ANALYTIQUE DU PRODUIT SCALAIRE DANS LE PLAN

Capacités attendues

- Exprimer le parallélisme et l'orthogonalité de deux droites;
- Utiliser le produit scalaire pour calculer des distances, des aires et des mesures d'angles;
- Reconnaitre l'ensemble des points M du plan vérifiant : $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$;
- Déterminer le centre et le rayon d'un cercle défini à l'aide d'une équation cartésienne;
- Passer d'une équation cartésienne à une représentation paramétrique et inversement;
- Utiliser l'analytique du produit scalaire pour résoudre des problèmes géométriques et algébriques.

6	S ANALYTIQUE DU PRODUIT SCALAIRE DANS LE PLAN	2
1)	Produit scalaire	4
	1 Expression triangulaire du produit scalaire	4
	2 Règles de calcul	4
П	Vecteurs orthogonaux	4
Ш	Autres expressions du produit scalaire	5
	1 Cas des vecteurs colinéaires	5
	2 Avec des projetés orthogonaux	5
IV	Expression analytique du produit scalaire	6
V	Droite dans le plan	7
	1 Vecteur directeur et représentation paramétrique d'une droite	7
	2 Vecteur normal et équation cartésienne d'une droite	7
VI	Cercle dans le plan	9
	1 Équations de cercles	9
	a Forme générale	9
	b Cercle de diamètre donné	9
	c Cercle défini par trois points non alignés	10
	2 Représentation paramétrique d'un cercle	11
VI		12
	1 Théorème de la médiane	12
	2 Formules d'Al Kashi	
	3 Formule des sinus et cosinus	

Produit scalaire

Expression triangulaire du produit scalaire

Définition On appelle produit scalaire de \overrightarrow{u} et \overrightarrow{v} le nombre réel noté \overrightarrow{u} . \overrightarrow{v} et défini par :

$$\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u};\overrightarrow{v})$$

Le produit scalaire d'un vecteur \overrightarrow{u} par lui-même $(\overrightarrow{u}.\overrightarrow{u})$ est appelé carré scalaire de \overrightarrow{u} et se note \overrightarrow{u}^2 .

Application

Soit un triangle équilatéral OAB tel que OA = 2. Calculer $\overrightarrow{OA} \cdot \overrightarrow{OB}$.

Solution

On a
$$\|\overrightarrow{OA}\| = 2$$
, $\|\overrightarrow{OB}\| = 2$ et $(\overrightarrow{OA}; \overrightarrow{OB}) = \pm \frac{\pi}{3}$. Ainsi $\overrightarrow{OA} \cdot \overrightarrow{OB} = 2 \times 2 \times \cos(\pm \frac{\pi}{3}) = 2 \times 2 \times \frac{1}{2} = 2$

2 Règles de calcul

Propriété Quels que soient \overrightarrow{u} et \overrightarrow{v} :

•
$$\overrightarrow{0} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{0} = 0$$

•
$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{v}.\overrightarrow{u}$$

•
$$\overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}.\overrightarrow{v}+\overrightarrow{u}.\overrightarrow{w}$$

$$\bullet \ (\overrightarrow{v} + \overrightarrow{w}).\overrightarrow{u} = \overrightarrow{v}.\overrightarrow{u} + \overrightarrow{w}.\overrightarrow{u}$$

•
$$\overrightarrow{u}.(\overrightarrow{kv}) = \overrightarrow{k} \times (\overrightarrow{u}.\overrightarrow{v})$$

•
$$(\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + 2\overrightarrow{u}.\overrightarrow{v} + \overrightarrow{v}^2$$

•
$$(\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u}^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$$

•
$$(\overrightarrow{u} + \overrightarrow{v}).(\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

Vecteurs orthogonaux

Définition Soient $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$ deux vecteurs dans le plan.

Les vecteurs
$$\overrightarrow{u}$$
 et \overrightarrow{v} sont orthogonaux si :

Propriété Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si \overrightarrow{u} . $\overrightarrow{v} = 0$.

 $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$ ou $(OA) \perp (OB)$

Démonstration

$$\overrightarrow{u}.\overrightarrow{v} = 0 \Leftrightarrow ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}; \overrightarrow{v}) = 0$$

$$\Leftrightarrow ||\overrightarrow{u}|| = 0 \text{ ou } ||\overrightarrow{v}|| = 0 \text{ ou } \cos(\overrightarrow{u}; \overrightarrow{v}) = 0$$

$$\Leftrightarrow \overrightarrow{u} = \overrightarrow{0} \text{ ou } \overrightarrow{v} = \overrightarrow{0} \text{ ou } (\overrightarrow{u}; \overrightarrow{v}) = \frac{\pi}{2} + k \times 2\pi$$

$$\Leftrightarrow \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux}$$

Autres expressions du produit scalaire

1 Cas des vecteurs colinéaires

Propriété • Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens alors $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$

• Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de sens contraires alors $\overrightarrow{u} \cdot \overrightarrow{v} = -\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|$

Démonstration

• Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens alors $(\overrightarrow{u}; \overrightarrow{v}) \equiv 0[2\pi]$ Ainsi, $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(0) = ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$

• Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de sens contraires, alors $(\overrightarrow{u}; \overrightarrow{v}) \equiv \pi[2\pi]$ Ainsi, $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\pi) = -||\overrightarrow{u}|| \times ||\overrightarrow{v}||$

Conséquences :

• Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens alors $\overrightarrow{u}.\overrightarrow{v} > 0$ et si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et sens contraires alors $\overrightarrow{u}.\overrightarrow{v} < 0$

• Quel que soit le vecteur \overrightarrow{u} , $\overrightarrow{u}^2 = ||\overrightarrow{u}||^2$

Avec des projetés orthogonaux

Propriété Soient A, B, C et D quatre points du plan. Si C' et D' sont les projeté orthogonaux de C et D sur (AB) alors $\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{C'D'}$

Démonstration

On a \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. $(\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}) = \overrightarrow{AB}$. $\overrightarrow{CC'} + \overrightarrow{AB}$. $\overrightarrow{C'D'} + \overrightarrow{AB}$. $\overrightarrow{D'D}$. Or C' et D' sont les projeté orthogonaux de C et D sur (AB) alors $(CC') \perp (AB)$ et $(DD') \perp (AB)$. Ainsi \overrightarrow{AB} . $\overrightarrow{CC'} = 0$ et \overrightarrow{AB} . $\overrightarrow{DD'} = 0$. D'où \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. $\overrightarrow{C'D'}$.

Application

 \overrightarrow{ABC} est un triangle isocèle en A tel que $\overrightarrow{AB} = 3$ et $\overrightarrow{BC} = 4$. O est le milieu du segment [BC]. Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{CA} \cdot \overrightarrow{BC}$.

Solution

Le projeté orthogonal de A sur (BC) est O donc \overrightarrow{BA} . $\overrightarrow{BC} = \overrightarrow{BO}$. $\overrightarrow{BC} = BO \times BC = 2 \times 3 = 6$ Le projeté orthogonal de A sur (BC) est O donc \overrightarrow{CA} . $\overrightarrow{BC} = \overrightarrow{CO}$. $\overrightarrow{BC} = -CO \times BC = -2 \times 3 = -6$

IV

Expression analytique du produit scalaire

Propriété

Soit $(O; \overrightarrow{i}; \overrightarrow{j})$ un repère orthonormal du plan. Si $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$ alors $\overrightarrow{u}.\overrightarrow{v} = xx' + yy'$.

Démonstration

On a $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$ deux vecteurs dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$. Alors $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j}$. Ainsi:

$$\overrightarrow{u}.\overrightarrow{v} = \left(x\overrightarrow{i} + y\overrightarrow{j}\right).\left(x'\overrightarrow{i} + y'\overrightarrow{j}\right)$$

$$= x\overrightarrow{i}.x'\overrightarrow{i} + x\overrightarrow{i}.y'\overrightarrow{j} + y\overrightarrow{j}.x'\overrightarrow{i} + y\overrightarrow{j}.y'\overrightarrow{j}$$

$$= xx'\overrightarrow{i}.\overrightarrow{i} + xy'\overrightarrow{i}.\overrightarrow{j} + yx'\overrightarrow{j}.\overrightarrow{i} + yy'\overrightarrow{j}.\overrightarrow{j}$$

Et on a $\overrightarrow{i} \cdot \overrightarrow{i} = 1$, $\overrightarrow{j} \cdot \overrightarrow{j} = 1$ et $\overrightarrow{i} \cdot \overrightarrow{j} = \overrightarrow{j} \cdot \overrightarrow{i} = 0$ car $(O; \overrightarrow{i}; \overrightarrow{j})$ est un repère orthonormé. Donc $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$.

Remarque

$$\overrightarrow{u} \cdot \overrightarrow{i} = x \times 1 + y \times 0 = x$$
 et $\overrightarrow{u} \cdot \overrightarrow{j} = x \times 0 + y \times 1 = x$

Application

Dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$, soient $\overrightarrow{u}(6;3)$, $\overrightarrow{v}(3;-1)$ et $\overrightarrow{w}(-2;2)$ Calculer $\overrightarrow{u}.\overrightarrow{v}, \overrightarrow{u}.\overrightarrow{w}$ et $\overrightarrow{v}.\overrightarrow{w}$.

Solution

$$\overrightarrow{u} \cdot \overrightarrow{v} = 6 \times 3 + 3 \times (-1) = 18 - 3 = 15$$

 $\overrightarrow{u} \cdot \overrightarrow{w} = 6 \times (-2) + 3 \times 2 = -12 + 6 = -6$
 $\overrightarrow{v} \cdot \overrightarrow{w} = 3 \times (-2) + (-1) \times 2 = -6 - 2 = -8$

Droite dans le plan

Vecteur directeur et représentation paramétrique d'une droite

Définition

On dit que \overrightarrow{u} est un vecteur directeur d'une droite (d) si pour tous points A, B de (d), \overrightarrow{u} est colinéaire à \overrightarrow{AB} . C'est-à-dire $\det(\overrightarrow{u}; \overrightarrow{AB}) = 0$.

Remarque

- Deux droites sont dites parallèles lorsque leurs vecteurs directeurs sont colinéaires.
- Elles sont dites perpendiculaires lorsque leurs vecteurs directeurs sont orthogonaux.

Propriété

Une droite (*d*) est entièrement déterminée par la donnée

- d'un point $A \in (d)$
- d'un vecteur directeur \overrightarrow{u} .

Ceci donne une **représentation paramétrique** de (d) : si $A(x_A; y_A)$ et $\overrightarrow{u}(\alpha; \beta)$, on a :

$$(d): \left\{ \begin{array}{l} x = x_A + t\alpha \\ y = y_A + t\beta \end{array} \right. / t \in \mathbb{R}$$

Démonstration

Soient $A(x_A; y_A) \in (d)$ et $\overrightarrow{u}(\alpha; \beta)$ un vecteur directeur de (d).

Alors pour tout point $M(x;y) \in (d)$, on a \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

Ainsi
$$\overrightarrow{AM} = t \overrightarrow{u}$$
 tel que $t \in \mathbb{R}$
C'est-à-dire $\begin{cases} x - x_A = t\alpha \\ y - y_A = t\beta \end{cases} / t \in \mathbb{R}$. D'où $\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \end{cases} / t \in \mathbb{R}$

Vecteur normal et équation cartésienne d'une droite

Définition

Un vecteur non nul \overrightarrow{n} est dit normal à une droite (d) si la direction de \overrightarrow{n} est orthogonale à celle de (d).

Propriété 1

Le plan est muni d'un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1 Une droite de vecteur normal $\overrightarrow{n}(a;b)$ a une équation de la forme ax + by + c = 0avec $c \in \mathbb{R}$.
- 2 Étant donnés trois réels a, b et c où a et b ne sont pas nuls simultanément, l'ensemble des points dont les coordonnées vérifient ax + by + c = 0 est une droite de vecteur normal $\overrightarrow{n}(a;b)$.

Démonstration

1/ Soit (*d*) une droite de vecteur normal $\overrightarrow{n}(a;b)$ et soit $A(x_0;y_0) \in (d)$.

Soit
$$M(x; y)$$
, on a $\overrightarrow{AM}(x - x_0; y - y_0)$

$$M(x;y) \in (d) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{n} = 0 \Leftrightarrow (x-x_0)a + (y-y_0)b = 0 \Leftrightarrow ax + by + c = 0 \text{ avec } c = -ax_0 - by_0.$$

2/ Soit (d) l'ensemble des points
$$M(x; y)$$
 tels que $ax + by + c = 0$ et soit $A(x_A, y_A) \in (d)$.

$$M(x;y) \in (d)$$
 $\Leftrightarrow ax + by + c = 0 = ax_A + by_A + c$
 $\Leftrightarrow a(x - x_A) + b(y - y_A) = 0$

$$\Leftrightarrow \overrightarrow{n} \cdot \overrightarrow{AM} = 0$$

$$\Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \Leftrightarrow M$$
 appartient à la droite passant par A et de vecteur normal \overrightarrow{n}

Application

Dans un repère orthonormal, on considère les points A(3;-1) et B(2;4). Déterminer une équation de la médiatrice (m) de [AB].

Solution

La médiatrice de [AB] est la droite perpendiculaire à (AB) passant par le milieu I de [AB].

On a $\overrightarrow{AB}(-1;5)$ donc une équation de (m) est de la forme -x + 5y + c = 0.

De plus,
$$I\left(\frac{5}{2}; \frac{3}{2}\right) \in (m) \text{ donc } -\frac{5}{2} + 5 \times \frac{3}{2} + c = 0 \text{ donc } c = -5.$$

Une équation de (m) est donc -x + 5y - 5 = 0.

Propriété 2

La distance du point A à la droite (d) est égale à $AH = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$ où H est le projeté orthogonal de A sur (d).

Démonstration

Soient (*d*) une droite d'équation ax+by+c=0, $\overrightarrow{n}(a;b)$ un vecteur normal à la droite (*d*) et $A(x_A;y_A)$ un point du plan.

Soit $H(x_H; y_H)$ le projeté orthogonal du point A sur la droite (d).

(Voir la figure ci-contre)

On a
$$\overrightarrow{AH} \cdot \overrightarrow{n} = (x_H - x_A)a + (y_H - y_A)b$$

= $(ax_H + by_H) - (ax_A + by_A)$

Or $H \in (d)$ alors $ax_H + by_H + c = 0$.

Ainsi $ax_H + by_H = -c$.

Donc
$$\overrightarrow{AH} \cdot \overrightarrow{n} = -(ax_A + by_A + c)$$

D'où
$$|\overrightarrow{AH}.\overrightarrow{n}| = |ax_A + by_A + c|$$

Et on a $|\overrightarrow{AH}.\overrightarrow{n}| = ||\overrightarrow{AH}||.||\overrightarrow{n}||$ car \overrightarrow{AH} et \overrightarrow{n} sont colinéaires.

Soit
$$\|\overrightarrow{AH}\| = \frac{|\overrightarrow{AH}.\overrightarrow{n}|}{\|\overrightarrow{n}\|} = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$$

VI Cercle dans le plan

- **Équations de cercles**
- **Torme générale**

Définition Soit Ω un point dans le plan et soit r un réel positif.

Le cercle (C) de centre Ω et de rayon r est l'ensemble des points M du plan tel que $\Omega M = r$ et on le désigne par $C(\Omega; r)$

Propriété Une équation du cercle (\mathcal{C}) de centre $A(x_A; y_A)$ et de rayon r est : $(x-x_A)^2 + (y-y_A)^2 = r^2$

Démonstration

$$M(x;y) \in (\mathcal{C}) \Leftrightarrow AM = R \Leftrightarrow AM^2 = r^2 \Leftrightarrow (x - x_A)^2 + (y - y_A)^2 = R^2.$$

Application

Quelle est la nature de l'ensemble (C) des points M(x; y) tels que $x^2 + y^2 - 6x + 2y + 5 = 0$?

Solution

$$M(x;y) \in (C)$$
 $\Leftrightarrow x^2 + y^2 - 6x + 2y + 5 = 0 \Leftrightarrow x^2 - 6x + y^2 + 2y + 5 = 0$
 $\Leftrightarrow (x-3)^2 - 9 + (y+1)^2 - 1 + 5 = 0 \Leftrightarrow (x-3)^2 + (y+1)^2 = 5$

(C) est donc le cercle de centre $\Omega(3;-1)$ et de rayon $\sqrt{5}$.

b Cercle de diamètre donné

Propriété On considère deux points A et B du plan. Le cercle (C) de diamètre [AB] est l'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Cette égalité permet de trouver son équation : $(x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$

Démonstration

 $M \in (\mathcal{C}) \Leftrightarrow M = A \text{ ou } M = B \text{ ou } AMB \text{ est un triangle rectangle en } M \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0.$

Application

Déterminer une équation du cercle (C) de diamètre [AB] avec A(2;2) et B(6;-2).

Solution

Soit
$$M(x;y)$$
. On a $\overrightarrow{MA}(2-x;2-y)$ et $\overrightarrow{MB}(6-x;-2-y)$.

$$M(x;y) \in (\mathcal{C}) \iff \overrightarrow{MA} \cdot \overrightarrow{MB} = 0$$

$$\Leftrightarrow (2-x)(6-x) + (2-y)(-2-y) = 0 \Leftrightarrow 12-8x+x^2-4-2y+2y+y^2 = 0$$

Une équation de (C) est donc $x^2 + y^2 - 8x + 8 = 0$.

Cercle défini par trois points non alignés

Propriété

Par trois points non alignés A, B et C passe un seul cercle (C) de centre Ω , le point d'intersection des médiatrices du triangle ABC, et de rayon $r = \Omega A$. Ce cercle est appelé le cercle circonscrit au triangle ABC.

Application

Déterminer une équation du cercle circonscrit (\mathcal{C}) au triangle ABC tels que : A(2;1), B(4;-1) et C(2;3).

Solution

Soient I(3;0) et J(2;2) respectivement les milieux des segments [AB] et [AC]. Soient (Δ) et (Δ') respectivement les médiatrices des segments [AB] et [AC].

• Une équation de (Δ) :

Soit
$$M(x;y)$$
 un point dans le plan . On a : $M(x;y) \in (\Delta)$ $\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{IM} = 0$ $\Leftrightarrow 2(x-3) - 2y = 0$ $\Leftrightarrow x - y - 3 = 0$

Soit
$$(\Delta)$$
 : $x - y - 3 = 0$.

• Une équation de (Δ) :

Soit
$$M(x;y)$$
 un point dans le plan . On a : $M(x;y) \in (\Delta')$ $\iff \overrightarrow{AC}.\overrightarrow{JM} = 0$ $\iff 0 \times (x-2) + 2(y-2) = 0$ $\iff y-2 = 0$

Soit
$$(\Delta'): y - 2 = 0$$
.

• Les coordonnées de Ω :

Le centre Ω du cercle (\mathcal{C}) est l'intersection de (Δ) et (Δ').

Ainsi le couple (x; y) des coordonnées de Ω est solution du système :

$$\begin{cases} x-y-3=0 \\ y-2=0 \end{cases} \Leftrightarrow \begin{cases} x-y-3=0 \\ y=2 \end{cases} \Leftrightarrow \begin{cases} x=5 \\ y=2 \end{cases}. \text{ Donc } \Omega(5:2).$$

• Le rayon *r* :

On a:
$$r = \Omega A = \sqrt{(5-2)^2 + (2-1)^2} = \sqrt{10}$$
.

$$M(x;y) \in (\mathcal{C}) \Leftrightarrow \Omega M = r \Leftrightarrow (x-5)^2 + (y-2)^2 = 10 \Leftrightarrow x^2 + y^2 - 10x - 4y + 19 = 0$$

Donc une équation du cercle (\mathcal{C}) est : $x^2 + y^2 - 10x - 4y + 19 = 0$.

Représentation paramétrique d'un cercle

Representation parametrique à un cercie

Propriété

Dans un plan $\mathcal P$ rapporté à un repère orthonormé, on considère un cercle $\mathcal C$ de centre $\Omega(a;b)$ et de rayon r .

Le cercle $\mathcal C$ est l'ensemble des points M(x;y) du plan qui vérifient le système : $\begin{cases} x=a+r\cos(\theta) \\ x=b+r\sin(\theta) \end{cases} / (\theta \in \mathbb R)$

Ce système est appelé une représentation paramétrique du cercle C.

VII

Longueurs et angles dans un triangle

1

Théorème de la médiane

Propriété

On considère deux points A et B du plan et I le milieu de [AB]. Pour tout point M du plan, on a :

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$

Démonstration

$$\begin{split} MA^2 + MB^2 &= \overrightarrow{MA}^2 + \overrightarrow{MB}^2 \\ &= (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2 \\ &= \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IA} + \overrightarrow{IA}^2 + \overrightarrow{MI}^2 + 2\overrightarrow{MI}.\overrightarrow{IB} + \overrightarrow{IB}^2 \\ &= 2MI^2 + 2\overrightarrow{MI}.(\overrightarrow{IA} + \overrightarrow{IB}) + IA^2 + IB^2 \end{split}$$

Or I est le milieu de [AB] donc $IA = IB = \frac{1}{2}AB$ donc $IA^2 = IB^2 = \frac{1}{4}AB^2$

De plus $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.

Ainsi $MA^2 + MB^2 = 2MI^2 + 2 \times \frac{1}{4}AB^2 = 2MI^2 + \frac{1}{2}AB^2$.

Application

ABC est un triangle tel que AB = 6, AC = 8 et BC = 12. Calculer AI où I est le milieu de [BC].

Solution

D'après le théorème de la médiane : $AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$.

On a donc $2AI^2 = 6^2 + 8^2 - \frac{1}{2} \times 12^2 = 28$. Ainsi $AI = \sqrt{14}$.

2

Formules d'Al Kashi

Propriété

On considère un triangle *ABC*. On pose a = BC, b = AC, c = AB, $\widehat{A} = \widehat{BAC}$, $\widehat{B} = \widehat{ABC}$ et $\widehat{C} = \widehat{ACB}$. On a :

$$a^{2} = b^{2} + c^{2} - 2bc\cos(\widehat{A})$$

 $b^{2} = a^{2} + c^{2} - 2ac\cos(\widehat{B})$

$$c^2 = a^2 + b^2 - 2ab\cos(\widehat{C})$$

Démonstration

$$BC^2 = \overrightarrow{BC}^2 = (\overrightarrow{BA} + \overrightarrow{AC})^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA}.\overrightarrow{AC} + \overrightarrow{AC}^2 = BA^2 + AC^2 - 2\overrightarrow{AB}.\overrightarrow{AC}$$

Ainsi $BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC})$ soit $a^2 = b^2 + c^2 - 2bc\cos(\widehat{A})$

Application

ABC est un triangle tel que AC = 9, AB = 5 et $\widehat{A} = \frac{\pi}{3}$. Calculer BC.

Solution

D'après la formule d'Al Kashi:

$$BC^{2} = AB^{2} + AC^{2} - 2 \times AB \times AC \times \cos(\widehat{A}) = 5^{2} + 9^{2} - 2 \times 5 \times 9 \times \cos(\frac{\pi}{3}) = 61$$
. Ainsi $BC = \sqrt{61}$

Formule des sinus et cosinus

Propriété

Dans un plan rapporté à un repère orthonormé $R = (O, \vec{i}, \vec{j})$, on considère deux vecteurs $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j}$ et soit $(\widehat{u}; \widehat{v}) = \alpha$. On a :

•
$$\cos(\alpha) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}.$$

•
$$\sin(\alpha) = \frac{\det(\overrightarrow{u}; \overrightarrow{v})}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}.$$

Démonstration

• D'après l'expression trigonométrique du produit scalaire on a :

$$\cos(\alpha) = \frac{\overrightarrow{u}.\overrightarrow{v}}{\|\overrightarrow{u}\|.\|\overrightarrow{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}.$$

• On a $(\widehat{u}; \widehat{v}) = \alpha$.

Soit \overrightarrow{w} un vecteur tels que $(\overrightarrow{u}; \overrightarrow{w}) = \frac{\pi}{2}$ et $|\overrightarrow{w}| = |\overrightarrow{u}|$ (voir la figure ci-contre)

On a donc
$$\overrightarrow{w}(-y;x)$$
 et $(\overrightarrow{v};\overrightarrow{w}) = \frac{\pi}{2} - \alpha$. Ainsi $\cos(\overrightarrow{v};\overrightarrow{w}) = \cos(\frac{\pi}{2} - \alpha) = \frac{\overrightarrow{v}.\overrightarrow{w}}{\|\overrightarrow{v}\|.\|\overrightarrow{w}\|} = \frac{xy' - yx'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$

Sachons que $\det(\widehat{u}; \widehat{v}) = xy' - yx'$ et $\cos(\frac{\pi}{2} - \alpha) = \sin(\alpha)$

Donc
$$\sin(\alpha) = \frac{\det(\overrightarrow{u}; \overrightarrow{v})}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}.$$

Aire d'un triangle

Propriété 1 On considère un triangle ABC et on appelle S son aire. On a : $S = \frac{1}{2}bc\sin(\widehat{A}) = \frac{1}{2}ac\sin(\widehat{B}) = \frac{1}{2}ab\sin(\widehat{C})$

$$S = \frac{1}{2}bc\sin(\widehat{A}) = \frac{1}{2}ac\sin(\widehat{B}) = \frac{1}{2}ab\sin(\widehat{C})$$

Démonstration

Soit *H* le projeté orthogonal de *C* sur *AB*. On a alors $S = \frac{1}{2}AB \times CH$.

Si l'angle \widehat{A} est aigu alors $CH = AC\sin(\widehat{A})$.

Si l'angle \widehat{A} est obtus alors $CH = AC\sin(\pi - \widehat{A}) = AC\sin(\widehat{A})$

Dans tous les cas $S = \frac{1}{2}AB \times AC \times \sin(\widehat{A})$.

Propriété 2 On considère un triangle
$$ABC$$
 et on appelle S son aire. On a :
$$S = \frac{1}{2} |\det(\overrightarrow{AB}; \overrightarrow{AC})| = \frac{1}{2} |\det(\overrightarrow{BA}; \overrightarrow{BC})| = \frac{1}{2} |\det(\overrightarrow{CA}; \overrightarrow{CB})|$$

Démonstration

Soit ABC un triangle tel que BC = a, AC = b et AB = c

On a d'après la propriété $1: S = \frac{1}{2}bc\sin(\widehat{A}) = \frac{1}{2}ac\sin(\widehat{B}) = \frac{1}{2}ab\sin(\widehat{C})$

Or $\sin(\widehat{A}) = |\sin(\overrightarrow{AB}; \overrightarrow{AC})| = \frac{|\det(\overrightarrow{AB}; \overrightarrow{AC})|}{\widehat{AC}}$

Alors $S = \frac{1}{2} |\det(\overrightarrow{AB}; \overrightarrow{AC})|$

De même pour les autres formules.

VIII

Exercices d'approfondissement

- Soit ABCD un carré de centre O et de coté a, I et J sont les points du plan tels que : $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AD}$. On désigne par K le point d'intersection des droites (ID) et (JC). Soit H le projeté orthogonal du point A sur (DI).
 - **1** Faire une figure.
 - **2 a.** Montrer que $\overrightarrow{IA}.\overrightarrow{JC} = -\frac{a^2}{3}$ et que $\overrightarrow{AD}.\overrightarrow{JC} = \frac{a^2}{3}$
 - **b.** En déduire que les droites (*ID*) et (*JC*) sont perpendiculaires.
 - **3 a.** Montrer que $\overrightarrow{DC} \cdot \overrightarrow{DI} = \frac{a^2}{3}$
 - **b.** En déduire que $DK = \frac{a}{\sqrt{10}}$
 - **4 a.** Montrer que $\overrightarrow{IJ}.\overrightarrow{ID} = \frac{7a^2}{9}$ et que $\overrightarrow{IJ}.\overrightarrow{IB} = -\frac{2a^2}{9}$
 - **b.** En déduire que : $\overrightarrow{IJ} \cdot \overrightarrow{IO} = \frac{5a^2}{18}$
 - **5** En utilisant un produit scalaire, montrer que : $IH \times ID = IA^2$. En déduire la distance IH.
- Soit ABCD un carré de coté 1 et I, J, et K sont les milieux respectifs de [AB], [AD] et [IA]. H est le projeté orthogonal de A sur (DI). On considère dans le plan le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$.
 - **1 a.** Déterminer les coordonnés du vecteur \overrightarrow{ID} .
 - **b.** En déduire une équation cartésienne de chacune des droites (ID) et (AH).
 - **c.** Déterminer alors les coordonnées (x;y) du point H.
 - **2** Montrer que les droites (JH) et (HK) sont perpendiculaires.
 - **3** En utilisant un produit scalaire convenable, écrire l'équation réduite du cercle C de diamètre [JK].
 - Soit la droite (Δ): x + 2y = 0. Montrer que (Δ) est tangente au cercle C en A.

03

 $(O, \overrightarrow{i}, \overrightarrow{j})$ étant un repère orthonormé du plan. On donne les points A(1; -2), B(2; 0) et C(0; 1).

- \blacksquare Placer les points A, B et C.
- **2 a.** Calculer \overrightarrow{AB} . \overrightarrow{BC} , AB et BC.
 - **b.** En déduire la nature du triangle ABC.
- **3** Soit *C* l'ensemble des points M(x;y) du plan vérifiant : $x^2 + y^2 x + y 2 = 0$.
 - **a.** Montrer que C est un cercle dont on précisera le centre I et le rayon R
 - **b.** Tracer le cercle *C* et vérifier qu'il est circonscrit au triangle *ABC*.
- 4 En utilisant un produit scalaire convenable, déterminer une équation cartésienne de la droite (*T*) tangente au cercle *C* au point *A*.
- Dans un plan P, on considère un rectangle ABCD de centre O tel que : AB = 8 et AD = 4. On désigne par I, J et K les milieux respectifs de [AB], [DC] et [OI].

 - **2 a.** Montrer que pour tout points *M* du plan *P*, on a :

$$\overrightarrow{MA}$$
, \overrightarrow{MB} + \overrightarrow{MC} , \overrightarrow{MD} = $2MO^2 - 24$

- **b.** En déduire $\overrightarrow{KC}.\overrightarrow{KD}$.
- **3** Déterminer l'ensemble C des points M du plan P tels que :

$$\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = -22$$

05

Dans un plan P, on considère un triangle ABC tel que : AB = a , AC = 2a et $(B\hat{A}C) = \frac{2\pi}{3}$; (a > 0).

- 1 Montrer que $BC = a\sqrt{7}$
- 2 Soit *H* le projeté orthogonal de *C* sur (*AB*).
 - **a.** En utilisant un produit scalaire, montrer que AH = a
 - **b.** Montrer que H est le barycentre des points pondérés (A; 2) et (B; -1).
- **3** Déterminer l'ensemble (E') des points M du plan tels que : $(2\overrightarrow{MA} \overrightarrow{MB}).\overrightarrow{AB} = 0$
- Déterminer l'ensemble (E) des points M du plan tels que : $\frac{MB}{MA} = \sqrt{2}$

- Soit dans un plan P un triangle équilatéral ABC de coté a (a > 0). On désigne par I le milieu du segment [AB].
 - **1 a.** Exprimer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ en fonction de a.
 - **b.** Montrer que pour tout point M de la médiatrice de [AB], on a : \overrightarrow{AB} . $\overrightarrow{AM} = \frac{1}{2}a^2$
 - **2** Soit G le barycentre des points pondérés (A; 3) et (B; -2).
 - **a.** Montrer que $\overrightarrow{GA} = 2.\overrightarrow{AB}$
 - **b.** En déduire *GA* en fonction de *a*.
 - **3 a.** Montrer que pour tout point M du plan, on a : $3MA^2 2MB^2 = MG^2 6a^2$
 - **b.** En déduire l'ensemble : $C = \{ M \in P / 3MA^2 2MB^2 = 3a^2 \}$
- Dans un plan P rapporté à un repère orthonormé $R = (O, \overrightarrow{i}, \overrightarrow{j})$, On considère les points A(-2;1), B(-1;2) et C(1;4). Soit K milieu de [BC].

Soit Γ l'ensemble des points M défini par : $\Gamma = \left\{ M \in P / \overrightarrow{MA} . \overrightarrow{MB} = \overrightarrow{AM} . \overrightarrow{MC} \right\}$

- **1 a.** Montrer que $M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 + 2x 4y + 3 = 0$
 - **b.** En déduire que Γ est un cercle dont on précisera les caractéristiques.
 - **c.** Vérifier que Γ passe par A. Tracer Γ .
- **2** Soit la droite (T): x + y 3 = 0. Montrer que (T) est tangente à Γ en K.
- Soit H(x; y) le projeté orthogonal de O sur la droite (T).

En tenant compte que \overrightarrow{OH} est un vecteur normal à T et que H appartient à T, déterminer les coordonnées de H.

- Dans le plan orienté de sens direct, on considère un rectangle ABCD tel que : BC = 4, AB = 2BC et $(\overrightarrow{BA}, \overrightarrow{BC}) \equiv \frac{\pi}{2}[2\pi]$. On désigne par J le point du segment [CD] tel que $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{CD}$.
 - **1 a.** Calculer AC puis $\overrightarrow{AB} \cdot \overrightarrow{AC}$
 - **b.** En déduire que $\cos(\widehat{BAC}) = \frac{2\sqrt{5}}{5}$.
 - **2 a.** Calculer $\overrightarrow{CA}.\overrightarrow{CB}$ et $\overrightarrow{CJ}.\overrightarrow{CA}$
 - **b.** En déduire que les droites (AC) et (BJ) sont perpendiculaires.
 - **3** Soit G le barycentre des points pondérés (A; 2) et (B; 3)
 - **a.** Construire le point *G*
 - **b.** Pour tout M du plan, on pose $\overrightarrow{U} = 2\overrightarrow{MA} + 3\overrightarrow{MB}$. Exprimer \overrightarrow{U} à l'aide de \overrightarrow{MG}
 - **c.** Déterminer et construire l'ensemble $\Delta = \left\{ M \in P / \overrightarrow{U} . \overrightarrow{AB} = 0 \right\}$