B.Sc. Engg./HD CSE 5th Semester (45)

20 February 2012 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2011-2012

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4533: Graph Theory

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

- a) What is a graph? Describe two real-life scenarios where the knowledge of graphs and graph theory can be applied.
 - b) Define walk, path and circuit. Draw the graph represented by the following adjacency matrix.

 $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}.$

- c) Define **complement of a graph**. Suppose a simple graph G has v vertices, e edges and the complement of graph G is denoted with \overline{G} . How many vertices and edges does \overline{G} have?
- d) How many vertices and how many edges does the following graphs have?

i. K_{m,n} ii. C_n iii. W_n iv. Q_n v. K_n

a) Define subgraph. Draw all subgraphs of the following graph.

a b c d

- b) Show that a simple graph with n vertices must be connected if it has more than [(n-1)(n-2)]/2 edges.
- c) Write short notes on the following:
 - Arbitrarily traceable graph
 - Solving the travelling salesman problem efficiently
 - iii. How the degree of a graph's vertices indicate where it is Eulerian or not?

1+6

2+3

5X2

3+2

5

3X3

	d)	How do you solve the Chinese postman problem for the following cases? i. A graph which is Eulerian	-4
		ii. A graph which is semi-Eulerian	
		RATION: 1 Hour 30 Minutes FULL MARKS:	
	a)	Define graph isomorphism and degree sequence . Classify the following statements as <i>true</i> or <i>false</i> :	4+2
		 Any two isomorphic graphs have the same degree sequence. 	
	b)	ii. Any two graphs with the same degree sequence are isomorphic. Define center, radius and diameter of a tree. Draw a tree in which its diameter is not equal to twice the radius. Under what condition does this inequality hold?	3+4
	c)	What is a rooted tree? If the number of labeled trees with n vertices $(n \ge 2)$ is n^{n-2} , prove	2+4
	d)	that the number of labeled rooted trees is n^{n-1} . Write short notes on the following:	6
	u)	i. Cyclic interchange	
		ii. Application of shortest spanning tree	
			11
1.	a)	What is weighted path length of a graph? How are Huffman codes related to it?	2+3
	b)	Define cut-sets, edge connectivity and cut-vertex. Discuss an application of cut-sets.	3+2
	c)	For each of the following, give an example of a graph G with desired properties. If no such graph exists, explain why not.	3X3
		Yayari adqesi aniwofiol adi asob asob yanan wod bar asobay yana wolf	
		 i. G is connected, contains a cut-vertex and contains a cutest of cardinality 3 ii. Every edge of G is a bridge, but G is not a tree 	
	41	iii. G = K ₅ and the vertex connectivity of G is 5	6
	d)	Briefly describe the followings: i. Height of a tree.	0
		ii. Kruskal's algorithm.	