Department of Computer Science Ashoka University

Introduction to Machine Learning: CS-3410-1

Assignment 2

Name: Dhruman Gupta

1 Question 1

Done on jupyter notebook.

2 Question 2

Done on jupyter notebook.

3 Question 3

Done on jupyter notebook. Question 4 is done next page onwards.

4 Do you even shatter?

4.1 $1\{a < x\}$

The VC dimension of this hypothesis class is 1. Given an $x \in \mathbb{R}$, the hypothesis $h(x) = 1\{a < x\}$ can shatter the set $\{x\}$ by choosing a < x or a > x depending on the label of x.

However, if we have 2 points, such that $x_1 < x_2$, where x_1 is labelled 1 and x_2 is labelled 0, then any choice of a will result in the other point being misclassified. Thus, the VC dimension is 1.

4.2 $1\{a < x < b\}$

The VC dimension of this hypothesis class is 2. Given two points $x_1 < x_2$, the hypothesis $h(x) = 1\{a < x < b\}$ can shatter these two points:

- For labelling (1,1), we can choose $a < x_1 < x_2 < b$.
- For labelling (0,0), we can choose $x_1 < a < b < x_2$.
- For labelling (1,0), we can choose $a < x_1 < b < x_2$.
- For labelling (0,1), we can choose $x_1 < a < x_2 < b$.

Now, say we have 3 points, $x_1 < x_2 < x_3$. Given the labelling (1,0,1), we can see that no choice of a and b will result in all the points being labelled correctly. Thus, the VC dimension is 2.

4.3 $1\{a\sin(x)>0\}$

The VC dimension of this hypothesis class is 1. Pick any x_1 with $\sin x_1 \neq 0$. To label 1, we can choose $a = \frac{\sin x_1}{|\sin x_1|}$. This will label x_1 as 1. If the label is 0, we can choose $a = -\frac{\sin x_1}{|\sin x_1|}$. This will label x_1 as 0.

Now, consider two points. If the signs of $\sin x_1$ and $\sin x_2$ are the same, then the labelling (1,0) or (0,1) cannot be achieved. If the signs are different, then the labelling (1,1) cannot be achieved. Thus, the VC dimension is 1.

4.4 $1\{\sin(x+a) > 0\}$

The VC dimension of this hypothesis class is 2. Given two points $x_1 < x_2$, the hypothesis $h(x) = 1\{\sin(x + a) > 0\}$ can shatter these two points:

- For labelling (1,1), we can choose a such that $\sin(x_1+a)>0$ and $\sin(x_2+a)>0$.
- For labelling (0,0), we can choose a such that $\sin(x_1+a)<0$ and $\sin(x_2+a)<0$.
- For labelling (1,0), we can choose a such that $\sin(x_1+a)>0$ and $\sin(x_2+a)<0$.
- For labelling (0,1), we can choose a such that $\sin(x_1+a) < 0$ and $\sin(x_2+a) > 0$.

As long as $x_1 - x_2 \mod \pi \equiv 0$ is not true, we can always find an a such that the labelling is achieved. Since for any x_1, x_2 where the above is not true, we can shatter them, the VC dimension is 2.

Consider 3 points, x_1, x_2, x_3 . Calculate $\theta_1, \theta_2, \theta_3$ as $\theta_i = x_i \mod 2\pi$. Now, WLOG, assume $\theta_1 \leq \theta_2 \leq \theta_3$. With this ordering (which will be there for every single point), the labelling (1,0,1) cannot be achieved. Because if $\sin(a+x_1)>0$, and $\sin(a+x_3)>0$, then it must be the case that $\sin(a+x_2)>0$ too. This comes from the fact that sin is continous, and x_2 is sandwiched between x_1 and x_3 . So, $\sin x_2$ cannot be lesser than 0. Thus, the VC dimension is 2.

5 Question 5

In this case, we can infact shatter all 3 options (I almost tried with a compass to verify this).

What this tells me is that the VC dimension is at least 4 - as it can shatter a set of 4 points.