Week 35: Ansatzes for fermions and bosons and second quantization

Morten Hjorth-Jensen¹

Department of Physics and Center for Computing in Science Education, University of Oslo, Norway¹

Week 35, August 25-29

© 1999-2025, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Week 35

- Topics to be covered
 - Thursday: Fermion and Boson state functions and computation of expectation values in first quantization, continuation from last week (see slides from last week)
 - Video of lecture at https://youtu.be/ND3nkwTq_w0
 - 3. Whiteboard notes at https: //github.com/ManyBodyPhysics/FYS4480/blob/master/ doc/HandwrittenNotes/2025/FYS4480August29.pdf
 - 4. Friday: Second quantization
- ► Lecture Material: These slides, slides from week 34 and Szabo and Ostlund chapters 1 and 2.
- Second exercise set

Definitions and second quantization

We introduce the time-independent operators a_{α}^{\dagger} and a_{α} which create and annihilate, respectively, a particle in the single-particle state φ_{α} . We define the fermion creation operator a_{α}^{\dagger}

$$a_{\alpha}^{\dagger}|0\rangle \equiv |\alpha\rangle,$$
 (1)

and

$$a_{\alpha}^{\dagger} | \alpha_{1} \dots \alpha_{n} \rangle_{AS} \equiv | \alpha \alpha_{1} \dots \alpha_{n} \rangle_{AS}$$
 (2)

Second quantization

In Eq. (1) the operator a_{α}^{\dagger} acts on the vacuum state $|0\rangle$, which does not contain any particles. Alternatively, we could define a closed-shell nucleus or atom as our new vacuum, but then we need to introduce the particle-hole formalism, see the discussion to come. In Eq. (2) a_{α}^{\dagger} acts on an antisymmetric n-particle state and creates an antisymmetric (n+1)-particle state, where the one-body state φ_{α} is occupied, under the condition that $\alpha \neq \alpha_1, \alpha_2, \ldots, \alpha_n$. It follows that we can express an antisymmetric state as the product of the creation operators acting on the vacuum state.

$$|\alpha_1 \dots \alpha_n\rangle_{\text{AS}} = a_{\alpha_1}^{\dagger} a_{\alpha_2}^{\dagger} \dots a_{\alpha_n}^{\dagger} |0\rangle$$
 (3)

Commutation rules

It is easy to derive the commutation and anticommutation rules for the fermionic creation operators a_{α}^{\dagger} . Using the antisymmetry of the states (3)

$$|\alpha_1 \dots \alpha_i \dots \alpha_k \dots \alpha_n\rangle_{AS} = -|\alpha_1 \dots \alpha_k \dots \alpha_i \dots \alpha_n\rangle_{AS}$$
 (4)

we obtain

$$a_{\alpha_i}^{\dagger} a_{\alpha_k}^{\dagger} = -a_{\alpha_k}^{\dagger} a_{\alpha_i}^{\dagger} \tag{5}$$

More on commutation rules

Using the Pauli principle

$$|\alpha_1 \dots \alpha_i \dots \alpha_i \dots \alpha_n\rangle_{AS} = 0$$
 (6)

it follows that

$$a_{\alpha_i}^{\dagger} a_{\alpha_i}^{\dagger} = 0.$$
 (7)

If we combine Eqs. (5) and (7), we obtain the well-known anti-commutation rule

$$a^{\dagger}_{\alpha}a^{\dagger}_{\beta} + a^{\dagger}_{\beta}a^{\dagger}_{\alpha} \equiv \{a^{\dagger}_{\alpha}, a^{\dagger}_{\beta}\} = 0$$
 (8)

Hermitian conjugate

The hermitian conjugate of a_{α}^{\dagger} is

$$a_{\alpha} = (a_{\alpha}^{\dagger})^{\dagger} \tag{9}$$

If we take the hermitian conjugate of Eq. (8), we arrive at

$$\{a_{\alpha}, a_{\beta}\} = 0 \tag{10}$$

Physical interpretation

What is the physical interpretation of the operator a_{α} and what is the effect of a_{α} on a given state $|\alpha_1\alpha_2\dots\alpha_n\rangle_{\rm AS}$? Consider the following matrix element

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | a_\alpha | \alpha_1' \alpha_2' \dots \alpha_m' \rangle$$
 (11)

where both sides are antisymmetric.

Two specific cases

We distinguish between two cases. The first (1) is when $\alpha \in \{\alpha_i\}$. Using the Pauli principle of Eq. (6) it follows

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | \mathbf{a}_{\alpha} = 0 \tag{12}$$

The second (2) case is when $\alpha \notin \{\alpha_i\}$. It follows that an hermitian conjugation

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | \mathbf{a}_{\alpha} = \langle \alpha \alpha_1 \alpha_2 \dots \alpha_n | \tag{13}$$

More derivations

Eq. (13) holds for case (1) since the lefthand side is zero due to the Pauli principle. We write Eq. (11) as

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | \mathbf{a}_{\alpha} | \alpha_1' \alpha_2' \dots \alpha_m' \rangle = \langle \alpha_1 \alpha_2 \dots \alpha_n | \alpha \alpha_1' \alpha_2' \dots \alpha_m' \rangle \quad (14)$$

Here we must have m = n + 1 if Eq. (14) has to be trivially different from zero.

Even and odd permutations

For the last case, the minus and plus signs apply when the sequence $\alpha, \alpha_1, \alpha_2, \ldots, \alpha_n$ and $\alpha'_1, \alpha'_2, \ldots, \alpha'_{n+1}$ are related to each other via even and odd permutations. If we assume that $\alpha \notin \{\alpha_i\}$ we obtain

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | \mathbf{a}_{\alpha} | \alpha_1' \alpha_2' \dots \alpha_{n+1}' \rangle = 0$$
 (15)

when $\alpha \in {\{\alpha'_i\}}$. If $\alpha \notin {\{\alpha'_i\}}$, we obtain

$$a_{\alpha} \underbrace{\left| \alpha_{1}^{\prime} \alpha_{2}^{\prime} \dots \alpha_{n+1}^{\prime} \right\rangle_{\neq \alpha}} = 0 \tag{16}$$

and in particular

$$a_{\alpha}|0\rangle = 0 \tag{17}$$

Even and odd permutations

If $\{\alpha\alpha_i\} = \{\alpha_i'\}$, performing the right permutations, the sequence $\alpha, \alpha_1, \alpha_2, \ldots, \alpha_n$ is identical with the sequence $\alpha_1', \alpha_2', \ldots, \alpha_{n+1}'$. This results in

$$\langle \alpha_1 \alpha_2 \dots \alpha_n | \mathbf{a}_{\alpha} | \alpha \alpha_1 \alpha_2 \dots \alpha_n \rangle = 1 \tag{18}$$

and thus

$$a_{\alpha}|\alpha\alpha_{1}\alpha_{2}\dots\alpha_{n}\rangle = |\alpha_{1}\alpha_{2}\dots\alpha_{n}\rangle \tag{19}$$

Annihilation operators

The action of the operator a_{α} from the left on a state vector is to to remove one particle in the state α . If the state vector does not contain the single-particle state α , the outcome of the operation is zero. The operator a_{α} is normally called for a destruction or annihilation operator.

The next step is to establish the commutator algebra of a_{α}^{\dagger} and a_{β} .

Action of anti-commutator

The action of the anti-commutator $\{a_{\alpha}^{\dagger},a_{\alpha}\}$ on a given *n*-particle state is

$$a_{\alpha}^{\dagger} a_{\alpha} \underbrace{|\alpha_{1} \alpha_{2} \dots \alpha_{n}\rangle}_{\neq \alpha} = 0$$

$$a_{\alpha} a_{\alpha}^{\dagger} \underbrace{|\alpha_{1} \alpha_{2} \dots \alpha_{n}\rangle}_{\neq \alpha} = a_{\alpha} \underbrace{|\alpha \alpha_{1} \alpha_{2} \dots \alpha_{n}\rangle}_{\neq \alpha} = \underbrace{|\alpha_{1} \alpha_{2} \dots \alpha_{n}\rangle}_{\neq \alpha}$$
(20)

if the single-particle state α is not contained in the state.

Anti-commutation rule for Fermions

If it is present we arrive at

$$a_{\alpha}^{\dagger} a_{\alpha} | \alpha_{1} \alpha_{2} \dots \alpha_{k} \alpha \alpha_{k+1} \dots \alpha_{n-1} \rangle = a_{\alpha}^{\dagger} a_{\alpha} (-1)^{k} | \alpha \alpha_{1} \alpha_{2} \dots \alpha_{n-1} \rangle$$

$$= (-1)^{k} | \alpha \alpha_{1} \alpha_{2} \dots \alpha_{n-1} \rangle = | \alpha_{1} \alpha_{2} \dots \alpha_{k} \alpha \alpha_{k+1} \dots \alpha_{n-1} \rangle$$

$$a_{\alpha} a_{\alpha}^{\dagger} | \alpha_{1} \alpha_{2} \dots \alpha_{k} \alpha \alpha_{k+1} \dots \alpha_{n-1} \rangle = 0$$
(21)

From Eqs. (20) and (21) we arrive at

$$\{a_{\alpha}^{\dagger}, a_{\alpha}\} = a_{\alpha}^{\dagger} a_{\alpha} + a_{\alpha} a_{\alpha}^{\dagger} = 1$$
 (22)

Three possible outcomes

The action of $\left\{a_{\alpha}^{\dagger}, a_{\beta}\right\}$, with $\alpha \neq \beta$ on a given state yields three possibilities. The first case is a state vector which contains both α and β , then either α or β and finally none of them. The first case results in

$$a_{\alpha}^{\dagger} a_{\beta} |\alpha \beta \alpha_{1} \alpha_{2} \dots \alpha_{n-2}\rangle = 0$$

$$a_{\beta} a_{\alpha}^{\dagger} |\alpha \beta \alpha_{1} \alpha_{2} \dots \alpha_{n-2}\rangle = 0$$
(23)

Second case

The second case gives

$$\begin{aligned}
a_{\alpha}^{\dagger} a_{\beta} | \beta \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n-1}}_{\neq \alpha} \rangle &= | \alpha \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n-1}}_{\neq \alpha} \rangle \\
a_{\beta} a_{\alpha}^{\dagger} | \beta \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n-1}}_{\neq \alpha} \rangle &= a_{\beta} | \alpha \beta \underbrace{\beta \alpha_{1} \alpha_{2} \dots \alpha_{n-1}}_{\neq \alpha} \rangle \\
&= - | \alpha \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n-1}}_{\neq \alpha} \rangle
\end{aligned} (24)$$

Third case

Finally if the state vector does not contain α and β

$$a_{\alpha}^{\dagger} a_{\beta} | \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n}}_{\neq \alpha, \beta} \rangle = 0$$

$$a_{\beta} a_{\alpha}^{\dagger} | \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n}}_{\neq \alpha, \beta} \rangle = a_{\beta} | \underbrace{\alpha_{1} \alpha_{2} \dots \alpha_{n}}_{\neq \alpha, \beta} \rangle = 0$$

$$(25)$$

For all three cases we have

$$\{a_{\alpha}^{\dagger},a_{\beta}\}=a_{\alpha}^{\dagger}a_{\beta}+a_{\beta}a_{\alpha}^{\dagger}=0,\quad \alpha\neq\beta$$
 (26)

Summarizing

We can summarize our findings in Eqs. (22) and (26) as

$$\{a_{\alpha}^{\dagger}, a_{\beta}\} = \delta_{\alpha\beta} \tag{27}$$

with $\delta_{\alpha\beta}$ is the Kroenecker δ -symbol.

Properties of creation and annihilation operators

The properties of the creation and annihilation operators can be summarized as (for fermions)

$$a_{\alpha}^{\dagger}|0\rangle \equiv |\alpha\rangle,$$

and

$$a_{\alpha}^{\dagger} | \alpha_1 \dots \alpha_n \rangle_{AS} \equiv | \alpha \alpha_1 \dots \alpha_n \rangle_{AS}.$$

from which follows

$$|\alpha_1 \dots \alpha_n\rangle_{\mathrm{AS}} = a_{\alpha_1}^{\dagger} a_{\alpha_2}^{\dagger} \dots a_{\alpha_n}^{\dagger} |0\rangle.$$

Hermitian conjugate or just adjoint

The hermitian conjugate has the following properties

$$a_{\alpha}=(a_{\alpha}^{\dagger})^{\dagger}.$$

Finally we found

$$a_{\alpha}\underbrace{|\alpha_1'\alpha_2'\dots\alpha_{n+1}'\rangle_{\neq\alpha}}=0,\quad \text{in particular }a_{\alpha}|0\rangle=0,$$

and

$$a_{\alpha}|\alpha\alpha_{1}\alpha_{2}\ldots\alpha_{n}\rangle=|\alpha_{1}\alpha_{2}\ldots\alpha_{n}\rangle,$$

and the corresponding commutator algebra

$$\{a_{\alpha}^{\dagger},a_{\beta}^{\dagger}\}=\{a_{\alpha},a_{\beta}\}=0 \hspace{0.5cm} \{a_{\alpha}^{\dagger},a_{\beta}\}=\delta_{\alpha\beta}.$$