DIP-Project: Fourier Transform

(for extra credit of 5%)

2021/06/04

Requirements

- **Deadline**: June 24 (Th.) 23:59
 - Code assignment (60%)
 - Implement DFT or FFT by using numpy.fft or cv2.dft.
 - The Fourier spectrums of the 4 given images should be as closed to results in textbook as possible.
 - Report (40%)
 - Write "Introduction (Goal)", "Method(FT & Post-process)", "Experimental Results", and "Discussion".
- Submit the code (.py) and report (.pdf) on E3
 - You just need to zip two files(.py and .pdf) and name it by DIP_studentID_name.zip, e.g., DIP_0886035_陳心怡.zip

Figure 4.28 (P. 261)

(a) Original image (906×678)

(b) Fourier spectrum of (a)

Figure 4.35 (P. 268)

Figure 4.37 (P. 272)

(a) Original image (600×600)

(b) Fourier spectrum of (a)

Figure 4.40 (P. 275)

- (a) Original image
 - (688×688)
- (b) Fourier spectrum* of (a)

* Circles are not parts of the spectrum

Hints

- For getting the most similar DFT/FFT results, you should try some intensity transformations on magnitude.
 - Log Transformation
 - $s = c \cdot \log(1 + r)$, p.124
 - Power-Law (Gamma) Transformation
 - $s = c \cdot r^{\gamma}$, p.125
- If you have no idea how to code, please refer to the sample code.