アルゴリズム論 2 第 5回: 凸包 (1)

関川 浩

2016/10/12

- 凸集合・凸包の定義と性質
 - 凸集合の定義と性質
 - 凸包の定義と性質
 - 端点
 - 支持超平面
 - 有限個の点の凸包
 - 凸包の応用
- 2 2次元凸包構成アルゴリズム
 - 問題の設定
 - Graham のアルゴリズム
 - 包装法

- 1 凸集合・凸包の定義と性質
- ② 2次元凸包構成アルゴリズム

凸集合の定義

定義 1 (凸集合)

集合 $S \subset \mathbb{R}^d$ が凸

$$\iff \forall P, Q \in S, 0 \leq \forall t \leq 1$$
 に対し $tP + (1-t)Q \in S$

凸集合の性質

命題1

$$S_{\lambda}$$
 ($\forall \lambda \in \Lambda$) が凸のとき $\bigcap_{\lambda \in \Lambda} S_{\lambda}$ は凸

証明

$$\Longrightarrow \forall \lambda \in \Lambda$$
 に対し $P, Q \in S_{\lambda}$

$$S_{\lambda}$$
 は凸だから $tP + (1-t)Q \in S_{\lambda}$

よって,
$$tP + (1-t)Q \in \bigcap_{\lambda \in \Lambda} S_{\lambda}$$

したがって
$$\bigcap_{\lambda \in \Lambda} S_{\lambda}$$
 は凸

凸包の定義と性質

定義 2 (凸包)

$$S\subset\mathbb{R}^d$$
 に対し,
$$\bigcap_{S\subset X\subset\mathbb{R}^d,\ X\ \text{td}} X \qquad を S \ \text{の凸包といい } \mathrm{CH}(S) \ \mathrm{と表す}$$

命題 2

 $\mathrm{CH}(S)$ は S を含む最小の凸集合すなわち, $S\subset S'\subset\mathbb{R}^d$ かつ S' が凸なら $\mathrm{CH}(S)\subset S'$

証明

 $S \subset S'$ かつ S' は凸だから,

$$\mathrm{CH}(S) = \bigcap_{S \,\subset\, X \,\subset\, \mathbb{R}^d,\ X \text{ is in }} X = \left(\bigcap_{S \,\subset\, X \,\subset\, \mathbb{R}^d,\ X \text{ is in }} X\right) \cap S' \subset S' \quad \blacksquare$$

端点

定義 3 (端点)

S: 凸集合

 $P \in S$ が端点 $\Longleftrightarrow \forall Q$, $R \in S$ s.t. $Q \neq P$, $R \neq P$ に対し $P \not\in \overline{QR}$

支持超平面

定義 4 (支持超平面)

 $P \in S$: 凸集合

π: P を通る超平面

S が π の片側に含まれるとき, π を支持超平面という

注意

P が凸集合 S の端点ならば, S との共通部分が P だけであるような 超平面が存在

有限個の点の凸包

 \mathbb{R}^2 内の n 点の凸包は多角形

頂点数は高々 n (n 多角形)

\mathbb{R}^3 内の n 点の凸包は多面体

- 端点数 (頂点数) を h とすると, $h \le n$
- 辺の数は高々 $3h-6 \le 3n-6$
- 面の数は高々 $2h-4 \le 2n-4$

証明

辺の数を e, 面の数を f とする

- h e + f = 2 (Euler の多面体公式)
- $3f \leq 2e$ (各面の辺の数は 3 以上, 各辺はちょうど二つの面が共有)

より

凸包の応用 (1/2)

パターン認識, データの分類

S, $T \subset \mathbb{R}^2$

 $\mathrm{CH}(S)\cap\mathrm{CH}(T)=\emptyset$ (線形分離可能) ならば S と T は本質的に異なるとみなすことが多い

⇒ 凸包構成アルゴリズムが不可欠

矢部研究室のパネル「データを分類する」の一部

凸包の応用 (2/2)

最遠点対

 $P_1, \ldots, P_n \in \mathbb{R}^2$: 与えられた有限個の点

問題: P_i , P_j 間の距離が最大となるような対 (P_i, P_j) を求めよ

 $\Longrightarrow P_1, \ldots, P_n$ の凸包が既知ならばキャリパー法を用いて O(h) で解ける (h は凸包の頂点数)

- 1 凸集合・凸包の定義と性質
- 2 2 次元凸包構成アルゴリズム

問題の設定

問題 (2 次元の凸包構成)

入力: 有限個の点 $P_1, \ldots, P_n \in \mathbb{R}^2 \ (n < \infty)$

出力: 凸包 (凸多角形) を構成する頂点を反時計周りに並べたリスト

 $[P_{i_1},\ldots,P_{i_m}]$

基本処理

 $P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3) \in \mathbb{R}^2$

 P_1 を中心に $\overline{P_1P_2}$ を θ 回転させると $\overline{P_1P_3}$ に重なるとき $(-\pi < \theta \leq \pi)$, 以下のどれかの判定

(a)
$$-\pi < \theta < 0$$
 (b) $0 < \theta < \pi$ (c) $\theta = 0$ あるいは π

$$\begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix}$$
 の符号が $\begin{cases} - \iff (a) \\ + \iff (b) \\ 0 \iff (c) \end{cases}$

Graham のアルゴリズム (1/4)

Grahama のアルゴリズム

入力: 有限個の点 $P_1(x_1, y_1), \ldots, P_n(x_n, y_n) \in \mathbb{R}^2$

出力: 凸包の頂点リスト $[P_{i_1},\ldots,P_{i_m}]$ (反時計周り)

- $lackbox{0}$ P_i のうち凸包の頂点となる点を一つとり Q_1 とする (例: x 座標最小の点,複数あればその中で y 座標最大の点)
- ② 入力された点 $(Q_1$ 以外) を Q_1 からの偏角が小さい順にソートした 結果を Q_2,\ldots,Q_m とする 偏角が同じ点があるときは Q_1 から一番遠い点のみ採用 $m\leq 3$ なら $[Q_1,\ldots,Q_m]$ を返して終了
- ③ $\overline{Q_{i-2}Q_i}$ と $\overline{Q_{i-2}Q_{i-1}}$ の位置関係を調べ凸包を構成 (詳細は次ページ)

Graham のアルゴリズム (2/4)

Step 3 の詳細

```
i \leftarrow 1; \quad i \leftarrow 1;
while (i \leq m) {
   R_i \leftarrow Q_i;
   時計周り (角度 0 を含む)) {
       R_{i-1} \leftarrow R_i;
       j \leftarrow j - 1;
   j \leftarrow j + 1; \quad i \leftarrow i + 1;
return [R_1,\ldots,R_i];
```

Graham のアルゴリズム (3/4)

Step 3

Graham のアルゴリズム (4/4)

計算量: $O(n \log n)$

• Step 1: *O*(*n*)

Step 2 (ソート部分): O(n log n)

• Step 3: *O*(*n*)

注意

2次元凸包構成アルゴリズムを用いてソートが可能

- ① $x_1, \ldots, x_n \in \mathbb{R}$ に対して $(x_1, x_1^2), \ldots, (x_n, x_n^2) \in \mathbb{R}^2$ の凸包の 頂点リストを構成 (すべての点が凸包の頂点となることに注意)
- ② x_1, \ldots, x_n の最小値が先頭になるよう書き換えた頂点リストの第 1 座標が x_1, \ldots, x_n のソート結果
- $\implies 2$ 次元凸包構成アルゴリズムは $\Omega(n \log n)$

包装法 (1/3)

包装法 (1/2)

入力: 有限個の点 $P_1(x_1, y_1), \ldots, P_n(x_n, y_n) \in \mathbb{R}^2$

出力: 凸包の頂点リスト $[P_{i_1},\ldots,P_{i_m}]$ (反時計周り)

- ullet P_i のうち x 座標最小の点をとり Q_1 とする 複数あるときはその中で y 座標最小の点を Q_1 とする
- ② Q_1 を原点としたとき、入力された点 $(Q_1$ 以外)の中でy 軸の負方向からの偏角が最小の点を Q_2 とする偏角が同じ点があるときは Q_1 から一番遠い点を Q_2 とするi=2 とおく

注意: 入力点はすべて $\overline{Q_1Q_2}$ の片側にある

包装法 (2/3)

包装法 (2/2)

- ③ Q_i を中心として半直線 $Q_{i-1}Q_i$ を反時計周りに回転したとき 最初に半直線に載る点を Q_{i+1} とする (複数の点が載ったら Q_{i-1} から一番遠い点を Q_{i+1} とする)
- もし $Q_1 = Q_{i+1}$ ならリスト $[Q_1, ..., Q_i]$ を返して終了 そうでなければ $i \leftarrow i+1$ として Step 3 へ

注意: 入力点はすべて $\overline{Q_{i-1}Q_i}$ の片側にある

包装法 (3/3)

計算量: O(hn) (h: 凸包の頂点数)

- Step 1 (Q_1 を探す手間): O(n)
- Step 2 (Q₂ を探す手間): O(n)
- Step 3 ($i \ge 3$ のとき Q_i を探す手間): O(n)

よって、凸包の 1 頂点を探す手間は O(n)

 \implies 全体の計算量は O(hn)

注意: 最悪の場合 $h = \Omega(n)$ なので $O(hn) = O(n^2)$