1

CE118-Lab04 Thiết kế vi xử lý đơn giản

1. Lýthuyết

Một vi xử lý đơn giản sẽ bao gồm 2 khối chính đó là Controller và Datapath.

- Controller có nhiệm vụ điều khiển đường đi của dữ liệu (điều khiển việc đọc ghi của Register File, ...) và điều kiển việc thực hiện tính toán (điều khiển Opcode của khối ALU, ...) trong khối Datapath.
- Datapath chứa các khối cần thiết để thực hiện việc tính toán (Register File, ALU, Bộ dịch,...) được điều khiển bởi Controller.

2. Thực hành

Sinh viên thực hiện thiết kế một vi xử lý đơn giản dùng để tính toán biểu thức sau:

$$D_3I_3 + D_2I_2 - D_1I_1 + D_0I_0$$

Trong đó:

- D_x là 4 ký số cuối của MSSV (Ví dụ 4 ký số cuối MSSV là 6789 thì $D_3 = 6$, $D_2 = 7$, $D_1 = 8$, $D_0 = 9$)
- I_x là 4 ký số được nhập lần lượt tại ngõ vào (I_x có 4 bit, *số I_x sẽ được sinh ngẫu nhiên lúc báo cáo*, sinh viên có thể sử dụng chức năng sinh số ngẫu nhiên trong phần mềm mô phỏng quartus để kiểm tra thiết kế)

TRƯỜNG ĐẠI HỌC **TIẾN HÀNH THIẾT KẾ: NGHỆ THÔNG TIN

Thực hiện thiết kế vi xử lý đơn giản để tính toán biểu thức: $\mathbf{II}_3 + 3\mathbf{I}_2 - 2\mathbf{I}_1 + 1\mathbf{I}_0$

Bước 1: Xác định các bước giải quyết bài toán:

Bước	Công việc
1	$Data0 \leftarrow I_0$
2	Data1 ← I ₁
3	Data2 ← I ₂
4	Data3 ← I ₃
5	Data1 ← Data1 << 1
6	Temp ← Data2 << 1
7	Data2 ← Data2 + Temp
8	Sum ← Data3 + Data2
9	Temp ← Data1 - Data0
10	Sum ← Sum - Temp
11	Sum ←Sum & Sum

Bước 2: Xác định các khối cần thiết để thực hiện tính toán Từ bảng 1, có thể thấy:

• Nhập dữ liệu (I_x) cần 4 bit, nhưng phải mở rộng dấu lên 16 bit để thực hiện tính toán sau này. Dưới đây là mạch mở rộng:

→ Convert (mở rộng 4 bit sang 16 bit) được thiết kế theo nguyên lý các bit cuối giữ nguyên, 12 bit đầu = 0

3

• Có 2 nguồn gán giá trị cho biến (một là từ đầu vào và hai là từ các phép tính toán) nên sẽ cần sử dụng Mux 2 16 bit (được thiết kế từ 16 mux21), được điều khiển bởi tín hiệu Select:

• Chúng ta sẽ sử dụng 6 biến có dấu (Data0, Data1, Data2, Data3, Sum, Temp). Vì thế cần sử dụng Register File có tối thiểu 8 thanh ghi 16 bit có chức năng đọc và ghi dữ liệu.

• ALU 16 bit để thực hiện các phép toán.

Một bộ dịch trái tối đa 1 bit

• Xuất kết quả cần sử dụng thanh ghi 16 bit có khả năng cho phép/không cho phép xuất giá trị tại ngõ ra (sử dụng cổng tri-state)

****DATAPATH:

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

THIÉT KÉ CONTROLLER:

Theo yêu cầu đề từ bảng , ta thấy cần 11 state để tính, từ S0-S10, sau khi thực hiện S10 lại quay về S0.

State	_	Trạng tha	ái hiện tại		Trạng thái kế tiếp						
State	Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+			
S0	0	0	0	0	0	0	0	1			
S1	0	0	0	1	0	0	1	0			
S2	0	0	1	0	0	0	1 /	1			
S3	0	0	1	1	0	1	0	0			
S4	0	1	0	0	0	1	0	1			
S5	0	0 1 0		1	0	1	/1	0			
S6	0	0 1 1		0	0	1	1	1			
S7	0	1	1	1	1	0	0	0			
S8	1	0	0	0	1	0	0	1			
S9	1	0	0	1	1	0	1	0			
S10	1	0	1	0	0	0	0	0			
S11	1	0	1	1	X	Χ	Χ	Χ			
S12	1	1	0	0	Χ	Χ	Χ	Χ			
S13	1	1	0	1	Χ	Χ	Х	Χ			
S14	1	1	1	0	Χ	Χ	Χ	Χ			
S15	1	1	1	1	X	X	Х	Х			

0202						
Q3Q2	00	01	11	10		
00						
01		TP	1	NC		
11	Х	Χ	Χ	Х		
10	1	1	X	Î		

ĐẠI HỌC THÔNG TIN

Q3Q2	Q1Q0									
QSQZ	00	01	11	10						
00			1							
01	1	1		1						
11	Χ	Χ	Χ	Χ						
10			Χ							

Q3Q2	Q1Q0									
QSQZ	00	01	11	10						
00		1		1						
01		1		1						
11	Χ	Χ	Χ	X						
10		1	X							

→
$$D1 = Q3'Q1Q0' + Q1'Q0$$

Q3Q2	Q1Q0									
Q3Q2	00	01	11	10						
00	1			1						
01	1			1						
11	X	X	X	X						
10	1		Χ							

****HIỆN THỰC NEXT STATE:

****BIỂU THỨC NGÕ VÀO CỦA DATAPATH:

IE		Write A	ddress			Read Address A Read Address E			ddress B	ALU				Select Shift	OE		
IC	WA2	WA1	WE0	WAA	RAA2	RAA1	RAA0	REAA	RAB2	RAB1	RAB0	REAB	S2	S1	S0	Select Stillt	OE
1	0	0	0	1	Х	Х	Х	0	Х	Х	Х	0	Х	Х	Х	0	0
1	0	0	1	1	X	Χ	Х	0	Х	Χ	X	0	Х	Х	Х	0	0
1	0	1	0	1	X	Χ	Х	0	Χ	Χ	X	0	Х	Х	Χ	0	0
1	0	1	1	1	X	Х	X	0	X	X	X	0	Х	Х	X	0	0
0	0	0	1	1	0	0	1	1	0	0	1	1	1	0	0	1	0
0	1	0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	0
0	0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	0	0
0	1	0	1	1	0	1	0	1	0	1	1	1	0	0	0	0	0
0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0
0	1	0	1	1	1	0	1	1	1	0	0	1	0	1	0	0	0
0	1	0	1	1	1	0	1	1	1	0	1	1	1	0	0	0	1
0	Χ	Х	Х	0	X	Х	Х	0	Х	Х	Х	0	Х	Х	Х	0	0
0	Χ	Х	Χ	0	Χ	Χ	Х	0	Χ	Χ	X	0	Х	Х	X	0	0
0	Χ	Χ	Χ	0	Χ	Χ	Х	0	Χ	X	X	0	Χ	Х	X	0	0
0	Х	Х	Х	0	Х	Х	Х	0	Х	Х	X	0	Х	Х	Х	0	0
0	Х	Х	Х	0	X	Х	Х	0	Х	Х	Х	0	Х	Х	Х	0	0

IE = Q3'Q2'

WA2 = Q2Q0 + Q3

WA1 = Q3'Q1Q0' + Q3'Q2'Q1

WA0 = Q2Q1'Q0' + Q2'Q0 + Q1Q0 + Q3Q1

WEA = Q2'Q1' + Q2'Q0' + Q3'

RAA2 = Q1Q0' + Q2'Q0

RAA1 = Q3'Q0

RAA0 = Q1'Q0' + Q2'

REAA = Q3Q2'Q1' + Q3Q2'Q0' + Q3'Q2

RAB2 = Q2'Q1 + Q2'Q0

RAB1 = Q3'Q1 + Q3'Q0

RAB0 = Q1Q0 + Q2'Q1 + Q3'Q1'Q0'

REAB = Q3Q2'Q1' + Q3Q2'Q0' + Q3'Q2

S2 = Q2'Q1 + Q3'Q1'

S1 = Q2'Q1'

S0 = 0

Select Shift = Q3'Q2Q1' NG NGHÊ THÔNG TIN

TRƯỜNG ĐẠI HỌC

OE = Q3Q2'Q1Q0'

****HIỆN THỰC NGÕ VÀO CỦA DATAPATH:

****CONTROLLER HOÀN CHỈNH:

CÔNG NGHỆ THÔNG TIN

****CPU HOÀN CHỈNH:

****MÔ TẢ CHỨC NĂNG CỦA CPU:

Cách Thức Tính và Luồng Hoạt Động

- 1. I0 = 8, I1 = 4, I2 = 6, I3 = 2 là các giá trị dữ liệu vào.
- 2. **Biểu thức cần tính**: 1I3+3I2-2I1+1I0:
 - \checkmark 1×I3=1×2=2
 - ✓ 3×I2=3×6=18
 - \checkmark $-2\times11=-2\times4=-8$
 - ✓ 1×I0=1×8=8

Tổng kết:

Kết quả=2+18-8+8=20.

- Các State từ S0 đến S10:
- **S0**: Khởi động, reset và chuẩn bị dữ liệu.
- S1-S3: Đọc và thực hiện phép nhân từng hệ số cho I3, I2, I1, và I0.

- S4-S8: Thực hiện cộng và trừ các giá trị trung gian.
- S9-S10: Tổng hợp và đưa kết quả ra output.
- Sau S10, mạch quay về S0 để chuẩn bị cho chu kỳ tiếp theo.

Quan Sát Sóng và Kết Quả

- Tại trạng thái cuối, Output = 20 đúng như kết quả của phép tính 2+18-8+8.
- Dữ liệu đầu vào chuyển dần qua các bước tính toán thông qua từng state.

Kết Luận

Mạch sử dụng một bộ điều khiển **11 trạng thái** để tính biểu thức 1I3+3I2-2I1+1I0. Kết quả cuối cùng 20 được xuất ra ở trạng thái **S10**. Sau đó mạch quay về trạng thái **S0** để bắt đầu chu kỳ tính toán mới.

Cách Thức Tính và Luồng Hoạt Động

- 3. I0 = 8, I1 = 10, I2 = 9, I3 = 15 là các giá trị dữ liệu vào.
- 4. **Biểu thức cần tính**: 1I3+3I2-2I1+1I0:
 - ✓ 1×I3=1×15=15
 - ✓ 3×I2=3×9=27
 - \checkmark -2×I1=-2×10=-20
 - ✓ 1×I0=1×8=8

Tổng kết:

Kết quả=15+27-20+8=30.

- Các State từ S0 đến S10:
- **S0**: Khởi động, reset và chuẩn bị dữ liệu.
- S1-S3: Đọc và thực hiện phép nhân từng hệ số cho I3, I2, I1, và I0.
- S4-S8: Thực hiện cộng và trừ các giá trị trung gian.
- S9-S10: Tổng hợp và đưa kết quả ra output.
- Sau S10, mạch quay về S0 để chuẩn bị cho chu kỳ tiếp theo.

Quan Sát Sóng và Kết Quả

- Tại trạng thái cuối, **Output = 30** đúng như kết quả của phép tính 15+27-20+8.
- Dữ liệu đầu vào chuyển dần qua các bước tính toán thông qua từng state.

Kết Luận

Mạch sử dụng một bộ điều khiển **11 trạng thái** để tính biểu thức 1I3+3I2-2I1+1I0. Kết quả cuối cùng 30 được xuất ra ở trạng thái **S10**. Sau đó mạch quay về trạng thái **S0** để bắt đầu chu kỳ tính toán mới.

*****NAP KIT: LAB4 nap KIT DE2.mp4 - Google Drive

- Đầu tiên ở trạng thái $S0 \rightarrow S3$ nhập giá trị lần lượt là I0 = 9, I1 = 8, I2 = 12 và I3 = 2 được gán đầu vào input từ SW[3..0] và xung clock tích cực cạnh lên được gán với KEY3
- Sau đó mạch sẽ chuyển trạng thái $S3 ext{->} S10$ với ung clock tích cực:

$$2x1 + 12x3 - 8x2 + 91 = 31$$

- Tại **S11** với xung clock tích cực cạnh lên sẽ cho ra output từ **LEDR[15..0]** với giá trj là **000000000011111**₂ = **31**₁₀ đúng với kết quả bài toán

-----Hết-----

UIT TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN