1

Chapitre

Suites

Rappels

Définition 1.1 : Suite réelle/complexe

Une suite réelle réelle est une application de $\mathbb N$ dans $\mathbb R$ ou $\mathbb C$. L'ensemble des suites réelles est noté $\mathbb R^\mathbb N$.

Définition 1.2 : Suites réelles majorées/minorées

Une suite réelle est

- · majorée si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, u_p \leq C$
- · minorée si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, u_p \geq C$
- **Définition 1.3 :** Suite réelle/complexe bornée

Si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, |u_p| \leq C$.

Définition 1.4 : Suite convergente/divergente

Une suite est dite convergente si $\exists l \in \mathbb{R} \setminus \infty, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \geq N, |u_p - l| \leq \varepsilon$. On dit que l est la limite de la suite. On le note $u_p \to l$.

On n'écrit pas $\lim u_p=l$ car en faisant ça on suppose que la limite existe vant même de commencer à l'étudier. Il ne faut pas l'écrire en début de calcul.

 π D

Définition 1.5 : Suite divergente

Elle est divergente si elle n'est pas convergente.

 $\overline{\pi}$

Proposition 1.1

Soit (u) une suite convergente. On suppose qu'il existe l_1,l_2 telle que $u_p\to l_1$ et $u_p\to l_2$. Alors $l_1=l_2$.

π

Proposition 1.2

Soit u une suite convergente. Alors elle est bornée. La réciproque est fausse $(u_n=(-1)^p)$

 $\hat{\pi}$

Définition 1.6 : Limite infinie de suites réelles

On dit que la suite tend vers

- $\cdot +\infty \text{ si } \forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_p \geq A$
- $\cdot -\infty$ si $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_p \leq A$

 π

Définition 1.7 : Propriété vraie à partir d'un certain rang

On dit qu'une suite vérifie une propriété à partir d'un certain rang, si $\exists n, \forall p \geq n, u_p$ vérifie la propriété.

 $\hat{\pi}$

Définition 1.8 : Suites réelles monotones

Soit u une suite réelle. On dit que u est croissante (à partir d'un certain rang) si $(\exists N,) \forall p (\geq N), u_{p+1} \geq u_p$.

 π

Proposition 1.3

Toute suite réelle croissante à partir d'un certain rang tend vers

une limite finie ou infinie.

Si elle est en plus majorée, elle tend vers une limite finie.

Notations de Landau

Définition 2.1 : Suites néglieables

Soit u et v deux suites. On dit que u est néglieable devant v (en + ∞), noté $u_p o_{p \to \infty}(v_p)$. Il existe une suite ε telle que $\varepsilon_p \to 0$ et $u_p = v_p \varepsilon_p$ à partir d'un certain rang.

proposition 2.1

u et v deux suites. On suppose qu'il existe $N\in\mathbb{N}, \forall p\geq N, v_p\neq 0$. Alors $u_p=o(v_p)\iff \frac{u_p}{v_p}\to 0$.

Proposition 2.2

Si u = o(v), v = o(w), alors u = o(w).

Définition 2.2 : Suite dominée

Soient u et v deux suites, on dit que u est dominée par v, noté u=O(v) si $\exists \eta$ une suite $born\acute{e}e$ telle que $u_p=\eta_p v_p$ à partir d'un certain rang.

Troposition 2.3

Si u = o(v), alors u = O(v).

Proposition 2.4

Si $v_p \neq 0, \forall p \geq N_1$, on a : $u = O(v) \iff \exists C \in \mathbb{R} tq \forall p \geq N, |\frac{u_p}{v_p}| \leq C$

Proposition 2.5

Soient u, v, w trois suites. Si u = O(v) et v = O(w), alors u = O(w).

n Proposition 2.6

Soient $u = O(v) \land v_p \to 0 \Rightarrow u_p \to 0$.

Définition 2.3 : Suite équivalente

Soient u et v 2 suites équivalentes. La suite u est éuivalente à v_p , noté $u\sim v$ si $u_p=v_p+o(v_p)$ ou encore $\exists \varepsilon \to 0, \forall p\geq N, u_p=v_p+\varepsilon_p v_p=(1+\varepsilon_p)v_p$

π Proposition 2.7

Soient u et v deux suites. $u_p \sim v_p \iff \frac{u_p}{v_p} \to 1$

Proposition 2.8

Soient u, v, w trois suites. On a :

- $u \sim u$
- $u_p \sim v_p \iff v_p \sim u_p$
- $u_p \sim v_p$ et $v_p \sim w_p$ alors $u_p \sim w_p$.

π Proposition 2.9

Soient u et v 2 suites. On suppose que $u_p \sim v_p$ et v converge vers l. Alors $u_p \to l$.

Proposition 2.10

u et v deux suites réelles. Si $u \sim v$ et $v_p \to \infty$, alors $u_p \to \infty$.

1. Sous-suites

On dit que v est une suite extraite de $u \iff \exists \varphi: \mathbb{N} \to \mathbb{N}$ streutement croissante telle que $\forall p \in \mathbb{N}, v_p = u_{\varphi(p)}$.

Proposition 3.1

On a $\varphi(p) \geq p$.

Proposition 3.2

Une suite converge vers $l \iff$ toutes ses suites extraites cobvergent ver l.

Définition 3.2 : Valeur d'adhérence

l est une valeur d'adhérence $\iff l$ est une limite finie d'une suite extraite de u.

Proposition 3.3

Toute suite admet une sous-suite monotone.

Théorème 3.1 : Bolzano Weitrass

Toute suite réelle bornée admet une sous-suite convergente.

1. Suite de Cauchy

Définition 4.1 : Suite de Cauchy

Soit u une suite. On dit que u est de Cauchy si elle vérifie une des 2 prorpiétés suivantes équivalentes :

- $\cdot \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \ N, q > N, |u_p u_q| \le \varepsilon$
- $\cdot \ \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \ N, q > N, |u_{p+q} u_p| \le \varepsilon$
- Proposition 4.1

Toute suite convergente est de Cauchy

π Proposition 4.2

Toute suite de Cauchy est bornée.

Proposition 4.3

Si \boldsymbol{u} est de Cauchy et admet une sous-suite convergente, alors \boldsymbol{u} converge.

Théorème 4.1

Toute suite de Cauchy converge. On dit que $\mathbb R$ et $\mathbb C$ sont complets.

1. Types de suite

1.5. \$uites géométriques, arithmétiques

- Définition 5.1
 - arithmétique : $u_{n+1} = u_n + r \Rightarrow u_n = u_0 + nr$
 - géométrique : $u_{n+1} = u_n \times q \Rightarrow u_n = u_0 \times q^n$

MATHÉMATIQUES & Suites, Suites géométriques, arithmétiques

· arithmético-géométrique : $u_{n+1}=qu_n+a\Rightarrow u_n=q^nu_0+\frac{1-q^n}{1-a}a$

π

Définition 5.2 : Suite linéaire d'ordre 2

C'est une suite de la forme : $u_{n+2} = au_{n+1} + bu_n$

On associe le polynomes x^2-ax-b dont on doit trouver les solutions pour avoir l'expression de u_n .

$\hat{\pi}$

Théorème 5.1 : Écriture d'une telle suite

Si les racines λ sont réelles : $u_n = \alpha \lambda_1^n + \beta \lambda_2^n$

Si les racines sont complexes, on en met une sous la forme $re^{i\theta}$ et on écrit $u_n=\alpha r^n\cos(n\theta)+\beta r^n\sin(n\theta)$