When analyzing the running time of an algorithm, it's often useful to consider a more general form of the relationship between the input size N and the running time T(N). If the running time of an algorithm is described by $T(N) \approx a N^b$, where a and b are constants, this form can help us determine the nature of the time complexity. Here's how you can analyze it:

- 1. Measure the running time for different input sizes N:
 - For $N=N_1$, measure $T(N_1)$.
 - For $N=N_2=2N_1$, measure $T(N_2)$.
- 2. Compare the running times:
 - Calculate the ratio $\frac{T(N_2)}{T(N_1)}$.

Steps in Detail

- 1. Measure the Running Time:
 - Let N_1 be the initial input size and $T(N_1)$ be the running time for this input size.
 - Let $N_2=2N_1$ be the doubled input size and $T(N_2)$ be the running time for this input size.
- 2. Formulate the Relationship:

Given
$$T(N) \approx aN^b$$
:

$$T(N_1)pprox aN_1^b$$

$$T(N_2)pprox a(2N_1)^b=a\cdot 2^b\cdot N_1^b=2^b\cdot aN_1^b$$

3. Calculate the Ratio:
$$rac{T(N_2)}{T(N_1)}pproxrac{2^b\cdot aN_1^b}{aN_1^b}=2^b$$

Determine the Exponent b

To find b, you can use the ratio calculated from your measurements: $b pprox \log_2\Bigl(rac{T(N_2)}{T(N_1)}\Bigr)$

Example

Suppose you measure the running times and find the following:

- ullet $T(N_1)=2$ seconds for $N_1=1000$
- $T(N_2)=16$ seconds for $N_2=2000$

Calculate the ratio: $\frac{T(2000)}{T(1000)}=\frac{16}{2}=8$

Now, solve for b: $bpprox \log_2(8)=3$

So, in this case, the running time T(N) is approximately proportional to N^3 , indicating a time complexity of ${\cal O}(N^3)$.

General Procedure

- 1. **Measure** the running times for input sizes N_1 and $N_2=2N_1$.
- 2. **Calculate** the ratio $\frac{T(N_2)}{T(N_1)}$.
- 3. **Determine** b using $b pprox \log_2\Bigl(rac{T(N_2)}{T(N_1)}\Bigr)$.

This approach helps you determine the polynomial order of the algorithm's time complexity when the running time can be approximated by $T(N) pprox aN^b$.