DIABETES PREDICTION

Importing Libraries and Loading Dataset

```
In [39]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   df=pd.read_csv('/content/diabetes_prediction_dataset.csv')
   df
```

Out[39]:		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	0	Female	80.0	0	1	never	25.19	6.6	140	0
	1	Female	54.0	0	0	No Info	27.32	6.6	80	0
	2	Male	28.0	0	0	never	27.32	5.7	158	0
	3	Female	36.0	0	0	current	23.45	5.0	155	0
	4	Male	76.0	1	1	current	20.14	4.8	155	0
	99995	Female	80.0	0	0	No Info	27.32	6.2	90	0
	99996	Female	2.0	0	0	No Info	17.37	6.5	100	0
	99997	Male	66.0	0	0	former	27.83	5.7	155	0
	99998	Female	24.0	0	0	never	35.42	4.0	100	0
	99999	Female	57.0	0	0	current	22.43	6.6	90	0

100000 rows × 9 columns

In [40]: df.head()

Out[40]:		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	0	Female	80.0	0	1	never	25.19	6.6	140	0
	1	Female	54.0	0	0	No Info	27.32	6.6	80	0
	2	Male	28.0	0	0	never	27.32	5.7	158	0
	3	Female	36.0	0	0	current	23.45	5.0	155	0
	4	Male	76.0	1	1	current	20.14	4.8	155	0

In [41]: df.tail()

Out[41]:		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	99995	Female	80.0	0	0	No Info	27.32	6.2	90	0
	99996	Female	2.0	0	0	No Info	17.37	6.5	100	0
	99997	Male	66.0	0	0	former	27.83	5.7	155	0
	99998	Female	24.0	0	0	never	35.42	4.0	100	0
	99999	Female	57.0	0	0	current	22.43	6.6	90	0

In [42]: df.isna().sum()

Out[42]:0gender0age0hypertension0heart_disease0smoking_history0bmi0HbA1c_level0blood_glucose_level0diabetes0

dtype: int64

In [43]: df.dtypes

```
Out[43]:
                     gender object
                        age float64
                hypertension
                               int64
                heart_disease
                               int64
             smoking_history
                              object
                        bmi float64
                 HbA1c_level float64
          blood_glucose_level
                               int64
                    diabetes
                               int64
         dtype: object
          df['diabetes'].value_counts()
In [44]:
Out[44]:
                    count
          diabetes
                 0 91500
                 1 8500
         dtype: int64
          sns.countplot(x='gender',data=df)
In [45]:
```

Out[45]:

<Axes: xlabel='gender', ylabel='count'>


```
In [46]: sns.countplot(x='smoking_history',data=df,color='g')
Out[46]: <Axes: xlabel='smoking_history', ylabel='count'>
```


Data Preprocessing

```
Out[48]:
                       gender
                                 int64
                          age float64
                 hypertension
                                 int64
                 heart_disease
                                 int64
              smoking_history
                                 int64
                          bmi float64
                  HbA1c_level float64
           blood_glucose_level
                                 int64
                      diabetes
                                 int64
```

dtype: object

```
In [49]: df1 = df.copy()
    #Correlation with Response Variable class
X = df1.drop(['diabetes'], axis=1)
y = df1['diabetes']
X.corrwith(y).plot.bar(
figsize = (16, 5), title = "Correlation with Response Variable class", fontsize = 15,
rot = 45, grid = False)
plt.show()
```

Correlation with Response Variable class

In [50]: df.corr()

Out[50]:		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	gender	1.000000	-0.030656	0.014203	0.077696	-0.077919	-0.022994	0.019957	0.017199	0.037411
	age	-0.030656	1.000000	0.251171	0.233354	0.228608	0.337396	0.101354	0.110672	0.258008
	hypertension	0.014203	0.251171	1.000000	0.121262	0.093177	0.147666	0.080939	0.084429	0.197823
	heart_disease	0.077696	0.233354	0.121262	1.000000	0.027598	0.061198	0.067589	0.070066	0.171727
	smoking_history	-0.077919	0.228608	0.093177	0.027598	1.000000	0.179361	0.037369	0.040219	0.094290
	bmi	-0.022994	0.337396	0.147666	0.061198	0.179361	1.000000	0.082997	0.091261	0.214357
	HbA1c_level	0.019957	0.101354	0.080939	0.067589	0.037369	0.082997	1.000000	0.166733	0.400660
	blood_glucose_level	0.017199	0.110672	0.084429	0.070066	0.040219	0.091261	0.166733	1.000000	0.419558
	diabetes	0.037411	0.258008	0.197823	0.171727	0.094290	0.214357	0.400660	0.419558	1.000000

In [51]: plt.figure(figsize=(10,10))
 sns.heatmap(df1.corr(),annot=True)
 plt.show()

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2


```
In [55]: x_test
Out[55]: array([[ 0. , 52. , 0. , ..., 27.32, 4.8 , 140. ],
                [ 1. , 56. , 0. , ..., 27.32, 4.8 , 100. ],
                [ 0. , 22. , 0. , ..., 37.16, 6.6 , 85. ],
                [ 1. , 26. , 0. , ..., 27.32, 6.2 , 145. ],
                [ 0. , 46. , 0. , ..., 25.58, 5.7, 200. ],
                [ 0. , 20. , 0. , ..., 21.68, 5.7 , 155. ]])
In [56]: y_train
Out[56]: array([0, 0, 0, ..., 1, 0, 0])
In [57]: y_test
Out[57]: array([0, 0, 0, ..., 0, 0, 0])
         Model Creation and Performance Evaluation
In [58]: from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler()
         scaler.fit(x train)
         x train=scaler.transform(x train)
         x test=scaler.transform(x test)
In [59]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy score, classification report
         knn=KNeighborsClassifier(n neighbors=7)
         dectree=DecisionTreeClassifier(random state=42)
         ranfor=RandomForestClassifier(n estimators=100,random state=42)
         lst=[knn,dectree,ranfor]
In [60]: for i in lst:
          i.fit(x train,y train)
          y pred=i.predict(x test)
          print("R2 score of",i,"model is",accuracy score(y test,y pred))
          print(classification report(y test,y pred))
```

R2_score of K	NeighborsClaprecision		_neighbors= f1-score	7) model is support	0.9612666666666667
0 1	0.96 0.90	0.99 0.61	0.98 0.73	27461 2539	
accuracy macro avg weighted avg	0.93 0.96	0.80 0.96	0.96 0.85 0.96	30000 30000 30000	
R2_score of D	ecisionTree		(random_sta f1-score	te=42) mode support	el is 0.9491
0 1	0.98 0.69	0.97 0.73	0.97 0.71	27461 2539	
accuracy macro avg weighted avg	0.83 0.95	0.85 0.95	0.95 0.84 0.95	30000 30000 30000	
R2_score of R	andomForest precision		(random_sta f1-score	te=42) mode support	el is 0.9699333333333333
0 1	0.97 0.95	1.00 0.68	0.98 0.79	27461 2539	
accuracy macro avg weighted avg	0.96 0.97	0.84 0.97	0.97 0.89 0.97	30000 30000 30000	