Propriétés : Soit a, b, n, m des entiers relatifs tels que $a \neq 0$ et $b \neq 0$. On a : $a^0=1$ $a^1=a$ $a^{-n}=rac{1}{a^n}$ $a^{-n}=rac{1}{a^n}$ $a^n imes a^m=a^{n+m}$ $a^n imes b^n=(a imes b)^n$ $a^n=a^n$ $a^n=a^n$ $a^n=a^n$

El Calculez les valeurs des expressions suivantes:

$$3^{-2}$$

$$\left(\frac{1}{2}\right)^{-3}$$

$$2^3 \times 2$$

$$2^{\circ} \div 2^{\circ}$$

$$2^3 imes 3^3$$

$$\left(\frac{2}{5}\right)^{\circ}$$

lacksquare Considérons la fonction f définie sur $\mathbb R$

$$f(x) = rac{1}{12}x^4 + rac{1}{6}x^3 + rac{5}{12}x^2 + x + 1$$

Montrez que f'(x) = f(x) pour x = -1, 0, 1 et 2. A-t-on f'(x)=f(x) pour tout $x\in\mathbb{R}$?

Propriété et définition : Il existe une unique fonction dérivable sur $\mathbb R$ telle que f(0)=1 et pour tout $x \in \mathbb{R}$, f'(x) = f(x). Cette fonction est appelée la fonction exponentielle et est notée exp :

$$egin{array}{ccc} \exp: \mathbb{R} & \longrightarrow & \mathbb{R} \ x & \longmapsto & \exp(x) \end{array}$$

$$\exp(0) = 1 \qquad (\exp)' = \exp$$

On se propose de démontrer que la fonction exponentielle est strictement positive sur \mathbb{R} . Pour cela considérons la fonction fdéfinie sur $\mathbb R$ par

$$f(x) = \exp(x) \times \exp(-x)$$

- **a.** Montrez que f'(x)=0 pour tout $x\in\mathbb{R}$.
- **b.** En déduire que f(x)=1 pour tout $x\in\mathbb{R}$.
- **c.** Concluez que $exp(x) \neq 0$ pour tout $x \in \mathbb{R}$.
- d. Que peut-on en déduire sur les variations de la fonction exponentielle sur ${\mathbb R}$?

Propriété: La fonction exponentielle est strictement positive et strictement croissante sur \mathbb{R} .

E4 On se propose de démontrer que pour tous réels a et b, on a $\exp(a+b)=\exp(a)\times \exp(b)$. Considérons la fonction f définie sur ${\mathbb R}$ par

$$f(x) = \exp(a+x) \times \exp(b-x)$$

- **a.** Montrez que f'(x)=0 pour tout $x\in\mathbb{R}$.
- **b.** Calculez f(0), f(b) puis concluez.

Propriétés : Pour tous a et b dans \mathbb{R} , on a : $\exp(a+b) = \exp(a) \times \exp(b)$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$
 $\exp(-a) = \frac{1}{\exp(a)}$

Voici l'allure de la fonction exponentielle :

E5 On admet que $\exp(-3) pprox 0.05$ et $\exp(-2.5) \approx 0.08$.

Complétez le tableau de valeurs suivant avec des valeurs approchées par lecture graphique jusqu'à x=2. Pour les deux dernières valeurs, utilisez la propriété $\exp(-x) = \frac{1}{\exp(x)}$.

$oldsymbol{x}$	-3	$-2,\!5$	- 2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3
$\exp(x)$	0,05	0,08											

Définition : On note e le nombre $\exp(1)$. On a :

$$e = 2,718 2...$$

e est un nombre irrationnel.

- **a.** Montrez que $\exp(2) = e^2$.
- **b.** Montrez que $\exp(-1) = \frac{1}{2}$.
- **c.** Exprimez $\exp(3)$ en fonction de e. Justifiez.

Propriété : Pour tout entier relatif n, on a :

$$\exp(n) = e^n$$

Par prolongement on écrit pour tout réel x:

$$\exp(x) = e^x$$

lacksquare Considérons la suite (u_n) définie par $u_n = \exp(1,2n)$. Montrez que c'est une suite géométrique et donnez son premier terme et sa raison.

Propriété : Pour tout réel a et tout entier naturel n, on a :

$$\exp(an) = (\exp(a))^n$$

Par prolongement on écrit :

$$e^{an} = (e^a)^n$$