BÀI TẬP ĐẠI SỐ TUYẾN TÍNH BÀI TẬP CHƯƠNG 1

Bài 1.1 Thực hiện các phép toán ma trận.

a)
$$\begin{pmatrix} 1 & 3 \\ 6 & 5 \\ 0 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 11 & 5 \\ -7 & 3 & 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \\ 5 \end{pmatrix}$$

$$\mathbf{c}) \begin{pmatrix} 5 \\ 3 \\ 2 \\ 1 \end{pmatrix} (1 \quad 4 \quad 9 \quad 3)$$

d)
$$\begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} (1 & 2)$$

e)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$
; $B = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 2 \end{pmatrix}$; $C = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

Tính (2A + 3B)C.

f) A =
$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$
; f(x) = 3x² + 2x - 4. Tính f(A)

g) Tính
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^n$$
, $a \in R$ và $n \in \mathbb{N}$.

Bài 1.2

a) Tìm các số x, y, z, w nếu:

$$3\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & 6 \\ -1 & 2w \end{pmatrix} + \begin{pmatrix} 4 & x+y \\ z+w & 3 \end{pmatrix}$$

b) Tìm tất cả các ma trận thực cấp 2 nhân giao hoán với ma trận

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

Bài 1.3 Cho các ma trận

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 2 & 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 2 \\ -1 & 2 \\ 3 & 2 \end{pmatrix}, C = \begin{pmatrix} 2 & -1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$$

a) Tính (AB)C, $C^TB^TA^T$.

b) Tính
$$f(A)$$
 biết $f(x) = 2x^2 + 3x + 5 - \frac{2}{x}$.

Bài 1.4 Tìm ma trận X trong các trường hợp sau:

$$\mathbf{a})\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} . X = \begin{pmatrix} 3 & 0 \\ 7 & 2 \end{pmatrix};$$

b)
$$X.\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix};$$

c)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} . X - X . \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\mathbf{d}) \begin{pmatrix} 1 & 2 & 2 \\ 2 & 5 & 4 \\ 2 & 4 & 5 \end{pmatrix} X - \begin{pmatrix} 3 & 5 \\ 7 & 6 \\ 2 & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 & 5 \\ 2 & 2 \\ -2 & 1 \end{pmatrix}$$

Bài 1.5 Tính các định thức sau:

a)
$$\begin{vmatrix} 7 & 6 & 5 \\ 1 & 2 & -1 \\ 3 & -2 & 2 \end{vmatrix}$$
; b) $\begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1 \end{vmatrix}$; c) $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$;

d)
$$\begin{vmatrix} 0 & x & y & z \\ x & 0 & z & y \\ y & z & 0 & x \\ z & y & x & 0 \end{vmatrix}$$
; **e)** $\begin{vmatrix} a+x & x & x \\ x & b+x & x \\ x & x & c+x \end{vmatrix}$;

$$\mathbf{f} \mathbf{f} \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & a' & a & a' \\ b & b & b' & b' \\ ab & a'b & ab' & a'b' \end{vmatrix}$$

$$\mathbf{f})\begin{vmatrix}
1 & 1 & 1 & 1 \\
a & a' & a & a' \\
b & b & b' & b' \\
ab & a'b & ab' & a'b'
\end{vmatrix} \mathbf{g})\begin{vmatrix}
1 & 2 & 3 & \dots & n-1 & n \\
1 & 0 & 3 & \dots & n-1 & n \\
1 & 2 & 0 & \dots & n-1 & n \\
1 & 2 & 3 & \dots & n-1 & n \\
1 & 2 & 3 & \dots & n-1 & 0
\end{vmatrix}$$

<u>Bài 1.6</u> Giải các phương trình, bất phương trình sau:

$$\mathbf{a)} \begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$$

a)
$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$$
 b)
$$\begin{vmatrix} x & x+1 & x+2 \\ x+3 & x+4 & x+5 \\ x+6 & x+7 & x+8 \end{vmatrix} = 0$$

c)
$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} > 0$$

c)
$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} > 0$$
 d) $\begin{vmatrix} 2-x & 1 & 1 \\ 1 & 3-x & 1 \\ 1 & 1 & 2-x \end{vmatrix} = 0$

Bài 1.7 Tìm hạng các ma trận sau:

a)
$$\begin{bmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 3 & 3 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{bmatrix}$$

3)
$$\begin{bmatrix} 0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10 \\ 2 & 3 & 0 \end{bmatrix}$$

Bài 1.8

a) Cho A =
$$\begin{pmatrix} 1 & m & 1 & 3 \\ 1 & 2m & 1 & 4 \\ m & 1 & 1 & 4 \end{pmatrix}$$
. Định m để $r(A) = 2$.

b) Cho A =
$$\begin{pmatrix} m & 1 & 1 & 1 \\ 1 & m & 1 & m \\ 1 & 1 & 1 & m^2 \end{pmatrix}$$
. Định m để $r(A) < 3$.

c) Cho A =
$$\begin{pmatrix} 1 & 4 & 3 & 6 \\ -1 & 0 & 1 & 1 \\ 2 & 1 & -1 & 0 \\ 0 & 2 & m & 4 \end{pmatrix}$$
. Định m để $\mathbf{r}(\mathbf{A}) = 3$.

Bài 1.9 Tìm hạng ma trận sau (biện luận theo m):

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & m & 12
\end{pmatrix}$$

Bài 1.10 Cho ma trận
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 2 & 6 \\ -1 & 1 & 7 \end{pmatrix}$$
. Tìm ma trận nghịch

đảo A-1 bằng phương pháp Gauss- Jordan.

Bài 1.11 Cho ma trận
$$A = \begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix}$$
. Tìm ma trận nghịch

đảo A⁻¹ bằng cách sử dụng định thức.

BÀI TẬP CHƯƠNG 2

Bài 2.1 Giải các hệ phương trình sau đây:

a)
$$\begin{cases} x +2y +3z = -1 \\ x +y +z = 1 \\ x +4y +9z = 9 \end{cases}$$
 b)
$$\begin{cases} x -y +2z = 1 \\ 2x +y +2z = 1 \\ x -3y +4z = 1 \end{cases}$$

$$\mathbf{c}) \begin{cases} -x & +3y & -3z & = & 11 \\ 4x & -5y & -z & = & 5 ; \\ 3x & +2y & +3z & = & 15 \end{cases} \begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = 1 \\ x_1 + x_2 - x_3 + x_4 = 2 \\ x_1 + 7x_2 - 5x_3 - x_4 = 0 \end{cases}$$

Bài 2.2 Giải và biện luận các hệ phương trình sau:

a)
$$\begin{cases} x + y -3z = 1 \\ 2x + y + mz = 3 \\ x + my +3z = 2 \end{cases}$$

$$\mathbf{b}) \begin{cases} 2x & -y & +3z & = & 1\\ x & +y & +z & = & 2m\\ x & -3y & = & m \end{cases}$$

$$\mathbf{c}) \begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$

$$\mathbf{d}) \begin{cases} x & +y & +(1-m)z = m+2 \\ (1+m)x & -y & +2z = 0 \\ 2x & -my & +3z = m+2 \end{cases}$$

$$\mathbf{e}) \begin{cases} x_1 & -2x_2 & +x_3 & +2x_4 & = & 1 \\ x_1 & +x_2 & -x_3 & +x_4 & = & m \\ x_1 & +7x_2 & -5x_3 & -x_4 & = & 4m \end{cases}$$

<u>Bài 2.3</u> Tìm điều kiện của tham số m để các hệ phương trình sau đây có nghiệm:

a)
$$\begin{cases} mx & +y & +z & = m \\ 2x & +(1+m)y & +(1+m)z & = m-1 \\ x & +y & +mz & = 1 \end{cases}$$

b)
$$\begin{cases} (2+m)x + my + mz = 1 \\ x + my + z = m \\ x + y + mz = 1 \end{cases}$$

Bài 2.4: Tìm các đa thức bậc ba f(x) biết

a)
$$f(1) = 2$$
; $f(-1) = -4$; $f(2) = 8$; $f(-2) = -28$.

b) Đồ thị hàm số y = f(x) đi qua các điểm:

$$(1,4)$$
; $(3,32)$; $(-3,-4)$; $(2,11)$.

Bài 2.5 Cho ma trận
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 2 & 6 \\ -1 & 1 & 7 \end{pmatrix}$$
. Tìm ma trận nghịch

đảo của ma trận A rồi áp dụng kết quả đó giải các hệ phương trình sau:

a)
$$\begin{cases} x & +2y & +2z & = & 1 \\ 2x & +3y & +6z & = & 1 \\ x & -y & +7z & = & m \end{cases}$$
b)
$$\begin{cases} 2x & +3y & -z & = & 1 \\ x & +2y & +z & = & 1 \\ 2x & +6y & +7z & = & m \end{cases}$$

c)
$$\begin{cases} -8x +5y -2z = 1 \\ 27x -16y +6z = 1 \\ -5x +3y -z = m \end{cases}$$
 d)
$$\begin{cases} 2x -y +2z = 1 \\ 3x -2y +6z = 1 \\ -x -y +7z = m \end{cases}$$

<u>Bài 2.6</u> Tìm hệ nghiệm cơ bản của các hệ phương trình tuyến tính thuần nhất sau:

$$\mathbf{a)} \begin{cases} x - 3y + z = 0 \\ 4x + 2y - 3z = 0 \\ 5x - y - 2z = 0 \end{cases}$$

$$\mathbf{b)} \begin{cases} x_1 - 3x_2 + 4x_3 - x_4 = 0 \\ 2x_1 + x_2 - 2x_3 + 2x_4 = 0 \\ 3x_1 - 2x_2 + 2x_3 + x_4 = 0 \\ x_1 + 4x_2 - 6x_3 + 3x_4 = 0 \end{cases}$$

BÀI TẬP CHƯƠNG 3

Bài 3.1 Trong các trường hợp sau đây, xét xem $W \subset \mathbb{R}^n$ có là không gian véctơ không. ($n \ge 3$, xét phép toán thông thường trong \mathbb{R}^n).

a) W = {
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 \ge 0$$
 }

b) W = {
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 + 2x_2 = x_3$$
 }

c) W = {
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 + x_2 + + x_n = 1$$
 }

Bài 3.2 'rong các trường hợp sau đây, hãy xác định tham số m để véctơ x là tô hợp tuyến tính của các véctơ u, v, w.

- a) Trong \mathbb{R}^3 : u = (2, 4, 2), v = (6, 8, 7), w = (5, 6, m), x = (1,3,5).
- b) Trong \mathbb{R}^3 : u = (4, 4, 3), v = (7, 2, 1), w = (4, 1, 6), x = (5, 9, m).
- c) Trong \mathbb{R}^3 : u = (1, -3, 2), v = (2, -1, 1), w = (3, -4, 3), x = (1, m, 5).
- d) Trong \mathbb{R}^4 : u = (1, 2, -3, 2), v = (4, 1, 3, -2), w = (16, 9, 1, -3), x = (m, 4, -7, 7).

<u>Bài 3.3</u> Xét tính độc lập tuyến tính, phụ thuộc tuyến tính của các tập véctơ sau:

a)
$$M = \{ (1, 2, 3), (3, 6, 7) \}$$
 trong \mathbb{R}^3 .

b)
$$M = \{(2, -3, m), (3, -2, 5), (1, -4, 3)\}$$
 trong \mathbb{R}^3 .

c) M={
$$(4,-5,2,6)$$
, $(2,-2,1,3)$, $(6,-3,3,9)$, $(4,-1,5,6)$ } trong \mathbb{R}^4 .

<u>Bài 3.4</u> Tìm hạng của các hệ véctơ sau, từ đó suy ra tính độc lập tuyến tính, phụ thuộc tuyến tính của hệ:

a)
$$u_1 = (1, 2, -1), u_2 = (0, 1, 1), u_3 = (2, 3, -3) \text{ trong } \mathbb{R}^3$$
.

b)
$$u_1 = (1, 2, -1)$$
, $u_2 = (1, 1, -2)$, $u_3 = (1, 1, 2)$ trong \mathbb{R}^3 .

c)
$$u_1 = (1, 2, -1)$$
, $u_2 = (1, 1, -2)$, $u_3 = (0, 3, 3)$,
 $u_4 = (2, 3, -3)$ trong \mathbb{R}^3 .

d)
$$u_1 = (1, -1, 0, 0)$$
, $u_2 = (0, 1, -1, 0)$, $u_3 = (0, 0, 1, -1)$, $u_4 = (-1, 0, 0, 1)$ trong \mathbb{R}^4 .

Bài 3.5 Trong các tập véctơ sau , xét xem tập nào là cơ sở của \mathbb{R}^3 .

a)
$$M = \{ u_1 = (1, 2, 1), u_2 = (1, 7, 5) \}$$

b)
$$M = \{ u_1 = (1, 2, 3), u_2 = (1, 1, 1), u_3 = (3,4,2), u_4 = (7, 2,1) \}$$

c)
$$M = \{ u_1 = (1, 2, 3), u_2 = (2, 3, 4), u_3 = (3, 4, 5) \}$$

d)
$$M = \{ u_1 = (1, 1, 2), u_2 = (1, 2, 1), u_3 = (3, 2, 2) \}$$

Bài 3.6 Trong mỗi trường hợp sau đây, hãy xác định tham số m để:

a)
$$M = \{ (0, 1, 1), (1, 2, 1), (1, 3, m) \}$$
 sinh ra \mathbb{R}^3 .

b)
$$M = \{ (1, 2, -1), (0, 3, 1), (1, 5, 0), (3, 9, m) \}$$
 không sinh ra \mathbb{R}^3 .

c) M={(m,3,1), (0,m-1, 2), (0, 0, m+1)} không là cơ sở của
$$\mathbb{R}^3$$
.

Bài 3.7 Trong \mathbb{R}^4 , cho các không gian vécto con:

$$W_1 = \{(x_1, x_2, x_3, x_4) \in R^4: x_1 + x_2 = 2x_3, x_1 - x_2 = 2x_4 \}$$

$$W_2 = \{(x_1, x_2, x_3, x_4) \in R^4: x_1 = x_2 = x_3 \}$$

Tìm một cơ sở của W₁, một cơ sở của W₂.

Bài 3.8 Trong \mathbb{R}^4 cho tập

$$B = \{(1, 2, -1, -2), (2, 3, 0, -1), (1, 2, 1, 4), (1, 3, -1, 0)\}.$$

Chứng minh rằng B là cơ sở của \mathbb{R}^4 và tìm tọa độ của vécto x = (7, 14, -1, 2) đối với cơ sở này.

<u>Bài 3.9</u> Cho B = { u_1 , u_2 , u_3 } là một cơ sở của không gian véctơ V trên \mathbb{R}^3 và đặt

$$E = \{v_1 = mu_1 + u_2 + 3u_3, v_2 = mu_1 - 2u_2 + u_3, v_3 = u_1 - u_2 + u_3\}$$

- a) Xác định m để E là cơ sở của V.
- b) Tìm ma trận chuyển cơ sở từ B sang E.

Bài 3.10 Trong \mathbb{R}^3 cho hai hệ véctơ

B = {
$$u_1 = (1,2,3)$$
, $u_2 = (1,1,2)$, $u_3 = (1,1,1)$ }
E = { $v_1 = (2,1,-1)$, $v_2 = (3,2,-5)$, $v_3 = (1,-1,m)$ }.

- a) Chứng minh B là cơ sở của \mathbb{R}^3 . Xác định m để E là cơ sở của \mathbb{R}^3 .
- b) Tìm ma trận chuyển cơ sở từ B sang E.

Bài 3.11

Trong mỗi trường hợp sau, hãy tìm một cơ sở và số chiều của không gian nghiệm của hệ phương trình tuyến tính thuần nhất:

a)
$$\begin{cases} x_1 - 3x_2 + x_3 = 0 \\ 4x_1 + 2x_2 - 3x_3 = 0 \\ 5x_1 - x_2 - 2x_3 = 0 \end{cases}$$
 b)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 4x_3 = 0 \\ 4x_1 + 5x_2 + 6x_3 = 0 \end{cases}$$

c)
$$\begin{cases} x_1 - 3x_2 + 4x_3 - x_4 = 0 \\ 2x_1 + x_2 - 2x_3 + 2x_4 = 0 \\ 3x_1 - 2x_2 + 2x_3 + x_4 = 0 \\ x_1 + 4x_2 - 6x_3 + 3x_4 = 0 \end{cases}$$

d)
$$AX = 0$$
 với $A =$

$$\begin{pmatrix}
1 & -2 & 4 & -3 \\
2 & 3 & 1 & -6 \\
-2 & -5 & 1 & 6 \\
3 & -1 & 7 & -9
\end{pmatrix}$$

BÀI TẬP CHƯƠNG 4-5

Tìm trị riêng và cơ sở của các không gian riêng tương ứng của các ma trận sau đây:

a)
$$\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$

b)
$$\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$
 d) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$

Bài 5.2: Chéo hóa các ma trận sau (nếu được)

a)
$$\begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

a)
$$\begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$

$$d) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

$$e) \begin{pmatrix} 1 & -2 & -1 \\ 0 & 2 & -1 \\ 0 & -2 & 1 \end{pmatrix}$$

$$d) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \quad e) \begin{pmatrix} 1 & -2 & -1 \\ 0 & 2 & -1 \\ 0 & -2 & 1 \end{pmatrix} \quad f) \begin{pmatrix} 1 & 0 & 4 \\ -2 & -1 & -4 \\ 0 & 0 & 2 \end{pmatrix}$$

Bài 5.3: Chéo hoá trực giao các ma trận đối xứng sau:

a)
$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 e) $\begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix}$

Bài 5.4 Trong không gian \mathbb{R}^3 xét tích vô hướng Euclide. Hãy áp dụng quá trình trực giao Gram-schmidt để biến cơ sở $\{u_1, u_2, u_3\}$ thành cơ sở trực chuẩn.

- a) $u_1 = (1,1,1), u_2 = (1,-1,0), u_3 = (1,2,1).$
- b) $u_1 = (1,0,0), u_2 = (3,1,-2), u_3 = (0,1,1).$

Bài 5.5 Tìm một sơ sở trực chuẩn của không gian con của \mathbb{R}^3

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 + 3x_2 = 5x_3\}$$

BÀI TẬP CHƯƠNG 6

<u>Bài 6.1</u> Đưa dạng toàn phương f về dạng chính tắc bằng phép biến đổi trực giao, tìm hạng và xét dấu dạng toàn phương f.

1)
$$f(x_1, x_2) = 5x_1^2 + 8x_2^2 - 4x_1x_2$$

2)
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

4)
$$f(x_1, x_2, x_3) = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

5)
$$f(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$$

6)
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3 - 2x_2x_3$$

7)
$$f(x_1, x_2, x_3) = -2x_1^2 - 5x_2^2 - 5x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$$

8)
$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

9)
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 + 4x_1x_3 + 4x_2x_3$$

10)
$$f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

<u>Bài 6.2</u> Đưa dạng toàn phương f về dạng chính tắc bằng phương pháp Lagrange, tìm hạng và xét dấu dạng toàn phương f.

a).
$$f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

b).
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

c).
$$f(x_1, x_2, x_3) = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$

d).
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 + 4x_1x_3 + 4x_2x_3$$

e).
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_3 - 2x_2x_3$$

<u>Bài 6.3</u> Hãy xác định tham số m để sau dạng toàn phương xác định dương.

a)
$$f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 2mx_1x_3 + 2x_2x_3$$

b)
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2mx_1x_2 - 2x_1x_3 + 4x_2x_3$$