EXAMEN DE ESTRUCTURAS ALGEBRAICAS

Ingeniero en Informática – 2 de septiembre de 2011

Duración: 3 horas

NOMBRE Y APELLIDOS:

GRUPO:

- 1. [1,5 puntos]
 - a) Resuelve el siguiente sistema de congruencias

$$x = 2 \mod 5$$
, $2x = 1 \mod 7$, $3x = 4 \mod 11$

- b) Determina el resto de dividir $(13)^{226}$ entre 15.
- 2. [2 puntos] Sea (G, \cdot) un grupo y H un subgrupo de G.
 - a) Si $a \in G$ comprueba que el conjunto $aHa^{-1} := \{aha^{-1} \mid h \in H\}$ es un subgrupo de G. Prueba que H es un subgrupo normal si y sólo si $aHa^{-1} = H$ para todo a en G.
 - b) En el grupo diédrico D_4 denotamos por r la rotación de ángulo $\pi/2$ y por s la simetría axial de forma que $r \circ s = s \circ r^3$. Sea H el subgrupo generado por s. Halla los subgrupos de D_4 de la forma aHa^{-1} para $a \in D_4$. ¿Es H un subgrupo normal?
- 3. [1,5 puntos] Enumera las clases de isomorfía de los grupos abelianos de orden 108, indicando divisores elementales, factores invariantes y un grupo representando cada clase. Estudia si alguno de estos grupos tiene elementos de orden 9 dando un ejemplo en el caso de que los tenga. ¿Cúales de estos grupos puede ser generado por dos elementos?
- 4. [1,5 puntos] En $\mathbb{Z}_2[x]$ consideramos los polinomios $f = x^4 + 1$ y $g = x^3 + x + 1$.
 - a) Prueba que el máximo común divisor de f y g es igual a 1 y halla una identidad de Bezout entre f y g.
 - b) Una versión del teorema chino del resto para polinomios: Halla un polinomio h en $\mathbb{Z}_2[x]$ tal que el resto de dividir h entre f sea igual a x y el resto de dividir h entre g sea igual a 1.
- 5. [1,5 puntos] Consideramos los siguientes anillos:

$$A = \mathbb{Z}_2[x]/(x^4+1),$$
 $B = \mathbb{Z}_9,$ $C = \mathbb{Q}[x]/(x^4+9x+3),$ $D = \mathbb{Z}_3[x]/(x^4+x+1).$

Indica cuáles de los anillos anteriores son cuerpos. Indica para cada uno de los anillos A, B, C y D si hay divisores de cero dando un ejemplo en el caso de que hubiera.

- 6. [2 puntos] Consideramos el polinomio $f = x^2 + 1 \in \mathbb{Z}_3[x]$ y el anillo cociente $k = \mathbb{Z}_3[x]/(f)$. Denotamos por α la clase [x] mod f en k.
 - a) Indica cuáles son los elementos de k y prueba que k es cuerpo.
 - b) Halla el inverso de $1 + \alpha$ para el producto.
 - c) Indica los órdenes posibles de los elementos del grupo de unidades k^* .
 - d) Prueba que $1+\alpha$ tiene orden 8 en k^* y halla un entero 1 < n < 8 tal que $(1+\alpha)^n = \alpha$.