Project 2 Report: OLED on Zedboard

Overview

- 1. Instantiate an AXI-SPI Core in the PL of the Zyng SoC to handle SPI communication.
- 2. The PS writes data to the AXI-SPI core via AXI4-Lite.
- 3. The AXI-SPI core in the PL sends the SPI data to the OLED display.

OLED Interfaces

- GPIO (Parallel): Uses multiple pins to transfer data in parallel, offering high-speed communication but requiring many GPIO pins, which can be complex to wire and debug.
- I2C: A two-wire serial interface (SDA for data, SCL for clock) that is simple to wire and allows multiple devices on the same bus but operates at a slower speed compared to SPI, making it ideal for simpler displays.
- **SPI**: Several variations, but generally a two to four wire serial interface that provides faster communication than I2C with fewer pins than GPIO, striking a balance between speed and pin usage for moderately complex displays.

This project implements the SPI interface to communicate with the OLED display.

AXI Bus

Communication between the Processing System(PS) and the Programmable Logic(PL)

AXI4-Lite Protocol

Figure 1: Read Channels

- The read address channel carries addressing information and handshaking signals
- The read data channel carries the data values and handshaking signals
- The write address channel carries addressing information and handshaking signals
- The write data channel carries the data values and handshaking signals
- The write response channel allows the slave peripheral to acknowledge receipt of the data

Handshaking Signals The handshaking signals are based on a simple "Ready/Valid" principle:

- "Ready" indicates that the recipient is ready to accept data.
- "Valid" indicates that the sender has valid data to send.

Either state can be asserted first:

Figure 2: Write Channels

"A frequently misunderstood use of the Valid and Ready signals, and one which often results in incorrect and illegal implementations of the AXI4-lite protocol, is the assumption that the sender can/must wait for "Ready" to be asserted by the receiver before it asserts its "Valid" signal. This is an illegal use of the handshaking signals and can result in a deadlock situation arising. Ready can be asserted before Valid, but the sender must never wait for Ready as a pre-condition to commencing the transaction."

Read Transactions

• AXI4-lite Read Address Channel

Signal Name Size	Driven by	Description
S_AXI_ARADDR bits S_AXI_ARVALIDbit	Master Master	Address bus from AXI interconnect to slave peripheral. Valid signal, asserting that the S_AXI_AWADDR can be sampled by the slave peripheral.
S_AXI_ARREADMt	Slave	Ready signal, indicating that the slave is ready to accept the value on S_AXI_AWADDR.

• AXI4-lite Read Data Channel

Signal Name	Size	Driven by	Description
S_AXI_ S_AXI_	RDATAbits RVALIDI RREADIY RRESDits	Slave Slave Master Slave	Data bus from the slave peripheral to the AXI interconnect. Valid signal, asserting that the S_AXI_RDATA can be sampled by the Master. Ready signal, indicating that the Master is ready to accept the value on the other signals. A "Response" status signal showing whether the transaction completed successfully or whether there was an error.

• AXI4-lite Response Signalling

RRESP State	
[1:0]	Condition
00	OKAY "OKAY" - The data was received successfully, and there were no errors.
01	EXOKA\(\frac{4}{2}\)Exclusive Access OK" - This state is only used in the full implementation of AXI4, and therefore cannot occur when using AXI4-Lite.
10	SLVERR'Slave Error" - The slave has received the address phase of the transaction correctly but needs to signal an error condition to the master. Often results in a retry.
11	DECERRDecode Error" - This condition is not normally asserted by a peripheral but can be asserted by the AXI interconnect logic. It indicates the address doesn't exist in the AXI interconnect address space.

Write Transactions Write transactions are almost identical to the Read transactions discussed above, except that the Write Data Channel has one signal that is different to the Read Data Channel.

• AXI4-lite Write Data Channel

Signal		Driven	
Name	Size	by	Description
S_AXI_	_WDA 32 Abits	Master	Data bus from the Master / AXI interconnect to the Slave peripheral.
$S_AXI_$	_WVALIBDt	Master	Valid signal, asserting that the S_AXI_RDATA can be sampled by the Master.
S_AXI_	_WREADAY	Slave	Ready signal, indicating that the Master is ready to accept the value on the other
			signals.
$S_AXI_$	_WSTRBits	Master	A "Strobe" status signal showing which bytes of the data bus are valid and should be
			read by the Slave.

• S_AXI_WSTRB Signals

S_AXI_WSTRB [3:0]	S_AXI_WDATA active bits [31:0]	Description
1111	11111111111111111111111111111111111	All bits active
0011	0000000000000000111111111111111111	Least significant 16 bits active
0001	00000000000000000000000011111111	Least significant byte (8 bits) active
1100	111111111111111110000000000000000000	Most significant 16 bits active

• AXI4-lite Write Response Channel

Signal		Driven	
Name	Size	by	Description
S_AXI_	_BRE ADIY	Master	Ready signal, indicating that the Master is ready to accept the "BRESP" response signal from the slave.
S_AXI_	_BRE S Bits	Slave	A "Response" status signal showing whether the transaction completed successfully or whether there was an error.
$S_AXI_$	_BVA LID t	Slave	Valid signal, asserting that the S_AXI_BRESP can be sampled by the Master.

AXI4-lite Write Response Signalling Port Descriptions

Zedboard

An Inteltronic/Wisechip UG-2832HSWEG04 **OLED** Display is used on the ZedBoard. This provides a 128x32 pixel, passive-matrix, monochrome display. The display size is 30mm x 11.5mm x 1.45mm.

UG-2832HSWEG04 OLED Display

OLED Interface Pinout

Figure 3: AXI_LITE IP

Figure 4: Zedboard Block Diagram

Pin Number	Symbol	Zynq Pin	Function	
Interface				
9	RES#	U9	Power Reset for Controller and Driver	
8	CS#	N/C	Chip Select – Pulled Down on Board	
10	D/C#	U10	Data/Command Control	
11	SCLK	AB12	Serial Clock Input Signal	
12	SDIN	AA12	Serial Data Input Signal	

The UG-2832HSWEG04 is a 0.91-inch OLED display module featuring a 128×32 pixel resolution and a 4-wire Serial Peripheral Interface (SPI) for communication. This interface facilitates efficient data transfer between the display module and a microcontroller.

SPI Interface Pins The display module utilizes the following pins for SPI communication:

- CS# (Chip Select): Active-low input that enables the display module when pulled low.
- RES# (Reset): Active-low input that resets the display module when pulled low.
- D/C# (Data/Command): Determines the nature of the data; high for data, low for command.
- SCLK (Serial Clock): Clock signal generated by the master device to synchronize data transmission.
- SDIN (Serial Data Input): Serial data line for transmitting data from the master to the display module.

Communication Protocol

1. Initialization:

- $\bullet\,$ Pull **RES#** low to reset the display module.
- Set **RES**# high to complete the reset process.

2. Data Transmission:

- Set **CS**# low to select the display module.
- Use **D/C**# to specify the nature of the data:
 - Set \mathbf{D}/\mathbf{C} # low for command bytes.
 - Set **D/C**# high for data bytes.
- Transmit data via SDIN, synchronized with the SCLK signal. Data is latched on the rising edge of SCLK.

3. Termination:

• After data transmission, set CS# high to deselect the display module.

Figure 5: GDDRAM Page Structure

Figure 6: GDDRAM Page Breakdown