CS2040S Data Structures and Algorithms

Welcome!

Summary

Monday:

Algorithm Analysis:

- Asymptotic notation
- Models of computation

Binary Search:

- Finding an element in array.
- Invariants

Peak Finding

- Finding a (local) maximum
- 1d-algorithm
- 2d-algorithm

Today: Optimization

Finding a maximum / minimum

- Key aspect of machine learning
- Binary search isn't always good

Newton's method

Second order approach

Gradient descent

• First order approach

Announcements / Reminders

Problem sets:

Problem Set 1 was due Monday.

Problem Set 2 is due next Thursday. (Happy Lunar New Year!)

Optional Practice Problems

- Good practice!
- Make sure you understand the techniques.
- Extra coding experience.
- Extra algorithm experience.

Announcements / Reminders

Tutorials:

Read your e-mail / announcements and follow instructions.

A mutually-agreed swap is approved by default.

Recitations:

We will get to it, after tutorials are resolved.

Puzzle of the Week

There are N students in CS2040S and K of them are spies. Your job is to identify all the spies.

Puzzle of the Week

To catch a spy:

You can send some students on a mission.

If all K spies are on the mission, they will meet.

You learn if the meeting occurred or not.

You learn nothing else.

Puzzle of the Week

Find:

The best strategy you can to catch all the spies. (Write a program!)

Announcements / Reminders

Competition:

Find the spies!

Open on Coursemology now:

- Optional.
- Write a program to implement your best spy catching strategy.
- We will test it on various spy rings.
- Fewest queries / fewest dollars wins!
- (And a small bonus for participating.)

Binary Search

O(log n) time

Sorted array: A [1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n-1
    while begin < end do:</pre>
          mid = begin + (end-begin)/2;
          if key <= A[mid] then</pre>
                end = mid
          else begin = mid+1
    return A[begin]
```

Peak Finding

Input: Some function f(x)

Output: local maximum

Peak Finding

O(log n) time

Input: Some array A[1..n]

FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] then

FindPeak (A[n/2+1..n], n/2)

else if A[n/2-1] > A[n/2] then

FindPeak (A[1..n/2-1], n/2)

2D Algorithm

O(m + n) time

Divide-and-Conquer

- Find MAX element on border + cross.
- 2. If found a peak, DONE.
- 3. Else:

Recurse on quadrant containing element bigger than MAX.

Binary Search

Sorted array: A[1..n]

Not just for searching arrays:

Assume a complicated function:

int complicatedFunction(int s)

Assume the function is always increasing:

complicatedFunction(i) < complicatedFunction(i+1)</pre>

Find the minimum value j such that:

complicatedFunction(j) > 100

Finding a maximum / minimum

Convex / concave function : f[1..n]

Problem Set 2

Not just for arrays:

Assume a complicated function:

int complicatedFunction(int s)

- Assume the function is convex (or concave)
- Find the maximum / minimum value:

min_j(complicatedFunction(j))

Why function maximization?

Two short answers:

Optimization is everywhere

- Maximize revenue
- Minimize cost
- Minimize time
- •

Why function maximization?

Two short answers:

Optimization is everywhere

- Maximize revenue
- Minimize cost
- Minimize time
- •

Machine learning

- All about optimization!
- Find the best model for your data
- Find the best neural network for your problem.

Classifier:

Input:

- A set of data points
- Each point has a label: 0 or 1

Output:

A function that classifies points.

Linear classifier:

Idea:

- Find a line: ax + by = c
- To classify point (x_i, y_i):

if
$$(ax_i + by_i > c)$$
: BLUE

if
$$(ax_i + by_i < c)$$
: RED

Linear classifier:

Idea:

- Find a line: ax + by + c = 0
- To classify point (x_i, y_i) :

if
$$(ax_i + by_i + c > 0)$$
: BLUE

if
$$(ax_i + by_i + c < 0)$$
: RED

Question:

Given data $(x_1, y_1, z_1), (x_2, y_2, z_1), ..., (x_n, y_n, z_1)$

Find best values of (a, b, c)

color for point (x,y)

Linear classifier:

Idea:

Find a line: ax + by + c = 0

One way to make that precise:

Given data
$$(x_1, y_1, z_1), (x_2, y_2, z_1), ..., (x_n, y_n, z_1)$$

$$\max_{a,b,c} \prod_{i=1}^{n} h_{a,b,c}(x_i, y_i)^{z_i} \cdot (1 - h_{a,b,c}(x_i, y_i)^{1-z_i})$$

Likelihood function:

h(x, y) = probability that point (x,y) is blue/1.1 – h(x,y) = probability that point (x,y) is red/0.

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

Given data $(x_1, y_1, z_1), (x_2, y_2, z_1), ..., (x_n, y_n, z_1)$

$$\max_{a,b,c} \prod_{i=1}^{n} h_{a,b,c}(x_i, y_i)^{z_i} \cdot (1 - h_{a,b,c}(x_i, y_i)^{1-z_i})$$

<u>Likelihood function:</u>

h(x, y) = probability that point (x,y) is blue/1.1 – h(x,y) = probability that point (x,y) is red/0.

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

Given data $(x_1, y_1, z_1), (x_2, y_2, z_1), ..., (x_n, y_n, z_1)$

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

Log-Likelihood function: log of the likelihood function.

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

Given data $(x_1, y_1, z_1), (x_2, y_2, z_1), ..., (x_n, y_n, z_1)$

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

Logistic Regression

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

Solution: binary search?

Finding a maximum / minimum

Convex / concave function : f[1..n]

What happens in d dimensions?

Dimension	Time
1	O(log n)
2	O(n)
3	$O(n^2)$
•••	•••
d	O(n ^{d-1})

3	4	5	7
2	8	12	9
1	4	8	7
0	2	6	3

Maximum distance between two points in a d-dimensional cube with side length n::

O(dn)

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

Solution: binary search?

- → Slow (as dimensions get large).
- → Not very robust to noise.

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

Solution: set (partial) derivatives to zero

- → Hard algebraically.
- → Can approximate numerically
- → E.g., Newton's method

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] x_i = 0$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] y_i = 0$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] = 0$$

Choice of h function?

$$h_{a,b,c}(x,y) = \frac{1}{1 + e^{-(ax+by+c)}}$$

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

Solution: approximate directly

- → Hard algebraically.
- Can approximate numerically
- → E.g., gradient descent

Summary

Today: Optimization

Finding a maximum / minimum

- Key aspect of machine learning
- Binary search isn't always good

Newton's method

Second order approach

Gradient descent

First order approach

When I say:

"Find x s.t.
$$f(x) = a^3 - x^{1/3} = 0$$
"

You can hear:

"Find parameters so that the partial derivatives of the log-likelihood function equal 0"

When I say:

"Find x to minimize
$$f(x) = 2x^2 + 4x + 9$$
"

You can hear:

"Find parameters to maximize the log-likelihood function"

```
float HIDDEN(float number)
    int i;
    float x2, y;
    float threehalfs = 1.5f;
    x2 = number*0.5f;
    y = number;
    i = Float.toIntBits(number); // evil floating bit level hacking
    i = 0x5f3759df - (i >> 1); // what the *bleep*?
    y = Float.intBitsToFloat(i);
    y = y * (threehalfs - (x2*y*y)) // first iteration
    return y;
```

```
float HIDDEN(float number)
    int i;
    float x2, y;
                                         Original comments...
    float threehalfs = 1.5f;
    x2 = number*0.5f;
    y = number;
    i = Float.toIntBits(number); // evil floating bit level hacking
    i = 0x5f3759df - (i >> 1); // what the *bleep*?
    y = Float.intBitsToFloat(i);
    y = y * (threehalfs - (x2*y*y)) // first iteration
    return y;
```

```
float HIDDEN(float number)
                                          Fake java:
                                           Returns bit representation of a float.
     int i;
                                           IEEE float:
     float x2, y;
                                              1 sign bit
                                             8 (biased) exponent bits
     float threehalfs = 1.5f;
                                              23 significand bits
     x2 = number*0.5f;
     y = number;
     i = Float.toIntBits(number); // evil floating bit level hacking
     i = 0x5f3759df - (i >> 1); // what the *bleep*?
     y = Float.intBitsToFloat(i);
    y = y * (threehalfs - (x2*y*y)) // first iteration
     return y;
                                            Fake java:
                                            Turns bits back into a float.
```

```
float HIDDEN(float number)
    int i;
    float x2, y;
                                         Magic number!
    float threehalfs = 1.5f;
    x2 = number*0.5f;
    y = number;
    i = Float.toIntBits(number);  // evil floating bit level hacking
    i = 0x5f3759df - (i >> 1); // what the *bleep*?
    y = Float.intBitsToFloat(i);
    y = y * (threehalfs - (x2*y*y)) // first iteration
    return y;
```

```
float HIDDEN(float number)
    int i;
    float x2, y;
    float threehalfs = 1.5f;
    x2 = number*0.5f;
    y = number;
    i = Float.toIntBits(number); // evil floating bit level hacking
    i = 0x5f3759df - (i >> 1); // what the *bleep*?
    y = Float.intBitsToFloat(i);
    y = y * (threehalfs - (x2*y*y)) // first iteration
    return y;
```

Newton's Method

Goal:

Find a root of f(x) = 0 via successive approximation:

Newton's Method

Goal:

Note: for this example in one dimension, we could use binary search!

Find a root of f(x) = 0 via successive approximation:

Goal:

Goal:

Goal:

Goal:

Goal:

Goal:


```
findRoot(float x, float error) {
       diff = error+1;
       while (diff > error){
          float f = function(x);
          float df = derivative(x);
          float newX = x - (f/df);
                                                                               tangent line
          diff = |x - newX|;
                                                                               at x<sub>i</sub>
          x = newX;
       return x
                                                                              x-intercept
                                                                              of tangent:
                                                                              X_{i+1}
                                                     y = f(x_i) + f'(x_i)(x - x_i)
```

```
findRoot(float x, float error) {
      diff = error+1;
                                                    How accurate an answer do you want?
      while (diff > error){←
          float f = function(x);
          float df = derivative(x);
          float newX = x - (f/df);
                                                                             tangent line
          diff = |x - newX|;
                                                                              at x<sub>i</sub>
          x = newX;
      return x
                                                                            x-intercept
                                                                             of tangent:
                                                                            X_{i+1}
                                                    y = f(x_i) + f'(x_i)(x - x_i)
```


Example: compute a^{1/3}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Function: $f(x) = a^{1/3} - x$

Derivative: f'(x) = -1

Example: compute a^{1/3}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Function: $f(x) = a^{1/3} - x$

Derivative: f'(x) = -1

Update: $x_{i+1} = x_i + (a^{1/3} - x_i) = a^{1/3}$

Correct, but not very useful...

Example: compute a^{1/3}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Function: $f(x) = a - x^3$

Derivative: $f'(x) = -3x^2$

Example: compute a^{1/3}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Function: $f(x) = a - x^3$

Derivative: $f'(x) = -3x^2$

Update:
$$x_{i+1} = x_i - \frac{a - x_i^3}{-3x_i^2} = x_i + \frac{a}{3x_i^2} - (2/3)x_i$$
$$= \frac{2x_i}{3} + \frac{a}{3x_i^2}$$

How fast does it converge?

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 $x_{i+1} = \frac{2x_i}{3} + \frac{a}{3x_i^2}$

Function: $f(x) = a - x^3$

Derivative: $f'(x) = -3x^2$

Quadratic convergence:

Every iteration, the number of correct digits doubles.

Iteration	Value
0	2
1	2 .675000000000003
2	2.5 333260546772647
3	2.525 1076782078234
4	2.525080872118423
5	2.525080871833849
TRUE:	2.525080871833849

How fast does it converge?

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 $x_{i+1} = \frac{2x_i}{3} + \frac{a}{3x_i^2}$

Function: $f(x) = a - x^3$

Derivative: $f'(x) = -3x^2$

Quadratic convergence:

Every iteration, the number of correct digits doubles.

d digits of accuracy

O(log d) iterations

error $\leq 10^{-67}$

7 iterations

Convergence analysis

Assume:

$$\epsilon_i < 1$$

$$x_i = a^{1/3}(1+\epsilon_i)$$

Newton's Method iteration

$$x_{i+1} = \frac{2x_i}{3} + \frac{a}{3x_i^2}$$

$$= \frac{2a^{1/3}(1+\epsilon_i)}{3} + \frac{a}{3a^{2/3}(1+\epsilon_i)^2}$$

plug in approximation assumption

$$= \frac{2a(1+\epsilon_i)^3 + a}{3a^{2/3}(1+\epsilon_i)^2}$$

algebra

$$= a^{1/3} \cdot \left[\frac{2(1+\epsilon_i)^3 + 1}{3(1+\epsilon)^2} \right]$$

$$= a^{1/3} \cdot \left[\frac{3(1+\epsilon)^2 + 2(1+\epsilon_i)^3 - 3(1+\epsilon)^2 + 1}{3(1+\epsilon)^2} \right]$$

$$= a^{1/3} \cdot \left[1 + \frac{2(1+\epsilon_i)^3 - 3(1+\epsilon)^2 + 1}{3(1+\epsilon)^2} \right]$$

$$= a^{1/3} \cdot \left[1 + \frac{2\epsilon_i^3 + 3\epsilon_i^2}{3(1+\epsilon)^2} \right]$$

quadratic convergence

$$\epsilon_{i+1} = \frac{2\epsilon_i^3 + 3\epsilon_i^2}{3(1+\epsilon)^2}$$

$$\leq \left(\frac{5}{3}\right)\epsilon^2$$

How fast does it converge?

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 $x_{i+1} = \frac{2x_i}{3} + \frac{a}{3x_i^2}$

Function: $f(x) = a - x^3$

Derivative: $f'(x) = -3x^2$

Quadratic convergence:

Every iteration, the number of correct digits doubles.

General conditions for quadratic convergence:

Function f continuously differentiable, derivative nonzero at root, has a second derivative at root.

Goal:

Newton's Method Part 2

Goal:

Find the minimum value of f(x) via successive approximation

Newton's Method Part 2

Goal:

Find the minimum value of f(x) via successive approximation:

Reduction:

Find a root of f'(x) = 0.

Newton's Method Part 2

Goal:

Find the minimum value of f(x) via successive approximation:

Reduction:

Find a root of f'(x) = 0.

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

Newton's Method Continued

Example:

Find the maximum value of f(x) via successive approximation:

$$\max_{a,b,c} \sum_{i=1}^{n} z_i \log(h_{a,b,c}(x_i, y_i)) + (1 - z_i) \log(1 - h_{a,b,c}(x_i, y_i))$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] x_i = 0$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] y_i = 0$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] = 0$$

Newton's Method Continued

What about higher dimensions?

Find the minimum value of f(x) via successive approximation:

Reduction:

Find a root of f'(x) = 0.

$$x_{i+1} = x_i - (\nabla f(x_i))(\nabla^2 f(x_i))^{-1}$$

derivative → gradient (vector)

second derivative → Hessian (matrix) (division → inverse)

Newton's Method Summary

Pros:

Fast convergence.

Relatively simple.

Compare to binary search:

- O(d^c) cost per iteration, d is the dimension
- Quadratic convergence → few iterations

Cons:

Slow computation in higher dimensions.

Requires access to derivative, second derivative of f.

Example problem:

Computing the inverse of the Hessian...

Summary

Today: Optimization

Finding a maximum / minimum

- Key aspect of machine learning
- Binary search isn't always good

Newton's method

Second order approach

Gradient descent

First order approach

When I say:

"Find x s.t.
$$f(x) = a^3 - x^{1/3} = 0$$
"

You can hear:

"Find parameters so that the partial derivatives of the log-likelihood function equal 0"

When I say:

"Find x to minimize
$$f(x) = 2x^2 + 4x + 9$$
"

You can hear:

"Find parameters to maximize the log-likelihood function"

Newton's Method Gradient Descent

Goal:

Find the minimum value of f(x) via successive approximation:

Reduction:

Find a root of f'(x) = 0.

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

Newton's Method Gradient Descent

Basic idea of Newton's Method:

- Gradient tells you which direction to move.
- Hessian tells you how far to move.

Problem:

Hessian is expensive to compute.

Solution:

Replace it with a constant.

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

$$x_{i+1} = x_i - \gamma f'(x)$$


```
findMin(float x, float step, float error) {
    diff = error+1;
    while (diff > error){
        float df = derivative(x);
        float newX = x - (step*df);
        diff = |x - newX|;
        x = newX;
    return x
```


Image from: Wikipedia

Goal: (in d dimensions)

Find the minimum value of f(x) via successive approximation:

Goal: (in d dimensions)

Find the minimum value of f(a,b,c) via successive approximation:

$$(a, b, c)_{i+1} = (a, b, c) - \gamma \nabla (f(a, b, c))$$

Notice:

Each derivative computation may involve iterating over your entire data set!

Stochastic GD

Example:

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] x_i$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)] y_i$$

$$\sum_{i=1}^{n} [z_i - h_{a,b,c}(x_i, y_i)]$$

Goal: (in d dimensions)

Find the minimum value of f(x) via successive approximation:

$$x_{i+1} = x_i - \gamma \nabla (f(x))$$

Cost per iteration:

- d computations of partial derivatives
- d multiplications
- d subtractions

Convergence:

A function **f** is convex if...

Convergence:

A function f is convex if...

→ has a minimum

Convergence:

A function f is convex if...

A function f has a gradient that is L-Lipschitz if...

(gradient doesn't change too fast)

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

Convergence:

If f is convex and differentiable and its gradient is L-Lipschitz, and if step size $\gamma \le 1/L$:

Convergence:

If f is convex and differentiable and its gradient is L-Lipschitz, and if step size $\gamma \le 1/L$:

Gradient descent will converge!

Convergence:

Convergence:

Convergence:

Convergence:

Convergence:

If step size is too large, may not converge:

(This is a fake example. Try it yourself!)

Image from: Wikipedia

Convergence:

If f is convex and differentiable and its gradient is L-Lipschitz, and if step size $\gamma \le 1/L$:

Gradient descent will converge!

After t iterations:

$$f(x_t) - f(x^*) \le \frac{||x_0 - x^*||^2}{2\gamma t}$$

Convergence:

If f is convex and differentiable and its gradient is L-Lipschitz, and if step size $\gamma \le 1/L$:

Gradient descent will converge!

To achieve error ε :

$$t \ge \frac{||x_0 - x^*||^2}{2\gamma\epsilon} \ge \frac{L||x_0 - x^*||^2}{2\epsilon}$$

Convergence:

If f is convex and differentiable and its gradient is L-Lipschitz, and if step size $\gamma \le 1/L$:

Gradient descent will converge!

To achieve error ε :

$$t \ge \frac{||x_0 - x^*||^2}{2\gamma\epsilon} \ge \frac{L||x_0 - x^*||^2}{2\epsilon}$$

More iterations than Newton's method... ... but faster computation per iteration.

Convergence:

How to choose step size γ ?

Convergence:

How to choose step size γ ?

1. Look at function and compute L.

Convergence:

How to choose step size γ ?

2. Adjust step size y in each step:

```
\gamma = very small value repeat:

Run t iterations of GD(\gamma).

If converged, stop.

Else \gamma = \gamma/2
```

Kind of like a binary search on γ !

Convergence:

How to choose step size γ ?

2. Adjust step size y in each step:

```
\gamma = big value
repeat:
Run t iterations of GD(\gamma).
If converged, stop.
Else \gamma = \gamma/2
```

What is a good value to start with?

How many iterations is enough?

Convergence:

How to choose step size γ ?

3. Compute an optimal step size for each iteration (*line search*):

$$\min_{\gamma} \left[f\left(x_i - \gamma \nabla f(x_i)\right) \right]$$

For (d=1), same as computing answer.

For (d > 1), it reduces to a one-dimensional minimization problem.

→ line search

Convergence:

How to choose step size γ ?

- 4. Backtracking
- 5. Other
- 6. Other
- 7. Other
- 8. Other
- 9. Compute the inverse Hessias

Much of the cleverness in implementing gradient descent lies in adjusting the step-size in a clever way.

Convergence:

If function is strongly convex, then convergence is much faster...

"Linear" \rightarrow rate = $\log 1/\epsilon$

Also see:

Accelerated gradient descent (Nesterov's method), and many, many more variations

Goal: (in d dimensions)

Find the minimum value of f(x) via successive approximation:

$$x_{i+1} = x_i - \gamma_i \nabla(f(x))$$

Trade-Offs

Newton's Method

Fewer iterations

Convergence is quadratic

More expensive computation

Requires inverse Hessian

Requires access to second derivative

Gradient Descent

More iterations

 Convergence is linear (when the function is strongly convex).

Cheap computation

• Just the gradient

Requires choices of step size

- Backtracking
- Line search
- *Etc.*

Summary

Today: Optimization

Finding a maximum / minimum

- Key aspect of machine learning
- Binary search isn't always good

Newton's method

Second order approach

Gradient descent

• First order approach

Next time:

Sorting

- BubbleSort
- InsertionSort
- SelectionSort
- MergeSort
- QuickSort

Properties of sorting algorithms

- Stability
- Input-sensitive performance
- *Etc.*

A Geometry Challenge

Compute AD (using, e.g., Newton's method, to 500 digits)

diameter = 1,000,000,000,000

What pattern do you see encoded in the result?