Python 3 玩火转机器学习 liuyubobobo

源课机器学习基础概念 版权所有,虚权以完

课课[网 《Python3机器学习》 关于数据版权所有。

数据

• 著名的鸢尾花数据 <u>https://en.wikipedia.org/wiki/Iris_flower_data_set</u>

Iris setosa

Iris versicolor

Iris verginica

数据。

Iris Plants Database

Notes

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)

:Number of Attributes: 4 numeric, predictive attributes and the class

:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

类大括

萼片长度	萼片宽度	花瓣长度	花瓣宽度	种类
5.1	3.5	1.4	0.2	se (0)
7.0	3.2	4.7	1.4	ve (1)
6.3	3.3	6	2.5	vi (2)

类文括 交列

萼片长度	萼片宽度	花瓣长度	花瓣宽度	种类	・数据整体叫数据集 (data set)
5.1	3.5	1.4	0.2	se (0)	每一行数据称为一个样本(sample)
7.0	3.2	4.7	1.4	ve (1)	•除最后一列,每一列表达样本的一个
6.3	3.3	6	2.5	vi (2)	特征(feature)
					·最后一列,称为标记(label)
				V	

第i个样本行写作 $\boldsymbol{X}^{(i)}$ 第i个样本第j个特征值 $\boldsymbol{X}_{j}^{(i)}$ 第i个样本的标记写作 $\boldsymbol{y}^{(i)}$

数据

萼片长度	萼片宽度	花瓣长度	花瓣宽度	-	特征	
5.1	3.5	1.4	0.2		特征向量 X	r(i)
7.0	3.2	4.7	1.4		T	
6.3	3.3	6	2.5		$(X^{(1)})^{T}$ $(X^{(2)})^{T}$ $(X^{(3)})^{T}$	

5.13.5

1.40.2

数据。

- 特征空间 (feature space)
- 分类任务本质就是在特征空间切分
- 在高维空间同理

特征可以很抽象

• 图像,每一个像素点都是特征

• 28*28的图像有28*28=784个特征

如果是彩色图像特征更多

机器学习的基本任务 版权所有,虚拟必然

机器学习的基本任务 ·洪师·仙山外山方分类。 ·山村以上,

• 二分类

- 判断邮件是垃圾邮件; 不是垃圾邮件
- 判断发放给客户信用卡有风险; 没有风险
- 判断病患良性肿瘤; 恶性肿瘤
- 判断某支股票涨; 跌

• 多分类

88888888888888888 99999999999999999

- 多分类
 - 数字识别
 - 图像识别
 - 判断发放给客户信用卡的风险评级

• 多分类

• 很多复杂的问题也可以转换成多分类问题

2048

SCORE **25008**

25008

Join the numbers and get to the 2048 tile!

• 多分类

• 多分类

- 多分类
 - •一些算法只支持完成二分类的任务
 - 但是多分类的任务可以转换成二分类的任务
 - 有一些算法天然可以完成多分类任务

• 多标签分类

1.12 woman

-0.28 in

1.23 white

1.45 dress

-0.13 with

3.58 tennis

1.81 racket

0.05 people

0.06 two

-0.14 in

0.30 green

-0.14 her

-0.09 behind

0.06 standing

另一类数据

		ORU		
房屋面积 (平方米)	房屋年龄(年)	卧室数量(间)	最近地铁站距离 (千米)	价格 (万元)
80	3	1	10	300
120	8	3	5	500
200	5	4	12	700

- 个连续数字的值,而非一个类别
 - •房屋价格

 - 学生成绩
 - 股票价格

回归任务

- 结果是一个连续数字的值,而非一个类别
 - 有一些算法只能解决回归问题
 - 有一些算法只能解决分类问题

• 有一些算法的思路既能解决回归问题,又能解决分类问题

回归任务

•一些情况下,回归任务可以简化成分类任务

机器学习的基本任务 ·洪师·仙山外山方分类。 ·山村以上,

什么是机器学习

监督学习为 (Python3) ·山地大学

40003M/ 监督学习, 非监督学习 半监督学习和增强学习 和增强学习

机器学习方法的分类

- 监督学习
 - 非监督学习
 - 半监督学习
 - 增强学习

监督学到

给机器的训练数据拥有"标记"或者"答案"

监督学习

```
6
```

监督学习

- 图像已经拥有了标定信息
- •银行已经积累了一定的客户信息和他们信用卡的信用情况
- 医院已经积累了一定的病人信息和他们最终确诊是否患病的情况
- 市场积累了房屋的基本信息和最终成交的金额

•

监督学习为 (Python3) ·山地大学

大部分算法, 属于监督学习算法

- k近邻

- SVM
- · 决策树和随机森林

非监督学习

给机器的训练数据没有任何"标记"或者"答案"

对没有"标记"的数据进行分类 - 聚类分析

对数据进行降维处理

• 特征提取: 信用卡的信用评级和人的胖瘦无关?

·特征压缩:PCA

Feature 1

降维处理的意义: 方便可视化

半监督学习

一部分数据有"标记"或者"答案",另一部分数据没有

更常见:各种原因产生的标记缺失

通常都先使用无监督学习手段对数据做处理,之后使用监督学习手段做模型的训练和预测

增强学习

根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。

增强学习

增强学习

无人驾驶

机器人

监督学习和半监督学习是基础

机器学习方法的分类

- 监督学习
 - 非监督学习
 - 半监督学习
 - 增强学习

机器学习的其他分类

013/1/3/1

在线学习和批量学习(离线学习)

参数学习和非参数学习

批量学习和在线学习

・批量学习 Batch Learning
・在线学习 Online Learning

批量学习

批量学习

• 优点: 简单

• 问题: 如何适应环境变化?

解决方案:定时重新批量学习

• 缺点:每次重新批量学习,运算量巨大;

在某些环境变化非常快的情况下,甚至不可能的。

在线学到

在线学习

• 优点: 及时反映新的环境变化

• 问题: 新的数据带来不好的变化?

解决方案:需要加强对数据进行监控

• 其他: 也适用于数据量巨大, 完全无法批量学习的环境。

参数学习和非参数学习

• 参数学习 Parametric Learning

・非参数学习 Nonparametric Learning

参数学习

$$f(x) = a^*x + b$$

参数学习的特点

一旦学到了参数,就不再需要原有的数据集

非参数学习

•不对模型进行过多假设

• 非参数不等于没参数!

和机器学习相关的"哲学"思考

据以所有。

数据即算法? 版权所有,是权必究

数据即算法?

• 数据确实非常重要

• 数据驱动

- ,收集更多的数据
- 提高数据质量
- ·提高数据的代表性
- 研究更重要的特征

算法为基础

如何选择机器学习算法?

kNN

SVM

线性回归

决策树

多项式回归

随机森林

逻辑回归

集成学习

模型正则化

模型选择

PCA

模型调试

奥卡姆的剃刀

• 简单的就是好的

•到底在机器学习领域,什么叫"简单"?

没有免费的午餐定理

• 可以严格地数学推导出: 任意两个算法,

他们的期望性能是相同的!

• 具体到某个特定问题,有些算法可能更好

•但没有一种算法,绝对比另一种算法好

没有免费的午餐定理

• 脱离具体问题, 谈那个算法好是没有意义的。

• 在面对一个具体问题的时候,尝试使用多种算法进行对比试验,是必要的。

其他思考

面对不确定的世界,怎么看待使用机器学习进行预测的结果?

课程环境搭建 版权所有

github.com/liuyubobobo/Play-with-Machine-Learning-Algorithms

其他語学习》

请大家善于使用慕课网的课程问答区

其他。

欢迎大家关注我的个人公众号:是不是很酷

Python 3 玩火转机器学习 liuyubobobo