Tests

goal of the test

Problem: Do I have more chances to survive if I have bought an expensive ticket?

expected values

The expectation is that the higer the cost of the ticket, the more likely is the person to survive.

resulting values

The feature corresponding to the ticket price is « Fare ».

Training result:

profile : mediumPrice

Population: 394

Number of survivors for the given profile: 166

profile : cheap
Population : 336

Number of survivors for the given profile: 67

profile : expensivePopulation : 161

Number of survivors for the given profile: 109

Model prediction:

Profile: expensivesurvivability: 1 (survive)

This means that if I have bought an expensive ticket, I will most likely survive.

But if I had bought a cheaper ticket, this is what would happen:

Profile: mediumPricesurvivability: 0 (death)

Profile: cheapsurvivability: 0 (death)

Checking the prediction performances:

But how precise is my model?

Correctly classified instances: 64%

Assuming that a random classifier would get something around 50%, 64% is not great but still quite good for this simple classification algorithm.