线性代数试题

一填空题(每空3分,共15分)

得分	评阅人

- 1、已知四阶行列式 D的第三行元素依次为 $a_{31}=2$, $a_{32}=0$, $a_{33}=-1$, $a_{34}=3$,并且 第三行元素的余子式依次为 $M_{31}=5$, $M_{32}=7$, $M_{33}=-6$, $M_{34}=-2$, 则 D=
- 3、若向量组 $\alpha_1 = \begin{pmatrix} 1 \\ t+1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 0 \\ t^2+1 \end{pmatrix}$ 线性相关,则 $t = \underline{\qquad \qquad }$
- 5、设n阶方阵A与B相似,且 $A^2 = A$,则 $B^2 =$ ______
- 二、选择题(每小题 3 分,共 15 分)

得分	评阅人

1、设A为三阶方阵,且 $|A| = \frac{1}{2}$,则|-2A| = () (A) -4(*B*) 4 (C) -1 (D) 1 2、设 A、 B为 n阶方阵,下列各式一定成立的是() (B) |AB| = |BA|(A) AB = BA(C)(AB')=A'B' $(D) (AB^2) = A^2B^2$ 3、设 A为 n阶方阵,则下列命题错误的是((A) A可逆的充要条件是 $|A| \neq 0$ 。 (B)A可逆的充要条件是A也可逆。(其中A为A的伴随矩阵) (C) A可逆的充要条件是 A有 n个不同的特征值。 (D) A可逆的充要条件是齐次线性方程组 AX=0 仅有零解。 4、三个方程四个未知量的非齐次线性方程组AX = B满足()时一定有解。

 (A) 系数矩阵 A的秩 = 1
 (B) 系数矩阵 A的秩 = 2

 (C) 系数矩阵 A的秩 = 3
 (D) 增广矩阵 [A,B] 的秩 = 3

 5、二次型 $f(x_1, x_2, x_3) = 2x_1^2 - 2x_1x_2 + x_2^2$ 的矩阵为 () 三、计算行列式 $D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 1 & -4 & 3 \\ 3 & -4 & -1 & 2 \\ 4 & 3 & -2 & -1 \end{vmatrix}$ 的值。(8分) 得分 评阅人

四、求向量组 α_1 = (2,1,3,-1), α_2 = (3,-1,2,0), α_3 = (4,2,6,-2), α_4 = (4,-3,1,1) 的一个最大线性无关组及向量组的秩。(10 分)

			`
得分	•	评阅人	

五、已知 $A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ 。求满足3A - 2X = B中的X. (8分)

得分	评阅人

六、设矩阵 $A = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ 得分 评阅人	$ \begin{bmatrix} -1 & -1 \\ -1 & -3 \\ 4 & 4 \end{bmatrix} $,求矩阵 A 的逆阵 A^1 。(10 分)	

				$\int x_1$	$+x_{2}$	$+2x_{3}$	=1
七、	求 a 、	<i>b</i> 的值,	使线性方程组	$\begin{cases} x_1 \end{cases}$		$+x_3$	=2 有无穷多个解,
				$\int 5x_1$	$+3x_{2}$	$+(a+8)_{3}$	= b + 7

并求出通解。(10分)

得分	评阅人

八、求矩阵 A=	2 -1 5 -3	3 的特征值和特征向量。(10分)	
	_1 0	-2	
得分评阅人			

九、设二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+5x_3^2+2tx_1x_2-2x_1x_3+4x_2x_3$ 为正定二次型。求t的取值范围。(8分)

/ 11	ベーバエ
得分	评阅人

十、设A, B, A+B都是非奇异矩阵, 试证明 A^1+B^1 也是非奇异矩阵, 并求 A^1+B^1 的逆阵。(6分)

71:3+11 12			
得分	评阅人		

$$\equiv$$
, **1** (A); **2** (B); **3** (C); **4** (C); **5** (C).

$$= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 2 & 11 \\ 0 & 0 & -6 & 12 \\ 0 & 0 & -12 & -6 \end{vmatrix}$$
 -----4 \Re

$$= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 2 & 11 \\ 0 & 0 & -6 & 12 \\ 0 & 0 & 0 & -30 \end{vmatrix}$$
 -----6 \(\frac{\frac{1}{2}}{3}\)

$$\square \cdot (\mathbf{a}_{1}', \mathbf{a}_{2}', \mathbf{a}_{3}', \mathbf{a}_{4}') = \begin{bmatrix} 2 & 3 & 4 & 4 \\ 1 & -1 & 2 & -3 \\ 3 & 2 & 6 & 1 \\ -1 & 0 & -2 & 1 \end{bmatrix} -----2$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad -----7 \, \text{fi}$$

$$\therefore R(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4) = 2 \qquad \qquad ------- \otimes \mathcal{T}$$

则
$$\mathbf{a}_1$$
, \mathbf{a}_2 为向量组的一个最大无关组 -----10 分

(注: α_1, α_4 或 α_2, α_3 或 α_2, α_4 或 α_3, α_4 亦为向量组的一个最大无关组)

五、
$$:: 3A - 2X = B$$

$$:: X = \frac{1}{2}(3A - B)$$
 -----2 分

$$= \frac{1}{2} \left[\begin{bmatrix} 9 & 3 & 0 \\ -3 & 6 & 3 \\ 9 & 12 & 6 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} \right] -----5$$

$$\therefore |A| = 2$$

$$A^{-1} = \frac{1}{|A|} A^* = \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 8 & 0 & 2 \\ 1 & 1 & 1 \\ 5 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

方法(二)

$$\begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 2 & -1 & -3 & 0 & 1 & 0 \\ -3 & 4 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 1 & 1 & 3 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 0 & -2 & -1 & 1 & 0 \\
0 & 1 & -1 & -2 & 1 & 0 \\
0 & 0 & 1 & \frac{5}{2} & -\frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 4 & 0 & 1 \\
0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{5}{2} & -\frac{1}{2} & \frac{1}{2}
\end{bmatrix}$$

$$\therefore \mathcal{A}^{-1} = \begin{bmatrix} 4 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

----10分

七、 对增广矩阵作初等行变换,有

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 5 & 3 & a+8 & b+7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & a+3 & b-3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & a & b \end{bmatrix} ------8$$

由此可见, 当a=b=0时,

增广矩阵的秩=系数矩阵的秩=2<未知量的个数,

此时原方程组有无穷多个解,并且当a=b=0时,原线性方程组的同解方程组为:

$$\begin{cases} x_1 & +x_3 & = 2 \\ & x_2 & +x_3 & = -1 \end{cases}$$

 $x_3 = k$

```
解得特征值为: \lambda_1 = \lambda_2 = \lambda_3 = -1。
           对应于\lambda_1 = -1,根据(\lambda E - A \lambda) = 0,有
           \begin{cases}
-3x_1 + x_2 - 2x_3 = 0 \\
-5x_1 + 2x_2 - 3x_3 = 0, & \exists 1 \\
x_1 + x_3 = 0
\end{cases} x_1 = -x_3
          取 x_3 = 1,则易求得 x_1 = -1, x_2 = -1。
          即关于\lambda_1 = \lambda_2 = \lambda_3 = -1的一个特征向量p = (-1, -1, 1') -----9分
          故关于\lambda_1 = \lambda_2 = \lambda_3 = -1的全部特征向量为: kp(k \neq 0) -----10分
           九、(1) |1|=1>0
           \begin{pmatrix} 2 \end{pmatrix} \begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1 - t^2 > 0
                  得: −1<t<1
             (3) |A| =  \begin{vmatrix} 1 & 1 & 2 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} 
                            =-5t^2-4t>0
                   得-\frac{4}{5} < t < 0
                    + \mathbf{A}^{-1} + \mathbf{B}^{-1} = \mathbf{A}^{-1}\mathbf{E} + \mathbf{A}^{-1}\mathbf{A}\mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{E} + \mathbf{A}\mathbf{B}^{-1}) = \mathbf{A}^{-1}(\mathbf{B}\mathbf{B}^{-1} + \mathbf{A}\mathbf{B}^{-1})
          = \mathbf{A}^{-1}(\mathbf{B} + \mathbf{A})\mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})\mathbf{B}^{-1}
          \Rightarrow \begin{vmatrix} \mathbf{A}^{-1} + \mathbf{B}^{-1} \end{vmatrix} = \begin{vmatrix} \mathbf{A}^{-1} | |\mathbf{A} + \mathbf{B}| |\mathbf{B}^{-1}| = |\mathbf{A}|^{-1} |\mathbf{A} + \mathbf{B}| |\mathbf{B}|^{-1} \\ |\mathbf{A}| \neq 0, |\mathbf{B}| \neq 0, |\mathbf{A} + \mathbf{B}| \neq 0 \end{vmatrix} \Rightarrow |\mathbf{A}^{-1} + \mathbf{B}^{-1}| \neq 0
          \Rightarrow A<sup>-1</sup> + B<sup>-1</sup> 是非奇异矩阵
        (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} = [\mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})\mathbf{B}^{-1}]^{-1} = (\mathbf{B}^{-1})^{-1}(\mathbf{A} + \mathbf{B})^{-1}(\mathbf{A}^{-1})^{-1} = \mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A} ---6
```