EAiIB	Pęcak Tomasz		Rok	Grupa	Zespół
Informatyka	Bielech Maciej		II	3a	II
Pracownia FIZYCZNA WFiIS AGH	Temat: Fale podłużne	nr ćwiczenia: 29			
Data wykonania:	Data oddania: Zwrot do poprawki: Data oddania: Data zaliczenia				OCENA:
28.10.2017	31.10.2017				

1 Wstęp

Celem ćwiczenia było wyznaczenie wartości modułu Younga dla różnych materiałów przy wykorzystaniu rónania fali rozchodzącej się w pręcie.

$$\Delta l = \frac{Fl}{SE}.\tag{1}$$

$$E = \frac{\sigma}{\varepsilon}.$$
 (2)

Wykres 1: Charakterystyka Modułu Younga. Źródło: pl.wikipedia.org

$$E = \frac{4l}{\pi d^2 a}. (3)$$

Wartość współczynnika a oraz jego niepewność u(a) wyznaczymy korzystając z regresji liniowej.

2 Wykonanie ćwiczenia

Ćwiczenie wykonywaliśmy dla drutów: mosiężnego, stalowego, miedzianego i aluminiowego. Dla każdego z nich wykonaliśmy nastepujące czynności:

- W pierwszym kroku dokonaliśmy pomiaru wymiarów próbki danego materiału w celu wyznaczenia jego objętości. W zależności od kształtu stosowaliśmy: taśmę mierniczą o dokładności ±1 mm lub suwmiarkę ±0.05 mm.
- Następnie każdą próbkę zwarzyliśmy. Ze względu na różne wielkośc próbek używaliśmy wag o różnych dokładnościach(±1g lub ±0.001g).
- W kolejnym kroku zmierzyliśmy długość pręta przy pomocy taśmy mierniczej.

 Na końcu dokonaliśmy pomiaru częstotliwości harmoniczych przy pomocy oscyloskopu w programie Zelscope. W tym celu umieśliśmy pręt na nitkach stojaka, by mógł swobonie drgać. Ustawiliśmy mikrofon w odpowiedniej odległości od drutu. Następnie uderzaliśmy młotkiem w koniec pręta i zapisywaliśmy wyniki uzykane w programie.

Tabela 1: Pomiary dla materiału miedzianego.

Nr harmonicznej	Częstotliwość <i>f</i> [Hz]	Długość fali λ [m]	Prędkość fali <i>v</i> [m/s]
1	1180	3,60	4248
2	2160	1,80	3888
3	3240	1,20	3888
4	4280	0,90	3852
5	5260	0,72	3787,2
6	6200	0,60	3720

Tabela 2: Pomiary dla materiału aluminiowego.

Nr harmonicznej	Częstotliwość <i>f</i> [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]	
1	2440	1,98	4831,2	
2	4960	0,99	4910,4	
3	6840	0,66	4514,4	
4	9560	0,50	4732,2	
5	11340	0,40	4490,64	
6	12360	0,33	4078,8	

Tabela 3: Pomiary dla materiału mosiężnego.

Nr harmonicznej	Częstotliwość <i>f</i> [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	1690	1,98	3346,2
2	3460	0,99	3425,4
3	5160	0,66	3405,6
4	6840	0,50	3385,8
5	8620	0,40	3413,52
6	12000	0,33	3960

Tabela 4: Pomiary dla materialu stalowego.

Nr harmonicznej	Częstotliwość <i>f</i> [Hz]	Długość fali λ [m]	Prędkość fali <i>v</i> [m/s]	
1	1420	3,60	5112	
2	2900	1,80	5220	
3	4300	1,20	5160	
4	5720	0,90	5148	
5	7120	0,72	5126,4	
6	8600	0,60	5160	

3 Opracowanie danych pomiarowych

3.1 Pomiary i ich niepewności.

Wszystkie wielkości mierzyliśmy niewielką ilość razy, dlatego dla każdej z nich przyjmujemy ocenę niepewności typu B, co w naszym przypadku będzie odpowiadać dokładności przyrządu pomiarowego. W każdym przypadku $u(\lambda)=u(l)$ oraz u(f)=20 Hz.

Tablica 1: Niepewności standardowe miedzi

Symbol	d [mm]	d_w [mm]	<i>l</i> [mm]	<i>m</i> [g]	
Wartość(niepewność)	15,2(5)	17,95(5)	1801(1)	761(1)	

Tablica 2: Niepewności standardowe aluminium

Symbol	h [mm]	d [mm]	<i>l</i> [mm]	<i>m</i> [g]
Wartość(niepewność)	43,9(5)	4,9(5)	999(1)	23,891(1)

Tablica 3: Niepewności standardowe stal

Symbol	h [mm]	<i>b</i> [mm]	c [mm]	<i>b</i> [mm]	<i>m</i> [g]
Wartość(niepewność)	19,80(5)	14,05(5)	14,20(5)	1800(1)	30,861(1)

Tablica 4: Niepewności standardowe mosiadz

Symbol	d [mm]	h [mm]	<i>l</i> [mm]	m [g]
Wartość(niepewność)	5,90(5)	31,10(5)	1800(1)	74(1)

Niepewność złożona powierzchni prostokąta:

$$u(P_P) = \sqrt{\left(\frac{\partial P_P}{\partial b}u(b)\right)^2 + \left(\frac{\partial P_P}{\partial a}u(a)\right)^2} = \sqrt{\left(bu(a)\right)^2 + \left(au(b)\right)^2}$$
(4)

Niepewność złożona powierzchni koła:

$$u(V) = \sqrt{\left(\frac{\partial P_P}{\partial d}u(d)\right)^2} = \sqrt{\left(\frac{\pi}{2}du(d)\right)^2}$$
 (5)

Niepewność złożona objętości:

$$u(V) = \sqrt{\left(\frac{\partial V}{\partial h}u(h)\right)^2 + \left(\frac{\partial V}{\partial P_p}u(P_p)\right)^2} = \sqrt{\left(hu(P_p)\right)^2 + \left(P_pu(h)\right)^2}$$
 (6)

Niepewność złożona gęstości:

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial V}u(V)\right)^2 + \left(\frac{\partial \rho}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(-\frac{m}{V^2}u(V)\right)^2 + \left(\frac{1}{V}u(m)\right)^2}$$
(7)

Niepewność złożona prędkości:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$
(8)

Niepewność złożona modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho vu(v)\right)^2}$$
(9)

3.2 Opracowanie danych dla drutu mosiężnego.

Wykres 2: Wykres zależności wydłużenia od siły dla drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (2) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Wykorzystując regresję liniową, obliczamy wartość współczynnika a prostej i jej dokładność u(a):

$$a = 1,86 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{10}$$

$$u(a) = 3.91 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{11}$$

Następnie wyznaczamy moduł Younga ze wzoru roboczego (3).

$$E = 124 \text{ GPa}$$

Obliczając niepewność złożoną (12) oraz rozszerzoną (13) dochodzimy do wyników:

$$u_c(E) = \sqrt{\left[\frac{4}{\pi d^2 a} u(l)\right]^2 + \left[-\frac{8l}{\pi d^3 a} u(d)\right]^2 + \left[-\frac{4l}{\pi d^2 a^2} u(a)\right]^2}$$
(12)

$$u_c(E) = 4,13 \text{ GPa},$$

$$U(E) = k \cdot u_c(E)$$
 (13)
$$U(E) = 2 \cdot 4,13 \text{ GPa} = 8,26 \text{ GPa}$$

Niepewość względna złożona (14) jest równa:

$$\frac{u_c(E)}{E} = \sqrt{\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(d)}{d}\right]^2 + \left[-\frac{u(a)}{a}\right]^2}$$

$$\frac{u_c(E)}{E} = 3,34\%$$
(14)

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=123,58~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |124 \text{ GPa} - 100 \text{ GPa}| = 24 \text{ GPa}.$$
 (15)
 $|E - E_0| > U(E)$

Wyniki pomiarów w przybliżeniu liniowe i niezgodny wynik mogą świadczyć o błędzie systematycznym. Było to złe wyzerowanie czujnika, dlatego każdy z pomiarów wskazuje niższą wartość wydłużenia drutu niż spodziewana. Błąd ten zauważyliśmy podczas wstępnej analizy pomiarów, dlatego wykonaliśmy kolejną serię pomiarów dla drutu mosiężnego.

3.3 Opracowanie danych dla drutu mosiężnego. Wyniki drugiej serii pomiarów.

Wykres 3: Wykres zależności wydłużenia od siły dla drugiej serii pomiarów drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (3) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Analogicznie jak w podsekcji 3.2 wyznaczamy współczynnik a i wartość modułu Younga:

$$a = 2,00 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{16}$$

$$u(a) = 3,50 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{17}$$

$$E = 116 \text{ GPa}$$

Obliczając niepewność (12) oraz rozszerzoną (13) dochodzimy do wyników:

$$u_c(E) = 3{,}01 \text{ GPa},$$

$$U(E) = 2 \cdot 3,01 \text{ GPa} = 6,02 \text{ GPa}$$

Niepewość względna złożona (14) jest równa:

$$\frac{u_c(E)}{E} = 2,6\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga (E = 116 GPa), a wartością tabelaryczną wynosi:

$$|E - E_0| = |116 \text{ GPa} - 100 \text{ GPa}| = 16 \text{ GPa}.$$
 (18)
 $|E - E_0| > U(E)$

3.4 Opracowanie danych dla drutu stalowego.

Wykres 4: Wykres zależności wydłużenia od siły dla drutu stalowego.

a) Analiza błędów.

Stwierdziliśmy wystąpienie dwóch pomiarów odstających, które możemy utożsamiać z błędami grubymi. Błędy te zaznaczylismy na wykresie (4). Mogły one zostać spowodowane niewystarczającym wydłużeniem dla pierwszego pomiaru, a dla ostatniego pomiaru zbyt dużym naprężeniem, zbliżonym do granicy sprężystości, lub błędnym odczytem pomiaru z czujnika.

b) Prawo przenoszenia niepewności.

Podobnie jak dla drutu mosiężnego w podsekcji 3.2 wyznaczamy współczynnik *a* i wartość modułu Younga:

$$a = 1,60 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{19}$$

$$u(a) = 4,55 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{20}$$

$$E = 176 \text{ GPa}$$

Obliczając niepewność złożoną (12) oraz rozszerzoną (13) dochodzimy do wyników:

$$u_c(E) = 7,13 \text{ GPa},$$

$$U(E) = 2.7, 13 \text{ GPa} = 14, 26 \text{ GPa}$$

Niepewość względna złożona jest równa:

$$\frac{u_c(E)}{E} = 4,03\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=176,47~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |176 \text{ GPa} - 215 \text{ GPa}| = 39 \text{ GPa}.$$
 (21)
 $|E - E_0| > U(E)$

4 Podsumowanie

Opis wielkości	E_0 [GPa]	E [GPa]	U(E) [GPa]	$\frac{u(E)}{E}$	$(0,9E_0-U(E);1,1E_0+U(E))$
Pomiary drutu mosiężnego I	100	124	8	3,34 %	(82;118)
Pomiary drutu mosiężnego II	100	116	6	2,6 %	(84; 116)
Pomiary drutu stalowego	210-220	176	14	4,03 %	(175; 256)

- Określenie poprawności wyników naszych doświadczeń jest trudne, ponieważ nie da się jednoznacznie określić wartości tabelarycznej dla danego metalu. Wynika to z nieznajomości dokładnego składu metalu (stopu), a także ze zużycia drutu. W naszych badaniach przyjmujemy rozrzut rzędu ±10% dla wartości odczytanych z tabel fizycznych.
- Zarówno dla pierwszych jak i drugich pomiarów dla mosiądzu obliczona wartość modułu wykracza poza przedział $(E_0 U(E), E_0 + U(E))$. Po uwzględnieniu dziesięcioprocentowego rozrzutu drugą serię pomiarów możemy uznać za poprawną w zakresie wyznaczonej niepewności. Pierwsza seria pomiarów nadal daje wynik niepoprawny, co potwierdza nasze obawy co do błędu systematycznego.
- Podobnie jak w przypadku drugiej serii pomiarów dla mosiądzu wartość modułu Younga dla stali wykracza poza $E_0 \pm U(E)$, lecz po uwzględnieniu dziesięcioprocentowego rozrzutu od wartości tablicowej możemy uznać obliczoną wartość za poprawną w zakresie wyznaczonej niepewności.