סטטיסטיקה 2

משימת פרויקט 5

מטרת משימה 5 בפרויקט היא לתרגל את הגישה הבייסיאנית והתמודדות עם נתונים חסרים.

במשימה זו ניתן להשתמש בכל פונקציה בפייתון. הפעילו שיקול דעת ובחרו בעצמכם כיצד להציג את התוצאות של הסעיפים השונים

חלק ראשון: הגישה הבייסיאנית

בחלק זה השתמשו בשאלת מבחן בה השתמשתם במשימה 2: האם ההתפלגות של משתנה רציף X בקטגוריה אחת שונה מההתפלגות של X בקטגוריה השנייה, כאשר הקטגוריות נקבעות על ידי משתנה בינארי Y. אם יש לכם יותר משתי קטגוריות, הגבילו את עצמכם לשתי קטגוריות. כל רווחי הסמך או המהימנות יבוצעו ברמה של 95%.

- בחרו באופן אקראי תת-מדגם בגודל 200. אלו הנתונים שאיתם נעבוד בחלק זה. נתייחס לנתונים האלו כנתונים הנצפים. בנוסף בחרו באקראי תת-מדגם בגודל 1000 שאינו מכיל נקודות מהנתונים הנצפים, ואליו נתייחס כנתוני העבר.
- 2. נגדיר משתנה חדש בינארי Z המבוסס על המשתנה X באופן הבא: נבחר ערך סף τ כך ש כן נגדיר משתנה חדש בינארי בזה מכונה דיכוטומיזציה. הסף τ יכול להיקבע על פי ערך $Z=\begin{cases} 1 & X>\tau \\ 0 & X\leq \tau \end{cases}$ שנראה לכם מתאים מהנתונים או כחציון (או אחוזון אחר) של המשתנה X. נגדיר את ההסתברות

$$P(Z = 1|Y = j) = p_j$$
 $j = 1,2$

- א. אמדו את ψ וחשבו רווח סמך מבוסס בוטסטראפ.
- וחשבו ψ אמדו את ,(j=1,2) וחשבו ב. השתמשו בפריור יוניפורמי סטנדרטי עבור כל רווח מהימנות.
 - ג. השתמשו בפריור של ג'פרי עבור כל ψ ,(j=1,2), אמדו את ג'פרי עבור כל מהימנות.
- ד. השתמשו בנתוני העבר כדי לחשב פריור ל-(j=1,2) p_j . אתם יכולים להניח שהפריור הוא ממשפחת Beta (כלומר, אמדו את הפרמטרים של ההתפלגות מן נתוני העבר, אפשר גם באמצעות פונקציות ספריה). חשבו את ההתפלגות האפוסטריורית, אמדו את ψ וחשבו רווח מהימנות.
- ה. השוו בין האומדים השונים ל- ψ . מהי מסקנתכם? **הדרכה לסעיפים ב'-ה':** ניתן להיעזר בסימולציות כדי לחשב רווחי מהימנות (ראו בדוגמה 11.4 בספר).

סטטיסטיקה 2

חלק שני: נתונים חסרים.

בחלק זה נרצה להשוות בין השיטות השונות לטיפול בנתונים חסרים. בחלק זה, בחרו לפחות 3 משתנים מסבירים מתוכם לפחות אחד רציף ואחד בדיד ומשתנה מוסבר אחד שהוא רציף שנסמנו ב-Y. אנחנו נייצר באופן מלאכותי נתונים חסרים במשתנה המוסבר ונבחן את ההצלחה של השיטות השונות.

- 1. בחרו באופן אקראי תת-מדגם בגודל 1000 ללא נתונים חסרים.
- 2. נרצה לאמוד את Y בעזרת רגרסיה לינארית על המשתנים המסבירים. אמדו את מקדמי הרגרסיה את בעזרת מטריצת מטריצת לאמוד און נתונים חסרים וחשבו להם רווחי סמך (בעזרת מטריצת השונות).
- 13. נרצה למחוק ב-500 מהערכים של Y כך שבכל ש-Y יותר גדול, הסיבוי שלו להימחק יותר גדול.

הדרכה: ניתן לעשות זאת במספר דרכים. דרך אחת היא: סדרו את ערכי ה-Y מקטן לגדול. עבור 1000, הגרילו משתנה מקרי ברנולי עם הסתברות להצלחה p_i התלויה ב- $i=1,\dots,1000$ בר שלמשל

$$p_1 = \frac{1}{5} < \dots < p_{500} = \frac{1}{2} < \dots < p_{1000} = \frac{4}{5}$$

ומחקו את כל הנקודות שמשתנה ברנולי שלהם יצא אחד.

- 4. נרצה לחזור על שאלה 2 כאשר ישנם נתונים חסרים. השתמשו במאגר הנתונים4. שקיבלתם בשאלה 3.
- א. אמדו את מקדמי הרגרסיה על בסיס הנתונים השלמים בלבד, ללא שורות בהם יש נתונים חסרים. חשבו להם רווחי סמך (בעזרת מטריצת השונות).
- ב. השלימו את הנתונים החסרים בעזרת regression imputation ואמדו את מקדמי הרגרסיה. חשבו להם רווחי סמך (בעזרת מטריצת השונות). האם התוצאה שקיבלתם שונה מהסעיף הקודם?
- ג. השתמשו כעת בmultiple imputation ואמדו את מקדמי הרגרסיה. אתם יכולים להניח מודל נורמלי.
 - ד. עבור כל מקדם שהתקבל בסעיף ג', השתמשו בנוסחה של רובין כדי לחשב את האומד ל-.s.e (הנוסחה מופיעה במצגת 20_{-} 12 בשקף אחרון, שורה תחתונה. החליפו את הביטוי $\frac{1}{nl(\theta)}$ בשונות של המקדם שקיבלתם ממטריצת השונות). חשבו רווח סמך למקדמי הרגרסיה.
 - $P(R=1|X_1,\dots,X_k)$ ה. היעזרו ברגרסיה לוגיסטית כדי לחשב את ההסתברות ברגרסיה לוגיסטית כאשר X_1,\dots,X_k הם המשתנים המסבירים.
 - . הציגו את בעיית הרגרסיה הלינארית כבעיית ריבועים פחותים והשתמשו במשקולות שקיבלתם בסעיף הקודם כדי לייצר אומד IPW למקדמים הרגרסיה (ראו שאלה 4 בקובץ השאלות של שיעור 12).
 - ז. חשבו רווחי סמך לאומדים שהתקבלו בסעיף ו' בעזרת בוטסטראפ.
 - ח. עבור כל מקדם רגרסיה:
 - ו. השוו את האומדים שקיבלתם לאומד שהתקבל בשאלה 2. מה .i מסקנתכם?
 - ii. סרטטו את רווחי הסמך שקיבלתם. מהי התרשמותכם?