Sum of 2 variables (5.4) If x and Y are continuous N.S with joint poly fixing, then X+Y has the poly. $f_{x+Y}(z) = \int_{-\infty}^{\infty} f(x,z-x) dx$. (not required proof: use distribution function technique. step 1. find odf of x + \. Fray $(z) = P(x+1 \le z) = Sys = f(x,y) dxdy$ = $\int_{-\infty}^{\infty} \int_{y=-\infty}^{y=x+z} f(x,y) dy dx$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, t-x) dt dx$ = 1-00 fix, t-x) dx dt step 2: fx+y(t) = Fx+y(z) = J-0 f(x, 2-x)dx If X, I are independent, then the puf of X + I is fx+y(2) = 1-0 fx(X) fry (2) = 50 fx(x). fy/2-x)dx. Σ convolution of f_x and f_y , denoted by $f_x * f_y$. t.g. if x and y are independent. Uniform (011) random variables. Find the paf of X + T. Sol: $f_{x+y} = f_x * f_y$. $f_x(x) = \int_0^1 6 \times (1 - f_y(y))$. $= \int_0^\infty f_{x(x)} \cdot f_{x(x-x)} dx$ $= \int_{-\infty}^{\infty} f_{x(x)} \cdot f_{y}(z-x) dx$ $= \int_{\max(0,z-1)}^{\infty} f_{x(x)} \cdot f_{y}(z-x) dx$

0<2<2 | f &<1 = 50 | dx = 2.

3.3 Limit Theorem

Markov's inequality.

Suppose X 13 a random variable that takes only non-negative values.

Then for any azo Plaza = E(x)

Proof: $F(x) = \int_0^\infty x f(x) dx = \int_a^\infty x f(x) dx = \int_a^\infty a f(x) dx = a f(x \neq a)$

F(x) > af(x>a) $f(x>a) = \frac{F(x)}{a}$

Cheby shers inequality

Suppose X is a random variable with finite mean u and voriance 52,

then for any k>0, $P(|x-\mu|>k) \leq \frac{6^2}{k^2}$

Weak Law of Large Numbers

Let x_1, x_2 be a sequence of iid r.v.s, each with a finite mean $E(x_1)=u$.

Then, for any Ero

 $P\left(\left|\frac{x_{17-} \times n}{n} - \mu\right| , \chi \xi\right) \to 0 ; \text{ as } n \to \infty.$

* limits of probabilities $\Rightarrow 0$ $\frac{x_1+\cdots x_n}{n} \Rightarrow \mu$, in probability as $n \Rightarrow \infty$.

Strong law of large number Let $x_1, x_2 - \cdots$ be a sequence of rid r.v.s, each with a finite mean $E(x_i) = \mu$. Then $P(\lim_{n\to\infty} \frac{x_{i+} \cdot x_{in}}{n} = \mu) = 1$ $\Rightarrow prob involving limits. \frac{x_{i+} - x_{in}}{n} \Rightarrow \mu with probabilities 1.$
Then $P(\lim_{n\to\infty} \frac{x_1 + \cdots \times x_n}{n} = \mu) = 1$
Then $\left(\frac{h}{n-\infty}\frac{x_1+\cdots x_n}{n}=\mu\right)=1$
$\chi_{+-} = \chi_{n}$
- + poo wowing units. n - n with propertilities /
· · · · · · · · · · · · · · · · · · ·
Central limit Theorem.
Let X1, X2. be a sequence of iid IVs. each with mean u, variance 62.
then the distribution of $\frac{x_1+x_2+\cdots x_n-n^{la}}{\sqrt{n}}$
tends to the standard normal as $n \rightarrow \infty$.
This is, for all z , $x_1+x_2+\cdots+x_N=n_N$
$P(\frac{x_1+x_2+\cdots+x_N-n/n}{\sqrt{n}} \leq z) \Rightarrow \Phi(z), \text{ as } n \neq \infty$ $v \text{ and } caf \text{ of } N(0,1).$
caf of NO.
y y y y y y y y y y
Remark
Remark. $\frac{x_1 + \cdots + x_n}{n} - \mu \rightarrow N(0,1)$
E.g. Suppose X, X2 iid exp(), then
E.g. Suppose $x_1, x_2 iid \exp(\frac{1}{x})$, then $\frac{x_1 + x_2 + x_n + 2n}{\sqrt{n} \cdot 2} \rightarrow N(0, 1) \text{ as } n \Rightarrow \infty.$
$\sqrt{n} \sim N(0, 1)$ as $n \approx \infty$.
Find the probability approximately the aug of x1, xn is less than 2.
Xi nexp(±)
X1+ X1000 Xx -2
$\frac{X_{1}+$
√√100
DC 100-2 2-2
$P(\overline{\chi_{100}} < 2) = P(\frac{100-2}{1/5} < \frac{2-2}{1/5})$
= P (\frac{\text{X:00} - 2}{\text{Y}_{\psi}} < 0) \frac{1}{2} \overline{\Psi}(0) = 0.5.
15 15 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20