IPWAVE Basic Protocols Project @ IETF-104 Hackathon

Champion: Jaehoon Paul Jeong pauljeong@skku.edu
Sungkyunkwan University

Goal of IPWAVE Basic Protocols Project

- **❖ Implementation of IPv6 Over IEEE 802.11- OCB and IPv6 Vehicular Neighbor Discovery**
 - 1. Router and Prefix Discovery along with IPv6 Address Autoconfiguration
 - 2. Address Registration and Duplicate Address Detection Procedure
 - 3. Multihop DAD Procedure via V2V Communications

IPWAVE Hackathon Project Poster

IP Wireless Access in Vehicular Environments (IPWAVE) Basic Protocols Project

Champion: Jaehoon Paul Jeong (SKKU)

Professors

- Jaehoon Paul Jeong (SKKU)
- Younghan Kim (SSU)

Students

- Zhong Xiang (SKKU)
- Yiwen Chris Shen (SKKU)
- Kyoungjae Sun (SSU)

Subnet 1 (Multi-link Subnet

WAVE Stack

Shared prefix: aaaa:1:64::/64

Node Structure in OMNeT++

Objective of this Hackathon

- Demonstrate IPWAVE basic protocols
- Discover technology gaps

Where to get code

- Github Source Code
 - √ https://github.com/ipwave-hackathon-ietf

Where to get video clip

- Youtube Demonstration
 - √ https://youtu.be/sKYfa0MC6Jg

What to pull down to set up an environment

- OS: Ubuntu 16.04
- OMNeT++: 5.4.1
- SUMO: 0.32.0
- Veins: 4.7.1
- INET Framework: 4.0.0

Contents of Implementation

- Transmission of IPv6 Packets over IEEE 802.11-OCB
- IPv6 Neighbor Discovery for IP-Based Vehicular Networks
 - ✓ Router and Prefix Discovery along with IPv6 Address Autoconfiguration
 - ✓ Address Registration and Duplicate Address Detection Process
 - ✓ Multihop DAD Process via V2V communications
- Build IPv6/TCP/UDP protocol stack based on VEINS-4.7.1 and INET-4.0
- Build a basic IPWAVE running scenario via V2I and V2V based on VEINS-4.7.1 and SUMO-0.32.0

Road Network Architecture (1/2)

✓ A 7*6 grid map with 3 lanes for a road network

Road Network Architecture (2/2)

- ✓ Two RSUs:
 - Belong to one subnet.
 - Connect with each other through Ethernet.
- ✓ Two Vehicles :
 - One is outside the coverage of RSUs.
- ✓ Mobility Anchor:
 - Manage RSUs and Vehicles.

Vehicular Network Architecture

Lessons from IETF-104 Hackathon Project

- Proof of Concept (POC) of IPWAVE-VND Protocol
 - IPWAVE- <u>Vehicular Neighbor Discovery (VND)</u>
- ➤ Design and Implementation of IPWAVE-VND in OMNeT++ and SUMO
 - Design of IPWAVE-VND Framework in OMNeT++
 - <u>Implementation of IPv6</u> over IEEE 802.11-OCB
- ➤ Proposal of Flexible Mobility Management for IPWAVE-VND
 - Simplify handover procedure between adjacent RSUs
 - Alleviate flow pressure at Mobility Anchor

Appendix

- -Hackathon Development Environment
- -Open-Source Depository of IPWAVE Basic Protocols Project
- -Demonstration Video Clip of IPWAVE Basic Protocols Project

Hackathon Development Environment

OS	Ubuntu Linux 16.04
OMNeT++	Version 5.4.1
SUMO	Version 0.32.0
Veins	Version 4.7.1
INET Framework	Version 4.0.0

Open-Source Depository of IPWAVE Basic Protocols Project

Github link:

https://github.com/ipwave-hackathon-ietf

Demonstration Video Clip of IPWAVE Basic Protocols Project

Youtube link:

https://youtu.be/sKYfa0MC6Jg

