Vadym Liss

257264

Zadanie 1

Epsilon maszynowy

Napisać program w języku Julia wyznaczający iteracyjnie epsilony maszynowe dla wszystkich dostępnych typów zmiennopozycyjnych Float16, Float32, Float64, zgodnych ze standardem IEEE 754 (half, single, double), i porównać z wartościami zwracanymi przez funkcje: eps(Float16), eps(Float32), eps(Float64) oraz z danymi zawartymi w pliku nagłówkowym float.h dowolnej instalacji języka C.

Wyniki programu w języku Julia wyznaczającego iteracyjnie epsilony maszynowe dla wszystkich dostępnych typów zmiennopozycyjnych:

Standard	Macheps wyliczony	Eps(Float)
Float16	0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	2.220446049250313e-16	2.220446049250313e-16

Widzimy, że wartości otrzymane eksperymentalnie są podobne do tych, które są zwracane przez funkcje języka Julia.

Z kolei dane zawarte w pliku nagłówkowym float.h instalacji języka C:

Funkcja	Zwracana wartość
FLT_EPSILON	1E-5 lub mniejsze
DBL_EPSILON	1E-9 lub mniejsze
LDBL_EPSILON	1E-9 lub mniejsze

Precyzje arytmetyki:

Standard	Zwracana wartość
Float16	0.00048828125
Float32	5.960464477539063e-8
Float64	1.1102230246251565e-16

Wniosek: Precyzja arytmetyki mówi o tym, ile cyfr znaczących (stanowiących mantysę w IEEE 754) jest reprezentowanych dokładnie, innymi słowy, na którym miejscu znajduje się ostatni bit reprezentowany dokładnie. Precyzja jest związana z długością mantysy (która wynosi kolejno 10, 23, 52 bity/ów dla Float16, Float32, Float64). Z pomocą powyższych obliczeń można zauważyć, że epsilon maszynowy różni się o jeden rząd wielkości w systemie dzisiętnym od precyzji poszczególnych typów, zatem mieści się w mantysie.

Eta

Napisać program w języku Julia wyznaczający iteracyjnie liczbę maszynową eta taką, że eta > 0.0 dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64, zgodnych ze standardem IEEE 754 (half, single, double), i porównać z wartościami zwracanymi przez funkcje: nextfloat(Float16(0.0)), nextfloat(Float64(0.0))

Wyniki programu w języku Julia wyznaczającego iteracyjnie liczbę maszynową eta dla wszystkich dostępnych typów zmiennopozycyjnych:

Standard	Eta wyliczona	Nextfloat(Float)
Float16	6.0e-8	6.0e-8

Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0e-324

Widzimy, że wartości otrzymane eksperymentalnie są takie same jak i te, które są zwracane przez funkcje języka Julia. Zauważmy, że liczba eta jest równa liczbie MIN_{sub} .

Funkcja	Zwracana wartość
floatmin(Float32)	1.1754944e-38
floatmin(Float64)	2.2250738585072014e-308

Wniosek: Powyższe wartości są równe wartości dla odpowiedniej arytmetyki.

Max

Napisać program w języku Julia wyznaczający iteracyjnie liczbę (MAX) dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64, zgodnych ze standardem IEEE 754 (half, single, double), i porównać z wartościami zwracanymi przez funkcje: floatmax(Float16), floatmax(Float32), floatmax(Float64) oraz z danymi zawartymi w pliku nagłówkowym float.h dowolnej instalacji języka C.

Wyniki programu w języku Julia wyznaczającego iteracyjnie liczbę MAX dla wszystkich dostępnych typów zmiennopozycyjnych:

Standard	Max wyliczony	Floatmax(Float)
Float16	6.55e4	6.55e4
Float32	3.4028235e38	3.4028235e38
Float64	1.7976931348623157e308	1.7976931348623157e308

Widzimy, że wartości otrzymane eksperymentalnie są podobne do tych, które są zwracane przez funkcje języka Julia.

Format	MAX
Float32	$3.4*10^{38}$
Float64	$1.8*10^{38}$

Patrząc na dane podane na wykładzie i porównując ich z wynikami naszego programu, jest banalnie oczywistym to, że maksymalna liczba wyliczona przez mnie pokrywa się z wartościami z tablicy z wykładu.

Wniosek: Arytmetyka IEEE-754 ma pewne ograniczenia, które trzeba brać pod uwagę, jeżeli chce się otrzymać dokładne wyniki obliczeń. Tzn. każdy typ zmiennopozycyjny arytmetyki IEEE 754 ma skończoną dokładność.

Zadanie 2

Sprawdzić eksperymentalnie w języku Julia słuszność tego stwierdzenia dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64.

Wyniki programu w języku Julia do sprawdzenia stwierdzenia Kahan'a dla wszystkich dostępnych typów zmiennopozycyjnych:

	Standard	Wyrażenie wyliczone	Eps(Float)
Ī	Float16	-0.000977	0.000977
ſ	Float32	1.1920929e-7	1.1920929e-7
Ī	Float64	-2.220446049250313e-16	2.220446049250313e-16

Wniosek: Jeżeli na wyrażenie nałożyłoby się wartość bezwzględną, to stwierdzenie jest jak najbardziej prawdziwe.

Zadanie 3

Sprawdź eksperymentalnie w języku Julia, że w arytmetyce Float64 (arytmetyce double w standarcie IEEE 754) liczby zmiennopozycyjne są równomiernie rozmieszczone w [1, 2] z krokiem $\delta = 2^{-52}$.

Z kolei przedstawiam wyniki do wybranej liczby kroków i w zależności od poczatku:

		m wyniki do wybranej liczby kroków i w zależności od początku:
Początek	krok	Check_delta
1	2^{-52}	001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111100000000000000000000000000
		001111111111110000000000000000000000000
		001111111111100000000000000000000000000
0.5	2^{-53}	001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
		001111111111000000000000000000000000000
2	2^{-51}	010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
		010000000000000000000000000000000000000
3	2^{-51}	010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000
		010000000010000000000000000000000000000

Wniosek: Na podstawie powyższych eksperymentów można stwierdzić, że liczby w podanych przedziałach są równomiernie rozłożone. Krok dla danego przedziału zależy od cechy - rośnie wraz z jej wzrostem. Stały odstęp między liczbami z podanych przedziałów, wynika z niezmiennej liczby bitów mantysy. Można zatem stwierdzić, że w każdym takim przedziałe można reprezentować tyle samo liczb. Dla przedziału [1,2], równomierne rozmieszczenie dla kroku $\delta=2^{-52}$, dla [1/2, 1], równomierne rozmieszczenie dla kroku $\delta=2^{-53}$, dla przedziału [2,4], równomierne rozmieszczenie dla kroku $\delta=2^{-51}$.

Zadanie 4

a) Znajdź eksperymentalnie w arytmetyce Float64 zgodnej ze standardem IEEE 754 (double) liczbę zmiennopozycyjną x w przedziale 1 < x < 2, taką, że $x * (1/x) \neq 1$; tj. fl(xf $l(1/x)) \neq 1$

Wynik zwrócony przez nasz program: 1.5000000000000002.

b) Znajdź najmniejszą taką liczbę

Eksperymentalnie ustaliłem, że taka liczba wynosi: 1.000000057228997.

Wniosek: Dowiadujemy się o ograniczeniach arytmetyki IEEE-754, ważniejszym z których jest, że liczby przedstawiane dokładnie w systemie dziesiętnym ma nieskończone rozwinięcie w systemie binarny m, przez co one nie mogą być dokładnie reprezentowane. Przez to pojawiają się błędy, takie jak w tym zadaniu.

Zadanie 5

Napisać program w języku Julia realizujący następujący eksperyment obliczania iloczynu skalarnego dwóch wektorów:

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].

(a) "w przód"

Standard	S	Różnica
Float32	-0.12593332	0.12593331932014976
Float64	1.0251881368296672e-10	1.1258452438296672e-10

(b) "w tył"

Standard s		Różnica
Float32	-0.23105995	0.2310599535603002
Float64	-1.5643308870494366e-10	1.4636737800494365e-10

(c) od największego do najmniejszego

Standard	S	Różnica
Float32	-0.25	0.2499999999899343
Float64	0.0	1.0065710700000004e-11

(d) od najmniejszego do największego

Standard	S	Różnica
Float32	-0.25	0.249999999899343
Float64	0.0	1.0065710700000004e-11

Wniosek: Poznajemy ważną własność arytmetyki IEEE-754, a konkretniej to, że dodawanie w niej nie jest przemienne. Także zauważamy, że wykorzystane algorytmy mają wpływ na końcowe wyniki.

Zadanie 6

Policzyć w języku Julia w arytmetyce Float64 wartości następujących funkcji

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = x^2 / (\sqrt{x^2 + 1} + 1)$$

dla kolejnych wartości argumentu $x = 8^{-1}$, 8^{-2} , 8^{-3} ,

W podanej tablicy mamy wyniki F(x) oraz odpowiednio G(x):

X	F(x)	G(x)
0.125	0.0077822185373186414	0.0077822185373187065
0.015625	0.00012206286282867573	0.00012206286282875901
0.001953125	1.9073468138230965e-6	1.907346813826566e-6
0.000244140625	2.9802321943606103e-8	2.9802321943606116e-8
3.0517578125e-5	4.656612873077393e-10	4.6566128719931904e-10
3.814697265625e-6	7.275957614183426e-12	7.275957614156956e-12
5.960464477539063e-8	1.7763568394002505e-15	1.7763568394002489e-15
4.76837158203125e-7	1.1368683772161603e-13	1.1368683772160957e-13
7.450580596923828e-9	0.0	2.7755575615628914e-17
9.313225746154785e-10	0.0	4.336808689942018e-19
1.1641532182693481e-10	0.0	6.776263578034403e-21
1.4551915228366852e-11	0.0	1.0587911840678754e-22

Wniosek: Od pewnego momentu (już dla n = 9) funkcja f zaczyna zwracać 0.0. Powinno się unikać odejmowania czy dodawania liczb bardzo bliskich sobie, ponieważ ryzykujemy utratą cyfr znaczących, a przez to niedokładnym wynikiem.

Zadanie 7

Przybliżoną wartość pochodnej f(x) w punkcie x można obliczyć za pomocą następującego wzoru:

$$f'(x_0) \approx \dot{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

Skorzystać ze wzoru do obliczenia w języku Julia w arytmetyce Float64 przybliżonej wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$ oraz błędów $|f'(x_0) - \dot{f}'(x_0)|$ dla $h = 2^{-n}(n = 0, 1, 2, ..., 54)$.

W podanej tablicy podaję to, jak zależy błąd od wyliczonych wartości:

Błąd
1.9010469435800585
1.753499116243109
0.9908448135457593
0.5062989976090435
0.253457784514981
0.1265007927090087
0.0631552816187897
0.03154911368255764
0.007881411252170345
0.001969968780300313
0.0004924679222275685
0.0002462319323930373
0.00012311545724141837
6.155759983439424e-5
3.077877117529937e-5
1.5389378673624776e-5
7.694675146829866e-6
3.8473233834324105e-6
1.9235601902423127e-6
9.612711400208696e-7

0.11694276239722967	4.807086915192826e-7
0.11694252118468285	2.394961446938737e-7
0.116942398250103	1.1656156484463054e-7
0.11694233864545822	5.6956920069239914e-8
0.11694231629371643	3.460517827846843e-8
0.11694228649139404	4.802855890773117e-9
0.11694222688674927	5.480178888461751e-8
0.11694216728210449	1.1440643366000813e-7
0.11694192886352539	3.5282501276157063e-7
0.11694145202636719	8.296621709646956e-7
0.11693954467773438	2.7370108037771956e-6
0.1169281005859375	1.4181102600652196e-5
0.116943359375	1.0776864618478044e-6
0.11688232421875	5.9957469788152196e-5
0.1168212890625	0.0001209926260381522
0.116943359375	1.0776864618478044e-6
0.11669921875	0.0002430629385381522
0.1162109375	0.0007313441885381522
0.1171875	0.0002452183114618478
0.11328125	0.003661031688538152
0.109375	0.007567281688538152
0.09375	0.023192281688538152
0.125	0.008057718311461848
0.0	0.11694228168853815
-0.5	0.6169422816885382

Czasami nie obserwujemy poprawy przybliżenia, ponieważ wartość wyrażenia 1+h zbliża się do 1, aż do momentu, gdy h jest na tyle małe, że otrzymujemy coś takiego jak 1+h = 1, wynikającego z ograniczenia precyzji.

Wniosek: Najlepiej unikać dodawania kolejnych cyfr, różniących się rzędem, ponieważ to działanie niesie ze sobą ryzyko utraty dokładności wyniku.