CS 577- Intro to Algorithms

Computational Intractability

Dieter van Melkebeek

November 17, 2020

Motivation

Motivation

► Recognizing infeasible approaches

Motivation

- ► Recognizing infeasible approaches
- P vs NP problem

Motivation

- ► Recognizing infeasible approaches
- ▶ P vs NP problem

Topics

Motivation

- Recognizing infeasible approaches
- ▶ P vs NP problem

Topics

Classes P and NP

Motivation

- Recognizing infeasible approaches
- P vs NP problem

Topics

- Classes P and NP
- ► NP-hardness and NP-completeness

Intractable Problems

Intractable Problems

Independent Set

Input: graph G

Output: independent set S of G such that |S| is maximized

Intractable Problems

Independent Set

Input: graph G

Output: independent set S of G such that |S| is maximized

Satisfiability

Input: Boolean formula φ

Output: satisfying assignment of φ , or report that none exists

Graph coloring

Graph coloring

Input: graph G = (V, E)

Graph coloring

```
Input: graph G = (V, E)
```

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and \boldsymbol{k} is minimized

Graph coloring

```
Input: graph G = (V, E)
```

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Graph coloring

Input: graph G = (V, E)

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Graph coloring

Input: graph G = (V, E)

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum total cost

Graph coloring

Input: graph G = (V, E)

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum

total cost

Subset sum

Graph coloring

Input: graph G = (V, E)

Output: $c: V \rightarrow [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum

total cost

Subset sum

Input: $a_1, a_2, \ldots, a_n \in \mathbb{N}$; $t \in \mathbb{N}$

Graph coloring

Input: graph G = (V, E)

Output: $c: V \to [k]$ such that $(\forall (u, v) \in E) c(u) \neq c(v))$

and k is minimized

Traveling salesperson problem (TSP)

Input: n cities and direct intercity travel costs for each pair

Output: tour that visits every city once and has minimum

total cost

Subset sum

Input: $a_1, a_2, \ldots, a_n \in \mathbb{N}$; $t \in \mathbb{N}$

Output: $I \subseteq [n]$ such that $\sum_{i \in I} a_i = t$, or report impossible

On input x of length $n \doteq |x|$:

On input x of length $n \doteq |x|$:

▶ Candidate solutions can be described by strings $y \in \{0,1\}^*$ with $|y| = n^c$ for some constant c.

On input x of length $n \doteq |x|$:

- ► Candidate solutions can be described by strings $y \in \{0, 1\}^*$ with $|y| = n^c$ for some constant c.
- ▶ Whether a candidate solution $y \in \{0,1\}^{n^c}$ is valid for input x can be checked in time polynomial in n.

On input x of length $n \doteq |x|$:

- ▶ Candidate solutions can be described by strings $y \in \{0, 1\}^*$ with $|y| = n^c$ for some constant c.
- ▶ Whether a candidate solution $y \in \{0,1\}^{n^c}$ is valid for input x can be checked in time polynomial in n.

$$V(x,y) = \begin{cases} 1 & \text{if } y \text{ is valid for } x \\ 0 & \text{otherwise} \end{cases}$$

On input x of length $n \doteq |x|$:

- ▶ Candidate solutions can be described by strings $y \in \{0, 1\}^*$ with $|y| = n^c$ for some constant c.
- ▶ Whether a candidate solution $y \in \{0,1\}^{n^c}$ is valid for input x can be checked in time polynomial in n.

$$V(x,y) = \begin{cases} 1 & \text{if } y \text{ is valid for } x \\ 0 & \text{otherwise} \end{cases}$$

▶ [in case of optimization problem] Objective f(x, y) can be evaluated in time polynomial in n.

Parameters:

○ $c \in \mathbb{N}$ ○ $V : \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \text{ in P}$ ○ $f : \{0,1\}^* \times \{0,1\}^* \to \mathbb{R} \text{ in P}$

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V:\{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ in P
 - o $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V:\{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ in P
 - o $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

Goal:

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - o $f:\{0,1\}^* \times \{0,1\}^* \to \mathbb{R}$ in P
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

Goal:

Decision Is $S_x \neq \emptyset$?

- Parameters:
 - \circ $c \in \mathbb{N}$
 - o $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ in P
 - $f: \{0,1\}^* \times \{0,1\}^* \to \mathbb{R} \text{ in } P$
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

► Goal:

Decision Is $S_x \neq \emptyset$? Search Find $y \in S_x$ or report that no such y exists.

- Parameters:
 - $egin{array}{ll} \circ & c \in \mathbb{N} \\ \circ & V : \{0,1\}^* imes \{0,1\}^* o \{0,1\} \ ext{in P} \\ \circ & f : \{0,1\}^* imes \{0,1\}^* o \mathbb{R} \ ext{in P} \end{array}$
- ▶ Solution set for input $x \in \{0,1\}^n$:

$$S_x \doteq \{y \in \{0,1\}^{n^c} : V(x,y) = 1\}$$

► Goal:

Decision Is $S_x \neq \emptyset$? Search Find $y \in S_x$ or report that no such y exists. Optimization Find $y^* \in S_x$ such that $f(x, y^*) = \min_{y \in S_x} (f(x, y))$ respectively $f(x, y^*) = \max_{y \in S_x} (f(x, y))$

P vs NP

P vs NP

Definition

P vs NP

Definition

P: class of decision problems computable in polynomial time

Definition

- P: class of decision problems computable in polynomial time
- ▶ NP: class of NP decision problems

Definition

- P: class of decision problems computable in polynomial time
- NP: class of NP decision problems, i.e., decision problems for which yes-instances have certificates that can be verified in polynomial time.

Definition

- P: class of decision problems computable in polynomial time
- NP: class of NP decision problems, i.e., decision problems for which yes-instances have certificates that can be verified in polynomial time.

Fact: $P \subseteq NP$

Definition

- P: class of decision problems computable in polynomial time
- NP: class of NP decision problems, i.e., decision problems for which yes-instances have certificates that can be verified in polynomial time.

Fact: $P \subseteq NP$

Open: P = NP

Definition

- P: class of decision problems computable in polynomial time
- NP: class of NP decision problems, i.e., decision problems for which yes-instances have certificates that can be verified in polynomial time.

Fact: $P \subseteq NP$

Open: P = NP

Conjecture: $P \neq NP$

Definition

- P: class of decision problems computable in polynomial time
- NP: class of NP decision problems, i.e., decision problems for which yes-instances have certificates that can be verified in polynomial time.

Fact: $P \subseteq NP$

Open: P = NP

Conjecture: $P \neq NP$

Assuming $P \neq NP$, the "hardest" problems in NP cannot be solved in polynomial time (but some problems in NP can).

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

 $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- \Rightarrow Consider any $A \in NP$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Definition

B is NP-hard if $(\forall A \in NP) A \leq^p B$.

Definition

B is NP-complete if B is NP-hard and $B \in NP$.

Proposition

Suppose *B* is NP-complete. Then $B \in P \Leftrightarrow P = NP$.

Proof

- $\leftarrow B \in NP \text{ and } P = NP \text{ implies } B \in P.$
- ⇒ Consider any $A \in NP$. $A \leq^p B$ and $B \in P$ implies $A \in P$.

Corollary

Assume $P \neq NP$. If B is NP-hard then $B \notin P$.

Theorem (next lecture) CNF-SAT is NP-hard.

Theorem (next lecture) CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Proof

Consider any $A \in NP$.

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Proof

Consider any $A \in NP$.

▶ By the NP-hardness of CNF-SAT, $A \leq^p$ CNF-SAT.

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Proof

Consider any $A \in NP$.

- ▶ By the NP-hardness of CNF-SAT, $A \leq^p$ CNF-SAT.
- ▶ By previous lecture, CNF-SAT \leq^p Independent Set.

Theorem (next lecture)

CNF-SAT is NP-hard.

Corollary

Independent Set is NP-hard.

Proof

Consider any $A \in NP$.

- ▶ By the NP-hardness of CNF-SAT, $A \leq^p$ CNF-SAT.
- ▶ By previous lecture, CNF-SAT \leq^p Independent Set.
- ▶ By transitivity, $A ext{ ≤}^p$ Independent Set.

Strategy

Strategy

To show a new problem C is NP-hard:

Strategy

To show a new problem C is NP-hard:

Find a known NP-complete problem B.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Motivation

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Motivation

Recognizing infeasible approaches.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Motivation

- Recognizing infeasible approaches.
- Convincing your boss

Strategy

To show a new problem C is NP-hard:

- Find a known NP-complete problem B.
- ▶ Show that $B \leq^p C$.

Motivation

- Recognizing infeasible approaches.
- Convincing your boss [Garey and Johnson, Computers and Intractability – A guide to the Theory of NP-Completeness]

Motivation for Proving NP-Hardness

"I can't find an efficient algorithm, I guess I'm just too dumb."

Motivation for Proving NP-Hardness

"I can't find an efficient algorithm, because no such algorithm is possible!"

Motivation for Proving NP-Hardness

"I can't find an efficient algorithm, but neither can all these famous people."

➤ Thousands of problems from all areas of science and engineering have been shown to be NP-complete.

- ► Thousands of problems from all areas of science and engineering have been shown to be NP-complete.
- ▶ Considered strong evidence that $P \neq NP$.

- ► Thousands of problems from all areas of science and engineering have been shown to be NP-complete.
- ▶ Considered strong evidence that $P \neq NP$.
- ▶ In fact, almost all of the known problems in NP that are not known to be in P, have been shown to be NP-hard.

- ► Thousands of problems from all areas of science and engineering have been shown to be NP-complete.
- ▶ Considered strong evidence that $P \neq NP$.
- ► In fact, almost all of the known problems in NP that are not known to be in P, have been shown to be NP-hard.
- Notorious exceptions include: graph isomorphism, factoring integers.