Another way t	o use Thevenin + Norton
Equivalents: Load	Line Analysis
Rs +	Lie Third
Voc (+) VE RE	Ix O RS VI FR
B	B
	Variable
Put on an externa for many values of	Tresistor and measure Vitic Ri, plot them:
At Co	alled the "Load Line"
I _x	operating IRVS VR
	straight line in between Ri-00
	Vavi
What if I put a fixed resistor R, in place	
of the load, what would vitic be?	
On same plot, put $l_R v_S v_R = v_R = R$, $i_R = \frac{i}{R}$, $v_R = \frac{i}{R}$ (slope = $\frac{i}{R}$)	
	or IR= RVR (Slope=R)

Maximum power is dissipated in Ri when these two lines are perpendicular or when intersect at (Voc., Isc) or a slope of $\frac{\frac{1}{2}\operatorname{Isc} - 0}{\frac{1}{2}\operatorname{Voc} - 0} = \frac{\operatorname{Isc}}{\operatorname{Voc}} = \frac{1}{\operatorname{Rs}}$ This is even more useful when the load is non-linear, & 1. + KV but is instead a different function like an exponential. A good example is a diode: Very large forward Von every small (Anode) (Cathode) reverse current Limited by forward current and reverse Voltage Reverse Biased Forward Brased

You can write various formulas to describe this curve, but all are nonlinear. If you put this in a simple clet: Light Emitting and the second s Diode LED Max Current: 40 m A Optimum Current: 20 mA Cannot solve this analytically, cane do it graphically O Remove LED, plot INRE operating point - Pradical Source More probably: VoF H