Optimization

Lusine Poghosyan

YSU

October 30, 2020

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and f is twice continuously differentiable, then f is convex if and only if

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \Omega.$$

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and f is a twice continuously differentiable function such that $\nabla^2 f(x) \succ 0$, $\forall x \in \Omega$, then f is strictly convex.

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and f is twice continuously differentiable, then f is concave if and only if

$$\nabla^2 f(x) \leq 0, \quad \forall x \in \Omega.$$

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and f is a twice continuously differentiable function such that $\nabla^2 f(x) \prec 0$, $\forall x \in \Omega$, then f is strictly concave.

Example

Check whether f is convex (strictly convex), concave (strictly concave) on Ω if

a.
$$f(x_1, x_2, x_3) = x_1^2 + 3x_1x_2 + 4x_2^2 + x_3^2 - x_1x_3, \Omega = \mathbb{R}^3$$
;

b.
$$f(x_1, x_2) = -x_1^4 + 2x_1x_2 - x_2^4 - x_1^2 - x_2^2$$
, $\Omega = \mathbb{R}^2$;

c.
$$f(x_1, x_2) = e^{x_1 x_2}, \Omega = \mathbb{R}^2$$
;

d.
$$f(x_1, x_2) = x_1^3 + x_2^3$$
, $\Omega = \mathbb{R}^2$.

Unconstrained Optimization

Conditions for Local Minimizers

minimize
$$f(x)$$

subject to $x \in \Omega$,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

Theorem (First-Order Necessary Conditions (FONC))

Assume f is a continuously differentiable function in Ω . If x^* is a local minimizer (maximizer) of f over Ω and x^* is an interior point of Ω , then

$$\nabla f(x^*)=0.$$

Definition

We call x^* a stationary point if $\nabla f(x^*) = 0$.

Example

Consider the problem

minimize
$$x_1^2 + 0.5x_2^2 + 3x_2 + 4.5$$

subject to $x \in \mathbb{R}^2$.

Find the points which satisfy the first-order necessary condition (FONC) for a local minimizer.

Theorem (Second-Order Necessary Conditions (SONC))

Assume f is twice continuously differentiable in Ω . If x^* is a local minimizer (maximizer) of f over Ω and x^* is an interior point of Ω , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive (negative) semidefinite.

Definition

A saddle point is a stationary point which is not a local extremum.

Example

Show that $x^* = (0,0)^T$ is a saddle point for the function $f(x_1, x_2) = x_1^2 + 8x_1x_2 + x_2^2$.

Theorem (Second-Order Sufficient Conditions (SOSC))

Assume f is twice continuously differentiable in Ω . If x^* is an interior point of Ω such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive (negative) definite, then x^* is a strict local minimizer (maximizer) of f.

Example

Find all stationary points of *f* and check if these points are local maximum, minimum or saddle points for that function if

a.
$$f(x_1, x_2) = 4x_1^4 + x_2^4 + 4x_1x_2$$
;

b.
$$f(x_1, x_2) = \frac{1}{3}x_1^3 - 4x_1 + \frac{1}{3}x_2^3 - 16x_2;$$

c.
$$f(x_1, x_2, x_3) = 3x_1^3 - 9x_1 + x_2^3 + x_3^3 - 6x_3^2 - 10.$$