Feuille d'exercices 8

Avertissement : tous les exercices ne seront pas traités durant les séances; pour en suivre l'avancement veuillez consulter mon site personnel dans la rubrique Forum.

Cryptosystèmes

Exercice 1. — Soit E la cubique définie sur \mathbb{F}_{11} d'équation

$$y^2 = x^3 + x + 6.$$

- 1. Montrer que E est une courbe elliptique sur \mathbb{F}_{11} .
- 2. Déterminer l'ordre du groupe $E(\mathbb{F}_{11})$.

On constate que le point P = (2,7) appartient à $E(\mathbb{F}_{11})$. Bob souhaite envoyer le message $M = (9,1) \in \mathbb{F}_{11} \times \mathbb{F}_{11}$ à Alice (M n'est pas un point de E) en utilisant le cryptosystème de Menezes-Vanstone associé au couple public (E,P). La clé secrète d'Alice est l'entier s=7.

- 3. Calculer la clé publique d'Alice.
- 4. Bob choisit aléatoirement l'entier k=6. Quel est le message chiffré envoyé par Bob à Alice et comment Alice retrouve-t-elle le message M?

Exercice 2. — Soit $G = E(\mathbb{F}_{41})$ où E est donné par $y^2 = x^3 + 2x + 1$. Soient P = (0,1) et Q = (30,40); en utilisant l'algorithme Baby step Giant step, trouver k tel que Q = kP.

Exercice 3. — Soit E une courbe elliptique sur \mathbb{F}_q et soient $P, Q \in E(\mathbb{F}_q)$. On suppose que l'ordre N de P est premier avec q.

- 1. Montrer qu'il existe k tel que Q = kP si et seulement si NQ = O et l'accouplement de Weil vérifie $e_N(P,Q) = 1$.
- 2. Soit m tel que $E[N] \subset E(\mathbb{F}_{q^m})$ et on considère l'algorithme suivant :
 - (a) on choisit aléatoirement un point $T \in E(\mathbb{F}_{q^m})$;
 - (b) on calcule l'ordre M de T;
 - (c) soit $d = M \wedge N$ et $T_1 = \frac{M}{d}T$ de sorte que T_1 est d'ordre d qui divise N;
 - (d) on calcule $\zeta_1 = e_N(P, T_1)$ et $\zeta_2 = e_N(Q, T_1)$ qui appartiennent donc à $\mu_d \subset \mathbb{F}_{a^m}^{\times}$;
 - (e) on résoud le logarithme discret $\zeta_2 = \zeta_1^k$ dans $\mathbb{F}_{q^m}^{\times}$ ce qui donne k modulo d;
 - (f) on répète avec d'autres T jusqu'à ce que le ppcm des d obtenus est N ce qui détermine k modulo N.
- 3. Soit E/\mathbb{F}_q une courbe supersingulière avec a=0; montrer que si $P\in E(\mathbb{F}_q)$ est d'ordre N alors $E[N]\subset E(\mathbb{F}_{q^2})$.

Exercice 4. — Soit $p \equiv 2 \mod 3$ et E la courbe elliptique définie sur \mathbb{F}_p dont une équation affine est $y^2 = x^3 + 1$.

- 1. Montrer que E/\mathbb{F}_p est supersingulière, i.e. de cardinal p+1.
- 2. Soit $\omega \in \mathbb{F}_{p^2}$ une racine cubique de l'unité. Montrer que l'application $\beta : (x,y) \mapsto (\omega x,y)$ définit un endomorphisme de $E(\mathbb{F}_{p^2})$ en posant $\beta(O) = O$.
- 3. Soit $P \in E[n]$ de sorte que $\beta(P) \in E[n]$; on suppose que 3 ne divise pas n montrer alors que $e_n(P,\beta(P))$ est une racine primitive n-ème de l'unité.
- 4. En vous aidant de l'exercice précédent, résolvez le **problème de décision de Diffie-Hellmann** : connaissant P, aP, bP des points de $E(\mathbb{F}_q)$ et un point $Q \in \mathbb{F}_q$, peut-on déterminer si Q = abP?
- 5. Protocole de Diffie-Hellmann tripartite : soit P un point d'ordre n ; Alice, Bob et Chris choisissent des entiers secrets a, b, c modulo n respectivement et publient aP, bP et cP. Alice calcule $\tilde{e}_n(bP,cP)^a$, Bob $\tilde{e}_n(aP,cP)^b$ et Chris $\tilde{e}_n(aP,bP)^c$ ce qui constitue leur clef commune.

Exercice 5. — Pour factoriser 4453, considèrez la courbe elliptique d'équation

```
1. y^2 = x^3 + 10x - 2 \mod 4453 \text{ et } P = (1,3);
```

2.
$$y^2 = x^3 + 3x \mod 4453 \text{ et } P = (1, 2).$$

Exercice 6. — Test de primalité de Goldwasser-Kilian : ce test n'est utilisé que pour des nombres ayant plus de 100 chiffres et ayant passé un grand nombre de tests de pseudo-primalité de sorte que l'on peut travailler avec n comme s'il était premier, i.e. comme si tous les nombres non divisibles par zéro qui apparaissent dans les calculs, sont inversibles (sinon on aurait un diviseur).

- 1. Soit E une courbe elliptique sur $\mathbb{Z}/n\mathbb{Z}$; soient un entier m et $P \in E(\mathbb{Z}/n\mathbb{Z})$ satisfaisant les propriétés suivantes:
 - il existe un nombre premier q divisant m tel que $q > (\sqrt[4]{n} + 1)^2$;
 - -mP=O;
 - $-(m/q)P = (x:y:t) \text{ avec } t \in (\mathbb{Z}/n\mathbb{Z})^{\times}.$

Montrer alors que n est premier.

- 2. Soient l_1, \dots, l_k des nombres premiers et des points finis $P_i \in E(\mathbb{Z}/n\mathbb{Z})$ tels que :
 - $-l_iP_i = O \ pour \ tout \ 1 \leq i \leq k;$
 - $-\prod_{i=1}^{k} l_i > (\sqrt[4]{n} + 1)^2.$ Alors n est premier.

- 3. Soit n premier avec 6 et $m = \sharp E(\mathbb{Z}/n\mathbb{Z})$. Montrer que s'il existe un nombre premier q|m tel que $q > (\sqrt[4]{n}+1)^2$ alors il existe $P \in E(\mathbb{Z}/n\mathbb{Z})$ tel que mP = O et (m/q)P = (x : y : t) avec $t \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 4. On calcule le cardinal de $E(\mathbb{Z}/n\mathbb{Z})$ en utilisant par exemple l'algorithme de Schoof. Le principe de l'algorithme de Goldwasser-Kilian est le suivant. On essaye de diviser m par de petits premiers en espérant que le quotient q soit un nombre pseudo-premier plus grand que $(\sqrt[4]{n}+1)^2$. Dans ce cas on suppose q premier et on cherche un point $P \in E(\mathbb{Z}/n\mathbb{Z})$ qui satisfait les hypothèses de la première question. Si un tel point P est trouvé, il nous faut prouver que q est bien premier : on utilise alors l'algorithme récursivement. Puisque $q \le m/2 \le (n+2\sqrt{n}+1)/2$, les nombres testés diminuent au moins de moitié à chaque itération de sorte que le nombre d'itération est $O(\log n)$ l'algorithme s'arrêtant dès que les nombres à tester deviennent assez petit pour employer d'autres tests.

Par exemple pour n = 907 et $E: y^2 = x^3 + 10x - 2$, le point P = (819, 784) vérifie 71P = O et comme $71 > (907^{1/4} + 1)^2 \simeq 42.1$, on déduit que 907 est premier, après avoir vérifié que 71 est premier.

Exercice 7. — Soit E la courbe elliptique $y^2 + y = x^3 - x$ sur le corps \mathbb{F}_p avec p = 751 qui est de cardinal N=727. On convient que les messages sont constitués des chiffres 0-9 et des lettres A-Z codés de 10 à 35. On utilise le cryptosystème du log discret avec $\kappa = 20$.

- 1. Comment codez-vous le message « STOP007 »?
- 2. Traduisez le message reçu (361, 383), (241, 605), (201, 380), (461, 467), (581, 395).
- 3. On utilise l'analogue du processus d'El Gamal; avec la clef publique (201, 380) et la suite aléatoire d'entiers 386, 209, 118, 589, 312, 483, 335 comment codez vous le message (1) ci-dessus?

1. Solutions

1 1) Le discriminant de E est 4 (modulo $11\mathbb{Z}$), il est non nul, donc E est une courbe elliptique définie sur \mathbb{F}_{11} . 2) Soit N l'ordre du groupe $E(\mathbb{F}_{11})$. Pour tout $z \in \mathbb{F}_{11}$, notons $\chi(z) = \left(\frac{z}{11}\right)$ le symbole de Legendre (cf. l'exercice 1). On a l'égalité

(1)
$$N = 1 + \sum_{x \in \mathbb{F}_{11}} (1 + \chi(x^3 + x + 6)).$$

Pour tout $x \in \mathbb{F}_{11}$, on détermine $\chi(x^3 + x + 6)$. Pour cela, on vérifie d'abord que l'ensemble des carrés de \mathbb{F}_{11} (qui est de cardinal 6) est $\{0, 1, 3, 4, 5, 9\}$. Il en résulte que l'ensemble des couples $(x, \chi(x^3 + x + 6))$ pour x parcourant \mathbb{F}_{11} est

$$\Big\{(0,-1),(1,-1),(2,1),(3,1),(4,-1),(5,1),(6,-1),(7,1),(8,1),(9,-1),(10,1)\Big\}.$$

D'après l'égalité (1), on a donc N=13. En notant O le point à l'infini de E, on en déduit par ailleurs que l'on a

$$E(\mathbb{F}_{11}) = \left\{ O, (2, \pm 4), (3, \pm 5), (5, \pm 2), (7, \pm 2), (8, \pm 3), (10, \pm 2) \right\}.$$

3) La clé publique d'Alice est le point $K_A = 7P$. Afin de calculer les coordonnées de K_A , on utilise les égalités $K_A = P + 2P + 4P = P + 2P + 2(2P)$. On vérifie que l'on a

$$2P = (5, 2), \quad 4P = (10, 2), \quad 6P = (7, 9) \quad \text{et} \quad K_A = (7, 2).$$

4) Conformément au cryptosystème utilisé, Bob calcule les points

$$C_1 = 6P$$
 et $6K_A = (x, y)$.

On a $6K_A = 42P = 3P$, d'où $6K_A = (8,3)$, d'où x = 8 et y = 3. Ensuite, Bob calcule le couple

$$C_2 = (9x, y) = (6, 3) \in \mathbb{F}_{11} \times \mathbb{F}_{11}.$$

Il envoie alors à Alice le couple $(C_1, C_2) = (7, 9), (6, 3)$. Alice retouve le message M en procédant comme suit. Avec sa clé secrète, elle calcule le point $7C_1 = 6K_A$, ce qui lui permet de déterminer le couple (x, y). En utilisant C_2 , elle en déduit M vu que l'on a $M = (8^{-1}6, 3^{-1}3)$ et que $8^{-1} = 7$.

2 D'après le théorème de Hasse, G est de cardinal au plus 54 de sorte que m=8. Les points iP pour $1 \le i \le 7$ sont

$$(0,1), (1,39), (8,23), (38,38), (23,23), (20,28), (26,9).$$

On calcule alors Q - jmP pour j = 0, 1, 2 ce qui donne

et on s'arrête car on retrouve P_7 . On obtient alors $Q = (7 + 2\mu.8)P = 23P$.

3 1) Si Q = kp alors NQ = kNP = 0 et $e_N(P,Q) = e_N(P,P)^k = 1^k = 1$. Réciproquement si NQ = O alors $Q \in E[N]$ et comme $N \wedge q = 1$, on a $E[N] \simeq (\mathbb{Z}/N\mathbb{Z})^2$. On choisit R tel que (P,R) est une base de E[N] et alors Q = aP = bR avec $e_N(P,R) = \zeta$ une racine primitive N-ième de l'unité. Ainsi si $e_N(P,Q) = 1$, on a

$$1 = e_N(P, Q) = e_N(P, P)^a e_N(P, R)^b = \zeta^b$$

de sorte que $b \equiv 0 \mod N$ et bR = O et donc Q = aP.

- 3) L'endomorphisme de Frobenius ϕ_q vérifie $\phi_q^2 a\phi_q + q = 0$ et comme a = 0 alors $\phi_q^2 = -q$. Soit $S \in E[N]$; comme $E(\mathbb{F}_q)$ est de cardinal q+1 et comme il existe un point d'ordre N, on a N|q+1 soit $-q \equiv 1 \mod N$ et donc $\Phi_q^2(S) = -qS = 1.S$ d'où le résultat
- 4 1) cf. l'exercice 4 de la feuille 7.
- 2) L'image $\beta(E(\mathbb{F}_{p^2}))$ est clairement contenue dans $E(\mathbb{F}_{p^2})$; par ailleurs comme $(x,y) \mapsto (\omega^{-1}x,y)$ est inverse de β , on a égalité. On vérifie aussi que c'est un morphisme (via les formules d'addition...)
- 3) Le résultat découle directement du fait que P et $\beta(P)$ forment une base de E[n], ce que nous allons prouver. Soient u, v des entiers tels que $uP = v\beta(P)$ alors $\beta(vP) = v\beta(P) = uP$. Si vP = O alors uP = O et donc $u \equiv 0$

mod n. Si $vP \neq O$ écrivons vP = (x, y) avec $x, y \in \mathbb{F}_q$ alors $(\omega x, y) = \beta(vP) \in E(\mathbb{F}_q)$. Puisque $\omega \notin \mathbb{F}_q$ nous devons avoir x = 0 et ainsi $vP = (0, \pm \sqrt{b})$ qui est d'ordre 3 ce qui est impossible puisque par hypothèse 3 ne divise pas n.

4) On utilise l'accouplement de Weil, cf. l'exercice précédent, pour vérifier que Q est un multiple de P, i.e. si $e_n(P,Q)=1$. Dans ce cas Q=tP et on pose $\tilde{e}_n(P_1,P_2)=e_n(P_1,\beta(P_2))$ de sorte que

$$\tilde{e}_n(aP,bP) = \tilde{e}_n(P,P)^{ab} = \tilde{e}_n(P,abP) \text{ et } \tilde{e}_n(Q,P) = \tilde{e}_n(P,P)^t.$$

Si 3 ne divise pas n, alors $\tilde{e}_n(P,P)$ est une racine primitive n-ème de l'unité et donc

$$Q = abP \Leftrightarrow t \equiv ab \mod n \Leftrightarrow \tilde{e}_n(aP, bP) = \tilde{e}_n(Q, P).$$

 ${f 5}$ 1) On calcule 2P : la pente de la tangente en P est

$$\frac{3x^2 + 10}{2y} = \frac{13}{6} \equiv 3713 \mod 4453.$$

Comme $6 \wedge 4453 = 1$, on calcule $6^{-1} \equiv 3711 \mod 4453$ et donc 2P = (x, y) avec

$$x \equiv 3713^2 - 2 \equiv 4432, \quad y \equiv -3713(x-1) - 3 \equiv 3230.$$

On calcule 3P = P + 2P: la pente est

$$\frac{3230 - 3}{4332 - 1} = \frac{3227}{4331}.$$

Comme $4331 \wedge 4453 = 61 \neq 1$ ce qui ne permet pas d'évaluer la pente mais fournit un diviseur 61 de 4453 = 61.73.

2) On calcule 2P; la pente de la tangente en P est

$$\frac{3x^2+3}{2y} = \frac{3}{2} \equiv 2228 \mod 4453.$$

Comme $2 \wedge 4453 = 1$, on calcule $2^{-1} \equiv 2227 \mod 4453$ et donc 2P = (x, y) avec

$$x \equiv 3340 \mod 4453$$
, $y \equiv 1669 \mod 4453$.

On calcule 3P = 2P + P; la pente est

$$\frac{1669 - 2}{3340 - 1} \equiv 746 \mod 4453.$$

Comme 3339 \wedge 4453 = 1, on calcule 3339⁻¹ \equiv 1483 mod 4453. On obtient alors 3P = (x, y) avec

$$x \equiv 1003 \mod 4453$$
, $y \equiv 610 \mod 4453$.

On calcule ensuite 6P = 3P + 3P; le dénominateur de la pente est 2.610 = 1220 et nous voyons que $1220 \land 4453 = 61$.

- 6 1) Soit p un facteur premier de n; en réduisant modulo p, l'image de P a un ordre divisant m mais ne divisant pas m/q puisque $t \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Puisque q est premier il divise l'ordre de l'image de P dans $E(\mathbb{F}_p)$ et donc ce dernier est de cardinal supérieur ou égal à q et donc, d'après le théorème de Hasse $q \leq (\sqrt{p} + 1)^2$. Ainsi pour $p \leq \sqrt{n}$, on obtient $q \leq (\sqrt[4]{n} + 1)^2$ d'où contradiction.
- 2) Soit p premier divisant $n = p^f n_1$ avec $p \wedge n_1 = 1$ alors $E(\mathbb{Z}/n\mathbb{Z}) = E(\mathbb{Z}/p^f\mathbb{Z}) \oplus E(\mathbb{Z}/n_1\mathbb{Z})$. La réduction modulo p de P_i est alors d'ordre l_i et donc l_i divise le cardinal de $E(\mathbb{F}_p)$ soit

$$(\sqrt[4]{n}+1)^2 < \prod_{i=1}^k l_i \le \sharp E(\mathbb{F}_p) < p+1+2\sqrt{p} = (\sqrt{p}+1)^2,$$

et donc $p > \sqrt{n}$ et donc n premier.

- 3) Posons $G = E(\mathbb{Z}/n\mathbb{Z})$; supposons que pour tout $P \in G$ nous avons (m/q)P = O alors $G \simeq \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z}$ avec $d_2|d_1$ avec $m = d_1d_2 \le d_1^2 \le (m/q)^2$ et donc $q^2 \le m$. Utilisant notre hypothèse sur la taille de q et le théorème de Hasse, nous avons $(\sqrt[4]{n} + 1)^2 < \sqrt{n} + 1$ ce qui est absurde.
- 7 (1) Le message envoyé est (562, 576), (581, 395), (484, 214), (501, 220), (1,0), (1,0), (144, 565).
 - (2) ICANT
- (3) (676, 182), (385, 703), (595, 454), (212, 625), (261, 87), (77, 369), (126, 100), (66, 589), (551, 606), (501, 530), (97, 91), (733, 110), (63, 313), (380, 530).