

Universidad Nacional de Colombia Facultad de Ciencias Topología General

- 1. Sean \mathcal{T} y \mathcal{T}' dos topologías sobre X. Si $\mathcal{T}' \supset \mathcal{T}$, ¿qué implica la conexidad de X en una topología sobre la otra?
- 2. Sea $\{A_n\}$ una secuencia de subespacios conexos de X, tal que $A_n \cap A_{n+1} \neq \emptyset$ para todo n. Demuestra que $\bigcup A_n$ es conexo.
- 3. Sea $\{A_{\alpha}\}$ una colección de subespacios conexos de X; sea A un subespacio conexo de X. Muestra que si $A \cap A_{\alpha} \neq \emptyset$ para todo α , entonces $A \cup (\bigcup A_{\alpha})$ es conexo.
- 4. Demuestra que si X es un conjunto infinito, entonces es conexo en la topología del complemento finito.
- 5. Un espacio es *totalmente disconexo* si sus únicos subespacios conexos son conjuntos de un solo punto. Muestra que si X tiene la topología discreta, entonces X es totalmente desconexo. ¿Es cierto el recíproco?
- 6. Sea $A \subset X$. Muestra que si C es un subespacio conexo de X que intersecta tanto A como X A, entonces C intersecta BdA.
- 7. ¿Es el espacio \mathbb{R}_ℓ conexo? Justifica tu respuesta.
- 8. Determina si \mathbb{R}^{ω} es conexo en la topología uniforme.
- 9. Sea A un subconjunto propio de X, y sea B un subconjunto propio de Y. Si X e Y son conexos, muestra que

$$(X \times Y) - (A \times B)$$

es conexo.

10. Sea $\{X_{\alpha}\}_{{\alpha}\in J}$ una familia indexada de espacios conexos; sea X el espacio producto

$$X = \prod_{\alpha \in J} X_{\alpha}$$
.

Sea $\mathbf{a} = (\mathfrak{a}_{\alpha})$ un punto fijo de X.

- a) Dado cualquier subconjunto finito K de J, sea X_K el subespacio de X que consiste en todos los puntos $\mathbf{x}=(x_\alpha)$ tales que $x_\alpha=a_\alpha$ para $\alpha\notin K$. Muestra que X_K es conexo.
- b) Demuestra que la unión Y de los espacios X_K es conexa.
- c) Demuestra que X es igual a la clausura de Y; concluye que X es conexo.
- 11. Sea $p: X \to Y$ un mapeo cociente. Demuestra que si cada conjunto $p^{-1}(\{y\})$ es conexo, y si Y es conexo, entonces X es conexo.
- 12. Sea $Y \subset X$; sean $X \in Y$ conexos. Demuestra que si A y B forman una separación de X Y, entonces $Y \cup A y Y \cup B$ son conexos.