

SEQUENCE LISTING

University of Kentucky Research Foundation Hildebrand, David Hatanaka, Tomoko

		•										
<120>	REC	OMBINANT STO	OKESIA EPOSY	YGENASE GENE	Ξ							
<130>	0502	229-0377										
<140> <141>		622,774 3-07-21										
<150> <151>	60/396,406 2002-07-19											
<160>	10											
<170>	PatentIn version 3.2											
<210><211><211><212><213>	1 1406 DNA Sto)	6 kesia laevi:	5									
<400>	1 ttta	aatatcaata	agatcagtgt	togacogaaa	tccaacgcat	tttctaattt	60					
			aaggtagcag				120					
			gagccccgat				180					
							240					
			attgcttccg									
			ccttcctttt				300					
			acttagcatg				360					
cctcact	tggt	ttatgggtcc	tcggccatga	atgcggccat	catgccttta	gtgagtacca	420					
gtggati	tgat	aacgccgttg	gattcgtcct	ccattcggct	ctcctcaccc	cttacttttc	480					
ttggaaa	atac	agccatcgaa	agcaccatgc	aaacacaaat	tcactcgaaa	acgaggaagt	540					
ttacat	tcct	agaactcagt	cccagctcag	gacttactcc	acatacgaat	ttcttgacaa	600					
cacgcc	tggt	cgaatcctca	tcttggtcat	catgttaacc	ttaggatttc	ctttatacct	660					
cttaac	gaat	gtttcaggca	agaagtacga	tagatttacc	aaccactttg	atccattgag	720					
cccgat	cttc	accgagcgtg	agcgaatcca	ggttgcgtta	tcagatcttg	gtatcgttgc	780					
agtgtt	ttac	ggactcaagt	ttcttgtaca	aacaaaagga	tttggttggg	tgatgtgcat	840					
gtatgga	agtt	ccagtgatag	gtctgaattc	cttcattatc	gtaatcactt	atctgcacca	900					
cacaca	tctg	tcgtcacccc	attacgattc	aaccgaatgg	aactggatca	aaggagcctt	960					

gaccacaatc gacagagatt	tcggtctcct	gaatcgggtt	ttccacgacg	ttacacacac	1020
ccacgtgttg caccatttgt	ttccctacat	tccacattat	catgcaaagg	aggcaagcga	1080
ggccatcaag ccaatcttgg	gtgattacag	gatgatcgac	aggactccat	ttttcaaagc	1140
aatgtggaga gaggccaagg	aatgcattta	catcgagcaa	gatgcagaca	gcaagcacaa	1200
agggacatat tggtaccata	aaatgtaatc	gatgatggag	tttagttgga	aataatgaca	1260
tgcagcatcc cttttgtatg	cttgaatcgt	tctatttctt	tatatgtttt	gtaagataaa	1320
taagtaaatc tttgagtgaa	gatggggagc	aggaaacaag	cagaatataa	tacgctaaaa	1380
aaaaaaaaaa aaaaaaaaaa	aaaaaa				1406

<210> 2

<211> 378

<212> PRT

<213> Stokesia laevis

<400> 2

Met Ser Asp Ser Tyr Asp Asp Arg Met Lys Asp His Asp Met Asp Glu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Arg Ala Pro Ile Asp Pro Ala Pro Phe Ser Leu Ser Asp Leu Lys Lys 20 25 30

Ala Ile Pro Ala His Cys Phe Arg Arg Ser Ala Val Trp Ser Ser Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Val Val Gln Asp Leu Ile Ile Thr Phe Leu Leu Tyr Thr Val Ala 50 55 60

Asn Thr Tyr Ile Pro His Leu Pro Pro Pro Leu Val Tyr Leu Ala Trp 65 70 75 80

Pro Val Tyr Trp Phe Cys Gln Ser Cys Ile Leu Thr Gly Leu Trp Val 85 90 95

Leu Gly His Glu Cys Gly His His Ala Phe Ser Glu Tyr Gln Trp Ile 100 105 110

Asp Asn Ala Val Gly Phe Val Leu His Ser Ala Leu Leu Thr Pro Tyr 115 120 125

Phe	Ser 130	Trp	Lys	Tyr	Ser	His 135	Arg	Lys	His	His	Ala 140	Asn	Thr	Asn	Ser
Leu 145	Glu	Asn	Glu	Glu	Val 150	Tyr	Ile	Pro	Arg	Thr 155	Gln	Ser	Gln	Leu	Arg 160
Thr	Tyr	Ser	Thr	Tyr 165	Glu	Phe	Leu	Asp	Asn 170	Thr	Pro	Gly	Arg	Ile 175	Leu
Ile	Leu	Val	Ile 180	Met	Leu	Thr	Leu	Gly 185	Phe	Pro	Leu	Tyr	Leu 190	Leu	Thr
Asn	Val	Ser 195	Gly	Lys	Lys	Tyr	Asp 200	Arg	Phe	Thr	Asn	His 205	Phe	Asp	Pro
Leu	Ser 210	Pro	Ile	Phe	Thr	Glu 215	Arg	Glu	Arg	Ile	Gln 220	Val	Ala	Leu	Ser
Asp 225	Leu	Gly	Ile	Val	Ala 230	Val	Phe	Tyr	Gly	Leu 235	Lys	Phe	Leu	Val	Gln 240
Thr	Lys	Gly	Phe	Gly 245	Trp	Val	Met	Cys	Met 250	Tyr	Gly	Val _,	Pro	Val 255	Ile
Gly	Leu	Asn	Ser 260	Phe	Ile	Ile	Val	Ile 265	Thr	Tyr	Leu	His	His 270	Thr	His
Leu	Ser	Ser 275	Pro	His	Tyr	Asp	Ser 280	Thr	Glu	Trp	Asn	Trp 285	Ile	Lys	Gly
Ala	Leu 290	Thr	Thr	Ile	Asp	Arg 295	Asp	Phe	Gly	Leu	Leu 300	Asn	Arg	Val	Phe
His 305	Asp	Val	Thr	His	Thr 310	His	Val	Leu	His	His 315	Leu	Phe	Pro	Tyr	Ile 320
Pro	His	Tyr	His	Ala 325	Lys	Glu	Ala	Ser	Glu 330	Ala	Ile	Lys	Pro	Ile 335	Leu
Gly	Asp	Tyr	Arg 340	Met	Ile	Asp	Arg	Thr 345	Pro	Phe	Phe	Lys	Ala 350	Met	Trp

Arg Glu Ala Lys Glu Cys Ile Tyr Ile Glu Gln Asp Ala Asp Ser Lys

355 360 365

```
His Lys Gly Thr Tyr Trp Tyr His Lys Met
                       375
    370
<210> 3
<211> 8
<212> PRT
<213> Crepis palaestina and Vernonia galamensis
<400> 3
Cys His Glu Cys Gly His His Ala
<210> 4
<211> 8
<212> PRT
<213> Crepis palaestina and Vernonia galamensis
<400> 4
His Asp Val Thr His Thr His Val
<210> 5
<211> 26
<212> DNA
<213> Stokesia laevis
<400> 5
cgcaacctgg attcgctcac gctcgg
                                                                     26
<210> 6
<211> 27
<212> DNA
<213> Stokesia laevis
<400> 6
                                                                     27
cccagctcag gacttactcc acatacg
<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial StexpF primer of unknown origin
<400> 7
                                                                     32
gacgcgtctt cccatgtcgg attcatatga tg
```

<210> 8 <211> 37 <212> DNA <213> Artificial Sequence											
<220> <223> Artificial StexpR primer of unknown origin											
<400> 8 gacgcccggg ttacatttta tggtaccaat atgtccc 37											
<210> 9 <211> 1364 <212> DNA <213> Veronia galamensis											
<400>	9						60				
_	-		_	tcaaatcgac		-	60				
caattca	aaat	ctggaaatat	taattggatc	aagcgggcgg	atatgatgat	gtcggattca	120				
tgtgatq	gatc	atgatcagct	ggtgaaagat	gatcataata	taaacgaacg	tgcaccggtt	180				
gatgcg	gcac	cattctcgtt	aagcgatcta	aagaaagcaa	tccctccgca	ttgcttccag	240				
cgatct	gcca	tccgttcatc	gtgctacgtt	gttcaggatc	tcattattac	cttcctttta	300				
tacacgo	ctcg	ccaactctta	cattcctctt	cttcctcctc	ctctacctta	cttagcatgg	360				
cctgttt	tact	ggttttgcca	atcttcgatc	ctcactggtt	tatgggtcat	tggccatgaa	420				
tgtggc	catc	atgcttatag	tgagtaccag	tgggttgata	acaccgttgg	attcatcctc	480				
cattcct	tttc	ttctcacacc	ttacttttct	tggaaataca	gccatcgaaa	gcaccatgcc	540				
aacacga	aatt	cactcgaaaa	cgaggaggtt	tacattccta	aagccaagtc	ccagctcágg	600				
aattact	tcca	atttcaaatt	tcttgacaac	acccctggtc	gaatcttcat	tttgcttatc	660				
atgttga	acct	tgggctttcc	tttatacctc	ttgaccaata	tttcaggcaa	gaaataccaa	720				
aggttt	gcca	accactttga	tccgttgagc	cccatcttca	gtgagcgtga	acgaatccag	780				
gtcgtg	ctat	cggatgtggg	tctcattgct	gtgttttacg	ggcttaagtt	tcttgtagcg	840				
aaaaaa	gggt	tcggttgggt	aatgcgcatg	tacggagccc	cagtggttgg	gctgaatgcc	900				
ttcataa	ataa	tgatcactta	tctccaccac	acccatctgt	cttcgcctca	ttacgattcg	960				
accgaat	tgga	actggatcaa	aggagccttg	actacaatcg	atagagattt	cggtctcctg	1020				
aatagg	gtgt	tccatgacgt	cactcacaca	cacgtgttgc	atcatttgtt	cccgtacatt	1080				
ccacatt	tatc	atgcaaagga	ggcgagcgac	gcaataaagc	cggtgttagg	ggagtatcgg	1140				

atgatcgata	ggactccgtt	ttacaaagca	atgtggagag	aggcgaagga	atgcatctac	1200
atcgagccag	atgaagataa	gaagcacaaa	ggtgtatatt	ggtaccataa	aatgtgatac	1260
gagctgagta	cgtagtacgt	tgtatgcttt	tgtaacgttt	tgtaagataa	ataaataaat	1320
cttgaatgaa	gataaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa		1364
<210> 10		•				

<211> 1344

<212> DNA

Crepis palaestina

<400> 10

60 gagaagttga ccataaatca tttatcaaca tgggtgccgg cggtcgtggt cggacatcgg 120 aaaaatcggt catggaacgt gtctcagttg atccagtaac cttctcactg agtgaattga 180 agcaagcaat coctocccat tgcttccaga gatctgtaat cogotcatot tactatgttg 240 ttcaagatct cattattgcc tacatcttct acttccttgc caacacatat atccctactc ttcctactag tctagcctac ttagcttggc ccgtttactg gttctgtcaa gctagcgtcc 300 tcactggctt atggatcctc ggccacgaat gtggtcacca tgcctttagc aactacacat 360. ggtttgacga cactgtgggc ttcatcctcc actcatttct cctcaccccg tatttctctt 420 ggaaattcag tcaccggaat caccattcca acacaagttc gattgataac gatgaagttt 480 acatteegaa aageaagtee aaactegege gtatetataa acttettaac aacceacetg 540 gtcggctgtt ggttttgatt atcatgttca ccctaggatt tcctttatac ctcttgacaa 600 atatttccgg caagaaatac gacaggtttg ccaaccactt cgaccccatg agtccaattt 660 720 tcaaagaacg tgagcggttt caggtcttcc tttcggatct tggtcttctt gccgtgtttt 780 atggaattaa agttgctgta gcaaataaag gagctgcttg ggtagcgtgc atgtatggag 840 ttccggtatt aggcgtattt acctttttcg atgtgatcac cttcttgcac cacacccatc 900 agtcgtcgcc tcattatgat tcaactgaat ggaactggat cagaggggcc ttgtcagcaa 960 tcgataggga ctttggattc ctgaatagtg ttttccatga tgttacacac actcatgtca 1020 tgcatcattt gttttcatac attccacact atcatgcaaa ggaggcaagg gatgcaatca agccaatctt gggcgacttt tatatgatcg acaggactcc aattttaaaa gcaatgtgga 1080 1140 gagagggcag ggagtgcatg tacatcgagc ctgatagcaa gctcaaaggt gtttattggt 1200 atcataaatt gtgatcatat gcaaaatgca catgcatttt caaaccctct agttacgttt 1260 gttctatgta taataaaccg ccggtccttt ggttgactat gcctaagcca ggcgaaacag

ttaaataata	tcggtatgat	gtgtaatgaa	agtatgtggt	tgtctggttt	tgttgctatg	1320	
aaagaaagta	tgtggttgtc	ggtc				1344	

.