MACS - Quantification des incertitudes pour la simulation

TD 7 - Année 2022-2023

1 Méthodes de réduction de variance

L'idée de cet exercice est d'illustrer les principales méthodes de réduction de variance, afin d'accélérer les convergences des extimateurs Monte-Carlo. On cherche ainsi à évaluer numériquement la valeur de π , à partir de tirages aléatoires de deux variables indépendantes X_1 et X_2 , qui sont toutes deux uniformément réparties sur [0,1].

On note $\Omega = \{(x_1, x_2) \in [0, 1] \times [0, 1] \mid x_1^2 + x_2^2 \le 1\}$, et on définit 1_{Ω} la fonction indicatrice définie sur $[0, 1] \times [0, 1]$ telle que $1_{\Omega}(x_1, x_2) = 1$ si $(x_1, x_2) \in \Omega$ et 0 sinon.

Approche Monte-Carlo classique.

- 1. Exprimer π en fonction de 1_{Ω} .
- 2. Définir l'estimateur Monte-Carlo, \widehat{I}_N , de π associé. Calculer la moyenne et la variance de cet extimateur, $\operatorname{Var}(\widehat{I}_N)$.
- 3. Déduire de cette variance le nombre moyen de tirages de X_1 et X_2 nécessaires à une estimation de π à 10^{-4} près avec une confiance de 95%.

Monte-Carlo conditionnel

- 4. En utilisant le fait que $x_1^2 + x_2^2 \le 1 \Leftrightarrow x_2 \le \sqrt{1 x_1^2}$, récrire π en fonction de X_1 seulement. En déduire un nouvel estimateur de π , nommé $\widehat{I}_N^{\rm cond}$.
 - 5. Evaluer la variance de ce nouvel estimateur, puis comparer au cas Monte-Carlo précédent.
- 6. On propose de combiner l'estimateur précédent à une **stratification** des tirages. Pour cela, on propose de concentrer αN tirages à l'intervalle [0,1/2] et seulement $(1-\alpha)N$ tirages à l'intervalles [1/2,1]. On nomme alors Y et Z les variables aléatoires uniformément distribuées sur [0,1/2] et [1/2,1] respectivement. Proposer alors un nouvel estimateur de π , que l'on nomme \widehat{I}^{ST}
 - 7. Montrer que:

$$\operatorname{Var}(\widehat{I}^{\operatorname{ST}}) = \frac{1}{4N} \left\{ \frac{1}{\alpha} \operatorname{Var}(\sqrt{1 - Y^2}) + \frac{1}{1 - \alpha} \operatorname{Var}(\sqrt{1 - Z^2}) \right\}.$$

1

- 8. Calculer $C_Y = \text{Var}(\sqrt{1-Y^2})$ et $C_Z = \text{Var}(\sqrt{1-Z^2})$.
- 9. Calculer le rapport optimal α^* minimisant $\operatorname{Var}(\widehat{I}^{\operatorname{ST}})$ en fonction de C_Y et C_Z .

10. Evaluer la valeur de la variance associée à cette valeur de α^* et comparer aux cas précédents.

Variable de contrà 'le et tirage d'importance

- 11. On se donne une fonction de contr \tilde{A} le g_r , ainsi que la constante associée $I_r = \mathbb{E}\left[g_r(X_1)\right]$ que l'on suppose connue. On nomme alors $\widehat{I}_N^{VC} = bI_r + \frac{1}{N}\sum_{n=1}^N \left(\sqrt{1-X_1^2(\theta_n)} bg_r(X_1)\right)$. Exprimer la variance de cet estimateur en fonction de b, $\operatorname{Var}(\widehat{I}_N^{\operatorname{cond}})$, $\operatorname{Cov}\left(\sqrt{1-X_1^2},g_r(X_1)\right)$ et $\operatorname{Var}(g_r(X_1))$.
 - 12. Evaluer la valeur optimale b^{\star} permettant de minimiser la variance de \widehat{I}_{N}^{VC} .
 - 13. Pour $g_r(x) = (1 x)^2$, on trouve :

$$\rho^2 = \frac{\text{Cov}\left(\sqrt{1 - X_1^2}, g_r(X)\right)^2}{\text{Var}(g_r(X_1))\text{Var}(\sqrt{1 - X_1^2})} \approx 0.642.$$

En déduire la variance de l'estimateur associé à cette fonction de contrà 'le.

14. On récrit :

$$\frac{\pi}{4} = \int_0^1 \sqrt{1 - x^2} dx = \int_0^1 \sqrt{1 - x^2} \frac{f(x)}{f(x)} dx = \mathbb{E}_f \left[\frac{\sqrt{1 - X_1^2}}{f(X_1)} \right].$$

On définit alors l'estimateur de tirage d'importance :

$$\widehat{I}_{N}^{TI} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sqrt{1 - \widetilde{X}^{2}}}{f(\widetilde{X})},$$

avec \widetilde{X} une variable aléatoire de PDF f. Exprimer la variance de ce nouvel estimateur.

- 15. Pour f(x)=1.5-x, on admet que $\mathrm{Var}(\widehat{I}_N^{II})\approx \frac{0.0099}{N}$. Expliquer dans quelle mesure f(x) permet de réduire cette variance.
- 16. Commenter l'ensemble des méthodes de réduction de variance proposées, en terme d'efficacité numérique.

