Clinical Pharmacy Slides; Organized & Simplified by **Haris Saeed**

CLINICAL PHARMACY-II

Dr. Abuzir Khan
Department of Pharmacy
University of Peshawar

Student Name	
Class:	5 th Professional Year
Section:	
Roll No.	
Mobile No.	

Index

S. No.	Title	Page No.
1	Rational Use of Drugs	
2	Introduction to Essential Drugs	
3	Drug Utilization Review	
4	Clinical Pharmacokinetics	
5	Pharmaceutical Care	
6		
7	Clinical Toxicology	
8	Safe Intravenous Therapy and Hazards	
9	Non-compliance	
10	Disease Management	
	V. Central Nervous System	
	a. Stroke	
	b. Epilepsy	
	c. Psychosis	
	VI. Infectious Diseases	
	a. Meningitis	
	b. Tuberculosis	
	VII. Endocrinological Disorders	
	a. Diabetes Mellitus	
	b. Hyperthyroidism	
	c. Hypothyroidism	
	d. Hypopituitarism	
	VIII. Nephrology	
	a. Acute Renal Failure	
	b. Urinary Tract Infections	
	IX. Hematology	
	a. Thrombocytopenia	

PHARMACEUTICAL CHEMISTRY-IV (MEDICINAL CHEMISTRY) (Practical) Paper 6 Marks 100

NOTE: Practical of the subject shall be designed from time to time on the basis of the above mentioned theoretical topics and availability of the facilities e.g. Estimation of functional groups; Carboxylic, Hydroxy, Amino and Nitro groups; Determination of Molecular weights of Organic Compounds. Synthesis of Paracetamol, Salicylic Acid, Methyl salicylate, Azobenzene, Benzoic Acid, 5-Hydroxy-1, 3-benzoxazol-2-one, Aspirin, P-nitrosophenol, 3-nitrophthalic acid, Chloro-benzoic acid. Assay of the Drugs like Sulpha drugs, Aspirin, Paracetamol, Benzyl Penicillin. Inorganic Preparations (**Note:** A minimum of 20 practicals will be conducted).

PHARMACY PRACTICE-VI (CLINICAL PHARMACY-II) (Theory)

<u>Paper 2</u> <u>Marks 100</u>

- 1. <u>RATIONAL USE OF DRUGS:</u> Rational Prescribing, Rational Dispensing, Problems of Irrational Drug Use, Learning about drug use problem, Sampling to study drug use, Indicators of drug use.
- **2.** <u>INTRODUCTION TO ESSENTIAL DRUGS:</u> Criteria for selection, Usage and Advantages. Development of EDL.
- **3.** <u>DRUG UTILZATION EVALUATION & DRUG UTILIZATIONREVIEW (DUE/DUR):</u> Development of protocol of use of few very low therapeutic index drug groups like Steroids, Vancomycin and Cimetidine.
- **4.** <u>CLINICAL PHARMACOKINETICS:</u> Therapeutic Drug Monitoring of Digoxin, Theophyline, Gentamycin, Lithium, Phenytoin, Cabamazepine, Phenobarbitone, Valproic Acid, Cyclosporins and Vancomycin.
- 5. PHARMACEUTICAL CARE, ITS SCOPE, MANAGEMENT AND APPLICATION OF CARE PLAN:
- **6.** <u>CLINICAL THERAPEUTICS:</u> General Strategy: Terminology of Disease. Management and Treatment. Drug Selection.
- 7. CLINICAL TOXICOLOGY:
 - (a) General information. Role of pharmacist in treatment of poisoning and general management of poisoning & over dosage. Role and Status of Poison Control Centre.
 - (b) Antidotes and their mechanism of action.
- 8. SAFE INTRAVENOUS THERAPY & HAZARDS OF IV THERAPY
- **9. NON-COMPLIANCE:** Definition, introduction and importance, Extent of non-compliance, Methods of assessment, Reasons for non-compliance, Strategies for improving compliance.

10. DISEASE MANAGEMENT:

- <u>Unit V: Central nervous system unit</u> (Stroke, Epilepsy, Psychosis)
- <u>Unit VI: Infectious diseases</u> (Meningitis, tuberculosis, dermatological infections, Rabies, Urinary track infection, Malaria fever, Typhoid fever, Fungal infections of skin, AIDS, Dengue fever, Common Cold, Pharyngitis & Tonsillitis, Conjunctivitis)
- <u>Unit VII: Endocrinology Unit</u> (Diabetes Mellitus, Hyper/Hypo-thyroidism, pituitary gland non-malignant disorders)
- <u>Unit VIII: Oncology Unit</u> (Types of tumors, Brief introduction to oncological diseases e.g. prostate cancer, breast cancer, lungs cancer)
- <u>Unit IX: Nephrology Unit</u> (Renal failure, nephrotic syndrom)
- <u>Unit X: Hematology Unit</u> (Bleeding disorders/coagulopathies/clotting disorders e.g. thrombocytopenia, hemophilia, Vit. K deficiency, Anemia).

PHARMACY PRACTICE-VI (CLINICAL PHARMACY-II) (Practical)

<u>Paper 7</u> <u>Marks 100</u>

- Clerkship in the Clinical Setting. A project Related to Clinical Pharmacy Practices will be completed by the students and will be evaluated by the external examiner.
- Student are required to take/present verbal presentation, communication, written and problem-solving skills, critical analysis of data and provision of care through a weekly conference and projects

PHARMACEUTICS-VII (PHARMACEUTICAL TECHNOLOGY) (Theory)

<u>Paper 3</u> <u>Marks 100</u>

1. PRINCIPLES OF PHARMACEUTICAL FORMULATION AND DOSAGE FORM DESIGN:

Need for dosage form; Pre-formulation Studies; Product Formulation.

2. <u>ADVANCED GRANULATION TECHNOLOGY (DESIGN & PRACTICE):</u>

Spray Drying Granulation Technology; Roller Compaction Technology; Extrusion/Spheronization as a Granulation Technique; Single-Pot Processing **Granulation Technology:** Rapid Release Granulation Technique; Particle Coating by Centrifugation Granulation Technology.

3. POLYMERS USED IN DRUG DELIVERY SYSTEMS:

4. NOVEL DRUG DELIVERY SYSTEM (DDS):

Sustained/ Controlled Release Drug Delivery System

- i. Microencapsulation technique
 - Coacervation
 - Solvent evaporation
 - Interfacial polymerization
 - Spray drying
- ii. Developmental aspects of Matrix and Reservoir Systems

Rational Use of Drugs (RDU)

Drug Use Process & Importance of RDU

Factors Leading to the Realization of RDU

- ✓ **Drug explosion** Increased availability of drugs
- ✓ Efforts to prevent resistance To avoid antimicrobial resistance
- ✓ **Growing awareness** Among healthcare providers and patients
- ✓ **Increased cost of treatment** Need for costeffective therapy
- ✓ Consumer Protection Act Legal measures to ensure safe drug use

Irrational Use of Drugs

Type of Irrational Use	Description
Under-prescribing	Prescribing less than the required dose or duration
Incorrect prescribing	Wrong drug, dose, route, or frequency
Extravagant prescribing	Prescribing unnecessary or expensive drugs
Over-prescribing	Using more medication than necessary
Multiple prescribing	Prescribing multiple drugs without proper justification
Unproven efficacy	Using drugs with questionable effectiveness
Extravagant prescribing Over-prescribing Multiple prescribing	Prescribing unnecessary or expensive drugs Using more medication than necessary Prescribing multiple drugs without proper justification

Definition of Rational Drug Use

✓ Right Drug	✓ Right Time	✓ Right Route
✓ Right Patient	✓ Right Dose	✓ Economical choice

Steps to Achieve RDU

Step	Action
Step I: Identify Patient Problem	Take a detailed history, assess complaints, review drug history
Step II: Diagnosis	Essential prerequisite for rational prescribing
Step III: Set Therapeutic Objective	Define the treatment goal
Step IV: Select Treatment	Consider lifestyle changes and drug selection based on safety, efficacy, cost, and ease of administration
Step V: Start Treatment	Implement prescribed therapy
Step VI: Monitor Treatment	Assess the treatment response
Step VII: Conclude Therapy	Stop or modify treatment as needed

Components of an RDU Program

Component	Details
1. Teaching of Basics	Pharmacology, Therapeutics, Guidelines, Problem-based learning
2. Essential Drug Concept	Essential Medicine List (EML), Drug selection, Formulary
3. Drug Information	Educating physicians, public awareness (newsletters, media), resisting marketing pressure
4. Drug Use Study	Monitoring prescribing patterns, assessing influencing factors

Factors Influencing Medicine Use

Category	Factors
Patient & Community	Awareness, adherence, affordability
Prescriber & Dispenser	Training, work environment, prescribing habits
Policy & Regulations	National drug policies, legal framework
Drug Supply System	Availability, affordability, and distribution

Rational Prescribing Steps

Step	Description
1. Specific Diagnosis	Identify the exact medical condition
2. Consider Pathophysiology	Understand the disease mechanism
3. Therapeutic Objective	Define what the treatment aims to achieve
4. Drug of Choice Selection	Choose the most effective and safe drug
5. Dosing Regimen	Determine the correct dose, frequency, and duration
6. Drug Action Monitoring	Observe effects and adjust as needed
7. Patient Education	Inform about drug use, side effects, and adherence

Dispensing Cycle:

Dispensing Process

Step	Description
1. Receiving of Prescription	Accepting the prescription from the patient or caregiver
2. Interpretation of Prescription	Understanding the prescribed medications and instructions
3. Checking of Prescription	Ensuring correctness, legality, and appropriateness of the prescription
4. Filling of Prescription	Selecting and preparing the required medication
5. Labeling of Prescription	Providing essential details like drug name, dosage, and instructions
6. Handling of Prescription	Dispensing the medication to the patient with counseling
7. Records	Maintaining a record of dispensed medications
Final Step	Poor or uncontrolled dispensing can be hazardous

Irrational Use of Drugs

Cause	Factors
1. Drug Selection	Inappropriate choice of medication
2. Patient Characteristics	Age, gender, comorbidities, and compliance
3. Lack of Information	Inadequate knowledge of the drug or condition
4. Incorrect Prescribing	Wrong drug, dose, or frequency
5. Expensive Drugs	Overprescribing costly medications without necessity

Factors Responsible for Irrational Use

- ✓ **Patients** Self-medication, demand for unnecessary drugs
- ✓ **Prescribers** Lack of knowledge, incentives from pharma companies
- ✓ **Workplace** Unregulated practices, lack of monitoring
- ✓ **Drug Regulations** Weak policies, ineffective implementation

Problems of Irrational Use

- ✓ Quality of Life (QOL)? Poor outcomes due to incorrect drug use
- ✓ Wastage Financial and resource loss
- ✓ Adverse Drug Reactions (ADRs) Increased side effects and complications
- ✓ Cost Increased treatment expenses

Solutions to Irrational Use

Solution	Approach
Best Practices	Following evidence-based medicine
Guidelines & Standards	Adhering to international treatment protocols
Drug Regulations	Strengthening policies and monitoring drug use

Drug Use Indicators

- ✓ **Definition** Objective measures to assess drug use in a country
- ✓ **Purpose Planning**, **Supervising** drug use practices
- ✓ Origin Introduced at 1985 WHO Nairobi Conference

Objectives of Drug Use Indicators

- ✓ Describing **drug use patterns**
- ✓ Assessing **prescribing behavior**
- ✓ Evaluating **intervention impacts**

Types of Drug Use Indicators

Type	Focus
Prescribing Indicators	Drug prescriptions, dosage, adherence to guidelines
Patient Indicators	Patient adherence, medication safety
Facility Indicators	Availability of essential drugs, proper storage

Prescribing Indicators

Indicator	Standard Values
Average number of drugs per encounter	1.6 - 1.8
Percentage of encounters with an antibiotic prescribed	20.0 - 26.8%
Percentage of encounters with an injection prescribed	13.4 - 24.1%
Percentage of drugs prescribed by generic name	100%
Percentage of drugs prescribed from the Essential Medicine List (EML)	100%

Here is the tabulated version of the data:

Primary Healthcare Centers	Average number of medicines prescribed per patient encounter	Percent medicines prescribed by generic name	Percent encounters with an antibiotic prescribed	Percent encounters with an injection prescribed	Percent medicines prescribed from essential medicines list
1	3.4 (1.4)	81.2	64.0	38.0	98.5
2	3.6 (1.5)	85.1	63.0	32.0	87.6
3	3.4 (1.3)	83.0	87.0	21.0	89.2
4	3.2 (3.1)	43.7	40.0	18.0	90.7
5	3.2 (1.4)	88.5	56.0	30.0	100
6	1.9 (1.0)	70.0	30.0	9.0	100
7	5.0 (2.3)	90.0	30.0	90.0	80.5
8	4.3 (2.4)	76.0	28.0	28.0	100
9	2.9 (0.7)	66.7	29.0	43.0	100
10	3.4 (1.1)	82.0	61.0	27.0	87.9
Mean (SD)	3.4 (0.8)	71.6 (15.7)	48.9 (20.2)	27.1 (9.8)	93.4 (7.1)
ANOVA	p < .0005	p < .0005	p < .0005	p < .0005	p < .0005

Notes:

• Primary Healthcare Centers:

1 = Agha pur, 2 = Jamal channar, 3 = Mubarak pur, 4 = Jhangi wali, 5 = Mithra, 6 = Chak kotoora, 7 = Kud wala, 8 = Khanqah sharif, 9 = Khanu wali, 10 = Kulab

Patient-Care Indicators

Indication	Standard Value
Average consultation time (minutes)	≥10
Average dispensing time (seconds)	≥90
Percent of medicines actually dispensed	100%
Percent of medicines adequately labeled	100%
Percent of patients with knowledge of correct doses	100%

Facility-Specific Indicators

Indication			Standard Value				
Availability of essential medicines list or formulary to practitioners			100%				
Percent of	f key medici	nes availal	ble			100%	
Primary Healthcare Centers	Average consultation time (minutes)	Average dispensing time (seconds)	Percent medicines actually dispensed	Percent medicines adequately labeled	Percent patients with knowledge of correct doses	Availability of essential medicines list to practitioners	Percent key medicines available
1	2.3 (1.5)	43.1 (34.7)	87.3	100.0	67.0	100.0	90.0
2	2.5 (1.2)	43.0 (17.1)	91.1	100.0	77.0	100.0	70.0
3	2.4 (1.0)	36.7 (10.8)	91.2	100.0	77.0	100.0	80.0
4	1.5 (7.7)	37.9 (20.3)	30.0	100.0	30.0	100.0	90.0
5	2.1 (0.9)	42.6 (16)	100.0	100.0	67.0	100.0	80.0
6	1.3 (0.6)	31.3 (14)	68.3	100.0	33.0	100.0	70.0
7	2.9 (1.4)	30.9 (10.5)	100.0	100.0	53.0	100.0	70.0
8	2.1 (1.2)	36.9 (25.8)	91.5	100.0	64.0	100.0	90.0
9	3.6 (1.1)	63.3 (50.7)	100.0	100.0	90.0	100.0	90.0
10	2.0 (0.7)	37.1 (20.6)	93.0	100.0	63.0	100.0	80.0
Mean (SD)	2.2 (0.8)	38.0 (12.1)	90.9 (9.5)	100.0	62.1 (19)	100.0	82.0 (7.9)
ANOVA	p < .0005	p<.0005	p < .0005	a	p < .0005	a	p < .0005

^aANOVA was not applied for these indicators as there was no variation in their values.

Let me know if you need further modifications!

Research Characteristics

- Research is creative and systematic work undertaken to increase knowledge, including knowledge of humans, culture, and society, and to develop new applications.
- Key Attributes:
 - o Neutrality
 - o Reliability

- o Validity
- Generalization

Research Design

Category	Types
Observational	Exploratory, Descriptive, Cohort, Case-Control, Cross-Sectional
Experimental	Randomized Control Trials
Other Designs	Qualitative Research, Systematic Reviews

Sampling in Drug Use Studies

Key Terms

- **Population**: The entire group being studied.
- **Sample**: A subset of the population selected for study.
- Participants: Individuals included in the sample.

Sampling Process

- The process of selecting a sample from a population is called **sampling**.
- Sampling Errors:
 - o **Systematic Errors**: Consistent errors in the sampling process.
 - o **Sampling Bias**: When certain groups are over or underrepresented.

Types of Sampling

Category	Definition
Probability Sampling	Every unit has an equal chance of selection.
Non-Probability Sampling	Some units have a higher chance of being selected.

Probability Sampling

Method	Description
Random Sampling	Equal chance for all; lottery or computer-generated selection.
Systematic Random Sampling	Selection at regular intervals from a homogenous population.
Stratified Random Sampling	Population divided into subgroups (strata), and samples taken randomly.
Cluster Sampling	Selection from clusters in a wide geographical area.
Multistage Sampling	Combination of two or more probability techniques (e.g., Cluster + Stratified).

Advantages of Probability Sampling

- Reduces systematic errors.
- Minimizes sampling bias.
- Ensures better representation.
- Produces generalizable results.

Disadvantages of Probability Sampling

- Requires significant effort and time.
- Expensive to conduct.

Random Sampling

- Every individual has an equal chance of selection.
- Works best with a well-defined, homogenous population.
- Selection methods include lottery systems or computergenerated tables.
- Once selected, participants are approached and interviewed.

Systematic Random Sampling

- Used for a homogenous population.
- Elements are selected at regular intervals based on time, space, or order.
- Ensures consistency and uniformity in selection.
- Once chosen, participants are approached and investigated.

Stratified Random Sampling

- Used for a heterogeneous population.
- Population is divided into subgroups (strata) based on shared characteristics.

- Sample is selected randomly or systematically from each stratum.
- Ensures better representation of the population.
- Challenges include high cost, effort, and the need for clear subgroup definitions.

Cluster Sampling

- Used for populations spread over a wide geographical area.
- The population is divided into clusters (e.g., cities, schools, hospitals).
- Entire clusters are randomly selected instead of individual participants.
- Cost-effective and practical for large-scale studies.
- May introduce higher sampling errors compared to other methods.

Cluster 1 Cluster 2 Cluster 2 Cluster 2 Cluster 3 Cluster 4 Cluster 4

Multistage Sampling

- Combines two or more probability sampling techniques.
- Often involves **Cluster Sampling** followed by **Stratified Sampling** or another method.
- Helps refine the sample selection in large populations.
- Reduces costs and increases efficiency.
- May lead to increased complexity in analysis.

Stratified Cluster Sampling

Non-Probability Sampling

- Not every unit in the population has an equal chance of being selected.
- Advantages: Requires less effort, cost, and time.
- **Disadvantages**: Higher risk of sampling errors, bias, and lack of generalizability.

Non-Probability Sampling Methods

- 1. **Volunteer Sampling** Participants self-select to be part of the study.
- 2. **Convenient Sampling** Selection based on ease of access to participants.
- 3. **Purposive Sampling** Selection based on specific characteristics relevant to the study.
- 4. **Snowball Sampling** Existing participants refer new participants.
- 5. **Matched Sampling** Participants are selected based on matching characteristics with a control group.
- 6. **Genealogy-Based Sampling** Selection based on family lineage or ancestry.

Essential Medicine List

Definition of Essential Medicines

Essential medicines are those that satisfy the priority health care needs of the population.

- **23rd edition**: 591 drugs (July 2023)
- Selection Criteria:
 - o Public health relevance
 - o Evidence
 - o Efficacy
 - o Safety
 - o Comparative cost-effectiveness

History of Modern Medicines

Year	Development
1897	Introduction of Aspirin
1941	Introduction of Antibiotics
1943	Introduction of Antimalarials
1944	Introduction of Antitubercular drugs
1950s	Oral contraceptives, drugs for diabetes, and mental illness
1977	WHO Model List of Essential Drugs (208 individual medicines)

• The WHO list provided **safe and effective treatment** for most communicable and non-communicable diseases.

Need for an Essential Medicine List (EML)

Factors	Explanation
List of drugs available in the market	Different prices, different healthcare needs
Chances of irrationality	Need a standardized list of medicines
Criteria	Safety, efficacy, cost-effectiveness
Healthcare coverage	Majority of healthcare needs can be fulfilled

Do We Really Need an Essential Medicine List?

Reason	Explanation
1. Poor supply chain in LMIC	C Limited access in Low- and Middle-Income Countries
2. Cost of Medicines	High prices limit accessibility
3. Availability of Medicines	Ensuring essential drugs are stocked
4. Reducing Mortality	Effective treatment reduces deaths
5. Therapeutic Manuals	Standardized treatment guidelines
6. ADR Monitoring	Adverse Drug Reaction monitoring
7. New Therapeutic Options	Need to include updated medicines
8. Regular Update of EML	Keeping up with medical advancements
9. Resource Constraints	Maximizing benefits in limited settings

Criteria for the Selection of Essential Drugs

Core List (Basic Health Care)	Complementary List (Specialized Facilities)
Minimum drugs required	Specialized treatment options
Safe, efficacious, cost-effective	Training requirements

Factors for Selection:

Criteria	Description
1. Prevalent Disease	Common illnesses requiring treatment
2. Treatment Facilities	Availability of healthcare centers
3. Trained and Experienced Personnel	Skilled medical staff availability
4. Financial Resources	Budget constraints
5. Genetic and Demographic Data	Population-specific treatment needs
6. Scientific Evidence	Backed by research and studies
7. Cost	Affordable options
8. Single Compounds	Preference for individual active ingredients
9. Dosage Form Selection	Suitable forms for different patient needs
10. Quality Assurance	Standardized manufacturing and safety
11. Reserve Anti-Infective Agents	Restricted use of strong antibiotics

Advantages and Uses of the Essential Medicines List (EML)

Advantages:

- 1. **Better Healthcare** Ensures people have access to the most needed medicines.
- 2. **Affordable Treatment** Helps keep medicine costs low and affordable.
- 3. Quality and Safety Includes only safe, effective, and tested medicines.
- 4. **Guidance for Doctors** Helps doctors choose the best treatment options.
- 5. **Prevents Resistance** Encourages proper use of antibiotics to avoid drug resistance.
- 6. **Cost-Effective Choices** Focuses on medicines that offer the best value for money.

- 7. **Better Control** Promotes wise use of medicines and reduces misuse.
- 8. **Regularly Updated** Keeps up with new medical research and health needs.
- 9. **Supports NEML** Provides a global base to help countries create their own National Essential Medicines List.
- 10. **Helps LMICs** Acts as a useful guide for low- and middle-income countries.

Uses:

- 1. **Hospitals & Clinics** Helps in selecting essential, effective medicines.
- 2. **Government Policies** Guides national health programs and medicine supply planning.
- 3. **Pharmacies** Ensures the most important medicines are always available.
- 4. **Health Insurance** Helps decide which medicines should be covered.
- 5. **Global Health** Supports better healthcare access worldwide.

AWaRe Classification of Essential Medicines

Aspect	Details
Introduction	First introduced in 2017 by the WHO Expert Committee on Selection and Use of Essential Medicines.
Purpose	Classifies antibiotics in the WHO Model List of Essential Medicines into three categories: Access, Watch, and Reserve.
2019 Update	Expanded to include all commonly used antibiotics globally, beyond just the WHO Model List.
Advisory Group	Based on recommendations from the EML Antimicrobials Working Group and WHO Expert Committee.
Reference	Detailed methodology and evidence are available in the WHO Technical Report Series.

Prioritizing Antibiotic Use: The WHO AWaRe Tool"

Antimicrobial resistance is a global crisis

Access category antibiotics should be the preferred choice for common and serious infections. Watch and Reserve category antibiotics are either at higher risk of resistance or too precious to use all the time.

Advantages and Uses of the Essential Medicines List (EML)

Advantages:

- 1. **Better Healthcare** Ensures people get the most needed medicines.
- 2. **Affordable Treatment** Helps keep medicine costs low.
- 3. Quality and Safety Includes only tested and effective medicines.
- 4. **Guidance for Doctors** Helps doctors prescribe the best medicines.
- 5. **Prevents Resistance** Promotes proper use of antibiotics to avoid drug resistance.

Uses:

- 1. **Hospitals & Clinics** Helps in choosing essential medicines.
- 2. **Government Policies** Guides health programs and medicine supply.
- 3. **Pharmacies** Ensures availability of important medicines.
- 4. **Health Insurance** Helps decide which medicines to cover.
- 5. Global Health Supports better medical care in all countries.

WHO Expert Committee for EML (23rd Edition)

The WHO Expert Committee for the Essential Medicines List (EML) consists of:

- 15 Committee Members
- 4 Temporary Advisers
- UN Agencies Involved:
 - UNICEF (United Nations Children's Fund)
 - WHO Regional Heads (5 members from America, South-East Asia, Eastern Mediterranean, etc.)
 - o WHO Headquarters in Geneva (Secretariat with 5 members)

23rd Edition of EML (2023) – Updates

- **156 countries** use the WHO EML as a reference.
- **Updated every 2 years** to ensure relevance and effectiveness.
- Total medicines in the 23rd edition (2023): 502
- New additions: 24 medicines (15 added to the core list, 9 to the complementary list).
- Review process:
 - 85 applications considered.
 - o 52 applications for adding new drugs.
 - o 9 proposals for adding new indications to existing 22 drugs.
 - o 9 proposals for new formulations.
 - 6 proposals for removing 13 drugs.
 - o 9 applications for other modifications.

Symbols Used in EML/23rd Edition of EML Edition:

- [c] Core List: Indicates restrictions on use for children.
- [c] Complementary List: Requires specialist diagnosis or monitoring.
- \Box (Square Box): Signifies therapeutic alternatives.
- **Age/Weight Restriction Symbol:** Indicates specific age or weight limits for medicine use.

Changes to the WHO Model List of Essential Medicinesviii							
	te to prescribers1						
Section 1:	Anaesthetics						
Section 2:	Analgesics, antipyretics, non-steroidal anti-inflammatory medicines						
	(NSAIMS), medicines used to treat gout and disease modifying						
	agents in rheumatoid disorders (DMARDs)30						
Section 3:	Antiallergics and medicines used in anaphylaxis47						
Section 4:	Antidotes and other substances used in poisonings55						
Section 5:	Anticonvulsants/antiepileptics67						
Section 6:	Anti-infective medicines80						
Section 7:	Antimigraine medicines						
Section 8:	Antineoplastic, immunosuppressives and medicines used in						
	palliative care						
Section 9:	Antiparkinsonism medicines						
Section 10.	Medicines affecting the blood						
Section 11:	Blood products and plasma substitutes						
Section 12:	Cardiovascular medicines						
Section 13:	Dermatological medicines (topical)						
Section 14:	Diagnostic agents						
Section 15:	Disinfectants and antiseptics						
Section 16:	Diuretics 326						
Section 17:	Gastrointestinal medicines						
Section 18:	Hormones, other endocrine medicines and contraceptives353						
Section 19:	Immunologicals						
Section 20:	Muscle relaxants (peripherally-acting) and cholinesterase						
	inhibitors 425						
Section 21:	Ophthalmological preparations						
Section 22:	Oxytocics and antioxytocics						
Section 23:	Peritoneal dialysis solution						
Section 24:	Psychotherapeutic medicines						
Section 25:	Medicines acting on the respiratory tract						
Section 26:	Solutions correcting water, electrolyte and acid-base						
	disturbances 486						
Section 27:	Vitamins and minerals						
Appendix 1:	Interactions 503						
Appendix 2:	Pregnancy						
Appendix 3:	Breastfeeding 599						
Appendix 4:	Renal impairment						
Appendix 5:	Hepatic impairment						
Index	429						

National Essential Medicines List (NEML) 2023

- Total drugs: 502
- First NEML introduced in 1994.
- Categorized into three levels:
 - o **Primary** (**P**) Basic healthcare needs.
 - o **Secondary (S)** More specialized healthcare.
 - o **Tertiary** (**T**) Advanced medical care.

DRUG UTILIZATION EVALUATION & DRUG UTILIZATION REVIEW

Chap. 3 Clinical Pharm II Abuzar Khan PhD

Contents

- DUE Introduction
- Goals Of DUE
- Scope Of DUE
- DUE Process
- Steps in DUE
- Practical Cases

Drug Utilization Review (DUE)

Also known as:

- MUE
- DUR
- Drug Usage Review

They all have the same meaning.

Drug Utilization Evaluation (DUE) Program

- Planned, criteria-based
- Systematic process
- Monitoring, evaluating, and continually improving medication use
- Aim: Improving medication-related outcomes for a group of patients or consumers

DUE Introduction

Main Focus Areas:

- Patient assessment and Patient education.
- Prescribing
- Preparation and dispensing
- Administration
- Patient monitoring for medication safety and efficacy

DUE vs. Drug Audit

Drug Audit:

- Single evaluation focusing on a particular medication, drug class, disease state, or process
- Data collection, organization, analysis, and reporting
- Small component of DUE

Drug Regimen Review:

- Review of an individual patient's medication regimen
- Reviewing the appropriateness of a new prescription
- Pharmacist's personal judgement. rather than explicit criteria

Pharmaceutical Care:

DUE Definition

- Formal Program Assesses data on drug use against explicit, prospective standards and introducing curative strategies as necessary to achieve desired outcomes.
- Corrective Actions: Introduces Indicators:
 - o **Red Flags** Warning signs in drug utilization.
 - o **Quantitative Measures** Objective assessment tools.
 - o **Example:** Postoperative infection rate.

Importance of DUE

- Improves medication use.
- Ensures proper formulary management.
- Reports adverse drug reactions.
- Prevents medication errors.
- Enhances pharmacist involvement.
- Supports clinical pharmacy services.

Role of Pharmacist

- **Responsibility** Ensures proper medication use.
- **Interdisciplinary Approach** Collaborates with healthcare professionals.
- **Team Involvement** Works with physicians, prescribers, nurses, administrators, and patients.
- **Leadership** Pharmacist should take the lead in medication management.

Goals of DUE

- 1. **Effectiveness:** Ensuring optimal therapeutic outcomes
- 2. Efficiency: Reducing unnecessary medication use
- 3. **Medication Safety:** Preventing adverse drug reactions
- 4. **Patient Satisfaction:** Enhancing treatment experience
- 5. **Cost Reduction:** Minimizing unnecessary expenses
- 6. Optimizing Care: Improving overall healthcare delivery

Scope of DUE

- 1. **High-Risk Medications:** Anticoagulants, chemotherapy, immunosuppressants
- 2. **High-Use/High-Volume Medications:** Common antibiotics, chronic disease medications
- 3. **High-Cost Medications:** Expensive drugs and procedures
- 4. **Drugs Used in High-Risk Patient Groups:** Critically ill, elderly, neonates
- 5. **Problem-Prone Drugs:** Medications frequently associated with safety concerns

Types of DUE

- 1. **Retrospective Review:** Evaluating past medication use.
- 2. **Prospective Review:** Assessing medication before it is prescribed
- 3. Concurrent Review: Monitoring drug use in real time

PART-II (PRACTICE)

Practice Case: Surgery DUE

- **Issue:** Postoperative infection rates for abdominal surgeries were higher than the national average.
- **Observation:** The pharmacy director noticed frequent use of cefoxitin, which was costly and inappropriate.
- **Decision:** The committee initiated a Drug Utilization Review (DUR) for antibiotic prophylaxis in abdominal surgery wound infections.
- **Justification:** The health problem met all DUR criteria high use, high cost, high risk, and problem-prone.

Priority of Problem:

Medication/health problem	High use	High cost	High risk	Problem prone	Total score
Paracetamol	1	0	0	0	1
Acute respiratory infections	2	0	1	1	4
Ceftriaxone	1	2	0	0.5	3.5
Warfarin	0.5	0	1	2	3.5
H2 antagonists	1	1	0	1	3
Surgical antimicrobial prophylaxis	1	1.5	0.5	1	4

^{*} Each medicine or health problem is rated 0–2 on the basis of the use, risk, cost, and probability of problems. The highest total scores may be targeted for the DUR.

Steps in DUE

Step	Description
Step 1	Establish responsibility by forming a DUE committee
Step 2	Develop scope and identify priority medications
Step 3	Establish criteria and standards based on evidence-based guidelines
Step 4	Collect and analyze data using surveys and software tools
Step 5	Identify and analyze medication-related problems
Step 6	Implement corrective actions and interventions
Step 7	Monitor outcomes and ensure adherence

Steps in DUE

Step I: Establish Responsibility

- Form a hospital committee.
- Plan activities and procedures.
- Distribute tasks and responsibilities.

Step II: Develop Scope

- Identify medication use problems.
- Prioritize:
 - o High-volume medicines.
 - o Medicines with a low therapeutic index.
 - Medicines with a high incidence of ADRs.
 - o Expensive medicines.

Step III: Establish Criteria

- Sources:
 - o Based on literature.
 - o Reviewed by local and international experts.
 - Standard Treatment Guidelines (STG) must be accepted by medical staff.

• Developing Thresholds:

- Pharmacy administration indicators:
 - Correct cost to patient
 - Accurate billing records
 - Accurate dispensing records
 - Appropriate use of generic medicines or therapeutic equivalents
 - Appropriate use of formulary medicines
 - Appropriate quantity dispensed

Step IV: Data Collection and Results

- Types of Data Collection:
 - o Prospective, retrospective, and concurrent methods.
- Tools Used:
 - o Questionnaires, PDAs, chart reviews, computerized software systems.
- Presentation of Results:
 - o Graphical or descriptive formats.

Step V: Analysis

- Frequency of Analysis:
 - o Conducted quarterly or annually.
- Methods:
 - o Data tabulation.
 - o Statistical analysis.
- Intervention:
 - o If thresholds are not met, it may indicate a medicine use problem requiring DTC (Drug and Therapeutics Committee) attention.

Step VI: Action Plan

- Fix medicine use problems.
- DTC decides to continue, stop, or expand DUE.

Step VII: Follow-up

• Ensure issues are resolved through regular checks.

Problems / Challenges in DUE

- 1. Lack of Authority: Insufficient enforcement power
- 2. **Poor Prioritization:** Ineffective selection of key drugs/issues
- 3. **Inadequate Follow-Up:** Lack of sustained monitoring
- 4. **Poor Documentation:** Incomplete record-keeping affects reliability

Practical Case Study: Surgery DUE

Issue: High postoperative infection rates in abdominal surgeries **Findings:**

- Surgeons used non-recommended antibiotics
- Delayed preoperative antibiotic doses
- Overprescription of high-dose antibiotics
- Unnecessary use of antibiotics for certain surgeries

Priority of the Problem: High use, high cost, high risk, and problem-prone

	Benchmark	Indicator: % Compliance per quarter			
Criterion	(%)	1st	2nd	3rd	4th
Antibiotic selection (per <i>Medical Letter</i>)	100	70	85	94	100
2. Correct dose (per Medical Letter)	95	65	90	94	97
3. Preoperative dose 0–2 hours before surgery	95	30	52	89	94
4. Postoperative dose only for dirty surgery	98	78	89	82	91
5. No postoperative infection	96	90	93	96	100
6. No adverse reactions to medicines	97	97	100	87	97

Review Criteria					Pati	ents				
from DTC	1	2	3	4	5	6	7	8	9	10
Indications ^a	Tonsillitis	Otitis media	Urethritis	Bowel	Severe gram- negative meningitis	Boils/ abscess	Severe cystitis	Surgical prophylaxis	Pneumonia	Severe wound infection
Appropriate indication?	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
Amoxicilline dosage ^b	250 mg tds	250 mg tds	250 mg tds	1,500 mg bd	500 mg tds	250 mg tds	500 mg tds	250 mg tds	250 mg tds	500 mg tds
Duration (usually 5 days)	5 days	7 days	7 days	1 day	10 days	7 days	5 days	5 days	5 days	7 days
Cost per capsule (KES)	30	30	30	30	30	30	30	30	30	30
Total cost ^c	470	650	650	380	1,800	650	920	470	470	1,280

Table 1. Sample DUE Criteria for Ciprofloxacin

Indicator	Criteria	Threshold,
Indication	Complicated, chronic, or relapsing urinary tract infection (UTI) Gonorrhea	90
	Resistant respiratory tract infections	
	Bone and joint infections	
	Prostatitis	
	Gastrointestinal (GI) infections	
Dose	Complicated or recurrent infections: 500–750 mg bid GI infections: 500 mg bid	95
	Gonorrhea: 250 mg in 1 dose	
	Dose in renal disease decrease as follows:	
	Creatinine clearance (CrCl) 30–50 ml/min	
	– 250–500 q 12 h 5–29 ml/min	
	– 250–500 q 18 h	
	Hemodialysis—500 mg q 24 h	
Duration	Complicated UTI: 10–21 days	95
	Respiratory: 7–14 days	
	Osteomyelitis: 4–6 weeks	
	GI infection: 5 days	
Contraindications	Pregnancy	100
	Children younger than 18	
Medicine interactions	Medicines—theophylline, antacids, iron, sucralfate, probenecid	90
	Food: decreased absorption with milk	
Outcome	Negative cultures	90
	Improved symptomatology	
	No treatment failures	

Annex 1. Example of Established DUE Criteria on Data Collection Form for Amikacin

Da	ate: Medicine: AMIKACIN	Data collect	or's initials:					
		Patient Cha	art No.					
		Diagnosis						
		Age/Sex/W	eight					
		Date Treate	ed					
	Criteria and Indicators	Threshold	Observed					
Jus	tification for medicine being prescribed							
1.	Serious infections caused by susceptible strains of aerobic gram- negative bacteria resistant to gentamicin and tobramycin	95%		Yes No				
2.	Suspected serious gram-negative infections acquired in the hospital with high resistance rates to gentamicin and tobramycin			Yes No				
3.	In combination with an antipseudomonal penicillin when treating serious pseudomonas infections			Yes No				
Pro	cess criteria							
4.	Obtain serum creatinine before therapy or within 24 hours of initiation of therapy	100%		Yes No				
5.	Loading dose of 7.5 mg/kg (IV or IM) based on ideal body weight	100%		Yes No				
6.	Maintenance dosage range of 15 mg/kg/day ideal weight (exception: renal compromise)	100%		Yes No				
7.	Therapy changed to tobramycin, gentamicin, or other medicine if culture and sensitivity indicate less expensive or more appropriate medicine	100%		Yes No				
Out	tcome criteria							
8.	Clinical improvement noted in patient medical records	90%		Yes No				
9.	Fever reduction to normal within 72 hours	90%		Yes No				

Therapeutic Drug Monitoring

Introduction

Therapeutic Drug Monitoring (TDM) is the practice of individualizing drug dosages by maintaining plasma or blood concentrations within a target range to achieve optimal therapeutic effects while minimizing toxicity.

Definition

- **CPR**: A practice applied to a specific group of drugs to target particular drug levels, ensuring a safer and more effective clinical response than clinical assessment alone.
- **Collat**: A routine practice for certain drugs where clinical response is compared to drug therapy.
- **Pk-Made Easy**: TDM ensures individualized dosage regimens by maintaining serum drug concentrations (SDC) within a therapeutic window using pharmacokinetic (Pk) parameters:
 - Absorption
 - Steady-state concentration
 - o Volume of distribution
 - Clearance

- Elimination
- o Plasma level-time curve
- o Half-life (T ½)

Therapeutic Range

Therapeutic range is the blood concentration range where a drug is most effective with minimal toxicity.

Key Concepts:

- At lower concentrations, both therapeutic effects and toxicity are minimal.
- As drug concentration increases, therapeutic effects rise until they stabilize.
- Toxicity risk increases gradually but becomes significant beyond a certain concentration.
- Some patients may experience toxicity within the therapeutic range, while others tolerate higher concentrations without adverse effects.
- Most drugs are monitored at **steady-state**, meaning equilibrium exists between blood and tissue concentrations.
- A decrease in blood drug concentration results in a proportional decrease in tissue concentrations, including at the drug's site of action.

Aims and Objectives: TDM aims to:

- Optimize and personalize patient responses to drug therapy.
- Maintain **serum drug concentration** within a safe and effective range.
- Prevent drug-induced toxicity from excessive concentrations.
- Avoid therapeutic failure from insufficient concentrations.

Therapeutic Ranges of Common Drugs

Drug	Therapeutic Range (mg/L)	Drug	Therapeutic Range (mg/L)
Digoxin	0.5 - 2.0	Carbamazepine	5 - 12
Amiodarone	1.0 - 2.5	Sodium Valproate	e 50 - 100
Theophylline	10 - 20	Phenobarbital	15 - 40

Common Candidates for TDM

TDM is commonly applied to the following drugs:

- Cardiac Drugs: Digoxin, Amiodarone, Quinidine, Perhexiline
- Anti-epileptic Drugs: Carbamazepine, Sodium Valproate, Phenobarbital, Phenytoin
- Antibiotics: Gentamicin, Tobramycin, Netilmicin, Amikacin, Vancomycin
- **Bronchodilators**: Theophylline
- Psychotropic Drugs: Amitriptyline, Imipramine, Nortriptyline
- Local Anesthetics: Lidocaine, Mexiletine
- Salicylates: Aspirin derivatives

General Procedure for the Determination of Pharmacokinetic (Pk) Parameters

Therapeutic Drug Monitoring (TDM) involves optimizing and individualizing drug therapy through the application of key **pharmacokinetic (Pk) parameters**, which include:

Key Pk Parameters

- **AUC** (**Area Under the Curve**) Measures total drug exposure over time.
- Onset Time The time it takes for the drug to start showing effects.
- **Duration of Action** The time for which the drug remains effective.
- **Intensity** The magnitude of the drug's effect.
- C_p max (Maximum Plasma Concentration) The peak drug concentration in blood.
- T_max (Time to Reach C_p max) Time taken to reach peak concentration.
- **MEC** (**Minimum Effective Concentration**) The lowest concentration needed for a therapeutic effect.
- MTC (Minimum Toxic Concentration) The lowest concentration at which toxicity begins.

Qualitative vs. Quantitative Drug Studies

Past Approach:

- Pharmacologists evaluated drug availability based on clinical response only.
- Example: In **anti-hypertensive drugs**, they monitored **blood pressure (BP)** changes qualitatively.

Modern Approach:

- Advanced analytical methods allow for **quantitative drug measurement**, including the detection of **parent compounds and metabolites** in biological samples.
- This has improved drug monitoring accuracy and effectiveness.

Analytical Techniques Used for Drug Measurement

Technique	Description
HPLC (High-Performance Liquid Chromatography)	Separates and quantifies drug components.
LCMS (Liquid Chromatography-Mass Spectrometry)	Provides precise drug concentration analysis.
Immunoassay (e.g., ELISA, FPIA)	Detects specific drug molecules using antibodies.
Gas Chromatography	Identifies drug compounds in gaseous form.
Spectrophotometry	Measures drug concentration based on light absorption.
Radioisotopic Methods	Uses radioactive markers to detect drugs.

Factors Influencing the Choice of Analytical Method

- **Physicochemical properties of the drug** (e.g., solubility, stability).
- Target concentration to be measured (therapeutic vs. toxic levels).
- Nature of the biological specimen (e.g., blood, serum, urine).
- Availability of instruments and trained personnel.
- Cost and accessibility of the assay method.

Due to **cost and equipment limitations**, most clinical pharmacokinetic services use **immunoassays**, such as:

- Abbott Therapeutic Drug System
- **Fluorescence Polarization Immunoassay (FPIA)** Used for anti-arrhythmics, aminoglycosides, and drugs of abuse testing.

Commercial Drug Testing Kits

Some companies provide **pre-made kits** for drug testing:

- Syntex
- Eastman Kodak

- Hoffman-La Roche
- Miles Laboratories

When to Take Blood Samples for Pk Analysis?

Before measuring drug concentration, practitioners must determine whether drug level monitoring is necessary.

Why?

- Some adverse effects (e.g., nausea, allergies) are unrelated to drug concentration.
- Monitoring should be based on **therapeutic relevance**, not just side effects.

Blood Sampling Times for TDM

- During the post-distribution phase (for a loading dose).
- At steady-state (for a maintenance dose).

Example: Blood Sampling for Pk Analysis

- 1. **Multiple samples** are collected over time.
- 2. A drug concentration vs. time graph is plotted.
- 3. The AUC (Area Under the Curve) is calculated to assess drug exposure.

Therapeutic Window and Therapeutic Index in Therapeutic Drug Monitoring (TDM)

1. Therapeutic Window / Index

The **Therapeutic Index (TI)** is the ratio of:

Therapeutic Index=MTCMEC\text{Therapeutic Index} = $\frac{MTC}{\text{MEC}}$

- MTC (Minimum Toxic Concentration): The lowest concentration at which toxicity occurs.
- **MEC** (**Minimum Effective Concentration**): The lowest concentration required for therapeutic effect.

A narrow therapeutic index (NTI) means the drug must be carefully monitored to avoid toxicity while maintaining efficacy.

2. Key Pharmacokinetic Parameters in Drug Therapy

Onset Time

• The **time required** for the drug to reach **MEC** and begin its pharmacological action.

Duration of Action

• The period during which the drug maintains an **effective concentration** in the blood.

Intensity of Drug Effect

- Determined by **the number of receptors occupied** by the drug.
- Higher drug concentration → Higher intensity of effect, but also higher risk of toxicity.
- Example: **Phenytoin**
 - o Therapeutic Range: 10-20 mg/L
 - \circ > 20 mg/L → Nystagmus (involuntary eye movements).
 - o $30-40 \text{ mg/L} \rightarrow \text{Ataxia}$ (lack of muscle coordination).
 - \circ > 40 mg/L \rightarrow Mental changes (confusion, lethargy).
- The **Therapeutic Range** is the drug concentration range where **maximum** therapeutic effect occurs with minimal adverse effects.

3. Significance of Therapeutic Drug Monitoring (TDM)

- 1. Rapid Achievement of Proper Dosage
 - o Crucial in **emergency situations** (e.g., accidents, surgery, anesthesia).
- 2. Evaluation of Existing Dosing Regimens
 - o Ensures that drug levels are **adequate** for therapeutic effects.
- 3. Prevention of Drug Toxicity
 - Helps maintain drug levels within the therapeutic range, reducing empirical dosing errors.
- 4. Differentiation Between Pharmacokinetic (PK) and Pharmacodynamic (PD) Failure
 - o **PK Failure:** Drug does **not reach** sufficient blood levels.
 - PD Failure: Drug reaches the bloodstream but does not elicit the desired effect (e.g., receptor resistance).
- 5. Cost-Effectiveness
 - Though expensive initially, TDM reduces:
 - Toxicity rates
 - Hospitalization duration
 - Complications
 - Overall healthcare costs
- 6. Measurement of Drug Bioavailability (BA)
 - o Determines:
 - Absolute Bioavailability (fraction reaching systemic circulation).
 - **Relative Bioavailability** (comparison with a reference formulation).

- 7. Application in Dose-Response Studies
 - o Helps in determining individualized dosage regimens.
- 8. Plasma Half-Life Calculation
 - o Determines **drug elimination rate**, helping in dosing adjustments.
- 9. Evaluation of Drug-Drug Interactions
 - o Identifies metabolic changes due to **co-administered drugs**.
- 10. Determination of Dose-Related Adverse Drug Reactions (ADRs)
 - Assesses **augmented ADRs** to optimize therapy.
- 11. Calculation of Optimal Dosage for Individuals
 - o Ensures **personalized treatment** for each patient.
- 12. Bioequivalence Studies
 - o Compares different formulations of the **same drug**.
- 13. Estimation of Drug Accumulation
 - o Determines potential buildup of active parent drug or metabolites.
- 14. Study of Receptor Sensitivity
 - o Helps understand **variations in drug response** among patients.
- 15. Prediction of Drug Levels in Biological Fluids
 - Determines drug presence in blood, urine, and tissues with various dosing regimens.

4. Criteria for TDM Candidate Drugs

Drugs requiring **TDM** typically have:

- 1. Narrow Therapeutic Index (NTI)
 - o **Precise monitoring** is needed to prevent **toxicity or sub-therapeutic effects**.
- 2. High Pharmacokinetic Variability
 - o Differences in absorption, metabolism, and clearance among individuals.
- 3. Non-Linear Pharmacokinetics
 - o **Dose adjustments** are unpredictable due to **enzyme saturation**.
 - o Example: Phenytoin, Salicylates, Alcohols
- 4. Steep Dose-Response Curve
 - A small increase in dose leads to significant changes in drug effect.
- 5. Major Dose-Related Side Effects
 - o Example: Phenytoin
 - $> 20 \text{ mg/L} \rightarrow \text{Nystagmus}$
 - $30-40 \text{ mg/L} \rightarrow \text{Ataxia}$
 - $> 40 \text{ mg/L} \rightarrow \text{Mental impairment}$
- 6. Specific Pharmacokinetic Considerations
 - Plasma Protein Binding
 - Example: **Phenytoin** is **highly protein-bound**.
 - In hypoalbuminemia, more free drug is available → higher toxicity risk.
 - Active Metabolites
 - Some drugs produce **active metabolites** that require monitoring:
 - Carbamazepine → Carbamazepine-10,11-epoxide
 - Procainamide → N-acetyl procainamide
 - Theophylline → Caffeine

■ **Imipramine** → Desipramine

7. Drug Intolerance

TDM is less effective in drugs with rapid tolerance development (e.g., opioids).

8. Reversibility

- o Drugs must be **reversible** in action (i.e., their effects should **decrease** when dosage is reduced).
- o Example of **Irreversible Drugs** (TDM **not effective**):
 - Alkylating anticancer agents
 - **Phenoxybenzamine** (α-blocker)

9. Availability of Drug Assay Technology

- o Requires:
 - Sensitive and accurate methods (e.g., HPLC, LC-MS).
 - Rapid analysis of parent drug, active metabolites, and enantiomers.

10. Sound Clinical Judgment

- Requires **trained healthcare professionals** with knowledge of:
 - Pharmacokinetics
 - Drug metabolism
 - Signs of toxicity
- o Example: **Digoxin** (0.9-2.0 mg/L)
 - Hypokalemia increases Digoxin toxicity, so TDM is crucial.

Blood Sampling and Therapeutic Drug Monitoring (TDM)

1. Blood Sampling

1.1 Importance of Blood Sampling in TDM

- Blood plasma or serum is usually used for drug assays, depending on the equipment.
- The most critical step in sampling is using the correct tube to avoid interference.
- Incorrect sampling times can lead to misleading plasma drug concentrations:
 - o **Early sampling (absorption or distribution phase)** → Incorrect plasma drug levels (\uparrow or \downarrow).
 - Best sampling time \rightarrow During the elimination phase for accurate results.

1.2 Recommended Blood Sampling Times (Schumacher, 1958)

Dose Type Recommended Sampling Time
Loading Dose Post-distribution/Elimination phase
Maintenance Dose At Steady State

• In some cases, **whole blood** is used instead of plasma (e.g., **cyclosporine**).

 Some blood collection tubes with gels can interfere with drug levels and should be replaced.

2. Usual Sampling Time

- **Correct sampling time is crucial** because drug concentration varies throughout the dosing interval.
- Clinical pharmacists may need to advise on when to collect blood samples.
- Multiple vs. Single Sampling:
 - o **Aminoglycosides** → Multiple blood samples at specific times.
 - o **Digoxin & Phenytoin** → Single sample at **steady state**.

2.1 Factors Affecting Sampling Time

Factor Variations

Drug Formulation Solid, Semi-solid, Liquid

Route of Administration Oral, Parenteral **Dosage Schedule** OD, BD, TDS

Duration of Therapy Short-term, Long-term

3. Therapeutic Drug Monitoring (TDM)

3.1 Definition

- TDM helps individualize drug doses by maintaining plasma/blood concentrations within a **therapeutic range** (**therapeutic window**).
- Sources of Variability in Drug Response:
 - Pharmacokinetic Variability → Differences in drug absorption, distribution, metabolism, and excretion.
 - o **Pharmacodynamic Variability** → Differences in drug effect at receptor sites.

3.2 Major Sources of Pharmacokinetic Variability

Source Examples
Patient Compliance Adherence to dosing regimen

Age Neonates, children, elderly

Physiology Gender, pregnancy

Disease States Hepatic, renal, cardiovascular, respiratory disorders

Drug Interactions Effects on metabolism, absorptionEnvironmental Factors Influence on drug metabolismGenetic Polymorphisms Differences in metabolic enzymes

4. Drugs Suitable for TDM

- Characteristics of drugs requiring TDM:
 - High pharmacokinetic variability
 - Therapeutic & adverse effects depend on drug concentration
 - Narrow therapeutic index
 - **o** Well-defined therapeutic range
 - o Difficult-to-monitor therapeutic effects
- TDM is especially important when:
 - 1. **Drugs are used prophylactically** (e.g., for seizures, arrhythmias, asthma, organ rejection).
 - 2. **Drugs have a narrow therapeutic range** (e.g., aminoglycoside antibiotics).

4.1 Commonly Monitored Drugs & Therapeutic Ranges

Drug Therapeutic Range (mg/L)

Digoxin	1.0-2.5	Carbamazepine	5-12
Amiodarone	2.0-5.0	Sodium Valproate	50-100
Lidocaine	2.0-5.0	Phenobarbitone	15-40
Quinidine	2.0-5.0	Gentamicin,	Trough <2;
Flecainide	0.2-0.9	Tobramycin, Netilmicin	Peak >5
Mexilitine	0.5-2.5	Amikacin	Trough <5;
Salicylate	150-300		Peak >15
Perhexiline	0.15-0.6	Vancomycin	Trough <10; Peak 20-40
Theophylline	10-20		0.5-1.0
Phenytoin	10-20	Lithium	mmol/L

5. Sampling and Drug Analysis

5.1 Assay Methods

- Key requirements:
 - o **Sensitive** enough to detect small drug concentrations.
 - Specific to the drug/metabolite.
 - o Accurate and precise.
- Common Drug Assay Methods:
 - Automated Immunoassay (widely used)
 - Manual Assay (for complex drugs):
 - High-Performance Liquid Chromatography (HPLC)
 - Gas Liquid Chromatography (GLC)

5.2 Sample Collection

- Plasma or serum is commonly used.
- **Whole blood** is used for drugs like **cyclosporine** due to shifts between red cells and plasma.
- **Blood collection tubes** with separation gels can interfere with drug levels.

5.3 Timing of Samples

- **Drug concentrations fluctuate** over the dosing interval.
- **Pre-dose (trough levels)** are the most stable.
- For short half-life drugs → Collect pre-dose samples.
- For long half-life drugs (e.g., phenytoin, amiodarone) → Timing is flexible.
- For digoxin \rightarrow Collect samples 6+ hours post-dose.

5.4 Information Required for Interpretation

Factor	Importance
Time of Sampling	Helps determine steady state levels
Duration of Treatment	Indicates accumulation trends
Dosing Schedule	Affects plasma concentration
Patient Information	Age, gender, disease conditions
Other Medications	Drug interactions
Reason for Test	Toxicity, routine monitoring, lack of effect

5.5 Factors Affecting Interpretation

1. Changes in Protein Binding

- Plasma assays measure total drug (bound + unbound), but only the unbound drug is active.
- If protein binding changes (e.g., due to **renal disease**), **total drug concentration does not reflect true activity**.
 - o Example: **Phenytoin** (Therapeutic range **10-20 mg/L**)
 - If **fraction unbound increases** (e.g., **renal disease**), the actual therapeutic range shifts to **5-10 mg/L**.

2. Active Metabolites

- Some metabolites contribute to drug activity but are **not measured in assays**.
- Examples:
 - Carbamazepine → Metabolized to an active form (Carbamazepine-10,11-epoxide).
 - o **Procainamide** → Metabolized to **N-acetylprocainamide**.
 - Neonatal Theophylline → Converted to Caffeine (requires different therapeutic range).

Clinical Pharmacokinetics and Therapeutic Drug Monitoring (TDM)

1. Clinical Pharmacokinetics (P.K)

1.1 Definition

Clinical pharmacokinetics is a discipline that applies pharmacokinetic principles to optimize drug therapy by designing individualized dosage regimens. It ensures therapeutic effectiveness while minimizing adverse drug reactions.

1.2 Uses of Clinical Pharmacokinetics

Purpose	Description
Dose Optimization	Determines the appropriate drug dose for an individual.
Dosing Interval	Establishes the correct timing for drug administration.
Bioequivalence Evaluation	Assesses differences in drug formulation absorption.
Drug Level Prediction	Estimates drug concentration in plasma, tissues, and urine.
Accumulation Estimation	Predicts drug/metabolite build-up over time.
Drug Interaction Analysis	Identifies and explains drug-drug interactions.
Toxicity Diagnosis	Helps detect overdose-related toxicity.
Patient Monitoring	Identifies incorrect doses, adverse reactions, and non-compliance.

1.3 Role of Clinical Pharmacokinetics in Pharmaceutical Care

- Ensures correct drug dosing and administration.
- Monitors drug therapy to prevent toxicity.
- Evaluates patient responses for unexpected effects.
- Educates healthcare professionals on pharmacokinetic principles.
- Recommends drug assays to improve therapy.

2. Pharmacist's Role in Clinical Pharmacokinetic Monitoring

Responsibility	Description
Dosage Design	Creates personalized drug regimens based on patient factors.
Monitoring & Adjustments	Modifies dosages based on drug concentration in biological fluids.
Explaining Drug Response	Investigates unusual patient reactions to drugs.

Responsibility	Description
Communication	Shares pharmacokinetic information with physicians and nurses.
Education & Training	Trains healthcare professionals on clinical pharmacokinetics.
Recommending Drug Assays	Suggests lab tests for accurate drug concentration measurement.
Quality Assurance	Documents patient outcomes and economic benefits of monitoring.

3. Therapeutic Drug Monitoring (TDM)

3.1 Definition

TDM involves measuring drug concentrations in the blood at specific intervals to maintain a **constant and effective** level of medication while minimizing toxicity.

3.2 Clinical Applications of TDM

Application	Benefit
Treatment Optimization	Helps ensure a patient responds appropriately to a drug.
Non-Compliance Detection	Differentiates between non-compliance and true non-response.
Monitoring Individual Variability	Adjusts dosage based on patient-specific factors.
Toxicity Confirmation	Determines if symptoms are drug-induced.
Dosage Verification	Ensures patients receive adequate drug levels.
Drug Interaction Identification	Detects and prevents harmful interactions.
Altered Drug Disposition	Adjusts doses for patients with disease-related changes in drug metabolism.

4. Concept of TDM

- TDM is based on the principle that for certain drugs, **plasma drug concentration is** directly related to therapeutic and toxic effects.
- If a **clear concentration-effect relationship does not exist**, TDM is unnecessary.
- Plasma drug level measurement is only justified when it improves therapeutic outcomes.

4.1 Criteria for Appropriate TDM

Criteria	Requirement
Narrow Therapeutic Range	The drug has a small margin between effective and toxic doses.
Plasma Level-Effect Relationship	Drug effects correlate with plasma concentrations.
Difficult-to-Monitor Therapeutic Effect	Clinical response is hard to assess without TDM.
High Variability in Drug Response	Large differences exist in drug metabolism among individuals.
Available Analytical Techniques	Reliable methods exist for measuring drug/metabolite levels.

4.2 When TDM is Unnecessary

Situation	Reason
No Dose-Concentration Relationship	Plasma levels do not predict effectiveness/toxicity.
Standard Dosing is Effective	No need for individualized monitoring.
Clinical Effects are Measurable	Outcomes can be observed without blood tests.
Wide Therapeutic Range	Low risk of toxicity (e.g., beta-blockers, calcium channel blockers).

5. Narrow Therapeutic Index Drugs

These drugs require TDM due to their small margin between therapeutic and toxic doses.

Category	Drugs
Antiepileptics	Phenytoin, Carbamazepine, Valproic Acid, Phenobarbital, Primidone
Antimicrobials	Gentamicin, Amikacin, Vancomycin
Cardiovascular Drugs	Digoxin
Immunosuppressants	Cyclosporine
Bronchodilators	Theophylline
Mood Stabilizers	Lithium

6. Factors Affecting TDM Interpretation

6.1 Key Pharmacokinetic Factors

Factor	Impact on Drug Levels	
Absorption	Affects how much drug reaches the bloodstream.	
Volume of Distribution	Determines drug distribution in tissues vs. blood.	
Elimination & Half-Life Influences drug clearance and accumulation.		
Sampling Time	Timing affects measured drug levels.	
Therapeutic Range	Helps assess whether the drug is effective or toxic.	

7. Sampling Time in TDM

7.1 Importance of Correct Sampling Time

- Ensures **accurate interpretation** of drug levels.
- Incorrect sampling times can lead to misleading results and inappropriate dose adjustments.

7.2 Steady-State Concentration

- Steady-state occurs when the **rate of drug administration** = **rate of elimination**.
- It typically takes **4-5 half-lives** to reach steady-state.

Half-Lives % of Steady-State Achieved

1 50%	3 87.5%	5 96.88%
2 75%	4 93.75%	6 98.44%

7.3 Sampling Guidelines for Different Drugs

Drug	Trough Sampling Time	Peak Sampling Time
Aminoglycosides (e.g., Gentamicin, Amikacin)	Immediately before next dose	30 min after IV infusion
Digoxin, Lithium, Cyclosporine	During elimination phase	Not applicable

- For drugs with a long half-life (e.g., Phenobarbital): Fluctuations in concentration are minimal, making trough sampling sufficient.
- For drugs with a short half-life (e.g., Gentamicin): Both peak and trough levels are crucial.

8. Therapeutic Ranges in TDM

- Therapeutic ranges **guide dose adjustments** but should not be taken as absolute.
- Some patients may require **higher or lower levels** to achieve the desired response.
- Therapeutic range + Clinical response = Optimal dose determination.

Practical/Clinical (CPK)

Pharmacokinetics

Clinical Pharmacokinetics (CPK) is the application of pharmacokinetic principles in humans to design individualized dosage regimens that optimize the therapeutic response of medications while minimizing adverse drug reactions (ADRs).

1. Important Uses of Pharmacokinetics

The main uses of pharmacokinetic principles in optimizing drug therapy are:

Purpose	Description
Optimal Dose	Determining how much drug should be given to an individual
Determination	patient.
Dosing Interval	Identifying the most appropriate time to administer the dose.
Bioequivalence Evaluation	Assessing differences in physiological availability between formulations.

Other Uses

- Predicting drug levels in plasma, tissues, and urine.
- Estimating drug/metabolite accumulation.
- Explaining pharmacokinetic drug interactions.
- Diagnosing drug toxicity due to overdose.

2. Clinical Pharmacokinetics in Pharmaceutical Care

CPK helps identify and resolve potential problems in patients who are:

• Taking the wrong dose of the correct drug.

- Experiencing ADRs.
- Experiencing drug-drug or drug-food interactions.
- Non-compliant with their medication regimen.
- Receiving drugs with a narrow therapeutic index (TDM).

3. Pharmacist's Role in Clinical Pharmacokinetic Monitoring

Role	Description	
Designing Drug Dosage Regimens	Creating patient-specific dosage plans based on pharmacokinetics and clinical conditions.	
Monitoring & Adjusting Dosage	Modifying drug regimens based on pharmacologic response and drug concentration in biological fluids.	
Evaluating Unusual Responses	Investigating unexpected patient responses for possible pharmacokinetic explanations.	
Communicating with Healthcare Team	Providing pharmacokinetic insights to physicians, nurses, and clinical practitioners.	
Educating Healthcare Professionals	Training pharmacists, doctors, and nurses on pharmacokinetic principles and TDM.	
Recommending Drug Assays Advising on appropriate tests for drug concentration analysis.		
Developing Quality Assurance Programs	Documenting improved patient outcomes and economic benefits of pharmacokinetic monitoring.	

Therapeutic Drug Monitoring (TDM)

TDM is the measurement of blood drug concentration at intervals to maintain a relatively constant level of medication in the bloodstream. It is used to individualize drug dosage by maintaining plasma or blood drug concentration within a target therapeutic range.

Clinical Usefulness of TDM

Application	Description
Better Insight into Drug Response	Helps distinguish between non-compliance and true non-response to medication.
Individualized Drug Utilization	Accounts for variations in drug metabolism due to physiological or disease states.
Reduced ADRs	Patients monitored via TDM suffer fewer adverse reactions.
Shorter Hospitalization	Leads to shorter hospital stays.

Application	Description
Improved Disease Control	Studies show better control in epilepsy patients when TDM is used.
Monitoring Compliance	Ensures patients are taking their medication correctly.
Confirming Drug Toxicity	Determines if toxicity symptoms are due to excessive drug levels.
Adjusting Drug Dosage	Ensures plasma concentration is within the therapeutic range.
Evaluating Drug Interactions	Identifies possible drug-drug interactions affecting drug levels.

4. Basic Concepts of TDM

When is TDM Necessary?

TDM is useful when:

- 1. The drug has a **narrow therapeutic index**.
- 2. A direct relationship exists between plasma drug levels and therapeutic/toxic effects.
- 3. Therapeutic effects cannot be clinically observed directly.
- 4. There is **large individual variability** in drug metabolism.
- 5. **Reliable analytical techniques** are available to measure drug concentrations.

When is TDM Unnecessary?

TDM is **not needed** when:

- 1. The drug has a **wide therapeutic index** (e.g., beta-blockers, calcium channel blockers).
- 2. Clinical outcome is **not related to plasma concentration**.
- 3. Dosage does not require individualization.
- 4. The **drug effect can be clinically measured** without lab tests.

5. Drugs with a Narrow Therapeutic Index (NTI)

Drug Class	Examples
Antiepileptics	Phenytoin, Valproic Acid, Carbamazepine, Phenobarbital, Primidone
Antimicrobials	Vancomycin, Aminoglycosides (Gentamicin, Amikacin)
Cardiovascular (CVS)	Digoxin
Immunosuppressants	Cyclosporine

Drug Class Examples Bronchodilators Theophylline **Mood Stabilizers** Lithium

6. Factors Affecting TDM Interpretation

- 1. **Absorption** Rate and extent of drug absorption.
- 2. **Volume of Distribution (Vd)** Drug distribution in body fluids.
- 3. **Elimination & Half-life (t1/2)** How fast the drug is removed from the body.
- 4. **Sampling Time (ST)** When the blood sample is taken relative to the last dose.
- 5. **Therapeutic Ranges** Target plasma drug levels for efficacy and safety.

7. Sampling Time (ST) in TDM

Correct sampling time is **critical** for accurate interpretation of TDM data.

Sampling Type	Best Time for Blood Sample Collection
Trough Level	Immediately before the next dose.
Peak Level	30 minutes after a 30-minute IV infusion ends, 15 minutes after a 60-minute

IV infusion ends.

Sampling

Importance of Sampling Time

- If blood samples are taken **too soon** after dosing, drug concentration appears falsely elevated, leading to potential under-dosing.
- If taken **too late**, the levels may appear **lower**, leading to potential **over-dosing**.
- Steady-state (SS) concentration is achieved when the drug input (dosing) equals drug elimination.
- SS is typically reached after **4–5 half-lives**.

Steady-State Drug Concentration Over Time

No. of Half- Lives	% of Steady-State Achieved	No. of Half- Lives	% of Steady-State Achieved
1	50%	4	93.75%
2	75%	5	96.875%
3	87.5%		

8. Therapeutic Ranges

Therapeutic ranges serve as a **guideline** for optimum drug concentrations but should not be considered absolute because:

- Some patients may respond to drug levels above or below the recommended range.
- Some may experience **toxic effects** even within the "therapeutic" range.
- Therapeutic range + clinical response = appropriate dose determination.

THERAPEUTIC RANGE

- Used as a guide to achieving optimal drug concentration.
- Should not be considered absolute because:
 - o Some patients may respond to levels above or below the range.
 - o Some may experience toxicity within the therapeutic range.
- Dose determination should always consider:
 - Therapeutic range
 - o Clinical response
 - o Individualized dosing

Drugs with Low Therapeutic Index & TDM of Gentamicin

- **Aminoglycosides** (Amikacin, Gentamicin, Tobramycin) are bactericidal and active against:
 - Some Gram-positive organisms
 - o Many **Gram-negative** organisms (e.g., *Pseudomonas aeruginosa*)

Factors Affecting Dose and Dosage Regimen

- Causative agent
- Renal function

- Concurrent disease state
- Patient's weight

Adverse Effects & Risk Factors

- **Main adverse effects:** Nephrotoxicity & Ototoxicity (dose-related)
- Risk factors:
 - Older patients
 - Renal dysfunction
 - o Previous aminoglycoside use
 - Liver disease
 - High daily doses

- Prolonged treatment
- Short dosing intervals
- Co-administration with nephrotoxic drugs

Therapeutic Ranges

Parameter Multiple Daily Dosing Once Daily Dosing

Peak5-12 mg/LVariesTrough<2 mg/L</th>Varies

(TDM values depend on pharmacokinetics)

Pharmacokinetic Properties

Property

Absorption
Poorly absorbed from GIT; administered via IV infusion (30-60 min) or IM injection
Distribution
Volume of distribution (Vd) = 0.25 L/kg; mainly confined to extracellular fluids
Elimination
85-95% excreted unchanged in urine; half-life 1.5-4 hrs (normal renal function)
Steady-State Achieved in 7.5-20 hrs

- **Follows a two-compartment model**: Distribution phase completes within **1 hour** (sampling considerations).
- Elimination requires ~5 half-lives (7.5-20 hrs) in normal renal function.

Here's your organized and structured document with tables for better readability. I have kept the original text intact while simplifying difficult terms where necessary.

FACTORS AFFECTING PLASMA CONCENTRATION

1) Gentamicin

Factors Affecting Plasma Concentration

Factor	Effect
Diseases	
Dehydration	Decreased Volume of Distribution (Vd)
Burn patients	Decreased Vd
Obesity	Increased Vd
Renal impairment	Decreased clearance
Congestive Cardiac Failure (CCF)	Decreased clearance

	Factor	Effect
Fever		Increased clearance
Drugs		Carbenicillin & Ticarcillin may inactivate Gentamicin.

Usual Sampling Time

- **Trough Level:** Immediately before the next dose.
- Peak Level:
 - o 30 min after a 30 min IV infusion
 - o 15 min after a 60 min IV infusion

Practical Implications

- **Initial Dosage:** Based on physiological parameters (e.g., clearance, elimination).
- Changing Dosage:
 - o Not simple as changing the dose affects both **peak and trough levels**.
 - Requires blood level measurement and pharmacokinetic (PK) equations to adjust dosage.
- Once Daily Dosing (ODD):
 - o Beneficial due to concentration-dependent bacterial killing.
 - o **Long post-antibiotic effect** and less nephrotoxicity.
 - **Not recommended** in children, pregnant/breastfeeding women, burn patients, renal failure.
- **Dose:** 5-7 mg/day (if creatinine clearance > 60 ml/min).
- **Blood Sample Collection:** 6-14 hrs after the 1st dose, then adjusted based on levels.

2) Digoxin

Clinical Uses

- **Increases** the force of heart contractions.
- **Reduces** conduction within the atrioventricular (AV) node.
- Used for:
 - o Supraventricular tachycardias.
 - o Controlling ventricular response in atrial fibrillation.

Adverse Effects & Risk Factors

- Effects depend on:
 - Plasma concentration of the drug.
 - o Heart's sensitivity, which increases in heart disease.
- **Toxicity is not solely predicted by plasma concentration**—clinical effects are more important.
- **Heart rate monitoring** is crucial in atrial fibrillation patients.
- Regular monitoring not necessary unless issues arise.

Serum Concentration & Response Relationship

Concentration (µg/mL)	Response
< 0.5	No clinical effect
0.7	Some positive inotropic & conduction-blocking effect
0.8 - 2	Optimum therapeutic range
2 - 2.5	Increased risk of toxicity
>2.5	Gastrointestinal (GI), Cardiovascular (CVS), and Central Nervous System (CNS) toxicity

Pharmacokinetic Properties

Property	Details
Absorption	Poor, variable (~60-70% in tablet form)
Distribution	Vd = 7.3 L/kg (widely distributed in tissues)
Elimination	60-80% renal excretion (unchanged) , 20-40% hepatic metabolism
Half-life (t½)	40 hrs (normal renal function), 120 hrs (renal impairment)
Steady-state concentration	5-7 days (normal renal function), longer in renal impairment

Usual Sampling Time

• 6 hrs after administration

Factors Affecting Plasma Concentration

Factor	Effect
Decreased Absorption	Antacids, Malabsorption
Decreased Clearance	Verapamil, Amiodarone, Spironolactone, Quinidine, Renal & Hepatic Impairment, CCF
Increased Concentration	Hypothyroidism (decreased metabolism & renal excretion)
Decreased Concentration	Hyperthyroidism
Increased Heart Sensitivity	Hypokalemia, Hypercalcemia

Practical Implications

- Population values (normal PK values) help estimate plasma concentration, but individuals vary.
- Therapeutic Drug Monitoring (TDM) helps optimize dosage and reduce adverse effects.

• Diseases and drugs significantly impact digoxin's pharmacokinetics.

3) Theophylline

Clinical Use

Used for bronchial asthma.

Adverse Effects

- Cardiovascular: Tachycardia, palpitations, arrhythmias.
- Gastrointestinal (GI): Nausea, vomiting.
- Central Nervous System (CNS): Headache, insomnia, seizures (if given too rapidly).

Serum Concentration & Response Relationship

Concentration (mg/L)	Response
<5	No significant bronchodilation
5 - 10	Some bronchodilation
10 - 20	Optimum therapeutic range
20 - 30	Increased risk of nausea, vomiting, cardiac arrhythmias
>30	Severe cardiac arrhythmias

Pharmacokinetic Properties

Property	Details
Absorption	100% after oral administration
Distribution	Vd = 0.5 L/kg (widely distributed, does not distribute well in fat)
Elimination	>90% hepatic metabolism, <10% renal excretion (unchanged)
Half-life (t½)	6 - 12 hrs
Steady-state concentration	1.5 - 2.5 days (chronic dosing)

Product Formulation

- Aminophylline (the ethylenediamine salt of the ophylline) is 80% the ophylline (salt factor = 0.8).
- Sustained-release (SR) preparations vary in bioavailability.
- Lower absorption rate constant (Ka) = better slow-release properties.

Usual Sampling Time

• **Trough Level:** Immediately before the next dose.

• **Peak Level:** 4-7 hrs after oral SR preparation (depends on formulation).

Factors Affecting Plasma Concentration

Factor Effect

Decreased Cimetidine, Allopurinol, Cor Pulmonale, Hepatic Dysfunction, Acute

Clearance Pulmonary Edema

Practical Implications

• IV bolus doses should be given slowly (preferably as a short infusion) to prevent adverse effects.

- **Dosage must be individualized based on plasma concentration** due to variable hepatic metabolism.
- Liver diseases and drug interactions can significantly affect theophylline metabolism.

4)Phenytoin

Clinical Use

• Anti-epileptic

Adverse Effects

• 20-30 mg/L: Nystagmus, blurred vision

• >30 mg/L: Ataxia, dysarthria (motor speech disorder), drowsiness, coma

Serum Concentration & Response Relationship

Concentration (mg/L)	Response
<5	No therapeutic effect
5-10	Some anticonvulsant activity
10-20	Optimum therapeutic range
20-30	Nystagmus, blurred vision
>30	Ataxia, dysarthria, drowsiness, coma

Pharmacokinetic Properties

Property	Details
Absorption	80-95% after oral administration
Distribution	Vd = 1 L/kg, 90% protein-bound, two-compartment model
Elimination	>95% hepatic metabolism, <5% renal excretion (unchanged)
Half-life (t½)	30-100 hrs (not a useful parameter due to non-linear kinetics)
Steady-state concentration	7-14 days before sampling (range: 8-30 days)

Usual Sampling Time

• Trough Level: Immediately before the next dose

Factors Affecting Plasma Concentration

Factor	Effect	
Decreased Clearance	Cimetidine, Isoniazid, Barbiturates (high conc.), Chronic liver disease	
Increased Clearance	Carbamazepine, Alcohol, Barbiturates (low conc.), Acute hepatitis	
Protein Binding	Hypoalbuminemia increases free drug levels	

Practical Implications

- Narrow therapeutic index.
- Non-linear dose-concentration relationship.
- Small dosage increases may cause large plasma concentration changes and toxicity.
- Monitoring plasma concentration is essential for dosage adjustment.

5) Carbamazepine

Clinical Use

- Drug of choice for simple and complex partial seizures.
- Also used for tonic-clonic seizures.
- Drug of choice for **trigeminal neuralgia**.

Serum Concentration & Response Relationship

Concentration (mg/L)	Response
<4	Little therapeutic benefit
4-12	Optimum range (monotherapy)
4-9	Optimum range (with other anti-convulsants)

Concentration (mg/L)	Response
>9	Nystagmus, diplopia (double vision), drowsiness, ataxia (lack of coordination)
>12	Ataxia, dysarthria, drowsiness, coma (even in monotherapy)

Pharmacokinetic Properties

Property	Details
Absorption	Slow and variable (bioavailability: 75-85%)
Distribution	Widely distributed, highest in liver and kidneys, 70-90% protein bound, $Vd = 0.8-2 L/kg$
Elimination	>98% hepatic metabolism, <2% renal excretion (unchanged)
Auto-induction	Begins within first few days of therapy
Half-life (t½)	Up to 35 hrs (single dose), decreases to 5-7 hrs (regular dosing)
Steady-state concentration	2-4 weeks after starting therapy

Usual Sampling Time

• **Trough Level**: Measured immediately before the next dose.

Factors Affecting Plasma Concentration

Factor	Effect
Inhibition of metabolism	Cimetidine, Isoniazid, Clarithromycin, Ketoconazole, Verapamil, Diltiazem
Induction of metabolism	Phenytoin, Barbiturates

Practical Implications

- Limited use of pharmacokinetic equations due to auto-induction.
- Drug interactions (e.g., Phenytoin) significantly affect metabolism and blood levels.
- Each 100 mg dose increases plasma concentration at steady state by 1 mg/L in adults.

6) Phenobarbitone

Clinical Use

- Generalized tonic-clonic epilepsy
- Partial seizures

Serum Concentration & Response Relationship

Concentration (mg/L)	Response
<15	Little therapeutic effect
15-40	Optimum therapeutic range
40-50	Sedation, confusion in elderly
>60	Ataxia, lethargy, stupor, coma

Pharmacokinetics

Property	Details
Absorption	70-90% after oral administration
Distribution	Vd = 0.7-1 L/kg, 50% protein bound
Elimination	50-80% hepatic metabolism, 20-50% renal excretion
Half-life (t½)	53-140 hours
Steady-State Concentrati	on 2-4 weeks

Usual Sampling Time

• Any time at steady state (due to long half-life)

Factors Affecting Plasma Concentration

Decrease Clearance Increase Concentration

Hepatic impairment Methylphenidate

Renal impairment -

Practical Implications

- Affected by liver/kidney disease but **not** by other antiepileptics
- Periodic plasma monitoring useful for dose adjustments

7) Vancomycin

Clinical Use

- Pseudomembranous colitis
- **Severe staphylococcal infections** (resistant strains)
- Endocarditis (with aminoglycosides)

Serum Concentration & Toxicity

Parameter	Value (mg/L)
Desired Peak	25-40
Desired Trough	5-10
Toxic Concentration	>80
Ototoxicity Risk	80-100
Nephrotoxicity Risk	↑ risk with high serum levels

Nephrotoxicity Risk \uparrow risk with high serum levels

Pharmacokinetics

Property	Details
Absorption	Poor oral absorption, given IV
Distribution	Vd = 0.5-1.0 L/kg
Elimination	80-90% renal excretion
Half-life (t½)	5-11 hrs (renal impairment → prolonged)
Steady-State Concentration	2 days (sampling on day 3)

Usual Sampling Time

Peak: 1 hour after 1-hour infusion **Trough:** Immediately before next dose

Factors Affecting Toxicity

↓ Clearance: Renal impairment

↑ **Toxicity:** Concurrent ototoxic/nephrotoxic drugs (aminoglycosides)

Practical Implications

- Monitoring needed in:
 - o Renal impairment
 - o Long-duration/high-dose therapy
 - Severe infections (endocarditis, meningitis)
 - High-risk patients (pregnant, burn victims, IV drug abusers)

8) Lithium (Li)

Clinical Uses

Mood stabilizer used in bipolar disorder (both treatment and prophylaxis).

Serum Concentration & Response Relationship

Serum Concentration (mmol/L)	Response
< 0.4	Little therapeutic effect
0.4 - 1.0	Optimum range for prophylaxis
0.8 - 1.2	Risk of renal impairment, ataxia, weakness, drowsiness, thirst, diarrhea
3 - 5	Confusion, spasticity, dehydration, convulsions, coma, death
>3.5	Medical emergency

Pharmacokinetic Properties (PK)

Property	Details			
Absorption	Variable in rate and extent			
Distribution	Unevenly distributed throughout the body			
Volume of Distribution (Vd)	0.5 - 1 L/kg			
Model	Follows a two-compartment model			
Distribution Time	~8 hours (so steady-state sampling at 12 hours)			
Elimination	90-98% renal excretion (unchanged drug), minor excretion via feces (1%) and sweat (4 – 55%)			
Diurnal Variation in Clearance	Slower at night than during the day			
Elimination Half-Life (t½)	8 – 35 hours (average ~18 hours)			
Time to Steady-State Concentration	Achieved after a few days of chronic dosing			

Usual Sampling Time

• 12 hours after the evening dose

Factors Affecting Plasma Concentration

Decrease Clearance (↑ Lithium Levels) Increase Clearance (↓ Lithium Levels)

Renal impairment	Aminophylline
Dehydration	-
Diuretics (especially thiazides)	-
ACE inhibitors	-
NSAIDs (except Aspirin)	-

Practical Implications

- **Dosage adjustments** lead to **proportional changes** in blood levels.
- Monitoring is essential before prescribing lithium.
- Conversion Factors for Different Lithium Salts:

Lithium Salt Lithium Ion Equivalent

100 mg Lithium carbonate 2.7 mmol Li⁺

 $100 \text{ mg Lithium citrate} \qquad 1.1 \text{ mmol Li}^+$

PHARMACEUTICAL CARE, ITS SCOPE, MANAGEMENT AND APPLICATION OF CARE PLAN

Chapter 5 – Clinical Pharmacy II

By Abuzar Khan, PhD

PHARMACEUTICAL CARE Summary

- 1. Assessment
- 2. Care Plan
- 3. Evaluation

Contents

- Case History
- Introduction
- Scope
- Management and Application of Care Plan

Case History

- Patient Name: Jamal Khan
- Address: Peshawar
- Gender: Male
- Age: 47 years
- **Height:** 65 inches
- Weight: 185 lbs
- Allergies: Aspirin
- Diagnosis: Asthma
- Other Information: Smoker

Drugs:

- 1. **Tab. Theophylline** 300 mg BD
- 2. Albuterol 2 puffs every 4 hours or as needed

Chief Complaint (CC):

- Cough, shortness of breath (SOB)
- Frequent exacerbation requiring MDI weekly
- Poor quality of life (QOL)
- **PEFR** between 60-80% of personal best

Patient Healthcare

- 1. Patient Care
- 2. Medical Care
- 3. Pharmaceutical Care
- 4. Nursing Care

Pharmaceutical Care

- Appropriate use of medicines
- Avoid irrational use of medicines
- Pharmacists' Role:
 - o Educate patients on safe drug use
 - o Guide on diet and lifestyle
 - o Maximize safe and effective medication use

Definition of Pharmaceutical Care

• Coined by Mikeal et al. (1975):

"The care that is given, patient requires, and receives, which assures safe and rational drug use."

• Hepler and Strand's Definition:

"Pharmaceutical care is the responsible provision of drug therapy for the purpose of achieving definite outcomes that improve the patient's quality of life."

Pharmaceutical Care Process (PCP)

- Involves:
 - Prescription analysis
 - Identifying drug-related problems (DRPs)
 - Consulting prescribers and patients to resolve issues

Historical Development:

• Early 20th Century: Apothecary

• 1960s: Dispenser

• Late 1990s: Pharmaceutical Care

Focus Areas of Pharmaceutical Care

- All patients, including those with:
 - o Diabetes Mellitus (DM)
 - Hypertension (HTN)
 - o Asthma
 - o Chronic Kidney Disease (CKD)
 - o AIDS
 - o Polypharmacy

Pharmaceutical Care Settings

- Hospitals
- Community pharmacies
- Nursing homes
- Home-based care services
- Clinics
- Other medicine-prescribing locations

Pharmaceutical Care Activities

- Medical history review
- Drug information
- Prescribing advice
- Patient education and counseling
- Adverse drug reactions (ADRs) and toxicity monitoring
- Drug interactions (DIs) management
- Dosage adjustments for renal & hepatic impairment
- Compliance monitoring
- Lab monitoring
- Therapeutic Drug Monitoring (TDM)
- Cost-related activities

Scope/Goals of Pharmaceutical Care

- 1. Cure of the patient's disease
- 2. Reduce or eliminate disease symptoms
- 3. Arrest or slow disease progression
- 4. Prevent diseases or symptoms

Pharmaceutical Care Plan (PCP)

• Definition:

- An individualized, comprehensive medication therapy plan developed for each patient. Based on clearly defined therapeutic goals Regularly revised according to patient needs.
- A plan developed by clinical pharmacist for individual patient; evaluated and revised according to the changing needs of the patient on continuous basis; for the purpose to formalize, optimize and document a specific course of treatment.

Developing a Pharmaceutical Care Plan

1. Gathering Information

- Medical history
- Lab tests
- Hospitalization records
- Significant events during drug therapy

2. Identifying Problems

- Subjective (S)
- Objective (O)
- Drug-Related Problems (DRPs)

Drug Therapy Problems

- 1. **Need for additional drug therapy:** Patient has a medical condition that requires initiation of new or additional drug therapy.
- 2. **Unnecessary drug therapy:** Patient is taking drug therapy that is not needed given their present medical condition.

- 3. **Wrong drug:** Patient has medical problem treated with therapy that is less effective, more costly, or more hazardous than alternative therapies.
- 4. **Dose too low:** Patient is taking correct drug for medical condition, but too little of drug is being taken.
- 5. **Adverse drug reaction:** Patient has medical problem caused by an adverse drug effect, which may include a side effect as well as an allergic reaction; idiosyncratic reaction; and a drug–drug, drug–food, or drug–laboratory test interaction.
- 6. **Dose too high:** Patient is taking correct drug for medical condition, but too much of drug is being taken.
- 7. **Nonadherence:** Patient has medical problem resulting from not taking or receiving drug prescribed.

3. Assessing Problems

- Integration of subjective and objective data
- Conclusion

4. Plan Development

- Goals linked to patient's problem
- Course of action
- Must positively impact overall patient health

5. Outcomes Evaluation

- Outcomes should be:
 - o Meaningful
 - o Measurable
 - o Manageable
 - Have measurable indicators

Experience of the Patient Potential Uses by the Physician **★** Functional Determine Limitations Clinical Trial ★ Impact on PATIENT-★ Impact on Emotional Well-being Monitor Therapy Effectiveness REPORTED # Impact on Assess Change Psychological Health OUTCOME ★ impact on Prognosis Kelkar, A.A. et al. J Am Coll Cardiol HF. 2016: 4(3):165-75.

6. Monitor and Follow-up

Regular assessment and adjustments

SOAP Method in Pharmaceutical Care

Subjective Data (S):

- Information provided by the patient or a caregiver
- Obtained via interview
- Includes patient history and past events

• Mnemonic: OLDCHARTS

Objective Data (O):

- Information observed or measured by the practitioner
- Includes:
 - Weight, height, blood pressure, pulse
 - Physical exam findings
 - Lab test results
 - Medication records from pharmacy or hospital
- Measurable and reproducible

Assessment (A):

• Evaluation of subjective and objective findings

Plan (P):

- Based on S/O findings & final assessment of each problem
- Includes:
 - Desired outcomes/goals
 - Recommendations/interventions
 - o Monitoring plan for each DRP
 - Future patient education initiatives

Pharmaceutical Care – Scope, Management & Application

1. Overview of Pharmaceutical Care

Pharmaceutical care involves **assessing**, **planning**, **and evaluating** patient treatment to improve health outcomes. It includes managing chronic diseases like **asthma** and **heart failure** through personalized care plans.

2. Developing a Pharmaceutical Care Plan (PCP)

Key Steps

- 1. **Gather Information** Collect patient history and current medications.
- 2. **Identify Problems** Recognize health concerns affecting treatment.
- 3. **Assess Problems** Determine causes of poor health outcomes.
- 4. **Plan** Develop strategies to improve patient adherence.
- 5. **Evaluate Outcomes** Monitor improvements and make adjustments.

3. Case Study 1: Asthma Management

Patient Information

Detail Description

Name Jamal Khan

Gender Male **Age** 47 years

Height 65 inches (5'5")

Weight 185 lbs
Allergies Aspirin
Diagnosis Asthma
Smoking Yes

Medications Theophylline 300 mg BD, Albuterol (2 puffs every 4 hrs or as needed)

Identified Problems

- Chief Complaints (CC): Chronic cough, shortness of breath (SOB), frequent asthma attacks.
- Quality of Life (QOL): Poor, requiring frequent medication use.
- **Peak Expiratory Flow Rate (PEFR):** 60–80% of personal best.

Assessment

- Poor asthma control due to:
 - Smoking
 - o Obesity
 - o Non-adherence to medication
 - o Inadequate anti-inflammatory treatment

Pharmaceutical Care Plan

Problem Intervention

Smoking Refer to smoking cessation program

Obesity Refer to dietitian for weight management

Non-Compliance Check medication calendar and refill reminders

Cough/SOB Suggest adding inhaled corticosteroid

Evaluation

Issue	Action Plan	Evaluation Criteria
Smoking	Smoking cessation referral	Assess improvement in cough & SOB
Obesity	Dietitian consultation	Check weight reduction progress
Non-Compliance	Medication refill reminders	Review refill history and inhaler use
Cough/SOB	Pulmonologist consultation	Monitor PEFR (>80% of personal best)

4. Case Study 2: Heart Failure Management

Patient Information

Detail Description
Gender Male

Age 61 years
Location Peshawar
Smoking Heavy smoker

Medical History Diabetes (DM), Hypertension (HTN) for 10 years

Diagnosis Heart Failure (HFC)

Symptoms SOB, Fatigue, Cough, Difficulty Walking

Clinical Findings

Parameter Value

BP	150/90 mmHg	Serum	2 mg/dl	Ankle	Present
JVP	8 cm of water	Creatinine	(elevated)	Edema	1 Tesent
RBS	200 mg/dl (high)	Urine	Protein present	Chest Crackles	Present

Diagnostic Tests

Test	Findings
1 CDL	I mang

ECG Left Ventricular Hypertrophy (LVH), ST and T wave changes (suggesting infarction)

ECHO Ejection Fraction (EF) = 33%, Left Ventricular dilation, Left atrial enlargement

Medications

Drug Dosage

Digoxin	0.25 mg (every	Enalapril	5 mg BD	Naproxen	500 mg BD
Digoxiii	other day)	Nitroglycerin	0.4 mg 505		
Furosemide	40 mg BD	(Sublingual)	0.4 mg SOS		
Isosorbide Dinitrate	20 mg TDS	Amitriptyline	25 mg OD (night)		

Identified Problems & Care Plan

Problem	Assessment	Intervention	Evaluation
Fatigue, SOB, Cough	Heart failure-related symptoms	Refer for diet assessment & lifestyle changes	Monitor improvement
Noncompliance (Diet)	Poor diet management (salt intake)	Educate & refer to dietitian	Follow-up on dietary adherence
Ankle Edema	Due to fluid retention & NSAIDs	Avoid NSAIDs, use alternative analgesic	Assess swelling reduction
Noncompliance (Medication)	Forgetting/refusing medications	Medication reminders, pill count	Check refill history & drug adherence
Fatigue/Depression	Psychological distress	Psychotherapy, consider SSRIs	Assess mood improvement
Smoking	Heavy smoker	Cognitive Behavioral Therapy (CBT) for smoking cessation	Evaluate smoking reduction

5. Assignment Task

- Task: Select a case from 4th or 5th-year clerkship where Pharmaceutical Care Plan (PCP) is needed.
- Format: Develop a plan using the SOAP (Subjective, Objective, Assessment, Plan) format.
- **Submission:** Take a **snapshot** and send it for review.

6. Self-Revision

- Review Asthma & Heart Failure Management strategies.
- Understand the **SOAP format for case documentation**.
- Study patient adherence improvement techniques.

Poison

Clinical Toxicology - Chapter 7

Poison can be defined as any substance that causes a harmful effect if administered, by accident or design, to a living organism.

Quantitative Concept

- Therapeutic dose
- Long-term chronic toxicity
- Lethality

Qualitative Concept

- Species
- Combinations

Toxin vs. Toxicant

- **Toxin**: Naturally occurring poison (e.g., from plants, animals, or bacteria).
- **Toxicant**: Synthetic or human-made poison.

Toxicology

Toxicology is a branch of science that deals with poisons. It also includes the study of harmful effects caused by physical phenomena, such as radiation of various kinds and noise.

Broad Definition

The study of the detection, occurrence, properties, effects, and regulation of toxic substances.

Toxicity: A Cascade of Events

- 1. **Exposure** (Starting point)
- 2. **Distribution and Metabolism** (Processing within the body)
- 3. **Interaction with Cellular Macromolecules** (Usually DNA or protein)
- 4. **Toxic End Point** (Final harmful effect)

Types of Toxicity

- **Acute / Chronic** (Short-term vs. long-term toxicity)
- Organ-Specific / General (Affecting a single organ or the whole body)

Factors Affecting Toxicity

- $Age \rightarrow Young or old$
- **Genetics** → Inherited traits
- **Gender** \rightarrow Male or female

- **Diet** \rightarrow Food intake
- **Physiological Condition** → Body function
- **Health Status** → Overall well-being

Toxicity Measurement

- **LD50** (Lethal Dose 50 the dose at which 50% of the test dies)
- **Tenfold Variations** (Different routes of exposure can lead varied toxicity levels)

Entrance to Body Ingestion Skin Inhalation Absorption into Blood Stream and Distribution to Body Tissues and Organs Toxicity Storage Excretion

Branches of Toxicology

- 1. **Biochemical & Molecular Toxicology** Study of toxins at the cellular and molecular levels.
- 2. **Behavioral Toxicology** Effects of toxins on behavior and the nervous system.
- 3. **Analytical Toxicology** Detection and measurement of toxic substances.
- 4. **Toxicologic Pathology** Study of tissue and organ damage due to toxins.
- 5. **Clinical Toxicology** Diagnosis and treatment of poisoning in humans.
- 6. **Veterinary Toxicology** Effects of toxins on animals.
- 7. **Forensic Toxicology** Investigation of toxins in legal cases.
- 8. **Environmental Toxicology** Study of toxins in the environment and their effects on ecosystems.

Toxicology Specialties

- 1. Mechanistic Toxicology
- 2. Descriptive Toxicology
- 3. Regulatory Toxicology

Mechanistic Toxicology

- Focuses on **identifying and understanding** how chemicals cause toxic effects at the **cellular, biochemical, and molecular** levels.
- Used in risk assessment (e.g., evaluating carcinogenicity and teratogenicity).
- Helps determine adverse reaction relevancy, like the case of saccharin.
- Mechanistic data aids in designing safer alternatives, e.g., Thalidomide in treating HIV and leprosy.
- STEPS (System for Thalidomide Education and Prescribing Safety) ensures safe usage.
- Contributes to the understanding of **physiology**, **biochemistry**, **and toxicological mechanisms**.

Descriptive Toxicology

- **Focus**: Direct **toxicity testing** of chemicals.
- Purpose: Assesses the risk posed by toxicants to humans, animals, birds, and plants.
- Methods: Uses advanced "omics" technologies, including:

- o **Genomics** (study of genes)
- o **Transcriptomics** (study of RNA)
- Proteomics (study of proteins)
- Metabonomics (study of metabolic changes)

Regulatory Toxicology

- Focus: Establishing and enforcing safety regulations for chemicals and drugs.
- Key Regulatory Bodies:
 - o **DRAP** (Drug Regulatory Authority of Pakistan)
 - o **EPA** (Environmental Protection Agency)
 - o **FDA** (Food and Drug Administration)
- **Related Field: Forensic Toxicology** Deals with legal aspects of toxicology, such as poisoning cases and drug regulations.

Interconnections between different areas of toxicology:

Classification of Toxic Agents

- 1. **Source Toxin/Toxicant** (Natural or synthetic substances causing toxicity).
- 2. Target Organ Hepatotoxic (Liver), Nephrotoxic (Kidney), etc.
- 3. Use Pesticides, Insecticides, Rodenticides, etc.
- 4. Chemical Structure Aromatic amines, Halogenated hydrocarbons, etc.
- 5. Poisoning Potential Extremely toxic, Very toxic, Slightly toxic.
- 6. Mechanism of Action Cholinesterase inhibitors, Methemoglobin producers, etc.
- 7. Duration Acute poisons (short-term) vs. Chronic poisons (long-term exposure).
- 8. Environmental Toxins Present in Air, Water, Soil.

Spectrum of Undesired Effects

- 1. **Allergic Reaction** Immune-mediated response to a substance.
- 2. **Idiosyncratic Reaction** Unpredictable and unusual response, not related to dose.
- 3. Immediate vs. Delayed Toxicity Effects occurring soon after exposure vs. long after exposure.
- 4. Reversible vs. Irreversible Toxic Effects
 - o **Reversible**: Body recovers after removal of the toxicant.
 - o **Irreversible**: Permanent damage (e.g., nerve or organ failure).

- 5. Local vs. Systemic Toxicity
 - o **Local**: Limited to the exposure site (e.g., skin burns).
 - o **Systemic**: Affects the whole body or specific organs.
- 6. **Tolerance** The body's reduced response to repeated exposure.

Mechanism of Toxicity

1. Acute Toxicity Mechanisms

- Narcosis Suppression of central nervous system activity.
- **Ion Channel Modulators** Disrupt normal ion flow, affecting nerve and muscle function.
- **Inhibitors of Cellular Respiration** Block energy production in cells, leading to cell death.
- **Acetylcholinesterase Inhibition** Prevents the breakdown of acetylcholine, causing overstimulation of nerves.

2. Chronic Toxicity Mechanisms

- **Carcinogenesis** Induction of cancer due to long-term exposure.
- **Teratogenesis** Toxic effects on fetal development, leading to birth defects.
- **Mutagenesis** Genetic mutations caused by toxicants.
- **Organ-Specific Toxicity** Long-term damage to organs like the liver, kidneys, or lungs.

Drug Information Centers (DIC)

Definition

- Operational units that provide **technical and scientific drug information** in an **objective and timely** manner.
- Equipped with databases, sources of drug information, and trained professionals to generate independent and relevant drug-related information.
- First DIC established in 1960 (UK).

Requirements for DIC

- Personnel:
 - Director (Pharmacist)
 - Staff pharmacist
 - o Internees
- Facilities & Equipment:
 - o Physical separate place for operation
 - o Computers
 - o Fax/telephone
 - o Internet access
 - o Books and journals

Aims and Objectives

- Ensure high-quality patient care.
- Promote:
 - o Safe, effective, and economic use of medicines.
 - Accurate, timely, appropriate, evidence-based, and unbiased drug information.

Activities of DIC Services

Divided into two main groups:

- 1. Reactive Services:
 - o **Responding to inquiries** regarding:
 - Prescribing of medicines.
 - **Supply** of drugs.
 - Formulation details.
 - **Administration** of medicines.
 - o Mostly focused on **patient-related issues**.

Enquiry type Includes

Administration Route and timing, techniques and equipment

Adverse effects

To all medicines, including OTCs and alternative therapies and in all clinical

situations (e.g. pregnancy) but excluding poisoning

Alternative therapies Homeopathic, herbal, aromatherapy and ethnic therapies

Enquiry type Includes

Availability In the UK or abroad for foreign travel

Best treatment choice, including most appropriate drug in a therapeutic class, Clinical choice

for a specified patient or policy

Indications/contraindications For what, and in what situations, a drug can be, or should be, used

Including in children and in specialist clinical situations, e.g. with renal and **Dosage**

kidney disease

Often in conjunction with drug abuse specialists Drug abuse

Generic, OTC, herbal, homeopathic, veterinary and foreign medicines **Identification**

Incompatibilities Normally in intravenous formulations

Interactions With other drugs, including OTCs, food and laboratory tests

Formulation, excipients, stability and analysis **Pharmaceutics**

Pharmacoeconomics Including cost-effectiveness

Pharmacology/pharmacokinetics Mechanism of action and adverse effects and factors associated with

metabolism, distribution and excretion

Poisoning/overdose Normally referred to the Poisons Information Service

Use in specific situations Pregnancy, breast-feeding, with liver or renal disease, with porphyria

2. Proactive Services:

Involves producing various informational outputs to support healthcare professionals and patients.

Key Activities Include:

- **Bulletins and Newsletters** Regular updates on drug-related information.
- Standardized, Evidence-Based Answers Responses to common drugrelated questions.
- Current Awareness Publications Keeping professionals updated on new developments.
- **Information on New Medicines** Providing details on newly approved drugs.
- **Cost Calculator** Estimating and comparing drug costs for economic use.

Drug Information Center (DIC) Pharmacist Skills Requirements

- 1. **Clinical Skills** In-depth knowledge of pharmacology, therapeutics, and patient care.
- 2. Communication Skills Ability to effectively convey drug-related information to healthcare professionals and patients.
- 3. Information Technology Skills Proficiency in using databases, drug information software, and electronic resources.
- 4. Training Skills Capability to educate healthcare professionals and interns on drugrelated topics.

Chapter 7 | Poison Control Centers (PCC)

Poison Control Centers (PCC)

- A poisons center is a specialized unit that provides advice on and assists with the **prevention, diagnosis, and management** of poisoning.
- Poisoning can occur by **any route** and due to **various causes**, including **accidental**, **intentional**, **occupational**, **or environmental** exposure.
- The structure and functions of poison control centers vary by country.
- The **primary role** of a poison control center is to provide **poison-related information**.
- Some centers may also have a **toxicology laboratory** and/or a **clinical treatment unit** for direct patient care.

Poison Control Centers (PCC) - History and Development

- **First poison control centers** were established in **North America and Europe** during the **1950s**.
- Early poison information centers emerged in various fields, including:
 - Pediatrics
 - o Intensive care
 - o Forensic medicine
 - o Occupational health
 - o Pharmacy
 - o Pharmacology
- Veterinary poison centers exist in Australia, France, and the USA.

Establishment of Poison Control Centers (PCC)

- 1. **National PCC Satellites** Network of poison control centers operating at a national level with regional branches.
- 2. **Location** Strategically placed in hospitals, research institutions, or emergency medical facilities.
- 3. **Staff** Includes toxicologists, pharmacists, physicians, and trained support personnel.
- 4. **Finances** Funded through government support, healthcare organizations, and private partnerships.

Poison Control Centers (PCC) Staff

- **Composition:** Physicians, nurses, chemists, pharmacists, or a combination of these professionals.
- Variability: Staff composition depends on local circumstances and resources.
- **Training:** Poisons information staff undergo specialized training in toxicology.
- **Expertise:** Well-equipped with toxicology knowledge.
- Education: Often hold postgraduate degrees (PGDs) or specialized courses in toxicology.

Poison Control Centers (PCC) Functions

- 1. **Assessment of Exposure** Evaluating exposure to chemicals, pharmaceuticals, and pesticides.
- 2. **Hazard Determination & Treatment** Analyzing toxicity levels and providing treatment options.
- 3. **Cost-Effective Management** Ensuring efficient and economical poisoning management.
- 4. **Database Maintenance** Keeping records of toxic substances and case reports.
- 5. **Chemical Incident Preparedness & Response** Developing protocols for handling chemical emergencies.
- 6. **Training and Teaching** Educating healthcare professionals on poison management.
- 6. **Pharmacovigilance** Monitoring and reporting adverse drug reactions and toxic effects.
- 7. **Substance Abuse Management** Providing information and assistance for drug and alcohol poisoning cases.
- 8. **Environmental Toxicology** Assessing and managing toxic environmental exposures.

Process of Poison Control Centers (PCC)

- 1. Access 24/7 availability via telephone, email, or written requests; face-to-face consultations.
- 2. **Inform** Providing information on diagnosis, prevention, prognosis, and treatment.
- 3. **Lab** Conducting investigations using instruments, hematology, biochemistry, assays, and HPLC.
- 4. **Manage** Utilizing own facilities or referring cases; providing first aid treatment.

Management of Poisoning

Toxicological Investigations: Routine investigations valuable in poison-induced conditions include:

• Electrolyte Imbalances

- Hypokalaemia
- o Hyperkalaemia

• Glucose Levels

- o Hypoglycaemia
- Hyperglycaemia

• Organ Failures & Disturbances

- Hepatic or renal failure
- Acid-base disturbances

• Specific Measurements

- Carboxyhaemoglobin
- Methaemoglobin

Supportive Management

1. Respiratory Support:

- Respiratory depression
- Loss of cough or gag reflex → Oropharyngeal airway & oxygen therapy
- Ventilator support

2. Cardiovascular Support:

- Hypotension
- Cardiovascular shock
- Correction of arrhythmogenic factors:
 - Hypoxia
 - Acidosis
 - Hypokalemia

Temperature Management in Poisoning

Hypothermia (Below 35°C):

- Recognized complication of poisoning
- Covered with a *space blanket*
- Use intravenous and intragastric fluids at normal body temperature
- Inspired gases should be warmed to 37°C

Hyperthermia:

- Remove clothing
- Sponge with water to promote evaporation

Specific Management of Poisoning

- 1. Antidotes
- 2. Reduction of Poison Absorption
 - Inhaled
 - o Skin
 - o Gut
- 3. Increasing Poison Elimination
 - o Gastric Lavage
 - Cathartics
 - o Ipecac

Benzodiazepine (BZD) Toxicity

Overview

- Isolated BZD toxicity is rare.
- Serious toxicity occurs when combined with alcohol and opioids.
- In 2018, the US poison control centers reported **22,995** cases.
 - o 469 (2%) resulted in major toxicity.
 - o 19 cases resulted in death.
- Cases involving BZDs with alcohol or other drugs show significantly higher numbers.

Presentation of Acute Poisoning

- 1. Mild Symptoms
 - o Drowsiness
 - o Ataxia
 - Weakness
- 2. Moderate to Severe Symptoms
 - o Vertigo
 - Slurred speech
 - Nystagmus
 - o Partial ptosis
 - Lethargy
 - o Coma
 - Hypotension
 - Respiratory depression

History Assessment

- Time of ingestion
- Dose taken / Co-ingestants (if any)
- Whether overdose was accidental or intentional
- Duration of BZD use

Physical Examination in Benzodiazepine Toxicity

Classic Presentation

• "Classic" isolated benzodiazepine overdose presents as coma with normal vital signs.

Physical Examination Findings

- Nystagmus
- Hallucinations
- Slurred speech
- Ataxia
- Coma
- **Hypotonia** (reduced muscle tone)
- Weakness
- Altered mental status and cognitive impairment
- Amnesia
- Paradoxical agitation (opposite of sedation, leading to restlessness or aggression)
- Respiratory depression
- Hypotension

Pregnancy:

Diagnosis of Benzodiazepine Toxicity

- 1. Qualitative Testing
 - Used to confirm the presence of benzodiazepines in the body.
- 2. Quantitative Levels
 - Measures the concentration of benzodiazepines in blood or urine to assess severity.
- 3. Skin Manifestations
 - o **Blisters** (bullae) may occur following an overdose with:
 - Nitrazepam
 - Oxazepam
 - Temazepam

Diagnostic Tests for Benzodiazepine Toxicity

- Tests and procedures depend on the presentation:
 - 1. **ABG assay** (if respiratory depression is present)
 - 2. **ECG** (to evaluate for co-ingestants, particularly cyclic antidepressants)

- 3. **Chest radiograph** (if respiratory compromise is present)
- 4. **Pregnancy test** (in women of childbearing age)
- In cases of intentional overdose, measure the following:
 - 1. Serum electrolytes
 - 2. Glucose
 - 3. BUN (Blood Urea Nitrogen)
 - 4. Creatinine clearance
 - 5. Ethanol level

General Management of Benzodiazepine Toxicity

1. Monitor

o CBC, serum electrolytes, glucose, BUN, creatinine, and urine myoglobin (in cases of significant intoxication).

2. Gastric Lavage

- o Preferably done using a large-bore, double-lumen tube.
- o Can be beneficial up to 12 to 24 hours post-ingestion.

3. Multiple Dose Activated Charcoal

o Shown to be effective in absorbing benzodiazepines.

4. Airway Management

- o Establish a **clear airway**.
- Oxygen and assisted ventilation may be necessary.

5. IV Fluids

o Ringer's lactate at 150 ml/hr for adults.

6. Correction of Hypotension

- o Begin with 10 to 20 ml/kg of isotonic fluid.
- o Place patient in **Trendelenburg position**.
- o If hypotension persists, administer **dopamine or noradrenaline**.
- o Consider **central venous pressure (CVP) monitoring** for fluid therapy guidance.

Flumazenil Therapy (Benzodiazepine Antidote)

- Flumazenil reverses benzodiazepine-induced coma.
- Most patients achieve **complete reversal** with a **total slow IV dose of 1 mg**.
- It is better administered in **incremental doses**, starting with **0.2 mg**, increasing **by 0.1–0.2 mg per minute** until a cumulative **3.5 mg dose is reached**.
- Resedation occurs within 30 minutes to 2 hours, depending on the dose and type of benzodiazepine.
- Continuous Flumazenil infusion (5–24 hours) may be needed in cases of resedation.
- Flumazenil reverses cardiovascular depression $\mathscr Q$
- Flumazenil does not effectively reverse respiratory depression X
- Flumazenil is contraindicated in mixed drug ingestions (e.g., co-ingestion with TCAs, opioids, or other CNS depressants) \(\Delta\)

Case Report: Alprazolam Overdose

Patient Details:

• Age: 37 years

• **History:** Psychiatric problems, panic disorder

Presentation:

• Unconscious state

• Alleged ingestion: 60 tablets of Alprazolam (3 hours prior)

• **Intent:** Suicide attempt

• Medication History: Alprazolam and Fluoxetine

Physical Examination:

Deep coma

• Bilateral constricted pupils (minimal reaction to light)

• Diminished tendon reflexes

• Urine retention

• Plantar reflexes absent bilaterally

• No response to painful stimuli

Vital Signs on Admission:

• **Pulse:** 100/min (feeble)

Blood Pressure: 80 mmHg (systolic)Respiratory Rate: 30/min (regular)

• Temperature: 36.8°C

Management

• Diagnosis: Alprazolam overdose

• Interventions:

1. Nasogastric tube placement and catheterization

2. **Gastric lavage** (no pill fragments recovered)

3. Urgent intubation and mechanical ventilation with continuous oxygen

4. Parenteral fluids administered

5. Flumazenil (benzodiazepine antidote) given

Outcome:

- Patient showed improvement after a few hours
- Extubated successfully
- Recovered and discharged

Compliance & Non-Compliance in Healthcare

Definition of Compliance

The **World Health Organization (WHO)** defines compliance as a patient's ability to follow health-related behaviors, including:

- Taking prescribed medications correctly.
- Adopting a healthy lifestyle.
- Following the recommendations of healthcare professionals.

Non-Compliance: The "Invisible Epidemic"

- **Non-compliance** occurs when patients do not follow medical advice, leading to ineffective treatment.
- It is often **unnoticed** but has significant consequences on health outcomes.

The Five Dimensions of Adherence

Dimension	Explanation	Examples	
1. Social & Economic	External factors affecting a patient's ability to follow treatment.	Low income, lack of social support, high medication costs.	
2. Health Care System	±	Poor communication with doctors, long wait times, lack of insurance.	
3. Condition- Related	illness	Chronic conditions needing lifelong treatment, asymptomatic diseases (e.g., high blood pressure).	
4. Therapy- Related		Complex medication regimens, side effects, long treatment duration.	
5. Patient- Related		Forgetfulness, fear of side effects, lack of motivation.	

Detection of Non-Compliance

Method	Examples					
Direct Methods	Biomarker testing, Measuring drug levels in blood					
Indirect Methods	Patient interviews, Counting remaining pills, Evaluating treatment effectiveness, Monitoring via electronic medication systems (MEMS)					

Factors Responsible for Non-Compliance

Category	Factors
1. Disease-Related Factors	Psychiatric disorders, Hypertension, High cholesterol (Hypercholesterolemia), Rheumatoid arthritis
2. Treatment-Related Factors	Multiple medications, Frequent dosing, Long treatment duration
3. Dosage Form Issues	Liquid medications – Taste issues; IV (Intravenous) – Requires expertise, painful; Suppositories – Social discomfort; Tablets – Large size, difficult to swallow
4. Treatment Duration	Lifelong therapies (e.g., diabetes, hypertension), Long antibiotic courses
5. Side Effects	Fear of adverse effects, Drowsiness (CNS effects), Sexual dysfunction, Hangover-like symptoms
6. Cost of Therapy	Expensive medications, Limited access to affordable brands
7. Patient-Provider Interaction	Complex medical terms, Lack of communication time

Consequences of Non-Compliance

Outcome	Effect
Underuse of Medication	Disease worsens due to insufficient treatment
Overuse of Medication	Risk of toxicity and overdose
Adverse Drug Reactions (ADRs)	Unexpected side effects from improper use
Drug Resistance	Ineffective treatment due to misuse of antibiotics
Waste of Resources	Increased healthcare costs and wasted medications
Hospitalization	Severe health deterioration leading to hospital admission
Drug Abuse	Misuse of prescribed drugs for non-medical reasons

Improving Compliance

1. Identifying Risk Factors

• Recognizing patients at risk of non-compliance and addressing their concerns.

2. Patient Education

Method	Purpose
Oral Communication	Direct patient counseling
Written Instructions	Easy-to-follow medication guides
Audiovisual Aids	Videos or demonstrations to explain proper medication use
Patient Motivation	Encouraging adherence through reminders and support

3. Compliance Aids

Tool	Function	
Proper Labeling	Clear instructions on medication packaging	
Compliance Containers	Pill organizers to manage doses	
Modified Dosage Forms Extended-release (SR) tablets for less frequent dosing		

Theories of Health Behavior

Health behavior theories explain why people make health-related choices and how they can be influenced to adopt healthier behaviors. These models help in designing effective health interventions.

1. Behavioral Model

This model focuses on how personal characteristics, lifestyle, and external influences shape health behaviors.

Key Concepts	Explanation
Personality & Lifestyle	Individual traits and daily habits impact health.
Responsibility for Health	People take charge of their own health choices.
Stimulus Response	Behaviors can be conditioned through external triggers.
Incentives & Reminders	Rewards and reminders help reinforce health behaviors.
Learning by Observation	Watching, listening, and reading can improve behaviors.

Rotter's Locus of Control

Describes how much control individuals believe they have over their health.

Locus of Control	Belief System	Impact on Health
Internal	"I control my health through my actions."	More likely to follow medical advice and adopt healthy behaviors.
External	"My health is controlled by external factors (e.g., luck, doctors, environment)."	Less proactive in taking health measures.

₱ Internal locus is linked to better health compliance and quality of life.

2. Health Belief Model

This model explains how personal beliefs influence health behavior.

Key Components	Explanation
Perceived Susceptibility	Belief about the likelihood of getting a disease.
Perceived Severity	Understanding how serious the disease and its consequences are.
Perceived Benefits	Belief that taking action will have positive effects.
Perceived Barriers	Recognizing and overcoming obstacles to action.

Example: A person at risk for diabetes may adopt a healthier lifestyle if they believe they are susceptible and see benefits in prevention.

3. Self-Efficacy

Self-efficacy refers to the belief in one's ability to succeed in health-related tasks.

Example: A Type 2 diabetic patient believes they can manage their condition through exercise, diet, and stress management.

4. Protection Motivation Theory

People make health decisions based on their perception of threats.

Key Idea					Impact on Behavior	

If a person perceives a serious health threat They are more likely to take preventive action.

Example: A smoker who understands the risk of lung cancer is more likely to quit smoking.

5. Self-Medication Hypothesis

People make independent decisions about their medication.

Key Aspects	Explanation
Self-adjustment	Patients may start, stop, or change medication based on how they feel.

Key Aspects	Explanation
Perceived Health	Decisions are often based on personal judgment rather than medical
Needs	advice.

Example: A person with a headache may decide to take painkillers without consulting a doctor.

6. Biomedical Model

This model focuses on biological factors and medical treatment.

Key Aspects	Explanation
Disease Characteristics	The nature and severity of an illness affect health decisions.
Fear of Side Effects (ADRs)	Concerns about adverse drug reactions impact medication adherence.
Role of Medical Professionals	Doctors provide essential support and treatment.
Simplified Treatment	Clear dosing instructions and easy packaging improve adherence.

7. Educational Model

This model highlights the role of education in health behavior.

Key Co	mponents		Explanation		
		T C		1	. 1

- **A.** Communication Informing patients with trust and empathy.
- **B. Self-Regulation** Patients actively manage their own health.

Components of Self-Regulation

- 1. **Standards** Setting personal health goals.
- 2. **Motivation** Staying committed to health improvements.
- 3. **Monitoring** Tracking progress.
- 4. **Willpower** Maintaining discipline to achieve goals.
- **Example:** A person trying to lose weight tracks their diet and adjusts based on results.

8. Transtheoretical Model (TTM) – Stages of Change

The **Transtheoretical Model (TTM)** explains how individuals change behavior over time through different stages. It is often used for health behaviors like quitting smoking.

Stage	Description	Example (Smoking Cessation)
Precontemplation	No intention to change behavior within the next 6 months.	A smoker who is not considering quitting.
Contemplation	· ·	A smoker who is considering quitting but has not set a specific date.
Preparation	, , , ,	A smoker who plans to quit soon and has already tried quitting for 24 hours in the past year.
Action	Recently changed behavior (within the last 6 months).	A person who has quit smoking but has not yet reached long-term stability.
Maintenance	Sustaining the new behavior for more than 6 months.	A former smoker who has not smoked for over 6 months and is working to prevent relapse.

Safe Intravenous (IV) Therapy & Hazards

Intravenous Therapy (IV Therapy)

Intravenous therapy involves the infusion of solutions, medications, blood, or blood products directly into a vein. It is widely used in hospitalized patients (80%) due to its effectiveness, speed, and necessity in emergencies or for comatose patients.

Types of IV Therapy

Type Description	
Peripheral IV Therapy (PIVT) Used for short-term treatment in small veins.	
Central IV Therapy (CIVT) Long-term treatment via the superior vena c	

IV Solutions

Type	Description
Colloid Solutions	Contain large molecules (e.g., Albumin, Dextran).
Crystalloid Solutions	Contain electrolytes and dextrose.
Based on Tonicity	Includes isotonic, hypertonic, and hypotonic solutions.

Common Reasons for IV Therapy

- 1. Fluid and electrolyte replenishment
- 2. Antibiotic administration (40% of all IV treatments)
- 3. Blood transfusion
- 4. Parenteral nutrition

Guidelines for Safe IV Therapy

1. Maintaining Hygiene

- Aseptic technique and proper hand hygiene.
- Proper preparation and maintenance of equipment.
- Prompt replacement if contamination occurs.

2. Accurate Information

- Physician's order must include:
 - o Type of drug
 - o Infusion rate
 - Duration and timing

3. Setting Up a Peripheral IV Line

- Upper extremity veins preferred.
- Use percutaneous vein puncture.
- Apply sterile transparent dressing to prevent dislodgement.
- Use positive pressure cap in catheter hub.

4. Discontinuation of Peripheral IV Line

- IV line should be changed every **72-96 hours**.
- Removed if patient is stable or showing signs of complications (tenderness, swelling, redness, drainage).
- Change administration set (IV tubing) accordingly.

5. Central Venous Catheters (CVCs)

- Also known as a **central line**, inserted into the superior vena cava.
- Inserted surgically by trained personnel using ultrasound or X-ray.
- Used for patients requiring long-term IV therapy (>6 days) and can be retained for up to 1 year.

Indications for CVC Use:

- Antineoplastic medications
- Serious or chronic illnesses
- Irritant/toxic medications
- Need for central venous pressure monitoring
- Long-term venous access (e.g., dialysis, total parenteral nutrition)
- Medications with extreme pH values (>9 or <5) or high osmolality (>600 mOsm/L)
- Poor venous access or multiple failed PIV attempts

6. IV System Assessment

- Must be checked every **1-2 hours** and at the beginning and end of shifts.
- Look for pain, tenderness, swelling, or discomfort at the insertion site.
- Replace PIV every **72 hours**.
- Flush non-in-use PIV sites every 12 hours.

7. Types of IV Solutions

Type	Examples
Colloid Solutions	Albumin, Dextran
Crystalloid Solutions	Electrolytes, Dextrose

Complications of Intravenous (IV) Therapy: Air Embolism

Definition

- **Air Embolism**: The presence of gas in the bloodstream, leading to potential complications.
- **Venous Air Embolism (VAE)**: A subset of gas embolism, often subclinical but can be fatal in large volumes.
- Significance:
 - > 5 mL/kg of air can cause severe injury.
 - o 2–3 mL of air in the cerebral circulation may be fatal.

Pathophysiology of Air Embolism

Effects	Consequences
Pulmonary artery pressure increases	Right ventricular (RV) ejection decreases
Reduced venous return	Cardiac output (CO) drops → Cardiogenic shock
Pulmonary vasculature effects	Inflammatory changes, endothelial damage, platelet & fibrin accumulation
Pulmonary complications	Pulmonary edema, ventilation-perfusion mismatch

Causes of Air Embolism

Cause	Description
Peripheral IV therapy	Air entering veins due to improper IV handling
Central IV therapy	Higher risk due to direct access to large veins
Surgical procedures	Air entry during surgeries involving major veins

Table 2. Examples of Nonoperative Procedures Associated with Vascular Air Embolism

• Direct vascular procedures:

- Central venous access related
- o Radial artery catheterization
- Parenteral nutrition therapy
- Interventional radiology

• Pain management procedures:

 Epidural catheter placement (loss of resistance to air technique)

Diagnostic procedures:

- o Contrast-enhanced CT
- Contrast-enhanced CT chest(Comp. Tomography)
- Lumbar puncture
- Thoracentesis

• Hemoperfusion procedures:

- o Intraaortic balloon rupture
- Rapid blood cell infusion systems
- o Blood storage container

Signs and Symptoms

- **Abrupt onset** of symptoms
- Respiratory Issues: Sudden dyspnea, cough, wheezing
- Chest Discomfort: Chest and/or shoulder pain
- Cardiovascular Signs: Tachycardia, hypotension, systolic murmur
- Neurological Symptoms: Stroke-like symptoms (cerebrovascular accident)
- **Severe Outcome**: Can lead to death

Diagnosis of Air Embolism

Diagnostic Method	Purpose
CT Scan	Detects air bubbles in circulation
MRI	Identifies brain involvement in cerebral air embolism
Ultrasound Doppler	Detects air in the venous system

Treatment of Air Embolism

Treatment Step	Action
Stop Infusion	Clamp the IV line to prevent further air entry
Oxygen Therapy	Increase oxygen supply to reduce hypoxia
Intubation	Endotracheal intubation if needed for respiratory distress
CPR	If cardiac arrest occurs, initiate resuscitation
Supportive Care	Vasopressors and mechanical ventilation may be required

Phlebitis: A Complication of IV Therapy

Definition

- **Phlebitis**: Inflammation of a vein, commonly affecting peripheral veins.
- Affects: Tunica intima (inner layer of the vein).
- Can Lead to: Thrombophlebitis (clot formation with inflammation).
- Common in: Individuals aged 40-60 years.
- Types: Superficial or Deep.
- **Symptoms**: Pain, redness, swelling.

Types of Phlebitis and Causes

Type	Cause	Prevention
Mechanical Phlebitis	Caused by cannula friction or injury to tunica intima	Use small-gauge cannula
Chemical Phlebitis	Due to strongly alkaline, acidic, or hypertonic drugs in small veins	Proper drug dilution & sufficient blood flow
Infective Phlebitis	Microorganisms entering through the puncture site due to poor hygiene	Aseptic technique & proper site care

Visual Infusion Phlebitis Score:

nula
serve
ınula
resite
art of nnula,
ebitis,
r

Management of Phlebitis

- Remove the cannula if the VIP score is 2 or greater to prevent further complications.
- **Dilute irritating solutions** before administration to reduce vein irritation.
- **Decrease the speed of infusion** to minimize mechanical stress on the vein.
- Reinsert a new small-gauge cannula if clinically necessary, ensuring minimal trauma.
- Place the cannula away from points of flexion to reduce movement-related irritation.
- If the VIP score reaches 5, take a swab for culture to assess for infection.

Extravasation

- **Definition**: The leakage of vesicant drugs into surrounding tissues, leading to severe local tissue damage.
- **Incidence**: Occurs in **0.5% to 6%** of patients receiving chemotherapy.
- High-Risk Patients:
 - o Cancer patients due to multiple infusions.
 - o Patients with **malnourishment** (weakened tissues).
 - Those experiencing side effects of chemotherapy and radiotherapy (compromised veins and skin integrity).

Chemotherapeutic agents listed according to local toxicity:

Category	Agents
Vesicant	Doxorubicin, epirubicin, daunorubicin, idarubicin, dactinomycin (anthracyclines) Vincristin, vinblastin, vindesin, vinorelbine, vinflurin (vinca alkaloids) Mitomycin-C, mechlorethamin, carmustin (alkylating agents)
Irritants	Mitoxantrone, aclarubicin (DNA-intercalating antibiotics) Etoposid, teniposid (epipodo-phyllotoxin) Fluorouracil, floxuridin (antimetabolites) Cisplatin, carboplatin, dacarbazin, oxaliplatin (alkylating or DNA-binding) Paclitaxel, docetaxel, bleomycin (others)
Non- Vesicants	Metotrexat, cytarabin, pentostatin, gemcitabin, capecitabin (antimetabolites) Cyklofosfamid, ifosfamid, melphalan (alkylating agents) Irinotecan, topotecan, trastuzimab (others)

Here is the organized and structured text on **IV Therapy and Its Hazards**:

Extravasation Pathophysiology

Steps of Extravasation Pathophysiology

- 1. Sites-specific free radical damage
- 2. DNA damage
- 3. Drug-DNA complexes diffuse into adjacent tissue
- 4. Induced tissue necrosis may deteriorate tissue

Extravasation Clinical Signs and Symptoms

Early Signs:

Pain

Irritation

• Swelling

Erythema

Blistering

Late Signs:

- Induration
- Ulceration
- Long-term pain
- Tissue necrosis
- Joint destruction
- Permanent dysfunction and cosmetic changes

Extravasation Management

- Discontinue infusion
- Administer antidote
- Do not flush the cannula

- Attempt to aspirate the drug from the cannula
- Apply topical steroids
- Surgery if necessary

Infection in IV Therapy

Causes of Infection:

- Cannula insertion
- Poor management and care
- Lack of aseptic techniques

• Local infection (which can sometimes become systemic)

Infection Clinical Signs and Symptoms

- Redness
- Swelling and localized induration
- Skin discoloration
- Purulent discharge

- Pain
- Severe systemic infection (e.g., fever)

Infection Management

- Take a swab from the insertion site for culture
- Remove the cannula and culture it
- Clean the insertion site with an antimicrobial wipe
- Place a sterile dressing over the site
- Notify medical staff

Additional Infection Management:

- Systemic antibiotics may be necessary
- Monitor the site every 8 hours
- Document all actions taken

Stroke

Chapter 10, Unit V: Introduction to Neurological Disorders

Neurological Disorders

Neurological disorders affect the **brain, spinal cord, and associated tracts**, leading to various functional impairments.

Categories of Neurological Disorders

Affected Area	Description	
Brain	Disorders impacting cognition, movement, and consciousness (e.g., stroke, epilepsy).	
Spinal Cord	Conditions affecting motor and sensory functions (e.g., spinal cord injury, multiple sclerosis).	
Associated Tracts	Issues in nerve pathways that transmit signals (e.g., neuropathies, ALS)	

Neurological Disorders- Brain Functions Change

Condition	Definition
Hemorrhage	Bleeding due to the rupture of a blood vessel in the brain.
Tumor	Abnormal growth of brain cells, which can be benign (non-cancerous) or malignant (cancerous).
Brain Damage	Permanent or temporary impairment due to injury, disease, or lack of oxygen.
Infections	Inflammation caused by bacteria, viruses, fungi, or parasites affecting the brain and spinal cord.
Infarction	Tissue death due to a lack of blood supply, commonly caused by a stroke.
Hemodynamics	The study of blood flow and circulation, crucial for brain function.
Brain Function Changes	Alterations in brain activity due to injury, disease, or external factors.

Cerebral Circulation and Auto-Regulation

Auto-Regulation

The brain maintains stable blood flow despite changes in blood pressure.

Concept of Effective Perfusion Pressure

Balance between arterial pressure, venous pressure, and intracranial pressure to ensure adequate blood flow.

Theories of Auto-Regulation

Theory	Mechanism
Myogenic	Response of blood vessels to pressure changes.
Metabolic	Regulation based on metabolic demand.
Neural	Autonomic nervous system control.
Cushing Reaction Response to increased intracranial pressure.	

Cerebral Blood Flow (CBF)

Parameter	Value	
Percentage of Cardiac Output 16-20%		
Flow Rate	1300 ml/min	
Perfusion Rate	55 ml/100 gm of brain tissue	

Major Arteries Supplying the Brain

Artery	Function
Basilar Artery	Supplies the posterior brain.
Internal Carotid Artery	Supplies the anterior brain.

Circle of Willis

Formed by branches of the basilar and internal carotid arteries, ensuring collateral circulation.

Cushing Reaction - Special type of CNS Ischemic Response Increased pressure of cerebrospinal fluid (cranial vault) Increase intracranial tension Compress whole brain & arteries in the brain Cuts off blood supply to brain CNS Ischemic Response initiated & arterial pressure rises Relieve brain ischemia

Intracranial Hypertension (IIH) & Intracranial Pressure (ICP)

1. Intracranial Pressure (ICP)

Definition	The pressure inside the skull, affecting brain tissue and cerebrospinal fluid (CSF).
Measurement Unit	mm Hg
Normal Level	7-15 mm Hg

ICP Maintenance

Factor	Details	
CSF Production & Absorption 500 ml produced, 100-150 ml circulates		
Brain Mass	1.5 kg	
Blood Flow	16% of cardiac output (CO), 1300 ml/min	

Monro-Kellie Hypothesis

Describes the pressure-volume relationship between ICP, CSF volume, blood, and brain tissue.

Compensation mechanisms exist to maintain equilibrium.

2. Idiopathic Intracranial Hypertension (IIH)

Definition	Elevation of pressure in the cranium, also known as Pseudotumor Cerebri or Benign Intracranial Hypertension (BIH).	
Normal ICP	7–15 mm Hg	
Upper Limit	20–25 mm Hg	

Pathophysiology of IIH

Factor	Explanation	
Obstruction	Narrowing of transverse dural venous sinus (MR venography studies).	
Increased Blood Flow Leads to increased pressure.		
Obesity	Affects venous emptying in SVC due to increased abdominal pressure.	

3. Clinical Presentation

Symptom	Description
Headache	Persistent and severe.
Papilledema	Swelling of the optic nerve.
Diplopia	Double vision.
Vision Issues	Loss, obscurity.
Nausea & Vomiting Common due to pressure changes.	
Bradycardia	Slow heart rate.
Hyperventilation	Rapid breathing response to increased ICP.

Idiopathic intracranial hypertension treatment trial (IIHTT)

4. Diagnosis

Method	Procedure
Physical Exam & History Clinical assessment.	
Optic Disc Examination	Fundoscopy.
Imaging	CT Scan, MRI, MRV.
Blood Tests	$CBC, Cardiolipin\ antibodies,\ Coagulation\ profile.$
Lumbar Puncture	CSF physical, chemical, and culture analysis.

5. Treatment of IIH

Goals

• Preserve optic nerve function.

Treatment	Details	
Acetazolamide (AZM)	Improves vision loss, ICP, and headaches (47%-60% success rate).	
Headache Management	Amitriptyline, Propranolol, Topiramate.	
Corticosteroids	Used for severe cases.	
Surgical Options	Optic Nerve Sheath Fenestration, CSF Diversion, Venous Sinus Stenting.	

IIH Long-Term Study (NIH)

- 165 patients with IIH and mild vision loss.
- 38% recurrence over 6.2 years; no recurrence in those on continuous acetazolamide treatment.

Case History

Patient Details	Information
Age	32 years
Gender	Female
Marital Status	Unmarried
Occupation	Assistant Professor of Gynecology
Medical History	History of migraine
Medications Used Triptans (not relieved)	

Clinical Course

Event	Details
Chief Complaint (CC) Severe headache for the last 2 days.	
Initial Visit	Presented to LRH Emergency with headache.
Initial Treatment	Given anti-migraine drugs and sent home.
Condition Worsened	Experienced a more severe headache attack.
Readmission	Admitted to Neurology.
Investigations	MRI and MRV performed.
Diagnosis	Cerebral Venous Thrombosis (CVT).
Treatment	Initiated based on CVT diagnosis.

STROKE

Definition	Acute or sudden onset of neurological deficits lasting at least 24 hours due to a vascular mechanism.
Incidence	250 per 100,000 population
New Cases Per Year	35,000

Ischemic Stroke

An ischemic stroke occurs when a blood clot or plaque blocks a blood vessel in the brain, cutting off blood flow and causing brain tissue damage

Category	Description
Large Vessel	Involves major brain arteries.
Small Vessel Affects smaller penetrating arterie	
Others	Various uncommon causes.

Outcomes of Ischemic Stroke (After 3 Months)

Stroke Type	Outcome %
Large Vessel (LV)	40%
Small Vessel (SV)	25%

Classification:

Risk factors Ischemic stroke

Pathophysiology ischemic stroke

Diagnosis & Classification of Stroke

- Large Vessel Stroke
 - o Involves major arteries (e.g., MCA, ACA, PCA, Basilar artery)
 - o Symptoms depend on affected artery
- Small Vessel Stroke (Lacunar Stroke)
 - Affects smaller penetrating arteries
 - Can cause pure motor or sensory deficits

Major Arteries and Their Infarctions

Artery	Affected Areas	Clinical Features
Middle Cerebral Artery (MCA)	Lateral frontal, temporal, parietal lobes	Hemiparesis, aphasia, visual deficits
Anterior Cerebral Artery (ACA)	Medial frontal & parietal lobes	Contralateral leg weakness
Posterior Cerebral Artery (PCA)	Occipital lobe, thalamus	Visual impairment, memory issues
Basilar Artery	Brainstem, cerebellum	CN deficits, coma, instability
Small Cerebral Blood Vessels (Lacunar Stroke)	Internal capsule, thalamus, pons	Pure motor or sensory stroke

Middle Cerebral Artery (MCA) Stroke

- Symptoms:
 - o Contralateral weakness
 - Sensory loss
 - o Aphasia (if dominant hemisphere affected)
 - o Hemineglect (if non-dominant hemisphere affected)
 - Visual field defects
- Complete MCA Syndrome:
 - Severe motor & sensory loss
 - o Global aphasia (if left hemisphere affected)
 - o Hemispatial neglect (if right hemisphere affected)

Anterior Cerebral Artery (ACA) Stroke

- Contralateral leg weakness
- Less involvement of arms & face
- Possible behavioral and cognitive changes

Posterior Cerebral Artery (PCA) Stroke

- 5-10% of all strokes
- Symptoms:
 - o Visual field deficits
 - o Memory disturbances
 - Sensory impairments

Basilar Artery Stroke

- Symptoms:
 - Cranial nerve deficits
 - o Apnea (breathing issues)
 - o Systemic instability
 - o Coma

Small Vessel (Lacunar) Strokes

- Types:
 - o Pure Motor Stroke
 - o Pure Sensory Stroke
 - o Lacunar Infarcts (small deep infarctions)
- Commonly affected arteries:
 - Lenticulostriate arteries

Thalamogeniculate & Thalamoperforator Artery Stroke

Artery	Affected Brain Region	Clinical Features	
Thalamogeniculate Arteries	Lateral thalamus	- Pure sensory stroke (contralateral sensory loss)	
Thalamoperforator Arteries	Medial thalamus, midbrain	Cognitive & memory impairmentsDecreased consciousnessMotor deficits (if midbrain involved)	

Ischemic Stroke: Treatment Options

1. Lifestyle Modifications

- Avoid Smoking
- Healthy Eating Habits
- Regular Physical Activity
- Stress-Free Life
- Maintain Healthy Body Weight
- Blood Pressure (BP) Control
- Compliance with Medications
- Emotional Support

2. Goals of Ischemic Stroke Treatment

- Reduce ongoing neurological injury.
- Prevent complications due to immobility and neurological dysfunction.
- Prevent stroke recurrence.
- Decrease mortality and long-term disability.

3. Non-Pharmacological Treatment

Procedure	Purpose
Craniectomy	Used in case of cerebral edema.
Carotid Endarterectomy	Removes plaque from carotid artery.
Carotid Stenting	Keeps carotid artery open.

4. Pharmacological Treatment

Drug	Dosage & Timing	Effectiveness	
Tissue Plasminogen Activator (tPA)	0.9 mg/kg over 1 hour (10% as bolus over 1 minute)		
tPA within <3 hrs	75% good outcomes within 6 months		
tPA within 3-4.5 hrs	26% good outcomes		
tPA after >4.5 hrs	15% good outcomes		
Aspirin	300 mg after 24 hours	Prevents clot progression	

5. Inpatient Management

Condition	Management
Hyperthermia	Antipyretics
Hyperglycemia	Insulin
Hypertension	ACE Inhibitors (ACEI), ARBs, Diuretics
Respiratory Issues	Oxygen Therapy
Dysphagia	Nasogastric (NG) Tube
Infections	Antibiotics
Brain Swelling	Corticosteroids

Hemorrhagic Stroke Treatment

Treatment	Purpose	
Blood Pressure Control	Prevent further bleeding	
Surgical Evacuation	Removes hematoma	
Reducing Intracranial Pressure (ICP) Manages brain swelling		
Ventricular Drainage Reduces CSF buildup		
Surgical Clipping	Within 72 hours of onset	
Triple H Therapy	Hypertension, Hypervolemia, Hemodilution	

Cerebrovascular anatomy and common sites of atherosclerosis

Category	Primary Agents	Alternatives
Acute Treatment	- tPA 0.9 mg/kg IV (max 90 kg) over 1 hour (within 3 hours of onset) - ASA 160–325 mg daily (within 48 hours of onset)	- tPA (various doses) intra-arterially (up to 6 hours after onset)
Secondary Prevention		
Noncardioembolic Stroke	- Aspirin 50–325 mg daily - Clopidogrel 75 mg daily - Aspirin 25 mg + Extended-release dipyridamole 200 mg twice daily	- Ticlopidine 250 mg twice daily
Cardioembolic Stroke (esp. Atrial Fibrillation)	- Warfarin (INR = 2.5)	
All Stroke Patients	- ACE inhibitor + diuretic or ARB (for blood pressure lowering) – Statin	

Epilepsy

Seizures

- Seizures are caused by **transient** (**temporary**), **paroxysmal** (**sudden**), and **synchronous** (**simultaneous**) discharges of groups of neurons in the brain.
- Results in changes in behavior, movements, feelings, or levels of consciousness.
- Causes include:
 - o **Hypoglycemia** (low blood sugar)
 - o **Hyponatremia** (low sodium levels)
 - Drug toxicity
- May result in only a single seizure or a few seizures at most.
- Treatment of the **underlying abnormality** corrects the seizure disorder.

Epilepsy

- Epilepsy is **recurrent** (**repeated**) **seizures**.
- Incidence is **high in infancy and old age** but decreases during childhood, reaching its lowest in adolescence.
- May be hereditary or acquired:

Type of Epilepsy	Causes	
Hereditary	May be due to channelopathies (genetic defects affecting ion channels)	
Acquired	Due to head trauma, CNS infection, structural brain malformations, strokes, or cerebral neoplasm (brain tumor)	

Pathophysiology

- Unstable cell membrane or its surrounding supportive cells.
- Excitatory (glutamatergic signaling) and inhibitory (GABAergic signaling) imbalance.
- Normal neuronal activity depends on:
 - Glucose, oxygen, sodium, potassium, chloride, calcium, pH, and amino acids.
- Increased oxygen levels \rightarrow ischemia (reduced blood supply) \rightarrow cognitive abnormality (mental dysfunction).
- Abnormal electrical activity spreads through physiological pathways to adjacent or distant brain areas.
- Clinical manifestations depend on:
 - o Site of the seizure focus
 - Degree of surrounding brain irritability
 - Intensity of the impulse
 - Raising threshold (increasing resistance to seizure activity) and limiting wave propagation (spread of abnormal signals).

Classification of Epileptic Seizures

- 1. Partial Seizures (Focal Seizures)
- 2. Generalized Seizures
- 3. Unclassified Seizures

1. Partial (Focal) Seizures

- Originate in one hemisphere of the brain.
- Result in asymmetric (unequal) motor symptoms.

a. Simple Partial Seizures

- Originate in the neocortex.
- Consciousness remains intact.
- Symptoms:

Symptom Type	Example
Motor	Focal myoclonus (muscle jerking) of a limb, hand, or face
Sensory	Seeing colored spots or lines
Autonomic	Epigastric sensation (abdominal discomfort)
Psychic	Memory disturbances

b. Complex Partial Seizures

- Alteration of consciousness.
- Arrest of motion (sudden pause in activity).
- Automatisms (involuntary movements) like:
 - Simple hand movements
 - o Oroalimentary (mouth-related) behavior like tasting movements or swallowing
 - Verbal utterances
 - o Amnesia (memory loss).
- Postictal (after-seizure) effects.
- Aura (warning signs like sensory, autonomic, or psychic symptoms) precedes loss of consciousness.

2. Generalized Seizures

- Loss of consciousness with apnea (temporary breathing pause) and violent muscle contractions.
- Patients may experience:

- o Mouth trauma
- o Bladder incontinence (loss of bladder control)
- Salivation (excessive drooling)
- o Increased pulse rate and blood pressure during the seizure.
- Phases of Generalized Seizure:

Phase	Description
Tonic Phase	Stiffening of muscles
Clonic Phase	Rhythmic muscle jerking
Postictal Phase	Breathing resumes, followed by unresponsiveness and gradual recovery

• Postictal symptoms:

- o Confusion for several minutes or longer
- o Muscle pain and headache
- $\circ \quad \textbf{Stereotyped behavior (predictable pattern of post-seizure recovery)}$

Types of Generalized Seizures

Type	Description	
a. Absence Seizures	Brief loss of awareness without convulsions	
b. Myoclonic Seizures	Sudden, brief muscle jerks	
c. Clonic Seizures	Repetitive rhythmic jerking movements	
d. Tonic-Clonic Seizures Stiffening followed by rhythmic jerking		
e. Atonic Seizures	Sudden loss of muscle tone, causing falls	

Diagnosis

Test	Purpose
HX (History)	Patient's medical and seizure history
CT (Computed Tomography)	Brain imaging to detect structural abnormalities
MRI (Magnetic Resonance Imaging)	Detailed brain imaging for lesions or malformations
CSF (Cerebrospinal Fluid Analysis)	To rule out infections or inflammatory causes
Prolactin	Elevated post-seizure; helps differentiate from psychogenic seizures
EEG (Electroencephalogram)	Detects abnormal electrical activity in the brain

Treatment

Treatment Goals

- Seizure-free state
- Good quality of life
- Reduced side effects
- Sacrifice of seizure control (in some cases where side effects outweigh benefits)
- Concerns related to:
 - o Driving
 - o Future planning
 - o Relationships
 - Safety
 - Social isolation & stigma
- Neuropsychiatric comorbidities may accompany epilepsy

Treatment Options

- 1. AEDs (Antiepileptic Drugs)
- 2. Vagus Nerve Stimulation
- 3. Surgery
- 4. Ketogenic Diet

1. Antiepileptic Drugs (AEDs)

- 30% to 35% of patients will be refractory (resistant) to treatment.
- Goals should shift to decreasing seizure frequency and minimizing drug adverse effects.
- Monotherapy (single drug treatment) is preferred:
 - o 50% to 70% of patients can be maintained on one drug.
- Prognosis for 12-month seizure freedom with monotherapy:

Seizure Type	Success Rate
Generalized Tonic-Clonic (GTC) Seizures	48% to 55%
Complex Partial Seizures	23% to 26%
Mixed Seizure Types	25% to 32%

2. AED Usage Guidelines

• Patients with ≥2 seizures should start AED therapy.

• AED withdrawal requires a seizure-free period of 2 to 4 years.

• First-line AEDs for new-onset seizures:

Seizure Type Drug of Choice

Partial or Generalized Seizures Carbamazepine, Phenytoin

Primary Generalized Convulsions Valproate, Lamotrigine,

Topiramate

Valproate

Absence Seizures Ethosuximide

Absence Seizures + Generalized Convulsions/Myoclonic

Seizures

• If the **first drug fails**, **increase the dose** before opting for a second AED.

Drugs of Choice for Specific-Seizure Disorders

Seizure Type	First-Line Drugs	Alternative Drugs
Partial seizures	Carbamazepine	Gabapentin
	Phenytoin	Topiramate
	Lamotrigine	Levetiracetam
	Valproic acid	Zonisamide
	Oxcarbazepine	Tiagabine
		Primidone, phenobarbital
		Felbamate
Generalized seizures		
Absence	Valproic acid, ethosuximide	Lamotrigine, levetiracetam
Myoclonic	Valproic acid, clonazepam	Lamotrigine, topiramate, felbamate, zonisamide, levetiracetam
Tonic-clonic	Phenytoin, carbamazepine, valproic acid	Lamotrigine, topiramate, phenobarbital, primidone, oxcarbazepine, levetiracetam

Vagus Nerve Stimulation (VNS)

Criteria for VNS Placement

- Indicated for partial-onset seizures that persist despite adequate trials of two or three AEDs.
- The patient should not be a good candidate for focal resective surgery.
- Patients should be older than 12 years.

Surgery

Criteria Details

Focus is difficult to locate Surgery is considered when the exact seizure focus is unclear.

Most common procedure Temporal lobectomy (removal of part of the temporal lobe).

Success Rate - 70% remain seizure-free.

• 20% show marked improvement.

Ketogenic Diet

- A high-fat, low-carbohydrate diet that prevents seizures by maintaining the patient in ketosis (a metabolic state where the body burns fat for energy).
- Diet composition:

Nutrient Ratio
Fats 4 parts

Psychosis (CNS Disorders - Chapter 10, Unit V)

Definition

Psychosis is a mental condition where a person struggles to differentiate between reality and delusions or hallucinations.

Symptoms

Category	Symptoms
Positive Symptoms (Excess of normal functions)	 Hallucinations (seeing or hearing things that aren't there) Delusions (false beliefs) Disorganized speech
Negative Symptoms (Reduction of normal functions)	 Blunted affect (reduced emotional expression) Poverty of thoughts (limited speech and ideas) Lack of emotions Anhedonia (inability to feel pleasure)
Cognitive Symptoms (Thinking difficulties)	Inattention (trouble focusing)Impaired memoryIllogical thinkingPoor judgment

Types of Psychosis

1. Affective Psychosis (Mood-Related Psychosis)

Psychosis occurs as part of a mood disorder, such as depression or bipolar disorder.

Type	Description
Schizoaffective Disorder	A combination of schizophrenia symptoms and mood disorder (either depression or bipolar disorder).
Bipolar Disorder with Psychotic Features	Psychotic symptoms appear during manic or depressive episodes.
Depression with Psychotic Features	Severe depression accompanied by hallucinations or delusions.

2. Non-Affective Psychosis (Not Directly Related to Mood Disorders)

Psychosis occurs independently of mood disorders.

Type	Description
Schizophrenia	A chronic mental disorder with hallucinations, delusions, and impaired thinking.
Schizophreniform Disorder	Similar to schizophrenia but lasts less than six months.
Borderline Personality Disorder (BPD) with Psychotic Episodes	Brief psychotic episodes, often triggered by stress.
Drug-Induced Psychosis	Caused by the use of substances such as LSD, cocaine, or methamphetamine.
Non-Affective Psychosis	Psychosis not linked to mood disorders, often due to neurological or unknown causes.

Pathophysiology of Psychosis

- **Reduction in Grey Matter Volume** Loss of brain tissue affecting cognition and emotions.
- **MRI Findings** Overall reduction in brain mass and cortex size.
- **Decreased Cortical Thickness** Thinning of the brain's outer layer, impacting thought processes.
- Variations in Regional Cerebral Blood Flow (rCBF) Uneven blood supply to different brain regions.
- Neurotransmitter Imbalance:
 - Increased Dopamine (D2 Receptor Activation) Causes hallucinations and delusions.
 - Decreased Dopamine (D1 Activity) Leads to cognitive impairment and reduced motivation.
 - Increased Serotonin (5HT) May contribute to positive symptoms like hallucinations.

Signs and Symptoms of Psychosis

1. Positive Symptoms (Excess or Distorted Functions)

Symptom	Description
Hallucinations	Seeing, hearing, or feeling things that aren't there.
Delusions	Strong false beliefs not based on reality.

Disorganized Speech Talking in a confused or illogical way.

2. Negative Symptoms (Loss of Normal Functions)

Symptom	Description
Blunted Affect	Reduced emotional expression.
Poverty of Thoughts	Limited speech and ideas.
Lack of Emotions	Decreased ability to express feelings.
Anhedonia	Inability to feel pleasure.

3. Cognitive Symptoms (Thinking Difficulties)

Symptom	Description
Inattention	Difficulty focusing or concentrating.
Impaired Memory	Trouble remembering information.
Illogical Thinking	Inability to form rational thoughts.
Impaired Judgment	Poor decision-making skills.

Figure 1-2: Course and prognosis of Schizophrenia

Etiology (Causes of Psychosis)

- 1. **Normal States** Temporary psychosis due to sleep deprivation, extreme stress, or sensory deprivation.
- 2. **Trauma** Psychological or physical trauma, such as childhood abuse or accidents.
- 3. **Psychiatric Disorders** Conditions like schizophrenia, bipolar disorder, and severe depression.
- 4. **Secondary Causes** Brain injuries, infections, metabolic disorders, or neurological conditions.
- 5. **Psychoactive Drugs** Substance-induced psychosis from drugs like LSD, cocaine, or alcohol.

Diagnosis of Psychosis

Step	Tests/Evaluations
1. Exclude Other Causes	Ensure symptoms are not due to medical conditions.
2. Laboratory Tests	CBC (Complete Blood Count), TFTs (Thyroid Function Tests), ESR (Erythrocyte Sedimentation Rate), Electrolytes.
3. Brain Imaging	MRI, CT scan to detect structural abnormalities.
4. Clinical Evaluation	Detailed interview and Mental Status Examination (MSE).
5. Psychosis Rating Scales	BPRS (Brief Psychiatric Rating Scale), PANSS (Positive and Negative Syndrome Scale).

Management Plan

Multidisciplinary Approach

- **Psychiatrists** Diagnose and prescribe medications.
- **Psychotherapists** Provide therapy and counseling.
- Social Workers & Nursing Staff Support patient care and rehabilitation.

Treatment Phases

Phase	Goal
Short-Term	Stabilize the patient, reduce symptoms, and ensure safety.

Long-Term Prevent relapse, improve daily functioning, and provide continued therapy.

Pharmacological Management

Goal: Treat positive and negative symptoms, improve cognitive function, and prevent hospitalization/relapse.

Category	Description
FGA (First-Generation Antipsychotics)	Older drugs mainly targeting positive symptoms.
SGA (Second-Generation Antipsychotics)	Newer drugs with fewer side effects, treating both positive and negative symptoms.
Combination Therapy	Using multiple drugs if needed.
Augmentation Therapy	Adding antidepressants or mood stabilizers for better control.

Table 1-1: Antipsychotic(s) type and comparative risk of EPS and obesity(3.

EPSa	Obesity
•	•
+++	++
++++	+
++++	+
++++	+
+++	+
++++	+
++	++++
+	++++
++	++
+	++
+	+
++	+
	+++ ++++ ++++ ++++ +++ +++ +++ ++ ++

Meningitis

Definition:

Meningitis is an inflammation of the meninges, the protective membranes covering the brain and spinal cord.

Types of CNS Infections:

- **Meningitis** Inflammation of the meninges.
- **Encephalitis** Inflammation of the brain.

Prevalance:

- **0.5 million** people affected worldwide each year.
- 137 deaths occur daily.
- In Pakistan, around 23,000 children die from meningitis each year.

Classification of Meningitis

Category	Type	Description
Based on Cause of Infection	Acquired Meningitis	Caused by infections from the environment or invasive medical procedures.
Based on Anatomy Affected	Pachymeningitis	Affects the dura mater (outer membrane).
	Leptomeningitis	Involves the arachnoid mater and subarachnoid space (inner membranes).
Based on Cause (Etiology)	Bacterial Meningitis	Caused by bacteria (<i>Streptococcus pneumoniae</i> , <i>Neisseria meningitidis</i>).
	Viral Meningitis	Caused by viruses (e.g., enteroviruses, herpes simplex virus).
	Non-Infectious Meningitis	Caused by conditions like autoimmune diseases, cancer, or medication reactions.

Pathophysiology of Meningitis

1. Entry of Pathogen:

- o The infectious organism originates from colonies elsewhere in the body.
- o It invades the **submucosa**, bypassing the body's immune defenses.
- o Reaches the **central nervous system (CNS)** through:
 - Bloodstream (Hematogenous spread)
 - Retrograde neuronal access (via nerves)
 - Contiguous spread (from nearby infections like sinusitis, otitis media).

2. Invasion & Immune Response:

- The bacteria penetrate the blood-brain barrier (BBB), disrupting its function.
- The immune system responds, leading to inflammation and infection in the meninges.

3. Physiological Changes & Damage:

- Description Leaky blood vessels → Increased permeability.
- \circ White blood cell (WBC) infiltration \rightarrow Further inflammation.
- o **Brain swelling (edema)** \rightarrow Increased intracranial pressure (ICP).
- Reduced cerebral blood flow (crBF) →
 Oxygen deprivation to brain tissues.

4. Complications:

- Cranial nerve (CN) damage –
 Neurological deficits.
- Obliteration of cerebrospinal fluid (CSF) pathways → Hydrocephalus.
- o Vasculitis and thrombophlebitis → Blood vessel inflammation and clotting.
- Types of Edema:
 - Vasogenic edema (due to leaky capillaries). Kernig Sign
 - Interstitial edema (CSF accumulation).
 - Cytotoxic edema (cellular swelling).

5. Clinical Symptoms:

- Headache
- Neck stiffness
- Fever
- o Photophobia (light sensitivity)
- Septicemia (blood infection)

Clinical Presentation of Meningitis

Category	Symptoms	
General Symptoms	Fever, headache, neck stiffness	
Neurological Symptoms Altered mental status, confusion, delirium, sleepiness, coma		
Sensory Symptoms	Photophobia (sensitivity to light)	

Diagnosis of Meningitis

1. Physical Examination

- **Kernig's Sign:** Resistance and pain when extending the knee with the hip flexed.
- **Brudzinski's Sign:** Involuntary bending of the knees when lifting the head while lying down.

2. Laboratory Tests

Test	Purpose
Blood Investigations (BLIs)	General infection markers
Complete Blood Count (CBC)	Checks for elevated white blood cells (WBCs)
Blood Glucose	Low levels may indicate bacterial meningitis
Electrolytes	Assesses metabolic imbalances
Blood Culture	Identifies causative bacteria (50% positivity rate)
Serum Procalcitonin	High levels indicate bacterial meningitis

Cerebrospinal Fluid (CSF) Findings in Different Types of Meningitis

Cause	Appearance	Polymorphonuclear Cells	Lymphocytes	Protein	Glucose
Pyogenic (Bacterial) Meningitis	Yellowish, turbid	Markedly increased	Slightly increased or Normal	Markedly increased	Decreased
Viral Meningitis	Clear fluid	Slightly increased or Normal	Markedly increased	Slightly increased or Normal	Normal
Tuberculous Meningitis	Yellowish, viscous	Slightly increased or Normal	Markedly increased	Increased	Decreased
Fungal Meningitis	Yellowish, viscous	Slightly increased or Normal	Markedly increased	Slightly increased or Normal	Normal or Decreased

Management of Meningitis - Goals of Treatment:

- 1. Eradicate the infectious agent (bacteria/virus).
- 2. **Relieve symptoms** (fever, headache, neck stiffness).
- 3. **Prevent neurological complications** (seizures, brain damage).

Supportive Management:

Treatment	Purpose
Antipyretics	Reduce fever and discomfort.
IV Fluids	Manage hypotension and shock.
Oxygen Therapy	Ensure adequate oxygen supply to the brain.
Benzodiazepines / Barbiturates	Control seizures.
Furosemide / Mannitol	Reduce intracranial pressure (ICP).
Corticosteroids (Dexamethasone)	Reduce inflammation and brain swelling.

Age Commonly Affected	Most Likely Organisms	Empirical Therapy	Risk Factors for All Age Groups
Newborn-1 month	Gram-negative enterics ^a Group B Streptococcus Listeria monocytogenes	Ampicillin + cefotaxime or ceftriaxone or aminoglycoside	Respiratory tract infection Otitis media Mastoiditis Head trauma Alcoholism High-dose steroids
1 month-4 years	H. influenzae N. meningitidis S. pneumoniae	Cefotaxime or ceftriaxone and vancomycin ^b	Splenectomy Sickle cell disease Immunoglobulin deficience
5–29 years	N. meningitidis S. pneumoniae H. influenzae	Cefotaxime or ceftriaxone and vancomycin ^b	Immunosuppression
30–60 years	S. pneumoniae N. meningitidis	Cefotaxime or ceftriaxone and vancomycin ^b	
>60 years	S. pneumoniae Gram-negative enterics L. monocytogenes	Ampicillin + cefotaxime or ceftriaxone or aminoglycoside and vancomycin ^b	

Antibiotic of First Choice ^a	Alternative Antibiotics ^a
Penicillin G 200,000–300,000 units/kg/day every	Cefotaxime 200 mg/kg/day every 4–6 h IV; max: 2 g
4 h IV; max: 4 million units every 4 h IV	every 4 h Ceftriaxone 100 mg/kg/day every 24 h IV ^b ; max: adults 2 g every 12 h
	Chloramphenicol ^e 100 mg/kg/day every 6 h; max: 1.5 g every 6 h
Cefotaxime or ceftriaxone and vancomycin ^e 30–40 mg/kg/day IV (60 mg/kg/day IV every 6 h ^b)	Cefepime 50 mg/kg/dose every 12 h ^b ; max: adult 2 g every 8 h IV
	Or meropenem 40 mg/kg every 8 h IV ^b ; max: adults 1 g every 8 h IV with vancomycin ^e
	Linezolid 600 mg every 12 h IV ^d
Penicillin \pm gentamicin e	Ampicillin ± gentamicin ^e
	Cefotaxime
	Ceftriaxone
	Chloramphenicol ^e
	Vancomycin ^e Linezolid ^d
vancomycin	Linezolid
Nafcillin	Vancomycin ^e
1.33.33.11.	Linezolid ^d
Ampicillin 220–400 mg/kg/day, every 6 h IV or penicillin G max: 2 g every 4 h IV plus gentamicin ^e	Trimethoprim 10 mg/kg/day and sulfamethoxazole 50 mg/kg/day, every 6 h
A consensus regarding recommended agents for the treatment of CNS infections caused by anthrax or other biologic warfare agents has not been reached. Optimal treatment must be tailored to the particular pathogen and/or genetic variants of the pathogen.	
	Penicillin G 200,000–300,000 units/kg/day every 4 h IV; max: 4 million units every 4 h IV Cefotaxime or ceftriaxone and vancomycin ^e 30–40 mg/kg/day IV (60 mg/kg/day IV every 6 h ^b) Penicillin ± gentamicin ^e Nafcillin 200 mg/kg/day every 4 h IV; max: 2 g every 4 h IV Vancomycin ^e Nafcillin Vancomycin ^e Ampicillin 220–400 mg/kg/day, every 6 h IV or penicillin G max: 2 g every 4 h IV plus gentamicin ^e A consensus regarding recommended agents for the treatment of CNS infections caused by anthrax or other biologic warfare agents has not been reached. Optimal treatment must be tailored to the particular pathogen

TABLE 105-5. Antimicrobial Agents of First Choice and Alternative Choice in the Treatment of	
Meningitis Caused by Gram-Negative Microorganisms	

Organism	Antibiotic of First Choice ^a	Alternative Antibiotics ^a
Neisseria meningitis (meningococcal)	Penicillin G 200,000– 300,000 units/kg/day	Cefotaxime 200 mg/kg/day every 4 h; max: 2 g IV every 4 h
		Ceftriaxone 100 mg/kg/day every 24 h ^b ; max: adults 2 g IV every 12 h
		Chloramphenicol ^e 100 mg/kg/day every 6 h; max: 1.5 g IV every 6 h
Escherichia coli	Cefotaxime or ceftriaxone	Cefepime 50 mg/kg/dose every 12 h ^b ; max: adult 2 g every 8 h IV
		Meropenem 40 mg/kg every 8 h IV ^b ; max: adults 1 g every 8 h IV
Hemophilus influenzae		
β -Lactamase positive	Cefotaxime	Ceftriaxone
β -Lactamase negative	Ampicillin 200-400 mg/kg/day	Cefotaxime
	every 6 h IV; max: 2 g every 4 h IV	Ceftriaxone
Pseudomonas aeruginosa	Ceftazidime 85 mg/kg/day;	Meropenem
	max: 2 g IV every 6 h plus tobramycin ^e 5–7.5 mg/kg/	Piperacillin 200–300 mg/kg/day; max: 3 g every 4 h IV plus tobramycin ^e
	day IV ^c	Colistin sulfomethate ^e 5 mg/kg/day IV ^d
Enterobacteriaceae	Cefotaxime	Ceftriaxone
Page 117 of	173	Piperacillin plus aminoglycoside ^e Meropenem

"Recommended doses for adults and pediatric patients with normal renal and/or hepatic function.

Pulmonary Tuberculosis (TB)

Overview & Case Study

1. Case Study: Jamil Khan

Patient Information

Detail	Description
Name	Jamil Khan
Age	32 years
Gender	Male
Medical History	Mother died due to TB
Occupation	Studying for Provincial Management Services Exam

Symptoms (Since Last Week)

CoughHigh-grade feverNight sweatsVomiting

Investigations & Findings

Test	Results
IV Cephalosporins Response	Patient remained febrile
ESR & CRP	Elevated (indicating inflammation/infection)
Chest X-ray & Chest U/S	Left pleural effusion
Pleural Fluid Analysis	High WBC count, especially lymphocytes

Diagnosis

Pulmonary Tuberculosis (TB)

Prescribed Medications

Medication	Dosage	Duration
Myrin P Forte	4 tablets/day	2 months, then Myrin P for 4 more months
Bevidox	1 tablet OD (once daily)	As needed
Pantoprazole	20 mg OD	As needed (for stomach protection)
Paroxetine	25 mg OD	As needed (for mood stabilization)

2. Tuberculosis (TB) – Overview

What is TB?

Tuberculosis is a **bacterial infection** caused by **Mycobacterium tuberculosis**, primarily affecting the **lungs**. However, in immunocompromised individuals, it can **spread to other organs** (extrapulmonary TB).

Types of TB

- 1. **Latent TB Infection (LTBI)** Asymptomatic stage where bacteria remain inactive.
- 2. **Active TB Infection (ATBI)** Symptomatic and contagious stage requiring urgent treatment.

Why is TB Dangerous?

- Highly infectious
- Life-threatening if untreated
- Requires a 6-month multidrug treatment regimen

3. TB Prevalence (Global & Pakistan)

Statistic Data

Global Cases (Yearly)

9 million develop active TB

Global Deaths (Yearly)

2 million die from TB

Affecting Poor Countries 95% of cases

Pakistan's TB Rank 5th highest worldwide

New TB Cases in Pakistan (Yearly) 500,000 Multidrug-Resistant TB (MDR-TB) Cases (Yearly) 15,000 WHO Eastern Mediterranean TB Burden 61%

Funding for TB in Pakistan

- Global Fund provides major financial support
- US\$ 154 million allocated (2016–2017)

4. TB Transmission

How TB Spreads?

TB is an **airborne disease** that spreads through:

- **High-Risk Groups:** Household contacts, healthcare workers, and immunocompromised individuals.
- Most Infectious Cases: Patients with AFB-positive sputum (cavitary disease).
- **AFB-negative cases:** Less contagious but can still spread TB.

5. Pathogenesis of TB (How TB Affects the Body)

When TB bacteria enter the lungs, four possible outcomes occur:

Stage	Description
1. No Infection	The immune system fights off the bacteria, and the tuberculin skin test remains negative.
2. Primary TB (Active Disease)	The bacteria multiply, causing active symptoms. This occurs more in children & immunocompromised individuals.
3. Latent TB (LTBI)	The immune system controls the infection, preventing symptoms, but the bacteria remain dormant.
4. LTBI → Active TB	Latent TB can reactivate later due to weak immunity (e.g., in diabetes, HIV, or malnutrition).

Classes of TB:

Class	Туре	Description
0	No TB exposure Not infected	 No history of TB exposure and no evidence of <i>M</i>. tuberculosis infection or disease. Negative reaction to TST or IGRA.
1	TB exposure No evidence of infection	History of exposure to <i>M. tuberculosis</i>.Negative reaction to TST or IGRA (given at least 8 to 10 weeks after exposure).
2	TB infection No TB disease	 Positive reaction to TST or IGRA. Negative bacteriological studies (smear and cultures). No bacteriological or radiographic evidence of active TB disease.
3	TB clinically active	 Positive culture for <i>M. tuberculosis</i> OR Positive reaction to TST or IGRA, plus clinical, bacteriological, or radiographic evidence of current active TB.
4	Previous TB disease (not clinically active)	 May have past medical history of TB disease. Abnormal but stable radiographic findings. Positive reaction to the TST or IGRA. Negative bacteriologic studies (smear and cultures). No clinical or radiographic evidence of current active TB disease.
5	TB suspected	- Signs and symptoms of active TB disease, but medical evaluation not complete.

Forms of TB

1. Pulmonary TB (Affects the lungs)

Туре	Description		
Primary Pulmonary TB	Fever, cough - Atypical pneumonia, pleuritis, pleural effusionCommon in young individuals		
Secondary Pulmonary TB (Reactivation)	 Reactivation of TB bacteria Symptoms: • Cough, fever • Sweats, anorexia, weight loss, night sweats • General discomfort (malaise) 		

2. Extrapulmonary TB (Affects organs other than the lungs)

- Can affect lymph nodes, bones, brain, kidneys, intestines
- More common in immunocompromised individuals

Latent TB Infection (LTBI)

ription

Symptoms Asymptomatic (No symptoms) **Transmission** Cannot spread TB to others

Sputum Test Negative **Chest X-ray** Normal

Reactivation Risk 5% risk of developing active TB

Signs and Symptoms of Tuberculosis

Tuberculosis (TB) presents with various symptoms, which can be categorized as follows:

Common Symptoms:

- Coughing up blood (Hemoptysis)
- Fever
- Chest pain

- Chills
- Weight loss
- Night sweats
- Long-term cough
- Loss of appetite
- Fatigu

Diagnosis of Tuberculosis (TB)

Diagnostic Method	Purpose		
1. Physical Examination	Assess general symptoms (fever, weight loss, cough, night sweats)		
2. Chest Radiograph (X-ray)	Identify lung abnormalities suggestive of TB		
3. Microbiology	Confirm infection through sputum analysis, culture, and PCR tests		

Extrapulmonary Tuberculosis (EPTB) Classification

Description	
TB infection of the pericardium (heart lining)	
TB affecting lymph nodes, commonly in the neck	
TB infection in the pleural space (around the lungs)	
TB affecting the kidneys, bladder, or reproductive organs	
TB of the bones and joints (e.g., spine: Pott's disease)	
TB infection of the intestines, peritoneum, or abdominal lymph nodes	
Widespread TB infection affecting multiple organs, seen as tiny lesions on X-ray	
TB infection in the brain and spinal cord, including TB meningitis	

Signs & Symptoms of EPTB:

Symptoms of Tuberculosis

Tuberculosis (TB) manifests in different forms, each presenting with specific and overlapping symptoms:

Pulmonary TB:

• Established Pulmonary TB: Productive cough

• Primary Pulmonary TB: Structural abnormalities

• Tuberculous Pleuritis: Chest pain

General Symptoms of Active TB:

Fever • Weakness

Weight loss • Poor appetite

Night sweats

Dry cough

Specific Forms of TB:

• Miliary Tuberculosis: Disseminated TB affecting multiple organs

• Return of Dormant TB: Cough with increasing mucus, coughing up blood

• Extrapulmonary TB: Common sites include meninges, lymph nodes, bones, joints, and the genitourinary tract

• Gastrointestinal Symptoms: Possible in some TB cases

TB Treatment Guidelines

Goals of Treatment

• Prevent relapse

• Prevent resistance

• Reduce mortality

• Eliminate *Mycobacterium tuberculosis* from the host

Group Name	Category	Anti-TB Drugs		
GROUP 1	First-line oral agents	Isoniazid, Rifampicin, Pyrazinamide, Ethambutol, Rifabutin		
GROUP 2	Injectable agents	Streptomycin, Amikacin, Kanamycin, Capreomycin		
GROUP 3	Fluoroquinolones (FQs)	Moxifloxacin, Levofloxacin, Ofloxacin		
GROUP 4	Oral bacteriostatic second- line anti-TB drugs	Ethionamide, Prothionamide, Cycloserine, Para-aminosalicylic acid		
GROUP 5	Drugs with limited data on efficacy and/or long-term safety in the treatment of DR-TB	Bedaquiline, Linezolid, Clofazimine, Amoxicillin/clavulanic acid, Isoniazid (high dose), Thioacetazone, Imipenem/cilastatin, Meropenem		

Mycobacterium Tuberculosis Subpopulations

Subpopulation	Characteristics
Rapidly Growing	- Resides in well-oxygenated cavities - Extracellular
Semidormant (1)	- Poorly oxygenated - Found in granulomas
Semidormant (2)	- Both intracellular and extracellular - Small in number

TB Treatment Options

Short Therapy 6 months Standard regimen Long Therapy 9 months Used in special cases	Therapy Du	uration	Drugs Used
Long Therapy 9 months Used in special cases	Short Therapy 61	months	Standard regimen
	Long Therapy 91	months	Used in special cases

Treatment options for Drug resistance TB

Pattern of Drug Resistance	Suggested Regimen (Alternative Choice)	Duration of Treatment (months)
Isoniazid (± streptomycin)	Rifampin, pyrazinamide, ethambutol; addition of a fluoroquinolone* may strengthen regimen for patients with extensive disease	6
Rifampin	Isoniazid, ethambutol, and a fluoroquinolone,* plus pyrazinamide for the first 2 months; an injectable agent† may be included for the first 2–3 months for patients with extensive disease	12–18
Isoniazid and rifampin (± streptomycin)	A fluoroquinolone,* pyrazinamide, ethambutol, and an injectable agent,† \pm an alternative agent‡	18–24

Phases of TB Treatment

Phase	Duration	Drugs Used	
Intensive Phase	2 months	INH, RIF, PZA, EMB (Ethambutol)	
Sterilizing Phase	4–7 months	INH, RIF, (± EMB)	

TB and **Pregnancy**

- Treatment should start as early as possible
- **Recommended regimen:** INH, RIF, EMB for 9 months
- PZA (Pyrazinamide) may be included
- Vitamin K should be added
- Avoid second-line anti-TB therapy

Treatment of EPTB

Site	Duration of Antimicrobial Therapy (Rating)	Adjunctive Corticosteroids (Rating)
Lymph node	6 mo (A/I)	Not recommended (D/III)
Bone and joint	6–9 mo (A/I)	Not recommended (D/III)
Pleural disease	6 mo (A/II)	Not recommended (D/III)
Pericarditis	6 mo (A/II)	Strongly recommended (A/I)
CNS, including meningitis	9–12 mo (B/II)	Strongly recommended (A/I)
Disseminated disease	6 mo (A/II)	Not recommended (D/III)
Genitourinary	6 mo (A/II)	Not recommended (D/III)
Peritoneal	6 mo (A/II)	Not recommended (D/III)

Treatment of Latent TB Infection (LTBI)

Drug	Duration
INH(Isoniazid)	9 months
RIF(Rifampicin)	4 months

Diabetes Mellitus (DM)

Instructor: Abuzar Khan, PhD

Definition:

Diabetes Mellitus (DM) is a **metabolic disorder** affecting the metabolism of **carbohydrates**, **fats**, **and proteins**.

Causes: DM results from:

- Defects in insulin secretion
- Defects in insulin action (insulin sensitivity)
- Or both

Characteristics:

- Chronic condition
- Hyperglycemia (high blood sugar levels)
- Impaired insulin secretion with or without insulin resistance
- Commonly referred to as DM

FBS/RBS:

Category	Fasting Plasma Glucose (FPG/FBS)	2-Hour Postload Plasma Glucose (OGTT) / RBS	Casual Plasma Glucose
Normal	$\leq 100 \text{ mg/dL } (5.6 \text{ mmol/L})$	< 140 mg/dL (7.8 mmol/L)	_
Impaired (Pre-diabetes)	100–125 mg/dL (5.6–6.9 mmol/L)	140–199 mg/dL (7.8–11.1 mmol/L)	_
Diabetes Mellitus	\geq 126 mg/dL (7.0 mmol/L)	\geq 200 mg/dL (11.1 mmol/L)	\geq 200 mg/dL (11.1 mmol/L) + Symptoms

Prevalence of Diabetes Mellitus (DM) in Pakistan

Key Statistics:

- 26.7% prevalence rate in Pakistan.
- **Higher in males** than females.
- More common in urban areas than rural areas.
- Pakistan ranks 3rd in the world for diabetes prevalence.

Pathophysiology-The Action of Insulin

Hypofunction Hyperfunction Trauma Surgery Radiation Microadenoma Ischemia Adenoma Suppression by Adenocarcinoma glucose levels fall Less exogenous hormone Congenital dysgenesis Pituitary Excessive trophic Inadequate trophic hormones hormones Endocrine Genetic defects Secreting tumors Autoimmune destruction glands Autoimmune stimulation Ischemia Non-secreting tumors Liver converts alvogen to alucose Fig. 45.1 Insulin-glucose relationship detailing the actions of insulin. Excessive hormone Exogenous or Sudden withdrawal administration of exogenous hormones ectopic source Non-endocrine tumor production of hormones Tissue resistance Peripheral Down-regulation target tissues of receptors Post-receptor defects

Classification of Endocrine Disorder

Classification of Diabetes Mellitus (DM)

- 1. **Type I Diabetes** Autoimmune destruction of insulin-producing beta cells, leading to absolute insulin deficiency.
- 2. **Type II Diabetes** Insulin resistance with relative insulin deficiency; commonly associated with obesity and lifestyle factors.
- 3. **Gestational Diabetes (GDM)** Glucose intolerance diagnosed during pregnancy, which may resolve postpartum or increase the risk of Type II DM later.

Pathophysiology Type-I DM:

FIGURE 72–4. Scheme of the natural history of the β -cell defect in type 1 diabetes mellitus. (From ADA Medical Management of Type of 1 Diabetes, 3rd ed.

Pathophysiology of Type-II DM of Insulin Release:

Pathophysiology Type II DM:

Characteristics of Type-II DM:

Characteristic	Type 1 DM	Type 2 DM
Age	<30 years ^b	>30 years ^b
Onset	Abrupt	Gradual
Body habitus	Lean	Obese or history of obesity
Insulin resistance	Absent	Present
Autoantibodies	Often present	Rarely present
Symptoms	Symptomatic ^c	Often asymptomatic
Ketones at diagnosis	Present	Absent ^d
Need for insulin therapy	Immediate	Years after diagnosis
Acute complications	Diabetic ketoacidosis	Hyperosmolar hyperglycemic state
Microvascular complications at diagnosis	No	Common
Macrovascular complications	Rare	Common

Signs and Symptoms of Diabetes Mellitus (DM)

- 1. **Polyuria** Excessive urination due to high blood glucose levels causing osmotic diuresis.
- 2. **Polydipsia** Increased thirst as a response to dehydration from excessive urination.
- 3. **Polyphagia** Excessive hunger due to the inability of glucose to enter cells for energy.

Other Symptoms:

- Unexplained weight loss (common in Type 1 DM)
- Fatigue and weakness
- Blurred vision
- Slow-healing wounds
- Frequent infections (e.g., skin, urinary tract)

Complications of Diabetes Mellitus (DM)

Diabetes mellitus leads to multiple complications affecting various organs due to prolonged hyperglycemia. These complications are classified into **macrovascular** and **microvascular** complications.

1. Macrovascular Complications (Affect Large Blood Vessels)

These complications are due to **atherosclerosis** and **insulin resistance**, leading to an increased risk of cardiovascular diseases.

Diabetic Cardiomyopathy

- Leading cause of death in diabetic patients.
- Hardening and narrowing of blood vessels (atherosclerosis).
- Increased risk of **hypertension**, **heart failure**, and **silent myocardial infarction (MI)** due to autonomic neuropathy.
- Coagulation abnormalities contribute to increased clot formation.

Hypertension in Diabetes

- Caused by hyperinsulinemia, sympathetic nervous system activation, and vascular hypertrophy.
- Leads to stiffening of blood vessels, causing elevated blood pressure (BP).
- Increases the risk of **heart attacks** and **strokes**.

Stroke (Cerebrovascular Disease)

- Involves **segmental arteries**, leading to decreased blood supply to the brain.
- Mismatch between oxygen demand and supply in brain tissues.
- Increased blood coagulability further raises stroke risk.

2. Microvascular Complications (Affect Small Blood Vessels)

Diabetic Retinopathy

- Most common in Type 1 DM.
- Loss of **capillary pericytes** leads to retinal damage.
- Background retinopathy is the **most common form**.
- Can lead to **vision loss and blindness** if untreated.

Diabetic Nephropathy (Kidney Damage)

- Chronic hyperglycemia damages **glomerular capillaries**.
- Leads to proteinuria, hypertension, and eventually kidney failure.
- A major cause of end-stage renal disease (ESRD).

3. Acute Complications of DM

Diabetic Ketoacidosis (DKA)

- Occurs mostly in Type 1 DM due to insulin deficiency.
- Leads to excessive ketone production, causing acidosis.
- Symptoms: Fruity breath odor, Kussmaul breathing (deep, rapid respiration), dehydration, and altered mental status.
- Requires immediate insulin therapy and fluid replacement.

Hyperosmolar Hyperglycemic State (HHS)

- More common in Type 2 DM.
- Characterized by severe dehydration, hyperglycemia (often >600 mg/dL), and hyperosmolarity.
- No significant ketone production.
- Requires aggressive fluid replacement and insulin therapy.

Retinopathy:

NORMAL

Diabetic Retinopathy

Diabetic Retinopathy Stages

- 1. Background Retinopathy
- 2. Pre-Proliferative Retinopathy
- 3. Proliferative Retinopathy
- 4. Maculopathy

Diabetic Nephropathy (Microvascular Complication)

- 35-45% of Type I DM patients are affected.
- Loss of **podocytes** and development of **peritubular fibrosis**.
- Microalbuminuria: Excretion of 30 to 300 mg of albumin per day.
- Clinical proteinuria: Excretion of more than 0.5 g of total protein per day.
- The **incidence of nephropathy peaks** at approximately **15 to 17 years** and declines somewhat thereafter.
- Hypertension (HTN) contributes to progression to End-Stage Renal Disease (ESRD).

Diabetic Neuropathy (Microvascular Complication)

- Peripheral symmetrical sensorimotor neuropathy.
- Numbness or tingling in the toes and feet.
- Progressively worsens.
- **Insensate feet** become vulnerable to trauma, leading to **neuropathic foot ulcers**, which are a frequent cause of **hospitalization and amputation**.
- Pain.
- Cranial neuropathies causing diplopia due to infarction and thrombosis.
- **Amyotrophy** occurs most commonly in **elderly men** with diabetes.
 - o Characterized by severe, unremitting pain and weakness in the thigh muscles.
 - o Associated with **depression**, cachexia, and weight loss.

Diabetic Ketoacidosis (DKA)

- Pure insulin deficiency.
- Occurs in 2% to 5% of patients with Type 1 Diabetes Mellitus per year.
- Dehydration.
- Osmotic diuresis.
- Vomiting.
- Diarrhea.

Test	Average	Range
Plasma glucose	600 mg/dl (33 mmol/L)	200-2,000 mg/dl (11-110 mmol/L)
Plasma ketones (positive)	1:16	1:2–1:64
Blood betahydroxybutyrate (mmol/L)	_	3–25
Plasma HCO ₃ (mEq/L)	10	4–15
Blood pH	7.15	6.80–7.30
Pco ₂ (mm Hg)	20	14–30
Plasma anion gap (Na ⁺ – [Cl + HCO ₃]) (mEq/L)	23	16–30

Diabetics Foot Ulcer:

Hyperosmolar Hyperglycemic State

Somogyi Phenomenon

- Described by Dr. Michael Somogyi in the 1930s.
- Occurs when **excess insulin causes nocturnal hypoglycemia**, triggering a **counterregulatory hormone response** (glucagon, cortisol, epinephrine, and growth hormone), which leads to **rebound hyperglycemia in the early morning (4-8 AM)**.
- It is more common in **Type 1 Diabetes Mellitus (DM)**.

Pathophysiology

- 1. **Insulin-induced nocturnal hypoglycemia** → Body compensates by releasing:
 - o Glucagon

o Cortisol

Epinephrine

- o Growth hormone
- 2. This leads to early morning hyperglycemia.

Patient History

- Morning hyperglycemia (4-8 AM)
- Unnoticed nocturnal hypoglycemia
- Post-hypoglycemic hyperglycemia
- Hypoinsulinemia

Lab Findings

- Fasting blood glucose
- Nocturnal blood glucose monitoring (detects nighttime hypoglycemia)
- Hemoglobin A1C (Hgb A1C)
- Frequent glucose sampling

Key Point:

The Somogyi phenomenon is often mistaken for **insufficient insulin**, leading to unnecessary **insulin dose increases**, which worsen the problem. **Monitoring nocturnal glucose levels** helps in proper diagnosis and management.

Dawn Phenomenon

The Dawn Phenomenon (Dawn Effect) is an early-morning rise in blood glucose levels occurring between 2 AM and 8 AM. It is seen in both Type 1 and Type 2 Diabetes Mellitus (DM) and results from hormonal changes that reduce insulin sensitivity.

Causes & Mechanism

- 1. Type 1 DM (T1D) \rightarrow Nocturnal growth hormone spikes reduce insulin effectiveness.
- 2. **Type 2 DM (T2D)** → **Increased hepatic glucose production** (glycogenolysis & gluconeogenesis) without enough insulin response.

Diagnosis

- Blood Glucose (BG) test at 3-5 AM
- Nocturnal BG monitoring to differentiate from the Somogyi phenomenon
- Continuous Glucose Monitoring System (CGMS) for precise tracking

Key Point:

Unlike the **Somogyi Phenomenon**, which results from **nocturnal hypoglycemia and a rebound effect**, the **Dawn Phenomenon** is a **natural hormonal rise causing fasting hyperglycemia**. Proper **insulin adjustment and meal planning** help manage this condition.

Feature comparing	The dawn phenomenon	The Somogyi effect
Definition	Recurring early morning hyperglycaemia	Early moming hyperglycaemia due to treatment with excessive amount of exogenous insulin
Cause	Decrease of insulin secretion between 3a.m. and 5a.m. and increase of insulin-antagonistic hormones	Nocturnal hypoglycemia due to excessive dose of insulin and the next early morning hyperglycemia due to increase of insulin-antagonistic hormones
Occurrence	Type 1 diabetic patients Type 2 diabetic patients with no insulin therapy	Type 1 diabetic patients Type 2 diabetic patients with insulin therapy
Incidence	Type 1 diabetic children — 27.4% Type 1 diabetic adults — 24.1% Type 2 diabetic adults — 3% Type 1 diabetes generally — 54% Type 2 diabetes generally — 55%	Type 1 and 2 diabetic patients — 12.6–67% Type 1 diabetic patients — 18%
Diagnosis	Measurement of the plasma glucose concentration between 3 a.m. and 5 a.m. during next several nights CGMS The confirmative result: high/normal plasma glucose level	Measurement of the plasma glucose concentration between 3 a.m. and 5 a.m. during next several nights CGMS The confirmative result: low plasma glucose level

Treatment of Diabetes: (HBA1C To Plasma Blood Glucose)

Table 6.1—Mean glucose levels for specified A1C levels (37,43)										
A1C	Mean plas	ima glucose*	Mean fasti	ng glucose	Mean prem	eal glucose	Mean post	meal glucose	Mean bed	time glucose
% (mmol/mal)	mg/dL	mmol/L	mg/dL	mmol/L	mg/dL	mmol/L	mg/dL	mmol/L	mg/dL	mmol/L
6 (42)	126 (100–152)	7.0 (5.5-8.5)								
5.5-6.49 (37-47)			122 (117–127)	6.8 (6.5-7.0)	118 (115-121)	6.5 (6.4-6.7)	144 (139–148)	8.0 (7.7-8.2)	136 (131-141)	7.5 (7.3–7.8)
6.5-6.99 (47-53)			142 (135–150)	7.9 (7.5-8.3)	139 (134–144)	7.7 (7.4–8.0)	164 (159–169)	9.1 (8.8-9.4)	153 (145–161)	8.5 (8.0-8.9)
7 (53)	154 (123-185)	8.6 (6.8-10.3)								
7.0-7.49 (53-58)			152 (143–162)	8.4 (7.9-9.0)	152 (147–157)	8.4 (8.2-8.7)	176 (170-183)	9.8 (9.4-10.2)	177 (166-188)	9.8 (9.2-10.4)
7.5-7.99 (58-64)			167 (157–177)	9.3 (8.7-9.8)	155 (148-161)	8.6 (8.2-8.9)	189 (180-197)	10.5 (10.0–10.9)	175 (163-188)	9.7 (9.0-10.4)
8 (64)	183 (147-217)	10.2 (8.1–12.1)								
8.0-8.5 (64-69)			178 (164–192)	9.9 (9.1–10.7)	179 (167–191)	9.9 (9.3-10.6)	206 (195–217)	11.4 (10.8–12.0)	222 (197-248)	12.3 (10.9-13.8)
9 (75)	212 (170-249)	11.8 (9.4–13.9)								
10 (86)	240 (193-282)	13.4 (10.7–15.7)								
11 (97)	269 (217-314)	14.9 (12.0-17.5)								
12 (108)	298 (240-347)	16.5 (13.3-19.3)								

Goals of Treatment

- 1. Reduce the risk of complications both microvascular (retinopathy, nephropathy, neuropathy) and macrovascular (stroke, heart disease).
- 2. **Control symptoms** such as excessive thirst, urination, and fatigue.
- 3. **Reduce mortality** by preventing severe complications.
- 4. **Improve quality of life** through better glucose control and lifestyle management.

General Approach to Treatment

- 1. Set Target Levels:
 - o Blood glucose, **HbA1C** < 7%, blood pressure, and lipid levels.
- 2. Lifestyle Modifications:
 - o **Dietary changes** balanced intake of carbs, proteins, and fats.
 - **Exercise** regular physical activity to improve insulin sensitivity.
- 3. Medications:
 - o Oral Hypoglycemic Therapy for Type 2 DM.
 - Insulin therapy for Type 1 DM and severe cases of Type 2 DM.
- 4. Self-Monitoring of Blood Glucose (SMBG):
 - o Regular glucose testing to ensure stable levels.
- 5. Lab Assessments:
 - Routine **HbA1C**, **lipid profile**, **kidney function**, **and eye exams** to prevent complications.

Non-Pharmacological Management:

Treatment Option for overweight and obesity in Type-2 Diabetes

			BMI category (kg/m	1 ²)	
Treatment	25.0-26.9 (or 23.0-26.9*)	27.0-29.9	30.0-34.9 (or 27.5-32.4*)	35.0-39.9 (or 32.5-37.4*)	≥40 (or ≥37.5*
Diet, physical activity, and behavioral therapy	t	t	t	t	t
Pharmacotherapy		t	t	t	t
Metabolic surgery			t	t	t

Pharmacotherapy

HbA1C Levels and Treatment Approach

- 7-8% HbA1C \rightarrow Start with monotherapy.
- More than 8% HbA1C \rightarrow Start with two-drug therapy.
- Obese patients \rightarrow Biguanides as the first-line treatment.
- Normal or lean patients \rightarrow Sulfonylureas (SU) as the first-line treatment.
- If $HbA1C > 9\% \rightarrow Combination of Biguanides + SU$ is recommended.
- **Biguanides** + **SU** is the most **cost-effective** combination.

Pharmacotherapy Options

1. Biguanides

Drug	Benefits	Considerations
	- Reduces HbA1C by 1.5-2% .	
	- Reduces LDL cholesterol .	- First-line choice in T2DM.
Metformin - Reduces weight.		- Preferred for obese diabetic
	- Improves macrovascular complications	patients.
	(UKPDS study).	

2. Sulfonylureas (SU)

Drug	Benefits	Considerations
Sulfonylureas	- Reduces HbA1C by 1-2% . - Reduces microvascular and macrovascular complications .	 Start with a low dose, gradually increase. Divide dose into BD or use SR formulation. Effective in new diabetics (up to 5 years). Effective in normal or modestly obese patients. Short-acting SU preferred in patients at risk of hypoglycemia.

3. Short-Acting Insulin Secretagogues (Meglitinides)

Drug	Benefits	Considerations
Meglitinid	 Short half-life. Low risk of hypoglycemia. es - Reduces HbA1C by 0.5-1%. Rapid action. Effectively reduces postprandial plasma glucose 	- Effective as monotherapy.

Drug Benefits Consideration	ns
-----------------------------	----

- Reduces **glucose toxicity**.

4. <u>α-Glucosidase Inhibitors</u>

Drug	Benefits	Considerations
α-Glucosidase Inhibitors	 Effective only in postprandial hyperglycemia. Reduces HbA1C by 0.8%. Low risk of hypoglycemia. 	- Must be taken before meals.

5. Thiazolidinediones (TZDs)

Drug	Benefits	Considerations
TZDs	 Reduces HbA1C by 1.5%. Reduces insulin resistance in muscle, fat, and liver. Decreases serum triglyceride levels. Increases HDL, but also increases LDL. Shows cardioprotection and beta-cell protection. 	- May not be suitable for patients with heart failure.

6. Glucagon-Like Peptide-1 (GLP-1) Agonists

Drug	Benefits	Considerations
Semaglutide (GLP-1 Agonists)	 Glucose-dependent insulin release. Slows gastric emptying. Inhibits inappropriate glucagon release. Lower risk of hypoglycemia. Reduces HbA1C by 1-1.6%. 	- Useful for patients with high postprandial glucose.

7. Dipeptidyl Peptidase-IV (DPP-4) Inhibitors

Drug	Benefits	Considerations
Sitagliptin (DPP-4 Inhibitors)	 Incretin-based therapy. Low risk of hypoglycemia. DPP-4 degrades active peptides, including GLP-1. 	- May be combined with other antidiabetic agents.

8. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors

Drug	Benefits	Considerations
Dapagliflozin, Empagliflozin (SGLT2 Inhibitors)	 - Promotes glucose excretion through urine. - Lowers blood glucose levels. - Weight loss benefit. - Cardiovascular protection. 	- Monitor kidney function Risk of dehydration and UTI.

Summary of Antidiabetic Drug Classes

Drug Class	Examples	Mechanism of Action	HbA1C Reduction	Key Benefits	Considerations
Biguanides	Metformin	Decreases hepatic glucose production & improves insulin sensitivity	1.5-2%	Weight loss, LDL reduction, improves macro vascular complications	First-line for T2DM , avoid in renal impairment
Sulfonylureas (SU)	Glimepiride, Glipizide	Stimulates pancreatic insulin secretion	1-2%	Effective in early diabetes, reduces microvascular complications	Risk of hypoglycemia, weight gain
Meglitinides	Repaglinide, Nateglinide	Short-acting insulin secretagogue	0.5-1%	Rapid action, reduces postprandial glucose	Short half-life, low risk of hypoglycemia
α-Glucosidase Inhibitors	Acarbose, Miglitol	Inhibits carbohydrate digestion & absorption	0.8%	Effective in postprandial hyperglycemia	Take before meals, low hypoglycemia risk
Thiazolidinediones (TZDs)	Pioglitazone, Rosiglitazone	Reduces insulin resistance at muscle, fat, and liver	1.5%	Improves lipid profile, beta-cell protection	Increases HDL & LDL, cardioprotective
GLP-1 Agonists	Semaglutide, Exenatide	Enhances insulin secretion, slows gastric emptying	1-1.6%	Low hypoglycemia risk, weight loss	Injectable, useful for postprandial glucose control
DPP-4 Inhibitors	Sitagliptin, Vildagliptin	Inhibits DPP-4 enzyme to prolong incretin action	0.5-1%	Low hypoglycemia risk	Safe in renal impairment
SGLT2 Inhibitors	Dapagliflozin, Empagliflozin	Inhibits glucose reabsorption in kidneys	0.5-1%	Weight loss, CV benefits, lowers BP	Risk of UTI & dehydration , avoid in renal failure

HOLISTIC PERSON-CENTERED APPROACH TO T2DM MANAGEMENT

TREATMENT OF DIABETES

Insulin Therapy

Insulin Preparations - Which One to Use?

Type of Insulin	Usage
Rapid-acting insulin	To the meal with the highest preprandial BGL
Intermediate-acting insulin	In the morning or night
Insulin premixed	For ease of use
Basal insulin	To reduce both postprandial and fasting BGLs

Insulin Dose

Fixed-Dose Insulin

- Carbohydrate to Insulin Ratio
- Sliding-Scale Insulin Therapy (SSI)
- Insulin dose calculation and division based on weight, age, and glycemia

Insulin Timing

Timing depends on blood glucose profile:

- If **fasting BGL** is high, give at bedtime
- If fasting BGL on target but evening BGL high, give in the morning
- If both fasting and evening BGLs are high, give bd NPH or once daily glargine

Insulin Dose

Dosage Calculation	Details
Total Insulin Dose	0.5-1 Unit/kg
Basal-Bolus Division	50% basal and 50% mealtime
Correction Dose	1-2 extra units for each 50 gm of glucose

Conventional Therapy

Meal	Dose Ratio
Breakfast	2/3 or 3/4 of total daily dose
Dinner	Remaining dose

Ratio of Insulin to Rapid-Acting (I:R) Before Meals

Meal	Ratio
Before Breakfast	2:1 or 4:2
Before Supper	1:1

Insulin dose is usually divided so that:

- One-half is administered before breakfast
- One-fourth before dinner
- One-fourth at bedtime

Conventional Insulin Therapy:

Regular Insulin Sliding Scale

Blood sugar (mg/dl)	Low dose scale	Mod dose scale	High dose scale
<70	Initiate hypo	oglycemia prot	ocol
70-130	0	0	0
131-180	2	4	8
181-240	4	8	12
241-300	6	10	16
301-50	8	12	20
351-400	10	16	24
>400	12	20	28

Intensive Insulin Therapy:

Hyperthyroidism

Introduction

Hyperthyroidism refers to a group of disorders characterized by:

- Excess **synthesis and secretion** of thyroid hormones.
- Overactivity of the **thyroid gland**, leading to a condition called **thyrotoxicosis** (a hypermetabolic state caused by high thyroid hormone levels).

Key Terms

- **Hyperthyroidism:** The excessive production of thyroid hormones by the thyroid gland.
- **Thyrotoxicosis:** A condition resulting from excess thyroid hormones in the bloodstream, leading to increased metabolism.

Physiology of Thyroid Hormones:

Physiology of Thyroid Hormones

Thyroid Hormone Composition

- 93% T4 (Thyroxine) and 7% T3 (Triiodothyronine)
- **T4 converts to T3** in the body (T3 is the active form).
- T3 is four times more active than T4.

Functions of Thyroid Hormones

- 1. Basal Metabolic Rate (BMR)
 - o Increases BMR, leading to higher energy consumption.

2. Protein Metabolism

- o Stimulates **DNA transcription** and **RNA translation**.
- o Increases mitochondrial activity and cellular enzyme function.
- o Enhances protein synthesis and protein breakdown.

3. Carbohydrate Metabolism

- o Increases glucose absorption and synthesis.
- o Promotes glucose uptake into cells.
- o Stimulates glycogen breakdown (glycogenolysis).

4. Fat Metabolism

o Mobilizes fats and increases fatty acid levels in the blood.

5. Body Temperature

• Enhances thermogenesis (heat production).

6. Growth and Development

o Essential for **fetal growth** and overall body development.

7. Body Weight

o Regulates metabolism, affecting weight gain or loss.

8. Cardiovascular System (CVS)

o Influences heart rate (HR), force of contraction (FC), blood pressure (BP), and red blood cell production (erythropoiesis).

9. Gastrointestinal System (GIT)

- o Increases **peristalsis** (movement of food through the intestines).
- o Boosts appetite.
- 10. **Respiratory System:** Increases **rate and depth** of breathing.

11. Central Nervous System (CNS)

- o Essential for **brain development** and maintaining an **active mind**.
- Excess T3/T4 (Hyperthyroidism): Causes nervousness, paranoia, anxiety.
- Deficiency (Hypothyroidism): Leads to lethargy and somnolence (excessive sleepiness).
- 12. **Sleep**: Regulated by thyroid hormones (imbalance can cause sleep disturbances).
- 13. **Sexual System**: Affects reproductive health and function.
- 14. **Muscles**: Can cause **thyrotoxic myopathy** (muscle weakness in hyperthyroidism).

Etiological Classification of Thyrotoxicosis:

Cause	Individual Diseases
Abnormal stimulation of the thyroid gland	Graves disease, hCG-mediated thyrotoxicosis, TSH-mediated thyrotoxicosis
Thyroid gland autonomy	Toxic adenoma, Toxic multinodular goiter, Congenital thyrotoxicosis, Iodine-induced hyperthyroidism, Thyroid cancer—related thyrotoxicosis

Cause	Individual Diseases
Gland inflammation with	Subacute (de Quervain) thyroiditis, Lymphocytic
unregulated thyroid hormone	thyroiditis, Amiodarone-induced thyrotoxicosis (type 2),
release	Acute thyroiditis

1. Abnormal stimulation of the thyroid gland:

The thyroid gland is activated by TSH (a thyroid-controlling hormone), hCG (a pregnancy-related hormone), and TRAb (immune proteins that can overstimulate the thyroid). These signals act on thyrocytes (thyroid cells) to produce hormones. A mutation (gene change) can also make the thyroid overactive, leading to Graves' disease (a condition that causes too much thyroid hormone and increases body activity).

2. Thyroid Gland Autonomy

- Increased production of thyroid hormones without regulation by TSH (Thyroid-Stimulating Hormone).
- Caused by hyperplastic (excessive cell growth) and neoplastic (tumor-related) conditions.
- Includes solitary or multiple thyroid adenomas (benign tumors of the thyroid).
- TSH levels decrease due to excessive hormone production.
- **Genetic and environmental factors** contribute to the development of autonomous thyroid function.
- **Iodine intake** may influence thyroid autonomy.

3. Glandular Inflammation (Thyroiditis)

- Causes of thyroid gland inflammation: Infectious diseases (bacterial or viral infections).
- Autoimmune conditions (e.g., Hashimoto's thyroiditis, Graves' disease).
- **Pharmacologic toxicity** (damage caused by certain medications).

• Effects of inflammation:

- o **Thyrocyte death** (destruction of thyroid cells).
- o **Disruption of follicular architecture** (damage to thyroid tissue structure).
- Unregulated leakage of thyroid hormones into the bloodstream, leading to thyrotoxicosis (excess thyroid hormone levels).

Physical Examination of Hyperthyroidism

- **Behavioral Signs:** Anxious, hyperactive.
- Speech & Cardiovascular Signs:
 - o Pressured speech.
 - o **Tachycardia** (rapid heartbeat).
 - Systolic hypertension (high upper blood pressure reading).
 - **Widened pulse pressure** (large difference between systolic and diastolic pressure).
- Skin & Hair Changes:
 - Velvety, warm, and moist skin.
 - Oily hair.
- Eye Signs:
 - Staring gaze.
 - Lid lag (upper eyelid moves slowly when looking downward).
- Heart & Muscle Involvement:
 - Prominent systolic flow murmur (heart murmur due to increased blood flow).
 - o Proximal leg muscle weakness and tremors.

Clinical Presentation of Hyperthyroidism

- Unexplained Weight Loss despite a good appetite.
- **Heat Intolerance** (feeling excessively warm).
- **Tremors** (shakiness in hands or body).
- Palpitations & Anxiety (rapid heartbeat and restlessness).
- Fatigue & Insomnia (tiredness but difficulty sleeping).
- **Dyspnea** (shortness of breath).
- **Atypical Chest Pain** (discomfort not linked to typical heart conditions).

Symptoms of Hyperthyroidism

Common Symptoms:

- **Eyes:** Dryness, eye pain, corneal erosion, excessive tearing.
- **Heart:** Rapid heartbeat, irregular heart rhythm.
- **Metabolism:** Increased thirst, frequent urination, excessive hunger, digestion issues, diarrhea, and abdominal pain.
- **Nervous System:** Irritability, anxiety, depression, insomnia.
- **Muscles & Bones:** Weak muscles, body tremors, osteoporosis (bone loss).

SYMPTOMS OF HYPERTHYROIDISM

Dryness, corneal erosion, pain in the eyes, lacrimation Heart Irritability, rhythm anxiety, disorder, depression, tachycardia insomnia Thirst, Sweating, copious early gray urination Infertility, meager Increased appetite, menstruation. indigestion, diarrhea, decreased potency abdominal pain Hypotrophy of muscles, tremors in the body and limbs, development of osteoporosis

- **Reproductive Health:** Irregular or light menstruation, infertility, reduced sexual function.
- **Skin & Hair:** Excessive sweating, early graying of hair.

These symptoms can vary in severity and may require medical attention to manage thyroid hormone levels effectively.

Thyroid Storm

Definition:

• A **life-threatening** medical emergency caused by **severe thyrotoxicosis** (excess thyroid hormones).

Clinical Features:

- **High fever** (often > 103°F).
- **Tachycardia** (rapid heart rate).
- **Tachypnea** (rapid breathing).
- **Dehydration** (due to excessive sweating and fluid loss).
- Neurological symptoms: Delirium, confusion, or coma.
- Gastrointestinal symptoms: Nausea, vomiting, and diarrhea.

Possible Precipitating Factors:

• Infection, surgery, trauma, stress, or sudden withdrawal of thyroid medication.

Diagnosis of Thyroid Storm

- 1. Physical Examination:
 - o High fever, rapid heartbeat, and signs of severe hyperthyroidism.
- 2. Thyroid Function Tests (TFTs):
 - o **Elevated T3 & T4** (thyroid hormones).
 - o **Suppressed TSH** (very low thyroid-stimulating hormone).
- 3. Thyroid Scan:
 - o Determines if the thyroid is overactive.
- 4. Thyroid Biopsy:
 - o Helps diagnose underlying thyroid disorders if needed.

Differential Diagnosis of Hyperthyroidism

Simplified Flowchart for Diagnosing Hyperthyroidism

- 1. Step 1: Check TSH, T4, and T3 Levels
 - o Low TSH + High/Normal T4 & T3 \rightarrow Do a radioactive iodine scan.
 - High TSH + High T4 & T3 → May indicate a rare TSH-secreting tumor in the pituitary gland.
- 2. Step 2: Analyze Radioactive Iodine Uptake
 - Low Uptake: Could be due to thyroiditis, ectopic thyroid hormone, or external Low uptake thyroid medication.
 - High Uptake:
 - Even (homogeneous) distribution → Likely Graves' disease.
 - Uneven (nodular) distribution:
 - Multiple areas of iodine accumulation → Toxic multinodular goiter.
 - Single area of iodine accumulation
 → Toxic adenoma.

Management of Hyperthyroidism

Goal of Therapy

- Eliminate excess thyroid hormones.
- Minimize symptoms and prevent long-term complications.
- Treatment is **individualized** based on:
 - o **Type and severity** of hyperthyroidism.
 - o Patient's age and gender.
 - **Other existing conditions.**
 - o Response to previous treatments.

Treatment Options for Hyperthyroidism

Treatment	Description
1. Anti-Thyroid Medications	Medications to suppress thyroid hormone production.
2. Radioactive Iodine (RAI)	Destroys thyroid tissue to reduce hormone production.
3. Surgery	Partial or complete thyroid removal.

1. Anti-Thyroid Drugs (ATDs)

When to Consider ATDs?

- **Temporary treatment** for Graves' Disease (GD) patients unwilling to undergo **RAI** therapy.
- Preliminary control before RAI or surgery.
- Safe option for pregnancy and neonatal Graves' disease.
- To assess if mild hyperthyroidism symptoms are genuine before permanent treatments.

Types of Anti-Thyroid Drugs

Drug Type	Examples	Mechanism of Action
Thiourea Drugs	PTU (Propylthiouracil), MMI (Methimazole)	Inhibit thyroid peroxidase , reducing hormone production.
PTU-Specific Action	PTU	Also decreases T4 to T3 conversion in peripheral tissues.
Potency	MMI	10 times more potent than PTU.

Effectiveness & Duration

- **Remission rate:** 40-50%.
- More effective in:
 - Older patients.
 - o Low T4/T3 ratio.
 - Short disease duration (<6 months).
 - **o** No previous relapse history.
- Therapy duration: 1 to 2 years or longer.
- Follow-up: Every 6 to 12 months after remission.
- Time to become euthyroid: 3-8 weeks.

2. Radioactive Iodine (RAI) Therapy

- Preferred treatment for Graves' Disease (GD) and Toxic Nodular Goiter (TNG).
- **Beta blockers** may be given to control symptoms.
- Outcomes:
 - o 60% of patients euthyroid within 6 months.
 - o 40% require multiple doses, becoming euthyroid within 1 year.
- Repeat RAI dose: After 6 months if needed.
- Precautions:
 - o In the UK, nursery school teachers are advised to stay home for 3 weeks after a 15-mCi I-131 dose due to radiation exposure.
- Time to become euthyroid: 1-2 months.

3. Surgical Management (Thyroidectomy)

When is Surgery Recommended?

- Large thyroid gland (>80 g).
- Severe ophthalmopathy (eye complications in Graves' disease).
- Failure to achieve remission with anti-thyroid drugs.

Surgery is usually a last resort when **medications and RAI are ineffective** or **contraindicated**.

Thyroid Storm:

Drug	Regimen
Propylthiouracil	900–1200 mg/day orally in four or six divided doses
Methimazole	90–120 mg/day orally in four or six divided doses
Propranolol	40–80 mg every 6 h
Dexamethasone	5–20 mg/day orally or IV in divided doses
Prednisone	25-100 mg/day orally in divided doses
Methylprednisolone	20-80 mg/day IV in divided doses
Hydrocortisone	100-400 mg/day IV in divided doses

Thyroiditis: Treatment Approach

Management of Mild Symptomatic Thyroiditis: Patients with **mild symptoms** are initially treated with:

- 1. β-Adrenergic Blockers (Beta-Blockers) To control heart rate, tremors, and anxiety.
- 2. NSAIDs (Non-Steroidal Anti-Inflammatory Drugs) To reduce inflammation and pain.

Additional Treatment Options (For Severe Cases)

- Corticosteroids Used if inflammation is severe or autoimmune-related.
- **Levothyroxine** Given if the patient develops **hypothyroidism** after thyroid inflammation.

Simplified Hyperthyroidism Management Flowchart

- 1. Check TSH Levels:
 - TSH 0.1 0.39 mIU/L
 - Graves' Disease (GD):
 - If age >65 years \rightarrow Treat with ATDs (antithyroid drugs).
 - Toxic Adenoma (TA) / Toxic Multinodular Goiter (TMNG):
 - All ages → Treat with RAI (radioactive iodine).
 - \circ TSH < 0.1 mIU/L
 - Graves' Disease (GD):
 - All ages → Treat with ATDs, RAI, or surgery.
 - Toxic Adenoma (TA) / Toxic Multinodular Goiter (TMNG):
 - All ages \rightarrow Treat with **RAI** or surgery.

Hypothyroidism

Definition

Hypothyroidism is a condition where the thyroid gland does not produce enough thyroid hormones. It leads to various clinical symptoms and biochemical changes in the body.

Types of Hypothyroidism

Type	Description
Underactive Thyroid	A general term for a thyroid that is not producing enough hormones.
Subclinical Hypothyroidism	A mild form where hormone levels are slightly low, but symptoms may not be obvious.
Overt Hypothyroidism	A more severe form with noticeable symptoms and clear hormone deficiencies.
Primary Hypothyroidism	Caused by a problem in the thyroid gland itself, leading to reduced hormone production.
Secondary Hypothyroidism	Caused by issues in the pituitary gland or hypothalamus, which control the thyroid gland.

TSH Range:

TSH Level (mU/L)	Condition
0.0 - 0.4	Hyperthyroidism or suppressed TSH
0.4 - 4.0	Normal range of TSH
4.0 - 10.0	Subclinical (mild) hypothyroidism
10.0 +	Hypothyroidism

Causes of Hypothyroidism:

- Iodine deficiency in the diet
- Inflammatory processes affecting thyroid tissues
- Complete or partial removal of the thyroid gland
- Unfavorable environmental factors (radioactive radiation, harmful work conditions)
- Congenital anomalies in intrauterine development
- Use of radioactive iodine for therapeutic purposes
- Drug therapies that suppress thyroid function
- Damage and inflammation of the hypothalamus

Classification of Hypothyroidism:

Hypothyroidism is classified into three types based on the underlying cause:

1. Primary Hypothyroidism

- Cause: Dysfunction or damage to the thyroid gland itself.
- Common Causes:
 - Iodine deficiency
 - o Hashimoto's thyroiditis (autoimmune disease)
 - o Congenital thyroid disorders
 - o Post-surgical or post-radioactive iodine treatment
 - o Certain medications (e.g., lithium, amiodarone)
- TSH Levels: HighT3/T4 Levels: Low

2. Secondary Hypothyroidism

- Cause: Dysfunction of the pituitary gland, leading to insufficient Thyroid-Stimulating Hormone (TSH) production.
- Common Causes:
 - o Pituitary tumors
 - Pituitary surgery or radiation damage
 - o Traumatic brain injury
 - o Sheehan's syndrome (postpartum pituitary failure)
- TSH Levels: Low or normal
- T3/T4 Levels: Low

3. Tertiary Hypothyroidism

- Cause: Dysfunction of the hypothalamus, leading to decreased Thyrotropin-Releasing Hormone (TRH) production, which in turn affects the pituitary and thyroid.
- Common Causes:
 - Hypothalamic tumors
 - o Brain injuries or surgeries affecting the hypothalamus
 - o Chronic illnesses affecting hypothalamic function
- TSH Levels: LowT3/T4 Levels: Low

Etiology (Causes) of Hypothyroidism

1. Congenital Hypothyroidism (Present from birth)

- Caused by mutations affecting:
 - o Thyroid gland development
 - o Iodine absorption
 - Enzymes required for thyroid hormone (T4) production

o Thyroid-Stimulating Hormone (TSH) receptor

2. Hashimoto's Thyroiditis (Autoimmune Cause)

- An autoimmune condition leading to:
 - o Enlargement of the thyroid (goiter) or thyroid atrophy
 - o Antibody-mediated damage to the thyroid gland
- Antibodies target:
 - o Thyroid peroxidase (TPO)
 - o Thyroglobulin
 - o Other thyroid cell membrane components

3. Iatrogenic Hypothyroidism (Caused by Medical Treatment)

- Possible causes:
 - o Thyroid surgery
 - o Radioactive iodine (RAI) treatment for Graves' disease
 - o Use of lithium carbonate (a medication for mood disorders)
 - o Excessive iodine intake from medications (e.g., expectorants)

4. Secondary Hypothyroidism (Caused by Pituitary Gland Issues)

- Due to inadequate TSH production by the pituitary gland
- Possible causes:
 - o Pituitary tumors
 - o Pituitary surgery
 - o Radiation therapy targeting the pituitary gland
 - o Postpartum pituitary necrosis (Sheehan's syndrome)
 - o Metastatic cancers affecting the pituitary

5. Hypothalamic Hypothyroidism (Rare Cause)

- Due to problems in the hypothalamus, leading to insufficient TRH (Thyrotropin-Releasing Hormone) production
- Possible causes:
 - o Cranial radiation therapy
 - o Head trauma
 - o Tumors affecting the hypothalamus

Signs & Symptoms:

- Dry hair
- Loss of eyebrow hair
- Puffy face
- Enlarged thyroid (goiter)
- Slow heartbeat
- Arthritis

- Depression
- 🖐 Dry skin
- □ Forgetfulness
- Menstrual disorders

- \$□ Infertility
- **4** Muscle aches
- ♣ Weight gain
- Constipation
- Brittle nails

Diagnosis and Treatment of Hypothyroidism

Diagnosis:

Method	Description
Physical Exam	The doctor checks for symptoms like fatigue, weight gain, dry skin, slow heart rate, and swelling in the neck (goiter).
Thyroid Function Tests (TFTs)	Blood tests to measure hormone levels: - TSH (Thyroid-Stimulating Hormone) — High in primary hypothyroidism, low in secondary hypothyroidism T3 & T4 (Thyroid Hormones) — Low in hypothyroidism.
Thyroid Scan	Imaging test to check the size, shape, and function of the thyroid gland.
Thyroid Biopsy	A small sample of thyroid tissue is taken to check for diseases like cancer or inflammation.

Treatment

Treatment	Description
Thyroxine (T4 Hormone Replacement)	A synthetic hormone (Levothyroxine) that replaces the missing thyroid hormones and helps restore normal body functions. It is taken as a daily pill.

Hypopituitarism

Introduction

- **Pan hypopituitarism** is a condition where the pituitary gland fails to produce **multiple** hormones.
- First described in 1914 by Simmonds, also known as Simmonds' disease.
- Types:
 - o **Hypopituitarism** Deficiency in **one or more** pituitary hormones.
 - Panhypopituitarism Complete loss of pituitary function (deficiency of all hormones).
- **Prevalence:** 4–21 cases per 100,000 people.

Causes (Etiology) of Hypopituitarism

Category	Examples
1. Pituitary & Hypothalamic Mass Lesions	Tumors pressing on the pituitary gland.
2. Pituitary Surgery	Surgery-related damage to the pituitary.
3. Radiotherapy	Radiation treatment affecting pituitary function.
4. Trauma & Vascular Injury	Brain injuries or stroke affecting blood flow to the pituitary.
5. Infiltrative Disorders	Conditions like sarcoidosis that invade pituitary tissue.
6. Infections	Tuberculosis, meningitis, or other infections.
7. Immune System Disorders	Autoimmune diseases attacking the pituitary.
8. Genetic Causes	Inherited disorders affecting pituitary development.

Pituitary Gland - Master Gland:

Etiology:

Category	Causes	
Neoplastic (Tumors)	Pituitary adenoma, Craniopharyngioma, Meningioma, Cysts (Rathke's cleft, arachnoid, epidermoid, dermoid), Germinoma, Glioma, Astrocytoma, Ganglioneuroma, Paraganglioma, Teratoma, Chordoma, Pituicytoma, Ependymoma, Pituitary carcinoma, Metastases	
Infectious	Bacterial, Fungal, Parasitic infections, Tuberculosis, Syphilis	
Vascular	Pituitary tumor apoplexy, Sheehan's syndrome, Intracranial carotid artery aneurysm, Subarachnoid hemorrhage	
Traumatic	Head injury	
Medications	Opiates (affect ACTH, GH), Glucocorticoids (ACTH), Megestrol acetate (ACTH), Somatostatin analogs (GH, ACTH, TSH), CTLA-4 blockers (ACTH, TSH, LH/FSH)	
Infiltrative/Inflammatory	Autoimmune (lymphocytic hypophysitis), Hemochromatosis, Granulomatous (granulomatosis with polyangiitis, sarcoidosis), Langerhans cell histiocytosis, Giant cell granuloma, Xanthomatous hypophysitis	
Structural/Idiopathic	Empty sella syndrome, Idiopathic (unknown cause)	
Treatment	Surgery, Radiotherapy	

Clinical Presentation:

Category Symptoms		
Acute	 Headache, nausea, vomiting, hypotension (low blood pressure), hyponatremia (low sodium levels), high mortality rate 	
Chronic	 Increased fat, low muscle mass (GHD), infertility, loss of body hair, menstrual irregularities, loss of libido, TSH deficiency, lethargy, tiredness, weight loss, ADH & prolactin deficiency 	

Diagnosis and Management of Hypopituitarism

Category	Details
Physical Examination	Examination of the thyroid, genital organs, body hair, and scalp hair. Checking BMI (Body Mass Index).
Laboratory Tests	Measuring cortisol and ACTH (adrenal hormones), TSH and T4 (thyroid hormones), IGF-I (growth hormone-related), and arginine vasopressin test (fluid balance).
Imaging	MRI scans and CT brain scans to detect pituitary abnormalities.

Non-Pharmacological Management

- Good gynecological care to prevent hormonal issues.
- Radiation prevention to avoid pituitary damage.
- Careful pituitary surgeries to minimize complications.
- **Experienced neurosurgeons** using high-resolution microscopes can reduce the risk of hypopituitarism (hormone deficiencies).

Goals of Pharmacotherapy

- Restore hormone levels to normal.
- Lifelong hormone replacement therapy is often required.
- Patients may need **higher glucocorticoid doses** during stress (illness, emotional strain) to prevent serious complications.

Treatment Options

Туре	Examples	
Hormone Replacement	Glucocorticoids, Estrogens, Progesterone, Testosterone, Growth Hormone (GH) replacement	
Surgical Management	Surgery to remove pituitary adenomas (tumors)	

Acute Kidney Injury (ARF)

Chapter 10 - Unit IX Nephrology

Contents

- 1. ARF (Acute Renal Failure)
- 2. Prevalence
- 3. Clinical Classification
- 4. Etiology
- 5. Stages of ARF
- 6. Pathophysiology
- 7. Symptoms
- 8. Diagnosis
- 9. Management
- 10. Standard Treatment Guidelines (STGs)

Acute Renal Failure (ARF)

- ARF or AKI (Acute Kidney Injury) is a **sudden and rapid decline** in renal filtration function.
- Symptoms:
 - Decreased urine output.
 - o Increase in Serum Creatinine (Scr) or Blood Urea Nitrogen (BUN).
- **Reversibility:** If managed early, it is reversible.
- Severity:
 - Delayed diagnosis leads to high mortality and morbidity.
 - Affects 5% of hospitalized patients.
 - High prevalence in ICUs and multi-organ failure patients.
 - o AKI mortality rate is 46.5%.
 - o 200 cases per million people in the USA.

ARF Classification

- 1. Prerenal (55%)
 - Causes:
 - Severe volume depletion.
 - o Hypotension.
 - Nephrons remain structurally intact.

2. Intrinsic (40%)

- Caused by cytotoxic, ischemic, or inflammatory injury to the kidneys.
- Leads to structural and functional kidney damage.

3. Postrenal (5%)

- Obstruction in urine passage due to:
 - Stones
 - o Tumors
 - Urethral obstruction (e.g., enlarged prostate)

ARF Classification Based on Urine Output

- 1. **Anuria** (<50 ml/day)
 - o High mortality, less reversible.
- 2. **Oliguria** (50-450 ml/day)
 - o High mortality, less reversible.
- 3. **Non-Oliguria** (>450 ml/day)
 - o Better prognosis, lower risk of fluid overload.

Etiology of ARF

1. Prerenal Causes

- Volume Depletion: Diuretics, GI losses, burns, hemorrhage.
- Cardiac Issues: Heart failure, hypotension.
- Other: Liver failure, sepsis.

2. Intrinsic Causes

- Vascular: Renal artery/vein obstruction, transplant rejection, malignant hypertension.
- Glomerular: Glomerulonephritis, autoimmune diseases.
- Tubular: Aminoglycoside toxicity, rhabdomyolysis.
- **Interstitial:** Inflammatory kidney diseases.

3. Postrenal Causes

- **Tubular Obstruction:** Crystals (e.g., uric acid, calcium oxalate).
- Ureteral Obstruction: Stones, tumors, fibrosis.
- **Urethral Obstruction:** Benign prostatic hypertrophy (BPH), neurogenic bladder, stones.

S.No.	Etiologica Group	l Etiological Sub Group	Number of Cases	Total
1	Medical	Gastroenteritis	(24)	75
		Sepsis	16	
		Myocardial infarction and CHF	10	
		Malaria	9	
		Cerebro vascular accident	6	
		Pancreatitis	5	
		Chronic liver disease	2	
		Rhabdomyolysis	2	
		Autoimmune hemolytic anemia	1	
2	Surgical	Laprotomy	5	17
		Cholecystectomy	4	
		CABG	3	
		Miscellaneous	3	
		Orthopedics Surgeries	2	
3	Obstetrics	Postpartum hemorrhage	3	5
		Eclampsia	2	
4	Others		3	3
	Grand To	tal JPMA 55:526;2005	,	100

Stages of ARF

Stage	Serum Creatinine (SCr)	Urine Output
Stage 1	1.5–1.9x baseline or >0.3 mg/dL increase	<0.5 mL/kg/h for 6–12h
Stage 2	2.0–2.9x baseline	<0.5 mL/kg/h for > 12h
Stage 3	3.0x baseline or SCr >4.0 mg/dL	<0.3 mL/kg/h for >24h or Anuria for >12h

Pathophysiology of ARF

Key Mechanisms

- 1. **Inflammation:** Cytokine and Leukocyte Activation
- 2. **Toxic Injury**: Direct Tubular Injury, Antibiotics Contrast.
- 3. **Ischemia**: Microcirculatory Failure and Hypoxia
- 4. Reactive Oxygen Species (ROS) and Mitochondrial Dysfunction
- 5. Endothelial Dysfunction
- 6. Coagulation Dysfunction

ARF Pathophysiology in Septic Conditions:

Complement and coagulation pathway activiation | Protease activation: | It.1, II.6, PAF. TNF-xx | DCI, platelets, endothelial cells | DCI, platelets, endothelial dysfunction | Metabolic acidosis | Capillary leakage | Thrombosis | Impaired vascular tone | DCI, platelets, endothelial dysfunction | Metabolic acidosis | Capillary leakage | Thrombosis | Impaired vascular tone | DCI, platelets, endothelial cells | DCI, platelets, end

ARF Pathophysiology Vasculature:

Signs & Symptoms: Vary from patient to patient Stage and etiological factors

- Prerenal Symptoms:
 - o Dehydration (thirst, dizziness, orthostatic hypotension).
 - Altered mental status.
- Intrinsic Symptoms:
 - o Fever, rash, muscle pain, seizures.
- Postrenal Symptoms:
 - o BPH (Benign Prostatic Hyperplasia), **urinary urgency**, **frequency**, **hesitancy**.
 - o Flank pain, hematuria.
- General Symptoms:
 - Hypertension, edema.

Diagnosis of ARF

- 1. Medical History & Physical Examination
- 2. Laboratory Tests:
 - o Complete Blood Count (CBC) & Biochemistry
 - Urinalysis & Electrolytes
- 3. Radiological Exams/Imaging:
 - o Ultrasound, CT scan, MRI

Management of ARF

Goals of Treatment

- Prevent ARF and its progression.
- Key interventions:
 - Theophylline, acetylcysteine, insulin, hydration (sodium loading), glycemic control.

Supportive Management

- 1. Fluid Management
 - Blood pressure and cardiac output monitoring.
 - Maintain tissue perfusion.
- 2. Electrolyte Management
 - o Correct sodium, potassium, calcium imbalances.
- 3. Management of Edema
 - o Diuretics if needed.
- 4. Renal Replacement Therapy (RRT)
 - o Continuous or intermittent **dialysis** for severe cases.
- 5. Acid-Base Balance and Intoxication Management.

ARF ATN ICU Algorithim

RIFLE Criteria for AKI

Urinary Tract Infection (UTI)

Case Study: Ms. Shaheen

- Age: 73 years
- Occupation: Housewife
- **Condition:** Anxious/distressed for the past 3 days
- Symptoms:
 - o Dysuria (painful urination) and urinary frequency
 - Urgency leading to incontinence
 - o Episode of hematuria (blood in urine)
 - Lower abdominal discomfort
 - o Cloudy or foul-smelling urine
- Diagnosis: Urine culture revealed E. coli
- Prescription:
 - o Trimethoprim/Sulfamethoxazole
 - Cranberry Juice

Introduction to UTI

- **Definition:** Presence of microorganisms in the urinary tract, invading tissues and adjacent structures.
- Types:
 - Asymptomatic
 - o **Symptomatic** (can lead to bacteremia or sepsis)
- Prevalence:
 - Common in boys during infancy
 - More common in females aged 1-5 years

Classification of UTI

Based on Anatomy

- **Upper UTI:** Affects kidneys and ureters
- Lower UTI: Affects bladder and urethra

Based on Clinical Presentation

- Uncomplicated UTI: Occurs in healthy individuals with normal urinary tracts
- **Complicated UTI:** Associated with structural abnormalities, catheter use, or underlying diseases
- **Recurrent UTI:** Multiple episodes over time

Pathophysiology

- Route of Infection:
 - o **Ascending (95%)** Fecal flora, contraceptive materials
 - o **Descending (5%)** Bloodborne (hematogenous route)
- Common Pathogen: E. coli (85%)
- Host Defenses:
 - Low pH, high urea concentration, prostatic secretions, diuresis, mucosal protection
- Risk Factors:
 - o Obstruction, neuropathies, kidney stones, BPH (benign prostatic hyperplasia), vesicourethral reflux, diabetes, pregnancy, stroke, catheterization

Signs and Symptoms

Type	Symptoms
Lower UTI (LUTI)	Dysuria, urgency, frequency, nocturia, suprapubic heaviness, gross hematuria
Upper UTI (UUTI)	Flank pain, fever, nausea, vomiting, malaise

Diagnosis

Physical Examination

Costovertebral tenderness

Laboratory Tests

- Urine Collection Methods:
 - Midstream clean catch
 - Catheterization
 - o Suprapubic bladder aspiration
- Findings:
 - o Bacteria, proteinuria, hematuria, pyuria
 - o Urine routine examination (Urine R/E)
 - Urine culture

Imaging

- Ultrasound (U/S)
- X-ray

Management of UTI

Goals of Treatment

- Prevent or treat systemic consequences of infection
- Eradicate the invading organism
- Prevent recurrence

Pharmacologic Therapy

- NSAIDs (for pain relief)
- Cranberry sachets (for prevention)
- Antibiotics (as per type of UTI)

Antibiotic Therapy for Uncomplicated UTI

Type of UTI	Antibiotic	Dose	Duration
Uncomplicated	Sulfame tho xazole/Trime tho prim	1 DS BID	3 days
	Ciprofloxacin	250 mg BID	3 days
Pyelonephritis	Ciprofloxacin	250-500 mg BID	14 days

Antibiotic Therapy for Complicated UTI

Type of UTI	Antibiotic	Dose	Duration
Complicated	Sulfamethoxazole/Trimethoprim	1 DS BID	10 days
	Ciprofloxacin	250-500 mg BID	10 days
Recurrent UT	Nitrofurantoin	50 mg OD	6 months

Standard Treatment Guidelines (STGs)

• **NICE Guidelines** (National Institute for Health and Care Excellence) for UTI treatment and management

Thrombocytopenia

Contents

✓ Thrombocytopenia
 ✓ Pathophysiology
 ✓ Symptoms
 ✓ Clinical Classification
 ✓ Diagnosis
 ✓ Management
 ✓ Standard Treatment
 ✓ Guidelines (STGs)

Platelet Basics

• **Produced by**: Megakaryocytes

Normal Count: 150,000 – 400,000/μL
 First Described By: James Homer (1906)

• **Lifespan**: 7-10 days

• Distribution:

o 2/3 in circulation

o 1/3 stored in the spleen

• Function:

o Constantly monitor blood vessel endothelium

o Play a key role in blood clotting (coagulation)

• Clearance: Removed from blood by macrophages in the spleen and liver

Thrombocytopenia: Definition & Classification

- Thrombocytopenia A condition where platelet count is < 150,000/μL
- Severity Levels:

Severity	Platelet Count (per µL)	Clinical Features
Mild	70,000 - 150,000	Often asymptomatic
Moderate	20,000 - 70,000	May have minor bleeding
Severe	< 20,000	High risk of spontaneous bleeding

Bleeding Risks Based on Platelet Count:

Platelet Count (per μL)	Bleeding Risk	
> 50,000	Usually no symptoms	
30,000 - 50,000	Rarely presents with purpura (bruising)	
10,000 - 30,000	Bleeding with minimal trauma	
< 10,000	Spontaneous bleeding (petechiae, bruising)	
< 5,000	High risk of mucosal, intracranial, gastrointestinal, and genitourinary bleeding	

Etiological Classification of Thrombocytopenia

Category	Causes
1. Decreased Platelet Production	Bone marrow failure, Bernard-Soulier syndrome, viral infections, liver cirrhosis, nutritional deficiencies, drug-induced
2. Increased Platelet Destruction	Immune thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), disseminated intravascular coagulation (DIC), drug-induced thrombocytopenia (DIT), heparin-induced thrombocytopenia (HIT), HELLP syndrome, viral infections
3. Sequestration (Platelet Pooling in Spleen)	Hypersplenism, pseudothrombocytopenia

Thrombotic Thrombocytopenic Purpura (TTP)

• A rare disorder in which small blood clots form throughout the body, blocking blood flow to vital organs.

1. Normal Condition (Top Image)

- The body produces von Willebrand Factor (vWF) to help blood clot.
- ADAMTS13 enzyme cuts large vWF molecules into smaller pieces.
- This prevents excessive clotting, allowing normal blood flow.

2. TTP Condition (Bottom Image)

- There is a severe deficiency of ADAMTS13 (enzyme not working properly).
- o Large vWF molecules stay intact and trap platelets, forming clots inside blood vessels.
- o These clots block blood flow, leading to organ damage and a low platelet count.

Thrombocytopenia DIC

Disseminated Intravascular Coagulation (DIC)

• A life-threatening condition where blood clotting is massively activated throughout the body, leading to excessive clotting and bleeding at the same time.

Simplified Explanation:

1. Triggering Event:

 Something like infection, trauma, or cancer activates blood clotting.

2. Clot Formation:

- o The coagulation process goes into overdrive, producing too much thrombin, leading to excessive clotting in small and large blood vessels.
- This causes organ damage (ischemia) and low platelet count (thrombocytopenia).

3. Clotting Factors Get Used Up:

 Since so many clots are being formed, the **body runs** of

Figure 1. Mechanisms leading to the development of DIC. FDP = fibrin degradation products. (Adapted from Gobel BH. Disseminated intravascular coagulation in cancer: providing quality care. Topics Adv Proct Nurs | fonline

being formed, the **body runs out of clotting factors**.

4. Uncontrolled Bleeding Begins:

- The body tries to break down clots, but because clotting factors are depleted, **excessive bleeding** occurs.
- o This leads to shock, low blood pressure, and increased risk of death.

Key Problem in DIC:

Body forms too many clots \rightarrow Uses up clotting factors \rightarrow Leads to uncontrolled bleeding.

While **TTP** involves abnormal clot formation due to an enzyme deficiency, **DIC** is a widespread clotting disorder triggered by an underlying illness, and **thrombocytopenia** simply refers to a low platelet count, which can occur in many conditions, including TTP and DIC.

Thrombocytopenia Pathophysiology:

Simplified Explanation:

1. Platelet Production Starts from Stem Cells:

 Stem cells turn into megakaryocytes, which mature and release platelets into the blood.

2. Problems in Platelet Production:

- Hypoplasia: Not enough stem cells producing megakaryocytes.
- o **Ineffective Thrombopoiesis:** Megakaryocytes fail to make platelets.
- o **Disordered Regulation:** Body is not properly controlling platelet production.
- 3. Circulating Platelet Pool (Where Platelets Are Used):

- Some platelets are stored in the spleen.
- Platelets are used up naturally or in response to injuries.

4. Causes of Thrombocytopenia:

- Abnormal pooling: Too many platelets trapped in the spleen.
- Accelerated destruction: Platelets are broken down too fast due to disease or immune response.

Key Issue in Thrombocytopenia:

Not enough platelets are made, or they are destroyed too quickly, leading to increased bleeding risk.

FIGURE 47.1 Pathophysiology of thrombocytopenia. A simplified diagram of the biodynamics of the megakaryocyte–platelet system (solid lines) and the mechanisms (dashed lines) by which pathologic processes (shaded blocks) produce thrombocytopenia.

Signs and Symptoms of Thrombocytopenia

Symptom	Description
Ecchymosis	Bruising without trauma
Petechiae	Small red or purple spots on the skin
Itch-less Rash	Non-itchy red or purple skin rash
Epistaxis	Nosebleeds
Hemoptysis	Coughing up blood
Melena	Black, tarry stools (due to internal bleeding)
Prolonged Menstrual Periods Heavy or extended menstrual bleeding	
Hematuria	Blood in urine
Gum Bleeding	Unexplained bleeding from the gums

Diagnosis of Thrombocytopenia

1. Patient History

- **Recent Infections** Viral or bacterial illnesses
- Malignancies Blood cancers affecting platelet levels
- **Pregnancy Status** Important in premenopausal women
- Recent Medications Drug-induced thrombocytopenia
- **Vaccinations** Certain vaccines may trigger immune response
- **Recent Travels** Exposure to infections or environmental factors
- **Recent Transfusions/Transplants** Risk of immune reactions
- **Family History** Genetic thrombocytopenia disorders
- **Autoimmune Disorders** Conditions like lupus or rheumatoid arthritis

2. Physical Examination

Findings	Clinical Indications	
Petechiae & Ecchymoses Small skin hemorrhages		
Mucocutaneous Bleeding Nosebleeds, gum bleeding		
Purpura	Large purple skin patches	
Retinal Hemorrhages	Bleeding in the eye	
Splenomegaly	Enlarged spleen (common in sequestration thrombocytopenia)	
CNS Bleeding (Rare)	Severe cases may present with brain hemorrhage	

Laboratory Tests for Thrombocytopenia

Test	Purpose
Complete Blood Count (CBC)	Measures platelet count and overall blood health
Peripheral Blood Smear	Examines platelet size, shape, and abnormalities
D-dimer	Checks for blood clotting issues
Serum LDH (Lactate Dehydrogenase)	Indicates cell breakdown, seen in TTP
Bone Marrow Examination	Evaluates platelet production in bone marrow
HIV Test	Rules out viral causes of thrombocytopenia
ESR (Erythrocyte Sedimentation Rate)	Detects inflammation and autoimmune disorders
hsCRP (High-Sensitivity C-Reactive Protein)	Assesses inflammation levels

Management of Thrombocytopenia

Goals of Treatment

✓ Careful monitoring✓ Prevent complications✓ Cost-effective therapy

General Management

Cause	Management Approach	
Decreased Platelet Production Identify and treat the underlying cause		
Drug-Induced	Discontinue and replace the causative drug	
Vitamin Deficiency	Supplement Vitamin B12 and Folic Acid	
Thrombopoietin	Used to stimulate platelet production	
Severe Cases	Platelet transfusion if needed	

Immune Thrombocytopenic Purpura (ITP) Management

Condition	Treatment
Platelet count $< 20,000 - 30,000/\mu L$	Treatment required to prevent bleeding
First-line treatment	Corticosteroids (Prednisolone for 2-3 weeks)
Persistent low platelets (< 30,000/µL after 4-6 weeks)	Splenectomy
Severe cases / Refractory ITP	IV Immunoglobulin (IV Ig) Therapy
Treatment-resistant cases	Rituximab
Pregnancy-associated ITP	IV Ig therapy

Thrombotic Thrombocytopenic Purpura (TTP) & Hemolytic Uremic Syndrome (HUS) Management

HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets) **Syndrome Management**

Condition	Treatment
HELLP Syndrome (Pregnancy-related)	Immediate termination of pregnancy
Mild cases	Corticosteroids

Platelet Sequestration Management

• Treat the underlying condition (e.g., hypersplenism, liver disease)