Optimal transport

III Wasserstein Space

Seongho, Joo

Seoul National University

Reminders

- Let X,Y be compact metric spaces, $c\in C(X\times Y)$ the cost function $(\mu,\nu)\in \mathcal{P}(X)\times \mathcal{P}(Y)$ the marginals. We call the following results:
 - minimizer/maximizers exist for both problems and, for the dual, can be chosen as (φ, φ^c) with φ c-concave.
 - lacksquare at optimality, it holds $\varphi(x)+\psi(y)=c(x,y)$ for γ -almost every (x,y).
 - we have the following special cases:
 - for $X = Y \subset r$ and c(x, y) = h(y x) with h strictly convex, the (unique) optimal transport plan, which can be characterized with the quantile functions of μ and ν .
 - lacktriangledown for X=Y and $c(x,y)=\mathrm{dist}(x,y)$, we have the Kantorovich-Rubinstein formula

$$T_c(\mu, \nu) = \sup_{\varphi \in 1\text{-Lip}} \int \varphi \, \mathrm{d}\mu - \nu$$

■ for $X=Y\subset \mathbf{r}^d$ and $c(x,y)=\frac{1}{2}|y-x|^2$, and when μ is absolutely continuous, there exists a unique optimal transport plan. It is of the from $\gamma=(\mathrm{id},\nabla \tilde{\varphi})_{\#}\mu$ for some $\tilde{\varphi}\in C(\mathbf{r}^d)$ convex.

Wasserstein space

Definition 1 (Wassetstein space)

Let (X,dist) be a compact metric space. For $p\geq 1$, we denote by $\mathcal{P}_p(X)$ the set of probability measures on X endowed with the p-Wasserstein distance, defined as

$$W_p(\mu,\nu) := \left(\min_{\gamma \in \Pi(\mu,\nu)} \int \mathsf{dist}(x,y)^p \, \mathrm{d}\gamma(x,y) \right)^{1/p} = \mathcal{T}_{\mathsf{dist}^p}(\mu,\nu)^{\frac{1}{p}}$$

• This distance is a natural way to build a distance on cP(X) from a distance on X. In particular, the map $\delta: X \to \mathcal{P}_p(X)$ mapping a point $x \in X$ to the Dirac mass δ_x is an isometry.

Wasserstein space

Definition 1 (Wassetstein space)

Let (X,dist) be a compact metric space. For $p\geq 1$, we denote by $\mathcal{P}_p(X)$ the set of probability measures on X endowed with the p-Wasserstein distance, defined as

$$W_p(\mu,\nu) := \left(\min_{\gamma \in \Pi(\mu,\nu)} \int \mathsf{dist}(x,y)^p \, \mathrm{d}\gamma(x,y) \right)^{1/p} = \mathcal{T}_{\mathsf{dist}^p}(\mu,\nu)^{\frac{1}{p}}$$

• This distance is a natural way to build a distance on cP(X) from a distance on X. In particular, the map $\delta: X \to \mathcal{P}_p(X)$ mapping a point $x \in X$ to the Dirac mass δ_x is an isometry.

Proposition 1

 W_n defines the axioms of a distance on $\mathcal{P}_n(X)$.

The symmetry of the Wasserstein distance is obvious. Moreover, $W_p(\mu,\nu)=0$ implies that there exists a $\gamma\in\Pi(\mu,\nu)$ such that $\int {\rm dist}^p\,{\rm d}\gamma=0$. This implies that γ is concentrated on the diagonal, so that $\gamma=({\rm id},{\rm id})_\#\mu$ is induced by the identity map.

Proposition 1 proof

To prove the triangle inequality we will use the gluing lemma below with N=3.

Lemma 1 (Gluing)

Let $X_1,\ldots X_N$ be complete and separable metric spaces, and for any $1\leq i\leq N-1$ consider a transport plan $\gamma_i\in\Pi(\mu_i,\mu_{i+1})$. Then, there exists $\gamma\in\mathcal{P}(X_1,\ldots,X_N)$ such that for all $i\in\{1,\ldots N-1\}$, $(\pi_{i,i+1})_{\#}\gamma=\gamma_i$, where $\pi_{i,i+1}:X_1\times\cdots\times X_N\to X_i\times X_{i+1}$ is the projection.

Proposition 1 proof

To prove the triangle inequality we will use the gluing lemma below with N=3.

Lemma 1 (Gluing)

Let $X_1,\ldots X_N$ be complete and separable metric spaces, and for any $1\leq i\leq N-1$ consider a transport plan $\gamma_i\in\Pi(\mu_i,\mu_{i+1})$. Then, there exists $\gamma\in\mathcal{P}(X_1,\ldots,X_N)$ such that for all $i\in\{1,\ldots N-1\}$, $(\pi_{i,i+1})_{\#}\gamma=\gamma_i$, where $\pi_{i,i+1}:X_1\times\cdots\times X_N\to X_i\times X_{i+1}$ is the projection.

Let $\mu_i\in\mathcal{P}_p(X)$ for $i\in\{1,2,3\}$ and let $\gamma_1\in\Pi(\mu_1,\mu_2)$ and $\gamma_2\in\Pi(\mu_2,\mu_3)$ be optimal in the definition of W_p . Then, there exists $\sigma\in\mathcal{P}(X^3)$ such that $(\pi_{i,i+1})_\#\sigma=\gamma_i$ for $i\in\{1,2\}$. A fortiori one has $(\pi_1)_\#\sigma=\mu_1$ and $(\pi_3)_\#\sigma=\mu_3$, so that $(\pi_{1,3})_\#\sigma\in\Pi(\mu_1,\mu_3)$. In particular,

$$\begin{split} W_p(\mu_1, \mu_3) & \leq \left(\int_{X^2} \mathsf{dist}(x, y)^p \, \mathrm{d}(\pi_{1,3})_\# \sigma(x, y) \right)^{1/p} \\ & = \left(\int_{X^3} \mathsf{dist}(x_1, x_3)^p \, \mathrm{d}\sigma(x_1, x_2, x_3) \right)^{1/p} \\ & \leq \left(\int_{X^3} (\mathsf{dist}(x_1, x_2) + \mathsf{dist}(x_2, x_3))^p \, \mathrm{d}\sigma(x_1, x_2, x_3) \right)^{1/p} \\ & \leq \left(\int_{X^3} \mathsf{dist}(x_1, x_2)^p \, \mathrm{d}\sigma(x_1, x_2, x_3) \right)^{1/p} + \left(\int_{X^3} \mathsf{dist}(x_2, x_3)^p \, \mathrm{d}\sigma(x_1, x_2, x_3) \right)^{1/p} \end{split}$$

Comparision between Wasserstein distances

Note that, due to Jensen's inequality, since all $\gamma\in\Pi(\mu,\nu)$ are probability measures, for $p\leq q$ we have $(\int \operatorname{dist}(x,y)^p\,\mathrm{d}\gamma)^{q/p}\leq\int\operatorname{dist}(x,y)^q\,\mathrm{d}\gamma$ and so

$$\left(\int \mathsf{dist}(x,y)^p \,\mathrm{d}\gamma\right)^{\frac{1}{p}} \le \left(\int \mathsf{dist}(x,y)^p \,\mathrm{d}\gamma\right)^{\frac{1}{q}},$$

which implies $W_p(\mu,\nu) \leq W_q(\mu,\nu)$. In particular, $W_1(\mu,\nu) \leq W_p(\mu,\nu)$ for every $p \geq 1$. In particular, $W_1(\mu,\nu) \leq W_p(\mu,\nu)$. On the other hand, for compact (and thus bounded) X, an opposite inequality also holds, since

$$\left(\int \mathsf{dist}(x,y)^p \,\mathrm{d}\gamma\right)^{1/p} \leq \mathsf{diam}(X)^{\frac{p-1}{p}} \left(\int \mathsf{dist}(x,y) \,\mathrm{d}\gamma\right)^{\frac{1}{p}}$$

This implies that for all $p \ge 1$,

$$W_1(\mu,\nu) \le W_p(\mu,\nu) \le \text{diam}(X)^{\frac{p-1}{p}} (W_1(\mu,\nu))^{\frac{1}{p}}$$

Topologial properties

Theorem 1

Assume that X is compact. For $p\in [1,+\infty]$, we have $\mu_n\rightharpoonup \mu$ if and only if $W_p(\mu,\mu)\to 0$.

Proof.

Topologial properties

Theorem 1

Assume that X is compact. For $p\in [1,+\infty]$, we have $\mu_n\rightharpoonup \mu$ if and only if $W_p(\mu,\mu)\to 0$.

Proof. We only need to prove the result for W_1 thanks to the comparison inequalities between W_1 and W_p . Consider a sequence μ_n such that $W_1(\mu_n,\mu) \to 0$. Thanks to the duality formula, for every $\varphi \in \operatorname{Lip}_1(X)$, we have $\int \varphi(\mu_n - \mu) \to 0$. By linearity, the same is true for any Lipschitz function. By density, this holds for any function in C(X). This shows that convergence in W_1 implies weak convergence.

To prove the opposite implication, consider a subsequence ν_{n_k} that satisfies $\lim_k W_1(\mu_{n_k},\mu) = \limsup_n W_1(\mu_n,n)$. For every k pick a function $\varphi_{n_k} \in \operatorname{Lip}_1(X)$ such that $\int \varphi_{n_k}(\mu_{n_k}-\mu) = W_1(\mu_{n_k},\mu)$. We may assume that the φ_{n_k} all vanish at the same point, and they are hence uniformly bounded and equi-continuous. By Ascoli-Arzelà theorem, we can extract a sub-sequence uniformly converging to a certain fucntion $\varphi \in \operatorname{Lip}_1(X)$. By replacing the original subsequence with this new one, we have now

$$W_1(\mu_{n_k}, \mu) = \int \varphi_{n_k} d(\mu_{n_k} - \mu) \to \int \varphi d(\mu - \mu) = 0$$

where the convergence of the integral is justified by the weak convergence $\mu_{n_k} \rightharpoonup \mu$ together with the strong convergence in C(X) $\varphi_{n_k} \to \varphi$. This shows that $\limsup_n W_1(\mu_n,\mu) \leq 0$ and concludes the proof.

Definition 2

Let (X,dist) be a metric space. A constant speed geodesic between two points $x_0,x_1\in X$ is a continuous curve $x:[0,1]\to X$ such that for every $s,t\in [0,1]$, $\operatorname{dist}(x_s,x_t)=|s-t|\operatorname{dist}(x_0,x_1)$

Proposition 2 (Geodesic between measures)

Let $\mu_0,\mu_1\in\mathcal{P}_p(X)$ with $X\subset\mathsf{r}^d$ compact and convex. Let $\gamma\in\Pi(\mu_0,\mu_1)$ be an optimal transport plan. Define

$$\mu_t := (\pi_t)_{\#} \gamma$$
 where $\pi_t(x, y) = (1 - t)x + ty$

Then, the curve μ_t is a constant speed geodesic between μ_0 and μ_1 .

Example 3.3 If there exists an optimal transport map T between μ_0 and μ_1 , then the geodesic defined above is $\mu_t = ((1-t)\mathrm{id} + tT)_\# \mu_0$.

Definition 2

Let (X,dist) be a metric space. A constant speed geodesic between two points $x_0,x_1\in X$ is a continuous curve $x:[0,1]\to X$ such that for every $s,t\in [0,1]$, $\operatorname{dist}(x_s,x_t)=|s-t|\operatorname{dist}(x_0,x_1)$

Proposition 2 (Geodesic between measures)

Let $\mu_0,\mu_1\in\mathcal{P}_p(X)$ with $X\subset \mathsf{r}^d$ compact and convex. Let $\gamma\in\Pi(\mu_0,\mu_1)$ be an optimal transport plan. Define

$$\mu_t := (\pi_t)_{\#} \gamma$$
 where $\pi_t(x, y) = (1 - t)x + ty$

Then, the curve μ_t is a constant speed geodesic between μ_0 and μ_1 .

Example 3.3 If there exists an optimal transport map T between μ_0 and μ_1 , then the geodesic defined above is $\mu_t = ((1-t)\mathrm{id} + tT)_\# \mu_0$.

Corollary 1

The space $(\mathcal{P}_p(X),W_p)$ with $X\subset \mathsf{r}^d$ compact and convex is a geodesic space, meaning that any $\mu_0,\mu_1\in\mathcal{P}_p(X)$ can be joined by (at least one) constant speed geodesic.

Prop 2 Proof.

Barycenters in $\mathcal{P}_2(X)$. The notion of geodesics allow to define the notion of a midpoint, or more generally barycenters, between two probability distributions. How to generalize the notion of "Wasserstein barycenters" to more than two probability distributions?

In \mathbf{r}^d , the barycenters of $x_1,\dots x_n$ with weights $\lambda_1,\dots,\lambda_n>0$ is the unique point y that minimizes $\sum_i \lambda_i \, \|y_i-x_i\|_2^2$. This motivates us to define Wasserstein-2 barycenters between $\mu_1\dots\mu_n\in\mathcal{P}_2(X)$ with weights $\lambda_1,\dots\lambda_n>0$ as any measures that solves

$$\min_{\nu \in \mathcal{P}_2(X)} \left\{ \sum_{i=1}^n \lambda_i W_2^2(\mu_i, \nu) \right\}$$

Observe that when $\mu_1=\delta_{x_i}$ we recover the usual notion of barycenters on $\mathbf{r}^d.$

Differentiability of the Wasserstein distance

Theorem 2

Let $\sigma, \rho_0, \rho_1 \in \mathcal{P}(X)$. Assume that there exists unique Kantorovich potentials (φ_0, ψ_0) between σ and ρ_0 which are c-conjugate to each other and satisfy $\psi_0(x_0)=0$ for some $x_0 \in X$. Then,

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{T}_c(\sigma + \rho_0 + t(\rho_1 - \rho_0))|_{t=0} = \int \psi \,\mathrm{d}(\rho_1 - \rho_0)$$

Proof.

Differentiability of the Wasserstein distance

• The assumption on the uniqueness of the potentials can be guaranteed a priori in several settings. Let us give one example of sufficient conditions which corresponds to the distance W_2 (one could prove it for W_p , with p>1 similarly).

Proposition 3 (Uniqueness of potentials)

If $X\subseteq \mathsf{r}^d$ is the closure of a bounded and connected open set, $x_0\in X$, $(\mu,\nu)\in \mathcal{P}(X)$ are such that μ is absolutely continuous and $\mathsf{spt}(\mu)=X$ then, there exists a unique pair of Kantorovich potentials (φ,ψ) optimal for $c(x,y)=\frac{1}{2}\|x-y\|^2$, c-conjugate to each other, and satisfying $\varphi(x_0)=0$.

Proof.

Dynamic formulation of optimal transport

• When $X\subset {\bf r}^d$, we can interpret the marginals $\mu,\nu\in {\mathcal P}(X)$ as distributions of particles at times t=0 and t=1 respectively. Assume that for each time t, there is a velocity field $v_t: rr^d\to {\bf r}^d$ which moves particles around. The relation between the velocity field and the distribution is given by the continuity equation (satisfied in the sense of distributions)

$$\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0.$$

• When v_t is regular enough (e.g. Lipschitz continuous in x, uniformly in t), then we can defines its flow $T:[0,1]\to X\to \mathsf{r}^d$ which is such that $T_t(x)$ gives the position at time t of a particle which is at x at time 0. It solves $T_0(X)=x$ and

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t(x) = v_t(T_t(x)).$$

• The relation between the evolution of the distribution ρ_t - the *Eulerian* descriptionand the evolution of the flow T_t - the *Lagrangian* description - is simply $\rho_t = (T_t)_{\#}\mu$.

Dynamic formulation of optimal transport

• Let us denote $\mathsf{CE}(\mu,\nu)$ the sets of solutions (ρ,ν) to the continuity equation such that $t\mapsto \rho_t$ is weakly continuous and satisfies $\rho_0=\mu$ and $\rho_1=\nu$. Consider also the integrated (generalized) "kinetic energy" functional

$$A_p(\rho, v) := \int_0^1 \int_X \|v_t(x)\|^p d\mu_t(x) dt.$$

By minimizing the functional over all interpolation between μ and ν , we recover the optimal transport with cost $\|y-x\|^p$. This is called the Benamou-Brenier formunilation.

Theorem 3 (Dynamic formulation)

Let $\mu,\nu\in\mathcal{P}(\mathbf{r}^d)$ be compactly supported. For $p\geq 1$ it holds

$$W_p^p(\mu,\nu) = \int \left\{ A_p(\rho,\nu) \,|\, (\rho,\nu) \in \mathsf{CE}(\mu,\nu) \right\}$$

Justifications for Theorem 3

• First argue that for $(\rho,\nu)\in \mathsf{CE}(\mu,\nu)$ it holds $A_p(\rho,\nu)\geq W_p^p(\mu,\nu)$. Assume (ρ,ν) is regular enough and consider the flow $T_t(x)$, that satisfies $\rho_t=(T_t)_\#\rho_0$. It holds

$$A(\rho, \nu) = \int_0^1 \int_X \|v_t(T_t(x))\|^p d\rho_0(x) dt$$
$$= \int_X \left(\int_0^1 \left\| \frac{\mathrm{d}}{\mathrm{d}t} T_t(x) \right\|^p dt \right) d\rho_0(x)$$
$$\geq \int_X \|T_1(x) - T_0(X)\|^p d\rho_0(x)$$

by Jensen's inequality. Since $(T_1)_{\#}\rho_0=\rho_1=\nu$ and $\rho_0=\mu$, the last quantity is larger than $W^p_p(\mu,\nu)$.

• Let us build an admissible $(\rho,\nu)\in \mathsf{CE}(\mu,\nu)$ such that $A(\rho,v)=W_p^p(\mu,\nu)$ using the geodesic between μ and ν . Assume that there exists an optimal transport map T between μ and ν , and set $\rho_t=(T_t)_\#\mu$ with $T_t(x)=(1-t)x+tT(x)$. Now define the velocity field

$$v_t = \left(\frac{\mathrm{d}}{\mathrm{d}t}\right) \circ T_t^{-1} = (T - \mathrm{id}) \circ T_t^{-1},$$

which, by construction, is that (ρ_t,v_t) satisfies the continuity equation in the weak sense. We have the desired equality:

$$A(\rho, v) = \int ||v_t(x)||^p d\rho_t(x) = \int |T(x) - x|^p d\rho_0(x) = W_p^p(\mu, \nu).$$

Riemannian interpretation

• In the case p=2, we can understand (at least as the formal level) the Benamou-Brenier formula as a Riemannaian formulation for w_2 . In this interpretation, the tangent space at $\rho\in\mathcal{P}(X)$ are measures of form $\delta\rho=-\nabla\cdot(v\rho)$ with a velocity field $v\in L^2(\rho,r^d)$ and the metric is given by

$$\|\delta\rho\|_p^2 = \int_{v\in L^2(\mathbf{r}^d,\rho)} \left\{ \int \|v(x)\|_2^2 \; \mathrm{d}\rho(x) \, | \, \delta\rho = -\nabla \cdot (v\rho) \right\}.$$