ARITHMETIC

Chapter 20 Sesión 1

RADICACIÓN

MOTIVATING STRATEGY

La radicación se expresa con el símbolo √ , que es una variante de la letra latina "r"; siendo esta la primera letra de la palabra latina "radix" que significa raíz. En el siglo XVI el símbolo de la raíz no era "r", sino la letra mayúscula "R" y junto a ella se escribía la primera letra de las palabras latinas quadrus (q) o la de cubus (c) señalando con ellos que la raíz a extraer es cuadrada o cúbica respectivamente. Por ejemplo, Rq 5329 significaba $\sqrt{5329}$ significaba $\sqrt[3]{1278}$.

HELICO THEORY

RADICACIÓN

La radicación es una de las operaciones inversas de la potenciación que consiste en que teniendo dos números llamados índice y radicando, se calcula un tercer número llamado raíz, donde este último elevado al índice reproduzca el radicando.

Es decir:

$$\sqrt[n]{N} = k \leftrightarrow k^n = N$$

 $\forall N, n \in \mathbb{Z}^+$

Donde:

n: indice.

N: radicando

k: raíz

HELICO THEORY

RAÍZ CUADRADA

Ejm

Calcule
$$\sqrt{400}$$

Descomponemos

Por descomposición canónica (solo funciona para números cuadrados

2. Simplificamos los exponentes

$$\sqrt{2^4 \times 5^2} = 2^2 \times 5^1 = 20$$

perfectos).

HELICO THEORY

Método general

Ejm Calcul $\sqrt{51982}$ $\begin{array}{c|c}
\hline
51982 & 227 \\
4 & 42x2 = 84 \\
\hline
119 & 84 \\
\hline
3582 & 3129
\end{array}$

453

Este método es para números que sean o no cuadrados perfectos.

Radicando = 51982

Raiz = 227

Residuo = 453

RAÍZ CÚBICA

Ejm

Calcule $\sqrt[3]{1728}$

1. Descomponemos

Por descomposición canónica

2.Simplificamos los exponentes

$$\sqrt[3]{2^6 \times 3^3} = 2^2 \times 3^1 = 12$$

$$\sqrt[3]{1728} = 12$$

Calcule A + B usando la descomposición canónica A = $\sqrt{324}$ B = $\sqrt[3]{9261}$

RESOLUCIÓN

9261	3				
3087	3				
1029	3	926	$01 = 3^3 \times 7^3$		
343	7				
49	7	В	$=\sqrt[3]{3^3 \times 7^3}$		
7	7	В	$= 3^1 \times 7^1$		
1			B = 21		
RPTA:		39			

Al calcular $\sqrt{5184}$ por el método de descomposición canónica se obtuvo $2^a \times 3^b$. Calcule a + b.

Raíz cuadrada

$$\sqrt{5184} = \sqrt{2^6 \times 3^4}$$

$$\sqrt{5184} = 2^3 \times 2^2 = 2^a \times 3^b$$

$$a + b = 3 + 2 =$$

<u>RESOLUCIÓN</u>

5184	2	
2592	2	
1296	2	
648	2	
324	2	L 5
162	2	
81	3	
27	3	
9	3	
3	3	
4		

$$5184 = 2^6 \times 3^4$$

01

HELICO PRACTICE

La raíz cuadrada de 2025 es $3^a \times 5^b$. Calcule (a + b)a.

RESOLUCIÓN

Raíz cuadrada

$$\sqrt{2025} = \sqrt{3^4 \times 5^2}$$

$$\sqrt{2025} = 3^2 \times 5^1 = 3^a \times 5^b$$

$$(a + b)a = (2 + 1) \times 2 =$$

6

◎□

HELICO PRACTICE

Calcule la raíz de 51 873 por el método general e indique la suma de cifras del residuo.

Resolución

$$N = k^2 + r$$

$$51873 = 227^2 + 344$$

$$r = 344$$

$$3 + 4 + 4 = RPTA$$
: 11

Al extraer 150 k k-r.

Resolución

. calcule

 $N = k^2 + r$

$$r = 6$$

Reemplazando

$$150 = 12^2 + 6$$

$$150 = 144 + 6$$

$$k - r = 6$$

Al extraer

$$103 \quad ab$$
 calcule $ab + r$.

Resolución

$$\overline{ab} = 10$$

$$r = 3$$

$$103 = 10^2 + 3$$

$$103 = 100 + 3$$

$$\overline{ab} + r = 13$$

Calcule ³√5832 por el método de descomposición canónica.

RAÍZ CUADRADA

$$\sqrt[3]{5832} = \sqrt[3]{2^3 \times 3^6}$$

$$\sqrt[3]{5832} = 2^1 \times 3^2 = 18$$

RESOLUCIÓ

En una reunión de ex-licenciados del ejército han asistido N personas; en un momento determinado todos los asistentes se ordenan formando un batallón de forma cuadrada con 17 personas por lado y sobrando 8 personas. Halle el valor de N e indique la suma de sus cifras. Resolución

$$N = k^2 + r$$

Datos:

$$k = 17$$

$$r = 8$$

$$N = ?$$

Reemplazando

$$N = 17^2 + 8$$

$$N = 289 + 8$$

$$N = 297$$