

Apuntes

Nicolas Muñoz

Teoria De Integración Licenciatura en Matemática Pontificia Universidad Católica - Chile

August 28, 2025

Contents

1	Introducción a la Integración de Riemann		
	1.1	Particiones y Sumas de Riemann	2
	1.2	Sumas de Darboux	2
	1.3	Integrales de Darboux	
	1.4	Medida de un conjunto	4
	1.5	Limitaciones de la Integral de Riemann	4
	1.6	Teorema Fundamental del Cálculo	4
_			
2	\mathbf{Ext}	endiendo la Integral de Riemann	4
	2.1	La Función Longitud	F

1 Introducción a la Integración de Riemann

1.1 Particiones y Sumas de Riemann

Definición 1. Una partición de un intervalo $[a,b] \subseteq R$ es un subconjunto finito $\pi \subseteq [a,b]$ tal que $a,b \in \pi$. Denotaremos a las particiones como $\pi = \{x_0,\ldots,x_n\}$ donde los puntos están ordenados, es decir $a = x_0 < x_1 < \cdots < x_n = b$. Los intervalos $I_i = [x_{i-1},x_i]$ para $i = 1,\ldots,n$ son llamados los intervalos de la partición. A veces identificaremos la partición con $(I_i)_{i=1,\ldots,n}$.

Definición 2. La norma de una partición π se define como:

$$||\pi|| := \max_{i=1,\dots,n} (x_i - x_{i-1}) = \max_{I_i \in \pi} |I_i|$$

Definición 3. Una partición marcada de [a,b] es un par $\pi^* = (\pi,\epsilon)$, donde $\pi = \{x_0,\ldots,x_n\}$ es una partición de [a,b], $y \in \{x_1^*,\ldots,x_n^*\}$ es una colección de puntos tal que $x_i^* \in I_i$ para cada $i=1,\ldots,n$. La norma de una partición marcada se define como $||\pi^*|| = ||\pi||$.

Definición 4 (Suma de Riemann). Sea $f:[a,b] \to R$ acotada y $\pi^* = (\pi, \epsilon)$ una partición marcada. La suma de Riemann de f asociada a π^* se define como:

$$S_R(f, \pi^*) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{I_i \in \pi} f(x_i^*)|I_i|$$

Definición 5 (Integrabilidad de Riemann). Dada $f:[a,b] \to R$ acotada, decimos que es Riemann integrable si existe el límite:

$$\lim_{||\pi^*|| \to 0} S_R(f, \pi^*)$$

Esto significa que $\exists L \in R$ tal que para cualquier $\epsilon > 0$, existe $\delta = \delta(\epsilon) > 0$ tal que si $||\pi^*|| < \delta$, entonces $||S_R(f,\pi^*) - L|| < \epsilon$. Cuando este límite existe, lo llamamos la integral de Riemann de f en [a,b] y lo denotamos por $\int_a^b f(x)dx$.

1.2 Sumas de Darboux

Definición 6. Dadas $f:[a,b] \to R$ acotada $y \pi = (I_i)_{i=1,\dots,n}$ una partición de [a,b], definimos:

- $m_{I_i} := \inf_{x \in I_i} f(x)$
- $M_{I_i} := \sup_{x \in I_i} f(x)$
- La suma inferior de Darboux: $\underline{S}(f;\pi) := \sum_{i=1}^n m_{I_i}(x_i x_{i-1}) = \sum_{I_i \in \pi} m_{I_i}|I_i|$
- La suma superior de Darboux: $\overline{S}(f;\pi) := \sum_{i=1}^n M_{I_i}(x_i x_{i-1}) = \sum_{I_i \in \pi} M_{I_i}|I_i|$

Observación 1. Como $m_{I_i} \leq f(x) \leq M_{I_i}$ para todo $x \in I_i$, para cualquier partición marcada $\pi^* = (\pi, \epsilon)$, se tiene que:

$$\underline{S}(f;\pi) \le S_R(f;\pi^*) \le \overline{S}(f;\pi)$$

Definición 7 (Refinamiento). Una partición π' de [a,b] es un refinamiento de otra partición π si $\pi \subset \pi'$. Equivalentemente, si para todo $J_i \in \pi'$ existe $I_i \in \pi$ tal que $J_i \subseteq I_i$.

Sea $f:[a,b]\to R$ acotada. Entonces:

- Si $\pi \subseteq \pi'$ son particiones de [a, b], entonces $\underline{S}(f; \pi) \leq \underline{S}(f; \pi')$ y $\overline{S}(f; \pi) \geq \overline{S}(f; \pi')$.
- Si π_1, π_2 son particiones de [a, b] cualesquiera, entonces $\underline{S}(f; \pi_1) \leq \overline{S}(f; \pi_2)$.

1.3 Integrales de Darboux

Definición 8. Sea $f:[a,b] \to R$ acotada. Definimos:

• La integral superior (de Darboux) de f como:

$$\overline{\int_{a}^{b}} f(x)dx := \inf_{\pi \ part. \ de \ [a,b]} \overline{S}(f;\pi)$$

• La integral inferior (de Darboux) de f como:

$$\int_{\underline{a}}^{b} f(x)dx := \sup_{\pi \text{ part. de } [a,b]} \underline{S}(f;\pi)$$

Teorema 1. Sea $f:[a,b] \to R$ acotada. Entonces:

$$\int_{a}^{b} f(x)dx = \lim_{\|\pi\| \to 0} \underline{S}(f;\pi), \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{\|\pi\| \to 0} \overline{S}(f;\pi)$$

Equivalentemente, para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n||\to 0$ cuando $n\to\infty$, se tiene que:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \underline{S}(f; \pi_n) \quad y \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{n \to \infty} \overline{S}(f; \pi_n)$$

Teorema 2 (Criterios de Integrabilidad). Dada $f:[a,b] \to R$ acotada, las siguientes afirmaciones son equivalentes:

- 1. f es integrable Darboux, es decir, $\int_a^b f(x)dx = \overline{\int_a^b} f(x)dx$.
- 2. f es Riemann integrable.
- 3. $\lim_{\|\pi\|\to 0} (\overline{S}(f;\pi) \underline{S}(f;\pi)) = 0$
- 4. Para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n|| \to 0$, se tiene que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$.
- 5. Existe una sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$.

Observación 2. Las integrales en el sentido de Darboux (1) y el de Riemann (2) coinciden.

- Si $f:[a,b]\to R$ es monótona, entonces es Riemann integrable.
- Si $f:[a,b] \to R$ es continua, entonces es Riemann integrable.

1.4 Medida de un conjunto

Definición 9. Decimos que un conjunto $I \subseteq \overline{R} := R \cup \{-\infty, \infty\}$ es un intervalo si satisface que para todo $x, y \in I$, se tiene que $z \in I$ para todo z tal que $\min\{x, y\} \le z \le \max\{x, y\}$.

Definición 10. La medida de un intervalo $I \subseteq \overline{R}$ se define como $|I| := \sup I - \inf I$. Se define $|\emptyset| := 0$ y |x| := 0 para un punto.

Si $I \subseteq J$ son intervalos, entonces $|I| \le |J|$.

Definición 11. Un conjunto $E \subseteq R^d$ se dice de medida nula si, dado $\epsilon > 0$, existe una sucesión de intervalos $(I_n)_{n \in \mathbb{N}}$ de R^d tal que $E \subseteq \bigcup_{n \in \mathbb{N}} I_n$ $y \sum_{n \in \mathbb{N}} |I_n| < \epsilon$.

Teorema 3. Sea $f:[a,b] \to R$ acotada. Entonces, f es Riemann integrable si y sólo si su conjunto de discontinuidades tiene medida nula.

1.5 Limitaciones de la Integral de Riemann

La integral de Riemann tiene algunas limitaciones:

- 1. Solo está definida para funciones acotadas y en intervalos [a, b] acotados. Las integrales impropias resuelven parcialmente este problema.
- 2. La convergencia puntual no siempre garantiza la intercambiabilidad del límite y la integral. Es decir, $f_n \to f$ puntualmente no implica que $\lim \int f_n = \int \lim f_n$. Ejemplos como $f_n(x) = n\chi_{(0,1/n]}$ en [0,1] muestran esta limitación.

Teorema 4. Si $(f_n)_{n\in\mathbb{N}}\subseteq R([a,b])$ y $f_n\to f$ uniformemente en [a,b], entonces $f\in R([a,b])$ y $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$.

1.6 Teorema Fundamental del Cálculo

Teorema 5 (Teorema Fundamental del Cálculo). Si $f \in R([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F(x) := \int_a^x f(t)dt$ es derivable en x_0 y $F'(x_0) = f(x_0)$. En particular, F es derivable en x y F'(x) = f(x) para todo x salvo un conjunto de medida nula.

Este "casi" no puede removerse. Hay contraejemplos notables:

- Teorema de Hankel (1871): Existe $f \in R([a,b])$ tal que $F(x) = \int_a^x f(t)dt$ no es derivable para ningún punto en un subconjunto denso de [a,b].
- Teorema de Volterra (1881): Existe una función $f:[a,b] \to R$ que es derivable en [a,b] y su derivada f' es acotada en [a,b], pero $f' \notin R([a,b])$.

2 Extendiendo la Integral de Riemann

Una manera de extender el concepto de la integral es a través de funciones escalonadas.

Definición 12 (Función Escalonada). Una función $\phi: [a,b] \to R$ se dice escalonada si existe una partición $\pi = \{x_0, \ldots, x_n\}$ de [a,b] y constantes $c_1, \ldots, c_n \in R$ tales que $\phi|_{(x_{i-1},x_i)} \equiv c_i$ para todo $i=1,\ldots,n$.

Cualquier función escalonada se puede escribir como una combinación lineal de funciones características de intervalos. La integral de una función escalonada se define como:

$$\int_{a}^{b} \phi(x)dx = \sum_{i=1}^{n} c_{i}|I_{i}|$$

2.1 La Función Longitud

Sea \mathcal{I} la colección de todos los intervalos en R. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ se define como $\lambda(I) := |I|$.

La función longitud λ tiene las siguientes propiedades:

- $\lambda(\emptyset) = 0$.
- Monotonía: Si $I_1, I_2 \in \mathcal{I}$ y $I_1 \subseteq I_2$, entonces $\lambda(I_1) \leq \lambda(I_2)$.
- Aditividad Finita: Si $I \in \mathcal{I}$ tal que $I = \bigcup_{i=1}^n J_i$ con $J_i \in \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^n \lambda(J_i)$.
- Aditividad Contable (σ -aditividad): Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^{\infty} I_i$ con $(I_i)_{i \in N} \subseteq \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^{\infty} \lambda(I_i)$.
- σ -subaditividad: Si $I \in \mathcal{I}$ verifica $I \subseteq \bigcup_{i=1}^{\infty} I_i$, donde $(I_i)_{i \in N}$ son intervalos (no necesariamente disjuntos), entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$.
- Invarianza por traslaciones: $\lambda(I+x) = \lambda(I)$ para todo $x \in R$.
- $\lambda(\{x\}) = 0$ para todo $x \in R$.

Nos gustaría extender λ a una clase más grande que \mathcal{I} . Más precisamente, nos gustaría definir una aplicación $m: \mathcal{M} \to [0, \infty]$, donde \mathcal{M} es una coleccción de subconjuntos de tal que $\mathcal{I} \subseteq \mathcal{M}$, de manera tal que, dado $E \in \mathcal{M}$, m(E) represente la "longitud" de E. Idealmente, nos gustaría que m cumpla lo siguiente:

- 1. $\mathcal{M} = \mathcal{P}()$;
- 2. Si $I \in \mathcal{I}$, entonces m(I) = |I|;
- 3. m es σ -aditiva $(E, (E_n)_{n \in \mathcal{M}}, E = \sum_{n=1}^{\infty} E_n \implies m(E) = \sum_{n=1}^{\infty} m(E_n));$
- $(1) + (2) + (3) \implies m$ es monóton, σ -subaditiva y finitamente aditiva.
- 4 Si $E \in \mathcal{M}$, entonces $E + x \in \mathcal{M}$ y $m(E + x) = m(E) \ \forall x \in \mathcal{M}$

El problema es que, si asumimos el Axioma de Elección, uno puede mostrar que no existe una tal m que cumpla (1) - (2) - (3) - (4) y, de hecho, no se sabe si existe m que cumpla (1) - (2) - (3). (Si asumimos la hipótesis del continuo, entonces no existe m que cumpla (1) - (2) - (3)).

Luego, para construir m debemos debilitar alguna de las propiedades:

- Si debilitamos (1) \implies TEORÍA DE LA MEDIDA;
- Si debilitamos (3) pidiento solo (hay dos opciones):
 - \rightarrow aditividad finita \Longrightarrow "medidas finitamente aditivas";
 - $\rightarrow \sigma$ -subaditividad \implies "medidas exteriores".

Vamos a optar por debilitar (1).

Una manera de extender λ es la siguiente:

- i. Si $E = \prod_{i=1}^{n} I_i$ entonces definitions $\lambda(E) \sum_{i=1}^{n} \lambda(I_i)$;
- ii. Si $E = \sum_{i=1}^{\infty} I_i$ entonces definimos $\lambda(E) \sum_{i=1}^{\infty} \lambda(I_i)$;
- iii. La fórmula anterior nos permite definir $\lambda(6)$ para todo 6 abierto en ;
- iv. Para conjuntos mas generales, "aproximar" por abiertos.

Definición 13 (premedida). Sea X un conjunto no vacío y C una colección de subconjuntos de X tal que \in C. Diremos que una aplicación $\mathcal{T}: C \to [0, \infty]$ es una premedida si $\mathcal{T}() = 0$.

Observación 3. El conjunto no vacío X será llamado un espacio y la colección C será llamada una clase (de subconjuntos de X).

Intuitivamente, C representa la colección de subconjuntos cuyo "tamaño" sabemos medir y \mathcal{T} nos da su medida.

- 1. Premedida de Lebesgue: $CI\{I \subseteq : I \text{ intervalo}\}, \mathcal{T}(I)|I|$.
- 2. Premedidas de Lebesgue-Stieltjes: Sea $F : \to \text{monótona}$ creciente y continua a derecha $(\lim_{x \to x_0}^+ F(x) = F(x_0))$. Una función tal se dice una función de Lebesgue-Stieltjes.

Observemos que, por monotonía, existen límites

$$\left\{ F(\infty) \lim_{x \to \infty} F(x) \atop F(-\infty) \lim_{x \to -\infty} F(x) \right\} \in$$

Sea además la clase $\widetilde{\mathcal{I}}$ de intervalos de dada por

$$\begin{split} \widetilde{\mathcal{I}}\{I(a,b)\ :\ \}\ \operatorname{donde}\ &I(a,b)(a,b]\cap\\ &=\{(a,b]\ :\ -\infty\leq a\leq b\}\cup\{(a,\infty)\ :\ -\infty\leq a<\infty\}.. \end{split}$$

Definimos la premedida \mathcal{T}_F de Lebesgue-Stieltjes asociada a F como la aplicación $\mathcal{T}_F : \widetilde{\mathcal{I}} \to [0, \infty]$, dada por

$$\mathcal{T}_F(I(a,b)) = F(b) - F(a).$$

Observar que si F(x) = x entonces \mathcal{T}_F es la premedida de Lebesgue (sobre $\widetilde{\mathcal{I}}$.

3. Premedidas de Probabilidad: Si F es una función de L-S tal que $F(\infty) = 1$ y $F(-\infty) = 0$, decimos que F es una función de distribución (acumulada). En tal caso, la premedida \mathcal{T}_F se conoce como premedida de probabilidad o predistribución (en).

Observación 4.
$$\mathcal{T}_F() = \mathcal{T}_F(I(-\infty,\infty)) = F(\infty) - F(-\infty) = 1 - 0 = 1.$$

4. Premedida...

Definición 14 (semiálgebra). Sea X un espacio y C una clase de subconjuntos de X. Decimos que C es una semiálgebra (de subconjuntos de X) si cumple:

- 1. $\in C$;
- 2. (C es cerrada por intesecciones finitas) $A, B \in C \implies A \cap B \in C$;
- 3. Si $A \in C$, existen $C_1, \ldots, C_n \in C$ disjuntos tal que $A^c = \prod_{i=1}^n C_i$.
- 1. La clase \mathcal{I}_d de intervalos en d es una semiálgebra.
- 2. La clase $\widetilde{\mathcal{I}}\{(a,b]\cap : -\infty \le a \le b \le \infty\}$ es una semiálgebra.
- 3. Si X e Y son espacios y C_X , C_Y son semiálgebras en X e Y respectivamente, entonces

$$C_X \times C_Y \{ F \times G : F \in C_X, G \in C_Y \}$$

es una semiálgebra en $X \times Y$, llamada "semiálgebra producto".

Definición 15 (álgebra). Sean X un espacio y A una clase de subconjuntos de X. Decimos que A es un álgebra (de subconjuntos de X) si cumple que:

- $(i) \in A;$
- (ii) A es cerrado por intersecciones finitas;
- (iii) (A es cerrada por complementos) $A \in A \implies A^c \in A$.

Equivalentemente, en presencia de (iii), (ii) se puede reemplazar por:

- (ii') (A es cerrada por uniones finitas) $A, B \in A \implies A \cup B \in A$. (**Dem:** Ejercicio!)
 - 1. X espacio, $A_1\{X\}$, $A_2\mathcal{P}(X)$ son álgebras (donde A es llamada el álgebra trivial);
 - 2. Sea S una semiálgebra de subconjuntos de un espacio X. Entonces

$$A\{E \subseteq X : \exists S_1, \dots, S_n \in S \text{ disjuntos tal que } E = \prod_{i=1}^n S_i\}$$

es un álgebra, llamada el álgebra generada por S. Notemos que A(S) es el menor álgebra que contiene a S:

(i) A(S) es un álgebra y $S \subseteq A(S)$;

(ii) Si A' es un álgebra con $S \subseteq A'$ entonces $A(S \subseteq A')$.

Toda álgebr es una semiálgebra.

Definición 16 (σ -álgebra). Una clase (no vacía) M de subconjuntos de un espacio X se dice una σ -álgebra si cumple:

- $1. \in M;$
- 2. $E \in M \implies E^c \in M$:
- 3. $(E_n)_{n\in}\subseteq M \implies \bigcup_{n\in} E_n\in M$.

Llamamos al par (X, M) un espacio medible y a los elementos de M, conjuntos medibles.

- 1. Todo σ -álgebra es un álgebra;
- 2. Equivalentemente, en presencia de (1), (3) se puede reemplazar por

(iii')
$$(E_n)_{n\in}\subseteq M \implies \bigcap_{n\in} E_n\in M.$$

- 1. σ -álgebra \implies álgebra \implies semiálgebra (no valen las recíprocas);
- 2. $\{X\}, \mathcal{P}(X) \text{ son } \sigma\text{-álgebras};$
- 3. Si $(M_{\gamma})_{\gamma \in \Gamma}$ son σ -álgebras, entonces

$$\bigcap_{\gamma \in \Gamma} M_{\gamma} \{ E \subseteq X : E \in M_{\gamma}, \ \forall \gamma \in \Gamma \}$$

es una σ -álgebra.

4. Si M es una clase de subconjuntos de X, entonces

$$\sigma(M) \qquad \bigcap \qquad M$$

$$M \text{ σ-\'algebra}$$

$$C \subseteq M$$

es la σ -álgebra generada por C. De hecho, $\sigma(M)$ es la menor σ -álgebra que contiene a C:

- (a) $\sigma(C)$ es σ -álgebra y $C \subseteq \sigma(C)$;
- (b) Si F es σ -álgebra y $C \subset F$ entonces $\sigma(C) \subseteq F$.
- 5. Si (X,T) es un espacio topológico, $\sigma(T)$ se conoce como la σ -álgebra de Borel, y sus elementos se llaman Borelianos. La notamos $\beta(X)$ $(=\sigma(T))$.

 $\beta()$ contiene a tods los abiertos, cerrados, intervalos, conjuntos de tipo G_{δ} y F_{σ} ,... De hecho, $\beta() = \sigma(\text{cerrados}) = \sigma(\text{compactos}) = \sigma(\mathcal{I}) = \sigma(\widetilde{\mathcal{I}})$.

Definición 17. Sea C una clase (no vacía) de subconjuntos de X y $\mu: C \to [0, \infty]$ una función (la llamamos una función de conjuntos). Diremos que:

- (i) μ es monótona (en M) si $A, B \in C$, $A \subseteq B \implies \mu(A) \le \mu(B)$;
- (ii) μ es finitamente aditiva si $(A_i)_{i=1,\dots,n} \subseteq C$ disjuntos $\implies \mu\binom{n}{i=1}A_i = \sum_{i=1}^n \mu(A_i)$;
- (iii) μ es σ -aditiva si $(A_n)_{n \in \subseteq} C$ disjuntos $\Longrightarrow \mu(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i);$
- (iv) μ es σ -subaditiva si $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_n)$, para todo $A \in C$ y $(A_n)_{n \in C} \subseteq C$ tal que $A \subseteq \bigcup_{n \in C} A_n$

Observación 5. Rana da una definición más débil de (4):

$$A \in C, \ A = \bigcup_{i=1}^{\infty} A_i, \ A_i \in C \ \forall i \implies \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Ambas definiciones son equivalentes si C es una semiálgebra y μ es monótona (siempre será el caso para nosotros).

Definición 18 (premedida finita y σ -finita). Una premedida $\mathcal{T}: C \to [0, \infty]$ se dice:

- 1. **finita** si $X \in C$ y $\mathcal{T} < \infty$;
- 2. σ -finita si existen $(C_n)_{n\in}\subseteq C$ disjuntos tales que $\sum_{n=1}^{\infty}C_n=X$ y $\mathcal{T}(C_n)<\infty$ $\forall n\in$.
- 1. finita $\implies \sigma$ -finita;
- 2. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ es σ -finita pero no finita;
- 3. Si F es una función de L-S, entonces $\mathcal{T}_F: \widetilde{\mathcal{I}} \to [0, \infty]$ es siempre σ -finita $(\mathcal{T}_F((n, n + 1]) = F(n + 1) F(n) < \infty \ \forall n \in)$ y es finita si y sólo si $\mathcal{T}_F() = \mathcal{T}_F((-\infty, \infty] \cap) = F(\infty) F(-\infty) < \infty$.

Definición 19 (medida). Sea (X, M) es un espacio medible. Diremos que $\mu : M \to [0, \infty]$ es una <u>medida</u> (en (X, M)) si:

- 1. $\mu()=0;$
- 2. μ es σ -subaditiva en M $(\mu \begin{pmatrix} \infty \\ i=1 \end{pmatrix} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Llamamos a la terna (X, M, μ) un epacio de medida.

Objetivo. Construir un espacio de medida (M, μ) tal que $\mathcal{I} \subseteq M$ y

$$\begin{cases} \mu(I) = |I| \ \forall I \in \mathcal{I}, \\ \mu(E+x) = \mu(E) \ \forall E \in M. \end{cases}$$

[Espacios de Probabilidad] Si (X, M, μ) es un EdM tal que $\mu(X) = 1, (X, M, \mu)$ recibe el nombre de espacios de probabilidad.

- X recibe el nombre de espacio muestral, y se lo nota Ω (en lugar de X);
- M se suele notar como F (\acute{o} Y). Sus elementos se dicen <u>eventos</u>;
- μ recibe el nombre de medida de probabilidad ó <u>distribución</u> y se la nota P.

En probabilidad, típicamente se estudian 2 tipos de distribuciones en (o en ^d).

- 1. Distribuciones discretas: $\exists S \subseteq \text{numerable y } (p_x)_{x \in S} \subseteq [0,1] \text{ tal que } P(A) = \sum_{x \in A \cap S} p_x$. Binomial, Geométrica, Poisson,...
- 2. Distribuciones (absolutamente) continuas: $\exists f : \to_{\geq 0}$ "integrable" tal que $P(A) = \int_A f(x) dx$. Uniforme, Exponencial, Normal,...

Propiedades generales de una medida. Si μ es una medida sobre (X, M), entonces:

- 1. μ es monótona (en M);
- 2. μ es σ -subaditiva;
- 3. μ es continua por debajo: si $(A_n)_{n\in}\subseteq M$ es creciente $(A_n\subseteq A_{n+1}\ \forall n)$ entonces

$$\mu\left(\bigcup_{n\in}A_n\right) = \lim_{n\to\infty}\mu(A_n).$$

4. μ es **continua por arriba**: si $(A_n)_{n\in}\subseteq M$ es <u>decreciente</u> $(A_{n+1}\subseteq A_n\ \forall n)$ y $\mu(A_{n_0})<\infty$ para algún $n_0\ (\Longrightarrow \mu(A_n)<\infty\ \forall n\geq n_0)$, entonces

$$\mu\left(\bigcap_{n\in}A_n\right) = \lim_{n\to\infty}\mu(A_n).$$

(Cuidado! (4) puede no valer si $\mu(A_n) = \infty \ \forall n \in$)

Definición 20 (premedida extendible y unívocamente extendible). Una premedida \mathcal{T} : $S \to [0,\infty]$ definida sobre una semiálgebra de subconjunto de X, se dice:

- 1. Extendible si es
 - (E1) finitamente aditiva en S;
 - (E2) σ -subaditiva en S.
- 2. Univocamente extendible si es extendible y se cumple
 - (E3) σ -finita

Observación 6. Los nombres de extendible y univocamente extendible no se encontrarán en el Rana (los puso el profe).

Teorema 6 (Extensión de Carathéodory). Dados un espacio X y una premedida \mathcal{T} sobre una semiálgebra S de subconjuntos de X tal que \mathcal{T} es extendible, existe una extensión de \mathcal{T} a una medida $\mu_{\mathcal{T}}$ definida sobre $\sigma(S)$ la σ -álgebra generada por S. Más aún, si \mathcal{T} es univocamente extendible, entonces la extensión $\mu_{\mathcal{T}}$ a $\sigma(S)$ es <u>única</u>.

Por último, si \mathcal{T} es univocamente extendible, entonces se puede extender de manera única a una medida $\overline{\mu_{\mathcal{T}}}$ sobre la $\mu_{\mathcal{T}}$ -completación de $\sigma(S)$, i.e. la σ -álgebra $\overline{\sigma(S)}$ dada por

$$\overline{\sigma(S)}\{B \cup N : B \in \sigma(S), \exists \widetilde{N} \in \sigma(S) \ con \ N \subseteq \widetilde{N} \ y \ \mu_{\mathcal{T}}(\widetilde{N}) = 0\}$$

mediante la fórmula $\overline{\mu_{\mathcal{T}}}(B \cap N)\mu_{\mathcal{T}}(B)$.

Observación 7. Si $\mathcal{T}: S \to [0, \infty]$ es σ -aditiva en S y S es una semiálgebra, entonces \mathcal{T} es extendible.

Observación 8. La extensión puede no ser única si \mathcal{T} no es σ -finita.

$$\widetilde{\mathcal{I}}\widetilde{\mathcal{I}}\cap = \{(a,b]\cap : -\infty \le a \le b \le \infty\}$$

- $\widetilde{\mathcal{I}}$ es una semiálgebra;
- $\sigma(\widetilde{\mathcal{I}}) = \sigma(\widetilde{\mathcal{I}} \cap) \stackrel{\text{Ej!}}{=} \sigma(\widetilde{\mathcal{I}}) \cap = \beta() \cap = \mathcal{P}()$ (9.52)
- $\mathcal{T}: \widetilde{\mathcal{I}} \to [0, \infty]$, dada por $\mathcal{T}(A) \begin{cases} 0 & A = \\ \infty & A \neq, A \in \widetilde{\mathcal{I}} \end{cases}$ (Observar que \mathcal{T} no es σ -finita)
- Para cada r > 0, $\mu_r : \mathcal{P}() \to [0, \infty]$ dada por $\mu_r(A)r(\#A)$ es una extensión de \mathcal{T} (y es una medida)

Definición 21 (espacio completo y conjuntos μ -nulos). Sea (X, M, μ) un EdM y definamos

$$N_{\mu}\{E \subset X : \exists N \in M \ con \ E \subseteq N \ y \ \mu(N) = 0\}$$

Los elementos de N_{μ} se dicen <u>conjuntos μ -nulos</u>. Diremos que (X, M, μ) es <u>completo</u> si $N_{\mu} \subseteq M$

Observación 9. $(X, \overline{\sigma(S)}, \overline{\mu_{\delta}})$ es <u>completo</u>. En efecto, $N_{\overline{\mu_{\delta}}}$ corresponde al subconjunto de $\overline{\sigma(S)}$ que se obtiene tomando $B = \overline{C}$.

Observación 10. Veremos más adelante que las siguientes premedidas son UE:

- (i) Premedidas de Lebesgue-Stieltjes (en particular, la función longitud λ (sobre $\widetilde{\mathcal{I}}$) y las premedidas de probabilidad).
- (ii) Premedidas de Lebesgue en d, con $d\in$.

En particular;

Corolario 1. Para cada función F de Lebesgue-Stieltjes, existe una σ -álgebra M_F sobre y una única medida μ_F en (M_F) tal que

$$\mu_F = (I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

Además, $\beta() \subseteq M_F$. Es decir, μ_F es una medida que extiende a \mathcal{T}_F , a todo M_F (y en particular, a todo $\beta()$). Además, (M_F, μ_F) es un EdM completo. $(M_F \sigma(\widetilde{\mathcal{I}})^F, \mu_F \overline{\mu_{\mathcal{T}_F}})$. La medida μ_F se conoce como medida de L-S asociada a F. En particular, para cualquier función de distribución F, existe una única medida de probabilidad P_F en (\mathcal{A})) tal que

$$P_F(I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

(En la guía 3 veremos que $F \rightarrow P_F$ es una biyección)

Los β son los Borelianos y $I(a,b) = (a,b] \cap$. (super $F \to 10.26$).

[Importante!] Medida de Lebesgue en . Tomando F = id en el Corolario anterior, obtenemos una σ -álgebra $L()M_{id}$ con $\beta() \subseteq L()$ y una medida μ_{id} en (,L()) tal que $\mu_{id}(I(a,b)) = b-a$ $\forall -\infty \leq a \leq b \leq \infty$. En particular, de esto se deduce que $\mu_{id}(I) = |I|$ $\forall I \in \mathcal{I}$. Dicha medida recibe el nombre de medida de Lebesgue (en), y los elementos de L() se dicen conjuntos medibles Lebesgue. Adoptaremos la notación $\mu_{id}(E)\lambda(E)|E|$. La medida μ_{id} es la extensión de la noción de longitud que buscábamos y L() son los conjuntos cuya "longitud" podremos medir. Además, los conjuntos de medida nula (de la guía 2), son exactamente aquellos $A \in L()$ tal que $\mu_{id}(A) = 0$ (lo veremos más adelante!).

[Medida de Lebesgue en d] Si \mathcal{I}_d son los intervalos en d y definimos $\mathcal{T}: \mathcal{I}_d \to [0, \infty]$ como $\mathcal{T}(I)|I|$, entonces \mathcal{I}_d es una semiálgebra y \mathcal{T} es una premedida σ -aditiva en \mathcal{I}_d (lo veremos después). Por lo tanto, \mathcal{T} se puede extender (de manera única, pues \mathcal{T} es σ -finita) a una medida μ_δ sobre la σ -álgebra $L(d) = \overline{\sigma(\mathcal{I}_d)^{\mathcal{T}}}$, llamada medida de Lebesgue en d y L(d) es la clase de conjuntos medibles Lebesgue en d. Al igual que antes, dado $E \in L(d)$, notamos $|E|\mu_{\mathcal{T}}(E)$.