

Sampriti Chatterjee (Great Learning)

Proprietary content. @Great Learning. All Rights Reserved. Unautnorized use or distribution pronibited

Agenda

1		What is Image Processing?
---	--	---------------------------

- 2 Traditional ML VS Deep learning
- 3 Human brain VS AI
- 4 How Image Input work in computer?
- What is CNN?
- 6 Layers in CNN

- 7 Convolutional Layer
- 8 Relu layer
- 9 Pooling layer
- 10 Fully connected layer
- Demo: Gender detection with Python

What is Image Processing

Image processing is a method to perform some important operations on an image. In order to get an enhanced high Quality image or to extract the most useful information from that

- It is a one type of signal processing
- In this processing input is an image and output may be image or characteristics/features associated with that image

Is It A Cat Or A Dog?

Human Brain VS Neural Network

Human Brain VS Neural Network

Neuron	Artificial Neuron
Cell Nucleus	• Node
• Dendrites	• Input: x1, x2
Synapse	Weights or interconnections
• Axon	f(x) (mapping, activation, learning)
Terminal Axon	Output: y1

How Image Input Works In Computer?

Converts the image into an array of pixel values where the dimension of array depends on the resolution of the image

4	21	54	92	48
2	22	54	36	22
3	42	37	86	73

Array of dimension 32 X 32 X 3 (The 3 refers to RGB values)

What is CNN?

"A feed forward network to process and recognize image data with the grid version"

Layers in CNN

- 1 Convolutional Layer
- 2 ReLU
- 3 Pooling Layer
- Fully Connected Layer

Convolutional Layer

"Converts images into an array"

- First layer of CNN
- Stores the pixelated values of image into an array
- Used for extracting the features of the image and reducing its dimensionality

Working Of Convolutional Layer

4	21	54	92	48
2	22	54	36	22
3	42	37	86	73

4	21	54	92	48
2	22	54	36	22
3	42	37	86	73

*	0	-1	
**	1	1	
Filt	er/Feat	ure de	tector

Terminology Alert!!

3	22	-2	10
23	25	87	139

- Extracted features from the image
- Dimension reduced

Activation function: ReLu

Layers in CNN

- 1 Convolutional Layer
- 2 ReLU
- 3 Pooling Layer
- Fully Connected Layer

"Converts negative values into zero"

- ReLU is a half rectifier
 - f(y) = 0 when y < 0
 - f(y) = y when y > = 0
- Range of ReLU: [0 to infinity]

ReLu

Working Of Relu Layer

3	22	-2	10
23	25	87	139

Applying ReLu layer

After removing the negative values

Pooling Layer

Layers in CNN

"Reduces the spatial size and the numbers of parameters"

- 1 Convolutional Layer
- 2 ReLU
- 3 Pooling Layer
- Fully Connected Layer

- Used to reduce dimensionality
- Helps to control overfitting
- Filters of size 2x2 are commonly used in it

Working Of Pooling Layer

3	22	0	10
23	25	87	139

Amount of movement between applications of the filter to the input image is referred as stride

25			
----	--	--	--

3	22	0	10
23	25	87	39

3	22	0	10
23	25	87	139

3	22	0	10	
23	25	87	139	

25 87	139	139
-------	-----	-----

Flatten The Data

"Converting the Pooled feature map into an array is known as data flattening"

Fully connected Layer

Layers in CNN

"Combines all the features together to create a final model"

- 1 Convolutional Layer
- Used to reduce dimensionality

2 ReLU

Helps to control overfitting

3 Pooling Layer

Filters of size 2x2 are commonly used in it

Fully Connected Layer

Working Of Fully Connected Layer

Gender detection using Python

Thank You