Análisis de datos para la toma de una decisión

Paso 1: Importar los paquetes requeridos

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```

Paso 2: Lectura de datos

In [2]:

```
df = pd.read_csv("Supermarket Transactions.csv")
df
```

Out[2]:

	Transaction	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	
0	1	18/12/2011	7223	F	S	Υ	2	30K - 50K	
1	2	20/12/2011	7841	М	М	Υ	5	70K - 90K	
2	3	21/12/2011	8374	F	М	N	2	50K - 70K	
3	4	21/12/2011	9619	М	М	Υ	3	30K - 50K	
4	5	22/12/2011	1900	F	S	Υ	3	130K - 150K	
14054	14055	29/12/2013	9102	F	М	Υ	2	10K - 30K	
14055	14056	29/12/2013	4822	F	М	Υ	3	10K - 30K	
14056	14057	31/12/2013	250	М	S	Υ	1	30K - 50K	
14057	14058	31/12/2013	6153	F	S	N	4	50K - 70K	
14058	14059	31/12/2013	3656	M	S	N	3	50K - 70K	
14059 ו	rows × 16 col	umns							
4								•	

In [3]:

```
# ¿Y qué es la tabla anterior?.. ¡Un DataFrame de Pandas!
print(type(df))
```

<class 'pandas.core.frame.DataFrame'>

In [4]:

Note que la primera columna no estaba en el archivo de excel. Esto es una indexación automática que hace Pandas. # Para quitarla: df = df.set_index("Transaction")

Out[4]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
1	18/12/2011	7223	F	S	Υ	2	30K - 50K	Lo Angele
2	20/12/2011	7841	M	М	Υ	5	70K - 90K	Lo Angele
3	21/12/2011	8374	F	М	N	2	50K - 70K	Bremerto
4	21/12/2011	9619	M	М	Υ	3	30K - 50K	Portlan
5	22/12/2011	1900	F	S	Υ	3	130K - 150K	Beverl Hill
14055	29/12/2013	9102	F	M	Υ	2	10K - 30K	Bremerto
14056	29/12/2013	4822	F	M	Υ	3	10K - 30K	Wall Wall
14057	31/12/2013	250	М	S	Υ	1	30K - 50K	Portlan
14058	31/12/2013	6153	F	S	N	4	50K - 70K	Spokan
14059	31/12/2013	3656	М	S	N	3	50K - 70K	Portlan
14059 rows	× 15 column	s						
4								•

Paso 3: Algunas operacione básicas con Dataframe

In [5]:

```
# Resumen estadístico... ¿De las variables cuantitativas? !Ojo!
print("Resúsmen estadístico de variables cuantitativas")
df.describe()
```

Resúsmen estadístico de variables cuantitativas

Out[5]:

	Customer ID	Children	Units Sold	Revenue
count	14059.000000	14059.000000	14059.000000	14059.000000
mean	5116.902127	2.530336	4.080589	13.004512
std	2920.755202	1.491852	1.174421	8.215543
min	3.000000	0.000000	1.000000	0.530000
25%	2549.000000	1.000000	3.000000	6.840000
50%	5060.000000	3.000000	4.000000	11.250000
75%	7633.000000	4.000000	5.000000	17.370000
max	10280.000000	5.000000	8.000000	56.700000

In [6]:

```
# Otras operaciones que se pueden hacer con el DaraFrame:
```

In [7]:

```
# Mostrar solo una columna:
print("Mostrar solo una columna")
df["Purchase Date"]
```

Mostrar solo una columna

18/12/2011

Out[7]:

1

```
Transaction
```

```
2
         20/12/2011
3
         21/12/2011
4
         21/12/2011
5
         22/12/2011
             . . .
         29/12/2013
14055
14056
         29/12/2013
14057
         31/12/2013
14058
         31/12/2013
14059
         31/12/2013
```

Name: Purchase Date, Length: 14059, dtype: object

In [8]:

```
# Mostrar las primeras cuatro filas:
print("Mostrar las primeras cuatro filas")
df.head(4)
```

Mostrar las primeras cuatro filas

Out[8]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
1	18/12/2011	7223	F	S	Υ	2	30K - 50K	Lo: Angele:
2	20/12/2011	7841	М	М	Υ	5	70K - 90K	Lo: Angele:
3	21/12/2011	8374	F	М	N	2	50K - 70K	Bremerto
4	21/12/2011	9619	M	М	Υ	3	30K - 50K	Portlan
4								•

In [9]:

```
# Mostrar las últimas dos filas:
print("Mostrar las ultimas dos filas")
df.tail(2)
```

Mostrar las ultimas dos filas

Out[9]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
14058	31/12/2013	6153	F	S	N	4	50K - 70K	Spokane
14059	31/12/2013	3656	М	S	N	3	50K - 70K	Portland
4								•

In [10]:

```
# Mostrar los índices
print("Índices")
df.index
```

Índices

Out[10]:

```
2, 3, 4, 5, 6, 7, 8,
Int64Index([
            1,
                                                             9,
            10,
          14050, 14051, 14052, 14053, 14054, 14055, 14056, 14057, 14058,
          14059],
         dtype='int64', name='Transaction', length=14059)
```

In [11]:

```
# Mostrar los nombres de las columnas
print("Nombres de las columnas")
df.columns
```

Nombres de las columnas

```
Out[11]:
```

```
Index(['Purchase Date', 'Customer ID', 'Gender', 'Marital Status', 'Homeow
ner',
       'Children', 'Annual Income', 'City', 'State or Province', 'Countr
у',
       'Product Family', 'Product Department', 'Product Category',
       'Units Sold', 'Revenue'],
      dtype='object')
```

In [12]:

```
# Organizar el DataFrame por una columna en particular
print("Organizar por género en orden alfabético")
df.sort_values(by='Gender',ascending=True)
```

Organizar por género en orden alfabético

Out[12]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
1	18/12/2011	7223	F	S	Υ	2	30K - 50K	Lo Angele
5879	14/02/2013	6433	F	S	Υ	1	10K - 30K	Seattl
5878	14/02/2013	8697	F	S	Υ	5	30K - 50K	Hidalg
5877	14/02/2013	7720	F	M	Υ	3	130K - 150K	Tacom
11115	26/08/2013	6603	F	М	N	5	30K - 50K	Merid
6217	25/02/2013	7308	М	M	Υ	2	130K - 150K	Sa Andre
6220	25/02/2013	645	М	S	N	1	50K - 70K	Portlan
6222	26/02/2013	2510	М	S	N	1	10K - 30K	Hidalg
6269	27/02/2013	3881	М	S	Υ	1	30K - 50K	Vancouv€
14059	31/12/2013	3656	M	S	N	3	50K - 70K	Portlan

14059 rows × 15 columns

In [13]:

```
# Mostrar solo los registros que cumplan con una condición
print("Solo los que tengan revenue mayor a 35")
df[df.Revenue > 35]
```

Solo los que tengan revenue mayor a 35

Out[13]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
56	05/01/2012	7733	М	S	Υ	5	10K - 30K	Salem
77	09/01/2012	4925	F	S	Υ	0	50K - 70K	Spokane
84	10/01/2012	7823	F	М	Υ	5	10K - 30K	Los Angeles
87	11/01/2012	7493	F	М	Υ	3	110K - 130K	San Diego
187	22/01/2012	3001	F	М	N	1	30K - 50K	Salem
13834	06/12/2013	2001	F	М	Υ	4	30K - 50K	Los Angeles
13838	06/12/2013	5284	F	M	N	3	50K - 70K	Acapulco
13842	06/12/2013	208	F	M	Υ	2	130K - 150K	Salem
13912	11/12/2013	3239	F	S	N	4	50K - 70K	Tacoma
14036	25/12/2013	7887	M	S	N	2	30K - 50K	Portland
000	- 1							

269 rows × 15 columns

In [14]:

```
# Remplazar un valor (primer Customer ID, por ejemplo)
print("Reemplazar el valor 7223 por remplazo en la primera transacción")
df_remplazo = df.replace(7223,"remplazo")
df_remplazo
```

Reemplazar el valor 7223 por remplazo en la primera transacción

Out[14]:

	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City
Transaction								
1	18/12/2011	remplazo	F	S	Υ	2	30K - 50K	Lo Angele
2	20/12/2011	7841	М	М	Υ	5	70K - 90K	Lo Angele
3	21/12/2011	8374	F	M	N	2	50K - 70K	Bremerto
4	21/12/2011	9619	М	М	Υ	3	30K - 50K	Portlan
5	22/12/2011	1900	F	S	Υ	3	130K - 150K	Beverl Hill
14055	29/12/2013	9102	F	М	Υ	2	10K - 30K	Bremerto
14056	29/12/2013	4822	F	М	Υ	3	10K - 30K	Wall Wall
14057	31/12/2013	250	М	S	Υ	1	30K - 50K	Portlan
14058	31/12/2013	6153	F	S	N	4	50K - 70K	Spokan
14059	31/12/2013	3656	М	S	N	3	50K - 70K	Portlan

14059 rows × 15 columns

In [15]:

```
#Presentar un solo registro
print("Mostrar solo el primer registro")
df_remplazo.iloc[0]
```

Mostrar solo el primer registro

Out[15]:

Purchase Date	18/12/2011
Customer ID	remplazo
Gender	F
Marital Status	S
Homeowner	Υ
Children	2
Annual Income	30K - 50K
City	Los Angeles
State or Province	CA
Country	USA
Product Family	Food
Product Department	Snack Foods
Product Category	Snack Foods
Units Sold	5
Revenue	27.38
Name: 1 dtyne: object	F

Name: 1, dtype: object

Paso 4: Visualización

In [16]:

```
# Histogramas
pd.DataFrame.hist(df, "Revenue")
```

Out[16]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001C27D6813C</pre> 8>]],

dtype=object)

In [17]:

```
# Se puede cambiar el número de bins. ¿Cambia el análisis también?
# Bins: intervalos en el eje x
pd.DataFrame.hist(df, "Revenue", bins=5)
```

Out[17]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001C27E13E5C</pre> 8>]], dtype=object)

In [18]:

```
# De forma predeterminada los bins son 10...¿Qué pasará ahorá con 15?
pd.DataFrame.hist(df,"Revenue",bins=15, color="green")
```

Out[18]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001C27E1BB2C 8>]], dtype=object)

In [19]:

```
# ¿Y si "ordenamos" el histograma anterior?
pd.DataFrame.hist(df, "Revenue", bins=15, cumulative=True, color="green")
```

Out[19]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001C27E270B0</pre> dtype=object)

In [20]:

```
# ¡Veamos los ingresos de los hombres y las mujeres!
pd.DataFrame.hist(df, "Revenue", xlabelsize=10, ylabelsize=10, by="Gender")
```

Out[20]:

array([<matplotlib.axes._subplots.AxesSubplot object at 0x000001C27E2F9108</pre> <matplotlib.axes._subplots.AxesSubplot object at 0x000001C27E32BE88</pre> >], dtype=object)

Otros tipos de gráficos

In [21]:

```
# Scatter plot:
y = df["Revenue"]
x = df["Units Sold"]
plt.scatter(x,y)
```

Out[21]:

<matplotlib.collections.PathCollection at 0x1c27e3c8d08>

In [22]:

```
# Boxplot
df.boxplot("Revenue",figsize=(15,15),by="Homeowner")
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c27f424288>

Boxplot grouped by Homeowner

In [23]:

```
# ¿Y qué podemos hacer con las variales categóricas?
```

In [24]:

```
# 1. Contemos los valores de una columna
df["Product Department"].value_counts()
```

Out[24]:

Produce	1994
Snack Foods	1600
Household	1420
Frozen Foods	1382
Baking Goods	1072
Canned Foods	977
Dairy	903
Health and Hygiene	893
Deli	699
Beverages	680
Baked Goods	425
Alcoholic Beverages	356
Snacks	352
Starchy Foods	277
Periodicals	202
Eggs	198
Breakfast Foods	188
Canned Products	109
Seafood	102
Meat	89
Checkout	82
Carousel	59
Name - Davidous - Davidous	عد عا

Name: Product Department, dtype: int64

In [25]:

```
# Y ahora...; Grafiquemos!
df["Product Department"].value_counts().plot(kind="barh",figsize=(10,10))
plt.title("Productos")
```

Out[25]:

Text(0.5, 1.0, 'Productos')

In [26]:

```
# ¿Y con otra variable..?
df["City"].value_counts().plot(kind="pie",figsize=(20,20),autopct="%.2f")
plt.title("Participación de las Ciudades en el Mercado")
```

Out[26]:

Text(0.5, 1.0, 'Participación de las Ciudades en el Mercado')

In [27]:

Finalmente veamos un ejemplo Tablas Pivot en Pandas

In [28]:

```
#¿Qué pasa si queremos separar los ingresos de las personas casadas y solteras en los d
istintos estados o provincias?
df_piv2=df.pivot_table(index=["State or Province"], values=["Revenue"],columns=["Marita"]
1 Status"],\
                           aggfunc=[np.mean],margins=True)
#values: la variable que queremos separar
#columns: criterio de separación
#index: criterio de agrupamiento
#aggfunc: permite realizar calculos matem{aticos sobre las variables, en este caso la m
#margins: crea una nueva columna("All") para presentar los cálculos de "aggfunc"
df_piv2
```

Out[28]:

	mean		
	Revenue		
Marital Status	M	S	All
State or Province			
ВС	13.921085	13.458697	13.679889
CA	12.785429	12.634205	12.707797
DF	12.784347	13.444101	13.121914
Guerrero	14.278889	12.828396	13.476005
Jalisco	4.917000	7.726909	6.977600
OR	13.270420	13.367956	13.323802
Veracruz	13.156840	13.813131	13.459526
WA	12.731647	12.854021	12.791695
Yucatan	13.215471	13.515569	13.364602
Zacatecas	13.249223	13.138078	13.192151
All	12.994518	13.014051	13.004512

In [29]:

```
# ¿Y si no queremos la media sino el máximo?
df_piv=df.pivot_table(index=["State or Province"], values=["Revenue"],columns=["Marital"]
Status"],\
                           aggfunc=[max],margins=True)
df_piv
```

Out[29]:

max

Revenue

Marital Status	M	s	AII
State or Province			
ВС	54.46	54.30	54.46
CA	48.25	46.08	48.25
DF	40.60	45.37	45.37
Guerrero	47.04	47.58	47.58
Jalisco	19.40	23.81	23.81
OR	46.08	53.19	53.19
Veracruz	43.68	52.80	52.80
WA	50.17	52.35	52.35
Yucatan	46.08	41.88	46.08
Zacatecas	56.70	49.75	56.70
All	56.70	54.30	56.70

In []: