

CHEMISTRY Chapter 20

2nd SECONDARY

ENLACE COVALENTE

HELICOMOTIVACIÓN

ENLACE COVALENTE

DEFINICIÓN

Es la fuerza electromagnética, principalmente eléctrica ,que surge cuando los electrones compartidos son atraídos por los núcleos de los átomos enlazados. Este enlace es característico entre átomos de elementos no metálicos

OBSERVACIONES:

Fuerza eléctrica: núcleo – par enlazante

Fuerza magnética: electrón (↑) – electrón (↓)

Los átomos tienden a formar octeto electrónico.

su mínima porción representativa se le denomina molécula (ósea sus unidades químicas son las moléculas).

$(0 \le \Delta EN < 1, 7)$

RECORDAR

no metal EN = 3,0

compartición de electrones (1 enlace covalente)

 $\Delta EN = 3 - 2.1 = 0.9$

CLASIFICACIÓN

A. POR LA POLARIDAD DEL ENLACE

1. ENLACE COVALENTE NO POLAR (APOLAR)

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero (Δ E.N.=0).

$$H-H \rightarrow H_2$$

$$\Delta$$
 EN = 2,1 - 2,1 = 0

2. ENLACE COVALENTE POLAR

Se forma entre átomos diferentes, donde la $\Delta E.N. \leq 1,7$ ($0 < \Delta EN < 1,7$)

$$\Delta$$
 EN = 2,4 - 2,1 = 0,3

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDO

1. ENLACE COV. NORMAL

(cada átomo aporta un electrón para formar enlace)

A - B

1 E. Cov. normal

A = B

2 E. Cov.normal

 $A \equiv B$

3 E. Cov. normal

2. ENLACE COV. DATIVO O COORDINADO

(Solo un átomo aporta un par de electrones para formar enlace)

C. POR EL NÚMERO DE PARES COMPARTID

SIMPLE

DOBLE

$$c = c$$

TRIPLE

$$-c\sigma = c - \frac{\pi}{\pi}$$

PROPIEDADES DE LOS COMPUESTOS COVALENTES

- Presentan bajo punto de fusión y ebullición, se encuentran en los tres estados.
- Generalmente son insolubles en solventes polares como el agua, pero solubles en solventes apolares como en el Benceno

Generalmente son malos conductores de la corriente eléctrica.

1

Un enlace covalente se forma cuando dos átomos <u>comparten</u> uno o más pares de electrones para lograr la estabilidad por medio del octeto electrónico.

RESOLUCIÓN:

El enlace covalente es la unión de los átomos mediante la fuerza de atracción electrostática que existe entre sus núcleos (+), con los electrones que comparten (-) y se forma cuando los átomos comparten uno o más pares de electrones.

2

De acuerdo a la estructura :

$$CH_2 = CH - CH - C$$

$$C = N$$

Hallar la cantidad de :

Enlaces simples: 9

Enlaces dobles: 3

RESOLUCIÓN:

Enlaces triples: 1

De acuerdo a la estructura :

Hallar la cantidad de :

RESOLUCIÓN:

a. La cantidad de enlaces covalentes polares:

9

b. La cantidad de enlaces covalentes apolares:

2

De la estructura lewis del ácido cis-butenodioico o (Z)-ácido butenodioico o ácido maleico, Halle el número de enlaces sigma (σ), pi (π) y pares libres

RESOLUCIÓN:

$$\pi = 3$$

$$\sigma = 11$$

Pares libres = 8

Relacione las siguientes sustancias con el tipo de enlace que presenta.

Dato:

Electronegatividad de Ca = 1,05; Cl = 3,16; C = 2,55; O = 3,44

RESOLUCIÓN:

```
    I. Zn<sub>2</sub> (II) Iónico
    II. CaO (III) Covalente
    III.CO<sub>2</sub> (I) Metálico
```

Las moléculas responsables de muchas de las reacciones que tenemos cuando nos enamoramos son Adrenalina (C_9 $H_{13}NO_3$) al encontrarnos con alguien que nos gusta, esto causa que se acelere nuestro ritmo cardíaco y comencemos a transpirar. La dopamina (C_8 $H_{11}NO_2$) es liberada en nuestro cerebro a medida que nos enamoramos, nos lleva a querer repetir cosas que nos gustan , pero altos niveles de dopamina se asocian con pérdida de apetito, pensamiento obsesivo e insomnio. La serotonina ($C_{10}H_{12}N_2$ O) nos hace sentir que la vida es hermosa y no podemos dejar de pensar en nuestro amado, nos sentimos eufóricos.

En base a la imagen indicar la cantidad de enlaces pi (π) en total.

RESOLUCIÓN:

 10π

ADRENALINA

HELICO | PRACTICE

El pentóxido de dinitrógeno u anhídrido nítrico ($N_2 O_5$), es un compuesto sólido de color blanco. Es empleado también para la fabricación de explosivos

- a. pares de electrones libre: 14
- b. número de enlaces covalente dativos: 2
- c. número de enlaces del tipo σ: 6
- d. enlaces covalentes polares: 6
- e. número de enlaces del tipo π : ____2