

CS230: Digital Logic Design and Computer Architecture

The Digital world: Logic gates

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

Logistics

- Join Piazza now
- Lab on Tuesday, 2 PM SL1 to SL3, attendance compulsory
- You can meet me and discuss if anything is not clear
- Problem set 1 in a week or two. Ungraded, for your practice only

Let's get started

Since 1946 all computers have had 5 components

In those days

Let's get started: One Step at a time

World of Digital computers

Not Analog

Digital: World of TRUE/FALSE or 1/0

World of binary variables

Logic circuits performing operations on binary variables: Logic gates

Digits vs bits

■ Digits = powers of 10

```
... 100, 10, 1, \frac{1}{10}, \frac{1}{100}, \frac{1}{1000} ... 10<sup>2</sup>, 10<sup>1</sup>, 10<sup>0</sup>, 10<sup>-1</sup>, 10<sup>-2</sup>, 10<sup>-3</sup> ...
```

Ex:
$$(36.25)_{10} = 3*10 + 6*1 + 2*1/10 + 5*1/100$$

■ Bits = powers of 2

$$\dots$$
 8, 4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ \dots $\frac{2^{3}}{3}$, $\frac{2^{2}}{3}$, $\frac{2^{1}}{3}$, $\frac{2^{0}}{3}$, $\frac{2^{-1}}{3}$, $\frac{2^{-2}}{3}$, $\frac{2^{-3}}{3}$

Ex:
$$(100100.01)_2 = 1*32 + 1*4 + 1*1/4$$

Decimal to binary

- Left of decimal point
 - Repeatedly divide integer part by 2 until you get 0
 - □ Read remainders bottom to up

```
22 = (?)_2 (10110)_2
```

```
22
11 R 0
5 R 1
2 R 1
1 R 0
0 R 1
```

Decimal to binary

- Right of decimal point
 - Repeatedly multiply fractional part by 2 until you get 1
 - □ Read integer portion top to bottom

```
0.8125 = (0.1101)_2
0.8125
1.6250
1.25
0.5
```

1.0

Both?

- What if there are both left and right of the decimal point?
 - Do them separately and combine

Binary Number System

1's column 10's column 100's column 1000's column

$$9742_{10} = 9 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 2 \times 10^0$$
nine seven four two ones

Convert 84₁₀ to binary

Convert 84₁₀ to binary

Binary addition

Simple

$$1 + 0 = 1$$

$$0 + 0 = 0$$

$$1 + 1 = 0$$
 with carry 1

So far unsigned, what about signed

most significant bit denotes sign and remaining N-1 bits denote value (Sign/magnitude numbers)

5₁₀: 0101₂

-5₁₀: 1101₂

Binary addition does not make sense

5 + (-5) = 0 BUT NOT IN SIGNED/MAGNITUDE

BTW, ZERO HAS TWO REPRESENTATIONS IN SIGN MAGNITUDE +0 AND -0, WHICH IS SO CONFUSING

SOLUTION? 2'S COMPLEMENT

The 2's complement way for negative numbers

Take the complement of a binary number and add 1 to the lsb (least significant bit)

-5₁₀: ?₂

5₁₀: 0101, complement: 1010, 2's

complement: 1011

Range of Numbers

System	Range		
Unsigned	$[0, 2^N - 1]$		
Sign/Magnitude	$[-2^{N-1}+1,2^{N-1}-1]$		
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$		

Remember sign/magnitude has two zeros ©

Sign Extension

To represent a signed number in 2's complement form using large number of bits

Repeat the sign bit at the msbs as needed

Overflow

1101 + 0101?

PAUSE

Common Logic Gates

Universal Logic gates? Coffee points++

NAND and NOR

A bit of Boolean algebra

Operations with 0 and 1:

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

1D.
$$X \cdot 1 = X$$

2D.
$$X \cdot 0 = 0$$

AND, OR with identities gives you back the original variable or the identity (dot: AND, plus: OR)

Idempotent Law:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

AND,
$$OR$$
 with self = self

Involution Law:

$$4.\,\overline{(\overline{X})}=X$$

double complement = no complement

Laws of Complementarity:

5.
$$X + \overline{X} = \hat{1}$$

5D.
$$X \cdot \overline{X} = 0$$

AND, OR with complement gives you an identity

Commutative Law:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$
 Just an axiom...

Associative Laws:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

= $X \cdot Y \cdot Z$

Parenthesis order does not matter

Distributive Laws:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$ Axiom

Simplification Theorems: 9. $X \cdot Y + X \cdot \overline{Y} = X$

9.
$$X \cdot Y + X \cdot \overline{Y} = X$$

9D.
$$(X + Y) \cdot (X + \overline{Y}) = X$$

10.
$$X + X \cdot Y = X$$
, how?

10D.
$$X \cdot (X + Y) = X$$

11.
$$(X + \overline{Y}) \cdot Y = X \cdot Y$$

11D.
$$(X \bullet \overline{Y}) + Y = X + Y$$

Actually worth remembering — they show up a lot in real designs... Computer Architecture

DeMorgan's Law (Can you prove it)?

12.
$$\overline{(X + Y + Z + \cdots)} = \overline{X}.\overline{Y}.\overline{Z}...$$

12D. $\overline{(X . Y. Z....)} = \overline{X} + \overline{Y} + \overline{Z} + ...$

- Think of this as a transformation
 - Let's say we have:

$$F = A + B + C$$

Applying DeMorgan's Law (12), gives us

$$F = \overline{\overline{(A + B + C)}} = \overline{(\overline{A}.\overline{B}.\overline{C})}$$

At least one of A, B, C is TRUE --> It is **not** the case that A, B, C are **all** false

Contd. with a Truth Table

$$A = \overline{(X + Y)} = \overline{X}\overline{Y}$$

$\boldsymbol{X} \boldsymbol{Y}$	$\overline{X+Y}$			$\overline{X}\overline{Y}$
0 0	1	1 1 0 0	1	1
0 1	0	1	0	0
1 0	0	0	1	0
1 1	0	0	0	0

NOR is equivalent to AND with inputs complemented

$$X \rightarrow 0$$
 $Y \rightarrow 0$
 A

$$B = \overline{(XY)} = \overline{X} + \overline{Y}$$

$$X Y \bigcirc -B$$

X	Y	XY	\overline{X}	Y	$\overline{X} + \overline{Y}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	1 0	1	1
1	1	0	0	0	0

NAND is equivalent to OR with inputs complemented

$$X \rightarrow Y \rightarrow B$$

Remember: It is not

$$\overline{(X.Y)} = \overline{X}.\overline{Y}$$

$$\overline{(X+Y)}=\overline{X}+\overline{Y}$$

Definitions of interest

- A *normal term* is a product or sum term in which no variable appears more than once.
 - Examples: $a, \bar{a}, a+c, \bar{a}cd$ are normal terms; $\bar{a}+a, \bar{a}a$ are not normal terms.
- A minterm of n variables is a normal product term with n literals. There are 2ⁿ such product terms.
 - \blacksquare Examples of 3-variable minterms: $\bar{a}bc$, abc
 - Example: āb is not a 3-variable minterm.
- A maxterm of n variables is a normal sum term with n literals. There are 2ⁿ such sum terms.
 - Examples of 3-variable maxterms: $\bar{a}+b+c$, a+b+c

Definitions of interest

- A sum of products (SOP) expressions is a set of product (AND) terms connected with logical sum (OR) operators.
 - Examples: $a, \bar{a}, ab+c, \bar{a}c+bde, a+b$ are SOP expressions.
- A product of sum (POS) expressions is a set of sum (OR) terms connected with logical product (OR) operators.
 - Examples: $a, \bar{a}, a+b+c, (\bar{a}+c)(b+d)$ are POS expressions.

Definitions of interest

- The canonical sum of products (CSOP) form of an expression refers to rewriting the expression as a sum of minterms.
 - Examples for 3-variables: $\bar{a}bc + abc$ is a CSOP expression; $\bar{a}b + c$ is not.
- The canonical product of sums (CPOS) form of an expression refers to rewriting the expression as a product of maxterms.
 - Examples for 3-variables: $(\bar{a}+b+c)(a+b+c)$ is a CPOS expression; $(\bar{a}+b)c$ is not.
- There is a close correspondence between the truth table and minterms and maxterms.

SOP: Sum of Products

Also known as disjunctive normal form or minterm expansion

Find all the input combinations (minterms) for which the output of the function is TRUE.

- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

• Only the shaded product term $-A\overline{B}C = 1 \cdot \overline{0} \cdot 1$ — will be 1

- Standard "shorthand" notation
 - If we agree on the order of the variables in the rows of truth table...
 - then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

Computer Architecture

A	B	C	minterms		
0	0	0	$\overline{A}\overline{B}\overline{C} = m0$		
0	0	1	$\overline{A}\overline{B}C = m1$		
0	1	0	$\overline{A}B\overline{C} = m2$		
0	1	1	$\overline{A}\underline{B}\underline{C} = m3$		
1	0	0	$A\overline{B}\overline{C} = m4$		
1	0	1	ABC = m5		
1	1	0	ABC = m6		
1	1	1	ABC = m7		

Shorthand Notation for Minterms of 3 Variables

2-Level AND/OR Realization

F in canonical form:

$$F(A,B,C) = \sum m(3,4,5,6,7)$$

= m3 + m4 + m5 + m6 + m7

$$F =$$

canonical form # minimal form

F

We are on the same page?

Row number	x_1	x_2	x_3	${ m Minterm}$	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{array}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

POS: Product of Sum

Find all the input combinations (maxterms) for which the output of the function is FALSE.

The function evaluates to FALSE (i.e., output is 0) if **any** of the Sums (maxterms) causes the output to be 0 Computer Architecture

- 1. Minterm to Maxterm conversion: rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used E.g., $F(A, B, C) = \sum m(3, 4, 5, 6, 7) = \prod M(0, 1, 2)$
- 2. Maxterm to Minterm conversion: rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used E.g., $F(A, B, C) = \prod M(0, 1, 2) = \sum m(3, 4, 5, 6, 7)$
- 3. Expansion of F to expansion of \overline{F} :

E. g.,
$$F(A, B, C) = \sum m(3, 4, 5, 6, 7)$$
 $\longrightarrow \overline{F}(A, B, C) = \sum m(0, 1, 2)$
= $M(0, 1, 2)$ $\longrightarrow = M(3, 4, 5, 6, 7)$

4. Minterm expansion of F to Maxterm expansion of \overline{F} : rewrite in Maxterm form, using the same indices as F

E. g.,
$$F(A, B, C) = \sum_{m=0}^{\infty} m(3, 4, 5, 6, 7)$$
 $\overline{F}(A, B, C) = \prod_{m=0}^{\infty} M(3, 4, 5, 6, 7)$

$$= \prod_{m=0}^{\infty} M(0, 1, 2) = \sum_{m=0}^{\infty} m(0, 1, 2)$$
Computer Architecture

Digital Logic 😊

Boring lectures will go away soon ©

Once we jump into architecture

Till then "Hang in there"

