Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Ignacio Lopez Moreno Yonghui Wu **Ruoming Pang Zhifeng Chen** Jonathan Shen Fei Ren Patrick Nguyen Ron J. Weiss Quan Wang Ye Jia Yu Zhang

Google

{jiaye,ngyuzh,ronw}@google.com

1. Summary

- Multispeaker Tacotron 2 TTS network conditioned on speaker embedding computed from reference utterance using *pretrained* speaker encoder
- disjoint training sets for speaker encoder and synthesizer
- leverage untranscribed and noisy audio to train speaker encoder
- generalizes better than joint training on smaller dataset
- Similar to [1, 2], except we focus on transfer from pretrained speaker encoder
- Allows zero-shot adaptation from \sim 5 second reference utterance
- although result is still distinguishable from real speech from that speaker
- Performance improves with number of speaker encoder training speakers
- Random embeddings synthesize novel voices dissimilar from training set

2. System architecture

- Speaker encoder computes speaker embedding from spectrogram
- stacked LSTM with 3 layers, embedding taken from output at final frame
- discriminatively trained on speaker verification task [5]
- 2. Synthesizer generates mel spectrogram from input phoneme sequence • sequence-to-sequence with attention, based on Tacotron 2 [3]
- 3. Vocoder inverts spectrogram to time-domain waveform
- conditional WaveNet [4], 30 dilated convolution layers

3. Experiments

Datasets:

- Train speaker encoder on internal corpus of 39K hours from 18K speakers noisy and reverberant speech without transcripts
- Train synthesizers and vocoders on LibriSpeech 436 hours from \sim 1.2K speakers, 16kHz sample rate VCTK 44 hours from 109 mostly British speakers, 24kHz sample rate
- hold out 10 speakers from training to evaluate adaptation to unseen speakers

Metrics:

- Subjective mean opinion score ratings of speech naturalness (MOS-nat) and speaker similarity (MOS-sim)
- Speaker verification equal error rate (SV-EER), measured using eval-only speaker encoder trained on separate dataset

4. Results

		Train on VCTK			Train on LibriSpeech		
System	Speaker set	MOS-nat	MOS-sim	SV-EER	MOS-nat	MOS-sim	SV-EER
Ground truth	Seen	4.43	_	_	4.49	_	_
Ground truth	Unseen	4.49	4.67	1.5%	4.42	4.33	0.9%
Lookup table	Seen	4.12	4.17	1.2%	3.90	3.70	3.1%
Proposed	Seen	4.07	4.22	1.6%	3.89	3.28	4.3%
Proposed	Unseen	4.20	3.28	10.5%	4.12	3.03	5.1%
Proposed	Cross dataset	4.28	1.82	29.2%	4.01	2.77	6.3%

- Proposed has similar performance to lookup-table baseline on seen speakers
- Synthesized speech for unseen speakers as natural as for seen speakers
- Speaker similarity decreases (SV-EER increases) on unseen speakers

 Model trained on LibriSpeech can generalize to VCTK speakers but cannot transfer accents

- Synthesize text using reference utterances from male (top), female (middle, bottom) speakers
- Different speaking rates and pitch/formant ranges, matching reference

6. Speaker embeddings: Real vs Synthetic speakers

- Real and synthetic utterances from the same speaker (same color) are consistently close
- But real and synthetic utterances consistently form distinct clusters
- SV-EER of 2.9% after enrolling 10 real LibriSpeech speakers and 10 synthetic versions • i.e. synthetic utterances are nearly always closest to other synthetic utterances for the same speaker
- Synthetized speech resembles target speaker, but not well enough to be confusable with real speech

Sound examples at

https://google.github.io/tacotron/publications/speaker_adaptation

7. Transfer from speaker encoder

SE Training Set	Speakers	Emb. Dim	MOS-nat	MOS-sim	SV-EER
LS-Clean (matched)	1.2K	64	3.73	2.23	16.6%
LS-Clean – Joint	1.2K	64	3.59	2.44	17.3%
LS-Clean – Joint+Spkr loss	1.2K	64	3.71	2.12	16.5%
LS-Other	1.2K	64	3.60	2.27	15.3%
LS-Other + VoxCeleb2	2.4K	256	3.83	2.43	12.0%
LS-Other + VoxCeleb1+2	8.4K	256	3.82	2.54	10.1%
Internal	18K	256	4.12	3.03	5.1%
Ground truth	_	_	4.42	4.33	0.9%

- Compare performance of synthesizer trained on LibriSpeech (LS) conditioned on speaker encoder (SE) trained on different datasets evaluate on previously unseen speakers
- Jointly training SE and synthesizer doesn't improve performance
- Performance improves with number of SE training speakers

8. Fictitious speakers

- Synthesize the same text conditioned on randomly sampled speaker embeddings
- All samples contain consistent phonetic content, but varied fundamental frequency and speaking rate
- Fictitious speakers speakers are distinct from training speakers
- measure similarity of synthesized speech from fictitious speakers to ten nearest neighbors in train set:

	Nearest neighbors in	Cosine similarity	SV-EER	MOS-nat	
	Synthesizer train set	0.222	56.77%	3.65	
Speaker Encoder train set		0.245	38.54%	3.03	

9. References

- [1] S. O. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. Neural voice cloning with a few samples. arXiv preprint arXiv:1802.06006, 2018.
- [2] E. Nachmani, A. Polyak, Y. Taigman, and L. Wolf. Fitting new speakers based on a short untranscribed sample. arXiv preprint arXiv:1802.06984, 2018.
- [3] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu. Natural TTS synthesis by conditioning WaveNet on mel spectrogram predictions. In Proc. ICASSP, 2018.
- [4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. CoRR abs/1609.03499, 2016.
- [5] L. Wan, Q. Wang, A. Papir, and I. L. Moreno. Generalized end-to-end loss for speaker verification. In *Proc.* ICASSP, 2018.