A Note on concentration inequality

Xuanfei Ren*

January 25, 2023

Contents

1	Introduction	1
2	Concentration inequality	1
3	Useful details	5

1 Introduction

- This note is a collation of relevant knowledge about measure concentration. Mainly used for our bandit and
- 3 reinforcement learning study. The most basic part is based on High-Dimensional Statistics A Non-Asymptotic
- 4 Viewpoint (2019, Cambridge University Press), and the rest of the inequalities come from the Internet.

5 2 Concentration inequality

- I will directly list the common knowledge, easy to consult. The specific learning process and proof details are written in later sections.
- Markov's inequality (X: non-negative and a finite mean):

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \forall t > 0 \tag{2.1}$$

Chebyshev's inequality $(Y = (X - \mu)^2)$:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{var(X)}{t^2}, \forall t > 0$$
(2.2)

Extensions of Markov's inequality (X has a central moment of order k):

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}|X - \mu|^k}{t^k}, \forall t > 0$$
(2.3)

(Chernoff's bounds) Suppose there is some constant b>0 such that the moment generating function $\phi(\lambda)=\mathbb{E}[e^{\lambda(X-\mu)}]$ exist for all $\lambda\leq |b|$:

$$\log \mathbb{P}(X - \mu \ge t) \le \inf_{\lambda \in [0, b]} (\log \mathbb{E}[e^{\lambda(X - \mu)}] - \lambda t)$$
(2.4)

Proposition 2.1. Let Z_1, \ldots, Z_n be independent Bernoulli variables where for every $i, \mathbb{P}[Z_i = 1] = p_i$, let $p = \sum_{k=1}^n p_i, Z = \sum_{k=1}^n Z_i$. Then, for any $\delta > 0$,

$$\mathbb{P}[Z > (1+\delta)p] \le e^{-h(\delta)p} \le e^{-p\frac{\delta^2}{2+2\delta/3}},$$

$$\mathbb{P}[Z < (1-\delta)p] \le e^{-h(-\delta)p} \le e^{-p\frac{\delta^2}{2+2\delta/3}}$$
(2.5)

5 where $h(a) = (1+a)\log(1+a) - a$.

^{*}University of Science and Technology of China; email: xuanfeiren@mail.ustc.edu.cn or xuanfeir@gmail.com

(Gaussian tail bounds) Suppose X is any $N(\mu, \sigma^2)$ random variable, then:

$$\mathbb{P}(X \ge \mu + t) \le e^{-\frac{t^2}{2\sigma^2}}, \forall t > 0 \tag{2.6}$$

Definition 2.2 (Sub-Gaussian). A random variable X with mean μ is sub-Gaussian if there is a positive number σ such that

$$\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\frac{\sigma^2 \lambda^2}{2}}, \forall \lambda \in \mathbb{R}$$
 (2.7)

- Remark 2.3. If $X \in [a, b]$, then it is sub-Gaussian with parameter $\sigma = \frac{b-a}{2}$.
- The sub-Gaussian variable satisfies the concentration inequality (2.6) and

$$\mathbb{P}(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2\sigma^2}}, \forall t \in \mathbb{R}$$
(2.8)

Theorem 2.4 (Hoeffding bound). Suppose that the variables X_i , i = 1, ..., n are independent and X_i has mean μ_i and sub-Gaussian parameter σ_i , then for all t > 0, we have

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right] \le \exp\{-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\}$$
 (2.9)

If $X_i \in [a, b]$, then we obtain the bound

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right] \le \exp\{-\frac{2t^2}{n(b-a)^2}\},
\mathbb{P}\left[\sum_{i=1}^{n} |X_i - \mu_i| \ge t\right] \le 2\exp\{-\frac{2t^2}{n(b-a)^2}\}$$
(2.10)

Definition 2.5 (sub-exponential). A random variable X with mean $\mu = \mathbb{E}[X]$ is sub-exponential if there are non-negative parameters (v,α) such that

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le e^{\frac{v^2\lambda^2}{2}} \text{ for all } |\lambda| < \frac{1}{\alpha}$$
 (2.11)

- Note: Any sub-Gaussian variable is also sub-exponential. However, the converse statement is not true.
- (Sub-exponential tail bound) Suppose that X is sub-exponential with parameters (v, α) , then

$$\mathbb{P}[X - \mu \ge t] \le \begin{cases} e^{-\frac{t^2}{2v^2}} & \text{if } 0 \le t \le \frac{v^2}{\alpha} \\ e^{-\frac{t}{2\alpha}} & \text{if } t > \frac{v^2}{\alpha}. \end{cases}$$
 (2.12)

Definition 2.6 (Bernstein's condition). Given a random variable X with mean μ and variance σ^2 , we say that Bernstein's condition with parameter b holds if

$$|\mathbb{E}[(X - \mu)^k]| \le \frac{1}{2} k! \sigma^2 b^{k-2} \text{ for } k = 2, 3, 4, \dots$$
 (2.13)

- Proposition 2.7. When X satisfies the Bernstein condition, then it is sub-exponential with parameters $(\sqrt{2}\sigma, 2b)$.
- 32 (Bernstein-type bound) For any random variable satisfying the Bernstein's condition, we have

$$\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\frac{\lambda^2 \sigma^2/2}{1-b|\lambda|}} \text{ for all } |\lambda| < \frac{1}{b},$$

33 and, moreover, the concentration inequality

$$\mathbb{P}[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}} \text{ for all } t > 0.$$
 (2.14)

There are another version of Bennet's and Bernstein's Inequalities.

Lemma 2.8 (Bennet's inequality). Let Z_1, \ldots, Z_m be independent random variables with zero mean, and assume that Z_i1 with probability 1. Let

$$\sigma^2 \ge \frac{1}{m} \sum_{i=1}^m \mathbb{E}[Z_i^2].$$

Then for all $\epsilon > 0$,

$$\mathbb{P}\left[\sum_{i=1}^{m} Z_i > \epsilon\right] \le e^{-m\sigma^2 h\left(\frac{\epsilon}{m\sigma^2}\right)},\tag{2.15}$$

- where h is the same definition as above.
- **Theorem 2.9** (Bernstein's inequality). Same as above, assume $|Z_i| < M$ a.s., then

$$\mathbb{P}\left[\sum_{i=1}^{m} Z_i > t\right] \le \exp\left\{-\frac{t^2/2}{\Sigma Z_j^2 + Mt/3}\right\}$$
 (2.16)

Corollary 2.10 (The sum of sub-exponential variables). Consider an independent sequence $\{X_k\}_{k=1}^n$ of random variables, such that X_k has mean μ_k , and is sub-exponential with parameters (v_k, α_k) , then

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}(X_{k}-\mu_{k}) \ge t\right] \le \begin{cases} e^{-\frac{nt^{2}}{2(v_{*}^{2}/n)}} & for \ 0 \le t \le \frac{v_{*}^{2}}{n\alpha_{*}}, \\ e^{-\frac{nt}{2a_{*}}} & for \ t > \frac{v_{*}^{2}}{n\alpha_{*}}, \end{cases}$$
(2.17)

- Where $\alpha_* := \max_{k=1,\dots,n} \alpha_k$ and $v_* := \sqrt{\sum_{k=1}^n v_k^2}$.
- Theorem 2.11 (One-sided Bernstein inequality). If $X \leq b$ a.s., then

$$\mathbb{E}[e^{\lambda(X - \mathbb{E}X)}] \le e^{\frac{\lambda^2 \mathbb{E}X^2}{1 - \lambda b/3}} \forall \lambda \in [0, b/3)$$

$$\mathbb{P}[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X) \ge t] \le \exp\{\frac{-nt^2}{2(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_i^2) + \frac{bt}{3}}\}.$$
(2.18)

Theorem 2.12 (Slud's Inequality). Let X be a (m, p) binomial variable and assume that $p = (1 - \epsilon)/2$. Then,

$$\mathbb{P}[X \ge m/2] \ge \frac{1}{2} (1 - \sqrt{1 - \exp\{-m\epsilon^2/(1 - \epsilon^2)\}}). \tag{2.19}$$

Definition 2.13 (Martingale, Martingale difference sequence). Given a sequence $\{Y_k\}_{k=1}^{\infty}$ of random variables adapted to a filtration $\{\mathcal{F}_k\}_{k=1}^{\infty}$, the pair $\{(Y_k, \mathcal{F}_k)\}_{k=1}^{\infty}$ is a martingale, if for all $k \geq 1$,

$$\mathbb{E}[|Y_k|] < \infty \ and \ \mathbb{E}[Y_{k+1}|\mathcal{F}_k] = Y_k.$$

A martingale difference sequence is an adapted sequence $\{(D_k, \mathcal{F}_k)\}_{k=1}^{\infty}$ such that for all $k \geq 1$,

$$\mathbb{E}[|D_k|] < \infty \text{ and } \mathbb{E}[D_{k+1}|\mathcal{F}_k] = 0.$$

- **Theorem 2.14** (A general Bernstein-type bound). Let $\{(D_k, \mathcal{F}_k)\}_{k=1}^{\infty}$ be a martingale difference sequence, and suppose that $\mathbb{E}[e^{\lambda D_k}|\mathcal{F}_{k-1}] \leq e^{\lambda^2 v_k^2/2}$ almost surely for any $|\lambda| < 1/\alpha_k$. Then the following hold:
- 1. The sum $\sum_{k=1}^{n} D_k$ is sub-exponential with parameters $(\sqrt{\sum_{k=1}^{n} v_k^2}, \alpha_*)$ where $\alpha_* := \max_{k=1}^{n} \alpha_k$.
- 2. The sum satisfies the concentration inequality:

$$\mathbb{P}\left[\left|\sum_{k=1}^{n} D_{k}\right| \ge t\right] \le \begin{cases}
2e^{-\frac{t^{2}}{2\sum_{k=1}^{n} v_{k}^{2}}} & \text{if } 0 \le t \le \frac{\sum_{k=1}^{n} v_{k}^{2}}{2} \\
2e^{-\frac{t}{2\alpha_{*}}} & \text{if } t > \frac{\sum_{k=1}^{n} v_{k}^{2}}{\alpha_{*}}.
\end{cases}$$
(2.20)

Corollary 2.15. Let X_i be a sequence of i.i.d. random variables such that $|X_i - E[X_i]| \leq b$. Then, it holds

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mathbb{E}X) \ge t\right] \le \exp\left\{\frac{-t^2}{2n\sigma^2 + \frac{2}{3}bt}\right\}.$$
 (2.21)

Corollary 2.16 (Azuma-Hoeffding). Let $\{(D_k, \mathcal{F}_k)\}_{k=1}^{\infty}$ be a martingale difference sequence for which there are constants $\{(a_k, b_k)\}_{k=1}^n$ such that $D_k \in [a_k, b_k]$ almost surely for all $k = 1, \ldots, n$. Then, for all $t \geq 0$,

$$\mathbb{P}\left[\left|\sum_{k=1}^{n} D_{k}\right| \ge t\right] \le 2e^{-\frac{2t^{2}}{\sum_{k=1}^{n} (b_{k} - a_{k})^{2}}}.$$
(2.22)

Theorem 2.17 (One-side Azuma-Hoeffding). Let $X_i \in \mathcal{F}_i$ and $\mathcal{F}_{k-1} \subseteq \mathcal{F}_k$. If it holds that

$$\mathbb{E}[X_i - \mathbb{E}X_i | \mathcal{F}_{i-1}] = 0, X_i \le \mathbb{E}X_i + R_i,$$

57 then it holds that

$$\mathbb{P}[\sum_{i=1}^{n} (X_i - \mathbb{E}X) \ge t] \le 2 \exp\{-\frac{2t^2}{\sum_{i=1}^{n} R_i^2}\}.$$

Theorem 2.18 (One-side Azuma-Bernstein). Let $X_i \in \mathcal{F}_i$ and $\mathcal{F}_{k-1} \subseteq \mathcal{F}_k$. If it holds that

$$\mathbb{E}[X_i - \mathbb{E}X_i | \mathcal{F}_{i-1}] = 0, X_i \le \mathbb{E}X_i + R_i, \mathbb{V}[X_i | \mathcal{F}_{i-1}] \le \sigma_i^2,$$

 $then\ it\ holds\ that$

$$\mathbb{P}[\sum_{i=1}^{n} (X_i - \mathbb{E}X) \ge t] \le 2 \exp\{-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2 + 2/3Rt}\}.$$

Corollary 2.19 (Bounded differences inequality). Suppose that f satisfies the bounded difference property with parameters (L_1, \ldots, L_n) and that the random vector $X = (X_1, \ldots, X_n)$ has independent components. Then

$$\mathbb{P}[|f(X) - \mathbb{E}[f(X)]| \ge t] \le 2e^{-\frac{2t^2}{\sum_{k=1}^{n} L_k^2}} \text{ for all } t \ge 0,$$
 (2.23)

- where the bounded difference property means if you change only the k th component, the value of the function changes at most L_k .
- Theorem 2.20 (Lipchitz bound). Let $X = (X_1, ..., X_n)$ be a vector of i.i.d standard Gaussian variables, and let $f : \mathbb{R}^n \to \mathbb{R}$ be L-Lipchitz with respect to the Euclidean norm. Then the variale $f(X) - \mathbb{E}[f(X)]$ is sub-Gaussian with parameter at most L, and hence

$$\mathbb{P}[|f(X) - \mathbb{E}[f(X)]| \ge t] \le 2e^{-\frac{t^2}{2L^2}} \text{ for all } t \ge 0$$
 (2.24)

Using the corollary above we can derive the χ^2 -concentration:

$$\mathbb{P}[Y \ge n(1+t)] \le e^{-\frac{nt^2}{18}} \text{ for all } t \in [0,3], \tag{2.25}$$

- where $Y:=\Sigma_{k=1}^n Z_k^2$ follows a χ^2 -distribution with n degrees of freedom.
- Proposition 2.21. Let $Z \sim \chi_k^2$, then for all $\epsilon > 0$ we have

$$\mathbb{P}[Z \le (1 - \epsilon)k] \le e^{-\frac{\epsilon k^2}{6}}$$

70 , and for all $\epsilon \in (0,3)$ we have

$$\mathbb{P}[Z \ge (1+\epsilon)k] \le e^{-\frac{\epsilon k^2}{6}}.$$

Finally, for all $\epsilon \in (0,3)$

$$\mathbb{P}[(1-\epsilon)k \le Z \le (1+\epsilon)k] \ge 1 - 2e^{-\frac{\epsilon k^2}{6}}.$$

$_{\scriptscriptstyle 2}$ 3 Useful details

- ⁷³ Here are some details about the concentration.
- 74 Theorem 3.1 (Equivalent characterizations of sub-Gaussian variables). Given any zero-mean random variable
- 75 X, the following properties are equivalent:
 - 1. There is a constant $\sigma > 0$ such that

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2}} \text{ for all } \lambda \in \mathbb{R}.$$

2. There is a constant c > 0 and Gaussian random variable $Z \sim N(0, \tau^2)$ such that

$$\mathbb{P}[|X| > s] \le c \mathbb{P}[|Z| > s] \text{ for all } s \ge 0.$$

3. There is a constant $\theta \geq 0$ such that

$$\mathbb{E}[X^{2k}] \le \frac{(2k)!}{2^k k!} \theta^{2k} \text{ for all } k = 1, 2, \dots$$

4. There is a constant $\sigma > 0$ such that

$$\mathbb{E}\bigg[e^{\frac{\lambda X^2}{2\sigma^2}} \leq \frac{1}{\sqrt{1-\lambda}}\bigg] \ \textit{for all} \ \lambda \in [0,1).$$

- Theorem 3.2 (Equivalent characterizations of sub-exponential variables). For a zeromean random variable X, the following statements are equivalent:
- 1. There are non-negative numbers (v, α) such that

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{v^2 \lambda^2}{2}} \text{for all } |\lambda| < \frac{1}{\alpha}$$

- 2. There is a positive number $c_0 > 0$ such that $\mathbb{E}[e^{\lambda X}] < \infty$ for all $|\lambda| \le c_0$.
- 3. There are constants $c_1, c_2 > 0$ such that

$$\mathbb{P}[|X| \ge t] \le c_1 e^{-c_2 t} \text{ for all } t > 0$$

- 4. The quantity $\gamma:=\sup_{k\geq 2}\left[\frac{\mathbb{E}[X^k]}{k!}\right]^{1/k}$ is finite.
- I plan to study uniform convergence about concentration next. In particular, the uniform convergence is required for the class of UCB algorithms.