Database Management System – 20 (Relational Algebra – Binary Relation operations (Join and Division))

Ajay James
Asst. Prof in CSE
Government Engineering College Thrissur

Outline

- JOIN
- EQUIJOIN
- NATURAL JOIN
- DIVISION

JOIN Operation

- Sequence of cartesian product followed by select is called JOIN
- Denoted by a
- Allows us to process relationships among relations
- General form of a join operation on two relations R(A₁, A₂, . . . , A_n) and S(B₁, B₂, . . . , B_m) is:

$$R \bowtie_{< join \ condition>} S$$

where R and S can be any relations that result from general *relational algebra expressions*

JOIN Operation

Example: Retrieve the name of the manager of each department

DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	177

RESULT $\leftarrow \pi_{Dname, Lname, Fname}(DEPT_MGR)$

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	M	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT

EMP_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	M	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	M	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	M	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	M	1942-02-28	
Joyce	English	453453453	123456789	Michael	M	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

Example

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT

ACTUAL_DEPENDENTS $\leftarrow \sigma_{Ssn=Essn}(EMP_DEPENDENTS)$

ACTUAL_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	

ACTUAL_DEPENDENTS ← EMPNAMES ⋈ San=Esan DEPENDENT

ACTUAL DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Jennifer	Wallace	987654321	987654321	Abner	O M	1942-02-28	

Join and Cross Product

- Result of the JOIN is a relation Q
- With n + m attributes Q(A₁, A₂, ..., A_n, B₁, B₂, ..., B_m) in that order
- Q has one tuple for each combination of tuples one from R and one from S
 - whenever the combination satisfies the join condition
- JOIN only combinations of tuples satisfying the join condition appear in the result
- CARTESIAN PRODUCT all combinations of tuples are included in the result

JOIN Operation

- · General join condition
 - <condition> AND <condition> AND ... AND <condition>
 - where each <condition> is of the form A_i θ B_j, A_i is an attribute of S, A_i and B_j have the same domain
 - $-\theta$ (theta) is one of the comparison operators {=, <, ≤, >, ≥, ≠}
- A JOIN operation with such a general join condition is called a *THETA JOIN*
- Tuples whose join attributes are NULL or for which the join condition is FALSE do not appear in the result
- JOIN operation does not necessarily preserve all of the information in the participating relations

EQUIJOIN Operation

- Most common use of join involves join conditions with equality comparisons only
- EQUIJOIN only comparison operator used is =
- Result of an EQUIJOIN
 - we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple.

 $\mathsf{DEPT_MGR} \leftarrow \mathsf{DEPARTMENT} \bowtie_{\mathsf{Mgr_ssn=Ssn}} \mathsf{EMPLOYEE}$

ACTUAL_DEPENDENTS ← EMPNAMES ⋈ San=Esan DEPENDENT

After EQUIJOIN

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	1.70
Headquarters	1	888665555	 James	E	Borg	888665555	100

ACTUAL DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	

NAURAL JOIN

- One of each pair of attributes with identical values is superfluous in EQUIJOIN
- Natural join—denoted by *
 - was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition
- Standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, have the **same name** in both relations
- If this is not the case, a renaming operation is applied first

NATURAL JOIN

DEPARTMENT

I	Dname	Dnumber	Mar ssn	Mgr_start_date
	Dillouino		11191_0011	IIIgi_otalit_aato

PROJECT

Pname Pnumber Plocation	Dnum
-------------------------	------

 $PROJ_DEPT \leftarrow PROJECT * \rho_{(Dname,\ Dnum,\ Mgr_ssn,\ Mgr_start_date)}(DEPARTMENT)$

 $\begin{aligned} & \mathsf{DEPT} \leftarrow \rho_{(\mathsf{Dname},\,\mathsf{Dnum},\,\mathsf{Mgr_ssn},\,\mathsf{Mgr_start_date})}(\mathsf{DEPARTMENT}) \\ & \mathsf{PROJ_DEPT} \leftarrow \mathsf{PROJECT} * \mathsf{DEPT} \end{aligned}$

PROJ_DEPT

Pname	Pnumber	Plocation	Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

Natural join

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

DEPT_LOCATIONS

Dnumber Dlocation

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

DEPT_LOCS

Dname	Dnumber	Mgr_ssn	Mgr_start_date	Location
Headquarters	1	888665555	1981-06-19	Houston
Administration	4	987654321	1995-01-01	Stafford
Research	5	333445555	1988-05-22	Bellaire
Research	5	333445555	1988-05-22	Sugarland
Research	5	333445555	1988-05-22	Houston

 $((\mathsf{PROJECT} \bowtie_{\mathsf{Dnum}=\mathsf{Dnumber}} \mathsf{DEPARTMENT}) \bowtie_{\mathsf{Mgr_ssn}=\mathsf{Ssn}} \mathsf{EMPLOYEE})$

Complete Set of Relational Operations

- Set of operations including select σ , project π , union \cup , set difference -, and cartesian product X is called a complete set
- Any other relational algebra expression can be expressed by a combination of these five operations
- Example:
- $\mathbf{R} \cap \mathbf{S} = (\mathbf{R} \cup \mathbf{S}) ((\mathbf{R} \mathbf{S}) \cup (\mathbf{S} \mathbf{R}))$
- $R \bowtie_{\leq \text{join condition}} S = \sigma_{\leq \text{join condition}} (R X S)$

DIVISION Operation

- Denoted by ÷
- Retrieve the names of employees who work on all the projects that 'John Smith' works on

EMPLOY	EE								
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
DEPART Dname	MENT Dnumb	oer Mgr	_ssn	Mgr_start_	date				
DEPT_LC	CATION	S							
Dnumb	er Dloc	cation_							
PROJEC	г								
Pname	Pnumb	er Ploc	ation	Dnum]				
WORKS_ Essn_		Hours						<u></u>	
DEPEND	ENT							Eia	11PA 9 E
Essn	Depend	ent_name	Sex	Bdate	Relations	ship			

DIVISION

 $\begin{array}{l} \text{SMITH} \leftarrow \sigma_{\text{Fname='John'}} \text{AND }_{\text{Lname='Smith'}} (\text{EMPLOYEE}) \\ \text{SMITH_PNOS} \leftarrow \pi_{\text{Pno}} (\text{WORKS_ON} \bowtie_{\text{Essn=Ssn}} \text{SMITH}) \end{array}$

Pno 1 2

SSN_PNOS $\leftarrow \pi_{Essn, Pno}(WORKS_ON)$

SSN_PNOS

0011_11100	
Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

 $SSNS(Ssn) \leftarrow SSN_PNOS \div SMITH_PNOS$

SSNS

Ssn 123456789 453453453

RESULT $\leftarrow \pi_{Fname, Lname}(SSNS * EMPLOYEE)$

DIVISION operation

- Division operation is applied to two relations R(Z) ÷ S(X)
 - where X subset Z
 - Let Y = Z X (and hence $Z = X \cup Y$);
 - let Y be the set of attributes of R that are not attributes of S
- Result of DIVISION is a relation T(Y)
 - includes a tuple t if tuples t_R appear in R with t_R [Y] = t and with t_R [X] = t_s for every tuple t_s in S
- For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S

Division example

R	2			
Α	В			
a1	b1			
a2	b1			
a3	b1			
a4	b1			
a1	b2			
a3	b2			
a2	b3			
a3	b3			
a4	b3			
a1	b4			
a2	b4			
a3	b4			

Α	
a1	
a2	
a3	

T			
	В	3	
, ,	b	1	
	b	4	
	b	4	_

OPERATION	PURPOSE	NOTATION	
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{< selection\ condition>}(R)$	
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{< ext{attribute list}>}(R)$	
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$	
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{\langle \text{join condition} \rangle} R_2$, OR $R_1 \bowtie_{\langle \langle \text{join attributes 1} \rangle)}$, $(\langle \text{join attributes 2} \rangle) R_2$	
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1*_{<\text{join condition}>} R_2,$ OR $R_1*_{<\text{join attributes 1>}},$ ($<\text{join attributes 2>})$ R_2 OR $R_1*_R^2$	
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$	
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$	
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$	
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$	
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$	

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you