

درس رقم

درس : عموميات حول الدوال

i. تذكير و إضافات:

<u>.A.</u> تذكير :

1 تذكير 1: - حول دالة عددية _

تعریف 1:

- $f:\mathbb{R} o \mathbb{R}$ بعنصر g بعنصر واحد على الأكثر g من g تسمى دالة عددية ونكتب: g علاقة g تربط كل عنصر g بعنصر واحد على الأكثر واحد على الأكث
- . $\mathbf{D}_{\mathbf{f}}$ التي لها صورة ب \mathbf{f} تكون مجموعة تسمى مجموعة تعريف الدالة \mathbf{f} و يرمز لها ب \mathbf{R} أو

<u>2</u> تذكير 2: - حول زوجية دالة - تعريف 2: (f دالة عددية زوجية)

. دالة عددية حيث \mathbf{D}_{f} مجموعة تعريفها

$$orall x \in D_f$$
 , $-x \in D_f$ (1) $\forall x \in D_f$, $f(-x) = f(x)$ (2) $\Leftrightarrow D_f$ نوجية على f

تعریف 3: (f دالة عددیة فردیة)

دالة عددية حيث \mathbf{D}_{f} مجموعة تعريفها .

$$egin{aligned} & \forall x \in D_{_f} \ , \ -x \in D_{_f} \end{aligned} \quad (1) \ & \Leftrightarrow \ D_{_f} \ \text{ if } f \end{aligned}$$
 فردية على f

3 رتابة دالة عددية:

تعریف 4:

f دالة عددية للمتغير الحقيقي x معرفة على مجال I.

- $f(x) < f(x') \) f(x) \le f(x')$ فإن: $(x') \le f(x') \) f(x) \le f(x')$ و $(x') \le f(x') = f(x')$ فإن: $(x') \le f(x') = f(x')$ و $(x') \le f(x') = f(x') = f(x')$ اتجاه المتفاوتة لا يتغبر $(x') \ge f(x') = f(x') = f(x') = f(x')$
- f(x) > f(x') و f(x') > f(x') فإن: f(x') > f(x') و f(x') > f(x') الدينا : إذا كان f(x) > f(x') فإن: f(x) > f(x') على f(x) > f(x') على f(x) > f(x') على f(x) > f(x') على f(x) > f(x') الدينا : إذا كان f(x) > f(x') فإن اتجاه المتفاوتة يتغبر) . أو أيضًا : f(x) > f(x') الدينا : f(x) > f(x') الدينا : f(x) > f(x') الدينا : إذا كان f(x) > f(x') الدينا : f(x) > f(x') الدينا : إذا كان f(x) > f(x')
 - $\forall x, x' \in I : f(x) = f(x')$: أو أيضا f(x) = f(x') : X من f(x) = f(x') أو أيضا أيضا و f(x) = f(x')

Extrémums d'1 fonction مطارف دالة عددية

V. minimale absolue. \mathbf{D}_{f} قيمة قصوى مطلقة على maximale absolue. \mathbf{D}_{f} قيمة قصوى مطلقة على maximale absolue. \mathbf{D}_{f}

. $\mathbf{X}_0 \in \mathbf{D}_{\mathrm{f}}$ دالة عددية معرفة على \mathbf{D}_{f}

- . $\forall x \in \mathbf{D}_f$, $f(x) \le f(x_0)$: إذا و فقط إذا كان $f(x_0)$ قيمة قصوى مطلقة ل $f(x_0)$ قيمة قصوى مطلقة ل أ
 - . $\forall x \in D_f$, $f(x) \ge f(x_0)$: قيمة دنيا مطلقة ل $f(x_0)$ و أو $f(x_0)$ تقبل قيمة دنيا مطلقة عند $f(x_0)$ فيمة دنيا مطلقة ل $f(x_0)$

f(x)

 $-\infty$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: عموميات حول الدوال

 $\mathbf{D}_{\mathbf{f}}$ نعتبر $\mathbf{p}_{\mathbf{f}}$ دالة عدية معرفة و فردية على

أنشطة

- نشاط 1: حول إتمام منحنى دالة _ زوجية _ فردية _
- أتمم جدول تغيراتها الدالة f و منحناها في كلتا الحالتين.
 - $\mathbf{D}_{\mathbf{f}}$ نعتبر $\mathbf{p}_{\mathbf{f}}$ دالة عددية معرفة و زوجية على

X	-∞	-2	0	2	+∞
f(x)			1	,	۲

- $oldsymbol{2}$ ماذا يمثل العدد $oldsymbol{f(0)}$ بالنسبة للدالة $oldsymbol{1}$ في الحالة $oldsymbol{(1)}$.
 - // تمرین:

$$f(x) = \frac{1}{x^2 - 1}$$
 :نعتبر الدالة العددية f المعرفة ب

- ا- استنتج \mathbf{D}_{f} مجموعة دراسة \mathbf{f} . استنتج \mathbf{D}_{f} مجموعة دراسة \mathbf{f} .
- ${f D}_{
 m f}$ ا ادرس رتابة ${f f}$ على كل من المجالين ${f D}_{
 m f}$ ثم ${f J}_{
 m 0}+$ ${f D}_{
 m f}$. ${f v}$ ضع جدول التغيرات ل ${f f}$ على ${f D}_{
 m f}$ ثم على ${f D}_{
 m f}$
 - 3- هل الدالة f تقبل مطراف ؟ حدده .
 - <u>.B</u>

1. مطارف نسبية:

أ_ قيمة قصوى نسبية: V. maximale relative - قيمة دنيا نسبية: V. minimale relative

. $\mathbf{x}_0 \in \mathbf{D}_f$ حيث \mathbf{D}_f عدية معرفة على \mathbf{f}

- قیمة قصوی نسبیة ل f (أو f تقبل قیمة قصوی نسبیة عند f) إذا وجد مجال مفتوح f ضمن f مرکزه f حیث: $\forall x \in I_{x_0}, f(x) \leq f(x_0)$
 - قیمة دنیا نسبیة ل f (أو f تقبل قیمة دنیا نسبیة عند f) إذا وجد مجال مفتوح f ضمن f مركزه f حیث: $\forall x \in I_{x_0}, f(x) \ge f(x_0)$

2. معدل تغيرات دالة عددية:

درس: عمومیات حول الدوال درس رقو

f دالة عددية للمتغير الحقيقي x المعرفة على المجال I.

$$T_f$$
 يسمى معدل تغيرات الدالة T_f بين T_f العدد T_f العدد T_f يسمى معدل تغيرات الدالة T_f بين T_f العدد T_f العدد T_f يسمى معدل تغيرات الدالة T_f بين T_f العدد T_f

b. مثال:

$$f(x) = 2x$$
 حيث المحدل تغيرات على المحدل على المحدل على المحدل على المحدل المحدل المحدد الم

<u>.c</u> خاصية:

معدل تغيرات دالة عددية $rac{1}{f}$ معدل تغيرات دالة عددية الميار مجال $rac{1}{f}$

- ا الدالة 1 تناقصية على 1 فإن الدالة 1 تناقصية على 1
- $oxedsymbol{I}_{ ext{r}} < 0$ فإن الدالة $oxedsymbol{f}_{ ext{r}}$ تناقصية قطعا على $oxedsymbol{I}_{ ext{r}}$
 - ا الدالة $rac{1}{2}$ فإن الدالة $rac{1}{2}$ تزايدية على $rac{1}{2}$
- ا إذا كان ${f T}_{
 m r}>0$ فإن الدالة ${f f}$ تزايدية قطعا على ${f I}_{
 m r}$
 - ا إذا كان $rac{\mathbf{T}_{\mathrm{f}}=\mathbf{0}}{\mathbf{T}_{\mathrm{f}}}$ فإن الدالة $rac{\mathbf{f}}{\mathbf{f}}$ ثابتة على \mathbf{I}_{c}

c دالة دورية: fonction périodique

<u>1</u>. نشاط 1:

 \mathbb{R} ناخذ \mathbf{x} من

- \mathbf{x} فع على محور الأفاصيل \mathbf{x} ثم \mathbf{x} .
- على المنحنى f(x) ثم f(x+3) ماذا تلاحظ ?
 - . $\forall x \in \mathbb{R} : f(x+3) = f(x)$ نلاحظ إن

<u>2.</u> مفردات:

P = 3نقول إن f دورية ودورها T = 3 أو أيضا

<u>3.</u> تعریف:

. \mathbf{R}^{+*} دالة عددية معرفة على \mathbf{D}_{f} و \mathbf{T} من

. $\mathbf{x}\in\mathbf{D}_{\mathrm{f}}\Rightarrow\mathbf{x}+\mathbf{T}\in\mathbf{D}_{\mathrm{f}}$ و دورية و دورها \mathbf{T} يكافئ: 1 - \mathbf{x}

$$\forall x \in D_f : f(x+T) = f(x) -2$$

مُلحوظة: مع T أصغر عدد حقيقي موجب قطعا يحقق العلاقة (2).

4. أمثلة:

- مثال 1:
- . $T=2\pi$ دوریة ودورها $f(x)=\sin x$.1
- . $T=2\pi$ دوریة ودورها $f(x)=\cos x$.2
- . $T = \pi$ دوریة ودورها $f(x) = \tan x$.3
 - مثال 3 :

(
$$a \neq 0$$
 مع $T = \frac{2\pi}{|a|}$ و دورها $\mathbf{F}(\mathbf{x}) = \sin a$ بين أن الدالة $\mathbf{f}(\mathbf{x}) = \sin a$

درس : عموميات حول الدوال درس رق

<u>5.</u> تمرین تطبیقی

 \mathbf{T} دالة عددية معرفة و دورية على \mathbf{D}_{f} و دورها

- . $\forall n \in \mathbb{N}$; $\forall x \in D_f : f(x+nT) = f(x)$.1.
- . $\forall n \in \mathbb{N}$; $\forall x \in D_f : f(x-nT) = f(x)$. 2

6. منحنى دالة دورية:

دالة عددية معرفة و دورية على \mathbf{D}_{f} و \mathbf{T} دورها .

- \mathbf{T} طوله $\mathbf{I}_0 = [\mathbf{a}, \mathbf{a} + \mathbf{T}] \cap \mathbf{D}_{\mathrm{f}}$ على منحناها \mathbf{C}_0
- $k\in\mathbb{Z}$ مع $\vec{u}=(kT)\vec{i}$ مع $\vec{u}=(kT)\vec{i}$ مع بالإزاحة ذات المتجهات

مثال 1 •

. la partie entière : دالة الجزء الصحيح . D

1. نشاط:

Ξ					
	 -4,55	-0,78	0,78	4,55	 X
					p

. $p \le x < p+1$ حيث p حيث العدد الصحيح النسبي

 \mathbb{R} من \mathbb{R} .

p = [x] العدد p = E(x) العدد p = E(x) العدد الحقيقي ويرمز له ب

3_ تعریف:

x عدد حقيقي

العدد الصحيح النسبي $p \le x < p+1$ الذي يحقق العلاقة $p \le x < p+1$ يسمى الجزء الصحيح النسبي ل

. $E(x) \le x < E(x) + 1$. إذن: p = [x] أو أيضا p = E(x)

<u>4.</u> ملحوظة:

$$\forall x \in I_p = [p, p+1[:f(x)=[x]=E(x)=p]$$

$$. x \in \mathbb{Z} \Leftrightarrow E(x) = x \quad \blacksquare$$

$$\forall x \in \mathbb{R} ; E(x) \le x < E(x) + 1$$

.
$$\forall x \in \mathbb{R}$$
, $\forall k \in \mathbb{Z} : E(x+k) = E(x)+k$

التمارين)
$$\forall x \in \mathbb{R}$$
; $x-1 < E(x) \le x$

درس : عموميات حول الدوال

منحني دالة الجزء الصحيح:

6. تمرین تطبیقی:

 $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = 2x - E(x)$$
 نعتبر الدالة العددية f المعرفة ب

.
$$I_0 = \begin{bmatrix} 0,1 \end{bmatrix}$$
 على C_0 منحنى 2

.
$$I_k = \begin{bmatrix} k, k+1 \end{bmatrix}$$
 على C_k منحنى C_k

ii. دالة مكبورة - دالة مصغورة - دالة محدودة - مطارف دالة عددية :

A. دالة: مكبورة - مصغورة - محدودة:

المنحنى التالى يمثل دالة عددية f.

اتمم ما يلى:

$$\forall \in [-4;11]: f(x)....5$$
 -1

$$. \forall x....[-4;11]:-4....f(x) -2$$

$$\forall x \in [\cdots, \cdots]: -4....f(x).....5$$
 -3

<u>2.</u> مفردات:

نقول إن:

f مكبورة ب 5 على [-4,11]. (أو أيضا ب 6).

3. تعاریف:

 \mathbb{R} دالة عددية معرفة على \mathbb{R} ضمن \mathbb{R} و \mathbb{R} عددان من \mathbb{R}

مكبورة ب M على I يعني $X \in I$; $f(x) \le M$ مكبورة ب f

(m < f(x)) مصغورة ب m = I على I يعني f(x) = f(x) مصغورة ب

(m < f(x) < M محدودة على $f(x) \leq M$ محدودة على $f(x) \leq M$ محدودة على $f(x) \leq M$

f دالة عددية حيث جدول تغيراتها هو كالتالى:

$$[-3,+\infty[$$
 على $]$ محبورة ؟ هل f مصغورة ؟ هل f محدودة f على $]$

$$f$$
 [-3,11] على f ثم 14- بالنسبة للدالة f على 7 ثم 2

 $f(x)=1/2 \times sin(x-\pi/2)$

5

+∞

درس : عمومیات حول الدوال درس

 $I = [1; +\infty]$ على الله عددية معرفة ب $f(x) = \frac{1}{x}$

- بین أن f مصغورة ب 0 على I.
 - بين أن f مكبورة على I.
 - هل f محدودة على I؟

<u>6.</u> ملاحظة:

 $\exists A \in \mathbb{R}^+$, $\forall x \in I : |f(x)| \leq A$. أو أيضا $|f(x)| \leq A$ محدودة على $|f(x)| \leq A$ محدودة على المنا على عن المنا المنا على المنا الم

<u>7.</u> مثال:

الرسم التالي يمثل منحني دالة عددية f

-8,11 هل f مكبورة هل مصغورة ، هل محدودة ، على -8,11 .

<u>iii</u> مقارنة دالتين-التأويل الهندسي

<u>A</u> دالة موجبة _ دالة سالبة _

<u>1.</u> نشاط:

- 1. الرسم 1 يمثل منحنى الدالة f. نقول أن الدالة f موجبة على f على f. ماهي الميزة التي يتميز بها f. ثم عبر عنها باستعمال الرموز.
- 2. الرسم 2 يمثل منحنى الدالة f. نقول أن الدالة f موجبة على [-8,11]. ماهي الميزة التي يتميز بها C_f . ثم عبر عنها باستعمال الرموز.

<u>2.</u> تعریف:

 $\mathbf{D}_{\mathbf{f}}$ دالة عددية معرفة على \mathbf{f}

. $\forall x \in D_f: f\left(x\right) \ge 0$ موجبة على D_f يكافئ f

. $\forall x \in D_f: f\left(x\right) < 0$ سالبة قطعا على D_f يكافئ f

 $[-1,+\infty[$ على g على أصغر من أو يساوي الدالة g على أصب

.] $-\infty$, -1[على g غلم الدالة أكبر قطعا من الدالة و على الدالة أكبر قطعا من الدالة و على الدالة أ

 $-\infty,-1$ ثم $-1,+\infty$ ثم $-\infty,-1$ ثم $-\infty,-1$ ثم $-\infty,-1$ ثم $-\infty,-1$

درس رقم

درس : عموميات حول الدوال

ماذا يمكن ان نقول عن الحالة التي تكون فيها الدالة f تساوي g?

<u>1.</u> تعریف:

لتكن f و g دالتين عدديتين معرفتين على مجال I.

- $.(\forall x \in I : f(x) \le g(x)) \iff (I : f \le g) \quad \blacksquare$
- $.(\forall x \in I : f(x) > g(x)) \Leftrightarrow (I : f > g)$ •

2. التأويل الهندسي:

. I على مجال f . يعني هندسيا أن منحنيان f و g منطبقان على المجال f

. I على مجال $f \leq g$ على المجال $f \leq g$ يوجد تحت منحنى g على المجال $f \leq g$

. I على مجال f يعني هندسيا أن منحنى f يوجد تحت محور الأفاصيل على المجال $f \leq 0$

محور) و المجال I يعني هندسيا أن منحنى f يوجد قطعا فوق محور الأفاصيل على المجال I . (لا توجد أي نقطة مشتركة مع محور)

<u>iv</u> مرکب دالتین:

____ 1. نشاط:

 $g(x) = x^2 + 1$; g(x) = 2x + 3 و g دالتین عدیتین معرفتین ب

. \mathbf{D}_{f} و \mathbf{D}_{f}

ب- أكتب: g(5) بدلالة g(5)

g(f(x)) ثم g(f(3)) - 3

<u>2.</u> مفردات و رمز:

 $\mathbf{h}(\mathbf{x}) = \mathbf{g} \circ \mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$. $\mathbf{h} = \mathbf{g} \circ \mathbf{f}$ نرمز لها ب: $\mathbf{h} = \mathbf{g} \circ \mathbf{f}$ نرمز لها ب

■ الدالة g o f تسمى مركبة الدالتين f ثم g في هذا الترتيب.

g o f نستعمل الرسم الاتي للدالة

$$h = g \circ f : D_{f} \xrightarrow{f} f(D_{f}) \subset D_{g} \xrightarrow{g} \mathbb{R}$$
$$x \mapsto f(x) \in D_{g} \mapsto g(f(x)) = g \circ f(x) = h(x)$$

<u>3.</u> تعریف:

 $f\left(D_{\mathrm{f}}\right)$ لتكن f و g دالتين عدديتين معرفتين على D_{f} و D_{g} . (على التوالي) حيث

. $\mathbf{D}_{\mathrm{gof}} = \left\{ x \in \mathbb{R} \, / \, x \in \mathbf{D}_{\mathrm{f}} \;\; \mathbf{g} \;\; \mathbf{f}(x) \in \mathbf{D}_{\mathrm{g}} \right\}$ نضع

 $h=g\circ f$ ونرمز لها ب D_{gof} ونرمز الها ب الدالة العددية الدالتين المعرفة على الدالة $h=g\circ f$ بما يلي الدالة العددية الدالة العددية الدالتين المعرفة على الدالة العددية العد

<u>4.</u> مثال:

$$f(x) = 2x^2 + 3x$$
; $g(x) = 5x - 7$

$$D_{g \circ f}$$
 ; $D_{f \circ g}$ -1

$$\mathbf{f} \circ \mathbf{g}(\mathbf{x})$$
 و $\mathbf{g} \circ \mathbf{f}(\mathbf{x})$: 2-

$$\mathbf{g} \circ \mathbf{f}(2)$$
 بـ ماذا تستنتج $\mathbf{g} \circ \mathbf{f}(2)$ و $\mathbf{g} \circ \mathbf{f}(2)$

درس رقم

درس : عموميات حول الدوال

$\mathbf{c} \cdot \mathbf{r}^*$ رتابة $\mathbf{f} + \mathbf{c}$ و $\mathbf{c} \cdot \mathbf{f} \cdot \mathbf{g}$ من $\mathbf{c} \cdot \mathbf{v}$

A. رتابة f+c و c.f

<u>1.</u> نشاط:

دالة عددية معرفة على مجال T_f . I معدل تغيراتها على I و 0 من $^*\mathbb{R}$.

 $\forall x \in I , g(x) = c \times f(x)$ و $\forall x \in I , h(x) = f(x) + c$ نعتبر الدائتين $\forall x \in I , g(x) = c \times f(x)$

- 1. أوجد T_h معدل تغيرات h على T_h ثم أعط استنتاج .
- . أوجد $T_{\rm g}$ معدل تغيرات g على $T_{\rm g}$ معدل تغيرات .

جواب:

. نجد T_h معدل تغیرات t علی T_h أعط استنتاج .

ليكن x و 'x من I حيث x ≠ 'x .

لدينا:

$$T_{h} = \frac{h(x) - h(x')}{x - x'} = \frac{f(x) + c - (f(x') + c)}{x - x'} = \frac{f(x) - f(x)}{x - x'} = \frac{f(x) - f(x)}{x - x'} = T_{f}$$

 $T_h = T_{f+c} = T_f$ ومنه

خلاصة: f و f+c لهما نفس منحى التغيرات على I.

. نجد $T_{\rm g}$ معدل تغیرات $T_{\rm g}$ علی $T_{\rm g}$ معدل تغیرات

ليكن x و 'x من I حيث x ≠ x .

لدينا:

$$T_{g} = \frac{g(x) - g(x')}{x - x'} = \frac{c \times f(x) - c \times f(x)}{x - x'} = \frac{c \times (f(x) - f(x))}{x - x'} = c \times T_{f}$$

 $T_g = T_{c \times f} = c \times T_f$: ومنه

خلاصه:

 ~ 1 لغان ~ 1 فإن ~ 1 و ~ 1 لهما نفس منحى التغيرات على ~ 1

c < 0 فإن منحى تغيرات c < c معاكس لمنحى تغيرات وأدا كان c < 0

2. خاصية:

 $T_{
m f}$. $T_{
m f}$ معدل تغیراتها علی $T_{
m e}$ من $T_{
m f}$. $T_{
m f}$ معدل تغیراتها علی $T_{
m f}$

- . I لادالتان f و f+c لهما نفس منحى التغيرات على $\underline{1}$
- m .I إذا كان m c > 0 فإن m f و m c imes 1 لهما نفس منحى التغيرات على
- m c imes c فإن منحى تغيرات m c imes c معاكس لمنحى تغيرات m c imes d على m c

<u>B.</u> رتابة f∘g:

<u>1.</u> نشاط:

. $\forall x \in I; f(x) \in f(J)$: و و دالتنا معرفتين على ا و I و على التوالي على g

حالة f:1 و g لهما نفس الرتابة قطعا.

. $D_{g \, \circ \, f}$ على عدل تغيرات الدالة $g \, \circ \, f$ على اكتب معدل عبيرات الدالة

درس: عموميات حول الدوال

.
$$T_{gof} = \frac{g(f(x)) - g(f(x'))}{f(x) - f(x')} \times \frac{.....}{.........}$$
 واتمم ما يلي (2

- . $T_{g\ \circ\ f}$: استنتج كتابة أخرى ل
 - 4) استنتج رتابة gof .

1. خاصية:

 $\forall x \in D_f$; $f(x) \in f(D_g)$ حيث (على التوالي) على D_g و D_g على معرفتين معرفتين على D_g على التوالي)

- . D_f على D_g و D_g فإن D_g تزايدية (تزايدية قطعا) على على D_g و الدي قطعا) على D_g تزايدية D_g على D_g على D_g الدي قطعا) على D_g على D_g على D_g الدي قطعا) على D_g على D_g الدي قطعا) على D_g الدي D_g
- . $D_{\rm f}$ على $D_{\rm g}$ و $D_{\rm g}$ تناقصية (تناقصية قطعا) على $D_{\rm g}$ و $D_{\rm g}$ قبان $D_{\rm g}$ تناقصية $D_{\rm g}$ على $D_{\rm g}$ على $D_{\rm g}$

2. مثال:

$$g(x) = x^2$$
 o $f(x) = |x| + 5$

- . مدد : D_g و D_f .
- $\mathbf{2}$. أعطرتابة f و g على \mathbb{R} . (بواسطة جدول).
 - \mathbb{R} استنتج رتابة $g \circ f$ على 3

vi.دراسة بعض الدوال العددية مع إنشاء المنحنى:

 $x \mapsto ax^2 + bx + c$ دراسة الدالة الحدودية من الدرجة 2.

<u>1.</u> نشاط:

. $a \neq 0$ مع \mathbb{R} مع b و a حيث $a \neq 0$ عن $a \neq$

(1):
$$f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$
: لدينا:

ومنه: $f\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$). نلاحظ أن: $ax^2 + bx + c$ ومنه:

(1)
$$\Leftrightarrow$$
 $f(x) = a\left(x + \frac{b}{2a}\right)^2 + f\left(-\frac{b}{2a}\right)$
 \Leftrightarrow $f(x) - f\left(-\frac{b}{2a}\right) = a\left(x + \frac{b}{2a}\right)^2$; (2)

a > 0 : 1 أـ حالة

$$(2) \Rightarrow f(x) - f\left(-\frac{b}{2a}\right) = a\left(x - \frac{b}{2a}\right)^2 \ge 0$$
$$\Rightarrow f(x) - f\left(-\frac{b}{2a}\right) \ge 0$$
$$\Rightarrow f(x) \ge f\left(-\frac{b}{2a}\right)$$
$$\Rightarrow f\left(x\right) \le f\left(x\right)$$

f(x)

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

درس: عموميات حول الدوال

القيمة الدنيا المطلقة ل f على R.	$\mathbf{f}\bigg($	$-\frac{\mathbf{b}}{2\mathbf{a}}$	و منه :
----------------------------------	--------------------	-----------------------------------	---------

- جدول تغیرات f علی

 R :
 - ا المنحنى للدالة f:

المنحنى للدالة
$$f$$
 يسمى شلجم . الشلجم موجه نحو الأعلى رأسه هو $S\left(-rac{b}{2a},f\left(-rac{b}{2a}
ight)
ight)$

. (D) :
$$y = -\frac{b}{2a}$$
: محور تماثله هو المستقيم الذي معادلته

$$f(x) = ax^{2} + bx + c$$

$$x = -b/2a$$

$$x = -b/2a$$

 $f\left(-\frac{b}{2a}\right)$

X	8	$-\frac{\mathbf{b}}{2\mathbf{a}}$	+∞
f(x)	f	$\left(-\frac{\mathbf{b}}{2\mathbf{a}}\right)$	
	7		7

ع دالة 2: a < 0

$$(2) \Rightarrow f(x) - f\left(-\frac{b}{2a}\right) = a\left(x - \frac{b}{2a}\right)^2 \le 0$$
 الدينا: $f(x) \le f\left(-\frac{b}{2a}\right)$

 \mathbb{R} و منه \mathbf{f} القيمة القصوى المطلقة ل $\mathbf{f}\left(-rac{\mathbf{b}}{2\mathbf{a}}
ight)$: و منه

- \mathbb{R} على جدول تغيرات f على
 - المنحنى للدالة f:
- المنحنى للدالة f يسمى شلجم. موجه نحو الأسفل

$$S\!\left(-rac{b}{2a},f\!\left(-rac{b}{2a}
ight)
ight)$$
 و رأسه هو

 $(\mathbf{D}): \mathbf{y} = -rac{\mathbf{b}}{2\mathbf{a}}:$ محور تماثله هو المستقيم الذي معادلته

2. أمثلة:

مثال1:

. $f(x) = 2x^2 + 4x + 3$ بنعتبر الدالة العددية f المعرفة ب

- 1. ماهى العناصر المميزة لمنحنى f.
 - 2. ضع جدول تغيرات f.
- (O,\vec{i},\vec{j}) . م. م. م. و (O,\vec{i},\vec{j}) .

درس: عموميات حول الدوال درس رهّ

.

[. العناصر المميزة لمنحنى]:

. (D) : y=-1 معادلته الذي معادلته S(-1,1) محور تماثله هو المستقيم الذي معادلته y=-1 المنحنى هو شلجم موجه نحو

2. نضع جدول تغیرات f.

X	∞	-1	+∞
f(x)	$f\left(-\frac{1}{2}\right)$	$\left(\frac{b}{2a}\right) = f\left(-\frac{a}{2}\right)$	> 1)=1

■ مثال 2٠

• مثال 2

 $f(x) = -x^2 + 4x$ المعرفة ب: الدالة العددية المعرفة ب

- 1. ماهى العناصر المميزة لمنحنى f.
 - 2. ضع جدول تغيرات f.
- $\mathbf{3}$. أنشئ منحنى \mathbf{f} في \mathbf{a} . م. م. م. م. ($\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}}$).

جواب:

1. العناصر المميزة لمنحنى 1:

. (D) : y=2 محور تماثله هو المستقيم الذي معادلته S(2,4) - رأسه S(2,4) - محور تماثله هو المستقيم الذي معادلته

2. نضع جدول تغیرات f.

		:			:	ī	-		7	-		:
						8		D: x =	2			
		а	=-	1		5						
f((x)	=-	х ² -	-4	X.	4		 <u>.</u>				
- `	(~~)								\			
						2	/		\setminus			
					T	1	7		7	\		
 	÷	<u> </u>	i	<u></u>		1+#-		 !		+-	 -	

3. ننشئ منحنی f.

. دراسة الدالة:

مجموعة تعريف $\mathbf{p}_{\mathrm{f}}=\mathbb{R}$ لإن \mathbf{p}_{f} حدودية.

 $\forall x \in \mathbb{R}, f(x) = a(-x)^3 = -ax^3 = f(x)$ فردية:

. $\mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap \mathbb{R}^+ = \mathbb{R}^+$: و مجموعة دراسة

. $\mathbf{X} < \mathbf{X}'$: من \mathbf{D}_{E} حيث: \mathbf{D}_{E} د رتابة \mathbf{f} على \mathbf{D}_{E} ليكن \mathbf{x}

 $(1): x < x' \Rightarrow x^3 < (x')^3$

a > 0 : 1 أـ حالة

 $(1) \Rightarrow ax^3 < a(x')^3$ $\Rightarrow f(x) < f(x')$

X

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

0 +∞

درس: عموميات حول الدوال

الصفحة

X	-∞ 0 +∞
f(x)) 0 /

a > 0

a < 0

. ℝ-	الرتابة على	و لها نفس	\mathbf{D}_{E}	قطعا على	دية	زاي	۰: f	و مذ
				كالتالي:	ھو	f	فيرات	جدول ت

ب_ حالة 2: a < 0

$$(1) \Rightarrow ax^3 > a(x')^3$$

$$\Rightarrow f(x) > f(x')$$

و منه: f تناقصية قطعا على $\mathbf{D}_{_{\mathrm{E}}}$ و لها نفس الرتابة على \mathbb{R}^- .

جدول تغيرات f هو كالتالي:

• جدول تغیرات و منحنی f علی -

a > 0 : 1 حالة

يكون على الشكل التالي: a>0

-∞

2. مثال:

. $f(x) = \frac{1}{2}x^3 : 1$

جدول تغيرات f هو كالتالي:

X	-∞ 0 +∞
f(x)	フ 0 フ

منحنى f يكون على الشكل التالي:

رس رقم

درس : عموميات حول الدوال

جدول تغيرات f هو كالتالى:

X	8	0	+∞
f(x)	×	0	<i>ا</i> د

fonction homographique – الدالة منخاطة الدالة
$$\Delta = ad - bc \neq 0$$
 و $(c \neq 0)$; $f(x) = \frac{ax + b}{cx + d}$ دراسة الدالة $\frac{C}{c}$

1. دراسة الدالة:

، مجموعة تعريف f:

.
$$D_f = \mathbb{R} \setminus \left\{-\frac{d}{c}\right\} = \left]-\infty, -\frac{d}{c}\right[\cup \left]-\frac{d}{c}, +\infty\right[: x \in D_f \Leftrightarrow cx + d \neq 0 \Leftrightarrow x \neq -\frac{d}{c}$$

رتابة f على D:

ليكن x و 'x من D_f حيث: 'x < x .

$$\begin{split} T_f &= \frac{f\left(x\right) - f\left(x'\right)}{x - x'} \quad ; (x \neq x') \\ &= \frac{\frac{ax + b}{cx + d} - \frac{ax' + b}{cx' + d}}{x - x'} \\ &= \frac{\left(ax + b\right)(cx' + d) - (ax' + b)(cx + d)}{(cx + d)(cx' + d)} \\ &= \frac{\left(cx + d\right)(cx' + d)}{x - x'} \\ &= \frac{adx + bcx' - adx' - bcx}{(cx + d)(cx' + d)(x - x')} \\ &= \frac{x(ad - bc) - x'(ad - bc)}{(cx + d)(cx' + d)(x - x')} \\ &= \frac{(ad - bc)}{(cx + d)(cx' + d)(x - x')} = \frac{(ad - bc)}{(cx + d)(cx' + d)} \; ; \; (\Delta = ad - bc) \\ &= \frac{-d}{c}, + \infty \end{split}$$

 Δ لدينا: $(\mathrm{cx} + \mathrm{d})(\mathrm{cx}' + \mathrm{d}) > 0$ و منه إشارة $(\mathrm{cx} + \mathrm{d}) > 0$

f(x) = (ax+b)/(cx+d)

Δ<0

f(x) = (ax+b)/(cx+d) المنحنى يسمى هذاول

 $\begin{bmatrix} -\infty, -\frac{\mathrm{d}}{\mathrm{c}} \end{bmatrix}$ على $\begin{bmatrix} -\infty, -\frac{\mathrm{d}}{\mathrm{c}} \end{bmatrix}$

لدينا: (cx+d)(cx+d)>0 و منه إشارة T_f هي إشارة Δ و بالتالي الدالة f لها نفس الرتابة على (cx+d)(cx+d)>0 . الرتابة

مرتبطة بإشارة △.

 $\left(\mathbf{C}_{\mathbf{f}}; \mathbf{j}\right)$. و جدول تغیرات \mathbf{f} و $\left(\mathbf{C}_{\mathbf{f}}\right)$ منحناها علی $\mathbf{D}_{\mathbf{f}}$ فی م.م.م

 $\Delta > 0$ حالة 1:

 Δ < 0 : 2 حالة

$$f(x) = \frac{2x+1}{x+1} : \frac{2}{2}$$

- 3. مفردات:

 المنحنى المحصل عليه يسمى: هذلول hyperbole

 المنحنى المحصل عليه يسمى: هذلول
 - sommet $\Omega\left(-\frac{d}{c}, \frac{a}{c}\right)$ مرکزه: النقطة
- Asymptote vertical . $\mathbf{D}_{\mathrm{h}}:\mathbf{y}=rac{\mathbf{a}}{\mathbf{c}}$ مقاربه العمودي: هو المستقيم المعرف ب
- Asymptote horizontal. $\mathbf{D}_{\mathbf{v}}:\mathbf{x}=-rac{\mathbf{d}}{\mathbf{c}}$: هو المستقيم المعرف ب

درس: عموميات حول الدوال

$$f(x) = \frac{2x+1}{x+1} : 2$$
مثال

X	-a		+∞
f(x)	0	7	

X	-8		a
f(x)	0	٧	

$$f(x) = \frac{2x+1}{x-1} : 1$$

$$f(x) = \sqrt{x+a}$$
 دراسة الدالة العدية: \underline{D}

$$f(x) = \sqrt{x+a} : \underline{a}$$

$$D_f = [-a; +\infty[$$
 معرفة على $f \Leftrightarrow$

$$-a \le x < x'$$
 ليكن x و x من x

$$x < x' \Rightarrow 0 \le x + a < x' + a$$

$$\Rightarrow 0 \leq \sqrt{x+a} < \sqrt{x'+a}$$

$$\Rightarrow 0 \le f(x) < f(x')$$

.
$$\mathbf{D}_{\mathrm{f}} = \begin{bmatrix} -a; +\infty \end{bmatrix}$$
 على قطعا على f منه f

$$\mathbf{D}_{\mathbf{f}} = \begin{bmatrix} -a; +\infty \end{bmatrix}$$
 جدول تغیرات \mathbf{f} علی

$$f(x) = \sqrt{a-x} : \underline{2}$$

$$[D_f=]-\infty,a$$
معرفة على f *

$$x < x' \le a$$
 ليكن x و x' من D_f من x'

$$x < x' \le a \Rightarrow -a \le -x < -x'$$

$$\Rightarrow 0 \le -x +a < -x' +a$$

$$\Rightarrow 0 \le \sqrt{x+a} < \sqrt{x'+a}$$

$$\Rightarrow 0 \le f(x) < f(x')$$

$$\mathbf{D}_{\mathbf{f}} = \left] - \infty, \mathbf{a} \right]$$
و منه \mathbf{f} تناقصية قطعا على

$$\mathbf{D}_{\mathbf{f}} = \left] - \infty, \mathbf{a} \right]$$
 جدول تغیرات \mathbf{f} علی