Examples

Ragib Zaman

AMSSC at the University of Newcastle

2 July 2014

Example

Take $\sigma = \mathsf{Cone}(e_1, e_2)$.

$$\sigma^{\vee} = \{(x, y) \in \mathbb{R}^2 \mid \langle (1, 0), (x, y) \rangle \ge 0 \text{ and } \langle (0, 1), (x, y) \rangle \ge 0\}$$

= \{(x, y) \in \mathbb{R}^2 \ | x \ge 0 \text{ and } y \ge 0\}.

Affine Toric Varieties

Lemma

The affine toric variety corresponding to the zero cone is the *n*-torus.

Proof.

The dual is $\sigma^{\vee} = \mathbb{R}^n$. So $M_0 = \mathbb{R}^n \cap \mathbb{Z}^n = \mathbb{Z}^n$, which is generated by $e_1, -e_1, e_2, -e_2, \dots, e_n, -e_n$. Therefore

$$\mathbb{C}[M_0] = \mathbb{C}[\chi^{e_1}, \chi^{-e_1}, \chi^{e_2}, \chi^{-e_2}, \dots, \chi^{e_n}, \chi^{-e_n}]$$

$$\cong \mathbb{C}[X_1, X_1^{-1}, X_2, X_2^{-1}, \dots, X_n, X_n^{-1}]$$

$$= \mathbb{C}[X_1, X_2, \dots, X_n]_{X_1, X_2, \dots, X_n}.$$

The spectrum of this is the set of points in \mathbb{C}^n satisfying $x_i \neq 0 \ \forall i$. Therefore $U_0 = (\mathbb{C}^*)^n$.

Affine Toric Varieties

Example

Since $(x, y) \in \sigma^{\vee}$ if and only if it is nonnegative on e_2 and $2e_1 - e_2$ i.e. $y \ge 0$ and $2x - y \ge 0$ we have the dual cone $\sigma^{\vee} = \mathsf{Cone}(e_1, e_1 + 2e_2)$.

 M_{σ} is generated by $e_1, e_1 + e_2$ and $e_1 + 2e_2$ so $\mathbb{C}[M_{\sigma}] = \mathbb{C}[X, XY, XY^2]$. The \mathbb{C} -algebra homomorphism $\varphi: \mathbb{C}[U, V, W] \to \mathbb{C}[X, XY, XY^2]$ that sends $U \mapsto X, V \mapsto XY$ and $W \mapsto XY^2$ has kernel $I = (V^2 - UW)$. So

$$U_{\sigma} = \operatorname{\mathsf{Spec}}\left(\mathbb{C}[U,V,W]/(V^2-UW)\right).$$

The elliptic cone $y^2 = xz$ in \mathbb{R}^3 .

Abstract Toric Varieties

Example

Take $\Delta = \{0, \sigma, \sigma'\}$ as shown below:

We have $\sigma = \sigma^{\vee} = \mathsf{Cone}(e_1)$ so M_{σ} is generated by e_1 so $\mathbb{C}[M_{\sigma}] = \mathbb{C}[X]$. Similarly, $\sigma' = (\sigma')^{\vee} = \mathsf{Cone}(-e_1)$ so $M_{\sigma'}$ is generated by $-e_1$ and $\mathbb{C}[M_{\sigma'}] = \mathbb{C}[X^{-1}]$. We know $\mathbb{C}[M_0] = \mathbb{C}[X, X^{-1}]$.

Both U_{σ} and $U_{\sigma'}$ are copies of \mathbb{C} and $X(\Delta)$ is obtained by gluing the images of the embeddings

$$i: U_0 = \operatorname{Spec} \mathbb{C}[X, X^{-1}] \to U_{\sigma} = \operatorname{Spec} \mathbb{C}[X]$$

$$i': U_0 = \operatorname{Spec} \mathbb{C}[X, X^{-1}] \to U_{\sigma'} = \operatorname{Spec} \mathbb{C}[X^{-1}].$$

Therefore we have

$$X(\Delta) = \frac{\mathbb{C} \bigsqcup \mathbb{C}}{(a \sim a^{-1})_{a \neq 0}}.$$

Recall $\mathbb{P}^1(\mathbb{C}) = \{[x:1] \mid x \in \mathbb{C}\} \cup \{[1:x] \mid x \in \mathbb{C}\}$ where the overlap is glued via the identification $[a:1] = [1:a^{-1}]$ for all $a \neq 0$. So $X(\Delta) = \mathbb{P}^1(\mathbb{C})$.

Generally, $\mathbb{P}^n(\mathbb{C}) = X(\Delta)$ where $\Delta = \{\mathsf{Cone}(E) | E \subset \{e_1, \dots, e_n, -(e_1 + \dots + e_n)\}\}.$

More examples:

- $Y^{n+1} = XZ$ (Rational singularity of type A_n)
- WZ = XY (Cone over a quadric)
- $Y^2 = X^3$ (Plane curve with a cusp)
- $V(WY X^2, WZ XY, XZ Y^2) \subset \mathbb{P}^3(\mathbb{C})$ (Twisted cubic curve in $\mathbb{P}^3(\mathbb{C})$.)

 \mathbb{C}^n , blow ups of projective space, Hirzebruch surfaces, rational normal scrolls ...