Host Utilities

Supporting Ministries

Session: India@100 in 2047: Vision for the Indian Power System

IEEE 2800 Complied Power Hardware-in-the-Loop (PHIL) Setup for Analyzing PV Plant's Behavior in Power Systems

Presented By

Sarasij Das, Associate Professor, IISc Bangalore

INTRODUCTION

Large-scale plants with Grid-Following (GFL) converters installed

• Dynamic and fault behavior of inverter-interfaced PV plants are different from the behavior of conventional synchronous generators

• IEEE 2800-2022 addresses interconnection and interoperability of Inverter-Based Resources at Transmission Level

CONTEXT

 Many unexpected system oscillations, over-voltages, and protection trippings are being observed in the field specially in weak-grids

How to model PV plants in grid connection studies?

How do we choose various grid-code settings for PV plants?

Do we need Grid Forming Inverters?

RELEVANCE

Grid-India facing many technical challenges with renewable integrations

 Experimental Set-up on realistic PV plant needed for better understanding and modelling of inverters' behaviour

- Grid-India (SRLDC) funded following projects at IISc to build a laboratoryscale PV plant in Hardware
- "Development of Grid Following Inverter & Experimental Set-up on Grid Integration of Photovoltaic Power Plants: Phase-I"
- "Development of Grid forming Inverter & experimental set-up on Grid Integration of Photovoltaic Power Plants (Phase-II)"

PRESENTATION ON THE TOPIC (1/2) (1 Min)

TABLE I: Modes of Operation of the Setup

Mode	Configuration	CB-1 Status	CB-2 Status	CB-3 Status
1	GFM with Load	Open	Open	Close
2	GFM	Open	Close	Open
3	GFL	Close	Open	Open
4	GFL, GFM Parallel	Close	Close	Open

IEEE 2800-2022 Requirements	Implemented in the GFL Inverter	
Voltage Ride Through	Yes	
Frequency Ride Through	Yes	
Reactive Power Control	Yes	
Automatic Voltage Regulation	Yes	
Balanced Current Injection	Yes	
Unbalanced Current Injection	Yes	

PRESENTATION ON THE TOPIC (2/2) (1 Min)

USE CASE / CASE STUDY

- Case Study: Weak Grid Scenario (SCR 1.9)
- Case-1: Only GFL
- Case-2: GFL+GFM

- GFL became unstable after Oscillations
- MPPT could not be reached

- GFL was stable when GFM running in parallel
- MPPT was reached

KEY TAKEAWAYS / RECOMMENDATIONS

• IEEE 2800 Complied PHIL set-up developed

Practical Inverter behaviour with a portion of Indian grid can be tested

Model validation can be done

Performance of Power Plant Controller can be checked

Grid code settings can be experimentally validated

KEY TAKEAWAYS / RECOMMENDATIONS

Future Extensions:

Development of STATCOM in hardware to study interactions

Development of HVDC Line in hardware to study interactions

We are looking for more industry collaborations
Contact me (<u>Sarasij@iisc.ac.in</u>)

Host Utilities

ORGANIZER

India **SMART UTILITY** Week 2025

Supporting Ministries

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

www.isuw.in

Links/References (If any)

