Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Original) A protected anti-neoplastic agent of the formula Hyp-L-N or Hyp-N, wherein

Hyp is a hypoxic activator;

N is an anti-neoplastic agent; and

L is a linking group of the formula $\sim X - Y \sim Y$, where X is selected from

$$0$$
 R_6 0 R_7

where R₆ is unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups;

R₇ is hydrogen, unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups; and

Y is a spacer group selected from a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4; a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4 in which one of the carbon backbone chain atoms is substituted by a heteroatom containing group; and a delayed release group comprising an aromatic group.

2. (Original) The protected anti-neoplastic agent of claim 1, wherein the hypoxic activator is selected from the group consisting of electron deficient nitrobenzene moieties, electron deficient nitrobenzoic acid amide moieties, nitroazole moieties, nitroimidazole moieties, nitrothiophene moieties, nitrothiazole moieties, nitrooxazole moieties, nitrofuran moieties, and nitropyrrole moieties.

- 3. (Original) The protected anti-neoplastic agent of claim 2, wherein the hypoxic activator is a substituted or unsubstituted nitroimidazole moiety.
- 4. (Original) The protected anti-neoplastic agent of claim 3, wherein the hypoxic activator is a moiety of the formula

$$R_2$$
 R_3
 R_1
 N_2
 N_2
 N_3
 N_4

wherein

R₂ is hydrogen;

 R_3 is hydrogen or C_1 - C_6 alkyl;

 R_1 is an electron withdrawing group, an unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups; and

 R_4 is an electron withdrawing group, -H, unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups.

5. (Original) The protected anti-neoplastic agent of claim 3, wherein the hypoxic activator is a moiety of the formula

$$R_2$$
 R_3
 R_1
 N_2
 N_3
 N_4
 N_4

wherein

R₂ is hydrogen;

 R_3 is hydrogen or C_1 - C_6 alkyl;

 R_1 is unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups; and

 R_4 is -H, unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups.

Claims 6-16 (Cancelled).

17. (Original) The protected anti-neoplastic agent of claim 2, wherein the hypoxic activator is a nitrobenzene of formula

$$R_{50}$$
 R_{51}
 R_{52}
 R_{53}

where

R₂ is hydrogen;

 R_3 is -H, C_1 - C_6 alkyl; and

 R_{50} , R_{51} , R_{52} , and R_{53} are independently selected from an electron withdrawing group, H, C_{1-6} alkyl or C_{1-6} alkoxy; where the alkyl and alkoxy are optionally independently substituted with one or more groups selected from ether (-OR²⁰), amino (-NH₂), monosubstituted amino (-NR²⁰H), di-substituted amino (-NR²¹R²²), cyclic C_{1-5} alkylamino, imidazolyl, C_{1-6} alkylpiperazinyl, morpholino, thiol (-SH), thioether -(SR²⁰), tetrazole, carboxylic acid (-

COOH), ester (-COOR²⁰), amide (-CONH₂), mono-substituted amide (-CONHR²⁰), disubstituted amide (-CONR²¹R²²), N-connected amide (-NH₂-C(=O)-R²⁰), mono-substituted N-connected amide (-NHR²¹-C(=O)-R²⁰), disubstituted N-connected amide (-NR²¹R²²-S(=O)₂-R²⁰), Nconnected sulfonamide (-NH₂-S(=O)₂-R²⁰), mono-substituted N-connected sulfonamide (-NHR²¹-S(=O)₂-R²⁰), disubstituted N-connected sulfonamide (-NR²¹R²²-S(=O)₂-R²⁰), sulphoxy $(-S(=O)_2OH)$, sulphonate $(S(=O)_2OR^{20})$, sulphonyl $(S(=O)_2R^{20})$, sulphixy (S(=O)OH), sulphinate (S(=O)OR²⁰), sulphinyl (S(=O)R²⁰), phosphonooxy (OP(=O)(OH)₂), phosphate $(OP(=O)(OR^{20})_2)$, and sulfonamide $(-S(=O)_2NH_2, -S(=O)_2NHR^{21}, or -S(=O)_2NR^{21}R^{22})$, where R²⁰, R²¹, and R²² are independently selected from a C₁-C₆ alkyl group; and wherein the electron withdrawing group is selected from halo, cyano (-CN), haloalkyl, carboxamide, nitro, aldehydo (-CHO), keto (-COR²⁰), alkenyl, alkynyl, quaternary amino (-N⁺R²⁰R²¹R²²), ester (-COOR²⁰), amide (-CONH₂), mono-substituted amide (-CONHR²⁰), disubstituted amide (-CONR²¹R²²), Nconnected amide (-NH₂-C(=O)-R²⁰), mono-substituted N-connected amide (-NHR²¹-C(=O)-R²⁰), disubstituted N-connected amide (-NR²¹R²²-S(=O)₂-R²⁰), N-connected sulfonamide (-NH₂-S(=O)₂-R²⁰), mono-substituted N-connected sulfonamide (-NHR²¹-S(=O)₂-R²⁰), disubstituted Nconnected sulfonamide (-NR²¹R²²-S(=O)₂-R²⁰), sulphoxy (-S(=O)₂OH), sulphonate $(S(=O)_2OR^{20})$, sulphonyl $(S(=O)_2R^{20})$, and sulfonamide $(-S(=O)_2NH_2, -S(=O)_2NHR^{21}, or S(=O)_2NR^{21}R^{22}$), where R^{20} , R^{21} , and R^{22} are independently a C_1 - C_6 alkyl group.

- 18. (Original) The protected anti-neoplastic agent of claim 1, wherein the anti-neoplastic agent is bonded to the hypoxic activator (Hyp) or linking group (L) through an -O- or -NR₅- group in the anti-neoplastic agent, where R₅ is -H, or C₁-C₆ alkyl, optionally substituted with one or more groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.
- 19. (Original) The protected anti-neoplastic agent of claim 1, wherein the anti-neoplastic agent is selected from the group consisting of doxorubicin, daunorubicin, duocarmycin, etoposide, duetoposide, Combretastatin A-4, vinblastine, vincristine, camptothecin, topotecan, 5-fluorouracil, AQ4N, hydroxyurea, maytansines, enediyenes,

discodermolides, epothilones, taxanes, calicheamicins, tedanolides, bleomycins, calicheamicins, colchicine, cytarabine, dacarbazine, dactinomycin, discodermolides, epirubicin, epirubicin derivatives, fludarabine, hydroxyureapentostatin, 6-mercaptopurine, methotrexate, mitomycin, mitoxantrone, carboplatin, cisplatin, prednisone, procarbazine, taxanes, docetaxel, paclitaxel, tedanolides, teniposide, 6-thioguanine, vinca alkaloids, cyclophosphamides, platinum coordination complexes, anthracenediones, substituted ureas, and methylhydrazine derivatives.

Claim 20 (Cancelled).

- 21. (Original) The protected anti-neoplastic agent of claim 1, wherein the compound released upon reduction of the hypoxic activator has an IC₅₀ of less than about 100nM.
- 22. (Original) The protected anti-neoplastic agent of claim 1, wherein the anti-neoplastic agent is bonded to the hypoxic activator (Hyp) or linking group (L) by an -O- group in the anti-neoplastic agent, and wherein the -O- group is bonded to an aromatic group in the anti-neoplastic agent.

Claim 23 (Cancelled).

24. (Original) The protected anti-neoplastic agent of claim 1, wherein R₆ is unsubstituted C₁-C₁₀ alkyl or C₁-C₁₀ alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano; and

 R_7 is hydrogen, unsubstituted C_1 - C_{10} alkyl, or C_1 - C_{10} alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.

Claim 25 (Cancelled).

26. (Original) The protected anti-neoplastic agent of claim 1, wherein R_6 is unsubstituted C_1 - C_{10} alkyl; and R_7 is hydrogen or unsubstituted C_1 - C_{10} alkyl.

Claims 27-28 (Cancelled).

29. (Original) The protected anti-neoplastic agent of claim 1, wherein the spacer group Y is an unsubstituted -(CH₂)_n- chain with n=1-4, or a -(CH₂)_n- chain with n=1-4 substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.

Claims 30-38 (Cancelled).

39. (Original) The protected anti-neoplastic agent of claim 1, wherein X is the acetal group and Y is -(CReRf)-Rm-(CRjRk)-(CH2)-, where Re, Rf are independently hydrogen, unsubstituted C₁-C₃ alkyl, C₁-C₃ alkyl substituted with one or more of hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano, or (CR^eR^f) is (C=O); R^j and R^k are independently hydrogen, unsubstituted C₁-C₃ alkyl, C₁-C₃ alkyl substituted with one or more of hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano, or (CR^jR^k) is (C=O); and R^m is selected from -O-, -S-, -S(=O)₂₋ and -NR³⁰-, where R₃₀ is selected from -C(=O)R³¹, -C(=O) NR³¹ R³², -H, C₁-C₁₀ alkyl or C₁-C₁₀ alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide , aldehydo, keto, amino, halo, and cyano; and R^{31} and R^{32} are independently selected from C₁-C₁₀ alkyl or C₁-C₁₀ alkyl substituted with one or more heteroatom containing groups, selected from hydroxyl, ether, thiol, thioether, sulfinic ester,

sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.

Claim 40 (Cancelled).

41. (Original) The protected anti-neoplastic agent of claim 1, wherein Y is the delayed release group and has the formula $\sim R_{10} - R_{11} - R_{12} \sim$ where R_{10} is a bond; R_{11} is an unsubstituted or substituted aryl or heteroaryl group; and R_{12} has the formula $-(CR^{40}R^{41})$ - R^{42} - or $-(CR^{40}R^{41})$ - CR^{43} = CR^{44} - R^{42} -, where R^{42} is a bond or -OC(=O)-, and R^{40} , R^{41} , R^{42} , and R^{43} are independently selected from -H, unsubstituted C_1 - C_{10} alkyl, and C_1 - C_{10} alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.

Claims 42-52 (Cancelled).

$$O \longrightarrow R_6$$

and
 R_7

where R₆ is unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups;

R₇ is hydrogen, unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups; and

Y is a spacer group selected from a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4; a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4 in which one of the carbon backbone chain atoms is substituted by a heteroatom containing group; and a delayed release group comprising an aromatic group.

- 54. (Original) The protected anti-neoplastic agent of claim 53, wherein the hypoxic activator is selected from the group consisting of electron deficient nitrobenzene moieties, electron deficient nitrobenzoic acid amide moieties, nitroazole moieties, nitroimidazole moieties, nitrothiophene moieties, nitrothiazole moieties, nitrooxazole moieties, and nitropyrrole moieties.
- 55. (Original) The protected anti-neoplastic agent of claim 54, wherein the hypoxic activator is a nitroimidazole of the formula

wherein

R₂ is hydrogen;

R3 is -H or C1-C6 alkyl;

R1 is substituted or unsubstituted C1-C6 alkyl or substituted or unsubstituted C1-C6 alkoxy; and

R4 is -H, substituted or unsubstituted C1-C6 alkyl, or substituted or unsubstituted C1-C6 alkoxy;

wherein the R1 and R4 substituted alkyl and substituted alkoxy are independently substituted with one or more heteroatom-containing groups selected from ether (-OR20), amino

(-NH2), mono-substituted amino (-NR20H), di-substituted amino (-NR21R22), cyclic C1-5 alkylamino, imidazolyl, C1-6 alkylpiperazinyl, morpholino, thiol (-SH), thioether -(SR20), tetrazole, carboxylic acid (-COOH), ester (-COOR 20), amide (-CONH $_2$), mono-substituted amide (-CONH $_2^{20}$), disubstituted amide (-CONR 21 R 22), N-connected amide (-NH $_2$ -C(=O)-R 20), mono-substituted N-connected amide (-NHR 21 -C(=O)-R 20), disubstituted N-connected amide (-NR 21 R 22 -S(=O) $_2$ -R 20), N-connected sulfonamide (-NH $_2$ -S(=O) $_2$ -R 20), mono-substituted N-connected sulfonamide (-NR 21 R 22 -S(=O) $_2$ -R 20), sulphoxy (-S(=O) $_2$ -R 20), disubstituted N-connected sulfonamide (-NR 21 R 22 -S(=O) $_2$ -R 20), sulphoxy (-S(=O) $_2$ OH), sulphonate (S(=O) $_2$ OR 20), sulphonyl (S(=O) $_2$ R 20), sulphixy (S(=O)OH), sulphinate (S(=O)OR 20), sulphinyl (S(=O)R 20), phosphonooxy (OP(=O)(OH) $_2$), phosphate (OP(=O)(OR 20) $_2$), and sulfonamide (-S(=O) $_2$ NH $_2$, -S(=O) $_2$ NHR 21 , or -S(=O) $_2$ NR 21 R 22), where R 20 , R 21 , and R 22 are independently selected from a C1-C6 alkyl group; and

L is a linking group of the formula \times X \to Y \to \times, where X is selected from R6 is unsubstituted C1-C3 alkyl or C1-C3 alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano;

R7 is hydrogen, unsubstituted C1-C3 alkyl, or C1-C3 alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano; and

the spacer group Y is an unsubstituted -(CH₂)_n- chain with n=1-4, or a -(CH₂)_n-chain with n=1-4 substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano; or

the spacer group Y is the delayed release group and has the formula \sim R_{10} R_{11} R_{12} where R10 is a bond; R11 is an unsubstituted or substituted aryl or substituted or unsubstituted heteroaryl group; and R12 has the formula –(CR40R41)-R42- or –

(CR40R41)-CR43=CR44-R42-, where R42 is a bond or -OC(=O)-, and R40, R41, R42, and R43 are independently selected from -H, unsubstituted C1-C10 alkyl, and C1-C10 alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano.

Claims 56-63 (Cancelled).

64. (Previously presented): A method for treating cancer comprising administering to a subject a therapeutically effective amount of a protected anti-neoplastic agent according to claim 1.

Claims 65-87 (Cancelled).

- 88. (New): A method for treating cancer comprising administering to a subject a therapeutically effective amount of a protected anti-neoplastic agent according to claim 53.
 - 89. (New) A protected anti-neoplastic agent of formula Hyp-L-N or Hyp-N, wherein Hyp is a hypoxic activator moiety of formula

$$R_2$$
 R_3
 R_1
 N_0
 N_0

wherein R_1 is unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups;

R₂ is hydrogen;

 R_3 is hydrogen or C_1 - C_6 alkyl; and

 R_4 is hydrogen, unsubstituted C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with one or more heteroatom-containing groups, unsubstituted C_1 - C_6 alkoxy, or C_1 - C_6 alkoxy substituted with one or more heteroatom-containing groups;

L is a linking group of the formula $\sim X - Y \sim Y$, wherein X is selected from

$$0 - R_6$$
 $0 - R_6$
 $0 - R_6$
 R_7

wherein R₆ is unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups;

R₇ is hydrogen, unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups; and

Y is a spacer group selected from a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4; a substituted or unsubstituted - $(CH_2)_p$ -HAC- $(CH_2)_q$ - chain wherein each p and q independently is 1-3 and p+q is less than or equal to 3 and HAC is a heteroatom containing group; and a delayed release group comprising an aromatic group; and

N is an anti-neoplastic agent selected from the group consisting of adrenocortical suppressants, alkylating agents, anthracyclines, antibiotics, antimetabolites, aromatase inhibitors, bisphosphonates, cyclo-oxygenase inhibitors, estrogen receptor modulators, folate antagonists, inorganic aresenates, methylhydrazine derivatives, microtubule polymerization perturbers, modifiers, nitrosoureas, nucleoside analogs, osteoclast inhibitors, platinum containing compounds, retinoids, substituted ureas, topoisomerase 1 inhibitors, topoisomerase 2 inhibitors, and tyrosine kinase inhibitors.

90. (New) The protected anti-neoplastic agent of claim 89 wherein Hyp is of formula

wherein R₁ and R₄ are each independently hydrogen or alkyl selected from methyl, ethyl, n-propyl, n-butyl, n-pentyl, t-butyl, cyclohexyl, cyclopentyl, and isopropyl, wherein the alkyl is optionally substituted with one or more heteroatom-containing groups; with the proviso that R₁ is not hydrogen.

- 91. (New) The protected anti-neoplastic agent of claim 90 wherein the anti-neoplastic agent is an alkylating agent.
- 92. (New) The protected anti-neoplastic agent of claim 91 wherein the alkylating agent is ifosfamide.
- 93. (New) The protected anti-neoplastic agent of claim 89 of formula

$$C_2N$$
 N
 R_3
 C_1
 C_1
 C_2
 C_3
 C_4
 C_4
 C_4
 C_5
 C_6
 C_7
 C_8

wherein R_3 is hydrogen or C_1 - C_6 alkyl.

94. (New) A protected anti-neoplastic agent of formula Hyp-L-N, wherein N is an anti-neoplastic agent;Hyp is a hypoxic activator moiety of formula

$$R_2$$
 R_3
 R_1
 N_2
 N_3
 N_4
 N_4

wherein R₂ is hydrogen;

R₃ is hydrogen or C₁-C₆ alkyl; and

 R_1 and R_4 are each independently hydrogen, C_1 - C_6 alkyl or C_1 - C_6 alkoxy, the alkyl or alkoxy being optionally substituted with one or more groups selected from ether (-OR²⁰), amino (-NH₂), mono-substituted amino (-NR²⁰H), di-substituted amino (-NR²¹R²²), cyclic C_{1-5} alkylamino, imidazolyl, C_{1-6} alkylpiperazinyl, morpholino, thiol (-SH), thioether -(SR²⁰), tetrazole, carboxylic acid (-COOH), ester (-COOR²⁰), amide (-CONH₂), mono-substituted amide (-CONHR²⁰), disubstituted amide (-CONHR²¹R²²), N-connected amide (-NH₂-C(=O)-R²⁰), mono-substituted N-connected amide (-NHR²¹-C(=O)-R²⁰), disubstituted N-connected amide (-NR²¹R²²-S(=O)₂-R²⁰), N-connected sulfonamide (-NH₂-S(=O)₂-R²⁰), mono-substituted N-connected sulfonamide (-NHR²¹-S(=O)₂-R²⁰), disubstituted N-connected sulfonamide (-NR²¹R²²-S(=O)₂-R²⁰), sulphoxy (-S(=O)₂OH), sulphonate (S(=O)₂OR²⁰), sulphonyl (S(=O)₂R²⁰), sulphixy (S(=O)OH), sulphinate (S(=O)OR²⁰), sulphinyl (S(=O)R²⁰), phosphonooxy (OP(=O)(OH)₂), phosphate (OP(=O)(OR²⁰)₂), and sulfonamide (-S(=O)₂NH₂, -S(=O)₂NHR²¹, or -S(=O)₂NR²¹R²²), wherein R²⁰, R²¹, and R²² are independently selected from a C₁-C₆ alkyl group, a C₃-C₂₀ heterocyclic group, or a C₃-C₂₀ aryl group, preferably a C₁-C₆ alkyl group; and with the proviso that R₁ is not hydrogen;

L is a linking group having the formula

$$R_{16}$$
 R_{16}
 R_{16}
 R_{13}
 R_{19}
 R_{17}
 R_{18}

wherein R_{12} has the formula $-(CR^{40}R^{41})-R^{42}$ - or $-(CR^{40}R^{41})-CR^{43}=CR^{44}-R^{42}$ -, wherein R^{42} is a bond or -OC(=O)-, and R^{40} , R^{41} , R^{42} , and R^{43} are independently selected from hydrogen, unsubstituted C_1 - C_{10} alkyl, and C_1 - C_{10} alkyl substituted with one or more heteroatom containing groups selected from hydroxyl, ether, thiol, thioether, sulfinic ester, sulfoxide, sulfone, sulfonic acid, sulfonic acid ester, sulfenamide, sulfonamide, carboxylic acid, carboxylic acid salt, ester, amide, aldehydo, keto, amino, halo, and cyano; and

each of R_{13} - R_{19} and R_{23} are independently selected from hydrogen, an electron withdrawing group, unsubstituted C_1 - C_6 alkyl, substituted C_1 - C_6 alkyl, unsubstituted C_1 - C_6 alkoxy, and substituted C_1 - C_6 alkoxy; wherein the substituted alkyl or alkoxy are independently substituted with one or more groups selected from ether (- OR^{20}), amino (- NH_2), monosubstituted amino (- $NR^{20}H$), di-substituted amino (- $NR^{21}R^{22}$), cyclic $C_{1.5}$ alkylamino, imidazolyl, $C_{1.6}$ alkylpiperazinyl, morpholino, thiol (-SH), thioether -(SR^{20}), tetrazole, carboxylic acid (-COOH), ester (- $COOR^{20}$), amide (- $CONH_2$), mono-substituted amide (- $CONHR^{20}$), disubstituted amide (- $CONHR^{20}$), disubstituted N-connected amide (- NHR^{21} -C(=O)- R^{20}), disubstituted N-connected amide (- $NR^{21}R^{22}$ -S(=O)₂- R^{20}), N-connected sulfonamide (- NH_2 -S(=O)₂- R^{20}), mono-substituted N-connected sulfonamide (- NH^{21} -S(=O)₂- R^{20}), disubstituted N-connected sulfonamide (- $NR^{21}R^{22}$ -S(=O)₂- R^{20}), sulphoxy (-S(=O)₂OH), sulphonate (S(=O)₂OR²⁰), sulphonyl (S(=O)₂R²⁰), sulphinyl (S(=O)OH), sulphinate (S(=O)OR²⁰), sulphinyl (S(=O)R²¹), phosphate (OP(=O)(OR²⁰)₂), and sulfonamide (-S(=O)₂NH₂, -S(=O)₂NHR²¹, or -S(=O)₂NR²¹R²²), wherein R^{20} , R^{21} , and R^{22} are independently selected from a C_1 - C_6 alkyl group, and

wherein the electron withdrawing group is selected from halo, cyano (-CN), haloalkyl, carboxamide, nitro, aldehydo (-CHO), keto (-COR 20), alkenyl, alkynyl, quaternary amino (- $N^{+}R^{20}R^{21}R^{22}$), ester (-COOR 20), amide (-CONH $_2$), mono-substituted amide (-CONH 20), disubstituted amide (-CONR $^{21}R^{22}$), N-connected amide (-NH $_2$ -C(=O)-R 20), mono-substituted N-connected amide (-NR $^{21}R^{22}$ -S(=O) $_2$ -R 20), N-connected sulfonamide (-NH $_2$ -S(=O) $_2$ -R 20), mono-substituted N-connected sulfonamide (-NH $^{21}R^{22}$ -S(=O) $_2$ -R 20), sulphoxy (-S(=O) $_2$ -R 20), disubstituted N-connected sulfonamide (-NR $^{21}R^{22}$ -S(=O) $_2$ -R 20), sulphoxy (-S(=O) $_2$ OH), sulphonate (S(=O) $_2$ OR 20), sulphonyl (S(=O) $_2$ R 20), and sulfonamide (-S(=O) $_2$ NH $_2$, -S(=O) $_2$ NHR 21 , or-S(=O) $_2$ NR $^{21}R^{22}$), wherein R 20 , R 21 , and R 22 are independently selected from a C1-C6 alkyl group.

95. (New) The protected anti-neoplastic agent of claim 94 of formula

wherein R_1 is selected from nitro and fluoro and each R_2 is selected from fluoro and hydrogen.

96. (New) A protected anti-neoplastic agent of formula Hyp-L-N or Hyp-N, wherein Hyp is a hypoxic activator moiety;

N is an anti-neoplastic agent;

L is a linking group of the formula $\final X$ —Y , wherein X is selected from

$$O \longrightarrow R_{\epsilon}$$
 $O \longrightarrow R_{\epsilon}$
 R_{7}

wherein R₆ is unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups;

R₇ is hydrogen, unsubstituted alkyl or alkyl substituted with one or more heteroatom containing groups;

Y is a spacer group selected from a substituted or unsubstituted - $(CH_2)_n$ - chain with n=1-4; a substituted or unsubstituted - $(CH_2)_p$ -HAC- $(CH_2)_q$ - chain wherein each p and q independently is 1-3 and p+q is less than or equal to 3 and HAC is a heteroatom containing group; and a delayed release group comprising an aromatic group; and

wherein the anti-neoplastic agent (N) is bonded to the hypoxic activator moiety (Hyp) or linking group (L) by an -O- group in the anti-neoplastic agent, and wherein the -O- group is bonded to an aromatic group in the anti-neoplastic agent.

- 97. (New) The protected anti-neoplastic agent of claim 96 wherein the -O- group is bonded to a substituted or unsubstituted phenyl group in the anti-neoplastic agent.
- 98. (New) The protected anti-neoplastic agent of claim 96, wherein the anti-neoplastic agent is selected from the group consisting of barminomycin, combretastatin A-4, daunorubicin, doxorubicin, duocarmycin, etoposide, 10-hydroxycamptothecin, and topotecan.