Consequences of Probability Axioms

Review

Definitions

Basic definitions

Elementary outcomes

Sample space

Event

Probability

Set theory

$$\Omega = \{1, \dots, 10\}, \quad A = \{1, 2, 3\} \quad B = \{2, 4, 5\}$$

$$A \cup B \quad A \cap B \quad A \setminus B$$

$$\emptyset \quad disjoint$$

Review

Definitions

Let A, B be **disjoint** events. By Kolmogorov's 3rd axiom:

Basic operations

$$P(A \ or \ B) = P(A \cup B) = P(A) + P(B)$$

Review

Definitions

Let A be the event "double ones".

Basic operations

$$P(not A) = P(A^c) = P(\Omega \backslash A) = P(\Omega) - P(A) = 1 - P(A)$$

Review

Definitions

Let E be the event "at least one die rolls one".

Note this can be broken as two events:

Basic operations

A: "white die is one" and B: "black die is one"

$$P(E) = P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

These are all consequences of the three axioms!

Conditional probability

Formula What is it?

It allows you to **introduce information** into your calculations.

How does it do it?

By reducing the sample space, then renormalizing the probabilities.

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

Conditional probability

Formula

Let A be the event that the sum of two dice rolls is 8 or greater.

What is P(A)?

Example 1

Conditional probability

Formula

Now suppose you receive information that one of the die rolled a four.

Example 1

Conditional probability

We can safely discard all other possibilities.

Formula

Example 1

What happened to the sample space?

Conditional probability

We can safely discard all other possibilities.

Formula

Example 1

What happened to the sample space?

Conditional probability

Now these are the only elementary outcomes that matter.

Formula

Example 1

What set is this?

How many favorable elementary outcomes are there?

Out of how many possible outcomes?

Conditional probability

Formula

We started by looking at A:

Example 1 But then we learned only a subset B could have happened:

The relevant outcomes became those in $P(A \cap B)$

Since there are 5 elements in $A \cap B$ and 12 in B

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{5}{12}$$

Conditional probability

Formula Non-naive probability example

Example 1

Example 2

		Intelligence		
		low	high	
	A	0.07		0.25
Grade	В	0.28	0.09	0.37
	C	0.35	0.03	0.38
		0.7	0.3	1

Think about the probabilities of:

 $P(High \cup A)$

P(High), P(C)

P(High|C), P(C|High)

More examples later []

Conditional probability

Formula "Conditioning is the soul of statistics"*

Conditional probability shows up all the time in the wild.

Example 1

Unconditional probabilities are boring:

Example 2 *P(College), P(Return on Investment), P(Click on Ad)*

Takeaway

Much more informative:

P(College | Rich, Female, Hispanic)

P(RoI | Technology, Startup, Cambridge)

P(Click on Ad | Browse history, Ad Placement)

^{*} Joe Blitzstein (link)