DEFINIZIONI

VERTICE RAGGIUNGIBILE

Dati due vertici u e $v \in V$, il vertice v è raggiungibile dal vertice u ($v \sim u$) SSE \exists un **cammino** dal vertice u al vertice v.

Nel caso di grafi non orientati \sim è una relazione d'equivalenza (simmetrica, riflessiva e transitiva).

CAMMINO

Un cammino da u a v è una sequenza (*finita*) di vertici $\mathbf{u_0}$, $\mathbf{u_1}$, ..., $\mathbf{u_k}$ dove $\mathbf{u_0} = u$ e $\mathbf{u_k} = v$ tale per cui \forall $i \in \{0, ..., k-1\}$ ($\mathbf{u_i}$, $\mathbf{u_{i+1}}$) \in E.

Ovviamente un cammino può anche avere lunghezza zero.

DISTANZA FRA VERTICI

La distanza di un vertice v da un vertice u è il numero di archi su un cammino minimo da u a v. La distanza tra u e u stesso vale 0.

GRAFO CONNESSO

Un grafo non orientato G è connesso SSE \forall u, v \in V, v è *raggiungibile* da u. Formalmente G = (V, E) | \forall u, v \in V, v è raggiungibile da u.

COMPONENTE CONNESSA

Una componente connessa è un sotto insieme di vertici $CC \subseteq V$ tale che \forall u, $v \in CC$, v è *raggiungibile* da u.

Formalmente: $CC \subseteq V \mid \forall u, v \in CC : v \text{ è raggiungibile da u}$ e ogni altro sottoinsieme che contiene CC è esattamente uguale a CC.

Compattamente: Una CC è un elemento di V / \sim (insieme quoziente della relazione di raggiungibilità).

Dove \sim è la relazione di raggiungibilità.

ALBERO

Un grafo G = (V, E) non orientato è un albero SSE

- è connesso e aciclico (privo di cicli).
- è connesso e |E| = |V| 1.
- è aciclico e |E| = |V| 1.

FORESTA

Un grafo G = (V, E) non orientato è una foresta se due suoi vertici qualsiasi sono connessi da **al più** un cammino (aciclico). Una foresta risulta quindi essere un'unione disgiunta di alberi.

GRAFO COMPLETO

Un grafo è completo quando ogni suo vertice è collegato ad ogni altro suo vertice. Formalmente:

- PER GRAFI NON ORIENTATI: $\forall v \in V, \ \forall u \in V \{v\}$ $(u, v) \in E$
- PER GRAFI ORIENTATI: $\forall v \in V, \forall u \in V$ $(u, v) \in E$

ALBERO BFS

Denotiamo l'albero BFS con $\mathbf{G}_{\pi} = (\mathbf{V}_{\pi}, \mathbf{E}_{\pi})$ tale che:

 V_{π} contiene tutti i vertici raggiungibili dalla sorgente s.

Possiamo quindi definire V_{π} in 3 modi equivalenti, ovvero:

- $V_{\pi} = \{ v \in V \mid v.col \neq WHITE \}$ (oppure v.col = BLACK)
- $V_{\pi} = \{ v \in V \mid v.d \neq \infty \}$
- $V_{\pi} = \{ v \in V \mid v.\pi \neq NIL \} \cup \{s\}$

 E_{π} sono gli archi dell'albero.

Definiamo E_{π} come

- $E_{\pi} = \{ (v.\pi, v) \mid v \in V_{\pi} \{s\} \}$
- $E_{\pi} = \{ (u, v) \mid u, v \in V_{\pi} \{s\} : v.\pi = u \} \cup \{ (s, w) \mid w \in Adj[s] \}$ (non sono sicuro della correttezza di questa)

FORESTA DFS

Denotiamo la foresta DFS con \mathbf{G}_{π} = (**V**, \mathbf{E}_{π}) tale che:

V è l'insieme dei vertici del grafo originario, poiché DFS visita tutti i nodi.

 E_{π} rappresenta gli archi della foresta e lo definiamo come:

$$\mathsf{E}_{\pi} = \{ (\mathsf{v}.\pi, \mathsf{v}) \mid \mathsf{v} \in \mathsf{V} \land \mathsf{v}.\pi \neq \mathsf{NIL} \}$$

MST

Sia G=(V,E) un grafo non orientato e connesso.

Un albero di copertura di G è un grafo (V,T) con $T\subseteq E$ aciclico.

Sia G=(V,E) un grafo non orientato, connesso e pesato mediante la funzione $w:E\to\mathbb{R}.$ Un albero di copertura minimo di G è un albero di copertura (V,T) tale che $w(T)=\min\{w(A)\mid A\subseteq E\land (V,A)\ albero\ di\ copertura\ di\ G\}.$

MATROIDI

Un matroide è una coppia < E, F> tale che

- E sia un insieme finito ed F una famiglia di sottoinsiemi di E tale per cui $\forall A \in F$ e $B \subseteq A$ $\implies B \in F$, ovvero che sia un sistema di indipendenza
- E tale che $\forall A, B \in F$, con |B| = |A| + 1, $\exists b \in B A$ tale che $A \cup \{b\} \in F$.

Il teorema di Rado ci dice inoltre che se < E, F> è un matroide, allora qualsiasi funzione peso utilizziamo, l'algoritmo greedy standard ci darà la soluzione ottima.