12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- we assume p* is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \text{dom } f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to
$$Fx \leq g$$

$$Ax = b$$

with dom $f_0 = \mathbf{R}_{++}^n$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

Reformulation of (1) via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \leq 0$ and $I_{-}(u) = \infty$ otherwise (I_{-} is indicator function of \mathbf{R}_{-})

Approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_-
- approximation improves as $t \to \infty$

Logarithmic barrier

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom } \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^*(t)$ as the solution of

minimize
$$t f_0(x) + \phi(x)$$

subject to $Ax = b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

• central path is $\{x^*(t) \mid t > 0\}$

Example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Dual points on central path

 $x = x^*(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

• therefore, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^{*}(t), \nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x) + \nu^{*}(t)^{T} (Ax - b)$$

where we define $\lambda_i^*(t) = 1/(-tf_i(x^*(t)))$ and $\nu^*(t) = w/t$

• this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t))$$

$$= L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$

$$= f_0(x^{\star}(t)) - m/t$$

Interpretation via KKT conditions

$$x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t)$$
 satisfy

- 1. primal constraints: $f_i(x) \le 0$, i = 1, ..., m, Ax = b
- 2. dual constraints: $\lambda \geq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to *x* vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T v = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

Centering problem (for problem with no equality constraints)

minimize
$$t f_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

Force field interpretation

- $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
- $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$
- the forces balance at $x^*(t)$:

$$F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0$$

Example

minimize
$$c^T x$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, m$

- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad ||F_i(x)||_2 = \frac{1}{d(x, \mathcal{H}_i)}$$

where $d(x, \mathcal{H}_i)$ is distance of x to hyperplane $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

Barrier method

given: strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$ repeat

- 1. centering step: compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b
- 2. *update*: $x := x^*(t)$
- 3. *stopping criterion*: quit if $m/t < \epsilon$
- 4. increase t: $t := \mu t$

- terminates with $f_0(x) p^* \le m/t < \epsilon$
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10-20$
- several heuristics for choice of $t^{(0)}$

Convergence analysis

Number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

Centering problem

minimize
$$t f_0(x) + \phi(x)$$

see convergence analysis of Newton's method

- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- ullet analysis via self-concordance requires self-concordance of tf_0 + ϕ

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \ge 10$

Geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log(\sum_{k=1}^{5} \exp(a_{0k}^{T} x + b_{0k}))$$
 subject to
$$\log(\sum_{k=1}^{5} \exp(a_{ik}^{T} x + b_{ik})) \le 0, \quad i = 1, \dots, m$$

Interior-point methods 12.14

Family of standard LPs $(A \in \mathbb{R}^{m \times 2m})$

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

 $m = 10, \dots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Feasibility and phase I methods

Feasibility problem: find *x* such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

Phase I: computes strictly feasible starting point for barrier method

Basic phase I method

minimize (over
$$x$$
, s) s
subject to $f_i(x) \le s$, $i = 1, ..., m$
 $Ax = b$ (3)

- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^* of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^* = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^* = 0$ and not attained, then problem (2) is infeasible

Interior-point methods

Sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $s \ge 0$, $f_i(x) \le s_i$, $i = 1, \dots, m$
 $Ax = b$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

Example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Example: family of linear inequalities $Ax \leq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma \leq 0$
- use basic phase I, terminate when s < 0 or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis via self-concordance

same assumptions as on page 12.2, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$
 \longrightarrow minimize $\sum_{i=1}^{n} x_i \log x_i$ subject to $Fx \leq g$ subject to $Fx \leq g$, $x \geq 0$

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step: from self-concordance theory

#Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

- bound on effort of computing $x^+ = x^*(\mu t)$ starting at $x = x^*(t)$
- γ, c are constants (depend only on Newton algorithm parameters)
- from duality (with $\lambda = \lambda^*(t)$, $\nu = \nu^*(t)$):

$$\mu t f_{0}(x) + \phi(x) - \mu t f_{0}(x^{+}) - \phi(x^{+})$$

$$= \mu t f_{0}(x) - \mu t f_{0}(x^{+}) + \sum_{i=1}^{m} \log(-\mu t \lambda_{i} f_{i}(x^{+})) - m \log \mu$$

$$\leq \mu t f_{0}(x) - \mu t f_{0}(x^{+}) - \mu t \sum_{i=1}^{m} \lambda_{i} f_{i}(x^{+}) - m - m \log \mu$$

$$\leq \mu t f_{0}(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

Interior-point methods

Total number of Newton iterations (excluding first centering step)

$$\# \text{Newton iterations} \leq N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

figure shows N for typical values of γ , c,

$$m = 100, \qquad \frac{m}{t^{(0)}\epsilon} = 10^5$$

- ullet confirms trade-off in choice of μ
- in practice, #iterations is in the tens; not very sensitive for $\mu \geq 10$

Polynomial-time complexity of barrier method

• for $\mu = 1 + 1/\sqrt{m}$:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed $(\mu = 10, \dots, 20)$

Interior-point methods 12.22

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

- f_0 convex, $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- we assume p^* is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- dom ψ = int K and $\nabla^2 \psi(y) < 0$ for $y >_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y >_K 0$, s > 0 (θ is the degree of ψ)

Examples

- nonnegative orthant $K = \mathbf{R}_{+}^{n}$: $\psi(y) = \sum_{i=1}^{n} \log y_{i}$, with degree $\theta = n$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$:

$$\psi(Y) = \log \det Y \qquad (\theta = n)$$

• second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

Properties (without proof): for $y >_K 0$,

$$\nabla \psi(y) \geq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta$$

• nonnegative orthant \mathbf{R}_{+}^{n} : $\psi(y) = \sum_{i=1}^{n} \log y_{i}$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

• positive semidefinite cone S_+^n : $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

• second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

Logarithmic barrier for $f_1(x) \leq_{K_1} 0, \ldots, f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom } \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- \bullet ϕ is convex, twice continuously differentiable

Central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ solves

minimize
$$t f_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path

 $x = x^*(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^{m} D f_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

• therefore, $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad v^{\star}(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^{\star}(t) >_{K_i^*} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

Semidefinite programming

minimize
$$c^T x$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \le 0$

with $F_i \in \mathbf{S}^p$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$; hence

$$tc_i - \text{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

• dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\operatorname{tr}(GZ)$$

subject to $\operatorname{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \geq 0$

• duality gap on central path: $c^T x^*(t) - \text{tr}(GZ^*(t)) = p/t$

Barrier method

given: strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$ repeat

- 1. centering step: compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b
- 2. *update*: $x := x^*(t)$
- 3. *stopping criterion:* quit if $(\sum_i \theta_i)/t < \epsilon$
- 4. increase t: $t := \mu t$
- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

complexity analysis via self-concordance applies to SDP, SOCP

Examples

Second-order cone program (50 variables, 50 SOC constraints in ${\bf R}^6$

Semidefinite program (100 variables, LMI constraint in S^{100})

Family of SDPs $(A \in \mathbf{S}^n, x \in \mathbf{R}^n)$

minimize $\mathbf{1}^T x$ subject to $A + \mathbf{diag}(x) \ge 0$

 $n = 10, \dots, 1000$, for each n solve 100 randomly generated instances

Interior-point methods 12.31

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

Interior-point methods 12.32