

SCAN 1 — Quiz #3 — 12'

October 6, 2021

Name: CARBON Climentine

Exercise 1. Let A be a non-empty set, let $f:A\to\mathbb{R}$ and let $Q\in\mathbb{R}$. Recall the definition of "Q is a lower bound of f."

3

Q is a lower bound of f @ Hoc EA, f(x) > Q

Exercise 2. Let $p, b \in \mathbb{C}$ and $k \in \mathbb{N}$. Recall the Binomial Theorem (and mind the notations!):

4

$$(p+b)^{k} = \sum_{\ell=0}^{k} \binom{k}{\ell} p^{\ell} b^{k-\ell}$$

Exercise 3. Let $x \in \mathbb{R}$. Fill in the blank (only give the final answer, no justifications required):

4

$$\cos(3x) = \frac{1}{2} \iff x = \frac{\pi}{3} + \frac{2k\pi}{3} \quad \text{or} \quad x = \frac{\pi}{3} + \frac{2k\pi}{3}$$

Exercise 4. Let $a, b \in \mathbb{R}$. Recall the product formula:

4

$$\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a+b) + \cos(a-b)\right)$$

Exercise 5. Let $A \subset \mathbb{R}$, let $f: A \to \mathbb{R}$, and let $B \subset A$. Recall the definition of "f is decreasing on B."

3

Exercise 6. Let A be a non-empty subset of $\mathbb R$ that is symmetric with respect to 0, and let $f:A\to\mathbb R$ and $g:A\to\mathbb R$ be two *even* functions. Prove that the function $f+g:A\to\mathbb R$ is even.

Let $x \in \mathbb{R}A$ since $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ $f+g: A \rightarrow \mathbb{R}$ Since A is symmetric with respect to 0, $-x \in A$ (f+g)(-x) = f(-x) + g(x)Since f and g are even (f+g)(-x) = f(x) + g(x) = (f+g)(x) (f+g)(-x) = f(x) + g(x) = (f+g)(x)Nance $f+g: A \rightarrow \mathbb{R}$ is even.