We gave a method for solving A(x)Q(x)=B(x) for Q(x), for any formal power series A(x), B(x). e.g. $x^2Q(x) = x$ can be solved' algebraically (as an equation about numbers), but has no formal power series Q(20) as a soln. Consider the case $\beta(x) = 1$. Let P(x) be a formal power series. If Q(x) is another 5.p.s. such that pla) Q(x)=1, then Q(a) is the reciprocal (inverse) of 1960). We write Q(x) = p(x) = p(x) e.g. (1-x)(1+2+x2+x3+...) = 1+(1-1)x+(1-1)x2+.... So 1+2+2+2+13+ ... = 1-1 Writing a FPS as a reciprocal is often useful for calculations. e.g. 50/ve $(1+x+x^2+...)Q(x)=(1+x)^2$ $\Rightarrow \frac{1}{1-x}Q(x) = (1+x)^{2}$ $Q(x) = (1+x)^{2}(1-x)$ Which formal power series have reciprocals? P(x) = 1-x does. P(x) = 2Prop: P(x) = [Pxx has a reciprocal iff po #0.

Pf: If $p_0=0$ then $p(x)Q(x)=(p_1x+p_2x^2+...)(q_0+q_1x+q_2x^2+...)$ which has constant term () for any Q.

So p(x) has no reciprocal.

Suppose that $p_0\neq 0$.

 $P(x)Q(x) = 1 \iff (P_0 + P_1 x + P_2 x^2 + ...)(P_0 + P_1 x + P_2 x^2 + ...) = 1$ $P_0 P_0 = 1$ $P_0 P_0 = 1$ $P_0 P_1 + P_1 P_0 = 0$ $P_0 P_1 + P_1 P_0 = 0$ $P_0 P_1 = -\frac{P_1 P_0}{P_0}$

 $P_{0}q_{2}+P_{1}q_{1}+P_{2}q_{0}=0$ $\Rightarrow P_{0}=\frac{P_{1}q_{1}-P_{2}q_{0}}{q_{0}}$

In general $90^{-2}\frac{1}{p_0}$ $91^{-2}\frac{1}{p_0}$ $91^{-2}\frac{1}{p_0}$ $91^{-2}\frac{1}{p_0}$

So p(x) has a reciprocal

Corollary: If A(x) has nonzero constant term, then A(x) Q(x) = B(x) can be solved for any B(x). (Since $Q(x) = A(x)^T B(x)$ is a soln)

The usual way to compute inverses is:

Prop! If A(x) has zero constant term, then $\frac{1}{1-A(x)} = \sum_{i \ge 0} A(x_i)^i = 1 + A(x_i) + A(x_i)^2 + \dots$

$$\frac{1}{3-x} = \frac{1}{3} \left(\frac{1}{1-\frac{1}{3}a} \right)^{2} = \frac{1}{3} \sum_{i \geq 0} (-x)^{i} = 1 - x + x^{2} - x^{3} + \dots
\frac{1}{3-x} = \frac{1}{3} \left(\frac{1}{1-\frac{1}{3}a} \right)^{2} = \frac{1}{3} \sum_{i \geq 0} (\frac{1}{2}x)^{i} = \sum_{i \geq 0} (\frac{1}{3})^{i+1} x^{i}
\frac{1}{1-x-x^{2}} = \sum_{i \geq 0} (x+x^{2})^{i} = 1 + (x+x^{2}) + (x+x^{2})^{2} + (x+x^{2})^{3} + \dots
= 1 + (x+x^{2}) + (x^{2} + 2x^{3} + x^{4}) + (x^{3} + 3x^{4} + 3x^{5} + x^{6}) + (x^{4} + \dots
= 1 + 1x + 2x^{2} + 3x^{3} + 5x^{4} + 8x^{5} + \dots$$

appears to be Fibonacci Sequence

We want to know for sure what the sequence of coefficients is.

Let $Q(x) = 90 + 91x + 92x^2 + ...$ be the inverse of $1-x-x^2$ $(1-x-x^2)(90+91x+92x^2+...)=1$

$$9e^{-1}$$
 generally, $9e^{-1}$ $9e^$

Also useful for simplifying is the following: Prop: If A(x) has zero constant term & $n \in \mathbb{N}$, then $\sum_{i=0}^{n} A(x_i)^i = \frac{1 - A(x_i)^{n+1}}{1 - A(x_i)}$

Prop: If A(x), B(a) are FPS and A(x) B(x)=0 then A(x) = 0 || B(x) = 0. Corollary: Inverses where they exist, are unique. Pf: suppose that Q(a) \$0 and Q(a) P(a) =1, Q(1) R(1) =] then 0=1-1= Q(a)P(a) - Q(a)R(a) - Q(21) (P(21) - R(21)) We know (260) \$0 by prop, P(0)-R(0)=0 P(21) = R(21).

So Q(2) only has one inverse (at most).