

United International University

Name (Optional)	
ID No. Section	Invigilator's Signature with date
Course Code Trimester / Semester : Spring / Summer / Fall, 20	
	te:
A Homogenous differential equation examples	
A first order differential);
equation is said to be homogenous OF,	n.E.
ic hash co-efficients M / Hom	nogenous D.E.
homogenous functions Form	
of same degree.	= f(x,y)
M(x,y) dx + N(x,y)dy = 0	
Example: 1):f(x, y) = (x3) (+y3)	(homogenous function
$2)f(\alpha,y) = x^3 + y^3 + 1$	
3) (12 + y2) dx + (22 - ny) dy =	O (homogenous
4) $\frac{dy}{dx} = x^2 + y^2 \qquad (Not D. E.)$ $(x^2 + y^2) dx = dy$	nomogenous
$(x^2 + y^2) dx = dy$	Hore, degree of

```
8/4 x 2, x 2, x 2, x
                   \mathbb{Z}ill] ch \Rightarrow 2.5
 Homogenous Equation: / function)
                                        1 homog. d.E
      (1x, 18) = 1 af(x, 8)
                                       is an equation
                                         containing a diff-
  suppose, M(x,y) dx + N(x,y) dy
                                        = 0 crientiation
                                            and a function
       M (12, ty) = 1 M (x,y)
                                          with you'ables
       N (tx, ty) = 10 N (x,y)
 substitution: y= ux
 Problem: 1) (x2+y2) dx + (x2-xy) dy = 0
 5017: Herre, M(x,y) - x2+y2
    (4x)^2 + (4y)^2 = 4^2 + 5(x,y)
   (17)2 - (1x)(y) = 12 f (x/y)
  30, homogenous.
Now, Let, y=ux .: dy = udx + xdu
other, (x2 + u2x2) dx + (x2 - ux2) (udx + xdu)
        => x2 dx + u2x2 dx + x2 udx + x3 du -
        u^2 d^2 dx - u x^3 du = 0
       =7 x2 (1+4) dx + x3 (1-4) du =0 } UNL
             \Rightarrow -\frac{\alpha^2 d\alpha}{\alpha^3} = \int \frac{(1-u)}{1+u} du = \int \frac{d\alpha}{\alpha} = \int \frac{u-1}{u+1} du
```

2 Ln/1+u/ 2 Ln | 1+4 = 211/1+7 = Lnx +c

[Ab]

Froblem: (b)
$$(y^2 + xy) dx - + \eta^2 dy = 0$$

$$M(tx, ty) = (ty)^x + txty$$

$$= t^2 y^2 + t^2 xy$$

$$= t^2 f(x,y)$$

$$N(tx, ty) = x^2 x^2$$

$$= t^2 f(x,y)$$

Thun, Let, $y = ux$

$$= y dy = udx + xdu$$

$$= y dy = udx + xdu$$

$$= 0$$

$$= y u^2 x^2 dx + x^2 y dx + x^2 y dx - x^3 du$$

$$= 0$$

$$= y u^2 x^2 dx = x^6 du$$

: Lnx + = C [Ans.]

Froblem:
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$

$$= y \quad (x+y) \quad dy = (y-x) dx$$

$$= y \quad (x+y) \quad dy = (y-x) dx$$

$$= y \quad (x+y) \quad [ud\alpha + xdu] = (uy-x) \quad dx$$

$$= y \quad (x+y) \quad [ud\alpha + xdu] = (uy-x) \quad dx$$

$$= y \quad (x+y) \quad [ud\alpha + xdu] = (uy-x) \quad dx$$

$$= y \quad (x+y) \quad dx \quad + ux^2 \quad dx \quad + ux^2 \quad dx \quad - ux \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad dx \quad = -x^2 \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad (x+y) \quad dx$$

$$= y \quad (x+y) \quad ($$

Inoblem: (9) -
$$y d\alpha + (\alpha + \sqrt{\pi y}) dy = 0$$

$$M(1\pi, 4y) = -4y = 4(-y) = 4f(\pi,y)$$

$$N(4\pi, 4y) = 4\pi + \sqrt{42\pi y} = +[\pi + \sqrt{\pi y}]$$

$$= 4 f(\pi,y)$$

Let,
$$y = ux$$
 .. $dy = udx + qdu$

Then, $-ux dx + (x + \sqrt{x \cdot ux}) [udx + qdu]$
 $= x - ux dx + xu dx + qx^2 du + xu \sqrt{u} dx$
 $= x - ux dx + xu dx + qx^2 du + xu \sqrt{u} dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + xu dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx^2 dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx^2 dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx^2 dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx^2 dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx dx + qx^2 dx + qx^2 dx + qx^2 dx + qx^2 dx$
 $= x - ux dx + qx dx + qx^2 dx + qx$

=>
$$-2\sqrt{\frac{1}{2}} + \ln u = -2\pi x + C$$

=> $-2(\frac{y}{x})^{1/2} + \ln(\frac{y}{x}) = -\ln x + C$
[Ans.]