

COMP4650/6490 Document Analysis

Deep Neural Networks — Part I

ANU School of Computing

Administrative matters

- Assignment 2
 - Minor update: Fixed 2 small issues in clustering.py
- Assignment 1
 - Expected return date: Tuesday 29 August

Outline

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

Outline

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

Neural networks

- Computing systems initially inspired by simplified models of the brain
- We keep some of the ideas and terminology, but it is NOT a current model of the brain
- A better way to think of modern neural networks
 - Differentiable vector cascades
 - Complex functions: A neural network is a stack of linear and non-linear functions

Why neural networks

- Non-linear relationships
 - What do we do if the target does not have a linear relationship with the input?
 - We need to fit a *non-linear* function to our data.

Why neural networks

- Non-linear relationships
 - What do we do if the target does not have a linear relationship with the input?
 - We need to fit a *non-linear* function to our data.
- Feature learning
 - Neural nets can be viewed as a way of learning features

Outline

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

From logistic regression to feedforward NN

- Binary logistic regression
 - A 1-layer NN (single output)
- Multinomial logistic regression
 - A 1-layer NN (multiple outputs)
- Multi-layer perceptron (MLP)
 - Stack multiple (non-)linear models
 - Fully connected feedforward NN
 - Composition of functions

$$\hat{\mathbf{y}} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

From logistic regression to feedforward NN

- Binary logistic regression
 - A 1-layer NN (single output)
- Multinomial logistic regression
 - A 1-layer NN (multiple outputs)
- Multi-layer perceptron (MLP)
 - Stack multiple (non-)linear models
 - Fully connected feedforward NN
 - Composition of functions

$$\hat{\mathbf{y}} = \operatorname{softmax}(W\mathbf{x} + \mathbf{b})$$

From logistic regression to feedforward NN

- Binary logistic regression
 - A 1-layer NN (single output)
- Multinomial logistic regression
 - A 1-layer NN (multiple outputs)
- Multi-layer perceptron (MLP)
 - Stack multiple (non-)linear models
 - Fully connected feedforward NN
 - Composition of functions

Notation

Computation in layer l (superscript [l] notation denotes layer l)

$$\mathbf{h}^{[l]} = \phi^{[l]}(W^{[l]}\mathbf{h}^{[l-1]} + \mathbf{b}^{[l]})$$

- $\mathbf{h}^{[l]}$: output of layer l
- $\phi^{[l]}$: activation function of layer l (usually a non-linear function)
- $W^{[l]}$: weight matrix of layer l
- $\mathbf{h}^{[l-1]}$: input of layer l, i.e. output of layer l-1, and $\mathbf{h}^{[0]} = \mathbf{x}$
- $\mathbf{b}^{[l]}$: biases of layer l, note that sometimes we write without the bias since it can be absorbed into $W^{[l]}$ by adding an extra dimension of value 1 to the input vector $\mathbf{h}^{[l-1]}$

Notation

Computation in layer l (superscript [l] notation denotes layer l)

$$\mathbf{h}^{[l]} = \phi^{[l]}(W^{[l]}\mathbf{h}^{[l-1]} + \mathbf{b}^{[l]})$$

Example:

- A 3-layer fully connected Feedforward NN (i.e. MLP) and its forward computation
- We usually don't count the input layer

Non-linear activation functions

Why use a non-linearity?

$$NN(\mathbf{x}) = W^{[2]}(W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]}$$
$$= W^{[2]}W^{[1]}\mathbf{x} + (W^{[2]}\mathbf{b}^{[1]} + \mathbf{b}^{[2]})$$

Non-linear activation functions

Why use a non-linearity?

$$NN(\mathbf{x}) = W^{[2]}(W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]}$$

= $W^{[2]}W^{[1]}\mathbf{x} + (W^{[2]}\mathbf{b}^{[1]} + \mathbf{b}^{[2]})$
= $W'\mathbf{x} + \mathbf{b}'$

where $W' = W^{[2]}W^{[1]}$ and $\mathbf{b}' = W^{[2]}\mathbf{b}^{[1]} + \mathbf{b}^{[2]}$.

This is still a linear model!

Non-linear activation functions

Why use a non-linearity?

$$NN(\mathbf{x}) = W^{[2]}\phi(W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]}$$

• ϕ is *some* function that is non-linear^{2.0} and (mostly) differentiable

- ϕ is called the *activation function*
- In principle we can use any non-linear (mostly) differentiable function as the activation function
- Commonly used in practice is ReLU(x) = max(x, 0) which is fast to compute and works well

Non-linear activation functions

Typical activation functions for *hidden* layers

$$- \sigma(z) = (1 + \exp(-z))^{-1}$$

- It was popular for a long period of time
- Tanh:

$$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$
$$= 2\sigma(2z) - 1$$

- ReLU(
$$z$$
) = max(z , 0)

e.g. GELU, see
 https://en.wikipedia.org/wiki/Rectifier (neural networks)

Non-linear activation functions

Typical activation functions for the *output* layer

- For classification
 - Use softmax (multi-class) or sigmoid (multi-label)
- For regression
 - Use a linear last layer i.e. $\phi^{[L]}$ is the identity function in an L-layer NN

Terminology

Layers

- For a Feedforward NN, we typically think of each composition of an activation function with a linear function as a *layer*
- Layers except the input and output layers are hidden layers
- In general, almost anything, regardless of complexity, can be called a layer, much like almost anything can be called a function.
- The term is used to conceptually distinguish between different components

Terminology

- Hidden dimensions
 - The size of the *input* layer is defined by the number of input features
 - The size of the output layer is defined by the number of output targets
 - The size of the *hidden* layers can be anything, this is a hyper-parameter for you to choose
 - The dimension of the output of a hidden layer is called the number of hidden units in that layer

Terminology

- Feature / representation learning
 - The intermediate models learns to output a *useful* representation of the input, e.g. $\mathbf{h}^{[1]}$ and $\mathbf{h}^{[2]}$ below.
 - The final model still learns to predict the desired output
 - Neural nets can be viewed as a way of learning features

Terminology

- Feature / representation learning
 - The intermediate models learns to output a *useful* representation of the input, e.g. $\mathbf{h}^{[1]}$ and $\mathbf{h}^{[2]}$ below.
 - The final model still learns to predict the desired output
 - Neural nets can be viewed as a way of learning features

Example

Fitting a Feedforward NN with 1 hidden layer of 2 hidden units with ReLU activations

- Each hidden unit learns a linear function then applies ReLU.
- Output is then a linear function of the hidden outputs.
- Resulting graph is equivalent to scaling, shifting and flipping two ReLU graphs and then adding them.

Example

Fitting a Feedforward NN with 1 hidden layer of 50 hidden units with ReLU activations

- Increasing the number of hidden units means we add together more (scaled) versions of the activation function.
- As we add more units we can approximate more complicated functions.
- As we add more units, our model becomes more capable of fitting noise in the training dataset overfitting.

Outline

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

Gradient descent

How can we learn the parameters $W^{[l]}$ and $\mathbf{b}^{[l]}$?

- Use gradient descent, and we need
 - Loss function $\mathscr{C}(\mathbf{y}, \hat{\mathbf{y}})$
 - Partial derivatives of the loss function ℓ w.r.t. the parameters $W^{[l]}$ and $\mathbf{b}^{[l]}$
- To efficiently compute $\frac{\partial \ell}{\partial \mathbf{b}^{[l]}}$ and $\frac{\partial \ell}{\partial \mathbf{b}^{[l]}}$
 - Use back-propagation

Back-propagation essentials

To efficiently compute the partial derivatives of the loss with respect to the parameters

- Forward pass
 - Compute the loss and the output of each layer
- Backward pass
 - Compute the partial derivatives layer by layer, starting from the last layer, using the chain rule and the results computed in the forward pass
 - A (bottom-up) dynamic programming (or memoisation) algorithm that avoids redundant calculations of intermediate terms

Chain rule

• Given z = f(x(t)), the derivative

$$\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt}$$

• Given z = g(x(t), y(t)), the derivative

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Example: Forward pass

Given the model with loss function for data point (x, y):

$$\mathcal{E}(y,\,\hat{y}) = \frac{1}{2} \left(\phi(wx+b) - y \right)^2$$

We can introduce intermediate variables z, \hat{y} to give:

$$z = wx + b$$

$$\hat{y} = \phi(z)$$

$$\mathcal{E} = \frac{1}{2}(\hat{y} - y)^2$$

Compute and store z, \hat{y}, ℓ in the forward pass.

Example: Backward pass

Compute the derivative of the loss ℓ w.r.t. \hat{y}

$$\frac{d\ell}{d\hat{y}} = \frac{d\frac{1}{2}(\hat{y} - y)^2}{d\hat{y}} = \hat{y} - y$$

Note that both z, \hat{y} , y are known:

- z, \hat{y} are computed and stored during the forward pass
- y is the ground truth

Forward pass:

$$z = wx + b$$

$$\hat{y} = \phi(z)$$

$$\mathcal{E} = \frac{1}{2}(\hat{y} - y)^2$$

$$\mathscr{C} = \frac{1}{2}(\hat{y} - y)^2$$

Example: Backward pass

Compute the derivative of the loss ℓ w.r.t. \hat{y}

$$\frac{d\ell}{d\hat{\mathbf{y}}} = \frac{d\frac{1}{2}(\hat{\mathbf{y}} - \mathbf{y})^2}{d\hat{\mathbf{y}}} = \hat{\mathbf{y}} - \mathbf{y}$$

Note that both z, \hat{y}, y are known:

- z, \hat{y} are computed and stored during the forward pass
- y is the ground truth

The chain rule states
$$\frac{d\ell}{dz} = \frac{d\ell}{d\hat{y}} \frac{d\hat{y}}{dz} = \frac{d\ell}{d\hat{y}} \phi'(z)$$
, and $\frac{d\ell}{dw} = \frac{d\ell}{dz} \frac{dz}{dw} = \frac{d\ell}{dz} \frac{dz}{dw} = \frac{d\ell}{dz} x$, and $\frac{d\ell}{db} = \frac{d\ell}{dz} \frac{dz}{db} = \frac{d\ell}{dz} \times 1$

Forward pass: z = wx + b $\hat{v} = \phi(z)$

$$\hat{y} = \phi(z)$$

$$\mathcal{E} = \frac{1}{2}(\hat{y} - y)^2$$

Another example: Forward pass

Given data point (\mathbf{x}, \mathbf{y}) and loss function $\ell(\mathbf{y}, \hat{\mathbf{y}})$

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{h}^{[1]} = \phi^{[1]}(\mathbf{a}^{[1]})$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]}\mathbf{h}^{[1]} + \mathbf{b}^{[2]}$$

$$\mathbf{h}^{[2]} = \phi^{[2]}(\mathbf{a}^{[2]})$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]}\mathbf{h}^{[2]} + \mathbf{b}^{[3]}$$

$$\hat{\mathbf{y}} = \phi^{[3]}(\mathbf{a}^{[3]})$$

$$\mathcal{E}(\mathbf{y}, \hat{\mathbf{y}})$$

Another example: Backward pass

Given data point (\mathbf{x}, \mathbf{y}) and loss function $\ell(\mathbf{y}, \hat{\mathbf{y}})$

Forward pass:

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{h}^{[1]} = \phi^{[1]}(\mathbf{a}^{[1]})$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]}\mathbf{h}^{[1]} + \mathbf{b}^{[2]}$$

$$\mathbf{h}^{[2]} = \phi^{[2]}(\mathbf{a}^{[2]})$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]}\mathbf{h}^{[2]} + \mathbf{b}^{[3]}$$

$$\hat{\mathbf{y}} = \phi^{[3]}(\mathbf{a}^{[3]})$$

$$\mathcal{E}(\mathbf{y}, \hat{\mathbf{y}})$$

Compute $\frac{\partial \ell}{\partial \mathbf{W}^{[1]}}$ using vector calculus¹ (more in this week's lab):

$$\frac{\partial \ell}{\partial \hat{\mathbf{y}}}, \frac{\partial \ell}{\partial \mathbf{a}^{[3]}} = \frac{\partial \ell}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{a}^{[3]}}$$

$$\frac{\partial \ell}{\partial \mathbf{h}^{[2]}} = \frac{\partial \ell}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{h}^{[2]}}, \frac{\partial \ell}{\partial \mathbf{a}^{[2]}} = \frac{\partial \ell}{\partial \mathbf{h}^{[2]}} \frac{\partial \mathbf{h}^{[2]}}{\partial \mathbf{a}^{[2]}}$$

$$\frac{\partial \ell}{\partial \mathbf{h}^{[1]}} = \frac{\partial \ell}{\partial \mathbf{a}^{[2]}} \frac{\partial \mathbf{a}^{[2]}}{\partial \mathbf{h}^{[1]}}, \frac{\partial \ell}{\partial \mathbf{a}^{[1]}} = \frac{\partial \ell}{\partial \mathbf{h}^{[1]}} \frac{\partial \mathbf{h}^{[1]}}{\partial \mathbf{a}^{[1]}}$$

$$\frac{\partial \ell}{\partial \mathbf{W}^{[1]}} = \frac{\partial \ell}{\partial \mathbf{a}^{[1]}} \frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{W}^{[1]}}$$

¹ Using numerator layout, see https://en.wikipedia.org/wiki/Matrix_calculus

Computation graph

- Computing partial derivatives by hand is tedious and error-prone
- Luckily this can be automated by representing a network as a computation graph and providing the forward/backward procedures of operators involved
- We can diagram out the computations using a computation graph
 - Nodes represent all the inputs and computed quantities
 - Edges represent which nodes are computed directly as a function of which other nodes

Computation graph

Example

$$\mathcal{E}(y, \, \hat{y}) = \frac{1}{2} \left(\phi(wx + b) - y \right)^2$$

$$z = wx + b$$

$$\hat{y} = \phi(z)$$

$$\ell = \frac{1}{2}(\hat{y} - y)^2$$

Computation graph

Example

$$\mathcal{E}(y, \hat{y}) = \frac{1}{2} \left(\phi(wx + b) - y \right)^2$$

$$z = wx + b$$

$$\hat{y} = \phi(z)$$

$$\ell = \frac{1}{2}(\hat{y} - y)^2$$

Forward pass

Computation graph

Example

$$\mathcal{E}(y, \, \hat{y}) = \frac{1}{2} \left(\phi(wx + b) - y \right)^2$$

$$z = wx + b$$

$$\hat{y} = \phi(z)$$

$$\ell = \frac{1}{2}(\hat{y} - y)^2$$

Forward pass

Backward pass

$$\frac{d\ell}{dx} \qquad y \\
\frac{d\ell}{dw} \qquad \frac{d\ell}{dz} \qquad \frac{d\ell}{d\hat{y}} \qquad \ell$$

$$\frac{d\ell}{db} \qquad \frac{d\ell}{dz} \qquad \frac{d\ell}{d\hat{y}} \qquad \ell$$

Note: updating *x* if learning embeddings

Full back-propagation algorithm

Let $v_1, ..., v_N$ be a topological ordering of the computation graph (i.e. parents come before children), and v_N denotes the variable we're trying to compute derivatives (e.g. loss)

Automatic differentiation with PyTorch

Calculus is hard! Use Autograd tools such as PyTorch (more in this week's lab), TensorFlow, JAX

```
import torch
x = torch.tensor([3., 2., 1.], requires_grad=False)
y = torch.tensor([0.7], requires_grad=False)

w = torch.tensor([1., 2., 3.], requires_grad=True)
b = torch.tensor([1.], requires_grad=True)
y_hat = torch.dot(w, x) + b

L = 1/2 * (y_hat - y)**2
L.backward()

print(w.grad)
print(b.grad)
tensor([30.9000, 20.6000, 10.3000])
tensor([10.3000])
```


PyTorch example

```
import torch
import torch.nn as nn
from sklearn.datasets import load iris
# Get classification dataset
X raw, y raw = load iris(return X y=True)
X = torch.tensor(X raw, dtype=torch.float32)
y = torch.tensor(y raw, dtype=torch.long)
loss fn = nn.CrossEntropyLoss() # Setup loss function
# Define layers in our MLP
linear1 = nn.Linear(in features=X.shape[1], out features=10)
linear2 = nn.Linear(in features=10, out features=int(max(y raw))+1)
# Define optmiser and give it layer parameters
all params = list(linear1.parameters()) + list(linear2.parameters())
optimiser = torch.optim.SGD(all params, lr=0.001)
# Run the MLP forwards
h = nn.functional.relu(linear1(X))
out logits = linear2(h)
loss = loss fn(out logits, y) # Calculate loss
optimiser.zero grad() # Zero out the stored gradients: important don't forget this
loss.backward() # Compute gradients (Backpropagation)
optimiser.step() # Do SGD step
```


Outline

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

Stochastic gradient descent (SGD)

- Standard gradient descent
 - Gradients are computed on the loss of the entire training dataset
 - Slow if the dataset is very large
- Mini-batch SGD
 - At each update we randomly sample a batch of \boldsymbol{B} data points and compute gradients only of the loss on these data points
 - The batch size B is a hyper-parameter
 - Usually B is one of 32, 64, ..., 512
 - SGD is much faster to compute per step
 - SGD acts as a regulariser: models trained with SGD usually generalise better

Popular optimisers

- Several improvements can be made to the basic stochastic gradient descent optimisation algorithm
- Two popular optimisers are SGD with momentum and Adam

SGD with momentum

- Momentum is an exponentially decaying moving average of gradients from previous batches
- Momentum helps traverse gullies quicker, and can drastically reduce the number of steps needed for training.
- Update rule: $\nu_t \leftarrow \alpha \nu_{t-1} \eta \nabla_{\theta} J(\theta_t)$ where $\theta_{t+1} \leftarrow \theta_t + \nu_t$
 - ν is the momentum, initialised to 0.
 - $\alpha \in [0, 1]$ is the momentum coefficient, a hyper-parameter determining how quickly the previous gradients terms in ν decay. Typically values: 0.5, 0.9, 0.99.
 - η is the learning rate, θ the parameters, and $J(\theta)$ the cost function.

SGD without momentum

SGD with momentum

Adam (Adaptive moment estimation)

- Adam keeps a running average of gradients and variances of gradients and uses them to normalise changes
- Adam is less sensitive to the learning rate that SGD with momentum
- In practice, Adam often converges in fewer iterations than SGD with momentum (Though this is not always the case).

Learning rate schedules

- Change the learning rate throughout training
- Exponentially decaying schedule multiplies learning rate by some $\lambda \in (0,1)$ after every step
- Allows for larger learning rate to be used initially, while still converging.

Summary

- Neural networks & why NN
- Feedforward neural network
 - From logistic regression to Feedforward NN
 - Non-linear activation functions
- Back-propagation
 - Gradient descent
 - Back-propagation essentials
 - Computation graph
- Optimisers
 - Stochastic gradient descent
 - SGD with momentum & Adam

Reference

Chapter 7, Speech and Language Processing