Theoretical Statistics. Lecture 1. Peter Bartlett

- 1. Organizational issues.
- 2. Overview.
- 3. Stochastic convergence.

Organizational Issues

- Lectures: Tue/Thu 11am–12:30pm, 332 Evans.
- Peter Bartlett. bartlett@stat. Office hours: Tue 1-2pm, Wed 1:30-2:30pm (Evans 399).
- GSI: Siqi Wu. siqi@stat. Office hours: Mon 3:30-4:30pm, Tue 3:30-4:30pm (Evans 307).
- http://www.stat.berkeley.edu/~bartlett/courses/210b-spring2013/ Check it for announcements, homework assignments, ...
- Texts:

Asymptotic Statistics, Aad van der Vaart. Cambridge. 1998.

Convergence of Stochastic Processes, David Pollard. Springer. 1984.

Available on-line at

http://www.stat.yale.edu/~pollard/1984book/

Organizational Issues

• Assessment:

Homework Assignments (60%): posted on the website. Final Exam (40%): scheduled for Thursday, 5/16/13, 8-11am.

Required background:
 Stat 210A, and either Stat 205A or Stat 204.

Asymptotics: Why?

Example: We have a sample of size n from a density p_{θ} . Some estimator gives $\hat{\theta}_n$.

- Consistent? i.e., $\hat{\theta}_n \to \theta$? Stochastic convergence.
- Rate? Is it optimal? Often no finite sample optimality results. Asymptotically optimal?
- Variance of estimate? Optimal? Asymptotically?
- Distribution of estimate? Confidence region. Asymptotically?

Asymptotics: Approximate confidence regions

Example: We have a sample of size n from a density p_{θ} . Maximum likelihood estimator gives $\hat{\theta}_n$.

Under mild conditions, $\sqrt{n} \left(\hat{\theta}_n - \theta \right)$ is asymptotically $N \left(0, I_{\theta}^{-1} \right)$. Thus $\sqrt{n} I_{\theta}^{1/2} (\hat{\theta}_n - \theta) \sim N(0, I)$, and $n(\hat{\theta}_n - \theta)^T I_{\theta} (\hat{\theta}_n - \theta) \sim \chi^2(k)$.

So we have an approximate $1 - \alpha$ confidence region for θ :

$$\left\{\theta: (\theta - \hat{\theta}_n)^T I_{\hat{\theta}_n} (\theta - \hat{\theta}_n) \le \frac{\chi_{k,\alpha}^2}{n}\right\}.$$

Overview of the Course

- 1. Tools for consistency, rates, asymptotic distributions:
 - Stochastic convergence.
 - Concentration inequalities.
 - Projections.
 - U-statistics.
 - Delta method.
- 2. Tools for richer settings (eg: function space vs \mathbb{R}^k)
 - Uniform laws of large numbers.
 - Empirical process theory.
 - Metric entropy.
 - Functional delta method.

- 3. Tools for asymptotics of likelihood ratios:
 - Contiguity.
 - Local asymptotic normality.
- 4. Asymptotic optimality:
 - Efficiency of estimators.
 - Efficiency of tests.
- 5. Applications:
 - Nonparametric regression.
 - Nonparametric density estimation.
 - M-estimators.
 - Bootstrap estimators.

Convergence in Distribution

 X_1, X_2, \ldots, X are random vectors,

Definition: X_n converges in distribution (or weakly converges) to X (written $X_n \rightsquigarrow X$) means that their distribution functions satisfy $F_n(x) \rightarrow F(x)$ at all continuity points of F.

Review: Other Types of Convergence

d is a distance on \mathbb{R}^k (for which the Borel σ -algebra is the usual one).

Definition: X_n converges almost surely to X (written $X_n \stackrel{as}{\to} X$) means that $d(X_n, X) \to 0$ a.s.

Definition: X_n converges in probability to X (written $X_n \stackrel{P}{\to} X$) means that, for all $\epsilon > 0$,

$$P(d(X_n, X) > \epsilon) \to 0.$$

Review: Other Types of Convergence

Theorem:

$$X_n \stackrel{as}{\to} X \Longrightarrow X_n \stackrel{P}{\to} X \Longrightarrow X_n \leadsto X,$$

$$X_n \stackrel{P}{\to} c \Longleftrightarrow X_n \leadsto c.$$

NB: For $X_n \stackrel{as}{\to} X$ and $X_n \stackrel{P}{\to} X$, X_n and X must be functions on the sample space of the same probability space. But not convergence in distribution.

Convergence in Distribution: Equivalent Definitions

Theorem: [Portmanteau] The following are equivalent:

- 1. $P(X_n \leq x) \rightarrow P(X \leq x)$ for all continuity points x of $P(X \leq \cdot)$.
- 2. $\mathbf{E}f(X_n) \to \mathbf{E}f(X)$ for all bounded, continuous f.
- 3. $\mathbf{E} f(X_n) \to \mathbf{E} f(X)$ for all bounded, Lipschitz f.
- 4. $\mathbf{E}e^{it^TX}n \to \mathbf{E}e^{it^TX}$ for all $t \in \mathbb{R}^k$. (Lévy's Continuity Theorem)
- 5. for all $t \in \mathbb{R}^k$, $t^T X_n \leadsto t^T X$. (Cramér-Wold Device)
- 6. $\lim \inf \mathbf{E} f(X_n) > \mathbf{E} f(X)$ for all nonnegative, continuous f.
- 7. $\lim \inf P(X_n \in U) \ge P(X \in U)$ for all open U.
- 8. $\limsup P(X_n \in F) \leq P(X \in F)$ for all closed F.
- 9. $P(X_n \in B) \to P(X \in B)$ for all continuity sets B (i.e., $P(X \in \partial B) = 0$).

Convergence in Distribution: Equivalent Definitions

Example: [Why do we need continuity?]

Consider $f(x) = 1[x > 0], X_n = 1/n$. Then $X_n \to 0, f(x) \to 1$, but f(0) = 0.

[Why do we need boundedness?]

Consider f(x) = x,

$$X_n = \begin{cases} n & \text{w.p. } 1/n, \\ 0 & \text{w.p. } 1 - 1/n. \end{cases}$$

Then $X_n \rightsquigarrow 0$, $\mathbf{E}f(X_n) \to 1$, but f(0) = 0.

Relating Convergence Properties

Theorem:

$$X_n \rightsquigarrow X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Longrightarrow Y_n \rightsquigarrow X,$$

$$X_n \rightsquigarrow X \text{ and } Y_n \rightsquigarrow c \Longrightarrow (X_n, Y_n) \rightsquigarrow (X, c),$$

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Longrightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y).$$

Relating Convergence Properties

Example: NB: **NOT** $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y \Longrightarrow (X_n, Y_n) \rightsquigarrow (X, Y)$. (joint convergence versus marginal convergence in distribution) Consider X, Y independent $N(0,1), X_n \sim N(0,1), Y_n = -X_n$. Then $X_n \rightsquigarrow X, Y_n \rightsquigarrow Y$, but $(X_n, Y_n) \rightsquigarrow (X, -X)$, which has a very different distribution from that of (X, Y).

Relating Convergence Properties: Continuous Mapping

Suppose $f: \mathbb{R}^k \to \mathbb{R}^m$ is "almost surely continuous" (i.e., for some S with $P(X \in S)=1$, f is continuous on S).

Theorem: [Continuous mapping]

$$X_n \rightsquigarrow X \Longrightarrow f(X_n) \rightsquigarrow f(X).$$

$$X_n \stackrel{P}{\to} X \Longrightarrow f(X_n) \stackrel{P}{\to} f(X).$$

$$X_n \stackrel{as}{\to} X \Longrightarrow f(X_n) \stackrel{as}{\to} f(X).$$

Relating Convergence Properties: Continuous Mapping

Example: For X_1, \ldots, X_n i.i.d. mean μ , variance σ^2 , we have

$$\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \leadsto N(0, 1).$$

So

$$\frac{n}{\sigma^2}(\bar{X}_n - \mu)^2 \leadsto (N(0,1))^2 = \chi_1^2.$$

Example: We also have $\bar{X}_n - \mu \rightsquigarrow 0$ hence $(\bar{X}_n - \mu)^2 \rightsquigarrow 0$. Consider f(x) = 1[x > 0]. Then $f((\bar{X}_n - \mu)^2) \rightsquigarrow 1 \neq f(0)$.

(The problem is that f is not continuous at 0, and $P_X(0) > 0$, for X satisfying $(\bar{X}_n - \mu)^2 \rightsquigarrow X$.)

Relating Convergence Properties: Slutsky's Lemma

Theorem: $X_n \leadsto X$ and $Y_n \leadsto c$ imply

$$X_n + Y_n \leadsto X + c,$$

 $Y_n X_n \leadsto cX,$
 $Y_n^{-1} X_n \leadsto c^{-1} X.$

(Why does $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y$ not imply $X_n + Y_n \rightsquigarrow X + Y$?)

Relating Convergence Properties: Examples

Theorem: For i.i.d. Y_t with $\mathbf{E}Y_1 = \mu$, $\mathbf{E}Y_1^2 = \sigma^2 < \infty$,

$$\sqrt{n}\frac{\bar{Y}_n - \mu}{S_n} \leadsto N(0, 1),$$

where

$$\bar{Y}_n = n^{-1} \sum_{i=1}^n Y_i,$$

$$S_n^2 = (n-1)^{-1} \sum_{i=1}^n (Y_i - \bar{Y}_n)^2.$$

Proof:

$$S_n^2 = \underbrace{\frac{n}{n-1}}_{\stackrel{P}{\to} 1} \left(\underbrace{\frac{1}{n} \sum_{i=1}^n Y_i^2 - \left(\underbrace{\bar{Y}_n}_{\stackrel{P}{\to} \mathbf{E} Y_1^2}\right)^2}_{\stackrel{P}{\to} \mathbf{E} Y_1^2} \right)$$

(weak law of large numbers)

$$\stackrel{P}{\to} \mathbf{E} Y_1^2 - (\mathbf{E} Y_1)^2$$

(continuous mapping theorem, Slutsky's Lemma)

$$=\sigma^2$$
.

Also

$$\underbrace{\sqrt{n}\left(\bar{Y}_n - \mu\right)}_{N(0,\sigma^2)} \underbrace{\frac{1}{S_n}}_{P \rightarrow 1/\sigma}$$

(central limit theorem)

$$\rightsquigarrow N(0,1)$$

(continuous mapping theorem, Slutsky's Lemma)

Showing Convergence in Distribution

Recall that the **characteristic function** demonstrates weak convergence:

$$X_n \rightsquigarrow X \iff \mathbf{E}e^{it^TX_n} \to \mathbf{E}e^{it^TX} \text{ for all } t \in \mathbb{R}^k.$$

Theorem: [Lévy's Continuity Theorem]

If $\mathbf{E}e^{it^TX_n} \to \phi(t)$ for all t in \mathbb{R}^k , and $\phi : \mathbb{R}^k \to \mathbb{C}$ is continuous at 0, then $X_n \leadsto X$, where $\mathbf{E}e^{it^TX} = \phi(t)$.

Special case: $X_n = Y$. So X, Y have same distribution iff $\phi_X = \phi_Y$.

Showing Convergence in Distribution

Theorem: [Weak law of large numbers]

Suppose X_1, \ldots, X_n are i.i.d. Then $\bar{X}_n \stackrel{P}{\to} \mu$ iff $\phi'_{X_1}(0) = i\mu$.

Proof:

We'll show that $\phi'_{X_1}(0) = i\mu$ implies $\bar{X}_n \stackrel{P}{\to} \mu$. Indeed,

$$\mathbf{E}e^{it\bar{X}_n} = \phi^n(t/n)$$

$$= (1 + ti\mu/n + o(1/n))^n$$

$$\to \underbrace{e^{it\mu}}_{=\phi_\mu(t)}.$$

Lévy's Theorem implies $\bar{X}_n \rightsquigarrow \mu$, hence $\bar{X}_n \stackrel{P}{\rightarrow} \mu$.

Showing Convergence in Distribution

e.g., $X \sim N(\mu, \Sigma)$ has characteristic function

$$\phi_X(t) = \mathbf{E}e^{it^T X} = e^{it^T \mu - t^T \Sigma t/2}.$$

Theorem: [Central limit theorem]

Suppose X_1, \ldots, X_n are i.i.d., $\mathbf{E}X_1 = 0$, $\mathbf{E}X_1^2 = 1$. Then $\sqrt{n}\bar{X}_n \rightsquigarrow N(0,1)$.

Proof:
$$\phi_{X_1}(0) = 1$$
, $\phi'_{X_1}(0) = i\mathbf{E}X_1 = 0$, $\phi''_{X_1}(0) = i^2\mathbf{E}X_1^2 = -1$.

$$\mathbf{E}e^{it\sqrt{n}\bar{X}_n} = \phi^n(t/\sqrt{n})$$

$$= \left(1 + 0 - t^2\mathbf{E}Y^2/(2n) + o(1/n)\right)^n$$

$$\to e^{-t^2/2}$$

$$= \phi_{N(0,1)}(t).$$

Uniformly tight

Definition:

X is **tight** means that for all $\epsilon > 0$ there is an M for which

$$P(||X|| > M) < \epsilon$$
.

 $\{X_n\}$ is **uniformly tight** (or **bounded in probability**) means that for all $\epsilon > 0$ there is an M for which

$$\sup_{n} P(\|X_n\| > M) < \epsilon.$$

(so there is a compact set that contains each X_n with high probability.)

Notation: Uniformly tight

Theorem: [Prohorov's Theorem]

- 1. $X_n \rightsquigarrow X$ implies $\{X_n\}$ is uniformly tight.
- 2. $\{X_n\}$ uniformly tight implies that for some X and some subsequence, $X_{n_j} \rightsquigarrow X$.

Notation for rates: o_P , O_P

Definition:

$$X_n = o_P(1) \Longleftrightarrow X_n \stackrel{P}{\to} 0,$$

 $X_n = o_P(R_n) \Longleftrightarrow X_n = Y_n R_n \text{ and } Y_n = o_P(1).$

$$X_n = O_P(1) \Longleftrightarrow X_n$$
 uniformly tight $X_n = O_P(R_n) \Longleftrightarrow X_n = Y_n R_n$ and $Y_n = O_P(1)$.

(i.e., o_P , O_P specify *rates* of growth of a sequence. o_P means strictly slower (sequence Y_n converges in probability to zero). O_P means within some constant (sequence Y_n lies in a ball).

Relations between rates

$$o_{P}(1) + o_{P}(1) = o_{P}(1).$$

$$o_{P}(1) + O_{P}(1) = O_{P}(1).$$

$$o_{P}(1)O_{P}(1) = o_{P}(1).$$

$$(1 + o_{P}(1))^{-1} = O_{P}(1).$$

$$o_{P}(O_{P}(1)) = o_{P}(1).$$

$$X_{n} \xrightarrow{P} 0, R(h) = o(\|h\|^{p}) \Longrightarrow R(X_{n}) = o_{P}(\|X_{n}\|^{p}).$$

$$X_{n} \xrightarrow{P} 0, R(h) = O(\|h\|^{p}) \Longrightarrow R(X_{n}) = O_{P}(\|X_{n}\|^{p}).$$