

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

ОТЧЕТ по лабораторной работе № <u>5</u>

Дисциплина: Технологии машинного обучения **Тема:** «Ансамбли моделей машинного обучения»

Студент	ИУ5Ц-82Б (Группа)	(Подпись, дата)	А.Н. Свинцов (И.О. Фамилия)
Преподаватель		(Подпись, дата)	Ю.Е. Гапанюк (И.О. Фамилия)
Преподаватель		(Подпись, дата)	А.Н. Нардид (И.О. Фамилия)

Лабораторная работа №5

```
Ансамбли моделей машинного обучения
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
import matplotlib.pyplot as plt
# скроем предупреждения о возможных ошибках для лучшей читаемости
import warnings
warnings.filterwarnings('ignore')
target col = 'class'
data = pd.read_csv('mushrooms.csv')
data
     class cap-shape cap-surface cap-color bruises odor gill-
attachment
                                                     t
0
                    Χ
                                 S
                                            n
                                                           р
         р
f
1
         е
                    Χ
                                 S
                                                     t
                                                           а
                                            У
f
2
                    b
                                                     t
                                                           l
         е
                                 S
                                            W
f
3
         р
                    Х
                                 У
                                            W
                                                     t
                                                           р
f
4
                                                     f
                                                           n
         е
                    Χ
                                 S
                                            g
f
. . .
       . . .
                  . . .
                               . . .
                                           . . .
                                                   . . .
                                                         . . .
8119
                    k
                                                     f
         е
                                 S
                                            n
                                                           n
8120
         e
                    Х
                                 S
                                            n
                                                     f
                                                           n
а
8121
                    f
         е
                                 S
                                            n
                                                           n
8122
                    k
                                                     f
         р
                                 У
                                            n
                                                           У
f
8123
         е
                    Χ
                                 S
                                            n
                                                           n
а
     gill-spacing gill-size gill-color ... stalk-surface-below-
ring
                                        k
                 С
                            n
                                                                         S
                                          . . .
```

1	С	b	k			S	
2	С	b	n			S	
3	С	n	n			S	
4	W	b	k			S	
8119	С	b	у			S	
8120	С	b	у			S	
8121	С	b	n			S	
8122	С	n	b			k	
8123	С	b	у			S	
stalk-cold color \ 0 W 1 W 2 W 3 W 4 W 8119 0 8120 n 8121 0 8122 W 8123		.ng stalk-co	olor-below-ri	w w w w	p p p p p p p		
ring-number ring-type spore-print-color population habitat o p k s u							

1	0	р	n	n	g
2	0	p	n	n	m
3	0	р	k	S	u
4	0	е	n	а	g
8119	0	р	b	С	l
8120	0	р	b	V	l
8121	0	p	b	С	l
8122	0	ė	W	V	l
8123	0	р	0	С	l

[8124 rows x 23 columns]

Предварительная обработка #Проверка на пропуски

data.isnull().sum()

```
class
                             0
cap-shape
cap-surface
                             0
                             0
cap-color
bruises
                             0
odor
                             0
gill-attachment
                             0
gill-spacing
                             0
gill-size
                             0
                             0
gill-color
stalk-shape
                             0
stalk-root
                             0
stalk-surface-above-ring
                             0
stalk-surface-below-ring
                             0
stalk-color-above-ring
                             0
                             0
stalk-color-below-ring
veil-type
                             0
veil-color
                             0
                             0
ring-number
                             0
ring-type
                             0
spore-print-color
population
                             0
habitat
dtype: int64
```

Пропусков нет

Категориальные признаки

```
le = LabelEncoder()
for col in data.columns:
    column_type = data[col].dtype
    if column type == 'object':
```

```
data[col] = le.fit transform(data[col]);
        print(col)
class
cap-shape
cap-surface
cap-color
bruises
odor
gill-attachment
gill-spacing
gill-size
gill-color
stalk-shape
stalk-root
stalk-surface-above-ring
stalk-surface-below-ring
stalk-color-above-ring
stalk-color-below-ring
veil-type
veil-color
ring-number
ring-type
spore-print-color
population
habitat
Обучающая и тестовая выборка
from sklearn.model selection import train test split
data_x = data.loc[:, data.columns != target_col]
data_y = data[target_col]
train_x, test_x, train_y, test_y = train_test_split(data_x, data_y,
test size=0.3, random state=1)
train x.shape
(5686, 22)
test_x.shape
(2438, 22)
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean absolute error
from sklearn.metrics import median_absolute_error, r2_score,
precision score
def test model(model):
```

```
print('precision: {}'.format(round(precision_score(test_y,
model.predict(test x)), 2)))
Обучение моделей
Случайный лес
from sklearn.ensemble import RandomForestRegressor
ran 80 = RandomForestRegressor(n_estimators=80)
ran 80.fit(train x, train y)
RandomForestRegressor(n estimators=80)
param_range = np.arange(50, 170, 10)
tuned_parameters = [{'n_estimators': param range}]
tuned parameters
[{'n estimators': array([ 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160])}]
from sklearn.model selection import GridSearchCV
from sklearn.model selection import ShuffleSplit
gs = GridSearchCV(RandomForestRegressor(), tuned parameters,
                  cv=ShuffleSplit(n splits=10), scoring="r2",
                  return_train_score=True, n jobs=-1)
gs.fit(data x, data y)
GridSearchCV(cv=ShuffleSplit(n splits=10, random state=None,
test size=None, train size=None),
             estimator=RandomForestRegressor(), n jobs=-1,
             param_grid=[{'n_estimators': array([ 50, 60, 70, 80,
90, 100, 110, 120, 130, 140, 150, 160])}],
             return train score=True, scoring='r2')
reg = gs.best estimator
import matplotlib.pyplot as plt
```

plt.plot(param range, gs.cv results ["mean train score"]);

plt.plot(param_range, gs.cv_results_["mean_test_score"]);

reg.fit(train_x, train_y)

RandomForestRegressor(n estimators=150)

Градиентный бустинг

```
from sklearn.ensemble import GradientBoostingRegressor
```

```
gr_80 = GradientBoostingRegressor(n_estimators=80)
gr_80.fit(train_x, train_y)
```

GradientBoostingRegressor(n_estimators=80)

GridSearchCV(cv=ShuffleSplit(n_splits=10, random_state=None, test_size=None, train_size=None),

estimator=GradientBoostingRegressor(), n_jobs=-1, param_grid=[{'n_estimators': array([50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160])}], return_train_score=True, scoring='r2')

```
reg = gs.best_estimator_
```

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```


plt.plot(param_range, gs.cv_results_["mean_test_score"]);

reg.fit(train x, train y)

GradientBoostingRegressor(n_estimators=160)

Стекинг

```
from sklearn.ensemble import RandomForestClassifier,
StackingClassifier, GradientBoostingClassifier
from sklearn.linear model import LogisticRegression
base learners = [
                 ('rf 1', RandomForestClassifier(n estimators=10,
random state=42))
                 ('rf_2', GradientBoostingClassifier(n_estimators=80))
                ]
clf = StackingClassifier(estimators=base learners,
final estimator=LogisticRegression())
clf.fit(train x, train y)
StackingClassifier(estimators=[('rf 1',
RandomForestClassifier(n estimators=10,
random state=42)),
```

```
('rf_2',
```