•Title:

Amazon Sales Analytics & Forecasting – End-to-End Data Pipeline

•Subtitle:

SQL + Power BI + Python Forecasting + Cloud Simulation (Azurite)

- •Name: Tanmay Sharma
- •Role: Data Analyst | Specialized in BI, SQL, Forecasting & Cloud Integration
- •LinkedIn: http://www.linkedin.com/in/

Project Overview

•Goal:

Build a complete sales analytics solution with:

- Data generation (Python)
- Database (MySQL)
- Visualization (Power BI)
- Forecasting (Prophet)
- Cloud Storage Simulation (Azurite)
- •Tools Used: MySQL, Python, Power BI, Azurite, Azure Storage Explorer.

End-to-End Architecture:

•Flow:

Python (Fake Data) \rightarrow MySQL DB \rightarrow Power BI \rightarrow Python Forecast \rightarrow Power BI Predictive Page \rightarrow Azurite (Blob Simulation)

End-to-End Architecture

Data Generation:

- •Description:
 - Python script created Customers, Products, Order, Order_Details.
 - •Libraries: Faker, Pandas, Random.

```
♠ Amazon.py > ...
      import pandas as pd
      import random
      from faker import Faker
      from datetime import datetime
      fake = Faker()
      # Configuration
      NUM CUSTOMERS = 2000
      NUM_PRODUCTS = 500
      NUM ORDERS = 10000
      categories = ["Electronics", "Home", "Fashion", "Beauty", "Sports", "Books"]
      regions = ["North America", "Europe", "Asia", "South America"]
      payment methods = ["Credit Card", "Debit Card", "PayPal", "Net Banking", "UPI"]
      # Generate Customers Table
      customers = []
      for i in range(1, NUM CUSTOMERS + 1):
          customers.append([
              fake.name(),
              fake.email(),
              fake.country()
      customers_df = pd.DataFrame(customers, columns=["CustomerID", "Name", "Email", "Country"])
      # Generate Products Table
      products = []
      for i in range(1, NUM_PRODUCTS + 1):
          category = random.choice(categories)
          price = round(random.uniform(10, 500), 2)
          products.append([i, f"{category} Product {i}", category, price])
      products df = pd.DataFrame(products, columns=["ProductID", "ProductName", "Category", "Price"])
      # Generate Orders and Order Details
      orders = []
      order details = []
      order id = 1
      for in range(NUM ORDERS):
         customer_id = random.randint(1, NUM_CUSTOMERS)
          order_date = fake.date_between(start_date='-2y', end_date='today')
          region = random.choice(regions)
          payment_method = random.choice(payment_methods)
          orders.append([order_id, customer_id, order_date, region, payment_method])
```


Database Setup:

- •Description:
 - •Created amazon_sales schema in MySQL.
 - •Imported generated CSVs via Table Data Import Wizard.

SQL Analysis:

•Queries Performed:

- Monthly Revenue & Profit
- Top Products by Revenue
- Regional Revenue
- Customer Lifetime Value

Result Grid 11					Export:	Customer	Total_Spent		ProductName	Total_Revenue	F
	Year	Month	Monthly_Revenue	Monthly_Profi	t Þ	Lonnie Smith	26192.62	•	Beauty Product 374	80519.25	
•	2023	8	563201.93	112749.19		Carl Ramirez	23853.04		Fashion Product 435	74890.92	•
	2023	9	616622.27	121715.19		Leslie Davis	22210.32		Electronics Product 174	73153.46	
	2023	10	683420.26	136388.44		Marissa Mack	22146.91		Electronics Product 159	72057.50	
	2023 11	638417.38	129880.25		Caitlin Rice	21817.42		Sports Product 188	71303.82		
	2023	12	658462.39	132185.30		Jeanne West	21581.38		Sports Product 190	70011.40	
	2024	1	684749.75	134721, 19		Matthew Bell	21211.76		Home Product 216	69416.44	
	2024	2	591255.02	117805.81		Daniel Case	20555.06		Fashion Product 227	68657.40	
	2024	3	626382,53	123657.00		Diane Castro	20485.31		Electronics Product 104	67946.80	
	2024	4	604027.79	121255.85		Haley Wagner	20437.21		Electronics Product 249	66085.04	

Re	sult Grid 🔢 🐧	Filter Rows:	Б	Export		
	Region	Regional_Revenue	Regional_Profit			
	South America	3990996.71	804459.71			
	Asia	3889439.32	775746.32			
	Europe	3836225.18	765697.77			
	North America	3798811.63	763227.36			

Power BI Integration:

•Description:

- Connected to MySQL for dynamic dashboards.
- Created relationships:
 - Customers → Order Details
 - Products → Order_Details

Navigator

Manage settings for data sources that you have connected to using Power BI Desktop.

O Data sources in current file O Global permissions

localhost;amazon_sales

t:\github\financial report\amazon.scripts\forecast.csv

t:\github\financial report\ama...on.scripts\monthly_revenue.csv

Change Source...

Export PBIDS E

Edit Permissions...

Clear Permissions

Edit Table

"Amazon Customer Insights Dashboard"

This page answers:

- 'Who are the top spending customers?
- 'Where are customers located?
- 'How many repeat vs new customers exist?

"Amazon Growth & Profitability

Profit Margin by Region & Category							
Region	Beauty	Books	Electronics	Fashion	Home	Sports	Total
Asia	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Europe	0.20	0.20	0.20	0.20	0.20	0.20	0.20
North America	0.20	0.20	0.20	0.20		0.20	0.20
South America	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Total	0.20	0.20	0.20	0.20	0.20	0.20	0.20

***Amazon Sales Performance Summary"**

Total Revenue

15.52M

Total Profits

3.11M

Total Orders

10K

Avg Order Value

1.55K

Revenue Growth %

"Amazon Product Performance Analysis"

This page answers:

Which products are generating the most revenue?

Which categories contribute the most?

Predictive Analysis:

•Description:

- •Forecasted next 12 months using **Prophet**.
- Imported forecast.csv into Power BI

```
forcast.py > ...
     # amazon forecast.py
     import pandas as pd
     from prophet import Prophet
      import matplotlib.pyplot as plt
     # Step 1: Load Historical Data
     df = pd.read_csv("monthly_revenue.csv")
     # Rename columns as required by Prophet
     df.rename(columns={"Month": "ds", "Monthly_Revenue": "y"}, inplace=True)
     # Convert 'ds' to datetime
     df['ds'] = pd.to_datetime(df['ds'])
     # Step 2: Initialize Prophet Model
     model = Prophet(yearly_seasonality=True, daily_seasonality=False)
     model.fit(df)
     # Step 3: Create Future DataFrame for 12 months
     future = model.make_future_dataframe(periods=12, freq='M')
     # Step 4: Forecast
     forecast = model.predict(future)
     # Step 5: Save Forecast to CSV
     forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].to_csv("forecast.csv", index=False)
     # Step 6: Plot Forecast
     fig1 = model.plot(forecast)
     plt.title("Amazon Sales Forecast (Next 12 Months)", fontsize=16)
     plt.xlabel("Date")
     plt.ylabel("Revenue")
     plt.show()
     fig2 = model.plot components(forecast)
     plt.show()
     print("Forecast completed! File saved as forecast.csv")
```


"Predictive Analysis – Future Revenue Forecast"

Next Month "Predicted Revenue"

22.86M

Confidence Range

₹963,446 - ₹990,326

Forecast Growth %

0.37

Forecast Table								
Year	Quarter	Month	Day	Sum of yhat	Sum of yhat_lower	Sum of yhat_upper		
2023	Qtr 3	August	1	5,64,882.16	5,59,620.91	5,70,669.32		
2023	Qtr 3	September	- 1	6,17,687.63	6,12,168.24	6,22,976.50		
2023	Qtr 4	October	1	6,83,321.61	6,77,669.11	6,88,929.83		
2023	Qtr 4	November	- 1	6,36,861.36	6,31,698.20	6,42,313.70		
2023	Qtr 4	December	- 1	6,55,622.50	6,50,035.89	6,61,401.98		
2024	Qtr 1	January	1	6,81,121.15	6,75,401.34	6,86,893.37		
2024	Qtr 1	February	1	5,87,010.01	5,81,003.29	5,92,692.94		
Total				2,28,58,820.07	2,26,21,724.62	2,30,92,550.68		

Cloud Simulation

- •Description:
 - Used Azurite for Azure Blob Storage simulation.
 - Uploaded all project files via Azure Storage Explorer.

Azurite Blob service is starting at http://127.0.0.1:10000
Azurite Blob service is successfully listening at http://127.0.0.1:10000
Azurite Queue service is starting at http://127.0.0.1:10001
Azurite Queue service is successfully listening at http://127.0.0.1:10001
Azurite Table service is starting at http://127.0.0.1:10002
Azurite Table service is successfully listening at http://127.0.0.1:10002

Key Learnings

- •ETL Pipeline Design
- •SQL & DAX for BI
- ML Forecasting (Prophet)
- •Cloud Readiness with Azurite

Tagline:

End-to-End Sales Analytics Project using MAANG standards.

Link to Github repository: https://github.com/Tanu272004/Amazon Analysis Project.git

```
Python (Generate Data)

↓

Save CSV → Upload to Azurite (Azure Blob Simulation)

↓

Download from Azurite → Import into MySQL

↓

Power BI → Dynamic Dashboard

↓

Python Forecast (Prophet) → Forecast.csv → Power BI Predictive Page

↓

Screenshots & PPT → GitHub + LinkedIn
```