A APPENDIX

Comparison with uniform oversampling

Dataset	Model	HR@1	HR@5	HR@10		
	RVAE	0.2548	0.5816	0.7433		
Ξ	$RVAE^{S,u}$	0.122	0.3998	0.5929		
MovieLens-1M	RVAE ^S	0.1951	0.5064	0.6876		
Ler	BPR	0.0946	0.3582	0.5501		
vie	$BPR^{S,u}$	0.0311	0.1422	0.2726		
Mo	BPR^S	0.0612	0.249	0.4267		
	RVAE	0.2073	0.434	0.5532		
GF	RVAE ^{S, u}	0.0244	0.1357	0.2814		
Amazon-GGF	RVAE ^S	0.216	0.468	0.5849		
ZOI	BPR	0.2151	0.4041	0.5088		
ша	$BPR^{S,u}$	0.1587	0.3666	0.4796		
	BPR ^S	0.1404	0.346	0.4631		
	RVAE	0.2769	0.6222	0.7784		
e-a	RVAE ^{S, u}	0.3977	0.7178	0.835		
Citeulike-a	RVAE ^S	0.3585	0.697	0.8254		
	BPR	0.3399	0.6689	0.7969		
	$BPR^{S,u}$	0.3926	0.6943	0.8044		
	BPR ^S	0.3568	0.6677	0.7837		
	RVAE	0.2754	0.7024	0.8761		
Pinterest	$RVAE^{S,u}$	0.2106	0.652	0.8589		
	RVAE ^S	0.2701	0.6985	0.8735		
Pir	BPR	0.2464	0.6361	0.8147		
	$BPR^{S,u}$	0.2643	0.6951	0.8669		
	BPR ^S	0.2298	0.6107	0.7895		
-r3	RVAE	0.0624	0.2013	0.3093		
	$RVAE^{S,u}$	0.0512	0.1843	0.299		
Yahoo-r3	$RVAE^S$	0.0578	0.1959	0.3092		
Yał	BPR	0.0514	0.1756	0.2786		
	$BPR^{S,u}$	0.0553	0.1901	0.2913		
	BPR ^S	0.0429	0.162	0.2631		

Table 1: Global accuracy effects on the oversampling calibration on the benchmark datasets. Results have been obtained by averaging five different runs on test set.

Table 1 shows the results in terms of $HR@\{1,5,10\}$ obtained by comparing the baseline model (RVAE and BPR) and the oversampling strategy, applied with different values of d. $RVAE^S$ (resp. BPR^S) represents our standard oversampling approach, while $RVAE^{S,u}$ (resp. $BPR^{S,u}$) represents a uniform oversampling, setting d=1. As we can see, the uniform oversampling severely affects most of the global performances over all the considered cutoffs, especially on RVAE. Nevertheless, it results in less disruptive effects on BPR. In our hypothesis, this is due to its user-/item-embedding modeling, since the additional constraint on geometrical closeness imposed by the user embedding, provides less freedom on the item embedding.

1

Results Tables

Dataset	Model				HR@10								
		Global	Low	Med	High	Global	Low	Med	High	Global	Low	Med	High
MovieLens-1M	RVAE	0.2548	0.0	0.11	0.37	0.5816	0.0	0.37	0.75	0.7433	0.01	0.56	0.89
	RVAES	0.1951	0.02	0.14	0.24	0.5064	0.05	0.4	0.6	0.6876	0.15	0.58	0.78
	$RVAE^{E}$	0.2526	0.0	0.11	0.37	0.5721	0.1	0.36	0.75	0.7205	0.3	0.53	0.88
	RVAE ^{Jan}	0.1694	0.01	0.15	0.19	0.4696	0.08	0.42	0.51	0.6483	0.17	0.59	0.7
lov	RVAE ^{IPS}	0.131	0.0	0.16	0.11	0.3928	0.0	0.43	0.36	0.5827	0.03	0.61	0.56
\geq	$RVAE^{b(r)}$	0.2424	0.0	0.12	0.34	0.5736	0.0	0.39	0.73	0.7384	0.03	0.57	0.88
	RVAE ^{PD}	0.1796	0.0	0.13	0.22	0.504	0.0	0.39	0.6	0.6915	0.0	0.57	0.79
H	RVAE	0.2073	0.02	0.16	0.62	0.434	0.08	0.41	0.91	0.5532	0.15	0.56	0.97
Amazon-GGF	$RVAE^S$	0.216	0.03	0.2	0.5	0.468	0.11	0.45	0.91	0.5849	0.19	0.59	0.98
'n-	$RVAE^{E}$	0.2066	0.02	0.16	0.61	0.4272	0.1	0.39	0.9	0.5377	0.18	0.52	0.96
azc	RVAE ^{Jan}	0.1098	0.03	0.07	0.36	0.2818	0.13	0.24	0.67	0.4011	0.21	0.36	0.8
ŢŢ,	RVAE ^{IPS}	0.1504	0.01	0.12	0.45	0.3494	0.04	0.33	0.76	0.4695	0.09	0.47	0.87
7	$RVAE^{b(r)}$	0.2214	0.01	0.16	0.72	0.4428	0.08	0.42	0.94	0.5595	0.14	0.56	0.98
	RVAE ^{PD}	0.1252	0.03	0.12	0.23	0.3661	0.11	0.36	0.66	0.5125	0.17	0.52	0.85
	RVAE	0.2769	0.06	0.2	0.51	0.6222	0.27	0.58	0.82	0.7784	0.47	0.76	0.91
e-9	RVAES	0.3585	0.16	0.29	0.55	0.697	0.46	0.67	0.83	0.8254	0.63	0.81	0.91
ij	$RVAE^{E}$	0.275	0.19	0.18	0.49	0.5755	0.52	0.49	0.76	0.6863	0.74	0.62	0.82
Citeulike-a	RVAE ^{Jan}	0.1451	0.14	0.12	0.2	0.4565	0.45	0.45	0.48	0.6572	0.64	0.65	0.67
Ü	RVAE ^{IPS}	0.2127	0.07	0.16	0.37	0.523	0.26	0.48	0.68	0.6928	0.44	0.67	0.81
	$RVAE^{b(r)}$	0.2604	0.02	0.15	0.55	0.5929	0.17	0.53	0.85	0.7594	0.35	0.74	0.93
	RVAE ^{PD}	0.2419	0.07	0.2	0.37	0.5894	0.23	0.57	0.72	0.7523	0.34	0.76	0.86
	RVAE	0.2754	0.13	0.23	0.47	0.7024	0.5	0.67	0.86	0.8761	0.68	0.86	0.95
st	$RVAE^{S}$	0.2701	0.24	0.22	0.45	0.6985	0.62	0.66	0.86	0.8735	0.77	0.86	0.95
ere	$RVAE^{E}$	0.273	0.28	0.22	0.47	0.695	0.67	0.65	0.86	0.8538	0.82	0.83	0.94
Pinterest	RVAE ^{Jan}	0.1956	0.22	0.21	0.14	0.6185	0.62	0.63	0.57	0.8315	0.78	0.83	0.83
	RVAE ^{IPS}	0.218	0.21	0.22	0.2	0.646	0.62	0.65	0.66	0.8441	0.77	0.84	0.87
	$RVAE^{b(r)}$	0.2303	0.12	0.22	0.26	0.6585	0.48	0.65	0.71	0.8567	0.66	0.85	0.89
	RVAE ^{PD}	0.199	0.24	0.22	0.13	0.6429	0.59	0.66	0.6	0.8567	0.71	0.86	0.87
Yahoo-r3	RVAE	0.0624	0.0	0.04	0.21	0.2013	0.03	0.14	0.55	0.3093	0.08	0.25	0.7
	RVAE ^S	0.0578	0.01	0.04	0.15	0.1959	0.06	0.15	0.46	0.3092	0.11	0.25	0.64
	$RVAE^{E}$	0.0604	0.01	0.03	0.19	0.1813	0.09	0.1	0.48	0.2619	0.25	0.17	0.58
ahc	RVAE ^{Jan}	0.0499	0.03	0.03	0.15	0.1703	0.12	0.12	0.39	0.2763	0.22	0.22	0.54
X	RVAE ^{IPS}	0.014	0.01	0.01	0.02	0.0598	0.03	0.06	0.09	0.1162	0.06	0.11	0.17
	$RVAE^{b(r)}$	0.062	0.0	0.03	0.21	0.1955	0.03	0.14	0.53	0.3027	0.07	0.24	0.68
	RVAE ^{PD}	0.0549	0.0	0.02	0.23	0.1812	0.0	0.1	0.59	0.2841	0.0	0.21	0.75

Table 2: Results with $\it RV\!AE$, obtained by averaging five different runs on test set.

Dataset	Model	HR@1					HR@	95		HR@10			
		Global	Low	Med	High	Global	Low	Med	High	Global	Low	Med	High
\mathbb{Z}	BPR	0.0946	0.0	0.02	0.19	0.3582	0.01	0.15	0.61	0.5501	0.01	0.34	0.81
MovieLens-1M	BPR ^S	0.0612	0.01	0.03	0.1	0.249	0.04	0.17	0.35	0.4267	0.07	0.33	0.55
ens	BPR^{E}	0.0923	0.02	0.01	0.15	0.3531	0.06	0.12	0.55	0.5439	0.09	0.28	0.76
ieL	BPR^{Jan}	0.0746	0.0	0.05	0.11	0.3171	0.01	0.23	0.42	0.5203	0.02	0.42	0.65
04.	BPR ^{IPS}	0.043	0.01	0.04	0.05	0.181	0.04	0.17	0.2	0.3276	0.07	0.31	0.35
Ξ	$BPR^{b(r)}$	0.0683	0.0	0.03	0.11	0.2983	0.0	0.18	0.44	0.506	0.01	0.37	0.68
	BPR ^{PD}	0.1055	0.0	0.02	0.21	0.3938	0.01	0.17	0.66	0.5941	0.02	0.37	0.86
———	BPR	0.2151	0.01	0.05	0.39	0.4041	0.03	0.18	0.64	0.5088	0.08	0.3	0.74
Amazon-GGF	BPR^{S}	0.1404	0.01	0.06	0.22	0.346	0.07	0.18	0.53	0.4631	0.14	0.27	0.67
'n-	BPR^{E}	0.1932	0.02	0.04	0.34	0.3112	0.18	0.11	0.49	0.3825	0.36	0.17	0.57
azc	BPR ^{Jan}	0.1586	0.01	0.04	0.28	0.2926	0.07	0.13	0.46	0.3766	0.12	0.21	0.55
- Tu	BPR ^{IPS}	0.1727	0.0	0.04	0.31	0.3326	0.03	0.15	0.53	0.4211	0.08	0.24	0.62
7	$BPR^{b(r)}$	0.1855	0.0	0.04	0.33	0.3452	0.03	0.16	0.54	0.4445	0.07	0.26	0.64
	BPR^{PD}	0.2019	0.01	0.06	0.35	0.3899	0.05	0.2	0.6	0.4981	0.1	0.31	0.71
	BPR	0.3399	0.14	0.29	0.55	0.6689	0.44	0.65	0.82	0.7969	0.61	0.79	0.9
Citeulike-a	BPR^S	0.3568	0.21	0.33	0.5	0.6677	0.5	0.66	0.78	0.7837	0.64	0.78	0.86
liķ	BPR^{E}	0.3249	0.22	0.26	0.48	0.6185	0.48	0.57	0.75	0.7448	0.63	0.71	0.84
ten	BPR^{Jan}	0.2732	0.26	0.25	0.33	0.5746	0.57	0.56	0.61	0.718	0.7	0.71	0.74
Ċ	BPR ^{IPS}	0.3386	0.16	0.3	0.52	0.6556	0.44	0.64	0.79	0.7789	0.6	0.78	0.87
	$BPR^{b(r)}$	0.2957	0.1	0.25	0.49	0.5968	0.32	0.58	0.78	0.7372	0.49	0.73	0.87
	BPR ^{PD}	0.3357	0.18	0.3	0.5	0.6708	0.5	0.65	0.8	0.8037	0.65	0.8	0.88
	BPR	0.2464	0.14	0.22	0.34	0.6361	0.45	0.6	0.74	0.8147	0.62	0.79	0.88
st	BPR^S	0.2298	0.22	0.21	0.28	0.6107	0.5	0.59	0.69	0.7895	0.64	0.77	0.86
ere	BPR^{E}	0.2326	0.23	0.2	0.3	0.5059	0.54	0.46	0.59	0.6041	0.69	0.57	0.69
Pinterest	BPR^{Jan}	0.19	0.22	0.2	0.16	0.569	0.56	0.57	0.56	0.7631	0.72	0.76	0.78
	BPR ^{IPS}	0.2539	0.16	0.23	0.33	0.6524	0.49	0.62	0.75	0.83	0.64	0.81	0.9
	$BPR^{b(r)}$	0.2479	0.15	0.19	0.42	0.6287	0.47	0.56	0.83	0.8058	0.62	0.77	0.93
	BPR ^{PD}	0.2432	0.17	0.23	0.28	0.6468	0.51	0.63	0.71	0.8275	0.66	0.81	0.88
£	BPR	0.0514	0.0	0.02	0.18	0.1756	0.02	0.11	0.48	0.2786	0.04	0.21	0.63
	BPR ^S	0.0429	0.01	0.03	0.12	0.162	0.03	0.12	0.38	0.2631	0.07	0.2	0.55
Yahoo-r3	BPR^{E}	0.0558	0.0	0.02	0.2	0.1836	0.03	0.1	0.52	0.2841	0.12	0.2	0.64
ho	BPR^{Jan}	0.0451	0.02	0.02	0.12	0.1494	0.08	0.11	0.33	0.244	0.18	0.19	0.45
Ϋ́	BPR ^{IPS}	0.0496	0.01	0.02	0.16	0.1734	0.03	0.11	0.44	0.2765	0.07	0.21	0.61
	$BPR^{b(r)}$	0.0577	0.0	0.02	0.2	0.1857	0.02	0.11	0.51	0.2898	0.05	0.22	0.65
	BPR ^{PD}	0.0557	0.01	0.02	0.19	0.1858	0.03	0.12	0.48	0.2903	0.06	0.22	0.64

Table 3: Results with BPR, obtained by averaging five different runs on test set.