Análisis de Series Temporales de Exportaciones de Café

Jhon Alejandro Ramírez Daza, Javier Felipe Rodriguez Ardila, Juan Felipe Moreno Rodriguez, Brad Dereck Rozo Rubio

08 de marzo- 2025

Descripción de los datos

- Colombia es uno de los mayores exportadores de café.
- Se analizan dos series temporales: volumen anual de exportaciones y valor mensual de exportaciones.
- Datos obtenidos de la Federación Nacional de Cafeteros (1958-2024).

Figure: Volumen y valor de exportaciones

Análisis de estacionariedad

- Se observa una tendencia estocástica y datos atípicos en el volumen.
- Prueba Dickey-Fuller:
 - Volumen: p-valor = 0.52 (no estacionaria).
 - Valor: p-valor = 0.08425 (no estacionaria a 5% de significancia).
- Se aplican transformaciones logarítmicas y diferenciación.

Figure: Series transformadas

Análisis de estacionariedad

Figure: ACF y PACF series transformadas

Modelo ARIMA para el Volumen

- Aplicación de transformaciones necesarias.
 - Logaritmo (BoxCox con un λ pequeño).
 - Primera diferencia regular.
- Se logra una reducción en la variabilidad la serie y un comportamiento estacionario.

Diferencia regular del log de la serie (d=1)

Pruebas de estacionariedad

- Pruebas de estacionariedad.
 - La prueba de Dickey-Fuller Aumentada ahora tiene un p-valor de 0.01, lo que sugiere que la serie diferenciada es estacionaria.
 - La prueba KPSS mantiene un p-valor mayor a 0.1, lo que sugiere que la diferenciación eliminó el componente no estacionario.
- También se observan sus autocorrelogramas:

PACF - Log Serie Diferenciada

Ajuste

- En al evaluación de los modelos aplicables se obtiene un buen ajuste de una camina aleatoria.
- ARIMA(0,1,0)
- La expresión general del modelo es:

$$Y_t = Y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \text{i.i.d. } N(0, \sigma^2)$$
 (1)

- El ajuste del modelo arrojó los siguientes valores:
 - Log-verosimilitud: 35.59
 - AIC: -69.19
 - AICc: -69.12
 - BIC: -67.04

Análisis de residuos

ACF of Residuals

p values for Ljung-Box statistic

Análisis de residuos

Figure: Histograma y Q-Q plot de los residuales para el modelo ARIMA.

Análisis de residuos

- La prueba de Ljung-Box para los residuos del modelo ajustado arroja un p-valores mayores al umbral.
- El histograma de los residuos se asemeja a una distribución normal, aunque la prueba de Shapiro-Wilk da un p-valor de 0.009815.
- El gráfico de la Figura 6 y el Q-Q plot de la Figura 7 parecen indicar que hay presencia de datos atípicos.

CUSUM y CUSUMQ

Figure: Cartas CUSUM y CUSUMQ de los residuales para el modelo ARIMA.

Datos Atípicos

Туре	Ind	Coefhat	T-stat
AO	20	-0.3475413	-4.587005
LS	21	0.5286932	4.934141

Table: Resultados de detección de valores atípicos

$$Y_t = Y_{t-1} + w_0 I_t^{(20)} + w_1 S_t^{(21)} + \varepsilon_t, \quad \varepsilon_t \sim \text{i.i.d. } N(0, \sigma^2)$$

Datos Atípicos: Medidas de Ajuste

	AO20	LS21
Coefficients	-0.1664	0.3623
s.e. (Error estándar)	0.1185	0.1676

Table: Estimaciones de coeficientes y errores estándar para los valores atípicos

Log-verosimilitud: 44.99

AIC: -83.97

• AICc: -83.56

BIC: -77.54

Datos Atípicos: Análisis de Residuales

ACF of Residuals

p values for Ljung-Box statistic

Datos Atípicos: Análisis de Residuales

Figure: Histograma y Q-Q plot de los residuales para el modelo ARIMA con intervenciones.

• Shapiro-Wilk: valor-p= 0.1009

Datos Atípicos: Análisis de Residuales

Figure: Cartas CUSUM y CUSUMQ de los residuales para el modelo ARIMA con intervenciones.

Medidas de Calidad de Predicción

Modelo	ME	RMSE	MAE	MPE
Sin Intervenciones	340.4915	1116.11	892.5975	2.416913
Con Intervenciones	339.1264	1115.983	891.2324	2.404946

Table: Métricas de capacidad predictiva entre el modelo sin intervenciones y con intervenciones

Predicción del modelo ARIMA con intervenciones

Figure: Pronósticos e intervalos de confianza para los próximos 5 años.

Análisis de Descomposición Valor del café

- Se comapran:
 - Sin transformación.
 - Transformación de BoxCox.
 - Logaritmo.

Figure: Comparación entre las transformaciones de la serie.

Valoración de los residuales

Figure: Residuos de los modelos aditivo y multiplicativo en la serie original, con o co

Descomposición multiplicativa.

Figure: Descomposición multiplicativa de la serie transformada.

Valoraciones

Test de Dickey–Fuller a cada uno de los componentes obtenidos:

Tendencia: $p ext{-valor} = 0.2811,$ **Estacionalidad:** $p ext{-valor} = 0.01,$ **Residuos:** $p ext{-valor} = 0.01.$

- Pruebas adicionales para evaluar la distribución e independencia de los residuos:
 - **Shapiro–Wilk:** Se obtuvo W=0.94245 con p-valor $< 2.2 \times 10^{-16}$, lo que evidencia una fuerte desviación de la normalidad.
 - **Box–Ljung:** Con $X^2 = 1.232$ (df = 1) y *p*-valor = 0.267 no se evidencia autocorrelación significativa.

Modelos SARIMA

• Modelo SARIMA(2,0,3)x(0,0,2)[12] para la serie de retornos: Sea $R_t := \nabla \log(X_t)$; la serie de retornos.

$$R_{t} = \phi_{1}R_{t-1} + \phi_{2}R_{t-2} + Z_{t} + \theta_{1}Z_{t-1} + \theta_{2}Z_{t-2} + \theta_{3}Z_{t-3} + \Theta_{1}Z_{t-12} + \Theta_{2}Z_{t-24}$$

con $\{Z_t\} \sim WN(0, \sigma^2)$.

• Validación con prueba de Ljung-Box.

Time ACF of Residuals

p values for Ljung-Box statistic

Heterocedasticidad

Figure: Cusumu y cusumq sarima

Detección de heterocedasticidad

- Presencia de efectos ARCH confirmados con prueba ARCH LM.
- Residuales muestran patrones de volatilidad.

Figure: Residuales al cuadrado

Pronósticos en la Serie de Retornos

Figure: Pronósticos en serie de retornos

Figure: Pronósticos a futuro

Pronósticos

Modelos Garch

sGarch

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

con $\alpha_0 > 0$, $\alpha_j, \beta_j \ge 0$ y $\{\epsilon_t\} \sim IID(0,1)$.

GJR-GARCH

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^q \left(\alpha_j \varepsilon_{t-j}^2 + \gamma_j I_{t-j} \varepsilon_{t-j}^2 \right) + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

Modelos ARMA-GARCH

- Se prueba ARMA(2,3) con modelos GARCH y GJR-GARCH.
- Se comparan distribuciones de errores: GED, t-student, skew-student.
- Selección basada en AIC y BIC.

Modelo	AIC	BIC
SGARCH(1,2)	0.1649	0.2127
SGARCH-sstd $(1,1)$	0.0492	0.1089
GJR-GARCH-ged(1,1)	0.0563	0.1143

Table: Comparación de modelos GARCH

Validación Arma-Garch

El modelo escogido entonces es 4: ARMA-sGarch-sstd(2,3)(1,1):

Figure: ACF RES

Figure: ACF RES2

ValidacionII

Figure: QQplot sstd

Figure: Desv.std Condicional

Pronosticos

Figure: Pronosticos intra muestra

Figure: Pronosticos a futuro 6 meses

Red Neuronal para Series de Tiempo

- Uso de redes neuronales para modelar series temporales.
- Estructura de la red: capas, neuronas y funciones de activación.
- Implementación en Keras.

Modelo Alternativo para la Variable Valores

- Uso de una red neuronal convolucional combinada con LSTM.
- Extracción de patrones locales y captura de dependencias a largo plazo.
- Entrenamiento con ventanas de 24 datos previos.

Arquitectura del Modelo

Evaluación del Modelo

- Pérdida durante el entrenamiento: *loss* = 0.0030.
- Evaluación con los últimos 12 meses: RMSE = 0.1394334.

Figure: Pérdida durante el entrenamiento del modelo 📲 🔻 🔊 🤏 🔊

Validación del Modelo

Figure: Validación de los últimos 12 valores

Predicciones

- Modelo reentrenado con la muestra total.
- Predicciones para los próximos 6 periodos.

Figure: Predicciones para los próximos 6 periodos

Predicción

Figure: Predicciones completas para los próximos 6 periodos

Comparación de Modelos

- Comparación del desempeño de ARIMA-GARCH y la red neuronal.
- Análisis de errores y capacidad predictiva.
- Visualización de predicciones.

Comparación de los modelos

Modelo	RMSE	
ARMA-GARCH	0.1386556	
Red Neuronal	0.1394334	

Table: Comparación de RMSE entre modelos

Conclusiones y Trabajo Futuro

- Resumen de hallazgos.
- Limitaciones del enfoque.
- Posibles mejoras y futuras investigaciones.