1 Curvature

Let's just straight-up define the curvature:

Definition 1.1. Consider a Riemannian manifold (M,g), with smooth vector fields $X, Y, Z \in \mathfrak{X}(M)$. We define

$$R_m(X,Y)Z = -\nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z + \nabla_{[X,Y]} Z$$

Alternately,

$$R_{abc}^d \omega_d = \nabla_a \nabla_b \omega_c - \nabla_b \nabla_a \omega_c$$

(Wald, p. 37)

Now, we need to establish that this is a tensor by showing it is function linear in each component.

Observe that

$$\begin{split} R_m(X,Y)fZ &= -\nabla_X \nabla_Y fZ + \nabla_Y \nabla_X fZ + \nabla_{[X,Y]} fZ \\ &= -X(Yf)Z - (Yf)\nabla_X Z - (Xf)\nabla_Y Z - f\nabla_X \nabla_Y Z + Y(Xf)Z + (Xf)\nabla_Y Z + Yf\nabla_X Z + f\nabla_Y Z \\ &= -f\nabla_X \nabla_Y Z + f\nabla_Y \nabla_X Z + f\nabla_{[X,Y]} Z \end{split}$$

as desired

Homework 1. Show this is function-linear in other components.

Note you can lower the contravariant index by applying g_{ab} i.e.

$$R_{abcd} = g_{dd'} R_{abc}^{d'}$$

Calculating Curvature

We can calculate the Riemann curvature tensor in coordinates by using the definitions of the covariant derivative.

$$\mathbb{R}_{abc}^{d} = \partial_b \Gamma_{ac}^{d} - \partial_a \Gamma_{bc}^{d} + \sum_{\alpha} (\Gamma_{ac}^{\alpha} \Gamma_{\alpha b}^{d} - \Gamma_{bc}^{\alpha} \Gamma_{\alpha a}^{d})$$

To make things easier, we can use local Riemannian normal coordinates by pushing the coordinates from T_pM to M via the exponential map.

Homework 2. Show that in Riemannian normal coordinates,

$$\Gamma_{ij}^k = 0 \ at \ p$$

and

$$\partial_k g_{ij} = 0$$
 at p

Definition 1.2. an orthonormal frame $\{e_i\}$ on an open neighborhood of a point $p \in M$ is called normal around p if

$$\nabla_a e_i = 0$$

at p.

The curvature follows the Bianchi Identity

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

In general, we have four important properties of the metric:

- $R^d_{abc} = R^d_{[ab]c}$ antiymmetry of the first two components
- $R^d_{[abc]} = 0$ the Bianchi identity
- $R_{abcd} = R_{ab[cd]}$ antiymmetry of the second two components
- $R_{abcd} = R_{cdab}$ symmetry in the first and second half components.

Note that item 4 can be derived from the other three.

An important concept not covered in Do Carmo:

Definition 1.3. Given a finite dimensional vector space (over \mathbb{R}) V, consider the tensor C of rank (0,4) (4 covariant indices). C is called an algebraic curvature tensor on V if it satisfies the above four properties (with appropriate index lowering).

Sectional Curvature

Let $p \in M$ and let σ be a 2-dimensional subspace of T_pM .

Definition 1.4. The sectional curvature $K(\sigma)$ is defined to be

$$K(\sigma) = R_m(e_1, e_2, e_1, e_2)$$

for $\{e_1, e_2\}$ an orthonormal basis for σ .

This definition is independent of choice of orthonormal basis by exploiting linearity of R_m .

This can also be expressed in an arbitrary basis u, v by

$$K(\sigma) = \frac{R_m(u, v, u, v)}{\|u \wedge v\|^2} \tag{1.1}$$

Where $||u \wedge v||^2$ is calculated from the inner product induced by the metric. That is, for $\{e_i\}$ an orthonormal basis for V, we declare $\{e_i \wedge e_j\}$ i < j to be orthonormal.

Homework 3. Show that the induced inner product is independent of choice of orthonormal basis.

Lemma 1. Let V be a vector space (finite dimensional, real) of dimension at least 2 with an inner product. Consider two algebraic curvature tensors C_1 and C_2 . Let K_1, K_2 denote the sectional curvatures of C_1 and C_2 . $K_1 = K_2$ if and only if $C_1 = C_2$.

Suppose C is such that $K(\sigma) = \kappa$ for all σ . Then,

$$C(x, y, z, w) = \kappa \left(g(x, z)g(y, w) - g(x, w)g(y, z) \right) \tag{1.2}$$

Ricci Curvature

Let R_m be a Riemannian curvature tensor, with components R_{abc}^d . We can take the trace over the first and third components to get

$$R_{ac} = Rabc^b (1.3)$$

Geometrically, this is defined as

Definition 1.5. $R_{C_p}(u, w) = trace(R_{m_p}(u, \cdot)w).$

In an orthonormal frame with $g(e_j, e_k) = \delta_{jk}$, we have

$$R_{ij} = R_{ikj}^k = R_{ikjk} \tag{1.4}$$

We can also define the Ricci scalar

Definition 1.6. $R = R_c(u, u)$ for unit vector u.

This can be given in coordinates as

$$R = R_i^i \tag{1.5}$$

Theorem 1. The Ricci curvature tensor is symmetric

Proof. We know that

$$R_{ac} = R_{abc}^b$$

But by symmetry of the Riemann curvature tensor, we have

$$R_{ac} = R_{abc}^b$$

$$= R_{cba}^b$$

$$= R_{ca}$$

as desired \Box

Now, let u be a unit vector, and build an orthonormal basis around u. Then,

$$R_c(u, u) = \sum R(e_1, e_i, e_1, e_i) = \sum K(e_1, e_i)$$

and

$$R = \sum R_c(e_i, e_i) = \sum K(e_i, e_j)$$

We also have the following identity for the Riemann curvature tensor R:

$$R(u \wedge v, w \wedge z) = R(u, v, w, z) \tag{1.6}$$

This relies on the antisymmetry of R, since R has to be linear.

Thus, interpreting R as a map from $\Lambda^2 T_p M \times \Lambda^2 T_p M \to \mathbb{R}$ we have that R is a symmetric bilinear map.

1.1 Riesz Representation and Tangent/Cotangent isomorphism

Given a metric, we have a natural isomorphism between T_pM and T_p^*M , denoted $\flat:T_pM\to T_p^*M$ and $\sharp:T_p^*M\to T_pM$ is given by

$$\flat(v) - v^{\flat} = q(v, \cdot) \tag{1.7}$$

This isomorphism extends also to exterior products of tangent spaces, allowing us to raise and lower indices at will.

1.2 Constant Curvature Spaces

Recall that if a space has constant sectional curvature κ , then

$$R(x, y, z, w) = \kappa(g(x, z)g(y, w) - g(x, w)g(y, z))$$

$$(1.8)$$

Examples of such spaces are

- 1. Euclidean flat space \mathbb{R}^n : $\kappa = 0$.
- 2. Spherical space S^n with the pullback metric from \mathbb{R}^{n+1} : $\kappa > 0$.
- 3. Hyperbolic space with the metric $\frac{ds^2}{(x^n)^2}$: $\kappa < 0$.

Calculating the curvature for \mathbb{R}^n is easy: we can always find an orthonormal frame that is parallel (covariant derivative is zero). Then, since R is defined in terms of the covariant derivatives, R must be zero.

Homework 4. Prove that $R^d_{abc} = 0$ on the product manifold $S^1 \times S^1$ with the standard product metric.

Now, let's calculate the curvature for the other two spaces.

Let M be our manifold, and let e_i be a local orthonormal frame on $U \subset M$ with dual ω^i . Then, we know that

$$d\omega^i = \omega^j \wedge \omega^i_j \tag{1.9}$$

with

$$\omega_j^i + \omega_i^j = 0 \tag{1.10}$$

Now, recall that

$$R(e_i, e_j) = \nabla_{e_i} \nabla_{e_j} + \nabla_{e_j} \nabla_{e_i} + \nabla_{[e_i, e_j]}$$

$$\tag{1.11}$$

and $\nabla_{e_j} e_k = \omega_k^l(e_j) e_l$ for connection forms ω_k^l . Thus

$$\nabla_{e_i} \nabla_{e_j} e_k = \nabla_{e_i} (\omega_k^l(e_j) e_l + \omega_k^l(e_j) \nabla_{e_j} e_l$$
$$= e_i \omega_k^l(e_j) e_l + \omega_k^l(e_j) \omega_l^m(e_j) e_m$$

Now, if the frame is normal, and we calculate at the center, $[e_i, e_j] = 0$ and so the last term vanishes.

So, we have

$$R(e_i, e_j)e_k = e_i\omega_k^l(e_j)e_l + \omega_k^l(e_j)\omega_l^m(e_j)e_m + e_j\omega_k^l(e_i)e_l + \omega_k^l(e_i)\omega_l^m(e_i)e_m$$

$$= d\omega_k^l(e_j, e_i)e_l + \omega_k^m \wedge \omega_m^l(e_i, e_j)e_l$$

$$= (d\omega_k^l + \omega_k^m \wedge \omega_m^l)(e_i, e_j)e_l$$

where the form in parentheses is the curvature form. Note that this differs from the normal convention by a negative sign, because the modern definition of the Riemann curvature tensor is $R^d_{abc}\omega_d=(-\nabla_a\nabla_b\omega_c+\nabla_b\nabla_a\omega_c)$ which is the negative of the definition found in Wald.

By convention, we define the curvature 2-form Ω to be

$$\Omega_i^j = d\omega_i^j + \omega_i^k \wedge \omega_k^j \tag{1.12}$$

These, however, are frame-dependent! We can define a global curvature form Ω on the principal bundle over the manifold with structure group O(n). Then, $\Omega_x \in \Lambda_x^{2*} M \otimes o(n)$ is a 2-form with values in o(n). (not important for this class)

Recall our goal to calculate the curvature of hyperbolic space. We know now that

$$R(X,Y)e_i = \Omega_i^j(X,Y)e_i \tag{1.13}$$

and the hyperbolic metric is

$$\frac{ds^2}{(x^n)^2} \tag{1.14}$$

Let's find the connection 1-forms using the orthonormal coframe $\omega^i = (\frac{dx^i}{x^n})^2$

$$d\omega^{i} = -\frac{1}{y^{2}}dy \wedge dx^{i}$$
$$= -\omega^{n} \wedge \omega^{i}$$

with $y = x^n$. The equating these with the structure equations

$$d\omega^i = \omega^j \wedge \omega^i_j \tag{1.15}$$

and

$$\omega_j^i + \omega_i^j = 0 \tag{1.16}$$

to get

$$\omega_i^n = \omega^i$$

with the other terms (not derived from antisymmetry) are zero.

Now, we have

$$\begin{split} \tilde{\Omega_j^i} &= d\omega_j^i + \omega_k^i \omega_j^k \\ \tilde{\Omega_j^i} &= 0 + \omega^i \wedge \omega^j & i, j < n \\ \tilde{\Omega_n^i} &= d\omega_n^i + \omega_k^i \omega_n^k \\ &= d\omega_n^i = -d\omega^i \\ &= -\omega^i \wedge \omega^n \end{split}$$

So, generally, $\tilde{\Omega^i_j}=-\omega^i\wedge\omega^j$. Now, let's calculate the whole curvature tensor. Let $Z=\xi^ie_i$. Then,

$$\begin{split} R(X,Y)Z &= -\tilde{\Omega}_i^j(X,Y)e_j \\ &= -\xi^i\omega^i \wedge \omega^j(X,Y)e_j \\ &= -Z^\flat \wedge (\omega^j e_j)(X,Y) \\ &= -Z^\flat \wedge \operatorname{Id}(X,Y) \\ &= -Z^\flat(X)\operatorname{Id}(Y) + Z^\flat(Y)\operatorname{Id}(X) &= -g(X,Z)Y + g(Y,Z)X \end{split}$$

Recall from earlier that

$$R(X, Y, Z, W) = \kappa(g(X, Z)g(Y, W) - g(X, W)g(Y, Z))$$

or

$$R(X,Y)Z = \kappa(g(X,Z)Y - g(Y,Z)X)$$