Linear Functions

a linear function is a function $f: \mathbb{R} \to \mathbb{R}$ whose graph is a straight line.

The formula for a linear function is of the $f(u) = m \cdot u + b$ for some fixed real numbers m and b.

m is called the slope of the linear function and b the intercept.

* The graph of a linear function is a straight line, but this line cannot be vertical, a vertical line is not the graph of a function. yo

not a function

* Reading the graph from left to right (increasing n) the bunction can increase (increasingy) or remain constant (constant y).

increasing decreasing

* The intercept is b = f(0), because $f(0) = m \cdot 0 + b = b$.

Example Consider the linear function $f(n) = 3 - \frac{1}{2}n$.

To draw its graph we compute e.g. f(0) = 3 $f_{1}(2)=2$

draw the points (0,3) and (2,2) and then astraight line through them.

The slope m is the rate of change of a linear function b:

- * m>0 it and only it t is increasing,
- * m < 0 " " " f is decreasing,
- * m=0 " " " f is constant.

If $u_1 \in \mathbb{R}$ and $u_2 \in \mathbb{R}$ with $u_1 \neq u_2$, then $m = \frac{f(u_2) - f(u_1)}{u_2 - u_1}$ the rate of change of f between u_1 and u_2 .

This is because $f(R_2) - f(R_1) = (m \cdot R_2 + l) - (m \cdot R_1 + l)$ $= m \cdot R_2 + l - m \cdot R_1 - l$ $= m \cdot R_2 + l - m \cdot R_1 - l$ $= m \cdot R_2 + l - m \cdot R_1 - l$ $= m \cdot R_2 - l - l$ $= m \cdot R_2 - l - l$ $= m \cdot R_2 - l - l$ $= m \cdot R_1 - l$ $= m \cdot (R_2 - R_1)$ $= m \cdot (R_2 - R_1)$

We can draw the graph of a linear bunction if we know two points on it.

Similarly we can find the formula of a linear function given two points.

Example Find the formula of the linear function f: IR -> IR through

the points (1,2) and (4,3).

Solution: $f(u)=m \cdot n + b$ and we must find m and b. Strategy: find m birst. $m = \frac{f(4) - f(1)}{4 - 1} = \frac{3 - 2}{4 - 1} = \frac{1}{3}$ so $f(u) = \frac{1}{3} \cdot u + b$ for some b.

To bind I we substitute one of the two points:

 $2 = f(1) = \frac{1}{3} \cdot 1 + \ell$ \Rightarrow $\ell = 2 - \frac{1}{3} \cdot 1 = 2 - \frac{1}{3} = 1\frac{2}{3}$.

(The other point also works;

 $3 = f(4) = \frac{1}{3} \cdot 4 + l$ $\Rightarrow l = 3 - \frac{1}{3} \cdot 4 = 3 - 1\frac{1}{3} = 1\frac{2}{3}$ same value for l.)

We find: $f(a) = \frac{1}{3} \cdot a + 1\frac{2}{3}$.

Remarks: * The graphs of two linear functions are parallel when the functions have the same slope.

* The graphs of two linear bunctions intersect perpendicularly (90° angle) if the product of their slopes is -1.

If a linear function $f(n) = m \cdot n + b$ has a slope $m \neq 0$, then its graph intersects the n-axis in a unique point. Algebraically we

where the linear equation f(u) = 0 $m \cdot u + b = 0$ $m \cdot u = -b$ $u = -\frac{b}{m}$.

Example $f(u) = 3 - \frac{1}{2}u$ has $m = -\frac{1}{2}$ and b = 3, so the graph intersects the u-axis at $u = -\frac{3}{-\frac{1}{2}} = 6$ where f(6) = 0.

Pemark: When m=0 the graph of f(n) is parallel to the n-anis, wit to does not intersect the n-anis anywhere (if 1 \neq 0), or it intersects the n-anis everywhere (if b=0).

To solve a linear inequality like f(a)>0 or f(a)<0 it often helps to first solve f(a)=0 and then consider the graph of f(a),

Example Find all values a E/R for which 3- 12 4>0.

Solution 1: We first robe $3-\frac{1}{2}u=0$ $3=\frac{1}{2}u$ $\frac{1}{2}u=3$ n=6 Casabove).

The linear function $f(a)=3-\frac{1}{2}u$ has a negative slope, $m=-\frac{1}{2}$, wit is decreasing. Thus: for u>6, $3-\frac{1}{2}u<0$, and for u<6, $3-\frac{1}{2}u>0$.

The solution set is {nER | n<6}.

Solution 2: a direct algebraic solution;

 $3-\frac{1}{2}a>0$ $-\frac{1}{2}a>-3$ multiply both sides by -2, a regative number, 2a=2 ">" becomes "<" $2a<-3\cdot(-2)=6$

The solution set is {a ER | a < 6} (as before).