Lezione 4

Scelta

Razionalità Economica

- Il principale postulato riguardante il comportamento di un agente economico è che egli sceglie l'alternativa preferita fra tutte quelle disponibili.
- Tutte le scelte disponibili costituiscono l'insieme di scelta.
- Come viene scelto il paniere ottimale?

Scelta razionale vincolata x₂ Panieri preferiti consentiti x₁

Scelta razionale vincolata

- La scelta ottima dati i prezzi e il reddito è detta PANIERE DOMANDATO dal consumatore.
- La FUNZIONE DI DOMANDA mette in relazione la scelta ottima con i diversi valori dei prezzi e dei redditi e si rappresenta con:

 $x_1*(p_1,p_2,m)$ and $x_2*(p_1,p_2,m)$.

Scelta razionale vincolata

- Quando x₁* > 0 e x₂* > 0 il paniere domandato è detto interno.
- Se l'acquisto di (x₁*,x₂*) costa \$m=reddito il budget è esaurito.

Scelta razionale vincolata

Scelta razionale vincolata x_2 La pendenza della curva di indiff. in (x_1^*, x_2^*) è = a quella del vincolo di bilancio. x_2^* x_1^* x_1

Scelta razionale vincolata

- (x_1^*, x_2^*) soddisfa due condizioni:
- (a) il budget è esaurito;

$$p_1x_1^* + p_2x_2^* = m$$

 (b) la pendenza del vincolo di bilancio, p₁/p₂, e la pendenza della curva di indifferenza che contiene (x₁*,x₂*) sono uguali nel punto (x₁*,x₂*).

Determinazione dell'ottimo

 Come possiamo usare queste informazioni per localizzare (x₁*,x₂*) dati p₁, p₂ e m?

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Supponiamo che il consumatore abbia preferenze di tipo Cobb-Douglas.

$$U(x_1,x_2) = x_1^a x_2^b$$

• Si ha

$$MU_1 = \frac{\partial U}{\partial x_1} = ax_1^{a-1}x_2^b$$

$$MU_2 = \frac{\partial U}{\partial x_2} = bx_1^a x_2^{b-1}$$

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Quindi il MRS è

$$\text{MRS} = \frac{\text{d} x_2}{\text{d} x_1} = -\frac{\partial \text{U}/\partial x_1}{\partial \text{U}/\partial x_2} = -\frac{\text{a} x_1^{a-1} x_2^b}{\text{b} x_1^a x_2^{b-1}} = -\frac{\text{a} x_2}{\text{b} x_1}.$$

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Quindi il MRS è

$$\text{MRS} = \frac{\text{d} \mathbf{x}_2}{\text{d} \mathbf{x}_1} = -\frac{\partial \mathbf{U}/\partial \mathbf{x}_1}{\partial \mathbf{U}/\partial \mathbf{x}_2} = -\frac{\mathbf{a} \mathbf{x}_1^{\mathbf{a}-1} \mathbf{x}_2^{\mathbf{b}}}{\mathbf{b} \mathbf{x}_1^{\mathbf{a}} \mathbf{x}_2^{\mathbf{b}-1}} = -\frac{\mathbf{a} \mathbf{x}_2}{\mathbf{b} \mathbf{x}_1}.$$

In (x_1^*, x_2^*) , MRS = $-p_1/p_2$ quindi

$$-\frac{ax_{2}^{*}}{bx_{1}^{*}} = -\frac{p_{1}}{p_{2}} \qquad \Rightarrow \quad x_{2}^{*} = \frac{bp_{1}}{ap_{2}}x_{1}^{*}.$$
 (A)

Determinazione dell'ottimo: il caso della Cobb-Douglas

• (x_1^*, x_2^*) esaurisce il budget quindi

$$p_1x_1^* + p_2x_2^* = m.$$
 (B)

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Riassumendo sappiamo che:

$$x_2^* = \frac{bp_1}{ap_2}x_1^*$$
 (A)

$$p_1x_1^* + p_2x_2^* = m.$$
 (B)

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Riassumendo sappiamo che:

Sostituendo
$$x_2^* \neq \frac{bp_1}{ap_2}x_1^*$$
 (A)

$$p_1 x_1^* + p_2 x_2^* = m.$$
 (B)

Determinazione dell'ottimo: il caso della Cobb-Douglas

• Riassumendo sappiamo che:

Sostituendo
$$x_2^* = \frac{bp_1}{ap_2}x_1^*$$
 (A)

$$p_1x_1 + p_2x_2 = m.$$
 (B)

otteniamo

$$p_1 x_1^* + p_2 \frac{bp_1}{ap_2} x_1^* = m.$$

Che si semplifica ...

Determinazione dell'ottimo: il caso della Cobb-Douglas

$$x_1^* = \frac{am}{(a+b)p_1}.$$

Sostituendo per x₁* nella

$$p_1x_1^* + p_2x_2^* = m$$

Si ottiene

$$x_2^* = \frac{bm}{(a+b)p_2}.$$

Determinazione dell'ottimo: il caso della Cobb-Douglas

Quindi abbiamo trovato che il paniere acquistabile preferito da un consumatore con preferenze CD

$$\mathbf{U}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^{\mathbf{a}} \mathbf{x}_2^{\mathbf{b}}$$

è

$$(x_1^*, x_2^*) = \left(\frac{am}{(a+b)p_1}, \frac{bm}{(a+b)p_2}\right).$$

Scelta razionale vincolata

- Quando x₁* > 0 e x₂* > 0
 e (x₁*,x₂*) esaurisce il budget,
 e le curve di indifferenza non hanno angoli, le funzioni di domanda si ottengono risolvendo:
- (a) $p_1x_1^* + p_2x_2^* = y$
- (b) uguagliando la pendenza del vincolo, p₁/p₂, e della curva di indifferenza che contiene (x₁*,x₂*) nel punto (x₁*,x₂*).

Scelta razionale vincolata

- Ma se $x_1^* = 0$?
- O se $x_2^* = 0$?
- Se x₁* = 0 oppure x₂* = 0 la scelta ottima (x₁*,x₂*) è una soluzione d'angolo o ottimo di frontiera.

Esempio di soluzione d'angolo: perfetti sostituti

Esempio di soluzione d'angolo: perfetti sostituti

Esempio di soluzione d'angolo: perfetti sostituti Quando U(x₁,x₂) = x₁ + x₂, il paniere Acquistabile preferito è (x₁*,x₂*) dove $(x_1^*,x_2^*) = \left(\frac{y}{p_1},0\right) \quad \text{se p}_1 < p_2$ e $(x_1^*,x_2^*) = \left(0,\frac{y}{p_2}\right) \quad \text{se p}_1 > p_2.$

Perfetti complementi $x_2 \qquad U(x_1,x_2) = min\{ax_1,x_2\}$ Qual è la scelta ottima? $x_2 = ax_1$

Perfetti complementi (a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$.

Perfetti complementi

(a)
$$p_1x_1^* + p_2x_2^* = m$$
; (b) $x_2^* = ax_1^*$.
Sostituendo per x_2^* da (b) nella (a) si ottiene $p_1x_1^* + p_2ax_1^* = m$

Sostituendo per
$$x_2^*$$
 da (b) nella (a) si ottiene $p_1x_1^* + p_2ax_1^* = m$

$$da \ cui \qquad x_1^* = \frac{m}{p_1 + ap_2}; \ x_2^* = \frac{am}{p_1 + ap_2}.$$

(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$.

Perfetti complementi

Dalle scelte alle preferenze

- Nella realtà possiamo osservare direttamente le scelte in corrispondenza di vari livelli di reddito e di prezzo e non le preferenze.
- Ma dalle scelte possiamo stimare la funzione di utilità impiegata.
- Questa può essere poi impiegata per valutare l'effetto di politiche economiche alternative.