WYDZIAŁ CHEMICZNY

KARTA PRZEDMIOTU

Nazwa przedmiotu w języku polskim Metrologia i walidacja metod analitycznych Nazwa przedmiotu w języku angielskim Metrology and validation of analytical methods

Kierunek studiów (jeśli dotyczy): Chemia i analityka przemysłowa

Specjalność (jeśli dotyczy):

Poziom i forma studiów: I stopień, stacjonarna

Rodzaj przedmiotu: obowiązkowy Kod przedmiotu

Grupa kursów TAK

	Wykład	Ćwiczenia	Laboratoriu	Projekt	Seminarium
			m		
Liczba godzin zajęć					
zorganizowanych w	15	15			
Uczelni (ZZU)					
Liczba godzin					
całkowitego nakładu	30	30			
pracy studenta (CNPS)					
Forma zaliczenia	zaliczenie	zaliczenie			
	na ocenę	na ocenę			
Dla grupy kursów					
zaznaczyć kurs końcowy					
(X)					
Liczba punktów ECTS	1	1			
w tym liczba punktów					
odpowiadająca zajęciom					
o charakterze					
praktycznym (P)					
w tym liczba punktów					
ECTS odpowiadająca					
zajęciom wymagającym	0.5	0.5			
bezpośredniego kontaktu					
(BK)					

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH **KOMPETENCJI** 1 Brak

CELE PRZEDMIOTU

- C1 Zaznajomienie z wymaganiami odnośnie metrologii pomiarów i analiz chemicznych
- C2 Poznanie parametrów charakteryzujących miarodajne wyniki pomiarów i parametrów walidacyjnych
- C3 Poznanie przebiegu walidacji metod i procedur analitycznych
- C4 Zaznajomienie z rolą i przebiegiem testów i porównań między-laboratoryjnych
- C5 Nabycie umiejętności stosowania parametrów statystycznych opisujących wyniki serii pomiarowych i stosowania testów i metod statystycznych do porównywania wyników serii pomiarowych i populacji

PRZEDMIOTOWE EFEKTY KSZTAŁCENIA

Z zakresu wiedzy:

- PEK_W01 Zna podstawowe pojęcia metrologii (pomiar, cecha, wielkość cechy, wzorcowanie przyrządu, kalibracja, zbiorowość generalna, zbiorowość próbna, dystrybuanta, rozkład normalny i jego gęstość, badanie statystyczne zupełne i częściowe), kryteria stawiane wiarygodnym wynikom pomiarowym
- PEK W02 Zna pojęcie spójności oraz niepewności pomiarowej
- PEK W03 Zna rolę certyfikowanych materiałów odniesienia w chemii analitycznej
- PEK_W04 Zna rolę procesu walidacyjnego metod i procedur analitycznych oraz wyznaczane parametry walidacyjne
- PEK_W05 Zna rolę i przebieg testów oraz porównań międzylaboratoryjnych

Z zakresu umiejętności:

- PEK_U01 Potrafi stosować prawo propagacji błędu i szacować błędy końcowe wyników analiz
- PEK_U02 Potrafi opracować wyniki serii pomiarowych, obliczając ich odpowiednie miary położenia i rozproszenia
- PEK_U03 Potrafi zastosować odpowiednie testy statystyczne celem odrzucenie wyników obarczonych błędem grubym, porównania wariancji i średnich dwóch serii pomiarowych
- PEK_U04 Potrafi ocenić, czy metoda nadaje się do zadanego celu, obliczając podstawowe parametry walidacyjne

	TREŚCI PROGRAMOWE			
Forma zajęć – wykład		Liczba godzin		
Wy1	Wstęp do metrologii - podstawowe pojęcia i definicje	2		
Wy2	Spójność i niepewność pomiarów	4		
Wy3	Certyfikowane materiały odniesienia – rola w zapewnieniu jakości wyników pomiarów, etapy wytwarzania i atestowania, przykłady zastosowań	2		
Wy4	Walidacja metod i procedur analitycznych – parametry walidacyjne	4		
Wy5	Porównania i testy międzylaboratoryjne	2		
Wy6	Podsumowanie	1		
	Suma	15		

	Forma zajęć – ćwiczenia	Liczba godzin
Ćw1	Przykłady i zadania obliczeniowe dotyczące prawa propagacji błędu	4

Ćw2	Przykłady i zadania obliczeniowe dotyczące miar położenia (średnia	3
	arytmetyczna, mediana, kwartyle) i rozproszenia (rozstęp,	
	wariancja, odchylenie standardowe, odchylenie przeciętne,	
	współczynnik zmienności) wyników serii pomiarowych	
Ćw3	Przykłady i zadania obliczeniowe dotyczące zastosowania testów	3
	statystycznych do odrzucania jednego (test Q-Dixona) lub kilku	
	(test Grubbsa) wyników obarczonych błędem grubym w serii	
	pomiarowej	
Ćw4	Przykłady i zadania obliczeniowe dotyczące zastosowania testów	4
	statystycznych do porównania wartości wariancji (test F-Snedecora)	
	oraz testów statystycznych do określania istotności różnic dwóch	
	wartości średnich lub wartości średniej z założoną wartością (test t-	
	Studenta, test C-Cochrana-Coxa, test Aspin-Welcha)	
Ćw5	Podsumowanie i test zaliczeniowy	1
	Suma godzin	15

STOSOWANE NARZĘDZIA DYDAKTYCZNE

- N1 Wykład informacyjny
- N2 Wykład problemowy
- N3 Ćwiczenia rachunkowe
- N4 Ćwiczenia problemowe

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA					
Oceny (F – formująca	Numer	Sposób oceny osiągnięcia efektu kształcenia			
(w trakcie semestru), P	przedmiotowego				
– podsumowująca (na	efektu kształcenia				
koniec semestru))					
P (wykład)	PEK_W01-	Referat na wybrany temat dotyczący			
	PEK_W05	zagadnień z przedmiotu (ocena)			
P (ćwiczenia)	PEK_U01-	Test zaliczeniowy (ocena)			
	PEK_U04	-			
	•	•			

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

[1] E. Bulska, Metrologia chemiczna – sztuka prowadzenia pomiarów, wyd. 2,

Wydawnictwo Malamut, Warszawa, 2012

[2] Ocena i kontrola jakości wyników pomiarów analitycznych, praca zbiorowa pod red. P. Konieczki i J. Namieśnika, wyd. 2, WNT, Warszawa, 2017

LITERATURA UZUPEŁNIAJĄCA:

[1] J. C. Miller, J. N. Miller, Statystyka i chemometria w chemii analitycznej (przekład z j. ang.), wyd. 1, PWN, Warszawa, 2019

[2] W. Hyk, Z. Stojek, Analiza statystyczna w laboratorium, wyd. 1, PWN, Warszawa, 2016

OPIEKUN PRZEDMIOTU (IMIE, NAZWISKO, ADRES E-MAIL)

Prof. dr hab. inż. Paweł Pohl, pawel.pohl@pwr.edu.pl