Content-based image and video analysis

Machine learning for multimedia retrieval

16.10.2012

Machine Learning / Classification

- An important task in machine learning is classification:
 - Given an input pattern \mathbf{x} , assign in to a class ω_i
 - Example: Given an image, assign label "face" or "non-face"
 - x can be an image, a video, or (more commonly) any feature vector that can be extracted from them
 - ω_i is the desired (discrete) class label
 - If "class label" is real number or vector → Regression
 - ML: Use example patterns with given class labels to automatically learn
- Many tasks in multimedia retrieval can be posed as classification tasks
 - Genre classification
 - Object detection
 - High-level feature detection
 - ...

Classification pipeline

Curse of dimensionality

- In computer vision, the extracted feature vectors are often high-dimensional
- Many intuitions about linear algebra are no longer valid in high-dimensional spaces
- Classifiers often work better in lowdimensional spaces
- These problems that present themselves in high-dimensional spaces are often called "curse of dimensionality"

Dimensionality reduction

PCA: Leave out dimensions and minimize error made

(see Duda & Hart)

Dimensionality reduction

LDA: Maximize class separability

(→ see Duda & Hart)

Classification process

Bayesian Classification

- We are given a feature vector x and want to know which class ω_i is most likely, given x
- Use Bayes' rule:

$$P(\omega_{i} \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_{i})P(\omega_{i})}{p(\mathbf{x})}$$
with $p(\mathbf{x}) = \sum_{i} p(\mathbf{x} \mid \omega_{i})P(\omega_{i})$

$$\Rightarrow posterior = \frac{likelihood \times prior}{normalization factor}$$

- Decide for the class ω_i with maximum posterior probability
- If we know $P(\mathbf{x}|w_i)$ and $P(\omega_i)$, then we can just compute the probabilities
- It can be shown that this is the optimal solution
- Problem: $p(\mathbf{x}|\omega_i)$ (and to a lesser degree $P(\omega_i)$) is usually unknown and often hard to estimate from data
- Priors describe what we know about the classes before observing anything
 - Can be used to model prior knowledge
 - Sometimes easy to estimate (counting)

Gaussian classification

- Assumption: $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$ This makes estimation easier:
- - Only mu and sigma have to be estimated
 - To reduce parameters, the covariance matrix can be restricted
 - Diagonal matrix → Dimensions uncorrelated
 - Multiple of unit matrix → Dimensions uncorrelated with same variance
- Problem: if the assumption(s) do not hold, the model does not represent reality well
 - Performance will decrease (often severely)
- Estimation of mu and sigma with Maximum Likelihood (ML)
 - Use parameters, that best explain the data (highest likelihood): $I(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\text{data} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\boldsymbol{x}_0, \boldsymbol{x}_1, ..., \boldsymbol{x}_n \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ $= p(\boldsymbol{x}_0 \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \cdot p(\boldsymbol{x}_1 \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \cdot ... \cdot p(\boldsymbol{x}_n \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - $log(l(\mu, \Sigma)) = log(p(\mathbf{x}_0 \mid \mu, \Sigma)) + ... + log(p(\mathbf{x}_n \mid \mu, \Sigma))$
 - Maximize log($I(\mu, \Sigma)$) over μ and Σ

Random samples drawn from a Gaussian distribution

Estimation of Gaussian with multiple of unit covariance matrix

Estimation of Gaussian with diagonal covariance matrix

Estimation of Gaussian with full covariance matrix

Random samples drawn from non-Gaussian distribution

Estimation of Gaussian with full covariance matrix

Gaussian Mixture Models (GMMs)

 Approximate true density function using a weighted sum of several Gaussians

$$p(\mathbf{x}) = \sum_{i} w_{i} \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$
with
$$\sum_{i} w_{i} = 1$$

- Any density can be approximated this way with arbitrary precision
 - But might need many Gaussians
 - → Difficult to estimate many parameters
 - Restrict covariance matrices as before
 - Only one shared covariance matrix for all Gaussians
- Now need to estimate parameters of the Gauss functions as well as the weights
 - Expectation Maximization (EM) Algorithm

GMM example

Random samples drawn from non-Gaussian distribution

GMM example

Estimated GMM with full covariance matrices

Expectation Maximization (EM)

- If we knew to which Gaussian each data point belongs, this would be simple
 - → We don't exactly know, but we can estimate
- EM Algorithm
 - Initialize parameters of GMM randomly
 - Repeat until convergence
 - Expectation (E) step:
 Compute the probability p_{ij} that data point i belongs to Gaussian j
 - Take the value of each Gaussian at point i and normalize so they sum up to one
 - Maximization (M) step:
 Compute new GMM parameters using soft assignments p_{ij}
 - Maximum Likelihood with data weighted according to p_{ij}

GMM applets

- http://www.socr.ucla.edu/Applets.dir/MixtureE M.html
- http://www.the-wabe.com/notebook/emapplet.html

Some taxonomy: parametric vs. non-parametric?

- Gaussian and GMMs are called parametric classifiers
 - They assume a specific form of probability distribution with some parameters
 - Then only the parameters need to be estimated
- There are also methods which do not assume a specific form of probability distribution
 - They are called non-parametric
 - Examples: Parzen windows, k-nearest neighbors
- Properties of parametric classifiers
 - + Need less training data because less parameters to estimate
 - Only work well if model fits data
- Properties of non-parametric classifiers
 - + Work well for all types of distributions
 - Need more data to correctly estimate distribution

Some taxonomy: generative vs. discriminative

- A method that models P(ω_i) and p(x|ω_i) explicitly is called a generative model
 - p(x|ω_i) allows to generate new samples of class ω_i
- The other common approach is called discriminative models
 - They directly model P(ω_i|x) or just output a decision ω_i given an input pattern x
- Often, discriminative models are easier to train because they solve a simpler problem

Linear Discriminant Functions

- Simplest possible discriminative classifier
- $F(\mathbf{x}) = sign(\mathbf{w}^T\mathbf{x} + b) = sign(\Sigma w_i \cdot x_i + b)$
- Hyperplane dividing feature space
- First, a notational trick
 - Define $w' = [b \ w]^T \text{ and } x' = [1 \ x]^T$
 - $\mathbf{w}^{\mathsf{T}}\mathbf{x}$ + b then becomes $\mathbf{w}^{\mathsf{T}}\mathbf{x}'$
 - This makes the math a bit easier
- y_i is the label of x_i
 Pinery elections
 - \rightarrow Binary classification: $y_i \in \{-1, 1\}$
- How to find w and b (or w')?
 - First and easiest solution: Perceptron learning algorithm

Perceptron learning

- Perceptron Algorithm
 - Start with initial w₀ (usually random or zero)
 - Classify all training samples using ŷ_i = sign(w^Tx_i)
 - For all misclassified training samples adjust w:
 - $\mathbf{w} \leftarrow \mathbf{w} \eta \cdot \mathbf{y}_i \cdot \mathbf{x}_i$
 - η is the learning rate
 - Repeat until training samples correctly classified
- Demo applet:
 - http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_ 5/Perceptron.html

Which hyperplane is best?

Perceptron algorithm finds any hyperplane that separates the data

Support vector machines

Find hyperplane that maximizes the margin between the positive and negative examples

 $\mathbf{w}^{\mathsf{T}}\mathbf{x} / ||\mathbf{w}|| \rightarrow \mathbf{x}$ projected in direction \mathbf{w}

On which side of the hyperplane is \mathbf{x} ? $\mathbf{w}^{\mathsf{T}}\mathbf{x} / ||\mathbf{w}|| <> -b / ||\mathbf{w}|| \rightarrow \mathbf{w}^{\mathsf{T}}\mathbf{x} <> -b$

$$y_i = 1 \rightarrow \mathbf{w}^T \mathbf{x}_i > b$$
 $y_i = -1 \rightarrow \mathbf{w}^T \mathbf{x}_i < b$
 $\rightarrow y_i (\mathbf{w}^T \mathbf{x}_i + b) > 0$

Length of **w** does not change anything Fix it by requiring: $\min y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) = 1$

Distance to hyperplane? $|\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b}| / ||\mathbf{w}||$

Minimal distance to hyperplane?

1 / ||w||

Margin? 2 / ||w||

Finding the hyperplane with maximum margin

- Pose as constrained optimization problem:
 - Minimize ||w||² (i.e. maximize margin 2 / ||w||)
 - Subject to $y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1$
 - Samples are on the right side of the hyperplane (> 0)
 - Samples are outside the margin (>= 1)
- This is known as a quadratic optimization problem
 - Has only one global minimum
 - Very nice, no problems with local minima!
 - Efficient algorithms for solving it are known
 - Optimization using Lagrange multipliers

Non-separable data

• What to do with data that is not linearly separable?

Large margin vs. training error

- Noise in data or labels can make training data non-separable
 - Or seriously reduce the size of the margin
- What we want:
 - A way to maximize margin while ignoring (some) outliers, that would lead to small margin
 - This gives us an SVM algorithm that also works for data that is not linearly separable (but almost)

Soft-margin SVM formulation

- Reminder: hard-margin SVM
 - Minimize ||w||² (i.e. maximize margin 2 / ||w||)
 - Subject to $y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1$
- Soft-margin SVM
 - Add sum of constraint violations to objective function:
 Minimize ||w||² + C·Σ ξ_i
 - Allow constraints to be violated: Subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) >= 1 - \xi_i$ (with $\xi_i >= 0$)
 - Parameter C controls the trade-off between low training error and large margin
- ξ_i has simple interpretation
 - $\xi_i = 0$ \rightarrow sample classified correctly outside margin
 - $0 < \xi_i < 1$ \rightarrow sample classified correctly inside margin
 - $\xi_i > 1 \rightarrow$ sample classified incorrectly
 - $\Sigma \xi_i$ is upper bound on number of training errors

Really non-separable data

• What about data that is really non-separable (not because of noise)?

No hyperplane will be able to perform well On this kind of data!

Non-linear SVMs: Going to higher dimensions

 Idea: Transform data to high-dimensional space where it is linearly separable

 $\Phi : \mathbf{R}^d \mapsto \mathcal{H}.$

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

Kernel trick

- Transforming feature vectors into a high dimensional space can be difficult to compute
 - For infinite-dimensional spaces it is impossible

$$\Phi: \mathbf{R}^d \mapsto \mathcal{H}.$$

- Kernel trick:
 - Re-write algorithm so that the feature vectors only appear in dot products (using Lagrange multipliers / dual optimization problem)

$$\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

Use kernel function to directly compute dot product in high-dimensional space from low- $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$ dimensional input vectors

$$K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

- High-dimensional space becomes implicit property of the kernel function
- Nothing needs to be computed in highdimensional space!
 - Even infinite-dimensional spaces are possible

(for mathematical details: See e.g. Burges 1998)

Common SVM kernels

Some kernel functions are widely used

• Linear kernel: $k(x, x') = x^Tx'$

• Polynomial kernel: $k(x, x') = (x^Tx' + 1)^d$

• Gaussian (RBF) kernel: $k(x, x') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$

• Sigmoid kernel: $k(x, x') = tanh(x^Tx' + c)$

- Kernels for non-vectorial data are also possible
 - Graphs, sets, texts, etc...
- Kernel defines a similarity function for the input vectors
 - Often problem-specific kernels can improve performance

Kernel SVM example

Polynomial kernel (degree 2): $(\mathbf{x}^{\mathsf{T}}\mathbf{x}' + 1)^2$

Kernel SVM example

RBF-Kernel: $\exp(-||\mathbf{x}-\mathbf{x}'||^2/2\sigma^2)$

Model selection

- SVM learning algorithm has parameter C, Kernels usually have parameter(s)
 - These need to be optimized to achieve best performance
- Simple idea: Training several SVMs with different parameters and taking the one with the best performance on the training set
 - But training error is not a good performance measure
 - What we want is good generalization capability (low test error)
- → n-fold cross-validation (CV)
 - Split training set into n folds
 - For each fold i, train SVM using all folds except fold I
- Perform CV for a number of SVM parameters and use the ones with best performance

Linear SVMs

- Don't completely forget about linear SVMs!
- If the input space is already high-dimensional, linear SVMs can often perform well too
- Linear SVMs have some advantages
 - Speed: Only one scalar product for classification
 - Kernel SVM needs #(support vectors) kernel evaluations
 - Memory: Only one vector w needs to be stored
 - Kernel SVM needs to store all support vectors
 - Training: Training is much faster
 - Specialized primal optimization algorithms
 - Model selection: Only one parameter to optimize
 - Kernel SVMs need to optimize C and kernel parameters

Multi-class SVMs

- SVM is originally a two-class classifier
- Generic methods to get a multi-class classifier
 - One-vs-all: One SVM per class
 - One-vs-one: Pairwise SVMs
 - Problems:
 - Classification sometimes ambiguous
 - Need to train and evaluate multiple classifiers
- Today real multi-class SVMs are available
 - Weston & Watkins 1998
 - Crammer & Singer 2001

Some practical tips for using SVMs

- Normalization of feature vectors very important
 - Normalize each feature separately
 - Zero mean, unit variance or [-1; 1] are popular
 - Normalize feature vector to unit norm
 - x' = x / ||x||
- Otherwise performance will suffer
 - Training will be much slower and numerically unstable
 - Classification performance will be suboptimal
- Model selection, i.e. optimization of C and kernel parameters also very important
 - Generally grid-search using cross-validation is used

SVM software

- LibSVM [Chang et al. 2001]
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- SVMlight [Joachims 1999]
 - http://svmlight.joachims.org/
- Applets
 - http://www.smartlab.dibe.unige.it/Files/sw/Applet%
 20SVM/svmapplet.html
 - http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

k-nearest-neighbors (KNN)

- Look at the k closest training samples and assign the most frequent label among them
- Model consists of all training samples
 - Pro: No information is lost
 - Con: A lot of data to manage
 - Naïve implementation: compute distance to each training sample every time
- Distance metric is needed
 - Important design parameter
 - L₁, L₂, L_∞, Mahalanobis, ...
 - Problem-specific distances
- kNN often good classifier, but:
 - Needs enough data
 - Scalability issues

Clustering

- New problem setting
 - Only data points are given, no class labels
 - Find structures in given data
- Generally no single correct solution possible

Literature

- Classification (Bayes, Gaussians, EM, ...)
 - Duda, Hart, Stork: Pattern Classification, 2nd ed., 2000)
 - Mitchell: Machine Learning, 1997
 - Bishop: Pattern Recognition and Machine Learning, 2008

SVMs

- C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2, 121-167 (1998)
- Shawe-Taylor, Cristianini: Kernel Methods for Pattern analysis, 2004
- Schölkopf, Smola: Learning with Kernels, 2001