

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Woods Hole Oceanographic Institution

OCT 19

Taxonomic Notes On The Abyssal Aggiutinated Benthic Foraminifera Of The HEBBLE Area (Lower Nova Scotian Continental Rise)

by

M. A. Kaminski

September 1983

Technical Report

Prepared for the Office of Naval Research under Contract N00014-82-C-0019.

Approved for public release; distribution unlimited.

RE COF

WOODS HOLE, MASSACHUSETTS 02543

号

83 10 04 054

0272-101						
REPORT DOCUMENTA	ATION	1. REPORT NO.		2.	1	's Accession No.
PAGE		WHOI-83-35			5. Report De	1133743
. Title and Subtitle Taxonomic Note	s On 1	he Abyssal Agglutinate	ed Benthic F	oraminifera	Septen	nber 1983
Of The HEBBLE	Area	(Lower Nova Scotian Co	ontinental I	lise)	6	
. Author(s)					. 8. Performir	g Organization Rept. No.
Michael A. Kam	<u>inski</u>				WHOL	-83-35
Woods Hole Oce					10. Project/	Task/Work Unit No.
Woods hole, Massachusetts 02543					11. Contract	(C) or Grant(G) No.
					(C) N000	014-82-C-0019
2. Sponsoring Organizatio	n Name s	nd Address			13. Type of	Report & Period Covered
Office of Naval Research Washington, DC					Techni	cal
5. Supplementary Notes		-				
This report shoul	ld be c	ited as: Woods Hole Oc	ceanog. Inst	Tech Rept. 1	VHOI-83-3	5.
	anda)					
Eighty specie	s and ments	morphological varieties from the HEBBLE Site wer Nova Scotian Conti	(4800 m de	pth) and the H	EBBLE Sha	llow
Eighty specie identified in sedi Site (4185 m) on and classification	es and iments the lo	from the HEBBLE Site	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us	es and iments the loon are issing SE	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us	es and iments the loon are issing SE	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us	es and iments the love of are in sing SE	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us 7. Decument Analysis at 1. Agglutinated 2. Continental R	besorted foramin	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us. 7. Decument Analysis and Agglutinated 2. Continental R. Nova Scotia m. b. Montifiers/Open-End	besorted foramin	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha eir morpho	llow ology
Eighty specie identified in sedi Site (4185 m) on and classification are illustrated us 7. Decument Analysis a. 1. Agglutinated 2. Continental R. 3. Nova Scotia m b. Identifiers/Open-End	besorted foramin	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre raphy.	EBBLE Sha	llow plogy specimens
identified in sedi Site (4185 m) on and classification are illustrated us 7. Decument Analysis at 1. Agglutinated 2. Continental R 3. Nova Scotia n b. Identifiers/Open-End c. COSATI Field/Group B. Aveilability Statemen:	Description of Terms	from the HEBBLE Site wer Nova Scotian Conti- ncluded in descriptions M, light microscopy, an	(4800 m de inental Rise of each spe	pth) and the H Details of the cies, and repre	EBBLE Sha	llow ology

Taxonomic Notes On The Abyssal Agglutinated Benthic Foraminifera Of The HEBBLE Area (Lower Nova Scotian Continental Rise)

By

M. A. Kaminski

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

September 1983

Technical Report

Prepared for the Office of Naval Research under Contract N00014-82-C-0019.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-35.

Approved for public release; distribution unlimited.

Approved for Distribution:

Richard P. von Herzen, Chairman Department of Geology and Geophysics

ABSTRACT:

Eighty species and morphological varieties of agglutinated benthic foraminifera were identified in sediments from the HEBBLE Site (4800 m depth) and the HEBBLE Shallow Site (4185 m) on the lower Nova Scotian Continental Rise. Details of their morphology and classification are included in descriptions of each species, and representative specimens are illustrated using SEM, light microscopy, and X-radiography.

INTRODUCTION:

In 1982 and 1983 a total of 48 box cores were collected at the HEBBLE (High Energy Benthic Boundary Layer Experiment) site, using a 0.25m² corer (Hessler and Jumars, 1974). The HEBBLE site is located on the lower continental rise off Nova Scotia centered at (40° 27'N, 62° 20'W) at approx. 4815 - 4830 m water depth. On a large scale, this region is influenced by intermittently strong bottom currents capable of resuspending sediments. The predominant water mass at the site is NADW, with periodic influence of AABW. On KNORR Cruise 103 (June, 1983), one box core was taken from a site designated the Hebble Shallow site (40° 53'N, 63° 44'W) at a depth of 4185 m. These samples will serve as a basis for comparing the fauna of a relatively quiet region with those of the primary HEBBLE site. The locations of both sites are shown in Fig. 1.

On KNORR Cruise 96 (July 1982), the top sediment layer from twenty-one box cores was sampled at 0-1mm, 1-5mm, and 5-20mm depth for analysis of particle size. The 0-1mm sample was obtained by gently oscillating sea water across the core surface to resuspend mobile surface particles, and picking up the resuspended material with a syringe. 1-5mm and 5-20mm layers were sampled by scraping the core surface with a spatula to the appropriate depth. On KNORR 101 (April, 1983) and 103, samples were taken from each core from the 0-1 cm. surface layer. Deeper samples were obtained from split Knorr 96 subcores using a plastic hypodermic syringe inserted into the sediment to give 10cc subsamples. All samples were gently washed without dispersant through a 63µm screen. Foraminifera were picked from the >250 and 63-250 µm size fraction splits, and individual specimens photographed on SEM and in reflected light.

This report deals specifically with the taxonomy of the agglutinated foraminifera of the lower Nova Scotian Continental Rise. Environmental data obtained from samples and spatial variation of agglutinated species will be published separately.

Fig. 1. Map showing location of HEBBLE Area (after Hollister et al. 1980, with modifications.)

- ★ HEBBLE Site
- ♣ HEBBLE Shallow Site

TAXONOMY:

Deep water agglutinated foraminifera from the North Atlantic have been studied by numerous workers for over a century. Brady's (1884) comprehensive work, revised by Barker (1960) is still widely used as a basis for taxonomic study. Other classic works include Goës (1894), Cushman (1918, 1920, 1922), and Höglund (1947). More recently, Cole (1981) illustrated species from the Newfoundland continental shelf and slope, Todd and Low (1981) figured forms from the N.E. United States continental shelf, and Gooday (1983) illustrated species from the NE Atlantic. Useful taxonomic treatments of recent deep water agglutinated foraminifera from other regions include Earland (1933, 1934, 1936), Echols (1971), Hofker (1972, 1976), Saidova (1975), Tendal and Hessler (1977), Lukina (1980), Ingle et al. (1980), Milam and Anderson (1981), Poag (1981), and Resig (1981).

On the basis of morphology, modern deep-water agglutinated foraminifera can be sub-divided into 7 general taxonomic groups:

1.	Bush- or bead-like forms made of clay	(Komokiidae and			
		Baculellidae)p.12.			
2.	Tubular forms, branched or unbranched	(Astrorhizidae)p. 5.			
3.	Single-chambered forms	(Saccamminidae)p. 9.			
4.	Single coiled tubes	(Ammodiscidae)p.ll.			
5.	Multilocular uniserial forms	(Hormosinidae)p.13.			
6.	Bi- and triserial forms	(Textulariidae)p.20.			
	(also Textular	riopsidae, Spiroplectammin-			
idae, Valvulinidae, and Ataxophragmii					
7.	Multilocular coiled forms	(Lituolidae, Loftusiidae,			
		and Trochamminidae)p.17.			

The suprageneric classification currently in use by most workers is that of Loeblich and Tappan (1964). However, in recent years profound changes have been made in the classification of Foraminifera. Scores of new genera have been created, and one new superfamily, the Komokiacea, was described (Tendal and Hessler, 1977). Saidova (1981) proposed

a new suprageneric classification scheme that has not gained wide acceptance. More recently, Loeblich and Tappan (1982a) published an outline of a suprageneric classification scheme which features modified latin endings for superfamilies, and incorporates many newly erected genera. This scheme was later modified by Loeblich and Tappan (1982b). Loeblich and Tappan (1982c) proposed a revised suprageneric classification, in which the original superfamily endings were retained. This classification contains 13 superfamilies and 52 families in the suborder Textularina, compared with 3 superfamilies and 16 families in Loeblich and Tappan (1982a). In a revision of the Trochamminacea, Brönnimann et al. (1983) modified Loeblich and Tappan's (1982c) scheme. The anticipated publication of an updated treatise by Loeblich and Tappan will no doubt synthesize recent changes in the classification of Foraminifera.

Since Loeblich and Tappan (1983c) do not list the genera contained within individual subfamilies, I have classified species according to the scheme of Loeblich and Tappan (1982a) with minor modifications. Taxonomic problems abound at the species level even among well-established taxa. I have taken a conservative taxonomic approach and describe several forms using open nomenclature. Notes of recent generic classification changes appear in the species descriptions.

ACKNOWLEDGEMENTS:

The second of th

I wish to thank the following persons for their help in the preparation of this study: C.D. Hollister, I.N. McCave, R.S. Chandler, J.Y. Yingst, D.E. Thistle, C.H. Pilskaln. W.A. Berggren, F.M. Gradstein and Claudia Schroeder reviewed this manuscript and provided useful suggestions. Financial support was supplied in part by the Office of Naval Research through the HEBBLE Project. This investigation is part of a long-term project on Cenozoic Deep Water Benthic Foraminifera conducted by W.A. Berggren and colleagues at the Woods Hole Oceanographic Institution and supported by a consortium of oil companies.

SYSTEMATIC PART

Class GRANULORETICULOSA Deflandre in Gresse, 1953 Order FORAMINIFERIDA Eichwald, 1830 Suborder ALLOGROMIINA Loeblich and Tappan, 1961 Superfamily LAGYNACEA Schultze, 1854 Family ALLOGROMIIDAE Rhumbler, 1904

Placopsilinella aurantica Earland.

P1. 11, fig. 8

Placopsilinella aurantica Earland, 1934. Discovery Reports, vol. 10, p. 95 pl. 3, fig. 18. Echols, 1971 pl. 1, fig. 1.

Small, chitinous, bright reddish-brown species attached to planktonic foraminifer tests.

Superfamily AMMODISCOIDEA Reuss, 1862 Family ASTRORHIZIDAE Brady, 1881

?Astrammina sphaerica (Heron-Allen and Earland) var. Pl. 1, fig. 1

Armorella sphaerica Heron-Allen and Earland, 1932. Roy. Micr. Soc. Jour., ser. 3, vol. 52, pt. 3, art. 10, p. 257, pl. 2, figs. 4-11.

Armorella was listed as a synonym of Astrammina by Loeblich and Tappan (1964), but retained by Hofker (1972) who maintains it differs from the latter in possessing a test built of a single layer of sand grains.

Specimens are large, brown in color with globular central chamber and 3 - 6 tubular arms not in one plane. Firmly cemented test comprised of one layer of sand grains. May incorporate large sand grains and occasionally planktonic foraminifera. Differs from the typical form in the larger dimensions of the tubular arms.

Rhabdammina cf. abyssorum Carpenter

P1. 1, fig. 2

Rhabdammina abyssorum Carpenter, 1869 Roy. Soc. London, Proc. vol. 18,

no. 4, p. 60. Milam and Anderson, 1981 pl. 1, fig. 1.

Test rectilinear, open at both ends, reddish brown in color, slender, up
to 5 mm long, firmly cemented, comprised of quartz grains, exterior
roughly finished. Distinguished from H. cylindrica by its rough texture,
darker color and lack of mafic grains.

Rhabdammina discreta Brady

P1. 1, fig. 3

Rhabdammina discreta Brady, 1881 Quart. Jour. Micro. Sci., vol. 21, p. 48. Barker, 1960 pl. 22, figs. 7-10.

Test straight, thicker than R. abyssorum, comprised of mud and sand with some mafic grains, firmly cemented.

Rhabdammina linearis Brady

P1. 1, fig. 4

Rhabdammina linearis Brady, 1879 Quart. Jour. Micr. Sci., vol. 19, p. 37. Milam and Anderson, 1981 pl. 1, fig. 1.

Test robust, straight, with swollen central chamber.

Rhizammina cf. algaeformis Brady

P1. 1, fig. 5

Rhizammina algaeformis Brady, 1879 Quart. Jour. Micr. Sci., vol. 19, p. 39, pl. 4, figs. 16,17. Cushman, 1918 pl. 11, figs. 2, 3.

Test thin, comprised of mud with or without agglutinated small planktic foraminiferal tests, loosely cemented, friable, flattened.

Rhizammina indivisa Brady

P1. 1, fig. 6

Rhizammina indivisa Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, p. 277, pl. 29, figs. 5-7. Cushman, 1918 pl. 12, figs. 7-10.

Test cylindrical, robust, with chitinous lining, composed of mud with small planktonic foraminiferal tests, more firmly cemented than R. algaeformis.

Bathysiphon cf. filiformis M. Sars Pl. 1, fig. 7

Bathysiphon filiformis M. Sars, 1872 Vidensk.-Selsk. Christiana, Forhandl. 1872, p. 251. Ellis and Messina, Catalogue of Foraminifera. Test robust, flexible, reaching a length of 14 mm. Wall smooth, comprised of clay with no constrictions.

Bathysiphon cf. rufescens Cushman

P1. 1, fig. 8

Bathysiphon rufescens Cushman, 1917 U.S. Nat. Mus. Proc. vol. 51, no. 2172, p. 651. Ellis and Messina, Catalogue of Foraminifera.

Test long (up to 6 mm), slender, gently curved. Wall yellow-orange in color, with mafic grains. Differs from typical B. rufescens in its lack of constrictions.

Marsipella cylindrica Brady

P1. 2, fig. 1

Marsipella cylindrica Brady, 1882 Roy. Soc. Edinburgh Proc. vol. 11, p. 714. Milam and Anderson, 1981 pl. 1, fig. 3.

Test thin, elongate, with organic lining. Wall comprised of fine sand with a considerable amount of long, slender sponge spicules oriented parallel to the test.

Hyperammina cylindrica Parr

P1. 2, fig. 2

Hyperammina cylindrica Parr, 1950. B.A.N.Z. Antarctic Res. Exped. 1929 - 1931 Reports, ser. B, vol. 5, pt. 6, p. 254, pl. 3, fig. 5. Ellis and Messina, Catalogue of Foraminifera.

Test thin, elongate, with subglobular proloculum greater in diameter than second chamber. Wall comprised of fine sand grains, yellowish brown in color with mafic grains.

Hyperammina elongata Brady

P1. 2, fig. 3

Hyperammina elongata Brady, 1878 Ann. Mag. Nat. Hist. ser. 5, vol. 1, p.
433, pl. 20, figs. 2a,b. Barker, 1960 pl. 23, fig. 8.

Test thick, elongate, with subglobular proloculum greater in diameter than second chamber, which tapers towards distal end. Wall comprised of fine sand grains. Larger in size than H. cylindrica.

Hyperammina friabilis Brady

P1. 2, fig. 4

Hyperammina friabilis Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, p. 258, pl. 23, figs. 1-3, 5, 6. Barker, 1960 pl. 23, figs. 1-3, 5, 6. Test large. Wall thick, composed of fine sand with some coarse particles.

Hyperammina cf. subnodosa Brady

P1. 2, fig. 5

Hyperammina subnodosa Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, p. 259, pl. 23, figs. 11-14.

Test robust, wall thick with coarse quartz grains and sponge spicules, no inner lining, loosely cemented. Differs from the typical <u>H. subnodosa</u> in its more coarsely arenaceous test.

Hyperammina sp.

P1. 2, fig. 6

Very fine, fragile, rectilinear tube with globular proloculus comprised of clear-white quartz grains.

Botellina labyrinthica Brady

P1. 2, fig. 10

Botellina labyrinthica Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, pl. 29, figs. 8-18. Barker, 1960 pl. 29, figs. 8-18.

Test grey in color, wall thick, comprised of very fine silt grains, loosely cemented. Interior labyrinthic with organic lining. Wall finer grained than Brady's material.

Dendrophrya arborescens (Norman)

<u>Psammatodendron arborescens</u> Norman, 1881 Norpod.-Exped. inder Jahren 1872 - 1874, vol. 13, p. 98.

Very fine, delicate bifurcating tube comprised of fine sand grains.

Saccorhiza ramosa (Brady)

P1. 2, fig. 7

Hyperammina ramosa Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 33, figs. 14, 15.

Saccorhiza ramosa (Brady). Cole, 1981 pl. 1, fig. 5.

Specimens are curved, rather coarsely agglutinated, with a moderate amount of sponge spicules oriented normal to the test.

?Saccorhiza sp.

P1. 2, figs. 8, 9

Test fragile, comprised of long, diachotomously branching tube closed at one end. Closed end not wider than ensuing tubular portion. Wall is tan in color, built of 2 or 3 layers of fine quartz silt grains with little cement. Black organic lining often collapses and pulls away from inner surface of rigid wall. Diameter of tube: 0.21 - 0.27 mm; Thickness of wall: 0.03 mm.

Family SACCAMMINIDAE Brady, 1884

Psammosphaera cf. fusca Schulze

P1. 3, figs. 1,2

<u>Psammosphaera fusca</u> Schulze, 1875 II Jahr. Comm. Wiss. Unt. deutsch Meer in Kiel. p. 113, pl. 2, figs. 8a-f.

Test coarsely finished, brown in color, may incorporate larger mineral grains (pseudoattached). Wall a single layer of sand grains.

Psammosphaera parva Flint

P1. 3, fig. 3

Psammosphaera parva Flint, 1899 Ann. Rep. U.S. Nat. Mus., 1897, pt. 1, p. 268, pl. 9, fig. 1. Mendelson, 1981 pl. 2, 3.

Test free or pseudo-attached, resembling $\underline{P. cf. fusca}$ except built around a single long sponge spicule. Wall comprised of a single layer of sand grains, reddish brown, firmly cemented.

Psammosphaera testacea (Flint)

P1. 3. fig. 6

Psammosphaera fusca var. testacea Flint, 1899 Ann. Rep. U.S. Nat. Mus., 1897, pt. 1, p. 268, pl. 8, fig. 2. Cushman, 1918 pl. 15, figs. 1, 2. Test comprised of tests of small planktonic foraminifera.

Psammosphaera sp.

P1. 3, figs. 4, 5

Test variable in composition, usually comprised of several large angular quartz grains agglutinated by fine quartz silt. Fine-grained portion yellow in color. May possess one or two planktonic foraminifera incorporated into the test.

Saccammina sphaerica G.O. Sars

P1. 3, fig. 7

Saccammina sphaerica G.O. Sars, 1872 Forhandl. Vidensk.-Selsk. Christiania 1872. p. 250. Barker, 1960 pl. 18, fig. 12. Test delicate, monolocular with aperture on a produced neck. Wall brown, finely agglutinated.

Saccammina sphaerica G.O. Sars var. catenulata Cushman Saccammina sphaerica Brady var. catenulata Cushman, 1917 U.S. Nat. Mus. Proc. vol. 51, p. 652. Cole, 1981 pl. 3, fig. 1. Specimens are pseudo-attached to large sand grains

Saccammina tubulata Rhumbler

P1. 3. fig. 8

Saccammina tubulata Rhumbler, 1931 in: Drygalski, 1931 Deutsche Sudpolar Expedition 1901-1903 Bd. 20, pl. 23. Resig, 1981 pl. 9, fig. 5. Test free or pseudo-attached, coarsely agglutinated with long, delicate, finely agglutinated neck.

Thurammina papillata Brady Pl. 3, fig. 9

Thurammina papillata Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 45, pl. 5, figs. 4-8. Barker, 1960 pl. 36, figs. 7, 13.

Fragile species often flattenned, brown in color, with multiple apertures. Finely agglutinated fragile test.

?Lagenammina difflugiformis (Brady) var. calcarea Cushman ?Lagenammina ?difflugiformis (Brady) var. calcarea Cushman, 1947 Cush. Lab. Foram. Res. Contr. vol. 23, p. 86, fig. 16

Test small, longer than wide, comprised of calcareous and clear-white quartz grains. Lukina (1969) erects the genus Proteonella for such pear-shaped monolocular forms.

Family AMMODISCIDAE Reuss, 1862

Glomospira charoides (Jones and Parker)

P1. 5. fig. 1

Trochammina squamata charoides Jones and Parker, 1860 Geol. Soc. London, Quart. Jour., vol. 16, p. 304.

Glomospira charoides (Jones and Parker). Poag, 1981 pl. 7-8, fig. 4. Small, very rare - found in one sample.

Glomospira gordialis (Jones and Parker)

P1. 5, fig. 4

Trochammina squamata gordialis Jones and Parker, 1860 Geol. Soc. London, Quart. Jour., vol. 16, p. 304.

Glomospira gordialis (Jones and Parker). Resig, 1981 pl. 9, fig. 12.

Found occurring with G. charoides.

Ammolagena clavata (Parker and Jones)

Trochammina irregularis var. clavata Parker and Jones, 1860 Quart. Jour. Geol. Soc. vol. 16, p. 304.

Ammolagena clavata (Parker and Jones). Lukina, 1980 fig. 31. Test attached (pseudo-attached) to Globorotalia menardii.

Suborder TEXTULARIINA Delage and Herouard, 1896 Superfamily KOMOKIACEA Tendal and Hessler, 1977 Family KOMOKIIDAE Tendal and Hessler, 1977

Septuma ocotillo Tendal and Hessler.

P1. 4, fig. 1

Septuma ocotillo Tendal and Hessler, 1977. Galathea Rep. vol. 14, p. 180, pl. 9, fig. C, pl. 10, figs. A,B, pl. 12, figs. A,B, pl. 19, fig. A, pl. 20, figs. A-F, pl. 21, figs. A-D.

Test bush-like, branching out irregularly from the base. Wall comprised of tan-colored clay with an organic lining.

Septuma sp.

P1. 4, figs. 3, 4

Test large, bush-like, flexible. Tubules flattened, with constrictions, branching out from the basal portion. Wall made of tan-colored clay and coccolith debris with some small fragments of planktonic foraminifera over a darker organic lining.

Lana reticulata Tendal and Hessler

P1. 4, fig. 2

Lana reticulata Tendal and Hessler, 1977. Galathea Rep. vol. 14, pp. 186-187. pl. 14, figs. A-C, pl. 19, fig. C.

Specimen comprised of fine, branching tubules with no focal point of symmetry. Wall tan colored clay.

Lana sp.

P1. 4, figs. 5, 6

Tubules are thicker than in <u>Lana reticulata</u>, and comprised of fine silt sized quartz particles over a dark inner organic lining. Attached to planktonic foraminifera and other debris.

Superfamily LITUOLOIDEA de Blainville, 1825 Family HORMOSINIDAE Haeckel, 1894

Aschemonella scabra Brady

P1. 5, figs. 3, 4

Aschemonella scabra Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 44, pl. 3, fig. 12, 13. Barker, 1960 pl. 27, figs. 1, 2, 4-11.

Test several millimeters in size, with several openings. Test wall comprised of fine sand several grains thick with occasional small planktonic foraminiferal tests. Type species for Aschemonella. Large number of fragmentary specimens found in one sample. Gooday (1983) speculates this species is a Xenophyophore.

Aschemonella ramuliformis Brady

P1. 5, figs. 5, 6

Aschemonella ramuliformis Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, p. 273, pl. 27, figs. 12-15. Gooday, 1983 figs. 11, 12. Dark, irregular ramifying tube with multiple apertures. Wall thin, comprised of fine quartz grains with occasional larger grains over a black organic lining. Rare. Traditionally listed with Foraminifera, Gooday and Nott (1982) have shown that this species is actually a Xenophyophore.

Hormosina globulifera Brady

P1. 5, fig. 7

Hormosina globulifera Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 60, pl. 4, figs. 4, 5. Mendelson, 1982 pl. 4.

Test large, yellow in color, with globular chambers, rapidly increasing in size.

Hormosina sp.

P1. 5, fig. 8

Small, reddish-brown in color, usually 2 or 3 chambers.

Hormosinella distans (Brady)

P1. 5, fig. 9

<u>Lituola (Reophax) distans</u> Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 50.

Reophax distans Brady. Barker, 1960 pl. 31, figs. 18, 19.

Test thin-shelled, most commonly broken into single chambers, colored brown. May incorporate larger quartz grains. Stschedrina (1969) designated R. distans the type species for Hormosinella. Saidova (1970) assigned this species as the genotype for Cadminus, which is considered a junior synonym herein.

Reophanus oviculus (Brady)

P1. 5, fig. 10

Hormosina ovicula Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 61, pl. 4, fig. 6.

Reophanus oviculus (Brady). Mendelson, 1981 pl. 5.

Test slender, finely agglutinated, several grains thick at apertural neck, yellowish to brown in color. Placed in Reophanus Saidova, 1970 by Saidova (1975), which supposedly differs from Reophax in possessing extended apertural ends of chambers which are embraced by successive chambers. Mendelson (1981) upheld the generic designation Reophanus, maintaining that the chambers do not embrace, but it differs from Hormosina in possessing a long apertural neck.

Subreophax adunca (Brady)

P1. 6, fig. 1, 2

Reophax adunca Brady, 1882 Proc. Roy. Soc. Edinburgh. vol. 11, no. 111, p. 715.

Subreophax adunca (Brady). Saidova, 1975 pl. 11, fig. 6.

Non-rectilinear flexible test with globular chambers. Wall brownish-grey in color. Saidova (1975) assigned this species as the genotype for Subreophax, which differs from Reophax in its sinuous test and compressed chambers. The generic designation was upheld by Loeblich and Tappan (1982).

Reophax agglutinatus Cushman

P1. 6, fig. 2. P1. 6, fig. 3

Reophax agglutinatus Cushman, 1913 U.S. Nat. Mus. Proc. vol. 44, p. 637, pl. 79, fig. 6.

Test large, containing 2-4 chambers, possessing a pelitic wall with agglutinated small planktonic foraminiferal tests.

Reophax bacillaris Brady

P1. 6, fig. 4

Reophax bacillaris Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 49 Cole, 1981 pl. 2, fig. 12.

Test large, gently curved, coarsely agglutinated, with sponge spicules. Found only at HEBBLE Shallow Site (4185 m depth). Placed in Pseudonodosinella by Saidova (1970).

Reophax bilocularis Flint

P1. 6, figs. 5, 7, 8

Reophax bilocularis Flint, 1899 U.S. Nat. Mus. Ann. Rep., 1897, pt. 1, p. 273, pl. 17, fig. 2. Hofker, 1972 pl. 9, figs. 3, 4. Test large, comprised of small planktonic foraminiferal tests and occasional sand grains. Aperture on a produced neck built of minute clear-white quartz fragments.

Reophax dentaliniformis Brady

P1. 6, fig. 9

Lituola (Reophax) dentaliniformis Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 49.

Reophax dentaliniformis Brady. Barker, 1960 pl. 30, fig. 21. Slender, elongate test comprised of clear quartz grains. Chambers globular, aperture small, on a produced neck.

Reophax dentaliniformis Brady var. 1

P1. 6, fig. 10

Differs from typical R. dentaliniformis in its more straight-sided test and wider aperture. Not found at the HEBBLE Shallow Site.

Reophax dentaliniformis Brady var. 2

P1. 6, figs. 6, 11

Differs from R. dentaliniformis var. 1 in utilizing small planktonic foraminifera in the construction of its test.

Reophax gracilis (Kiaer)

Modulina gracilis Kiaer, 1900 Norweg. Fish Mar. Invest., Rept.,

Kristiania vol. 1, no. 7, p. 24, text-figs. 1, 2. Reophax gracilis (Kiaer). Cole, 1981 pl. 16, fig. 25. Rare, very delicate, fine grained species, yellow in color.

Reophax nodulosa Brady

P1. 6, fig. 12

Reophax nodulosa Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 52, pl. 4, figs. 7,8. Barker, 1960 pl. 31, figs. 6-9.

Robust brownish test with finely agglutinated, finely finished wall. Type species for Pseudonodosinella Saidova (1970), which differs from Reophax in having 3-4 costae at base of chamber interior. Not found at the HEBBLE Shallow Site.

Reophax pilulifer Brady

P1. 7, figs. 1, 2

Reophax pilulifer Brady, 1884 Rep. Voy. Challenger. Zoology, vol. 9, p. 292-293, pl. 30, figs. 18-20. Barker, 1960 pl. 30, figs. 18-20. Test robust, yellow in color, comprised of coarse sand grains with occasional small planktonic foraminifera and pelitic material.

Reophax scorpiurus Montfort

P1. 7, fig. 3

Reophax scorpiurus Montfort, 1808 Conch. Syst., vol. 1, p. 330 83me genre. Barker, 1960 pl. 30, fig. 16. Test clear-white, coarsely arenaceous with few chambers.

Reophax sp. 1
P1. 7, figs. 4, 5

Test increases rapidly in size, chambers flask-shaped, comprised of a single layer of clear-white quartz grains, usually found as monolocular fragments.

Reophax sp. 2 Pl. 7, fig. 6

Test minute, reddish-brown in color, coarsely agglutinated. Differs from Hormosina sp. in possessing less embracing chambers.

?Hormosina guttifer (Brady)

P1. 7. fig. 7

Lituola (Reophax) guttifer Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 49.

Reophax guttifer (Brady). Barker, 1960 pl. 31, figs. 10-15.

Brownish test with overlapping pyriform chambers. Test wall made of sand grains of various size, typically one layer thick. Saidova (1970) placed this species in Reophanus.

Family LITUOLIDAE de Blainville, 1825

Haplophragmoides sp.

P1. 7, fig. 8

Minute planispiral, finely agglutinated test with 4 1/2 chambers in last whorl, brown in color.

Adercotryma glomerata (Brady)

P1. 7, figs. 9, 10

<u>Lituola glomerata</u> Brady, 1878 Ann. Mag. Nat. Hist. ser. 5, vol. 1, p. 433, pl. 20, fig. 1.

Adercotryma glomerata (Brady). Barker, 1960 pl. 34, figs. 15-18.

Small, brownish test with high chambers.

Cribrostomoides rotulatum (Brady)

<u>Lituola (Haplophragmium) rotulatum</u> Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 50.

<u>Cribrostomoides rotulatum</u> (Brady). Barker, 1960 pl. 34, figs. 5, 6.

Test coarsely agglutinated, with deeply excavated umbilious. Pl. 8, figs.

1a, b.

Cribrostomoides scitulum (Brady)

P1. 8, figs. 2a, b

Lituola (Haplophragmium) scitulum Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 50

Cribrostomoides scitulum (Brady). Poag, 1981 pl. 11-12, fig. 4.

Smaller, more evolute and more numerous chambers than <u>C. subglobosum</u>. Test finely arenaceous, brownish-yellow, with open umbilicus.

Cribrostomoides subglobosum (G.O. Sars)

P1. 8, figs. 3a, b

<u>Lituola subglobosa</u> G.O. Sars, 1871 For. Vid. Selsk. Christiana p. 253. <u>Cribrostomoides subglobosum</u> (G.O. Sars). Poag, 1981 pl. 11-12, fig. 2. A robust species with 6 chambers in the last whorl.

Recurvoides contortus Earland

P1. 8, fig. 5a, b

Recurvoides contortus Earland, 1934 Discovery Reports, Cambr. Univ. Press, vol. 10, p. 91, pl. 10, figs. 7-19. Resig, 1981 pl. 10, fig. 12. The type species for Recurvoides, test light brown in color, early convolutions are inclined 90* to later convolutions, with about 7 chambers in the first plane, and 2 or 3 in the second. Common.

Recurvoides contortus Earland var.

P1. 8, fig. 6

Differs from the typical in its greenish-yellow color and more finely agglutinated test with more cement.

Recurvoides turbinatus (Brady)

P1. 8, fig. 4

Haplophragmium turbinatum Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 50. Cole, 1981 pl. 6, figs. 7, 8.

Test brown in color, with open umbilicus. Later convolution inclined only slightly to previous one. More finely agglutinated than R. contortus.

Cystammina pauciloculata (Brady)

P1. 9, fig. 1

Trochammina pauciloculata Brady, 1879 Quart. Jour. Micr. Sci. vol. 19, p. 58, pl. 5, figs. 13, 14.

Cystammina pauciloculata (Brady). Ingle et al., 1980 pl. 9, fig. 11.

Test brown in color, rare. Placed in the family Lituolidea by Brönnimann et al. (1983).

Cystamminella galeata (Brady)

P1. 9, fig. 2a, b

Trochammina galeata Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 52. Cystamminella galeata (Brady). Lukina, 1980 fig. 47.

Wall finely agglutinated, finely finished, dark brown. Designated by Lukina (1980) as the type species for <u>Cystamminella</u>, which differs from <u>Cystammina</u> in possessing a planispiral involute test with a peripheral aperture. Not found at the HEBBLE Shallow Site.

Cystamminella ringens (Brady)

P1. 9, fig. 3a, b

Trochammina ringens Brady, 1979 Quart. Jour. Micr. Sci., vol. 19, p. 57, pl. 5, fig. 12a,b.

Cystamminella ringens (Brady). Lukina, 1980 fig. 48.

LAKANA LAMAN LAMANAK KACAK ANDA LAMANAK

Color brown, very smoothly finished test, 3 chambers in the last whorl, aperture an areal slit. Rare.

Ammobaculites agglutinans (d'Orbigny)

P1. 9, fig. 4

Spirolina agglutinans d'Orbigny, 1846 Foram. Foss. Vienne, p. 137, pl. 7, figs. 10-12.

Ammobaculites agglutinans (d'Orbigny). Resig, 1981 pl. 9, fig. 16. Robust, coarsely agglutinated test, pooly cemented. Test larger and thicker than A. americanus, with wider uniserial part. Found only at HEBBLE Shallow site (4185m).

<u>Ammobaculites</u> cf. <u>americanus</u> Cushman

P1. 9, fig. 5

Ammobaculites americanus Cushman, 1910. U.S. Nat. Mus. Bull. no. 71, pp. 117-118, text figs. 184, 185.

Test thin, coarsely agglutinated, with dark mafic grains, spiral part in 2 whorls, uniserial part usually absent, delicate and thin. Differs from the typical in the more slender uniserial part. Abundant.

Ammomarginulina foliacea (Brady)

P1. 9, fig. 6

Lituola (Haplophragmium) foliacea Brady, 1881 Quart. Jour. Micr. Sci. London, vol. 21, p. 50.

Ammomarginulina foliacea (Brady). Cole, 1981 pl. 5, fig. 4.

Test finely agglutinated, very thin, almost black in color, with many biotite flakes and mafic grains. Uniserial part broad, with arched septa. Spiral part in 1 whorl, broader than uniserial part.

Family LOFTUSIIDAE Brady, 1884

Cyclammina cancellata Brady

P1. 10, figs la, b, 2, 3

Cyclammina cancellata Brady 1979 Quart. Jour. Micr. Sci., vol. 19, p. 62. Biconvex, compressed planispiral test with approx. 13 chambers in the last whorl. Reddish or yellowish brown in color and typically poorly preserved. Both megalosphaeric and microsphaeric forms present.

Family TEXTULARIIDAE Ehrenberg, 1838

Textularia cf. flintii Cushman

P1. 9, fig. 7

<u>Textularia flintii</u> Cushman, 1911 U.S. Nat. Mus. Bull. 72, vol. 2, p. 21, figs. 36a,b.

Very robust fine-grained test with wide interiomarginal aperture, grey in color. Rare.

Family TROCHAMMINIDAE Schwager, 1877

Trochammina globigeriniformis (Parker and Jones)

P1. 10, fig. 5a, b

<u>Lituola nautiloidea</u> Lamarck var. <u>globigeriniformis</u> Parker and Jones, 1865 Roy. Soc. London Philos. Trans. vol. 155, p. 407, pl. 15, figs. 46, 47.

Trochammina globigeriniformis (Parker and Jones), Poag, 1981 pl. 13-14, fig. 1.

Robust species with four chambers visible on the umbilical side.

Trochammina cf. macrescens Brady

Trochammina macrescens Brady, 1870 Ann. Mag. Nat. Hist. ser. 4, vol. 6, p. 51, pl. 11, figs. 5 a-c.

Rare species, compressed, with 2 whorls on spiral side, brown in color.

Trochammina pygmaea Höglund

P1. 10, fig. 7

Trochammina globigeriniformis (Parker et Jones) var. pygmaea Höglund, 1947 p. 200, text-fig. 182, pl. 17, fig. 3.

Test smaller, yellowish in color, with fewer chambers in last whorl than T. globigeriniformis. Finely agglutinated with many mafic grains.

Trochammina soldanii Earland

Pl. 11, fig. 4a, b

Trochammina soldanii Earland, 1936 Discovery Reports vol. 8, p. 38, pl. 1, figs. 32-34.

Robust, coarsely agglutinated, yellowish test with earlier whorls sometimes darker in color. Five chambers are visible on the ventral side. Aperture interiomarginal surrounded by a thin rim.

Portatrochammina eltaninae Echols

P1. 10, figs. 4, 6a, b

Portatrochammina eltaninae Echols, 1971 Antarctic Res. ser. 15, p. 148, pl. 8, fig. 1, 2.

Test attached or free, brown in color, with 5 chambers in the last whorl.

?Conotrochammina bullata (Höglund)

Pl. 11, figs. 1, 2, 3

Trochamminella bullata Höglund, 1947 pp. 213-214, pl. 17, fig. 5. Conotrochammina bullata (Höglund). Echols, 1971 pl. 5, fig. 11, 12.

Test small, conical, initial chambers brownish-red in color, 4 to a whorl, latter chambers lighter in color or white, 3 to a whorl. Aperture umbilical. Brönnimann et al. (1983) consider Conotrochammina nomen dubium.

Family VULVULINIDAE Berthelin, 1880

Eggerella bradyi (Cushman)

P1. 11, fig. 5

Verneuilina bradyi Cushman, 1911 U.S. Nat. Mus. Bull. 71, pt. 2, p. 54, test fig. 87a, b. pl. 6, fig. 4.

Eggerella bradyi (Cushman). Barker, 1960 pl. 47, 4-7.

Robust, very fine-grained, greyish-white in color.

Eggerella propinqua (Brady)

P1. 11, fig. 6

Verneuilina propinqua Brady, 1884 Rep. Voy. Challenger, Zool. vol. 9, p. 387, pl. 47, figs. 8-12.

Eggerella propinqua (Brady). Barker, 1960 pl. 47, fig. 8-12.

Robust, coarse-grained with some dark mafic grains, brown in color.

Karreriella apicularis (Cushman)

P1. 11, fig. 7.

Gaudryina apicularis Cushman, 1911 U.S. Nat. Mus. Bull. 71, pt. 2, p. 69, figs. 110a,b.

Karreriella apicularis (Cushman). Poag, 1981 pl. 15-16, fig. 5.

Test minute, dark brown in color, with twisted biserial part.

Bibliography

- Barker, R.W., 1960 Taxonomic Notes on the species figured by H.B. Brady in his report on the foraminifera collected by H.M.S. Challenger, during the years 1873-1876. S.E.P.M. Spec. Pub. 9, Tulsa Okla.
- Brady, H.B., 1884 Report on the Foraminifera collected by H.M.S. Challenger, during the years 1873-1876. Rep. Sci. Results Voyage H.M.S. Challenger, Zool. 9.
- Brönnimann, P., Zaninetti, L., and Whittaker, J.E., 1983 On the classification of the Trochamminacea (Foraminiferida). Jour. Foram. Res. 13 (3), pp. 202-218.
- Cole, F.E., 1981 Taxonomic notes on the bathyal zone benthonic foraminiferal species off northeast Newfoundland. Bedford Inst. Oceanogr. Rep. BI-R-81-7.
- Cushman, J.A., 1918 The Foraminifera of the Atlantic Ocean, Part 1. Astrorhizidae. U.S. Nat. Mus. Bull. 104 (1).
- Cushman, J.A., 1920 The Foraminifera of the Atlantic Ocean, Part 2. Lituolidae. U.S. Nat. Mus. Bull. 104 (2).
- Cushman, J.A., 1922 The Foraminifera of the Atlantic Ocean, Part 3. Textulariidae. U.S. Nat. Mus. Bull. 104 (3).
- Earland, A., 1933 Foraminifera Part II, South Georgia. Discovery Rep. 7.
- Earland, A., 1934 Foraminifera Part III, The Falklands sector of the South Atlantic (Excluding South Georgia) Ibidem 10.
- Earland, A., 1936 Foraminifera Part IV. Additional records from the Weddell Sea sector from material obtained by the S.Y. 'Scotia'. Ibidem 10.
- Echols, R.J., 1971 Distribution of Foraminifera in sediments of the Scotia Sea area, Antarctic Waters. in: Reid, J.L. (ed.) Antarctic Oceanology 1. Antarctic Res. ser. 15, Washington. pp. 93-168.
- Ellis, B.F., and Messina, A., 1940 Catalogue of Foraminifera. American Mus. Nat. Hist., New York. (Supplements, Post-1940).
- Goes, A., 1894 A synopsis of the Arctic and Scandinavian recent marine foraminifera hitherto discovered. P.A. Norstedt & Soner, Stockholm.

- Gooday, A.J., 1983 Primative Foraminifera and Xenophyophorea in IOS epibenthic sledge samples from the Northeast Atlantic. Inst. Ocean. Sciences Report 153
- Gooday, A.J., and Nott, J.A., 1982 Intracellular barite crystals in two Xenophyophores, <u>Aschemonella ramuliformis</u> and <u>Galatheammina sp.</u> (Protista, Rhizopoda) with comments on the taxonomy of <u>A. ramuliformis</u> Jour. Mar. Biol. Assoc. U.K. 62 pp. 595-605.
- Höglund, H., 1947 Foraminifera in the Gullmar Fjord and the Skagerak. Zool. Bidrag Fran Uppsala, Bd. 26
- Hollister, C.D., Nowell, R.M., and Smith, J.D., 1980 Third annual report of the High Energy Benthic Boundary Layer Experiment. W.H.O.I. Tech. Rep. WHOI-80-32.
- Hessler, R.R., and Jumars, P.A., 1974 Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res. 21, pp. 185-209.
- Hofker, J., 1972 Primitive agglutinated foraminifera. E.J. Brill, Leiden.
- Hofker, J., 1976 Further studies on Caribbean foraminifera. Studies on the Fauna of Curacao and other Carribean Islands: no. 162.
- Ingle, J.C., Keller, G, and Kolpack, R.L., 1980 Benthic foraminiferal biofacies, sediments and water masses of the southern Peru-Chile Trench area, southeastern Pacific Ocean. Micropaleo. 26, (2), pp. 113-150.
- Loeblich, A.R., and Tappan, H., 1964 Protista 2, Sarcodina chiefly "Thecamoebians" and Foraminiferida. in: R.C. Moore (editor), Treatise on invertebrate paleontology, Part C, vols. 1 and 2. G.S.A. and Univ. Kansas Press, Lawrence, Kansas
- Loeblich, A.R., and Tappan, H., 1982a Granuretulosa. <u>in</u>: Parker, S.P. (ed.) 1982 Synopsis and classification of living organisms. vol. 1. McGraw-Hill, New York.

" CHANGE " LYMPINE, INDICATED THE PARKER! STANDING

- Loeblich, A.R., and Tappan, H., 1982b A revision of mid-Cretaceous textularian formanifera from Texas. Jour. Micropal. 1, pp. 55-69.
- Loeblich, A.R., and Tappan, H., 1983c Classification of Foraminifera. in: Broadhead, T.W., (ed.) 1982 Foraminifera Notes for a short course organized by M.A. Buzas and B.K. Sen Gupta. Univ. Tenn. Dept. Geol. Sc. Studies in Geol. 6.

- Lukina, T.G., 1969 O nekotorykh izmeneniyakh v sisteme semeystva Saccamminidae (Foraminifera). Vopr. Mikropal. 11, pp. 1445-1450.
- Lukina, T.G., 1980 Glubokovodnye foraminifery tsentralnoy chasti Tikhogo Okeana. Izdat. "Nauka", Lenningrad.
- Mendelson, C.V., 1982 Surface texture and wall structure of some recent species of agglutinated foraminifera (Textulariina). Jour. Paleo. pp. 295-312.
- Milam, R.W., and Anderson, J.B., 1981 Distribution and ecology of recent benthonic foraminifera of the Adlie-George V continental shelf and slope, Antartica. Marine Micropaleo. 6, pp. 297-325.
- Poag, C.W., 1981 Ecologic Atlas of Benthic Foraminifera of the Gulf of Mexico. Marine Sciences International, Woods Hole, Ma.
- Resig, J.M., 1981 Biogeography of benthic foraminifera of the northern Nazca plate and adjacent continental margin. G.S.A. Mem. 154.
- Saidova, Kh.M., 1975 Bentosnye foraminifery Tikhogo Okeana. Akad. Nauk SSSR, Inst. Okean. im. P.P. Shirshova. Moscow.
- Saidova, Kh.M., 1981 O sovremennom sostoyanim sistemy nadvidovykh taksonov Kainozoiskikh bentosnykh foraminifer. Akad. Nauk SSSR, Inst. Okean. im. P.P. Shirshova. Moscow.
- Stschedrina, Z.G., 1969 O nekotorykh izmeneniyakh v sisteme semeystva Astrorhizidae i Reophacidae. Vopr. Mikropal. 11, pp. 157-170.
- Tendal, O.S., and Hessler, R.R., 1977 An introduction to the biology and systematics of Komokiacea (Textulariina, Foraminiferida). Galathea Rep. 14, pp. 165-194.
- Todd, R., and Low, D., 1981 Marine flora and fauna of the northeastern United States. Protozoa: Sarcodina: Benthic Foraminifera. NOAA Tech. Rep. NMFS Circular 439.

Plates

Plate 1.

Fig. 1.	?Astrammina sphaerica Heron-Allen and Earland var	. X	40
Fig. 2.	Rhabdammina cf. abyssorum Carpenter	X	50
Fig. 3.	Rhabdammina discreta Brady	X	85
Fig. 4.	Rhabdammina linearis Brady	X	40
Fig. 5.	Rhizammina cf. algaeformis Brady	X	40
Fig. 6.	Rhizammina indivisa Brady	X	40
Fig. 7.	Bathysiphon cf. filiformis M. Sars	X	35
Fig. 8.	Bathysiphon cf. rufescens Cushman	X	35

Plate 2

Fig. 1.	<u>Marsipella cylindrica</u> Brady. Abraded specimen showing inner lining	X 200
Fig. 2.	Hyperammina cylindrica Parr	X 50
Fig. 3.	Hyperammina elongata Brady	X 50
Fig. 4.	Hyperammina friabilis Brady	X 25
F1g. 5.	Hyperammina cf. subnodosa Brady	X 50
Fig. 6.	Hyperammina sp.	X 75
Fig. 7.	Saccorhiza ramosa (Brady)	X 45
Figs. 8, 9.	?Saccorhiza sp.	X 50
Fig. 10.	Botellina labrynthica Brady	X 50

Fig. 1.	<u>Psammosphaera</u> cf. <u>fusca</u> Schultze	X 85
Fig. 2.	<u>Psammosphaera</u> cf. <u>fusca</u> Schultze	X 100
Fig. 3.	Psammosphaera parva Flint	X 100
Fig. 4.	<u>Psammosphaera</u> sp.	X 170
Fig. 5.	<u>Psammosphaera</u> sp. Specimen with agglutinated planktonic foraminifer and <u>P. cf. fusca</u> test.	X 100
Fig. 6.	Psammosphaera testacea (Flint)	X 100
Fig. 7.	Saccammina sphaerica G.O. Sars	X 200
Fig. 8.	Saccammina tubulata Rhumbler	X 100
Fig. 9.	Thurammina papillata Brady	X 100

Fig. 1.	Septuma ocotillo Tendal and Hessler	X 25
Fig. 2.	Lana reticulata Tendal and Hessler	X 25
Fig. 3.	Septuma sp.	X 25
Fig. 4.	Septuma sp.	X 75
Figs. 5, 6.	Lana sp.	X 25

Fig. 1.	Glomospira charoides (Jones and Parker)	X 250
Fig. 2.	Glomospira gordialis (Jones and Parker)	X 375
Fig. 3.	Aschemonella scabra Brady	X 25
Fig. 4.	Aschemonella scabra Brady	X 50
Fig. 5, 6.	Aschemonella ramuliformis Brady	X 50
Fig. 7.	Hormosina globulifera Brady	X 60
Fig. 8.	Hormosina sp.	X 120
Fig. 9.	Hormosinella distans (Brady)	X 75
Fig. 10.	Reophanus oviculus (Brady)	X 100

Fig. 1,	- Subreophax adunca (Brady)	X 80
Fig. 2,	Subreophax adunca (Brady)	X 50
Fig. 3.	Reophax agglutinatus Cushman	X 25
Fig. 4.	Reophax bacillaris Brady	X 50
Fig. 5.	Reophax bilocularis Flint	X 50
Fig. 6.	Reophax dentaliniformis Brady var. 2	X 25
Fig. 7.	Reophax bilocularis Flint	X 25
Fig. 8.	Reophax bilocularis Flint	X 25
Fig. 9.	Reophax dentaliniformis Brady	X 100
Fig. 10.	Reophax dentaliniformis Brady var. 1	X 80
Fig. 11.	Reophax dentaliniformis Brady var. 2	X 100
Fig. 12.	Reophax nodulosa Brady	X 75

Fig. 1.	Reophax pilulifer Brady	X 50
Fig. 2.	Reophax pilulifer Brady (specimen with planktonic foraminifera incorporated into the test)	X 60
Fig. 3.	Reophax scorpiurus Montfort	X 70
Fig. 4.	Reophax sp. 1	X 75
Fig. 5.	Reophax sp. 1	X 85
Fig. 6.	Reophax sp. 2	X 250
Fig. 7.	?Hormosina guttifer (Brady)	X 100
Fig. 8.	Haplophragmoides sp.	X 250
Figs. 9, 10.	Adercotryma glomerata (Brady)	X 250

Figs. la, b.	Cribrostomoides rotulatum (Brady)	X 80
Figs. 2a, b.	Cribrostomoides scitulum (Brady)	X 80
Figs. 3a, b.	Cribrostomoides subglobosum (G.O. Sars)	X 80
Fig. 4.	Recurvoides turbinatus (Brady)	X 75
Figs. 5a, b.	Recurvoides contortus Earland	X 80
Fig. 6.	Recurvoides contortus Earland var.	X 160

Fig. 1.	Cystammina pauciloculata (Brady)	X 160
Fig. 2a, b.	Cystamminella galeata (Brady)	X 120
Figs. 3a, b.	Cystamminella ringens (Brady)	x 100
Fig. 4.	Ammobaculites agglutinans (d'Orbigny)	X 50
Fig. 5.	Ammobaculites cf. americanus Cushman	X 75
Fig. 6.	Ammomarginulina foliacea (Brady) -	X 125
Fia. 7.	Textularia cf. flintii Cushman	X 75

Figs. la, b.	Cyclammina cancellata Brady	X 120
Figs. 2, 3.	Cyclammina cancellata Brady. Contact X-radiograph images of microsphaeric and megalosphaeric specimens	X 100
Fig. 4.	Portatrochammina eltaninae Echols	X 250
Figs. 5a, b.	Trochammina globigeriniformis (Parker and Jones)	X 120
Figs. 6a. b.	Portatrochammina eltaninae Echols	X 200
Fig. 7.	Trochammina pygmaea Höglund	X 100

Fig. 1.	?Conotrochammina bullata Höglund	X 200
Fig. 2.	?Conotrochammina bullata Höglund Spiral side.	X 150
Fig. 3.	?Conotrochammina bullata Höglund Umbilical side.	X 150
Fig. 4a, b.	Trochammina soldanii Earland	X 100
Fig. 5.	Eggerella bradyi (Cushman)	X 200
Fig. 6.	Eggerella propinqua (Brady)	X 75
Fig. 7.	Karreriella apicularis (Cushman)	X 100
Fig. 8.	Placopsilinella aurantica Earland	X 250

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE
AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED JUNE 1983)

 Deputy Under Secretary of Defense (Research and Advanced Technology)
 Military Assistant for Environmental Science Room 3D129
 Washington, DC 20301

> Office of Naval Research 800 North Quincy Street Arlington, Va 22217

- 3 ATTN: Code 483
- 1 ATTN: Code 420C
- 2 ATTN: 102B

Commanding Officer
Naval Research Laboratory
Washington, DC 20375

- 6 ATTN: Library Code 2627
- 1 ATTN: Library Code 2620, Mr. Peter Imhof
- 12 Defense Technical Information Center Cameron Station Alexandria, VA 22314 ATTN: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522

- 1 ATTN: Code 8100 1 ATTN: Code 6000
- 1 ATTN: Code 3300
- 1 NODC/NOAA
 Code D781
 Wisconsin Avenue, N.W.
 Washington, DC 20235

END

FILMED

11-83

DTA