

Otimização de Viagens em Companhias Aéreas Brasileiras

Daniel Augusto Cortez, Lucas Rodrigues Colucci e Renato Lerac Corrêa de Sá

dacortez79@gmail.com, lucasrcolucci@gmail.com, renatolerac@gmail.com

Introdução

As tripulações de uma companhia aérea representam o segundo maior custo operacional, perdendo apenas para o combustível. Um processo otimizado de escalonamento pode resultar em ganhos econômicos da ordem de milhões de dólares.

O problema é resolvida em duas etapas. Na primeira delas, determina-se uma partição dos voos da empresa em um conjunto de viagens legais de custo mínimo (PDV). Na segunda, as viagens obtidas devem ser atribuídas aos tripulantes de forma a minimizar os custos (PDE).

Estudamos aqui o PDV. Uma viagem é definida como uma sequencia de voos encadeados no espaço e no tempo, obedecendo uma série de restrições legais impostas pela legislação do aeronauta brasileira, originando e terminando na base residencial do tripulante.

Implementamos e comparamos três métodos de solução do PDV: um algoritmo baseado em uma busca local, um algoritmo genético híbrido e um procedimento de geração de colunas.

FORMULAÇÃO

O PDV pode ser formulado como um problema de programação linear inteiro conhecido por **Set Cover**: Seja $x_j = 1$ se a viagem j for escolhida, com custo c_j . Seja $y_i \ge 0$ o número de vezes que o voo i é coberto e d_i o custo associado. Então, queremos resolver:

minimizar
$$\sum_{j=1}^n c_j x_j + \sum_{i=1}^m d_i y_i$$
 sujeito à
$$\sum_{j=1}^n a_{ij} x_j - y_i = 1, \quad i = 1, \dots, m$$

$$x_j \in \{0, 1\}, \quad j = 1, \dots, n$$

$$y_i \ge 0, \quad i = 1, \dots, m.$$

Dado que o problema é NP-difícil e que existe um número enorme de variáveis (viagens possíveis), métodos heurísticos devem ser aplicados.

Geração de Viagens

As viagens para otimização são geradas a partir de uma busca em profundidade na rede de voos do problema. Cada nó representa um voo e arcos são adicionados toda vez que for possível estabelecer uma conexão legal entre os voos. Uma fonte s e um sorvedouro t são adicionados e os voos que se iniciam na base da tripulação são ligados à s. Os voos que chegam na base são ligados à t. Toda viagem viável representa um caminho s-t no grafo.

Análise Preliminar

Resolvemos exatamente o PLI para um conjunto de voos utilizando os otimizadores GLPK e CPLEX. Dado o número enorme de variáveis geradas, os problemas não puderam ser resolvidos em tempo hábil mesmo para um número pequeno de pernas (voos).

Algoritmo Genético

Busca Local Critério de Solução Escolha k viagens inicial parada satisfeito? aleatórias da solução Problema viável?

Geração de Colunas

```
\boldsymbol{x} \leftarrow \text{solução viável}
\boldsymbol{\pi} \leftarrow \text{duais da relaxação com } \boldsymbol{x} \text{ repeat}
until w^* > 0
for Blur and regularisation values do
     Initialize q, q_{\text{best}} and \kappa
    repeat
          Calculate \Delta p F(q,0), F(q)
          if F(q) < F(q_{best}) then
               q_{\text{best}} \leftarrow q
               Increase \kappa
          else
               if \kappa smaller than threshold then
                 ∟ return
              decrease \kappa
          Calculate p from \Delta pF(q_{best}, p) and \kappa
         q \leftarrow C \circ q, p
    until converged
```


		73H_26		738_48		733_92		73G_340		cgh_sdu_62	
		Obj	CPU	Obj	CPU	Obj	CPU	Obj	CPU	Obj	CPU
CG		5,696	0,26	6,230	0,54	10,973	1,36	42,744	54,02	10,103	1,13
LS	k=2	0%	1,10	>100%	1,22	>100%	3,16	>100%	208,44	>100%	0,79
	k=3	0%	1,48	14,1%	7,91	8,1%	18,68	$32,\!5\%$	1303,53	87,9%	1,31
	k=4	0%	1,81	0%	11,46	8,0%	99,09	25,7%	2182,31	0%	17,83
AG	f=1	0%	1,39	78,1%	4,35	>100%	8,30	>100%	1074,97	56,2%	4,31
	f = 5	0%	$4,\!17$	13,8%	13,19	$46,\!4\%$	10,79	>100%	763,19	$36,\!2\%$	13,99
	$\int f = 10$	0%	11,01	0%	33,99	72,2%	17,85	>100%	482,10	30,5%	27,50

Conclusões