RAG for Hungarian documents Which embedder to use?

- Problem
- Solution
- Retrieval Evaluation

Problem

- Create a chatbot for the **ClearService** company
- Company data: **Hungarian**

Fizetés

- A fizetés 1800-2000 euró körüli havonta nettó
- Órabér alapján számolódik, gyorsasági prémiumokkal kiegészítve
- A fizetés két részből áll: magyar alapbérből és német elszámolásból, amit egy összegben utalnak a bankszámlára a hónap 15-én
- A vasárnapi és ünnepnapi munkákra 80% pótlék jár
- A német fizetés 2 részből áll: a magyar alapbérből és a német elszámolásból, ami egy összegben 15-én utalódik a saját bankszámlára
- A magyar havi alapbér NEM ELŐLEG, hanem része a német fizetésnek
- Akinek Revolut/TransferWise bankszámlája van, az azonnal megkapja az elutalt fizetést

Nyelvtudás

- Német nyelvtudás nem szükséges a jelentkezéshez
- A munkához szükséges alapvető kifejezéseket és kommunikációt a cégnél tanítják meg
- Németországban kötelező nyelvoktatást fog kapni, hogy elsajátítsa a legfontosabb, munkához szükséges kifejezéseket

. . .

Solution

- Build a RAG system
- Evaluate the retriever part
- Plot results

Embedder Models

- 1. PP-MINILM ST paraphrase-multilingual-MiniLM-L12-v2
- 2. NOMIC Ollama nomic-embed-text
- 3. MINILM Ollama all-minilm:latest
- 4. OPENAI-ADA OpenAl text-embedding-ada-002
- 5. OPENAI-3 SMALL -OpenAl text-embedding-3-small
- 6. **GEMINI** Gemini **embedding-001**
- 7. BGE-M3 ST BAAI/bge-m3
- 8. HUBERT ST NYTK/sentence-transformers-experimental-hubert-hungarian

Dataset

- Data for ingestion: data/clearservice/topics.txt
- Question set: data/clearservice/cs_qa.csv

Retriever Evaluation

- Vector DB: FAISS
- Question set: **50** questions
- Metrics:
- 1. MRR Mean Reciprocal Rank
- 2. Recall@1
- 3. Recall@3

Results - Table

Model	MRR	Recall@1	Recall@3
BGE-M3	0.90	0.86	0.96
PP-ML-MINILM	0.84	0.78	0.92
OPENAI-ADA	0.80	0.72	0.90
OPENAI-3 SMALL	0.80	0.72	0.94
NOMIC	0.71	0.64	0.80
MINILM	0.59	0.46	0.74
GEMINI	0.50	0.38	0.68
HUBERT	0.48	0.38	0.68

Semantic vs Lexical Search

Model	MRR	Recall@1	Recall@3
BGE-M3 (best semantic)	0.90	0.86	0.96
HUBERT (worst semantic)	0.48	0.38	0.68
BM25 (lexical)	0.77	0.68	0.80

Results

MRR, Recall@1, Recall@3

Results

Recall@3

Best Models

Model	Provider	Dim.	Context
BGE-M3	Sentence-Transformers	1024	8192 tokens
PP-MINILM	Sentence-Transformers	384	256 tokens
OPENAI-3SMALL	OpenAl	1536	8192 tokens

Winner

The BAAI/bge-m3 model, developed by Beijing Academy of Artificial Intelligence (BAAI), is a multilingual, multi-task, and multi-vector embedding model designed for high-performance retrieval and semantic search across languages and tasks.

References

- Massive Text Embeddings Leaderboard
- Harang Peter: Mennyire tudnak magyarul az embedding-ek?,
 2025.01.09.