VERMES MIKLÓS Fizikaverseny 2017. február 27. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

Az S pontból kiinduló fény rendre áthalad az L_1 és L_2 közös főtengelyű gyűjtőlencsén, majd egy homorú tükörről visszaverődve fordított irányban ismét átmegy a két lencsén.

a) Helyezzük el a rendszert úgy, hogy az általa megalkotott végső kép az S pontban jöjjön létre a	két
lencse közötti távolságtól függetlenül!	4 p
b) Oldjuk meg a feladatokat úgy, hogy a homorú tükröt domború-, majd síktükörrel helyettesítjük	!
	_

c) Készítsük el a megfelelő rajzokat! 3 p

II. feladat

Adott két illesztett (ragasztott) lencséből álló optikai rendszer. Az első lencse 1,5 törésmutatójú anyagból készült, sík-domború, görbült felületének sugara 15 *cm*. A második lencse törőképessége -2 dioptria, anyaga az előző lencse anyagával egyezik meg. Határozzuk meg!

a) Az első lencse gyújtótávolságát.	2 p
b) A második lencse jellegét, valamint a gyújtótávolságát.	1 p
c) A lencsék együttesének a gyújtótávolságát.	2 p
d) A lencserendszerhez képest milyen távolságra kell elhelyezni egy kicsiny tárgyat,	
hogy annak valódi képe a lencserendszerre vonatkoztatott szimmetrikusa legyen?	1,5 p
e) Az egész rendszert 4/3 törésmutatójú vízbe merítjük, a tárgy – lencse távolság megváltoztatása	
nélkül. A lencserendszertől milyen távolságra keletkezik a kép és milyen jellegű?	3,5 p

III. feladat

Vékony gyűjtőlencse optikai főtengelyén pontszerű fényforrás található 1,5 m-re a lencsétől. A lencsétől fokozatosan távolítjuk az optikai tengelyre merőleges ernyőt. Amikor az ernyő a lencsétől $d_1 = 50$ cm-re, illetve $d_2 = 1$ m-re található az ernyőn keletkezett fényes foltok átmérői egyformák.

a) Határozzuk meg a lencse gyújtótávolságát!	3 p
b) A fényforrás és lencse közé elhanyagolható vastagságú, az optikai tengelyre merőleges és eg	ymással
párhuzamos falú, 40 cm hosszú, folyadékkal töltött edényt helyezünk.	
Ekkor a fényforrás képe 25/9 <i>cm</i> -rel távolodik el eredeti helyzetétől.	
Határozzuk meg a folyadék törésmutatóját!	5 p
c) Helyezzük az edényt a lencse és a fényforrás képe közé.	
Most milyen változást észlelünk?	2 p