

TP Final: Generación de terrenos montañosos por elevación

Organización del computador II

Integrante	LU	Correo electrónico
Florencia Zanollo	934/11	florenciazanollo@gmail.com
Luis Toffoletti	827/11	luis.toffoletti@gmail.com

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Intr	oduccion	3
2.	2D		4
	2.1.	Versión de C	4
	2.2.	Versión de ASM	4
	2.3.	C vs ASM	4
	2.4.	Versión de C $$	4
	2.5.	Versión de ASM	4
	2.6.	C vs ASM	4

1. Introduccion

Para este trabajo práctico nos propusimos implementar el modelo para generación de terreno explicado en el paper "The Uplift Model Terrain Generator". 1

En él se propone la generación de terreno montañoso a partir de elevaciones o picos. El modelo se puede aplicar tanto en 2D como 3D. La idea general del algoritmo es generar picos de manera aleatoria y luego obtener la altura final de cada porción del terreno promediando las influencias provenientes de las elevaciones.

Nuestra meta es realizar dos implementaciones del modelo, una de ellas en C++ y la otra en ASM utilizando la tecnología SIMD. Para poder así demostrar cómo, utilizando SIMD, se puede acelerar el procesamiento.

 $^{^{1}} https://www.dropbox.com/s/q6brk3jqwppxrhx/upliftTerrainGenerator.pdf?dl=0\\$

- 2. 2D
- 2.1. Versión de C
- 2.2. Versión de ASM
- 2.3. C vs ASM