Do Carmo 黎曼几何习题

颜成子游

2024年3月9日

目录

 1 第一章

 2 第二章

 3 第三章

1 第一章

2 第二章

1. 设 c(t) 的切向量为 $\dot{c}(t)$ 。根据平行移动可知:

$$\nabla_{\dot{c}(t)} P_{c,t_0,t} = 0 \tag{2.1}$$

等距性:

$$s(t) = ||P_{c,t_0,t}||^2, \dot{s}(t) = 0 \Rightarrow s(t) \equiv s(t_0)$$
(2.2)

保定向:

设 e_i 是 t_0 处的一组单位正交定向基,则 $P_{c,t_0,t}(e_i)$ 是一组 t 处的单位正交基。这两组基诱导的定向必须连续变化,于是 P 是保定向的映射。

2.

$$\frac{d}{dt}P_{c,t_0,t}^{-1}(Y(c(t)))|_{t=t_0} = \lim_{t \to t_0} \frac{Y(c(t)) - P_{c,t_0,t}(Y(p))}{t - t_0} = \nabla_X(Y - P_{c,t_0,t}Y)(p) = \nabla_XY(p)$$
 (2.3)

3.▽ 是联络是平凡的。我们需要说明这是黎曼联络。

根据拉回,M 的度量是 f^*g . 设 $f_*X = \bar{X}$ 。(其他向量场也同理)。从而:

$$X\langle Y,Z\rangle = X\langle f_*Y, f_*Z\rangle = f_*(X)\langle f_*Y, f_*Z\rangle = \langle \bar{\nabla}_{\bar{X}}\bar{Y}, \bar{Z}\rangle + \langle \bar{Y}, \bar{\nabla}_{\bar{X}}\bar{Z}\rangle = \langle \nabla_X Y, Z\rangle + \langle Y, \nabla_X Z\rangle \quad (2.4)$$

4.(a) 借鉴上题的思路。设 ∇ 是 M 上的联络, 则 $\nabla_V V = 0$. 于是 \mathbb{R}^3 上的平凡联络 D 满足:

$$D_V V \perp V$$
 (2.5)

若上述公式成立,则 $\nabla_V V = 0$ 。所以 V 沿着曲线平行移动。

(b)

5. 欧氏空间上平行移动与点无关。因为欧氏空间的联络是平凡的,从而对单位向量 e_i 求联络总是 0.

若不是欧氏空间,则可以举球面 S^2 的例子。从北极点平行移动到南极点,走不同经线得到的结果不同。

6.

7.

8.(a) 略。带入公式:

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} \left\{ \frac{\partial}{\partial x_{i}} g_{jm} + \frac{\partial}{\partial x_{j}} g_{im} - \frac{\partial}{\partial x_{m}} g_{ij} \right\} g^{km}$$
(2.6)

即可。

- (b) 使用 Christoffel 记号计算平行移动的方程即可。
- 9.(a) 仿照 Levi-Civita 联络的证明即可。

因为联络和伪黎曼度量是相容的,且联络是无挠的,我们仍然有:

$$X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle = \langle [X, Z], Y \rangle + \langle [Y, Z], X \rangle + \langle [X, Y], Z \rangle + 2\langle Z, \nabla_Y X \rangle \tag{2.7}$$

因为 $\langle \cdot, \cdot \rangle$ 仍然是非退化的, 所以通过指定 $\langle Z, \nabla_Y X \rangle$ 的值, 我们仍然可以给出 ∇ 的唯一性和存在性。

(b) 设洛伦兹度量下的 Levi-Civita 联络是 ∇ . 平凡度量下的 Levi-Civita 联络是 D. 我们说明若 $\nabla_X Y = 0$ 与 $D_X Y = 0$ 等价。

对于 ∇ 而言, 带入式 (7), 不难发现 $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i} = 0, 0 \leq i, j \leq n$. 所以 $\nabla_{X^i \frac{\partial}{\partial x_i}} (Y^j \frac{\partial}{\partial x_j}) = 0$ 等价于:

$$X^{i}(\nabla_{\frac{\partial}{\partial x_{i}}}Y^{j})\frac{\partial}{\partial x_{i}} = 0 \tag{2.8}$$

由于任何联络作用在函数上总是求李导数, 所以上述方程可以直接替换为:

$$X^{i}(D_{\frac{\partial}{\partial x_{i}}}Y^{j})\frac{\partial}{\partial x_{j}} = 0 \tag{2.9}$$

于是 $D_X Y = 0$ 与 $\nabla_X Y = 0$ 等价。

3 第三章

- 1.(Geodesic of a surface of revolution)
- (a) 计算:

$$\langle \frac{\partial}{\partial v}, \frac{\partial}{\partial u} \rangle = 0, \langle \frac{\partial}{\partial v}, \frac{\partial}{\partial v} \rangle = f'^2 + g'^2, \langle \frac{\partial}{\partial u}, \frac{\partial}{\partial u} \rangle = f^2$$
 (3.1)

(b) 设测地线 $\gamma(t)$ 为 (u(t), v(t)). 则切向量为:

$$\dot{\gamma}(t) = u'(t)\frac{\partial}{\partial u} + v'(t)\frac{\partial}{\partial v}$$
(3.2)

显然需要先计算联络系数。我们有:

$$\Gamma_{11}^1 = 0, \Gamma_{12}^1 = \Gamma_{21}^1 = \frac{f'}{f}, \Gamma_{22}^1 = 0$$
 (3.3)

$$\Gamma_{11}^2 = -\frac{ff'}{f'^2 + g'^2}, \Gamma_{12}^2 = \Gamma_{21}^2 = 0, \Gamma_{22}^2 = \frac{f'f'' + g'g''}{f'^2 + g'^2}$$
(3.4)

带入测地线方程:

$$\frac{d^2u}{dt^2} + 2\frac{f'}{f}\frac{du}{dt}\frac{dv}{dt} = 0 \tag{3.5}$$

$$\frac{d^2v}{dt^2} - \frac{ff'}{(f')^2 + (g')^2} (\frac{du}{dt})^2 + \frac{f'f'' + g'g''}{f'^2 + g'^2} (\frac{dv}{dt})^2 = 0$$
(3.6)

 $(c)|\gamma'(t)|^2 = u'^2 f^2 + v'^2 (f'^2 + g'^2).$ 对其求导:

$$\frac{d}{dt}|\gamma'(t)|^2 = 2u'u''f^2 + 2u'^2ff'v' + 2v''v'(f'^2 + g'^2) + 2v'^3(f''f' + g''g')$$
(3.7)

$$=2u'u''f^{2}+2u'^{2}ff'v'+2v'[ff'u'^{2}-(f'f''+g'g'')v'^{2}]+2v'^{3}(f''f'+g''g')$$
(3.8)

$$=2fu'(u''f+2u'v'f')=0$$
(3.9)

略去第二个有向角的计算。记录为:

$$r\cos\beta = \text{const}$$
 (3.10)

- (d) 我认为是一个错题。
- 2.(定义切丛上的 Riemann 度量)
- (a) 对于给出的度量表达式,良定义意为选择的曲线 p, v, q, w 并不影响计算的结果. 其次,这是一个对称的正定二次型。

对称的正定二次型是平凡的。因而我们只需要考虑良定义问题。观察表达式:

$$\langle V, W \rangle_{p,v} = \langle d\pi(V), d\pi(W) \rangle_p + \langle \frac{Dv}{dt}(0), \frac{Dw}{ds}(0) \rangle_p$$
 (3.11)

显然第一项是自然良定的。对于第二项, 注意到:

$$\frac{Dv}{dt}(0) = \nabla_{d\pi(V)}v(t), \frac{Dw}{ds}(0) = \nabla_{d\pi(W)}w(s)$$
(3.12)

我们需要说明 $\nabla_{d\pi(V)}v(t)$ 是不依赖 v(t) 选取的向量。不妨根据联络的定义展开:

$$\nabla_{d\pi(V)}v(t) = ((d\pi(V))^j \frac{\partial v^i}{\partial x^j} + \Gamma^i_{kj}(d\pi(V))^k Y^j) \frac{\partial}{\partial x^i}, \frac{\partial v^i}{\partial x^j} = V^{n+i}$$
(3.13)

于是该向量被v,V所表达,因而是良定义的。

(b) 纤维上 $d\pi(W) = 0$ 。因此 V 是水平向量等价于:

$$\langle \frac{Dv}{dt}(0), \frac{Dw}{ds}(0) \rangle \equiv 0, \forall w(t)$$
 (3.14)

因此 $\frac{Dv}{dt} = \nabla_{\dot{p}(t)} v(t) = 0$ 恒成立, 即 v(t) 沿着 p(t) 平行移动。

(c) 设 v(t) 是测地向量场 $(M \perp b)$ 。这也可以写作 $v: M \to TM$ 表。我们断言 $v_*v(t)$ 是水平向量场。不妨设 v(t) 对应的测地线是 p(t)。

于是在 (p(t),v(t)) 处, $\nabla_{p(t)}v(t)=0$ 恒成立,从而 $v_*v(t)$ 是水平向量场。

(d) 设 $\bar{\alpha}(t) = (\alpha(t), v(t))$, 其中 v(t) 是沿着 $\alpha(t)$ 的向量场。则:

$$\|\dot{\alpha}(t)\|^2 = \|\dot{\alpha}(t)\|^2 + \|\frac{Dv}{dt}\|^2 \ge \|\dot{\alpha}(t)\|^2$$
 (3.15)

于是我们有:

$$l(\bar{\alpha}) \ge l(\alpha) \tag{3.16}$$

若 $\alpha(t)$ 是测地线且 v(t) 是 $\alpha(t)$ 的切向量, 我们有:

$$\|\dot{\alpha}(t)\|^2 = \|\dot{\alpha}(t)\|^2 + \|\frac{Dv}{dt}\|^2 = \|\dot{\alpha}(t)\|^2 + 0 = \|\dot{\alpha}(t)\|^2$$
(3.17)

于是 $l(\alpha) = l(\bar{\alpha})$ 。

现在考虑一个能使得测地线是最短线的凸邻域。于是 $\bar{\alpha}$ 成为了所有 $\bar{\gamma}(t)$ 中的最短线, 因而是测地线。

(e) 因为
$$\frac{Dw}{dt} = 0(W$$
 水平), 所以第一个等式成立。

如果 W 垂直, 则 $d\pi(W)=0$ 且 $\dfrac{Dw}{dt}$ 退化为 W. 所以第二个等式成立。