Finding and Evaluating Parameters for FV using the average-case approach

Beatrice Biasioli¹, Chiara Marcolla¹, Marco Calderini² and Johannes Mono³

1 Technology Innovation Institute, Abu Dhabi, United Arab Emirates, 2 Università degli studi di Trento, Italy; 3 Ruhr University Bochum, Germany

- Notations $\mathcal{R} = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ $\mathcal{K} = \mathbb{Q}[x]/\langle x^n + 1 \rangle$ where $n = 2^{\kappa}$. $m \in \mathcal{R}_t$ message $\mathbf{c} = (c_0, c_1) \in \mathcal{R}_q$ ciphertext $s \in \chi_s$ secret key, where $\chi_s = \{-1, 0, 1\}$ Let $a \in \mathcal{R}$ random, and V_a the variance of the coefficients of a. The bounds for the error estimation are: Our $\max \le 6\sqrt{2V_a}$, Our mean $\approx \sqrt{V_a}$, can $||a||^{can} \le 6\sqrt{nV_a}$

What a complex life!

- Every operation increases the error.
- 2 Any error must be bounded.

- 3 Security & Parameters problem:
 - # operations $q \uparrow \lambda \downarrow$ # operations $q \uparrow \lambda = n \uparrow$

- Notations — M = # multiplications $\eta = \#$ summands $\tau = \#$ rotations Generator Inputs (Selection) Options Input any integer ≥ 40 sec or n or ≥ 4 , resp. M, η any integer ≥ 1 any integer ≥ 0 Model 1, 2, 3, 4Library None, 'OpenFHE', 'PALISADE', 'SEAL' 'BV', 'GHS', 'Hybrid' KeySwitch Generator Circuit (Model 3)

Rotation circuit

Parameter Generator

Our method: average-case approach analysis

The *invariant noise* associated with a ciphertext $\mathbf{c} = (c_0, c_1)$ is the minimal $\nu \in \mathcal{K}$ such that

$$\frac{t}{q}[c_0 + c_1 s]_q = m + \nu + kt \quad \text{ for some } k \in \mathcal{R}.$$

Any coefficient of ν can be well-approximated with a Gaussian centered in 0.

- Idea: study the variance of each coefficient.
- © Problem: coefficients are not independent.
- \odot Solution: estimate the behaviour of (powers of) s statistically.

$$\begin{split} \operatorname{HomAdd}(\mathbf{c},\mathbf{c}') &\to \nu_{\operatorname{add}} = \nu + \nu' \implies V_{\operatorname{add}} = V + V' \\ \operatorname{HomMul}(\mathbf{c},\mathbf{c}') &\to \nu_{\operatorname{mul}} \approx \nu \frac{t}{q'} (c'_0 + c'_1 s) + \nu' \frac{t}{q} (c_0 + c_1 s) \\ &\Longrightarrow V_{\operatorname{mul}} \leq \frac{t^2 n^2 V_s}{12} \Big(V + V' \Big) f(\ell + 1) \end{split}$$
 where

$$f(x) \approx -\frac{1}{e^{ax-b}} + c,$$

where a, b, c depend on n and χ_s .

Comparison

Let ν be the invariant noise associated with **c**. The noise budget captures the correctness in FV. Indeed, it is the number of bits left for correct decryption. Since $||\nu|| < 1/2$, then the noise budget for **c** is defined as $-\log_2(2 \cdot ||\nu||)$.

				Encryption	1		Addition					
			maximum value		mean value			maximum value		mean value		
n	$\log_2(q)$	can	our	exp	our	exp	can	our	\exp	our	\exp	
2^{12}	74	54.9	60.4	61.1	63.5	63.9	53.9	59.9	60.7	63.0	63.4	
2^{13}	149	128.9	134.9	135.7	138.0	138.4	127.9	134.4	135.1	137.5	137.86	
2^{14}	298	276.9	283.4	284.0	286.5	286.9	275.9	282.9	283.6	286.0	286.4	
2^{15}	597	574.9	581.9	582.5	585.0	585.4	573.9	581.4	582.0	584.5	584.9	

		Multiplication						Circuit $(M = 3, \eta = 8, \tau = 0, \alpha = 1)$					
			maximu	m value	mean value				maximum value		mean value		
n	$\log_2(q)$	can	our	\exp	our	\exp		can	our	exp	our	exp	
2^{12}	74	39.9	47.9	48.8	51.0	51.6		0.7	17.7	19.1	20.7	21.4	
2^{13}	149	112.9	121.4	122.3	124.5	125.1		71.7	89.7	90.3	92.2	92.8	
2^{14}	298	259.9	268.9	269.8	272.0	272.6		216.7	235.2	235.9	237.7	238.4	
2^{15}	597	556.9	566.4	567.3	569.5	570.1		511.7	530.2	531.5	533.2	533.9	

References

https://eprint.iacr.org/2023/600

Contact Information

- B. Biasioli: beatrice.biasioli@tii.ae
- C. Marcolla: chiara.marcolla@tii.ae