Problem Set 4 is due This Friday, Feb 14 (10pm)

Class 10: Circuit Size Hierarchy

University of Virginia cs3120: DMT2

Wei-Kai Lin

Recap: Circuit Size of *n*-bit Functions

- There are 2^{2^n} Boolean functions $\{0,1\}^n \to \{0,1\}$
- There are **at most** $2^{O(s \log s)}$ circuits of size s• There are **at most** $2^{O(s \log s)}$ functions of size s: $|SIZE(s)| \le 2^{O(s \log s)}$

$$|SIZE(s)| \le 2^{O(s \log s)}$$

So, $SIZE_n(s)$ cannot contain all functions $\{0,1\}^n \to \{0,1\}$ If $s = \frac{2^n}{10n}$, then $|SIZE(s)| \le 2^{c \cdot s \log s} < 2^{2^n}$

If
$$S = \frac{2^n}{10n}$$
, then $|SIZE(s)| \le 2^{c \cdot s \log s} < 2^{2^n}$

Checking the Definitions

SIZE(s) is defined as the set of all **functions** that can be implemented by a circuit of at most s NAND gates

 $SIZE_n(s)$ is defined as the set of all **functions** $\{0,1\}^n \rightarrow \{0,1\}$ that can be implemented by a circuit of at most s NAND gates

What is the relationship between SIZE(3) and $SIZE_2(3)$?

Circuit Size Hierarchy

Size Hierarchy Theorem

Proof idea

 $SIZE_n(s) \subsetneq SIZE_n(s+10n)$.

Find a sequence of functions such that:

- 1. First function can be computed using $\leq 10n$ gates.
- 2. Last function **cannot** be computed by $\frac{0.1 \cdot 2^n}{n}$ gates.
- For all functions in the sequence, if function i can be computed using t gates, then the function i+1 can be computed using t+10n gates.

Find a sequence of functions such that:

- 1. First function can be computed using $\leq 10n$ gates.
- 2. Last function **cannot** be computed by $\frac{0.1 \cdot 2^n}{n}$ gates.
- 3. For all functions in the sequence, if function i can be computed using t gates, then the function i+1 can be computed using t+10n gates.

What sequence of functions works?

How do we know f^* exists?

How do we know f^* exists?

Theorem 5.3 (Counting argument lower bound)

There is a constant $\delta > 0$, such that for every sufficiently large n, there is a function $f: \{0,1\}^n \to \{0,1\}$ such that $f \not\in SIZE_n\left(\frac{\delta 2^n}{n}\right)$. That is, the shortest NAND-CIRC program to compute f requires more than $\delta \cdot 2^n/n$ lines.

The constant δ is at least 0.1 and in fact, can be improved to be arbitrarily close to 1/2, see Exercise 5.7.

What sequence of functions works?

Idea: make function f_i easy for all inputs > i

 $f_i: \{0, 1\}^n \to \{0, 1\} \in SIZE_n(s)$

So f_{i+1} is not hugely harder than f_i

Does f_0 work?

$$f_i(x) = \begin{cases} f^*(x) & \text{for the first } i \text{ inputs} \\ 0 & \text{for all other inputs} \end{cases}$$

Does
$$f_{2}n$$
 work?

$$f_i(x) = \begin{cases} f^*(x) & \text{for the first } i \text{ inputs} \\ \hline 0 & \text{for all other inputs} \end{cases}$$

Does f_{2^n} work?

$$f_{2}n(x) = f^*(x)$$

$$f^* \notin SIZE_n\left(0.1 \cdot \frac{2^n}{n}\right)$$

Inductive Step: $f_i \rightarrow f_{i+1}$

3. For all functions in the sequence, if function *i* can be computed using s gates, then the function i+1 can be computed using t + 10n gates.

$$f_i(x) = \begin{cases} f^*(x) & \text{for the first } i \text{ inputs} \\ 0 & \text{for all other inputs} \end{cases}$$

$$f_{i+1}(x) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Inductive Step: $f_i \rightarrow f_{i+1}$

3. For all functions in the sequence, if function i can be computed using s gates, then the function i+1 can be computed using t+10n gates.

10n

$$f_i(x) = \begin{cases} f^*(x) & \text{for the first } i \text{ inputs} \\ 0 & \text{for all other inputs} \end{cases}$$

$$f_{i+1}(x) = \begin{cases} f^*(x) & \text{for the } i \text{ input} \\ f_i(x) & \text{for all other inputs} \end{cases}$$

Implementing f_{i+1} in $SIZE_n(t+10n)$

3. For all functions in the sequence, if function i can be computed using t gates, then the function i+1 can be computed using t+10n gates.

$$f_{i+1}(x) = \begin{cases} f^*(x) & \text{for the } i^{th} \text{ input} \\ f_i(x) & \text{for all other inputs} \end{cases}$$

$$C_{H1}(x) = if x = if(x) = f(i+1)$$
ret f'(x) = f'(i+1)

$$f_{i}: \{0,1\}^{n} \to \{0,1\} \in SIZE_{n}(t)$$

7 Ordering the Inputs

 $lex(x) \in \{0, 1, ..., 2^n\}$ is defined as the position of x in an ordered

sequence of all
$$n$$
-bit values $\inf(x)$

$$f_i(x) = \begin{cases} f^*(x), & lex(x) < i \\ 0, & \text{otherwise} \end{cases}$$

Theorem 5.5 (Size Hierarchy Theorem)

For every sufficiently large n and $10n < s < 0.1 \cdot 2^n/n$,

Completing the Proof

 $SIZE_n(s) \subsetneq SIZE_n(s+10n)$.

If s is between 10n and $0.1 \cdot \frac{2^n}{n}$ then there are functions on both sides of s.

This was an existential proof (annoying?)

Our proof showed $f_i \in SIZE(s + 10n) \setminus SIZE(s)$ exists

We did not "explicitly show" what function f_j we are dealing with

Root cause: we did not construct function f^* to begin with

Even if we did know f^* , it is not easy to identify the value of j

How about this existential proof?

Fact

Theorem: there is an irrational real number

Proof: $\sqrt{2}$ is irrational....

Theorem: There are irrational numbers x, y where x^y is rational. Proof: First let $x = \sqrt{2}$ and $y = \sqrt{2}$. If x^y is rational, we are done, and if not: then let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$, and we have $x^y = 2$.

1+ rxibhal

The proof does not tell us which pair is the one we want!

Any "constructive" proof of Size Hierarchy?

Is this a constructive description?

Describe a simple function (in English or math?) that provably has circuit complexity (i.e., necessary number of gates) at least $2^{\Omega(n)}$

A candidate function (open to prove circuit lower bond):

Given input of length n, interpret it as a graph G on $m = \sqrt{n}$ vertices and output 1 if G has m/2 vertices that are all pairwise connected.

Since most functions have large circuits, it is like: "finding hay in haystack".

Chapter 14

Circuit lowerbounds

Complexity theory's Waterloo

We believe that \mathbf{NP} does not have polynomial-sized circuits. We've seen that if true, this implies that $\mathbf{NP} \neq \mathbf{P}$. In the 1970s and 1980s, many researchers came to believe that the route to resolving \mathbf{P} versus \mathbf{NP} should go via circuit lowerbounds, since circuits seem easier to reason about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lower bound of n is trivial for any function that depends on all its input bits. We are unable to prove even a superlinear circuit lower bound for any **NP** problem—the best we can do after years of effort is 4.5n - o(n).

"Complexity theory's Waterloo"

• • •

"We are unable to prove even a superlinear circuit lowerbound for any NP problem—the best we can do after years of effort is ${\bf 4.5}n-o(n)$."

Universal Circuits

Evaluate a NAND cet using mother NAND cet

Recap: Representing Circuits as Bits

- Equivalent: NAND straightline program
- n-bit input, ℓ lines, m-bit output.
- Circuit size $s = \ell + m$ (# gates)

- Represented by a sequence of:
 - -2(s+1) natural numbers (at most)
 - $-O(s \log s)$ bits

Consequences of Programs as Data

1. We can count the number of programs of certain size.

2. We can also feed a circuit as input to other circuits.

Consequence of Program as Data

 Can define the following function, whose outputs is based on running a program given as input:

$$EVAL_{\underline{s},n,m}(p_k) = \begin{cases} P(x) & p \in \{0,1\}^{\underline{S(s)}} \text{ represents a size-}s \text{ program } P \text{ with } n \text{ inputs and } m \text{ outputs otherwise} \end{cases}$$

Are the P's the same?

But can we implement U as well?

Theorem 5.9 (Bounded Universality of NAND-CIRC programs)

For every $s,n,m\in\mathbb{N}$ with $s\geq m$ there is a NAND-CIRC program $U_{s,n,m}$ that computes the function $EVAL_{s,n,m}$.

Universal Circuit/Program

Figure 5.6 from TCS Book

program U takes a program description P and input x as its input, and "simulates" running P on x:

$$U(P,x) = P(x)$$

Points to pause and think

- Note that the fact that we ran a program using another program is already something to pause and appreciate
- But do we really want to use such inefficient simulation?

Charge

Circuit size hierarchy Many hard functions Many classes of circuit size

PS4: due this Friday 10:00pm

PRR5: due next Monday 10:00pm

Not yet PS5, yeah!