GEORGE HALAL | Personal Site: https://georgehalal.github.io | Email: georgech@stanford.edu | Phone: +1 (650) 422-9033

SUMMARY

Astrophysicist specialized in developing efficient machine learning and statistical techniques for analyzing large and complex datasets.

EDUCATION

Stanford University| Ph.D. Physics| GPA: 4.00/4.00| 2019–2024Lehigh University| B.S. Physics & Minor in Applied Mathematics| GPA: 3.97/4.00| 2015–2019

Thesis: "Machine Learning Applications for Relativistic Heavy-Ion Collisions"

SKILLS

Proficient | Python • SQL • MATLAB Familiar | C++ • HTML • Tableau

Python Packages | PyTorch • PyTorch Lightning • Scikit-learn • Pandas • Hugging Face transformers • NumPy • Statsmodels •

SciPy • Seaborn • Xgboost • Shap • Matplotlib • Pytest • TensorFlow/Keras

Machine Learning | Computer Vision • Generative Modeling • Natural Language Processing • MLOps

Other Topics | Causal Inference • Bayesian Inference • Hypothesis Testing • Time Series/Signal Processing

EXPERIENCE

Data Scientist Intern | Alife Health, Inc., San Francisco, CA

| 2023

Causal Inference and Machine Learning for IVF Intracycle Dose Adjustments

- Developed techniques for analyzing the impact of dose adjustment patterns throughout IVF cycles on pregnancy outcomes.
- Employed statistical tests to alert clinics when a doctor's performance deviates from their peers' on key performance indicators.

Graduate Student Researcher | Stanford University, Stanford, CA

| 2019-2024

Deep Learning-Based Super-Resolution for Dust Polarization Images

Employed multimodal modeling techniques to increase the resolution of dust polarization images by 4x.

Causal Inference for Modeling the Effects of the Nearby Dust Geometry on Magnetic Fields | Paper in prep.

Spherical Harmonic Convolutional Hough Transform | GitHub Link | Paper Link | Invited Talk Link

- Developed a computer vision algorithm to model the structure of interstellar gas.
- Achieved 3000x runtime speedup and 5x memory reduction over the previous state-of-the-art.

Modeling the Foreground Obscuring Radiation from the Early Universe | Paper Link | Award Link | Invited Talks: Harvard, Spain, S4

Used computer vision, hypothesis testing, and Bayesian inference for quantifying this foreground signal, setting new limits.

Deep Learning for Stochastic Generation of Observed Galaxy Properties | GitHub Link

Developed a conditional Wasserstein generative adversarial neural network with gradient penalty (cWGAN-GP) to generate
observed galaxy properties in wide-field surveys.

Deep Learning for Modeling the Transfer Function of Galaxy Detection | GitHub Link

 Developed a probabilistic model for predicting the transfer function of galaxy detection in wide-field surveys, achieving an ROC-AUC score of 0.95.

Deep Learning for Searching for 2-ν Double-β Decay of ¹³⁶Xe | Poster Link

Developed a Long Short-Term Memory (LSTM) based model to search for this decay to the excited state of ¹³⁶Ba in EXO-200 data, achieving an ROC-AUC score of 0.98.

Undergraduate Student Researcher | Yale University and Lehigh University

| 2018-2019

Deep Learning for Heavy-Flavor Jet Classification at RHIC | Report Link | Talk Link

• Developed a Python-based Long Short-Term Memory (LSTM) model to classify bottom, charm, and light jets, attaining misclassification rates of 2.1%, 10.9%, and 4×10⁻³%, respectively, leveraging C++ for efficient data preprocessing.

Undergraduate Student Researcher | The Ohio State University and Lehigh University

| 2016-2018

Deep Learning for Collision Geometry Determination

• Developed a model to identify the collision geometry of nuclei based on the activation pattern of STAR-EPD detector tiles in Python, leveraging C++ for efficient data preprocessing.

PUBLICATIONS | 15+ including 3 first/corresponding-author