CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Pipeline Processing

Lecture No.- 01

Topic

Basics Instn CPU & CIU. I/O , rem cache Disk

Topics to be Covered

Topic Pipe

Pipeline Processing

Topic

Pipeline Cycle Time

Topic

Speed Up

Topic: Parallel Processing

Parallel Processing: Simultaneous data processing

Types:

- Vector Processing
- Array Processing
- Pipeline Processing (Pipelining)

Topic: Flynn's Classification of Computers

Topic: Pipeline Processing

Pipelining is useful, When same processing is applied over multiple inputs

Topic: Pipeline Processing

- Technique to decompose a sequential process into sub-operations
- Sub-operations are performed in segments / stages
- Task: One operation performed in all segments

Topic: Pipelining Example

shirt making

	,	7		1
	cut	stitch	tinish	Pack
10 10 1	51			
min 2	52	51		
unin 3	53	52	<u>51</u>	
4	54	53	52	51
5	55	54	S3	52
6	56	55	54	53
7	_	56	55	54
801	<u> </u>		56	55 si

	no. of cycles		
	non-pipeline (sequential)	pripeline	Speed up
for n = 6 inputs	4*6=24	9	24 = 2.67
n = 7	4*7=28	10	$\frac{28}{10} = 2.8$
n = 8	4*8=32	11	32 <u>-</u> 2.9

Topic: Pipeline Cycle Time

Min. amount of time in which all segments can finish their respective suboperations.

Topic: General Consideration About Pipeline

Consider a k segment pipeline with clock cycle time = t_p to perform n tasks

Topic: General Consideration About Pipeline

Consider a non-pipeline system that takes t_n time to perform a task

Topic: General Consideration About Pipeline

Performance of a pipeline is given by Speed up ratio.

$$S = \frac{n * tn}{(k+n-1) tp}$$

as the no. of tasks increases

 $S_{ideal} = \frac{t_n}{t_p}$ or S_{max}

ideal condition means ignore k-1cycles to fill the pipe initially hence

for each input pipeline takes 1

cycle:

for n inputs => n cycles = n *tp time

Special carse
Time needed to perform 1 task in pipeline is equal to time needed in non-pipeline system for 1 task.

 $t_n = k * t_p$

Sideal = k

NAT

- A non-pipeline system takes 50 ns to process a task. The same task can be #Q. processed in a six-segment pipeline with a clock cycle of 10ns.
- Determine the speedup ratio of the pipeline for 100 tasks. 1.

$$t_n = 50 \text{ ns}$$

$$k = 6$$

$$t_p = 10 \text{ ns}$$

2. What is the maximum speedup that can be achieved?
$$t_n = 50 \text{ ns}$$

$$k = 6$$

$$t_p = 10 \text{ ns}$$

2.
$$S_{max} = \frac{t_n}{t_p} = \frac{50}{10} = 5$$

 $\Rightarrow \text{ if ideal speed up asked}$ or
or
or value of n is not mentioned 0 USe $5 = \frac{t_n}{t_p}$

Topic: Synchronous Pipeline

Topic: Cycle Time in Synchronous Pipeline

A non-pipeline system does not use buffer or reg.

[NAT]

#Q. Consider 6 segment pipeline with segment delay of segments as 20ns, 26ns, 21ns, 21ns, 24ns and 28ns respectively. Calculate processing time of pipeline for 1000 tasks?

$$k = 6$$

 $t_p = max(20, 26, 21, 21, 24, 28) = 28 \text{ ns}$
 $n = 1000$

$$p^{n}$$
 peline time
= $(k + n - 1) t_{p}$
= $(6 + 1000 - 1) 28 \text{ ns}$
= 28140 ns

[NAT]

#Q. The time delay of the four segments in pipeline are as shown follows:

$$t_1 = 50 \text{ ns}, t_2 = 30 \text{ ns}, t_3 = 95 \text{ ns}, \text{ and } t_4 = 45 \text{ ns}.$$

The interface registers delay time $t_r = 5$ ns.

How long would it take to process 100 tasks in the pipeline?

$$k = 4$$
 $n = 100$
 $t_p = max(50, 30, 95, 45) + 5$
 $= 100 \text{ ns}$

time =
$$(k+n-1)t_p$$

= $(4+100-1)100$
= 10300 nS

#Q. How can we reduce the total time about the one-half of the time calculated in above question?

2 mins Summary

Topic

Pipeline Processing

Topic

Pipeline Cycle Time

Topic

Speed Up

Happy Learning

THANK - YOU