WO0108449

Publication Title:

METHOD FOR THE REPRODUCTION OF SOUND WAVES USING ULTRASOUND LOUDSPEAKERS

Abstract:

The invention concerns a method for the reproduction of audio sound using ultrasound loudspeakers as well as a construction type of the loudspeakers and their application. A method and device for the reproduction of audio sound using an ultrasound generating device, whereby the audio signal to be reproduced is connected to the ultrasound frequency range via side-band amplitude modulation with a carrier signal in the ultrasound frequency range and whereby means are also provided to subject the ultrasound signal to dynamic error compensation. The compensated ultrasound signal is, if necessary, subjected to a frequency response linearisation procedure and then fed to an ultrasound convertor (loudspeaker), whereby means are provided for reducing the amplitude of the ultrasound carrier signal, (carrier reduction).

Data supplied from the esp@cenet database - http://ep.espacenet.com

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. Februar 2001 (01.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/08449 A1

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/EP00/03931

H04R 27/00

(22) Internationales Anmeldedatum:

2. Mai 2000 (02.05.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 19 980.9 30. April 19

30. April 1999 (30.04.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SENNHEISER ELECTRONIC GMBH & CO. KG [DE/DE]; Am Labor 1, D-30900 Wedemark (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): NIEHOFF, Wolfgang [DE/DE]; Auf der Horst 9C, D-30900 Wedemark (DE). GORELIK, Vladimir [DE/DE]; Forssmannweg 3, D-30627 Hannover (DE). GELHARD, Oliver [DE/DE]; Göhrdestrasse 1, D-30161 Hannover (DE).
- (74) Anwalt: FRITSCHE, Rainer; Eisenführ, Speiser & Partner, Arnulfstrasse 25, D-80335 München (DE).
- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR THE REPRODUCTION OF SOUND WAVES USING ULTRASOUND LOUDSPEAKERS
- (54) Bezeichnung: VERFAHREN ZUR WIEDERGABE VON AUDIOSCHALL MIT ULTRASCHALL-LAUTSPRECHERN

Einfache Realisierung des Ultraschall - Lautsprechers

SIMPLE EMBODIMENT OF THE ULTRASOUND LOUDSPEAKER

- 1...LOW FREQUENCY
- 2...FREQUENCY RESPONSE LINEARISATION 1
- 3...TWO-SIDE BAND AMPLITUDE MODULATION, CARRIER IN THE ULTRASOUND RANG
- 4....ERROR COMPENSATION
- 5...FREQUENCY RESPONSE LINEARISATION 2
- (57) Abstract: The invention concerns a method for the reproduction of audio sound using ultrasound loudspeakers as well as a construction type of the loudspeakers and their application. A method and device for the reproduction of audio sound using an ultrasound generating device, whereby the audio signal to be reproduced is connected to the ultrasound frequency range via side-band amplitude modulation with a carrier signal in the ultrasound frequency range and whereby means are also provided to subject the ultrasound signal to dynamic error compensation. The compensated ultrasound signal is, if necessary, subjected to a frequency response linearisation procedure and then fed to an ultrasound convertor (loudspeaker), whereby means are provided for reducing the amplitude of the ultrasound carrier signal, (carrier reduction).
- (57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Wiedergabe von Audioschall mit Ultraschall-Lautsprechern sowie eine Konstruktion der Ultraschall-Lautsprecher und ihre Anwendung. Verfahren und Vorrichtung zur Wiedergabe von Audioschall mittels einer Ultraschall erzeugenden Einrichtung, wobei das wiederzugebene Audiosignal durch eine Seitenband-Amplitudenmodulation mit einem Trägersignal im Ultraschallfrequenzbereich verknüpft wird, wobei Mittel vorgesehen sind, das modulierte Ultraschallsignal einer Dynamik-Fehler-Kompensation zu unterwerfen und das kompensierte Ultraschallsignal gegebenenfalls einer Frequenzganglinearisierung unterzogen wird und dann einem Ultraschall-Wandler (Lautsprecher) zugeführt wird, wobei Mittel vorgesehen sind, die Amplitude des Ultraschallträgersignals zu reduzieren (Trägerreduktion).

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- Mit internationalem Recherchenbericht.

Vor Ablauf der f\(\tilde{u}\)r \(\tilde{A}\)nderungen der Anspr\(\tilde{u}\)che geltenden
Frist: Ver\(\tilde{o}\)fjentlichung wird wiederholt, falls \(\tilde{A}\)nderungen
eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 01/08449 PCT/EP00/03931

Verfahren zur Wiedergabe von Audioschall mit Ultraschall-Lautsprechern

Die Erfindung betrifft ein Verfahren zur Wiedergabe von Audioschall mit Ultraschall-Lautsprechern sowie eine Konstruktion der Ultraschall-Lautsprecher und ihrer Anwendung.

Aus J. Acoust. Soc. Am., Vol. 73, No. 5, Mai 1983 "The audio spotlight: An application of nonlinear interaction of sound waves to a new type of loudspeaker design" ist bereits bekannt, einen Lautsprecher aus mehreren Ultraschallstrahlern aufzubauen. Mittels solcher Ultraschallstrahler kann Audioschall in einem Frequenzbereich abgestrahlt werden, indem der Audioschall selbst nicht mehr vom menschlichen Ohr wahrgenommen werden kann. Durch nichtlineare Effekte in der Luft wird bei hohem Schalldruck und Überlagerung zweier Ultraschallwellen ein

hörbarer Schall erzeugt. Die im Vergleich zu üblichen Audiosignalen hoher Frequenz des Ultraschalls bewirkt, daß die Abstrahlung des Schalls wegen seiner kleinen Wellenlänge und der im Vergleich dazu großen Wandlerabmessungen des Ultraschallstrahlers stark räumlich gerichtet erfolgt. Die Frequenzabhängigkeit der Richtcharakteristik herkömmlicher Lautsprecher - Kugelstrahler bei tiefen Frequenzen, Richtstrahler bei hohen Frequenzen - tritt bei einem Ultraschall-Lautsprecher kaum auf.

Ferner ist ein verschiebener Effekt im Konferenzband AES, 26.-29. September 1998, San Francisco, Californien, "The Use of Airborne Ultrasonics for Generating Audible Sound Beams" beschrieben. Auch hieraus sind Überlegungen zur Erzeugung eines hörbaren Schalls basierend auf der Abstrahlung des Audioschalls mittels Ultraschall bekannt.

Ferner ist das Phänomen der Erzeugung von Schallwellen mittels
Ultraschallstrahlern auch aus der Zeitschrift Audio, Heft 8, 1997, Seiten 7-8,
bekannt. Hierbei wird beschrieben, daß mittels eines Lautsprechersystems ein
erstes Signal von 200 kHz abgestrahlt wird und das Lautsprechersystem ein
zweites Signal mit derselben Frequenz von 200 kHz abstrahlt, wobei das zweite
Signal mit dem Audioschallsignal (20 Hz bis 20 kHz) moduliert ist. Durch das
nichtlineare Verhalten der Luft wird bei der Überlagerung der beiden Signale ein
Mischergebnis erzeugt, so daß die Differenz beider Signale voneinander als
akustischer Schall hörbar ist.

Als weiterer Stand der Technik sei auf Druckschriften US-A-4,872,148, US-A-4,439,642, US-A-4,439,641, US-A-4,409,441, US-A-4,280,204, US-A-4,199,246, WO-A-85/02748, EP-A-0 164 342, EP-A-0 154 256, CA 1 274 619, CA 1 215 164, CA 1 195 420, CA 1 120 578, AU-A-28287/77, AU-A-510193, WO98/39209, WO98/02976, WO98/02977, WO98/02978, WO98/26405, GB-A-2 225 426, DE-A-27 39 748, US-A-5,375,099, CA 1 274 619, DE-A-196 28 849, US-1,616,639, US-

A-1,951,669, US-A-2,461,344, US-A-3,398,810 hingewiesen. Weitere Merkmale der Ultraschall-Lautsprecher sind in den vorgenannten Literaturstellen beschrieben.

Obwohl es verschiedene Ansätze für Ultraschall-Lautsprecher gegeben hat, hat sich ein solches Produkt bislang am Markt nicht etablieren können. Dies hängt auch damit zusammen, daß trotz der besonderen Eigenschaften von Ultraschall-Lautsprechern einige Probleme auftauchen, die zum Teil mit dem Wesen der Ultraschallausbreitung zusammenhängen, andererseits aber auch mit dem Ultraschallstrahler selbst.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Wiedergabe von Audioschall sowie einen Ultraschall-Lautsprecher gegenüber den bisherigen Ansätzen zu verbessern, so daß eine qualitativ hochwertige Schallwiedergabe möglich ist. Die Aufgabe wird erfindungsgemäß mit einem Verfahren nach Anspruch 1 und einem Ultraschall-Lautsprecher nach Anspruch 2 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen und in der nachstehenden Beschreibung beschrieben.

Das erfindungsgemäße Verfahren verbindet niederfrequenten Audioschall mit der starken Richtcharakteristik des Ultraschalls. Die Richtcharakteristik des Lautsprechers ist damit nahezu unabhängig von der Signalfrequenz. Zum Verständnis der Erfindung und ihres Wesens sei auf folgendes hingewiesen: Mathematisch kann mit Formeln der nichtlinearen Akustik gezeigt werden, daß bei hohem Schalldruckpegel (p > 110 dB bei 40 kHz) infolge der Nichtlinearität des Mediums Luft neue Wellen entstehen, wenn mehrere Wellen in Wechselwirkung zueinander stehen. Die Frequenzen dieser Wellen entsprechen der Summen- und der Differenzfrequenz der ursprünglichen Wellen sowie Vielfachen davon (n \cdot $\omega_1 \pm m \cdot \omega_2$ wobei ω_1 und ω_2 Frequenzen der initiierten Schallwellen (Töne) und n, m ganze Zahlen sind). Die Summen- und Differenzfrequenzen treten in jedem Frequenzbereich auf. Deutliche Vorteile

gegenüber herkömmlichen Lautsprechem ergeben sich im Ultraschallbereich, indem eine sehr starke Richtcharakteristik der Wandler realisiert werden kann und die außerhalb des menschlichen Hörbereichs liegt. Die initiierenden Signale - also die Ultraschallwellen - sind dabei unhörbar.

Wenn z.B. ein erster Ton mit einer Frequenz von 200 kHz und ein zweiter Ton mit einer Frequenz von 201 kHz beim hohen Schalldruck in die Luft abgestrahlt wird, so entstehen in der Überlagerungszone der beiden Töne Summen- und Differenztöne. Der erste Summenton (f=200kHz+201kHz=401kHz) ist nicht hörbar. Zur Erzeugung von hörbarem Schall wird der erste Differenzton

(f=200kHz-201kHz=1kHz) ausgenutzt (Figur 4). Dieser Differenzton ist viel lauter als alle anderen bei der Wechselwirkung entstehenden Töne. Summen- und Differenztöne entstehen erst in einem nichtlinearen Medium wie Luft als Verzerrungsprodukte.

Die erzeugten Differenztöne haben hierbei die Eigenschaft, daß die Ausbreitung der Differenztöne (Sekundärschall) in Richtung des zu erzeugenden Ultraschalls (initiierende Töne, Primärschall) erfolgt. Ferner sind die Differenztöne nur im Bereich des Ultraschalls hörbar, d.h., die Richtcharakterstik der Differenztöne entspricht der des Ultraschalls. Schließlich steigt der Schalldruck der Differenztöne mit der Frequenz des Ultraschalls an.

Bei der technischen Realisierung eines erfindungsgemäßen Ultraschall-Lautsprechers, wird zunächst einmal das wiederzugebende noch niederfrequente Audiosignal einer Frequenzganglinearisierung unterworfen (Figur 1, Figur 2). Dieses Signal wird dann durch eine Zweiseitenband-Amplitudenmodulation mit einem Trägersignal im Ultraschallfrequenzbereich verknüpft. Anschließend wird dieses Ultraschallsignal einer Dynamik (-Fehler-Kompensation (Kompression)) unterworfen, das komprimierte Signal einer zweiten Frequenzganglinearlisierung unterzogen und dieses Signal wiederum dem Ultraschall-Lautsprecher zugeführt.

Alternativ zu der vorbeschriebenen Bildung des Ultraschallsignals kann statt der Zweiseitenband-Amplitudenmodulation eine Einseitenband-Amplitudenmodulation vorgesehen werden, wobei der Ultraschallträger vorzugsweise um einige dB, beispielsweise 12dB, unterdrückt wird (Figur 2).

Die ideale Mittenfrequenz, d.h. der Mittelwert zwischen der Ultraschallträgerfrequenz und der Seitenbandfrequenz(-Bereich) des abgestrahlten Ultraschallsignals ergibt sich aus der beabsichtigten Anwendung. Es können hierbei maßgeblich zwei Gruppen angegeben werden: A. Anwendung im Nahbereich bis ca. 50cm; B. Anwendung im Abstand von mehr als 50cm bis zur Fernbeschallung.

Aus dieser Bereichsunterteilung lassen sich unterschiedliche Anforderungen an die Mittenfrequenz ableiten. Die Höhe des hörbaren Schalldrucks hängt maßgeblich ab vom Schalldruck des Ultraschallsignals, dem Nichtlinearitätsparameter des Mediums, der Frequenz des entstehenden Audiosignals sowie vom Abstand zur Quelle und der Dämpfung des Mediums. Die Differenzfrequenzwelle DFW - also der hörbare Schall - baut sich mit zunehmendem Abstand zur Quelle auf. Bedingt durch die Dämpfung der Ultraschallwelle in der Luft wird in einer bestimmten Entfernung der größte Schalldruck erreicht, bis der Pegel bei größer werdender Entfernung infolge Dämpfung wieder abfällt. Die Dämpfung des Ultraschalls in der Luft hängt wiederum von der Ultraschallfrequenz ab. Je höher die Frequenz ist, desto höher ist auch die Absorption des Ultraschalls in Luft.

Für praktische Anwendungen bedeutet dies, daß für Anwendungen im Abstand von größer als 50cm bis einige Meter ein idealer Frequenzbereich von ca. 40kHz bis 500kHz (oder mehr) angegeben werden kann. Der Frequenzbereich ist einerseits hoch genug gewählt, um möglichst effektiv eine DFW zu erzeugen und einen ausreichenden Frequenzabstand zum hörbaren Schall zu gewährleisten, andererseits aber niedrig genug, daß die Dämpfung durch die Luft keinen zu großen Einfluß auf den Audioschall hat. Ein weiteres Kriterium ist die Richtcharakterstik des

Ultraschallstrahlers. Je höher die abgestrahlte Frequenz ist, desto gerichteter erfolgt die Abstrahlung.

Für den Nahbereich (kleiner als 50cm) ist eine höhere Frequenz sinnvoll, denn die Absorption der Luft ist im Nahbereich von vernachlässigbarer Größe, während die Dimensionen des Ultraschallwandlers je nach Anwendung so klein sind, daß eine stärkere Richtwirkung nicht durch die Formgebung des Wandlers erreicht, sondern nur durch Erhöhung der Ultraschallfrequenz realisiert werden kann.

Die Frequenzverschiebung des Niederfrequenzsignals (Sprache, Musik, Geräusche, Klänge) in dem Ultraschallbereich erfolgt durch eine Amplitudenmodulation. Dabei entsteht ein Trägersignal sowie ein oberes und ein unteres Seitenband, die die modulierte Information enthalten. Bei hohem Schalldruck wird das Trägersignal, z.B. 200kHz und das untere Seitenband über einen Wandler abgestrahlt und in der Luft überlagert. Durch das nichtlineare Verhalten der Luft entsteht dabei ein Signal, dessen Frequenz der Differenz aus der Träger- und Seitenbandfrequenz entspricht. Je höher die Frequenzen der abgestrahlten Töne bei konstanter Amplitude sind, desto lauter sind die entstehenden Differenztöne. Der Schalldruck der Differenztöne steigt quadratisch mit der Differenzfrequenz der abgestrahlten Ultraschalltöne. Durch eine hohe Ultraschallfrequenz läßt sich die erzielbare Richtwirkung maximieren und der Frequenzabstand des abgestrahlten Ultraschalls zum menschlichen Hörberereich vergrößern.

Der Schalldruck der Differenzfrequenzen ergibt sich u.a. aus dem Produkt der zu mischenden Signale. Bei der Abstrahlung eines amplitudenmodulierten Signals erfolgt auch im Fall einer Modulationspause, d.h. wenn kein Signal am Modulator anliegt, die Abstrahlung des Trägers in voller Höhe. Die Amplitude des Trägers bedeutet eine ständige Geräuschbelastung für die Ohren und eine permanente elektrische Belastung der Wandler. Bei einer gewöhnlichen Amplitudenmodulation beträgt die Amplitude eines Seitenbandes mxA_T/2 (mit m=Modulationsindex und A_T=Trägeramplitude). Der

Träger wird ständig abgestrahlt und hat eine größere Amplitude als das Seitenband, daß im Takt der Niederfrequenz moduliert ist. Diese vorgenannten Probleme können mit den folgenden beschriebenen Maßnahmen sinnvoll beseitigt werden. Eine Geräuschreduktion läßt sich erreichen, wenn die Amplitude des Trägers reduziert wird, z.B. durch einen Filter oder bereits im Modulator durch eine teilweise Trägerunterdrückung, und gleichzeitig die Amplitude des oberen Seitenbandes erhöht wird. Dadurch wird der Dauerpegel reduziert und die relative, auf den Träger bezogene Änderung des Pegels durch die Modulation größer. Für den Fall einer Trägerunterdrückung muß das untere Seitenband stark unterdrückt werden, um eine Mischung der beiden Seitenbänder untereinander zu verhindern, welche starke Verzerrungen hervorrufen würde. Die vorbeschriebene Maßnahme kann auch allgemein als "Trägerreduktion" bezeichnet werden.

Wird die Trägeramplitude mit der Amplitude des zu übertragenden Signals moduliert, so wird im Fall einer Modulationspause kein Signal abgestrahlt. Erforderlich ist dann eine zusätzlich gesteuerte Kompressorstufe, die Amplitudenfehler ausgleicht, die sich aus der Modulation des Trägers ergeben. Zur Beseitigung des oben beschriebenen Problems kann also eine Modulation der Trägeramplitude im Takt des zu modulierenden Signals vorgenommen werden.

Ferner kann einem oben beschriebenen Problem begegnet werden, indem eine Komprimierung des zu modulierenden Signals erreicht wird, so daß das Signal in seiner Dynamik verringert wird und damit insbesondere die leisen Signalpassagen in ihrer Lautstärke angehoben werden. Dadurch läßt sich der Modulator optimal aussteuem. Nach der Modulation muß die Komprimierung durch eine Expandierung wieder ausgeglichen werden, um die Originaldynamik zu erhalten. Mit der beschriebenen Komprimierung des Modulationssignals vor der Modulation konnten sehr gute Ergebnisse erzielt werden.

Eine weitere Maßnahme zur Beseitigung des obigen Problems besteht darin, in

Modulationspausen eine Ansteuerung der Wandler mit dem Trägersignal zu unterdrücken (Stummschaltung), so daß das Modulator-Ausgangssignal ausgeblendet wird, wenn kein Eingangssignal anliegt.

Die amplitudenmodulierte Niederfrequenzschwingung wird bei hohem Schalldruck mit einem Wandler abgestrahlt. In der Luft entsteht durch die Wechselwirkung zwischen der Trägerschwingung und dem modulierten Seitenband ein Differenzfrequenz-Spektrum, das dem Spektrum der Niederfrequenz entspricht. Um einen niedrigen Klirrfaktor zu erzielen, ist eine Einseitenbandmodulation in besonders bevorzugter Weise geeignet. Wird der Träger in einer gewöhnlichen Zweiseitenband-Amplitudenmodulation teilweise unterdrückt, so ist eine Unterdrückung des unteren Seitenbandes unerläßlich, weil die Mischung der beiden Seitenbänder untereinander zusätzliche Differenzfrequenzen bewirkt, die sich in Form eines Klirrfaktors unerwünscht bemerkbar machen.

Mit piezoelektrischen Wandlern ist die Abstrahlung des modulierten Signals jedoch so schmalbandig, daß das untere Seitenband nur sehr leise wiedergegeben wird. Die Mischung der Seitenbänder untereinander ist dadurch schalldruckmäßig vernachlässigbar. Das setzt aber voraus, daß der Träger so laut ist, daß die Mischung von Träger und Seitenband ein viel lauteres Signal ergibt als die Mischung der Seitenbänder untereinander. Die Modulation wird demnach entweder als gewöhnliche Zweiseitenband-Amplitudenmodulation realisiert oder als Einseitenband-Amplitudenmodulation, bei der der Träger zur weiteren Funktionsoptimierung um beispielsweise 12dB unterdrückt wird.

Der Zusammenhang zwischen dem elektrischen Eingangssignal der piezoelektrischen Wander und dem Schalldruckpegel der Differenztöne ist nicht linear. Mit einer Kompensationsschaltung läßt sich hierbei eine lineare Übertragung erzielen (Dynamikkompression).

Mit einer Frequenzganglinearisierung, die insbesondere bei piezoelektrischen Wandlern mit stark nichtlinearem Frequenzgang erforderlich ist, werden frequenzabhängige Amplitudenfehler des Übertragungssystems ausgeglichen. Die Entzerrung kann vor der Modulation im Niederfrequenzbereich erfolgen oder nach der Modulation im Ultraschallbereich. Die Entzerrung nach der Modulation hat den Vorteil, daß dadurch die Aussteuerungsreserve des Modulators bei einer Anhebung eines Frequenzbereiches nicht eingeschränkt wird.

Im abgestrahlten Ultraschallkegel entsteht die Differenztonwelle. Der Querschnitt des Kegels hat dabei einen Einfluß auf den resultierenden Audio-Frequenzgang. An einer Grenzfläche, die in den Schallstrahl hineingehalten wird, entsteht das hörbare Signal. Die untere Grenzfrequenz hängt dabei von der Querschnittsfläche des in den Strahl gebrachten Gegenstandes ab. Um für einen Reflektor an einer Wand einen linearen Frequenzgang zu erzielen, ist eine auf die Fläche des Reflektors abgestimmte Entzerrung notwendig (flächenbezogene Entzerrung).

Das Maximum des Schalldrucks ergibt sich in einer bestimmten Entfernung von der Ultraschallquelle. Es tritt für verschiedene Audiofrequenzen in unterschiedlichen Abständen auf. Ein linearer Frequenzgang kann sich deshalb für eine bestimmte Entfernung nur durch eine spezielle entfernungsbezogene Entzerrung einstellen. Die Signalverarbeitung muß deshalb für einen linearen Frequenzgang eine spezielle entfernungsabhängige Frequenzgangsentzerrung beinhalten.

Um einen hohen Ultraschall-Pegel zu erzeugen, wird eine größere Anzahl von Wandlern parallelgeschaltet. Es konnte hierbei herausgefunden werden, daß die Anordnung der Wandler eine große Rolle spielt. So sind Wandler auf einer Platte dichtestmöglich angeordnet, so daß die Tiefenwiedergabe des Lautsprechers leiser als bei einer Anordnung ist, bei der die gleiche Anzahl von Wandlern ringförmig angebracht ist.

Die beschriebene analoge Amplitudenmodulation läßt sich auch digital realisieren.
Hierbei ist die Multiplikation einer Sinusschwingung (Träger) mit einem
Niederfrequenzsignal, teilweise Unterdrückung des Trägers sowie die Unterdrückung
des unteren Seitenbandes mit einem digitalen Signalprozessor-Baustein möglich.
Frequenzgangkonturen lassen sich ebenfalls beim Einsatz eines
Digitalsignalprozessors relativ leicht durchführen.

Die Höhe des Audioschalldrucks hängt unter anderem aber auch vom Nichtlinearitätsparameter des akustisch durchlässigen Mediums ab. Für Luft beträgt der Parameter _=1,2. Für das Medium Wasser beträgt _=3,5. Es konnte nun gefunden werden, daß bei einem Wasserluftblasengemisch ein Extremwert von _ von über 5000 angegeben werden kann, was bedeutet, daß gegenüber dem Medium Luft mit einem Wasser/Luftgemisch der Schalldruck um den Faktor 4000 erhöht werden kann. Auf diese Art ist es möglich, beispielsweise ein Wasser/Luftgemisch in einer Kopfhörermuschel zu realisieren, so daß das Wasser/Luftgemischmedium zwischen dem Ultraschallstrahler und dem Hörer angeordnet ist und den Schalldruck des Audiosignals erhöht.

Der Audioschalldruck kann auch durch andere Maßnahmen noch weiter vergrößert werden. Bedingt durch die zunehmende Aufsteilung der Wellenfront im Zuge der Ausbreitung, was gleichbedeutend ist mit der Entstehung von Oberwellen. Nach einer Energiebilanz steht die Energie, die in den Oberwellen steckt, nicht für die Differenztonwelle zur Verfügung. Es erfolgt gewissermaßen ein Energiefluß von der Grundwelle zu den Oberwellen. Wenn es gelingt, diesen Energiefluß zu bremsen, so ließe sich der Audioschalldruck vergrößern. Ein Realisierungsvorschlag hierfür sieht wie folgt aus:

Ein schalldurchlässiges Medium enthält kleine Hohlräume, welche zusammen mit dem Material eine Vielzahl von Helmholz-Resonatoren ergibt. Die Resonatoren sind auf der ersten Oberwelle des Signals abgestimmt und bremsen dadurch den Energiefluß zu

höheren Oberwellen. Füllt man die Hohlräume mit einem nichtlinearen Medium, z.B. einer Flüssigkeit, so läßt sich durch diese Maßnahme ein höherer Wert für die Nichtlinearitätsparameter erzielen, wodurch der Schalldruck der Differenztöne erhöht würde.

Durch diese Technologie lassen sich Reflektoren bauen, die auf passive Weise den Schalldruck der Differenztöne verstärken.

Für einen in die Kopfstütze eines Autos eingebauten Ultraschall-Lautsprecher läßt sich durch die beschriebene "Dämpfungsplatte" ein höherer Audioschall bei gleichzeitig reduziertem Ultraschall erreichen. Für kabellose Kopfhörer wäre es denkbar, unhörbaren Ultraschall drahtlos zu übertragen und über den oben beschriebenen Absorber die Differenztöne auf einen ausreichenden Pegel zu bringen.

Mathematisch kann mit Formeln der nichlinearen Akustik gezeigt werden, daß bei hohem Schalldruckpegel (p>110dB bei 40kHz) infolge der Nichlinearität des Mediums Luft neue Wellen entstehen, wenn mehrere Wellen in Wechselrichtung zueinander stehen.

Die Frequenzen dieser Wellen entsprechen der Summen- und der Differenzfrequenz der ursprünglichen Wellen sowie Vielfachen davon.

(n * ω_1 + m ω_2 mit ω_1 , ω_2 : Frequenzen der initiieren Töne und n, m: gaäne Zahlen).

Die Summen- und Differenzfrequenzen treten in jedem Frequenzbereich auf.

Deutliche Vorteile gegenüber herkömmlichen Lautsprechern ergeben sich im

Ultraschallbereich, in dem eine sehr starke Richtcharakteristik der Wandler realisiert werden kann und der außerhalb des menschlichen Hörbereichs liegt; die initiierenden Signale sind dabei unhörbar.

Beispiel:

- 12 -

Wird ein Ton der Frequenz 200kHz und ein zweiter Ton der Frequenz 201kHz bei hohem Schalldruck in die Luft abgestrahlt, so entstehen in der Überlagerungszone der beiden Töne Summen- und Differenztöne. Der erste Summenton (f=200kHz+201kHz=401kHz) ist nicht hörbar. Zur Erzeugung von hörbarem Schall wird der erste Differenzton (f=200kHz-201kHz=1kHz) ausgenutzt. Er ist außerdem viel lauter als alle anderen bei der Wechselwirkung entstehenden Töne. Erst in einem nichtlinearen Medium wie Luft entstehen Verzerrungsprodukte, die Summen- und Differenztöne ergeben.

Eigenschaften der erzeugten Differenztöne

- Die Ausbreitung des Sekundärschalls (der Differenztöne) erfolgt in Richtung des Primärschalls (der initiierenden Töne),
- Der Sekundärschall ist nur im Bereich des Primärschalls hörbar, das heißt, die Richtcharakteristik des Sekundärschalls entspricht der des Primärschalls,
- Der Schalldruck der Differenztöne steigt mit der Frequenz der initiierenden Töne.

Technische Realisierung (Beispielhafte Ausführung der Erfindung):

Figur 1 und Figur 2 zeigen Blockschaltbilder eines Ultraschall-Lautsprechers, wobei Figur 2 eine verbesserte Schaltung gegenüber Figur 1 darstellt.

Wie in Figur 1 zu sehen, wird zunächst einmal das niederfrequente Audiosignal einer Frequenzganglinearisierung unterzogen und dann einer Zweiseitenband-Amplitudenmodulation (und/oder einer Frequenz- und/oder Phasenmodulation) unterzogen, wobei die Trägerfrequenz im Ultraschallbereich liegt. Hiernach wird gegebenenfalls eine Dynamikkompression bzw. Dynamik-Fehler-Kompensation (signalabhängig) durchgeführt. Anschließend erfolgt nochmals eine weitere Frequenzganglinearisierung und daß dann ausgegebene Signal wird dem Ultraschallwandler zugeführt.

Die Schaltung nach Figur 2 unterscheidet sich von Figur 1 im wesentlichen dadurch, daß statt der Zweiseitenband-Amplitudenmodulation eine Einseitenband-Amplitudenmodulation durchgeführt wird, wobei der Träger im Ultraschallbereich um ca. 12dB unterdrückt wird.

Die ideale Mittenfrequenz, d.h. der Mittelwert zwischen Trägerfrequenz und Seitenbandfrequenz (-bereich) des abgestrahlten Ultraschallsignals ergibt sich aus der beabsichtigten Anwendung. Es können zwei Gruppen angegeben werden:

- 1. Anwendungen im Nahbereich bis ca. 50cm
- 2. Anwendungen im Abstand > 50cm und Fernbeschallung

Aus dieser Bereichsunterteilung lassen sich unterschiedliche Anforderungen an die Mittenfrequenz ableiten. Die Höhe des hörbaren Schalldrucks hängt ab vom Schalldruck des Ultraschallsignals, dem Nichlinearitätsparameter des Mediums, der Frequenz des entstehenden Audiosignals sowie vom Abstand zur Quelle und der Dämpfung des Mediums. Die Differenzfrequenzwelle baut sich mit zunehmendem Anstand zur Quelle auf. Bedingt durch die Dämpfung der Ultraschallwelle in der Luft wird in einer bestimmten Entfernung der größte Schalldruck erreicht, bis der Pegel bei größer werdender Entfernung infolge Dämpfung wieder abfällt. Die Dämpfung des Ultraschalls in der Luft hängt wiederum von der Frequenz ab. Je höher die Frequenz ist, desto höher ist auch die Absorption des Schalls in Luft.

Für praktische Anwendungen bedeutet dies, daß für Applikationen im Abstand >50cm bis einige Meter ein idealer Frequenzbereich von ca. 80kHz bis 180kHz angegeben werden kann. Der Frequenzbereich ist einerseits hoch genug gewählt, um möglichst effektiv eine DFW zu erzeugen und einen ausreichenden Frequenzabstand zum hörbaren Schall zu gewährleisten, andererseits aber niedrig genug, daß die Dämpfung durch die Luft keinen zu großen Einfluß auf den Audioschall hat. Ein weiteres Kriterium

ist die Richtcharakteristik des Strahlers. Je höher die abgestrahlte Frequenz ist, desto gerichteter erfolgt die Abstrahlung.

Für den Nahbereich ist eine höhere Frequenz sinnvoll, denn die Absorption der Luft ist im Nahbereich von vernachlässigbarer Größe, während die Dimensionen des Wandlers je nach Anwendung so klein sind, daß eine stärkere Richtwirkung nicht durch die Formgebung des Wandlers erreicht, sondern nur durch Erhöhen der Ultraschallfrequenz realisiert werden kann.

Frequenzverschiebung des Niederfrequenzsignals

Die Frequenzverschiebung des Niederfrequenzsignals (Sprache, Musik, Geräusche, Klänge) in den Ultraschallbereich erfolgt durch eine Amplitudenmodulation. Dabei entsteht ein Trägersignal sowie ein oberes und ein unteres Seitenband, die die modulierte Information enthalten.

Bei hohem Schalldruck wird das Trägersignal, z.B. 200kHz, und das obere Seitenband über einen Wandler abgestrahlt und in der Luft überlagert. Durch das nichtlineare Verhalten der Luft entsteht dabei ein Signal, dessen Frequenz der Differenz aus der Träger- und der Seitenbandfrequenz entspricht. Je höher die Frequenzen der abgestrahlten Töne bei konstanter Amplitude sind, desto lauter sind die entstehenden Differenztöne. Der Schalldruck der Differenztöne steigt quadratisch mit der Differenzfrequenz der abgestrahlten Ultraschalltöne. Durch eine hohe Ultraschallfrequenz läßt sich die erzielbare Richtwirkung maximieren und der Frequenzabstand des abgestrahten Ultraschalls zum menschlichen Hörbereich vergrößern.

Unzulänglichkeit bei der Amplitudenmodulation: permanente Trägeramplitude

Der Schalldruck der Differenzfrequenzen ergibt sich u.a. aus dem Produkt der zu mischenden Signale. Bei der Abstrahlung eines amplitudenmodulierten Signals erfolgt auch im Fall einer Modulationspause, d.h. wenn kein Signal am Modulator anliegt, die Abstrahlung des Trägers in voller Höhe. Die hohe Amplitude des Trägers bedeutet eine ständige Geräuschbelastung für die Ohren und eine permanente elektrische Belastung der Wandler. Bei einer gewöhnlichen Amplitudenmodulation beträgt die

Amplitude eines Seitenbandes m * $\frac{A_T}{2}$ (mit m=Modulationsindex und

A_r:Trägeramplitude). Der Träger wird ständig abgestrahlt und hat eine größere Amplitude als das Seitenband, das im Takt der Niederfrequenz moduliert ist. Daher sind folgende Maßnahmen sinnvoll:

Trägerreduktion

Eine Geräuschreduktion läßt sich erreichen, wenn die Amplitude des Trägers reduziert wird, z.B. durch ein Filter oder bereits im Modulator durch eine teilweise Trägerunterdrückung, und gleichzeitig die Amplitude des oberen Seitenbandes erhöht wird. Dadurch wird der Dauerpegel reduziert und die relative, auf den Träger bezogene Änderung des Pegels druch die Modulation größer. Für den Fall einer Trägerunterdrückung muß das untere Seitenband stark unterdrückt werden, um eine Mischung der beiden Seitenbänder untereinander zu verhindern, welche starke Verzerrungen hervorrufen würde.

Modulation der Trägeramplitude im Takt des zu modulierenden Signals

Wird die Trägeramplitude mit der Amplitude des zu übertragenen Signals moduliert, so wird im Fall einer Modulationspause kein Signal abgestrahlt. Erforderlich ist dann eine zusätzliche gesteuerte Kompressorstufe, die Amplitudenfehler ausgleicht, die sich aus der Modulation des Trägers ergeben.

Komprimierung des Modulationssignals vor der Modulation

Mit einer Komprimierung des zu modulierenden Signals ist zu erreichen, daß das Signal in seiner Dynamik verringert wird und damit insbesondere die leisen Signalpassagen in ihrer Lautstärke angehoben werden. Dadurch läßt sich der Modulator optimal aussteuern. Nach der Modulation muß die Komprimierung durch eine Expandierung wieder ausgeglichen werden, um die Originaldynamik zu erhalten.

Stummschaltung

Um in Modulationspausen eine Ansteuerung der Wandler mit dem Trägersignal zu unterdrücken, wird das Modulator-Ausgangssignal ausgeblendet, wenn kein Eingangssignal anliegt.

Praktische Auslegung des Modulators

Die amplitudenmodulierte Niederfrequenzschwingung wird bei hohem Schalldruck mit einem Wandler abgestrahlt. In der Luft entsteht durch die Wechselwirkung zwischen der Trägerschwingung und dem modulierten Seitenband ein Differenzfrequenz-Spektrum, das dem Spektrum der Niederfrequenz entspricht. Um einen niedrigen Klirrfaktor zu erzielen, ist eine Einseitenbandmodulation optimal. Wird der Träger bei einer gewöhnlichen Zweiseitenband-AM teilweise unterdrückt, so ist eine Unterdrückung des unteren Seitenbandes unerläßlich, weil die Mischung der beiden Seitenbänder untereinander zusätzliche Differenzfrequenzen bewirkt, die sich in Form von Klirrfaktor bemerkbar machen.

Mit piezoelektrischen Wandlern ist die Abstrahlung des modulierten Signals jedoch so schmalbandig, daß das untere Seitenband nur sehr leise wiedergegeben wird. Die Mischung der Seitenbänder untereinander ist dadurch schalldruckmäßig vernachlässigbar. Das setzt aber voraus, daß der Träger so laut ist, daß die Mischung

von Träger und Seitenband ein viel lauteres Signal ergibt als die Mischung der Seitenbänder untereinander.

Die Modulation wird demnach entweder als gewöhnliche Zweiseitenband-AM realisiert oder als Einseitenband-AM, bei der der Träger zur weiteren Funktionsoptimierung um ca. 12dB unterdrückt wird.

Dynamikkompression (Dynamik-Fehler-Kompensation)

Der Zusammenhang zwischen dem elektrischen Eingangssignal der piezoelektrischen Wandler und dem Schalldruckpegel der Differenztöne ist nichtlinear. Mit einer Kompensationsschaltung läßt sich eine lineare Übertragung erzielen.

Linearisierung des Frequenzgangs

Mit einer Frequenzganglinearisierung, die insbesondere bei piezoelektrischen Wandlern mit stark nichtlinearem Frequenzgang erforderlich ist, werden frequenzabhängige Amplitudenfehler des Übertragungssystems ausgeglichen. Die Entzerrung kann vor der Modulation im Niederfrequenzbereich erfolgen oder nach der Modulation im Ultraschallbereich. Die Entzerrung nach der Modulation hat den Vorteil, daß dadurch die Aussteuerungsreserve des Modulators bei einer Anhebung eines Frequenzbereiches nicht eingeschränkt wird.

Flächenbezogene Entzerrung

Im abgestrahlten Ultraschallkegel entsteht die Differenztonwelle. Der Querschnitt des Kegels hat dabei einen Einfluß auf den resultierenden Audio-Frequenzgang. An einer Grenzfläche, die in den Schallstrahl hineingehalten wird, entsteht das hörbare Signal. Die untere Grenzfrequenz hängt dabei von der Querschnittsfläche des in den Strahl gebrachten Gegenstandes ab. Um für einen Reflektor an einer Wand einen linearen

Frequenzgang zu erzielen, ist eine auf die Fläche des Reflektors abgestimmte Entzerrung notwendig.

Entfernungsbezogene Entzerrung

Das Maximum des Schalldrucks ergibt sich in einer bestimmten Entfernung von der Quelle. Es tritt für verschiedene Audiofrequenzen in unterschiedlichen Abständen auf. Ein linearer Frequenzgang kann sich deshalb für eine bestimmte Entfernung nur durch eine spezielle entfernungsbezogene Entzerrung einstellen. Die Signalverarbeitung muß deshalb für einen linearen Frequenzgang eine spezielle entfernungsabhängige Frequenzgangentzerrung beinhalten.

Erhöhung des Schalldrucks durch große Anzahl von Wandlem

Um den hohen Ultraschall-Pegel zu erzeugen, wird eine größere Anzahl von Wandlem parallelgeschaltet.

Die Anordnung der Wandler spielt dabei eine Rolle: sind die Wandler auf einer Platte dichtestmöglich angeordnet, so ist die Tiefenwiedergabe des Lautsprechers leiser als bei einer Anordnung, bei der die gleiche Anzahl an Wandlern ringförmig angebracht ist.

Modulation durch Digital Signal Processing

Die beschriebene analoge Amplitudenmodulation läßt sich auch digital realisieren. Multiplikation einer Sinusschwingung (Träger) mit einem Niederfrequenzsignal, teilweise Unterdrückung des Trägers sowie Unterdrückung des unteren Seitenbandes sind mit einem DSP-Baustein möglich – Figur 3 -. Frequenzgangkorrekturen lassen sich ebenfalls relativ einfach durchführen.

Nichtlinearitätsparameter

Die Höhe des Audioschalldrucks hängt u.a. vom Nichtlinearitätsparameter des Mediums ab. Für Luft beträgt der Parameter ε =1,2. Für das Medium Wasser beträgt ε =3,5, für Wasser mit Luftblasen kann ein Extremwert von ε =5000 angegeben werden. Gegenüber dem Medium Luft kann also theoretisch ein um den Faktor 4000 größerer Schalldruck erreicht werden.

Ein geeignetes Medium zwischen Ultraschallstrahler und Hörer kann den Schalldruck des Audiosignals erhöhen.

Der Audioschalldruck kann durch eine weitere Maßnahme vergrößert werden. Bedingt durch die zunehmende Aufsteilung der Wellenfront im Zuge der Ausbreitung was gleichbedeutend ist mit dem Entstehen von Oberwellen. Nach einer Energiebilanz steht die Energie, die in den Oberwellen steckt, nicht für die Differenztonwelle zur Verfügung. Es erfolgt gewissermaßen ein Energiefluß von der Grundwelle zu den Oberwellen. Wenn es gelingt, diesen Energiefluß zu bremsen, so ließe sich der Audioschalldruck vergrößern.

Ein Realisierungsvorschlag sieht folgendermaßen aus:

Ein schalldurchlässiges Medium enthält kleine Hohlräume, welche zusammen mit dem Material eine Vielzahl von Heimholtz-Resonatoren ergibt. Die Resonatoren sind auf die ersten Oberwellen des Signals abgestimmt und bremsen dadurch den Energiefluß zu höheren Oberwellen. Füllt man die Hohlräume mit einem nichtlinearen Medium, z.B. einer Flüssigkeit, so läßt sich durch diese Maßnahme ein höherer Wert für den Nichtlinearitätsparameter erzielen, wodurch der Schalldruck der Differenztöne erhöht wurde.

Durch diese Technologie lassen sich Reflektoren bauen, die auf passive Weise den

Schalldruck der Differenztöne verstärken.

Für einen in die Kopfstütze eines Autos eingebauter Ultraschall-Lautsprecher läßt sich durch die beschriebene "Dämpfungsplatte" ein höherer Audioschall bei gleichzeitig reduziertem Ultraschall erreichen.

Für kabellose Kopfhörer ist es denkbar, unhörbaren Ultraschall drahtlos zu übertragen und über den oben beschriebenen Absorber die Differenztöne auf ein hohen Pegel zu verstärken.

Praktische Anwendungen

Da hörbarer Schall nur in der Überlagerungszone der gemischten Ultraschallsignale entsteht, ist durch die räumliche getrennte Abstrahlung von Träger- und Seitenbandsignal über eigene Wandler eine nahezu punktförmige "Projektion" des Schalls möglich. Die Abstrahlung beider Signale über einen einzigen Wandler bzw. ein Wandlerarray hingegen verändert die punktförmige in eine linienförmige Charakteristik eintlang der Ausbreitungsrichtung des Ultraschalls.

Praktische Anwendungen des Ultraschall-Lautsprechers sind in erster Linie solche, bei denen die starke Richtwirkung des Lautsprechers ausgenutzt wird. Bei den Anwendungen a) - e) sorgt ein absorbierendes Material hinter dem zu beschallenden Bereich dafür, eine rückwärtige Reflexion des Ultraschalls zu verhindern.

a) Kunstobjekte die "sprechen" Beschallung eines Kunstobjektes derart, daß der Schall nur in unmittelbarer Umgebung des Objektes hörbar ist. Der Wandler kann bspw. Über dem Objekt angeordnet werden und ist nur innerhalb eines kleinen Bereichs um das Objekt herum hörbar. Eine Beschallung des umliegenden Bereichs erfolgt dadurch nicht.

- b) Aktive Lärmkompensation für Auto, Flugzeug, Bus, Zug: Mit einem Mikrofon wird das Umgebungsgeräusch aufgenommen und analysiert. Mit einer elektronischen Schaltung wird ein Signal mit entgegengesetzter Phase erzeugt und mit dem Ultraschall-Übertragungsverfahren sitzplatzabhängig und gerichtet abgestrahlt. Die Überlagerung des Schalls mit dem erzeugten Gegenschall bewirkt eine Umgebungsgeräuschminderung.
- c) Konferenzsysteme zur räumlich adressierbaren Beschallung in verschiedenen Sprachen: In Konferenzräumen werden die einzelnen Sitzplätze selektiv beschallt, ohne daß der jeweilige Nachbar gestört wird. So lassen sich verschiedene Sprachen gleichzeitig und ohne Kopfhörer übertragen.
- d) Lautsprecher im Flugzeug, Bus, Zug als Kopfhörerersatz: Die starke Richtwirkung des Ultraschall-Lautsprechers ermöglicht eine Beschallung mit Lautsprechern statt mit Kopfhörern. Dies ist durch Realisierung von elektrisch oder mechanisch schwenkbare Strahler möglich und erlaubt ein "Audio on Demand".
- e) Gerichtete Beschallung auf der Bühne (Souffleuse)
- f) Im Auto als adressierbarer Lautsprecher (Im Dachhimmel oder Kopfstütze angebrachte Wandler sind über ein Bedienfeld mit Matrixdisplay steuerbar)
- g) Beschallung von Computer-Arbeitsplätzen am Monitor. Um die Bildröhre des Monitors herum sind Wandler angebracht. Der Schall ist damit nur direkt vor dem Monitor hörbar.
- h) "Ultraschalltapete" oder Ultraschalldecke zur aktiven Lärmkompensation im Heim, Funktion s.o.
- i) Surround-Lautsprecher: Ausnutzung von Wandreflexionen: "Projektion" der

Surroundinformation auf die Raumwände, an denen sich virtuelle Schallquellen befinden sollen. Die hinteren Boxen müssen damit nicht zwangsläufig hinter dem Hörer aufgestellt werden.

- j) Beschallung bei PA-Anwendungen: Akustische "Ausleuchtung" ganz bestimmter Zonen. Dabei Abgrenzung der umliegenden Bereiche (Audio on Demand).
- k) Freisprecheinrichtung (im Auto zum Telefonieren): Durch die starke Richtwirkung des Lautsprechers läßt sich bei geeigneter Anbringung des Mikrofons erreichen, daß es zwischen Lautsprecherschall und dem aufgenommenen Mikrofonschall zu keiner akustischen Rückkopplung kommt. Kombination aus Ultraschall-Lautsprecher und Richtmikrofon zur Vermeidung einer akustischen Rückkopplung: Der Lautsprecher ist bspw. über dem Zuhörer angeordnet während das Richtmikrofon frontal auf den Sprecher gerichtet ist. Der stark gerichtete Schall des Ultraschall-Lautsprechers erreicht das Mikrofon nicht, so daß keine akustische Rückkopplung entstehen kann (z.B. in TV-studios bei Zuschauerfragen.
- Ist an jedem Sitzplatz ein Ultraschall-Lautsprecher installiert, so läßt sich ein Telefonat an jeden Sitzplatz weiterleiten, ohne daß der Telefonhörer weitergereicht werden muß.

Bei dem hier beschriebenen Verfahren zur Wiedergabe von Audioschall wird über einen speziellen Wandler ausschließlich unhörbarer Ultraschall in die Luft abgestrahlt.

Durch nichtlineare Effekte in der Luft wird bei hohem Schalldruck und der Überlagerung zweier Ultraschallwellen hörbarer Schall erzeugt. Die im Vergleich zu üblichen Audiosignalen hohe Frequenz des Ultraschalls bewirkt, daß die Abstrahlung des Schalls wegen seiner kleinen Wellenlänge und der im Vergleich dazu relativ

großen Wandlerabmessungen stark räumlich gerichtet erfolgt. Die Frequenzabhängigkeit der Richtcharakteristik herkömmlicher Lautsprecher (Kugelstrahler bei tiefen Frequenzen, Richtstrahler bei hohen Frequenzen) tritt bei diesem Lautsprecher kaum auf.

Das Verfahren verbindet niederfrequenten Audioschall mit der starken Richtcharakteristik des Ultraschalls. Die Richtcharakteristik des Lautsprechers ist damit nahezu unabhängig von der Signalfrequenz.

Reduzierung der Verzerrungen bei Amplitudenmodulation

Die Abstrahlung des modulierten Signals erfolgt mit Ultraschallwandlern. Handelt es sich bei dem Signal um ein zweiseitenmoduliertes AM-Signal, so lassen sich prinzipbedingte Verzerrungen folgendermaßen reduzieren:

- 1. durch schmalbandige Wandler mit hoher Güte
- 2. bei breitbandigen Wandlern durch ein vorgeschaltetes Filter

Bei schmalbandigen Wandlern entfällt das Filter, da die Übertragungsfunktion der Wandler bereits der eines schmalbandigen Filters äquivalent ist.

Das System ist so abzustimmen, daß die Trägerfrequenz ca. auf dem -6dB Punkt der Filterflanke zu liegen kommt. Das Abschneiden des unteren Seitenbandes bewirkt eine Reduktion der Verzerrungen.

Temperaturabhängige Drift der Filterflanke von schmalbandigen Wandlern und Filtern muß durch Nachführen der Trägerfrequenz kompensiert werden. Die Nachführung der Trägerfrequenz erfolgt möglichst in Signalpausen.

Bei Sprachwiedergabe sollte zur Erhöhung der Sprachverständlichkeit eine Signalfilterung des zu modulierenden Audiosignals vorgenommen werden. Das Filter ist so auszulegen, daß ab der Signalfrequenz von 1kHz eine Dämpfung von 3dB/Okt. erfolgt.

Reduzierung der Verzerrungen infolge der Wandlergeometrie

Überschreiten die Wandlerabmessungen den Wert von ca. ¼ der niedrigsten abzustrahlenden Niederfrequenz-Wellenlänge, so treten im Nahfeld des Wandlers in zunehmendem Maß Verzerrungen durch Laufzeitunterschiede der Signale auf. Die Abmessungen des Wandlers sollten deshalb kleiner als die genannte Wellenlänge dimensioniert werden.

Ergänzung zur technischen Umsetzung der Modulation

Eine noch stärker gerichtete Abstrahlung des Audiobandes läßt sich folgendermaßen erreichen:

Der Schalldruck des Audiobandes hängt ab vom Produkt der Schalldrücke des Trägersignals und des Seitenbandes. Durch die Erhöhung des Schalldrucks - entweder des Trägers oder des Seitenbandes - erhöht sich der resultierende Schalldruck im Audiofrequenzbereich. Die Abstrahlung eines breiten Frequenzbereichs bei hohem Schalldruck bereitet gewisse Schwierigkeiten.

Die Abstrahlung von Träger und Seitenband über einen Wandler bzw. eine Wandlergruppe stellt große Anforderungen an die Wandler. Durch nahezu identisch Abstrahlungsbedingungen von Träger und Seitenband entsteht die Audiowelle im gesamten Überlagerungsbereich der Signale. Dies führt zu einer relativ breiten Abstrahlung. Eine noch schärfere Richtwirkung läßt sich erreichen, indem man Träger und Seitenband über getrennte Wandler abstrahlt:

Ein spezieller, sehr schmalbandiger, empfindlicher und sehr richtstarker Wandler erzeugt das Trägersignal, während das Seitenband mit einem breitbandigeren Wandler/Wandlerarray überlagert wird. Da sich der Audioschalldruck aus dem Produkt der beiden zu überlagernden Ultraschall-Schalldrücke ergibt, läßt sich über

den Schalldruck des Trägers in weiten Grenzen der Schalldruck der Audiowelle einstellen und gleichzeitig bei gering eingestellten Lautstärken der Pegel des Ultraschallträgers reduzieren. Die Überlagerung der Schallwellen und Erzeugung von Mischprodukten erfolgt jedoch nur in dem Bereich, wo beide Schallwellen gleichermaßen den Raum erfüllen. Durch die sehr starke mögliche Richtcharakteristik des Trägerstrahlers ergibt sich daraus auch für die Audiowelle eine sehr ausgeprägte Richtwirkung.

Absorption des Ultraschallsignals durch ein Ultraschallfilter

Zur Erzeugung des Audiosignals aus dem modulierten Ultraschallsignal ist eine bestimmte Wegstrecke erforderlich, entlang der sich die Welle in der Luft demoduliert. Hat der Ultraschall die erforderliche Wegstrecke zurückgelegt, so bewirkt ein für Audiofrequenzen durchlässiges, jedoch für Ultraschall undurchlässiges Filter, daß zwar die Audiowelle gut hörbar ist, das Ultraschallsignal aber stark bedämpft wird. Auf die Richtcharakteristik des Wandlers hat das Filter keine signifikante Auswirkung.

Das Filter muß so beschaffen sein, daß es Frequenzen oberhalb des Hörbereichs stark bedämpft, während Audiofrequenzen nur eine geringe Dämpfung erfahren. Angeordnet wird es sinnvollerweise am Ende der Generationszone.

Da für niedrige Audiofrequenzen eine lange Generationszone erforderlich ist, läßt sich durch Variation des Abstandes zwischen Wandler und Absorber die untere Grenzfrequenz des Audiosignals variieren.

Anreicherung des Klangbildes durch psychoakustische Effekte

Je tiefer die in der Luft demodulierte Frequenz der Audiowelle ist, desto geringer ist der Schalldruck der Welle, bezogen auf konstanten Schalldruck der Ultraschallwellen. Aus physikalischen Gründen können deshalb tiefe Frequenzen nur sehr leise reproduziert werden.

Um den subjektiven Eindruck zu erzeugen, tiefe Töne zu reproduzieren, welche objektiv gar nicht vorhanden sind, läßt sich durch Signalbearbeitung ein bestimmtes Obertonspektrum erzeugen, welches diesen Eindruck entstehen läßt. Eine Vorverzerrung des Audiosignals ist dafür erforderlich. Der Modulator enthält eine Schaltung, die diese Funktion erfüllt.

Weitere Anwendungen

Virtueller Lautsprecher

Um ein Schallobjekt scheinbar im Raum wandern zu lassen, ist es mit herkömmlicher Lautsprechertechnik notwendig, den Lautsprecher im Raum zu bewegen. Wirkungsvoller läßt sich dieser Effekt mit dem Ultraschall-Lautsprecher erzielen.

Durch Ausnutzung der reflektierenden Eigenschaften für Ultraschall schallharter Oberflächen läßt sich erreichen, daß die Reflexion des Ultraschall-Lautsprechers an einer Wand o.ä. ähnlich dem in einem Spiegel reflektierten Lichtstrahl wahrgenommen wird und somit eine virtuelle Quelle entsteht.

- Z. B. zwei Realisierungen sind möglich:
- 1. Dreh- und schwenkbar aufgehängter US-Lautsprecher
- 2. Fest aufgehängter US-Lautsprecher, der auf einen beweglich montierten Reflektor strahlt.

Räumliche Signalmitführung durch mitlaufenden Wandler

Bei Bewegung des Zuhörers, z.B. auf einem Laufband, Rolltreppe o.ä. läßt sich durch Schwenken des Wandlers das Audiosignal mitführen, so daß nur der sich bewegende Zuhörer beschallt wird, der umgebende Raumbereich jedoch nicht.

Ein Mitbewegen des Audioschalls kann auch auch mit einem mit der Laufgeschwindigkeit des Laufbandes / der Rolltreppe synchronisierten Zuschalten von über dem Zuhörer befindlichen Ultraschallstrahlern erfolgen, welche immer nur die Raumbereiche beschallen, in denen sich der Zuhörer gerade bewegt.

Räumliche Signalmitführung durch phased array

Durch gezielte Ansteuerung einzelner Wandlerelemente eines array ist eine räumliche Signalmitführung (bei der starken Richtcharakteristik des Ultraschall-Lautsprechers) möglich, ohne dabei den Ultraschallstrahler zu bewegen. Das Verfahren ist eine Kombination aus der Technik des "phased array" und dem oben beschriebenen "Ultraschall-Lautsprecher".

Figur 4a und 4b zeigen die Ausbreitung einer Audioschallwelle, die von einem Ultraschallwandler erzeugt wird. Hierbei wird von dem Ultraschallstrahler (Ultraschallwandler) beispielsweise die Frequenzen f₁=101kHz und f₂=100kHz gleichzeitig abgestrahlt. Ähnlich einer (nichtlinearen) Mischstufe eines AM-Mittelwellenempfänger entstehen nun im Ultraschallstrahl in der Luft die Mischprodukte f₁+f₂=201kHz und f₁-f₂=1kHz und deren Vielfache. Die Sumenfrequenz f₁ und f₂=201kHz ist für den Menschen nicht hörbar, wohl aber die Differenzfrequenz f₁-f₂=1kHz. Man kann sich nun leicht vorstellen, daß man f₁ mit dem Audiofrequenzbereich Δf=100...20kHz zu f₁=100kHz+Δf moduliert. Im Ultraschallstrahl entsteht dann durch die Mischung an der Nichtlinearität der Luft u.a. auch genau die Audiofrequenz 100Hz...20kHz, wobei diese eine ähnlich starke Bündelung besitzt wie

sie durch den Ultraschallstrahl vorgegeben ist.

In der Mischzone des Ultraschallstrahls entstehen virtuelle Audioschallquellen (virtuelle Lautsprecher) die in Richtung des fortlaufenden Ultraschalls aufaddiert werden, denn Ultra- und Audioschall pflanzen sich mit der gleichen Schallgeschwindigkeit (340m/s) fort. Man sich diesen Effekt an einem Modell vorstellen. Auf einer Leiste sind kleine Lautsprecher eng aneinander montiert, die alle als Kugelstrahler Audioschall abstrahlen können (Figur 5) und die zeitverzögert mit dem gleichen Audiosignal angesteuert werden. Die Zeitverzögerung t zwischen zwei Lautsprechem wird so gewählt, daß sie exakt der Zeit entspricht, die die Schallwelle von einem zum nächsten Lautsprecher benötigt. Sie kann durch die Beziehung t=c/l_L (c=Schallgeschwindigkeit) bestimmt werden. Der vom ersten Lautsprecher ausgehende Schall wird vom zweiten verstärkt usw. Durch die Vielzahl der Lautsprecher (im Ultraschallstrahl entstehen quasi unendlich viele virtuelle Schallquellen) die mit der Laufzeit des Schalls ortsabhängig zugeschaltet werden, entsteht eine sehr strarke Bündelung des Audioschalls.

Der Audioschall beim erfindungsgemäßen Ultraschallstrahl entsteht im Ultraschallstrahl selbst. Im Gegensatz zur Abstrahlung durch einen herkömmlichen Lautsprecher wird er mit zunehmender Entfernung zunächst lauter, bis der Ultraschallpegel soweit abgenommen hat, daß der nichtlineare Effekt der Luft nicht mehr wirkt und somit keine Anteile mehr zur Audioschallerzeugung hinzuaddiert werden. Die Länge der aktiven Zone der Audioschallerzeugung im Ultraschallstrahl bestimmt die untere Grenzfrequenz der gerichteten Audioschallquelle. Es müssen mindestens so viele virtuelle Schallquellen vorhanden sein, daß die aktive Zone mehrere Wellenlängen bei der unteren Grenzfrequenz lang ist. Deshalb erfordem Audiofrequenzen unter 100Hz große Abstände des Zuhörers vom Ultraschallstrahler (und damit auch hohe Ausgangsleistungen). Einen Lösungsansatz bietet die Nutzung psychoakustischer Signalbearbeitung, wie vorstehend beschrieben.

Aus den beiden beschriebenen Effekten folgt, daß der Pegel und die untere Wiedergabefrequenz des Audiosignals ortsabhängig sind. Der zur Erzeugung des Audioschalls prinzipiell notwendige hohe Ultraschallpegel muß nur in der aktiven Zone des Ultraschallstrahls vorhanden sein. Ist der gerichtete Audoschallstrahl erst einmal erzeugt, kann man den Ultraschallanteil mit einem akustischen Tiefpaßfilter (audioschalldurchlässiger Ultraschallabsorber) eliminieren.

Figur 6a und 6b zeigen typische Anwendungsbeispiele des Ultraschallstrahlers, welcher unter einer Decke angeordnet ist und die mit Audiosignalen modulierten Ultraschallstrahlen auf eine Wand richtet, von welcher eine ultraschallabsorbierende Beschichtung (Ultraschallreflexionsbelag) so ausgerichtet, daß Ultraschall absorbiert wird, aufweist. Die dann reflektierten Audiosignale sind ultraschallfrei und können vom Menschen vor der Wand gehört werden.

Für die Ultraschallwandler selbst kann ein üblicher Ultraschallwandler verwendet werden. Besonders geeignet sind aber auch Ultraschall-Folienwandler, die nach Art eines Kondensator- (Elektret)Wandlers eine Folie und einer entsprechend (mit Rillen oder Löchem) ausgebildeten Gegenelektrode aufweisen.

Vorteilhaft ist auch die Ausführungsvariante, bei der mittels einer
Abstandsmesseinrichtung zu einer Ultraschallmesseinrichtung ermittelt wird, wo sich ein zu beschallender Zuhörer befindet. Wenn dieser sich in einem kritischen Bereich Ultraschallstrahls befindet, der gesundheitsschädlich sein könnte, wird die Ultraschallwiedergabe abgeschaltet, damit die jeweilige Person (oder das Tier) nicht zu hohen Ultraschallpegeln ausgesetzt wird. Wenn der Ultraschall auf einen bestimmten Bereich gerichtet werden soll und wenn dieser Bereich sich auch noch bewegt (dies ist z. B. bei einem einzelnen Zuhörer der Fall, welcher sich auf einer Bühne bewegt und beschallt werden soll) so ist es hierfür vorteilhaft, wenn eine Einrichtung ausgebildet ist, mittels der der zu beschallende Zuhörer aktuell lokalisiert werden kann, so dass dann die Beschallung bevorzugt nur auf den lokalisierten

Bereich erfolgt. Dies kann beispielsweise dadurch realisiert werden, dass der zu beschallende Hörer eine Sendeeinrichtung mit Navigation (z. B. GPS) mit sich trägt und somit ständig seine eigenen Navigationsdaten an eine Empfangseinrichtung sendet, die ihrerseits zur Steuerung der Schwenkung des Ultraschallstrahls herangezogen wird. Auch könnte der zu beschallende Zuhörer mit einem sogenannten TAG-Identifyer ausgestattet sein, dessen genaue Position von einem entsprechenden Interogator (Abfrageeinheit für das TAG) ermittelt wird, mit welchem dann seinerseits die Schwenkung der Ultraschallstrahlen gesteuert wird. Aber auch alle anderen technischen Möglichkeiten zur Lokalisation eines einzelnen Bereichs oder mehrerer Bereiche können verwendet werden, um die Schwenkung eines Ultraschallstrahls zu steuern, so dass dann immer nur in dem gewünschten engen Bereich die Audiowiedergabe zu hören ist, nicht jedoch außerhalb des gewünschten Bereichs.

Solche Anwendungen sind besonders vorteilhaft in einem Theater (für die Souffleuse) oder auch im Fernsehstudio bei einer TV-Show, wenn der sich über die Bühne bewegende Moderator Hinweisungen erhalten soll, die für das übrige Publikum nicht hörbar sein sollen.

Die Schwenkung des Ultraschallstrahls kann mit dem in dieser Anmeldung beschriebenden unterschiedlichen Techniken erfolgen, also durch das Schwenken der Ultraschallstrahler oder durch einen schwenkbarren Reflektor oder durch die sogenannte "Phased Array"-Steuerung, wobei die Ultraschallstrahlen richtungelektronisch bestimmt wird.

Ansprüche

- 1. Verfahren und Vorrichtung zur Wiedergabe von Audioschall mittels einer Ultraschall erzeugenden Einrichtung, wobei das wiederzugebene Audiosignal durch eine Seitenband-Amplitudenmodulation mit einem Trägersignal im Ultraschallfrequenzbereich verknüpft wird, wobei Mittel vorgesehen sind, das modulierte Ultraschallsignal einer Dynamik-Fehler-Kompensation zu unterwerfen und das kompensierte Ultraschallsignal gegebenenfalls einer Frequenzganglinearisierung unterzogen wird und dann einem Ultraschall-Wandler (Lautsprecher) zugeführt wird, wobei Mittel vorgesehen sind, die Amplitude des Ultraschallträgersignals zu reduzieren (Trägerreduktion).
- 2. Verfahren und Vorrichtung nach Anspruch1, dadurch gekennzeichnet, daß in Modulationspausen, wenn also kein Audiosignal wiedergegeben werden soll, das Ultraschall-Signal unterdrückt (stummgeschaltet) wird.
- 3. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das wiederzugebende (noch niederfrequente) Audiosignal vor der Modulation einer Frequenzganglinearisierung unterworfen wird.
- 4. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das wiederzugebende Audiosignal einer Zweiseitenband-Amplitudenmodulation oder einer Einseitenband-Amplitudenmodulation unterworfen wird.
- 5. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Mittel vorgesehen sind, den Ultraschallträger um einen Betrag von etwa 8 bis 20 dB, vorzugsweise 12 dB zu unterdrücken.

- 6. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Frequenz des Ultraschallträgersignals im Bereich von etwa 40 kHz bis 500 kHz liegt.
- 7. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einer Zweiseitenband-Amplitudenmodulation Mittel vorgesehen sind, das untere Seitenband zu unterdrücken.
- 8. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Mittel vorgesehen sind, nach der Amplitudenmodulation eine Entzerrung (Frequenzganglinearisierung) durchzuführen.
- 9. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Mehrzahl von Ultraschall-Wandlern vorgesehen ist, die parallel geschaltet sind.
- Verfahren und Vorrichtung nach Anspruch 9,
 dadurch gekennzeichnet, daß die Wandler auf einer Platte dichtesmöglich angeordnet sind.
- 11. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Modulation mittels eines digitalen Signalprozessors durchgeführt wird.
- 12. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Ultraschallausbreitungsweg ein Wasserluftblasengemisch angeordnet ist.
- 13. Verfahren und Vorrichtung nach Anspruch 12,

dadurch gekennzeichnet, daß das Wasserluftblasengemisch in einer Kopfhörermuschel ausgebildet ist.

- 14. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Ausbreitungsweg der Ultraschallstrahlen ein schalldurchlässiges Medium angeordnet ist, welches Hohlräume enthält, welche zusammen mit dem Mediummaterial eine Vielzahl von Helmholz-Resonatoren aufweisen, welche bevorzugt auf die erste Oberwelle des Ultraschallsignals abgestimmt sind.
- 15. Verfahren und Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Hohlräume mit einem nichtlinearen Medium gefüllt sind.
- 16. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Vielzahl von Ultraschall-Wandlern ringförmig angeordnet sind.
- 17. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ultraschallträgersignal und das Seitenbandsignal und getrennten Wandlern zugeführt wird.
- 18. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, daß der Öffnungswinkel eines Ultraschallwandlers etwa im Bereich von 0,5 bis 10°, vorzugsweise 1° liegt.
- 19. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Mittel vorgesehen sind, das Audiosignal einer Vorverzerrung zu unterziehen.

- 20. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Mittel ausgebildet sind, den Ultraschallstrahl in eine gewünschte Richtung zu schwenken.
- 21. Verfahren und Vorrichtung nach Anspruch 20,
 dass Mittel zum Schwenken des Ultraschallstrahls aus einer mechanischen
 Schwenkeinrichtung des Ultraschallstrahlers und/oder aus einer elektronischen
 Ansteuerung der Ultraschallstrahler nach Art eines sogenannten "phased array"
 besteht und/oder dass ein schwenkbarer Reflektor ausgebildet ist, der den Ultraschall
 in eine gewünschte Richtung reflektiert.
- 22. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ultraschallvorrichtung eine Ultraschalltapete bildet, so dass beim Zuhören der Eindruck entsteht, dass der Schall direkt von der Wand (bzw. der Tapete auf der Wand) kommt.
- 23. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trägerband des Ultraschallstrahlband und das Ultraschallstrahlseitenband mit unterschiedlichen Wandlem erzeugt wird.
- 24. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Audio-NF-Signal einer psychoakustischen Vorverarbeitung (insbesondere einer psychoakustischen Vorverzerrung) unterworfen wird und hierzu entsprechende Mittel ausgebildet sind.
- 25. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung als akustisches Laufband ausgebildet ist, so dass Vorbeibewegung eines Zuhörers eines Ultraschallwandlers nur der bewegte Zuhörer beschallt wird, nicht jedoch der umgebende Raumbereich.

- 26. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Ultraschallwandler vorgesehen ist, welcher ausschließlich oder zusätzlich zur Ultraschallaustrahlung als Sende- und/oder Empfangseinrichtung einer auf Ultraschall basierenden Abstandsmesseinrichtung dient.
- 27. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Eigenschaften des wiederzugebenden Audiosignals, insbesondere dessen untere Grenzfrequenz durch die Größe der Reflektionsfläche bestimmt wird, um somit bevorzugt die Frequenzganglinearisierung bzw. die Entzerrung des Audiosignals zu kompensieren.
- 28. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das wiederzugebende Audiosignal in einem Modulator einer Frequenz- und/oder Phasenmodulation unterzogen wird.
- 29. Verwendung einer Ultraschallwiedergabevorrichtung nach einem der vorhergenden Ansprüche in einer Kunstausstellung und/oder in einem Museum oder zur aktiven Lärmkompensation und/oder in Konferenzsystemen und/oder als Lautsprecher als Kopfhörerersatz und/oder zur gerichteten Beschallung auf einer Bühne (Souffleuse) und/oder als adressierbarer Lautsprecher und/oder zur Beschallung von Computer-Arbeitsplätzen und/oder als Surround-Lautsprecher und/oder zur akustischen Beschallung ganz bestimmter Zonen und/oder in einer Freisprecheinrichtung.
- 30. Verwendung nach einem der vorhergehenden Ansprüche, zur Beschallung eines Bereichs, durch den sich der Zuhörer bewegt bzw. durch den der Zuhörer bewegt wird, wobei der Wiedergabepegel des Ultraschallsignals stets auf den bewegten Zuhörer gerichtet ist.

Fig. 1 Einfache Realisierung des Ultraschall - Lautsprechers

Fig. 2 Verbesserte Schaltung des Ultraschall - Lautsprechers

Fig. 3 Übertragungsstrecke realisiert mit digitaler Signalverarbeitung (DSP)

WO 01/08449 PCT/EP00/03931

4/8

Intermodulationsprodukte 2f1 + ∆f (unhörbar) f₁ = Trägerfrequenz (Ultraschall mit konstanter Amplitude) $\Delta f = Audiosignal$ f1 + ∆f

ERSÄTZBLATT (REGEL 26)

Fig. 4a

Fig. 5

Fig. 6a

8/8

Fig. 6b

INTERNATIONAL SEARCH REPORT

nal Application No PCT/EP 00/03931

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04R27/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO4R HO4B HO3G G10L G01S G10K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° WO 98 49868 A (AMERICAN TECHNOLOGY CORP) 1,3,4, 5 November 1998 (1998-11-05) 6-10,16,17,20, 23,25, 29,30 page 1, line 10-15 page 4, line 13-23 column 6, line 6-23 Α 2.5. 11-15, 18,19, 21,22, 24,27,28 column 6, line 34 -column 7, line 25 column 8, line 17 -column 11, line 8 $\,$ column 13, line 7-22 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but ched to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

"&" document member of the same patent family

Date of mailing of the international search report

22 November 2000

29/11/2000

Authorized officer

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nt. Fax: (+31-70) 340-3016

Zanti, P

Form PCT/ISA/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/EP 00/03931

		PC1/EP 00/03931
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 4 376 916 A (GLABERSON JOHN B) 15 March 1983 (1983-03-15)	1,3,4, 6-10,16, 17,20, 23,25, 29,30
	column 1, line 6-8 column 5, line 31-68	
A	DE 28 41 680 A (SENNHEISER ELECTRONIC) 3 April 1980 (1980-04-03) page 5, line 24 -page 6, line 34 page 7, line 8 -page 9, line 21	1-30
A	US 5 095 509 A (VOLK WILLIAM D) 10 March 1992 (1992-03-10)	1,6,11, 20-22, 25,28-30
	column 1, line 7-10 column 2, line 3-38 column 2, line 63 -column 5, line 38	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inten nal Application No PCT/EP 00/03931

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication date
WO 9849868	A	05-11-1998	US 5859915 A AU 7365098 A	12-01-1999 24-11-1998
US 4376916	Α	15-03-1983	CA 1153315 A DE 3165470 D EP 0041310 A JP 57023336 A	06-09-1983 20-09-1984 09-12-1981 06-02-1982
DE 2841680	Α	03-04-1980	NONE	
US 5095509	A	10-03-1992	NONE	*

INTERNATIONALER RECHERCHENBERICHT

nales Aktenzeichen

PCT/EP 00/03931 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 H04R27/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) HO4R HO4B HO3G G10L G01S G10K Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete tallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbedriffe) WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* Υ WO 98 49868 A (AMERICAN TECHNOLOGY CORP) 1,3,4, 5. November 1998 (1998-11-05) 6-10,16,17,20, 23,25, 29,30 Seite 1, Zeile 10-15 Seite 4, Zeile 13-23 Spalte 6, Zeile 6-23 2,5, Α 11-15. 18,19, 21,22, 24,27,28 Spalte 6, Zeile 34 -Spalte 7, Zeile 25 Spalte 8, Zeile 17 -Spalte 11, Zeile 8 Spalte 13, Zeile 7-22 -/--Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der * Besondere Kategorien von angegebenen Veröffentlichungen *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeidung nicht Keildiert, sondern nur zum Verstandnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *E* ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wernd die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung tür einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 22. November 2000 29/11/2000 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2

1

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Zanti, P

INTERNATIONALER RECHERCHENBERICHT

Inten naies Aktenzeichen
PCT/EP 00/03931

		00/03931
C.(Fortsetz Kategorie*	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
		·
Y	US 4 376 916 A (GLABERSON JOHN B) 15. März 1983 (1983-03-15)	1,3,4, 6-10,16, 17,20, 23,25, 29,30
	Spalte 1, Zeile 6-8 Spalte 5, Zeile 31-68	
A	DE 28 41 680 A (SENNHEISER ELECTRONIC) 3. April 1980 (1980-04-03) Seite 5, Zeile 24 -Seite 6, Zeile 34 Seite 7, Zeile 8 -Seite 9, Zeile 21	1-30
A	US 5 095 509 A (VOLK WILLIAM D) 10. März 1992 (1992–03–10)	1,6,11, 20-22, 25,28-30
	Spalte 1, Zeile 7-10 Spalte 2, Zeile 3-38 Spalte 2, Zeile 63 -Spalte 5, Zeile 38	
	•	

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

Interr lales Aktenzeichen
PCT/EP 00/03931

Im Recherchenberich ungeführtes Patentdokur		Datum der Veröffentlichung	Mitglied(er) de Patentfamilie	r	Datum der Veröffentlichung
WO 9849868	A	05-11-1998	US 58599 AU 73650		12-01-1999 24-11-1998
US 4376916	A	15-03-1983	CA 11533 DE 31654 EP 00413 JP 570233	70 D 10 A	06-09-1983 20-09-1984 09-12-1981 06-02-1982
DE 2841680	Α	03-04-1980	KEINE		
US 5095509	A	10-03-1992	KEINE		