VOLTA

Repository with several multimodal encoders: LXMERT, ViLBERT, VisualBERT, etc.

How to install it in LISA cluster by SurfSara

- 1. Connect to LISA gpu
 - a. \$ ssh <yourname>@login-gpu.lisa.surfsara.nl
- 2. Clone VOLTA git repository with submodules
 - a. \$ git clone --recurse-submodules https://github.com/e-bug/volta.git
- 3. Load needed modules
 - a. \$ module load 2020
 - b. \$ module load Anaconda3/2020.02
- 4. Create conda virtual environment with python3.6 [I named it 'voltaenv' but can be any]
 - a. \$ conda create -n voltaenv python=3.6
- 5. Activate virtual env (note that conda activate doesn't work)
 - a. \$ source activate .conda/envs/voltaenv OR \$ source activate voltaenv
- 6. Install VOLTA requirements
 - a. \$ cd volta
 - b. \$ pip install -r requirements.txt
- 7. Check pytorch and torchvision versions match required ones (if not, \$ conda install them)
 - a. \$ python
 - b. \$ import torch
 - c. \$ torch. version
- 8. Install required condatoolkit
 - a. \$ conda install cudatoolkit=10.1 -c pytorch
- 9. Load required modules too have CUDA 10.1.243 (same as pytorch) and GCC 8.3.0
 - a. \$ module load 2019
 - b. \$ module load CUDA/10.1.243-GCC-8.3.0 [TBC]
- 10. Install APEX
 - a. \$ cd apex/
 - Try: \$ pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ [NOTE: works with CUDA/10.1.243-GCC-8.3.0]
- 11. Setup the refer submodule for referring expression comprehension + install it
 - a. \$ cd tools/refer; make
 - b. \$ python setup.py develop [didn't work for me; see workaround below]
 - c. Workaround:
 - i. \$ vim setup.pv
 - ii. comment first line: # from distutils.core import setup
 - iii. add the line: from setuptools import setup
 - iv. save and quit
 - d. \$ python setup.py develop [worked for me]

Case study: retrieval with Flick30k

- 1. This task (TASK 8 in config) is the only one which allows evaluating models pretrained on Conceptual Captions (CC) but without any finetuning with the option --zero_shot; see ~/volta/eval retrieval.py
- 2. We need to download Flick30k data
 - a. We create a folder in project space: \$ mkdir /project/dmg data/data-volta
 - b. \$ cd data-volta
 - c. \$ mkdir flickr30k
 - d. \$ cd flickr30k
 - e. \$ wget data
 - f. Run scripts to obtain captions as described at https://github.com/e-bug/volta/tree/main/data/flickr30k
 - g. Organize data following the structure described here (bottom page): https://github.com/e-bug/volta/tree/main/data/flickr30k

NOTE1: *.tsv files are not given

NOTE2: Imdb contains two *.mdb files: data and lock

- 3. We create folder sandro examples in ~/volta/
- 4. We modify the file ~/volta/config_tasks with our correct paths
 - a. \$ vim ctrl_test_tasks.yml
- We download pretrained models on CC; we will start with ViLBERT, which was the one originally tested in zero-shot setting (see: https://arxiv.org/pdf/1908.02265.pdf)

Pooled_output: the final representation (~[CLS] in BERT), not at each layer

To deactivate virtual environment: \$ conda deactivate