Lecture 1

Algorithms via Convex Optimization

CPSC 368/516, Spring 2023

Nisheeth Vishnoi Yale

Administrative Stuff

- Tuesday: 9.25 11.15
- Professor: Nisheeth VISHNOI
 - 10 Hillhouse, Room 227
 - Appointment by email
- TA: Anay Mehrotra
 - <u>a.mehrotra@yale.edu</u>
 - Office hours: Thursday 4-5 PM? (on Zoom)
- Course will be largely based on the book: https://convex-optimization.github.io/

CANVAS – everyone must register!

Content

- Turing machines
- Part I Convexity
 - Basics of calculus, linear algebra, probability, ...
 - Convexity
 - Convex programming and efficiency
- Part II 1st-order methods for convex optimization (with applications)
 - Gradient descent (flows/cuts)
 - Mirror descent and multiplicative weights method (matching)
- Part III Second-order/advanced methods (with applications)
 - Newton's method
 - Interior point methods (linear programming, flows)
 - Ellipsoid methods (submodular functions, counting)

Content

- Mathematical: Significant experience in mathematical problem solving, writing proofs. Must solve homework problems, write them up (ideally in latex) and submit
- Prerequisites: Calculus, linear algebra, and probability, or permission of the instructor
- What this course is not?
 - A first course in proofs/discrete mathematics
 - An introduction to machine learning
- **End Goal:** Prepare you for **mathematical** research in theoretical computer science, optimization, and machine learning

Grading - Undergraduates

• Problem sets -40% (~ 8 problem sets/4 graded)

• **Exam 1** − 30% (Week of March 6)

• **Exam 2** – 30% (Week of April 24)

Grading - Graduates

• Problem sets -30% (~ 8 problem sets/4 graded)

- **Exam 1** 30% (Week of March 6)
- Exam 2 30% (Week of April 24)

Additional work – 10%

Discrete problems in TCS/Optimization

Shortest path

Input: Graph G = (V, E), source S, and sink t

Output: Shortest "path" from s to t

s-t-Max Flow

Input: Graph G = (V, E), source S, and sink t

Output: Maximum "flow" from s to t such that

at most 1 unit flow per edge

Bipartite Matching

Input: Graph G = (L, R, E)

Output: Decide if G has a perfect matching

Count spanning trees

Input: Graph G = (V, E)

Output: Count the number of spanning trees in G

Old and new approaches

Old Idea:

- Formulate an optimization problem over discrete variables
- Use combinatorial/discrete optimization methods

New approach:

- Formulate a (convex) formulation over continuous domains
- Use continuous methods (convex optimization)
- Prove correctness, establish precise running time guarantees

Why?

- Big data old algorithms may be slow
- Combination of this idea with tools such as linear solvers have led to fastest known algorithms for nearly all discrete optimization problems

Added benefits:

Learn methods important in many areas (e.g., ML)

The s-t-maximum flow problem

S-t-maximum flow problem captures many discrete optimization problems, e.g., generalizes bipartite matching, scheduling, routing

- **Input:** 1) Undirected graph G = (V, E), $n \coloneqq |V|$, $m \coloneqq |E|$
 - 2) Source and sink $s, t \in V$, $s \neq t$

Vertex-edge incidence matrix $B \in \mathbb{R}^{n \times m}$

 $\forall i \in E$, direct $i \coloneqq (u, v)$, B has a column $b_i \coloneqq e_u - e_v$

Output: s-t-flow $x: E \to \mathbb{R}$ satisfies

- 1) flow conservation: for all $j \in V \setminus \{s, t\}, \langle e_j, Bx \rangle = 0$
- 2) feasibility: for all $i \in E$, $|x_i| \le 1$ (capacity 1)


```
\begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ +1 & 0 & -1 & 0 & -1 \\ 0 & +1 & +1 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 \end{bmatrix}
```

Problem: Find a feasible s-t-flow x that maximizes the flow out of s: $|\langle e_s, Bx \rangle|$

Fact: There exists an integral S-t-maximum flow $x_i \in \{-1, 0, 1\}$

B is totally unimodular \Rightarrow every sq. submatrix A of B satisfies $\det(A) \in \{-1,0,1\}$

Many combinatorial algorithms: Ford-Fulkerson, Edmonds-Karp, Dinic, ...

For the s-t-maximum flow problem with capacity $U \in \{1, 2, ...\}$:

[Goldberg and Rao, 1998]: An $\tilde{O}(m\min(n^{2/3},m^{1/2})\log U)$ time <u>exact</u> algorithm for S-t-maximum flow. E.g., when m=O(n) and U=O(1), running time is $O(m^{1.5})$

Convex programming (continuous) approach for maxflow

s-t-maximum flow reduces to: Given $F \in \mathbb{R}$ find an s-t flow x of value at least F (F can be found in $O(\log m)$ steps using binary search)

Idea 1: S-t-F flow is the same as finding a point in

$$\{x \in \mathbb{R}^m : Bx = F(e_s - e_t)\} \cap \{x \in \mathbb{R}^m : |x_i| \le 1, \forall i \in [m]\}$$

$$(K_1) x \text{ is } s\text{-}t\text{-flow } F$$

$$(K_2) x \text{ satisfies "capacities"}$$

 K_1 and K_2 are convex sets—they are defined by linear equalities/inequalities

Idea 2: Formulate as convex program. E.g.,

- 1) Find $x \in K_1$ that minimizes "distance" to K_2
- 2) Find $x \in K_2$ that minimizes "distance" to K_1

Both are convex programs (i) K_1 , K_2 are convex, (ii) distance to convex sets is convex

Idea 3 [Lee-Rao-Srivastava, 2013]: Consider nonlinear convex program

$$\min_{x \in \mathbb{R}^m} \operatorname{dist}(x, K_2)$$
s.t., $x \in K_1$,

where $\operatorname{dist}(x,K_2)$ is the (squared) Euclidean distance between x and K_2

First-order methods for minimizing convex fns

Roughly, family of iterative methods: each step moves in direction of negative gradient

Theorem: Given $\varepsilon > 0$, convex function $f: \mathbb{R}^m \to \mathbb{R}$, and access to gradients of f the following gradient descent methods make O(T) calls to the gradients of f and output a point $x \in \mathbb{R}^m$ such that

$$f(x) \le f(x^*) + \varepsilon$$
 $(x^* - \text{optimal point})$

Where

- Gradient descent assumes that f is L-Lipschitz continuous and has $T = O(L\varepsilon^{-1})$
- Mirror-descent assumes that norm of gradient of f is $\leq G$ and has $T = O(G^2 \varepsilon^{-2})$
- Accelerated GD assumes that f is L-Lipschitz continuous and has $T = O(\sqrt{L\varepsilon^{-1}})$

[Lee-Rao-Srivastava, 2013] use accelerated GD to give:

An $\tilde{O}(mn^{1/3}\varepsilon^{-1/3})$ time algorithm that for any $\varepsilon>0$, $F\in\mathbb{R}$ outputs a s-t-flow of value $\geq (1-\varepsilon)F$. E.g., when m=O(n), runtime $O(m^{4/3})$ (beats Goldberg-Rao)

It can be converted to an exact algorithm, but requires $\varepsilon \approx O(1/F)$ For general capacity graphs, F can be large – so the running time is slow..

Problem: There is convex, L-Lipschitz cont. f for which any GD-method has $T = \Omega(\sqrt{L\varepsilon^{-1}})$

Linear programming approach to maxflow

S-t-maximum flow is also special case of linear programming:

- (i) objective is to maximize F
- (ii) subject to linear equality/inequality constraints

Linear program: Given matrix $A \in \mathbb{R}^{n \times m}$, constraint vector $b \in \mathbb{R}^n$, a cost vector $c \in \mathbb{R}^m$, solve:

```
\min_{x \in \mathbb{R}^m} \langle c, x \rangle<br/>s. t. Ax = b and x \ge 0
```

Combinatorial algorithms for S-t-maximum flow rely on

- max-flow min-cut theorem,
- integrality of S-t-maximum flow

Linear prog. duality generalizes the max-flow min-cut theorem; e.g., [Farkas, 1902]

Dual of the above program:

$$\max_{y \in \mathbb{R}^n} \langle b, y \rangle$$
, s.t. $A^{\mathsf{T}} y \ge c$

Theorem: For any matrix $A \in \mathbb{R}^{n \times m}$, constraint vector $b \in \mathbb{R}^n$, a cost vector $c \in \mathbb{R}^m$, if both primal and dual programs are <u>feasible</u>, then their <u>optimal values are equal</u>

But general linear programs—among other properties—do **not** guarantee **integrality**!

How to solve linear prog. in time polynomial in the bit-complexity of A, b, c?

Ellipsoid method: LP is in P

[Khachiyan, 1979] A "geometric" algorithm to check feasibility of linear programs

Along with binary search, gives an algorithm to solve a linear program

Requires: Separation oracle for $K := \{x : Ax = b, x \ge 0\}$

- Input: A point $x \in \mathbb{R}^n$
- Output: YES if x is in K, otherwise
 - A **certificate**—hyperplane H—separating x and K

Input: An Ellipsoid E containing K

At each iteration, guess the **center of** \boldsymbol{E} as a point in K Then, **update** \boldsymbol{E} based on the **response** of the separation oracle

- the volume of E reduces sufficiently
- solves one linear system

Theorem: A $\mathbf{poly}(L)$ iteration algorithm for solving linear programs, where L is the bit-complexity of (A, b, c). In <u>each iteration</u>, the algorithm makes <u>one call</u> to the separation and takes additional $\mathbf{poly}(L)$ time

 E_{t+1}

But for s-t-maximum flow it is slower than [Goldberg and Rao, 1998]

Interior point methods: Faster LP algorithms

[Karmarkar, 1984] A faster algorithm for linear programming than Ellipsoid method

Main idea: "Convert" LP to an unconstrained convex prog. using barrier functions

Barrier function (Informal): A **convex** fn that is finite in interior of set and increases to infinity as one approaches the boundary

Example: For $Ax \leq b$, $F(x) := -\sum_{i} \log(b_i - \langle A_i, x \rangle)$

[Renegar, 1988] Combined the barrier-approach with Newton's method—a second order optimization method—to improve the running time

Input: A barrier function F(x), and second-order oracle of F(x)

Main step: Minimize $\eta \langle c, x \rangle + F(x)$, for fixed $\eta > 0$ (also change η over time)

Theorem: A $O(\sqrt{m} \cdot L)$ step algorithm for solving linear programs, where \underline{L} is the bit-complexity of (A, b, c). In each step, the algorithm solves an $m \times m$ linear system

For s-t-maximum flow:

Theorem: [Lee and Sidford, 2014] An $\tilde{O}(mn^{1/2} \cdot \log^2 U)$ time algorithm for s-t-maximum flow problem. E.g., for any m > n it is **faster** than $\tilde{O}(m^{1.5})$

Recently [Chen, Kyng, Liu, Peng, Probst, Sachdeva 2022] running time to $\tilde{O}(m)$!

Ellipsoid method for convex programs

Problem: Given convex set $K \subseteq \mathbb{R}^m$ and convex function $f: \mathbb{R}^m \to \mathbb{R}$: $\min_{x \in K} f(x)$

Ellipsoid method can used to solve the most general convex programs

Theorem:
$$\operatorname{poly}((T_K + T_f) \cdot m \cdot \log \varepsilon^{-1})$$
 time algorithm that outputs $x \in K$, s.t. $f(x) \leq f(x^\star) + \varepsilon$, where T_K and T_f are the running time of separation oracle for K and first-order of f

Implies efficient algorithms for comb. problems; e.g., via submodular minimization

A submodular (set-)function
$$f: 2^{[m]} \to \mathbb{R}$$
 satisfies: For sets $S \subseteq T \subseteq [m]$ and $i \in [m]$, $f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$

Problem: Given submodular function $f: 2^{[m]} \to \mathbb{R}$ find its minimizer: $\operatorname{argmin}_{S \subseteq [m]} f(S)$

Applications:

- Originated in discrete optimization, e.g., minimum S-t-cut in graphs
- Machine learning: Arises in objectives for data summarization, influence maximization

Theorem: There is an algorithm that, given oracle access to a submodular function f, and $\varepsilon>0$, outputs $S\subseteq [m]$ such that

$$f(S) \le f(S^*) + \varepsilon$$
,

where S^* is minimizer of f. The algorithm makes $poly(m, log(\varepsilon^{-1}))$ queries to f

Applications: Max-entropy distributions

Convex programming for (approximately) counting discrete objects

Counting problem: Given G = (V, E), compute the number of spanning trees of G.

Let \mathcal{T}_G be the set of all spanning trees of G

Let P_G be spanning tree polytope, i.e., the convex hull of all spanning trees in \mathcal{T}_G

Optimization problem: Given G = (V, E) and $\theta \in P_G$, write θ as a convex combination of the vertices of P_G so that the probability distribution corresponding to the convex combination maximizes the **Shannon entropy**:

$$\min_{p} - \sum_{T \in \mathcal{T}_G} p_T \log p_T \tag{1}$$

s.t.
$$\sum_{T \in \mathcal{T}_G} p_T v_T = \theta$$
, $\sum_{T \in \mathcal{T}_G} p_T = 1$, $p_T \ge 0 \ \forall \ T \in \mathcal{T}_G$

Connection: If θ is the average of the vertices in P_G , then the value of Prog. (1) is $\log |\mathcal{T}_G|$

Prog. (1) is convex – however, it has **exponentially** many variables

• e.g., for the complete graph Prog. (1) has $|\mathcal{T}_G| = n^{n-2}$ variables

The dual of Prog. (1) has n variables and can be efficiently solved using the Ellipsoid method [Singh and Vishnoi, 2014] [Straszak and Vishnoi, 2019]

Turing Machines

What is a computer?

Abstractly ..

More abstractly ..

Single tape seems enough ...

Program vs Finite Automata

```
def fib_tail(n):
   def fib_tail_rec(a, b, n):
       if n < 1:
           return a
       return fib_tail_rec(b, a + b, n - 1)
   return fib_tail_rec(0, 1, n)
def fib_exponential(n):
   if n == 0 or n == 1:
       return n
   else:
       return fib_slow(n - 1) + fib_slow(n - 2)
                                                                   Abstract (special purpose)
                                                                   computer
```

Finite size program, larger and larger instances

Infinite Tape!

Turing Machine

Head can Read/Write/Move Left/Right/Stay
Once it reaches left-most cell, it can't go more left

Head has (finitely many) states

Exactly **one** Accept state and exactly **one** Reject state

Remaining states:
"computation in progress"

Tape Alphabet contains Input Alphabet

Example of starting configuration

May never reach an accept/reject state May never HALT!

Formal Definition of a TM

A **Turing Machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where Q, Σ, Γ are **finite** sets and:

- 1. Q is the set of states,
- 2. Σ is the input alphabet not containing the blank symbol \sqcup ,
- 3. Γ is the tape alphabet where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $q_{accept} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Recognizable/Decidable Languages

M accepts $w \in \Sigma^*$ if $\exists C_1, C_2, \dots, C_t$ such that

- 1. C_1 is the starting configuration of M on w
- 2. $C_i \rightarrow C_{i+1}$ is a valid step of the TM (for i = 1, 2, ..., t-1)
- 3. C_t is an accepting configuration

$$L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}$$

TM M recognizes a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$

- 1. If $w \in L$ then M accepts w and
- 2. If $w \notin L$ then M either rejects w or never halts Such languages are called (Turing)-Recognizable

TM M decides a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$

- 1. M halts on W
- 2. M accepts w iff $w \in L$ Such languages are called (Turing)-Decidable

Church-Turing Thesis

Alan Turing

Alonzo Church

Intuitive notion of algorithms

equals

Turing machine algorithms

Can Turing Machines recognize/decide all languages? NO

Time Complexity

A Decidable Language L

Deciders for L:

Number of configurations TM needs to reach an accept/reject state on this input

		I								on th
		M_A	M_B	M_{C}	M_D	M_E	M_F	M_G	M_H	OIT II
Inputs	ε	2	2	5	2	3	4	2	2	A
	0	2	5	12	2	3	5	12	5	•••
	1	20	12	14	13	8	19	2	9	
	00	32	14	18	9	18	3	5	90	
	01	12	21	56	8	12	18	18	30	
	10	21	22	26	15	11	12	32	15	
-	11	11	12	25	100	13	48	98	29	
C	000	320	201	159	201	190	200	180	65	
001 010		211	208	190	200	189	301	219	82	
		328	271	214	441	193	208	109	77	
0	11	227	261	191	201	188	107	211	207	
	:	į	:	÷	÷	:	:	÷	÷	••

How to compare different deciders?

Two Deciders for L

Running Time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The *running time* or *time complexity* of M is the function $t: \mathbb{N} \to \mathbb{N}$ where

$$t(n) = \max_{w \in \Sigma^*; |w| = n}$$
 number of steps M takes on w

- M runs in time t(n)
- n represents the input length

$$t(0) = 2$$
 $t(1) = 10$
 $t(2) = 45$
 $t(3) = 85$
 \vdots

Two Deciders for L

 M_A

Length 0

Length 1

Length 2

Length 3

Length 5

 $t_1(0) = 3$

 $t_1(1) = 5$

 $t_1(2) = 9$

 $t_1(3) = 17$

 M_B

Length 0

Length 1

Length 2

 $t_2(0) = 3$

 $t_2(1) = 8$

 $t_2(2) = 13$

 $t_2(3) = 18$

Length 3

 $t_2(4) = 23$

Length 4

 $t_1(4) = 33$

 $t_1(5) = 65$

Length 5

Length 4

 $t_2(5) = 28$

$$t_1(n) = 2^{n+1} + 1$$
 vs $t_2(n) = 5n + 3$

How to compare running time functions?

$$f_1(n) = 2^n$$
, $f_2(n) = 5n^3 + 1$, $f_3(n) = 20n + 6$

Big-O and Small-o Notation

Definition (Big-O): Let
$$f, g: \mathbb{N} \to \mathbb{R}_{\geq 0}$$
. We say $f(n) = O(g(n))$ if $\exists C > 0 \ \exists n_0 \ \text{s.t.}$ $\forall n \geq n_0 \ f(n) \leq C \cdot g(n)$

Examples:

$$5n^3 + 1 = ? O(2^n)$$
 $5n^3 + 1 = ? O(20n + 6)$

Definition (Small-o): Let
$$f, g: \mathbb{N} \to \mathbb{R}_{\geq 0}$$
. We say $f(n) = o(g(n))$ if $\forall c > 0 \ \exists n_0 \ \text{s.t.}$ $\forall n \geq n_0 \ f(n) \leq c \cdot g(n)$

Examples:

$$\sqrt{n} = ? \ o(n)$$

$$f(n) = ? \ o(f(n))$$

$$f_1(n) = 2^n, \qquad f_2(n) = 5n^3 + 1, \qquad f_3(n) = 20n + 6$$

$$f_3(n) = O(f_2(n)) \qquad f_2(n) = O(f_1(n))$$

To Summarize ...

Time Complexity

Definition: Time complexity class

 $TIME(t(n)) := \{L \subseteq \Sigma^* | L \text{ is decided by a TM with running time } O(t(n)) \}$

 $-B \in TIME(n^2)$

Theorem:

 $\mathsf{TIME}(n) \subseteq \mathsf{TIME}(n^2) \subseteq \cdots \subseteq \mathsf{TIME}\big(2^{\sqrt{n}}\big) \subseteq \mathsf{TIME}(2^n) \subseteq \mathsf{TIME}\big(2^{2^n}\big) \cdots$

The Complexity Class P and Efficiency

Definition: P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$\boldsymbol{P} = \bigcup_{k=1}^{\infty} \mathrm{TIME}(n^k).$$

For instance: *P* is the same class of languages for TMs with 2 tapes.

- 1. P is invariant for all models of computation that are polynomially equivalent to deterministic single-tape TM robust
- 2. P roughly corresponds to the class of problems that are realistically solvable and we focus on such problems in the course