Set Theory

Thomas Jech

September 6, 2021

Contents

1	Ordinal Numbers		1
	1.1	Linear and Partial Ordering	1
	1.2	Well-Ordering	2
	1.3	Ordinal Numbers	3
	1.4	Induction and Recursion	4
2	2 Question		6

1 Ordinal Numbers

1.1 Linear and Partial Ordering

Definition 1.1. A binary relation < on a set *P* is a **partial ordering** of *P* if

- 1. $p \not < p$ for any $p \in P$
- 2. if p < q and q < r then p < r

(P,<) is called a **partially ordered set**. A partial ordering < of P is a **linear ordering** if moreover

- 3. p < q or p = q or q < p for all $p, q \in P$ If < is a partial ordering, then \le is also a partial ordering
- if (P,<) and (Q,<) are partially ordered sets and $f:P\to Q$, then f is **order-preserving** if x< y implies f(x)< f(y). If P and Q are linearly ordered, then an order-preserving function is also called **increasing**

1.2 Well-Ordering

Definition 1.2. A linear ordering < of a set P is a **well-ordering** if every nonempty subset of P has a least element

Lemma 1.3. If (W, <) is a well-ordered set and $f: W \to W$ is an increasing function, then $f(x) \ge x$ for each $x \in W$

Proof. Assume that the set $X = \{x \in W : f(x) < x\}$ is nonempty and let z be the least element of X. If w = f(z), then f(w) < w, a contradiction \Box

Corollary 1.4. The only automorphism of a well-ordered set is the identity

Proof. By Lemma 1.3, $f(x) \ge x$ for all x, and $f^{-1}(x) \ge x$ for all x

Corollary 1.5. If two well-ordered sets W_1, W_2 are isomorphic, then the isomorphism of W_1 onto W_2 is unique

if W is a well-ordered set and $u \in W$, then $\{x \in W : x < u\}$ is an **initial** segment of W

Lemma 1.6. No well-ordered set is isomorphic to an initial segment of itself

Proof. If
$$ran(f) = \{x : x < u\}$$
, then $f(u) < u$, contrary to Lemma 1.3

Theorem 1.7. If W_1 and W_2 are well-ordered sets, then exactly one of the following three cases holds

- 1. W_1 is isomorphic to W_2
- 2. W_1 is isomorphic to an initial segment of W_2
- 3. W_2 is isomorphic to an initial segment of W_1

Proof. For $u \in W_i$, (i = 1, 2), let $W_i(u)$ denote the initial segment of W_i given by u. Let

$$f = \{(x,y) \in W_1 \times W_2 : W_1(x) \text{ is isomorphic to } W_2(y)\}$$

Using Lemma 1.6, f is a injective: if $f(x_1)=f(x_2)=y$, then $W_1(x_1)\cong W_2(y)\cong W_1(x_2)$, and $x_1< x_2$ or $x_2< x_1$ fail. If h is an isomorphism between $W_1(x)$ and $W_2(y)$, and x'< x, then $W_1(x')$ and $W_2(h(x'))$ are isomorphic. It follows that f is order-preserving

If $dom(f) = W_1$ and $ran(f) = W_2$, then case 1 holds

if $y_1 < y_2$ and $y_2 \in \operatorname{ran}(f)$, then $y_1 \in \operatorname{ran}(f)$. Thus if $\operatorname{ran}(f) \neq W_2$ and y_0 is the least element of $W_2 - \operatorname{ran}(f)$, we have $\operatorname{ran}(f) = W_2(y_0)$. Necessarily, $\operatorname{dom}(f) = W_1$, for otherwise we would have $(x_0, y_0) \in f$, where x_0 =the least element of $W_1 - \operatorname{dom}(f)$

if W_1 and W_2 are isomorphic, we say that they have the same **order-type**.

1.3 Ordinal Numbers

Definition 1.8. A set T is **transitive** if every element of T is a subset of T

Definition 1.9. A set is an **ordinal number** (an **ordinal**) if it is transitive and well-ordered by \in

Define

$$\alpha < \beta$$
 iff $\alpha \in \beta$

Lemma 1.10. 1. $0 = \emptyset$ is an ordinal

- 2. *if* α *is an ordinal and* $\beta \in \alpha$ *, then* β *is an ordinal*
- 3. *if* $\alpha \neq \beta$ *are ordinals and* $\alpha \subset \beta$ *, then* $\alpha \in \beta$
- 4. *if* α , β *are ordinals, then either* $\alpha \subset \beta$ *or* $\beta \subset \alpha$

Proof. 1,2 by definition

- 3. if $\alpha \subset \beta$, let γ be the least element of the set $\beta \alpha$. Since α is transitive, it follows that α is the initial segment of β given by γ : for $\eta \in \alpha$, $\eta \neq \gamma$ and $\gamma \notin \eta$, hence $\eta \in \gamma$ since ordinals are well-ordered by \in . Thus $\alpha = \{\xi \in \beta : \xi < \gamma\} = \gamma$, and so $\alpha \in \beta$.
- 4. $\alpha \cap \beta$ is an ordinal, $\alpha \cap \beta = \gamma$. We have $\gamma = \alpha$ or $\gamma = \beta$, for otherwise $\gamma \in \alpha$ and $\gamma \in \beta$, by 3. Then $\gamma \in \gamma$, which contradicts the definition of an ordinal (namely that \in is a **strict** ordering of α)

Using Lemma 1.10 one gets the followings

- 1. < is a linear ordering of the class Ord
- 2. for each α , $\alpha = \{\beta : \beta < \alpha\}$
- 3. if C is a nonempty class of ordinals, then $\bigcap C$ is an ordinal, $\bigcap C \in C$ and $\bigcap C = \inf C$
- 4. if X is a nonempty set of ordinals, then $\bigcup X$ is an ordinal, and $\bigcup X = \sup X$

5. for every α , $\alpha \cup \{\alpha\}$ is an ordinal and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$

We thus define $\alpha + 1 = \alpha \cup \{\alpha\}$. In view of 4, the class Ord is a proper class; otherwise consider $\sup \operatorname{Ord} + 1$

Theorem 1.11. Every well-ordered set is isomorphic to a unique ordinal number

Proof. The uniqueness follows from Lemma 1.6. Given a well-ordered set W, define $F(x) = \alpha$ is α is isomorphic to the initial segment of W given by x. If such an α exists, then it is unique. By the Replacement Axioms, F(W) is a set. For each $x \in W$, such an α exists (otherwise consider the least x for which such an α does not exists). If γ is the least $\gamma \notin F(W)$, then $F(W) = \gamma$ and we have an isomorphism of W onto γ

0 is a limit ordinal and define $\sup \emptyset = 0$

Definition 1.12 (Natural Numbers). We denote the least nonzero limit ordinal ω (or \mathbb{N}). The ordinals less than ω are call **finite ordinals**, or **natural numbers**

1.4 Induction and Recursion

Theorem 1.13 (Transfinite Induction). *Let C be a class of ordinals and assume that*

- 1. $0 \in C$
- 2. if $\alpha \in C$, then $\alpha + 1 \in C$
- 3. if α is a nonzero limit ordinal and $\beta \in C$ for all $\beta < \alpha$, then $\alpha \in C$

Then C is the class of all ordinals

Proof. Otherwise, let α be the least $\alpha \notin C$ and apply 1,2 and 3.

A function whose domain is the set \mathbb{N} is called an **(infinite)** sequence (A sequence in X is a function $f: \mathbb{N} \to X$). The standard notation for a sequence is

$$\langle a_n : n < \omega \rangle$$

A finite sequence is a function s s.t. $dom(s) = \{i : i < n\}$ for some $n \in \mathbb{N}$; then s is a sequence of length n

A transfinite sequence is a function whose domain is an ordinal

$$\langle a_\xi : \xi < \alpha \rangle$$

It is also called an α -sequence or a sequence of length α . We also say that a sequence $\langle a_{\xi}: \xi < \alpha \rangle$ is an **enumeration** of its range $\{a_{\xi}: \xi < \alpha\}$. If s is a sequence of length α , then $s \hat{\ } x$ or simply sx denotes the sequence of length $\alpha + 1$ that extends s and whose α th term is x:

$$s^{\hat{}}x = sx = s \cup \{(\alpha, x)\}\$$

Sometimes we call a "sequence"

$$\langle a_{\alpha} : \alpha \in \mathsf{Ord} \rangle$$

a function (a proper class) on Ord

"Definition by transfinite recursion" usually takes the following form: Given a function G (on the class of transfinite sequence), then for every θ there exists a unique θ -sequence

$$\langle a_{\alpha} : \alpha < \theta \rangle$$

s.t.

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

for every $\alpha < \theta$

Theorem 1.14 (Transfinite Recursion). Let G be a function (on V), then (1) below defines a unique function F on Ord s.t.

$$F(\alpha) = G(F \upharpoonright \alpha)$$

for each α

In other words, if we let $a_{\alpha} = F(\alpha)$, then for each α

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

(Note that we tacitly use Replacement: $F \upharpoonright \alpha$ is a set for each α)

Corollary 1.15. Let X be a set and θ an ordinal number. For every function G on the set of all transfinite sequences in X of length $< \theta$ s.t. $\operatorname{ran}(G) \subset X$ there exists a unique θ -sequence $\langle a_{\alpha} : \alpha < \theta \rangle$ in X s.t. $a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$ for every $\alpha < \theta$

Proof. Let

$$\begin{split} F(\alpha) &= x \leftrightarrow \text{there is a sequence } \langle a_{\xi} : \xi < \alpha \rangle \text{ s.t.:} \\ &1. \ (\forall \xi < \alpha) a_{\xi} = G(\langle a_{\eta} : \eta < \xi \rangle) \\ &2. \ x = G(\langle a_{\xi} : \xi < \alpha \rangle) \end{split}$$

2 Question