T1 magic

因为 $x = \max(a, b)$, $y = \max(a, c)$, 所以 $\max(x, y) = \max(a, b, c)$

同理, $\max(y, z) = \max(x, z) = \max(a, b, c)$

当且仅当x,y,z中两两之间最大值都相同时才有答案,否则输出NO

不妨设 $a \geq b \geq c$

那么有x = a, y = b, z = c

还有 $x = z \ge y$

也就是说有解必须满足其中有两个数相等,且这两个数都不小于第三个

60 pts 是 int 范围

100 pts 是 long long 范围

T2 count

枚举x的具体权值判定是否是回文数,复杂度n的三次根号。

T3 gcd

30 pts

枚举两个数并判断, $O(n^2 \log n)$

60 pts

根据 xor 的性质, a xor b = c 等价于 a xor c = b

那么有 gcd(a, b) = gcd(a, a xor c) = c

而其中 c 是 a 的约数,因此我们可以枚举 c,再枚举 $a=i\times c$,由于 $\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+\ldots+\frac{n}{n}=O(n\log n)$,再算上 \gcd 的一只 \log ,总复杂度 $O(n\log^2 n)$

100 pts

因为 a = b 是肯定无解,所以不妨设 a > b

那么有 $\gcd(a,b) \leq a-b, a \operatorname{xor} b \geq a-b$,很明显有 c=a-b。那么我们在 60 pts 的算法基础上,有 $\gcd(a,a-c)=c$,所以我们只需判断 $a \operatorname{xor} c=a-c$ 即可,复杂度 $O(n \log n)$

T4 inverse

20 pts

指数暴力枚举每个机遇选或不选

50 pts

考虑一个 DP

f(i,j,k) 表示经过 i 次机遇后, $a_i>a_k$ 的方案数

如何统计答案?

答案就是所有满足 i < j 的 f(m, i, j) 之和

如何转移?

枚举状态 i, j, k, 设第 i 次机会是交换 a_x 和 a_y

若x,y和j,k完全不同,则 $f(i,j,k)=2\times f(i-1,j,k)$

若
$$x=j,y\neq k$$
,则

$$f(i,j,k) = f(i-1,x,k) + f(i-1,y,k)$$
, $f(i,k,j) = f(i-1,k,x) + f(i-1,k,y)$

若
$$x = j, y = k$$
, 则 $f(i, j, k) = f(i - 1, j, k) + f(i - 1, k, j)$

复杂度 $O(n^3)$

100 pts

怎么优化?

第一维可以滚动数组。

注意到,每次转移只有 O(n) 个位置不是 imes 2,其他 $O(n^2)$ 个位置都是 imes 2

那么通过这个观察,我们能否优化掉这 $O(n^2)$ 个位置的转移呢?

答案是可以的, 我们设

 $g(i,j,k) = rac{f(i,j,k)}{2^i}$,这样每次就不需要imes 2了,最终答案 $imes 2^m$ 即可

时间复杂度 O(nm)