Machine Learning and Data Mining

Meta-learning, lecture

Maxim Borisyak

2016/09/29

National Research University Higher School of Economics

SOME STATISTICS

Parameter estimation

Consider a distribution F from a parametrized distribution family \mathcal{F} and samples $\{x\}_{i=1}^{N}$ i.i.d. from F. The task is to recover θ from $\{x\}_{i}$.

Maximum likelihood method

$$L(\theta) = \prod_{i} p(x \mid \theta);$$

$$\hat{\theta} = \arg \max L(\theta);$$

Estimates of error

Consider decomposition of expected error:

$$Err = err + \omega$$

- Err training (in-sample) error estimation;
- err generalization error;
- \odot ω optimistic training bias.

C_p statistic

If d parameters are fit under MSE loss to data:

$$L = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

 C_p statistic can be used to estimate expected error.

C_p statistic

$$C_p = \operatorname{err} + 2 \frac{d}{N} \hat{\sigma_{\varepsilon}}^2$$

where: $-\hat{\sigma}_{\varepsilon}^2$ - estimation of intrinsic noise variance.

Akaike information criterion

If log-likelihood loss function is used:

$$\mathcal{L} = \sum_{i=1}^{N} \log_{\theta}(y_i)$$

Akaike information criterion for maximum-likelihood estimation θ can be used (holds for large N):

Akaike information criterion

AIC =
$$-2\mathbb{E}[\log P_{\theta}(Y)] \approx -2\frac{1}{N}\mathbb{E}[\mathcal{L}] + 2\frac{d}{N}$$

Generalized AIC

Consider a parametrized family of models $\{f_{\alpha}(x) \mid f \in F_{\alpha}\}$. Then we can <u>define</u>:

Generalized AIC

$$AIC(\alpha) = err(\alpha) + 2\frac{d(\alpha)}{N}\hat{\sigma}_{\varepsilon}^{2}$$

Effective number of parameters

Effective number of parameters

$$\mathrm{df}(\hat{y}) = \frac{1}{\hat{\sigma}_{\varepsilon}^{2}} \sum_{i=1}^{N} \mathrm{Cov}(\hat{y}_{i}, y_{i})$$

For example, if a Neural Network minimizes $R(w) + \alpha ||w||_2^2$:

$$\mathrm{df}(\alpha) = \sum_{i} \frac{\theta_{i}}{\theta_{i} + \alpha}$$

where θ_i - *i*-th eigenvalues of $\partial R/\partial w \partial w^T$

Bayesian approach

Consider model M with parameters θ and dataset D.

$$P(M \mid D) \propto P(M)P(D \mid M)$$

 $\propto P(M) \int P(D \mid \theta, M)P(\theta \mid M)d\theta$

 $P(D \mid M)$ is called Bayesian factor and can be used for model selection.

Bayesian Information Criterion

For maximum-likelihood estimation $\hat{\theta}$:

$$\log P(D \mid M) = \log P(D \mid M, \hat{\theta}) - \frac{d_m}{2} \log N + O(1)$$

REGULARIZATION

Usually, models represent a very wide family of functions to learn. Thus, minimization of training loss can lead to overfit.

Examples:

- Decision Trees represent a very wide range of functions and can easily lower most of commonly used losses to zero on training data;
- Neural Networks with enough units can interpolate any smooth function with arbitrary precision.

A common way to reduce overfit is to restrict effective model complexity by adding regularization term.

$$L_{\rm reg} = L + \text{complexity penalty}$$

For linear models one of the common ways is to apply l_1 or l_2 regularizations:

$$L_{\text{reg}}(w) = L(w) + \lambda ||w||_1;$$

 $L_{\text{reg}}(w) = L(w) + \lambda ||w||_2^2;$

where:

$$||w||_1 = \sum_i |w_i|;$$

 $||w||_2^2 = \sum_i w_i^2;$

Ridge regression

Linear regression model with l_2 penalty is called *Ridge* Regression:

$$L(w) = \sum_{i} (y_i - wx)^2 + \lambda ||w||_2^2$$

This can be rewritten as:

$$w^* = \underset{i}{\text{arg min}} \sum_{i} (y_i - \mathbf{wx})^2;$$

subject to $||w||_2^2 \le t;$

or:

$$W^* = (X^T X + \lambda I)^{-1} X^T y$$

Ridge regression

Using SVD decompisition:

$$X = UDV^T$$

$$XW^* = X^TX + \lambda I)^{-1}X^Ty$$

$$= UD(D^2 + \lambda I)^{-1}DU^Ty$$

$$= \sum_i u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^Ty;$$

where:

- \cup u_i j-th left eigenvector (U matrix);
- \bigcirc d_i j-th singular value (D_{ii});

Ridge regression

Effective degree of freedom:

$$\mathrm{df}(\lambda) = \sum_{j} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda}$$

Bayesian insight

Consider:

$$y \sim wx + \mathcal{N}(0, \sigma^2)$$

Assuming prior on $w_i \sim \mathcal{N}(0, \tau^2)$ and using Bayesian estimate:

$$w^* = \mathbb{E}[w \mid D]$$

is equivalent to:

$$L(w) = \sum_{i} (y_i - wx)^2 + \frac{\sigma^2}{\tau^2} ||w||_2^2 \to \min$$

LASSO

LASSO regression is Linear regression with l_1 penalty:

$$L(w) = \sum_{i} (y_i - wx)^2 + \lambda |w|_1$$

or:

$$w^* = \underset{i}{\operatorname{arg \, min}} \sum_{i} (y_i - \mathbf{wx})^2;$$

subject to $||\mathbf{w}||_1 \le t;$

Discussion

Discussion

 l_1 regularization can be used for feature selection.

Discussion

Tip

Note that regularized model with effective degrees of freedom df and unregularized one with the same number of parameters df, in general, is **not the same**.

Tip

Instead of reularization terms like $||w||_2^2$ you can use relative regularization:

$$||w - w_0||_2^2$$

DECISION TREES

Common ways is to restrict:

- maximal depth;
- minimal number of samples in a leaf;
- o minimal number of samples to perform a split;
- minimal gain to perform split.

XGBoost regularization

$$\Omega(\text{tree}) = \gamma T + \frac{\lambda}{2} \sum_{i=1}^{T} W_i;$$

where:

- *T* number of leaves;
- \bigcirc w_i i-th leaf score.

Learning with regularization

A Decision Tree is trained in a greedy fashion. Each new split is selected to maximize **gain**.

Regularized gain:

$$\operatorname{gain} = \frac{1}{2} \left\{ \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} + \frac{(G_R + G_L)^2}{H_L + H_R + \lambda} \right\} - \gamma$$

where:

- G gain;
- *H* sum of loss gradients in the leaf;

This regularization will be discussed in much more details along with Gradient Boosting.