

Universidade do Minho

Mestrado Integrado em Engenharia Informática

Paradigmas da Computação Paralela

2º Trabalho - MPI
Bucket-Sort

João Alves (A77070) Filipe Silva (A77284)

Conteúdo

1	Análise Teórica do Algoritmo	1
2	Desenvolvimento da Implementação MPI2.1Partição do Problema e dos Dados a Processar	1 1 2 2 3
3	Análise Teórica da Implementação Paralela 3.1 Análise da Computação e Comunicação	3 3
4	Experimentação 4.1 Máquinas Utilizadas	4 4
5	Análise do Perfil de Execução	5
6	Análise de Resultados 6.1 Escalabilidade	5 6 7 8
7	Comparação com a Implementação OpenMP e Conclusões	8
Aı	pêndices	10
-	pêndice A Mapeamento dos Processos A.1 Por Core	10 10 12 14
	pêndice B Especificações dos CPUs Instalados nas Máquinas Usadas	16
Aı	pêndice C Resultados da Análise do Perfil de Execução	16
Ap	pêndice D Resultados Obtidos D.1 Por Core	17 17 17 18
Aı	pêndice E Tabela de SpeedUps	18
Aı	pêndice F Custos de Comunicação F.1 Por Core F.2 Por Nodo F.3 Por Socket	19 19 20 21

Lista de Figuras

1	Speedups obtidos para os diferentes tipos de mapeamento	7
2	Tempos de comunicação obtidos para os diferentes tipos de mapeamento,	
	comparativamente com os tempos computacionais	7
3	Diferença da carga distribuída pelos processos	8

1 Análise Teórica do Algoritmo

O algoritmo estudado pelo grupo, assim como para a implementação com memória partilhada anteriormente, é o **bucket-sort**. Este é um algoritmo de ordenação, que foi descrito como podendo ser dividido em quatro fases distintas, mas dependentes. Sendo estas as seguintes: criação de um vetor de *buckets*, inicialmente vazios, colocação de cada elemento do vetor original, no *bucket* correspondente, ordenação dos *buckets* não vazios, aplicando um algoritmo de ordenação definido, e, finalmente, colocação no vetor original. Sendo todas as fases dependentes, estas têm de ser então executadas ordenadamente.

A análise da complexidade permite concluir que as fases de inicialização, colocação e recolocação no vetor original executam em tempo linear. Já a fase de ordenação dos buckets está dependente do algoritmo de ordenação que é aplicado. Uma vez que o algoritmo escolhido foi o merge sort, a sua complexidade é dada por $N\log_2{(N/p)}$. Conclui-se assim que a complexidade total do algoritmo é igual a:

$$3N + N \log_2(N/p) = O(N + N \log_2(N/p))$$

Onde p é o número de buckets utilizados e N é o número de elementos do vetor inicial.

2 Desenvolvimento da Implementação MPI

Para proceder ao desenho da implementação **MPI**, o grupo decidiu seguir-se pela metodologia de **Foster** [1], constituída por quatro fases. Sendo que, cada uma destas será abordada nas próximas secções, com o intuito de justificar a solução implementada.

2.1 Partição do Problema e dos Dados a Processar

O primeiro contacto do grupo com o problema, na solução anterior com memória partilhada, permitiu-lhes visualizar algumas oportunidades de paralelismo.

Sendo que todas as fases do problema são dependentes, não será possível definir uma decomposição funcional. Contudo, existem dados que podem ser processados em paralelo, nomeadamente nas fases de inicialização e ordenação dos buckets, uma vez que, depois destes serem preenchidos, podem ser ordenados de forma independente. Com isto, foi então possível reconhecer a aplicação de um mesmo algoritmo de ordenação, a um conjunto de dados previamente processado (buckets). Sendo esta uma das principais características de um padrão master-slave, o grupo decidiu trabalhar sobre esta hipótese de implementação.

Posto isto, sendo que o **master** fica responsável pela alocação dos elementos do vetor original, nos *buckets* respetivos, e os **slaves** pela ordenação de cada *bucket*, a divisão do trabalho é feita pelo **master** e enviada aos **slaves**, para, depois de executadas as tarefas, os resultados poderem ser recolhidos pelo **master**.

Concluiu-se assim que, este padrão torna-se adequado, uma vez que não existem dependências entre as tarefas a serem executadas e os custos de passagem de dados, entre o *master* e os *slaves*, não seriam excessivamente elevados.

Porém, se a granularidade das tarefas for muito fina, ou se existir um número demasiado elevado de *slaves*, o processo *master* poderá tornar-se um *bottleneck*. Esse é o principal problema de um paradigma *master-slave*.

Por isso, o grupo decidiu estabelecer um teto para o número de bucktes a serem ordenados, que consiste na limitação do mesmo, ao número de slaves. Desta forma, tenta-se garantir que granularidade das tarefas seja maior e o número de slaves não seja demasiado elevado. Contudo, é preciso ter especial atenção à distribuição dos elementos pelos buckets, uma vez que, se esta for demasiado desbalanceada, terá um grande impacto negativo na eficiência do algoritmo.

2.2 Identificação da Comunicação Necessária

Seguindo ainda o modelo *master-slave*, a comunicação necessária envolve apenas o *master* e os *slaves*, para o envio das tarefas e recolha dos resultados.

Posto isto, o grupo começou por implementar a comunicação entre *master* e *slaves*, usando as primitivas **MPI_Send** e **MPI_Recv**. Porém, um estudo mais aprofundado da documentação do **MPI**, permitiu concluir que as operações coletivas são bastante mais eficientes, do que uma implementação de *gather* ou *scatter*, recorrendo apenas às primitivas **MPI_Send** e **MPI_Recv** [2].

Visto isto, para tirar o melhor partido das operações coletivas, o grupo decidiu utilizar as primitivas MPI_Scatter para enviar os buckets para os processos respetivos, seguido pelo MPI_Gatherv, para recolher os resultados. A principal diferença entre MPI_Gather e MPI_Gatherv, encontra-se no facto da última permitir especificar um displacement relativo ao array retornado como resultado. A sua utilidade encontra-se no facto de os elementos não serem distribuídos uniformemente pelos buckets, no entanto, o array especificado como displacement, permite ao master reconhecer onde colocar o conjunto de dados, retornados por um dado processo, relativamente ao buffer recebido. Isto permite ao master recolher imediatamente os elementos ordenados por cada slave, para o vetor original.

Concluiu-se então que a comunicação é **local**, uma vez que cada tarefa comunica apenas com o *master* e este com as restantes tarefas, **estruturada** e **estática** e, por último, síncrona.

2.3 Aglomeração de Computação e de Comunicação

Com o objetivo de reduzir os custos de comunicação, para além de tirar proveito da eficiência das operações coletivas, todos os elementos do vetor original são primeiramente colocados no *bucket* respetivo e só depois são enviados, para proceder à ordenação.

Sendo que, se o vetor original for constituído por N elementos, cada bucket suportará também N elementos, contando com o pior caso, em que a distribuição é feita apenas por um bucket.

Contudo, a distribuição foi feita com vista em ser o mais balanceada possível, processando-se da seguinte forma: para um elemento aleatório do vetor original i, o seu bucket correspondente é dado por: $i \times \frac{P}{N}$, onde P é o número de buckets (slaves) e N é o número total de elementos do vetor original, assim como o valor máximo, existente ou não, no array.

No que diz respeito à ordenação de cada *bucket*, não existe qualquer tipo de comunicação, ou seja, não é necessário considerar qualquer tipo de aglomeração para a tarefa de ordenação.

Finalmente, a comunicação inerente no retorno dos resultados, consiste apenas no envio dos respetivos vetores ordenados, por parte dos **slaves**, para o **master**. Sendo que, cada um envia o número de elementos que ordenou, em vez do tamanho do *bucket* em si.

2.4 Mapeamento das Tarefas no Sistema

Seguindo ainda o mesmo padrão de implementação, o grupo decidiu distribuir os slaves pelos processadores e, consequentemente, distribuir a carga através de uma atribuição estática.

Deste modo, a cada *slave* (processador) seria atribuído um *bucket* para ser ordenado. Mais à frente, serão estudadas várias técnicas de mapeamento, com o objetivo de encontrar a estratégia mais eficiente (ver anexo A).

3 Análise Teórica da Implementação Paralela

3.1 Análise da Computação e Comunicação

Recordando a análise da complexidade da implementação sequencial, o seu custo era $N+N\log_2{(N/p)}$. Porém, com a introdução da paralelização ao nível da ordenação dos *buckets*, o seu custo é reduzido para $(\frac{N}{p})\log_2{(\frac{N}{p})}$, onde p é o número de processos. Ficando assim com um tempo de computação igual a:

$$N + \frac{N \log_2\left(N/p\right)}{p}$$

Posto isto, as operações de comunicação do programa resumem-se a dois *scatters*, um do número de elementos em cada *bucket* e outro dos elementos de cada *bucket*, pelos respetivos processos, e um *qather*.

Considerando que o custo do scatter de N elementos custa $T_s + NT_d$, onde T_s é o overhead de criação e o T_d é o custo do envio de um elemento, o tempo total de comunicação é dado por:

$$3pT_s + pT_d + 2NT_d$$

3.2 Análise do SpeedUp

Vistos os custos computacionais e de comunicação, o tempo total da execução paralela é dado pela soma dos dois, da seguinte forma:

$$T_{e} = N + \frac{N \log_{2}(N/p)}{p} + 3pT_{s} + pT_{d} + 2NT_{d}$$

$$= O(N + p + \frac{N \log_{2}(N/p)}{p})$$
(1)

Isto aplica-se, assumindo que a carga dos processos é distribuída equitativamente por todos. Podendo então o *speedup* ser calculado por:

$$speedup = \frac{3N + N \log_2{(N/p)}}{N + \frac{N \log_2{(N/p)}}{p} + 3pT_s + pT_d + 2NT_d}$$

4 Experimentação

Feito o desenho e após a implementação da solução visualizada, o grupo procedeu à experimentação e medição de métricas, que permitissem analisar o desempenho do programa.

Para obter dados reproduzíveis em cada medição, foram executadas oito repetições para cada uma, calculando de seguida a mediana dos resultados obtidos. Para além disto, a cache foi sempre limpa antes de se proceder à execução do algoritmo.

Nas próximas secções, serão justificadas as decisões tomadas pelo grupo, nesta fase de experimentação.

4.1 Máquinas Utilizadas

Tal como foi sugerido, o grupo optou por usar sempre duas máquinas do *rack* **641** do *cluster* **SeARCH** [5], para correr todos os testes e recolha de resultados.

Este *rack* é constituído por um total de vinte nodos, cada um com dois **CPU**, ambos **Intel Xeon Processor E5-2650** [6], cuja arquitetura encontra-se documentada em anexo (ver anexo B).

Finalmente, para cada teste, foram também requisitados 32 cores lógicos, uma vez que este é o máximo suportado pelos CPU, tentando assim evitar a possível partilha de recursos com outros utilizadores.

4.2 Dados de Entrada

Uma vez que a distribuição da carga de cada *bucket* é um fator determinante, no que diz respeito ao impacto no desempenho do algoritmo, o grupo considerou que todos os diferentes tamanhos para o vetor inicial deveriam ser potências de dois. Isto tendo em conta que, o número de *buckets* seja também uma potência de dois, de modo a simplificar a divisão e tentar melhorar a distribuição dos elementos.

Com isto, o grupo decidiu testar a execução do algoritmo com um número de buckets variável, para um mesmo tamanho. Ou seja, para vetores com tamanhos 2048, 16384, 1048576 e 2048k foram recolhidas medições para 2, 4, 8, 16 e 32 buckets.

A dimensão dos vetores foi calculada com base nos tamanhos das *caches*, de maneira a que estes fossem completamente carregados para os vários níveis da hierarquia. Tendo assim o vetor com 2048 elementos completamente carregado na *cache* L1, 16384 na *cache* L2 e assim sucessivamente, tendo em conta que o vetor de maior dimensão ultrapassaria a capacidade da *cache* L3.

5 Análise do Perfil de Execução

Com o intuito de retirar e analisar o perfil de execução do programa e após uma pesquisa sobre as ferramentas disponíveis, que pudessem auxiliar o grupo nesta tarefa, optou-se por usar uma ferramenta designada por **Score-P** (*Scalable Performance Me-asurement Infrastructure for Parallel Codes*) [3]. Esta disponibiliza uma infraestrutura que permite medir o perfil de execução de uma aplicação, orientada para computação de elevado desempenho.

Após um estudo prévio da documentação [4] desta, procedeu-se à sua aplicação, para analisar o perfil de execução de um vetor inicial com 2048k elementos, obtendo o resultado que pode ser visto em anexo (ver anexo C).

A primeira linha dos resultados obtidos fornece uma estimativa sobre o tamanho total requerido, com a agregação de todos os processos. É uma informação útil para estimar o espaço requerido no disco. Neste caso sendo 141MB.

A segunda linha permite estimar o espaço de memória necessário por cada processo. No entanto, a memória reservada pela ferramenta em cada processo, no início da execução da aplicação, deve ser suficiente para que os dados se encontrem todos em memória, de maneira a evitar *flushes*, uma vez que estes podem causar algum ruído nas medições.

Para além disto, o **Score-P** requer ainda alguma memória adicional para manter as suas estruturas de dados, daí também ser disponibilizada uma estimativa da memória necessária em cada processo, na terceira linha do *output*.

As cinco linhas seguintes fornecem já alguma informação sobre o tempo de execução da aplicação, distribuído por certos grupos de funções. A coluna time(s) apresenta o tempo despendido em regiões pertencentes ao respetivo grupo, em segundos. Enquanto que a coluna seguinte possui a fração do tempo total, consumido por esse grupo. De seguida, a coluna time/visit(us) mostra o tempo médio por visita em micro-segundos. Por fim, a coluna visits indica número de vezes que essa região é invocada.

Para este algoritmo foram reconhecidos os grupos **ALL**, **USR**, **MPI** e **COM**. Sendo os mais relevantes os grupos **MPI** e **USR**, que contêm as funções **MPI** e as funções definidas pelo grupo, respetivamente.

Finalmente, as linhas seguintes mostram as informações vistas anteriormente, mas desta vez para cada região da aplicação, onde cada região é uma função chamada pelo programa.

Seguindo então com a análise dos resultados obtidos, é possível verificar que as operações que possuem mais impacto no desempenho do programa são MPLInit, MPLScatter, merge e sort, como seria de esperar. É de notar que a função MPLScatter é chamada oito vezes, sendo que tem-se apenas quatro processos em execução. Isto acontece porque é necessário enviar para todos os processos, não só os buckets para serem ordenados, mas também o número de elementos contidos em cada um. De seguida, as operações merge e sort dizem respeito à aplicação do algoritmo merge sort, para ordenar os elementos de cada bucket.

6 Análise de Resultados

Uma vez traçado o perfil de execução da aplicação, procedeu-se então com a análise de resultados, para as medições realizadas. Estas consistem na medição do tempo total

de execução, somente os tempos de comunicação e no número de elementos ordenados por cada processo. Com estas medições o grupo pretende calcular a escalabilidade do programa, os custos de comunicação e o grau de balanceamento da carga pelos processos.

Cada uma destas métricas será discutida aprofundadamente nas próximas secções, juntamente com os resultados correspondentes obtidos.

6.1 Escalabilidade

A primeira métrica analisada pelo grupo foi a escalabilidade do programa. Para tal, foi medido o tempo de execução total e, para as mesmas condições experimentais e dados de entrada, o tempo do algoritmo sequencial, dividindo o mesmo pelo resultado obtido da implementação paralela, obtendo por fim o **speedup**.

Uma primeira análise dos resultados obtidos, permite concluir que o algoritmo paralelo não possui ganhos para os dois vetores de menor dimensão. Uma vez que, o overhead associado à comunicação torna-se demasiado expressivo, face à granularidade das tarefas a serem executadas em paralelo. Na próxima secção verificar-se-á isto mesmo, comparando os tempos de comunicação e de computação.

De seguida, reparou-se que a aplicação escala de forma crescente até aos 8 processos por *core*, começando a decrescer a partir daí, devido à mesma razão discutida em cima (ver figura 1a). Contudo, a maior quebra ocorre, quando a distribuição é feita por 32 processos, causada pela utilização de duas máquinas diferentes, que aumenta em grande escala os tempos de comunicação.

Para além disto, foram também recolhidos resultados para mais dois tipos diferentes de mapeamento dos processos, sendo estes por nodo e por *socket* (ver anexo D). Contudo, foi possível verificar que os melhores foram obtidos para os mapeamentos por *core* e por *socket* (ver anexo E), estando estes muito próximos um do outro. Para o mapeamento por nodo, como este é feito em *round-robin* por nodo, os processos serão atribuídos a *cores* em máquinas diferentes, o que implica elevados custos de comunicação entre eles.

Figura 1: Speedups obtidos para os diferentes tipos de mapeamento.

6.2 Custos de Comunicação

Para calcular os custos de comunicação, o grupo mediu apenas os tempos da distribuição dos *buckets* e respetivo número de elementos, pelos processos, e respetiva coleta resultados. Isto corresponde apenas às duas primitivas MPI_Scatter e à primitiva MPI_Gathery.

Obtidos os resultados, compararam-se os tempos de comunicação com os tempos de computação, que podem ser vistos na figura abaixo, para os respetivos tipos de mapeamento, e para o vetor de maior dimensão (2048k elementos).

Figura 2: Tempos de comunicação obtidos para os diferentes tipos de mapeamento, comparativamente com os tempos computacionais.

Como é possível concluir, os tempos de comunicação aumentam consideravelmente, a partir do momento em que são utilizadas duas máquinas.

6.3 Distribuição da Carga pelos Processos

Finalmente, para medir o grau de balanceamento ente a carga dos processos, foi contabilizado o número de elementos ordenado por cada processo, isto é o número de elementos por *bucket*. De seguida, foi feita a diferença entre o número máximo de elementos ordenados por um processo e o número mínimo, e foi calculada a percentagem de excesso (ver anexo G).

Com os resultados obtidos, foi possível reparar que quanto maior for o número de elementos, melhor é a distribuição dos mesmos, pelos buckets respetivos, melhorando também o desempenho do algoritmo.

A figura abaixo ilustra esta diferença, em percentagem, para o array de maior dimensão.

Figura 3: Diferença da carga distribuída pelos processos.

7 Comparação com a Implementação OpenMP e Conclusões

Uma vez que a implementação usando memória partilhada, com **OpenMP**, não exige comunicação entre *threads*, a sua escalabilidade será melhor, uma vez que não existe o *overhead* de comunicação.

Resta ainda concluir que, por causa do teto estabelecido para o número de *buckets*, a escalabilidade do programa encontra-se bastante limitada, uma vez que, se o número de *buckets* fosse superior e o mapeamento fosse dinâmico, talvez a escalabilidade do algoritmo melhorasse. Porém, isso exigiria que cada processo possuísse conhecimento sobre o número de *buckets* que já tinham sido ordenados, sendo que essa seria uma possível implementação híbrida (com memória partilhada e distribuída).

Referências

- [1] Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.
- [2] Wes Kendall. MPI Scatter, Gather, and Allgather. URL: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/.
- $[3] \quad \textit{Score-P.} \ \texttt{URL:} \ \texttt{https://www.vi-hps.org/projects/score-p/.}$
- [4] SCORE-P User Manual. URL: https://www.vi-hps.org/upload/packages/scorep/scorep-4.0.pdf.
- [5] SeARCH. URL: http://search6.di.uminho.pt/wordpress/.
- [6] Search Nodes. URL: http://search6.di.uminho.pt/wordpress/?page_id=55.

Anexos

A Mapeamento dos Processos

A.1 Por Core

Distribuição dos Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,/,,/,/,,/,][,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/

Distribuição dos Processos com 4 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,/][,/,/,/,/,/,/,/,/,/,/,
MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [,,/8B/,,/,,/,,/,,/,,/,]
MCW rank 2 bound to socket 0[core 2[hwt 0-1]]: [_/,_/BB/_,/_,/_,/_,/][_,/_,/_,/_,/_,/_,/_,/_
MCW rank 3 bound to socket 0[core 3[hwt 0-1]]: [,/,,/,,/BB/,/,,/,/,][,,/,,/,,/,,/,,/,,/,,/,,/,

Distribuição dos Processos com 8 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,],[,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 2 bound to socket 0[core 2[hwt 0-1]]: [,,/,/BB/,/,,/,,/,][,,/,,/,,/,,/,,/,,/,,/,]
MCW rank 3 bound to socket 0[core 3[hwt 0-1]]: [,,/,,/,BB/,,/,,/,,/][,/,/,,/,/,/,/,/,/,/,
MCW rank 4 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,/,BB/,/,,/,][,,/,,/,,/,,/,,/,,/,]
MCW rank 5 bound to socket 0[core 5[hwt 0-1]]: [,,/,,/,,/,BB/,/,][,,/,,/,,/,,/,,/,]
MCW rank 6 bound to socket 0[core 6[hwt 0-1]]: [,,/,,/,,/,/,///BB/,,][,,/,,/,,/,,/,,/,
MCW rank 7 bound to socket 0[core 7[hwt 0-1]]: [_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/

Distribuição dos Processos com 16 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/, /, /, /, /, /, /, /, /, /, /, /, /, /
MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,/,],,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 2 bound to socket 0[core 2[hwt 0-1]]: [,,/,,/BB/,,/,,/,,/,, , , , , , , , , , ,
MCW rank 3 bound to socket 0[core 3[hwt 0-1]]: [_,/_,/_,/BB/,/_,/_,/_,][_,/,,/_,/_,]
MCW rank 4 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,,/,BB/,,/,,/,][,,/,,/,,/,,/,,/,,/,,/,,/,]
MCW rank 5 bound to socket 0[core 5[hwt 0-1]]: [_,/_,/_,/_, _,/_, _, _, _,/_, _, _, _, _, _, _, _, _, _, _, _, _, _
MCW rank 6 bound to socket 0[core 6[hwt 0-1]]: [,,/,,/,,/,/BB/,,][,,/,,/,,/,,/,,/,,/,,/,]
MCW rank 7 bound to socket 0[core 7[hwt 0-1]]: [,,/,,/,,/,,/,/,BB][,/,/,/,/,,/,,/,,]
MCW rank 8 bound to socket 1[core 8[hwt 0-1]]: [,,/,,/,,/,,/,/,][BB/,,/,,/,,/,,/,]
MCW rank 9 bound to socket 1[core 9[hwt 0-1]]: [_,/_,/_,/_,/_,/_, _, _, _, _, _, _, _, _, _, _, _, _, _
MCW rank 10 bound to socket 1[core 10[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,/BB/,/,/,/,/,/]
MCW rank 11 bound to socket 1[core 11[hwt 0-1]]: [,/,/,/,/,/,/,/,/,////////////////////
MCW rank 12 bound to socket 1[core 12[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,/,/,//,/////////
MCW rank 13 bound to socket 1[core 13[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,//,///////////////
MCW rank 14 bound to socket 1[core 14[hwt 0-1]]: [.,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 15 bound to socket 1[core 15[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/

MCW rank 10 bound to socket 0[core 0[hwt 0-1]]: [88/, al., al., al., al., al., al., al., al.
MCW rank 1 bound to socket 0[core 1[hwt 0-1]]: [/aB[A,/a a/a a/a a/a a/
MCW rank a bound to socket 0[core 4[hwt 0-1]]: [f.,f,f8B,f.,
MCW rank a bound to socket 0[core 4[hwt 0-1]]: [f.,f,f8B,f.,
MCW rank 5 bound to socket 0[core 5[hwt 0-1]]: [l.,
MCW rank 8 bound to socket 1[core 8[hwt 0-1]]: [d_nd_nd_nd_nd_BB], [d_nd_nd_nd_nd_nd_nd_nd_nd_nd_nd_nd_nd_nd
MCW rank 17 bound to socket 0[core 7[hwt 0-1]]: [l_n l_n l_n l_n l_n l_n l_n l_n l_n l_n
MCW rank 8 bound to socket 1[core 8[hwt 0-1]]: [lddddd][88/,ddddddd.] MCW rank 9 bound to socket 1[core 1]hwt 0-1]]: [ddddddddddddd
MCW rank 10 bound to socket 1 [core 10[hwt 0-1]]: [f.,
MCW rank 10 bound to socket 1[core 10[hwt 0-1]]: [l_n_l_n_l_n_l_n_l_n_l_n_l_n_l_n_l_n_l
MCW rank 11 bound to socket 1[core 11[hwt 0-1]]: [., .
MCW rank 12 bound to socket 1[core 12[hwt 0-1]]: [/////////
MCW rank 13 bound to socket 1[core 13[hwt 0-1]]: [_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_
MCW rank 13 bound to socket 1[core 13[hwt 0-1]]: [_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_d,_
MCW rank 15 bound to socket 1[core 15[hwt 0-1]]: [a/a, a/a, a/a, a/a, a/a, a/a, a/a, a/a
MCW rank 16 bound to socket 0[core 0[hwt 0-1]]: [BB/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 17 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,][,,/,,/,,/,,/,,]
MCW rank 18 bound to socket 0[core 2[hwt 0-1]]: [,/,,/88/,/,,/,,/,,/][,/,,/,,/,,/,,/,,/,]
MCW rank 19 bound to socket 0[core 3[hwt 0-1]]: [,/,,/,/BB/,,/,,/,][,/,,/,,/,,/,,/,,/,,/,]
MCW rank 20 bound to socket 0[core 4[hwt 0-1]]: [,/,,/,,/,/BB/,,/,,/,][,/,,/,,/,,/,,/,]
MCW rank 21 bound to socket 0[core 5[hwt 0-1]]: [,/,,/,,/,/,BB/,/,][,/,,/,/,/,/,/,/,/,]
MCW rank 22 bound to socket 0[core 6[hwt 0-1]]: [,,/,,/,,./,//8B/,,][,,/,,/,,/,,/,,]
MCW rank 23 bound to socket 0[core 7[hwt 0-1]]: [,/,,/,,/,,/,/,/,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 24 bound to socket 1[core 8[hwt 0-1]]: [,/,,/,,/,,/,/,][BB/,/,/,/,/,/,]
MCW rank 25 bound to socket I[core 9[hwt 0-1]]: [,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,],// BB/,/,,/,,/,,/,,/,
MCW rank 26 bound to socket 1[core 10[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,BB/,,/,,/,,/,]
MCW rank 27 bound to socket 1[core 11[hwt 0-1]]: [./, ./, ./, ./, ./, ./, ./, ./, ./, ./,
MCW rank 28 bound to socket 1[core 12[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 29 bound to socket 1[core 13[hwt 0-1]]: [./, //, //, //, //, //, //, //, //, //,
MCW rank 30 bound to socket 1[core 14[hwt 0-1]]: [_/, _/, _/, _/, _/, _/, _/, _/, _/, _/,
MCW rank 31 bound to socket 1[core 15[hwt 0-1]]: [_/_////

A.2 Por Nodo

Distribuição dos Processos com 2 Processos	
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,,/,/,/,/,/,][,,/,/,/,/,]	
MCW rank 1 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,,/,/,/,/,],[,/,/,/,/,/,/,]	

Distribuição dos Processos com 4 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 1 bound to socket 0[core 0[hwt 0-1]]: [8B/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,/,/,][,,/,,/,,/,,/,,/,]
MCW rank 3 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,

Distribuição dos Processos com 16 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/, /, /, /, /, /, /, /, /, /, /, /, /,
MCW rank 1 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,/BB/,,/,/,/,/,] [,/,,/,/,/,]
MCW rank 3 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 4 bound to socket 0[core 2[hwt 0-1]]: [,,/,/BB/,,/,,/,,/,,/],[,,/,,/,,/,,/,]
MCW rank 5 bound to socket 0[core 2[hwt 0-1]]: [,/,/,BB/,/,/,/,/,] [,/,/,l/,/,/,/,]
MCW rank 6 bound to socket 0[core 3[hwt 0-1]]: [,/,/,/BB/,/,/,/,/][,/,/,/,/,/,/,/,/]
MCW rank 7 bound to socket 0[core 3[hwt 0-1]]: [,/,/,/,BB/,/,/,/,][,/,/,,/,/,]
MCW rank 8 bound to socket 0[core 4[hwt 0-1]]: [,/,/,///BB/,/,//,][,//,//,//,//,//,//]
MCW rank 9 bound to socket 0[core 4[hwt 0-1]]: [,/,/,/,/BB/,/,/,] [,/,/,/,/,/]
MCW rank 10 bound to socket 0[core 5[hwt 0-1]]: [,/,/,/,/,/,BB/,/,/][,/,/,/,/,//,//
MCW rank 11 bound to socket 0[core 5[hwt 0-1]]: [,/,/,/,//,BB/,/,][,/,/,/,/,/,/,/,]
MCW rank 12 bound to socket 0[core 6[hwt 0-1]]: [,/,/,/,/,/,/,//,/////////////////////
MCW rank 13 bound to socket 0[core 6[hwt 0-1]]: [,/,/,/,/,//,////8B/,][,/,/,/,/,/,/,/,/
MCW rank 14 bound to socket 0[core 7[hwt 0-1]]: [,/, /, /, /, /, /, /, /, BB][,/, /, /, /, /, /, /, /, /,
MCW rank 15 bound to socket 0[core 7[hwt 0-1]]: [,/,/,/,/,/,/,/,/BB][,/,/,/,/,/,/,/,/,/

Distribuição dos Processos com 32 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/, , , , , , , , , , , , , ,
MCW rank 1 bound to socket 0[core 0[hwt 0-1]]: [BB///////////////////////////////////
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,/,,/,,/,,/,,/,],[,, , , , , , , , , , , , , , , , , ,
MCW rank 3 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,/,],[,,/,,/,,/,,/,]
MCW rank 4 bound to socket 0[core 2[hwt 0-1]]: [, /, //BB/, /, // // // // // // // // // // // /
MCW rank 5 bound to socket 0[core 2[hwt 0-1]]: [,,///8B/,//////////////////////////////
MCW rank 6 bound to socket 0[core 3[hwt 0-1]]: [,/,/,//BB/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 7 bound to socket 0[core 3[hwt 0-1]]: [,,/,,/,/BB/,/,/,,/,], [,,/,,/,/,/,]
MCW rank 8 bound to socket 0[core 4[hwt 0-1]]: [,/,/,///BB/,//,/][,/,////,/,]
MCW rank 9 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,,/ BB/,,/,,/,][,,/,/,,/,/,]
MCW rank 10 bound to socket 0[core 5[hwt 0-1]]: [,/,,/,/,//BB/,/,][,/,/,/,/,/]
MCW rank 11 bound to socket 0[core 5[hwt 0-1]]: [,/,,/,/,//BB/,/,][,/,/,//,/]
MCW rank 12 bound to socket 0[core 6[hwt 0-1]]: [,/,,/,,/,/,/BB/,][,,/,,/,,/,,/,]
MCW rank 13 bound to socket 0[core 6[hwt 0-1]]: [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MCW rank 14 bound to socket 0[core 7[hwt 0-1]]: [,/,,/,,/,//BB][,/,/,/,/,/,/,]
MCW rank 15 bound to socket 0[core 7[hwt 0-1]]: [_/, /, /, /, /, // 8B][_/, /, /, /, // 8B][_/, /, /, /, /]
MCW rank 16 bound to socket 1[core 8[hwt 0-1]]: [,/, ,/, ,/, ,/,][BB/,/, ,/, ,/, ,]
MCW rank 17 bound to socket 1[core 8[hwt 0-1]]: [,/, ,/, ,/, ,/, ,] [BB/,/, ,/, ,/, ,]
MCW rank 18 bound to socket 1[core 9[hwt 0-1]]: [,/, ,/, ,/, ,/, ,/,][,/ [88/, ,/, ,/, ,/,]
MCW rank 19 bound to socket 1[core 9[hwt 0-1]]: [,/, ,/, ,/, ,/, ,/,][, // BB/, ,/, ,/, ,/,]
MCW rank 20 bound to socket 1[core 10[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,/,/,/,/,/,/,/,/,/,/
MCW rank 21 bound to socket 1[core 10[hwt 0-1]]: [,/,/,/,/,/,/,/,/,//,//,/,/,/,/,/,/,/,/
MCW rank 22 bound to socket 1[core 11[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,]
MCW rank 23 bound to socket 1[core 11[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 24 bound to socket 1[core 12[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,/,/,//,/////////
MCW rank 25 bound to socket 1[core 12[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 26 bound to socket 1[core 13[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 27 bound to socket 1[core 13[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 28 bound to socket 1[core 14[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 29 bound to socket 1[core 14[hwt 0-1]]: [i,_i,i,_i,_i,_i,_i,_i,_i,_i,_i,_i] [i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,
MCW rank 30 bound to socket 1[core 15[hwt 0-1]]: [l,l,l,l,l,l,l,l,l,l
MCW rank 31 bound to socket 1[core 15[hwt 0-1]]: [l,l,l,l,l,l,l,l,l,l

A.3 Por Socket

Distribuição dos Processos com 2 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,,/,,/,,/,,/,,/,]
MCW rank 1 bound to socket 1[core 8[hwt 0-1]]: [,/,/,/,/,/,/,/][BB/,/,/,//,//,/]

Distribuição dos Processos com 4 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/][,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 1 bound to socket 1[core 8[hwt 0-1]]: [,/,/,/,/,/,/,/,/][BB/,/,/,/,/,/,/]
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [_,/BB/,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_
MCW rank 3 bound to socket 1[core 9[hwt 0-1]]: [///////////_

Distribuição dos Processos com 8 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,][,/,/,/,/,/,/,/,/,/,/,/
MCW rank 1 bound to socket 1[core 8[hwt 0-1]]: [,,/,,/,,/,,][BB/,/,,/,,/,,/,]
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,/BB/,/,/,/,/,/, ,[,/,/,/,/,/,/,/,/,/,/,/,/,
MCW rank 3 bound to socket 1[core 9[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 4 bound to socket 0[core 2[hwt 0-1]]: [,,/,/BB/,/,,/,,/,,/,,][,,/,,/,,/,,/,,/,]
MCW rank 5 bound to socket 1[core 10[hwt 0-1]]: [,,/,,/,,, ,, ,, ,/, ,, , , , , , , , ,
MCW rank 6 bound to socket 0[core 3[hwt 0-1]]: [,/,/,/,/BB/,/,,/,/,][,/,/,/,/,/,/,/,/,/,/,/,]
MCW rank 7 bound to socket 1[core 11[hwt 0-1]]: [,/,/,/,/,/,/,/,/,//,//,//,///////////

Distribuição dos Processos com 16 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [88/,//,.//
MCW rank 1 bound to socket 1[core 8[hwt 0-1]]: [,,/,,/,,/,,/,/][BB/,,/,,/,,/,,/,]
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,,/8B/,,/,,/,,/,,],,,/,,/,,],,/,,/,,/,,/,,/,
MCW rank 3 bound to socket 1[core 9[hwt 0-1]]: [_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_,/_
MCW rank 4 bound to socket 0[core 2[hwt 0-1]]: [,,/,,/BB/,,/,,/,,/,, , , , ,/,,/,,/,,/,,/,,/,,/,
MCW rank 5 bound to socket 1[core 10[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/]
MCW rank 6 bound to socket 0[core 3[hwt 0-1]]: [,,/,,/,,/8B/,,/,,/,, ,, ,/,,/,,/,,/,,/,,/,,/,,/,,/,
MCW rank 7 bound to socket 1[core 11[hwt 0-1]]: [
MCW rank 8 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,,/BB/,/,/,,][,,/,,/,,/,,/,,]
MCW rank 9 bound to socket 1[core 12[hwt 0-1]]: [.,
MCW rank 10 bound to socket 0[core 5[hwt 0-1]]: [,/,/,/,/,/,BB/,//,][,/,/,/,/,/,]
MCW rank 11 bound to socket 1[core 13[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,/,/,/,/,/,//,/
MCW rank 12 bound to socket 0[core 6[hwt 0-1]]: [,/,/,/,/,/,/,///BB/,,][,/,/,/,/,/,/,]
MCW rank 13 bound to socket 1[core 14[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/
MCW rank 14 bound to socket 0[core 7[hwt 0-1]]: [/,.////BB][////]
MCW rank 15 bound to socket 1[core 15[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/

Distribuição dos Processos com 32 Processos
MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/,,/,,/,,/,,/,,/,, ,, ,,/,, ,, ,, ,, ,,
MCW rank 1 bound to socket 1[core 8[hwt 0-1]]: [_/_/_/_//
MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [,,/BB/,,/,,/,,/,,/,],[,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,
MCW rank 3 bound to socket 1[core 9[hwt 0-1]]: [,,/,,/,,/,,/, , , , , , , , , , , , , ,
MCW rank 4 bound to socket 0[core 2[hwt 0-1]]: [_//BB////
MCW rank 5 bound to socket 1[core 10[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/ BB/,/,/,/,/,/]
MCW rank 6 bound to socket 0[core 3[hwt 0-1]]: [,/, /, /, /8B/, /, /, /, /] [, /, /, /, /, /, /, /, /]
MCW rank 7 bound to socket 1[core 11[hwt 0-1]]: [,,/,,/,,/,,/,,/,,/,,/,BB/,,/,,/,,/]
MCW rank 8 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,,/,/BB/,,/,/,][,,/,,/,,/,,/,,/,,/,]
MCW rank 9 bound to socket 1[core 12[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,//,///////////////
MCW rank 10 bound to socket 0[core 5[hwt 0-1]]: [,,/,,/,,/,,/BB/,/,,][,,/,,/,,/,,/,,/,,/,,]
MCW rank 11 bound to socket 1[core 13[hwt 0-1]]: [///////][////BB//]
MCW rank 12 bound to socket 0[core 6[hwt 0-1]]: [,/,/,/,/,//BB/,,][,,/,,/,/,/,/,]
MCW rank 13 bound to socket 1[core 14[hwt 0-1]]: [////////////.
MCW rank 14 bound to socket 0[core 7[hwt 0-1]]: [,/,/,/,/,/,/,/BB][,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 15 bound to socket 1[core 15[hwt 0-1]]: [,/,/,/,/,/,/,/,/,/,/,/,/,//,//////////
MCW rank 16 bound to socket 0[core 0[hwt 0-1]]: [BB/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 17 bound to socket 1[core 8[hwt 0-1]]: [,,/,,/,,/,,/,,/,][BB/,,/,/,/,,/,,/,,/,]
MCW rank 18 bound to socket 0[core 1[hwt 0-1]]: [_//BB/_/_/_/_/_/_/
MCW rank 19 bound to socket 1[core 9[hwt 0-1]]: [,/,/,/,/,/,/,][,/BB/,/,/,/,/,]
MCW rank 20 bound to socket 0[core 2[hwt 0-1]]: [_,/_,/BB/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,/,,
MCW rank 21 bound to socket 1[core 10[hwt 0-1]]: [,/,,/,,/,,/,,][,,/,/BB/,,/,,/,/,]
MCW rank 22 bound to socket 0[core 3[hwt 0-1]]: [_/,_/_/,BB/,_/_/,_/,][_,/_,/_,/_,]
MCW rank 23 bound to socket 1[core 11[hwt 0-1]]: [.,/,,/,,/,,/,/,,/,/,/,/,/,/,/,/,/,/,/,/
MCW rank 24 bound to socket 0[core 4[hwt 0-1]]: [,,/,,/,,/,BB/,/,,/,][,,/,,/,,/,,/,,/,,/,,/,,]
MCW rank 25 bound to socket 1[core 12[hwt 0-1]]: [,/,,/,,/,,/,,/,][,,/,/,,/,BB/,/,,/,]
MCW rank 26 bound to socket 0[core 5[hwt 0-1]]: [,/,/,/,/,/,BB/,/,,][,,/,,/,,/,/,/,/,/,/,/,/,
MCW rank 27 bound to socket 1[core 13[hwt 0-1]]: [////////BB//]
MCW rank 28 bound to socket 0[core 6[hwt 0-1]]: [,/,/,/,//,//BB/,,][,,/,,/,/,/,]
MCW rank 29 bound to socket 1[core 14[hwt 0-1]]: [,,/,,/,,/,,/,,/,], [,,/,,/,,/,,/,,/,,/,,/,,/,/,/,]
MCW rank 30 bound to socket 0[core 7[hwt 0-1]]: [,,/,,/,,/,/,/,BB][,,/,,/,,/,,/,/,]
MCW rank 31 bound to socket 1[core 15[hwt 0-1]]: [,,/,,/,,/,,/,][,,/,,/,,/,,/,,/,,/,BB]

B Especificações dos CPUs Instalados nas Máquinas Usadas

Intel® Xeon® Process	Ivy Bridge EP	
Essentials	I vy bridge Er	
Vertical Segment	Server	
Processor Number	E5-2650V2	
Performance	25 2550 7 2	
# of Cores	8	
# of Threads	16	
Processor Base Frequency	2.60 GHz	
Max Turbo Frequency	3.40 GHz	
Cache	20 MB SmartCache	
Bus Speed	8 GT/s QPI	
# of QPI Links	2	
TOP	95 W	
VID Voltage Range	0.65-1.30V	
Memory Specifications	0.00 2.004	
Max Memory Size (dependent on memory type)	768 GB	
Memory Types	DDR3 800/1066/1333/1600/1866	
Max # of Memory Channels	4	
Max Memory Bandwidth	59.7 GB/s	
Physical Address Extensions	46-bit	
ECC Memory Supported ‡	Yes	
Expansion Options	1.4.9	
Scalability	2S Only	
PCI Express Revision	3.0	
PCI Express Configurations ‡	x4, x8, x16	
Max # of PCI Express Lanes	40	
Advanced Technologies	140	
Intel® Turbo Boost Technology	2.0	
Intel® vPro™ Platform Eligibility ‡	Yes	
Intel® Hyper-Threading Technology ‡	Yes	
Intel® Virtualization Technology (VT-x) ‡	Yes	
Intel® Virtualization Technology (v1-x) + Intel® Virtualization Technology for Directed I/O (VT-d) +		
Intel® VT-x with Extended Page Tables (EPT) ‡	Yes	
Intel® TSX-NI	No	
Intel® 64 ‡	Yes	
Instruction Set	64-bit	
Instruction Set Extensions	Intel® AVX	
Idle States	Yes	
Enhanced Intel SpeedStep® Technology	Yes	
Intel® Demand Based Switching	Yes	
Thermal Monitoring Technologies	Yes	
Intel® Flex Memory Access	No.	
Intel® Identity Protection Technology ‡	No	

C Resultados da Análise do Perfil de Execução

1411				e	te size of event trac	Stimated aggregat
36N			f)	ace buffer (max_bu	ments for largest tra	stimated requirer
4097			ORY)	DREP_TOTAL_MEMO	requirements (SCC	stimated memory
	time/visit[us] re	time[%]	time[s]	visits	max_buf[B]	ype
Α	0,4	100	2,29	5,676,414	36,929,148	ALL
U	0,16	40,2	0,92	5,676,382	36,928,814	USR
M	48933,79	59,8	1,37	28	308	MPI
cc	36,15	0	0	4	26	COM
void sort(int*, int*, int, ir	0,12	22,4	0,51	4,194,300	27,283,074	USR
void merge(int*, int*, int, int, ir	0,19	12	0,27	1,482,066	9,645,688	USR
MPI_Scatt	55325,94	19,3	0,44	8	136	MPI
MPI_Gathe	3116,37	0,5	0,01	4	68	MPI
MPI Finali	882,01	0,2	0	4	26	MPI
void utils_results	11,43	0	0	4	26	USR
MPI_Comm_si	0,22	0	0	4	26	MPI
int utils_clean(int	451,73	0	0	1	26	USR
void utils_setup(char*, ir	3,2	0	0	1	26	USR
void utils_start_time	2,83	0	0	1	26	USR
void utils_init(int**, ir	46621,47	2	0,05	1	26	USR
void utils_clear_cache	78333,39	3,4	0,08	1	26	USR
MPI_Comm_ra	1,31	0	0	4	26	MPI
void bucketsort_init(int*, in	0,7	0	0	1	26	USR
void mergesort(int*, in	142,4	0	0	4	26	USR
void utils_stop_time	5,77	0	0	1	26	USR
MPI_II	227884,73	39,8	0,91	4	26	MPI
int main(int, char*	36,15	0	0	4	26	COM
id bucketsort placement(int*, int*, int*, int, in	6627,44	0,3	0,01	1	26	USR

D Resultados Obtidos

D.1 Por Core

		mapping:map-by core		
		<i></i> 3		
		Array com 2048 Elementos		
#Buckets		Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
:	0,282	0,158906	.,	10,6996
	0,275	0,19598	,	12,5514
	0,4115	0,352859		9,87654
1	· '-	0,511527	0,0515425	12,6374
3.	6,014	5,896565	-0,01302	27,1523
		Array com 16384 Elementos		
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
II DOCKELS	1.1985	0.2980235		1,27764
	0,9575	0,4669425	,	2,27892
	1,1215	0,7914305		6,1245
1		1,47104		2,82353
3.		13,12195	0,3485	4,51745
		Array com 1048576 Elementos		
#Buckets		Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
	78,1705	4,728435	73,36297	0,000953674
	48,6965	9,165885		0,186909
	38,5665	18,4034	,	0,138832
1		40,67505	17,86845	0,544784
3.	2 658,682	639,318	19,897	0,748081
		Array com 2097152 Elementos		
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
mbuckets .	2 161.903	9,275915		0.0181215
	83,7435	17,4946		0,155003
	74,9525	34,8054		0.235977
1	, , , , , , , , , , , , , , , , , , ,	70,88705	,	0,464488
3:		1262,885	29,055	0,450237

D.2 Por Nodo

		mapping:map-by node		
		Array com 2048 Elementos		
#Buckets				Diferença de Cargas dos Buckets (%)
2	0,8165		0,154574	10,6996
4	1,051	1,01447		12,5514
8	1,6755			9,87654
16		2,922535	,	2,82353
32	5,071	5,260585	0,054925	27,1523
		Array com 16384 Elementos		I
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)		Diferença de Cargas dos Buckets (%)
2	3,105			
4	3,2325	2,66743	0,66795	2,27892
8	4,3875	,	,	6,1245
16		6,549475		2,82353
32	12,551	12,094	0,5211	4,51745
		Array com 1048576 Elementos		
#Buckets		,	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
#Buckets	130.681	57,26205	73.5149	0.000953674
	130,081			0,000953674
4	193,4125	,	,	0,18832
8 16		322,418	17,473	0,138832
32		,	,	0,344764
32	640,189	623,2435	14,4295	0,748081
		Array com 2097152 Elementos		
#Buckets			Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)
2	264,881	112,7005		0.0181215
4	267,392	,	,	0,155003
8	379,1955		38.7975	0,235977
16			,	0,464488
32		1246.91	28,225	0,450237

D.3 Por Socket

		mapping:map-by socket				
		Array com 2048 Elementos				
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)		Diferença de Cargas dos Buckets (%)		
	2 0,2615					
	4 0,25	,	,	,		
	8 0,3785	0,3111365				
	6 0,6065	,	,	,		
	2 5,7115	5,66888	0,113025	27,1525		
		Array com 16384 Elementos				
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)		
	2 1.17					
	4 0,946	,	,	,		
	8 1,13					
1	6 1,707	1,53196				
	2 13,595	13,29145	0,35955	4,51745		
		Array com 1048576 Elementos				
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)		
	2 77,7465	4,40085	73,423055	0,000953674		
	48,6285	10,1106	38,5094	0,186909		
	8 43,676	20,96795	22,46445	0,138832		
1	6 59,0945	40,8845	18,326	0,544784		
	2 658,451	639,8685	17,7565	0,748081		
Array com 2097152 Elementos						
#Buckets	Tempo de Execução (ms)	Tempo de Comunicação (ms)	Tempo de Computação (ms)	Diferença de Cargas dos Buckets (%)		
	2 161,9865	9,317995				
	4 98,5615	19,52505				
	83,5275	39,96755	,	,		
	6 98,396					
3	2 1291,375	1260,825	29,375	0,450237		

E Tabela de SpeedUps

		SpeedUps		
		Array com 2048 Elementos		
#Buckets	OMP	MPImap-by core	MPImap-by node	MPImap-by socket
2	0,616600791	0,553191489	0,1910594	0,596558317
4	0,640718563	0,389090909	0,101807802	0,428
8		0,235722965	0,057893166	0,256274769
16	0,55	0,175221239	0,031997414	0,163231657
32	0,408695652	0,015630196	0,018536778	0,016458023
		Array com 16384 Elementos		
#Buckets	OMP	MPImap-by core	MPImap-by node	MPImap-by socket
2		1,289111389	0,497584541	1,320512821
4	1,148546825	1,114360313	0,330085073	1,127906977
8		0,898796255	0,22974359	0,892035398
16	2,4921875	0,575120192	0,139240506	0,560632689
32	0,076842564	0,064953736	0,07019361	0,064803236
		rray com 1048576 Elementos		
#Buckets	OMP	MPImap-by core	MPImap-by node	MPImap-by socket
2	2	1,350662974	0.807936884	1,358028979
4	-,	2,032877106	0,743067102	2,035719794
- 8	-,	2,433718383	0,485284043	2,149006319
16	,,	1,523365194	0,26647104	1,530531606
32		0,130647262	0,134421241	0,130693096
	3/5 / 1002550	0,200011202	0,201122212	0,2000000
	A	rray com 2097152 Elementos		
#Buckets	OMP	MPImap-by-core	MPImap-by node	MPImap-by socket
2	1,407461966	1,351407942	0,826019986	1,350711325
4	2,588420344	2,525103441	0,790827699	2,145472624
8	4,352400318	2,627263934	0,51930996	2,357546916
16	7,145666147	1,891711472	0,280478638	1,909437376
32	5,789021101	0,141216948	0,143032085	0,141276546

F Custos de Comunicação

F.1 Por Core

F.2 Por Nodo

F.3 Por Socket

G Grau de Distribuição da Carga entre Processos

