离散数学(2023)作业17-代数系统与半群

离散数学教学组

Problem 1

设S为n元集,问:

- I. 集合 S 上可以定义多少个不同的二元运算?
- 2. 其中有多少个二元运算是可交换的?
- 3. 其中有多少个二元运算是幂等的?
- 4. 其中有多少个二元运算是既不可交换又不幂等的?

答案:

- I. $n^{n^2} \uparrow$
- 2. $n^{\frac{n(n+1)}{2}} \uparrow$
- 3. $n^{n^2-n} ext{ } ext{ }$
- **4.** $n^{n^2} n^{\frac{n(n+1)}{2}} n^{n^2-n} + n^{\frac{n(n-1)}{2}} \uparrow$

Problem 2

设 $A = \{a, b, c\}, a, b, c \in \mathbb{R},$ 能否确定 a, b, c 的值,使得:

- I. A对普通加法封闭?
- 2. A对普通乘法封闭?

答案:

- I. 不能。假设存在满足题意的集合 A,那么 A 中必然存在绝对值最大的非零元素,不妨假设是 a,那么 |a+a|=2|a|>|a| 比 A 中绝对值最大的元素还大,因此不属于 A,矛盾。故不存在满足题意的集合。
- 2. 能, $A = \{-1, 0, 1\}$ 。

Problem 3

判断下列集合对所给的二元运算是否封闭:

- I. 整数集合 ℤ 和普通的减法运算
- 2. 非零整数集合 Z* 和普通的除法运算
- 3. 全体 $n \times n$ 实数矩阵集合 $M_n(\mathbb{R})$ 和矩阵加法及乘法运算,其中 $n \geq 2$
- 4. 全体 $n \times n$ 实可逆矩阵集合关于矩阵加法和乘法运算,其中 $n \ge 2$
- 5. 正实数集合 ℝ+和。运算,其中。运算定义为:

$$\forall a, b \in \mathbb{R}^+, a \circ b = ab - a - b$$

6. $\mathbb{A} = \{a_1, a_2, \dots, a_n\}, n \geq 2, 其中 \circ 运算定义如下:$

$$\forall a,b \in \mathbb{A}, a \circ b = b$$

7. S = {0,1} 关于普通加法和乘法运算

8. $S = \{x | x = 2^n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算

9. $\mathbb{S} = \{x | x = \ln n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算

答案:

I. 封闭

2. 不封闭

3. 加法,乘法都封闭

4. 加法不封闭,乘法封闭

5. 不封闭

6. 封闭

7. 加法不封闭, 乘法封闭

8. 加法不封闭,乘法封闭

9. 加法封闭,乘法不封闭

Problem 4

 \mathbb{R} 为实数集,定义以下 4 个函数 f_1, f_2, f_3, f_4 . $\forall x, y \in \mathbb{R}$ 有

$$f_1((x,y)) = x \cdot y,$$
 $f_2((x,y)) = x - y,$ $f_3((x,y)) = \max(x,y),$ $f_4((x,y)) = |x - y|.$

I. 判断上述二元运算是否为可交换,可结合,幂等的;

2. 求上述二元运算的单位元,零元以及每一个可逆元素的逆元;

3. 设 $A = \{a, b\}$,试给出 A 上一个不可交换,也不可结合的二元运算。

答案:

		可交换	可结合	幂等	
	f_1			×	
I.	f_2	×	×	×	
	f_3				
	f_4		×	×	

		单位元	零元	逆元
	f_1	1	0	$1/x(x \neq 0)$
2.	f_2	×	×	×
	f_3	×	×	×
	f_4	×	×	×

3.
$$\begin{array}{c|cccc}
 \circ & a & b \\
\hline
 a & b & b \\
 b & a & a
\end{array}$$

Problem 5

设 $S = \{1, 2, ..., 10\}$,问下面定义的运算能否与 S 构成代数系统 $\langle S, * \rangle$?如果能,则说明 * 运算是否满足交换律、结合律,并给出单位元和零元。

- I. $x * y = \gcd(x, y)$, $\gcd(x, y)$ 是 $x \ni y$ 的最大公约数;
- **2.** x * y = lcm(x, y), lcm(x, y) 是 x 与 y 的最小公倍数;
- 3. $x * y = \max(x, y)$;
- **4.** x * y =质数p的个数,其中 $x \le p \le y$ 。

答案:

	代数系统	交换律	结合律	单位元	零元
1				×	1
2	×				
3	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	10
4	×				

Problem 6

设 A 是一个非空集合,定义 \circ : $a \circ b = a, \forall a, b \in A$ 。试证明: $\langle A, \circ \rangle$ 是一个半群。

答案: 显然 \circ 是 A 上的二元运算。对于任意的 $a,b,c \in A$,由

$$(a \circ b) \circ c = a \circ c = a, a \circ (b \circ c) = a \circ b = a,$$

恒有

$$(a \circ b) \circ c = a \circ (b \circ c).$$

即结合律成立,所以 $\langle A, \circ \rangle$ 是一个半群。

Problem 7

设(S,*)是一个半群, $a \in S$,在S上定义 \circ : $x \circ y = x * a * y, \forall x, y \in S$ 。证明: (S, \circ) 也是一个半群。

答案: 显然 \circ 是 S 上的二元运算。对于 $\forall x, y, z \in S$,有

$$(x \circ y) \circ z = (x \circ y) * a * z = (x * a * y) * a * z = (x * a) * y * a * z = x * a * (y \circ z) = x \circ y \circ z$$

因此。满足结合律, (S,\circ) 是一个半群。

Problem 8

设(S,*)是一个半群,如果对所有的 $a,b \in S$,只要 $a \neq b$,必有 $a*b \neq b*a$,证明:

- I. $\forall a \in S$,有 a * a = a;
- **2.** $\forall a, b \in S$, f(a) * b * a = a;
- 3. $\forall a, b, c \in S$, 有 a * b * c = a * c.

答案: 由题设,对所有的 $a,b \in S$,只要 a*b=b*a,必有 a=b:

- I. $\forall a \in S, (a*a)*a = a*(a*a),$ 故 a*a = a.
- 2. $\forall a, b \in S$,由第一问有 (a*b*a)*a = a*b*(a*a) = a*b*a, a*(a*b*a) = (a*a)*b*a = a*b*a,故 (a*b*a)*a = a*(a*b*a),因此 a*b*a=a。
- 3. $\forall a, b, c \in S$, 由第二问有 (a*b*c)*(a*c) = a*b*(c*a*c) = a*b*c, (a*c)*(a*b*c) = (a*c*a)*b*c = a*b*c, 故 (a*b*c)*(a*c) = (a*c) = (a*c), 因此 a*b*c = a*c.

Problem 9

设代数系统 (A,*) 是一个有限的半群,证明 A 中必存在某个元素 a,使得 a*a=a。

答案: 对任意 $x \in A$, $x^2, x^3, x^4, \dots, x^n, \dots$ 均在 A 中,由于 A 是有限的,存在 i < j,使得 $x^i = x^j$,则有 $x^j = x^{j-i} \cdot x^i$,取 $p = j - i \ge 1$,对任意的 q > i,

$$x^q = x^{q-i} \cdot x_i = x^{q-i} \cdot (x^p \cdot x^i) = x^p \cdot x^q$$

由于 $p \ge 1$,存在k,使得 $kp \ge i$,从而

$$x^{kp} = x^p \cdot x^{kp} = x^p \cdot (x^p \cdot x^{kp}) = x^{2p} \cdot x^{kp} = x^{2p} \cdot (x^p \cdot x^{kp}) = \dots = x^{kp} \cdot x^{kp}$$

取 $a = x^{kp}$,则有 $a \cdot a = a$ 。

Problem 10

设 $\langle A, \oplus \rangle$ 和 $\langle B, \odot \rangle$ 是两个代数系统, $f \in \langle A, \oplus \rangle$ 到 $\langle B, \odot \rangle$ 的同构映射。证明:

- I. μ ⊕ 是可结合的,那么 ⊙ 也是可结合的;
- **2.** 如果 $e \in \langle A, \oplus \rangle$ 的单位元,那么 $f(e) \in \langle B, \odot \rangle$ 的单位元;
- **3.** 如果在 $\langle A, \oplus \rangle$ 中 $b \not\in a$ 的逆元,那么在 $\langle B, \odot \rangle$ 中 $f(a) \not\in f(b)$ 的逆元。

答案:

- I. 如果 \oplus 是可结合的,那么对于任意的 $x,y,z\in A$,有 $(x\oplus y)\oplus z=x\oplus (y\oplus z)$ 。由同构映射 f 的定义可知, f 保持运算,即 $f(x\oplus y)=f(x)\odot f(y)$ 。因此, $(f(x)\odot f(y))\odot f(z)=f(x)\odot (f(y)\odot f(z))$ 。根据结合律 的定义,这说明 \odot 也是可结合的。
- 2. 如果 $e \not\in \langle A, \oplus \rangle$ 的单位元,则对于任意的 $x \in A$,有 $x \oplus e = e \oplus x = x$ 。根据同构映射 f 的定义,f 保持单位元,即 $f(e) \not\in \langle B, \odot \rangle$ 的单位元。因此,对于任意的 $y \in B$,有 $y \odot f(e) = f(x \oplus e) \odot f(y) = f(x) \odot f(y) = f(x \oplus e) \odot f(y) = g \odot f(e)$ 。这说明 $f(e) \not\in \langle B, \odot \rangle$ 的单位元。
- 3. 如果在 $\langle A, \oplus \rangle$ 中 b 是 a 的逆元,则 $b \oplus a = a \oplus b = e$,其中 e 是 $\langle A, \oplus \rangle$ 的单位元。根据同构映射 f 的定义, f 保持逆元,即对于任意的 $x \in A$,有 $f(x^{-1}) = f(x)^{-1}$ 。因此, $f(b) \odot f(a) = f(b \oplus a) = f(e) = e_B$,其中 e_B 是 $\langle B, \odot \rangle$ 的单位元。同样地, $f(a) \odot f(b) = f(a \oplus b) = f(e) = e_B$ 。这说明 f(a) 是 f(b) 的逆元。