DMTH237 Discrete Mathematics II — Assignment 3

Christian Nassif-Haynes

May 29, 2013

- 1. (a) We have $26 \times 2 + 10 + 6 = 68$ available characters. Hence, there are $68^8 + 68^9 + 68^{10} + 68^{11} + 68^{12} = 9,920,671,339,261,325,541,376$ different passwords.
 - (b) With only letters and numbers we have $26 \times 2 + 10 = 62$ characters so that there are $62^8 + 62^9 + 62^{10} + 62^{11} + 62^{12}$ passwords which do not contain at least one special character. Subtracting this from the number of passwords found in part 1a we have

$$(68^8 + 68^9 + 68^{10} + 68^{11} + 68^{12}) - (62^8 + 62^9 + 62^{10} + 62^{11} + 62^{12})$$

= 6, 641, 514, 961, 387, 068, 437, 760

which is the number of passwords not containing at least one special character.

- (c) Checking each password would take 314.6 billion years (short scale)—about 23 times the age of the universe!
- 2. To solve this problem we note the following.
 - Without restricting the value of each digit we have 10⁹ possible strings.
 - There are 9⁹ strings which do not contain the digit 1 but may contain 3 or 7.
 - There are $9^9 8^9$ strings which do not contain the digit 3, contain at least a single 1 and may contain a 7. This is a problem of the same kind as in part 1b.
 - There are $9^9 2(8^9 7^9) 7^9$ strings which do not contain the digit 7 but contain at least a single 1 and at least a single 3. This is because there are $8^9 7^9$ strings which do not contain the digits 1 and 7 but contain at least a single 3; there are $8^9 7^9$ strings which do not contain the digits 3 and 7 but contain at least a single 1 and; there are 7^9 strings which do not contain the digits 1, 3 or 7.

From this we see that the number of strings which have 1, 3 and 7 appearing at least once is given by

$$(10^9) - (9^9) - (9^9 - 8^9) - (9^9 - 2(8^9 - 7^9) - 7^9)$$

= 200, 038, 110.

3. (a) A teacher has n students and asks them all m questions. Any student who gets a question correct gets a piece of candy. (It is possible that no student is correct, so that no one gets candy.)

1

Now, if r questions are answered correctly there are

$$\binom{n+r-1}{r}$$

ways the candy might be distributed among the students. By the rule of sum,

$$\sum_{r=0}^{m} \binom{n+r-1}{r}$$

is the number of different distributions of candy for a varying number of correct answers. The RHS,

$$\binom{n+m}{m}$$
,

is then the number of ways to distribute the students among the candy, including the case where no students answer correctly.

(b) First we show that the base case (where m = 0) holds.

$$\sum_{r=0}^{m} \binom{n+r-1}{r} = \binom{n+m}{m}$$

$$\sum_{r=0}^{0} \binom{n+r-1}{r} = \binom{n+0}{0}$$

$$\binom{n+0-1}{0} = \binom{n+0}{0}$$

$$1 = 1$$
(1)

Now, in order to undertake the inductive step we will use

$$\sum_{i=0}^{n} \binom{j}{k} = \binom{n+1}{k+1}, \quad \text{for every } n, k \in \mathbb{N}$$
 (2)

which, for completeness, we prove as follows:

$$\sum_{j=0}^{n} {j \choose k} = \sum_{j=0}^{n} \left[{j+1 \choose k+1} - {j \choose k+1} \right]$$

$$= \left[{1 \choose k+1} - {0 \choose k+1} \right] + \left[{2 \choose k+1} - {1 \choose k+1} \right] + \left[{3 \choose k+1} - {2 \choose k+1} \right] + \dots + \left[{n+1 \choose k+1} - {n \choose k+1} \right]$$

$$= -{0 \choose k+1} + \left[{1 \choose k+1} - {1 \choose k+1} \right] + \left[{2 \choose k+1} - {2 \choose k+1} \right]$$

$$+ \dots + \left[{n \choose k+1} - {n \choose k+1} \right] + {n+1 \choose k+1}$$

$$= {n+1 \choose k+1}.$$

Completing the inductive step, we must have

$$\sum_{r=0}^{m+1} \binom{n+r-1}{r} = \binom{n+m+1}{m+1} \qquad \text{(by the induction hypothesis)}$$

$$\sum_{r=0}^{m+1} \binom{n+r-1}{n-1} = \binom{n+m+1}{m+1} \qquad (n \text{ choose } k \text{ equals } n \text{ choose } n-k)$$

$$\sum_{s=n-1}^{n+m} \binom{s}{n-1} = \binom{n+m+1}{m+1} \qquad \text{(letting } s=n+r-1)$$

$$\binom{n+m+1}{n-1+1} = \binom{n+m+1}{m+1} \qquad \text{(by equation (2))}$$

$$\binom{n+m+1}{m+1} = \binom{n+m+1}{m+1}, \qquad (n \text{ choose } k \text{ equals } n \text{ choose } n-k)$$

which was to be proved.

4. Two integers a_i, a_{i+1} are consecutive if $a_{i+1} > a_i + 1$. Hence we have

$$1 \le a_1 < a_2 - 1 < a_3 - 2 < a_4 - 3 < a_5 - 4 < a_6 - 5 < a_7 - 6 \le 50 - 6.$$

Writing $b_i = a_i - (i - 1)$, we have

$$1 \le b_1 < b_2 < \dots < b_7 \le 44.$$

Now there clearly exists a bijection between every a_i, b_i . Thus, the number of ways to choose $a_i, 1 \le i \le 7$ is equal to the number of ways to choose $b_i, 1 \le i \le 7$.

The number of ways to choose the seven different numbers is therefore

$$\binom{44+1}{7} = 45,379,620.$$

5. The left and right machines accept the languages \mathcal{L} and \mathcal{M} . Their respective state tables are show below.

The state tables for the machines which accept the languages $\overline{\mathcal{L}}$ and $\overline{\mathcal{M}}$ are shown below.

Combining the above tables to find a finite state acceptor for the language $\overline{\mathcal{L}} + \overline{\mathcal{M}}$ yields the mutually equivalent machines shown below.

						0	1			0	1	
	0	1	١		$\rightarrow AR$	BS	CR	*	$\rightarrow 0$	1	2	*
\ A	U	1	$\frac{\lambda}{AR}$		BS	CR	ES	*	1	2	3	*
$\rightarrow A_0$	D	α	An		CR	CR	CR	*	2	2	2	*
A	B	C		*	ES	GT	GS	*	3	4	5	*
B	D	E		*	GT	CR	AT	*	4	2	6	*
C	F	Z		*	GS	CR	\overline{AS}	*	5	2	7	*
D	Z	Z			AT	BR	CT	*	6	8	9	*
E	G	G			AS	BT	\overline{CR}	*	7	10	2	*
F	Z	Z			BR	CR	ER	*	8	2	11	*
G	Z	A		*	CT	FR	$\frac{DR}{CR}$	*	9	12	2	*
Z	Z	Z		*	BT	FR	ET	*	10	12	13	*
R	\overline{S}	R				GS	$\frac{EI}{GR}$	本	-	5		*
S	T	S		*	ER				11		14	
T	\overline{R}	T		*	FR	CR	CR		12	2	2	
				J	ET	GR	GT	*	13	14	4	*
					GR	CR	AR	*	14	2	0	*

Hence, we have the machine accepting strings in the language $\mathcal{L} \cap \mathcal{M}$, shown below.

	0	1	
$\rightarrow 0$	1	2	
1	2	3	
2	2	2	
3	4	5	
4	2	6	
5	2	7	
6	8	9	
7	10	2	
8	2	11	
9	12	2	
10	12	13	
11	5	14	*
12	2	2	*
13	14	4	
14	2	0	