PAT-NO:

JP411315366A

DOCUMENT-IDENTIFIER: JP 11315366 A

TITLE:

PRODUCTION OF RAMP MAGNETIC MATERIAL

PUBN-DATE:

November 16, 1999

INVENTOR-INFORMATION:

NAME COUNTRY YAMAJI, TSUNEHIRO N/A KASAI, KATSUJI N/A NINOMIYA, HIRONORI N/A NAMIKAWA, MISAO N/A

INT-CL (IPC): C23C010/08, H01F027/25

ABSTRACT:

PROBLEM TO BE SOLVED: To control high-frequency magnetic characteristics and residual magnetization characteristics without variations in a longitudinal direction by subjecting a steel sheet to a siliconization treatment to form an Si concn. gradient in a thickness direction, then controlling the production conditions in the siliconization treatment furnace stage in accordance with iron loss values measured under different magnetization conditions.

SOLUTION: After the steel sheet is heated in a heating furnace 1, the steel sheet is passed through a siliconization treatment furnace 2 and is subjected to a siliconization treatment at about 1200°C in a nonoxidizing atmosphere contg. a reactive Si compd., such as SiCl4 to diffuse the Si from the steel sheet surface. The steel sheet is then treated in a diffusion treatment furnace 3 to form the desired Si concn. gradient in the thickness direction. Insulating films are thereafter formed on both surfaces of the steel sheet by an insulating film applying device 12 and a drying and baking device 13 to improve and stabilize the iron loss. The iron loss is measured at &le:1 kHz and ≥5 T with, for example, a first iron loss meter 5a and at ≥5 to &le:0.5 T with a second iron loss meter 5b on the outlet side of a cooling furnace 4 in the post stage of the production process for this ramp magnetic material and the control of the production conditions is executed via arithmetic and logic units 9 to 11 and controller 6 to 8 in accordance with the measured values.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-315366

(43)公開日 平成11年(1999)11月16日

(51) Int.CL*

體別記号

ΡI

C 2 3 C 10/08

H01F 27/25

C23C 10/08 H01F 27/24

В

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出闢番号

特顯平10-124619

(22)出顧日

平成10年(1998) 5月7日

(71)出願人 000004123

日本鋼管株式会社

東京都千代田区丸の内一丁目1番2号

(72)発明者 山路 常弘

東京都千代田区丸の内一丁目1番2号 日

本铜管株式会社内

(72)発明者 笠井 勝司

東京都千代田区丸の内一丁目1番2号 日

本網管株式会社内

(72)発明者 二宮 弘憲

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(74)代理人 弁理士 鈴江 武彦 (外4名)

最終質に続く

(54) 【発明の名称】 傾斜磁性材料の製造方法

(57)【要約】

【課題】傾斜磁性材料の高周波磁気特性及び残留磁化特性を長手方向でバラツキなく制御することができる傾斜 磁性材料の製造方法を提供する。

【解決手段】鋼板を反応性Si化合物を含む無酸化性ガス雰囲気中で珪浸処理して鋼板の板厚方向にSi濃度勾配を有する傾斜磁性材料を連続して製造する工程と、この工程の後段に鉄損計を配置して、少なくとも2種類の異なる励磁条件で鉄損を測定する工程と、これらの測定値に基づいて珪浸処理工程での製造条件を制御する工程とを備えたSi濃度勾配を有する傾斜磁性材料の製造方法。

1

【特許請求の範囲】

【請求項1】 鋼板を反応性Si化合物を含む無酸化性 ガス雰囲気中で珪浸処理して鰯板の板厚方向にSi濃度 勾配を有する傾斜磁性材料を連続して製造する工程と、 この工程の後段に鉄損計を配置して、少なくとも2種類 の異なる励磁条件で鉄損を測定する工程と、これらの測 定値に基づいて珪浸処理工程での製造条件を制御する工 程とを備えたSi濃度勾配を有する傾斜磁性材料の製造 方法。

【請求項2】 少なくとも2種類の異なる励磁条件は、 周波数及び/又は磁束密度が異なる励磁条件である請求 項1に記載のSi濃度勾配を有する傾斜磁性材料の製造

【請求項3】 少なくとも2台の鉄損計を設置し、第1 の鉄損計の測定周波数条件が1kHz以下で、かつ測定 磁束密度が0.5 T以上、第2の鉄損計の測定周波数条 件が5kHz以上で、かつ測定磁束密度が0.5T以下 である請求項2に記載のSi濃度勾配を有する傾斜磁性 材料の製造方法。

【請求項4】 1台の鉄損計を設置し、この鉄損計の測 20 定周波数条件が5kHz以上の高周波領域で、かつ測定 磁束密度が0.3 T以下の低磁束密度である請求項1に 記載のSi濃度勾配を有する傾斜磁性材料の製造方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高周波磁気特性に 優れ、残留磁束密度の低い傾斜磁性材料、特に、高珪素 鋼板(鋼帯)の製造方法に関する。

[0002]

【従来の技術】浸珪法等で高珪素鋼帯を製造する場合、 そのSi含有量を制御することは鋼帯の長手方向の品質 管理において重要な項目である。 従来、 鋼板のSi 濃度 を連続的に測定する方法としては鋼板の電気抵抗を測定 し、これをSi濃度に換算する方法がある。しかし、こ の測定方法は、鋼板板厚方向のSi濃度を平均した値を 測定してしまうため、板厚方向にSi 濃度分布が存在 し、かつそのSi濃度分布が高周波磁気特性及び残留磁 束密度に影響を与えてしまう傾斜磁性材料においては、 上記の電気抵抗測定法では品質管理が不可能である。 [0003]

【発明が解決しようとする課題】本発明は、上記事情に 鑑みてなされたもので、その目的とするところは、異な る励磁条件下で鉄損値を測定し、これら測定値に基づい て珪浸処理工程での製造条件を制御することにより、傾 斜磁性材料の高周波磁気特性及び残留磁化特性を長手方 向でバラツキなく制御することができる傾斜磁性材料の 製造方法を提供するものである。

[0004]

【課題を解決するための手段】(1) 鋼板を反応性S i 化合物を含む無酸化性ガス雰囲気中で珪浸処理して鯯 50 測定すると、この条件ではヒステリシス損が支配的であ

板の板厚方向にSi濃度勾配を有する傾斜磁性材料を連 続して製造する工程と、この工程の後段に鉄損計を配置 して、少なくとも2種類の異なる励磁条件で鉄損を測定 する工程と、これらの測定値に基づいて珪浸処理工程で の製造条件を制御する工程とを備えたSi濃度勾配を有 する傾斜磁性材料の製造方法。

2

【0005】(2) 少なくとも2種類の異なる励磁条 件は、周波数及び/又は磁束密度が異なる励磁条件であ る(1)に記載のSi濃度勾配を有する傾斜磁性材料の 10 製造方法。

【0006】(3) 少なくとも2台の鉄損計を設置 し、第1の鉄損計の測定周波数条件が1kHz以下で、 かつ測定磁束密度が0.5T以上、第2の鉄損計の測定 周波数条件が5kHz以上で、かつ測定磁束密度が0. 5T以下である(2)に記載のSi 濃度勾配を有する傾 斜磁性材料の製造方法。

【0007】(4) 1台の鉄損計を設置し、この鉄損 計の測定周波数条件が5kHz以上の高周波領域で、か つ測定磁束密度が0.3 T以下の低磁束密度である

(1) に記載のSi濃度勾配を有する傾斜磁性材料の製 造方法。

[0008]

40

【発明の実施の形態】以下、本発明を図面を参照して詳 細に説明する。図1に示す装置は、鋼板の脱脂装置(図 示せず)と、脱脂された鋼板を加熱する加熱炉1と、こ の鋼板を反応性Si化合物を含む無酸化性ガス雰囲気中 で珪浸処理する浸珪処理炉2と、拡散処理炉3と、冷却 炉4と、絶縁皮膜塗布装置12、乾燥・焼付装置13と を順に配置している。更に、冷却炉出側と絶縁皮膜塗布 30 装置12の入側との間に鉄損値を測定するための鉄損計 5a, 5bを配置している。鉄損計5a, 5bからの出 力信号は、演算器9、10、11に入力しており、演算 器9からの制御信号は、上面SiC12供給流量調整装 置6へ、演算器10からの制御信号は、下面SiC12 供給流量調整装置7へ、演算器11からの制御信号は、 均熱炉ヒータ調整装置8に出力するようになっている。 【0009】次に図1の装置の作用を説明する。 鋼板 は、例えば、図2に示すように、加熱炉1で1200℃ まで加熱される。次いで浸珪炉2で反応性Si化合物 (特に、SiCl4)を含む無酸化性ガス雰囲気中で120 O℃で加熱処理されてSiが鋼板表面から拡散される。 次いで、拡散処理炉4で所望のSi濃度勾配となる条件 下で拡散処理される。その後賴板両表面は、絶縁皮膜塗 布装置12で絶縁皮膜塗布され、乾燥・焼付装置13で 加熱乾燥されて、鉄損の改善と安定化が図られる。 【0010】冷却炉4の出側に設けられた鉄損計5a. 5 bは、それぞれ異なる励磁条件で鉄損を測定するもの である。 すなわち、 本発明に係る Si 濃度勾配を有する

鋼板を、測定周波数条件が例えば 1 kHz 以下の鉄損計で

るため、均一なSi濃度の鋼板よりも鉄損が高くなる。 他方、測定周波数条件が例えば5kHz 以上の鉄損計で測 定すると、この条件では渦電流損が支配的であるため、 均一なSi濃度の鋼板よりも鉄損が低くなる。また、あ る高周波励磁の場合に、低磁束密度領域では磁束が表層 の高Si部に集中するが、高磁束密度領域では網板内部 まで磁束か流れる。このため、本発明に係るSi濃度勾 配を有する鋼板は、低磁束密度領域では均一なSi濃度 の鋼板よりも低鉄損特性を示し、高磁束密度領域では逆 らの知見に基づけば、同一磁束密度で周波数の異なる2 条件のの鉄損及び/又は同一周波数で磁束密度の異なる 2条件の鉄損を測定することにより、本発明で対しよう としているSi濃度勾配を有する鋼板のSi濃度勾配を 求めることができる。この例では、第1の鉄損計5a は、測定周波数条件が400Hz以下、測定磁束密度が 0.5T以上、第2の鉄損計5bは、5kHz以上、 0. 5T以下とするのがよい。鉄損計5a, 5bからの 測定値は、演算器9,10,11に入力される。演算器 ... 9では、鉄損計5aからΔSi (表層Si濃度と中心部 20 層Si値には蛍光X線分析値を用いた。 のSi濃度との差)を求め、残留磁束密度を求める。ま た、鉄損計5a, 5bから△Siと表層Siを求め、高*

*周波低鉄損を得る条件を求める。これから演算器9,10 が所定の値、例えば鉄損計5aが10W/kg超え、演 算器10が所定の値、例えば鉄損計5bが8W/kg未 満となるようにSiCla流量を制御しながら、本発明 に係る傾斜磁性材料を製造する。鉄損計5a,5bの値 から演算器11を通して拡散処理温度を均熱炉ヒータ調 整器8で制御し、ΔSiの最適化を図る。

[0011]

【実施例】 (実施例1)連続浸珪ラインの炉出側、コー に均一なSi 濃度の鋼板よりも高鉄損特性を示す。これ 10 夕との間に、10kHz, 0.1Tでの鉄損を測定する 連続鉄損計を設置した。0.3 mm, 3% Si 鋼板に浸 珪処理し、連続的に鉄存置を測定した。

> 【0012】 浸珪処理炉の温度は、1200℃、均熱温 度は、1150, 1000, 900℃の3ゾーンに分け て設置した。ライン速度は10mpm一定とし、SiC 14流量を徐々に挙げ、劉板板厚方向のSi分布を変化 させ、鉄損値を測定した。表1に作成した試料のEPM Aによる板厚方向Si分布調査結果を示す。また、表1 に連続鉄損計及びエプスタイン測定値を示す。 表1の表

[0013]

【表1】

表層Si% (蛍光×線)	連続鉄換計	エプスタイン 測定値 (W/kg)		
4. 2	28. 3	27. 5		
5. 6	25. 6	25. 9		
6. 3	20. 6	20. 4		
7. 2	24. 9	25. 4		

高周波鉄損は、表層Si量:6.5%付近で最小値を示 30※流量を変化させ、0.1mm、3%珪素鋼板に浸珪処理 す。上記結果は、表層Si量の変化に伴う材料の鉄損変 化を良好に捉えており、連続製造を行う上で本条件での 鉄損測定が有効であることが分かる。板中央部でのSi 量は、何れも3%であった。

【0014】ライン速度やヒートパターンを固定するこ とにより、ASi量分布がある程度予測できる場合に は、高周波鉄損のみのオンライン測定で所定の製品を製 造できる。

し、連続的に鉄損値をオンラインで測定し、下記条件に て製品製造を行った。

【0015】 炉出側に2台の鉄損計を配置し、1台の鉄 損計は400Hz, 1.0T(A)、もう1台の鉄損計 は10kHz、0.1T(B)の条件で測定した。バッ チの試料とオンラインで製造した試料の評価結果を表2 に示す。

[0016]

(実施例2)ライン速度とヒートパターン及びSiС14※

【表2】

	(A)	(B)	Br12/DC	ΔSi	平均Si	表層Si
均一な6.5%	5. 7	8. 3	1. 11	0	6. 5	6.5
試料 1	10.6	7, 1	0. 50	2. 2	5. 4	6. 5
試料 2	11.8	8. 5	0. 48	2.6	5. 2	7.2
試料 3	8. 3	9. 1	0. 72	1.5	4. 2	5.6
試料 4 (オンライン)	10. 2	7. 8	0. 52	2.1	5, 3	6. 3

【0017】表2から、残留磁束密度は、ASiと相関 ★の鉄損と相関があり表層Siが6.5%に近く、ASi があり、W10/400の鉄損が大幅に増加する結果と の値が大きく、すなわちW10/400がある程度大き なって現れる。 Δ S i と表層 S i の値は、W 1 \diagup 1 O k ★50 いことが、均一な材料より高周波低鉄損材を得る条件と 5

いえる。

【0018】(A)での測定値が10W/kg超え、(B)での測定値が8W/kg未満となるようにオンライン測定しながら製造した試料4は、目的の材料が得られている。

[0019]

【発明の効果】以上に様に、本発明によれば、板厚方向 に所望のSi 濃度勾配を有する傾斜磁性材料を連続的に かつ再現性よく製造することができる製造装置を提供す ることができる。

【図面の簡単な説明】

【図1】本発明に係る板厚方向にSi 濃度勾配を有する 傾斜磁性材料の製造装置の一例を示す概略説明図。 【図2】この装置の炉温パターンの1例を示す図。 【符号の説明】

1...加熱炉,

2... 浸珪処理炉,

3...拡散処理炉,

4...冷却炉.

5... 蛍光エックス線装置,

5a...第1の鉄損計,

5 b . . . 第2の鉄損計,

10 6...上面SiCl4供給流量装置,

7. . . 下面SiCl4供給流量装置,

8...均熱炉ヒータ調整装置,

9~11...演算器。

【図1】

【図2】

フロントページの続き

(72)発明者 浪川 操

東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内