KEXIN DING

In https://www.linkedin.com/in/kexin-ding/ | kding1@uncc.edu | (484)-747-7743

Actively looking for 2022 summer intern in computer vision, deep learning and machine learning related positions

EDUCATION

University of North Carolina at Charlotte

Charlotte, NC

Ph.D. student in Computer Science. GPA: 3.714/4.0

09/2019 – Expected 2023

- Advisor(s): Dr. Shaoting Zhang and Dr. Aidong Lu
- Research area: deep learning, machine learning, computer vision, medical image analysis.

Lehigh University

Bethlehem, PA

M.S. in Computer Science

09/2017 - 05/2019

• Coursework: Algorithm and data structure, Machine learning, deep learning, data mining.

Xidian University

Xi'an, China

B.S. in Intelligent Science Technology

09/2013 - 06/2017

WORK & RESEARCH EXPERIENCE

SenseTime (Leading AI start-up company in Asia) Research intern

Beijing, China, 06/2019-09/2019

- Implemented CNN models for gene mutation prediction using pathological images in colon cancer by **PyTorch**.
- Trained a tumor detection model to select the tumor region patches (e.g., 10k) for gene mutation prediction.
- Implemented an image preprocessing pipeline including segmentation, foreground detection, and normalization.

Spatially-aware Graph Neural Networks Enable Cross-level Molecular Profile Prediction in Colon Cancer

- Achieved 5%-15% prediction improvements (AUC) compared with other state-of-the-art studies.
- Implemented a GNN model for predicting a panel of molecular profiles in colon cancer using **PyTorch** while developed an image-graph transformation strategy to define the spatially-connected graph.
- Designed a tile importance interpretation method to select clinical-relevance tiles for outcome explanation.

Graph Neural Networks for COVID-19 Diagnosis Based on Computed Tomography Images

- Implemented an agile transfer learning framework of GNN while using graph-wised data augmentation strategy to improve the efficiency and diagnosis accuracy of COVID-19 patients by using **PyTorch**.
- Introduced a KNN-graph construction strategy that covert CT images to graph structure data.

Feature-enhanced Graph Neural Networks for Genetic Mutational Prediction on colon cancer

- Achieved 15%-20% genetic mutation prediction improvement(AUC) compare with CNN baseline models.
- Designed a GNN model to improve the ability of distinguishing non-isomorphic graphs while exploring both image and topological features using **PyTorch**.
- Utilized a subgraph ensemble strategy to alleviate cancer heterogeneity and boost the prediction performance.

PUBLICATION

[1] **Kexin Ding**, Qiao Liu, Edward Lee, Mu Zhou, Aidong Lu, and Shaoting Zhang, "Feature-Enhanced Graph Networks for Genetic Mutational Prediction Using Histopathological Images in Colon Cancer.", *In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2020), pp. 294-304. Springer, Cham, 2020. Accepted by MICCAI2020.*

[2] Spatially-aware Graph Neural Networks Enable Cross-level Molecular Profile Prediction in Colon Cancer Histopathology: A Retrospective Multicentre Cohort Study. *Submitted to The LANCET Digital Health*.

[3] Graph Convolutional Networks in Multi-modality Medical Imaging: Concepts, Architectures, and Clinical Applications. *Under preparation*.

PROFESSIONAL SKILLS

Programming languages: Python, Matlab, SQL, Java, Javascript, C, Scala **Framework**: PyTorch, NumPy, Matplotlib, Slearn, Pandas, Pillow, CUDA

Operation system: Linux, MacOS **Language**: English, Mandarin