1 Regular Surfaces; Inverse Images of Regular Values

Definition (Regular Surface). A subset $S \subseteq \mathbb{R}^3$ is a **regular surface** if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $\mathbf{x}: U \to V \cap S$ of an open set $U \subseteq \mathbb{R}^3$ onto $V \cap S \subseteq \mathbb{R}^3$ such that

(1) \mathbf{x} is differentiable. This means that if we write

$$\mathbf{x}(u,v) = (x(u,v), y(u,v), z(u,v)), (u,v) \in U,$$

the functions x(u,v), y(u,v), and z(u,v) have continuous partial derivatives of all orders in U.

- (2) \mathbf{x} is a homeomorphism. Since \mathbf{x} is continuous by condition (1), it follows that \mathbf{x} has an inverse $\mathbf{x}^{-1}: V \cap S \to U$ which is continuous.
- (3) (Regularity Condition) For each $q \in U$, the differential $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ is injective.

Definition (Parametrization). The mapping \mathbf{x} is called a **Parametrization** or a system of (local) coordinates in (a neighborhood of) p. The neighborhood $V \cap S$ of p is S is called a coordinate neighborhood.