

Corrigé avec barème IE3 : c'est nickel!

	Règle des moments chimiques : (0,60-0,40).m _L =(0,70-0,60).m _S	
	m_L =333 g et m_S =667 g	
	Solide : $m_{Ni} = 0.70 \times 667 = 467$ g et $n_{Ni} = 467/58, 7 = 7.95$ mol; $m_{Au} = 0.30 \times 667 = 200$ g	
	et n _{Au} = 200/196,9 = 1,01 mol	
	$n_s = 7,95+1,01 = 8,96 \text{ mol}$	
	Liquide : $m_{Ni} = 0.40 \times 333 = 133$ g et $n_{Ni} = 133/58,7 = 2.27$ mol; $m_{Au} = 0.60 \times 333 = 200$ g et $n_{Au} = 200/196,9 = 1.01$ mol	
	n _L = 2,27+1,01 = 3,28 mol	
	11 - 2,27 · 1,61 - 3,25 moi	
	Compositions molaires : Solide : 0,89 en Ni ; Liquide 0,69 en Ni	
4.a)	En refroidissant à 1100°C, on récupère 667 g de solide à 70% massique en Ni.	
	On le fond entièrement puis on le refroidit à 1200°C. On récupère un solide à 80%	
	massique en Ni et un liquide à 55,5% en Ni.	
	Règle des moments chimiques : (0,70-0,55)m _L =(0,80-0,70)m _S	
	m _L =267 g et m _S =400 g	
	Le solide est de plus en plus riche en Ni mais la masse de solide diminue	
4.b)	Impossible de récupérer tout le nickel pur. A la fin, il reste aussi un solide à x_{Ni} =0,15.	
	Tout I'or (400 g) est dans ce mélange de variance nulle : 0,85=400/(400+m _{Ni}) ;	
	m_{Ni} =71 g	
	Masse de nickel pur : $m_{Ni} = 600-71 = 529 g$	
4.c)	Cristallisation fractionnée	
5)	On veut x _{Ni} =0,05	
I	soit $v_{1} = 0.05 \cdot cm \cdot 2.donc \cdot 0.05 = (m_{1} + 400) / (1000 + m_{2})$	
	soit x_{Au} =0,95; on a donc: 0,95 = $(m_{Au}+400)/(1000+m_{Au})$,	
6.a)	soit m _{Au} = 11 kg	
6.a)	soit m _{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or	
6.a)	soit m _{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni	
	soit m _{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or	
6.b)	soit m _{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que x _{Ni} < 0,2	
6.b)	soit \mathbf{m}_{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que \mathbf{x}_{Ni} < 0,2 En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$	
6.b)	soit \mathbf{m}_{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que \mathbf{x}_{Ni} < 0,2 En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$)	
6.b)	soit \mathbf{m}_{Au} = 11 kg Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que \mathbf{x}_{Ni} < 0,2 En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \text{ kJ.mol}^{-1}$	
6.b)	soit $\mathbf{m}_{Au} = 11 \ kg$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni II faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 \ et \Delta_r S_T^0 \cong \Delta_r S_{298}^0 : \Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \Delta_f \overline{H}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \Delta_f \overline{H}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \ kJ. mol^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \overline{S}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \overline{S}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \ J. K^{-1}. mol^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \ en \ kJ. mol^{-1}$	
6.b)	soit $\mathbf{m}_{Au} = 11 \ kg$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 \ et \Delta_r S_T^0 \cong \Delta_r S_{298}^0 : \Delta_r G_T^0 = \Delta_r H_{298}^0 - T \Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \Delta_f \overline{H}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \Delta_f \overline{H}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \ kJ.mol^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \overline{S}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \overline{S}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \ J.K^{-1}. mol^{-1}$	
6.b)	soit $\mathbf{m}_{Au} = 11 \ kg$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni II faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 \ et \Delta_r S_T^0 \cong \Delta_r S_{298}^0 : \Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \Delta_f \overline{H}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \Delta_f \overline{H}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \ kJ. mol^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \overline{S}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \overline{S}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \ J. K^{-1}. mol^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \ en \ kJ. mol^{-1}$	
6.b)	soit $\mathbf{m}_{Au} = 11 \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \mathrm{kJ.mol^{-1}}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni_{(CO)_{4(g)}}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \mathrm{J.K^{-1}.mol^{-1}}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \mathrm{en kJ.mol^{-1}}$ A T = 316 K équilibre de vaporisation : $Ni_{(CO)_4}(I) \hookrightarrow Ni_{(CO)_4}(g) \Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni_{(s)} + 4 \mathrm{CO}(g) \leftrightarrows Ni_{(CO)_4}(g) \Delta_{rb} H_T^0$	
6.b)	soit $\mathbf{m_{Au}} = 11 \ \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x_{Ni}} < 0,2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 \ \mathrm{et} \Delta_r S_T^0 \cong \Delta_r S_{298}^0 : \Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \Delta_f \overline{H}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \Delta_f \overline{H}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110,5) = -160, 3 \ \mathrm{kJ.mol^{-1}}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \overline{S}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \overline{S}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \ \mathrm{J.K^{-1}.mol^{-1}}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \ \mathrm{en} \ \mathrm{kJ.mol^{-1}}$ $\Delta T = 316 \ \mathrm{K} \ \mathrm{\acute{e}quilibre} \ \mathrm{\acute{e}de} \ \mathrm{vaporisation} : \ \mathrm{Ni(CO)_4} \ \mathrm{(I)} \ \ \Delta_{ra} H_T^0$ $T \ge 316 \ \mathrm{K} : \ \mathrm{\acute{e}quilibre} \ \mathrm{\acute{e}lo} \ \mathrm{Ni(s)} + 4 \ \mathrm{CO} \ \mathrm{\acute{e}lo} \ \ \mathrm{Si(CO)_4} \ \mathrm{\acute{e}lo} \ \ \Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$	
6.b)	soit $\mathbf{m}_{Au} = 11 kg$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0.2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T \Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602.3 - 0 - 4 \times (-110.5) = -160.3 \mathrm{kJ.mol^{-1}}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410.1 - 29.9 - 4 \times 197.7 = -410.6 \mathrm{J.K^{-1}.mol^{-1}}$ D'où $\Delta_r G_T^0 = -160.3 + 0.411 \times T \mathrm{en} \mathrm{kJ.mol^{-1}}$ A T = 316 K équilibre de vaporisation : $Ni(CO)_4$ (I) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ T $\geq 316 \mathrm{K}$: équilibre (b) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190.4 + 0.508.T$ (en $\mathrm{kJ.mol^{-1}}$, avec T en K), donc	
6.b)	soit $\mathbf{m_{Au}} = \mathbf{11 kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x_{Ni}} < 0,2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \text{ kJ.mol}^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \text{ J.K}^{-1}.\text{mol}^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \text{ en kJ.mol}^{-1}$ A T = 316 K équilibre de vaporisation : Ni(CO) ₄ (I) \leftrightarrows Ni(CO) ₄ (g) $\Delta_{vap} \overline{H}_{316}^0$ T \leq 316 K : équilibre (a) Ni(s) + 4 CO (g) \leftrightarrows Ni(CO) ₄ (I) $\Delta_{ra} H_T^0$ T \geq 316 K : équilibre (b) Ni(s) + 4 CO (g) \leftrightarrows Ni(CO) ₄ (g) $\Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$ Pour T \leq 316 K : $\Delta_r G_T^0 = -190, 4 + 0, 508.T$ (en kJ.mol ⁻¹ , avec T en K), donc $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190, 4 \text{ kJ.mol}^{-1}$ avec Ni(CO) _{4(I)}	
6.b)	soit $\mathbf{m}_{Au} = 11 \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0,2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 \mathrm{et} \Delta_r S_T^0 \cong \Delta_r S_{298}^0 : \Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \Delta_f \overline{H}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \Delta_f \overline{H}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110,5) = -160, 3 \mathrm{kJ.mol}^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0 \left(Ni(CO)_{4(g)} \right) - \overline{S}_{298}^0 \left(Ni_{(s)} \right) - 4 \times \overline{S}_{298}^0 \left(CO_{(g)} \right)$ $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \mathrm{J.K}^{-1}. \mathrm{mol}^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \mathrm{en} \mathrm{kJ.mol}^{-1}$ A T = 316 K équilibre de vaporisation : Ni(CO)_4 (I) \(\Box \times \mathrm{Ni}(\mathrm{CO})_4 \mathrm{(g)} \Delta_{vap} \overline{H}_{316}^0 T $\leq 316 \mathrm{K}$: équilibre (a) Ni(s) + 4 CO (g) \(\Box \times \mathrm{Ni}(\mathrm{CO})_4 \mathrm{(g)} \Delta_{rb} H_T^0 T $\geq 316 \mathrm{K}$: équilibre (b) Ni(s) + 4 CO (g) \(\Box \times \mathrm{Ni}(\mathrm{CO})_4 \mathrm{(g)} \Delta_{rb} H_T^0 Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190, 4 + 0, 508.T$ (en kJ.mol-1, avec T en K), donc $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190, 4 \mathrm{kJ.mol}^{-1}$ avec Ni(CO) _{4(I)} et on a calculé en 2) $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -160, 3 \mathrm{kJ.mol}^{-1}$ avec Ni(CO) _{4(g)} .	
6.b) 1)	soit $\mathbf{m_{Au}} = \mathbf{11 kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x_{Ni}} < 0,2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \mathrm{kJ.mol^{-1}}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \mathrm{J.K^{-1}.mol^{-1}}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \mathrm{en kJ.mol^{-1}}$ A T = 316 K équilibre de vaporisation : $Ni(CO)_4$ (I) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni(s) + 4 \mathrm{CO}$ (g) $\hookrightarrow Ni(CO)_4$ (l) $\Delta_{ra} H_T^0$ T $\geq 316 \mathrm{K}$: équilibre (b) $Ni(s) + 4 \mathrm{CO}$ (g) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$ Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190, 4 + 0, 508. T \mathrm{(en kJ.mol^{-1}, avec T en K), donc}$ $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190, 4 \mathrm{kJ.mol^{-1}} avec Ni(CO)_{4(g)}$ et on a calculé en 2) $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -160, 3 \mathrm{kJ.mol^{-1}} avec Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol^{-1}}$	
6.b)	soit $\mathbf{m}_{Au} = 11 \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \mathrm{kJ.mol}^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \mathrm{J.K}^{-1}. \mathrm{mol}^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \mathrm{en} \mathrm{kJ.mol}^{-1}$ A T = 316 K équilibre de vaporisation : $Ni(CO)_4$ (I) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$ Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190, 4 + 0, 508, T$ (en $\mathrm{kJ.mol}^{-1}$, avec T en K), donc $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190, 4 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(l)}$ et on a calculé en 2) $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -160, 3 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$	
6.b) 1)	soit $\mathbf{m}_{\mathbf{Au}} = 11 \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{\mathbf{Ni}} < 0.2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(S)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602.3 - 0 - 4 \times (-110.5) = -160.3 \mathrm{kJ.mol}^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(S)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410.1 - 29.9 - 4 \times 197.7 = -410.6 \mathrm{J.K}^{-1}.\mathrm{mol}^{-1}$ D'où $\Delta_r G_T^0 = -160.3 + 0.411 \times T \mathrm{en} \mathrm{kJ.mol}^{-1}$ A T = 316 K équilibre de vaporisation : $Ni(CO)_4$ (I) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (I) $\Delta_{ra} H_T^0$ T $\geq 316 \mathrm{K}$: équilibre (b) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$ Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190.4 + 0.508.T$ (en $\mathrm{kJ.mol}^{-1}$, avec T en K), donc $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190.4 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$ et on a calculé en 2) $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -160.3 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160.3 + 190.4 = 30.1 \mathrm{kJ.mol}^{-1}$ V = $N - r - r' + n - \varphi = 3 - 1 - 0 + 1 (P = 1 \mathrm{bar}$, seule T non fixée) - 2 = 1 Si l'on fixe T en plus de P alors le système est parfaitement défini.	
6.b) 1)	soit $\mathbf{m}_{Au} = 11 \mathbf{kg}$ Fragilité liée à une mauvaise cohésion interfaciale entre les domaines riches en or et riches en Ni Il faut que $\mathbf{x}_{Ni} < 0, 2$ En considérant $\Delta_r H_T^0 \cong \Delta_r H_{298}^0$ et $\Delta_r S_T^0 \cong \Delta_r S_{298}^0$: $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T\Delta_r S_{298}^0$ Avec $\Delta_r H_{298}^0 = \Delta_f \overline{H}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\Delta_f \overline{H}_{298}^0$ ($Ni_{(s)}$) $-4 \times \Delta_f \overline{H}_{298}^0$ ($CO_{(g)}$) $\Delta_r H_{298}^0 = -602, 3 - 0 - 4 \times (-110, 5) = -160, 3 \mathrm{kJ.mol}^{-1}$ $\Delta_r S_{298}^0 = \overline{S}_{298}^0$ ($Ni(CO)_{4(g)}$) $-\overline{S}_{298}^0$ ($Ni_{(s)}$) $-4 \times \overline{S}_{298}^0$ ($CO_{(g)}$) $\Delta_r S_{298}^0 = 410, 1 - 29, 9 - 4 \times 197, 7 = -410, 6 \mathrm{J.K}^{-1}. \mathrm{mol}^{-1}$ D'où $\Delta_r G_T^0 = -160, 3 + 0, 411 \times T \mathrm{en} \mathrm{kJ.mol}^{-1}$ A T = 316 K équilibre de vaporisation : $Ni(CO)_4$ (I) $\hookrightarrow Ni(CO)_4$ (g) $\Delta_{vap} \overline{H}_{316}^0$ T $\leq 316 \mathrm{K}$: équilibre (a) $Ni(s) + 4 \mathrm{CO}$ (g) $\leftrightarrows Ni(CO)_4$ (g) $\Delta_{rb} H_T^0$ $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0$ Pour T $\leq 316 \mathrm{K}$: $\Delta_r G_T^0 = -190, 4 + 0, 508, T$ (en $\mathrm{kJ.mol}^{-1}$, avec T en K), donc $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -190, 4 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(l)}$ et on a calculé en 2) $\Delta_r H_T^0 \cong \Delta_r H_{298}^0 = -160, 3 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$ avec $Ni(CO)_{4(g)}$. $\Delta_{vap} \overline{H}_{316}^0 = \Delta_{rb} H_T^0 - \Delta_{ra} H_T^0 = -160, 3 + 190, 4 = 30, 1 \mathrm{kJ.mol}^{-1}$	

	_									
	détermi	ner P _{co} et P _{Ni}	(CO)4	système de 2 é	quatio	ns à deux inco	nnues).			
4)	Pour que	e Ni(CO) ₄ soit	t en ¡	ohase gaz, il fau	t que ⁻	Γ > 316 K.				
	Cependa	Cependant $\Delta_{rb}H_T^0$ < 0 donc la réaction est exothermique et est défavorisée lorsque								
	la tempé	érature augm	ente	<u>)</u> .						
	II faut do	onc choisir ur	ne te	mpérature > 31	.6K ma	is peu élevée.				
5)	$r = x/n_0$					-				
'		Ni(s)	+	4 CO(g)	≒	Ni(CO) ₄ (g)	n _{(g) tot}			
	t=0	n ₀		4 n ₀		0	(6) 101			
		n ₀ -x		4(n ₀ -x)		x	4n ₀ - 3x			
	t _{eq}	n ₀ (1-r)		4 n ₀ (1-r)		r n ₀	n ₀ (4-3r)	1		
	1 1	110 (1-1)		4 110 (1-1)		1 110	110 (4-31)			
	x/n ₀			4(1-r)		r		_		
		_		$\frac{1(1-t)}{(4-2n)}$. P		$\frac{r}{(4-3r)}P$				
	$\begin{array}{ c c c c c }\hline P_i & - & & \frac{4(1-r)}{(4-3r)}.P & & \frac{r}{(4-3r)}.P \end{array}$									
	$K_{T}^{0} = \frac{P_{I}}{I}$	$\frac{Ni(CO)4^{PO}}{P} = \frac{1}{2}$	r(4-	$\frac{(3r)^3 \times P^{0^3}}{(3r)^3 \times (2r)^3}$						
6)	$K_T^0 = \frac{{}^P_{Ni(CO)4}{}^P{}^{0^3}}{{}^P_{CO}{}^4} = \frac{r(4-3r)^3 \times P^{0^3}}{256(1-r)^4 \times (P)^3}$ Par ailleurs, à l'équilibre : $\Delta_r G_T^P = \Delta_r G_T^0 + RT ln K_T^0 = 0$									
0)										
	$\operatorname{d'où} K_T^0$	$=exp\left(\frac{\Delta_{T}}{RT}\right)$	$\left(\frac{T}{T}\right)$ a	$\operatorname{vec} \Delta_r G_T^0 = -1$	60,3 -	$+0,411 \times T$				
	Soit K ₀	$= ern(\frac{16}{16})$	0,3-0	$\left(\frac{1,411\times T\cdot 10^3}{RT}\right) = \epsilon$	$rn(\frac{1}{2})$.60,3-0,411×323	$(-10^3) = 28509$	a		
				otient $K_T^0 = 28$				ent $K_T^{\circ} =$		
,				$K{323}^0 < 34725 \text{ d}$						
7)				troduit en excè	•		•	e sens de		
				ens direct : le re						
8)			xcès	de Ni n'a pas d	'intlue	nce sur l'équili	ibre : le nicke	el est seul		
	dans sa phase									
9)	$K_{d573}^{0} =$	$=\frac{1}{\nu^0}=\frac{1}{1}$	1	$\frac{1}{\sqrt{1}} = exp\left(\frac{\Delta_r G_5^0}{RT}\right)$	<u>73</u>)					
	$K_{d573}^{0} = rac{1}{K_{573}^{0}} = rac{1}{exp\left(rac{-\Delta_{T}G_{573}^{0}}{RT} ight)} = exp\left(rac{\Delta_{r}G_{573}^{0}}{RT} ight)$									
	avec $\Delta_r G_T^0 = -160.3 + 0.411 \times T$									
	Soit $K_{d573}^0 = exp\left(\frac{(-160,3+0,411\times T).10^3}{RT}\right) = exp\left(\frac{(-160,3+0,411\times 573).10^3}{8.314\times 573}\right) = 7,2.10^6$									
	, , , , , , , , ,									
-	réaction quantitative									
A1	$Cd^{2+} + 2 HO^{-} \leftrightarrows Cd(OH)_{2(s)}$									
A2	Précipitation lorsque $K_{s1} = [Cd^{2+}] \times [HO^{-}]^{2} = [Cd^{2+}] \times K_{e}^{2}/[H_{3}O^{+}]^{2}$ soit pH = -½ log[Cd ²⁺] + pK _e – ½ pK _{s1} = 8									
			•	_e	.U _ 0					
	_		-	rsque le pH sera		riour ou ágal à	0			
A3				on : [Cd ²⁺] = 0,0:						
AS								°O+12		
	pH \geq 8 (précipitation): $[Cd^{2+}] = K_{s1} \times [HO^{-}]^{-2} = K_{s1} \times K_{e}^{-2} \times [H_{3}O^{+}]^{2} = 10^{-14} \times [H_{3}O^{+}]^{2}$							30]		
	soit $log{[Cd^{2+}]} = 14 - 2 pH$ $pH = 8$ [Cd ²⁺] = 10^{-2} mol/L $pH = 10$ [Cd ²⁺] = 10^{-6} mol/L $pH = 12$ [Cd ²⁺] = 10^{-10} mol/L									
		-	-	•						
	pH tel que $[Cd^{2+}]/0,010 \le 10\%$ soit $[Cd^{2+}] \le 10^{-3}$ donc $K_{s1} \times K_e^{-2} \times [H_3O^+]^2 \le 10^{-3}$									
	soit $[Cd^{2}] \le 10^{3}$ donc $K_{s1} \times K_{e}^{2} \times [H_{3}O^{*}]^{2} \le 10^{3}$ donc $[H_{3}O^{+}] \le 10^{-1.5} \times K_{s1}^{-0.5} \times K_{e}$									
	_	30] ≥ 10 ^ ≥ 1,5 - 0,5 pK								
A4				Cd ²⁺ + 2	ر تے ر					
, ~~ -				Cd(OH) _{2(s)} + 2 e ⁻						
A5				$e^{\frac{Cd(O11)^{2}(s)}{2} + \frac{C}{2} = \frac{Cd^{2+}}{2}}$			ol/L			
, , ,				= -0,40 -0,06 =						
			-		-	•	•			
	$\frac{\text{si pH} \ge 8}{\text{si pH}}$ précipitation donc $[Cd^{2+}] = K_{s1} / [HO^{-}]^2 = K_{s1} \times K_e^{-2} \times [H_3O^{+}]^2$									
	$E_1 \approx E_1^{\circ} + 0.03 \log [Cd^{2+}] = E_1^{\circ} + 0.03 (2 \text{ pKe} - \text{pK}_{s1}) - 0.06 \text{ pH}$									
1	$E_1 \approx 0.02 - 0.06 \text{ pH}$ $Rq: pH = 8 \text{ on retrouve bien } E_1 = -0.46 \text{ V (continuité des valeurs)}$									
	Rainu.	- 2 on rotrou	up hi	on F 0 16 V	contin	uité des valeur	rc l			

В6	$pK_{s2} > pK_{s1}$ donc $K_{s2} < K_{s1}$							
	donc Ni ²⁺ moins soluble que Cd ²⁺ , donc encore plus de précipité (donc moins d'ions							
	libres) que dans la question A3							
	Donc Ni [II] très majoritairement sous forme d'hydroxyde précipité							
B7	$E_2 \approx E_2^{\circ} + \frac{1}{2} 0,06 \log\{1/[HO^{-}]^2\}$							
	$E_2 \approx E_2^{\circ} - 0.06 \log\{[HO^{-}]\} = E_2^{\circ} - 0.06 \log\{K_e/[H_3O^{+}]\}$							
	$E_2 \approx E_2^{\circ} + 0.06 \text{ pK}_e - 0.06 \text{ pH}$							
	$E_2 \approx 1,02-0,06 \text{ pH}$							
C8	$pH = pK_e - log[HO^-] = 14 - 2 = 12$							
	$E_1 \approx 0.02 - 0.06 \text{ pH} = -0.70 \text{ V}$							
	$E_2 \approx 1,02 - 0,06 \text{ pH} = 0,30 \text{ V}$							
С9	L'électrode 2 (Ni ₂ O ₃ /Ni ²⁺) est le pôle positif de l'accu							
	$f.e.m = E_2 - E_1 = 0.30 - (-0.70) = 1.00 V$							
	indépendant du pH (si pH > 10) donc de la concentration en potasse car :							
	E ₂ – E ₁ = 1,02 – 0,06 pH - 0,02 + 0,06 pH = 1,00 V							
C10	En milieu très basique (ici pH 12), les espèces (très) majoritaires des métaux [II]							
	sont les hydroxydes solides:							
	$Ni_2O_{3(s)} + Cd_{(s)} + 3 H_2O \leftrightarrows 2 Ni(OH)_{2(s)} + Cd(OH)_{2(s)}$							
	Ne pas accepter Ni ₂ O _{3(s)} + Cd _(s) + 3 H ₂ O \leftrightarrows 2 Ni ²⁺ + Cd ²⁺ + 6 HO							
	Pas de pont salin car les réactifs sont solides donc pas de variation du nombre							
	d'ions dans la solution (il faut seulement une jonction électrique pour faire circuler							
011	les e ⁻)							
C11	$Q = it = 0.01 \times 3 \times 3600 = 108 C$							
	Il faut consommer 2 moles d'e pour consommer 1 mole de Ni ₂ O ₃							
	Soit $n_{Ni2O3} = \frac{Q}{2F}$ et $m_{Ni2O3} = M_{Ni2O3} \times \frac{Q}{2F}$ avec $M_{Ni2O3} = 165,4$ g.mol ⁻¹							
	AN: $m_{Ni2O3} = 0.0926 g \approx 93 \text{ mg}$							