

Emergent gait periodicity in artificially evolved creatures on unknown terrains

Benjamin Ellenberger

Contents

Are we alone in the universe?

Simple limiters theory

Methods

Genetic language

Fitness evaluation

Evolution

Simulations

Velocity as the fitness function

Meet & Greet with the Creatures

Outlook

Optimization & Extension

Other settings & fitness functions

Life as it is vs. life as it could be

Applications

- Build robots that are not only capable but also more adaptive (Engineering goal)
- Structures and strategies that always tend to evolve (Academic goal)

Simple limiters

Simple limiters in nature

- Muscle length & joint limits
- The weight of the limbs
- The relative position of limbs connected by joints (Direction of force applied to joints)

Simple limiters cont.

In silico¹: Will they be used?

- •
- •

¹In silico = in simulation

Evolving Virtual Creatures

- a
- b
- C

Figure 7: Creatures evolved for walking.

Figure 8: Creatures evolved for jumping.

Contents

Are we alone in the universe?

Simple limiters theory

Methods

Genetic language

Fitness evaluation

Evolution

Simulations

Velocity as the fitness function

Meet & Greet with the Creatures

Outlook

Optimization & Extension

Other settings & fitness functions

Genetic language

• Limb Part of creature body

Genetic language

Execution of creatures

Fitness evaluation

- Fitness evaluation framework
- A creature is simulated for a certain evaluation time during which the fitness function measures the fitness of the creature
- Evaluates multiple fitness functions at the same time and combines them linearly

Evolution

- Selection
 - Only a certain percentage of creatures are selected for new generation
- Cross-over
 - Only certain percentage of creatures are allowed to breed
- Mutation
 - Other creatures are subject to mutation
 - Mutation of gene
 - Mutation of gene attributes
 - Mutation of gene branches
- Successful creatures stay in the population and the population is refilled with new bred and mutated ones

Contents

Are we alone in the universe?

Simple limiters theory

Methods

Genetic language

Fitness evaluation

Evolution

Simulations

Velocity as the fitness function

Meet & Greet with the Creatures

Outlook

Optimization & Extension

Other settings & fitness functions

Velocity as the fitness function

- · Sampling of position over time
- Moved distance in a certain time interval
- Continuous average
- Expectations: Some really moving creatures and some finding the exploit that only the main body has to move.
 (main body = first limb in phenotype)

Contents

Are we alone in the universe?

Simple limiters theory

Methods

Genetic language

Fitness evaluation

Evolution

Simulations

Velocity as the fitness function

Meet & Greet with the Creatures

Outlook

Optimization & Extension

Other settings & fitness functions

Optimization & Extension

- The framework was written in a quick & dirty manner
- Several components need to be reimplemented properly to provide a more scalable environment
- The system does not use any parallelization
- The phenotype could be more natural
- The genotype to phenotype transcription does not include any additional developmental parts (no embryogenesis)
- More sensor types
- More logging for data analysis

Other settings & fitness functions

- Island genetic algorithm
- Competitions of individuals
- Implicit fitness functions (survival of the fittest in a virtual world)
- Information theoretic measures such as the transfer entropy

References

- Sims K. Evolving Virtual Creatures (1994)
- Sims K. Evolving 3D Morphology and Behavior by Competition (1994)
- Krcah P. Evolving Virtual Creatures Revisited (2007)
- Schmidt N. Bootstrapping perception using information theory: case studies in a quadruped running robot running on different grounds (2013)
- Hill, A.V. The heat of shortening and dynamics constants of muscles (1938)
- Stoop R. Theory and Simulation of Neural Networks (2014)

Some mathematical specialities

Theorem (Murphy (1949))

Anything that can go wrong, will go wrong.

Proof.

A special case of Theorem 1 is proven in

Title Page

The title page is created using the \titleframe command.

The title page background can also be used on other frames (or for a customised title frame) using the titlestyleframe environment.

Normal Frame

The normal frame looks like this. It is created using the frame environment.

Inverse Slides

The inverted frame looks like this. It is created using the inverseframe environment.

Minimal Frame

The minimal frame looks like this. It is created using the minimal frame environment.

