

REPÚBLICA DE MOÇAMBIQUE MINISTÉRIO DA EDUCAÇÃO E DESENVOLVIMENTO HUMANO DIRECÇÃO NACIONAL DO ENSINO SECUNDÁRIO

BIOLOGIA

O meu caderno de actividades

i

FICHA TÉCNICA

Título: O meu caderno de actividades de Biologia – 10^a Classe

Direcção: Gina Guibunda & João Jeque

Coordenação Manuel Biriate

Elaboradores: Lurdes Salomão & Francisco Mandlate

Concepção gráfica e Layout: Hélder Bayat & Bui Nguyet

Cadeia Alimentar

Impressão e acabamentos: MINEDH

Revisão: Isaías Mulima & Rui Manjate

Tiragem: xxx exemplares.

PREFÁCIO

No âmbito da prevenção e mitigação do impacto da COVID-19, particularmente no

processo de ensino-aprendizagem, o Ministério da Educação e Desenvolvimento

Humano concebeu um conjunto de medidas que incluem o ajuste do plano de estudos,

os programas de ensino, bem como a elaboração de orientações pedagógicas a serem

seguidas para a melhoria da qualidade de ensino e aprendizagem.

Neste contexto, foi elaborado o presente Caderno de Actividades, tendo em

consideração os diferentes conteúdos programáticos nas diferentes disciplinas

leccionadas no Ensino Secundário. Nele é proposto um conjunto alargado de actividades

variadas, destinadas a complementar as acções desenvolvidas na aula e também

disponibilizar materiais opcionais ao desenvolvimento de competências pré-definidas

nos programas.

A concepção deste Caderno de Actividades obedeceu à sequência e objectivos dos

programas de ensino que privilegiam o lado prático com vista à resolução dos problemas

do dia-a-dia e está estruturado em três (3) partes, a saber: I. Síntese dos conteúdos

temáticos de cada unidade didáctica; II. Exercícios; III. Tópicos de correcção/resolução

dos exercícios propostos.

Acreditamos que o presente Caderno de Actividades constitui um instrumento útil para o

auto-estudo e aprimoramento dos conteúdos da disciplina ao longo do ano lectivo. O

mesmo irá permitir desenvolver a formação cultural, o espírito crítico, a criatividade, a

análise e síntese e, sobretudo, o desenvolvimento de habilidades para a vida.

As actividades propostas no Caderno só serão significativas se o caro estudante resolvê-

las adequadamente, com a mediação imprescindível do professor.

"Por uma Educação Inclusiva, Patriótica e de Qualidade!"

MINISTRA DA EDUCAÇÃO E

DESENVOLVIMENTO HUMANO

iii

ÍNDICE

1.		Unida	de Temática I: Base Citológica da Hereditariedade 5
	•	1.1.	Funções vitais da célula 5
	•	1.2.	Base Molecular da Hereditariedade: ADN E ARN 6
	•	1.4.	Principais Acontecimentos da Mitose e Meiose 18
	•	1.5.	Comparação entre Espermatogénese e Ovogénese 19
	•	1.6.	Comparação entre Reprodução Sexuada e Assexuada 19
	•	1.7.	Exercícios de Aplicação da Unidade Temática I Error! Bookmark not defined.
2.		Unida	de Temática II: Genética Error! Bookmark not defined.
	•	2.1.	Conceitos usados na Genética 22
	•	2.2.	A Vida e Experiências de Mendel 23
	•	2.3.	Leis de Mendel (monohibridismo) 24
	•	2.4.	Principais Simbolos Usados na Construção de Árvores Genealógicas 26
	•	2.5.	Grupos Sanguíneos: Sistema ABO 27
	•	2.6.	Grupos Sanguíneos: Sistemas Rhesus (Rh) 27
	•	2.7.	Hereditariedade ligada ao sexo (Daltonismo e Hemofilia) 28
	•	2.8.	Mutações 29
	•	2.9.	Exercícios de Aplicação da Unidade Temática II 30
3.		Unida	de Temática III: Evolução Error! Bookmark not defined.
	•	3.1.	Teorias Antigas Sobre a Origem dos Seres Vivos 33
	•	3.2.	Teorias Evolucionistas 33
	•	3.2.	Teoria Científica da Evolução dos Organismos 34
	•	3.3.	Exercícios de Aplicação da Unidade Temática III 38
4.		Unida	de Temática IV: Ecologia Error! Bookmark not defined.
	•	4.1.	Conceitos Básicos de Ecologia 39
	•	4.2.	Tipos de Ecossistema 39
	•	4.3.	Composição de Um Ecossistema 40
	•	4.4.	Níveis Tróficos 43
	•	4.5.	Alterações dos Ecossistemas 44
	•	4.6.	Protecção dos Ecossistemas44
	•	4.7.	Exercícios de Aplicação da Unidade Temática IV 44
5.		Respo	ostas dos Exercícios de Aplicação Error! Bookmark not defined.
	•	5.1.	Respostas dos Exercícios de Aplicação da Unidade Temática I 47
	•	5.2.	Respostas dos Exercícios de Aplicação da Unidade Temática II Error! Bookmark
		not de	efined.
	•	5.3.	Respostas dos Exercícios de Aplicação da Unidade Temática III Error! Bookmark

not defined.

 5.4. Respostas dos Exercícios de Aplicação da Unidade Temática IV Error! Bookmark not defined.

Bibliografia Error! Bookmark not defined.

1.1. Funções vitais da célula

Célula - é a unidade básica, estrutural e funcional de todos os seres vivos.

Funções vitais da célula são processos que se realizam na célula e que concorrem para a manutenção da vida da célula.

As principais funções vitais são: Irritabilidade, contractibilidade, homeostase, metabolismo celular, divisão celular, hereditariedade.

Irritabilidade é a capacidade que a célula tem de responder aos estímulos do meio.

Contractilidade é a capacidade que a célula tem de se contrair devido ao encurtamento activo de determinadas moléculas proteicas do seu citoplasma, mantendo o mesmo volume.

Homeostase é a capacidade que a célula tem de manter o seu meio interno em equilíbrio, independentemente das alterações externas.

Metabolismo celular é o conjunto de todos os fenómenos químicos que ocorrem nas células e que são responsáveis pela transformação e utilização de matéria e da energia. O metabolismo celular compreende o **anabolismo** e **catabolismo**.

Divisão celular é a capacidade que a célula tem de se dividir originando novas células. **Exemplo:** Os seres vivos são constituídos por células. Após a sua formação os seres multicelulares crescem e desenvolvem-se graças à divisão das células. Os seres unicelulares usam esse processo para a sua reprodução.

Hereditariedade é a capacidade que a célula tem de transmitir informações genéticas às novas células.

Constituição e Funções do Núcleo

O núcleo da célula é constituído pelo invólucro nuclear (membrana nuclear), nucleoplasma, nucléolo e cromatina.

Estrutura do núcleo

Funções do núcleo:

- Controlar e coordenar todas as actividades da célula;
- Contém a informação genética que é responsável pela hereditariedade.

•

1.2. Base Molecular da Hereditariedade: ADN E ARN

O ácido desoxirribonucleico (**ADN** ou **DNA**) e o ácido ribonucleico (**ARN** ou **RNA**) são substâncias químicas que formam a maioria das moléculas existentes nos seres vivos e denominam-se ácidos nucleicos. Estas substâncias são indispensáveis à transmissão de características dos indivíduos de geração para geração, ou seja, constituem a base da hereditariedade.

O **ADN** é uma molécula orgânica complexa de cadeia dupla e localiza-se nas mitocôndrias, nos cloroplastos e essencialmente no núcleo. Formada por milhões de nucleotídeos ligados uns aos outros, formando **cadeias polinucleótidas**.

O **ARN** é uma cadeia simples e localiza-se nos nucléolos, nos ribossomas e essencialmente no citoplasma.

As moléculas de ADN e ARN são constituídas por pequenas unidades designadas nucleótidos. Cada **nucleotídeo** é, por sua vez, formado por três tipos de substâncias químicas:

- Um composto contendo nitrogénio (base azotada)
- Pentose (um açúcar de 5 carbonos)
- Um grupo fosfato

O conjunto formado pela pentose e pela base azotada chama-se nucleósido.

Estrutura de um nucleótido

A pentose do ADN é Desoxirribose e as bases são Adenina (A), Guanina (G), citosina (C) e timina (T).

No ARN a pentose é Ribose e as bases são as mesmas do ADN com excepção da timina que é substituída pelo uracilo (U).

Bases azotadas ou nitrogenadas - são constituídas por nucleotídeos que se ligam à pentose. As cinco bases azotadas são: Adenina; Guanina; Citosina; Timina e Uracilo. São representadas pelas letras A, G, C, T e U, respectivamente. Adenina emparelha-se com a timina (A-T); a guanina com a citosina (G-C); o uracilo liga-se com a adenina para formar o par U-A. As bases permanecem unidas por fracas ligações chamadas pontes de hidrogénio, e são estas pontes de hidrogénio as responsáveis pela manutenção da estrutura do ADN.

Cadeia polinucleotidica

É uma cadeia formada por vários nucleótidos ligados entre si pelos grupos fosfatos. Os nucleótidos são designados pela base que entra na sua constituição. Assim podem considerar-se cinco categorias de nucleótidos: nucleótido de Adenina, nucleótidos de Guanina, nucleótido de Citosina, nucleótido de timina e nucleótido de Uracilo.

Numa cadeia polinucleotidica, cada novo nucleótido liga-se pelo grupo fosfato ao carbono 3⁻ de cada pentose do último nucleótido da cadeia, repetindo-se o processo no sentido 5⁻⁻⁻ 3⁻⁻⁻ 3⁻⁻⁻

Comparação entre ADN e ARN

	ADN	ARN
Tipo de cadeia	Dupla	Simples
Bases Azotadas	A, G, C e Timina	A, G, C e Uracilo
Tipo de pentose	Desoxirribose	Ribose
Localização	No núcleo	No citoplasma
Quantidade	Constante	Variável

Estrutura do ADN

Modelo da dupla hélice

Em 1953, James Watson e Francis Crick, cientistas americanos propuseram um modelo para a estrutura do ADN.

Segundo este modelo, a molécula de ADN é constituída por duas cadeias polinucleotidicas dispostas em hélice dupla. No exterior da hélice situam-se os grupos fosfatos e no interior encontram-se as bases azotadas. Existe uma complementaridade entre as bases: a adenina ligase à timina e a guanina liga-se à citosina.

Estrutura de ARN

O ARN é formado por uma só cadeia polinucleotídica. No entanto, esta cadeia pode dobrar-se sobre si mesma formando uma estrutura complexa. Nesta molécula, a Adenina emparelha-se com o Uracilo e a Citosina com a Guanina. Existem três tipos de ARN, nomeadamente:

- ARN mensageiro (ARN_m) contém a mensagem do DNA para a produção proteínas.
- RNA Transportador (RNA_t) tem a função de transportar aminoácidos até aos ribossomas.
- RNA ribossómico (RNA_r) catalisa a ligação entre os aminoácidos para síntese de proteínas.

Replicação do ADN

Replicação – é o processo de formação de duas novas moléculas a partir de uma única molécula do ADN.

Segundo Watson e Crick, a complementaridade das bases do DNA permitiria que esta molécula se autoduplicasse de forma **semi-conservativa**.

As duas cadeias da dupla hélice, na presença de enzimas específicas, DNA polimerases, separam-se por rupturas das ligações de hidrogénio.

Cada uma das cadeias serve de molde à formação de uma cadeia complementar, sendo utilizados nucleótidos que existem livres na célula.

Formam-se, simultaneamente, duas cadeias novas de desoxirribonucleótidos de acordo com a regra de complementaridade de bases. Estas novas cadeias são, pois, complementares de duas cadeias originais, sendo uma antiparalela em relação a que lhe serviu de molde.

A informação genética contida no DNA deve passar de célula para célula, mantendo-se constante de geração em geração. Por esta razão, antes de uma célula se dividir, ela tem de duplicar o seu DNA para o dividir igualmente pelas células - filhas.

A figura abaixo apresenta um esquema do processo de replicação semi-conservativa do DNA.

A replicação do DNA é semiconservativa porque as novas moléculas conservam uma das cadeias polinucleotidicas da molécula inicial.

Código Genético

Código genético é a relação entre a sequência de bases de ADN e a sequência correspondente

de aminoácidos.

Os investigadores verificaram que sequência de 3 nucleótidos formam o sistema de codificação mais simples utilizado pelas células vivas. Três nucleótidos consecutivos do DNA constituem um tripleto, que representa a mais pequena unidade de mensagem genética necessária à codificação de um aminoácido. Como existem sequências diferentes de tripletos, essas sequências vão permitir codificar a ordem dos aminoácidos que caracterizam diversas proteínas. Por cada tripleto de DNA é formado, por complementaridade, um tripleto de nucleótidos do RNA mensageiro, denominado **codão**, o qual codifica um determinado aminoácido. O código genético é um quadro de correspondência entre 64 codões possíveis e os 20 aminoácidos existentes nas proteínas.

Nem todos os codões codificam aminoácidos. Alguns determinam o início ou o fim da síntese de uma proteína.

Características do código genético

O código genético tem as seguintes características:

- Cada aminoácido é codificado por um tripleto designado por codão;
- Tripleto AUG tem uma dupla função: além de codificar o aminoácido metionina, é o codão de iniciação da síntese protéica;
- Os tripletos UAA, UGA e UAG são codões de finalização, isto é, quando surgem, significa que a síntese da proteína está a terminar;
- Código genético é redundante, isto é, existe mais do que um codão para codificar um aminoácido. Por exemplo, qualquer um dos codões GCU, GCC, GCA ou GCG codifica o mesmo aminoácido – a alanima;
- Código genético não é ambíguo, isto é, um determinado codão não codifica dois aminoácidos diferentes;
- Terceiro nucleótido de cada codão não é tão específico como os dois primeiros. Por exemplo, os codões CUU, CUC, CUA e CUG codificam o aminoácido leucina;
- Regra geral, o código genético é universal, isto é, um determinado codão tem o mesmo significado para a maioria dos organismos. Esta característica é um argumento a favor da origem comum dos seres vivos.
- Na passagem da linguagem dos genes contida na molécula de DNA para a linguagem das proteínas estão envolvidos dois processos: transcrição e tradução.

Transcrição

A transcrição é o processo de formação do RNA a partir do DNA. A mensagem contida no DNA é, assim, transcrita para o RNA mensageiro.

DNA <u>transcrição</u> → mRNA <u>tradução</u> → Proteínas

A transcrição é o processo que origina o RNA, produzido por um processo que copia a sequência do nucleótido do DNA. Para que a transcrição tenha inicio, é necessário que um determinado segmento de dupla hélice de DNA se desenrole.

Uma das cadeias de DNA exposta serve de molde para a síntese de mRNA, que se faz a partir dos nucleótidos presentes no nucleoplasma. Este processo é mediado pela enzima RNA polimerase, que promove a formação de RNA no sentido 5' 3'. A transcrição termina quando a RNA polimerase encontra uma região de finalização. Nessa altura, a cadeia de RNA sintetizada desprende-se da molécula de DNA, que volta a emparelhar com a sua cadeia complementar, refazendo-se a dupla hélice.

Nas células procarióticas não ocorre processamento do RNA. Assim, a molécula de RNA transcrita é a molécula de RNA funcional.

Tradução

Cada molécula de RNAt apresenta uma região localizada na extremidade 3' da molécula, designada local aminoacil, que lhe permite fixar um aminoácido específico, localizado na extremidade 3' do codão do RNAm, designando **anticodão**, que reconhece o codão, ligando-se a ele; locais para ligação ao ribossoma e locais para a ligação às enzimas intervenientes na formação das proteínas.

É nos ribossomas que se efectua a tradução da mensagem contida no RNA mensageiro que especifica a sequência de aminoácidos na proteína. O RNAt funciona como tradutor dessa mensagem. Ele selecciona e transporta os aminoácidos para os locais de síntese, os ribossomas.

Síntese de Proteínas

A síntese de proteínas obedece a uma determinada sequência específica de aminoácidos.

O processo de síntese protéica resume-se basicamente na transformação da linguagem codificada do DNA (sequência de nucleótidos) para a linguagem das proteínas (sequência de aminoácidos). Embora a sequência de bases no DNA determine a sequência de aminoácidos na proteína, as células não usam directamente a informação contida no DNA. É o RNA que executa a transferência da informação.

A pesquisa da Biologia Molecular revela que a célula utiliza moléculas de RNA formadas no núcleo que migram para o citoplasma, transformando a mensagem que estava contida no DNA. Esse RNA funciona como mensageiro entre o DNA nuclear e o local de síntese de proteínas, o ribossoma.

Cromossomas

Cromossomas são estruturas que contêm a informação genética, formada pela condensação da cromatina.

Os cromossomas são formados por numerosos segmentos denominados genes, que determinam as características de um indivíduo.

Cariótipo é o conjunto de cromossomas numa célula de um indivíduo.

O número de cromossomas varia de espécie para espécie.

A espécie humana possui 46 cromossomas, ou seja, o cariótipo do Homem é formado por 46 cromossomas, dos quais 23 são herdadas do pai e 23 são herdados da mãe. Cada indivíduo tem, assim, 23 pares de cromossomas.

Composição química do cromossoma

Quimicamente, um cromossoma é constituído por uma molécula de DNA associada a proteínas específicas denominadas histonas.

Estruturado cromossoma

Estruturalmente, o cromossoma é formado por dois cromatidios unidos pelo centrómero.

Os cromossomas de cada par denominam-se **cromossomas homólogos**, por transportarem os genes que determinam as mesmas características.

1.3. Ciclo CelularÉ o processo que decorre, de forma cíclica e contínua, desde o surgimento de uma célula até à sua própria divisão.

Diagrama do ciclo celular

Fases sub-fases do ciclo celular

O ciclo celular é composto por duas fases distintas:

1ª: Interfase é um período longo que vai desde o fim de uma divisão celular até ao início da divisão seguinte. Neste período, os cromossomas estão muito distendidos, formando os fios de cromatina que são visíveis ao microscópio. Durante este período, a célula cresce e ocorre a duplicação da informação genética que será transmitida às células – filhas.

A interfase é constituída por intervalos sucessivos: Intervalo G1; Intervalo S; Intervalo G2

- Período ou intervalo G1 decorre desde a formação da célula até ao período S. Este intervalo é caracterizado por uma intensa actividade de síntese de proteínas. A célula cresce em tamanho e o número de constituintes aumenta, para, mais tarde, serem divididos em partes iguais pelas células – filhas.
- Período ou intervalo S neste período, moléculas de DNA duplicam-se por um mecanismo de auto-replicação semi-conservativo. A quantidade de DNA na célula passa, assim, a ser o dobro.
- **Período** ou **intervalo G2** decorre entre o final da síntese de DNA no intervalo S e o início da divisão celular. Neste período, verifica-se a síntese de mais proteínas que vão ser necessárias à divisão celular.
- 2ª: Fase Mitótica (Mitose) ou Divisão Celular é um período de fraca actividade metabólica, durante o qual o DNA é repartido igualmente por duas células-filhas. Nesta fase, a célula mãe (diplóide) divide-se dando origem a duas células filhas idênticas à célula mãe.

A etapa da mitose é um processo contínuo nas células eucarióticas. Divide-se em quatro fases:

Descrição dos acontecimentos que representam a Mitose

Prófase

Encurtamento de cromossoma;

formando a placa equatorial.

Formação de centríolos;

Síntese e organização das proteínas e fuso acromático; Desaparecimento do nucléolo e da membrana celular.

Metáfase

Os centríolos atingem os pólos da célula; Os cromossomas atingem o máximo de condensação; Os cromossomas dispõem-se no equador da célula,

Anáfase

Os centrómeros dividem-se e os cromatídios separamse, migrando para pólos opostos;

Os cromatídios, agora chamados cromossomas, são puxados em direcção aos pólos pelas fibras do fuso a que estão ligados.

No final desta fase existe em cada pólo da célula um conjunto de cromossoma com a mesma quantidade de ADN existente na célula mãe.

Telófase

Desenrolamento dos cromossomas; Desaparecimento do fuso acromático; Reaparecimento da membrana nuclear e nucléolo; Divisão do citoplasma.

Importância biológica da Mitose

Nos pluricelulares, a mitose permite:

- Crescimento de um ser vivo a partir da célula-ovo, através da multiplicação rápida das suas células;
- A renovação dos tecidos, por substituição das células mortas por outras que se vão

formando, como sucede na pele e no sangue do ser humano.

 A regeneração de partes do corpo em plantas (ramos) e animais (regeneração da cauda da lagartixa).

Meiose

É um tipo de divisão celular em que uma célula mãe diplóide (2n) divide-se dando origem a quatro células filhas haplóides (n), com metade do número de cromossomas da célula mãe.

Divisões consecutivas da Meiose

A meiose ocorre em duas divisões consecutivas: meiose I e meiose II.

Meiose I ou Divisão Reducional

Nesta divisão ocorre a separação ou segregação dos pares dos cromossomas homólogos. Cada cromossoma sobe aos pólos duplicado, ou seja, constituído por dois cromatídeos ligados na região do centrómero. Formam-se duas células haplóides. Cada célula apresenta n cromossomas com estrutura dupla.

Meiose II ou Divisão Equacional

Em cada uma das células resultantes da 1ª divisão, separam-se os cromatídeos de cada cromossoma nos moldes da mitose. Formam-se 4 células haplóides. Cada célula apresenta n cromossomas com estrutura simples.

A meiose II ocorre nos moldes da mitose, possuindo a célula um cromossoma de cada par de homólogos.

É nesta divisão que ocorre a separação dos dois cromatídeos de cada cromossoma de tal modo que cada uma das quatro células haplóides resultantes receba um cromatídeo de cada cromossoma.

Diagrama da Meiose

Meiose I - ocorrem 4 sub-fases:

Prófase I

Encurtamento de cromossoma:

Os cromatídeos de um cromossoma cruzam-se sobre os do seu homólogo formando pares. Cada ponto de contacto é um quiasma; Pode haver trocas de segmentos equivalentes entre dois cromatídeos (crossing-over);

Síntese e organização das proteínas do fuso acromático;

Desaparecimento do nucléolo e da membrana nuclear;

Os cromossomas unem-se às fibras do fuso acromático pelo centrómero e forma a placa equatorial.

Metáfase I

Os cromossomas homólogos colocam-se em posição simétrica, com os pontos de quiasma no plano equatorial do fuso acromático.

Anáfase I

Não há divisão do centrómero;

Separação dos cromossomas homólogos que migram para os pólos opostos.

Telófase I

Desaparecimento do fuso acromático;

Alongamento dos cromossomas;

Divisão do citoplasma e o surgimento de duas células haplóide.

Meiose II - também ocorrem 4 sub-fases:

Profáse II

Consiste na condensação dos cromossomas;

Desaparecimento do nucléolo e da membrana nuclear;

Síntese e organização das proteínas no fuso acromático.

Metáfase II

Cromossomas com dois cromatídeos unem-se às fibras do fuso acromático e dispõem-se no equador.

Anáfase II

Ocorre a divisão do centrómero e os cromatídeos de cada par separam-se e migram para pólos opostos.

Telófase II

Os cromossomas descondensam-se;

Os nucléolos reaparecem;

Desaparece o fuso acromático;

Forma-se a membrana nuclear;

Divide-se o citoplasma formando-se assim 4 células filhas com metade do número de cromossomas

Importância biológica da Meiose

A meiose produz gâmetas ou células sexuais; favorece a reprodução sexuada; permite a variabilidade genética dos seres vivos e a evolução das espécies.

1.4. Principais Acontecimentos da Mitose e Meiose

Características	Mitose	Meiose	
Número de células filhas	2	4	
Cariótipo das células filhas	2n	N	
Tipo de células filhas	diplóides	haplóides	
Finalidades das células filhas	crescimento, renovação e	formação de gâmetas e	
	regeneração	variabilidade genética.	
Local de ocorrência	células somáticas	células germinativas	
Ocorrência de crossing over	não ocorre	Ocorre	
Tipo de reprodução	Assexuada	Sexuada	

Gametogénese

É o conjunto de transformações que conduz a formação de gâmetas.

Tipos de gametogénese:

- Gametogénese feminina ou ovogénese que ocorre nos ovários, originando óvulos;
- Gametogénese masculina ou espermatogénese que ocorre nos testículos e forma espermatozóides.

Fases da Espermatogénese

- Multiplicação: a gametogénese inicia com a multiplicação durante a qual, por mitoses sucessivas, as células das gónadas se multiplicam. As células assim formadas nos testículos designam-se espermatogónias.
- Crescimento: verifica-se o aumento do citoplasma, pois terão ocorrido nas células intensos processos de síntese proteica, ocorre a replicação do DNA e inicia a primeira divisão da meiose. As células resultantes desta fase designam-se por espermatócito I ou espermatócito da 1ª ordem.
- Maturação: o espermatócito I sofre a primeira divisão meiótica dando origem a dois espermatócitos da segunda ordem. Estes sofrem a segunda divisão da meiose dando origem aos espermatídios.
- **Diferenciação:** verifica-se a transformação dos espermatídeos em espermatozóides.

Fases da ovogénese

- Multiplicação: a ovogénese inicia por multiplicação durante a qual por mitoses sucessivas as células das gónadas se multiplicam. As células formadas nos ovários designam-se ovogónias.
- Crescimento: regista-se maior desenvolvimento da célula feminina que deste modo dispõe de uma maior quantidade de reservas nutritivas, a replicação do DNA inicia a 1ª divisão da meiose originando o ovócito I.
- Maturação: nesta etapa os oócitos I prosseguem com a divisão dando origem os ovócitos

II. Deste modo, forma-se uma célula maior que recolhe quase todo o citoplasma o oócito II e outro muito menor não funcional denominado 1º glóbulo polar.

A segunda divisão da gametogénese feminina só ocorre se o oócito II é fecundado. Se ocorre há uma repartição desigual do citoplasma formando-se uma célula maior que é o óvulo e outra menor designada 2º glóbulo polar.

1.5. Comparação entre Espermatogénese e Ovogénese

Aspectos a comparar	Ovogénese	Espermatogénese		
Início da gametogénese	Na fase do embrião feminino	A partir da puberdade do		
	(antes do nascimento)	homem		
Número de gâmetas		Cada espermatogónia dará		
produzidos a partir de	Cada ovogónia dará origem a um	origem a quatro		
uma gónia	único óvulo	espermatozóides		
Ritmo de	Com uma fase de repouso, depois			
desenvolvimento	é cíclico	Contínuo		
Duração	Desde a fase embrionária até à	Desde a puberdade até à		
	menopausa	morte		

1.6. Comparação entre Reprodução Sexuada e Assexuada

	Reprodução assexuada	Reprodução sexuada
Progenitor	Um progenitor	Dois progenitores excepto em hermafroditas
Gâmetas	Não há participação de gâmetas, nem há fecundação	Há formação de gâmetas e sua união na fecundação
Divisão celular	Mitose	Mitose e Meiose
Descendentes	Os descendentes são idênticos entre si e aos progenitores	Os descendentes diferem entre si e relativamente aos progenitores
Organismo	Em microrganismos, plantas e animais de baixo nível de desenvolvimento e nos fungos	Ocorre na maioria das espécies, animais, vegetais e fungos
Durabilidade	Permite uma rápida multiplicação das espécies e consequentemente grande número de descendentes	A produção da descendência é lenta, obtendo-se um número menor de descendentes

Vantagens	Implic ambie	a uma boa adapt nte.	ação ao	Permite a adaptação a novos habitats na selecção das combinações genéticas favoráveis				
EXERCÍCIOS								
1. O núcleo é um organ	elo celu	lar fundamental o	da célula.					
a. Menciona os seus co	nstituint	es.						
b. Que funções desemp								
2. Ao processo em que se				cas às células filhas denomina				
A Contractilidade	B. Her	editariedade	C. Irritabilidade	D Metabolismo celular				
3 A capacidade que a	célula te	m de manter a si	ua composição int	erna constante denomina-se				
A Contractilidade		eostase	C Irritabilidade	D Metabolismo celular				
 A base molecular da nucléicos chama-se: 	heredita	ariedade são os a	ácidos nucleicos e	e a unidade estrutural dos ácidos				
A núcleo	B nucle	eina	C nucleosídeo	D nucleotídeo				
F. Frietra deletione de			L ADNI					
5. Existem dois tipos de			N E O ARN.					
a. Qual é o significado o	· ·							
6. Completa o quadro q								
Critérios de compara	ção	ADN		ARN				
Tipo de bases azotada	S							
Tipo de cadeia								
Tipo de açúcar								
7. Escreve os nomes do	os segui	ntes processos:		l				
a. Síntese de ARN-m a partir de uma das fitas de ADN como molde								
Duplicação do ADN								
O Indian a complete	00,000	andonto os assal	uto do tror-seise	o do oogmanta TAC CAT ACC				
•	-	-	-	o do segmento TAC GAT ACC				
ATG de um filamento	ae ADI	n para o AKIN-M.						

.....

9. A figura abaixo representa a mitose.

a.	Identifica as fases representadas em 1, 2, 3 e 4.
• • •	
L	Deservo e que coentace no célulo 2

b. Descreve o que acontece	na celula 5.

10. Ciclo celular é o processo que decorre durante a vida de uma célula. Transcreva a opção certa sobre a sequência natural dos períodos que compõem este ciclo.

A divisão celular, S, G1, G2 B. G1,

C G1, S, G2, divisão celular

B divisão celular, S, G2

D G2, S, divisão celular, G1

11. Na prófase II da divisão celular ocorre o (a):

A Desaparecimento do fuso acromático

C Divisão do centrómero

B Desintegração da membrana nuclear

D Separação dos cromatídeos

- 12. A mitose e a meiose são dois processos de divisão celular.
- a. Preenche a tabela abaixo que compara os dois processos.

	Mitose	Meiose
Número de células filhas		
Cariótipo das células filhas		
Tipo de célula filha		

13.	A reprodução	nos	seres	vivos	pode	ser	sexuada	ou	assexuada.	Qual	é a	afirmação	que
(corresponde a r	epro	dução a	assexu	uada?								

A Envolvimento de dois progenitores

C Ocorre a meiose

B Não há fecundação

D Ocorre a gametogénese

14	. A gametogénese masculina é também	chamada	e	ocorre nos	órgãos
	reprodutores chamados	A formação do	os seus gámeta	as ocorre em	quatro
	etapas que são a		e a		

Nesta unidade vais aprender sobre a genética. Esta ciência tem como base a transmissão de características hereditárias de progenitores (pais) para descendentes (filhos).

A Genética é a ciência que estuda a hereditariedade, ou seja, a transmissão da informação biológica de pais para filhos, de uma geração para outra geração.

Contudo, as bases para a compreensão, numa perspectiva científica, dos mecanismos da hereditariedade só foram descobertas no final do século XIX, com os trabalhos de investigação de Gregor Mendel.

1.1. Conceitos usados na Genética

Genótipo é a constituição genética que condiciona as características de um indivíduo.

Fenótipo é qualquer carácter expresso como resultado da interacção entre um genótipo e factores ambientais.

Fenótipo = Genótipo + Meio ambiente

Homozigótico ou linha pura é o indivíduo que possui nos seus cromossomas homólogos dois genes (alelos) idênticos para uma determinada característica.

Heterozigótico ou hibrido é o individuo que possui nos seus cromossomas homólogos dois genes diferentes para uma determinada característica.

Gene é um trecho ou fracção de uma molécula de ADN com informação para a expressão de uma característica, ou seja, é a parte do cromossoma que contém a informação genética para uma dada característica.

Alelos são variantes do gene para um determinado carácter que resultam em diferentes formas de expressão e ocupam o mesmo *locus* em cromossomas homólogos.

Locus genético é o lugar ocupado por um gene no cromossoma.

Alelo ou gene dominante é aquele que mesmo estando um só no genótipo determina o fenótipo, ou seja, se manifesta em exclusão do outro. É representado pela letra maiúscula. Exemplo: A, B,C, etc.

Alelo ou gene recessivo é aquele que não manifesta a característica quando em presença do dominante. Só se manifesta em dose dupla. É representado pela letra minúscula. Exemplo: a, b, c, etc.

Genes ou alelos co-dominantes são aqueles que têm a mesma influência no fenótipo, nenhum domina o outro.

Simbologia ou representações usadas na Genética

Progenitores: P; Cruzamento: X; Fenótipo: F; Genótipo: G; Gâmetas: g

Primeira geração filial: F1; Segunda geração filial: F2;

1.2. A Vida e Experiências de Mendel

O cientista Gregor Mendel nasceu em 1822 em Áustria. Entre 1856 e 1865, realizou uma série de experimentos com ervilhas, com o objectivo de perceber como as características hereditárias eram transmitidas de pais para filhos. A 8 de Março de 1865, Mendel apresentou um trabalho à Sociedade de História Natural de Brünn, no qual enunciava as suas leis de hereditariedade, deduzidas das experiências com as ervilhas. Publicado em 1866, com data de 1865, esse trabalho permaneceu praticamente desconhecido do mundo científico até o início do século XX, pois poucos leram a publicação, e os que a tinham lido não conseguiram compreender a sua importância para a Biologia. As leis de Mendel foram redescobertas apenas em 1900, por três pesquisadores que trabalhavam independentemente.

Mendel morreu em Brünn, em 1884, sem ter tido nenhum reconhecimento público pela sua grande obra. Viveu os seus últimos anos de vida frustrado e cheio de desapontamentos, pois os trabalhos administrativos do mosteiro impediam ao monge de se dedicar exclusivamente à ciência. Hoje Mendel é tido como uma das figuras mais importantes no mundo científico, sendo considerado o "Pai" da Genética.

Os experimentos de Mendel

A escolha da ervilheira, uma planta herbácea, leguminosa que pertence ao mesmo grupo do feijão e da soja. Na reprodução, surgem vagens contendo sementes, as ervilhas.

Razões que levaram Mendel à escolha da ervilheira:

- Planta fácil de cultivar;
- Ciclo reprodutivo curto;
- Produz muitas sementes;
- Autopolinização e autofecundação;
- Produz muitas variedades.

Metodologia utilizada por Mendel

- Analisou uma característica de cada vez;
- Efectuou cruzamentos usando progenitores de linhas puras. Para ter a certeza de que eram de linha pura testou-as, inicialmente, durante dois anos;
- Escolha de plantas com características nítidas e contrastantes;
- Para ter um bom número de dados, fez muitos cruzamentos idênticos, e associou todos os resultados, como se as várias descendências fossem originadas pelos mesmos progenitores;
- Aplicou as leis de estatística aos resultados numéricos que obteve nos seus cruzamentos.

Razões de sucesso de Mendel

- 1- Escolha de material;
- 2- Escolha das características distintas;
- 3- Aplicação de matemática nos resultados obtidos.

Monohibridismo é um tipo de herança ligada à genética em que se leva em consideração uma característica.

Mendel começou o seu trabalho fazendo experiências de monohibridismo, pois cruzou entre si indivíduos de linhas puras que apresentavam uma dada característica contrastante.

1.1. Leis de Mendel (monohibridismo)

1^a lei de Mendel – Lei da uniformidade dos híbridos da 1^a geração

Experiências de Mendel

1^a Lei de Mendel

Mendel, através do processo de autopolinização, obteve plantas de linhas puras quanto a uma determinada característica.

Numa primeira fase, cruzou plantas de linha pura de sementes amarelas com plantas de linha pura de sementes verdes e obteve na F1 somente plantas de sementes amarelas, o que demonstrava que a semente amarela era dominante em relação à semente verde.

Para a representação dos cruzamentos usa-se uma tabela denominada **quadro de Punnett**. Este nome deve-se a homenagem feita ao cientista Reginaldo Punnett, pelo facto de ter sugerido que a representação do quadro Mendeliano devia ser feito sob a forma de um xadrez, o que tornaria

mais fácil encontrar os resultados esperados de qualquer cruzamento.

P: Ervilheiras de sementes amarelas X Ervilheiras de sementes verdes

G: VV X vv g: V,V X v,v

F1:

	V	V
V	Vv	Vv
V	Vv	Vv

Proporção genotípica: 4/4 ou 100% Vv

Proporção fenotípica: 4/4 ou 100% ervilheiras de sementes amarelas.

Mendel realizou outros cruzamentos de duas linhas puras com características contrastantes e obteve sempre o mesmo resultado: a primeira geração (F1) ou híbridos da 1ª geração era constituída por indivíduos semelhantes entre si que apresentavam apenas a característica de um dos progenitores.

Da análise destes resultados, Mendel concluiu o seguinte:

Todos os híbridos da 1ª geração (F1) são semelhantes uns aos outros em relação ao caracter em estudo, apresentando a característica de um dos progenitores – 1ª Lei de Mendel ou Lei da uniformidade dos caracteres.

2ª Lei de Mendel – Lei da disjunção dos caracteres ou segregação dos caracteres na geração F2

"Os genes de cada par de alelos separam-se durante a formação de gametas e recombinam ao acaso na fecundação".

NB: Esta lei baseia-se no auto-cruzamento dos indivíduos da F1 (sementes amarelas), onde na F2 obteve-se 75% de sementes amarelas e 25% de sementes verdes. Portanto, a proporção das características resultantes é de 3:1.

P: F1 X F1
G: Vv X Vv
g: V,v X V,v

F1:

	٧	V
٧	VV	Vv
V	Vv	VV

Proporção genotípica: 1/4 ou 25% VV; 2/4 ou 50% Vv; ½ ou 25% vv.

Proporção fenotípica: 3/4 ou 100% ervilheiras de sementes amarelas; 1/4

ou 25% ervilheiras de sementes verdes

Hereditariedade Humana

Na espécie humana, o modo de transmissão da informação genética de geração em geração realiza-se segundo os mesmos mecanismos de hereditariedade que operam nas outras espécies.

Um dos métodos clássicos que continua a ser importante fonte de informação para os genetecistas consiste na elaboração de **árvores genealógicas**, que são diagramas que permitem

acompanhar a transmissão de uma determinada característica numa família ao longo das gerações.

A genealogia é uma representação esquemática de indivíduos relacionados entre si e os respectivos graus parentescos. Permite seguir de geração para geração as características em estudo.

1.1. Principais Símbolos Usados na Construção de Árvores Genealógicas Genealogias ou Heredogramas

Hereditariedade autossómica é a transmissão através de genes localizados nos cromossomas autossómicos (pares 1 a 22). Exemplo: miopia e albinismo.

Miopia

É a anomalia visual que impede o indivíduo de ver bem ao longe.

A miopia é determinada por um alelo recessivo em relação ao alelo que determina a visão normal. Da união entre um homem e uma mulher heterozigótica podem nascer filhos míopes, tendo herdado de cada um dos seus progenitores um alelo para a miopia.

P: Homem X Mulher

F: Normal híbrido x Normal híbrido

G: Aa × Aa

g: A, a x A, a

F1:

	Α	Α
Α	AA	Aa
а	Aa	Aa

Filhos normais (1/4AA e 1/2Aa): 75%

Filhos míopes (1/4 aa): 25%

Albinismo

É o resultado de bloqueio de uma via metabólica que é responsável pela síntese de melanina (pigmento negro responsável pela coloração da pele) devido à falta de enzima.

Os albinos não têm pigmentação da pele, têm a pele com uma coloração branca-leitosa, pupila encarnada e cabelos brancos ou louros claros.

O albinismo ocorre de forma igual, em ambos sexos porque é determinado por genes autossómicos.

O gene de albinismo é recessivo em relação ao que determina a pigmentação normal.

1.1. Grupos Sanguíneos: Sistema ABO

Os tipos de grupos sanguíneos do sistema **ABO** relacionam-se com a presença ou ausência de dois tipos de substâncias: uma delas localiza-se nas hemácias e é denominada aglutinogénio; e outra localiza-se no plasma sanguíneo e é chamada aglutinina.

Características dos grupos sanguíneos do sistema ABO

No sistema ABO encontramos 4 tipos de grupos sanguíneos: A, B, AB, O.

Grupo	Genótipos	Antigénio	Anticorpo (aglutinina)
		(aglutinogénio)	
Α	AA (Homozigótico)	A	Anti – B
	AO (Heterozigótico)		
В	BB (Homozigótico)	В	Anti – A
	BO (Heterozigótico)		
AB	AB	A,B	
0	00		Anti – A e anti - B,

- 1. Antigénio é uma substância biológica que induz a produção de anticorpos.
- 2. Anticorpo é uma substância proteica produzida por linfático com a função de defesa do organismo.

Representação esquemática da compatibilidade sanguínea entre os grupos sanguíneos

Grupo sanguíneo	Pode dar;	Pode receber
Α	A,AB	A,O
В	B,AB	B.O
AB	AB	A,B,AB,O
0	A,B,AB,O	0

Dador universal (grupo O) – aquele que pode dar sangue a qualquer grupo.

Receptor universal (grupo AB) – aquele que recebe sangue de qualquer grupo.

1.1. Grupos Sanguíneos: Sistemas Rhesus (Rh)

Além dos aglutinogénios A, B e O, os glóbulos vermelhos podem possuir outros, tais como o Rh. Designou-se por factor Rhesus ou factor Rh o antigene específico localizado na superfície das

hemácias que induziu a formação do anticorpo designado anti-Rh.

O sistema de Rhesus foi descoberto pela primeira vez nos macacos rhesus em 1940 por Landsteiner e Wiener. é um aglutinogénio presente nas superfícies das hemácias.

Rh⁺ (positivo) – significa que tem este aglutinogénio

Rh (negativo) – significa que não possui este aglutinogénio

Compatibilidade dos Grupos sanguíneos

Fenótipo	Pode dar	Pode receber
Rh⁺	Rh⁺	Rh ⁺ ,Rh ⁻
Rh ⁻	Rh ⁺ , Rh ⁻	Rh ⁻

A incompatibilidade dos grupos sanguíneos verifica-se não só ao nível do sistema ABO mas também ao nível do sistema Rh.

Os indivíduos Rh⁺ podem, normalmente, receber transfusões de sangue do tipo Rh- sem que ocorram problemas, pois, em regra, não existem anticorpos anti-Rh no plasma sanguíneo.

A incompatibilidade entre a mãe e feto pode provocar a destruição das hemácias e provocar a morte de recém-nascido;

Se a mãe for do grupo Rh- e o feto Rh+ durante a rotura da placenta os Rh+ do feto podem passar para a mãe e esta começará a produzir anti –Rh. Na segunda gravidez se a criança for Rh⁺, as aglutininas anti-Rh da mãe podem atravessar a placenta e destruir as hemácias do feto (doença hemolítica ou eritroblastose fetal)

1.1. Hereditariedade ligada ao sexo (Daltonismo e Hemofilia)

Existe uma diferença no 23º par de cromossomas no homem e mulher. Este par é o cromossoma sexual. No homem o par XY e na mulher é XX. O gene responsável pelas características ligadas ao sexo se encontram no cromossoma X por isso, o homem precisa de um X portador e a mulher dois XX portadores para terem as anomalias.

O quadro abaixo ilustra as anomalias autossómicas e as ligadas ao sexo, relacionando-as com os respectivos cromossomas, bem como a representação dos genótipos:

Cromossomas	Anomalia	Forma de Representação
Autossómicos	Albinismo e Miopia	Nunca usar o X. Usar por exemplo: aa ou bb
Sexuais (X)	Daltonismo e Hemofilia	Usar sempre o X, como no exemplo, X ^d X ^d e X ^h X ^h

1. Daltonismo (cegueira das cores)

É a incapacidade de distinguir as cores, principalmente entre vermelho e verde ou vermelho e azul. é transmitido por um gene recessivo localizado no cromossoma X, daí que um homem daltónico nunca transmitirá aos filhos rapazes. Mulheres daltónicas recebem do pai e da mãe um cromossoma X portador do alelo para esta anomalia.

Genótipos e fenótipos

Genótipos	$X^{D}X^{D}$	X_DX_q	X_qX_q	X ^D Y	X ^d Y
Fenótipos	Mulher com	Mulher com visão	Mulher	Homem com	Homem
i enotipos	visão normal	normal (portadora)	daltónica	visão normal	daltónico

Hemofilia

É uma anomalia em que o indivíduo tem dificuldades de coagulação de sangue por falta de globulina responsável por este processo.

São raras as mulheres hemofílicas apenas casais hemofílico e portadora podem ter filha hemofílica e é raro este casamento.

Genótipos e fenótipos

Genótipos	X ^H X ^H	X^HX^h	X^hX^h	X ^H Y	X ^h Y
	Mulher com	Mulher com	Mulher	Homem com	Homem
Fenótipos	coagulação	coagulação normal	hemofílica	coagulação	hemofílico
	normal	(portadora)		normal	

1.1. Mutações

Mutação é qualquer modificação ou alteração brusca de genes (mutações génicas) ou de cromossomas (mutações cromossómicas) que pode provocar uma variação hereditária ou uma mudança no fenótipo.

Tipos de mutações

- Mutações génicas ou genéticas são alterações que afectam apenas a estrutura do gene. Resultam da mudança da sequência de nucleótidos do DNA, por substituição de bases ou remoção de bases. Exemplo, a anemia falciforme é uma doença causada pela substituição da base azotada timina na cadeia de DNA pela base azotada, adenina.
- Mutações cromossómicas são mudanças na estrutura ou no número de cromossomas.

Agentes mutagénicos podem ser de natureza:

- Física, como os raios X, raios ultravioleta, radiações beta e gama.
- Química, como o formol, óxido nitroso, certos medicamentos, alguns corantes e conservantes, constituintes do fumo do cigarro, pesticidas, etc.

Efeitos das mutações cromossómicas

1. Síndroma de Down ou trissomia 21

Langdon Down, em 1866, descreveu esta mutação que resulta da existência de mais um cromossoma no par 21 – trissomia 21 ou síndroma de **Down.** Esta doença manifesta-se por alterações no desenvolvimento físico e intelectual, anomalias nas mãos e nos pés e uma expressão facial característica (maçãs do rosto salientes e olhos oblíquos)

2. Síndroma de Klinefelter

É uma trissomia XXY que pode ocorrer quando não há separação dos cromossomas XX durante a

ovogénese ou da não separação dos cromossomas XY durante a espermatogénese. Os indivíduos portadores desta mutação são do sexo masculino e manifestam geralmente estatura elevada, algumas perturbações mentais e caracteres sexuais secundários femininos (seios desenvolvidos e pouca pilosidade)

3. Síndroma de Tuner

família.

É uma monossomia XO, pois as portadoras desta mutação têm apenas um cromossoma sexual X. Esta anomalia resulta da não disjunção dos cromossomas sexuais durante a meiose, o que conduz à formação de gâmetas sem cromossomas sexuais. Se um desses gâmetas fecundar um gâmeta portador do cromossoma X, pode originar um indivíduo com a síndroma de Turner.

1.1. Exercícios de Aplicação da Unidade Temática II

1. Existem vários conceitos fundamentais no estudo da genética. Faz corresponder os conceitos às respectivas definições:

Conceitos	Definições
A. Gene	i. Carácter resultante da interacção entre um genótipo e factores ambientais
B. Linha pura	ii Alelo que só se manifesta em dose dupla
C. Fenótipo	iii Parte do cromossoma que contém informação genética
D. Recessivo	iv. Indivíduo que recebeu alelos iguais para uma dada característica

2. Nas suas experiências, Mendel optou pe	lo uso das ervilheiras porque
A São plantas de difícil manuseamento	C São plantas monospérmicas
B Possuem flores unissexuais	D Possuem poucas variedades
castanho (dominante). a. Se este casal for homozigótico, qual ser cruzamento utilizado a letra R/r.	resenta cabelo ruivo (recessivo) e a mulher, cabelo á o genótipo e fenótipo dos filhos? Faz um quadro de
b. Que lei de Mendel ficou demonstrada nes	ste cruzamento? Enuncia.
4. O albinismo no ser humano é determina	do por um gene recessivo, enquanto a pigmentação é põe que um casal normal tem um filho albino.
	fere-se aos grupos sanguíneos dos membros duma

	odos os
b. Quais são os genótipos possíveis dos filhos do cas 7 e 9?	do casal

		uma mulher do grupo san anguíneos dos filhos deste	
A Grupo B ou O	B Grupo AB ou O	C Apenas grupo B	D Apenas grupo O
•	•	do com uma mulher cujos a sal poderá ter apenas desce	endentes:
A Do grupo O	B Do grupo AB	C Dos grupos AB e O	D Dos grupos A e B
8. Um homem de coa hemofílico. Os filhos	•	gue é casado com uma m	ulher normal, filha de pai
A 50% Normais e 50%	hemofílicos	C 25% Normais e 75%	hemofílicos
B 100% Normais		D 75% Normais e 25%	hemofílicos
tem uma criança da a. Qual é o sexo da cr	Itónica. iança?	cessivo e ligado ao sexo. L	
		ança danomea.	
•	•	es verdadeiras com V e as f	falsas com F.
	ser espontâneas ou inc	duzidas énicos químicos e físicos, r	ospostivamente
•		m a estrutura dos cromosso	•
_	s apenas alteram os ge		mus
11. Atenta no indivídu	o de cariotipo 44A+XXY	.	
a. Que anomalia genér	ica apresenta?		
b. Menciona duas cara	cterísticas deste indivíd	luo.	

1.1. Teorias Antigas Sobre a Origem dos Seres Vivos

Fixismo: segundo esta hipótese as espécies surgiram tal como se conhecem no presente e mantiveram-se imutáveis ao longo do tempo, sem originarem novas espécies.

Geração espontânea: o filósofo grego Aristóteles acredita que em certas condições a vida podia surgir espontaneamente a partir de matéria sem vida, como, por exemplo, carne, fruta ou queijo em decomposição, ou mesma na lama, por acção de um "princípio activo" que actuava sobre essa matéria - hipótese abiogénese. Esta explicação de origem dos seres vivos perdurou durante vários séculos.

Catastrofismo: esta teoria defendia que uma sucessão de grande catástrofe tinha atingido a terra, destruindo todos ou quase ou quase todos os seres vivos existentes, por acção de um criador, a terra teria sido repovoada, após cada cataclismo, com formas de vida diferentes das existentes anteriormente.

Transformismos: segundo esta teoria, os primeiros seres vivos eram mais simples e teriam sofrido modificações ao longo do tempo.

Teorias EvolucionistasTeoria de Lamarck/Lamarckismo resume-se em dois princípios fundamentais:

- Lei do uso e desuso de acordo com esta lei, a necessidade de usar um órgão em determinado ambiente acaba por provocar modificações nesse mesmo órgão.
- Lei da herança dos caracteres adquiridos as modificações que se produzem nos indivíduos como consequência do uso ou desuso dos órgãos são hereditárias, transmitindo-se à descendência.

As ideias de Lamark foram contestadas relativamente aos seguintes aspectos:

A lei de uso e do desuso, embora válida para alguns órgãos, como músculos, não explica todas as modificações;

A lei da herança dos caracteres adquiridos não se verifica experimentalmente. A modificação de um órgão, adquirida durante toda a vida de um ser vivo, não é transmitida à descendência.

Lamark foi o primeiro a chamar atenção para o fenómeno da adaptação dos seres vivos às alterações do ambiente, acreditando que a evolução explicava a presença de fósseis e a diversidade de vida na terra.

3.2. Teoria Científica da Evolução dos Organismos

Teoria de Charles Darwin/ Darwinismo (1809 – 1820)

Charles Darwin defendia o seguinte: Os organismos vivos têm grande capacidade de se reproduzirem, nisto resultaria em indivíduos mais aptos e menos aptos, e que ao enfrentar o novo ambiente, alguns sobrevivem (portanto os mais aptos), e outros morrem (portanto os menos aptos) — **Principio da selecção natural**. Os que sobrevivem transmitem essas características mais aptas a nova descendência — **Principio da transmissão das características mais aptas**.

N.B.: Tanto para **Lamarck**, como para **Darwin**, o ambiente tem papel importante. Para **Lamarck** o ambiente é o causador directo da variação, e para **Darwin**, o ambiente selecciona a variação mais adaptativa.

Concepção Moderna Sobre a Evolução

Na teoria de selecção de **Darwin** faltou explicar a natureza das variações favoráveis que interessa considerar para a evolução. Está claro que se a variação é favorável, mas não hereditária, não interessa para a evolução, pois os descendentes não apresentam. Portanto, só tem interesse para a evolução das espécies as variações hereditárias. Hoje, sabemos que tais variações são as mutações quer genéticas, quer cromossómicas, que afectam os genes no DNA.

Se na teoria de Darwin introduzirmos o conceito de mutação, ela passará a constituir a **Teoria Moderna da Evolução** que se fundamenta no seguinte:

É por alterações genéticas ou cromossómicas que surgem todas as variações hereditárias que apresentam todos os indivíduos da mesma espécie. – **Indivíduos mutantes**;

O factor responsável pelo destino dos mutantes é a **selecção natural**, selecção feita pelo ambiente:

Dos mutantes seleccionados, surgem, por novas mutações, novos mutantes e assim sucessivamente;

Por acumulação de mutações seleccionadas ao longo das gerações, acaba por surgir uma nova espécie.

Factores de Evolução

São factores de evolução: Mutação; Selecção natural; Recombinação genética; Isolamento geográfico.

1. Mutação: é uma modificação brusca dos genes ou cromossomas, e que é possível ser transmitido à descendência.

Os organismos que sofrem mutações, podem apresentar uma ou duas características novas, que podem ser úteis ou não.

- 2. Selecção natural: O aparecimento de novas características permite ou impede uma melhor adaptação ao ambiente. As características positivas favorecem a sobrevivência do ser vivo, por enguanto que as negativas o eliminam. É o processo de Selecção Natural.
- **3. Recombinação genética:** é um factor importantíssimo que origina a variabilidade, e é característico da reprodução sexuada. A recombinação dos genes promove o aparecimento não de novos genes, mas sim de genótipos novos.

A recombinação dos genes processa-se por três mecanismos básicos:

- Segregação dos cromossomas na meiose;
- Ocorrência de permutação genética (crossing-over);
- Fecundação.
- **4. Isolamento:** É todo o processo que diminui o cruzamento entre indivíduos, o que impede, em maior ou menor escala, a troca de genes entre eles.

Podem ser considerados dois tipos de barreiras de isolamento:

Barreiras externas: são constituídas por acidentes geográficos ou espaciais. Entre estas podemos citar as cadeias montanhosas, os rios, os mares, etc.

Barreiras internas ou biológicas. Estas são de diversas naturezas e impedem a troca de genes, ainda que as populações se encontrem juntas.

Provas de Evolução

São provas de evolução:

1. Paleontologia

É a ciência que estuda a descoberta e interpretação dos fósseis. **Fósseis** – são restos ou vestígios de organismos de épocas geológicas remotas que ficaram preservados nas rochas. O registo fóssil é prova directa que apoia a teoria da evolução e auxilia o Homem na reconstituição da história sobre o processo da evolução dos seres vivos.

Tipos de fossilização: Moldagem; Incarbonização; Impressão; Mineralização; Incrustação; Conservação

2. Anatomia comparada:

É uma parte da biologia que compara e contrasta as semelhanças e diferenças das estruturas, tanto entre as plantas como entre animais que estão estritamente relacionados. Ex: A comparação dos sistemas respiratório, circulatório dos vertebrados actuais.

Os argumentos de anatomia comparada, baseados na semelhança das características morfológicas dos indivíduos, são principalmente: Estruturas homólogas; Estruturas análogas; Estruturas vestigiais.

Os **órgãos homólogos** são órgãos estruturalmente semelhantes, todavia que desempenham funções diferentes. Exemplo: Os membros superiores do Homem e os membros anteriores das baleias, dos morcegos (membrana alar), das aves (as asas), dos cavalos, das toupeiras e das salamandras - todos estes órgãos têm a mesma origem embriológica e são constituídos por ossos correspondentes, mas desempenham funções diferentes.

Os **órgãos** análogos são estruturalmente diferentes, mas que desempenham funções semelhantes. Exemplos: Os tubarões (peixe cartilagíneos) e os golfinhos (mamíferos aquáticos) pertencentes a famílias diferentes, mas têm a mesma forma do corpo e barbatanas que facilitam a sua deslocação dentro de água.

Estruturas ou órgãos vestigiais são órgãos atrofiados sem função evidente e sem significado biológico que existem em alguns grupos.

- **3. Fisiologia comparada:** Esta relacionada com a comparação das diferentes funções que revelam também certas semelhanças entre os seres vivos. Ex: Há uma grande semelhança entre hormonas de diferentes animais. A função da insulina do cão tem a mesma função que a do Homem. Em ambos os casos a falta provoca diabetes.
- **4. Embriologia comparada:** Proporciona uma evidência indirecta em apoio à teoria da evolução. A segmentação do ovo e as primeiras etapas do desenvolvimento embrionário são bastante semelhantes nos diferentes grupos de animais. As semelhanças observadas nos embriões dos vertebrados demonstram que há um antepassado comum.

Baseando em observações embriológicas, Haeckel estabeleceu a Lei biogenética básica: "O desenvolvimento de um ser vivo é uma repetição curta do desenvolvimento da espécie".

São as semelhanças a registar ao nível dos embriões dos vertebrados:

- Presença da cauda;
- Presença de fendas branquiais;
- Presença de sulcos;
- Cabeça desproporcional ao corpo.

5. Formas intermediárias:

- Latimeria: forma intermediaria entre peixes e anfíbios;
- Archaeopteryx: é um animal intermediário com características de um réptil.

Tendências de Evolução

A cooperação de todos os factores de evolução pode, durante o desenvolvimento dos seres vivos, provocar mudanças de células, tecidos e órgãos. Todas estas mudanças podem possibilitar uma maior eficiência e com isso uma maior independência dos seres vivos a certas condições ambientais. Grupos de organismos com estas características chamam-se **organismos mais desenvolvidos**. O respectivo processo pode decorrer como **diferenciação** (células e tecidos) ou

centralização (tecidos).

Eis o exemplo da diferenciação dos tecidos: as pteridófitas e espermatófitas são mais desenvolvidas que as briófitas.

Outro exemplo de diferenciação de tecidos: diferentes tipos de pulmões nos vertebrados (dos Anfíbios, Répteis e Mamíferos).

Centralização: pode ter como finalidade um aumento da capacidade dos órgãos. Por exemplo, o desenvolvimento do sistema nervoso: Sistema nervoso difuso (hidra), Célula nervosa ganglionar (minhoca) e, Encéfalo e medula espinal (cão).

Durante o processo de evolução, os seres vivos tornam-se mais ajustados ao mundo que os rodeia. Adaptam-se ao meio desenvolvendo características especiais.

Grandes mudanças das condições ambientais podem efectuar uma **redução**. Estas reduções podem ser adaptações específicas do meio ambiente.

N.B: Uma redução não é um desenvolvimento para trás, os organismos mantêm o seu nível de desenvolvimento.

Cronologia Geral da Evolução do Homem

O Homem e o macaco têm um antepassado comum; Ambos pertencem à ordem dos primatas.

Lugar do Homem na natureza

- Reino: Animália --> Organismos usualmente móveis que ingerem alimentos;
- Filo: <u>Chordata</u> --> Animais com simetria bilateral, corda dorsal e tubo neural em posição dorsal.
- **Sub-Filo**: <u>Vertebrata</u> --> Animais com esqueleto interno ósseo cartilagíneo e espinal medula com o cérebro na extremidade anterior.
- Classe: <u>Mammalia</u> --> Animais de sangue quente, coberto de pelos, que amamentam as suas crias;
- Sub Classe: <u>Theria</u> --> Mamíferos vivíparos. Os embriões desenvolvem-se ligados ao corpo materno por uma estrutura chamada placenta;
- Ordem: <u>Primata</u> --> Animais essencialmente arborícolas, com capacidade de preensão.
 Devido à oponibilidade do polegar aos outros dedos. Têm unhas em vez de garras, num ou mais dos seus dedos.
- Sub Ordem: <u>Antropoidea</u> --> Primatas mais evoluídos, com um grande controlo dos dedos e grande capacidade de aprendizagem. Estrutura dental característico;
- **Super Família:** <u>Hominoidea</u> --> Primatas se cauda, com grande liberdade de movimentos dos membros superiores.
- Família: Hominidae --> Primatas terrestres, bípedes, capazes de fabricar ferramentas;
- **Género**: Homo --> Homem moderno e seus ancestrais imediatos;
- Espécies: Homo sapiens --> Todas as populações humanas do período pós-glaciar e

algumas mais antigas;

 Sub – Espécie: Homo sapiens sapiens> Homem actu 	ctua	em ac	Homem	sapiens>	sapiens s	Homo	b – Espécie:	Sub-	•
--	------	-------	-------	----------	-----------	------	--------------	------	---

3.3. Exercícios de Ap	licação da Unidade Te	mática III	
1. Fixismo é uma hipó	tese antiga sobre a evol	lução dos seres vivos.	
a. Qual é a ideia defer	•		
b. Quais são as teoria	s fixistas?		
2. Sabemos que Jean	-Baptiste Lamarck foi ur	n dos primeiros estudioso	s que compreenderam que
o meio poderia de a	alguma forma influenciar	na evolução dos seres vi	vos.
Marca a alternativa qu	e indica os dois pontos إ	principais do lamarckismo	
A Selecção natural e r	nutação.		
B Lei do uso e desuso	e selecção natural.		
C Lei do uso e desuso	e lei da necessidade.		
D Lei da herança dos	caracteres adquiridos e	lei do uso e desuso.	
E Selecção natural e le	ei da herança dos carac	teres adquiridos.	
tempo. Essa teoria	é sustentada por alguma embrionária semelhante	seres vivos sofreram mod as evidências, como a pre e, mas nem sempre a mes	sença de estruturas que
A Homólogas	B Heterólogas	C Análogas	D Isólogas
		a de estruturas atrofiadas as estruturas são chamada	
A órgãos homólogos	B órgãos extintos	C órgãos vestigiais	D órgãos análogos
a. Menciona os princip). 	
6. O Homem é um ser	r vivo inserido no reino A		ser humano?

Ecologia é ciência que estuda as relações que os organismos estabelecem entre si e com o ambiente natural em que vivem.

1.1. Conceitos Básicos de Ecologia

Espécie é o conjunto de organismos com formas semelhantes que podem cruzar-se entre si, originando descendentes férteis.

População é o conjunto de organismos da mesma espécie que vivem numa determinada área.

Comunidade conjunto formado pelas populações diferentes numa determinada área.

Habitat-local onde vive o conjunto de indivíduos que constitui a comunidade.

Ecossistema conjunto de diferentes comunidades interagindo entre si e com o ambiente não-vivo (físico e químico) e energia.

Nicho ecológico é o conjunto de relações e actividades próprias de uma espécie. É o seu "modo de vida" particular, isto é, indica o papel que os indivíduos dessa espécie desempenham na comunidade: o tipo de alimento, a altura do dia em que se alimentam, a época do ano em que se reproduzem, o tipo de abrigo, os seus inimigos, etc. Por exemplo, a coruja e o corvo têm o mesmo *habitat*, mas a coruja vive nos buracos dos troncos das árvores, enquanto o corvo constrói os ninhos nos ramos. Deste modo, tem nichos ecológicos diferentes.

Biosfera é conjunto de todos os ecossistemas da terra, isto é, a zona da terra que contém vida. O esquema da figura abaixo apresenta alguns níveis de organização dos seres vivos na biosfera.

Importância do estudo da Ecologia

Permite entender o funcionamento do planeta, perceber como vivem e se relacionam, criar medidas de preservação da espécie.

Tipos de EcossistemaOs ecossistemas podem ser naturais ou artificiais. Os ecossistemas

naturais podem ser terrestres ou aquáticos.

Exemplo de **ecossistemas naturais terrestres**: bosques, florestas e desertos.

Exemplo de ecossistemas naturais aquáticos: rios, oceanos, lagos e estuários.

Ecossistemas artificiais - construídos pelo Homem. Exemplos: aquários, represas, plantações e barragens.

Quanto às suas dimensões, os ecossistemas podem ser classificados como: **Macroecossistemas**, **Mesoescossistemas** e **Microecossistemas**.

4.3. Composição de um Ecossistema

- Factores abióticos (luz, água, temperatura...)
- Factores bióticos: relações intra e inter específicas (parasitismo, predatismo, simbiose, competição)

Relações entre os Seres Vivos de uma Comunidade

Existem dois tipos de relações que se estabelecem entre os seres vivos de uma comunidade, a citar:

Relações intra-específicas, quando se verificam entre organismos da mesma espécie;

Relações interespecíficas, quando se verificam entre organismos de espécies diferentes.

Tabela I – Relações intra-específicas

Tipo de Relação	Características	Exemplos
Competição	Os indivíduos competem entre si para satisfazerem as suas necessidades alimentares, de território ou de reprodução.	 Os veados lutam até à morte pelo seu território; Os leões lutam mesma fêmea, com a qual o mais forte acasalará, originando descendência; Os machos de algumas aves, na altura do acasalamento, assinalam o território com o seu canto, impedindo a aproximação de outros; As plantas competem pela luz.
Cooperação	Colónia: os indivíduos agrupam-se para obter um benefício comum a todos, como favorecer a reprodução, proteger-se do frio e dos inimigos ou facilitar a procura de alimento.	 Os pinguins vivem em colónias numerosas, o que permite uma melhor protecção contra o frio das regiões onde vivem. Os corais são unidos uns aos outros, actuando em conjunto
Cooperação	Sociedade: os indivíduos agrupam-se de forma organizada, possuindo uma hierarquia; cada um tem a sua função e actividade específica, havendo diferenciação de funções.	 As abelhas estão organizadas em sociedade. A rainha põe os ovos e cuida dos alimentos. Os zângãos defendem o enxame e as obreiras procuram o alimento. As formigas também estão organizadas em sociedade O Homem vive na sociedade mais especializada do reino animal
Canibalismo	Um indivíduo mata o outro, da mesma espécie, para se alimentar.	- O louva-a-deus fêmea e a aranha viúva- alegre comem os machos depois de terem sido fecundadas.

Tabela II- relações interespecíficas

Tipo de Relação	Características	Exemplos
Predação	A espécie mais forte (predadora) mata a outra (presa) para se alimentar.	 -Um leão mata e come um herbívoro. -A águia mata e come as cobras. -Alguns pássaros alimentam-se de insectos. -As cobras matam e comem os ratos.

	Indivíduos de espécies				
	diferentes associam-se e	- As abelhas e as borboletas alimentam-se			
	cooperam para benefício	do néctar das flores. Ao mesmo tempo,			
	mútuo.	estes insectos realizam a polinização.			
	Quando a associação é	-algumas aves que acompanham o gado			
Mutualismo	fundamental para a	alimentam-se de insectos que ficam a			
Wataansmo	sobrevivência de ambas	descoberto no solo e também de parasitas			
	espécies, isto é, quando	que vivem agarrados a superfície do corpo			
	uma espécie não pode viver	dos animais, que assim ficam livres deles.			
	afastada da outra, esta	-os líquenes são uma simbiose de uma alga			
	relação chama-se	com um fungo.			
	simbiose.				
	Indivíduos de espécies	-o búfalo e a zebra vivem no mesmo			
	diferentes com nichos				
	ecológicos Semelhantes	ecossistema e competem pelo mesmo tipo de alimento e pela agua .			
Competição	competem muitas vezes	-a coruja e a cobra alimentam-se de rãs do			
Companyao	pelos mesmos recursos	mesmo lago.			
	água, alimento, e espaços	-as plantas competem pela água e pelos			
	quando estes existem em	sais minerais do solo.			
	pouca quantidade.				
	Um indivíduo de uma	-as carraças, as pulgas e os piolhos são			
	espécie – parasita – vive à	ectoparasitas que se alimentam do sangue			
	custa de outro de espécie	dos seus hospedeiros.			
Parasitismo	diferente. hospedeiro	- a ténia e as lombrigas são endoparasitas			
	geralmente, sem lhe	que vivem no intestino do Homem,			
	provocar a morte.	Alimentando-se à custa das substâncias			
		orgânicas digeridas por este.			
		- Alguns peixes escondem-se dos seus			
	Indivíduos de espécies	inimigos entre os tentáculos das anémonas			
	diferentes vivem em	ou entre os corais.			
	conjunto, sendo um deles	- As plantas epifitas, como por exemplo,			
Comensalismo	indiferente à presença do	certas orquídeas, vivem sobre o tronco de			
	outro, que, por seu lado,	árvores altas; alimentam-se a partir de			
	aproveita a protecção,	substâncias que retiram do ar e da água das			
	transporte ou restos de	chuvas.			
	alimento.	-as hienas acompanham os leões nas suas			
		caçadas, alimentando-se dos restos			
		deixados por eles.			

Processos comuns dentro de um Ecossistema

Uma das relações dentro do ecossistema mais complexa e necessária à vida no Planeta é a alimentação. Plantas e animais precisam de obter energia para a manutenção da vida. Os vegetais "fabricam" sua energia, ou seja, sintetizam seu próprio alimento (são autotróficos), por isso são chamados **produtores**. Já os animais não conseguem isso, obtêm a energia de fontes externas, comendo vegetais e outros animais. São por conseguinte, **consumidores**. Ao morrer, tanto os produtores como os consumidores servem de fonte de energia para o ambiente a partir dos processos de decomposição.

4.4 Níveis Tróficos

De acordo com o tipo de nutrientes que os seres vivos consomem, estes podem pertencer a diversas categorias, que se designam níveis tróficos. Podem ser classificados como **produtores**, **consumidores** e **decompositores**.

Cadeia alimentar

As relações alimentares entre todos os organismos que vivem num determinado ecossistema representam-se por uma cadeia alimentar ou cadeia trófica, constituída por uma sequência de organismos através dos quais passa o alimento.

Cada cadeia alimentar é constituída por vários níveis tróficos: 1.º nível trófico ocupado pelos **produtores (P)**; 2.º nível trófico, constituído pelos **consumidores primários ou de 1.ª ordem (C1)**; 3.º nível trófico, ocupado pelos **consumidores secundários ou de 2.ª ordem (C2)**; 4.º nível trófico, constituído pelos **consumidores terciários ou de 3.ª ordem (C3)**. Podem existir cadeias alimentares com níveis tróficos mais elevados.

Cadeia alimentar

Teia alimentar

Na natureza, alguns seres podem ocupar vários papéis em diferentes cadeias alimentares. Quando comemos uma maçã, por exemplo, ocupamos o papel de consumidores primários. Já, ao comer um bife, somos consumidores secundários, pois o boi, que come o capim, é consumidor primário. Muitos outros animais também têm alimentação variada. Um organismo pode alimentarse de diferentes seres vivos, além de servir de alimento para diversos outros. O resultado é que as cadeias alimentares se cruzam na natureza, formando o que chamamos de **teia alimentar**.

Nas teias alimentares, um mesmo animal pode ocupar papéis diferentes, dependendo da cadeia envolvida.

Teia alimentar

4.5. Alterações dos Ecossistemas

As alterações dos ecossistemas são consequência de causas naturais e da acção humana. A poluição (da água, do ar e do solo), a introdução de novas espécies, a extinção (desaparecimento) de espécies, a explosão demográfica (grande aumento da população de seres humanos) e a destruição da floresta são as principais causas de alteração dos ecossistemas pela acção do homem.

4.6. Protecção dos Ecossistemas

As acções que visam a protecção e conservação da natureza destacam-se:

Criação de áreas protegidas, tratamento de resíduos sólidos, tratamento de águas residuais, reservas naturais para proteger espécies ameaçadas e em risco de extinção, protecção dos parques, controlo biológico de pragas.

4.7. Exercícios de Aplicação da Unidade Temática IV1. Ecologia é a ciência da biologia que

- A Estuda a unidade básica dos seres vivos.
- B Estuda características morfológicas e anatómicas dos seres vivos.
- C Estuda os seres vivos e as suas manifestações
- D Estuda as relações dos seres vivos entre si e com o meio ambiente.

2. Faz corresponder os conceitos básicos da ecologia às respectivas definições.

Conceito	Definição	Correspondência
1. Ecossistema	A. conjunto de várias populações que habitam uma determinada área e que se relacionam entre si.	
2. Comunidade	B. conjunto de organismos com formas semelhantes que podem cruzar-se entre si, originando descendentes férteis.	
3. Habitat	C. Os organismos da mesma espécie que vivem numa determinada área.	
4. População	D. conjunto de diferentes comunidades interagindo entre si e com os factores físicos e químicos do ambiente.	
5. Espécie	E. O lugar onde um ser vivo vive.	

5. Espécie	E. O lugar onde um se	er vivo vive.				
 Assinala as afirmações verdadeiras com V e as falsas com F. 						
A Florestas, desertos, rios, oceanos e lagos são ecossistemas artificiais ()						
B Aquários, represas, pla	B Aquários, represas, plantações e barragens são ecossistemas naturais ()					
C Os oceanos são macro	ecossistemas ()					
D Uma poça de água é u	m mesoescossistema ()				
E Um tronco de uma árvo	re é um microecossister	ma ()				
4. São factores abióticos	os seguintes					
A Plantas e animais	B Solo e chuva	C Plantas e solo	D Animais e chuva			
5. Identifica as relações d	os seres vivos existente	es nos seguintes casos:				
A Os bois comem e acaba	am o milho plantado nur	ma certa machamba				
B O piolho se aloja na cal	oeça do Homem sugand	do o seu sangue				
C As hienas alimentam-se	e de restos de carne de	búfalo deixados pelo leão	0			
D Os patos machos lutar	D Os patos machos lutam pela posse das fêmeas					
E Os corais são unidos uns aos outros, actuando em conjunto						
F A aranha viúva-alegre come o macho depois de ter sido fecundada						
G Certas orquídeas vivem sobre o tronco de árvores altas sem lhes causar nenhum prejuízo,						
alimentam-se a partir de substâncias que retiram do ar e da água das chuvas						
H Certas algas fornecem	matéria orgânica a certo	os fungos. Estes, em troc	a, fornecem-lhes			
matéria inorgânica. Assim	ı, vivem juntos					

6. Observa a cadeia alimentar abaixo representada.

a.	muica	a 08 fi	iveis ti	OHCOS	de tod	08 08 (elemei	nos re	presen	ilados.			

7. Observa a seguinte teia alimentar.

a. Quantas cadeias existem nesta teia alimentar?
b. Identifica: o produtor, o consumidor da 4ª ordem e o decompositor.

8. Os ecossistemas são fundamentais para a vida de todos os seres vivos. Por essa razão devem ser protegidos.

 er os ecossistema		

Unidade Didáctica 1

- 1. a) Constituintes do núcleo: membrana nuclear, nucleoplasma, nucléolo e cromatina.
- b) Armazena o material genético; controla o metabolismo celular.
 - 2. B Hereditariedade
 - 3. B Homeostase
 - 4. D.- Nucleotídeo
 - 5. a) ARN ácido ribonucléico

6.

Critérios de comparação	ADN	ARN
Tipo de bases azotadas	A,C,G,T	A,C,G,U
Tipo de cadeia	Dupla	Simples
Tipo de açúcar	Desoxirribose	Ribose

- 7. a) Transcrição da informação genética.
- b) Replicação do ADN.
- c) Tradução da informação genética.
 - 8. AUG CUA UGG UAC
 - 9. a) 1- Profase; 2- Metafase; 3- Anafase; 4- Telofase.
- b) Na fase 3 (anafase) ocorre a divisão do centrómero e migração dos cromatídeos idênticos para pólos opostos.
 - 10. C G1, S, G2, divisão celular
 - 11. B Desintegração da membrana nuclear
 - 12. a) Comparação entre mitose e meiose

	Mitose	Meiose
Número de células filhas	2	4
Cariótipo das células filhas	2n	N
Tipo de célula filha	Diplóide	Haplóide

- 13. a) B Não há fecundação.
- 14. A gametogénese masculina é também chamada <u>espermatogénese</u> e ocorre nos órgãos reprodutores chamados <u>testículos</u>. A formação dos seus gâmetas ocorrem em quatro etapas que são a <u>multiplicação</u>, <u>crescimento</u>, <u>maturação</u> e a <u>diferenciação</u>.

Unidade Didáctica 2

- 1. A-iii; B-iv; C-i; D-ii
- 2. C São plantas polispérmicas
- 3. a) Alelos: cabelo ruivo-r; cabelo castanho-R
- P: Homem de cabelo ruivo X Mulher de cabelo castanho homozigótico

G:		rr	X	RR
g:		r,r	Χ	R,R
	R	r	PG: 4/4 ou	ı 100% Rr

	R	r
R	Rr	Rr
R	Rr	Rr

PF: 4/4 ou 100% filhos de cabelos castanhos

- b) 1^a lei de Mendel ou lei de uniformidade dos caracteres. Diz que os indivíduos da F1, filhos de pais de linha pura são iguais entre si e a um dos progenitores.
 - 4. a) alelos: pigmentação normal-A; pigmentação albina-a

P: Pai híbrido X Mãe híbrida

G: Aa X Aa g: A,a X A,a

	\	Α	а
Α	ı	AA	Aa
Α		Aa	aa

PG: ¼ ou 25% AA; ½ ou 50% Aa; ¼ ou 25% aa

PF: 75% filhos normais; 25% filhos albinos

- 5. a) 1- AO; 2-OO; 3-OO; 4-AO; 5-AO; 6-AB; 7-BO; 8- AA/AO; 9-OO.
- b) P: 7 X 9
- G: BO X OO
- g: B,O X O,O

	В	0
0	ВО	00
0	ВО	00

PG: ½ ou 50% BO; ½ 50% OO

PF: 50% filhos do grupo B; 50% filhos do grupo O

- 6. A Grupo B ou O.
- 7. D Dos grupos A e B
- 8. D 75% Normais e 25% hemofílicos.
- 9. a) A criança é do sexo masculino.
- b) Os genótipos dos pais são: pai: X^DY, mãe: X^DX^d e o da criança e X^dY
- 10. V, F, F, V
- 11. a) Síndrome de Klinnefelter
- b) São homens que manifestam geralmente estatura elevada, algumas perturbações mentais e caracteres sexuais secundários femininos (seios desenvolvidos e pouca pilosidade)

Unidade Didáctica 3

1. a) As espécies surgiram tal como se conhecem no presente e mantiveram-se imutáveis ao

longo do tempo, sem originarem novas espécies

- b) Geração espontânea, catastrofismo e transformismo.
- 2. D Lei da herança dos caracteres adquiridos e lei do uso e desuso.
- 3. A Homólogas.
- 4. C órgãos vestigiais.
- 5. a) Mutações, recombinação genética e isolamento.
- 6. Classificação do Homem:

Filo: Chordata

Classe: *Mammalia*Família: *Hominidae*Ordem: *Primata*Género: *Homo*

Espécie: Homo sapien

Unidade Didáctica 4

- 1. D Estuda as relações dos seres vivos entre si e com o meio ambiente.
- 2. 1-D; 2-A; 3-E; 4-C; 5-B
- 3. F, F, V, F, V
- 4. B Solo e chuva
- 5. Relações dos seres vivos existentes nos casos dados:
 - A. Predação
 - B. Parasitismo
 - C. Comensalismo
 - D. Competição
 - E. Cooperação
 - F. Canibalismo
 - G. Comensalismo
 - H. Simbiose
- 1. a) Produtor; b) consumidor da 1ª ordem; c) consumidor da 2ª ordem; d) consumidor da 3ª ordem; e) consumidor da 4ª ordem.
- 2. a) 5 cadeias.
- b) O produtor é capim; o consumidor da 4ª ordem é o gavião; não há decompositor.
- 3. a) Criação de áreas protegidas, tratamento de resíduos sólidos, tratamento de águas residuais, reservas naturais para proteger espécies ameaçadas e em risco de extinção, protecção dos parques, controlo biológico de pragas.

BIBLIOGRAFIA

Instituto Nacional de Desenvolvimento da Educação (2010). *Programa de Biologia da 10ª classe*. Maputo-Moçambique.

Noronha, Cecília Mascarenhas et al. (2015). Biologia 10ª classe, Plural Editores

Bibliografia electrónica

http://ead.mined.gov.mz/site/