CONTENTS

1	Polynomial dynamics													1																		
	1.1	Introduction]

POLYNOMIAL DYNAMICS 1

1.1 INTRODUCTION

Take some polynomial $p:\mathbb{C}\to\mathbb{C}$, then we can consider the orbits $\{p^n(z)\}_{n=1}^\infty$ for any $z\in\mathbb{C}$, where p^n denotes repeatedly applying p a total of n times.

Definition 1. Given a polynomial $p: \mathbb{C} \to \mathbb{C}$,

- I_p := {z ∈ ℂ | lim_{n→∞} pⁿ(z)} is the set of escaping points of p;
 K_p := ℂ − I_p is the filled Julia set of p;
 J_p := ∂K_p is the Julia set of p.

 I_p is nonempty if $\deg(p) \geq 2$. This is because as |z| gets large enough, $|p^n(z)| \approx |z|^{(k^n)}$, which clearly diverges as $n \to \infty$.

One way of thinking of I_p is as the set of points converging to the point at infinity inside the Riemann sphere $\hat{\mathbb{C}}$. This is helpful because, as we'll see later on, the Julia set contains the "chaotic" points that neither converge nor get stuck in a cycle during the process of iterating p. The rest of the points in the plane (so I_p and the interior of K_p) either converge (perhaps to the point at infinity) or get stuck in a cycle.

Example 1. Let $p(z) = z^2$, then

- $I_p = \{z \in \mathbb{C} \mid |z| > 1\};$ $K_p = \{z \in \mathbb{C} \mid |z| \le 1\};$ $J_p = \{z \in \mathbb{C} \mid |z| = 1\}.$

For many simple polynomials, the Julia set is a fractal. The below is a first attempt at giving this a concrete definition, although we'll move to better definitions later on.

Definition 2. A closed set $E \subseteq \mathbb{C}$ is a **fractal set** if it's *not* a countable union of rectifiable (finite length) curves. A domain (nonempty, connected, open set) D in $\mathbb C$ is a **fractal domain** if ∂D is a fractal set.

Fill in gap here...

Theorem 1. Let $\deg(p) \geq 2$, then

- 1. K_p is a nonempty compact set;
- 2. I_p is a domain (nonempty, connected, open).

