Applied Mathematics TW324 Assignment 03

Bhekimpilo Ndhlela (18998712)

22 March 2018

Question 1

a.)

b.)

```
def question_b (debug=True):
    x = linspace(0,3, num=100) # equally spaced points on interval [0, 3]
    x = [a \text{ for } a \text{ in } x \text{ if } a != 0. \text{ if } a != 1. \text{ if } a != 2. \text{ if } a != 3.]
    # the interpolating function from Barycentric Interpolation
    num = lambda v : (J[0]/v) ((3*J[1])/(v1.)) + ((3*J[2])/(v2.))
                        (J[3]/(v 3.))
    den = lambda v : (1./v) (3./(v1.)) + (3./(v2.)) (1./(v3.))
    P = [num(i) / den(i) for i in x]
    global J
    J = [bessel_function(i) for i in x]
    \# plot p(v) and Jv(1) on the same system
    func1, = plt.plot(x, J, label="Jv(1)", linestyle="')
    func2, = plt.plot(x, P, label="P(v)", linestyle='')
    plt. title ('Jv(1) \perp and \perp P(v)')
    plt.ylabel('Jv(1) _{a}and _{b}P(v)')
    plt.xlabel('v')
    first_legend = plt.legend(handles=[func1], loc=1)
    ax = plt.gca().add_artist(first_legend)
    plt.legend(handles=[func2], loc=4)
    plt.show()
    # plot the error function Jv(1) = p(v)
    error = [jv 	 pv 	 for 	 jv, 	 pv 	 in 	 zip(J, P)]
    plt.plot(x, error, 'r')
    plt.title('Error_Functioin')
    plt.ylabel('Error: Jv(1) = P(v)')
    plt.xlabel('v')
    plt.show()
    if debug is False:
         print "\nDebug_Mode_: \_ON__\\t_Question_1_(b.)"
         print "i = t \cdot t \cdot t \cdot x = t \cdot t \cdot t \cdot P(x) = t \cdot t \cdot Jx(1) = t \cdot t \cdot t \cdot err"
         for i in xrange(len(x)):
             " {:.10 f}" . format(J[i]), "\t", \
" {:.10 f}" . format(error[i])
    return error
```


Figure 1: These are the $J\dot{\,}v(1)$ and P(v) curves/ graphs

Figure 2: This is the error function: $J\dot{\,\,}v(1)$ - P(v)

c.)

Python Source Code:

```
def question_c(error, M4=3.0, h=1.0, n=4.0, debug=True):
    est_error = (1. / (4. * n)) * (h**n) * M4
    max_error = sorted(error)[1] # get max error from questio 1 b.)
#compare errors is est_error >= max_error
is_bound_true = est_error >= max_error

if debug is True:
    print "\nDebug_Mode_:_ON_\t_Question_1_(c.)"
    print "Estimated_Error_____\t:", est_error
    print "Maximum_Error_[Question_1_c.)]_\t:", max_error
    print "est_error_>=_max_error_?____\t", is_bound_true

[Estimated Error | Maximum Error [Question 1 b.)]

[0.1875000000000000 | 0.0600749992108]
```

Theoretic Estimated Max Error \geq Max Error [Question 1 b.)] ? By taking h = 1.0, I proved that:

 $C_n h^n M_n \ge \max_{x_1 \le x \le x_4} |f(x) - P_{n-1}(x)|$

d.)

Python Source Code:

Hence: $max_{x_0 \le x \le x_3} |\pi(x)| = 1.0000$

```
def question_d (debug=True):
    \# coeff \ of : pi'(x) = 2x^3 \ 9x^2 + 11x \ 3 = 0
     coeff = [2, 9, 11, 3]
     zeros = roots(coeff)
     pi_x = lambda x : x**4
                                   6*(x**3) + 11*(x**2)
                                                               6*x
    maxi = [pi_x(x) \text{ for } x \text{ in } zeros]
     if debug is True:
         print "\nDebug_Mode_: \_ON__\\t_Question_1_(d.)"
         for i, (zero, max_min) in enumerate(zip(zeros, maxi)):
              " { : . 10 f }" . format ( fabs ( max_min ) )
\pi(x) = x(x-1)(x-2)(x-3)
\pi(x) = x^4 - 6x^3 + 11x^2 - 6x
\pi'(x) = 4x^3 - 18x^2 + 22x - 6
let: \pi'(x) = 0
0 = 4x^3 - 18x^2 + 22x - 6
Therefore:
x_1, \quad x_2, \quad x_3 = 2.6180339887,
                              1.50000000000, 0.3819660113 respectively
Hence:
\pi(x_1) = \pi(2.6180339887) = -1.00000000000
                                          |\pi(2.6180339887)| = 1.00000000000
\pi(x_2) = \pi(1.5000000000) = 0.56250000000
                                          |\pi(1.5000000000)| = 0.5625000000
                                          |\pi(0.3819660113)| = 1.00000000000
\pi(x_3) = \pi(0.3819660113) = -1.00000000000
max(1.0000000000; 0.5625000000; 1.00000000000) = 1.00000000000
```

Question 3

a.)

Python Source Code for)

```
def question_a (N=4, debug=True):
    x = zeros(N)
    x = [cos(((2 * k     1) * pi)/(2 * N)) for k in xrange(1, N + 1)]
    # defining the chebyshev Vandermonde matrix where V = 4x4 Matrix
    V = C.chebvander(x, N     1).T
    if debug is True:
        print "DEBUG_MODE: _ON_ [Question_3_(a.)]:"
        print "vector_x______", x
        print "\nchebyshev_Vandermonde_matrix_where_V:_____\n", V
    return x, V
    x = [0.9238795325112867  0.38268343236508984  -0.3826834323650897  -0.9238795325112867]
```

let: V = Chebyshev Vandermonde Matrix

```
\mathbf{v} = \begin{pmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 0.92387953 & 0.38268343 & -0.38268343 & -0.92387953 \\ 0.70710678 & -0.70710678 & -0.70710678 & 0.70710678 \\ 0.38268343 & -0.92387953 & 0.92387953 & -0.38268343 \end{pmatrix}
```

b.)

Python Source Code:

 $\mathbf{e}^*\mathbf{x} = \begin{bmatrix} 2.5190441714069842 & 1.4662138007571095 & 0.682028773350537 & 0.39697596864348 \end{bmatrix}$

$$Vc = e^{x}$$

$$V^{-1}Vc = V^{-1}e^{x}$$

$$c = V^{-1}e^{x}$$

$$\mathbf{c} = \begin{pmatrix} 0.25 & 0.46193977 & 0.35355339 & 0.19134172 \\ 0.25 & 0.19134172 & -0.35355339 & -0.46193977 \\ 0.25 & -0.19134172 & -0.35355339 & 0.46193977 \\ 0.25 & -0.46193977 & 0.35355339 & -0.19134172 \end{pmatrix} \begin{pmatrix} 2.5190441714069842 \\ 1.4662138007571095 \\ 0.682028773350537 \\ 0.39697596864348 \\ 0.3969759686434 \\ 0.3969759686434 \\ 0.3969759686434 \\ 0.3969759686434 \\ 0.3969759686434 \\ 0.3969769686434 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.39697696864 \\ 0.396976968 \\ 0.396976968 \\ 0.396976968 \\ 0.396976968 \\ 0.396976968 \\ 0.39697698 \\ 0.39697698 \\ 0.396976988 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.39697698 \\ 0.3969$$

 $\mathbf{c} = ([1.62415515 \quad 0.48579634 \quad 0.29145858 \quad 0.1176341)$

The c represents

.....

c.)

Python Source Code:

```
def question_c (b=3, a=0, N=0.0, debug=True):
    approx = lambda N : exp(N) * ((b a)**N / (fact(N) * 2**(2*N 1)))
    while 10** 10 <= approx(N):
        N = N + 1.0
        print N
    if debug is True:
        print "\nDEBUG_MODE: _ON_ [ Question_3_(c.)]:"
        print "Number_of_Chebyshev_Points_N_=_", int(N)
        print "Approximated_Value, ______@_N_==_", approx(N)
    return N</pre>
```

The number of Chebyshev Points necessary to approximate the function exp(x) to an accuracy of 10 10 on the interval [0,3] is:

n = 19

Approximated Value at, n = 19 **is** 1.24077928729e - 11

d.)

i	Chebyshev Points	
1	2.99487673951	
2	2.95410039891	
3	2.87365998998	
4	2.75574971739	
5	2.60358586601	
6	2.42131906903	
7	2.21392108956	
8	1.98704920381	
9	1.74689188542	
10	1.50000000000	
11	1.25310811458	
12	1.01295079619	
13	0.786078910444	
14	0.578680930965	
15	0.39641413399	
16	0.244250282606	
17	0.126340010017	
18	0.045899601091	
19	0.0051232604	

e.)

```
def question_e(chebyshev_points, debug=True):
    \exp_{\mathbf{x}} \mathbf{x} \mathbf{k} = [\exp(\mathbf{v}\mathbf{k}) \text{ for } \mathbf{v}\mathbf{k} \text{ in } \text{chebyshev\_points}]
    \#use\ polyfit
    fit = polyfit (chebyshev_points, exp_xk, len(exp_xk)
                                                                     1)
    err_vals = [e]
                      f for e, f in zip(exp_xk, fit)]
    warnings.simplefilter('ignore', RankWarning) #ignore warnings
    # plot the error function
    plt.plot(linspace(0,3,num=19), exp_xk, label="exp(xk)")
    plt.plot(linspace(0,3,num=19), err_vals, label="err_vals")
    plt.plot(linspace(0,3,num=19), fit, label="fit")
    plt.legend(bbox_to_anchor = (1.0, 1), loc = 0, borderaxespad = 0.)
    plt.show()
    if debug is True:
         print "\nDEBUG_MODE_: LON__ [ Question _3_e.)]"
         print "k", "\t", "chebyshev_points(k)", "\t", "\exp(k) \setminus t \setminus t",\
                "polyfit_points(k)"
         for k, (xk, e) in enumerate(zip(chebyshev\_points, exp\_xk)):
              print k, "\t", "\{:.16 f}".format(xk), "\t","\{:.16 f}".format(e), \
                     "\t", "\{:.16 f}".format(fit [k])
```


Figure 3: Error of **e^x**

k	chebyshev points(k)	$\exp(k)$	polyfit points(k)
1	2.9948767395100049	19.9828966364183991	-0.0000000000000168
2	2.9541003989089956	19.1844565966013114	0.0000000000004260
3	2.8736599899825861	17.7016877825937016	-0.0000000000047462
4	2.7557497173937930	15.7328316599325380	0.0000000000335313
5	2.6035858660096975	13.5121038604438937	-0.0000000001397079
6	2.4213190690345021	11.2607031675513909	0.0000000006593969
7	2.2139210895556101	9.1515301018746555	0.0000000008709762
8	1.9870492038070253	7.2939789307318259	0.0000000272904685
9	1.7468918854211006	5.7367444785709703	0.0000002724300402
10	1.50000000000000000	4.4816890703380645	0.0000027591227060
11	1.2531081145788994	3.5012082197865295	0.0000247987718511
12	1.0129507961929751	2.7537146890514030	0.0001984144914214
13	0.7860789104443897	2.1947736279721375	0.0013888880233439
14	0.5786809309654983	1.7836840758813131	0.0083333336421386
15	0.3964141339903027	1.4864847939769930	0.0416666665889665
16	0.2442502826062074	1.2766638172542299	0.1666666666793699
17	0.1263400100174137	1.1346679011556191	0.499999999988355
18	0.0458996010910044	1.0469692911054875	1.0000000000000446
19	0.0051232604899951	1.0051364068301394	1.00000000000000000