1. 矩阵和向量。矩阵加法、标量乘法、矩阵乘法。

用矩阵运算简化编码,提升运行速度。如:预测函数:

单个预测函数计算:

多个预测函数同时计算:

2. 矩阵相乘的性质: (1) 不满足交换率 (2) 满足结合率 (3) 单位矩阵 Al=IA=A (4) 矩阵的逆 (5) 矩阵转置

3. 多变量:n表示特征/变量数量。

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
*1	×2	×3	*4	9
2104	5	1	45	460 7
-> 1416	3	2	40	232 / M= 47
1534	3	2	30	315
852	2	1	36	178
Notation:	*	*	1	$\chi^{(2)} = \begin{bmatrix} 1416 \\ 2 \end{bmatrix}$
$\rightarrow n = nu$	mber of fea	<u>~</u> ≥ ∈		
$\longrightarrow x^{(i)} = inp$	out (feature	. (2) [40]		
$\longrightarrow x_j^{(i)} = va$	lue of featu	le. $43=2$		

假设的形式改变:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

为了记号方便起见,定义x0 = 1.有:

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$ (x_0)

4. 多元模型中的梯度下降方法: 可以将theta写成向量形式。

Hypothesis:
$$\underline{h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n}$$
 Parameters:
$$\underline{\theta_0, \theta_1, \dots, \theta_n}$$
 $\underline{\Theta}$ N+1 - direction:
$$\underline{J(\theta_0, \theta_1, \dots, \theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\longrightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(6)**
$$\}$$
 就是代价函数的对参数 θ_j 的偏导数 every $j = 0, \dots, n$)

对thetaj求偏导数,会剩余xj,于是有:

5. 特征缩放(Features Scaling):确保不同特征在相似的范围之内,从而加快代价函数收敛速度:

通常情况下,将特征都缩放在大约[-1,1]范围之内。这里不管太大或者太小都不合适,绝对值在接近1的适当范围是可以接受的。

Androw No

均值归一化(Mean normalization):用xi-ui来代替xi从而保证特征均值大约为0.(ui是数据集i的均值,注意不要运用到x0=1上)。

Mean normalization

Replace $\underline{x_i}$ with $\underline{x_i-\mu_i}$ to make features have approximately zero mean (Do not apply to $\overline{x_0=1}$).

E.g.
$$\Rightarrow x_1 = \frac{size-1000}{2000}$$

$$x_2 = \frac{\#bedrooms-2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_1 \\ y_2 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_3 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y$$

其中S不必是标准差,范围即可(即最大-最小)。

6. 学习速率。

首先要确保梯度下降算法正确工作,也就是说在每一次迭代中代价函数J都必须下降,在达到某一步代价函数不再变化,已经接近收敛。

如果出现问题,需要调整学习速率:

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration. \leq
- But if α is too 那么梯度下降算法可能收敛得很慢 w to converge.

总结:

选择学习速率,... 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1,....

Summary:

- If α is too small: slow convergence.
- #titors If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow wavege

also possible.

7(0)

To choose α , try

Andrew Ng

7. 特征和多项式回归。

选择合适的特征,比如:有两个特征,长度和宽度,有时候我们可以选择他们的乘积,即面积。有时候定义新的特征可能会得到更好 的模型。

多项式回归:(Polynomial Regression)数据关系不是线性。但是可以通过线性回归的简单变换拟合,变换x。但是要注意特征缩 放,缩放到相似的范围。

最后,注意模型的选择,以便对数据更好的拟合。(为防止二次函数下降,不用三次函数,用根号)

但是,这么多模型要怎么选择呢?

9. 正规方程(Normal Equation):对于某些情况求解theta更快。不是用迭代,而是用解析方法直接求解出theta的值。 代价函数对每个theta求偏导数,令偏导数为0.然后解出所有的theta值,便得到最小代价函数的theta。

Intuition: If 1D
$$(\theta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \dots \quad \stackrel{\text{Set}}{=} O$$
Solve for O

$$heta\in\mathbb{R}^{n+1}$$
 $J(heta_0, heta_1,\dots, heta_m)=rac{1}{2m}\sum_{i=1}^m(h_ heta(x^{(i)})-y^{(i)})^2$ $rac{\partial}{\partial heta_j}J(heta)=\dots\stackrel{ ext{Set}}{=}0$ (for every j)

Solve for $heta_0, heta_1,\dots, heta_n$

向量方法:

Examples: m = 4.

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
$\rightarrow x_0$	x_1	x_2	x_3	x_4	<u>y</u>	
1	2104	5	1	45	460	7
1	1416	3	2	40	232	
1	1534	3	2	30	315	1
1	852	2	_1	36	178	7
$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$ $M \times (n+1)$ $\theta = (X^T X)^{-1} X^T y$						

X和y的构建如下:

从而得到了最小二乘矩阵矩阵形式:也即正规方程:

$$\theta = (X^T X)^{-1} X^T y$$
 $(X^T X)^{-1}$ is inverse of matrix $X^T X$.

Set $\theta = \chi^{\tau} \chi$
 $\chi^{\tau} \chi^{-1}$
 $\chi^{\tau} \chi^{-1}$
 $\chi^{\tau} \chi^{-1}$

Octave: $\chi^{\tau} \chi^{\tau} \chi^{$

同时注意,正规方程方法不需要进行特征缩放。

10. 梯度下降和特征方程方法的比较:

m training examples, n features.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

N= 106

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

 $\sim (X^T X)^{-1}$

Slow if n is very large.

N= 1000

在一万左右 我会开始考虑换成梯度下降法<mark>。。</mark>

Andrew Ng

正规方程法公式: theta = inv(X'*X)*X'*y, 即最小二乘法。