第二次编程作业报告

热合玛·阿不力克木

1700017843

一、实验目标

实现一种基于 RNN 的模型以及一种基于 CNN 的模型进行文本分类任务,具体为对英文篇章级文本进行分类。评估指标是 Accuracy。由自己实现相关的评估指标。

二、实验环境

tensorflow 1.13.1

keras 2.2.4

python 3.6

(jupyter notebook)

三、实验方法及模型介绍

对文本用jieba进行分词,用Word2Vec模型进行词向量转化,RNN模型用的是带有Attention机制的LSTM模型,CNN模型运用了TextCNN模型。

Word2Vec模型:

Word2vec模型是谷歌在2013年提出的,其能将词语转化成具有语义信息的空间词向量,从而能将一段文本转化成一段有语义的向量,进行多种自然语言处理任务。在同义词挖掘中,可以利用其将词语转化成语义信息的空间词向量这一特点,计算两两词语中的空间距离,计算向量空间距离的方法有很多,例如:欧氏距离,余弦距离,编辑距离等,本文采用欧氏距离计算词语空间距离。Word2vec模型具有训练快速,内存消耗低的特点。Word2vec模型中包含CBOW模型和Skip-gram模型。本次实验中,我运用的是CBOW模型。

CBOW模型结构图

CBOW模型根据句子中前后若干个词语来预测中间词语是哪个词语。如上图所示,CBOW模型总共有三层,第一层为输入层,将词语转化成对应的向量,第二层为投影层,投影层将输入的词向量进行求和,第三层为输出层,输出最可能的预测的词语。CBOW模型目标在于最大化似然函数:

$$au = \sum_{w \in C} logp(w|content(w))$$

其中w为语料库C中的任意一个词语。

本文采用CBOW模型来训练词向量,训练时使用负采样训练方式,节省更多的空间,词向量维度为 128维。通过将文本转化为词向量之后就可以输入模型进行训练,迭代次数为10。

RNN模型: BILSTM+Attention机制

模型总体结构:

本文的模型结构如下图所示,将文本分词后输入到输入层,将训练好的word2vec词向量输入到词嵌入矩阵中,通过词嵌入矩阵将句子转换成带有语义的向量形式,通过双向LSTM层对句子进行编码,通过Attention层计算每个词语的相似度。最后通过softmax激活函数得出各个类别的概率。

模型总体结构

BILSTM:

BILSTM模型[1]可以捕捉文本的双向信息流,本文将文本输入向量输入到BILSTM模型中得到特征向量。BILSTM模型结构如下图所示,Xi-1到Xi+1为输入向量,输入向量分别从正向和反向分别输入到模型中,得到特征向量Hi-1到Hi+1。

BILSTM模型结构图

Self Attention机制:

Self Attention[2]机制如图3.3所示,Self Attention机制的具体操作如下:H向量经过三个不同的全连接层得到Q,K,V三个向量。Q和KT做矩阵乘法之后,得到向量Q*KT,其表示词语与其它词语的相关程度,对*QKT做标准化后,输入Softmax激活函数后得到词语之间的相关程度向量,将相关度程度向量与V做点乘得到向量A1。即模型在编码时每个词语都会考虑到句子中其他词语的语义比重,从而有着强大的编码能力。可以提高分类的效果。

CNN模型: TextCNN模型

TextCNN模型能够通过卷积神经网络的方式对向量进行局部抽取信息,进行编码。

网络结构

输入层为文本矩阵,卷积层使用不同的卷积核,卷积核的宽度和词向量的长度一致,每个卷积核获得一列feature map。每个feature map通过max-pooling都会得到一个特征值,这个操作也使得TextCNN能处理不同长度的文本。全连接层的输入为池化操作后形成的一维向量,经过激活函数输出,再加上Dropout层防止过拟合。并在全连接层上添加12正则化参数。将全连接层的输出使用softmax函数,获取文本分到不同类别的概率。

四、实验步骤及代码

1.读取数据集

这里为了后续操作,对标题和内容进行了连接,生成了新的content列,并且为了方便处理数据,将 dev.csv里读取的数据接在了train.csv中读取的数据后面。

```
import pandas as pd
df=pd.read_csv("train.csv")
df_val=pd.read_csv("dev.csv")
```

: df				
:	Class I	ndex	Title	Description
	0	3	Wall St. Bears Claw Back Into the Black (Reuters)	Reuters - Short-sellers, Wall Street's dwindli
	1	3	Carlyle Looks Toward Commercial Aerospace (Reu	Reuters - Private investment firm Carlyle Grou
	2	3	Oil and Economy Cloud Stocks' Outlook (Reuters)	Reuters - Soaring crude prices plus worries\ab
	3	3	Iraq Halts Oil Exports from Main Southern Pipe	Reuters - Authorities have halted oil export\f
	4	3	Oil prices soar to all-time record, posing new	AFP - Tearaway world oil prices, toppling reco
263	4		Mobile phones: An ear full of worms	They #39;re coming to mobile phones - those n

108264 rows × 3 columns

```
# 连接标题和内容

df["content"]=df["Title"]+" "+df["Description"]

df_val["content"]=df_val["Title"]+" "+df_val["Description"]

df_val_num=df_val.shape[0] #dev的元素个数

# 拼接train和dev(但训练时还是用train,这里只是为了方便处理数据)

df=pd.concat([df,df_val],axis=0)

df=df[["Class Index","content"]]

df["category"]=df["Class Index"]
```


2.分词

采用jieba工具包对文本进行分词。

```
num_classes = len(df["category"].unique())# 获得标签数
#分词
import jieba
sentence=[[j.lower() for j in i.split(" ")] for i in df["content"]]
```

查看结果:

```
[12]: print (sentence[0])

['wall', 'st.', 'bears', 'claw', 'back', 'into', 'the', 'black', '(reuters)', 'reuters', '-', 'short-sellers,', 'wall', "street's", 'dwindling\\band', 'of', 'ultra-cynics,', 'are', 'seeing', 'green', 'again.']
```

3.训练word2vec词向量 size为词向量长度, 迭代次数为10

```
import pandas as pd
import gensim
w2v_model = gensim.models.Word2Vec(sentence, size=128, iter=10, min_count=0)
word_vectors = w2v_model.wv
w2v_model.save("w2v")
w2v_model=gensim.models.Word2Vec.load("w2v")
```

4.导入实现神经网络必要的包

```
from keras.layers import *
import numpy as np
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers.merge import concatenate
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras import backend as K
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from sklearn.model_selection import StratifiedKFold
from keras.utils.np_utils import to_categorical
from sklearn.metrics import f1_score, classification_report
from sklearn.model_selection import train_test_split
import tensorflow as tf
```

5.将文本转化成向量,将标签onehot,对文本向量以最大长度补零

```
x_train=sentence
tokenizer = Tokenizer()
tokenizer.fit_on_texts(x_train) #统计每个词对应的数字,以便于将文本转化成向量
train_sequence = tokenizer.texts_to_sequences(x_train)#将所有的文本转化成向量
MAX_SEQUENCE_LENGTH=128 #最大长度
EMBEDDING_DIM = 128 #向量维度
y_train = df["category"]
y_train = to_categorical(y_train) #将标签 one-hot
y_train = y_train.astype(np.int32)
word_index = tokenizer.word_index
#print('Found %s unique tokens.' % len(word_index))
train_pad = pad_sequences(train_sequence, maxlen=MAX_SEQUENCE_LENGTH) #将每条文本按
照最大长度补0
```

6.统计每个单词应该对应哪一条向量

```
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM),
dtype=np.float32)
not_in_model = 0
in model = 0
embedding_max_value = 0
embedding_min_value = 1
not_words = []
for word, i in word_index.items():
    if word in w2v_model:
        in\_model += 1
        embedding_matrix[i] = np.array(w2v_model[word])
        embedding_max_value = max(np.max(embedding_matrix[i]),
embedding_max_value)
        embedding_min_value = min(np.min(embedding_matrix[i]),
embedding_min_value)
    else:
        not_in_model += 1
        not_words.append(word)
```

7.用keras定义一个词嵌入层,并把刚才的矩阵加进去

```
embed = Embedding(len(word_index) + 1, EMBEDDING_DIM, weights=
[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH,
trainable=True) #定义一个词嵌入层,将句子转化成对应的向量
```

8.把前面合并的验证集和训练集再划分开

```
# train_data, val_data, train_y, val_y = train_test_split(train_pad, y_train,
test_size=0.2, random_state=43)
train_data=train_pad[:-df_val_num]
train_y=y_train[:-df_val_num]
val_data=train_pad[-df_val_num:]
val_y=y_train[-df_val_num:]
```

9.定义textcnn模型

```
def get_cnnmodel(embedding, class_num=5):
   inputs_sentence = Input(shape=(MAX_SEQUENCE_LENGTH,))#设置输入向量维度
   sentence =(embedding(inputs_sentence))#定义词嵌入层
   con=Conv1D(256, 5, padding='same')(sentence)
   maxp=MaxPooling1D(3, 3, padding='same')(con)
   con=Conv1D(128, 5, padding='same')(maxp)
   maxp=MaxPooling1D(3, 3, padding='same')(con)
   con=Conv1D(64, 3, padding='same')(maxp)
   fla=Flatten()(con)
   drop=Dropout(0.1)(fla)
   bn=BatchNormalization()(drop)
   ds=Dense(256, activation='relu')(bn)
   dp=Dropout(0.1)(ds)
   output = Dense(class_num, activation='softmax')(dp)#softmax
   model = Model(inputs=[inputs_sentence], outputs=output)
   model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy'])#定义损失函数,优化器,评分标准
```

```
model.summary()
  return model
# model = get_cnnmodel(embed)
```

10.训练cnn模型

11.加载最优的模型并且测试验证集

```
from tensorflow.keras.models import load_model
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import fl_score
test_data=val_data
test_y=val_y
lstm_attention= load_model("textcnn.hdf5")
testpre=lstm_attention.predict([test_data])
tpre=np.argmax(testpre,axis=1)
testy=np.argmax(test_y,axis=1)

from sklearn.metrics import classification_report
print (classification_report(testy,tpre,digits=4))
```

		precision	recall	f1-score	support
	1	0. 9287	0. 8965	0. 9123	2802
	2	0. 9592	0. 9866	0. 9727	2980
	3	0. 9003	0. 8701	0. 8850	3103
	4	0. 8686	0. 9039	0. 8859	2851
micro	avg	0. 9142	0. 9142	0. 9142	11736
macro		0. 9142	0. 9143	0. 9140	11736
weighted		0. 9143	0. 9142	0. 9140	11736

```
import matplotlib.pyplot as plt
val_loss = history.history['val_loss']
loss = history.history['loss']
epochs = range(1, len(loss) + 1)
plt.title('Loss')
plt.plot(epochs, loss, 'red', label='Training loss')
plt.plot(epochs, val_loss, 'blue', label='Validation loss')
plt.legend()
plt.show()
plt.cla()
val_loss = history.history['val_acc']
loss = history.history['acc']
epochs = range(1, len(loss) + 1)
plt.title('acc')
plt.plot(epochs, loss, 'red', label='Training acc')
plt.plot(epochs, val_loss, 'blue', label='Validation acc')
plt.legend()
plt.show()
```


0.86

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

```
def 给测试集输出指标(val_data):
   testpre=lstm_attention.predict([test_data])
   ypre=np.argmax(testpre,axis=1)
   ytrue=np.argmax(test_y,axis=1)
   def leibie_acc(test_pre,y_test):
       test_pre=np.array(test_pre)
       y_test=np.array(y_test)
       print ("准确率:",sum((test_pre==y_test).astype(int))/len(y_test))
       for i in set(list(y_test)):
           tmp=
(test_pre[np.where(y_test==i)]==y_test[np.where(y_test==i)]).astype(int)
           acc=sum(tmp)/len(tmp)
           print (i,"类别准确率为:",acc,"数量为: ",len(tmp))
       return
   import seaborn as sns
   from sklearn.metrics import confusion_matrix
   import matplotlib.pyplot as plt
   def 混洗矩阵(valp,valy):
       sns.set()
       np.set_printoptions(suppress=True)
       f,ax=plt.subplots()
       valp=np.array(valp)
       valy=np.array(valy)
       C2= confusion_matrix(valy , valp,
labels=list(range(1,len(set(df["category"]))+1)))
       print(C2) #打印出来看看
       sns.heatmap(C2,annot=True,ax=ax,fmt='.20g') #画热力图
       ax.set_title('confusion matrix') #标题
       ax.set_xlabel('predict') #x轴
       ax.set_ylabel('true') #y轴
   def 评价指标(val_data,val_y):
         valpre=model_load.predict(val_data)
       leibie_acc(val_data,val_y)
       混洗矩阵(val_data,val_y)
    评价指标(ypre,ytrue)
给测试集输出指标(test_data)
```

```
准确率: 0.9141956373551465
1 类别准确率为: 0.8965024982155603 数量为: 2802
2 类别准确率为: 0.9865771812080537 数量为: 2980
3 类别准确率为: 0.8701256848211408 数量为: 3103
4 类别准确率为: 0.9038933707471063 数量为: 2851
[[2512 68 130 92]
[ 22 2940 10 8]
[ 83 30 2700 290]
[ 88 27 159 2577]]
```


13.LSTM+Attention模型

```
def attention_3d_block(inputs):
   input_dim = int(inputs.shape[2])
   a = Permute((2, 1))(inputs)
   a = Reshape((input_dim, train_data.shape[1]))(a) # this line is not useful.
It's just to know which dimension is what.
   a = Dense(train_data.shape[1], activation='softmax')(a)
   a_probs = Permute((2, 1), name='attention_vec')(a)
   output_attention_mul = Multiply()([inputs, a_probs])
   return output_attention_mul
def get_lstmmodel(embedding, class_num=len(set(df["category"]))):
   inputs_sentence = Input(shape=(MAX_SEQUENCE_LENGTH,)) #设置输入向量维度
    sentence =(embedding(inputs_sentence)) #定义词嵌入层
   context1 = Bidirectional(LSTM(64, return_sequences=True))(sentence) # 双向
1stm层,1stm神经元维度为64
   atten = attention_3d_block(context1) #给lstm1层加上注意力机制
   atten = Flatten()(atten)
   x = Dense(100, activation='relu')(atten)# 全连接层,全连接层神经元维度为100
    x = Dense(100, activation='relu')(x)# 全连接层,全连接层神经元维度为100
   output = Dense(5, activation='softmax')(atten) #softmax层
   model = Model(inputs=[inputs_sentence], outputs=output)
   model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy']) #定义损失函数,优化器,评分标准
   model.summary()
   return model
model = get_lstmmodel(embed)
```

Layer (type)	Output	Shape	Param #	Connected to
input_6 (InputLayer)	(None,	128)	0	
embedding_1 (Embedding)	(None,	128, 128)	20315776	input_6[0][0]
bidirectional_5 (Bidirectional)	(None,	128, 128)	98816	embedding_1[5][0]
permute_5 (Permute)	(None,	128, 128)	0	bidirectional_5[0][0]
reshape_5 (Reshape)	(None,	128, 128)	0	permute_5[0][0]
dense_15 (Dense)	(None,	128, 128)	16512	reshape_5[0][0]
attention_vec (Permute)	(None,	128, 128)	0	dense_15[0][0]
multiply_5 (Multiply)	(None,	128, 128)	0	bidirectional_5[0][0] attention_vec[0][0]
flatten_6 (Flatten)	(None,	16384)	0	multiply_5[0][0]
dense_17 (Dense)	(None,	5)	81925	flatten_6[0][0]

Total params: 20,513,029 Trainable params: 20,513,029 Non-trainable params: 0

14.LSTM模型训练

由于设备问题,这里训练只进行了一轮,如果能训练地比较充分,准确率还能提高。

15.加载最优模型,并测试验证集

```
from tensorflow.keras.models import load_model
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
lstm_attention= load_model("LSTM.hdf5")
testpre=lstm_attention.predict([test_data])

# pre=[]
tpre=np.argmax(testpre,axis=1)
testy=np.argmax(test_y,axis=1)
```

```
from sklearn.metrics import classification_report
print (classification_report(testy,tpre,digits=4))
import matplotlib.pyplot as plt
val_loss = history.history['val_loss']
loss = history.history['loss']
epochs = range(1, len(loss) + 1)
plt.title('Loss')
plt.plot(epochs, loss, 'red', label='Training loss')
plt.plot(epochs, val_loss, 'blue', label='Validation loss')
plt.legend()
plt.show()
plt.cla()
val_loss = history.history['val_acc']
loss = history.history['acc']
epochs = range(1, len(loss) + 1)
plt.title('acc')
plt.plot(epochs, loss, 'red', label='Training acc')
plt.plot(epochs, val_loss, 'blue', label='Validation acc')
plt.legend()
plt.show()
```

	precision	recall	f1-score	support
1	0. 9315	0. 8887	0. 9096	2802
2	0. 9715	0. 9711	0. 9713	2980
3	0. 8966	0. 8295	0. 8617	3103
4	0. 8139	0. 9172	0. 8625	2851
micro avg	0.9034	0. 9009	0. 9009	11736
macro avg		0. 9016	0. 9013	11736
weighted avg		0. 9009	0. 9012	11736


```
def 给测试集输出指标(val_data):
   testpre=lstm_attention.predict([test_data])
   ypre=np.argmax(testpre,axis=1)
   ytrue=np.argmax(test_y,axis=1)
   def leibie_acc(test_pre,y_test):
       test_pre=np.array(test_pre)
       y_test=np.array(y_test)
       print ("准确率:",sum((test_pre==y_test).astype(int))/len(y_test))
       for i in set(list(y_test)):
           tmp=
(test_pre[np.where(y_test==i)]==y_test[np.where(y_test==i)]).astype(int)
           acc=sum(tmp)/len(tmp)
           print (i,"类别准确率为:",acc,"数量为: ",len(tmp))
       return
   import seaborn as sns
   from sklearn.metrics import confusion_matrix
   import matplotlib.pyplot as plt
   def 混洗矩阵(valp,valy):
       sns.set()
       np.set_printoptions(suppress=True)
       f,ax=plt.subplots()
       valp=np.array(valp)
       valy=np.array(valy)
       C2= confusion_matrix(valy , valp,
labels=list(range(1,len(set(df["category"]))+1)))
       print(C2) #打印出来看看
       sns.heatmap(C2,annot=True,ax=ax,fmt='.20g') #画热力图
       ax.set_title('confusion matrix') #标题
       ax.set_xlabel('predict') #x轴
       ax.set_ylabel('true') #y轴
   def 评价指标(val_data,val_y):
         valpre=model_load.predict(val_data)
       leibie_acc(val_data,val_y)
       混洗矩阵(val_data,val_y)
    评价指标(ypre,ytrue)
给测试集输出指标(test_data)
```

```
准确率: 0.9009032038173143
1 类别准确率为: 0.8886509635974305 数量为: 2802
2 类别准确率为: 0.9711409395973154 数量为: 2980
3 类别准确率为: 0.8295198195294876 数量为: 3103
4 类别准确率为: 0.9172220273588214 数量为: 2851
[[2490 49 112 151]
[ 31 2894 26 29]
[ 89 22 2574 418]
[ 63 14 159 2615]]
```


17.分别用cnn模型和rnn模型预测test并生成csv文件

```
# import jieba
cnn_model= load_model("textcnn.hdf5")
rnn_model= load_model("LSTM.hdf5")
def getleibie(text):
      d=dict(zip(d_category_to_number.values(),d_category_to_number.keys()))
      print ([i for i in list(jieba.cut(text)) if i!=" "])
   x=tokenizer.texts_to_sequences([[i.lower() for i in text.split(" ")]])
   pre_X = pad_sequences(x, maxlen=MAX_SEQUENCE_LENGTH) #将每条文本按照最大长度补0
    return np.argmax(cnn_model.predict(pre_X),axis=-1)[0]
    # return np.argmax(rnn_model.predict(pre_X),axis=-1)[0]
#getleibie("i love you too")
df_test=pd.read_csv("test.csv")
from tqdm import tqdm
tmppre=[]
for i,row in tqdm(df_test.iterrows()):
    tmppre.append(getleibie(row["Title"]+" "+row["Description"]))
df_test["Class Index"]=tmppre
df_test.to_csv("submit.csv",header=True,index=False,encoding="utf-8-sig")
```

五、验证集实验结果

TextCNN:

```
准确率: 0.9141956373551465
1 类别准确率为: 0.8965024982155603 数量为: 2802
2 类别准确率为: 0.9865771812080537 数量为: 2980
3 类别准确率为: 0.8701256848211408 数量为: 3103
4 类别准确率为: 0.9038933707471063 数量为: 2851
[[2512 68 130 92]
[ 22 2940 10 8]
[ 83 30 2700 290]
[ 88 27 159 2577]]
```

BILSTM+Attention:

```
准确率: 0.9009032038173143
1 类别准确率为: 0.8886509635974305 数量为: 2802
2 类别准确率为: 0.9711409395973154 数量为: 2980
3 类别准确率为: 0.8295198195294876 数量为: 3103
4 类别准确率为: 0.9172220273588214 数量为: 2851
[[2490 49 112 151]
[ 31 2894 26 29]
[ 89 22 2574 418]
[ 63 14 159 2615]]
```

从结果中得到,本文使用的CNN模型准确率可以达到约91.42,RNN模型准确率可以达到90.09。按道理来说,本文用的BILSTM+Attention机制的准确率应该比TextCNN高才对,但是由于设备原因,BILSTM+Attention模型训练的不够充分,只进行了一轮训练,因此准确率才比较低,若能再训练充分一些,该模型准确率应该会比TextCNN高。

参考文献

- [1] 李健龙,王盼卿,韩琪羽.基于双向 LSTM 的军事命名实体识别[]].计算机工程与科学,2019 (4): 20.
- [2] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
- [3] Guo B, Zhang C, Liu J, et al. Improving text classification with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374.