

Inteligência Computacional Sistema Fuzzy Linguístico e Funcional

João Gustavo Silva Guimarães Pedro Henrique Pires Dias

26 de maio de 2025

Motivação e Objetivo

Objetivo: Desenvolver um sistema fuzzy linguístico (Mamdani) que ajusta a ventilação com base em temperatura, umidade e ocupação

Por que controlar a ventilação? Conforto térmico e qualidade do ar Por que controlar a ventilação com fuzzy? Para economia de energia utilizando sistemas computacionais inteligentes

Aplicações reais: salas, escritórios, laboratórios, automação residencial

Metodologia Geral

Modelo de inferência fuzzy Mamdani (SE... ENTÃO)

Operadores lógicos: AND (mínimo), OR (máximo)

Defuzzificação: Centroide, Bissetriz, Média dos Máximos (MoM)

Implementação em Python

Variáveis Fuzzy e Funções de Pertinência

Entradas:

Temperatura: baixa, média, alta Umidade: baixa, média, alta

Pessoas: poucas, moderado, muitas

Saída:

Ventilação: fraca, moderada, forte

Base Normativa: ASHRAE 55:2017

A modelagem dos conjuntos fuzzy foi fundamentada na norma ASHRAE 55:2017, que define condições ambientais de conforto térmico para ocupação humana.

Para ambientes internos, a norma recomenda:

Temperatura de conforto: 20 ℃ a 26 ℃ Umidade relativa: 30% a 60%

Os conjuntos linguísticos "baixa", "média"e "alta"para temperatura e umidade foram ajustados de modo a refletir essas faixas

Isso garante que o sistema fuzzy opere com base em parâmetros reconhecidos internacionalmente.

ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017

Thermal Environmental
Conditions for
Human Occupancy

Base de Regras Fuzzy (27 Regras)

Regras do tipo SE... ENTÃO com combinações de $3\times3\times3=27$ possibilidades Modelo:

SE condição 1 E condição 2 E condição 3 ENTÃO ação.

Exemplo 1:

Se temperatura é **alta** E umidade é **alta** E pessoas são **muitas**, então ventilação é **forte**.

Exemplo 2:

Se temperatura é **baixa** E umidade é **média** E pessoas são **poucas**, então ventilação é **fraca**.

Configuração dos Cenários de Teste

Foram definidos 5 cenários para testar a resposta do sistema fuzzy
As combinações variam temperatura, umidade e número de pessoas
Operadores AND/OR e métodos de defuzzificação foram combinados nos testes

Cenário 1 - ('cenario_1', [18, 25, 2], 'AND', 'centroid')

Temperatura baixa (18 °C) Umidade baixa (25%) Ocupação moderada (2 pessoas) Ventilação **fraca (19.27)**

Cenário 2 - ('cenario_2', [25, 50, 6], 'AND', 'bisector')

Temperatura média (25 °C) Umidade média (50%) Ocupação moderada (6 pessoas) Ventilação **moderada (50.00)**

Cenário 3 - ('cenario 3', [35, 80, 15], 'AND', 'mom')

Temperatura alta (35 ℃) Umidade alta (80%) Ocupação intensa (15 pessoas) Ventilação **forte (89.50)**

Cenário 4 - ('cenario_4', [22, 70, 8], 'OR', 'centroid')

Temperatura média (22 ℃) Umidade alta (70%) Ocupação intensa (8 pessoas) Ventilação **moderada (50.00)**

Cenário 5 - ('cenario_5', [30, 40, 5], 'OR', 'bisector')

Temperatura alta (30 °C) Umidade baixa (40%) Ocupação baixa (5 pessoas) Ventilação **moderada (51.00)**

Resultados dos Cenários

Cenário	Temp.	Umid.	Pessoas	Defuzz.	Saída
1	18	25	2	centroid	19.27
2	25	50	6	bisector	50.00
3	35	80	15	mom	89.50
4	22	70	8	centroid	50.00
5	30	40	5	bisector	51.00

Fraca = até 40 Moderada = 41-70 Forte = acima de 70

Conclusão

O sistema fuzzy com Mamdani gerou saídas coerentes com os cenários simulados e com o objetivo de manter o conforto térmico.

Observou-se que a escolha dos operadores e métodos de defuzzificação pode alterar o valor final da saída, o que reforça a importância da configuração.

A estrutura de regras linguísticas torna o sistema compreensível e de fácil interpretação, o que pode ser útil em aplicações reais.

Para trabalhos futuros, o modelo pode ser integrado a sensores físicos e microcontroladores para testes práticos em ambientes controlados.

Sistema Fuzzy Funcional

Item 1

Item 2

Item 3

Item 4

Proposição de problemática

A modelagem dos conjuntos fuzzy foi fundamentada na tentativa de descrever o comportamento cíclico de uma bacia hidrográfica ao longo do tempo.

Variáveis:

x é o Tempo: ciclos de 0 à 10 dias^a, ou seja, $x \in [0, 10]$. y é a Vazão: volume de água que escoa por um ponto específico, em $milimetros(mm)^b$.

Os conjuntos Fuzzy do Modelo partem de uma função dividida em 21 partes.

^aUnidade de medida de tempo utilizada em trabalhos correlatos[4]

^bUnidade de medida de tempo utilizada em trabalhos correlatos[4]

Função proposta para ser modelada:

$$f(x) = e^{\frac{-x}{5}} \cdot \sin(3x) + 0.5 \cdot \sin(x)$$

21 Conjuntos Fuzzy

- f Solo completamente seco
- g Umidade incipiente
- h Chuva leve
- i Aumento de umidade
- i Pré-saturação
- **k** Saturação superficial
- I Pico de retenção hídrica
- m Início de escoamento
- **n** Drenagem moderada
- o Baixa infiltração
- **p** Nível de equilíbrio temporário

- **q** Nova precipitação
- r Sobrecarga hídrica
- s Escoamento forte
- t Risco de enchente
- **u** Redução do volume de água
- v Escoamento residual
- w Início de secagem
- a Solo parcialmente seco
- **b** Final da evaporação
- c Preparação para novo ciclo de chuva

Modelo	f(x) de Ativação.	Nível de Sobreposição	RMSE	Operador
1	Trapezoidal	1	0.5210	produto
2	Trapezoidal	2	0.5704	produto
3	Trapezoidal	3	0.5109	produto
4	Gaussiana	1	0.5037	produto
5	Gaussiana	2	0.4784	produto
6	Gaussiana	3	0.4907	produto
7	Gaussiana	4	0.4482	produto
8	Gaussiana	5	0.4275	produto
9	Gaussiana	6	0.4215	produto
10	Gaussiana	7	0.3379	produto
11	Gaussiana	8	0.1591	produto e bias
12	Gaussiana	8	0.1510	produto e duplo bias

Redução Mais Significativa de Erro = Redução de 0.25 no valor do RMSE.

Alterações Mais Significativas no Modelo = Os níveis de Sobreposição para funções de ativação Gaussianas 7 e 8 bem como o uso do operador de bias, foi o que mais trouxe resultados para aprimorar o modelo.

Comparação entre os 12 modelos

Modelos Avaliados

Referências

- 1 P. H. P. Dias, "Sistema Fuzzy para Controle de Ventilação em Ambientes Fechados utilizando o modelo de Mamdani," GitHub. [Online]. Disponível em: https://github.com/peudias/ic_atv02. 2025.
- 2 J. G. S. Guimarães, "modelagem_Fuzzy" GitHub. [Online]. Disponível em: https://github.com/jAzz-hub/modelagem_Fuzzy. 2025.
- 3 ASHRAE, ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers. [Online]. Disponível em: https://www.ashrae.org/file%20library/technical% 20resources/standards%20and%20guidelines/standards% 20addenda/55_2017_d_20200731.pdf. 2017.
- 4 TAYFUR, G.; BROCCA, L. Fuzzy Logic for Rainfall-Runoff Modelling Considering Soil Moisture. Water Resources Management, v. 29, p. 3519–3533, 2015. [Online]. Disponível em:

https://doi.org/10.1007/s11269-015-1012-0.

Dúvidas

Dúvida é o começo da sabedoria.