Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) . Si besoin, on peut restreindre les exercices aux fonctions réelles de la variable réelle, ou à l'ensemble ordonné (\mathbb{R},\leq) dans un premier temps. Le théorème de la bijection de terminale sur les fonctions continues strictement monotones sur un intervalle peut être utilisé, même si non abordé en cours.

Chapitre 3: Applications et relations

Notion d'application

Produit cartésien $E \times F$, première et seconde composante d'un élément de $E \times F$. Une relation binaire entre E et F est une partie de $E \times F$. Notion de graphe fonctionnel : $\forall x \in E, \forall y \in F, \forall \in F, [(x,y) \in G \land (x,z) \in G] \Rightarrow x = y$. Domaine de définition d'un graphe fonctionnel. Notion de fonction, d'application. Domaine de définition d'une fonction f, notation D_f . Hormis pour les fonctions réelles de la variable réelle, dont on peut demander l'ensemble de définition (tan, ln, composées, etc), on se restreint dans la suite à des applications. Notation $f: E \to F, x \mapsto f(x)$. Image d'un élément de E, antécédents d'un élément de F par une application f. Indicatrice d'une partie de E, application identité de E. Famille d'éléments, produit cartésien d'un nombre fini d'ensembles. Notion de E-composantes.

Opérations sur les applications

Image directe d'une partie de E par une application, image d'une application, notation f(A). Image réciproque d'une partie de F, notation $f^{-1}(B)$. (*) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$, $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_1 \cap B_2)$. Restriction, corestriction. Injections, surjections, bijections. (*) Une application $f: E \to F$ est bijective si et seulement si $\forall y \in F, \exists ! x \in E, f(x) = y$. Application réciproque d'une application bijective. Ensembles en bijection. Composition d'applications, (*) composée d'applications surjectives, d'applications injectives. (*) Une application $f: E \to F$ est bijective si et seulement s'il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{Id}_F$ et $g \circ f = \mathrm{Id}_E$. Réciproque d'une composée de bijections. Soit $f: E \to F$ une application entre deux ensembles finis de même cardinal, alors f est bijective ssi injective ssi surjective.

Relation binaire sur un ensemble E

Une relation binaire entre E et E est une partie de E^2 . On note $x\mathcal{R}y$ plutôt que $(x,y) \in \mathcal{R}$ dans ce cadre. Relation binaire induite sur une partie A de E.

Relations d'équivalence

Une relation d'équivalence est une relation réflexive, symétrique, transitive. Une relation d'équivalence induit une relation d'équivalence. Relation de congruence sur \mathbb{R} , sur \mathbb{Z} . Notions de recouvrement disjoint, de partition d'un ensemble E. Classe d'équivalence d'un élément de E, notation C(x). (*) L'ensemble des classes d'équivalence d'une relation d'équivalence forme une partition de E. Notation E/\mathcal{R} . (*) Pour $(A_i)_{i\in I}$ une partition de E, on définit la relation \mathcal{R} via $x\mathcal{R}y \iff \exists i \in I, x \in A_i \land y \in A_i$. Cela définit une relation d'équivalence et $E/\mathcal{R} = (A_i)_{i\in I}$. Classes d'équivalences des relations de congruences. Exemple $x\mathcal{R}y \iff f(x) = f(y)$, classes d'équivalence de cette relation.

Relations d'ordre

Une relation d'ordre est une relation réflexive, antisymétrique, transitive. Relation d'ordre totale. Ensembles ordonnés (\mathbb{R}, \leq) , $(\mathbb{N}^*, |)$, $(\mathcal{P}(E), \subset)$. Relation d'ordre strict, d'ordre opposé. Parties majorées, minorées, bornées. Maximum, minimum, unicité lors d'existence. Borne supérieure, borne inférieure. Application (strictement) (dé)croissante, (strictement) monotone. Si $f: E \to F$ une application monotone et injective, alors f est strictement monotone. (\star) Si $f: E \to F$ une application strictement monotone avec E totalement ordonné, alors f est injective. Si $f: E \to F$ bijective monotone avec E totalement ordonné, alors sa réciproque est monotone de même monotonie. (\star) Composition d'applications (strictement) monotones.

* * * * *