

Deep Learning in Applications

<u>Lecture 6:</u> How NLP Cracked Transfer Learning

Anastasia lanina

Harbour. Space University 15.07.2019, Barcelona, Spain

Outline

- 1. Transformer: recap
- 2. OpenAl Transformer
- 3. ELMO
- 4. BERT
- 5. Q & A

The Transformer: recap

The Transformer

The Transformer

The Transformer

the word in each position flows through its own path in the encoder

Output **Probabilities** Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Outputs Inputs (shifted right)

The Transformer: recap

- Proposed in the paper
 "Attention is All You Need"
 (Ashish Vaswani et al.)
- No recurrent or convolutional neural networks -> just attention
- Uses Multi-Head
 <u>self-attention</u> concept

Self-Attention: recap

Self-Attention: Matrix Calculation

Multi-Head Attention

Multi-Head Attention

ATTENTION

HEAD #0

 Z_0

Multi-Head Attention

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Positional Encoding

Positional Encoding

Positional Encoding

Output The Transformer: recap Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention $N \times$ Forward Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding 20 Inputs Outputs (shifted right)

The Decoder

The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT

The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT

The Decoder Side

Recap of Training

Recap of Training

Example: one-hot encoding of our output vocabulary

Recap of Training

Target Model Outputs

Trained Model Outputs

Loss Function

Kullback-Leibler Divergence: $D_{KL}(P||Q) = \sum_{x} p(x)log \frac{p(x)}{q(x)}$

Cross-Entropy:
$$H(p,q) = -\sum_{x} p(x) \, \log q(x)$$

OpenAl Transformer: Pre-training Decoder for Language Modeling

OpenAl Transformer

- The Encoder-Decoder structure of the transformer made it perfect for machine translation
- But what about sentence classification?
- Main goal: pre-train a language model that can be fine-tuned for other tasks

Aardvark Possible classes: Improvisation 10% All English words Zyzzyva FFNN + Softmax 12 **DECODER DECODER DECODER**

OpenAl Transformer

Differences from vanilla Transformer:

- no encoder
- decoder layers would not have the encoder-decoder attention sublayer
- Pre-train the model on predicting the next word using massive (unlabeled) datasets

OpenAl Transformer

- During pre-training phase layers have been tuned to reasonably handle language
- Now let's use it for downstream tasks (e.g. sentence classification)

Input transformations for different tasks

ELMo: context that matters

ELMo: contextualized word embeddings

"Why not give it an embedding based on the context it's used in – to both capture the word meaning in that context as well as other contextual information?"

Peters et. al., 2017, McCann et. al., 2017, and yet again Peters et. al., 2018 in the ELMo paper

ELMo - deep contextualized word representations

ELMo

What does it stand for?

- 1. Expedited Labour Market Opinion
- 2. Electric Light Machine Organization
- 3. Enough Let's Move On

ELMo

What does it stand for?

- 1. Expedited Labour Market Opinion
- 2. Electric Light Machine Organization
- 3. Enough Let's Move On
- 4. Embeddings from Language Models

ELMo: contextualized word embeddings

ELMo: Contextualized word embeddings

- uses a bi-directional LSTM trained on Language Modeling task
- a model can learn without labels

Bidirectional Language Models (biLMs)

biLMs consist of forward and backward LMs:

forward:

$$p(t_1, t_2, ..., t_N) = \prod_{k=1}^{N} p(t_k | t_1, t_2, ..., t_{k-1})$$

Backward:

$$p(t_1, t_2, ..., t_N) = \prod_{k=1}^{N} p(t_k | t_{k+1}, t_{k+2}, ..., t_N)$$

LSTM predicts next word in both directions to build biLMs

ELMo: main pipeline

Embedding of "stick" in "Let's stick to" - Step #1

Backward Language Model Let's stick

ELMo: main pipeline

ELMo represents a word as a linear combination of corresponding hidden layers:

Embedding of "stick" in "Let's stick to" - Step #2

ELMo embedding of "stick" for this task in this context

ELMo

ELMo can be integrated to almost all neural NLP tasks with simple concatenation to the embedding layer

ELMo: overview

- Pretrained ELMo models: http://allennlp.org/elmo
- AllenNLP is a library on the top of PyTorch
- Higher levels seems to catch semantics while lower layer probably capture syntactic features

BERT

Bidirectional Encoder Representations from Transformers

BERT

BERT: base and large

BERT vs. Transformer

	THE TRANSFORMER	BERT	
		Base BERT	Large BERT
Encoders	6	12	24
Units in FFN	512	768	1024
Attention Heads	8	12	16

Identical to the Transformer up until this point

Identical to the Transformer up until this point

Why is BERT so special?

Model outputs

For sentence classification we focus on the first position (that we passed [CLS] token to)

Similar to CNN concept!

Use the output of the masked word's position to predict the masked word

BERT: pre-training

Randomly mask 15% of tokens

Input

BERT: pre-training

- "Masked Language Model" approach
- To make BERT better at handling relationships between multiple sentences, the pre-training process includes an additional task:

"Given two sentences (A and B), is B likely to be the sentence that follows

A, or not?"

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

BERT: fine-tuning for different tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT: fine-tuning for different tasks

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT for feature extraction

The output of each encoder layer along each token's path can be used as a

BERT for feature extraction

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER Dev F1 Score First Layer Embedding 91.0 Last Hidden Layer 94.9 Sum All 12 95.5 Layers Second-to-Last 95.6 Hidden Layer Sum Last Four 95.9 Hidden Help 12 Concat Last 96.1 Four Hidden

BERT: tokenization

Example: Unaffable -> un, ##aff, ##able

- Single model for 104 languages with a large shared vocabulary (119,547 WordPiece model)
- Non-word-initial units are prefixed with ##
- The first 106 symbols: constants like PAD and UNK
- 36.5% of the vocabulary are non-initial word pieces
- The alphabet consists of 9,997 unique characters that are defined as word-initial (C) and continuation symbols (##C), which together make up 19,994 word pieces
- The rest are multicharacter word pieces of various length.

BERT: tokenization

BERT: overview

- BERT repo
- Try out BERT on TPU
- WordPieces Tokenizer
- PyTorch Implementation of BERT

