2.2 The Inverse of a Matrix

McDonald Fall 2018, MATH 2210Q, 2.2&2.3 Slides

2.2 Homework: Read section and do the reading quiz. Start with practice problems.

- *Hand in*: 3, 6, 7, 9, 13, 29
- Recommended: 7, 11, 15, 23, 24, 32, 37

Definition 2.2.1. An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix C such that CA = I and AC = I, where $I = I_n$ is the identity matrix.

In this case, C is called the **inverse** of A. A matrix that is *not* invertible is called a **singular** matrix, and an invertible matrix is called a **non-singular** matrix.

Remark 2.2.2. Suppose B and C were both inverses of A. Then

$$B = BI = B(AC) = (BA)C = IC = C.$$

It turns out, that if A has an inverse, it's unique. We call this unique inverse A^{-1} .

Example 2.2.3. Let
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$. Show that $C = A^{-1}$

 ${\bf Theorem~2.2.4.}~ {\it Invertible~matrices~have~the~following~three~properties}.$

- 1. If A is an invertible matrix, then A^{-1} is invertible, and $(A^{-1})^{-1} = A$.
- 2. If A and B are $n \times n$ invertible matrices, then so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. If A is an invertible matrix, then so is A^T , and $(A^T)^{-1} = (A^{-1})^T$.

Theorem 2.2.5. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$

If ad - bc = 0, then A is not invertible.

Remark 2.2.6. The quantity ad - bc is called the **determinant** of A, and we write

$$\det A = ad - bc.$$

The theorem says that a 2×2 matrix A is invertible if and only if det $A \neq 0$.

Example 2.2.7. Find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Theorem 2.2.8. If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example 2.2.9. Solve the system

$$x_1 + 2x_2 = 1$$

$$3x_1 + 4x_2 = 2$$

Definition 2.2.10. An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Example 2.2.11.
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Find the products E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A. Find an elementary matrix E such that

$$EA = \left[\begin{array}{ccc} a & b & c \\ d - 2a & e - 2b & f - 2c \\ g & h & i \end{array} \right].$$

Observation 2.2.12. If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .

Observation 2.2.13. Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

Example 2.2.14. Find the inverses of
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Theorem 2.2.15. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n . In this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

Procedure 2.2.16. To find A^{-1} , row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[A \ A^{-1}]$. Otherwise, A does not have an inverse.

Example 2.2.17. Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
.

 ${\bf 2.2.1}\quad {\bf Additional\ Thoughts\ and\ Problems}$

2.3 Characterizations of Invertible Matrices

- **2.3** Homework: Read section and do the reading quiz. Start with practice problems.
 - *Hand in*: 1, 3, 11, 13, 15, 28.
 - Reccommended: 5, 8, 17, 26, 35, 40 (challenge).

Theorem 2.3.1 (The Invertible Matrix Theorem). Let A be a square $n \times n$ matrix. Then the following statements are equivalent (i.e. they're either all true or all false).

(a) A is an invertible matrix.

- (g) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) There is an $n \times n$ matrix C such that CA = I. (h) $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^n .
- (c) There is an $n \times n$ matrix D such that AD = I. (i) The columns of A span \mathbb{R}^n

(d) A is row equivalent to I_n .

(j) The columns of A are linearly independent.

(e) A^T is an invertible matrix.

(k) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

(f) A has n pivot positions.

(1) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.

Remark 2.3.2. Note that the invertible matrix theorem only applies to square matrices.

7

Example 2.3.3. Use the Invertible Matrix Theorem to decide if A or B are invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 6 \end{bmatrix}$$

Definition 2.3.4. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

The next theorem shows that if S exists, it's unique. We call S the **inverse** of T, written as T^{-1} .

Theorem 2.3.5. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is invertible. In that case, the linear transformation $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying the equations in the definition above.

Example 2.3.6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$. Describe T geometrically, and find T^{-1} if it exists.