Data Mining 知识点

背景(为什么要Data Mining)

我们处在信息时代,这个时代不缺乏数据,数据库中的数据量急速膨胀,但是缺乏有价值的信息(当然也缺乏获取有用信息的人)。

于是产生了KDD(knowledge discovery in dadabase),Data Mining 是KDD的一个步骤。

Data Minng 概念

从*大量的,不完全的,有噪声的,模糊的,随机的*数据中,提取*隐含在其中的,人们事先不知道的,但又是潜在信息和知识*的过程。

知识发现(KDD)是"数据挖掘"的广义说法;数据挖掘是知识发现过程的核心。

Similarity and Dissimilarity

相似度一般取值[0,1],而不相似度最小取0(eg:Distace)

Minkowski Distance(明式距离)

公式略,自己查;又被成为L-h norm

特殊情况

- 1. 哈弗曼距离 (L-1 norm)
- 2. 欧氏距离(1-2 norm)
- 3. supuremum 距离,或者称为棋盘距离

Cosin Similarity(余弦相似度)

数据预处理

Data Preprocessing 主要步骤

- Data Cleaning (missing, noisy, inconsistent)
- 2. Data Integration
- 3. Data Reduction
- 4. Data Transformation

Data Cleaning: 处理*missing data* 方法:

the most probable value: inference-based (基于推理的) such as Bayesian formula or decision tree.

Data Cleaning: 处理noisy data 方法:

Binning (分级)

first sort data and partition into (equal-frequency) bins then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

smooth by fitting the data into regression functions

Clustering

detect and remove outliers

Combined computer and human inspection (人机检查)

detect suspicious (可疑的) values and check by human (e.g., deal with possible outliers)

Data Integration(数据整合)

含义: Combines data from multiple sources into a coherent store (统一存储)

Handling Redundancy in Data Integration

- 1. 不同属性表示同一个意思 (Object identification)
- 2. 派生数据(Derivable data)

Detection of redundant attributes

- 1. correlation analysis
- 2. covariance analysis

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{A} \overline{B}}{(n-1)\sigma_A \sigma_B}$$

Co-Variance (协方差): An Example

Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14). $\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})$

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

• Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?

■ E(A) =
$$(2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$$
 $Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$

$$\bullet$$
 E(B) = (5 + 8 + 10 + 11 + 14)/5 = 48/5 = 9.6

•
$$Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 - 4 \times 9.6 = 4$$

Thus, A and B rise or fall together since Cov(A, B) > 0.

如果两个变量的变化趋势一致,也就是说如果变量值同时大于或小于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

Data Reduction

方法:

- 1. Dimensionality reduction
- 2. Numerosity reduction
- 3. Data compression

Dimensionality reduction

含义: remove unimportant attributes

方法:

- 1. Wavelet transforms(小波变换)
- 2. Principal Components Analysis (PCA)
- 3. Feature subset selection, feature creation

特征提取与特征选择

特征提取通过投影变换降维,它生成新特征。典型用途:图像,文档特征提取。 特征选择从给定高维数据中选出一组最具描述性的有效特征,不生成新特征。典型用途:基因选择。

Numerosity Reduction

含义: Reduce data volume by choosing alternative, smaller forms (in volume) of data representation

方法:

- 1. Parametric methods
- 2. Non-parametric methods

Parametric Data Reduction

- 1. Linear regression
- 2. Multiple regression
- 3. Log-linear model

Non-parametric Data Reduction

- 1. histograms
- 2. clustering
- 3. sampling

Data Compression

含义:

A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values.

方法:

- 1. Smoothing: Remove noise from data
- 2. Attribute/feature construction
- 3. Aggregation(聚合)
- 4. Normalization: Scaled to fall within a smaller, specified range