Lock in

Gruppo BN Federico Belliardo, Marco Costa, Lisa Bedini

8 maggio 2017

1 Scopo dell'esperienza

Questa esperienza consta di due parti. Nella prima parte ci si propone di montare i circuiti e valutarne il singolo funzionamento, successivamente procederemo a collegare i circuiti fra loro per formare il circuito di lock-in. Quest'ultimo circuito sarà usato per misurare l'attenuazione della differenza di potenziale in funzione del numero di lastrine di Mylar¹ (e quindi ricavare il coefficiente di assorbimento di tale materiale) interposte fra la sorgente luminosa (LED) e il fotodiodo (fototransistor?). Infine verificheremo che il sistema non è sensibile alla luce ambientale²

2 Materiale occorrente

- TL082 (JFET input dual Op-Amp);
- 4 TL081 (JFET input Op-Amp);
- SN7400 (4 porte NAND);
- DG441 (4 interruttori analogici CMOS);
- 2N1711/BC182 (transistor NPN);
- LED rosso;
- fotodiodo;

Tutte le resistenze, i condensatori e la tensione di alimentazione sono stati misurati con il multimetro digitale, quindi l'errore è stato propagato secondo le specifiche nel manuale. I tempi e le restanti tensioni sono state misurate con i cursori dell'oscilloscopio: l'errore sui tempi è dato dalla risoluzione dei cursori stessi mentre quello sulle tensioni è stato propagato considerando sia l'errore sul posizionamento dei cursori sia l'errore sistematico del 3%.

3 Modello teorico (?)

Il circuito Lock-in è usato per effettuare misure di segnali deboli in un ambiente molto rumoroso. Nel nostro caso il segnale è la luce emessa dal LED. Tale segnale non è continuo ma modulato da un' onda sinusoidale generata dal generatore di funzioni. Abbiamo scelto una frequenza pari a 1 kHz

4 Implementazione schema a blocchi

Amplificatore di potenza e preamplificatore

Sfasatore di 90°e sfasatore variabile

Squadratore e campionatore

Amplificatore differenziale

¹Resina termoplastica di indice di rifrazione pari a 1.5750 (utile?)

²Una delle tante sorgenti di rumore.

Figura 1: Schermate dell'oscilloscopio, in canale 1 c'è l'output e in canale 2 l'input.

$R_i[\Omega]$	$\Delta R_i[\Omega]$	$t[\mu s]$	$\Delta t[\mu s]$
327	3	25.8	0.2
470	4	41.6	0.2
669	5	69.2	0.6
824	7	82	1
984	8	102	1
1183	9	118	1
1454	11	140	1

Tabella 1: Presa dati per verificare la linearità fra R e $t.\,$