

Secretaría/División: División de Ingeniería Eléctrica

Área/Departamento: Ingeniería en

Computación

Laboratorio de Computación Gráfica e Interacción Humano Computadora

Adaptación y Carga de Modelos

N° de práctica: 05

Nombre	Firma	
N° de brigada:	Fecha de ejecución:	Grupo:
Calificación:	Profesor:	

Elaborado por:	Revisado por:	Autorizado por:	Vigente desde:
----------------	---------------	-----------------	----------------

-			
Secretaría/División:		Área/Departamento:	

1. Objetivos de aprendizaje

I. Objetivos generales:

- a. El alumno aprenderá como está estructurado un modelo tridimensional realizado a partir de un software de modelado para ser llevado y cargado correctamente a OpenGL.
- b. El alumno empleará la biblioteca de carga de modelos Assimp para la incorporación de modelos complejos en sus escenarios de OpenGL.

II. Objetivos específicos:

- a. El alumno aprenderá a configurar la biblioteca de carga de modelos Assimp para importar modelos en una escena con OpenGL.
- b. El alumno adaptará el código de sus programas y shaders para la carga de geometrías simples y complejas usando la biblioteca Assimp.
- c. El alumno comprenderá cómo separar, agrupar y adecuar un modelo tridimensional en un programa de modelado para poder ser importado por Assimp en OpenGL.

2. Recursos a emplear

I. Software

Sistema Operativo: Windows

Ambiente de Desarrollo: Visual Studio Programa de Modelado: 3dsMax o Blender

II. Equipos

Equipos de cómputo disponibles en el Laboratorio de Computación Gráfica

3. Fundamento Teórico

Secretaría/División: Área/Departamento:

Presentación de conceptos.

- Se le proporcionará al alumno una descripción general de las estructuras de datos para formatos de archivo más empleados en el cómputo gráfico, y se programarán las clases para la carga, configuración y despliegue de modelos básicos y complejos usando funciones de la API OpenGL y la librería de carga de modelos Assimp.
- o Se proporcionará al alumno los elementos necesarios para separar, agrupar y adecuar modelos 3D en software especializado.

Datos necesarios.

Librería OpenGL 3.1 en adelante, librería de carga de modelos (ASSIMP), librería matemática (GLM), librería de creación de ventanas (GLFW), IDE de desarrollo (Visual Studio) Software de Modelado (3dsMax o Blender).

4. Desarrollo de actividades

I. Actividad 1

- a. El profesor proporciona un modelo en un formato compatible con el programa de modelado a ser utilizado.
- b. El profesor guía en las opciones para importar/abrir el modelo proporcionado en el programa de modelado.
- c. El profesor ejemplificará los comandos más utilizados para la modificación y optimización de los modelos a ser utilizados.
- d. El profesor mostrará las opciones de exportación a ser utilizadas con la finalidad de asegurar la mayor compatibilidad posible.

II. Actividad 2

- **a.** El profesor explicará las funciones de la librería Assimp y las modificaciones al código para poder importar modelos al proyecto de OpenGL.
- **b.** Se procederá a importar el modelo creado en la actividad anterior y se le aplicarán transformaciones geométricas para su correcta visualización.

III. Actividad 3

a. Actividad sugerida por el profesor.

Secretaría/División: Área/Departamento:

5. Observaciones y Conclusiones

5.1. El peso de evaluación de los ejercicios de clase es a consideración del profesor

6. Anexos

I. Cuestionario previo.

- a. Qué información exporta un modelo en formato .obj, un modelo en formato .3ds y un modelo en fromato .dae?
- b. ¿Para qué sirve la librería Assimp, qué valores recibe la función ReadFile y para que sirven dichos valores?
- Descargar un modelo de un coche en formato obj o 3ds, adjuntarlo y traerlo listo para la sesión (de preferencia con texturas) (adjuntar imagen y liga de descarga de modelo)

II. Actividad de investigación previa.

a. Ninguna

III. Reporte

a. El profesor indica al alumno los ejercicios de reporte de práctica correspondientes

IV. Enlaces Adicionales

https://assimp-docs.readthedocs.io/en/v5.1.0/

https://github.com/assimp/assimp

https://www.blender.org

https://www.autodesk.mx/products/3ds-max/overview