CREDITI DI TIPO D MATLAB

Attività svolta da Christian Sfeir (0284535) e Matteo Cipolletta (0306676)

PROBLEMI

Problema 2.1. Si consideri la funzione \sqrt{x} .

(a) Sia p(x)il polinomio d'interpolazione di \sqrt{x} sui nodi

$$x_0 = 0$$
, $x_1 = \frac{1}{64}$, $x_2 = \frac{4}{64}$, $x_3 = \frac{9}{64}$, $x_4 = \frac{16}{64}$, $x_5 = \frac{25}{64}$, $x_6 = \frac{36}{64}$, $x_7 = \frac{49}{64}$, $x_8 = 1$.

Calcolare il vettore (colonna)

$$[p(\zeta_1) - \sqrt{\zeta_1} \quad p(\zeta_2) - \sqrt{\zeta_2} \quad \cdots \quad p(\zeta_{21}) - \sqrt{\zeta_{21}}]^T$$

dove $\zeta_i = \frac{i-1}{20}$ per $i = 1, \dots, 21$, e osservare in che modo varia la differenza $p(\zeta_i) - \sqrt{\zeta_i}$ al variare di i da 1 a 21.

(b) Tracciare il grafico di \sqrt{x} e di p(x) sull'intervallo [0,1], ponendo i due grafici su un'unica figura e inserendo una legenda che ci dica qual è la funzione \sqrt{x} e qual è il polinomio p(x).

SOLUZIONE:

a)

R =

Columns 1 through 9

$$0.0094 \quad -0.0166 \quad 0.0063 \quad 0.0261 \quad -0.0000 \quad -0.0468 \quad -0.0528 \quad 0.0190$$

Columns 10 through 18

Columns 19 through 21

Problema 2.2. Si consideri la funzione

$$f(x) = e^x$$
.

Per ogni intero $n \ge 1$ indichiamo con I_n la formula dei trapezi di ordine n per approssimare

$$I = \int_0^1 f(x) dx = 1.7182818284590...$$

- (a) Per ogni fissato $\varepsilon>0$ determinare un $n=n(\varepsilon)$ tale che $|I-I_n|\leq \varepsilon.$
- (b) Costruire una tabella che riporti vicino ad ogni $\varepsilon \in \{10^{-1}, 10^{-2}, \dots, 10^{-10}\}$:
 - il numero $n(\varepsilon)$;
 - il valore I_n per $n = n(\varepsilon)$;
 - il valore esatto I (in modo da confrontarlo con I_n);
 - l'errore $|I I_n|$ (che deve essere $\leq \varepsilon$).
- (c) Calcolare le approssimazioni di I ottenute con le formule dei trapezi I_2 , I_4 , I_8 , I_{16} e confrontarle con il valore esatto I.
- (d) Sia p(x) il polinomio d'interpolazione dei valori I_2 , I_4 , I_8 , I_{16} sui nodi h_2^2 , h_4^2 , h_8^2 , h_{16}^2 , dove $h_2 = \frac{1}{2}$, $h_4 = \frac{1}{4}$, $h_8 = \frac{1}{8}$, $h_{16} = \frac{1}{16}$ sono i passi di discretizzazione relativi alle formule dei trapezi I_2 , I_4 , I_8 , I_{16} rispettivamente. Calcolare p(0) e confrontare I_2 , I_4 , I_8 , I_{16} , p(0) con il valore esatto I. Che cosa si nota?

SOLUZIONE:

A)
$$S_{1A}$$
 $f(x) = e^{x}$. P_{ER} il teorema sul resto della formula dei traferi :

$$\begin{vmatrix}
\int_{0}^{1} e^{x} dx - I_{m} | = | -\frac{f'(4)}{12} \cdot \left(\frac{1}{m}\right)^{2} = \frac{|f'(4)|}{12m^{2}} & (H \in [0,13])$$
 $C_{ALLOLIAHO}$ $f'(x)$:

$$f'(x) = e^{x}$$

$$f'(x$$

b)

Epsilon	n(epsilon)	I_n	Errore
1.0e-01	2	1.7539310925	3.5649264006e-02
1.0e-02	5	1.7240056198	5.7237913237e-03
1.0e-03	16	1.7188411286	5.5930012095e-04
1.0e-04	48	1.7183439765	6.2148054069e-05
1.0e-05	151	1.7182881084	6.2799898122e-06
1.0e-06	476	1.7182824604	6.3197400291e-07
1.0e-07	1506	1.7182818916	6.3133985595e-08
1.0e-08	4760	1.7182818348	6.3197409528e-09
1.0e-09	15051	1.7182818291	6.3209260048e-10
1.0e-10	47595	1.7182818285	6.3191452071e-11

c - d)

Valore esatto I: 1.7182818285
Valori calcolati con i trapezi:
I2 = 1.7539310925, I4 = 1.7272219046, I8 = 1.7205185922, I16 = 1.7188411286
Valore di p(0): 1.7182818285

Confronto:

Errore |I2 - I| = 3.5649264006e-02Errore |I4 - I| = 8.9400760985e-03Errore |I8 - I| = 2.2367637053e-03Errore |I16 - I| = 5.5930012095e-04Errore |p(0) - I| = 1.3438139490e-12

Si nota che p(0) è un'approssimazione di I molto più accurata delle singole formule dei trapezi I_2 , I_4 , I_8 e I_{16} .

Problema 2.3. Consideriamo la funzione $f(x) = x^2 e^{-x}$ e indichiamo con I_n la formula dei trapezi di ordine n per approssimare $I = \int_0^1 f(x) dx$.

- (a) Calcolare I prima manualmente e poi con la funzione simbolica int di MATLAB.
- (b) Calcolare $I_5, I_{10}, I_{20}, I_{40}$.
- (c) Calcolare p(0), dove p(x) è il polinomio d'interpolazione dei dati (h_0^2, I_5) , (h_1^2, I_{10}) , (h_2^2, I_{20}) , (h_3^2, I_{40}) e h_0, h_1, h_2, h_3 sono i passi di discretizzazione delle formule dei trapezi $I_5, I_{10}, I_{20}, I_{40}$.
- (d) Riportare in una tabella:
 - i valori I₅, I₁₀, I₂₀, I₄₀, p(0);
 - gli errori $|I_5 I|$, $|I_{10} I|$, $|I_{20} I|$, $|I_{40} I|$, |p(0) I|.
- (e) Posto $\varepsilon = |p(0) I|$, determinare un n in modo tale che la formula dei trapezi I_n fornisca un'approssimazione di I con errore $|I_n I| \le \varepsilon$. Calcolare successivamente I_n e verificare che effettivamente $|I_n I| \le \varepsilon$.

SOLUZIONE:

a)
$$I = \int_{0}^{1} x^{2}e^{-x} dx = x^{2} \cdot (-e^{-x}) - \int_{0}^{1} e^{-x} \cdot 2x dx = x^{2} \cdot (-e^{-x}) + 2 \int_{0}^{1} xe^{-x} dx = 1$$

$$INTEGRATIONE$$

$$= x^{2} \cdot (-e^{-x}) + 2 \cdot (x \cdot (-e^{-x}) - \int_{0}^{1} -e^{-x} dx) = x^{2} \cdot (-e^{-x}) + 2 \cdot (x \cdot (-e^{-x}) + \int_{0}^{1} e^{-x} dx) = 1$$

$$= x^{2} \cdot (-e^{-x}) + 2 \cdot (x \cdot (-e^{-x}) - e^{-x}) \Big|_{0}^{1} = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x}\Big|_{0}^{1} = 1$$

$$= -1^{2}e^{-1} - 2e^{-1} - 2e^{-1} - (-0^{2}e^{-0} - 2 \cdot 0 \cdot e^{-0} - 2e^{-0}) = -\frac{5}{e} + 2 = 0,1606027941...$$

IN MATLAB:

```
syms x;
f = x^2 * exp(-x); % Definisci la funzione simbolica
integrale = int(f, x, 0, 1); % Calcola l'integrale definito da 0 a 1
disp(integrale); % Mostra il risultato
```

2 - 5*exp(-1)

b-c-d)

Tabella dei risultati:

n	In	In - I
5	0.1618165768	1.2137826779e-03
10	0.1609085786	3.0578448931e-04
20	0.1606793868	7.6592668551e-05
40	0.1606219515	1.9157332069e-05
p(0)	0.1606027941	1.6237011735e-14
e)		

e)

e) Posto
$$\varepsilon$$
 = $|p(o) - I| \approx 1,6237011435 \cdot 10^{14}$

Per il teorema sull' errore della formula dei trapezi,

$$|I_m - \int_0^1 x^2 \cdot e^{-x} \, dx| = \left| -\frac{f''(M)}{12} \cdot \left(\frac{1}{m} \right)^2 \right| = \frac{|f''(M)|}{12m^2} \quad (\gamma \in [0,1])$$

Calcalano:

$$|f'(x) = 2 \times e^{-x} - x^2 e^{-x} \quad ; \quad |f''(x) = 2e^{-x} - 4 \times e^{-x} + x^2 e^{-x}$$
 $|f''(x)| = |2e^{-x} - 4 \times e^{-x} + x^2 e^{-x}| < 2e^{-x} + 4 \times e^{-x} + x^2 e^{-x} < 2 + 4 + 1 = 7$

Dunque,
$$|f''(y)| = |f''(y)| < \frac{7}{12m^2}$$

Infonco:
$$|f''(y)| < \frac{7}{12m^2} = m(\varepsilon)$$

In conclusione, se fizendo mam(ε) allowa $|I_m - I| < \varepsilon$

Nel caso $\varepsilon = 1,6237011735 \cdot 10^{16}$ prendero ma S993843)

Risultato per n = 5993843:

$$I n = 0.1606027941$$

$$|I n - I| = 1.0158540675e-14$$

Problema 2.4. Consideriamo la funzione $f(x) = \frac{1}{x \log x}$ e indichiamo rispettivamente con I_n e S_n la formula dei trapezi e di Cavalieri-Simpson di ordine n per approssimare $I = \int_2^5 f(x) dx$.

- (a) Calcolare I prima manualmente e poi con la funzione simbolica int di MATLAB.
- (b) Costruire una tabella che riporti vicino ad ogni valore di

$$n = 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560$$

sia le approssimazioni di I ottenute con I_n e S_n sia i relativi errori $|I_n - I|$ e $|S_n - I|$. Quale delle formule I_n e S_n converge più velocemente al valore esatto I al crescere di n?

SOLUZIONE:

IN MATLAB:

```
syms x
f = 1/(x*log(x)); % Definizione della funzione
integrale = int(f, x, 2, 5); % Calcolo dell'integrale definito da 2 a 5
disp(integrale) % Mostra il risultato
```

log(log(5)) - log(log(2))

b)				
n	I_n	S_n	I_n - I	S_n - I
5	8.667092e-01	8.426174e-01	2.431127e-02	2.195180e-04
10	8.486404e-01	8.424135e-01	6.242456e-03	1.557515e-05
20	8.439702e-01	8.423989e-01	1.572295e-03	1.011061e-06
40	8.427917e-01	8.423980e-01	3.938322e-04	6.382981e-08
80	8.424964e-01	8.423979e-01	9.850591e-05	3.999568e-09
160	8.424225e-01	8.423979e-01	2.462948e-05	2.501337e-10
320	8.424041e-01	8.423979e-01	6.157557e-06	1.563594e-11
640	8.423995e-01	8.423979e-01	1.539401e-06	9.768852e-13
1280	8.423983e-01	8.423979e-01	3.848510e-07	6.228351e-14
2560	8.423980e-01	8.423979e-01	9.621279e-08	3.663736e-15

• Cavalieri-Simpson convergerà più velocemente all'integrale esatto I rispetto alla formula dei trapezi, soprattutto per valori di n più grandi.

Problema 2.6. Si consideri il sistema lineare A_n **x** = \mathbf{b}_n , dove $\mathbf{b}_n = [1, 1, ..., 1]^T$ e A_n è la matrice $n \times n$ definita nel modo seguente:

$$(A_n)_{ij} = \begin{cases} 3, & \text{se } i = j, \\ -(\frac{1}{2})^{\max(i,j)-1}, & \text{se } i \neq j. \end{cases}$$

- (a) Scrivere esplicitamente A_n per n=5.
- (b) Dimostrare che, qualunque sia n, A_n è una matrice a diagonale dominante in senso stretto per righe e per colonne. Dedurre che i metodi di Jacobi e Gauss-Seidel per risolvere un sistema lineare di matrice A_n sono convergenti.
- (c) Risolvere con il comando "\" il sistema lineare $A_n \mathbf{x} = \mathbf{b}_n$ per n = 5, 10, 20.
- (d) Risolvere il sistema lineare $A_n \mathbf{x} = \mathbf{b}_n$ per n = 5, 10, 20 con i metodi di Jacobi e Gauss-Seidel entro una soglia di precisione $\varepsilon = 10^{-7}$ partendo dal vettore d'innesco $\mathbf{x}^{(0)} = \mathbf{0}$.
- (e) Costruire una tabella che vicino ad ogni n = 5, 10, 20 riporti:
 - la soluzione esatta \mathbf{x} del sistema $A_n\mathbf{x} = \mathbf{b}_n$ ottenuta al punto (c);
 - le soluzioni approssimate \mathbf{x}_J e \mathbf{x}_G ottenute con i metodi di Jacobi e Gauss-Seidel al punto (d);
 - gli errori $\|\mathbf{x}_J \mathbf{x}\|_{\infty}$ e $\|\mathbf{x}_G \mathbf{x}\|_{\infty}$;
 - i numeri K_J e K_G che contano le iterazioni effettuate da Jacobi e Gauss-Seidel per calcolare \mathbf{x}_J e \mathbf{x}_G , rispettivamente.

SOLUZIONE:

a)	3	-1/2	-1/4	-1/8	-1/16
	- 1/2	3	-1/4	-1/8	-1/16
	- 3/4	-1/4	3	-1/8	- 1/16
	-1/8	-4/8	-1/8	3	-1/16
	-2/16	-1/16	-1/16	-1/6	3

UNA HATRICE E DIAGONALE IN SENSO STRETTO PER RIGHE SE PER OGNI RIGAL VALE:

$$|a_{ii}| > \sum_{i \neq j} |a_{ij}|$$

 $O_{A}: -a_{i,i}=3$ $-a_{i,j}=-\left(\frac{1}{2}\right)^{\max(i,j)-1}$ $con i \neq j$

LA SOMMA PER UNARIGA i $\stackrel{.}{E}$: $\sum_{j\neq i} |\alpha_{ij}| = \sum_{j\neq i} \left(\frac{1}{2}\right)^{\max(i,j)-1}$

DIVIDIANO IL CALCOLO IN 2 CASI:

PER J > i : max (i, 5) = i => |aij| = $\left(\frac{1}{2}\right)^{i-1}$ PER J > i : max (i, 5) = $J = |aij| = \left(\frac{1}{2}\right)^{3-1}$

LA SOMMA TOTALE E: $\sum_{J\neq i} |\partial_{iJ}| = \sum_{J\neq i} (\frac{1}{2})^{i-1} + \sum_{J\neq i} (\frac{1}{2})^{J-1}$ (4)

(1) PER JUL CI SONO C-1 TERMINI UGUACI A (1) 1-1, QUINDI:

$$\sum_{5\leq i} \left(\frac{1}{2}\right)^{i-1} = (i-1) \cdot \left(\frac{1}{2}\right)^{i-1}.$$

(2) PER J > i SI HA: $\sum_{J>i} \left(\frac{1}{2}\right)^{5-4} = \left(\frac{1}{2}\right)^{i} + \left(\frac{1}{2}\right)^{i+1} + \dots + \left(\frac{1}{2}\right)^{m-1} =$

SOUHA GEONETIELCA

$$\frac{1}{2} \frac{\left(\frac{1}{2}\right)^{i} \left(1 - \left(\frac{1}{2}\right)^{m-i}\right)}{1 - \frac{1}{2}} = 2 \cdot \left(\frac{1}{2}\right)^{i} \left(1 - \left(\frac{1}{2}\right)^{m-i}\right)$$

QUINDI: $\sum_{J \neq i} |\Omega_{iJ}| = (i-1) \cdot \left(\frac{1}{2}\right)^{i-1} + 2 \cdot \left(\frac{1}{2}\right)^{i} \left(1 - \left(\frac{1}{2}\right)^{m-i}\right) \leq \left(i-1\right) \cdot \left(\frac{1}{2}\right)^{i-1} + \left(\frac{1}{2}\right)^{i-1} = i \cdot \left(\frac{1}{2}\right)^{i-1} = f(i)$

DERIVIANO S(i): i. 2-(i-1)

 $f'(i) = 1.2^{-(i-1)} + i.(-2^{-(i-1)}.ln(2)) = 2^{-(i-1)} - i.2^{-(i-1)}.ln(2) =$

= $2^{-(i-1)}(1-i\cdot \ln(2)) = -2^{-i+1}\cdot (\ln(2)\cdot i-1)$

LA PONGO 70: -2-1+1 (ln(2). L-1) 30

·POICHE - 2- C+1 E SEMPIZE MAGGIORE DI ZERO, DEVO DIMOSTRARE CHE

ln(2). i-1 20 <=> i = 1 = 1,44269504...

QuiNoi f(1,44269504...) = 1,061475691... <3

Possiano concludere che la natrice Am è a diagonale dorinante in senso stretto per pighe.

DIHOSTRIAHO CHE LA MATRICE Am E SIMMETRICA: (Am)ij = (Am)Ji Vi,J

SE $i \neq J$, ABBIAHO: $(A_m)_{iJ} = -\left(\frac{1}{2}\right)^{max(i,J)-1} \in (A_m)_{Ji} = -\left(\frac{1}{2}\right)^{max(J,i)-1}$

Poiche max (i, j) = max (j, i) si HA CHE: (Am) = (Am)ji

=> Am è SIMMETRICA.

GRAZIE ALLA SIMHETICIA DI AM, ESSENDO DIAGONALE DOMINANTE IN SENSO STREPPO PER RIGHE IMPLICA AUTOMATI CAMENTE CHE LA MATRICE È A DIAGONALE DOMINANTE IN SENSO STRETTO PER COLONNE. PERTANTO, I HETODI DI JACOBI E GAUSS-SEIDE SONO CONVERGENTI PER AM.

```
Matrice A:
 Columns 1 through 4
  -0.5000000000000000
                 3.00000000000000 -0.250000000000000
                                              -0.1250000000000000
 -0.25000000000000 -0.250000000000000
                               3.000000000000000 -0.125000000000000
 3.0000000000000000
 Column 5
 -0.0625000000000000
 -0.0625000000000000
 -0.0625000000000000
 -0.0625000000000000
  3.0000000000000000
n = 5:
- uso il comando "/":
   soluzione:
  0.472839561157381
  0.472839561157381
  0.436467287222197
  0.398640122329607
  0.370433052747220
- uso il metodo di Gauss-Seidel:
   soluzione:
  0.472839495700892
  0.472839536275474
  0.436467276654638
  0.398640117555638
  0.370433050545555
  iterazioni:
   7
   norma:
   6.545648906230994e-08
```

>> Problema6

```
- uso il metodo di Jacobi:
   soluzione:
   0.472839520639523
   0.472839520639523
  0.436467256695226
   0.398640103198520
   0.370433042053835
   iterazioni:
    12
    norma:
     4.051785723602208e-08
n = 10:
- uso il comando "/":
   soluzione:
   0.482920946916211
   0.482920946916211
   0.445773181768810
  0.407139506015513
   0.378331035084876
   0.359580987851714
   0.348197124552742
   0.341556432073382
   0.337778975988719
   0.335666796313260
 - uso il metodo di Gauss-Seidel:
   soluzione:
   0.482920853681719
   0.482920910890988
   0.445773166214829
```

- 0.407139498827743
- 0.378331031635072
- 0.359580986162509
- 0.348197123717112
- 0.341556431657905
- 0.337778975781665
- 0.335666796210006

iterazioni:

7

```
norma:
     9.323449240428161e-08
 - uso il metodo di Jacobi:
    soluzione:
   0.482920898075894
   0.482920898075894
   0.445773144884688
   0.407139482755145
   0.378331021912008
   0.359580980824802
   0.348197120921409
   0.341556430227333
   0.337778975058110
   0.335666795846191
    iterazioni:
    12
   norma:
     4.884031762353302e-08
n = 20:
 - uso il comando "/":
   soluzione:
   0.483235935360422
   0.483235935360422
   0.446063940332697
   0.407405065503864
   0.378577804053791
   0.359815526975880
   0.348424238475304
   0.341779214559493
   0.337999294603625
```

0.00122222000020

0.335885737244730

0.334718624665744

0.334080313405781

0.333733894550127

0.333547084865033

0.333446888426869

0.333393396716275

0.333364954734990

0.333349885847086

0.333341927498632

```
- uso il metodo di Gauss-Seidel:
  soluzione:
 0.483235841376342
  0.483235899044855
 0.446063924653065
 0.407405058257840
 0.378577800575872
 0.359815525272765
 0.348424237632653
 0.341779214140388
 0.337999294394627
 0.335885737140369
  0.334718624613598
  0.334080313379717
  0.333733894537097
 0.333547084858519
  0.333446888423612
 0.333393396714646
 0.333364954734176
 0.333349885846679
 0.333341927498428
 0.333337736383758
  iterazioni:
   7
  norma:
```

- uso il metodo di Jacobi:

9.398408029603900e-08

soluzione:

- 0.483235886390101
- 0.483235886390101
- 0.446063903350300
- 0.407405042181361
- 0.378577790845548
- 0.359815519929902
- 0.348424234833920
- 0.341779212708136
- 0.337999293670142
- 0.335885736776020
- 0.334718624430894
- 0.334080313288232
- 0.333733894491321
- 0.333547084835623
- 0.333446888412162
- 0.333393396708921
- 0.333364954731313
- 0.333349885845247
- 0.333341927497712
- 0.333337736383400

iterazioni:

12

norma:

4.897032157558101e-08

Tabella risultati per n = 5:

x_Direct	x_ Gauus-Seidel	x_Jacobi
0.472839561157381	0.472839495700892	0.472839520639523
0.472839561157381	0.472839536275474	0.472839520639523
0.436467287222197	0.436467276654638	0.436467256695226
0.398640122329607	0.398640117555638	0.39864010319852
0.37043305274722	0.370433050545555	0.370433042053835
k_Gauss-Seidel k	_Jacobi	
7	12	
norma_Gauss-Seidel	norma_Jacobi	
6.54564890623099e-0	8 4.05178572360221	e-08

x_Direct	x_Gauus-Seidel	x_Jacobi
0.482920946916211	0.482920853681719	0.482920898075894
0.482920946916211	0.482920910890988	0.482920898075894
0.44577318176881	0.445773166214829	0.445773144884688
0.407139506015513	0.407139498827743	0.407139482755145
0.378331035084876	0.378331031635072	0.378331021912008
0.359580987851714	0.359580986162509	0.359580980824802
0.348197124552742	0.348197123717112	0.348197120921409
0.341556432073382	0.341556431657905	0.341556430227333
0.337778975988719	0.337778975781665	0.33777897505811
0.33566679631326	0.335666796210006	0.335666795846191
k_Gauss-Seidel k	_Jacobi	
7	12	
norma_Gauss-Seidel	norma_Jacobi	

9.32344924042816e-08 4.8840317623533e-08

x_Direct	x_Gauus-Seidel x_Jacobi	
0.483235935360422	0.483235841376342	0.48323588639010
0.483235935360422	0.483235899044855	0.48323588639010
0.446063940332697	0.446063924653065	0.446063903350
0.407405065503864	0.40740505825784	0.40740504218136
0.378577804053791	0.378577800575872	0.37857779084554
0.35981552697588	0.359815525272765	0.35981551992990
0.348424238475304	0.348424237632653	0.3484242348339
0.341779214559493	0.341779214140388	0.34177921270813
0.337999294603625	0.337999294394627	0.33799929367014
0.33588573724473	0.335885737140369	0.3358857367760
0.334718624665744	0.334718624613598	0.33471862443089
0.334080313405781	0.334080313379717	0.33408031328823
0.333733894550127	0.333733894537097	0.33373389449132
0.333547084865033	0.333547084858519	0.33354708483562
0.333446888426869	0.333446888423612	0.33344688841216
0.333393396716275	0.333393396714646	0.33339339670892
0.33336495473499	0.333364954734176	0.33336495473131
0.333349885847086	0.333349885846679	0.33334988584524
0.333341927498632	0.333341927498428	0.33334192749771
0.33333773638386	0.333337736383758	0.333337736383
k Gauss-Seidel k	Jacobi	
- 	- 	
7	12	
norma Gauss-Seidel	norma Jacobi	

9.3984080296039e-08 4.8970321575581e-08

Problema 2.7. Si consideri il sistema lineare $A_n \mathbf{x} = \mathbf{b}_n$, dove $\mathbf{b}_n = [-1, 1, -1, 1, \dots, (-1)^n]^T$, $A_n = (n+1)I_n - B_n$, I_n è la matrice identità $n \times n$ e $B_n = \left[\sin \frac{\pi i}{n+1} \sin \frac{\pi j}{n+1}\right]_{i,j=1}^n$.

- (a) Dimostrare che, qualunque sia n, A_n è una matrice a diagonale dominante in senso stretto per righe e per colonne. Dedurre che i metodi di Jacobi e Gauss-Seidel per risolvere un sistema lineare di matrice A_n sono convergenti.
- (b) Dimostrare che, qualunque sia n e qualunque sia la partizione $[n_1, n_2, \ldots, n_m]$ di n che si considera, il metodo di Jacobi a blocchi $[n_1, n_2, \ldots, n_m]$ è applicabile per risolvere il sistema $A_n \mathbf{x} = \mathbf{b}_n$.
- (c) Fissiamo n=9 e la partizione di 9 data da [3,3,3]. Immaginiamo di risolvere il sistema $A_n\mathbf{x} = \mathbf{b}_n$ con i metodi di Jacobi, Jacobi a blocchi [3,3,3] e Gauss-Seidel innescati con il vettore nullo $\mathbf{x}^{(0)} = \mathbf{0}$. Costruire una tabella che riporti vicino ad ogni $\varepsilon \in \{10^{-1}, 10^{-2}, \dots, 10^{-10}\}$:
 - i numeri K_{ε}^{J} , K_{ε}^{JB} , K_{ε}^{G} che contano le iterazioni effettuate da Jacobi, Jacobi a blocchi [3, 3, 3] e Gauss-Seidel per convergere entro la precisione ε ;
 - le soluzioni approssimate $\mathbf{x}_{\varepsilon}^{J}$, $\mathbf{x}_{\varepsilon}^{J_{B}}$, $\mathbf{x}_{\varepsilon}^{G}$ calcolate da Jacobi, Jacobi a blocchi [3, 3, 3] e Gauss-Seidel;
 - le norme ∞ degli errori $\|\mathbf{x}_{\varepsilon}^{J} \mathbf{x}\|_{\infty}$, $\|\mathbf{x}_{\varepsilon}^{J_{B}} \mathbf{x}\|_{\infty}$, $\|\mathbf{x}_{\varepsilon}^{G} \mathbf{x}\|_{\infty}$, essendo \mathbf{x} la soluzione esatta del sistema.

SOLUZIONE:

a)

LA HATRICE Am = (m+1) Im- Bm, DOVE IM E'LA MATRICE IDENTITÀ MXM E Bm HA EVENEUTI by=[SIM(Ti Mti)SIM(T)]" L'ELEMENTO DIAGONALE DI AME aii = (M+1)-bii ORA bii = SIM2 (iT). ALLORA $\partial_{ii} = (m+1) - \sin^2\left(\frac{\pi i}{m+1}\right)$ GLI ELENENTI FUORI DALLA DIAGONALE SONO : air = - bir PER i # J ALLORA LA SOMMA DEGLI ELEMENTI FUORI DALLA DIAGONALE DELLA L-ESIMA RIGA SONO: $\sum |\partial_{i,j}| = \sum |b_{i,j}| = \sum |\operatorname{Sim}\left(\frac{\pi i}{m+4}\right) \operatorname{Sim}\left(\frac{\pi J}{m+4}\right)|$ PER LA PROPRIETA DEL SEND (DEVE ESSERE <1) SI HA CHE | bij | <1 : Zlbisl < m-1 QUINDI : | ail = (m+1)-sin2 (Ti) = m-1 VEILO, POICHE SIMP (Ti) < 1 => (M+1)-SIMP (Ti) > M CHE E HAGGIORE STRETTO DI M-1 · LA MATRICE B_m è SIMMETRICA PERCHÈ: Bij = Sim (Ti mti) (TJ mti) = Bji.

QUINDI, PER COSTRUZIONE, BM & SHUCETRICA.

LA MATRICE Am E COSTRUITA COSI: Am = (M+1) Im - Bm. - GLI ELEMENTI DELLA MATRICE IDENTITÀ IM SONO:) 1 DE LEJ - GLI ELEMENTI DELLA MATERCE Am SONO: ai, = (m+1)(Im)is-bis $= 2a_{i,3} = \int_{-b_{i,3}}^{(m+1)-b_{i,3}} \Delta e = i = J$ $-b_{i,3} \Delta e = i \neq J$ VERIFICHIAMO LA SIMPETRIA: 1. SE i= J GU ELEKENTI DIA GONALI SONO UGUALI PER DEFINIZIONE: 2i.i = (m+1) - bi.i 2. SE i + J GU ELEMENTI FUORI DALLA DIAGONALE DI AM SONO: ai = - bi, 5 MA POICHE By & SIMMETRICA, ABBIANO: ai, = - bi, = - bj, i = aj,i. => 2i, j = 25, i Vi, j. Quindi, LA HATRICE Am E SIMUETRICA POICHE AM E SIMMETRICA, LA DOMINANZA DIAGONACE PER RIGHE IMPCICA AUTOHATI CAMENTE LA DOMINANZA DIA GONAJE PER COCONNE. POICHE ABBIAND DINOSTRATO CHE AM E A DIAGONALE DOMINANTE IN SEUSD STRETTO SIA PER RIGHE CHEPER COLONNE, CONCCUDIATIO CHE SIA JA COBI CHE GAUSS-SEIDEL CONVERGONO

NEC METODO DI JACOBI A BLOCCHI, LA MATRICE AM E' DIVISA IN BLOCCHI IN BASE ALLA PARTIZIONE [M1, M2,..., Mm], DOVE M1+M2+...+ Mm=M.

DRA Am = D+R, DOVE . D = E' LA PARTE A BLOCCHI DIAGONALE
.R = BLOCCHI FUORI ALLA DIAGONALE

L METODO DI JACOBI A BLOCCHI E APPLICABILE SE:

- 1. DE INVERTIBILE;
- 2. LA PARTIZIONE SCECTA E' VALIDA, OSSIA D MANTIENE LA SUA STRUTTURA

GRAZIE ALLA PROPRIETA DI DIAGONALE DOMINANTE, LA HATRICE AM È INVERTIBILE

Possiano dividere LA MATRICE Am IN M BLOCCHI DIAGONALI D1, D2,..., Dm:

$$D = \begin{bmatrix} D_1 & 0 & \cdots & 0 \\ 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_m \end{bmatrix}$$

OGNI BLOCCO DE È UNA SOTTOMATRICE DI AM LUNGO LA DIAGONALE PRINCIPALE, ED È INVERTIBILE POICHÉ:

- 1. LA DIAGONALE DI AM E'DOMINANTE IN SEUSO STRETTO.
- 2. | SUTTOBLOCCHI DELLA HATRICE DIAGONALE DOMINANTE EREDITANO LA DOMINANZA
 DIAGONALE IN SENSO STRETTO E QUINDI DI CONSEGUENZA L'INVERTIBILITA'.

PER ESEMPIO CON M=4 E UNA PARTIZIONE DI AM IN DIE BLOCCHI DIAGONALI DIE DO DI DIMENSIONE 2×2 SI HA CHE:

· BLOCCHI DIAGONACI:	D1 =	4.6545 -0.5590	-0.55 9 0 4.0966	, D ₂ =	4.0955 -0.5690	-0.5590 4.6545
SI NOTA CHE ENTRAMBI IN SENSO STRETTO.	1 840	оссні Д)4 E D2	SONO	A DA60N	ALE DOHINANTE
=>1 BLOCCHI SONO INVEI PER QUESTA PARTIZIONE.	RTIBICI	EIL H	etobo bi	<i>Тас</i> ов	A BLOCCH	HI E APPCICABILE

c)
Risultati per epsilon = 0.1
Soluzioni approssimate:

Soluzione_Jacobi_a_blocchi	Soluzione_Gauss_Seidel	Soluzione_Jacobi	
-1.0184e-01	-1.0096e-01	-1.0096e-01	
9.6500e-02	1.0168e-01	1.0358e-01	
-1.0482e-01	-1.0453e-01	-1.0700e-01	
1.1193e-01	1.0409e-01	1.0994e-01	
-8.7455e-02	-1.0633e-01	-1.1111e-01	
1.1193e-01	1.0332e-01	1.0994e-01	
-1.0482e-01	-1.0398e-01	-1.0700e-01	
9.6500e-02	1.0058e-01	1.0358e-01	
-1.0184e-01	-1.0065e-01	-1.0096e-01	

Numero di iterazioni (k):

Jacobi_a_blocchi	Gauss_Seidel	Jacobi
1	1	1

Norma infinito degli errori:

Errore_Jacobi_a_blocchi	Errore_Gauss_Seidel	Errore_Jacobi
1 5712 00	7 1015 00	1 0057 00
1.5713e-02	7.1015e-03	1.2957e-02

Risultati per epsilon = 0.01 Soluzioni approssimate:

Soluzione_Jacobi_a_bloo	chi Sol	.uzione_Gauss_Se	idel Soluzione_Jacobi
-1.0089e-01		-1.0065e-01	-1.0048e-01
9.8314e-02		9.8656e-02	9.8913e-02
-1.0232e-01		-1.0166e-01	-1.0087e-01
9.8324e-02		9.7446e-02	9.7364e-02
-1.0176e-01		-1.0228e-01	-1.0052e-01
9.8324e-02		9.7285e-02	9.7364e-02
-1.0232e-01		-1.0219e-01	-1.0087e-01
9.8314e-02		9.8329e-02	9.8913e-02
-1.0089e-01		-1.0088e-01	-1.0048e-01
Jumero di iterazioni (k):			
Jacobi_a_blocchi Gau	ss_Seidel	Jacobi	
3	2	2	
Norma infinito degli errori	:		
Errore_Jacobi_a_blocchi		_Gauss_Seidel	Errore_Jacobi
1.4058e-03	9.	0100e-04	2.6517e-03

Risultati per epsilon = 0.001 Soluzioni approssimate:

Soluzione_Jacobi_a_b	locchi	Soluzione_Gauss_Seide	l Soluzione_Jacob
	 -		_
-1.0095e-01		-1.0088e-01	-1.0093e-01
9.8190e-02		9.8309e-02	9.8226e-02
-1.0249e-01		-1.0237e-01	-1.0245e-01
9.7127e-02		9.7186e-02	9.7121e-02
-1.0302e-01		-1.0303e-01	-1.0303e-01
9.7127e-02		9.7097e-02	9.7121e-02
-1.0249e-01		-1.0249e-01	-1.0245e-01
9.8190e-02		9.8187e-02	9.8226e-02
-1.0095e-01		-1.0095e-01	-1.0093e-01
mero di iterazioni (k)	:		
Jacobi_a_blocchi	Gauss_Seid	el Jacobi	
5	3	5	
rma infinito degli err	ori:		
	chi Erre		

1.4635e-04 1.9823e-04 1.3687e-04

Risultati per epsilon = 0.0001 Soluzioni approssimate:

1.7362e-05

oluzione_Jacobi_a_blo	occhi	Soluzione_Gauss_Seidel	l Soluzione_Jacob
-1.0097e-01		-1.0097e-01	-1.0097e-01
9.8147e-02		9.8148e-02	9.8147e-02
-1.0255e-01		-1.0255e-01	-1.0255e-01
9.7004e-02		9.6998e-02	9.7000e-02
-1.0315e-01		-1.0316e-01	-1.0315e-01
9.7004e-02		9.6993e-02	9.7000e-02
-1.0255e-01		-1.0256e-01	-1.0255e-01
9.8147e-02		9.8141e-02	9.8147e-02
-1.0097e-01		-1.0098e-01	-1.0097e-01
o di iterazioni (k):			
acobi_a_blocchi Ga	auss_Se	eidel Jacobi	
7	5	8	
infinito degli erro	ri•		
		rrore Gauss Seidel E	rrore Jacobi
rrore_Jacobi_a_blocch		rrore_Gauss_Seidel E	rrore_Jacobi

1.1193e-05 1.3475e-05

Risultati per epsilon = 1e-05 Soluzioni approssimate:

Soluzione_Jacobi_a_blocchi	Soluzione_Gauss_Seid	del Soluzione_Jacobi
-1.0098e-01	-1.0098e-01	-1.0098e-01
9.8139e-02	9.8139e-02	9.8139e-02
-1.0256e-01	-1.0256e-01	-1.0256e-01
9.6989e-02	9.6988e-02	9.6989e-02
-1.0317e-01	-1.0317e-01	-1.0317e-01
9.6989e-02	9.6988e-02	9.6989e-02
-1.0256e-01	-1.0256e-01	-1.0256e-01
9.8139e-02	9.8138e-02	9.8139e-02
-1.0098e-01	-1.0098e-01	-1.0098e-01
Numero di iterazioni (k):		
Jacobi_a_blocchi Gauss_Se	eidel Jacobi	
		
9 7	11	
Norma infinito degli errori:		
Errore_Jacobi_a_blocchi E	Errore_Gauss_Seidel	Errore_Jacobi
2.2482e-06	6.3909e-07	1.3102e-06

Risultati per epsilon = 1e-06 Soluzioni approssimate:

1.1324e-07

Soluzione_Jacobi_a	blocchi	Soluzione_Gauss_Seid	el Soluzione_Jacobi
-1.0098e-01		-1.0098e-01	-1.0098e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0317e-01		-1.0317e-01	-1.0317e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0098e-01		-1.0098e-01	-1.0098e-01
mero di iterazioni ()	c) :		
Jacobi_a_blocchi	Gauss_Se	idel Jacobi	
12	8	14	
orma infinito degli en	rori:		
-			

1.5243e-07 1.2742e-07

Risultati per epsilon = 1e-07 Soluzioni approssimate:

Soluzione_Jacobi_a_bl	Locchi	Soluzione_Gauss_Seidel	. Soluzione_Jacob
-1.0098e-01		-1.0098e-01	-1.0098e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0317e-01		-1.0317e-01	-1.0317e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0098e-01		-1.0098e-01	-1.0098e-01
nero di iterazioni (k):	:		
Jacobi_a_blocchi (Gauss_Se	idel Jacobi	
			
14	10	17	
ma infinita dagli anno			
rma infinito degli erro	orr:		

1.5980e-08 8.6713e-09 1.2391e-08

Risultati per epsilon = 1e-08 Soluzioni approssimate:

2.2676e-09

Soluzione_Jacobi_a_	blocchi So	luzione_Gauss_Seid	el Soluzione_Jacobi
			_
-1.0098e-01		-1.0098e-01	-1.0098e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0317e-01		-1.0317e-01	-1.0317e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0098e-01		-1.0098e-01	-1.0098e-01
Numero di iterazioni (k	:):		
Jacobi_a_blocchi	Gauss_Seidel	Jacobi	
		· —	
16	11	20	
Norma infinito degli er Errore_Jacobi_a_blo		e_Gauss_Seidel	Errore_Jacobi

2.0682e-09 1.2051e-09

Risultati per epsilon = 1e-09 Soluzioni approssimate:

Soluzione_Jacobi_a_bl	Locchi	Soluzione_Gauss_Sei	idel Soluzione_Jacobi
			_
-1.0098e-01		-1.0098e-01	-1.0098e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0317e-01		-1.0317e-01	-1.0317e-01
9.6987e-02		9.6987e-02	9.6987e-02
-1.0256e-01		-1.0256e-01	-1.0256e-01
9.8138e-02		9.8138e-02	9.8138e-02
-1.0098e-01		-1.0098e-01	-1.0098e-01
umero di iterazioni (k):	:		
Jacobi_a_blocchi (Gauss_Seid	el Jacobi	
19	13	22	
orma infinito degli erro	ori:		
Errore_Jacobi_a_bloco		ore_Gauss_Seidel	Errore_Jacobi
1.2150e-10		1.1765e-10	2.5484e-10

Risultati per epsilon = 1e-10 Soluzioni approssimate:

Soluzione_Jacobi_a_bloco	hi Soluzione_Gauss_Seidel	Soluzione_Jacob
-1.0098e-01	-1.0098e-01	-1.0098e-01
9.8138e-02	9.8138e-02	9.8138e-02
-1.0256e-01	-1.0256e-01	-1.0256e-01
9.6987e-02	9.6987e-02	9.6987e-02
-1.0317e-01	-1.0317e-01	-1.0317e-01
9.6987e-02	9.6987e-02	9.6987e-02
-1.0256e-01	-1.0256e-01	-1.0256e-01
9.8138e-02	9.8138e-02	9.8138e-02
-1.0098e-01	-1.0098e-01	-1.0098e-01
nero di iterazioni (k):		
Jacobi_a_blocchi Gaus	s_Seidel Jacobi	
		
	15 25	

Errore_Jacobi_a_blocchi	Errore_Gauss_Seidel	Errore_Jacobi
1.7326e-11	6.6925e-12	2.4783e-11

Problema 2.8. Consideriamo i seguenti due casi:

- $f(x) = x^3 + 3x 1 e^{-x^2} e[a, b] = [0, 1];$
- $f(x) = \cos x x$ e $[a, b] = [0, \pi]$.

Per ciascuno di questi due casi, risolvere i seguenti punti.

- (a) Verificare che f(a)f(b) < 0.
- (b) Tracciare il grafico di f(x) su [a,b] e verficare che f(x) ha un unico zero ζ nell'intervallo (a,b).
- (c) Dimostrare analiticamente che f(x) ha un'unico zero ζ nell'intervallo (a,b).
- (d) Costruire una tabella che riporti vicino ad ogni $\varepsilon \in \{10^{-1}, 10^{-2}, \dots, 10^{-10}\}$:
 - un'approssimazione ξ_{ε} di ζ , calcolata con il metodo di bisezione, che soddisfa $|\xi_{\varepsilon} \zeta| \leq \varepsilon$;
 - il numero d'iterazioni K_{ε} effettuate dal metodo di bisezione per calcolare l'approssimazione ξ_{ε} ;
 - il valore $f(\xi_{\varepsilon})$.

SOLUZIONE:

 \mathbf{a}

CALCOCIANO f(a) & f(b):

1. PER x= == 0: f(0) = 03+3.0-1-e02=-&

2. PER X=b=1: f(1)=13+3.1-1-e-123-e-1 \$2,6321 >0

=> f(0).f(1) = (-2).(2,6321)=-5,2642<0.

CASO 2: f(x) = cos(x) -x , [a, b] = [0, T]

1. PER x=0=0: f(0)= cos(0)-0=1-0=1

2. PER x=b= TT: f(TT) = COS(TT)-TT =-1-TT =-1-3,1416 x-4,1416<0

=> f(0).f(11)= 1. (-4,1416)=-4,1416<0.

c)

CASO 1: f(x) = x3+3x-1-ex2, [a,b]=[0,1]

- · f(x) & CA SONMA DI POLINOMI E FUNZIONI ESPONENZIALI => È CONTINVA SU [0,1].
- · DAL PUNTO (A) ABBIANO VISTO CHE F(O)CO E F(1)70 >> 3 ALMENO UNO ZERO IN (O,1) PER IL TEOREMA DI BOLZANO.
- · DERIVIANO .

f(x) = 3x2+3+2xex2>0 \text{ \text{\$V\$} \in \text{\$[0,1]}}.

POICHE f(x) >0 => f(x) E STRETT. CRESCENTE SU [0,1] E PUO AVELE ALPIU' UNO ZERO.

CASO 2: f(x) = cosx -x, [2,6] = [0,1]

- * f(x) E' CA COMBINAZIONE DI FUNZIONI CONTINUE (OSSIA COSX E X) =>
 E' CONTINUA SU [0,TI]
- DAL PUNTO (A), f(O) 70 E f(T) <0 => 3 ALMENO UNO ZERO IN (O,T) PER IL TEOREMA DI BOLZANO.
- · DERIVIANO: f(x) = -SIM(x)-1 CHE E' SEMPRE NEGATIVA.

 POICHE f(x) < 0 => f(x) E' STRETT. DECRESCENTE SU [0,71] => PUO'AVERE AL PIÙ
 UNO ZERO

ENTRAMBE LE FUNZIONI fix) HANNO UN UNICO ZERO NEI RISPETTIVI INTERVALLI.

d) Caso 1: $f(x) = x^3 + 3x - 1 - e^{-x^2}$ in [0, 1] Iterazioni Approssimazione f(Approssimazione) Epsilon 0.5312500000 -1.0419952430e-02 1.0e-01 4 1.0e-02 7 0.5351562500 7.7653125829e-03 1.0e-03 0.5336914062 9.3895595480e-04 10 1.0e-04 0.5334777832 -5.5864090477e-05 14 -2.5746125594e-06 1.0e-05 17 0.5334892273 1.0e-06 20 0.5334897041 -3.5420670641e-07 1.0e-07 0.5334897935 6.2119488442e-08 24 1.0e-08 27 0.5334897824 1.0078712531e-08 1.0e-09 30 0.5334897800 -7.6311579278e-10 1.0e-10 34 0.5334897802 -8.5501605795e-11 Caso 2: f(x) = cos(x) - x in [0, pi]Iterazioni Approssimazione f(Approssimazione) Epsilon 4.6403471699e-03 5 1.0e-01 0.7363107782 1.0e-02 9 0.7393787398 -4.9141530026e-04 1.0e-03 12 0.7389952446 1.5043574205e-04 1.0e-04 7.0210305791e-05 15 0.7390431815 1.0e-05 19 0.7390881223 -5.0025832334e-06 1.0e-06 22 0.7390855008 -6.1512370841e-07 1.0e-07 25 0.7390851731 -6.6691625000e-08 1.0e-08 29 0.7390851350 -3.0343347834e-09 1.0e-09 32 0.7390851332 2.6112001450e-11 35 -5.0399240337e-11 1.0e-10 0.7390851332

Problema 2.9. Un'immagine in bianco e nero viene spesso rappresentata come una matrice A a componenti in [0,1]: ogni componente (i,j) di A rappresenta un pixel e il valore A_{ij} rappresenta il colore del pixel (i,j), cioè una tonalità di grigio in [0,1]. Il valore 0 corrisponde al nero, il valore 1 corrisponde al bianco, i valori intermedi in (0,1) corrispondono alle varie sfumature (toni) di grigio che diventano via via più chiari man mano che ci si sposta dallo 0 (nero) all'1 (bianco).

- (a) Attraverso il comando "rand", costruire una matrice A di dimensioni 100×200 le cui componenti sono numeri casuali in (0,1). Visualizzare l'immagine corrispondente alla matrice A mediante il comando "imshow(A)" e salvare l'immagine sul proprio computer.
- (b) Costruire la versione compressa B di A utilizzando una griglia di compressione $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$ con n = 20. Visualizzare e salvare l'immagine corrispondente alla matrice B.
- (c) Costruire la versione compressa C di A utilizzando una griglia di compressione $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$ con n = 5. Visualizzare e salvare l'immagine corrispondente alla matrice C.
- (d) Confrontare le dimensioni delle tre immagini corrispondenti ad A, B, C: che cosa si osserva?

SOLUZIONE:

b)

c)

d)

Le dimensioni delle immagini dipendono dalla quantità di informazioni salvate, ovvero il numero di pixel e la loro rappresentazione binaria.

L'immagine A ha un peso totale di : 20KB.

L'immagine B è compressa usando n=20; Ha un peso totale di 15KB.

L'immagine C è compressa usando n=5; Ha un peso totale di 9KB.

La compressione riduce lo spazio occupato a discapito della qualità. A valori più bassi di n, la compressione è più aggressiva, ma si osserva perdita di dettagli.

APPENDICE:

• ESERCIZIO 1:

```
function [V] = ValPol(X,Y,T)
% X = vettore a componenti reali tutti distinti
% Y = vettore a componenti reali della stessa lunghezza di X
% T = vettore contenente i punti in cui verrà calcolato p(x)
%
% output:
% V = vettore che contiene le valutazioni nei punti del vettore T del
% polinomio p(x) interpolante i valori Y sui nodi X.

Z = zeros(lenght(Y));
% Z = tabelle delle differenze divise
for i =1:length(Y)
```

```
Z(i,1) = Y(i);
    end
    C = CNewton(X,Y);
    %C = vettore dei coefficienti di Newton
    for k = 1:length(T)
        V(k) = RH(T(k),C,X);
    end
    %V = vettore dei polinomi calcolati con t
    function [f] = CNewton(X,Y)
        Z = zeros(length(Y));
        %Z = tabelle delle differenze divise
        for i = 1:length(Y)
            Z(i,1) = Y(i);
        end
        %f(1) = Z(1,1);
        for j = 2:length(Y)
            for i = j:length(Y)
                Z(i,j) = (Z(i,j-1)-Z(j-1,j-1))/(X(i)-X(j-1));
                if i == j
        %
                    f(j) = Z(i,j);
        %
                end
            end
        end
        f = diag(Z);
    end
    function [g] = RH(t,C,X)
        g = 0;
        n = length(C);
        for i = n:-1:1
            g = g * (t - X(i)) + C(i);
        end
    end
end
```

```
function [app] = Trapezi(a,b,n,f)
% input:
% a = estremo sinistro dell'intervallo
% b = estremo destro dell'intervallo
% n = numero naturale >= 1
% f = funzione integrabile su [a,b]
% output:
% app = approssimazione dell'integrale su [a,b] della
% funzione f ottenuta mediante la formula dei trapezi
% di ordine n
   r = 0;
    h = (b-a)/n;
   for j = 1:(n-1)
        r = r+f(a+j*h);
    end
    app = ((f(a)+f(b))/2+r)*h;
end
```

• ESERCIZIO 3:

```
function [p0] = Estrapolazione(a,b,f,N)
% input:
% a = estremo sinistro dell'intervallo
% b = estremo destro dell'intervallo
% f = funzione definita su [a,b]
% N = vettore di numeri >= 1 tutti distinti
%
% output:
% p0 = valore estrapolato p0, dove p(x) è il polinomio d'interpolazione
% dei dati (h(k)^2,g(k)) dove gli h(k) sono i passi di
discretizzazione dei g(k); i g(k) sono le formule dei
% trapezi di ordine N(k) per approssimare l'integrale di f su [a,b].

for k = 1:length(N)
h(k) = (b-a)/N(k);
g(k) = Trapezi(a,b,N(k),f);
```

```
% g contiene i valori di tutte le ln per ogni valore n in N
end

p0 = ValPol(h.^2,g,0);
end
```

ESERCIZIO 4:

```
function [Sn] = CavaSimp(a,b,f,n)
% input:
% a = estremo sinistro dell'intervallo
% b = estremo destro dell'intervallo
% f = funzione integrabile su [a,b]
% n = numero naturale >= 1
% output:
% Sn = approssimazione dell'integrale su [a,b] della
   funzione f ottenuta mediante la formula di Cavalieri-Simpson di ordine n
    h = (b-a)/n;
    % s1 rappresenta la prima sommatoria della formula
    s1 = 0;
    for j = 1:(n-1)
        xj = a+(j*h);
        s1 = s1+f(xj);
    end
    %s2 rappresenta la seconda sommatoria della formula
    s2 = 0;
    for j = 0:(n-1)
        x0 = a + (j*h);
        x1 = a + ((j+1)*h);
        x2 = (x0+x1)/2;
        s2 = s2 + f(x2);
    end
    % Sn rappresenta la formula di Cavalieri-Simpson di ordine n
    Sn = (h/6)*(f(a)+f(b)+2*s1+4*s2);
end
```

```
function [x,k,norma] = Jacobi(A,b,ep,x,Nmax)
% input:
% A = matrice del sistema lineare
% b = vettore dei termini noti del sistema lineare
% ep = soglia di precisione del metodo
% x = vettore d'innesco del metodo
% Nmax = numero massimo di iterazioni consentito
% output:
% x = vettore delle soluzioni del sistema lineare calcolato
  con il metodo di Jacobi
% k = numero di iterazioni effettuate dal metodo per il
  calcolo del vettore delle soluizioni
% norma = norma del residuo a cui si arresta il metodo
    k = 0;
    z = zeros(length(A),1);
    for i = 0:Nmax-1
        r = b-(A*x);
        if norm(r,2)<=ep*norm(b,2)</pre>
            break;
        end
        for j = 1:length(r)
            z(j,1) = r(j)/A(j,j);
        end
        x = x+z;
        k = k+1;
    end
    norma = norm(r, 2);
end
```

ESERCIZIO 6:

```
function [x,k,norma] = GaussSeidel(A,b,ep,x,Nmax)
% input :
% A = matrice del sistema lineare
% b = vettore dei termini noti del sistema lineare
% ep = soglia di precisione del metodo
% x = vettore d'innesco del metodo
```

```
% Nmax = numero massimo di iterazioni consentito
%
% output:
% x = vettore delle soluzioni del sistema lineare calcolato
% con il metodo di Jacobi
% k = numero di iterazioni effettuate dal metodo per il
% calcolo del vettore delle soluzioni
% n = norma del residuo a cui si arresta il metodo
    k = 0;
    z = zeros(length(A),1);
    for l = k:Nmax-1
        r = b-(A*x);
        if norm(r,2)<=ep*norm(b,2)</pre>
            break;
        end
        for i = 1:length(z)
            S = 0;
            for j = 1:i-1
                S = S+(A(i,j)*z(j,1));
            end
            z(i,1) = (r(i-1)-S)/A(i,i);
        end
        x = x+z;
        k = k+1;
    end
    n = norm(r, 2);
end
```

ESERCIZIO 7:

```
function [x,k,norma] = JacobiABlocchi(A,b,n,ep,x,Nmax)
% input :
% A = matrice del sistema lineare
% b = vettore dei termini noti del sistema lineare
% n = partizione della dimensione di A
% ep = soglia di precisione del metodo
% x = vettore d'innesco del metodo
% Nmax = numero massimo di iterazioni consentito
%
% output:
```

```
% x = vettore delle soluzioni del sistema lineare calcolato
% con il metodo di Jacobi
% k = numero di iterazioni effettuate dal metodo per il
  calcolo del vettore delle soluzioni
% norma = norma del residuo a cui si arresta il metodo
    l = 1;
    M = zeros(length(A));
    % nel seguente ciclo, costruisco la matrice M
    for i = 1:length(n)
        for j = l:l+n(i)-1
            for k = 1:1+n(i)-1
                M(j,k) = A(j,k);
            end
        end
        l = l+n(i);
    end
    k = 0;
    % nel seguente ciclo, applico il metodo iterativo per calcolare x
    for i = 1:Nmax
        r = b-(A*x);
        if norm(r,2)<=ep*norm(b,2)</pre>
            break;
        end
        z = M \ r;
        x = x+z;
        k = k+1;
    end
    norma = norm(r, 2);
end
```

ESERCIZIO 8:

```
function [app,k,val] = Bisezione(a,b,f,ep)
% input :
% a = estremo sinistro dell'intervallo
% b = estremo destro dell'intervallo
% f = funzione continua su [a,b], con f(a)f(b)<0 e con un unico zero</pre>
```

```
% S nell'intervallo
% ep = soglia di precisione >0
% output :
% app = approssimazione di uno zero della funzione f sull'intervallo
       [a,b] ottenuto con il metodo della bisezione
% k = indice di arresto del metodo
% val = valore di f(app) che sarà all'incirca pari a 0
    ak = a;
    bk = b;
    k = 0;
    while (bk-ak)>=ep
        if (f(ak)*f((ak+bk)/2)) <= 0
            bk = (ak+bk)/2;
        else
            ak = (ak+bk)/2;
        end
        k = k+1;
    end
    app = (ak+bk)/2;
    val = f(app);
end
```

ESERCIZIO 9:

```
function [B] = Compressione(A,n)
% input :
% A = matrice con tutte le componenti nell'intervallo [0,1]
% n = numero naturale >=1
%
% output :
% B = matrice ottenuta "comprimendo" le informazioni contenute in A

% nel seguente ciclo, comprimo ogni componente di A in B secondo le
% istruzioni date confrontando ogni componente con il vettore v (griglia)
s = size(A);
B = A;
for i = 1:s(1)
    for j = 1:s(2)
```

```
B(i,j) = floor(A(i,j)*10)/10;
    end
end
end
```