天津大学《数值计算方法与 Matlab》2008-2009 学年第二学期期末试卷 A

题 号	1	1 1	1:1	成	绩	核分人签字
得分						

٦,	填空题:	(共42分,	每空3分)	按要求把正确的答案填在每题中的横线上方。
----	------	--------	-------	----------------------

1.	下列各数是经过四舍五。	入得到的近似值 x; = 1.1021	,	$x_2^* = 0.031$,	则它们分别有	Д
----	-------------	---------------------	---	-----------------	---	--------	---

位有效数字	,	$x_1 + x_2$ 的绝对误差限为	0
-------	---	---------------------	---

2.
$$\mathbf{n}+1$$
 点插值型数值积分公式 $\int_a^b f(x) \, dx \approx \sum_{k=0}^n A_k f(x_k)$ 的代数精度,至少是

最高不超过。

- 3. 已知 $f(x_k)$ 在节点 x_k =0.9, 1.0 和 1.1 处函数值分别为 1.260, 1.557 和 1.964, 则用
- 三点数值微分公式计算,f'(1.1) = 和f'(0.9) = (保留 3 位有效数字)。
- 4.建立常微分方程初值问题 y'(x) = f(x,y) , $y(x_0) = y_0$ 的计算格式有三种基本方法,

r> R⊤E	
它们是	0

5. 设 S(x) 是 f(x) 在互异节点 x_k (k=0,1,...,n) 上的三次样条函数,要想确定此三

次样条函数S(x),共需要几个定解条件:,	其中自然边界条件是指
-----------------------	------------

6.	已知{g,(x)} 。	是区间[0,1]]上带权ρ(x)=1	的最高次项系数为 1	的正交多项式序
----	-------------	----------	------------	------------	---------

$$I = \int_{0.2 + x}^{1} dx$$
 ,则为使误差不超过10⁻⁵ ,至少需要节点个数是_____。

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
。当 $b \in \mathbb{R}$ 有误差 $\mathcal{S}b = \begin{bmatrix} \varepsilon \\ \varepsilon \\ 0 \end{bmatrix}$ 时,引起解向量的相对误差 $\frac{\|\mathcal{S}x\|_{2}}{\|\mathbf{x}\|_{2}}$ 的上界为______。

二、解下列各题: (共36分,每小题9分)

1. 确定求积公式 $\int_0^1 xf(x) dx \approx Af(0) + Bf(1) + Cf(2)$ 中的特定参数 A, B, C,使其代数精度尽量高,并指出所确定的求积公式的代数精度。

学院______专业_

A卷 共三页 第2页

2. 写出解下列方程组的 Gauss-Seidel 法迭代公式的分量形式,并考察此方法当常数 ϵ 为 何值时收敛与发散。

$$\begin{bmatrix} 1 & c & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ c & 1 & c \end{bmatrix} \begin{bmatrix} 2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \end{bmatrix}$$
$$\begin{bmatrix} 0 & c & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

4. 利用 Gauss-Legendre 三点求积公式计算积分 $\int_0^1 e^{-2x^2} \cos(2x) dx$ (保留 5 位有效数 字)。

3. 设 $y = \cos x$ 的函数数据表如下:

X _k	0.0	0.1	0.2	0.3	0.4	0.5	0.6
Уk	1.00000	0.99500	0.98007	0.95534	0.92106	0.87758	0.82534

利用四次插值多项式计算 cos(0.048)的近似值(保留5位有效数字)。

三、 应用题: (共22分, 每小题11分)

1. 给定实验数据如下:

Х	1.0	1.4	1.8	2.2	2.6
у	0.931	0.473	0.297	0.224	0.168

求形如 $y = \frac{1}{a + bx}$ 的拟合函数 (结果保留三位小数)。

2. 假设有两种生物蓝鲸和磷虾,在时刻t时的数量分别为 $x_1(t)$ 和 $x_2(t)$ 。蓝鲸以磷虾为主要食物,二者在自然条件下,它们的数量关系为:

$$\dot{x}_{1} = -ax_{1} + bx_{1}x_{2}, \ \dot{x}_{2} = cx_{2} - dx_{1}x_{2}$$

其中a=0.8,b=0.3,c=1.2,d=0.6, $\dot{x}_{_{4}},k=1,2$ 表示 $x_{_{4}}$ 对时间 t 的导数,初始条件为 $x_{_{1}}(0)=2$ 和 $x_{_{2}}(0)=1$ 。写出用经典四阶 Runge-Kutta 方法解此初值问题的计算格式(步 长取为 h)。

