3

409132

AN NO. DEJ FILE COPY

10. 409132 FILE COPY

4 por (i)

Report Number

REPRODUCED FROM BEST AVA!LABLE COPY

United States Atomic Energy Commission Division of Technical Information

OTI-131(May 1962)

A CONTRACTOR OF THE PERSON OF

04 M 60

NP-12663

MASTER

. AN INVESTIGATION OF THE LOW EXCITED STATES OF Cr 52

Robert Roland Wilson .

TONKHAM (A)

School of the University of Colorado in partial fulfillment of the requirements for the Degree

Waster of Science

Department of Physics

The Co

This Thesis for the M.S. degree by

has been approved for the Robert Roland Wilson

Department of

Physics

1700

1961

Wilson, Robert Roland (M.S., Physics) An Investigation of the Low Excited States of Cr⁵². Thesis directed by Associate Professor Jack J. Kraushaar.

(0.08%), 1463 ± 2 (0.3%), 1180 ± 20 (1.4%), 1070 ± 20 (3.2%), current study of Mg decay with the University of Colorado sented. The energies given are those of the beta-ray spection quanta (65.5%). Weak transitions seen were: 2650 ± 30 (2.3%), 743.8 ± 0.3 (84.0%), 345.74 ± 0.08 (0.9%), annihila-102 r double-focusing beta-ray spectrometur are also prethe weighted average of the results of both spectrometers. The low excited state of Cr 32 have tarm investigated The gamma-ray energies and intensities reported were (all 200-channel pulse height analyzer. The results of a con-(6.2%), 1214 ± 1 (2.8%), 935.1 ± 0.4 (87.1%), 847.4 ± 0.6 trometer studies, and the intensities given are those of by studying the decay of Hn with 3 NaI(II) crystals (1 Kev): $1433.6 \pm 0.4 (1007)$, $1332 \pm 1 (5.87)$, 1245.6 ± 0.4 large, 2 small) as singles and in coincidence gating a. 630 ± 60 (2.4%).

New decay schemes for Mn 52 and Mn 52 were proposed. The energy, spin, and parity of the excited levels of $\rm Cr^{52}$ were given as (all Mev): 3.832 (5+,6+), 3.800 (2+), 3.74 (7±), 3.614 (5+,6+), 3.480 (3+), 3.161 (1-,2-,3-), 3.112 , (6+), 2.965 (2+,3+), 2.766 (4+), 2.648 (0+), 2.369 (4+), and 1.434 (2+).

Of interest is the 5 newly proposed excited levels of highest energy, the 9 newly reported gamma rays, the intensity differences of the 3 main transition gamma rays from

those previously reported, the support given to the assignment of spin and parity by D. M. Van Patter to the triplet between 3.112 and 2.369 Mev, and the assignment to the 3.161 Mev level as the first odd parity state.

This abstract of about 250 words is approved as to form and content. I recommend its publication.

ged Lened Instructor in charge of dissertation

۶,

TABLE OF CONTENTS

Acknowledgements	It is a pleasure for the author to be able to express	gratitude to Prof. J. J. Kraushaar for suggesting the	lem discussed in this paper, and for his continued	
	it is a pleasure	ratitude to Prof	es discussed in	4 mm

his 8 probl adbp

values listed herein, and the author takes this opportunity To Prof. A. A. Bartlett, designer and builder of the to thank them both for their long hours of data taking. worker, the entire credit is due for the precise energy beta-ray spectrometer, and Robert A. Ristinen, his co-

Roger H. Berger assisted throughout the investigation help the job could not have been done on schedule and the by taking data, reducing this data by tedious means, and maintaining the scintillation spectrometer. Without his author is very grateful for his cheerful assistance.

Commission for the financial support for this research, to the Physics Department which furnished much equipment, and to the Nuclear Physics Laboratory Staff for the technical The author is also indebted to the Atomic Energy assistance given.

- Bag		-	•	4			E	15		18		. 51	22		Analysis.	32	25	98		Assignment.	ctrometer. 40		42	. 57	s Paper. 48	
# .	2	tion.		A History of the Cr 52 Isocope.		Experimental Method.	Scintillation Spectroscopy.	Source Preparation.	Multichannel Pulse Height Analyzer.	Singles Method.	Variables in Scintillation	Spectroscopy.	Coincidence Method.		of Data Analysis and Error Analysis.	Singles Analysis.	Coincidence Analysis.	Error Analysis.		Experimental Results and Level Scheme Assignment.	Single Crystal Gama-Ray Spectrometer.	Double Crystal Coincidence		Revised Decay Scheme of Mn ⁵²	Comparison of Results of this	Log ft Values for the Revised
List of Figures	List of Tables Chapter 1.	Introduction.	Chapter 2.	A History	Chapter 3.	Experimen	3.1.	3.2.	3.3.	3.4.	3.5.	,	3.6.	Chapter 4.	Technique	4.1.	4.2.	4.3.	Chapter 5.	Experiment	5.1.	5.2.		5.3.	5.4.	5.5.

MASTER COPY RECORD-SUPPLEMENTAL SHEET

		TI P						CC	PY DIS	TRIBUTI	ON							
NO COPIES	INST. CODE	AUTH. BY	DATE		NO. PIES	INST.		JTH. BY	DATE	NO. COPIES	INST.	AUTH. BY	DATE	NO. COPIES	INST.	AU B		DATE
	ACB					DUP	†				MLM				SANL	1		
	ACC					DUPA					NAA				SAP			
	AECE					EBR					NACA				SCAO			
	AECW					EGGN					NACW				SEP			
	AGC			_		GCI	_				NBL				SFA			
	AGN					GDA	<u> </u>				NBS		<u> </u>		SE00	J.,		
	ANL			_		CECE	↓_			 	NDA	L		-0	GL.	250	J^{\perp}	
	ARPA					GLMM	↓			 .	NED		\	DH	1669]		W	
,	AS					G00	+-				NEPA			عل	TCB	_	$H\!H$	
	BABS					H00	-				NLC		White The	9	01st2	7	44	\
	BABV		ļ	- -		HW	-				NMEC		1111	701-6	UCLA	1	34	<u> </u>
	BBCB	-				100	┿┈				NRL		10/		Tall	W .	\rightarrow	
	BMI					1000	 			ļ	NYOO		HH	15	UCRE	B		····
	BOE					ISC	+			 	NYUC		$+\mathcal{P}_{I}$	1 - 1	AKO	 	\dashv	
	BPB			-#		JPL K-25	╁			 	OMC		1		WAPD	+		
·	BPBA					KAPL	+-			 	ORNL		 	 	WARD	+		
	CEND					LA	+			 	OSG		-	 	WECC	+		
	CERD				-+	LAOV	+-				OTAC		 		WPGY	+		
	CONB			1		LOMS	+				PADC				WPSI	+		
	coo			1		MCWH	┿┈				PITR	 	 		Y-12	+	+	
	CRM					METC	+				PPR		1			+		
	CVNP			1		МНІ	+	t		 	PRDC		†			 		
	DCD					M:TB				 	RWC		1	ļ —		 		
	DRI					MITK	1				SAND		1	 		1		
						SUBS	SEQU	ENT	AND SPI	ECIAL D	ISTRIBU	TION						
	₽R	INTED CO	PY DIS	TRIBU	TION			MIC	ROCARDS		Pf	RINTED C	OPY DIST	RIBUTION			MICRO	CARDS
NO COPIES	INS	TALLATIO	N AND/	OR COD	E	AUTH. BY	DATE	SET		NO. COPIES	INS	TALLATIO	N AND/OR	CODE	AUTH. BY	DATE	NO. SETS	DATE
										 								
							-		-						+-			╁
								-										
·								╁┈										 -
						 		╂							 		ļ	
						-	<u> </u>	╁	-						+			 -
								╅	1						+			
						<u> </u>	1	1	1						†			†
	DELF	TED COP	Y DISTE	RIBUTIO)N	<u></u>	Ti	DELET	E AS FOL	LOWS:					<u> </u>		<u> </u>	<u> </u>
NO	INSTALLA	TION A	UTH.	DATE	DIST.	DAT	⊣,											
COPIES	CODE		ВҮ	JA12	BY	- LAI	_											
ŀ																		
		 -				+	+											
		}			İ	1	- 1	బ		·						——		
' <u> </u>		1																
	·		-			+	+,	3		· · · · · · · · · · · · · · · · · · ·								
		F	ļ		1	1	'	-										
								-					•••					
I careid.	u that del-	etions or	SD4016	iad hii	the a	mhe	1 00-	00.00	n abovo	wara	de and th	at these	deletion	- WA		bu b		
4 0611111																		
① No																		
① No	me					1	ritle.					Date		<u> </u>	Copy No			

AN INVESTIGATION OF THE LOW EXCITED STATES OF ${\rm cr}^{52}$

by

Robert Roland Wilson

B.S., United States Naval Academy, 1952

A Thesis submitted to the Faculty of the Graduate
School of the University of Colorado in partial
fulfillment of the requirements for the Degree

Master of Science
Department of Physics
1961

This report furnished ASTIA by DTI Extension.

Please indicate on this copy AD-number and OTS availability and return to DTI Extension Attention Cataloging Branch.

	6 00	LIST OF TABLES	
Chapter 6,			Pag
Discussion of Results.	ï	History of Cr ⁵² .	'n
6.1. Branching Ratios of Ma ⁵² Decay.	53	Particle Reactions of Cr ⁵² .	07
6.2. The Results of Mausman et al. Compared to Those of Mazari et al.	III.	Sample Data for the Calculation of Relative Intensities for $(3-3/4^{\prime\prime} \times 3^{\prime\prime})$ NaI(T1) Crystal at 14 cm.	35
6.3. The Results of Katch et al. and Ma52m.	IV.	Intensities of Gamma Rays in Large Crystal Singles, and Intensities of Gamma Rays Coincident with the O 034, and O 244 Act	
6.4. Proposed Decay Scheme of Mn 52m.	59	Gamma Rays.	41
6.5. $V^{52} \rightarrow Cr^{52}$ Beta Decay.	v .	Intensities of Gemme Rays Coincident with the 1.43 Mev Gemma Ray	63
6.6. Theoretical Points of Interest,	61 VI.	Gaussa Ray Intensities in Decay of Mn ⁵²	(3
ppendlx A.	.IIv	Energy Levels of Gr ⁵² .	. 4 7
Construction of Intrinsic Efficiency Gurves for NaI(II) Crystals.	A-1	Comparison of Energy Values of the Main Transition Game Rays of Cr52.	9
Ppend3× B.	IX.	log ft Values for Mn ⁵² - Cr ⁵² .	· 2
Variation in Shape of a Gamma Ray as a Function of Analyzer Gain or Channel	×	Branching Ratios of $M_b^{52} \rightarrow Cr^{52}$.	: 23
Number.	B-1 XI.	Energy Levels of Cr 52 from Hausman et al.	26
ppendix C.	XII.	Calculation of Levels Given by Mazari et al.	. 57
Variation in Shape of a Gumma Ray when it is the Sum of Iwo Other Garma Rays.	C-1 XIII.	Log ft Values for $hn^{52m} \rightarrow Cr^{52}$.	82
pendix D	A-I.	Photoelectric neak area/rotal erea	•
Calibration Procedure for the Model 302 Universal Coincidence Circuit.	D-1	ma rays.	4
gures I through 16.	A-111.	Relative intrinsic efficiencies of known gamma rays for a (3-3/4" x 3") NaI(T1) crystal.	4-K
	A-IV.	Relative intrinsic efficiencies of known gamma rays for a $(2'' \times 2'')$ NaI(II) crystai.	A-5

Appendix A.

Append1x B.

Appendix C.

Appendix D.

Page 'n 9

Figures 1 through 16.

List of Figures

- 1. Decay Scheme of Mn 2 as Previously Reported.
 - . Man 52 Garma-Ray Spectrum Singles.
 - . Singles Geometry and Circuit.
- . Fast-Slow Coincidence Circuit.
- . Mn. Samma-Ray Spectrum Coincident with the 1.43 Mev Gamma Ray.
- Mn ⁵² Gamma-Ray Spectrum Coincident with the 1.33 Mcv Gamma Ray.
- 7. Fast Coincidence Circuit.
- Mn 52 Gamma-Ray Spectrum Coincident with the 0.935 Mev Gamma Ray.
- 9. Mn⁵² Gamma-Ray Spectrum Coincident with the 0.744 Mev G n a Ray.
 - 10. Revised Decay Scheme of Mn^{52} .
- 11. Intrinsic Efficiency of a (3-3/4" x 3") NaI(T1) Crystal.
 - 12. Intrinsic Efficiency of a $(2" \times 2")$ NaI(T1) Grystal.
- 13. Variation of Gamma-Ray Shape as a Function of Channel Number.
- 14. Sum-Peak Shape Versus a Normal Gamma-Ray Shape.
 - Model 302 Universal Coincidence Discriminator Calibration Curve.
 - 6. Proposed Decay Scheme for M_1 ,

CHAPTER 1

INTRODUCTION

One of the broad classes into which muclei have been divided for ease of systematic analysis is that of eveneven nuclei. An area which has not received a great deal of attention is the $40 \le A \le 92$ region, and contained there in is the interesting group of nuclei with $40 \le A \le 56$ which have particles outside of a closed shell in the $f_{7/2}$ state. This particular area has been the subject of calculations by Lawson and Uretsky, ¹ by Raz, ² by Kelly and Moszkowski, ³ by Shakin and Kermin, ⁴ and by Kisslinger and Sorensen. ⁵ Necessary adjuncts to any such calculations are appropriate experimental data to compare with these theories.

The present experiment on Cr^{52} is a continuation of the study of nuclei in the $\mathrm{f}_{7/2}$'s region which was commenced at the University of Colorado by a study of the Ca and Ca isotopes. Cr 52 has 24 protons and a closed shell of 28 neutrons with the 4 protons which are outside of the closed shell being in the $\mathrm{f}_{7/2}$'s state.

The experiment was conducted by observing the decay of Mn ⁵² with two scintillation gamma-ray spectrometers in coincidence gating a 200 channel pulse-height analyzer. A concurrent study of Mn ⁵² was conducted by another group at the University of Colorado using a $\sqrt{2}$ r double-focusing beta-ray spectrometer. The energies of the more prominent transitions reported here were measured by internal and external conversion in the beta-ray spectrometer. These latter results were consistent with those of the scintillation endiage.

·

A revised decay scheme was constructed with the addition of three new upper levels at 3.614 Mev with a spin of 5 or 6, 3.74 and 3.832 Mev the spin of which is uncertain. Mine new gamma rays are being reported in addition to the three main transitions and annihilation quanta gamma ray previously reported.

From an analysis of the intensities of these gamma rays the EC/p+ ratio was recalculated to be 1.50 instead of approximately 2 as has been consistently reported heretofore. Apparent reasons for this anomaly are also discussed.

This investigation was made during a 9 month period commencing in August of 1960. There were 411 separate runs of all types made on the gamma-ray scintillation spectrometer in support of this research. Of the runs which were analyzed for gamma ray content and for their respective intensities, 10 were made on the large single crystal spectrometer and 29 were made on the double crystal coincidence spectrometer. 19 of the 29 were of the spectrum of those gamma rays in coincidence with the 1.43 Mev gamma ray. 5 of the 29 were of the 0.935 Mev coincidence spectrum, and the remaining 5 were of the 0.744 Mev spectrum.

In Chapter 2 the history of Cr⁵² is discussed briefly, and the experimental method used to obtain the above results is given in Chapter 3. The technique used to analyze the data obtained in the scintillation studies is presented in Chapter 4, while the compilation of the results and the construction of the revised decay scheme is given in Chapter 5. Chapter 6 contains a discussion of the implications of this new decay scheme in the theory of even-even nuclei with emphasis on the f₇/₂ mucleon region.

References for Chapter 1

- . R. D. Lewson, and J. L. Uretsky, Phys. Rev., 106, 1369 (1957).
- B. J. Raz, Bill. Am. Phys. Soc., 3, 224 (1958) and Phys. Rev. 116, 1116 (1959).
- P. S. Kelley and S. A. Moszkowski, Z. Physik, 158, 304 (1960).
- C. Shakin and A. K. Kermin, Private communication.
- 5. L. S. Kisslinger and R. A. Sorensen, Rgl. Danske Videnskab. Selskab, Mat.-fys. Medd., 32, no. 9 (1960).

CHAPTER 2 A History of the Cr⁵² Isotope

There are a number of ways in which a history such as this could be presented. Since this chapter is meant only to give a survey of the increase in knowledge of the isotope it was thought that a chronological table would be the most appropriate form in that all of the facts could be assimilated at a glance. Table I outlines this history. Some literature concerning even-even nuclei is also listed as a matter of interest. Table II lists reaction studies which give the energy of the first excited state of Cr^{52} .

Fig. 1 displays the decay scheme of $4m^{52}$ as of April 1961. Of particular interest is the firm establishment of the ground state of $4m^{52}$ as 6+, $p\cdot y\cdot z$ and the primary decay sequence being 6+(b+) 6+(y) 4+(y) 2+(y) 0+. The energy levels are those reported by Mazari et all except for the one at 3.109 Mev which was assigned by Konijn et al. The spin assignments to the triplet states between the 3.109 and 2.369 Mev levels as well as the possible spins of the 3.161 Mev level were assigned by Van Patter. December 3.169 scheme does not reflect the results of Katoh et al W who reported new levels and transitions in December 1960 since there was a delay in receipt of their Japanese journal. The results of Katoh et al will be discussed in detail in Chapter 6.

TALE I. History of Gr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Investigators	Methods 52	Remarks
1946	Peacock and Deutsch	Decay of Mn	Found Fermi plot was straight and
			thus decay was simple to 3.13
			Mev level. Made first decay
			scheme of 3.13-, 2.40-, 1.46
			Mev levels, and reported 0.510
			± 0.01, 0.734 ± 0.015, 0.940 ±
	•		0.02, and 1.46 ± 0.03 games
		•	rays all Mev, 35% positrom.
976	1946 Good, Peaslee, and	Decay of Mn ⁵²	Reported $\beta^{+}/EC + \beta + = (0.35 \pm$
	Deutsch	••	0.02), and EC/ p + s (1.86 ±
			0.17).
1950	Way et al	Tabulation	Refers to above papers.
1951	Goldhaber and Sunyar	Theory/Tabulation	First pointed out that the first
			excited state of even-even
			nuclei usually has spin and
			parity of 2+.
1952	Hausman et al	8 Mcv (p,p')	Reported levels at 1.46-, 2.43-,
			and 3.01 Mev.
		(cont'd)	

3.109 Mev. Suggests Ma decays to 3.161 Mev level in	Date Investigators 1957 Mazari et al	Methods 6.5 Mev (p,p')	Remarks Assigned all energies to levels of Fig. 1 except that of
	Lawson and Uretsky	Theory	Predict 1.43 Mev level to be (2+), and calculate it to be 1.41 Mev.
Theory	El Bedevi and Tadros	8.7 Mev (d, d') Angular distri- bution	Assigned (2+) to 1.44 ± 0.02 Mev level.
Theory 8.7 Mev (d,d') Angular distribution	Ambler et al ^p	β+ Angular correlation	Assign (6+) to ground state of Mn ⁵² . Say (7+) is ruled out.
Theory 8.7 Mev (d,d') Angular distribution A Angular correlation	Strominger et alq	Tabulation	Assigns Mn ⁵² decay to 3.161 Mev

<u>()</u>

(cont'd)

ଟ	
ont	
ပ္ ၊	
BLE	
3	

Date	Investigators	Methods	Remarks
1958	Konijn et al ^r	Decay of Mn ⁵²	$EC/\beta + = 1.99 \pm 0.06$. Say 3.109
			Mev level involved in Mn ⁵²
			decay and not 3.161 Mev.
			$EC/\beta + = 2.03 \pm 0.06$ is theo-
			retical value.
1958	Porter et al ⁸	4.3-4.6 Mev	1.432 ± 0.005 Mev seen, but not
		(b, p')	2.368 ± 0.004 Mev of Mazari.
1958	Raz	Theory	Added 2 f _{1/2} particles to Bohr-
			Mottelson model.
1959	Van Patter ^u	Tabulation	E2 transition of $(0.+ - 2+)$ and
			(2'+ → 0+).
1959	Mandeville et al	1.5-5.0 Mev	Systematic study of low levels of
		(b, p')	even-even nuclei.
1959	Ofer and Schwarzchild	Nucl. Res.	Lifetime of (2+) in Cr ⁵² is (0.8
			± 0.2 misec.)
1960	Kelly and	Theory	Constructed j-j coupled wave-
	Moszkowski ^X		functions using a central
			average potential perturbed
			by 4 $f_{1/2}$ holes.
		(cont'd)	

(cont'd)

TABLE 1 (cont'd)

		a Contract	,
1960	Katoh et al	Decay of Ma 22 and	
		10 E 10 E 10 E	cepuit y rays of /46.8 ± .02,
		1 /2 /3 august	938.1 ± 0.4, and 1434.7 ±
		correlation	0.8 Kev all at equal inten-
			sity. Report weak y's at
			1.33 and 1.2 Mey at 5% and
			3% of 1,43 Mev resp. Corrob-
			orate spin and parities of
			6+, 4+, 2+, In decay of
			Mn ^{52m} report 1.52 (22),
		•	1.37, 1.15 (22), 1.02 (32),
			0.94 (41), 0.70 (31) coin.
0,01			with 1.43 Mev y ray.
1960	Kedzie	Paramag. Res.	Assigns I = 6 to Mn ⁵² .
0061	Shakin and Kermin"	Theory	Added a cubic term to harmonic
			oscillator description of
1901	99		nuclear vibrations.
1301	van ratter	3.3 Mev (n, n' y)	Assigned spins and partities of 2.65 (0+), 2.77 (≥ 4), 2.96 (2+),

_

TABLE I (cont'd)

Remarks	Report γ rays of 746.8 ± .02,	938.1 ± 0.4, and 1434.7 ±	0.8 Key all at equal inten-	sity. Report weak 7's at	1.33 and 1.2 Nev at 5% and	3% of 1.43 Mev resp. Corrob-	orate spin and parities of	6+, 4+, 2+. In decay of	Mn ^{52m} report 1.52 (22),	1.37, 1.15 (27), 1.02 (31),	0.94 (41), 0.70 (31) coin.	with 1.43 Mev y ray.	Assigns I = 6 to Mn ⁵²	Added a cubic term to harmonic	oscillator description of	nuclear vibrations.	Assigned spins and parities of 2.65	(0+), 2.77 (2 4), 2.96 (2+),	and 3.16 (1, 2, or 3) all Mev. 6
Methods	Decay of Mn 52, and	7 7 2 7 3 angular	correlation							••			Paramag. Res.	Theory		•	3.3 Mev (n, n' 7)		
Investigators	Katoh et al ^y												Aedzie	Shakin and Kermin		qq	van ratter		
Dace	1960											1020	700.	1967		1961	7071		

Reaction Studies on Cr⁵² Yielding the Energy of TABLE II.

	the First Excited State.	ed State.	
Date	Resction	Hev.	Investigator
1952	8 Mev (p, p')	1.45 ± 0.02	Hausman et al
1956	('n',n')	1.44 ± 0.05	Beghian et al
1957	4.4 Mev (n, n')	1.455 ± 0.10	Sinclair
1957	6.51 Mev Ma	1,434 ± 0.016	Mazari et al
	(p, a)		
1957	6.51 Mev (p.p')	1.433 ± 0.005	Mazari et al
8	4 4 Nev (0, 6')	1,432 ± 0.005	Porter et al
1958	8.7 Nev (d. d')	1.44 ± 0.02	El Bedewi and
2		:	Tadros
1957	Theoretical	1,41	Lawson and
			Uretsky

(7)

References for Tables I and II

- W. C. Peacock, and M. Deutsch, Phys. Rev. 69, 306 (1946).
 - W. M. Good, D. Peaslee, and M. Deutsch, Phys. Rev. 69, 313 (1946).
- K Way, L. Fano, M. Scott, and K. Thew, Muclear Data, (NBS 499, 1950) p. 47.
- H. J. Hausman, A. J. Allen, J. S. Arthuz, R. S. Bender, and C. J. McDole, Phys. Rev., <u>88</u>, 1296 (1952). M. Goldhaber and A. Sunyar, Phys. Rev. 83, 906 (1951).
- M. J. Glaubman, Phys. Rev., 20, 1000 (1953).
- R. Sehr, Z. Physik, 132, 523 (1954).
- K. Way, R. W. King, C. L. McGinnis, R. van Liesbout, Nuclear Level Schemes, AEC TID-5300, GPO, 1955.
- Scharff-Goldhaber and J. Weneser, Phys. Rev., 28, 212 (1955).
- G. M. Temmer and N. P. Heydenburg, Phys. Rev. 22, 1609 (1955).
- W. J. Huiskamp, M. J. Steenland, A. R. Micdome, H. A. Tolhoek, and C. J. Gorter, Physics, 22, 587 (1956).
- M. Mazari, W. W. Buechner, and A. Sperduto, Phys. Rev., 102, 1383 (1957).
- M. Abraham, C. D. Jeffries, R. W. Kedzie, and O. S. Leifson, Boll. Am. Phys. Soc., Ser II, 2, 382 (1957).
- F. A. El Bedewi and S. Tadros, Nuclear Phys., 6, 434 (1958). R. D. Lawson, and J. L. Uretsky, Phys. Rev., 105, 1369 (1957).
- غ
- E. Ambler, R. W. Hayward, D. D. Roppes, and R. P. Hudson, Phys. Rev., 110, 787 (1958).

- D. Strowinger, J. H. Hollander, and G. I. Seaborg, Rev. Hod. Phys., 30, 2, 11 (1958).
- .. J. Konijn, B. Van Nooijn, and H. L. Hagedoorn, Physica, 24, 377 (1958).
- . W. C. Porter, D. H. Van Patter, H. A. Rothman, and C. E. Mandeville, Phys. Rev. 112, 467 (1958).
- B. J. Raz, Bull. Am. Phys. Soc. 3, 224 (1958).
- D. M. Van Patter, Muclear Phys., 14, 42 (1959).
- C. E. Mandeville, D. M. Van Patter, W. C. Porter, M. A. Rothman, and C. P. Swann, AFOSR-TR-59-28, 1959.
- S. Ofer and A. Schwarzchild, Phys. Rev. Lett., 3, 384 (1959).
- . P. S. Kelley and S. A. Moszkowski, Z. Physik, 158, 304 (1960).
- y. T. Katch, M. Nozava, Y. Yoshizawa, and Y. Koh, J. Phys. Soc. Japan, 15, 2140 (1960).
- R. W. Kedzie, Phys. Rev., 117, 1056 (1960).
- 1a. C. Shakin and A. K. Kermin, Private communication.
- . D. M. Van Patter, Bull. Am. Phys. Soc., 6, (1961).
- cc. L. E. Beghian, D. Hicks, and B. Milman, Phil. Mag. 1, 261 (1956).
- dd. R. M. Sinclair, Phys. Rev., 107, 1306 (1957).

CHAPTER 3

EXPERIMENTAL METHOD

3.1 Scintillation Spectroscopy

Before commencing the description of the scintillation apparatus in particular, it may be helpful to discuss scintillation spectroscopy in general. There are several recent theories^{1,2} extant relative to the mechanism which produces the photons in the crystal as opposed to the general description of an "ionizing action" which is a little vague. A quantitative discussion of the mechanism would be out of place here but it is hoped that a brief qualitative discussion would prove to be interesting.

There appears to be two model mechanisms which are mejor candidates for the excitation process: electron-hole pairs and excitons. Other effects were considered but their contribution seemed to be minor in comparison to these two.

Sodium iodide being an ionic crystalline semiconductor has exciton bands, as well as a conduction band, and a periodic potential structure in Block's treatment. Excitons can be created and valence band electrons can be raised to the conduction band by Coulomb excitation from collision processes of the primary electrons which occur from gamma-ray photoelectric effect, Compton scattering, and pair production. The thallium ions, having a concentration of 0.1% in our crystals, have a greater ionization potential than do the sodium ions which they replace and thus perform as attractive centers for any diffusing excited electrons. One of the differences between electron-hole pairs and the exciton whereas they

•

the same action except that the electron and hole arrive more arrival of an exciton at the thallium activity center causes exciton as 10 B seconds with a diffusion speed of 10 cm/sec. excitation by a dipole transition creates the photons. The (the speed of thermal electrons) and a resulting mean free captured by a thallium ion converting it to a ground state thallium atom. This atom can then capture a hole creating or less simultaneously. Dekker gives the lifetime of an are not in the pairs. Thus, a conduction electron can be thallium ion in an excited state and its subsequent depath of 10-4cm.

(liquid nitrogen) than at 20°C. A possible explanation being the activity site as a result of the presence of the excited rearrangement is retarded and the non-radiative transitions are greatly reduced necessitating the de-excitation process transition 6,7 to the ground state. At -190°C this lattice that at 20°C there is a slight lattice rearrangement near ion creating a pronounced possibility of a non-radiative lodide with thallium is much more pronounced at -190°C Van Sciver shows that the fluorescence of sodium to be mainly radiative.

electronic circuitry. 1944 saw the first successful coupling crystal phosphor, a photomultiplier tube, and the associated detect radiations. The rapid growth of this type of counter terest centers mainly on scintillation phosphors as opposed The acintillation counter consists of three parts: a lies in the development of all three components. This inof a scintillation phosphor to a photomultiplier tube to to other types of detectors because of their:

- a. high sensitivity to gamma rays,
- b. wide range of physical size,
- response being proportional to the incident

d. fast decay times.

can be used for successful analysis. Sodium iodide crystals beta-ray spectrometers in that very low activity sources Scintillation spectrometers have an advantage over are hygroscopic and therefore are hermetically sealed. 3.2 Source Preparation

The supplier of the Mn 52 was the Muclear Science and

radio-chemical purity was greater than 98%. The first source containing iron carrier, is poured carefully into a mixture of MaOH and Br_2 . The chromium is exidized to soluble chro-December 22, 1960 (30 mr/hr at 12"), and the third on March free Mn⁵² in the eluate. This eluate is evaporated to dryness and the residue is dissolved in about 0.5 N HCl. The Engineering Corporation in Pittsburgh and the sources were irradiated and dissolved in H Cl. The resulting solution, 10, 1961 (90 mr/hr at 12")? Because of the chemical form, was received near the first of August 1960, the second on mate, while the manganese is oxidized to Mo_2 and co-prethe sources required no special preparation or separation the iron is removed by an ion exchanger, leaving carriercipitates with $\mathrm{Fe}(\mathrm{OH})_3$. The $\mathrm{Fe}(\mathrm{OH})_3$ is filtered off and dissolved in H Cl. The entire process is repeated, then produced by the (Cr + p) reaction. Chromium powder was and they were usable upon receipt.

bration, in order to calculate the optimum thickness of the coincidence bottle. We desired to have the container thick To standardize our procedure and reduce the number of variables as much as possible we investigated the energies bottom of a lucite singles bottle and the side of a lucite of the beta particles of our manganese source, as well as those of all of the sources we intended to use for cali-

enough to stop nearly all beta particles but not so thick as to absorb too much energy of any weak gamme rays. Using the range-energy relationship for electrons of Katz and Penfold it was determined that one-tenth of an inch of lucite for our windows would be sufficient. We proceeded to manufacture identical lucite source cups for our call-bration sources and for the Mh⁵² source.

3.3 Multi-channel Pulse Height Anglyzer

When a gamma ray of a given energy is converted inside of a scintillation crystal it can be completely absorbed by a photoelectric event or by creation of an electron-positron pair, or it can be partially absorbed by undergoing a Compton scattering event. Thus, the output of an associated photomultiplier tube can be a continuously varying series of pulses starting with a very small pulse denoting a small compton event and ending at a large pulse denoting complete absorption of the gamma ray by a photoelectric event.

The RIDL* 200 channel pulse height analyzer sorts this continuous series of pulses by size. For every input pulse accepted for analysis, the analog-to-digital converter generates a train of constant amplitude output pulses, the number of the pulses in this train being directly proportional to the amplitude of the input pulse. This pulse train is then processed by a digital computer, so that if the number of pulses in the train is N, one count will be stored in the memory at channel N.

The elapsed time for this counting operation is given by (20 + 0.5N) μ seconds and is called the "dead" time of the analyzer since the input channel to the analog-to-digital

* Radiation Instrument Development Laboratory, Chicago, Ill.

converter is closed to incoming sulses until after the counting and storage operation has been completed. This dead time is indicated on a meter on the front of the analyzer and is given as percent of the analyzer's capacity to perform these operations.

Strong sources, or sources which are placed too close to the scintillation crystal, provide emough counts per second to almost fully occupy the capacity of the analyzer to perform. It was found that to have no distortion in the cathoderay tube display it was necessary that the dead time be kept at 30% or below.

Conversely, the length of time-that the analyzer is capable of receiving pulses is the "live" time. Experimental runs are measured in "live" time as opposed to "elapsed" time since elapsed time would include the time the analyzer is computing and this cannot be used for absolute source activity measurements. This is because computing time is a function of pulse height whereas activity is not. Thus, when activities are compared, as for example the half-lives of isotopes, the live time of the analyzer is required in order to obviate each run having to be corrected for dead time later. In the Model 34-2 this is done automatically.

The gain of the amplifier in the analyzer is the control by which the operator selects the voltage reference for calibration purposes. The cathode-ray tube displays one illuminated image point for each channel and these are numbered horizontally and consecutively. The height of each point from zero reflects the number of counts put in that channel. Thus, for the photo-peak, the statistical distribution of the size of the incoming pulses yields a normal distribution curve, and for a single gamma ray one sees such a curve on the

cathode-ray tube. The energy corresponding to the channel at which the apex of this distribution curve is found is designated as the energy of the games ray (pulse distribution) which caused it.

The gamma-ray spectrometer is calibrated by using radioactive sources the energies of the gamma rays of which have been accurately measured such as Z_0^{65} , Na_2^{22} , Cs^{137} , C_0^{60} , Pr^{144} , or ThC''(Tl²⁰⁸). The position of these known gamma-ray pulse distributions on the cathode-ray tube determines the "energy to channel number" relation used. Changing the analyzer gain moves the distribution to the left or right on the cathode-ray tube setting in a new energy to channel correspondence. A plot of the energy of the gamma rays of such sources versus the channel number position of each gamma ray yields a calibration curve such as seen in Fig. 15 of Appendix D.

A gamma-ray scintillation spectrum is a superposition of many such distributions and for a complex nuclei of, say, 10 gamma rays it is the purpose of analysis (Chapter 4) to separate this conglomeration into an ordered, quantitative determination of the intensities and energies of; all components.

3.4 Singles Method

The initial step in the analysis was to get an overall look at the gamma-ray spectrum and to attempt to arrive at some preliminary intensity figures. Fig. 2 is such a study which had a 1000 minute live time. To accomplish this we used a large single NaI(Ti) scintillation crystal in a circuit which drove the 200-channel pulse-height analyzer as shown in Fig. 3. We used a 3-3/4" x 3" crystal, factory mounted, to a 5075EX photocube of 5" diameter. Although 3" phototubes were available (Dumont 6363 for example) an increase in

efficiency is realised by using larger phototubes to reduce edge effects. The resolution of a crystal-photomultiplier combination is given by

 $\frac{\Delta E_1}{E} = \text{resolution},$

where \triangle $E_{\underline{k}}$ is the width of the peak at helf maximum and \underline{k} is the peak energy, we found the resolution of the (3-3/4" x 3") crystal to be 12% using $G_{\underline{k}}^{137}$ although the factory packing slip stated the resolution to be 9.1%.

There was the usual background due to commic rays and stray radiation and we reduced this by encasing the crystal in a lead house with 2" walls and 2-3/4" top. There was a 7/8" hole in the roof over a tapered collimating opening in which we placed the source cup and since the source was outside of the hole backscattering was eliminated.

In addition to the source cup thickness we standardized the geometry further by having the bottom surface of the source cup, which was in contact with the liquid, lie in the plane of the top of the lead cover as shown in Fig. 3. All sources would then be 14 cm from the top of the large singles crystal. We considered this 14 cm position to be the "standard" or "normal" geometry and a source to crystal distance of 30 cm. to be the "high" geometry. It is necessary to have "set" geometries in order to have continuity throughout the investigation. Referring to equation A.1 of Appendix A the probability of a count in the photo-peak is N = cP N N for a given geometry. The probability of a sum peak is then the product:

 $N_B = (cP \Omega N_0)_1 (cP \Omega N_0)_2$ = $(cP N_0)_1 (cP N_0)_2 \Omega^2$ (3.

The relative intensity then of a sum peak to a real games ray

is then of the order of fi. When the source to crystal distance is doubled this relative intensity is decreased by a factor of 1/4. Thus, by doubling the distance from the source to the crystal relative contributions of real and sum gamma rays are easily seen as illustrated in Fig.

It was mentioned above that the background was reduced by enclosing the crystal in a lead house. It was not eliminated, however, and the thorium in the lead bricks contributed its undesired spectrum along with other active elements. We ran a background for most runs just after, or before, a scheduled run thereby insuring a good match in analyzer calibration so that by subtracting the background from the run only the desired spectrum remained.

Two difficulties were noticeable and only one of which was controllable. These presumably were saturation of the photo-cathode and/or space charge effect of the photo-tube and drift. Saturation and/or space charge effects are noticeable as non-linearity of the analyzer during calibration.

In this was prevented by keeping the source strength limited to the point of having the 200-channel analyzer dead time be always under 30%. It appeared that 40% dead time was near the non-linearity threshold.

Part of the drift problem was reduced by the replacement of a locally constructed, and rather old, high voltage supply by a highly stabilized (0-2999) volt one manufactured by the Fluke Company. This replacement not only allowed very long runs for the single; but also for the coincidence circuit since we used this supply for the coincidence phototubes also. This replacement did not eliminate other circuit caused drifts.

3.5 Variables in Scingillation Spectroscopy

In gamma-ray acintiliation spectroscopy there are many variables which affect the spectrum presentation on the cathide-ray tube of the pulse-height analyzer which is in turn a visual display of the data in the memory of the analyzer. These variables are:

- Variation of gamma-ray photo efficiency in the sointillation crystal with gamma-ray energy.
- b. Varietion in shape of a gamma ray of a given energy with gain setting or channel of the pulseheight analyzer (PHA).
- . Variation in shape of a games ray when this games ray is the sum of two other games rays.
 - d. Variation in shape of a gamma ray of a given

energy with variation in source to crystal distance. In practice, the last variation listed had relatively little effect compared to the magnitudes of the other three.

The first type of variation depends on the material of which the scintillation crystal is made, the size and shape of the crystal, and the energy of the gamma ray. The fourth type of variation is normally included with this one but operationally it is easier to consider them as separate functions and treat this first variation by using a fixed

Appendix A considers this first type of function, Appendix B considers the second type, while Appendix C considers the third type.

source to crystal distance.

In practice, the first type of variation is reduced to a graph called an "Intrinsic Efficiency Curve" (See Figs. 11 and 12, Appendix A). The use of these intrinsic efficiency curves is discussed in Chapter 4. It is unfortunate that

()

The experimental procedure for obtaining the data for Appendix A was to put the largest gamma ray of standard calibration sources near channel 150 of the 200 channel PHA. This channel setting gave better statistics for the gammatray shape. We then analyzed these plotted results to obtain the relative intensities of the gamma rays present. (See Appendix A for details). The relative intensities were alteredy known from published data. We then compared these intensities and obtained ratios for the intrinsic efficiencies of 2 gamma rays. By assuming a value for the intrinsic efficiencies for the other gamma ray. A plot of these for all known gamma rays used should yield a smooth curve. The values assumed were adjusted until the best fit was obtained. The results are seen in Fig. 11 and Fig. 12 of Appendix A.

3.6 Coincidence Method

From the results of the single crystal method we should

have a complete spectrum of all of the gamma rays emitted by the nucleus. But, in order to construct a unified decay scheme it is necessary to obtain an ordering of the separate gamma rays. Of the various modes of decay available from the mother to the daughter nucleus, and of the various modes of de-excitation in cascade available in the daughter nucleus, only one mode for each occure for any given decaying nucleus. By measuring as many of these modes as possible we can consolidate these results and determine the relative probability for any one of them and thus arrive at a decay scheme.

The experimental method of achieving this is the fastslow coincidence method. In this method we use two crystal
counters instead of one as shown in Fig. 4. We require that
one selected gamma ray enters counter #1 which is a (1-3/4"
x 2") NaI(T1) crystal, while all of the others associated
with it are counted in detector #2 which is a (2" x 2")
NaI(T1) crystal. In order to differentiate between all of
the various modes, the time available for the counting of the
associated gamma rays entering detector #2 is limited by a
fast coincidence circuit.

There is always the possibility that gamma rays from two separate nuclei arrive at the counters at the same time and are counted. These are referred to as "chance" coincidences and will be discussed later.

Briefly the process is as follows. In the #1 circuit there is a single channel pulse-height analyzer (Model 302 Universal Coincidence Circuit) the discriminator of which is set to pass only those pulse heights corresponding to our selected gamma ray. Pulses from counter #2 are amplified and then delayed by 3µ secs before going to the PHA to compensate for the delay by the rest of the circuity of the gate pulse.

When a gamma ray is absorbed in each crystal at the same time, then a pulse from each counter arrives at the fast coincidence circuit at nearly the same time. These pulses have a finite width and the fast coincidence circuit is designed to transmit a signal only if the two pulses arrive within the resolving time (2r) of the circuit. If such a signal is transmitted, then, after amplification, it enters side \$2 of the slow coincidence circuit. If the gamma ray which entered crystal \$1 is of the energy which was pre-set on the discriminator of the alow coincidence circuit, then its pulse combines with the fast coincidence signal to send a slow coincidence pulse to the 200 channel analyzer as a gating pulse. This allows the analyzer to record only the energies of those gamma rays which are in coincidence (same decay mode or cascade mode) with the preselected gamma ray.

It was mentioned that the timing pulse used was taken directly from the anode of the photomultiplier. For these time measurements only the first few electrons of a pulse are used. ¹³ The reason for this is that the decay time of the sodium fodide is 2.5×10^{-7} seconds ¹⁴ while the resolution of our coincidence circuit is $\sim 10^{-8}$ seconds and all of the electrons can not be counted before a coincidence is measured. In addition, we only use the information that an event occurred and the leading edge of the pulse contains this. The rise times of the Hewlett-Packard 460AR wide band amplifiers in our circuit were rated at 3 x 10^{-9} seconds and each had a delay time of 14×10^{-9} seconds thus insuring excellent response.

The pulses do not arrive at the fast coincidence circuit at precisely the same time since there are statistical variations because of the crystal decay time and because

of delays incurred also in the phototube.

RCA 6810A photomultiplier tubes were used in the two coincidence counters and the (2" x 2") crystal had a resolution of 9% using Cs 3. This is one of the fastest tubes available 15 except for pre-production design prototypes, and for energy determination (in circuit #2) there is only one other tube listed 15 is having a slight edge in performance. Thus, this tube offered the optimum of those available.

Fig. 7 displays the fast coincidence circuit of Wenzell6 A Rossi-type diode coincidencecircuit is preceded by a limit. slow amplifier which acts also as a discriminator. Its grid are turned off, the plate voltage rises to B+ and a positive are used to keep the coincidence circuit independent of the Wenzel's report. 16 The limiter tubes, normally conducting, height sensitivity of this type of circuit as described in are among the fastest in response. The \mathbf{D}_1 diodes are prolittle current, about I ma, and is easily turned off. The the diode, and then it turns off $oldsymbol{D}_1$. The other diode then is biased so that the single diode D₁ cut-off pulse is not incoming pulse. All diodes are the G/A type, since these carries all of the current of both so that the voltage on pulse is sent through the pulse-stretching diode \emph{D}_{2} to a clipped in the plate circuit by the delay line preceding er tube (Amperex E180F) in each channel to reduce pulse vided a bias which is adjusted so that each diode draws the plate line remains nearly constant. If both diodes negative input pulse is limited, the positive pulse is passed but the larger pulse from a double cut-off is amplified.

There are many ways to determine the resolving time of such a circuit. This time amounts to twice the length of

Attach the output of one crystal-phototube combination to both inputs of the coincidence circuit and have its output, in turn, sent to a counter after appropriate amplification. The output will then be exactly coincident. Now put a variable delay line in one of the two input lines. As this delay is increased the number of counts stored per unit time decreases. If a plot is made of counts per unit time versus delay time, a gaussian peak results with the apex at zero delay time. The resolving time is defined as the full width at half the maximum number of counts. Since the delay time is r and messured from the abscisse point under the maximum, the resolving time is then 2r.

Now, if a given source registers N₁ counts per second, then there will be (2tN₁) of these counts stored within the time 2τ. This, then, is the probability of these counts occurring. If we take two separate sources, then the probability of their occurring at the same time is a product: (2tN₁)(2tN₂). By definition we can say that the number of chance coincidences occurring within 2t is then (2tN_{ch}) which is equal to the above product, ox:

$$N_{ch} = 2 \pi N_1 N_2$$
 (3.2)

One method we used to determine 2 τ was to use two different sources, Na 22 and Ca 137 , placed so that a lead shielding

between them exposed only one of them to one counter. Any coincidence counts observed with this geometry should be chances. By counting each separately we then got N_1 and M_2 . Thus, 2r was determined using equation (3.2). The result was $2\tau = 3.6 \times 10^{-8}$ seconds.

As another check we used ${\rm Co}^{60}$ and put a delay line of 215 mµ seconds in one side to get chance counts and used one side of the circuit to register ${\rm M}_1$, and the other side to get ${\rm N}_2$. The result was $2\tau=5.0 \times 10^{-8}$ seconds.

The relatively long half life of 5.7 days for Mn did not require special procedures 18 to determine chances since the longest run made was only 3-1/2 days, and we assumed that the chance rate remained constant during the runs.

From equation (3.2) we see that $N_{\rm ch}$ is a function of the source strength squared since both $N_{\rm l}$ and $N_{\rm l}$ are each a function of the source strength. We thus wust use as small a source strength as we can, yet enough to get good statistics. In practice, we found by making actual runs to get chances that, as long as we satisfied the 30% dead time requirement discussed earlier, the chances were negligible for the runs under consideration.

The method of selecting the discriminator voltage settings on the slow coincidence circuit is discussed in Appendix D. This is critical for if the voltage window is too large then those gamma rays with energies in the vicinity of the desired one can also trigger the gate, and you then record the radiations in coincidence with them as well as those in coincidence with the desired one. As seen in the 1.43 Mev coincidence spectrum of Fig. 5, the 1.24 Mev and the 1.33 Mev gamma rays are very close to the 1.43 Mev line. For a considerable time we used a window which was too wide, giving us results which were impossible to resolve. When the window was narrowed down

28

We used an amplifier in the #1 counter circuit to increase the pulse height for the #1 discriminator. We found that the 6810A photomultiplier gave such a strong pulse out of the pre-amplifier that this pulse over-loaded the amplifier and gave us non-linear results. An attenuator placed in the line after the pre-amplifier corrected this. Incidentally, it is this high performance of the 6810A which allows us to take the pulse from the anode directly for the input to the wide band amplifiers.

triggering can make. We selected a window size and positioned This plot is indicated in Fig. 8. Its subtraction then should it to obtain the 0.935 Mev spectrum. We knew that the Compton Mev and 0.744 Mev gamma-ray coincidence spectra, respectively, Compton pulses would trigger the circuit. We ran this second were all triggering the circuit allowing the 0.935 Mev gamma strength, etc., so that a superposition plot could be made. energy larger than the selected one also yield pulses which can trigger the system. Fig. 8 and Fig. 9 are of the 0.935 in its own spectrum. We positioned the window used just to In addition to gamma rays whose photo-peaks are in the near vicinity of the selected gamma ray contributing to the and they illustrate what a large contribution this Compton this effect is seen by the presence of the 0.935 Mev gamma pulses of the 1.43 Mev, 1.33 Mev, and 1.24 Mev gamma rays ray to enter counter #2 and be counted. The magnitude of the right of the 0.935 Mev gamma ray so that only these. rum under the same conditions of time, geometry, source triggering, the Compton effect of real gamma rays with

yield a close approximation to the true spectrum. In Chapter 4 this is discussed in more detail.

This same effect is realized by the larger sum peaks of two real gamma rays triggering the circuit. We found, however, that this contributes a negligible amount.

W. A. Wenzel, (University of California Radiation Laboratory Report, UCRL 8000, 1957).

Nuclear Electronics op. cit., p. 9.

17.

ဓ္က

16.

References for Chapter 3

- A. J. Dekker, Solid State Physics, (Prentice-Hall Inc. Englewood Cliffs, N. J. 1957) p. 399.
- . Nuclear Electronics (International Atomic Energy Agency, Austria, 1959) p. 37.

K. Siegbahn, <u>Bets-and Germa-Ray Spectroscopy</u>, (Inter-science Publishers, Inc., New York, 1955), p. 205.

- Scintillation Phosphors, (Harshaw Chemical Co., Cleveland, 1960) p. 24.
 - . Dekker, <u>op</u>. <u>cit.</u>, pp. 374 and 4ul.
- . Nuclear Electronics, op. cit., p. 38.
- S. C. Curran, Luminescence and the Scintillation Counter, (Academic Press, Inc., London, 1953), p. 77.
- Dekker, op. cit., p. 401.
- F. Ajzenberg-Selove, Muclear Spectroscopy, (Academic Press, New York, 1960), Part A, p. 29.
- 9. DuMont Multiplier Photo Tubes, (A. B. DuMont Laboratories, Inc., New Jersey, 1959) 2nd. ed., p. 15.
- 10. Ibid. p. 16.
- R. L. Heath, <u>Scintillation Spectroscopy Gamma-Ray</u> <u>Spectrum Catalogue</u>, (Phillips Petroleum Co., 1957) IDO-16408.
- 12. W. F. Hiller and W. J. Snow, Monte Carlo Calculation of the Energy Loss Spectra for Gamma-Rays in Sodium Lodide and Casium Lodide, (Argenne National Laboratory, 1961) ANL-6318.
- 13. Ajzenberg-Selove, op. cit., p. 34.
- 4. Scintillation Phosphors, op. cit., p. 10.
- 15. Muclear Electronics, op. cit., p. 4.

CHAPTER 4

fechnique of Data Analysis and Error Analysis

4.1 Singles Analysis

The spectrum of any radioactive isotope as displayed on the cathode-ray tube of a multichannel pulse height analyzer is a locus of points the heights of which are dependent upon the number of counts stored in the memory of each channel. For complex nuclei each of the several gamma-rays emitted has a total pulse height distribution (gamma-ray shape) dependent upon its energy, and this distribution is composed of photoelectric events, Compton events, and electron-positron pairs as discussed in Chapter 3 and Appendix B. Every channel then contains pulses of each type from many different gamma rays. In order to separate the total counts in each channel so as to determine quantitatively how many of the counts are the result of each of the different gamma rays a subtraction process is used.

A calibration curve is made using known calibration sources. The isotope to be analyzed is used as a source for a run and the results of this run are plotted. (See Fig. 2 as an example.) Using the calibration curve the energies corresponding to the channel numbers of the obvious gamma rays on this plot are read off and ansigned tentatively to each of the unknown gamma rays. An unknown gamma ray in the spectrum which is prominent, and has relatively the highest energy, such as the 1.43 Mev gamma ray, is selected as the starting point for this subtraction process. For the prefent we will ignor any complicating effects such as sum peaks. Having chosen the 1.43 Mev gamma ray we must now take a known source which has a single gamma ray of this energy and, using

the analyzer, make a run such that this single gamma ray is at the same channel as the 1.43 Mev gamma ray. We do this in order to obtain the shape of a gamma ray having this energy using this particular equipment.

In practice, this is impossible since such convenient isotopes are non-existent. It is necessary to use isotopes with gamma rays which are near the energy desired and also be rather prominent. To be most precise, it is best to get a larger and a smaller energy gamma ray to set at the chosen channel. A super position plot of one on the other such that their apexes match will allow an interpolation to be made using the three energies of 2 known calibration sources and the 1 known subject source. (Ror example, see the dashed curve gamma-ray shape in Fig. 13).

In the particular case of M⁵² we used K⁴² with its 1.53 Mev gamma ray as a subtraction gamma ray for the 1.43 Mev gamma ray. The 1.28 gamma ray of Na²² was used for the 1.24 and 1.33 Mev gamma rays. Zn⁶⁵ having a 1.114 Mev gamma ray was used for the 0.935 Mev gamma ray. Mh⁵⁴ has a 0.842 Mev gamma ray which could be used both for the 0.935 Mev and the 0.744 Mev gamma rays. The 0.511 Mev gamma ray of Na²² worked nicely for the annihilation quanta of Mh⁵².

Having obtained the requisite subtraction curves the first step is to match the leading (right side) edge and the apexes of the gamma ray of K^{42} to that of the 1.43 Mev gamma ray of M_{52} . The matching of the apexes and leading edge is the result of a basic assumption that all of the counts in these channels are due solely to a real gamma ray at that intensity and we wish to take all of it out. Later we will see that after this is done and the entire subtraction process is completed this original assumption is changed and various

contributions are used to arrive at a sore realistic intensity. The entire shape of the K⁴² curve is traced on the original drawing of Mh⁵². The value of each point of the K⁴² curve is subtracted, channel by channel, from the value of the point on the Mh⁵² curve yielding a difference curve. (See Fig. 5 for details, since that drawing is very illustrative). The leading edge of the next prominent gamma ray trative). The leading edge of the next prominent gamma ray that appears is of the 1.33 May gamma. Using the appropriate energy related curve we use the same technique obtaining a second difference curve with the 1.24 Mey gamma ray now the prominent gamma ray to be taken out. In this fashion, the totality of points in any one channel is distributed sorng various gamma rays according to what contribution each appearently sade to this total.

The shape of the gamma ray used for subtraction is therefore a very critical matter since the presence of low intensity gamma rays can be lost if dus regard is not given. This subtlety is seen in the shape of the points defining the 1.06 and 0.63 Mev gamma rays in Fig. 6. Using this method gamma rays of the order of 1% of the intensity of the 1.43 Mev gamma ray were clearly identified.

The relative intensities are computed by using equation A.3 of Appendix A. Table III below illustrates such a computation.

TABLE III. Sample data for the calculation of relative intensities for 3-3p4" x 3" MaI(T1) crystal at 14 cm.

Relative Intensity to 1.43	1001	83.9%	87.72
Product	1.62 x 107	1.36 x 107	1.41 × 107
Intrinsic Efficiency	64.	z,	.62
Helf Widths	3.77	2.36	2.25
Peak Height (Counts)	1.85 × 10 ⁶	3.1 × 10 ⁶	3.9 x 10 ⁶
7-Ray Energy	1.43	0.935	0.744

squares of the half widths of the two real gamma rays involved. each of the gamma rays contributing to this sum by a constant, the probability of 2 events occurring at the same time. It is the product of their individual probabilities. This constant, K, thus determined can, in turn be used to calculate the area (h Hg) of the desired sum peak. The appropriate Wg for this a sum peak at or near the channel at which a gamma ray to be ply the product of the derived areas (h W, experimental) of In general, this method is not satisfactory if the constant, applicable in some cases is to find another sum peak on the perimental) of the sum peak. This composition derives from much of the heights of these points are due to the sum peak peak). After the entire analysis has been finished, multisum peak is approximately the square root of the sum of the K, and set this total product equal to the area (h W ex-One complication to this process is the occurrence of earlier a change in source to crystal distance will reduce original drawing. (See Appendix D for the shape of a sum taken out is positioned. The problem is to determine how and how much are due to the real games ray. As mentioned the sum peak contribution. An alternate method which is

36

1.2 Coincidence Analysis

tain this curve was discussed in Chapter 3. The contribution coincidence spectrum. The process is now the same from here circles. It is seen that the entire 0.935 Mev gamma ray has affect plotted as a dashed line. The technique used to ob-It was wentioned in Chapter 3 that the gating discrimbeen removed since ideally it should not appear in its own prence or these pulses can be the result of two real gamma on for this run as for the singles technique described in games rays which are larger than the one selected as refpeak distribution. Fig. 8 shows the contribution of this to the 1.43 Mev gamma ray in this Figure is clearly seen. This entire curve is subtracted from the original data to rays entering the crystal at the same time causing a sum inator can be triggered by Compton event pulses of real yield the first difference curve as shown by the solid peregraph 4.1.

This technique has the advantage that it firmly establishes the contribution to the complete curve by the Compton contributions. A detailed analysis should yield the gamma rays in coincidence with the 0.935 Mev gamma ray in their true intensities. A jossible drawback is that this bulk subtraction may cause some weak gamma rays to be missed since this is an approximation. In Fig. 8 the 0.847 Mev gamma ray can be seen as the difference between the solid circles and the Compton of the 1.43 Mev subtraction curve.

But, the approximation fails sometimes since a little to the right of channel 120 one obtains negative numbers if one were to be literal with the technique.

In the absence of a convenient flat Compton expanse on the high side of the selected gamma ray on which to set the discriminator, as in the case of the 0.935 Mev gamma ray, one must try to construct such a total Compton contribution.

Fig. 9 displays the 0.744 Mev coincidence spectrum in which this very situation exists. The dashed curve is one which was constructed. The original data curve is the result of the true 0.744 Mev coincidence spectrum as well as the coincidence spectrum of the true 0.744 Mev coincidence spectrum as well as the coincidence spectra of the 0.935, 1.24, 1.33, and 1.43 Mev gamma rays in proportion to their intensities in the 0.744 Mev region near channels 80 - 90. It was necessary to construct a coincidence spectrum for each of these gamma rays unless one already was available. This was necessary only in the case of the 1.24 Mev gamma ray. Figs. 5, 6, and 8 were the curves available for the others.

To construct the 1.24 Mev coincidence spectrum it, too, was the result of higher energy Compton triggering by the 1.33 and 1.43 Mev gamma rays. From an estimated decay scheme sequence based on data already derived, it was assumed what a pure 1.24 Mev spectrum would look like. Compton contributions were judiciously added by adding the 1.33 and 1.43 Mev coincidence spectra.

These four spectra of 0.935, 1.24, 1.33, and 1.43 Nev gamma rays were now combined to yield an estimated Compton contribution. The dashed curve of Fig. 9 is the result. Subtracting it from the original data yielded the solid circle curve which in turn was analyzed in detail. It can be seen how the 0.744 Nev gamma ray was removed from its coincidence run by this process.

38

4.3 Error Analysis

It is impossible to assign quantitative errors to any intensities derived by this technique which are based on quantitative systematics of the apparatus since the bulk of the error is qualitative in origin. The intrinsic efficiency curves themselves have errors in them which stem from the effects to be discussed presently. But, for any given energy, the scale on the intrinsic efficiency curve ordinate is expanded enough so that the error resulting from a small vertical displacement of the curves is under 2%. The basis for this figure results from a calculation of the relative intensity of the 0.935 Mev gamma ray to that of the 1.43 Mev gamma ray using both the 14 cm and 30 cm curves. The difference was only 4%. An estimated deviation of the 14 cm

The major contributions to the error of this technique are listed below:

- a. Having an imperfect knowledge of the shape of subtraction gamma rays, and not having such a curve for each specific energy required for a specific isotope;
- b. The multiple subtraction process which generates cumulative errors at each subtraction since the scale on the log paper is of a size such that only the first three significant figures can be used regardless of the magnitude of the number of counts in a channel (For instance, a small change of 500 counts is a significant contribution but when it is subtracted from a 65,000 count peak the difference is barely discernable. Thus, low energy gamma rays, i.e. 0.70 Mev and under in Mn⁵², of low intensities are not reported with much positiveness. However, the higher the energy of a gamma ray the fewer subtractions were required to obtain it and hence its intensity is more certain.);

c. The Compton triggering of the gating circuit, as discussed previously, generates menifold problems which are impossible or at best extremely difficult to surmount and then they are only partially allayed.

39

d. Drifts were experienced but the magnitude was slight. (In the present experience the longest run made was of the 1.33 Mev coincidence which had a 5000 minute live time duration. The total drift was 5 channels all of which occurred in the last 1000 minutes and the spectrum was easily corrected by re-adding the last 1000 minutes at the proper channels. Pig. 6 demonstrates that long runs can yield excellent results. In fact, it was this run which allowed the scintillation spectroscopy group to display the 0.346 Mev gamma ray which was not possible in any of the other runs. The beta-ray spectrometer group found this gamma ray early in their experiment.);

e. The error in reading the energy from the calibration curve is estimated at ± 0.01 Mev and this is based upon an error of ± 1 channel in reading the gamma ray position from the plot (The gross variations in the energies assigned to gamma rays in the figures result from the gross errors discussed in a., b., and c. above and not from the misreading of the calibration curve or its inherent errors.)

In summary, the errors assigned to the gamma ray intensities as found in these scintillation studies were the result of using a simple arithmetic average and taking the root-mean-square deviation as the error.

CHAPTER 5

Experimental Results and Level Scheme Assignment

5.1 Single Crystal Gamma-Ray Spectrometer

The single crystal studies performed at the beginning of the experiment allowed us to get an overall view of the Mn⁵² decay spectrum. Fig. 2 presents the typical singles spectrum and this particular run had a live time of 1000 minutes. Because of the complaxity of this spectrum only 2 of the gamma rays of second or third order magnitude intensity relative to the 1,43 MeV gamma ray are shown, 1.e. 1.24 and 1.33 MeV. The change in height of the gamma rays between channels 100 and 160 as the source to crystal distance is changed indicates that these are sum peaks. It also indicates that no real gamma rays exist in this area of any appreciable magnitude.

The sum peaks for 1.24 + 1.43 Mev and 1.33 + 1.43 Mev gamma rays were calculated and are shown as 2.67 and 2.76 Mev respectively. Their sum has been subtracted from the original data and it appears that a real gamma ray may exist of 2.65 Mev energy with a relative intensity of 0.08% of the 1.43 Mev gamma ray.

Table IV presents the results of the large single crystal runs and the errors assigned are rms although the uncertainty is actually of the order of 10%. The important result shown there is that the intensities of the 0.935 and 0.744 Mev gamma rays are not the same as that of the 1.43 Mev gamma ray as has been consistently reported in the literature prior to this experiment.

TABLE IV. Intensities of Gamma Rays in Large Crystal Singles and Intensities of Gamma Rays Coincident with the 0.935- and 0.744 Mev Gamma Rays.

()

ţ

y-Ray		Large Singles	ingle		0.935	0.935 Mev Coincidence	tdence	0 .744 M	0.744 Mev Coincidence	dence
Mev	*	#40 #53	# 23	Ave.	# 267	\$10¢	Ave.	#273	# 107	Ave.
1.43	100	100	100	001	Present	Present Present Present	Present	Present	Present Present Present	Present
1.33	,	,	•	•	•	•	ı	•	,	
1.24			•	•	5.4	7.4	6.4 ± 1.0	•	,	•
1.18		,	,			•	,	•	•	,
1.07	,	,	•	•	•	4.1	1.3 ± 1.0	•	•	•
0.93	82.3	83.9	78.3	82.3 83.9 78.3 81.5 ± 4.0	88.43	82.5	85.4 ± 3.1		Present Present	Present
78.0	•	,	1		3.8	3.9	3.9 ± 1.0	•		
0.74	79.8	87.7	82.1	87.7 82.1 83.2 ± 5.8 84.0 ^b		94.0 ^b	84.0b	•	,	,
0.63			•	•	1.5	3.9	2.7 ± 1.2	3.8	4.3	4.1 ± 0.3
0.51	59.7	72.3	58.9	59.7 72.3 58.9 63.6 ± 6.1 61.0		62.7	71.8 ± 0.9	67.0	64.7	65. * ± 1.2
Min.										
Time 1000 1000 1000	1000	1000	1000	•	2000	1500	•	1000	1000	

a. From intensity of .743 Mev y-Ray.
b. Used for normalization.

5.2 Double Crystal Coincidence Spectrometer

thus to relatively intensify real gamma rays, and to help defigure. Because of analysis difficulties of low energy gamma of intensity of gamma rays. The first order being the 0.935, The value of the coincidence method lies in its ability rays, their presence there could not be seen. Of particular interest is the manifest appearance of 3 orders of magnitude 0.744, and 0.511 Mev gamma rays. The second order being the transition, all gamma rays in cascade should appear in this 1.33, 1.24, and 0.84 Mev gamma rays. The third order being were weak. The 1.43 Mev gamma ray appears there because of order gamma rays are dashed in Fig. 5 to indicate that they to eliminate background, to separate cascade sequences and Compton triggering by higher energy sum peaks. The magnitudes of those gamma rays in coincidence with the 1.43 Mev coincidence with the 1.43 Mev gamma ray and it was a 4000 termine cascade sequences. Fig. 5 shows the spectrum in the 1.18, 1.07, and the 0.59 Mev gamma rays. The third minute live time study. Since this is the ground state gauma ray are listed in Table V.

A substantial amount of information was derived from the 0.935 and 0.744 Mev coincidence experiments. Fig. 8, a 2000 minute live time run of the 0.935 Mev coincidence spectrum, demonstrates clearly that the 1.24 Mev gamma ray is in cascade with the 0.935 Mev gamma ray. The 1.24 Mev gamma ray being seen in the 0.935 Mev spectrum and not in the 0.744 Mev spectrum established the new level at 3.614 Mev. The absence of the 1.33 and 1.18 Mev gamma rays shows that either these are not in coincidence with the 0.935 Mev gamma ray or that they are very weak. It turned out that the 1.33 Mev gamma ray was not in coincidence, and the 1.18 Mev gamma ray

TABLE V. Intensities of Gamma Rays Coincident with the 1,43 Mev Gamma Ray.

1 1

y-Ray					Average	
Mev	#83#	\$102	4 1138	# 247	(ms Error)	
1.43	100	100	100	100	100	
1.33	5.6	6.0	5.9	5.7	5.8±0.3	
1.24	8.1	5.8	5.3	5.88	6.3±2.1	
1.18	1.4	2.3	0.7	1.3	1.441.1	veak
1.07	,	5.2	3.3	1.2	3.242.7	veak
0.93	89.5	87.0	88.3	0.48	87.2±2.0	
98.0	•	6.1	7.2	6.4	9.140.9	
0.74	84.0 ^b	84.0p	84.0b	84.0b	40.48	
0.63	•	2.5	2.7	2.0	2.4±0.5	veak
0.51	58.2	62.7	51.5	67.2	59.945.8	
Minutes						
Time	1000	2000	2000	0007		•

a. Number indicates run number.

b. Used for normalization.

,†**7**

might have been present but it was too wed to find. In other analyzed runs of this type, the following garma rays were clearly present: 1.07, 0.847, and 0.63 Mev. This is in addition to the first order magnitude transitions. It will be shown later that these three garma rays helped to establish the three new energy levels in this isotope.

The presence of the 1.07 and 0.847 Mev garma rays in concidence with the 0.953 Mev garma ray implies the existence of a 0.398 Mev garma ray implies the existence of a 0.398 Mev garma ray as a transition between the known levels of 2.766 and 2.369 Mev but it was not seen. Table IV shows the results of chese 0.935 Mev coincidence runs.

The revised decay scheme of Mn⁵², as determined from the results of this experiment, is presented in Fig. 10. In the following discussion of the different coincidence runs made and the arguments leading to the establishment of the three new upper levels, specific reference to this figure will not be made but this reference is implied throughout. Only 2 of the 3 new levels are shown since one of the levels (3.74 Mev) was determined by only 1 gamma ray, and this was considered to be only weak evidence for a new level.

Fig. 9, a 1000 minute live time run of the 0.744 Mev coincidence spectrum, does not show the very important gamma ray of 0.63 Mev energy although it appeared in 2 analyzed runs of this type. Since this gamma ray appears in the 1.43, 0.935, and 0.744 Mev coincidence runs, this implies that it feeds the level from which the 0.744 Mev gamma ray issues. This then establishes a possible new level in the decay scheme at 3.74 Mev. Table IV also displays the results of the 0.744 Mev coincidence runs.

The presence of the 3.74 Mev level would yield transitions also to states other than the 3.112 Mev. We would then expect to see the following gamma rays (all Mev and followed by the respective level): 0.77 (2.97); 0.97 (2.77); 1.09 (2.65); 1.37 (2.37); and 2.31 (1.43). It is interesting to note that in each case, except that of the 2.31, the gamma ray is near the energy of a more intense gamma ray already listed and therefore they would not be discernable. It is clearly seen in Fig. 2 that if a gamma ray exists of energy greater than 1.43 it would not be strong and almost impossible to detect with acintillation methods and thus the 2.31 Mev, if it exists, is weak.

6 established a new level at 3.832 Mev which was supported and 1.21 Mev internally converted electrons. The 1.21 Mev both types of experimental methods, gamma-ray and beta-ray sition seen in the 1.43 Mev gamma ray apectrum support the This is an excellent illustration of the utility of using The spectrum of those gamma rays in coincidence with interesting run of them all. It alone clearly showed the 0.346 Mev grama ray. The 1.07 Mev gamma ray seen in Fig. transition was masked in our scintillation studies by the lost in the leading edge of the 1.43 Mev main transition. spectrometers, since they can support each other so well. by the beta-ray spectrometer group's finding of the 1.46 5000 minutes live time. This was the most fruitful and the 1.33 Mev gamma ray are shown in Pig. 6. It ran for The 1.21 Mev transition coupled with the 1.18 Mev tranlevel assignment at 3.832 Mev. The 1.46 Mev transition more dominent 1.24 Mev gamma ray, and the 1.46 Mev was also supports the existence of this level.

A series of coincidence runs were made which were designed to display those gamma rays which were feeding the (4+) level at 2.369 Mev. The results of this study supported this revised decay scheme since the following gamma rays appeared to be present besides the 0.744 and 0.511 Mev gamma rays: 1.24, 1.07, 0.847, 0.630, and 0.346 Mev.

The final results of the studies of both the gamma-ray and beta-ray spectrometer groups is given in Table VI. Of algnificant interest are the weighted averages of the gamma rays and converted electrons seen. Previously the main transition gamma rays were reported as having equal intensities. We have found that the intensities of the 0.935, 0.744, and 0.511 Mev gamma rays have intensities of 87.1%,

d. Used for normalization
 e. Gamma-ray spectrometer results except 1463 Kev

TABLE VI. C.	Comma-Ray Intensities in Decay of Man	ntensities	in Decay	of Man 36				
Gamma Ray	Singles	1.43	1.33	0.935	0.744	Internal	External	External Weighted
Energy (Kev)		Coin.	Coin.	Coin.	Coin.	Conver.	Conver.	Average
1433.6±0.4	100	100	Present	Present Present	Present	100	100	100
1332±1	•	5.8±0.3		•		5.840.9	4.3±3.4 5.8±0.8	5.8±0.8
1245.6±0.4		6.3±2.1		6.4±1.0		5.2±1.3	6.5±2	6.2±1.3
1214#1	,		_	,		2.841.8	•	2.841.8
935.1±0.4	81.5±4.0 87.2±2.0	87.2±2.0	•	85.413.1° Present	Present	86±6.0	93*10	87.143.1
847.4±0.6		6.0 ±1.6	2.8±0.3	3.9±1.0	•	2.5±0.4	0.7±0.7	2.27±0.4
743.8±0.3	83.2±5.8	84.0d	,	84.0d	•	80 \$ \$.0	83±3	Po. 48
345.74±0.08			0.6±0.3	•	•	0.84±0.08	1.0±0.2	1.0±0.2 0.86±0.08
Annihilation 63.6±6.1 59.9±5.8 Present Radiation	63.6±6.1	8.9.945.8	Present	61#10	67±10	1		65.5±8
Weak Transitions								
2650±30	0.08±0.05			•	•	•	•	
1463±2	,	,	•	,		0.3±0.2	•	
1180±20		2 >	,			•	•	
1070*20	•	*	₽		1	•	•	
630±60	•	€\$	₽	ç	≎	,	•	

1 1

a. Beta-ray spectrometer results
 b. Based on E2 conversion coefficient
 c. From intensity of 1.43 Mev gamma ray

34.0%, and 65.5% respectively. It is emphasized that the energies given are those derived by the beta-ray spectrometer group.

5.4 Comparison of Results of this Paper

ray and beta-ray spectroscopy. Table VII and VIII list the Recently Katch et al. " reported their determination of results of the three latest independent studies concerning the values of the energy levels of Cr 52 also using game-

> l)

TABLE VII. En	TABLE VII. Energy Levels of Cr 52 (All Key)	(All Key)	
Mazari et al.2	Univ. of Colo.	Proposed	Katoh et ell
and Konijn	Beta-Ray	Additions	
et al. 3	Spectrometer	1	
1	3831.7 ± 2.0	•	•
•	ı	3800 ± 20	•
		3740 ± 20	•
. 1	3613.8 ± 0.5	•	•
	•	3480 ± 20	ı
3161 ± 8.0	•	•	•
3109 \$ 7.0	3112.1 ± 0.5	٠	3119.6 ± 0.5

See Chapter 6 for details.

 2372.8 ± 0.6 1434.7 ± 0.8

2368.7 ± 0.7 1433.6 ± 0.4

 2766.2 ± 0.8 2647.6 ± 1.1

2965 ± 8.0 2767 ± 8.0 2648 ± 8.0 2368 ± 8.0 1433 ± 4.0

Competison of Energy Values of the Main TABLE VIII.

49

Beta-Ray Spectrometer 1433.6 ± 0.4 935.1 ± 0.4 743.8 ± 0.3 Univ. of Colo. Transition Genea Rays of Cr 52 Katoh et al. 1434.7 ± 0.8 938.1 ± 0.4 746.8 ± 0.2

those in the first two columns. An explanation of a possible indicator. It is believed that at high field strengths they sults making their calibrations inaccurate. To obviate this the beta-ray spectrometer used in these studies was designed spectrometer it appears that they used a solid from core in and I Kev in another case) in the Katoh et al. results from reason for this is that from the drawings of their beta-ray the decay process is not involved and hence the reason for well with the results of Mazari et al. 2 and Konijn et al. 3 experienced saturation in this core giving non-linear re-Since Mazari et al. used the (p,p') reaction in their determinations they observed low spin states in areas where It is seen in Table VII that the present work agrees their magnet and used magnet current as a field strength the blanks in the 'Univ. of Colo.' column of Table VII. Also apparent is the wide diversity (3 Kev in two cases with coils in the center instead of an iron core. 4

Some other variations occurred between their results and the results of this paper and an explanation for these could

weight in their spectra that is afforded by a 200 channel height analyzer and, hence, did not have the statistical The Katch et al. group used a 20 channel pulseanalyzer.

- b. In their spectrum analysis the $2n^{6.5}$ gamma-ray pulse-height distribution was used to extract the 1.43 Mev gamma-ray contribution. We found that this energy difference is excessive and does not yield accurate results.
 - c. They reported the 3 main transition gamma rays as having equal intensity and our results clearly show that this is not the case.

5.5 Log ft Values for the Revised Decay Scheme

(^)

In order to help in the discussion of spins in the proposed decay scheme, the log ft values are listed in Table IX for the energy levels indicated. They were calculated by using Moszkowski's nomogram, 5 and computing the theoretical (EC/ β +) ratio. The calculation of this ratio was performed by finding the (K/ β +) ratio 6 for Mh 5 2, and then adding appropriate terms 7 for the L and higher shells. The final formula used was:

$$\frac{KG}{\rho^4} = \frac{K}{\mu^4} \left(1 + \frac{L_1}{K} + \left(\frac{L_1}{K} \right) \left(\frac{L_{11}}{L_1} \right) + \left(\frac{L_1}{K} \right) \left(\frac{H}{L_1} \right) \right) \quad (5.1)$$

which gave the result:

$$\frac{EG}{b^+} = \frac{K}{b^+} (1.095)$$
 (5.

Maying the net feeding of a level and the (EC/ β +) ratio we can then obtain the log ft value for either the EC or the β + transitions.

<u>کر</u> ک
t
Ž
for
┙
Value
OR EC
los ft
IX.
TABLE

Energy				log ft	
 Level	Feeding	Feeding Leaving	Met	+9	ន
3.832	0	75	25	energetically 6.0	6.0
-				prohibited	
3.740	0	3.3%	3.3%	energetically	6.4
				prohibited	
3.614	0	8.5%	8.5%		6.0
 3.112	3.3%	84.97	81.6%	_ =	5.5

The 3.614 and 3.832 Nev levels have log ft values which are commensurate with allowed electron capture and this could have spins and parities of 5+, 6+, or 7+. Since they both seem to feed 4+ levels, it seems more likely that the spins and parities are 5+ or 6+ rather than 7+. The 3.74 Nev level has a log ft value which is suitable for 4-forbidden or first forbidden which could yield 5+, 6+, or 7+. The 0.630 Nev which established this level feeds the 6+ level at 3.112 Nev and other levels very weakly if at all. This could indicate that this level has a spin and parity of 7+. The log ft value for the 3.112 Nev level shows it is an allowed transition which is consistent with previously published results. It has been clearly established that this level of Cr⁵² is 6(+) and that the ground state of Nn⁵² is also 6(+). (See Table I).

References for Chapter 5

- I. Katch, M. Nozawa, Y. Yoshizawa, and Y. Koh, J. Phys. Soc. Japan, 15, 2140 (1960).
- M. Mazari, W. W. Buechner. and A. Sperduto, Phys. Rev., <u>107</u>, 1383 (1957).
- J. Konijn, B. Van Nooijn, and H. L. Hagedoorn, Physica, 24, 377 (1958).
- A. A. Bartlett and R. A. Ristinen, Bull. Am. Fhys. Soc. 6, 11, 240 (1961).

4 7

- S. A. Moszkowski, Zhys. Rev., 82, 35 (1951).
- A. H. Wapstra, G. J. Nijgh, and R. van Lieshout, Nuclear Spectroscopy Tables, (Interstience Publishers, Inc., 1959), p. 65.
- 1bid, p. 51.

Discussion of Results CHAPTER 6

6.1 Branching Ratios of Mn 52 Decay

The consistency of the previously reported values of EC/β^+ for the decay $H_0^{52} \rightarrow Cr^{52}$ is seen in Table X.

TABLE X. Branching Ratios of $M_{\rm b}^{52} \sim c_{\rm c}^{52}$

Date	Investigator	Branching ratio reported
1946	Good, Peaslee	EC/6+ = 1.86 ± 0.17
	and Deutsch	
1954	Sehr	EC/6+ = 2.01 ± 0.22
1958	Konijn et el.	$EC/\beta + = 1.99 \pm 0.06 \text{ (exp.)}$
		EC/p+ = 2.03 ± 0.06 (theor.)
1961	present	EC/6+ = 1.50

- D. Peaslee, and M. Deutsch, Phys.
- Rev. 69, 313 (1946).
 R. Sehr, Z. Fhysik, 137, 523 (1954).
 J. Konijn, B. Van Nooijn, and H. L. Hagedoorn, Physica, 24, 377 (1958).

reported. We will calculate the EC/p+ ratio in two differ-The apparent reason for this anomaly is that the previous ent ways. One way yielding results consistent with those previously reported, and another way yielding the results since no other such experimentally found modes had been investigators relied on the published data of the decay sequence being $6+ (\beta+) 6+ (\gamma) 4+ (\gamma) 2+ (\gamma) 0+$ to the exclusion of all other modes of decay and de-excitation reported in this paper.

The EC/p+ can be calculated by using:

EC | (net feeding) - B+

(8.1)

the 3.74 or the 3.832 Mev levels and very improbable for the of electron capture decay to the 3.112 Mev level would then is at 3.684 Mev and for the 3 new levels considered in this roughly 33%. This is because the positron decay threshold paper it is energetically impossible for positron decay to not shown on the decay scheme, but it is assumed to be the source of the 0.630 Mev transition to the 3.112 Mev level. is decreased, the positron decay remains about the same at changes the electron capture contribution to the branching such a new level since the 52% electron capture specified would then be decreased in intensity by the amount of the results shown in Table X. However, from Tables V and VI (65.5%), and 0.346 Mev (0.9%). The level at 3.74 Mev is The above assumption yields a result consistent with the be 49%. It is important to note here that, although the intensity of this 0.63 Mev gamma ray of 3%. The percent electron capture decay to the 3.112 Mev level apparently the decay scheme also does not show the consequences of 3.614 Mev level. Thus, this revised decay scheme only Je get 0.744 Mev (84.0%), 0.630 Mev (3.3%), 0.511 Mev ratio. Again using equation (6.1) we now get: $\frac{EC}{B^+} = \frac{100 - 33}{33} = 2.03$

$$\frac{EG}{b^+} = \frac{(84.0 + 0.9 - 3.3) - 1/2 (65.5)}{1/2 (65.5)} * 1.50$$
 (6.3)

Thus, the results of this experiment give $EC/\beta + = 1.50$ as 6.2 The Results of Hausman et al. Compared to Those of opposed to about 2.0 as has been previously reported. Mazeri et al.

reaction study on Cr⁵² of 8 Mev (p,p'). Referring to Table ment should yield states of higher energy than any of the other studies since they could surmount higher energy thresable procedure, but it did lead to interesting results. The highest for a study of the levels of this isotope since the state energy. It would be expected then that their experiany more but suggested that a designated few might be those as being those of Cr⁵² were taken from this drawing and are shown in Table XI. It is .dmitted that this is a questionthe energies of these resonances but only presented a drawof Cr^{52} since all of the others were apparently identified In 1952 Hausman et al. reported the results of their II in Chapter 2 we see that their reaction energy was the as those of the backing material, etc. They did not list levels to their resonance peaks, they hesitated to assign energies of the inclastically acattered protons suggested El Bedewi and Tadros report gave only the first excited holds. Although Hausman et al. did assign three energy ing with peaks indicated by letters. The values of the levels were calculated by using: 7

$$Q = E_3 (1 + \frac{H_3}{H_4}) - E_1 (1 - \frac{H_3}{H_4}) - \frac{2 (H_1 E_1 H_3 E_3)^{\frac{1}{2}}}{H_4} \cos \theta \quad (6.4)$$

where: I refers to the combarding proton (8 Mev), 3 was taken as the scattered proton, and 4 was taken as $\text{Cr}^{52^{+}},$

8

 $Q = 1.02 E_3 - 7.84 + 0.0942 (E_3)^{\frac{1}{2}}$ (6.5)

where: $\mathbf{E}_{\mathbf{3}}$ is the energy of the inelastically scattered proton.

TABLE XI. Enexey Levels of Gr 52 from Hausman et al.

Level	- E	Levels	Levels	Levels of
Assignments	(HeV)	Calculated	Adjusted	Mazari et al.
(Mev)		ð	to Magawi et al.	
1.46	98.2	1.64	1.43	1.432
2.43	4.98	2.34	2.37	2.368
•	89.4	32:87	2.67	2.648
,	4.60	2.8	2.76	2.767
3.01	4.41	3.14	2.96	2.965
,	4.20	3.37	3.175	3.161
ı	3.90	3.67	3.51	ŧ
	3.60	3.99	3.83	•

a. Listed by Way et al. on p. 40 as 3.46 Mev while 3.83 is not listed therein at all.

There was a noticeable difference between the energies given by Mazari et al. and those calculated. It was thought that the method of using equation (6.4) was in error. Reference was pade to the energies given by Mazari et al., and their levels were calculated using (6.4) and $(\theta=90^\circ)^5$. Table XII shows the results and the error was considered as being reasonable. The final equation used for Table XII is:

 $Q = 1.02 E_1 - 6.38$ (6.6)

TABLE XII. Calculation of levels Given by Maseri et al.

Levels Assigned ⁵	(Mev.)	0.00	1.43	2.37	2.65	2.71	2.96	3.16
Levels	Q (Mev)	0.03	1.40	2.35	2.61	2.74	2.93	- 3.12
, a (), d. (), d		6.28	4.88	3.95	3.70	3.57	3.38	3.19

difference could be found to fit Hausman's results to Mazari's ment was indeed linear which supported the original assumption range. If a linear plot of energy level (q) versus scattered in order to find how well they matched. The linear plot was three points a straight line was drawn. The Q values listed (6.5) contained a very small quadratic term, it was reasoned proton energy were to be made then perhaps a constant factor reference, their positions were adjusted vertically dominand about the size of the quadratic term being small. The lines Taking those levels assigned by Hausman et al. as points of so as to fall on the values of Mazari et al. Through these The original line through the calculated Q's before adjustthe divergence of the calculated Q's in Table XI from those that perhaps it would be close to linearity over a limited Since the use of equation (6.4) then seemed in order, agreement with the results of Mazari et al. is very nice. of Mazari et al. was inexplicable. Noting that equation in column 4 of Table XI are the result. Even though the method employed is somewhat questionable it is seen that made of the calculated Q's in column three of Table XI.

6.3 The Besults of Katch at al. and Mb.

Recently Katch et al. reported results of a study of the decay of Mn 52m, the isomeric state at 5.098 Mev, or 0.390 Mev higher than the ground state of Mn 52. They report the spin of this level as (2+) or (3+) which is consistent with other results. Some of their other tesults have been discussed in Chapter 5.

(They also reported seaing gamma rays of 1.33 and 1.2 May at intensities estimated at 5% and 3% respectively in coincidence with the 1.43 May gamma ray. These apparently are the 1332.0 ± 1.0 Key (5.8 ± 0.8%) and the 1245.6 ± 0.4 Key (6.2 ± 1.3%) reported in this paper which supports our findings. However, they reported a very weak gamma ray of 1.73 May energy in their singles runs. But, from our studies as shown in Fig. 2 it appears that this 1.73 May gamma ray is spurious.)

Their results of the decay of Mn^{52m} included the following gamma rays: 1.52 (2%, 1.37 (missing %), 1.15 (2%), 1.02

(3%), 0.94 (4%), and 0.70 (3%) all Mev. The main decay path
is via the emission of a 2.63 Mev positron to the (2+) level
at 1.43 Mev (90%). In order to fit these resulting gamma
rays into the levels reported by Mazari et al., Katch et al.
suggested that a new level was necessary at 3.67 Mev. In this
decay scheme there are apparent alsitts in energy of as much
decay scheme.

6.4 Proposed Decay Scheme of Mn 52m

59

The dashed game rays are those expected to be seen in order to complete the cascades to the ground state but which were rays were positioned such that if the 3.83 May were a (2+) state then either of these transitions to a (4+) or a (0+) fit. Thus, the levels in Pig. 16 were assigned the values state is probable. These energy levels did not give too lower limits at which the levels could be put for a best energy difference between levels for comparison purposes. good a fit, and the errors assigned to them were used as isomeric decay gamma rays reported by Katch et al. Fig. present at 3.51 and 3.83 May from the report of Mausean 16 is such a decay scheme. The 1.02 and 1.15 Mev game of 3.48 and 3.80 Mev. The number in parenthesis is the Recalling that possible low spin states might be et al. it was attempted to fit these levels with the not reported as having been seen.

Using the intensities as given by Katch et al. the log ft values for the levels involved were calculated by the use of Moszkowski's nomogram and equation (5.2). The results are given in Table XIII.

TABLE XIII. Log ft Values for Mn 52m - Cr 52

	٤	3.82(4.82)	4.40(1.07)	,	•
Log ft	+9	•	•	5.46(1.62)	5.40(882)
	Ket	22	37	22	202
	Out	52	3%	22	100%
y-Ray	Feeding	0	•	•	10%
Tevel	Mev	3.80	3.48	2.965	1.434

It is seen that the log ft value for the 1,434 level is of the order for an allowed transition which is consistent with

known experimental results. The log ft values for the 3.80 and the 3.48 Mev levels appear to be low which probably means that the intensities given by Katch et al. were a little high. Rowever, it would seem that if these transitions were allowed then spins and partitles for them both could be (1+), (2+), or (3+). Because of the split feeding of a 4+ and a 0+ level, the 2+ assignment seems best for the 3.80 Mev level. Since a 0.83 Mev gamma ray was not reported, then the 3.48 Mev level might best be 3⁴ since the 2.65 Mev level is not populated from this state.

The level at 2.965 Mev has been tentatively assigned the spin and parity of (2+) by Van Patter. The log ft values indicate that the decay to the 2.965 Mev level could be an allowed transition to yield either (1+), (2+), or (3+) for spin and parity and therefore this data could support the assignment of Van Patter of (2+).

It is seen in Fig. 16 that the 3.83, 3.74, and 3.614 Mev levels are apparently not populated as would be expected. It is interesting also to note that the 3.161 Mev level is not populated in either the Mn⁵² or the Mn^{52m} decay. An explanation of this could be that it is a negative parity state and hence requires a first forbidden beta branch.
6.5 V⁵²² Cr⁵² Beta Decay.

K. Way et al. ⁶ suggested a possible experiment with $\sqrt{52}$ as a means of determining which of the Cr^{52} levels are indeed 2+. The ground state of $\sqrt{5}^2$ is 2+ and allowed betadecay transitions would populate the 2+ levels of Cr^{52} most strongly. This investigation is presently underway using 98% chemically pure $\sqrt{51}$, irradiated by thermal neutrons from a Ra-Be source enclosed in a paraffin box. As yet, no definitive results can be reported.

6.6 Theoretical Points of Interest

core giving rise to higher values of deformation than expected. (2+); second, third, and fourth excited states in a band with their asymmetric motion can tend to polarise the closed shell is characterized by bands of states separated by energy gaps. allows the maximum interplay of short range muclear cohesive shells the intrinsic forces of the closed shell core are not gaps between levels are much smaller than those for the vibequilibrium shapes allows smeller values of angular momentum rise to a spectrum like that of a polar molecule (dambbell). The pure vibrational spectrum of an even-even mucleus forces thus yielding vibrations of high frequency and large some arrangement of (0+, 2+, and 4+); and the fifth through The large moment of inertia attendent to large nonspherical The sequence being: ground state (0+); first excited state band on the other hand is characterized by quadrupole tranbetween closed shells, the less effective are these forces. These excess nucleons generate the nuclear deformation and The closed shell nuclei possess spherical equilibrium 9-11 (0+, 2+, 3+, 4+, 6+) not respectively. A pure rotational nuclei possessing a nonspherical equilibrium shape giving ninth excited states in a higher band of spin and parity sitions and a level sequence up from the ground state of (0+, 2+, 4+, 6+) in a ladder type diagram but the energy rational spectrum. The rotational spectrum results from energy gaps in the spectrum. When nuclei have unfilled to arise from energy quanta. Thus, the nuclei with many as effective on the nucleons in the outer shell and the and thus can be described by the addition of a harmonic oscillator term to the Hamiltonian. Spherical symmetry larger the number in this unfilled shell, or mid-range

mucleons in this unfilled shell should display almost pure rotational spectra and the nuclei with the larger A showing smaller energy gaps. This is seen to be the case for the 150<A<190 and A>222 elements. For the 40<A<150 region this latter effect is not pronounced and large deformations do not occur.

A criterion to tell if a given nucleus would possess a rotational spectrum was calculated by Temmer and Heydenburg. They took the rough criterion given by Bohr and Mottelson that a rotational spectrum should have a correspondence to $(E=J(J+1)n^2/2I)$ and they calculated, for a rotational spectrum, the energy of the first excited state to be:

$$E(^{1}2+)$$
 $< \frac{9.22 \times 10^{5}}{A^{5/3}}$ Kev (6.7)

Van Nooijn et al. 13 investigated Ti 46 , which has 2 protons outside of a closed shell and 2 neutron holes, and found its levels and parities to be:

They calculated the criterion for this isotope to get $E(^12+)$ < 1.46 Mev and concluded that $Ti^{48}_{}$ must have rotational level spacing since $E(^12+)$ was 0.986 Mev. However, it must be recalled that rotational spectra are usually seen only in 180-topes of 150<A<190 and is not to be expected in isotopes of A \sim 48. A calculation for the case of $Cr^{52}_{}$ yielded $E(^12+)$ < 1.28 Mev and $Cr^{52}_{}$ has $E(^12+) = 1.433$ Mev it would appear that a vibrational spectrum would be favored. A comparison of their energies normalized to the first excited state shows:

25.25	1.00	1.66	1.93	2.17
	*	+7	+7	*
22 T1 26	1.00	2.33	3.29	3.39

These results show a marked difference and one wonders at the connection between the Temmer and Naydenburg criterion (if it is applicable for A ~ 50) and the above table.

An interesting experiment to compare this result with is to investigate the levels of ΣI^{44} since it has 2 protons and 2 neutrons outside of a closed shell. In addition, a comparison of Ca^{44} with all of these would yield valuable information since Ca^{44} has 4 excess nucleons (neutrons), Cr^{52} has 4 excess nucleons (protons) and ΣI^{44} has 4 excess nucleons (2 protons and 2 neutrons). Using equation 6.7 again for Ca^{44} to see what results, the criteria yield $E(^{1}2+) < 1.75$ Mev for a rotational spectrum. Since $E(^{1}2+) = 1.16$ Mev for this isotope it appears that it would have a rotational spectrum too if the criterion is applicable.

Mallman¹⁴ presents a graph of energy of the first oddparity state as a function of the mass number A. He states that Morinaga¹⁵ has found the first odd-parity state of eveneven nuclei to have predominantly a spin of 3 and appear near the line

$$E = \frac{67}{3}/4$$
 Hev (6.

(a semi-empirical formula which is used to describe the separation of two mass parabolas in even A nuclei). Alder et al. state that the odd parity collective vibrations of lowest energy are expected to be of octupole character (I = 3). In even-even nuclei this is the one phonon excitation. The two phonon excitation of octupole vibrations give rise to states

of I = 0+, 2+, 4+, and 6+. C_0^{40} which is maple-maple has a 3-state at 3.73 MeV. A^{40} has a 2-state at 4.21 MeV cmit thes 2 heles and 2 excess purpons. C_0^{140} has a_1 3-state at 2.42 MeV and it has 3 mothers emission of a_1 has a_2 3-state of 50 and could be expected to yield a spectrum similar to that of C_0^{52} . The level of 3.151 MeV in C_0^{52} has here that of C_0^{52} . The level of 3.151 MeV in C_0^{52} has here that of C_0^{52} in the signed the spins and partities of (1+, 2+, 3+) for reasons alruady riven. The energy level fails nearly on the line given in equation 5.8. Systematically it appears then that the 4.161 MeV could be the first odd parity state of C_0^{52} .

 $\tilde{(}$

in purchasion, it appears that the spectrum of Cr⁵² is not a pure list of conditing spectrum, not is it a pure vibrational spectrum.

**Rather, it is a very complex conditional of several effects, and at this time there is active interest in extuation and at this time there is active interest in extuation and at this time there is active interest in extuation and at this time there is active interest in extuation and active interest in extuation and active interest in extuation and active interest in extuation.

References for Chapter 6

- . J. Konijn, B. Van Mooijn, and H. L. Hagedoorn, Physica, 24, 377 (1958).
- J. O. Juliano, C. W. Kocher, T. D. Mainan, A.C.G. Mitchell, Phys. Rev., 113, 602 (1959).
- F. A. El Bedeuf and S. Tadros, Nuclear Phys., 6, 434, (1958).
- H. J. Hausman, A. J. Allen, J. S. Arthur, R. S. Bender, and C. J. McDole, Phys. Rev. <u>85</u>, 1296 (1952).
- M. Mazari, W. W. Buechner, and A. Sperduto, Phys. Rev. 107, 1383 (1957).
- K. Way, R. W. King, C. L. McGinnis, R. van Lieshout, Nuclear Level Schemes, AEC TID-5300, GPO, 1955.
- R. D. Evans, The Atomic Nucleus, (McGraw-Hill Book Co., Inc., New York, 1955) p. 411.
- T. Katch, M. Nozawa, Y. Yoshizawa, and Y. Koh, J. Phys. Soc. Jupan, 15, 2140 (1960).
- K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. <u>28</u>, 4, 432 (1956).
- C. E. Mandeville, D. M. Van Patter, W. C. Porter, M. A. Rothman, and C. P. Swann, Air Force Office of Scientific Research Report, AFOSR-TR-59-28 (1959).
- L. S. Kisslinger and R. A. Sorensen, Kgl. Danake Videnskab. Selskab, Mat. fys. Medd., 22, No. 9 (1960).
 - G. M. Temmer, and N. P. Heydenburg, Phys. Rev. 99, 1609 (1955).
- B. Van Nooijn, J. Konijn, A. Heyligers, J. F. Vander Brugge, and A. H. Wapstra, Physica 23, 753 (1957).
- 14. C. A. Mallmanp, A/CONF. 15/1, 14, P/1971 (1958).
- 15. H. Morinaga, Phys. Rev., 103, 503 (1956).

REPRODUCED FROM BEST AVAILABLE COPY

A XIQUE

Construction of Intrinsic Bifficiency Ourves for Hel(TI) Crystals

Consider a monoenergetic gamma-ray source. It has a given emitted flux at any known time. Of the total number of gamma rays emitted, only a small fraction lie in the solid angle subtended by the crystal and are absorbed by it. This fraction is called "total absolute efficiency." Of the gamma-ray converted into photoms in the crystal only another small fraction fall under the photoelectric effect curve.

The area under the full curve of counts versus pulse height is proportional to the total number of distinct games rays that were transformed in the crystal and is thus proportional to the probability of the event occurring. If a spectrum contains only two games rays, then the ratio of their two total areas is a measure of the relative probability of the events occurring and is thus a measure of the relative probabilating of the relative probabilation of the relative intensity of these two radiations.

The ratio of the area under an ideal photoelectric effect peak to the total area is a constant for a given crystal and game ray. For instance, Table A-I shows such a relationship for 2 different MaI(TI) crystals used in the Muclear Physics Laboratory, University of Colorado.

TAME A-1. Photoelectric peak area/total area ratios.

(3-3/4" × 3"	0.522	0.394	0.324
(3" × 3")	0.502	0.326	0.292
7-Ray Hev	0.661	1.17	1.28
Source	Ca 137	3	. Ma 22

In general, we see that a larger crystal allows more of the Compton effect photons to be recovered, thereby increasing the ratio.

In practice it is much easier to measure the height and width of the photo-peak area than the area of the total. Thus, we suck a way of comparing the relative intensity of gamma rays by comparing the areas of their photo-peaks. The relationship used is:

where (1) M is the number of $\gamma_{\underline{i}}$ in the photoelectric peak

(2) E is the total efficiency for source used.

(3) P is the ratio of photo-peak area/total area. (4) N_0 is the total flux of γ_{\perp} from the source.

(5) A is the solid angle subtended by the crystal.

We usually plot the number of counts or gamma rays versus channel number on semi-log paper thereby converting the gaussian curve of standard distribution of the photo peak into a parabola. We then use the width at one half maximum as the width of a rectangle whose haight is that of the apex of the parabola of the photo-peak. Then M = h M is the area of the photo-peak and also a seasure of the probability of the gamma ray occurring. Then, using (A.1),

is a measure of the true intensity of gamma ray $\gamma_{\underline{1}}$. Since $(a_{\underline{1}})$ is difficult to obtain we can use the relative intensities of two different gamma rays appearing in the same nucleus.

$$\frac{N_{0_{1}}}{N_{0_{2}}} = \frac{(h \cdot W_{1})^{1}/(6.7)_{1}}{(h \cdot W_{1})^{2}/(6.7)_{2}}$$
(A.3)

The quantity (6 P) is called the "total intrinsic efficiency" of the gamma ray-crystal-geometry used. Since

the solid angle cancelled out it will be a peremeter for the curve. Let us denote this by a(1). Then

$$I_{rel}$$
. $\frac{(h W_k)_1 o(2)}{(h W_k)_2 o(1)}$ (A.4)

of two gamma rays from their published decay schemes. Then To implement this result we use the relative intensity

$$\frac{\alpha(2)}{\alpha(1)}$$
 = constant (A.5)

()

Some representative relative intensities using published data is determined by analyzing known sources, to find the approtics. Then to obtain a curve of intrinsic efficiency versus channel 150 on the analyzer so as to obtain optimum statistwo points for each unique combination of game rays. The fields two points for the curve. Each isotope used yields assumed values are readjusted until all of the points for the various isotopes used fall in a rather smooth curve. cannot ray energy we assume a value for $\alpha(1)$ in equation printe h and W with the larger gamma ray placed near (A.5) in order to determine $\alpha(2)$ for one isotope which are shown in Tabic A-II.

TABLE A-II. Relative Intensities of Selected Gamma Rays.

Source	y-Rays Mev	Relative Intensity
Na 22	1.274	10.511 - 1.796
	.511	*1.28
993	1.17	1,33 = 1 o
	1.33	1,17

Inble A-III below diminays the ratio a(2)/a(1) for the indicated sources which were used to construct Fig. 11.

4-11

TABLE A-III. Relative intrinsic Efficiencies of known gamma rays for a (3-3/4" x 3") NaI(T1) crystal.

Source	Na 22	0993	Sode
Ratio	$\frac{\alpha(0.511)}{\alpha(1.28)}$ - 1.76	1.06	a(0.585) - 1.12 a(1.119) - 1.12
Source	Pr 144	87^	
Ratio	a(2.18) = 0.482 a(0.697) = 0.482	a(2.25) = 0.765 a(1.32) = 0.765	
		$\frac{\alpha(0.986)}{\alpha(1.32)} = 1.46$	
		$\frac{\alpha(0.511)}{\alpha(1.32)} = 1.71$	

Fig. 12 was constructed from a similar table for a (2" x 2") crystal as shown in Table AlVbelow.

TABLE A-1V. Relative intrinsic efficiencies of known gamma rays for a (2" x 2") MaI(T1) crystal.

l Source	1" Source to crystal distance	•	
Source	Na ²² .	09 ⁰	Pr 144
Ratio	$\frac{2(1.28)}{\alpha(0.511)} = 0.355$	$\frac{2(1.28)}{\alpha(0.511)} = 0.355$ $\frac{\alpha(1.33)}{\alpha(1.17)} = 0.89$	$\frac{\alpha(2.18)}{\alpha(0.694)} = 0.303$
1-1/2" \$	1-1/2" Source to crystal distance	stance	
Source	Pr 144	2n ₆₅	
	c(2.18)	α(1.11)	

Source Pr ¹⁴⁴ Zn ⁶⁵ Ratio <u>c(2.15)</u> = 0.314 <u>a(1.11)</u> = 0.436
Pr 144

In Fig. 1) the 40 cm line was positioned relative to the experimental 14 cm line by analysis of Heath's curves. The 30 cm line was then interpolated into position. In Tig. 12 the 1" and 1-1/2" are experimental results and the 3" line was extrapolated again based on Heath's work.

APPENDIX B Variation in Shape of a Gamma Ray as a Function of Analyzer Gain or Channel Mumber

Miller and Snow 12 have shown that theoretical calculations of the gamma-ray absorption process have reached a state as to be able to fit the experimentally determined gamma-ray pulse height spectrum quite nicely. Practically speaking, it is necessary to have at hand during spectrum analysis a catalogue of gamma rays of various energies, and each of these positioned and plotted for convenient channel increments. With the above calculations performed we now have a technique to construct such catalogues appropriate for selected crystals and geometries.

Fig. 13 illustrates this change for the Zn sotope using a reference to Fig. 15, showing an analyzer calibration curve. equation (3.1), shows that as the amplifier gain is changed First, select any Samma-ray energy on the ordinate and also gamma ray of a given energy. The definition of resolution, dependent of this effect. This can be seen graphically by peak is moved to the right, toward higher channel numbers. a Δ $E_{1/2}$ centered on this selected energy. Since this reanalyzer gain is changed the pictorial presentation of the broadens as the gain is increased and the gamma-ray photothe resolution is not changed since the resolution is inlationship is constint, draw two imaginary horizontal li: photomultiplier tube combination and is a constant for a (3-3/4" x 3") NaI(II) crystal at 14 cm source to crystal gamma-ray shape also changes. The gamma-ray photo-peak spectrometer being determined primarily by the crystal-It is found that as the multi-channel pulse height distance. This effect is due to the resolution of the from the ends of $\Delta \, \, E_{1/2} \,$ to intersect the analyzer the slope of this intersected portion of the curve. The slope of this intersected portion of the curve. The slope decreases as the gain is increased and a content of point is moved to the right. The two parallel lines intercept an increasing number of channels as the slope is decreased which indicates peak broadening. There is no apparent remedy for this. The effect is, however, that in the subtraction process during analysis (Chapter 4) precise curves are needed for precise subtraction. For each possible gain setting a complete catalogue of sample gamma-ray shapes is required. For continuity, just as set geometries are required to eliminate some variables, set gains are required so that a catalogue of gamma ray shapes can be made and used throughout the analysis.

During the progress of the experiment such a catalogue was made for our equipment, although it was extremely modest in size.

Early in the experiment it was thought that the Compton distribution was flat from the crest of the leading edge all the way to the left. Observation of $2n^{6.5}$ with its relatively uncluttered spectrum, $3n^{5.4}$, $K^{4.2}$, and plates in the literature yielded convincing evidence that there was a slight drop off to the left as seen in the analyzed coincidence drawings in the body of this paper. An effort was made to use all of the appropriate standard calibration sources available in order to construct the above mentioned catalogue. Each source was positioned at various channels (gaid) and plotted. We then had a record of variation in shape of one instepols euryes as a function of gain, which yieldet the variation in gamma-ray shape (at a constant channel) as a function of energy. The dashed curve in Fig. 13 indicates have inter-

polabilon can be used to obtain a desired gamma-ray nurve for a specific channel if none is at hand.

With this study as background we made a cutalogue of curves for the "act" gains used in this experiment. It is felt that this contributes a great deal to the accuracy and reproducibility of this analytical technique.

ទ

APPENDIX C

Variation in Share of a Gamma hay when it is the Sum of Iwo Other Tays.

to indicate the type of variation existing. It is seen that would be relatively isolated. Three runs were analyze and the results shown in Fig. 14., Restriction of page size deshown in order to allow the sumpeak to be made larger. A superposition of a K⁴² (1.53 May) gamma-ray curve is shown the Compton effect leading edge is very much inflated and that such an investigation be undertaken. Again the magnit manded that the two poaks of .511 Mev and 1.28 Mev not be choice of geometry may not be one of the luxuries available main gamma rays indicated that their sum peak at 1.79 Mev annihilation peak and the separation in energy o, the two peaks to a spectrum. However, the possibility exists that to the investigator and a derailed knowledge of the shape of a sum peak may be extremely useful. It was suggested $_{
m Na}^{22}$ was selected because of its prominent tude of the inquiry was small but the results wore ory On page 3-6 it was mentioned that source to commonly distance had a marked effect on the contribution of sum the photo-peak reduced.

curves arises from a narrowed half width, and a higher Compton an almost circular shape. It is assume, that the Compton conin the sum peak curve. Inc Compton leading edge has tainn on tribution drops slightly as the energy is decreased as do the this sum peak. But, the visible difference between these two small (peak/total arez) ratio (See Heath's Catalogue) as does It is known that real gamma rays of high energy have a real gamma rays.

APPENDIX D

Calibration Procedure for the Model 302 Universal Coincidence Circuit.

As discussed in paragraph 3.5, the calibration procedure discussed is unchanged. Fig. 15 is for illustration purposes external or internal calibration is used the procedure to be only and the discriminator voltages listed were not used in option of using internal calibration of our instruments for Chapter 5 lists the tively good values for the energies of the first order gam for the gating discriminator is one of the most critical beta-ray spectrometer research group. These energies are close to the energies originally reported by the beta-ray spectrometer group early in the experiment. Having relathe gamma-ray spectrometer, or external calibration using curve using internal calibration. Regardless of whether rays of this isotope early in the experiment, we had the known calibration sources. Fig. 15 shows a calibration energies of the gamma rays seen in Mn 22 as found by the steps in the coincidence experiments. any experiment.

200-channel pulse-height analyzer at an appropriate gain such that the desired energy range is covered by the 200 channels. being at channel 140. This area could contain a gamma ray or any interesting portion of the plotted spectrum desired to be Then the #2 counter is used to record coincidence-singles at between channels 130 and 150 be investigated with the center this gain setting and geometry desired. Assuming that this investigated. The energy on the ordinate shows channel 140 The analyzer calibration curve is made by setting the singles run has been plotted, it is desired that the area to correspond to 1.90 Mev.

Variation in Stape of a Gamma Ray when it is the Sum of Two Other Gamma Rays.

to indicate the type of variation existing. It is seen that choice of geometry may not be one of the luxuries available mould be relatively isolated. Three runs were analyzed and the results shown in Fig. 14. Restriction of page size dethat such an investigation be undertaken. Again the magnithose in order to allow the sum peak to be made larger. A superposition of a K42 (1.53 Nev) gamma-ray curve is shown peaks to a spectrum. Nowever, the possibility exists that anded that the two peaks of 1511 Nev and 1.28 Mev not be to the investigator and a detailed knowledge of the shape mein gamma rays indicated that their sum peak at 1.79 Mev mmihilation peak and the separation in energy of the two the Compton effect leading edge is very much inflated and of a sum peak may be extremely useful. It was suggested On page 3-4 it was mentioned that source to crystal tude of the inquiry was small but the results were very Latisfying. Na Palected because of its prominent distance had a marked effect on the contribution of suthe photo-peak reduced.

It is known that real gamma rays of high energy have a small (peak/total area) ratio (See Heath's Catalogue) as does this sum peak. But, the visible difference between these two curves arises from a narrowed half width, and a higher Compton in the sum peak curve. The Compton leading edge has taken an almost circular shape. It is assumed that the Compton contribution drops slightly as the energy is decreased as do the real gamma rays.

The Model 202 coincidence circuit is now switched from "upper-lower" discriminators selection to "lower-battery bias" discriminator setting. The former is a differential discriminator setting. The former is a differential discriminator setting which allows two discriminators to be set independently to define the voltage window. The latter is an integral discriminator using the lower level discriminator but the upper discriminator grid is biased relative to that of the lower by a bettery so that a constant window is had as the lower level discriminator is used as a single channel pulse-height analyzer. We found that a voltage bias of 1-1/2 volts was optimum since small peaks were then well defined.

peak is clearly passed. The energy in this illustrative case is 1.43 Mev and the peak has its center at 33-1/2 volts. The This curve is drawn and extended passed the 1.90 Mev area in abscissa of Fig. 15 is now relabeled to read volts and this scaler. To find the position of the first order games rays distribution. A voltage in this area is selected as referreduced by 1-1/2 volts to a new setting and a count is made process is continued with the result that 0.935 Mev centers pending on the source strength. The discriminator is then of our isotope (% 2 in this case) we set the discriminator and recorded. This is continued until the maximum of the ence and the counts are recorded for 5 or 10 seconds, deannihilation quanta of 0.511 Mev centers at 11-1/2 volts. The output of this single channel PHA is fed into a high so that few counts are recorded. We then pass down the voltage scale until the change of the counting rate at 21-1/2 volts, 0.744 Mev centers at 17 volts, and the indicates a definite leading edge of a gamma-ray pulse point of 1.43 Mev at 33-1/2 volts is plotted thereon. which we are interested. The plotted spectrum of the #2 counter shows that the area of interest has upper and lower energies of 1.78 Mev to 2.04 Mev. These energies are draw on the discriminator curve and found to be from 41.5 volts to 48.0 wits.

The differential discriminators are now used and these voltages are set in them.

This procedure is obvious and not at all difficult to perform. It allows the investigator to choose the area to be investigated pracisely and to set the discriminators just as pracisely. The discriminator itself can drift as a result of variation in room temperature, or the amplifier which feeds this discriminator can drift. Both effects are possible sources of serious error and room fempirature stabilization is necessary for precise work.

FICURE 2

()

FIGURE 12

 \bigcirc

0

 \cup