4、机器人状态估计

通过ROS拓展板上的IMU模块加上轮子的编码器,可以估计当前小车的位置和姿态,这个在建图导航中有着重要的作用。

1、启动

以本公司的Rosmaster-X3为例,终端输入命令,

ros2 launch yahboomcar_bringup yahboomcar_bringup_x3_launch.py

2、查看节点通讯图

ros2 run rqt_graph rqt_graph

主要是看以上图红色框的节点输入输出,可以看的出来,/ekf_filter_node接收odom_raw数据和 imu_data数据进行融合,最后输出发布一个odom数据,我们可以通过ros2 node 工具来查看,终端输入,

ros2 node info /ekf_filter_node

3、launch文件解析

我们看下launch文件主要的相关节点,

- /driver_node: 启动小车底盘,获取到轮子的速度vel数据,发布给/base_node节点,获取imu数据,发布给/lmu_filter_madgwick节点;
- /base_node:接收vel数据,通过计算,转换成odom_raw数据,发布给/ekf_filter_node节点;
- /lmu_filter_madgwick: 接收底盘发布的imu数据,通过自身算法过滤后,发布过滤后的imu/data数据给/ekf_filter_node节点;
- /ekf_filter_node: 接收/base_node节点发布的odom数据和/lmu_filter_madgwick发布过来的imu/data数据,通过自身算法,融合后,发布odom数据。