Linear Algebra

Dr. Bui Xuan Dieu

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

Chapter 4: Linear Mapping

- Linear Mapping
 - Definition, Examples
 - Image, Kernel, Injective, Surjective, Bijective
 - Matrix of linear map
 - Eigenvalues, Eigenvectors

Linear Mapping

Definition

Let V and W be vector spaces. A function $T:V\to W$ is is said to be a linear map if

- i) $T(u+v) = T(u) + T(v), \forall u, v \in V$
- ii) $T(ku) = kT(u), \forall k \in \mathbb{R}, u \in V$

First consequences

- a) T(0) = 0.
- b) $T(-v) = -T(v), \forall v \in V$.
- c) $T(u-v) = T(u) T(v), \forall u, v \in V$.

Dr. Bui Xuan Dieu Linear Algebra 3 / 28

Kernel, image and the rankâĂŞnullity theorem

Definition

Let $T: V \to W$ be a linear map. We define the kernel and the image or range of T by

$$Ker(T) := \{x | x \in V, T(x) = 0\}$$

and

$$Im(T) := \{ y | y \in W, \exists x \in V, T(x) = y \} = \{ T(x) | x \in V \}.$$

Properties

- i) Ker(T) is a subspace of V.
- ii) Im(T) is a subspace of W.
- iii) $\dim Ker(T) + \dim Im(T) = \dim V$ (the rank-nullity theorem).

Dr. Bui Xuan Dieu Linear Algebra 4 / 28

Kernel, image and the rankâĂŞnullity theorem

Lemma

Let $T: V \to W$ be a linear map and $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ is a basis of V. Then $Im(T) = span\{f(e_1), f(e_2), \dots, f(e_n)\}$.

Lemma

Let $f: V \to W$ be a linear map. Then

- a) f is injective if and only if $Ker f = \{0\}$.
- b) f is surjective if and only if Im f = W.

Corollary

Let V,V' be n-dimensional spaces and $f:V\to V'$ be a linear map. The following are equivalent

a) f is injective.

b) f is surjective.

c) f is bijective.

Dr. Bui Xuan Dieu Linear Algebra 5 / 28

Quotient space

Let W be a subspace of V. We define $M_v = \{x \in V | x - v \in W\}$ and

$$V/W = \{M_v | v \in V\}.$$

The operations
$$\begin{cases} \lambda M_{\nu} = M_{\lambda \nu}, \\ M_{\nu} + M_{\nu'} = M_{\nu + \nu'}. \end{cases}$$

Definition

The space V/W is called the quotient space of V modulo W.

The map

$$p: V \to V/W, p(v) = M_v,$$

is called the projection. Obviously, Ker p = W and Im p = V/W.

Lemma

$$\dim(V/W) = \dim V - \dim W$$

Dr. Bui Xuan Dieu Linear Algebra 6 / 28

Matrix of linear map

Problem

Let $T:V\to W$ be a linear map from n-dimensional space V to m-dimensional space W. Suppose that $\mathcal B$ is a basis of V and $\mathcal B'$ is a basis of W, where

$$\mathcal{B} = \{u_1, u_2, \dots, u_n\}, \mathcal{B}' = \{v_1, v_2, \dots, v_m\}$$

Find the relation between $[T(x)]_{\mathcal{B}'}$ and $[x]_{\mathcal{B}}$.

Definition

 $A m \times n$ matrix A satisfies

$$[T(x)]_{\mathcal{B}'} = A.[x]_{\mathcal{B}}, \forall x \in V,$$

if exists, is called the matrix of the linear map $T:V\to W$ with respect to the bases $\mathcal B$ of V and $\mathcal B'$ of W.

Dr. Bui Xuan Dieu Linear Algebra 7 / 28

Matrix of linear map

Theorem

The matrix of the linear map $T:V\to W$ with respect to the bases $\mathcal B$ of V and $\mathcal B'$ of W is uniquely determined by

$$A = [[T(u_1)]_{\mathcal{B}'}, [T(u_2)]_{\mathcal{B}'}, \dots, [T(u_n)]_{\mathcal{B}'},].$$

Example

Let the function $f: P_2[x] \to P_4[x]$ defined as: $f(p) = p + x^2 p, \forall p \in P_2$.

- a) Prove that f is a linear map.
- b) Find the matrix of f with respect to the bases $E_1 = \{1, x, x^2\}$ of $P_2[x]$ and $E_2 = \{1, x, x^2, x^3, x^4\}$ of $P_4[x]$.
- c) Find the matrix of f with respect to the bases $E_1'=\left\{1+x,2x,1+x^2\right\}$ of $P_2\left[x\right]$ and $E_2=\left\{1,x,x^2,x^3,x^4\right\}$ of $P_4\left[x\right]$.

Dr. Bui Xuan Dieu Linear Algebra 8 / 28

Meaning of the matrix of linear maps

$$\begin{array}{ccc}
x & \xrightarrow{\text{Directly}} & T(x) \\
(1) \downarrow & & \uparrow (3) \\
[x]_{\mathcal{B}} & \xrightarrow{\text{Multiply } A[x]_{\mathcal{B}}} & [T(x)]_{\mathcal{B}'}
\end{array}$$

Compute T(x) indirectly through 3 steps

- 1) Find the coordinate vector $[x]_{\mathcal{B}}$.
- 2) Compute $[T(x)]_{\mathcal{B}'} = [T(x)]_{\mathcal{B}'}$.
- 3) From $[T(x)]_{\mathcal{B}'}$, it follows T(x).

Meaning of the matrix of linear maps

- i) It provides a method to compute T(x) via computers.
- ii) We can choose \mathcal{B} vÃa \mathcal{B}' such that the matrix A is as simple as possible. Then it can provided some important information about the linear mapp.

Dr. Bui Xuan Dieu Linear Algebra 9 / 28

Transformation matrix

Matrix similarity

Two *n*-by-*n* matrices *A* and *B* are called similar if $B = P^{-1}AP$ for some invertible *n*-by-*n* matrix *P*.

Theorem

Let $T: V \to V$ be a linear map over finite dimensional space V. If

- i) A is the transformation matrix of T w.r.t the basis $\mathcal B$ and
- ii) A' is the transformation matrix of T w.r.t the basis \mathcal{B}' then

$$A' = P^{-1}AP$$

where P is the matrix that change the basis from \mathcal{B} to \mathcal{B}' .

Dr. Bui Xuan Dieu Linear Algebra 10 / 28

Rank of linear transformation

Definition

The rank of a linear transformation $T:V\to W$ is the dimension of its image, written rank rank(T):

$$\mathsf{rank}(T) = \mathsf{dim}\,\mathsf{Im}(T)$$

Rank-Nullity Theorem

$$n = \dim V = \dim \operatorname{Im}(T) + \dim \operatorname{Ker}(T) = \dim \operatorname{rank}(T) + \dim \operatorname{Ker}(T).$$

Example

Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. Prove that $rank(AB) \le min \{rank A, rank B\}.$

Dr. Bui Xuan Dieu Linear Algebra 11 / 28

Rank of linear transformation vs Rank of matrix

An $n \times m$ matrix A can be used to define a linear transformation $L_A: \mathbb{R}^m \to \mathbb{R}^n$ given by $L_A(v) = Av$. If we do this,

$$rank(A) = rank(L_A), \quad nullity(A) = Ker(L_A).$$

COnversely,

$\mathsf{Theorem}$

The rank of a linear transformation $T:V\to W$ equals to the rank of its matrix w.r.t any bases \mathcal{B} of V and \mathcal{B}' of W.

Corollary

rank(A + B) < rank(A) + rank(B).

Dr. Bui Xuan Dieu Linear Algebra 12 / 28

Eigenvalues and Eigenvectors of a matrix

Definition

Let A be an n-square matrix. A real number λ is called an eigenvalue of A if the equation

$$Ax = \lambda x, x \in \mathbb{R}^n$$

has at least a non-trivial solution $x = (x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0)$.

The equation $Ax = \lambda x$ can be written in the following form

$$(A - \lambda I)x = 0 \tag{1}$$

 λ is an eigenvalue of A if and only if

$$\det(A - \lambda I) = 0 \tag{2}$$

Definition

The equation (2) is called the characteristic equation of A, and the polynomial $det(A - \lambda I)$ is called the characteristic polynomial of A.

Dr. Bui Xuan Dieu Linear Algebra 13 / 28

Eigenvalues and eigenvectors of linear transformation

Definition

Let V be a linear space. A real number λ is called an eigenvalue of the linear transformation $T:V\to V$ if the equation $T(x)=\lambda x$ has at least a non-trivial solution $x\neq 0$.

Eigenspace

i) If λ is an eigenvalue of the matrix A, then

$$E = \{v \in \mathbb{R}^n : (A - \lambda I)v = 0\} = nullity(A - \lambda I)$$

is called the eigenspace of A.

ii) Similarly, if λ is an eigenvalue of the linear transformation $f:V \to V$, then

$$E = \{ v \in V : (f - \lambda \operatorname{Id}_V)v = 0 \} = \operatorname{Ker}(A - \lambda I)$$

is called the eigenspace of f.

Dr. Bui Xuan Dieu Linear Algebra 14 / 28

Eigenvalues and eigenvectors

Matrix vs Linear transformation

Let A be the matrix of T w.r.t. a basis \mathcal{B} of V. Then,

- i) λ is an eigenvalue of $T \Leftrightarrow \lambda$ is an eigenvalue of A.
- ii) v is an eigenvector of T w.r.t the eigenvalue λ if and only if $[v]_{\mathcal{B}}$ is an eigenvector of A w.r.t. λ .

Dr. Bui Xuan Dieu Linear Algebra 15 / 28

Diagonalizable matrix

Diagonalizable matrix

A square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Diagonalizable linear map

A linear map $f: V \to V$ is called diagonalizable if there exists an ordered basis of V with respect to which f is represented by a diagonal matrix.

- i) Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.
- ii) A square matrix that is not diagonalizable is called defective.

Dr. Bui Xuan Dieu Linear Algebra 16 / 28

Diagonalizable matrix

Necessary and sufficient conditions

A matrix A is diagonalizable if and only if

$$P_A(X) = (-1)^n (X - \lambda_1)^{s_1} (X - \lambda_2)^{s_2} \dots (X - \lambda_m)^{s_m},$$

where $s_1 + s_2 + \cdots + s_m = n$,

(ii)
$$rank(A - \lambda_i I) = n - s_i \ (i = 1, 2, ..., m).$$

Corollary

An $n \times n$ matrix A is diagonalizable if and only if there exists a basis of \mathbb{R}^n consisting of eigenvectors of A.

Corollary

An $n \times n$ matrix A is diagonalizable if it has n distinct eigenvalues.

Dr. Bui Xuan Dieu Linear Algebra 17 / 28

Diagonalization

The algorithm

1) Find *n* linearly independent eigenvectors of the matrix *A*:

$$p_1, p_2, \ldots, p_n$$

- 2) Writing P as a block matrix of its column vectors p_1, p_2, \ldots, p_n .
- 3) Then

$$P^{-1}AP = \operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n],$$

where $\lambda_i (i = 1, 2, ..., n)$ are eigenvalues corresponding to eigenvectors p_i .

Example

Diagonalization the matrix
$$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$
.

Dr. Bui Xuan Dieu Linear Algebra 18 / 28

Trace of a matrix

Definition

The trace of an n-by-n square matrix A is defined to be the sum of the elements on the main diagonal,i.e., $tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$.

Properties

- 1) The trace is a linear mapping. That is,
 - i) tr(A+B) = tr(A) + tr(B),
 - ii) tr(cA) = c tr(A).
- 2) $\operatorname{tr}(A) = \operatorname{tr}(A^T)$,
- 3) $\operatorname{tr}(AB) = \sum_{i,j} a_{ij}b_{ji} = \operatorname{tr}BA \Rightarrow \operatorname{tr}(PAP^{-1}) = \operatorname{tr}(P^{-1}AP) = \operatorname{tr}A$,
- 4) The trace of a matrix is the sum of the (complex) eigenvalues, and it is invariant with respect to a change of basis.

Dr. Bui Xuan Dieu Linear Algebra 19 / 28

Trace of a matrix

Properties

- 5) The trace is invariant under cyclic permutations, i.e., tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC), however, tr ABC ≠ tr ACB.
- 6) If A is symmetric and B is antisymmetric, then tr AB = 0.
- 7) If A is an *n*-by-*n* matrix with real or complex entries and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicities), then

i) tr
$$A = \sum_{i=1}^{n} \lambda_i$$
,

ii) In contrast, $\det A = \prod_{i=1}^{n} \lambda_i$.

More generally, $\operatorname{tr} A^k = \sum_{i=1}^n \lambda_i^k$.

- 8) If A is an idempotent matrix $(A^2 = A)$, then tr(A) = rank(A).
- 9) The trace of a nilpotent matrix $(A^k = 0 \text{ for some } k > 0)$ is zero.

Dr. Bui Xuan Dieu Linear Algebra 20 / 28

Minimal Polynomial

Definition

The minimal polynomial m_A of an $n \times n$ matrix A is the monic polynomial P of least degree such that P(A) = 0.

Theorem

Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of m_A .

Theorem (Cayley - Hamilton)

Each matrix is a root of its characteristic polynomial.

Dr. Bui Xuan Dieu Linear Algebra 21 / 28

Eigenvalues, eigenvectors, characteristic polynomials

Lemma

If λ is a root of multiplicity p of the characteristic polynomial of the matrix A, then

- a. dim $Ker(A \lambda I) \leq p$.
- b. $1 \le n \operatorname{rank}(A \lambda I) \le p$.

Lemma

If A is an n-by-n matrix with real or complex entries and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicities), then

- i) The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ (with multiplicities),
- ii) The eigenvalues of A^2 are $\lambda_1^2, \dots, \lambda_n^2$ (with multiplicities),
- iii) The eigenvalues of A^p are $\lambda_1^p, \dots, \lambda_n^p$ (with multiplicities).

Dr. Bui Xuan Dieu Linear Algebra 22 / 28

Eigenvalues, eigenvectors, characteristic polynomials

Lemma

If A is an n-by-n matrix with complex entries and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicities), then

$$\det f(A) = f(\lambda_1)f(\lambda_2)\dots f(\lambda_n),$$

where f(X) is any polynomial with complex coefficients.

Lemma

If $P_A(\lambda) = \prod_{i=1}^k (\lambda_i - \lambda)^{s_i}$ is the characteristic polynomial of A, then

$$P_{f(A)}(\lambda) = \prod_{i=1}^{k} (f(\lambda_i - \lambda))^{s_i},$$

where f(A) is any polynomial.

Dr. Bui Xuan Dieu Linear Algebra 23 / 28

Symmetric and antisymmetric matrices

- i) A matrix A is called symmetric if $A^T = A$.
- ii) A matrix A is called antisymmetric if $A^T = -A$.

Properties

- i) If A is an antisymmetric matrix, then A^2 is a symmetric matrix.
- ii) All nonzero eigenvalues of an antisymmetric matrix are pure imaginary.
- iii) The rank of an antisymmetric matrix is an even number.
- iv) If A is an antisymmetric matrix, then I + A is an invertible matrix.
- v) If A is an antisymmetric, invertible, then A^{-1} is also an antisymmetric matrix.

Dr. Bui Xuan Dieu Linear Algebra 24 / 28

Nilpotent matrix

A nilpotent matrix is a square matrix A such that $A^k = 0$ for some positive integer k. The smallest such k is sometimes called the index of A.

Properties

- 1) A is nilpotent if and only if $P_A(\lambda) = \lambda^n$.
- 2) A is nilpotent if and only if $tr(A^p) = 0$ for all p = 1, 2, ..., n.
- 3) A is nilpotent if and only if the only eigenvalue for A is 0.
- 4) If A is nilpotent, then I A is invertible.

Dr. Bui Xuan Dieu Linear Algebra 25 / 28

Idempotent matrix - Projection

- i) An idempotent matrix is a matrix which, when multiplied by itself, yields itself, i.e., $A^2 = A$.
- ii) A linear map $P: V \to V$ is a projection if $P^2 = P$.

Properties

- 1) There is a basis of V s.t the matrix of P is diag $(1, \ldots, 1, 0, \ldots, 0)$.
- 2) If P is a projection, then rank $P = \operatorname{tr} P$.
- 3) If P is a projection, then I-P is also a projection. Moreover, $\operatorname{Ker}(I-P)=\operatorname{Im} P$ and $\operatorname{Im}(I-P)=\operatorname{Ker} P$.
- 4) The following are equivalent:
 - a. A idempotent.

d. rank(A) + rank(I - A) = n

b. $\mathbb{C}^n = \operatorname{Im} A + \operatorname{Ker} A$. c. $\operatorname{Ker} A = \operatorname{Im}(I - A)$

e. $Im(A) \cap Im(I - A) = \{0\}$

Dr. Bui Xuan Dieu Linear Algebra 26 / 28

Idempotent matrix - Projection

Properties

- 5) A is idempotent \Leftrightarrow rank $(A) = \operatorname{tr}(A)$ and rank $(I A) = \operatorname{tr}(I A)$.
- 6) If AB = A and BA = B, then A, B are idempotent.
- 7) If A is idempotent, then $(A+I)^k = I + (2^k 1)A \forall k \in \mathbb{N}$.
- 8) Let A, B be idempotent and I (A + B) invertible, then tr(A) = tr(B).
- 9) Let P_1 and P_2 be projection. Then,
 - a) $P_1 + P_2$ is a projection if and only if $P_1P_2 = P_2P_1 = 0$.
 - b) $P_1 P_2$ is a projection if and only if $P_1 P_2 = P_2 P_1 = P_2$.

Dr. Bui Xuan Dieu Linear Algebra 27 / 28

Involutory matrix

An involutory matrix is a matrix that is its own inverse, i.e., $A^2 = I$.

Properties

- 1) P is an idempotent matrix if and only if 2P I is an involutory matrix.
- 2) If A isan involutory matrix, then $A \sim \text{diag}(\pm 1, \dots, \pm 1)$.
- 3) If A isan involutory matrix, then $\mathbb{R}^n = \text{Ker}(A+I) \oplus \text{Ker}(A-I)$.
- 4) A matrix A can be represented as a product of two involutory matrices if and only if $A \sim A^{-1}$.
- 5) A is an involutory matrix if and only if $\frac{1}{2}(I+A)$ is an idempotent matrix.

Dr. Bui Xuan Dieu Linear Algebra 28 / 28