3.3 Arithmetic on Vectors in 3-Dimensional Space

ADDITION & SUBTRACTION OF VECTORS

To add or subtract two vectors, add or subtract their corresponding components.

Example (1)

To **add** the vectors $\vec{u} = \langle 2, 5, 4 \rangle$ and $\vec{v} = \langle 4, 2, 1 \rangle$, add their corresponding

components.

$$\vec{u} + \vec{v} = \langle 2 + 4, 5 + 2, 4 + 1 \rangle = \langle 6, 7, 5 \rangle$$

So, $\vec{u} + \vec{v} = \langle 6, 7, 5 \rangle$

Now, graph this sum. Start at the origin.

Since the x –component is 6, move 6 units in the x –direction.

Since the y –component is 7, move 7 units in the y –direction.

Since the z –component is 5, move 5 units upward.

Example (2)

To **subtract** the vectors $\vec{u} = \langle 2, 5, 4 \rangle$ and $\vec{v} = \langle 4, 2, 1 \rangle$ subtract their corresponding components.

$$\vec{u} - \vec{v} = \langle 2 - 4, 5 - 2, 4 - 1 \rangle = \langle -2, 3, 3 \rangle$$

So, $\vec{u} - \vec{v} = \langle -2, 3, 3 \rangle$

SCALAR MULTIPLICATION

Scalar multiplication is the multiplication of a vector by a real number (a scalar).

Suppose we let the letter k represent a real number and \vec{v} be the vector $\langle x, y, z \rangle$. Then, the scalar multiple of the vector \vec{v} is

$$k\vec{v} = \langle kx, ky, kz \rangle$$

Example (1)

Suppose $\vec{u} = \langle -3, -8, 5 \rangle$ and k = 3.

Then
$$k\vec{u} = 3\vec{u} = 3\langle -3, -8, 5 \rangle = \langle 3(-3), 3(-8), 3(5) \rangle = \langle -9, -24, 15 \rangle$$

Example (2)

Suppose $\vec{v} = \langle 6, 3, -12 \rangle$ and $k = \frac{-1}{3}$.

Then
$$k\vec{u} = \frac{-1}{3}\vec{u} = \frac{-1}{3}\langle 6, 3, -12 \rangle = \left\langle \frac{-1}{3}(6), \frac{-1}{3}(3), \frac{-1}{3}(-12) \right\rangle = \langle -2, -1, 4 \rangle$$

Example (3)

Suppose
$$\vec{u} = \begin{bmatrix} -2 \\ 6 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -8 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$. Find $3\vec{u} + 4\vec{v} - 2w$.

Then
$$3\vec{u} + 4\vec{v} - 2w = 3\begin{bmatrix} -2\\6\\0 \end{bmatrix} + 4\begin{bmatrix} 1\\2\\-8 \end{bmatrix} - 2\begin{bmatrix} -3\\-1\\2 \end{bmatrix} = \begin{bmatrix} -6\\18\\0 \end{bmatrix} + \begin{bmatrix} 4\\8\\-32 \end{bmatrix} + \begin{bmatrix} 6\\2\\-4 \end{bmatrix} = \begin{bmatrix} 4\\28\\-36 \end{bmatrix}$$

USING TECHNOLOGY

We can use technology to determine the value of adding or subtracting vectors.

Go to www.wolframalpha.com.

Suppose and $\vec{u} = \begin{bmatrix} -2 \\ 6 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -8 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$. Use WolframAlpha to find $3\vec{u} + 4\vec{v} - 2w$. In the entry field enter evaluate 3*[-2,6,0] + 4*[1,2,-8] - 2*[-3,-1,2].

evaluate
$$3*[-2, 6, 0] + 4*[1, 2, -8] - 2*[-3, -1, 2]$$

$$\int_{\Sigma^3}^{\pi} \text{ Extended Keyboard } \quad \underline{ } \quad \text{Upload}$$
Input:
$$3 (-2, 6, 0) + 4 (1, 2, -8) - 2 (-3, -1, 2)$$
Result:
$$(4, 28, -36)$$
Vector length:

WolframAlpha answers (4, 28, -36) which is WolframAlpha's notation for $\begin{bmatrix} 4\\28\\-36 \end{bmatrix}$.

TRY THESE

1. Add the vectors $\vec{u} = \langle -3, 4, 6 \rangle$ and $\vec{v} = \langle 8, 7, -5 \rangle$.

ANS:
$$\vec{u} + \vec{v} = \langle 5, 11, 1 \rangle$$

2. Subtract the vector $\vec{v} = (8, 7, -5)$ from the vector $\vec{u} = (-3, 4, 6)$.

ANS:
$$\vec{u} - \vec{v} = \langle -11, -3, 11 \rangle$$

3. Given the three vectors, $\vec{u}=\langle 2,4,-5\rangle$, $\vec{v}=\langle -3,4,-8\rangle$, and $\vec{w}=\langle 0,1,2\rangle$, find $2\vec{u}+3\vec{v}-4\vec{w}$.

ANS:
$$2\vec{u} + 3\vec{v} - 4\vec{w} = \langle -5, 16, -42 \rangle$$

4. Suppose and $\vec{u} = \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -1 \\ 6 \\ 4 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}$, find $4\vec{u} - 4\vec{v} - \vec{w}$.

ANS:
$$4\vec{u} - 4\vec{v} - \vec{w} = \langle 16, -13, -26 \rangle$$

NOTE TO INSTRUCTOR

Consider working through these examples.

1. Add the vectors $\vec{u} = \langle 3, -4, 5 \rangle$ and $\vec{v} = \langle -1, 4, 2 \rangle$.

ANS:
$$\vec{u} + \vec{v} = \langle 2, 0, 7 \rangle$$

2. Subtract the vector $\vec{v} = \langle -5, 2, 1 \rangle$ from the vector $\vec{u} = \langle -9, 4, -3 \rangle$.

ANS:
$$\vec{u} - \vec{v} = \langle -4, 2, -4 \rangle$$

- 3. Given the three vectors, $\vec{u} = \langle 1, -2, -3 \rangle$, $\vec{v} = \langle 4, 3, 2 \rangle$, and $\vec{w} = \langle 1, -1, 1 \rangle$,
 - a. Find $2\vec{u} + 3\vec{v} 4\vec{w}$.
 - b. Find the length of the vector $2\vec{u} + 3\vec{v} 4\vec{w}$.

ANS: a.
$$2\vec{u} + 3\vec{v} - 4\vec{w} = \langle 10, 9, -4 \rangle$$

b. $\sqrt{197}$

4. Suppose and
$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -5 \\ 2 \\ 6 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 6 \\ 0 \\ -6 \end{bmatrix}$, find $3\vec{u} - 4\vec{v} - 2\vec{w}$.

ANS:
$$3\vec{u} - 4\vec{v} - 2\vec{w} = \langle 11, -5, -21 \rangle$$

3-3 arithmetic on vectors in 3-dimensional space.pdf, attributed to Denny Burzynski (author) and Downey Unified School District (publisher) is licensed under CC BY-NC 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0