TABLICA 1

W tablicy zawarte zostały informacje o podstawowych właściwościach figur płaskich związanych z rozkładem masy. Podano środki ciężkości, momenty bezwładności centralne $J_{xc},\,J_{yc}$ i dla niektórych przypadków dodatkowo względem krawędzi $J_x,\ J_y$ oraz centralne momenty dewiacji $D_{x_cy_c}.\ m$ za każdym razem oznacza indywidualną masę liczonego obiektu, c środek ciężkości.

Lp.	Figura	Wartości	Lp.	Figura	Wartości
T.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J_{x_c} = \frac{ma^2}{12}$ $J_{y_c} = \frac{mb^2}{12}$ $J_x = \frac{ma^2}{3}$ $J_y = \frac{mb^2}{3}$ $D_{xy} = \frac{mab}{4}$ $D_{x_cy_c} = 0$	T.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J_{x_c} = \frac{ma^2}{18}$ $J_{y_c} = \frac{mb^2}{18}$ $J_x = \frac{ma^2}{6}$ $J_y = \frac{mb^2}{6}$ $D_{xy} = \frac{mab}{12}$ $D_{x_cy_c} = -\frac{mab}{36}$
Т.3		$J_{x_c} = \frac{mr^2}{4}$ $J_{y_c} = \frac{mr^2}{4}$ $D_{x_cy_c} = 0$	T.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J_{x_c} = 0$ $J_{y_c} = \frac{mb^2}{12}$ $J_y = \frac{mb^2}{3}$ $D_{x_c y_c} = 0$
T.5	$ \begin{array}{c c} y & y_c \\ \hline \frac{4r}{3\pi} & m \\ 0 & c \\ \end{array} $	$J_{x} = J_{x_{c}} = \frac{mr^{2}}{4}$ $J_{y} = \frac{mr^{2}}{4}$ $D_{xy} = 0$ $J_{y_{c}} = mr^{2}(\frac{1}{4} - \frac{16}{9\Pi^{2}})$	T.6	$y y_c$ $r x_c$ $0 \frac{4r}{3\pi}$	$J_{x} = \frac{mr^{2}}{4}$ $J_{y} = \frac{mr^{2}}{4}$ $D_{xy} = \frac{mr^{2}}{2\pi}$ $J_{yc} = mr^{2}(\frac{1}{4} - \frac{16}{9\Pi^{2}})$

Pytania i komentarze: daniel.lewandowski@pwr.wroc.pl