RflySim 平台安装教程

1.1. 检查电脑配置

1.1.1. 常规配置

为了能够运行 RflySim 平台, 推荐以下电脑配置:

- ➤ 系统: Windows 10 x64 系统(版本大于等于 1809)
- ▶ CPU: Intel i5 十代处理器及以上,或同等性能 AMD 处理器
- ▶ 显卡: 英特尔集成显卡 UHD 620 及以上, 或同等性能 AMD 显卡
- ▶ 内存:容量 16G 及以上,频率 DDR3 1600MHz 及以上
- ▶ 硬盘:剩余容量 40G 及以上(推荐固态硬盘)
- ▶ 显示器:分辨率 1080P (1920*1080)及以上(推荐双屏幕)
- ▶ 接口:至少有一个USB Type A 接口(可用扩展线)
- ► MATLAB: 2017b 或以上版本(推荐2017b 版本, Simulink 等工具箱必须安装)

注:电脑配置应该越高越好,低配电脑也可以运行本平台 Demo,但是可能出现控制不稳定、实验效果不佳等问题。MATLAB 请提前自行安装。

注:本平台更适用于游戏本或游戏主机,专业服务器和图形工作站可能出现抖动与卡顿。

注:对于只关注于 Python 进行视觉集群等上层控制算法开发的用户,也可不安装 MAT LAB,直接使用后文的 exe 一键程序安装,这种模式将无法使用 MATLAB 相关的底层飞控开发和集群控制功能。

1.1.2. 底层开发配置

如果做底层飞控开发,不做视觉算法开发,推荐以下配置

- ▶ CPU: Intel i5 十代处理器及以上,或同等性能AMD处理器
- ▶ 显卡: 英特尔集成显卡UHD 620及以上, 或同等性能AMD显卡
- ▶ 内存:容量8G及以上

参考配置: 无, 目前主流中高配笔记本和台式机均可以运行。

1.1.3. 最优配置

为了能流畅运行平台所有例程,能流畅运行UE4/RflySim3D和UE5/RflySimUE5,且能够支持单机尽可能多的视觉窗口,并运行尽快能多的集群飞机,推荐使用如下配置:系统:Windows 11 x64系统

- ▶ CPU: Intel i9 十二代处理器及以上,或同等性能AMD处理器
- ▶ 显卡:独立显卡NVIDIA GTX3080及以上,或同等性能AMD显卡
- ▶ 内存: 容量32G及以上, 频率DDR5 1600MHz及以上
- ▶ 硬盘: 高速固态硬盘, 剩余容量80G及以上
- ▶ 显示器:分辨率1080P(1920*1080)及以上(推荐双屏幕)

台式机参考配置: 联想拯救者刃 9000K (i9-14900KF RTX4080 16G 显卡 32G DDR5 1T B SSD), https://item.jd.com/100070918986.html

1.2. 软件获取及安装

获取安装包: 从官方途径获取最新.iso 的镜像(如: 免费版是 RflySimAdvFree-****.is o, 后面****表示版本号), 可以鼠标右键-打开方式-Windows 资源管理器来加载镜像(或用解压软件解压,或用虚拟光驱加载), 从而获取右图所示安装包文件夹。

扫码查看 RflySim 平台视频安装教程

注意:免费版和完整版镜像可以通过填写邮箱的方式,从 https://rflysim.com/download 获取云盘下载链接。完整版下载链接和注册码请咨询 service@rflysim.com。我们分享的云盘链接和密码不会变更,但里面的安装包会经常更新,因此以云盘中安装包更新的时间为版本基准。

1.3. 启用 WSL 子系统功能

1.对于 Win10 和 Win11 系统: 推荐使用 Win10WSL 编译器,需要先进行如下操作: 开启 WSL 子系统功能: 双击"0.UbuntuWSL\ EnableWSL.bat"脚本(先关闭杀毒软件以免拦截),在"用户账户控制"窗口点击"是",即可自动开启 WSL 子系统。

注意: 电脑首次执行本命令,需要在弹出窗口中输入"Y"并回车来确认安装并重启 电脑。如果非首次执行本命令,窗口会自动关闭,不需要重启电脑。

注意:若出现闪退等问题,请在 CMD 窗口输入 wslconfig 命令来检验是否安装成功。 提示命令不存在,则说明安装失败,请尝试关闭杀毒软件,再按 "0.UbuntuWSL\readme.pd f" 的流程尝试手动开启。

2. 对于Win7系统(或Win10WSL编译器安装失败的情况): 只能使用Cygwin编译器。这里可以跳过上文步骤,直接在后文的一键安装脚本页面,输入"PX4 固件编译器"时选择"3": Cygwin编译器。

4.PX4固件编译器 (1: Win10WSL[通用],2: Msys2[适用版本≤PX4-1.8],3: Cygwin[适用≥PX4-1.8] 3

1.4. 一键安装脚本

点击 MATLAB 的"浏览文件夹"按钮,定位到刚才加载 iso 镜像得到文件夹,鼠标右键 OnekeyScript.p,点击"运行"按钮(或在窗口输入 OnekeyScript 命令)。若您的相关开发工作暂时涉及不到 MATLAB 软件,也可选择 exe 安装程序一键安装。

等待程序运行,待弹出如下界面后,可确定各项具体安装设置,首次安装时,将平台一键部署到系统中(使用默认配置,全选"是"即可),并完成相关配置。

后续使用中,再次运行安装脚本,可以修改编译命令、编译器、固件版本、还原软件等。(不需要还原的项目选择"否",会根据情况更新配置,节省时间)下载新安装包后,直接运行安装脚本(选择"自动",会需要更新的内容),再点击确认,开始升级。

单击图片可见本界面各个选项的详细说明

1.5. 安装成功验证

1. 如下图所示,在安装目录(默认是 C:\PX4PSP)下可以得到一系列的文件夹,其中 "RflySimAPIs"文件夹是高级功能的接口教程文件夹,最为重要。如下图所示,在桌面 R flyTools 文件夹内可以得到一系列的快捷方式。

2. (若采用 exe 安装程序一键安装方式可省略本步)打开 MATLAB, 任意新建一个 Simul ink 程序, 进入库浏览器 (Library browser)页面。如下图,向下翻可以看到 Pixhawk Target Blocks 的工具箱,说明安装成功。本功能针对底层飞控算法开发,支持 Simulink 设计飞控算法,并生成代码上传到 Pixhawk 中,进行硬件在环仿真和真机实验。

3. 进入桌面 "RflyTools" 文件夹,双击 "SITLRun" 快捷方式,并输入1,再回车。等到 RflySim3D 显示 "*** EKF 3DFixed" (CopterSim 上也会显示),表示飞控已经初始化完毕,可以开始控制自主飞行。

进入 QGroundControl 软件,看到飞机进入"Hold"模式,点击"Takeoff"按钮。会弹出确认滑块,将其拖到最右侧,开始自动起飞。如果飞机能离地起飞,说明平台配置正确。

1.6. 平台软件卸载方法

- 自动卸载:用 MATLAB 打开安装包目录,运行"uninstall.m"脚本,即可完成所有卸载工作。
- 手动卸载:包含如下流程(可查看 uninstall.m 内注释)
 - 1. 删除桌面 RflyTools 内所示快捷方式;
 - 2. 删除"[文档]\MATLAB\Add-Ons\Toolboxes\PX4PSP"文件夹。
 - 3. 编辑 MATLAB "pathdef.m", 查找并删除残余的 PX4PSP 路径条目;
 - 4. 在 Windows 系统中卸载 Ubuntu 18.04 LTS 程序。
 - 5. 删除[文档]目录下的 QGroundControl、FlightGear 等临时目录
 - 6. 删除 RflyMaps 的本地临时 Cesium 地图目录

- 7. 注意: [文档]\Ogre 目录下存储着序列号等文件 sn6.txt, 完整版会保留。
- 8. 删除安装目录 (默认 "C:\PX4PSP") 文件夹内的所有文件和子文件夹

1.7. 平台安装故障排除

如果蓝屏、无法仿真、或无法起飞,请确认以下要点:

- ➤ 若出现编译缓慢、编译时蓝屏、SITL时无法连接 QGC、Offboard 无法控制飞机、 局域网电脑无法联机等问题,请确认,请确认彻底关闭或卸载电脑杀毒软件(如 联想电脑管家、火绒、360 杀毒/安全卫士、腾讯电脑管家等),并关闭 Windows10 的实时保护!
- ➤ SITLRun 命令行窗口中,查看命令是否有报错,确认 px4_sitl 软件控制器运行成功。
- ➤ CopterSim 页面,消息框显示了"3D Fixed"字样,确保飞机模型正确初始化且连接飞控。
- ➤ 重新运行一键安装脚本,并进入配置页面,确认固件版本 ≥ PX4 1.10,编译器为Win10WSL。
- ➤ 若还是无法起飞,请将图片和问题描述发布在https://github.com/RflySim/RflyExpC ode/issues
- 如安装时 MATLAB 出现文件占用的错误,首先尝试重启并重新打开 MATLAB 来安装,不能解决请卸载重装。

对于电脑配置低,出现飞行仿真抖动的用户,可以先尝试右键以管理员方式运行 bat 脚本。其次,可以修改 bat 脚本,查找并替换其中的 RflySim3D 字符为 3DDisplay,启用简易三维引擎来观察效果。以 SITLRun 脚本为例,具体步骤如下:

打开平台的安装目录,默认为 C:\PX4PSP\RflySimAPIs, 找到 SITLRun.bat 的脚本。右键编辑, 修改 bat 脚本, 使用替换工具, 搜索并替换其中的所有 RflySim3D 字符为 3DDispl ay 即可。右键以管理员方式修改完的 bat 一键脚本。

1.8. 其他设置方式

1.8.1. 一键安装脚本(无 MATLAB 安装)

由于 MATLAB 需要占用很大空间,针对主要用 Python 进行单机、视觉、集群、通信等上层算法开发的用户,也可不安装 MATLAB,采用 exe 安装程序一键安装。步骤如下:

安装 MATLAB 的运行库文件: <a href="https://ssd.mathworks.cn/supportfiles/downloads/R2017b/deployment_files/R2017b/installers/win64/MCR_R2017b_win64_installer.exe" 或从下面网址选择合适运行库版本: http://www.mathworks.com/products/compiler/mcr/index.html, 双击安装包内 "OnekeyScript.exe" 文件,即可弹出安装界面

	R2019a (9.6)	64-bit	64-bit
	R2018b (9.5)	64-bit	64-bit
	R2018a (9.4)	64-bit	64-bit
	R2017b (9.3)	64-bit	64-bit

注意:这种方式无法安装自动代码生成工具箱等 MATLAB 相关的功能,也就不支持底层控制算法开发,DLL模型生成,Simulink集群控制等。

1.8.2. 完整版安装序列号输入

完整版会弹出激活页面,获取序列号后输入即可。体验版不会弹出激活窗无需输入序列号!

接着会弹出如右图所示安装页面(安装前请按照安装包内 readme.txt 事项关闭杀毒软件)。

1.8.3. 一键安装脚本详细说明

- 1. 工具包安装路径。本平台的所有依赖文件都会安装在本路径下,大约需要 20G 的空间。默认安装路径是"C:\PX4PSP",如果 C 盘空间不够可以选择其他盘符下的路径。注意:路径名称必须正确,且只能用纯英文的路径,否则会导致编译失败。
- 2. PX4 固件编译命令。主要对应底层控制器开发需求,并使用代码生成功能,需要根据飞控硬件来选择编译命令(注: 顶层视觉和集群算法开发用户不需要配置,保持默认即可)。默认为"droneyee_zyfc-h7_default"对应卓翼 H7 自驾仪。除此之外,平台将长期支持以下三款飞控: Pixhawk V6X 编译命令为: px4_fmu-v6x_default; Pixhawk V6C 编译命令为: px4_fmu-v3_default。更多飞控编译指令请见: https://doc.rflysim.com/hardware.html。注: 第一次安装完成后,除了重新运行本安装脚本,另一种针对不同的 Pixhawk 硬件板子想更换不同的编译命令(例如换成 px4_fmu-v3_default)的方法,只需要在 MATLAB 中输入命令: PX4CMD('px4_fmu-v3_default')或者使用命令: PX4CMD px4_fmu-v3_default。
- 3. PX4 固件版本。PX4 源代码每年都会进行更新,目前最新的固件版本为 1.12。随着固件版本的升级,功能会逐渐增加,支持的新产品也越多,但是对旧的一些自驾仪硬件的兼容就会变差。本实验课程推荐使用卓翼 H7 飞控,对应的编译指令为"droneyee_zyfc-h7_default",选用的固件版本 PX4-1.12.3。
- 4. PX4 固件编译器。由于 PX4 源代码的编译依赖于 Linux 编译环境和相关组件,本平台提供了三套编译环境来实现 Windows 平台下对 Linux 编译环境的模拟,它们分别是:基于 Windows Subsystem for Linux(WSL)的编译环境 Win10WSL 编译器、基于 Msys2 的 M sys2Toolchain 编译环境和基于 Cygwin 的 CygwinToolchain 编译器。注意,如果需要编译≥ PX4-1.8 版本以上固件,请需要选择 CygwinToolchain 编译器;编译≤PX4-1.8 版本的固件,可选择 Msys2Toolchain 编译器。基于 Msys2 或 Cygwin 的本地编译器,支持 WIndows 7~11 平台,而且部署方便,但是编译效率较低。对于 Windows10 1809 及以上的系统版本,推荐安装 Win10WSL 编译器,这种方式可以大大加快编译速度,而且兼容所有版本的 PX4 飞控固件。

- 5. 是否全新安装 PSP 工具箱。如果该选项设置为"是",会将 PSP 工具箱安装在本地 MATLAB 软件中。如果 PSP 工具箱已经安装过,则会对 PSP 工具箱进行全新安装。如果选择"否",脚本对 PSP 工具箱不做任何更改(不会卸载掉安装的 PSP 工具箱或其他动作)。
- 6. 是否全新安装其他依赖程序包。如果该选项设置为"是",会将 QGC 地面站、Copte rSim、3DDisplay等软件部署在设定的安装路径上,并安装 Pixhawk 硬件的相关驱动程序,以及在桌面生成这些软件的快捷方式。如果安装路径上已经部署过相关依赖软件,选择"是"则会删除旧的安装包并进行全新重新安装。如果该选项设置为"否"则不做任何修改。
- 7. 是否全新配置固件编译器编译环境。如果该选项设置为"是",会将选定的编译器(Win10WSL、CygwinToolchain 或 Msys2Toolchain)部署在设定的安装路径上,如果环境已经存在,则会清空旧的编译环境,进行还原与全新部署。反之,如果该选项设置为"否"则不会进行任何更改。
- 8. 是否全新部署 PX4 固件代码。如果该选项设置为"是",会将选定的 PX4 Firmware 源代码部署在设定的安装路径上,如果固件存在,会删除旧的固件文件夹,并进行全新部署。如果该选项设置为"否"则不会进行任何更改。
- **9. 是否全新编译固件。**如果该选项设置为"是",会对部署固件进行预编译,这样可以 大大节省后续代码生成与编译的时间,同时可以检测环境安装是否正常。如果该选项设置 为"否"则不会进行任何更改。
- 10. 是否屏蔽 PX4 自身控制器输出。如果该选项设置为"是",会对 Firmware 中对电机的控制信号进行屏蔽,防止与生成代码发生冲突(注:本选项不会屏蔽 PX4_SITL 控制器的输出,因此可以正常进行软件在环仿真)。如果选择"否",则不会进行对固件输出进行屏蔽,可以用于测试 PX4 自带的控制算法,因此如果要生成官方固件,本选项请选择"否"。