San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Other Models of TMs

(Part 2)

Lecture 18 Day 19/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 19

- Summary of Lecture 17
- Quiz 7
- Lecture 18: Teaching ...
 - Other Models of TMs (Part 2)

TMs vs NPDAs

- We use simulation to compare TMs and NPDAs.
- We can simulate whatever NPDAs do with TMs.
- But not vice versa!
 - At least we know some languages for which we could not construct NPDAs but could construct TMS
 - such as: anbncn and ww
- So, TMs are more powerful than NPDAs.

Any Question

Machines and Languages Association

 TMs recognize some other non-regular languages called Turing recognizable.

Any Question

TMs as Transducer

- Transducer is a device that converts an input to an output.
- We model a transducer by a ...
 - ... function.
- TMs can work in transducers mode.
 - Input is all or part of the nonblank symbols on the tape at the initial time.
 - Output is all or part of the tape's content when the machine halts.
- We learned how JFLAP shows the output.

- A function is called
 Turing-computable if ...
 - ... there exists a TM that implements it.
- We learned how to break a complex problem into smaller ones and how to combine TMs to make a bigger one.

Any Question

Other Models of TMs

- We tried to figure out whether we can get more power by adding some capabilities to standard TMs.
- With any changes in standard TMs, we created a new class of automata.
- The changes we made:
 - TMs with stay-option ...
 - TMs with multidimensional-tape ...
- Were the new classes more powerful than the standard TM?

 We mentioned several theorems stating that the new classes were equivalent to standard TMs.

Any Question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	7
DATE	03/28/2019	PERIOD	1/2/3

TEST RECORD			
PART 1	123		
PART 2			
TOTAL			

Take-Home Exami Quiz 7 **Use Scantron**

Your list # goes here!

(1) Multi-Tape TMs

Multi-Tape TMs: Building Block

- We can add additional tapes with independent read-write head to the standard TMs.
- For example, a double-tape TM looks like this:

Multi-Tape TMs: Transitions

Example 5

- This is a transition of a double-tape TM.
 - We separate the labels of different tapes with "|".
- The transition condition is both inputs:

input symbol of tape 1 = 'a'

AND

input symbol of tape 2 = 'e'.

• The sub-rule looks like this: $\delta(q_2, a, e) = (q_5, x, y, R, L)$

Multi-Tape TMs: Transitions

Example 5 (cont'd)

$$\delta (q_2, a, e) = (q_5, x, y, R, L)$$

11

Multi-Tape TMs: Example

Example 6

Design a double-tape TM for accepting the language
 L = {aⁿbⁿ : n ≥ 1} over Σ = {a, b}.

Requirements:

- 1. The input is written on the tape 1.
- 2. You can use stay-option.

 Recall that we designed a standard TM for L before as the figure shows.

Multi-Tape TMs: Example

Example 6 (cont'd)

Strategy

- Read a's from tape 1 and write them on tape 2.
- When sensed the first 'b' on tape 1, match b's with the a's on tape 2.
- If all match, then accept,
- otherwise, reject.

Do double-tape TMs facilitate our programming?

Homework

Design a double-tape TM for accepting the following language:

```
L = \{a^nb^nc^n : n \ge 1\} \text{ over } \Sigma = \{a, b, c\}
```

Requirements:

- 1. The input is written on the tape 1.
- 2. You can use stay-option.

Multi-Tape TMs: Formal Definition

A TM with n-tape M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

- Where:
 - ... (same as standard TM elements)

$$δ$$
: Q x $Γ$ ⁿ $→$ Q x $Γ$ ⁿ x {L, R}ⁿ Where $Γ$ ⁿ = Γ x Γ x ... x Γ (Cartesian product)

Is this new class more powerful than standard TMs?

Theorem

- The TMs with multi-tape class is equivalent to the standard TMs class.
- We need to prove two things:
 - Multi-tape TMs simulate standard TMs.
 - Standard TMs simulate multi-tape TMs.

Proof

- Multi-tape TMs simulate standard TMs.
- This step is trivial because if we just use one tape, then we have standard TM.
- Standard TMs simulate multi-tape TMs.

Nondeterministic TMs (NTMs)

Nondeterministic TMs (NTMs)

Determinism:

During any timeframe, there is no more than one transition.

Any violation of this makes a machine nondeterministic.

- What could be those violations in standard TMs?

 - When δ is multifunction

- Theoretically, we can define λ-transition as usual.
- But historically it was not defined in TMs!

NTMs: Multifunction Examples

Example 7

• Are the following transitions violations for determinism? $X, Y \in \{L, R\}$

NTMs: Formal Definition

A nondeterministic TM M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

- Where:
 - ... (same as standard TM elements)

$$δ$$
: Q x Γ → $2^{Q \times \Gamma \times \{L, R\}}$

δ is total function.

NTMs: Sub-Rules of Transition Function

Example 8

Draw the transition graph of the following sub-rule:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, c, L)\}$$

Solution

How NTMs Behave If They Have Multiple Choices

We already know that:

All types of nondeterministic machines start parallel processing when they have multiple choices.

- In other words, for every possible choice, they create a new process and every process independently continues processing the string.
- The procedure of initiating a new process is exactly the same as NFAs.

How NTMs Behave If They Have Multiple Choices

Procedure of Initiating New Processes

- It replicates its entire structure (transition graph + tape)
- 2. It initializes the new process with the current configuration.
- 3. The new process independently continues processing the rest of the input string.
- The only thing we need to know is:

What info do we need for the configuration?

NTMs' Configuration

- 1. Current state of the transition graph
- 2. Tape content + Position of the cursor

Theorem

- Nondeterministic TMs class is equivalent to standard TMs class.
- We need to prove two things:
 - Nondeterministic TMs simulate standard TMs.
 - Standard TMs simulate nondeterministic TMs.

Proof of 1

- Let's assume we've constructed a standard TM for an arbitrary language L.
- Can we always construct a NTM for L? How?
- Yes, just convert TMs definition to the NTMs', the same way we did for converting DFAs' to NFAs'.

Proof of 2

- Mathematical proof of this part is not so easy but we can understand it intuitively.
- We'll explain it through an example.
- But first, we need some background.
- Next slide refreshes your knowledge about one-dimensional projection.

- As we learned before, we can represent a walk by one-dimensional projection.
- As an example, look at the string (walk) w = aaaab in the following NFA:

This walk can be shown as:

- Proof of 2 (cont'd)
- The following transition graph is an example of an NTM.

- For simplicity, we showed only the input symbols of the labels.
- It looks like an NFA, but we won't lose the generality of the point.

- If we input w = abab into this NTM, overall 6 processes will be initiated.
- We usually prefer to organize them as a tree.

- Proof of 2 (cont'd)
- All processes for the string w = abab are organized in the following "processes tree":

- Proof of 2 (cont'd)
- All processes for the string w = abab are organized in the following "processes tree":

- Proof of 2 (cont'd)
- All processes for the string w = abab are organized in the following "processes tree":

- Proof of 2 (cont'd)
- All processes for the string w = abab are organized in the following "processes tree":

- Proof of 2 (cont'd)
- All processes for the string w = abab are organized in the following "processes tree":

- **Proof of 2 (cont'd)**
- Every walk from q₀ to a leaf is a process.
- Is every process a standard TM?
 - Yes!

(1)

Therefore, an NTM is a collection of standard TMs.

Proof of 2 (cont'd)

- Can standard TM simulate NTMs?
- If it can handle the bookkeeping of the processes, then YES!
- Your term project and previous semesters term projects show that standard TMs can do this!

Nondeterministic TMs: Notes

- Nondeterminism does NOT ADD any POWER to the automata theory.
 - It just speeds up the computation.
- We are always looking for more power and speed is NOT our concern yet.
 - "Speed" will be a matter of concern when we will be talking about "complexity theory".
- 3. Quantum computing tries to implement nondeterminism!
 - So, it does NOT add any power to computing too!

Basic Concepts of Computation

Definition of Algorithm

① Definition

- An algorithm for a problem L (= language) is equivalent to design a TM that solves L (= accept the language).
- Therefore, we define the TM structure as the "algorithm" for solving that problem.

Definition of Program

- A sub-rule defines how a machine acts in one transition for a specific state.
- The transition function defines all possible transitions of the machine for all possible situations.
- What is the "program" of a TM?

① Definition

The transition function of a TM is its "program".

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012 ISBN: 978-1-4496-1552-9
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790