COURSERA – FINAL PROJECT

[1] 5885 104

ENVIRONMENT PREPARATION - Downloading necessary libraries for the programming

```
# Set the working directory
setwd("/Users/alexandralocchi/Documents/EDHEC NICE/Cours/FE")
library(lattice)
library(ggplot2)
library(caret)
library(rpart)
library(rpart.plot)
library(corrplot)
library(rattle)
library(randomForest)
library(RColorBrewer)
set.seed(1012)
# DATA LOADING & CLEANSING
# Set URL for the download
UrlTrain <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
UrlTest <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
# Download adequate datasets
training <- read.csv(url(UrlTrain))
testing <- read.csv(url(UrlTest))
# Create a partition with the training dataset (70% of the data) for the modeling process and
a TestSet with 30% of remaining data for validations
inTrain <- createDataPartition(training$classe, p=0.7, list=FALSE)
TrainSet <- training[inTrain, ]</pre>
TestSet <- training[-inTrain, ]</pre>
dim(TrainSet)
## [1] 13737 160
dim(TestSet)
## [1] 5885 160
#The two datasets (TrainSet & TestSet) have 160 variables and multiple NA numbers and
near zero variance variables. I will remove both.
nzv_var <- nearZeroVar(TrainSet)</pre>
TrainSet <- TrainSet[, -nzv_var]
TestSet <- TestSet[, -nzv_var]
dim(TrainSet)
## [1] 13737 104
dim(TestSet)
```

> With the cleaning of the data, only 54 variables remain.

CORRELATION ANALYSIS

```
corr_matrix <- cor(TrainSet[ , -54])
corrplot(corr_matrix, order = "FPC", method = "circle", type = "lower",
    tl.cex = 0.8, tl.col = rgb(0, 0, 0))</pre>
```


Variables showing high level of correlation appear in darker colors in the previous plot; they are dark blue for a positive correlation or dark red for a negative correlation?

PREDICTION MODEL BUILDING


```
Reference
Prediction A B 59 691 C 19 72 D 91 147 E 19 39
                         19 72 816 153 101
91 147 67 635 133
19 39 22 43 664
```

Overall Statistics

Accuracy : 0.7293 95% CI : (0.7178, 0.7406) No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.6567

Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.8877	0.6067	0.7953	0.6587	0.6137
Specificity	0.9143	0.9313	0.9290	0.9110	0.9744
Pos Pred Value	0.8045	0.6794	0.7028	0.5918	0.8437
Neg Pred Value	0.9534	0.9080	0.9555	0.9316	0.9180
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2525	0.1174	0.1387	0.1079	0.1128
Detection Prevalence	0.3138	0.1728	0.1973	0.1823	0.1337
Balanced Accuracy	0.9010	0.7690	0.8622	0.7849	0.7940

The predictive accuracy of the decision tree model is relatively low at 72.93%.

GENERALIZED BOOSTED MODEL

```
set.seed(1012)
```

ctrl_GBM <- trainControl(method = "repeatedcv", number = 5, repeats = 1)

fit_GBM <- train(classe ~ ., data = TrainSet, method = "gbm",

trControl = ctrl GBM, verbose = FALSE)

fit GBM\$finalModel

Prediction of the decision tree model on TestSet

```
predict_GBM <- predict(fit_GBM, newdata=TestSet)</pre>
conf_matrix_GBM <- confusionMatrix(predict_GBM, TestSet$classe)</pre>
conf matrix GBM
```

Ploting the matrix results of the GBM model

```
plot(conf_matrix_GBM$table, col = conf_matrix_GBM$byClass,
  main = paste("GBM - Accuracy =", round(conf matrix GBM$overall['Accuracy'], 4)))
```

Confusion Matrix and Statistics

Keterence						
Prediction	Α	В	C	D	Ε	
Α	1667	6	0	1	0	
В	7	1115	11	1	7	
C	0	16	1012	19	1	
D	0	2	3	942	11	
E	0	0	0	1	1063	

Overall Statistics

Accuracy : 0.9854 95% CI : (0.982, 0.9883) No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Карра : 0.9815

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.9958	0.9789	0.9864	0.9772	0.9824
Specificity	0.9983	0.9945	0.9926	0.9967	0.9998
Pos Pred Value	0.9958	0.9772	0.9656	0.9833	0.9991
Neg Pred Value	0.9983	0.9949	0.9971	0.9955	0.9961
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2833	0.1895	0.1720	0.1601	0.1806
Detection Prevalence	0.2845	0.1939	0.1781	0.1628	0.1808
Balanced Accuracy	0.9971	0.9867	0.9895	0.9870	0.9911

GBM - Accuracy = 0.9854

The predictive accuracy of the GBM model is relatively high at 98.54%.

RANDOM FOREST MODEL

```
set.seed(1012)
```

fit_RF\$finalModel

Prediction of the decision tree model on TestSet

predict_RF <- predict(fit_RF, newdata = TestSet)
conf_matrix_RF <- confusionMatrix(predict_RF, TestSet\$classe)
conf_matrix_RF</pre>

Ploting the matrix results of the random forest model

plot(conf_matrix_RF\$table, col = conf_matrix_RF\$byClass,

Random Forest - Accuracy = 0.9971

Confusion Matrix and Statistics

Reference					
Prediction	A	В	C	D	E
A	1674	1	0	0	0
В	0	1137	1	0	0
C	0	0	1025	6	0
D	0	1	0	958	8
E	0	0	0	0	1074

Overall Statistics

Accuracy: 0.9971 95% CI: (0.9954, 0.9983) No Information Rate: 0.2845 P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.9963

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	1.0000	0.9982	0.9990	0.9938	0.9926
Specificity	0.9998	0.9998	0.9988	0.9982	1.0000
Pos Pred Value	0.9994	0.9991	0.9942	0.9907	1.0000
Neg Pred Value	1.0000	0.9996	0.9998	0.9988	0.9983
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1932	0.1742	0.1628	0.1825
Detection Prevalence	0.2846	0.1934	0.1752	0.1643	0.1825
Balanced Accuracy	0.9999	0.9990	0.9989	0.9960	0.9963

The predictive accuracy of the RF model is the higher amongst all methodologies, at 99.71%.

CCL - APPLY THE SELECTED MODEL TO THE DATA TEST

predict_Test <- predict(fit_RF, newdata=testing)
predict_Test</pre>

[1] B A B A A E D B A A B C B A E E A B B B

Levels: A B C D E

> To conclude, the predictive accuracy of the models are: 72.93% for the Decision Tree model; 98.54% for the Generalized Boosted model; and 99.71% for the Random Forest model.

We can select the RF model to predict the 20 quiz results.