Assignment Project Exam Help Admeeun Sewagents

Reminder: ps4 self-grading form out, due Friday 10/30

Assignment Project Exam Help

- pset 5 out Thursdaypl@/201ed.uen1/5 (1 week)
- Midterm grades will go up by Monday (don't discuss it yet)
- My Thursday office hours moved to 11am
- Lab this week probabilistic models, ipython notebook examples

Add WeChat powcoder

Add WeChat powcoder CS542 Machine Learning

Assignment Project Exam Help Rayesian Methods

Before, we derived cost functions from maximum likelihood,
 then added regularization terms to these cost functions

Assignment Project Exam Help

• Can we derive regularization directly from probabilistic principles? https://powcoder.com

Add WeChat powcoder

Yes! Use Bayesian methods

Assignment Project Exam Help Add WeChat powcoder

Assignment Project Exam Help Bayesian Methods https://powcoder.com

Add WeChat powcoder Motivation

Problem With Waximum Likelihood: Add WeChappowcoder

- ML estimates are biased
- Especially a problem for small number of samples, or high input dimensionalityment Project Exam Help
- Suppose we sample 2,3,6 points from the same dataset, use ML to fit regression parameters der.com

Problem With Waximum Likelihood: Add Wesherpewegler

 $h(x, \theta_{ML})$

X

 \mathcal{X}

- ML estimates cannot be used to choose complexity of model
 - E.g. supposeigrament to restimate am Help the number of basis functions
 - Choose K=1? https://powcoder.com
 - Or K=15? Add WeChat powcoder
 - ML will always choose K that best fits training data (in this case, K=15)
 - Solution: use a Bayesian method--define a prior distribution over the parameters (results in regularization)

Assignment Project Exam Help Bayesian Frequentist

Frequentist: maximize data likelihood

Bayesian: treat θ as tapes of power in the posterior

$$p(\theta|D) = \frac{\text{Mod We follows oder}}{p(D)}$$

 $p(D|\theta)$ is the data likelihood, $p(\theta)$ is the prior over the model parameters

Assignment Project Exam Help Rawesian Method

Treat θ as random variable, maximize posterior

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\text{Proje(Ot)}}$$
Assignment Proje(Ot)Exam Help

Likelihood $p(D|\theta)$ is the same we before, as in Maximum Likelihood Add We Chat powcoder

Prior $p(\theta)$ is a new distribution we model; specifies which parameters are more likely *a priori*, before seeing any data

p(D) does not depend on θ , constant when choosing θ with the highest posterior probability

Add WeChat powcoder

https://powcoder.com

Add WeChat powcoder intuition

Assignment Project Exam Help AdWilchepscore?

Assignment Project Exam Help Add Wilchepscore?

Assignment Project Exam Help Rediwechistribution

Prior distributions $p(\theta)$ are probability distributions of model parameters based on some a priori knowledge about the parameters. Assignment Project Exam Help

Prior distributions are independent of the observed data.

Coin Tossoxample

What is the probability of heads (θ) ?

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help ABeta Prior for 0

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help ABeta-Prior for θ

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Assignment Project Exam Help Uninformative Prior

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Assignment Project Exam Help Anformative Prior

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Assignment Project Exam Help Cain Toss Experiment

- n=10 coin tosses
- y = 4 number of heads Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help Likelihood Function for the Data

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help Priorwand Likelihood

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$

Assignment Project Exam Help Posterior Distribution

Posterior = Prior × Likelihood

$$P(\theta|y) = \frac{\text{Mother Replicate Exam Help}}{P(\theta|y)} = \frac{\text{https://powcoder.com}}{Beta(\alpha, \beta) \times Binomial(n, \theta)}$$

$$Add \text{ WeChat powcoder}$$

$$= Beta(y + \alpha, n - y + \beta)$$

This is why we chose the Beta distribution as our prior, posterior is also a Beta distribution: conjugate prior.

Assignment Project Exam Help Posterior Distribution

Assignment Project Exam Help Effection Informative Prior

Assignment Project Exam Help Effect And Weninformative Prior

Assignment Project Exam Help Add WeChat powcoder

Bayesian Linear Froject Exam Help Regression https://powcoder.com

Assignment Project Exam Help Bayesian Linear Regression

Let's now apply the Bayesian method to linear regression.

To do that, we Assigned pto langue the Essama Incom variable, design a prior over it. https://powcoder.com

First, review maximanddikelie Control of the contro

Probability of one datatpoint/powcoder.com

$$p(t|x,\theta,\beta) = N(t|h(x),\beta^{-1})$$

Add WeChat powcoder

$$p(t|x,\theta,\beta) = \prod_{i=1}^{m} N(t^{(i)}|h(x^{(i)}), \beta^{-1})$$
 Likelihood function

Maximum likelihood solution

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} p(t|x, \theta, \beta)$$
 $\beta_{ML} = \underset{\beta}{\operatorname{argmax}} p(t|x, \theta, \beta)$

Assignment Project Exam Help What is Buseful for?

- Recall: we assumed observations t are Gaussian given h(x)
- β allows us to write down distribution over t, given new x, called predictive distribution of Exam Help

https://powcoder.com

Add Weckfar you wooder

 β_{ML}^{-1} is the variance of this distribution

Predictive Distribution

Given a new input point x, we can now compute a distribution over the output t:

Define a distribution over parameters

• Define prior distribution over θ as

$$p(\theta) = N(\theta | m_0, S_0)$$

Assignment Project Exam Help

 Combining this with the likelihood function and using results for marginal and topditional condense and the posterior

Add WeChat powcoder
$$p(\boldsymbol{\theta}|\boldsymbol{t}) = N(\boldsymbol{\theta}|\boldsymbol{m}_N, \boldsymbol{S}_N)$$

where

$$\boldsymbol{m}_{N} = \boldsymbol{S}_{N}(\boldsymbol{S}_{0}^{-1}\boldsymbol{m}_{0} + \beta \boldsymbol{X}^{T}\boldsymbol{t})$$
$$\boldsymbol{S}_{N}^{-1} = \boldsymbol{S}_{0}^{-1} + \beta \boldsymbol{X}^{T}\boldsymbol{X}$$

A common choice for prior

A common choice for the prior is

 $p(\boldsymbol{\theta}) = N(\boldsymbol{\theta}|\boldsymbol{\theta}, \alpha^{-1}\boldsymbol{I})$ Assignment Project Exam Helpo

for which

https://powcoder.com

$$m_N = \beta S_N X^T t$$

Add WeChat powcoder
 $S_N^{-1} = \alpha I + \beta X^T X$

Assignment Project Exam Help Intuition: prefer θ to be simple Add WeChat powcoder

For a linear model for regression, $\theta^T x$ θ_1 What do we mean by θ being simple?

Assignment Project Exam Help $p(\theta) = N(\theta | \mathbf{0}, \alpha^{-1} \mathbf{I})$ https://powcoder.com

Namely, put a prior And θ , Which cappures could be lief that θ is around zero, i.e., resulting in a simple model for prediction.

This Bayesian way of thinking is to regard θ as a random variable, and we will use the observed data D to update our prior belief on θ

Assignment Project Exam Help Add WeChat powcoder

Regression Example https://powcoder.com

Assignment Project Exam Help Bayesian Linear Regression Example

0 data points observed

Assignment Project Exam Help Bayesian Linear Regression Example

1 data point observed

Assignment Project Exam Help Bayesian Linear Regression Example

2 data points observed

Assignment Project Exam Help Bayesian Linear Regression Example

20 data points observed

Assignment Project Exam Help Add WeChat powcoder

Assignment PoweResian Hinear https://poweResression

Add WeChat powcoder Prediction

Assignment Project Exam Help Add Welfiel Exam Help Add Welfiel Exam Help

 Now that we have a Bayesian model, how do we use it to make predictions for new data points?

Assignment Project Exam Help Add Welfal powered

- One way is to maximize the posterior to get an estimate of $oldsymbol{ heta}_*$
- Then, plug $oldsymbol{ heta}_*$ into the predictive distribution
- This is known as the maximum a posteriori estimate Assignment Project Exam Help

Assignment Project Exam Help Maximum Appeteriori (MAP)

Output the parameter that maximizes its posterior distribution given the data

θ_{MA} Assignment (Arti) ect Exam Help⁰

Recall: for our prior $\frac{http(\theta)}{2}$

the posterior is Apt Decharage of the posterior is Apt Decharage of the control o

where
$$\boldsymbol{m}_N = \beta \boldsymbol{S}_N \boldsymbol{X}^T \boldsymbol{t}$$
, $\boldsymbol{S}_N^{-1} = \alpha \boldsymbol{I} + \beta \boldsymbol{X}^T \boldsymbol{X}$.

Therefore,
$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta|t) = \left(X^TX + \frac{\alpha}{\beta}I\right)^{-1}X^Ty$$

Same as solution to regularized regression with $\|\boldsymbol{\theta}\|^2$ term.

Note, this is the mode of the distribution

Assignment Project Exam Help Add WeChat powcoder

Add WeChat powcoder Connection to Regularized Linear Regression

Maximizing posterior leads to regularized Add Weshat pawgoder

Joint likelihood of both training data and parameter

$$\begin{split} \log p(\mathcal{D},\theta \) &= \sum \log p(y_n|\boldsymbol{x}_n,\theta \) + \log p(\theta \) \\ &\quad \text{Assignment Project Exam Help} \\ &\quad \frac{\sum_n (\theta^{\text{T}}\boldsymbol{x}_n - y_n)^2}{\text{https://powgoder.com}} \sum_d \frac{1}{2\alpha^{-2}} \, \theta_d^2 + \text{const} \end{split}$$

where β^{-2} is the noise Adahce and that is the properties of the properties of

Maximum a posterior (MAP) estimate: we seek to maximize

$$\theta_{MAP} = \operatorname{arg\,max}_{\theta} \log p(\theta \mid \mathcal{D}) \propto \log p(\mathcal{D}, \theta)$$

that is, the most likely θ conditioning on observed training data \mathcal{D} .

Maximatignesterier feads Helpregularized Add Westatun stioner

Can re-write the optimization in the same form as the **regularized linear regression** cost:

$$Assignment Project Exam Help$$

where $\lambda = \beta^{-2}/\alpha^{-2}$ corresponds to the regularization hyperparameter. https://powcoder.com

- Intuitively, as $\lambda \to A + \infty$, then $\beta^{-2} \to \alpha^{-2}$. That is, the variance of noise if far greater than what our prior model can allow for θ . In this case, our prior would be more accurate than what data can tell us, so we are getting a simple model, where $\theta_{MAP} \to 0$.
- If $\lambda \to 0$, then $\beta^{-2} \ll \alpha^{-2}$, and we trust our data more, so the MAP solution approaches the maximum likelihood solution, i.e. $\theta_{MAP} \to \theta_{ML}$.

Assignment Project Exam Help

A Effect of Jambda

Overfitting is reduced from complex model to simpler one with the help of increasing regularizers

Add WeChat powcoder λ vs. residual error shows the difference of the model performance on

training and testing dataset

Assignment Project Exam Help

Add WeChat powcoder

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help Maximum Apposteriori (MAP)

Output the parameter that maximizes its posterior distribution given the data

$$\theta_{MAP}$$
 Assignment Project Exam Help⁰

https://powcoder.com

 However, sometimes we may want to hedge our bets and average (integrate) over all possible parameters, e.g. if the posterior is multi-modal

Assignment Project Exam Help Bayesiand Redictive Distribution

• Predict t for new values of x by integrating over θ :

$$p(t|x_{s}t_{i}g_{n}\beta_{i}e_{\overline{n}}t)$$
 Project Person the poly $d\theta$

where

Add WeChat powcoder
$$\sigma_N^2(x) = \frac{1}{\beta} + x^T S_N x$$

Assignment Project Exam Help. What does it look like? Add WeChat powcoder

Compare to Maximum Likelihood:

$$p(t|x, \boldsymbol{x}, \boldsymbol{t}) = N(t|m_N^T x, \sigma_N^2) \qquad p(t|x, \theta_{ML}, \beta_{ML}) = N(t|\theta_{ML}^T x, \beta_{ML}^{-1})$$

Assignment Project Exam Help Add Weenat powers

Support Vector Machines I

maximum margin methods; support vector Assignment Project Exam Help machines; primal vs dual SVM formulation; Hinge loss vs. cross-entropy loss

Add WeChat powcoder

Reading: Bishop Ch 7.1.1-7.1.2