# Agile Teams (A-Teams)

John Paschkewitz

Proposers Day

December 7, 2016



# A-Teams: Design abstractions for agile human-machine (hybrid) teams

### **Program Goal:**

Discover and test predictive and generalizable mathematical methods for the design of agile teams of humans and intelligent machines (hybrid teams)

### **Program Outcomes:**

- 1) Mathematical methods enabling a general purpose design tool for dynamically co-evolving hybrid team structure and problem solving processes
- 2) Experimental capabilities to reproducibly and quantitatively evaluate team architectures in a diverse range of problem contexts



## Machine intelligence and team capability



- **Team Structure:** Given a dynamically changing problem, how should a team of humans and machines be structured? Who should have what role or roles, when and why?
- Team Problem Solving: Given an uncertain environment and fluid team structure, how to best use combined human and machine cognitive capability to make decisions?



# Hybrid team design is relevant to a diverse set of collective activities

| Activity                                       | Team<br>members                           | Machine elements                                                     |                                                                                 |
|------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                |                                           | Today                                                                | Tomorrow                                                                        |
| Develop complex software                       | Programmers                               | Code correction                                                      | <ul><li>Architecture optimizer</li><li>System resource emulator</li></ul>       |
| Deliver goods to users through complex network | Logisticians                              | Scheduling tools                                                     | <ul><li>Plan formulation and diagnosis aids</li><li>UxV delivery</li></ul>      |
| Discover new drugs                             | Chemists<br>Biologists<br>Pharmacologists | High throughput testing                                              | <ul> <li>Automated compound<br/>synthesis</li> </ul>                            |
| Design a space probe                           | Project leader<br>Subsystem<br>engineers  | <ul><li>Design tools</li><li>Modeling and simulation tools</li></ul> | <ul><li>Automated design</li><li>Decision and interaction facilitator</li></ul> |
| Control and manage an air battle               | Planners<br>Pilots                        | <ul><li>Decision aids</li><li>UAVs</li></ul>                         | <ul><li>Automatic Plan formulation</li><li>UAV swarm</li></ul>                  |
| Conduct infantry operations in a megacity      | Squad leader<br>Riflemen                  | Communications (radios, phones)                                      | <ul><li>UAV/UGV</li><li>Autonomous EW operations</li></ul>                      |

How can we design teams augmented with intelligent machines in a principled way?



## Mathematics for team and problem solving design

Edge lengths *d* represent compatibility for working together to complete a task or goal

Each human or machine agent node has a probability distribution of task capability, C<sub>H,i</sub> or C<sub>M,i</sub>







- Team "synergy" is the average of each pair's capability scaled by compatibility
- Graph optimization algorithms can identify team structures for optimal task performance

#### What about the machines?

Hierarchy with machine agents included



Insight: Machines are not just agents – but a fabric to change overall team and problem states



Are there generalizable mathematical abstractions to capture the dynamic co-evolution of problem space, team structure and performance?



## **DARPA** Technical Areas

#### TA1: Dynamic Team Design

- Mathematics
- Organizational theory
- · Operations research

#### TA2: Team Problem Solving

- Planning/scheduling
- Cognitive science
- Human factors

#### TA3: Experimental Testbeds

- Citizen science
- Autonomy

#### Theory/Model Building

#### Minimal models

• Balance rigor with practicality

#### Moderate team size

• 5-50 human/machine agents

#### Clear path to TA1/TA2 integration

 No coupling until later stages of program

#### Testing

#### Data on team behavior

 Provide high quality data for theory teams

#### Validation

 Test predictions from TA1 & TA2 teams



# **DARPA** Program structure

|                                                     | Discover                                                                                                                                                                                           | Integrate                                                                                                                                                                                        | Test                                                                                                          |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| TA1: Dynamic Team Design  TA2: Team Problem Solving | <ul> <li>What is the best team structure in context for dynamically evolving and interrelated tasks?</li> <li>How to make optimal joint decisions in uncertain and coevolving contexts?</li> </ul> | <ul> <li>Are there practical encodings of the dynamic co-evolution of problem space, team structure &amp; performance?</li> <li>How can you change the team when the problems change?</li> </ul> | <ul> <li>How generalizable are the methods?</li> <li>Can they predict average performance a prior?</li> </ul> |
| TA3: Experimental Testbeds                          | <ul> <li>How does team structure affect outcome?</li> <li>What about decision making approach?</li> </ul>                                                                                          | <ul> <li>What is the impact of intelligent machines in various roles?</li> <li>How correlated are team structure and problem solving approaches?</li> </ul>                                      |                                                                                                               |
| Outcome                                             | Model that predicts and explains performance of top teams                                                                                                                                          | Coupled models that predict structure and behavior for a best performing team                                                                                                                    | Demonstration that the coupled models are effective in multiple types of team                                 |

problems



# **DARPA** TA1: Dynamic Team Design

Goal: Machine-based "intelligent fabric" that will co-evolve team structure in context with problems

- Abstractions, algorithms, "programming languages," and architectures
- Must be practical, predictive, generalizable and computable

#### Must address:

- Decidability and computational complexity
- Encoding of variability in environment, goals, tasks, team interactions, roles, individual characteristics
- How to determine best team structure in dynamic context: what are roles and how will that change
- Coupling to TA2: Team Problem Solving and simultaneous team structure/problem solving evolution





## **DARPA** TA2: Team problem solving

Goal: Machine-based "intelligent fabric" that will dynamically mitigate gaps in ability, improve team decision making, and accelerate realization of collective goals

- Abstractions, algorithms, "programming languages," and architectures
- Must be practical, predictive, generalizable and computable: "minimal models" for human problem solving



#### Must address:

- Decidability and computational complexity
- Approaches to make optimal joint decisions in uncertain and coevolving contexts with variable human and machine capabilities
  - Abstractions encoding joint and individual reasoning, decision making
- Communication intensity, information content, latent/intermittent communications, and effect on strategy
- Individual agent and team learning, memory, and sensing
- Coupling to TA1: Dynamic Team Structure and simultaneous team structure/problem solving evolution



## **DARPA** TA3: Experimental Testbeds

#### Goal:

Scalable experimental testbeds to exercise and validate TA1 and TA2 formalisms

#### Must have:

- Multiple, selectable intelligent machine elements
  - Ideally embodied in interaction substrate
- Ability to quantitatively measure team progress towards collective goals
- Ability to incorporate qualitative changes that test team adaptability
- Clear strategy for replicability and control experiments
- Clear strategy for TA1 and TA2 integration
- See BAA for other desired features

## Other TA3 specific guidance

- Strongly recommend local IRB approval prior to proposal submission, including consent for sharing data with third parties
- Must have clear data management plan, as specified in BAA
- If you have data available to share with TA1 and TA2 teams at start of effort, identify the data and measurements/characteristics relevant to TA1 and TA2



## Timeline and milestones



