$$N = \frac{e^{1-n}}{n^2 - 1}$$

si cerca

- 1. C.E.
- 2. symmetrie
- 3. zeri
- 4. segno

C.E.

2

 $N^2-1\neq 0$ $\sim D$ $N \in \mathbb{R} - \{\pm 1\}$ oppuse $n \in (-\infty; -1) \cup (-1; +1) \cup (+1+\infty)$ $\sim da$ scriver

simmetrie

Junzione pan'o dispari o niente?

pari $f(n) \stackrel{?}{=} f(-n)$ NO NE pari né dispari dispari $f(n) \stackrel{?}{=} -f(-n)$ NO

(3) zeri

>) = f(n) A (0; -e) ~ questo non é uno zero

 $\sqrt{N=0}$

y = f(x) $\sim e^{x-x} = 0$ $\sim NO ZERI (tuta positiva o tuta negativa)$ y =0

(4)segui

> $\frac{e^{\lambda-n}}{n^2-1}>0$ $e^{1-n} > 0$ $\forall m \in C.E.$ $m^2 - 1 > 0$ $m < -1 \lor m > 1$ n<-1 V n>1

f(n) > 0 $n \in (-\infty; -1) \cup (1; +\infty)$

limiti (5) (si calcolono i limiti agli estremi del dominio)

- $\lim_{n\to\infty} f(n)$
- $\lim_{n\to -1^-} f(n)$
- lim f (n)
- come li calcoliamo?

- $\lim_{n\to +n^-} f(n)$
- $\lim_{n\to +1^+} \int_{-\infty}^{\infty} (n)$
- $\lim_{n\to+\infty} f(n)$