- 1. Show that FWER == Pr (reject Hold Ho) \(\leq \alpha\)
 Where Ho= \(\int_{i=1}^{\infty} H_{0ii} \)
 - Pr (reject Ho | Ho) = Epr (reject Ho, i | Ho) = Epr (reject Ho, i | Ho, i)
 - [reject Ho. -> reject Hosi]
 - $= \sum \rho_i \leq \sum \%_n = \infty$

- assume Hosi = Hoss Hi

 -s Pr (roject Hosi | Hosi)

 = Pr (roject Hosi | Hosi)

 elmy of Ler scenarios

 increases the entropy

 and thus reduces

 the proble
- 2) FWER = Pr(reject Ho | Ho) = 1- Pr(not reject Ho) Ho)
 - = 1- (not reject Ho,i | Ho)

 (independence) = 1- (not reject Ho,i | Ho,i)

 1- [1-r(rejecting Ho,i | Ho,i)
 - $\leq 1 \left[\frac{1}{n} \right] \left(\frac{1}{n} \right)^{h} = 1 \left(\frac{1}{n} \right)^{h} = 1 e^{\alpha}$

Problem 2

1.
$$y_{n+1} = \beta_0 + \beta_1 x_{n+1} + \epsilon_{n+1}$$

 $\hat{y}_{n+1} = \hat{\beta}_0 + \hat{\beta}_1 x_{n+1} = 0$
Since cur estimate of $\epsilon_{n+1} = 0$

$$(\beta_0^*\beta_1 \chi_{n=1})$$
 is const given $\chi_{n=1} = Var \left[\epsilon_{n+1} - (\beta_c^* + \beta_1 \chi_{n+1}) \right]$

$$= \sigma^{2} + \sigma^{2} \left(\frac{1 + \left(\frac{X_{nx} - X}{S_{xx}} \right)^{2}}{\frac{1}{n} \left(\frac{X_{nx} - X}{S_{xx}} \right)^{2}} \right)$$

$$= \sigma^{2} \left(1 + \frac{1}{n} + \frac{\left(\frac{X_{nx} - X}{S_{xx}} \right)^{2}}{S_{xx}} \right)$$

$$\frac{y_{n+1} - \hat{y}_{n+1}}{S_{n+1} + \frac{(X_{n+1} - \bar{x})^2}{S_{n+1}}} \sim t_{n-2} \rightarrow y_{n+1} \in \hat{\beta}_0 + \hat{\beta}_1 \times_{n+1} \pm t_{n-2}^{1-\frac{\alpha}{2}} S \left(1 + \frac{1}{n} + \frac{(X_{n+1} - \bar{x})^{\frac{1}{2}}}{S_{n+1}}\right)$$

 V_{CCRLO} city (30) V_{CCRLO} $V_{\text{CCRL$

3.
$$y_{n+1} \in \hat{\beta}_0 + \hat{\beta}_1 \times n_{+1} \stackrel{!}{=} t_{n-2}^{1-\alpha/2} S \left[\frac{1}{\lambda} + \frac{1}{n} + \frac{(X_{n+1} - \overline{X})^{\lambda}}{S_{\times \times}} \right]$$

$$\left[\text{Since now,} \quad \text{Var} \left(y_{n+1} \right) = \text{Var} \left(\frac{\mathcal{E}_{n+1}^{(N)} + \mathcal{E}_{n+1}^{(N)}}{\lambda} \right) = \sigma_{N}^{N} \right]$$

This CI is of course <u>narrower</u> than for section (1) and generally $m \to \infty$ \Rightarrow CI becomes smaller, Since the assumption of normality of $l_m \sum_{i=1}^{m} \varepsilon_{n+1}^{(i)} \sim N(0, \sqrt{m})$ is more reasonable then less to < 1.7.