If $f: X \to Y$ is a continuous mapping between Hausdorff topological spaces X and Y, prove that

$$f(\overline{E}) \subseteq \overline{f(E)}$$

for every set $E \subseteq X$. Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

Solution. Let $y \in f(\overline{E})$, then there is some $x \in \overline{E}$ such that f(x) = y. If $x \in E$, we have that $y \in f(E)$ hence $y \in \overline{f(E)}$. If $x \notin E$, we must have that $x \in E'$ (since $\overline{E} = E \cup E'$).

So now assume that $x \in E'$. If $y \in f(E)$, we have $y \in \overline{f(E)}$ as well. So now also assume that $y \notin f(E)$. Consider some arbitrary open set W containing y. Since f is continuous, $U = f^{-1}(W)$ is open, and furthermore, $x \in U$. Since $x \in E'$, we have that $U \setminus \{x\} \cap E \neq \emptyset$. So there is some $x_1 \in U \setminus \{x\}$ and $x_1 \in E$. So $f(x_1) \in f(E)$ and $f(x_1) \in f(U \setminus \{x\}) \subseteq f(U) = W$. Hence, we have that $f(x_1) \in f(E) \cap W \neq \emptyset$, and since $y \notin f(E)$, we have $f(x_1) \in f(E) \cap (W \setminus \{y\})$. Hence, $f(E) \cap (W \setminus \{y\}) \neq \emptyset$. But since W was an arbitrary open set containing y, this gives us that $y \in f(E)'$. Thus, $y \in f(E)$.

In each case, whether $x \in E$, $x \notin E$ and $y \in f(E)$, or $x \notin E$ and $y \notin f(E)$, we have shown that $y \in \overline{f(E)}$. Since y was an arbitrary point in $f(\overline{E})$, this shows that $f(\overline{E}) \subseteq \overline{f(E)}$ as deired.

To show that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$, we give the following example: let X be \mathbb{R} with the discrete topology, and Y be \mathbb{R} with the usual topology (from the metric). As we have mentioned in class, these are both Hausdorff. Recall that, by definition, every set in X is open, which implies that for any $U \subseteq X$, U^c is open as well, so every set in X is closed as well. Hence, if we let $E \subseteq X$ be the interval (a,b), since E is closed, we have $E = \overline{E} = (a,b)$. Now let f be the identity map. This is obviously continuous, since the pre-image of every open set in Y is a set in X, which is open. So we have $f(\overline{E}) = f((a,b)) = (a,b)$. Note though that $\overline{f(E)} = \overline{(a,b)} = [a,b]$. So $f(\overline{E}) = (a,b) \subsetneq [a,b] = \overline{f(E)}$. Hence, we have some continuous f that maps between two Hausdorff spaces, and there is some $E \subseteq X$ such that $f(\overline{E}) \subsetneq \overline{f(E)}$.

- (a). Let X and Y be metric spaces. Prove that for $f: X \to Y$, TFAE:
 - (a) f is uniformly continuous on X;
 - (b) for any sequences (x_n) and (x'_n) in X satisfying $d_X(x_n, x'_n) \to 0$, one has $d_Y(y_n, y'_n) \to 0$, where $y_n = f(x_n), y'_n = f(x'_n)$.
- (b). Identify, with proof, all real numbers p for which the function $f(x) = x^p$ is uniformly continuous on $X = (0, +\infty)$. [It's OK to use a little calculus to support your findings.]
- (a). Solution. We first prove $(a) \implies (b)$. So assume that f is uniformly continuous on X. Let (x_n) , (x'_n) be arbitrary sequences in X such that $d_X(x_n, x'_n) \to 0$. Let $\varepsilon > 0$ be arbitrary. Since f is uniformly continuous on X, we get some $\delta > 0$ such that $\forall t \in \mathbb{B}_X[x_n; \delta)$, $d_Y(f(x_n), f(t)) < \varepsilon$. Now using the definition of $d_X(x_n, x'_n) \to 0$, we have that for some N, $d(x_n, x'_n) < \delta$ for all $n \geq N$. Hence, $x'_n \in \mathbb{B}_X[x_n; \delta)$, thus $d_Y(f(x_n), f(x'_n)) < \varepsilon$ for all $n \geq N$. But then if $y_n = f(x_n)$, $y'_n = f(x'_n)$, since ε was arbitrary, this is the definition for $d_Y(y_n, y'_n) \to 0$.
 - Now, to prove $(b) \implies (a)$, we use contraposition, so assume that f is not uniformly continuous on X. Then there is some $\varepsilon' > 0$ such that for any $\delta > 0$, there is some $s \in X$ where for some $t \in \mathbb{B}_X[s;\delta)$, we have $d(f(s), f(t)) \ge \varepsilon'$. Consider $\delta_n = \frac{1}{n}$. For each δ_n , from above, we can get s, t where $t \in \mathbb{B}_X[s;\delta_n)$, but $d(f(s), f(t)) \ge \varepsilon'$; so for each δ_n , we let $x_n = s$ and $x'_n = t$. See that $d_X(x_n, x'_n) \to 0$, since for any $\varepsilon > 0$, using the Archimedean property, we can find $N > \frac{1}{\varepsilon} > 0$ so $\frac{1}{N} = \delta_N < \varepsilon$ and $\forall n \ge N, \ \delta_n \le \delta_N < \varepsilon$, so for all $n \ge N, \ x'_n \in \mathbb{B}_X[x_n;\delta_n) \implies d_X(x_n,x'_n) < \delta_n < \varepsilon$. However, notice that if $y_n = f(x_n)$ and $y'_n = f(x'_n)$, we have $d_Y(y_n,y'_n) \ne 0$, since regardless of n, we have $d_Y(y_n,y'_n) \ge \varepsilon'$, hence $d_Y(y_n,y'_n)$ cannot converge to 0. This shows that $(a) \iff (b)$, as desired.
- (b). Solution. ff

A metric space (X,d) is called an ultrametric space if d satisfies the condition

$$\forall x, y, z \in X, \quad d(x, z) \le \max\{d(x, y), d(y, z)\}.$$

(This makes d itself "an ultrametric".) Show that in any ultrametric space (X,d),...

- (a). every open ball $\mathbb{B}[x;r)$ is a closed set;
- (b). one has $y \in \mathbb{B}[x;r)$ if and only if $\mathbb{B}[y;r) = \mathbb{B}[x;r)$; and
- (c). if $\mathbb{B}[x;r_1) \cap \mathbb{B}[y;r_2) \neq \emptyset$, then one of these balls must contain the other, i.e.,

$$\mathbb{B}[x;r_1) \subseteq \mathbb{B}[y;r_2) \neq \emptyset$$
 or $\mathbb{B}[x;r_1) \supseteq \mathbb{B}[y;r_2) \neq \emptyset$

[The "p-adic numbers" form an ultrametric space of interest in number theory.]

(a). Solution. So normally, triangle inequality gives us $d(x, z) \le d(x, y) + d(y, z)$.

By a corollary from class, it is sufficient to show that $\mathbb{B}[x;r)'\subseteq\mathbb{B}[x;r)$. If $\mathbb{B}[x;r)'=\emptyset$, we are done. So assume that there exists some $y\in\mathbb{B}[x;r)'$. So for any $r\geq r_1>0$, we have $\mathbb{B}[x;r)\cap(\mathbb{B}[y;r_1)\setminus\{y\})\neq\emptyset$. So there is some $z\in\mathbb{B}[x;r)$ and $z\in\mathbb{B}[y;r_1)\setminus\{y\}$. Hence d(x,z)< r and $0< d(y,z)< r_1$. Using the inequality, we then get that $d(x,y)<\max\{r,r_1\}$. Since $r\geq r_1$, we have $d(x,y)< r\Longrightarrow y\in\mathbb{B}[x,r)$. Since $y\in\mathbb{B}[x;r)'$ was arbitrary, this shows that $\mathbb{B}[x;r)'\subseteq\mathbb{B}[x;r)$, so $\mathbb{B}[x;r)$ is closed.

(b). Solution. Assume that $y \in \mathbb{B}[x;r)$. So d(x,y) < r. Let $z \in \mathbb{B}[y;r)$, so d(y,z) < r. Thus, $d(x,z) \le \max\{d(x,y),d(y,z)\} < r$. Hence, $z \in \mathbb{B}[x;r)$, and since z was arbitrary, we get $\mathbb{B}[y;r) \subseteq \mathbb{B}[x;r)$. Now let $z \in \mathbb{B}[x;r)$, so d(x,z) < r. Thus, $d(y,z) \le \max\{d(x,y),d(x,z)\} < r$. Hence, $z \in \mathbb{B}[y;r)$, and since z was arbitrary, we get $\mathbb{B}[y;r) \subseteq \mathbb{B}[x;r)$. Therefore, we get that $\mathbb{B}[x;r) = \mathbb{B}[y;r)$.

Now assume that $\mathbb{B}[y;r) = \mathbb{B}[x;r)$. Since $y \in \mathbb{B}[y;r)$, we must then have that $y \in \mathbb{B}[x;r)$ by equality. Thus, we have $y \in \mathbb{B}[x;r)$ if and only if $\mathbb{B}[x;r) = \mathbb{B}[y;r)$.

(c). Solution. If $\mathbb{B}[x;r_1) \cap \mathbb{B}[y;r_2) \neq \emptyset$, then $\mathbb{B}[x;r_1) \neq \emptyset \neq \mathbb{B}[y;r_2)$, and there exists some $z \in \mathbb{B}[x;r_1)$ and $z \in \mathbb{B}[y;r_2)$. So $d(x,z) < r_1$ and $d(y,z) < r_2$. Assume that $\mathbb{B}[x;r_1) \not\supseteq \mathbb{B}[y;r_2)$. Then there is some point $y_1 \in \mathbb{B}[y;r_2)$ such that $y_1 \notin \mathbb{B}[x;r_1)$. So $d(y,y_1) < r_2$ but $d(x,y_1) \geq r_1$.

We now show that this gives us $r_2 \ge r_1$. Note that $d(y_1, z) \le \max\{d(y_1, y), d(z, y)\} \le r_2$. Now we have that $\max\{d(y_1, z), d(x, z)\} \ge d(y_1, x) \ge r_1$. However, $d(x, z) < r_1$, so to have our left hand side \ge than the right, we must have that $d(y_1, z) \ge r_1 > d(x, z)$. Thus, $r_1 \le d(y_1, z) \le r_2$ so by transitivity of order in the reals, we get that $r_1 \le r_2$ as well.

Now take any $x_1 \in \mathbb{B}[x; r_1) \neq \emptyset$, We know that $d(x_1, z) \leq \max\{d(x_1, x), d(x, z)\} < r_1$. Furthermore, we know that $d(y, z) < r_2$, so $d(x_1, y) \leq \max\{d(x_1, z), d(z, y)\} < \max\{r_1, r_2\} = r_2$. So $x_1 \in \mathbb{B}[y; r_2)$. But since $x_1 \in \mathbb{B}[x_1; r_1)$ was arbitrary, this gives us that $\mathbb{B}[x; r_1) \subseteq \mathbb{B}[y; r_2)$. Therefore we must have $\mathbb{B}[y; r_2) \subseteq \mathbb{B}[x; r_1)$, or if this is not true, we have proven that we must then have $\mathbb{B}[x; r_1) \subseteq \mathbb{B}[y; r_2)$. Furthermore, we stated our balls are not \emptyset at the start, and so we have proven what is desired.

Given Hausdorff Topological Spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) , and continuous functions $f, g: X \to Y$, consider the equalizer:

$$E = \{x \in X : f(x) = g(x)\}.$$

Prove that E is closed in X.

Solution. For the sake of contradiction, assume that E is not closed in X. Then $E \subsetneq \overline{E}$. So there is some $x_1 \in \overline{E}$ but $x_1 \not\in E$. Recall the following theorem from class: for continuous function f_1, f_2 and $Q \subseteq X$, if $f_1(q) = f_2(q)$ for all $q \in Q$, then $f_1(x) = f_2(x)$ for all $x \in \overline{Q}$. Using the theorem with the definition of E then, we must have that f(x) = g(x) for all $x \in \overline{E}$, which includes x_1 , so $f(x_1) = g(x_1)$. But then $x_1 \in E$, a contradiction, since we assumed that $x_1 \notin E$. Hence, we must have that $E = \overline{E}$ and so E is closed.

Three continuous functions $f, g, h \colon \mathbb{R} \to \mathbb{R}$ are related by the identity

$$f(x+y) = g(x) + h(y)$$

- (a). In the special case where f = g = h, show that there must be a real number m such that f(t) = mt for all real t.
- (b). Drop the hypothesis that f, g, h are identical. Describe the most general trio of continuous functions compatible with the given identity.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff

Here's a key fact every math student should know:

Every nonempty open set in \mathbb{R} can be expressed as a finite or countable union of disjoint open intervals Prove this, referring to a given open set $U \neq \emptyset$, by following these steps:

- (a). For each $x \in U$, let $I(x) = (\alpha(x), \beta(x))$, where $\alpha(x) = \inf\{a \colon \text{ one has } x \in (a,b) \text{ for some } (a,b) \subseteq U\} \\ \beta(x) = \sup\{a \colon \text{ one has } x \in (a,b) \text{ for some } (a,b) \subseteq U\} \\ \text{Prove that } x \in I(x) \text{ and } I(x) \subseteq U, \text{ while } \alpha(x) \notin U \text{ and } \beta(x) \notin U. \text{ [Argue carefully, since both } \alpha(x) = -\infty \\ \text{and } \beta(x) = +\infty \text{ are possible.]}$
- (b). Let $\mathcal{G} = \{I(x) : x \in U\}$. Show that any two intervals in \mathcal{G} must be either disjoint or identical.
- (c). Explain why the key fact stated above must hold.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff