Elektroakustika; vlastnosti akustické vlny; základní akusticko-elektrické měniče a jejich princip.

1. Elektroakustika

Elektroakustika se zabývá převodem zvukové energie na elektrickou a naopak. Využití elektroakustických systémů najdeme v mnoha oblastech – od běžných spotřebičů, jako jsou mikrofony a reproduktory, až po sofistikované zvukové systémy v koncertních sálech nebo ve vědeckém výzkumu. Historie elektroakustiky sahá až do 19. století s rozvojem telefonie a zvukových záznamů.

2. Vlastnosti akustické vlny

Základní pojmy:

- Frekvence: Počet kmitů za sekundu, měřená v Hertzech. Frekvence určuje výšku tónu
 vyšší frekvence znamená vyšší tón.
- o Amplituda: Výška vlny, která ovlivňuje hlasitost zvuku.
- Rychlost zvuku: Rychlost, kterou se zvuk šíří v prostředí. Ve vzduchu je tato rychlost asi 343 m/s, ve vodě nebo v pevných látkách je vyšší.
- o **Délka vlny**: Vzdálenost mezi dvěma body s fázově shodnými místy na vlně.

Zvuk se šíří prostřednictvím podélných vln, které vytváří oblasti stlačení a zředění v médiu, například ve vzduchu. Interakce více zvukových vln může vést k jevům jako rezonance nebo interference.

Grafické znázornění zvukové vlny

Zvukovou vlnu lze znázornit pomocí sinusové křivky, která ukazuje střídání maxim a minim. V praxi zvuk obsahuje mnoho složek s různými frekvencemi, které vytvářejí složitější vlnové tvary.

3. Akusticko-elektrické měniče

Mikrofony

Mikrofony jsou zařízení, která převádějí zvukové vlny na elektrický signál. Fungují na principu, že zvuková vlna způsobuje pohyb membrány, která mění elektrické vlastnosti systému.

Typy mikrofonů:

Dynamický mikrofon: Membrána je spojena s cívkou, která se pohybuje v magnetickém poli. Tím se indukuje elektrický proud, který odpovídá zvukové vlně.

- o Výhody: Odolnost, vhodné pro hlasité prostředí.
- Nevýhody: Nižší citlivost na jemné zvuky.

Kondenzátorový mikrofon: Využívá změny kapacity kondenzátoru. Membrána a pevná deska tvoří kondenzátor, jehož kapacita se mění podle pohybu membrány.

- Výhody: Vyšší citlivost, kvalitní přenos vysokých frekvencí.
- Nevýhody: Potřeba napájení (phantom power).

Reproduktory

Reproduktory převádějí elektrický signál zpět na zvuk. Základem je cívka, která se pohybuje v magnetickém poli a vytváří vibrace membrány, která následně generuje zvukové vlny.

Typy reproduktorů:

- Dynamické reproduktory: Fungují na stejném principu jako dynamické mikrofony, ale v opačném směru.
- Piezoelektrické reproduktory: Využívají krystal, který se deformuje působením elektrického napětí a tím generuje zvukové vlny.

Typ měniče	Princip fungování	Výhody	Nevýhody
Dynamický mikrofon	Pohyb cívky v magnetickém poli	Odolnost, vhodné pro hlasité prostředí	Nižší citlivost
Kondenzátorový mikrofon	Změna kapacity kondenzátoru	Vysoká citlivost, přenos jemných detailů	Potřeba napájení
Dynamický reproduktor	Pohyb cívky a membrány v magnetickém poli	Vysoký výkon, kvalita zvuku	Vyšší cena
Piezoelektrický reproduktor	Deformace krystalu napětím	Nízká cena, kompaktní velikost	Nižší kvalita zvuku

4. Technologie zpracování zvuku

Zvukové signály jsou často zesilovány a upravovány před přehráváním nebo nahráváním. Zesilovače slouží ke zvýšení úrovně signálu, zatímco ekvalizéry a filtry umožňují úpravu frekvenčního spektra.

Zesílení signálu:

Zesilovače používají tranzistory nebo elektronky k zesílení elektrického signálu, který odpovídá zvukové vlně. Výstupní signál je pak silnější a může pohánět reproduktory.

• Filtrace a úprava signálu:

- Ekvalizér: Umožňuje úpravu různých frekvenčních pásem (např. zvýšení basů nebo výšek).
- Kompresor: Vyrovnává dynamiku signálu, čímž eliminuje příliš hlasité nebo příliš tiché části.

Typ zvuku	Frekvenční rozsah
Infrazvuk	Pod 20 Hz
Slyšitelný zvuk	20 Hz – 20 kHz
Ultrazvuk	Nad 20 kHz

5. Aplikace a závěr

Elektroakustické měniče nacházejí uplatnění v mnoha oblastech: od nahrávacích studií a koncertních sálů, přes domácí zvukové systémy, až po sluchátka a mikrofony pro každodenní použití. Budoucnost elektroakustiky směřuje k využití technologií jako 3D zvuk nebo binaurální nahrávky, které vytvářejí prostorový efekt a zlepšují zážitek z poslechu.