

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 2

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Pumping lemma	4.3	Q1-Q27

Extra Questions

- 1. Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection and complement.
 - a) $\{0^n 1^m 0^n \mid m, n \ge 0\}$
 - b) $\{wtw \mid w,t \in \{0,1\}^*\}$
- 2. Let $\sum = \{0,1,+,=\}$ and ADD = $\{x=y+z \mid x,y,z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\}$. Show that ADD is not regular.
- 3. The pumping lemma says that every regular language has a pumping length p, such that every string in the language can be pumped if it has length p or more. If p is a pumping length for the language A,so is any length p' >= p. The minimum pumping length for A is the smallest p that is a pumping length for A. For example, if $A = 01^*$, the minimum pumping length is 2. The reason is that the string s=0 is in A and has length 1 yet s cannot be pumped, but any string in A of length 2 or more containa a 1 and hence can be pumped by dividing it so that x = 0, y=1 and z is the rest. For each of the following languages, give the minimum pumping length and justify your answer.
 - a. 1*01*01*
 - b. (01)*
 - c. 1011
 - d. 001 ∪ 0*1*
- 4. To show that Language contains equal numbers of a and b, if we select the string w as follows, what could the adversary do in each case?

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

a.
$$w = (ab)^m$$

b.
$$w = a^{m/2}b^{m/2}$$

- 5. Show that the following languages over {a, b} are not regular:
 - a. $\{a^n ba^n : n \ge 1\}$.
 - b. $\{a^n: n \text{ is a perfect cube }\}.$
 - c. $\{w : \# a(w) < \# b(w)\}.$
 - d. $\{wb^n : w \in \{a, b\} * , Length(w) = n\}$.
 - e. $\{(ab)^m b^n : m > n \ge 0\}$.
 - f. $\{a^m b^n : m \ n, m.n \in N\}$.
 - g. $\{a^m b^n a^k : k \ge m + n\}$.
 - h. $\{a^n b^{2n} : n \ge 1\}$.
 - i. $\{a^m b^n : 0 < m < n\}$.
 - j. $\{a^m b^n a^k : k \neq m + n\}.$
 - k. $\{a^m b^n a^k : m = n \text{ or } n \neq k\}.$
 - $l. \quad \{a^mb^n: m \le n\}.$
 - m. $\{w \in \{a, b\}^* : \# a(w) \# b(w)\}.$
 - n. $\{ww : w \in \{a, b\}^*\}.$
 - o. $\{w^R w : w \in \{a, b\}^*\}$.
 - p. $\{www^R: w \in \{a, b\}^*\}$.
 - q. $\{a^mb^n : m > n\} \cup \{a^mb^n : m + 1 \neq n\}$.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- r. $\{uww^R v : u, v, w \in \{a, b\}^+\}.$
- s. $\{ww^n v : v, w \in \{a, b\}^+, n \ge 1\}$.
- t. $\{ww : w \in \{a, b\} * \}$, where w is the string obtained from w by changing a to b, and b to a simultaneously.
- 6. Are the following languages over {a} regular?
 - a. $\{a^n: n = m \ 2 \text{ for some } m \subseteq N\}$.
 - b. $\{a^n : n = 2 \text{ m for some } m \in N\}.$
 - c. $\{a^{p-1}: p \text{ is a prime number}\}.$
 - d. ${a^{mk}: m \text{ and } k \text{ are prime numbers}}$.
 - e. ${a^n: n \text{ is either a prime or a product of two or more primes}}$.
- 7. Show that the set of balanced parentheses is not a regular language.
- 8. Let L be a regular language. Consider the two languages:

L 1 =
$$\{w : w^n \in L \text{ for some } n \in N\}$$
 and L 2 = $\{w^n : w \in L \text{ for some } n \in N\}$.

Which one of L $\bf 1$, L $\bf 2$ is regular and which is not? Justify.

- 9. Are the following languages regular?
 - a. $\{uww^R v : u, v, w \in \{a, b\}^+(u) \ge (v)\}$.
 - b. $\{a^m ba^n ba^{m+n} : m, n \ge 1\}.$