[Recitation 5]

Quasi-Experiment, Natural Experiments, And Observational Studies

Jungmin Han

The Outline of Today's Recitation

A Brief Review

- "True" Experiment vs. Natural Experiment
- The Strengths and Limitations of Quasi-Experiments
- "Passive Observation" or "Ex Post Facto" Design
- The Strengths and Limitations of Passive Observation

Discussion

- "Why Demonstrating is Good for Kids" (NYT)
- "Do 'Fast and Furious' Movies Cause a Rise in Speeding?" (NYT)
- "Coronavirus Vaccines Work. But This Statistical Illusion Makes People Think They Don't" (Washington Post)

A Model of the Research Process

The Classic Experimental Design

	I	Pre-Test		Post-Test	Difference
Treatment Group	R	M_{1t}	X	M _{2t}	M_{2t} - M_{1t}
Control Group	R	M_{1c}		M _{2c}	M_{2c} - M_{1c}

- 1. Create two groups through random assignment
- 2. Measure the dependent variable
- 3. Expose one group to the independent variable (Treatment)
- 4. Measure the dependent variable again

Parallel Trend

Coefficient	Calculation	Interpretation
β_0	В	Baseline average
β_1	D-B	Time trend in control group
β_2	A-B	Difference between two groups pre-intervention
β_3	(C-A)-(D-B)	Difference in changes over time

https://www.publichealth.columbia.edu/research/population-health-methods/difference-difference-estimation

The Classic Quasi-Experimental Design

	Pre-Test		Post-Test	Difference
Treatment Group	M_{1t}	X	M _{2t}	M_{2t} - M_{1t}
Control Group	M_{1c}		M _{2c}	M_{2c} - M_{1c}

- 1. Measure the dependent variable
- 2. Expose one group to the independent variable (Treatment)
- 3. Measure the dependent variable again

The Classic Quasi-Experimental Design (Example)

Benefits of Quasi-Experiments

- QE studies with pre-tests can **control** for the baseline levels of Y for all groups the starting points on the dependent variable.
- The researcher directly observes **changes** in Y, and(usually) knows that X came before the changes in Y were observed.
- QE studies often have relatively high **external validity**, as they involve real world observations, without laboratory or other constraints imposed through classic experimental methods.

Limitations of Quasi-Experiments

- As with the classic experiment, the QE researcher may not have a problem of...
 - Not knowing the true length of time it takes for X to cause Y
 - Possible non-compliance and drop-out
 - Possible unknown variation in treatment
 - Possible "contamination" of the treatment and control groups through spillover effects
 - Possibly unrepresentative sample sites
- A bigger problem? "Selection Bias" (History, Maturation, and Regression)
 - We can't completely rule out the possibility that **Z confounds** the process and that, therefore, there is not really a causal effect of X on Y.
 - "Self-selection": the Z confounds that lead individuals or units to select themselves into the treatment may also influence changes in Y over time.

The Classic Natural Design

- 1. Two groups are created by "as if" random assignment
- 2. Measure the dependent variable
- 3. Treatment is given by "nature"
- 4. Measure the dependent variable again

"Passive Observation" or "Ex Post Facto" Design

	Post-Test	
X	M _t	
M_c		
	X	

- 1. Treatment is given in some ways
- 2. Measure the dependent variable

The Observational Design (Example)

Self-report Question?

Outcome Measurement

Strengths and Limitations of "Passive Observation"

- Strengths
 - External validity
 - No manipulation of X
- Limitations
 - **Spuriousness**: No randomization & No pre-test
 - No control of X? Endogeneity problem (Y causes X, not X causes Y)
- How to overcome these threats?
 - **Statistical controls** of Zs (multivariate analysis)
 - More time periods and More observations
 - A Panel & Time-series & Multi-level design

Article 1. "Why Demonstrating Is Good for Kids" (NYT)

- Following the researcher's argument, what does lead young adults who voted, volunteered or engaged in activism to go further in school and have higher incomes?
- Does their evidence necessarily guarantee the causal linkage between activism and better academic and financial outcomes? Why, or why not?

Article 2.

"Do 'Fast and Furious' Movies Cause a Rise in Speeding?" (NYT)

- What is the suggested causal linkage between watching bad behaviors in movies and engaging in risky behaviors in real life? Is this problematic?
- What research design do studies use to overcome such kinds of potential problems in making a causal claim?
 - What is "as-if" random assignment?
 - Do you think this is random enough?

Article 3. "Coronavirus Vaccines Work. But This Statistical Illusion Makes People Think They Don't" (Washington Post)

- What is Simpson's paradox? How is it related to the high hospitalization figures in Israel and the high death rate of White people in the US?
- What does make people read data incorrectly? Can you explain this with the concept of "parallel trend"?