ImProc. Digital Image Processing

Lecture 1 (draft)

Basic Tools & techniques in Image Processing

16 & 23 Oct. 2017

https://my.eurecom.fr/jcms/p0_2027226/en/improc

jean-luc.dugelay@eurecom.fr

Typical Sequence

Pre-processing

Noise reduction: low-pass Filtering

Processing

- Gradient maps + Threshold
- Gradient based descriptor (hand-crafted vs. learned features)

Post-processing

- Edge thinning, closing
- Outlier removal

Representation & Description

Hough Transform

Spatial Masks

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ (x-1, y-1) & (x-1, y) & (x-1, y+1) \\ w_4 & w_5 & w6 \\ (x, y-1) & (x, y) & (x, y+1) \\ w_7 & w_8 & w_9 \\ (x+1, y-1) & (x+1, y) & (x+1, y+1) \end{bmatrix}$$

$$T[f(x,y)] = w_1 f(x-1, y-1) + w_2 f(x-1, y)$$

$$+ w_3 f(x-1, y+1) + w_4 f(x, y-1)$$

$$+ w_5 f(x, y) + w_6 f(x, y+1) + w_7 f(x+1, y-1)$$

$$+ w_8 f(x+1, y) + w_9 f(x+1, y+1)$$

W1,...,W9: mask coefficients 8-neighbors of (x,y)

- size of the template
- values of coefficients

Direct Low pass filtering by averaging

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
averaging 2x2

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

averaging 3x3

$$\sum_{p=0}^{k-1} \sum_{q=0}^{k-1} h(p,q) = 1$$

Low pass filtering by averaging

Median Filtering

Algorithm

1. Classify
$$S = \{f(x_j, y_j), (x_j, y_j) \in W\}$$

$$2. \quad f'(x_i, y_i) = med(S)$$

Non linear,

$$med(\alpha.I_1 + \beta.I_2) \neq \alpha.med(I_1) + \beta.med(I_2)$$

Useful in preserving edges while reducing noise (image smoothing)

Edges: Gradient & Laplacian

$$f(x, y)$$

$$\nabla f(x, y) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$|\nabla f(x, y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

Image Sharpening

Gradient Pattern

Gradient

$$G_{x} \begin{bmatrix} 0 & 0 & 0 \\ 1 & \mathbf{0} & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad G_{y} \begin{bmatrix} 0 & 1 & 0 \\ 0 & \mathbf{0} & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & \mathbf{0} & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & \mathbf{0} & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & \mathbf{0} & -1 \\ 1 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -1 \\ 2 & \mathbf{0} & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad \begin{array}{l} \textit{if } |\nabla f(x,y)| > \textit{Threshold at } (x_0,y_0) \\ \textit{then } (x_0,y_0) \text{ is an edge point} \\ \textit{else } (x_0,y_0) \text{ is not an edge point} \\ \textit{1} & 0 & -1 \end{bmatrix}$$

Prewitt

Sobel

Gradient Pattern

 0°

22.5°

45°

Questions

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & \mathbf{4} & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

If we apply it two times?

2D filtering or 2 times 1D?

Gradient based descriptor: SURF, FAST, DAISY, SIFT, etc. Local binary Pattern (LBP)

IDD _	$\sum_{p=1}^{p-1} a(a)$	_	\mathbf{D}^{p}
LBP =	$\sum s(g_p)$	$-g_c$	$)Z^{*}$
	p=0		

$$s(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

	Original Image					LBP c	odes			Quant	tizatio	า	Histogramization	
1	25	156	158	123		00010000	00011000	00001100	00000111	000	000	000	000	12
7	1	86	169	186	(01110000	11110000	00010000	00000000	011	111	000	000	10 8 6
5	4	62	33	41	ı	01111100	11101110	11111111	11000110	011	111	111	110	4 2
20	05	154	73	60	(00000000	0000001	00000001	00000001	000	000	000	000	0 1 2 3 4 5 6 7

$$\chi^{2}(S, M) = \sum_{i}^{n} \frac{(S_{i} - M_{i})^{2}}{S_{i} + M_{i}}$$

Laplacian Pattern

• Laplacian

$$\begin{bmatrix} 0 & +1 & 0 \\ +1 & -4 & +1 \\ 0 & +1 & 0 \end{bmatrix}$$

Edges: zero-crossing points

$$\nabla^{2} f \left[\left(x, y \right) \right] \approx f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

$$\frac{\partial f}{\partial x}(x, y) \approx \frac{f(x+a, y) - f(x-b, y)}{a+b}$$

Basic question on Filtering

• What are the differences between averaging and median filters (e.g. of size 3x3) in terms of implementation and impact?

Hough Transform

Originally designed for Line detection but can also be used for any analytical curve (circle, ellipse, etc.)

Image Space defined by {Mi (xi,yi)}

A set of pixels defines a curve described by a parametric equation,

$$f(a_1,a_2,...,a_n,x,y)=0$$

Ex.

Line
$$\{y = a.x + b \text{ or } \rho = x.\cos(\theta) + y.\sin(\theta)\}$$
: 2 parameters (a,b) or (ρ, θ)
Circle $\{(x - a)^2 + (y - b)^2 = c^2\}$: 3 parameters (center (a,b) and radius c , or $(a, w, R)\}$

A point in H corresponds to a straight line in I A point in I corresponds to a sinusoid in H

Points on the same line in I give curves passing through a common point in H Points on the same curve in H give lines passing through a common point in I

Several kind of transformations:

• From m to 1

Any "m-uplets" from the image space is associated to a parametric curve {ai} in the Hough space;

• From 1 to n

Any pixel (xi,yi) from the image space is associated to m parametric curves {ai} in the Hough space;

From m to m'

Any "m-uplets" from the image space is associated to m' parametric curves {ai} in the Hough space;

Line detection: from m to 1

• m=2

 $M_i(x_i,y_i)$ and $M_j(x_j,y_j)$

$$\rho_{k} = \frac{\left| x_{i} y_{j} - x_{j} y_{i} \right|}{\sqrt{\left(y_{j} - y_{i} \right)^{2} + \left(x_{j} - x_{i} \right)^{2}}}$$

$$\theta_1 = -Arctg \frac{x_j - x_i}{y_i - y_i}$$

Line detection: from 1 to m

Algo.

- A- Partition H into cells $ACC(\rho_k, \theta_l)$ initialized to 0;
- B- For each pixel Mi(xi,yi) in I,
- do ACC(ρ_k , θ_l) \leftarrow ACC(ρ_k , θ_l) +1 if $f(\rho_k$, θ_l , x_i , y_i) ≈ 0 is verified
- C- Hence, for a given cell, that is to say $ACC(\rho_m, \theta_n)$,
- its value is incremented as many times as a pixel is on the straight
- line (ρ_m, θ_n) ;
- D- If ACC(ρ_m , θ_n) > Threshold in H, then a straight line (ρ_m , θ_n) in I is detected.

Quad tree

Bounding box

Quad tree

Split & Merge segmentation

• Split:

Split the picture into smaller and smaller areas until reaching a given uniformity criterion;

• Merge:

Merge neighboring areas according to a similarity criterion (mean, variance, etc.);

• Split & Merge:

Combination of both previous approaches

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	2
1	1	1	1	1	2	2	2
1	1	1	1	2	2	2	2
1	1	1	1	1	2	2	2
1	1	1	1	1	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2

Split

$$TEST: E(R_l) = \frac{1}{card[R_l]} \sum_{x_i \in R_l} (g(x_i) - m(R_l))^2 < Threshold _1$$

	1.0	1.3
	1.8	2.0
1.0	1	.9
2.0		
		1.8

$$TEST: E(R_l) = \frac{1}{card[R_l]} \sum_{x_i \in R_l} (g(x_i) - m(R_l))^2 < Threshold _1$$

0	0	0	0	0	0	.3	.3
0	0	0	0	0	0	.3	.7
0	0	0	0	.8	.2	0	0
0	0	0	0	.2	.2	0	0
0	0	0	0	.9	.1	.1	.1
0	0	0	0	.9	.1	.1	.1
0	0	0	0	.1	.1	.1	.1
0	0	0	0	.1	.1	.1	.1

$$TEST: E(R_l) = \frac{1}{card[R_l]} \sum_{x_i \in R_l} (g(x_i) - m(R_l))^2 < Threshold _1$$

Merge

Region adjacency graph

1.0		1.0	1.3
		1.8	2.0
1.0	1.0	1.	.9
2.0	2.0		

$$E(R_{1},R_{k}) = \sum_{x_{i} \in R_{1} \cup R_{k}} (g(x_{i}) - \mu(R_{1},R_{k}))^{2}$$

$$\mu(R_1, R_k) = \frac{1}{\text{card}\{R_1 \cup R_k\}} \sum_{x_i \in R_1 \cup R_k} g(x_i)$$

Merge

Region adjacency graph

μ=1.0			1.3
		1.8	2.0
1.0	1.0	1.	.9
2.0	2.0		

$$E(R_{1}, R_{k}) = \sum_{x_{i} \in R_{1} \cup R_{k}} (g(x_{i}) - \mu(R_{1}, R_{k}))^{2}$$

$$\mu(R_{1}, R_{k}) = \frac{1}{\operatorname{card}\{R_{1} \cup R_{k}\}} \sum_{x_{i} \in R_{1} \cup R_{k}} g(x_{i})$$

$$SEQ(L) = \sum_{l=1}^{L} \sum_{x_i \in R_l} (g(x_i) - \mu(R_l))^2 > Threshold _2$$

Merge

Region adjacency graph

$$E(R_{1},R_{k}) = \sum_{x_{i} \in R_{1} \cup R_{k}} (g(x_{i}) - \mu(R_{1},R_{k}))^{2}$$

$$\mu(R_1, R_k) = \frac{1}{\text{card}\{R_1 \cup R_k\}} \sum_{x_i \in R_1 \cup R_k} g(x_i)$$

Math. Morpho.: Intro.

Math. Morpho.: Basic operations

- Object A
- Structuring element B_p

• EROSION
$$\operatorname{er}(A, B_p) \equiv \{ p | B_p \subset A \}$$

• DILATATION
$$\operatorname{dil}(A, B_p) \equiv \{p | B_p \cap A \neq \emptyset\}$$

- OPENING $dil(er(A,B_p),B_p)$
- CLOSING er(dil(A,B_p),B_p)

Math. Morpho.: Some properties (Cont.)

Math. Morpho.: Intro.(Cont.)

isthmus island cape

Math. Morpho.: Some properties

- Translation invariant
- Erosion & dilatation are not inverses of each other

Duality: $dil(A, B_p) = [er(A^c, B_p)]^c$

- Increasing: $X \subset X' \Rightarrow T(X) \subset T(X')$
- •

Opening: cuts narrow isthmus;

removes small islands and narrow capes.

Closing: fills narrow canals;

removes small lakes and narrow gulfs.

It is more severe to erode prior to dilate than the contrary.

Erosion

Original image

Eroded image

Erosion

Eroded once

Eroded twice

Opening and Closing

OPENING: The original image eroded twice and dilated twice (opened). Most noise is removed

CLOSING: The original image dilated and then eroded. Most holes are filled.

Optical Flow, or apparent motion field

relative motion between an observer (an eye or a camera) and the scene

Motion vector pattern resulting from camera panning and zooming

zoom in

Camera panning and tilting

http://extra.cmis.csiro.au/IA/changs/motion/

Apparent motion

Optical flow

between two consecutive image frames taken at t and $t'(t + \delta t)$

STEP 1. Local Estimation:

displacement: $d_i(d_{X_i}, d_{y_i})$ for each pixel: $p_i(x_i, y_i)$

$$\begin{cases} d_{x_i} \equiv x'_i - x_i \\ d_{y_i} \equiv y'_i - y_i \end{cases}$$

Apparent motion (Cont.)

STEP 2. Global Interpretation

$$\{z_f, pan_x, pan_y\}:$$

$$\forall i, \begin{pmatrix} x'_i \\ y'_i \end{pmatrix} = z_f \cdot \begin{pmatrix} x_i \\ y_i \end{pmatrix} + \begin{pmatrix} pan_x \\ pan_y \end{pmatrix}$$

parameter	name	interpretation
Z_f	zoom factor	IF z_f is closed to 0
\		THEN no zoom
		ELSE
		$Z_f >> 1 => \text{backward zoom}$
		$Z_f << 1 \Rightarrow$ forward zoom
t_{χ}	vertical pan	mean vertical displacement
		in pixels of the whole image
t_{y}	horizontal pan	mean horizontal displacement
·		in pixels of the whole image

Estimation of the Optical Flow

Hypothesis: the luminance of a pixel is constant over time.

$$I(x, y, t) = I(x + \delta x, y + \delta y, t + \delta t)$$

Assuming that δx and δy are smalls

I(x,y,t) with Taylor series can be developed to get:

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t + H.O.T.$$

$$\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0$$

$$\frac{\partial I}{\partial x} Vx + \frac{\partial I}{\partial y} Vy = -\frac{\partial I}{\partial t}$$

- Technique based on a relation between spatial and temporal gradients (i.e. derivatives of the image at (x,y,t)
- 1 equation 2 unknowns
- Compute V_x and V_y via an iterative process:

$$V^{(i)} = V^{(i-1)}(p,t) - \varepsilon .DFD(p,t,V^{(i-1)}) \nabla I(x - V_x^{(i-1)}, y - V_y^{(i-1)}, t - 1)$$

$$d^{(i)} = d^{(i-1)}(p,t) - \varepsilon. sign \left\{ DFD(p,t,d^{(i-1)}) \right\}. sign \left\{ \nabla I(x-d_x^{(i-1)},y-d_y^{(i-1)},t-1) \right\}.$$

position

Optical flow: basic illustration

(iteration #1)

Pixel #6 at time t (from which position at t-1 does this pixel come from ?)

Assumption: $d^{(0)} = 0$

Gradients

Temporal I(6,t) - I(6,t-1)

Spatial I(7,t-1) - I(5,t-1)

Gain: $\varepsilon = 1$ Temporal > 0 Spatial > 0

$$d^{(i)} = d^{(i-1)}(p,t) - \varepsilon. sign \left\{ DFD(p,t,d^{(i-1)}) \right\} sign \left\{ \nabla I(x-d_x^{(i-1)},y-d_y^{(i-1)},t-1) \right\}$$

Optical flow: basic illustration (Cont.)

(iteration #2)

Pixel #6

$$\mathbf{d}^{(1)} = \mathbf{d}^{(0)} - 1 = -1$$

Gradients

Temporal I(6,t) - I(7,t-1)

Spatial I(8,t-1) - I(6,t-1)

position