

Partition-Based Trajectory Pattern Mining

- □ Partition-Based Trajectory Pattern Mining (e.g., Mining T-Patterns) [1]:
- ☐ First partition the space into equal-width grids and obtain Regions-of-Interests (Rols)
- ☐ Then transform each input trajectory into a time-annotated symbolic sequence
- Use constraint-based sequential pattern mining to find trajectory patterns

Railway Station −15min→ Castle Square −2h15min→ Museum

Railway Station $-10min \rightarrow$ Middle Bridge $-10min \rightarrow$ Campus

[1] F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory Pattern Mining, KDD'07

Detecting Moving Object Clusters

- ☐ Flock and convoy: Both require *k* consecutive time stamps
 - □ **Flock:** At least *m* entities are within a *circular* region of *radius r* and move in the same direction
 - □ Convoy: Density-based clustering at each timestamp; no need to be a rigid circle
- Swarm: Moving objects may not be close to each other for all the consecutive time stamps
 - □ Efficient pattern mining algorithm can be derived for mining such swarm patterns

Z. Li, et al.: Swarm: Mining Relaxed Temporal Moving Object Clusters. VLDB'10

Trajectory Clustering: A Partition-and-Group Framework

- \Box Grouping trajectories *as a whole* \Rightarrow cannot find *similar portions* of trajectories
- **Solution:** discovers common **sub**-trajectories, e.g., forecast hurricane landfall
- Two phases: partitioning and grouping
- Identify the points where the behavior (1) Partition $_{3}^{1}$ of a trajectory changes rapidly \Rightarrow characteristic points
 - Based on the minimum description length (MDL) principle

●: characteristic point - -: trajectory partition

J.-G. Lee, et al., "Trajectory Clustering: A Partitionand-Group Framework", SIGMOD'07