SOLUCIONES o PISTAS a los ejercicios de la HOJA 4

1. a)
$$\mathbb{R} \setminus \{-1, 4\}$$
 b) $(-1, 1] \cup (4, +\infty)$ c) $(-1, 1) \cup (4, +\infty)$

d)
$$[-2,3]$$
 e) $\mathbb{R} \setminus \{1\}$ f) $[1,+\infty)$

g)
$$[-1,1) \cup [2,+\infty)$$
 h) $[1,2) \cup (2,+\infty)$

2. f+g y fg son constantes, así que son continuas en 0 pese a que ni f ni g lo son

3. a)
$$2/3$$
 b) 6 c) $1/2$ d) $n(n+1)/2$ e) 1

f)
$$1/4$$
 g) $3/2$ h) $1/2$ i) -3 j) $4/3$

k) 1/2 l) 4/3 m)
$$1/\sqrt{6}$$
 n) $+\infty$ ñ) $1/e$

4. a) 7 b)
$$-2$$
 c) 4 d) 4

5. a)
$$1/e$$
 b) $\pi^2/2$ c) pa^{p-1} d) 1 e) 2

f)
$$e^{-8}$$
 g) e^{2a} h) 6 i) $e^{-1/2}$ j) $3/2$

k) no existe (por la derecha es
$$\sqrt{2}$$
, por la izquierda es $-\sqrt{2}$)

l) no existe (por la derecha es
$$1/\sqrt{2}$$
, por la izquierda es $-1/\sqrt{2}$)

$$m)\ 1/2 \quad n)\ 2$$

6. a)
$$n = -2$$

b)
$$n = 0$$
 [no se aplica Bolzano]

c)
$$n = -1$$

7. aplicar Bolzano a la función diferencia

en c) hay que aplicarlo en dos intervalos y en d) en infinitos para e), notar que la diferencia es un polinomio de grado 3