Red-Black-Trees

Binary Search Tree

- Average case and worst case Big O for
 - insertion
 - deletion
 - access
- Can balanced be guaranteed?

Red Black Trees

- A BST with more complex algorithms to ensure balance
- Each node is labeled as Red or Black.
- Path: A unique series of links (edges) traverses from the root to each node.
 - The number of edges (links) that must be followed is the path length
- In Red Black trees paths from the root to elements with 0 or 1 child are of particular interest

black-height

 The black-height of a node x, denoted bh(x), is the number of black nodes on any path from, but not including, a node x down to a leaf.

Red Black Tree Rules

- Every node is colored either Red or black
- 2. The root is black
- 3. If a node is red its children must be black.
- 4. Every path from a node to a null link must contain the same number of black nodes

Example of a Red Black Tree

- The root of a Red Black tree is black
- Every other node in the tree follows these rules:
 - Rule 3: If a node is Red, all of its children are Black
 - Rule 4: The number of Black nodes must be the same in all paths from the root node to null nodes

- Prove :for each node x in red black tree, the Subtree with root x includes at least 2^{bh(x)}-1 internal nodes.
 - The **basis** is when height of the tree is 0, which means that x is a leaf node and therefore bh(x) = 0 and the subtree rooted at node x has $2^{bh(x)}-1 = 2^0-1 = 1$.
 - We Assume the subtree with root x and height h has 2^{bh(x)}-1internal nodes then we can show that the subtree with root x with height h+1 has 2^{bh(x)}-1 internal nodes:

Prove(Continue)

For any non-leaf node x (height > 0) we can see that the black height of any of its two children is at least equal to bh(x)-1 or bh(x).

By applying the assumption above we conclude that each child has at least 2^[bh(x)-1]-1 internal nodes, accordingly node v has at least

 $2^{bh(x)-1}-1 + 2^{bh(x)-1}-1 + 1 = 2^{bh(x)-1}$ internal nodes, which ends the proof.

- Is there any relationship between the height of a red black tree and its internal nodes?
 - A red-black tree with n internal nodes has height at most 2lg(n+1)
 - Proof? $n \ge 2^{bh(root)} - 1$ $n \ge 2^{h/2} - 1$ $\lg(n+1) \ge h/2$ $h \le 2 \lg(n+1)$

Thus
$$h = O(\lg n)$$

- Is there any relationship between number of leaves and number of internal nodes?
- See some examples of red-black trees
 - Number of leaves = Number of internal nodes +1?
 - Can you prove this by induction?

Red-Black Trees: Insertion

- Insertion: the basic idea
 - Insert x into tree, color x red
 - Only rule 3 might be violated (if parent of x is red)
 - If so, move violation up tree until a place is found where it can be fixed
 - Total time will be $O(\lg n)$

RB Trees: Rotation

 Our basic operation for changing tree structure is called *rotation*:

Insertions with Red Parent - Child

Must modify tree when insertion would result in Red Parent (using color changes and rotations)

Insertion Cases

- Parent of z is a left child; sibling y of parent of z is red.
 - (a) z is a left child.
 - (b) z is a right child.
- Parent of z is a left child; sibling y of parent of z is black. z is a right child.
- Parent of z is a left child; sibling y of parent of z is black. z is a left child.

RB Insert: Case 1: Red uncle

Change colors of some nodes, preserving rule 4: all downward paths have equal bh

The while loop now continues with z's grandparent as the new z

Fixing Tree when S is Red

make appropriate color changes

16

Case 2: Black Unice

- Case 2:
 - "Uncle" is black
 - Node z is a right child
- Transform to case 3 via a left-rotation

Left Rotation

Red-Black Tree Visualization

 https://www.cs.usfca.edu/~galles/ visualization/RedBlack.html