

Methods & Algorithms FS 2023

Aufgabenblatt 2: k-Nächste-Nachbarn und k-Mitten

Die Bearbeitung der Aufgaben ist freiwillig; es erfolgt keine Bewertung.

Aufgabe 1

a) Gegeben ist folgende Tabelle mit n=12 Werten der tatsächlichen Klassifikation y und der durch k-Nächste-Nachbarn vorhergesagten Klassifikation \hat{y} eines Datensatzes (Klassen 0 und 1). Bestimmen Sie die Treffsicherheit des Algorithmus.

i	1	2	3	4	5	6	7	8	9	10	11	12
y i	1	1	1	1	1	1	0	1	0	1	1	0
ŷ i	1	1	1	1	0	1	1	0	0	1	0	0

b) Wie gross ist demnach die Fehlinterpretationsrate (Hamming-Verlust)?

Aufgabe 2

Die Datei "wine.dat" in Moodle enthält drei Spalten des zugehörigen Datensatzes aus dem Paket sklearn.datasets. Die ersten beiden Spalten entsprechen 2D-Koordinaten (x und y), die dritte Spalte entspricht der tatsächlichen Klassifikation der Punkte.

- a) Visualisieren Sie die Datei als Streudiagramm (Scatter Plot).
- b) Ermitteln Sie anhand der Ellenbogen-Methode den optimalen *k*-Wert für eine Clusterbildung gemäss *k*-Mitten-Algorithmus und zeichnen Sie die zugehörige (Trägheits)Kurve.
- c) Bestimmen Sie für den aus b) ermittelten optimalen k-Wert eine Vorhersage (fit_predict) der Klassenzugehörigkeit aller Punkte der Datei "wine.dat" und visualisieren Sie das Ergebnis als Streudiagramm. Wie gut stimmt die vorhergesagte Klassifikation rein optisch betrachtet mit dem tatsächlichen Ergebnis aus a) überein?

Aufgabe 3 (für Experimentierfreudige)

In der Vorlesung wurde für die Datei "smp_data.dat" (x-y-Punktkoordinaten) mittels linearer Regression die zugehörige Regressionsgerade bestimmt. Das Paket sklearn.neighbors bietet hier die Möglichkeit, mittels KNeighborsRegressor eine Regression basierend auf dem bekannten k-Nächste-Nachbarn-Algorithmus durchzuführen. Dabei wird das zugehörige

Modell mit den *x*-Punktkoordinaten als Daten und den *y*-Punktkoordinaten als Klassifikation trainiert.

```
data = np.loadtxt("smp_data.dat", delimiter=",")
x_data = data[:,0].reshape((-1,1))
y_data = data[:,1]
from sklearn.neighbors import KNeighborsRegressor as knr
model = knr()
model.fit(x_data, y_data)
```

- a) Bestimmen Sie den optimalen k-Wert der Regression gemäss KNeighborsRegressor für die Daten aus der Datei "smp_data.dat". Beachten Sie, dass es sich um eine Regression und nicht um eine Klassifizierung handelt, d.h. die Qualität der Vorhersage durch KNeighborsRegressor.predict() muss mittels R²-Wert bestimmt werden.
- b) Erzeugen Sie sich eine Sequenz aus 50 x-Punktkoordinaten im Bereich [1, 11] mittels

```
x = np.linspace(1,11,50) Aufgabe b.) nicht relevant
```

und nutzen Sie diese Sequenz für die Vorhersage durch **KNeighborsRegressor** unter Verwendung des in Aufgabe a) ermittelten, optimalen Wertes für *k*.

```
model = knr( --Ihr-k-Wert-- )
model.fit(x_data, y_data)
y = model.predict(x.reshape((-1,1)))
```

Die vorhergesagten Werte entsprechen den zugehörigen *y*-Punktkoordinaten der Regressionskurve. Zeichnen Sie die Originaldaten inklusive Regressionskurve in einem Diagramm.