

Lösung eines Phasenfeld Modells für Rissentstehung mittels semiglatter Newtonmethode

BACHELORARBEIT
zur Erlangung des akademischen Grades
BACHELOR OF SCIENCE

Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Numerische und Angewandte Mathematik

Betreuung:

Prof. Dr. Benedikt Wirth

Eingereicht von:

Ines Ahrens

Münster, September 2015

Inhaltsverzeichnis

1.	Einl	eitung		1								
2.	Mathematische Grundlagen											
	2.1.	Grund	llagen Optimierung	3								
		2.1.1.	Optimierungsproblem ohne Nebenbedingung	3								
		2.1.2.	Optimierungsproblem mit Ungleichungsnebenbedingung	5								
	2.2.	Grund	llagen pDGL	6								
	2.3.	Finite	Elemente	8								
	2.4.	Semid	ifferenzierbare Newton Methoden	10								
		2.4.1.	Newton Methoden mit einfachen Nebenbedingungen	10								
		2.4.2.	Konvergenz der generalisierten Newton Methode	11								
		2.4.3.	Semidifferential	13								
		2.4.4.	semidiffbare Newton Methoden	15								
3.	Anw	endun _i	g auf das Phasenfeldmodell für Rissentstehung	17								
	3.1.	erste I	Betrachtung der Rissentstehung	17								
	3.2.	nierung nach u	18									
		3.2.1.	Analytische Betrachtung	18								
		3.2.2.	Numerische Betrachtung	21								
		3.2.3.	Agregation	25								
	3.3.	Optim	nierung nach v	26								
		3.3.1.	Analytische Betrachtung	26								
		3.3.2.	semidifferenzierbare Newton Methode	30								
		3.3.3.	numerische Betrachtung	34								
		3.3.4.	Agregation	40								
4.	Fazi	t und /	Ausblick	41								

Inhaltsverzeichnis ii

Α.	Allge	emeine	ln	forr	nat	ion	en													42
	A.1.	Rechni	ung	gen																42
		A.1.1.	nι	ime	riscl	ne I	ars	stell	ung	yo	n (G_1								42
		A.1.2.	В	erec	hnu	ng '	von	G_{2i}	, .											46
	A.2.	Code																		47
1:+	oroti	. w o r = o	:ch	nic																10
Lit	eratu	ırverzei	ich	nis																48

1. Einleitung

Ich befasse mich mit Rissen und der Darstellung des Problems als Newtonmethode. Dabei sind meine Aufgaben:

- 1. Optimalitätsbedingungen aufstellen (KKT)
- 2. Das Problem auf Semidifferenzierbarkeit untersuchen
- 3. Newtonmethode für das Problem aufstellen
- 4. Problem implementieren mithilfe von Finite Elemente
- 5. Konvergenz des Problems anhand der Implementation untersuchen: Hängt die Konvergenz vom Gitter ab?

Das Problem lautet:

$$\min_{u \in H^1(\Omega)^2, v \in H^1(\Omega)} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} \left(1 - v \right)^2 dx$$

s.d. $0 \le v \le v_0$
 $u = u_0$ auf $\Gamma_1 \cup \Gamma_2$

Notation 1.0.1.
$$|\nabla u|^2 := \frac{\partial u_1}{\partial x_1}^2 + \frac{\partial u_1}{\partial x_2}^2 + \frac{\partial u_2}{\partial x_1}^2 + \frac{\partial u_2}{\partial x_2}^2 = u_{1x_1}^2 + u_{1x_2}^2 + u_{2x_1}^2 + u_{2x_2}^2$$

dabei ist $\epsilon_i > 0 \ \forall i \in \{1,2,3\}$ ein kleiner Parameter und $\Gamma_1, \Gamma_2 \subset \Omega$ ein der rechte bzw. linke Rand eines rechteckigen Gebietes $\Omega \subset \mathbb{R}^2$, das heißt, $\Omega = [0,a] \times [0,b] \ \Gamma_1 = \{0\} \times [0,b] \ \Gamma_2 = \{a\} \times [0,b]$

 $u: \Omega \to \mathbb{R}^2$ beschreibt die Verschiebung eines Körpers auf dem Gebiet Ω , wenn ein Riss entsteht. Der Körper ist an Γ_1 und Γ_2 befestigt, was die Randbedingung u_0 angibt. $v: \Omega \to \mathbb{R}$ gibt an, wo und wie stark der Körper gerissen ist. 1 bedeutet, dass der Körper vollständig gerissen ist und 0, das kein Riss vorhanden ist.

Analytische und numerische Grundlagen werden gebraucht, um die Verschiebung des Gebietes und den Riss zu finden. Für die analytische Betrachtung nutze ich partiel1 Einleitung 2

le Differentialgleichungen und Grundlagen der Optimierung. Da die Lösung des Problems analytisch nicht zu finden ist, diskretisiere ich das Problem mit dreieckig lineare Lagrange Elemente und implementiere es mittels semiglatter Newtonmethoden. Die Grundlagen dazu sind im zweiten Kapitel zu finden. Alle Themen sind sehr umfangreich und ich werde nur die wichtigsten Begriffe einführen können. Der Leser sollte schon Wissen über Finite Elemente, insbesondere die dreieckig linearen Lagrange Elemente mitbringen.

Die Untersuchung des Problems folgt in Kapitel drei. Beim ersten Betrachten fällt auf, dass man die Optimierung nach u und v trennen kann. Dieses wird im ersten Teil des dritten Kapitels erläutert. Im zweiten Teil wird die Optimierung nach u betrachtet. Zuerst wird die Existenz und Eindeutigkeit gesichert, um dann numerisch die Lösung mit dreieckig linearen Lagrange Elementen zu suchen. Die Optimierung nach v im dritten Teil hat den selben Aufbau. Nur ist hier das Problem komplizierter und die numerische Lösung erfolgt mit der semiglatten Newton Methoden. Im letzten Kapitel werte ich die numerischen Resultate aus und ziehe Rückschlüsse für die Konvergenz der Methode aufgrund der Gitterweite.

2. Mathematische Grundlagen

2.1. Grundlagen Optimierung

Das Phasenfeldmodell für die Rissentstehung ist ein Optimierungsproblem mit Ungleichungsnebenbedingungen. Um die Eindeutigkeit und Existenz einer Lösung zu sichern, werden Grundlagen in der Optimierung benötigt. Außerdem werden wir Bedingungen kennenlernen, mit denen sich das Optimierungsproblem in ein einfacheres Problem umschreiben lässt. Grundsätzlich lassen sich Optimierungsprobleme in Probleme mit und ohne Nebenbedingung aufteilen. Fangen wir zunächst mit der einfacheren Variante an.

2.1.1. Optimierungsproblem ohne Nebenbedingung

Optimierungsprobleme ohne Nebenbedingung kennt man im endlichdimensionalen bereits aus der Schule. Wir wollen ein Minimum oder Maximum finden und leiten dazu die zu optimierende Funktion ab und setzen die Ableitung gleich 0. Allerdings betrachten wir jetzt nicht mehr nur endlichdimensionale Probleme, sondern auch unendlichdimensionale. Sei also W ein Banachraum und $J:W\to\mathbb{R}$ ein Funktional. Das Optimierungsproblem ohne Nebenbedingung hat dann folgende Form:

$$\min_{w \in W} J(w) \tag{2.1}$$

Um nun wieder die Ableitung 0 setzen zu können, muss erst der Ableitungsbegriff in Banachräumen definiert werden. Dies ist die Gâteaux-Ableitung. Die Definitionen stammen aus [?, S. 50]

Sei $F: U \subset X \to Y$ ein Operator zwischen Banachräumen und $U \neq \emptyset$ offen. **Definition 2.1.1** (Richtungsableitung). F heißt Richtungsableitbar in $x \in U$, falls

$$\partial F(x)(h) = \lim_{t \to 0^+} \frac{F(x+th) - F(x)}{t} \in Y$$

für alle $h \in X$ existiert. Dann heißt $\delta F(x,h)$ Richtungsableitung von F in Richtung h. **Definition 2.1.2** (Gâteaux differenzierbar). F heißt Gâteaux differenzierbar in $x \in U$, falls F Richtungsableitbar ist und die Richtungsableitung

$$F'(x): X \to Y$$

 $h \mapsto \partial F(x)(h)$

beschränkt und linear ist d.h. $F'(x) \in L(X,Y)$

Definition 2.1.3 (Fréchet differenzierbar). F heißt Fréchet differenzierbar in $x \in U$, falls F Gâteaux differenzierbar ist und folgende Approximation gilt:

$$||F(x+h) - F(x) - F'(x)h||_{Y} = o(||h||_{X})$$
 für $||h||_{X} \to 0$

Nun können wir die Ableitung von J bestimmen und daraus resultierend das Optimeriungsproblem lösen. Das Theorem stammt aus der Vorlesung "Optimierung 2", gelesen von Prof. B. Wirth.

Theorem 2.1.4. Sei das Optimierungsproblem (2.1) gegeben. Sei $J: W \to \mathbb{R}$ Gâteaux differenzierbar in $\tilde{w} \in W$. Wenn \tilde{w} das Optimierungsproblem löst, gilt:

$$\partial J(\tilde{w})(h) = 0 \quad \forall h \in W$$

Dabei ist h die Richtung der Ableitung.

Beweis. Für alle $h \in W$ muss $\alpha \mapsto J(\tilde{w} + \alpha h)$ minimal in $\alpha = 0$ sein. Daraus folgt:

$$\frac{\partial}{\partial \alpha} f(x + \alpha h)|_{\alpha = 0} = 0$$

Damit ist eine Bedingung für ein Optimum gegeben. Das Optimierungsproblem ist zu einer Nullstellensuche geworden. Oftmals ist die Ableitung eine partielle Differentialgleichung. Für diese muss eine Lösung gefunden werden. Dies wird in den Grundlagen Partieller Differentialgleichungen 2.2 erklärt.

2.1.2. Optimierungsproblem mit Ungleichungsnebenbedingung

Oftmals tauchen als Nebenbedingungen Ungleichungsbedingungen wie $a \le u \le b$ auf, wobei $a, b, u \in X$ gilt und X ein Vektorraum ist. Damit überhaupt klar ist, wie das \le gemeint ist, wird ein positiver Kegel nach der Vorlesung "Optimierung 2"von Prof. Wirth definiert.

Definition 2.1.5 (positiver Kegel). Sei X ein Vektorraum, $P \subset X$ ein konvexer Kegel. Für $x, y \in X$ schreiben wir $x \leq_P y$ oder $y \geq_p x$ falls $y - x \in P$. P heißt positiver Kegel.

$$x <_P y \ oder \ y >_P x \ bedeutet \ y - x \in \mathring{P}$$

Wir werden Probleme der Form

$$\min_{w \in W} J(w) \quad s.d. \quad G(w) \le_p 0$$

bearbeiten, wobei W, Z Banachräume sind, $J: W \to \mathbb{R}$ Gâteaux differenzierbar und $G: W \to Z$ die Nebenbedingung des Optimierungsproblems ist. $P \subset Z$ ist ein positiver Kegel. Die Nebenbedingung lässt sich in eine Raumnebenbedingung umschreiben, $C := \{w \in W | G(w) \leq_P 0\}$. Dabei ist C nichtleer, abgeschlossen und konvex. Das Problem lautet:

$$\min_{w \in W} J(w) \quad s.d. \quad w \in C \tag{2.2}$$

Je nachdem welche Notation grade praktischer ist, wird die eine oder andere benutzt. Bei Optimierungen dieser Art muss zunächst die Existenz und Eindeutigkeit der Lösung gesichert werden.

Theorem 2.1.6. Sei

- 1. W reflexiver Banachraum
- 2. $C \subset W$ nichtleer, konvex und abgeschlossen
- 3. $J:W\to\mathbb{R}$ strikt konvex und stetig auf C
- 4. J Gâteaux differenzierbar

5.
$$\lim_{w \in C, \|w\|_W \to \infty} J(w) = \infty$$

Dann existiert genau eine Lösung von (2.2).

Beweis. Der Beweis und das Theorem sind in [?, S.66] zu finden

Bei Optimierungsproblemen mit Nebenbedingung reicht als Bedingung für das Optimum nicht aus, dass die Ableitung 0 ist. Da das Optimum auf dem Rand des zulässigen Gebietes sein könnte, muss die Ableitung nicht zwingend 0 sein. Jedoch gibt es andere Bedingungen, die ausreichend für ein Optimum sind. Die Herleitung dieser Bedingungen, die wir im folgenden Karush-Kuhn-Tucker Bedingungen nennen werden, werde ich aufgrund des Umfanges hier nicht machen können. Ich werde sie nur angeben.

Theorem 2.1.7 (Lagrangefunktion). Seien X, Y normierte Räume, $P \subset Z$ ein positiver Kegel mit $P \neq \emptyset$. Sei $J: W \to \mathbb{R} \cup \{\infty\}$, $G: W \to Z$ konvex. Es existiert ein \hat{w} im Bild(J), sodass $G(\hat{w}) <_P 0$. Außerdem gelte $\mu = \inf\{J(w)|G(w) \leq_P 0\} < \infty$.

Dann $\exists z' \in Z^*$ $mitz' \geq_{P^*} 0$, $sodass \ \mu = \inf_{w \in W} J(w) + \langle G(w), z' \rangle_{Z,Z^*}$. Falls ein optimales \overline{w} existiert, dann minimiert \overline{w} $J(w) + \langle G(w), z' \rangle_{Z,Z^*}$.

Beweis. Der Beweis ist im Script zu der Vorlesung "Optimierung II", gelesen von Prof. Wirth, zu finden. \Box

Nun haben wir die Bedingungen gegeben, sodass wir von (2.2) mit C wie oben das KKT System aufstellen können. Dabei ist \overline{w} die Lösung des Problems. μ und λ heißen Lagrange Multiplikatoren.

$$\nabla J(\overline{w}) + \lambda - \mu = 0$$

$$\overline{w} \ge a \quad \mu \ge 0 \quad \mu(\overline{w} - a) = 0$$

$$\overline{w} < b \quad \lambda > 0 \quad \lambda(b - \overline{w}) = 0$$

Aus den letzten beiden Zeilen folgt, dass

$$\mu - \lambda = \max\{0, \mu - \lambda + c(\overline{w} - b)\} + \min\{0, \mu - \lambda + c(\overline{w} - a)\} \forall c > 0$$
(2.3)

Diese Darstellung werde ich später nutzen, um das Problem über die Rissentstehung zu lösen.

2.2. Grundlagen pDGL

Optimierungsprobleme kann man oft umschreiben, sodass statt dem Optimierungsproblem eine partielle Differentialgleichung gelöst wird. Dadurch kann man Rückschlüsse

auf die Existenz und Eindeutigkeit von dem Optimierungsproblem ziehen. Die Theorie, die ich dazu verwende ist aus der Vorlesung "partielle Differentialgleichungen"gelesen vom Professor B. Wirth.

Wir betrachten das elliptische Dirichlet-Problem auf einem beschränkten Gebiet $\Omega \subset \mathbb{R}^n$

$$Lu = f \text{ auf } \Omega$$

$$u = g \text{ auf } \partial \Omega$$
(2.4)

mit $g \in H^1(\Omega)$, $f: \Omega \to \mathbb{R}$ und $Lu(x) := -\text{div}(A(x)\nabla u(x)) + b(x)\nabla u(x) + c(x)u(x)$, wobei $A: \Omega \to \mathbb{R}^{n \times n}$, $b: \Omega \to \mathbb{R}^n$ und $c: \Omega \to \mathbb{R}$

Definition 2.2.1 (schwache Lösung). $u \in g + H_0^1(\Omega)$ heißt schwache Lösung zu (2.4), falls

$$B(u,v) := \int_{\Omega} \nabla v^T A \nabla u + b \nabla u v + c u v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in H_0^1(\Omega)$$

Damit eine schwache Lösung eindeutig ist, brauchen wir ein paar Voraussetzungen: **Annahme 2.2.2.** Es existieren $\lambda, \Lambda, \nu > 0$, sodass $\forall x \in \Omega, \forall \xi, \zeta \in \mathbb{R}^n$ gilt:

1.
$$\xi^T A(x)\xi > \lambda |\xi|^2$$

2.
$$|\xi^T A(x)\zeta| \leq \Lambda |\xi||\zeta|$$

3.
$$\lambda^{-2}|b(x)|^2 + \lambda^{-1}|c(x)| \le \nu^2$$

4.
$$c(x) \ge 0$$

Theorem 2.2.3 (Eindeutigkeit der schwachen Lösung). Seien die Annahmen 2.2.2 für das Problem (2.4) erfüllt. Falls eine schwache Lösung für (2.4) existiert, ist sie eindeutig.

Beweis. Der Beweis wird im Script von Prof. B. Wirth zur Vorlesung "Partielle Differentialgleichungen" geführt. \Box

Theorem 2.2.4 (Existenz der schwachen Lösung). Sei Ω beschränkt mit Lipschitz Rand. A, b, c seien beschränkt, $f \in L^2(\Omega)$. Dann existiert eine schwache Lösung $u \in H^1(\Omega)$ von (2.4).

Beweis. Der Beweis wird im Script von Prof. B. Wirth zur Vorlesung "Partielle Differentialgleichungen" geführt. \Box

2.3. Finite Elemente

Finite Elemente sind die Grundlage, um partielle Differentialgleichungen auf zweidimensionalen Gebieten numerisch darstellen zu können. Dazu wird zunächst das Gebiet in Dreiecke trianguliert. Dann werden Basisfunktionen auf diesen Dreiecken definiert, die sogenannten globalen Formfunktionen. Aus diesen ist die gesuchte Funktion zusammengesetzt und kann damit berechnet werden. Dieses ist der Galerkin-Ansatz. Die hier beschriebene Theorie richtet sich nach der Vorlesung "Numerik Partieller Differentialgleichungen"gelesen von Dr. F. Wübbeling.

Es ist ein rechteckiges Gebiet in 2D gegeben. ObdA $\Omega = [0, a] \times [0, b]$. Auf diesem Gebiet legen wir ein äquidistantes Gitter G_h .

$$G_h := \left\{ (ih_1, jh_2) | i = 0, \dots, \frac{a}{h_1}, j = 0, \dots, \frac{b}{h_2} \right\}$$

 $h = (h_1, h_2)$ ist die Schrittweite mit $a = (n+1)h_1$ und $b = (m+1)h_2$, n+1 die Anzahl der Stützpunkte in x-Richtung und m+1 die Anzahl der Stützpunkte in y-Richtung. Um ein sinnvolles Gitter zu erhalten, sollten m und n recht nahe beieinander gewählt werden. Nun wird durch die Gitterpunkte die Triangulierung gelegt. Diese nennen wir E_k und ist in 2.1 dargestellt.

Abbildung 2.1.: Triangulierung eines rechteckigen Gebietes

Abbildung 2.2.: Referenzdreieck

Stellen wir das Referenzelement unserer Finiten Elemente auf. Wir benutzen dreieckig lineare Lagrange Elemente. Bei diesen sind die Funktionsauswertungen auf den Ecken der Dreiecke gegeben. Das Finite Element ist deswegen gegeben durch (E, P, Ψ) , wobei

E das Referenzdreieck 2.2 ist, $P = \mathcal{P}_1$, sind Polynome auf \mathbb{R}^2 vom Grad 1 mit Basis $\{p_1, p_2, p_3\}$

$$p_1(x,y) := 1$$
 $p_2(x,y) := x$ $p_3(x,y) := y$

und $\Psi := \{\varphi_0, \varphi_1, \varphi_2\}$ sind Funktionale auf P und damit eine Basis von P^* . φ_i sind lokale Formfunktionen d.h. $\varphi_i(p_j) = \delta_{ij}$, $i, j \in \{0, 1, 2\}$. Dabei ist δ_{ij} das Kronecker-Delta. Außerdem soll gelten $\varphi_i(p_j) = p_j(a_i)$, wobei a_i eine Auswertung in einer Ecke des Dreiecks ist. Daraus ergibt sich, dass

$$\varphi_1 = 1 - x - y, \ \varphi_2 = x, \ \varphi_3 = y$$
 (2.5)

Nun ist das Referenzelement gegeben. Jedes Element (E_k, P_k, Ψ_k) lässt sich nun mit der affin linearen Transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \pm \begin{pmatrix} h_1 x \\ h_2 y \end{pmatrix}$$

durch das Referenzelement darstellen. Dabei entspricht $(a_1, a_2)^t$ dem Eckpunkt mit dem 90° Winkel des Rechteckes und $(h_1, h_2)^t$ ist die Höhe des Dreiecks. Mit dem Transformationssatz können wir alle Berechnungen auf dem Referenzelement ausführen und dann auf das transformierte Element übertragen. Durch die Transformation muss dann zu allen Integralen $|\det DT(x,y)|^{-1}$ multipliziert werden. Das ergibt

$$|\det \mathbf{D} \ T(x,y)|^{-1} = |\det \begin{pmatrix} h_1 & 0 \\ 0 & h_2 \end{pmatrix}|^{-1} = \frac{1}{h_1 h_2}$$

Die Familie $\{(E_k, P_k, \Psi_k)\}$ von Finiten Elementen, die durch unsere Triangulierung hervorgegangen ist, ist verträglich. Also können wir die globalen Formfunktionen aufstellen, die auf dem gesamten Gebiet Ω definiert sind. Die globale Formfunktion T_j ist 1 auf dem Gitterpunkt j und 0 sonst.

Für die Berechnung von linearen Funktionen auf dreieckig-linearen Lagrange Elementen, brauchen wir oft eine explizite Darstellung. Durch die Triangulierung haben wir 2 Arten von Dreiecken. Dabei entspricht a^i der Wert der Funktion a an dem Eckpunkt i.

Abbildung 2.3.: gerade und ungerade Dreiecke mit den Werten von a

a(x,y) wird auf dem linken Dreieck von 2.3 dargestellt durch

$$a(x,y) = (a^3 - a^2)x + (a^1 - a^2)y + a^2 \text{ mit } \nabla a(x,y) = \begin{pmatrix} a^3 - a^2 \\ a^1 - a^2 \end{pmatrix}$$
 (2.6)

und auf dem rechten Dreieck von 2.3 wird a(x,y) dargestellt durch

$$a(x,y) = (a^{1} - a^{2})x + (a^{3} - a^{2})y + a^{2} \text{ mit } \nabla a(x,y) = \begin{pmatrix} a^{1} - a^{2} \\ a^{3} - a^{2} \end{pmatrix}$$
 (2.7)

2.4. Semidifferenzierbare Newton Methoden

Semiglatte Newton Methoden werden gebraucht, um Nullstellen von nicht differenzierbaren Funktionen numerisch zu berechnen. Die Rissentstehung ist ein nicht differenzierbares Problem. Um die Idee der Newton Methoden zu verstehen, führe ich zunächst einfache Newton Methoden ohne Nebenbedingung und dann solche mit einfachen Nebenbedingungen ein. Um diese realisieren zu können, wird der Begriff der Semidifferenzierbarkeit benötigt. Das ist eine Mengenwertige Ableitung, mit der auch nicht-differenzierbare, aber stetige Punkte in einer Funktion abgeleitet werden können. Damit kann dann die semidifferenzierbare Newton Methode eingeführt werden, von der wir auch die Konvergenz betrachten werden. Dieses Kapitel richtet sich nach [? , S. 115 ff].

2.4.1. Newton Methoden mit einfachen Nebenbedingungen

Als erstes leiten wir uns zum Verständnis die einfache Newton Methode her. Dazu betrachten wir wie vorher das Minimierungsproblem

$$\min_{w \in \mathbb{R}^n} f(w) \qquad f: \mathbb{R}^n \to \mathbb{R}$$
 (2.8)

Die Optimalbedingung zu diesem Problem lautet $\nabla f(w) = 0$. Nun wollen wir ein numerisches Verfahren für dieses Problem entwickeln. Dazu setzen wir $G := \nabla f$. Da wir ein diskretes Verfahren wollen, setzten wir w_0, w_1, \cdots in G ein. Wir erhalten:

$$G(w_{k+1}) = 0$$

Um ein iteratives Verfahren zu erhalten taylorn wir G in w_k . Das ergibt:

Theorem 2.4.1 (einfaches Newtonverfahren). Der Algorithmus 1 löst das Optimierungsproblem (2.8). Es konvergiert superlinear falls $G \in C^1$ und G' invertierbar ist.

```
Data: w^0 (möglichst Nah an der Lösung \overline{w})

for k = 0, 1, \cdots do

Löse G'(w^k)s^k = -G(w^k);

w^{k+1} = w^k + s^k;

end
```

Algorithm 1: einfache Newton Methode

2.4.2. Konvergenz der generalisierten Newton Methode

Nun möchten wir Aussagen über die Konvergenz der Newton Methode treffen können. Dazu definieren wir Konvergenzgeschwindigkeiten.

Definition 2.4.2 (Konvergenzgeschwindigkeit). Sei x_k eine Folge, die \overline{x} approximiert.

- lineare Konvergenz: $||x_{k+1} \overline{x}|| \le c||x_k \overline{x}|| \quad \forall k > k_0$
- superlineare Konvergenz: Sei c_k eine Nullfolge. $||x_{k+1} \overline{x}|| \le c_k ||x_k \overline{x}|| \quad \forall k > k_0$
- Konvergenz der Ordnung $p: ||x_{k+1} \overline{x}|| \le c||x_k \overline{x}||^p \quad \forall k > k_0$

Betrachte nun

$$G(x) = 0 (2.9)$$

mit $G: X \to Y$, wobei X, Y Banachräume sind. Sei \overline{x} die Lösung der Gleichung.

Um eine numerische Lösung von (2.9) zu erhalten, benutzen wir einen ähnlichen Algo-

rithmus, wie den für das einfache Newtonverfahren, nur allgemeiner:

```
Data: x^0 \in X (möglichst Nah an der Lösung \overline{x})

for k = 0, 1, \cdots do

| Wähle invertierbaren Operator M_k \in L(X, Y);

Erhalte s_k beim lösen von M_k s^k = -G(x^k);

x^{k+1} = x^k + s^k;

end
```

Algorithm 2: Generalisierte Newton Methode

Bis jetzt war der Operator M_k die Ableitung von G. Dies ist jedoch nicht möglich, wenn G nicht differenzierbar ist. Wie der Operator M_k in diesem Fall sinnvoll zu wählen ist, wird später bestimmt.

Nun untersuchen wir die durch diesen Algorithmus gewonnene Folge x^k in einer Umgebung von \overline{x} . Sei $d^{k+1} = x^{k+1} - \overline{x}$ der Abstand zwischen dem Iterationsschritt und der Lösung. Dann gilt:

$$M_k d^{k+1} = M_k (x^{k+1} - \overline{x}) = M_k (x^k + s^k - \overline{x}) = M_k d^k - G(x^k)$$

= $G(\overline{x}) + M_k d^k - G(x^k)$

Wir erhalten:

Theorem 2.4.3 (Konvrgenz der generalisierten Newton Methode). Betrachte (2.9) mit der Lösung \overline{x} . Sei x^k die Folge, die durch den Generalisierten Newton Algorithmus 2 erzeugt wurde. Sei x^0 nah genug an \overline{x} gewählt

1. Falls $\exists \gamma \in (0,1)$ mit

$$||d^{k+1}||_X = ||M_k^{-1} (G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k)||_X \le \gamma ||d^k||_X$$

 $\forall k \ mit \ ||d_k||_X \ klein \ genug$

gilt, dann konvergiert $x^k \to \overline{x}$ linear mit Konstante γ

2. Falls $\forall \eta \in (0,1) \quad \exists \delta_{\eta} > 0, \ sodass$

$$||d^{k+1}||_X = ||M_k^{-1} \left(G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k \right) ||_X \le \eta ||d^{k+1}||_X$$
 für $||d_k||_X < \delta_\eta$

gilt, dann konvergiert $x^k \to \overline{x}$ super linear

3. Falls $\exists \gamma \in (0,1)$ mit

$$||d^{k+1}||_X = ||M_k^{-1} \left(G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k \right) ||_X \le C ||d^k||_X^{1+\alpha}$$

$$f \ddot{u} r ||d_k||_X \to 0$$

gilt, dann konvergiert $x^k \to \overline{x}$ super linear der Ordnung $\alpha + 1$

Beweis. Der Beweis ist in [?, S. 118] zu finden.

Oft teilt man diese Kleinheitsannahmen in zwei Teile auf:

Definition 2.4.4 (Regularitätsannahme). Sei $M_k \in L(X,Y)$, wobei X,Y Banachräume sind. Dann ist die Regularitätsannahme gegeben durch:

$$||M_k^{-1}||_{Y\to X} \le C \quad \forall k \ge 0$$

Bemerkung (Operatornorm). Die Notation für die Operatornorm von einem linearen Operator $f: X \to Y$, wobei X, Y normierte Vektorräume sind lautet:

$$||f||_{X\to Y} := \sup_{||x||_X=1} ||f(x)||_Y$$

Definition 2.4.5 (Approximationsannahme). Sei $M_k \in L(X,Y)$, wobei X,Y Banachräume sind, \overline{x} die Lösung von G(x) = 0 und $d^k := x^k - \overline{x}$ Sei $\alpha + 1 > 1$ Dann ist die Approximationsannahme gegeben durch:

$$||G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k||_Y = o(||d^k||_X) \text{ für } ||d_k||_X \to 0$$

oder

$$||G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k||_Y = o(||d^k||_X^{1+\alpha}) \text{ für } ||d_k||_X \to 0$$

Die geeingnete Wahl von M_k ist das sogenannte Semidifferential. Was das genau ist und wie es gerechnet wird, klärt folgendes Kapitel.

2.4.3. Semidifferential

Definition 2.4.6 (verallgemeinerte Differentiale). Seien X, Y Banachräume und $G: X \to Y$ ein stetiger Operator. Dann ist die Menge der verallgemeinerten Differentiale

definiert als

$$\partial G: X \rightrightarrows L(X,Y)$$

Dabei meint $\rightrightarrows L(X,Y)$, dass ein Punkt $x \in X$ auf eine Menge von linearen Operatoren abgebildet wird (und nicht nur auf einen Operator). Ein Beispiel für ein verallgemeinertes Differenzial ist das Clarke Differenzial. Dies ist jedoch nur für Vektorwertige Funktionen definiert.

Nun können wir, um unser Newtonverfahren umzugestalten $M_k \in \partial G(x^k)$ wählen. Damit unser Verfahren aber super linear konvergiert, muss gelten

$$\sup_{M \in \partial G(\overline{x} + d)} \|G(\overline{x} + d^k) - G(\overline{x}) - M_k d\|_Y = o(\|d\|_X) \text{ für } \|d\|_X \to 0$$

Dieses nennt sich semidiffbar.

Definition 2.4.7 (semidifferenzierbar). Sei $G: X \to Y$ ein stetiger Operator zwischen Banachräumen. Sei $\partial G: X \rightrightarrows L(X,Y)$ mit nicht leeren Bildern gegeben wie oben.

1. G heißt ∂G semidiffbar in $x \in X$, falls

$$\sup_{M \in \partial G(x+d)} \|G(x+d^k) - G(x) - M_k d\|_Y = o(\|d\|_X) \text{ für } \|d\|_X \to 0$$
 (2.10)

2. G heißt ∂G semidiffbar von der Ordnung $\alpha + 1 > 1$ in $x \in X$, falls

$$\sup_{M \in \partial G(x+d)} \|G(x+d^k) - G(x) - M_k d\|_Y = \mathcal{O}\left(\|d\|_X^{\alpha+1}\right) \text{ für } \|d\|_X \to 0$$

Lemma 2.4.8. Sei $G: X \to Y$ ein Operator zwischen Banachräumen und stetig F-diffbar in einer Umgebung von x. Dann ist $G \{G'\}$ -semidiffbar in x. Falls G' α -Hölderstetig in einer Umgebung von x ist, dann ist $G \{G'\}$ -semidiffbar in x von der Ordnung α .

$$\{G'\}$$
 beschreibt den Operator $\{G'\}:X \rightrightarrows L(X,Y)$ mit $\{G'\}(x)=\{G'(x)\}$

Beweis.

$$||G(x+d^k) - G(x) - G'(x+d)d||_Y$$

$$\leq ||G(x+d^k) - G(x) - G'(x)d||_Y + ||G'(x)d - G'(x+d)d||_Y$$

$$\leq o(||d||_X) + ||G'(x) - G'(x+d)||_{X\to Y}||d||_X = o(||d||_X)$$

Der zweite Teil des Beweises erfolgt analog, siehe [?, S. 121]

Theorem 2.4.9 (Rechenregeln semidiffbare Funktionen). Seien X, Y, Z, X_i, Y_i Banachräume.

- 1. Falls die Operatoren $G_i: X_i \to Y_i \ \partial G_i$ -semidiffbar in x sind, dann ist (G_1, G_2) $(\partial G_1, \partial G_2)$ -semidiffbar in x.
- 2. Falls die Operatoren $G_i: X \to Y \ \partial G_i$ -semidiffbar in x sind, dann ist $G_1 + G_2$ $(\partial G_1 + \partial G_2)$ -semidiffbar in x.
- 3. Seien $G_1: Y \to Z$ und $G_2: X \to Y$ ∂G_i -semidiffbar in $G_2(x)$ und in x. Sei außerdem ∂G_1 beschränkt in einer Umgebung von $x = G_2(x)$ und G_2 ist Lipschitzstetig in einer Umgebung von x. Dann ist $G = G_1 \circ G_2$ ∂G -semidiffbar mit

$$\partial G(x) = \{ M_1 M_2 | M_1 \in \partial G_1 (\partial G_2(x)), \quad M_2 \in \partial G_2(x) \}$$

Beweis. Der Beweis ist in [?, S. 122] zu finden.

2.4.4. semidiffbare Newton Methoden

Mit dem Semidifferential können wir nun die semidifferenzierbare Newton Methode definieren.

Algorithm 3: semidiffbare Newton Methode

Damit diese konvergiert, muss die Approximationsannahme und die Regularitätsannahme erfüllt sein. Die Approximationsannahme ist durch die Semidiffbarkeit gegeben. Fehlt

noch die Regularitätsannahme.

Definition 2.4.10 (Regularitätsannahme für semidiffbare Newton Verfahren). Betrachte (2.9) mit der Lösung \overline{x} . Dann lautet die Regularitätsannahme

$$\exists C > 0, \quad \exists \delta > 0 : \|M^{-1}\|_{X \to Y} \le C \quad \forall M \in \partial G(x) \quad \forall x \in X, \quad \|x - \overline{x}\|_X < \delta$$

$$(2.11)$$

Theorem 2.4.11 (Konvergenz des semidiffbaren Newton-Verfahrens). Sei das Problem (2.9) gegeben mit der Lösung \overline{x} . Seien X, Y Banachräume, $G: X \to Y$ stetig und ∂G semidiffbar und die Regularitätsannahme (2.11) sei gegeben. Dann existiert $\delta > 0$, sodass für alle $x^0 \in X$ mit $||x^0 - \overline{x}||_X < \delta$ die semidiffbare Newton Methode super linear gegen \overline{x} konvergiert.

Falls G ∂G -semidiffbar der Odnung $\alpha > 0$ in \overline{x} ist, dann ist die Konvergenzordnung $1 + \alpha$

Beweis. 2.4.3 besagt, dass wenn ich ein Newtonverfahren der Form 2 habe, also $M_k \in \mathcal{L}(X,Y)$, M_k invertierbar ist und

$$||M_k^{-1} (G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k)||_X = o(||d^k||_X)$$

gilt, dann konvergiert das Newtonverfahren super linear. Da $M_k \in \partial G$, ist $M_k \in \mathcal{L}(X,Y)$. M_k ist invertierbar, da die Regularitätsannahme gilt. Außerdem gilt mit der Regularitätsannahme und der Semidiffbarkeit:

$$||M_k^{-1} (G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k)||_X$$

$$\leq ||M_k^{-1}||_X || (G(\overline{x} + d^k) - G(\overline{x}) - M_k d^k)||_X$$

$$\leq Co(||d^k||_X) = o(||d^k||_X)$$

Also ist 2.4.3 anwendbar.

Damit haben wir Bedingungen für die Konvergenz der semidifferenzierbaren Newton Methode gefunden. Diese können wir für den Beweis der Konvergenz bei unserer Newton Methode anwenden.

3. Anwendung auf das Phasenfeldmodell für Rissentstehung

Nachdem wir die Mathematischen Grundlagen für die Betrachtung eines Optimierungsproblems kennengelernt haben, wollen wir diese anwenden. Zunächst teilen wir das Minimierungsproblem in zwei voneinander unabhängige Optimierungen auf: Die Optimierung nach u und die Optimierung nach v. Im Anschluss betrachten wir beide Optimierungen genauer, indem wir sie umschreiben und numerische Verfahren zur Lösung entwickeln. Zum Schluss fusionieren wir beide Verfahren.

3.1. erste Betrachtung der Rissentstehung

Erinnern wir uns an die vorangegangene Problemstellung:

$$\min_{u \in H^1(\Omega)^2, v \in H^1(\Omega)} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} \left(1 - v \right)^2 dx$$

s.d. $0 \le v \le v_0$
 $u = u_0$ auf $\Gamma_1 \cup \Gamma_2$

Beim genaueren Betrachten bemerkt man, dass die Ungleichungsnebenbedingung nur von v und die Randbedingung nur von u abhängt. Dies bietet die Möglichkeit das

Optimierungsproblem in zwei Teilprobleme aufzuteilen.

$$\min_{u \in H^1(\Omega)^2} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} \left(1 - v \right)^2 dx$$

$$u = u_0 \text{ auf } \Gamma_1 \cup \Gamma_2$$

$$\min_{v \in H^1(\Omega)} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} \left(1 - v \right)^2 dx$$
s.d. $0 \le v \le v_0$

Wenn man beide Probleme implementiert, löst man zunächst die Optimierung nach u und setzt die Lösung dann in die Optimierung nach v ein. Dieses Vorgehen wird mit der semidifferenzierbaren Newtonmethode wiederholt. Betrachten wir zuerst die Optimierung nach u.

3.2. Optimierung nach u

Das Kapitel ist in zwei Unterkapitel aufgeteilt: Die analytische und numerische Betrachtung.

Im analytischen Teil formulieren wir das Problem zu einem Problem ohne Nebenbedingung und. Dieses lässt sich dann als partielle Differentialgleichung schreiben. Die Existenz und Eindeutigkeit der schwachen Lösung sichern wir uns am Schluss des ersten Teils.

Für die numerische Betrachtung schreiben wir das Problem nochmal um und wenden dann Finite Elemente und den Galerkin Ansatz an. Das Resultat ist ein Gleichungssytem, das sich einfach lösen lässt.

3.2.1. Analytische Betrachtung

Erinnern wir uns an das Optimierungsproblem, das die Verschiebung des Körpers bei der Entstehung von einem Riss beschreibt.

$$\min_{u \in H^1(\Omega)^2} \int_{\Omega} (v^2 + \epsilon_1) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx$$

$$u = u_0 \text{ auf } \Gamma_1 \cup \Gamma_2$$

Es ist leichter ein Problem ohne Nebenbedingung zu betrachten, also nehmen wir die Nebenbedingung mit in dem Raum auf, über dem wir optimieren. Also suchen wir statt $u \in H^1(\Omega)^2$

$$u \in u_0 + H_0^1(\Omega)^2 := u_0 + \{u \in H^1(\Omega)^2 | u = 0 \text{ auf } \Gamma_1 \cup \Gamma_2\}$$

Das Problem hat dann folgende Form

$$\min_{u \in u_0 + H_0^1(\Omega)^2} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx$$
 (3.1)

Da $u: \Omega \to \mathbb{R}^2$, müssen wir nach u_1 und nach u_2 minimieren. Es tauchen keine Mischung aus den Termen u_1 und u_2 auf, das heißt, dass wir die Optimierungen trennen können. Beide sind identisch, es müssen später nur unterschiedliche Werte eingesetzt werden. Betrachten wir oBdA die Optimierung nach u_1 .

Theorem 3.2.1 (Bedingung für ein Minimum). Sei das Minimierungsproblem (3.1) gegeben und \tilde{u}_1 nimmt das Minimum an. Dann gilt

$$\int_{\Omega} 2(v^2 + \epsilon_1) \nabla \tilde{u}_1 \nabla \varphi \, dx = 0 \forall \varphi \in u_0 + H_0^1(\Omega)$$
(3.2)

Beweis. Nach 2.1.4 muss nur überprüft werden, ob die Gâteaux-Ableitung von

$$J: u_0 + H_0^1(\Omega)^2 \to \mathbb{R}$$
$$u \mapsto \int_{\Omega} (v^2 + \epsilon_1) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx$$

(3.2) ist. Leiten wir J ab:

$$\partial J(u)(\varphi) = \lim_{t \to 0} \frac{1}{t} \left(J(u_1 + t\varphi, u_2) - J(u_1, u_2) \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) |\nabla(u_1 + t\varphi)|^2 + |\nabla u_2|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx \right)$$

$$- \int_{\Omega} (v^2 + \epsilon_1) |\nabla u_1|^2 + |\nabla u_2|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) (|\nabla(u_1 + t\varphi)|^2 - |\nabla u_1|^2) dx \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) (|\nabla u_1 + t\nabla \varphi|^2 - |\nabla u_1|^2) dx \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) (|\nabla u_1|^2 + 2t\nabla u_1 \nabla \varphi + t^2 |\nabla \varphi|^2 - |\nabla u_1|^2) dx \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) (2t\nabla u_1 \nabla \varphi + t^2 |\nabla \varphi|^2) dx \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} (v^2 + \epsilon_1) (2t\nabla u_1 \nabla \varphi + t^2 |\nabla \varphi|^2) dx \right)$$

$$= \int_{\Omega} 2(v^2 + \epsilon_1) \nabla u_1 \nabla \varphi dx$$

Damit dies eine Gâteaux Ableitung ist, muss die Abbildung $J'(u_1): \varphi \mapsto \partial J(u_1, \varphi) \in \mathbb{R}$ linear und beschränkt sein. Linearität ist einfach nachzurechnen. Beschränktheit lässt sich durch Cauchy-Schwarz zeigen.

Also lautet unser analytisches Problem: Finde $u_1 \in u_0 + H_0^1(\Omega)$, sodass $\forall \varphi \in u_0 + H_0^1(\Omega)$ gilt:

$$0 = \int_{\Omega} 2(v^2 + \epsilon_1) \nabla u_1 \nabla \varphi \, dx$$
(3.3)

Nun ist noch interessant, ob eine Lösung existiert und ob sie eindeutig ist. Dieses hängt von u_0 und v_0 ab.

Theorem 3.2.2 (Existenz und Eindeutigkeit). Sei $u_0 \in H^1(\Omega)^2$, $v_0 \in H^1(\Omega)$. Die schwache Lösung $u \in u_0 + H_0^1(\Omega)$ von (3.3) existiert und ist eindeutig.

Beweis. Wir wenden 2.2.4 an. Dazu müssen wir die Bilinearform aufstellen und dann 2.2.2 zeigen. Die Bilinearform lautet:

$$B(u_1, \varphi): (u_0 + H^1(\Omega)0^2)^2 \to \mathbb{R}$$

 $(u_1, \varphi) \mapsto \int_{\Omega} (v^2 + \epsilon_1) 2\nabla u_1 \nabla \varphi \, dx$

Mit den Bezeichnungen aus 2.2 ist $g = u_0, f, b, c = 0$ und

$$A(x) := \begin{pmatrix} v^2(x) + \epsilon_1 & 0 \\ 0 & v^2(x) + \epsilon_1 \end{pmatrix}$$

Aus 2.2.2 sind 3 und 4 bereits erfüllt, da b, c = 0 gilt. Beweisen wir 1.

Sei $\xi \in \mathbb{R}^n$. Dann gilt:

$$\xi^T A(x)\xi = \xi^T \begin{pmatrix} v^2(x) + \epsilon_1 & 0 \\ 0 & v^2(x) + \epsilon_1 \end{pmatrix}$$
$$= (v^2 + \epsilon_1)\xi \cdot \xi$$
$$> \epsilon_1 |\xi|^2$$

Damit ist Annahme 1 erfüllt mit $\lambda = \epsilon_1$. Zu Annahme 2:

$$|\xi^T A(x)\zeta| = (v^2 + \epsilon_1)\xi \cdot \zeta \le (v_0^2 + \epsilon_2)\xi \cdot \zeta \le (\sup(v_0)^2 + \epsilon_3)|\xi||\zeta|$$

$$\min \Lambda = \sup(v_0)^2 + \epsilon$$

3.2.2. Numerische Betrachtung

Wir haben grade bewiesen, dass wir folgendes Problem lösen müssen:

Finde $u_1 \in u_0 + H_0^1(\Omega)$, sodass

$$0 = \int_{\Omega} (v^2 + \epsilon_1) \nabla u_1 \nabla \varphi \, dx \quad \forall \varphi \in u_0 + H_0^1(\Omega)$$

Da die Nullstelle im Raum $H_0^1(\Omega)$ einfacher zu finden ist, als im Raum $u_0 + H_0^1(\Omega)$, stellen wir das Problem um. Dazu definieren wir $\tilde{u}_0 \in u_0 + H_0^1(\Omega)$, sodass $\tilde{u}_0 u_{0_1}$ auf dem Rand $\Gamma_1 \cup \Gamma_2$ entspricht und sonst 0 ist. Dafiniere zusätzlich $\tilde{u} \in H_0^1(\Omega)$, sodass $u_1 = \tilde{u} + \tilde{u}_0$. Damit lässt sich das Problem umschreiben zu

Finde $\tilde{u} \in H_0^1(\Omega)$, sodass $\forall \varphi \in H_0^1(\Omega)$

$$-\int_{\Omega} (v^2 + \epsilon_1) \nabla \tilde{u}_0 \nabla \varphi \, dx = \int_{\Omega} (v^2 + \epsilon_1) \nabla \tilde{u} \nabla \varphi \, dx$$

Zur numerischen Betrachtung bieten sich Finite Elemente, insbesondere die dreieckiglinearen Lagrange Elemente an. Dafür triangulieren wir das Gebiet, wie in 2.3 dargestellt. Nun nutzen wir den Galerkin Ansatz. Dafür gilt ab jetzt k := (m+1)(n+1)

$$\tilde{u}(x,y) := \sum_{i=1}^{k} u_i^h T_i(x,y)$$

Dabei sind $T_i(x,y)$ die globalen Formfunktionen und u_i^h die gesuchten Konstanten. Setzt man die Definition von \tilde{u} ein und ersetzt $\varphi \in H_0^1(\Omega)$ durch die Basis von P^* , also den globalen Formfunktionen T_i , so gilt $\forall i \in \{1, \dots, k\}$

$$-\int_{\Omega} (v^{2} + \epsilon_{1}) \nabla \tilde{u}_{0} \nabla \varphi \, dx = \int_{\Omega} (v^{2} + \epsilon_{1}) \nabla \tilde{u} \nabla \varphi \, dx$$

$$\Leftrightarrow -\int_{\Omega} (v^{2} + \epsilon_{1}) \sum_{i=1}^{k} u_{0i}^{h} \nabla T_{i} \nabla T_{i} \, dx = \int_{\Omega} (v^{2} + \epsilon_{1}) \sum_{i=1}^{k} u_{i}^{h} \nabla T_{i} \nabla T_{j} \, dx$$

$$\Leftrightarrow -\sum_{i=1}^{k} u_{0i}^{h} \int_{\Omega} (v^{2} + \epsilon_{1}) \nabla T_{j} \nabla T_{i} \, dx = \sum_{i=1}^{k} u_{i}^{h} \int_{\Omega} (v^{2} + \epsilon_{1}) \nabla T_{i} \nabla T_{j} \, dx$$

$$\Leftrightarrow L * u_{0}^{h} = L * u^{h}$$

wobei
$$u^h := (u_1^h, \dots u_k^h)^T$$
, $u_0^h := (u_{01}^h, \dots u_{0k}^h)^T$ und $L := (\int_{\Omega} (v^2 + \epsilon) \nabla T_i \nabla T_j \, dx)_{ij}$

Also müssen wir L berechnen und dann das Gleichungssystem $L*u_0^h=L*u^h$ lösen.

Berechnung des u Integrals

Als erste Vereinfacherung betrachten wir nicht mehr das Integral über Ω , sondern über die einzelnen Dreiecke der Triangulierung. Desweiteren ist T_i linear, also ∇T_i konstant. Es gilt:

$$\int_{\Omega} (v^2 + \epsilon_1) \nabla T_i \nabla T_j \, dx = \sum_{\tilde{E} \in E_k} \int_{\tilde{E}} (v^2 + \epsilon_1) \nabla T_i \nabla T_j \, dx$$
$$= \sum_{\tilde{E} \in E_k} \nabla T_i \nabla T_j \int_{\tilde{E}} (v^2 + \epsilon_1) \, dx$$

Wir kennen $\nabla T_i \nabla T_j$ auf jedem Dreieck. Also muss nur noch $\int_E v^2 + \epsilon \, \mathrm{d}x$ berechnet werden. Es darf über das Referenzdreieck integriert werden, da durch den Transformationssatz das Integral über das transformierte Element gewonnen werden kann. Es gilt:

$$\int_{E} v^{2} + \epsilon_{1} dx = \int_{E} v^{2} dx + \frac{1}{2} \epsilon_{1}$$

Da v bereits numerisch berechnet wurde, haben wir nur Funktionsauswertungen von v an den Ecken des Dreieckes gegeben und wir wissen, dass $v \in \mathcal{P}_1$. Also ist v eindeutig

bestimmt und kann berechnet werden. Die Berechnung ist in (2.6) und (2.7) zu finden.

Die Berechnung von $\int_E v^2 dx$ sieht wie folgt aus

$$\int_{E} v(x,y)^{2} dx dy = \int_{0}^{1} \int_{0}^{1-y} ((v_{3} - v_{1})x + (v_{2} - v_{1})y + v_{1})^{2} dx dy$$
$$= \frac{1}{12} (v_{1}^{2} + v_{2}^{2} + v_{3}^{2} + v_{1}v_{2} + v_{1}v_{3} + v_{2}v_{3})$$

Da die Berechnung über das transformierte Element durchgeführt wurde, muss noch der Multiplikator $\frac{1}{h_1h_2}$ eingefügt werden.

Berechnen wir nun

$$L_{i,j} = \sum_{\tilde{E} \in E_k} \nabla T_i \nabla T_j \int_{\tilde{E}} (v^2 + \epsilon) dx$$

 T_i ist nur auf dem Gitterpunkt i 1 und sonst 0. Das heißt genauer, dass T_i nur auf sechs Dreiecken ungleich 0 ist. Um das Integral zu bestimmen braucht man also maximal sechs Dreiecke. Falls der Gitterpunkt am Rand liegen sollte, betrachtet man nur drei Dreiecke, an den Ecken entweder ein oder zwei Dreiecke.

Abbildung 3.1.: Triangulierung im Inneren

Jetzt können wir $B(T_i, T_j)$ für festes i, j berechnen. Falls i und j nicht adjazent sind, ist $B(T_i, T_j) = 0$, da $T_i T_j = 0$ gilt. Seien nun T_I und T_j adjazent. Hier haben wir vier Fälle: i liegt auf j, also j = i, j liegt rechts neben i also j = i+1, j liegt direkt unter i, j = i+n+1 und j liegt schräg unter i, also j = i+n+2. Betrachten wir für die einzelnen Berechnungen 3.1. T_i ist immer der Mittelpunkt dieser Zeichnung, T_j ist entsprechend des jeweiligen j positioniert. In den Berechnungen stimmen die Nummerierungen der Dreiecke mit den Nummerierungen in der Abbildung 3.1 überein und $\varphi_k, k \in \{0, 1, 2\}$ entspricht den φ_k in (2.5).

Betrachten wir nun die vier Fälle.

i und j sind gleich

$$L_{i,i} = \sum_{E \in E_k} \nabla T_i \nabla T_i \int_E (v^2 + \epsilon) \, dx$$

$$= \nabla \varphi_1 \nabla \varphi_1 \int_{E_1} (v^2 + \epsilon) \, dx + \nabla \varphi_2 \nabla \varphi_2 \int_{E_2} (v^2 + \epsilon) \, dx$$

$$+ \nabla \varphi_0 \nabla \varphi_0 \int_{E_3} (v^2 + \epsilon) \, dx + \nabla \varphi_0 \nabla \varphi_0 \int_{E_4} (v^2 + \epsilon) \, dx$$

$$+ \nabla \varphi_2 \nabla \varphi_2 \int_{E_5} (v^2 + \epsilon) \, dx + \nabla \varphi_1 \nabla \varphi_1 \int_{E_6} (v^2 + \epsilon) \, dx$$

j liegt rechts neben i

$$L_{i,i+1} = \sum_{E \in E_k} \nabla T_i \nabla T_{i+1} \int_E (v^2 + \epsilon) dx$$
$$= \nabla \varphi_0 \nabla \varphi_1 \int_{E_3} (v^2 + \epsilon) dx + \nabla \varphi_0 \nabla \varphi_1 \int_{E_6} (v^2 + \epsilon) dx$$

j liegt unter i

$$L_{i,i+1+n} = \sum_{E \in E_k} \nabla T_i \nabla T_{i+1+n} \int_E (v^2 + \epsilon) dx$$
$$= \nabla \varphi_0 \nabla \varphi_1 \int_{E_4} (v^2 + \epsilon) dx + \nabla \varphi_0 \nabla \varphi_1 \int_{E_5} (v^2 + \epsilon) dx$$

j liegt schräg unter i

$$L_{i,i+2+n} = \sum_{E \in E_k} \nabla T_i \nabla T_{i+2+n} \int_E (v^2 + \epsilon) dx$$
$$= \nabla \varphi_1 \nabla \varphi_2 \int_{E_5} (v^2 + \epsilon) dx + \nabla \varphi_1 \nabla \varphi_2 \int_{E_6} (v^2 + \epsilon) dx$$
$$= 0$$

Zusammenfassung Mit diesen Werten können wir nun die Matrix $(\int_{\Omega} (v^2 + \epsilon) \nabla T_i \nabla T_j)_{ij}$ aufstellen:

Abbildung 3.2.: Darstellung der Matrix $\left(\int_{\Omega} (v^2 + \epsilon) \nabla T_i \nabla T_j\right)_{ij}$

Dabei sind auf der Diagonalen die Einträge $L_{i,i}$, auf der Nebendiagonalen die Einträge $BL_{i,i+1}$ und auf der anderen Diagonale die Einträge $BL_{i,i+n+1}$. Wir haben bis jetzt immer nur über das Referenzdreieck integriert. Da wir aber eigentlich über die transformierten Dreiecke integrieren, müssen wir zu der Matrix $1/(h_1h_2)$ multiplizieren.

3.2.3. Agregation

Nun haben wir die Matrix L und den Vektor u_0^h gegeben, um das Gleichungssystem $Lu^h = Lu_0^h$ zu berechnen. Allerdings haben wir noch nicht eingebracht, dass auf $\Gamma_1 \cup \Gamma_2$ u = 0 gilt. Eigentlich würden wir das im Vektor u mit aufnehmen, also die Zeilen 0 setzten, die den Rand repräsentieren und dann das Gleichungssystem lösen. Dies geht numerisch jedoch nicht so einfach. Die Information muss in L und in Lu_0^h codiert sein. Dazu setzt man die Zeilen in L 0, die zum Rand gehören. Die zugehörigen Diagonaleinträge werden 1 gesetzt. Diese Matrix nennen wir \tilde{L} . Die zugehörige Zeile in Lu_0^h setzt man 0. Den neuen Vektor nennen wir Lu_0^h Dadurch erhält man, dass u^h an dieser Stelle 0 wird.

Damit haben wir beide Seiten diskretisiert und können das Gleichungssystem implementieren. Wir wollen

$$\frac{1}{h_1h_2}\tilde{L}u = \frac{1}{h_1h_2}\tilde{Lu_0^h} \Leftrightarrow \tilde{L}u = \tilde{Lu_0^h}$$

berechnen. Der Code dazu hat folgende Form:

- 1. Berechne Matrix \tilde{L}
- 2. Berechne Vektor $\tilde{Lu_0^h}$
- 3. $u = \tilde{Lu_0^h} \backslash \tilde{L}$

Algorithm 4: Berechnung von u

Da sowohl \tilde{L} als auch $\tilde{Lu_0^h}$ aus fast nur Nullen besteht, verwende ich in Matlab Sparse

Matrizen. Dies führt zu einer wesentlich kürzeren Laufzeit.

3.3. Optimierung nach v

Bei der Optimierung nach v geht es um die Fortsetzung des Risses. Für dieses Optimierungsproblem mit Ungleichungsnebenbedingung sicheren wir zunächst die Existenz und Eindeutigkeit der Lösung. Danach stellen wir die Optimalitätsbedingungen auf. Das resultiert in ein Karush Kuhn Tucker System. Dieses wollen wir mittels semidifferenzierbarer Newton Methode lösen. Dazu müssen zunächst alle Funktionen der KKT Systems differenziert und danach diskretisiert werden. Dies geschieht wieder mit Finiten Elementen. Am Schluss führe beide Optimierungsprobleme zu einem Verfahren zusammen.

3.3.1. Analytische Betrachtung

Die Optimierung nach v hat folgende Form:

$$\min_{v \in H^1(\Omega)} \int_{\Omega} \left(v^2 + \epsilon_1 \right) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 dx$$
s.d. $0 \le v \le v_0$

Das lässt sich allgemein als Optimierungsproblem mit Ungleichungsnebenbedingungen darstellen:

$$\min_{w \in W} J(w) \quad \text{s.d.} \quad w \in C$$

wobei W ein Banachraum, $J: W \to \mathbb{R}$ G-diffbar und $C \subset W$.

In diesem Fall bedeutet das also, dass

$$J: H^{1}(\Omega) \to \mathbb{R}$$

$$v \mapsto \int_{\Omega} (v^{2} + \epsilon_{1}) |\nabla u|^{2} + \epsilon_{2} |\nabla v|^{2} + \frac{1}{\epsilon_{3}} (1 - v)^{2} dx$$

$$C := \{ v \in H^{1}(\Omega) | 0 \le v \le v_{0} \}$$

Zunächst wollen wir die Existenz und Eindeutigkeit der Lösung zeigen. Dafür brauchen

wir, dass J Gâteaux differenzierbar ist.

Lemma 3.3.1. J ist Gâteaux-Differenzierbar mit

$$J'(v): \overline{H^1}(\Omega) \to \mathbb{R}$$

$$s \mapsto \left(2v|\nabla(u)|^2 - \epsilon_2 2\Delta v - \frac{2}{\epsilon_3}(1-v), s\right)_{L^2(\Omega)} + (2\epsilon_2 \nabla v \nu, s)_{L^2(\partial\Omega)}$$

Beweis. Zunächst kommt die Richtungsableitung:

$$\begin{split} \partial J(v)(s) &= \lim_{t \to 0} \frac{1}{t} \bigg(\int_{\Omega} ((v+ts) - J(v) \bigg) \\ &= \lim_{t \to 0} \frac{1}{t} \bigg(\int_{\Omega} ((v+ts)^2 + \epsilon_1) |\nabla(u)|^2 + \epsilon_2 |\nabla(v+ts)|^2 + \frac{1}{\epsilon_3} (1 - (v+ts))^2 \\ &- \int_{\Omega} (v^2 + \epsilon_1) |\nabla u|^2 + \epsilon_2 |\nabla v|^2 + \frac{1}{\epsilon_3} (1 - v)^2 \bigg) \\ &= \lim_{t \to 0} \frac{1}{t} \bigg(\int_{\Omega} (((v+ts)^2 + \epsilon_1) - (v^2 + \epsilon_1)) |\nabla(u)|^2 \\ &+ \epsilon_2 (|\nabla(v+ts)|^2 - |\nabla v|^2) \\ &+ \frac{1}{\epsilon_3} ((1 - v - ts)^2 - (1 - v)^2) \bigg) \\ &= \lim_{t \to 0} \frac{1}{t} \bigg(\int_{\Omega} (v^2 + 2vts + t^2s^2 - v^2) |\nabla u|^2 \\ &+ \epsilon_2 (|\nabla v|^2 + 2t\nabla v\nabla s + t^2 |\nabla s|^2 - |\nabla v|^2) \\ &+ \frac{1}{\epsilon_3} ((1 - v)^2 - 2(1 - v)ts + t^2s^2 - (1 - v)^2) \bigg) \\ &= \lim_{t \to 0} \bigg(\int_{\Omega} (2vs + ts^2) |\nabla u|^2 + \epsilon_2 (2\nabla v\nabla s + t |\nabla s|^2) \\ &- \frac{1}{\epsilon_3} (2(1 - v)s + ts^2) dx \bigg) \\ &= \int_{\Omega} 2sv |\nabla u|^2 + \epsilon_2 2\nabla v\nabla s - \frac{2}{\epsilon_3} (1 - v)s dx \\ &= \int_{\Omega} 2v |\nabla u|^2 s - \epsilon_2 2\Delta vs - \frac{2}{\epsilon_3} (1 - v)s dx + \int_{\partial \Omega} 2\epsilon_2 \nabla v \nu s dx \end{split}$$

Damit es auch eine Gâteaux Ableitung ist, muss sie beschränkt und linear sein. Dies ist einfach zu sehen. □

Theorem 3.3.2. Das Problem (3.4) besitzt genau eine Lösung, falls v_0 stetig ist.

Beweis. Wir wollen 2.1.6 anwenden. Zunächst müssen wir alle Voraussetzungen prüfen.

- 1. $W = H^1(\Omega)$ ist ein Hilbertraum, also ist er ein reflexiver Banachraum.
- 2. Nun muss gezeigt werden, dass C nichtleer, abgeschlossen und konvex ist. C ist nichtleer, da $0 \in C$.

Sei v_n eine konvergente Folge in C. Dann gilt $0 \le v_n \le v_0 \ \forall n \in \mathbb{N}$. Es gilt auch $0 \le \lim_{n \to \infty} u_n \le v_0$. Also ist C abgeschlossen.

Für Konvexität sei $0 < \lambda < 1$ und $v, w \in C$. Dann gilt $0 \le \lambda v + (1 - \lambda)w$, da $\lambda > 0$. Außerdem gilt $\lambda v + (1 - \lambda)w \le \lambda v_0 + (1 - \lambda)v_0 = v_0$. Also ist jede Konvexkombination in C enthalten, C ist konvex.

- 3. *J* ist strikt konvex. Der Beweis dazu kann durch einfaches nachrechnen geführt werden. Für Stetigkeit gilt dasselbe.
- 4. J ist Gâteaux differenzierbar nach (3.3.1)
- 5. Sei $w \in C$ mit $||v||_{H^1(\Omega)} \to \infty$. Dann gilt

$$J(v) = \int_{\Omega} (v^{2} + \epsilon_{1}) |\nabla u|^{2} + \epsilon_{2} |\nabla v|^{2} + \frac{1}{\epsilon_{3}} (1 - v)^{2} dx$$

$$= \int_{\Omega} v^{2} |\nabla u|^{2} + \epsilon_{1} |\nabla u|^{2} + \epsilon_{2} |\nabla v|^{2} + \frac{1}{\epsilon_{3}} (1 - 2v + v^{2}) dx$$

$$= \int_{\Omega} v^{2} |\nabla u|^{2} - \frac{2}{\epsilon_{3}} v + \frac{1}{\epsilon_{3}} v^{2} dx + \int_{\Omega} \epsilon_{1} |\nabla u|^{2} + \frac{1}{\epsilon_{3}} dx + \int_{\Omega} \epsilon_{2} |\nabla v|^{2} dx$$

$$\leq \int_{\Omega} v^{2} \left(|\nabla u|^{2} + \frac{1}{\epsilon_{3}} \right) dx + c + \epsilon_{2} ||\nabla v||_{L^{2}(\Omega)}^{2}$$

$$\leq c' ||v||_{L^{2}(\Omega)}^{2} + c + \epsilon_{2} ||\nabla v||_{L^{2}(\Omega)}^{2}$$

$$\leq c'' \left(||v||_{L^{2}(\Omega)}^{2} + ||\nabla v||_{L^{2}(\Omega)}^{2} \right) + c$$

$$\leq c'' ||v||_{H^{1}(\Omega)}^{2} + c$$

$$\to \infty$$

mit c, c', c'' > 0 passende Konstanten.

Alle Vorraussetzungen aus 2.1.6 sind erfüllt, alse existiert genau eine Lösung des Optimierungsproblems.

Nachdem wir nun wissen, dass die Lösung existiert und eindeutig ist, wollen wir das Minimum finden. Dazu brauchen wir Optimalitätsbedingungen. Diese stellt das folgende Theorem auf:

Theorem 3.3.3 (Optimalitätsbedingungen). Sei $a := \inf\{J(w)|G(w) \leq_P 0\}$. Dann gilt:

$$a = \inf_{v \in H^1(\Omega)} J(v) + \langle G(v), \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \rangle_{H^1(\Omega), H^{-1}(\Omega)}$$

Beweis. Die Bedingungen aus 2.1.7 müssen gelten: Sei $P:=\{(v,w)\in H^1(\Omega)\times H^1(\Omega)|v\geq 0 \text{ und } w\geq 0\}\subset H^1(\Omega)\times H^1(\Omega). \stackrel{\circ}{P}\neq\emptyset, \text{ da } H^1(\Omega) \text{ nur stetige Funktionen enthält. Also ist }P \text{ ein positiver Kegel.}$

 $J: H^1(\Omega) \to \mathbb{R}$ sei wie oben definiert.

$$G: H^1(\Omega) \to H^1(\Omega)$$

$$v \mapsto \begin{pmatrix} -v \\ v - v_0 \end{pmatrix}$$

G ist linear, also konvex.

Das Bild von J enthält ein \hat{v} , sodass $G(\hat{v}) <_P 0$ gilt, da es ein $v \in H^1(\Omega)$ geben muss, das echt zwischen 0 und v_0 liegt.

Außerdem ist $a := \inf\{J(w)|G(w) \leq_P 0\} < \infty$, da J stetig und beschränkt ist.

Also kann 2.1.7 angewendet werden. Damit existiert $(\mu, \lambda) \in H^{-1}(\Omega) \times H^{-1}(\Omega)$ mit $(\mu, \lambda) \geq 0$ Komponentenweise, sodass

$$a = \inf_{v \in H^1(\Omega)} J(v) + \langle G(v), \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \rangle_{H^1(\Omega), H^{-1}(\Omega)}$$

Damit müssen wir nur noch das Minimum der Lagrangefunktion suchen. Dies funktioniert, indem wir die Ableitung bestimmen und 0 setzen. Wir leiten die Lagragefunktion ab und erhalten $\nabla J(v) + \lambda - \mu = 0$. Ausformuliert sieht das so aus:

$$2v|\nabla u|^2 - \epsilon_2 2\Delta v - \frac{2}{\epsilon_3}(1-v) + \lambda - \mu = 0$$
 auf Ω
$$2\epsilon_2 \nabla v \nu = 0$$
 auf $\partial \Omega$

Nun ist alles gegeben, damit das KKT System aufgestellt werden kann.

$$\begin{split} &2\overline{v}|\nabla u|^2 - \epsilon_2 2\Delta \overline{v} - \frac{2}{\epsilon_3}(1-\overline{v}) + \lambda - \mu = 0 \text{ auf } \Omega \\ &2\epsilon_2 \nabla \overline{v}\nu = 0 \text{ auf } \partial \Omega \\ &\overline{v} \geq a \quad \mu \geq 0 \quad \mu \overline{v} = 0 \\ &\overline{v} \leq b \quad \lambda \geq 0 \quad \lambda(v_0 - \overline{v}) = 0 \end{split}$$

Die Projektion für die Nebenbedingung lautet nach (2.3):

$$\mu - \lambda = \max\{0, \mu - \lambda + c(\overline{v} - v_0)\} + \min\{0, \mu - \lambda + c\overline{v}\} \forall c > 0$$

Daraus ergibt sich eine starke und schwache Formulierung. Die Starke lautet: Suche $v \in H^1$, sodass

$$\begin{split} &2\overline{v}|\nabla u|^2 - \epsilon_2 2\Delta \overline{v} - \frac{2}{\epsilon_3}(1-\overline{v}) + \eta = 0 \text{ auf } \Omega \\ &2\epsilon_2 \nabla \overline{v}\nu = 0 \text{ auf } \partial \Omega \\ &\eta = \max\{0, \eta + c(\overline{v} - v_0)\} + \min\{0, \eta + c\overline{v}\} \ \forall c > 0 \end{split}$$

Die schwache Formulierung ist dann

$$\int\limits_{\Omega} 2\varphi v |\nabla u|^2 + \epsilon_2 2\nabla v \nabla \varphi - \frac{2}{\epsilon_3} (1 - v)\varphi + \eta \varphi \, \mathrm{d}x = 0 \qquad \forall \varphi \in H^1(\Omega)$$

$$\int\limits_{\Omega} \left(\eta - \max\{0, \eta + c(\overline{v} - v_0)\} - \min\{0, \eta + c\overline{v}\} \right) \varphi \, \mathrm{d}x = 0 \quad \forall c > 0, \forall \varphi \in H^1(\Omega)$$

 $mit \eta = \mu - \lambda$

3.3.2. semidifferenzierbare Newton Methode

Unser Ziel ist es, eine Methode zu finden, wie wir das KKT System lösen können. Betrachten wir also

$$G: H^{1}(\Omega) \times H^{1}(\Omega) \to H^{-1}(\Omega)^{2}$$

$$(v, \eta) \mapsto \begin{pmatrix} \int_{\Omega} 2\varphi v |\nabla u|^{2} + \epsilon_{2} 2\nabla v \nabla \varphi - \frac{2}{\epsilon_{3}} (1 - v)\varphi + \eta \varphi \, \mathrm{d}x \\ \int_{\Omega} (\eta - \max\{0, \eta + c(v - v_{0})\} - \min\{0, \eta + cv\}) \varphi \, \mathrm{d}x \end{pmatrix}$$

Wir wollen (v, η) finden, sodass G = 0. Direkt kann diese Formel nicht gelöst werden, da wir um G_2 zu berechnen (v, η) benötigen. Dies ist nicht gegeben. Also lösen wir das Problem mit einer Newton Methode. Für jeden Iterationsschritt ist (v, η) durch den vorherigen gegeben. Dafür brauchen wir aber die Ableitung von G. Da G_2 offensichtlich keine Gâteaux-Ableitung hat, brauchen wir das Semidifferenzial. Also wird die semidifferenzierbare Newton Methode gebraucht.

Sehen wir uns zunächst die $\partial G_1(v,\eta)(h)$ an. Es gilt:

Theorem 3.3.4. $G_1(v,\eta)$ ist semidifferenzierbar mit

$$\partial G_{1v}(v,\eta)(\phi) = \int_{\Omega} 2\varphi \phi |\nabla u|^2 + \epsilon_2 2\nabla \phi \nabla \varphi + \frac{2}{\epsilon_3} \phi \varphi \, dx$$
$$\partial G_{1\eta}(v,\eta)(\phi) = \int_{\Omega} \phi \varphi \, dx$$

Beweis. Nach 2.4.8 ist G_1 ∂G_1 semidifferenzierbar, falls G_1 stetig Fréchet differenzierbar ist. Bestimmen wir zunächst die Richtungsableitung. Diese ist gegeben durch

$$\partial G_{1v}(v,\eta)(\phi) = \int_{\Omega} 2\varphi \phi |\nabla u|^2 + \epsilon_2 2\nabla \phi \nabla \varphi + \frac{2}{\epsilon_3} \phi \varphi \, dx$$
$$G_{1\eta}(v,\eta)(\phi) = \int_{\Omega} \phi \varphi \, dx$$

Die Berechnung wird hier nicht weiter ausgeführt. Die Richtungsableitung muss linear und beschränkt in ϕ sein. Linearität ist einfach zu sehen. Für Fréchet Differenzierbarkeit muss eine Abschätzung überprüft werden:

$$||G_{1}(v+h,\eta) - G_{1}(v,\eta) - \partial G_{1v}(v,\eta)(h)||$$

$$= ||\int_{\Omega} 2\varphi(v+h)|\nabla u|^{2} + \epsilon_{2}2\nabla(v+h)\nabla\varphi - \frac{2}{\epsilon_{3}}(1-(v+h))\varphi + \eta\varphi \,dx$$

$$-\int_{\Omega} 2\varphi v|\nabla u|^{2} + \epsilon_{2}2\nabla v\nabla\varphi - \frac{2}{\epsilon_{3}}(1-v)\varphi + \eta\varphi \,dx$$

$$-\int_{\Omega} 2\varphi h|\nabla u|^{2} + \epsilon_{2}2\nabla h\nabla\varphi + \frac{2}{\epsilon_{3}}h\varphi \,dx||$$

$$= ||\int_{\Omega} 2\varphi h|\nabla u|^{2} + \epsilon_{2}2\nabla h\nabla\varphi + \frac{2}{\epsilon_{3}}h\varphi \,dx - \int_{\Omega} 2\varphi h|\nabla u|^{2} + \epsilon_{2}2\nabla h\nabla\varphi + \frac{2}{\epsilon_{3}}h\varphi \,dx||$$

$$= 0$$

Für das Semidifferenzial von G_2 beweisen wir zunächst ein Lemma

Lemma 3.3.5. Betrachte $f: H^1(\Omega)^2 \to H^{-1}(\Omega)$ mit

$$(\eta, v) \mapsto \eta - \max\{0, \eta + c(v - v_0)\} - \min\{0, \eta + cv\}$$
 (3.5)

Dann ist f semidifferenzierbar mit

$$\frac{\partial f}{\partial \eta} = \begin{cases} \{0\} & falls - c(v - v_0) < \eta \text{ oder } \eta < -cv \\ \{1\} & falls - cv < \eta < -c(v - v_0) \\ [0, 1] & falls - c(v - v_0) = \eta \text{ oder } \eta = -cv \end{cases}$$

und

$$\frac{\partial f}{\partial v} = \begin{cases} \{-c\} & falls - c(v - v_0) < \eta \text{ oder } \eta < -cv \\ \{0\} & falls - cv < \eta < -c(v - v_0) \\ [-c, 0] & falls - c(v - v_0) = \eta \text{ oder } \eta = -cv \end{cases}$$

Beweis. f kann in einer anderen Form dargestellt werden:

$$f(v,\eta) = \begin{cases} -c(v - v_0) & \text{falls } -c(v - v_0) \le \eta \\ \eta & \text{falls } -cv < \eta < -c(v - v_0) \\ -cv & \text{falls } \eta \le -cv \end{cases}$$

Die Äquivalenz von diese Form von f und (3.5), kann einfach nachgerechnet werden. Betrachten wir zunächst die Ableitung nach η Es reicht, die Semidifferenzierbarkeit der einzelnen Abschnitte zu betrachten. Falls jeder Abschnitt semidifferenzierbar ist und die Übergänge auch, so ist f semidifferenzierbar.

Sei dazu $-c(v-v_0) < \eta$ oder $\eta < -cv$. Mit 2.4.8 gilt, dass, falls f stetig Fréchet differenzierbar ist, $f \partial f$ semidifferenzierbar. Um Fréchet Differenzierbarkeit zu zeigen, bestimmen wir zunächst die Richtungsableitung. Diese ist offensichtlich 0. Dadurch folgt sofort die Fréchet differenzierbarkeit.

Sei nun $-cv < \eta < -c(v - v_0)$. Durch 2.4.8 müssen wir wieder die Fréchet Differenzierbarkeit überprüfen. Offensichtlich ist die Identität Fréchet differenzierbar. Das Differenzial ist hier 1.

Sei $\eta = -c(v - v_0)$. Sei zunächst d > 0. Die Abschätzung (2.10) muss gelten. Hier ist $\partial f(\eta + d, v) = \{0\}$ und damit

$$\begin{split} \sup_{M \in \partial f(\eta + d, v)} & \| f(\eta + d, v) - f(\eta) - M d \|_{H^{-1}(\Omega)} \\ &= \| - c(v - v_0) + c(v - v_0) \|_{H^{-1}(\Omega)} = 0 = o\left(\| d \|_{H^1(\Omega)} \right) \text{ für } \| d \|_{H^1(\Omega)} \to 0 \end{split}$$

Sei nun d < 0. Da d nahe an 0 ist, gilt $d > -cv_0$ mit $v_0 > 0$. Es ist $\partial G_2^{\eta}(\eta + d) = \{1\}$

und damit

$$\begin{split} \sup_{M \in \partial f(\eta + d, v)} & \| f(\eta + d, v) - f(\eta, v) - M d \|_{H^{-1}(\Omega)} \\ &= \| - c(v - v_0) + d + c(v - v_0) - d \|_{H^{-1}(\Omega)} = 0 = o\left(\| d \|_{H^1(\Omega)} \right) \text{ für } \| d \|_{H^1(\Omega)} \to 0 \end{split}$$

Fehlt nur noch $\eta = -cv$. Sei zunächst d > 0. Da d nahe an 0 ist, gilt auch $d < cv_0$. Es gilt $\partial f(\eta + d, v) = \{1\}$ und damit

$$\begin{split} \sup_{M \in \partial G_2^{\eta}(\eta + d)} & \| f(\eta + d, v) - f(\eta) - M d \|_{H^{-1}(\Omega)} \\ &= \| - cv + d + cv - d \|_{H^{-1}(\Omega)} = 0 = o\left(\| d \|_{H^1(\Omega)} \right) \text{ für } \| d \|_{H^1(\Omega)} \to 0 \end{split}$$

Sei nun d < 0. Es gilt: Es gilt $\partial G_2^{\eta}(\eta + d) = \{0\}$ und damit

$$\begin{split} \sup_{M \in \partial f(\eta + d, v)} & \| f(\eta + d, v) - f(\eta, v) - M d \|_{H^{-1}(\Omega)} \\ &= \| - cv + cv \|_{H^{-1}(\Omega)} = 0 = o \left(\| d \|_{H^{1}(\Omega)} \right) \text{ für } \| d \|_{H^{1}(\Omega)} \to 0 \end{split}$$

Damit ist f semidifferenzierbar nach η . Für die Semidifferenzierbarkeit nach v gilt die Gleiche Rechnung.

Das eigentliche Ziel war es, das Semidifferenzial von G_2 zu finden. Dieses können wir nun tun

Theorem 3.3.6. $G_2: H^1(\Omega)^2 \to H^{-1}(\Omega)$ mit

$$(v,\eta) \mapsto \int_{\Omega} (\eta - \max\{0, \eta + c(v - v_0)\} - \min\{0, \eta + cv\}) \varphi dx$$

ist semidifferenzierbar mit

$$\partial G_{2\eta}(\eta, v)(\varphi, \phi) = \int_{\Omega} \frac{\partial f}{\partial \eta} \varphi \phi \, \mathrm{d}x$$

$$\partial G_{2v}(\eta, v)(\varphi, \phi) = \int_{\Omega} \frac{\partial f}{\partial v} \varphi \phi \, \mathrm{d}x$$

Beweis. \Box

Damit ergibt sich als Ableitung

$$G'(v,\eta) = \begin{pmatrix} G_{1v} & G_{1\eta} \\ G_{2v} & G_{2\eta} \end{pmatrix}$$

Also lautet das Gleichungssystem, das für das Newtonverfahren nach s gelöst werden muss

$$-\begin{pmatrix} G_1 \\ G_2 \end{pmatrix} = \begin{pmatrix} G_{1v} & G_{1\eta} \\ G_{2v} & G_{2\eta} \end{pmatrix} \begin{pmatrix} s^1 \\ s^2 \end{pmatrix}$$

3.3.3. numerische Betrachtung

Alle Funktionen aus dem Newtonsystem müssen numerisch dargestellt werden.

Für die Diskretisierung wird dasselbe Gitter und die Selben Elemente genommen wie bei der Optimierung nach u. Auch hier werden wir wieder mit dem Galerkin Ansatz arbeiten d.h.

$$v = \sum_{i=1}^{k} v_i^h T_i$$
 $\eta = \sum_{i=1}^{k} \eta_i^h T_i$ $v_0 = \sum_{i=1}^{k} v_0^h T_i$

wobei die T_i wieder die globalen Formfunktionen sind.

Da u gegeben ist, ist u ein Vektor mit den Auswertungen an den Ecken der Dreiecke. Die Darstellung ist die gleiche wie in (2.7) und (2.7). Also gilt

$$|\nabla u|^2 = (u_{31} - u_{21})^2 + (u_{11} - u_{21})^2 + (u_{32} - u_{22})^2 + (u_{12} - u_{22})^2 =: u^{dis}$$

numerische Darstellung von G_1

$$G_1(v,\eta) = \int_{\Omega} 2\varphi v |\nabla u|^2 + \epsilon_2 2\nabla v \nabla \varphi - \frac{2}{\epsilon_3} (1-v)\varphi + \eta \varphi \,dx$$

wird nun diskretisiert:

$$\int_{\Omega} 2\varphi v |\nabla u|^2 + 2\epsilon_2 \nabla v \nabla \varphi - \frac{2}{\epsilon_3} (1 - v) \varphi + \eta \varphi \, \mathrm{d}x$$

$$= \int_{\Omega} 2T_j \sum_{i=1}^k v_i^h T_i u^{dis} + \epsilon_2 2 \sum_{i=1}^k v_i^h \nabla T_i \nabla T_j - \frac{2}{\epsilon_3} (1 - \sum_{i=1}^k v_i^h T_i) T_j + \sum_{i=1}^k \eta_i^h T_i T_j \, \mathrm{d}x$$

$$= \sum_{i=1}^k v_i^h \left(2 \int_{\Omega} u^{dis} T_i T_j \, \mathrm{d}x + 2\epsilon_2 \int_{\Omega} \nabla T_i \nabla T_j \, \mathrm{d}x + \frac{2}{\epsilon_3} \int_{\Omega} T_i T_j \, \mathrm{d}x \right)$$

$$- \frac{2}{\epsilon_3} \sum_{i=1}^k \int_{\Omega} T_j \, \mathrm{d}x + \sum_{i=1}^k \eta_i^h \int_{\Omega} T_i T_j \, \mathrm{d}x$$

$$= (2A + 2\epsilon_2 B + \frac{2}{\epsilon_3} D) v^h - \frac{2}{\epsilon_3} c + D\eta^h$$

mit $v^h := (v_1^h, \dots, v_k^h)^T$, $\eta^h := (\eta_1^h, \dots, \eta_k^h)^T$, $A_{ij} = \int_{\Omega} u^{dis} T_i T_j \, dx$, $B_{ij} := \int_{\Omega} \nabla T_i \nabla T_j \, dx$, $c_j := \int_{\Omega} T_j \, dx$ und $D_{ij} := \int_{\Omega} T_i T_j \, dx$.

Die Berechnung der Matrizen A, B, D und des Vektors c erfolgt im Anhang A.1. Es ergibt sich:

$$(2A + 2\epsilon_2 B + \frac{2}{\epsilon_3}D)v^h - \frac{2}{\epsilon_3}c + D\eta^h =$$

$$\left(2\left(\frac{1}{\epsilon}\right) + 2\epsilon\left(\frac{1}{\epsilon}\right) + \frac{2}{\epsilon}\left(\frac{1}{\epsilon}\right) + \frac{2}{\epsilon}\left(\frac{1}{\epsilon}$$

wobei bei A auf der Hauptdiagonalen $\frac{1}{12}\left(\sum_{i=1}^6 u_{E_i}^{dis}\right)$, auf der Nebendiagonalen $\frac{1}{24}\left(u_{E_3}^{dis}+u_{E_6}^{dis}\right)$, auf der zweiten Nebendiagonalen $\frac{1}{24}\left(u_{E_4}^{dis}+u_{E_5}^{dis}\right)$ und auf der dritten Nebendiagonalen $\frac{1}{24}\left(u_{E_5}^{dis}+u_{E_6}^{dis}\right)$ steht.

Bei B steht auf der Hauptdiagonalen 4, auf der Nebendiagonalen und der zweiten Nebendiagonalen -1.

Der Vektor c hat bei allen Einträgen, die nicht zu einem Randpunkt gehören eine 1, bei Einträgen am Rand und nicht in einer Ecke, eine $\frac{1}{2}$, an der linken oberen und der rechten unteren Ecke eine $\frac{1}{3}$ und der Eintrag auf den anderen beiden Ecken ist $\frac{1}{6}$.

Bei D steht auf der Hauptdiagonalen $\frac{1}{2}$, auf der ersten, zweiten und dritten Nebendiagonalen $\frac{1}{12}$.

Durch die noch ausstehende Transformation der Dreiecke, muss der gesamte Term mit $1/h_1h_2$ multipliziert werden.

numerische Darstellung von G_2

$$\int_{\Omega} (\eta - \max\{0, \eta + c(v - v_0)\} - \min\{0, \eta + cv\}) \varphi \,dx$$

Um dieses Funktional numerisch darzustellen, benutzen wir den Galerkin Ansatz mit

$$v = \sum_{i=1}^{k} v_i^h T_i(x, y) \qquad \eta = \sum_{i=1}^{k} \eta_i^h T_i(x, y) \qquad v_0 = \sum_{i=1}^{k} v_0^h T_i(x, y)$$

Daraus ergibt sich:

$$\begin{split} &\int_{\Omega} \left(\eta - \max \left\{ 0, \eta + c(v - v_0) \right\} - \min \left\{ 0, \eta + cv \right\} \right) \varphi \, \mathrm{d}x \\ &= \int_{\Omega} \left(\sum_{i=1}^k \eta_i^h T_i - \max \left\{ 0, \sum_{i=1}^k \eta_i^h T_i + c(\sum_{i=1}^k v_i^h T_i - \sum_{i=1}^k v_0^h T_i) \right\} \right. \\ &- \min \left\{ 0, \sum_{i=1}^k \eta_i^h T_i + c \sum_{i=1}^k v_i^h T_i \right\} \right) T_j \, \mathrm{d}x \\ &= \int_{\Omega} \left(\sum_{i=1}^k \eta_i^h T_i - \max \left\{ 0, \sum_{i=1}^k \left(\eta_i^h + c(v_i^h - v_0^h) \right) T_i \right\} \right. \\ &- \min \left\{ 0, \sum_{i=1}^k \left(\eta_i^h + cv_i^h \right) T_i \right\} \right) T_j \, \mathrm{d}x \\ &= \int_{\Omega} \left(\sum_{i=1}^k \eta_i^h T_i - \sum_{i=1}^k \max \left\{ 0, \eta_i^h + c(v_i^h - v_0^h) \right\} T_i \right. \\ &- \sum_{i=1}^k \min \left\{ 0, \eta_i^h + cv_i^h \right\} T_i \right) T_j \, \mathrm{d}x \\ &= \int_{\Omega} \sum_{i=1}^k \left(\eta_i^h - \max \left\{ 0, \eta_i^h + c(v_i^h - v_0^h) \right\} - \min \left\{ 0, \eta_i^h + cv_i^h \right\} \right) T_i T_j \, \mathrm{d}x \\ &= \left(\sum_{i=1}^k \eta_i^h - \max \left\{ 0, \eta_i^h + c(v_i^h - v_0^h) \right\} - \min \left\{ 0, \eta_i^h + cv_i^h \right\} \right) \int_{\Omega} T_i T_j \, \mathrm{d}x \\ &= Dw_{v\eta} \end{split}$$

mit D aus der numerischen Darstellung von G_1 und $(w_{v\eta})_i := \eta_i^h - \max\left\{0, \eta_i^h + c(v_i^h - v_{0i}^h)\right\} - \min\left\{0, \eta_i^h + cv_i^h\right\}$. Die Summe und T_i darf aus dem max bzw. min herausgezogen werden, da T_i immer nur an einem Punkt ungleich 0 ist. Dadurch kommt niemals zustande, dass mehr als ein Term der Summe ungleich 0 ist. $w_{v\eta}$ kann auch explizit dargestellt werden:

$$(w_{v\eta})_i = \begin{cases} -c(v_i^h - v_{0i}^h) & \text{falls } -c(v_i^h - v_{0i}^h) \le \eta_i^h \\ \eta_i^h & \text{falls } -cv_i^h < \eta < -c(v_i^h - v_{0i}^h) \\ -cv_i^h & \text{falls } \eta_i^h \le -cv_i^h \end{cases}.$$

Auch hier muss das Integral wieder transformiert werden, wodurch der Faktor ${}^/h_1h_2$ multipliziert wird.

numerische Darstellung von G_{1v}

$$G_{1v}(v,\eta) = \int_{\Omega} 2\varphi \phi |\nabla u|^2 + \epsilon_2 2\nabla \phi \nabla \varphi + \frac{2}{\epsilon_3} \phi \varphi \, dx$$

wird nun diskretisieren:

$$\int_{\Omega} 2\varphi \phi |\nabla u|^2 + \epsilon_2 2\nabla \phi \nabla \varphi + \frac{2}{\epsilon_3} \phi \varphi \, dx$$

$$= \int_{\Omega} 2T_j T_i u^{dis} + \epsilon_2 2\nabla T_i \nabla T_j + \frac{2}{\epsilon_3} T_i T_j \, dx$$

$$= 2A + 2\epsilon_2 B + \frac{2}{\epsilon_3} D$$

Wir benutzen die gleichen Notationen, wie bei der numerischen Darstellung von G_1 und die gleiche Transformation.

numerische Darstellung von $G_{1\eta}$

$$G_{1\eta}(v,\eta) = \int_{\Omega} \phi \varphi \, \mathrm{d}x$$

wird nun diskretisieren:

$$\int\limits_{\Omega} \phi \varphi \, \mathrm{d}x = \int\limits_{\Omega} T_j T_i = D$$

Auch hier muss wieder transformiert werden.

numerische Darstellung von G_{2v}

Es soll

$$\partial G_{2v}(\eta, v)(\varphi, \phi) = \int_{\Omega} \frac{\partial f}{\partial v} \varphi \phi \, \mathrm{d}x$$

mit

$$\frac{\partial f}{\partial v} = \begin{cases} \{-c\} & \text{falls } -c(v-v_0) < \eta \text{ oder } \eta < -cv \\ \{0\} & \text{falls } -cv < \eta < -c(v-v_0) \\ [-c,0] & \text{falls } -c(v-v_0) = \eta \text{ oder } \eta = -cv \end{cases}.$$

numerisch dargestellt werden. Statt $\frac{\partial f}{\partial v}$ implementieren wir eine Vereinfachung, die nicht mehr Mengenwertig ist. Dazu wählen wir statt [-c,0] einen Punkt aus dem Intervall z.B. -c/2. Nun kann $\frac{\partial f}{\partial v}$ diskretisiert werden zu f^h . Dies ist einfach die Funktion ausgewertet an den Gitterpunkten.

Nun wird $\partial G_{2v}(\eta, v)(\varphi, \phi)$ diskretisiert. Hier wird wie immer φ, ϕ durch die globalen Formfunktionen T_i ersetzt und Ω durch die Vereinigung aller Dreiecke. Nun kann für jedes Dreieck $\int_{\Gamma} \frac{\partial f}{\partial v} T_i T_j \, \mathrm{d}x$ berechnet werden. Dies erfolgt im Anhang A.1.

Wir erhalten wieder eine Matrix folgender Form: Jeder Eintrag, der nicht 0 ist, besteht

Abbildung 3.3.: Darstellung der Matrix
$$(\int_{\Omega} (v^2 + \epsilon) \nabla T_i \nabla T_j)_{ij}$$

aus der Summe von unterschiedlichen Auswertungen der Funktion f auf den Dreiecken, über denen integriert wurde.

numerische Darstellung von $G_{2\eta}$

Die numerische Darstellung ist genau die gleiche, wie bei G_{2v} , nur dass die Funktionsauswertungen von f andere sind.

3.3.4. Agregation

Nun sind alle Funktionen disktretisiert und das Problem kann implementiert werden. Stellen wir die genaue Newton Methode auf:

$$\begin{aligned} \mathbf{Data} &: v^0, \eta^h \text{ (m\"oglichst Nah an der L\"osung } (\overline{v}, \overline{\eta})) \\ \mathbf{for} \ k = 0, 1, \cdots \ \mathbf{do} \\ & L\"ose \ das \ Gleichungssytem \ Lu^k = Lu^k_0 \ nach \ u^k \ ; \\ & Erhalte \ s_k \ beim \ l\"osen \ von \\ & - \begin{pmatrix} G_1(v^k, \eta^k) \\ G_2(v^k, \eta^k) \end{pmatrix} = \begin{pmatrix} \partial G_{1v}(v^k, \eta^k)(T_i) & \partial G_{1\eta}(v^k, \eta^k)(T_i) \\ \partial G_{2v}(v^k, \eta^k)(T_i) & \partial G_{2\eta}(v^k, \eta^k)(T_i) \end{pmatrix} \begin{pmatrix} s_1^k \\ s^k \end{pmatrix}; \\ & v^{k+1} = v^k + s_1^k \quad \eta^{k+1} = \eta^k + s_2^k; \end{aligned}$$
 end

Algorithm 5: semidiffbare Newton Methode

mit

$$L = \int_{\Omega} (v^{2} + \epsilon_{1}) \nabla T_{i} \nabla T_{j} dx$$

$$G_{1} = \left(2 \left(\int_{\Omega} u^{dis} T_{i} T_{j} dx \right)_{ij} + 2 \epsilon_{2} \left(\int_{\Omega} \nabla T_{i} \nabla T_{j} dx \right)_{ij} + \frac{2}{\epsilon_{3}} \left(\int_{\Omega} T_{i} T_{j} dx \right)_{ij} \right) v^{k}$$

$$- \frac{2}{\epsilon_{3}} \left(\int_{\Omega} T_{j} dx \right)_{j} + \left(\int_{\Omega} T_{i} T_{j} dx \right)_{ij} \eta^{k}$$

$$G_{2} = \left(\int_{\Omega} T_{i} T_{j} dx \right)_{ij} \left(\eta_{i}^{h} - \max \left\{ 0, \eta_{i}^{h} + c(v_{i}^{h} - v_{0}^{h}) \right\} - \min \left\{ 0, \eta_{i}^{h} + cv_{i}^{h} \right\} \right)_{i}$$

$$\partial G_{1v} = 2 \left(\int_{\Omega} u^{dis} T_{i} T_{j} dx \right)_{ij} + 2 \epsilon_{2} \left(\int_{\Omega} \nabla T_{i} \nabla T_{j} dx \right)_{ij} + \frac{2}{\epsilon_{3}} \left(\int_{\Omega} T_{i} T_{j} dx \right)_{ij}$$

$$\partial G_{1\eta} = \left(\int_{\Omega} T_{i} T_{j} dx \right)_{ij}$$

$$\partial G_{2v} = \left(\int_{\Omega} \frac{\partial f}{\partial v} T_{i} T_{j} \right)_{ij}$$

$$\partial G_{2\eta} = \left(\int_{\Omega} \frac{\partial f}{\partial \eta} T_{i} T_{j} \right)_{ij}$$

$$f = \eta - \max \{ 0, \eta + c(v - v_{0}) \} - \min \{ 0, \eta + cv \}$$

 $1/h_1h_2$ kommt nicht in der Newton Methode vor, da es vorher gekürzt wurde.

4. Fazit und Ausblick

Jetzt könnte man noch untersuchen, ob auch mit weniger Voraussetzungen an u_0 und v_0 das Problem eine eindeutige Lösung hat. Dieses werde ich jedoch im Rahmen der Bachelorarbeit nicht untersuchen können.

Am Ende der Arbeit steht in der Regel die Zusammenfassung der geleisteten Arbeit. Hier werden noch einmal die zentralen Punkte der Aufgabenstellung und der Arbeit aufgelistet, ohne dabei die Sätze und Aussagen aus den vorherigen Teilen Arbeit wörtlich zu wiederholen. Dieser Teil sollte auch andere Standpunkte der Arbeit aufzeigen, wie z.B.

- Diskussion über Einschränkungen oder Begrenzungen der Arbeit oder der Methoden, ohne die Sachen dabei negativ zu formulieren.
- Darstellung von offenen Problemen, Perspektiven und Ausblicke für zukünftige Arbeiten.

A. Allgemeine Informationen

A.1. Rechnungen

In diesem Kapitel werden alle Rechnungen vorgestellt, die zur numerischen Darstellung der Optimierung nach v notwendig sind.

A.1.1. numerische Darstellung von G_1

Die Formel

$$G_{1}(v^{h}, \eta^{h}) = \left(2\left(\int_{\Omega} u^{dis} T_{i} T_{j} \, \mathrm{d}x\right)_{ij} + 2\epsilon_{2}\left(\int_{\Omega} \nabla T_{i} \nabla T_{j} \, \mathrm{d}x\right)_{ij} + \frac{2}{\epsilon_{3}}\left(\int_{\Omega} T_{i} T_{j} \, \mathrm{d}x\right)_{ij}\right) v^{k}$$
$$-\frac{2}{\epsilon_{3}}\left(\int_{\Omega} T_{j} \, \mathrm{d}x\right)_{j} + \left(\int_{\Omega} T_{i} T_{j} \, \mathrm{d}x\right)_{ij} \eta^{k}$$
$$= \left(2A + 2\epsilon_{2}B + \frac{2}{\epsilon_{3}}D\right) v^{h} - \frac{2}{\epsilon_{3}}c + D\eta^{h}$$

soll berechnet werden.

Um A, B, D zu berechnen, brauchen wir $\int_E \varphi_i \varphi_j$ bzw. $\int_E \nabla \varphi_i \nabla \varphi_j$, wobei E das Einheitsdreieck ist.

Nun können wir die einzelnen Matrizen berechnen. Die Berechnung erfolgt analog zur Optimierung nach u. Bei den Matrizen gibt es immer die Fälle, dass i und j gleich sind, j rechts neben i ist, j direkt unter i liegt und j rechts unter i liegt. Für alle anderen i und j ist der Matrixeintrag immer 0. Die Bezeichnungen sind die Gleichen, wie bei u.

Berechnung der Matrix A

$$\begin{split} A_{i,i} &= \int\limits_{\Omega} u^{dis}_{E_1} T_i \, \mathrm{d}x \\ &= \int\limits_{E_1} u^{dis}_{E_1} \varphi_1 \varphi_1 \, \mathrm{d}x + \int\limits_{E_2} u^{dis}_{E_2} \varphi_2 \varphi_2 \, \mathrm{d}x + \int\limits_{E_3} u^{dis}_{E_3} \varphi_0 \varphi_0 \, \mathrm{d}x \\ &+ \int\limits_{E_4} u^{dis}_{E_4} \varphi_0 \varphi_0 \, \mathrm{d}x + \int\limits_{E_5} u^{dis}_{E_5} \varphi_2 \varphi_2 \, \mathrm{d}x + \int\limits_{E_6} u^{dis}_{E_6} \varphi_1 \varphi_1 \, \mathrm{d}x \\ &= \frac{1}{12} u^{dis}_{E_1} + \frac{1}{12} u^{dis}_{E_2} + \frac{1}{12} u^{dis}_{E_3} + \frac{1}{12} u^{dis}_{E_4} + \frac{1}{12} u^{dis}_{E_5} + \frac{1}{12} u^{dis}_{E_6} \\ &= \frac{1}{12} \left(\sum_{i=1}^6 u^{dis}_{E_i} \right) \end{split}$$

$$A_{i,i+1} = \int_{\Omega} u^{dis} T_i T_{i+1} \, \mathrm{d}x = \int_{E_3} u^{dis}_{E_3} \varphi_0 \varphi_1 \, \mathrm{d}x + \int_{E_6} u^{dis}_{E_6} \varphi_0 \varphi_1 \, \mathrm{d}x$$
$$= \frac{1}{24} u^{dis}_{E_3} + \frac{1}{24} u^{dis}_{E_6} = \frac{1}{24} \left(u^{dis}_{E_3} + u^{dis}_{E_6} \right)$$

$$A_{i,i+1+n} = \int_{\Omega} u^{dis} T_i T_{i+1+n} \, \mathrm{d}x = \int_{E_4} u^{dis}_{E_4} \varphi_0 \varphi_1 \, \mathrm{d}x + \int_{E_5} u^{dis}_{E_5} \varphi_0 \varphi_1 \, \mathrm{d}x$$
$$= \frac{1}{24} u^{dis}_{E_4} + \frac{1}{24} u^{dis}_{E_5} = \frac{1}{24} \left(u^{dis}_{E_4} + u^{dis}_{E_5} \right)$$

$$A_{i,i+n+2} = \int_{\Omega} u^{dis} T_i T_{i+2+n} \, \mathrm{d}x = \int_{E_5} u^{dis}_{E_5} \varphi_1 \varphi_2 \, \mathrm{d}x + \int_{E_6} u^{dis}_{E_6} \varphi_1 \varphi_2 \, \mathrm{d}x$$
$$= \frac{1}{24} u^{dis}_{E_5} + \frac{1}{24} u^{dis}_{E_6} = \frac{1}{24} \left(u^{dis}_{E_5} + u^{dis}_{E_6} \right)$$

Berechnung der Matrix B

$$B_{i,i} = \int_{\Omega} \nabla T_i \nabla T_i \, dx$$

$$= \int_{E_1} \nabla \varphi_1 \nabla \varphi_1 \, dx + \int_{E_2} \nabla \varphi_2 \nabla \varphi_2 \, dx + \int_{E_3} \nabla \varphi_0 \nabla \varphi_0 \, dx$$

$$+ \int_{E_4} \nabla \varphi_0 \nabla \varphi_0 \, dx + \int_{E_5} \nabla \varphi_2 \nabla \varphi_2 \, dx + \int_{E_6} \nabla \varphi_1 \nabla \varphi_1 \, dx$$

$$= \frac{1}{2} + \frac{1}{2} + 1 + 1 + \frac{1}{2} + \frac{1}{2} = 4$$

$$B_{i,i+1} = \int_{\Omega} \nabla T_i \nabla T_{i+1} \, dx = \int_{E_3} \nabla \varphi_0 \nabla \varphi_1 \, dx + \int_{E_6} \nabla \varphi_0 \nabla \varphi_1 \, dx$$
$$= -\frac{1}{2} - \frac{1}{2} = -1$$

$$B_{i,i+n+1} = \int_{\Omega} \nabla T_i \nabla T_{i+1+n} \, dx = \int_{E_4} \nabla \varphi_0 \nabla \varphi_1 \, dx + \int_{E_5} \nabla \varphi_0 \nabla \varphi_1 \, dx$$
$$= -\frac{1}{2} - \frac{1}{2} = -1$$

$$B_{i,i+n+2} = \int_{\Omega} \nabla T_i \nabla T_{i+2+n} \, \mathrm{d}x$$
$$= \int_{E_5} \nabla \varphi_1 \nabla \varphi_2 \, \mathrm{d}x + \int_{E_6} \nabla \varphi_1 \nabla \varphi_2 \, \mathrm{d}x = 0$$

Berechnung des Vektors c

$$c := \int_{\Omega} T_i \, \mathrm{d}x = \sum_{E \in E_k} \int_E T_i \, \mathrm{d}x$$

Wie immer reicht es, die sechs Dreiecke um den Gitterpunkt i zu betrachten. Es gilt:

$$\int\limits_{E} T_i \, \mathrm{d}x = \frac{1}{6} \ \forall i$$

Also berechnen wir

$$\int_{\Omega} T_i \, \mathrm{d}x = \sum_{E \in E_k} \int_E T_i \, \mathrm{d}x =$$

$$= \int_{E_1} T_i \, \mathrm{d}x + \int_{E_2} T_i \, \mathrm{d}x + \int_{E_3} T_i \, \mathrm{d}x + \int_{E_4} T_i \, \mathrm{d}x + \int_{E_5} T_i \, \mathrm{d}x + \int_{E_6} T_6 \, \mathrm{d}x$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

Falls i an einem Rand liegen sollte, werden die Dreiecke, die nicht vorhanden sind, weggelassen.

Berechnung der Matrix D

$$D_{i,i} = \int_{\Omega} T_i T_i \, dx$$

$$= \int_{E_1} \varphi_1 \varphi_1 \, dx + \int_{E_2} \varphi_2 \varphi_2 \, dx + \int_{E_3} \varphi_0 \varphi_0 \, dx$$

$$+ \int_{E_4} \varphi_0 \varphi_0 \, dx + \int_{E_5} \varphi_2 \varphi_2 \, dx + \int_{E_6} \varphi_1 \varphi_1 \, dx$$

$$= \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{2}$$

$$D_{i,i+1} = \int_{\Omega} T_i T_{i+1} \, dx = \int_{E_3} \varphi_0 \varphi_1 \, dx + \int_{E_6} \varphi_0 \varphi_1 \, dx$$
$$= \frac{1}{24} + \frac{1}{24} = \frac{1}{12}$$

$$D_{i,i+n+1} = \int_{\Omega} T_i T_{i+1+n} \, dx = \int_{E_4} \varphi_0 \varphi_1 \, dx + \int_{E_5} \varphi_0 \varphi_1 \, dx$$
$$= \frac{1}{24} + \frac{1}{24} = \frac{1}{12}$$

$$D_{i,i+n+2} = \int_{\Omega} T_i T_{i+2+n} \, dx = \int_{E_5} \varphi_1 \varphi_2 \, dx + \int_{E_6} \varphi_1 \varphi_2 \, dx$$
$$= \frac{1}{24} + \frac{1}{24} = \frac{1}{12}$$

A.1.2. Berechnung von G_{2v}

Es muss $\int_{\Omega} \frac{\partial f}{\partial v} T_i T_j \, dx$ berechnet werden. Dazu integriert man statt über Ω wieder über die einzelnen Dreiecke. Dabei ist zu beachten, dass für gerade und ungerade Dreiecke andere Ergebnisse zustande kommen:

ij	$\int_{E} \frac{\partial f}{\partial v} T_i T_j \mathrm{d}x \text{ gerades Dreieck}$	$\int_{E} \frac{\partial f}{\partial v} T_{i} T_{j} \mathrm{d}x \text{ ungerades Dreieck}$
00	$\frac{1}{60}(f_1^h + 3f_2^h + f_3^h)$	$\frac{1}{60}(f_1^h + 3f_2^h + f_3^h)$
11	$\frac{1}{60}(f_1^h + f_2^h + 3f_3^h)$	$\frac{1}{60}(3f_1^h + f_2^h + f_3^h)$
22	$\frac{1}{60}(3f_1^h + f_2^h + f_3^h)$	$\frac{1}{60}(f_1^h + f_2^h + 3f_3^h)$
01	$\frac{1}{120}(f_1^h + 2f_2^h + 2f_3^h)$	$\frac{1}{120}(2f_1^h + 2f_2^h + f_3^h)$
02	$\frac{1}{120}(2f_1^h + 2f_2^h + f_3^h)$	$\frac{1}{120}(f_1^h + 2f_2^h + 2f_3^h)$
12	$\frac{1}{120}(2f_1^h + f_2^h + 2f_3^h)$	$\frac{1}{120}(2f_1^h + f_2^h + 2f_3^h)$

Dabei ist f_1^h bei einem geraden Dreieck die Auswertung von f^h an der oberen linken Ecke des Dreiecks. Die anderen Bezeichnungen sind darauf aufbauend.

Damit können wir ∂G_{2v} diskretisieren. Wir nennen die Diskretisierung F_{ij} . Hier hat man wieder die vier Fälle:

$$\begin{split} F_{i,i} &= \int\limits_{\Omega} f^h T_i T_i \, \mathrm{d}x \\ &= \int\limits_{E_1} f^h_{E_1} \varphi_1 \varphi_1 \, \mathrm{d}x + \int\limits_{E_2} f^h_{E_2} \varphi_2 \varphi_2 \, \mathrm{d}x + \int\limits_{E_3} f^h_{E_3} \varphi_0 \varphi_0 \, \mathrm{d}x \\ &+ \int\limits_{E_4} f^h_{E_4} \varphi_0 \varphi_0 \, \mathrm{d}x + \int\limits_{E_5} f^h_{E_5} \varphi_2 \varphi_2 \, \mathrm{d}x + \int\limits_{E_6} f^h_{E_6} \varphi_1 \varphi_1 \, \mathrm{d}x \\ &= \frac{1}{60} \left(\left(f^h_1 + f^h_2 + 3f^h_3 \right)_{E_1} + \left(f^h_1 + f^h_2 + 3f^h_3 \right)_{E_2} + \left(f^h_1 + 3f^h_2 + f^h_3 \right)_{E_3} \\ &+ \left(f^h_1 + 3f^h_2 + f^h_3 \right)_{E_4} + \left(3f^h_1 + f^h_2 + f^h_3 \right)_{E_5} + \left(3f^h_1 + f^h_2 + f^h_3 \right)_{E_6} \right) \end{split}$$

$$A_{i,i+1} = \int_{\Omega} f^h T_i T_{i+1} \, dx = \int_{E_3} f_{E_3}^h \varphi_0 \varphi_1 \, dx + \int_{E_6} f_{E_6}^h \varphi_0 \varphi_1 \, dx$$
$$= \frac{1}{120} \left(\left(f_1^h + 2f_2^h + 2f_3^h \right)_{E_3} + \left(2f_1^h + 2f_2^h + f_3^h \right)_{E_6} \right)$$

$$A_{i,i+1+n} = \int_{\Omega} f^h T_i T_{i+1+n} \, \mathrm{d}x = \int_{E_4} f_{E_4}^h \varphi_0 \varphi_1 \, \mathrm{d}x + \int_{E_5} f_{E_5}^h \varphi_0 \varphi_1 \, \mathrm{d}x$$
$$= \frac{1}{120} \left(\left(2f_1^h + 2f_2^h + f_3^h \right)_{E_4} + \left(f_1^h + 2f_2^h + 2f_3^h \right)_{E_5} \right)$$

$$A_{i,i+n+2} = \int_{\Omega} f^h T_i T_{i+2+n} \, \mathrm{d}x = \int_{E_5} f_{E_5}^h \varphi_1 \varphi_2 \, \mathrm{d}x + \int_{E_6} f_{E_6}^h \varphi_1 \varphi_2 \, \mathrm{d}x$$
$$= \frac{1}{120} \left(\left(2f_1^h + f_2^h + 2f_3^h \right)_{E_5} + \left(2f_1^h + f_2^h + 2f_3^h \right)_{E_6} \right)$$

hierbei bedeutet $(f_1^h + f_2^h + f_3^h)_{E_j}$, dass f_i^h f auf dem *i*-ten Gitterpunkt des Dreieck E_j ausgewertet wird. Die Transformation mit $1/h_1h_2$ wird auch hier am Schluss ausgeführt.

A.2. Code

Literaturverzeichnis

[1] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. *Optimazation with PDE Constraints*. Springer, 2009. siehe S.