R:905

What is claimed is:

An optically active salicylideneaminoalcohol compound of formula
 (1):

$$\begin{array}{c} R_1 & R_2 \\ & R_3 \\ & R_4 \\ & R_2 \\ & R_3 \\ & R_4 \\ & R_4 \\ & R_5 \\ & R$$

wherein R₁ represents

5

10

15

20

25

an alkyl group which may be substituted with a group selected from an alkoxy group, an aralkyloxy group, an aryloxy group and cycloalkoxy group,

an aralkyl, aryl or cycloalkyl group all of which may be substituted with a group selected from an alkyl group, an alkoxy group, an aralkyloxy group, an aryloxy roup and a cycloalkoxy group,

R₂ represents

an alkyl group, a cycloalkyl group, or

an aralkyl or phenyl group which may be substituted with a group selected from an alkyl group, an alkoxy group, an aralkyloxy group, an aryloxy group and a cycloalkoxy group,

when X1 represents a nitro group, X2 is a hydrogen atom,

when X1 represents a chlorine atom, X2 is a chlorine atom, and

when X1 is a hydrogen atom, X2 is a fluorine atom; and

the carbon atom denoted by " * " is an asymmetric carbon atom having either an S or R configuration.

- 2. An optically active salicylideneaminoalcohol compound according to claim 1, wherein R₁ and R₂ are the same or different and independently represent an alkyl group, an aralkyl group, a phenyl group, a 2-methoxyphenyl group, a 2-tert-butoxy-5-tert-butylphenyl group or a 2-octyloxy-5-tert-butylphenyl group.
- 30 3. A process for producing an optically active salicylideneaminoalcohol compound as defined in claim 1, which comprises

reacting

an optically active amino alcohol of formula (2):

$$R_1$$
 $*$
 R_2
 R_2
 R_2
 R_2
 R_2

5 wherein R₁ represents

an alkyl group which may be substituted with a group selected from an alkoxy group, an aralkyloxy group, an aryloxy group and cycloalkoxy group,

an aralkyl, aryl or cycloalkyl group all of which may be substituted with a group selected from an alkyl group, an alkoxy group, an aralkyloxy group, an aryloxy roup, and a cycloalkoxy group,

R₂ represents

a hydrogen atom, an alkyl group, a cycloalkyl group or

an aralkyl or phenyl group which may be substituted with a group selected from an alkyl group, an alkoxy group, an aralkyloxy group, an aryloxy roup and a cycloalkoxy group, and

the carbon atom denoted by " * " is an asymmetric carbon atom having either an S or R configuration, with a 2-hydroxybenzaldehyde derivative of formula (3):

20

15

10

$$X_1$$
—CHO
$$X_2$$
(3)

wherein when X1 represents a nitro, X2 is a hydrogen atom,

when X_1 represents a chlorine atom, X_2 is a chlorine atom, and when X_1 is a hydrogen atom, X_2 is a fluorine atom.

25

4. A process according to claim 3, wherein R₁ and R₂ are the same or different and independently represent an alkyl group, an aralkyl group, a phenyl group, a 2-methoxyphenyl group, a 2-tert-butoxy-5-tert-butylphenyl group or a 2-octyloxy-5-tert-butylphenyl group.

30

5. A chiral copper complex obtained by contacting a mono-valent or

di-valent copper compound with an optically active salicylideneaminoalcohol

6. An adduct comprising a chiral copper complex as defined in claim 5 and a prochiral olefin of formula (5):

wherein R₃, R₄, R₅ and R₆ independently represent

a hydrogen atom,

compound as defined in claim 1 or 2.

a halogen atom,

a (C1-C8)alkyl group which may be substituted with a halogen atom or a lower alkoxy group,

a (C4-C8)cycloalkyl group,

an aryl group which may be substituted with a halogen atom or a lower alkoxy group,

an alkoxy group,

 R_3 and R_4 , or R_5 and R_6 may be bonded at their terminals to form an alkylene group having 2-4 carbon atoms, and

one of R_8 , R_4 , R_5 and R_6 groups represents an alkenyl group which may be substituted with a halogen atom, an alkoxy group or an alkoxy carbonyl group, of which alkoxy may be substituted with a halogen atom or atoms,

provided that when R_3 and R_5 are the same, R_4 and R_6 are not the same.

7. A method for producing a chiral copper complex of formula (1):

$$R_1$$
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2

30

10

15

20

25

(1)'

5

20

wherein R₁ and R₂ are the same or different and independently represent an alkyl group, an aralkyl group, a phenyl group, a 2-methoxyphenyl group, a 2-tert-butoxy-5-tert-butylphenyl group, or a 2-octyloxy-5-tert-butylphenyl group,

when X_1 represents a nitro group, X_2 is a hydrogen atom, when X_1 represents a chlorine atom, X_2 is a chlorine atom, and when X_1 represents a hydrogen atom, X_2 is a fluorine atom,

the carbon atom denoted by " * " is an asymmetric carbon atom having either an S or R configuration,

which comprises contacting a divalent copper compound, in an inert organic solvent, with a chiral salicylideneaminoalcohol compound of formula (1):

$$X_1$$
 X_2
 X_1
 X_2
 X_1
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9
 X_9
 X_9

wherein R₁, R₂ X₁, X₂ and "*" respectively have the same meaning as defined above.

- 8. A method according to claim 7, which further comprises subjecting the resulting solution to precipitation and collecting the precipitated crystals of said chiral copper complex of formula (1).
- 9. A method according to claim 8, said precipitation is carried out by cooling the reaction solution or by adding an aliphatic hydrocarbon solvent.
- 25 10. A method for producing an optically active cyclopropanecarboxylic acid ester of formula (4):

$$R_3$$
 R_4
 R_6
 R_6
 R_6
 R_6

wherein R₃, R₄, R₅, R₆ and R₇ are as defined below,

wherein R_3 , R_4 , R_5 and R_6 are as defined below, with a diazoacetic acid ester of formula (6):

$N_2CHCO_2R_7$ (6),

wherein R₇ is as defined below, in the presence of a chiral copper complex as defined in claim 5,

wherein R₃, R₄, R₅ and R₆ independently represent

a hydrogen atom,

a halogen atom,

a (C1-C8)alkyl group which may be substituted with a halogen atom or a lower alkoxy group,

a (C4-C8)cycloalkyl group,

an aryl group which may be substituted with a halogen atom or a lower alkoxy group,

an alkoxy group,

 R_3 and R_4 , or R_5 and R_6 may be bonded at their terminals to form an alkylene group having 2.4 carbon atoms, and

one of R₃, R₄, R₅ and R₆ groups represents an alkenyl group which may be substituted with a halogen atom, an alkoxy group or an alkoxy carbonyl group, of which alkoxy may be substituted with a halogen atom or atoms,

provided that when R_8 and R_5 are the same, R_4 and R_6 are not the same, and R_7 represents

an alkyl group having 1 to 8 carbon atoms,

a benzyl group which may be optionally substituted with a cycloalkyl group, a lower alkyl group, a lower alkoxy group, a phenoxy group or a halogen atom, or

a phenyl group which may be optionally substituted with a lower alkyl group, a lower alkoxy group or a phenoxy group.

35

30

15

20

25

11. A method according to claim 10, wherein R_7 represents an alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group.

5