-GLS test) is nonitistics is a conse-

against the simplest against the single Cey Concept 14.8, 1, so

(16.19)

iditional assump-

(16.20)

orrelated and has so the probability of the first term in $\frac{r}{-1}u_t$, which in turn of the term of

(16.21)

ent than the usual nary. Instead, the nis Dickey-Fuller d distribution with

The denominator follows a random

walk under the null hypothesis, $\frac{1}{T}\sum_{i=1}^{T}Y_{i-1}^2$ does not converge in probability to a constant. Instead, the denominator in Equation (16.19) is a random variable, even in large samples: Under the null hypothesis, $\frac{1}{T^2}\sum_{i=1}^{T}Y_{i-1}^2$ converges in distribution jointly with the numerator. The unusual distributions of the numerator and denominator in Equation (16.19) are the source of the nonstandard distribution of the Dickey–Fuller test statistic and the reason that the ADF statistic has its own special table of critical values.

16.4 Cointegration

Sometimes two or more series have the same stochastic trend in common. In this special case, referred to as cointegration, regression analysis can reveal long-run relationships among time series variables, but some new methods are needed.

Cointegration and Error Correction

Two or more time series with stochastic trends can move together so closely over the long run that they appear to have the same trend component; that is, they appear to have a common trend. For example, two interest rates on U.S. government debt are plotted in Figure 16.2. One of the rates is the interest rate on 90-day U.S. Treasury bills, at an annual rate (R90_t); the other is the interest rate on a 1-year U.S. Treasury bond (R1yr,); these interest rates are discussed in Appendix 16.1. The interest rates exhibit the same long-run tendencies or trends: Both were low in the 1960s, both rose through the 1970s to peaks in the early 1980s, then both fell through the 1990s. Moreover, the difference between the two series, $R1yr_t$ - R90, which is called the "spread" between the two interest rates and is also plotted in Figure 16.2, does not appear to have a trend. That is, subtracting the 90-day interest rate from the 1-year interest rate appears to eliminate the trends in both of the individual rates. Said differently, although the two interest rates differ, they appear to share a common stochastic trend: Because the trend in each individual series is eliminated by subtracting one series from the other, the two series must have the same trend; that is, they must have a common stochastic trend.

Two or more series that have a common stochastic trend are said to be cointegrated. The formal definition of **cointegration** (due to the econometrician Clive Granger, 1983; see the box on Clive Granger and Robert Engle) is given in Key Concept 16.5. In this section, we introduce a test for whether cointegration is present, discuss estimation of the coefficients of regressions relating cointegrated variables, and illustrate the use of the cointegrating relationship for forecasting.

KEY CONCEPT

Cointegration

16.5

Suppose that X_t and Y_t are integrated of order one. If, for some coefficient θ , $Y_t - \theta X_t$ is integrated of order zero, then X_t and Y_t are said to be *cointegrated*. The coefficient θ is called the **cointegrating coefficient**.

If X_t and Y_t are cointegrated, then they have the same, or common, stochastic trend. Computing the difference $Y_t - \theta X_t$ eliminates this common stochastic trend.

The discussion initially focuses on the case that there are only two variables, X_t and Y_t .

Vector error correction model. Until now, we have eliminated the stochastic trend in an I(1) variable Y_t by computing its first difference, ΔY_t ; the problems created by stochastic trends were then avoided by using ΔY_t instead of Y_t in time series

One-year and three-month interest rates share a common stochastic trend. The spread, or the difference, between the two rates does not exhibit a trend. These two interest rates appear to be cointegrated.

some coefficient to be cointegrated.

ommon, stochastic on stochastic trend.

y two variables, X_t

ated the stochastic ; the problems crel of Y_t in time series

00 2005

rence, between the

regressions. If X_t and Y_t are cointegrated, however, another way to eliminate the trend is to compute $Y_t - \theta X_t$, where θ is chosen to eliminate the common trend from the difference. Because the term $Y_t - \theta X_t$ is stationary, it too can be used in regression analysis.

In fact, if X_t and Y_t are cointegrated, the first differences of X_t and Y_t can be modeled using a VAR, augmented by including $Y_{t-1} - \theta X_{t-1}$ as an additional regressor:

$$\Delta Y_{t} = \beta_{10} + \beta_{11} \Delta Y_{t-1} + \dots + \beta_{1p} \Delta Y_{t-p} + \gamma_{11} \Delta X_{t-1} + \dots + \gamma_{1p} \Delta X_{t-p} + \alpha_{1} (Y_{t-1} - \theta X_{t-1}) + u_{1t}$$
(16.22)

$$\Delta X_{t} = \beta_{20} + \beta_{21} \Delta Y_{t-1} + \dots + \beta_{2p} \Delta Y_{t-p} + \gamma_{21} \Delta X_{t-1} + \dots + \gamma_{2p} \Delta X_{t-p} + \alpha_{2} (Y_{t-1} - \theta X_{t-1}) + u_{2t}.$$
(16.23)

The term $Y_t - \theta X_t$ is called the **error correction term**. The combined model in Equations (16.22) and (16.23) is called a **vector error correction model** (VECM). In a VECM, past values of $Y_t - \theta X_t$ help to predict future values of ΔY_t and/or ΔX_t .

How Can You Tell Whether Two Variables Are Cointegrated?

There are three ways to decide whether two variables can plausibly be modeled as cointegrated: Use expert knowledge and economic theory, graph the series and see whether they appear to have a common stochastic trend, and perform statistical tests for cointegration. All three methods should be used in practice.

First, you must use your expert knowledge of these variables to decide whether cointegration is in fact plausible. For example, the two interest rates in Figure 16.2 are linked together by the so-called expectations theory of the term structure of interest rates. According to this theory, the interest rate on January 1 on the 1-year Treasury bond is the average of the interest rate on a 90-day Treasury bill for the first quarter of the year and the expected interest rates on future 90-day Treasury bills issued in the second, third, and fourth quarters of the year; if not, then investors could expect to make money by holding either the 1-year Treasury note or a sequence of four 90-day Treasury bills, and they would bid up prices until the expected returns are equalized. If the 90-day interest rate has a random walk stochastic trend, this theory implies that this stochastic trend is inherited by the 1-year interest rate and that the difference between the two rates, that is, the spread, is stationary. Thus the expectations theory of the term structure

gration." In subne University of le, Granger pron, most notably ed on page 653. is are now a sta-

Engle was ponolatility of U.S. Figure 16.1b). If

obert F. Engle

not observe) of observe)? he autoregres-ARCH) model, I model and its gle and his stumodeling the sulting volatiliancial derivation the risk of sures and forement of finanmodel and its s for modeling

implies that if the interest rates are I(1), then they will be cointegrated with a cointegrating coefficient of $\theta = 1$ (Exercise 16.2).

Second, visual inspection of the series helps to identify cases in which cointegration is plausible. For example, the graph of the two interest rates in Figure 16.2 shows that each of the series appears to be I(1) but that the spread appears to be I(0), so the two series appear to be cointegrated.

Third, the unit root testing procedures introduced so far can be extended to tests for cointegration. The insight on which these tests are based is that if Y_t and X_t are cointegrated with cointegrating coefficient θ , then $Y_t - \theta X_t$ is stationary; otherwise, $Y_t - \theta X_t$ is nonstationary [is I(1)]. The hypothesis that Y_t and X_t are not cointegrated [that is, that $Y_t - \theta X_t$ is I(1)] therefore can be tested by testing the null hypothesis that $Y_t - \theta X_t$ has a unit root; if this hypothesis is rejected, then Y_t and X_t can be modeled as cointegrated. The details of this test depend on whether the cointegrating coefficient θ is known.

Testing for cointegration when θ is known. In some cases expert knowledge or economic theory suggests values of θ . When θ is known, the Dickey-Fuller and DF-GLS unit root tests can be used to test for cointegration by first constructing the series $z_t = Y_t - \theta X_t$ and then testing the null hypothesis that z_t has a unit autoregressive root.

Testing for cointegration when θ is unknown. If the cointegrating coefficient θ is unknown, then it must be estimated prior to testing for a unit root in the error correction term. This preliminary step makes it necessary to use different critical values for the subsequent unit root test.

Specifically, in the first step the cointegrating coefficient θ is estimated by OLS estimation of the regression

$$Y_t = \alpha + \theta X_t + z_t. \tag{16.24}$$

In the second step, a Dickey-Fuller *t*-test (with an intercept but no time trend) is used to test for a unit root in the residual from this regression, \hat{z}_t . This two-step procedure is called the Engle-Granger Augmented Dickey-Fuller test for cointegration, or **EG-ADF test** (Engle and Granger, 1987).

Critical values of the EG-ADF statistic are given in Table 16.2.2 The critical values in the first row apply when there is a single regressor in Equation (16.26),

²The critical values in Table 16.2 are taken from Fuller (1976) and Phillips and Ouliaris (1990). Following a suggestion by Hansen (1992), the critical values in Table 16.2 are chosen so that they apply whether or not X_1 , and Y_2 have drift components.

TABLE	16.2 Critical Values for the E	ngle-Granger ADF S	tatistic	
Numbe	r of X's in Equation (16.24)	10%	5%	1%
1		-3.12	-3.41	-3.96
2		-3.52	-3.80	-4.36
3		-3.84	-4.16	-4.73
4		-4.20	-4.49	-5.07

so there are two cointegrated variables $(X_t \text{ and } Y_t)$. The subsequent rows apply to the case of multiple cointegrated variables, which is discussed at the end of this section.

Estimation of Cointegrating Coefficients

If X_t and Y_t are cointegrated, then the OLS estimator of the coefficient in the cointegrating regression in Equation (16.24) is consistent. However, in general the OLS estimator has a nonnormal distribution, and inferences based on its t-statistics can be misleading whether or not those t-statistics are computed using HAC standard errors. Because of these drawbacks of the OLS estimator of θ , econometricians have developed a number of other estimators of the cointegrating coefficient.

One such estimator of θ that is simple to use in practice is the **dynamic OLS** (**DOLS**) estimator (Stock and Watson, 1993). The DOLS estimator is based on a modified version of Equation (16.24) that includes past, present, and future values of the change in X_t :

$$Y_{t} = \beta_{0} + \theta X_{t} + \sum_{j=-p}^{p} \delta_{j} \Delta X_{t-j} + u_{t}.$$
 (16.25)

Thus, in Equation (16.25), the regressors are $X_t, \Delta X_{t+p}, \ldots, \Delta X_{t-p}$. The DOLS estimator of θ is the OLS estimator of θ in the regression of Equation (16.25).

If X_t and Y_t are cointegrated, then the DOLS estimator is efficient in large samples. Moreover, statistical inferences about θ and the δ 's in Equation (16.25) based on HAC standard errors are valid. For example, the t-statistic constructed using the DOLS estimator with HAC standard errors has a standard normal distribution in large samples.

One way to interpret Equation (16.25) is to recall from Section 15.3 that cumulative dynamic multipliers can be computed by modifying the distributed last

1%	
-3.96	
-4.36	
-4.73	
-5.07	

uent rows apply to at the end of this

fficient in the coinin general the OLS on its t-statistics can sing HAC standard θ , econometricians ting coefficient. It the **dynamic OLS** nator is based on a ent, and future val-

(16.25)

t-p. The DOLS estition (16.25). is efficient in large n Equation (16.25) tatistic constructed andard normal dis-

tion 15.3 that cumuthe distributed lag regression of Y_t on X_t and its lags. Specifically, in Equation (15.7), the cumulative dynamic multipliers were computed by regressing Y_t on ΔX_t , lags of ΔX_t , and X_{t-r} ; the coefficient on X_{t-r} in that specification is the long-run cumulative dynamic multiplier. Similarly, if X_t were strictly exogenous, then in Equation (16.25) the coefficient on X_t , θ would be the long-run cumulative multiplier, that is, the long-run effect on Y of a change in X. If X_t is not strictly exogenous, then the coefficients do not have this interpretation. Nevertheless, because X_t and Y_t have a common stochastic trend if they are cointegrated, the DOLS estimator is consistent even if X_t is endogenous.

The DOLS estimator is not the only efficient estimator of the cointegrating coefficient. The first such estimator was developed by Søren Johansen (Johansen, 1988). For a discussion of Johansen's method and of other ways to estimate the cointegrating coefficient, see Hamilton (1994, Chapter 20).

Even if economic theory does not suggest a specific value of the cointegrating coefficient, it is important to check whether the estimated cointegrating relationship makes sense in practice. Because cointegration tests can be misleading (they can improperly reject the null hypothesis of no cointegration more frequently than they should, and frequently they improperly fail to reject the null), it is especially important to rely on economic theory, institutional knowledge, and common sense when estimating and using cointegrating relationships.

Extension to Multiple Cointegrated Variables

The concepts, tests, and estimators discussed here extend to more than two variables. For example, if there are three variables, Y_t , X_{1t} , and X_{2t} , each of which is I(1), then they are cointegrated with cointegrating coefficients θ_1 and θ_2 if $Y_t - \theta_1 X_{1t} - \theta_2 X_{2t}$ is stationary. When there are three or more variables, there can be multiple cointegrating relationships. For example, consider modeling the relationship among three interest rates: the 3-month rate, the 1-year rate, and the 5-year rate (R5yr). If they are I(1), then the expectations theory of the term structure of interest rates suggests that they will all be cointegrated. One cointegrating relationship suggested by the theory is $R1yr_t - R90_t$, and a second relationship is $R5yr_t - R90_t$. (The relationship $R5yr_t - R1yr_t$ is also a cointegrating relationship, but it contains no additional information beyond that in the other relationships because it is perfectly multicollinear with the other two cointegrating relationships.)

The EG-ADF procedure for testing for a single cointegrating relationship among multiple variables is the same as for the case of two variables, except that the regression in Equation (16.24) is modified so that both X_{11} and X_{22} are regressors; the critical values for the EG-ADF test are given in Table 16.2, where the appropriate

row depends on the number of regressors in the first-stage OLS cointegrating regression. The DOLS estimator of a single cointegrating relationship among multiple X's involves including the level of each X along with leads and lags of the first difference of each X. Tests for multiple cointegrating relationships can be performed using system methods, such as Johansen's (1988) method, and the DOLS estimator can be extended to multiple cointegrating relationships by estimating multiple equations, one for each cointegrating relationship. For additional discussion of cointegration methods for multiple variables, see Hamilton (1994).

A cautionary note. If two or more variables are cointegrated, then the error correction term can help to forecast these variables and, possibly, other related variables. However, cointegration requires the variables to have the same stochastic trends. Trends in economic variables typically arise from complex interactions of disparate forces, and closely related series can have different trends for subtle reasons. If variables that are not cointegrated are incorrectly modeled using a VECM, then the error correction term will be I(1); this introduces a trend into the forecast that can result in poor out-of-sample forecast performance. Thus forecasting using a VECM must be based on a combination of compelling theoretical arguments in favor of cointegration and careful empirical analysis.

Application to Interest Rates

As discussed earlier, the expectations theory of the term structure of interest rates implies that if two interest rates of different maturities are I(1), then they will be cointegrated with a cointegrating coefficient of $\theta=1$; that is, the spread between the two rates will be stationary. Inspection of Figure 16.2 provides qualitative support for the hypothesis that the 1-year and 3-month interest rates are cointegrated. We first use unit root and cointegration test statistics to provide more formal evidence on this hypothesis, then estimate a vector error correction model for these two interest rates.

Unit root and cointegration tests. Various unit root and cointegration test statistics for these two series are reported in Table 16.3. The unit root test statistics in the first two rows examine the hypothesis that the two interest rates, the 3-month rate (R90) and the 1-year rate (R1yr), individually have a unit root. Two of the four statistics in the first two rows fail to reject this hypothesis at the 10% level, and three of the four fail to reject at the 5% level. The exception is the ADF statistic evaluated for the 90-day Treasury bill rate (-2.96), which rejects the unit root hypothesis at the 5% level. The ADF and DF-GLS statistics lead to different

cointegrating regresship among multiple d lags of the first difps can be performed the DOLS estimator estimating multiple all discussion of coin.).

d, then the error cory, other related varithe same stochastic nplex interactions of trends for subtle realeled using a VECM, trend into the foreice. Thus forecasting ing theoretical argus.

ture of interest rates (1), then they will be, the spread between vides qualitative supates are cointegrated. ide more formal eviction model for these

ointegration test stanit root test statistics o interest rates, the we a unit root. Two of pothesis at the 10% exception is the ADF which rejects the unit stics lead to different

TABLE 16.3 Unit Root and Cointegration Test Statistics for Two Interest Rates				
Series	ADF Statistic	DF-GLS Statistic		
R90	-2.96*	OI-GD States		
R1yr	-2.22	-1.88		
		-1.37		
R1yr — R90	-6.31**	£ £0**		
R1yr - 1.046R90	-6.97**	-5.59**		
890 is the interest rate on 00 day 110 m	0.57			

R90 is the interest rate on 90-day U.S. Treasury bills, at an annual rate, and R1yr is the interest rate on 1-year U.S. Treasury bonds. Regressions were estimated using quarterly data over the period 1962:I-1999:IV. The number of lags in the unit root-test statistic regressions were chosen by AIC (six lags maximum). Unit root test statistics are significant at the *5% or **1% significance level.

conclusions for this variable (the ADF test rejects the unit root hypothesis at the 5% level while the DF-GLS test does not), which means that we must exercise some judgment in deciding whether these variables are plausibly modeled as I(1). Taken together, these results suggest that the interest rates are plausibly modeled as I(1).

The unit root statistics for the spread, $R1yr_t - R90_t$, test the further hypothesis that these variables are not cointegrated against the alternative that they are. The null hypothesis that the spread contains a unit root is rejected at the 1% level using both unit root tests. Thus we reject the hypothesis that the series are not cointegrated against the alternative that they are, with a cointegrating coefficient $\theta = 1$. Taken together, the evidence in the first three rows of Table 16.3 suggests that these variables plausibly can be modeled as cointegrated with $\theta = 1$.

Because in this application economic theory suggests a value for θ (the expectations theory of the term structure suggests that $\theta = 1$) and because the error correction term is I(0) when this value is imposed (the spread is stationary), in principle it is not necessary to use the EG-ADF test, in which θ is estimated. Nevertheless, we compute the test as an illustration. The first step in the EG-ADF test is to estimate θ by the OLS regression of one variable on the other; the result is

$$\widehat{R1yr_t} = 0.361 + 1.046R90_t, \quad \overline{R}^2 = 0.973.$$
 (16.26)

The second step is to compute the ADF statistic for the residual from this regression, \hat{z}_t . The result, given in the final row of Table 16.3, is less than the 1% critical value of -3.96 in Table 16.2, so the null hypothesis that \hat{z}_t has a unit

autoregressive root is rejected. This statistic also points toward treating the two interest rates as cointegrated. Note that no standard errors are presented in Equation (16.26) because, as previously discussed, the OLS estimator of the cointegrating coefficient has a nonnormal distribution and its *t*-statistic is not normally distributed, so presenting standard errors (HAC or otherwise) would be misleading.

A vector error correction model of the two interest rates. If Y_t and X_t are cointegrated, then forecasts of ΔY_t and ΔX_t can be improved by augmenting a VAR of ΔY_t and ΔX_t by the lagged value of the error correction term, that is, by computing forecasts using the VECM in Equations (16.22) and (16.23). If θ is known, then the unknown coefficients of the VECM can be estimated by OLS, including $z_{t-1} = Y_{t-1} - \theta X_{t-1}$ as an additional regressor. If θ is unknown, then the VECM can be estimated using \hat{z}_{t-1} as a regressor, where $\hat{z}_t = Y_t - \hat{\theta} X_t$, where $\hat{\theta}$ is an estimator of θ .

In the application to the two interest rates, theory suggests that $\theta=1$, and the unit root tests support modeling the two interest rates as cointegrated with a cointegrating coefficient of 1. We therefore specify the VECM using the theoretically suggested value of $\theta=1$, that is, by adding the lagged value of the spread, $R1yr_{t-1}-R90_{t-1}$, to a VAR in $\Delta R1yr_t$ and $\Delta R90_t$. Specified with two lags of first differences, the resulting VECM is

$$\widehat{\Delta R90}_{t} = 0.14 - 0.24 \Delta R90_{t-1} - 0.44 \Delta R90_{t-2} - 0.01 \Delta R1yr_{t-1}
(0.17) (0.32) (0.34) (0.39)
+ 0.15 \Delta R1yr_{t-2} - 0.18(R1yr_{t-1} - R90_{t-1})
(0.27) (0.27) (0.27)$$
(16.27)

$$\widehat{\Delta R1yr_{t}} = 0.36 - 0.14 \Delta R90_{t-1} - 0.33 \Delta R90_{t-2} - 0.11 \Delta R1yr_{t-1}
(0.16) (0.30) (0.29) (0.35)
+ 0.10 \Delta R1yr_{t-2} - 0.52(R1yr_{t-1} - R90_{t-1})
(0.25) (0.24)$$
(16.28)

In the first equation, none of the coefficients is individually significant at the 5% level and the coefficients on the lagged first differences of the interest rates are not jointly significant at the 5% level. In the second equation, the coefficient on the lagged first differences are not jointly significant, but the coefficient on the lagged spread (the error correction term), which is estimated to be -0.52, has a t-statistic of -2.17, so it is statistically significant at the 5% level. Although lagged values of the first difference of the interest rates are not useful for predicting future