Introduction to Financial Econometrics

Chapter 2: Multiple Linear Regression Model

Christophe Hurlin

Univ Orléans

May, 2019

In finance, investors are interested in the trade-off between (expected) returns and risk.

Suppose that one would like to assess this trade-off in the case of a technology company (Intel corporation equity price).

Questions:

- How can one quantify and interpret such a relationship?
- Is there any evidence that Intel return amplifies/attenuates market risk?
- Is there any evidence that this stock outperforms/underperforms the market?

2 / 183

- To quantify risk, one can proceed with statistical models (e.g., using financial theory), and especially the multiple linear regression models.
- Once the model is specified (step 1), the second step consists in estimating the (unknown) value of the model parameters.
- In the case of the multiple linear regression models, we generally consider the Ordinary Least Squares (OLS) estimator defined by

The objectives of this chapter are the following:

- Define the (multiple) linear regression model.
- Introduce the ordinary least squares (OLS) estimator.
- Onsider the CAPM (Capital Asset Pricing Model) as an illustration.
- Opening the main statistical properties of the OLS estimator.

The outline of this chapter is the following:

Section 2: The multiple linear regression model

Section 3: The ordinary least squares estimator

Section 4: Statistical properties of the OLS estimator

The detail of the outline is the following:

Section 2: The multiple linear regression model

Subsection 2.1: The CAPM as a linear regression model

Subsection 2.2: Specification of the multiple linear regression model

Subsection 2.3: Assumptions on the multiple linear regression model

Section 3: The ordinary least squares estimator

Subsection 3.1: Intuition of the OLS estimator

Subsection 3.2: Definition of the OLS estimator

Subsection 3.3: Applications to the CAPM model

Section 4: Statistical properties of the OLS estimator

Subsection 4.1: Finite sample properties

Subsection 4.2: Asymptotic properties

Subsection 4.3: Applications to the CAPM model

References

Campbell, J., Y., A.W. Lo and A.C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.

Greene W. (2007), Econometric Analysis, sixth edition, Pearson - Prentice Hil

Tsay, R., 2002, Analysis of Financial Time Series, Wiley Series

Notations: In this chapter, I will (try to...) follow some conventions of notation.

Y random variable

y realization

y vector

Y matrix

Problem: this system of notations does not allow to discriminate between a vector (matrix) of random elements and a vector (matrix) of non-stochastic elements (realization).

Abadir and Magnus (2002), Notation in econometrics: a proposal for a standard, Econometrics Journal.

Section 2

The Multiple Linear Regression Model:

Specification and Assumptions

Definition (Linear regression model)

The **linear regression model** is used to study the relationship between a dependent variable and one explanatory variable. The generic form of the linear regression model is

$$y_t = \alpha + \beta x_t + \varepsilon_t, \quad t = 1, ..., T$$

Notations

$$y_t = \alpha + \beta x_t + \varepsilon_t$$

- α is called the **intercept**.
- β is the **slope** (parameter) of the regression.
- Both parameters are assumed to be fixed and unknown.

Notations (cont'd)

$$y_t = \alpha + \beta x_t + \varepsilon_t$$

- y_t is the dependent variable, the regressand, or the explained variable.
- \bullet x_t is an explanatory variable, a regressor or a covariate.
- ε_t is the error term or disturbance.

IMPORTANT: do not use the term "residual"

Notations (cont'd)

The term ε_t is a **random disturbance**, so named because it "disturbs" an otherwise stable relationship. The disturbance arises for several reasons:

- Primarily because we cannot hope to capture every influence on an economic variable in a model. The net effect (positive or negative) of these omitted factors is captured in the disturbance.
- There are many errors of measurement on the variables used in the model.

Assumption

We assume that the error terms $\{\varepsilon_1,\ldots,\varepsilon_T\}$ are independent and identically distributed (i.i.d.) with

$$\mathbb{E}\left(\varepsilon_{t}\right)=0 \quad \forall t$$

$$\mathbb{V}\left(\varepsilon_{t}\right)=\sigma_{\varepsilon}^{2} \quad \forall t$$

where σ_{ε}^2 is the variance of error terms.

Note: The acronym i.i.d. means that all the random variables $\varepsilon_1, \ldots, \varepsilon_T$ have the same distribution and are independently distributed.

Sub-Section 2.1

The CAPM and the Linear Regression Model

Objectives

- Define the Capital Asset Pricing Model (CAPM).
- Define the systematic and idiosyncratic risks.
- To write the CAPM as a linear regression model.
- To collect a dataset (sample) to evaluate a CAPM model.
- To study the descriptive statistics of the data.

Definition (Capital Asset Pricing Model)

The Capital Asset Pricing Model (CAPM) is an economic model that specifies what expected returns (and therefore prices) should be as a function of systematic risk.

Systematic vs. idiosyncratic risks

- Systematic risk arises from market structure or dynamics which produce shocks or uncertainty faced by all agents in the market; such shocks could arise from government policy, international economic forces, etc.
- Idiosyncratic risk is the risk to which only specific agents or industries are vulnerable.
- The idiosyncratic risk can be reduced or eliminated through diversification; but since all market actors are vulnerable to systematic risk, it cannot be limited through diversification.

Source: Wikipedia

Remarks

- The CAPM is a model for pricing an individual security or portfolio
- The CAPM puts structure to Markowitz's (1952) mean-variance optimization theory.
- The CAPM assumes only one source of systematic risk: market risk.
- Investors are compensated for the market risk by a risk premium.
- Their compensation is proportional to the risk exposure.

Markowitz, H.M. (1952), Portfolio Selection, *The Journal of Finance*, 7(1), 77–91.

Definition (security market line)

If the CAPM is true, then all securities should lie in the **security market line** (SML) which represents the expected rate of return of an individual security as a function of the systematic (market) risk, such that

$$\mathbb{E}\left(R_{i}\right)=r_{f}+\beta_{i}\left(\mathbb{E}\left(R_{m}\right)-r_{f}\right)$$

Notations

- $\mathbb{E}(R_i)$ is the expected return of the asset i.
- $\mathbb{E}(R_m)$ is the expected return of the market portfolio.
- r_f is a risk-free rate (non-stochastic).
- β_i (beta of security i) represents the systematic (market) risk.

Figure: Illustration of the security market line

Source: Wikipedia

Notations (cont'd)

- $\mathbb{E}(R_m) r_f$ is the expected excess return of the market portfolio, also called the market premium.
- $\mathbb{E}(R_i) r_f$ is the expected excess return of asset i, also called the risk premium.

22 / 183

Definition (beta coefficient)

The **beta** parameter β_i represents the sensitivity of the expected excess asset returns to the expected excess market returns, with

$$eta_i = rac{\mathbb{C}ov\left(R_i, R_m
ight)}{\mathbb{V}\left(R_m
ight)}$$

23 / 183

Interpretation

$$\mathbb{E}(R_i) = r_f + \beta_i \left(\mathbb{E}(R_m) - r_f \right)$$

• If $\beta_i = 0$, asset i is not exposed to market risk. Thus, the investor is not compensated with higher return:

$$\mathbb{E}\left(R_{i}\right)=r_{f}$$

- If $\beta_i > 0$, asset i is exposed to market risk and $\mathbb{E}(R_i) > r_f$, provided that $\mathbb{E}(R_m) > r_f$.
- ullet If $eta_i=1$, the expected return of asset i is equal to the expected market return

$$\mathbb{E}\left(R_{i}\right)=\mathbb{E}\left(R_{m}\right)$$

From the theoretical CAPM model to a linear regression model

Definition (the CAPM as a regression model)

The empirical CAPM model for an asset i at all time t can defined as

$$R_{i,t} - r_{f,t} = \alpha_i + \beta_i \left(R_{m,t} - r_{f,t} \right) + \varepsilon_{i,t}$$

where α_i is a constant term (intercept), β_i denotes the slope parameter and $\varepsilon_{i,t}$ is an error term with $\mathbb{E}\left(\varepsilon_{i,t}\right)=0$ and $\mathbb{V}\left(\varepsilon_{i,t}\right)=\sigma^2$.

Note: if the intercept α_i is null, then we have

$$\mathbb{E}\left(R_{i,t}\right) = r_{f,t} + \beta_{i} \left(\mathbb{E}\left(R_{m,t}\right) - r_{f,t}\right)$$

Definition (excess return)

In the rest of the chapter, we denote the excess return by

$$z_{j,t} = R_{j,t} - r_{f,t}$$

for an asset j or the market portfolio. Remind that $z_{j,t}$ is a random variable since the return $R_{j,t}$ is stochastic.

Example (CAPM model for Intel Corp.)

Consider a CAPM model for the equity Intel Corp. (ticker: INTC) given by

$$z_{\texttt{intel},t} = \alpha + \beta z_{\texttt{market},t} + \varepsilon_t$$

where $z_{\mathtt{intel},t}$ (the dependent variable) is the excess (log-) return of Intel, $z_{\mathtt{market},t}$ (the explanatory variable) is the excess (log-) return of the market and ε_t is an error term. We consider a sample of daily log(returns), based on the unadjusted closing prices for the equity INTEL Corp. from August 19, 2013 to August 17, 2018 (5 years).

Figure: Closing daily prices for Intel Corp. (Aug 2013 - Aug 2018)

Figure: Daily log-returns for Intel Corp. (Aug 2013 - Aug 2018)

What is the Market Portfolio?

- It represents all wealth. We need to include not only all stocks, but all bonds, real
 estate, privately held capital, publicly held capital, and human capital in the world.
- Such a series does not exist: we have to use a proxy, typically a large portfolio of
 equities.
- In general, we consider the SP500 index for the US market: this index is based on the market capitalizations of the 500 largest companies having common stock listed on the NYSE or NASDAQ.
- A measurement error is introduced: Roll's (1977) critique.

Roll R. (1977). A critique of the asset pricing theory's tests, *Journal of Financial Economics*, 4, 129-176.

Figure: Historical data available with Yahoo Finance (ticker: ^GSPC).

Figure: Closing daily prices for the S&P500 index (Aug 2013 - Aug 2018)

32 / 183

Figure: Daily log-returns for Intel Corp. (Aug 2013 - Aug 2018)

Figure: Daily log-returns for the S&P500 (Aug 2013 - Aug 2018)

In order to estimate the parameters of the CAPM regression model, we need the excess returns (log-)returns.

Definition (excess returns)

The excess (log-)return is defined as difference between the return on the asset/portfolio (Intel or S&P500 in our case) and the (log-)return on a risk-free bond, denoted $r_{f,t}$.

$$z_{\mathtt{intel},t} = R_{\mathtt{intel},t} - r_{f,t}$$

$$z_{\texttt{market},t} = R_{\texttt{market},t} - r_{f,t}$$

Note: For the risk-free rate, we consider the **3 months treasury bill rate** for the US market.

Figure: Historical data available with Yahoo Finance (ticker: ^IRX).

Remarks

- In general, the T-Bill rate is quoted as an annualized interest rate.
- In order to compute the daily excess (log-) return, we have to convert this annual rate in a daily return.
- Denote by $r_{f,t} \equiv r_{f,t}^{[1]}$ the daily rate and $r_{f,t}^{[365]}$ the yearly interest rate, respectively. According to the simple interest formula (cf. Chapter 1), we have:

$$r_{f,t}^{[1]} = \frac{1}{365} r_{f,t}^{[365]}$$

Figure: Daily T-bill rate (Aug 2013 - Aug 2018)

Figure: Daily returns and excess returns for Intel Corp. (Aug 2013 - Aug 2018)

Figure: Daily returns and excess returns for the S&P500 index (Aug 2013 - Aug 2018)

Figure: Scatter plot of the excess returns of the S&P500 and Intel Corp.

Table 1: Descriptive statistics for the daily excess returns (August 22, 2017 to August 17, 2018)

Daily excess return	Intel Corp.	S&P500
Mean	0.0011	0.0005
Median	0.0015	0.0009
Maximum	0.1002	0.0267
Minimum	-0.0898	-0.0418
Std. Dev.	0.0188	0.0078
Skewness	0.1942	-1.3194
Kurtosis	8.7062	8.9555
Jarque-Bera	340.74	442.00
p-value	0.0000	0.0000
Observations	250	250

Key Concepts

- Capital Asset Pricing Model (CAPM)
- Security Market Line (SML)
- Systematic and idiosyncratic risk
- Beta parameter
- Market portfolio
- Excess (log-) return
- Descriptive statistics

Sub-Section 2.2

Specification of the Multiple Linear Regression Model

43 / 183

Objectives

- Define the (multiple) linear regression model.
- Make a distinction between the semi-parametric and parametric MLR model.
- Introduce the multiple linear Gaussian model.
- Introduce a vectorial definition of the MLR model.

Multiple linear regression model

- Other explanatory variables might explain variations of the excess (log-) return of Intel: macroeconomic variables (e.g., inflation), financial variables (e.g., Fama-French factors or price-to-dividend ratio), etc.
- For instance,

$$z_{\texttt{intel},t} = \beta_0 + \beta_1 z_{\texttt{market},t} + \beta_2 \text{inflation}_t + \varepsilon_t$$

• This is called the **multiple** linear regression model.

Definition (Multiple linear regression model)

The multiple linear regression model is used to study the (linear) relationship between a dependent variable and one or more independent variables, given by

$$y_t = x_{t,1}\beta_1 + x_{t,2}\beta_2 + \ldots + x_{t,K}\beta_K + \varepsilon_t$$

where y is the **dependent** (or explained) variable and $\mathbf{x}_1,...,\mathbf{x}_K$ are the **explanatory** (or independent) variables.

Notation

 $x_{t,k} =$ value of the k^{th} explanatory variable for time t

Xtime, variable

46 / 183

Notations (cont'd)

$$\mathbf{y}_{T\times 1} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_t \\ \dots \\ y_T \end{pmatrix} \quad \mathbf{x}_k = \begin{pmatrix} x_{1,k} \\ x_{2,k} \\ \dots \\ x_{t,k} \\ \dots \\ x_{T,k} \end{pmatrix} \quad \mathbf{\varepsilon}_{T\times 1} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_t \\ \dots \\ \varepsilon_T \end{pmatrix} \quad \boldsymbol{\beta}_{K} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_K \end{pmatrix}$$

Notations (cont'd)

$$\underset{\mathcal{T}\times\mathcal{K}}{\boldsymbol{X}}=(\boldsymbol{x}_1:\boldsymbol{x}_2:\ldots:\boldsymbol{x}_{\mathcal{K}})$$

or equivalently

$$\mathbf{X}_{T \times K} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} & \dots & x_{1,K} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} & \dots & x_{2,K} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{t,1} & x_{t,2} & \dots & x_{t,k} & \dots & x_{t,K} \\ \dots & \dots & \dots & \dots & \dots \\ x_{T,1} & x_{T,2} & \dots & x_{T,k} & \dots & x_{T,K} \end{pmatrix}$$

Definition (multiple linear regression model)

The multiple linear regression model can be written

$$\mathbf{y}_{T\times 1} = \mathbf{X} \mathbf{\beta}_{K\times 1} + \mathbf{\varepsilon}_{T\times 1}$$

where K denotes the number of regressors (including the intercept).

Remark

More generally, the matrix ${\bf X}$ may as well contain **stochastic** and **non stochastic** elements such as:

- Constant:
- Time trend;
- Dummy variables (for specific episodes in time);
- etc.

Therefore, **X** is generally a mixture of fixed and random variables.

Remark: If the model includes a constant term (intercept), then we have

$$y_t = \underbrace{1 \times \beta_1}_{\text{intercept}} + x_{t,2}\beta_2 + ... + x_{t,K}\beta_K + \varepsilon_t$$

The matrix X becomes

$$\mathbf{X}_{T \times K} = (\mathbf{e} : \mathbf{x}_2 : \dots : \mathbf{x}_K) = \begin{pmatrix} \mathbf{1} & x_{1,2} & \dots & x_{1,k} & \dots & x_{1,K} \\ \mathbf{1} & x_{2,2} & \dots & x_{2,k} & \dots & x_{2,K} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{1} & x_{t,2} & \dots & x_{t,k} & \dots & x_{t,K} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{1} & x_{T,2} & \dots & x_{T,k} & \dots & x_{T,K} \end{pmatrix}$$

where **e** is a unit $T \times 1$ vector

Example (CAPM model for Intel Corp.)

The CAPM model for Intel Corp. can be written as

$$z_{\texttt{intel},t} = \beta_1 + \beta_2 z_{\texttt{market},t} + \varepsilon_t$$

or equivalently

$$\mathbf{y}_{T \times 1} = \mathbf{X} \mathbf{\beta}_{T \times 2} + \mathbf{\varepsilon}_{T \times 1}$$

with

$$\mathbf{X}_{T \times 2} = \begin{pmatrix} 1 & z_{\texttt{market},1} \\ .. & .. \\ .. & .. \\ 1 & z_{\texttt{market},T} \end{pmatrix} \quad \mathbf{y}_{T \times 1} = \begin{pmatrix} z_{\texttt{intel},1} \\ .. \\ .. \\ z_{\texttt{intel},T} \end{pmatrix} \quad \underset{T \times 1}{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ .. \\ .. \\ \varepsilon_T \end{pmatrix} \quad \underset{2 \times 1}{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

Christophe Hurlin (Univ Orléans)

One key difference for the specification of the MLRM:

Parametric/semi-parametric specification

Parametric model: the distribution of the error terms is fully characterized, e.g. $\varepsilon \sim \mathcal{N}\left(\mathbf{0}, \Omega\right)$

Semi-Parametric specification: only a few moments of the error terms are specified, e.g. $\mathbb{E}\left(\varepsilon\right)=\mathbf{0}$ and $\mathbb{V}\left(\varepsilon\right)=\mathbb{E}\left(\varepsilon\varepsilon^{\top}\right)=\Omega$.

This **difference** does not matter for the derivation of the ordinary least square estimator But this difference matters for (among others):

- The characterization of the statistical properties of the OLS estimator (e.g., efficiency);
- 1 The choice of alternative estimators (e.g., the maximum likelihood estimator, etc.).

Definition (Semi-parametric multiple linear regression model)

The semi-parametric multiple linear regression model is defined by

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where the error term ε satisfies

$$\mathbb{E}\left(\left.oldsymbol{arepsilon}
ight|\mathbf{X}
ight)=oldsymbol{0}_{T imes1}$$

$$\mathbb{V}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right) = \sigma^{2} \mathbf{I}_{T \times T}^{T}$$

and I_T is the identity matrix of order T.

Remarks

1 If the matrix X is non stochastic (fixed), i.e. there are only fixed regressors, then the conditions on the error term ε read:

$$\mathbb{E}\left(\boldsymbol{\varepsilon}\right) = \mathbf{0}$$

$$\mathbb{V}\left(\boldsymbol{\varepsilon}\right) = \sigma^2 \mathbf{I}_{\mathcal{T}}$$

@ If the (conditional) variance covariance matrix of arepsilon is not diagonal, i.e. if

$$\mathbb{V}\left(\left.arepsilon
ight|\mathbf{X}
ight)=\mathbf{\Omega}$$

the model is called the Multiple Generalized Linear Regression Model

Remarks (cont'd)

The two conditions on the error term ε

$$\mathbb{E}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right) = \mathbf{0}_{T \times 1}$$

$$\mathbb{V}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right)=\sigma^{2}\mathbf{I}_{\mathcal{T}}$$

are equivalent to

$$\mathbb{E}\left(\left.\mathbf{y}\right|\mathbf{X}\right)=\mathbf{X}\boldsymbol{\beta}$$

$$\mathbb{V}\left(\left.\mathbf{y}\right|\mathbf{X}\right)=\sigma^{2}\mathbf{I}_{T}$$

Definition (The multiple linear Gaussian model)

The (parametric) multiple linear Gaussian model is defined by

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{arepsilon}$$

where the error term arepsilon is normally distributed

$$oldsymbol{arepsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}_{\mathcal{T}}\right)$$

As a consequence, the vector \mathbf{y} has a conditional normal distribution with

$$\mathbf{y} | \mathbf{X} \sim \mathcal{N} \left(\mathbf{X} \boldsymbol{\beta}, \sigma^2 \mathbf{I}_T \right)$$

Remarks

- The multiple linear Gaussian model is (by definition) a parametric model.
- $oldsymbol{0}$ If the matrix X is non stochastic (fixed), i.e. there are only fixed regressors, then the vector $oldsymbol{y}$ has marginal normal distribution:

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_T\right)$$

59 / 183

Key Concepts

- The multiple linear regression model.
- Semi-parametric multiple linear regression model
- Parametric multiple linear regression model
- Multiple linear Gaussian model

Sub-Section 2.3

Assumptions on the Multiple Linear Regression Model

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 1: Linearity)

The model is **linear** with respect to the parameters $\beta_1,...,\beta_K$.

Remarks

 The model specifies a linear relationship between the dependent variable and the regressors. For instance, the models

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

$$y_t = \beta_0 + \beta_1 \cos(x_t) + v_t$$

$$y_t = \beta_0 + \beta_1 \times \frac{1}{x_t} + \omega_t$$

are all linear with respect to (w.r.t.) β .

- ullet In contrast, the model $y_t=eta_0+eta_1x_t^{eta_2}+arepsilon_t$ is non linear w.r.t. $oldsymbol{eta}$.
- The model can be linear after some transformations. Starting from $y_t = Ax_t^{\beta} \exp{(\varepsilon_t)}$, one has a **log-linear** specification:

$$\ln(y_t) = \ln(A) + \beta \ln(x_t) + \varepsilon_t$$

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 2: Full column rank)

X is an $T \times K$ matrix with rank K.

Interpretation

- There is no exact relationship among any of the independent variables in the model.
- The columns of X are linearly independent.

Remarks

- Perfect multi-collinearity is generally not difficult to spot and is signalled by most statistical software.
- Imperfect multi-collinearity is a more serious issue.

Example (identification)

Suppose that we want to estimate the following model:

$$z_{\texttt{intel},t} = \beta_1 + \beta_2 z_{\texttt{market},t} + \beta_3 (z_{\texttt{market},t} \times 2) + \varepsilon_t$$

The identification condition does not hold since the variables $z_{\mathtt{market},t}$ and $z_{\mathtt{market},t} \times 2$ are perfectly collinear. It is impossible to estimate β_2 and β_3 .

69 / 183

Figure: Example of perfect multi-collinearity. Source: Eviews 3

Definition (Identification)

The multiple linear regression model is **identifiable** if and only if one the following equivalent assertions holds:

- (i) $\operatorname{rank}(\mathbf{X}) = K$
- (ii) The matrix $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- (iii) $\mathbf{X}\boldsymbol{\beta}_1 = \mathbf{X}\boldsymbol{\beta}_2 \Longrightarrow \boldsymbol{\beta}_1 = \boldsymbol{\beta}_2 \ \ \forall \, (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) \in \mathbb{R}^K \times \mathbb{R}^K$
- (iv) $\mathbf{X}\boldsymbol{\beta} = 0 \Longrightarrow \boldsymbol{\beta} = 0 \ \ \forall \boldsymbol{\beta} \in \mathbb{R}^K$
- (v) $\ker(\mathbf{X}) = \{0\}$

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 3: Strict exogeneity of the regressors)

The regressors are exogenous if:

$$\mathbb{E}\left(\left. \boldsymbol{\varepsilon} \right| \mathbf{X} \right) = \mathbf{0}_{T imes 1}$$

or equivalently

$$\mathbb{E}\left(\left.\varepsilon_{t}\right|x_{s,k}\right)=0$$

for any explanatory variable $k \in \{1, \dots, T\}$ and any time $(t, s) \in \{1, \dots, T\}$.

Comments

- **1** The expected value of the error term at time t is not a function of the explanatory variables observed at any observation (including the t^{th} observation).
- The explanatory variables are not predictors of the error terms.
- The strict exogeneity condition can be rewritten as:

$$\mathbb{E}\left(\mathbf{y}\mid\mathbf{X}\right)=\mathbf{X}\boldsymbol{\beta}$$

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 4: Spherical disturbances)

The error terms are such that:

$$\mathbb{V}\left(\left.\boldsymbol{\varepsilon}_{t}\right|\mathbf{X}\right)=\mathbb{E}\left(\left.\boldsymbol{\varepsilon}_{t}^{2}\right|\mathbf{X}\right)=\sigma^{2}\ \, \text{for all time }t\in\left\{ 1,..T\right\}$$

and

$$\mathbb{C}\textit{ov}\left(\left.\varepsilon_{t},\varepsilon_{s}\right|\mathbf{X}\right)=\mathbb{E}\left(\left.\varepsilon_{t}\times\varepsilon_{s}\right|\mathbf{X}\right)=0\ \ \text{for all}\ t\neq s$$

Notes:

- **1** The condition of constant variances is called **homoscedasticity**.
- The uncorrelatedness across observations is called non-autocorrelation.

Comments

- Spherical disturbances = homoscedasticity + non-autocorrelation
- If the errors are not spherical, we call them nonspherical disturbances.
- The assumption of homoscedasticity is a strong one: this is the exception rather than the rule!

Comments

Let us consider the (conditional) variance covariance matrix of the error terms:

Comments

Let us consider the (conditional) variance covariance matrix of the error terms:

$$\underbrace{\mathbb{V}\left(\boldsymbol{\varepsilon}|\mathbf{X}\right)}_{T\times T} = \underbrace{\mathbb{E}\left(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\middle|\mathbf{X}\right)}_{T\times T} =$$

$$\begin{pmatrix} \mathbb{V}\left(\varepsilon_{1}|\mathbf{X}\right) & \mathsf{Cov}\left(\varepsilon_{1}\varepsilon_{2}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{1}\varepsilon_{t}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{1}\varepsilon_{T}|\mathbf{X}\right) \\ \mathsf{Cov}\left(\varepsilon_{2}\varepsilon_{1}|\mathbf{X}\right) & \mathbb{V}\left(\varepsilon_{2}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{2}\varepsilon_{t}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{2}\varepsilon_{T}|\mathbf{X}\right) \\ ... & ... & ... & ... & ... & ... \\ \mathsf{Cov}\left(\varepsilon_{s}\varepsilon_{1}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{s}\varepsilon_{t}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{s}\varepsilon_{T}|\mathbf{X}\right) \\ ... & ... & ... & ... & ... & ... \\ \mathsf{Cov}\left(\varepsilon_{T}\varepsilon_{1}|\mathbf{X}\right) & ... & \mathsf{Cov}\left(\varepsilon_{T}\varepsilon_{t}|\mathbf{X}\right) & ... & \mathbb{V}\left(\varepsilon_{T}|\mathbf{X}\right) \end{pmatrix}$$

Comments

The two assumptions (homoscedasticity and nonautocorrelation) imply that:

Comments

$$\underbrace{\mathbb{V}\left(\boldsymbol{\varepsilon}|\mathbf{X}\right)}_{T\times T} = \underbrace{\mathbb{E}\left(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\middle|\mathbf{X}\right)}_{T\times T} = \sigma^{2} \mathbf{I}_{T}$$

• homoscedasticity means the "same variance" for all the error terms

$$\mathbb{V}\left(\left.\varepsilon_{1}\right|\mathbf{X}\right)=\ldots=\mathbb{V}\left(\left.\varepsilon_{T}\right|\mathbf{X}\right)=\sigma^{2}$$

non-autocorrelation means "no correlation" for two error terms at two different dates

$$\mathbb{C}\left(\left. \varepsilon_{s} \varepsilon_{t} \right| \mathbf{X} \right) = 0 \quad \text{if } s \neq t$$

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 5: Data generation)

The data in $(x_{t,1} \ x_{t,2} \ ...x_{t,K})$ may be any mixture of **constants** and **random variables**.

Example (non-stochastic terms)

Some examples of non-stochastic terms used as regressors: a constant term (intercept), a time trend, or some dummy variables (in some particular cases).

Comments

- The fact that the columns of X are stochastic (or not) has an impact on the asymptotic properties.
- If the explanatory variables are randomly distributed, additional assumptions regarding $(x_{t,1},\ldots,x_{t,K})$ are required. This is a statement about how the sample is drawn.
- In the sequel, we assume that $(x_{t,1} \ x_{t,2} \ ... x_{t,K})$ are independently and identically distributed (i.i.d) for t=1,..,T.

The classical linear regression model consists of a set of assumptions that describes how the data set is produced by a data generating process (DGP)

Assumption 1: Linearity

Assumption 2: Full rank condition or identification

Assumption 3: Exogeneity

Assumption 4: Spherical error terms

Assumption 5: Data generation

Assumption 6: Normal distribution

Definition (Assumption 6: Normal distribution)

The disturbances are **normally** distributed.

$$arepsilon | \mathbf{X} \sim \mathcal{N} \left(\mathbf{0}_{T imes 1}, \sigma^2 \mathbf{I}_T
ight)$$

Comments

- Normality is not necessary to obtain most of the results presented below.
- Assumption 6 implies assumptions 3 (exogeneity) and 4 (spherical disturbances).

$$arepsilon | \mathbf{X} \sim \mathcal{N} \left(\mathbf{0}, \sigma^2 | \mathbf{I}_T
ight)$$

$$\mathbb{E}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right)=\mathbf{0}\qquad\mathbb{V}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right)=\sigma^{2}\ \mathbf{I}_{T}$$

Summary

The main assumptions of the multiple linear regression model

A1: linearity	The model is linear with eta	
A2: identification	${f X}$ is an $T imes K$ matrix with rank K	
A3: exogeneity	$\mathbb{E}\left(\left.oldsymbol{arepsilon} ight \mathbf{X} ight)=0_{\mathcal{T} imes1}$	
A4: spherical error terms	$\mathbb{V}\left(\left.oldsymbol{arepsilon} ight \mathbf{X} ight)=\sigma^{2}\mathbf{I}_{T}$	
A5: data generation	X may be fixed or random	
A6: normal distribution	$oldsymbol{arepsilon}\left \left. \mathbf{X} \sim \mathcal{N} \left(0, \sigma^2 \mathbf{I}_{\mathcal{T}} ight) ight.$	

Key Concepts

- Assumptions of the multiple linear regression model
- Linearity (A1)
- Identification (A2)
- Exogeneity (A3)
- Spherical error terms (A4)
- Oata generation (A5)
- Normal distribution (A6)

Section 3

The Ordinary Least Squares (OLS) Estimator

3. The ordinary least squares estimation

Introduction

The simple linear regression model assumes that the following specification is true in the population:

$$y_t = \beta_1 + \beta_2 x_t + \varepsilon_t, \quad t = 1, \dots, T$$

where other unobserved factors determining y_t are captured by the error term ε_t .

- ② Consider a sample $\{X_t, Y_t\}_{i=1}^T$ of random variables and only one realization $\{x_t, y_t\}_{i=1}^T$ of this sample (your data set).
- **1** How to **estimate** the parameters β_1 and β_2 ?
- A solution here is to use the ordinary least squares estimator (OLS).

90 / 183

Sub-Section 3.1

Intuition of the OLS Estimator

Objectives

- Define the Ordinary Least Squares (OLS) estimator.
- Define the Sum of Squared Residuals (SSR) or Residual Sum of Squares (RSS).
- Define the notions of predicted values and residuals.
- Define the variance of the error terms.
- Define the Standard Error (SE) of the regression.

Intuition

Let us consider the following linear regression model :

$$y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$$

The general idea of the OLS consists in minimizing the "distance" between the points (x_t, y_t) and the regression line defined by

$$\widehat{y}_t = \widehat{\beta}_1 + \widehat{\beta}_2 x_t$$

or the points (x_i, \hat{y}_i) for all t = 1, ..., T.

Figure: Intuition of the OLS estimator

Definition (Sum of Squared Residuals)

Estimates of β_1 and β_2 are chosen by minimizing the Sum of Squared Residuals (SSR), or Residual Sum of Squares (RSS)

$$SSR = \sum_{t=1}^{T} \widehat{\varepsilon}_t^2$$

Note: The SSR corresponds to the sum of squares of the vertical distances between the actual y values and the predicted values of y, i.e.

$$\sum_{t=1}^{T} \widehat{\varepsilon}_{t}^{2} = \sum_{t=1}^{T} \left(y_{t} - \widehat{\beta}_{1} - \widehat{\beta}_{2} x_{t} \right)^{2}$$

Definition (OLS - simple linear regression model)

In the simple linear regression model $y_t=\beta_1+\beta_2x_t+\varepsilon_t$, the **OLS** estimators $\widehat{\beta}_1$ and $\widehat{\beta}_2$ are the solutions of the minimization problem

$$\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right) = \underset{\left(\beta_{1}, \beta_{2}\right)}{\arg\min} \sum_{t=1}^{T} \left(y_{t} - \beta_{1} - \beta_{2} x_{t}\right)^{2}$$

Definition (OLS estimators)

In the simple linear regression model $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$, the **OLS estimators** $\widehat{\beta}_1$ and $\widehat{\beta}_2$ are defined by

$$\widehat{\beta}_1 = \overline{y} - \widehat{\beta}_2 \overline{x}$$

$$\widehat{\beta}_{2} = \frac{\sum_{t=1}^{T} (x_{t} - \overline{x}_{T}) (y_{t} - \overline{y}_{T})}{\sum_{t=1}^{T} (x_{t} - \overline{x}_{T})^{2}}$$

where $\overline{y}_T = T^{-1} \sum_{t=1}^T y_t$ and $\overline{x}_T = T^{-1} \sum_{t=1}^T x_t$ respectively denote the sample mean of the dependent variable y and the regressor x.

Remark

The estimator for the slope parameter \widehat{eta}_2 can also be expressed as

$$\widehat{\beta}_2 = \frac{cov\left(x_t, y_t\right)}{var\left(x_t\right)}$$

where $cov(x_t, y_t)$ is the **empirical (or sample) covariance** of y_t and x_t , and $var(x_t)$ denotes the **empirical (or sample) variance** of x_t :

$$cov\left(x_{t}, y_{t}\right) = \frac{1}{T-1} \sum_{t=1}^{T} \left(x_{t} - \overline{x}_{T}\right) \left(y_{t} - \overline{y}_{T}\right)$$

$$var\left(x_{t}
ight)=rac{1}{T-1}\sum_{t=1}^{T}\left(x_{t}-\overline{x}_{T}
ight)^{2}$$

98 / 183

Example (CAPM)

We want to estimate the intercept and the slope parameter in the CAPM model

$$z_{\texttt{intel},t} = \alpha + \beta z_{\texttt{market},t} + \varepsilon_t$$

where $z_{\mathtt{intel},t}$ is the excess (log-) return for Intel Corp and $z_{\mathtt{market},t}$ is the excess (log-) return for the S&P500. We consider a sample of **250 observations** from August 22, 2017 to August 17, 2018 (1 year) for which we get

$$\begin{split} & \sum_{t=1}^{T} \left(z_{\texttt{market},t} - \overline{z}_{\texttt{market}} \right) \left(z_{\texttt{intel},t} - \overline{z}_{\texttt{intel}} \right) = 0.023990 \\ & \sum_{t=1}^{T} \left(z_{\texttt{market},t} - \overline{z}_{\texttt{market}} \right)^2 = 0.015526 \\ & \sum_{t=1}^{T} z_{\texttt{intel},t} = 0.2889 \quad \sum_{t=1}^{T} z_{\texttt{market},t} = 0.1498 \end{split}$$

Question: compute the OLS estimates of the parameters α and β .

Solution

In the CAPM model, the OLS estimators $\widehat{\beta}$ and $\widehat{\alpha}$ are respectively defined by

$$\widehat{\beta} = \frac{\sum_{t=1}^{T} \left(z_{\text{market},t} - \overline{z}_{\text{market}} \right) \left(z_{\text{intel},t} - \overline{z}_{\text{intel}} \right)}{\sum_{t=1}^{T} \left(z_{\text{market},t} - \overline{z}_{\text{market}} \right)^2} = \frac{0.023990}{0.015526} = 1.5442$$

$$\widehat{\alpha} = \overline{z}_{intel} - \widehat{\beta} \overline{z}_{market} = \frac{0.2889}{250} - 1.5442 \times \frac{0.1498}{250} = 2.3032 e^{-04} \simeq 0.0002$$

Figure: Regression line and fitted values

Definition (Fitted value)

The predicted (or fitted) value of y_t is:

$$\widehat{y}_t = \widehat{\beta}_1 + \widehat{\beta}_2 x_t$$

 $\textbf{Note:} \ \ \mathsf{The} \ \mathsf{sample} \ \mathsf{mean} \ \mathsf{of} \ \mathsf{the} \ \mathsf{fitted} \ \mathsf{values} \ \mathsf{is} \ \mathsf{equal} \ \mathsf{to} \ \mathsf{the} \ \mathsf{sample} \ \mathsf{mean} \ \mathsf{of} \ \mathsf{the}$

observations

$$\widehat{\overline{y}}_T = \frac{1}{T} \sum_{t=1}^T \widehat{y}_t = \overline{y}_T = \frac{1}{T} \sum_{t=1}^T y_t$$

Definition (residual)

The **residual** at time *t* is defined as:

$$\widehat{\varepsilon}_t = y_t - \widehat{\beta}_1 - \widehat{\beta}_2 x_t$$

with a sample mean equal to zero by definition:

$$\bar{\hat{\varepsilon}}_T = \frac{1}{T} \sum_{t=1}^T \hat{\varepsilon}_t = 0$$

Remark

It is necessary to estimate the variance σ_{ε}^2 of the errors terms

$$\begin{aligned} y_t &= \beta_1 + \beta_2 x_t + \varepsilon_t \\ \varepsilon_t \quad \text{i.i.d. with } \mathbb{E}\left(\varepsilon_t\right) &= 0 \quad \mathbb{V}\left(\varepsilon_t\right) = \sigma_\varepsilon^2 \quad \forall t \end{aligned}$$

So we have 3 parameters to estimate

- **1** The intercept β_1 .
- **2** The slope parameter β_2 .
- **1** The variance σ_{ε}^2 of the error terms.

Definition (standard error of the regression)

An estimator of the variance of the error terms $\sigma_{arepsilon}^2$ is defined by

$$\widehat{\sigma}_{\varepsilon}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 = \frac{SSR}{T - K}$$

where SSR denotes the sum of the squared residuals and K is the number of regressors (including the constant).

Note: The quantity $\hat{\sigma}_{\varepsilon}$ is also called the Standard Error (S.E.) of the regression or the Root Mean Squared Error (RMSE).

Example (CAPM)

Write a Matlab script to estimate by OLS the intercept and the slope parameter in the CAPM model

$$z_{\texttt{intel},t} = \alpha + \beta z_{\texttt{market},t} + \varepsilon_t$$

where $z_{\mathtt{intel},t}$ is the excess (log-) return for Intel Corp and $z_{\mathtt{market},t}$ is the excess (log-) return for the S&P500. For that, consider a sample of 250 observations from August 22, 2017 to August 17, 2018 (1 year).

Note: the data are available within the file Data_CAPM_returns.xlsx.

Figure: Matlab code for estimating a linear regression model

```
% PURPOSE: Data for CAPM model
% Course Name "Financial Econometrics", EDHEC Business School
% Chapter 1, Section 1. Multiple Linear Regression Models
% Author: Christophe Hurlin
clear , clc , close all
%== Data importation ===
[dataset,date] = xlsread('Data CAPM returns.xlsx'); % Importation of the data
                                                    % Transformation of the date
date=datetime(date(2:end,1));
r Intel ex=dataset(:,1);
                                                    % Excess daily (log-) returns for Intel
r SP500 ex=dataset(:,2);
                                                    % Excess daily (log-) returns for S&P500
%== Linear regression model and OLS estimator ===
reg=fitlm(r SP500 ex,r Intel ex);
disp(reg)
```

Figure: CAPM model for Intel Corp (Aug 2017 - Aug 2018): Matlab function fitlm

Linear regression model: $v \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tstat	pvalue
(Intercept)	0.00022961	0.00090928	0.25252	0.80085
x1	1.5452	0.11505	13.431	2.8468e-31

Number of observations: 250, Error degrees of freedom: 248
Root Mean Squared Error: 0.0143
R-squared: 0.421, Adjusted R-Squared 0.419
F-statistic vs. constant model: 180, p-value = 2.85e-31

3.1. Intuition of the OLS estimator

Figure: CAPM model for Intel Corp (Aug 2017 - Aug 2018): Matlab function fitlm

Linear regression model: $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue	
(Intercept)	0.00022961	0.00090928	0.25252	0.80085	
x1	1.5452	0.11505	13.431	2.8468e-31	

Number of observations: 250, Error degrees of freedom: 248 Root Mean Squared Error: 0.0143

R-squared: 0.421, Adjusted R-Squared 0.419

F-statistic vs. constant model: 180, p-value = 2.85e-31

3.1. Intuition of the OLS estimator

Key Concepts

- Ordinary least squares estimator.
- Sum of Squared Residuals (SSR) or Residual Sum of Squares (RSS).
- Predicted (or fitted) value and residuals.
- Variance of the error terms.
- Standard Error of the regression.

Sub-Section 3.2

Definition of the OLS Estimator

Objectives

- Define the OLS estimator in a multiple linear regression model.
- Write the vectorial formula for the OLS estimator.
- Minimize the sum of squared residuals.
- Solve the same minimization problem with matrix notation.
- Give a geometrical interpretation of the OLS estimator.

Now consider the multiple linear regression model

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{arepsilon}$$

or

$$y_t = \sum_{k=1}^K \beta_k x_{t,k} + \varepsilon_t$$

Objective: Find an estimator (and an estimate) of β_1 , β_2 , ..., β_K and σ^2 under the assumptions A1-A5.

OLS and multiple linear regression model

Different (equivalent) methods:

- Minimize the sum of squared residuals (SSR).
- Solve the minimization problem with matrix notation.
- Geometrical interpretation.

1. Minimize the sum of squared residuals (SSR)

As for the simple linear regression, we have

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \sum_{t=1}^{T} \varepsilon_{t}^{2} = \underset{\beta}{\operatorname{arg\,min}} \sum_{t=1}^{T} \left(y_{i} - \sum_{k=1}^{K} \beta_{k} x_{t,k} \right)^{2}$$

One can derive the first order conditions with respect to β_k for k=1,..,K and solve a system of K equations with K unknowns.

Definition (OLS and multiple linear regression model)

In the **multiple** linear regression model $y_t = \mathbf{x}_t^{\top} \boldsymbol{\beta} + \varepsilon_t$, with $\mathbf{x}_t = (x_{t,1}, ..., x_{t,K})^{\top}$, the OLS estimator $\widehat{\boldsymbol{\beta}}$ is the solution of

$$\widehat{oldsymbol{eta}} = \mathop{\mathrm{arg\,min}}_{oldsymbol{eta}} \sum_{t=1}^T \left(y_t - \mathbf{x}_t^{ op} oldsymbol{eta}
ight)^2$$

The **OLS estimators** of $oldsymbol{eta}$ is:

$$\widehat{\boldsymbol{\beta}}_{(K,1)} = \left(\sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t^{\top} \mathbf{x}_t^{\top}\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_t y_t \right)$$

2. Using matrix notations

Definition (OLS and multiple linear regression model)

the **multiple** linear regression model $\mathbf{y}=\mathbf{X}\boldsymbol{\beta}+\boldsymbol{\varepsilon}$, The OLS estimator $\widehat{\boldsymbol{\beta}}$ is the solution of the minimization problem

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\arg\min} \ \boldsymbol{\varepsilon}^{\top} \boldsymbol{\varepsilon} = \underset{\boldsymbol{\beta}}{\arg\min} \ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \, (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

The **OLS estimators** of $oldsymbol{eta}$ is:

$$\widehat{\boldsymbol{\beta}}_{(K,1)} = \left(\mathbf{\boldsymbol{\chi}}^{\top}_{(K,T)(T,K)} \right)^{-1} \left(\mathbf{\boldsymbol{\chi}}^{\top}_{(K,T)(T,1)} \right)$$

3. Geometric interpretation

- The ordinary least squares estimation methods consists in determining the adjusted vector, $\hat{\mathbf{y}}$, which is the closest to \mathbf{y} (in a certain space...) such that the squared norm between \mathbf{y} and $\hat{\mathbf{y}}$ is minimized.
- ② Finding \hat{y} is equivalent to find an estimator of β .

Definition (Geometric interpretation)

The adjusted vector, $\hat{\mathbf{y}}$, is the (orthogonal) projection of \mathbf{y} onto the column space of \mathbf{X} . The fitted error terms, $\hat{\boldsymbol{\varepsilon}}$, is the projection of \mathbf{y} onto the orthogonal space engendered by the column space of \mathbf{X} . The vectors $\hat{\mathbf{y}}$ and $\hat{\boldsymbol{\varepsilon}}$ are orthogonal.

3. Geometric interpretation

3. Geometric interpretation

Definition (Projection matrices)

The vectors $\hat{\mathbf{y}}$ and $\hat{\boldsymbol{\varepsilon}}$ are defined to be:

$$\widehat{\mathbf{y}} = \mathbf{P} \times \mathbf{y}$$

$$\widehat{\pmb{\varepsilon}} = \mathbf{M} \times \mathbf{y}$$

where **P** and **M** denote the two following projection matrices:

$$\mathbf{P} = \mathbf{X} \left(\mathbf{X}^{ op} \mathbf{X}
ight)^{-1} \mathbf{X}^{ op}$$

$$\mathbf{M} = \mathbf{I}_{\mathcal{T}} - \mathbf{P} = \mathbf{I}_{\mathcal{T}} - \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top}$$

Remarks

Suppose that there is a **constant term** in the model.

1 The least squares residuals sum to zero:

$$\sum_{t=1}^{T} \widehat{\varepsilon}_t = 0$$

- $\textbf{@} \ \, \text{The regression hyperplane passes through the point of means of the data} \ (\overline{\mathbf{x}}_{\mathcal{T}},\overline{\mathbf{y}}_{\mathcal{T}}) \, .$
- **1** The mean of the fitted values of y equals the mean of the actual values of y:

$$\overline{\widehat{y}}_T = \overline{y}_T$$

Definition (Unbiased variance estimator)

An **unbiased estimator of** σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \hat{\varepsilon}_t^2 \equiv \frac{SSR}{T - K}$$

Note: The estimator $\widehat{\sigma}^2$ can also be written as

$$\widehat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \left(y_t - \mathbf{x}_t^{\top} \widehat{\boldsymbol{\beta}} \right)^2$$

$$\widehat{\sigma}^2 = \frac{\left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right)^{\top} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right)}{T - K}$$

Key Concepts

- Matrix notation for the OLS estimator.
- Minimize the Sum of Squared Residuals.
- Geometric interpretation of the OLS estimator.
- Projection matrix.

Sub-Section 3.3

Applications to the CAPM model

Objectives

- Apply the OLS estimator to the CAPM model.
- 2 Run an OLS estimation with Excel.
- Interpret the OLS estimation outputs of various software

Example (CAPM)

We want to estimate the parameters eta_1 , eta_2 and σ^2 in the CAPM model

$$z_{\mathtt{intel},t} = eta_1 + eta_2 z_{\mathtt{market},t} + arepsilon_t$$
 $arepsilon_t$ i.i.d. $\left(0,\sigma^2
ight)$

For that we consider a sample of 250 observations from August 22, 2017 to August 17, 2018 (1 year), for which we observe

$$\sum_{t=1}^{250} z_{\text{market},t} = 0.1498 \qquad \sum_{t=1}^{250} z_{\text{market},t}^2 = 0.0156$$

$$\sum_{t=1}^{250} z_{\texttt{intel},t} = 0.2889 \qquad \sum_{t=1}^{250} z_{\texttt{intel},t} \times z_{\texttt{market},t} = 0.0242$$

Question: Compute the OLS estimates of the parameters β_1 , β_2 and σ^2 with the vectorial formula.

Note: the data are available within the file Data_CAPM_returns.xlsx.

Solution

The linear regression model can be written as

$$\mathbf{y}_{_{(250,1)}} = \mathbf{X}_{_{(250,2)}(2,1)} \boldsymbol{\beta} + \underset{(250,1)}{\varepsilon}$$

with T=250 and K=2

$$\mathbf{y} = \begin{pmatrix} \mathbf{z}_{\texttt{intel},1} \\ \mathbf{z}_{\texttt{intel},2} \\ \vdots \\ \mathbf{z}_{\texttt{intel},t} \\ \vdots \\ \mathbf{z}_{\texttt{intel},250} \end{pmatrix} \quad \mathbf{X} = (\mathbf{e} : \mathbf{z}_{\texttt{market}}) = \begin{pmatrix} 1 & z_{\texttt{market},1} \\ 1 & z_{\texttt{market},2} \\ \vdots & \vdots \\ 1 & z_{\texttt{market},t} \\ \vdots & \vdots \\ 1 & z_{\texttt{market},250} \end{pmatrix}$$

Solution

The linear regression model can be written as

$$\mathbf{y}_{_{(250,1)}} = \mathbf{X}_{_{(250,2)}(2,1)} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{_{(250,1)}}$$

with T=250 and K=2

$$egin{aligned} oldsymbol{arepsilon} oldsymbol{arepsilon} & oldsy$$

Solution (cont'd)

The OLS estimators of β is:

$$\widehat{\boldsymbol{\beta}} = \begin{pmatrix} \mathbf{X}^{\top} \mathbf{X} \\ {(2,250)(250,2)} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{X}^{\top} \mathbf{y} \\ {(2,250)(250,1)} \end{pmatrix}$$

with

$$\mathbf{X}^{\top}\mathbf{X} = \begin{pmatrix} T & \sum_{t=1}^{250} z_{\text{market},t} \\ \sum_{t=1}^{250} z_{\text{market},t} & \sum_{t=1}^{250} z_{\text{market},t}^2 \end{pmatrix} = \begin{pmatrix} 250 & 0.1498 \\ 0.1498 & 0.0156 \end{pmatrix}$$

$$\mathbf{X}^{\top}\mathbf{y} = \begin{pmatrix} \sum_{t=1}^{250} z_{\texttt{intel},t} \\ \sum_{t=1}^{250} z_{\texttt{intel},t} \times z_{\texttt{market},t} \end{pmatrix} = \begin{pmatrix} 0.2889 \\ 0.0242 \end{pmatrix}$$

Solution (cont'd)

The OLS estimators of β is equal to:

$$\hat{\beta} = \begin{pmatrix} \mathbf{X}^{\top} \mathbf{X} \\ (2,250)(250,2) \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{X}^{\top} \mathbf{y} \\ (2,250)(250,1) \end{pmatrix} \\
= \begin{pmatrix} 250 & 0.1498 \\ 0.1498 & 0.0156 \end{pmatrix}^{-1} \begin{pmatrix} 0.2889 \\ 0.0242 \end{pmatrix} \\
= \begin{pmatrix} 0.0002 \\ 1.5452 \end{pmatrix} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$$

Solution (cont'd)

The estimator of σ^2 is given by

$$\widehat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 = \frac{SSR}{T - K}$$

Here, we have

$$SSR = 0.0510$$
 $T = 250$ $K = 2$

T - K = 248 (number of degrees of freedom)

$$\widehat{\sigma}^2 = \frac{0.0510}{248} = 2.0551e^{-04}$$

S.E. of regression $= \text{RMSE} = \sqrt{\widehat{\sigma}^2} = 0.0143$

Figure: CAPM model for Intel Corp (Aug 2017 - Aug 2018): Matlab function fitlm

Linear regression model: $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tstat	pvalue
(Intercept)	0.00022961	0.00090928	0.25252	0.80085
x1	1.5452	0.11505	13.431	2.8468e-31

Number of observations: 250, Error degrees of freedom: 248
Root Mean Squared Error: 0.0143
R-squared: 0.421, Adjusted R-Squared 0.419
F-statistic vs. constant model: 180, p-value = 2.85e-31

Example (CAPM)

Question: Write a **Matlab** code to estimate by OLS the parameters β_1 , β_2 and σ^2 in the CAPM model

$$z_{\mathtt{intel},t} = eta_1 + eta_2 z_{\mathtt{market},t} + arepsilon_t$$
 i.i.d. $\left(\mathtt{0},\sigma^2
ight)$

by using the **vectorial formula** for the OLS estimators.

Note: the data are available within the file Data_CAPM_returns.xlsx.

Figure: Matlab code for estimating a linear regression model

```
clear , clc , close all
%== Data importation ===
[dataset,date]=xlsread('Data CAPM returns.xlsx');
                                                     % Importation of the data
date=datetime(date(2:end,1));
                                                     % Transformation of the date
r Intel ex=dataset(:,1);
                                                     % Excess daily (log-) returns for Intel
r SP500 ex=dataset(:,2);
                                                     % Excess daily (log-) returns for S&P500
%== Regression ===
T=length(r Intel ex);
                               % Sample size (T=250)
X=[ones(T,1) r SP500 ex];
                                % Matrix X(250,2)
Y=r Intel ex;
                                 % Vector Y(250,1)
disp(' ')
disp(X'*X)
disp(X'*Y)
```

Figure: Matlab code for estimating a linear regression model

Figure: Estimation result with Matlab

```
250.0000 0.1498
0.1498 0.0156
0.2889
0.0242
OLS estimates
0.0002
1.5452
SSR
0.0510
S.E. of the regression
0.0143
```

Example (CAPM)

Question: Use **Excel** to compute the OLS estimates of the parameters β_1 , β_2 and σ^2 in the CAPM model

$$z_{\mathtt{intel},t} = eta_1 + eta_2 z_{\mathtt{market},t} + arepsilon_t$$
 i.i.d. $\left(0,\sigma^2
ight)$

Note: the data are available within the file Data_CAPM_returns.xlsx.

How to run an OLS estimation with Excel?

You can use the data analysis tools in the **Analysis ToolPak**.

- This is not a standard part of Excel's instillation. To install the ToolPak on your computer, select "Tools" from the menu bar and look for the "Data Analysis" option.
- If you do not see Data Analysis, select Add-ins from the Tools menu. Check the box for the Analysis ToolPak and click on OK to install them.
- Once you install the Analysis ToolPak, it will continue to load each time you launch Excel.

Note. For the French version of Excel: Fichier => Options => Compléments => Gérer "compléments Excel"

Figure: Installation of the Analysis ToolPak in Excel (French version)

To run a regression with Excel (cont'd):

- Select Data Analysis from the Tools menu, which opens the Data Analysis window.
- Scroll through the window, select Regression from the available options.
- Place the cursor in the box for Input Y range and then click and drag over cells for the Y data.
- Place the cursor in the box for Input X range and click and drag over cells for the X data.
- Select the radio button for Output range and click on any empty cell; this is where Excel will place the results.

Note. for the French version: Données => Utilitaires d'analyse => Régression linéaire

Figure: Run an OLS regression (step 1)

Figure: Run an OLS regression (step 2)

Figure: Output from the Excel estimation Tool Pack

RAPPORT DÉTAILLÉ								
Statistiques de la régression								
Coefficient de détermination multiple	0,6489074							
Coefficient de détermination R^2	0,42108081							
Coefficient de détermination R^2	0,41874646							
Erreur-type	0,01433559							
Observations	250							
ANALYSE DE VARIANCE								
	Degré de	Somme des	Moyenne		Valeur			
	liberté	carrés	des carrés	F	critique de F			
Régression	1	0,03707066	0,03707066	180,384488	2,8468E-31			
Résidus	248	0,05096626	0,00020551					
Total	249	0,08803692						
					Limite	Limite	Limite	Limite
					inférieure	supérieure	inférieure	supérieure
					pour seuil	pour seuil	pour seuil	pour seuil
					de	de	de	de
					confiance =	confiance =	confiance =	confiance =
	Coefficients	Erreur-type	Statistique t	Probabilité	95%	95%	95,0%	95,0%
Constante	0,00022961	0,00090928	0,25251848	0,8008495	-0,00156128	0,0020205	-0,00156128	0,0020205
Variable X 1	1,54515835	0,1150465	13,4307293	2,8468E-31	1,31856557	1,77175113	1,31856557	1,77175113

Example (extended CAPM)

We want to estimate by OLS the parameters of the extended CAPM model given by

$$\begin{aligned} z_{\texttt{intel},t} &= \beta_1 + \beta_2 z_{\texttt{market},t} + \beta_3 \mathsf{inflation}_t + \varepsilon_t \\ & \varepsilon_t \ \mathsf{i.i.d.} \ \left(0,\sigma^2\right) \end{aligned}$$

where $z_{\mathtt{intel},t}$ is the excess (log-) return for Intel Corp and $z_{\mathtt{market},t}$ is the excess (log-) return for the S&P500. For that we consider a sample of 120 observations. **Question:** Write a Matlab code to compute the OLS estimates of the parameters β_1 , β_2 , β_3 and σ^2 with the vectorial formula.

Note: the data are available in the file Data_CAPM_extended.xlsx.

Figure: Matlab code for estimating a linear regression model

```
clear , clc , close all
%== Data importation ===
dataset=xlsread('Data CAPM extended.xlsx');
                                                 % Importation of the data
                                                 % Excess daily (log-) returns for Intel
r Intel=dataset(:,1);
r SP500=dataset(:,2);
                                                 % Excess daily (log-) returns for S&P500
inflation=dataset(:,3);
                                                 % Inflation rate
%== Regression ===
%-----
T=length(r Intel);
                                   % Sample size T
X=[ones(T,1) r SP500 inflation];
                                   % Matrix X
Y=r Intel;
                                   % Vector Y
disp(' ')
disp(X'*X)
disp(X'*Y)
```

Figure: Matlab code for estimating a linear regression model

% OLS estimates

```
beta=pinv(X'*X)*X'*Y;
disp(' OLS estimates')
disp(beta)
residuals=Y-X*beta;
                           % Residuals
SSR=sum(residuals.^2): % Sum of squared residuals
sigma2=SSR/(T-size(X,2)); % Estimator of the variance
disp(' SSR')
disp(SSR)
disp('S.E. of the regression')
disp(sgrt(sigma2))
```

Figure: Estimation result with Matlab

```
120.0000
              0.0871
                         0.2330
    0.0871
              0.2652
                         0.0007
    0.2330
              0.0007
                         0.0027
    0.3344
   0.4176
   -0.0027
OLS estimates
    0.0052
    1.5777
   -1.8285
SSR
    0.7764
S.E. of the regression
    0.0815
```

Figure: Estimation results obtained with the Matlab function fitlm

Linear regression model: $y \sim 1 + x1 + x2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0.0051922	0.0081507	0.63703	0.52535
x1	1.5777	0.15825	9.9698	2.5606e-17
x2	-1.8285	1.719	-1.0637	0.28965

Number of observations: 120, Error degrees of freedom: 117

Root Mean Squared Error: 0.0815

R-squared: 0.461, Adjusted R-Squared 0.452

F-statistic vs. constant model: 50.1, p-value = 1.94e-16

Section 4

Statistical Properties of the OLS Estimator

4. Statistical properties of the OLS estimator

Objectives

The objectives of this section are the following:

- **Q** Compute the two **first moments** of the (unknown) finite sample distribution of the OLS estimators $\hat{\beta}$ and $\hat{\sigma}^2$.
- **②** Determine the **finite sample distribution** of the OLS estimators $\hat{\beta}$ and $\hat{\sigma}$ under assumption A6.
- Determine the asymptotic properties of the OLS estimators.
- Determine if the OLS estimators are "good": efficient estimator versus BLUE.

4. Statistical properties of the OLS estimator

In order to study the statistical properties of the OLS estimator, we have to distinguish:

- **1** The finite sample properties
- The large sample or asymptotic properties

Sub-Section 4.1

Finite Sample Properties

Definition (Finite sample properties and finite sample distribution)

The finite sample properties of an estimator $\widehat{\beta}$ correspond to the properties of its **finite** sample distribution (or exact distribution) defined for any sample size $T \in \mathbb{N}$.

Definition (Unbiased estimator)

Under the assumption A3 (strict exogeneity), the OLS estimator $\widehat{\beta}$ is unbiased:

$$\mathbb{E}\left(\widehat{\boldsymbol{\beta}}\right) = \boldsymbol{\beta}_0$$

where β_0 denotes the true value of the vector of parameters. This result holds whether or not the matrix ${\bf X}$ is considered as random.

Definition (Variance of the OLS estimator, non-stochastic regressors)

Under the assumption A4 (spherical error terms), the variance covariance matrix of the OLS estimator $\hat{\beta}$ is

$$\mathbb{V}\left(\widehat{\boldsymbol{\beta}}\right) = \sigma^2 \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$$

where X is non-stochastic.

Remark

If the matrix ${\bf X}$ is **stochastic**, the conditional variance covariance matrix of the OLS estimator $\hat{m{\beta}}$ is

$$\mathbb{V}\left(\left.\widehat{\boldsymbol{eta}}\right|\mathbf{X}\right) = \sigma^2 \left(\mathbf{X}^{ op}\mathbf{X}\right)^{-1}$$

The unconditional variance covariance matrix is equal to

$$\mathbb{V}\left(\widehat{oldsymbol{eta}}
ight) = \sigma^2 \,\, \mathbb{E}_{X}\left(\left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}
ight)$$

where \mathbb{E}_X denotes the expectation with respect to the distribution of \mathbf{X} .

Question

How to estimate the variance covariance matrix of the OLS estimator?

$$\mathbb{V}\left(\widehat{oldsymbol{eta}}
ight) = \sigma^2 \; \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}$$

Definition (estimator for the variance of errors)

Under the assumption A3 (exogeneity), the estimator $\hat{\sigma}^2$ defined by

$$\widehat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 = \frac{\widehat{\varepsilon}^{\top} \widehat{\varepsilon}}{T - K}$$

is unbiased

$$\mathbb{E}\left(\widehat{\sigma}^2\right) = \sigma^2$$

Note: this result holds whether or not the matrix **X** is considered as random.

Definition (Variance estimator)

An unbiased estimator of the variance covariance matrix of the OLS estimator is

$$\widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\beta}}_{OLS}\right) = \widehat{\sigma}^2 \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$$

where $\widehat{\sigma}^2 = (T - K)^{-1} \widehat{\varepsilon}^{\mathsf{T}} \widehat{\varepsilon}$ is an unbiased estimator of σ^2 . This result holds whether **X** is stochastic or non stochastic.

This result is particularly important as it allows to compute the Standard Error (SE) associated to the estimators $\hat{\beta}_{\nu}$

$$\begin{split} \widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\beta}}\right) &= \left(\begin{array}{ccc} \widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\boldsymbol{\beta}}_{1}\right) & \widehat{\mathbb{C}}\mathit{ov}\left(\widehat{\boldsymbol{\beta}}_{1},\widehat{\boldsymbol{\beta}}_{k}\right) & \widehat{\mathbb{C}}\mathit{ov}\left(\widehat{\boldsymbol{\beta}}_{1},\widehat{\boldsymbol{\beta}}_{K}\right) \\ \widehat{\mathbb{C}}\mathit{ov}\left(\widehat{\boldsymbol{\beta}}_{k},\widehat{\boldsymbol{\beta}}_{1}\right) & \widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\boldsymbol{\beta}}_{k}\right) \\ \widehat{\mathbb{C}}\mathit{ov}\left(\widehat{\boldsymbol{\beta}}_{K},\widehat{\boldsymbol{\beta}}_{1}\right) & \widehat{\mathbb{C}}\mathit{ov}\left(\widehat{\boldsymbol{\beta}}_{K},\widehat{\boldsymbol{\beta}}_{k}\right) & \widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\boldsymbol{\beta}}_{K}\right) \\ \\ \mathrm{SE}_{\widehat{\boldsymbol{\beta}}_{k}} &= \sqrt{\widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\beta}}_{k}\right)} & \forall k = 1, \ldots, K \end{split}$$

Figure: Estimation results obtained with the Matlab function fitlm

Linear regression model: $v \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0.00022961	0.00090928 0.11505	0.25252 13.431	0.80085 2.8468e-31

Number of observations: 250, Error degrees of freedom: 248 Root Mean Squared Error: 0.0143 R-squared: 0.421, Adjusted R-Squared 0.419 F-statistic vs. constant model: 180, p-value = 2.85e-31

Theorem (Linear gaussian regression model)

Under the assumption A6 (normality), the estimators $\hat{\beta}$ and $\hat{\sigma}^2$ have a finite sample distribution given by:

$$\widehat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta}_0$$
 , $\sigma^2\left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}
ight)$

$$\frac{\widehat{\sigma}^2}{\sigma^2} (T - K) \sim \chi^2 (T - K)$$

Moreover, $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are independent. This result holds whether or not the matrix \mathbf{X} is considered as random. In this last case, the distribution of $\hat{\boldsymbol{\beta}}$ is conditional to \mathbf{X} .

Question: OLS estimator = "good" estimator of β ?

 The question is to know if there this estimator is preferred to other unbiased estimators?

$$\mathbb{V}\left(\widehat{oldsymbol{eta}}_{\mathit{OLS}}
ight) \lessgtr \mathbb{V}\left(\widehat{oldsymbol{eta}}_{\mathit{other}}
ight)$$

- In general, to answer to this question we use the FDCR or Cramer-Rao bound and study the efficiency of the estimator.
- ullet Problem: the computation of the FDCR bound requires an assumption on the distribution of arepsilon

Theorem (Efficiency - Gaussian model)

Under the assumption A6 (normality), the OLS estimator $\hat{\beta}$ is efficient. Its variance reaches the FDCR or Cramer-Rao bound:

$$\mathbb{V}\left(\widehat{oldsymbol{eta}}
ight) = FDCR \ bound = I_T^{-1}\left(oldsymbol{eta}_0
ight)$$

This result holds whether or not the matrix **X** is considered as random.

Problem

- In a semi-parametric model (with no assumption on the distribution of ε), it is impossible to compute the FDCR bound and to show the **efficiency** of the OLS estimator.
- The solution consists in introducing the concept of best linear unbiased estimator (BLUE): the Gauss-Markov theorem.

Theorem (Gauss-Markov theorem)

In the linear regression model under assumptions A1-A5, the least squares estimator $\hat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of β_0 whether **X** is stochastic or nonstochastic.

Comment

The estimator \widehat{eta}_k for k=1,..K is the BLUE of eta_k

Best = smallest variance

Linear (in \mathbf{y} or y_i) : $\widehat{\boldsymbol{\beta}}_k = \sum_{i=1}^T \omega_{ki} y_i$

Unbiased: $\mathbb{E}\left(\widehat{eta}_{k}\right)=eta_{k}$

Estimator: $\hat{\beta}_k = f(y_1, ..., y_T)$

Summary

Properties	Assumptions required
$\widehat{oldsymbol{eta}}$ is unbiased: $\mathbb{E}\left(\widehat{oldsymbol{eta}} ight)=oldsymbol{eta}_0$	A3: Exogeneity
$\mathbb{V}\left(\widehat{oldsymbol{eta}} ight) = \sigma^2 \ \left(\mathbf{X}^{ op}\mathbf{X} ight)^{-1}$	A4: Spherical disturbances
$\widehat{\sigma}^2$ is unbiased: $\mathbb{E}\left(\widehat{\sigma}^2\right)=\sigma^2$	A3 and A4
$\widehat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta},\!\sigma^2\left(oldsymbol{X}^{ op}oldsymbol{X} ight)^{-1} ight)$	A6: Normality
$\frac{\widehat{\sigma}^2}{\sigma^2} \left(T - K \right) \sim \chi^2 \left(T - K \right)$	A6: Normality

Summary (cont'd)

Properties	Assumptions required	
$\widehat{oldsymbol{eta}}$ is efficient and BUE	A6: Normality	
$\widehat{oldsymbol{eta}}$ is the <code>BLUE</code>	A3,A4	

BUE: Best Unbiased Estimator

Sub-Section 4.2

Asymptotic Properties

Question: what is the behavior of the random variable $\widehat{\beta}$ when the sample size T tends to infinity?

Definition (Asymptotic theory)

Asymptotic or **large sample theory** consists in the study of the distribution of the estimator when the sample size is sufficiently large.

The asymptotic theory is fundamentally based on the notion of convergence...

Theorem (Consistency)

Under assumptions A1-A5, the OLS estimators $\hat{\beta}$ and $\hat{\sigma}^2$ are (weakly) consistent

$$\widehat{\boldsymbol{\beta}} \stackrel{p}{\to} \boldsymbol{\beta}_0$$
$$\widehat{\sigma}^2 \stackrel{p}{\to} \sigma^2$$

$$\widehat{\sigma}^2 \stackrel{p}{\longrightarrow} \sigma^2$$

171 / 183

Theorem (Asymptotic distribution)

Under assumptions A1-A5, the OLS estimator $\widehat{m{\beta}}$ is asymptotically normally distributed

$$\sqrt{T}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\right) \stackrel{d}{\to} \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{Q}^{-1}\right)$$

where

$$\mathbf{Q} = plim rac{1}{T} \mathbf{X}^{ op} \mathbf{X} = \mathbb{E}_{X} \left(\mathbf{x}_{i}^{ op} \mathbf{x}_{i}
ight)$$

or equivalently

$$\widehat{oldsymbol{eta}} \stackrel{\mathsf{asy}}{pprox} \mathcal{N}\left(oldsymbol{eta}_0, rac{\sigma^2}{T} \mathbf{Q}^{-1}
ight)$$

Definition (Estimator of the asymptotic variance matrix)

A consistent estimator of the ${\bf asymptotic}$ variance covariance matrix is given by:

$$\widehat{\mathbb{V}}_{asy}\left(\widehat{oldsymbol{eta}}
ight)=\widehat{\sigma}^{2}\left(oldsymbol{\mathsf{X}}^{ op}oldsymbol{\mathsf{X}}
ight)^{-1}$$

where $\widehat{\sigma}^2$ is consistent estimator of σ^2 :

$$\widehat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 = \frac{\widehat{\varepsilon}^{\top} \widehat{\varepsilon}}{T - K}$$

Asymptotic variance covariance matrix

Even **without** the normality assumption A6, the OLS estimator $\widehat{\pmb{\beta}}$ has a normal distribution as soon ${\cal T}$ is sufficiently large

$$\widehat{\pmb{eta}} \stackrel{\mathsf{asy}}{pprox} \mathcal{N} \left(\pmb{eta}_0, rac{\sigma^2}{T} \mathbf{Q}^{-1}
ight)$$

The estimator of its (asymptotic) variance covariance matrix is always defined as

$$\widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{oldsymbol{eta}}
ight) = \widehat{\sigma}^2 \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}$$

Sub-Section 4.3

Applications to the CAPM model

Example (CAPM)

Consider the CAPM model

$$z_{ ext{intel},t} = eta_1 + eta_2 z_{ ext{market},t} + arepsilon_t$$
 $arepsilon_t$ i.i.d. $\left(0,\sigma^2
ight)$

and a sample of 250 observations from August 22, 2017 to August 17, 2018f. **Question:** Compute the standard errors of the OLS estimator, knowing that

$$SSR = \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} = 0.0510$$

$$\begin{pmatrix} T & \sum_{t=1}^{T} z_{\text{market},t} \\ \sum_{t=1}^{T} z_{\text{market},t} & \sum_{t=1}^{T} z_{\text{market},t}^{2} \end{pmatrix} = \begin{pmatrix} 250 & 0.1498 \\ 0.1498 & 0.0156 \end{pmatrix}$$

Note: the data are available within the file Data_CAPM_returns.xlsx.

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 釣 へ ②

Solution

The linear regression model can be written as

$$\mathbf{y}_{_{(250,1)}} = \mathbf{X}_{_{(250,2)}(2,1)} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{_{(250,1)}}$$

with
$$oldsymbol{eta} = (eta_1, eta_2)^{ op}$$
 , $T = 250$ an,d $K = 2$

$$\mathbf{y} = \begin{pmatrix} z_{\texttt{intel},1} \\ z_{\texttt{intel},2} \\ \vdots \\ z_{\texttt{intel},t} \\ \vdots \\ z_{\texttt{intel},250} \end{pmatrix} \quad \mathbf{x} \\ \mathbf{z} = (\mathbf{e} : \mathbf{z}_{\texttt{market}}) = \begin{pmatrix} 1 & z_{\texttt{market},1} \\ 1 & z_{\texttt{market},2} \\ \vdots & \vdots \\ 1 & z_{\texttt{market},t} \\ \vdots & \vdots \\ 1 & z_{\texttt{market},250} \end{pmatrix}$$

Solution (cont'd)

The estimator of σ^2 is given by:

$$\widehat{\sigma}^2 = \frac{1}{T - K} \sum_{t=1}^{T} \widehat{\varepsilon}_t^2 = \frac{SSR}{T - K} = \frac{0.0510}{250 - 2} = 2.0551e^{-04}$$

S.E. of regression
$$=$$
 RMSE $=\sqrt{\widehat{\sigma}^2}=$ 0.0143

Solution (cont'd)

As there is no information on the distribution of ε , we consider the asymptotic properties of the OLS estimator. A consistent estimator of the **asymptotic** variance covariance matrix is given by:

$$\begin{split} \widehat{\mathbb{V}}_{asy} \left(\widehat{\boldsymbol{\beta}} \right) &= \widehat{\sigma}^2 \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \\ &= 2.0551 e^{-04} \times \left(\begin{array}{cc} 250 & 0.1498 \\ 0.1498 & 0.0156 \end{array} \right)^{-1} \\ &= \left(\begin{array}{cc} 0.0083 e^{-04} & -0.0793 e^{-04} \\ -0.0793 e^{-04} & 132.3570 e^{-04} \end{array} \right) \end{split}$$

Solution (cont'd)

So we have:

$$\widehat{\mathbb{V}}_{asy}\left(\widehat{\boldsymbol{\beta}}\right) = \begin{pmatrix}
\widehat{\mathbb{V}}_{asy}\left(\widehat{\boldsymbol{\beta}}_{1}\right) & \widehat{\mathbb{C}}ov_{asy}\left(\widehat{\boldsymbol{\beta}}_{1}, \widehat{\boldsymbol{\beta}}_{2}\right) \\
\widehat{\mathbb{C}}ov_{asy}\left(\widehat{\boldsymbol{\beta}}_{1}, \widehat{\boldsymbol{\beta}}_{2}\right) & \widehat{\mathbb{V}}_{asy}\left(\widehat{\boldsymbol{\beta}}_{2}\right)
\end{pmatrix}$$

$$= \begin{pmatrix}
0.0083e^{-04} & -0.0793e^{-04} \\
-0.0793e^{-04} & 132.3570e^{-04}
\end{pmatrix}$$

and the standard errors are equal to

$$\begin{split} &\mathsf{SE}_{\widehat{\beta}_1} = \sqrt{\widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\beta}_1\right)} = \sqrt{0.0083 e^{-04}} = 0.0009 \\ &\mathsf{SE}_{\widehat{\beta}_2} = \sqrt{\widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\beta}_2\right)} = \sqrt{132.3570 e^{-04}} = 0.1150 \end{split}$$

Figure: Estimation results obtained with the Matlab function fitlm

Linear regression model: $v \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0.00022961	0.00090928	0.25252	0.80085
x1	1.5452	0.11505	13.431	2.8468e-31

Number of observations: 250, Error degrees of freedom: 248 Root Mean Squared Error: 0.0143 R-squared: 0.421, Adjusted R-Squared 0.419 F-statistic vs. constant model: 180, p-value = 2.85e-31

4. Statistical properties of the OLS estimator

Key Concepts

- The OLS estimator is unbiased under assumption A3 (exogeneity)
- Mean and variance of the OLS estimator under assumptions A3-A4 (exogeneity spherical disturbances)
- BLUE estimator and efficient estimator (FDCR bound)
- The OLS estimator is weakly consistent
- The OLS estimator is asymptotically normally distributed
- Asymptotic variance covariance matrix
- Estimator of the asymptotic variance

End of Chapter 2

Christophe Hurlin