Brandon Amos

Spamos • Last updated on November 4, 2024

Current Positions

Research Scientist, Meta, Fundamental Al Research (FAIR), New York City	2019 – Present	
Visiting Lecturer, Cornell Tech, New York City	2024 – Present	
Education		
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00)	2014 - 2019	
Thesis: Differentiable Optimization-Based Modeling for Machine Learning		
Advisor: J. Zico Kolter		

B.S. in Computer Science, *Virginia Tech* (3.99/4.00)

2011 - 2014

Previous Positions

December Assistant Communic Mellow Hair and Communic Communic Communication	2016 2010
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization)	2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision)	2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL)	2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems)	2014 - 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems)	2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization)	2013 - 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems)	2012 - 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers)	2012 - 2014
Software Intern, Snowplow (Scala development)	2013 - 2014
Software Intern, Qualcomm, San Diego (Python and C++ development)	2013
Software Intern , <i>Phoenix Integration</i> , Virginia (C++, C#, and Java development)	2012
Network Administrator Intern, Sunapsys, Virginia	2011

Honors & Awards

NeurIPS Top Reviewer	2022
ICML Outstanding Reviewer	2022
ICLR Outstanding Reviewer	2019
NSF Graduate Research Fellowship	2016 - 2019
Nine undergraduate scholarships	2011 - 2014

Roanoke County Public Schools Engineering, Salem-Roanoke County Chamber of Commerce, Papa John's, Scottish Rite of Freemasonry, VT Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar: 9.1k+ citations and an h-index of 38]

Selected publications I am a primary author on are highlighted.

1. AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs [code] Anselm Paulus*, Arman Zharmagambetov*, Chuan Guo, Brandon Amos[†], and Yuandong Tian[†] arXiv 2024

- Neural Optimal Transport with Lagrangian Costs [code]
 Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, and Brandon Amos UAI 2024
- Learning to Warm-Start Fixed-Point Optimization Algorithms [code]
 Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato
 JMLR 2024
- Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models Sanae Lotfi, Yilun Kuang, Marc Anton Finzi, Brandon Amos, Micah Goldblum, and Andrew Gordon Wilson NeurIPS 2024
- Stochastic Optimal Control Matching [code]
 Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky T. Q. Chen NeurIPS 2024
- Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold [code]
 Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio,
 Alexander Tong, and Kirill Neklyudov
 ICML GRaM Workshop 2024
- 7. To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning
 Da JU, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov,
 Brandon Amos, Xian Li, Justine T Kao, Maryam Fazel-Zarandi, and Yuandong Tian
 EMNLP Demo 2024
- Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning
 Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali İrfan Mahmutoğulları, Brandon Amos, Tias Guns,
 and Michele Lombardi
 arXiv 2024
- Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles
 Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich
 arXiv 2024
- Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos arXiv 2024
- 11. Wasserstein Flow Matching: Generative modeling over families of distributions [code] Doron Haviv, Aram-Alexandre Pooladian, Dana Pe'er, and **Brandon Amos** arXiv 2024

2023. . . .

- 12. Tutorial on amortized optimization [code]
 - **Brandon Amos**

Foundations and Trends in Machine Learning 2023

13. On amortizing convex conjugates for optimal transport [code]

Brandon Amos
ICLR 2023

- End-to-End Learning to Warm-Start for Real-Time Quadratic Optimization [code]
 Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato
 L4DC 2023
- 15. Meta Optimal Transport [code]
 Brandon Amos, Samuel Cohen, Giulia Luise, and levgen Redko
 ICML 2023
- Multisample Flow Matching: Straightening Flows with Minibatch Couplings
 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky T. Q. Chen
 ICML 2023
- Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
 Qinqing Zheng, Mikael Henaff, Brandon Amos, and Aditya Grover
 ICML 2023
- 18. TaskMet: Task-Driven Metric Learning for Model Learning [code]
 Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, and Brandon Amos
 NeurlPS 2023
- Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information [code]
 Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina, and Yuandong Tian NeurIPS 2023
- Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics
 Matthew Retchin, Brandon Amos, Steven Brunton, and Shuran Song ICML Differentiable Almost Everything Workshop 2023

2022

- 21. Cross-Domain Imitation Learning via Optimal Transport [code]
 Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
 ICLR 2022
- 22. Matching Normalizing Flows and Probability Paths on Manifolds
 Heli Ben-Hamu*, Samuel Cohen*, Joey Bose, **Brandon Amos**, Aditya Grover, Maximilian Nickel,
 Ricky T. Q. Chen, and Yaron Lipman
 ICML 2022
- 23. Semi-Discrete Normalizing Flows through Differentiable Tessellation Ricky T. Q. Chen, **Brandon Amos**, and Maximilian Nickel NeurlPS 2022
- 24. Theseus: A Library for Differentiable Nonlinear Optimization [code]
 Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky Chen,
 Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong, Brandon Amos, and
 Mustafa Mukadam
 NeurlPS 2022
- 25. Nocturne: a driving benchmark for multi-agent learning [code]
 Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, **Brandon Amos**, and Jakob Foerster
 NeurlPS Datasets and Benchmarks Track 2022

- 26. On the model-based stochastic value gradient for continuous reinforcement learning [code] [slides] Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson L4DC 2021 (Oral)
- 27. Riemannian Convex Potential Maps [code] [slides]
 Samuel Cohen*, Brandon Amos*, and Yaron Lipman
 ICML 2021
- 28. CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints [code] Anselm Paulus, Michal Rolínek, Vít Musil, **Brandon Amos**, and Georg Martius ICML 2021
- 29. Scalable Online Planning via Reinforcement Learning Fine-Tuning
 Arnaud Fickinger, Hengyuan Hu, **Brandon Amos**, Stuart Russell, and Noam Brown
 NeurlPS 2021
- 30. Aligning Time Series on Incomparable Spaces [code] [slides]
 Samuel Cohen, Giulia Luise, Alexander Terenin, **Brandon Amos**, and Marc Peter Deisenroth
 AISTATS 2021
- Learning Neural Event Functions for Ordinary Differential Equations [code] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- Neural Spatio-Temporal Point Processes [code]
 Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- 33. Improving Sample Efficiency in Model-Free Reinforcement Learning from Images [code] Denis Yarats, Amy Zhang, Ilya Kostrikov, **Brandon Amos**, Joelle Pineau, and Rob Fergus AAAI 2021
- 34. Neural Fixed-Point Acceleration for Convex Optimization [code]
 Shobha Venkataraman* and Brandon Amos*
 ICML AutoML Workshop 2021
- 35. Sliced Multi-Marginal Optimal Transport Samuel Cohen, Alexander Terenin, Yannik Pitcan, Brandon Amos, Marc Peter Deisenroth, and K S Sesh Kumar NeurIPS OTML Workshop 2021
- 36. Input Convex Gradient Networks
 Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos
 NeurlPS OTML Workshop 2021
- Imitation Learning from Pixel Observations for Continuous Control
 Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and Denis Yarats
 NeurlPS DeepRL Workshop 2021
- 38. MBRL-Lib: A Modular Library for Model-based Reinforcement Learning [code] Luis Pineda, **Brandon Amos**, Amy Zhang, Nathan Lambert, and Roberto Calandra arXiv 2021

′ 1		

39. The Differentiable Cross-Entropy Method [code] [slides]
Brandon Amos and Denis Yarats

ICML 2020

- 40. Objective Mismatch in Model-based Reinforcement Learning
 Nathan Lambert, **Brandon Amos**, Omry Yadan, and Roberto Calandra
 L4DC 2020
- QNSTOP: Quasi-Newton Algorithm for Stochastic Optimization [code]
 Brandon Amos, David Easterling, Layne T. Watson, William Thacker, Brent Castle, and Michael Trosset
 ACM TOMS 2020
- 42. Neural Potts Model

Tom Sercu, Robert Verkuil, Joshua Meier, **Brandon Amos**, Zeming Lin, Caroline Chen, Jason Liu, Yann LeCun, and Alexander Rives MLCB 2020

43. Deep Riemannian Manifold Learning
Aaron Lou, Maximilian Nickel, and Brandon Amos
NeurlPS Geo4dl Workshop 2020

2019.....

44. Differentiable Optimization-Based Modeling for Machine Learning [code]

Brandon Amos

Ph.D. Thesis 2019

- 45. Differentiable Convex Optimization Layers [code]
 Akshay Agrawal*, Brandon Amos*, Shane Barratt*, Stephen Boyd*, Steven Diamond*, and
 J. Zico Kolter*
 NeurlPS 2019
- The Limited Multi-Label Projection Layer [code]
 Brandon Amos, Vladlen Koltun, and J. Zico Kolter arXiv 2019
- 47. Generalized Inner Loop Meta-Learning [code] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala arXiv 2019

2018.....

48. Learning Awareness Models

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil ICLR 2018

49. Differentiable MPC for End-to-end Planning and Control [code] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter NeurIPS 2018

- 50. Depth-Limited Solving for Imperfect-Information Games
 Noam Brown, Tuomas Sandholm, and **Brandon Amos**NeurlPS 2018
- Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
 Mahadev Satyanarayanan
 ACM TOMM 2018

2017.....

- 52. OptNet: Differentiable Optimization as a Layer in Neural Networks [code] [slides]

 Brandon Amos and J. Zico Kolter
 ICML 2017
- 53. Input Convex Neural Networks [code] [slides]
 Brandon Amos, Lei Xu, and J. Zico Kolter
 ICML 2017
- 54. Task-based End-to-end Model Learning [code] Priya L. Donti, Brandon Amos, and J. Zico Kolter NeurlPS 2017
- 55. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle

 Minghan Chan Brandon Amos Layna T. Watson, John Tyson, Yang Cao, Cliff Shaffer

Minghan Chen, **Brandon Amos**, Layne T. Watson, John Tyson, Yang Cao, Cliff Shaffer, Michael Trosset, Cihan Oguz, and Gisella Kakoti IEEE/ACM TCBB 2017

- 56. You can teach elephants to dance: agile VM handoff for edge computing Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, Brandon Amos, Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan SEC 2017
- 57. An Empirical Study of Latency in an Emerging Class of Edge Computing Applications for Wearable Cognitive Assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, **Brandon Amos**, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek, and Mahadev Satyanarayanan

SEC 2017

58. A Scalable and Privacy-Aware IoT Service for Live Video Analytics [code] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and Mahadev Satyanarayanan ACM MMSys 2017 (Best Paper)

2016.

- 59. OpenFace: A general-purpose face recognition library with mobile applications [code]

 Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan

 CMU 2016
- Collapsed Variational Inference for Sum-Product Networks
 Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos
 ICML 2016

61. Quantifying the impact of edge computing on mobile applications
Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, **Brandon Amos**, Zhuo Chen, Padmanabhan Pillai,
and Mahadev Satyanarayanan
ACM SIGOPS 2016

62. Privacy mediators: helping IoT cross the chasm
Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon Amos
HotMobile 2016

2015 and earlier...

63. Edge Analytics in the Internet of Things
Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
Wenlu Hu, and **Brandon Amos**IEEE Pervasive Computing 2015

64. Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks?

Hamilton Turner, Jules White, Jaime A. Camelio, Christopher Williams, Brandon Amos, and Robert Parker

JEEE Sequitive & Drivery 2015

IEEE Security & Privacy 2015

- 65. Early Implementation Experience with Wearable Cognitive Assistance Applications Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, Alex Hauptmann, and Mahadev Satyanarayanan WearSys 2015
- 66. The Case for Offload Shaping

Wenlu Hu, **Brandon Amos**, Zhuo Chen, Kiryong Ha, Wolfgang Richter, Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev Satyanarayanan HotMobile 2015

67. Are Cloudlets Necessary? Ying Gao, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, and Mahadev Satyanarayanan CMU 2015

68. Adaptive VM handoff across cloudlets
Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, **Brandon Amos**, Padmanabhan Pillai, and
Mahadev Satyanarayanan
CMU 2015

69. Global Parameter Estimation for a Eukaryotic Cell Cycle Model in Systems Biology
Tricity Andrew, **Brandon Amos**, David Easterling, Cihan Oguz, William Baumann, John Tyson, and
Layne T. Watson
SummerSim 2014

70. Applying machine learning classifiers to dynamic Android malware detection at scale [code] Brandon Amos, Hamilton Turner, and Jules White IWCMC 2013

Open Source Repositories

36.6k+ GitHub stars across all repositories.

1. facebookresearch/advprompter — ★120 — Fast Adaptive Adversarial Prompting for LLMs
2. facebookresearch/lagrangian-ot — ★47 — Lagrangian OT
2024

Page 7 of 11

3.	lazaratan/meta-flow-matching — ★38 — Meta Flow Matching	2024
4.	facebookresearch/soc-matching — ★27 — Stochastic Optimal Control Matching	2024
5.	kuleshov/cornell-cs5785-2024-applied-ml — ★403 — Slides for our applied ML course	2024
6.	facebookresearch/amortized-optimization-tutorial — ★236 — Tutorial on amortized optimization	2023
	facebookresearch/taskmet — ★18 — TaskMet: Task-Driven Metric Learning for Model Learning	2023
	facebookresearch/w2ot — ★43 — Wasserstein-2 optimal transport in JAX	2023
	facebookresearch/LANCER — ★35 — Landscape Surrogate Learning Decision Losses	2023
	facebookresearch/theseus — ★1.8k — Differentiable non-linear optimization library	2022
	facebookresearch/meta-ot — ★95 — Meta Optimal Transport	2022
	bamos/presentations — ★142 — Source for my major presentations	2022
	facebookresearch/gwil — ★23 — Gromov-Wasserstein Cross Domain Imitation Learning	2022
	facebookresearch/nocturne — ★264 — A partially-observable multi-agent driving simulator	2022
	facebookresearch/rcpm — ★68 — Riemannian Convex Potential Maps	2021
	facebookresearch/svg — ★55 — Model-based stochastic value gradient	2021
	facebookresearch/mbrl-lib — ★961 — Model-based reinforcement learning library	2021
	martius-lab/CombOptNet — ★72 — CombOptNet	2021
19.	samcohen16/Aligning-Time-Series — ★49 — Aligning time series on incomparable spaces	2021
	facebookresearch/neural_stpp — ★97 — Neural Spatio-Temporal Point Processes	2021
21.	facebookresearch/neural-scs — ★29 — Neural Fixed-Point Acceleration for SCS	2021
22.	rtqichen/torchdiffeq — ★5.6k — PyTorch Differentiable ODE Solvers (differentiable event handling)	2021
23.	facebookresearch/dcem — ★123 — The Differentiable Cross-Entropy Method	2020
24.	facebookresearch/higher — ★1.6k — PyTorch higher-order gradient and optimization library	2019
25.	bamos/thesis — ★320 — Ph.D. Thesis LaTeX source code	2019
26.	cvxgrp/cvxpylayers — ★1.8k — Differentiable Convex Optimization Layers	2019
27.	locuslab/Iml — ★57 — The Limited Multi-Label Projection Layer	2019
28.	locuslab/mpc.pytorch — ★885 — Differentiable PyTorch Model Predictive Control library	2018
29.	locuslab/differentiable-mpc — ★247 — Differentiable MPC experiments	2018
	locuslab/icnn — ★278 — Input Convex Neural Network experiments	2017
31.	locuslab/optnet — ★511 — OptNet experiments	2017
	locuslab/qpth — ★681 — Differentiable PyTorch QP solver	2017
	bamos/densenet.pytorch — ★829 — PyTorch DenseNet implementation	2017
34.	bamos/block — ★298 — Intelligent block matrix constructions	2017
35.	bamos/setGPU — ★106 — Automatically use the least-loaded GPU	2017
	bamos/dcgan-completion.tensorflow — $\star 1.3$ k — Image completion with GANs	2016
	cmusatyalab/openface — ★15.1k — Face recognition with deep neural networks	2015
	bamos/girl — ★70 — GitHub README link checker	2015
	bamos/conference-tracker — ★71 — Minimal conference tracker	2015
	vtopt/qnstop — ★10 — Fortran quasi-Newton stochastic optimization library	2014
	bamos/snowglobe — ★27 — Haskell-driven, self-hosted web analytics with minimal configuration	2014
	bamos/zsh-history-analysis — ★226 — Analyze and plot your zsh history	2014
	bamos/beamer-snippets — $\star 109$ — Beamer and TikZ snippets	2014
	bamos/latex-templates — ★366 — LaTeX templates	2013
	cparse/cparse — ★335 — C++ expression parser using Dijkstra's shunting-yard algorithm	2013
	bamos/cv — ★401 — Source for this CV: Creates LaTeX/Markdown from YAML/BibTeX	2013
	bamos/parsec-benchmark — ★98 — PARSEC benchmark support for Arch Linux	2013
	bamos/python-scripts — ★198 — Short and fun Python scripts	2013
	bamos/reading-list — ★185 — YAML reading list and notes system	2013
り ()	bamos/dotfiles — ★239 — ♥ Linux xmonad emacs vim zsh tmux	2012

Invited Talks

Slides for my major presentations are available here under a ${\sf CC\text{-}BY}$ license.

1.	Transport and flows between distributions over distributions — Genesis Therapeutics	2024
2.	Transport and flows between distributions over distributions — UT Austin	2024
3.	On LLM prompt optimization and amortization — Dagstuhl Seminar on ML for CO	2024
4.	Amortized optimization for optimal transport and LLM attacks — ISMP	2024
5.	Differentiable optimization for robotics — RSS Optimization for Robotics Workshop	2024
6.	Amortized optimization-based reasoning for AI — University of Amsterdam	2024
7.	End-to-end learning geometries for graphs, dynamical systems, and regression — LoG New York	2024
8.	Amortized optimization for optimal transport — NeurIPS Optimal Transport and ML Workshop	2023
9.	On optimal control and machine learning — ICML Control and Dynamical Systems Workshop	2023
10.	Tutorial on amortized optimization — Brown University	2023
11.	Learning with differentiable and amortized optimization — NYU AI Seminar	2023
12.	Learning with differentiable and amortized optimization — Vanderbilt ML Seminar	2023
13.	Learning with differentiable and amortized optimization — Microsoft Research	2022
14.	Amortized optimization for computing optimal transport maps — Flatiron Workshop	2022
15.	Learning with differentiable and amortized optimization — Cornell Al Seminar	2022
16.	Learning with differentiable and amortized optimization — Cornell Tech Seminar	2022
17.	Learning with differentiable and amortized optimization — Argonne National Laboratory	2022
18.	Theseus: A library for differentiable nonlinear optimization — NYU	2022
19.	Theseus: A library for differentiable nonlinear optimization — University of Zurich	2022
20.	Differentiable optimization-based modeling for machine learning — Colorado Mines AMS Colloquium	2022
21.	Differentiable optimization — IJCAI Tutorial	2022
22.	Differentiable optimization for control and RL — ICML Workshop on Decision Awareness in RL	2022
23.	Differentiable optimization-based modeling for machine learning — CPAIOR Master Class	2022
24.	Tutorial on amortized optimization — ICCOPT	2022
25.	Differentiable optimization for control and RL — Gridmatic	2022
26.	Learning for control with differentiable optimization and ODEs — Columbia University	2021
	Differentiable optimization-based modeling for machine learning — IBM Research	2021
	Differentiable optimization for control — Max Planck Institute (Tübingen)	2020
	Differentiable optimization-based modeling for machine learning — Mila Seminar	2020
	Deep Declarative Networks — ECCV Tutorial	2020
	On differentiable optimization for control and vision — CVPR Deep Declarative Networks Workshop	2020
	Differentiable optimization-based modeling for machine learning — Caltech CS 159 (Guest Lecture)	2020
33.	Unrolled optimization for learning deep energy models — SIAM MDS Minisymposium	2020
	Differentiable optimization-based modeling for machine learning — NYU CILVR Seminar	2019
	Differentiable optimization-based modeling for machine learning — INFORMS	2019
	Differentiable optimization-based modeling for machine learning — Facebook Al Research	2019
	Differentiable optimization-based modeling for machine learning — ISMP	2018
	Differentiable optimization-based modeling for machine learning — Google Brain	2018
	Differentiable optimization-based modeling for machine learning — Bosch Center for Al	2018
	Differentiable optimization-based modeling for machine learning — Waymo Research	2018
	Differentiable optimization-based modeling for machine learning — Tesla Al	2018
	Differentiable optimization-based modeling for machine learning — NVIDIA Robotics	2018
	Differentiable optimization-based modeling for machine learning — Salesforce Research	2018
	Differentiable optimization-based modeling for machine learning — OpenAl	2018
	Differentiable optimization-based modeling for machine learning — NNAISENSE	2018
46.	Differentiable optimization and control — UC Berkeley	2018

Interns and Students

Aaron Havens (visiting FAIR from UIUC)	2024 – present
Aram-Alexandre Pooladian (visiting FAIR from NYU)	2022 - 2024
Carles Domingo-Enrich (visiting FAIR from NYU, now at MSR)	2022 - 2024
Anselm Paulus (visiting FAIR from Max Planck Institute, Tübingen)	2023 - 2024
Matthew Retchin (Columbia MS thesis committee, now at Harvard)	2023
Sanae Lotfi (visiting FAIR from NYU)	2022 - 2023
Dishank Bansal (Al resident at FAIR)	2022 - 2023
Arnaud Fickinger (visiting FAIR from Berkeley)	2021 - 2022
Aaron Lou (visiting FAIR from Cornell and Stanford, now scientist at OpenAI)	2020 - 2022
Eugene Vinitsky (visiting FAIR from Berkeley, now professor at NYU)	2021 - 2022
Samuel Cohen (visiting FAIR from UCL, now CEO at FairGen)	2021 - 2022
Ricky Chen (visiting FAIR from Toronto, now scientist at FAIR)	2020
Paul Liang (visiting FAIR from CMU, now professor at MIT)	2020
Phillip Wang (at CMU, now CEO at Gather)	2018

Professional Activities

AAAI Senior Program Committee	2025
NeurlPS Area Chair	2024
NeurIPS Datasets and Benchmarks Area Chair	2024
AAAI Senior Program Committee	2024
NeurlPS Area Chair	2023
NeurIPS Datasets and Benchmarks Area Chair	2023
AAAI Senior Program Committee	2023
NeurIPS Learning Meets Combinatorial Optimization Workshop Organizer	2020
CVPR Deep Declarative Networks Workshop Organizer	2020
ECCV Deep Declarative Networks Tutorial Organizer	2020
CMU CSD MS Admissions	2014 - 2015

AAAI Conference on Artificial Intelligence

AAAI Comerence on Artificial Intelligent

American Controls Conference (ACC)

Reviewing.....

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

IEEE Conference on Decision and Control (CDC)

IEEE Control Systems Letters (L-CSS)

IEEE International Conference on Computer Vision (ICCV)

IEEE International Conference on Intelligent Robots and Systems (IROS)

IEEE International Conference on Robotics and Automation (ICRA)

International Conference on the Constraint Programming, AI, and Operations Research (CPAIOR)

International Conference on Learning Representations (ICLR)

International Conference on Machine Learning (ICML)

International Conference on Machine Learning (ICML) SODS Workshop

Journal of Machine Learning Research (JMLR)

Learning for Dynamics and Control (L4DC)

Mathematical Programming Computation (MPC)

Neural Information Processing Systems (NeurIPS)

Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track

Neural Information Processing Systems (NeurIPS) OPT Workshop

Neural Information Processing Systems (NeurIPS) DiffCVGP Workshop Neural Information Processing Systems (NeurIPS) Deep RL Workshop Optimization Letters

Transactions on Machine Learning Research (TMLR)

Teaching

Applied Machine Learning (Cornell Tech CS5785), Co-instructor	F2024
Graduate AI (CMU 15-780), TA	S2017
Distributed Systems (CMU 15-440/640), TA	S2016
Software Design and Data Structures (VT CS2114), TA	S2013

Skills

Programming C, C++, Fortran, Haskell, Java, Lua, Make, Mathematica, Python, R, Scala

Frameworks JAX, NumPy, Pandas, PyTorch, SciPy, TensorFlow, Torch7 Toolbox Linux, emacs, vim, evil, org, mu4e, xmonad, git, tmux, zsh