OBSTOJ SCHUROVE FORME

Trditev 0.1 (Schurova forma). Naj bo $A \in \mathbb{R}^{n \times n}$ matrika. Potem obstajata:

(1) Unitarna matrika $Q \in \mathbb{C}^{n \times n}$ $(QQ^* = I_n)$, da je Q^*AQ

zgornje trikotna matrika.

(2) Ortogonalna matrika $U \in \mathbb{R}^{n \times n}$ ($UU^T = I_n$), da je $U^T A U$

bločno zgornje trikotna matrika z diagonalnimi bloki velikosti 2×2 oz. 1×1 . Lastne vrednosti 2×2 blokov ustrezajo konjugiranim parom kompleksnih lastnih vrednosti matrike A, lastne vrednosti 1×1 blokov pa ustrezajo realnim lastnim vrednostim.

Dokaz. Dokažimo najprej obstoj unitarne matrike Q. Dokazujemo z indukcijo na n. Za n=1 vzamemo kar Q=1 in trditev je očitna. Predpostavimo veljavnost predpostavke za n-1 in dokazujemo veljavnost za n. Naj bo $\lambda \in \mathbb{C}$ lastna vrednost matrike A, q pa pripadajoč enotski lastni vektor. Poiščimo $Q' \in \mathbb{R}^{n \times (n-1)}$ tako, da je matrika $[q,Q']=Q_1$ unitarna. Potem je

$$Q_1^*AQ_1 = \begin{pmatrix} q^*Aq & q^*AQ' \\ (Q')^*Aq & (Q')^*AQ' \end{pmatrix}.$$

Ker je

 $(Q')^*Aq = \lambda(Q')^*q = 0$ (saj je Q_1 unitarna),

velja

$$Q_1^*AQ_1 = \begin{pmatrix} q^*Aq & q^*AQ' \\ 0 & (Q')^*AQ' \end{pmatrix}.$$

Po indukcijski predpostavki obstaja unitrana matrika $Q_2 \in \mathbb{C}^{(n-1) \times (n-1)}$, da je

$$Q_2^*((Q')^*AQ')Q_2$$

zgornje trikotna. Zato je

$$\begin{pmatrix} 1 & 0 \\ 0 & Q_2^* \end{pmatrix} Q_1^* \cdot A \cdot \underbrace{Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix}}_{Q}$$

zgornje trikotna matrika.

Dokaz obstoja ortogonalne matrike U je podoben. Če obstaja realna lastna vrednost, potem uporabimo zgornji dokaz, le da uporabimo ustrezno indukcijsko predpostavko. Sicer pa obstaja konjugirani par lastnih vrednosti $\lambda, \overline{\lambda}$ s pripadajočima lastnima vektorjema u in \overline{u} (saj iz $Au = \lambda u$ s konjugiranjem sledi $A\overline{u} = \overline{\lambda}\overline{u}$). Namesto vektorjev u in \overline{u} vzamemo $u_1 = \frac{u+\overline{u}}{2}$ in $u_2 = \frac{u-\overline{u}}{2i}$. Izračunamo QR razcep matrike $[u_1,u_2] = Q_1R_1$, kjer je $Q_1 = [q_1,q_2]$. Dopolnimo Q_1 do ortogonalne matrike $Q_2 = [Q_1,\widetilde{Q}_1]$. Potem velja

$$Q_2^T A Q_2 = \begin{pmatrix} Q_1^T A Q_1 & Q_1^T A \widetilde{Q}_1 \\ \widetilde{Q}_1^T A Q_1 & \widetilde{Q}_1^T A \widetilde{Q}_1 \end{pmatrix}.$$

Ker je $AQ_1\subseteq \operatorname{Lin}\{q_1,q_2\}$, je $\widetilde{Q}_1^TAQ_1=0$ (saj je Q_2 ortogonalna). Po indukcijski predpostavki uporabljeni za $\widetilde{Q}_1^TA\widetilde{Q}_1$ dokončamo dokaz. \Box