Формальные грамматики и языки. Обозначим алфавит символов за σ , а множество конечных строк за $L \subset 2^{\sigma^*}$, где σ^* — это все последовательности конечной длины.

Регулярные выражения. Тривиальные регулярные выражения: (пустое множество) ϵ (пустая строка), $x \in \sigma$. Остальные регулярные выражения определяются рекурсивно относительно них. А именно, мы также разрешаем A+B (последовательная запись), A|B (выбор из двух регулярок), A* (повторение строки из языка A 0, 1, 2, . . . раз) Звездочка еще называется замыканием Kleene.

Например, $\{0|1|2|3\} * + \{0|1|2|3\}$ это множество всех непустых строк из символов $\sigma = \{0, 1, 2, 3\}$.

Способы задания языков. Регулярные выражения, ДКА, НКА, ϵ -НКА. Эти способы эквивалентны. Очевидно $L_{\text{ДКА}} \subset L_{\text{HKA}} \subset L_{\epsilon\text{-HKA}}$ Вложенность ϵ -НКА в ДКА можно показать, если рассмотреть алгоритм приведения одного автомата в другой. Например, можно выделить все подмножества вершин НКА как отдельные вершины ДКА (то есть, он будет иметь экспоненциальный размер). Тогда переход по ребру — это то же самое, что взять все вершины подмножества, и объединить переходы по ребрам из них. Еще стоит следить за переходами по пустому символу, потому что вершина сразу задает подмножество вершин, достижимых из нее по ϵ -ребрам.