Ensembles de nombres et intervalles de ${\mathbb R}$

Table des matières

1	Les entiers
	1.1 Multiples - diviseurs
	1.2 Pair - impair
	1.3 Nombres premiers
	1.4 Décomposition en facteurs premiers
2	Les ensembles \mathbb{D} , \mathbb{Q} et \mathbb{R}
	2.1 Les décimaux : D
	2.2 Les rationnels : $\mathbb Q$
	2.3 Les réels : $\mathbb R$
	2.4 Les ensembles de nombres à connaître igoplus en 2 ^{nde}
3	Intervalles de $\mathbb R$ et valeur absolue
	3.1 Valeur absolue

1. Les entiers

 $\underline{\text{Rem.}}$: Dans le lycée, il y a un ensemble d'**humains**. Parmi eux, il y a des **élèves** et parmi ces élèves il y a des **secondes**.

Def.:

Parmi les nombres **entiers**, il existe :

- ullet Entiers ${f naturels}$: ${\Bbb N}$
 - Entiers (sans partie décimale) positifs : 0 ; 1 ; 4 ; 999...
- ullet Entiers ${f relatifs}$: ${\Bbb Z}$
 - \bullet Entiers positifs ou négatifs : -6 ; -77 ; 98 ; 4

Ex. :

- 17 appartient à \mathbb{N} et à \mathbb{Z} \Rightarrow 17 \in \mathbb{N} et 17 \in \mathbb{Z}
- (-2) n'appartient pas à \mathbb{N} \Rightarrow $(-2) \notin \mathbb{N}$
- 157 à \mathbb{N} \Rightarrow 157 \mathbb{N}

1.1. Multiples - diviseurs

Def.: Soit a et b, deux nombres entiers.

On dit que a est un **multiple** b s'il existe un entier k tel que :

$$a = k \times b$$

On dit aussi que b est un **diviseur** de a.

Ex._:

- $27 = 3 \times 9$ donc
 - 27 est **multiple** de 3 (et de 9)
 - 9 est un diviseur de 27
- 85 n'est pas un multiple de 10 car :
 - $85 = k \times 10 \Leftrightarrow k = 8.5$ et k pas entier

0

x 0 1 2 3 4 5 6 7 8 9 10

Prop. :

Soit a un entier. La somme de deux **multiples** de a, est un **multiple** de a.

Ex. :

21 et 33 sont des **multiples** de 3 donc 54 = (21 + 33) est un **multiple** de 3. En effet, $54 = 18 \times 3$

Démonstration :

Soit n_1 et n_2 , deux multiples de a alors :

$$n_1 = k_1 \times a$$
 et $n_2 = k_2 \times a$

On a donc:

$$n_1 + n_2 = (k_1 \times a) + (k_2 \times a) = (k_1 + k_2) \times a$$

Donc : $(n_1 + n_2)$ est multiple de a

1.2. Pair - impair

Def. :

Un nombre **pair** est un multiple de 2.

- Si n est pair alors n=2k avec $k\in\mathbb{Z}$
- ullet Si n est ${f impair}$ alors n=2k+1 avec $k\in\mathbb{Z}$

<u>Ex. :</u>

- 157 est **impair** car $157 = (2 \times 78) + 1$
- 2048 est **pair** car $2048 = (2 \times 1024)$

Prop. :

Le carré d'un nombre impair est impair

Si n est **impair** alors n^2 est **impair**.

Démonstration :

Soit
$$n$$
 un nombre **impair**. On a donc $n = 2k + 1$ $n^2 = (2k + 1)^2 = (2k + 1)(2k + 1)$ $= 4k^2 + 4k + 1$ $= 2(2k^2 + 2k) + 1$ $= 2K + 1$

246813579

1.3. Nombres premiers

Def.<u>:</u>

Un entier naturel est dit premier, s'il admet exactement deux diviseurs entiers positifs.

Ex. :

- 25 admet comme diviseurs 1, 5 et 25 \rightarrow pas premier
- 17 admet comme diviseurs 1 et $17 \rightarrow$ premier
- 221 admet comme diviseurs $\ldots \rightarrow \ldots$

21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 61) 62 63 64 65 66 67 68 69 72 (73) 74 75 76 71 78 (74) 80 82 (83) 84 85 86 87 88 (84) 90

1.4. Décomposition en facteurs premiers

Ex. :

•
$$60 = 30 \times 2 = 15 \times 2 \times 2 = 5 \times 3 \times 2 \times 2$$

La décomposition de 60 en facteurs premiers est :

$$60 = 3^1 \times 5^1 \times 2^2$$

• 1300 = ...

Méthode pour décomposer 60 :

2. Les ensembles \mathbb{D} , \mathbb{Q} et \mathbb{R}

2.1. Les décimaux : $\mathbb D$

Nombres dont la partie décimale est finie. On peut les écrire sous la forme :

$$\frac{a}{10^n}$$
 avec $a \in \mathbb{Z}$

Ex. :

À vous de compléter :

- 0.009 =
- $\frac{-1234}{10^2} = \dots$

- $1.77 = \frac{177}{100} = \frac{177}{10^2}$ donc $1.77 \in \mathbb{D}$ $-5.001 = \frac{-5001}{1000} = \frac{-5001}{10^3}$ donc $-5.001 \in \mathbb{D}$

2.2. Les rationnels : \mathbb{Q}

avec $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ Ils peuvent s'écrire sous la forme :

Ex. :

- $\frac{2}{7} \in \mathbb{Q}$
- $\frac{1}{3} = 0.3333... \in \mathbb{Q}$
- $\frac{50}{7} = 7.142 857 142 857 \dots \in \mathbb{Q}$

Rem. : La partie décimale peut se "répéter" à l'infini.

2.3. Les réels : $\mathbb R$

Tous les nombres connus en seconde.

Ex:
$$-16$$
; $\sqrt{3}$; π ; ...

2.4. Les ensembles de nombres à connaître ullet en 2^{nde}

Démonstration :

Démontrons que $\frac{1}{3}$ n' appartient pas aux décimaux.

Supposons que $\frac{1}{3}$ appartient aux décimaux alors il peut s'écrire sous la forme : $\frac{a}{10^n}$

$$\frac{1}{3} \in \mathbb{D} \qquad \Leftrightarrow \qquad \frac{1}{3} = \frac{a}{10^n}$$

$$\Leftrightarrow \qquad 3 \times a = 1 \times 10^n$$

$$\Leftrightarrow \qquad 3a = 10^n$$

On a :

- 3a est un multiple de 3 donc la **somme des ses chiffres** doit être un multiple de 3.
- 10^n est un nombre constitué d'un seul 1 et de zéros donc la **somme des ses chiffres** est 1. Donc 10^n n'est pas un multiple de 3, donc $10^n \neq 3 \times a$ donc $\frac{1}{3} \notin \mathbb{D}$

3. Intervalles de ${\mathbb R}$ et valeur absolue

<u>Def. :</u>

L'ensemble I de tous les nombres réels x tels que $2\leqslant x\leqslant 4$ peut se représenter sur une droite graduée :

Cet ensemble est appelé un intervalle et se note :

$$I = [2; 4]$$

<u>Ex. :</u>

L'ensemble J des réels x tels que $-2\leqslant x\leqslant 7$ se note :

$$J = \begin{bmatrix} -2 ; 7 \end{bmatrix}$$

On a :
$$4 \in [-2; 7]$$
 et $-5 \notin [-2; 7]$

<u>Ex. :</u>

Notation	Inégalité								
[0; 1]	$0 \leqslant x \leqslant 1$	-2	. <u>-</u> 1	_ [_	-1	. 2		4	-
] - 1; 3]	$-1 < x \leqslant 3$	-2	-]	0	1	2	-1	4	>
[-0.5 ; 2.3[$-0.5 \leqslant x < 2.3$	-2	-1	0	1	2		4	-
]2 ; 4[2 < x < 4	-2	-1	 0	. 1	- }-	3	_ [>

<u>Ex.:</u>

Notation	Inégalité	Représentation							
] − ∞ ; 1.5]	$x \leqslant 1.5$	-2	-1	0	1	2	3	4	-
$]-\infty$; $-1.7[$	x < -1.7	-2	- <u>-1</u>	Ö	. <u>.</u> 1	2	3	4	-
] - 2 ; +∞[x > -2		-1	0	1	2	3	4	-
[2.7 ; + ∞[$x \geqslant 2.7$	-2	-1	 0	· · · · · · · · · · · · · · · · · · ·	2	3	4	-

Rem.:

L'ensemble ${\mathbb R}$ est un intervalle qui se note

$$\mathbb{R} =]-\infty$$
; $+\infty$

Def.:

- L'intersection de deux ensembles A et B est l'ensemble des éléments qui appartiennent à A et à B et se note : $A \cap B$
- La **réunion** (ou **l'union**) de deux ensembles A et B est l'ensemble des éléments qui appartiennent à A ou à B et se note : $A \cup B$

Ex.: I = [0; 3]

3.1. Valeur absolue

Def.:

La distance de deux réels a et b est la distance des points A et B d'abscisses a et b sur la droite numérique.

<u>Ex. :</u>

Rem._:

- Si (a < b) alors la distance est (b a)
- Si (a > b) alors la distance est (a b)

On note la distance : |a-b| et on lit valeur absolue de (a-b)

Ex. :

La distance de 5 à 18 est |5-18| = 18-5 = 13

Def.:

La **valeur absolue** d'un réel x est la distance de ce réel à 0.

Elle est notée : |x|

Ex.: La valeur absolue de -4 est la distance de -4 à 0. On a : |-4|=4

Ex. :

- |3| = 3
- $\left|\sqrt{2}\right| = \sqrt{2}$
- |-4| = 4
- |-0.177| = 0.177

Prop. :

On a, pour tout $x \in \mathbb{R}$:

$$|x| = \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x < 0 \end{cases}$$

<u>Ex.:</u>

- |3| = 3 car 3 > 0
- |-7| = -(-7) = 7 car (-7) < 0

Prop. :

 $\overline{ ext{L'intervalle}}$ [a-r ; a+r] est l'ensemble des x tel que :

$$|x-a| \leqslant r$$

<u>Ex.:</u>

 $\overline{ \text{L'ens}} = 0$ des nombres x tel que $|x-5| \leqslant 3$ est l'intervalle $I = \begin{bmatrix} 5-3 \; ; \; 5+3 \end{bmatrix} = \begin{bmatrix} 2 \; ; \; 8 \end{bmatrix}$

