

RECEIVED

2 0 JAN 2004

WIPO PCT

REPÚBLICA FEDERATIVA DO BRASIL Ministério do Desenvolvimento, da Indústria e Comércio Exterior. Instituto Nacional da Propriedade Industrial Diretoria de Patentes

CÓPIA OFICIAL

PARA EFEITO DE REIVINDICAÇÃO DE PRIORIDADE

O documento anexo é a cópia fiel de um Pedido de Desenho Industrial Regularmente depositado no Instituto Nacional da Propriedade Industrial, sob Número PI 0300042-7 de 14/01/2003.

Rio de Janeiro, 06 de Janeiro de 2004.

ORIA REGINA COSTA Chefe do NUCAD Mat. 00449119

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

14.W Kins 60042

_+ Protocolo depósito **DEPÓSITO** Pedido de Patentes ou de Zetaneta múmero e data de depósito Certificado de Adição : Ao Instituto Nacional da Propriedade Industrial: O requerente solicita a concessão de um registro de desenho industrial nas condições abaixo indicadas: 1. Depositante (71): 1 Nome: companhia brasileira de metalurgia e mineração 1.2 Qualificação: companhia brasileira. 33131541000370 1.3 CNPJ/CPF: CEP 38180-000, 1.4 Endereço completo: Córrego da Mata s/no., Araxá, Minas Gerais, Brasil.) continua em folha anexa Telefone: 1.5 (FAX: 2. Natureza: 2.2 Modelo de Utilidade ☐ 2.1.1 Certificado de Adição ∠ 2.1 Invenção Escreva, obrigatoriamente e por extenso, a Natureza desejada: Patente de Invenção Título da Invenção, do Modelo de utilidade ou do Certificado de Adição (54): OMPOSIÇÕES DE VIDRO PARA A PRODUÇÃO DE PEÇAS DE VIDRO ISENTAS DE CHUMBO) continua em folha anexa (, de do pedido nº 4. Pedido de Divisão 5. Prioridade Interna - O depositante reivindica a seguinte prioridade: (66)Data de Depósito 3.5 Nº de depósito ::: 6. Prioridade - O depositante reivindica a(s) seguinte(s) prioridade(s): Data do depósito Número do depósito País ou organização de origem) continua em folha anexa (

·			100		··	
7. Inventor (72): () Assinale aqui se o(s) mesmo(s) (art. 6° § 4° da LPI e item 1.1 d 7.1 Nome: Antônio Telhado Pereira CPF: 534746607-30 7.2 Qualificação: engenheiro químic 7.3 Endereço: Rua Esmeralda, 73 -	o Ato Norm	ativo nº 12	lgação 7/97)			
7 4 000	elefone:		(X			olha anexa
8. Declaração na forma do item 3.2 do	Ato Norm	ativo nº 12	7/97:			
		•	÷	(.	ن ن ن	em anexo
. Declaração de divulgação anterior n	ião prejudic	cial (Períod	lo de graca).	·	<u>, , , , , , , , , , , , , , , , , , , </u>	
(art. 12 da LPI e item 2 do Ato Normativ	o n° 127/97):	io do graça).	·		
				()	em anexo
0. Procurador (74):						***************************************
0.1 Nome e CPF/CNPJ: MOMSEN, LE 0.2 Endereço: Rua Teófilo Otoni, 6	•		CNPJ 3 de Janeiro		9 5/00 0:	1-26
0.3 CEP: 20090-080	Telefon	e: (021) :	2518-2264			
11. Documentos anexados: (assinale e ir Deverá ser indicado o nº total de somento 11.1 Guia de recolhimento 11.2 Procuração 11.3 Documentos de prioridade 11.4 Doc. de contrato de Trabalho 11.9 Outros (especificar):	1 fls. 2 fls. fls.	as de cada 11.5 Relat	documento) tório descritivindicações nhos			8 fls. 1 fls. 2 fls. 1 fls. fls.
11.10 Total de folhas anexadas						15 fls.
2. Declaro, sob penas da Lei, que todas erdadeiras:	as informa	ÉI	DUARDO COLONN	A ROSMAN	letas e	
io de Janeiro, RJ. 14 de Janeiro de	2003	Αį	ente da Proprieda "n.º Matricula	de Industrial 252	•	
	-	pp.MOMSEN	, LEONARDOS &	CIA Matri	ula Nº 353	

Formulário 1.01- Depósito de Pedido de Patente ou de Certificado de Adição (folha 2/2)

Continuação do quadro 07. Inventor

Andreia Duarte Menezes; engenheira química, brasileira

CPF: 947890966-53

Rua Colibris 62 Área 1 - Araxá - Minas Gerais, Brasil

CEP: 38182-192

Frederico Werner Strauss; engenheiro graduado em materiais inorgânicos não metálicos, brásileiro

CPB: 383682859-68

Rua Arnoldo Beck 300, Itoupava Central, Blumenau - Santa Catarina, Brasil CEP: 89062-270

Débora da Silvá; assessora técnica, brasileira

CPF: 006837519-05

Qua Adriano Kormann 409, Bela Vista, Gaspar - Santa Catarina, Brasil CEP: 89110-000

"COMPOSIÇÕES DE VIDRO PARA A PRODUÇÃO DE PEÇAS DE VIDRO ISENTAS DE CHUMBO"

Campo da Invenção

A presente invenção se refere a composições de vidro para a produção de peças de vidro isentas de chumbo, com massa específica superior a 2,4 g/cm³ e índice de refração mínimo de 1,51, que possam ser utilizados para produção de peças finas de mesa e decorativos com características semelhantes às encontradas nas peças produzidas com a formulação de 24% de PbO (sonoridade, brilho transparência, maleabilidade).

5

15

25

A necessidade da produção de novos vidros com as mesmas características dos cristais com 24% de PbO advêm do fato de que o chumbo, bem como os seus compostos, apresenta certa toxidade quando em contato humano direto. Por este motivo, sempre que seja tecnicamente possível, deverá optar-se por produtos alternativos de menor toxidade.

A proposta da presente intenção é a substituição do Chumbo pelo Nióbio nas composições de vidro.

Fundamentos da Invenção

O chumbo é um elemento químico do grupo dos metais. Maleável e resistente, é mau condutor de eletricidade. Seu número atômico é 82 e o símbolo químico é Pb, derivado do latim *plumbum*. Tem uma vasta gama de aplicações e é um dos metais mais utilizados no mundo.

O chumbo é empregado como protetor de tubulações e cabos subterrâneos condutores de eletricidade. Para absorver radiações de ondas curtas, é usado como protetor de reatores nucleares, aceleradores de partículas, em equipamentos de raios X, no transporte e armazenagem de material radioativo. Numerosos sais de chumbo têm diversas aplicações, como por exemplo o amarelo e o vermelho de cromo como corantes e pigmentos; o monóxido de chumbo, ou litargírio, na fabricação do vidro, na vulcanização da borracha, e como componente de esmaltes vítreos; o dióxido

de chumbo nas placas positivas de baterias elétricas; o carbonato de chumbo fornece alvaiade.

A principal fonte de chumbo é a galena, cuja mineração visa também o aproveitamento de outros metais a ela associados, como prata, ouro, zinco, cádmio, bismuto, arsênio e antimônio.

A produção mundial de chumbo concentra-se nos Estados Unidos da América, na Austrália, no Canadá, no Peru e no México. Algumas jazidas do norte e sudoeste da África aumentaram muito a produção no final do século XX. Quase todo o chumbo produzido é consumido pelos Estados Unidos e Europa. Tomando como base de cálculo a tonelagem de metal refinado, o chumbo ocupa o quinto lugar dentre os metais mais consumidos no mundo, depois do ferro, alumínio, cobre e zinco.

No Brasil, a produção iniciou-se na Bahia, ainda hoje o maior produtor do país, vindo em seguida São Paulo e Paraná. Os minérios de chumbo brasileiros, principalmente a galena, apresentam alto teor de prata (cerca de 2,5kg para uma tonelada de chumbo refinado). Ao final do século XX, estimava-se que a produção brasileira seria suficiente para atender à demanda interna.

O chumbo e os seus compostos minerais podem provocar uma intoxicação conhecida por saturnismo; a sua entrada no organismo pode darse pelos três modos a seguir: penetração digestiva de poeiras grossas; absorção cutânea; e/ou, penetração respiratória de poeiras muito finas e sobre tudo de vapores. Dessa forma é saudável evitar a utilização de materiais contendo chumbo e seus derivados.

O Nióbio, o elemento 41, foi descoberto na Inglaterra em 1801 por Charles Hatchett, que na época o denominou de colúmbio. Posteriormente, o químico alemão Heinrich Rose, pensando haver encontrado um novo elemento ao separá-lo do metal tântalo, deu-lhe o nome de nióbio em homenagem a Níobe, filha do mitológico rei Tântalo.

X

25

15

5

As informações mais antigas sobre o uso de nióbio datam de 1925, referindo-se à substituição do tungstênio na produção de ferramentas de aço. No início da década de 1930, o nióbio passou a ser utilizado na prevenção de corrosão intergranular em aço inoxidáveis.

Até a descoberta quase simultânea de depósitos de pirocloro no Canadá (Oka) e no Brasil (Araxá), na década de 50, o uso do nióbio era limitado pela oferta limitada (era um subproduto do tântalo) e custo elevado. Com a produção primária de nióbio, o metal tornou-se abundante e ganhou importância no desenvolvimento de materiais de engenharia.

5

15

25×

Atualmente, o Brasil possui a maior jazida conhecida de Nióbio do mundo, suficiente para mais de 400 anos de produção.

Na década de 50, com o início da corrida espacial, aumentou muito o interesse pelo nióbio, o mais leve dos metais refratários. Ligas de nióbio, foram desenvolvidas para utilização nas indústrias espacial e nuclear, e também para fins relacionados à supercondutividade. Os tomógrafos de ressonância magnética para diagnóstico por imagem, utilizam magnetos supercondutores feitos com a liga de Nióbio.

O conhecimento científico se revelou essencial para o elemento 41. Os avanços conseguidos até aqui ampliaram o raio de aplicação do nióbio em aços, superligas, materiais intermetálicos e ligas de Nb, bem como em compostos, revestimentos, nanomateriais, dispositivos optoeletrônicos e catalizadores.

Devido à toxidade do chumbo, esta invenção vem com o propósito de retirá-lo da formulação básica do cristal, substituindo-o pelo Nióbio, que é totalmente inerte, não apresentando risco em seu manuseio às pessoas que precisam ter contato direto com este material.

Outro ponto salientado na substituição do chumbo pelo nióbio, é o fato do chumbo ser adquirido fora do país, no México, pois o chumbo extraído no Brasil está fora dos padrões de qualidade para a produção de

peças de cristais, além de que, este produto só é encontrado em granulometrias muito baixas, o que no momento do preparo da mistura acaba por emitir uma quantidade muito grande de poeira facilitando a contaminação dos operadores.

Devido a isto, pesquisas vêm sendo realizadas em busca de materiais que possam substituí-lo nos cristais finos de mesa. Sabe-se que mesmo em pequenas quantidades o chumbo pode ser lixiviado dos vidros.

A patente norte-americana US 6333288 sobre vidros ópticos ensina que Nb₂O₅ e La₂O₃ aumentam o índice de refração. Além disso, ambos os componentes podem aumentar a transmissão dos vidros.

A patente norte-americana US 4224074 sobre matéria prima de vidros relata que a utilização ZrO₂ aumenta o índice de refração e fornece excepcional durabilidade química. Também ensina que TiO₂ e HfO podem ser adicionados para aumentar o índice de refração.

(10)

J.

O pedido de patente europeu EP 0594422A, referente a composições de vidro, ensina que quando o teor de TiO₂ for menor do que 5%, os alvos dos valores de índice de refração e dispersão não podem ser atingidos. Por outro lado quando o teor de TiO₂ exceder 8%, aumenta significantemente a tendência do aparecimento de coloração amarela, e isto é

indesejável para os cristais onde a transparência é importante.

A patente norte-americana US 6184166 refere-se às composições de vidros livres de chumbo, onde se substitui o PbO por ZnO. Esta substituição conjuntamente com o controle dos óxidos alcalinos proporciona a característica desejada de viscosidade alcançada previamente com o óxido de chumbo. Os vidros atuais, contendo o óxido de zinco têm melhor resistência do que os vidros que contêm o óxido de chumbo, além de fornecerem durabilidade melhorada ao ataque químico. No entanto, sabe-se que o ZnO introduzido na massa de vidro pode conter uma quantidade relativamente grande de CdO, substância altamente tóxica mesmo em

15

5

20

25

李行

concentrações baixas

Sumário da Invenção

Assim, é objetivo da presente invenção prover composições de vidro para produção de cristais livres de chumbo, contendo massa específica superior a 2,4 g/cm³, índice de refração mínimo de 1,51 e alta resistência ao ataque químico, cujas composições são caracterizadas pelo fato de compreenderem, em massa:

de cerca de 50% a cerca de 75% de SiO₂; de cerca de 0,1% a cerca de 1% de As₂O₃; de cerca de 5% a cerca de 15% de K₂O; de cerca de 2% a cerca de 5% de Na₂O; de cerca de 3% a cerca de 12% de CaO; de cerca de 0,1% a cerca de 5% de BaO; de cerca de 0,1% a cerca de 10% de Nb₂O₅; e, até 5% de outros elementos.

200

15

G.

25

5

A sílica (SiO₂) é responsável pela formação da rede básica do vidro;

Os teores de Na₂O e K₂O funcionam como modificadores da rede e agem como fluxos facilitando a fundição do cristal. Efeitos adversos são que aumentos excessivos destes componentes aumentam o coeficiente de expansão térmica que é frequentemente indesejável, e diminuem a durabilidade química.

O CaO é o alcalino terroso mais importante para a formação do vidro.

BaO e CaO poderão ser empregados para assegurar alta massa específica e alto índice de refração.

Nb₂O₅ é utilizado para aumentar o índice de refração como também a resistência química e física do cristal.

Entre os aditivos que facilitam "refinação", As₂O₃ pode ser

usado até uma quantidade de 1%. O cristal pode conter ainda agentes da descoloração, tais como CoO, NiO, Nd₂O₃.

A medida do índice de refração foi efetuada com a ajuda de um Abbe Refractometer da Atago. Para a medida de microdureza utilizou-se o microdurômetro FM da Future Tech. Coorporation, com dispositivo de leitura semi-automático. A carga de identificação foi 50g. As análises foram realizadas na superfície polida do vidro e 7 medidas foram realizadas para cada amostra. Os ensaios de índice de refração e microdureza foram realizados no Laboratório de Materiais Vítreos (LaMaV) da Universidade Federal de São Carlos.

5

15

, 1

25

A determinação do coeficiente de dilatação térmica foi efetuada segundo a NBR 13818:1997 Anexo K. Esta análise foi realizada no Centro de Caracterização e Desenvolvimento de Materiais (CCDM).

O ensaio de determinação do coeficiente de dilatação térmica fornece os seguintes dados:

Ponto de Recozimento (Anneling Point AP): O ponto de recozimento corresponde à máxima temperatura na faixa de recozimento na qual a força interna do vidro será substancialmente eliminada. A viscosidade do vidro a esta temperatura é 10¹³dPa.s (poise). O ponto de recozimento é medido pelo método Fiber Elongation Method descrito na ASTM-C336.

Ponto de amolecimento (Softening Point SP): O ponto de amolecimento é a temperatura na qual o vidro deforma sobre o seu próprio peso. A viscosidade do vidro é 10^{7,65} dPa.s(poise) nesta temperatura. O ponto de amolecimento é medido pelo método Fiber Elongation Method descrito na JIS-R3104 e ASTM-C338.

Temperatura de transição vítrea (Transformation Temperatura Tg): A temperatura de transição vítrea é a faixa de temperatura na qual o vidro gradualmente transforma do seu estado sólido para o estado "plástico". A temperatura de transição pode ser determinada através da curva de

9.

expansão térmica. O coeficiente de viscosidade nesta temperatura é 10¹³ poise.

Coeficiente de Expansão Térmica (CTE): Um corpo se expande quando é aquecido. Expansão térmica é a mudança relativa em uma dada dimensão quando um corpo é aquecido.

5

.

A durabilidade química foi testada através de pesagens após o tratamento em pH 1 e neutro em diferentes tempos, na temperatura de 50°C.

Descrição Detalhada da Invenção

A fim de superar as inconveniências dos cristais livres de chumbo discutidos anteriormente, propôs-se a reformulação da mistura (% em peso de óxido) para a fabricação de peças de vidro livres de chumbo descritas nas Tabelas 1 e 2 abaixo:

Tabela 1: Propriedades químicas do Cristal de nióbio

<u> </u>	Propriedades Químicas		
Elemento	Teste 1	Teste 2	
%SiO ₂	72	74	
%As ₂ O ₃	0,3	0,3	
%K₂O	10,6	. 11	
%Na₂O	5,2	5,4	
%CaO	5,1	5,3	
%BaO	2	2	
%Nb ₂ O₅	4,6	(4g) - 1	

Tabela 2: Propriedades físicas do Cristal de nióbio

Propriedad	Propriedades Físicas					
Propriedade	Teste 1	Teste 2				
(S.P.) °C	592	577				
Tg °C	521	516				
(CTE)x10 ⁻⁷ /°C	85,3	99,9				
Massa específica (g/cm³)	2,52	2,7				
nd	1,52	1,51				
Dureza (Hv) kgf/mm ²	521*/-8	502 +/- 5				

A resistência química das amostras (vide Tabela 3) foi avaliada através da perda do peso após a imersão em solução neutra por períodos de até 105 horas e em uma solução do pH 1 até 57 horas. Os resultados são mostrados nas Figuras 1 e 2, podendo-se observar que as amostras que contêm Nb₂O₅ sofrem menor ataque químico.

Tabela 3: Percentagem de Nb₂O₅ e PbO nos testes analisados

5

Amostra	%Nb ₂ O ₅	PbO
4%PbO	es. 0	4 49
24%PbO	0	24
4%Nb ₂ O ₅	4	0
1%Nb ₂ O ₅	1	0

REIVINDICAÇÕES

1. Composições de vidro para produção de cristais livres de chumbo, contendo massa específica superior a 2,4 g/cm³, índice de refração mínimo de 1,51 e alta resistência ao ataque químico, cujas composições são caracterizadas pelo fato de compreenderem, em massa:

5

 $\tilde{\epsilon}$

de cerca de 50% a cerca de 75% de SiO₂; de cerca de 0,1% a cerca de 1% de As₂O₃; de cerca de 5% a cerca de 15% de K₂O; de cerca de 2% a cerca de 5% de Na₂O; de cerca de 3% a cerca de 12% de CaO; de cerca de 0,1% a cerca de 5% de BaO; de cerca de 0,1% a cerca de 10% de Nb₂O₅; e, até 5% de outros elementos.

an' a Eq. (a a rain day).

Teste de corrosão pH =1

٠, ;

:..:

 $\mathbb{N}_{\mathbb{R}}$

RESUMO

"COMPOSIÇÕES DE VIDRO PARA A PRODUÇÃO DE PEÇAS DE VIDRO ISENTAS DE CHUMBO"

A invenção se refere a novas composições de vidro para produção de cristais livres de chumbo, contendo massa específica superior a 2,4 g/cm³, índice de refração mínimo de 1,51 e alta resistência ao ataque químico, cujas composições são caracterizadas pelo fato de compreenderem, em massa:

de cerca de 50% a cerca de 75% de SiO₂; de cerca de 0,1% a cerca de 1% de As₂O₃; de cerca de 5% a cerca de 15% de K₂O; de cerca de 2% a cerca de 5% de Na₂O; de cerca de 3% a cerca de 12% de CaO; de cerca de 0,1% a cerca de 5% de BaO; de cerca de 0,1% a cerca de 10% de Nb₂O₅; e, até 5% de outros elementos.

Ox