Доклад

Дерево решений

Дворкина Е. В.

07 марта 2025

Преподаватель Кулябов Д. С.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Дворкина Ева Владимировна
- студентка
- · группа НФИбд-01-22
- Российский университет дружбы народов
- · 1132226447@rudn.ru
- https://github.com/evdvorkina

Вводная часть

Цели и задачи

Цель

исследовать модель "Дерево решений"

Задачи

- Дать определение модели дерево решений;
- Описать алгоритм построения дерева решений;
- Показать пример, демонстрирующий работу алгоритма;
- Показать практическую реализацию примера.

Актуальность

- Интерпретируемый и эффективный метод для принятия решения
- Визуализация логики работы с помощью графа
- Применение в различных задачах

Определение

Дерево решений - математическая модель, средство поддержки принятия решений, использующееся в прогнозной аналитике и статистике.

Рис. 1: Пример решающего дерева

Принципы модели

Элементы решающего дерева:

- Узлы
- Ветви
- Листья

Рис. 2: Элементы решающего дерева

Задача построения дерева решений

Общий алгоритм построения дерева решений

- 1. Корневой узел
- 2. Нахождение лучшего атрибута и значения для разделения данных
- 3. Разделение данных на подмножества на основе найденных атрибута и значения.
- 4. Повторение шагов 2 и 3

Условия остановки алгоритма

- Все объекты в узле принадлежат к одному классу.
- · Достигнута максимальная глубина дерева max_depth
- Количество объектов в узле меньше заданного порога min_samples_leaf и min_samples_split.

Энтропия Шеннона

$$E(X_m) = H(X_m) = -\sum_{k=1}^K (p_k \log_2 p_k)$$

 p_k - доля объектов класса k в наборе данных X_m

Рис. 3: Иллюстрация различных значений энтропии Шеннона

Прирост информации (Information Gain)

$$IG(X_m,A) = H(X_m) - \sum_A \frac{|X_{m_v}|}{X_m} H(X_{m_v})$$

- $\cdot \,\, A$ атрибут, по которому происходит разделение данных
- · X_{m_v} подмножество множества X_m после разделения по атрибуту $A.\,v$ конкретное значение атрибута.
- $\cdot \mid X_{m_n} \mid$ количество объектов в модмножестве.
- $\cdot \mid X_{m_n} \mid$ количество объектов в наборе данных делимого узла

Ограничения построения дерева решений

- Низкая обобщающая способность
- Высокая вычислительная сложность

Рис. 4: Пример ограничений дерева решений

Пример работы алгоритма

Данные для принятия решения о выдаче кредитов с помощью решающих деревьев

	Воз-		Кредитная	Трудоустрой-	Семейное	Выдать
ID	раст	Доход	история	СТВО	положение	кредит
1	Моло- дой	Низкий	Плохая	Безработный	Холост	Нет
2	Сред- ний	Средний	Хорошая	Официаль- ная	Женат	Да
3	Пожи- лой	Высокий	Отличная	Пенсионер	Вдовец	Да
4	Моло- дой	Средний	Хорошая	Неофициаль- ная	Холост	Нет

Построение дерева

Сравнение показателей энтропии Шеннона на первом разбиении

Энтропия	
0.40	
0.41	
0.7	
0.59	
0.84	

Построение дерева

Построение дерева

Практическая реализация

Используемые библиотеки

using DataFrames, StatsBase, Random

Функция для вычисления энтропии множества значений целевой переменной

```
function entropy(s)
    counts = countmap(s)
    total = length(s)
    return -sum((v/total) * log2(v/total) for v in values(counts))
end
```

Определение структуры данных для узла дерева решений

```
mutable struct DecisionTree
   name::String
   df::DataFrame
   edges::Vector{Any}
end
```

Создание корневого узла с полными исходными данными

```
root = DecisionTree("decision tree $(names(df0)[end])", df0, [])
open_nodes = [root]
```

```
while !isempty(open_nodes)
  node = popfirst!(open_nodes) # Извлекаем первый узел из очереди
  df_n = node.df

# Проверяем, является ли узел листом
  if entropy(df_n[:, end]) == 0
      continue
  end
```

```
attrs = Dict()
for attr in names(df n)[1:end-1]
    attrs[attr] = (entropy=0.0, dfs=[], values=[])
    for value in unique(df n[:. attr])
        df m = filter(row -> row[attr] == value. df n)
        e = entropy(df_m[:, end]) * size(df_m, 1) / size(df_n, 1)
        attrs[attr] = (entropy=attrs[attr].entropy + e, dfs=push!(attrs[a
    end
end
```

Построение дерева решений

end

```
if isemptv(attrs)
    continue # Если больше нечего разделять, выходим
end
# Выбираем атрибут с наименьшей энтропией
best attr = argmin(x -> x[2].entropy, attrs)[1]
# Создаем дочерние узлы и добавляем их в дерево и очередь open nodes
for (d, v) in zip(attrs[best attr].dfs, attrs[best attr].values)
   child = DecisionTree("$best attr=$v", d[:, Not(best attr)], [])
    push!(node.edges. child) # Добавляем в дерево
    push!(open nodes, child) # Добавляем в очередь на обработку
end
```

22/23

Результат работы

```
decision tree Выдать_кредит
  Трудоустройство=Безработный Dict("Heт" => 4)
  Трудоустройство=Официальная
    Кредитная история=Хорошая Dict("Да" => 3)
    Кредитная история=Отличная Dict("Да" => 4)
    Кредитная история=Плохая Dict("Heт" => 1)
  Трудоустройство=Пенсионер
    Кредитная история=Отличная Dict("Да" => 1)
    Кредитная история=Плохая Dict("Het" => 1)
    Кредитная_история=Хорошая Dict("Да" => 3)
  Трудоустройство=Heoфициальная Dict("Her" => 3)
```

Выводы