Part XI. Properties of Regular Languages

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let L be a RL. Then, there is $k \ge 1$ such that if $z \in L$ and $|z| \ge k$, then there exist u,v,w:z = uvw, 1) $v \ne \epsilon$ 2) $|uv| \le k$ 3) for each $m \ge 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is **regular**. There is k = 3 such that 1), 2) and 3) holds.

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let L be a RL. Then, there is $k \ge 1$ such that if $z \in L$ and $|z| \ge k$, then there exist u, v, w: z = uvw, 1) $v \ne \varepsilon$ 2) $|uv| \le k$ 3) for each $m \ge 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is **regular**. There is k = 3 such that 1), 2) and 3) holds.

```
• for z = abc: z \in L(r) & |z| \ge 3: uv^0w = ab^0c = ac \in L(r)

uv^1w = ab^1c = abc \in L(r)

uv^2w = ab^2c = abbc \in L(r)

v \ne \varepsilon, |uv| = 2 \le 3
```

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let L be a RL. Then, there is $k \ge 1$ such that if $z \in L$ and $|z| \ge k$, then there exist u,v,w:z = uvw, 1) $v \ne \epsilon$ 2) $|uv| \le k$ 3) for each $m \ge 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is **regular**. There is k = 3 such that 1), 2) and 3) holds.

- for z = abc: $z \in L(r)$ & $|z| \ge 3$: $uv^0w = ab^0c = ac \in L(r)$ $uv^1w = ab^1c = abc \in L(r)$ $uv^2w = ab^2c = abbc \in L(r)$ $v \ne \varepsilon$, $|uv| = 2 \le 3$
- for z = abbc: $z \in L(r) \& |z| \ge 3$: $uv^0w = ab^0bc = abc \in L(r)$ $uv^1w = ab^1bc = abbc \in L(r)$ $uv^2w = ab^2bc = abbbc \in L(r)$
 - $v \neq \varepsilon$, $|uv| = 2 \le 3$

 $\overline{\bullet L}$ = any regular language:

- Let L be a regular language. Then, there exists DFA $M = (Q, \Sigma, R, s, F)$, and L = L(M).
- For $z \in L(M)$, M makes |z| moves and M visits |z| + 1 states:

 $sa_{1}a_{2}...a_{n} \vdash q_{1}a_{2}...a_{n} \vdash ... \vdash q_{n-1}a_{n} \vdash q_{n}$

- Let $k = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice.
- For z exist u, v, w such that z = uvw:

- Let $k = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice.
- For z exist u, v, w such that z = uvw:

- Let $k = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice.
- For z exist u, v, w such that z = uvw:

- Let $k = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice.
- For z exist u, v, w such that z = uvw:

- Let $k = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice.
- For z exist u, v, w such that z = uvw:

 $sz = suvw \mid -iqvw \mid -jqw \mid -*f, f \in F$

• There exist moves:

1. $su \vdash q;$ 2. $qv \vdash g;$ 3. $qw \vdash f, f \in F$, so

• There exist moves:

```
1. su \vdash q; 2. qv \vdash jq; 3. qw \vdash f, f \in F, so
```

• for m = 0, $uv^m w = uv^0 w = uw$,

SUW

• There exist moves:

1.
$$su \vdash q;$$
 2. $qv \vdash jq;$ 3. $qw \vdash f, f \in F$, so

• for m = 0, $uv^m w = uv^0 w = uw$,

$$suw = \frac{1}{q}w$$

• There exist moves:

1.
$$su \vdash q;$$
 2. $qv \vdash jq;$ 3. $qw \vdash f, f \in F$, so

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{\mathbf{Suw}}_{\mathbf{I}-\mathbf{i}}\underbrace{\mathbf{qw}}_{\mathbf{I}-\mathbf{*}}\underbrace{\mathbf{f}},\,\mathbf{f}\in F$$

• There exist moves:

```
1. su \vdash q; 2. qv \vdash q; 3. qw \vdash f, f \in F, so
```

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{suw}_{-i} \underbrace{qw}_{-i} \underbrace{f}, f \in F$$

$$Suv^mw$$

• There exist moves:

```
1. su \vdash q; 2. qv \vdash q; 3. qw \vdash f, f \in F, so
```

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{suw}_{-i} \underbrace{qw}_{-i} \underbrace{-*f}, f \in F$$

$$Suv^mw$$
 $-i$ qv^mw

• There exist moves:

```
1. su \vdash q; 2. qv \vdash q; 3. qw \vdash f, f \in F, so
```

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{\mathbf{Suw}}_{\mathbf{I}-\mathbf{i}}\underbrace{\mathbf{qw}}_{\mathbf{I}-\mathbf{*}}\mathbf{f}, \ \mathbf{f} \in F$$

• There exist moves:

```
1. su \vdash q; 2. qv \vdash g; 3. qw \vdash f, f \in F, so
```

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{\mathbf{Suw}}_{\mathbf{I}-\mathbf{i}}\underbrace{\mathbf{qw}}_{\mathbf{I}-\mathbf{*}}\underbrace{\mathbf{f}},\,\mathbf{f}\in F$$

• There exist moves:

1.
$$su \vdash q;$$
 2. $qv \vdash jq;$ 3. $qw \vdash f, f \in F$, so

• for m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{\mathbf{Suw}}_{\mathbf{I}-\mathbf{i}}\underbrace{\mathbf{qw}}_{\mathbf{I}-\mathbf{*}}\underbrace{\mathbf{f}},\,\mathbf{f}\in F$$

• for each m > 0,

Summary:

- 1) $qv \mid -j q, j \geq 1$; therefore, $|v| \geq 1$, so $v \neq \varepsilon$
- 2) $\sup_{i=1}^{\infty} |-i| qv |-j| q$, $i+j \le k$; therefore, $|uv| \le k$
- 3) For each $m \ge 0$: $suv^m w \vdash^* f$, $f \in F$, therefore $uv^m w \in L$

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

Assume that L is regular

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

Assume that L is regular

Consider the PL constant k and select $z \in L$, whose length depends on k so $|z| \ge k$ is surely true.

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

Assume that L is regular

Consider the PL constant k and select $z \in L$, whose length depends on k so $|z| \ge k$ is surely true.

For <u>all</u> decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$, show: there exists $m \geq 0$ such that $uv^m w \notin L$ contradiction from the pumping lemma, $uv^m w \in L$

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

Assume that L is regular

Consider the PL constant k and select $z \in L$, whose length depends on k so $|z| \ge k$ is surely true.

For <u>all</u> decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$, show: there exists $m \geq 0$ such that $uv^m w \notin L$ contradiction from the pumping lemma, $uv^m w \in L$

false assumption

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is **not** regular

Assume that L is regular

Consider the PL constant k and select $z \in L$, whose length depends on k so $|z| \ge k$ is surely true.

For <u>all</u> decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$, show: there exists $m \geq 0$ such that $uv^m w \notin L$ contradiction from the pumping lemma, $uv^m w \in L$

false assumption

Therefore,
L is not regular

- 1) Assume that L is regular. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Assume that L is regular. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Assume that L is regular. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Assume that L is regular. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

Pumping Lemma: Example

Prove that $L = \{a^nb^n : n \ge 0\}$ is not regular:

- 1) Assume that L is regular. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

4) Therefore, L is not regular

Note on Use of Pumping Lemma

Pumping lemma:

L is regular exist $k \ge 1$ and ...

Main application of the pumping lemma:

• proof by contradiction that L is **not** regular.

Note on Use of Pumping Lemma

• Pumping lemma:

L is regular then

exist $k \ge 1$ and ...

Main application of the pumping lemma:

- proof by contradiction that L is **not** regular.
- However, the next implication is incorrect:

 We cannot use the pumping lemma to prove that L is regular.

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M)$, $k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ is infinite:

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M)$, $k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ is infinite:

if $z \in L(M)$, $k \le |z|$, then by PL:

 $z = uvw, v \neq \varepsilon$, and for each $m \ge 0$: $uv^m w \in L(M)$

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M)$, $k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ is infinite:

if $z \in L(M)$, $k \le |z|$, then by PL:

 $z = uvw, v \neq \varepsilon$, and for each $m \ge 0$: $uv^m w \in L(M)$

L(M) is infinite

- 2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:
- We prove by contradiction, that

there exists
$$z \in L(M)$$
, $|z| \ge k$
there exists $z \in L(M)$, $k \le |z| < 2k$

- a) Prove by contradiction that
- L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$

- 2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:
- We prove by contradiction, that

there exists
$$z \in L(M)$$
, $|z| \ge k$
there exists $z \in L(M)$, $|z| \ge k$

- a) Prove by contradiction that
- L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

- 2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:
- We prove by contradiction, that

there exists
$$z \in L(M)$$
, $|z| \ge k$
there exists $z \in L(M)$, $|z| \ge k$

- a) Prove by contradiction that
- L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$

Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all
$$z \in L(M)$$
 holds $|z| < k$

- 2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:
- We prove by contradiction, that

there exists
$$z \in L(M)$$
, $|z| \ge k$
there exists $z \in L(M)$, $|z| \ge k$

- a) Prove by contradiction that
- L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all
$$z \in L(M)$$
 holds $|z| < k$

$$L(M) \text{ is finite}$$

- 2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:
- We prove by contradiction, that

there exists
$$z \in L(M)$$
, $|z| \ge k$
there exists $z \in L(M)$, $|z| \ge k$

- a) Prove by contradiction that
- L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$

Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = \frac{2k}{|z_0|} - \frac{k}{|v|} \ge k$$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = |z_0| - |v| \ge k \qquad \text{for } m = 0 : uv^m w = uw \in L(M)$$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = |z_0| - |v| \ge k$$
 for $m = 0$: $uv^m w = uw \in L(M)$

Summary: $uw \in L(M)$, $|uw| \ge k$ and $|uw| < |z_0|$!

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = |z_0| - |v| \ge k$$
 for $m = 0$: $uv^m w = uw \in L(M)$

Summary: $uw \in L(M)$, $|uw| \ge k$ and $|uw| < |z_0|!$ z_0 is not the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$

- b) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

$$k \times 2k$$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = \frac{2k}{|z_0|} - \frac{4k}{|v|} \ge k \qquad \text{for } m = 0 : uv^m w = uw \in L(M)$$

Summary: $uw \in L(M)$, $|uw| \ge k$ and $|uw| < |z_0|$! z_0 is not the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$

Contradiction!

Definition: The family of regular languages is closed under an operation o if the language resulting from the application of o to any regular languages is also regular.

Definition: The family of regular languages is closed under an operation o if the language resulting from the application of o to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Definition: The family of regular languages is closed under an operation o if the language resulting from the application of o to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Definition: The family of regular languages is closed under an operation o if the language resulting from the application of o to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Theorem: The family of regular languages is closed under union, concatenation, iteration.

Proof:

- Let L_1 , L_2 be two regular languages
- Then, there exist two REs r_1 , r_2 : $L(r_1) = L_1$, $L(r_2) = L_2$;
- By the definition of regular expressions:
 - $r_1.r_2$ is a RE denoting L_1L_2
 - $r_1 + r_2$ is a RE denoting $L_1 \cup L_2$
 - r_1^* is a RE denoting L_1^*
- Every RE denotes regular language, so
 - L_1L_2 , $L_1 \cup L_2$, L_1^* are a regular languages

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

- Method:
- $\bullet F' := Q F$

Example:

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

- Method:
- $\bullet F' := Q F$

Example:

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

- Method:
- $\bullet F' := Q F$

Example:

 $L(M) = \{x: ab \text{ is a substring of } x\}; \ L(M') = \{x: ab \text{ is no substring of } x\}$

- Previous algorithm requires a complete FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

Example:

Incomplete DFA:

- Previous algorithm requires a complete FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

- Previous algorithm requires a complete FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

- Previous algorithm requires a complete FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

Closure properties: Complement

Theorem: The family of regular languages is closed under complement.

Proof:

- Let *L* be a regular language
- Then, there exists a complete DFA M: L(M) = L
- We can construct a complete DFA M': $L(M') = \overline{L}$ by using the previous algorithm
- Every FA defines a regular language, so *L* is a regular language

Closure properties: Intersection

Theorem: The family of regular languages is closed under intersection.

Proof:

- Let L_1 , L_2 be two regular languages
- L_1 , L_2 are regular languages (the family of regular languages is closed under complement)
- $L_1 \cup L_2$ is a regular language (the family of regular languages is closed under union)
- $\overline{L_1} \cup \overline{L_2}$ is a regular language (the family of regular languages is closed under complement)
- $L_1 \cap L_2 = \overline{L_1 \cup L_2}$ is a regular language (DeMorgan's law)

Boolean Algebra of Languages

Definition: Let a family of languages be closed under union, intersection, and complement. Then, this family represents a *Boolean algebra of languages*.

Theorem: The family of regular languages is a Boolean algebra of languages.

Proof:

• The family of regular languages is closed under union, intersection, and complement.

Minimization: Distinguishable States

Gist: String w distinguishes states p and q if WSFA reaches a final state from precisely one of configurations pw and qw.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a WSFA, and let $p, q \in Q, p \neq q$. States p and q are distinguishable if there exists $w \in \Sigma^*$ such that: $pw \vdash p'$ and $qw \vdash p'$, where $p', q' \in Q$ and $((p' \in F \text{ and } q' \notin F) \text{ or } (p' \notin F \text{ and } q' \in F))$; otherwise, states p and q are indistinguishable

• s and q_1 are distinguishable, because for w = a:

$$sa \mid -s, s \notin F$$
 $q_1a \mid -q_2, q_2 \in F$

• s and q_1 are distinguishable, because for w = a:

$$sa \vdash s, s \notin F$$
 $q_1a \vdash q_2, q_2 \in F$

• q_2 and q_3 are indistinguishable, because for each $w \in \Sigma^*$:

$$q_2w \vdash^* q_2, q_2 \in F$$

 $q_3w \vdash^* q_3, q_3 \in F$

• s and q_1 are distinguishable, because for w = a:

$$sa \vdash s, s \notin F$$
 $q_1a \vdash q_2, q_2 \in F$

• q_2 and q_3 are indistinguishable, because for each $w \in \Sigma^*$:

$$q_2w \vdash^* q_2, q_2 \in F$$

 $q_3w \vdash^* q_3, q_3 \in F$

• Other pairs of states are trivially **distinguishable** for $w = \varepsilon$.

Minimum-State FA

Definition: Let *M* be a **WSFA**. Then, *M* is *minimum-state FA* if *M* contains only distinguishable states.

Theorem: For every WSFA M, there is an equivalent minimum-state FA M_m

Proof: Use the next algorithm.

Algorithm: WSFA to Min-State FA

- Input: WSFA $M = (Q, \Sigma, R, s, F)$
- Output: Minimum-State FA $M_m = (Q_m, \Sigma, R_m, s_m, F_m)$
- Method:
- $Q_m = \{ \{p: p \in F\}, \{q: q \in Q F\} \};$
- repeat

if there exist $X \in Q_m$, $d \in \Sigma$, $X_1, X_2 \subset X$ such that $X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset$ and

$$\{q_1: p_1 \in X_1, p_1 d \to q_1 \in R\} \subseteq Q_1, Q_1 \in Q_m,$$

$$\{q_2: p_2 \in X_2, p_2 d \to q_2 \in R\} \cap Q_1 = \emptyset$$

then divide X into X_1 and X_2 in Q_m

until no division is possible;

- $R_m = \{ Xa \rightarrow Y: X, Y \in Q_m, pa \rightarrow q \in R, p \in X, q \in Y, a \in \Sigma \};$
- $s_m = X$ with $s \in X$; $F_m := \{X: X \in Q_m, X \cap F \neq \emptyset\}$.

1)
$$X = \{s, f\}$$
:
$$d = a: \quad sa \to f$$

$$fa \to s$$


```
1) X = \{s, f\}: From one set d = a: sa \rightarrow f fa \rightarrow s
```


1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow fb \rightarrow q_4$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
:
 $d = a$: $q_1 a \rightarrow q_1$
 $q_2 a \rightarrow q_2$
 $q_3 a \rightarrow q_4$
 $q_4 a \rightarrow q_3$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $q_2 a \rightarrow q_2$ $q_3 a \rightarrow q_4$ $q_4 a \rightarrow q_3$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $d = b$: $q_1 b \rightarrow s$ $q_2 a \rightarrow q_2$ $q_2 b \rightarrow f$ $q_3 a \rightarrow q_4$ $q_4 a \rightarrow q_3$ $q_4 a \rightarrow q_2$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ q_4

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $d = b$: $q_1 b \rightarrow s$ $q_2 b \rightarrow f$ $q_2 a \rightarrow q_3 a \rightarrow q_4$ $q_3 a \rightarrow q_4 a \rightarrow q_3$ $q_4 a \rightarrow q_3$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ q_4

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $d = b$: $q_1 b \rightarrow q_2 a \rightarrow q_2 a \rightarrow q_3 a \rightarrow q_4 a \rightarrow q_4 a \rightarrow q_3$ $q_1 b \rightarrow q_1 b \rightarrow q_2 b \rightarrow q_3 b \rightarrow q_1 a \rightarrow q_4 b \rightarrow q_4 a \rightarrow q_4 a \rightarrow q_4 a \rightarrow q_5 a \rightarrow q_$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ q_4

2)
$$X = \{q_1, q_2, q_3, q_4\}$$
: From one set $d = a$: $q_1 a \to q_1$ $d = b$: $\{q_1 b \to g_1\}$ $q_2 a \to g_2$ $q_3 a \to g_4$ $\{q_3 b \to g_1\}$ $\{q_4 b \to g_2\}$ $\{q_4 b \to g_2\}$ Division: $\{q_1, q_2, q_3, q_4\}$ $\{q_1, q_2\}$, $\{q_3, q_4\}$ $\{q_1, q_2\}$ $\{q_1, q_2\}$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
:
$$d = a: \quad sa \to f$$

$$fa \to s$$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $fa \rightarrow s$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

```
Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}
```

```
1) X = \{s, f\}: From one set d = a: sa \to f d = b: sb \to q_3 fb \to q_4
```

2)
$$X = \{q_1, q_2\}$$
:
 $d = a$: $q_1 a \rightarrow q_1$
 $q_2 a \rightarrow q_2$

```
Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}
```

```
1) X = \{s, f\}: From one set d = a: sa \to f d = b: sb \to q_3 fb \to q_4
```

2)
$$X = \{q_1, q_2\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $q_2 a \rightarrow q_2$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

```
1) X = \{s, f\}: From one set d = a: sa \to f d = b: sb \to q_3 fb \to q_4
```

2)
$$X = \{q_1, q_2\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1$ $d = b$: $q_1 b \rightarrow s$ $q_2 a \rightarrow q_2$ $q_2 b \rightarrow f$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

1)
$$X = \{s, f\}$$
: From one set $d = a$: $sa \rightarrow f$ $d = b$: $sb \rightarrow q_3$ $fb \rightarrow q_4$

2)
$$X = \{q_1, q_2\}$$
: From one set $d = a$: $q_1 a \rightarrow q_1 \ q_2 a \rightarrow q_2$ $d = b$: $q_1 b \rightarrow s \ q_2 b \rightarrow f$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

- 1) $X = \{s, f\}$: From one set d = a: $sa \to f$ d = b: $sb \to q_3$ $fb \to q_4$
- 2) $X = \{q_1, q_2\}$: From one set d = a: $q_1 a \rightarrow q_1 \ q_2 a \rightarrow q_2$ d = b: $q_1 b \rightarrow s \ q_2 b \rightarrow f$
- 3) $X = \{q_3, q_4\}$: d = a: $q_3 a \rightarrow q_3$ $q_4 a \rightarrow q_4$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

- 1) $X = \{s, f\}$: From one set d = a: $sa \to f$ d = b: $sb \to q_3$ $fb \to q_4$
- 2) $X = \{q_1, q_2\}$: From one set d = a: $q_1 a \rightarrow q_1 \ q_2 a \rightarrow q_2$ d = b: $q_1 b \rightarrow s \ q_2 b \rightarrow f$
- 3) $X = \{q_3, q_4\}$: From one set d = a: $q_3 a \rightarrow q_4$ $q_4 a \rightarrow q_4$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

- 1) $X = \{s, f\}$: From one set d = a: $sa \to f$ d = b: $sb \to q_3$ $fb \to q_4$
- 2) $X = \{q_1, q_2\}$: From one set d = a: $q_1 a \rightarrow q_1 \ q_2 a \rightarrow q_2$ d = b: $q_1 b \rightarrow s \ q_2 b \rightarrow f$
- 3) $X = \{q_3, q_4\}$: From one set d = a: $q_3 a \rightarrow q_4$ d = b: $q_3 b \rightarrow q_1$ $q_4 b \rightarrow q_2$

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

- 1) $X = \{s, f\}$: From one set d = a: $sa \to f$ d = b: $sb \to q_3$ $fb \to q_4$
- 2) $X = \{q_1, q_2\}$: From one set d = a: $q_1 a \rightarrow q_1 \ q_2 a \rightarrow q_2$ d = b: $q_1 b \rightarrow s \ q_2 b \rightarrow f$
- 3) $X = \{q_3, q_4\}$: From one set d = a: $q_3 a \rightarrow q_4$ d = b: $q_3 b \rightarrow q_1$ $q_4 a \rightarrow q_4$ $q_4 a \rightarrow q_4$

No next divisions !!!

$$Q_m = \{\{s,f\}, \{q_1,q_2\}, \{q_3,q_4\}\}$$

$$\begin{array}{l} sa & \rightarrow f \in R: \\ fa & \rightarrow s \in R: \end{array} \} \Longrightarrow \{s,f\}a & \rightarrow \{s,f\} \in R_m \\ sb & \rightarrow q_3 \in R: \\ fb & \rightarrow q_4 \in R: \end{array} \} \Longrightarrow \{s,f\}b & \rightarrow \{q_3,q_4\} \in R_m \\ q_1a & \rightarrow q_1 \in R: \\ q_2a & \rightarrow q_2 \in R: \end{array} \} \Longrightarrow \{q_1,q_2\}a \rightarrow \{q_1,q_2\} \in R_m \\ q_1b & \rightarrow s \in R: \\ q_2b & \rightarrow f \in R: \end{cases} \Longrightarrow \{q_1,q_2\}b \rightarrow \{s,f\} \in R_m \\ q_2b & \rightarrow f \in R: \end{cases} \Longrightarrow \{q_3,q_4\}a \rightarrow \{q_3,q_4\} \in R_m \\ q_3a & \rightarrow q_3 \in R: \\ q_4a & \rightarrow q_4 \in R: \end{cases} \Longrightarrow \{q_3,q_4\}a \rightarrow \{q_3,q_4\} \in R_m \\ q_3b & \rightarrow q_1 \in R: \\ q_4b & \rightarrow q_2 \in R: \end{cases} \Longrightarrow \{q_3,q_4\}b \rightarrow \{q_1,q_2\} \in R_m \\ \end{array}$$

$$\begin{array}{c}
\mathbf{s} \in \{\mathbf{s}, \mathbf{f}\} & \Longrightarrow \mathbf{s}_{m} := \{\mathbf{s}, \mathbf{f}\} \\
\mathbf{s} \in F: \\
\mathbf{f} \in F: \} & \Longrightarrow \{\mathbf{s}, \mathbf{f}\} \in F_{m}
\end{array}$$

$$\begin{array}{c}
M_{m} = (Q_{m}, \Sigma, R_{m}, s_{m}, F_{m}), \text{ where: } \Sigma = \{\mathbf{a}, \mathbf{b}\}, s_{m} = \{\mathbf{s}, \mathbf{f}\} \\
Q_{m} = \{\{\mathbf{s}, \mathbf{f}\}, \{\mathbf{q}_{1}, \mathbf{q}_{2}\}, \{\mathbf{q}_{3}, \mathbf{q}_{4}\}\}, F_{m} = \{\{\mathbf{s}, \mathbf{f}\}\} \\
R_{m} = \{\{\mathbf{s}, \mathbf{f}\}\mathbf{a} \to \{\mathbf{s}, \mathbf{f}\}, \{\mathbf{s}, \mathbf{f}\}\mathbf{b} \to \{\mathbf{q}_{3}, \mathbf{q}_{4}\}, \{\mathbf{q}_{1}, \mathbf{q}_{2}\}\mathbf{a} \to \{\mathbf{q}_{1}, \mathbf{q}_{2}\}, \{\mathbf{q}_{1}, \mathbf{q}_{2}\}\} \\
\{\mathbf{q}_{1}, \mathbf{q}_{2}\}\mathbf{b} \to \{\mathbf{s}, \mathbf{f}\}, \{\mathbf{q}_{3}, \mathbf{q}_{4}\}\mathbf{a} \to \{\mathbf{q}_{3}, \mathbf{q}_{4}\}, \{\mathbf{q}_{3}, \mathbf{q}_{4}\}\mathbf{b} \to \{\mathbf{q}_{1}, \mathbf{q}_{2}\}\}
\end{array}$$

$$\mathbf{s} \in \{\mathbf{s},\mathbf{f}\} \implies s_m := \{\mathbf{s},\mathbf{f}\}$$

$$s \in F$$
:
 $f \in F$:
 $s \in F$:
 s

$$\begin{split} &M_{m} = (Q_{m}, \Sigma, R_{m}, s_{m}, F_{m}), \text{ where: } \Sigma = \{a, b\}, s_{m} = \{s, f\} \\ &Q_{m} = \{\{s, f\}, \{q_{1}, q_{2}\}, \{q_{3}, q_{4}\}\}, F_{m} = \{\{s, f\}\} \} \\ &R_{m} = \{\{s, f\}a \rightarrow \{s, f\}, \{s, f\}b \rightarrow \{q_{3}, q_{4}\}, \{q_{1}, q_{2}\}a \rightarrow \{q_{1}, q_{2}\}, \{q_{1}, q_{2}\}b \rightarrow \{s, f\}, \{q_{3}, q_{4}\}a \rightarrow \{q_{3}, q_{4}\}, \{q_{3}, q_{4}\}b \rightarrow \{q_{1}, q_{2}\} \} \end{split}$$

Variants of FA: Summary

	FA	e-free FA	DFA	Complete FA	WSFA	Min-State FA
Number of rules of the form $p \rightarrow q$, where $p, q \in Q$	0- <i>n</i>	0	0	0	0	0
Number of rules of the form $pa \rightarrow q$, for any $p \in Q$, $a \in \Sigma$	0- <i>n</i>	0- <i>n</i>	0-1	1	1	1
Number of inaccessible states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0	0
Number of nonterminating states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0-1	0-1
Number of this FAs for any regular language.	8	8	8	8	8	1

Main Decidable Problems

- 1. Membership problem:
- Instance: FA $M, w \in \Sigma^*$; Question: $w \in L(M)$?
- 2. Emptiness problem:
- Instance: FA M; Question: $L(M) = \emptyset$?
- 3. Finiteness problem:
- Instance: FA M; Question: Is L(M) finite?
- 4. Equivalence problem:
- Instance: FA M_1 , M_2 ; Question: $L(M_1) = L(M_2)$?

Algorithm: Membership Problem

- Input: DFA $M = (Q, \Sigma, R, s, F); w \in \Sigma^*$
- Output: YES if $w \in L(M)$ NO if $w \notin L(M)$
- Method:
- if $sw \vdash f, f \in F$ then write ('YES') else write ('NO')

Summary:

The membership problem for FAs is decidable

Algorithm: Emptiness Problem

- Input: FA $M = (Q, \Sigma, R, s, F)$;
- Output: YES if $L(M) = \emptyset$ NO if $L(M) \neq \emptyset$
- Method:
- if s is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for FAs is decidable

Algorithm: Finiteness Problem

- Input: DFA $M = (Q, \Sigma, R, s, F)$;
- Output: YES if L(M) is finite
 NO if L(M) is infinite
- Method:
- Let $k = \operatorname{card}(Q)$
- if there exist $z \in L(M)$, $k \le |z| < 2k$ then write ('NO') else write ('YES')

Note: This algorithm is based on L(M) is infinite \Leftrightarrow there exists $z: z \in L(M), k \le |z| < 2k$

Summary:

The finiteness problem for FAs is decidable

Question: $ab \in L(M)$?

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$

Question: $ab \in L(M)$?

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $ab \in L(M)$?

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?


```
Question: ab \in L(M)?
```

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

 $Q_0 = \{ f \}$


```
Question: ab \in L(M)?
```

$$sab \mid -sb \mid -f, f \in F$$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1.
$$qa' \rightarrow f$$
; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$
 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$ is terminating

```
Question: ab \in L(M)?
```

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s is terminating

Answer: NO because s is terminating


```
Question: ab \in L(M)?
```

$$sab \mid -sb \mid -f, f \in F$$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1.
$$qa' \rightarrow f$$
; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$

$$Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating }$$

Answer: NO because s is terminating

Question: Is L(M) finite?


```
Question: ab \in L(M)?
```

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$

 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$ is terminating

Answer: NO because s is terminating

Question: Is L(M) finite?

 $k = \operatorname{card}(Q) = 2$

All strings $z \in \Sigma^*$: $2 \le |z| < 4$: aa, bb, ab, ...


```
Question: ab \in L(M)?
```

$$sab \mid -sb \mid -f, f \in F$$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1.
$$qa' \rightarrow f$$
; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$

$$Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$$
 is terminating

Answer: NO because s is terminating

Question: Is
$$L(M)$$
 finite? $k = can$

Question: Is L(M) finite? $k = \operatorname{card}(Q) = 2$ All strings $z \in \Sigma^*$: $2 \le |z| < 4$: aa, bb, $ab \in L(M)$, ...


```
Question: ab \in L(M)?
```

 $sab \mid -sb \mid -f, f \in F$

Answer: YES because $sab \vdash f, f \in F$

Question: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$

 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$ is terminating

Answer: NO because s is terminating

Question: Is L(M) finite? $k = \operatorname{card}(Q) = 2$ All strings $z \in \Sigma^*$: $2 \le |z| < 4$: aa, bb, $ab \in L(M)$, ...

Answer: NO because there exist $z \in L(M)$, $k \le |z| < 2k$

Algorithm: Equivalence Problem

- Input: Two minimum state FA, M_1 and M_2
- Output: YES if $L(M_1) = L(M_2)$ NO if $L(M_1) \neq L(M_2)$
- Method:
- if M₁ coincides with M₂ except for the name of states
 then write ('YES')
 else write ('NO')

Summary:

The equivalence problem for FA is decidable

Question: $L(M_1) = L(M_2)$ **?**

Question: $L(M_1) = L(M_2)$ **?**

Question: $L(M_1) = L(M_2)$?

A minimum state FA

Question: $L(M_1) = L(M_2)$ **?**

A minimum state FA

Answer: YES because M_{min1} coincides with M_{min2}