1. Repaso:

Tablas de verdad

Negación

p	$\neg p$
(F)	V
V	F

	And	d
p	$p \wedge q$	
F	F	F
F	V	F
V	F	F
V	V	V

Or								
p q q p q								
F	F	F						
F	V	V						
V	F	V						
V	V	V						

Or

pexclusiv⊕ q							
F	F	F					
F	V	V					
V	F	V					
V	V	F					

	_								
- 1	•	\mathbf{a}	n	$\boldsymbol{\alpha}$	11		io	n	
- 4	•	u		u	ш	6	ıv	•	а

p	q	$p \rightarrow q$
F	F	V
F	V	V
V	F	F
V	V	V

Equivalencia

p	q	$p \leftrightarrow q$
F	F	V
F	V	F
V	F	F
V	V	V

Operadores en lenguage natural

- p y q
- p, pero q
- p aún q
- p también q
- p todavía q
- p, aunque q
- p sin embargo q
- p además q
- p no obstante q

- poq (Caso or inclusivo)
- p, a menos que q (Caso or exclusivo)

- (Si p entonces q)
- Si p, q
- **q** si p
- p sólo si q
- Para p, es necesario q
- Es suficiente p para q
- q en caso de que p
- q siempre que p
- Como p, q
- q cuando p
- p implica que q
- Cuando p, q

- p si, y solo si, q
- p es suficiente y necesario para q
- p es equivalente a q
- p y q son equivalentes
- Si p entonces q, y viceversa

Ljemplo:

Puedes acceder a internet desde el campus solo si estudias ciencias de la

computación o no eres estudiante de primer año ソフ

6. 7Q x (PUR) = V

m = (a*b)/(c*s)

c. P v Q v R

3. Tablas de versad

Evalue todos los valores de verdad de la expression 791Q -> R Variables: P,Q,R

Posibles combinaciones:

	_
p	$\neg p$
F	V
V	F

p	q	$p \wedge q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	F	V	V
F	V	F	V	V	V	F
V	F	F	V	V	F	F
V	V	V	V	F	V	V

Hay varias tormas de representar Falso y Verdader

Falso: F, F, False, O Verdaders: V , T _ True , A

Trabajando con tablas de verdad

Para construir una tabla de verdad se siguen los siguientes pasos:

🚺. Identificar las variables proposicionales. 🗸

2. Determinar el número de filas necesarias (para n variables 2^n contumanas).

3. Construir las columnas de las variables (Falso = 0; Verdadero = 1).

Agregar columnas auxiliares si es necesario.

Tip de legibilidad: Cuando la cantidad de columnas es muy grande es útil representar una expresión lógica (con letras minúsculas) con una letra mayúscula.

- 5. Evaluar la expresión lógica paso a paso.
- Revisar y validar la tabla.

Ejemplos: Evalue las signientes expressones empleando la table de la verdad

Variables: P, Q

$$n=2 \implies f=2^n=2^2=4$$

р	$p \mid q \mid p \land q \mid p \lor q \mid p \oplus q \mid p \rightarrow q \mid p \leftrightarrow q$										
F	F	F		F	V	V					
F	V	F	V	V	V	F					
V	F	F	V	V	F	F					
V	V	V	(V)	F	V	V					

Variables: P

•	√	(A)	②
P	78	JPAP	7(7PAP)
V 0	X	O	7
Л	\mathcal{O}	0	1

					\sim				
			p	q	$\{p \land q\}$	$p \lor q$	$p' \oplus q$	$m{p} ightarrow m{q}$	$p \leftrightarrow q$
p	$\neg p$	\	F	F	F	F	F	V	V
F	V	\ -	F	V	F	V	V	V	F
V	F) -	V	F	F	V	V	F	F
		ξ	V	V	V	V	F	V	V

(anylvary) Amiras verdare (V) Ambox Falser - F Disgunción inclusión Disyuncion exclusion (1) ≠ - Verden Implicación -> Equadraca <>

3. 7PVQ +> 7Q17P

Variables: P, Q $h=2 - f=2^2=4$

P Q 7P 7Q 7P 7Q 7Q 77 7P 7P 7Q 63 7Q 77 7P 7Q 63 7Q 77 7P 7Q 63 7Q 77 7P 7P 7Q 63 7Q 77 7P					F	6	F 23 G
	7	Ø	TP	7	7 P V Q	70 17	1800 00 10178
	0	0	<u>,</u> 4	۲	√	1	А
	0	ا ۱۸	ً د	,	A	0	0
	4	ტ 🕯	6	Л	0	0	△
	Λ	^ *	.0	ري. ا		ĺ	

p	$\neg p$
F	V
V	F

p q	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
(F F)	F	F	F	V	V
FV	F		V	V	F
V F	F	V	V	F	F
VV	V	V	F	V	\overline{V}
	,				