

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №1 на тему:

" Методы численного решения обыкновенных дифференциальных уравнений"

Студент	ФН2-51Б (Группа)	(Подпись, дата)	М.А. Каган (И.О. Фамилия)
Студент	ФН2-51Б (Группа)	(Подпись, дата)	И. А. Яковлев (И. О. Фамилия)
Проверил	(- FJ)	(Подпись, дата)	(И.О. Фамилия)

ОРПАВ ПЕЦИЕ	ϵ
ОГЛАВЛЕНИЕ	/

Контрольные вопросы

Контрольные вопросы

1. Сформулируйте условия существования и единственности решения задачи Коши для обыкновенных дифференциальных уравнений. Выполнены ли они для вашего варианта задания?

Ответ:

Рассмотрим векторную функцию $u:I\subseteq\mathbb{R}\to\mathbb{R}^n$, где $t\in\mathbb{R}$. Рассмотрим задачу Коши:

$$\begin{cases} u' = f(t, u) \\ u(t_0) = u_0 \end{cases}$$

(a) Пусть функция f(t, u) определена и непрерывна в прямоугольнике:

$$D = \{(t, u) : |t - t_0| \leqslant a; |u_i - u_{0,i}| \leqslant b\}.$$

Выберем M > 0, такую что $|f_i| < M$.

(b) Пусть функция f(t,u) липшиц-непрерывна с постоянной L по переменным u_1,u_2,\ldots,u_n :

$$|f(t, u^{(1)}) - f(t, u^{(2)})| \le L \sum_{i=1}^{n} |u^{(1)} - u^{(2)}|$$

Тогда решение задачи Коши существует и единственно на участке

$$|t - t_0| \leqslant \min a, b/M, 1/L$$

2. Что такое фазовое пространство? Что называют фазовой траекторией? Что называют интегральной кривой?

Omeem:

3. Каким порядком аппроксимации и точности обладают методы, рассмотренные в лабораторной работе?

Ответ:

- (а) Метод Эйлера:
- (b) Метод Рунге Кутты:
- (с) Метод Адамса Башфорта:
- (d) Метод «предикор корректор»:
- 4. Какие задачи называются жесткими? Какие методы предпочтительны для их решения? Какие из рассмотренных методов можно использовать для решения жестких задач?

Ответ:

5. Как найти $\vec{y}_1, \vec{y}_2, \vec{y}_3,$ чтобы реализовать алгоритм прогноза и коррекции (1.18)?

Omeem:

6. Какой из рассмотренных алгоритмов является менее трудоемким? Какой из рассмотренных алгоритмов позволяет достигнуть заданную точность, используя наибольший шаг интегрирования? Какие достоинства и недостатки рассмотренных алгоритмов вы можете указать?

Omeem:

7. Какие алгоритмы, помимо правила Рунге, можно использовать для автоматического выбора шага?

Omeem: