

Plano de Ensino para o Ano Letivo de 2020

	IDEN	TIFICAÇÃO		
Disciplina:				Código da Disciplina:
Smart Grid - Redes Inteligentes	MIN107			
Course:				-
Smart Grid				
Materia:				
Smart Grid - Redes Inteligentes				
Periodicidade: Semestral Carg	a horária total:	40	Carga horária sema	nal: 02 - 00 - 00
Curso/Habilitação/Ênfase:			Série:	Período:
Administração			4	Matutino
Administração			4	Noturno
Engenharia de Alimentos			5	Diurno
Engenharia de Controle e Automação	o		6	Noturno
Engenharia de Controle e Automação	o		5	Diurno
Engenharia de Computação			5	Diurno
Engenharia Civil			5	Diurno
Engenharia Civil			6	Noturno
Design			4	Noturno
Design			4	Matutino
Engenharia Eletrônica			5	Diurno
Engenharia Eletrônica			6	Noturno
Engenharia Elétrica			6	Noturno
Engenharia Elétrica			5	Diurno
Engenharia Mecânica			6	Noturno
Engenharia Mecânica			5	Diurno
Engenharia de Produção			5	Diurno
Engenharia de Produção			6	Noturno
Engenharia Química			5	Diurno
Engenharia Química			6	Noturno
Professor Responsável:	T	itulação - Graduaç	ção	Pós-Graduação
Alexsander Tressino de Carvalho	E	ingenheiro em	Elétrica	Doutor
Professores:	Ti	itulação - Graduaç	ção	Pós-Graduação
Murilo Zanini de Carvalho	Т	ecnologia em	Eletrônica	Mestre

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- 1) Da rede elétrica convencional, como a geração, transmissão e distribuição da energia elétrica ocorre atualmente;
- 2) Da estrutura de rede inteligente (Smart Grid), quais suas características, vantagens e desvantagens;
- 3) Dos medidores inteligentes (Smart Meters), que possibilitam a aquisição em tempo real das informações de consumo e permitem a troca de informações entre consumo e fornecimento;
- 4) Da estrutura de comunicação necessária para que os medidores inteligentes possam trocar informações;

2020-MIN107 página 1 de 9

Habilidades:

- 5) Capacidade de analisar as vantagens e desvantagens da aplicação de dispositivos inteligentes nas redes elétricas;
- 6) Comparar a evolução da tecnologia das redes inteligentes no Brasil e no mundo:
- 7) Conseguir selecionar quando sua aplicação é viável em uma região; Atitudes:
- 8) Formulação de problemas com as características fornecidas sobre uma situação;
- 9) Realizar pesquisas por soluções utilizando as restrições impostas por um problema;
- 10) Compilar informações atuais para a formulação de uma solução.

EMENTA

O conceito Smart Grid: perspectivas e tendências. Aplicações do conceito de smart grid em redes elétricas convencionais, na geração, transmissão e distribuição da energia elétrica. Características de redes inteligentes (Smart Grid), vantagens e desvantagens, medidores inteligentes (Smart Meters) que possibilitam a aquisição em tempo real das informações de consumo e permitem a troca de informações entre consumo e fornecimento.

SYLLABUS

The concept Smart Grid: prospects and trends. Applications of the concept of smart grid in conventional power grids in the generation, transmission and distribution of electricity. Features of smart grids, advantages and disadvantages, smart meters that enable the real-time acquisition of consumer information and allow the exchange of information between consumption and supply.

TEMARIO

El concepto Smart Grid: perspectivas y tendencias. Aplicaciones del concepto de redes inteligentes en redes eléctricas convencionales en la generación, transmisión y distribución de electricidad. Características de las redes inteligentes, ventajas y desventajas, contadores inteligentes que permiten la adquisición en tiempo real de información de los consumidores y que permitan el intercambio de información entre el consumo y la oferta.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Não

METODOLOGIA DIDÁTICA

A metodologia utilizada:

- 1) Aulas expositivas, utilizando vídeos e recursos de multimídia, para introdução dos conceitos;
- 2) Dinâmica de grupo, para realizar a verificação de como os conceitos foram absorvidos, fornecendo feedback imediato sobre o conteúdo;
- 3) Seminários sobre artigos relacionados com o tema de pesquisadores renomados;
- 4) Estudo de casos sobre a aplicação das técnicas propostas e os resultados obtidos com ela.

2020-MIN107 página 2 de 9

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Conhecimento básico sobre o sistema elétrico brasileiro, sobre sistemas de comunicação, fontes renováveis de energia, geração de energia, sistemas de proteção e metodologia científica.

CONTRIBUIÇÃO DA DISCIPLINA

O conhecimento sobre novas tecnologias é essencial para o desenvolvimento de soluções eficientes e inovadoras. O uso eficiente da energia elétrica apresenta diversos desafios, não apenas em sua geração e distribuição, mas também na mudança de paradigmas com seu consumo.

Nesse contexto, as redes inteligentes, os Smart Grids, são uma proposta de solução para esse grande problema. Com a capacidade de comunicação dos medidores inteligentes, é possível compartilhar informações entre as concessionárias de energia elétrica e os consumidores, além de integrar fontes distribuídas de geração de energia a rede principal.

BIBLIOGRAFIA

Bibliografia Básica:

ANDERSON, Paul M. Power system protection. New York: IEEE, c1999. 1307 p. (IEEE Press Power Engineering Series)

CIPOLI, José Adolfo. Engenharia de distribuição. Rio de Janeiro, RJ: Qualitymark, 1993. 324 p.

PHADKE, Arun G.; THORP, James S. Computer relaying for power systems. 2. ed. Chichester: John Wiley, 2009. 326 p.

Bibliografia Complementar:

FARAHANI, Shahin. Zigbee wireless networks and transceivers. Amsterdam: Elsevier, c2008. 339 p.

ROBBA, Ernesto João. Geração, transmissão e distribuição da energia elétrica. São Paulo, SP, 1969. 155 p.

STEVENSON JR., William D. Elementos de análise de sistemas de potência. Trad. de Ademaro A. M. B. Cotrim. São Paulo, SP: McGraw-Hill, 1974. 347 p.

TANENBAUM, Andrew S. Redes de computadores. Rio de Janeiro, RJ: Campus, 1997. 923 p.

THOMAZINI, Daniel; ALBUQUERQUE, Pedro Urbano Braga e. Sensores industriais: fundamentos e aplicações. 7. ed. São Paulo, SP: Érica, 2010. 224 p

2020-MIN107 página 3 de 9

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos.

Pesos dos trabalhos:

k₁: 5,0 k₂: 5,0

			II	NFO	RMAÇ	ΘE	s so	BRE P	RO\	/AS	E TR	ABA	LHO	S				
)s	trabalhos	serã	o ba	asea	dos	no	con	teúdo	da	di	scip	olina	a e	det	ermi	nado	os	temas
nas	primeiras	sema	anas	de	aula	, a	.ssim	como	0	cro	nogr	ama	de	apre	sent	ação		

2020-MIN107 página 4 de 9

OUTRAS INFORMAÇÕ	DES

2020-MIN107 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Labview 2018 ou similar
Autocad 2018 ou similar
Matlab Simulink

2020-MIN107 página 6 de 9

APROVAÇÕES

Prof.(a) Alexsander Tressino de Carvalho Responsável pela Disciplina

Prof.(a) Angelo Sebastiao Zanini Coordenador do Curso de Engenharia de Computação

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Prof.(a) Claudia Alquezar Facca Coordenador(a) do Curso de Design

Prof.(a) David Garcia Penof Coordenador do Curso de Engenharia de Produção

Prof.(a) Edval Delbone Coordenador(a) do Curso de Engenharia Elétrica

Prof.(a) Eliana Paula Ribeiro Coordenador(a) do Curso de Engenharia de Alimentos

Prof.(a) Fernando Silveira Madani Coordenador(a) do Curso de Eng. de Controle e Automação

Prof.(a) Luciano Gonçalves Ribeiro Coordenador(a) do Curso de Engenharia Química

Prof.(a) Ricardo Balistiero Coordenador(a) do Curso de Administração

Prof.(a) Sergio Ribeiro Augusto Coordenador do Curso de Engenharia Eletrônica

2020-MIN107 página 7 de 9

Data de Aprovação:							

2020-MIN107 página 8 de 9

	PROGRAMA DA DISCIPLINA
Nº da	Conteúdo
semana	
22 T	Introdução a disciplina, apresentação do conteúdo
23 Т	Definição de redes inteligentes
24 Т	Medidores inteligentes - Definição de funcionamento
25 Т	Medidores inteligentes - Algoritmos de Medição
26 Т	Sensores utilizados por medidores inteligentes
27 Т	Redes de comunicação para redes inteligentes
28 Т	Tecnologias de comunicação sem fio aplicadas em sistemas inteligentes
29 Т	Estudo de caso: Impacto dos medidores inteligentes na distribuição deenergia
30 T	Período de provas.
31 T	Geração de energia elétrica - fontes não renováveis e renováveis.
32 T	Sistemas de proteção convencionais.
33 T	Sistemas de proteção integrados a redes inteligentes.
34 T	Definição de conjuntos de dados, informações e conhecimento. Armazenamento de
	grande quantidade de dados e suas aplicações.
35 T	Definição das técnicas de descoberta de conhecimentos em bancos de dados.
36 Т	Apresentação e definição dos conceitos de mineração de dados e aprendizadode
	máquina.
37 Т	Utilização de técnicas de mineração de dados em redes inteligentes.
38 Т	Elaboração do artigo - Apresentação dos temas.
39 Т	Elaboração do artigo - Acompanhamento da evolução dos trabalhos.
40 T	Apresentação do artigo.
41 T	Período de provas.
Legenda	: T = Teoria, E = Exercício, L = Laboratório

2020-MIN107 página 9 de 9