Corrigé - Colle 7 (Sujet 1)

BCPST1B Année 2021-2022

16 novembre 2021

Exercice 1. On considère la fonction $f: x \mapsto \sqrt{x^2 + x - 2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f.
- 2. Déterminer l'image de f, i.e. $f(\mathcal{D}_f)$.
- 3. L'application f est-elle injective de \mathcal{D}_f dans \mathbb{R} ?

Solution de l'exercice 1. 1. L'ensemble de définition de f est l'ensemble des points x tels que $x^2 + x - 2 \ge 0$. Or, $x^2 + x - 2$ est un trinôme dont le discriminant est $\Delta = 9$ et dont les racines sont donc $x_1 = -2$ et $x_2 = 1$. De plus, $x^2 + x - 2$ est positif sauf entre les racines $x_1 = -2$ et $x_2 = 1$. L'ensemble de définition de f est donc $\mathcal{D}_f =]-\infty, -2] \cup [1, +\infty[$.

- 2. L'image de f est donnée par $f(\mathcal{D}_f) = [0, +\infty[$ (car le trinôme s'annule en -2 et en $1, x^2 + x 2 \to +\infty$ lorsque $x \to +\infty$ et la fonction racine est continue sur \mathbb{R}^+).
- 3. Non, l'application f n'est pas injective de \mathcal{D}_f dans \mathbb{R} . En effet, f(-2) = f(1) = 0.

Exercice 2. Soit $f : \mathbb{R} \to \mathbb{R}$ telle que : $\forall (x, y) \in \mathbb{R}^2$, $x < y \Rightarrow f(x) < f(y)$.

- 1. Comment appelle-t-on une telle application?
- 2. Montrer que f est injective.

Solution de l'exercice 2. 1. Une telle application est strictement croissante.

2. Soit $(x,y) \in \mathbb{R}^2$ tel que f(x) = f(y). Supposons par l'absurde que $x \neq y$. Alors, x < y ou x > y. Supposons, sans perte de généralité que x < y. Alors par hypothèse, f(x) < f(y). On obtient donc une contradiction. Ainsi, on a nécessairement x = y et f est donc injective.

Exercice 3. On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = u_n^2$ pour tout $n \in \mathbb{N}$.

- 1. Écrire un programme Python calculant u_n pour $n \in \mathbb{N}$.
- 2. Étant donné un nombre M, écrire un programme Python renvoyant le premier entier n tel que $u_n > M$.

Solution de l'exercice 3. 1. On a

$\overline{\mathbf{Algorithme 1}}$: Calcul de u_n

Entrées : Un entier n

Sorties : u_n .

- 1 $u = u_0$;
- 2 pour k de 0 a n faire
- $u = u^2$
- 4 fin
- 5 retourner u

2. On a

$\overline{\textbf{Algorithme 2}: \text{Premier rang pour lequel } u_n \text{ dépasse } M}$

Entrées: Un nombre M

Sorties : n le premier rang tel que $u_n > M$.

- $u = u_0$;
- **2** n = 0;
- 3 tant que $u \leq M$ faire
- 4 | $u = u^2$;
- $5 \quad n = n + 1;$
- 6 fin
- 7 retourner n

Exercice 4. Soient

$$f: \mathbb{R} \to \mathbb{R}$$
 et $g: \mathbb{R}^* \to \mathbb{R}$ $x \mapsto \sqrt{x^2 + 1} - x$

- 1. Montrer que tout réel x, f(x) > 0.
- 2. Montrer que la composée $f \circ g$ est bien définie sur \mathbb{R}_+^{\star} et calculer $(f \circ g)(x)$ pour tout x > 0.
- 3. De même, montrer que la composée $g \circ f$ est bien définie sur \mathbb{R} et calculer $(f \circ g)(x)$ pour tout $x \in \mathbb{R}$.
- 4. Que peut-on en conclure?

Solution de l'exercice 4. 1. On a

$$f(x) > 0 \Leftrightarrow \sqrt{x^2 + 1} > x \Leftrightarrow x^2 + 1 > x^2 \Leftrightarrow 1 > 0$$

ce qui est bien sûr vraie pour tout $x \in \mathbb{R}$. Ainsi, f(x) > 0 pour tout $x \in \mathbb{R}$.

2. $f \circ g$ est bien définie lorsque pour tout $x \in \mathbb{R}_+^*$ puisque f est définie sur \mathbb{R} et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}_+^* . De plus,

$$(f \circ g)(x) = f(g(x)) = \sqrt{\left(\frac{1 - x^2}{2x}\right)^2 + 1} - \frac{1 - x^2}{2x} = \sqrt{\frac{1 - 2x^2 + x^4}{4x^2} + 1} - \frac{1 - x^2}{2x}.$$

Après calcul, on arrive à

$$(f\circ g)(x) = \sqrt{\frac{1+2x^2+x^4}{4x^2}} - \frac{1-x^2}{2x} = \sqrt{\frac{(1+x^2)^2}{4x^2}} - \frac{1-x^2}{2x}.$$

Or, $\sqrt{(1+x^2)^2} = |(1+x^2)^2| = (1+x^2)^2$ car $(1+x^2)^2 \ge 0$ et de plus, puisque $x \in \mathbb{R}_+^*$, $\sqrt{4x^2} = |2x| = 2x$. Ainsi, on a finalement,

$$(f \circ g)(x) = \frac{1+x^2}{2x} - \frac{1-x^2}{2x} = x.$$

3. La composée $g \circ f$ est définie sur \mathbb{R} car f est définie sur \mathbb{R} , f(x) > 0 pour tout $x \in \mathbb{R}$ et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}_+^* . De plus,

$$(g \circ f)(x) = g(f(x)) = \frac{1 - (\sqrt{x^2 + 1} - x)^2}{2(\sqrt{x^2 + 1} - x)} = \frac{1 - (x^2 + 1 - 2x\sqrt{x^2 + 1} + x^2)}{2(\sqrt{x^2 + 1} - x)}.$$

Après calcul, on arrive à

$$(g \circ f)(x) = \frac{1 - x^2 - 1 + 2x\sqrt{x^2 + 1} - x^2}{2(\sqrt{x^2 + 1} - x)} = \frac{2x(\sqrt{x^2 + 1} - x)}{2(\sqrt{x^2 + 1} - x)} = x.$$

4. On a montré que

Autrement dit,

$$f \circ g = Id_{\mathbb{R}^{\star}_{+}}$$
 et $g \circ f = Id_{\mathbb{R}}$.

On peut en déduire que l'on a en réalité montré que f et g sont des applications réciproques l'une de l'autre.

Exercice 5. Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Solution de l'exercice 5. Pour x > 0, posons

$$f(x) = x^{1/x} = e^{\frac{\ln(x)}{x}}$$

de sorte que $\sqrt[n]{n} = f(n)$. f est dérivable sur l'intervalle $]0, +\infty[$ et on a

$$f'(x) = \frac{1 - \ln(x)}{x^2} e^{\frac{\ln(x)}{x}}.$$

Pour x > 0, f'(x) est du signe de $1 - \ln(x)$, donc f'(x) > 0 si $x \in]0, e[$ et f'(x) < 0 si $x \in]e, +\infty[$. Puisque 3 > e, on en déduit que la fonction f est strictement décroissante sur $[3, +\infty[$. En particulier, pour $n \ge 3$, on a $f(n) \ge f(3)$, et donc la plus grande valeur de $\sqrt[n]{n}$ est atteinte pour n = 2 ou pour n = 3. Comme $\sqrt{2} \simeq 1,41$ et $\sqrt[3]{3} \simeq 1,44$ la valeur maximale vaut $\sqrt[3]{3}$.