Les vecteurs

**

I. Translation et vecteurs

1. Translation de vecteur

Sur la figure ci-dessous, on a construit l'image \mathcal{F}_2 de la figure \mathcal{F}_1 par la translation qui transforme A en B. La flèche que l'on a tracée allant de A jusqu'à B indique la direction, le sens et la longueur du déplacement que l'on doit effectuer pour construire l'image d'un point :

Définition.

Soit A et B deux points du plan.

La translation qui transforme A en B est appelée translation de vecteur \overrightarrow{AB} .

Lorsque A et B sont distincts, le vecteur \overrightarrow{AB} est représenté par une flèche allant du point A jusqu'au point B:

2. Égalité de vecteurs

Définition.

Soit quatre points A, B, C et D du plan.

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont **égaux** signifie que D est ______ de C par la translation de vecteur ______ .

Définition.

On dit que \overrightarrow{AB} et \overrightarrow{CD} sont \overrightarrow{egaux} si les trois propriétés suivantes sont satisfaites :

- 1. les _____ sont les mêmes, c'est à dire $(AB)/\!/(CD)$;
- **2.** ______ sont les mêmes (le sens de A vers B est le même que le sens de C vers D);
- 3. les _____ sont les mêmes, c'est à dire AB = CD

De manière équivalente :

Propriété.

 $\overrightarrow{AB} = \overrightarrow{CD} \iff ABDC \text{ est } \underline{\hspace{2cm}}$

ATTENTION! L'ordre des points est très important!

Remarque. Quand on a un parallélogramme, on peut alors en déduire plusieurs égalités de vecteurs. Dans le cas de ABDC, comme sur la figure ci-dessus, on a en particulier aussi $\overrightarrow{AC} = \dots$

Propriété.

Soit \overrightarrow{AB} un vecteur et O un point du plan. Il existe *un unique* point M tel que $\overrightarrow{AB} = \overrightarrow{OM}$. C'est le point M de telle sorte que le quadrilatère ABMO est un parallélogramme :

On dit aussi que M est l'image de O par la translation de vecteur \overrightarrow{AB} .

Remarques. Il est important de noter que si on a $\overrightarrow{AB} = \overrightarrow{CD}$ alors l'objet \overrightarrow{AB} est le même objet que \overrightarrow{CD} , bien que les points A et B ne soient pas les points C et D.

Par ailleurs, on peut nommer un vecteur par une seule lettre (minuscule) surmontée d'une flèche comme par exemple \overrightarrow{v} voire \overrightarrow{u} .

On peut alors représenter un vecteur à plusieurs endroits du plan, cependant, il s'agit toujours du même objet.

Définition.

Le vecteur \overrightarrow{BA} est appelé vecteur opposé du vecteur \overrightarrow{AB} .

On le note aussi $-\overrightarrow{AB}$. Il est de $m\hat{e}me$ direction et de $m\hat{e}me$ longueur que le vecteur \overrightarrow{AB} , mais de sens contraire.

Propriété.

Soit A et B deux points du plan.

$$\overrightarrow{AM} = \overrightarrow{MB} \Longleftrightarrow M$$
milieu de $[AB]$

II. Somme de vecteurs

Pour faire la somme de deux vecteurs, on représente ces deux vecteurs de manière que l'origine de l'un soit l'extrémité de l'autre. La *somme* est alors le vecteur dont l'origine est l'origine du premier et l'extrémité est l'extrémité du second.

Méthode.

Pour faire la somme de \overrightarrow{u} et \overrightarrow{v} :

- 1. On choisit un point A.
- **2.** On construit le point B tel que $\overrightarrow{AB} = \overrightarrow{u}$.
- 3. On construit ensuite le point C tel que $\overrightarrow{BC} = \overrightarrow{v}$.
- 4. On a alors $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Propriété.

Soit A, B et C trois points du plan. Alors :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Cette relation est appelée relation de Chasles.

Remarques.

Bien faire attention à avoir le même point entourant un signe + pour appliquer cette relation.

Ça ne fonctionne en particulier pas avec un signe -.

Parfois, on souhaite faire la somme de deux vecteurs qui ont la même origine, c'est à dire $\overrightarrow{AB} + \overrightarrow{AC}$. Il s'agit alors d'une autre propriété.

Propriété.

Pour tous points A, B et C du plan,

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$$

où D est le point tel que ABDC est un parallélogramme.

Remarque. Quelque soit A et B,

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$

Cela explique pourquoi \overrightarrow{BA} est l'opposé de \overrightarrow{AB} . On note $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AB} + (-\overrightarrow{AB}) = \overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{0}$.

Remarque. Avec la règle du parallélogramme, on peut remarquer que l'on a :

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$