Projet : Reconnaissance automatique de vidéos avec un processeur photonique neuro-inspiré

Georgin Nicolas

Date: 23/01/2019

Sommaire

- 1. Profiling sur de grands réseaux 2025 & 4 096
- 2. Fonction de sous-échantillonnage
- 3. Résultats
- 4. Discution

Profiling

- Rappel : la fonction pinv ne pose pas de problème pour un petit réseau (1024)
 - Profiling sur le code amélioré

Profile Summary

Generated 17-Jan-2020 17:47:48 using performance time.

<u>Function Name</u>	Calls	Total Time	Self Time*	Total Time Plot (dark band = self time)
rc kth pca mix score	1	330.638 s	228.450 s	
analyse kth pca mix	18	74.089 s	12.346 s	
<u>mode</u>	36	61.665 s	61.665 s	
pinv	18	16.371 s	16.371 s	•
ca mix score>@(x)slm transf lut(x)	955008	11.026 s	11.026 s	1

Profiling

$$N = 2025$$

N = 4096

Line Number	Code	Calls	Total Time	% Time	Time Plot
136	A = mask * inputs;	18	228.867 s	31.7%	
182	weights = P' * pinv(R);	18	115.493 s	16.0%	***
180	R = X*X' + reg_te	18	99.406 s	13.8%	
<u>156</u>	res_in = A(:, t) + w * C;	954990	77.817 s	10.8%	
198	analyse_kth_pca_mix;	18	75.611 s	10.5%	
All other lines			123.790 s	17.2%	
Totals			720.984 s	100%	

Line Number	Code	Calls	Total Time	% Time	Time Plot
182	weights = P' * pinv(R);	18	1240.714 s	43.8%	
<u>136</u>	A = mask * inputs;	18	476.794 s	16.8%	
180	R = X*X' + reg_te	18	397.232 s	14.0%	_
<u>156</u>	res_in = A(:, t) + w * C;	954990	330.932 s	11.7%	
198	analyse_kth_pca_mix;	18	82.344 s	2.9%	1
All other lines			302.368 s	10.7%	
Totals		7	2830.384 s	100%	

Fonction de sous échantillonnage

- 1. Fonction sous-échantillonne à intervalle régulier
- Prends en argument les données et un coefficient correspondant au pourcentage que l'on veut garder.
- 3. Exemple: 0.5, 50 %, on garde 1 image sur 2
- 4. 2 cas à distingué
 - a. Si le coefficient est inférieur à 0.5, exemple 0.1, (10 %), l'algorithme retient 1 image sur 10
 - b. Si le coefficient, il est supérieur à 0.5, exemple 0.95 (95 %), l'algorithme rejette 1 image sur 20
- 5. Coefficient pour le sous-échantillonnage de la base de données
 - a. 0.1 0.2 0.25 0.5 0.75 0.8 0.95 0.96 0.98 1
 - b. D'autres coefficients peuvent marcher.

Résultats

- Le sous-échantillonnage de la base de données est testé sur le jeu d'hyper-paramètres du code transmis initialement.
- 2. Moyenne des scores

Moyenne sur le jeux de paramètres original, pour une taille de réseau de 1024. Meilleur résultat en moyenne, excepté une base contenant pour 10% et 25%.

Meilleur score 520 obtenu avec 25 % de données

Input gain: 0.01 Feedback gain: 1

Interconnectivity gain: 0.01

Interconnivity matrix density: 0.01

Résultats sur de plus grands réseaux

Discussion

- 1. Faire d'autres types échantillonnage
 - a. Prendre la moitié de chaque vidéo
- 2. Impossible échantillionage random
 - a. Problème de taille des données qui fait planté le logiciel
- 3. Cross-validation

- Pour de petits réseaux, le sous-échantillonnage semble marcher, pour de grand réseau c'est moins le cas
 - a. Problème plus complexe, besoin de plus de données.
 - b. Pour des petits réseaux, les images doivent se ressembler, redondance niveau des données.