National University of Singapore Semester 2, academic year 2022 / 2023

Jonathan Gruber March 3, 2023

Exercise 1. - to be handed in by 17 February 2023

Give a detailed proof of the strictness theorem (Theorem 3.3 in the lecture notes).

In more detail, prove that any monoidal category $(\mathcal{C}, \mathbf{1}, \otimes, \alpha, \lambda, \rho)$ is monoidally equivalent to the strict monoidal category $\mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C})$ of right \mathcal{C} -module endofuctors of \mathcal{C} (where we consider \mathcal{C} as a right module category over \mathcal{C} , as in Example 2.3(1) in the lecture notes).

Remark: In view of Remark 1.15(3), it suffices to construct a monoidal functor

$$(F, \varphi, \varepsilon) \colon \mathcal{C} \longrightarrow \mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C})$$

and a functor $G \colon \mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C}) \to \mathcal{C}$ such that $G \circ F$ is naturally isomorpic to the identity functor on \mathcal{C} and $F \circ G$ is naturally isomorphic to the identity functor on $\mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C})$. You do not need to endow G with the structure of a monoidal functor or check that the natural isomorphisms are monoidal. (But you are still encouraged to do this for yourself.)

Exercise 2. - to be handed in by 3 March 2023

Let \mathcal{C} and \mathcal{D} be rigid monoidal categories and let $(F, \varphi, \varepsilon) \colon \mathcal{C} \to \mathcal{D}$ and $(G, \varphi', \varepsilon') \colon \mathcal{C} \to \mathcal{D}$ be monoidal functors. Further let $u \colon F \to G$ be a monoidal natural transformation. Show that u is an isomorphism of functors.

You can follow the sequence of hints below.

We first make the following definition:

Definition. A contragrediant of a homomorphism $f: X \to Y$ in \mathcal{C} is a homomorphism $f^{\vee}: X^* \to Y^*$ such that

$$\operatorname{ev}_Y \circ (f^{\vee} \otimes f) = \operatorname{ev}_X$$
 and $(f \otimes f^{\vee}) \circ \operatorname{coev}_X = \operatorname{coev}_Y$.

Now you can proceed as follows:

(a) Let $f: X \to Y$ be a homomorphism in \mathcal{C} with a contragredient $f^{\vee}: X^* \to Y^*$. Show that

$$f^* \circ f^{\vee} = \mathrm{id}_{X^*}$$
 and $f^{\vee} \circ f^* = \mathrm{id}_{Y^*}$.

Hint: Recall that $id_{X^*} = (ev_X \otimes id_{X^*}) \circ (id_{X^*} \otimes coev_X)$ by the zig-zag relation and

$$f^* = (\text{ev}_Y \otimes \text{id}_{X^*}) \circ (\text{id}_{Y^*} \otimes f \otimes \text{id}_{X^*}) \circ (\text{id}_{Y^*} \otimes \text{coev}_X)$$

by definition.

(b) Show that $u_{X^*}: F(X)^* = F(X^*) \to G(X^*) = G(X)^*$ is a contragredient of $u_X: F(X) \to G(X)$, for all objects X of \mathcal{C} .

Hint: Use the definition of monoidal natural transformations and of the evaluation and coevaluation maps for F(X); see Definition 1.14 and the proof of Lemma 4.8 in the lecture notes.

(c) Conclude that u_X is an isomorphism for every object X of \mathcal{C} .