Rappels

Produit scala

Définition. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan. On représente le vecteur \vec{u} par <u>une flèche</u>

 \vec{u} représente la translation « se déplacer de x unités vers la droite/gauche et de y unités vers le haut/bas ». Visuellement, deux vecteurs sont égaux s'ils pointent dans la même direction, et ont la même longueur.

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Additionner des vecteurs, c'est appliquer des translations successivement.

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

 $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé.

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et tout réel k , $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k. Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et

inverser son sens.

Définition. Etant donnés deux points $A = (x_A; y_A)$ et $B = (x_B; y_B)$ on note $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Le vecteur \overrightarrow{AB} représente la translation qui déplace notamment le point A au point B

Propriété. $\overrightarrow{AB} = \overrightarrow{CD}$ ssi \overrightarrow{ABDC} est un parallélogramme. (Attention à l'ordre des lettres).

Propriétés. Pour tous points A, B on a $-\overrightarrow{AB} = \overrightarrow{BA}$. Pour tout point A, on a $\overrightarrow{AA} = \overrightarrow{0}$

Propriétés. Soit un vecteur \vec{u} .

Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{AB}$ pour un certain point B.

Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{CA}$ pour un certain point C.

Soit A, B, C trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Attention, $AB + BC \ge AC$.

Définition. La longueur d'un vecteur $\vec{u} = \binom{x}{y}$, notée $||\vec{u}||$ et lue « norme de \vec{u} » est $||\vec{u}|| = \sqrt{x^2 + y^2}$.

Définition. La longueur d'un segment [AB] est $AB = \|\overrightarrow{AB}\| = \|\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Définition. Un vecteur est **unitaire** ssi il est de norme 1, autrement dit s'il est de longueur 1.

Remarque. On peut rendre un vecteur unitaire en le divisant par sa norme. $\frac{\vec{u}}{\|\vec{v}\|}$ est toujours de norme 1.

Définition. Angle orienté. Si \vec{u} et \vec{v} sont unitaires : Soit A et B les points tels que $\vec{u} = \overrightarrow{OA}, \vec{v} = \overrightarrow{OB}$.

A et B sont 2 points du cercle trigonométrique \mathcal{C} puisque \vec{u} et \vec{v} sont unitaires et \mathcal{C} est de rayon 1.

L'angle orienté de \vec{u} et \vec{v} noté $(\vec{u}; \vec{v})$ est défini comme la longueur de l'arc de cercle \widehat{AB} , modulo 2π , comptée positivement dans le sens direct, négativement dans le sens indirect.

Si \vec{u} et \vec{v} sont quelconques : on se ramène au cas unitaire. $(\vec{u}; \vec{v})$ est défini comme l'angle orienté $(\frac{\vec{u}}{||\vec{u}||}; \frac{\vec{v}}{||\vec{v}||})$.

Définition. On définit de la manière analogue un angle géométrique, en comptant la longueur positivement quel que soit le sens, et modulo π , au lieu de 2π .

Remarque. Intuitivement, l'angle géométrique de \vec{u} et \vec{v} noté $(\vec{u}; \vec{v})$ correspond à l'angle saillant (entre 0 et π) que l'on mesure directement au rapporteur entre \vec{u} et \vec{v} si on les fait partir d'un même point. $(\vec{u}; \vec{v})$ est donc toujours dans l'intervalle $[0; \pi]$.

Définition. Deux vecteurs non nuls sont **orthogonaux**, s'ils forment un angle géométrique valant $\frac{n}{2}$.

Définition. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle géométrique valant 0 ou π .

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un réel k tel que $\vec{u} = k\vec{v}$.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ désigne la donnée d'un point 0 et de vecteurs $\vec{\imath}$ et $\vec{\jmath}$ non colinéaires.

Propriété et définition. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un vecteur \vec{u} . Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\vec{u} = x\vec{\imath} + y\vec{\jmath}$.

x et y sont les coordonnées du <u>vecteur</u> \vec{u} dans le repère \vec{R} . On note $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_{\vec{R}}$

Propriété et définition. Soit un point M. Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\overrightarrow{OM} = x\vec{i} + y\vec{j}$.

x et y sont les coordonnées du <u>point</u> M dans le repère R. On note $M=(x;y)_R$

Définition. On note $\mathbf{R_0} = \left((0;0); \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$ le **repère canonique**. Jusqu'ici, on a seulement utilisé R_0 .

Remarque. Quand on change de repère R, les coordonnées d'un vecteur ou d'un point changent. Cependant, les définitions et formules précédentes restent valables, si on les écrit dans un <u>même</u> repère R. **Définition**. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthogonal** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 dans R_0 . **Remarque.** Dans un repère orthonormé $R = (0, \vec{\imath}; \vec{\jmath})$, l'angle géométrique $\widehat{(\vec{\imath}; \vec{\jmath})}$ vaut toujours $\frac{\pi}{2}$, mais l'angle orienté $(\vec{\imath}; \vec{\jmath})$ peut valoir soit $\frac{\pi}{2}$, soit $-\frac{\pi}{2}$.

Définition. Un repère orthonormé est **direct** (resp. **indirect**) ssi $(\vec{i}; \vec{j}) = \frac{\pi}{2}$ (resp. $(\vec{i}; \vec{j}) = -\frac{\pi}{2}$).

Propriété. Les longueurs et angles géométriques ne changent pas si on change de repère <u>orthonormé</u> **Propriété**. Les angles orientés ne changent pas par changement de repère <u>orthonormé</u> <u>direct</u>.

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_R$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}_R$ est $\det(\vec{u}; \vec{v}) = xy' - x'y$.

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} vaut $|\det(\vec{u}; \vec{v})|$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repère R)

1. Point de vue géométrique du produit scalaire

Théorème. Loi des cosinus, ou **formule d'Al-Kashi** (généralisation du théorème de Pythagore) Dans un triangle ABC <u>quelconque</u>, on a, par exemple $BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC})$. On l'écrit parfois sous la forme $a^2 = b^2 + c^2 - 2bc\cos(\alpha)$ en notant a = BC, b = AC, c = AB, $\alpha = \widehat{BAC}$

Exemple. Soit un triangle ABC tel que AB = 8, AC = 4 et $\widehat{BAC} = 50^{\circ}$. Calculer la longueur BC.

 $BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC}) = 64 + 16 - 2 \times 8 \times 4 \times \cos(50^\circ) \approx 38,86$ et donc $BC \approx 6,23$

Définition. **Produit scalaire**. Soit \vec{u} et \vec{v} deux vecteurs du plan tous deux non nuls.

On appelle **produit scalaire de** \vec{u} **et** \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre réel</u> défini par : $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(\widehat{\vec{u}}; \widehat{\vec{v}})$ Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors le produit scalaire s'écrit : $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$

Remarque. La loi des cosinus se réécrit alors $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Dans le cas où \vec{u} est nul ou \vec{v} est nul, on définit $\vec{u} \cdot \vec{v} = 0$. (l'angle $(\vec{u}; \vec{v})$ n'a pas de sens dans ce cas)

Exemple. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que $\|\overrightarrow{AB}\| = AB = 2$ et $\|\overrightarrow{AC}\| = AC = 3$ et $\widehat{BAC} = 30^\circ$.

Leur produit scalaire vaut $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{BAC}) = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

Propriétés. Soit \vec{u} , \vec{v} deux vecteurs non nuls. On a $-\|\vec{u}\|\|\vec{v}\| \le \vec{u} \cdot \vec{v} \le \|\vec{u}\|\|\vec{v}\|$ puisque $-1 \le \cos(.) \le 1$

- \vec{u} et \vec{v} sont colinéaires de même sens $\Leftrightarrow (\vec{u}; \vec{v}) = 0 \Leftrightarrow \cos(\vec{u}; \vec{v}) = 1 \Leftrightarrow \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}||$
- \vec{u} et \vec{v} sont colinéaires de sens opposé $\Leftrightarrow (\vec{u}; \vec{v}) = \pi \Leftrightarrow \cos(\vec{u}; \vec{v}) = -1 \Leftrightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \|\vec{v}\|$
- \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow (\widehat{\vec{u}}; \vec{v}) = \frac{\pi}{2} \Leftrightarrow \cos(\widehat{\vec{u}}; \vec{v}) = 0 \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul.

Propriété (projeté orthogonal). Soit trois points A, B, C (ou deux vecteurs \vec{u}, \vec{v} qu'on fait partir d'un même point A). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur (AB). Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon.

2. Point de vue algébrique du produit scalaire

Théorème. Calculer un produit scalaire de vecteurs à partir de leurs coordonnées.

Dans un repère orthonormé, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors $\vec{u} \cdot \vec{v} = xx' + yy'$

Démonstration. On peut choisir 3 points A, B, C tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

D'une part, d'après Chasles : $BC^2 = \|\overrightarrow{BC}\|^2 = \|\overrightarrow{BA} + \overrightarrow{AC}\|^2 = \|\overrightarrow{AC} - \overrightarrow{AB}\|^2 = \|\overrightarrow{v} - \overrightarrow{u}\|^2$.

D'autre part, d'après la loi des cosinus, et la définition géométrique du produit scalaire :

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC}) = \|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$
Alone: $\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AB}\|^2 + \|\overrightarrow{A$

Ainsi $\|\vec{v} - \vec{u}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$, donc:

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{v} - \vec{u}\|^2) = \frac{1}{2} \left(\left\| \binom{x}{y} \right\|^2 + \left\| \binom{x'}{y'} \right\|^2 - \left\| \binom{x' - x}{y' - y} \right\|^2 \right)$$

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (x^2 + y^2 + x'^2 + y'^2 - ((x' - x)^2 + (y' - y)^2))$$

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left(x^2 + y^2 + x'^2 + y'^2 - (x'^2 + x^2 - 2xx' + y'^2 + y^2 - 2yy') \right) = \frac{1}{2} (2xx' + 2yy') = xx' + yy'.$$

Exemple. Le produit scalaire de $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ vaut $\vec{u} \cdot \vec{v} = 2 \times (-3) + 3 \times (-5) = -21$

Théorème. Dans un repère orthonormé, deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont orthogonaux si et

seulement si leur produit scalaire est nul si et seulement si xx' + yy' = 0. **Exemple**. On considère les vecteurs $\vec{u} = \binom{2}{3}$ et $\vec{v} = \binom{-3}{-5}$. Leur produit scalaire vaut :

 $\vec{u} \cdot \vec{v} = 2 \times (-3) + 3 \times (-5) = -21 \neq 0$ donc les deux vecteurs \vec{u} et \vec{v} ne sont pas orthogonaux.

Théorème. Propriétés algébriques du produit scalaire.

Soit \vec{u} , \vec{v} , \vec{w} trois vecteurs du plan, et k un réel. Alors :

- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (commutativité)
- $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$ donc $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (distributivité)
- $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$

• $\vec{u} \cdot (k\vec{v}) = k(\vec{u} \cdot \vec{v})$

• $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$ (Loi des cosinus)

Propriété. Etant donné deux points A et B et leur milieu I, on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$

Propriété. Soit *A* et *B* deux points distincts.

L'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

Propriété. Soit A, B et C trois points distincts.

ABC est rectangle en C si et seulement si C appartient au cercle de diamètre [AB].

Propriété. Pour calculer les coordonnées d'un vecteur dans un repère orthonormé, on projette le vecteur sur les vecteurs de base. Dans un repère <u>orthonormé</u> $R = (0; \vec{\iota}; \vec{\jmath})$,

Les coordonnées d'un vecteur $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}_{\mathcal{D}}$ vérifient $x = \vec{v} \cdot \vec{\iota}$ et $y = \vec{v} \cdot \vec{\jmath}$.

Les coordonnées d'un point $M = (x; y)_R$ vérifient $x = \overrightarrow{OM} \cdot \vec{\iota}$ et $y = \overrightarrow{OM} \cdot \vec{\jmath}$.

Propriété et définitions. Soit d = (AB) une droite.

Alors $\vec{u} = \frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|} = \frac{\overrightarrow{AB}}{AB}$ est un vecteur <u>unitaire</u> directeur de cette droite d.

Soit *M* un point du plan. Soit *H* le projeté orthogonal de *M* sur la droite *d*.

Alors: $\overrightarrow{AH} = (\overrightarrow{AM} \cdot \overrightarrow{u}) \overrightarrow{u}$ et $|\overrightarrow{AM} \cdot \overrightarrow{u}| = AH$

 $(\overrightarrow{AM} \cdot \overrightarrow{u}) \overrightarrow{u}$ est appelé **vecteur projeté orthogonal** du vecteur \overrightarrow{AM} sur la droite d.

 $\overrightarrow{AM} \cdot \overrightarrow{u}$ est appelé **composante** de \overrightarrow{AM} le long de la droite d (orientée par \overrightarrow{u}).

