Concours Communs Polytechniques - Session 2007

Corrigé de l'épreuve d'analyse

Étude d'extremum d'une fonction de deux variables. Échanges de limites et d'intégrales

Corrigé par Mohamed TARQI

EXERCICE:

a. f étant une fonction continue sur le compact $F = [0,1] \times [0,1]$, donc bornée et atteint ses bornes sur F, et par conséquent le nombre $M = \sup_{(x,y) \in F} f(x,y)$ existe et bien définie.

b. D'après le théorème du cours, si la borne supérieure sur F est atteinte en un point (x,y) de l'intérieur Ω de Ff, alors

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 1 - x^2 - 2xy = 0\\ \frac{\partial f}{\partial y}(x,y) = 1 - y^2 - 2xy = 0 \end{cases},$$

on trouve $x = y = \frac{\sqrt{3}}{3}$, donc $M = \sup_{(x,y) \in F} f(x,y) = f(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}) = \frac{3\sqrt{3}}{8}$.

c. Notons $D_1 = \{(0,y)/0 \le y \le 1\}$, $D_2 = \{(x,1)/0 \le x \le 1\}$, $D_3 = \{(1,y)/0 \le y \le 1\}$ et $D_4 = \{(x,0)/0 \le x \le 1\}$. Notons aussi f_i la restriction de f à D_i pour i = 1, 2, 3, 4, alors on a : $f_1(x) = f_4(x) = f_4(x) = f_4(x)$ $\frac{x}{1+x^2}$ et $f_2(x)=f_3(x)=\frac{1}{2}\frac{x+1}{1+x^2}$. L'étude élémentaire de ces deux fonctions montre que le sup de f_1

est $f(1,1)=\frac{1}{2}$ et le sup de f_2 est $f(\sqrt{2}-1,1)=\frac{1+\sqrt{2}}{4}$. La comparaison de M est ces deux dernières valeurs montre que le sup de f sur F est nécessairement $M = \frac{3\sqrt{3}}{2}$.

PROBLÈME:

PARTIE PRÉLIMINAIRE

1a. Soit x>0. Comme $\lim_{t\longrightarrow 0}t^{1-x}(t^{x-1}e^{-t})=0$ et $t^{x-1}e^{-t}=_{+\infty}0(\frac{1}{t^2})$, la fonction $t\to e^{-t}t^{x-1}$ est intégarble sur $]0, +\infty[$, donc Γ est bien définie sur $]0, +\infty[$.

1b. $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt=[\frac{1}{x}t^xe^{-t}]_0^{+\infty}+\frac{1}{x}\int_0^{+\infty}t^xe^{-t}dt=\frac{1}{x}\Gamma(x+1)$; en particulier $\Gamma(1)=1$ et $\Gamma(n)=(n-1)!$ pour tout entier naturel non nul.

2a. Pour tout entier naturel non nul k et x réel x > 1, on a :

$$\frac{1}{k^x} \le \int_k^{k+1} \frac{dt}{t^x} \le \frac{1}{(k+1)^x}$$

Donc $\forall n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k^x} \le \int_{1}^{n+1} \frac{dt}{t^x} \le \sum_{k=1}^{n+1} \frac{1}{(k+1)^x}$$

et par conséquent,

$$\sum_{n=1}^{\infty} \frac{1}{k^x} \le \int_{1}^{+\infty} \frac{dt}{t^x}$$

donc

$$\sum_{k=n+1}^{\infty} \frac{1}{t^x} \le \int_1^{+\infty} \frac{dt}{t^x} - \sum_{k=1}^n \frac{1}{k^x} \le \int_1^n \frac{dt}{t^x} + \int_n^{+\infty} \frac{dt}{t^x} - \sum_{k=1}^n \frac{1}{k^x} \le \int_n^{+\infty} \frac{dt}{t^x} = \frac{1}{(x-1)n^{x-1}}.$$

2b. D'après la dernière question, pour que $\left|\sum_{k=1}^{n} \frac{1}{k^p} - \zeta(p)\right| \le \varepsilon$, il suffit que $\frac{1}{p-1} \frac{1}{n^{p-1}} \le \varepsilon$, condition sur n, qui s'écrit aussi $n \geq \sqrt[p-1]{\frac{1}{\varepsilon(p-1)}}$.

2c. Application numérique : pour p=7, on prend $n=E\left(\sqrt[6]{\frac{10^6}{6}}\right)+1$., on trouve n=8 et $\zeta(7)\simeq 1,008348$.

1

Première partie : Suites de fonctions

3. Posons $F_n = \int_a^b f_n(t)dt$, $F = \int_a^b f(t)dt$. La fonction F est bien définie puisque la fonction f est une limite uniforme d'une suite de fonctions continues sur [a, b]. Posons

$$f(x) = f_n(x) + \delta_n(x).$$

$$|F_n - F| = \left| \int_a^b \left[f_n(t) - f(t) \right] dt \right| \le \int_a^b \left| \delta_n(t) \right| dt$$

D'après la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$,

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall t \in [a, b], \forall n \ge n_0 \Longrightarrow |\delta_n(t)| < \frac{\varepsilon}{b - a}$$

et par suite,

$$\int_{a}^{b} |\delta(t)| dt < \frac{\varepsilon}{b-a} |b-a| \le \varepsilon$$

En définitive, on peut écrire

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0 \Longrightarrow |F_n - F| < \varepsilon$$

D'où:

$$\int_{a}^{b} \left[\lim_{n \longrightarrow +\infty} f_n(t) \right] dt = \lim_{n \longrightarrow +\infty} \int_{a}^{b} f_n(t) dt.$$

4a. Considérons la suite de fonctions définie sur [0, 1] par :

$$f_n(x) = \begin{cases} (-1)^n n^3 x, & \text{si } x \in [0, \frac{1}{n}] \\ (-1)^{n+1} n^3 (x - \frac{2}{n}), & \text{si } x \in [\frac{1}{n}, \frac{2}{n}] \\ 0, & \text{si } x \in [\frac{2}{n}, 1] \end{cases}$$

 $f_n(0)=0$ et si $x\in]0,1]$ fixé, il existe $n_0\in \mathbb{N}$ tel que $\frac{2}{n_0}<2$ et on a alors $\forall n\in \mathbb{N}, n\geq n_0$ implique $f_n(x)=0$. Ceci montre que f_n converge simplement vers la fonction nulle sur [0,1]. Comme $\|f_n\|_{\infty}=n^2$,

$$f_n$$
 ne converge pas uniformément, d'ailleurs $\forall n \geq 2$, $\int_0^1 f_n(x) dx = (-1)^n n$.

4b. La suite de fonctions définie sur $[0,1]$ par $f_n(x) = x^n$ converge simplement, non uniformément vers la fonction $f(x) = \begin{cases} 0, & \text{si } x \in [0,1[\\ 1, & \text{si } x = 1 \end{cases}$, cependant $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \frac{1}{n+1} = 0 = \int_0^1 f(x) dx$.

5a. La suite de fonctions f_n est une suite de fonctions qui converge simplement vers 0 , car c'est le

terme général d'une série convergente, de plus la convergence est uniforme puisque $||f_n||_{+\infty} = f_n(n) = f_n(n)$

$$\frac{n^n e^{-n}}{n!} = \frac{1}{\sqrt{2\pi n}(1+\varepsilon_n)} \text{ qui tend vers 0 (} n! = n^n e^{-n} \sqrt{2\pi n}(1+\varepsilon_n) \text{ avec } \lim_{n\to\infty} \varepsilon_n = 0.\text{) et } \int_0^{+\infty} f_n(x) dx = 0.$$

$$\frac{1}{n!} \int_0^\infty x^n e^{-x} dx = \frac{\Gamma(n+1)}{n!} = 1 \neq \int_0^{+\infty} f(x) dx.$$
 Le théorème n'est pas applicable même si la convergence est uniforme

5bi. Puisque la suite f_n est uniformément convergente, alors elle vérifie la condition de Cauchy, donc il existe $n_0 \in \mathbb{N}$ tel que $\forall p \geq q \geq n_0$, on a $||f_q - f_p||_{\infty} \leq 1$, qui s'écrit encore

$$\forall x \in I, |f_q(x)| \ge 1 + |f_p(x)|$$

par passage à la limite quand q tend vers $+\infty$ on obtient : $|f(x)| \le 1 + |f_p(x)|$; inégalité qui montre que f est intégrable sur I.

5bii. Posons $F_n = \int_{T} f_n(t)dt$, $F = \int_{T} f(t)dt$. La fonction F est bien définie d'après la dernière question. Posons

$$|f(x)| = f_n(x) + \delta_n(x).$$

$$|F_n - F| = \left| \int_I [f_n(t) - f(t)] dt \right| \le \int_I |\delta_n(t)| dt$$

D'après la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall t \in I, \forall n \ge n_0 \Longrightarrow |\delta_n(t)| < \frac{\varepsilon}{l(I)}$$

et par suite,

$$\int_I |\delta(t)| dt < \frac{\varepsilon}{l(I)} l(I) \leq \varepsilon$$

En définitive, on peut écrire

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0 \Longrightarrow |F_n - F| < \varepsilon$$

D'où:

$$\int_{I} \left[\lim_{n \to +\infty} f_n(t) \right] dt = \lim_{n \to +\infty} \int_{I} f_n(t) dt.$$

6a. La condition $\forall x \in I, \ |f_n(x)| \leq \varphi(x)$ assure l'intégrabilte de chaque f_n sur I, puisque φ est intégrable sur I. La même inégalité entraîne, par passage à la limite, $|f(x)| \leq \varphi(x)$, donc f est intégrable sur I. **6bi.** La suite de fonctions définie sur $[0,\frac{\pi}{2}]$ par $f_n(x)=\sin^n x$, dominée par la fonction constante égale à 1, converge simplement vers $f(x)=\left\{\begin{array}{ll} 0, & \text{si } x\in[0,\frac{\pi}{2}[\\ 1, & \text{si } x=\frac{\pi}{2} \end{array}\right.$ et vérifie

$$\int_0^{\frac{\pi}{2}} f(x)dx = \lim_{n \longrightarrow +\infty} \int_0^{\frac{\pi}{2}} f_n(x)dx.$$

6bii. La suite de fonction $f_n(x)=\frac{e^{\sin\frac{x}{n}}}{1+x^2}$, définie sur $[0,+\infty[$, vérifie les hypothèses du théorème TH2 avec $\varphi(x)=\frac{1}{1+x^2}$, donc

$$\lim_{n \to \infty} \int_0^{+\infty} \frac{e^{\sin\frac{x}{n}}}{1+x^2} = \int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{4}.$$

DEUXIÈME PARTIE: SÉRIES DE FONCTIONS

7. Soit $\sum_{n=0}^{n} f_n$ une suite de fonctions qui converge uniformément vers f, alors d'après l'étude faite sur les suites de fonctions, on déduit facilement le théorème TH3; il suffit, pour l'obtenir, de remplacer dans la démonstration f_n par $S_n = \sum_{k=0}^n f_k$ et δ_n par $R_n = f - S_n$.

8a. Supposons que la série $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin nx$ est une série de Fourier d'une fonction 2π -périodique f et continue par morceaux. Alors le théorème de Parseval implique

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}}\right)^2 = \sum_{n=1}^{\infty} \frac{1}{n} = \|f\|_2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt$$

ce qui entraı̂ne la convergence de la série $\sum_{n=1}^{\infty} \frac{1}{n}$, et ceci est impossible.

8b. Soit $f(x)=a_0+\sum\limits_{n=1}^{\infty}[a_n\cos nx+b_n\sin nx]$, cette série étant uniformément convergente sur $[0,2\pi]$, donc on peut intégrer terme à terme, on obtient donc $a_0=\frac{1}{2\pi}\int_0^{2\pi}f(t)$, $a_n=\frac{1}{\pi}\int_0^{2\pi}f(t)\cos ntdt$, $n\leq 1$ et $b_n=\frac{1}{\pi}\int_0^{2\pi}f(t)\sin ntdt$, $n\in\mathbb{N}^*$.

9a.Considérons , la série entière $\sum\limits_{n=0}^{\infty}a_nx^n$, de rayon de convergence $R\geq 1$ (car la série $\sum\limits_{n=0}^{\infty}a_n$ est convergente). On a

$$\forall x \in \mathbb{R}, \ \frac{a_n}{n!} x^n = a_n \left(\frac{R}{2}\right)^n \frac{\left(\frac{2x}{R}\right)^n}{n!} = o\left(\frac{\left(\frac{2x}{R}\right)^n}{n!}\right).$$

La série $\sum_{n=0}^{\infty} \frac{(\frac{2x}{R})^n}{n!}$ est absolument convergente, ce qui assure que que son rayon de convergence est infini ; il est de même pour la série $\sum_{n=1}^{\infty} \frac{a_n}{n!} x^n$.

9b. Soit $x \in]-R, R[$. Introduisons alors la suite de fonctions : $f_n(t) = e^{-t} \frac{a_n t^n x^n}{n!}$, f_n constitue une

suite d'applications continues et intégrables sur $[0,+\infty[$. La série $\sum_{n=0}^{\infty}$ converge normalement vers $t\to$ $e^{-t}f(tx)$ sur tout segment de $[0,+\infty[$. On en déduit que $e^{-t}f(tx)$ est continue sur $[0,+\infty[$. On outre on

$$\int_0^{+\infty} |f_n(t)dt| = \Gamma(n+1) \frac{a_n |x|^n}{n!} = a_n |x|^n,$$

qui est le terme général d'une série convergente. Le théorème TH3 assure que $t \to e^{-t} f(tx)$ est intégrable $\operatorname{sur} [0, +\infty[$ et que

$$\int_0^{+\infty} e^{-t} f(tx) dt = \sum_{n=0}^{+\infty} \int_0^{+\infty} f_n(t) dt = \sum_{n=0}^{\infty} a_n x^n = f(x)$$

En particulier, $\int_0^{+\infty} e^{-t} f(t) = \sum_{n=0}^{+\infty} a_n$.

$$R_n(x) = \frac{(-1)^{n+1}x^{n+1}}{1+x}$$

l'étude de $|R_n|$ montre que le sup est atteint en x=1 et vaut $\frac{1}{2}$, donc la convergence n'est pas uniforme.

10b. La série
$$\sum_{n=0}^{\infty} \int_{0}^{1} |(-1)^{n} x^{n}| dx = \sum_{n=0}^{\infty} \frac{1}{n+1}$$
 est divergente.

10b. La série $\sum_{n=0}^{\infty} \int_{0}^{1} |(-1)^{n} x^{n}| dx = \sum_{n=0}^{\infty} \frac{1}{n+1}$ est divergente. **10c.** On a $|\int_{0}^{1} R_{n}(x) dx| = \int_{0}^{1} \frac{x^{n+1}}{1+x} dx \le \int_{0}^{1} x^{n+1} dx = \frac{1}{n+2}$ qui tend vers 0 quand n tend vers l'infini.

Donc
$$\ln 2 = \int_0^1 f(x) dx = \lim_{n \to \infty} \int_0^1 S_n(x) dx = \lim_{n \to \infty} \sum_{k=0}^n \int_0^1 f_k(x) dx = \sum_{n=0}^\infty \frac{(-1)^n}{n+1}.$$

11. Puisque f_k est une suite de fonctions positives, donc (S_n) est croissante, ce qui donne pour $n, p \in \mathbb{N}$ avec $n \le p$, $0 \le S_p(x) \le S_n(x)$, donc lorsque n tend vers l'infini on obtient, $0 \le S_n(x) \le f(x)$, donc les S_n sont intégrables et donc

$$\sum_{n=0}^{\infty} \int_{I} S_{n}(x) dx = \int_{I} \lim_{n \to \infty} S_{n}(x) dx$$

qui s'écrit encore

$$\sum_{n=0}^{\infty} \int_{I} f_n(x) dx = \int_{I} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx.$$

12a.La fonction $f:t \to \frac{t^3}{e^t-1}$ continue sur $]0,+\infty[$, prolongeable par continuité en 0 et $\lim_{t\to +\infty}t^2f(t)=0$; donc $\int_0^{+\infty} \frac{t^3}{e^t-1}$ existe. Introduisons sur $]0,+\infty[$ la suite de fonction de terme général $f_n(x)=t^3e^{-(n+1)t}$, la série $\sum_{n=0}^{\infty} f_n$ converge simplement vers $\frac{t^3}{e^t-1}$. En outre chaque f_n est positive, intégrable sur $]0,+\infty[$ et $\int_0^\infty f_n(t)dt = \int_0^{+\infty} t^3 e^{-(n+1)t} dt = \frac{\Gamma(4)}{(n+1)^4} = \frac{6}{(n+1)^4}$ est le terme général d'une série convergente, le

$$\int_0^{+\infty} \frac{t^3}{e^t - 1} dt = \sum_{n=0}^{\infty} \int_0^{\infty} f_n(t) dt = \sum_{n=0}^{\infty} \frac{6}{(n+1)^4} = 6\zeta(4) = \frac{\pi^4}{15}.$$

12b. Le changement de variable $t=\frac{\hbar c}{k_B T}\frac{1}{\lambda}$ nous permet d'écrire :

$$u = \int_0^{+\infty} u_{\lambda} d\lambda = \frac{8\pi (k_B T)^4}{(hc)^3} \int_0^{+\infty} \frac{t^3}{e^t - 1} dt$$

donc $M = \frac{c}{4}u = \frac{2\pi^5 k_B^4}{15h^3 c^2} T^4$.

13a.La fonction $f: t \to \frac{t^{x-1}}{e^t-1}$ continue sur $]0, +\infty[$, prolongeable par continuité en 0 et $\lim_{t \to +\infty} t^2 f(t) = 0$. Donc $\int_0^{+\infty} \frac{t^{x-1}}{e^t-1}$ existe. Introduisons sur $]0,+\infty[$ la suite de fonction de terme général $f_n(x)=t^{x-1}e^{-(n+1)t}$, la série $\sum_{n=0}^{\infty} f_n$ converge simplement vers $\frac{t^{x-1}}{e^t-1}$. En outre chaque f_n est positive, intégrable sur $]0,+\infty[$ et

 $\int_0^\infty f_n(t)dt = \int_0^{+\infty} t^{x-1}e^{-(n+1)t}dt = \frac{\Gamma(x)}{(n+1)^x} \text{ est le terme général d'une série convergente, le théorème assure que la fonction } f \text{ est intégrable sur }]0,+\infty[\text{ et que l'on a : }$

$$\int_{0}^{+\infty} \frac{t^{x-1}}{e^{t}-1} dt = \sum_{n=0}^{\infty} \int_{0}^{\infty} f_{n}(t) dt = \sum_{n=0}^{\infty} \frac{\Gamma(x)}{(n+1)^{4}} = \Gamma(x) \zeta(x).$$

13b. D'après ce qui précède
$$\int_0^{+\infty} \frac{t}{e^t-1} dt = \Gamma(2)\zeta(2) = \frac{\pi}{6}$$
 et $\int_0^{+\infty} \frac{t^6}{e^t-1} dt = \Gamma(7)\zeta(7) \simeq 726,011691.$

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr