APPLIED MACHINE LEARNING AND DATA MINING (AMLDM) COURSEWORK REPORT

Do not write your name on your work unless your lecturer has explicitly told you to do so.

Student ID number	T			Ti	itle of degre	ee studying	<u> </u>		Level/Year
2200918	Bachelo	or of Sci	ience (I	Honours)	Data Scie	ence and	Analytics		1
Short unit name:	M32365	- AMLD	M			Due date	e: 20 February 2023	Deadline: 20	0 February
Full unit name:	APPLIEI	D MACH	INE LEA	ARNING A	AND DATA	MINING	(AMLDM)		
Unit lecturer name:	Akshay S	Sachdeva					Group: (if applicable)		
Additional items e.g. CD/disk/USB:	Yes		No	~	Details:				
All additional items shou	ıld be clear	rly labelle	d with ID	number a	nd unit nam	e and secu	rely attached to your	work.	
sense that all or a su if it were the studen Please note: Group co	e University ubstantial part's own wo oursewor nember's I	y defines a art of the v ork when ir rk will be ID numbe	es the inco work has I in fact it is filed und ers.	prporation be been copied wholly or su der the firs	y a student i I without any ubstantially t st Student II	n work for a y adequate a the work of D number	ssessment of material wattempt at attribution or another person or person at the top of the list.	r has been incor ons.	porated as
FOR OFFICIAL USE ON	<u>iLY</u>								
Date received/Office st	amp		Provision	nal mark %	6 / Commen	ts			

Administration Office

Academic Staff Member

1. Task A – Supervised learning

In supervised learning, machines are trained using labeled data sets. Models are trained over time using labeled data to classify a new data point. Supervised learning can be broadly classified into two types: classification and regression. The two types of regression discussed in the coursework are simple linear regression and multiple linear regression.

Two tasks were given under supervised learning. The two projects I chose for A.1.2 were to identify gender based on data pertaining to measurement of facial features and weather analysis to predict if it is going to rain next day or not. For each project I used four classification models: Logistic Regression, Random Forest, Decision Tree and Support Vector.

Logistic Regression

Logistic regression is a statistical technique for analyzing a dataset in which one or more independent variables influence the outcome. It is used to predict one of two possible outcomes (e.g., yes/no, success/failure) in binary classification problems. The logistic regression model is an equation that calculates the likelihood of the positive class (e.g., yes, success) based on the input features, which are then converted into a value between 0 and 1 using the logistic function. Following that, the predicted probabilities are thresholded to produce the final binary predictions.

Random Forest Classifier

The Random Forest Classifier is an ensemble learning method for classification problems. It works by constructing multiple decision trees from a random subset of the data and features and then aggregating their predictions to make the final prediction for new instances. The aggregation process is usually performed by majority voting for binary classification problems or by averaging for multiclass classification problems.

Decision Tree Classifier

The Random Forest Classifier is a classification problem ensemble learning method. It works by building multiple decision trees from a random subset of the data and features and then combining their predictions to make the final prediction for new instances. Aggregation is typically accomplished through majority voting for binary classification problems or averaging for multiclass classification problems.

SVC (Support Vector Classifier): linear

SVC Linear (SVC Linear) is a type of Support Vector Classifier (SVC) that is used for linear binary classification problems. The algorithm finds the best hyperplane by drawing a straight line between the two classes. The SVC Linear algorithm attempts to maximize the margin between the two classes by locating the line (hyperplane) that is closest to both classes while also ensuring that the line is equidistant from the support vectors, which are the closest data points from each class.

1.2 Building Classification Model

1.2.1 Gender data

Summary of Gender Data

The aim of gender data is to identify gender based on data pertaining to measurement of facial features. Gender data contain 5001 rows and 8 columns. There are 7 columns (numerical) and 1 column (categorical). Gender data has no missing values across all columns. There are duplicated values.

Data preparation steps carried out for building the model are:

- Remove 1,768 duplicated rows.
- Label Encoder is used to transform ['gender'] column values to 0 or 1 values only.
- MinMax Scaler is used to transform predictor attribute X from 0 to 1 range.

All columns except gender have correlation.

```
X = gender.iloc[:,:-1] # All except Last column(Gender)
y = gender.iloc[:,-1] # Gender only
```

Predictor attribute X, all except 'gender' which is the target attribute y to predict whether it will rain on the next day or not.

```
# trasnform gender columns values to 0 or 1 only
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit transform(y)
le_g = pd.DataFrame(y)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, shuffle =True)
print('X_train shape is ', X_train.shape)
print('X_test shape is ', X_test.shape)
print('y_train shape is ', y_train.shape)
print('y_test shape is ', y_test.shape)
X_{\text{train}} shape is (3500, 7)
X_test shape is (1501, 7)
y_train shape is (3500,)
y_test shape is (1501,)
# transform all columns values except gender column to 0 to 1 range only
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(copy=True, feature range=(0, 1))
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

The predictor attribute X is feature scaled from 0 to 1 and the target attribute y is encoded to 0 or 1. Both predictor attribute X and target attribute y are then split in two by the train test model in a 70:30% ratio.

Results

\$	Model ≑	Accuracy Score \$
0	Logistic Regression	95.57%
2	Decision Tree	95.15%
1	Random Forest	94.85%
3	SVC Linear	94.33%

\$	Model ≑	Run Time 💠
2	Decision Tree	0.053s
0	Logistic Regression	0.106s
3	SVC Linear	0.139s
1	Random Forest	0.316s

	precision	recall	f1-score	support		precision	recall	f1-score	suj
ogistic Regression	p. 001510		.1 500.0	зарро. с	Decision Tree	precision	rccuii	11 30010	Ju
0	0.95	0.94	0.95	425	0	0.94	0.96	0.95	
1	0.96	0.97	0.96	545	1	0.96	0.94	0.95	
accuracy			0.96	970	accuracy			0.95	
macro avg	0.96	0.95	0.95	970	macro avg	0.95	0.95	0.95	
weighted avg	0.96	0.96	0.96	970	weighted avg	0.95	0.95	0.95	
andom Forest	precision	recall	f1-score	support	SVC	precision	recall	f1-score	sup
0	0.95	0.94	0.95	457	Female	0.95	0.93	0.94	
1	0.95	0.95	0.95	513	Male	0.94	0.96	0.95	
accuracy			0.95	970	accuracy			0.94	
macro avg	0.95	0.95	0.95	970	macro avg	0.94	0.94	0.94	
weighted avg	0.95	0.95	0.95	970	weighted avg	0.94	0.94	0.94	

The logistic regression model has the greatest accuracy score (95.57%). Then there was a decision tree classifier with an accuracy score of 95.15%. Random Forest comes in third, with a slightly lower accuracy score of 94.85%. SVC linear has the lowest accuracy score of 94.33%.

Although the logistic regression execution time of 0.106s is not the fastest of the three classifications, it is only slightly slower than the decision tree's fastest speed of 0.053s. I will recommend logistic regression as the best model because of its overall high accuracy, precision, and recall scores.

2.2 Weather data

Summary of Weather data

The data's goal is to predict whether or not it will rain the next day. It is made up of 145,460 rows and 23 columns. Except for the Date and Location columns, there were many missing values.

Data preparation steps carried out for building the model are:

- Separated the columns into two lists: categorical features (Data type object) and numerical features (Data type float).
- Fill in the missing values of categorical features using the column's mode.
- Fill in missing numerical features values with the column's mean.
- The 'Year', 'Month', and 'Day' columns were derived from the Date column, the 'date' column is then removed from the weather data.

- Label Encoder was used to convert categorical features values to numeric values.
- Standard Scaler was used to transform predictor attribute x to 0 to 1 value only.

```
x = weather.drop(['RainTomorrow'],axis=1).values # Predictor value
y = weather['RainTomorrow'].values # Target value
```

Predictor attribute x, all columns except 'RainTomorrow,' which is the target attribute y to predict whether it will rain the next day.

Results

\$		Model	Accura	acy Score	\$		\$	Me	odel 🗢	Run Time	\$
1	R	andom Fore	st	85.60	%		0	Logistic Reg	ression	0.40)8s
0	Logist	ic Regressio	n	84.23	%		2	Decisio	on Tree	1.00)2 s
3		SVC Line	ar	84.17	%		3	SVC	Linear	1468.51	3 s
2		Decision Tre	ee	83.78	%		1	Random	Forest	21.78	37s
Logi	stic Regre	precisior ession	recall	f1-score	support	Decision	Tree	precision	recall	f1-score	support
		0 0.87	0.95	0.90	34057			0 0.86	0.94	0.90	34057
		1 0.71	0.48	0.57	9581			1 0.69	0.47	0.56	9581
	accurac	у		0.84	43638	a	ccurac	У		0.84	43638
	macro av	/g 0.79	0.71	0.74	43638	ma	cro av	/g 0.78	0.70	0.73	43638
wei	ghted av	/g 0.83	0.84	0.83	43638	weigh	ted av	/g 0.83	0.84	0.83	43638
Ranc	lom Fores	precision	recall	f1-score	support	SVC Li	near	precision	recall	f1-score	support
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0 0.87	0.96	0.91	34057			0 0.86	0.95	0.90	34057
		1 0.76	0.50	0.60	9581			1 0.73	0.44	0.55	9581
	accurac	у		0.86	43638	a	ccurac	У		0.84	43638
	macro av	/g 0.82	0.73	0.76	43638	ma	cro av	/g 0.79	0.70	0.73	43638
wei	ghted av	/g 0.85	0.86	0.84	43638	weigh	ted av	/g 0.83	0.84	0.83	43638

I will recommend the Random Forest Classifier Model as the best model because it has the highest accuracy score of 85.49%. Then came Logistic Regression, with an accuracy score of 84.23% and a slightly lower score of 84.17% for SVC linear. Decision Tree Classifier had the lowest accuracy score of 83.78%.

Although the Random Forest model had the highest precision and recall score, its recall score for predicting rain days is only 0.50. This means that the model correctly predicted 50% of the rainy days in the dataset.

3. Task A.2 - Building Regression Model

3.1 Regression Technique

Simple Linear Regression

Simple Linear Regression is a statistical method used to examine the relationship between two continuous variables where one variable (the dependent variable) is predicted from the values of the other variable (the independent variable).

Multiple Linear Regression

Multiple Linear Regression, on the other hand, involves more than one independent variable to predict the value of a dependent variable. It is used to model the relationship between two or more independent variables and a dependent variable.

3.2.1 Ice Cream Data

	irst 5 rows cream.head()	
\$	Temperature ♦	Revenue \$
0	24.566884	534.799028
1	26.005191	625.190122
2	27.790554	660.632289
3	20.595335	487.706960
4	11.503498	316.240194

Summary of IceCream data

The goal of IceCream data is to forecast daily revenue (in USD) based on the outside temperature (°C). It has 500 rows and 2 columns. IceCream data contains no missing values.

As shown in the graph above, there is a strong positive correlation between temperature and revenue. Furthermore, we can deduce that as the temperature rises, so will revenue.

```
X = icecream.iloc[:,0].values.reshape(-1,1)
y = icecream.iloc[:,-1].values
```

Since this IceCream dataset only has two columns, the predictor attribute X, temperature, will be used to predict the daily revenue generated, which is the target attribute y.

Results

The results show little difference between the train, test, and actual datasets. Temperature and revenue continue to have a strong positive correlation. The R² score, also known as the coefficient of determination, quantifies how well a regression model predicts the dependent variable based on the independent variables. The better the model fits the data, the higher the R² score. This dataset has an R²score of 0.98, which is very close to one, indicating that it is a perfect model.

3.2.2 Car Price Data

	irst 5 i .head()	rows										
\$	car_ID \$	symboling 4	+	CarName \$	fueltype \$	aspiration \$	doornumber \$	carbody \$	drivewheel \$	enginelocation \$	wheelbase \$	\$ enginesize \$
0	1	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130
1	2	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130
2	3	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 152
3	4	1	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 109
4	Ę	5 :	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 136

5 rows × 26 columns

Summary of CarPrice data

The goal of CarPrice data is to create a prediction model that can explain how car prices vary depending on their specifications. It is made up of 205 rows and 26 columns. There are no duplicated or missing values.

Data preparation steps carried out for building the model are:

- The car ID column was removed.
- Label Encoder was used to convert categorical features to a numeric value.
- All columns except price were transformed to 0 to 1 value using the standard scaler.

Exploratory Data Analysis

According to the graphs above, prices rise when the relevant features rise as well.

```
car.corr()['price'].sort_values(ascending=False)>=0.5
price
enginesize
curbweight
                            True
                            True
horsepower
carwidth
                            True
carlength
                            True
drivewheel
                            True
wheelbase
                            True
boreratio
                            True
fuelsystem
                            True
enginelocation
aspiration
                           False
carheight
                           False
compressionratio
                           False
enginetype
                           False
                                                                                : #Defined X value and y value , and split the data train

X = car.drop(columns="price") #all except price , predictor attribute

y = car["price"] # y = price , price column only , target attribute
cylindernumber
                           False
doornumber
                           False
symboling
                           False
```

Only columns in red box will be selected for Predictor attribute X, which is based on car features to predict price which is target attribute y.

Results

```
from sklearn import metrics
from sklearn.metrics import r2 score
print("R square (R2) score is :",r2_score(y_test, y_pred)*100,'%')
print("MAE", metrics.mean_absolute_error(y_test,y_pred))
print("RMSE", np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
#To retrieve the intercept:
print('Intercept: \n', reg.intercept_)
#For retrieving the slope:
print('Coefficients: \n', reg.coef_)
R square (R<sup>2</sup>) score is : 82.19678883899657 %
MAE 2241.236397093437
RMSE 3278.4003626692274
Intercept:
 13188.785115274359
Coefficients:
 [-381.55170111 -272.61931251 -60.00285415 777.87465479 -381.48146321
 1631.42243674 1756.69397444 1264.82876481 3554.0608345 ]
```

As R² score evaluation shows how well the data fits the regression model, we have a score of 82.19% for this model, but other metrics such as Mean Absolute Error and Root Mean Squared Error had very high values. This could be due to several factors, including a poorly chosen model, insufficient data, or data outliers. As a result, we can conclude that the model only works well to a certain extent.

4. Task B – Unsupervised Learning

4.1 Cluster Analysis

K-Means clustering

K-means is a centroid-based or distance-based algorithm that uses distances to assign a point to a cluster. Each cluster in K-Means is associated with a centroid. The k-means clustering algorithm relies heavily on optimization.

The optimization process seeks the set of centroids that minimizes the sum of squared distances between each data point and its nearest centroid. This process is repeated until convergence occurs, resulting in the best clustering solution.

Hierarchical clustering

Hierarchical Clustering is a clustering algorithm that uses unsupervised machine learning. It creates a cluster hierarchy, with each cluster subdivided into smaller sub-clusters.

Agglomerative Hierarchical Clustering begins by treating each data point as its own cluster, then merges the closest pairs of clusters successively until all the points are in one large cluster, or a stopping criterion is met. Hierarchical Clustering is useful for visualizing data structure and exploring various levels of abstraction.

DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is the foundation algorithm for density-based clustering. It can find clusters of various shapes and sizes in a large amount of data that contains noise and outliers.

4.2 Applying Cluster Analysis in Coursework

4.2.1 Credit Card data

Summary of Credit Card data

Credit card information consists of 8950 rows and 18 columns. There are no duplicate values. Missing values are found in the Credit limit and Minimum Payment columns.

cred	it.info()			<pre>credit.isna().sum()</pre>	
Rang	ss 'pandas.core.frame.DataFrame'> eIndex: 8950 entries, 0 to 8949			CUST_ID	0
	columns (total 18 columns):			BALANCE	0
#	Column	Non-Null Count	Dtype	BALANCE_FREQUENCY	0
	CUCT TO	0000	-1-11	PURCHASES	0
0 1	CUST_ID	8950 non-null	object float64	ONEOFF PURCHASES	0
7	BALANCE BALANCE_FREQUENCY	8950 non-null 8950 non-null	float64	_	-
3	PURCHASES	8950 non-null	float64	INSTALLMENTS_PURCHASES	0
1	ONEOFF_PURCHASES	8950 non-null	float64	CASH_ADVANCE	0
5	INSTALLMENTS_PURCHASES	8950 non-null	float64	PURCHASES_FREQUENCY	0
6	CASH ADVANCE	8950 non-null	float64	ONEOFF PURCHASES FREQUENCY	0
7	PURCHASES_FREQUENCY	8950 non-null	float64	PURCHASES INSTALLMENTS FREQUENCY	0
8	ONEOFF PURCHASES FREQUENCY	8950 non-null	float64		a
9	PURCHASES_INSTALLMENTS_FREQUENCY	8950 non-null	float64	CASH_ADVANCE_FREQUENCY	•
10	CASH_ADVANCE_FREQUENCY	8950 non-null	float64	CASH_ADVANCE_TRX	0
11	CASH_ADVANCE_TRX	8950 non-null	int64	PURCHASES_TRX	0
12	PURCHASES_TRX	8950 non-null	int64	CREDIT LIMIT	1
13	CREDIT_LIMIT	8949 non-null	float64	PAYMENTS	9
14	PAYMENTS	8950 non-null	float64		-
15	MINIMUM_PAYMENTS	8637 non-null	float64	MINIMUM_PAYMENTS	313
16	PRC_FULL_PAYMENT	8950 non-null	float64	PRC_FULL_PAYMENT	0
17	TENURE	8950 non-null	int64	TENURE	0

Data preparation steps carried out for building the model are:

- The Customer ID column was removed.
- Numerical features (Dtypes float and int) are grouped together.
- Fill in the missing values in the credit limit column with mean ()
- Fill in the missing values in the minimum payments column with backward fill.
- Log transformation for highly skewed features

Results

```
# BALANCE and PURCHASES Predictor
x = credit.iloc[:, [0,2]].values
```

K-Means Clustering

Elbow Plot

From the elbow plot above, we can see that the best fit for number of clusters is 3.

Target (Blue) group have a higher balance and higher purchases. Sensible (Orange) group have a high balance but low purchases. Careless (Green) group have a lower balance but high purchases.

Hierarchical Clustering

From the dendrogram above, a red dotted horizontal line that passes through longest distance, we can see that best fit for number of clusters is 3.

Clusters of Customers

Target (Green) group have a higher balance and higher purchases. Sensible (Orange) group have a high balance but low purchases. Careless (Blue) group have a lower balance but high purchases.

DBSCAN

```
# print number of instances in each cluster group, Note that -1 represents noises/outliers
credit['cluster group'].value_counts()

0 6878
1 2050
-1 22
Name: cluster group, dtype: int64
```

DBSCAN no need to define any cluster, it will automatically group the data into clusters on its own.

According to K-Means and Hierarchical clustering analysis, balance and purchases are directly proportional to the Target, Sensible, and Careless groups. They both performed well in customer segmentation, forming three similar clusters. DBSCAN can be used to identify noise, demonstrating that K-Means and Hierarchical clustering do not work well with noise.

5. Task B.2 Association Rule

5.1 Association Rules – Apriori Algorithm

Apriori is an algorithm used in association rule learning to discover frequent item sets in a transactional database. There is no need to define target variable as it figures out relationship among the data itemsets.

The process is repeated, using the frequent itemsets from the previous iteration as the basis for generating the next set of candidate itemsets. This process continues until no more frequent itemsets can be found. The resulting frequent itemsets can then be used to generate association rules, which describe relationships between items in the database.

5.2 Applying Apriori Algorithm in Coursework

5.2.1 Online Retail Dataset

data	a.head()							
\$	InvoiceNo \$	StockCode \$	Description \$	Quantity \$	InvoiceDate \$	UnitPrice \$	CustomerID \$	Country \$
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Summary of Online Retail data

Online Retail data contain 541,909 rows and 8 columns. There are missing values in 'Description' and 'CustomerID'. There are 5,231 duplicated rows in Online Retail data.

data	a.info()			<pre>data.isna().sum()</pre>	
<c1< th=""><th>ass 'pandas.co</th><th>re.frame.DataFram</th><th>ie'></th><th>InvoiceNo</th><th>0</th></c1<>	ass 'pandas.co	re.frame.DataFram	ie'>	InvoiceNo	0
Rang	geIndex: 54190	9 entries, 0 to 5	41908	StockCode	0
Data	a columns (tot	al 8 columns):		Description	1454
#	Column	Non-Null Count	Dtype	Quantity	0
				InvoiceDate	0
0	InvoiceNo	541909 non-null	object	UnitPrice	0
1	StockCode	541909 non-null	object	CustomerID	135080
2	Description	540455 non-null	object	Country	0
3	Quantity	541909 non-null	int64	TotalAmount	0
4	InvoiceDate	541909 non-null	datetime64[ns]	InvoiceYear	0
5	UnitPrice	541909 non-null	float64	InvoiceMonth	0
6	CustomerID	406829 non-null	float64	InvoiceYearMonth	0
7	Country	541909 non-null	object	dtype: int64	

Data preparation steps carried out for building the model are:

- 'TotalAmount' column was added by deriving from 'Quantity' * 'UnitPrice'.
- Remove 10,624 'Quantity' rows with negative values.
- Remove the duplicated rows (5,231 in total).
- Remove 1,174 rows of 'UnitPrice' with 0 values.

Exploratory Data Analysis

<pre># Top 20 Most Frequently sold items gp_stockcode_frq_quantitiy.head(20)</pre>	by quantitiy	<pre># Frequently sold items by total amount gp_stockcode_frq_amount.head(20)</pre>				
Description		Description				
PAPER CRAFT , LITTLE BIRDIE	80995	PAPER CRAFT , LITTLE BIRDIE	168469.60			
MEDIUM CERAMIC TOP STORAGE JAR	77916	REGENCY CAKESTAND 3 TIER	142264.75			
WORLD WAR 2 GLIDERS ASSTD DESIGNS	54319	WHITE HANGING HEART T-LIGHT HOLDER	100392.10			
JUMBO BAG RED RETROSPOT	46078	JUMBO BAG RED RETROSPOT	85040.54			
WHITE HANGING HEART T-LIGHT HOLDER	36706	MEDIUM CERAMIC TOP STORAGE JAR	81416.73			
ASSORTED COLOUR BIRD ORNAMENT	35263	POSTAGE	77803.96			
PACK OF 72 RETROSPOT CAKE CASES	33670	PARTY BUNTING	68785.23			
POPCORN HOLDER	30919	ASSORTED COLOUR BIRD ORNAMENT	56413.03			
RABBIT NIGHT LIGHT	27153	Manual	53419.93			
MINI PAINT SET VINTAGE	26076	RABBIT NIGHT LIGHT	51251.24			
PACK OF 12 LONDON TISSUES	25329	CHILLI LIGHTS	46265.11			
PACK OF 60 PINK PAISLEY CAKE CASES	24230	PAPER CHAIN KIT 50'S CHRISTMAS	42584.13			
BROCADE RING PURSE	22927	PICNIC BASKET WICKER 60 PIECES	39619.50			
VICTORIAN GLASS HANGING T-LIGHT	22404	BLACK RECORD COVER FRAME	39045.80			
ASSORTED COLOURS SILK FAN	21876	JUMBO BAG PINK POLKADOT	37254.36			
RED HARMONICA IN BOX	20945	DOORMAT KEEP CALM AND COME IN	35880.85			
JUMBO BAG PINK POLKADOT	20148	SPOTTY BUNTING	35509.55			
SMALL POPCORN HOLDER	18241	WOOD BLACK BOARD ANT WHITE FINISH	34414.71			

According to the table above, the most popular item is "paper craft, little birdie," with total sales of \$168,459.60 and 80,995 units sold.

The United Kingdom, the Netherlands, EIRE, Germany, and France are the top five revenue-generating countries for the online retail store. The United Kingdom was the largest customer, with 16,646 invoices. Following that, we will apply the association rule to the United Kingdom, France, and EIRE to determine which items are the most popular in each country.

Results

United Kingdom Rules

With defined mini support of 0.02, mini confidence of 0.8, and mini lift of 2, there is 84.40% confidence that customer bought 'PINK REGENCY TEACUP AND SAUCER', 'GREEN REGENCY TEACUP AND SAUCER' will also be likely to purchase with 'ROSES REGENCY TEACUP AND SAUCER' in United Kingdom.

France Rules

The itemset that is most frequently purchased together in France is "SET/6 RED SPOTTY PAPER PLATES" and "SET/6 RED SPOTTY PAPER CUPS" with defined mini support of 0.02, mini confidence of 0.8, and mini lift of 2. It has 100% confidence.

EIRE Rules

The item set that is most frequently purchased together in EIRE is "ROSES REGENCY TEACUP AND SAUCER" which has defined mini support of 0.02, mini confidence of 0.8, and mini lift of 2. It has 100% confidence.

5.2.2 Titanic Dataset

Summary of titanic data

The Titanic data set is made up of 891 rows and 12 columns. The 'Age,' 'Cabin,' and 'Embarked' Colmuns have missing values. There are no data duplicates found.

ang	eIndex: 891 e	re.frame.DataFra entries, 0 to 890	
	,	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

#Check any mi titanic.isnul	
PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
Title	0
dtype: int64	

Data preparation steps carried out for building the model are:

- Selected features such as 'age,' 'pclass, 'survived,' and 'sex' are grouped into a list.
- Rename the column 'survived' to 'survival'. Replace binary survival values with 0 for 'Dead' and 1 for 'Survived'.
- Filled up 'age' missing values with 0.
- Using the binning method, 'age' column is divided into 4 categories, unknown, young, adult and old.
- Transaction Encoder is used to convert records to a binary array or matrix with only true or false values.

Exploratory Data Analysis

We can see from the distribution of male passengers in pclass 3 that the majority did not survive.

Results

```
rules = rules[['antecedents','consequents','confidence','support','lift']]
rules = rules.sort_values(by="confidence",ascending=False)
rules.head(20)
          antecedents $ consequents $ confidence $ support $
                                                                     lift ¢
 $
 12
                                                         0.023569 1.544194
           (Dead, 1, Old)
                                  (male)
                                              1.000000
                                              0.976190
                                                         0.046016 1.507428
 8
             (Dead, Old)
                                  (male)
 2
                                              0.968085
                                                         0.102132 2.522116
              (female, 1)
                               (Survived)
         (Adult, female, 1)
                                              0.965517
                                                         0.062851 2.515426
 11
                               (Survived)
 0
                (Dead, 1)
                                  (male)
                                              0.962500
                                                         0.086420 1.486287
 18 (Young, female, Dead)
                                              0.958333
                                                         0.025814 1.739053
                                     (3)
          (Adult, Dead, 1)
                                  (male)
                                              0.948718
                                                         0.041526 1.465005
 10
          (Adult, 2, male)
                                              0.941176
                                                         0.071829 1.527483
                                  (Dead)
 14
 3
                (Dead, 2)
                                  (male)
                                              0.938144
                                                         0.102132 1.448677
                                                         0.071829 1.432296
          (Adult, 2, Dead)
                                  (male)
                                              0.927536
 13
 16
       (Adult, Survived, 2)
                                (female)
                                              0.925926
                                                         0.056117 2.627389
 4
                               (Survived)
                                              0.921053
                                                         0.078563 2.399584
              (female, 2)
                                                         0.056117 2.368421
 15
         (Adult, female, 2)
                               (Survived)
                                              0.909091
                                                         0.080808 1.613035
 7
           (Dead, female)
                                     (3)
                                              0.888889
                                                         0.097643 1.440783
17
       (3, male, Unknown)
                                  (Dead)
                                              0.887755
              (male, Old)
                                  (Dead)
                                              0.872340
                                                         0.046016 1.415766
```

The minimum support in this model is set at 0.02. We can conclude with 100% confidence based on the results that the individual involved is old, deceased, and a member of PClass 1. Female survivor from PClass 1 who is adult-aged, with 96.55% confidence. We can also draw the conclusion that, regardless of PClass, the deaths for most men were high.

Conclusion

This coursework made it easier for me to understand various machine learning techniques. Classification and regression are both supervised learning techniques that are used to predict or classify new data based on labeled examples. Classification is used when the output is a categorical variable, while regression is used when the output is a continuous variable.

Clustering, on the other hand, is an unsupervised learning technique that groups data points into clusters based on similarities between them. Clustering can be used to identify patterns and relationships in data that may not be immediately apparent and can be applied in a variety of fields, such as market segmentation and social network analysis.

Association rule mining, specifically the Apriori algorithm, is a technique used to uncover hidden relationships between variables in large datasets. It is commonly used in retail and ecommerce for product recommendation and in healthcare for disease diagnosis and treatment. The Apriori algorithm generates a set of rules that can be used to make predictions or guide decision-making.

References

- 1. https://www.javatpoint.com/supervised-machine-learning
- 2. https://www.javatpoint.com/unsupervised-machine-learning
- 3. https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html#:~:text=low%20point%20density.-,Density%2DBased%20Spatial%20Clustering%20of%20Applications%20with%20Noise%20(DBSCAN),is%20containing%20 noise%20and%20outliers.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/#:~:text=The%20log%20transformation%20is%2C%20arguably,normal%20or%20near%20normal%20distribution.
- 5. https://www.analyticsvidhya.com/blog/2020/07/types-of-feature-transformation-and-scaling
- 6. https://www.jmp.com/en_sg/statistics-knowledge-portal/what-is-regression.html
- https://www.jmp.com/en_sg/statistics-knowledge-portal/what-is-multipleregression.html
- 8. https://www.javatpoint.com/apriori-algorithm-in-machine-learning
- 9. https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/