

RF-BM-BG22A3 硬件规格书

EFR32BG22 BT5.2 模组

深圳市信驰达科技有限公司 更新日期: 2021 年01月21日

目录

● 根	死述	3
>	原理框图	3
>	主要参数	3
>	模块特性	4
>	应用	5
• 尺	尺寸与引脚定义	6
技	支术参数	8
>	操作条件	8
>	规范	8
>	射频性能与功耗实测	8
● 碩	更件设计注意事项	S
● 常	年见问题	11
>	传输距离不理想	11
>	易损 <mark>坏——</mark> 异常损坏	11
>	误 <mark>码率太</mark> 高	
• <u>□</u>	可流焊 <mark>条件</mark>	12
前	争电放电警示	12
● 版	ý本更新记录	13
助	关系我们	13

● 概述

RF-BM-BG22A3 模块是采用SILICON LABS 芯片 EFR32BG22C224F512GM32-C 设计的远距离低功耗蓝牙模块, 输出功率最大为 6 dBm,接收灵敏度 -106.7 dBm (125kbps GFSK),该模块采用 SILICON LABS 稳定的参考设计而改进,支持 Bluetooth 5.2。模块采用1/4波长蛇形天线输出形式。

模块具有优秀的超低功耗性能,4.1 mA发射电流@0dbm输出功率,3.6 mA接收电流(1Mbit/S GFSK)。

▶原理框图

图 1. 原理框图

▶主要参数

信驰达 RF-BM-BG22Ax 系列模组目前有 3 款,分别使用 EFR32BG22 系列的3 款芯片,如下表所示。此三款模组所使用的芯片封装、引脚、外围电路兼容,因此模组尺寸一致,可直接替换芯片使用。

模块型号	芯片型号	MAX CPU Speed (MHz)	发射 功率 (dBm)	FLASH (KB)	RAM (KB)	Protocol Stack
BG22 A1	EFR32BG22C112F352GM32-C	38.4	0	352	32	BT5.2
BG22 A2	EFR32BG22C222F352GM32-C	76.8	+6	352	32	BT5.2 Proprietary
BG22 A3	EFR32BG22C224F512GM32-C	76.8	+6	512	32	BT5.2 Direction finding Proprietary

表 1. RF-BM-BG22Ax 系列模块说明

表 2. RF-BM-BG22A3 主要参数

芯片型号	EFR32BG22C224F512GM32-C		
工作电压	1.71~3.8 V,推荐为 3. 3 V		
工作频段	2402 MHz \sim 2480 MHz		
发射功率	-20 ~ 6 dBm		
接收灵敏度	-106.7 dBm (125 kbps GFSK)		
RAM	32 KB		
FLASH	512 KB		
GPIO数量	18 个		
晶振频率	38.4 MHz		
模块尺寸	11.6 * 16.5 * 2.06 mm		
封装方式	SMT(邮票半孔)		
工作温度	- 40 °C ∼ + 85 °C		
储存温度 - 40 ℃ ~ + 125 ℃			

▶模块特性

❖ 低功耗无线片上系统

- 高性能 32 位 **76.8 MHz ARM** Cortex[®]-M33, 带有 DSP 指令和浮点单元,可实现高效的信号处理
- 高达 512 kB 的闪存程序存储器
- 高达 32 kB 的 RAM 数据存储器
- 2.4 GHz 无线电操作
- ❖ 射频性能
- 在 125kbps GFSK 的条件下, 灵敏度为-106.7dBm
- 在 1 Mbit/s GFSK 的条件下, 灵敏度为 -98.9 dBm
- 在 2 Mbit/s GFSK 的条件下, 灵敏度为 -96.2 dBm
- 发射功率高达 6 dBm
- 无线电接收电流为 2.5 mA
- 在 0 dBm 输出功率的条件下,无线电传输电流为 3.4 mA
- 在 6 dBm 输出功率的条件下,无线电传输电流为 7.5 mA

❖ 低系统能耗

• RX 电流为 3.6 mA (1 Mbps GFSK)

- 在 0 dBm 输出功率的条件下, TX 电流为 4.1 mA
- 在 6 dBm 输出功率的条件下, TX 电流为 8.2 mA
- 在 76.8 MHz 活动模式 (EM0) 下,运行功耗为 27 μA/MHz
- 1.40 μA EM2 深度睡眠电流(保留 32 kB RAM, RTC 从 LFXO 中运行)
- 1.75 μA EM2 深度睡眠电流(保留 32 kB RAM, RTC 从 Precision LFRCO 中运行)
- 0.17 µA EM4 电流
- ❖ 支持的调制格式
- 2 (G)FSK, 可配置完整波形
- OQPSK DSSS
- (G)MSK
- ❖ 协议支持
- 低功耗蓝牙 (Bluetooth 5.2)
- 采用到达角 (AoA) 和发射角 (AoD) 实现测向
- 私有协议
- ❖ 广泛的 MCU 外围设备选择

- 12 位 1 Msps SAR 模拟数字转换器 (ADC)
- 高达 18 个带有输出状态保持和异步中断功能的通用 I/O 引脚
- 8 信道 DMA 控制器
- 12 信道外围设备反射系统 (PRS)
- 4 个 16 位定时器/计数器(3 个比较/捕获/PWM 通道)
- 1 个 32 位定时器/计数器(3 个比较/捕获/PWM 通道)
- 32 位实时计数器
- 24 位低能耗定时器,用于波形生成
- 1 个看门狗定时器
- 2 个 通 用 同 步 / 异 步 接 收 器 / 传 输 器 (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S)
- 1 个增强型通用异步接收器/传输器 (EUART)
- 2 个 I²C 接口,带有 SMBus 支持
- 数字麦克风接口 (PDM)
- 32 KHz 睡眠晶体更换为精密低频 RC 振荡器

- 可选 OOK 模式的 RFSENSE
- 单点校准后具有±1.5℃精度的芯片温度传感器
- ❖ 宽工作范围
- 单电源 1.71 至 3.8 V
- -40°C to +85°C
- ❖ 安全特性
- ●通过信任根和安全加载程序(RTSL)进行的安全启动
- 硬件加密加速,适用于 AES128/256、 SHA-1、 SHA-2(高达 256位)、 ECC(高达 256位)、 ECDSA和 ECDH
- 符合 NIST SP800-90 和 AIS-31 标准的真随机数生成器 (TRNG)
- ARM® TrustZone®
- 使用锁定/解锁功能进行安全调试

▶应用

- ❖ 资产标签和信标
- ❖ 消费电子遥控器
- ◆ 便携式医疗器械
- ❖ 蓝牙网状网络低功耗节点

- ❖ 体育、健身和健康设备
- ❖ 联网家庭
- ❖ 建筑自动化及安全

● 尺寸与引脚定义

11 15

图 3. 引脚图

表 3. 引脚定义

引脚序号	名称	功能	描述		
1	EXT_ANT	_	外接天线接口		
2	PB02	I/O	GPIO		
3	PB01	I/O	GPIO		
4	PB00	I/O	GPIO		
5	PA00	I/O	GPIO		
6	PA03	I/O	GPIO		
7	PA04	I/O	GPIO		
8	PA05	I/O	GPIO		
9	PA06	I/O	GPIO		
10	GND	_	模块地		
11	RESET	_	复位脚,低电平有效(内部上拉)		
12	PA01	I/O	GPIO/SWCLK(connect jlink)		
13	PA02	I/O	GPIO/SWCDIO(connect jlink)		
14	GND		模块地		
15	VCC		电源正极输入: 1.71~3.8 V, 推荐 3.3 V		
16	PD01	I/O	GPIO		
17	PD00	I/O	GPIO		
18	PC00	I/O	GPIO		
19	PC01	I/O	GPIO		
20	PC02	I/O	GPIO		
21	PC03	I/O	GPIO		
22	PC04	I/O	GPIO		
23	PC05	I/O	GPIO		
24	GND	_	模块地		

● 技术参数

> 操作条件

表 4. 操作条件

参数	Min	Max	Unit
测试频率范围	2402	2480	MHz
操作电压范围	1.71	3.8	V
操作温度范围	-40	+85	$^{\circ}\mathbb{C}$
存储温度范围	-40	+125	$^{\circ}\!\mathbb{C}$
所有的外设IO输入或输出电压范围	0	VDD	V

▶ 规范

所有的测量是基于 SILICON LABS 参考设计以及数据手册进行的。

表 5. 防电测试等级

	Value	Unit		
人体静电模型 人体模型(HBM),per ANSI/ESDA/JEDEC JS001 ⁽¹⁾				kV
带电模型(ESD)性能	带电设备模型(CDM), per JESD22-C101 ⁽²⁾ 所有管脚		±500	٧

(1)JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2)JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.

▶ 射频性能与功耗实测

测试条件:增加衰减器后数据。

表 6. 射频参数测试

硬件版本: 1.0a							
测试	2020年5月14日						
测试条件	FLUKE15B+万用表,负载接DSA1030频谱仪,offset: 0.2,RBW=100KHz						
	第一个版本功耗测试						
待机	1 μΑ						
	设置发射	实测发射	实测发射 实测电流 其他				
发射电流	6 dBm	5.5 dBm	8.0 mA	注意:			
	0 dBm	-0.5 dBm	4.0 mA	测试方法与电流息息相关,比如输出负载天线和			
接收电流		2.5 mA		标准 50 Ω 测试的数据不同。			

● 硬件设计注意事项

- 1、推荐使用直流稳压电源对模块进行供电,电源纹波系数尽量小,模块需可靠接地;请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- **2**、请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏; 请检查电源稳定性,电压不能大幅频繁波动;
- 3、在针对模块设计供电电路时,往往推荐保留 30% 以上余量,有利于整机长期稳定地工作;模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 4、高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 5、假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散以及接收灵敏度;
- 6、假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 7、假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
 - 8、通信线若使用5V电平, 必须使用电平转换电路:
 - 9、尽量远离部分物理层亦为 2.4 GHz 频段的TTL 协议,例如: USB3.0。
- 10、模块天线布局请参考下图。天线的放置直接影响天线的辐射效率,建议客户在实际的产品上在进行一次天线调试,黄色区域为keep out , 距离建议大于10 mm:

图 4. 布局建议

11、天线输出方式更改:该模块有两种天线输出方式,分别为板载 PCB 天线和邮票半 孔输出(ANT脚,详见引脚定义表)。

默认出货为板载 PCB 天线输出方式,R1 位置(0 Ω)焊接;如想要更改为半孔天线输出,请断开 R1 位置,如下图所示。

图 5. 天线输出方式更改

●常见问题

>传输距离不理想

- 1、当存在直线通信障碍时,通信距离会相应的衰减;温度、湿度,同频干扰,会导致通信 丢包率提高;地面吸收、反射无线电波,靠近地面测试效果较差;
- 2、海水具有极强的吸收无线电波能力,故海边测试效果差;
- 3、天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 4、功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 5、室温下电源低压低于推荐值,电压越低发功率越小;
- 6、使用天线与模块匹配程度较差或天线本身品质问题。

▶易损坏——异常损坏

- 1、请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏; 请检查电源稳定性,电压不能大幅频繁波动;
- 2、请确保安装使用过程防静电操作,高频器件静电敏感性;
- 3、请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件,如果没有特殊需求不建 议在过高、过低温度下使用。

▶误码率太高

- 1、附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 2、电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 3、延长线、馈线品质差或太长, 也会造成误码率偏高。

● 回流焊条件

- 1、加热方法: 常规对流或 IR 对流;
- 2、允许回流焊次数: 2次,基于以下回流焊(条件)(见图 6);
- 3、温度曲线:回流焊应按照下列温度曲线(见图 6);
- 4、最高温度: 245°C。

图 6. 部件的焊接耐热性温度曲线(焊接点)

●静电放电警示

模块会因静电释放而被损坏, RF-star 建议所有模块应在以下 3 个预防措施下处理:

- 1、必须遵循防静电措施,不可以裸手拿模块。
- 2、模块必须放置在能够预防静电的放置区。
- 3、在产品设计时应该考虑高电压输入或者高频输入处的防静电电路。

静电可能导致的结果为细微的性能下降到整个设备的故障。由于非常小的参数变化都可能导致设备不符合其认证要求的值限,从而模块会更容易受到损害。

● 版本更新记录

版本号	文档日期	更新内容
V1.0	2020/09/10	第一次发布
V1.1	2021/01/21	更正表1. RF-BM-BG22Ax 系列模块说明的Flash单位

● 联系我们

深圳市信驰达科技有限公司

Shenzhen RF-star Technology Co., Ltd.

Tel(Sales): 0755–8632 9829 Tel(FAE): 0755-3695 3756

E-mail: sales@szrfstar.com Web: www.szrfstar.com

地址: 深圳市南山区高新园科技南一道创维大厦 C座 601室

Add: Room 601, Block C, Skyworth Building, Nanshan High-Tech Park, Shenzhen.