Resueltos Lógica y Computabilidad

Ignacio E. Losiggio

February 15, 2019

- 1 Práctica 1 Funciones primitivas recursivas y clases PRC
- 1.1 Mostrar que, dado un k fijo, la función constante f(x) = k puede definirse usando las funciones iniciales y composición (sin usar recursión primitiva)

Podemos empezar bien qué funciones nos piden, si k = 0 entonces $f_0(x) = n(x)$ (con n la función constante 0, que es primitiva). Si k = 1 entonces $f_1 = s(f_0(x))$, que sabemos que es primitiva recursiva porque lo hicimos una composición válida. Podemos intentar entonces búqueda de un patrón dentro de las funciones que nos piden:

k

$$f_k(x)$$
 Expresión expandida

 $k = 0$
 $f_0(x) = n(x)$
 $n(x)$
 $k = 1$
 $f_1(x) = s(f_0(x))$
 $s(n(x))$
 $k = 2$
 $f_2(x) = s(f_1(x))$
 $s(s(n(x))$
 $k = n$
 $f_n(x) = s(f_{n-1}(x))$
 $s(s(\dots s(n(x))))$

Cómo podemos ver, construir la función constantemente k sólo requiere de aplicar s(x) kveces sobre n(x).

1.2 Probar que las siguientes funciones son primitivas recursivas, mostrando que pueden obtenerse a partir de las funciones iniciales usando composición t/o recursión primitiva:

1.2.1
$$f_1(x,y) = x + y$$

Tomamos la estructura de la recursión primitiva:

$$f(x_1, \dots, x_n, 0) = h(x_1, \dots, x_n)$$

$$f(x_1, \dots, x_n, t+1) = g(f(x_1, \dots, x_n, t), x_1, \dots, x_n, t)$$

Con esto tenemos que elegir una h(x) y una g(n,x,t) que nos construyan la suma y copypastear cómo corresponda:

$$f_1(x,0) = u_1^1(x)$$

$$f_1(x,t+1) = g(f_1(x,t), x, t)$$

$$g(n,x,t) = s(u_1^3(n,x,t))$$

¿No queda claro por qué funciona? Hagamos un par de reemplazos a ver que pasa.

$$g(n, x, t) = s(u_1^3(n, x, t))$$

$$= s(n)$$

$$f_1(x, 0) = u_1^1(x)$$

$$= x$$

$$f_1(x, t + 1) = g(f_1(x, t), x, t)$$

$$= s(f_1(x, t))$$

Ajá!

$$f_1(x,0) = x$$

$$f_1(x,t+1) = s(f_1(x,t))$$
 es equivalente a $f_1(x,y) = \begin{cases} x & \text{si } y = 0 \\ 1 + f_1(x,y-1) & \text{sino} \end{cases}$

Bueno, con este truco vamos a meterle a todo el resto de los ejercicios de este punto!

1.2.2
$$f_2(x,y) = x \cdot y$$

Bien, pongamos de vuelta en práctica lo que acabamos de hacer. Si tu intuición te llama a que vamos a tener que usea $f_1(x,y)$ acá estás más que en lo cierto. Pero primero plantiemos una función partida común y corriente a ver cómo vamos desde ahí a nuestra recursión primitiva:

$$f_2(x,y) = \begin{cases} 0 & \text{si } y = 0\\ x + f_2(x, y - 1) & \text{sino} \end{cases}$$

Y de ahí salimos a buscar nuestro h(x) y nuestro g(n, x, t):

$$f_2(x,0) = n(x)$$

$$= 0$$

$$f_2(x,t+1) = g(f_2(x,t), x,t)$$

$$g(n,x,t) = f_1(u_2^3(n,x,t), u_1^3(n,x,t))$$

$$= x + n$$

Y para estar del todo seguros hacemos todos los reemplazos cómo la otra vez:

$$f_2(x,0) = 0$$

 $f_2(x,t+1) = x + f_2(x,t)$

Justo lo que buscábamos.

1.2.3
$$f_3(x,y) = x^y$$

Bueno, supongo que ya te diste cuenta de cuál es el patrón, te paso cuál es la h(x) y la g(n, x, t):

$$h(x) = s(n(x))$$
= 1
$$g(n, x, t) = f_2(u_2^3(n, x, t), u_1^3(n, x, t))$$
= $x \cdot n$

$$f_3(x,0) = 1$$

 $f_3(x,t+1) = x \cdot f_3(x,t)$

Observación: se asume que $f_4(x,0) = 1$

$$h(x) = s(n(x))$$

$$= 1$$

$$g(n, x, t) = f_3(u_2^3(n, x, t), u_1^3(n, x, t))$$

$$= x^n$$

$$f_4(x,0) = 1$$

 $f_4(x,t+1) = x^{f_4(x,t)}$

1.2.5
$$g_1(x) = x - 1$$

Cómo sólo estamos operando en los \mathbb{N} el predecesor de 0 es 0. Una cosa a notar es que (según la teórica, filmina 25, primera clase de computabilidad) "En este contexto,

una función 0-aria es una constante k. Si f es 1-aria y t=0 entonces $h(t)=k=s^{(k)}(n(t))$.".

$$g_1(0) = n(0)$$

 $g_1(t+1) = u_1^1(t)$

1.2.6
$$g_2(x,y) = \dot{x-y}$$

Observación:

$$\dot{x-y} = \begin{cases} x - y & \text{si } y \le x \\ 0 & \text{si } y > x \end{cases}$$

Bueno, entonces podemos empezar a intentar construir la resta.

$$f(x) = u_1^1(x) = x g(n, x, t) = g_1(u_1^3(n, x, t)) = n-1$$

¿Está bien esto? Probemos algún número:

$$g_2(5,3) = g(g_2(5,2),5,3) = g_2(5,2) - 1$$

$$g_2(5,3) = g(g_2(5,1),5,3) - 1 = g_2(5,1) - 1 - 1$$

$$g_2(5,3) = g(g_2(5,0),5,3) - 1 - 1 = g_2(5,0) - 1 - 1 - 1$$

$$g_2(5,3) = 5 - 1 - 1 - 1$$

$$g_2(5,3) = 2$$

¡Bien!

1.2.7
$$g_3(x,y) = \max\{x,y\}$$

Como operamos con los naturales sabemos que si x < y entonces x - y = 0 podemos usar la recursión primitiva para construir una función de decisión.

$$d(x, y, 0) = u_2^2(x, y)$$
= y
$$d(x, y, t + 1) = u_2^4(d(x, y, t), x, y, t)$$
= x

Ahora, esto no es $g_3(x,y)$ pero está peligrosamente cerca, podemos usar la composición para finalmente construirlo.

$$g_3(x,y) = d(u_1^2(x,y), u_2^2(x,y), g_2(x,y))$$

= $d(x, y, x - y)$

1.2.8
$$g_4(x,y) = \min\{x,y\}$$

La idea es la misma que recién, pero parametrizamos la decisión al revés:

$$g_3(x,y) = d(u_2^2(x,y), u_1^2(x,y), g_2(x,y))$$

= $d(y, x, x - y)$

1.3 Sea C_i la clase de funciones iniciales y C_c la (mínima) clase que extiende a C_i y se encuentra cerrada por composición:

Es decir, C_i aquella que contiene a:

$$n(x) = 0$$
 $s(x) = x + 1$ $u_i^n(x_1, \dots x_n) = x_i$ para cada $n \in \mathbb{N}$ e $i \in \{1, \dots, n\}$

Y
$$C_c$$
 aquella que si f, g_1, \ldots, g_m están en C_c , entonces $h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_m(x_1, \ldots, x_n))$ también lo está.

1.3.1 Demostrar que para toda $f: \mathbb{N}^n \to \mathbb{N}$, f, está en \mathcal{C}_c sii existe $k \geq 0$ tal que, o bien sucede $f(x_1, \ldots, x_n) = k$, o bien para algún i fijo, se tiene $f(x_1, \ldots, x_n) = x_i + k$.

El enunciado nos propone demostrar que C_c sólo tiene funciones que devuelven constantes y funciones que suman constantes a *uno* de sus parámetros (y siempre el mismo).

Demostrar la vuelta es particularmente fácil, primero construyo la función 1-aria que suma k con el método del primer ejercicio (teniendo $u_1^1(x)$ cómo caso base en lugar de n(x) y la llamo k(x). También construyo una función constantemente 0 que tome n argumentos.

$$k(x)=s(\dots s(u_1^1(x)))$$
 Nota: si $k=0$ entonces $k(x)=u_1^1(x)$
$$z(x_1,\dots,x_n)=n(u_1^n(x_1,\dots,x_n))$$

Ahora sólo tengo que cubrir cada caso:

• Si tengo una $f: \mathbb{N}^n \to \mathbb{N}$ que es constantemente k.

$$f(x_1,\ldots,x_n)=k(z(x_1,\ldots,x_n))$$

• Si tengo una $f: \mathbb{N}^n \to \mathbb{N}$ que es constantemente $x_i + k$.

$$f(x_1,\ldots,x_n)=k(u_i^n(x_1,\ldots,x_n))$$

Cómo sólo hice composiciones para construir la f entonces esto debería bastar para demostrar que las funciones constantes y las que suman constantes pertenecen todas a C_c .

Para demostrar la ida necesito asegurarme que las funciones en C_c sólo pueden ser constantes (o sumar constantes). Si empezamos examinando los casos base...

Primitiva	Forma	k
n(x) = 0	f(x) = k	0
s(x) = x + 1	f(x) = x + k = x + 1	1
$u_i^n(x_1,\ldots,x_n)=x_i$	$f(x_1,\ldots,x_n)=x_i+k$	0

... tenemos que todos ellos tienen o la forma k o la de $x_i + k$. Ahora examinemos nuestra regla de composición:

Sea:

$$f: \mathbb{N}^m \to \mathbb{N}$$

 $g_1, \dots, g_m: \mathbb{N}^n \to \mathbb{N}$

Podemos construir $h: \mathbb{N}^n \to \mathbb{N}$ de la siguiente manera:

$$h(x_1,\ldots,x_n) = f(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,g_n))$$

Puedo tomar f_1, \ldots, f_n que tengan la forma k o la forma $x_i + k$ y analizar qué pasa si las compongo (paso inductivo).

	$f_i(x_1,\ldots,x_n)=k$		$f_i(x_1,\ldots,x_n)=x_j+k$	
Composición	Forma	k'	Forma	k'
$n(f_i(x_1,\ldots,f_n))$	k	0	k	0
$s(f_i(x_1,\ldots,f_n))$	k	k+1	$x_j + k$	k+1
$u_i^n(f_1(\ldots), dots, f_i(\ldots), \ldots, f_n(\ldots))$	k	k	$x_j + k$	k
$f_i(f_1(\dots),\dots,f_n(\dots))$	k	k	$f_j(\dots)+k$	$f_j(\dots)+k$

Si bien el último caso puede parecer molesto, por la hipótesis inductiva sabemos que f_k tiene o bien forma k o bien forma $x_i + k$, entonces $k' = k_{f_j} + k_{f_i}$ y la forma se mantiene.

Entonces, si parto de funciones en C_c y las compongo siempre voy a llegar a una función de la forma k o $x_i + k$. Y dado que las funciones iniciales tienen también esa forma entonces todo C_c la tiene también.

1.3.2 Mostrar que existe una función primitiva recursiva que no está en \mathcal{C}_c

 $f_1(x,y)$ del ejercicio 2. Es primitiva recursiva porque está construida en base a la recursión primitiva y a la composición de funciones. Pero depende de ambos parámetros para emitir su resultado (a diferencia de todas las de C_c).

1.4 Mostrar que los predicados \leq , \geq , =, \neq , < t > : $\mathbb{N}^2 \to \{0,1\}$ están en cualquier clase PRC

Llamamos predicado a cualquier función $p: \mathbb{N}^n \to \{0,1\}$, escribimos $p(a_1,\ldots,a_n)$ en lugar de $p(a_1,\ldots,a_n)=1$ y decimos, informalmente, en este caso, que " $p(a_1,\ldots,a_n)$ es verdadero".

Vamos a empezar poniéndoles nombres a las funciones que queremos construir y vamos a tener en cuenta las funciones que construímos en el ejercicio 2 para facilitarnos la vida:

$$f_1(x,y) = \begin{cases} 1 & \text{si } x \le y \\ 0 & \text{sino} \end{cases} \qquad f_2(x,y) = \begin{cases} 1 & \text{si } x \ge y \\ 0 & \text{sino} \end{cases} \qquad f_3(x,y) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{sino} \end{cases}$$

$$f_4(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{sino} \end{cases} \qquad f_5(x,y) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{sino} \end{cases} \qquad f_6(x,y) = \begin{cases} 1 & \text{si } x > y \\ 0 & \text{sino} \end{cases}$$

Y para hacernos la vida más fácil vamos a construir $\alpha(x)$ que es la negación lógica en nuestro modelo.

$$\alpha(0) = n(0)$$
$$\alpha(t+1) = s(n(t))$$

¡Y ahora sí!

$$f_1(x,y) = \alpha(x - y)$$

$$f_2(x,y) = \alpha(y - x)$$

$$f_3(x,y) = (x \le y) \cdot (y \le x)$$

$$f_4(x,y) = \alpha(x = y)$$

$$f_5(x,y) = \alpha(x \ge y)$$

$$f_6(x,y) = \alpha(x \le y)$$

 $Nota: f_3$ puede parecer raro al no parecer una composición tan simple, plantearlo prolijamente requiere una funcion auxiliar que cambia el orden de los parámetros.

1.5 Sean $\mathcal C$ una clase PRC, $f_1,\ldots,f_k,g:\mathbb N^n\to\mathbb N$ funciones en $\mathcal C$ y $p_1,\ldots,p_k:\mathbb N^n\to\{0,1\}$ predicados disjuntos en $\mathcal C$. Mostrar que la siguiente función también está en $\mathcal C$:

$$h(x_1, ..., x_n) = \begin{cases} f_1(x_1, ..., x_n) & \text{si } p_1(x_1, ..., x_n) \\ \vdots & & \\ f_k(x_1, ..., x_n) & \text{si } p_k(x_1, ..., x_n) \\ g(x_1, ..., x_n) & \text{sino} \end{cases}$$

Observar que h queda completamente determinada por este esquema.

Nota: Al ser p_1, \ldots, p_k disjuntos no sucede $p_i(a_1, \ldots, a_n) = p_j(a_1, \ldots, a_n) = 1$ con $i \neq j$ para ningún $(a_1, \ldots, a_n) \in \mathbb{N}^n$.

Si podemos resolverlo para el caso de k=1 entonces podremos resolverlo para cualquier k arbitrario. Podemos construir $h(x_1, \ldots, x_n)$ de la siguiente forma:

$$h(x_1, ..., x_n) = h_1(x_1, ..., x_n)$$

$$h_i(x_1, ..., x_n) = \begin{cases} f_i(x_1, ..., x_n) & \text{si } p_i(x_1, ..., x_n) \\ h_{i+1}(x_1, ..., x_n) & \text{sino} \end{cases} \quad \forall i \neq k+1$$

$$h_{k+1}(x_1, ..., x_n) = g(x_1, ..., x_n)$$

Ahora sólo queda resolverlo para el caso de k = 1. ¡Cosa que ya hicimos en el ejercicio 2 con $\max\{x,y\}$ y $\min\{x,y\}$! Repasemos esa solución: construimos una función de

decisión d_i y la encapsulamos para construir el h_i .

$$d_{i}(x_{1},...,x_{n},0) = f_{i}(x_{1},...,x_{n})$$

$$d_{i}(x_{1},...,x_{n},t+1) = h_{i+1}(x_{1},...,x_{n})$$

$$h_{i}(x_{1},...,x_{n}) = d_{i}(x_{1},...,x_{n},p(x_{1},...,x_{n}))$$

$$\forall i \neq k+1$$

$$h_{k+1}(x_{1},...,x_{n}) = g(x_{1},...,x_{n})$$

Ahora tenemos todo listo, sólo queda enunciar a nuestro h:

$$h(x_1,\ldots,x_n) = h_1(x_1,\ldots,x_n)$$

Nota: Una forma alternativa (y mucho más simple) que me dieron fué construir $h(x_1, \ldots, x_n)$ de la siguiente manera:

$$h(x_1, \dots, x_n) = f_1(x_1, \dots, x_n) \cdot p_1(x_1, \dots, x_n)$$

$$+ f_2(x_1, \dots, x_n) \cdot p_2(x_1, \dots, x_n)$$

$$\vdots$$

$$+ f_{k-1}(x_1, \dots, x_n) \cdot p_{k-1}(x_1, \dots, x_n)$$

$$+ f_k(x_1, \dots, x_n) \cdot p_k(x_1, \dots, x_n)$$

$$+ g(x_1, \dots, x_n) \cdot \alpha(p_1(x_1, \dots, x_n) + \dots + p_k(x_1, \dots, x_n))$$

1.6 Demostrar las siguientes afirmaciones

$$1.6.1 \quad \text{El predicado } par(x) = \begin{cases} 1 & \text{si } x \text{ es par} \\ 0 & \text{sino} \end{cases} \text{ está en toda clase } PRC$$

La menor clase PRC es la que contiene a las primitivas recursivas, si podemos demostrar par(x) cómo primitiva recursiva tenemos el ejercicio hecho.

Intentemos definir par(x) con una recursión primitiva:

$$par(0) = 1$$
$$par(t+1) = \alpha(par(t))$$

Podemos ver que si el número es par nos va a quedar una cantidad par de α por lo que se cancelan y queda 1 de respuesta, y en el caso contrario un 0 cómo era esperado.

Cómo α es primitiva recursiva y la clase de las primitivas recursivas está cerrada por composición y recursión primitiva entonces par(x) pertenece a esa clase. Cómo esa clase es la menor clase PRC entonces par(x) pertenece a toda clase PRC.

1.6.2 Demostrar que la función f(x) = |x/2| está en toda clase PRC

Podemos intentar lo mismo que en el punto anterior:

$$f(0) = 0$$

$$f(t+1) = par(t) + f(t)$$

1.6.3 Sea $\mathcal C$ una clase PRC, y sean $f:\mathbb N^n\to\mathbb N$ y $g_1,\ g_2:\mathbb N^{n+2}\to\mathbb N$ funciones en $\mathcal C$. Mostrar que también está en $\mathcal C$ cualquier h que cumpla:

$$h(x_1, \dots, x_n, t) = \begin{cases} f(x_1, \dots, x_n) & \text{si } t = 0\\ g_1(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 1\\ g_2(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 2 \end{cases}$$

Observar que h queda completamente determinada por este esquema.

Podemos usar una recursión primitiva no tan trivial:

$$h(x_1, ..., x_n, 0) = f(x_1, ..., x_n)$$

$$h(x_1, ..., x_n, t+1) = g_1(x_1, ..., x_n, \lfloor x/2 \rfloor, h(x_1, ..., x_n, t)) \cdot par(t)$$

$$+ g_2(x_1, ..., x_n, \lfloor x/2 \rfloor, h(x_1, ..., x_n, t)) \cdot \alpha(par(t))$$

Si bien el término para t+1 es complejo podemos ver que usamos funciones de C (f, g_1, g_2) , que llamamos a h con el valor anterior de t y que usamos funciones que ya demostramos como primitivas recursivas (y por ende pertenecen a C) siendo estas par, α , la suma, la multiplicación y la división truncada.

El reordenamiento de los parámetros también es primitivo recursivo, dado que nos lo regalan los proyectores (u_i^n) .