MATH 611 (DUE 11/13)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 27) Let $f:(X,A)\to (Y,B)$ be a map such that both $f:X\to Y,f:A\to B$ are homotopy equivalences.

- Show that $f_*: H_n(X,A) \to H_n(Y,B)$ is an isomorphism for all n.
- For the case of the inclusion $f:(D^n,S^{n-1})\to (D^n,D^n\setminus\{0\})$, show that f is not a homotopy equivalence of pairs there is no $g:(D^n,D^n\setminus\{0\})\to (D^n,S^{n-1})$ such that fg and gf are homotopic to the identity through maps of pairs.

Proof.

• For each $n \geq 1$, we have an exact sequence $H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X)$ and another one with X, A replaced with Y, B. Moreover, they are connected by homomorphisms $f_*: H_n(A) \to H_n(B)$, $f_*: H_n(X) \to H_n(Y)$, $f_*: H_n(X,A) \to H_n(Y,B)$ such that the diagram commutes. (naturality) Since $f: X \to Y$ and $f: A \to B$ are both homotopy equivalences, $f_*: H_n(X) \to H_n(Y)$, $f_*: H_n(A) \to H_n(B)$ are isomorphisms. By the Five lemma, $f_*: H_n(X,A) \to H_n(X,B)$ is an isomorphism.

The exact sequence $H_1(A) \to H_1(X) \to H_1(X,A) \to 0$ can be extended to $H_1(A) \to H_1(X) \to H_1(X,A) \to 0 \to 0$ by appending 0 at the end. Using the same argument as above, $f_*: H_1(X,A) \to H_1(Y,B)$ is an isomorphism.

• Suppose $f:(D^n,S^{n-1})\to (D^n,D^n-\{0\})$ is a homotopy equivalence.

Prove that $f: S^{n-1} \to D^n$ is a homotopy equivalence.

Since $f:(D^n,S^{n-1})\to (D^n,D^n)$ is a homotopy equivalence, we have an isomorphism $f_*:H_n(D^n,S^{n-1})\to H_n(D^n,D^n)$. $H_n(D^n,S^{n-1})=H_n(D^n/S^{n-1})$ since (D^n,S^{n-1}) is a good pair. Moreover, $D^n/S^{n-1}=S^n$, so $H_n(D^n,S^{n-1})=\mathbb{Z}$.

On the other hand, (D^n, D^n) is a good pair, so $H_n(D^n, D^n) = H_n(D^n/D^n) = H_n(\text{point}) = 0$ since $n \ge 1$.

Since \mathbb{Z} is not isomorphic to 0, the inclusion is not a homotopy equivalence of pairs.