

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

15 de Julho de 2018

- (1) Um número natural \mathbf{n} é dito um **quadrado perfeito**, se, e somente se, existir um número natural \mathbf{a} tal que $n=a^2$. Prove que se um quadrado perfeito é par sua raiz quadrada é par e que se um quadrado perfeito é ímpar então sua raiz quadrada é ímpar.
- (2) Usando o princípio de indução, mostre que:

$$1+3+5+7+\cdots+(2n-1)=n^2, n \in \mathbb{N}.$$

- (3) Uma caixa contém 3 tipos de bolas (azuis, verdes, amarelas). Qual o número de bolas que devemos retirar da caixa para garantirmos que temos duas bolas da mesma cor?
- (4) Seja o conjunto infinito e enumerável $A = \left\{\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots\right\}$. Mostre que:
 - (a) A está escrito na ordem crescente de seus termos; ou seja

$$a_n = \frac{n}{n+1} < a_{n+1} = \frac{n+1}{n+2}, \quad \forall n \in \mathbb{N}.$$

- (b) A é limitado inferior e superiormente;
- (c) $1 \notin o$ supremo $e \frac{1}{2} \notin o$ ínfimo de A.
- (5) Seja $(a_n) = \left(\frac{n}{2n+3}\right)$.
 - (a) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < \frac{1}{4}$;
 - (b) Mostre, usando a definição de limite de sequência, que $\lim_{n\to\infty} a_n = \frac{1}{2}$.
- (6) Prove que se (a_n) é uma sequência que converge para zero e (b_n) uma sequência limitada, não necessariamente convergente, então (a_nb_n) converge para zero. Dê um exemplo.
- (7) Prove que $a_n = 5n^3 4n^2 + 7$ tende ao infinito.