Introduction to Rings and Modules

Lecture 19, Wednesday June 21 2023 Ari Feiglin

Proposition 19.0.1:

Every \mathcal{O}_d is a Dedekind domain.

Proof:

Since $\mathcal{O}_d \subseteq \mathbb{C}$, it is obvious that it is an integral domain. \mathcal{O}_d is integrally closed as the integral closure of \mathbb{Z} . Since $\mathcal{O}_d = \mathbb{Z}[\alpha]$, then we define $f: \mathbb{Z}[x] \longrightarrow \mathbb{Z}[\alpha]$ where $f(x) = \alpha$ and f(1) = 1, so in general

$$f(a_n x^n + \dots + a_0) = a_n \alpha^n + \dots + a_0$$

this is a homomorphism, as it is a restriction of the evaluation homomorphism. Since every element of $\mathbb{Z}[\alpha]$ is of the form $a + b\alpha$ (for the α s we are studying), so $a + b\alpha = f(a + bx)$. Thus by the first isomorphism theorem

$$\mathbb{Z}[x]/_{\operatorname{Ker} f} \cong \mathcal{O}_d$$

Since \mathbb{Z} is a PID, and therefore noetherian, by Hilbert's basis theorem so is $\mathbb{Z}[x]$. Since the quotient of a noetherian ring is noetherian, we have that \mathcal{O}_d is noetherian.

The final criterion is that dim $\mathcal{O}_d = 1$. We must show that there exist non-zero prime ideals, and that every such ideal is maximal. Assume P is a non-zero prime ideal, let $I = P \cap \mathbb{Z}$. Then I is a prime ideal over \mathbb{Z} , it is an ideal since it is a group (intersection of groups), and if $n \in \mathbb{Z}$ and $i \in I \subseteq \mathbb{Z}$ then $ni \in P$ and \mathbb{Z} . Now suppose $ab \in I$ for $a, b \in \mathbb{Z}$ then $ab \in P$ so either a or b is in P (and \mathbb{Z}) and thus I.

We also claim that $I \neq (0)$. Suppose $0 \neq y \in P$ then let us look at the isomorphism from the previous lecture

$$\varphi \colon \mathbb{Q}(\sqrt{d}) \longrightarrow \mathbb{Q}(\sqrt{d}), \qquad a + b\sqrt{d} \mapsto a - b\sqrt{d}$$

we showed that \mathcal{O}_d is φ -invariant, and $\alpha \varphi(\alpha) \in \mathbb{Z}$ for every $\alpha \in \mathbb{Q}(\sqrt{d})$. Thus since $y \neq 0$, $\varphi(y) \neq 0$ and $y\varphi(y) \in \mathbb{Z}$ and in P (since $y \in \mathcal{O}_d$ so $\varphi(y) \in \mathcal{O}_d$ and P is an ideal), so $0 \neq y\varphi(y) \in I$.

Thus $I = p\mathbb{Z}$ where p is prime, and since $p\mathbb{Z} = I = P \cap \mathbb{Z} \subseteq P$, thus $p \in P$ and so we have $p\mathcal{O}_d \subseteq P$. So we can look at the natural homomorphism

$$\mathcal{O}_d /_{p\mathcal{O}_d} \longrightarrow \mathcal{O}_d /_P, \qquad w + p\mathcal{O}_d \mapsto w + P$$

But note that

$$\mathcal{O}_d \Big/ p \mathcal{O}_d = \Big\{ [a] + [b] \gamma \ \Big| \ [a], [b] \in \mathbb{Z} \Big/ p \mathbb{Z} \Big\}$$

where $\mathcal{O}_d = \mathbb{Z}[\gamma]$, and thus the order of this quotient is p^2 , and since the homomorphism is surjective, \mathcal{O}_d/P is a finite integral domain (since P is prime), meaning it is a field. Thus P is maximal, as required.

Note

Material from the end of this lecture has been moved to the next lecture's file.