Algorytmy optymalizacji dyskretnej - Lista 2

Wojciech Sęk

4 listopada 2021

1 Zadanie 1

1.1 Opis modelu

1.1.1 Zmienne decyzyjne

Dla problemu związanego z n lotniskami i m firmami zmienną decyzyjną jest $x \in \mathbb{R}^{n \times m}$, która oznacza, że od firmy j lotnisko i kupiło x_{ij} paliwa.

1.1.2 Ograniczenia

Mamy 3 rodzaje ograniczeń:

- Zawsze kupujemy nieujemną ilość paliwa zatem $(\forall i \in [n], j \in [m])(x_{ij} \ge 0)$.
- ullet Firma j może zapewnić tylko c_j paliwa, zatem mamy

$$(\forall j \in [m]) \left(\sum_{i=1}^{n} x_{ij} \leqslant c_j \right)$$

 \bullet Lotnisko imusi kupić C_i paliwa, zatem mamy

$$(\forall i \in [n]) \left(\sum_{j=1}^{m} x_{ij} = C_i \right)$$

1.1.3 Funkcja celu

Niech $A \in \mathbb{R}_+^{n \times m}$ to macierz kosztu, w której a_{ij} oznacza koszt paliwa kupionego od firmy j dla lotniska i. Wtedy funkcja celu:

$$\sum_{i \in [n], j \in [m]} a_{ij} \cdot x_{ij}$$

W tym problemie funkcja będzie minimalizowana.

1.2 Wyniki i interpretacja

Dla 3 firm i 4 lotnisk z następującymi kosztami

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

i ograniczeniami na paliwo od firm i lotnisk:

$$c_1 = 275000, c_2 = 550000, c_3 = 660000; C_1 = 110000, C_2 = 220000, C_3 = 330000, C_4 = 4400000, C_5 = 220000, C_6 = 220000, C_7 = 220000, C_8 = 2200000, C_8 = 220000, C_8 = 2200000, C_8 =$$

wartość minimalna funkcji celu wynosi 8525000 i ilości kupionego paliwa wyglądają następująco

	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110000	0
Lotnisko 2	165000	55000	0
Lotnisko 3	0	0	330000
Lotnisko 4	110000	0	330000
Suma lotnisk	275000	165000	660000

Wszystkie firmy dostarczają paliwo i tylko firma 2 może jeszcze dostarczyć paliwa, bo $\sum_{i=1}^4 x_{i2} < c_2$, a dla $j \neq 2$ mamy $\sum_{i=1}^4 x_{ij} = c_j$.

2 Zadanie 2

2.1 Opis modelu

2.1.1 Zmienne decyzyjne

Dla problemu z n miastami i m połączeniami między miastami zmienną decyzyjną jest macierz połączeń między miastami $x \in \mathbb{R}^{n \times n}$, gdzie $x_{ij} = 1$ oznacza, że droga optymalna zawiera połączenia z miasta i do j, a $x_{ij} = 0$ oznacza, że nie zawiera.

2.1.2 Ograniczenia

W oryginalnym modelu mamy 6 ograniczeń:

- 1) Wartości w macierzy są równe 0 albo 1, zatem $(\forall i \in [n], j \in [m])(x_{ij} \in \{0,1\})$
- 2) Jeżeli nie ma połączenia między miastami i i j, to nie wykorzystujemy go w rozwiązaniu optymalnym. Niech $c \in \mathbb{R}^{n \times n}$ oznacza macierz kosztów dojazdu, c_{ij} to koszt dojazdu z miasta i do j. Zatem $(\forall i \in [n], j \in [m])(c_{ij} = 0 \Rightarrow x_{ij} = 0)$
- 3) Dla każdego miasta oprócz pierwszego i ostatniego suma dróg wpadających do nich jest równa sumie dróg wychodzących

$$(\forall i \in [n] \setminus \{i_0, j_0\}) \left(\sum_{j \in [n]} x_{ij} = \sum_{j \in [n]} x_{ji} \right)$$

4) Dla miasta startowego i_0 suma dróg wychodzących jest większa o 1 od sumy dróg wchodzących

$$\sum_{j \in [n]} x_{i_0 j} - \sum_{j \in [n]} x_{j i_0} = 1$$

5) Dla miasta startowego i_0 suma dróg wychodzących jest większa o 1 od sumy dróg wchodzących

$$\sum_{i \in [n]} x_{j_0 i} - \sum_{i \in [n]} x_{i j_0} = -1$$

6) Niech $t \in \mathbb{R}^{n \times n}$ oznacza macierz czasów dojazdu, t_{ij} to czas dojazdu z miasta i do j. Niech T to ograniczenie górne na czas przejazdu. Wtedy

$$\sum_{i \in [n], j \in [n]} t_{ij} \cdot x_{ij} \leqslant T$$

Model drugi osłabia warunek 1) do $(\forall i \in [n], j \in [m])(x_{ij} \in [0, 1])$. Model trzeci usuwa warunek 6).

2.1.3 Funkcja celu

Funkcją celu jest koszt całej trasy, czyli

$$\sum_{i \in [n], j \in [n]} c_{ij} \cdot x_{ij}$$

Funkcję tę będziemy minimalizować.

Wyniki i interpretacja

Rozważamy egzemplarz, gdzie $i_0=1, j_0=4, T=7,$ a koszta i czasy wyglądają następująco

Model pierwszy, czyli prawidłowy, znalazł następującą trasę, o koszcie 12 i czasie przejazdu $6 (\leq T)$:

Drugi model (bez ograniczenia na całkowitość) znalazł następującą trasę, o koszcie 7 i czasie przejazdu 7, ale nielegalnej ze względu na niecałkowite zmienne decyzyjne:

Model trzeci (bez ograniczenia czasowego) znalazł następującą trasę, o koszcie 2 i czasie 8. Przekracza ona limit czasu:

Zadanie 3 3

3.1Opis modelu

Zmienne decyzyjne

Dla problemu związanego z n zmianami i m dzielnicami mamy macierz czterowymiarową $x^{(n+1)\times(m+1)\times(m+1)\times(m+1)}$, w której x_{abcd} oznacza przepływ przez łuk od (a,b) do (c,d). W naszym grafie przez węzeł (n+1,m+1) przypływają wszystkie radiowozy, przez węzły postaci (n+1,j) przepływają wszystkie radiowozy związane z dzielnicą j. Przez węzły postaci (i,m+1) przepływają wszystkie radiowozy związane ze zmianą i. Przez węzły postaci (i,j) dla $i \le n, j \le m$, przepływają radiowozy związane ze zmianą i i dzielnicą j.

3.1.2 Ograniczenia

Mamy 4 rodzaje ograniczeń:

• Ponieważ mamy ograniczenia na minimalną liczbę dla każdej zmiany i dzielnicy, jak również na minimalną liczbę radiowozów dla całej zmiany i całych dzielnic, to krawędzie bez ograniczenia dolnego (z ograniczeniem dolnym = 0) nie istnieją i nie bierzemy ich pod uwage w modelu

$$(\forall a, c \in [n+1], b, d \in [m+1])(l_{abcd} = 0 \Rightarrow x_{abcd} = 0)$$

• Dla każdego węzła suma radiowozów wjeżdżających do niego i suma wyjeżdżających z węzła są równe.

$$(\forall a \in [n+1], b \in [m+1]) \left(\sum_{c \in [n+1], d \in [m+1]} x_{abcd} = \sum_{c \in [n+1], d \in [m+1]} x_{cdab} \right)$$

• Jeżeli dla węzła istnieje ograniczenie dolne $(l_{abcd} > 0)$ to uwzględniamy je

$$(\forall a, c \in [n+1], b, d \in [m+1])(l_{abcd} > 0 \Rightarrow x_{abcd} \geqslant l_{abcd})$$

• Jeżeli dla węzła istnieje ograniczenie górne ($u_{abcd} > 0$ w naszym programie) to uwzględniamy je

$$(\forall a, c \in [n+1], b, d \in [m+1])(u_{abcd} > 0 \Rightarrow x_{abcd} \leqslant u_{abcd})$$

3.1.3 Funkcja celu

Funkcją celu jest suma wszystkich radiowozów przepływających przez sieć (wszystkie przepływają od węzłów postaci (i, m+1) do węzła głównego (n+1, m+1)), czyli

$$\sum_{i \in [n]} x_{i,m+1,n+1,m+1}$$

Funkcję tę będziemy minimalizować.

3.2 Wyniki i interpretacja

Rozważamy egzemplarz z 3 zmianami, 3 dzielnicami i następującymi ograniczeniami:

• Ograniczenia dolne

	zmiana 1	zmiana 2	zmiana 3
p_1	2	4	3
p_2	3	6	5
p_3	5	7	6

• Ograniczenia górne

	zmiana 1	zmiana 2	zmiana 3
p_1	3	7	5
p_2	5	7	10
p_3	8	12	10

- Dla zmiany 1, 2 i 3 powinno być dostępnych, odpowiednio, co najmniej 10, 20 i 18 radiowozów.
- Dla dzielnicy 1, 2 i 3 powinno być dostępnych, odpowiednio, co najmniej 10, 20 i 13 radiowozów.

Model zwraca następujące przypisanie radiowozów:

	zmiana 1	zmiana 2	zmiana 3
p_1	2	6	3
p_2	3	7	10
p_3	5	7	6

Wtedy

- Dla zmiany 1, 2 i 3 jest dostępnych, odpowiednio, 10, 20 i 19 radiowozów.
- Dla dzielnicy 1, 2 i 3 jest dostępnych, odpowiednio, 11, 20 i 18 radiowozów.

Całościowo potrzebujemy 49 radiowozów.

4 Zadanie 4

4.1 Opis modelu

4.1.1 Zmienne decyzyjne

Dla magazynu o wymiarze $n \times m$ zmienną decyzyjną jest macierz $c \in \mathbb{N}^{n \times m}$, dla której c_{ij} oznacza liczbę kamer w kwadracie ij.

4.1.2 Ograniczenia

Mamy dwa rodzaje ograniczeń:

- Nie możemy stawiać kamer tam gdzie stoją kontenery. Niech $b \in \{0,1\}^{n \times m}$ to macierz obecności kontenerów, gdzie $b_{ij} = 1$ oznacza, że na kwadracie ij stoi kontener. Wtedy: $(\forall i \in [n], j \in [m])(b_{ij} = 1 \Rightarrow c_{ij} = 0)$
- \bullet Dla zasięgu kamer k mamy ograniczenie na obecność kamer wokół kontenerów:

$$(\forall i \in [n], j \in [m]) \left(\sum_{l=\max(1,j-k)}^{\min(m,j+k)} c_{il} + \sum_{l=\max(1,i-k)}^{\min(n,i+k)} c_{lj} \ge 1 \right)$$

4.1.3 Funkcja celu

Funkcją celu jest liczba kamer

$$\sum_{i \in [n], j \in [m]} c_{ij}$$

Funkcję tę będziemy minimalizować.

4.2 Wyniki i interpretacja

Dla egzemplarzu problemu z k=2 zasięgiem kamery, i magazynem o wymiarach 10×10 z następującym rozkładem kontenerów:

Model znalazł następujący rozkład kamer:

Model jest prawidłowy, a optymalna liczba kamer to 6.