(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-92632

(43)公開日 平成7年(1995)4月7日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

G03C 7/38

C 0 7 D 487/04

139

7019-4C

庁内整理番号

審査請求 未請求 請求項の数2 OL (全 17 頁)

(21)出願番号

特顧平5-240806

(71)出願人 000001270

コニカ株式会社

(22)出願日

平成5年(1993)9月28日

東京都新宿区西新宿1丁目26番2号

(72)発明者 池洲 俉

東京都日野市さくら町1番地コニカ株式会

社内

(72)発明者 金子 豊

東京都日野市さくら町1番地コニカ株式会

社内

(54)【発明の名称】 新規な写真用シアンカプラー

(57)【要約】

【目的】 第一にハロゲン化銀カラー写真感光材料の素 材として用いられる新規な写真用シアンカプラーを提供 する、そして第二に色再現性に優れ、熱・湿気および光 に起因する色相の変化を起こさない色画像を形成できる ハロゲン化銀カラー写真用シアンカプラーを提供する。

【構成】 一般式 [I] で表わされる写真用シアンカプ ラー

【化1】

一般式〔I〕

〔式中、RおよびYは水素原子または置換基を表わし、 EWGはハメットの置換基定数 σ, が0.3以上の電子吸引 性基を表わし、Xは水素原子または発色現像主薬の酸化 体との反応により離脱しうる基を表わす。〕

【特許請求の範囲】

【請求項1】 一般式〔I〕で表わされる写真用シアン カプラー

【化1】

一般式[I]

〔式中、RおよびYは水素原子または置換基を表わし、 EWGはハメットの置換基定数σ,が0.3以上の電子吸引 性基を表わし、Xは水素原子または発色現像主薬の酸化 体との反応により離脱しうる基を表わす。〕

【請求項2】 上記一般式〔1〕で表わされる化合物の EWGがアリールスルホニル基、アルキルスルフィニル 基、アリールスルフィニル基、β,β-ジシアノピニル 基、ハロゲン化アルキル基、ホルミル基、アリールカル ボニル基、アリールオキシカルボニル基、モノアルキルカルバモイル基、モノアリールカルバモイル基、モノア 20 ルキルスルファモイル基、モノアリールスルファモイル 基であることを特徴とする請求項1に記載の写真用シアンカプラー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はハロゲン化銀カラー写真 感光材料の素材として用いられる新規なシアンカプラー に関し、詳しくは色再現性、熱、湿気および光に対する 堅牢性が優れている色素画像を形成できる新規な写真用 シアンカプラーに関するものである。

[0002]

【従来の技術】一般に、カラー写真を製造する場合には、ハロゲン化銀カラー写真感光材料に露光を与えた後、これを発色現像処理すると、その露光領域において、酸化された芳香族第一級アミン発色現像主薬と色素形成カプラーとが反応して色素を生成し、色画像が形成されるが、このような写真方法においては減色法による色再現法が使用され、それによってイエロー、マゼンタおよびシアンの各色画像が形成される。

【0003】従来、上記のイエロー色画像を形成させる 40 ために用いられる写真用カプラーとしては、例えばアシルアセトアニリド系カプラーがあり、またマゼンタ色画像形成用のカプラーとしては、例えばピラゾロン、ピラゾロベンズイミダゾール、ピラゾロトリアゾールまたはインダゾロン系カプラーが知られており、さらにシアン色画像形成用のカプラーとしては、例えばフェノールまたはナフトール系カプラーが一般的に用いられており、これらのカプラーから得られる色素画像は、長時間光に曝されても、また高温、高温下に保存されても変褪色しないことが望まれている。 50

2

【0004】しかしながら、シアン色素を形成するためのカプラーとして、これまでに研究・実用化が進められてきた上記フェノール系カプラーおよびナフトール系カプラーは、形成されたシアン色素画像の分光吸収特性、耐熱性および耐湿性等の点で今一つ不十分であり、したがってこれの改良をめざして、カプラー中の置換基の選択、探求をはじめとして、従来種々の提案がなされているが、これらの特性に関するすべての要求を満足するようなカプラーは未だ発見されていない。

【0005】また、リサーチ・ディスクロージャー(Re serch Disclosure)16216にはシアンカプラーとしてイ ミダゾトリアゾール系カプラーの記載があるが、6位に 電子吸引性基を有していないために生成色素の吸引が短 波で色再現上、満足いくものではなかった。

【0006】そこで本発明者等は、このような状況に鑑みてさらに研究を進めた結果色再現性に優れ、熱、湿気および光に対して色相変化を起こさない色素画像を形成できる写真用カプラーを見出した。

[0007]

【発明が解決しようとする課題】したがって、本発明の第一の目的はハロゲン化銀カラー写真感光材料の素材として用いられる新規な写真用シアンカプラーを提供することにあり、そして本発明の第二の目的は色再現性に優れ、熱、湿気および光に起因する色相の変化を起こさない色画像を形成できるハロゲン化銀カラー写真用シアンカプラーを提供することにある。

[0008]

【課題を解決するための手段】本発明の上記目的は下記 構成①または②によって達成された。

30 【0009】①一般式 [I] で表わされる写真用シアンカプラー

[0010]

【化2】

一般式〔I〕

【0011】式中、RおよびYは水素原子または置換基を表わし、EWGはハメットの置換基定数σ,が0.3以上の電子吸引性基を表わし、Xは水素原子または発色現像主薬の酸化体との反応により離脱しうる基を表わす。

【0012】②上記一般式〔I〕で表わされる化合物の EWGがアリールスルホニル基、アルキルスルフィニル 基、アリールスルフィニル基、β,β-ジシアノビニル 基、ハロゲン化アルチル基、ホルミル基、アリールカルボニル基、アリールオキシカルボニル基、モノアルキルカルバモイル基、モノアリールカルバモイル基、モノア ルキルスルファモイル基、モノアリールスルファモイル

基であることを特徴とする請求項1に記載の写真用シア ンカプラー。

【0013】以下、本発明を具体的に説明する。

【0014】先ず一般式 [I] で表わされる本発明のシ アンカプラーについて説明する。

【0015】一般式[I]において、Rの表わす置換基 としては特に制限はないが、代表的には、アルキル、ア リール、アニリノ、アシルアミノ、スルホンアミド、ア ルキルチオ、アリールチオ、アルケニル、シクロアルキ ル等の各基が挙げられるが、この他にハロゲン原子及び 10 く、具体的には2-フリル基、2-チエニル基、2-ピリミジ シクロアルケニル、アルキニル、複素環、スルホニル、 スルフィニル、ホスホニル、アシル、カルパモイル、ス ルファモイル、シアノ、アルコキシ、アリールオキシ、 複素環オキシ、シロキシ、アシルオキシ、スルホニルオ キシ、カルパモイルオキシ、アミノ、アルキルアミノ、 イミド、ウレイド、スルファモイルアミノ、アルコキシ カルポニルアミノ、アリールオキシカルポニルアミノ、 アルコキシカルポニル、アリールオキシカルポニル、複 素環チオ、チオウレイド、カルポキシ、ヒドロキシ、メ ルカプト、ニトロ、スルホ等の各基、ならびにスピロ化 20 等;イミド基としてはコハク酸イミド基、3-ヘプタデシ 合物残基、有橋炭化水素化合物残基等も挙げられる。

【0016】以下、Rで表わされる各基において、アル キル基としては、炭素数1~32のものが好ましく、直鎖 でも分岐でもよい。

【0017】アリール基としては、フェニル基が好まし 41

【0018】アシルアミノ基としては、アルキルカルポ ニルアミノ基、アリールカルポニルアミノ基等が挙げら

ホニルアミノ基、アリールスルホニルアミノ基等が挙げ られる。

【0020】アルキルチオ基、アリールチオ基における アルキル成分、アリール成分は上記Rで表わされるアル キル基、アリール基が挙げられる。

【0021】アルケニル基としては、炭素数2~32のも の、シクロアルキル基としては炭素数3~12、特に5~ 7のものが好ましく、アルケニル基は直鎖でも分岐でも

【0022】シクロアルケニル基としては、炭素数3~ 40 12、特に5~7のものが好ましい。スルホニル基として はアルキルスルホニル基、アリールスルホニル基等;ス ルフィニル基としてはアルキルスルフィニル基、アリー ルスルフィニル基等:ホスホニル基としてはアルキルホ スホニル基、アルコキシホスホニル基、アリールオキシ ホスホニル基、アリールホスホニル基等;アシル基とし てはアルキルカルポニル基、アリールカルポニル基等; カルバモイル基としてはアルキルカルバモイル基、アリ ールカルパモイル基等;スルファモイル基としてはアル キルスルファモイル基、アリールスルファモイル基等; 50 られる。

アシルオキシ基としてはアルキルカルポニルオキシ基、 アリールカルポニルオキシ基等;スルホニルオキシ基と しては、アルキルスルホニルオキシ基、アリールスルホ ニルオキシ基等;カルパモイルオキシ基としてはアルキ ルカルパモイルオキシ基、アリールカルパモイルオキシ 基等:ウレイド基としてはアルキルウレイド基、アリー ルウレイド基等;スルファモイルアミノ基としてはアル キルスルファモイルアミノ基、アリールスルファモイル アミノ基等:複素環基としては5~7員のものが好まし ニル基、2-ペンゾチアゾリル基、1-ピロリル基、1-テト ラゾリル基等:複素環オキシ基としては5~7員の複素 環を有するものが好ましく、例えば3,4,5,6-テトラヒド ロピラニル-2-オキシ基、1-フェニルテトラゾール-5-オ キシ基等:複素環チオ基としては、5~7員の複素環チ オ基が好ましく、例えば2-ピリジルチオ基、2-ベンゾチ アゾリルチオ基、2,4-ジフェノキシ-1,3,5-トリアゾー ル-6-チオ基等;シロキシ基としてはトリメチルシロキシ 基、トリエチルシロキシ基、ジメチルプチルシロキシ基 ルコハク酸イミド基、フタルイミド基、グルタルイミド 基等:スピロ化合物残基としてはスピロ[3,3] ヘプタン -1-イル等: 有橋炭化水素化合物残基としてはビシクロ [2,2,1] ヘプタン-1-イル、トリシクロ [3,3,1,13 7] デカン-1-イル、7,7-ジメチルーピシクロ[2,2,1] ヘブ タン-1-イル等が挙げられる。

【0023】上記の基は、さらに長鎖炭化水素基やポリ マー残基などの耐拡散性基等の置換基を有してもよい。

【0024】一般式 [I] において、EWGの表わす置 【0019】スルホンアミド基としては、アルキルスル 30 換基としてはハメットの置換基定数 σ s が0.3以上の置換 基であり、代表的には、シアノ基、ニトロ基、スルホニ ル基(例えばオクチルスルホニル基、フェニルスルホニ ル基、トルフルオロメチルスルホニル基、ペンタフルオ ロフェニルスルホニル基等)、β-カルポキシビニル 基、スルフィニル基(例えばt-プチルスルフィニル基、 トリルスルフィニル基、トリフルオロメチルスルフィニ ル基、ペンタフルオロフェニルスルフィニル基等)、 β, β-ジシアノビニル基、ハロゲン化アルキル基(例 えばトリフルオロメチル基、パーフルオロオクチル基、 ω-ヒドロパーフルオロドデシル基等)、ホルミル基、 カルボキシル基、カルボニル基(例えばアセチル基、ピ パロイル基、ベンゾイル基、トリフルオロアセチル基 等)、アルキル及びアリールオキシカルポニル基(例え ばエトキシカルポニル基、フェノキシカルポニル基 等)、1-テトラゾリル基、5-クロル-1-テトラゾリル 基、カルバモイル基(例えばドデシルカルパモイル基、 フェニルカルパモイル基等)、スルファモイル基(例え ばトリフルオロメチルスルファモイル基、フェニルスル ファモイル基、エチルスルファモイル基等)などが挙げ

【0025】EWGの表わす好ましい置換基としては、 アリールスルホニル基(例えばフェニルスルホニル基、 ペンタフルオロフェニルスルホニル基等)、アルキルス ルフィニル基 (例えばにプチルスルフィニル基、トリフ ルオロメチルスルフィニル基等)、アリールスルフィニ ル基(例えばトリルスルフィニル基、ペンタフルオロフ ェニルスルフィニル基等)、 β , β -ジシアノピニル基、 ハロゲン化アルキル基(例えばトリフルオロメチル基、 パーフルオロオクチル基等)、ホルミル基、アリールカ ルボニル基 (例えばベンゾイル基等)、アリールオキシ 10 記載されているような現像主薬酸化体との反応により、 カルポニル基(例えばフェノキシカルポニル基等)、モ ノアルキルカルパモイル基(例えばドデシルカルパモイ ル基等)、モノアリールカルバモイル基(例えばフェニ ルカルパモイル基等)、モノアルキルスルファモイル基 (例えばトリフルオロメチルスルファモイル基、エチル スルファモイル基等)およびモノアリールスルファモイ ル基(例えばフェニルスルファモイル基等)を挙げるこ とができる。

【0026】Xの表わす発色現像主薬の酸化体との反応 により離脱しうる基としては、例えばハロゲン原子(塩 20 素原子、臭素原子、弗素原子等) 及びアルキレン、アル コキシ、アリールオキシ、複素環オキシ、アシルオキ シ、スルホニルオキシ、アルコキシカルポニルオキシ、 アリールオキシカルポニル、アルキルオキザリルオキ シ、アルコキシオキザリルオキシ、アルキルチオ、アリ ールチオ、複素環チオ、アルキルオキシチオカルポニル チオ、アシルアミノ、スルホンアミド、N原子で結合し た含窒素複素環、アルキルオキシカルボニルアミノ、ア

リールオキシカルポニルアミノ、カルポキシル等の各基 が挙げられるが、好ましくは水素原子、ハロゲン原子、 アルコキシ基、アリールオキシ基、アルキルチオ基、ア リールチオ基、N原子で結合した含窒素複素環である。 【0027】Yは水素原子または置換基を表わすが、置 換基として好ましいものは、例えば現像主薬酸化体と反 応した後に脱離するもので、例えばYが表わす置換基 は、特開昭61-228444号等に記載されているようなアル カリ条件下で、離脱しうる基や特開昭56-133734号等に カップリング・オフする置換基等が挙げられるが、好ま しくはYは水素原子である。 従って、一般式 (I) で 表わされる本発明の化合物の中でも、特により好ましく は、一般式〔II〕で表わされる。

[0028]

[化3]

一般式[I]

【0029】〔式中、R、XおよびEWGは一般式 [I] におけるR、XおよびEWGと同義である。〕次 に本発明の代表的化合物例を以下に示すが、本発明はこ れらに限定されるものではない。

[0030]

[化4]

(5)

特開平7-92632

7

 $\begin{array}{c} \text{NC} \\ \text{NC} \\ \text{N} \end{array}$

(2) NC N S0₃C₁₆H₃₃(i)

(3)

NC N NHSO₂—OC_{1 2}H_{2 5}

Ce NHSO₂—OC_{1 2}H_{2 5}

NC N NHCOCHCH₂CO₂H
C₁₈H₃₅

(5) NC N N OC1 2H25 CH3

(6)
NC N SO₂C_{1 2}H₂₅

[0031] [化5]

9

(7)

NO₂ N CH₂CH₂CH₂CH₂SO₂C₁₂H₂₅

(8)
$$CH_{3}SO_{2} \xrightarrow{N} \overset{C}{N} \overset{C}{N} CHCH_{2}NHCOCHO \xrightarrow{C_{5}H_{11}(t)} C_{5}H_{11}(t)$$

$$C_{15}H_{81}SO_{2} \xrightarrow{\text{II}} N$$

$$CH_{3}O \xrightarrow{\text{II}} N$$

[0032] [化6]

(13) $F = \begin{cases} & & 12 \\ & & \\ &$

CH₃0—S0₂—NHCOCHCH₂CO₂H C₁₈H₃₅

(15) $SO_2 \longrightarrow C_{10}H_{33}(i)$ $NO_2 \longrightarrow N$

(16)

CF₃

N

N

C₁ 2H₂₅

(18) CF₃ NHCOCHCH₂CO₂H CH₃O NHCOCHCH₂CO₂H C₁₈H₃₅

13 (19)

CF₃ N N S0₂C_{1 2}H₂₅

(20)

C₈H₇NHNH C₁₈H₃₅

(21)

CH₃SO N N C₁₆H₈₈(i)

(22)

(23)

(24)

[0034]

【化8】

15

(25)
(i) $C_{16}H_{38}SO_{2}$ — CO_{N} — $C_{4}H_{9}(t)$

(26)
$$C_{12}H_{25}O \longrightarrow C_{0}N \longrightarrow N C_{3}H_{7}(i)$$

(27)
$$(t)C_{5}H_{1} = OCH_{2}CH_{2}CH_{2}NHCO N H_{N} C_{4}H_{9}(t)$$

$$C_{5}H_{11}(t) CH_{3}O N N N$$

(28)
$$C_{1\ 2}H_{2\ 5}O \longrightarrow SO_{2}NH$$

$$NHCO \longrightarrow N$$

$$N$$

$$N$$

$$N$$

$$N$$

(29)
$$C_8H_{1.7}NHCO N N F F$$

$$HO_2CCH_2CH_2S N N F F$$

[0035] [化9]

(31)
$$(t)C_5H_{11} - OCH_2CH_2CH_2NHSO_2 - N - N - N$$

$$C_5H_{11}(t) - C\ell$$

$$C_4H_9NHSO_2 N N N N NHCOCHO C_5H_{11}(t)$$

$$C_5H_{11}(t)$$

$$C_8H_{17}(t)$$

(33)
$$C_5H_{11}(t)$$

NHSO₂ N CHO C₁₀H₂₁
 $C_5H_{11}(t)$

【0036】本発明の化合物は、Chem.Ber. 第103巻 28 45頁~2852頁(1970年)、同第103巻 3533頁~3542頁(1970年)、同第105巻 1810頁~1814頁(1972年)、Te trahedron第32巻 341頁~348頁(1976年)、J. Chem. Res each(s)262頁~263頁(1989年)記載の合成法に準じて

合成することができる。 【0037】〔合成例〕例示化合物(16)は以下のルートで合成した。

[0038] [化10]

$$H_2N$$
 N
 $C_{12}H_{25}$
 $+$
 CF_3COCH_2Br
 $(16a)$
 $(16b)$

【0039】(中間体(16c)の合成)(16a)7.57g (30ミリモル) と (16b) 5.73g (30ミリモル) をアセ トニトリル100mlに溶解し、窒素気流下室温でナトリウ ムメチラートの28%メタノール溶液を5.88g (30ミリモ ル) 滴下する。さらに2時間室温にて撹拌した後、塩酸 水にて中和し、酢酸エチルで抽出した。乾燥後、溶媒を 滅圧留去し残渣をカラムクロマトグラフィーにより分離 し、中間体(16c)を4.47g(収率41%)得た。

【0040】 (例示化合物 (16) の合成) 中間体 (16 c) 3.62g (10ミリモル) をトルエン40ml, オキシ塩化 10 リン2.80ml (30ミリモル) とともに加熱還流下5時間反 応させる。反応終了後、反応液を氷ー水に注ぎ、酢酸工 チルで抽出した。乾燥後、溶媒を減圧留去し、残渣を力 ラムクロマトグラフィーにより分離し、例示化合物(1 6) を2.48g(収率72%) 得た。

【0041】なお、構造は「H-NMR, IR, MAS Sスペクトルにより確認した。

【0042】本発明のカプラーは通常ハロゲン化銀1モ ル当り1×10-3モル~1モル、好ましくは1×10-2モル ~8×10⁻¹モルの範囲で用いることができる。

【0043】また本発明のカプラーは他の種類のシアン カプラーと併用することもできる。

【0044】本発明のカプラーには、通常の色素形成力 プラーにおいて用いられる方法および技術が、同様に適 用される。

【0045】本発明のカプラーには、いかなる発色法に よるカラー写真形成用素材としても用いることができる が、具体的には、外式発色法および内式発色法が挙げら れる。外式発色法として用いられる場合、本発明のカブ ールなど) に溶解して、現像処理液中に添加し使用する ことができる。

【0046】本発明のカプラーを内式発色法によるカラ 一写真形成用素材として用いる場合、本発明のカプラー は写真感光材料中に含有させて使用する。

【0047】典型的には、本発明のカプラーをハロゲン 化銀乳剤に配合し、この乳剤を支持体上に塗布してカラ 一感光材料を形成する方法が好ましく用いられる。

【0048】本発明のカプラーは、例えばカラーのネガ およびポジフィルム並びにカラー印画紙などのカラー写 40 真感光材料に用いられる。

【0049】このカラー印画紙を初めとする本発明のカ プラーを用いた感光材料は、単色用のものでも多色用の ものでもよい。多色用感光材料では、本発明のカプラー はいかなる層に含有させてもよいが、通常は赤色感光性 ハロゲン化銀に含有させる。多色用感光材料はスペクト ルの3原色領域のそれぞれに感光性を有する色素画像形 成構成単位を有する。各構成単位は、スペクトルのある 一定領域に対して感光性を有する単層または多層乳剤層 から成ることができる。画像形成構成単位の層を含めて 50 材料は、当業界公知の発色現像処理を行うことにより画

20

感光材料の構成層は、当業界で知られているように種々 の順序で配列することができる。

【0050】典型的な多色用感光材料は、少なくとも1 つのシアンカプラーを含有する少なくとも1つの赤感光 性ハロゲン化銀乳剤層からなるシアン色素画像形成構成 単位、少なくとも1つのマゼンタカプラーを含有する少 なくとも1つの緑感光性ハロゲン化銀乳剤層からなるマ ゼンタ色素画像形成構成単位、(シアンカプラーの少な くとも1つは本発明のカプラーである。) 少なくとも1 つのイエローカプラーを含有する少なくとも1つの青感 光性ハロゲン化銀乳剤層からなるイエロー色素画像形成 構成単位を支持体上に担持させたものからなる。

【0051】感光材料は、追加の層例えばフィルター 層、中間層、保護層、下塗り層等を有することができ る。

【0052】本発明のカプラーを乳剤に含有せしめるに は、従来公知の方法に従えばよい。例えばトリクレジル ホスフェート、ジプチルフタレート等の沸点が175℃以 上の高沸点有機溶媒または酢酸プチル、プロピオン酸プ 20 チル等の低沸点溶媒のそれぞれ単独にまたは必要に応じ てそれらの混合液に本発明のカプラーを単独でまたは併 用して溶解した後、界面活性剤を含むゼラチン水溶液と 混合し、次に高速回転ミキサーまたはコロイドミルで乳 化した後、ハロゲン化銀に添加して本発明に使用するハ ロゲン化銀乳剤を調製することができる。

【0053】本発明のカプラーを用いた感光材料に好ま しく用いられるハロゲン化銀組成としては、塩化銀、塩 臭化銀または塩沃臭化銀がある。また更に、塩化銀と臭 化銀の混合物等の組合せ混合物であってもよい。即ち、 ラーはアルカリ水溶液あるいは有機溶媒(例えばアルコ 30 ハロゲン化銀乳剤がカラー用印画紙に用いられる場合に は、特に速い現像性が求められるので、ハロゲン化銀の ハロゲン組成として塩素原子を含むことが好ましく、少 なくとも1%の塩化銀を含有する塩化銀、塩臭化銀また は塩沃臭化銀であることが特に好ましい。

> 【0054】ハロゲン化銀乳剤は、常法により化学増感 される。また、所望の波長域に光学的に増感できる。

【0055】ハロゲン化銀乳剤には、感光材料の製造工 程、保存中、あるいは写真処理中のカブリの防止、およ び/又は写真性能を安定に保つことを目的として写真業 界においてカプリ防止剤または安定剤として知られてい る化合物を加えることができる。

【0056】本発明のカプラーを用いたカラー感光材料 には、通常感光材料に用いられる色カブリ防止剤、色素 画像安定化剤、紫外線防止剤、帯電防止剤、マット剤、 界面活性剤等を用いることができる。

【0057】これらについては、例えばリサーチ・ディ スクロージャー (Research Disclosure) 176巻、22~31 頁(1978年12月)の記載を参考にすることができる。

【0058】本発明のカプラーを用いたカラー写真感光

像を形成することができる。

【0059】本発明に係るカプラーを用いたカラー写真 感光材料は、親水性コロイド層中に発色現像主薬を発色 現像主薬そのものとして、あるいはそのプレカーサーと して含有し、アルカリ性の活性化浴により処理すること もできる。

【0060】本発明のカプラーを用いたカラー写真感光 材料は、発色現像後、漂白処理、定着処理を施される。 漂白処理は定着処理と同時に行ってもよい。

る。また水洗処理の代替えとして安定化処理を行っても よいし、両者を併用してもよい。

[0062]

【実施例】次に本発明を実施例によって具体的に説明す るが、本発明はこれらに限定されるものではない。

【0063】 実施例1

ポリエチレンで両面ラミネートされた紙支持体上に下記 の各層を支持体側より順次塗設し、赤色感光性カラー感 光材料試料1を作成した。尚、化合物の添加量は特に断 りのない限り1m²当りを示す(ハロゲン化銀は銀換算 20 値)。

【0064】第1層:乳剤層

*ゼラチン1.3g、赤感性塩臭化銀乳剤(塩化銀99.5モル %含有) 0.21およびジオクチルホスフェート0.45gに溶 解した比較シアンカプラーa 9.1×10-4 モルからなる赤 感性乳剤層。

【0065】第2層:保護層

ゼラチン0.50gを含む保護層。尚、硬膜剤として2,4-ジ クロロ-6-ヒドロキシ-s-トリアジンナトリウム塩をゼラ チン1g当り0.017gになるよう添加した。

【0066】次に、試料1において比較カプラーaを表 【0061】定着処理の後は、通常は水洗処理が行われ 10 1に示すカプラー(添加量は比較カプラーaと同モル 量) に代えた以外は、全く同様にして、本発明の試料2 ~8を作製した。

> 【0067】上記で得た試料1~8は、それぞれ常法に 従ってウェッジ露光を与えた後、次の工程で現像処理を 行った。

【0068】処理条件は下配の通りである。

[0069]

処理工程	温度	時間
発色現像	35.0±0.3℃	45 秒
漂白定着	35.0±0.5℃	4510
安定化	30~40℃	90秒
乾 燥	60∼80℃	60₺

発色現像液

純水	800ml
トリエタノールアミン	10 g
N, N-ジエチルヒドロキシルアミン	5g
臭化カリウム	$0.02\mathrm{g}$
塩化カリウム	2g
亜硫酸カリウム	0.3g
1-ヒドロキシエチリデン-1,1-ジホスホン酸	1.0g
エチレンジアミン四酢酸	1.0g
カテコール-3,5-ジスルホン酸二ナトリウム塩	1.0g
ジエチレングリコール	10 g
N-エチル-N-β-メタンスルホンアミド	
エチル-3-メチル-4-アミノアニリン硫酸塩	4.5g
蛍光増白剤(4,4′-ジアミノスチルベンスルホン酸誘導体)	1.0g
炭酸カリウム	27 g

[0070]

漂白定着液

エチレンジアミン四酢酸第二鉄アンモニウム2水塩	60 g
エチレンジアミン四酢酸	3g
チオ硫酸アンモニウム(70%水溶液)	100ml
西路酔アンチーウム (ADS:水淡海)	27 5ml

水を加えて全量を11とし、pH=10.10に調整する。

水を加えて全量を11とし、炭酸カリウム又は氷酢酸で [0071] pH=5.7に調整する。

安定化液

5-クロロ-2-メチル-4-イソチアゾリン-3-オン	0.2g
1,2-ペンツイソチアゾリン-3-オン	0.3g
エチレングリコール	1.0g

<i>23</i>	24
1-ジヒドロキシエチリデン-1,1-ジホスホン酸	2.0g
0−フェニルフェノールナトリウム	1.0g
エチレンジアミン四酢酸	1.0g
水酸化アンモニウム(20%水溶液)	3.0g
蛍光増白剤(4,4-ジアミノスチルベンスルホン酸誘導体)	1.5g

水を加えて全量を11とし、硫酸又は水酸化カリウムで pH=7.0に調整する。

【0072】上記で処理された試料1~8について、濃 度計(コニカ株式会社製KD-7型)を用いて濃度を測定 し、さらに、上記各処理済試料を高温・高湿(60℃, 80 10 光試験後の色素残留パーセントで表わす。 %RH) 雰囲気下に14日間放置し、色素画像の耐熱・耐湿 性を調べた。

* 【0073】また、各試料をキセノンフェードメーター で10日間照射した後、濃度を測定して、耐光性を調べ た。結果を表1に示す。但し色素画像の耐熱性、耐湿性 および耐光性は初濃度1.0に対する耐熱、耐湿および耐

[0074] 【化11】

比較カプラーa

$$\begin{array}{c} C_5H_{11}(t) \\ C_2H_5 \end{array}$$

$$\begin{array}{c} C_5H_{11}(t) \\ C_2H_5 \end{array}$$

[0075]

※ ※【表1】

試料		色業残存率(%)		
No.	使用カプラー	耐熱・湿性	耐光性	
1	比 較 a	60	81	
2	本発明2	81	82	
3	本発明8	83	81	
4	本発明10	90	85	
5	本発明16	91	85	
6	本 発 明 2 2	90	85	
7	本発明30	90	86	
8	本発明34	91	85	

【0076】表1の結果から明らかなように、本発明の カプラーを用いた試料ことに試料4~8は、比較カプラ ーを用いた試料に比べていずれも色素残存率が高く、耐 熱・耐湿性および耐光性に優れており堅牢であることが 40 ゼラチン1.5gを含む保護層。尚、硬膜剤として2,4-ジ 分かる。

【0077】 実施例2

下引済のトリアセテートフィルム上に、下記の各層を支 持体側より順次塗設し、赤色感光性カラー感光材料(試 料9)を作成した。なお、化合物の添加量は、特に断り のない限り、1㎡当たりを示す(ハロゲン化銀は銀換算

【0078】第1層:乳剤層

ゼラチン1.4g、赤感性沃臭化銀乳剤(沃化銀4モル% 含有) 1.5g およびトリクレジルホスフェート1.1g に溶 50 【0082】

解した、比較シアンカプラーb 8.0×10-4モルからなる 赤感性乳剂層。

【0079】第2層:保護層

クロロー6-ヒドロキシー8-トリアジンナトリウム塩をゼラ チン1g当り、0.017gになるよう添加した。

【0080】次に、試料9において比較カプラーbを表 2に示すカプラー(添加量は比較カプラーbと同モル 量) に代えた以外は、全く同様にして、本発明の試料10 ~16を作製した。

【0081】得られたフィルム試料は、通常の方法でウ ェッジ露光し、下記のカラー用処理工程に従いカラー現 像を行った。

26

【化12】

比較カプラーb

$$\begin{array}{c} OH \\ CONH(CH_2)_4O \\ \hline \end{array} \begin{array}{c} C_5H_{11}(t) \\ \hline \\ C_5H_{11}(t) \end{array}$$

比較カプラーc*

*(リサーチ・ディスクロージャー16216号記載の化合物)

[0083]

[処理工程](処理温度38℃)	処理時間
発色現代	(2)	3分15秒
漂	∄	6 分30秒
水	先	3分15秒
定	ř	6分30秒
水	先	3分15秒
安定	<mark></mark> ኒ	1分30秒
乾	5	

各処理工程において使用した処理液組成は下記の如くで 【0084】 ある。

[発色現像液]

4-アミノ-3-メチル-N-エチル-N-(β-ヒドロキシエチル)

アニリン・硫酸塩	4.75 g
無水亜硫酸ナトリウム	4.25 g
ヒドロキシルアミン・1/2硫酸塩	2.0g
無水炭酸カリウム	37.5g
臭化ナトリウム	1.3g
ニトリロ酢酸・3ナトリウム(1水塩)	2.5g
水酸化カリウム	1.0g
1. ch des 7 com 000 1.1.1	

水を加えて1000mlとし、水酸化ナトリウムを用いてpH10.6に調整する。

[0085]

[漂白液]

エチレンジアミン四酢酸鉄アンモニウム塩	100.0g
エチレンジアミン四酢酸2アンモニウム塩	10.0g
臭化アンモニウム	150.0g
米酢酸	10.0g
the first of the second of the	

水を加えて1000mlとし、アンモニア水を用いてpH6.0に調整する。

[0086]

50

[定着液]

27

チオ硫酸アンモニウム

無水亜硫酸ナトリウム メタ亜硫酸ナトリウム

水を加えて1000mlとし、酢酸を用いてpH6.0に調整する。

[0087]

[安定化液]

ホルマリン (37%水溶液) コニダックス(コニカ(株)製) 1.5ml 7.5ml

28

175.0g

8.6g 2.3g

水を加えて1000回とする。

【0088】上記で処理された試料9~16について、濃 度計(コニカ株式会社KD-7型)を用いて透過濃度を測 定し、さらに、上記各処理済試料を高温・高温(60℃,8 0%REO 雰囲気下に14日間放置し、色素画像の耐熱・耐 湿性を調べた。

【0089】また、各試料をキセノンフェードメーター で10日間照射して、耐光性を調べた。結果を表2に示 す。但し色素画像の耐熱性、耐湿性および耐光性は初濃* *度1.0に対する耐熱、耐温および耐光試験後の色素残留 パーセントで表わす。

【0090】また、発色画像試料をコニカカラーペーパ ーに10倍に伸ばして、カラーペーパー現像処理(CPK -18P) を行い、目視で色再現性を5段階評価した。な お、数値の大きい程色再現性が良好であることを示す。

[0091]

【表2】

試料	He m + -2 =	色素残存	宇率(%)	プリント
No.	使用カプラー	耐熱・湿性	耐光性	色再現性
9	比 較 b	70	80	4
10	比 較 c	78	81	3 ~ 4
11	本発明 1	81	83	5
12	本発明8	79	83	5
13	本発明17	90	85	5
14	本発明23	91	86	5
15	本発明24	90	85	5
16	本発明35	89	85	5

【0092】表2の結果から明らかなように、本発明の カプラーを用いた試料は、比較カプラーbを用いた試料 に比べて、いずれも色素残存率が高く、耐熱・耐湿性お よび耐光性に優れており、さらに色再現性においても優 れていることがわかる。ことに本発明のカプラーを用い た試料13~16は、堅牢性に優れていることがわかる。

【0093】また、本発明のカプラーを用いた試料は、 比較カプラーcを用いた試料に比べて色再現性において 優れていることがわかる。

【0094】 実施例3

トリアセチルセルロースフィルム支持体上に、下記の各 層を支持体側より順次塗設し、表3に示すカプラーを含 有する赤感性カラー反転写真感光材料17~22を作成し た。

【0095】第1層:乳剤層

ゼラチン1.4g、赤感性塩臭化銀乳剤(塩化銀96モル% 50 発色現像

含有) 0.5g およびジプチルフタレート1.5g に溶解した 表3に示すカプラー9.1×10-4モルからなる赤感性乳剤

【0096】第2層:保護層

ゼラチン0.5gを含む保護層。尚、硬膜剤として2,4-ジ 40 クロロ-6-ヒドロキシ-s-トリアジンナトリウム塩をゼラ チン1g当り、0.017gになるよう添加した。

【0097】上記で得た試料は、それぞれ常法に従って ウェッジ露光を与えた後、次の工程で現像処理を行っ

【0098】[反転処理工程]

処理工程	時間	温度
第1現像	6分	38℃
水 洗	2分	38℃
反 転	2分	38℃
群 召 現 俊	6 <i>分</i>	38℃

				(16)		特開平7-92
		29			<i>30</i>	
調	整	2分	38℃	安 定	1分	常温
漂	白	6分	38℃	乾 燥		
定	着	4分	38℃	処理液の組成	は以下のものを用いる	5.
水	洗	4分	38℃	[0099]		
		[第1現像液]				
		テトラポリ燐酸	きナトリウム		2.0g	
		亜硫酸ナトリウ	7		20.0g	
		ハイドロキノン	・・モノスルホネ・	- ト	30.0g	
		炭酸ナトリウム	、(1水塩)		30.0g	
		1-フェニル-4-	メチル-4-ヒドロ:	キシメチル-3-ピラゾリ	ドン 2.0g	
		臭化カリウム			2.5g	
		チオシアン酸力	リウム		1.2g	
		沃化カリウム	(0.1%溶液)		2m1	
		水を加えて			1000ml	
		[反 転 液]				
			チレンホスホン	酸・6ナトリウム塩	3.0g	
		塩化第1スズ			1.0g	
		p-アミノフェノ			0.1g	
		水酸化ナトリウ			5.0g	
		水酸化ノイック 氷酢酸	-		15ml	
		水を加えて			1000mi	
		[発色現像液]			100021	
		テトラポリ燐酸	ナトルウム		2. 0	ø
		亜硫酸ナトリウ			7.0g	9
			・ム ウム (12水塩)		36.0g	
		臭化カリウム			1.0g	
		沃化カリウム	(0.19/数域)		90ml	
		水酸化ナトリウ			3.0g	
		シトラジン酸	, Д		1.5g	
			-マタンフルホン	アミドエチル-3-メチル	_	
		アミノアニリン) < P. T.) // 0-///	7 11.0g	
		エチレンジアミ			3.0g	
					1000ml	
		水を加えて [調 整 液]			100011	
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• •		12.0g	
				÷1. (Ω-₩#)	=	
		• • • • •	ン四酢酸ナトリ	ソム (2小塩)	8.0g	
		チオグリセリン			0. 4ml	
		氷酢酸			3ml	
		水を加えて			1000ml	
		[漂 白 液]		(o 1.14)		
			ン四酢酸ナトリ		2.0g	
			ン四酢酸鉄(II	I)アンモニウム(2ヵ	_	
		臭化カリウム			100.0g	
		水を加えて			1000ml	
		[定 着 液]				
		チオ硫酸アンモ			80 g	
		亜硫酸ナトリウ			5g	
		重亜硫酸ナトリ	リウム		5g	
		水を加えて			1000ml	
		[安 定 液]				

(17)

特開平7-92632

31

ホルマリン (37重量%) コニダックス (コニカ株式会社製)

5m1

32

5m1 1000ml

上記で処理された各試料について、実施例2と同様に色 素画像の耐熱・耐湿性および耐光性を調べた。その結果

水を加えて

* [0100] 【表3】

を表3に示す。

試料	# H + -2 = -	色素残存率 (%)	
No.	使用カプラー	耐熱・湿性	耐光性
17	比較a	59	81
18	本発明 6	75	82
19	本 発 明 13	88	84
20	本発明20	86	85
21	本 発 明 28	91	86
22	本発明32	90	84

【0101】表3から明らかなように本発明のカプラー た試料に比べて、いずれも色素残存率が高く、耐熱・耐 湿性および耐光性に優れており堅牢であることがわか る。

[0102]

【発明の効果】本発明によれば第一にハロゲン化銀カラ を用いた試料ことに試料19~22は、比較カプラーを用い 20 一写真感光材料の素材として用いられる新規な写真用シ アンカプラーを提供する、そして第二に色再現性に優 れ、熱・温気および光に起因する色相の変化を起こさな い色画像を形成できるハロゲン化銀カラー写真用シアン カプラーを提供することができる。