

Figure 1: DEA \leadsto $M = (\{S_0, ..., S_4\}, \{1, 0\}, \delta, \{S_4\})$

Schritt 1

Der erste Schritt besteht darin, alle Zustände zu entfernen, die nicht errreichbar sind. Folgend wird eine Matrix, wie links dargestellt, aufgebaut. Es werden alle Paare markiert (\star) , die nur einen Endzustand enthalten. Im vorstehenden Fall wären es alle Paare von Zuständen, die den Zustand S_4 enthalten.

Schritt 2

Im Anschluss wird für jedes noch unmarkierte Paar überprüft, ob der Übergang in einen marlierten Zustand führt, also ob für das Paar (x, x') das Paar, welches durch den Übergang entsteht, also $\{\delta(x, a), \delta(x', a)\}$, bereits markiert ist. Wenn dies der Fall ist, wird das Paar ebenfalls markiert.

S_0	~				
S_1	*	~			
S_2		*	~		
S_3	*		*	~	
S_4	*	*	*	*	~
	S_0	S_1	S_2	S_3	S_4

δ	0	1
$\overline{S_0 S_3}$	$S_1 S_4$	$S_2 S_0$
$S_1 S_3$	$S_4 S_4$	$S_2 S_0$
$S_2 S_3$	$S_1 S_4$	$S_2 S_2$
$S_0 S_2$	$S_1 S_3$	$S_2 S_2$
$S_1 S_2$	$S_4 S_3$	$S_2 S_3$
$S_0 S_1$	$S_1 S_4$	$S_2 S_2$

Schritt 3

Die Übergangstabelle, welche man auch am Graphen (Übergangsdiagramm) erstellen kann, liefert den reduzierten DEA. S_0 und S_2 sowie S_1 und S_3 können jeweils zu einem Zustand verschmolzen werden.

δ	0	1
$S_0 S_3$	$S_1 S_4$	$S_2 S_0$
$S_1 S_3$	$S_4 S_4$	$S_2 S_0$
$S_2 S_3$	$S_1 S_4$	$S_2 S_2$
$S_0 S_2$	$S_1 S_3$	$S_2 S_2$
$S_1 S_2$	$S_4 S_3$	$S_2 S_3$
$S_0 S_1$	$S_1 S_4$	$S_2 S_2$

Endergebnis

Figure 2: minimierter DEA \leadsto $M = (\{S_0, ..., S_4\}, \{1, 0\}, \delta, \{S_4\})$

Basisautomat

Suche nach allen Zustandspaaren, die zu einem zusammengefasst werden können.

Erstellen einer Zustandspaartabelle (alle Möglichkeiten)

Listreichen von Zuständer

- · Zustände müsser nicht mit sich selbst überprüft werden
- O Pagre müssen nur in eie Richtung betrachtet werden Candere Richtung gestrichen

Streichen der Paare, die einen Endzustand Chier: () entralten

Überprüfung, ob Übergang in markierten Zustand führt

Zustandspaar	0	1
((0 ()	15 1
(A,B)	(B, G)	(F, ()
(A,D)	(B,C)	(F,G)
(A,E)	(B, H)	(F,F)
(A, □)	(0, ()	(F,G)
(A,6)	(8,61	(F,E)
(A,H)	(8,6)	(F,()
(B,D)	(6,0)	(6,6)
(B'E)	(6,H)	(C,F)
(B, F)	(G,C)	(0,61)

Zustandspaar	D	1
(B,6)	(6,6)	(C,E)
(B,H)	(6,6)	((,c)
(D,E)	(C,H)	(6,F)
(D,F)	(c, c)	(6,6)
(0,6)	((, 6)	(G,E)
(D,H)	((,6)	(6,0)
(E,F)	(H,C)	(F, 6)
(E,6)	(H,G)	(F, E)
(E, H)	(H, 6)	(F,C)

Ergibt das Paar ein Paar, welches bereits gestricher wurde, wird es				
bereits gestrichez wurde, wird es	Ergibt d	as Boar o	ein Paar,	welches
	bereits	gestriche	ez wunde,	wird es

Zustandspaar

(F,G)

(F, H)

(G,H)

1

(G,E)

(6,0)

(E,C)

D

(C,G)

(C, G)

(6,6)

