Inhaltsverzeichnis	
Wahrscheinlichkeit	3
W.1 Wahrscheinlichkeiten	3
W.1.1 Ereignisraum, Grundraum	3
W.1.2 Wahrscheinlichkeitsmass	3
W.1.3 Endliche Räume	3
W.1.4 Bedingte Wahrscheinlichkeit	3
W.1.5 Unabhängigkeit	3
W.2 Zufallsvariablen	3
W.2.1 Diskrete Zufallsvariablen	3
W.2.2 Stetige Zufallsvariablen	3
W.2.3 Transformation von Zufallsvariablen	4
W.2.4 Simulation von Verteilungen	4
W.2.5 Erwartungswert	4
W.2.6 Varianz und Standardabweichung	4
<u> </u>	-
W.3 Wichtige Verteilungen	4 4
W.3.1 Diskrete Verteilungen	4 5
W.3.2 Stetige Verteilungen	_
W.4 Gemeinsame Verteilungen	6
W.4.1 Randverteilungen	6
W.4.2 Bedingte Verteilung	6
W.4.3 Unabhängigkeit	6
W.4.4 Funktionen von Zufallsvariablen	7
W.4.5 Erwartungswert	7
W.4.6 Kovarianz und Korrelation	7
W.5 Grenzwertsätze	7
W.5.1 Gesetz der grossen Zahlen	7
W.5.2 Zentraler Grenzwertsatz	8
W.5.3 Chebyshev-Ungleichung	8
W.5.4 Monte Carlo Integration	8
Statistik	8
S.1 Grundlagen	8
S.2 Deskriptive Statistik	_
-	8
S.2.1 Histogramm	8
S.2.2 Boxplot	8
S.2.3 QQ-Plot	9
S.3 Schätzer	9
S.3.1 Momenten-Methode	9
S.3.2 Maximum-Likelihood	9
S.4 Tests	10
S.4.1 Fehler 1. und 2. Art	10
S.4.2 Mögliches Vorgehen	10
S.4.3 Likelihood-Quotienten Test	10
S.4.4 z-Test	10
S.4.5 t-Test	11
S.4.6 Gepaarter Zweistichprobentest	11
S.4.7 Ungepaarter Zweistichprobentest	11
S.4.8 Konfidenzbereiche	11
Anhang	11
A.1 Kombinatorik	11
A.2 Reihen und Integrale	11
A.3 Beispiele	12
A 3.1 Regeln	12

INHALISVERZEICHNIS
A.3.2 Berechnung des Median
A.3.3 Verteilungsfunktion mit der Dichte 12
A.3.4 Erwartungswert mit Dichte
A.3.5 Verteilungsfunktion Beweis
A.3.6 $P[X \le \alpha] 12$
A.3.7 Erwartungswert aus Dichtegraph lesen 12
A.3.8 Beweis lognormale ZV
A.3.9 Doppelte Integration
A.3.10 Bedingter E. Wert
A.3.11 Dichtefunktion Beweis
A.3.12 Randdichten von zusammengesezten ZV
berechnen
A.3.13 Kovarianz berechnen
A.3.14 Dichte einer uniform verteilten ZV
A.3.15 Zur standartisierten ZV Z übergehen 13
A.3.16 SummenRechnen
A.3.17 Bedingte Gewichtsfunktion berechnen 13
A.3.18 Normalverteilung
A.3.19 X N(1,2) berechnen
A.3.20 Funktion von unabhängigen ZV
A.3.21 Interval Normalverteilte ZV

Wahrscheinlichkeit

W.1 ${f Wahrscheinlichkeiten}$

W.1.1Ereignisraum, Grundraum

Ereignisraum: Der *Ereignisraum* oder *Grundraum* Ω ist die Menge aller möglichen Ereignisse eines Zufallexperiments. Die Elemente $\omega \in \Omega$ heissen *Elementarereignisse*.

Ereignis: Ein *Ereignis* $A \subseteq \Omega$ ist eine Teilmenge von Ω .

Wahrscheinlichkeitsmass

Wahrscheinlichkeitsmass: Ein Wahrscheinlichkeitsmass \mathbb{P} ist eine Abbildung $\mathbb{P}: \mathcal{F} \to [0,1]$ mit folgenden Eigenschaften:

i: $\mathbb{P}[\Omega] = 1$.

ii: $\mathbb{P}[A] \geq 0$ für alle $A \in \mathcal{F}$. iii: $\mathbb{P}[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ falls $A_i \cap A_j = \emptyset$ für $i \neq j$.

Aus den Axiomen i bis iii folgen direkt die Rechenregeln:

i: $\mathbb{P}[A^C] = 1 - \mathbb{P}[A]$.

ii: $\mathbb{P}[\emptyset] = 0$.

iii: $A \subseteq B \Rightarrow \mathbb{P}[A] \leq \mathbb{P}[B]$.

iv: $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$ (Additionsregel).

Endliche Räume W.1.3

Für einen endlichen Raum $\Omega = \{\omega_1, \dots, \omega_n\}$ mit $\mathbb{P}[\omega_i] = p_i$ für alle 1 < i < n gilt

$$\mathbb{P}[A] = \sum_{i \text{ mit } w_i \in A} p_i$$

Laplace-Raum: In einem Laplace-Raum sind alle Ereignisse $\omega_1, \ldots, \omega_n$ gleich wahrscheinlich $(p_i = p_j \text{ für alle } i, j)$. Es gilt dann

$$P[A] = \frac{|A|}{|\Omega|}$$

W.1.4Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit:

$$\mathbb{P}[B \mid A] := \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]}$$

$$\mathbb{P}[A \cap B] = \mathbb{P}[B \mid A]\mathbb{P}[A]$$

Satz (Totale Wahrscheinlichkeit): Sei $A_{1 \leq i \leq n}$ eine disjunkte Zerlegung von Ω , dann gilt für ein beliebiges Ereignis B:

$$\mathbb{P}[B] = \sum_{i=1}^n \mathbb{P}[B \mid A_i] \mathbb{P}[A_i]$$

Satz (Formel von Bayes): Sei A_1, \ldots, A_n eine disjunkte Zerlegung von Ω mit $\mathbb{P}[A_i] > 0$ für alle i und B ein Ereignis mit $\mathbb{P}[B] > 0$, dann gilt für jedes k:

$$\mathbb{P}[A_k \mid B] = \frac{\mathbb{P}[B \mid A_k] \mathbb{P}[A_k]}{\sum_{i=1}^n \mathbb{P}[B \mid A_i] \mathbb{P}[A_i]}$$

W.1.5Unabhängigkeit

Unabhängigkeit: Die Ereignisse A_1, \ldots, A_n heissen unabhängig, wenn für alle $m \in \mathbb{N}$ und $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$

$$\mathbb{P}\left[\bigcap_{i=1}^{m} A_{k_i}\right] = \prod_{i=1}^{m} \mathbb{P}[A_{k_i}].$$

Hinweis: Bei unabhängigen Ereignissen A, B hat das Eintreten des einen Ereignisses keinen Einfluss auf die Wahrscheinlichkeit des anderen Ereignisses: $\mathbb{P}[B\mid A]=\frac{\mathbb{P}[A\cap B]}{\mathbb{P}[A]}=\mathbb{P}[B]$

W.2Zufallsvariablen

Zufallsvariable: Eine Zufallsvariable X auf Ω ist eine Funktion $X:\Omega\to\mathcal{W}(X)\subseteq\mathbb{R}$. Jedes Elementarereignis ω wird auf eine Zahl $X(\omega)$ abgebildet.

Verteilungsfunktion: Die Verteilungsfunktion einer Zufallsvariable X ist die Abbildung $F_X : \mathbb{R} \to [0, 1],$

$$F_X(t) := \mathbb{P}[X \le t] := \mathbb{P}[\{\omega \mid X(\omega) \le t\}].$$

Jede Verteilungsfunktion \mathcal{F}_X hat folgende Eigenschaften:

i: $a \le b \Rightarrow F_X(a) \le F_X(b)$ (monoton wachsend).

 $\lim_{t \to u, t > u} F_X(t) = F_X(u) \text{ (rechtsstetig)}.$

iii: $\lim_{t \to -\infty} F_X(t) = 0$ und $\lim_{t \to \infty} F_X(t) = 1$.

Diskrete Zufallsvariablen W.2.1

Eine Zufallsvariable heisst diskret, falls ihr Wertebereich $\mathcal{W}(X)$ endlich oder abzählbar ist.

Gewichtsfunktion: Die Wahrscheinlichkeitsfunktion oder Gewichtsfunktion einer diskreten Zufallsvariable X ist gegeben durch

$$p_X(x) = \begin{cases} \mathbb{P}[X = x] & \text{für } x \in \mathcal{W}(X) \\ 0 & \text{sonst} \end{cases}$$

Eine Gewichtsfunktion weist folgende Eigenschaften auf:

i: $p_X(x) \in [0,1]$ für alle x.

ii: $\sum_{x_i \in \mathcal{W}(X)} p_X(x_i) = 1.$

Diskrete Verteilungsfunktion: Die Verteilungsfunktion F_X einer diskreten Zufallsvariable X mit Wertebereich $\mathcal{W}(X) = \{x_1, \dots, x_n\}$ ist die Funktion

$$F_X(t) = \mathbb{P}[X \le t] = \sum_{\substack{x_k \in \mathcal{W}(X) \\ x_k \le t}} p_X(x_k)$$

W.2.2Stetige Zufallsvariablen

Dichte: Eine Zufallsvariable X mit der Verteilungsfunktion $F_X(t)$ heisst stetig mit Dichte $f_X: \mathbb{R} \to [0, \infty)$, falls gilt

$$F_X(t) = \int_{-\infty}^t f_X(s) ds$$
 für alle $t \in \mathbb{R}$.

Für eine Dichtefunktion f_X gilt:

SEITE 3

i:
$$f_X(t) \ge 0$$
 für alle $t \in \mathbb{R}$.
ii: $\int_{-\infty}^{\infty} f_X(s) \mathrm{d}s = 1$.

Hinweis: Es gilt $\frac{d}{dt}F_X(t) = f_X(t)$ falls f_X an der Stelle t stetig ist.

W.2.3 Transformation von Zufallsvariablen

Satz: Sei X eine stetige Zufallsvariable mit Dichte f_X und $f_X(t) = 0$ für $t \notin I \subseteq \mathbb{R}$. Sei $g : \mathbb{R} \to \mathbb{R}$ stetig differenzierbar und streng monoton auf I mit Umkehrfunktion g^{-1} . Dann hat die Zufallsvariable Y := g(X) die Dichte

$$f_Y = \begin{cases} f_X(g^{-1}(t)) | \frac{d}{dt} g^{-1}(t) | & \text{für } t \in \{g(x) \mid x \in I\} \\ 0 & \text{sont} \end{cases}$$

Beispiel (Lineare Transformation): Aus Y := aX + b mit $a > 0, b \in \mathbb{R}$ folgt

$$F_Y(t) = \mathbb{P}[aX + b \le t] = \mathbb{P}\left[X \le \frac{t-b}{a}\right] = F_X\left(\frac{t-b}{a}\right)$$

und mit der Kettenregel ergibt sich

$$f_Y(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_Y(t) = \frac{1}{a} f_X\left(\frac{t-b}{a}\right).$$

Beispiel (Nichtlineare Transformation): Aus $Y := X^2$ folgt

$$F_Y(t) = \mathbb{P}[X^2 \le t] = \mathbb{P}\left[-\sqrt{t} \le X \le \sqrt{t}\right] = F_X(\sqrt{t}) - F_X(-\sqrt{t})$$

und somit

$$f_Y(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_Y(t) = \frac{f_X(\sqrt{t}) + f_X(-\sqrt{t})}{2\sqrt{t}}$$

W.2.4 Simulation von Verteilungen

Satz: Sei F eine stetige und streng monoton wachsende Verteilungsfunktion mit Umkehrfunktion F^{-1} . Ist $X \sim \mathcal{U}(0,1)$ und $Y := F^{-1}(X)$, so hat Y die Verteilungsfunktion F.

Beispiel: Um die Verteilung $Exp(\lambda)$ zu simulieren bestimmt man zu der Verteilungsfunktion $F(t) = 1 - e^{-\lambda t}$ für $t \ge 0$ die Inverse $F^{-1}(t) = -\frac{\log(1-t)}{\lambda}$. Mit $U \sim \mathcal{U}(0,1)$ erhält man

$$X := F^{-1}(U) = -\frac{\log(1 - U)}{\lambda} \sim Exp(\lambda).$$

W.2.5 Erwartungswert

Diskreter Erwartungswert: Ist X diskrete Zufallsvariable mit Gewichtsfunktion p_X , so ist der *Erwartungswert* von X definiert als

$$\mathbb{E}[X] := \sum_{x_i \in \mathcal{W}(X)} x_i p_X(x_i),$$

sofern diese Reihe konvergiert.

Stetiger Erwartungswert: Falls X eine stetige Zufallsvariable mit Dichte f_X ist, dann ist der Erwartungswert von X definiert als

$$\mathbb{E}[X] := \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x,$$

falls das Integral konvergiert.

Satz (4.1): Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion p_X und Y := g(X), dann gilt

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x_i \in \mathcal{W}(X)} g(x_i) p_X(x_i).$$

Falls X eine stetige Zufallsvariable mit Dichte f_X ist, ist analog

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

W.2.6 Varianz und Standardabweichung

Varianz: Sei X eine Zufallsvariable mit $\mathbb{E}[X^2] < \infty$. Die Varianz von X ist definiert als

$$Var[X] := \mathbb{E}\left[(X - \mathbb{E}(X))^2 \right].$$

Hinweis: Nach Satz 4.1 lässt sich die Varianz folgendermassen berechnen:

$$Var[X] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 f_X(x) dx$$

Standardabweichung: Die Standardabweichung einer Zufallsvariable X ist

$$\sigma_X := \sqrt{\operatorname{Var}[X]}.$$

W.3 Wichtige Verteilungen

W.3.1 Diskrete Verteilungen

W.3.1.1 Diskrete Gleichverteilung

Zufallsvariable X mit Wertebereich $\mathcal{W}(X) = \{x_1, \dots, x_n\}$ und alle Werte haben die gleiche Wahrscheinlichkeit falls

$$p_X(x_i) = \frac{1}{n} \quad \text{für } i \in \{1, \dots, n\}$$

Beispiel (Würfeln): Die Zufallsvariable X gibt die Augenzahl bei einem Würfelwurf an. Der Wertebereich ist also $W = \{1, 2, 3, 4, 5, 6\}$ und somit n = 6.

W.3.1.2 Bernoulli-Verteilung

Eine bernoulli-verteilte Zufallsvariable $X \sim Be(p)$ mit Parameter $p \in [0,1]$ nimmt die Werte 0 und 1 mit Wahrscheinlichkeiten

$$p_X(1) = p$$
 und $p_X(0) = 1 - p$

an. Eine alternative Schreibweise ist

$$p_X(x) = \begin{cases} p^x (1-p)^{1-x} & x \in \{0,1\} \\ 0 & \text{sonst.} \end{cases}$$

Erwartungswert : pVarianz : p(1-p)

Beispiel (Münzwurf): Ein fairer Münzwurf ist bernoulliverteilt mit Parameter $p=\frac{1}{2}$. Für einen Parameter $p\neq\frac{1}{2}$ wäre der Münzwurf unfair.

SEITE 4 JEROME DOHRAU

W.3.1.3 Binomialverteilung

Die Gewichtsfunktion p_X einer binomial-verteilten Zufallsvariable $X \sim Bin(n,p)$ mit Parameter $n \in \mathbb{N}$ und $p \in [0,1]$ ist gegeben durch

$$p_x(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{für } k \in \{0, \dots, n\}$$

Erwartungswert : npVarianz : np(1-p)

X ist die Anzahl der Erfolge k bei n unabhängigen Wiederholungen eines Bernoulli-Experiments. Es gibt $\binom{n}{k}$ verschiedene Möglichkeiten bei n Versuchen k-mal erfolgreich zu sein. Jeder dieser Möglichkeit hat Wahrscheinlichkeit $p^k(1-p)^{n-k}$.

W.3.1.4 Geometrische Verteilung

Die Gewichtsfunktion p_X einer geometrisch-gleichverteilten Zufallsvariable $X\sim Geom(p)$ mit Parameter $p\in[0,1]$ ist gegeben durch

$$p_X(k) = p(1-p)^{k-1}$$
 für $k \in \{1, 2, ...\}$

Erwartungswert : $\frac{1}{p}$ Varianz : $\frac{1}{p^2}(1-p)$

Beispiel (Wartezeit): Die Geometrische Verteilung ist die Wahrscheinlichkeitsverteilung der Anzahl X Bernoulli-Versuche, die notwendig sind, um den ersten Erfolg zu erzielen. Für die Anzahl Würfelfwürfe, die man braucht um eine 6 zu würfeln, ist $p = \frac{1}{6}$.

W.3.1.5 Negativbinomiale Verteilung

Die Gewichtsfunktion p_X einer negativ-binomial-verteilten Zufallsvariable X mit Parameter $r \in \mathbb{N}$ und $p \in [0,1]$ ist gegeben durch

$$p_X(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$
 für $k \in \{r, r+1, \ldots\}$

Erwartungswert : $\frac{r}{p}$ Varianz : $\frac{r}{p^2}(1-p)$

X entspricht der Wartezeit auf den r-ten Erfolg. Es gibt $\binom{k-1}{r-1}$ möglichkeiten für r-1 Erfolge bei k-1 Versuchen; der r-te Erfolg tritt ja beim k-ten Versuch ein.

W.3.1.6 Hypergeometrische Verteilung

Die Gewichtsfunktion p_X einer hypergeometrisch-verteilten Zufallsvariable X mit Parameter $r,n,m\in\mathbb{N},$ wobei $r,m\leq n,$ ist gegeben durch

$$p_X(k) = \frac{\binom{r}{k} \binom{n-r}{m-k}}{\binom{n}{m}} \quad \text{für } k \in \{0, \dots, \min\{r, m\}\}$$

Erwartungswert : $m\frac{r}{n}$ Varianz : $m\frac{r}{n}(1-\frac{r}{n})\frac{n-m}{n-1}$

In einer Urne befinden sich n Gegenstände. Davon sind r Gegenstände vom Typ A und n-r vom Typ B. Es werden m Gegenstände ohne Zurücklegen gezogen. X beschreibt die Wahrscheinlichkeitsverteilung für die Anzahl k der Gegenstände vom Typ A in der Stichprobe.

Beispiel (Lotto): Anzahl Zahlen n=45, richtige Zahlen r=6, meine Zahlen m=6. Die Wahrscheinlichkeit für 4 Richtige ist

$$p_X(4) = \frac{\binom{6}{4}\binom{39}{2}}{\binom{45}{6}} \approx 0.00136.$$

W.3.1.7 Poisson Verteilung

Die Gewichtsfunktion p_X einer Poisson-verteilten Zufallsvariable $X \sim \mathcal{P}(\lambda)$ mit Parameter λ ist gegeben durch

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 für $k \in \{0, 1, \ldots\}$

Erwartungswert : λ Varianz : λ

Die Poisson-Verteilung eignet sich zur Modellierung von seltenen Ereignissen, wie z.B. Versicherungsschäden.

Hinweis: Die Binomialverteilung Bin(n,p) kann approximativ durch die Poissonverteilung $\mathcal{P}(\lambda)$ mit $\lambda=np$ berechnet werden. Faustregel: Die Approximation kann für $np^2 \leq 0.05$ benutzt werden.

W.3.2 Stetige Verteilungen

W.3.2.1 Stetige Gleichverteilung

Die Dichte f_X und Verteilungsfunktion F_X einer stetigen und gleichverteilten Zufallsvariable $X \sim \mathcal{U}(a,b)$ mit Parameter $a,b \in \mathbb{R}$ wobei a < b sind gegeben durch

$$f_X(t) = \begin{cases} \frac{1}{b-a} & \text{für } t \in [a,b] \\ 0 & \text{für } t \notin [a,b] \end{cases}$$

$$F_X = \begin{cases} 0 & \text{für } t < a \\ \frac{t-a}{b-a} & \text{für } t \in [a,b] \\ 1 & \text{für } t > b \end{cases}$$

Erwartungswert : $\frac{1}{2}(a+b)$ Varianz : $\frac{1}{12}(a-b)^2$

Beispiel: Rundungsfehler einer Messung.

W.3.2.2 Exponential verteilung

Die Dichte f_X und Verteilungsfunktion F_X einer exponentialverteilten Zufallsvariable $X \sim Exp(\lambda)$ mit Parameter $\lambda > 0$

SEITE 5 JEROME DOHRAU

sind gegeben durch

$$f_X(t) = \begin{cases} \lambda e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases}$$

$$F_X(t) = \begin{cases} 1 - e^{-\lambda t} & \text{für } t \ge 0 \\ 0 & \text{für } t < 0 \end{cases}$$

Erwartungswert : $\frac{1}{\lambda}$ Varianz : $\frac{1}{\lambda^2}$

Beispiel (Lebensdauer): Die Exponentialverteilung ist eine typische Lebensdauerverteilung. So ist beispielsweise die Lebensdauer von elektronischen Bauelementen häufig annähernd exponentialverteilt.

W.3.2.3 Normalverteilung

Die Dichte f_X einer normalverteilten Zufallsvariable $X \sim$ $\mathcal{N}(\mu, \sigma^2)$ mit Parameter $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ ist gegeben durch

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Für die Verteilungsfunktion F_X existiert kein geschlossener Ausdruck. Deshalb werden die Werte der Verteilungsfunktion $\Phi(t)$ der Standard-Normalverteilung

$$f_X(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

mit $\mu = 0$ und $\sigma^2 = 1$ tabelliert. Für allgemeine Normalverteilungen berechnet man dann

$$F_X(t) = \mathbb{P}[X \le t] = \mathbb{P}\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right).$$

Erwartungswert : μ Varianz

Beispiel: Streuung von Messwerten um den Mittelwert.

W.4Gemeinsame Verteilungen

Gemeinsame Verteilung: Die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1, \ldots, X_n ist die Abbildung $F: \mathbb{R}^n \to [0,1],$

$$F(t_1,\ldots,t_n) := \mathbb{P}[X_1 \le t_1,\ldots,X_n \le t_n].$$

Gemeinsame Gewichtsfunktion: Falls X_1, \ldots, X_n diskrete Zufallsvariablen sind, ist ihre gemeinsame Gewichtungsfunktion $p: \mathbb{R}^n \to [0,1]$ definiert durch

$$p(x_1, \dots, x_n) := \mathbb{P}[X_1 = x_1, \dots, X_n = x_n].$$

Gemeinsame Dichte: Seien X_1, \ldots, X_n stetige Zufallsvariablen mit gemeinsamer Verteilungsfunktion $F(t_1, \ldots, t_n)$. Die Funktion $f: \mathbb{R}^n \to [0, \infty)$ heisst gemeinsame Dichte von X_1, \ldots, X_n , falls für alle $t_i \in \mathbb{R}$ gilt

$$F(t_1,\ldots,t_n) = \int_{-\infty}^{t_1} \ldots \int_{-\infty}^{t_n} f(x_1,\ldots,x_n) dx_n \ldots dx_1$$

Falls X_1, \ldots, X_n eine gemeinsame Dichte f haben, so hat diese folgende Eigenschaften:

i:
$$f(t_1, \ldots, t_n) \ge 0$$
 für alle $t_i \in \mathbb{R}$.

ii:
$$\int_{\mathbb{R}^n} f(t_1, \dots, t_n) d\mu = 1.$$

iii:
$$\mathbb{P}[(X_1, \dots, X_n) \in A] = \int_{(t_1, \dots, t_n) \in A} f(t_1, \dots, t_n) d\mu$$
.

iii:
$$\mathbb{P}[(X_1,\ldots,X_n)\in A]=\int_{(t_1,\ldots,t_n)\in A}f(t_1,\ldots,t_n)\mathrm{d}\mu.$$
 iv: $f(t_1,\ldots,t_n)=\frac{\partial^n}{\partial t_1\cdots\partial t_n}F(t_1,\ldots,t_n),$ falls definiert.

W.4.1Randverteilungen

Randverteilung: Seien X und Y Zufallsvariablen mit gemeinsamer Verteilungsfunktion $F_{X,Y}$, dann ist die Randverteilung $F_X: \mathbb{R} \to [0,1]$ von X definiert durch

$$F_X := \mathbb{P}[X \le x] = \mathbb{P}[X \le x, Y < \infty] = \lim_{y \to \infty} F_{X,Y}(x, y).$$

Für zwei diskrete Zufallsvariablen X und Y mit gemeinsamer Gewichtsfunktion $p_{X,Y}(x,y)$ ist die Gewichtsfunktion der Randverteilung von X gegeben durch

$$p_X = \mathbb{P}[X = x] = \sum_j \mathbb{P}[X = x, Y = y_j] = \sum_j p_{X,Y}(x, y_j).$$

Für zwei stetige Zufallsvariablen X und Y mit gemeinsamer Dichte $f_{X,Y}(x,y)$ ist die Randdichte (Dichtefunktion der Randverteilung) von X gegeben durch

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

W.4.2Bedingte Verteilung

Bedingte Gewichtsfunktion: Seien X und Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion $p_{X,Y}(x,y)$, dann ist die bedingte Gewichtsfunktion $p_{X|Y}(x \mid y)$ von X gegeben Y definiert durch

$$p_{X|Y}(x \mid y) := \mathbb{P}[X = x \mid Y = y] = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

falls $p_Y(y) > 0$ und 0 falls $p_Y(y) = 0$.

Bedingte Dichte: Für zwei stetige Zufallsvariablen X und Y mit gemeinsamer Dichte $f_{X,Y}(x,y)$ ist die bedingte Dichte $f_{X|Y}$ von X gegeben Y definiert durch

$$f_{X|Y}(x \mid y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

falls $f_Y(y) > 0$ und 0 falls $f_Y(y) = 0$.

W.4.3 Unabhängigkeit

Unabhängigkeit: Die Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls die gemeinsame Verteilungsfunktion das Produkt der Verteilungsfunktionen der Randverteilungen ist:

$$F(x_1,\ldots,x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$

Im diskreten Fall sind X_1,\ldots,X_n unabhängig, genau dann

$$p(x_1,\ldots,x_n) = \prod_{i=1}^n p_{X_i}(x_i)$$

gilt und analog im stetigen Fall, falls

$$f(x_1, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i).$$

SEITE 6 JEROME DOHRAU

W.4.4Funktionen von Zufallsvariablen

Ausgehend von den Zufallsvariablen X_1, \ldots, X_n kann man mit einer Funktion $g: \mathbb{R}^n \to \mathbb{R}$ eine neue Zufallsvariable Y = $g(X_1,\ldots,X_n)$ bilden.

Beispiel (Summe, diskret): Für die Gewichtsfunktion p_Z der Summe Z = X + Y zweier diskreten Zufallsvariablen X und Y mit gemeinsamer Gewichtsfunktion p erhält man

$$p_Z(z) = \sum_{x_i \in \mathcal{W}(X)} \mathbb{P}[X = x_i, Y = z - x_i] = \sum_{x_i \in \mathcal{W}(X)} p(x_i, z - x_i)$$

Beispiel (Summe, stetig): Sind X und Y stetige Zufallsvariablen mit gemeinsamer Dichte f, so ist die Verteilungsfunktion F_Z der Summe Z = X + Y gegeben durch

$$F_Z = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) dy dx \stackrel{v=x+y}{=} \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(x, v-x) dx dv$$

und somit auch die Dichte

$$f_Z = \frac{\mathrm{d}}{\mathrm{d}z} F_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) \mathrm{d}x.$$

W.4.4.1i.i.d Annahme

Die Abkürzung i.i.d. kommt vom Englischen independent and identically distributed. Die n-fache Wiederholung eines Zufallsexperiments ist selbst wieder ein Zufallsexperiment. Für die Zufallsvariablen X_i der i-ten Wiederholung wird oft aus Gründen der Einfachheit Folgendes angenommen:

- i: X_1, \ldots, X_n sind paarweise unabhängig.
- ii: Alle X_i haben dieselbe Verteilung.

W.4.4.2 Spezielle Funktionen von Zufallsvariablen

Wichtige Spezialfälle sind die Summe $S_n = \sum_{i=1}^n X_i$ und das arithmetische Mittel $\overline{X}_n = \frac{S_n}{n}$.

- 1. Wenn $X_i \sim Be(p)$, dann ist $S_n \sim Bin(n, p)$.
- 2. Wenn $X_i \sim \mathcal{P}(\lambda)$, dann ist $S_n \sim \mathcal{P}(n\lambda)$.
- 3. Wenn $X_i \sim \mathcal{N}(\mu, \sigma^2)$, dann ist $S_n \sim \mathcal{N}(n\mu, n\sigma^2)$.

Für den Erwartungswert und die Varianz gilt allgemein

$$\mathbb{E}[S_n] = n\mathbb{E}[X_i] \quad \text{Var}[S_n] = n\text{Var}[X_i]$$

W.4.5Erwartungswert

Hinweis: Der Erwartungswert einer n-dimensionalen Verteilung wird als n-Tupel der Erwartungswerte aller Randverteilungen $\mathbb{E}[X_i]$ angegeben.

Satz (4.2): Für den Erwartungswert $\mathbb{E}[Y]$ einer Funktion $Y := g(X_1, \dots, X_n)$ der Zufallsvariablen X_1, \dots, X_n gilt im diskreten Fall

$$\mathbb{E}[Y] = \sum_{x_1, \dots, x_n} g(x_1, \dots, x_n) p(x_1, \dots, x_n)$$

und analog im stetigen Fall

$$\mathbb{E}[Y] = \int \dots \int_{\mathbb{R}^n} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_n \dots dx_1.$$

Satz (4.4): Seien X_1, \ldots, X_n Zufallsvariablen mit endlichen Erwartungswerten $\mathbb{E}[X_1], \dots, \mathbb{E}[X_n]$, dann ist

$$\mathbb{E}\left[a + \sum_{i=1}^{n} b_i X_i\right] = a + \sum_{i=1}^{n} b_i \mathbb{E}[X_i].$$

Kovarianz und Korrelation W.4.6

Kovarianz: Seien X und Y Zufallsvariablen mit $\mathbb{E}[X^2] < \infty$ und $\mathbb{E}[Y^2] < \infty$, dann ist die Kovarianz von X und Y gegeben

$$Cov[X, Y] := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))].$$

Es gelten folgende Rechenregeln:

i: $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

ii: $Var[a + bX] = b^2 Var[X]$.

iii: $\operatorname{Var}[a+\sum_{i=1}^n b_i X_i] = \sum_{i=1}^n b_i^2 \operatorname{Var}[X_i]$, für X_i unabhängig. iv: $\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X,Y]$.

v: Cov[X, Y] = Cov[Y, X].

vi: Cov[X, X] = Var[X].

vii: $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

viii: Cov[X, a] = 0 für alle $a \in \mathbb{R}$.

ix: Cov[X, bY] = bCov[X, Y] für alle $b \in \mathbb{R}$.

x: Cov[X, Y + Z] = Cov[X, Y] + Cov[X, Z].

xi: $\operatorname{Cov}[X, Y + Z] = \operatorname{Cov}[X, Y] + \operatorname{Cov}[X, Z]$. xi: $\operatorname{Cov}[a + \sum_{i=1}^{n} b_i X_i, c + \sum_{j=1}^{m} d_j Y_j]$ $= \sum_{i=1}^{n} \sum_{j=1}^{m} b_i d_j \operatorname{Cov}[X_i, Y_j]$ xii: $\operatorname{Cov}[X, Y] = 0$, falls X und Y unabhängig.

Korrelation: Seien X und Y Zufallsvariablen, dann heisst

 $\operatorname{Corr}[X,Y] := \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}}$

Korrelation von X und Y. Ist Corr[X,Y] = 0, oder "aquivalent"Cov[X, Y] = 0, dann heissen X und Y unkorreliert.

Hinweis: Die Korrelation misst die Stärke und Richtung der $linearen\ Abhängigkeit\ zweier\ Zufallsvariablen\ X\ und\ Y:$

$$Corr[X, Y] = \pm 1 \Leftrightarrow \exists a \in \mathbb{R}, b > 0 : Y = a \pm bX$$

Hinweis: Sind X und Y unabhängig, dann ist Cov[X, Y] = 0und Corr[X, Y] = 0. Die Umkehrung gilt aber im Allgemeinen

W.5Grenzwertsätze

W.5.1Gesetz der grossen Zahlen

Satz (Schwaches GGZ): Für eine Folge X_1, X_2, \ldots von unkorrelierten Zufallsvariablen, die alle den Erwartungswert $\mu = \mathbb{E}[X_i]$ und die Varianz $\operatorname{Var}[X_i] = \sigma^2$ haben, gilt

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \stackrel{n \to \infty}{\longrightarrow} \quad \mu = \mathbb{E}[X_i].$$

Das heisst

$$\mathbb{P}\left[|\overline{X}_n - \mu| > \epsilon\right] \stackrel{n \to \infty}{\longrightarrow} 0 \quad \forall \epsilon > 0.$$

SEITE 7 JEROME DOHRAU Satz (Starkes GGZ): Für eine Folge X_1, X_2, \ldots unabhängiger Zufallsvariablen, die alle den endlichen Erwartungswert $\mu = \mathbb{E}[X_i]$ haben, gilt

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \stackrel{n \to \infty}{\longrightarrow} \quad \mu = \mathbb{E}[X_i]. \quad \text{P-fastsicher}$$

Das heisst

$$\mathbb{P}\left[\left\{\omega\in\Omega\mid\overline{X}_n(\omega)\stackrel{n\to\infty}{\longrightarrow}\mu\right\}\right]=1.$$

W.5.2 Zentraler Grenzwertsatz

Satz (ZGS): Sei X_1, X_2, \ldots eine Folge von i.i.d. Zufallsvariablen mit $\mu = \mathbb{E}[X_i]$ und $\sigma^2 = \text{Var}[X_i]$, dann gilt für die Summe $S_n = \sum_{i=1}^n X_i$

$$\lim_{n \to \infty} \mathbb{P} \left[\frac{S_n - n\mu}{\sigma \sqrt{n}} \le t \right] = \Phi(t) \quad \forall t \in \mathbb{R}$$

wobei Φ die Verteilungsfunktion von $\mathcal{N}(0,1)$ ist.

Hinweis: Die Summe S_n hat Erwartungswert $\mathbb{E}[S_n] = n\mu$ und Varianz $\operatorname{Var}[S_n] = n\sigma^2$. Die Grösse

$$S_n^* := \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$$

hat Erwartungswert 0 und Varianz 1. Für grosse n gilt zudem:

$$\begin{array}{ccc} \mathbb{P}[S_n^* \leq x] & \approx & \Phi(x) \\ S_n^* & \stackrel{\text{approx.}}{\sim} & \mathcal{N}(0,1) \\ S_n & \stackrel{\text{approx.}}{\sim} & \mathcal{N}(n\mu, n\sigma^2) \end{array}$$

W.5.3 Chebyshev-Ungleichung

Für eine Zufallsvariable Y mit Erwartungswert μ_Y und Varianz σ_Y^2 und jedes $\epsilon>0$ gilt

$$\mathbb{P}[|Y - \mu_Y| > \epsilon] \le \frac{\sigma_Y^2}{\epsilon^2}.$$

W.5.4 Monte Carlo Integration

Das Integral

$$I := \int_0^1 g(x) dx$$

lässt sich als Erwartungswert auffassen, denn mit einer gleichverteilten Zufallsvariable $U \sim \mathcal{U}(0,1)$ folgt

$$\mathbb{E}[g(U)] = \int_{-\infty}^{\infty} g(x) f_U(x) dx = \int_{0}^{1} g(x) dx.$$

Mit einer Folge von Zufallsvariablen U_1, \ldots, U_n , die unabhängig gleichverteilt $U_i \sim \mathcal{U}(0,1)$ sind, lässt sich das Integral approximieren: Nach dem schwachen Gesetz der grossen Zahlen gilt

$$\overline{g(U_n)} = \frac{1}{n} \sum_{i=1}^n g(U_i) \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}[g(U_1)] = I.$$

Statistik

S.1 Grundlagen

Stichprobe: Die Gesamtheit der Beobachtungen x_1, \ldots, x_n oder der Zufallsvariablen X_1, \ldots, X_n wird *Stichprobe* genannt; die Anzahl n heisst *Stichprobenumfang*.

Empirische Verteilungsfunktion: Die empirische Verteilungsfunktion F_n zu den Messdaten x_1, \ldots, x_n ist definiert durch

$$F_n(y) := \frac{1}{n} |\{x_i \mid x_i \le y\}| = \frac{1}{n} \sum_{i \text{ mit } x_i \le y} f_i.$$

Empirischer Mittelwert:

$$\overline{x}_n = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Empirische Varianz und Standardabweichung:

$$s_n^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

Empirisches Quantil: Das empirische α -Quantil zu den geordneten Daten $x_{(1)}, \ldots, x_{(n)}$ ist gegeben durch

$$(1 - \alpha)x_{(k)} + \alpha x_{(k+1)} = x_{(k)} + \alpha \left(x_{(k+1)} - x_{(k)}\right),\,$$

wobei $k = \lfloor \alpha n \rfloor$ und $\alpha \in (0,1)$. Damit liegt etwa der Anteil α unterhalb des empirischen α -Quantils, und somit etwa der Anteil $1 - \alpha$ oberhalb.

Empirischer Median: Der *empirische Median* ist definiert als das 0.5-Quantil.

S.2 Deskriptive Statistik

S.2.1 Histogramm

Bei grossem Stichprobenumfang n werden benachbarte Werte zu einer Klasse zusammengefasst. Der Wertebereich der Daten wird dadurch in disjunkte Intervalle (die Klassen) unterteilt.

- i) Die Anzahl der Klassen sollte von der Grössenordnung \sqrt{n} sein.
- ii) Die Klassenbreite sollte für alle Klassen gleich sein; als Ausnahme können die Klassen am linken und rechten Rand grösser sein (Ausreisser).

S.2.2 Boxplot

Aus einem Boxplot lässt sich folgendes ablesen:

- a: empirischer Median
- b: empirisches 0.25-Quantil
- c: empirisches 0.75-Quantil
- d: kleinster Datenwert x_i mit $b x_i < 1.5(c b)$
- e: grösster Datenwert x_i mit $x_i c < 1.5(c b)$
- f: Ausreisser

SEITE 8

Abb. 1: Histogramm einer standard-norvmalverteilten Zufallsvariable.

Abb. 2: Boxplot

S.2.3 QQ-Plot

Mit einem QQ-Plot (Quantil-Quantil) kann man die Abweichung der Daten von einer gewählten Modell-Verteilung F graphisch überprüfen.

Es werden die empirischen Quantile auf der y-Achse gegenüber den theoretischen Quantilen auf der x-Achse geplottet.

S.3 Schätzer

Für eine Stichprobe X_1,\ldots,X_n soll ein passendes Modell gefunden werden. Die Parameter $\vartheta=(\vartheta_1,\ldots,\vartheta_m)$ des Modells versucht man mit einem $Sch atzer T=(T_1,\ldots,T_m)$ aufgrund der Stichprobe herauszufinden. Die Sch atzer sind Zufallsvariablen der Form $T_j=t_j(X_1,\ldots,X_n)$ für eine geeignete Funktion $t_j:\mathbb{R}^n\to\mathbb{R}$. Durch Einsetzen von Daten x_i erhält man Sch atzer twerte $t_j(x_1,\ldots,x_n)$ für ϑ_j .

Erwartungstreu: Ein Schätzer T heisst erwartungstreu für ϑ , falls $\mathbb{E}[T] = \vartheta$ (im Mittel wird richtig geschätzt).

Konsistent: Eine Folge von Schätzern $T^{(n)}, n \in \mathbb{N}$ heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ im Modell \mathbb{P}_{ϑ} gegen ϑ konvergiert. Das heisst für jedes $\vartheta \in \Theta$ und $\epsilon > 0$ gilt

$$\lim_{n \to \infty} \mathbb{P}[|T^{(n)} - \vartheta| > \epsilon] = 0.$$

Hinweis: Der Grundraum Ω und die Menge der beobachtbaren Ereignisse \mathcal{F} sind fest. Die Wahl des Parameters ϑ aus dem Parameterraum Θ hat aber Einfluss auf das Wahrscheinlichkeitsmass \mathbb{P}_{ϑ} . Mit \mathbb{E}_{ϑ} wird der Erwartungswert unter \mathbb{P}_{ϑ} bezeichnet.

S.3.1 Momenten-Methode

Moment: Das k-te Moment einer Zufallsvariablen X im Model \mathbb{P}_{ϑ} ist

$$\mu_k := \mu_k(\vartheta) := \mathbb{E}_{\vartheta}[X^k].$$

Stichprobenmoment: Das k-te Stichprobenmoment von Zufallsvarialben X_1, \ldots, X_n ist

$$\hat{\mu}_k := \frac{1}{n} \sum_{i=1}^n X_i^k.$$

Die Parameter ϑ_i der theoretischen Verteilung werden als Funktion der Momente μ_k angegeben.

$$\vartheta_j = g_j(\mu_1, \dots, \mu_m)$$
 für $j \in \{1, \dots, m\}$

Den Momentenschätzer für $\vartheta = (\vartheta_1, \dots, \vartheta_m)$ erhält man, indem man die Stichprobenmomente in die Funktionen der Momente einsetzt; der Schätzer ist also $T = (T_1, \dots, T_m)$ mit

$$T_j := g_j(\hat{\mu}_1, \dots, \hat{\mu}_m)$$
 für $j \in \{1, \dots, m\}$

Beispiel: Gegeben seien n unabhängige Realisierungen x_1, \ldots, x_n einer Zufallsvariablen $X \sim \mathcal{P}(\lambda)$. Es gilt $\mathbb{E}[X] = \lambda$. Für die Funktion g_1 kann also die Idendität gewählt werden. Der Momentenschätzer ist somit

$$\lambda_{\text{MM}} = \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}.$$

Es gilt aber auch $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \lambda$. Es kann also auch $g_1(\mu_1, \mu_2) = \mu_2 - \mu_1^2$ gewählt werden. Dadurch erhält man einen anderen Momentenschätzer

$$\lambda_{\text{MM}} = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) - \left(\sum_{i=1}^{n}x_i\right)^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i - \overline{x})^2$$

S.3.2 Maximum-Likelihood

Es wird von einer Zufallsvariable X_1, \ldots, X_n ausgegangen, deren gemeinsame Dichte $f(t_1, \ldots, t_n \mid \vartheta)$ von einem Parameter ϑ abhängt. Die *Likelihood-Funktion* \mathcal{L} ist gegeben durch

$$\mathcal{L}(x_1,\ldots,x_n\mid\vartheta)=f(x_1,\ldots,x_n\mid\vartheta).$$

Anschaulich ist das die Wahrscheinlichkeit¹, dass im Modell \mathbb{P}_{ϑ} die Stichprobe X_1, \ldots, X_n die Werte x_1, \ldots, x_n liefert. Um eine möglichst gute Anpassung des Modells an die Daten zu erreichen, wird der Likelihood-Schätzer als Funktion von ϑ maximiert.

SEITE 9 JEROME DOHRAU

¹oder zumindest das stetige Pendant zur Wahrscheinlichkeit.

Hinweis: Im diskreten Fall wird lediglich die Dichte f durch die Gewichtsfunktion p ersetzt.

Oft sind die Zufallsvariablen X_i unter \mathbb{P}_{ϑ} i.i.d. mit Dichtefunktion $f(t\mid\vartheta)$, so dass sich die Likelihood-Funktion vereinfacht zu

$$\mathcal{L}(x_1, \dots, x_n \mid \vartheta) = \prod_{i=1}^n f(x_i \mid \vartheta).$$

Aufgrund der Monotonie des Logarithmus kann dann die logarithmierte Likelihood-Funktion verwendet werden, ohne dass sich dadurch das Maximum der Funktion verschiebt.

$$\log \mathcal{L}(x_1, \dots, x_n \mid \vartheta) = \sum_{i=1}^n \log f(x_i \mid \vartheta)$$

Beispiel: Gegeben seien n unabhängige Realisierungen x_1, \ldots, x_n einer Zufallsvariable $X \sim Exp(\lambda)$ mit Dichte $f(t) = \lambda e^{-\lambda t} \mathbb{1}_{[0,\infty)}(t)$ und unbekanntem Parameter λ . Für die Likelihood-Funktion erhält man

$$\mathcal{L}(\lambda) := \mathcal{L}(x_1, \dots, x_n \mid \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$$

und durch logarithmieren

$$\log \mathcal{L}(\lambda) = \sum_{i=1}^{n} \log \lambda e^{-\lambda x_i} = n \log \lambda - \lambda \sum_{i=1}^{n} x_i.$$

Zur Bestimmung des Maximums wird die Ableitung nullgesetzt:

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\log\mathcal{L}(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i \stackrel{!}{=} 0 \quad \Rightarrow \quad \lambda_{\mathrm{LH}} = \frac{n}{\sum_{i=1}^{n} x_i}$$

Aus $\frac{d^2}{d\lambda^2}\mathcal{L}(\lambda) = -\frac{n}{\lambda^2} < 0$ für $\lambda > 0$ folgt, dass es sich auch tatsächlich um ein Maximum handelt.

S.4 Tests

S.4.1 Fehler 1. und 2. Art

Fehler 1. Art: Die Hypothese wird zu Unrecht abgelehnt, d.h. obwohl sie richtig ist. Die Wahrscheinlichkeit für einen Fehler 1. Art ist

$$\mathbb{P}_{\vartheta}[T \in K] \quad \text{für } \vartheta \in \Theta_0.$$

Fehler 2. Art: Die Hypothese wird akzeptiert, obwohl sie falsch ist. Die Wahrscheinlichkeit für einen Fehler 2. Art ist

$$\mathbb{P}_{\vartheta}[T \notin K] = 1 - \mathbb{P}_{\vartheta}[T \in K] \quad \text{für } \vartheta \in \Theta_A.$$

S.4.2 Mögliches Vorgehen

Ausgangspunkt ist eine Stichprobe X_1, \ldots, X_n in einem Modell \mathbb{P}_{ϑ} mit unbekanntem Parameter $\vartheta \in \Theta$.

1: Aufgrund einer Vermutung, wo sich der richtige Parameter ϑ befindet, werden eine $Hypothese\ \Theta_0\subseteq\Theta$ und eine $Alternative\ \Theta_A\subseteq\Theta$ mit $\Theta_0\cap\Theta_A=\emptyset$ formuliert:

Hypothese
$$H_0: \vartheta \in \Theta_0$$

Alternative $H_A: \vartheta \in \Theta_A$

Hinweis: Die Hypotese (bzw. Alternative) heisst *einfach*, falls sie nur aus einem einzelnen Wert besteht, also z.B. $\Theta_0 = \{\vartheta_0\}$ (bzw. $\Theta_A = \{\vartheta_A\}$).

- 2. Es wird eine Teststatistik $T = t(X_1, ..., X_n)$ gewählt, wobei $t : \mathbb{R}^n \to \mathbb{R}$ eine geeignete Funktion ist.
- 3. Es wird ein Signifikanzniveau $\alpha \in (0,1)$ gewählt.
- 4. Ein Verwerfungsbereich $K \subseteq \mathbb{R}$ wird konstruiert, so dass

$$\sup_{\vartheta \in \Theta_0} \mathbb{P}_{\vartheta}[T \in K] \le \alpha.$$

Dadurch wird die Wahrscheinlichkeit eines Fehlers 1. Art durch α beschränkt.

5. Die Hypothese wird verworfen, falls der realisierte Wert $t(x_1, \ldots, x_n)$ im Verwerfungsbereich K liegt.

Hinweis: Alternative zu Schritt 4 und 5: Der P-Wert p wird berechnet und die Hypothese verworfen, falls $p \leq \alpha$.

P-Wert: Der P-Wert ist die Wahrscheinlichkeit, dass unter der Nullhypothese H_0 ein zufälliger Versuch mindestens so extrem ausfällt, wie der beobachtete Wert t.

Macht: Die Macht eines Tests ist die Funktion

$$\beta: \Theta_A \to [0,1], \quad \vartheta \mapsto \beta(\vartheta) := \mathbb{P}_{\vartheta}[T \in K].$$

Das Maximieren der Macht $\beta(\vartheta)$ entspricht dem Minimieren der Wahrscheinlichkeit für einen Fehler 2. Art $1 - \beta(\vartheta) = \mathbb{P}_{\vartheta}[T \notin K]$ für $\vartheta \in \Theta_A$.

S.4.3 Likelihood-Quotienten Test

Als Teststatistik wird der Likelihood- $Quotient \mathcal{R}$ gewählt, wobei \mathcal{L} die Likelihood-Funktion ist:

$$T := \mathcal{R}(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} \mathcal{L}(x_1, \dots, x_n \mid \vartheta)}{\sup_{\vartheta \in \Theta_A} \mathcal{L}(x_1, \dots, x_n \mid \vartheta)}$$

Ist dieser Quotient klein, sind die Beobachtungen im Modell \mathbb{P}_{Θ_A} deutlich wahrscheinlicher als im Modell \mathbb{P}_{Θ_0} . Der Verwerfungsbereich K := [0, c) wird so gewählt, dass der Test das gewünschte Signifikanzniveau einhält.

Hinweis: Sind Hypothese und Alternative beide einfach, so ist der Test optimal (nach Neyman-Pearson-Lemma).

S.4.4 z-Test

Seien $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\vartheta_0, \sigma^2)$ unter \mathbb{P}_{ϑ_0} mit bekannter Varianz σ^2 . Es soll die Hypothese $H_0: \vartheta = \vartheta_0$ getestet werden. Mögliche Alternativen H_A sind $\vartheta > \vartheta_0$, $\vartheta < \vartheta_0$ (einseitig) oder $\vartheta \neq \vartheta_0$ (zweiseitig). Die Teststatistik ist

$$T := \frac{\overline{X}_n - \vartheta_0}{\sigma_X / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

unter dem Modell \mathbb{P}_{ϑ_0} . Der Verwerfungsbereich ist von der Form $(c_>, \infty)$, bzw. $(-\infty, c_<)$, bzw. $(-\infty, -c_{\neq}) \cup (c_{\neq}, \infty)$. Zum Beispiel liefert die Bedingung

$$\alpha = \mathbb{P}_{\vartheta_0}[T \in K_>] = \mathbb{P}_{\vartheta_0}[T > c_>] = 1 - \Phi(c_>),$$

dass $c_{>} = \Phi^{-1}(1-\alpha)$, also das $(1-\alpha)$ -Quantil der $\mathcal{N}(0,1)$ -Verteilung, sein muss.

SEITE 10 JEROME DOHRAU

S.4.5 t-Test

Seien $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0,\sigma^2)$ unter \mathbb{P}_{ϑ} wobei $\vartheta=(\mu,\sigma^2)$ und insbesondere die Varianz σ^2 unbekannt ist. Die Hypothese $H_0: \mu=\mu_0$ soll getestet werden. Die unbekannte Varianz σ^2 wird durch den Schätzer $s^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$ (empirische Varianz) ersetzt. Danach kann mit der Teststatistik

$$T := \frac{\overline{X}_n - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

gleich wie beim z-Test vorgegangen werden.

S.4.6 Gepaarter Zweistichprobentest

Seien $X_{1 \leq i \leq n} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_X, \sigma^2)$ und $Y_{1 \leq i \leq n} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_Y, \sigma^2)$ unter \mathbb{P}_{ϑ} . Falls man eine natürliche Paarbildung zwischen X_i und Y_i hat, lässt der Test zum Vergleich von μ_X und μ_Y auf eine Stichprobe zurückführen:

$$Z_i := X_i - Y_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_x - \mu_y, 2\sigma^2)$$

S.4.7 Ungepaarter Zweistichprobentest

Seien $X_{1 \leq i \leq n} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_X, \sigma^2)$ und $Y_{1 \leq i \leq m} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_Y, \sigma^2)$ unter \mathbb{P}_{ϑ} .

a) Ist σ^2 bekannt, so ist die Teststatistik

$$T := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1).$$

b) Ist σ^2 unbekannt, berechnet man

$$s^2 := \frac{1}{m+n-2}((n-1)s_X^2 + (m-1)s_Y^2)$$

und wählt für die Teststatistik

$$T := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{s\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

S.4.8 Konfidenzbereiche

Konfidenzbereich: Ein Konfidenzbereich für ϑ zu den Stichproben X_1, \ldots, X_n ist eine Menge $C(X_1, \ldots, X_n) \subseteq \Theta$. In den meisten Fällen ist das ein Intervall, dessen Endpunkte von X_1, \ldots, X_n abhängen.

C heisst ein Konfidenzbereich zum Niveau $1 - \alpha$, falls gilt

$$\mathbb{P}_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] > 1 - \alpha$$

Anhang

A.1 Kombinatorik

Ziehen von k Elementen aus einer Menge mit n Elementen

	geordnet	ungeordnet
mit zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

A.2 Reihen und Integrale

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=0}^{n} a_{0}q^{k} = a_{0}\frac{1-q^{n+1}}{1-q}$$

$$\sum_{k=0}^{\infty} a_{0}q^{k} = \frac{a_{0}}{1-q}$$

$$\sum_{k=0}^{\infty} \frac{k}{a^{k}} = \frac{a}{(a-1)^{2}}, \qquad |a| > 1$$

$$\sum_{k=0}^{\infty} \frac{x^{k}}{k!} = e^{x}$$

Partielle Integration:

$$\int_a^b f'(x)g(x)\mathrm{d}x = [f(x)g(x)]_a^b - \int_a^b f(x)g'(x)\mathrm{d}x$$

Substitutionsregel:

$$\int_{a}^{b} f(g(x))g'(x)dx \stackrel{t=g(x)}{=} \int_{g(a)}^{g(b)} f(t)dt$$

Bei den folgenden Integralen wurden die Integrationskonstanten weggelassen.

$$\int a \, dx = ax$$

$$\int x^a \, dx = \frac{1}{a+1}x^{a+1}, \qquad a \neq -1$$

$$\int (ax+b)^c \, dx = \frac{1}{a(c+1)}(ax+b)^{c+1}, \qquad c \neq -1$$

$$\int \frac{1}{x} \, dx = \log|x|, \qquad x \neq 0$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a}\log|ax+b|$$

$$\int \frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}$$

$$\int e^{ax} \, dx = \frac{1}{a}e^{ax}$$

$$\int xe^{ax} \, dx = \frac{e^{ax}}{a^2}(ax-1)$$

$$\int x^2 e^{ax} \, dx = \frac{e^{ax}}{a^2}(ax-1)$$

$$\int \log|x| \, dx = x(\log|x|-1)$$

$$\int \log_a |x| \, dx = x(\log_a |x| - \log_a e)$$

$$\int x^a \log x \, dx = \frac{x^{a+1}}{a+1} \left(\log x - \frac{1}{a+1}\right), \quad a \neq -1, x > 0$$

$$\int \frac{1}{x} \log x \, dx = \frac{1}{a}\sin(ax+b)$$

$$\int \cos(ax+b) \, dx = -\frac{1}{a}\cos(ax+b)$$

$$\int \tan x \, dx = -\log|\cos x|$$

$$\int \frac{1}{\sin x} \, dx = \log|\tan \frac{x}{2}|$$

$$\int \frac{1}{\cos x} \, dx = \log|\tan \frac{x}{2}|$$

$$\int \sin^2 x \, dx = \frac{1}{2}(x-\sin x\cos x)$$

$$\int \cos^2 x \, dx = \frac{1}{2}(x+\sin x\cos x)$$

$$\int \tan^2 x \, dx = \tan x - x$$

$$\int \frac{f'(x)}{f(x)} \, \mathrm{d}x = \log |f(x)|$$

A.3 Beispiele

A.3.1 Regeln

- Die Dichte kann bei stetigen ZV > 1 sein.
- $Kov[X,Y] = 0 \Leftrightarrow X,Y$ sind unabhängig $\Leftrightarrow f_X(x)f_Y(y) = f_{X,Y}(x,y)$.
- X und Y sind unkorreliert $\rightarrow E[XY] = E[X]E[Y]$
- Mit der gemeinsamen Verteilung von X und Y kann man die Dichte berechnen
- $P[a \le X \ge b] = F_X(a) F_X(b)$
- $0 \le F_X(x) \ge 1$ aber $f_X(x)$ kann größer 1 sein.
- Wenn X $Exp(\lambda)$: $P[X > t + s | X > s] = P[X > t] \forall t, s \in \mathbb{R}^+$.

• $f(x_1,...,x_n) = f(x_1)...f(x_n) \Rightarrow$ Die gemeinsame Dichte ist das Produkt der Randdichten.

A.3.2 Berechnung des Median

Für den Median muss gelten : F(m)=0.5 Dann einfach Gleichung der Verteilungsfunktion (= 0.5) für m auflösen.

A.3.3 Verteilungsfunktion mit der Dichte

Dichtefunktion integrieren und als Grenzen der Integrale die Grenzen des Wahrscheinlichkeitsraums benutzen.

 \rightarrow Dichte anhand Verteilung : Verteilung ableiten

A.3.4 Erwartungswert mit Dichte

 $E[X] = \int_*^* x f(x) dx$, mit * die Grenzen des Definitionsbereich

A.3.5 Verteilungsfunktion Beweis

- Monotonie
- Rechtsstetig
- $\lim_{x\to-\infty} F(x) = 0$
- $\lim_{x\to\infty} F(x) = 1$

A.3.6 $P[X \leq \alpha]$

 $P[X \leq \alpha] = F_X(\alpha) = \int_*^{\alpha} f_X(x) dx$, mit * die untere Grenze des Wahr.Raums.

A.3.7 Erwartungswert aus Dichtegraph lesen

Wo die Dichte symmetrisch zuläuft liegt der E.Wert.

A.3.8 Beweis lognormale ZV

Sei R lognormal und $(R\ N(\mu,\sigma^2))$. $V = \alpha R\beta \rightarrow log(V) = log(\alpha R\beta) = log(\alpha\beta) + log(R^{\alpha})$ Das heisst V ist auch lognormal verteilt mit Parametern : $VlogN(x\mu + log(\alpha\beta), x^2\sigma^2)$

A.3.9 Doppelte Integration

$$F(x,y) = \int_0^{1/4} \int_0^1 (1 + 16xy + 6y^2) dy dx$$

$$= \int_0^{1/4} ([y + 8x^2 + 2y^3]_0^1) dx$$

$$= \int_0^{\frac{1}{4}} (8x + 3 - 0) dx$$

$$= [3x + 4x^2]_0^{1/4}$$

$$= 1$$

A.3.10 Bedingter E. Wert

$$E[Y|X = x] = \int_{a}^{b} y f_{Y|X=x}(y) dy$$
$$= \int_{a}^{b} y \frac{f_{X,Y}(x,y)}{f_{X}(x)} dy$$

A.3.11 Dichtefunktion Beweis

- $f_{X,Y}(x,y) \ge 0, \forall (x,y) \in \mathbb{R}^2$
- $\int_{\mathbb{R}^2} f_{X,Y}(x,y) dx dy = 1$ Bzw. in D. Bereich.

A.3.12 Randdichten von zusammengesezten ZV berechnen

Gegeben $f_{X,Y}(x,y) = 1 + 16xy + 6y^2$ und $D = [0, 1/4] \times [0, 1]$.

- $f_X(x) = \int_0^1 f_{X,Y}(x,y)dy = 3 + 8x, x \in [0,1/4]$
- $f_Y(y) = \int_0^{1/4} f_{X,Y}(x,y) dx = \frac{1}{4} + \frac{1}{2}y + \frac{3}{2}y^2, x \in [0,1]$

A.3.13 Kovarianz berechnen

* Gleiche Funktion und ZV wie obige Bsp. Cov[X, Y] = E[XY] - E[X]E[Y]

$$E[XY] = \int_0^{1/4} \int_0^1 xy(1 + 16xy + 6y^2) dx dy$$
$$= \int_0^{1/4} (2x + \frac{1}{6}3x^2 dx)$$
$$= \frac{13}{144}$$

And

$$\begin{split} E[X]*E[Y] &= \int_0^{1/4} (3x + 8x^2) dx * \int_0^1 \frac{1}{4} y \frac{1}{2} y^2 \frac{3}{2} y^3 \\ &= 2/3 * 13/96 \\ &= 13/144 \end{split}$$

Hence: Cov[X,Y] = 0 => X und Y sind unabhängig.

A.3.14 Dichte einer uniform verteilten ZV

N uniform auf [a, b] verteilt. $\rightarrow f_X(x) = \frac{1}{(b-a)}$

A.3.15 Zur standartisierten ZV Z übergehen

Sei
$$X$$
 $N(\mu, \sigma^2)$ dann gilt $Z = \frac{(X - \mu)}{\sigma}$
z.B : $P[X \le \alpha] = P[Z \le \frac{\alpha - \mu}{\sigma}]$

A.3.16 SummenRechnen

Konstante C bestimmen :

$$1 = \sum_{k=2}^{\infty} \sum_{j=1}^{k-1} C(\frac{1}{2})^k$$

$$= C \sum_{j=1}^{\infty} \sum_{k=j+1}^{\infty} (\frac{1}{2})^k$$

$$= C \sum_{j=1}^{\infty} (\frac{1}{2})^{j+1} \sum_{k=0}^{\infty} (\frac{1}{2})^k$$

A.3.17 Bedingte Gewichtsfunktion berechnen

$$p_{X|Y}(j|k) = \frac{p_{X,Y}(j,k)}{p_Y(k)}$$

A.3.18 Normalverteilung

Für $X: N(\mu, \sigma^2)$ gilt dass $((X - \mu)/\sqrt{\sigma^2}): N(0, 1)$

A.3.19 \times N(1,2) berechnen

$$\begin{split} P[E[X] - 1 &\leq X \leq E[X] + 1 = P[0 \leq X \leq 2] \\ &= P[-1/2 \leq \frac{X - 1}{2} \leq 1/2] \\ &= \Phi(1/2) - \Phi(-1/2) \\ &= \Phi(1/2) - (1 - \Phi(1/2)) \\ &= 2\Phi(1/2) - 1 \end{split}$$

 \Rightarrow in der Tabelle ablesen

A.3.20 Funktion von unabhängigen ZV

Gegeben $X_n = min\{X_1...X_k\}$, Dichtefunktion berechnen: $F(t) = 1 - P[X_n > t] = 1 - P[X_1...X_k] = 1 - (1 - F(t))^n$ Daher gilt: $f(t) = \frac{d}{dt}F(t) = n(1 - F(t))^{n-1}f(t)$

A.3.21 Interval Normalverteilte ZV

Gegeben : $X - N(\mu, \sigma^2)$, und Gesucht : P[40 < X < 60]

$$\begin{split} P[|X-50|<10] &= P[40 < X < 60] \\ &= P[X < 60] - P[X \le 40] \\ &= P[\frac{X-50}{5} < \frac{60-50}{5}] - P[\frac{X-50}{5} \le \frac{40-50}{5}] \\ &= \Phi(2) - \Phi(-2) = 2\Phi(2) - 1... \end{split}$$