Autonomous Robots I (Robotic/Cobotic) - Orga

- Content
 - Stationary Robots / Robot Manipulators
 - Kinematics, Dynamics
 - Vision, Perception
 - Grasping
- Joint Ostfalia/NTNU Lecture https://vc2.sonia.de/b/rei-3du-vaa-1zu
 - Robots (Prof. Gerndt Ostfalia)
 - Inverted / flipped classroom
 - Read 'Introduction to Autonomous Robots' chapters 1 to 9* https://ebookcentral.proquest.com/lib/ostfalia/detail.action?docID=29673057
 - Consultations
 - Summarise and Discuss
 - Robot Vision (Prof. Baltes NTNU)
 - Remote lectures
 - Project work (joint students teams)
 - Implement
 - Understand

^{*}

Inverted Classroom

- https://ebookcentral.proquest.com/lib/ostfalia/detail.action?docID=29673057,
- e.g. chapter 1:
- 'Introduction'

mercial robot in 1961 (the Unimate). In a "Tonight Show" at the time, this robot did am ball into a ho things we exp creative. Since

years have pa

be and what:

Take-home lessons

- The best solution to a problem is a function of the available sensing, actuation, computation and communication abilities of the available platform. Usually, there exist trade-offs that allow you to solve a problem using a minimal set of resources but compromise performance characteristics such as speed, accuracy or reliability.
- Robotics problems are different control Intelligence, particularly or actuation.

Robotics celebrated its 60th birthday in 2021, dating back to the first com-

 The unreliability of sensor a probabilistic notion of uncertainty.

Exercises

- 1. What kind of sensors do you need to solve the "Ratslife" game? Think both about trivial and close-to-optimal approaches.
- 2. What devices in your home could be considered robots? Why and why not?
- 3. Is a mechanical clock a robot? Why and why not?
- Weekly assignment: 1-page summary of each chapter and relation to ≥ 1 reference (paper, book, ...)

Projects

Ostfalia
University of
Applied Sciences

- Peg-in-hole using Intera on Sawyer robot
 - Repeatedly pick up pegs and place it in holes according to some high-level algorithm
- Dynamic Pick-and-place using ROP on Sawyer
 - Repeatedly pick objects from a dynamic environment and place objects in a dynamic environment
- Mixed teams with Taiwan for robotics and vision expertise
- Details to follow!

Schedule* - Thursday 08:15 - 11:30 - Room 152 + HCR Lab

Date	Subject
26.09.	1. Introduction, Introduction to Sawyer robot with Intera; Peg-in-hole project start
03.10.	Holiday - Time to work on Peg-in-hole project
10.10.	2. Robotics consultations (chapter 2 summary due), introduction to ROS, Gazebo, and project work
17.10.	3. Computer vision lecture, robotics consultations (chapter 3 summary due), introduction to ROS, Gazebo, and project work
24.10	4. Computer vision lecture, robotics consultations (chapter 4 summary due), introduction to ROS, Gazebo, and project work
31.10.	Holiday - Time to work on project
07.11.	5. Peg-in-hole project presentation, consultations (chapter 5 summary due) and project work
14.11.	6. Computer vision lecture, consultations (chapter 6 summary due) and project work; Dynamic Pick-and-place project start
21.11	7. Computer vision lecture, robotics consultations (chapter 7 summary due) and project work
28.11.	8. Computer vision lecture, robotics consultations (chapter 8 summary due) and project work
05.12.	9. Computer vision lecture, robotics consultations (chapter 9 summary due) and project work
12.12.	10. Consultations and project work
19.12.	11. Dynamic Pick-and-place project presentation, due date for final documentations
???	Final exam *Subject to change

Good to Know

Ostfalia
University of
Applied Sciences

- StudIP ,Robotics/Cobotics'
 - Slides
 - Additional documents
 - File exchange (consider setting up a Git for your programming activities)
 - Groups (possibly 2 +2)
- Grading covering robotics and vision
 - 10% One page summaries
 - 50% Projects
 - 20% Peg-in-hole (demonstration, documentation and video)
 - 30 % Dynamic Pick-and-place (demonstration, documentation and video)
 - 40% Exams
 - 10% Intermediate exam
 - 30% Final exam