

LM833

Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.

This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.

The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

■ Wide dynamic range:

140dB

Low input noise voltage:

4.5nV/√Hz

High slew rate:High gain bandwidth:

7 V/μs (typ); 5V/μs (min) 15MHz (typ); 10MHz (min)

■ Wide power bandwidth:

120KHz 0.002%

■ Low distortion:

0.3mV

Low offset voltage:Large phase margin:

0.3mV 60°

■ Available in 8 pin

MSOP package

Schematic Diagram (1/2 LM833)

Connection Diagram

Order Number LM833M, LM833MX, LM833M, LM833MM or LM833MMX See NS Package Number M08A, N08E or MUA08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage $V_{CC}-V_{EE}$ Differential Input Voltage (Note 3) V_I ±30V Input Voltage Range (Note 3) V_{IC} ±15V Power Dissipation (Note 4) P_D 500 mW Operating Temperature Range T_{OPR} -40 ~ 85°C Storage Temperature Range T_{STG} -60 ~ 150°C

Soldering Information Dual-In-Line Package Soldering (10 seconds) 260°C Small Outline Package (SOIC and MSOP) Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering

1600V

surface mount devices.

ESD tolerance (Note 5)

DC Electrical Characteristics (Notes 1, 2)

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{os}	Input Offset Voltage	$R_S = 10\Omega$		0.3	5	mV
I _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Voltage Gain	$R_L = 2 k\Omega, V_O = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega$	±12	±13.5		V
		$R_L = 2 k\Omega$	±10	±13.4		V
V _{CM}	Input Common-Mode Range		±12	±14.0		V
CMRR	Common-Mode Rejection Ratio	V _{IN} = ±12V	80	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 15~5V, -15~-5V	80	100		dB
I _Q	Supply Current	V _O = 0V, Both Amps		5	8	mA

AC Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V, R_L = 2 \text{ k}\Omega)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 2 k\Omega$	5	7		V/µs
GBW	Gain Bandwidth Product	f = 100 kHz	10	15		MHz

Design Electrical Characteristics

 $(T_A = 25$ °C, $V_S = \pm 15$ V) The following parameters are not tested or guaranteed.

Symbol	Parameter	Conditions	Тур	Units
$\Delta V_{OS}/\Delta T$	Average Temperature Coefficient		2	μV/°C
	of Input Offset Voltage			
THD	Distortion	$R_L = 2 k\Omega$, $f = 20~20 \text{ kHz}$	0.002	%
		$V_{OUT} = 3 \text{ Vrms}, A_V = 1$		
e _n	Input Referred Noise Voltage	$R_S = 100\Omega$, $f = 1 \text{ kHz}$	4.5	nV/√Hz
i _n	Input Referred Noise Current	f = 1 kHz	0.7	pA/√Hz
PBW	Power Bandwidth	$V_{O} = 27 V_{pp}, R_{L} = 2 k\Omega, THD \le 1\%$	120	kHz
f _U	Unity Gain Frequency	Open Loop	9	MHz
фм	Phase Margin	Open Loop	60	deg
	Input Referred Cross Talk	f = 20~20 kHz	-120	dB

www.national.com

Typical Applications

 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \text{ }\mu\text{V}$ A Weighted

NAB Preamp Voltage Gain vs Frequency

Balanced to Single Ended Converter

 $V_O = V1-V2$

Adder/Subtracter

 $V_{O} = V1 + V2 - V3 - V4$

Sine Wave Oscillator

$$_{0}=\frac{1}{2\pi RC}$$

7 www.national.com

Second Order High Pass Filter (Butterworth)

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

Illustration is $f_0 = 1 \text{ kHz}$

Second Order Low Pass Filter (Butterworth)

$$C1 = \frac{\sqrt{2}}{\omega_0 R}$$

$$C2 = \frac{C1}{2}$$

Illustration is $f_0 = 1 \text{ kHz}$

$$f_0 = \frac{1}{2\pi C 1 R 1}, Q = \frac{1}{2} \left(1 + \frac{R2}{R0} + \frac{R2}{RG} \right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$
 Illustration is $f_0 = 1$ kHz, $Q = 10$, $A_{BP} = 1$

AC/DC Converter

2 Channel Panning Circuit (Pan Pot)

Line Driver

Tone Control

$$\begin{split} f_L &= \frac{1}{2\pi R2C1}, f_{LB} = \frac{1}{2\pi R1C1} \\ f_H &= \frac{1}{2\pi R5C2}, f_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

 $f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$ $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$

RIAA Preamp

 $A_V = 35 \text{ dB}$

 $E_n = 0.33 \, \mu V$

S/N = 90 dB

f = 1 kHz

A Weighted

A Weighted, $V_{IN} = 10 \text{ mV}$

@f = 1 kHz

Balanced Input Mic Amp

If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is:
$$V0 = 101(V2 - V1)$$

10 Band Graphic Equalizer

fo(Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

Note 6: At volume of change = ±12 dB

Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

www.national.com 12