Introduction to Information Retrieval http://informationretrieval.org

IIR 13: Text Classification & Naive Bayes

Mihai Surdeanu

(Based on slides by Hinrich Schütze & Lucia D. Krisnawati at informationretrieval.org)

Spring 2017

Overview

- Text classification
- 2 Naive Bayes
- 3 NB theory
- 4 Feature selection (only for grad students!)
- **5** Evaluation of TC

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Feature selection (only for grad students)
- Evaluation of text classification: how do we know it worked / didn't work?

Outline

- Text classification
- 2 Naive Bayes
- NB theory
- 4 Feature selection (only for grad students!)
- Evaluation of TC

Machine Learning

How machine learning algorithms make predictions...

A text classification task: Email spam filtering

From: ''', <takworlld@hotmail.com>

http://www.wholesaledaily.com/sales/nmd.htm

How would you write a program that would automatically detect and delete this type of message?

Formal definition of TC: Training

Given:

- A document space X
 - Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. nonspam).
- A training set $\mathbb D$ of labeled documents. Each labeled document $\langle d,c\rangle\in\mathbb X\times\mathbb C$

Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Formal definition of TC: Application/Testing

Given: a description $d\in\mathbb{X}$ of a document Determine: $\gamma(d)\in\mathbb{C}$, that is, the class that is most appropriate for d

Topic classification

Exercise

 Find examples of uses of text classification in information retrieval

Examples of how search engines use classification

- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)

Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- ullet o We need automatic methods for classification.

Classification methods: 2. Rule-based

- E.g., Google Alerts is rule-based classification. Or IFTTT (ifttt.com).
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Ultimately, building and maintaining rule-based classification systems is cumbersome and expensive.

A Verity topic (a complex classification rule)

```
comment line
                  # Beginning of art topic definition
top-lenel topic
                  art ACCRUE
                       /author = "fsmith"
topic de finition modifiers
                       /date
                                 = "30-Dec-01"
                       /annotation = "Topic created
                                                             sub to pic
                                                                               * 0.70 film ACCRUE
                                         by fsmith"
                                                                               ** 0.50 STEM
                  * 0.70 performing-arts ACCRUE
subtopictopic
                                                                                   /wordtext = film
  eviden cetopi c
                  ** 0.50 WORD
                                                                               ** 0.50 motion-picture PHRAS
                                                             subtopic
  topic definition modifier
                       /wordtext = hallet
                                                                               *** 1.00 WORD
                  ** 0.50 STEM
  eviden cetopi c
                                                                                    /wordtext = motion
  topic definition modifier
                       /wordtext = dance
                                                                               *** 1.00 WORD
                  ** 0 50 WORD
  eviden cetopi c
                                                                                   /wordtext = picture
  topic definition modifier
                       /wordtext = opera
                                                                               ** 0.50 STEM
  eviden cetopi c
                  ** 0.30 WORD
                                                                                    /wordtext = movie
  topic definition modifier
                       /wordtext = symphony
                                                             subtopic
                                                                               * 0.50 video ACCRUE
subtopic
                  * 0.70 visual-arts ACCRUE
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                   /wordtext = video
                       /wordtext = painting
                                                                               ** 0.50 STEM
                  ** 0.50 WORD
                                                                                   /wordtext = vcr
                       /wordtext = sculpture
                                                                               # End of art topic
```

Classification methods: 3. Statistical/Probabilistic

- This was our definition of the classification problem text classification as a learning problem
- (i) Supervised learning (what is supervised learning?) of the classification function γ and (ii) application of γ to classifying new documents
- We will look at one method for doing this in this lecture:
 Naive Bayes
- (And two more in the next couple of lectures.)
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.

Outline

- Text classification
- 2 Naive Bayes
- 3 NB theory
- 4 Feature selection (only for grad students!)
- Evaluation of TC

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- n_d is the length of the document. (number of tokens)
- $P(t_k|c)$ is the conditional probability of term t_k occurring in a document of class c
- $P(t_k|c)$ as a measure of how much evidence t_k contributes that c is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with highest P(c).

Maximum a posteriori class

- Our goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or maximum a posteriori (MAP) class c_{map}:

$$c_{\mathsf{map}} = \argmax_{c \in \mathbb{C}} \hat{P}(c|d) = \argmax_{c \in \mathbb{C}} \ \hat{P}(c) \prod_{1 < k < n_d} \hat{P}(t_k|c)$$

Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c)
ight]$$

Naive Bayes classifier

Classification rule:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c) \right]$$

- Simple interpretation:
 - Each conditional parameter $\log \hat{P}(t_k|c)$ is a weight that indicates how good an indicator t_k is for c.
 - The prior $\log \tilde{P}(c)$ is a weight that indicates the relative frequency of c.
 - The sum of log prior and term weights is then a measure of how much evidence there is for the document being in the class.
 - We select the class with the most evidence.

Parameter estimation take 1: Maximum likelihood

• Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?

Parameter estimation take 1: Maximum likelihood

- Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?
- Prior:

$$\hat{P}(c) = \frac{N_c}{N}$$

- N_c : number of docs in class c; N: total number of docs
- Conditional probabilities:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

- T_{ct} is the number of tokens t in training documents from class c (includes multiple occurrences!! Let's see an example.)
- We've made a Naive Bayes independence assumption here: $\hat{P}(t_{k_1}|c) = \hat{P}(t_{k_2}|c)$, i.e., they are independent of position

The problem with maximum likelihood estimates: Zeros

$$P(China|d) \propto P(China) \cdot P(Beijing|China) \cdot P(And|China) \cdot P(Taipei|China) \cdot P(join|China) \cdot P(WTO|China)$$

• If WTO never occurs in class China in the train set:

$$\hat{P}(\text{WTO}|\textit{China}) = \frac{T_{\textit{China}}, \text{WTO}}{\sum_{t' \in V} T_{\textit{China},t'}} = \frac{0}{\sum_{t' \in V} T_{\textit{China},t'}} = 0$$

The problem with maximum likelihood estimates: Zeros (cont)

ullet If there are no occurrences of WTO in documents in class China, we get a zero estimate:

$$\hat{P}(WTO|China) = \frac{T_{China},WTO}{\sum_{t' \in V} T_{China}} = 0$$

• \rightarrow We will get P(China|d) = 0 for any document that contains WTO!

To avoid zeros: Add-one smoothing

• Before:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

- B is the number of bins in this case the number of different words or the size of the vocabulary |V| = M
- What does this method remind you of?
- This is the third smoothing method we have seen. What are the other two?
- This is also called Laplace smoothing.

Naive Bayes: Summary

- Estimate parameters from the training corpus using add-one smoothing
- For a new document, for each class, compute sum of (i) log of prior and (ii) logs of conditional probabilities of the terms
- Assign the document to the class with the largest score

Naive Bayes: Training

```
TRAINMULTINOMIALNB(\mathbb{C}, \mathbb{D})
      V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
      do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)
  5
           prior[c] \leftarrow N_c/N
  6
           text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
           for each t \in V
  8
           do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
  9
           for each t \in V
           do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
 10
 11
       return V, prior, condprob
```

Naive Bayes: Testing

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 for each c \in \mathbb{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in W

5 do score[c] + = \log condprob[t][c]

6 return \arg \max_{c \in \mathbb{C}} score[c]
```

Exercise

	docID	words in document	in $c = China$?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

- Estimate parameters of Naive Bayes classifier
- Classify test document

Example: Parameter estimates

Priors: $\hat{P}(c) = 3/4$ and $\hat{P}(\overline{c}) = 1/4$ Conditional probabilities:

$$\hat{P}(\text{Chinese}|c) = (5+1)/(8+6) = 6/14 = 3/7$$
 $\hat{P}(\text{Tokyo}|c) = \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14$
 $\hat{P}(\text{Chinese}|\overline{c}) = (1+1)/(3+6) = 2/9$
 $\hat{P}(\text{Tokyo}|\overline{c}) = \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9$

The denominators are (8+6) and (3+6) because the lengths of $text_c$ and $text_{\overline{c}}$ are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

Example: Classification

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003$$

 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$

Thus, the classifier assigns the test document to c=China. The reason for this classification decision is that the three occurrences of the positive indicator CHINESE in d_5 outweigh the occurrences of the two negative indicators JAPAN and TOKYO.

Time complexity of Naive Bayes

	time complexity
training	$\Theta(\mathbb{D} L_{ave} + \mathbb{C} V)$
testing	$ \begin{array}{ c c } \hline \Theta(\mathbb{D} L_{ave} + \mathbb{C} V) \\ \Theta(L_{a} + \mathbb{C} M_{a}) = \Theta(\mathbb{C} M_{a}) \end{array} $

- L_{ave} : average length of a training doc, L_{a} : length of the test doc, M_{a} : number of distinct terms in the test doc, \mathbb{D} : training set, V: vocabulary, \mathbb{C} : set of classes
- $\Theta(|\mathbb{D}|L_{\text{ave}})$ is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$ is the time it takes to compute the parameters from the counts.
- ullet Generally: $|\mathbb{C}||V|<|\mathbb{D}|L_{\mathsf{ave}}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

Outline

- Text classification
- 2 Naive Bayes
- 3 NB theory
- 4 Feature selection (only for grad students!)
- Evaluation of TC

Naive Bayes: Analysis

- Now we want to gain a better understanding of the properties of Naive Bayes.
- We will formally derive the classification rule . . .
- ...and make our assumptions explicit.

Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg}\,\mathsf{max}} P(c|d)$$

Apply Bayes rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} \frac{P(d|c)P(c)}{P(d)}$$

Drop denominator since P(d) is the same for all classes:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg \, max}} P(d|c)P(c)$$

Too many parameters / sparseness

$$\begin{array}{ll} c_{\mathsf{map}} & = \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} \ P(d|c)P(c) \\ & = \underset{c \in \mathbb{C}}{\mathsf{arg}} \max_{c \in \mathbb{C}} P(\langle t_1, \dots, t_k, \dots, t_{n_d} \rangle | c)P(c) \end{array}$$

- There are too many parameters $P(\langle t_1, \ldots, t_k, \ldots, t_{n_d} \rangle | c)$, one for each unique combination of a class and a sequence of words.
- We would need a very, very large number of training examples to estimate that many parameters.
- This is the problem of data sparseness.

Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the Naive Bayes conditional independence assumption:

$$P(d|c) = P(\langle t_1, \ldots, t_{n_d} \rangle | c) = \prod_{1 \leq k \leq n_d} P(X_k = t_k | c)$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_k = t_k | c)$. Recall from earlier the estimates for these conditional probabilities: $\hat{P}(t|c) = \frac{T_{ct}+1}{(\sum_{t' \in V} T_{ct'})+B}$

Generative model

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- Generate a class with probability P(c)
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability $P(t_k|c)$
- To classify docs, we "reengineer" this process and find the class that is most likely to have generated the doc.

Second independence assumption

- $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$
- For example, for a document in the class *UK*, the probability of generating QUEEN in the first position of the document is the same as generating it in the last position.
- The two independence assumptions amount to the bag of words model.

A different Naive Bayes model: Bernoulli model

Exercise: What are $\hat{P}(c)$ and $\hat{P}(t|c)$ in this case?

Violation of Naive Bayes independence assumptions

Conditional independence:

$$P(\langle t_1,\ldots,t_{n_d}\rangle|c)=\prod_{1\leq k\leq n_d}P(X_k=t_k|c)$$

- Positional independence:
- $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$
- The independence assumptions do not really hold of documents written in natural language.
- Exercise
 - Examples for why conditional independence assumption is not really true?
 - Examples for why positional independence assumption is not really true?
- How can Naive Bayes work if it makes such inappropriate assumptions?

Why does Naive Bayes work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

	c_1	<i>c</i> ₂	class selected
true probability $P(c d)$	0.6	0.4	c_1
$\hat{P}(c)\prod_{1\leq k\leq n_d}\hat{P}(t_k c)$	0.00099	0.00001	c_1

- Classification is about predicting the correct class and not about accurately estimating probabilities.
- Naive Bayes is terrible for correct estimation . . .
- ... but if often performs well at accurate prediction (choosing the correct class).

Naive Bayes is not so naive

- Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

Three ways of messing up Naive Bayes

- Underflow: not using log probs
- Zero counts: not smoothing
- Not doing feature selection (next)

Outline

- Text classification
- 2 Naive Bayes
- NB theory
- 4 Feature selection (only for grad students!)
- Evaluation of TC

Feature selection

- In text classification, we usually represent documents in a high-dimensional space, with each dimension corresponding to a term.
- In this lecture: axis = dimension = word = term = feature
- Many dimensions correspond to rare words.
- Rare words can mislead the classifier. Why?
- Rare misleading features are called noise features.
- Eliminating noise features from the representation increases efficiency and effectiveness of text classification.
- Eliminating features is called feature selection.

Example for a noise feature

- Let's say we're doing text classification for the class China.
- Suppose a rare term, say ARACHNOCENTRIC, has no information about *China* . . .
- ... but all instances of ARACHNOCENTRIC happen to occur in *China* documents in our training set.
- Then we may learn a classifier that incorrectly interprets ARACHNOCENTRIC as evidence for the class China.
- Such an incorrect generalization from an accidental property of the training set is called overfitting.
- Feature selection reduces overfitting and improves the accuracy of the classifier.

Basic feature selection algorithm

```
SELECTFEATURES(\mathbb{D}, c, k)

1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})

2 L \leftarrow []

3 for each t \in V

4 do A(t, c) \leftarrow \text{ComputeFeatureUtility}(\mathbb{D}, t, c)

5 APPEND(L, \langle A(t, c), t \rangle)

6 return FeaturesWithLargestValues(L, k)

How do we compute A, the feature utility?
```

Different feature selection methods

- A feature selection method is mainly defined by the feature utility measure it employs
- Feature utility measures:
 - Frequency select the most frequent terms
 - Mutual information select the terms with the highest mutual information
 - Mutual information is also called information gain in this context.
 - Chi-square (see book but not required for this course)

Mutual information

- Compute the feature utility A(t,c) as the mutual information (MI) of term t and class c.
- MI tells us "how much information" the term contains about the class and vice versa.
- For example, if a term's occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0.
- Definition:

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

How to compute MI values

 Based on maximum likelihood estimates, the formula we actually use is:

$$I(U; C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

• N_{10} : number of documents that contain t ($e_t = 1$) and are not in c ($e_c = 0$); N_{11} : number of documents that contain t ($e_t = 1$) and are in c ($e_c = 1$); N_{01} : number of documents that do not contain t ($e_t = 1$) and are in c ($e_c = 1$); N_{00} : number of documents that do not contain t ($e_t = 1$) and are not in c ($e_c = 1$); $N = N_{00} + N_{01} + N_{10} + N_{11}$.

MI example for *poultry*/EXPORT in Reuters

$$e_c=e_{poultry}=1$$
 $e_c=e_{poultry}=0$
 $e_t=e_{\mathrm{EXPORT}}=1$ $N_{11}=49$ $N_{10}=27,652$ $Plug$
 $e_t=e_{\mathrm{EXPORT}}=0$ $N_{01}=141$ $N_{00}=774,106$ these values into formula:

$$\begin{split} I(U;C) &= \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49+27,652)(49+141)} \\ &+ \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141+774,106)(49+141)} \\ &+ \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49+27,652)(27,652+774,106)} \\ &+ \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141+774,106)(27,652+774,106)} \\ &\approx \quad 0.000105 \end{split}$$

MI feature selection on Reuters

Class:	coffee

term	MI
COFFEE	0.0111
BAGS	0.0042
GROWERS	0.0025
KG	0.0019
COLOMBIA	0.0018
BRAZIL	0.0016
EXPORT	0.0014
EXPORTERS	0.0013
EXPORTS	0.0013
CROP	0.0012

Class: sports

5.455. Sp 5.15				
term	MI			
SOCCER	0.0681			
CUP	0.0515			
MATCH	0.0441			
MATCHES	0.0408			
PLAYED	0.0388			
LEAGUE	0.0386			
BEAT	0.0301			
GAME	0.0299			
GAMES	0.0284			
TEAM	0.0264			

Naive Bayes: Effect of feature selection

(multinomial = multinomial Naive Bayes, binomial = Bernoulli Naive Bayes)

Feature selection for Naive Bayes

- In general, feature selection is necessary for Naive Bayes to get decent performance.
- Also true for many other learning methods in text classification: you need feature selection for optimal performance (if the learning algorithm does not have built in "regularization".
- Algorithms that have regularization: SVMs, logistic regression
- Algorithms that do not: Naive Bayes, perceptron, decision trees

Exercise

(i) Compute the "export"/POULTRY contingency table for the "Kyoto"/JAPAN in the collection given below. (ii) Make up a contingency table for which MI is 0 – that is, term and class are independent of each other. "export"/POULTRY table:

	$e_c = e_{poultry} = 1$	$e_c = e_{poultry} = 0$
$e_t = e_{\text{EXPORT}} = 1$	$N_{11} = 49$	$N_{10} = 27,652$
$e_t = e_{\text{EXPORT}} = 0$	$N_{01} = 141$	$N_{00} = 774,106$

Collection:

	docID	words in document	in $c = Japan?$
training set	training set 1 Kyoto Osaka Taiwan		yes
	2	Japan Kyoto	yes
	3	Taipei Taiwan	no
	4	Macao Taiwan Shanghai	no
	5	London	no

Outline

- Text classification
- 2 Naive Bayes
- NB theory
- 4 Feature selection (only for grad students!)
- **5** Evaluation of TC

Evaluation on Reuters

Example: The Reuters collection

symbol	statistic	value
N	documents	800,000
L	avg. $\#$ word tokens per document	200
Μ	word types	400,000

A Reuters document

Evaluating classification

- Evaluation must be done on test data that are independent of the training data, i.e., training and test sets are disjoint!!!
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall, F_1 , classification accuracy

Precision P and recall R

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)

TP, FP, FN, TN are counts of documents.

The sum of these four counts is the total number of documents.

Precision P and recall R

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)
		, , ,

TP, FP, FN, TN are counts of documents.

The sum of these four counts is the total number of documents.

precision:
$$P = TP/(TP + FP)$$

recall: $R = TP/(TP + FN)$

A combined measure: F

F₁ allows us to trade off precision against recall.

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P + R}$$

• This is the harmonic mean of P and R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$

Averaging: Micro vs. Macro

- We now have an evaluation measure (F_1) for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- Macroaveraging
 - Compute F_1 for each of the C classes
 - Average these C numbers
- Microaveraging
 - Compute TP, FP, FN for each of the C classes
 - Sum these C numbers (e.g., all TP to get aggregate TP)
 - Compute F_1 for aggregate TP, FP, FN
- Exercise

Naive Bayes vs. other methods

(a)		NB	Rocchio	kNN	SVM
	micro-avg-L (90 classes)	80	85	86	89
	macro-avg (90 classes)	47	59	60	60

(b)		NB	Rocchio	kNN	trees	SVM
	earn	96	93	97	98	98
	acq	88	65	92	90	94
	money-fx	57	47	78	66	75
	grain	79	68	82	85	95
	crude	80	70	86	85	89
	trade	64	65	77	73	76
	interest	65	63	74	67	78
	ship	85	49	79	74	86
	wheat	70	69	77	93	92
	corn	65	48	78	92	90
	micro-avg (top 10)	82	65	82	88	92
	micro-avg-D (118 classes)	75	62	n/a	n/a	87
	-1: Da.			عنيما الم		

Evaluation measure: F_1 Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM). But the gap is very small when NB uses feature selection!

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Feature selection (only for grad students)
- Evaluation of text classification: how do we know it worked / didn't work?