

实验报告

课程名	3称: 物理奥验P	实验名称: 力學基本量	划量	实验日期:	2024	年_	4	月_	2	且	晚上
班	级: 63012318	教学班级:		学 号:	1120232535	姓	名:	汪隻	了.	12	

一、实验目的

通过测量规则和不规则形状物体的密度,掌握常规测量工具的使用,完成长度、质量两个基本量的测量,在实践中掌握"不确定度"理论。

二、实验仪器

游标卡尺, 虫素旋测微尺, 物理天平, 比重瓶

三、实验原理

1. 规则形状固体密度测量。

设物体质量为m,均匀分布,体积为V,则其密度 $\rho=\frac{m}{V}$ 。对规则形状物体,m可直接由物理天平测得,V可使用旋测量仪器如游标卡V、虫果旋测微处,,经间接测量的方法测确定。

2.不规则形状固体密度测量

对不规则形状固体,其体积V可由阿基米德原理间接测定。

若 物体密度大于 1 ,其在空气中和完全 浸在 液体中所测得的重量分别为 $W_1 = mg$ 和 $W_2 = m_2 g$,设液体密度为 ρ' ,则被测物体 $\rho = \frac{m_1}{m_1 - m_2}$ ρ' (1) .

联系方式:		
	联系方式:	指导教师签字:

北京理工大学良乡校区管理处监制

电话: 81382088

VIII des la cità		並 报 告			
课程名称: 班 级:	_ 实验名称: _ 教学班级:	实验日期: 学 号:			
四、实验内容及步骤	_ 	+ 4:	Æ	白:	
1.用物理天平测固位	丰密度				
(1) 调整 天平底 座的~	K平螺钉, 使水	作器艺泡对位于中人	二,天平底	板水平	-
(2)把游码移到横梁	主端 要线上,	倾针打开旋钮开关	支起 横多	段; 若天平	不平衡
之关闭天平。调节平衡虫	•				
(3) 先测规则形状物					
将p>l的被测物l铝		放在天平主办轮盘中	硅 码数	在右边 称	舟中 天
平衡时,由固定法码和					
•					
丰积,用螺旋测微器 尺				,	据间接
则量量不确定度定义式	分别确定两个的	皮测物体密度的不确	钟度范 _[刻 。	
	7400144/4台:1	7			
(4)测定p人 的形状			- W		للم ، ۲
同上先导聚,测定					
将与被测物连接的重	坠完全浸入水	中,测出此时视质量	_M2;最	后,将被	测物作
与重坠 - 同完主浸入水	中,测出视质	量m3, 由(2)确定ρ	并确定	不确定度	范围。

北京理工大学良乡校区管理处监制

电话: 81382088

实验报告

数据处理: $\overline{D} = \sum_{i=1}^{7} D_i \cdot \frac{1}{7} = 25.331 \text{ mm}$, $\overline{H} = \sum_{i=1}^{7} H_i \cdot \frac{1}{7} = 33.137 \text{ mm}$, $\overline{d} = \sum_{i=1}^{7} d_i \cdot \frac{1}{7} = 14.971 \text{ mm}$ h== hi == 21.849mm. $S_0 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(0_i - \bar{0})^2}{7 - 1} = 0.0397 \, \text{mm} \qquad S_H = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(H_i - \bar{H})^2}{7 - 1} = 0.0482 \, \text{mm}.$ $S_{d} = \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{(d_{i} - \overline{d})^{2}}{7 - 1} = 0.0527 mm \qquad S_{h} = \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{(h_{i} - \overline{h})^{2}}{7 - 1} = 0.0344 mm$ $U_{A-D} = \frac{S_D}{15} = 0.015 \text{ mm}, \ U_{A-H} = \frac{S_H}{15} = 0.018 \text{ mm}, \ U_{A-d} = \frac{S_H}{15} = 0.019 \text{ mm}, \ U_{A-h} = \frac{S_h}{15} = 0.013 \text{ mm}$ $U_B = \frac{\Delta_{in5}}{V} = \frac{0.02}{5} = 0.012 mm$ UC-0= Jua-0=+40== 0.019mm UC-H=Jua-H=+ UB== 0.022mm $U_{c-d} = \int_{U_{A-d}^2 + U_{B}^2} = 0.022 mm$ $U_{c-h} = \int_{U_{A-h}^2 + U_{B}^2} = 0.018 mm$ V= 7 pH - 2 · dh $u_{V} = \sqrt{\left(\frac{\partial v}{\partial 0} \cdot u_{c-0}^{2}\right)^{2} + \left(\frac{\partial v}{\partial H} \cdot u_{c-H}\right)^{2} + \left(\frac{\partial v}{\partial d} \cdot u_{c-d}\right)^{2} + \left(\frac{\partial v}{\partial h} \cdot u_{c-h}\right)^{2}} = 329 \text{ mm}^{3}$ 数 V=12854(29) mm3 $P = \frac{m}{V} \quad Um = \frac{\Delta_{ins}}{k} = 0.03 \qquad P = \frac{m}{V} = \frac{m}{\frac{\pi}{2}(0^{2}H - d^{2}h)}$ $U\rho = \int \left(\frac{\partial P}{\partial m} Um\right)^2 \left(\frac{\partial P}{\partial v} \cdot Uv\right)^2 = 6 \times 10^{-6} g/mm^3$ $U\rho = \int \left(\frac{\partial \rho}{\partial m} \cdot u_{m}\right)^{2} + \left(\frac{\partial \rho}{\partial h} \cdot u_{0}\right)^{2} + \left(\frac{\partial \rho}{\partial h} \cdot u_{H}\right)^{2} + \left(\frac{\partial \rho}{\partial d} \cdot u_{d}\right)^{2} + \left(\frac{\partial \rho}{\partial h} \cdot u_{h}\right)^{2} = 7 \times 10^{-6} g \, \text{lmm}^{3}$ $= 0.007q lcm^3$ 妓 p=2.763 (0.007) qlcm3 不规则物件数据处理见背面 指导教师签字: 联系方式:

北京理工大学良乡校区管理处监制 电话: 81382088

$$P = \frac{m_1 p'}{m_2 - m_3} = 0.911 g l cm^3$$

$$U = U_0 = \frac{a i n s}{k} = \frac{0.05}{1.645} = 0.03g$$

$$ln p = ln m_1 - ln (m_2 - m_3) + ln p'$$

$$\frac{d ln p}{d m_1} = \frac{1}{m_1}, \frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_2} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_2 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_3 - m_2}, \frac{d ln p}{m_3} = \frac{1}{m_3 - m_3}$$

$$\frac{d ln p}{m_3} = \frac{1}{m_3 - m_3}, \frac{d ln p}{m_3} = \frac{1}{m_$$

in the state of

-1 = - (to -) + (to

实验一 力学基本量测量

1. 形状规则物体(铝件)的密度测量:(游标卡尺测量其体积)

游标卡尺(均匀矩形分布,置信度 100%): $\Delta_{ins}=0.02mm$,包含因子 $k=\sqrt{3}$

W1 1/1 / C (1/3/12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	ins	0.02,,,,,,		707	
直接测量量测量次数	D(mm)	H(mm)	d(mm)	h(mm)	
1	<i>25.30</i>	33.06	15.04	21.82	
2	25.28	3 3.18	15.00	21.84	
3	25.36	33.10	14.90	21.80	
4	<i>2</i> 5.32	33.14	14.98	21.88	
5	25.40	33,20	15.02	21.84	
6	25.34	33. <i>1b</i>	14.92	21.90	
7	25.32	33.12	14.94	21.86	
平均值 \bar{x} (mm)	25.331	33.137	14.971	21.849	
实验标准偏差 S_x (mm)	0.0397	0.0482	0.0527	0.0344	
不确定度 A 类分量 u _A (mm)	0.015	0.018	0.019	0.013	
不确定度 B 类分量 u _B (mm)	0.012	0.012	0.012	0.012	
合成标准不确定度 u_c (mm)	0.019	0.022	0.022	0.018	
直接测量量 $\bar{x}(u_c)$ (mm)	25.331(0.019)	33.137(0.022)	14.97[(0.022)	21.849(0.08)	
间接测量量 <i>V(u_V)</i> (mm) ³					

物理天平 (正态分布, 置信度 90%): $\Delta_{ins} = 0.05g$, 包含因子 k = 1.645

铝件质量: $m(u_m) = 35.52$ g , 铝件密度 $\rho(u_\rho) = 2.763 (0.007) \text{ g/cm}^3$

写出 u_{ρ} 表达式: $U_{\rho} = \begin{bmatrix} u_{m} \\ \frac{2}{3}(0^{2}H - d^{2}h) \end{bmatrix}^{2} + \begin{bmatrix} \frac{2}{3}DH \, m \, u_{c-o} \\ \frac{2}{3}(0^{2}H - d^{2}h) \end{bmatrix}^{2} + \begin{bmatrix} \frac{2}{3}dh \, m \, u_{c-d} \\ \frac{2}{3}(0^{2}H - d^{2}h) \end{bmatrix}^{2}$

2. 形状不规则物体密度: (聚丙烯测件 ρ<1, 阿基米德原理)

水温 t = <u>19.5</u> ℃	水的	的密度 ρ´ = <u>0.99833</u>	g.cm ⁻³
待测物体在空气中的质量	m ₁ (g)	10.95	
物空气中+坠子在水中视质	量 m ₂ (g)	21.25	
物和坠子都浸入水中视质量	t m₃ (g)	9.25	
物体密度 ρ= m ₁ ρ′/(m ₂ - m ₃) (g.cm ⁻³)	0.911	
相对不确定度 E (%)		0.45	
绝对不确定度 $u_{\rho} = \rho \times E$ (g.cm ⁻³)		0.004	
物体密度 $\rho(u_{\rho})$	(g.cm ⁻³)	0.91110.00	94)

物理天平: Δ_{ins} = 0.05g, 包含因子 k = 1.645

写出相对不确定度表达式 $E = \frac{\left(\frac{U\theta}{m_1}\right)^2 + \left(\frac{U\theta}{m_2 - m_2}\right)^2 + \left(\frac{U\theta}{m_2 - m_3}\right)^2}{\left(\frac{U\theta}{m_1}\right)^2 + \left(\frac{U\theta}{m_2 - m_3}\right)^2}$

思考题: 1. 用天平测出台主质量 m.

用细绳悬挂言主,使其主浸入水中,此时视肠量 m_2 . 设言主密度为 ρ ,体积为V 则有 $m_1 = \rho V$, $m_2 = \rho_{R} M_1 - m_2 = \rho_{R} V$, $\rho = \frac{W_{Aut} \ W_{Cu}}{W_{Pnu} + \frac{W_{Cu}}{\rho_{Cu}}}$

