1c company - predict future sales (Kaggle)

This is the solution for the '1C company, predict future sales' competition, which serves as Final project for "How to win a data science competition" Coursera course.

I ranked 6th on the public leaderboard out of 388 participants.

https://www.kaggle.com/c/competitive-data-science-final-project/leaderboard

Project Description:

We were provided time-series dataset consisting of daily sales data of 1C Company, and were asked to predict total sales for every product and store in the next month.

Highlights:

- The best single model is an entity embedding neural network from studying the winning solution of Rossman Sales prediction competition (https://github.com/entron/entity-embedding-rossmann)
- Stacking using simple Linear Regression over 4 base models (xgboost, randomforest, linear regression, embedding neural networks) shows significant improvement over one single model.

EDA

- Target is heavily skewed, most of the values are zero. 0,20 range contain 99.9% of the data range. Therefore, clipping the target to (0,20)
- Category_target and shop_target shows strong decreasing trend and yearly seasonal pattern, therefore, should incorporate lag 12 features. Autocorrelation plot shows the previous 6 months often have positive correlation, therefore include lag 1 to 6 features.

Feature preprocessing and generation

- Remove outlier from sales train data
- Calculate aggregation features for each month on shop_id and item_id, shop_id only, item_id only, category_id only. For each aggregation, calculate item_cnt_day sum, item_price median, and sales sum.
- Split the date column into month and year features
- Generate lag features for month 1,2,3,4,5,6,12
- For neural networks, numerical features are standardized before fitting into the model
- For tree based features, no scaling is performed since they do not affect the model performance.
- For linear regression, only numerical features are fed into the model.

Feature extraction from text

- Use TfidfVectorizer to transform item name and category name into vectors.
- Then use TruncatedSVD to reduce its dimensions to 10

Mean encodings

- Generated mean encoding for all categorical features using expanding mean
- Features encoded: item_id,shop_id,item_category_id,month,year
- Target used for encoding: target, shop target, item target, category target

Validation

- Train test split is time based.
- Two ways to split for train and validation:
 - 1. use last two month as validation set
 - 2. Use date block num in {9,21,33} as validation set
- After comparing the validation RMSE score vs. leaderboard RMSE score, selected the second validation method.

Metrics optimization

 Regressors minimize mean squared error. Validation metric used RMSE, same as the evaluation metric of the project.

Hyperparameter tuning

used early stopping to do parameter tuning for xgb and neural networks.

Ensembles

- Stacking five model: xgb, rfr, Ir, simple nn, embedding nn
- Train meta-features are generated using scheme f) from the reading material of the course. T equal to month, M=28
- Add pairwise differences to the level2 meta features and fit using LinearRegression.

How to generate solutions

- 1. Generate the full dataframe and split it into training, validation, test Python run_all_data.py
- 2. Generate best xgboost regressor prediction, and generate feature importances Python model_xgboost.py
- Generate best simple neural network model prediction, as well as a standardized features dictionary dumped to local for stacking.
 Python model simple neural network.py

- Generate best embedding neural network model prediction, as well as a processed feature dictionary dumped to local for stacking.
 Python model_embedding_neural_network.py
- 5. Generate an ensemble using stacking for XGBRegressor, RandomForestRegressor, LinearRegression, simple NeuralNetwork and embedding Neural Network. Python run_ensemble.py