Data Analytic

Presentassi AOL Data Anaytics Kelompok 3 - LB01

Start Slide

Introduction

Dataset ini berisi data keterlambatan penerbangan di Amerika Serikat, dan dilengkapi dengan data cuaca dan detail pesawat. Ini memungkinkan kita untuk menganalisis faktor-faktor yang memengaruhi keterlambatan penerbangan dari berbagai sisi — apakah itu karena kondisi cuaca, jenis pesawat, rute, atau maskapai.

Selain itu, dataset ini sangat relevan karena isu keterlambatan penerbangan adalah masalah nyata yang memengaruhi jutaan penumpang setiap tahun. Dengan data aktual tahun 2023, bisa mendapatkan insight yang up-to-date dan sesuai dengan kondisi penerbangan.

Programming Language

Datasets

- 1 US Flights 2023
- 2 Airport Geolocation
- 3 Airport Daily Weather

Link Datasets

Home (About Contact

US Flights 2023

Data penerbangan domestik Amerika Serikat tahun 2023, mencakup jadwal, delay, penyebab delay, durasi penerbangan, dan spesifikasi pesawat.

FlightDate	Day_Of_Week	Airline	Tail_Number	Dep_Airport	Dep_CityName	DepTime_label	Dep_Delay	Dep_Delay_Tag	Dep_Delay_Type
02/01/2023	1	Endeavor Air	N605LR	BDL	Hartford, CT	Morning	-3	0	Low <5min
03/01/2023	2	Endeavor Air	N605LR	BDL		Morning	-5	0	Low <5min
04/01/2023	3	Endeavor Air	N331PQ	BDL	Hartford, CT	Morning	-5	0	Low <5min

Distance_type		Delay_Weather	Delay_NAS	Delay_Security	Delay_LastAircraft	Manufacturer	Model	Aicraft_age
Short Haul >1500Mi	0	0	0	0	0	CANADAIR REGIONAL JET	CRJ	16
Short Haul >1500Mi		0	0	0	0		CRJ	16
Short Haul >1500Mi	0	0	0	0	0	CANADAIR REGIONAL JET	CRJ	10

Arr_Airport	Arr_CityName	Arr_Delay	Arr_Delay_Type	${\sf Flight_Duration}$
LGA	New York, NY	-12	Low <5min	56
LGA	New York, NY	-8	Low <5min	62
LGA	New York, NY	-21	Low <5min	49

Airport Geolocation

Daftar bandara di AS dengan kode IATA, detail administratif (kota, negara bagian), lokasi geografis (Latitude/Longitude)

ARF Lehigh Valley					<u> </u>	LONGITUDE
ADE Echigii valicy	International Airport	Allentown	PA	USA	4.065.236	-754.404
ABI Abilene F	Regional Airport	Abilene	TX	USA	3.241.132	-996.819
ABQ Albuquerque I	nternational Sunport	Albuquerque	NM	USA	3.504.022	-10.660.919

Airport Daily Weather

Data cuaca harian per bandara (suhu, presipitasi, angin, tekanan) yang terhubung ke bandara via kolom airport_id

time	tavg	tmin	tmax	prcp	snow	wdir	wspd	pres	airport_id
01/01/2023	8.1	2.2	11.7	0.0	0.0	278.0	9.7	1013.8	ABE
02/01/2023	5.4	0.0	11.7	0.0	0.0	353.0	3.6	1019.6	ABE
03/01/2023	8.4	7.2	9.4	15.2	0.0	50.0	5.0	1013.9	ABE

DATAHANDLING

Data Loading and Merging

Data Balancing

```
# Memisah data menjadi 2 bagian (0 & 1)
class_0 = final_df[final_df["Dep_Delay_Tag"] == 0] #not delay
class_1 = final_df[final_df['Dep_Delay_Tag'] == 1] #delay

min_count = 200000

class_0_sample = class_0.sample(n=min_count, random_state=42)
class_1_sample = class_1.sample(n=min_count, random_state=42)

balanced_df = pd.concat([class_0_sample, class_1_sample])
balanced_df = balanced_df.sample(frac=1, random_state=42).reset_index(drop=True)
```


HeatMap

																								1.0		C																								1.0
0.000										C	orrela	tion M	latrix																							c	orrela	tion M	atrix											
Day_Of_Week -	100	0.03	0.01	0.07	0.07	6.01	-0.00	0.0	1 0	00 0	ot -	0.00	-0.00	-0.00	40.03	0.0	a a	00 <	07 <	202	0.03	-0.01	0.00	- 0.0	3		FlightDate	1.00	0.01	0.01	-0.00	-0.00	0.00	0.00	0.03	-0.03	-0.0	1 0.0	0 9.0	n -0.	00-	0	20 C	90 -0.	90 -0	0.00	0.01			0.
Dep_Delay -	0.02	1.00	B.51	0.90	0.03	0.71	0,00	0.2	0.	03	63	0.01	0.01	0.05	0.04	0.0	0.	00 -0	.01 0	102	0.05	0.02	0.00			А	Artine	0.01	1.00	0.09	0.03	0.02	0.01	0.63	0.03	0.02	0.00	2 0.0	8 0.1	5 -0.	19 0	0.	0.	0.0	00 0	101	0.07			
Dep_Delay_Tag -	0.01	0.37	1.00	9.36	0.07	0.16	9.08	DI	a 0.	99 5	77	0.00	0.01	0.07	0.05	0.0	6 0	00 4	00 0	103	0.06	-0.05	-0.02				Sal_Number	0.00	0.09	1.00	0.03	-6.DB	0.01	0.62	-0,03	6.06	0.01	0.0	1 (0.1	10 (0)	01 0	1 0	03 0	03 -0	050	104 -	0.04			
Ar_Delay -	0.02	0.98	B(36	1.00	0,05	0.70	0.28	0.0	0.0	93	62	0.01	0.03	0.06	6,04	0.0	7 0.	01 (.01	3.02	0.05	0.02	0.02	- ne			Dep_Airport	0.00	0.03	-0.03	1.00	6.74	0.02	-0.00	9.01	0.01	0.00	0.0	7 0.0	1 0	06 0	00 1	10 1	00 0.0	62: 0	100	0:0%			a)
Right Duration -	0.02	0.03	0.07	0.05	1.00	0.03	0.00	0.1	0 (0)	00 0	01	0.15	0.03	0.04	-0.01	0.0	0	01 <	00 0	105	10.0	0.02	0.01				Dep_CityName	-0.00	0.62	-0.00	0.74	1.00	0.02	10.0	-0.01	-0.03	4.0	1 40.0	2 10.0	2 -01	03 -0	(e) (t.	14 <u>n</u>	74 03	82 O	1,64	2.83			
Delay_Carner -	0.01	0.71	0.16	a 70	0.03	1.00	-0.00	n n n	0.0	160	.04	0.002	0.01	u.us		0.0	g n	01 -	00 0	101	0.07	0.00	0.02				DepTime_label					0.02	1.00	0.04	41.01	0.01	0.0	2 0.0	9 0.0	12 0.0	10 6	10 0.	12 E	nt 0.0	67 0	ini i	0.00			
Delay_Weather -	-0.00	0.78	0.06	d in	-0.00	40.00	1.00	0.0	2 0		07	0.00	0.00	0.00	+0.110	0.0	0	ni «	D1 (101	0.02	0.00	0.01				Dep_Delay_Type	- 0.00		9.02	-0.00	40.01	-0.04	1.00	0.01	0.01	0.60	-0.0	3 -0.0	2 -03	04 -0	00 -0	00 40	00 -0	00 -0	10.0	0.01			
Delay_NAS -	10.0	1	0.10			0.02		1.0	0 0	00 0	03			0.02					00 0	201	0.03	-0.00	0.03	-0.4		G	Arr_Airport	0.01	0.03	-0.03	9.01		0.01	0.01	1.00	0.74	0.01	1 -0.0	7 0.0	n -0.0	06 0	01 -0	01 0	01 -0.	01 -0	1.00	0.04			0.4
Delay_Security -	0.00	0.05	0.03	0.63	0.00	0.00	9.01	0.0	0 1	00	.00	0.00	0.00	0.00	0.00	0.0	0 11	00 0	00 <	2.00	0.00	0.01	9.00			G	Arr_CityName	1000	SHOW O	0.06	0.00		0.01	0.01	0.74	1.00	0.01	1 0.0	7 0.0	1 0	03 0	01 -0	01 0	DE -0.	05 0	101	0.03			
Delay_LastAircraft -												0.01	0.03	0.05	6.04	0.0	s a	00 0	01 (102	0.04	-0.03	0.02			\circ	Arr_Delay_Type	8100	0.02	0.01	0.00	0.01	Acres (The said	0.01	0.01	1.00	0.0	1 0.1	11 -0.0	03 -0	01 0.	o n	00 0.	00 -0	1.00	0.01			
Aicraft_age -	-0.00	0.01	-0.00	0.01	-0.15	0.01					010	1.00	-0.02	-0.03		0,0	0 0	00 -	.00 4	0.01	0.00	0.00	0.05			O	Distance_type	0.00	S neces			-0.01		0.01	Page 1		J. Con	10	0.2	0 0	ов -о	00 0	07 0	07 -0.	07 -0	100	D.De			
tavg -	-0.00	0.05	nne	0.05	0.01	0.03	0.00	0.0	2 0	00 0	05	0.02	100	0.97	6.97	0.0	3 -0.	24 -4	10 3	2.10	-0.38	-0.47	-0.02	- 0.1		D	Manufacturer			-0.26	0.03	6.02	-0.02	0.02	0.01	0.01	0.0	1 0.2	2.0	0.00	51 0	01 00	ot u	11 O	00 -0	101	0.03			0.2
tmin -	-0.00		0.07						2 0	00 6	05	0.03	0.97	1.00	6.90	0.0	6 0.	24 4	12 3	0.07	0.34	-0.49	0.02			R	Model	0.00	-0.19	-0.01	-0.04	-0.03	0.00	-0.04	-0.06	0.03	0.0	8 40.0	-0.5	1 10	10.0	00 0	06 -0.	95 -0.	05 -0	1.041	0.02			
tinax -	-0.01								1 0	00 0	04	0.03	0.97	0.90	1.00	0.0	8 4	24 4	.00 <	0.15	0.31	-0.44	0.04				time		2000		-0.00	-0.00							0 40.0	11 -04		10 -0	00 40	00 40	00 -0	1.00	0.01			
buth -	201	0.06	nns	ner	0.00	0.03	0.06	0.0	+ 0	90 5	85	0.05	0.07	0.06	-0.03	1.0	a 40	m «	09 1	120	-014	-3.02	E,09				amport at		10000		1.00	0.74	0.92	-0.00		0.03	0.00	0.0	7 110		000 000 100		99 1.0	0 0		and I	0.01			6.0
500% -														-0.24				•		-				- 0.0)		MYA_CODE	2200			100	10.0	1000										90 1.0		42 6	-	0.00			
wdir -	CALLED !	DATE OF THE PARTY.	CONTRACT.						000 (Date		1000	COURT !				- 00000	W 100		erik i				The same			C	ARPORT																+	2 10	00.		0.05			
wspd -		NAME OF	SACKS.	(Mariane)	E000							AND S																				-						0 00				00 0.		99 0.7	7	-1				
pros -																						_		0	2	А	50.000	NAME OF TAXABLE PARTY.				0.00	5000			-	17250					VIII DA	a9 a.						1	-0
LATITUDE -		DOM:				100000						MANUAL IN		SIATE		1000					Name and	Name of Street					STATE	Batter	4.41	300	0.00	411						1 00						7	0	and a				
LONGITUDE -	200	0.03	500	- A	5	6.03	E.	10			2	1	200	-0.02	-U.Da	0.0			-	7	207	4	-				COUNTRY		ź	1	t		1	1	4	*	ż		1				i es			2	ė.	ż		
	Day of was	Dep_Det	Dep_Delay_R	Arr_Delt	right puratio	Delay_Com	Delay Weath	Delay, MA	Salar Const	Detay, Securi	way Lattaires	Acraft of	ŝ	Į,	twe	348			NO.	NAS	ā.	питтир	CONCITUD	0	.4			FightDat	Aute	Tail Numb	Dep Airpo	Dep_CityNam	DepTime_lab	Dep_Delay_3kg	arr airps	Ar Chyllan	Arr_Delay_Typ	Distance, typ	Manufactura	Spoke	-		600 818	ED4HP	- Company	8	STA	DOWNE		-0

R

HeatMap Numerical and Categorical Columns

Evaluasi Heatmap

Target:
Dep_Delay_Tag

Categorical Columns:

- 1.airport_id
- 2.IATA_CODE
- 3. AIRPOTY
- 4.CITY
- 5.Tail_Number
- 6.Dep_CityName
- 7.STATE
- 8. COUNTRY
- 9.Model

Numerical Columns:

- 1. Arr_Delay
- 2.Dep_Delay
- 3.Delay_Carrier
- 4.Delay_NAS
- 5.Delay_Security
- 6.Delay_Weather
- 7.Delay_LastAircraft
- 8.tmin
- 9.tmax
- 10.Aircraft_age
- 11.wdir
- 12.wpgt
- 13.pres
- 14.LATITUDE
- 15.LONGITUDE

DATAGLEANING

Penanganan Missing Value

```
print(df.isnull().sum())

√ 3.2s

[15]
    FlightDate
    Day Of Week
                        0
    Airline
                        0
    Dep_Airport
    DepTime_label
    Dep_Delay_Tag
                        0
    Dep_Delay_Type
    Arr_Airport
    Arr CityName
    Arr_Delay_Type
    Flight_Duration
                        0
    Distance type
    Manufacturer
                        0
    Aicraft_age
                        0
    time
                        0
                        0
    tavg
    prcp
    snow
    wspd
    AIRPORT
                        0
    Month
                        0
    Day
                        0
    Quarter
                        0
    dtype: int64
```

Penanganan Duplicate Values

```
Penanganan File Duplikat
        print(df.duplicated().sum())
      ✓ 11.5s
                                                           Python
[18]
     7864
D ~
        duplicates = df.duplicated().sum()
        if duplicates > 0:
            df = df.drop duplicates()
            print(f"{duplicates} duplikasi dihapus.")
        else:
            print("Tidak ada duplikasi.")
      ✓ 22.9s
[19]
                                                           Python
     7864 duplikasi dihapus.
```

Handling Outliers Data

```
df_cleaned[numerical_valid] = df_before.mask(outlier_condition_before, np.nan)
df_cleaned[numerical_valid] = df_cleaned[numerical_valid].fillna(df_cleaned[numerical_valid].median())
```

```
0 -> Sesudah:
                                                            0
- Dep Delay Tag
                         Sebelum:
                                            Sesudah:
- Flight Duration
                         Sebelum:
                                   20119
                                     262 -> Sesudah:
                                                            0
                         Sebelum:
- Aicraft age
                                    1592 -> Sesudah:
                         Sebelum:
tavg
                                   86714 -> Sesudah:
                         Sebelum:
                                                            0

    prcp

                                    9817 -> Sesudah:
                                                            0
                         Sebelum:
- snow
                                    9010 -> Sesudah:
                         Sebelum:
                                                            0

    wspd

                                       0 -> Sesudah:
                         Sebelum:
- Month
                                                            0
                                       0 -> Sesudah:
                         Sebelum:
                                                            0
 Day
                                         -> Sesudah:
                         Sebelum:
                                                            0
- Quarter
```

Handling Skewness

```
# Menangani Skewness
        skewness = df_cleaned[numerical_valid].apply(lambda x:
        skewed columns = skewness[abs(skewness) > 0.5].index
        for col in skewed_columns:
            df_cleaned[col] = np.log1p(df_cleaned[col])
        print(f"Skewness dikurangi untuk {len(skewed_columns)}
        for col in skewed columns:
            print(f"- {col}")
        print(f"Total: {len(skewed_columns)}")

√ 3.5s

                                                          Python
[53]
    Skewness dikurangi untuk 0 fitur.
     Total: 0
```

Saving the dataframe into .csv file

```
df_cleaned.to_csv(r"C:\Users\USER\OneDrive\Dokumen\Semester 4\AOL Data Analytics - Semester 4\result_dataset\dep_delay.csv", index=False)

[54] ✓ 29.1s
```

	Day_Of_Week	Dep_Delay_Tag	Flight_Duration	Aicraft_age	tavg	prcp	snow	wspd	Month	Day	Quarter
count	6.735540e+06	6.735540e+06	6.735540e+06	6.735540e+06	6.735540e+06	6735540.0	6735540.0	6.735540e+06	6.735540e+06	6.735540e+06	6.735540e+06
mean	3.982966e+00	3.792866e-01	4.761886e+00	1.345337e+01	1.693455e+01	0.0	0.0	1.195945e+01	6.600749e+00	1.574982e+01	2.533399e+00
std	2.001771e+00	4.852096e-01	4.044149e-01	7.831972e+00	8.946082e+00	0.0	0.0	4.829170e+00	3.413097e+00	8.766301e+00	1.110217e+00
min	1.000000e+00	0.000000e+00	0.000000e+00	1.000000e+00	-9.300000e+00	0.0	0.0	0.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00
25%	2.000000e+00	0.000000e+00	4.477337e+00	7.000000e+00	1.060000e+01	0.0	0.0	8.400000e+00	4.000000e+00	8.000000e+00	2.000000e+00
50%	4.000000e+00	0.000000e+00	4.787492e+00	1.200000e+01	1.790000e+01	0.0	0.0	1.150000e+01	7.000000e+00	1.600000e+01	3.000000e+00
75%	6.000000e+00	1.000000e+00	5.056246e+00	2.000000e+01	2.390000e+01	0.0	0.0	1.510000e+01	1.000000e+01	2.300000e+01	4.000000e+00
max	7.000000e+00	1.000000e+00	5.598422e+00	3.900000e+01	4.220000e+01	0.0	0.0	2.510000e+01	1.200000e+01	3.100000e+01	4.000000e+00

```
label_encoder = LabelEncoder()
y encoded = label encoder.fit transform(y)
categorical_columns = X.select_dtypes(include=['object']).columns
numerical columns = X.select dtypes(exclude=['object']).columns
ohe = OneHotEncoder(handle_unknown="ignore", sparse=True)
X cat = ohe.fit transform(X[categorical columns])
X_num = X[numerical_columns].values
X combined = hstack([X num, X cat])
X train, X temp, y train, y temp, airline train, airline temp = train test split(
    X_combined, y_encoded, airline_names, test_size=0.3, random_state=42, stratify=y_encoded)
X_val, X_test, y_val, y_test, airline_val, airline_test = train_test_split(
    X temp, y temp, airline temp, test size=2/3, random state=42, stratify=y temp)
```

Data Splitting

- 70% Training
- 10% Validation
- 20% Testing

Checking Class Distribution

Scaling and PCA

```
scaler = StandardScaler(with_mean=False)
X_train_scaled = scaler.fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
X_test_scaled = scaler.transform(X_test)

X_train_scaled = X_train_scaled.toarray()
X_val_scaled = X_val_scaled.toarray()
X_test_scaled = X_test_scaled.toarray()
```

```
pca = PCA(n_components=1000)

X_train_pca = pca.fit_transform(X_train_scaled)

X_val_pca = pca.transform(X_val_scaled)

X_test_pca = pca.transform(X_test_scaled)
```

Training each Model

```
print("\n=== Training Machine Learning Models ===")
for name, model in classification models.items():
    try:
        print(f"Training {name}...")
        start time = time.time()
        # Train model
        model.fit(X train, y train)
        elapsed = time.time() - start time
        # Predict
       y_train_pred = model.predict(X_train_scaled)
       y val pred = model.predict(X val scaled)
       y_test_pred = model.predict(X_test_scaled)
        # Accuracy
        train acc = accuracy score(y train, y train pred)
        val acc = accuracy score(y val, y val pred)
        test_acc = accuracy_score(y_test, y_test_pred)
        # Metrics
        acc = accuracy score(y val, y val pred)
       prec = precision score(y val, y val pred)
       rec = recall_score(y_val, y_val_pred)
        f1 = f1 score(y val, y val pred)
        # Simpan hasil
       results.append([name, train acc, val acc, test acc, prec, rec, f1, elapsed])
        print(f"{name} - Train Acc: {train_acc:.4f} | Val Acc: {val acc:.4f} | Test Acc: {test_acc:.4f} | \
             Precision: {prec:.4f} | Recall: {rec:.4f} | F1 Score: {f1:.4f} | Time: {elapsed:.2f}s")
```

Training each Model

	Model	Train Acc	Val Acc	Test Acc	Precision	Recall	F1-Score	Train Time (s)
9	LightGBM	0.789570	0.782659	0.780711	0.887510	0.647382	0.748663	63.507046
1	Logistic Regression	0.783877	0.782034	0.781861	0.887530	0.645932	0.747699	12.022280
7	XGBoost	0.822833	0.779908	0.779024	0.858387	0.670434	0.752857	136.991289
5	Gradient Boosting	0.775487	0.774833	0.773686	0.879934	0.636532	0.738699	14929.688928
3	Random Forest	0.999986	0.769733	0.768198	0.851823	0.653083	0.739330	1983.385960
8	XGBRF	0.761650	0.761757	0.757485	0.897434	0.591080	0.712731	139.395139
0	Bagging Classifier	0.983902	0.757207	0.755922	0.829448	0.647582	0.727319	17609.474188
6	AdaBoost	0.748906	0.749356	0.745872	0.788166	0.682034	0.731269	3137.003448
4	Decision Tree	0.999986	0.697652	0.695231	0.695017	0.704435	0.699695	1046.435800
2	GaussianNB	0.529183	0.530540	0.531721	0.517918	0.883094	0.652914	6.426768

Model Training with Neural Network (NN)

```
# Neural Network Model
model nn = keras.Sequential([
    layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
    layers.Dropout(0.3),
    # BatchNormalization(),
    layers.Dense(64, activation='relu'),
    layers.Dropout(0.3),
    # BatchNormalization(),
    layers.Dense(32, activation='relu'),
    layers.Dropout(0.3),
    # BatchNormalization(),
    layers.Dense(1, activation='sigmoid')
optimizer = Adam(learning rate=0.0001)
model nn.compile(optimizer=optimizer, loss='binary crossentropy', metrics=['accuracy'])
```

Model training yang terinspirasi dari cara kerja otak manusia, untuk memepelajari pola dari data. NN ini berperan melatih melalui proses backpropagation untuk menyesuaikan model terhadap pola data

Data Validation

```
from tensorflow.keras.models import load_model
history = model_nn.fit(
    X_train_pca, y_train,
    epochs=100,
    validation_data=(X_val_pca, y_val),
    batch_size=32,
    verbose=1,
    )
```

```
- 25s 3ms/step - loss: 0.4683 - accuracy: 0.7728 - val loss: 0.4551 - val accuracy: 0.7767
8750/8750 [
Epoch 3/100
      Epoch 6/100
      8750/8750 [--
     Epoch 11/100
    Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
c:\Users\USER\OneDrive\Dokumen\Semester 4\AOL Data Analytics - Semester 4\tf-env\lib\site-packages\keras\src\engine\training.py:3183;
Neural Network Test Accuracy: 0.7803
```

Evaluasi Kinerja Model

```
train_loss, train_acc = model_nn.evaluate(X_train_pca, y_train, verbose=0)
val_loss, val_acc = model_nn.evaluate(X_val_pca, y_val, verbose=0)
test_loss, test_acc = model_nn.evaluate(X_test_pca, y_test, verbose=0)
```

=== Hasil Akurasi Mo	del ===						
Model	Train Accuracy	Validation Accuracy	Test Accuracy	Precision	Recall	F1-Score	Training Time (s)
Bagging Classifier	0.9839	0.7572	0.7559	0.8294	0.6476	0.7273	17609.474188
Logistic Regression	0.7839	0.7820	0.7819	0.8875	0.6459	0.7477	12.022280
GaussianNB	0.5292	0.5305	0.5317	0.5179	0.8831	0.6529	6.426768
Random Forest	1.0000	0.7697	0.7682	0.8518	0.6531	0.7393	1983.385960
Decision Tree	1.0000	0.6977	0.6952	0.6950	0.7044	0.6997	1046.435800
Gradient Boosting	0.7755	0.7748	0.7737	0.8799	0.6365	0.7387	14929.688928
AdaBoost	0.7489	0.7494	0.7459	0.7882	0.6820	0.7313	3137.003448
XGBoost	0.8228	0.7799	0.7790	0.8584	0.6704	0.7529	136.991289
XGBRF	0.7616	0.7618	0.7575	0.8974	0.5911	0.7127	139.395139
LightGBM	0.7896	0.7827	0.7807	0.8875	0.6474	0.7487	63.507046
Neural Network	0.8346	0.7803	0.7803	0.8672	0.6619	0.7508	60.166055

Hyperparameter Tuning

```
import numpy as np
from lightgbm import LGBMClassifier
from sklearn.experimental import enable halving search cv
from sklearn.model selection import HalvingRandomSearchCV, StratifiedKFold
from sklearn.metrics import accuracy score
from scipy stats import uniform, randint
x train pca = x train pca.astype(np.float32)
X val pca = X val pca.astype(np.float32)
X test pca = X test pca.astype(np.float32)
param distributions = {
    'learning rate': uniform(0.01, 0.1),
    'max depth': randint(3, 10),
    'n estimators': randint(100, 300)
lgbm = LGBMClassifier(random state=42,n jobs=1)
cv = StratifiedKFold(n splits=3, shuffle=True, random state=42)
halving search - HalvingRandomSearchCV(
    estimator=lgbm,
    param distributions-param distributions,
    cv=cv.
    factor=3,
    scoring='accuracy',
    verbose=2.
    random state=42,
    n jobs-1,
    error score='raise'
```

```
print("Melakukan Hyperparameter Tuning dengan HalvingRandomSearchCV pada LightGBM")
halving_search.fit(X_train_pca, y_train)

best_model = halving_search.best_estimator_
print("Model terbaik dari HalvingRandomSearchCV:")
print(best_model)

val_preds = best_model.predict(X_val_pca)
best_val_score = accuracy_score(y_val, val_preds)
print("Skor validasi terbaik:", best_val_score)

test_preds = best_model.predict(X_test_pca)
test_score = accuracy_score(y_test, test_preds)
print("Skor akurasi di test set:", test_score)
```

```
XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=0.8, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='logloss', feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.05, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=200, n_jobs=None, num_parallel_tree=None, ...)

Skor validasi terbaik: 0.776358226867015

Skor akurasi di test set: 0.7755234702168886
```

Hasil Prediksi

	Actual	Predicted	
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	1	1	
5	0	0	
6	0	0	
7	0	0	
8	0	0	
9	0	0	
To	tal corr	ect predict	tions:62129 dari 79995 data
Мо	del terb	aik telah d	disimpan sebagai 'xgbboost_class_model.pkl'
Ha	sil pred	iksi telah	disimpan sebagai 'xgbboost prediksi.csv'

=== Contoh 10	0 Prediksi ===						
		Airline	Actua	1 Pred	licted (Correct	
49219	Southwest Airli	nes Co.		0	0	1	
321922	United Air Lin	es Inc.		0	0	1	
338612	Delta Air Li	nes Inc		0	0	1	
157337	American Airlin	es Inc.		0	0	1	
60246	Alaska Airlin	es Inc.		1	1	1	
159298	Allegi	ant Air		0	0	1	
231301 Amer:	ican Eagle Airlin	es Inc.		0	0	1	
78435	Southwest Airli	nes Co.		0	0	1	
175101	American Airlin	es Inc.		0	0	1	
287376	American Airlin	es Inc.		0	0	1	
=== Akurasi p	per Maskapai ===						
		Total	Benar	Salah	Accura	cy (%)	
Airline						, , ,	
Republic Air	ways	3013	2602	411	86.	359111	
Endeavor Air		2214	1873	341	84.	598013	
Skywest Airl:	ines Inc.	7369	6176	1193	83.8	310558	
PSA Airlines		2113	1757	356	83.1	151917	
American Eag	le Airlines Inc.	2548	2074	474	81.	397174	
JetBlue Airwa		3322	2668	654	80.	313064	
Frontier Air		2194	1757	437	80.0	082042	
	lines Inc.			2292	79.2		
United Air L	ines Inc.	8404	6391	2013	76.0	947120	
Alaska Airli		2914	2186	728		217159	
		18127				545209	
Hawaiian Air		1010	706		69.9		
randitan /il.	ernes ins.	1010	, 00	207	051.		

Hasil Prediksi

Accuracy: 78%

Precision = 89%

Recall = 63%

F1-Score = 74%

Model Terbaik - XGBoost

Mengapa XGBoost?

- Model XGBoost menghasilkan akurasi tertinggi dibanding model lain.
- Dari total 79.995 data, XGBoost berhasil memprediksi dengan benar sebanyak 62.472 data.
- Akurasi keseluruhan mencapai 78.12%.

Contoh Akurasi per Maskapai:

- Republic Airways: 83.33%
- PSA Airlines: 81.99%
- American Airlines Inc.: 69.58%
- File model disimpan sebagai: xgboost_class_model.pkl
- Hasil prediksi: xgboost_prediksi.csv

Cara Kerja XGBoost

XGBoost (Extreme Gradient Boosting) adalah algoritma boosting berbasis tree keputusan yang dibangun secara bertahap (iteratif).

Prinsip Kerja:

- 1. Setiap iterasi, model belajar dari kesalahan sebelumnya.
- 2. Mengukur error (loss), lalu menghitung gradien sebagai arah perbaikan.
- 3. Menambahkan tree keputusan baru untuk memperbaiki prediksi.

Tujuan:

Menggabungkan banyak tree kecil (weak learners) → menjadi model yang kuat dan akurat.

Kesimpulan

Tujuan = Analisis Komprehensif terhadap data penerbangan, cuaca, dan pesawat digunakan untuk memahami faktor utama keterlambatan.

Proses Data End-to-End:

- a. Menggabungkan data multi-sumber yaitu jadwal, cuaca, geolokasi
- b. Pembersihan data dari missing values, duplikat, outliers, dan distribusi tidak normal.
- c.Dilakukan undersampling untuk menyeimbangkan data.

Modeling dan Validasi:

- a. Menerapkan berbagai algoritma, termasuk Neural Network dan XGBoost.
- b. Model dilatih dan dievaluasi menggunakan data terpisah (train, validasi, test).

Hasil:

- a. XGBoost menjadi model paling seimbang, akurat dan tidak overfitting.
- b.Prediksi efektif terhadap delay keberangkatan berdasarkan atribut seperti cuaca, usia pesawat, dan lokasi bandara..

<u>Home</u> About

Contact

Thankyou

FOR YOUR ATTENTION

