

ALLOY 6 A MATTER OF TIME

Authors:

Luca Padalino Francesca Pia Panaccione Francesco Santambrogio

To understand how Alloy 5 deals with dynamic modeling

To understand which are the **limitations** of the **dynamic modeling** in Alloy 5 and why Alloy needed a **new version**

To understand which are the **new features** introduced in **Alloy 6**

STATIC

VS

DYNAMIC

STATIC MODELSThe family example

STATIC

Represents something that does not change over time

Allows to describe a legal state of a dynamic system

```
abstract sig Person {
   father: lone Man,
   mother: lone Woman
sig Man extends Person {
   wife: lone Woman
sig Woman extends Person {
   husband: lone Man
```

STATIC MODELS

Instances

STATIC

Represents something that does not change over time

Allows to describe a legal state of a dynamic system

STATIC MODEL INSTANCES

```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {}
```



```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {John, Sarah}
```

DYNAMIC MODELSState transitions

DYNAMIC

Represents something changing over time

Allows to describe possible transitions between states of the system

```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {}
```



```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {John, Sarah}
```

DYNAMIC MODELSUntil Alloy 6

Until Alloy 6: no predefined notion of time and of state transition

BUT two ways to model dynamic aspects of a system:

By placing an **ordering** on some signatures

2 By introducing a **Time signature** expressing time

DYNAMIC MODELSOrdering

By placing an **ordering** on some signatures


```
open util/ordering[S]
sig S{}
```

Creates a **single linear ordering** over signature S

- There are multiple "S" atoms representing the same physical element but at different points in time
- ➤ It is like creating a **finite state machine** on atoms of "S"

DYNAMIC MODELS

Traces

TRACE (Alloy 5): a fact that describes how the system will evolve by constraining "valid models" to ones where the system evolves properly


```
open util/ordering[S] as ord
...
fact traces {
    ord/first=S1
    all s: ord-ord/last |
    let s' = s.next |
    // general operations
    op1[s, s'] or ... or opN[s, s']
}
```

DYNAMIC MODELSOrdering limitations

The ordering method is really **hard to use** when we have **multiple** signatures that are changing or multiple properties that can change:

- > We should place the order on each signature that can change over time
- → the code is not optimized.

...WE CAN DO BETTER!

DYNAMIC MODELSUntil Alloy 6

Until Alloy 6: no predefined notion of time and of state transition

BUT two ways to model dynamic aspects of a system:

By placing an **ordering** on some signatures

2 By introducing a **Time signature** expressing time

DYNAMIC MODELS

Time signature

by introducing a Time signature expressing time

Creates a **Time signature** that internally uses the ordering module

> The linear ordering is placed on Time

> We have to add a time component to each relation that changes over time

DYNAMIC MODELSThe family example

DYNAMIC

Represents something changing over time

Allows to describe possible transitions between states of the system

```
sig Time {}
abstract sig Person {
   father: Man
   mother: Woman
   alive: set Time
sig Man extends Person {
   wife: Woman lone -> Time
sig Woman extends Person {
   husband: Man lone -> Time
```

DYNAMIC MODELSThe family example

If the **relation** that changes over time is **BOOLEAN**:

```
sig Person {
   alive: set Time
}

times where the field is true
```


DYNAMIC MODELSThe family example

If the **relation** that changes over time is **ARBITRARY**:

DYNAMIC MODELS Limitations

There are **some limitations** to what we can model in a dynamic system:

- Import a package and try to emulate time without dealing with a real notion of time
- Alloy cannot test that some property is guaranteed to happen in infinite time (liveness)

...WE CAN DO BETTER!

ALLOY 6 Introduction

Alloy 6: there is an implicit, built-in notion of (discrete) time

1 Linear temporal logic

4 Time horizon

2 Mutable signatures and fields

5 New visualizer

3 Temporal operators

6 Concurrency

LINEAR TEMPORAL LOGIC (LTL) Definition

LINEAR TEMPORAL LOGIC (LTL): «an infinite sequence of states where each point in time has a unique successor, based on a linear-time perspective»

Trace

Instance = TRACE: infinite sequence of states

LASSO: a sequence of a finite number of states that loops back to a former state

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

2 Mutable signatures and fields

3 Temporal operators

Time horizon

5 New visualizer

6 Concurrency

MUATBLE SIGNATURES AND FIELDS Var keyword

VAR

- ➤ A signature or field proceeded by **var** is said to be **mutable**
- ➤ A signature or field **not** proceeded by **var** is said to be **static** and assumed to be **constant** over time

```
enum Liveness {Alive, Dead, Unborn}
abstract sig Person {
   father: lone Man
   mother: lone Woman
  var liveness: Liveness
sig Man extends Person {
  var wife: lone Woman
sig Woman extends Person {
   var husband: lone Man
```

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

2 Mutable signatures and fields

3 Temporal operators

Time horizon

5 New visualizer

6 Concurrency

TEMPORAL OPERATORSFuture and Past operators

FUTURE	PAST
ALWAYS	HISTORICALLY
EVENTUALLY	ONCE
AFTER	BEFORE
UNTIL	SINCE
RELEASES	TRIGGERERD
• •	(NO DUAL)

...FOR MORE INFO: (link)

Flipped Classroom

Video on Temporal Operators

Link Video

10 min.

Quiz

1

Dynamic modeling in Alloy 5 https://forms.office.com/e/9bjmhZTQ0j 5 min.

DYNAMIC MODELS

Quiz solutions

1.	What is a dynamic model?		
	A model that represents something static.		
	A model that represents something changing over time.		
	A model that has a first-class notion of time.		
2.	How is time emulated in Alloy 5?		
	By using utility macros.		
	By placing an ordering on some signature.		
	By encoding it in the signature fields.		
3.	What is a trace in Alloy 5?		
	A fact that describes how the system will evolve.		
	A module that helps to model time.		
	A predicate that relates each state to the next state in the sequence.		
4.	hat is the purpose of a time signature?		
	To represent complex specifications with multiple changing entities or properties.		
	To represent simple boolean properties that change over time.		
	To encode arbitrary properties with multirelations.		

Quiz

2

LTL and Mutable Signatures and Fields

https://forms.office.com/e/G3MzQugLb5 5 min.

LTL & MUTABLE SIGNATURES AND FIELDS

Quiz solutions

1.	What does the 'var' keyword do in Alloy 6?	
		Specifies that a signature or field is constant over time
		Specifies that a signature or field is mutable
		Specifies that a signature or field is a trace
		Specifies that a signature or field is a lasso trace
2.	What	is a static signature or field in Alloy 6?
		A signature or field that is constant over time
		A signature or field that is a trace
		A signature or field that is a lasso trace
		A signature or field that is mutable
3.	What	is linear-time temporal logic used for in Alloy 6?
		Reasoning about future and past states along a trace
		Reasoning about constant values
		Reasoning about mutable values
		Reasoning about lasso traces

Quiz

3

Temporal Operators

https://forms.office.com/e/d5Himvahqs 10 min.

TEMPORAL OPERATORS

1.	What is the condition for the expression "F until G" to be true in state i?
	G is true in some state j ≥ i and F is true in every state k such that i ≤ k <
	☐ G is true in every state ≥ i up to and including a state k in which F is true
	□ F is true in state i and G is true in state i + 1
2.	What is the condition for the expression "F; G" to be true in state i?
	G is true in some state j ≥ i and F is true in every state k such that i ≤ k <
	☐ G is true in every state ≥ i up to and including a state k in which F is true
	□ F is true in state i and G is true in state i + 1
3.	What is the condition for the expression "always F" to be true in state i?
	☐ F is true in some state ≥ i
	☐ F is true in every state ≥ i
	☐ F is true in state i + 1
4.	What is the condition for the expression "eventually F" to be true in state i?
	☐ F is true in some state ≥ i
	☐ F is true in every state ≥ i
	☐ F is true in state i + 1

TEMPORAL OPERATORS

5.	What is the condition for the expression "after F" to be true in state i?
	☐ F is true in some state ≤ i
	☐ F is true in every state ≤ i
	☐ F is true in state i + 1
6.	What is the condition for the expression "before F" to be true in state i?
	☐ F is true in some state ≤ i
	F is true in every state ≤ i
	□ F is true in state i – 1
7.	What is the condition for the expression "historically F" to be true in state i?
	F is true in some state ≥ i
	F is true in every state ≤ i
	☐ F is true in state i + 1
8.	What is the condition for the expression "once F" to be true in state i?
	□ F is true in some state ≤ i
	F is true in every state ≤ i
	☐ F is true in state i + 1

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

2 Mutable signatures and fields

3 Temporal operators

Time horizon

5 New visualizer

6 Concurrency

TIME HORIZON Number of steps

TIME HORIZON: the possible number of transitions of lasso traces to explore

lefault) #steps = 10

for 10 steps

1 <= #steps <= N

for N steps

м.. N M <= #steps <= N

for M .. N steps

1...) 1 <= #steps

for 1 .. steps

TIME HORIZON Model-checking

TIME HORIZON: the possible number of transitions of lasso traces to explore

(M...N) M <= #steps <= N

BOUNDED MODEL-CHECKING

COMPLETE MODEL-CHECKING

Quiz

4

Time Horizon

https://forms.office.com/e/SXfQ5ByiNJ 5 min.

TIME HOIZON Quiz solutions

1.	What is	nat is the time horizon in Alloy used for?			
		To specify the upper bound on the number of transitions in a lasso trace			
		To specify the lower bound on the number of transitions in a lasso trace			
		To specify the exact number of transitions in a lasso trace			
		To specify the type signature names in plain scopes			
2.	What is a lasso trace?				
		An infinite and non-repeating sequence of transitions			
		A finite and non-repeating sequence of transitions			
		An infinite and periodic sequence of transitions			
		A finite and periodic sequence of transitions			
3. What is the purpose of the steps keyword in Alloy?		the purpose of the steps keyword in Alloy?			
		To specify the upper bound on the number of transitions in a lasso trace			
		To specify the lower bound on the number of transitions in a lasso trace			
		To specify the exact number of transitions in a lasso trace			
		To specify the type signature names in plain scopes			
4. What is the d		the difference between complete model-checking and bounded model checking?			
		Complete model-checking checks over all possible traces without bounding them upfront, while bounded model checking only checks a subset of possible traces with an upper bound on the number of transitions.			
		Complete model-checking checks only a subset of possible traces with an upper bound on the number of transitions, while bounded model checking checks over all possible traces without bounding them upfront.			
		Complete model-checking checks only the first and last states in a lasso trace, while bounded model checking checks all states in a lasso trace.			
		Complete model-checking and bounded model checking are the same thing.			

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

Time horizon

2 Mutable signatures and fields

5 New visualizer

3 Temporal operators

6 Concurrency

Introduction

NEW VISUALIZER

Trace, states, lasso

NEW VISUALIZERStep-pair

 \mathcal{B}

The visualizer shows a **step-pair**

New generating options

configuration

afterwards

Quiz

5

New Visualizer

https://forms.office.com/e/TWVpieWMCF 5 min.

 What does the visualizer show? 		
	All possible states of the system	
	The current state and the next state	
	All past states of the system.	
	The entire behavior of the system.	
What	is lasso in the visualizer?	
	A sequence of states that terminates.	
	A sequence of states that loops back to a previous state.	
	A sequence of states that terminates or loops back to a previous state.	
	A sequence of states that cannot be represented in the visualizer.	
What	does the "New Fork" option do?	
	Finds a new behavior trace from the existing configuration and initial state.	
	Finds a new initial state and behavior trace.	
	Fixes the present state and states before and finds a new next state.	
	Changes the immutable parts of the model and finds a new behavior trace.	
	What What	

3.	What is the purpose of the "New Init" option?
	To find a new behavior trace from the existing configuration and initial state.
	To change the immutable parts of the model and find a new behavior trace.
	To fix the immutable relations and find a new initial state and behavior trace.
	To fix the present state and states before and find a new next state.
4.	What happens when you select the "New Config" option?
	The visualizer finds a new initial state and behavior trace.
	The visualizer shows a popup message.
	The visualizer changes the immutable parts of the model and finds a new behavior trace.
5.	When does the visualizer show the old layout with a "New Instance" button?
	☐ When the model is entirely dynamic.
	☐ When the model is entirely static.
	■ When there are too many forks in the visualizer.
	When the model has too many states to fit in memory.

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

]

2 Mutable signatures and fields

5

3 Temporal operators

Concurrency

Time horizon

New visualizer

CONCURRENCYAn Alloy 6 application

CONCURRENCY: a property of a system in which multiple processes or threads can run simultaneously or appear to be running simultaneously.

Scenarios that deal with CONCURRENCY:

- distributed systems
- multi-threading/multi-tasking applications
- data migrations...

...EXAMPLE ON EXERCISE LECTURE

ALLOY 6Lesson summary

- Two ways to deal with dynamic modeling in Alloy 5:
 - Odering module
 - Time signature

To understand how Alloy 5 deals with dynamic modeling

- Limitations of dynamic modeling in Alloy 5:
 - > Cannot tell deadlocks
 - No liveness property
 - No built-in notion of time

To understand which are the **limitations** of the **dynamic modeling** in Alloy 5 and why Alloy needed a **new version**

- New features introduced in Alloy 6:
 - Linear temporal logic
 - Mutable signatures and fields
 - Temporal operators
 - > Time horizon
 - New visualizer
 - Concurrency

To understand which are the **new features** introduced in **Alloy 6**