CSE 331: Automata & Computability
Spring 2025
Prepared By: KKP
Assignment 01 (DFA & NFA)
Total Mark: 103

[Or means you may solve any One question]

[Problems having multiple Or, mention the problem no properly. For example: 2a) 3b)]

Group Formation:

- This is a group assignment. You can make a group of at most three students.
- From each group you have to submit one copy only.
- Cross section group formation is not allowed.

Submission Deadline:

- Part A (Questions 1-10): February 18, 2024
- Part B (Questions 11-21): February 25, 2024
- Part C (Questions 01-04): March 2, 2025

Submission Link: https://forms.gle/pjZc6uugFrPXBCDG8

Please note you have to submit both a hard copy and a soft copy. If you are unable to submit the hard copy within the deadline, you may submit the soft copy by the deadline and later [by next class] submit the hard copy.

Penalty:

- For each day delay, you will receive a 5 marks penalty.
- If you plagiarize, then each member of the group will receive (number of questions plagiarized * 3 * number of group members) points penalty.

Additional Resources

Please go through the video lectures of Mursalin Sir [The first three video lectures on DFA] Link: https://drive.google.com/drive/folders/1790ApcX9k_8GBFM3Suea1_SEwTpyReRW

Part 0:

1. Do you understand that it is not possible to finish the assignment if you start solving the assignment 1-2 days before the deadline? (Yes/No)

2. Do you understand solving the assignment using AI or directly copy pasting from any available resources without understanding the solution will impact your quiz/midterm performance? (Yes/No)

Part A: Deterministic Finite Automata (DFA) [Each question contains 3 marks]

- 1. a) Draw a DFA for the set of strings that have three consecutive 0s. $\Sigma = \{0,1\}$
 - Or, b) Draw a DFA for the set of strings that don't contain 000. $\Sigma = \{0,1\}$
- 2. a) Construct a DFA that accept the language, $L = \{ w \in \{a,b\}^*: w \text{ starts and ends with different symbols.} \}$
 - Or, b) Construct a DFA that accepts the language, $L = \{ w \in \{a,b\}^* : w \text{ starts and ends with the same symbol.} \}$
- 3. a) Draw a DFA of strings that ends with "0101". $\Sigma = \{0,1\}$
 - Or, b) Design a DFA that accepts the language $L = \{w \mid w \text{ ends with the substring "yxxy"}\}$ over the alphabet $\{x,y\}$
- 4. a) Construct a DFA defined as $L = \{ w \in \{0,1\}^* : \text{ the length of } w \text{ is two more than multiple of four} \}$
 - Or, b) Construct a DFA defined as $L = \{ w \in \{0,1\}^*: \text{ numbers of 1s in } w \text{ is two more than multiple of four} \}$
- 5. Construct a DFA defined as $L = \{ w \in \{0,1\}^*: w, when interpreted as a binary number, is divisible by 5. \}$
- 6. a) L = $\{w \in \{0, 1, \#\}^* : w \text{ does not contain } \# \text{ and the number of 0s in } w \text{ is not a multiple of } 3\}$

```
Or, b) let's \Sigma= {0,1}
L1 = {w does't contain #}
L2 = {the number of 0s in w is not a multiple of 3}
L = L1 \cap L2
```

Prove L is a regular language by giving a state diagram for DFA.

7. Construct a DFA of the language L over the alphabet $\Sigma = \{a,b,c\}$ defined as follows-L = { w|w does not contain "ba" and ends with "cb"}

- 8. Draw a DFA of strings that contains at least three 0s or exactly two 1s. $\Sigma = \{0,1\}$
- 9. a) Draw a DFA of strings where the 2nd last symbol is a. $\Sigma = \{a,b\}$
 - Or, b) Draw a DFA of strings where the 3rd last symbol is 1. Σ = {0,1} [You may draw the NFA for this problem if you find it difficult to solve using DFA]
- 10. L = $\{w \in \{a, b\}^*$: the last letter of w appears at least twice in w.

Part B: More Deterministic Finite Automata (DFA) [Each question contains 3 marks]

- 11. a) Draw a DFA of strings that have 1 as every 3rd symbol. $\Sigma = \{0,1\}$
 - Or, b) The set of binary numbers has 0 in all even positions. $\Sigma = \{0,1\}$.
- 12. a) Draw a DFA that accepts exactly one "ab". $\Sigma = \{a,b\}$
 - Or, b) Draw a DFA that accepts exactly two "ab". $\Sigma = \{a,b\}$
- 13. Draw a DFA that accepts at least two "00" as a substring. $\Sigma = \{0,1\}$
- 14. a) Draw a DFA that accepts exactly two "00" as a substring. $\Sigma = \{0,1\}$
 - Or, b) Draw a DFA that accepts at most two "00" as a substring. $\Sigma = \{0,1\}$
- 15. Construct a DFA defined as L = {An even number of 0s follow the last 1 in w} Σ = {0,1}
- 16. Construct a DFA defined as L = {w| each "b" is followed by at least one "a"} Σ = {a,b} For example: baaa
- 17. Construct a DFA where the set of binary strings where numbers of 0s between two successive 1s will be even. $\Sigma = \{0,1\}$.
- 18. Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : no 00 \text{ appears as a substring before the first } 11 \text{ in } w. \}$
- 19. Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : no 00 \text{ appears as a subsequence before the first 11 in w.} \}$
- 20. a) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : w \text{ contains } 01^m 0 \text{ as a substring } where m is divisible by 3 \}$

Or, b) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : w \text{ contains } 01^m 0 \text{ as a substring } where m leaves a remainder of 2 when divided by 3}$

Hints:

We denote by
$$1^m$$
 the string $\underbrace{111...111}_{m \text{ times}}$.

- 21. a) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^*: w = 0^m 1^n \text{ where m and n are both odd.} \}$
 - Or, b) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : w = 0^m 1^n \text{ where m and n are both even.} \}$
 - Or, c) The problem can also be designed as:

L1 = {w : w =
$$0^m$$
, where m is even}
L2 = {w : w = 1^n , where n is even}
L = L1 . L2

Prove L is a regular language by giving a state diagram for DFA.

Part C: Mursalin Sir's [MHB] Quiz Question from Previous semesters [Each question contains 10 marks.]

Question 1.

Let
$$\Sigma = \{0, 1\}$$

L1 = {w : w = 1^m where m is odd}
L2 = {w : w does not contain any y \in L1 as a substring}

- (a) Write down a length 6 string that is in L2. (1 point).
- (b) Give the state diagram for a DFA that recognizes L1. (5 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)
- (d) Give the state diagram for a DFA that recognizes L1 \cap L2. You can use the construction shown in class but there is a much simpler DFA. (2 points)

Question 2.

The symmetric difference of the languages L1 and L2, denoted by L1 \triangle L2, is defined in the following way.

$$L1\Delta L2 = \{w : w \text{ is in exactly one of } L1 \text{ and } L2\}$$

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

A = $\{w : \text{the length of } w \text{ is greater than or equal to 3 but less than or equal to 5}\}$ B = $\{w : \text{the length of } w \text{ is greater than or equal to 2 but less than or equal to 4}\}$

C = {w : the length of w is odd}

- (a) Give the state diagram for a DFA that recognizes A. (2 points)
- (b) Give the state diagram for a DFA that recognizes B. (2 points)
- (c) Give the state diagram for a DFA that recognizes $A\triangle B$. (2 points)
- (d) If you use the construction from class to get a DFA for the language $(A\triangle B)\cup C$, how many states will it have? (1 point)
- (e) Give a 5-state DFA that recognizes $(A\triangle B) \cup C$. (3 points)

Question 3.

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

L1 = {w : every second letter of w is 0} L2 = {w : every third letter of w is 1}

- (a) Write down a length 5 string that is in L1 \cap L2. (1 point).
- (b) Give the state diagram for a DFA that recognizes L1. (3 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)
- (d) Give the state diagram for a DFA that recognizes L1 \cap L2. (3 points)

Question 4.

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L1 = \{0, 10\}$$

 $L2 = L_1^*$

L3 = {w : the length of w is four}

- (a) Write down all the strings in L2 \cap L3. (2.5 points)
- (b) Give the state diagram for a DFA that recognizes L1. (4.5 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)

For Practice: [Don't have to submit]

Part D: Non-Deterministic finite automata (NFA)

- 1. Construct an NFA that recognizes the language $L = \{ w \in \{0,1\}^* : w \text{ contains both "000" and "111" as a substring} \}$
- 2. Construct a NFA which recognize the language $L = \{ w \in \{0,1\}^* : w \text{ contains at least two } 0 \text{s or exactly two } 1 \text{s} \}$
- 3. Construct an NFA for the languages L = $\{w \in \Sigma : w \text{ does not start with a Punctuation or contains only Alphabets} \}$ where $\Sigma = D \cup A \cup P$

You can use the sets above to label the transitions of your NFA.