Data Wrangling

IMPORT REQUIRED LIBRARIES

```
import pandas as pd
         import seaborn as sns
         import numpy as np
              LOAD TITANIC DATASET
In [ ]:
         Kas = sns.load_dataset("Titanic")
              GET DATA DETAILS
In [ ]:
         Kas.head()
         Kas.shape
        (891, 15)
Out[]:
```

```
In []:  # simple operations (maths operator)
    (Kas["age"]+6).head(10)
    # the above code will add 6 in age col

Out[]:    0    28.0
    1    44.0
    2    32.0
    3    41.0
    4    41.0
    5    NaN
    6    60.0
    7    8.0
    8    33.0
    9    20.0
    Name: age, dtype: float64
```

- Dealing with missing values

- In as data missing values are either: N/A/NaN/0/blank cell
- if we have missing value in any col or row

- Perform the following Steps:

- 1. Recollect the data and check the mistakes
- 2. remove the column having missing values if is not effecting the whole data or useless
- 3. Replace the missing value
 - 1. How
- 1. Take Average/Mean of entire columns and replace that with missing values
 - 2. frequency/ MODE replacement
 - 3. USE ML Algorithms
 - 4. Leave it like that
 - 2. Why?
 - 1. its better because no data is lost
 - 2. Avoid less accuracy

```
survived
Out[ ]:
        pclass
                          0
        sex
        age
                        177
        sibsp
                          0
        parch
        fare
        embarked
        class
        who
        adult male
        deck
                        688
        embark_town
        alive
        alone
        dtype: int64
In [ ]:
         #removing null values from a column:deck
         Kas.dropna(subset=["deck"], axis=0, inplace= True)
         #inplace=True will made the changes in original dataframe
         print(Kas.shape)
        (203, 15)
In [ ]:
         Kas.isnull().sum()
```

```
survived
                         0
Out[]:
        pclass
                         0
        sex
                         0
                        19
        age
        sibsp
                         0
        parch
        fare
        embarked
        class
        who
        adult_male
        deck
                         0
        embark_town
        alive
        alone
                         0
        dtype: int64
In [ ]:
         #remove null values from whole dataset
         Kas=Kas.dropna()
         Kas.isnull().sum()
```

```
survived
Out[]:
        pclass
        sex
        age
        sibsp
        parch
        fare
        embarked
        class
        who
        adult_male
        deck
        embark_town
        alive
        alone
        dtype: int64
In [ ]:
         Kas.shape
        (182, 15)
Out[]:
```

Replacing missing values

- by taking mean/average of relevant column

```
In [ ]: kas1 = sns.load_dataset("titanic")
```

```
In [ ]:
         kas1.shape
        (891, 15)
Out[]:
In [ ]:
         # Finding mean of age column as it contains 177 missing values
         mean= kas1["age"].mean()
         mean
        29.69911764705882
Out[]:
In [ ]:
         #replacing NaN with mean of the data ( also updating the column)
         kas1["age"]=kas1["age"].replace(np.nan, mean)
In [ ]:
         kas1.isnull().sum()
```

```
survived
Out[ ]:
         pclass
         sex
         age
         sibsp
         parch
         fare
         embarked
         class
         who
         adult male
         deck
                        688
         embark_town
         alive
         alone
         dtype: int64
```

Replacing NaN values of "deck" & "embark_town" Column

```
Out[]: survived
         pclass
         sex
         age
         sibsp
         parch
         fare
         embarked
         class
         who
         adult_male
         deck
         embark_town
         alive
         alone
         dtype: int64
```

Data Formatting

- Make the data as per standardized format
- Make sure that the data is consistent and understandable
 - easy to gather
 - easy to workwith
 - names should be uniformed
 - e.g use Lahore or LHR on all place dont mix

- if a columns has different unit like kg, g or pounds, make a single unit for all entries i.e: all entries should b kg/g etc
- one standard unit for each col

```
In [ ]:
         # check data types of columns
         kas1.dtypes
         survived
                           int64
Out[]:
         pclass
                           int64
         sex
                          object
                         float64
         age
         sibsp
                           int64
         parch
                           int64
         fare
                         float64
         embarked
                          object
         class
                        category
         who
                          object
         adult_male
                            hoo1
         deck
                        category
         embark_town
                          object
         alive
                          object
         alone
                            bool
         dtype: object
```

TYPECASTING

```
In [ ]:
         # convert data type of one column into other
         Kas["survived"] = Kas["survived"].astype("float64")
In [ ]:
         Kas.dtypes
        survived
                        float64
Out[]:
        pclass
                          int64
                         object
        sex
                        float64
        age
        sibsp
                          int64
        parch
                          int64
        fare
                        float64
        embarked
                         object
        class
                         object
        who
                         object
        adult male
                           hoo1
        deck
                         object
        embark_town
                         object
        alive
                         object
        alone
                           hoo1
        dtype: object
In [ ]:
         # converting age cols into days instead of years
         kas1["age"] = kas1["age"]*365
         kas1.head()
```

Out[]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030.0	1	0	7.2500	S	Third	man	True
	1		1	female	13870.0	1	0	71.2833	С	First	woman	False
	2	1	3	female	9490.0	0	0	7.9250	S	Third	woman	False
	3	1	1	female	12775.0	1	0	53.1000	S	First	woman	False
	4	0	3	male	12775.0	0	0	8.0500	S	Third	man	True

Removing decimal numbers from "age" Column

```
In [ ]: kas1["age"] = kas1["age"].astype("int64")
    kas1.head()
```

Out[]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030	1	0	7.2500	S	Third	man	True
	1	1	1	female	13870	1	0	71.2833	С	First	woman	False
	2	1	3	female	9490	0	0	7.9250	S	Third	woman	False
	3	1	1	female	12775	1	0	53.1000	S	First	woman	False
	4	0	3	male	12775	0	0	8.0500	S	Third	man	True

```
# renaming column name
kas1.rename(columns={"age":"age in days"}, inplace=True)
kas1.head()
```

:		survived	pclass	sex	age in days	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030	1	0	7.2500	S	Third	man	True
	1	1	1	female	13870	1	0	71.2833	С	First	woman	False
	2	1	3	female	9490	0	0	7.9250	S	Third	woman	False
	3	1	1	female	12775	1	0	53.1000	S	First	woman	False
	4	0	3	male	12775	0	0	8.0500	S	Third	man	True

•

Data Normalization

Makes the data uniform

Out[]

- They have same impact
- bring both variables or datasets in a range for making comparison
- Also for computational purpose

```
In [ ]: kas1.head()
```

Out[]:	survive	d	pclass	sex	age in days	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030	1	0	7.2500	S	Third	man	True
	1	1	1	female	13870	1	0	71.2833	С	First	woman	False
	2	1	3	female	9490	0	0	7.9250	S	Third	woman	False
	3	1	1	female	12775	1	0	53.1000	S	First	woman	False
	4	0	3	male	12775	0	0	8.0500	S	Third	man	True

```
In [ ]:
    kas2 = kas1[["age in days", "fare"]]
    kas2.head()
```

Dut[]:		age in days	fare
	0	8030	7.2500
	1	13870	71.2833
	2	9490	7.9250
	3	12775	53.1000
	4	12775	8.0500

The above data is in above range as values in age in days and values in fare have huge gap, here we need to normalize the data

Methods to normalize the data

- 1. simple feature scaling
 - x(new) = x(old)/x(max)
- 2. Min-Max method
- 3. Z-score (standard score) -3 to +3 (0 to 3)
- 4. Log transformation

Method-1: Simple Feature Scaling

```
kas2["fare"] = kas2["fare"]/kas2["fare"].max()
In [ ]:
         kas2["age in days"] = kas2["age in days"]/kas2["age in days"].max()
         kas2.head()
        C:\Users\My Net\AppData\Local\Temp\ipykernel 8120\956855613.py:2: SettingWithCopyW
        arning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user guide/indexing.html#returning-a-view-versus-a-copy
          kas2["fare"] = kas2["fare"]/kas2["fare"].max()
        C:\Users\My Net\AppData\Local\Temp\ipykernel 8120\956855613.py:3: SettingWithCopyW
        arning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user guide/indexing.html#returning-a-view-versus-a-copy
          kas2["age in days"] = kas2["age in days"]/kas2["age in days"].max()
```

Out[]:		age in days	fare
	0	0.2750	0.014151
	1	0.4750	0.139136
	2	0.3250	0.015469
	3	0.4375	0.103644
	4	0.4375	0.015713

Method-2: Min-Max

```
In [ ]:
    kas1["fare"] = (kas1["fare"]-kas1["fare"].min())/(kas1["fare"]-kas1["fare"].max())
    kas1.head()
```

Out[]: _		survived	pclass	sex	age in days	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030	1	0	-0.014354	S	Third	man	True
	1	1	1	female	13870	1	0	-0.161623	С	First	woman	False
	2	1	3	female	9490	0	0	-0.015712	S	Third	woman	False
	3	1	1	female	12775	1	0	-0.115629	S	First	woman	False
	4	0	3	male	12775	0	0	-0.015963	S	Third	man	True

Method-3: Z-score

```
In [ ]:
    kas2["fare"] = kas2["fare"]-kas2["fare"].mean()
    kas2["age in days"] = kas2["age in days"]-kas2["age in days"].mean()
    kas2.head()
```

C:\Users\My Net\AppData\Local\Temp\ipykernel_8120\2287191071.py:2: SettingWithCopy
Warning:

A value is trying to be set on a copy of a slice from a $\mathsf{DataFrame}$.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

kas2["fare"] = kas2["fare"]-kas2["fare"].mean()

C:\Users\My Net\AppData\Local\Temp\ipykernel_8120\2287191071.py:3: SettingWithCopy
Warning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
kas2["age in days"] = kas2["age in days"].mean()

Out[]:		age in days	fare
	0	-0.096237	-0.048707
	1	0.103763	0.076277
	2	-0.046237	-0.047390
	3	0.066263	0.040786
	4	0.066263	-0.047146

Method-4: Log Transformation

```
In [ ]:
    k= sns.load_dataset("titanic")
    k["fare"] = np.log(k["fare"])
    k.head()
```

C:\Users\My Net\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\c
ore\arraylike.py:397: RuntimeWarning: divide by zero encountered in log
 result = getattr(ufunc, method)(*inputs, **kwargs)

Out[]: _		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	22.0	1	0	1.981001	S	Third	man	True
	1	1	1	female	38.0	1	0	4.266662	C	First	woman	False
	2	1	3	female	26.0	0	0	2.070022	S	Third	woman	False
	3	1	1	female	35.0	1	0	3.972177	S	First	woman	False
	4	0	3	male	35.0	0	0	2.085672	S	Third	man	True

Bining

- Grouping values (less or more continous) into smaller number of bins
- convert numeric into categories (child, young, old) etc

- To have better understanding of groups
 - low vs mid high price

Bining "age" column into three groups

```
In [ ]:
    K5=sns.load_dataset("titanic")
    K5=K5.dropna()
    K5.isnull().sum()
    K5["age"] = K5["age"].astype("int64")

bins = K5['age'].value_counts(bins=4, sort=True)
bins= np.sort(bins)
    age_groups = ["Childern", " Young", " Old"]
    K5["age"] = pd.cut(K5["age"], bins, labels= age_groups, include_lowest=True)
    K5=K5.dropna()
    K5.isnull().sum()
    K5.head()
```

survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
1	1	female	Young	1	0	71.2833	С	First	woman	Fal
1	1	female	Young	1	0	53.1000	S	First	woman	Fal
0	1	male	Young	0	0	51.8625	S	First	man	Trı
1	1	female	Old	0	0	26.5500	S	First	woman	Fal
1	2	male	Young	0	0	13.0000	S	Second	man	Trı
	I 1 B 1	1 1 1 1 1 1 5 0 1 1 1 1	1 1 female 1 1 female 5 0 1 male 1 1 female	1 1 female Young 1 1 female Young 1 1 male Young 1 1 female Old	1 1 female Young 1 1 1 female Young 1 1 1 male Young 0 1 1 female Old 0	1 1 female Young 1 0 1 1 female Young 1 0 1 1 male Young 0 0 1 1 female Old 0 0	1 1 female Young 1 0 71.2833 1 1 female Young 1 0 53.1000 6 0 1 male Young 0 0 51.8625 1 1 female Old 0 0 26.5500	1 1 female Young 1 0 71.2833 C 1 1 female Young 1 0 53.1000 S 1 1 male Young 0 0 51.8625 S 1 1 female Old 0 0 26.5500 S	1 1 female Young 1 0 71.2833 C First 1 1 female Young 1 0 53.1000 S First 5 0 1 male Young 0 0 51.8625 S First 1 1 female Old 0 0 26.5500 S First	1 1 female Young 1 0 71.2833 C First woman 1 1 female Young 1 0 53.1000 S First woman 5 0 1 male Young 0 0 51.8625 S First man 1 1 female Old 0 0 26.5500 S First woman

converting categories into dummies

- easy to use for computations
- e.g male,female=0,1

```
pd.get_dummies(kas1["sex"])
kas1.head()
```

Out[]:		survived	pclass	sex	age in days	sibsp	parch	fare	embarked	class	who	adult_male
	0	0	3	male	8030	1	0	-0.014354	S	Third	man	True
	1	1	1	female	13870	1	0	-0.161623	С	First	woman	False
	2	1	3	female	9490	0	0	-0.015712	S	Third	woman	False
	3	1	1	female	12775	1	0	-0.115629	S	First	woman	False
	4	0	3	male	12775	0	0	-0.015963	S	Third	man	True

How to get dummies to change data inside a dataframe?

Out[]:		survived	pclass	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	em
	0	0	3	22.0	1	0	7.2500	S	Third	man	True	NaN	Sc
	1	1	1	38.0	1	0	71.2833	С	First	woman	False	С	
	2	1	3	26.0	0	0	7.9250	S	Third	woman	False	NaN	Sc
	3	1	1	35.0	1	0	53.1000	S	First	woman	False	С	Sc
	4	0	3	35.0	0	0	8.0500	S	Third	man	True	NaN	Sc

•

More Explanation of Bining

```
In [ ]: import matplotlib.pyplot as plt
In [ ]: kk = sns.load_dataset("titanic")
In [ ]: kk.head(10)
```

```
Out[]: survived pclass
                                       age sibsp parch
                                                          fare embarked
                                                                                        who adult male
                                 sex
                                                                               class
          0
                    0
                           3
                                male
                                      22.0
                                                                          S
                                                                               Third
                                                       0
                                                           7.2500
                                                                                        man
                                                                                                    True
                              female
                                      38.0
                                                          71.2833
                                                                          C
                                                                                First woman
                                                                                                    False
          1
                    1
                           3 female
                                      26.0
                                                           7.9250
                                                                               Third woman
                                                                                                    False
          2
                    1
                                               0
                                                                          S
          3
                    1
                           1 female
                                      35.0
                                                                          S
                                                                                First woman
                                                                                                    False
                                                          53.1000
          4
                    0
                           3
                                male
                                      35.0
                                               0
                                                           8.0500
                                                                          S
                                                                               Third
                                                                                        man
                                                                                                    True
                           3
                                                                          Q
          5
                    0
                                male
                                      NaN
                                                           8.4583
                                                                               Third
                                                                                                    True
                                                                                        man
          6
                    0
                                male
                                      54.0
                                               0
                                                       0 51.8625
                                                                          S
                                                                                First
                                                                                                    True
                                                                                        man
          7
                    0
                           3
                                male
                                       2.0
                                                3
                                                       1 21.0750
                                                                          S
                                                                               Third
                                                                                        child
                                                                                                    False
                           3 female
                                                                               Third woman
          8
                                      27.0
                                               0
                                                       2 11.1333
                                                                          S
                                                                                                    False
          9
                    1
                           2 female
                                      14.0
                                                       0 30.0708
                                                                             Second
                                                                                        child
                                                                                                    False
                                                                                                       •
           kk["age"].dtype
Out[ ]: dtype('float64')
           kk["age"].isnull().sum()
```

```
177
Out[]:
         kk["age"].dropna()
                22.0
Out[]:
                38.0
                26.0
                35.0
                35.0
                39.0
        885
               27.0
        886
        887
               19.0
               26.0
        889
                32.0
        890
        Name: age, Length: 714, dtype: float64
```

disturibute data into equal parts

• As in our example we want to divide age column into three equal parts.

```
In [ ]: #create bins
bins = np.linspace(min(kk["age"]), max(kk["age"]), 5) # we need 3 bins but we alwo
bins

Out[ ]: array([ 0.42 , 20.315, 40.21 , 60.105, 80. ])

In [ ]: group_names =["Child", "young", "middle-age", "old"]

In [ ]: #perform bins
kk["age_binned"] = pd.cut(kk["age"], bins, labels=group_names, include_lowest= Tru

In [ ]: kk[["age", "age_binned"]].head(20)
```

Out[]:		age	age_binned
_	0	22.0	young
	1	38.0	young
	2	26.0	young
	3	35.0	young
	4	35.0	young
	5	NaN	NaN
	6	54.0	middle-age
	7	2.0	Child
	8	27.0	young
	9	14.0	Child
	10	4.0	Child
	11	58.0	middle-age
	12	20.0	Child
	13	39.0	young
	14	14.0	Child
	15	55.0	middle-age

```
age age_binned
        16
             2.0
                       Child
        17 NaN
                       NaN
        18 31.0
                      young
        19 NaN
                       NaN
In [ ]:
         kk["age_binned"].value_counts(sort= True)
         # shows number of childs, young and old people in dataset
                       385
        young
Out[ ]:
        Child
                      179
        middle-age
                      128
        old
                       22
        Name: age_binned, dtype: int64
In [ ]:
         plt.hist(kk["age"])
         plt.xlabel("Age Group")
         plt.ylabel("frequency")
        Text(0, 0.5, 'frequency')
Out[ ]:
```

