Лекция 3: метрический подход к прогнозированию, проклятие размерности, переобучение

Что прогнозирует модель?

Если есть несколько наблюдений с одинаковым вектором признаков x_* , но разными откликами $y_{*1}, y_{*2}, ... y_{*k}$, то какой прогноз минимизирует эмпирический риск (ошибку)? Ответ:

$$y_* = \underset{y}{\operatorname{arg}} \min Q(y, \{y_{*1}, y_{*2}, \dots y_{*k}\}) = \underset{y}{\operatorname{arg}} \min \frac{1}{k} \sum_{*i} L(y_{*i}, y),$$

например, для квадратичной функции потерь: $y_* = E(y|x = x_*)$

■ Если повторяющихся наблюдений нет, то можно «приблизить»:

$$y_* = E(y|x=x_*) pprox mean[y|x \in N(x_*)]$$
, где $N(x_*)$ - «окрестность» x_*

 Но должна выполняться гипотеза о компактности (или о непрерывности) и может быть проблема проклятия размерности

r,

Обобщенный метрический классификатор

■ Для выбранного x_* , ранжируем выборку $\{x^{(1)}, x^{(2)}, ..., x^{(l-1)}\}$, так чтобы:

$$d(x_*, x^{(1)}) \leq d(x_*, x^{(2)}) \leq ... \leq d(x_*, x^{(l-1)})$$
 $x^{(i)}$ - i -й сосед x_* , а $y^{(i)}$ - отклик i -го соседа

Метрический алгоритм классификации:

$$a(x,Z) = \arg\max_{y \in Y} \Gamma_y(x)$$

 $\Gamma_y(x) = \sum_{i=1}^l [y = y^{(i)}] w(i,x)$ - оценка близости объекта x к классу y, w(i,x) – важность i-го соседа, не возрастает по i, неотрицательна

- Методы:
 - \square «ближайшего соседа» $w(i,x)=[i\leq 1]$
 - □ «k ближайших соседей» $w(i,x) = [i \le k]$

Простые методы К ближайших соседей

- Общая схема работы:
 - □ Каждый пример точка в пространстве, все примеры хранятся
 - □ Вводится метрика расстояния с учетом нормирования координат
 - □ Ищется К (от 1 до ...) ближайших соседей
 - □ Прогноз вычисляется как агрегирующая функция от откликов найденных соседей
- Метод KNN:
 - Для задачи регрессии отклик считается как среднее по откликам всех соседей:
 - Для классификации выбирается самый частый класс:

$$y^* = \frac{1}{K} \sum_{x_i \in N(x^*)} y_i$$

$$y^* = \underset{c \in C, x_i \in N(x^*)}{\operatorname{arg}} \max \left[\left| y_i = c \right| \right]$$

Метод «взвешенных» К ближайших соседей

- На базе KNN, но:
 - помимо распределения «отклика» учитываются и расстояния до соседей $w(i,x)=[i\leq k]w_i$, где w_i зависит от близости до x
- Примеры весов:
 - \square линейный вес $w_i = rac{k+1-i}{k}$, экспоненциальный $w_i = q^i$, 0 < q < 1
 - \square ядра, например, $w_i = \exp(-d_i^2/h)$
- Усреднение отклика за счет:
 - «взвешенного» голосования для классификации и «взвешенного» среднего для регрессии (далее покажем откуда это следует)

$$y^* = \underset{c \in C, x_i \in N(x^*)}{\text{max}} \left[\frac{w_i | y_i = c|}{\sum_{x_j \in N(x^*)}^{w_i} w_i} \right] \qquad y^* = \frac{\sum_{x_i \in N(x^*)}^{w_i} w_i y_i}{\sum_{x_i \in N(x^*)}^{w_i} w_i}$$

Метод К ближайших соседей с дискриминантным адаптивным расстоянием

Метод DANN:

□ На базе KNN, но используется итеративный (m-номер итерации) расчет локального расстояния Махаланобиса с учетом структуры распределения соседей в окрестности:

$$d^{(m)}(x^*, x_i) = (x^* - x_i)^T \sum_{i=1}^{-1} (x^* - x_i)^T$$

- Параметры алгоритма:
 - □ K_м число соседей для оценки метрики (нужно побольше)
 - □ K число соседей для прогноза (лучше поменьше)

Выбор параметра К

Важность К:

k = 1: Результат = квадрат

k = 5: Результат = треугольник

k = 7: Снова квадрат

KNN: K=1

KNN: K=100

■ Выбор *k*:

- □ Если k мал, то чувствительность к шуму, и негладкие границы классов (или линии уровня для регрессий)
- \square Если k велико, то окрестность может сильно «задеть» соседний класс, зато гладкие границы
- $\ \square$ При классификации следует нечетный k, чтобы не было «ничьей»
- □ Выбирается кросс-валиадцией или на валидационном наборе (далее)
- □ Стандартная эвристика k=sqrt(n)

Метод окна Парзена (для классификации)

■ Вес задается радиально-базисным ядром (h – «ширина ядра»):

$$w(i, x) = K\left(\frac{d(x, x^{(i)})}{h}\right)$$

- h фиксировано $a(x, Z, h) = \arg\max_{y \in Y} \sum_{i=1}^{l} [y = y^{(i)}] K\left(\frac{d(x, x^{(i)})}{h}\right)$
- k фиксировано $a(x, Z, k) = \underset{y \in Y}{\arg\max} \sum_{i=1}^{l} [y = y^{(i)}] K \left(\frac{d(x, x^{(i)})}{d(x, x^{(k)})} \right)$

w

Параметрические модели

■ Параметрическое семейство функций

$$A = \{g(x, \theta) \mid \theta \in \Theta\}, g: X \times \Theta \to Y$$

О – множество допустимых параметров

- Линейная модель:
 - □ Классификация $g(x,\theta) = sign[\sum_{i=1}^q \theta_i f_i(x)], Y = \{-1,1\}$
 - \square Регрессия $g(x,\theta) = \sum_{i=1}^q \theta_i f_i(x)$, $Y = \mathbb{R}$
 - θ -вектор параметров
 - *f_i*-не обязательно линейная
 - если f_i -зависит от одного признака,
 - то модель аддитивная
- Пример:
 - □ Признаки $\{1, x, x^2\}$ vs $\{1, x, \sin(x)\}$

Метод наименьших квадратов для линейной регрессии

• Оценка ошибки - квадратичная функция потерь:

$$Q(\theta, Z) = \frac{1}{l} \sum_{i=1}^{l} (y_i - a(\bar{x}_i, \theta))^2 = \frac{1}{l} \sum_{i=1}^{l} \left(y_i - \theta_0 - \sum_{j=1}^{p} x_{ij} \theta_j \right)^2$$

В матричной форме:

$$Q(\theta, Z) = (\bar{y} - X\theta)^T (\bar{y} - X\theta)$$

 Единственное оптимальное решение (если матрица данных не сингулярная)

$$\theta = (X^T X)^{-1} X^T \bar{y}$$

- Но не все так просто:
 - □ Если сингулярная матрица данных из-за коррелированных факторов
 - □ Большое число регрессоров плохая точность и интерпретируемость

Непараметрическая (ядерная) регрессия Надарая-Ватсона

- Суть метода:
 - □ МНК (квадратичная функция потерь)
 - □ Локальный прогноз константой в точке
 - □ Ядерные веса для определения локальной окрестности
- Постановка задачи:

$$Q(Z,\theta) = \frac{1}{l} \sum_{i=1}^{l} K\left(\frac{d(x,x^{(i)})}{h}\right) (y_i - \theta)^2 \to \min_{\theta \in \mathbb{R}}$$

Решающая функция:

$$a(x, Z, h) = \theta = \frac{\sum_{i=1}^{l} y_i K\left(\frac{d(x, x^{(i)})}{h}\right)}{\sum_{i=1}^{l} K\left(\frac{d(x, x^{(i)})}{h}\right)}$$

Непараметрическая (ядерная) регрессия Надарая-Ватсона

 $h \in \{0.1, 1.0, 3.0\}$, треугольное ядро $K(r) = (1 - |r|)[|r| \leqslant 1]$

 $h \in \{0.1, 1.0, 3.0\}$, прямоугольное ядро $K(r) = \lceil |r| \leqslant 1 \rceil$

- Чем больше h тем «проще» функция
- Гладкость определяется ядром (непрерывная/кусочно линейная, кусочно постоянная аппроксимация)
- Разрыв, если нет точек в окрестности

Локальная взвешенная регрессия

■ Вместо константы (как в kernel regression) простая локальная параметрическая модель, например, линейная:

$$Q(Z,\theta) = \frac{1}{l} \sum_{i=1}^{l} K\left(\frac{d(x,x^{(i)})}{h}\right) (y_i - x^T \theta)^2 \to \min_{\theta \in \mathbb{R}^p}$$

Локальная взвешенная регрессия

 Нужно задавать параметр сглаживания (фактически – штраф за сложность), который определяет число точек окрестности, чтобы не усложнять модель:

Пример (Python)

Data Set Characteristics:

```
Number of
              442
Instances:
Number of
              First 10 columns are numeric predictive values
Attributes:
Target:
              Column 11 is a quantitative measure of disease progression one year after baseline
Attribute
               • age age in years
Information:
               sex

    bmi body mass index

                                                                    plt.scatter(range(len(y test)), y test, color="blue")
               • bp average blood pressure
               • s1 tc, total serum cholesterol
                                                                    plt.plot(KNN.predict(X_test), color="green")
               • s2 ldl, low-density lipoproteins
                                                                    plt.xlim([100, 150])
               • s3 hdl, high-density lipoproteins

    s4 tch, total cholesterol / HDL

               • s5 ltg, possibly log of serum triglycerides level
               • s6 glu, blood sugar level
```

from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import load_diabetes

```
N = 200
data = load_diabetes()
X, X_test = data.data[:N], data.data[N:]
y, y_test = data.target[:N], data.target[N:]
```

```
# weights="uniform" is default
# weights="distance" is for KWNN
# weights as user function: distances -> weight (implement DANI
KNN = KNeighborsRegressor(n_neighbors=5, weights="distance")
KNN.fit(X, y)
pass
```


Пример (Python)

```
KNN = KNeighborsRegressor(n_neighbors=3, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```

```
350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 50 100 150 200 250
```

```
KNN = KNeighborsRegressor(n_neighbors=30, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```


M

Свойства метрических методов

■ Основные свойства:
□ «Ленивая модель» - не надо ничего обучать
□ Обязательно нужна хорошая метрика и значимые признаки
 □ Есть критические метапараметры, определяющие сложность модел (гладкость границы или изолиний)
■ Достоинства:
□ Простота реализации
□ Один из самых точных методов (при корректной настройке)
 □ Легко адаптируется под сложные типы «откликов», включая ранжирование, многотемность и т.д.
 □ Можно интегрировать экспертные знания, задавая веса у примеров, или параметры у метрики
■ Недостатки:
«черный ящик» - результат не интерпретируемый совсем
□ Достаточно вычислительно трудоемкие
«Проклятие размерности»

Проклятие размерности

- Суть проблемы: экспоненциальный рост числа необходимых наблюдений при линейном росте размерности пространства
- Пример: ближайшие соседи как правило расположены далеко при больших размерностях пространства признаков.

Например, нам нужно получить значительную часть выборки, чтобы сгладить границу и снизить случайность в усредненном прогнозе, пусть 10%. 10% соседей для случая больших размерностей не может быть локализована, так что мы уже не можем оценить отклик на основе локального усреднения.

Модельный пример, демонстрирующий проклятие размерности

- r=K/N
- $E_p(r) = r^{1/p}$
- \blacksquare E₁₀(0.01)=0.63
- \blacksquare E₁₀(0.1)=0.8

Сложность модели

Сложность модели

Сложность модели

Проблема недообучения и переобучения

Модельный пример.

- Красные точки наблюдения, синяя поверхность истинная зависимость $income = f(education, seniority) + \epsilon$
- Желтая поверхность линейная модель

$$\hat{f}_L(ext{education}, ext{seniority}) = \hat{eta}_0 + \hat{eta}_1 imes ext{education} + \hat{eta}_2 imes ext{seniority}$$

Плохая точность приближения

Проблема недообучения и переобучения

Модельный пример.

- Более сложные модели (сплайны или полиномиальные регрессии или нейронные сети или еще что-то)
- Справа модель не допускает ошибок на обучающем наборе.
- Это хорошо? Нет!

м

Недообучение vs переобучение

Основная п	роблема	машинного	обу	учения!!!	
			_	,	

- Недообучение низкое качество (большой эмпирический риск) на тренировочном наборе и на этапе скоринга
- □ Переобучение высокое качество (маленький эмпирический риск) на тренировочном наборе и плохое качество на этапе скоринга (большой эмпирический риск)

■ Причины:

- □ Сложность модели: например, для параметрических моделей много степеней свободы (параметров модели) или слишком сложное уравнение или большая норма вектора параметров
- Плохое качество данных: шум и выбросы, малый объем или несбалансированность тренировочной выборки
- □ Зависимости в пространстве признаков

Обобщающая способность:

- □ способность алгоритма «качественно» прогнозировать отклик для объектов одной природы (из одной генеральной совокупности), которых не было в тренировочном наборе
- Как оценить?

v

Борьба с переобучением

- Ограничить сложность модели (например, регуляризация)
- Преобразовать данные (удалять шум, уменьшать размерность и тд.)
- Использовать теоретические оценки обобщающей способности для некоторых методов обучения (обычно бесполезно, т.к. это оценки сверху)
- Эмпирически оценивать обобщающую способность с помощью тестовой выборки (или процедуры, имитируя проверку на тестовой выборке):
 - Строим модель на обучающем наборе данных и хотим, чтобы она была наилучшей.
 - \square Можем взять, например, квадратичную функцию потерь и оценить ее через среднеквадратичную ошибку MSE_{Tr}
 - □ Оценка может быть смещена в сторону более сложных моделей.
 - \square Поэтому мы вычисляем оценку MSE_{Te} , используя тестовый набор данных, который не участвовал в обучении модели

Оценка качества модели (сложная зависимость, много шума)

- Кривая, обозначенная черным цветом, истинные значения.
- Красная кривая на правом рисунке $-MSE_{Te}$, серая кривая $-MSE_{Tr}$.
- Оранжевая, голубая и зеленая кривые соответствуют подгонке моделей различной сложности.
- Простые модели недообучены, сложные модели переобучены

Оценка качества модели (простая зависимость, много шума)

- Простые модели дают высокую обощающую способность
- Сложные модели переобучены

Оценка качества модели (сложная зависимость, мало шума)

- Простые модели недообучены
- Сложные обладают хорошей обобщающей способностью

MSE декомпозиция

$$MSE = E[(a(x) - y(x))]^2 = E[a(x)^2] + E[y(x)^2] - E[2a(x)y(x)] =$$
 $= (Var(a(x)) + (Var(y(x)) + (E[a(x)] - E[y(x)])^2)$ Дисперсия прогноза Дисперсия шума (не зависит от модели)

Компромисс: Дисперсией vs Смещение!!!!

Сложнее модель => точнее приближение => меньше смещение +++

Сложнее модель => больше параметров => больше дисперсия --
... и наоборот ...

Поиск баланса между точностью и сложностью = поиск компромисса между смещением и дисперсией

MSE декомпозиция (примеры)

$$y = y(x) + \varepsilon$$

y – наблюдения отклика, y(.) – истинная зависимость, ε – шум $N(0,\sigma)$

■ KNN (k-число соседей):

$$MSE = \sigma^2 + \frac{\sigma^2}{k} + \left[\frac{1}{k} \sum_{i \in N_k(x)} E[a(x)] - y(x)\right]^2$$

Линейная регрессия (р-размерность пространства признаков, I – размер выборки):

$$MSE = \sigma^2 + \frac{p}{l}\sigma^2 + \frac{1}{l}\sum_{x} [E[a(x)] - y(x)]^2$$

Компромис отклонения и смещения для трех примеров

Качество на обучающем и тестовом наборе

Low

High

Model Complexity

Валидация, кросс-валидация и бутстреппинг

- Эти методы позволяют:
 - оценить ошибки прогнозирования тестового набора
 - □ найти оценки параметров модели
 - □ выбрать лучшую модель
- Различия между ошибкой тестирования и ошибкой обучения:
 - □ Ошибка тестирования это усредненная ошибка, которая возникает в результате применения модели машинного обучения для прогнозирования отклика на новом наблюдении, которое не было задействовано в процессе обучения.
 - Ошибка обучения вычисляется после применения алгоритма машинного обучения к наблюдениям, используемым в обучении.

M

Применение валидационного набора

■ Разделим случайным образом имеющийся набор образцов на две части: обучающую и валидационную выборки.

- Построим модель на обучающем наборе и используем ее для прогнозирования откликов наблюдений в валидационном наборе.
- Полученная ошибка на валидационном множестве дает оценку тестовой ошибки.

$$HO(\mu, Z, Z_{val}) = Q(\mu(Z \backslash Z_{val}), Z_{val})$$

Использование валидационного набора данных

Training Data inputs target inputs inputs

Основные методы генерации валидационного набора:

- Случайная выборка
- Стратифицированная выборка (сохраняем распределение выбранных переменых)
- Кластерная выборка (сохраняем пропорции кластеров)

Оценка моделей

Training Data

Validation Data

Оценка качества моделей на валидационном наборе

Сложность Валидационная модели оценка

Выбор модели

Training Data

Validation Data

Самая простая модель среди самых лучших на валидационном наборе

Сложность Валидационая модели оценка

Пример (Python)

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
```

```
plt.hist(iris.target, color="red")
plt.hist(y_train, color="green")
plt.hist(y_test, color="blue")
pass
```

Для кластерной выборки передаем в качестве stratify метки кластеров

٠,

Пример

- Хотим сравнить регрессионные модели с разными степенями полиномима
- Разделим случайным образом 392 наблюдения на две группы: обучающий набор, содержащий 196 объектов и валидационный набор, содержащий оставшиеся 196 объектов.

Слева показано одиночное разбиение, справа - множественное

Недостатки подхода применения валидационного набора

- Если плохое разбиение:
 - □ Валидационная оценка ошибки тестирования может сильно варьироваться в зависимости от того, какие именно наблюдения включены в обучающий наборе, а какие в валидационный.
- Не вся информация используется при обучении:
 - □ При валидационный подходе только подмножество наблюдений (те, которые включены в обучающий набора, а не в валидационный) используются для построения модели.
- Чрезмерный оптимизм:
 - □ Ошибка на валидационном наборе может иметь тенденцию переоценивать ошибку тестирования

10

Кросс-валидация

- *Широко используемый подход* для оценки ошибки тестирования.
- Оценки могут быть использованы для:
 - □ выбора оптимальной модели,
 - □ оценки тестовой ошибки результирующей выбранной модели.
- Идея разделить данные на К частей равного размера. Мы удаляем часть k, строим модель на оставшихся частях, а затем получаем прогнозы для удаленной k-ой части.

Validation Train Train Train Train

■ Это делается в свою очередь для каждой части k = 1, 2, ..., K, а затем результаты объединяются.

٧

Кросс-валидация для оценки ошибки

Обозначим К частей как $Z_1, ..., Z_K$, где Z_k - наблюдения в части
 $k.\ l_k$ - наблюдений в части k, удобно брать $l_k = l/K$

■ Вычислим: $CV_Z(\mu) = \sum_{k=1}^K \frac{l_k}{l} Q(\mu(Z \backslash Z_k), Z_k)$

■ При K = l имеем l папок или кросс-валидацию с попеременным исключением одного наблюдения — скользящий контроль ($leave-one\ out\ cross-validation,\ LOOCV$).

Кросс-валидация для оценки метапараметров (мета-обучение) и выбора модели

- Задают стратегию перебора вариантов метапараметров
- Запускают кросс-валидацию для разных значений метапараметров
- Рассчитывают кросс-валидационные ошибки для каждого варианта
- Выбирают лучшее значение метапараметра по кроссвалидационной ошибке
- Перестраивают модель на всей выборке с этим значением метапараметра

Кросс-валидация и валидация для выбора метапараметров (мета-обучение)

AutoML:

- □ Поиск по решетке
- □ Случайный поиск
- □ Латинский гиперкуб
- Эволюционные и генетические алгоритмы поиска
- □ «Мета» оптимизация
- □ Байесовская оптимизация

Оценка качества:

 □ Не обязательно (и даже как правило) оценка качества для выбора модели совпадает с функцией потерь для обучения модели

Пример (Python)

from sklearn.utils import resample

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

Пример – Grid Search (Python)

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X y=True)
N = 5000
X, y = X[:N], y[:N]
X.shape, y.shape
((5000, 8), (5000,))
scaler = StandardScaler()
VT = VarianceThreshold() # Preprocessing
KNN = KNeighborsRegressor() # Regressor
# Combined model - encapsulates all stages
model = Pipeline([("scaler", scaler), ("VT", VT), ("KNN", KNN)])
```

Пример – Grid Search (Python)

```
# Parameters to cycle through
# Pipeline parameters are passed as <STAGE> <PARAMETER NAME>
parameters = {"KNN__n_neighbors": range(2, 20),
              "VT threshold": [0, 1]}
# 5-fold cross-validation
GSCV = GridSearchCV(model, parameters, cv=5)
GSCV.fit(X, y)
pass
GSCV.best params
{'KNN__n_neighbors': 4, 'VT__threshold': 0}
pred = GSCV.predict(X) # GSCV is equal to the best estimator
```

7

Пример – Grid Search (Python)

```
plt.scatter(*pd.DataFrame(GSCV.cv_results_["params"]).T.values, c=GSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)
```


M

Пример – Случайный поиск (Python)

```
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
```

Пример – Случайный поиск (Python)

```
RSCV.best_params_
{'KNN_n_neighbors': 4, 'VT_threshold': 0.5513147690828912}

pred = RSCV.predict(X) # RSCV is equal to the best estimator
```

plt.scatter(*pd.DataFrame(RSCV.cv_results_["params"]).T.values, c=RSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)

pass

Пример – Отбор (Python)

```
from sklearn.experimental import enable_halving_search_cv # Required import
from sklearn.model selection import HalvingGridSearchCV, HalvingRandomSearchCV
model = Pipeline([("scaler", scaler),
                  ("VT", VarianceThreshold()),
                  ("KNN", KNeighborsRegressor())])
distributions = {"KNN__n_neighbors": randint(2, 20),
                 "VT_threshold": uniform(0, 1)}
HRSV = HalvingRandomSearchCV(model, distributions, cv=5,
                             factor=2, # Candidate selection cut-off
                             # Resource increasing during selection:
                             resource="n samples",
                             min_resources=100)
HRSV.fit(X, y)
```

.

Пример – Отбор (Python)

Размер отвечает за число семплов

Бутстрэппинг

- Бутстрэппинг представляет собой мощный статистический инструмент, который может быть использован для количественной оценки неопределенности.
- Например, он может позволить произвести оценку стандартной ошибки коэффициента или доверительного интервала для этого коэффициента.
- Использование термина бутстреппинг происходит от фразы, чтобы to pull oneself up by one's bootstraps, - «пример» из книги «Удивительные приключения барона Мюнхгаузена»

Барон упал на дно глубокого озера. Когда казалось, что все было потеряно, он решил вытащить себя своими собственными силами.

×

Бутстрэппинг

- Подход бутстрэппинга позволяет имитировать процесс получения новых случайных наборов данных, так что мы можем оценить дисперсию нашей оценки, не создавая дополнительных образцов.
- Вместо того, чтобы постоянно получать независимые наборы данных, мы получаем различные наборы путем многократной выборки наблюдений из исходного набора с замещением (или с возвращением).
- Каждый из этих "наборов данных" создается путем выборки с замещением и имеет такой же размер как наш исходный набор данных. В результате некоторые наблюдения могут появляться более одного раза в наборе данных бутстреппинга, а некоторые нет вообще.

Демонстрационный пример

- Графическая иллюстрация бутсреппингового подхода на маленькой выборке
- Каждый бутсреппинговый набор данных содержит наблюдения, отобранные с заменой из исходного набора.
- Каждый такой набор данных начальной используется для получения оценки

M

Бутстрэппинг

- Обозначая k-й набор данных бутстреппинга как Z^{*k} , мы используем его, чтобы выполнить новую оценку для a^{*k}
- Эта процедура повторяется B раз для некоторого большого значения B (например, 100 или 1000), чтобы получить B различных наборов данных бутстреппинга $Z^{*1}, Z^{*2}, ..., Z^{*B}$, и B соответствующих оценок $a^{*1}, a^{*2}, ..., a^{*B}$
- Оценим среднее и стандартную ошибку этих оценок бутстреппинга:

$$\tilde{a} = \frac{1}{B} \sum_{r=1}^{B} (a^{*r}), SE_B(a) = \sqrt{\frac{1}{B-1} \sum_{r=1}^{B} (\tilde{a} - a^{*r})^2}$$

 Они служат в качестве оценки, полученной на тестовом наборе данных.

Общая схема бутсрепинга

- В более сложных ситуациях, определение подходящего способа для получения выборок бутстрепинга может потребовать значительных усилий.
- Например, если данные представляют собой временные ряды,
 мы не можем просто выбирать наблюдения с замещением

м

Как бутстрепинг оценивает ошибку прогнозирования

- При кросс-валидации каждый из *К* блоков валидации отличается от других *К* 1, используемых для обучения: *перекрытия нет*.
- Для оценки ошибки прогнозирования с помощью бутстреппинга мы могли бы использовать каждый набор данных бутстреппинга как валидационный набор для остальных (или наоборот), но:
 - каждая выборка бутстрепинга имеет значительное перекрытие с исходным набором (около двух третей).
 - это приведет бутстреппинг к существенному недооцениванию истинной ошибки прогнозирования
- Удаление перекрытия (out of bag) можно частично решить эту проблему, используя для оценки только те наблюдения, которые не появились (случайно) в текущей выборке бутстреппинга $OOB(\mu) = \sum_{k=1}^K \frac{l_k}{l} Q(\mu(Z^{*k}), Z \backslash Z^{*k})$

Пример (Python)

```
ITER = 100
SAMPLES = 100
frame = []
for i in range(ITER):
    sample = resample(X, replace=True, n_samples=SAMPLES, stratify=None)
    stat = sample["HouseAge"].mean()
    frame.append(stat)
frame = np.array(frame).flatten()
frame = pd.Series(frame).sort_values()
```

Доверительные интервалы 90% для среднего возраста жилища:

```
frame.quantile(0.05), frame.quantile(0.95)
(26.248, 30.6515)
```

Бутстреп-регрессия (Python)

0.48

0.020

```
from sklearn.ensemble import BaggingRegressor
estimator = BaggingRegressor(LinearRegression(), n_estimators=100
                                 bootstrap=True, max samples=0.1,
                                 random state=42)
                                                                             0.38
                                                                                  0.40
                                                                                       0.42
                                                                                            0.44
features = X[["MedInc", "HouseAge"]]
estimator.fit(features, y)
                                                                           200
pass
coefs = np.array([x.coef for x in estimator.estimators ])
                                                                            50
                                                                                         0.016
                                                                               0.012
                                                                                    0.014
                                                                                             0.018
 sns.kdeplot(data=coefs[:, 0])
 plt.axvline(coefs[:, 0].mean(), 0, 0.93, ls="--")
 plt.axvline(np.quantile(coefs[:, 0],0.025), 0, 0.20,c="red")
 plt.axvline(np.quantile(coefs[:, 0],0.975), 0, 0.27,c="red")
 sns.kdeplot(data=coefs[:, 1])
 plt.axvline(coefs[:, 1].mean(), 0, 0.91, ls="--")
 plt.axvline(np.quantile(coefs[:, 1],0.025), 0, 0.13,c="red")
 plt.axvline(np.quantile(coefs[:, 1],0.975), 0, 0.25,c="red")
```

Бутстреп-регрессия (Python)

```
pred = np.array([x.predict(features.values) for x in estimator.estimators_]).T
pred.shape

(20640, 100)

plt.plot(np.percentile(pred, q=5, axis=1)[:25], c="blue")
plt.plot(np.percentile(pred, q=95, axis=1)[:25], c="red")
plt.scatter(range(25), estimator.predict(features)[:25], c="green")
pass
```


Контрольный опрос

