Computer Models

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #26: Friday, March 10 2023

Climate and Economy

Climate and Economy

How well do markets manage global warming?

- How well do markets manage supply and price of bread?
- What is different about global warming?
- Externalities:
 - What is an externality?
 - Are externalities good or bad?
 - What challenges to they pose for markets?
 - How can market-based economies manage externalities better?

Energy, Economy, Emissions

Energy, Economy, Emissions

Kaya Identity

Kaya Identity

$$P \times \frac{G}{P} \times \frac{E}{G} \times \frac{F}{E} = F,$$

where

 $F = CO_2$ emissions

E = energy use

G = gross domestic product

P = population

Kaya Identity

$$F = P \times \frac{G}{P} \times \frac{E}{G} \times \frac{F}{E}$$

$$= P \times g \times e \times f$$

where

```
P = \text{population}
g = G/P = \text{per-capita GDP}
e = E/G = \text{energy intensity of economy}
f = F/E = CO_2 intensity of energy supply
```

Kaya Identity in Practice

Computer Models of Climate

Computer Models of Climate

Computer Models

Computer Models

Principles of Computer Modeling

- Make models as simple as possible:
 - Start simple
 - Add complexity only as needed
 - Different models for different purposes
 - Check model against real world

Transient vs. Equilibrium Response

Transient vs. Equilibrium Response

- Gradually raise CO₂ and then stop.
- Planet takes time to heat up
 - Oceans absorb heat
 - Like pot of water on stove
- Transient response: ΔT when CO_2 stops changing
- Equilibrium response:
 Stable temperature (much later)
 - Green: Atmosphere & surface ocean
 - Red: Atmosphere, surface ocean, & deep ocean.
- Equilibrium takes many decades.

Modeling for Science vs. Policy

Modeling for Science vs. Policy Integrated Assessment Models (IAMS)

- Combine climate system and world economy
 - Emissions as a consequence of economic activity
 - Energy use for production (factories, etc.)
 - Energy use for consumption (households, etc.)
 - Farming: fertilizers, livestock, paddy fields, etc.
 - Climatic impacts on economy
 - Cost of severe weather
 - Sea level rise
 - Droughts & heat waves
 - \circ
- Optimize for greatest net economic output

Climate Projections

- Biggest uncertainty in predicting future climates is GHG emissions
 - We can predict consequences of emissions
 - We can't predict what emissions will be
- Scenarios and Pathways:
 - Scenario: possible future,
 - \circ Story of economic & political development o resulting emissions
 - Pathway: possible future,
 - \circ Trajectory of emissions o economic activity that might cause them
- Projections:
 - Conditional predictions:
 - "If emissions do this, then climate will do that."

Projections for future emissions in US:

	2010	2050	Growth rate
g (\$/person)	42,300	83,495	1.7%
ef (tons/\$million)	432	228	-1.6%
P (millions)	309	393	0.6%
Total Emissions <i>F</i> (million tons CO ₂)	5,647	7,471	1.7 - 1.6 + 0.6 = 0.7%

Projections for future world emissions:

	2010	2050	Growth rate
g (\$/person)	9,780	22,654	2.1%
ef (tons/\$million)	522	275	-1.6%
P (millions)	6,410	9,188	0.9%
Total Emissions <i>F</i> (million tons CO ₂)	32,724	57,289	2.1 - 1.6 + 0.9 = 1.4%

Uncertainties in Projections

Projections for future world emissions:

	2010	2050	2100	Growth rate
g (\$/person)	9,780	22,654	64,737	2.1%
ef (tons/\$million)	522	275	124	-1.6%
P (millions)	6,410	9,188	14,409	0.9%
Total Emissions <i>F</i> (million tons CO ₂)	32,724	57,289	115,366	1.4%

Uncertainties in Projections

Projections for future world emissions with slightly different growth rates:

	2010	2050	2100	Growth rate	Δrate
g (\$/person)	9,780	24,541	77,505	2.3%	0.2%
ef (tons/\$million)	522	298	148	-1.4%	0.2%
P (millions)	6,410	9,563	15,766	1.0%	0.1%
Total Emissions <i>F</i> (million tons CO ₂)	32,724	69,973	180,930	1.9%	0.5%
Difference		12,684	65,564	0.5%	
Difference (%)		22%	57%		