Tensor Symmetry (43)

n = 2	n=3	n=4
$T_{ij} = T_{ji}$	$T_{ijk} = T_{jik} = T_{kji} = T_{ikj}$	$T_{ijkl} = T_{jikl} = T_{kjil} = T_{ljki} = T_{ikjl} = T_{ilkj} = T_{ijlk}$
$S_{ij} = -S_{ji}$	$S_{ijk} = -S_{jik} = -S_{kji} = -S_{ikj}$	$S_{ijkl} = -S_{jikl} = -S_{kjil} = -S_{ljki} = -S_{ikjl} = -S_{ilkj} = -S_{ijlk}$
e^{ij}	e^{ijk}	e^{ijkl}
e_{ij}	e_{ijk}	e_{ijkl}

Determinants (44)

n=2	n=3	n=4
$Ae^{rs} = e^{ij}a_i^r a_j^s$ $Ae_{rs} = e^{ij}a_{ir}a_{js}$ $Ae^{rs} = e_{ij}a^{ir}a^{js}$	$Ae^{rst} = e^{ijk}a_i^r a_j^s a_k^t$ $Ae_{rst} = e^{ijk}a_{ir}a_{js}a_{kt}$ $Ae^{rst} = e_{ijk}a^{ir}a^{js}a^{kt}$	$Ae^{rstu} = e^{ijkl}a_i^r a_j^s a_k^t a_l^u$ $Ae_{rstu} = e^{ijkl}a_{ir}a_{js}a_{kt}a_{lu}$ $Ae^{rstu} = e_{ijkl}a^{ir}a^{js}a^{kt}a^{lu}$
$A = \frac{1}{2!} e^{ij} e_{rs} a_i^r a_j^s$ $A = \frac{1}{2!} e^{ij} e^{rs} a_{ir} a_{js}$ $A = \frac{1}{2!} e_{ij} e_{rs} a^{ir} a^{js}$	$A = \frac{1}{3!}e^{ijk}e^{rst}a_{ir}a_{js}a_{kt}$	$A = \frac{1}{4!} e^{ijkl} e_{rstu} a_i^r a_j^s a_k^t a_l^u$ $A = \frac{1}{4!} e^{ijkl} e^{rstu} a_{ir} a_{js} a_{kt} a_{lu}$ $A = \frac{1}{4!} e_{ijkl} e_{rstu} a^{ir} a^{js} a^{kt} a^{lu}$

Delta System (45)

n=2	n = 3	n=4
$\delta_{rs}^{ij} = \begin{vmatrix} \delta_r^i & \delta_s^i \\ \delta_r^j & \delta_s^j \end{vmatrix}$	$\delta_{rst}^{ijk} = \begin{vmatrix} \delta_r^i & \delta_s^i & \delta_t^i \\ \delta_r^j & \delta_s^j & \delta_t^j \\ \delta_r^k & \delta_s^k & \delta_t^k \end{vmatrix}$	$\delta_{rstu}^{ijkl} = \begin{vmatrix} \delta_r^i & \delta_s^i & \delta_t^i & \delta_u^i \\ \delta_r^j & \delta_s^j & \delta_t^j & \delta_u^j \\ \delta_r^k & \delta_s^k & \delta_t^k & \delta_u^k \\ \delta_r^l & \delta_s^l & \delta_t^l & \delta_u^l \end{vmatrix}$
$\delta^{ij}_{rj} = \delta^i_r$	$\delta_{rsk}^{ijk} = \delta_{rs}^{ij}$	$\delta^{ijkl}_{rstl} = \delta^{ijk}_{rst}$
$\delta^i_i=2$	$\delta_{rj}^{ij} = 2\delta_r^i$	$\delta^{ijk}_{rsk} = 2\delta^{ij}_{rs}$
	$\delta_i^i = 3$	$\delta_{rj}^{ij} = 3\delta_r^i$
		$\delta_i^i=4$
$\delta_{rs}^{ij} = e^{ij}e_{rs}$	$\delta_{rst}^{ijk} = e^{ijk}e_{rst}$	$\delta_{rstu}^{ijkl} = e^{ijkl}e_{rstu}$
$A = \frac{1}{2!} \delta_{rs}^{ij} a_i^r a_j^s$	$A = \frac{1}{3!} \delta_{rst}^{ijk} a_i^r a_j^s a_k^t$	$A = \frac{1}{4!} \delta_{rstu}^{ijkl} a_i^r a_j^s a_k^t a_l^u$

Relative Tensors (46)

n=2	n=3	n=4
$e^{i'j'} = Je^{ij}J_i^{i'}J_j^{j'}$	$e^{i'j'k'} = Je^{ijk}J_i^{i'}J_j^{j'}J_k^{k'}$	$e^{i'j'k'l'} = Je^{ijkl}J_i^{i'}J_j^{j'}J_k^{k'}J_l^{l'}$
$e_{i'j'} = J^{-1}e_{ij}J_{i'}^{i}J_{j'}^{j}$	$e_{i'j'k'} = J^{-1}e_{ijk}J_{i'}^{i}J_{j'}^{j}J_{k'}^{k}$	$e_{i'j'k'l'} = J^{-1}e_{ijkl}J_{i'}^{i}J_{j'}^{j}J_{k'}^{k}J_{l'}^{l}$
$\left a_{\cdot,\prime}^{\prime}\right = a_{\cdot} $	$\left a_{\cdot'}^{\prime}\right = \left a_{\cdot}\right $	$\left a_{i'}^{\prime}\right = \left a_{i}\right $
$ a_{\cdot,\cdot} = J^2 a_{\cdot\cdot} $	$ a_{\cdot,\cdot} = J^2 a_{\cdot,\cdot} $	$ a_{\cdot,\cdot} = J^2 a_{\cdot,\cdot} $
$\left \left a^{\prime\prime}\right \right = J^{-2}\left a^{\cdot\prime}\right $	$\left \left a^{\cdot \prime \cdot \prime} \right = J^{-2} a^{\cdot \cdot} $	$\left \left a^{\cdot \prime \cdot \prime} \right = J^{-2} a^{\cdot \cdot} $

Cofactors (47)

n = 2	n=3	n=4
$A_r^i = \frac{\partial A}{\partial a_i^r} = \frac{1}{1!} \delta_{rs}^{ij} a_j^s$	$A_r^i = \frac{\partial A}{\partial a_i^r} = \frac{1}{2!} \delta_{rst}^{ijk} a_j^s a_k^t$	$A_r^i = \frac{\partial A}{\partial a_i^r} = \frac{1}{3!} \delta_{rstu}^{ijkl} a_j^s a_k^t a_l^u$
$A^{ir} = \frac{\partial A}{\partial a_{ri}} = \frac{1}{1!} e^{ij} e^{rs} a_{sj}$	$A^{ir} = \frac{\partial A}{\partial a_{ri}} = \frac{1}{2!} e^{ijk} e^{rst} a_{sj} a_{tk}$	$A^{ir} = \frac{\partial A}{\partial a_{ri}} = \frac{1}{3!} e^{ijkl} e^{rstu} a_{sj} a_{tk} a_{ul}$
$A_{ir} = \frac{\partial A}{\partial a^{ri}} = \frac{1}{1!} e_{ij} e_{rs} a^{sj}$	$A_{ir} = \frac{\partial A}{\partial a^{ri}} = \frac{1}{2!} e_{ijk} e_{rst} a^{sj} a^{tk}$	$A_{ir} = \frac{\partial A}{\partial a^{ri}} = \frac{1}{3!} e_{ijkl} e_{rstu} a^{sj} a^{tk} a^{ul}$
$A_r^i a_m^r = A \delta_m^i$ $A^{ir} a_{rm} = A \delta_m^i$	$A_r^i a_m^r = A \delta_m^i$ $A^{ir} a_{rm} = A \delta_m^i$	$A_r^i a_m^r = A \delta_m^i$ $A^{ir} a_{rm} = A \delta_m^i$
$A_{ir}a^{rm} = A\delta_i^m$	$A_{ir}a^{rm} = A\delta_i^m$ $A_{ir}a^{rm} = A\delta_i^m$	$A_{ir}a^{rm} = A\delta_i^m$

Volume Element (48)

n=2	n=3	n=4
$\sqrt{Z'} = J \sqrt{Z}$	$\sqrt{Z'} = J \sqrt{Z}$	$\sqrt{Z'} = J \sqrt{Z}$
$rac{\partial \sqrt{Z}}{\partial Z^i} = \sqrt{Z} \Gamma^m_{mi}$	$\frac{\partial \sqrt{Z}}{\partial Z^i} = \sqrt{Z} \Gamma_{mi}^m$	$\frac{\partial \sqrt{Z}}{\partial Z^i} = \sqrt{Z} \Gamma^m_{mi}$

Voss-Weyl Formula (49)

n=2	n=3	n=4
$\operatorname{div} \vec{T} = \nabla_i T^i = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} \left(\sqrt{Z} T^i \right)$	$\operatorname{div} \vec{T} = \nabla_i T^i = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} \left(\sqrt{Z} T^i \right)$	$\operatorname{div} \vec{T} = \nabla_i T^i = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} (\sqrt{Z} T^i)$
$\nabla^2 f = \nabla_i \nabla^i f = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} \left(\sqrt{Z} Z^{ij} \frac{\partial f}{\partial Z^j} \right)$	$\nabla^2 f = \nabla_i \nabla^i f = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} \left(\sqrt{Z} Z^{ij} \frac{\partial f}{\partial Z^j} \right)$	$\nabla^2 f = \nabla_i \nabla^i f = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^i} \Big(\sqrt{Z} Z^{ij} \frac{\partial f}{\partial Z^j} \Big)$

Levi-Civita Symbols (51)

n = 2	n=3	n=4
$ \varepsilon^{ij} = \frac{1}{\sqrt{Z}} e^{ij} $	$\varepsilon^{ijk} = \frac{1}{\sqrt{Z}} e^{ijk}$	$\varepsilon^{ijkl} = \frac{1}{\sqrt{Z}}e^{ijkl}$
$ \varepsilon_{ij} = \sqrt{Z}e_{ij} $	$\varepsilon_{ijk} = \sqrt{Z}e_{ijk}$	$ \varepsilon_{ijkl} = \sqrt{Z}e_{ijkl} $
$\delta_{rs}^{ij} = \varepsilon^{ij} \varepsilon_{rs}$	$\delta_{rst}^{ijk} = \varepsilon^{ijk} \varepsilon_{rst}$	$\delta_{rstu}^{ijkl} = \varepsilon^{ijkl} \varepsilon_{rstu}$
$\varepsilon^{ij} Z_{ir} Z_{js} = \varepsilon_{rs}$ $\varepsilon_{ij} Z^{ir} Z^{js} = \varepsilon^{rs}$	$\varepsilon^{ijk} Z_{ir} Z_{js} Z_{kt} = \varepsilon_{rst}$ $\varepsilon_{ijk} Z^{ir} Z^{js} Z^{kt} = \varepsilon^{rst}$	$\varepsilon^{ijkl} Z_{ir} Z_{js} Z_{kt} Z_{lu} = \varepsilon_{rstu}$ $\varepsilon_{ijkl} Z^{ir} Z^{js} Z^{kt} Z^{lu} = \varepsilon^{rstu}$
$\nabla_m \varepsilon^{ij} = 0$ $\nabla_m \varepsilon_{ij} = 0$	$ \nabla_m \varepsilon^{ijk} = 0 \\ \nabla_m \varepsilon_{ijk} = 0 $	$ \nabla_m \varepsilon^{ijkl} = 0 \nabla_m \varepsilon_{ijkl} = 0 $

Cross Product (52)

n = 2	n=3	n=4
$W^i = \varepsilon^{ij} U_j$	$W^i = \varepsilon^{ijk} U_j V_k$	$W^i = \varepsilon^{ijkl} U_j V_k S_l$
$W_i = \varepsilon_{ij} U^j$	$W_i = \varepsilon_{ijk} U^j V^k$	$W_i = \varepsilon_{ijkl} U^j V^k S^l$
$\vec{W} = \varepsilon^{ij} U_j \vec{Z}_i$	$ \vec{W} = \varepsilon^{ijk} U_j V_k \vec{Z}_i = \varepsilon_{ijk} U^j V^k \vec{Z}^i$	$ \vec{W} = \varepsilon^{ijkl} U_j V_k S_l \vec{Z}_i = \varepsilon_{ijkl} U^j V^k S^l \vec{Z}^i$
$=\varepsilon_{ij}U^j\vec{Z}^i$		
	$\varepsilon_{ijk}U^{j}V^{k} = -\varepsilon_{ijk}V^{j}U^{k}$	$\begin{aligned} \varepsilon_{ijkl} U^j V^k S^l &= -\varepsilon_{ijkl} V^j U^k S^l = -\varepsilon_{ijkl} S^j V^k U^l = \\ -\varepsilon_{ijkl} U^j S^k V^l \end{aligned}$
$\left(\varepsilon_{ij}U^j\right)U^i=0$	$\left(\varepsilon_{ijk}U^{j}V^{k}\right)U^{i} = \left(\varepsilon_{ijk}U^{j}V^{k}\right)V^{i} = 0$	$\left(\varepsilon_{ijkl}U^{j}V^{k}S^{l}\right)U^{i} = \left(\varepsilon_{ijkl}U^{j}V^{k}S^{l}\right)V^{i} = \left(\varepsilon_{ijkl}U^{j}V^{k}S^{l}\right)S^{i} = 0$
$ \overrightarrow{W} = \overrightarrow{U} $	$\left \left \overrightarrow{W}\right ^{2} = \left \overrightarrow{U}\right ^{2} \left \overrightarrow{V}\right ^{2} - \left(\overrightarrow{U} \cdot \overrightarrow{V}\right)^{2}$	$ \vec{W} ^2 = \vec{U} ^2 \vec{V} ^2 \vec{S} ^2 - \vec{U} ^2 (\vec{V} \cdot \vec{S})^2 - \vec{V} ^2 (\vec{S} \cdot \vec{U})^2$
	$ \vec{W} = \vec{U} \vec{V} \sin \theta$	$-\left \vec{S}\right ^{2}\left(\vec{U}\cdot\vec{V}\right)^{2}+2\left(\vec{U}\cdot\vec{S}\right)\left(\vec{V}\cdot\vec{U}\right)\left(\vec{S}\cdot\vec{V}\right)$
$U^{i}(\varepsilon_{ij}V^{j}) = V^{i}(\varepsilon_{ij}U^{j})$	$U^{i}(\varepsilon_{ijk}V^{j}W^{k}) = V^{i}(\varepsilon_{ijk}W^{j}U^{k}) = W^{i}(\varepsilon_{ijk}U^{j}V^{k})$	$U^{i}(\varepsilon_{ijkl}V^{j}W^{k}S^{l}) = V^{i}(\varepsilon_{ijkl}W^{j}S^{k}U^{l}) = W^{i}(\varepsilon_{ijkl}S^{j}U^{k}V^{l})$ $= S^{i}(\varepsilon_{ijkl}U^{j}V^{k}W^{l})$

Curl (53)

n=2	n=3	n=4
	$\begin{aligned} V^i &= \varepsilon^{ijk} \nabla_j U_k \\ V_i &= \varepsilon_{ijk} \nabla^j U^k \\ \vec{V} &= \varepsilon^{ijk} \nabla_j U_k \vec{Z}_i = \varepsilon_{ijk} \nabla^j U^k \vec{Z}^i \end{aligned}$	
	$V^i = \varepsilon^{ijk} \frac{\partial U_k}{\partial Z^j}$	

Integration (54)

n = 2	n=3	n=4
$d\Omega = \sqrt{Z} \ dZ^1 dZ^2$	$d\Omega = \sqrt{Z} dZ^1 dZ^2 dZ^3$	$d\Omega = \sqrt{Z} \ dZ^1 dZ^2 dZ^3 dZ^4$
$\int_{\Omega} f \ d\Omega = \iint_{\Omega} f(Z) \sqrt{Z} \ dZ^{1} dZ^{2}$	$\int_{\Omega} f d\Omega = \iiint_{\Omega} f(Z) \sqrt{Z} dZ^{1} dZ^{2} dZ^{3}$	$\int_{\Omega} f \ d\Omega = \int \iiint_{\Omega} f(Z) \sqrt{Z} \ dZ^{1} dZ^{2} dZ^{3} \ dZ^{4}$