

Linear Algebra

FINAL EXAM

SSA Linear Algebra Final

Image Convolution in MATLAB (and a bit of Python)

Evan Xiang¹ Vivan Poddar¹ Rohan Khera¹ Beau Brush¹

¹Mathematics Department Shady Side Academy Senior School

December 16th, 2024

Table of Contents

Linear Algebra

FINAL EXAM

Cauccia

Cauch

Box BI

Kernel

Sliding Windo

Intenfere

Proof

Future Work

Applications

Thanks!

Overview

Gaussian

Cauchy

Box Blur

6 Kernel Implementation

6 Sliding Window

🕜 Interface

8 Proof

Future Work

Mathematical Applications

Convolution Overview

Linear Algebra

FINAL EXAM

Overview

Gaussi

Cauc

Box BI

Implementati

Sliding Window

. . .

IIICEIIac

Future Worl

Application

Thanks!

Definition

A convolution is done by multiplying a pixel's and its neighboring pixels color value by a matrix.

Generalized Matrix Convolution Formula

$$(F*G)(x,y) = \sum_{m} \sum_{n} F(x-m,y-n)G(m,n)$$

Where:

- x and y represent the current position within the output matrix
- m and n are generalized variables representing the shift of the matrix with regard to $G(m, n) \rightarrow$ the kernel matrix

Convolution Cont.

Linear Algebra

FINAL EXAM

Overview

Gaussia

Caucl

Box Bit

Implementat

Sliding Window

Interfa

Proof

Future vvork

Application

Thanks

Figure: A general description of the convolution operation. (Photo downloaded from Apple Developer Documentation, CC BY-SA 4.0)

Summary of the Convolution Operation

- Place the kernel G(m, n) over the input matrix F(x, y) such that the kernel's center aligns with the current position (x, y) of the output matrix.
- For every element of the kernel G(m, n), multiply it with the corresponding element of the input matrix F(x-m, y-n).
- Sum all the resulting products to compute the value for the current position (x, y) in the output matrix.

$$(F*G)(x,y) = \sum_{m} \sum_{n} F(x-m,y-n)G(m,n)$$

 Slide the kernel over the input matrix to the next position and repeat steps 2 and 3. This involves systematically shifting the kernel across all valid positions in the input matrix.

Weierstrass Transform (Gaussian Filter)

Linear Algebra

FINAL EXAM

Overview

Gaussian

L .

Implementation

I make of the co

Interface

Application

Thanks!

Figure: Weierstrass Transform for 5 parameters of t. The green line represents the standard Weierstrass. (Photo downloaded from Glosser.ca - Own work, CC BY-SA 4.0)

Definition

The Weierstrass transform applies a 2D Gaussian Kernel to an image to reduce noise and create a blurred version of the original function by taking a weighted average of the function's values with the degree of smoothing controlled by the Gaussian's variance.

Gaussian Cont.

Linear Algebra

FINAL EXAM

Overview

Gaussian

DOX DI

Implementati

Sliding Window

Future Worl

Applications

Thanks!

Formula

$$O(i,j) = \sum_{x=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} \sum_{y=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} \left(\frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \right) \cdot I(i-x,j-y)$$

Where:

- N represents the size of the kernel
- $(\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}})$ represents the Gaussian kernel
- O(i, j) represents the output

Cauchy Kernel

Linear Algebra

FINAL EXAM

Overvio

Cauccia

Cauchy

Box BI

Kernel

C !! !! \ \

Interf

F 1001

Applications

Thanks!

Cauchy Matrix Convolution Formula

$$O(i,j) = \sum_{x=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} \sum_{y=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} \frac{1}{\pi \gamma \left(1 + \frac{x^2 + y^2}{\gamma^2}\right)} \cdot I(i-x,j-y)$$

Note that this looks relatively similar to the Weierstrass Transform with the Gaussian! But how does it differ...

Gaussian vs. Cauchy Kernel

The primary difference arises in the difference in the kernel decay rate. The Gaussian, represented by $K_{\text{Gaussian}}(r) = \exp\left(-\frac{r^2}{2\sigma^2}\right)$, decreases exponentially. The Cauchy, represented by $K_{\text{Cauchy}}(r) = \frac{\gamma}{\pi(\gamma^2 + r^2)}$, decreases algebraically, allowing for longer distance influences.

Box Blur Method

Linear Algebra

FINAL EXAM

Overviev

Gaussia

Cauch

Box Blur

Kernel

Sliding vvindow

Interfac

_

Applications

Thankel

Formula

$$O(i,j) = \frac{1}{N^2} \sum_{x=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} \sum_{y=-\lfloor N/2 \rfloor}^{\lfloor N/2 \rfloor} I(i-x,j-y)$$

See how this is much simpler than all the previous algorithms... There's a reason for this... I mean it's literally just a weighted average of the values covered by the kernel applied to all values in the image matrix.

The Gaussian in Disguise

Linear Algebra

FINAL EXAM

Overvio

Gaussi

Cauc

Box Blur

Implementation

Sliding Windo

Interf

Proof

Application

Thanks!

Proof

The box blur operation is a convolution of the image I with K(x,y), producing a blurred output O(x,y). Repeated application of the box blur corresponds to convolving K(x,y) with itself n times. After n convolutions, the resulting kernel $K_n(x,y)$ is given by:

$$K_n(x,y) = K(x,y) * K(x,y) * \cdots * K(x,y)$$
 (n times).

By the Central Limit Theorem, the sum of n independent random variables converges to a Gaussian distribution as $n \to \infty$ with finite mean and variance. The kernel K(x,y) acts as a probability distribution. Since the uniform box kernel K(x,y) satisfies the conditions of the CLT, the repeated convolution $K_n(x,y)$ converges to a Gaussian kernel G(x,y):

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right),$$

where the standard deviation σ grows proportionally to \sqrt{n} . Thus, repeated application of the box blur approximates the Gaussian Kernel as $n \to \infty$.

Kernel Implementation

Linear Algebra

FINAL EXAM

Overvie

C-----

DOX DIUI

Kernel Implementation

....picinicina a cio

Sliding Window

Interface

Proof

Future Work

Application

Thanks!

```
99
       % kernel creation functions
100 🗔
       function gaussianKernel = createGaussianKernel(kernelSize, sigma)
            [x. y] = meshgrid(-floor(kernelSize/2):floor(kernelSize/2). -floor(kernelSize/2):floor(kernelSize/2)):
101
102
            gaussianKernel = \exp(-(x.^2 + v.^2) / (2 * sigma^2)):
103
            gaussianKernel = gaussianKernel / sum(gaussianKernel(:)):
104
       end
105
106 -
       function cauchyKernel = createCauchyKernel(kernelSize. gamma)
            [x, y] = meshgrid(-floor(kernelSize/2):floor(kernelSize/2), -floor(kernelSize/2));
107
108
            cauchyKernel = 1 \cdot / (1 + (x.^2 + y.^2) / gamma^2);
109
            cauchyKernel = cauchyKernel / sum(cauchyKernel(:));
110
       end
111
112 🗔
       function boxKernel = createBoxKernel(kernelSize)
113
            boxKernel = ones(kernelSize, kernelSize) / (kernelSize^2):
114
       end
115
```

Figure: Implementation of all 3 kernels in MATLAB (.mat) code. Each function defines a separate type of kernel which can be called to slide across the pixels of an image.

Sliding Window

Linear Algebra

FINAL FXAM

Sliding Window

```
97 占
        for channel = 1:3
            region = double(image(v:v+height-1, x:x+width-1, channel)):
 98
 99
            cauchyBlurredRegion = zeros(size(region));
100
            boxBlurredRegion = zeros(size(region)): % Replaced laplacian with box
101
            gaussianBlurredRegion = zeros(size(region));
            [kHeight, kWidth] = size(cauchvKernel):
102
103
            padHeight = floor(kHeight / 2):
            padWidth = floor(kWidth / 2):
104
105
            paddedRegion = padarray(region, [padHeight, padWidth]. 0. 'both'):
106
            for i = 1:size(region, 1)
107
                for i = 1:size(region, 2)
108
                    localWindow = paddedRegion(i:i+kHeight-1, j:j+kWidth-1);
109
                    cauchvBlurredRegion(i, i) = sum(sum(localWindow .* cauchvKernel)):
                    boxBlurredRegion(i, j) = sum(sum(localWindow .* boxKernel)); % Replaced laplacian with box
110
111
                    gaussianBlurredRegion(i, i) = sum(sum(localWindow .* gaussianKernel));
112
                end
113
            end
114
            cauchyBlurredImage(v:v+height-1. x:x+width-1. channel) = uint8(cauchyBlurredRegion):
115
            boxBlurredImage(y:y+height-1, x:x+width-1, channel) = uint8(boxBlurredRegion); % Replaced laplacian with box
            gaussianBlurredImage(v:v+height-1. x:x+width-1. channel) = uint8(gaussianBlurredRegion):
116
117
       end
```

Figure: Implementation of the full convolution operation, using the 3 separate kernels defined in the previous slide.

Final Developed Interface

Linear Algebra

FINAL EXAM

Overvie

Gaussi

Caucl

DOX DIGI

Implement

Cliding Windo

onania rrinaer

Interface

Future Wor

Application

Quod erat demonstrandum!

Linear Algebra

FINAL EXAM

Overvie

Gaussia

Cauch

Kernel

Implementat

Sliding Windov

....

Proof

ruture vvori

Applications

Code for Proof

Linear Algebra

FINAL EXAM

Overvie

C----

Cauch

Box B

Kernel

CU U MAG I

Silding Willidow

Interface

Proof

Future Worl

Application

Thanks

```
import cv2
import numpy as no
import matplotlib.pvplot as plt
def \ gaus2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
    return 1. / (2. * np.pi * sx * sv) * np.exp(-((x - mx)**2. / (2. * sx**2.) + (v - mv)**2. / (2. * sv**2.)))
image = np.ones((49, 49)) * 255
image[24][24] = 0
gblur = cv2.GaussianBlur(image, (31, 31), 3.5, 3.5)
box blurs = [image]
for i in range(6):
    box blurs.append(cv2.boxFilter(box blurs[-1], -1, (5, 5)))
plt.figure(figsize=(18, 3))
titles = ["Input"] + [f"Box Blur - {i} Pass{'es' if i > 1 else ''}" for i in range(1, 7)] + ["Gaussian Blur"]
for i, (title, img) in enumerate(zip(titles, box blurs + [qblur])):
    plt.subplot(1, len(titles), i + 1)
    plt.title(title)
    plt.imshow(img, cmap='Blues')
    plt.gca().get xaxis().set visible(False)
    plt.gca().get vaxis().set visible(False)
plt.tight lavout()
plt.savefig("box.ipg", facecolor='white', dpi=300)
plt.show()
```

Figure: Python code that displays the repeated box blurs after each iteration, in addition to the Gaussian blur.

Future Work

Linear Algebra

FINAL EXAM

sharpen images using Laplacian of Gaussian.

Overvie

Gaussia

Cauci

. . .

Implementation

Sliding Window

Interf

1001

Future Work

Applications

Thanks!

Laplacian of Gaussian (LoG)

We apply the Laplacian operator directly to the Gaussian kernel, resulting in the following equation:

Future work would most likely involve the implementation of an algorithm to

$$LoG(x, y) = \Delta (G(x, y) * I(x, y))$$

Then, we expand this with full equations to:

$$\Delta G(x,y) = \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) \cdot \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

This equation lends itself to edge detection, as the Laplacian blurring function may selectively blur non-edges, while the Gaussian smooths out noise, resulting in edge-detection with LoG.

Convolutional Neural Networks (ConvNet)

Linear Algebra

FINAL EXAM

Overviev

Caussia

Cauch

Boy Bl

Kernel

Sliding Window

Silding Willido

....

Applications

Convolutional Layers for Feature Extraction

Fully-connected Layers for Classification

Thanks for Listening

Linear Algebra

FINAL EXAM

Overvie

Gaussia

Cauc

Box B

Kernel

Implementation

Sliding Window

Interfac

interiac

Future Wor

Application

Thanksl

 All information for implementation of our algorithm may be found here: https://github.com/evankxiang/ssalinalgfinal

- We have included CSV files of the image convolution algorithm and all raw code for the algorithm (.mat files). Furthermore, we include our old test files, primarily consisting of non-selective image blurring (no ability to select a bounding box). Finally, we include a preliminary sharpening algorithm using LoG that is a WIP.
- EX, VP completed the programming segment. EX, RK, BB completed the slideshow and testing of the algorithms. Note, we are NOT listed in order of contribution.