Module 5: fMRI Signal & Noise

MRI

- MRI studies brain anatomy.
 - Structural (T1) images
 - High spatial resolution
 - Can distinguish different types of tissue

fMRI

- fMRI studies brain function.
 - Functional (T2*) images
 - Lower spatial resolution/ Higher temporal resolution
 - Relate changes in signal to experimental manipulation

Functional MRI

 An fMRI experiment consists of a sequence of individual MR images, where one can study oxygenation changes in the brain across time.

BOLD fMRI

 The most common approach towards fMRI uses the Blood Oxygenation Level Dependent (BOLD) contrast.

- It allows us to measure the ratio of oxygenated to deoxygenated hemoglobin in the blood.
- It doesn't measure neuronal activity directly, instead it measures the metabolic demands (oxygen consumption) of active neurons.

BOLD Contrast

- Hemoglobin exists in two different states each with different magnetic properties producing different local magnetic fields. (Pauling 1936)
 - Oxyhemoglobin is diamagnetic.
 - Deoxyhemoglobin is paramagnetic.
- BOLD fMRI takes advantage of the difference in T2* between oxygenated and deoxygenated hemoglobin.
 - Deoxyhemoglobin suppresses the MR signal.
 - As the concentration of deoxyhemoglobin decreases the fMRI signal increases.

BOLD Signal

- The change in the MR signal triggered by instantaneous neuronal activity is known as the hemodynamic response function.
- As neural activity increases, so does metabolic demand for oxygen and nutrients.
- As oxygen is extracted from the blood, the hemoglobin becomes paramagnetic which creates distortions in the magnet field that cause a T2* decrease (i.e. a faster decay of the signal).

BOLD Signal

- An over-compensation in blood flow dilutes the concentration of deoxyhemoglobin and tips the balance towards oxyhemoglobin.
 - This leads to a peak in BOLD signal about 4-6 s following activation.
- After reaching its peak, the BOLD signal decreases to an amplitude below baseline level.
 - This poststimulus undershoot is due to a combination of reduced blood flow and increased blood volume.

HRF

The strongest signal appears 5-6 seconds after activation.

HRF Properties

- Magnitude of signal changes is quite small
 - 0.1 to 5%
 - Hard to see in individual images
- Response is delayed and quite slow
 - Extracting temporal information is tricky, but possible
 - Even short events have a rather long response
- Exact shape of the response has been shown to vary across subjects and regions.

Interpretation

- How well does BOLD signal reflect increases in neural firing?
- The BOLD signal corresponds relatively closely to the local electrical field potential surrounding a group of cells, which is likely to reflect changes in post-synaptic activity, under many conditions.
- Demonstrations have shown that high-field BOLD activity closely tracks the position of neural firing and local field potentials.

LTI System

- The relationship between stimuli and the BOLD response is often modeled using a linear time invariant (LTI) system.
 - Here the neuronal activity acts as the input or impulse and the HRF acts as the impulse response function.
- In this framework the signal at time t, x(t), is modeled as the convolution of a stimulus function v(t) and the hemodynamic response h(t), that is,

$$x(t) = (v * h)(t)$$

Convolution Examples

Experimental Stimulus Function

Hemodynamic Response Function

Predicted Response

Event-Related

Non-linearity

- Studies have shown that the BOLD response is roughly linear, with some departures from linearity.
- There is some evidence of refractory effects, which are reductions in amplitude of a response as a function of inter-stimulus intervals.

• There is evidence of non-linearity if the stimulus are spaced closer than 5-6 s apart.

fMRI Noise

 The measured fMRI signal is corrupted by random noise and various nuisance components that arise due to hardware reasons and the subjects themselves.

Sources of noise:

- Thermal motion of free electrons in the system.
- Patient movement during the experiment.
- Physiological effects, such as the subject's heartbeat and respiration.
- Low frequency signal drift.

Drift

- Slow changes in voxel intensity over time (low-frequency noise) is present in the fMRI signal.
- Scanner instabilities and not motion or physiological noise may be the main cause of the drift, as drift has been seen in cadavers.
- We need to include drift parameters in our future models.

Issues

- Drift can have serious consequences:
 - Experimental conditions that vary slowly may be confused with drift.
 - Experimental designs should use high frequencies (more rapid alternations of stimulus on/off states).

Motion

- Subject motion during the experiment can also give rise to serious problems.
- Typically motion correction is performed in the pre-processing stages of the analysis.
- However, 'spin-history' artifacts may remain that cannot be removed.
 - This is caused by through-plane motion.
 - Attempts to account for it are often made in the modeling stage.

Physiological Noise

- Respiration and heart beat give rise to highfrequency noise.
- It can potentially be modeled, but if the TR is too low there will be problems with aliasing.
- For standard TR values (~ 2s) this type of noise is difficult to remove and is often left in the data giving rise to temporal autocorrelations.

fMRI Noise

- Some noise components can be removed prior to analysis, while others need to be included as components in subsequent models.
- However, it is difficult to remove or model all sources of noise and therefore significant autocorrelation will be present in the signal.
- In fMRI we typically use autoregressive (AR) or autoregressive moving-average (ARMA) processes to model the correlation.

Spatio-temporal Behavior

 The spatiotemporal behavior of these noise processes is complex.

Spatial maps of the model parameters from an AR(2) model estimated for each voxel's noise data.

End of Module

