Thesis Stage - II

Hugoniot Characterzation of alloys using molecular dynamics simulation

Ayush Tripathi

(ME22MTECH02001)

Thesis Supervisors: Dr. Prakhar Gupta

Dr. Syed Nizamuddin Khaderi

SUCSHM Lab || Impact mechanics Lab

Department of Mechanical and Aerospace Engineering

4□ > 4回 > 4 豆 > 4 豆 > 豆 め Q (~)

1 / 60

Presentation Outline

- Recap
- Simulation Results
- 3 Interatomic Potential I: (V)
- 4 Interatomic Potential II: (P)
- 5 Tungsten Heavy Alloy 90W-7Ni-3Fe
- Results and Conclusion
- Future work

Recap

Hugoniot curve

Charactrestics described by Hugoniot relation

- Equation of state
- Phase transition
- Material strength (Shock compressibility)

under extreme conditions

Passing of a shock wave

Hugoniot curve

Conservation equations

$$\rho(u_s - u_p) = \rho_0 u_s
P - P_0 = \rho_0 u_s u_p
E - E_0 = \frac{1}{2} (P + P_0)(V_0 - V)$$

Under wide range of pressure , the relation between u_s and u_p is linear

$$u_s = C_0 + \lambda u_p$$

Hugoniot curve

$$P_H(V) = \frac{\rho_0 C_0^2 (1 - V/V_0)}{[1 - \lambda (1 - V/V_o)]^2}$$

Objective

• Relation between Us and Up for SC-Al and WHA

• Obtain Hugoniot Curve for SC-Al and WHA

MD Framework for material characterization and validation

Simulation Results

The science behind MD simulations

- Each of N particle is a point mass
- Particles interact via empirical force laws
 - all physics in energy potential
 - many-body forces (EAM)
- Numerical integration Newton's equations of motion
 - \bullet F=ma
 - set of 3N coupled ODEs
- Properties obtained via time averaging
- Seed velocity; Zero Force

Simulation setup

- Single crystal fcc micro structure
- Simulation box of dimension 10a x 10a x 200a
- Lattice parameter(a) = 4.05 Å
- Equilibriated at 300K and 0 bar
- Time step 1 femto second
- Computation time 8 pico second

Stress - Strain plot for Aluminium

$$\mathsf{E}_{vel} = 44.2 \; GPa$$

 $\mathsf{E}_{pres} = 69.1013 \; GPa$

Interatomic Potential I: (V)

 $U_s = 6.5 \ km/s$

 $P_{max} = 8.0283 \ GPa$ イロト (部) (注) (注)

 $U_s = 7 \ km/s$

 $P_{max} = 19.4391 \ GPa$

イロト (部) (注) (注)

 $U_s = 7.4985 \ km/s$

$$\mathsf{P}_{max} = 32.8207 \; GPa$$

Ayush Tripathi MD simulations 14 / 60

 $U_s = 7.9225 \ km/s$

 $P_{max} = 49.2174 \ GPa$

MD simulations

《四》《圖》《意》《意》

15 / 60

 $U_s = 8.756 \ km/s$

 $\mathsf{P}_{max} = 67.889 \; GPa$

Ayush Tripathi MD simulations 16 / 60

 $U_{s} = 9.5 \ km/s$

$$P_{max} = 89.1084 \ GPa$$

《四》《圖》《意》《意》

 $U_s = 10.14 \ km/s$

 $P_{max} = 112.808 \ GPa$

18 / 60

 $U_s = 10.86 \ km/s$

 $P_{max} = 139.799 \ GPa$ 《四》《圖》《意》《意》

Ayush Tripathi MD simulations 19 / 60

 $U_s = 11.5 \ km/s$

$$\mathsf{P}_{max} = 172.966 \; GPa$$

Ayush Tripathi MD simulations 20 / 60

 $U_s = 12.14 \ km/s$

$$P_{max} = 206.124 \ GPa$$

イロト (部) (注) (注)

 $U_s = 12.785 \ km/s$

$$\mathsf{P}_{max} = 242.863 \; GPa$$

Ayush Tripathi MD simulations 22 / 60

Interatomic Potential II: (P)

 $U_s = 6.5 \ km/s$

$$\mathsf{P}_{max} = 7.4134 \; GPa$$

MD simulations

24 / 60

 $U_s = 7.286 \ km/s$

 $P_{max} = 18.954 \ GPa$ イロト (部) (注) (注)

 $U_s = 7.499 \ km/s$

 $\mathsf{P}_{max} = 31.3654 \; GPa$

イロト (部) (注) (注)

Ayush Tripathi MD simulations 26 / 60

 $U_s = 8.0 \ km/s$

$$\mathsf{P}_{max} = 45.1983 \; GPa$$

イロト (部) (注) (注)

27 / 60 Ayush Tripathi MD simulations

 $U_s = 8.2107 \ km/s$

$$\mathsf{P}_{max} = 61.6051 \; GPa$$

《四》《圖》《意》《意》

Ayush Tripathi MD simulations 28 / 60

 $U_s = 8.998 \ km/s$

$$\mathsf{P}_{max} = 79.9458 \; GPa$$

《四》《圖》《意》《意》

Ayush Tripathi MD simulations 29 / 60

 $U_{s} = 9.5 \ km/s$

$$\mathsf{P}_{max} = 100.843 \; GPa$$

30 / 60 Ayush Tripathi MD simulations

 $U_s = 9.767 \ km/s$

 $\mathsf{P}_{max} = 124.717 \; GPa$

イロト (部) (注) (注)

Ayush Tripathi MD simulations 31 / 60

Ayush Tripathi MD simulations 32 / 60

-1 ps

2 ps

3 ps

-4 ps

5 ps

6 ps

-7 ps

-8 ps

1000

 $U_s = 10.3 \ km/s$

$$\mathsf{P}_{max} = 175.388 \; GPa$$

Ayush Tripathi MD simulations 33 / 60

$$U_s = 12.785 \ km/s$$

$$\mathsf{P}_{max} = 202.9 \; GPa$$

Us – Up curve

R-square = 0.9777

R-square = 0.9964

Us - Up Curve

Pressure Profile

Pressure Variation

Hugoniot curve

Tungsten Heavy Alloy 90W-7Ni-3Fe

Why Tungsten heavy alloys

distinctive combination of yield strength, elongation and density

better ductility under compression and tension

WHA foams supposed to have better strength to weight ratio

Simulation setup

- Single crystal bcc micro structure
- Simulation box of dimension 30a x 30a x 400a
- Lattice parameter(a) = 3.165 Å
- Equilibriated at 300K and 0 bar
- Time step 1 femto second
- Computation time 5 pico second

Ayush Tripathi MD simulations 42 / 60

Stress - Strain curve for WHA

$$E_{Sim} = 321.85 \ GPa$$

 $E_{exp} = 310 \ GPa$
% $Error = 3.8$

 $U_s = 5.49 \ km/s$

 $P_{max} = 20.9938 \ GPa$ イロト (部) (注) (注)

 $U_s = 6.133 \ km/s$

 $P_{max} = 50.9423 \ GPa$ イロト (部) (注) (注)

MD simulations 45 / 60 Ayush Tripathi

 $U_s = 6.649 \ km/s$

$$\mathsf{P}_{max} = 88.2872 \; GPa$$

Ayush Tripathi MD simulations 46 / 60

 $U_s = 7.2 \ km/s$

$$\mathsf{P}_{max} = 137.99 \; GPa$$

 $U_s = 7.7 \ km/s$

$$\mathsf{P}_{max} = 196.846 \; GPa$$

 $U_s = 9.14 \ km/s$

$$\mathsf{P}_{max} = 346.854 \; GPa$$

max — 545.554 G1 G

イロト (部) (注) (注)

 $U_s = 11.245 \ km/s$

$$\mathsf{P}_{max} = 640.668 \; GPa$$

《□▷《圕▷《豊▷《토▷ 전 ♡익() MD simulations 52 / 60

 $U_s = 11.78 \ km/s$

$$\mathsf{P}_{max} = 755.21 \; GPa$$

Ayush Tripathi MD simulations 53 / 60

Us-Up Curve

Pressure Variation

Results and Conclusion

Results and discussion

- LAMMPS code for shock loading has been developed
- Linear relationship for Us Up has been reproduced
 - found to be in close agreement with theoretical and experimental results
- Hugoniot curve has been reproduced
 - found to be in close agreement with LASL experimental results
- Alloys with custom composition have been successfully modeled
 - further validation required

Future work

Future Work:

- Plastic Deformation
- Metal Foams, such as:
 - * Aluminium
 - * Tungsten heavy alloy
- Shock propagation time
- Experimental validation.

"Thank you!"

me22mtech02001@iith.ac.in