Reflexlichtschranke Reflective Interrupter Lead (Pb) Free Product - RoHS Compliant

SFH 9202

Wesentliche Merkmale

- Optimaler Arbeitsabstand 1 mm bis 5 mm
- IR-GaAs-Lumineszenzdiode in Kombination mit einem Si-NPN-Fototransistor
- Tageslichtsperrfilter
- · Geringe Sättigungsspannung
- · Sender und Empfänger galvanisch getrennt
- Lötmethode: IR-Reflow Löten
- Vorbehandlung nach JEDEC Level 4

Anwendungen

- Positionsmelder
- Endabschalter
- Drehzahlüberwachung
- Bewegungssensor

Features

- Optimal operating distance 1 mm to 5 mm
- IR-GaAs-emitter in combination with a Silicon NPN phototransistor
- · Daylight cut-off filter
- · Low saturation voltage
- · Emitter and detector electrically isolated
- · Soldering Methode: IR Reflow Soldering
- · Preconditioning acc. to JEDEC Level 4

Applications

- · Position reporting
- End position switch
- Speed monitoring
- · Motion transmitter

Typ Type	Bestellnummer Ordering Code	I_{CE} [mA] $(I_{\text{F}}$ = 10 mA, V_{CE} = 5 V, d = 1 mm)
SFH 9202	Q65110A2712	0.063 0.8
SFH 9202-2/3	Q65110A2705	0.063 0.2
SFH 9202-3/4	Q65110A2710	0.10 0.32
SFH 9202-4/5	Q65110A2709	0.16 0.50
SFH 9202-5/6	Q65110A2711	0.25 0.80

Grenzwerte				
Maximum	Ratings			

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit	
Sender (GaAs-Diode) Emitter (GaAs diode)				
Sperrspannung Reverse voltage	V_{R}	5	V	
Vorwärtsgleichstrom Forward current	I_{F}	50	mA	
Verlustleistung Power dissipation	P_{tot}	80	mW	
Empfänger (Si-Fototransistor) Detector (silicon phototransistor)				
Dauer-Kollektor-Emitter-Sperrspannung Continuous collector-emitter voltage	V_{CE}	16	V	
Kollektor-Emitter-Sperrspannung, $(t \le 1 \text{ min})$ Collector-emitter voltage, $(t \le 1 \text{ min})$	V_{CE}	30		
Emitter-Kollektor-Sperrspannung Emitter-collector voltage	V_{EC}	7		
Kollektorstrom Collector current	I_{C}	10	mA	
Verlustleistung Total power dissipation	P_{tot}	100	mW	
Reflexlichtschranke Light Reflection Switch				
Lagertemperatur Storage temperature range	$T_{ m stg}$	- 40 + 100	°C	
Umgebungstemperatur Ambient temperature range	T _A	- 40 + 100		
Verlustleistung Power dissipation	P_{tot}	150	mW	
Elektrostatische Entladung Electrostatic discharge	ESD	2	KV	
Umweltbedingungen / Environment conditions	3 K3 acc. to E	3 K3 acc. to EN 60721-3-3 (IEC 721-3-3)		

Kennwerte ($T_A = 25 ^{\circ}\text{C}$)
Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Sender (GaAs-Diode) Emitter (GaAs diode)			
Durchlaβspannung Forward voltage $I_{\rm F}$ = 50 mA	V_{F}	1.25 (≤ 1.65)	V
Sperrstrom Reverse current $V_{\rm R} = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	μΑ
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	Co	25	pF
Wärmewiderstand ¹⁾ Thermal resistance ¹⁾	R_{thJA}	270	K/W
Empfänger (Si-Fototransistor) Detector (silicon phototransistor)			
Kapazität Capacitance $V_{\text{CE}} = 5 \text{ V}, f = 1 \text{ MHz}$	C_{CE}	5	pF
Kollektor-Emitter-Reststrom Collector-emitter leakage current $V_{\rm CE}$ = 20 V	I_{CEO}	1 (≤ 50)	nA
Fotostrom (Fremdlichtempfindlichkeit) Photocurrent (outside light density) $V_{\rm CE}$ = 5 V, $E_{\rm v}$ = 1000 Lx	I_{P}	1	mA
Wärmewiderstand ¹⁾ Thermal resistance ¹⁾	R_{thJA}	270	K/W

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung	Symbol	Wert	Einheit	
Parameter	Symbol	Value	Unit	

Reflexlichtschranke Light Reflection Switch

Kollektor-Emitterstrom Collector-emitter current Kodak neutral white test card, 90% Reflexion $I_{\rm F}$ = 10 mA; $V_{\rm CE}$ = 5 V; d = 1 mm	$I_{ m CE\ min.}$ $I_{ m CE\ max}$	63 800	μ Α μ Α
Kollektor-Emitter-Sättigungsspannung Collector-emitter saturation voltage Kodak neutral white test card, 90% Reflexion $I_{\rm F}$ = 10 mA; d = 1 mm; $I_{\rm C}$ = 20 μ A	$V_{CE\;sat}$	0.15 (≤ 0.6)	V

¹⁾ Montage auf PC-Board mit > 5 mm² Padgröβe

¹⁾ Mounting on pcb with > 5 mm² pad size

Schaltzeiten ($T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 5 V, $I_{\rm C}$ = 100 $\mu{\rm A}^{1)}$, $R_{\rm L}$ = 1 k Ω) Switching Times

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Einschaltzeit Turn-on time	$t_{ m ein} \ t_{ m on}$	40	μs
Anstiegzeit Rise time	t_{r}	30	μs
Ausschaltzeit Turn-off time	$t_{ m aus}$ $t_{ m off}$	45	μS
Abfallzeit Fall time	t_{f}	40	μs

 $I_{\mathbb{C}}$ eingestellt über den Durchlaβstrom der Sendediode, den Reflexionsgrad und den Abstand des Reflektors vom Bauteil (d)

 $I_{\rm C}$ as a function of the forward current of the emitting diode, the degree of reflection and the distance between reflector and component (d)

Collector Current

$$\frac{I_{\rm C}}{I_{\rm Cmax}} = f(d)$$

Permissible Power Dissipation for Diode and Transistor $P_{\rm tot}$ = $f(T_{\rm A})$

Switching Characteristics $t = f(R_L)$ $T_A = 25$ °C, $I_F = 10$ mA

Max. Permissible Forward Current $I_F = f(T_A)$

 $I_{\rm F}^{\rm 120}$

100

80

60

40

20

OHL00986

80 °C 100

 $-T_A$

Collector Current $I_C = f(I_F)$, spacing d to reflector = 1 mm, 90% reflection

Forward Voltage (typ.) of the Diode $V_{\rm F} = f\left(T\right)$

40 60

Relative Spectral Emission of Emitter (GaAs) $I_{\rm rel} = f(\lambda)$ and Detector (Si) $S_{\rm rel} = f(\lambda)$

Output Characteristics (typ.) $I_C = f(V_{CE})$, spacing to reflector:

Perm. Pulse Handling Capability $I_{\rm F} = f(t_{\rm p})$, Duty cycle D = parameter, $T_{\rm A} = 25~{\rm ^{\circ}C}$

Perm. Pulse Handling Capability $I_{\rm F} = f\left(t_{\rm p}\right)$, Duty cycle D = parameter, $T_{\rm A}$ = 85 °C

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Empfohlenes Lötpaddesign Recommended Solder Pad

IR-Reflow Löten IR REflow Soldering

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Löthinweise Soldering Conditions

Bauform Drypack Type Level acc.		Tauch-, Schwalllötung Dip, Wave Soldering		Reflowlötung Reflow Soldering		Kolbenlötung Iron Soldering
	to IPS-stand. 020	Peak Temp. (solderbath)	Max. Time in peak zone	Peak Temp. (package temp.)	Max. Time in Peak Zone	(Iron temp.)
SFH 9202	4	n. a.	_	260 °C	20 sec.	n.a.

Bitte Verarbeitungshinweise für SMT-Bauelemente beachten! Please observe the handling guidelines for SMT devices!

Lötbedingungen Soldering Conditions IR-Reflow Lötprofil für bleifreies Löten IR Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 (nach J-STD-020B) (acc. to J-STD-020B)

Gurtung / Polarität und Lage

siehe Dokument: Short Form Katalog: Gurtung und Verpackung - SMT-Bauelemente - Gehäuse: SMT RLS

Methode of Taping / Polarity and Orientation see document: Short Form Catalog: Tape and Reel - SMT-Components - Package: SMT-RLS

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg

www.osram-os.com

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

