

Acids and Bases

Acids

chua họ cam quýt

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

Н

React with certain metals to produce hydrogen gas.

React with carbonates and bicarbonates to produce carbon dioxide gas

Bases

đắng

Have a bitter taste.

Feel slippery. Many soaps contain bases.

Acid - Base

$$HCI(g) + NH_3(g) \rightarrow NH_4CI(s)$$

Definition of An Acid

Arrhenius acid is a substance that produces H⁺ (H₃O⁺) in water

A *Brønsted acid* is a proton donor

A Lewis acid is a substance that can accept a pair of electrons

A **Lewis base** is a substance that can donate a pair of electrons

$$H^+ + \overset{\circ}{\circ}H^- \longrightarrow H - \overset{\circ}{\circ}-H$$
acid base
$$H + \overset{\circ}{\circ}H^- \longrightarrow H - \overset{\circ}{\circ}H^-$$

Lewis Acids and Bases

No protons donated or accepted!

A Brønsted acid is a proton donor A Brønsted base is a proton acceptor

$$\mathrm{NH_3}(aq) + \mathrm{H_2O}(l) \Longrightarrow \mathrm{NH_4^+}(aq) + \mathrm{OH^-}(aq)$$
 base acid base conjugate acid base

Acid-Base Properties of Water

$$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$$

autoionization of water

The Ion Product of Water

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$
 $K_2 = \frac{[H^+][OH^-]}{[H_2O]}$ $[H_2O] = \frac{\text{constant}}{[H_2O]}$

$$K_c[H_2O] = K_w = [H^+][OH^-]$$

The ion-product constant (K_w) is the product of the molar concentrations of H⁺ and OH⁻ ions at a particular temperature.

At 25 $^{\circ}$ C $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

$$[H^+] = [OH^-]$$
 neutral $[H^+] > [OH^-]$ acidic $[H^+] < [OH^-]$ basic

Solution Is

What is the **concentration** of OH⁻ ions in a HCl solution whose hydrogen ion concentration is 1.3 *M*?

$$K_W = [H^+][OH^-] = 1.0 \times 10^{-14}$$

$$[H^+] = 1.3 M$$

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{1 \times 10^{-14}}{1.3} = 7.7 \times 10^{-15} M$$

pH – A Measure of Acidity

Solution is

$[H^{+}] = [OH^{-}]$ neutral

acidic

basic

$$[H^+] > [OH^-]$$

$$[H^+] < [OH^-]$$

At 25 °C

$$[H^+] = 1 \times 10^{-7}$$

$$[H^+] > 1 \times 10^{-7}$$

$$[H^+] < 1 \times 10^{-7}$$

$$pH = 7$$

TABLE 15.1

The pHs of Some Common Fluids

Sample	pH Value		
Gastric juice in the stomach	1.0-2.0		
Lemon juice	2.4		
Vinegar	3.0		
Grapefruit juice	3.2		
Orange juice	3.5		
Urine	4.8–7.5		
Water exposed	5.5		
to air*			
Saliva	6.4–6.9		
Milk	6.5		
Pure water	7.0		
Blood	7.35-7.45		
Tears	7.4		
Milk of	10.6		
magnesia			
Household	11.5		
ammonia			

^{*}Water exposed to air for a long period of time absorbs atmospheric CO_2 to form carbonic acid, H_2CO_3 .

Other important relationships

$$pOH = -log [OH^{-}]$$

$$[H^+][OH^-] = K_W = 1.0 \times 10^{-14}$$

$$-\log [H^+] - \log [OH^-] = 14.00$$

$$pH + pOH = 14.00$$

Measure of pH

pH meter

Red cabbage

pH paper

Litmus paper

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H⁺ ion concentration of the rainwater?

pH = -log [H+]
[H+] =
$$10^{-pH} = 10^{-4.82} = 1.5 \times 10^{-5} M$$

The OH^- ion concentration of a blood sample is 2.5 x 10^{-7} *M*. What is the pH of the blood?

pH + pOH = 14.00
pOH = -log [OH⁻] = -log (2.5 x
$$10^{-7}$$
) = 6.60
pH = 14.00 - pOH = 14.00 - 6.60 = 7.40

Strong Electrolyte – 100% dissociation

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Weak Electrolyte - not completely dissociated

$$CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Strong Acids are strong electrolytes

HCI
$$(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CI^- (aq)$$

HNO₃ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$
HCIO₄ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CIO_4^- (aq)$
H₂SO₄ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + HSO_4^- (aq)$

Weak Acids are weak electrolytes

HF
$$(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + F^- (aq)$$

HNO₂ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_2^- (aq)$
HSO₄⁻ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + SO_4^{2-} (aq)$
H₂O $(I) + H_2O (I) \longrightarrow H_3O^+ (aq) + OH^- (aq)$

Strong Bases are strong electrolytes

NaOH (s)
$$H_2O$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) H_2O K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) H_2O Ba²⁺ (aq) + 2OH⁻ (aq)

Weak Bases are weak electrolytes

$$F^{-}(aq) + H_2O(l) \longrightarrow OH^{-}(aq) + HF(aq)$$

 $NO_2^{-}(aq) + H_2O(l) \longrightarrow OH^{-}(aq) + HNO_2(aq)$

Conjugate acid-base pairs:

- The conjugate base of a strong acid has no measurable strength.
- H₃O⁺ is the strongest acid that can exist in aqueous solution.
- The OH⁻ ion is the strongest base that can exist in aqeous solution.

TABLE 15.2 Relative Strengths of Conjugate Acid-Base Pairs

		Acid	Conjugate Base		
,	\uparrow	(HClO ₄ (perchloric acid) ClO ₄ (perchlorate ion)			
	spi	HI (hydroiodic acid)	I (iodide ion)		
	aci	HBr (hydrobromic acid)	Br ⁻ (bromide ion)		
	Strong acids	HCl (hydrochloric acid)	Cl ⁻ (chloride ion)		
7.0	Str	H ₂ SO ₄ (sulfuric acid)	HSO ₄ (hydrogen sulfate ion)	80	
Acid strength increases		HNO ₃ (nitric acid)	NO ₃ (nitrate ion)	Base strength increases	
cre		H ₃ O ⁺ (hydronium ion)	H ₂ O (water)	ıcre	
h ir		HSO ₄ (hydrogen sulfate ion)	SO_4^{2-} (sulfate ion)	h ii	
engt		HF (hydrofluoric acid)	F (fluoride ion)	sugt	
stre		HNO ₂ (nitrous acid)	NO_2^- (nitrite ion)	stre	
cid	cids	HCOOH (formic acid)	HCOO ⁻ (formate ion)	ase	
<(ıka	CH ₃ COOH (acetic acid)	CH ₃ COO ⁻ (acetate ion)	l A	
Acid Weak acids	Wez	NH ₄ ⁺ (ammonium ion)	NH ₃ (ammonia)		
		HCN (hydrocyanic acid)	CN ⁻ (cyanide ion)		
		H ₂ O (water)	OH (hydroxide ion)		
		NH ₃ (ammonia)	NH ₂ (amide ion)	\downarrow	

Strong Acid (HCI)

Before Ionization Equilibrium HCl H+ Cl-

Weak Acid (HF)

What is the pH of a 2 x 10^{-3} M HNO₃ solution?

HNO₃ is a strong acid – 100% dissociation.

Start 0.002
$$M$$
 0.0 M 0.0 M HNO₃ (aq) + H₂O (I) \longrightarrow H₃O⁺ (aq) + NO₃⁻ (aq) End 0.0 M 0.002 M 0.002 M

$$pH = -log [H^+] = -log [H_3O^+] = -log (0.002) = 2.7$$

What is the pH of a 1.8 x 10^{-2} M Ba(OH)₂ solution?

 $Ba(OH)_2$ is a strong base – 100% dissociation.

Start 0.018
$$M$$
 0.0 M 0.0 M
Ba(OH)₂ (s) \longrightarrow Ba²⁺ (aq) + 2OH⁻ (aq)
End 0.0 M 0.018 M 0.036 M
pH = 14.00 - pOH = 14.00 + log(0.036) = 12.6

Weak Acids (HA) and Acid Ionization Constants

HA
$$(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + A^-(aq)$$

HA $(aq) \longrightarrow H^+(aq) + A^-(aq)$
 $K_a = \frac{[H^+][A^-]}{[HA]}$

*K*_a is the *acid ionization constant*

Ionization Constants of Some Weak Acids and Their Conjugate Bases at 25°C **TABLE 15.3**

Name of Acid	Formula	Structure	K a	Conjugate Base	K _b [†]
Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Nitrous acid	HNO_2	O=N-O-H	4.5×10^{-4}	NO_2^-	2.2×10^{-11}
Acetylsalicylic acid (aspirin)	$\mathrm{C_9H_8O_4}$	O 	3.0×10^{-4}	C ₉ H ₇ O ₄	3.3×10^{-11}
Formic acid	НСООН	О Н—С—О—Н	1.7×10^{-4}	HCOO ⁻	5.9×10^{-11}
Ascorbic acid*	$\mathrm{C_6H_8O_6}$	H-O C	8.0×10^{-5}	C ₆ H ₇ O ₆	1.3×10^{-10}
Benzoic acid	C ₆ H ₅ COOH	—С—О—Н О П	6.5×10^{-5}	C ₆ H ₅ COO ⁻	1.5×10^{-10}
Acetic acid	CH₃COOH	О CH ₃ —С—О—Н	1.8×10^{-5}	CH₃COO¯	5.6×10^{-10}
Hydrocyanic acid	HCN	H—C≡N	4.9×10^{-10}	CN ⁻	2.0×10^{-5}
Phenol	C ₆ H ₅ OH	О—Н	1.3×10^{-10}	C ₆ H ₅ O ⁻	7.7×10^{-5}

^{*}For ascorbic acid it is the upper left hydroxyl group that is associated with this ionization constant. † The base ionization constant K_b is discussed in Section 15.6.

What is the pH of a 0.5 M HF solution (at 25 °C)?

HF (aq)
$$\longrightarrow$$
 H⁺ (aq) + F⁻ (aq) $K_a = \frac{[H^+][F^-]}{[HF]} = 7.1 \times 10^{-4}$

$$HF(aq) \longrightarrow H^+(aq) + F^-(aq)$$

Initial (M)

0.50 0.00 0.00

Change (M) -x + x + x

Equilibrium (M) 0.50 - x

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$
 $K_a << 1 \quad 0.50 - x \approx 0.50$

$$K_a \ll 1$$

$$0.50 - x \approx 0.50$$

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-4}$ $x = 0.019 M$

$$x^2 = 3.55 \times 10^{-4}$$

$$x = 0.019 M$$

$$[H^+] = [F^-] = 0.019 M$$

$$pH = -log[H^+] = 1.72$$

$$[HF] = 0.50 - x = 0.48 M$$

When can I use the approximation?

$$K_a << 1 \quad 0.50 - x \approx 0.50$$

When x is less than 5% of the value from which it is subtracted.

$$x = 0.019$$
 $\frac{0.019 \ M}{0.50 \ M} \times 100\% = 3.8\%$ Less than 5% Approximation ok.

What is the pH of a 0.05 M HF solution (at 25 °C)?

$$K_a \approx \frac{x^2}{0.05} = 7.1 \times 10^{-4} \quad x = 0.006 M$$

$$\frac{0.006 \ M}{0.05 \ M} \times 100\% = 12\%$$
 More than 5% Approximation **not** ok.

Must solve for *x* exactly using quadratic equation or method of successive approximations.

Solving weak acid ionization problems:

- 1. Identify the major species that can affect the pH.
 - In most cases, you can ignore the autoionization of water.
 - Ignore [OH⁻] because it is determined by [H⁺].
- 2. Use ICE to express the equilibrium concentrations in terms of single unknown *x*.
- 3. Write K_a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly.
- 4. Calculate concentrations of all species and/or pH of the solution.

What is the pH of a 0.122 M monoprotic acid whose K_a is 5.7 x 10⁻⁴?

HA (aq)
$$\longrightarrow$$
 H+ (aq) + A- (aq)
Initial (M) 0.122 0.00 0.00
Change (M) -x +x +x
Equilibrium (M) 0.122 - x x x x
 $K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$ $K_a << 1$ 0.122 - $x \approx 0.122$
 $K_a \approx \frac{x^2}{0.122} = 5.7 \times 10^{-4}$ $x^2 = 6.95 \times 10^{-5}$ $x = 0.0083$ M

$$\frac{0.0083 \ M}{0.122 \ M} \times 100\% = 6.8\%$$

More than 5% Approximation **not** ok.

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$$
 $x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$

$$ax^2 + bx + c = 0$$

$$x = 0.0081$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$X = -0.0081$$

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

0.122

0.00

0.00

-X

+X +X

Equilibrium (M) 0.122 - x

X

$$[H^+] = x = 0.0081 M$$

$$pH = -log[H^+] = 2.09$$

For a monoprotic acid HA

Percent ionization =
$$\frac{[H^+]}{[HA]_0}$$
 x 100% $[HA]_0$ = initial concentration

Weak Bases and Base Ionization Constants

$$NH_3 (aq) + H_2O (I) \longrightarrow NH_4^+ (aq) + OH^- (aq)$$

$$K_b = \frac{[\mathsf{NH_4^+}][\mathsf{OH}^-]}{[\mathsf{NH_3}]}$$

K_b is the **base ionization constant**

Solve weak base problems like weak acids *except* solve for [OH-] instead of [H+].

TABLE 15.4 Ionization Constants of Some Weak Bases and Their Conjugate Acids at 25°C

Name of Base	Formula	Structure	K _b *	Conjugate Acid	K a
Ethylamine	C ₂ H ₅ NH ₂	CH ₃ —CH ₂ —N—H 	5.6×10^{-4}	$C_2H_5\overset{+}{N}H_3$	1.8×10^{-11}
Methylamine	CH ₃ NH ₂	CH ₃ —N—H H	4.4×10^{-4}	CH ₃ NH ₃	2.3×10^{-11}
Ammonia	NH_3	 Н—N—Н Н	1.8×10^{-5}	NH_4^+	5.6×10^{-10}
Pyridine	C_5H_5N	N:	1.7×10^{-9}	C₅H₅NH	5.9×10^{-6}
Aniline	$C_6H_5NH_2$	 N—H H	3.8×10^{-10}	$C_6H_5\overset{+}{N}H_3$	2.6×10^{-5}
Caffeine	$C_8H_{10}N_4O_2$	H_3C C C C C C C C C C	5.3×10^{-14}	$C_8H_{11}\overset{+}{N}_4O_2$	0.19
Urea	(NH ₂) ₂ CO	O H—N—C—N—H 	1.5×10^{-14}	H ₂ NCONH ₃	0.67

^{*}The nitrogen atom with the lone pair accounts for each compound's basicity. In the case of urea, K_b can be associated with either nitrogen atom.

Ionization Constants of Conjugate Acid-Base Pairs

$$HA (aq) \rightleftharpoons H^{+} (aq) + A' (aq) \qquad K_{a}$$

$$A^{-} (aq) + H_{2}O (I) \rightleftharpoons OH^{-} (aq) + HA (aq) \qquad K_{b}$$

$$H_{2}O (I) \rightleftharpoons H^{+} (aq) + OH^{-} (aq) \qquad K_{w}$$

$$K_{a}K_{b} = K_{w}$$

Weak Acid and Its Conjugate Base

$$K_a = \frac{K_w}{K_b} \qquad K_b = \frac{K_w}{K_a}$$

Diprotic and Triprotic Acids

- May yield more than one hydrogen ion per molecule.
- Ionize in a stepwise manner; that is, they lose one proton at a time.
- An ionization constant expression can be written for each ionization stage.
- Consequently, two or more equilibrium constant expressions must often be used to calculate the concentrations of species in the acid solution.

$$H_{2}CO_{3}(aq) \iff H^{+}(aq) + HCO_{3}^{-}(aq) \qquad K_{a_{1}} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}$$

$$HCO_{3}^{-}(aq) \iff H^{+}(aq) + CO_{3}^{2-}(aq) \qquad K_{a_{2}} = \frac{[H^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}$$

TABLE 15.5 Ionization Constants of Some Diprotic Acids and a Polyprotic Acid and Their Conjugate Bases at 25°C

Name of Acid	Formula	Structure	K a	Conjugate Base	K _b
Sulfuric acid	H_2SO_4	О 	very large	HSO ₄	very small
Hydrogen sulfate ion	HSO_4^-	O H-O-S-O ⁻ O	1.3×10^{-2}	SO ₄ ²⁻	7.7×10^{-13}
Oxalic acid	$H_2C_2O_4$	O O	6.5×10^{-2}	$HC_2O_4^-$	1.5×10^{-13}
Hydrogen oxalate ion	$HC_2O_4^-$	H-O-C-C-O-	6.1×10^{-5}	$C_2O_4^{2-}$	1.6×10^{-10}
Sulfurous acid*	H_2SO_3	О Н—О—S—О—Н	1.3×10^{-2}	HSO ₃	7.7×10^{-13}
Hydrogen sulfite ion	HSO ₃	O H—O—S—O ⁻	6.3×10^{-8}	SO ₃ ²⁻	1.6×10^{-7}
Carbonic acid	H_2CO_3	O H-O-C-O-H	4.2×10^{-7}	HCO_3^-	2.4×10^{-8}
Hydrogen carbonate ion	HCO_3^-	O H—O—C—O ⁻	4.8×10^{-11}	CO_3^{2-}	2.1×10^{-4}
Hydrosulfuric acid Hydrogen sulfide ion [†]	H ₂ S HS ⁻	H—S—H H—S ⁻	9.5×10^{-8} 1×10^{-19}	HS ⁻ S ²⁻	1.1×10^{-7} 1×10^{5}
Phosphoric acid	H_3PO_4	O 	7.5×10^{-3}	$\mathrm{H_2PO_4^-}$	1.3×10^{-12}
Dihydrogen phosphate ion	$\mathrm{H_2PO_4^-}$	H O H-O-P-O ⁻ O H	6.2×10^{-8}	HPO_4^{2-}	1.6×10^{-7}
Hydrogen phosphate ion	HPO_4^{2-}	O H-O-P-O ⁻ O ⁻	4.8×10^{-13}	PO ₄ ³⁻	2.1×10^{-2}

^{*}H₂SO₃ has never been isolated and exists in only minute concentration in aqueous solution of SO₂. The K₃ value here refers to the process SO₂(g) + H₂O(l) = The ionization constant of HS $^-$ is very low and difficult to measure. The value listed here is only an estimate.

Molecular Structure and Acid Strength

HF << HCl < HBr < HI

TABLE 15.6

Bond Enthalpies for Hydrogen Halides and Acid Strengths for Hydrohalic Acids

Bond Enthalpy (kJ/mol)	Acid Strength
568.2	weak
431.9	strong
366.1	strong
298.3	strong
	568.2 431.9 366.1

Molecular Structure and Oxoacid Strength

$$\sum Z - O - H \longrightarrow Z - O + H^{+}$$

The O-H bond will be more polar and easier to break if:

- Z is very electronegative or
- Z is in a high oxidation state

Molecular Structure and Oxoacid Strength

1. Oxoacids having different central atoms (Z) that **are from the same group** and that have the **same oxidation number**.

Acid strength increases with increasing electronegativity of Z

CI is more electronegative than Br

Molecular Structure and Acid Strength

2. Oxoacids having the same central atom (Z) but different numbers of attached groups.

Acid strength increases as the oxidation number of Z increases.

Acid-Base Properties of Salts

Neutral Solutions:

Salts containing an alkali metal or alkaline earth metal ion (except Be²⁺) **and** the conjugate base of a **strong** acid (*e.g.* Cl⁻, Br⁻, and NO₃⁻).

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Basic Solutions:

Salts derived from a strong base and a weak acid.

NaCH₃COOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + CH₃COO⁻ (aq)

$$CH_3COO^-(aq) + H_2O(l) \longrightarrow CH_3COOH(aq) + OH^-(aq)$$

Acid-Base Properties of Salts

Acid Solutions:

Salts derived from a strong acid and a weak base.

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$

$$NH_4^+(aq) \longrightarrow NH_3(aq) + H^+(aq)$$

Salts with small, highly charged metal cations (*e.g.* Al³⁺, Cr³⁺, and Be²⁺) and the conjugate base of a strong acid.

$$AI(H_2O)_6^{3+}(aq) \longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H^+(aq)$$

Acid Hydrolysis of Al³⁺

Acid-Base Properties of Salts

Solutions in which both the cation and the anion hydrolyze:

- K_b for the anion > K_a for the cation, solution will be basic
- K_b for the anion K_a for the cation, solution will be acidic
- K_b for the anion $\approx K_a$ for the cation, solution will be neutral

TABLE 15.7	Acid-Base Properties of Salts								
Type of Salt	:	Examples	lons That Undergo Hydrolysis	pH of Solution					
Cation from s	trong base; anion from strong acid	NaCl, KI, KNO ₃ , RbBr, BaCl ₂	None	≈ 7					
Cation from s	trong base; anion from weak acid	CH ₃ COONa, KNO ₂	Anion	> 7					
Cation from w	veak base; anion from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation	< 7					
Cation from w	veak base; anion from weak acid	NH ₄ NO ₂ , CH ₃ COONH ₄ , NH ₄ CN	Anion and cation	< 7 if $K_{\rm b} < K_{\rm a}$					
				$\approx 7 \text{ if } K_{\rm b} \approx K_{\rm a}$					
				> 7 if $K_{\rm b} > K_{\rm a}$					
Small, highly	charged cation; anion from strong acid	AlCl ₃ , Fe(NO ₃) ₃	Hydrated cation	< 7					

Oxides of the Representative Elements In Their Highest Oxidation States

1 1A				Basic o	oxide												18 8A
	2 2A			Acidic	oxide							13 3A	14 4A	15 5A	16 6A	17 7A	
Li ₂ O	BeO			Ampho	oteric ox	ide						B_2O_3	CO ₂	N_2O_5		OF ₂	
Na ₂ O	MgO	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃	Cl ₂ O ₇	
K ₂ O	CaO											Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇	
Rb ₂ O	SrO											In ₂ O ₃	SnO ₂	$\mathrm{Sb_2O_5}$	TeO ₃	I ₂ O ₇	
Cs ₂ O	BaO											Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇	

Na₂O (s) + H₂O (
$$I$$
) \longrightarrow 2NaOH (aq)
CO₂ (g) + H₂O (I) \Longrightarrow H₂CO₃ (aq)
N₂O₅ (g) + H₂O (I) \Longrightarrow 2HNO₃ (aq)

43

Chemistry In Action: Antacids and the Stomach pH Balance

Some Common Commercial Antacid Preparations

Commercial Name	Active Ingredients		
Alka-2	Calcium carbonate		
Alka-Seltzer	Aspirin, sodium bicarbonate, citric acid		
Bufferin	Aspirin, magnesium carbonate, aluminum glycinate		
Buffered aspirin	Aspirin, magnesium carbonate, aluminum hydroxide-glycine		
Milk of magnesia	Magnesium hydroxide		
Rolaids	Dihydroxy aluminum sodium carbonate		
Tums	Calcium carbonate		

$$Mg(OH)_2(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + 2H_2O(l)$$

NaHCO₃
$$(aq)$$
 + HCI (aq) \longrightarrow
NaCl (aq) + H₂O (I) + CO₂ (g)

Acid-Base Equilibria and Solubility Equilibria

The **common ion effect** is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

The presence of a common ion **suppresses** the ionization of a weak acid or a weak base.

Consider mixture of CH₃COONa (strong electrolyte) and CH₃COOH (weak acid).

CH₃COONa (s)
$$\longrightarrow$$
 Na⁺ (aq) $+$ CH₃COO⁻ (aq) common CH₃COOH (aq) \longrightarrow H⁺ (aq) $+$ CH₃COO⁻ (aq) ion

Consider mixture of salt NaA and weak acid HA.

NaA (s)
$$\longrightarrow$$
 Na⁺ (aq) + A⁻ (aq)
HA (aq) \longleftrightarrow H⁺ (aq) + A⁻ (aq)

$$[H^+] = \frac{K_a[HA]}{[A^-]}$$

$$-\log [H^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

$$-\log [H^+] = -\log K_a + \log \frac{[A^-]}{[HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Henderson-Hasselbalch equation

$$pH = pK_a + log \frac{[conjugate base]}{[acid]}$$

$$pH = pK_a + log \frac{[A^-]}{[HA]} \qquad pK_a = -log K_a$$

What is the pH of a solution containing 0.30 *M* HCOOH and 0.52 *M* HCOOK?

Mixture of weak acid and conjugate base!

HCOOH (aq)
$$\rightleftharpoons$$
 H+ (aq) + HCOO- (aq)
Initial (M) 0.30 0.00 0.52
Change (M) -x +x +x
Equilibrium (M) 0.30 - x x 0.52 + x

Common ion effect

$$0.30 - x \approx 0.30$$

$$0.52 + x \approx 0.52$$

HCOOH p
$$K_a = 3.77$$

$$pH = pK_a + log \frac{[HCOO^-]}{[HCOOH]}$$

pH =
$$3.77 + log \frac{[0.52]}{[0.30]} = 4.01$$

A **buffer solution** is a solution of:

- 1. A weak acid or a weak base and
- 2. The salt of the weak acid or weak base

Both must be present!

A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base.

Consider an equal molar mixture of CH₃COOH and CH₃COONa

Add strong acid

$$H^+(aq) + CH_3COO^-(aq) \longrightarrow CH_3COOH(aq)$$

Add strong base

$$OH^{-}(aq) + CH_{3}COOH(aq) \longrightarrow CH_{3}COO^{-}(aq) + H_{2}O(1)$$

HCI
$$\longrightarrow$$
 H⁺ + Cl⁻
HCI + CH₃COO⁻ \longrightarrow CH₃COOH + Cl⁻

Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na₂CO₃/NaHCO₃

- (a) KF is a weak acid and F⁻ is its conjugate base buffer solution
- (b) HBr is a strong acid not a buffer solution
- (c) CO₃²⁻ is a weak base and HCO₃⁻ is its conjugate acid buffer solution

Calculate the pH of the 0.30 *M* NH₃/0.36 *M* NH₄Cl buffer system. What is the pH after the addition of 20.0 mL of 0.050 *M* NaOH to 80.0 mL of the buffer solution?

$$NH_4^+$$
 (aq) \longrightarrow H^+ (aq) + NH_3 (aq)

pH = p
$$K_a$$
 + log $\frac{[NH_3]}{[NH_4^+]}$ p K_a = 9.25 pH = 9.25 + log $\frac{[0.30]}{[0.36]}$ = 9.17

start (moles) 0.029 0.001 0.024
$$NH_4^+ (aq) + OH^- (aq) \longrightarrow H_2O (1) + NH_3 (aq)$$
 end (moles) 0.028 0.0 0.025

final volume = 80.0 mL + 20.0 mL = 100 mL

$$[NH_4^+] = \frac{0.028}{0.10} [NH_3] = \frac{0.025}{0.10} pH = 9.25 + log \frac{[0.25]}{[0.28]} = \frac{9.20}{52}$$

Chemistry In Action: Maintaining the pH of Blood

Red blood cells in a capillary

Titrations (Review)

In a *titration* a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point – the point at which the reaction is complete

Indicator – substance that changes color at (or near) the equivalence point

Slowly add base to unknown acid UNTIL

The indicator changes color (pink)

Alternative Method of Equivalence Point Detection

monitor pH

Strong Acid-Strong Base Titrations

NaOH (aq) + HCl (aq)
$$\longrightarrow$$
 H₂O (l) + NaCl (aq)

$$OH^{-}(aq) + H^{+}(aq) \longrightarrow H_{2}O(l)$$

Weak Acid-Strong Base Titrations

CH₃COOH (aq) + NaOH (aq) \longrightarrow CH₃COONa (aq) + H₂O (I) CH₃COOH (aq) + OH⁻ (aq) \longrightarrow CH₃COO⁻ (aq) + H₂O (I) At equivalence point (pH > 7):

 $CH_3COO^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + CH_3COOH(aq)$

Strong Acid-Weak Base Titrations

$$HCI(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$$

$$H^+$$
 (aq) + NH_3 (aq) $\longrightarrow NH_4CI$ (aq)

At equivalence point (pH < 7):

$$NH_4^+$$
 (aq) + H_2O (l) \longrightarrow NH_3 (aq) + H^+ (aq)

Exactly 100 mL of 0.10 M HNO₂ are titrated with a 0.10 M NaOH solution. What is the pH at the equivalence point?

start (moles) 0.01 0.01

$$HNO_2 (aq) + OH^- (aq) \longrightarrow NO_2^- (aq) + H_2O (I)$$

end (moles) 0.0 0.0 0.01
Final volume = 200 mL $[NO_2^-] = \frac{0.01}{0.200} = 0.05 M$
 $NO_2^- (aq) + H_2O (I) \longrightarrow OH^- (aq) + HNO_2 (aq)$
Initial (M) 0.05 0.00 0.00
Change (M) -x +x +x
Equilibrium (M) 0.05 - x x x x
 $K_b = \frac{[OH^-][HNO_2]}{[NO_2^-]} = \frac{x^2}{0.05 - x} = 2.2 \times 10^{-11}$ pOH = 5.98
 $0.05 - x \approx 0.05$ $x \approx 1.05 \times 10^{-6} = [OH^-]$

Acid-Base Indicators

$$\frac{\text{HIn } (aq)}{[\text{HIn}]} \ge 10$$
 Color of acid (HIn) predominates $\frac{[\text{HIn}]}{[\text{In}^-]} \le 10$ Color of conjugate base (In⁻) predominates

TABLE 16.1 Some Common Acid-Base Indicators						
Indicator	In Acid	In Base	pH Range*			
Thymol blue	Red	Yellow	1.2–2.8			
Bromophenol blue	Yellow	Bluish purple	3.0-4.6			
Methyl orange	Orange	Yellow	3.1-4.4			
Methyl red	Red	Yellow	4.2-6.3			
Chlorophenol blue	Yellow	Red	4.8-6.4			
Bromothymol blue	Yellow	Blue	6.0–7.6			
Cresol red	Yellow	Red	7.2–8.8			
Phenolphthalein	Colorless	Reddish pink	8.3–10.0			

^{*}The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Solutions of Red Cabbage Extract

The titration curve of a strong acid with a strong base.

Which indicator(s) would you use for a titration of HNO₂ with KOH?

Weak acid titrated with strong base.

At equivalence point, will have conjugate base of weak acid.

At equivalence point, pH > 7

Use cresol red or phenolphthalein

		Color	
Indicator	In Acid	In Base	pH Range*
Thymol blue	Red	Yellow	1.2–2.8
Bromophenol blue	Yellow	Bluish purple	3.0-4.6
Methyl orange	Orange	Yellow	3.1-4.4
Methyl red	Red	Yellow	4.2-6.3
Chlorophenol blue	Yellow	Red	4.8-6.4
Bromothymol blue	Yellow	Blue	6.0-7.6
Cresol red	Yellow	Red	7.2–8.8
Phenolphthalein	Colorless	Reddish pink	8.3–10.0

^{*}The pH range is defined as the range over which the indicator changes from the acid color to the base color.

Solubility Equilibria

$$AgCI(s) \longrightarrow Ag^{+}(aq) + CI^{-}(aq)$$

$$K_{sp} = [Ag^+][Cl^-]$$

K_{sp} is the **solubility product constant**

$$MgF_2$$
 (s) \longrightarrow Mg^{2+} (aq) + $2F^-$ (aq)

$$K_{sp} = [Mg^{2+}][F^{-}]^{2}$$

$$Ag_2CO_3$$
 (s) \rightleftharpoons $2Ag^+$ (aq) $+ CO_3^{2^-}$ (aq)

$$K_{sp} = [Ag^+]^2[CO_3^{2^-}]$$

$$Ca_3(PO_4)_2$$
 (s) \longrightarrow $3Ca^{2+}$ (aq) + $2PO_4^{3-}$ (aq) $K_{sp} = [Ca^{2+}]^3[PO_4^{3-}]^2$

$$K_{SD} = [Ca^{2+}]^3 [PO_4^{3-}]^2$$

Dissolution of an ionic solid in aqueous solution:

 $Q < K_{sp}$ Unsaturated solution

No precipitate

$$Q = K_{sp}$$
 Saturated solution

 $Q > K_{sp}$ Supersaturated solution

Precipitate will form

TABLE 16.2 Solubility Products of Some Slightly Soluble Ionic Compounds at 25°C

Compound	$oldsymbol{\mathcal{K}}_{sp}$	Compound	K_{sp}
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-11}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH) ₂]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH) ₃]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide [Cu(OH) ₂]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH) ₂]	1.6×10^{-14}	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH) ₃]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}
Lead(II) chloride (PbCl ₂)	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

Molar solubility (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution.

Solubility (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution.

What is the solubility of silver chloride in g/L?

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = 1.6 \times 10^{-10}$
Initial (M) 0.00 0.00 $K_{sp} = [Ag^+][Cl^-]$
Change (M) +s +s $K_{sp} = s^2$
Equilibrium (M) s $s = \sqrt{K_{sp}}$
 $S = \sqrt{K_{sp}}$
 $S = 1.3 \times 10^{-5}$

Solubility of AgCl =
$$\frac{1.3 \times 10^{-5} \text{ mol AgCl}}{1 \text{ L soln}} \times \frac{143.35 \text{ g AgCl}}{1 \text{ mol AgCl}} = 1.9 \times 10^{-3} \text{ g/L}$$

TABLE 16.3 Relationship Between K_{sp} and Molar Solubility (s)

Compound	K_{sp} Expression	Cation	Anion	Relation Between $K_{\rm sp}$ and s
AgCl	$[Ag^+][Cl^-]$	S	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$ $K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$
BaSO_4	$[Ba^{2+}][SO_4^{2-}]$	S	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$
Ag_2CO_3	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	2s	S	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
PbF_2	$[Pb^{2+}][F^{-}]^{2}$	S	2s	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
Al(OH) ₃	$[Al^{3+}][OH^{-}]^{3}$	S	3s	$K_{\rm sp} = 27s^4; s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{4}}$
$Ca_3(PO_4)_2$	$[Ca^{2+}]^3[PO_4^{3-}]^2$	3s	2s	$K_{\rm sp} = 108s^5; s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{5}}$

If 2.00 mL of 0.200 *M* NaOH are added to 1.00 L of 0.100 *M* CaCl₂, will a precipitate form?

The ions present in solution are Na⁺, OH⁻, Ca²⁺, Cl⁻.

Only possible precipitate is Ca(OH)₂ (solubility rules).

Is
$$Q > K_{sp}$$
 for $Ca(OH)_2$?

$$[Ca^{2+}]_0 = 0.100 M$$
 $[OH^{-}]_0 = 4.0 \times 10^{-4} M$

$$Q = [Ca^{2+}]_0[OH^{-1}]_0^2 = 0.10 \times (4.0 \times 10^{-4})^2 = 1.6 \times 10^{-8}$$

$$K_{SD} = [Ca^{2+}][OH^{-}]^{2} = 8.0 \times 10^{-6}$$

 $Q < K_{sp}$ No precipitate will form

What concentration of Ag is required to precipitate ONLY AgBr in a solution that contains both Br⁻ and Cl⁻ at a concentration of 0.02 *M*?

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq) $K_{sp} = 7.7 \times 10^{-13}$
 $K_{sp} = [Ag^+][Br^-]$

$$[Ag^+] = \frac{K_{sp}}{[Br^-]} = \frac{7.7 \times 10^{-13}}{0.020} = 3.9 \times 10^{-11} M$$

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = 1.6 \times 10^{-10}$
 $K_{sp} = [Ag^+][Cl^-]$

$$[Ag^+] = \frac{K_{sp}}{[Cl^+]} = \frac{1.6 \times 10^{-10}}{0.020} = 8.0 \times 10^{-9} M$$

$$3.9 \times 10^{-11} M < [Ag^+] < 8.0 \times 10^{-9} M$$

The Common Ion Effect and Solubility

The presence of a common ion **decreases** the solubility of the salt.

What is the molar solubility of AgBr in (a) pure water and (b) 0.0010 *M* NaBr?

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq)

 $K_{sp} = 7.7 \times 10^{-13}$
 $S^2 = K_{sp}$
 $S = 8.8 \times 10^{-7}$

[Br⁻] = 0.0010 M

AgBr (s) \longrightarrow Ag⁺ (aq) + Br⁻ (aq)

[AgBr (s) \longrightarrow Ag⁺ (aq) + Br⁻ (aq)

 $AgBr (s) \longrightarrow$ Ag⁺ (aq) + Br⁻ (aq)

pH and Solubility

- The presence of a common ion decreases the solubility.
- Insoluble bases dissolve in acidic solutions
- Insoluble acids dissolve in basic solutions

readdye

Complex Ion Equilibria and Solubility

A *complex ion* is an ion containing a central metal cation bonded to one or more molecules or ions.

$$Co^{2+}(aq) + 4Cl^{-}(aq) \longrightarrow CoCl_4^{2-}(aq)$$

The formation constant or stability constant (K_f) is the equilibrium constant for the complex ion formation.

Effect of Complexation on Solubility

 $Ag(0)H_3)_2^+$

TABLE 16.4 Formation Constants of Selected Complex Ions in Water at 25°C

Complex Ion	Equilibrium Expression	Formation Constant (<i>K</i> _f)
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \iff Ag(NH_3)_2^+$	1.5×10^{7}
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \iff Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \rightleftharpoons Cu(CN)_{4}^{2-}$	1.0×10^{25}
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \iff Cu(NH_3)_4^{2-}$	5.0×10^{13}
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_{4}^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^{-} \iff CdI_4^{2-}$	2.0×10^{6}
$HgCl_4^{2-}$	$Hg^{2+} + 4Cl^{-} \iff HgCl_4^{2-}$	1.7×10^{16}
HgI_4^{2-}	$Hg^{2+} + 4I^{-} \iff HgI_4^{2-}$	2.0×10^{30}
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^- \Longrightarrow Hg(CN)_4^{2-}$	2.5×10^{41}
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6NH_3 \iff Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \rightleftharpoons Zn(NH_3)_4^{2+}$	2.9×10^{9}

Separation of Cations into Groups According to Their Precipitation Reactions with Various Reagents

Group	Cation	Precipitating Reagents	Insoluble Compound	$K_{\sf sp}$
1	Ag^+	HC1	AgCl	1.6×10^{-10}
	Hg_2^{2+}		Hg_2Cl_2	3.5×10^{-18}
	Pb^{2+}		PbCl ₂	2.4×10^{-4}
2	Bi^{3+}	H_2S	$\mathrm{Bi}_2\mathrm{S}_3$	1.6×10^{-72}
	Cd^{2+}	in acidic	CdS	8.0×10^{-28}
	Cu^{2+}	solutions	CuS	6.0×10^{-37}
	Hg^{2+}		HgS	4.0×10^{-54}
	Sn^{2+}		SnS	1.0×10^{-26}
3	Al^{3+}	H_2S	$Al(OH)_3$	1.8×10^{-33}
	Co^{2+}	in basic	CoS	4.0×10^{-21}
	Cr ³⁺	solutions	$Cr(OH)_3$	3.0×10^{-29}
	Fe^{2+}		FeS	6.0×10^{-19}
	Mn^{2+}		MnS	3.0×10^{-14}
	Ni^{2+}		NiS	1.4×10^{-24}
	Zn^{2+}		ZnS	3.0×10^{-23}
4	Ba^{2+}	$Na_2^{\checkmark}CO_3$	$BaCO_3$	8.1×10^{-9}
	Ca^{2+}		$CaCO_3$	8.7×10^{-9}
	Sr^{2+}		SrCO ₃	1.6×10^{-9}
5	K^{+}	No precipitating	None	
	Na ⁺	reagent	None	
	NH_4^+		None	

Qualitative Analysis of Cations

Flame Test for Cations

Chemistry In Action: How an Eggshell is Formed

$$Ca^{2+}(aq) + CO_3^{2-}(aq) \rightleftharpoons CaCO_3(s)$$

$$CO_2(g) + H_2O(1) \xrightarrow{\text{carbonic}} H_2CO_3(aq)$$

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^- (aq) \longrightarrow H^+ (aq) + CO_3^{2-} (aq)$$

