

Advanced Clustering

CASA0006: Spatial Data Capture and Analysis CASA0009: Data Science for Spatial Systems

Huanfa Chen

Thanks to Ed and Thomas for some slides

CASA0006

- 1 Introduction to Databases
- 2 Introduction to SQL
- 3 Advanced SQL
- 4 Data Munging
- 5 Advanced Clustering

- 6 Advanced Regression
- 7 Classification
- 8 Dimension Reduction
- **9** Unstructured Data
- 10 Analysis Workflow

CASA0009

- 1 Introduction to Databases
- 2 Introduction to SQL
- 3 Advanced SQL
- 4 Data Munging
- 5 Advanced Clustering

- 6 Advanced Regression
- 7 Interactive Viz 1: HTML + CSS
- 8 Interactive Viz 2: Javascript
- 9 Server Side Coding: Node.JS
- **10** Real-time data visualisation

Recap

What we already know

Database and SQL

Different data formats

Data cleaning using Python and Pandas

Data Analysis?

Connecting with Quantitative Methods

Clustering: Plan of Attack

Standardisation Methods

Z-Score (roughly symmetrical data)

Min-Max rescaling (asymmetric data)

IDR rescaling (data with significant outliers)

Explicit rescaling

Clustering Methods

K-Means

Hierarchical

Clustering Quality

SSE

Silhouette Analysis

Please find the lecture note and video of QM lecture 'Cluster Analysis' on Moodle

Visualisation

Elbow Diagram

Silhouette Plot

Dendrogram

Scatter Plots

Follow Up

Examine cluster centroids

Describe cluster characteristics

Compare against unconsidered variables

/ categories / geography

Consider analysing clusters separately

Outline

1. Overview

- a. Data Analysis Approaches
- b. Definition of Clustering
- c. Standardisation

2. Clustering Methods

- a. K-Means
- b. Hierarchical
- c. DBSCAN

3. Measuring Clustering Quality

- a. SSE/Elbow Method
- b. Silhouette Analysis

4. Next steps

- a. Visualisation
- b. Observe and interpret
- c. Consider analysing separately

Data Mining

Analysis Approach

All data analyses follow a similar methodology, regardless of the dataset and data mining approach being used

Data Analysis

Picking an Approach

The approach to take towards analyzing your data depends on what you want to understand from it

Method		Output
Clustering	\longrightarrow	Creation of Groupings
Regression	\longrightarrow	Identify Data Relationships
Classification	\longrightarrow	Identify Discrete Class
Dimensionality Reduction	\longrightarrow	Understand Influential Factors
Association Rule Mining		Identify Dependencies
Anomaly Detection		Identify Outliers
	Clustering Regression Classification Dimensionality Reduction Association Rule Mining	Clustering Regression Classification Dimensionality Reduction Association Rule Mining

Unsupervised: no ground truth **Supervised: with ground truth**

Clustering

Definition

Type of analysis that divides observations into groups based on some similarity criteria (distance)

Clustering

- Goals of clustering
 - Discover groups of similar observations
 - Reduce data size
- Issues with clustering
 - Unsupervised learning: no ground truth or accuracy measure available to check the result
 - Good news is that there are some ways to measure clustering quality
 - Clustering often involves many dimensions, so standardisation is necessary to make these dimensions comparable

Standardisation

Z score

(for not highly skewed data)

$$z = \frac{x - \mu}{\sigma}$$

Min-Max Rescaling

(for highly skewed data)

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}}$$

IDR Standardisation

(Non-normal data with significant outliers)

$$x^{\text{IDR}} = \begin{cases} \frac{x - P_{50}}{P_{90} - P_{50}}, x \ge P_{50} \\ \frac{x - P_{50}}{P_{50} - P_{10}}, x < P_{50} \end{cases}$$

Criteria

- 1. Highly skewed distribution?
- 2. Significant outliers?

Clustering

Divisive – K-Means Clustering

K-Means clustering **breaks down** a dataset into groups, based on proximity of points within a multidimensional space.

Iterative Algorithm

- 1 Place k centroids randomly within space
- 2 Assign points to nearest centroid
- 3 Recalculate centroids as the new mean of the cluster
- 4 Continue until centroid assignments no longer change

Clustering

Problems with K-Means Clustering

- Requires knowledge of the number of clusters, which you may not know in advance (solution: Elbow method);
- Sensitive to initialisation, which can lead to poor solutions (solution: try different random initialisation and get a best one);
- Sensitive to outliers, which can results in inaccurate clusters (solution: use another clustering method or remove outliers);
- Incapable of handling clusters of a non-convex shape;
- Inapplicable to categorical data (solution: k-modes).

Choose k wisely

Non-convex shape

Agglomerative

Hierarchical clustering **builds up** clusters based on proximity of instances, ending on reaching predefined number of points

Iterative Algorithm

- 1 Start with every point in its own cluster
- 2 Merge points according to a *linkage* criterion (or distance)
- 3 Compute centroid of new clusters
- 4 Expand linkage threshold and continue until all points in one cluster
- Hierarchical structure
 No a priori knowledge of data required
- Can not un-agglomerate after cluster formed

Dendrogram

Agglomerative

Bottom Up: Begins with one cluster per data point;

Gradually merge into larger clusters.

Divisive

Top Down: Begins with one big cluster;

Gradually split into smaller clusters.

Clustering

Density-based – DBSCAN Clustering

DBSCAN clustering joins builds clusters of points based on local proximity, only where falling within a maximum distance threshold

Given ε (search radius), points are classified into three classes:

- 1. Point p is **core point**: if at least minPts points are within distance ε of it (including p)
- Point p is edge point: if p is not a core point but it is reachable from a core point
- 3. Point p is **outlier**: all points not reachable from any core points

Clustering

Density-based – DBSCAN Clustering

Step 1

Step 2

Step 3

Process

- 1 Find the points in the ε neighborhood of every point, and identify the core points
- 2 Find the connected components of core points, ignoring all non-core points
- 3 Assign each non-core point to a nearby cluster if the cluster is an ε neighbour, otherwise assign it to noise

Summary

Three clustering methods

method	required parameters	
kmeans	number of clusters	
hierarchical	number of clusters (but you can get a sensor	
DBSCAN	eps and minPts	

Measuring Clustering Quality

How do you know our groups make sense?

Necessary when...

- Comparing different implementations of a clustering method (e.g. k-means)
- Comparing clusterings with different numbers of clusters
- Comparing different clustering techniques

Method 1: SEE / Elbow Method

SSE: Sum of Squared Errors

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} w^{(i,j)} dist(x^{(i)}, \mu^{(j)})$$

Where: i is a observation, j is a cluster, and $w^{(i,j)}=1$ when i is in cluster j.

What is the range of SSE? [0, infinity)

- When the points in each cluster are identical, SSE = 0
- When #observation = #cluster, SSE = 0

Method 1: SEE / Elbow Method

Elbow diagram: help choose k for k-means

k (Number of Clusters)

Estimated number of clusters: 3

Method 2: Silhouette Analysis

Silhouette of a point

"Is this point closer to points of the same cluster, or any other cluster? "

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i): mean distance to points of the same cluster

b(i): minimum mean distance to points of another cluster

$$-1 \le \mathsf{s}(i) \le 1$$

poorly clustered well

clustered

Silhouette Score for a Clustering

Average of s(i) for all points i

Method 2: Silhouette Analysis

Choose k for k-means

Υ

Silhouette Score

k (Number of Clusters)

Method 2: Silhouette Analysis

'Optimal' k-Means

$$k = 11$$

S. Score = 0.59

Method 3: Comparing against 'ground truth'

Homogeneity

All clusters contain only points from a single observed class – expressed as a proportion of clusters for which this is true

Completeness

All members of given class are within the same cluster – expressed as a proportion of classes for which this is true

Homogeneity	0	1	0.5
Completeness	1	1	0

https://scikit-learn.org/stable/modules/clustering.html#homogeneity-completeness

Method 3: Comparing against 'ground truth'

- But ... where is the 'ground truth' from?
 - Possibly you have some ground truth available, and you want to create a clustering for later use
 - The 'ground truth' can come from a different but relevant task. Be sure to prove they are really relevant.
 - You can ask some experts for ground truth. This is very common and useful.

Next steps of clustering Very important!

- Visualisation (often combined with dimension reduction, e.g. PCA)
- Describe cluster characteristics
- Compare against unconsidered variables or geography (do these clusters cluster in space?)
- Compare against expert knowledge
- Consider analysing clusters separately

Figure 33. Cluster Map of HAC for Index of Service Usage Rate and Satisfaction

Figure 33. Cluster Map of HAC for Index of Service Usage Rate and Satisfaction

Workshop Data Mining

- This workshop will focus on using clustering methods to analyse a multivariate dataset
- You'll learn how to use the scikit-learn Python library, which offers a number of useful tools for running data analysis methods
- Don't worry about the maths for clustering. You're not expected to understand all
 of the maths and algorithms. The key skill is the application, validation, and
 interpretation of the methods and results.
- Download this week's iPython Notebook from Moodle, open it in Anaconda and work through