- 1 . do "/Users/imisiaiyetan/Documents/My Econometrics Assignme
 - 2.
 - 3 . *

Name: Imis

Co

- 1. *
- > 12 . * Topic: Impact of capital accumulation an
- > conomic Growth
- 6
- 7.
- 8 . * Let's load the data from download folder
- 9 . clear
- 10 . set more off
- 11 . webuse auto (1978 Automobile Data)

lncapital

cons

- 12 .
- 13 . use "/Users/imisiaiyetan/Downloads/Table2_1.dta"
 (Production data for the USA, 2005)
- 14.
- 15 . * Problem 1a: Run the multiple regression
- 16.
- 17 . reg lnoutput lnlabor lncapital

Numbe	MS		df	ss	Source
F(2 Prob R-squ		45.96 .0711	2 48	91.9246133 3.41551772	Model Residual
Adj R Root	80262	1.906	50	95.340131	Total
P> t [9	t	Err.	Std.	Coef.	lnoutput
0.000 .	4.73	9259	.0989	.4683318	lnlabor

.096887

.3962281

0.000

0.000

з.

5.38

9.81

.5212795

3.887599

18 .

19 . * problem 1b: Regress lnoutput on lncapital to predict the > ilarly, regress Inlabour on Incapital to predict the seco

20.

21 . reg lnoutput lncapital

Source	SS	df	MS		Numbe
Model Residual	90.3298259 5.0103051		298259 251124		F(1 Prob R-squ
Total	95.340131	50 1.90	680262		Adj R Root
lnoutput	Coef.	Std. Err.	t	P> t	[9
lncapital _cons	.9617962 3.391633	.0323595	29.72 7.40	0.000	.8

22 . predict el, residuals

23 .

24 . reg lnlabor lncapital

Source

Model Residual	86.3937937 7.27102154		.3937937 48388195		Prob R-squ
Total	93.6648153	50 1.8	37329631		Adj R Root
lnlabor	Coef.	Std. Err	. t	P> t	[9
lncapital _cons	.9406082 -1.059006	.0389823	24.13 -1.92	0.000	.8

df

MS

25 . predict e2, residuals

Numbe F(1

SS

26.

27 . reg e1 e2

Source

Prob R-squ Adj R	178739 704443		1 49	1.59478739 3.41551769	Model Residual
Root	206102	.1002	50	5.01030508	Total
P> t [9	t	Err.	Std.	Coef.	e1
0.000 .2 1.0000	4.78 -0.00		.0979	.4683318 -9.90e-10	e2 _cons

df

MS

MS

Numbe F(1

Numbe F(1

SS

28 .

29 .

30 . * problem 1c: The next procedure is to regress lnoutput on

SS

31 .

32 . reg lnoutput e2

Source

Model Residual	1.59478745 93.7453436		478745 317028		Prob R-squ Adj R
Total	95.340131	50 1.900	680262		Root
lnoutput	Coef.	Std. Err.	t	P> t	[9
e2 _cons	.4683318 16.94139	.5129548	0.91 87.47	0.366	5 16

df

33 .

34 .

35 .

36 . * problem 2: IV regression

37 .

38 .

39 . * problem 2a: Instrumental Variable regression. lnoutlab i

> ent in this regression. In that case, we replace lncapital

> noutput is regressed on lnlabor lnoutlab

40.

41 . ivregress gmm lnoutput lnlabor (lncapital = lnoutlab)

Instrumental variables (GMM) regression

Numbe Wald

Prob

GMM weight matrix: Robust

R-squ Root

Numbe F(2

Prob

lnoutput	Coef.	Robust Std. Err.	z	P> z	[9
lncapital lnlabor _cons	1.385655 3792855 2.044667	.4317705 .4425238 1.018963	3.21 -0.86 2.01	0.001 0.391 0.045	.5 -1.

Instrumented: lncapital

Source

Model

Instruments: lnlabor lnoutlab

42.

43.

44 . reg lnoutput lnlabor lnoutlab

R-squ	.3354e-13		al 2.0810e-11 48 4.33	
Adj R Root	0680262	50 1.9	95.340131	Total
P> t [9	t	Std. Err.	Coef.	lnoutput
0.000 .9 0.000 .9 0.715 -3.	1.5e+07 3.6e+06 -0.37	6.83e-08 2.81e-07 1.64e-06	1 1 -6.02e-07	lnlabor lnoutlab _cons

df

MS

2 47.6700655

SS

95.340131

45 .

46 . * problem 2b: To perform two stage least squares, predict

> ereafter regress lnoutput on lnlabour and lncapital hat

47.

48 . predict lncapital_hat
 (option xb assumed; fitted values)

49 .

50 . reg lnoutput lnlabor lncapital_hat

SS

95.340131

Source

Residual	4.0460e-11	48 8.42	92e-13		R-squ	
Total	95.340131	50 1.90	680262		Adj R Root	
lnoutput	Coef.	Std. Err.	t	P> t	[
lnlabor lncapital_hat	2.09e-07 .9999998 1.38e-06	3.96e-07 3.92e-07 2.28e-06	0.53 2.5e+06 0.60	0.600 0.000 0.548	-5 -3	

df

2

MS

47.6700655

51 .

52 . * problem 2c: Regress lnoutput on lnlabor and lnoutlab and

> coefficient. Similarly, Regress lncapital on lnlabor and l

> the second coefficient

53 .

54 . reg lnoutput lnlabor lnoutlab

Source	SS	df	MS
Model Residual	95.340131 2.0810e-11	2 48	47.6700655 4.3354e-13
Total	95.340131	50	1.90680262

Numbe F(2 Prob R-squ Adj R

Root

Numbe

F(2

Prob

lnoutput	Coef.	Std. Err.	t	P> t	[9
lnlabor lnoutlab	1	6.83e-08		0.000	. 9
Inoutlab	ł	2.81e-07		0.000	. 9
_cons	-6.02e-07	1.64e-06	-0.37	0.715	-3.

- $55 \cdot mat beta = e(b)$
- 56 . svmat beta, names(matcol)

Source

- 57 .
- 58 . reg lncapital lnlabor lnoutlab

SS

Model Residual	92.9197874 4.72858879		598937 512266		Prob R-squ Adj R
Total	97.6483762	50 1.95	296752		Root
lncapital	Coef.	Std. Err.	t	P> t	[9
lnlabor lnoutlab _cons	.9954032 .7216804 -1.475596	.0325471 .1341345 .7796798	30.58 5.38 -1.89	0.000 0.000 0.064	.9 .4 -3.

df

MS

Numbe F(2

- $59 \cdot mat gamma = e(b)$
- 60 . svmat gamma, names(matcol)
- 61 .
- 62 . * Take the ratio of the two coefficients derived
- 63 .
- 64 . scalar alpha hat1 = betalnoutlab/gammalnoutlab
- 65 . display alpha hat1
 - 1.3856551
- 66 .

- 67 . * problem 2d: Check using another approach, if we will arr > a hat1. The procedure is as follows
- 68 .
- 69 . * regress lnoutlab on lnlabor and predict the first residu
- 70.
- 71 . reg lnoutlab lnlabor

 Source	ss	df		MS		Numbe F(1
Model Residual	.039343945 5.47531704	1 49		343945 741164		Prob R-squ
Total	5.51466099	50	.11	029322		Adj R Root
 lnoutlab	Coef.	Std.	Err.	t	P> t	[9
lnlabor _cons	0204951 4.999017	.034	5397 2371	-0.59 11.80	0.556 0.000	0 4

- 72 . predict e_z, residuals
- 73 .
- 74 . * regress lnoutput on lnlabor and predict the second resid

SS

- 76 . reg lnoutput lnlabor

Source

F(1					
Prob R-squ	548125 741195		1 49	89.8648125 5.47531855	Model Residual
Adj R Root	580262	1.906	50	95.340131	Total
P> t [9	t	Err.	Std.	Coef.	lnoutput
0.000 .9 0.000 4	28.36 11.80	5397 2371	.0345	.9795049 4.999017	lnlabor

df

MS

Numbe

- 77 . predict e y, residuals
- 78 .
- 79 . * regress lnoutlab on lnlabor and predict the third residu

SS

- 80.
- 81 . reg lncapital lnlabor

Source

Model Residual	90.0681184 7.5802578		681184 699139		Prob R-squ
Total	97.6483762	50 1.95	296752		Adj R Root
lncapital	Coef.	Std. Err.	t	P> t	[9
lnlabor _cons	.9806122 2.132096	.0406402	24.13 4.28	0.000	.8 1.

df

MS

Numbe F(1

- 82 . predict e t, residuals
- 83 .
- 84 . * Estimate the first covariance using the second and the f
- 86 . corr e_y e_z, covariance (obs=51)

	e_y	e_z
е_у	.109506	
e z	.109506	.109506

- 87 . scalar scov1 = r(cov 12)
- 88 .
- 89 . * Estimate the second covariance using the third and the f
- 91 . corr e t e z, covariance (obs=51)

101 .

```
e_t
                  e_z
       .151605
e_t
       .079029
               .109506
```

```
92 . scalar scov2 = r(cov_12)
93 .
94 . * Finally, divide the first covariance by the second covar
95 .
96 . scalar alpha_hat2 = scov1/scov2
97 . display alpha_hat2
   1.3856551
98 .
99 .
100 .
   end of do-file
```