Partitions:

These are the values which divided the series into a number of equal parts.

Quartiles: The three points which divided the series in to four equal parts are called quartiles. It is denoted by Q_1 , Q_2 , Q_3 .

Deciles: The nine points which divided the series in to ten equal parts are called deciles. It is denoted by D_1, D_2, \dots, D_9 .

Percentiles: The ninety-nine points which divided the series in to hundred equal parts are called percentiles. It is denoted by P_1, P_2, \dots, P_{99} .

Case A Raw data:

Suppose a data set contains n values say $x_1, x_2 \dots x_n$. Arrange the data into either ascending order or descending order. The partition values can be defined as follows.

(i)n is an odd number:

Quartiles	Deciles	Percentiles	
$Q = \left(\frac{n+1}{4}\right)^{th} \text{ term value}$	$D = \left(\frac{n+1}{10}\right)^{th} \text{ term value}$	$P_1 = \left(\frac{n+1}{100}\right)^{th}$ term value	
$Q = \left(\frac{2(n+1)}{4}\right)^{th}$	$D_2 = \left(\frac{2(n+1)}{10}\right)^{th}$	$P_2 = \left(\frac{2(n+1)}{100}\right)^{th}$	
term value	term value	term value	
$Q = \left(\frac{3(n+1)}{4}\right)^{th}$	$D_{9} = \left(\frac{9(n+1)}{10}\right)^{th}$	$P_{99} = \left(\frac{99(n+1)}{100}\right)^{th}$	
term value	term value	term value	

(ii)n is an even number:

Quartiles	Deciles	Percentiles
$Q = Next to \left(\frac{n}{4}\right)^{th}$	$D_1 = Next to \left(\frac{n}{10}\right)^{th}$	$P_1 = Next to \left(\frac{n}{100}\right)^{th}$
term value	term value	term value
$Q = Next \ to \left(\frac{2n}{4}\right)^{th}$	$D_2 = Next to \left(\frac{2n}{10}\right)^{th}$	$P_2 = Next to \left(\frac{2n}{100}\right)^{th}$
term value	term value	term value
$Q = Next \ to \left(\frac{3n}{4}\right)^{th}$	$D_{3} = Next to \left(\frac{9n}{10}\right)^{th}$	$P_{99} = Next \ to \left(\frac{99n}{100}\right)^{th}$
term value	term value	term value

Case b: For discrete frequency distribution:

Quartiles:- Q_k : $\frac{k(N+1)}{4}$; the corresponding variable is the quartile value. Here, k=1,2,3.

Deciles:- D_k : $\frac{k(N+1)}{10}$; the corresponding variable is the decile value. Here, k = 1, 2, 3, 4, 5, 6, 7, 8, 9.

Percentiles:- P_k : $\frac{k(N+1)}{100}$; the corresponding variable is the percentile value. Here, $k=1,2,\cdots,99$.

Case c: For continuous frequency distribution:

Quartiles:- Step-1: Find quartile class by:

Compute $\frac{kN}{4}$; Identify the same value in cf list, otherwise find cf just greater than $\frac{kN}{4}$.

Step-2: Use the formula

$$Q_k = l + \frac{h}{f} \left(\frac{kN}{4} - c \right); k = 1, 2, 3.$$

Deciles:- Step-1: Find decile class by:

Compute $\frac{kN}{10}$; Identify the same value in cf list, otherwise find cf just greater than $\frac{kN}{10}$.

Step-2: Use the formula

$$D_k = l + \frac{h}{f} \left(\frac{kN}{10} - c \right); k = 1, 2, \dots, 9.$$

Percentiles:- Step-1: Find percentile class by:

Compute $\frac{kN}{100}$; Identify the same value in cf list, otherwise find cf just greater than $\frac{kN}{100}$.

Step-2: Use the formula

$$P_k = l + \frac{h}{f} \left(\frac{kN}{100} - c \right); k = 1, 2, \dots, 99.$$

Quartile Deviation

Definition: Average amount by which the two quartiles differ from the median.

Quartile Deviation (Q.D.) =
$$\frac{Q_3 - Q_1}{2}$$

- The Median ± Q.D. covers exactly 50 per cent of the observations.
- When Q.D. is very small, it describes high uniformity or small variation of the central 50% items, and a high Q.D. means that the variation among the central items is large.

Relative measure of Q.D.

Coefficient of Q.D. =
$$\frac{Q_3-Q_1}{Q_3+Q_1}$$

It can be used to compare the degree of variation in different distributions.

Example 3: Calculate the value of Q.D. and its coefficient of Q.D. from the following data.

Roll No.	1	2	3	4	5	6	7
Marks	20	28	40	12	30	15	50

Solution: Marks in ascending order 12 15 20 28 30 40 50

Q = Size of
$$\frac{N+1}{4}th$$
 item = Size of $\frac{7+1}{4} = 2^{\text{nd}}$ item.
Size of 2^{nd} item is 15. Hence $Q_1 = 15$

$$Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right)th$$
 item = Size of $3\left(\frac{7+1}{4}\right) = 6^{th}$ item.
Size of 6^{th} item is 40. Hence $Q_3 = 40$.

$$\therefore Q.D. = \frac{Q_3 - Q_1}{2} = \frac{40 - 15}{2} = 12.5$$
Coefficient of Q.D. = $\frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{40 - 15}{40 + 15} = 0.455$

Example 4: Compute the value of Q.D. and its coefficient from the following data.

Marks	10	20	30	40	50	60
No. of Students	4	7	15	8	7	2

Solution:

Marks	Frequency	cumulative frequency
10	4	4
20	7	11
30	15	26
40	8	34
50	7	41
60	2	43

$$Q_1 = \text{Size of } \frac{N+1}{4} th \text{ item} = \text{Size of } 11^{\text{th}} \text{ item.}$$

Size of 11^{th} item is 20. Hence $Q_1 = 20$

$$Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right) th \text{ item } = \text{Size of } 3\left(\frac{43+1}{4}\right) = 33^{\text{rd}} \text{ item.}$$

Size of 33rd item is 40. Hence $Q_3 = 40$.

$$\therefore Q.D. = \frac{Q_3 - Q_1}{2} = \frac{40 - 20}{2} = 10$$
Coefficient of Q.D.
$$= \frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{40 - 20}{40 + 20} = 0.333$$

Example 4: Compute the value of Q.D. and coefficient of Q.D. from the following data

C.I.	10-20	20-30	30-40	40-50	50-60	60-70	70-80
f	12	19	5	10	9	6	6

Solution:

Marks	Frequency	Cumulative Frequency
10-20	12	12
20-30	19	31
30-40	5	36
40-50	10	46
50-60	9	55
60-70	6	61
70-80	6	67
	N =67	

 $Q_1 = \text{Size of } \frac{N}{4} \text{ th item} = \text{Size of } \frac{67}{4} = 16.75^{\text{th}} \text{ item.}$ $Q_1 \text{ lies in the interval } \textbf{20-30}$

$$Q_1 = l + \frac{\frac{N}{4} - c.f.}{f} \times i$$
 $l = 20, N/4 = 16.75, c.f. = 12 f = 19, i = 10$

$$Q_1 = 20 + \frac{\frac{67}{4} - 12}{19} \times 10 = 20 + 2.5 = 22.5$$

Hence $Q_1 = 22.5$

 $Q_3 = \text{Size of } \frac{3N}{4} \text{ th item} = \text{Size of } \frac{3 \times 67}{4} = 50.25^{\text{th}} \text{ item.}$ $Q_3 \text{ lies in the class } 50\text{-}60.$

$$Q_3 = l + \frac{\frac{3N}{4} - c.f.}{f} \times i$$
 $l = 50, 3N/4 = 50.25, c.f. = 46 f = 9, i = 10$

$$Q_3 = 50 + \frac{50.25 - 46}{9} \times 10 = 50 + 4.72 = 54.72$$

Hence $Q_3 = 54.72$

$$Q.D. = \frac{Q_3 - Q_1}{2} = \frac{54.72 - 22.5}{2} = 16.11$$

Coefficient of $Q.D. = \frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{54.72 - 22.5}{54.72 + 22.5} = 0.4172$