HOCHSCHULE LUZERN

Informatik FH Zentralschweiz

Einführung in die Zahlentheorie 2 - Übung

Prof. Dr. Josef F. Bürgler

I.BA DMATH, Semesterwoche 10

Die Aufgaben sind zusammen mit dem Lösungsweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig

Sie sollten im Durchschnitt 75% der Aufgaben bearbeiten. Die mit grossen römischen Zahlen gekennzeichneten Aufgaben **müssen** bearbeitet werden und die Lösungen dieser Aufgaben werden kontrolliert und bewertet. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche, nachdem das Thema im Unterricht besprochen wurde.

Referenz: Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill International Edition, 6.

Auflage, kurz: KR

1. Berechnen Sie:

$$3 \odot_{11} (2 \oplus_{11} 7) =$$

$$3 \odot_{11} 2 \oplus_{11} 10 =$$

$$(3 \oplus_{12} 9) \odot_{12} (3 \oplus_{12} 9) =$$

$$7 \odot_{11} 2 \oplus_{11} 9 \odot_{11} 9 =$$

$$((3 \oplus_{11} 6) \odot_{11} 3) \ominus_{11} 9 =$$

$$3 \odot_{11} 6 \ominus_{11} 3 \ominus_{11} 9 =$$

X. Berechnen Sie:

$$3 \odot_{9} (2 \oplus_{9} 5) =$$

$$3 \odot_{10} 2 \oplus_{10} 8 =$$

$$(3 \oplus_{12} 9) \odot_{12} (3 \oplus_{12} 9) =$$

$$7 \odot_{9} 2 \oplus_{9} 4 \odot_{9} 6 =$$

$$((3 \oplus_{9} 6) \odot_{9} 3) \ominus_{9} 8 =$$

$$3 \odot_{8} 6 \ominus_{8} 2 \ominus_{8} 3 =$$

Z. Rechnen in \mathbb{Z}_6

Ergänzen Sie alle fehlenden Einträge:

\oplus_6	0	1	2	3	4	5	\odot_6	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1							1	0					
2	2						2	0					
3	3						3	0					
4	4						4	0					
2 3 4 5	5						5	0					

Bestimmen Sie alle Elemente in \mathbb{Z}_6^* , die bezüglich der Multiplikation \odot_6 invertierbar sind und geben Sie jeweils die zugehörigen (multiplikativen) Inversen an.

 $\text{ Bestimmen Sie alle Nullteiler in } \mathbb{Z}_6.$

Ergänzen Sie alle fehlenden Einträge:

\ominus_6	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1					
2	2					
2 3	3					
4	4					
5	5					

M. Rechnen in \mathbb{Z}_7 Ergänzen Sie alle fehlenden Einträge:

\oplus_7	0	1	2	3	4	5	6	⊙7	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6	0	0	0	0	0	0	0	0
1	1							1	0						
2	2							2	0						
3	3							3	0						
4	4							4	0						
5	5							5	0						
, 6	6							6	0						

Bestimmen Sie alle Elemente in Z₇, die bezüglich der Multiplikation ⊙₇ invertierbar sind und geben Sie jeweils die zugehörigen (multiplikativen) Inversen an.

3. Berechnen Sie **Schritt für Schritt** mit Hilfe des SMA (Square and Multiply Algorithm) die modulare Potenz 3²¹ mod 11.

M. Berechnen Sie **Schritt für Schritt** mit Hilfe des SMA (Square and Multiply Algorithm) die modulare Potenz 3¹³ **mod** 13. Hätte man die Lösung hier auch einfacher finden können?

4. Sei n = 10 und $\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$. Ergänzen Sie die folgenden Tabellen:

x	1	3	7	9	a	1	3	7	9
$x\odot_{10}x$					$\sqrt{a} \mod 10$				

W. Sei n = 15 und $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. Ergänzen Sie die folgenden Tabellen:

	<i>x</i>	1	2	4	7	8	1	11	13	14	_
	$x\odot_{15}x$										
	a		1 2	2 4	4	7	8	11	. 1	3 1	4
1	$\sqrt{a} \mod 1$	5									

- 5. Finden Sie eine Lösung k der Gleichung $12 = 5^k \mod 17$.
- 6. Bestimmen Sie $log_9(16)$ mod 17.

Lösungen

- 1. 5, 5, 0, 7, 7, 6
- I. -

2.

\oplus_6	0	1	2	3	4	5	\odot_6	0	1	2	3	4	5	\ominus_6	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0	0	0	5	4	3	2	1
1	1	2	3	4	5	0	1	0	1	2	3	4	5	1	1	0	5	4	3	2
2	2	3	4	5	0	1	2	0	2	4	0	2	4	2	2	1	0	5	4	3
3	3	4	5	0	1	2	3	0	3	0	3	0	3	3	3	2	1	0	5	4
4	4	5	0	1	2	3	4	0	4	2	0	4	2	4	4	3	2	1	0	5
5	5	0	1	2	3	4	5	0	5	4	3	2	1	5	5	4	3	2	1	0

Invertierbar bezüglich der Multiplikation sind 1 (mit $1^{-1} = 1$ denn $1 \odot_6 1 = 1$) und 5 (mit $5^{-1} = 5$ $denn \ 5 \odot_6 5 = 1)$

Nullteiler sind die drei Elemente 2, 3 und 4, denn $2 \odot_6 3 = 3 \odot_6 2 = 3 \odot_6 4 = 4 \odot_6 3 = 0$

II. -

3. $21 = (10101)_2 \rightarrow QQMQQM$ und somit

$$3 \xrightarrow{Q} 9 \equiv 9 \xrightarrow{Q} 81 \equiv 4 \xrightarrow{M} 12 \equiv 1 \xrightarrow{Q} 1 \equiv 1 \xrightarrow{Q} 1 \equiv 1 \xrightarrow{M} 3$$

III. -

4.

IV. -

5. k = 9 (durch Probieren gelöst)

6. $\log_9(16)$ mod 17 = 4, denn 9^4 mod 17 = 16

