Module Interface Specification for SCEC (Solar Cooker Energy Calculator)

Deesha Patel

March 23, 2023

1 Revision History

Date	Version	Notes
March 17, 2023 March 19, 2023 March 19, 2023	0.1 0.2 0.3	Initial Release Updates according to the comments Updates according to the issues

2 Symbols, Abbreviations and Acronyms

See SRS Documentation for symbols, abbreviations and acronyms.

symbol	description
С	Condition
en	Energy
energySeq	Energy Sequence
ODEs	Ordinary Differential Equations
param	Parameters
r	Rule
SCEC	Solar Cooker Energy Calculator
temp	Temperature value
tempSeq	Temperature Sequence

Contents

1	Revision History	i
2	Symbols, Abbreviations and Acronyms	ii
3	Introduction	1
4	Notation	1
5	Module Decomposition	1
6	MIS of Constant Value Module 6.1 Module 6.2 Uses 6.3 Syntax	3 3 3
	6.3.1 Exported Constants 6.3.2 Exported Access Programs 6.4 Semantics	3 3 3
	6.4.1 State Variables	3 3 4
	6.4.4 Access Routine Semantics	4 4 4
7	MIS of Energy Equation Module	5
	7.1 Module	5 5 5 5 5 5
	7.4 Semantics 7.4.1 State Variables 7.4.2 Environment Variables 7.4.3 Assumptions 7.4.4 Access Routine Semantics 7.4.5 Local Functions	5 5 5 6 6
8	MIS of Input Format Module 8.1 Module	7 7 7 7 7

		8.3.2	Exported Access Programs
	8.4	Seman	tics
		8.4.1	State Variables
		8.4.2	Environment Variables
		8.4.3	Assumptions
		8.4.4	Access Routine Semantics
		8.4.5	Local Functions
9	MIS	of In	put Parameter Module
_	9.1	_	e
	9.2		
	9.3		<u> </u>
		9.3.1	Exported Constants
		9.3.2	Exported Access Programs
	9.4		tics
		9.4.1	State Variables
		9.4.2	Environment Variables
		9.4.3	Assumptions
		9.4.4	Access Routine Semantics
		9.4.5	Local Functions
10			itput Module 1
	10.1	Modul	e 1
	10.2	Uses	
	10.3	Syntax	、
		10.3.1	Exported Constants
			Exported Access Programs
	10.4	Seman	tics
		10.4.1	State Variables
		10.4.2	Environment Variables
		10.4.3	Assumptions
		10.4.4	Access Routine Semantics
		10.4.5	Local Functions
11	MIS	of Co	ontrol Module 1
	11.1	Modul	e
			<mark> </mark>
			Exported Constants
			Exported Access Programs
	11.4		tics
	_		State Variables
			Environment Variables 1

	11.4.3 Assumptions	14
	-	14
		14
12 MIS	of Temperature ODE Module	15
12.1	Module	15
12.2	Uses	15
12.3	Syntax	15
	12.3.1 Exported Constants	15
		15
12.4	Semantics	15
		15
	12.4.2 Environment Variables	16
	12.4.3 Assumptions	16
	12.4.4 Access Routine Semantics	16
	12.4.5 Local Functions	17
13 MIS	of ODE Solver Module	18
13.1	Module	18
13.2	Uses	18
13.3	Syntax	18
	13.3.1 Exported Constants	18
	13.3.2 Exported Access Programs	18
13.4	Semantics	18
	13.4.1 State Variables	18
	13.4.2 Environment Variables	18
	13.4.3 Assumptions	18
	13.4.4 Access Routine Semantics	18
	13.4.5 Local Functions	19
14 MIS	of Plotting Result Module	20
		20
14.2		20
		20
	14.3.1 Exported Constants	20
	·	20
14.4	Semantics	20
	14.4.1 State Variables	20
		20
		20
		20
		21
14.5		21

15 MIS of Sequence Data Structure Module	22
15.1 Module	
15.2 Considerations	22
16 Appendix	23
List of Tables	
1 Module Hierarchy	2
2 Possible errors for input	23

3 Introduction

The following document details the Module Interface Specifications for SCEC (Solar Cooker Energy Calculator). This document specifies how every module is interfacing with every other parts.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at Github repository for SCEC.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SCEC.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2	
Hardware-Hiding Module		
	Constant Value Module	
	Energy Equation Module	
	Input Format Module	
Behaviour-Hiding Module	Input Parameter Module	
	Output Module	
	Control Module	
	Temperature ODE Module	
	ODE Solver Module	
Software Decision Module	Plotting Result Module	
	Sequence Data Structure Module	

Table 1: Module Hierarchy

6 MIS of Constant Value Module

6.1 Module

Const Value Params

6.2 Uses

None

6.3 Syntax

6.3.1 Exported Constants

params.stefan_const	5 := 5.670374419e-08	#Stefan-Boltzman constant
$params.h_t_int3$:= 4.0	#Heat flux from Lid to Inner area of
		container
$params.h_ref_int2$:= 4.4	#Heat flux from reflector to Inner area
		of box
$params.h_ref_f$:= 4.0	#Heat flux from reflector to fluid
$params.c_ref$	= 900	#Specific heat capacity of reflector
$params.c_f$:= 4190	#Specific heat capacity of fluid
$params.m_ref$	= 0.2	#Mass of reflector
$params.m_f$:= 2.0	#Mass of fluid
$params.t_g$:= 0.48	#Transmittivity of glass
params.p	= 0.89	#Reflectivity of glass

6.3.2 Exported Access Programs

None

6.4 Semantics

6.4.1 State Variables

None

6.4.2 Environment Variables

6.4.3 Assumptions

None

6.4.4 Access Routine Semantics

None

6.4.5 Local Functions

None

6.4.6 Considerations

Note: These constants are as per the SRS document, so constant parameters and values may change according to the implementation if required.

7 MIS of Energy Equation Module

7.1 Module

 $energy_calculation$

7.2 Uses

- Input Parameter Module
- Constant Value Module

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
energyWat	sequence of \mathbb{R}	sequence of $\mathbb R$	MissingParamError, TempValueError, EnergyValueError, EnergySeqError, TempSeqError

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

None

7.4.3 Assumptions

The Energy Equation Module is called through the Control Module, ensuring that Temperature ODE Module has been called before Energy Equation Module and fluid temperature values are calculated to give input to the Energy Equation Module.

7.4.4 Access Routine Semantics

This module satisfies R5 from the SRS.

energyWat(temp):

• transition: None

• output: The energy equation module returns the sequence of energy: out := $\{i \in \mathbb{N}, 0 \le i < |s-1| \mid m_f c_f(temp[i] - T_{init})\}$, where $m_f = getConstantValue(m_f)$, $c_f = getConstantValue(c_f)$

• exception: exc :=

Expression	Exception	Description
$\neg(\triangle T > 0)$	TempValueError	Valid temperature value should positive only.
$(E_f = 0 \lor E_f \notin \mathbb{R})$	EnergyValueError	Energy of fluid should be real and non zero number.
$(en = \emptyset)$	EnergySeqError	Energy sequence should have at least one value, not an empty sequence.
$(temp = \emptyset)$	TempSeqError	Temperature sequence should not be empty.

7.4.5 Local Functions

getConstValue: String

getConstValue(param): A function to fetch the mass and capacity of fluid from the Constant Value Module.

• output: out:=

 $m_f: \mathbb{R},$ $c_f: \mathbb{R}$

• exception: exc:=

Expression	Exception	Description
$(m_f = \nexists \lor c_f = \nexists)$	MissingParamError	Valid string should be available
		in the Constant Value Module.

8 MIS of Input Format Module

8.1 Module

format_input

8.2 Uses

- Input Parameter Module
- Hardware Hiding Module

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_params	String	sequence of \mathbb{R}	InputError, FileFormatError

8.4 Semantics

8.4.1 State Variables

None

8.4.2 Environment Variables

- 1. file: A file containing sequence of strings that provides data related to temperature, Area and other properties.
- 2. Windows keyboard: Input Format Module takes the input from the keyboard in the file.

8.4.3 Assumptions

- The Control Module call this module for formating input parameters.
- The paramFile contains input starts with '#' in new line. The order of the inputs should be as below:

Line 1: Area of lid

Line 2: Temperature of lid

Line 3: Temperature of fluid

Line 4: Emissivity of lid

Line 5: Area of reflector

Line 6: Temperature of reflector

Line 7: Emissivity of reflector

Line 8: Temperature of glass

Line 9: Area of mass

8.4.4 Access Routine Semantics

This module is a function to load, verify and store input data. (R1 and R2 from SRS).

load_params(paramFile):

- transition: paramFile is the file for fetching input values from the file. The following procedure is performed:
 - 1. Verify the format of the file to be .txt.
 - 2. Extract the input one by one.
 - 3. Verify all inputs, verifyInput(param)
 - 4. Store inputs to the data structure
- output: Give sequence of inputs contains all inputted data under appropriate field names.

out := params

• exception: Data input which does not comply with the data constraints specified in SRS for this project will yield one of the potential exceptions or warning as listed in the appendix of this document.

8.4.5 Local Functions

verifyInputs: string, \mathbb{R}

verifyInputs(file, param): A function to verify the inputs for SCEC.

• output: out:= none

• exception: exc:=

Expression	Exception	Description
If file is not in correct for-	${\bf File Format Error}$	Valid input file should be *.txt
$ mat \neg (s = 9) $	InputError	file only. Valid size of input sequence
(s - 9)	присытог	should be 9.

See appendix (Table 2) for all constraints and error message.

9 MIS of Input Parameter Module

9.1 Module

parameters

9.2 Uses

• Hardware Hiding Module

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
init	-	-	-

9.4 Semantics

Parameters is a data structure designed to store the input information entered by the Input Format Module.

9.4.1 State Variables

```
param := sequence of (A_t : \mathbb{R}, Area of lid T_t : \mathbb{R}, Temperature of lid T_f : \mathbb{R}, Temperature of fluid e_t : \mathbb{R}, Emissivity of lid A_{\text{ref}} : \mathbb{R}, Area of reflector T_{\text{ref}} : \mathbb{R}, Temperature of reflector e_{\text{ref}} : \mathbb{R}, Emissivity of reflector T_g : \mathbb{R}, Temperature of glass A_m : \mathbb{R}, Area of mass
```

9.4.2 Environment Variables

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

Parameters:

• transition: This module is a simple data structure for storing the input values formatted by Input Format Module.

• output: None

• exception: exc:= None

9.4.5 Local Functions

10 MIS of Output Module

10.1 Module

output

10.2 Uses

- Input Parameter Module
- Hardware Hiding Module
- Plotting Result Module

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	String, sequence of \mathbb{R} , sequence of \mathbb{R} , sequence of \mathbb{N}	Output File	MissingValueError, FileAlreadyExistError

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

- 1. file: The file in which the output is saved.
- 2. Window screen: Output Module prints the result in the graph, which is shown to the screen.

10.4.3 Assumptions

The Control Module properly verified values against the constraint.

10.4.4 Access Routine Semantics

output(fileName, tempSeq, energySeq, t):

• transition: None

• output: This module is able to output the file which contains output of the temperature and energy sequence.

out := file

• exception: exc:= None

10.4.5 Local Functions

11 MIS of Control Module

11.1 Module

main

11.2 Uses

- Constant Value Module
- Energy Equation Module
- Hardware Hiding Module
- Input Format Module
- Output Module
- Temperature ODE Module
- ODE Solver Module
- Sequence Data Structure Module

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	Modifies output file	Various

11.4 Semantics

11.4.1 State Variables

- init_temp : sequence of [T1: \mathbb{R} , T2: \mathbb{R}] # initial temperature values.
- $\bullet~t$: vector # vector of time.
- temp : sequence of [T1: \mathbb{R} , T2: \mathbb{R}] # sequence 2D for temperatures.
- \bullet e.f : sequence of [E1: $\mathbb R]$ # sequence 1D for energy of fluid.

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

main():

- transition: Control the order of execution of different modules as follow:
 - Set constant value using Constant Value Module (M2, Section 6).
 - Set inputted values to the appropriate variables using Input Format Module (M4, Section 8).
 - Set the time vector using Sequence Data Structure Module (M11, Section ??).
 - Temperature values for reflector and fluid is calculated using initial conditions by Temperature ODE Module (M8, Section 12).
 - Using the previous step output, energy of fluid is calculated in Energy Equation Module (M3, Section 7).
 - Output is transferred to the output file with the help of Output Module and internally it also called Plotting Result Module for plotting result on graphs (M6, Section 10 and M10, Section 14).
- output: out := None
- exception: exc:= Potential exceptions occurs are from different sub-modules only.

11.4.5 Local Functions

12 MIS of Temperature ODE Module

12.1 Module

calculation

12.2 Uses

- Constant Value Module
- Input Parameter Module

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
calculateOde	sequence of $[T1:\mathbb{R}, T2:\mathbb{R}],$	sequence of $[T1 : \mathbb{R},$	TypeError,
	sequence of \mathbb{R}	$T2:\mathbb{R}]$	NameError,
			Missing-
			ValueError,
			EmptyArray-
			Error, Val-
			ueError

12.4 Semantics

12.4.1 State Variables

- in_t : \mathbb{R} # Calculate and store inner temperature of the box.
- q11: \mathbb{R} # Heat flow convection of the lid toward the inner box.
- q12: \mathbb{R} # Heat flow radiation of the lid of the recipient toward the fluid.
- q13: \mathbb{R} # Heat flow convection of recipient to the inner box.
- q14: \mathbb{R} # Heat flow reflection of incident radiation on the reflector.
- q15: \mathbb{R} # Heat flow radiation of recipient toward glass2.
- q16: \mathbb{R} # Heat flow radiation of recipient toward the fluid.

- q17: \mathbb{R} # Heat flow convection of recipient toward the fluid.
- dr: \mathbb{R} # Temperature of reflector.
- df: \mathbb{R} # Temperature of fluid.

12.4.2 Environment Variables

None

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

calculation(initial_condition, params):

- transition: Temperature is calculated as follows:
 - Calculate and set the value of *in_t* which is an inner temperature of the box calculate by performing mean of glass, lid of recipient and reflector temperature.

$$in_{t} = \frac{T_{\text{glass}} + T_{\text{lid}} + T_{\text{ref}}}{3}$$

- Calculate and store the values of qs using the input params.

$$q11 = A_t h_{t-int3}(T_t - T_f)$$

$$q12 = A_t \sigma \epsilon_t (T_t^4 - T_f^4)$$

$$q13 = A_{ref} h_{ref-int2}(T_{int2} - T_{ref})$$

$$q14 = \sum_{i=1}^n \rho A_{ref,n} G \tau_g^2 cos(90 - \theta_{ref,n})$$

$$q15 = A_{ref} \sigma \epsilon_{ref} (T_{ref}^4 - T_{g2}^4)$$

$$q16 = A_{ref} \sigma \epsilon_{ref} (T_{ref}^4 - T_f^4)$$

$$q17 = A_m h_{ref-f} (T_{ref} - T_f)$$

- Find the value of dr and df using qs and constant values.

$$dr = \frac{q13 + 4q14 - q15 - q16 - q17}{m_r c_r}$$
$$df = \frac{q11 + q12 + q16 + q17}{m_f c_f}$$

- Return calculated dr and df as a sequence.
- output: Temperature ODE Module give an output of 2D sequence which stores temperature of reflector and fluid.

out := s # temperature of reflector and fluid respectively

\bullet exception: exc:=

Expression	Exception	Description
$(\forall i \in [0 s -1])(\text{initial_condition}[i] \notin \mathbb{R})$	TypeError	Valid initial input for the temperature se- quence are real num- bers.
If any of the input is missing	MissingValueError	Module requires 3 input values: fileName, temperatureSeq, and energySeq
If tries to use variable that is not declared.	NameError	Variables those are declared in the module can accessible.

12.4.5 Local Functions

verify Temp : \mathbb{R}

verifyTemp(temp): A function to verify the temperature sequence.

• output: None

• exception:

Expression	Exception	Description	
$(dr < 0 \lor df < 0)$	ValueError	Valid temperature value should not negative	
$(dr = \emptyset \lor df = \emptyset)$	EmptyArrayError	Temperature sequence should no null	

13 MIS of ODE Solver Module

13.1 Module

solver

13.2 Uses

- Temperature ODE Module
- Sequence Data Structure Module

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
solveOde	String, sequence of \mathbb{R} , vector,	sequence of $[T1:\mathbb{R},T2:$	ValueError,
	sequence of \mathbb{R}	$\mathbb{R}]$	TypeError,
			OverflowError,
			RuntimeError

13.4 Semantics

13.4.1 State Variables

None

13.4.2 Environment Variables

None

13.4.3 Assumptions

All input parameters to the solveOde() are correct and verified by the Control Module.

13.4.4 Access Routine Semantics

 $solveOde(funcName, init_cond, t, args)$:

• transition: ODE is calculated as follows:

- Takes specified inputs as a parameter.
- With specified function name (first argument) in solveOde, initial conditions, time interval and extra parameters the solution is to be computed.
- Output is store in the local variable.
- output: ODE Solver Module give an output of 2D sequence from Temperature ODE Module using programming library.

- out := sequence s

• exception: exc:=

Expression	Exception	Description
$(\forall i \in [0 s -1])(\text{initial_condition}[i] \notin \mathbb{R} \lor \text{initial_condition}[i] \notin \mathbb{N} \lor \text{initial_condition}[i] \notin \mathbb{Z})$	ValueError	Valid initial input for the temperature se- quence are real or nat- ural numbers.
solveOde(init_cond, funcName, t, args)	TypeError	Module requires 4 input values in order of funcName, init_cond, t and args.
If solution of solveOde results larger value of temperature than range of double.	OverflowError	Limit of the temperature should be correct.
If the specified function has some prob- lems	RuntimeError	Function should work properly in order to solve the integration of ODE.

13.4.5 Local Functions

14 MIS of Plotting Result Module

14.1 Module

plot

14.2 Uses

• Hardware Hiding Module

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot	vector, sequence of $\mathbb R$	graph	-

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

Windows screen: As this module display a graph on screen, it uses screen for it.

14.4.3 Assumptions

None

14.4.4 Access Routine Semantics

plot(t, s):

• transition: None

• output: Plotting Result Module display the graph using the received input parameters. output := graph

• exception: exc:= None

14.4.5 Local Functions

None

14.5 Considerations

This module usually handle by the programming language. For SCEC system, we are using matplotlib to plot the result. So, exceptions are handled by the language itself.

15 MIS of Sequence Data Structure Module

15.1 Module

sequential

15.2 Considerations

The Sequence Data Structure Module is handled by the programming language. For the purpose of sequences, SCEC is using NumPy.

16 Appendix

Table 2: Possible errors for input

Var	Physical Constraints	Error Message
$A_{\rm ref}$	$0 < A_{\text{ref}} \le 1$	In valid Area Of Reference Input Error
A_m	$0 < A_m \le 1$	Invalid Area Of Mass Input Error
A_t	$0 < A_t \le 1$	Invalid Area Of Lid Input Error
$T_{ m f}$	$20 < T_{\rm f} < 100$	In valid Temperature Of Fluid Input Error
$T_{\rm ref}$	$20 < T_{\rm ref} < 100$	In valid Temperature Of Reference Input Error
$T_{\rm g2}$	$20 < T_{\rm g2} < 100$	In valid Temperature Of Glass Input Error
$T_{ m t}$	$20 < T_{\rm t} < 100$	In valid Temperature Of Lid Input Error
$\epsilon_{ m ref}$	$0 < \epsilon_{\rm ref} < 1$	In valid Emittance Of Reference Input Error
$\epsilon_{ m t}$	$0 < \epsilon_{\rm t} < 1$	In valid Emittance Of Lid Input Error

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.