Отчёт по лабораторной работе №7

Предмет: Математическое моделирование

Манаева Варвара Евгеньевна, НФИбд-01-20. 1032201197

Содержание

1	Задание лабораторной работы				
	1.1	Вариа	ант №28 [1]	4	
2	Теоретическое введение 2.1 Общая информация о модели [2]				
	2.1	Обща	я информация о модели [2]	5	
3	Выполнение лабораторной работы				
	3.1	Реше	ние с помощью программ	7	
		3.1.1	Julia	7	
			3.1.1.1 Программный код решения на Julia	7 7 7 7 9 9	
		3.1.2	OPenModelica	9	
			3.1.2.1 Программный код решения на OPenModelica	9	
		3.1.3	Результаты работы кода	12	
4	Выв	оды		18	
Сп	Список литературы				

Список иллюстраций

3.1	"График численности информированных клиентов в модели Маль-	
	туса для условия 1 (Julia)"	12
3.2	"График численности информированных клиентов в модели Маль-	
	туса для условия 1 (OpenModelica)\$"	13
3.3	"График численности информированных клиентов в модели Маль-	
	туса для условия 2 (Julia)"	14
3.4	"График численности информированных клиентов в модели Маль-	
	туса для условия 2 (OpenModelica)\$"	15
3.5	"График численности информированных клиентов в модели Маль-	
	туса для условия 3 (Julia)"	16
3.6	"График численности информированных клиентов в модели Маль-	
	туса для условия 3 (OpenModelica)\$"	17

Изучить простейшую модель распространения рекламы и решить задания лабораторной работы.

Задачи:

- Изучить теоретическую справку;
- Запрограммировать решение на Julia;
- Запрограммировать решение на OpenModelica;
- Сравнить результаты работы программ;

1 Задание лабораторной работы

1.1 Вариант №28 [1]

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.48 + 0.000081 n(t))(N-n(t))$$

2.
$$\frac{dn}{dt} = (0.000049 + 0.82 n(t))(N-n(t))$$

3.
$$\frac{dn}{dt} = (0.6t + 0.3\cos 2tn(t))(N - n(t))$$

При этом объем аудитории N=1665, в начальный момент о товаре знает 18 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

2 Теоретическое введение

2.1 Общая информация о модели [2]

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами.

Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна

числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. Эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса.

В обратном случае ($\alpha_1(t) << \alpha_2(t)$) получаем уравнение логистической кривой

3 Выполнение лабораторной работы

3.1 Решение с помощью программ

3.1.1 Julia

3.1.1.1 Программный код решения на Julia

Решить дифференциальное уравнение, расписанное в постановке задачи лабораторной работы, поможет библиотека DifferentialEquations[3]. Итоговые изображения в полярных координатах будут строиться через библиотеку PyPlot.

```
using PyPlot;
using DifferentialEquations;
function f(du, u, p, t)
    du[1] = (a1 * t + a2 * t * u[1]) * (N - u[1])
end
function f2(du, u, p, t)
    du[1] = (a1 * t + a2 * sin(3*t) * u[1]) * (N - u[1])
end
range = (0, 1)
N = 1665
N0 = 18
a1 = 0.48
a2 = 0.000081
ode = ODEProblem(f, [N0], range)
```

```
sol = solve(ode, dtmax=0.01)
n = [u[1] \text{ for } u \text{ in sol.u}];
clf()
plot(sol.t, n)
xlabel("время")
ylabel("Проинформированные люди")
title("Случай 1")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab7\\report\\image\\graph1_t.png")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab7\\presentation\\image\\graph1_t.png")
clf()
a1 = 0.000049
a2 = 0.82
ode = ODEProblem(f, [N0], range)
sol = solve(ode, dtmax=0.01)
n = [u[1] \text{ for } u \text{ in sol.} u];
plot(sol.t, n)
xlabel("время")
ylabel("Проинформированные люди")
title("Случай 2")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab7\\report\\image\\graph2_t.png")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab7\\presentation\\image\\graph2_t.png")
clf()
```

```
a1 = 0.6
a2 = 0.3
ode = ODEProblem(f2, [N0], range)
sol = solve(ode, dtmax=0.01)
n = [u[1] for u in sol.u];

plot(sol.t, n)
xlabel("время")
ylabel("Проинформированные люди")
title("Случай 3")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Mateматическое_моделирование
2023_mathmod\\labs\\lab7\\report\\image\\graph3_t.png")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Mateматическое_моделирование
2023_mathmod\\labs\\lab7\\report\\image\\graph3_t.png")
clf()
```

3.1.2 OPenModelica

3.1.2.1 Программный код решения на OPenModelica

```
model laba7
parameter Real N= 1665;
parameter Real N0= 18;
Real n(start=N0);

function k
  input Real t;
  output Real result;
algorithm
```

```
result:= 0.48;
end k;
function p
  input Real t;
  output Real result;
algorithm
  result:= 0.000081;
end p;
equation
  der(n)=(k(time)+p(time)*n)*(N-n);
end laba7;
model laba7_2
parameter Real N= 1665;
parameter Real NO= 18;
Real n(start=N0);
function k
  input Real t;
  output Real result;
algorithm
  result:= 0.000049;
end k;
function p
```

```
input Real t;
  output Real result;
algorithm
  result:= 0.82;
end p;
equation
  der(n)=(k(time)+p(time)*n)*(N-n);
end laba7_2;
model laba7_3
parameter Real N= 1665;
parameter Real NO= 18;
Real n(start=N0);
function k
  input Real t;
  output Real result;
algorithm
  result:= 0.6*t;
end k;
function p
  input Real t;
  output Real result;
algorithm
  result:= 0.3*sin(3*t);
```

```
end p;
equation
  der(n)=(k(time)+p(time)*n)*(N-n);
end laba7_3;
```

3.1.3 Результаты работы кода

Решение для условия 1 (рис. 3.1, 3.2).

Рис. 3.1: "График численности информированных клиентов в модели Мальтуса для условия 1 (Julia)"

Рис. 3.2: "График численности информированных клиентов в модели Мальтуса для условия 1 (OpenModelica)\$"

Решение для условия 2 (рис. 3.3, 3.4).

Рис. 3.3: "График численности информированных клиентов в модели Мальтуса для условия 2 (Julia)"

Рис. 3.4: "График численности информированных клиентов в модели Мальтуса для условия 2 (OpenModelica)\$"

Решение для условия 3 (рис. 3.5, 3.6).

Рис. 3.5: "График численности информированных клиентов в модели Мальтуса для условия 3 (Julia)"

Рис. 3.6: "График численности информированных клиентов в модели Мальтуса для условия 3 (OpenModelica)\$"

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и построены графики. Также эти графики были изучены и сделаны выводе о работе программ и эффективности распространения рекламы.

Были записаны скринкасты лабораторной работы и презентации лабораторной работы.

Список литературы

- 1. Задания к лабораторной работе №6 (по вариантам) [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971669/mod_resou rce/content/2/Задание%20к%20лабораторной%20работе%20№%202%20%2 0%281%29.pdf.
- 2. Лабораторная работа №6 [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971668/mod_resource/content/2/Лабораторная%20работа%20№%206.pdf.
- 3. DifferentialEquations.jl: Efficient Differential Equation Solving in Julia [Электронный ресурс]. 2023. URL: https://docs.sciml.ai/DiffEqDocs/stable/.