线性代数 II(H) 2024-2025 春夏期中

图灵回忆卷

2025年4月23日

一、(10 分) 求过点 (1,0,2) 与平面 3x - y + 2z + 2 = 0 平行,且与直线 $\frac{x-1}{4} = \frac{y+1}{-2} = \frac{z}{1}$ 相交的直线方程。

二、(10 分) 设 V 为有限维线性空间, $T \in V$ 到 V 的线性映射。若 $T^2 - 3T + 2I = 0$,证明:

$$V = \text{null}(T - I) \oplus \text{range}(T - I)$$

三、(10 分) 设 v_1, \ldots, v_n 为有限维线性空间 V 的一组基, $\varphi_1, \ldots, \varphi_n$ 为其对偶基。设 $\psi \in V^*$,证明:

$$\psi = \psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n$$

四、(10 分) 设 $p \in \mathbb{C}[x]$, $p \neq 0$, 令 $U = \{pq \mid q \in \mathcal{P}(\mathbb{C})\}$ 。

- 1. 证明: $\dim(\mathcal{P}(\mathbb{C})/U) = \deg p$;
- **2.** 求 $\mathcal{P}(\mathbb{C})/U$ 的一组基。

五、(10 分) 设 V 为有限维内积空间, $S,T \in L(V)$. 称 S,T 可同时对角化,若存在 V 的一组基,使得 S 和 T 在这组基下的矩阵都是对角矩阵。若 S 和 T 可对角化,证明:它们可同时对角化当且仅当 ST = TS.

六、(10 分) 设 A 为 n 阶实方阵,记 A^T 为 A 的转置。证明 $\dim E(\lambda, A) = \dim E(\lambda, A^T)$ 。

七、 $(10 \ \ \%)$ 设 W_1, W_2 为有限维内积空间的子空间。证明:

$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}; \quad (W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

八、(10 分) 考虑 \mathbb{R}^n 上的标准内积,设列向量 $x_1, \dots, x_p \in \mathbb{R}^n$, $\sum_{i=1}^p x_i = 0$. 记 $X = (x_1, \dots, x_p)$,设 XX^T 有 n 个不同的正特征值,给定 $k \in \mathbb{N}_+$,k < n,考虑 PCA 算法:

- 1. $C = XX^T$
- **2.** 取 $\lambda_1 \geq \cdots \lambda_k$ 为 C 最大的 k 个特征值, v_1, \cdots, v_k 为对应的单位特征向量
- **3.** $\diamondsuit V = \text{span}\{v_1, \dots, v_k\}, \ U = (v_1, \dots, v_k), \ P_V = UU^T$
- **4.** $\Leftrightarrow y_i = P_V x_i, i = 1, \dots, n$

证明:

- 1. $\{v_1, \dots, v_k\}$ 为 V 的规范正交基,且 P_V 为 \mathbb{R}^n 到 V 的正交投影.
- **2.** PCA 算法最小化投影误差. 即 $\forall W$ 为 \mathbb{R}^n 的 k 维子空间, P_W 为正交投影, $\sum_{i=1}^p \|x_i y_i\|^2 \le \sum_{i=1}^p \|x_i P_W x_i\|^2$.
- 九、(20分)试判断下列命题的真伪。若命题为真,请给出简要证明;若命题为假,请举出反例。
 - 1. 任意空间向量 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 满足 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$;
 - 2. 每个非常数的复系数多项式都有零点;
 - **3.** 设 $T \in L(V)$, 存在 V 的一组基 $\{v_1, \ldots, v_n\}$, 使得 T 关于这组基的矩阵是对角矩阵;
- **4.** 设 V = C([0,1]) (即 V 为 [0,1] 区间上连续函数全体构成的线性空间), $\langle f,g \rangle = \int_0^{\frac{1}{2}} f(t)g(t) dt$ 为 V 上的内积。