Econometrics - Week 2

William Schill

2/3/2017

In [1]: import numpy as np
 import pandas as pd
 from matplotlib.pyplot import *
 import statsmodels.api as sma
 import statsmodels.stats as sms
 import seaborn as sns
%matplotlib inline

In [2]: path = 'C:\\Users\\SchillW\\Documents\\Econ_Coursera\\Wk2\\'
df = pd.read_excel(path+'TestExer2-GPA-round2.xls')

In [3]: df.head()

Out[3]:

		Observation	FGPA	SATM	SATV	FEM
0)	1	2.518	4.0	4.0	1
1	1	2	2.326	4.9	3.1	0
2	2	3	3.003	4.4	4.0	1
(7)	3	4	2.111	4.9	3.9	0
4	1	5	2.145	4.3	4.7	0

```
In [4]: xa = df['SATV']
    ya = df['FGPA']
    moda = sma.OLS(ya,sma.add_constant(xa))
    fita = moda.fit()
    print fita.summary()
```

OLS Regression Results

= Dan Vandaklar		FC	ъ.	D			0.00
Dep. Variable: 8		FG	iPΑ	R-squa	ared:		0.00
Model:		C	LS	Adj. F	R-squared:		0.00
7 Method:		Least Squar	es	F-stat	tistic:		5.20
1 Date:	Fr	i, 27 Jan 20	17	Prob ((F-statistic):		0.022
9 Time:		10:27:	38	Log-Li	ikelihood:		-388.4
4 No. Observations	5:	6	609	AIC:			780.
9 Df Residuals:		6	607	BIC:			789.
7 Df Model:			1				
			_				
_							
Covariance Type:	:	nonrobu	IST				
Covariance Type:				:=====		========	======
	-=====		====				
 = t.]	coef	std err	====	t	P> t	[95.0% Co	nf. In
 = t.]	coef	std err	====	t		[95.0% Co	nf. In
======================================	coef	std err		t	P> t	[95.0% Co	nf. In
======================================	coef 	std err 		t	P> t	[95.0% Co	nf. In 2.74
======================================	coef 2.4417 3.0631	std err 0.155 0.028	 15	t 3.747 2.280	P> t 0.000 0.023	[95.0% Col	nf. In 2.74 0.11
======================================	coef 2.4417 3.0631	std err 0.155 0.028	 15	t 747 280	P> t 0.000 0.023	[95.0% Col	nf. In 2.74 0.11
======================================	coef 2.4417 3.0631	std err 0.155 0.028	 15 2	t 747 280 	P> t 0.000 0.023	[95.0% Col	nf. In 2.74 0.11 ======
======================================	coef 2.4417 3.0631	std err 0.155 0.028		t 747 280 	P> t 0.000 0.023 ====================================	[95.0% Col	nf. In 2.74 0.11 ======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

(a)(i) The coefficient is 0.0631 amd the p-value is 0.023. Assuming H0 is that SATV has a significant effect on FGPA, we cannot reject the Null to the 95% confidence interval.

```
In [5]:
       b = fita.params
        FGPA1 = np.dot(sma.add_constant(xa),b.T)
        FGPA2 = np.dot(sma.add constant((xa+1)),b.T)
        ciFGPA1 = sms.weightstats.zconfint(FGPA1, alpha=0.05)
        ciFGPA2 = sms.weightstats.zconfint(FGPA2, alpha=0.05)
        print "Confidence Interval for FGPA is :", ciFGPA1
        print "Confidence Interval for FGPA with SATV+1 is :", ciFGPA2
       Confidence Interval for FGPA is: (2.7894274148855658, 2.7961653601554843)
       Confidence Interval for FGPA with SATV+1 is : (2.8525132602634118, 2.85925120
       55333303)
In [6]: # print "Mean , Stand Dev of FGPA1 = ", np.mean(FGPA1), " , ", np.std(FGPA1)
        # print "Mean , Stand Dev of FGPA2 = ", np.mean(FGPA2), " , ", np.std(FGPA2)
        print "\n=======\n"
        print "Increase of 1 Point in SATV has ",
        (np.mean(FGPA2)/np.mean(FGPA1)-1.0)*100.0, '% effect on mean FGPA'
        _____
```

Increase of 1 Point in SATV has 2.25887736248 % effect on mean FGPA

(a)(ii) The confidence interval for the 1 point increase can be seen above. A 1 point change to SATV is approximately a 2.26% increase in FGPA.

```
In [7]: xb = df.drop(['FGPA','Observation'],axis=1)
   yb = ya
   modb = sma.OLS(yb,sma.add_constant(xb))
   fitb = modb.fit()
   print fitb.summary()
```

OLS Regression Results

=========	=====		======	=====	========	=======	======
= Dep. Variable:			FGPA	R-s	quared:		0.08
Model:			OLS	Adj	. R-squared:		0.07
Method:		Least	Squares	F-s	tatistic:		18.2
Date:		Fri, 27 J	an 2017	Pro	b (F-statistic):	2.41e-1
Time: 7		1	0:27:38	Log	-Likelihood:		-364.6
No. Observation	ns:		609	AIC	:		737.
Df Residuals:			605	BIC	:		755.
Df Model:			3				
Covariance Typ	e:	no	nrobust				
	=====		======	=====	========	=======	======
=	coef	f std e	err	t	P> t	[95.0% Co	nf. In
t.]							
- const	1.5576	0.2	16	7.205	0.000	1.133	1.98
1 SATM	0.1727	7 0.0	32	5.410	0.000	0.110	0.23
5 SATV 9	0.0142	0.0	28	0.507	0.612	-0.041	0.06
FEM 4	0.2003	0.0	37	5.358	0.000	0.127	0.27
	======		:=====:	=====	========	========	======
= Omnibus: 2			7.757	Dur	bin-Watson:		1.91
Prob(Omnibus):			0.021	Jar	que-Bera (JB):		5.72
7 Skew:			0.118	Pro	b(JB):		0.057
<pre>1 Kurtosis: 3.</pre>			2.588	Con	d. No.		10
=======================================	=====		======	=====	========	========	======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

(b)(i) The coefficient are listed above and assuming the H0 is that the variables have a significant impact of FGPA, we can reject the Null for SATV when SATM and FEM are included.

```
In [8]: b2 = fitb.params
    FGPA3 = np.dot(sma.add_constant(xb),b2.T) #prediction

xb2 = xb.copy()
    xb2['SATV'] = xb2['SATV']+1.0
    FGPA4 = np.dot(sma.add_constant(xb2),b2.T) #prediction

ciFGPA3 = sms.weightstats.zconfint(FGPA3, alpha=0.05)
    ciFGPA4 = sms.weightstats.zconfint(FGPA4, alpha=0.05)

print "Confidence Interval for FGPA is :", ciFGPA3
    print "Confidence Interval for FGPA with SATV+1 is :", ciFGPA4
Confidence Interval for FGPA is : (2.7822678481821517, 2.8033249268589073)
```

Confidence Interval for FGPA is: (2.7822678481821517, 2.8033249268589073) Confidence Interval for FGPA with SATV+1 is: (2.7964297447224977, 2.81748682 33992534)

Increase of 1 Point in SATV has 0.507086610525 % effect on mean FGPA

(b)(ii): The confidence interval for FGPA with a 1 point increase in SATV for the model with more variables is seen above. The effect of a 1 point increase here is 0.51% which makes sense as the variable has a far less significant impact when accompanied by the other variables.

```
In [10]: corchk = df.drop(['Observation'], axis=1)
    corchk.corr()
```

Out[10]:

	FGPA	SATM	SATV	FEM
FGPA	1.000000	0.195040	0.092167	0.176491
SATM	0.195040	1.000000	0.287801	-0.162680
SATV	0.092167	0.287801	1.000000	0.033577
FEM	0.176491	-0.162680	0.033577	1.000000

```
In [11]: sns.heatmap( corchk.corr())
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0xa60fa90>

(c) SATM and SATV have a 0.288 correlation which is lowering the significance of SATV in part b(ii). SATV could be dropped with out any significant effect on the model.

Comparing F tests for regression a and regression b:

```
In [98]: g = 3.0-1.0 ##difference in number of parameters so 3 versus 1
       n = np.shape(xb)[0]
       k = np.shape(xb)[1] + 1 #adding in the constant
       F = ((fitb.rsquared - fita.rsquared) / g) / ( (1-fitb.rsquared)/(n-k) )
       Fcheck = (fitb.ess - fita.ess)/(fitb.centered_tss - fitb.ess) * (n-k)/g
       print "\n=========\n"
       print "Manual calculation of F test"
       print F
       print Fcheck
       print "g=",g, " n=",n, " k=",k
       print "\n=========\n"
       print "Sqaure root of F = ", np.sqrt(F)
       _____
       Manual calculation of F test
       24.5651939993
       24.5651939993
       g = 2.0
            n= 609
                    k=4
       _____
       Sqaure root of F = 4.95632868153
In [99]:
       print "\n========\n"
       print "statsmodels F test calculation for comaprison"
       F2 = fitb.compare_f_test(fita)
       print F2
       print np.sqrt(F2[0])
       ______
       statsmodels F test calculation for comaprison
       (24.565193999316627, 5.5276752534971204e-11, 2.0)
       4.95632868153
```

d(i):

The calculation for the F test (using part against part b) shows that the F value exceeds the critical value of 3.9 and we can reject the Null hypothesis. We can confirm this using statsmodels method built into the fit as shown above.

d(ii):

Analytically, it can be shown that the F-test is approximately equal to the t-test squared. However in each calculation, this was unachievable. The statsmodels method derived a value of 8.66E-13 is close to the numerical calculation seen below that of 7.88E-13. In no way was I able to get a value of 4.956 for the t-test.

```
In [97]: sms.weightstats.ttest_ind(FGPA3,FGPA1)
Out[97]: (8.6611425410076572e-13, 0.9999999999911, 1216.0)
```

```
In [93]: top = np.mean(FGPA3) - np.mean(FGPA1)
    s = np.sqrt( (np.std(FGPA3)**2 + np.std(FGPA1)**2)/2 )
    t = top / (s * np.sqrt( 2.0/len(FGPA3) ))
    t2 = top / np.sqrt( np.std(FGPA3)**2/len(FGPA3) + np.std(FGPA1)**2/len(FGPA1)
    )

In [94]: print t, t2
    7.88023842255e-13 7.88023842255e-13
In []:
```