Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Distribuição multivariada

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Revisão

Distribuição contínua univariada

- Normal
- Gama
- Beta

Funções no R relacionadas a distribuições comuns:

- rnorm, rgamma, rbeta
- dnorm, dgamma, dbeta
- pnorm, pgamma, pbeta
- qnorm, qgamma, qbeta

Distribuição multivariada

Probabilidade envolvendo mais de uma variável aleatório

Modelar fenômenos reais pode requer um modelo de distribuição com mais variáveis;

Estudos ambientais: temperatura, umidade, concentração de gases, ...;

Genômica: Cada posição do nucleotídeo pode ser uma variável aleatória.

Conceitos expandidos de probabilidade

Cálculo da probabilidade de um evento dado que algum outro evento a priori aconteceu e que temos a sua probabilidade.

P(A|B) → Probabilidade do evento A dado evento B.

Exemplo:

Coloração das ervilhas de Mendel.

Característica cor: codificado por um gene com dois alelos (Y e y);

Y: codifica para fenótipo de cor amarela;

y: codifica para fenótipo de cor verde.

Suponha que temos uma ervilha de cor amarela. Qual a probabilidade dele ser heterozigoto?

Genótipo	Fenótipo	Prob	
YY	amarelo	1/4	
Yy, yY	amarelo	1/2	
уу	verde	1/4	

Suponha que temos uma ervilha de cor amarela. Qual a probabilidade dele ser heterozigoto?

P(yY ou Yy | amarelo) = 2/3

Suponha que temos uma ervilha de cor amarela. Qual a probabilidade dele ser heterozigoto?

P(amarelo) = 3/4 P(yY ou Yy \cap amarelo) = 2/4

P(yY ou Yy | amarelo) = P(yY ou Yy ∩ amarelo) / P(amarelo) = 2/3

Probabilidades em cada conjunto de ramos soma 1

Soma das interseções é igual a 1

Independência

Conceitos expandidos de probabilidade

Eventos independentes → Quando a ocorrência de um não altera a probabilidade da ocorrência do outro.

Independência entre eventos

Eventos independentes → Quando a ocorrência de um não altera a probabilidade da ocorrência do outro.

Se A e B são eventos independentes, então:

$$P(A|B) = P(A), e P(B|A) = P(B).$$

Considerando que $P(A|B) = P(A \cap B)/P(B)$

Podemos reescrever a fórmula:

$$P(A \cap B) = P(A)P(B)$$

Mutuamente exclusivo ≠ independente

Eventos mutuamente exclusivo → interseção é vazio;

Independente → A ocorrência de um evento não interfere no outro;

Independência em mais de dois eventos

$$P(A \cap B \cap C) = P(A)*P(B)*P(C)$$

Se a expressão acima for verdadeira, então os pares de eventos também serão independentes entre eles.

Distribuição multivariada

Probabilidade envolvendo mais de uma variável aleatório

Variáveis:

- Discreta
- Contínua

Distribuição

- Conjunta;
- Marginal;
- Condicional.

Probabilidade e distribuição multivariada discreta

		Nucleotide at position 1				
7		A	T	C	G	
Nucleotide at position 2	A	0.2	0.1	0	0.1	
at po	T	0	0.1	0.1	0.1	
eotide	C	0.1	0	0.1	0	
Nucl	G	0	0.1	0	0	

P(A1 ∩ A2)

Probabilidade e distribuição conjunta discreta

P(A1 ∩ A2)

Distribuição de probabilidade multivariada

Função massa de probabilidade

Tabela de probabilidades conjunta → Probabilidades devem somar 1

Probabilidade e distribuição conjunta

		X= Nu	X= Nucleotide at position 1			
00		A	T	C	G	
Y=Nucleotide at position 2	A	0.2	0.1	0	0.1	
ide at	T	0	0.1	0.1	0.1	
ucleot	C	0.1	0	0.1	0	
Y=N	G	0	0.1	0	0	

$$P(X=xi, Y=yi) = P(X=xi \cap Y=yi)$$

Probabilidade e distribuição marginal

		Nucleotide at position 1				Marginal probabilities
7		A	T	C	G	for rows
Nucleotide at position 2	A	0.2	0.1	0	0.1	0.4
at po	T	0	0.1	0.1	0.1	0.3
eotide	C	0.1	0	0.1	0	0.2
Nucl	G	0	0.1	0	0	0.1
Margina probabil columns	lities for	0.3	0.3	0.2	0.2	1

Probabilidade marginal P(X=A)

Lei da probabilidade total

Distribuição de probabilidade multivariada

Probabilidade e distribuição condicional

		Nucleotide at position 1 (X)				Marginal probabilities
3		A	T	C	G	for rows
Nucleotide at position 2(Y)	A	0.2	0.1	0	0.1	0.4
at po	T	0	0.1	0.1	0.1	0.3
eotide	C	0.1	0	0.1	0	0.2
Nucl	G	0	0.1	0	0	0.1
Margir probab column	ilities for	0.3	0.3	0.2	0.2	1

$$P(X=A \mid Y=A) = ?$$

$$P(X=A \cap Y=A) = 0,2$$

$$P(Y=A) = 0,4$$

$$P(X=A \mid Y=A) = 0,2/0,4$$

$$P(X=A | Y=A) = \frac{1}{2}$$

$$P(X=T | Y=A) = \frac{1}{4}$$

$$P(X=C \mid Y=A) = 0$$

$$P(X=G | Y=A) = \frac{1}{4}$$

Distribuição condicional

Distribuição multivariada contínua

Distribuição conjunta → função densidade de probabilidade conjunta;

Duas variáveis aleatórias (X, Y) → fdp conjunta equivale a uma área (A).

$$P((X,Y) \in A) = \int \int f(x,y) dy dx$$

Probabilidade de X e Y estar na área A equivale ao volume sob a área A.

Distribuição multivariada conjunta contínua

Distribuição multivariada contínua

Distribuição marginal

- Discreta: soma das probabilidades ao longo de uma variável;
- Contínua: integral da função densidade de probabilidade por uma das variáveis

$$f_x(x) = \int f(x,y) dy$$

Distribuição multivariada contínua marginal

Distribuição multivariada contínua

Distribuição condicional

Se **X** e **Y** possuem uma função densidade de probabilidade conjunta **f**(**x**,**y**), então a função densidade de probabilidade condicional para qualquer intervalo de X, dado que Y=y, é definido como a função conjunta de X e Y dividido pela função marginal de Y=y.

$$f_{x|y}(x|y) = rac{f(x,y)}{f(y)}$$

Distribuição multivariada contínua condicional

