

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

По лабораторной работе № __6_

Название:	«Исследование биполярного транзистора»
Дисциплина:	Основы электроники

Студент	ИУ7-35Б		А. В. Толмачев	
•	(Группа)		(И.О. Фамилия)	
Преподаватель	Оглоблин Дмитрий Игоревич			

Москва, 2022

Эксперимент №4. Ключ на биполярном транзисторе.

Используемый диод: 2N2945A - PNP

1. Определение сопротивления Rb для режима работы ключа с 1 степенью насыщения

Rk = 750 Om, Ek = 5B, UB = 5B

Uкэ = 0.2B

=> Ток коллектора при насыщении: Ікнас = (Ek – Uкэ)/Rk = 4.8B/7500м = 6.4 мА

Uбэ = 0.7В

B = 559.229

Iбнас = Iкнас/B = 6.4 MA/559.229 = 0.011 MA

Rb(S) = (UBX-UG9)/(S*IGHac)=4.3B/(S*0.011MA)=4.3B/(S*0.000011A)=390909/S OM

=> Rb(1)= 390909 Om

2. Построение схемы

3. Настройка импульсного генератора

4. Настройка параметров анализа

5. Выходной импульс

6. Настройка stepping для варьирования значения сопротивления, для получения выходных импульсов для степеней насыщения 1,2,5,20.

7. Построение графиков выходного импульса

8. Определение длительности фронтов, времени рассасывания, и напряжение на коллекторе в режиме насыщения

S	t10	t01	tp	Uk
2	2575	3494	322	0.051
5	945	3428	280	0.072
20	220	1264	190	0.148

9. Установка диода Шоттки для s=20

10. Наблюдаем уменьшение времени рассасывания

Эксперимент №5. Повышение быстродействия ключа на биполярном транзисторе.

1. Подбор емкости при фиксированном сопротивлении R=390909 Ом

Длительность фронтов уменьшается при увеличении емкости => C = 100 p

2. Подбор сопротивления при фиксированной емкости С = 100р

3. Таким образом, R = 750 Ом и Cp = 100p

- 4. Заменим в схеме транзистор на 2N3307
- 5. Рассчитаем необходимое сопротивление Rb при s=1

$$Rk = 750 \text{ Om}, Ek = 5B, U_B = 5B$$

$$U_{K9} = 0.2B$$

=> Ток коллектора при насыщении: Ікнас = (Ek - Uкэ)/Rk = 4.8B/750Oм = 6.4 мА

$$Uбэ = 0.7$$

B = 153.471

Ібнас = Ікнас/B = 6.4мA/153.471 = 0.042 мА

 $Rb(S) = (U_{BX}-U_{D})/(S*I_{D}+C)=4.3B/(S*0.042MA)=4.3B/(S*0.000042A)=102380$ S/OM

=> Rb(1)= 102380 Om

6. Изменим сопротивление в схеме

7. Построим график входного импульса

8. Построим графики при степенях насыщения s=1,2,5,20

9. Определим длительность фронтов, время рассасывания, и напряжение на коллекторе в режиме насыщения

S	t10	t01	tp	Uk
2	423	514	1	0.48
5	129	282	2	0.44
20	27	104	2	0.41

Эксперимент №6. Изучение влияния обратных связей в ключевой схеме на биполярном транзисторе.

1. Построим схему симметричного мультивибратора

2. Построим осциллограммы напряжений в мультивибраторе

3. Измерим параметры выходных импульсов

U = 0.65B -открытое состояние

U = 12B -закрытое состояние

T = 534 мкс — в открытом

T = 546мкс — в закрытом

4. Изменим импульс в сторону уменьшения/увеличения путем изменения R3

5. Заменим транзисторы на 2N3307

6. Импульсы при использовании транзистора 2N3307

7. Параметры импульсов

U = 1.077 - для открытого состояния

U = 10.5 - для закрытого состояние

T = 527 мкс — для открытого

T = 540 мкс- для закрытого

Таким образом, замена транзистора позволяет изменить напряжение на коллекторе и длительность импульса.

Контрольные вопросы к эксперименту 6

- Какие элементы имеют основное влияние на частоту мультивибратора?
 Постоянные времени цепочек сопротивлений и емкостей базы R4C2(R3C1), используемые транзисторы
- 2. Как влияет замена транзистора на параметры колебания? При замене транзистора меняется напряжение на коллекторе, длительность импульса.
- 3. Чем отличается работа математической модели мультивибратора от реального устройства? Математическая модель мультивибратора, в отличие от реального устройства, нуждается в нарушении баланса в плечах, только тогда будет возможно получить колебания