CS-302 Design and Analysis of Algorithms Spring 2021

National University of Computer and Emerging Sciences - FAST, Lahore

Credit Hours: 3

Prerequisites: Data Structures

Instructors: Sarim Baig (<u>sarim.baig@nu.edu.pk</u>)

Course Website: https://classroom.google.com

Class code: go2rrom

Class Meet Link: https://meet.google.com/lookup/c2km7ltfof

Office Hours: Tuesday and Thursday 01:10 - 02:10

Texts:

Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein, 3rd Ed., MIT Press, 2001.

• Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Algorithms, McGraw-Hill Education

• Plus: material on the web shared through the course website, etc.

Objectives:

To study canonical algorithms design techniques; the methods of analyses required to evaluate design; proofs of correctness of algorithms, the span and style of algorithms in today's computing.

Grading Policy:

We will use absolute grading sceheme. Specific marks brackets and the corresponding grades are available on course website.

• Quizzes (3-4) 10% (announced, based on homeworks)

Homeworks (5) 30%
 Mid term I 10%
 Mid term II 10%
 Final exam 40%

Homeworks may be done in groups of 2. Cross-group work will be considered cheating. The group must remain the same throughout the course. If you're working alone, there'll be no compensation for that.

Outline and Distribution:

Following is a **tentative break-down**. It is the bare minimum content that we will cover. There will be other topics building on these ones which we shall discuss as they come.

Lectures	Description	Chapters of Text
Week -1	The role of algorithms in computers,	1, 2, 3

		T
	Asymptotic functions and notations (Bid-oh,	
	big-omega, theeta) best and worst case time	
	complexity	
Week – 2, 3,	Divide and Conquer (maximum subarray,	2, 3, 6
4	quicksort, merge sort, large integer	
	multiplication)	
	+ Solving recurrences	
Week – 5	Lower bound for comparison based sorting,	8
	Sorting in linear time: Count Sort, Radix Sort,	
	Bucket Sort	
	Midterm – I	
Week – 6	Introduction to graphs (revision of BFS, DFS)	22
	and their application (Bridges and articulation	
	point, topological sort, strongly connected	
	components)	
Week - 7, 8	Dynamic Programming (maximum subarray,	15
	rod cutting, edit distance, longest	
	increasing/decreasing subsequence)	
Week – 9,	Greedy Algorithms (Activity selection, fractional	16
10	knapsack and Huffman codes) proof of	
	correctness	
	Midterm – II	
Week – 11	Minimum Spanning Trees (MST)(Prim's	23
	Algorithm and Kruskal's Algorithm)	
Week – 12	Shortest Path Algorithms (dijkstra's Algorithm,	24
	BellmanFord and Warshall Algorithm	
Week - 13,	B-Trees/Hashing/Exhaustive Search	
14	intractable problems	
	Final Exam	Comprehensive