This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

A semiconductor light emitting device comprising:
a substrate;

an n-type layer provided on the substrate and made of a nitride semiconductor material;

a multiple quantum well structure active layer including a plurality of well layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 $\leq x$, 0 $\leq y$, x+y<1) and a plurality of barrier layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 $\leq x$, 0 $\leq t$, s+t<1), the multiple quantum well structure active layer being provided on the n-type layer; and

a p-type layer provided on the multiple quantum well structure active layer and made of a nitride semiconductor material.

wherein the p-type layer contains hydrogen, and the hydrogen concentration of the p-type layer is greater than or equal to about 1×10^{16} atoms/cm³ and less than or equal to about 1×10^{19} atoms/cm³.

2. A semiconductor light emitting device according to claim 1, wherein the p-type layer contains Mg, and the Mg concentration of the p-type layer is greater than or equal to about 4×10^{19} atoms/cm³ and less than or equal to

about 1×10²¹ atoms/cm³.

- 3. A semiconductor light emitting device according to claim 1, further comprising a p-type electrode for applying a voltage via the p-type layer to the multiple quantum well structure active layer, wherein the p-type electrode contains atoms selected from the group consisting of Pd. Sc. Y, La, Ce, Pr. Nd. Sm. Eu, Tb. Ti, Zr., Hf., V, Nb and Ta.
- 4. A semiconductor light emitting device according to claim 2, further comprising a p-type electrode for applying a voltage via the p-type layer to the multiple quantum well structure active layer, wherein the p-type electrode contains atoms selected from the group consisting of Pd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Ti, Zr, Hf, V, Nb and Ta.
- 5. A semiconductor light emitting device according to claim 1, the hydrogen concentration of the n-type layer is less than or equal to 1×10^{17} atoms/cm³.
- 6. A semiconductor light emitting device according to claim 4, the hydrogen concentration of the n-type layer

is less than or equal to 1×1017 atoms/cm3.

- 7. A semiconductor light emitting device according to claim 1, further comprising a layer including Al, wherein the p-type layer is provided, via the layer including Al, on the multiple quantum well structure active layer.
- 8. A semiconductor light emitting device according to claim 7, the layer including Al has a thickness of about 5 nm or more.
- 9. A method for producing a semiconductor light emitting device, the method comprising the steps of:

growing a nitride semiconductor material on a substrate to form an n-type layer;

forming a multiple quantum well structure active layer including a plurality of well layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 \le x, 0 \le y, x+y<1) and a plurality of barrier layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 \le s, 0 \le t, s+t<1), the multiple quantum well structure active layer being provided on the n-type layer; and

growing a nitride semiconductor material on the multiple quantum well structure active layer to form a p-type layer,

wherein the step of growing the p-type layer includes the step of growing a nitride semiconductor material in an atmosphere not containing hydrogen gas while keeping a temperature of the substrate at a first growth temperature.

10. A method according to claim 9, wherein the step of forming the p-type layer further includes the step of lowering the temperature of the substrate from the first growth temperature to about 400°C in the atmosphere not containing hydrogen gas after the step of growing the nitride semiconductor material in the atmosphere not containing hydrogen gas.