Bayesian mean-only linear model with Stan

In this program, we assume that we have a vector of N observations that can be reasonably modeled by a $N(\mu, \sigma)$ distribution.

Our objective is to fit the mean-only linear model:

$$Y = \beta_0 + e$$

where:

- Y is a vector of observed measurements (Sepal.Width from the iris dataset).
- β_0 is a parameter, assumed to be a random variable and given a prior distribution.
- e is a vector of independent normal random variables with mean zero and standard deviation σ_e .

In the Bayesian formulation, β_0 and σ_e are treated as parameters, which are random variables in the Bayesian framework.

The Bayes equation is:

$$f(\beta_0, \sigma_e|Y) \propto f(Y|\beta_0, \sigma_e) \cdot f(\beta_0) \cdot f(\sigma_e)$$

where:

- $f(\beta_0, \sigma_e|Y)$ is the (joint) posterior distribution of β_0 and σ_e given Y
- $f(Y|\beta_0, \sigma_e)$ is the conditional likelihood of Y given β_0 and σ_e
- $f(\beta_0)$ is the prior distribution for β_0
- $f(\sigma_e)$ is the prior distribution for σ_e

The likelihood and priors are specified in mean_only.stan:

With this model file, we have the following specifications:

- The likelihood $f(Y|\beta_0,\sigma_e)$ is $N(\beta_0,\sigma_e)$, coded as y \sim normal(beta_0,sigma)
- The prior $f(\beta_0)$ is N(0,100), coded as beta_0 \sim normal(0,100)
- The prior $f(\sigma_e)$ is half-cauchy (because of < lower = 0 >) coded as sigma_e \sim cauchy(0,10)