Algebraic Curves homework 1, due 9/28 in class

- 1. Prove that when $\omega_1, \omega_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent, then
 - 1. $\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ is discrete.
 - 2. $\mathbb{C}/\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ is Hausdorff.
 - 3. $\mathbb{C} \to \mathbb{C}/\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ is a covering map.
- **2.** Let V be a complex vector space of dimension n, with \mathbb{C} -basis e_1, \ldots, e_n , and $T \colon V \to V$ is a \mathbb{C} -linear transformation. Suppose T has matrix representation X = A + Bi where $A, B \in M_n(\mathbb{R})$ under (complex) basis e_1, \ldots, e_n . Prove
 - 1. $e_1, \ldots, e_n, ie_1, \ldots, ie_n$ is an \mathbb{R} -basis of V.
 - 2. T has matrix

$$\begin{bmatrix} A & B \\ -B & A \end{bmatrix}$$

under the \mathbb{R} -basis above when T is viewed as an \mathbb{R} -linear transformation.

3.

$$\det \begin{bmatrix} A & B \\ -B & A \end{bmatrix} = |\det X|^2.$$

3. Complete the proof of implicit function theorem: Assume f(z,w) is holomorphic w.r.t $(z,w) \in U \subset \mathbb{C}^2$, and $\frac{\partial f}{\partial z} \neq 0$ for all $(z,w) \in U$, and

$$\{f=0\} \cap U = \{(g(w),w) \mid w \in D\}$$

for some open subset $D \subset \mathbb{C}$.

Prove g is holomorphic w.r.t w by showing $\frac{\partial g}{\partial \bar{w}} = 0$.

4. Let x_1, \ldots, x_n be distinct points on \mathbb{C} and

$$f(x,y) = y^d - (x - x_1) \cdots (x - x_n).$$

Prove that $C = \{f(x,y) = 0\}$ defines a Riemann surface in \mathbb{C}^2 . (Question to think about: what is the topological shape of C?)

5.(Extra excersice. You get extra credit for this exercise) Prove the implicit function theorem for several variables.

Let $f_1(z_1, \ldots, z_n), \cdots, f_m(z_1, \ldots, z_n)$ be holomorphic functions w.r.t $(z_1, \ldots, z_n) \in U \subset \mathbb{C}^n$, where $m \leq n$. Assume $(a_1, \ldots, a_n) \in U$ satisfies $f(a_1, \ldots, a_n) = 0$ and

$$\left(\frac{\partial f_i}{\partial z_j}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

is nondegenerate at (a_1, \ldots, a_n) .

Then there exists a neighborhood V of (a_1, \ldots, a_n) and holomorphic functions

$$g_1(z_{m+1},\ldots,z_n),\ldots,g_m(z_{m+1},\ldots,z_n)$$

defined on a neighborhood D of $(a_{m+1}, \ldots, a_n) \in \mathbb{C}^{n-m}$ such that

$$\{f=0\}\cap V=\{(g_1(z_{m+1},\ldots,z_n),\ldots,g_m(z_{m+1},\ldots,z_n),z_{m+1},\cdots,z_n)\mid (z_{m+1},\ldots,z_n)\in D\}.$$