THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE

MIDTERM EXAMINATION FALL 2018

CPSC 313 L01

NAME: _			
	Tutorial Section	(please circle one):	
T01	T02	T03	T04

(Wed 12:00)

(Wed 17:00)

Instructions:

• Answer all questions on the exam paper in the space provided.

(Mon 17:00)

• Show all your work.

(Mon 12:00)

- Use the last two pages to continue answers if you need more space, or as rough paper.
- No aids are allowed.
- Total marks: 85+1 bonus point. Maximum attainable score: 86/85 (101.2 percent)

Name:	ID:

Qu	estion	Score	Out Of
1.	Multiple Choice Questions		5
2.	True/False Questions		5
3.	Definitions and Short Answer Questions		10
4.	Decision Problems		8
5.	NFAs and DFAs		20
6.	Pumping Lemma for Regular Languages		5
7.	Regular Expressions, DFAs, CFGs		14+1
8.	Context-Free Grammars and Languages		8
9.	Chomsky Normal Form		10
	Total:		85

Name:	ID:

1. [5 points] Multiple Choice Questions

For each question, check exactly one answer.

- (a) [1 point] Which of the following statements is true about the transition function of an NFA over some alphabet Σ ?
 - \circ It can take on the value \emptyset (the empty set).
 - \circ For some states q, the empty string ε may be a valid input, i.e. $\delta(q,\varepsilon)$ is defined.
 - Both these statements are true.
 - Neither of these statements is true.
- (b) [1 point] Consider the language $L = \{w \in \{0,1\}^* \mid w \text{ has odd length and ends in } 01 \}$. Which of the following is true?
 - \circ L is regular, but not context-free.
 - \circ L is context-free, but not regular.
 - \circ L is regular and context-free.
 - \circ L is neither regular nor context-free.
- (c) [1 point] Which of the following statements holds for the language $L = \{10^n 1^{2n} \mid n \ge 0\}$?
 - There exists a DFA that accepts it.
 - There exists an NFA that accepts it.
 - There exists a regular expression that describes it.
 - None of the above is true.
- (d) [1 point] Which of the following statements is true about a regular language?
 - Its complement is regular.
 - Its Kleene closure is regular.
 - Both these statements are true.
 - Neither of these statements is true.
- (e) [1 point] Check the correct continuation of the statement "A context-free grammar G is ambiguous if and only if ..."
 - \circ every string in L(G) has more than one parse tree in G.
 - \circ there exists a string in L(G) that has more than one parse tree in G.
 - \circ every string in L(G) has more than one derivation in G.
 - \circ there exists a string in L(G) that has more than one derivation in G.

Name: _____

ID:_____

 2. [5 points] True/False Questions Answer every questions with TRUE or FALSE. No explanations are required. (a) [1 point]. Every finite language is regular.
(b) [1 point] Every context-free language contains the empty string.
(c) [1 point] The union of two context-free languages is context-free.
(d) [1 point] No grammar in Chomsky Normal Form is ambiguous.

(e) [1 point] The language of the regular expression $e=((a\cup b)^*c(a\cup b)^*cc)^*$ over the

alphabet $\Sigma = \{a, b, c\}$ contains the string abccabcc.

Name: _____

ID:_____

3. [10 points] Definitions and Short Answer Questions

(a) [2 points] Formally define what it means for a problem to be a decision problem.

(b) [2 points] Formally define the Kleene closure L^* of a language L over some alphabet Σ .

(c) [2 points] Write down a regular expression for the language accepted by the following NFA over the alphabet $\Sigma = \{a, b\}$:

(d) [2 points] Give (without proof or explanation) an example of a context-free language over the alphabet $\Sigma = \{0, 1\}$ that is not regular.

(e) [2 points] Consider the grammar G over the alphabet $\Sigma = \{a, b\}$ with only one variable S and the rules $S \to aS \mid aSb \mid \varepsilon$. Give a set-theoretic description of L(G).

Name:	ID:
4. [8 points] Decision Problems	
(a) [4 points] For each of the decision probl of the language of the problem.	ems stated below, give a set-theoretic description
i. Input: a grammar G and a langual Output: "Yes" iff $L(G) = L$	age L
ii. INPUT: a DFA M and a positive in OUTPUT: "Yes" iff M has at least	
(b) [4 points] For each of the languages de has that language.	scribed below, state the decision problem which
i. The language of all trees of height	≤ 10
Input:	
Output:	
ii. The language $L = \{0^n 1^n \mid n \ge 0\}$ of	over the alphabet $\Sigma = \{0, 1\}$
Input:	
OUTPUT:	

Name:______ ID:____

5. [20 points] NFAs and DFAs

Consider the NFA N defined over the alphabet $\Sigma=\{0,1\}$ with the following transition diagram.

(a) [3 points] Give a formal description of N.

- (b) [2 points] Write down the ε -closures of the state sets i. $\{A\}$:
 - ii. $\{A, C\}$:

Name:	ID:

(c) [8 points] Give a formal description of a DFA M that is equivalent to N, (i.e. recognizes the same language as N). Continue on the next page if necessary. For your convenience, here is the diagram of the NFA N once more.

Name:		ID:	
() [1	s] Write down all the reachable state ass, there should only be two reacha	· · ·	l the algorithm

(e) [3 points] Draw a diagram of M with all the non-reachable states removed.

(f) [2 points] What is the language accepted by M? Just state your answer, no proof required.

Name:	ID:

6. [5 points] **Pumping Lemma for Regular Languages** Use the Pumping Lemma for regular languages to prove that the language

$$L = \{w0w \mid w \in \Sigma^*\}$$

over the alphabet $\Sigma = \{0, 1\}$ is not regular.

For your convenience, here is the Pumping Lemma for regular languages.

Pumping Lemma for Regular Languages. Let L be a regular language over some alphabet Σ . Then there exists a positive integer p (the *pumping length* of L) such that every string $s \in L$ of length at least p can be written as s = xyz with strings $x, y, x \in \Sigma^*$ such that

- 1. $|xy| \leq p$;
- 2. $y \neq \varepsilon$;
- 3. $xy^iz \in L$ for all $i \ge 0$.

Name:	ID:	

- 7. [14 points plus 1 bonus point] Regular Expressions, DFAs, Context-Free Grammars Let L be the language of the regular expression $e = (a \cup b)^*c^*$ over the alphabet $\Sigma = \{a, b, c\}$.
 - (a) [2 points] Give a set-theoretic description of L. You need not prove your answer correct.

(b) [4 points] Draw a diagram of a DFA M with at most 3 states that accepts L.

(c) [4 points plus 1 bonus point] Give a context-free grammar G such that L(G) = L. Carefully write down the variables and rules, and use the letter S for your starting variable. You need not prove your answer correct. Solutions with at most 2 variables will receive one bonus point. Continue your solution on the next page if necessary.

Name:	ID:	

(Continued from Problem 7 (c))

(d) [2 points] Give a left-most derivation for the string $w = abacc \in L$ using your grammar of part (d).

(e) [2 points] Draw a parse tree for the string $w = abc \in L$ using your grammar of part (d).

Name:	ID:

8. [8 points] Context-Free Grammars and Languages

Consider the context-free grammar $G=(V,\Sigma,R,S)$ with $V=\{S,A\},\ \Sigma=\{0,1\},$ and R contains the rules

$$\begin{array}{ccc} S & \rightarrow & 0A0 \mid 1A1 | \varepsilon \\ A & \rightarrow & 0A \mid 1A \mid \varepsilon \end{array}$$

Formally prove that

$$L(G) = \{ w \in \Sigma^* \mid w \text{ starts and ends with the same symbol} \}.$$

Continue your proof on the next page if necessary.

(Note that $\varepsilon \in L$: it is vacuously true that ε starts and ends with the same symbol since it has no symbols.)

You may use without proof the following:

Lemma. Let $G = (V', \Sigma, R', A)$ where $V' = \{A\}$ and R' consists of the rules

$$A \to 0A \mid 1A \mid \varepsilon$$
.

Then $L(G') = \Sigma^*$.

CPSC 313 (cont'd.)	Page XIV of XVIII	
Name:	ID:	
(Continued from Problem 8)		

Name:	ID:

9. [10 points] Chomsky Normal Form Consider the grammar $G = (V, \Sigma, R, S)$ where $V = \{S, A, B\}, \Sigma = \{a, b\},$ and R contains the following rules:

$$\begin{array}{ccc} S & \rightarrow & AB \mid A \\ A & \rightarrow & aBb \mid \varepsilon \\ B & \rightarrow & aB \mid bB \mid a \mid b \end{array}$$

Convert G to Chomsky Normal Form. Carefully describe all the steps you are taking, which new variables and/or rules you are introducing, which rules you are removing or replacing, etc.

Note that S does not appear on the right-hand side of any rule, so you can (and should) skip step 1 of the Chomsky Normal Form conversion algorithm discussed in class.

Continue your work on the next page(s) if necessary.

CPSC 313 (cont'd.)	Page XVI of XVIII	
Name:	ID:	
(Continued from Problem 9)		

CPSC 313 (cont'd.)	Page XVII of XVIII	
Name:	ID:	
(Extra blank page)		

CPSC 313 (cont'd.)	Page XVIII of XVIII	
Name:	ID:	
(Extra blank page)		