Problem A. Manhattan

Time limit 3000 ms **Mem limit** 524288 kB

Vamos utilizar a métrica da distância de Manhattan para calcular a distância entre dois pontos p_1 (com coordenadas (x_1,y_1)) e p_2 (com coordenadas (x_2,y_2)), denotada como $d(p_1,p_2)=|x_1-x_2|+|y_1-y_2|$. Por exemplo, a distância entre dois pontos com coordenadas (1,3) e (4,2) é |1-4|+|3-2|=4.

Dados dois pontos, A e B. O ponto A tem coordenadas (0,0), enquanto o ponto B tem coordenadas (x,y).

O seu desafio é encontrar um ponto C, tal que:

- Ambas as coordenadas de C sejam inteiros não negativos;
- A distância de A até C seja igual à metade da distância de A até B (sem arredondamento);
- A distância de B até C seja igual à metade da distância de A até B (sem arredondamento).

Descubra um ponto C que satisfaça essas condições, ou indique se tal ponto não existe.

Entrada

A primeira linha contém um inteiro t ($1 \leq t \leq 3000$) – o número de casos de teste.

Cada caso de teste consiste em uma linha contendo dois inteiros x e y ($0 \le x, y \le 50$) – as coordenadas do ponto B.

Saída

Para cada caso de teste, imprima a resposta em uma linha separada da seguinte forma:

- se for impossível encontrar um ponto C que atenda às restrições, imprima "-1" (sem aspas);
- caso contrário, imprima dois inteiros não negativos que não excedam $10^6\,$ as coordenadas do ponto C que atendem às restrições. Se houver múltiplas respostas, imprima qualquer uma delas. Pode ser demonstrado que se algum ponto assim existir,

é possível encontrar um ponto com coordenadas que não excedam $10^6\,$ que atenda às restrições.

Exemplo 1

Input	Output
10	23 3
49 3	1 25
2 50	-1 -1
13 0	-1 -1
0 41	21 0
42 0	0 18
0 36	13 12
13 37	25 4
42 16	-1 -1
42 13	0 0
0 0	

Nota

Explicações para alguns dos casos de teste do exemplo:

- No primeiro caso de teste, o ponto B tem coordenadas (49,3). Se o ponto C tiver coordenadas (23,3), então a distância de A para B é |49-0|+|3-0|=52, a distância de A para C é |23-0|+|3-0|=26, e a distância de B para C é |23-49|+|3-3|=26.
- No segundo caso de teste, o ponto B tem coordenadas (2,50). Se o ponto C tiver coordenadas (1,25), então a distância de A para B é |2-0|+|50-0|=52, a distância de A para C é |1-0|+|25-0|=26, e a distância de B para C é |1-2|+|25-50|=26.
- Nos terceiro e quarto casos de teste, pode ser demonstrado que nenhum ponto com coordenadas inteiras atende às restrições.
- No quinto caso de teste, o ponto B tem coordenadas (42,0). Se o ponto C tiver coordenadas (21,0), então a distância de A para B é |42-0|+|0-0|=42, a distância de A para C é |21-0|+|0-0|=21, e a distância de B para C é |21-42|+|0-0|=21.