(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-7077

(43)公開日 平成7年(1995)1月10日

(51) Int.Cl. ⁶ H 0 1 L 21/768	識別記号.	庁内整理番号	FΙ	技術表示箇所	
C 2 3 C 14/24 H 0 1 L 21/28	301 R	9271 – 4K 7376 – 4M	·		
		8826-4M	H01L	21/ 90	D
			審査請求	未請求 請求項の数23	OL (全 13 頁)
(21)出願番号	特願平5-309549		(71)出願人.	390019839 三星電子株式会社	
(22)出顧日	平成5年(1993)12月	9日	(72)発明者	大韓民国京畿道水原市/ 李 相忍	飞達区梅灘洞416
(31)優先権主張番号 (32)優先日	1992 P 23 1992年12月10日	807		大韓民国 京畿道 水原 洞 197番地 東南ビラ	
(33)優先権主張国	韓国(KR)		(74)代理人	弁理士 服部 雅紀	
	•			•	
			*		
				.*	

(54) 【発明の名称】 半導体装置及びその製造方法

(57)【要約】 (修正有)

【目的】 半導体ウェハー上に形成されたその表面部分 にシリル化層を有する拡散障壁層を含む半導体装置及び その製造方法を提供する。

【構成】 半導体ウェハー11上に拡散障壁層13,15を形成し、この拡散障壁層13,15に、シリコン水素化物を利用したプラズマ処理により又は SiF4 を利用した反応性スパッタリング方法によりシリル化層19を形成する。このシリル化層19に金属層を形成する場合、拡散障壁層13,15と金属との湿潤性が向上され粒子が大きく形成され、金属層の接触口又はブァイアホールの段差塗布性を増加させる。又、シリル化層19上に金属層を形成した後高温熱処理すれば、金属層のリフロー特性が良くなり接触口やブァイアホールの埋立を容易にする。これにより、信頼性のよい金属配線が得られ、後に続くシンタリング工程が要らなくなる。

【特許請求の範囲】

【請求項1】 半導体基板と、

前記半導体基板上に形成され、その表面部分にシリル化 層を有する拡散障壁層を含む半導体装置。

【請求項2】 前記拡散障壁層は耐火金属又は耐火金属 化合物よりなる群から選択されたいずれか一つより構成 されていることを特徴とする請求項1記載の半導体装 置。

【請求項3】 前記耐火金属はチタニウム、ジルコニウム、タンタル及びモリブデンより構成された群から選択されたいずれか一つであることを特徴とする請求項2記載の半導体装置。

【請求項4】 前記拡散障壁層は耐火金属から構成された第1拡散障壁層と耐火金属化合物から構成された第2 拡散障壁層より構成された複合層であることを特徴とする請求項2記載の半導体装置。

【請求項5】 前記シリル化層上に形成され耐火金属化合物より構成された第3拡散障壁層を更に含むことを特徴とする請求項1記載の半導体装置。

【請求項6】 半導体基板と、前記半導体基板上に形成され、凹部を有する絶縁層と、

前記絶縁層上に形成され、シリル化層を含む拡散障壁層 と、

前記凹部を完全に埋め立てる第1金属層を含む半導体装 置。

【請求項7】 前記凹部は前記半導体基板の不純物ドーピング領域を露出する接触口あるいは半導体装置の下部 導電層を露出するブァイアであることを特徴とする請求 項6記載の半導体装置。

【請求項8】 前記第1金属層上に平坦な表面を有する 第2金属層を更に含むことを特徴とする請求項6記載の 半導体装置。

【請求項9】 半導体基板上に拡散障壁層を形成する段階と、

前記拡散障壁層にシリル化層を形成させる段階を含む半 導体装置の製造方法。

【請求項10】 前記シリル化層の形成段階はシリコン 水素化物を利用したプラズマ処理により遂行されること を特徴とする請求項9記載の半導体装置の製造方法。

【請求項11】 前記シリコン水素化物として SiF4 又は Si2H6を使用することを特徴とする請求項9記載の半導体装置。

【請求項12】 前記シリル化層の形成段階はシリコン水素化物を利用した反応性スパッタリング方法により遂行されることを特徴とする請求項9記載の半導体装置の製造方法

【請求項13】 前記シリル化層の形成段階は前記拡散 障壁層を形成した後、真空を破らず連続的に遂行される ことを特徴とする請求項9記載の半導体装置の製造方 法。 【請求項14】 前記拡散障壁層の形成段階は、耐火金属を蒸着し第1拡散障壁層を形成し、耐火金属化合物を蒸着し第2拡散障壁層を形成することにより、複合層を形成する段階であることを特徴とする請求項9記載の半導体装置の製造方法。

【請求項15】 前記拡散障壁層にシリル化層を形成した後、耐火金属化合物を蒸着し第3拡散障壁層を形成する段階を更に含むことを特徴とする請求項14記載の半導体装置の製造方法。

【請求項16】 半導体基板上に耐火金属より構成された第1拡散障壁層を形成する段階と、

前記第1拡散障壁層に、耐火金属化合物より構成された 第2拡散障壁層を形成する段階と、

前記第2拡散障壁層上にシリル化層を形成する段階と、 真空を破らず、前記シリル化層上に耐火金属化合物より 構成された第3拡散障壁層を形成させる段階を含む半導 体装置の製造方法。

【請求項17】 半導体基板上に絶縁層を形成する段階 と、

前記絶縁層に凹部を形成する段階と、

前記絶縁層上に拡散障壁層を形成する段階と、

前記拡散障壁層上にシリル化層を形成する段階と、

前記シリル化層上に第1金属層を形成する段階を含む半 導体装置の製造方法。

【請求項18】 前記凹部は半導体基板の表面部分に形成された不純物ドーピング領域を露出する接触口であることを特徴とする請求項17記載の半導体装置の製造方法。

【請求項19】 前記第1金属層の形成段階は、Al又はAl合金を低温で蒸着し遂行されることを特徴とする請求項17記載の半導体装置の製造方法。

【請求項20】 第1金属の溶融点以下の高温で熱処理 し前記第1金属物質で前記凹部を埋め立てる段階を更に 含むことを特徴とする請求項17記載の半導体装置の製造方法。

【請求項21】 前記熱処理段階以後に、前記凹部を埋め立てる第1金属層上に第2金属層を形成する段階を更に含むことを特徴とする請求項20記載の半導体装置の製造方法。

【請求項22】 前記第2金属層を第2金属の溶融点以下の高温で熱処理し第2金属の表面を平坦化する段階を更に含むことを特徴とする請求項21記載の半導体装置の製造方法。

【請求項23】 半導体基板上に絶縁層を形成する段階と、

前記絶縁層に凹部を形成する段階と、

前記絶縁層上に拡散障壁層を形成する段階と、

前記拡散障壁層上にシリル化層を形成する段階と、

前記シリル化層上に第1金属層を形成する段階と、

第1金属の溶融点以下の高温で前記第1金属を熱処理し

前記第1金属層の物質で前記凹部を埋め立てる段階と、 前記凹部を埋め立てる第1金属層上に第2金属層を形成 する段階と、

前記第2金属層を第2金属の溶融点以下の高温で熱処理 し第2金属の表面を平坦化する段階を含む半導体装置の 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体装置及びその製造 方法に係り、より具体的に本発明は配線層を含む半導体 装置及びその製造方法に関する。

[0002]

【従来の技術】従来の集積度の低い半導体装置において、金属の段差塗布性は大きく問題とならなかった。ところが、最近には半導体装置の高集積化により接触口の直径はハーフミクロン位で非常に小さくなり、半導体基板に形成された不純物注入領域は一層浅くなった。従って、従来のアルミニウムを利用し配線を形成する方法は、1μm以下の接触口を埋め立てるのに困難であり、ボイドが形成され金属配線層の信頼性を低下させるので改善する必要性があった。従って、近来には半導体装置の配線方法は半導体装置の速度、収率及び信頼性を決定する要因となるので半導体製造工程の中一番重要な位置を占めている。

【0003】高いアスペクト比、スパッターされたアルミニウムの段差塗布性の不良によるボイド形成のような問題点を解決するために、アルミニウムを溶融させ接触口を埋め立てる方法を提示した。例えば、特開昭61-132848号(Yukiyasu Sugano等)、特開昭63-99546号(Shinpei Iijima等)、特開昭62-109341号(清水雅裕等)等にはアルミニウム又はアルミニウム合金を蒸着した後、アルミニウムをアルミニウムの溶融点以上の温度で加熱し液状アルミニウムを流動させ接触口を埋め立てる。

【0004】前記方法によれば、半導体ウェハーを水平的に位置させ溶融された液状アルミニウムが接触口を適当に埋め立てさせ、液状金属層は表面張力を小さくしようとし固化の際収縮したり捩じれるようになり底部の半導体物質を露出させ、熱処理温度が正確に調節できず一定に反復再生しにくいという問題点等がある。又、金属上の残余部分で接触口以外の部分は表面が荒くなり後続くフォトリングラフィー工程が困難である。

【0005】又、米国特許第4、970、176号(Tracy等)では、段差塗布性を向上させるための金属配線方法が提示されている。即ち、前記特許には低温(約200℃以下)で所定の厚さの厚い金属層を蒸着した後、400~500℃の温度に温度を上昇させながら金属を蒸着させる。このような金属層は粒子成長、再結晶及びバルク拡散を通じて後に蒸着される金属層の段差塗布性を向上させる。

【0006】前述した方法によるとしても、直径1μmの接触口をアルミニウム又はアルミニウム合金で完全に埋め立てることはできない。一方、Hisako Ono等はAl-Si 膜の温度が500℃以上の場合にAl-Si 应液体性が急に増加すると発表し500~550℃でAl-Si 膜を蒸着し接触口を埋め立てる方法を提示したことがある(1990 VMIC Conference June 11~12, pp. 76~82)。

【0007】又、依田 孝等は500~550℃の温度で金属を蒸着し接触口を埋め立てる方法を提示した(ヨーロッパ特許出願第90104814.0号、特開平02-239665号)。依田等の方法によれば、接触口は金属で完全に埋め立てられるが、Al-Si 膜がエレクトロマイグレーション(electro-migration)に対しては強い抵抗性を示し、ストレスマイグレーション(stress-migration)に対しては弱い抵抗性を示す可能性が大きい。又、Al膜内に含まれたSiがAl粒子境界で析出されるので改善性は不十分である。従って、追加エッチング段階により接触口以外の全てのAl-Si 膜を取り除いた後Al-Si-Cu膜を蒸着し配線を形成する必要がある。

【0008】上記以外にも本発明者を含む C.S. Park 等は100℃以下の低温でアルミニウム合金を蒸着した後、溶融点より少し低い温度である550℃で約3分の間熱処理し接触口を完全に埋め立てる方法を開示した

(Proceedings of 1990 VMICConference, June 11~1 2, pp. 326 ~328)。前記の方法は1992年8月24日付けで出願された米国特許出願第07/585、218号("半導体装置の金属配線形成方法"という名称で1990年9月19日付けで出願された米国特許出願第07/585、218号の一部係属出願である)に含まれている。前記低温蒸着されたアルミニウムは、550℃熱処理の際に溶けないが、接触口内に移動し接触口を完全に埋め立てる。

【0009】前述した C.S. Park 等の方法によれば100℃以下の低温で約500Åのアルミニウムを蒸着した後にも熱処理し大きさが 0.8μm でありアスペクト比が約1.0の接触口を完全に埋没させることができ、Yoda Dakashi等の方法の場合のような追加エッチング段階が不必要である。このような利点のために、前記 C.S. Park 等の接触口埋没方法は当分野で多くの関心を引いている。

【0010】又、半導体の初期段階では純粋なアルミニウムを使用し金属配線層を形成したが、純アルミニウム層はシンタリング段階で温度が上がるにつれシリコン基板内のシリコン原子と反応し接合スパイキングを発生するので、アルミニウムをシリコンで過飽和させたAI-1%Siが金属配線層の材料として広く用いられてきた。しかしながら、このような AI-1%Siを使用し半導体装置の配線を形成する場合、約450℃以上の温度で熱処理する時AI膜中のシリコンが析出されSi残砂を形成し接触口ではシリコン粒子が固状エピタキシャル成長しSi-ノジュ

ール(Si-nodule) が形成され配線の抵抗や接触抵抗を増加させる。

【0011】金属配線層とシリコン基板間の前記のよう な反応によるAIスパイキングやSi残砂又はSi-ノジュー ルの形成を防止するために、配線層とシリコン基板又は 絶縁層の間に拡散障壁層を形成する方法が広く知られて 公知されている。例えば、米国特許第4、897、70 9号(Yokoyama等)には拡散障壁層として窒化チタニウ ム膜を接触口の内壁に形成する方法が述べられている。 又、特開昭 6 1 − 1 8 3 9 4 2 号には、Mo、W、Tiある いはTa等の耐火金属を蒸着し耐火金属層を形成する段 階、前記耐火金属層上に窒化チタニウム層を形成する段 階及び前記耐火金属層及び窒化チタニウム層より構成さ れた二重膜を熱処理し、半導体基板と前記耐火金属層間 の反応によりこれらの界面に熱的に安定した化合物より なる耐火金属シリサイド層を形成する段階を含む障壁層 形成方法が藤田一朗等により開示されている。この方法 によれば、障壁効果が向上される。このような拡散障壁 層を熱処理する工程は窒素雰囲気でアニーリングして遂 行する。拡散障壁層をアニーリングしない場合には45 0℃以上の温度でアルミニウムやアルミニウム合金をス パッタリングするとか後にシンタリングする場合接合ス パイキング現象が発生する。

【0012】又、萩田雅史は障壁金属とアルミニウム配 線との湿潤性を向上させ配線の質と収率を向上させるた めに、障壁層である TiN層を熱処理した後SiやO2 をイ オン注入する方法を提示した(特開昭63-17603 5号、特開平2-26052号)。又、拡散障壁層を形 成する時、TiN層を形成した後、熱処理し、再び TiN層 を形成させ障壁効果を増大させる方法が知られている。 【0013】前記のように拡散障壁層の特性を改善し、 アルミニウムスパイキングやSi残砂の析出を防止する方 法以外にアルミニウム配線層を相異なる組成を有する複 合層に形成させることにより、アルミニウムスパイキン グやSi残砂の形成を防止する方法も提示されている。例 えば、特開平02-159065号(松本道一)には配 線層の形成の際に、先ずAl-Si 膜を形成し、その上に純 粋なAI層を形成した後、シンタリング工程でのSi残砂の 析出を防止する方法を開示した。又、S. I. Lee (本発明 者)による米国特許出願第07/828,458号(1 992年1月30日出願され現在係属中である)及び米 国特許出願第07/910,894号(1992年7月 8日出願され現在係属中である)には、前記 C.S. Park 等の方法により、低温でアルミニウムを蒸着し、溶融点 以下の高温で熱処理し、接触口を埋め立てる時発生する Si残砂の析出を防止するために、複合層を形成させる方 法が述べられている。前記米国特許出願第07/82 8, 458号に述べられた方法によれば、所定の配線の 厚さの約1/3の厚さで、純粋なアルミニウムを低温で 蒸着し第1金属を形成し、前記第1金属層を約550℃

の温度で熱処理し、接触口を埋没させた後、再び約350℃の温度で、Siを含むアルミニウム合金を蒸着し第2金属層を形成する。このように、複合層を形成することにより、後続くシンタリング工程でSi成分を含まない折した。以前記米国特許出願第07/910、894号に述べられた方法によると、Si成分を含まないがまニウム合金を先ず蒸着し、次いで、Si成分を含まない純粋なアルミニウムやアルミニウム合金を素着し、次いで、Si成分を含まない純粋なアルミニウムやアルミニウム合金を素着し、パタニングして配線層を完成する。

【0014】通常、拡散障壁層を形成した後、金属層を形成するためにはウェハーを金属層形成のためのスパッター装置に移送すべきなので大気に露出される。この際、拡散障壁層の表面や粒子境界部分で酸化が発生し、酸化された拡散障壁層上ではアルミニウム原子の移動度が小さくなり、Al-1%Si-0.5%Cu合金を約6,000A位に常温で蒸着する時、粒子大きさは0.2μm位の小さい粒子が形成される。

【0015】一方、大気に露出されない拡散障壁層では約 1μ m までの大きい粒子が形成され、高温で熱処理したり高温スパッタリングしてアルミニウム膜を蒸着ニウム膜の表面が非常に荒くなり、拡散障壁層の表面が非常に荒くなり、拡散障壁層の表面が非常に荒くなり、拡散障壁層の表生する。(政策を受ける)が落ち、後続く写真触刻工程で困難な点が発生すり、はでいる)が用いられている。前記膜はが完まが、では、大気に変出を解決する。といるでは、大気に変出を解決するが、大気に変出される場合に少量の酸素が混入され拡散降壁効果が増進される。これをスタッフィング効果という。

【0016】一般的に TiNを蒸着した後、大気に露出させれば大気中の酸素によりスタッフィング効果が現れる。又、前記特開平2-26052の方法も拡散障壁層の表面を酸素処理化させ障壁金属の特性を向上させる。しかしながら、Ti又はTiN を蒸着し障壁層を形成させた後大気に露出させたり、酸素を混入させTiN を蒸着したり、酸素の混入された窒素雰囲気で障壁層をアニーリングする場合接触抵抗が増加し得る。

【0017】従って、大気露出時間、蒸着の際の酸素混入量、アニーリングの際の酸素混入量及びアニーリング温度等の条件によりTiN 膜の障壁特性が変化する。障壁金属のアニーリングは約450℃の温度で、N2 雰囲気下で30~60分の間遂行するのが最適だと知られてい

る。図1は拡散障壁層を形成した後酸素含有雰囲気に曝された状態で拡散障壁層の表面に形成された酸化物層を示す図面であり、図2は拡散障壁層を形成した後N2アニーリングして拡散防止特性を向上させた後、拡散障壁層の表面に形成された酸化物層を示す断面図である。

【0018】図3は第1拡散障壁層を形成した後、イオ ン注入又は窒素アニーリングした後、前記第1拡散障壁 層上に第2拡散障壁層を形成させて得た断面図である。 前記図3で、第1拡散障壁層と第2拡散障壁層の間に、 イオン注入による非晶質層や窒素アニーリングによる酸 化物層が中間層として存することが分かる。以上のよう な拡散障壁層を形成した後、前記 C.S. Park 等の方法に より又は高温スパッタリング方法によりアルミニウム配 線層を形成する場合には、拡散障壁層が大気に露出され るので、拡散障壁層の表面と粒子境界部分に酸化物が存 するようになり拡散障壁層とアルミニウムとの湿潤性が 適量ではないので、蒸着の初期に形成される粒子の大き さが小さくなる。従って、蒸着されたアルミニウム層の プロファイルがよくなかったり、接触口埋没の際にボイ ドが形成したり、又熱処理の際にアルミニウム層のプロ ファイルが変形し好ましくない。

【0019】図4~図6は前記従来の拡散障壁層上にアルミニウムを蒸着し金属層を形成した後、金属層を熱処理し接触口を埋没させる時、現れ得る配線層の不良を示す。図4~図6で参照番号1は半導体基板、参照番号2は不純物のドーピング領域、参照番号3は絶縁膜(BPSG膜)、参照番号4は拡散障壁層、参照番号6はAI合金属層を示す。図4は高温スパッタリングの際あるいはAI蒸着の際に接触口の側壁で発生する、拡散障壁層のはAI素着の際に接触口の側壁で発生する、拡散障壁層の脚線不良7を示し、図5はAI金属を蒸着した後真空熱処理したり、高温スパッタリング方法により接触口を埋没する場合に接触口に存するボイド8を示し、図6はAIを高温でスパッタリングしたり、AI蒸着の後真空熱処理した場合に発生したAI合金層の不良なプロファイル9を示す。

【0020】Hiroshi Nishimura 等はAIスパッタリングの前にTiを蒸着した後連続的にAIを約500℃で高温スパッタリングし直径が0.5μmであり、アスペクト比が1.6であるブァイアホールが埋め立てられると発表した("Reliable Submicron Vias using Aluminum Alloy High Temperature Sputter Filling" pp.170~176,VMIC conference, 1991)。Hiroshi Nishimura 等によれば、接触口埋没の原因はAIとTiの反応による。ところが、AI3Tiが生成する場合、アルミニウムとは違って後続く工程でシンタリングの際450℃の温度でシリコンの固溶度は約15重量%までに非常に高くなる。従って、接触口でAI3Tiが生成すれば、AI層と基板でAI3TiとSiが反応しアルミニウムスパイキングが発生する可能性が高まる。のみならず、AIとTiが反応すれば、高温で

Alをスパッタリングしたり蒸着工程の後に C.S. Park の 方法により真空熱処理を遂行する際Alの表面が非常に荒 くなり、反射度が低下し後続く写真工程の困難さが発生 する。

【0021】又、Si残砂の析出を防止するためにSiを含 まない金属を蒸着する場合にも、脆弱な拡散障壁層が存 する場合には、前記AIと基板が反応しAIスパイキングを 起こすおそれがある。図7は前記従来の技術で生成され るアルミニウムスパイキングを示すための図面である。 同図で、参照番号は、図4~図6の場合と同様に、参照 番号1は半導体基板、2は不純物のドーピング領域、3 は絶縁膜(BPSG膜)、4は拡散障壁層、6はAI合金 金属層、10は前記アルミニウムスパイキングを示す。 【0022】接触口で拡散障壁層の特性を向上させるた めには拡散障壁層の表面と粒子境界に酸化物が存する状 態にするのが望ましい。ところが、このような酸化物の 存在は拡散障壁層とアルミニウムとの湿潤性を低下さ せ、ボイドを形成させたり、熱処理の際に不良なプロフ ァイルを有する金属層を形成させ半導体装置の配線層の 信頼度を低下させる。

【0023】又、前述した米国特許出願第07/82 8、458号や米国特許出願第07/910、894号 に開示された方法により複合層を形成する場合には、ア ルミニウムの蒸着工程が複雑になり、処理量が減少した り、拡散障壁層の形成条件がやかましくなって工程マー ジンが狭くなり望ましくない。Dipankar Pramanik 等は 170℃でAl-1%Cu 合金を種々の下支膜に蒸着した実験 結果を発表したことがある(参照文献; "EFFECT OF UN DERLAYER ON SPUTTERED ALUMINUM GRAIN STRUCTURE AND ITS CORRELATION WITH STEP COVERAGE INSUBMICRO N VIAS " 1990 VMIC Conference, June 12~13 pp. 332 ~334)。Dipankar Pramanik 等は下支膜の種類によ り蒸着の際生成されるアルミニウムの粒子の大きさが異 なり、粒子が一番大きく形成されたTiW 膜上で一番良好 な段差塗布性が得られると教示している。このようなア ルミニウムの段差塗布性は蒸着の際形成されるアルミニ ウムの粒子の大きさと密接した関係にあることを示す。 即ち、蒸着の際形成されるアルミニウムの粒子が大きい ほどアルミニウム層の接触口又はプァイアホール (層間 導通孔)に対する段差塗布性は良好となる。又、前記ア ルミニウム粒子と下支膜間の湿潤性が良いほどアルミニ ウム粒子は蒸着の際に大きく向上される。

[0024]

【発明が解決しようとする課題】本発明の目的は拡散障壁層の特性を改善すると同時に、アルミニウムと拡散障壁層の湿潤性を向上させ、蒸着により形成されるアルミニウム粒子の熱処理時移動度を増加させ、これにより配線層の接触口の段差塗布性を向上させ、あるいは向上させたりして接触口の埋没をより容易にする半導体装置を提供することである。

【0025】本発明の他の目的は拡散障壁層の特性を改善しアルミニウムの移動度を増加させ接触口での段差塗布性を向上させると同時に接触口を完全に埋め立てる信頼性のある金属配線層形成方法を提供することである。 【0026】

【課題を達成するための手段】前述した目的を達成するために本発明によると、半導体基板及び前記半導体基板上に形成され、その表面部分にシリル化層を有する拡散障壁層を含む半導体装置が提供される。前記拡散障壁層はチタニウム、ジルコニウム、タンタル、モリブデン等のような耐火金属又はこれらの耐火金属化合物より構成された第1拡散障壁層と耐火金属化合物より構成された第2拡散障壁層より構成された複合膜であることが望ましい。又、本発明の一態様によれば、前記シリル化層上に金属化合物より構成されている第3拡散障壁層が形成されることもできる。

【0027】本発明によれば、半導体基板と、前記半導体基板上に形成された絶縁膜と、前記絶縁膜に形成された凹部と、前記絶縁層上に形成され、シリル化層を含む拡散障壁層と、前記凹部を完全に埋め立てる第1金属層を含む半導体装置が提供される。前記シリル化層は前記拡散障壁層の表面部分又は前記拡散障壁層の中間部分に形成され得る。

【0028】前記凹部は前記半導体基板の不純物ドーピング領域を露出する接触口、前記半導体ウェハー上に形成された下部導電層を露出するブァイア又は絶縁膜上に形成された配線層のパターン形成部分に形成されたグループである。又、本発明によれば、半導体ウェハー上に拡散障壁層を形成する段階及び前記拡散障壁層にシリル化層を形成させる段階を含む半導体装置の製造方法が提供される。

【0029】本発明の一態様によれば、前記シリル化層をシリコン水素化物を利用したプラズマ処理により形成させ得る。前記シリコン水素化物としては SiF4 又は Si2H6等が挙げられる。本発明の他の態様によれば、前記シリル化層をシリコン水素化物を利用した反応性スパッタリング方法により形成させ得る。前記拡散障壁層を形成した後、真空を破らず連続的に前記シリル化層を形成させる。

【0030】前記シリル化層を形成した後には、真空を破らず連続的に金属を蒸着し前記シリル化層上に第1金属層を形成する。前記第1金属層はAI又はAI合金を低温で蒸着し形成させたり高温スパッタリング方法により形成させ得る。必要によっては、前記第1金属層を形成した後、第1金属の溶融点以下の高温で前記第1金属層を熱処理し前記第1金属層の物質で前記凹部を埋め立てる。又、前記熱処理後に、前記凹部を埋め立てる第1金属層上に第2金属層を形成し、第2金属層を第2金属の溶融点以下の高温で熱処理し第2金属の表面を平坦化す

る。

【0031】従って、本発明の拡散障壁層を利用し、金属層を蒸着すれば金属層の段差塗布性が向上され、ひいてはこのような金属層を0.87m~Tm(Tmは前記金属の溶融点である)の高温で熱処理すれば、より良好に接触口を埋め立てた金属層が得られる。前記熱処理工程は金属層を蒸着した後、真空を破らず連続的に0.87m~Tm(Tmは第1金属層金属の溶融点である)の温度で遂行する。0.87m以下の温度ではアルミニウム合金粒子の移動が不十分であって接触口を完全に埋め立てることが困難であり、Tm以上の温度ではアルミニウム合金が溶融される可能性がありボールアップ(塊状化)されるので望ましくない。

【0032】前記金属層はSiを含む金属層とSiを含まない金属層を交代に積層することにより、複合層を形成するのが望ましい。Siを含まない金属層はSiを含む金属層から後の熱処理又はシンタリング工程の際のSi原子を吸収することによってSi残砂やSiノジュールの形成を防止する。前記第2金属層は同一のスパッタリング装置で第1金属層の熱処理工程の後真空を破らず直ちに蒸着されるのが望ましい。この際、第2金属層の蒸着の際の温度は約350℃以下となる。前記第2金属層を形成した後再び熱処理し第2金属層の表面を平坦化するのが望ましい。平坦化することによって、後続くフォトリソグラフィー工程が容易に遂行できる。

【0033】本発明の半導体装置の配線層は従来のアルゴンプラズマによるスパッタリング装置で単純にシリコン水素化物を追加で導入させ工程を遂行し容易に製造され得る。

[0034]

【作用】本発明の方法により形成された拡散障壁層は蒸着されたアルミニウムとの 湿潤性が良好なので、スパッタリングによりAI又はAI合金を蒸着させる場合に、段差塗布性が非常に良好であり、接触口やブァイアホールのような開口部の側壁に断線現象が発生せず、又溶融点以下の高い温度で熱処理し前記蒸着された金属層で開口部を埋め立てる場合にリフロー現象が向上され、開口部の埋立度が増加する。又、より完全に開口部を埋め立てられるようにする。

【0035】本発明の方法により形成された配線層は、 障壁層に酸化膜を存在させた状態でその上にシリル化層 を形成するので、スパッタリング効果がそのまま維持さ れ従来の技術のようなスパイキング現象が避けられる。

[0036]

【実施例】以下、添付した図面に基づき本発明を詳細に 説明する。図8~図10は本発明の半導体装置の配線層 の実施例を示す断面図である。図8は本発明の半導体装 置の配線層の望ましい一実施例を示す。図8で、参照番 号11は半導体基板、参照番号13はTiより構成された 第1拡散障壁層、参照番号15はTiNより構成された第 2 拡散障壁層、参照番号17は前記第2拡散障壁層15 の表面部分に存する酸化物層、参照番号19は前記酸化 物層の表面をシリル化処理したシリル化層、そして参照 番号21はAI配線層を示す。

【0037】前記図8に示した構造の配線層は次のように形成した。先ず、半導体基板11上に、Tiをターゲットとして使用しスパッタリングして第1拡散障壁層13を形成した。次に、通常のTiをターゲットとして使用し、アルゴン雰囲気下で、 N_2 反応性スパッタリング方法により、TiNを蒸着しTiNより構成された第2拡散障壁層15を形成した。次いで、AlとSiの拡散経路を遮するために約450℃~500℃の温度で N_2 雰囲気下で30~60分の間アニーリング工程を遂行した。この際、酸素スタッフィング効果により、前記第2拡散障層15の表面に TiO_2 またはTiONより構成された酸化物層17が存し、このような酸化物層17の存在によりAlと拡散障壁層間の湿潤性が低下する。

【0038】次に、前記酸化物層17の形成された拡散 障壁層のシリル化工程を遂行しシリル化層19を形成し た。ここで、前記シリル化工程はシリコン水素化物を使 用しSiH4 又は Si2H6プラズマやSi* 又は SiH* ラジカ ルに露出させ遂行した。この際、シリコン水素化物の分 圧は 0.5~15mTorr であり、電力は1~10kWであ り、基板の温度は常温~200℃である。又、シリル化 層形成の際に装置の真空度は5×10-8Torr以下に保 つ。シリコン水素化物はグロー放電の際に又はスパッタ リングの途中にSi*、H*、SiH*又はSiH2*等のよう な反応性のラジカルを生成させた。スパッタリング途中 の水素は2次電子の放出により半導体基板の損傷を防止 し半導体素子の特性や信頼性を向上させる。従って、シ リル化処理の際に水素を1μTorr~5mTorr位の分圧で 別に添加するのが望ましい。水素を添加する場合には水 素ラジカルによりTiO2またはTiONより構成された酸化物 層17の還元が起こり、シリル化処理されたシリル化層 の厚さが変わる。

【0039】このようにシリル化層19を形成させることにより、拡散障壁層とAIとの湿潤性が増加しスパッターされたAIの段差塗布性を向上させるだけでなく、AIとシリコンの拡散経路を遮断させスパイキングの発生を防止する。前記シリル化層19を形成した後に、真空を破らず連続的にAI又はAI合金を蒸着し配線層形成のための金属層21を形成した。

【0040】図9は本発明の配線層の下部に形成される拡散障壁層の他の一実施例を示す断面図である。図9で、参照番号11、13及び15は前記図8の場合と同一の部材を示し、参照番号23はシリコン水素化物の反応性スパッタリング方法により形成されたシリル化層を示す。

【0041】前記図9に示した拡散障壁層は次のように 形成した。先ず、図8の場合と同一の方法で第1拡散障 壁層 13 を半導体基板 11 上に形成した。次いで、反応性スパッタリング方法により $2\sim7$ mTorr のアルゴン及び $1.5\sim5$ mTorr の窒素雰囲気下で(この際、合計圧力に対する窒素の分圧を 40 %に保つ)、Ti をターゲットとして使用し、200 C の基板温度及び $300\sim500$ A/分の蒸着速度でTiN を蒸着し厚さ 500 A ~100 0 Aの第 2 拡散障壁層 15 を形成した。次に、 SiF_4 を $0.5\sim5$ mTorr の分圧で添加し、反応性スパッタリング方法により蒸着させ、 TiN_x Si_y (TiN-TiSi) より構成されたシリル化層 23 を $100\sim500$ A の厚さで、望ましくは 200 A の厚さで形成させた。

【0042】又、前記シリル化層23は前記第2拡散障壁層15を形成した後、真空を破らず他の反応室に移送させた後、前述した反応性のスパッタリング方法により形成させることもできる。次に真空を破らず連続的にAl又はAl合金を蒸着し配線層形成のための金属層(図示せず)を形成した。

【0043】又、前記金属層を形成する前に真空を破る場合、例えば粒子除去のためのスクラッビング(清拭)作業を遂行する場合には、前記シリル化層23を形成した後、再び前記図8の場合のようにシリル化処理を遂行した後、真空を破らず連続的にAI又はAI合金を蒸着し配線層形成のための金属層(図示せず)を形成した。図10は本発明の配線層の下部に形成される拡散障壁層の又他の一実施例を示す断面図である。

【0044】図10で、参照番号11、13、15及び 23は前記図9の場合と同一の部材を示し参照番号25 は前記シリル化層23上に形成されたTiN より構成され た第3拡散障壁層を示す。前記図10に示した拡散障壁 層は次のように形成した。先ず、前記図8の場合と同一 の方法で第1拡散障壁層13を半導体基板11上に形成 する。次いで、反応性スパッタリング方法により2~7 mTorr のアルゴン及び 1.5~5mTorr の窒素雰囲気下で (この際、合計圧力に対する窒素の分圧を40%に保 つ)、Tiをターゲットとして使用し、200℃の基板温 度及び300~500A/分の蒸着速度でTiN を蒸着し 厚さ500Åの第2拡散障壁層15を形成した。次に、 SiH₄を 0.5~5mTorr の分圧で添加し、反応性スパッ タリング方法により蒸着させ、TiNx Siv (TiN-TiSi)よ り構成されたシリル化層23を100~500点の厚さ で、望ましくは200点の厚さで形成させた。次に、 S iH4 の供給を中断し、再びTiN を蒸着し500Åの第3 拡散障壁層 25 を形成する。

【0045】次に、真空を破らず連続的にAI又はAI合金を蒸着し配線層形成のための金属層(図示せず)を形成した。このような方法で前記シリル化層23と TiNより構成された薄い拡散障壁層を複数個に形成することもできる。以下、前記拡散障壁層を利用し接触口を埋め立てる方法に対し具体的に下記実施例を挙げ説明する。

【0046】 (実施例1) 図11~図14は本発明の方

法による半導体装置の配線層形成方法の一実施例を示す ための概略図である。図11は拡散障壁層35の形成段 階を示す。具体的には、不純物ドーピング領域32の形 成されている半導体基板31上に絶縁層33を形成し た。絶縁層33は含燐含硼素ガラス(Borophospho-silic ate grass) BPSGを使用し約 0.8μm~ 1.6μm の厚 さで形成した。次に前記絶縁層33に半導体基板31の 不純物ドーピング領域32の表面の一部を露出させる接 触口34を形成した。前記接触口の直径は基板の側に行 くほど小さく、その反対の側に行くほど大きい。一番大 きい上部直径の大きさは 0.5μ m ~ 1.0μ m であり、一 番小さい直径は約 0.3μm~ 0.7μm である。次に、絶 緑層33の全表面、接触口34の内面及び半導体基板3 1の露出された表面上に拡散障壁層35を形成した。前 記拡散障壁層35は前記図8に示した通り、アルゴン雰 囲気でスパッタリング方法によりチタニウムTiを約10 0~300Åの厚さで蒸着し第1拡散障壁層を形成した 後、圧力が 7 mTorr であり、N₂ の状態分圧が 4 0 % の アルゴン雰囲気下でスパッタリング方法によりチタニウ ムナイトライドを約300~1000点の厚さで蒸着し 第2拡散障壁層を形成した。この際、基板の温度はTiを 蒸着する時もTiN を蒸着する時も共に200℃である。 次に、前記拡散障壁層35を450~550℃の温度 で、30~60分の間 N_2 雰囲気でアニーリングした。 この際、微量の酸素が混入され図8に示した通り拡散障 壁層の表面にTiO2、TiO 、Ti2O3 等のような酸化物層 (図示せず) が形成された。

【0047】図12は前記拡散障壁層35のシリル化処 理段階を示す。前記で得られた拡散障壁層35を前記図 8で説明した通りシリル化処理工程を遂行する。そうす れば、図8に示した通り、前記酸化物層の形成された表 面にシリル化処理されたシリル化層36が形成された。 図13は第1金属層37の形成段階を示す。前記シリル 化層36を形成した後に、真空を破らず、基板31を他 の反応室に移送させた後、前記シリル化層36上に低温 で真空中で第1金属を蒸着し第1金属層を形成した。第 1 金属層はAl-0.4%Si-0.5%Cuをターゲットとして使用し 単一層を形成したり、Al-Si 合金(Al-1%Si 合金)又は A1-0.5%Cu-1%Si合金のようにSi成分を含むアルミニウム 合金や純粋なアルミニウム又はAl-Cu 合金 (Al-0.5Cu合 金) 又はAl-Ti 合金のようにSi成分のないアルミニウム 合金をターゲットとして使用し単一層又はSi成分を含む 金属層とSi成分を含まない金属層より構成された複合層 を形成した。第1金属は200℃以下の低温で4mTorr 以下、望ましくは2mTorr のAr雰囲気でスパッタリング 法により100~150Å/sec 、好ましくは120Å /sec の速度で蒸着する。この際パワーは5~7.2 kW である。

【0048】第1金属層37の厚さは望ましくは4、000~6、000 Aである。こうして得られた第1金属層37

は、拡散障壁層と蒸着されたAIとの湿潤性が増加し、大きいアルミニウム粒子を有する第1金属層を形成した。 従って、配線層の段差塗布性が増加するので半導体装置の配線の信頼度が向上される。このような第1金属層を後にパタニングし半導体装置の配線として使用したり、必要によっては、前記第1金属層37の形成後に、熱処理し前記接触口34を埋没させたり、あるいは、追加で第2金属層(図示せず)を蒸着し半導体装置の配線層(図示せず)を蒸着し半導体装置の配線層(図示せず)を蒸着し半導体装置の配線層(図示せず)を形成することもできる。

【0049】(実施例2)図14~図16は本発明の方 法による開口部埋没方法の一実施例を示すための概略図 である。図14~図16で参照番号は前記実施例1の場 合と同一の部材を示す。図14は第1金属層37の金属 で接触口34を埋め立てる段階を示す。より具体的に、 前記実施例1の図13で第1金属層を500~3,000 Åの 厚さで蒸着することを除いては実施例1の場合と同一の 方法で第1金属層37をアルミニウムを含む金属を用い て、形成した。次いで、半導体ウェハーを真空を破るこ となく他の室(図示せず)に入れ、アルゴン伝導法を利 用し第1金属層37を約500~550℃の装置の設定 温度で約1~5分の間熱処理し、アルミニウム原子又は アルミニウム合金を接触口34内に移動させる。アルミ ニウム原子の移動はその自由エネルギーを減少させ、従 って表面積を減少させ第1金属層の金属で接触口34を 完全に埋め立てる。この熱処理条件は第1金属層を形成 した後大気に霧出される時間、第1金属層を蒸着する間 添加される酸化剤の量、あるいは蒸着装置中の酸化剤の 量などの条件などにより変化されうる。熱処理温度は酸 化剤の量が小さいほど、霧出時間が短いほど、または真 空度が高いほど低くなる。この熱処理段階は不活性ガス 、(例えば、N₂ Ar) 又は還元性のガス(例えば、H₂) 雰囲気で遂行されることもできる。前記アルゴン伝導法 の代わりに、R T A (Rapid Thermal Annealing) 法、 ランプ加熱法等のような他の熱処理法を使用することも できる。これら熱処理方法を単独で又は他の方法と組み 合わせて使用することもできる。図14で、参照番号3 7 a は接触口を完全に埋め立てる第1金属層を示す。

【0050】図15は前記で熱処理された第1金属層37a上に第2金属層38を形成する段階を示す。より具体的に、350℃以下の温度で真空を破らず、配線層が所定の厚さを有するように、スパッタリング方法により金属を蒸着し3、000~5、500点の厚さの第2金属層を形成する。第2金属層の材料としては、第1金属層がSi成分を含む場合にはAl-Cu合金(Al-0.5%Cu合金)又はAl-Ti合金のようなSi成分のない金属を使用し、下部の第1金属層がSi成分を含まない場合にはAl-Si合金(Al-1%Si合金)又はAl-Cu-Si合金(Al-0.5%Cu-1%Si合金)のようにSi成分を含む金属を使用することもできる。

【0051】前記第2金属層38は前記第1金属層の熟

処理と同時に形成され得る。例えば、前記図13のように厚さ500~3、000Aの第1金属層を形成した後、真空を破らず基板を約500~550℃の装置の設定温度で保ちながら前記第2金属層を蒸着する。そうすれば、第1金属層は熱処理され前記開口部34を埋め立てる間第2金属層が形成された。

【0052】図16は第2金属層38を熱処理し配線層 の表面を平坦化する段階を示す。参照番号38aは熱処 理された第2金属層を示す。この段階は真空を破らず第 1 金属層の場合と同一の方法で遂行した。この段階を遂 行することにより第2金属層の原子を接触口34に移動 させ接触口をより完全に埋没することにより平坦化され た配線層を生成させた。従って、後続くフォトリソグラ フィー工程がより容易で効果的に遂行され得る。次に、 後続くフォトリソグラフィー工程を向上させるために熱 処理された第2金属層38aの表面上にスパッタリング 方法により窒化チタニウムを200~500点の厚さで 蒸着し反射防止膜(図示せず)を形成した。反射防止膜 を形成した後、半導体装置の配線パターン形成のために 所定のレジストパターン(図示せず)を反射防止膜上に 通常のフォトリソグラフィー工程により形成した。次い で、反射防止膜、平坦化された第2金属層38a、第1 金属層37a及び表面にシリル化層36を有する拡散障 壁層35を順次的にエッチングし本発明による配線層を 完成した。

【0053】(実施例3)前記実施例1で、拡散障壁層を図9に示した通り形成することを除いては実施例1の図11の場合と同一の方法で拡散障壁層を形成した。より具体的には不純物ドーピング領域の形成された半導体基板上にBPSGを使用し厚さ0.8~1.5μmの絶縁層を形成した。次に上部に段差部の形成されている接触口(例えば、0.7×0.7μm)を形成し前記半導体基板の不純物ドーピング領域を露出させた。

【0054】前記接触口を形成した後前記図8の場合と同一の方法で、前記絶縁膜、前記接触口の内面及び半導体基板の露出された表面上にTiより構成された第1拡散障壁層を形成した後、反応性スパッタリング方法により前記図9で説明した条件で前記第1拡散障壁層上に、Tiをターゲットとして使用し、TiNを蒸着し厚さ500 Å~1,000 Åの第2 拡散障壁層を形成した。次に、 SiF4 を $0.5\sim5$ mTorr の分圧で添加し、反応性スパッタリング方法により蒸着させ、 TiN $_{\rm X}$ Si $_{\rm Y}$ (TiN-TiSi)より構成されたシリル化層を $100\sim500$ Åの厚さで、望ましくは200 Åの厚さで形成させた。

【0055】又は、前記シリル化層は前記第2拡散障壁層を形成した後、真空を破らず基板を他の反応室に移送させた後、前述した反応性スパッタリング方法により形成させることもできる。このような方法で前記拡散障壁層上にシリル化層を形成させれば、シリコンと金属原子の拡散経路を遮断させる。

【0056】次に、前記拡散障壁層上に、真空を破らず連続的に前記実施例1の図13の説明と同一の方法で、AI又はAI合金を蒸着し配線層形成のための第1金属層を形成した。又、前記金属層を形成する前に真空を破る場合には、前記シリル化層を形成した後、再びシリル化理を遂行した後、真空を破らず連続的にAI又はAI合金を蒸着し配線層形成のための金属層を形成する。前記金属層の形成の際に、前記金属層の金属原子は、前記金属層と拡散障壁層の湿潤性が向上され大きいアルミニウムの粒子を有する金属層が形成されボイド形成を阻止できる。又、段差塗布性が改善されこれにより半導体装置の配線層の信頼性が向上される。

【0057】次には、前記実施例2の場合と同一の方法で真空を破らず半導体基板の温度を約0.8Tm~Tmの温度で保って前記第1金属層で前記接触口を完全に埋没させる。又、必要に応じては前記実施例2の場合と同様に追加で前記接触口を埋め立てる第1金属層上に第2金属層を形成した後、再び熱処理を遂行することもできる。次に実施例2の場合と同一の方法で、反射防止膜形成段階及び金属配線層形成のためのリソグラフィー段階を経て本発明の配線層を得た。

【0058】(実施例4)前記実施例1で、拡散障壁層を図10に示した通り形成することを除いては実施例1の図11の場合と同一の方法で拡散障壁層を形成した。より具体的には不純物ドーピング領域の形成された半導体基板上にBPSGを使用し厚さ0.8~1.5μmの絶縁層を形成した。次に、上部に段差部の形成されている接触口(例えば、0.7×0.7μm)を形成し前記半導体基板の不純物ドーピング領域を露出させた。

【0059】前記接触口を形成した後、前記図8の場合と同一の方法で、前記絶縁膜、前記接触口の内面及び半導体基板の露出された表面上にTiより構成された第1拡散障壁層を形成した後、反応性スパッタリング方法により前記図10で説明した条件で前記第1拡散障壁層上に、Tiをターゲットとして使用し、TiNを蒸着し厚さ500点の第2拡散障壁層を形成した。次に、SiF4を0.5~5mTorrの分圧で添加し、反応性スパッタリング方法により蒸着させ、 TiN_x Si $_y$ (TiN-TiSi)より構成されたシリル化層を100~500点の厚さで、望ましくは200点の厚さで形成させた。次に、 SiF_4 の供給を中断し、再 $_y$ TiN を蒸着し500点の第3拡散障壁層を形成した。

【0060】次に、真空を破らず連続的にAI又はAI合金を蒸着し配線層形成のための金属層を形成した。このような方法で前記シリル化層とTiNより構成された薄い拡散障壁層を複数個に形成することもできる。このような方法で前記拡散障壁層上にシリル化層を形成させれば、シリコンと金属原子の拡散経路を遮断させると同時にシリル化層が前記拡散障壁層の間の中間層として形成されているので、拡散障壁層の熱処理や窒素アニーリング工

程の追加がなくてもアルミニウム配管工程でのスパイキ ングが防止できる。

【0061】次に、前記拡散障壁層上に、真空を破らず連続的に、前記実施例1の図13の説明と同一の方法でAI又はAI合金を蒸着し配線層形成のための第1金属層を形成する。又、前記金属層を形成する前に真空を破る場合には、前記シリル化層を形成してから真空を破った後、再びシリル化処理を遂行した後、真空を破らず、連続的にAI又はAI合金を蒸着し配線層形成のための金属層を形成する。前記金属層形成の際に、前記実施例1~3の場合と同様に前記金属層の金属原子は、前記金属層を形成され、前記金属層が形成され、ボイド形成が現れない。又、段差塗布性が向上される。

【0062】次には、前記実施例2の場合と同一の方法で真空を破らず半導体基板の温度を約0.8Tm~Tmの温度で保ち前記第1金属層で前記接触口を完全に埋め立てる。又必要に応じては前記実施例2の場合と同様に、追加で前記接触口を埋め立てる第1金属層上に第2金属層を形成した後、再び熱処理を遂行することもできる。次に実施例2の場合と同一の方法で、反射防止膜形成段階及び金属配線層形成のためのリソグラフィー段階を経て本発明の配線層を得た。

【0063】(実施例5)図17及び図18は本発明の方法による半導体装置の配線層の形成方法の他の実施例を示す。図17はブァイアホール69の形成段階及び拡散障壁層の形成段階を示す。より具体的には不純物ドーピング領域62の形成された半導体基板61上にBPSGを使用し厚さ0.8~1.5μmの絶縁層63を形成する。次に、下部配線層66と半導体基板61の不純物ドーピング領域62と電気的接触のための接触口64(例えば、0.7×0.7μm)を形成し前記半導体基板61の不純物ドーピング領域62を露出させた後、前記実施例1~4及び前記図8~図10に示した方法或いは通常の方法により拡散障壁層65を形成し下部配線層666と反射防止膜67を形成する。次に、SiC2より構成された絶縁膜68に1.0×1.0μm以下のブァイアホール69を形成した。

【0064】前記ブァイアホール69を形成した後、実施例1の場合と同一の方法で、前記絶縁膜68、ブァイアホール69の内面及び露出された下部配線層上に拡散障壁層70を形成し、前記拡散障壁層の表面をシリル化処理しシリル化層71を形成した。拡散障壁層が形成されない場合、又は通常の拡散障壁層を使用する場合には絶縁膜の表面状態がSiO2よりなったり図2に示した通り通常の拡散障壁層の表面部分に酸化物層が形成されており、金属層をスパッタリング方法で形成する場合に、金属層と絶縁層間の湿潤性が不良であり、ブァイアホール

の金属層の段差塗布性は、特にプァイアホールの側壁で 不良になる。このようなプァイアホールを含む絶縁膜に 拡散障壁層を形成した後、本発明の場合のように、シリ ル化層を形成する場合には後続く金属工程で蒸着の際に 拡散障壁層とスパッターされた金属との湿潤性が良好な ので、側壁に断線のない良好なプロファイルを有する上 部金属層が得られる。

【0065】図18は上部金属層72の形成段階を示す。具体的には前記シリル化処理の後真空を破らず、Al-Si-Cu合金(Al-1%Si-0.5%Cu 合金)又はAl-Si 合金をスパッタリング方法により約8,000Åの厚さで蒸着させ上部金属層72を形成する。この際、前記上部金属層は前記実施例1の場合と同一の方法で200℃以下の温度で150Å/sec以下の蒸着速度で蒸着する。前記上部金属層72形成の際に、前記上部金属層72の金属原子は、前記上部金属層72と絶縁膜68の湿潤性が向上され大きいアルミニウムの粒子を有する金属層が形成されるので、ブァイアホール69内に移動し、前記上部金属層72は段差被覆性が増加するので、前記ヴァイアホール69は信頼性が向上される。

【0066】次に実施例2の場合と同一の方法で、前記上部金属層に熱処理を遂行し前記ヴァイアホール69を前記上部金属層の物質で埋め立てられる。又は、前記上部金属層を薄く形成した後、熱処理し前記ヴァイアホール69を埋め立てた後、再び前記ヴァイアホール69を埋め立てる上部金属層上に他の第2金属層を形成することもできる。このような第2金属層は前記実施例2の場合と同様に熱処理し平坦な表面が持てるようにした。次に、反射防止膜の形成段階及び上部金属配線層形成のためのリソグラフィー段階を経て本発明の配線層を得た。

【0067】(実施例6)図19〜図21は本発明の方法による半導体装置の配線層形成方法の又他の実施例を示すための概略図である。図19は溝90の形成段階及び拡散障壁層83の形成段階を示す。より具体的には半導体基板81上にBPSGを使用し厚さ1.5μmの層間絶縁層82を形成する。次に、半導体装置の配線層を形成する部分に、通常の写真蝕刻工程を利用し深さ0.3〜0.7μmの溝を形成した。

【0068】次に実施例1の場合と同一の方法で、前記層間絶縁膜82及び溝90の内面上に拡散障壁層83を形成し、前記拡散障壁層の表面をシリル化処理しシリル化層84を形成した。拡散障壁層が形成されない場合には絶縁膜の表面状態がSiO2よりなったり図2に示した通り通常の拡散障壁層の表面部分に酸化物層が形成されている。

【0069】従って、金属層をスパッタリング方法で形成する場合に、金属層と絶縁層間の湿潤性が不良であるので、形成された金属間の粒子の大きさが小さくなる。このようなヴァイアホールを含む絶縁膜に拡散障壁層を形成した後、本発明の場合のように、シリル化層を形成

する場合には後続く金属工程で、蒸着の際に拡散障壁層 とスパッターされた金属との湿潤性が良好なので、形成 された金属層の粒子が大きくなる。

【0070】図20は金属層85の形成段階を示す。具体的には前記シリル化処理の後、真空を破らず、Al-Si-Cu合金(Al-1%Si-0.5%Cu合金)やAl-Cu合金又はAl-Si合金をスパッタリング方法により約8,000点の厚さで蒸着させ金属層85を形成する。この際、前記金属層85は前記実施例1の場合と同一の方法で200℃以下の温度で150点/sec以下の蒸着速度で蒸着する。前記金属層85の形成の際、前記金属層85と層間絶縁膜82の湿潤性が向上され大きいアルミニウムの粒子を有する金属層が形成されるので溝90での段差被覆性が良好である。

【0071】次に実施例2の場合と同一の方法で、前記金属層85を熱処理し前記溝90を上部金属層の物質で埋め立てながら前記金属層の表面を平坦化する。次に、反射防止膜の形成段階及び上部金属配線層の形成のためのリソグラフィー段階あるいは化学機械錬磨法(Chemical-mechanical polishing)を経て本発明の配線層を得る。前記本発明の方法により形成された配線層は、原子移動性断線が少なくなり、特に電子移動性及び耐ストレス性(electro-migrationおよびstress-migration)が改善されて、従来方法によるスパッタリングしてパタニングされた配線層に比べ信頼性が著しく改善される。

[0072]

【発明の効果】以上のような本発明の半導体装置の配線層は従来のアルゴンプラズマによるスパッタリング装置で単純にシリコン水素化物のみを追加で導入させて工程を遂行し、容易に製造できる。従って、単純な装備改善により本発明の配線層が容易に製造できる。

【0073】又、拡散障壁層の形成の際に追加でシリコン水素化物のみを追加すれば容易に本発明の配線層を形成させ得るのでスループットが改善され、同時に室間の移動回数が減るので収率が増加する。本発明の方法により形成された拡散障壁層は蒸着されたアルミニウムとの湿潤性が良好であるので、スパッタリングによりAI又はAI合金を蒸着させる場合に、段差途布性が非常に良好であり、開口部(接触口やヴァイアホール等)の側壁に断線現象が発生せず、又溶融点以下の高い温度で熱処理し前記蒸着された金属層で開口部を埋め立てる場合にリフロー特性が向上され、開口部の埋立度が増加する。又、より完全に開口部が埋め立てられるようにする。

【0074】本発明の方法により形成された配線層は、障壁層に酸化膜を存在させた状態でその上にシリル化層を形成するのでスタッフィング効果がそのまま保たれ従来技術のようなスパイキング現象が現われない。又、拡散障壁層の中間にシリル化層を形成させる場合には、前記シリル化層が金属原子又はシリコン原子の拡散経路を遮断させるので、拡散障壁層の特性がそのまま保たれ、

後に別に拡散障壁層を熱処理又は窒素アニーリングしなくても金属を蒸着させ得る。

【0075】従来の技術によれば、AIの蒸着又は埋没工程の後に、シンタリング段階が必須である。このようなシンタリング段階は水素ガスを含む窒素雰囲気で遂行される。ところが、本発明の半導体装置の配線層又は配線形成方法により形成された配線層を含む半導体装置の場合にはシリコン水素化物を利用したプラズマ処理の際に水素ラジカル又は水素ガスが発生し、これらが金属層と下部基板にふくまれるようになる。金属形成の後にはペシベーション工程が存するようになるため、後続く工程だけでも十分であるのでシンタリング段階が要らなくなる。

【0076】従って、本発明によれば、半導体装置の配線層は従来に比べ収率及び信頼性が向上されただけでなく、スループットが向上され、半導体装置をより低い値で製造できる。

【図面の簡単な説明】

【図1】従来技術において、拡散障壁層を形成した後、 酸素含有雰囲気に曝された状態で拡散障壁層の表面に酸 化物が形成された状態を示す断面図である。

【図2】従来技術において、拡散障壁層を形成した後、 N2 アニーリングして拡散防止特性を向上させた後、拡 散障壁層の表面に酸化物層が形成された状態を示す断面 図である。

【図3】従来技術において、拡散障壁層を形成した後、 イオン注入又は窒素アニリングした後、再び拡散障壁層 を形成させて得られた断面図である。

【図4】前記従来の拡散障壁層上にアルミニウムを蒸着した後、熱処理し接触口を埋没させる時現れ得る配線層の不良を示す図である。

【図5】前記従来の拡散障壁層上にアルミニウムを蒸着 した後、熱処理し接触口を埋没させる時現れ得る配線層 の不良を示す図である。

【図6】前記従来の拡散障壁層上にアルミニウムを蒸着した後、熱処理し接触口を埋没させる時現れ得る配線層の不良を示す図である。

【図7】従来の技術で生成されるアルミニウムスパイキングを示すための図面である。

【図8】 本発明の半導体装置の配線層の実施例を示す断 面図である。

【図9】本発明の半導体装置の配線層の実施例を示す断 面図である。

【図10】本発明の半導体装置の配線層の実施例を示す 断面図である。

【図11】本発明の方法による半導体装置の配線層形成 方法の一実施例を示すための概略図である。

【図12】本発明の方法による半導体装置の配線層形成 方法の一実施例を示すための概略図である。

【図13】本発明の方法による半導体装置の配線層形成

方法の一実施例を示すための概略図である。

【図] 4】 本発明の方法による開口部埋没方法の一実施例を示すための概略図である。

【図15】本発明の方法による開口部埋没方法の一実施例を示すための概略図である。

【図 1 6】本発明の方法による開口部埋没方法の一実施例を示すための概略図である。

【図17】本発明の方法による半導体装置の配線層形成 方法の他の実施例を示す図である。

【図18】本発明の方法による半導体装置の配線層形成 方法の他の実施例を示す図である。

【図19】本発明の方法による半導体装置の配線層形成

方法の又他の実施例を示すための概略図である。

【図20】本発明の方法による半導体装置の配線層形成 方法の又他の実施例を示すための概略図である。

【図21】本発明の方法による半導体装置の配線層形成 方法の又他の実施例を示すための概略図である。

【符号の説明】

- 11 半導体基板
- 13 第1拡散障壁層
- 15 第2拡散障壁層
- 17 酸化物層
- 19 シリル化層
- 20 A 1 配線層

[図1]

【図2】

【図4】

