1. A bar magnet is placed in a uniform magnetic field at an angle θ . What is the torque acting on it?
A) MB B) MB sinθ C) MB cosθ D) M/B
Answer: B) MB sin θ Explanation: The torque (τ) acting on a magnetic dipole in a magnetic field is τ = MB sin θ , where M is magnetic moment and B is magnetic field.
2. The magnetic moment of a bar magnet is M. If it is cut into two equal halves perpendicular to its length, the magnetic moment of each piece will be:
A) M B) M/2 C) M/4 D) 2M
Answer: B) M/2 Explanation: Cutting a bar magnet perpendicular to its length halves the magnetic moment because magnetic moment \propto length.
3. If a magnetic needle is placed at the magnetic north pole of Earth, it will:
A) Point vertically upward B) Point vertically downward C) Align horizontally D) Become stationary in any direction
Answer: B) Point vertically downward Explanation: At the magnetic north pole, Earth's magnetic field is completely vertical and directed downward.
4. Magnetic field at the center of a circular current loop of radius r and current I is:
A) $\mu_0 I / 2\pi r$ B) $\mu_0 I / 2r$ C) $\mu_0 I r / 2$

D) μ_0 I / $4\pi r$
Answer: B) $\mu_0 I / 2r$
Explanation: Magnetic field at the center of a current-carrying loop is given by B = $\mu_0 I$ / 2r.
5. A magnetic dipole placed in a uniform magnetic field experiences:
A) A force and a torque
B) Only a force
C) Only a torque
D) Neither force nor torque
Answer: C) Only a torque
Explanation: A magnetic dipole in a uniform magnetic field experiences torque but no net force.
6. Magnetic susceptibility (χ) of a diamagnetic substance is:
A) Small and positive
B) Small and negative
C) Large and positive
D) Zero
Answer: B) Small and negative
Explanation: Diamagnetic substances slightly repel magnetic fields, hence they have small negative
susceptibility (χ < 0).
7. A magnetic needle oscillates 10 times per minute in a magnetic field B. When the field is increased to 4B, the
frequency becomes:
A) 10
B) 20
C) 40
D) 100
Answer: C) 40

Explanation: Frequency \propto VB. So if B \Rightarrow 4B, then f \Rightarrow 2f. New frequency = 10 \times 2 = 20 oscillations per 30 seconds

= 40 per minute.

8. Which of the following materials can be permanently magnetized?
A) Paramagnetic B) Diamagnetic C) Ferromagnetic D) Non-magnetic
Answer: C) Ferromagnetic Explanation: Only ferromagnetic materials like iron, cobalt, and nickel can be permanently magnetized due to strong domain alignment.
9. The Earth's magnetic field is due to:
A) Magnetic materials in the Earth's crust B) Electric currents in Earth's core C) Gravitational pull D) Solar winds
Answer: B) Electric currents in Earth's core Explanation: The geodynamo effect — electric currents in the liquid outer core — is responsible for Earth's magnetic field.
10. The angle between the geographic meridian and magnetic meridian is called:
A) Dip B) Declination C) Latitude D) Magnetic inclination
Answer: B) Declination Explanation: Magnetic declination is the angle between true north (geographic) and magnetic north.
11. If the horizontal component of Earth's magnetic field is 0.35 G and the angle of dip is 60°, what is the vertical component?
A) 0.20 G

B) 0.30 G

- C) 0.60 G
- D) 0.35 G

Answer: C) 0.60 G

Explanation: Vertical component = $H \times tan(\delta) = 0.35 \times tan(60^{\circ}) = 0.35 \times \sqrt{3} \approx 0.60 \text{ G}$.

- 12. The magnetic field lines due to a bar magnet:
- A) Are discontinuous
- B) Intersect each other
- C) Form closed loops
- D) Start from south and end at north

Answer: C) Form closed loops

Explanation: Magnetic field lines are always closed loops from N to S outside the magnet and S to N inside.

- 13. Which of the following is used to detect the Earth's magnetic field?
- A) Voltmeter
- B) Tangent galvanometer
- C) Magnetic needle
- D) Ammeter

Answer: C) Magnetic needle

Explanation: A magnetic compass needle aligns with Earth's magnetic field, making it a basic detector.

- 14. A bar magnet has magnetic moment 0.5 A·m². What is the torque in a magnetic field of 0.2 T, when it is placed at 90° to the field?
- A) 0.1 N·m
- B) 0.05 N·m
- C) 0.2 N·m
- D) 0.01 N·m

Answer: A) 0.1 N·m

Explanation: $\tau = MB \sin\theta = 0.5 \times 0.2 \times \sin(90^\circ) = 0.1 \text{ N·m}.$

- 15. The horizontal component of Earth's magnetic field is zero at:
- A) Equator
- B) Poles
- C) 45° latitude
- D) Tropic of Cancer

Answer: B) Poles

Explanation: At the magnetic poles, the field is vertical, so the horizontal component is zero.

- 16. At a place, the angle of dip is 45° and the horizontal component of Earth's magnetic field is 0.3 G. The vertical component is:
- A) 0.3 G
- B) 0.424 G
- C) 0.212 G
- D) 0.6 G

Answer: B) 0.424 G

Explanation:

Vertical component = $H \times tan(\theta) = 0.3 \times tan(45^\circ) = 0.3 \times 1 = 0.3 G$

Total magnetic field = $V(H^2 + V^2) = V(0.3^2 + 0.3^2) = 0.424$ G

- 17. Susceptibility of a paramagnetic material:
- A) Increases with temperature
- B) Is independent of temperature
- C) Decreases with temperature
- D) First increases then decreases

Answer: C) Decreases with temperature

Explanation:

According to Curie's law, $\chi \propto 1/T$, so susceptibility decreases as temperature increases.

- 18. Which of the following statements is true for ferromagnetic substances?
- A) They are weakly magnetized
- B) They do not retain magnetism

C) They have domains aligned permanently D) Their susceptibility is negative
Answer: C) They have domains aligned permanently
Explanation:
In ferromagnetic materials, atomic dipoles are aligned in domains even without external fields.
19. A neutral point in a magnetic field is a point where:
A) Only electric field exists
B) Magnetic field is maximum
C) Magnetic field is zero
D) Only gravitational field exists
Answer: C) Magnetic field is zero
Explanation:
At a neutral point, fields from different sources cancel each other, resulting in net zero magnetic field.
20. The SI unit of magnetic susceptibility is:
A) Tesla
B) Weber
C) No unit
D) A·m ²
Answer: C) No unit
Explanation:
It is a ratio of two magnetic quantities and hence dimensionless.
21. The magnetic moment of a bar magnet is 1.2 A·m². The magnet is placed in a uniform field of 0.5 T. The maximum torque acting on it is:
·
A) 0.6 N·m
B) 1.7 N·m
C) 0.24 N·m

D) 2.4 N·m

Answer: A) 0.6 N·m

Explanation:

 $\tau = MB \sin\theta \rightarrow \text{for maximum torque}, \sin\theta = 1 \rightarrow \tau = 1.2 \times 0.5 = 0.6 \text{ N} \cdot \text{m}$

- 22. In diamagnetic materials, magnetic dipole moments:
- A) Align in the direction of field
- B) Strengthen the external field
- C) Oppose the magnetic field
- D) Are zero in the absence of a field

Answer: C) Oppose the magnetic field

Explanation:

Diamagnetic materials develop an induced magnetic moment opposite to the applied field.

- 23. Magnetic meridian is:
- A) A vertical plane containing magnetic axis of Earth
- B) A vertical plane perpendicular to geographic meridian
- C) A horizontal plane passing through a magnet
- D) A vertical plane parallel to equator

Answer: A) A vertical plane containing magnetic axis of Earth

Explanation:

The magnetic meridian is the vertical plane in which a magnetic needle aligns itself.

- 24. The bar magnet is cut into two equal pieces. The magnetic moment of each piece is:
- A) Same as original
- B) Twice the original
- C) Half the original
- D) One-fourth the original

Answer: C) Half the original

Explanation:

Magnetic moment M = m × 2l; halving the length gives M = m × l \rightarrow half of original.

25. A bar magnet has a magnetic moment of 2 A·m². If it is placed at	an angle of 60°	in a magnetic fie	eld of 0.3 T,
torque experienced is:			

- A) 0.6 N·m
- B) 0.519 N·m
- C) 0.45 N·m
- D) 0.3 N·m

Answer: B) 0.519 N·m

Explanation:

 $\tau = MB \sin\theta = 2 \times 0.3 \times \sin(60^{\circ}) = 0.6 \times \sqrt{3}/2 \approx 0.519 \text{ N} \cdot \text{m}$

26. A freely suspended magnet aligns itself in which direction?

- A) East-West
- B) North-South
- C) Random
- D) Vertical

Answer: B) North-South

Explanation:

It aligns with Earth's magnetic field which approximately points from magnetic south to magnetic north.

27. Magnetic dipole moment of a solenoid is given by:

- A) $m = B \times A$
- B) m = NIA
- C) $m = NI/\mu_0$
- D) $m = \mu_0 NI$

Answer: B) m = NIA

Explanation:

Magnetic dipole moment = Number of turns × Current × Area.

28. If a diamagnetic substance is placed in a non-uniform magnetic field, it will move:

- A) Toward the stronger field
- B) Toward the weaker field

C) Will remain stationary D) Randomly
Answer: B) Toward the weaker field Explanation: Diamagnetic materials are repelled by magnetic fields and hence move to weaker regions.
29. For a magnetic dipole in a magnetic field, the condition for stable equilibrium is when angle between m and B is:
A) 0° B) 45° C) 90° D) 180°
Answer: A) 0° Explanation: Stable equilibrium occurs when the dipole aligns with the field.
30. The angle of dip at magnetic equator is:
A) 0° B) 45° C) 60° D) 90°
Answer: A) 0° Explanation: At the magnetic equator, the field is purely horizontal \Rightarrow dip angle = 0° .
31. If the horizontal component of Earth's magnetic field is 0.36 G and the angle of dip is 60°, then the vertical component is:
A) 0.62 G B) 0.31 G C) 0.18 G D) 0.623 G

Answer: A) 0.62 G Explanation:
Vertical component = $H \times tan(dip) = 0.36 \times tan(60^\circ) = 0.36 \times 1.732 \approx 0.62 G$
32. Magnetic inclination is defined as the angle between:
A) Magnetic meridian and geographic meridian
B) Magnetic axis and equator
C) Magnetic field vector and horizontal
D) Magnetic field and vertical
Answer: C) Magnetic field vector and horizontal Explanation:
Inclination (dip) is the angle made by Earth's total magnetic field with the horizontal.
33. The magnetic field due to a short bar magnet at an axial point is inversely proportional to:
A) r
B) r ²
C) r ³
D) r^4
Answer: C) r ³
Explanation:
On axial line, $B \propto 1/r^3$. So, magnetic field decreases rapidly with distance.
34. A current-carrying conductor is placed in a magnetic field. The force on the conductor will be maximum when:
A) Angle between the conductor and magnetic field is 0° B) Angle between the conductor and magnetic field is 90° C) Angle between the conductor and magnetic field is 45° D) The conductor is parallel to the magnetic field
Answer: B Explanation: The force is given by $F = I \times L \times B \times \sin\theta$. It is maximum when $\sin\theta = 1$, i.e., $\theta = 90^\circ$.

35. The magnetic field due to a long straight current-carrying wire is:
A) Inversely proportional to distance from the wire B) Directly proportional to the square of the distance C) Independent of the current D) Zero at any point outside the wire
Answer: A
Explanation: B = $(\mu_0 I) / (2\pi r)$, so it decreases with distance r.
36. A solenoid has 1000 turns per meter and carries a current of 2 A. What is the magnetic field inside it? (μ_0 = $4\pi \times 10^{-7}$ Tm/A)
A) 4×10^{-3} T
B) 8×10^{-3} T C) 2×10^{-3} T
D) 6×10^{-3} T
Answer: A $ \text{Explanation: B} = \mu_0 \times n \times I = (4\pi \times 10^{-7}) \times 1000 \times 2 = 8\pi \times 10^{-4} \approx 4 \times 10^{-3} \text{T}. $
37. The magnetic field at the center of a circular loop of radius r carrying current I is:
A) μ_0 I / (2r)
B) μ_0 I / (4 π r)
C) $\mu_0 I / (2\pi r)$
D) μ ₀ I / r
Answer: A
Explanation: Magnetic field at center of a circular loop is B = μ_0 I / (2r).
38. A 1 m long wire carries a current of 5 A and is placed in a uniform magnetic field of 2 T perpendicular to it. What is the magnetic force?
A) 10 N
B) 5 N

C) 15 N D) 20 N

Answer: A
Explanation: $F = I \times L \times B \times \sin\theta = 5 \times 1 \times 2 \times 1 = 10 \text{ N (since } \theta = 90^{\circ}\text{)}.$
39. The direction of the magnetic field due to a current-carrying wire is determined using:
A) Fleming's left-hand rule
B) Right-hand thumb rule
C) Ampere's circuital law
D) Coulomb's law
Answer: B
Explanation: Right-hand thumb rule gives the direction of the magnetic field in circular loops around the wire.
40. Two long parallel wires carrying equal current in the same direction will:
A) Repel each other
B) Attract each other
C) Remain unaffected
D) Rotate
Answer: B
Explanation: Parallel currents in the same direction attract each other.
41. A charged particle enters a magnetic field perpendicular to its velocity. The path followed will be:
A) Straight line
B) Circular
C) Parabola
D) Ellipse
Answer: B
Explanation: Force acts as centripetal force, making the particle move in a circular path.
42. Magnetic moment of a current loop is:
A) Proportional to the current and area

B) Proportional to the square of the area C) Inversely proportional to current D) Independent of area
Answer: A Explanation: Magnetic moment $M = I \times A$ (current \times area of the loop).
43. Magnetic field inside a long solenoid is:
A) Zero B) Non-uniform C) Uniform and parallel to axis D) Circular
Answer: C Explanation: The magnetic field inside an ideal solenoid is uniform and parallel to its axis.
44. Magnetic force on a moving charge in a magnetic field is given by:
A) qvB B) qB C) qv D) qvB sinθ
Answer: D Explanation: Magnetic force $F = qvB \sin\theta$, where θ is the angle between v and B .
45. The SI unit of magnetic field is:
A) Gauss B) Tesla C) Newton D) Weber
Answer: B Explanation: Tesla (T) is the SL unit of magnetic field