1 Emerging Memory Technologies [30 points]

Computer scientists at ETH developed a new memory technology, ETH-RAM, which is non-volatile. The access latency of ETH-RAM is close to that of DRAM while it provides higher density compared to the latest DRAM technologies. ETH-RAM has one shortcoming, however: it has limited endurance, i.e., a memory cell stops functioning after 10⁶ writes are performed to the cell (known as cell wear-out).

A bright ETH student has built a computer system using 1 GB of ETH-RAM as main memory. ETH-RAM exploits a perfect wear-leveling mechanism, i.e., a mechanism that equally distributes the writes over all of the cells of the main memory.

- (a) [15 points] This student is worried about the lifetime of the computer system she has built. She executes a test program that runs special instructions to bypass the cache hierarchy and repeatedly writes data into different words until **all** the ETH-RAM cells are worn-out (stop functioning) and the system becomes useless. The student's measurements show that ETH-RAM stops functioning (i.e., all its cells are worn-out) in one year (365 days). Assume the following:
 - The processor is in-order and there is no memory-level parallelism.
 - It takes 5 ns to send a memory request from the processor to the memory controller and it takes 28 ns to send the request from the memory controller to ETH-RAM.
 - ETH-RAM is word-addressable. Thus, each write request writes 4 bytes to memory.

What is the write latency of ETH-RAM? Show your work.

$$t_{wear_out} = \frac{2^{30}}{2^2} \times 10^6 \times (t_{write_MLC} + 5 + 28)$$

$$365 \times 24 \times 3600 \times 10^9 \text{ns} = 2^{28} \times 10^6 \times (t_{write_MLC} + 33)$$

$$t_{write_MLC} = \frac{365 \times 24 \times 3600 \times 10^3}{2^{28}} - 33 = 84.5 \text{ns}$$

Explanation:

Initials: Solutions

- Each memory cell should receive 10⁶ writes.
- Since ETH-RAM is word addressable, the required amount of writes is equal to $\frac{2^{30}}{2^2} \times 10^6$ (there is no problem if 1 GB is assumed to be equal to 10^9 bytes).
- The processor is in-order and there is no memory-level parallelism, so the total latency of each memory access is equal to $t_{write-MLC} + 5 + 28$.
- (b) [15 points] ETH-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 2 bits. The student decides to improve the lifetime of ETH-RAM cells by using the single-level cell (SLC) mode. When ETH-RAM is used in SLC mode, the lifetime of each cell improves by a factor of 10 and the write latency decreases by 70%. What is the lifetime of the system using the SLC mode, if we repeat the experiment in part (a), with everything else remaining the same in the system? Show your work.

$$t_{wear_out} = \frac{2^{29}}{2^2} \times 10^7 \times (25.35 + 5 + 28) \times 10^{-9}$$

 $t_{wear_out} = 78579686.3s = 2.49 \text{ year}$

Explanation:

- Each memory cell should receive $10 \times 10^6 = 10^7$ writes.
- The memory capacity is reduced by 50% since we are using SLC: $Capacity = 2^{30}/2 = 2^{29}$
- The required amount of writes is equal to $\frac{2^{29}}{2^2} \times 10^7$.
- The SLC write latency is $0.3 \times t_{write\ MLC}$: $t_{write\ SLC} = 0.3 \times 84.5 = 25.35 \, \text{ns}$

Midterm Exam Page 2 of 20