Spatiotemporal models

Lutz Brusch, 13 August 2018

Protein dynamics on individual endosome

Del Conte-Zerial et al., Mol. Syst. Biol. 2008

Single endosome in Lagrangian formalism

Rink et al., Cell 122, 735 (2005)

Poteryaev et al., Cell 141, 497-508 (2010)

Endosomes move in Eulerian formalism

Marino Zerial

Spatial protein concentration profile

Rab5:GDP + Rab5:GTP

Not uniform! Concentric Rab5 gradient as a result of flow

Bacteria as mathematicians:

- Bacteria are too small to search for nutrients by looking into different directions. Only noisy nutrient differences across cell diameter.
- They have to walk (run and tumble) around to check out nutrient landscape!
- But how to infer right spatial direction towards nutrient maximum given only temporal data?
- -> Lagrangian formalism!
- Keep running when concentration increases temporally, else tumble

Bacterial chemotaxis in uniform space

http://doctorprodigious.wordpress.com

Bacterial chemotaxis in gradient

Morphogen gradients ** tissue growth

Wartlick et al., Science 331, 1154 (2011)

Tissue growth → Morphogen gradient

Cell flow through morphogen gradient

Joseph-Louis de Lagrange

Leonhard Euler

* 25. January 1736 in Turin, Italy † 10. April 1813 in Paris, France

Osborne Reynolds

* 15. April 1707 in Basel, Switzerland† 7. September1783 in Sankt Petersburg

* 23. August 1842 in Belfast, Northern Irland † 21. February 1912 in Somerset, England

