

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,012,133 B1
APPLICATION NO. : 08/963656
DATED : March 14, 2006
INVENTOR(S) : Craig J. Gerard et al.

Page 1 of 11

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Columns 67-86, delete the sequence listing and replace with the following sequence listing as listed on the following pages.

Signed and Sealed this
Seventh Day of June, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 2 of 11

<110> GERARD, CRAIG J.
GERARD, NORMA P.
MACKAY, CHARLES R.
PONATH, PAUL D.
POST, THEODORE W.
QIN, SHIXIN

<120> ANTIBODIES TO C-C CHEMOKINE RECEPTOR 3 PROTEIN

<130> 079259-0040

<140> 08/963,656
<141> 1997-11-03

<150> 08/720,565
<151> 1996-09-30

<150> PCT/US96/00608
<151> 1996-01-19

<150> 08/375,199
<151> 1995-01-19

<160> 18

<170> PatentIn version 3.5

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 3 of 11

<210> 1
<211> 1689
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1291)..(1291)
<223> a, c, t, g, unknown or other
<400> 1
aatcctttc ctggcacctc tgatattc ttgaaattca tgttaaagaa tccctaggct 60
gctatcacat gtggcatctt tggtagtac atgaataaaat caactggtgt gttttacgaa 120
ggatgattat gcttcattgt gggattgtat ttttcttctt ctatcacagg gagaagtgaa 180
atgacaacct cactagatac agttgagacc tttggtagcca catcctacta tggatgacgtg 240
ggcctgctct gtgaaaaagc tgataccaga gcactgtatgg cccagttgt gcccccgctg 300
tactccctgg tggtagtgc gggccttctt gcaatgtgg tggtagtgc gatcctcata 360
aaatacagga ggctccgaat tatgaccaac atctacctgc tcaacctggc catttcggac 420
ctgctttcc tcgtcaccct tccattctgg atccactatg tcagggggca taactgggtt 480
tttggccatg gcatgtgtaa gctcctctca gggttttac acacaggctt gtacagcgag 540
atcttttca taatcctgct gacaatcgac aggtacctgg ccattgtcca tggatgtgtt 600
gcccttcgag cccggactgt cactttggt gtcatcacca gcatcgacat ctggggcctg 660
gcagtgttag cagctttcc tgaatttac tcttatgaga ctgaagagtt gtttgaagag 720
actcttgca gtgctttta cccagaggat acagttata gctggaggca tttccacact 780
ctgagaatga ccatcttcg tctcgatctc cctctgctcg ttatggccat ctgctacaca 840
ggaatcatca aaacgctgct gaggtggccc agtaaaaaaaaa agtacaaggc catccggctc 900
attttgtca tcatggcggt gttttcatt ttcttgacac cctacaatgt ggatcttcctt 960
ctctcttcct atcaatccat cttatttgg aatgactgtg agcggacgaa gcatctggac 1020
ctggatcatgc tggtagacaga ggtgatcgcc tactccact gctgatgaa cccggatgtc 1080
tacgccttg ttggagagag gttccgaaag tacctgcgac acttcttca cagggacttg 1140
ctcatgcacc tggcgagata catccattc ctccctagtg agaagctgga aagaaccagc 1200
tctgtctctc catccacagc agagccgaa ctctctattt tggttagt agatgcagaa 1260
aattgctaa agaggaagga ccaaggagat naagcaaaca cattaaggct tccacactca 1320
cctctaaaac agtcctcaa accttcagg gcaacactga agtcttaag acactgaaat 1380
atacacacag caytagcagt agatgcatgt accctaaggt cattaccaca gggcagggt 1440
gggcagcgta ctcatcatca acctaaaaag cagagcttg ctctctctc taaaatgagt 1500
tacctatatt ttaatgcacc tgaatgttag atagttacta tatgccccta caaaaaggta 1560
aaactttta tattttatac attaacttca gccagcttattt atataaataa aacattttca 1620
cacaatacaa taagttactt attttattt ctaatgtgcc tagttcttc cctgcttaat 1680
gaaaagctt 1689

<210> 2
<211> 355
<212> PRT
<213> Homo sapiens
<400> 2
Met Thr Thr Ser Leu Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr
1 5 10 15
Tyr Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu
20 25 30
Met Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly
35 40 45
Leu Leu Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg
50 55 60
Leu Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp
65 70 75 80
Leu Leu Phe Leu Val Thr Leu Pro Phe Trp Ile His Tyr Val Arg Gly
85 90 95
His Asn Trp Val Phe Gly His Gly Met Cys Lys Leu Leu Ser Gly Phe
100 105 110
Tyr His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125
Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 4 of 11

130	135	140	
Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Val Thr Trp Gly Leu			
145	150	155	160
Ala Val Leu Ala Ala Leu Pro Glu Phe Ile Phe Tyr Glu Thr Glu Glu			
165	170	175	
Leu Phe Glu Glu Thr Leu Cys Ser Ala Leu Tyr Pro Glu Asp Thr Val			
180	185	190	
Tyr Ser Trp Arg His Phe His Thr Leu Arg Met Thr Ile Phe Cys Leu			
195	200	205	
Val Leu Pro Leu Leu Val Met Ala Ile Cys Tyr Thr Gly Ile Ile Lys			
210	215	220	
Thr Leu Leu Arg Cys Pro Ser Lys Lys Lys Tyr Lys Ala Ile Arg Leu			
225	230	235	240
Ile Phe Val Ile Met Ala Val Phe Phe Ile Phe Trp Thr Pro Tyr Asn			
245	250	255	
Val Ala Ile Leu Leu Ser Ser Tyr Gln Ser Ile Leu Phe Gly Asn Asp			
260	265	270	
Cys Glu Arg Thr Lys His Leu Asp Leu Val Met Leu Val Thr Glu Val			
275	280	285	
Ile Ala Tyr Ser His Cys Cys Met Asn Pro Val Ile Tyr Ala Phe Val			
290	295	300	
Gly Glu Arg Phe Arg Lys Tyr Leu Arg His Phe Phe His Arg His Leu			
305	310	315	320
Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Ser Glu Lys Leu			
325	330	335	
Glu Arg Thr Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Leu Ser			
340	345	350	
Ile Val Phe			
355			
 <210> 3			
<211> 1193			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (92)..(1156)			
<400> 3			
ttgtgcttat ccgggcaaga acttatcgaa atacaataga agacccacgc gtccggttt			60
tacttagaag agatttcag ggagaagtga a atg aca acc tca cta gat aca			112
Met Thr Thr Ser Leu Asp Thr			
1 5			
gtt gag acc ttt ggt acc aca tcc tac tat gat gac gtg ggc ctg ctc			160
Val Glu Thr Phe Gly Thr Ser Tyr Tyr Asp Asp Val Gly Leu Leu			
10 15 20			
tgt gaa aaa gct gat acc aga gca ctg atg gcc cag ttt gtg ccc ccg			208
Cys Glu Lys Ala Asp Thr Arg Ala Leu Met Ala Gln Phe Val Pro Pro			
25 30 35			
ctg tac tcc ctg gtg ttc act gtg ggc ctc ttg ggc aat gtg gtg gtg			256
Leu Tyr Ser Leu Val Phe Thr Val Gly Leu Leu Gly Asn Val Val Val			
40 45 50 55			
gtg atg atc ctc ata aaa tac agg agg ctc cga att atg acc aac atc			304
Val Met Ile Leu Ile Lys Tyr Arg Arg Leu Arg Ile Met Thr Asn Ile			
60 65 70			
tac ctg ctc aac ctg gcc att tcg gac ctg ctc ctc gtc acc ctt			352
Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Leu Val Thr Leu			
75 80 85			
cca ttc tgg atc cac tat gtc agg ggg cat aac tgg gtt ttt ggc cat			400
Pro Phe Trp Ile His Tyr Val Arg Gly His Asn Trp Val Phe Gly His			
90 95 100			
ggc atg tgt aag ctc ctc tca ggg ttt tat cac aca ggc ttg tac agc			448

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 5 of 11

Gly Met Cys Lys Leu Leu Ser Gly Phe Tyr His Thr Gly Leu Tyr Ser			
105	110	115	
gag atc ttt ttc ata atc ctg ctg aca atc gac agg tac ctg gcc att			496
Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile			
120	125	130	135
gtc cat gct gtg ttt gcc ctt cga gcc cggt act gtc act ttt ggt gtc			544
Val His Ala Val Phe Ala Leu Arg Ala Arg Thr Val Thr Phe Gly Val			
140	145	150	
atc acc agc atc gtc acc tgg ggc ctg gca gtg cta gca gct ctt cct			592
Ile Thr Ser Ile Val Thr Trp Gly Leu Ala Val Leu Ala Ala Leu Pro			
155	160	165	
gaa ttt atc ttc tat gag act gaa gag ttg ttt gaa gag act ctt tgc			640
Glu Phe Ile Phe Tyr Glu Thr Glu Glu Leu Phe Glu Glu Thr Leu Cys			
170	175	180	
agt gct ctt tac cca gag gat aca gta tat agc tgg agg cat ttc cac			688
Ser Ala Leu Tyr Pro Glu Asp Thr Val Tyr Ser Trp Arg His Phe His			
185	190	195	
act ctg aga atg acc atc ttc tgt ctc gtt ctc cct ctg ctc gtt atg			736
Thr Leu Arg Met Thr Ile Phe Cys Leu Val Leu Pro Leu Leu Val Met			
200	205	210	215
gcc atc tgc tac aca gga atc atc aaa acg ctg ctg agg tgc ccc agt			784
Ala Ile Cys Tyr Thr Gly Ile Ile Lys Thr Leu Leu Arg Cys Pro Ser			
220	225	230	
aaa aaa aag tac aag gcc atc cgg ctc att ttt gtc atc atg gcg gtg			832
Lys Lys Lys Tyr Lys Ala Ile Arg Leu Ile Phe Val Ile Met Ala Val			
235	240	245	
ttt ttc att ttc tgg aca ccc tac aat gtg gct atc ctt ctc tct tcc			880
Phe Phe Ile Phe Trp Thr Pro Tyr Asn Val Ala Ile Leu Leu Ser Ser			
250	255	260	
tat caa tcc atc tta ttt gga aat gac tgt gag cgg agc aag cat ctg			928
Tyr Gln Ser Ile Leu Phe Gly Asn Asp Cys Glu Arg Ser Lys His Leu			
265	270	275	
gac ctg gtc atg ctg gtg aca gag gtg atc gcc tac tcc cac tgc tgc			976
Asp Leu Val Met Leu Val Thr Glu Val Ile Ala Tyr Ser His Cys Cys			
280	285	290	295
atg aac ccg gtg atc tac gcc ttt gtt gga gag agg ttc cgg aag tac			1024
Met Asn Pro Val Ile Tyr Ala Phe Val Gly Glu Arg Phe Arg Lys Tyr			
300	305	310	
ctg cgc cac ttc cac agg cac ttg ctc atg cac ctg ggc aga tac			1072
Leu Arg His Phe Phe His Arg His Leu Leu Met His Leu Gly Arg Tyr			
315	320	325	
atc cca ttc ctt cct agt gag aag ctg gaa aga acc agc tct gtc tct			1120
Ile Pro Phe Leu Pro Ser Glu Lys Leu Glu Arg Thr Ser Ser Val Ser			
330	335	340	
cca tcc aca gca gag ccg gaa ctc tct att gtg ttt taggttagatg			1166
Pro Ser Thr Ala Glu Pro Glu Leu Ser Ile Val Phe			
345	350	355	
cagaaaaattg cctaaagagg aaggacc			1193
<210> 4			
<211> 355			
<212> PRT			
<213> Homo sapiens			
<400> 4			
Met Thr Thr Ser Leu Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr			
1	5	10	15
Tyr Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu			
20	25	30	
Met Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly			
35	40	45	
Leu Leu Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg			

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 6 of 11

50	55	60
Leu Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp		
65	70	75
Leu Leu Phe Leu Val Thr Leu Pro Phe Trp Ile His Tyr Val Arg Gly		80
85	90	95
His Asn Trp Val Phe Gly His Gly Met Cys Lys Leu Leu Ser Gly Phe		
100	105	110
Tyr His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr		
115	120	125
Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala		
130	135	140
Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Val Thr Trp Gly Leu		
145	150	155
Ala Val Leu Ala Ala Leu Pro Glu Phe Ile Phe Tyr Glu Thr Glu Glu		160
165	170	175
Leu Phe Glu Glu Thr Leu Cys Ser Ala Leu Tyr Pro Glu Asp Thr Val		
180	185	190
Tyr Ser Trp Arg His Phe His Thr Leu Arg Met Thr Ile Phe Cys Leu		
195	200	205
Val Leu Pro Leu Leu Val Met Ala Ile Cys Tyr Thr Gly Ile Ile Lys		
210	215	220
Thr Leu Leu Arg Cys Pro Ser Lys Lys Lys Tyr Lys Ala Ile Arg Leu		
225	230	235
Ile Phe Val Ile Met Ala Val Phe Phe Ile Phe Trp Thr Pro Tyr Asn		240
245	250	255
Val Ala Ile Leu Leu Ser Ser Tyr Gln Ser Ile Leu Phe Gly Asn Asp		
260	265	270
Cys Glu Arg Ser Lys His Leu Asp Leu Val Met Leu Val Thr Glu Val		
275	280	285
Ile Ala Tyr Ser His Cys Cys Met Asn Pro Val Ile Tyr Ala Phe Val		
290	295	300
Gly Glu Arg Phe Arg Lys Tyr Leu Arg His Phe Phe His Arg His Leu		
305	310	315
Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Ser Glu Lys Leu		320
325	330	335
Glu Arg Thr Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Leu Ser		
340	345	350
Ile Val Phe		
355		

<210> 5
<211> 1116
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
consensus sequence
<400> 5
cagggagaag tgaaatgaca acctcaactag atacagttga gaccttttgtt accacatcct
actatgatga cgtgggcctg ctctgtaaaa aagctgatac cagagcactg atggcccaagt
ttgtggcccc gctgtactcc ctgggtttca ctgtggccct cttgggcaat gtgggttgttgg
tgatgatcct cataaaatac aggaggctcc gaattatgac caacatctac ctgctcaacc
tggccatttc gcacctgctc ttccctcgta cccttccatt ctggatccac tatgtcagg
ggcataactg gtttttggc catggcatgt gtaagctcct ctcagggttt tatcacacag
gcttgcacag cgagatctt ttcataatcc tgctgacaat cgacaggta cttggccattt
tccatgctgt gtttggccctt cgagcccgga ctgtcaactt tggtgtcatac accagcatcg
tcacctgggg cctggcagtg ctagcagctc ttccctgaatt tatcttctat gagactgaag
agttgttga agagactmtt tgcaagtgc tttaccacaga ggatacagta tatagctgga
gssatttcca cactctgaga atgaccatct tctgtctcg tctccctctg ctcgttatgg
ccatctgcta cacaggaatc atcaaaaacgc tgctgaggtg ccccagtaaa aaaaagtaca
aggccatccg gtcattttt gtcatcatgg cgggtttttt cattttctgg acaccctaca
60
120
180
240
300
360
420
480
540
600
660
720
780

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 7 of 11

atgtggctat ccttctctct tscywwymaw ycatcttatt tggaaatgac tgtgagcggm 840
mgarsmwyyk ggacctggc atgctggta cagaggtgat cgccactc cactgctgca 900
tgaaccgggt gatctacgcc tttgtggag agaggttccg qaagtacctg cgccacttst 960
tccacaggca cttgctcatg cacctggca gatacatccc attccttcct agtgagaagc 1020
tggaaaagaac cagctctgca tctccatcca cagcagagcc ggaactctct attgtgttt 1080
aggttagatgc agaaaattgc ctaaagagga aggacc 1116

<210> 6
<211> 355
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
consensus sequence
<220>
<221> MOD_RES
<222> (182)..(182)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (196)..(197)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (263)..(266)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (276)..(279)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (315)..(315)
<223> Any amino acid
<400> 6
Met Thr Thr Ser Leu Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr
1 5 10 15
Tyr Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu
20 25 30
Met Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly
35 40 45
Leu Leu Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg
50 55 60
Leu Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp
65 70 75 80
Leu Leu Phe Leu Val Thr Leu Pro Phe Trp Ile His Tyr Val Arg Gly
85 90 95
His Asn Trp Val Phe Gly His Gly Met Cys Lys Leu Ser Gly Phe
100 105 110
Tyr His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125
Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala
130 135 140
Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Val Thr Trp Gly Leu
145 150 155 160
Ala Val Leu Ala Ala Leu Pro Glu Phe Ile Phe Tyr Glu Thr Glu Glu
165 170 175
Leu Phe Glu Glu Thr Xaa Cys Ser Ala Leu Tyr Pro Glu Asp Thr Val
180 185 190
Tyr Ser Trp Xaa Xaa Phe His Thr Leu Arg Met Thr Ile Phe Cys Leu
195 200 205

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 8 of 11

Val Leu Pro Leu Leu Val Met Ala Ile Cys Tyr Thr Gly Ile Ile Lys
210 215 220
Thr Leu Leu Arg Cys Pro Ser Lys Lys Lys Tyr Lys Ala Ile Arg Leu
225 230 235 240
Ile Phe Val Ile Met Ala Val Phe Phe Ile Phe Trp Thr Pro Tyr Asn
245 250 255
Val Ala Ile Leu Leu Ser Xaa Xaa Xaa Xaa Ile Leu Phe Gly Asn Asp
260 265 270
Cys Glu Arg Xaa Xaa Xaa Xaa Asp Leu Val Met Leu Val Thr Glu Val
275 280 285
Ile Ala Tyr Ser His Cys Cys Met Asn Pro Val Ile Tyr Ala Phe Val
290 295 300
Gly Glu Arg Phe Arg Lys Tyr Leu Arg His Xaa Phe His Arg His Leu
305 310 315 320
Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Ser Glu Lys Leu
325 330 335
Glu Arg Thr Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Leu Ser
340 345 350
Ile Val Phe
355

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<220>
<221> modified_base
<222> (19)..(19)
<223> Inosine
<220>
<221> modified_base
<222> (24)..(24)
<223> Inosine
<400> 7
tacctgctsa acctggccnt ggcnng 25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<220>
<221> modified_base
<222> (9)..(9)
<223> Inosine
<220>
<221> modified_base
<222> (14)..(14)
<223> Inosine
<400> 8
acctggccnt ggcnngacctm ctctt 25

<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 9 of 11

```
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (18)..(18)
<223> Inosine
<400> 9
gaccgytacc tggccatngt ccaygcc
```

27

```
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (10)..(10)
<223> Inosine
<400> 10
ggcrtggacn atggccaggt arcggtc
```

27

```
<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (1)..(1)
<223> Inosine
<220>
<221> modified_base
<222> (6)..(6)
<223> Inosine
<220>
<221> modified_base
<222> (16)..(16)
<223> Inosine
<220>
<221> modified_base
<222> (18)..(18)
<223> Inosine
<400> 11
naccanrttg tagggnrncc armarag
```

27

```
<210> 12
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (8)..(8)
<223> Inosine
```

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 10 of 11

```
<220>
<221> modified_base
<222> (10)..(10)
<223> Inosine
<220>
<221> modified_base
<222> (23)..(23)
<223> Inosine
<400> 12
tgttaggnrn ccarmaragr agnargaa 28

<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (12)..(12)
<223> Inosine
<220>
<221> modified_base
<222> (15)..(16)
<223> Inosine
<400> 13
gaaggcgtag ansanngggt tgasgca 27

<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (4)..(4)
<223> Inosine
<220>
<221> modified_base
<222> (7)..(8)
<223> Inosine
<400> 14
agansanngg gttgasgcag cwgtg 25

<210> 15
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> CDS
<222> (16)..(48)
<400> 15
aagcttccag cagcc atg gac tac aag gac gac gat gac aaa gaa ttc 48
      Met Asp Tyr Lys Asp Asp Asp Lys Glu Phe
      1           5             10
```

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,012,133 B1

Page 11 of 11

```
<210> 16
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 16
Met Asp Tyr Lys Asp Asp Asp Asp Lys Glu Phe
1                      5                         10

<210> 17
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 17
ttaagaattc acaacacctcac tagatac

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 18
catagtggat ccagaatg
```