Applied Statistics - Notes 260236 March 2024

Contents

1	Sample Geometry and Random Sampling	3
	1.1 The Geometry of the Sample	3

1 Sample Geometry and Random Sampling

1.1 The Geometry of the Sample

A single multivariate observation is the collection of measurements on p different variables taken on the same item or trial. If n observations have been obtained, the entire data set can be placed in an $n \times p$ array (or matrix), also called data frame:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$
(1)

Each **row** of **X** represents a **multivariate observation**. Since the entire data frame is often one particular realization of what might have been observed, we say that the data frame are a **sample of size** n **from a** p**-variate "population"**. The sample then consists of n measurements, each of which has p components.

Look at the matrix, n measurements (rows), each of which has p components (columns). In mathematics, each n row contains p columns and vice versa.

The data frame can be plotted in two different ways:

- 1. p-dimensional scatter plot, where the rows represent n points in p-dimensional space;
- 2. Geometrical representation, p vectors in n-dimensional space.

Scatter plot

For the p-dimensional scatter plot, the rows of X represent n points in p-dimensional space:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \leftarrow 1 \text{st (multivariate) observation}$$

$$\leftarrow n \text{th (multivariate) observation}$$

The row vector \mathbf{x}'_j , representing the *j*th observation, contains the coordinates of a point. The scatter plot of *n* points in *p*-dimensional space provides information on the locations and variability of the points.

<u>Note</u>: when p (dimensional space) is greater than 3, the **scatter plot** representation cannot actually be graphed. Yet the consideration of the data as n points in p dimensions provides **insights that are not readily available** from algebraic expressions.

Geometrical representation

The alternative **geometrical representation** is constructed by considering the data as p vectors in n-dimensional space. Here we take the elements of the columns of the data frame to be the coordinates of the vectors:

$$\mathbf{X}_{(n \times p)} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = [\mathbf{y}_1 \mid \mathbf{y}_2 \mid \cdots \mid \mathbf{y}_p]$$
(3)

Then the **coordinates** of the first point $\mathbf{y}_1 = [x_{11}, x_{21}, \dots, x_{n1}]$ are the *n* measurements on the first variable.

In general, the *i*th point $\mathbf{y}_i = [x_{11}, x_{21}, \dots, x_{n1}]$ is determined by the *n*-tuple of all measurements on the *i*th variable.

Geometrical representations usually facilitate understanding and lead to further insights. The ability to relate algebraic expressions to the geometric concepts of length, angle and volume is therefore very important.