Developing Irregular Crosssections for DSM2-Hydro

Brad Tom
Department of Water Resources
Suisun Marsh Planning Section
btom@water.ca.gov

Acknowledgements

- Ralph Finch
- Nicky Sandhu
- Parviz Nader-Tehrani

Problem Statement

to describe 3D bathymetry data to hydro, a 1D model

Use CSDP to create model geometry

- Create a minimal representative data set based on the bathymetry data set
- place less emphasis on unreliable or less representative data
- evaluate the effects of proposed changes

Outline

- Introduction to CSDP
- Problems to avoid
- Demonstration of CSDP
- CSDP Example problem(?)

CSDP

- replaces BDD
- written in Java
 - also an object-oriented language
 - platform independent
 - easier to maintain than C++
- available on DMS web page
 - http://baydeltaoffice.water.ca.gov/modeling/delt amodeling/models/csdp

Geometry Development

3D Bathymetry Data

```
:HorizontalDatum:
                 UTMNAD83
:HorizontalZone:
                 10
;HorizontalUnits: Meters
; Vertical Datum: NGVD29
; VerticalUnits: USSurveyFeet
; Filetype: bathmetry
; NumElements: 382117
630611.64,4193254.73,-14.54,1934,NOAA,N71-00500
630664.06,4193277.77,-8.53,1934,NOAA,N71-00501
630637.85,4193266.25,-12.54,1934,NOAA,N71-00502
Column Description
       Easting (west/east UTM zone 10 NAD27 coord.)
       Northing (north/south UTM zone 10 NAD27 coord.)
       elevation, ft(NGVD)
       year of survey
       source of data or name of survey
       description of data point (currently not used)
```

CSDP

Cross-section Normalized Distance

Data selection

Drawing Cross-sections

"W" shaped cross-section

"J" shaped cross-section

Calculation of Conveyance Characteristics

Why J-Shaped cross-section is a bad idea

Area is not much smaller,
But wetted perimeter is!
Result:
inaccurate estimation of conveyance

characteristics

Cross-section Interpolation

- results in a virtual (interpolated) cross-section at every computational point
- done automatically by Hydro
- limits the use of rectangular cross-sections

Cross-section Interpolation Example

DSM2 Virtual Cross-Sections

VIRTUAL C	ROSS-SECTION LO	OKUP TABLE								
Channel 1, Virtual Section 1										
Height	Width	Area	Wet_p	Z Centroid	min_elev					
	100.00		100.00							
0.00		0.00	192.00	0.00	-5.10					
5.10	192.00	979.20	202.20	2.55	-5.10					
100.00	192.00	19200.00	392.00	50.00	-5.10					
Channel	nnel 1,Virtual Section 2									
Height	Width	Area	Wet_p	Z Centroid	min_elev					
0.00	 192.00	0.00	192.00	0.00	-5.10					
5.10		979.20		2.55	-5.10					
100.00	192.00	19200.00	392.00	50.00	-5.10					
Channel	1, Virtual Section 3									
Height	Width	Area	Wet_p	Z Centroid	min_elev					
0.00	192.00	0.00	192.00	0.00	-5.10					
5.10		979.20	202.20	2.55	-5.10					
100.00	192.00		392.00	50.00	-5.10					
I										

Problems to avoid

- Convergence Failures-big changes within channel
- negative dConveyance
- interpolated negative dConveyance

Convergence Failures

- model will not converge if large changes in NGVD area within a channel max NGVD area >= 2 * min NGVD area
- If a channel dries up or overflows, could be the result of a convergence failure
- to find channels with potential convergence problems, run Hydro with printlevel 5
- to correct: adjust cross-sectional areas or assign cross-sections to ends of channels to prevent interpolation

Negative dConveyance

$$K = \left(\frac{1.486}{n}\right)AR^{\frac{2}{3}}$$
since $R = \frac{A}{P}$

$$K = \left(\frac{1.486}{n}\right)\frac{A^{\frac{2}{3}}}{P^{\frac{2}{3}}}$$

$$\frac{\partial K}{\partial Z} = \left(\frac{\partial K}{\partial A}\frac{\partial A}{\partial Z} + \frac{\partial K}{\partial P}\frac{\partial P}{\partial Z}\right)$$

$$\frac{\partial K}{\partial Z} = \left(\frac{1.486}{n}\right)\left(\frac{5}{3}\frac{A^{\frac{2}{3}}}{P^{\frac{2}{3}}}\frac{\partial A}{\partial Z} + \left(-\frac{2}{3}\right)\frac{A^{\frac{5}{3}}}{P^{\frac{5}{3}}}\frac{\partial P}{\partial Z}\right)$$
If $\frac{\partial K}{\partial Z} < 0$, then
$$\frac{5}{3}\frac{A^{\frac{2}{3}}}{P^{\frac{2}{3}}}\frac{\partial A}{\partial Z} + \left(-\frac{2}{3}\right)\frac{A^{\frac{5}{3}}}{P^{\frac{5}{3}}}\frac{\partial P}{\partial Z} < 0$$
Or $5\frac{\partial A}{\partial Z} < 2R\frac{\partial P}{\partial Z}$

Negative dConveyance

- derivative of conveyance wrt height
- caused by small line segment slopes
- model run will fail if water level enters a portion of any cross-section with —dk
- identify by running Hydro with printlevel 5
- try to remove -dk in -5 ft < Z > 15 ft NGVD
- A convergence failure could cause water level to go outside of its normal range, cause a —dk error.
- eliminate by changing slope

Negative dConveyance

Interpolated Negative dConveyance

- occurs in virtual(interpolated) cross-sections
- usually caused by differences in bottom elevation
- to correct:
 - change bottom elevation(s)
 - assign cross-section to end(s) of channel toprevent interpolation from adjacent channel(s)

Interpolated Negative dConveyance

Correcting Interpolated Negative dConveyance

CSDP Output files--DSM2 irregular cross-section input

irregular_xsects.inp

```
IRREG GEOM
CHAN
        DTST
                  FTT.FNAME.
        0.62093
                   ./6 0.62093.txt
        0.25863
                   ./7 0.25863.txt
                   ./7 0.86019.txt
        0.86019
        0.13301
                   ./8 0.13301.txt
        0.18331
                   ./9 0.18331.txt
                   ./9 0.89620.txt
        0.89620
 11
        0.05921
                   ./11 0.05921.txt
END
```

Don't edit this file!

irregular_xsects_copy.inp

DSM2 irregular cross-section input

Cross-section: 105_0.75640											
A -	P	M	Rh	Xc	Zc						
=========	========	========	========	========	======						
108887.6	1164.4	1026.1	93.5	86.6	47.7						
9631.0	939.9	931.0	10.2	-1.4	-6.7						
3481.9	728.5	724.1	4.8	-94.7	-11.7						
1451.9	519.6	517.5	2.8	-182.9	-14.4						
1003.7	458.6	456.7	2.2	-227.6	-15.6						
706.3	394.9	393.2	1.8	-275.8	-16.7						
636.5	167.0	165.3	3.8	-288.8	-17.1						
541.1	116.6	115.1	4.6	-300.5	-17.6						
0.0	40.4	40.4	0.0	-308.7	-21.6						
	A 108887.6 9631.0 3481.9 1451.9 1003.7 706.3 636.5 541.1	A P 108887.6 1164.4 9631.0 939.9 3481.9 728.5 1451.9 519.6 1003.7 458.6 706.3 394.9 636.5 167.0 541.1 116.6	A P W 108887.6 1164.4 1026.1 9631.0 939.9 931.0 3481.9 728.5 724.1 1451.9 519.6 517.5 1003.7 458.6 456.7 706.3 394.9 393.2 636.5 167.0 165.3 541.1 116.6 115.1	A P W Rh 108887.6 1164.4 1026.1 93.5 9631.0 939.9 931.0 10.2 3481.9 728.5 724.1 4.8 1451.9 519.6 517.5 2.8 1003.7 458.6 456.7 2.2 706.3 394.9 393.2 1.8 636.5 167.0 165.3 3.8 541.1 116.6 115.1 4.6	A P W Rh Xc 108887.6 1164.4 1026.1 93.5 86.6 9631.0 939.9 931.0 10.2 -1.4 3481.9 728.5 724.1 4.8 -94.7 1451.9 519.6 517.5 2.8 -182.9 1003.7 458.6 456.7 2.2 -227.6 706.3 394.9 393.2 1.8 -275.8 636.5 167.0 165.3 3.8 -288.8 541.1 116.6 115.1 4.6 -300.5						

```
X: -421.68 -360.62 -328.87 -288.44 -232.02 -20.80 98.01 162.39 247.35 564.60 604.42
Y: 100.00 -12.13 -21.64 -21.64 -14.00 -13.75 -8.86 -14.68 -13.05 -1.43 100.00
```

What to do if you get a –dk error

- Use the "H" value and bottom elevation to calculate the elevation of the —dk
- Do any of the irregular cross-sections have —dk at this elevation? If no, it's interpolated —dk.
- If it's not interpolated —dk: should the water be entering this part of the cross-section?
 - If yes, then determine which cross-section(s) are used to create the virtual cross-section, and edit crosssection(s).
 - If no, then it's really a convergence failure

What to do if a channel dries up

- Check all input for errors (fixed and time-varying)
- What is the H value?
 - If large negative value, it's definitely a convergence problem.
 - If small, possibilities are:
 - Is it early in the run? May need to adjust initial conditions. An initial stage that is too high or too low can cause a channel to dry up.
- Does this channel dry up in reality?
 - If yes, then options are:
 - remove channel from grid
 - Make cross-section(s) deeper, either by removing irregular crosssections or by editing them
 - If no:
 - Does the channel almost dry up in reality? Consider making the crosssections deeper.
 - Does the channel never come close to drying up in reality? If initial conditions are ok, consider modifying geometry to remove large cross-sectional area changes.

What to do if a channel overflows

- Check all input (fixed and time-varying)
- Check virtual cross-sections for large changes in cross-sectional area and adjust.

CSDP Installation

- Download and execute the csdpsetup.exe file from <u>http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/csd</u> p/index.html
- The setup program creates c:\semms.env and c:\semmsconLib\. Do not rename or remove these.

Cross-Section Development Program Version 2.53

----- Semmscon Test Results -----

Input: utm27x, utm27y=629355.0,4199384.0

NOTE: the following values should be

629258.5972470464 and 4199579.604951745

If they are not, there may be a problem with the installation of the coordinate conversion routines result of utm27ToUtm83:

These numbers should match these numbers

utm83x, utm83y=629258.5972470464,4199579.604951745

CSDP Demonstration

- Add bathymetry data to database
- select data
 - centerline
 - cross-section line
- draw and edit cross-sections
- create DSM2 input files
- run Hydro
- -dConveyance & convergence failures