Universidad Estatal a Distancia

Vicerrectoría Académica

Escuela De Ciencias Exactas y Naturales

Carrera de Diplomado en Ingeniería Informática

Asignatura: Organización De Computadores

Código: 00823

Proyecto #1

Estudiante:

Francisco Campos Sandi

114750560

Sede: San Vito

Grupo 08

Tutor: José Gabriel Cordero Soto

II Cuatrimestre 2024

Contenido

INTRODUCCIÓN4
Marco teórico5
1.1 Tablas de verdad5
1.2 Mapas de Karnaugh5
1.3 Simplificación Booleana6
DESARROLLO7
2. Tabla de verdad ecuación original
3. Mapas de Karnaugh 8
3.2 Mapa Led verde "Bomba de Salida (BS)"
3.3 Mapa Led amarillo. "Sistema de Ajuste de pH (APH):)"
3.4 Mapa Led anaranjado "Sistema de Limpieza de Filtros (LF)11
3.5 Mapa Led rojo. "Sistema de Registro de Eventos anormales (RE) 12
Conclusión13
Referencias 14

Índice de tablas

Tabla 1. Ecuación original	. 7
Tabla 2. Mapa de Karnaugh "bomba de entrada (BE)"	. 8
Tabla 3 Mapa Led verde "Bomba de Salida (BS)"	. 9
Tabla 4 Mapa Led amarillo. "Sistema de Ajuste de pH (APH):)"	10
Tabla 5 Mapa Led anaranjado "Sistema de Limpieza de Filtros (LF)	11
Tabla 6 Mapa Led rojo. "Sistema de Registro de Eventos anormales (RE)	12

INTRODUCCIÓN

En el presente documento se desarrolla el tema de simplificación de ecuaciones de un problema dado el cual trata de diseñar un sistema de monitoreo y control para una planta de tratamiento de aguas residuales y creación de un circuito en Digital Works mediante un proyecto en el cual se facilita los enunciados para saber cuándo las bombas se activan o el pH, así dependiendo de la situación se logra saber si en la tabla se colocan 1 o 0, se crea su tabla de verdad con todos elementos que componen la ecuación original y su respectiva salida y la identificación de sus términos.

En el desarrollo del problema luego de trabajar la tabla de verdad, se procede con el procedimiento de ir trabando cada salida un mapa de Karnaugh y con el álgebra de Boole con los valores dados y se simplifica en una ecuación más simple y fácil de trabajar en el circuito.

En el presente trabajo se reconoce la importancia de los conceptos para poder llegar un procedimiento más simple con ayuda de la lógica Booleana y la ayuda para poder simplificar con ayuda de los mapas de Karnaugh.

Marco teórico

1.1 Tablas de verdad

En la lógica formal, la tabla de verdad es un método utilizado debido a su simplicidad y precisión para determinar el valor de verdad de una proposición. Este método implica generar todas las combinaciones posibles de valores de verdad o falso, evaluando así la veracidad de la fórmula completa. Según Bustamante (2009, p. 133), "Se construye listando las 2^n interpretaciones posibles, donde n es el número de átomos en la fórmula. Luego se procede a establecer los valores de verdad de sus fórmulas, hasta obtener la evaluación de la fórmula completa". La tabla de verdad inicialmente se emplea para poder ir colocando los 1 o 0 de acuerdo a las indicaciones que dan para el funcionamiento de la planta, para poder obtener las salidas las cuales serán trabajadas en el mapa de Karnaugh para obtener las ecuaciones simplificadas.

1.2 Mapas de Karnaugh

Al manejar funciones complejas, el uso de mapas de Karnaugh se utiliza para simplificar y reducir ecuaciones lógicas. Según Gómez (2010, p. 60), "Este método consiste en formar diagramas de 2^n cuadros, siendo n el número de variables, cada cuadro representa una de las diferentes combinaciones posibles, y se disponen de tal forma que se puede pasar de un cuadro a otro [...]".

Los mapas de Karnaugh son herramientas diseñadas para simplificar expresiones algebraicas Booleanas, así obtener ecuaciones más sencillas para trabajar circuitos lógicos.

1.3 Simplificación Booleana

En el diseño de circuitos es importante trabajar con variables claras y concisas. La simplificación de funciones lógicas mediante el álgebra de Booleana disminuye la complejidad y el riesgo de errores, así logrando diseños, implementación y ejecución eficiente de los circuitos lógicos. Según Gómez (2010, p. 50), "Una expresión Booleana simplificada emplea el menor número posible de puertas en la implementación de una determinada expresión". Además, Floyd (2016, p. 200) menciona que "Con el álgebra de Boole se puede reducir una expresión a su forma más simple o cambiarla a una forma más adecuada para conseguir implementarla de la manera más eficiente".

En la simplificación se logra obtener ecuaciones más sencillas al ir reduciendo los términos adyacentes que se obtienen de los mapas de Karnaugh, los cuales al ir verificando que cada variable no cambie, dado que las cuatro entradas son "AND" al cambiar alguna de 1 o 0, se eliminan y solo se conservan las que todas son el mismo valor, por eso en algunas tenemos 8 términos adyacentes y solo queda una variable como resultado de la simplificación.

DESARROLLO

2. Tabla de verdad ecuación original

Tabla de verdad de la expresión original

En la siguiente tabla de verdad se puede observar, en una la tabla de verdad completa, para luego agregarlos al mapa de Karnaugh y con su respectiva función de salida.

- ✓ Agua cruda: AC donde haya 0 se activa la bomba de entra BE
- ✓ Agua tratada: AT alcanza un umbral máximo (alto), se activa la bomba donde haya un 1
- ✓ PH: pH está fuera del rango óptimo (nivel bajo), se activa donde haya un 0
- ✓ TZ: turbidez del agua es alta, se activa el sistema de limpieza de filtros se activa donde haya 1

N	AC	AT	PH	TZ						
	Α	В	C	D	TÉRMINO	BE	BS	APH	LF	RE
0	0	0	0	0	A'B'C'D'	1	0	1	0	0
1	0	0	0	1	A'B'C'D	1	0	1	1	1
2	0	0	1	0	A'B'CD'	1	0	0	0	0
3	0	0	1	1	A'B'CD	1	0	0	1	1
4	0	1	0	0	A'BC'D'	1	1	1	0	0
5	0	1	0	1	A'BC'D	1	1	1	1	0
6	0	1	1	0	A'BCD'	1	1	1	0	1
7	0	1	1	1	A'BCD	1	1	1	1	1
8	1	0	0	0	AB'C'D'	0	0	1	0	0
9	1	0	0	1	AB'C'D	0	0	1	1	1
10	1	0	1	0	AB'CD'	0	0	0	0	0
11	1	0	1	1	AB'CD	0	0	0	1	1
12	1	1	0	0	ABC'D'	0	1	1	0	0
13	1	1	0	1	ABC'D	0	1	1	1	0
14	1	1	1	0	ABCD'	0	1	1	0	1
15	1	1	1	1	ABCD	0	1	1	1	1

Tabla 1. Ecuación original

3. Mapas de Karnaugh

De acuerdo a la guía del video de una tutoría se logra guiar para representar el mapa de Karnaugh (Cátedra Desarrollo de Sistemas UNED, 2020)

3.1 Mapa Led azul "bomba de entrada (BE)"

Se realiza la agrupación de términos adyacentes en esta ocasión de 8 términos, siguiendo el libro, (Floyd, 2016) se pueden agregar hasta 8 términos, se colocan las celdas adyacentes para realizar su simplificación con álgebra Booleana, en este primer caso solo se coloca **A'** dado que es el único termino que no cambia, debido que los ABCD son un "AND" lógico y no pueden cambiar el valor sea de 0 o de 1, y se obtiene la ecuación de BE

BE	AGRUPACIONES											
A'B'C'D'	A'B'C'D	A'B'CD'	A'B'CD	A'BC'D'	A'BC'D	A'BCD'	A'BCD					
0000	0001	0010	0011	0100	0101	0110	0111					
AB/CD	00	01	11	10		CELDAS AD	YANCENTES	ENTRE SÍ				
	0000	0001	0011	0010		AGI	RUPACIONES					
00	A'B'CD'	A'B'C'D	A'B'CD	A'B'CD'			ABCD					
	1	' 1	1	1			0000					
						0001						
		_	_	_		•	0010					
01	0100	0101	0111	0110		0011						
	A'BC'D'	A'BC'D	A'BCD	A'BCD'		0100						
	1	1	. ∵1 •	. 1 .			0101					
		_	_	_		0110						
11	1100	1101	1111	1110			0111					
	ABC'D'	ABC'D	ABCD	ABCD'	•	. A'						
	0	0	. 0	O ·		ECUACIÓN SIMPLIFICADA						
		_	_	_		BE = A'						
10	1000	1001	1011	1010								
	AB'C'D'	AB'C'D	AB'CD	AB'CD'								
	0	0	0	0			•					

Tabla 2. Mapa de Karnaugh "bomba de entrada (BE)"

ECUACIÓN SIMPLIFICADA

BE = AC' NOTA: Recordar A'= AC'

3.2 Mapa Led verde "Bomba de Salida (BS)"

Se realiza la agrupación de términos adyacentes en esta ocasión de 8 términos, siguiendo el libro, (Floyd, 2016) se pueden agregar hasta 8 términos, se colocan las celdas adyacentes para realizar su simplificación con álgebra Booleana, en este primer caso solo se coloca **B** dado que es el único termino que no cambia, debido que los ABCD son un "AND" lógico y no pueden cambiar el valor sea de 0 o de 1, y se obtiene la ecuación de BS.

BS		AGRUPACIONES											
A'BC'D'	A'BC'D	A'BCD'	A'BCD	ABC'D'	ABC'D	ABCD'	ABCD						
0100	0101	0110	0111	1100	1101	1110	1111						
AB/CD	00	01	11	10		CELDAS AD	YANCENTES	ENTRE SÍ					
	0000	0001	0011	0010		AGI	RUPACIONES						
00	A'B'CD'	A'B'C'D	A'B'CD	A'B'CD'			ABCD						
	0	' 0	0	0		0100							
						0101							
						0111							
01	0100	0101	0111	0110		0110							
	A'BC'D'	A'BC'D	A'BCD	A'BCD'		1100							
	1	1	1	1		1101							
		_	_	_			1111						
11	1100	1101	1111	1110			1110						
	ABC'D'	ABC'D	ABCD	ABCD'	•	ECUACIÓN SIMPLIFICADA							
	1	1	1	1		BS = B							
	L	_	_	_		DO D							
10	1000	1001	1011	1010									
	AB'C'D'	AB'C'D	AB'CD	AB'CD'									
	0	0	0	0	Ţ,								

Tabla 3 Mapa Led verde "Bomba de Salida (BS)"

ECUACIÓN SIMPLIFICADA

BS = AT'

NOTA: Recordar B= AT

3.3 Mapa Led amarillo. "Sistema de Ajuste de pH (APH):)"

Se realiza la agrupación de términos adyacentes en esta ocasión de 8 términos en dos agrupaciones, siguiendo el libro, (Floyd, 2016) se pueden agregar hasta 8 términos, se colocan las celdas adyacentes para realizar su simplificación con álgebra Booleana, en este primer caso solo se coloca **C**' y la segunda agrupación se coloca **B** dado que es el único termino que no cambia, debido que los ABCD son un "AND" lógico y no pueden cambiar el valor sea de 0 o de 1, y se obtiene la ecuación de **APH**

APH			,	AGRUPACI	ONES						
A'B'C'D'	A'B'C'D	A'BC'D'	A'BC'D	A'BCD'	A'BCD	AB'C'D'	AB'C'D	ABC'D'	ABC'D	ABCD'	ABCD
0000	0001	0100	0101	0110	0111	1000	1001	1100	1101	1110	1111
AB/CD	00	01	11	10		CELDAS A	DYANCENTES	ENTRE SÍ			
	0000	0001	0011	0010		AG	RUPACIONES	5			
00	A'B'CD'	A'B'C'D	A'B'CD	A'B'CD'		ABCD	ABCD				
	1	' 1	0	0							
						0000	0100				
						0001	0101				
01	0100	0101	0111	0110		0100	0111				
	A'BC'D'	A'BC'D	A'BCD	A'BCD'		0101	0110				
	1	1	1	1		1100	1100				
						1101	1101				
11	1100	1101	1111	1110		1000	1111				
	ABC'D'	ABC'D	ABCD	ABCD'	•*	1001	1110				
	1	1	1	1							
						C'	В				
10	1000	1001	1011	1010		ECUAC	IÓN SIMPLIFI	CADA			
	AB'C'D'	AB'C'D	AB'CD	AB'CD'		APH = 0	$C' \perp R$				
	1	1	0	0	•	MH = 0	<i>∪</i> 1° D				

Tabla 4 Mapa Led amarillo. "Sistema de Ajuste de pH (APH):)"

ECUACIÓN SIMPLIFICADA

$$APH = PH + AT$$

NOTA: Recordar C = PH y B = AT

3.4 Mapa Led anaranjado "Sistema de Limpieza de Filtros (LF)

Se realiza la agrupación de términos adyacentes en esta ocasión de 8 términos, siguiendo el libro, (Floyd, 2016) se pueden agregar hasta 8 términos, se colocan las celdas adyacentes para realizar su simplificación con álgebra Booleana, en este primer caso solo se coloca **D** dado que es el único termino que no cambia, debido que los ABCD son un "AND" lógico y no pueden cambiar el valor sea de 0 o de 1, y se obtiene la ecuación de LF.

LF			А	GRUPACION	ES					
A'B'C'D	A'B'CD	A'BC'D	A'BCD	AB'C'D	AB'CD	ABC'D	ABCD			
0001	0011	0101	0111	1001	1011	1101	1111			
AB/CD	00	01	11	10		CELDAS A	ADYANCENTES	ENTRE SÍ		
	0000	0001	0011	0010		Д	GRUPACIONE	S		
00	A'B'CD'	A'B'C'D	A'B'CD	A'B'CD'			ABCD			
	0	' 1	1	0		0001				
						0011				
			_			0101				
01	0100	0101	0111	0110		0111				
	A'BC'D'	A'BC'D	A'BCD	A'BCD'			1001			
	0	1	1	0		1011				
			_				1101			
11	1100	1101	1111	1110			D			
	ABC'D'	ABC'D	ABCD	ABCD'	•	ECUA	ECUACIÓN SIMPLIFICADA			
	0	1	1	0		BE = D				
10	1000	1001	1011	1010						
	AB'C'D'	AB'C'D	AB'CD	AB'CD'						
	0	1	1	0						

Tabla 5 Mapa Led anaranjado "Sistema de Limpieza de Filtros (LF)

ECUACIÓN SIMPLIFICADA

BE = TZ

NOTA: Recordar D = TZ

3.5 Mapa Led rojo. "Sistema de Registro de Eventos anormales (RE)

Se realiza la agrupación de términos adyacentes en esta ocasión de 8 términos, siguiendo el libro, (Floyd, 2016) se pueden agregar en 4 términos en dos agrupaciones, se colocan las celdas adyacentes para realizar su simplificación con álgebra Booleana, en este primer caso solo se coloca **B'D** y la segunda agrupación se coloca **BC** dado que es el único termino que no cambia, debido que los ABCD son un "AND" lógico y no pueden cambiar el valor sea de 0 o de 1, y se obtiene la ecuación de **RE**

RE			А	GRUPACIONI	ES			
A'B'C'D	A'B'CD	A'BCD'	A'BCD	AB'C'D	AB'CD	ABCD'	ABCD	
0001	0011	0110	0111	1001	1011	1110	1111	
AB/CD	00	01	11	10		CELDAS A	ADYANCENTES	S ENTRE SÍ
	0000	0001	0011	0010		А	GRUPACIONE	S
00	A'B'CD'	A'B'C'D	A'B'CD	A'B'CD'		ABCD	ABCD	
	0	' 1	1	0				
						0001	0111	
		_				0011	0110	
01	0100	0101	0111	0110		1001	1111	
	A'BC'D'	A'BC'D	A'BCD	A'BCD'		1011	1110	
	0	0	1	1		B'D	ВС	
		_		_				
11	1100	1101	1111	1110		ECUA	CIÓN SIMPLIF	ICADA
	ABC'D'	ABC'D	ABCD	ABCD'	•	RE = B'D + BC		
	0	0	1	1		IND - D I	o i be	
_	L			-				
10	1000	1001	1011	1010				
	AB'C'D'	AB'C'D	AB'CD	AB'CD'				
	0	1	1	0	•			

Tabla 6 Mapa Led rojo. "Sistema de Registro de Eventos anormales (RE)

ECUACIÓN SIMPLIFICADA

$$RE = AT TTZ + AT PH$$

NOTA: Recordar B' = AT', C = PH y D = TZ

Conclusión

En el presente trabajo se ha logrado desarrollar una solución a un problema dado el cual se dan las condiciones de diseñar un sistema de monitoreo y control para una planta de tratamiento de aguas residuales de poder simplificar una ecuación lógica por medio de los mapas de mapa de Karnaugh y el uso del álgebra de Boole y así poder diseñar los cinco circuitos de salida de la planta y poder lograr circuitos más simples

En la elaboración de este trabajo se logra trabajar un problema de aplicación de los conceptos ya trabajados en la tarea anterior, lo cual facilitó más enriquecedor dado que se trabaja un problema de la vida cotidiana.

En el proyecto se logra superar desafíos prácticos en los cuales con conceptos más abstractos se aplican, el poder escoger las celdas adyacentes y saber simplificar con el algebra de Boole, da un enfoque practico de conocimientos que tiene la informática para poder enfrentar otros problemas a futuro.

Referencias

- Bustamante, A. (2009). Lógica y Argumentación: De los argumentos deductivos a las álgebras de Boole. México: Pearson Educación. T1-Bustamante-cap03-logica-simbolica.pdf (uned.ac.cr)
- Cátedra Desarrollo de Sistemas UNED (Director). (2020, julio 9). *Tutoría 1* (Énfasis en mapas de Karnaugh).

 https://www.youtube.com/watch?v=OgSIQbbsGmU
- Floyd, T. L. (2016). FUNDAMENTOS DE SISTEMAS DIGITA LES, 11th Edition. [[VitalSource Bookshelf version]]. Retrieved from vbk://9788490353004
- Gómez, E. (2010). MATERIAL COMPLEMENTARIO. ORGANIZACIÓN DE COMPUTADORAS. San José. UNED.