18-10-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-9_Key&Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 18-10-15

 Time: 3 Hours
 2011-P1-Model
 Max Marks: 240

PAPER-I KEY & SOLUTIONS

CHEMISTRY

1	D	2	С	3	A	4	В	5	С	6	С
7	В	8	CD	9	ВС	10	ABC	11	ABD	12	В
13	A	14	В	15	D	16	С	17	2	18	6
19	2	20	2	21	6	22	3	23	8		

PHYSICS

24	В	25	С	26	A	27	D	28	В	29	С
30	D	31	С	32	AD	33	CD	34	BC	35	В
36	В	37	В	38	A	39	В	40	5	41	7
42	4	43	5	44	4	45	3	46	6		

MATHS

47	С	48	A	49	С	50	A	51	В	52	С
53	С	54	AC	55	BCD	56	BD	57	AB	58	С
59	D	60	В	61	D	62	В	63	2	64	6
65	2	66	3	67	0	68	1	69	8		

PHYSICS

24.
$$D_3\left(\frac{\pi}{2k},10A\right)$$

$$D_1\left(\frac{\pi}{2k},10A\right)$$

f₃ is maximum

F₂ is minimum

Hence $f_3 > f_2 > f_1$

25.

$$PE = \frac{1}{2} \left(T \right) \left(\frac{dy}{dx} \right)^{2} dx$$

$$E = \frac{1}{2} \left(U dx \right) V^{2} \qquad \frac{1}{2}$$

$$PE + 1 \times E = \frac{1}{2} U a^{2} \omega^{2} \left[\int_{0}^{\infty} \left[3 \left(S_{in} \times S$$

26.
$$T = \left(\int_{z}^{8} \mu d_{z}\right) g =$$

$$V = \sqrt{\frac{T}{\mu(z)}} \Rightarrow T = V^{2} \mu(z)$$

$$\Rightarrow V^{2} \mu(z) = \int_{z}^{\alpha} \mu(z) d_{z}.g$$

Sri Chaitanya IIT Academy

18-10-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-9_Key&Sol's

$$V^2 \frac{d\mu}{dz} = \{\mu(z)\}g$$

$$\Rightarrow \int_{\mu}^{\mu} \frac{d\mu}{-\mu} = \int_{0}^{z} \frac{g}{V^{2}} dz$$

$$-ln\left(\frac{\mu}{-\mu_0}\right) = \frac{gz}{V^2}$$

27. Conceptual

28.
$$f_2 - f_1 = 2$$

$$\frac{A_{max}}{A_{min}} = 49$$

- 29. Conceptual
- 30. Conceptual
- 31. Conceptual

32.
$$\xi = (0.3mm)\cos\frac{2\pi}{0.8}(z+0.01)\cos(400)t$$

End correction is 1cm. so at y=-1 cm.

$$\xi = (0.3mm)\cos\frac{2\pi}{80}(-1cm + 1cm) = (0.3mm)\cos(0) = Antinode$$

So upper end is open.

At lower end z=99 cm

$$\xi = (0.3mm)\cos\frac{2\pi}{80}(99+1)$$

$$=0.01\cos\frac{5\pi}{2}(99+1)$$

$$= 0.01\cos\frac{5\pi}{2} = 0 \qquad \Rightarrow \text{Node}$$

Tube is closed at lower end

So tube is open closed.

33. Conceptual

34. Conceptual

35

The pressure wave is detected at a time $T = \frac{80}{400} + \frac{32}{4 \times 400} = 220 ms$

- 36. the Pulse is detected between x = 8 to 46 and 92 to 16
- 38. Conceptual
- 39. Conceptual

40.
$$f_1 - f_2 = 85 \left(\frac{340 + 10}{340 - 10 + 10} \right) - 85 \left(\frac{340 - 10}{340 - 10 + 10} \right) = 5$$

41.
$$\frac{l_a}{l_b} = \left(\frac{n_a}{n_b}\right) \left(\sqrt{\frac{\mu_b}{\mu_a}}\right)$$
$$\Rightarrow 5n_a = 3n_b$$

Hence minimum values of n_a and n_b are 3 and 5 hence the total number of nodes are 9 and antinodes are 8

42. SOL:
$$\Delta t = \frac{vx}{c(v-v_o)} = 4s$$

43.
$$l_2 - l_1 = \frac{\lambda}{2}$$

$$\frac{\lambda}{4} = l_1 + e \text{ hence } e = \frac{1}{40} = 25mm$$

45.
$$\frac{n}{2f} \left(\sqrt{\frac{T}{9\mu}} \right) = \frac{2}{2f} \sqrt{\frac{T}{4\mu}}$$
$$\Rightarrow n = 3$$

46.
$$U\alpha \cos^2 \omega t$$