

代数数论讲义

2021 春

作者: 李加宁

组织:中国科学技术大学,安徽省合肥市

目录

1	整数环以及理想		
	1.1	Kronecker-Weber 定理	1
	1.2	类域论介绍	4
	1.3	理想的范	8
2	赋值	9	9
	2.1	赋值的定义	9
	2.2	p 进数	0
	2.3	完备域上的有限维线性空间1	1
	2.4	Hensel 引理, 非阿赋值的延拓	2
	2.5	嵌入,非阿赋值,素理想,在数域中的应用 15	5
3	阿代	尔环与伊代尔群 20	6
	3.1	阿代尔与伊代尔的定义与拓扑 26	6
	3.2	阿代尔与主阿代尔的关系	6
	3.3	伊代尔与主伊代尔的关系	0
	3.4	Haar 测度	2

第一章 整数环以及理想

1.1 Kronecker-Weber 定理

本节利用我们所学的内容给出如下著名定理的初等证明. 我将证明分割成众多习题. 随着课程的深入,这个定理有更简单的证明,特别的它是我们本学期将建立的类域论的直接推论. 但历史上,这个定理是类域论发展初期的重要结果,给后面的发展带来很多启发. K/\mathbb{Q} 是 abel 扩张指 K/\mathbb{Q} 是 Galois 扩张且 Galois 群是 abel 群.

定理 1.1. Kronecker-Weber 定理

◎的有限 abel 扩张均是分圆域的子域.

 \Diamond

练习 1.1 设 L/K 是数域的 Galois 扩张. \mathfrak{p} 是 K 的素理想, \mathfrak{P} 是 L 的 \mathfrak{p} 之上的素理想. $\pi \in \mathfrak{P} \setminus \mathfrak{P}^2$. 记 $I_{\mathfrak{P}}$ 是 \mathfrak{P} 的惯性群, $E = L^{I_{\mathfrak{P}}}$ 是惯性域. 对每个 $i \in \mathbb{Z}_{\geq 0}$ 定义 $I_{\mathfrak{P}}$ 的子群

$$V_i = \{ \sigma \in I_{\mathfrak{P}} : \sigma(x) \equiv x \bmod {\mathfrak{P}}^{i+1}, \forall x \in \mathcal{O}_L \}.$$

特别地 $V_0 = I_{\mathfrak{D}}$.

(1) 证明 $L = E(\pi)$, 从而对每个 i 有

$$V_i = \{ \sigma \in I_{\mathfrak{P}} : \sigma(\pi) \equiv \pi \bmod {\mathfrak{P}}^{i+1} \}.$$

- (2) 证明 $\cap_i V_i = \{1\}$.
- (3) 证明 $\sigma \mapsto \frac{\sigma(\pi)}{\pi} \mod \mathfrak{P}$ 是 V_0 到 $(\mathcal{O}_L/\mathfrak{P})^{\times}$ 的群同态, 其核为 V_1 , 从而诱导了单射 $f: V_0/V_1 \hookrightarrow (\mathcal{O}_L/\mathfrak{P})^{\times}$.

证明映射 f 不依赖于 π 的选取. 如果分解群 $D_{\mathfrak{D}}$ 是 abel 群, 证明 f 的像落在 $(\mathcal{O}_K/\mathfrak{p})^{\times}$ 里.

(4) 设 $i \geq 1$. 证明对 $\sigma \mapsto \frac{\sigma(\pi) - \pi}{\pi^{i+1}} \mod \mathfrak{P}$ 是 V_i 到 $\mathcal{O}_L/\mathfrak{P}$ 的群同态, 其核为 V_{i+1} , 从而诱导了单射

$$V_i/V_{i+1} \hookrightarrow \mathcal{O}_L/\mathfrak{P}$$
.

(5) 证明 V_1 是 V_0 的正规 Sylow p-子群.

接下来的练习中 K/\mathbb{Q} 是有限 abel 扩张, p 是任意素数.

△ 练习 1.2 说明定理1.1可约化到如下结论: (提示: 利用 Galois 理论与有限 abel 群结构定理,)

若 $[K:\mathbb{Q}]=p^k$,则 K 是分圆域的子域.

▲ 练习1.3

设 $[K:\mathbb{Q}]$ 等于 p 的方幂. 本题目为证明下面的 (3) 和 (4).

(1) 设有素数 $q \neq p$ 也在 K 中分歧. 证明 q 在 K 中的分歧指数 $e_q(K/\mathbb{Q})$ 整除 q-1.

 \Diamond

(练习1.1(3).)

(2) 设 $F \subset \mathbb{Q}(\zeta_q)$ 使得 $[F:\mathbb{Q}] = e_q$. 记 L = FK. 对任意数域 $T \subset L$, 记 $I(T/\mathbb{Q})$ 是 q 在 T/\mathbb{Q} 处的惯性群. 证明限制映射给出如下单同态

$$I(L/\mathbb{Q}) \hookrightarrow I(F/\mathbb{Q}) \times I(K/\mathbb{Q}).$$

证明 $I(L/\mathbb{Q}) \cong I(F/\mathbb{Q}) \cong I(K/\mathbb{Q})$ (利用练习1.1(3)) 以及 $KL^{I(L/\mathbb{Q})} = L$.

(3) 将定理1.1归化到如下情形:

若 K/\mathbb{Q} 在 p 以外的素数非分歧, 则 K 是分圆域的子域.

(4) 利用 Minkowski 的判别式定理: "对任何不等于 $\mathbb Q$ 的数域都存在素数在其中分歧",证明:

若 K/\mathbb{Q} 中分歧的素数只有 p, 则 K 是分圆域的子域.

- **练习 1.4** (1) 证明 $\mathbb{Q}(\zeta_{2^{k+2}}) \cap \mathbb{R}$ 是 \mathbb{Q} 的 2^k 次循环扩张 (循环扩张即 Galois 群为循环群的扩张).
 - (2) 设 $p \neq 2$. 证明 $\mathbb{Q}(\zeta_{p^{k+1}})$ 有唯一的子域 F 使得 F/\mathbb{Q} 是 p^k 次循环扩张.
- **练习 1.5** 设 $[K:\mathbb{Q}] = 2^k$ 且在 K 中分歧的素数只有 2.
 - (1) 当 k=1 时, 证明 K 是 $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{-1})$ 或者 $\mathbb{Q}(\sqrt{-2})$, 这三个域是 $\mathbb{Q}(\zeta_8)$ 的全部非平凡子域.
 - (2) 当 k > 1 时,设 $F \subset \mathbb{Q}(\zeta_{2^{k+2}})$ 是练习1.4(1) 中的子域. 记 L = KF,令 $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ 使得 $\sigma|_F$ 是 $\operatorname{Gal}(F/\mathbb{Q})$ 的生成元. 设 E 为 L 被 σ 固定不动的域. 则证明 $E \cap F = \mathbb{Q}$,再证明 $E \cap \mathbb{R} = \mathbb{Q}$,以及 $E = \mathbb{Q}, \mathbb{Q}(\sqrt{-1})$ 或者 $\mathbb{Q}(\sqrt{-2})$. 利用这些证明 $K \subset \mathbb{Q}(\zeta_{2^{k+2}})$.
- **练习 1.6** 利用下面命题1.1的结论证明: 若 $p \neq 2$, $[K:\mathbb{Q}] = p^k$ 且在 K 中分歧的素数只有 p, 则 K 是分圆域的子域.

结合这些练习, Kronecker-Weber 定理的证明就差下面这个关键命题了.

命题 1.1

设p是奇素数, K/\mathbb{Q} 是p次 abel 扩张且p是在K中分歧的唯一素数.则 $K \subset \mathbb{Q}(\zeta_{p^2})$.

(题外话, 举例说明如果去掉 abel 的条件, 这个结论不对.)

引理 1.1

记 $F = \mathbb{Q}(\zeta_p), \pi = 1 - \zeta_p, \text{则} \pi^{p-1} = p\mathcal{O}_F.$ 设 $\alpha \in \mathcal{O}_F$, 我们还有

- (1) 对任意 $m \in \mathbb{Z}_{>1}$, 存在 $a_i \in \mathbb{Z}$ 使得 $\alpha = a_0 + a_1\pi + \cdots + a_{m-1}\pi^{m-1}$.
- (2) 若 $\alpha \equiv 1 \mod \pi$, 则存在 $a \in \mathbb{Z}$ 使得 $\zeta_n^a \alpha \equiv 1 \mod \pi^2$.
- (3) 若 $\alpha = \gamma^p, \gamma \in F$ 且 $\alpha \equiv 1 \mod \pi$, 则 $\alpha \equiv 1 \mod \pi^p$.
- (4) 若 $\alpha \equiv 1 \mod \pi^p$, 则 $K(\sqrt[p]{\alpha})/K$ 在 π 处非分歧.

证明 引理的证明留作练习.

证明 [命题1.1的证明] 记 $F = \mathbb{Q}(\zeta)$, $(\zeta = \zeta_p)$. 我们来证明 $L := KF = \mathbb{Q}(\zeta_{p^2})$. 则由于 L/\mathbb{Q} 处是完全分歧,则 $\pi\mathcal{O}_F$ 在 L/F 中完全分歧,如同上面引理, $\pi = 1 - \zeta$.

根据 Kummer 理论, $L = F(\sqrt[p]{\alpha})$ 是 p 次根式扩张. 我们进一步断言可选取适当 α 是 π -单位, 即 $v_{(\pi)}(\alpha) = 0$. 限制映射诱导了同构

$$G := \operatorname{Gal}(L/\mathbb{Q}) \cong \operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(F/\mathbb{Q}).$$

设 $\sigma \in G$ 使得 $\sigma|_F = \mathrm{id}$, $\sigma|_K$ 上是 $\mathrm{Gal}(K/\mathbb{Q})$ 的生成元, 从而 $\sigma^p = 1$. 设 $\tau \in G$ 使得 $\sigma|_K = \mathrm{id}$, $\sigma|_F$ 上是 $\mathrm{Gal}(F/\mathbb{Q})$ 的生成元, 从而 $\sigma^{p-1} = 1$. 因为 $\sigma(\sqrt[p]{\alpha})^p = \sigma(\alpha) = \alpha$ 且 $\sqrt[p]{\alpha} \notin F$, 所以 $\sigma(\sqrt[p]{\alpha}) = \sqrt[p]{\alpha}, \zeta \neq 1$ 是 p 次单位根. 那么利用 $\sigma\tau = \tau\sigma$, 记

$$\theta = \frac{\sigma \tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}},$$

则

$$\theta = \frac{\tau(\zeta)\tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}}, \quad \sigma(\theta) = \frac{\tau(\zeta^2)\tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}}, \quad \theta^p = \frac{\sigma(\alpha)}{\alpha}.$$

由于 $\tau(\zeta)$ 显然不等于 1, 前两个等式说明了 $\theta \notin K$, 最后一个等式说明了 $L = K(\sqrt[p]{\frac{\sigma(\alpha)}{\alpha}})$. 但由于 p 在 L 中完全分歧, 故 $\sigma((\pi)) = (\pi)$, 则 $\frac{\sigma(\alpha)}{\alpha}$ 是 π 单位. 这就证明了断言.

根据中国剩余定理存在 $a \in \mathcal{O}_F$ 且 $\pi \nmid a$, 使得 $a^p \alpha \in \mathcal{O}_F$. 由于 $F(\sqrt[p]{a^p \alpha}) = F(\sqrt[p]{\alpha})$, 所以我们不妨设 $\alpha \in \mathcal{O}_F$. 利用 $F(\sqrt[p]{\alpha}) = F(\sqrt[p]{\alpha^{p-1}})$, 将 α 换成 α^{p-1} , 这样我们可进一步假设 $\alpha \equiv 1 \mod \pi$. 根据上面引理, 取 $\alpha = \zeta_p^a \beta$ 且 $\beta \equiv 1 \mod \pi^2$. 则存在 $c \in \mathbb{Z}$, $p \nmid c$, $m \geq 2$ 使得

$$\beta \equiv 1 + c\pi^m \bmod \pi^{m+1}.$$

利用上面引理中的 $\sigma(\pi) \equiv g\pi \mod \pi^2$, 知

$$\sigma(\beta) \equiv 1 + cg^m \pi^m \mod \pi^{m+1}$$
.

设 $\tau(\zeta) = \zeta^g$. 则 g 是模 p 的原根且

$$\sigma$$
作用 $\frac{\sigma\tau(\sqrt[p]{\alpha})}{(\sqrt[p]{\alpha})^g}$ 不动.

这说明了 $\frac{\tau(\beta)}{\beta^g} = \frac{\tau(\alpha)}{\alpha^g} \in (L^{\times})^p$. 根据上面引理,这推出了

$$\sigma(\beta) \equiv \beta^g \bmod \pi^p. \tag{1.1.1}$$

从而我们有

$$1 + gc\pi^m \equiv 1 + cg^m \pi^m \bmod \pi^{m+1}.$$

现在我们断言 $m \geq p$. 否则 $m+1 \leq p$, 则(1.1.1)推出了 $\sigma(\beta) \equiv \beta^g \mod \pi^{m+1}$. 结合上面几个同余式得出

$$1 + cg^m \pi^m \equiv (1 + c\pi^m)^g \bmod \pi^{m+1}.$$

这会得出 $g^m \equiv g \mod \pi$, 利用 $g \neq p$ 的原根知 $m \geq p$, 矛盾. 这样就证明了

$$\beta \equiv 1 \mod \pi^p$$
.

由于 $L = K(\sqrt[p]{\beta\zeta^a})$, 所以只要能证明 $\beta \in (K^\times)^p$ 就能说明 $L \subset \mathbb{Q}(\zeta_{p^2})$ 了. 反证法, 如果不是, 则域扩张 L'/K 非平凡, 这里 $L' = K(\sqrt[p]{\beta})$. 显然 $LL' \subset L(\zeta_{p^2})$, 所以 L'/\mathbb{Q} 只在 p 处分歧. 根据上面引理, L'/K 在 (π) 处是非分歧的. 这样的话, L'/\mathbb{Q} 关于 p 的惯性域是非平凡的, 从而它的惯性域在每个素数处都非分歧. 这与 Minkowski 定理矛盾. 所以

L' = K.

1.2 类域论介绍

定义 1.1. 无穷素位

设 K 是数域,设 $Hom(K,\mathbb{C})$ 是 K 到 \mathbb{C} 的所有嵌入的集合. $Gal(\mathbb{C}/\mathbb{R})$ 以显然的方式作用在 $Hom(K,\mathbb{C})$ 上, K 的一个无穷素位指这个作用的一个轨道. 若无穷素位由实嵌入代表, 称为实素位; 否则称为复素位.

也就是说, 如果 K 有 r_1 个实嵌入, $2r_2$ 个复嵌入. 则 K 有 r_1 个实素位, r_2 个复素 位.

设 L/K 是有限扩张. 设 $\sigma \in \text{Hom}(K,\mathbb{C})$. 称 $\tau \in \text{Hom}(L,\mathbb{C})$ 在 σ 之上是指 $\tau|_K = \sigma$, 此时也称 σ 在 τ 之下.

设 τ 是L的一个素位,若 τ 本身是复素位但 τ 之下的K的素位是实,则称 τ 在L/K中分歧,否则称 τ 在L/K中完全分裂.

设 σ 是 K 的一个素位, 若 σ 实, 且存在 σ 之上 L 的素位分歧, 则称 σ 在 L/K 中分歧. 其他情形均称 σ 在 L/K 中非分歧 (也称完全分裂).

 \mathcal{O}_K 的非零素理想也被称作 K 的有限素位 (或有限素点).

例 1.1 无穷素位的例子:

- $\mathbb{Q}(\sqrt[3]{2})$ 有一个由 $\sqrt[3]{2} \mapsto \sqrt[3]{2} \in \mathbb{R}$ 决定的实素位,一个复素位 = 一对共轭的复嵌入 (由 $\sqrt[3]{2} \mapsto \zeta_3 \sqrt[3]{2}$ 或 $\overline{\zeta}_3 \sqrt[3]{2}$ 决定.) 所以 \mathbb{Q} 的唯一的无穷素位在 $\mathbb{Q}(\sqrt[3]{2})$ 中分歧.
- 在 $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ 中, \mathbb{Q} 的无穷素位不分歧.
- 在 $\mathbb{Q}(\sqrt{-1})/\mathbb{Q}$ 中, \mathbb{Q} 的无穷素位分歧.
- 练习: 在 $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ 中, 哪些 $\mathbb{Q}(\sqrt{2})$ 的无穷素位分歧?
- 练习: 若 L/K 是 Galois 扩张, 则 K 的实素位 σ 之上的 L 的素位要么全是实的, 要 么全是复的.

例 1.2 无穷素位的分歧对于素理想分解影响的两个例子:

- $p\mathbb{Z}$ 在 $\mathbb{Q}(\sqrt{2})$ 中分裂当且仅当 $p \equiv \pm 1 \mod 8$,即当且仅当 $p\mathbb{Z}$ 中存在一个生成元 $\equiv 1 \mod 8$.
- $p\mathbb{Z}$ 在 $\mathbb{Q}(\sqrt{-1})$ 中分裂当且仅当 $p \equiv 1 \mod 4$ 当且仅当 $p\mathbb{Z}$ 中存在一个正生成元 $\equiv 1 \mod 4$.

以上两个例子将纳入一般的类域论现象.

定义 1.2

K 的一个 modulus 是指" 形式乘积" $\mathfrak{m}_o\mathfrak{m}_\infty$, 其中 \mathfrak{m}_o 是 K 的整理想, \mathfrak{m}_∞ 是 K 的一些不同的实素位的" 形式乘积". 给定两个 modulus \mathfrak{m}_1 , \mathfrak{m}_2 , 我们说 \mathfrak{m}_1 整除 \mathfrak{m}_2 (记作 $\mathfrak{m}_1 \mid \mathfrak{m}_2$) 是指存在 modulus \mathfrak{m}_3 使得 $\mathfrak{m}_2 = \mathfrak{m}_1\mathfrak{m}_3$.

比如在 $K = \mathbb{Q}(\sqrt{2})$, 记 ∞_1, ∞_2 是 K 的实素位. 则 $\mathfrak{m}_1 = (3 + \sqrt{2}) \infty_1$, $\mathfrak{m}_2 = (7) \infty_1 \infty_2$ 就是一些 modulus 的例子, 其中 $\mathfrak{m}_1 \mid \mathfrak{m}_2$.

对 $\alpha \in K$, 符号 $\alpha \equiv 1 \mod + \mathfrak{m}$ 指

$$v_{\mathfrak{p}}(\alpha - 1) \geq v_{\mathfrak{p}}(\mathfrak{m}_o) \quad \forall \mathfrak{p} \mid \mathfrak{m}_o, \quad \mathbb{L}\sigma(\alpha) > 0 \quad \forall \sigma \mid \mathfrak{m}_{\infty}.$$

这里 \mathfrak{p} 是 K 的素理想, $v_{\mathfrak{p}}(\mathfrak{m}_o)$ 指 \mathfrak{m}_o 做素理想分解后 \mathfrak{p} 出现的指数, $v_{\mathfrak{p}}(\alpha) = v_{\mathfrak{p}}((\alpha))$.

定义 1.3. 射线理想类群

设 m 是 K 的一个 modulus. 令 I_K 表示 K 的分式理想群. 记

$$I_K^{\mathfrak{m}} = \{ \mathfrak{a} \in I_K : v_{\mathfrak{p}}(\mathfrak{a}) = 0 \quad \forall \mathfrak{p} \mid \mathfrak{m}_0 \}.$$

换言之, I_K^m 是由与 m_o 互素的素理想生成的 I_K 的子群. 记

$$K_{\mathfrak{m},1} = \{ \alpha \in K : \alpha \equiv 1 \bmod^+ \mathfrak{m} \}.$$

我们记 $i: K^{\times} \to I_K, \alpha \mapsto (\alpha)$. 关于 modulus m 的射线理想类群 Cl(K, m) 为

$$\mathrm{Cl}(K,\mathfrak{m}) := I_K^{\mathfrak{m}}/i(K_{\mathfrak{m},1}).$$

特别的, Cl(K,(1)) 就是理想类群 Cl(K);

例 1.3 (1) $K = \mathbb{Q}$. $\mathfrak{m} = N\infty$. 则 $(\mathbb{Z}/N\mathbb{Z})^{\times} \cong \mathrm{Cl}(K,\mathfrak{m})$. 同构映射由 $a \bmod N \mapsto a\mathbb{Z}$ 诱导. (细节留作练习, 或者见下面一般情形.)

(2) 设 m 为所有实素位的乘积. $I_K^{\mathfrak{m}} = I_K$, $K_{\mathfrak{m},1} = K^+ := \{\alpha \in K : \sigma(\alpha) > 0$, 对每个实嵌入 σ }, K^+ 中的元素称作在 K 中全正. (如果 K 没有实素位, 则称 $K = K_{\mathfrak{m},1}$ 中元素都是全正的, 比如 -1 在 $\mathbb{Q}(\sqrt{-1})$ 中是全正的.) 则 $\mathrm{Cl}(K,\mathfrak{m}) = I_K/i(K^+)$.

命题 1.2

 $Cl(K, \mathfrak{m})$ 是有限的.

证明 证明是通过考察 $Cl(K, \mathfrak{m}) \to Cl(K)$ 的自然映射得到的. 留作练习. 我们后面讲完局部理论时会对这个事实有更清楚的了解.

定义 1.4. Artin 映射

设 L/K 是 abel 扩张, 设 S 是 K 的素理想的有限集且包含所有分歧的素理想. 若 K 的素理想 $p \notin S$, 我们有 $Frob_p = Frob_{p,L/K} \in G$. 所谓 Artin 映射就是将 Frobenieus 映射延拓为如下群同态:

$$\psi_{L/K}: I_K^S \to \operatorname{Gal}(L/K), \quad \prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \mapsto \prod_{\mathfrak{p}} (\operatorname{Frob}_{\mathfrak{p}})^{a_{\mathfrak{p}}}.$$

这里 I_K^S 是由 K 中不属于 S 的素理想生成的 I_K 的子群.

在陈述类域论主定理之前,我们先总结下分圆域的性质.

• 在 $\mathbb{Q}(\zeta)/\mathbb{Q}$, $\mathbb{Q}(\zeta + \zeta^{-1})/\mathbb{Q}$, $\zeta = \zeta_N$ 的情形, 有如下交换图:

- 设 $v = p\mathbb{Z}$ 或者 ∞ , 则 $v \nmid N \infty$ 时, v 在 $\mathbb{Q}(\zeta_N)$ 中非分歧; $v \nmid N$ 时, v 在 $\mathbb{Q}(\zeta_N + \zeta_N^{-1})$ 中非分歧.
- 特别的, $p\mathbb{Z}$ 在 $\mathbb{Q}(\zeta)$ 中完全分裂当且仅当 $p\mathbb{Z} \in i(\mathbb{Q}_{(N)\infty,1})$, 即 $p \equiv 1 \bmod N$;
- $p\mathbb{Z}$ 在 $\mathbb{Q}(\zeta + \zeta^{-1})$ 中完全分裂当且仅当 $p\mathbb{Z} \in i(\mathbb{Q}_{(N),1})$, 即 $p \equiv \pm 1 \mod N$;
- 根据 Kroncker-Weber 定理, 若 F/\mathbb{Q} 是有限 abel 扩张, 且 ∞ 在 F 中分歧, 则 $F \subset \mathbb{Q}(\zeta_N)$ 对某个 N;
- 若 F/\mathbb{Q} 是有限 abel 扩张, 且 ∞ 在 F 中非分歧, 即 $F \subset \mathbb{R}$, 则 $F \subset \mathbb{Q}(\zeta_N + \zeta_N^{-1})$ 对某个 N.
- $\not\equiv M \mid N, \not \supseteq \mathbb{Q}(\zeta_M) \subset \mathbb{Q}(\zeta_N), \mathbb{Q}(\zeta_M + \zeta_M^{-1}) \subset \mathbb{Q}(\zeta_N + \zeta_N^{-1}).$

下面用理想语言来陈述类域论的主要结论. 本课程的一大目的是理解好类域论的陈述和应用.

定理 1.2. 类域论

对任何 K 的 modulus \mathfrak{m} , 存在唯一的有限 abel 扩张 $K(\mathfrak{m})/K$ 使得

- (1) 对任何 $\mathfrak{p} \nmid \mathfrak{m}, \mathfrak{p}$ 在 $K(\mathfrak{m})/K$ 中不分歧;
- (2) $\psi_{K(\mathfrak{m})/K}$ 诱导了同构 $\mathrm{Cl}(K,\mathfrak{m})\cong\mathrm{Gal}(L/K)$.

而且

- (3) 给定两个 modulus $\mathfrak{m}_1, \mathfrak{m}_2,$ 若 $\mathfrak{m}_1 \mid \mathfrak{m}_2$ 则 $K(\mathfrak{m}_1) \subset K(\mathfrak{m}_2)$.
- (4) 设 $L \in K$ 的有限 abel 扩张,则存在 m 使得 $L \subset K(\mathfrak{m})$. 而且,存在 m 使得 $L \subset K(\mathfrak{m})$ 且若 $L \subset K(\mathfrak{m}')$,则 m | m';此时,K 的素位 v(有限或无限) 在 L 中分歧 当且仅当 v | m. (这个 m 称作 L/K 的导子.)

例 1.4 在 $K = \mathbb{Q}$ 的情形, 说明 $\mathbb{Q}((N)\infty) = \mathbb{Q}(\zeta_N)$, $\mathbb{Q}((N)) = \mathbb{Q}(\zeta_N + \zeta_N^{-1})$.

命题 1.3

设 K 是二次域, $d = |d_K|$. 则 $\mathbb{Q}(\zeta_d)$ 是包含 K 的最小分圆域. 这推出了 K 是实二次域时, K 的导子是 (d_K) ; 当 K 是虚二次域时, K 的导子是 $(d_K)\infty$.

这个证明留作练习.

1.2.1 Hilbert 类域

当 K 的 modulus 为 (1) 时, 则 $Cl(K,\mathfrak{m}) = Cl(K)$. 根据类域论, 记 K(1) := K((1)) 为 其对应的射线类域, 由于历史的原因, 这个域也称作 K 的 Hilbert 类域.

推论 1.1

- (1) K(1) 是 K 的极大 abel 且在每个素位 (包括无穷素位) 都非分歧的扩张;
- (2) Artin 映射诱导了同构 $Cl(K) \cong Gal(K(1)/K)$.

 \Diamond

证明 (1) 由定理1.2(4), (2) 是定理1.2(2) 特殊情形.

由于类群是有限的, 所以这个结论告诉我们 K 的极大 abel 非分歧扩张是 K 的有限扩张, 定理1.2还推出

K 的素理想 \mathfrak{p} 是主理想 $\Leftrightarrow \mathfrak{p}$ 在K(1) 中完全分裂.

练习: 若 K/\mathbb{Q} 是 Galois 扩张, 则 $K(1)/\mathbb{Q}$ 也是.

例 1.5

- $K = \mathbb{Q}(\sqrt{-5})$, $Cl(K) \cong \mathbb{Z}/2\mathbb{Z}$, $K(1) = K(\sqrt{5}) = \mathbb{Q}(\sqrt{-5}, \sqrt{-1})$;
- $K = \mathbb{Q}(\sqrt{-14})$, $Cl(K) \cong \mathbb{Z}/4\mathbb{Z}$, shift $K(1) = K(\sqrt{2\sqrt{2}-1})$;
- $K = \mathbb{Q}(\sqrt{-23})$, $Cl(K) \cong \mathbb{Z}/3\mathbb{Z}$, \mathfrak{M} if $K(1) = K(\alpha)$, $\alpha \not\in T^3 T 1$ 的一个根.

给定 $d \in \mathbb{Z}$, 历史上, 人们关心什么样的素数 p 可表示为 $x^2 + dy^2$, $x, y \in \mathbb{Z}$. 这个问题可由类域论描述, 我们讲一个容易叙述的情形.

命题 1.4

设整数 $d \equiv 2,3 \mod 4$ 且无平方因子, $K = \mathbb{Q}(\sqrt{d})$. 设素数 $p \nmid 2d$. 下面等价:

- (1) 存在 $x, y \in \mathbb{Z}$ 使得 $\pm p = x^2 dy^2$;
- (2) $p\mathbb{Z}$ 在 K 中分裂为两个主理想相乘;
- (3) $p\mathbb{Z}$ 在 K(1) 中完全分裂.

证明 (1) 和 (2) 等价是显然的. (2) 和 (3) 等价是由 Hilbert 类域的性质.

如果 K(1) 恰好也是 $\mathbb Q$ 的 abel 扩张时,则上面等价条件中的 (3) 可进一步用 $p \equiv a \bmod N$ 这样的同余条件描述.

例 1.6

• $p = x^2 + 5y^2$ 当且仅当 p 在 $K(1) = \mathbb{Q}(\sqrt{-5}, \sqrt{-1})$ 中分裂, 这里 $K = \mathbb{Q}(\sqrt{-5})$. 此 时由于 $K(1) \subset \mathbb{Q}(\zeta_{20})$. 在同构 $Gal(\mathbb{Q}(\zeta_{20})/\mathbb{Q}) \cong (\mathbb{Z}/20\mathbb{Z})^{\times}$ 下, 有

$$Gal(\mathbb{Q}(\zeta_{20})/K(1)) \cong \{1 \mod 20, 9 \mod 20\}.$$

所以 p 在 K(1) 中完全分裂当且仅当 $\operatorname{Frob}_{p,\mathbb{Q}(\zeta_{20})/\mathbb{Q}} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{20})/K(1))$ 当且仅当 $p \equiv 1,9 \mod 20$. (也可以利用 p 在 $K(1) = \mathbb{Q}(\sqrt{5},\sqrt{-1})$ 中完全分裂当且仅当 p 同 时在 $\mathbb{Q}(\sqrt{5})$ 和 $\mathbb{Q}(\sqrt{-1})$ 中完全分裂这个事实来得到 $p \equiv 1,9 \mod 20$.)

• 由于 $K = \mathbb{Q}(\sqrt{-14})$ 时, $K(1)/\mathbb{Q}$ 不是 abel 的, 我们将在后面的课程中证明 p 在 K(1) 中完全分裂将不能由形如 $p \equiv a \mod N$ 之类的同余条件刻画, 从而 $p = x^2 + 14y^2$ 也不能由这样的同余条件刻画.

1.3 理想的范

设 L/K 是数域的扩张. 我们推广之前理想的绝对范的定义.

定义 1.5. 理想的 (相对) 范

设 \mathfrak{P} 是L的一个素理想. 定义

$$\mathbf{N}_{L/K}(\mathfrak{P}) = \mathfrak{p}^f, \quad \mathfrak{p} = \mathfrak{P} \cap K, f = f(\mathfrak{P}/\mathfrak{p}).$$

对L的一个分式理想 \mathfrak{A} ,若 \mathfrak{A} 的素理想分解为 $\Pi\mathfrak{P}^{ap}$,则定义

$$\mathbf{N}_{L/K}(\mathfrak{A}) = \prod \mathbf{N}_{L/K}(\mathfrak{P})^{a_{\mathfrak{P}}}.$$

命题 1.5

记 I_L 和 I_K 分别为L和K的分式理想群.则我们有如下交换图:

$$\begin{array}{ccc} L^{\times} & \longrightarrow & I_{L} \\ \downarrow^{N_{L/K}} & & & & \downarrow^{N_{L/K}} \\ K^{\times} & \longrightarrow & I_{K} \end{array}$$

证明 先证明 L/K 是 Galois 扩张的情形. 此时, $\mathbf{N}_{L/K}(\mathfrak{P})\mathcal{O}_L = \mathfrak{p}^f \mathcal{O}_L = \prod_{\sigma \in G} \sigma(\mathfrak{P})$, 进而对一般的理想 \mathfrak{A} , 有 $\mathbf{N}_{L/K}(\mathfrak{A}) = \prod_{\sigma \in G} \sigma(\mathfrak{A})$. 而对 $x \in L$, 熟知 $N_{L/K}(x) = \prod_{\sigma \in G} \sigma(x)$. 所以交换图成立.

一般情形, 设 $M \in K$ 的正规扩张且 $M \supset L$. 记 G = Gal(M/K). 对 $x \in L$, 我们有

$$\mathbf{N}_{M/K}(x\mathcal{O}_M) = (x\mathcal{O}_L)^{[M:L]}$$

以及

$$\mathbf{N}_{M/K}(x\mathcal{O}_M) = N_{M/K}(x)\mathcal{O}_K = N_{L/K}(x)^{[M:L]}\mathcal{O}_K.$$

由此推出 $\mathbf{N}_{L/K}(x\mathcal{O}_L) = N_{L/K}(x)\mathcal{O}_K$.

第二章 赋值

2.1 赋值的定义

设 A 是 Dedekind 整环, K 是分式域. \mathfrak{p} 是 A 的非零素理想. 定义所谓 \mathfrak{p} -进赋值 $v_{\mathfrak{p}}(x)$ 为分式理想 (x) 做分解时 \mathfrak{p} 出现的指数, 再定义 $v_{\mathfrak{p}}(0) = \infty$. 容易验证有

$$v_{\mathfrak{p}}(xy) = v_{\mathfrak{p}}(x) + v_{\mathfrak{p}}(y), \qquad v_{\mathfrak{p}}(x+y) \ge \min\{v_{\mathfrak{p}}(x), v_{\mathfrak{p}}(y)\}. \tag{2.1.1}$$

我们着重考虑 $A = \mathbb{Z}, K = \mathbb{Q}$ 的情形. 简记 $v_{(p)}$ 为 v_p .

先回顾域上绝对值的定义.

定义 2.1

对任意域 K, 一个 (乘性) 赋值或绝对值是指满足下面三条的函数 $|\cdot|: K \to \mathbb{R}_{\geq 0}$:

- (1) |x| = 0 当且仅当 x = 0;
- (2) $|xy| = |x| \cdot |y|$ 对任意 $x, y \in K$;
- (3) (三角不等式) $|x+y| \le |x| + |y|$ 对任意 $x, y \in K$.

称赋值 | ⋅ | 是非阿基米德赋值 (简称非阿赋值) 如进一步满足

(3')(强三角不等式) $|x+y| \le \max\{|x|,|y|\}$, 对任意 $x,y \in K$.

否则称 |. | 是阿基米德赋值.

对每个域, 都存在平凡绝对值: 它将所有非零元的绝对值定义为 1. 若 $\zeta \in K$ 是个单位根, 即存在 $n \in \mathbb{Z}$ 使得 $\zeta^n = 1$, 则 ζ 在任何绝对值下都等于 1.

引理 2.1

 $|\cdot|$ 是非阿赋值当且仅当对每个 $m\in\mathbb{Z}$, $|m|\leq 1$. 特别的, 若 K 特征大于 0, 则 K 上的所有赋值都是非阿.

证明 若 $|\cdot|$ 非阿,则根据强三角不等式知 $|m| \le 1$ 对每个 $m \in \mathbb{Z}$. 反过来,对 $x,y \in K$, $N \in \mathbb{Z}_{>1}$,我们有

$$|(x+y)^N| \le \sum_{i=0}^N |x^i y^{N-i}| \le (N+1) \max\{|x|^N, |y|^N\}.$$

由此知,对每个N,

$$|x+y| \le \sqrt[N]{N+1} \max\{|x|, |y|\}.$$

令 $N \to \infty$, 熟知 $\sqrt[N]{N+1} \to 1$, 由此强三角不等式成立. 最后如果 K 的特征是 p > 0, 则 $|1| = |2| = \cdots |p-1| = 1$, 因为它们都是 p-1 次单位根, 所以 $|\cdot|$ 是非阿的.

定义 2.2

设 $(K, |\cdot|)$ 是赋值域,则 K 称为自然度量空间,特别的 K 是自然的拓扑空间. 称 K 上两个绝对值等价是指它们诱导了相同的度量拓扑.

引理 2.2

设 $|\cdot|,|\cdot|'$ 是域K上两个绝对值,则以下几条等价:

- (1) | · | 与 | · |′ 等价;
- $(2) |x| \le 1$ 当且仅当 $|x|' \le 1$.
- (3) |x| < 1 当且仅当 |x|' < 1.
- (4) 存在 c > 0 使得 $|x|' = |x|^c$ 对每个 $x \in F$ 成立;

 \Diamond

证明 留作练习.

2.2 p 进数

 \mathbb{Q} 上的 p-进 (加法) 赋值 v_p 可给出 p-进 (乘法) 赋值 (或叫作 p-进绝对值) $|\cdot|_p$:

$$|\cdot|_p: \mathbb{Q} \to \mathbb{R}_{>0}, \quad x \mapsto p^{-v_p(x)}.$$

由(2.1.1) 知 $|\cdot|_p$ 是 \mathbb{Q} 上的非阿赋值. 将其完备化 (柯西列的等价类) 记作 \mathbb{Q}_p , 称 \mathbb{Q}_p 为 p-进数域. 由于 $|\mathbb{Q}|_p := \{|x|_p : x \in \mathbb{Q}\} = \{0, p^{\pm 1}, p^{\pm 2}, \cdots\}$ 是 \mathbb{R} 的闭集, 所以 $|\mathbb{Q}_p|_p = |\mathbb{Q}|_p$, 特别的 $|\mathbb{Q}^{\times}|_p = |\mathbb{Q}_p^{\times}|_p$ 在 \mathbb{R} 中还是离散的. 类似的, v_p 也延拓为 \mathbb{Q}_p 的函数, 且仍旧满足(2.1.1).

定义

$$\mathbb{Z}_p := \{ x \in \mathbb{Q}_p : |x|_p \le 1 \} = \{ x \in \mathbb{Q}_p : v_p(x) \ge 0 \}.$$

利用强三角不等式知 \mathbb{Z}_p 是 \mathbb{Q}_p 的子环, 我们称 \mathbb{Z}_p 为 p-进整数环.

定义 2.3

同时是 Dedekind 整环和局部环的环被称作离散赋值环.

4

由前面 Dedekind 整环一节知,只有有限个素理想的 Dedekind 整环是主理想整环. 所以离散赋值环也可定义为同时是主理想整环和局部环.

命题 2.1

- (1) \mathbb{Z}_p 是离散赋值环,它的极大理想是 $p\mathbb{Z}_p$,它的单位群是 $\mathbb{Z}_p^{\times}=\{x\in\mathbb{Z}_p:|x|_p=1\}$. \mathbb{Z}_p 的所有非零理想都形如 $p^n\mathbb{Z}_p$, $n\in\mathbb{Z}_{\geq 0}$. 而且 $p^n\mathbb{Z}_p$ 是 0 的一组邻域基. 我们有 $\mathbb{Q}_p=\mathbb{Z}_p[\frac{1}{p}]$,特别的 \mathbb{Q}_p 是 \mathbb{Z}_p 的分式域.
- (2) \mathbb{Z} 在 \mathbb{Z}_p 中稠密;
- (3) 自然包含 \mathbb{Z} ⊂ \mathbb{Z}_p 诱导了同构

$$\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p.$$

证明 (1) 关于 Z_p 是局部环, 以及它的单位群的断言是显然的. 它的极大理想是

$$\{x \in \mathbb{Z}_n : |x|_n < 1\} = \{x \in \mathbb{Z}_n : |x|_n \le p^{-1}\} = p\mathbb{Z}_n.$$

其中第一个等式是利用了延拓后赋值仍旧是离散的, 第二个等式是显然的. 设 $\mathfrak{a} \subset \mathbb{Z}_p$ 是非零理想, 则取 $a \in \mathfrak{a}$ 使得 $|a|_p = p^{-n}$ 最大 (即 $v_p(a)$ 最小). 则 $\mathfrak{a} = \{x \in \mathbb{Z}_p : |x|_p \le p^{-n}\}$

 p^{-n} } = $p^n \mathbb{Z}_p$. (1) 中最后两句话的断言是显然的.

(2) 任取 $x \in \mathbb{Z}_p$, 则存在某个 n 使得 $x = p^n u$, $u \in \mathbb{Z}_p^\times$. 则根据完备化的定义存在一列有理数 $\frac{a_n}{b_n}$ 使得其在 $|\cdot|_p$ 下的极限是 u. 因为 $u \in \mathbb{Z}_p^\times$, 所以对充分大的 n, 我们有 $|\frac{a_n}{b_n}|_p = 1$, 即 $p \nmid a_n b_n$, 那么存在 $c_n \in \mathbb{Z}$ 使得 $b_n c_n \equiv 1 \mod p^n$. 则

$$\lim_{n \to \infty} a_n c_n - \frac{a_n}{b_n} = \lim_{n \to \infty} a_n \left(\frac{b_n c_n - 1}{b_n} \right) = 0.$$

这就证明了

所以 \mathbb{Z} 在 \mathbb{Z}_p 中稠密.

(3) 显然 $\mathbb{Z} \cap p^n \mathbb{Z}_p = p^n \mathbb{Z}$, 即 (3) 中映射是单射. 任取 $x \in \mathbb{Z}_p$, 由 \mathbb{Z} 的稠密性知存在 $a \in \mathbb{Z}$ 使得 $|x - a|_p \le p^{-n}$, 即 $x \equiv a \mod p^n \mathbb{Z}_p$. 这就证明了满射.

2.2.1 p 进指数和对数函数

这部分内容完全包含于《数论 I, 2.5 节》,请直接阅读这部分,注意教材中 ord_p 是课堂上的 v_p . 我把教材中略去的一个证明补在这里.

证明 [数论 I, 引理 2.14(1) 的证明]

 $1 \le n$ 内被 p^k 整除的数恰是 $p^k, 2p^k, \cdots, \left\lceil \frac{n}{p^k} \right\rceil p^k$. 所以

$$\#\{1 \le a \le n : a \in \mathbb{Z}, v_p(a) = k\} = \left\lceil \frac{n}{p^k} \right\rceil - \left\lceil \frac{n}{p^{k+1}} \right\rceil.$$

于是,

$$v_p(n!) = \sum_{k=1}^{\infty} k\left(\left[\frac{n}{p^k}\right] - \left[\frac{n}{p^{k+1}}\right]\right) = \sum_{k=1}^{\infty} \left[\frac{n}{p^k}\right].$$

2.3 完备域上的有限维线性空间

本节我们证明一个分析学中的结论.

定义 2.4

设 $(K, |\cdot|)$ 是赋值域,且在此赋值下完备.设 V 是 K 上的有限维线性空间.如果函数 $||\cdot||: V \to \mathbb{R}_{>0}$ 满足下面三条,称它为 V 上的一个范数:

- $(1) ||\alpha|| = 0$ 当且仅当 $\alpha = 0$;
- (2) $\forall x \in K, \alpha \in V, ||x\alpha|| = |x| \cdot ||\alpha||;$
- (3) $\forall \alpha, \beta \in V, ||\alpha + \beta|| \le ||\alpha|| + ||\beta||.$

V 上两个范数 $||\cdot||_1, ||\cdot||_2$ 等价是指存在常数 $C_1, C_2 > 0$ 使得

$$C_1||\alpha||_1 \le ||\alpha||_2 \le C_2||\alpha||_1, \quad \forall \alpha \in V.$$

例 2.1 固定 V 的一组基 e_1, \dots, e_n . 对任意 $\alpha = x_1 e_1 + \dots x_n e_n \in V, x_i \in K$, 如下定义的 $||\cdot||_{\max}$ 是一个范数

$$||\alpha||_{\max} = \max\{|x_1|, \cdots, |x_n|\}.$$

若 K 完备, 则 V 在 $||\cdot||_{max}$ 下也是完备的.

定理 2.1

证明 我们沿用上面例子中的记号. 令 $C_2 = n \max\{||e_1||, \dots, ||e_n||\}$. 则对任意 $\alpha \in V$,

$$||\alpha|| \le \sum |x_i|||e_i|| \le C_2||\alpha||_{\max}.$$

下面用归纳法来证明存在 $C_1 > 0$ 使得对每个 $\alpha \in V$ 有 $||\alpha|| \ge C_1 ||\alpha||_{\text{max}}$. 当 n = 1 时结 论显然成立. 假设结论对 n - 1 维空间成立. 对每个 i, 考虑 n - 1 维空间

$$V_i = Ke_1 + \cdots Ke_{i-1} + Ke_{i+1} + \cdots Ke_n.$$

由归纳假设 V_i 在 $||\cdot||$ 下完备,特别的 V_i 在 V 中是闭集,从而 $W_i := e_i + V_i$ 也是 V 的闭集.由于 $0 \notin W_i$,故存在如下半径为 $r_i > 0$ 的 0 的邻域与 W_i 不交

$$\{\beta \in V : ||\beta|| \le r_i.\}$$

我们取 $C_1 = \min\{r_1, \dots, r_n\}$. 任取 V 中非零元 $\alpha = x_1e_1 + \dots + x_ne_n$, 不妨设 $\|\alpha\|_{\max} = |x_j|$ 则 $x_j \neq 0$. 由于 $x_j^{-1}\alpha \in W_j$, 所以

$$||\alpha|| = |x_j| \cdot ||x_j^{-1}\alpha|| \ge r_j||\alpha||_{\max} \ge C_1||\alpha||_{\max}.$$

推论 2.1

设 K, $|\cdot|$ 完备,L/K 是有限扩张. 则 L 上延拓 $|\cdot|$ 的赋值 (若存在) 则是唯一的,且 L 在这个赋值下完备.

证明 若 L 上一个赋值延拓了 $|\cdot|$,则它显然是 L 作为 K 线性空间的范数. 若有两个不同的赋值延拓 $|\cdot|_L$ 和 $|\cdot|_L'$,则它们作为范数是等价的,从而作为赋值也是等价的因为它们定义了相同的拓扑. 所以存在 c>0 使得 $|\cdot|_L'=|\cdot|_L'$. 又它们限制在 K 上相同,所以 c=1. L 的完备性是定理的直接推论.

2.4 Hensel 引理, 非阿赋值的延拓

定义 2.5. 完备离散赋值域

设 $(K, |\cdot|)$ 是非阿赋值域. 记 $A = \{x \in K : |x| \le 1\}$ 为 K 的赋值环.

称 K 是完备离散赋值域指 A 是离散赋值环且 K 是完备的.

例 2.2 若 \mathfrak{p} 是某 Dedekind 整环的非零素理想. 则其分式域 K 在 \mathfrak{p} 诱导的赋值下的完备化是完备离散赋值域. 特别的前面介绍的 \mathbb{Q}_p 是完备离散赋值域.

在本节中, K **总表示完备离散赋值域**. 由于其赋值环 A 是离散赋值环 (特别的是 Dedekind 整环), 记 π 是其极大理想 \mathfrak{p} 的一个生成元. K 中每个非零元都可写成 $\pi^m u$, $m \in \mathbb{Z}, u \in A^{\times}$ 的形式. 将素理想 $\mathfrak{p} = (\pi)$ 诱导的加法赋值记作 $v_{\mathfrak{p}}$, 则 $v_{\mathfrak{p}}(\pi^m u) = m$. 对于 $f, g \in A[T]$, 记号 $f \equiv g \mod \pi^k$ 表示 f - g 的每个系数在 $\mathfrak{p}^k = (\pi^k)$ 中. 记号 \bar{f} 表示 f 在

剩余类域多项式环 $A/\mathfrak{p}[T]$ 中的像.

定理 2.2. Hensel 引理

设 $f(T) \in A[T], x_0 \in A, n = v_{\mathfrak{p}}(f(x_0)), k = v_{\mathfrak{p}}(f'(x_0)).$ 若 n > 2k, 则存在 $x \in A$ 使 得 f(x) = 0 且 $x \equiv x_0 \mod \pi^{n-k}$.

证明 我们断言存在 x1 满足

$$x_1 \equiv x_0 \mod \pi^{n-k}, \quad f(x_1) \equiv 0 \mod \pi^{n+1}, \quad v_{\mathfrak{p}}(f'(x_1)) = k.$$

设 $a \in A$ 记 $x_1 = x_0 + \pi^{n-k}a$. 由二项式展开

$$f(x_1) \equiv f(x_0) + f'(x_0)\pi^{n-k}a \mod \pi^{2n-2k}$$

由于 $2n-2k \ge n+1$, 上面同余式对模 π^{n+1} 也成立. 根据条件 $f'(x_0)/\pi^k \in A^{\times}$, 从而可取 a 满足下面同余式,

$$\frac{f(x_0)}{\pi^n} + \frac{f'(x_0)}{\pi^k} a \equiv 0 \bmod \pi.$$

此时便有 $f(x_1) \equiv 0 \mod \pi^{n+1}$. 再由二项式展开知

$$f'(x_1) \equiv f'(x_0) + f''(x_0)\pi^{n-k}a \mod \pi^{2n-2k}$$

利用 n-k > k 以及 2n-2k > k 知 $v_n(f'(x_1)) = k$. 这就证明了断言.

以此类推, 可用归纳法证明对每个 $m \in \mathbb{Z}_{>1}$, 存在 x_m 使得

$$x_m \equiv x_{m-1} \mod \pi^{n+m-1-k}, \quad f(x_n) \equiv 0 \mod \pi^{n+m} A, \quad v_{\mathfrak{p}}(f'(x_1)) = k.$$

显然 $\{x_m\}$ 是柯西列, 设 x 是其极限. 则 f(x)=0. 由于每个 $x_m\equiv x_0 \mod \pi^{n-k}$, 所以 $x\equiv x_0 \mod \pi^{n-k}$.

推论 2.2

设 $f(T) \in A[T], x_0 \in A$. 若 $f(x_0) \equiv 0 \mod \pi$, $f'(x_0) \not\equiv 0 \mod \pi$, 则存在唯一的 $x \in A$ 使得 f(x) = 0 且 $x \equiv x_0 \mod \pi$.

证明 这是 n=1, k=0 的情形. 唯一性由 x_0 是 $\bar{f}(T) \in A/\mathfrak{p}[T]$ 的单根得出.

例 2.3 考虑 $A = \mathbb{Z}_p$ 的情形. 设 p > 2, $f(T) = T^{p-1} - 1$, 由 Hensel 引理知对每个 $a \in \mathbb{F}_p^{\times}$, 存在唯一的 $x \in A$ 使得 f(x) = 1 且 $x \equiv a \mod p$.

例 2.4 $A = \mathbb{Z}_2$. 考虑老例子 $f(T) = T^3 - T^2 - 2T - 8 \in \mathbb{Z}_2[T]$. 计算知

$$f(0) \equiv f(2) \equiv f(4) \equiv f(6) \equiv f(7) \equiv 0 \mod 8.$$

以及

$$v_2(f'(0)) = v_2(f'(2)) = v_2(f'(4)) = v_2(f'(6)) = 1, \quad v_2(f'(7)) = 0.$$

根据 Hensel 引理, 存在 $x, y, z \in \mathbb{Z}_2$ 使得

$$f(x) = f(y) = f(z) = 0 \, \text{A.s.} \equiv 0 \mod 4, y \equiv 2 \mod 4, z \equiv 7 \mod 8.$$

这说明了 f(T) 在 $\mathbb{Z}_2[T]$ 中分解为三个不同的一次因式的乘积. 后面将看到这件事情与我们之前证明的 2 在 $\mathbb{Q}(T)/(f)$ 这个数域中完全分裂这件事之前的关系.

定理 2.3. Hensel 引理'

设 $f \in A[T]$. 若 $\bar{f} = \phi \psi$ 且 $\phi, \psi \in A/\mathfrak{p}[T]$ 互素. 则存在唯一的 $g, h \in A[T]$ 使得 f = gh 且 $\bar{g} = \phi$, $\bar{h} = \psi$ 以及 $\deg g = \deg \phi$.

证明 对每个 $n \ge 1$, 我们将归纳构造 $g_n, h_n \in A[T]$ 满足如下性质:

$$g_{n+1} \equiv g_n \bmod \pi^n \quad h_{n+1} \equiv h_n \bmod \pi^n, \tag{2.4.1}$$

$$f \equiv g_n h_n \mod \pi^n, \quad \deg g_n = \deg \phi.$$
 (2.4.2)

显然 $\{g_n\}$, $\{h_n\}$ 是两个收敛的多项式序列. 令 $g = \lim g_n$, $h = \lim h_n$, 则 g, h 满足定理的要求. 唯一性是显然的.

对 n=1, $g_1,h_1 \in A[T]$ 分别取 ϕ,ψ 的任意提升且满足 $\deg g_1 = \deg \phi$. 假设对小于等于 n 时均已构造处满足上面要求的 g_n 和 h_n . 令 $g_{n+1} = g_n + \pi^n u$, $h_{n+1} = h_n \pi^n v$, $u,v \in A[T]$. 则 g_{n+1},h_{n+1} 满足上面行间公式的第一条要求. 由于

$$g_{n+1}h_{n+1} \equiv g_n h_n + \pi^n (g_n v + h_n u) \bmod \pi^n,$$

则 $f \equiv g_{n+1}h_{n+1} \mod \pi^{n+1}$ 当且仅当

$$\frac{f - g_n h_n}{\pi^n} + (g_n v + h_n u) \equiv 0 \bmod \pi. \tag{2.4.3}$$

注意根据归纳假设, 上式左边第一项属于 A[T]. 由于 $g_n \equiv \phi \mod \pi$, $h_n \equiv \psi \mod \pi$, 且 ϕ , ψ 在 $A/\mathfrak{p}[T]$ 中互素, 满足(2.4.3)的 u, v 显然是存在的, 且可要求 $\deg u < \deg g_n = \deg \phi$, 因为若 $\deg u > \deg \phi$, 则 $u \equiv \phi q + r \mod \pi$, 这里 $q, r \in A[T]$ 且 $\deg r < \deg \phi$, 将原来的 (u,v) 换成 $(r,v+h_nq)$ 即可.

推论 2.3

设 $f(T) = T^d + a_{d-1}T^{d-1} + \cdots + a_0 \in K[T]$ 是首一不可约多项式, 若 $a_0 \in A$, 则每个系数 a_i 也属于 A.

证明 如若不然, 则存在 $k \in \mathbb{Z}_{\geq 1}$ 使得 $\pi^k f(T) \in A[T]$ 但 $\pi^k f(T) \not\equiv 0 \mod \pi$. 我们有 $\pi^k f(T) \equiv T^i g(T) \mod \pi \quad g(T) \in A[T], \ \exists 1 < i < d-1.$

根据 Hensel 引理'知 f(T) 不是不可约多项式. 矛盾.

现在利用 Hensel 引理来证明本节的主要结果.

定理 2.4. 完备离散赋值域的延拓

设 K 是完备离散赋值域, A 是其赋值环. 设 L/K 是有限扩张.

(1) 存在唯一的 L 上的赋值 $|\cdot|_L$ 延拓了 $(K, |\cdot|)$. 这个赋值是

$$|\alpha|_L = |N_{L/K}(\alpha)|^{\frac{1}{[L:K]}}, \quad \alpha \in L.$$

- (2) L 的赋值环 $\{\alpha \in L : |\alpha|_L \leq 1\}$ 等于 A 在 L 中的整闭包.
- (3) B 是完备离散赋值环, L 是完备离散赋值域.

证明 (1) 延拓的唯一性由推论2.1知. 现来证 (2) 中的等式. 记 $B \to A$ 在 L 中的整闭包. 若 $\alpha \in B$, 熟知 $N_{L/K}(\alpha) \in A$, 故 $|\alpha|_L \le 1$. 反过来, 若 $N_{L/K}(\alpha) \in A$, 则 α 在 K 的极小

多项式的常数项也属于 A. 根据上面 Hensel 引理的推论知 α 的极小多项式属于 A[T],则 $\alpha \in B$. 这就证明了 (2) 中的等式. 特别的 $\{\alpha \in L : |\alpha|_L \le 1\}$ 是环, 因为 B 是环.

现证 $|\cdot|_L$ 是赋值. $|\cdot|_L$ 的"非零性"与"乘性"根据范数的性质显然. 关于强三角不等式, 我们只需证明 $|\alpha|_L \le 1 \Rightarrow |\alpha+1|_L \le 1$. 而这也是显然成立的因为 B 是环! 这就证明了 (1) 和 (2).

- (3) 根据推论2.1知, L 是完备的. 从而 L 的赋值环 B 是完备赋值环. 赋值的离散性从 $|\cdot|_L$ 的定义可得出. 这就证明了本定理.
- (当 L/K 可分时 (3) 的另证) 由 $|\cdot|_L$ 的定义可看出 $|\cdot|_L$ 也是离散赋值. 从而 B 是离散赋值环. 又 B 是 A 在 L 中的整闭包, 依据第一章 Dedekind 整环的结论知 B 是有限生成的 A 模, 从而由 A 是主理想整环知 $B \cong A^n$, n = [L:K]. 再利用 A 是完备的知

$$A \cong \lim_{\leftarrow} A/\mathfrak{p}^n$$
 从而 $B \cong \lim_{\leftarrow} B/\mathfrak{p}^n B$.

注意到 $\mathfrak{p}^n B$ 是 B 的一组邻域基, 所以 B 是完备的. 取 $\Pi \in B$ 是 B 极大理想的生成元, 则 $L = B[\Pi^{-1}]$. 由此得 L 也是完备的.

延拓的唯一性的另证: 如果 $(L, |\cdot|'_L)$ 是 $(K, |\cdot|)$ 的另一种延拓,则 $|\cdot|'_L$ 也是非阿赋 值. 那么记 B', \mathfrak{p}' 分别为 $(L, |\cdot|'_L)$ 的赋值环和其极大理想. 我们先断言 $B \subset B'$. 否则取 $\alpha \in B \setminus B'$,由于 α 在 A 上整,设 $f = T^d + a_{d-1}T^{d-1} + \cdots + a_0 \in A[T]$ 是 α 在 K 上的极小多项式.则

$$\alpha^d + a_{d-1}\alpha^{d-1} + \dots + a_0 = 0.$$

两边同时除以 α^d , 利用 $A \subset B'$ 得 $1 \in \mathfrak{m}'_L$, 矛盾. 说明 $B \subset B'$, 即 $|x|_L \leq 1 \Rightarrow |x|'_L \leq 1$.

类似的可证明 $\mathfrak{p} \subset \mathfrak{p}'$, 即 $|x|_L < 1 \Rightarrow |x|_L' < 1$. (否则取 $\alpha \in \mathfrak{m} \setminus \mathfrak{m}'$, 则由 Hensel 引理知上面 α 极小多项式的每个系数 $a_i \in \mathfrak{p}$ (为什么, 留作习题), 然后两边除以 α^d 得出 $1 \in \mathfrak{m}'_L$ 的矛盾.)

现在若 $|x|_L > 1$, 则 $|x^{-1}|_L < 1$, 则 $|x^{-1}|_L' < 1$ 从而 $|x|_L' > 1$. 根据赋值等价性的等价条件知 $|\cdot|_L \sim |\cdot|_L'$, 但它们限制在 K 上相等, 说明 $|\cdot|_L = |\cdot|_L'$. 这就证明了唯一性.

推论 2.4

设 \overline{K} 是K的代数闭域.其上存在唯一的赋值(仍记作)|·|延拓(K,|·|). 特别的取 $(K,|\cdot|)=(\mathbb{Q}_p,|\cdot|_p)$ 时, $\overline{\mathbb{Q}}_p$ 上存在唯一的赋值(仍记作)|·| $_p$ 延拓 $(\mathbb{Q}_p,|\cdot|_p)$.

证明 唯一性是上面定理的推论. 存在性: 对任意 $\alpha \in \overline{K}$. 定义

$$|\alpha| = |N_{K(\alpha)/K}(\alpha)|^{\frac{1}{[K(\alpha):K]}}.$$

如果 L 是含有 α 的 K 的有限扩张, 利用如下范映射的事实, 再由上面定理知 $|\cdot|$ 是赋值.

$$N_{L/K}(\alpha) = (N_{K(\alpha)/K}(\alpha))^{[L:K(\alpha)]}.$$

2.5 嵌入, 非阿赋值, 素理想, 在数域中的应用

本节中 K 总表示数域.

2.5.1 素理想与非阿赋值

先回顾下素理想与非阿赋值之间的关系. 设 $\mathfrak{p} \in \mathcal{O}_K$ 的非零素理想. 如前面所讲可定义 K 上的 (加法) 赋值 $v_{\mathfrak{p}}$. 其 (乘法) 赋值 $|\cdot|_v$ 可定义为,

$$|x|_v = C^{-v_{\mathfrak{p}}(x)} \quad C > 1.$$

取不同的 C 定义的是等价的赋值. 由此得到一个从 \mathcal{O}_K 的素理想到 K 的非阿赋值等价类的映射, 这里将 0 理想对应到平凡赋值.

反过来, 对于 K 上一个非阿赋值 $|\cdot|$, 令 A 是其赋值环, $\{x \in A : |x| < 1\}$ 是 A 的极大理想. (注意到两个等价的非阿赋值给出的赋值环和极大理想是相同的.) 由下面引理知 $\mathcal{O}_K \subset A$, 那么 $\{x \in A : |x| < 1\} \cap \mathcal{O}_K$ 是 \mathcal{O}_K 的素理想. 特别的, 若 $|\cdot|$ 是平凡赋值, 则 $\{x \in A : |x| < 1\} \cap \mathcal{O}_K$ 是 0 理想.

引理 2.3

若 $|\cdot|$ 是 K 上的非阿赋值, 设 $A=\{x\in K:|x|\leq 1\}$ 是其赋值环. 则 $\mathcal{O}_K\subset A$.

证明 设 $\alpha \in \mathcal{O}_K$. 则存在 $a_0, \dots, a_{n-1} \in \mathbb{Z}$ 使得 $\alpha^n = a_{n-1}\alpha^{n-1} + \dots a_1\alpha + a_0$. 根据非阿 赋值的强三角不等式性质以及 $k \in \mathbb{Z} \Rightarrow |k| \le 1$ 的性质知存在 $0 \le i \le n-1$ 使得

$$|\alpha^n| \le |a_i \alpha^i| \le |\alpha^i|$$
.

由此 $\alpha \in A$.

命题 2.2

我们有一一对应:

$$\{\mathcal{O}_K \text{ 的素理想}\} \quad \stackrel{1-1}{\longleftrightarrow} \quad \{K \text{ 的非阿赋值}\}/\sim$$

$$\mathfrak{p} \mapsto |\cdot|_v$$

$$\{x \in K : |x| < 1\} \cap \mathcal{O}_K \leftrightarrow |\cdot|$$

证明 这两个映射显然互逆.

接下来设 L/K 是有限扩张. 设 $\{\mathfrak{P}_1, \cdots, \mathfrak{P}_g\}$ 是 L 的 \mathfrak{p} 之上的素理想. 对 $\mathfrak{P} = \mathfrak{P}_i$, 可定义 L 上的加法赋值 $w_{\mathfrak{P}}$. 其相应的 (乘法) 赋值 $|\cdot|_w$ 定义为

$$|x|_w = C^{-\frac{w_{\mathfrak{P}}(x)}{e}}, \quad e = e(\mathfrak{P}/\mathfrak{p}).$$

则 $(L, |\cdot|_w)$ 是 $(K, |\cdot|_v)$ 的延拓.

命题 2.3

设 $|\cdot|_{u}$ 是p诱导的 K上的赋值. 有一一对应:

$$\{\mathcal{O}_L \text{ 的p 之上的素理想}\} \quad \stackrel{1-1}{\longleftrightarrow} \quad \{L \text{ 的延拓}(K,|\cdot|_v) \text{ 的赋值}\}$$

证明 这是由前一命题推出来的. 再注意到若 | · |, | · |' 是两个延拓, 则 | · | ~ | · |' 等价于

 $|\cdot|=|\cdot|'$,因为它们限制在 K 上相同.

用域嵌入的方式也可以给出 L 上延拓 $(K, |\cdot|_v)$ 的赋值. 记 K_v 是 K 在 $|\cdot|_v$ 的完备 化. 记 \overline{K}_v 是 K_v 的代数闭包, 在上一节中我们证明了 $|\cdot|_v$ 可唯一的延拓到 \overline{K}_v 上. 任给 $\sigma \in \operatorname{Hom}_K(L, \overline{K}_v)$, 可得到 L 的一个延拓 $(K, |\cdot|_v)$ 的赋值:

$$|x|_{\sigma} := |\sigma(x)|_{v}.$$

定义 2.6

对 $\sigma, \tau \in \operatorname{Hom}_K(L, \overline{K}_v)$, 称 σ 与 τ 共轭 (记作 $\sigma \sim \tau$) 指存在 $s \in \operatorname{Gal}(\overline{K}_v/K_v)$ 使得 $\sigma = s \circ \tau$, 即使得下图交换

$$L \xrightarrow{\tau} \overline{K}_v \\ \downarrow^s \\ \overline{K}_v$$

换句话讲, 若 $L=K(\alpha)$, 则 σ 与 τ 共轭当且仅当 $\sigma(\alpha)$ 与 $\tau(\alpha)$ 是在 K_v 上共轭的两个元素.

例 2.5 设 $L/K = \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, $K_v = \mathbb{Q}_5$. 根据 $T^3 - 2$ 模 5 的不可约分解得出在 $\mathbb{Q}_5[T]$ 中的不可约分解为

$$T^3 - 2 = (T - 3 + O(5))(T^2 + (3 + O(5))T + 4 + O(5)).$$

从而在 $\overline{\mathbb{Q}}_5[T]$ 中,

$$T^3 - 2 = (T - \alpha)(T - \beta_1)(T - \beta_2), \quad \sharp \Phi \alpha \in 3 + 5\mathbb{Z}_5, \beta_1, \beta_2 \notin \mathbb{Q}_5.$$

我们有

$$\operatorname{Hom}(\mathbb{Q}(\sqrt[3]{2},\overline{\mathbb{Q}}_5)=\{\sigma,\tau_1,\tau_2\},$$

这三个域嵌入由 $\sigma(\sqrt[3]{2}) = \alpha, \tau_i(\sqrt[3]{2}) = \beta_i \ (i = 1, 2)$ 决定. 则 τ_1 与 τ_2 是共轭的, σ 与 τ_i 是不共轭的.

虽然之前讨论的 v 是非阿的,但下面的定理对 v 是阿基米德赋值也成立. (详见下一小节对无穷素位的补充)

定理 2.5. 延拓定理

设 $|\cdot|_v$ 是数域 K 的赋值.

- (1) L 的每个延拓 $(K, |\cdot|_v)$ 的赋值都等于某 $|\cdot|_{\sigma}, \sigma \in \operatorname{Hom}_K(L, \overline{K}_v)$;
- (2) 对 $\sigma, \tau \in \operatorname{Hom}_K(L, \overline{K}_v), |\cdot|_{\sigma} \sim |\cdot|_{\tau}$ 当且仅当 σ 与 τ 共轭.

上述定理可表述成

 \Diamond

定理 2.6. 延拓定理等价描述

有一一对应:

$$\operatorname{Hom}_K(L,\overline{K}_v)/\sim \stackrel{1-1}{\longleftrightarrow} \{L$$
 的延拓 $(K,|\cdot|_v)$ 的非阿赋值 $\}$ $\sigma\longmapsto |\cdot|_{\sigma}.$

证明 (1) 设 $|\cdot|_w$ 是 L 的一个赋值且延拓 $|\cdot|_v$. 记 L_w 是 $(L,|\cdot|_w)$ 的完备化. 则 K 在 L_w 中的闭包是 K 的完备化 K_v . 所以 $L_w \supset LK_v$. 由于 LK_v 是 K_v 的有限扩张, 根据定理2.1, LK_v 是完备的. 根据完备化的唯一性知,

$$L_w = LK_v$$
.

从而 L_w/K_v 是有限扩张特别的是代数扩张. 所以 $\operatorname{Hom}_{K_v}(L_w, \overline{K}_v)$ 非空.

任取 $\sigma \in \operatorname{Hom}_{K_v}(L_w, \overline{K}_v)$. 利用这个 σ , 我们又可得到 L_w 的一个赋值: $x \mapsto |\sigma(x)|_v$ 且延拓 $|\cdot|_v$. 由于 K_v 是完备的, 根据延拓的唯一性, (定理2.1) 知 $|x|_w = |\sigma(x)|_v$ 对任意 $x \in L_w$, 特别的等式对 $x \in L$ 成立. 最后注意到 $\sigma|_L \in \operatorname{Hom}_K(L, \overline{K}_v)$. 所以 L 上的赋值 $|\cdot|_w$ 是由 σ_L 诱导来的. 这就证明了 (1). 从这个证明中还得出 (后面会用到)

$$L_w \cong \sigma(L_w) = K_v \sigma(L), \tag{2.5.1}$$

(2) 若 σ 与 τ 共轭,则根据赋值延拓的唯一性知 $|\cdot|_{\sigma} = |\cdot|_{\tau}$. 反之,设 $|\cdot|_{\sigma} = |\cdot|_{\tau}$. 断言: $\tau(L)K_v$ 是 $\tau(L)$ 的完备化. 一方面由于 $\tau(L)K_v$ 是 K_v 的有限扩张,故是完备的,所以它包含 $\tau(L)$ 的完备化;另一方面 $\tau(L)$ 的完备化要包含 $\tau(K) = K$ 的完备化 K_v 以及 $\tau(L)$. 这就证明了断言. 所以 $\tau(L)L_v$ 中的元素都形如 $\lim \tau(x_n)$, $\tau(x_n)$ 是柯西列 $x_n \in L$. 类似的结论当然对 $\sigma(L)$ 也成立.

定义

$$s: \tau(L)K_v \to \sigma(L)K_v, \quad \lim \tau(x_n) \to \lim \sigma(x_n).$$

这里 $\tau(x_n)$ 是 $\tau(L)K_v \subset \overline{K}_v$ 中的柯西列. 由于 $|\cdot|_{\sigma} = |\cdot|_{\tau}$, $\sigma(x_n)$ 也是 $\sigma(L)K_v \subset \overline{K}_v$ 中的柯西列, 所以 $\lim \sigma(x_n) \in \sigma(L)K_v$.

请读者自行验证 s 不依赖于代表柯西列的选取以及 σ 是域嵌入. 由于 $\tau|_K = \sigma|_K$, 所以根据 s 的定义, s 限制在 K_v 上也是恒等. 根据域论 s 可延拓为 $\overline{K_v}$ 到 $\overline{K_v}$ 的自同构. 这就证明了 $\sigma \sim \tau$.

设

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_q^{e_g}.$$

设 $L = K(\alpha)$, $f(T) \in K[T]$ 是 α 在 K 上的极小多项式. 设 f(T) 在 $K_v[T]$ 上的不可约分解为:

$$f(T) = f_1(T) \cdots f_u(T)$$
 (马上会看到 $u = g$).

对每个 $\beta \in \overline{K}_v$ 是 f(T) 的根, 都存在域嵌入 $L \hookrightarrow \overline{K}_v$ 将 α 映为 β .

反过来, 给定 $\sigma, \tau \in \operatorname{Hom}_K(L, \overline{K}_v)$, $\sigma(\alpha)$ 和 $\tau(\alpha)$ 也分别是某 f_i 和 f_j 的根. 又根据域 论, σ 与 τ 共轭当且仅当 $\sigma(\alpha)$ 与 $\tau(\alpha)$ 都是某个 f_i 的根. 特别的, u = g. 所以我们有一一

对应

$$\operatorname{Hom}_K(L, \overline{K}_v)/\sim \stackrel{1-1}{\longleftrightarrow} \{f_1, \cdots, f_g\}.$$
 (2.5.2)

设 L 在 $|\cdot|_{\sigma}$ 的完备化为 L_w , 显然 σ 可延拓为 $\operatorname{Hom}_{K_v}(L_w, \overline{K}_v)$ 中的元素. 由上面的证明 公式(2.5.1)知 $\sigma(L_w) = K_v(\sigma(\alpha)) \cong K_v[T]/(f_i)$, 利用 $L_w \cong \sigma(L_w)$ 知 $L_w \cong K_v[T]/(f_i)$. 如果 $|\cdot|_w$ 是 $|\cdot|_w$ 的延拓,我们记作 $w \mid v$.

定理 2.7

设 $\alpha, f, f_1, \cdots, f_g$ 如上面, 我们有 K_v -代数同构:

$$L \otimes_K K_v \cong K_v[T]/(f) \cong \prod_{i=1}^g K_v[T]/(f_i) \cong \prod_{w|v} L_w.$$

证明 其中第一个同构利用 $L \cong K[T]/(f)$ 以及张量积的基本性质. 第二个同构是中国剩余定理, 第三个同构是根据上面的讨论.

推论 2.5

p 在 L 中完全分裂当且仅当 f(T) 在 K_v 中分解为一次多项式的乘积.

例 2.6 前面用 Hensel 引理知 $f(T) = T^3 - T^2 - 2T - 8$ 在 \mathbb{Q}_2 中分解为三个不同的一次因式乘积; 在第一章中用理想语言证明了 2 在 $\mathbb{Q}(\alpha)$ 中完全分裂 ($f(\alpha) = 0$); 这个例子中产生的现象便是上面定理的一个特例.

推论 2.6

设 $N_{L/K}: L \to K$, $\mathrm{Tr}_{L/K}: L \to K$ 分别是范和迹映射. 我们有

$$N_{L/K} = \prod_{w|v} N_{L_w/K_v}$$
 以及 $\operatorname{Tr}_{L/K} = \prod_{w|v} \operatorname{Tr}_{L_w/K_v}.$

证明 设 e_1, \dots, e_n 是 L 的一组 K 基. 则 $e_1 \otimes 1, \dots, e_n \otimes 1$ 是 $L \otimes K_v$ 的一组 K_v 基. 对任意 $L \to L$ 的 K 线性变换 $A, A \otimes 1$ 给出了 $L \otimes K_v \to L \otimes K_v$ 的 K_v 线性变换,且这两个线性变换在上面两组基下的矩阵是相同的. 特别的,对 $\alpha \in L$,

$$N_{L/K}(\alpha) = N_{L \otimes K_v/K_v}(\alpha \otimes 1), \quad \operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}_{L \otimes K_v/K_v}(\alpha \otimes 1).$$

本推论随后由上面定理的同构得出.

2.5.2 关于无穷素位的简短补充

定理 2.8. Ostrowkski

- (1) ℚ的阿基米德赋值等价于通常的绝对值.
- (2) 更一般的,设K是数域.

$$\{K$$
 的阿基米德赋值 $\}/\sim$ $\stackrel{1-1}{\longleftrightarrow}$ $\operatorname{Hom}(K,\mathbb{C})/\sim$

证明 (1) 设 $||\cdot||$ 是 Q 的一个阿基米德赋值. 设 m_0 是大于 1 的两个整数. 对每个 $N \in \mathbb{Z}_{\geq 1}$, 存在正整数 k 以及 $a_i \in \{0, 1 \cdots, m_0 - 1\}$ 使得

$$m^N = a_0 + a_1 m_0 + \dots + a_k m_0^{k-1}, \quad m_0^{k-1} \le m^N < m_0^k.$$

则 $k \leq N \frac{\log m}{\log m_0} + 1$. 记 $A = \max\{||1||, ||2||, \cdots, ||m_0 - 1||\}$. 则对每个 N,

$$||m|| = \sqrt[N]{||m||^N} \le \sqrt[N]{A(1+||m_0||+\cdots+||m_0^{k-1}||)}.$$
 (2.5.3)

若 $||m_0|| \le 1$, 令 N 趋于无穷大可得 $||m|| \le 1$, 从而 $||\cdot||$ 是非阿赋值, 矛盾. 由于 m_0 是任意选取的, 所以每个大于 1 的整数的 $||\cdot||$ 都大于 1. 由(2.5.3)得

$$||m|| \le \sqrt[N]{kA \cdot ||m_0^{k-1}||}.$$

令 N 趋于无穷得,

$$||m|| \le ||m_0||^{\frac{\log m}{\log m_0}}$$

调换m与 m_0 的位置重复上面的证明得

$$||m_0|| \le ||m||^{\frac{\log m_0}{\log m}}.$$

若记 $||m_0|| = m_0^c$, 则 c > 0, 则上式说明了 $||m|| = m^c$. 因为 m 是任意的以及 ||-1|| = 1, 利用赋值的乘性知对任意 $x \in \mathbb{Q}$ 有 $||x|| = |x|^c$. 这就证明了 $||\cdot||$ 与通常的绝对值 $|\cdot|$ 是等价的.

用(1)的结论,(2)可由原封不动的仿照定理2.6的证明得出.

我们将 $\operatorname{Hom}(K,\mathbb{C})/\sim$ 中的元素 σ 或者它诱导的赋值 $|\cdot|_{\sigma}$ 称作是 K 的一个无穷素 位. 若 σ 是实 (复) 嵌入, 称 σ 是实 (复) 素位. 下面的命题也是类似得到的.

命题 2.4

设 L/K 是数域的扩张,设 $|\cdot|_{\sigma}$ 是 K 的一个无穷素位,记 $\mathrm{Hom}_{\sigma}(L,\mathbb{C})=\{\tau\in\mathrm{Hom}(L,\mathbb{C}):\tau|_{K}=\sigma\}$.则有一一对应

$$\{L \text{ 的延拓}|\cdot|_{\sigma} \text{ 的赋值}\}/\sim \stackrel{1-1}{\longleftrightarrow} \operatorname{Hom}_{\sigma}(L,\mathbb{C})/\sim.$$

综合前面一小节对非阿赋值的讨论,下面三个集合有一一对应 (记 $\mathbb{Q}_{\infty}=\mathbb{R}$) K 非平凡赋值等价类之集, \mathcal{O}_K 非零素理想之集 $\cup \mathrm{Hom}(K,\mathbb{C})/\sim$, $\bigcup_{p\leq\infty}\mathrm{Hom}(K,\overline{\mathbb{Q}}_p)/\sim$. 现在可以给出数域 K 的素位的定义:

定义 2.7

设 K 是数域, K 的一个素位 (或者素点) 是指 K 上的一个非平凡赋值的等价类. 非 阿赋值对应的素位称作是有限素位, 阿基米德赋值对应的素位称作是无穷 (无限) 素位. 无歧义时, 也将在上面一一对应下另外两个集合中的元素称作是 K 的一个素位 (有限素位, 无穷素位).

2.5.3 分歧

现在回到 v 是非阿的情形. 设 $K_v = K_\mathfrak{p}$ 是素理想 \mathfrak{p} 诱导的完备化, $L_w = L_\mathfrak{P}$ 是 \mathfrak{P} 诱导的完备化, 且 $\mathfrak{P} \mid \mathfrak{p}$, 则 L_w 是 K_v 的有限扩张. 设 $\mathcal{O}_v = \mathcal{O}_\mathfrak{p}$ 和 $\mathcal{O}_w = \mathcal{O}_\mathfrak{P}$ 分别是 K_v 和 L_w 的赋值环. 前面我们证明了 \mathcal{O}_w 等于 \mathcal{O}_v 在 L_w 中的整闭包. 我们有 \mathcal{O}_v 的极大理想等于 $\mathfrak{p}\mathcal{O}_v$, \mathcal{O}_w 的极大理想等于 $\mathfrak{p}\mathcal{O}_w$.

命题 2.5

我们有
$$e(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}\mathcal{O}_w/\mathfrak{p}\mathcal{O}_v), f(\mathfrak{P}/\mathfrak{p}) = f(\mathfrak{P}\mathcal{O}_w/\mathfrak{p}\mathcal{O}_v);$$

证明 若 $\mathfrak{P}' \neq \mathfrak{P}$ 是 \mathcal{O}_L 的素理想, 则 $\mathfrak{P}'\mathcal{O}_w = \mathcal{O}_w$. 记 $\mathfrak{P}_1 = \mathfrak{P}$, $e_1 = e(\mathfrak{P}/\mathfrak{p})$, 那么

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g} \Rightarrow \mathfrak{p}\mathcal{O}_w = \mathfrak{P}_1^{e_1}\mathcal{O}_w.$$

这就证明了关于分歧指数的断言. 对于惯性指数的断言是由于

$$\mathcal{O}_L/\mathfrak{P} \cong \mathcal{O}_w/\mathfrak{P}\mathcal{O}_w$$
 以及 $\mathcal{O}_K/\mathfrak{p} \cong \mathcal{O}_v/\mathfrak{p}\mathcal{O}_v$.

注 记 $e = e(\mathfrak{P}/\mathfrak{p}), f = f(\mathfrak{P}/\mathfrak{p}).$ 通过数 $\mathcal{O}_w/\mathfrak{p}\mathcal{O}_w = \mathcal{O}_w/\mathfrak{P}^e\mathcal{O}_v$ 两边的 $\mathcal{O}_v/\mathfrak{p}\mathcal{O}_v$ -维数, 利用 \mathcal{O}_v 是主理想整环易得

$$[L_w:K_v]=ef.$$

结合定理2.7, 这重新证明了用理想语言讲述时的等式:

$$\sum_{\mathfrak{P}} e(\mathfrak{P}/\mathfrak{p}) f(\mathfrak{P}/\mathfrak{p}) = [L:K].$$

笔记 所以要了解数域中素理想的分解行为,我们需要学习类似 L_w/K_v 在扩张中的分歧指数与惯性指数,由于这些域是完备离散赋值域且剩余类域是有限域,了解它们比了解数域要简单一些.

衡量分歧的更精细的概念是共轭差积. 我们回顾所谓 AKLB 记号,即 A 是 Dedekind整环,K 是 A 的分式域,L/K 是有限可分扩张,B 是 L 在 A 中的整闭包. 在这里 AKLB等于下面两种情况之一 (一般的讨论参考数论 I $\S 6.3$ 或者 Neukrich):

$$\mathcal{O}_K, K, L, \mathcal{O}_L$$
 $\forall I$ $\mathcal{O}_v, K_v, L_w, \mathcal{O}_w$

定义 2.8

设 AKLB 如上. 令

$$D(B/A)^{-1} := \{ \alpha \in L : \operatorname{Tr}_{L/K}(\alpha B) \subset A \}.$$

 $D(B/A)^{-1}$ 是 B 分式理想且包含 B (练习). 定义 AKLB 的共轭差积 (different) D(B/A) 为 $D(B/A)^{-1}$ 的逆理想. 特别的 D(B/A) 是 B 的整理想.

 $(\mathbb{Z}, \mathbb{Q}, K, \mathcal{O}_K)$ 的共轭差积被称作数域 K 的 (绝对) 共轭差积, 记作 \mathbf{D}_K .

命题 2.6

设K是数域,N是理想的绝对范, d_K 是K的判别式.则

$$\mathbf{N}(\boldsymbol{D}_K)=d_K.$$

证明 设 K 的一组整基是 $\alpha_1, \dots, \alpha_n$. 回顾 $\operatorname{Tr}_{K/\mathbb{Q}}$ 诱导了 K 上的非退化双线性配对. 记 $\check{\alpha}_1, \dots, \check{\alpha}_n$ 是对偶基. 则 \mathbf{D}_K^{-1} 是由这组对偶基自由生成的 \mathbb{Z} -模. 由于

$$(\check{\alpha}_1, \cdots, \check{\alpha}_n) = (\alpha_1, \cdots, \alpha_n)(\operatorname{Tr}(\alpha_i \alpha_j))_{i,j}.$$

我们有

$$[\boldsymbol{D}_K^{-1}:\mathcal{O}_K]=[\mathcal{O}_K:\boldsymbol{D}_K]=\det(\operatorname{Tr}(\alpha_i\alpha_i))_{i,j}=d_K.$$

设 $|\cdot|_{\mathfrak{p}} = |\cdot|_{v}$ 是 K 的素位延拓了 \mathbb{Q} , $|\cdot|_{p}$. 对 \mathbb{Z}_{p} , \mathbb{Q}_{p} , $K_{\mathfrak{p}}$, $\mathcal{O}_{\mathfrak{p}}$. 由于 \mathcal{O}_{v} 是有限秩的自由 \mathbb{Z}_{p} -模,设 α_{1} , \cdots , α_{n} 是一组基. 定义局部判别式 $d_{K_{\mathfrak{p}}}$ 为这组基在 $\mathrm{Tr}_{K_{\mathfrak{p}}/\mathbb{Q}_{p}}$ 诱导的双线性配对的度量矩阵的行列式在 \mathbb{Z}_{p} 中生成的理想. 对 $K_{\mathfrak{p}}$ 的理想 \mathfrak{p}^{k} , 定义

$$N_{K_{\mathfrak{p}}/\mathbb{Q}_p}(\mathfrak{p}^k) = (p\mathbb{Z}_p)^{fk}, \quad f = f(\mathfrak{p}/p).$$

这个定义使得, 对 $\alpha \in K_v$, $N_{K_{\mathfrak{p}}/\mathbb{Q}_p}(\alpha)\mathbb{Z}_p = N_{K_{\mathfrak{p}}/\mathbb{Q}_p}(\alpha \mathcal{O}_v)$. (证明类似第一章最后一节: 理想的范.)

命题 2.7

$$N_{K_{\mathfrak{p}}/\mathbb{Q}_p}(\boldsymbol{D}(\mathcal{O}_v/\mathbb{Z}_p))=d_{K_{\mathfrak{p}}}.$$

如下定理将共轭差距的计算归化为"局部"情形.

定理 2.9

$$v_{\mathfrak{P}}(\mathbf{D}(\mathcal{O}_L/\mathcal{O}_K)) = v_{\mathfrak{P}}(\mathbf{D}(\mathcal{O}_w/\mathcal{O}_v)).$$

证明 设 $d \in \mathbb{Z}_{\geq 1}$, 我们需证明 $\mathfrak{P}^d \mid D(\mathcal{O}_w/\mathcal{O}_v)$ 当且仅当 $\mathfrak{P}^d \mid D(\mathcal{O}_L/\mathcal{O}_K)$. 取 $0 \neq a \in \mathcal{O}_K$ 使得 $a \in \mathfrak{P}^d$. 由中国剩余定理再结合推论2.6得下面交换图表:

$$\mathfrak{P}^{-d}/\mathcal{O}_{L} \hookrightarrow a^{-1}\mathcal{O}_{L}/\mathcal{O}_{L} \xrightarrow{\operatorname{Tr}} a^{-1}\mathcal{O}_{K}/\mathcal{O}_{K}$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathfrak{P}^{-d}\mathcal{O}_{w}/\mathcal{O}_{w} \hookrightarrow \prod_{\mathfrak{P}'\mid a} a^{-1}\mathcal{O}_{\mathfrak{P}'}/\mathcal{O}_{\mathfrak{P}'} \xrightarrow{\mathfrak{p}'\mid a} \prod_{\mathfrak{p}'\mid a} a^{-1}\mathcal{O}_{\mathfrak{p}'}/\mathcal{O}_{\mathfrak{p}'}.$$

其中第一行右侧的 Tr 表示由迹映射诱导的, 第二行右侧的 $Tr_{\mathfrak{P}'/\mathfrak{p}'}$ 是由 $L_{\mathfrak{P}'}$ 到 $K_{\mathfrak{p}'}$ 的迹映射诱导的. 中间和右边的同构是中国剩余定理以及前面证明过的 Dedekind 整环的事实:

对非零理想 $\mathfrak{a} \subset \mathcal{O}_K$ 有 $\mathcal{O}_K/\mathfrak{a} \cong \mathfrak{a}^{-1}/\mathcal{O}_K$. 那么,

$$\mathfrak{P}^d \mid \mathbf{D}(\mathcal{O}_L/\mathcal{O}_K) \Leftrightarrow$$
上右水平箭头零化 $\mathfrak{P}^{-d}/\mathcal{O}_L$ \Leftrightarrow 下右水平箭头零化 $\mathfrak{P}^{-d}\mathcal{O}_w/\mathcal{O}_w$ $\Leftrightarrow \mathfrak{P}^d\mathcal{O}_w \mid \mathbf{D}(\mathcal{O}_w/\mathcal{O}_v).$

推论 2.7

对每个素数 p, 有 $v_p(d_K) = \sum_{\mathfrak{p}|p} v_p(d_{K_{\mathfrak{p}}})$.

 \Diamond

定理 2.10

$$v_{\mathfrak{P}}(\boldsymbol{D}(\mathcal{O}_w/\mathcal{O}_v)) \geq e-1$$
, 等号成立当且仅当 $\mathfrak{p} \nmid e$, 这里 $e=e(\mathfrak{P}/\mathfrak{p})$.

 \sim

引理 2.4

设
$$L_w/K_v$$
 是完全分歧. 设 Π 是 $\mathfrak{P}\mathcal{O}_w$ 的一个生成元. 则 $\mathcal{O}_w=\mathcal{O}_v[\Pi]$.

证明 此时 Π 的极小多项式是关于 $\mathfrak p$ 的 Eisenstein 多项式 $f(T) = T^n + a_{n-1}T^{n-1} + \cdots a + 0$ (之前习题的结论). 根据前面 Dedekind 整环的结论知 $\mathcal O_w/(\mathcal O_v[\Pi]) \otimes \mathcal O_v/\mathfrak p = 0$. 但由于 $\mathfrak p$ 是 $\mathcal O_v$ 唯一的极大理想,知 $\mathcal O_w = \mathcal O_v[\Pi]$. 通过乘 Π 诱导的线性映射 $L_w \to L_w$ 在基 $1, \Pi, \cdots, \Pi^{n-1}$ 下的矩阵记为 A. 则 A 是 $\mathcal O_v$ 系数的矩阵,且 $A \mod \mathfrak p$ 形如

$$\begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & \ddots & \ddots & & \\ & & & 1 & 0 \end{pmatrix}$$

由此易得对 $k \geq 1$, $\operatorname{Tr}(\Pi^k) = \operatorname{Tr}(A^k) \equiv 0 \mod \mathfrak{p}$.

练习 2.1 思考题: 设 L_w/K_v 不一定完全分歧, 证明此时也存在 $\alpha \in \mathcal{O}_w$ 使得 $\mathcal{O}_w = \mathcal{O}_v[\alpha]$. 这在数域的情形是不对的, 例如 $K = \mathbb{Q}(\alpha)$, $\alpha \in T^3 - T^2 - 2T - 8$ 的一个根.

命题 2.8

- (1) 若 L_w/K_v 是非分歧的,则 $\mathbf{D}(\mathcal{O}_w/\mathcal{O}_v) = (1)$ 且 $\mathrm{Tr}(\mathcal{O}_w) = \mathcal{O}_v$.
- (2) 设分歧指数 $e = e(\mathfrak{P}/\mathfrak{p}) > 1$. 则 $\text{Tr}(\mathfrak{P}) \subset \mathfrak{p}$; 当 $\mathfrak{p} \nmid e$ 时 $\text{Tr}(\mathcal{O}_w) = \mathcal{O}_v$; 当 $\mathfrak{p} \mid e$ 时, $\text{Tr}(\mathcal{O}_w) \subset \mathfrak{p}\mathcal{O}_v$.

证明 (1) 此时 $\mathfrak{P} = \mathfrak{p}B$. 根据共轭差积的定义,

熟知最后一条是不对的, 所以 $\mathbf{D}(\mathcal{O}_w/\mathcal{O}_v)=(1)$. 注意到 $\mathrm{Tr}(\mathcal{O}_w)$ 总是 \mathcal{O}_v 的非零理想从而 $\mathrm{Tr}(\mathcal{O}_w)=\mathcal{O}_v$.

(2) 记 M 是最大的 L_w/K_v 中间域使得 M/K_v 非分歧. 则 $e = [L_w : M]$. 设 M 的 赋值环是 \mathcal{O} . 则 \mathcal{O} 的极大理想是 $\mathfrak{p}\mathcal{O}$. 由上面引理 $\mathcal{O}_w = \mathcal{O} + \mathcal{O}\Pi + \cdots \mathcal{O}\Pi^{e-1}$. 我们 断言当 $k \geq 1$ 时 $\mathrm{Tr}(\Pi^k) \in \mathfrak{p}$. 记 $\mathrm{Tr}_{L_w/M}$ 在 $B/\mathfrak{p}B$ 上诱导的迹映射为 T. 对 $\alpha \in \mathfrak{P}$, $\bar{\alpha} := \alpha \mod \mathfrak{p}B \in B/\mathfrak{p}B = B/\mathfrak{P}^eB$ 是幂零元, 所以 $T(\bar{\alpha}) = 0$. 换言之, $\mathrm{Tr}(\mathfrak{P}) \subset \mathfrak{p}\mathcal{O}$. 特别的断言成立.

现在, $\operatorname{Tr}_{L_w/M}(1) = e \in \mathfrak{p}\mathcal{O}_M$ 当且仅当 $\mathfrak{p} \mid e$. 所以

再利用 (1) 和迹的传递性 $\operatorname{Tr}_{L_w/K_v} = \operatorname{Tr}_{M/K_v} \circ \operatorname{Tr}_{L_w/M}$ 得所需结论.

证明 [定理2.10的证明] 当 e=1 时,这由命题2.8(1) 推出. 设 e>1. 则由上面命题 知 $\text{Tr}(\mathfrak{P}) \subset \mathfrak{p}$ 所以 $\text{Tr}(\mathfrak{p}^{-1}\mathfrak{P}) = \text{Tr}(\mathfrak{P}^{1-e}) \subset \mathcal{O}_v$. 根据共轭差积的定义,有 \mathfrak{P}^{e-1} | $D(\mathcal{O}_w/\mathcal{O}_v)$. 进一步,再根据命题2.8

$$\operatorname{Tr}(\mathfrak{P}^{-e}) = \operatorname{Tr}(\mathfrak{p}^{-1}\mathcal{O}_w) = \mathfrak{p}^{-1}\operatorname{Tr}(\mathcal{O}_w) \begin{cases} = \mathfrak{p}^{-1} & \text{if } e, \\ \subset \mathfrak{p}^{-1}\mathfrak{p} = \mathcal{O}_v & \text{if } e. \end{cases}$$

由此知 $\mathfrak{P}^e \mid D(\mathcal{O}_w/\mathcal{O}_v)$ 当且仅当 $\mathfrak{p} \mid e$.

例 2.7 $K = \mathbb{Q}(\zeta_p)$ 时, $D_K = (1 - \zeta_p)^{p-2}$.

最后我们用这些理论来计算纯三次域的判别式和整基. 设 $K = \mathbb{Q}(\sqrt[3]{m}), m \in \mathbb{Z}$ 但不是立方数. K 称作是纯三次域. 显然我们可假设 $m = ab^2, a, b \in \mathbb{Z}_{\geq 1}, a, b$ 互素且 a, b 均无平方因子. 设 $\alpha = \sqrt[3]{m}, \beta = \sqrt[3]{a^2b} = \frac{\alpha^2}{b}$.

命题 2.9

- (1) 若 $m \neq \pm 1 \mod 9$, 则 K 一组整基是 $\{1, \alpha, \beta\}$, 判别式 $d_K = -27a^2b^2$.
- (2) 若 $m \equiv \pm 1 \mod 9$, 则 K 一组整基是 $\{\gamma, \alpha, \beta\}$, 判别式 $d_K = -3a^2b^2$, 其中 $\gamma = \frac{1+a\alpha+b\beta}{3}$.

证明 $1, \alpha, \alpha^2$ 的判别式等于 $T^3 - m$ 的判别式等于 $-27m^2$, 所以 $d_K < 0$. 由此还知若 $p \nmid 3ab$, 则 p 非分歧. 特别的对这样的 p, 若 $v \mid p$, 则 $d_{K_v} = (1)$.

若 $p \mid a$ (若 $p \mid b$), 则 $T^3 - ab^2$ ($T^3 - a^2b$) 是 p-Eisenstein, 所以 p 完全分歧, 记为 $p\mathcal{O}_K = \mathfrak{p}^3$. 由 Eisenstein 多项式性质知 $\mathcal{O}_{\mathfrak{p}} = \mathbb{Z}_p[\alpha]$ ($\mathcal{O}_{\mathfrak{p}} = \mathbb{Z}_p[\beta]$). 总之

$$d_{K_{\mathfrak{p}}} = -27a^{2}b^{2}\mathbb{Z}_{p} = \begin{cases} 3^{5} & \exists p = 3, \\ p^{2} & \exists p \neq 3. \end{cases}.$$

故若 3 | m, 有

$$d_K = -3^3 a^2 b^2.$$

计算知

$$d(1, \alpha, \beta) = \frac{1}{h^2}d(1, \alpha, \alpha^2) = -27a^2b^2.$$

从而 $1, \alpha, \beta$ 是一组整基.

现在考虑 $3 \nmid m$ 的情形. 若 $m \not\equiv \pm 1 \bmod 9$,则根据下面引理知, $T^3 - m$ 在 $\mathbb{Q}_3[T]$ 中不可约. 注意到 $(T \pm 1)^3 - m$ 是 3-Eisenstein 的, 所以 3 依旧完全分歧, 与上面一样的分析得想要结论.

若 $m \equiv \pm 1 \mod 9$, 则有 $\mathbb{Z}_3[T]$ 中的不可约分解

$$T^3 - m = (T - \alpha)(T^2 + \alpha T + \alpha^2).$$

设 $\mathfrak{p}_1,\mathfrak{p}_2$ 是 K 的两个素位分别对应右边的两个多项式. 则 $K_{\mathfrak{p}_1}=\mathbb{Q}_3,K_{\mathfrak{p}_2}=\mathbb{Q}_3(\zeta_3)$. 于是 $\mathcal{O}_{\mathfrak{p}_1}=\mathbb{Z}_3,\mathcal{O}_{\mathfrak{p}_2}=\mathbb{Z}_3[\zeta_3]$. 所以

$$d_{K_{\mathfrak{p}_1}} = (1) \quad d_{K_{\mathfrak{p}_2}} = 3\mathbb{Z}_3.$$

那么当 $m \equiv 1 \mod 9$ 时,整合每个局部的判别式得

$$d_K = -3a^2b^2.$$

设 $\sigma_1, \sigma_2 \in \text{Hom}(K, \overline{\mathbb{Q}}_3)$ 分别对应 $\mathfrak{p}_1, \mathfrak{p}_2$. 可不妨设 $\sigma_1(\alpha) = \alpha \in \mathbb{Z}_3, \sigma_2(\alpha) = \zeta_3 \alpha \in \mathbb{Z}_3[\zeta_3]$. 简单计算知 (下面 + 对应 +, - 对应 -)

$$m \equiv \pm 1 \mod 9 \Rightarrow \alpha \equiv a \equiv \pm 1 \mod 3.$$

由此

$$\sigma_1(1+a\alpha+\alpha^2)\equiv 0 \bmod 3\mathbb{Z}_3, \quad \sigma_2(1+a\alpha+\alpha^2)\equiv 1+\zeta_3+\zeta_3^2\equiv 0 \bmod 3\mathbb{Z}_3.$$

这说明 $\sigma_i(\gamma) \in \mathcal{O}_{\mathfrak{p}_i}(i=1,2)$, 即 γ 在 $\mathfrak{p}_1,\mathfrak{p}_2$ 处的 (加法) 赋值是非负的, 而 γ 在其他素理想处的赋值显然是非负的, 所以 $\gamma \in \mathcal{O}_K$. 计算得

$$d(\gamma,\alpha,\beta) = \frac{1}{3^2}d(1,\alpha,\beta) = -3a^2b^2 = d_K.$$

这推出整基是 γ, α, β .

引理 2.5

$$(\mathbb{Z}_3^{\times})^3 = 1 + 9\mathbb{Z}_3 \times \{\pm 1\}.$$

证明 习题.

第三章 阿代尔环与伊代尔群

设 K 是数域. 本章介绍 K 的阿达尔环 \mathbb{A}_K 与伊代尔群 \mathbb{A}_K^{\times} . 我们将用两种方式来讲述,第一种是从第一章理想语言所得到的结论来推导本节的主要结果. 另一种是讲述 < 数论 \mathbb{I} 的方式: 用局部紧群上的测度理论来建立主要结果,由此再推导出第一章的主要结论. 这些颇为重要,后面将看到

- A_K 上的 Fourier 分析会给出 K 的解析理论, 这是 Tate 博士论文的内容;
- 类域论会将 K 的极大 abel 扩张关于 K 的 Galois 群与所谓伊代尔类群 $\mathbb{A}_K^{\times}/K^{\times}$ 联系起来, 从而对伊代尔群有个好的认识会帮助我们了解 K 的 abel 扩张.

3.1 阿代尔与伊代尔的定义与拓扑

见数论 I, 第六节 a). 我们补充一点. (与书中类似, 紧和局部紧均指对 Hausdorff 空间.)

命题 3.1

 \mathbb{A}_K 和 \mathbb{A}_K^{\times} 均是 Hausdorff 的局部紧群.

证明 一般的局部紧群的限制直积均是 Hausdorff 局部紧. 证明留作练习.

3.2 阿代尔与主阿代尔的关系

本小节用之前理想语言得到的结论来建立这些小标题中的关系.

定理 3.1. 强逼近定理

设 v_0 是 K 的任意素位. 则 K 在限制直积 $\prod_{v\neq v_0}' K_v$ 中稠密. 这里 v 跑遍 K 的不同于 v_0 的所有素位, 限制直积是对 (K_v, \mathcal{O}_v) (当 v 有限时) 取的.

设 $S \neq K$ 素位的有限集合且包含 K 的全部无穷素位. 定义 K 的 S-整数环

$$\mathcal{O}_S := \{x \in K : \operatorname{ord}_v(x) \geq 0 \text{ 对任意}v \notin S.$$

例 3.1 $K = \mathbb{Q}, S = \{p, \infty\}$. 则 $\mathcal{O}_S = \mathbb{Z}[\frac{1}{n}]$.

上面定理写成经典语言的话是:

定理 3.2. 强逼近定理'

设 S 是包含 K 所有无穷素位的有限集合. 任取 $v_0 \in S$, 记 $S' = S \setminus \{v_0\}$. 则 \mathcal{O}_S 在 $\prod_{v \in S'} K_v$ 中稠密.

肇记 这里我详细写下定理3.1与定理3.2的等价性证明. (这纯属点集拓扑的简单讨论.) 定理3.1 "⇒ 定理3.2": 任意给定 $(a_v)_{v \in S'} \in \prod_{v \in S'} K_v$ 以及 $\epsilon > 0$. 定义 $\prod_{v \neq v_0}' K_v$ 中

元素

在 $\prod_{v\neq v_0}' K_v$ 中取 a 的如下开邻域

$$U := \prod_{v \notin S} \mathcal{O}_v \times \prod_{v \in S} B(a_v, \epsilon), \quad \text{if } \mathbb{E} B(a_v, \epsilon) = \{x \in K_v : |x - a_v|_v < \epsilon\}.$$

由定理3.1知, 存在 $x \in K \cap U$. 注意到 $K \cap U \subset \mathcal{O}_S$, 且当 $v \in S'$ 时 $|x - a_v|_v < \epsilon$. 这就证明了定理 3.2.

定理3.2 "⇒ 定理3.1 ": 任意给定 $a = (a_v)_{v \neq v_0} \in \prod'_{v \neq v_0} K_v$ 以及 a 的开邻域 U. 根据限制直积拓扑的定义, 我们可不妨设

$$U = \prod_{v \notin S} \mathcal{O}_v \times \prod_{v \in S, v \neq v_0} B(a_v, \epsilon),$$

其中 S 为包含全部无穷素位且不包含 v_0 的有限集合. 由定理3.2知, 存在 $x\in\mathcal{O}_S$ 使得当 $v\in S\setminus\{v_0\}$ 时, $x\in B(a_v,\epsilon)$. 注意到在 $\prod_{v\neq v_0}'K_v$ 中有 $x\in U$, 这就证明了定理3.1.

我们将对定理3.2给出证明. (下面这个引理可推广到一般 Dedekind 整环中).

引理 3.1

$$\mathcal{O}_S$$
 在 $\prod_{v \in S, v \nmid \infty} K_v$ 中稠密.

5

证明 证明是个关于中国剩余定理的游戏. 细节如下: 记 $\{p_1, \dots, p_r\}$ 为 S 中有限素位的集合. 任意给定

$$(a_i)_i \in \prod_{i=1}^r K_{\mathfrak{p}_i} \quad \ \ \, \ \, \ \, \& \, \, \ \, \epsilon > 0.$$

我们需证存在 $z \in \mathcal{O}_S$ 使得对每个 $i|z - a_i|_{\mathbf{p}_i} < \epsilon$.

首先来说明存在 $x \in K$ 使得 $v_{\mathfrak{p}_i}(x) = v_{\mathfrak{p}_i}(a_i)$. 记 $k_i = v_{\mathfrak{p}_i}(a_i)$. 取 $\beta \in \mathfrak{p}_i^{|k_i|} \setminus \mathfrak{p}^{|k_i|+1}$. 根据中国剩余定理存在 $\alpha_i \in \mathcal{O}_K$ 满足

$$\alpha_i \equiv \beta \bmod \mathfrak{p}^{|k_i|+1},$$

$$\alpha_i \equiv 1 \mod \mathfrak{p}_i$$
, 对每个 $j \neq i$.

适当取 ± 号, 我们有 $\alpha := \prod_{i=1}^r \alpha_i^{\pm}$ 在每个 \mathfrak{p}_j ($1 \le j \le r$) 处的赋值都等于 k_j . 再次应用中国剩余定理知存在 $\gamma \in \mathcal{O}_K$ 使得对充分大的整数 N 成立

$$\gamma \equiv 0 \bmod \mathfrak{p}_i^N$$
$$\gamma \equiv 1 \bmod \mathfrak{p}_i \ \forall \beta \uparrow j \neq i.$$

则 $x := \gamma \alpha \in \mathcal{O}_S$ 就是所需元素.

特别的, $\frac{a_i}{x} \in \mathcal{O}_{p_i}^{\times}$. 再由中国剩余定理知存在 $y \in \mathcal{O}_K$ 使得, 对每个 $i = 1, 2, \dots, r$ 以

及充分大的整数 N 有

$$y \equiv \frac{a_i}{r} \bmod \mathfrak{p}_i^N \mathcal{O}_{\mathfrak{p}_i}.$$

则

$$z := xy \in \mathcal{O}_S$$
 且对每个 i 有 $z - a_v \in \mathfrak{p}_i^{k_i + N} \mathcal{O}_{\mathfrak{p}_i}$.

当 N 充分大时,显然我们有 $|z-a_i|_{\mathbf{p}_i}<\epsilon$ 对 $1\leq i\leq r$ 成立. 这就说明了 z 是所需的逼近.

Minkowski 定理在如下的证明中起到了核心作用.

证明 [定理3.2的证明]

任意给定 $(a_v)_v \in \prod_{v \in S'} K_v$ 以及 $\epsilon > 0$. 我们需证明存在 $z \in \mathcal{O}_S$ 使得 $|z - a_v| < \epsilon$, $v \in S'$. 我们将先证两种特殊情形,最后证一般情形. 设 $\mathcal{F} \not\in \prod_{v \mid \infty} K_v$ 关于格 \mathcal{O}_K 的一个基本区域. 由于 \mathcal{F} 有界, 可取 M > 0 使得

对任意
$$(f_v)_{v|\infty} \in \mathcal{F}$$
 有 $|f_v|_v \le M$. (3.2.1)

(1) 设 $S = \{ \text{全体无穷素位} \}, v_0 \in S$. 此时 $\mathcal{O}_S = \mathcal{O}_K$. 应用 Minkowski 定理知存在 $x \in \mathcal{O}_K$ 使得

$$|x|_v < \frac{\epsilon}{M}, \quad \text{ 対每个} v \in S'.$$

任取 $a_{v_0} \in K_{v_0}$, 因为 \mathcal{F} 是基本区域, 存在 $y \in \mathcal{O}_K$ 使得在 $\prod_{v \in S} K_v$ 中,

$$y - \frac{(a_v)_{v \in S}}{x} \in \mathcal{F}.$$

根据(3.2.1)有

$$|xy - a_v|_v = |x|_v|y - \frac{a_v}{x}|_v < \epsilon \quad \text{ } \forall \Leftrightarrow v \in S'.$$

那么 $z = xy \in \mathcal{O}_S$ 就是所需的逼近.

(2) 设 $S' = \{ \text{全体无穷素位} \}$, v_0 是有限素位. 设 v_0 对应的素理想是 \mathfrak{p}_0 . 由于类群有限, 故存在 $h \in \mathbb{Z}_{>0}$ 使得 $\mathfrak{p}_0^h = (\pi), \pi \in \mathcal{O}_K$. 则我们有

$$\mathcal{O}_S = \mathcal{O}_K[\pi^{-1}].$$

其中右边包含于左边是显然的; 反过来的包含是因为对任意 $\alpha \mathcal{O}_S$, 显然存在 $N \in \mathbb{Z}_{\geq 0}$ 使得 $\pi^N \alpha \in \mathcal{O}_K$. 设 $0 \neq \mathfrak{a} \subset \mathcal{O}_K$ 是整理想, 则对 $m \in \mathbb{Z}_{\geq 1}$, \mathcal{O}_K 的分式理想 $(\pi^{-m})\mathfrak{a}$ 作为 $\prod_{v \in S'} K_v$ 中格的体积随着 m 增大时可任意小. 应用 Minkowski 定理知存在 $x \in \mathcal{O}_S$ 使得

$$|x|_v < \frac{\epsilon}{M}$$
 对每个 $v \in S'$.

取 $y \in \mathcal{O}_K$ 使得

$$y - \frac{(a_v)_{v \in S'}}{x} \in \mathcal{F}.$$

根据(3.2.1)有

$$|xy - a_v|_v = |x|_v |y - \frac{a_v}{r}|_v < \epsilon \quad \text{ } \forall \text{ } \Leftrightarrow \text{ } \land v \in S'.$$

那么 $z = xy \in \mathcal{O}_S$ 就是所需的逼近.

注意到在上面两种特殊情形的条件下,我们实际上成立如下更强的事实

$$N\mathcal{O}_S$$
 在 $\prod_{v \in S'} (NK_v) = \prod_{v \in S'} K_v$ 中稠密, N 任意正整数.

(3) 一般情形: 由引理3.1知存在 $x \in \mathcal{O}_S$ 使得

$$|x - a_v|_v < \epsilon \quad \text{xpart} \quad x \in S' \ \exists v \nmid \infty.$$
 (3.2.2)

对 $N \in \mathbb{Z}_{>1}$, 由前两种特殊情形的结论知存在 $y \in N\mathcal{O}_S$ 使得

$$|y - (x - a_v)|_v < \epsilon$$
 $\forall x \in S' \ \exists v \mid \infty.$ (3.2.3)

若 v_0 是有限素位,根据情形 (2); 若 v_0 是无穷素位,这是由情形 (1) 的结论. 现在取 N 满足对每个素理想 $\mathfrak{p} \in S$, \mathfrak{p} 的足够高次方整除 N,结合(3.2.3)可知(3.2.3)中的不等式对 S' 中的有限素位也成立. 则 $z = x - y \in \mathcal{O}_S$ 就是所需的逼近.

命题 3.2

K 在 \mathbb{A}_K 中离散且闭, \mathbb{A}_K/K 紧.

证明 记 $K_{\infty} = \prod_{v \mid \infty} K_v$. 由强逼近定理易知

$$K + (\prod_{v \nmid \infty} \mathcal{O}_v \times K_\infty) = \mathbb{A}_K.$$

另外我们有显然的等式

$$K \cap (\prod_{v \nmid \infty} \mathcal{O}_v \times K_\infty) = \mathcal{O}_K.$$

所以包含映射诱导了如下自然的拓扑群同构

$$(\prod_{v \nmid \infty} \mathcal{O}_v \times K_{\infty})/\mathcal{O}_K \cong \mathbb{A}_K/K.$$

设 \mathcal{F} 是 $\prod_{v\mid\infty}K_v$ 关于格 \mathcal{O}_K 的基本区域,记 $\overline{\mathcal{F}}$ 为其闭包.显然有连续的自然满射

$$\prod_{v \nmid \infty} \mathcal{O}_v \times \overline{\mathcal{F}} \to (\prod_{v \nmid \infty} \mathcal{O}_v \times K_\infty) / \mathcal{O}_K.$$

前者作为紧空间的乘积是紧,从而后者也是紧的. K 在 \mathbb{A}_K 中的离散性由 \mathcal{O}_K 在 $\prod_{v \mid \infty} K_v$ 中的离散性得出. (根据一般拓扑群的结论知 K 在 \mathbb{A}_K 中闭).

推论 3.1

设 $S \to K$ 素位的有限集合且包含 K 所有无穷素位. 则 \mathcal{O}_S 在 $\prod_{v \in S} K_v$ 下的像离散且余紧.

证明 由于 \mathcal{O}_S 是群, 我们只需证明 $0 \in \mathcal{O}_S$ 在 $\prod_{v \in S} K_v$ 中离散. 对 $v \in S$, 设 $U_v \subset K_v$ 是 $0 \in K_v$ 的一个紧邻域. 则 U 是 0 在 \mathbb{A}_K 中的紧邻域, 这里

$$U = \prod_{v \in S} U_v \times \prod_{v \notin S} \mathcal{O}_v.$$

由于 K 在 \mathbb{A}_K 中闭, 所以 $K \cap U$ 紧且离散, 故而有限. 显然 $x \in K \cap U$ 当且仅当

 $x \in \mathcal{O}_S \cap \prod_{v \in S} K_v$, 所以 \mathcal{O}_S 在度量空间 $\prod_{v \in S} K_v$ 中离散. 由于

$$K + \prod_{v \notin S} \mathcal{O}_v \times \prod_{v \in S} K_v = \mathbb{A}_K,$$

故

$$(\prod_{v \notin S} \mathcal{O}_v \times \prod_{v \in S} K_v) / \mathcal{O}_S \cong \mathbb{A}_K / K \ \S.$$

利用如下自然投射知后者紧

$$(\prod_{v \notin S} \mathcal{O}_v \times \prod_{v \in S} K_v)/\mathcal{O}_S \to (\prod_{v \in S} K_v)/\mathcal{O}_S.$$

例 3.2 (1) ℤ 在 ℝ 中离散且余紧.

(2) $\mathbb{Z}\left[\frac{1}{p}\right]$ 在 $\mathbb{R} \times \mathbb{Q}_p$ 中离散且余紧, 但分别在 \mathbb{R} 和 \mathbb{Q}_p 中稠密.

3.3 伊代尔与主伊代尔的关系

对 K_v 上的绝对值, 我们首先需要选择所谓" 标准" 绝对值 $|\cdot|_{K_v}$, 也简记作 $|\cdot|_v$. 若 v 是有限素位对应素理想 \mathfrak{p} , (仿照 < 数论 \mathfrak{l} >) 用 ord_v 来表示加法赋值 $v_{\mathfrak{p}}$, 记 q_v 是 K_v 剩余 类域的阶. 定义

$$|x|_{K_v} = \begin{cases} q_v^{-\operatorname{ord}_v(x)} & \text{若}v \text{ 有限}; \\ \\ \text{通常绝对值} & \text{若}K_v = \mathbb{R}; \\ \\ x\bar{x} & \text{若}K_v = \mathbb{C}. \end{cases}$$

在阿代尔上定义绝对值 · | AK (也简记为 | · |):

$$|\cdot|_{\mathbb{A}_K}: \mathbb{A}_K \to \mathbb{R}_{\geq 0}, \quad a = (a_v)_v \mapsto \prod_v |a_v|_{K_v}.$$

由于对几乎所有的 $v, a_v \in \mathcal{O}_v$ 即 $|a_v|_{K_v} \leq 1$, 故上面乘积收敛. 如果 $(a_v)_v$ 是个伊代尔, 则对几乎所有的 $v, |a_v|_{K_v} = 1$, 故 $|(a_v)_v|_{\mathbb{A}_K}$ 是有限乘积.

命题 3.3. 乘积公式

若
$$x \in K^{\times}$$
, 则 $|x|_{\mathbb{A}_K} = 1$.

证明 当 $K=\mathbb{Q}$ 时,直接验证即可得结论. 一般情形显然由如下等式推出

$$|x|_{\mathbb{A}_K} = |N_{K/\mathbb{O}}(x)|_{\mathbb{A}_{\mathbb{O}}}.$$
(3.3.1)

为证(3.3.1), 只要说明对每个素位 v, 当 $x \in K_v$ 时成立如下等式

$$\prod_{v|p} |x|_v = |N_{K/\mathbb{Q}}(x)|_p.$$

这里p是 \mathbb{Q} 的v之下的素位. 当v是无限素位时,上式由范的基本性质推出. 以下设v是有限素位. 根据赋值理论知

$$N_{K/\mathbb{Q}}(x) = \prod_{v|p} N_{K_v/\mathbb{Q}_p}(x).$$

 \Diamond

所以我们只需证明

$$|N_{K_v/\mathbb{O}_n}(x)|_p = |x|_v.$$

对当 $\operatorname{ord}_v(x) = 1$ 时, (右边的事实见练习) $\operatorname{ord}_p(N_{K_v/\mathbb{Q}_p}(x)) = f(v/p)$. 利用 $q_v = p^{f(v/p)}$ 知 对这样的x上面公式成立时,利用乘性知对任意 $x \in K_v$ 上式也成立. 这就证明了(3.3.1).

令

$$\mathbb{A}_{K}^{1} = \{ a \in \mathbb{A}_{K}^{\times} : |a|_{K} = 1. \}$$

给 \mathbb{A}_K^1 赋予 \mathbb{A}_K^{\times} 的子拓扑. 命题3.3证明了 $K^{\times} \subset \mathbb{A}_K^1$.

定理 3.3 K^{\times} 在 \mathbb{A}^1_K 中离散且 $\mathbb{A}^1_K/K^{\times}$ 紧.

为证明这个定理, 定义映射 (回忆 I_K 表示 K 的分式理想群):

$$\mathbb{A}_K^{\times} \to I_K, \quad (a_v)_v \mapsto \prod_{v \nmid \infty} \mathfrak{p}_v^{\operatorname{ord}_v a_v}.$$

(闲谈: 由这个映射可看出伊代尔是(分式)理想的"加细",这正是名称 idéle = ideal element 的由来). 记其核为 U_K , 则

$$U_K = \prod_{v \nmid \infty} \mathcal{O}_v^{\times} \times \prod_{v \mid \infty} K_v^{\times}. \tag{3.3.2}$$

显然 I_K 的子群主分式理想群的逆像是 $K^{\times}U_K$, 这诱导了同构

$$\mathbb{A}_K^{\times}/U_KK^{\times} \cong \mathrm{Cl}_K.$$

记 $U_K^1=U_K\cap\mathbb{A}_K^1$. 则自然嵌入 $\mathbb{A}_K^1\subset\mathbb{A}_K^ imes$ 诱导了同构 $\mathbb{A}_K^1/K^ imes U_K^1\cong\mathbb{A}_K^ imes/U_KK^ imes.$

$$\mathbb{A}_K^1/K^{\times}U_K^1 \cong \mathbb{A}_K^{\times}/U_KK^{\times}.$$

特别的, $\mathbb{A}_K^1/K^{\times}U_K^1$ 同构于类群从而是有限群.

证明 利用 $K^{\times} \subset \mathbb{A}^1_K$, 我们得出 $\mathbb{A}^1_K \cap U_K K^{\times} = U^1_K K^{\times}$. 所以只需证明

$$\mathbb{A}_K^1 U_K = \mathbb{A}_K^{\times}.$$

设 $a \in \mathbb{A}_{K}^{\times}$. 取一个无穷素位v, 令

$$b = (1, \dots, 1, b_v, 1, \dots, 1) \in U_K$$
 $\notin \{|b_v|_v = |a|_K.$

则 $|b|_K = |a|_K$. 故 $ab^{-1} \in \mathbb{A}^1_K$ 从而 $a = (ab^{-1})b \in \mathbb{A}^1_K U_K$. 这就证明了上面的等式.

证明 [定理3.3的证明]

记

$$K_{\infty} = \prod_{v \mid \infty} K_v, \quad K_{\infty}^1 = \{(x_v)_v \in K_{\infty} : \prod_{v \mid \infty} |x_v|_v = 1\}.$$

则

$$\left(\prod_{v\nmid\infty}\mathcal{O}_v^\times\times K_\infty\right)\cap K^\times=\left(\prod_{v\nmid\infty}\mathcal{O}_v^\times\times K_\infty^1\right)\cap K^\times=\mathcal{O}_K^\times.$$

从而有拓扑 abel 群的正合列:

$$1 \to (\prod_{v \nmid \infty} \mathcal{O}_v^\times \times K_\infty^1)/\mathcal{O}_K^\times \to \mathbb{A}_K^1/K^\times \to \mathbb{A}_K^1/U_KK^\times \to 1.$$

因为类数有限,故右边是有限群. 所以若能证明左边是紧群就行了. 考虑正合列

$$1 \to \prod_{v \nmid \infty} \mathcal{O}_v^\times \to (\prod_{v \nmid \infty} \mathcal{O}_v^\times \times K_\infty^1)/\mathcal{O}_K^\times \to K_\infty^1/\mathcal{O}_K^\times \to 1.$$

右边的箭头由 $(a_v)_v \to (a_v)_{v \mid \infty}$ 诱导. 左边是紧的, 右边紧是因为 Dirichlet 单位定理, 从而中间一项也是紧的.

3.4 Haar 测度