Mostafa Sabri

Lecture 14

4.5 The Dimension of a Vector Space

Dimension

Thm: If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors is linearly dependent.

<u>Proof.</u> Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\} \subset V$ with p > n. Then $\{[\mathbf{u}_1]_{\mathcal{B}}, \ldots, [\mathbf{u}_p]_{\mathcal{B}}\} \subset \mathbb{R}^n$. The latter set is dependent by Lec3. As the coordinate map is an isomorphism, we deduce that $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is dependent as well (Lec 13).

Thm: If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.

The proof is identical to Lec5.

Finite and infinite dimension

If V is a vector space that has a basis with n vectors, we say that $\dim V = n$. If no finite set spans V, we say it is infinite dimensional.

e.g. $\dim P_n = n + 1$, $\dim M_{m,n} = mn$, while $C[\alpha, b]$ is infinite dimensional.

Find the dimension of
$$H = \left\{ \begin{bmatrix} a-c \\ b+d \\ c-d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$
.

Dimension and Subspaces

Thm: Let V be a finite dimensional vector space and $H \subseteq V$ a subspace. Then

- 1. Any linearly independent set in *H* can be expanded, if necessary, to a basis for *H*.
- 2. $\dim H < \dim V$.
- 3. If dim $H \neq$ dim V, then $H \neq V$.
- 4. If $\dim H = \dim V$, then H = V.

<u>Proof.</u> Let $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\} \subset H$ be linearly independent. If S spans H, it is a basis for H. If not, then some $\mathbf{v} \in H$ is not in Span(S). It follows that $S' = \{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}\}$ is linearly independent. Indeed if S' was dependent, some vector in S' would be a combination of those preceding

Dimension and Subspaces

it, which is not possible here. Now, if S' is a basis for H we stop. Otherwise, we continue adding independent vectors until reaching dim H, then the expanded set S_+ must be a basis for H, since any more vectors \mathbf{v} would make S_+ dependent, implying $\mathbf{v} \in \operatorname{Span}(S_+)$.

- 2. Let $F \subseteq H$ be a basis for H. Then F is linearly independent in V. If it spans V, then dim $V = \dim H$. If it does not span V, then we expand F until it becomes a basis for V, using 1. Then dim $H < \dim V$.
- 3. This is trivial as the dimension is well-defined.
- 4. We showed in 2. that if $F \subseteq H$ is a basis for H, and if it does not span V, then $\dim H < \dim V$. So $\dim H = \dim V$ implies F must span V. Hence, $V = \operatorname{Span}(F) = H$.

Basis Theorem

Basis Thm. Let dim V = p. If p vectors in V are linearly independent, they must be a basis for V. If p vectors in V span V, they must be a basis for V.

<u>Proof.</u> Let $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$. If S is linearly independent, let $H = \operatorname{Span}(S)$. Then S is a basis for H, so $\dim H = p = \dim V$, hence H = V. On the other hand, if S spans V, then a subset S' of S is a basis for V (Lec12), so p = |S'| = |S|, hence S' = S.

Let us turn back to the column and row spaces and discuss their dimension. Recall that the rank of a matrix *A* is the dimension of the column spaces, also the number of pivot columns.

Rank and Row Spaces

Thm: The row and column spaces of an $m \times n$ matrix A have the same dimension.

<u>Proof.</u> Let *B* be the reduced row echelon form of *A*. If $r = \dim Col(A)$, then *B* has *r* pivot columns. Let *s* be the number of nonzero rows in *B*. Since the pivots move to the right when going down the rows, we must have $s \ge r$. But each nonzero row in *B* has a pivot position, so the corresponding columns are pivot columns. Thus, s = r.

Corollary: rank(A) = dim Col(A) = dim Row(A).

Rank Theorem

Rank Thm. If A has n columns, then rank(A) + dim Nul(A) = n.

<u>Proof.</u> Let B be a row echelon of A and let r be the number of nonzero rows in B. We have $Nul(A) = \{x : Ax = 0\} = \{x : Bx = 0\}$. But back-substitution using B gives r equations in n variables. So we have n-r free variables. This implies we can write Nul(A) as the span of n-r linearly independent vectors using the usual procedure. Hence, dim Nul(A) = n-r.

We sometimes call dim Nul(A) the *nullity* of A.

Let A have size 4×10 . Can A have rank 7? nullity 10?

Rank and Linear Transformations

In the following, V and W are vector spaces

If
$$T: V \to W$$
 is linear, we define $rank(T) = dim Range(T)$, $nullity(T) = dim ker(T)$.

Thm: If
$$T: V \to W$$
 is linear and dim $V = n$, then
$$rank(T) + nullity(T) = n$$
.

<u>Proof.</u> This follows from the rank theorem since T can be represented by a matrix A with n columns, so $\dim \operatorname{Range}(T) = \dim \operatorname{Range}(A) = \dim \operatorname{Col}(A)$, and $\dim \ker(T) = \dim \operatorname{Nul}(A)$.

П

Rank and Linear Transformations

Thm: Let $T: V \rightarrow W$ be linear, where dim W = m.

- 1. T is surjective (onto W) iff rank(T) = m.
- 2. If $\dim V = \dim W = m$, then T is surjective iff it is injective.

<u>Proof.</u> 1. If T is surjective then Range(T) = W, so rank(T) = dim W = M. Conversely, if rank(T) = M, then Range(T) $\subset W$ is a subspace of W of the same dimension as W, so Range(T) = W (earlier thm).

2. rank(T) + dim ker(T) = m. If T is surjective, then rank(T) = m, so dim ker(T) = 0, so $ker(T) = \{0\}$ and T is injective. On the other hand, if T is injective, then dim ker(T) = 0, so rank(T) = m and T is surjective. \square

Isomorphism

Show that if V and W are both isomorphic to a vector space H, then V is isomorphic to W.

Thm: Two finite dimensional vectors spaces V, W are isomorphic iff they have the same dimension.

<u>Proof.</u> If V, W are isomorphic, then the isomorphism $T: V \to W$ carries a basis of V to a basis of W, so $\dim V = \dim W.^1$ Conversely, if $\dim V = \dim W = m$, then V and W are both isomorphic to \mathbb{R}^m via the coordinate map, so they are isomorphic to each other. \square

e.g. \mathbb{R}^4 , $M_{4,1}$, $M_{2,2}$ and P_3 are all isomorphic.

¹Find an alternative proof using the rank theorem.