Limites de fonctions

Définitions. Une fonction f a pour limite l en $+\infty$ ssi étant donné un intervalle contenant l aussi petit soit il, la courbe C_f , en allant vers la droite, finit par entrer dans l'intervalle sans jamais en ressortir :

 $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in D_f, x > A \Rightarrow |f(x) - l| \leq \varepsilon.$

Dans ce cas on note $\lim_{x \to +\infty} f(x) = l$ ou encore $f(x) \underset{x \to +\infty}{\to} l$

Dans ce cas la droite d'équation « y = l » est une **asymptote horizontale** à la courbe C_f .

De façon similaire, on définit « f a pour limite l en $-\infty$ », « $\lim_{x\to-\infty} f(x) = l$ ».

Définitions. Une fonction f a pour limite $+\infty$ en $+\infty$ ssi étant donnée une valeur M aussi grande soit elle, la courbe C_f , en allant vers la droite, finit par dépasser M sans jamais redescendre :

 $\forall M \in \mathbb{R}, \exists A \in \mathbb{R}, \forall x \in D_f, x > A \Rightarrow f(x) \geq M.$

Dans ce cas on note $\lim_{x\to +\infty} f(x) = +\infty$ ou encore $f(x) \underset{x\to +\infty}{\to} +\infty$

De façon similaire, on définit « f a pour limite $-\infty$ en $+\infty$ »;

« $\lim_{x \to \infty} f(x) = -\infty$ »; et les autres cas $\pm \infty$...

Définitions. Une fonction f a pour limite $+\infty$ en a ssi étant donnée une valeur M aussi grande soit elle, la courbe C_f , en se rapprochant de \underline{a} , finit par dépasser M sans jamais redescendre :

 $\forall M \in \mathbb{R}, \, \exists \delta > 0, \, \forall x \in D_f, |x - a| \leq \delta \Rightarrow f(x) \geq M.$

Dans ce cas on note $\lim_{x \to a} f(x) = +\infty$ ou encore $f(x) \underset{x \to a}{\to} +\infty$

Dans ce cas la droite d'équation « x = a » est une **asymptote** verticale à la courbe C_f . De façon similaire, on définit « f a pour limite $-\infty$ en $a \gg$, « $\lim_{x \to a} f(x) = -\infty \gg$.

Définitions. Une fonction f a pour limite l en a ssi étant donné un intervalle contenant l aussi petit soit il, la courbe C_f , en se rapprochant de a, finit par entrer dans l'intervalle sans jamais en ressortir : $\forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in D_f, |x - a| \le \delta \Rightarrow |f(x) - l| \le \varepsilon.$

Dans ce cas on note $\lim_{x\to a} f(x) = l$ ou encore $f(x) \underset{x\to a}{\to} l$

Définitions. Parfois la limite en a n'existe pas, on peut alors souvent définir une limite à droite ou à gauche de a que l'on note respectivement : $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$. Il faut adapter les définitions précédentes en restreignant l'intervalle où varie x à un seul côté.

Propriété. Si $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$ existent <u>et ont la même valeur</u> lalors $\lim_{x \to a} f(x)$ existe et $\lim_{x \to a} f(x) = l$.

Réciproquement si $\lim_{x \to a} f(x) = l$, alors $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = l$.

Définitions. Limite en l^+/l^- . Pour toutes les définitions de limites finies précédemment données, on écrit parfois $\lim f(x) = l^+$ (respectivement $\lim_{x \to a} f(x) = l^-$) pour signifier d'une part que $\lim_{x \to a} f(x) = l$ et d'autre part que $f(x) \ge l$ (respectivement $f(x) \le l$) près de a.

Propriétés. Limites usuelles à connaitre.

Fonction constante	Pour tout réel <i>c</i> ,					
	$\lim_{x \to a} c = c$					
Fonction inverse	$\lim_{x \to +\infty} \frac{1}{x} = 0$		$\lim_{x \to 0^+} \frac{1}{x} = +\infty$		$\lim_{x \to 0^-} \frac{1}{x} = -\infty$	
Fonction puissance	Pour tout <i>n</i> entier <u>naturel</u>		Si n pair :		Si n est impair :	
	$\lim_{x \to +\infty} x^n = +\overline{\infty}$		$\lim_{x \to -\infty} x^n = +\infty$		$\lim_{x \to -\infty} x^n = -\infty$	
Fonction exponentielle	$\lim_{x\to+\infty}e^x=+\infty$		$\lim_{-\infty} e^x = 0$	$\lim_{x\to+\infty}e^{-x}$	= 0	$\lim_{x \to -\infty} e^{-x} = +\infty$
Fonction racine carrée	$\lim_{x \to +\infty} \sqrt{x} = +\infty$	lii x→	$\lim_{0^+} \sqrt{x} = 0$	$\lim_{x\to+\infty}\frac{1}{\sqrt{x}}=$	= 0	$\lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$

Exemple. $\lim_{x \to +\infty} \frac{1}{x} = 0$ car tout intervalle [-a; a] autour de 0, contient $\frac{1}{x}$ dès que x est assez grand (en l'occurrence dès que $x > \frac{1}{a}$ on a bien $0 < \frac{1}{x} < a$).

Remarque. En pratique, pour mémoriser ces tables, on remplace mentalement *x* par une valeur proche de sa limite dans l'expression f(x), et on essaye de deviner vers quoi tend f(x). Par exemple, pour « se rappeler » de $\lim_{x\to+\infty}\frac{1}{x}$ on remplace x par 1000 (proche de $+\infty$), $\frac{1}{1000}=0.001\approx0$ donc on devine que $\lim_{x \to +\infty} \frac{1}{x} = 0.$

Règles d'addition, produit, quotient de limites.

Soit f et g deux fonctions. On note α une valeur réelle a ou α^+ ou α^- ou $-\infty$ ou $+\infty$.

$\lim_{x\to\alpha}f(x)$	$\lim_{x\to\alpha}g(x)$	$\lim_{x \to \alpha} f(x) + g(x)$	$\lim_{x \to \alpha} f(x) g(x)$
l	l'	l + l'	$l \times l'$
l	+∞ +∞		$+\infty$ si $l>0$
			$-\infty$ si $l < 0$
			indéterminé si $l=0$
l	$-\infty$	-∞	$-\infty$ si $l>0$
			$+\infty$ si $l < 0$
			indéterminé si $l=0$
+∞	+∞	+∞	+8
+∞	-∞	indéterminé	-8
-∞	-∞	-∞	-∞
-∞	+∞	indéterminé	-∞

	$\lim_{x\to\alpha}f(x)$	$\lim_{x\to\alpha}g(x)$	$\lim_{x \to \alpha} \frac{f(x)}{g(x)}$	
Ī	l	$l' \neq 0$	i i	
			$\overline{l'}$	
	l	±∞	0	
	$l \neq 0$	0+	$+\infty$ si $l>0$	
			$-\infty$ si $l < 0$	
	$l \neq 0$	0-	$-\infty$ si $l>0$	
			$+\infty$ si $l < 0$	
ſ	+∞	l'	$+\infty \text{ si } l' > 0 \text{ ou } l' = 0^+$	
			$-\infty$ si $l' < 0$ ou $l' = 0^-$	
	$-\infty$	l'	$-\infty$ si $l'>0$ ou $l'=0^+$	
			$+\infty$ si $l' < 0$ ou $l' = 0^-$	
	±∞	±∞	indéterminé	
	0	0	indéterminé	

Dans ces tableaux :

Indéterminé signifie qu'on ne peut pas conclure sur la limite. $\lim_{x \to \alpha} f(x) = 0^+$ (resp 0⁻) signifie que $\lim_{x \to \alpha} f(x) = 0$ et

que f(x) > 0 (resp. < 0) pour x assez proche de α .

Pour déterminer $\lim_{x \to a} f(x) - g(x)$ on peut juste remarquer que f(x) - g(x) = f(x) + (-g(x)).

Exemple. Calculer $\lim_{x \to +\infty} x^2 + \frac{1}{\sqrt{x}}$. On a $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ donc par somme $\lim_{x \to +\infty} x^2 + \frac{1}{\sqrt{x}} = +\infty$.

Méthodes : Pour lever une forme indéterminée

- On peut simplifier : Déterminer $\lim_{n \to +\infty} \frac{x}{x}$. On a une F.I. $\frac{x}{+\infty}$. Cependant $\frac{x}{x} = 1$ donc $\lim_{x \to +\infty} \frac{x}{x} = \lim_{x \to +\infty} 1 = 1$. On peut factoriser : Déterminer $\lim_{x \to +\infty} x^2 x$. Sachant $\lim_{x \to +\infty} x^2 = \lim_{x \to +\infty} x = +\infty$ on a une F.I. $\frac{x}{+\infty} = 1$.

Mais $x^2 - x = x^2 \left(1 - \frac{1}{x}\right)$ or $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$, donc par produit $\lim_{n \to +\infty} x^2 \left(1 - \frac{1}{x}\right) = +\infty$.

Notation. On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty; +\infty\}$

Théorème. Limite par encadrement ou théorème des gendarmes.

Soit f, g, h trois fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$ et vérifiant pour tout $x \in I$, $f(x) \leq g(x) \leq h(x)$.

Si
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x)$$
 alors $\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} h(x)$

Exemple. Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{\sin(x)}{x}$. On cherche $\lim_{x \to +\infty} f(x)$.

La fonction sin est périodique non constante, de valeurs comprises entre -1 et 1. Elle n'a donc pas de limite en $+\infty$. On ne peut pas appliquer la règle quotient. Comme la fonction sin est bornée par -1 et 1, on a pour tout x>0, $-1\leq \sin(x)\leq 1$ donc en divisant par x>0 on obtient $-\frac{1}{x}\leq \frac{\sin(x)}{x}\leq \frac{1}{x}$ pour tout x>0.

 $\lim_{x \to +\infty} -\frac{1}{x} = 0$ et d'autre part $\lim_{x \to +\infty} \frac{1}{x} = 0$. Par le théorème des gendarmes, on en déduit $\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$.

Théorème. Limite par comparaison.

Soit f, g deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$ et vérifiant pour tout $x \in I$, $f(x) \leq g(x)$.

Si
$$\lim_{x \to a} f(x) = +\infty$$
 alors $\lim_{x \to a} g(x) = +\infty$

Si
$$\lim_{x \to a} g(x) = -\infty$$
 alors $\lim_{x \to a} f(x) = -\infty$

Si f et g admettent une limite (finie ou non) en a, alors on a toujours $\lim_{x\to a}g(x)\leq \lim_{x\to a}f(x)$

La fonction cos est périodique non constante, de valeurs comprises entre -1 et 1. Elle n'a donc pas de limite en $+\infty$. On ne peut pas appliquer la règle somme. Comme la fonction cos est bornée par -1 et 1, on a pour tout $x \in \mathbb{R}$, $-1 \le \cos(x) \le 1$.

Donc en ajoutant x, on a $-1 + x \le x + \cos(x)$ soit : pour tout $x \in \mathbb{R}$, $-1 + x \le f(x)$.

 $\lim_{x\to +\infty} -1 + x = +\infty$. Par le théorème de comparaison de limites, on en déduit que $\lim_{x\to +\infty} f(x) = +\infty$.

Théorème. Composition de limites ou changement de variables.

Soit $a, b, c \in \overline{\mathbb{R}}$. Soit f, g définie au voisinage de a, respectivement de b.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{y \to b} g(y) = c$ alors $\lim_{x \to a} g(f(x)) = c$

Exemple. Déterminer $\lim_{x \to +\infty} e^{\frac{1}{x}}$. On a $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{y \to 0} e^y = 1$ donc par composition, $\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$.

Théorème. Croissances comparées. Pour tout entier naturel n, $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$.