Part III – Analytic Number Theory (Unfinished course)

Based on lectures by Dr T. Bloom Notes taken by Bhavik Mehta

Lent 2019

Contents

0	Introduction	2
1	Elementary Techniques 1.1 Arithmetic Functions	3
In	dex of Notation	6
In	dex	7

0 Introduction

Lecture 1 Analytic Number Theory is the study of numbers using analysis. It is a fascinating field because because a number - in particular in this course an integer - is discrete, whilst analysis involves the real/complex numbers which are continuous.

In this course, we will ask quantitative questions.

Example.

1. How many primes? We can define the function $\pi(x) = |\{n \mid n \leq x \text{ and } n \text{ is prime}\}|$. Then the prime number theorem, which we will prove in this course states

$$\pi(x) \sim \frac{x}{\log x}.$$

(We will always take 'numbers' to mean natural numbers, not including zero).

- 2. How many twin primes are there? That is, where p, p+2 are both prime. It is not known whether there are infinitely many but since 2014, there has been immense progress by Zhang, Maynard and a Polymath project which has determined there are infinitely many primes at most 246 apart. Guess: there are $\approx \frac{x}{(\log x)^2}$ many $\leq x$.
- 3. How many primes are there $\equiv a \mod q$ where (a,q)=1. We know, by Dirichlet's theorem proven in the 20th century, that there are infinitely many such. The guess for how many is

$$\frac{1}{\varphi(q)} \frac{x}{\log x}.$$

This is known for small q. Recall $\varphi(n) = |\{1 \le m \le n \mid (m,n) = 1\}|$

The course will be split up into 4 (roughly equal) parts

- 1. Elementary techniques (real analysis)
- 2. Sieve methods
- 3. Riemann Zeta function, Prime Number Theorem (complex analysis)
- 4. Primes in arithmetic progressions

1 Elementary Techniques

We begin with a review of asymptotic notations:

- $f(x) = \mathcal{O}(g(x))$ if there is C > 0 such that $|f(x)| \le C|g(x)|$ for all large enough x. (Landau notation)
- $f \ll g$ is the same as $f = \mathcal{O}(g)$ (Vinogradov notation)
- $f \sim g$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$ (i.e. f = (1 + o(1))g).
- f = o(g) if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$

1.1 Arithmetic Functions

Definition (Arithmetic function). An arithmetic function is just a function $f: \mathbb{N} \to \mathbb{C}$.

Definition (Convolution). An important operation for multiplicative number theory is the multiplicative convolution

$$f * g(n) := \sum_{ab=n} f(a)g(b).$$

Example.

- $1(n) := 1 \ \forall n$. Caution: $1 * f \neq f$.
- Möbius function:

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \cdots p_k \\ 0 & \text{if } n \text{ not squarefree} \end{cases}$$

• Liouville function:

$$\lambda(n) = (-1)^k$$
 if $n = p_1 \cdots p_k$, not necessarily distinct

• Divisor function:

$$\tau(n) = |\{d \mid d \text{ a factor of } n\}|$$

Definition (Multiplicative function). An arithmetic function is a **multiplicative function** if f(nm) = f(n)f(m) for (n,m) = 1. In particular, a multiplicative function is determined by its values on prime powers $f(p^k)$.

Fact. If f, g are multiplicative, then so is f * g. $\log n$ is not multiplicative. Note, almost all arithmetic functions are not multiplicative.

Lemma (Möbius inversion).

$$1 * f = q \iff \mu * q = f.$$

Proof.

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}$$

Note the left hand side is $1 * \mu$. Since $1, \mu$ are multiplicative, $1 * \mu$ is multiplicative. Hence it is enough to check the identity for prime powers: If $n = p^k$, then $\{d \mid d \text{ divides } n\} = \{1, p, \ldots, p^k\}$ so the left hand side is $1 - 1 + 0 + \ldots + 0 = 0$, unless k = 0 when the left hand side is $\mu(1) = 1$.

The right hand side is the identity of convolution, and convolution is associative, giving the required result. \Box

Our ultimate goal is to study the primes. This would suggest that we should work with

$$1_p(n) = \begin{cases} 1 & \text{if } n \text{ prime} \\ 0 & \text{otherwise} \end{cases}$$

For example $\pi(x) = \sum_{1 \le n \le x} 1_p(n)$. This is an awkward function to work with. Instead, we work with the **von Mangoldt function**

$$\Lambda(n) = \begin{cases} \log p & \text{if } n \text{ is a prime power} \\ 0 & \text{otherwise.} \end{cases}$$

This function is easier to understand. Why?

Lemma 1.1.

$$1 * \Lambda = \log$$
 and $\mu * \log = \Lambda$

Proof. The second part follows immediately by Möbius inversion.

$$1 * \Lambda(n) = \sum_{d|n} \Lambda(d) \quad \text{so if } n = p_1^{k_1} \dots p_k^{n_k}$$

$$= \sum_{i=1}^r \sum_{j=1}^{k_i} \Lambda(p_i^j)$$

$$= \sum_{i=1}^r \sum_{j=1}^{k_i} \log p_i$$

$$= \sum_{i=1}^r k_i \log p_i = \sum_{i=1}^r \log p_i^{k_i} = \log n.$$

We can write

$$\begin{split} \Lambda(n) &= \sum_{d|n} \mu(d) \log \left(\frac{n}{d}\right) \\ &= \log n \sum_{d|n} \mu(d) - \sum_{d|n} \mu(d) \log d \\ &= - \sum_{d|n} \mu(d) \log d. \end{split}$$

Example.

$$\begin{split} \sum_{1 \leq n \leq x} & \Lambda(n) = -\sum_{1 \leq n \leq x} \sum_{d \mid n} \mu(d) \log d \\ &= -\sum_{d \leq x} \mu(d) \log(d) \left(\sum_{\substack{1 \leq n \leq x \\ d \mid n}} 1 \right) \\ &= -x \sum_{d \leq x} \mu(d) \frac{\log d}{d} + O\left(\sum_{d \leq x} \mu(d) \log d \right) \\ &\sum_{\substack{1 \leq n \leq x \\ d \mid n}} 1 = \left\lfloor \frac{x}{d} \right\rfloor = \frac{x}{d} + O(1). \end{split}$$

 $\quad \text{since} \quad$

Index of Notation

k	convolution, 3	μ	Möbius function, 3
\mathcal{I}	Big $\mathcal O$ notation; Landau notation, 3	\sim	asymptotic equality, 3
Λ	von Mangoldt function, 4		0 1 1 07
λ	Liouville function, 3	au	divisor function, 3
«	Vinogradov notation, 3	0	Little o notation, 3

Unfinished course 6 Updated online

Index

arithmetic function, 3 Liouville function, 3 Möbius function, 3 multiplicative function, 3 divisor function, 3 von Mangoldt function, 4