

Education

Bachelor of Science

Major in Computer Science & Data Science

• GPA: 3.7/4.3 (Around 5% in CS Dept)

• Graduate Courses: Optimization, Computer Vision

Graduate Courses: Operating System, Machine Learning

The Hong Kong University of Science and Technology September 2020 – June 2024

Exchange Northwestern University

2022 Fall

Publication

• **Xiaonan Luo***, Yichao Fu,* Cheng Wan, Zhifan Ye, Yingyan Lin. *VR-BNS: Variance Reduction for Boundary Nodes Sampling for full-graph training.* (In preparation)

• Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, **Xiaonan Luo**, Zhuohao Li, Wei Wang, Ruichuan Chen, Dapeng Nie, Haoran Yang. *FaaSwap: SLO-Aware, GPU-Efficient Serverless Inference via Model Swapping*. arXiv:2306.03622 (Submitted to EuroSys' 24)

Research Experience

Topic in DLRM & CXL-related architecture design

Advised by Prof. Yufei Ding in UCSD

2023 Summer UCSD, U.S.

- Research in the area of system/architecture design for memory-intensive DLRM. The project aims to alleviate memory pressure while minimizing training latency overhead. A CXL-GPU heterogeneous memory-tiered system is proposed.
- Design CXL-featured cache mechanism by leveraging the granularity of the CXL-enabled system to mitigate inter-device communication
- Propose a comprehensive memory allocation algorithm(comprehensive compared with SOTA works) over different memory hierarchies to minimize embedding lookup latency

VR-BNS: Variance Reduction for Boundary Nodes Sampling for full-graph training

2023 Spring Gatech, U.S.

Advised by Prof. Yingyan Lin in Georgia Institute of Technology

- Research in the area of GNN training optimization. The project is closely related to BNS-GCN, a boundary
 node sampling based training framework to reduce memory footprint and communication volume. A new
 approximate computation algorithm will be used to reduce feature variance, induced by the insight of
 history aggregation embeddings.
- Re-design GAT computation algorithm, followed by the insight of history aggregation embedding to approximate feature prediction under full-graph training.
- Implemented GAT computation and training process, stabilized computation over training iteration with synchronized normalization.
- In addition to sampling-based memory reduction, included tensor compression technique to further reduce memory footprint on accelerators.

FaaSwap: SLO-Aware, GPU-Efficient Serverless Inference via Model Swapping Jan 2023 – May 2023 Advised by Prof. Wei Wang in HKUST HKUST, HK

- Research in the area of ML inference optimization in the context of serverless computing. The project aims to improve accelerator utilization under latency-aware inference. Submitted to EuroSys 24': FaaSwap
- Design of GPU remoting, model swapping, memory management, asynchronized server-client communication, and scheduling algorithm technique
- Conducted experiments on classical models inference performance(e.g. BERT, Resnet) with factors of GPU remoting(sync or async), model swapping, pipelining(PCIe or NVLink)

Professional Experience

Meituan

Software Engineer Intern

2022 Summer Beijing, China

• Implemented Meituan Network Automatic Platform(MNAP) for switch operation and maintenance

Skills

Coding C++, Python, Golang

Framework PyTorch, DGL

Language Fluent in English, Native Mandarin Chinese