今後のHPCI技術開発に関する報告書

アプリケーション&コンピュータアーキテクチャ・コンパイラ・システムソフトウェア合同作業部会

目次

- 」はじめに
- 2. サイエンスロードマップ
- 3. ロードマップ達成にむけて
- 4. アーキテクチャ技術開発目標
- 5. アーキテクチャ検討例と計算機科学の研究課題
- 6. 技術開発ロードマップ
- 7. 今後の推進体制に求められる要件 執筆者・協力者リスト

なお、以下の白書をhttp://www.open-supercomputer.org/workshop/ホームページに掲載する予定

- 計算科学研究ロードマップ白書(仮題)
- ▶ HPCI技術開発ロードマップ白書(仮題)

1. はじめに

▶ 背景

- ▶ HPCI計画の推進にあたり国として必要な事項等を検討するため、研究振興局長の諮問会議「HPCI計画推進委員会」のもとに「今後のHPC技術の研究開発のあり方を検討するWG」が設置され、以下の作業を行うことが決まった
 - ▶ 今後の開発を担う若手を中心に、幅広い産学官の関係者による検討を開始
 - ▶「アプリケーション」、「コンピュータアーキテクチャ」、「コンパイラ・システムソフトウェア」の3つの作業部会が緊密に連携しながら検討を進めていく体制を立ち上げ
 - □ アプリケーション作業部会とコンピュータアーキテクチャ・コンパイラ・システムソフトウェア作業部会の2体制
 - ▶ 複数の追求すべきHPCシステムとこれを開発していく体制案をとりまとめる

検討プロセス

- ▶ 2020年までに社会的・科学的課題を如何に解決できるかの視点に立ったサイエンスロードマップをまとめるとともに計算機システムに対する要求事項を検討
 - 生命科学、物質科学、地球科学、ものづくり、宇宙・素粒子・原子核
- ▶ サイエンスロードマップを達成するために、サイエンス達成年の2年前である2018年までに消費電力20~30MW、設置面積2000平米に設置できる計算機システムに必要となる技術開発を検討
 - アーキテクチャ、コンパイラ、OS、ミドルウェア、プログラミングモデル・言語、数値計算ライブラリ

▶ 作業部会

- ▶ 広くオープンに議論が進むよう文部科学省の広報チャネルおよび各コミュニティに開催案内
- ▶ アプリケーション作業部会:5戦略分野関係者、大学・研究機関、企業などで、4回の集中討論
 - □ このほかアプリケーション要求性能サブWGを2回開催
- コンピュータアーキテクチャ・コンパイラ・システムソフトウェア作業部会:「戦略的高性能計算システム開発に関するワークショップ」で検討されてきた内容を基に大学・研究機関、企業などで、6回の集中討論
- ▶ 合同作業部会:3回開催(参加延べ人数:368人)
 - ▶ http://www.open-supercomputer.org/workshop/参照

2. サイエンスロードマップ 「概要」 (1/9)

- アプリケーション作業部会では、HPCI戦略分野を中心とする科学分野について、意見交換を行い以下についてまとめた。
- ・ 今後5~20年程度においての計算科学面から期待される
 - 分野間の連携が必要な横断的課題と将来的な社会的貢献とその要件
 - 各科学分野のサイエンスブレークスルー
- 本報告書は、今後のHPCを考える際に、元となるべきでものである。
- 本サマリーでは2020年までのものを記載しているが、現時点での予測に基づき、2030年程度まで議論されている。
- 確たる方向付けのため、<u>今後も継続的に情報交換・議論を続けることを意図</u>している。

前提となるコンセンサス

- 2018年~2020年ごろの社会ニーズと期待されうるサイエンスに基づくHPCが必要
 - ピーク性能ありきではない。
- サイエンスロードマップを実現するためのアプリケーションの計算手法にマッチした複数のアーキテクチャを想定する。
 - 今後汎用マシンだけでは全てのアプリケーションに対応できるわけではないと考えられるため
- 想定される様々な計算規模へ適切に対応する。その時代での科学的プロダクトの効率と計算科学・ 計算機科学としての継続性を考えると、どの規模のジョブも必要。
 - ・ 大規模ジョブ:

スパコンの半系や全系を用いてタイトな通信が必要な計算。そのスパコンを使わないと出来ない計算で、**意味ある科学的成果を望める分野も多い**。また、次の世代の中規模ジョブに相当し、科学的な成果の可能性を追求するうえで必要。

中規模ジョブ:

スパコンの100分の1程度X100、10分の1程度X10などの形で計算量としては全体リソース規模を必要とし、大量に投入される。ユーザーが最も使用するジョブクラスと考えられる規模で成果の多くがこのクラスのジョブから創出されると考えられる。

小規模ジョブ:

アレイジョブと位置づけられるこのクラスのジョブでは、ほとんどノード間通信が発生しない。 ただし、スパコンを使うことで大量のパラメータスタディをタイムラグなく行うことができ、ここで も大量のジョブ処理が必要となる。大きな研究成果が見込める。このクラスのジョブのサポートも必要

◆ 各主要アプリケーションのネットワーク特性と製造・ランニングコストを考慮しながら、最適解 を求める作業が今後必要となる。

生命科学

- •分子•細胞•臟器
- •脳神経
- •創薬・医療
- •データ解析

物質科学

- •物性科学
- •分子科学
- •材料科学

地球科学

- •地震学•津波
- •気象•気候学

ものづくり

- •熱流体解析
- •構造解析
- •連成解析
- •可視化・データ分析手法

素粒子·宇宙物理学

- •宇宙
- •素粒子·原子核

横断的課題

- •惑星科学(地球科学、宇宙)
- •防災(地震津波•構造解析)
- ・タンパク質やDNAなどの生体分子・ 複合体の立体構造に基づく解析

2. サイエンスロードマップ「分野横断的課題」 (2/9)

地震における構造物の耐震性解析

(「防災減災」分野と「ものづくり」分野の横断的課題)

- 地震シミュレーションと構造解析の連成による大規模複雑構造物の地震時挙動の 精緻化
 - ・設計・保守活動への結果のフィードバック ➡ 構造物のより一層の耐震性向上
 - 被災時の正確な状態予測 ➡ アクシデントマネージメントの高度化
- 例:最大級の耐震性の確保が必要な原子力発電所の評価
 - 高精度な地震動シミュレーション結果を入力した原子力関連構造物の振動シミュレーション結果の参照
 - 地震とそれが引き起こす津波の多数のシナリオに対する耐震性を調査

タンパク質やDNAなどの生体分子・複合体の立体構造に基づく解析

(「生命科学」分野と「物質科学」分野の境界に位置した横断的課題)

- 二つのアプローチの融合
 - 細胞、臓器等の高次の生命現象へのつながりを意識した生命科学的アプローチ
 - 電子や原子・分子さらには分子集団における物質的側面を重視した物質科学的アプローチ
 - 精度の高い物質科学方法論を駆使して、より高次の生命科学的に重要な現象 に関わる問題に挑戦
- 効果が高く副作用の少ない薬品分子(低分子, 高分子を含む)の開発の加速
- 生体親和性の高いインプラントや抗原を検知するセンサーの設計などのバイオ・ナノの境界領域のシミュレーションが可能になると期待

惑星系の形成、惑星の多様性、構造の理解

(宇宙科学分野と地球科学分野の横断的課題)

- 惑星系の形成
 - 太陽系など複数の惑星をもつシステムの形成過程の解明
- 地球・惑星の形成
 - 衛星との相互作用による地球、木星など、様々な惑星の形成過程の解明
- 地球を含めた多くの惑星表層環境・構造の形成と進化の理解

2.サイエンスロードマップ「将来の社会貢献とその要件」(3/9)

災害発生時のリアルタイム予測:

- 現在、リアルタイムデータ同化・シミュレーション予測に関する基礎的な研究が進められている段階。 エクサレベルの計算機が実現 すれば、こうした基礎研究の進展と実用化の追い風となる。
 - ただし、観測データのリアルタイム入手と災害情報の適切な伝達・活用方法について物理的・法的手段が整備されていることが前提
- 人や車の位置を把握しつつ的確に避難誘導するためのリアルタイムシミュレーションは減災に向けた1つの可能性
 - 例: 地震発生後に津波襲来まで10分の猶予、10万人の避難をエクサレベル計算機で想定した場合
 - ・ 全携帯の通信に計5分、10万人のエージェントシミュレーションに対し、実時間の半分で計算を終わらせる必要。現行 (1000人のシミュレーションに対して実時間の10倍程度)の2000倍の高速計算であれば実時間計算が可能。(ただし エージェントの複雑さとエージェント間の情報交換の質・量次第で数値は変わる)
- 津波による浸水がどこまで広がったかを予測するためのリアルタイムシミュレーションの精緻化が必要
 - 津波が迫っている最中の予測は困難でも、津波が引いた後の迅速な被害把握による救援体制や避難場所確保等のために、 浸水域をリアルタイム評価することが重要
 - 海底水圧計、波浪計、津波レーダーなどの沖合津波と地震動データによる震源モデルのジョイントインバージョンを逐次実施し、逐次解のアップデート毎に、非線形津波遡上シミュレーションを行う その際(ランダムにばらつかせた震源モデル)x(複数の遡上モデル&パラメタ)を並列独立に実行し、そのアンサンブルから津波遡上高や浸水域予測の範囲を推定する
 - 遡上計算で現行の1000倍の高速化が実現すれば、2kmx2kmx25mを1m程度の分解能(1億メッシュ)で数秒以内に計算可能

産業界への展開・波及効果:

- ナショナルフラグシップマシンは、サイエンスブレークスルー・社会的要請を踏まえたシステム構成になっていることが必要
 - そのうえで、産業界への展開できるようなシステムになっていることが望ましい。
- 産業界が求めるアプリケーションの新開発や既存アプリケーションの移植が容易なハードウェア構成やその継続性が重要
 - これらの可否で産業界への展開が大きく左右されることを十分に考慮するべきである。

「サイエンス・モデル」と人材教育の必要性

- 計算モデル構築~アルゴリズム開発~プログラム開発~シミュレーション~成果の一連のサイクルのターンアラウンドタイムが非常 に重要
 - プログラム開発の分業化・専業化により、モデル・アルゴリズムの開発が滞り、新しい科学が生まれにくくなる恐れ
 - 分業化・専業化した時のそれぞれのキャリアパス確保が必要
- 避けられない分業化の一方で、モデル構築~プログラム開発~成果の発信までをカバーし全体を見渡せる人材を継続的に生み出す教育システムの整備が急務

2. サイエンスロードマップ「生命科学」(4/9)

分野概要:生命体を構築する要素である生体分子、細胞、臓器、脳神経に対し、様々なスケールにて計算機シミュレーションを 行うとともに、膨大な生命データを解析し、予測可能な生命科学と医療および創薬に貢献できる理論モデルを構築する。

課題項目&目標/社会的ニーズと波及効果:

- ・細胞環境に至る生体分子シミュレーションによる分子機能発現機構の解明
- ・細胞でのシグナル伝達系モデリング. 細胞集団における応答不均一性に注目した、細胞分化、癌化、増殖などの機構の解明
- ・細胞反応を基にした組織・臓器・器官などの連成シミュレーション実現により、疾患解明や創薬に繋げる
- 複雑なターゲットタンパク質に作用する医薬品 候補を高精度シミュレーションを用いて発見
- 血栓成長等の現象解明により効率的医療実現
- 超音波シミュレーション等で低侵襲治療による 患者のQOLの向上
- ・次世代シークエンサに よる膨大なDNA情報 の高速処理により、個 人ゲノムを解読し、ガン 治療等に必要な情報を 獲得・解析
- 脳で用いられている情報処理機構、人間の高度な知的情報処理機構を解明

			- VA1011			HIII — V V			
	2012	2013	2014	2015	2016	2017	2018	2019	2020
分子	タンパク質、	生体膜,DN	NAなどのタ	・イナミクス	生体超分	↑子複合体 [・]	や細胞環境	などのダイ	ナミクス
細胞	細胞内シ 伝達反応 モデル構	経路の	分子混雑 環境の導			分化、癌化、 への拡大	増殖など <i>0</i>	の機構の解	明と細
	膵ラ氏島(栓形成	の役割分担	目や血小板	による血	細胞反応な成シミュレ		且織∙臓器∙∜	器官の生化	学血流連
臓器	血流解析シ 模化と並列		ョンの大規	生物のイションへ		モデリング	と、その血液	・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	レー
創薬	MD計算を (数百から		薬品候補 <i>の</i>	探索	膜タンパの適用	パク質を含め	た複雑なタ	マーゲットタン	パク質へ
医療	超音波流	台療シミュし	ノーション	->	Drug D 御を用い		stem (DDS)において走	2音波制 2音波制
がんゲ ノム解 析	2000人規模	莫の解析		ィークエンサ 規模の解析		第4世代 規模の角		サによる20	0000人
	視覚野ネシミュレー	申経回路網 ーション	モデル	< →	人間全朋		ルシミュレー	-	
脳神経	★ カイコガ詳れ ルタイムショ			重動系リア	-	ガモデルで	脳の詳細モの全脳詳細の全脳詳細による からない かいりょう かいいい かいいい かいいい かいいい かいいい かいいい かいいい かい		レーション

2. サイエンスロードマップ「物質科学」(5/9)

分野概要:物質科学は、物性科学、分子科学、材料科学の3つにまたがる広大な学問分野である。さまざまな物質や材料をミクロな視点に立って研究し、基礎研究と応用研究とをつなぐと同時に、現代社会の産業基盤の形成に貢献する。

課題項目&目標:

- •1万~100万原子規模の密度汎関数法により 半導体材料の熱的特性、光学特性、電気特 性などを予測
- •局所的な原子配列からサブミクロンにまたがるマルチスケールシミュレーションにより、エネルギー変換機構を解明、構造材料の構造と特性を高精度に予測・設計
- ・強相関電子系における新概念の数値検証・ 提案、強相関物質材料の物性を高い精度で 予測・解明
- ・数億~数十億の原子を対象とした長距離相 互作用分子動力学、FMOにより、細胞内外の 多様な相互作用の全容を明らかに

社会的ニーズと波及効果:

- 物理学の基礎理論の発展と同時に材料開発 や新デバイス開発を加速
- •高いエネルギー変換効率を持つ太陽電池や燃料電池、熱交換デバイスの実現へ
- •強度や耐久性、耐熱性を併せ持つ材料や軽量高強度の材料の開発へ
- •巨大分子や溶液の特性の理論予測を通じてウイルス機能予測、機能性タンパクの応用へ

				_
		現在	ペタ(5年後)	エクサ(7~15年後)
	第一原理計算(O(N³))		十万原子程度まで。動的計算の需要が 増加。左の計算対象に加えて、分子材料 たんぱくなどと固体材料の界面を含む系。	時代と同程度の規模だがより統計性を
	第一原理計算(O(N))	半導体表面の成長、水中のDNAなど。	半導体や酸化物のナノ構造、固相・液相 界面での構造安定性や触媒反応など。 半導体材料:数十万~100万原子。生体 系:1~数十万原子	同左。原子規模は最大1億程度。100 原子程度の系の統計性を重視した計:
	高精度分子軌道法	100原子系のMP2基底関数極限計算	100原子系のMP2-F12基底関数極限計 算	100原子系のCCSD-F12基底関数極限 算
タンパク質の	フフラグメント分子軌道(FMO)計算	残基数規模は数百程度。HIV、インフル エンザなどの薬剤(基底)状態)、蛍光タン パク質の吸光や発光の波長(励起状態)	残基数規模は千程度(水和、多サンブル)。DNA等との複合系、生活習慣病、新ウィルス、ガンの薬剤(基底状態)、光合成系、非線形光学応答(励起状態)	数千程度の残基数規模(統計サンプル ナノ複合体。分子標的薬や抗体医薬(底状態)、固体・タンパク質界面複合モ リング(基底・励起の両状態)
短	距離力古典分子動力学	粒子数: 1000万~1億個 現象: 滅圧発泡現象の解析。特に単一気 泡生成、成長プロセス	粒子数:10億~1兆個 現象:多重気泡生成、気泡流における気 泡間相互作用解析	粒子数:1兆~100兆個 現象:沸騰流の直接解析。特に種々の 動様式の直接再現や熱交換率予測
長	~数十万原子、~数十ns、PME法:単 をシパク質分子、生体膜パッチ構造の知 時間ダイナミクス、数サンブルの統計		~1000万原子、~サブミリns、FMM:ウイルスとレセプターとの結合の安定性評価、ペシクル全体のダイナミクス、数~数十サンブルの統計	~10億、サブミリ~ミリns、FMM:巨大 イルス、細胞の一部分のダイナミクス、 ~数十サンブルの統計
	電子ダイナミクス法	1辺5nm立方体空間の実時間・実空間電 子ダイナミクス。1万原子系。	1辺十数nm立方体空間の実時間・実空間電子・電磁場ダイナミクス。10万原子系。	1 辺数十nm立方体空間の実時間・実3間電子・電磁場ダイナミクス。100万~200万原子系。
	量子モンテカルロ法	10万スピン系基底状態平衡シミュレー ション、	1000万スピン系基底状態平衡シミュレー ション、	10億スピン系基底状態平衡シミュレー ション、
	厳密対角化法	40サイトスピン系の基底状態波動関数と エネルギー計算	48サイトスピン系の基底状態波動関数と エネルギー計算	54サイトスピン系の基底状態波動関数 エネルギー計算
	化学反応動力学	分子系、分子クラスター系の反応	生体系、溶液系の反応	複雑系(表面、界面)の反応
	量子動力学(経路積分法)	古典力場計算に基づいたシミュレーショ ン	QM/MM計算、FMO計算に基づいたシ ミュレーション	第一原理電子状態計算に基づいたションーション
背層的マルチス ールシミュレー ション	クラスター展開法	二元系合金の相図の計算	三元系合金の相図の計算	相図の計算の自動化、高精度化
	格子動力学	高い対称性を持った結晶系の直接的な 熱伝導計算	一般の結晶の直接的な熱伝導計算	格子欠陥などの拡張結晶系の直接的 熱伝導計算
	強誘電体の分子動力学計算	100nm, 10ns	1 μ m, 1 μ s	10 μ m, 100 μ s

合同作業部会 2012/03/31版

2. サイエンスロードマップ「地球科学」 (6/9)

分野概要: 地震・津波分野では、力学系としての固体地球の包括的理解にもとづき、M9級以上の大規模低頻度現象を含む被 害予測システムを構築する。気象・気候分野では、局所的集中豪雨の予測を目指す気象予報の実用化を目指すとともに、地球 温暖化などの地球環境変化の予測の再解析システムの構築を行う。

課題項目&目標/社会的ニーズと波及効果 (地震津波分野)

- 地震・津波複合被害予測の高精度化/プレート間 固着すべり(列島スケール)のモニタリングに基づく 地殻変動アンサンブル予測
 - 各地域毎の独自の被害想定に使える都市や港湾 単位被害予測システムの実用化・中央防災会議で の被害想定の高度化/長期評価の高度化
- 地設力学モデルによる地震活動物理解明/全球マ ントルダイナミクスでのプレートテクトニクス再現
- 地震切迫度評価/M9地震やカルデラ形成噴火等 の大規模低頻度災害評価·M10地震可能性検討 (気象・気候学分野)
- データ同化の精緻化とシミュレーションモデル高解 像度化(500m-1km)を通じた気象予報の高度化 予測の高精度化による人命と財産の保護地球環境 監視予測システム構築のための地球環境再予測・ 再解析システム構築
 - 自然環境と調和のとれた社会制度の創出
- スケール間相互作用の解明/パラメタリゼーションの 改良
 - 地球環境における複雑現象の理解と、気象予測、 気候変動予測の精緻化

陸域植生モデル. 地球システムモデル

合同作業部会

2. サイエンスロードマップ「ものづくり(連続体系)」(7/9)

分野概要:ものづくり分野における**設計の革新**として「数値シミュレーションによる設計」を実現する。大規模数値シミュレーションを用いた高精度解析による**試験の代替、最適設計、設計の準自動化**による**開発の効率化、製品の革新的高性能化**を実現する。

課題項目&目標:

- 熱流体解析では機械工学の多くの製品の設計開発で微小な渦を直接計算するLES解析 (準第一原理的解析)の適用を実現する。
- 構造解析では部品単位の解析からそれらを アセンブリした構造物全体のまるごと解析を 実現する。
- ITER(国際熱核融合実験炉)規模の核燃焼 プラズマに対する第一原理乱流計算を実現 する。
- 大規模な解析データから科学的な知見を発見するために必要となる可視化等のデータ分析フレームワークを実現する。

社会的ニーズと波及効果:

- 試験の代替による製品の高信頼化、コスト削減、また設計探査による開発の効率化、革新的製品の実現に貢献する。
- 原子カプラントの厳密かつ高精度な安全性、 健全性評価に貢献する。
- 低炭素社会の実現、我が国の新たなエネルギー戦略・産業の発展に繋がる核融合エネルギーの実現に貢献する。
- 大規模計算環境が生み出すデータの可視化 やデータ分析はHPCを支える重要な基盤技 術である。

	2012	2013	2014	2015	2016	2017	2018	2019	2020
世界最速	10PF		I00PF			IEF			I OEF
製品開発に利用	10-100TF		0.1-1PF			I-IOPF			10-100PF
+1 11	Re数10 ⁶ の製	品に対する	LESの実証研究				Re数10 ⁷	の製品に対	▼ するLESの実証研究
熱流体			数百億格子規模	のLES計算		、ターボ機械、小型			▼
構造	十担措牌	生物の士で	ごと解析技術の	H 2%		本効果の取込みに			
117.2	入 祝铁博	旦初のよる		用光	744 NIL1	中 <i>洲</i> 米•万4000	-5.05.01	— С пт фш/ут 1/	
		核燃焼	のない超高温プラ	ズマ実験に	こ対する実)m ³), JT-(60SA (120m ²	3), 他
プラズマ				核燃炉	尭プラズマ	の性能予測研究		Γ	TER(800m³)の解析
				1				核融合原	型炉設計への応用
可視化	領域毎のデー タ構造、手法等 の調査		レームワークの 本機能の提供	In situ ii 法の研究 トタイプ[ミとプロ	エクサスケール 機能と性能評値		継続的なザーサポー	機能開発とユーート

自動車まわりの詳細気流解析 原子カプラントまるごと解析 核融合炉心プラズマ性能評価

2. サイエンスロードマップ「宇宙・原子核・素粒子」(8/9)

課題項目&目標/社会的ニーズと波及

宇宙を支配する究極の法則の解明

● 宇宙の探求

宇宙開闢以降の137億年にわたる宇宙 史、極限状況での新たな物理、惑星と宇宙 生物学、宇宙時代に向けた宇宙環境学の 探求と開拓を行う。

人類の自然観の醸成と知的財産に資す る。新たな科学技術の基盤形成。宇宙にお ける生命誕生の意味付け。衛星通信と宇宙 天気予報。

● 複数の階層にわたる現象の解明

ミクロな物質階層の各階層の基礎物理 を連携するシミュレーション。究極の基礎法 則、新しい階層の発見。新しい現象の予言 や発見。素粒子-原子核-軽元素-重元素間 基礎法則の確立。

自然界の各階層の物理法則の基盤。自 然界における新しい物理階層と究極法則の 発見。

● 極限状況下での物質形態の解明

実験で再現不可能な状況下での物質の 振る舞いをシミュレーションで解明する。宇 宙初期での物質の振る舞いや、超新星爆 発での物質の振る舞い等の解明に必要な クォーク物質、核物質の極限状況下での基 礎法則を解明する。

宇宙の成り立ちや天体現象に必要な基礎 物理。

10億N体計算による地球質量ダー

初代銀河形成と宇宙再電離の クマター・ハローのシミュレーション 3千万体輻射流体シミュレーション

(例)太陽活動 と宇宙環境 素粒子物理 【核物理の基 礎】→原子核 物理【核融合】 →宇宙物理 【恒星活動、宇 宙環境】

宇宙の探求

クエンチ近似QCDによる2体核力 ポテンシャルの計算(青木慎也)

原子核殻模型計算における対 角化次元の過去・現在・未来

(例)CP非保存の物理を通した標準模 型を超える物理の探索。

格子QCDによるB中間子物理計算 を含む(緑、黄、橙の半円)

クォーク・グルーオン・プラズマ

重いクォークの物理から さらにミクロな物理階層 や究極理論の発見

初期宇宙

通常の原子核

温度 (K)

2兆

宇宙を支配する 究極の法則の解明

ヘリウム原子核

クォークグルーオンプラズマ状態 方程式 (クエンチ近似格子QCD シミュレーション 163格子.CP-PACS'01)

極限状況下での 物質形態の解明

(例)宇宙の元素合成(R過程) 素粒子物理【量子色力学(QC D) 】→原子核物理【原子核反応】 →宇宙物理【物質の起源】

Н				Big	Ban	9											ŀ
Li	Be			Sup						Stars		В	C	N	0	F	ı
Na	Mg			Lar	ge S	tars		Co	smic	Ray	rs	AI	Si	Р	S	CI	ļ
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	ı
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Co	In	Sn	Sb	Te	1	,
Cs	Ba	١.	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	F
Fr Ra																	
_	_	N	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	L
		- 1	Ac	Th	Pa	11	Nn	PIII	Am	Cm	Bk	Cf	Es	Fm	Md	No	L

重力崩壊型超新星爆発の3次 元磁気流体シミュレーション (64³×8段多層格子)

2012/03/31版

合同作業部会

密度 (kg/cm³)

原子核物質相

図の想像図

(東大物理

Webpage

2. サイエンスロードマップ「アプリケーションからの要求の概要」(9/9)

ネットワークレイテンシ

タンパクMD	1時間ステップがマイクロ秒程度。同期等がこれより十分短い必要あり
格子QCD	大域縮約をマイクロ秒程度
他の多く	もう少し余裕あり

ネットワークバンド幅

格子QCD	隣接ノードとの通信速度が B/F で 0.01 程度
大域FFT	バイセクションバンド幅で性能が決まる。普通の構成では効率 1% 以下
人以FFI	ハードウェアだけでなく、アルゴリズム面からの検討も重要

メモリ容量・バンド幅

- 1	<u> </u>	
	地震波動解析 圧縮性流体計算 有限要素解析の 防災・工学応用	100ペタバイト前後のメモリ、高いメモリバンド幅(B/F 0.5 以上)が必要
- 1	タンパクMD 格子QCD	メモリ必要量は極めて小さい。大きなバンド幅(B/F 1以上) が必要
	大規模粒子系計算 量子化学計算	バンド幅、メモリ量とも比較的要求小さい

ストレージ容量 速度

DNA	シーケンサデータ処理 50EB, 500TB/s 程度が必要
他の多く	1桁程度下の要求

多様な要求

- ・複数アーキテクチャも視 野にいれる必要あり?
- ・メモリ・ネットワークバン ド幅については新しいア ルゴリズムの研究開発も 重要

12 合同作業部会 2012/03/31版

3.ロードマップ達成に向けて(アーキテクチャ動向)

- ▶ ターゲットサイエンスの課題に高度高性能計算を実現するスーパーコンピュータは必須
- ▶ 日本は継続的に世界水準のスーパーコンピュータを研究開発・運用してきた
 - ▶ハードウェア: 専用LSIを開発した数値風洞、CP-PACS、地球シミュレータ、京やコモディティHWを活用したTSUBAME、PACS-CS、T2Kなど
 - →ソフトウェア: 並列実行基盤SCore、ライブラリFFTE、フレームワークHPC-Middleware、並列言語XcalableMPなど
 - ▶2011年に稼動した「京」は運用の難しい約10万プロセッサのシステムを安定動作させ、電力性能も世界水準(829MFlops/W)へ引上げた(図1)
- 各種アプリを実行するのに適すると思われる計算機構成を4つ検討し、適切、かつ、継続的な技術開発で実現される技術トレンドの予測から、各構成で2018年に実現すると推測されるシステム性能諸元を予想した(表1,表2,表3)
 - ▶ 電力20MW、設置面積2000m2の制約での数値である

表 I. プロセッサ・メモリ: 最大(20MW)システム性能の予想値

	総演算性能 PetaFLOPS	総メモリ帯域 PetaByte/s	総メモリ容量 PetaByte
汎用(従来型)	200~400	20~40	20~40
容量•帯域重視	50~100	50~100	50~100
メモリ容量削減	500~1000	250~500	0.1~0.2
演算重視	1000~2000	5~10	5~10

表2. ネットワークのレイテンシと帯域の性能の予想値

	Injection	P-to-P	Bisection	Min 遅延	Max 遅延
High-radix (Dragonfly)	32 GB/s	32 GB/s	2.0 PB/s	200 ns	1000 ns
Low-radix (4D Torus)	128 GB/s	16 GB/s	0.13 PB/s	100 ns	5000 ns

表3.ストレージの容量と帯域の予想

総容量	総帯域
約I EB	約10TB/s
メモリ(約10PB) の100倍の容量	メモリを1000秒で ローカルデバイス に退避できる帯域

4. ロードマップ達成に向けて(アプリ要求性能)

- ▶サイエンスロードマップ基づいて2018年ごろのアプリケーションに必要な性能を調査
- ▶ 演算性能要求・総メモリ容量・演算性能あたりメモリ帯域・ネットワーク要求を調査 要求性能の解析結果
- ▶ 演算性能・メモリ容量・メモリ帯域に関する要求
 - ▶ 演算性能は800PFLOPS~2500PFLOPS
 - ▶ メモリ容量は10TB~500PBの幅があり、帯域も1000倍程度の差がある
 - ▶特徴的なもの
 - ▶ メモリ容量が少なくても良い: MD・気候・宇宙物理・素粒子物理
 - ▶ メモリ帯域が少なくても良い: 量子化学・原子核物理
 - ▶ メモリ容量・帯域が両方必要: 構造解析・非圧縮流体解析など
- ▶ ネットワークに対する要求 ※トポロジに依存する部分もあり継続検討が必要
 - ▶レイテンシ・帯域とも強い要求はないが、性能必要なアプリもあった
 - ▶ タンパク質の構造解析などでは lus以下での通信が必要な見込み
 - ▶ 物質化学分野ではBisection帯域が必要なアプリもある
 - ▶ lus以下での高速な同期・放送・縮約などが要求されるアプリケーションもあり、 専用のハードウェアによるサポートが必要になる可能性もある
- ストレージに対する要求
 - ▶要求容量に対して他の課題に比べて大きな課題はない
 - ▶ 性能要求に対しては今後のストレージデバイス技術に応じて構成方法を検討
- ▶ 要求性能をトレンドから予想される性能にマッピングした(図I)
 - ▶ サイエンスロードマップの達成には、前スライドの4分類とも、技術トレンドから予想される性能よりも高い数値が要求されている
- ▶ ロードマップ達成のためにアプリケーションの特性をさらに詳細化・定量化し、将来のスーパーコンピュータの設計目標を提示していくことが必要である

図1. 要求性能と予測性能の相関 上:各アプリの要求するB/F値とメモリ容量 下:各分類に対する要求性能値と予想性能

14 合同作業部会 2012/03/31版

5. アーキテクチャ技術開発目標

- ▶トレンドに基づく技術進展ではサイエンスロードマップ実現は困難
 - 更に高性能な計算機が必要で、アプリ・ハード・ソフトのco-designが必要
- ▶4分類で改善するべき点を議論して問題点·改善点を整理
 - 共通の問題・改善点
 - 電力・設置面積・コストで性能が律速されていて改善必要(特に電力)
 - ▶各分類に関する改善点・問題点
 - <u>汎用(従来型)</u>:PCクラスタや「京」と似たCPUを中心とした計算機であるため、コモディティと比較して優位な点を明確化する必要がある
 - <u>容量・帯域重視型</u>:現状では、汎用型と比較して電力・コスト的優位がない。実 アプリケーションでの電力あたりの性能の改善を明確にする必要がある
 - <u>演算重視型・メモリ容量削減型(帯域・演算重視):</u>メモリの制約から全問題に対して適用することは現実的でない。(電力的なメリットを生かしたまま、アプリと協力して、適用範囲を広げる検討が必要)
- ※重要サイエンス分野で大きな成果を得るため、この分類を超えた研究開発が必要である
- ・上記問題点・改善点を克服するための課題を具体化(図2)
 - ・共通の課題: 各要素の低電力化・電力制御・部品点数増加に対する信頼性の担保
 - ・汎用:メモリの階層化、ヘテロ化したシステム管理
 - ・容量・帯域: メモリシステムの電力を下げる方式(3D積層LSI・スマートメモリ)
 - ・アクセラレータ: ソフトウェア・アプリとの協調で問題の適用範囲の拡大
 - ・容量削減:オンチップネットワーク・省メモリアルゴリズム・超大規模並列
- ・さらに、2018年以降のサイエンス・ロードマップも睨み、計算科学・計算機科学の協調による継続的な課題抽出・研究・技術開発が必要

図1.ロードマップへ向けた研究開発の成果イメージ

図2. 各分類における性能向上に向けた課題 (配置は各種分類との相関の強さを表す)

15 合同作業部会 2012/03/31版

5. アーキテクチャ検討例と計算機科学の研究課題(1/2)

- ▶課題の詳細化・具体化のために2018年に目標とする べき計算機の構成を、特に汎用型の構成を議論
 - ・プロセッサ・ノード・システム構成で階層化(図1)
 - 各階層であり得る構成を網羅し、それぞれで発生する 問題を分類・整理

図1:システム階層

- ▶各階層を検討するは他の計算機構成でも必須で、 この検討例では以下の点を検討している
 - 主要部品の電力と性能のバランス
 - 各構成をとることによる定性的な問題の提示
 - プログラミングモデルの変更
 - 一部機能の専用化
- ▶また、本検討で得られた検討結果は他の計算機分 類でも活用できる場合がある
 - 2018年の半導体の性能(演算器性能・周波数)
 - メモリデバイスの消費電力(容量・帯域)
 - ネットワークのレイテンシ・バンド幅

プロセッサ構成

- 2種類のコアと、その組み合わせを検討
- レイテンシコア(シングルスレッド性能特化)
 - 並列性が乏しいプログラムが高速動作するように設計
 - キャッシュ・プリフェッチ・分岐予測・深いパイプライン
- スループットコア(電力あたりの演算性能特化)
 - 並列性があるプログラムが高速動作するように設計
 - 浅いパイプライン・マルチスレッド・インオーダー実行
- ヘテロ構成
 - レイテンシコア・スループットコアを両方採用することで適 応可能範囲を拡大
 - システム自体は複雑になりアプリ開発が難しくなる

スループットコア

ハードウェアの複雑さを隠蔽する手段が必要となる

レイテンシコア

4GHz / 64GF

8命令同時実行

16 stages

Reg. L1(32KB)

ヘテロ構成

1GHz / 32GF

8 stages 8スレッド実行

L2 L2

レイテンシコア 16個 スループット 256個 を同一チップに集積

	構成	コア数	演算性能 (TFlops)	周波数
ホモ	レイテンシコアのみ	32	2.0	4GHz
構成	スループットコアのみ	512	16.0	1GHz
ヘテロ 構成	レイテンシコア + スループットコア	16L+ 256T	9.0	4GHz/ 1GHz

※Iプロセッサが50W-200Wの電力を消費するプロセッサを想定している

5. アーキテクチャ検討例と計算機科学の研究課題(2/2)

ノード構成(プロセッサ・メモリ接続)

構成1:メモリ・プロセッサー体型

構成2: 1プロセッサ・複数メモリ型

構成3: 複数プロセッサ・複数メモリ型

性能諸元	メモリ容量 (GB)	メモリ帯域 (GB/s)
構成1	8	200
構成2	128	1000
構成3	1024	8000

※3次元積層技術の利用がない場合に は帯域が1/3程度になると予想される

システム構成(プロセッサとメモリの接続)

性能諸元	P2P	Injextion	Bisection	Min遅延	Max遅延
High-Radix(Dragonfly)	32GB/s	32GB/s	2.0PB/s	200ns	1000ns
Low-Radix (4D Torus)	16GB/s	128GB/s	0.13PB/s	100ns	5000ns

※集約・放送のための 専用ネットワークの機能 の追加などの検討 (極超並列への課題)

- ▶本検討の知見・各作業部会で の議論から将来のスパコンの問 題を分類し、以下の4分野で研究 課題を整理した
 - ▶アーキテクチャ・コンパイラ
 - ▶ システムソフトウェア
 - →プログラミングモデル・ 言語・フレームワーク
 - ▶数値計算ライブラリ
- ▶各分野で2018年へ向けた 技術ロードマップを作成した

計算機科学 研究分野

アーキテクチャ・コンパイラ

プログラミングモデル・言語

システムソフトウェア

数値計算ライブラリ

技術開発ロードマップ:アーキテクチャ

目標:各種アプリケーションの多様な性能要件へのアーキテクチャ適合性を担保しつつ、電力や設置面積の制約(20~30MW、 2000m²) を満たし、既存のインフラストラクチャへ配置可能な次世代HPCシステムの実現

課題:

- •電力効率に優れたスループットコア導入(ヘテロ化)
- •計算モデルに適した記憶階層と高機能メモリ
- •次世代メモリデバイス/システムの活用
 - •三次元積層DRAM、NVRAM
- •超大規模並列化への対処
 - 通信遅延削減、トポロジ検討、集合通信支援
- ・低電力化と電力あたり性能の向上
 - 新デバイス活用、スループットコア利用技術
 - ・システムレベル電力制御技術の確立
- •耐故障へのアーキテクチャ支援
- •co-designによるアーキテクチャ設計

波及効果:

- 各種技術・知見の蓄積による産業競争力の強化
- コンシューマ機器への新技術の適用促進

FS&要素技術概要:

- 個別課題精査
- 要素技術の調査・先行開発
- アプリの性能要件に適合するアーキテクチャ探索 (モデル化、シミュレーション)
- ・研究開発体制&計画、システム設置計画
- 開発・製造の費用見積り
- 産業界への波及・国際競争力強化策の検討

諸課題 (電力/大規模並列/ヘテロ・階層化/信頼性・生産性低下) を解決するアーキテクチャ

合同作業部会 2012/03/31版 18

6. 技術開発ロードマップ:システムソフトウェア

目標:次世代HPCアーキテクチャ群に対して、コモディティソフトウェア資産の移植性を有しつつ、スケーラビリティ、 低消費電力、耐故障機能を提供するシステムソフトウェアの実現

課題:

アーキテクチャの変化→既存ソフトはスケールしない

- ヘテロジニアスアーキテクチャ
- O(100K)~O(1M)ノード超大規模並列システム
- ・ 電力による性能制約
- コモディティソフトウェアに対する互換性確保
- → システムソフトウェアが両者をつなぐ必要がある
- ・ 演算コア向け軽量OS
- 電力・メモリ階層アウェアOS・ランタイム
- 低遅延非同期通信ライブラリ
- 超規模並列ファイルシステム
- タスクスケジューリング・データ配置
- 耐故障機構
- ユーザAPIの国際標準化推進

波及効果:

小・中規模システムとの基盤・コード 共通化による生産性向上

FS&要素技術概要:

- 個別課題精査
- 演算コア用OS先行開発および国際標準化推進
- 超規模並列ファイルシステム検討
- ベンチマーク策定(性能・ユーザビリティ)
- 研究開発体制&計画、継続的保守体制
- 費用見積り

6. 技術開発ロードマップ:プログラミングモデル・言語・フレームワーク

目標:ハードウェア、システムソフトウェアおよびアプリケーションとの協調の下に高性能と高生産性を両立し、さらにはエクサスケール時代に深刻化する電力、耐障害性等の問題解決に貢献するプログラミング言語・モデル・フレームワークの構築

課題:エクサ時代に求められる要素技術

エクサ時代の問題解決にはアプリの協力が不可欠

- •ヘテロジニアスアーキテクチャ対応:可搬性を保ちつつ 異種プロセッサを利用
- •大規模並列性対応:システム中の異なる階層の並列性 を統一的に利用
- •複雑化するメモリアーキテクチャ対応:特徴の異なる複数のメモリ空間を適切に使い分け
- •電力制御:電力制約下での性能最大化
- •耐障害機能:アプリケーション側から耐故障対応への積極的に関与
- ・生産性:デバッグおよび性能チューニング支援 各要素技術を統一的に利用するための環境の構築
- 1.既存アプリとの親和性重視のアプローチ
- 2.ドメイン特化による高水準化のアプローチ

波及効果:

ソフトウェア開発の生産性を高め、エクサシステムの性能をフル活用できるアプリケーションの開発を促進

FS&要素技術概要:

- 個別課題精査
- 対象ドメインの検討・選定
- 移行作業における定石の体系化
- ベンチマーク策定
- 研究開発体制&計画
- 費用見積り

6. 技術開発ロードマップ:数値計算ライブラリ

目標: 計算科学ソフトウェア構築に必要な共通機能を定め、高性能実装を提供し、ソフトウェアの生産性・性能を高める。 複数の異なる計算機アーキテクチャに対し、チューニングされたサブルーチンを提供し、高い処理性能を実現する。

課題:10億コア規模の並列性を目指した

- ライブラリインターフェース(LI):移行コストを軽減、アーキ依存性を吸収
- **非均質プロセッサ対応 (HP):** 高演算効率のアクセラレータを最大限利用
- 通信量およびメモリアクセス回数の削減 (RCM):データ移動オーバヘッドの最小化
- **演算精度 (CA)**: 倍精度では不足の事態も
- 低電力化 (LP):電力を制御可能なライブラリ
- 耐故障性 (FT):ライブラリでFTを補助
- フレームワーク(FW):主要領域のアプリ開発共通基盤により、開発コストを低減

波及効果:シミュレーションソフトウェアに対する高性能化・高生産性化・低保守コスト化。コンパイラ等の基盤ソフトウェアの機能向上。WSからスパコンまでシームレスな開発基盤を提供、計算科学の裾野を飛躍的に広げる。

FS&要素技術概要:

<要素技術>高精度演算・精度保証演算,数値計算ライブラリのインタフェース,アプリGとのコデザイン・ミドルウェア,ヘテロジニアス環境最適化,電力最適化,耐故障性対応

<FS 概要>アプリ・ハード分析, 要素技術方式・ 実装手法検討, インタフェース標準化・コミュニティ形 成戦略, 研究開発および保守体制検討, 費用見積り

6. 鳥瞰ロードマップ

主な進行中競争的資金プロジェクト

	2011	2012	2013	2014	2015	2016	関連分野
ルビーによる高生産な超並列・超分散計算ソフトウェア基盤(基盤S)							プログラミング
汎用自動チューニング機構を実現するためのソフトウェア基盤の研究(基盤A)							数値ライブラリ
革新的電源制御による次世代超低電力高性能システムLSIの研究(CREST)							アーキテクチャ、システムソフトウェア
ULP-HPC: 次世代テクノロジのモデル化・最適化による超低消費電力ハイパフォーマンスコンピューティング(CREST)		 →					アーキテクチャ、システムソフトウェア
ディペンダブルVLSIシステムの基盤技術(CREST)					\longrightarrow		デバイス, アーキテクチャ
10億並列・エクサスケールスーパーコンピュータの耐障害性基盤(科研基盤S)					→		システムソフトウェア
高性能・高生産性アプリケーションフレームワークによるポストペタスケール高性能計算の 実現(CREST)					>		プログラミング
自動チューニング機構を有するアプリケーション開発・実行環境(CREST)					\longrightarrow		数値ライブラリ
ポストペタスケールデータインテンシブサイエンスのためのシステムソフトウェア(CREST)							システムソフトウェア、プログラミング
メニーコア混在型並列計算機用基盤ソフトウェア(CREST)							システムソフトウェア
ポストペタスケールに対応した階層モデルによる超並列固有値解析エンジンの開発 (CREST)	-				>		数値ライブラリ
ポストペタスケールシステムにおける超大規模グラフ最適化基盤(CREST)						>	システムソフトウェア
省メモリ技術と動的最適化技術によるスケーラブル通信ライブラリの開発(CREST)							システムソフトウェア
ポストペタスケール時代のスーパーコンピューティング向けソフトウェア開発環境							プログラミング
進化的アプローチによる超並列複合システム向け開発環境の創出(CREST)						\rightarrow	プログラミング、数値ライブラリ
ポストペタスケールシミュレーションのための階層分割型数値解法ライブラリ開発						\longrightarrow	▶ 数値ライブラリ
シームレス高生産・高性能プログラミング環境(eサイエンス)							システムソフトウェア、プログラミング、 数値ライブラリ
研究コミュニティ形成のための資源連携技術に関する研究(eサイエンス)	→						システムソフトウェア
ポストペタスケールコンピューティングのためのフレームワークとプログラミング(JST-ANR FP3C)							システムソフトウェア、プログラミング、 数値ライブラリ
ECS: Enabling Climate Simulation at Extreme Scale(G8)							システムソフトウェア、プログラミング
NuFuSE: Nuclear Fusion Simulation for Exascale							プログラミング
低消費電力メニーコア用アーキテクチャとコンパイラ技術	311 212 85						アーキテクチャ、プログラミング

7. 今後の推進体制に求められる要件

- 社会・科学的課題解決のために数値計算ライブラリからアーキテクチャをco-designできる継続的体制かつ国民に対するアウトリーチ活動が可能となっていること
- ▶ Feasibility Studyとして求められる体制 & 研究内容
 - ▶ 2018年前後の運用開始実現性を有する体制(製造技術の裏付け等)
 - 採択課題間体制
 - アプリケーションの特徴抽出などの共通項
 - サイエンスロードマップの観点から、アーキテクチャ検討グループ群には属さない中立的立場から複数アーキテクチャの性能評価を実施する体制も検討すべきという意見もあった
 - 社会的要請とサイエンスロードマップの精査および目標性能の精査
 - アーキテクチャに反映させるベンチマークセット制定
 - アーキテクチャ概念設計・評価・検証
 - ハードウェア(数値計算ライブラリからアーキテクチャまで)の課題精査
 - ▶ 要素技術の一部プロトタイプ開発
 - ハードウェア(数値計算ライブラリからアーキテクチャ)
 - 既存競争的資金で行われている研究開発と重複しないこと
 - 開発計画および開発予算。購入設置予算、運用経費見積もり

ハードウェア執筆者・協力者リスト

- 全体取りまとめ: 石川 裕(東京大学大学院情報理工学系研究科 教授)
- アーキテクチャ
 - ▶ 近藤 正章 (電気通信大学大学院情報システム学研究科 准教授)
 - 塙 敏博(筑波大学計算科学研究センター 准教授)
 - ▶ 佐野 健太郎 (東北大学大学院情報科学研究科 准教授)
 - ▶ 鯉渕 道紘 (国立情報学研究所アーキテクチャ科学研究系 准教授)
 - ▶ 佐藤 幸紀(北陸先端科学技術大学院大学情報社会基盤研究センター 助教)
 - ▶ 石井 康雄 (NEC)
 - ▶ 安島 雄一郎(富士通)
 - 井上 弘士(九州大学大学院システム情報科学研究院 准教授)
 - *松岡 聡 (東京工業大学学術国際情報センター 教授)
 - *平木 敬(東京大学大学院情報理工学系研究科 教授)
 - *中村 宏(東京大学大学院情報理工学系研究科 教授)
- システムソフトウェア
 - 野村 哲弘(東京工業大学学術国際情報センター 産学官連携研究員)
 - 清水 正明(日立製作所)
 - ▶ 高野了成(産業技術総合研究所情報技術研究部門 研究員)
 - ▶ 宇野 俊司(富士通)
 - ▶ 松葉 浩也(日立製作所)
 - ▶ 今田 俊寛(理化学研究所計算科学研究機構 リサーチアソシエイト)
 - 南里 豪志 (九州大学情報基盤研究開発センター 准教授)
 - ▶ 建部 修見(筑波大学計算科学研究センター 准教授)
 - ▶ 佐藤 仁(東京工業大学学術国際情報センター 特任助教)
 - 安井隆(日立製作所)
 - ▶ 大野 善之 (理化学研究所計算科学研究機構リサーチアソシエイト)
 - ▶ 中田 秀基(産業技術総合研究所情報技術研究部門 研究員)
 - ▶ 竹房 あつ子(産業技術総合研究所情報技術研究部門 研究員)
 - 遠藤 敏夫 (東京工業大学学術国際情報センター特任准教授)
 - ▶ 鴨志田 良和(東京大学情報基盤センター 特任助教)
 - ▶ 滝澤 真一朗 (東京工業大学学術国際情報センター特任助教)

- 事本 英之 (東京大学情報基盤センター 助教)
- *石川 裕(東京大学大学院情報理工学系研究科 教授)
- * 堀 敦史(理化学研究所計算科学研究機構)
- *並木美太郎(東京農工大学工学部 教授)
- *住元 真司(富士通)

プログラミング

- 丸山 直也(東京工業大学大学学術国際情報センター 助教)
- ▶ 滝沢 寛之(東北大学大学院情報科学研究科 准教授)
- ▶ 田浦 健次朗(東京大学大学院情報理工学系研究科 准教授)
- 平石 拓 (京都大学学術情報メディアセンター 助教)
- 窪田 昌史(広島市立大学大学院 情報科学研究科 助教)
- ▶ 八杉 昌宏 (京都大学大学院情報学研究科 准教授)
- 中尾 昌広 (筑波大学計算科学研究センター 研究員)
- *中島浩(京都大学学術情報メディアセンター教授)
- *佐藤 三久(筑波大学計算科学研究センター 教授)
- *米澤 明憲(理化学研究所計算科学研究機構 副機構長)

数値計算ライブラリ:

- 片桐 孝洋(東京大学情報基盤センター 准教授)
- 須田 礼仁(東京大学大学院情報理工学系研究科 教授)
- 高橋 大介 (筑波大学計算科学研究センター 准教授)
- 岩下 武史(京都大学学術情報メディアセンター 准教授)
- 小野 謙二(東京大学生産技術研究所 特任研究員)
- 伊東聰(東京大学情報基盤センター 特任助教)
- *中島 研吾(東京大学情報基盤センター 教授)
- *関口智嗣(産業総合研究所情報技術研究部門研究部門長)
- *平尾公彦(理化学研究所計算科学研究機構機構長)
- *宇川 彰 (筑波大学大学院数理物質科学研究科 教授)

*戦略的高性能計算システム開発 (SDHPC) アドバイザリ

アプリケーション執筆者・協力者リスト(1/3)

全体取りまとめ

- 牧野 淳一郎(東京工業大学 教授)
- ▶ 富田 浩文 (理化学研究所・計算科学研究機構 チームリーダー)

生命科学分野

- 執筆者
 - 伊井 仁志 (大阪大学 大学院基礎工学研究科 助教)
 - ▶ 五十嵐 潤(理化学研究所 次世代計算科学研究開発プログラム 特別研究 員)
 - 池口 満徳 (横浜市立大学 大学院生命ナノシステム科学研究科 准教授)
 - 太田 元規(名古屋大学 大学院情報科学研究科 教授)
 - 沖田 浩平(日本大学 生産工学部 准教授)
 - 加沢 知毅(東京大学 先端科学技術研究センター 特任研究員)
 - ▶ 杉田 有治 (理化学研究所 基幹研究所 准主任研究員)
 - 杉山 和靖(東京大学 大学院工学系研究科 特任准教授)
 - 須永泰弘(理化学研究所次世代計算科学研究開発プログラム研究員)
 - ▶ 高田 彰二(京都大学 大学院理学研究科 准教授)
 - ▶ 高橋 恒一(理化学研究所 生命システム研究センター チームリーダー)
 - ▶ 玉田 嘉紀(東京大学 大学院情報理工学系研究科 助教)
 - 林 重彦(京都大学 大学院理学研究科 准教授)
 - ▶ 山下 雄史 (東京大学 先端科学技術研究センター 特任准教授)
 - ▶ 李秀栄(理化学研究所 基幹研究所 協力研究員)

執筆協力者

- 秋山泰(東京工業大学大学院情報理工学研究科教授)
- ▶ 大野 洋介 (理化学研究所 次世代計算科学研究開発プログラム 上級研究員)
- ▶ 泰地 真弘人(理化学研究所 計算科学研究機構 チームリーダー)
- ▶ 長崎 正朗 (東京大学 医科学研究所 ヒトゲノム解析センター 准教授)
- ▶ 野田 茂穂 (理化学研究所 情報基盤センター 技師)

物質科学分野

執筆者

- ▶ 志賀基之((独)日本原子力研究開発機構 研究副主幹)
- ▶ 藤堂眞治(東京大学物性研究所 特任教授)
- 西松 毅 (東北大学金属材料研究所 助教)
- ▶ 信定克幸(自然科学研究機構分子科学研究所 准教授)
- ▶ 山崎隆浩((株)富士通研究所 主任研究員)

執筆協力者

- 石村和也(神戸大学大学院システム情報学研究科 助教)
- 岩田潤一(東京大学大学院工学系研究科 特任講師)
- 世古敦人(京都大学大学院工学研究科 助教)
- 常行真司(東京大学大学院理学系研究科教授)
- 東後篤史(京都大学大学院工学研究科 博士研究員)
- 中野博生(兵庫県立大学大学院物質理学研究科 助教)
- 宮崎剛(物質·材料研究機構主幹研究員)
- ▶ 宮本良之(産業技術総合研究所 研究グループ長)
- 望月祐志(立教大学理学部 教授)
- 吉井範行(名古屋大学大学院工学研究科 特任准教授)
- 吉本芳英(鳥取大学大学院工学研究科 准教授)
- ▶ 渡辺宙志(東京大学物性研究所 助教)

アプリケーション執筆者・協力者リスト(2/3)

地球科学分野

- 執筆者
 - 荒川 降 ((財)高度情報科学技術研究機構 研究員)
 - 河宮 未知生 ((独)海洋研究開発機構 チームリーダー)
 - ▶ 堀 高峰 ((独)海洋研究開発機構 地震津波・防災研究プロジェクト サブリーダー)
- 執筆協力者
 - ▶ 木本 昌秀 (東京大学大気海洋研究所 教授)
 - 井上 孝洋 ((財)高度情報科学技術研究機構 研究員)
 - 大越智幸司((独)海洋研究開発機構研究員)
 - 斉藤 和雄 (気象庁気象研究所 予報研究部第二研究室 室長)
 - 本田 有機 (気象庁数値予報課 予報官)
 - 荒波恒平(気象庁数値予報課 技術専門官)
 - 有川太郎((独)港湾空港技術研究所海洋研究領域 上席研究官)
 - ▶ 古市幹人 ((独)海洋研究開発機構 地球内部ダイナミクス領域 研究員)
 - ▶ 古村孝志 (東京大学 情報学環 総合防災情報研究センター 教授)
 - ▶ 堀 宗朗 (東京大学 地震研究所 教授)
 - ▶ 前田拓人 (東京大学 情報学環 総合防災情報研究センター 特任助教)
- ものづくり分野
 - 執筆者
 - 加藤 千幸 (東京大学 生産技術研究所 教授 革新的シミュレーション 研究センター長)
 - 小野 謙二 (東京大学 生産技術研究所 特任研究員)
 - 河合 浩志 (東京大学 工学系研究科 特任研究員)
 - 井戸村泰宏((独)日本原子力研究開発機構核融合研究開発部門研究副主幹)
 - ▶ 高木 亮治 ((独)宇宙航空研究開発機構 宇宙科学研究所 准教授)
 - 執筆協力者
 - ▶ 坪倉 誠 (北海道大学大学院 工学研究院 准教授)

宇宙・素粒子・原子核分野

- 執筆者
 - 石川 健一 (広島大学 大学院理学研究科 准教授)
 - 梅村 雅之 (筑波大学 計算科学研究センター 教授)
 - 藏増 嘉伸 (筑波大学 数理物質系 准教授, 理化学研究所・計算科学研究機構 チームリーダー)
 - 清水 則孝 (東京大学 原子核科学研究センター 特任准教授)
 - 中務 孝 (理化学研究所 仁科加速器研究センター 准主任研究員)
 - 牧野 淳一郎 (東京工業大学 大学院理工学研究科理学研究流動機構 教授)
- 執筆協力者
 - (宇宙分野)
 - ▶ 石山 智明 (筑波大学 計算科学研究センター 研究員)
 - ▶ 岡本崇 (筑波大学 計算科学研究センター 准教授)
 - ▶ 草野完也 (名古屋大学 太陽地球環境研究所 教授)
 - 柴田大 (京都大学 大学院理学研究科 教授)
 - 庄司光男 (筑波大学 計算科学研究センター 助教)
 - 関口雄一郎 (京都大学 基礎物理学研究所 研究員)
 - 滝脇知也 (国立天文台 天文シミュレーションプロジェクト 研究員)
 - ▶ 富阪幸治 (国立天文台 理論研究部 教授)
 - ▶ 中本泰史 (東京工業大学 大学院理工学研究科 准教授)
 - 星野真弘 (東京大学 大学院理学系研究科 教授)
 - 長谷川賢二 (筑波大学 計算科学研究センター 研究員)
 - 松元亮治 (千葉大学 大学院理学研究科 教授)
 - 松本洋介 (千葉大学 大学院理学研究科 特任助教)
 - 三上隼人 (千葉大学 大学院理学研究科 研究員)
 - ▶ 横山央明 (東京大学 大学院理学系研究科 准教授)
 - ▶ 吉川耕司 (筑波大学 計算科学研究センター 講師)
 - 吉田直紀 (東京大学 数物連携宇宙研究機構 特任准教授)

アプリケーション執筆者・協力者リスト(3/3)

▶ 宇宙·素粒子·原子核分野

- 執筆協力者
 -) (原子核分野)
 - ▶ 青山茂義(新潟大学 情報基盤センター 准教授)
 - ▶ 浅川正之(大阪大学 大学院理学研究科 教授)
 - ▶ 阿部喬(東京大学 原子核科学研究センター 特任助教)
 - ▶ 延與佳子(京都大学 **大学院理学研究科** 准教授)
 - 大塚孝治(東京大学 大学院理学系研究科 教授)
 - 大西明(京都大学 **基礎物理学研究所** 教授)
 - ▶ 岡真(東京工業大学 大学院理工学研究科 教授)
 - ▶ 緒方一介(大阪大学 **核物理研究センター** 准教授)
 - ▶ 小野章(東北大学 大学院理学研究科 助教)
 - ▶ 木村真明(北海道大学 **大学院理学院** 特任助教)
 - ▶ 据野敏貴(国立天文台 **理論天文学研究系** 准教授)
 - 萩野浩一(東北大学 大学院理学研究科 准教授)
 - 》 初田哲男(東京大学 **大学院理学系研究科** 教授)
 - ▶ 肥山詠美子(理化学研究所 仁科加速器研究センター 准主任研究員)
 - ▶ 平野哲文(上智大学 **理工学部** 准教授)
 - ▶ 松尾正之(新潟大学 **理学部** 教授)
 - ▶ 矢花一浩(筑波大学 **数理物質科学研究科** 教授)
 - ▶ 八尋正信(九州大学 **大学院理学研究院** 教授)
 - ▶ 吉田賢市(新潟大学 大学院自然科学研究科 助教)

宇宙・素粒子・原子核分野

- 執筆協力者
 - (素粒子分野)
 - 青木愼也 (筑波大学 数理物質系 教授)
 - ▶ 石井理修 (筑波大学 計算科学研究センター 准教授)
 - 石塚成人 (筑波大学 数理物質系 准教授)
 - 金谷 和至 (筑波大学 数理物質系 教授)
 - 金児 隆志 (高エネルギー加速器研究機構 素粒子原子核研究所 助教)
 - 谷口裕介(筑波大学 数理物質系 講師)
 - 松古栄夫 (高エネルギー加速器研究機構 計算科学センター 助教)
 - ▶ 山崎剛 (名古屋大学 素粒子宇宙起源研究機構 特任助教)
 - ▶ 山田憲和 (高エネルギー加速器研究機構 素粒子原子核研究所 助教)
 - ▶ 吉江友照 (筑波大学 数理物質系 准教授)