PRANVEER SINGH INSTITUTE OF TECHNOLOGY, KANPUR

Even Semester

Session 2022-23

CT-I

B. Tech. 4th Semester

Digital Electronics (KOE-049)

CO Number	Course Outcome
CO1	Define the concepts of Digital system (logic gates, Combinational Logic, Sequential
	Logic, Synchronous & Asynchronous Sequential Circuits and memory).
CO2	Explain the concepts of various digital devices and logic families.
CO3	Apply the concepts of digital devices on various applications.
CO4	Analyze various digital circuits, Sequential Logic, Synchronous & Asynchronous
	Sequential of different configuration.
CO5	Design various digital circuits, Sequential Logic, Synchronous & Asynchronous
	Sequential of different configuration.

Time: 1.5 Hrs.

M. M. 15

Section A

Q1. Attempt all questions:

(1x3=3 Marks)

Draw Ex-OR gate using NOR gate only.

CO₁

Differentiate between combinational circuit and sequential circuit.

CO₁

Explain one bit magnitude comparator circuit.

CO₂

Section B

02. Attempt all questions:

(2x4=8 Marks)

(i) Convert $(986.32)_{10} = ()_8 = ()_H$

CO₁

Or

(ii) Convert $(10101010.10)_4 = ()_8 = ()_{16}$

CO1

b) (i) Design full subtractor circuit using two half subtractor and one OR gate.

CO₅

Or

- (ii) The input to combinational logic circuit is a 4-bit binary number. Design the logic circuit CO₅ with two outputs (Y_1, Y_2) for the following condition.
 - $Y_1 = 1$ if the input binary number is 5 or less than 5
 - $Y_2 = 0$ if the input binary number is 9 or more than 9
- (i) Construct the circuit using NOR gate only with its steps for given function.

CO₄

 $Y = ABC + \overline{A}\overline{C} + \overline{B}D$

Or

(ii) Construct the binary multiplier circuit for multiplication of two bit numbers A and B. The multiplicand bits are B_1B_0 and the multiplier bits are A_1A_0 and the product is $C_3C_2C_1C_0$. CO₄

Or(ii) Simplify the given function using tabular method. CO₃ $F(A,B,C,D) = \sum m(0,1,3,7,8,9,11,15)$ Section C (4x1 = 4 Marks)(i) Solve the given function using K-map in SOP form also construct the minimized expression CO₄ using NAND gate. $f(x, y, z, w, p) = \prod M(0,3,4,5,6,7,8,9,10,11,14,16,22,26,28,30) + d(1,2,12,24)$ Or

(ii) Construct look ahead carry adder with proper circuit diagram also enlist the advantage of

d) (i) Simplify the given function using Mc-Cluskey minimization technique.

using this adder over normal parallel adder.

 $F(A.B.C.D) = \Sigma m (1.5,6,12,13,14) + d(2,4)$

CO₃

CO₄