Leonard Blam 900086 Homework 3 Theoretical HW DS 2 Answers are in **bold**

Ex3: Recurrences

1. Given the following recursive function

$$f(V, n) // V$$
 is an array, $n \ge 1$
if $n < 2$
return 0;
else

$$\{ m = \left\lfloor \frac{n}{2} \right\rfloor;$$

$$\text{return } (f(V, m) + f(V, m));$$

a. Write a recurrence describing the function's runtime.

(In what I understand the question is by writing out the runtime as T(n))

$$T(n)=2T\left(\frac{n}{2}\right)+1$$

b. Solve the recurrence, and write the runtime as a function of n.

$$a = 2, b = 2, f(n) = 1, log b(a) = 1, n^{log b(a)} = n$$

 $f(n) = O(n^{1-e}) => T(n) = \Theta(n)$

2. Given the following recursive function

$$f(V,from,to)$$
 // V is an array, $from$, to are indices if $(from>=to)$ return true; else if $(V[from] !=V[to])$ return false; else return $f(V,from+1,to)$ and $g(V,from,to)$;

a. Assume g(V, from, to) scans V's elements with indices in [from, to] once. Write a recurrence describing the function's runtime.

(In what I understand the question is by writing out the runtime as T(n))

$$T(n) = T(n-1) + n$$

b. Solve the recurrence, and write the runtime as a function of n.

$$T(n) = O(n^2)$$

3. Solve the following recurrences, assuming T(1) = 1.

a)
$$T(n) = 2T(n/2) + n^3$$

 $a = b = 2$, $f(n) = n^3$, $logb(a) = 1$, $n^logb(a) = n$
 $f(n) = \Omega(n^1+e) => T(n) = \Theta(n^3)$

b)
$$T(n) = T(n/3) + 2 \log n$$

 $a = 1, b = 3, f(n) = 2 \log(n), \log b(a) = 0, n \log b(a) = 1$
 $f(n) = \Omega(n e) \Rightarrow T(n) = \Theta(2 \log(n)) = \Theta(\log(n))$

c)
$$T(n) = T(n/8) + nlogn$$

 $\mathbf{a} = \mathbf{1}, \mathbf{b} = \mathbf{3}, \mathbf{f}(\mathbf{n}) = \mathbf{nlog}(\mathbf{n}), \mathbf{logb}(\mathbf{a}) = \mathbf{0}, \mathbf{n^logb}(\mathbf{a}) = \mathbf{1}$
 $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{n^e}) \Rightarrow T(\mathbf{n}) = \Theta(\mathbf{nlog}(\mathbf{n}))$

d)
$$T(n) = 2T(n/3) + n^{1.5}$$

 $a = 2$, $b = 3$, $f(n) = n^3/2$, $logb(a) = 0.6$, $n^logb(a) = n^0.6$
 $f(n) = O(n^0.6-e) => T(n) = \Theta(n^3/2)$

e)
$$T(n) = 3T(n/2) + n^2 \log n$$

 $a = 3, b = 2, f(n) = n^2 \log(n), \log b(a) = 3/2, n^\log b(a) = n^3/2$
 $f(n) = \Omega(n^1.5 + e) => T(n) = \Theta(n^2 \log(n))$

f)
$$T(n) = 2T(n/4) + \sqrt{n}$$

 $\mathbf{a} = 2, \mathbf{b} = 4, \mathbf{f}(\mathbf{n}) = \mathbf{root}(\mathbf{n}), \mathbf{logb}(\mathbf{a}) = \frac{1}{2}, \mathbf{n} \cdot \mathbf{logb}(\mathbf{a}) = \mathbf{root}(\mathbf{n})$
 $\mathbf{f}(\mathbf{n}) = \Theta(\mathbf{root}(\mathbf{n})) \Longrightarrow T(\mathbf{n}) = \Theta(\mathbf{root}(\mathbf{n})\mathbf{log}(\mathbf{n}))$

g)
$$T(n) = T(\sqrt{n}) + 2logn$$

 $T(n) = O(\log n)$

h)
$$T(n) = 4T(n/4) + n / \lg n$$

 $a = 4, b = 4, f(n) = n/\log(n), \log b(a) = 1, n \log b(a) = n$
 $f(n) = O(n^1-e) \Rightarrow T(n) = \Theta(n)$