Full Name:	
EEL 4750 / EEE 5502 (Fall 2021) – HW #8	Due: 4:00 PM ET, Nov. 02, 2021

Concept Questions 8

Question #1: Complete the Canvas questions here: https://ufl.instructure.com/courses/437179/assignments/4812584

Theory Questions 8

Question #1: Consider the analog biquad filter, an analog filter design that is very common because it is flexible (can be low-pass, high-pass, band-pass, or stop-band) and easy to manufacture. A biquad filter is most generally defined by:

$$H(s) = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s + a_0} = \frac{K\left(s^2 + 2(\Omega_z/Q_z)s + \Omega_z^2\right)}{s^2 + 2(\Omega_p/Q_p)s + \Omega_p^2}$$

(a) Show that the system

poles are equal to:
$$s = \Omega_p \left(-1/Q_p \pm \sqrt{1/Q_p^2 - 1} \right)$$

zeros are equal to:
$$s = \Omega_z \left(-1/Q_z \pm \sqrt{1/Q_z^2 - 1} \right)$$

Note that with the Laplace transform, $s = j\omega + \sigma$ whereas the z-transform $z = e^{j\omega + \sigma}$. In both cases, the ω values correspond to angular frequency and the σ values correspond to the impulse response decay rate.

- (b) When $\Omega_z = 0$, $Q_p = \infty$, and $\Omega_p > 0$, at what frequencies (as a function of Ω_p) are approximately in the analog filter's passband (in radians/s)?
- (c) When $\Omega_z = 0$, $0 \le Q_p \le 1$, and $\Omega_p > 0$, at what frequencies (as a function of Ω_p) are approximately in the analog filter's passband (in radians/s)?
- (d) When $\Omega_z = 0$, $Q_p = \sqrt{2}$, and $\Omega_p > 0$, at what frequencies (as a function of Ω_p) are approximately in the analog filter's passband (in radians/s)?
- (e) Use the difference approximation method with a sampling rate of $f_s = 1$ to design a digital IIR filter based on the analog biquad filter. Under this approximation, show that

poles are equal to:
$$z = \frac{1}{1 + \Omega_p \left(1/Q_p \pm \sqrt{1/Q_p^2 - 1} \right)}$$

zeros are equal to:
$$z = \frac{1}{1 + \Omega_z \left(1/Q_z \pm \sqrt{1/Q_z^2 - 1} \right)}$$

- (f) When $\Omega_z = 0$, $Q_p = \infty$, and Ω_p approaches infinity (i.e., $\Omega_p \gg 1$ Footnote:1), frequencies (as a function of Ω_p) are approximately in the digital filter's passband (in radians/s)?
- (g) When $\Omega_z = 0$, $0 \le Q_p \le 1$, and Ω_p approaches infinity (i.e., $\Omega_p \gg 1$), frequencies (as a function of Ω_p) are approximately in the digital filter's passband (in radians/s)?
- (h) When $\Omega_z=0$ and Ω_p approaches zero (i.e., $\Omega_p\ll 1$ Footnote: 2), what frequencies (as a function of Ω_p) are approximately in the analog filter's passband (in radians/s)?
- (i) Based on these results, what type(s) of filter(s) do you the think the first difference method here would be most effective at approximating? Why?

¹Hence, $1 + \Omega_p \approx \Omega_p$

²Hence, $1 + \Omega_p \approx 1$

Implementation Questions 8

Question #1: Consider a **negative** ideal low-pass, continuous-time filter defined by

$$H(\Omega) = u(\Omega + \Omega_c) - u(\Omega - \Omega_c)$$

and its DTFT equivalent frequency response

$$H(\omega) = u \left(\omega + \Omega_c/f_s\right) - u \left(\omega - \Omega_c/f_s\right)$$
 (this repeats for every 2π shift)

For all of the components below, use a sampling rate of $f_s = 1$ Hz and a cut-off frequency of $\Omega_c = \pi/4$ rad/s. For every designed filter, ensure that the DC gain (i.e., at $\omega = 0$) is equal to 1.

- (a) Use the windowing method with a Hann window ³ to design an FIR, linear phase low-pass filter of length N=50 from $H(\Omega)$.⁴ Plot the pole-zero plot for the filter and plot the magnitude and phase response.
- (b) Use the frequency sampling method to design an FIR, linear phase low-pass filter of length N=50 from $H(\Omega)$. Plot the pole-zero plot for the filter and plot the magnitude and phase response.
- (c) Use the difference approximation method to design an IIR filter with K=1, $\Omega_z=20$, and $Q_p=5$, $Q_z=2$, and $\Omega_p=0.8$ for the bi-quad filter from theory questions. Plot the pole-zero plot for the filter and plot the magnitude and phase response.
- (d) Using filters in (a), (b) and (c) above, filter the following square waves defined in the template:
 sqwaves{1} = square(2*pi*0.4*t);
 sqwaves{2} = square(2*pi*1*t);

³A Hann window is defined by $w[n] = 0.5(1 - \cos(2\pi n/(N-1)))$ for $0 \le n \le N-1$, where N is the window length ⁴Note: You may need to use a sinc function. I am providing a sinc-func function in the template since MATLAB's sinc function uses a different definition, as discussed in class.