25

UA-319

WE CLAIM:

1. A supramolecular structure produced by the process comprising:

reacting a multi-generation dendrimer with a monomer, where the dendrimer comprises a core molecule, a plurality of interior generations spherically disposed around the core molecule and an outermost generation comprising a plurality of dendritic branches having terminal groups sufficiently reactive to undergo addition or substitution reactions, where the monomer introduces a labile bond and at least one cross-linkable moiety to the terminal groups of each dendritic branch, and where the cross-linkable moiety is bonded to the terminal group via the labile bond;

cross-linking the cross-linkable moieties of adjacent dendritic branches; and

cleaving the labile bonds, thereby freeing the dendrimer and forming a molecule encapsulated within a cross-linked shell molecule.

- 2. The supramolecular structure produced by claim 1, wherein the dendrimer is selected from the group consisting of poly(propylenimine) (DAB) and polyamidoamine (PAMAM) dendrimers.
 - 3. The supramolecular structure produced by claim 1, wherein the monomer is a trialkenesilane.
 - 4. The supramolecular structure produced by claim 3, wherein the trialkenesilane is a trialkenechlorosilane.
- 5. The supramolecular structure produced by claim 4, wherein the trialkenechlorosilane is selected from the group consisting of

25

UA-319

trivinylchlorosilane, triallychlorosilane, tripropargylchlorosilane and diallylchlorosilane.

- 6. The supramolecular structure produced by claim 1, wherein the labile bond is selected from the group consisting of silicon-oxygen, silicon-oxygen-carbon, oxygen-nitrogen, nitrogen-silicon, nitrogen-carbonyl-nitrogen, silicon-acetylene, amide, blocked isocyanates and ureas.
- 7. The supramolecular structure produced by claim 6, wherein the labile bond is a nitrogen-silicon bond.
 - 8. The supramolecular structure produced by claim 1, wherein the cross-linking method is selected from group consisting of hydrosilation, olefin metathesis, radical polymerization, polycondensation, anionic polymerization, cationic polymerization and coordination polymerization.
 - 9. The supramolecular structure produced by claim 1, wherein the cross-linkable moieties are cross-linked with a cross-linking agent.
- 20 10. The supramolecular structure produced by claim 8 wherein the crosslinking method is hydrosilation.
 - 11. The supramolecular structure produced by claim 9, wherein cross-linking agent is selected from double and multiple cross-linking agents.
 - 12. The supramolecular structure produced by claim 11, wherein the double cross-linking agent is of the general formula (I):

$$R_1 \xrightarrow{H} Si \xrightarrow{R_2} X \xrightarrow{R_1} R_1$$

5

20

25

wherein where R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 30 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 30 carbon atoms, and x is an integer from about 1 to about 4. Preferably R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 15 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 15 carbon atoms, and x is an integer form about 1 to about 2.

The supramolecular structure produced by claim 11, wherein the multiple cross-linking agent is selected from the group consisting of CH₃Si(CH₂CH₂Si(CH₃)₂H)₃; CH₃(CH₂SiH₂)₂CH₃; HC(Si(R¹)₂H)₃; Si(R¹)₂H₂; (SiR¹HO)₄; linear polymers selected from the group consisting of (CH₃)₃Si-O-(SiR²H-O)_n-Si(CH₃)₃, H(CH₃)₂Si-O-(SiPH(-OSi(CH₃)₂H)-O)_n-Si(CH₃)₂H,

15 (CH₃)₃Si-O-(Si(CH₃)H-O)_m-(Si(CH₃)(C₈H₁₇)-O)_n-Si(CH₃)₃, and H₂R³Si(SiR³H)_n-SiR³H₂; cyclic compounds; a dendrimer; and mixtures thereof; wherein

R¹ is selected from hydrogen and organic groups having from about 1 to about 15 carbon atoms;

R² is selected from methyl and ethyl groups;

R³ is selected from aryl and alkyl groups having from about 1 to about 15 carbon atoms;

n is a positive integer from about 10 to about 100; and

m is a positive integer from about 10 to about 100.

UA-319

- 14. The supramolecular structure produced by claim 8, wherein olefin metathesis includes the use of a ring opening metathesis polymerization (ROMP) catalyst.
- 5 15. The supramolecular structure produced by claim 8, wherein olefin metathesis includes the use of a acyclic diene metathesis (ADMET) catalyst.
 - 16. The supramolecular structure produced by claim 8, wherein the coordination polymerization is Ziegler Natta polymerization.
 - 17. The supramolecular structure produced by claim 1, wherein the core dendrimer contains catalytic centers.
- 15 18. The supramolecular structure produced by claim 1, wherein the core dendrimer contains metallocores.
 - 19. A process for producing a supramolecular structure comprising:
- reacting a multi-generation dendrimer with a monomer, where the dendrimer comprises a core molecule, a plurality of interior generations spherically disposed around the core molecule and an outermost generation comprising a plurality of dendritic branches having terminal groups sufficiently reactive to undergo addition or substitution reactions, where the monomer introduces a labile bond and at least one cross-linkable moiety to the terminal reactive groups, and where the cross-linkable moiety is bonded to the terminal reactive group via the labile bond;

crosslinking the cross-linkable moieties of adjacent dendritic branches; and

20

UA-319

cleaving the labile bonds, thereby freeing the dendrimer and forming a molecule encapsulated within a cross-linkable shell molecule.

- The process of claim 19, wherein the dendrimer is selected from the group consisting of poly(propylenimine) (DAB) and polyamidoamine (PAMAM) dendrimers.
- The process of claim 19, wherein the monomer is a trialkenesilane selected from the group consisting of trivinylchlorosilane, triallychlrosilane, tripropargylchlorosilane and diallylchlorosilane.
 - 22. The process of claim 19, wherein the labile bond is selected from the group consisting of silicon-oxygen, oxygen-nitrogen, silicon-oxygen-carbon, nitrogen-carbonyl-nitrogen, nitrogen-silicon, silicon-acetylene, amide, blocked isocyanates and ureas.
 - 23. The process of claim 19, wherein the cross-linking method is selected from group consisting of hydrosilation, olefin metathesis, radical polymerization, polycondensation, anionic polymerization, cationic polymerization and coordination polymerization.
 - 24. The supramolecular structure produced by claim 19, wherein the cross-linkable moieties are cross-linked with a cross-linking agent.
- 25. The supramolecular structure produced by claim 24, wherein cross-linking agent is selected from double and multiple cross-linking agents.
 - 26. The process of claim 25, wherein the double crosslinking agent is of the general formula (I):

10

15

20

25

wherein where R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 30 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 30 carbon atoms, and x is an integer from about 1 to about 4. Preferably R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 15 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 15 carbon atoms, and x is an integer form about 1 to about 2.

27. The process of claim 19, wherein the multiple cross-linking agent is selected from the consisting of CH₃Si(CH₂CH₂Si(CH₃)₂H)₃; group $CH_3(CH_2SiH_2)_2CH_3$; $HC(Si(R^1)_2H)_3$; $Si(R^1)_2H_2$; $(SiR^1HO)_4$; linear polymers selected from the group consisting of (CH₃)₃Si-O-(SiR²H-O)_n-Si(CH₃)₃, $H(CH_3)_2Si-O-(SiPH(-OSi(CH_3)_2H)-O)_n-Si(CH_3)_2H$ (CH₃)₃Si-O-(Si(CH₃)H- $O)_{m}-(Si(CH_3)(C_8H_{17})-O)_{n}-Si(CH_3)_3,$ and $H_2R^3Si(SiR^3H)_n-SiR^3H_2$; cyclic compounds; a dendrimer; and mixtures thereof; wherein

R¹ is selected from hydrogen and organic groups having from about 1 to about 15 carbon atoms;

R² is selected from methyl and ethyl groups;

R³ is selected from aryl and alkyl groups having from about 1 to about 15 carbon atoms;

n is a positive integer from about 10 to about 100; and

m is a positive integer from about 10 to about 100.

- A supramolecular structure comprising a dendrimer and a cross-linked shell molecule spherically disposed about the dendrimer, wherein the dendrimer and the cross-linked shell molecule are not ionically or covalently bonded together.
- 10 29. A supramolecular structure produced by the process comprising:

reacting a multi-generation dendrimer with a monomer, where the dendrimer comprises a core molecule, a plurality of interior generations spherically disposed around the core molecule and an outermost generation comprising a plurality of dendritic branches having terminal groups sufficiently reactive to undergo addition or substitution reactions, where the monomer introduces a labile bond and at least one cross-linkable moiety to the terminal groups, and where the cross-linkable moiety is bonded to the terminal group via the labile bond;

20

15

crosslinking the cross-linkable moieties of adjacent dendritic branches;

cleaving the labile bonds, thereby freeing the dendrimer and forming a molecule encapsulated within a cross-linked shell molecule; and

- degrading and removing the free dendrimer, thereby producing a intramolecularly cross-linked spherical hollow shell structure.
- 30. The supramolecular structure produced by claim 29, wherein the dendrimer is selected from the group consisting of poly(propylenimine) (DAB) and polyamidoamine (PAMAM) dendrimers.

15

- 31. The supramolecular structure produced by claim 29, wherein the monomer is a trialkenesilane.
- 32. The supramolecular structure produced by claim 31, wherein the trialkenesilane is a trialkenechlorosilane.
 - 33. The supramolecular structure produced by claim 32, wherein the trialkenechlorosilane is selected from the group consisting of trivinylchlorosilane, triallychlrosilane, tripropargylchlorosilane and diallylchlorosilane.
 - 34. The supramolecular structure produced by claim 29, wherein the labile bond is selected from the group consisting of silicon-oxygen, oxygen-nitrogen, silicon-oxygen-carbon, nitrogen-carbonyl-nitrogen, nitrogen-silicon, silicon-acetylene, amide, blocked isocyanates and ureas.
 - 35. The supramolecular structure produced by claim 34, wherein the labile bond is a nitrogen-silicon bond.
- 20 36. The supramolecular structure produced by claim 29, wherein the crosslinking method is selected from group consisting of hydrosilation, olefin metathesis, radical polymerization, polycondensation, anionic polymerization, cationic polymerization and coordination polymerization.
- 25 37. The supramolecular structure produced by claim 29, wherein the cross-linkable moieties are cross-linked with a crosslinking agent.
 - 38. The supramolecular structure produced by claim 36, wherein the crosslinking method is hydrosilation.

15

20

25

UA-319

- 39. The supramolecular structure produced by claim 37, wherein the cross-linking agent is selected from double and multiple cross-linking agents.
- 40. The supramolecular structure produced by claim 39, wherein the double cross-linking agent is of the general formula I:

$$R_{1} \xrightarrow{H} Si \xrightarrow{R_{2}} Si \xrightarrow{R_{1}} R_{1}$$

$$R_{1} \xrightarrow{R_{1}} Si \xrightarrow{R_{2}} Si \xrightarrow{R_{1}} R_{1}$$

$$(I)$$

wherein where R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 30 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 30 carbon atoms, and x is an integer from about 1 to about 4. Preferably R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 15 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 15 carbon atoms, and x is an integer form about 1 to about 2.

The supramolecular structure produced by claim 39, wherein the multiple cross-linking agent is selected from the group consisting of CH₃Si(CH₂CH₂Si(CH₃)₂H)₃; CH₃(CH₂SiH₂)₂CH₃; HC(Si(R¹)₂H)₃; Si(R¹)₂H₂; (SiR¹HO)₄; linear polymers selected from the group consisting of (CH₃)₃Si-O-(SiR²H-O)_n-Si(CH₃)₃, H(CH₃)₂Si-O-(SiPH(-OSi(CH₃)₂H)-O)_n-Si(CH₃)₂H, (CH₃)₃Si-O-(Si(CH₃)H-O)_m-(Si(CH₃)(C₈H₁₇)-O)_n-Si(CH₃)₃, and H₂R³Si(SiR³H)_n-SiR³H₂; cyclic compounds; a dendrimer; and mixtures thereof; wherein

R¹ is selected from hydrogen and organic groups having from about 1 to about 15 carbon atoms;

R² is selected from methyl and ethyl groups;

5

R³ is selected from aryl and alkyl groups having from about 1 to about 15 carbon atoms;

n is a positive integer from about 10 to about 100; and

10

15

m is a positive integer from about 10 to about 100.

- 42. The supramolecular structure produced by claim 36, wherein olefin metathesis includes the use of a ring opening metathesis polymerization (ROMP) catalyst.
- 43. The supramolecular structure produced by claim 36, wherein olefin metathesis includes the use of a acyclic diene metathesis (ADMET) catalyst.
- 20 44. The supramolecular structure produced by claim 36, wherein the coordination polymerization is Ziegler Natta polymerization.
 - 45. A process for producing a supramolecular structure comprising:
- reacting a multi-generation dendrimer with a monomer, where the dendrimer comprises a core molecule, a plurality of interior generations spherically disposed around the core molecule and an outermost generation comprising a plurality of dendritic branches having terminal groups sufficiently reactive to undergo addition or substitution reactions, where the monomer introduces at least one labile bond and a cross-linkable moiety to the terminal group of

each dendritic branch, and where the cross-linkable moiety is bonded to the terminal group via the labile bond;

crosslinking the cross-linkable moieties of adjacent dendritic branches;

5

cleaving the labile bonds, thereby freeing the core dendrimer and forming a molecule encapsulated within a cross-linked shell molecule; and

10

degrading and removing the free dendrimer, thereby producing a intramolecularly cross-linked spherical hollow shell structure.

- 46. The process of claim 45, wherein the dendrimer is selected from the group consisting of poly(propylenimine) (DAB) and polyamidoamine (PAMAM) dendrimers.
- The process of claim 45, wherein the monomer is a trialkenesilane selected from the group consisting of trivinylchlorosilane, triallychlorosilane, tripropargylchlorosilane and diallylchlorosilane.
- The process of claim 45, wherein the labile bond is selected from the group consisting of silicon-oxygen, oxygen-nitrogen, silicon-oxygen-carbon, nitrogen-carbonyl-nitrogen, nitrogen-silicon, silicon-acetylene, amide, blocked isocyanates and ureas.
- The process of claim 45, wherein the cross-linking method is selected from group consisting of hydrosilation, olefin metathesis, radical polymerization, polycondensation, anionic polymerization, cationic polymerization and coordination polymerization.
- The supramolecular structure produced by claim 45, wherein the cross-linkable moieties are cross-linked with a cross-linking agent.

5

- 51. The process of claim 50, wherein the cross-linking agent is selected from double and multiple cross-linking agents.
- 52. The process of claim 51, wherein the double cross-linking agent is of the general formula (I):

$$R_{1} \xrightarrow{R_{1}} Si \xrightarrow{R_{2}} Si \xrightarrow{R_{1}} R_{1}$$

$$R_{2} \qquad (I)$$

wherein where R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 30 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 30 carbon atoms, and x is an integer from about 1 to about 4. Preferably R₁ is selected from the group consisting of hydrogen or organic groups having from about 1 to about 15 carbon atoms, R₂ is selected from the group consisting of hydrogen and organic groups having from about 1 to about 15 carbon atoms, and x is an integer form about 1 to about 2.

15

20

25

10

53. The process of claim 51, wherein the multiple cross-linking agent is selected from the group consisting of CH₃Si(CH₂CH₂Si(CH₃)₂H)₃; $CH_3(CH_2SiH_2)_2CH_3$; $HC(Si(R^1)_2H)_3$; $Si(R^1)_2H_2$; $(SiR^1HO)_4$; linear polymers selected from the group consisting of (CH₃)₃Si-O-(SiR²H-O)₀-Si(CH₃)₃, $H(CH_3)_2Si-O-(SiPH(-OSi(CH_3)_2H)-O)_n-Si(CH_3)_2H$ (CH₃)₃Si-O-(Si(CH₃)H- $O)_{m}-(Si(CH_3)(C_8H_{17})-O)_{n}-Si(CH_3)_3$ and $H_2R^3Si(SiR^3H)_n-SiR^3H_2$; cyclic compounds; a dendrimer; and mixtures thereof; wherein

R¹ is selected from hydrogen and organic groups having from about 1 to about 15 carbon atoms;

UA-319

R² is selected from methyl and ethyl groups;

R³ is selected from aryl and alkyl groups having from about 1 to about 15 carbon atoms;

5

n is a positive integer from about 10 to about 100; and

m is a positive integer from about 10 to about 100.

- 10 54. A supramolecular structure comprising a hollow cross-linked shell molecule.
 - 55. A supramolecular structure comprising a dendrimer having a cross-linked peripheral surface.

ADPA2