

Symbol

TrenchT2™ HiperFET™ **Power MOSFET**

IXFA230N075T2 IXFP230N075T2

V_{DSS} **75V** 230A $4.2m\Omega$ $\boldsymbol{R}_{\text{DS(on)}}$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Test Conditions

Maximum Ratings

TO-263 AA (IXFA)

TO-220AB (IXFP)

G = Gate	D	= Drain
S = Source	Tab	= Drain

\mathbf{V}_{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 175°C, $R_{_{\rm GS}} = 1\text{M}\Omega$		75	V
V _{GSM}	Transient		± 20	V
I _{D25}	T _C = 25°C (Chip Capability)		230	A
LRMS	Lead Current Limit, RMS		120	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$		700	Α
I _A	T _c = 25°C		115	A
E _{as}	$T_{c} = 25^{\circ}C$		850	mJ
$\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$	T _C = 25°C		480	W
		55	.175	°C

Features

- International Standard Packages
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Automotive
 - Motor Drives
 - 12V Power Bus
 - ABS Systems
- DC/DC Converters and Off-Line UPS
- Primary- Side Switch
- High Current Switching Applications

$\mathbf{V}_{\mathrm{DSS}}$ $T_{\perp} = 25^{\circ}C$ to $175^{\circ}C$ 75 $^{\circ}\text{C}$ -55 ... +175 T_{J} T_{JM} 175 °C $\mathbf{T}_{\mathrm{stg}}$ -55 ... +175 °C ٥С 1.6mm (0.062in.) from Case for 10s 300 T_{L} T_{sold} Plastic Body for 10 seconds 260 $^{\circ}C$ Mounting Torque (TO-220) Md 1.13 / 10 Nm/lb.in. TO-263 2.5 Weight g TO-220 3.0 g

Symbol Test Conditions Chara			cteristic Values		
$(T_J = 25^{\circ}C$	Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	75			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 150^{\circ}C$			250	μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 50A, Note 1$			4.2	mΩ

Symbo (T ₁ = 25		Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic	Values Max.
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	50	85	S
C _{iss})			10.5	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1165	pF
C _{rss}	J			125	pF
t _{d(on)})	Resistive Switching Times		23	ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		18	ns
t _{d(off)}		$R_{\rm G} = 2\Omega$ (External)		33	ns
t _f	J	g , , ,		15	ns
Q _{g(on)})			178	nC
Q_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		53	nC
\mathbf{Q}_{gd}	J			41	nC
R _{thJC}					0.31 °C/W
R _{thCH}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol	Test Conditions	Chara	cteristic	: Values	
$(T_J = 25^{\circ}C, I)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			230	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			900	Α
V _{SD}	$I_{F} = 100A, V_{GS} = 0V, Note 1$			1.3	V
t _{rr}	$I_{\rm F} = 115A, V_{\rm GS} = 0V$		59		ns
I _{RM}	-di/dt = 100A/μs		3.6		Α
$Q_{_{\mathrm{RM}}}$	$V_R = 37V$		106		nC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

TO-263 (IXFA) Outline | Column | Colum

SYM	INCH	ES	MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54 BSC	
L	.575	.625	14.61	15.88
L1	.090	.110	2,29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

Pins: 1 - Gate 2 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
С	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
е	.100	BSC	2.54 BSC	
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
ØΡ	.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 115A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 115A Value vs.

Drain Current

Fig. 6. Drain Current vs. Case Temperature

Fig. 9. Forward Voltage Drop of Intrinsic Diode 300 270 240 210 180 150 120 T_J = 150°C 90 60 T_J = 25°C 30 0 0.4 0.5 0.6 0.7 8.0 0.9 1.0 1.1 1.2 1.3 V_{SD} - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.
Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.

Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.

Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

