

You can use AND gates to do the same logic -use the same logic table

(we wanted to try this instead since it's more explicit to describe in verilog)

Adder (1 bit full adder)

Α			Ceut	Ś
0	Ö	0	٥	Ó
Ö		ĭ	Ö	j
0	i i	Ö	Ó	ĺ
Ó	ľ	ť	١	Ó
Ĺ	Ó	Ö	0	ľ
ĺ	Ö	ľ	í	Ö
T	Í	ø	1	0
Ň	i	í	ı	1

Summer

input 8-bit bus from main 4 split into 4 z input adders

Conway's Game of Life Cell Module

Rules:

- 1) Any Cell W/2-3 neighbors Survive
- 2) Any dead cell w/ 3 neighbors is born
- 3) All other live cells die in the next generation, dead cells stay dead

LED DRIVER

note:

rows need to go low to light up the LED

