El conjunto $D=\{(\theta,r)\in\mathbb{R}^2\mid 0< r<\alpha\cos\theta\ \theta\in[0,2\Pi)\}$ se debe reescribir como $D=\{(\theta,r)\in\mathbb{R}^2\mid 0< r<\alpha\cos\theta,\theta\in[0,\frac{\pi}{2}],V(\frac{\pi}{2},\Omega)\}$ unotro que tenga igual imagen por $\Phi:D'=\{(\theta,r)\in\mathbb{R}^2\mid 0< r<\alpha\cos\theta,\theta\in[0,\frac{\pi}{2}],V(\frac{\pi}{2},\Omega)\}$ La condición $0<\alpha\cos\theta$ implica (se su pone que el radio es positivo) que $\cos\theta>0$, es decir, $\theta\in(0,\frac{\pi}{2})$ $V(\frac{3\pi}{2},2\Pi)$ Si no hacemos esta consideración y ciplicamos el corolario de Fubini con $0\neq 2\pi$ como extremos de la integral estoremos integrando en un conjunto más grande de I que que almente que remos integran.

 $-\frac{\pi}{2} = \frac{1}{2} = \frac{\pi}{2} = \frac{3\pi}{2} = \pi$

Además, para que D sea realmente un conjunto conexo sustituimos el dominio de 8 por (-\$\frac{\pi}{2}, \frac{\pi}{2}), es decir, consideramos D!. En realidad, la parametrización que se está usando para ser precisos es:

 $\Phi: \langle (\theta,r) \in \mathbb{R}^2 | 0 < r < \alpha \cos \theta, \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \rangle \longrightarrow \mathbb{R}^3$ $\Phi(\theta,r) \longrightarrow \Phi(\theta,r) = (r \cos \theta, r \sin \theta, r)$

Notese que $D \neq D'$ pero $\overline{\Phi}(D) = \overline{\Phi}(D') = \widehat{A}$

108