

planetmath.org

Math for the people, by the people.

proof of L^p -norm is dual to L^q

Canonical name ProofOfLpnormIsDualToLq

Date of creation 2013-03-22 18:38:16 Last modified on 2013-03-22 18:38:16

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof Classification msc 46E30

Classification msc 46E30 Classification msc 28A25

Let (X, \mathfrak{M}, μ) be a σ -finite measure space and p, q be Hölder conjugates. Then, we show that a measurable function $f: X \to \mathbb{R}$ has L^p -norm

$$||f||_p = \sup\{||fg||_1 : g \in L^q, ||g||_q = 1\}.$$
 (1)

Furthermore, if either $p < \infty$ and $||f||_p < \infty$ or p = 1 then μ is not required to be σ -finite.

If $||f||_p = 0$ then f is zero almost everywhere, and both sides of equality (??) are zero. So, we only need to consider the case where $||f||_p > 0$.

Let K be the right hand side of equality (??). For any $g \in L^q$ with $||g||_q = 1$, the Hölder inequality gives $||fg||_1 \le ||f||_p$, so $K \le ||f||_p$. Only the reverse inequality remains to be shown.

If $1 and <math>||f||_p < \infty$ then, setting $g = |f|^{p-1}$ gives

$$||g||_q = \left(\int |f|^p d\mu\right)^{\frac{1}{q}} = ||f||_p^{p-1} < \infty.$$

Therefore, $g \in L^q$ and,

$$K \ge \|f(g/\|g\|_q)\|_1 = \||f|^p\|_1/\|g\|_q = \|f\|_p^p/\|f\|_p^{p-1} = \|f\|_p.$$

On the other hand, if p = 1 so that $q = \infty$, then setting g = 1 gives $||g||_q = 1$ and

$$K \ge \|fg\|_1 = \|f\|_1.$$

So, we have shown that $K = ||f||_p$ when $p < \infty$ and $||f||_p < \infty$, and when p = 1. From now on, it is assumed that the measure is σ -finite. Then there is a sequence $A_n \in \mathfrak{M}$ increasing to the whole of X and such that $\mu(A_n) < \infty$.

Now consider the case where $1 and <math>||f||_p = \infty$. Let f_n be the sequence of functions

$$f_n = 1_{A_n} 1_{|f| \le n} f$$

then, $|f_n| \leq |f|$ and monotone convergence gives $||f_n||_p \to ||f||_p = \infty$. Therefore,

$$K \ge \sup \{ \|f_n g\|_1 : g \in L^q, \|g\|_q = 1 \} = \|f_n\|_p.$$

and letting n go to infinity gives $K = \infty$.

We finally consider $p = \infty$. Then, for any $L < ||f||_p$ there exists a set $A \in \mathfrak{M}$ with $\mu(A) > 0$ such that $|f| \ge L$ on A. Also, monotone convergence gives $\mu(A \cap A_n) \to \mu(A)$ and, therefore, $\mu(A \cap A_n) > 0$ eventually. Replacing

A by $A \cap A_n$ if necessary, we may suppose that $\mu(A) < \infty$. So, setting $g = 1_A/\mu(A)$ gives $||g||_1 = 1$ and,

$$K \ge \|fg\|_1 = \int_A |f| \, d\mu/\mu(A) \ge L.$$

Letting L increase to $||f||_p$ gives $K \ge ||f||_p$ as required.