Chemie I: Begrippen

DEEL I: ATOMEN EN MOLECULEN

Inleiding				
Materie	Alles wat massa heeft en ruimte inneemt.			
Zuivere stof	Vorm van materie die een uniforme chemische samenstelling heeft en die			
	bestaat uit één soort moleculen.			
Enkelvoudige stof	Een stof die is opgebouwd uit atomen van slechts één element.			
Samengestelde	Zuivere stoffen die zijn opgebouwd uit atomen van meerdere elementen.			
stoffen				
	ng voor de ontwikkeling van de kwantummechanica			
Atoommodel van Dalton (1808)	 Materie is samengesteld uit kleine, ondeelbare partikels. Alle atomen ve gegeven element zijn identiek in hun eigenschappen en massa. Verschillende chemische elementen bestaan uit verschillende atoomsoorten. leder atoomsoort bezit een karakteristieke m. Atomen zijn onverwoestbaar, kunnen niet gecreëerd worden, en behouden hun identiteit na een scheikundige reactie. Chemische verbindingen worden gevormd door combinatie van atomen van verschillende elementen in verhoudingen van gehele getallen. In chemische reacties worden atomen herschikt, van elkaar gescheiden en met elkaar gecombineerd. 			
Kathodestraalbuis	Of ontladingsbuis bestaat uit een glazen buis waarin een gas bij lage druk zit opgesloten, en waarin 2 elektroden zijn aangebracht. "kathodestralen"			
Plum pudding model	Wolk van uniforme positieve lading waarin de negatief geladen elektronen willekeurig verdeeld waren en bewogen. (Thompson)			
Radioactiviteit	Fenomeen waarbij onstabiele elementen spontaan straling afgeven. De straling van uranium kan door een elektrisch veld geleid worden en splitst dan in 3 bundels; •straling, niet door het elektrisch veld beïnvloed, dus een zeer hoge frequente elektromagnetische straling. •straling, wordt afgebogen door elektrisch veld richting positieve elektrode; bestaat dus uit negatief geladen deeltjes. •straling, wordt afgebogen door elektrisch veld richting negatieve elektrode; bestaat dus uit positief geladen deeltjes. Door Rutherford aangetoond; stroom helium-ionen.			
Experiment van Rutherford	Bestraling van dunne metaalfolies met een bundel -stralen. ⇒ In het centrum vd atoom is een kleine, zware, positief geladen kern aanwezig, omringd door een aantal zeer lichte, negatief geladen elektronen. ⇒ Atoom bestaat uit een kern (grootste fractie vd massa) en e- in een ijle structuur rond de kern			

Elektromagnetische golf	Het zeer snel periodisch wisselen van het elektrisch veld E en het magnetisch veld B. (transversale golf)			
	A E E			
	Richting van de lichtgolf →			
Golflengte	De afstand tussen 2 nabijgelegen toppen of dalen met identieke amplitude. Notatie: (SI-eenheid: m)			
Frequentie	Het aantal golflengten van de golf die per tijdseenheid (gewoonlijk 1s) aan een			
	bepaald punt voorbijkomen. Notatie: (SI-eenheid: Hz).			
Elektromagnetisch	De verschillende frequenties en de golflengten, van elektromagnetische golven			
spectrum	die verschillende lichtstralen weergeven.			
	10 ² 1 10 ⁻² 10 ⁻⁴ 10 ⁻⁸ 10 ⁻¹⁰ 10 ⁻¹²			
	radiogolven micro- infra- ultra- röntgen- gamma-			
	golven rood violet stralen stralen			
	zichtbaar licht			
Optisch zwart object	Geïdealiseerd object dat alle straling van alle golflengten, ontvangen onder			
	iedere hoek, perfect absorbeert.			
Zwart lichaam	Caviteit (holle ruimte) met een heel klein gaatje in de wand: iedere golf die de			
	caviteit binnendringt via dit gaatje wordt door het materiaal van de wanden			
	ofwel eindeloos gereflecteerd op de binnenwanden, zodat de straling met zeer			
	grote waarschijnlijkheid niet terug uit de caviteit zal stralen via het gaatje.			
	⇒ Bijzondere eigenschap; ieder object is in thermisch evenwicht met zijn			
	omgeving; dus het zendt precies evenveel straling uit als het			
	absorbeert = Kircchof's wet van de thermische straling.			
	⇒ Zwart lichaam is een perfecte straler en absorber; bij elke temperatuur			
	zendt een zwart lichaam evenveel of meer thermische straling uit dan eender welk ander lichaam.			
Radiantie van een	"Energie" = de stralingsintesiteit (uitgestraald vermogen per sterradiaal) per			
zwart lichaam	eenheid van oppervlak en per eenheid van golflengte van zwarte			
2Ware nondani	lichaamsstraling enkel afhankelijk is vd T°			
Zwarte	Probleem van Rayleigh:			
lichaamsstraling	- Alle toegelaten trillingstoestanden kom daadwerkelijk voor en iedere			
spectrum	golf heeft een E = kT (equipartitie)			
	- E ve golf is proportioneel met het kwadraat vd amplitude van de golf			
	(en niet met de frequentie).			
	Oplossing Planck:			
	- Alle toegelaten trillingstoestanden hebben een zekere			
	waarschijnlijkheid (bepaald door v) en iedere golf heeft een E =hv			
	$\rho(v,T)dv = \frac{8\pi v^2}{c^3} hv \left(\frac{1}{e^{(hv/kT)} - 1} dv \right) = \frac{8\pi hv^3}{c^3} \frac{1}{e^{(hv/kT)} - 1} dv$ - Stralingswet van Planck			
	- Straingswet van Flanck			
	⇒ Gemiddelde E per trillingstoestand bij hogere v daalt sneller dan toestandsdichtheid stijgt en dus geen UV catastrofe.			

Successen	- Energieniveaus H-atoom (lijnenspectra) en ionen met 1e-				
atoommodel van	- Ionisatie-energie H-atoom				
Bohr	- Waarde van de Rydberg constante ()				
Falen atoommodel	- Atoommodel slaagt er niet in om energieniveaus te berekenen van				
van Bohr	een atoom met meerdere elektronen.				
	- Draai-impuls van het elektron bij het waterstofatoom is 0 (uit				
	spectroscopische metingen), terwijl Bohr hier een waarde aan toekent				
	h.				
	- Geen verklaring opsplitsing spectraallijnen in aanwezigheid van				
	magnetisch veld.				
	- Een elektron zendt geen straling uit wanneer het zich in een				
	"toegelaten" baan bevindt (tegenspraak theorie Maxwell).				
Hoofdstuk 2: Golfmec	hanica van het H-atoom				
Hypothese De Broglie	EM-straling heeft een golf-deeltjes dualiteit, voor de beschrijving van materie				
Trypothese be brogne	de tekortkomingen van de deeltjes theorie opgevangen werden door een				
	kwantisering van de draaiimpuls.				
	voor materie bestaat dezelfde deeltjes dualiteit, aantal aspecten vd beweging				
	van een deeltje kan worden beschreven met behulp van een golf en deze golf				
	moet dezelfde eigenschappen hebben als fotonen. Experimenteel bevestigd				
	adv interferentiepatronen bekomen met elektronen.				
Karaktariatiak gayala	·				
Karakteristiek gevolg	Microscopische systemen kunnen slechts voorkomen in toestanden met				
golfeigenschappen	welbepaalde, discontinue energieën. Gekwantiseerde stationaire toestanden				
0	n.				
Operator	Een wiskundig proces waarbij een bepaalde operatie wordt uitgevoerd op een				
Handle of the second	functie, hetgeen (gewoonlijk) resulteert in een nieuwe functie.				
Hamiltoniaan-	De operator waarmee de energie als waarneembare grootheid overeenkomt.				
operator	De som van een kinetische en een potentiële energie-operator. In de fysische aanvaardbare oplossingen (die stationaire toestanden van het				
Kwantumgetallen	systeem beschrijven) komen slechts discrete gehele waarden voor.				
Onzekerheids-	Door de golfeigenschappen van een deeltje, is het onmogelijk om op hetzelfde				
principe van	ogenblik met hoge precisie de plaats en het impuls van een deeltje te kennen.				
Heisenberg	ogenblik met noge precisie de plaats en net impuis van een deelije te kennen.				
Waarschijnlijkheids-	De golffunctie heeft enkel een statische betekenis, en heeft dus geen exacte				
verdeling	baan. De waarschijnlijkheid om een deeltje aan te treffen in een volume-				
verueiing	element dv.				
	, , , , , , , , , , , , , , , , , , , ,				
	een bepaalde waarde kunnen aannemen (verschil met Bohr-model;				
	constante straal).				
	⇒ Meest waarschijnlijke r komt overeen met de laagst-energetische baan				
Manustra al :-	in het Bohr model.				
Voerstraal r	Afstand tussen en de kern en de elektronen. (coördinaat voor				
Out to a	waarschijnlijkheidsverdeling)				
Orbitaal	Wiskundige functie die het golfgedrag van een elektron in een atoom (of in een				
	molecule) beschrijft. 3D-waarschijnlijkheidsverdeling die het gerag ve e- in een				
	atoom beschrijft baan van het e-				
Oplossen van	Wiskundige oplossing voor de differentiaalvergelijking die bestaat uit een set				
Schrödinger-	van golffuncties en overeenkomstige energieën die samen alle mogelijke				
vergelijking	fysische aanvaardbare toestanden vh systeem beschrijven.				
Radiale gedeelte van	Functie R = enkel afhankelijk van de afstand van de kern tot het elektron.				
de golffunctie	Wiskundig; radiale golffuncties zijn het product van een exponentiële functie				
	en een polynoom van r/a0.				
	Golffunctie neemt exponentieel af met de afstand tot de kern.				

Hoekafhankelijk gedeelte vd	Golffunctie Waarschijnlijkheids- Waarschijnlijkheid (n-l-1) knooppunten dichtheid (n-l-1) maxima Gekarakteriseerd door 2 kwantumgetallen, n en l; - Wanneer n groter wordt, wordt de waarschijnlijkheids-verdeling vh ediffuser => e- wordt minder en minder op 1 bepaalde afstand teruggevonden. (I beïnvloedt de gemiddelde afstand tot de kern niet!) In functie van de hoek. Angulaire golffunctie = wiskundig; sferisch harmonische functies. Zij bepalen de vorm van de orbitalen.
golffunctie	Gekarakteriseerd door 2 kwantumgetallen l en ml; - De golffuncties voor de s-orbitalen bevatten geen hoekafhankelijke factor => hoekafhankelijk gedeelte vd waarschijnlijkheid in alle richtingen heeft dezelfde waarde.
Ontaarde toestanden	 NKG; Toestanden met dezelfde n, maar een verschillende waarde van l, die steeds dezelfde energie hebben (bv H-atoom). MKG; in afwezigheid van een uitwendig veld, toestanden voor het H-atoom met gelijke n en l waarden maar verschillende waarden van ml. Maar is aanwezigheid van een extern veld; opheffing van ontaarding.
Zeemaneffect (Pieter Zeeman, Nederland 1865- 1943)	Stel dat het gedrag van de atomaire dipool hetzelfde is als die van de kompasnaald (magnetische dipool richt naar uitwendig veld) - Verwachtingen: door de interactie van de atomaire magnetische dipool met het magneetveld gaan de spectraallijnen van het H-atoom verschuiven. - Werkelijkheid: niet alleen verschuivingen, ook opsplitsingen spectraallijnen in een aantal componenten. ⇒ atomaire magnetische dipool klassieke magnetische dipool
Spectraallijn Opheffing van de	Deel van het elektromagnetisch spectrum waar een chemische stof of een voorwerp zich anders gedraagt dan in de omgeving van dat deel. Door de interactie met een uitwendig veld zullen toestanden met een
ontaarding	verschillende waarden van ml niet langer dezelfde E hebben. $\frac{m_{I}=+2}{m_{I}=+1}$ $\frac{m_{I}=0}{m_{I}=-2}$ Opheffing van ontaarding in extern veld B
Spinmagnetisch moment	Omwille van de negatieve lading van een elektron, antiparallel is aan zijn draai- impuls vector S.

Elektron spin draai- impuls	Anomale Zeeman effect: verdere opsplitsing tgv plaatsing in extern magnetisc veld.			
	⇒ Oorzaak; magnetische moment niet enkel veroorzaakt door orbitaal draai-impuls vh e-, maar ook spin draai-impuls.			
Orbitaal vs spin draai-impuls	Orbitaal draai-impuls Spin draai-impuls			
'	$L = \sqrt{l(l+1)}\hbar$ $M = -\frac{e}{2m}L$ $S = \sqrt{s(s+1)}\hbar$ $M_s = g\frac{q}{2m}S$			
	$L_z = m_i \hbar \qquad S_Z = m_i \hbar$			
	$m_l \in \{-1,1\}$ (2l+1 waarden) $m_s = \{-1/2;1/2\}$ (2 waarden)			
	$\frac{B}{2h} =$			
	$h = m_l = 1$ S_Z $S = (3/4)^{1/2} h = 0.866 h$			
	$L = \sqrt{6}h$ 35.26°			
	$m_l = 0$			
	$h = -1/2 h$ $S = (3/4)^{12} h$			
	-2h m ₁ =-2			
	I = 2 (d-orbitaal)			
Hyperfijn-interactie	Adhv de Schrödingervgl; oplossingen bevatten geen info over de spin van het			
	elektron. Maar bij het H-atoom, toestanden met dezelfde n, l en ml, vertonen			
	de "spin-up" toestanden eenzelfde ruimtelijke waarschijnlijkheidsverdeling als			
	de "spin-down".			
	⇒ Niet helemaal juist; de kern heeft ook een spin, en het kernmagnetisch			
	moment dat hieruit volgt is een zwakke magnetische interactie met de elektronspin(zeer kleine invloed, wordt verwaarloosd)			
Knoopvlak	Het vlak (x,y)-vlak van het p-orbitaal waarin de waarschijnlijkheidsdichtheid 0			
	is.			
Axiaalsymmetrische	De 3D hoekwaarschijnlijkheid verkregen wordt door ieder van de lobben om			
lobben	zijn eigen lengte-as te roteren.			
Contourlijnen	Krommen die ontstaan wanneer we de waarschijnlijkheids-dichtheid berekenen in een groot aantal punten van een vlakke doorsnede van de			
	ruimte, en de punten met dezelfde dichtheid met elkaar verbinden.			
Contourdiagram	Het geheel van contourlijnen in een vlak, vaak getekend met constant			
-	dichtheidsinterval.			
Verschil Bohr en golf	Het resultaat bij de waarschijnlijkheidsverdeling voor een e- in de laagst			
mechanische beschrijving	energetische toestand vh H-atoom is verschillend met het gedrag in het Bohratoom. In het Bohr-atoom doorloopt het e- een baan met constante r, wat			
beschrijving	betekent dat de opeenvolgende metingen vd e- kern afstand steeds dezelfde			
	waarden hebben maar bij de waarschijnlijkheidsverdeling is dit niet het geval.			
	Als het NKG I = 0 dan zou het e- moeten stilstaan en zou het atoom ophouden			
	met bestaan, als I verschilt van 0, dan is de waarde vd draai impuls nooit gelijk			
Hanfdetule 2: Manuala	aan het HKG in het postulaat van Bohr.			
Hoofdstuk 3: Meerele Neutron	Neutrale deeltjes waarvan de massa nagenoeg hetzelfde is als die van			
INCULION	protonen.			
Atoomnummer	Het aantal protonen in een kern. Symbool: Z			
Massagetal van een	De som van het aantal protonen en het aantal neutronen. Symbool: A			
kern				
Isotopen	Het naast elkaar bestaan van kernen met eenzelfde aantal protonen maar een			
	verschillend aantal neutronen; voor zowat alle atoomsoorten zijn verschillende			
	isotopen bekend.			

	1H 2H				
	³ H Bv. De isotopen van waterstof				
Abundantie	Fractie waarin iedere isotoop voorkomt, wanneer een natuurlijk voorkomend element samengesteld is uit meerdere isotopen.				
Tabel van Mendelejev	Systematische opsomming van de chemische element, gerangschikt naar stijgende massa en naar chemische verwantschap.				
Relatieve atoommassa	De verhouding van de massa m(a) van een atoom tot de massaconstante m(u). m(u) =				
Sterke kernkracht	Aangezien protonen dezelfde lading hebben stoten ze elkaar af en door de uiterst kleine afmetingen van een kern zitten ze heel dicht op elkaar. Om te voorkomen dat de kernen door deze afstoting uit elkaar zouden spatten, moeten de protonen en neutronen samengehouden worden door een bijzonder sterke kracht.				
Massadefect	De massa van de kern van een atoom is kleiner dan de som van de totale massa van protonen en de totale massa van neutronen.				
Centraal potentiaalveld	Potentiaalveld waarvan alle punten met gelijke potentiaal gelegen zijn op een boloppervlak rond 1 centraal punt.				
Penetratie-effect	Voor meer-systeem, gaat elk toegevoegde- interfereren met het potentiaalveld van een ander E(ns) < E(np) < E(nd) < Radiale waarschijnlijkheidsverdelingen; e- uit een hogere schil houden soms heel dicht bij de kern op. => e- is diep doordrongen in het gebied vd lager gelegen e-, waardoor hun afscherming vd kern-potentiaal vermindert. (beïnvloedt de gem potentiële E vh e-) Orbitalen in dezelfde hoofdschil en verschillende onderschil zijn niet langer ontaard. (dezelfde I, verschillende ml wel ontaard) Verlaagt de energie van een orbitaal met lager NKG t.o.v een orbitaal met hoger NKG binnen dezelfde schil. E neemt toe met nevenkwantumgetal.				
Elektronen-repulsie	e- stoten elkaar af omdat ze dezelfde lading dragen. Deze afstoting is proportioneel met de overlap vd orbitalen waarin deze e- zich bevinden. ER verhoogt de energie van een orbitaal met een hoger NKG t.o.v een orbitaal met een lager NKG binnen eenzelfde schil. Bv. E(2s) < E(2) = E(2) = E(2)				
Pauliverbod	Geen 2 e- in eenzelfde atoom kunnen dezelfde 4 kwantum-getallen hebben (n, l, ml, ms) = Geen 2 e- in eenzelfde systeem bevinden zich in dezelfde kwantumtoestand.				
Aufbau principe	Laagst energetische toestand = grondtoestand: - De E van een e- stijgt met zijn HKG n; - Binnen eenzelfde schil stijgt de E van een e- met zijn NKG I.				
Regel van Hund	= De regel van maximale multipliciteit; Wanneer meerder e- in een verzameling ontaarde orbitalen aanwezig zijn, dan heeft de configuratie met het maximale aantal door het Pauliverbod toegelaten evenwijdige spins de laagste E.				
Edelgas- configuratie	Elke elektronenconfiguratie waarin de s- en de p-orbitalen van de hoogste schi helemaal gevuld zijn.				

Valentie-elektronen	Elektronen o					bevinden	. Zij bepa	ilen de	
Overgangs-metalen	Atomen die					m dwz d	at het laa	itste e- zi	ich
	in het s-orbi	taal ve nieuw	ve schil b	evindt. H	et blijkt	indd dat	3d-orbita	alen iets	
	hoger in E zi	jn dan 4s-ork	oitalen						
	⇒ Eers	ste 2 elemen	ten na Ar	, K en Ca	eerst de	e 4s-scha	al opvulle	en. Daarr	าล
	pas	de 3d-orbita	len.						
	Sc Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
		$4s^2$ $3d^34s^2$	3d ⁵ 4s ¹	3d ⁵ 4s ²	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	3d84s2	3d104s1	3d1
	34 45 34	15 54 15	54 15	5 u 15	54 15	<i>5</i> u 15	54 15	5 u 15	<i>-</i>
Periodiek systeem	Manier om o	hemische el	ementen	te order	nen De d	ordening	geheurt i	on hasis	
T criodick systeem	van het atoo								
	chemische e				<u></u> e u.e_	0.0.00		<u></u>	
	Bestaat uit;	- Name							
		olommen, g	roepen. a	antal val	entie-ele	ektronen			
		en, <i>perioden</i>	•						
		sboven het l			et atoom	nummei	1) en re	chtsonde	er
		zwaarste (m		-			,		
Periodische wet	Wanneer de	chemische e	elemente	n worde	n gerang	schikt vo	lgens stij	gende	
	massa dan b	lijken zij een	periodis	che varia	tie te ve	rtonen ir	n hun fysi	sche en	
	chemische e	igenschappe	n. (basis	PSE)					
Covalentstraal/	Afstand tuss	en 2 covalen	t met elk	aar	30	0	Rb	Cs	
atoomstraal	gebonden at	omen. Bepa	ald door	de	25	* K	Ĭ.		
	effectieve ke	ernladingen.			20	Li [1 1	pre franchisch	
		nen periode,				[] gal	James X	e Rn	
		nemend atoo			10	Ne Ne	Kr		
		nen groep to		raal (wai	nt '	0 2	0 40	60 Atoomnur	nmer
		ds extra sch	-						
Effectieve kern-	Lagerliggend			_			_		
lading	potentiële E								Ct)
	gelijk aan, de schillen zitte		aumg ve	minuero	metne	t dalital t	e- ale ili i	agere	
1 ^{ste} ionisatie-	E die nodig i		lat in gro	ndtoesta	nd ,	2500 He			-3
potentiaal	vh atoom he					2000 Ne			
potentiaai	volledig uit g					1500 - Ar	Kr		
	verwijderen.					1000	A X	Rn 8 Å	1
	-	arde /mol		,		500	Same of Same of Same	Janes	7
		nen een perio	ode, toen	ame IP		O O O	Rb C	s Fr	
		elgassen heb					40	00 Atoomnu	mmer
	- Binr	nen een groe	p, afnam	e IP					
Elektronaffiniteit	E die vrijkom	nt wanneer e	en gasvo	rmig neu	itraal ato	om ve b	epaald el	ement e	en
	e- opneemt	ter vorming	ve negati	ef gelade	en ion (g	evormde	ion heef	t E	
	afgegeven r		-						
	Hoe negatie	ver de elektr	onaffinit	eit hoe st	abieler l	net ion.			
Elektro-	De mate wa				nt de ne	iging ver	toont om	bindend	de
negativiteit	elektronen r		te trekke	n.					
Hoofdstuk 4: Molecula									
Ionaire binding	Volledige ov								
	(ionen word	en bijeen gel	nouden d	oor elek	trostatis	cne aant	rekking t	ussen – e	en
Cavalanta bizzlizza	+ ion).	ا امسمییی	· ·		ما داد د		ا ا ا ا ا ا ا		
Covalente binding	2 elektroner								
	beide atome kenmerk!	ıı waartusse	n een ch	emische	nitiaing (gevorma	worat =	belangrij	K
	keninerk!								

Schrödinger- vergelijking	Via het oplossen van deze vergelijking kunnen we de gekwantiseerde energieniveaus voor het systeem berekenen & wordt de bijhorende golffuncties berekend; hiermee wordt de waarschijnlijkheid een e- aan te				
	treffen in ieder willekeurig gekozen volume element berekend				
MO-theorie	Model bestaat uit een set van wiskundige vergelijkingen, die een zeer fysische				
	realiteit beschrijven. Gebaseerd op				
	<u>LCAO</u> = Lineaire Combinatie van Atoom Orbitalen				
	Basisconcept; de elektronenwolken van atomen (AO's) met elkaar overlappen				
	en zo aanleiding geven tot nieuwe elektronenwolken (MO's)				
Normalisatie	Factoren die ervoor moeten zorgen dat de totale waarschijnlijkheid om het e-				
constanten	aan te treffen in gen u juist gelijk is aan 1. Ng & Nu				
Energie H2-ion	Hangt af van de afstand tussen de 2 protonen				
	0.0 Eg 0.0 Eg 1 rmin 4 af stand / Bohr radii				
	Nulpunt Eg = ongebonden toestand (H-atoom + proton op oneindige afstand,				
	omwille vd grote afstand is de interactie tussen de 2 gereduceerd tot 0 dwz				
	geen chemische binding aanwezig).				
	Minimum Eg = <u>evenwichtstoestand (</u> molecule heeft max stabilisatie bereikt;				
	toestand naar waar de molecule zal evolueren) de afstand op dit moment				
	tussen beiden protonen = bindingslengte (rmin = 2,5).				
Bindend orbitaal	Orbitaal dat verantwoordelijk is voor de vorming van de chemische binding.				
	(attractief)				
	- E is negatief (tenzij voor zeer kleine afstanden)				
	- Stabilisatie door r te verkleinen				
	- Stabieler dan ongebonden				
Bindingsenergie	Hoeveelheid E die vrijkomt wanneer de chemische binding gevormd wordt				
	maw de hoeveelheid E die moet toegevoegd worden om de chemische binding				
	te breken (= dissociatie-energie).				
A satistic of a selection of	Estanda haran dan in anashan dan karatan dan anashahiri				
Antibindend orbitaal	- E steeds hoger dan in ongebonden toestand => onstablel				
	- Stabilisatie door r te vergroten en E naar 0 te laten gaan				
	- Stel e- zit in deze orbitaal zal het ion spontaan dissociëren.				
Overler internal	Repulsieve toestand				
Overlap-integraal	De sterkte van de overlap tussen de golffunctie van atoom A en een golffunctie van atoom B. Integratie verloopt over de gehele ruimte.				
	het is een belangrijke maat voor de beoordeling van de sterkte vd binding. $S_{AB} = \int \psi_A^* \psi_B dv$				
Malaguulaghitalag	de sterkte va biriding.				
Molecuulorbitalen	15 y 1 y 2 y 2 y 3 y 3 y 4 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5				
	strekken zich uit over de hele mocule (maken dus gedeeltelijk gebruik vd e-).				
	- zijn verschillend van 0 in het gebied tussen de kernen. (behalve 1 punt				
	voor).				
	- Gaan naar 0 in het gebied niet gelegen tussen de kernen.				
	- Overlap-integraal; veel overlap tussen de kernen.				
	⇒ -ion; combinatie van 2 1s-orbitalen (AO's) tervorming van 2 MO's				
	(bindend en antibindend orbitaal)				

Bindingsorde	Van een chemische binding wordt gevonden door het aantal e- paren in bindende MO's te verminderen met het aantal e- paren in antibindende MO's. $n = \frac{\# e^-(bindende\ MO) - \# e^-(antibindende\ MO)}{2}$ Symbool: n			
Hogerliggende MO	Ook de hogergelegen, niet-gevulde AO's combineren met elkaar om MO's te vormen, omdat MO's eveneens het Pauliverbod gehoorzamen, zal het verkrijgen vd grondtoestand ve neutrale molecule nooit nodig zijn om e- te plaatsen in MO's geconstrueerd uit AO's hoger ve schil hoger dan de valentieschil			
Gedrag van de lagerliggende e-	$\int \psi_{A,2s}^* \psi_{B,2s} dv >> \int \psi_{A,Js}^* \psi_{B,Js} dv$ $\Rightarrow \text{ slechts klein verschil tussen E(AO_{1s}) en E(MO_{1\sigma})}$ $\Rightarrow \text{ ls} \Rightarrow \text{ ls} \Rightarrow$			
	Li Li ₂ Li uit lagere schillen verwaarloosbaar			
Paramagnetische stoffen	Stoffen die sterk door een magneetveld worden aangetrokken. - Wordt bepaald door ongepaarde e- die in de stof aanwezig zijn (door spin gedraagt e- zich als een klein magneetje dat een interactie aan gaat met een uitwendig veld, en zich er naar richt) - Indien stof ongepaard e- bevat => paramagnetisch			
Diamagnetische stoffen	Stoffen met slechts een verwaarloosbare interactie met magneetveld - Pauliverbod; 2e- in eenzelfde orbitaal met tegengestelde spin - 2 tegengestelde magneetvelden heffen elkaar op - e- paar heeft geen resulterend magnetisch moment en dus geen interactie met uitwendig magnetisch veld			
Sigma binding (MO)	p-orbitalen die langs de molecuulas liggen vormen deze binding.			
Pi -binding (MO)	p-orbitalen die loodrecht op de molecuulas staan combineren tot deze bindingen. Aangezien er telkens 2 p-orbitalen loodrecht zijn, worden er telkens 2 -bindingen gevormd. Omdat de 2 loodrechte p-orbitalen vd atomen equivalent zijn, zij de gevormde -orbitalen eveneens equivalent maw zijn ontaard.			
AO en MO	Axiale overlap is efficiënter dan de zijdelingse overlap => heeft een lagere E dan , en een hogere E dan Opmerking; de onderlinge energieën vd MO is element-afhankelijk ⇒ voor sommige homonucleaire moleculen keren en om in volgorde (oorzaak: 2s -2p interactie) ⇒ de verschuiving is mee het gevolg vd repulsie tussen ve- ⇒ -orbitaal vertoont zijn grootste e- dichtheid in de buurt vd molecuul as (zoals - en -orbitaal). Het -orbitaal zal daarom een repulsie ondervinden van e- in - en -orbitaal. Deze repulsie is veel groter dan de repulsie die de eorbitalen ondervinden (deze zitten in gebieden waar			

	on arbitaal oon lage e dichtheid vartanen) en dus komt het arbitaal
	- en -orbitaal een lage e- dichtheid vertonen) en dus komt het -orbitaal te liggen bij een E hoger dan verwacht.
Heteronucleaire	te liggeri bij een E noger dan verwacht.
diatomische	
moleculen	
moleculen	
	Toenemend verschil energie AO's
	Toenemende interactie-energie
	Heteronucleair: $c_A \neq c_B$
	Relatieve bijdrage van AO; hoe groter het E verschil is tussen de
	samenstellende AO's, hoe kleiner de interactie-energie is, dwz hoe kleiner de
	overlappende integraal is.
	Bv. HF; omdat F meer elektronegatief is dan H, zal het trachten de e- dichter bij
	zich te houden => E vd ve- van F is lager dan die van H
	⇒ De bindende MO heeft dus een groter bijdrage van F, terwijl het
	antibindende MO een grotere bijdrage heeft van H.
Excimeren	Moleculen die slechts stabiel zijn in elektronisch geëxciteerde toestanden. Bv
	Be2; moet een e- van het *2s-orbitaal geëxciteerd worden naar het 2p-
	orbitaal, waardoor de bindingsorde = 1.
HOMO-orbitalen	"Highest Occupied Molecular Orbital"; hoogste MO's die gevuld zijn
LUMO-orbitalen	'Lowest Unoccupied Molecular Orbital"; laagste MO's die niet gevuld zijn.
	⇒ Energie verschil tussen de HOMO en de LUMO =
	HOMO-LUMO energieverschil.
SOMO-orbitalen	"Singly Occupied Molecular Orbital"
HOMO-LUMO	Vooral nuttig voor het verklaren van chemische reactiviteit.
theorie	- De bezette orbitalen van 2 moleculen stoten elkaar af.
	- + ladingen op de ene molcule trekken – ladingen op de andere
	molecule aan.
	 De bezette orbitalen vd ene molecule interageren met de onbezette orbitalen vd andere molecule.
	Challenger but a see hat a see and a see door
	door interactie HOMO en LUMO
	orbitalen. In het bovenstaande ΔE_2 LUMO _B
	and the state of t
	voorbeeld gaan HOMOa en LOMOb met elkaar interageren want Δ E1 is kleiner
	dan Δ E2.
	, ,
Hoofdstuk 5: Valent	iebindingstheorie
Lewisstructuur	Model waarbij formules van moleculen worden opgesteld die duidelijk
	weergeven hoe de ve- verdeeld zijn binnen de molecule.
	Dit houdt meteen in dat orbitalen uit schillen lager of hoger dan de
	valentieschil niet betrokken zijn bij covalente bindingen.
Lewis-grondregel	Wanneer 2 atomen die zich in elkaars omgeving bevinden hun ve- zo
	herschikken zodanig dat sommige e- samen gebruikt kunnen worden door de 2
	atomen, dan wordt een stabiele molecule gevormd wanneer het samen
	gebruik leidt tot een volledig gevulde valentieschil voor beide atomen.
Octetregel	Regel die stelt dat atomen streven naar een valentieschil met 8e- (=octet) en
	zo de edelgassenconfiguratie bereiken.
	Zwaardere elementen: ook d-orbitalen: opvulling mogelijk tot 18 e-

Coördinatief covalente binding	Binding waarbij beide elektronen door 1 atoom geleverd worden. Bv. NH3				
Enkele binding	Samengebruiken van 2 elektronenparen in een chemische binding ⇒ Dubbele binding = samen gebruiken van 2 elektronenparen ⇒ Driedubbele binding = gebruiken van 3 ongepaarde e- van het andere atoom (Bv. N2)				
Homopolaire binding	De e- van het bindende paar verblijven een even grote fractie van hun tijd rond ieder van de atomen.				
Regels voor het tekenen van Lewisstructuren	 Bereken het aantal ve- (+ negatieve lading/ - positieve lading) Teken de skeletstructuur vd molecule Verdeel de e- over de atomen die het centrale atoom omringen. Zorg dat de octetregel voldaan is. Verdeel de overblijvende e- paarsgewijs over het centrale atoom (controleer adhv formele lading) 				
Formele lading	F = N - V - B/2 # e in bindende e - paren # valentie-e neutrale atoom Lading die een atoom heeft in een geïdealiseerde Lewisstructuur. Hypothetisch lading, geen reële lading. `				
Zuiver ionaire binding	Voor iedere binding kennen we beide e- toe aan het meest elektronegatieve element. Zo bekomen we voor elk atoom een getal gelegen tussen +7 en -7 = oxidatietrap = oxidatietoestand = oxidatiegetal (wordt aangeduid met Romeinse cijfers; geen reële lading!)				
Gedelokaliseerde binding	Als in de molecule slechts 1 dubbele binding aanwezig is, dan zit het elektronenpaar dat aanleiding geeft tot de dubbele binding verspreid over de 2 N-O bindingen (in het nitrietion). We verspreiden 1 bindend elektronenpaar over 2 reeds bestaande bindingen.				
Resonantie beschrijving	Om gedelokaliseerde bindingen toch met een Lewisstructuur voor te stellen. (dubbele pijl tussen de veschillende mogelijkheden) De waarschijnlijkheidsverdeling van de dubbele binding is op ieder moment even groot.				
Uitzonderingen op octetregel	 Moleculen met minder dan 8 ve- rond het centrale atoom. moleculen met meer dan ve- rond het centrale atoom. Moleculen met een oneven aantal elektronen (wordt weergegeven door een punt) 				
VSEPR-model	Theorie; model dat toelaat de geometrie te voorspellen van moleculen, gebaseerd op het feit dat e- paren elkaar afstoten.				
Pauling	Model gebaseerd op de lokalisatie-gedachte van Lewis maar met een kwantitatieve, kwantummechanische beschrijving vd bindingen. Nadeel: lokalisatie e- is niet nauwkeurig.				

VB-theorie	Gebaseerd op het concept dat de chemische binding bestaat uit een overlap van 2 AO's, die hun oorspronkelijke karakter grotendeels behouden <-> MO-theorie. Basis: - e- zijn gelokaliseerd in specifieke bindingen - binding vereist orbitaal overlap - per overlappende orbitaal: 1 minstens 2 orbitalen		
Bindingscapaciteit	Schaal op basis van de efficiëntie waarmee het orbitaal kan overlappen met orbitalen van andere atomen. - S-orbitaal; bindingscapaciteit = 1 - P-orbitaal; bindingscapaciteit = = 1,732 - s-s overlap = 1; s-p overlap = 1,73; p-p overlap = 3		
Hybridisatie	Lineaire combinatie van AO op 1 atoom. De ruimtelijke oriëntatie van de gevormde hybride orbitalen correspondeert met ruimtelijke schikking van ladingswolken rond het atoom in de beschouwde molecule. VSEPR bepaalt welk type hybridisatie nodig is voor het beschrijven van de binding. Pauling: - het systeem streeft naar een zo laag mogelijke E - herschikking ve- in nieuwe AO's die een maximale bindingscapaciteit hebben. - Sterkste bindingen vormen zodat molecule max stabiliseert - Nieuwe orbitalen nieuwe golffuncties voor ve- door maken van lineaire combinaties vd oorspronkelijke golffuncties.		
Hybridisatie sp ³	Combinatie van 1 s en 3 p orbitalen = 4 equivalente hybride orbitalen. (bindingscapaciteit van = 2.0) - Enkele binding - Hoekwaarschijnlijkheid = axiaal symmetrisch - Oriëntatie = tetraëder		
hybridisatie sp ²	Combinate van 1s en 2 p orbitalen ter vorming van 3 equivalente hybridisatie. (bindingscapaciteit = 1.99) - Dubbele binding mogelijk - hoekwaarschijnlijkheid = axiaal symmetrisch - Oriëntatie = vlakke gelijkzijdige driehoek met overig p-orbitaal loodrecht op het oppervlak		
sp hybridisatie	Combinatie van 1 s en 1 p orbitaal ter vorming van 2 equivalente hybride sp orbitalen. (bindingscapaciteit = 1.932) - Drievoudige binding mogelijk - Hoekwaarschijnlijkheid = axiaal symmetrisch - Oriëntatie = lineair met overige porbitalen loodrecht op het oppervlak.		
Iso-energetisch	E blijft behouden (na hybridisatie).		

Kritiek op VB-theorie	Bijvoorbeeld CH4	
· · · · · · · · · · · · · · · · · · ·	- 4 equivalente bindingen	
	- e- gelokaliseerd in de bindingen	
	MO-schema: Waarom dan niet 3 gelijke en 1 verschillende binding? Omdat MO orbitalen verdeeld zijn over de hele molecule, en niet op slechts 1 binding betrekking hebben MO-schema: - 4 equivalente, iso-energetische bindingen Voor eenvoud lokaliseren we ieder e- in een individuele binding (in VB), omwille vd experimentele symmetrie. □ 2 bindende MO NIET iso-energetisch!! □ 2 behebben echter niet allemaal dezelfde E.	
Hoofdstuk 6: Kwalitati	eve MO/ VB-energieschema's	
MO vs VB	- MO; AO's, die horen bij de atomen waaruit de molecule is	
	 opgebouwd, gaan volledig verloren bij de vorming vd molecule; er resten enkel nog MO's (lineaire combinatie van AO's en zijn over de hele molecule uitgespreid) VB; chemische binding wordt opgevat als de essentie gelokaliseerde concentratie van e- tussen 2 atomen, waarbij de golffunctie die de MO beschrijft, opgebouwd is als combinatie van de AO's. 	
Combinatie MO en	- VB-theorie voor skeletstructuur (-bindingen)	
VB	- MO-theorie voor -bindingen en conjugatie	
Symmetrisch MO	Orbitaal dat verdeeld zit over de gehele molecule en aan iedere binding een identieke bijdrage tot de elektronendensiteit levert.	
sigma-binding (VB)	Beschrijft de enkele binding in een molecule (gebaseerd op het concept van $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
pi-binding (VB)	hybridisatie en lokalisatie van e-) sp s Beschrijft de meervoudige bindingen in een molecule.	
pi-binding (VB)	 -bindingen zijn reactiever dan -bindingen, omdat gevolg van minder efficiënte zijdelingse overlap - binding heeft een hogere E dan -bindingen en vereist dus minder E om gebroken te worden. 	
MO/ VB schema voor	Bv. Het carbonaation heeft 3 equivalente Lewisstructuren	
resonantie structuren	$\begin{bmatrix} \overline{0} \\ \\ \\ C \\ \underline{0} & \bigcirc \end{bmatrix}^{2} \longleftrightarrow \begin{bmatrix} \overline{0} \\ \\ \\ C \\ \bigcirc \end{bmatrix}^{2} \longleftrightarrow \begin{bmatrix} \overline{0} \\ \\ \\ C \\ \bigcirc \end{bmatrix}^{2}$ $A \qquad B \qquad C$	
	$\psi = a\psi_A + b\psi_B + c\psi_C$	
	a = b = c (want equivalente structuren)	
	C is steeds gehybridiseerdO eigenlijk iets tussen en	

	 ⇒ We kiezen 2 O-atomen met en 1 met hybridisatie, zonder te specifiëren, welke atomen precies. We krijgen dan als resultaat 3 -bindingen en 1 (gedelokaliseerde) -binding. ⇒ Slechts 1 orbitaal van C gaat overlappen met O, de 2 anderen zullen overlappen met de rest van de molecule. 	
Resonantie-energie	Het verschil in energie tussen deze resonantiestructuren en de werkelijke energie.	
Geconjugeerd systeem	Structuur waarin enkele en dubbele bindingen elkaar afwisselen, en waarbij de p-orbitalen die de dubbele bindingen vormen ook met elkaar interageren overheen de tussenliggende enkele binding.	
Hoofdstuk 7: Bindinge	n en bindingkarakteristieken	
Homopolaire	Covalente binding tussen 2 identieke atomen waarbij het e- vh ene atoom	
covalente binding	even graag verblijft op het andere, en omgekeerd. Gemiddeld spenderen ze even veel tijd rond het ene atoom als rond het andere. Symmetrische verdeling; omdat E van de AO's die de MO vormen zijn identiek. = symmetrische elektronenverdeling	
Polaire binding	Bij een covalente tussen 2 ongelijke atomen, zal het zelden voorkomen dat de 2 AO's die de MO vormen dezelfde E hebben.	
Elektronegativiteit niet polair: $\Delta \chi \leq 0.5$ polair: $\Delta \chi \leq 2.0$ ionair: $\Delta \chi \geq 2.0$ Bindingsorde	 Van een element is de mate waarin een atoom van dat element de neiging vertoont om bindende e- naar zich toe te trekken. 1) Mulliken EN = soort van balans (e- afstaan langs de ene kant maar ook e- krijgen) gemiddelde van de 2 EN. 2) Pauling EN = gaat uit van de bindingsenergie van een molecule wanneer we 2 atomen combineren. Hoe sterk is de moleculaire binding? Bereken het ΔE van de bindingen. 3) Allred & Rochow = gebaseerd op de effectieve kernlading, omdat sommige bindingen geen homopolaire bindingen heeft (waarvoor 2 en 1 niet zouden werken). Aantal bindende e- paren die door de 2 atomen gedeeld worden. 	
	= \frac{aantal bindende e-paren tussen X en Y}{aantal bindingen} Niet-gehele bindingsorden kome voor bij gedelokaliseerde bindingen	

Bindingslengte	Voor ieder type binding: karakteristieke bindingslengte = som van covalentstralen. (sterke correlatie tussen BL en BO) 1) Alle moleculen vd dezelfde soort komt eenzelfde binding voor met identieke bindingslente 2) In onderscheiden moleculen, tussen atoom A en B is een chemische binding met dezelfde bindingsorde aanwezig, dan zijn de
	bindingslengten nagenoeg identiek
Bindingsenergie	De bindingsenergie van een binding A-B is de gemiddelde reactie-enthalpie ΔH die nodig is voor het verbreken van binding A-B in de gasfase. (sterke correlatie tussen BE en BO)
	= maat voor sterkte vd binding (hoe hoger bindingsenergie, hoe sterker de binding). De hindingsenergie neemt toe met het
	- De bindingsenergie neemt toe met net
Bindingsdissociatie-	aantal bindingen tussen 2 elementen. E die moet toegevoegd worden aan een molecule om de beschouwde binding
energie	te verbreken = dissociatie-energie.
Reactie-enthalpie	De vrijgekomen of opgenomen warmte wanneer deze reacties bij constante druk verlopen. ΔH
Overzicht molecule beschrijvingen	 Kwantummechanica: analytische oplossing slechts voor aller-eenvoudigste moleculen
	 MO-theorie: gebaseerd op LCAO benadering; correcte beschrijving maar nog steeds zeer complex
	 Lewis structuren: eenvoudig model dat toelaat e⁻ te verdelen over de molecule, dat echter weinig inzicht geeft in de aard van de binding en de e⁻ (foutievelijk) localiseert in 1 binding of op 1 atoom
	 Valentiebindings theorie: model dat bindingen in vele moleculen kan rationaliseren adhv het voorkomen van hybride orbitalen
Hoofdstuk 8: Het VSEI	PR-model
Molecuul-geometrie	Driedimensionale verdeling van de atomen in een molecule = molecuulstructuur
Bindingshoek	De hoek tussen de lijnen die telkens de kernen van 2 met elkaar gebonden atomen verbinden, in een groep van 3 opeenvolgende atomen.
VSEPR-model	"Valence Shell Electron Pair Repulsion" = eenvoudig model om moleculaire geometrie kwalitatief te voorspellen, gebaseerd op onderlinge afstoting door elektronen.
	⇒ Bindingen en vrije e- paren trchten zich zo ver mogelijk van elkaar te bevinden, om zo het systeem max te stabiliseren.
Algemene regel	Afstoting-volgorde op eenzelfde atoom:
	VP:VP > VP:BP > BP:BP
EN substituent	Zuigt het bindend elektronenpaar naar zich toe, en verwijdert daarom de elektronendichtheid uit de buurt vh centrale atoom.
	 ⇒ Bindingen met sterk EN substituenten oefenen minder repulsie uit op de andere concentratie gebieden; <u>De regel van Bent</u>
Sterische hindering	Afstoting chemische bindingen (= elektronenconcentraties) tegenoverliggende centrale atomen.
J	

Secundaire effecten	Eon wii o naar voroorzaakt oon grotore renusie dan hindend o naar	
Secundaire effecten	Een vrij e- paar veroorzaakt een grotere repusie dan bindend e- paar Secundaire effecten F is minder EN dan I en dus I	
	H 109,5° (*) 104° waardoor de hoek groter is.	
	H H De hoek is kleiner omdat de	
	2. Verschil in elektronegativiteit dubbele binding zwaarder is	
	⊕ 102° ⊕ 98°	
	P	
	I F F	
	3. Verschil in volume van de binding	
	F Cl Cl	
	B 120° C 111°	
	Ė Ö	
Sferische hindering	Afstoting van de tegenoverliggende centrale atomen (bij moleculen met meer	
_	dan 1 centraal atoom).	
	- Wanneer 2 fragmenten ten overstaan van elkaar kunnen roteren	
	bereiken ze hun minimale pot. E voor de positie waarvoor hun	
	sferische hindering minimaal is.	
	- De rotatie rond een meervoudige binding vergt veel meer E dan wat	
	de minimalisatie vd sferische hindering oplevert.	
Overzicht VSEPR	<u>i+j</u> j=0 j=1 j=2 j=3	
	2 X—A—X BeF ₂	
	3 AAAAX BF3 GeF2	
	<u> </u>	
	$A = \int_{-\infty}^{\infty} \hat{A}_{x_{1} \times x_{2}} \times \int_{-\infty}^{\infty} \hat{A}_{x_{2} \times x_{3}} \times \hat{A}_{x_{2} \times x_{3}} \times \hat{A}_{x_{3} \times x_{$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	6 X X X X X X X X X X X X X X X X X X X	
	X X X X X AIF6	
Hoofdstuk 9: De ionai	ire binding en de metaalbinding	
Ionaire binding	Volledige elektronenoverdracht om zo edelgassenconfiguratie te bereiken.	
	(vorming van ionen)	
	Van elektrostatische aard.	
Elektronen-affiniteit	De elektronenaffiniteit van Cl is een negatief getal, dit wijst op het feit dat	
van Cl	wanneer het Cl-atoom een ion opneemt er een stabilisatie vh systeem	
	plaatsvindt en dus een lagere E.	
IP van natrium	Positieve IP van natrium wijst er op dat voor de ionisatie E aan het systeem	
	moet toegevoegd worden. De "eindtoestand" heeft dan een hogere E dan de	
	"begintoestand" van de reactie.	
Coulomb-interactie	Het IP en elektronenaffiniteit zeggen alleen iets over de aparte (geïsoleerde	
(ionen)	ionen) en dus niet over hun onderlinge interacties.	
	⇒ Coulomb-interactie = formule waarbij r de afstand is tussen beide	
	ionen. (attractie)	
	⇒ Vereenvoudiging van de reële reactie; 3 ^e stap moet rekening	
	gehouden worden met het feit dat in de evenwichtspositie de ionen	
	niet allen de Coulomb-attractie maar ook repulsieve krachten	
Vation	ondervinden => Coulomb- en Pauli-afstoting	
Kation	Positief ion	
Anion	Negatief ion	

Born-Habercycli	Cyclus dia hostaat uit oon rooks anaanvalganda roactios, om roactio	
воп-паветсусп	Cyclus die bestaat uit een reeks opeenvolgende reacties, om reactie- enthalpieën te kunnen analyseren, en heeft betrekking op de vorming ve	
	ionaire verbinding uit de reactie ve metaal met een niet-metaal. (toepassing	
	van de wet van Hess)	
Roosterentalpie	$\begin{array}{c} \underbrace{Na^{+}(g) + Cl(g)}_{Na(g) \rightarrow Na^{+}(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na(g) \rightarrow Na^{+}(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na(g) \rightarrow Cl(g) \rightarrow Cl(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na(g) \rightarrow Cl(g) \rightarrow Cl(g) \rightarrow Cl(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na(g) \rightarrow Cl(g) \rightarrow Nal(g) \rightarrow Cl(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na^{+}(g) \rightarrow Cl(g) \rightarrow Cl(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na^{+}(g) \rightarrow Cl(g) \rightarrow Cl(g)} + Cl(g) \\ \underbrace{Na^{+}(g) + Cl(g)}_{Na^{+}(g) \rightarrow Cl(g)} + Cl(g) \\ Na^$	
	Naci(s) aantrekkingskracht tussen positief en negatief	
Manastamissha	geladen ionen.	
Monoatomische ionen	Alkalimetalen (Na, Li, K, Rb, Cs) groep IA: afgeven van 1e- Aardalkalimetalen (Be, Mg, Ca, Sr, Ba) groep IIA: afgeven van 2e-	
lonen	⇒ Lage ionisatiepotentiaal	
Negatieve	Chalcogenen (O, S, Se, Te, Po, Uuh) groep VIA: opname van 2e-	
monoatomaire ionen	Halogenen (F, Cl, Br, I, At) Groep VIIA): opname 1e-	
	⇒ Hoge elektronenaffiniteit (nemen graag e- op)	
Transitiemetalen	Speciaal geval; Bv. Voor een reeks transitiemetalen hebben de 3d-orbitalen	
	een hogere E dan de 4s-orbitalen, hierdoor bij de vorming van een kation	
	veranderen de relatieve E. De grondtoestand vh ontstane kation bevat niet een	
	e- minder in het 3d-orbitaal maar in het 4s-orbitaal.	
	Soms komen ook driewaardige kationen voor zoals bij; de relatief lage 3º IP komt doordat de 3º ionisatie een e- weghaalt uit een dubbel bezet 3d-orbitaal; het 6º 3d-e- zit in een bezet orbitaal en ondervindt dus een sterkere inter-e- afstoting dan de andere 3d-e- ⇒ hogere E en dus makkelijker te verwijderen.	
Elektronenwolk-	Kenmerken:	
model	 Metaalatomen: gerangschikt in dichtgestapeld rooster, waarin elk atoom 1 of meer e- verliest gevormde metaalionen = atoomharten. e- bewegen zich vrij binnen de grenzen vh metaal. e- worden binnen het metaal gehouden adhv Coulomb krachten, uitgaande van atoomharten. Deze worden bijeengehouden door elektrostatische aantrekking vd beweeglijke e- tussen hen in (= "elektronenlijm") 	
Metaalbinding	Het delen van elektronen doorheen het hele kristal	
Metallische eigenschappen	 Metaalglans; door EM straling van zichtbare, opp e- trillen met van invallende straling opp e- versneld dus moeten EM-straling afgeven met zelfde als invallende straling. We zien dus uitgezonden straling als terugkaatsing vd invallende lichtstraal. Zachtheid en vervormbaarheid; positieve 	
	kernen in zee e- druk buigen 3) Elektrische geleidbaarheid; e- zijn "vrij" en kunnen makkelijk bewegen => hoog	
	ladingstransport, hoge geleidbaarheid.	
Elektronen-gasmodel	Elektronen vormen een soort "gas", zodat hun mobiliteit (en dus de	
	geleidbaarheid) zou moeten stijgen bij stijgende T.	
	⇒ Experimenteel: omgekeerde! Elektronengasmodel niet helemaal	
	correct door te sterke vereenvoudiging.	

Energiebanden	Wanneer een zeer groot aantal atomen combineren, zeer groot met onderling zeer kleine verschillen in E.	wordt het aantal MO's
	⇒ Energieniveaus in een vaste stof zijn dan eerd	ler banden.
	++++++++++++++++++++++++++++++++++++++	andenstructuur"
Valentieband	Gevormd door de bindende orbitalen (die bezet word	
Conductieband	Gevormd door de antibindende orbitalen.	,
Geleidbaarheid	conductieband Conductieband	Geleiders: indien overlap of raken, e- kunnen naar conductieband over- springen. T° stijgt, geleidbaar- heid daalt => ionen trillen meer, dus beletten ze de
	metaal halfgeleider isolator	
	metaal halfgeleider isolator	doorgang van e-
	hoge geleiding lage geleiding geen geleiding	
	 <u>Halfgeleiders:</u> ΔE is niet groot dus sommige e- kunnen	wel de conductieband
	bereiken; als T° stijgt dan stijgt de geleidbaarheid, omdat bij hogere T° meer e- de conductieband bereiken.	
Intrinsieke	Bevat evenveel e- in de valentieband als in de conductieband. De	
halfgeleider	geleidbaarheid is een intrinsieke eigenschap zelf. De g	
	bepaald door het ΔE tussen de valentie- en conductie	
Doteren	Geleidbaarheid aanpassen dmv doteren = inbrengen van andere atomen in de zuivere stof.	
Extrensieke halfgeleider	Verschillend aantal e- in de conductieband en gaten in de valentieband. De ingebrachte atomen brengen dus extra ladingdragers. (typisch voorbeeld van doteren) - p type halfgeleider; als de ladingdragers positief zijn	
	 n type halfgeleider; als de ladingdragers nega 	tier zijn
<i>pn</i> -junctie	Wanneer een p type halfgeleider in contact wordt gebracht met een n type halfgeleider. - "forward bias" = wanneer aan de p zijde een + spanning wordt aangelegd tegenover de n zijde => er kan stroom vloeien =>	
	constructie gedraagt zich als geleider - "reverse bias" = spanning wordt omgekeerd a	aangelegd => er kan geen
	stroom vloeien => isolator ⇒ Geleidingsverschil aanleggen door dotering e	n het aanleggen van een
Hoofdstule 10: Internet	potentiaalverschil.	
Hoofdstuk 10: Intermo		ulan andarling (year
krachten	Krachten die zorgen voor een interactie tussen molec zwakker dan krachten tussen atomen). Hangt sterk af	_
	moleculen (grote afstanden: attractief/ korte afstande 1) Oppervlaktespanning = sferische vorm 2) Cohesie = krachten tussen gelijke moleculen (en: repulsief)
	3) Adhesie = krachten tussen verschillende mole	

Van der Waals- interacties	Dipool-dipool; dipool-geïnduceerde dip dipool interacties.	ool; geïnduceerde dipool-geïnduceerde
interacties	Interactie type	Interactie-energie (kJ/mol)
	Ion-dipool	40 - 600
	Dipool -dipool	5 - 25
	Dipool – geïnduceerde dipool	2 - 10
	Geïnduceerde dipool – geïnduceerde	0,05 - 40
	dipool	0,03 - 40
Multipool-expansie	Wiskundige reeks waarin de eerste terr	n de elektrische mononool weergeeft
Widitipool expansie	De tweede term is de dipoolterm, de de	•
	voor neutrale elementen is de monopo	
Dipoolmoment	·	eschreven worden als de vectorsom van
•	zogenaamde bindingsmomenten (=dipo	
	δ+, .	οιδ· alaktrisaka diasak
	worden met de polaire bindingen).	elektrische dipool
	- Elektrisch dipoolmoment geeft	de oriëntatie vd dipool aan.
	- (met r = de vector gericht van	negatieve naar positieve lading =
	bindingslengte)	
Dipoolmoment van	vectorsom	vd dipoolmomenten, geassocieerd met
water	I = I + I	bindingen van de molecule.
	H H = 1.94 D Het dipooli	moment is verschillend van 0.
Dipoolmoment van	de C-O bindingen zijn oo O=C=O elektronegatiever is dan	•
CO2	O=C=O elektronegatiever is dan C, dus bindingsmoment. 2 bindingsmoment zijn even groot (beide bindingen zijn perfect	
	$\vec{\mu} = 0$ 2 bindingsmoment zijn e equivalent), dipoolmome	
		etrische moleculen dan wel uit polaire
		ar niet noodzakelijk een dipoolmoment
	vertonen.	, ,
Moleculen als		moleculaire dipolen
dipolen	Dipolen in een ele	komen nagenoeg komen komen nagenoeg
	oplijning tgv. extern	evenwijdig naast
	niet periect wegen	s thermische beweging elkaar te liggen.
	Dinast dinastin	
	Dipool - dipool int	
		ere moleculen / dipolen orgt voor richtende kracht
Dipool-dipool	Als beide moleculen dipool zijn dan zull	
2.p00. dip00!	,	chten die dipolen op elkaar uitoefenen).
Ion-dipool	lonen creëren sterk elektrisch veld die g	
·	H2O => richtend effect van ionen.	
	- Ion negatief: H2O zal + kant na	ar ion richten
	- Ion positief: H2O zal – kan naai	rion o Ho O oH
	richten.	нобон
		(-) (+)
Hydratatie	Door het sterk elektrisch veld rond ione	
	optreden tussen ionen en watermolecu	
	water zullen zich permanent hechten a	an de ionen).

Hydratatie-energie	Door hydratatie neemt de translatie E af: hydratatie gaat gepaard met een E vermindering en dus stabilisatie vh systeem. Bv. Na⁺(g) + x H₂O(g) → [Na(H₂O)x]⁺(aq) + 397 kJ - Uitgangstoestand = geïsoleerde natrium ionen en geïsoleerde H2O moleculen - Eindtoestand = gehydrateerd natriumionen in een waterige oplossing - Bij dit proces komt ongeveer 400 kJ aan E vrij, wat overeenkomt met die van een covalente binding
Oppervlaktelading en hydratatie	 Aantal H2O moleculen rond een ion is afhankelijk van de straal vh ion Meestal vormen de H2O 1 hydratatielaag rond het ion dus hoe groter het oppervlak hoe meer H2O moleculen
Dipool-dipool interactie = Keesom interactie	Dipool (2 gescheiden ladingen) moleculaire dipolen creëren elektrisch veld in hun omgeving beïnvloedt andere moleculen in hun buurt. Wanneer andere dipool in dit veld wordt gebracht dan ondervinden beide door hun wisselwerking een richtende kracht. veel minder permanent dan hydratatie door het zwakkere elektrisch veld! - Thermische beweging verhindert perfecte alignatie - Netto resultaat: continue vorming en verbreking van dipool-dipool interacties.
Condensatie-warmte	E die vrijkomt wanneer de ver van elkaar verwijderde dipolaire moleculen naar elkaar toegebracht worden, waardoor ze met elkaar in interactie treden, en hun E minimaliseer door zich zo veel mogelijk naar elkaar te richten.
Verdampings- warmte	E die moet toegevoegd worden om vloeibaar chloroform te verdampen (= interactie E die moet overwonnen worden om de individuele dipolen uit elkaars intersfeer te verwijderen).
Waterstofbrug	O vertoont 2 vrije e- paren (dus e- rijk) <-> H is zeer e- arm en kan daarom diep doordringen in het gebied vd diffuse vrije e- paren van O resultaat: stabilisatie is groter dan verwacht op basis van dipool-dipoolinteractie. Interactie is zo sterk (vergeleken met een chemische binding)

Kookpunten	Wanneer er waterstofbruggen aanwezig zijn, moet er extra veel E toegevoegd	
	worden om de vloeistof te laten verdampen (hoge kookpunten) toenemende abscis afnemende EN toenemende massa centrale element	
	CH4 en SnH4 zijn de centrale elementen weinig EN kookpunt neemt toe met stijgende massa	
	HF, H2O en NH3 vertonen afwijking op deze regel waterstofbruggen zorgen inderdaad voor een grotere stabilisatie	
Polariseerbaarheid	Mate waarin de elektronenwolk vervormd kan worden door een elektrisch veld.	
	- e- dicht bij de kern: lage	
	polariseerbaarheid	
	- e- ver van de kern: hoge polariseerbaarheid	
	 molecule zoals I2 zal dus een hogere polariseerbaarheid vertonen dan H2 	
Geïnduceerde dipool	Molecule die wordt gepolariseerd (zie tekening hierboven).	
	De zwaartepunten van de + en – lading vallen niet langer samen.	
	= Debye interacties	
GI dipool-GI dipool interactie	Interactie tussen niet-polaire atomen door de vorming van momentane dipoolmomenten. Gemiddeld zwak aantrekkende krachten	
interactic	alpoolitionienten. Germaacia zwak aanti ekkenae kraciten	
	0 0 0	
	Kwantummechanisch; atomen vertonen een sferisch symmetrische e-	
	verdeling, wat niet wilt zeggen dat op ieder ogenblik de ladingsverdeling	
	symmetrisch moet zijn. e- kunnen zich op een ogenblik aan 1 zijde vd kern	
	bevinden zwaartepunten van – en + lading van dat atoom vallen niet meer	
	samen dipoolmoment induceert een dipoolmoment in het andere atoom.	
London-dispersie	De aantrekkende krachten die de apolaire moleculen ten gevolge van deze	
krachten	interacties ondervinden. (Bv. Kookpunt van alkanen neemt toe met grootte	
	van moleculen)	

DEEL II: CHEMISCHE THERMODYNAMICA

Hoofdstuk 11: Inleiden	de begrippen uit de thermodynamica	
Thermodynamisch	Een deel vh universum dat op, arbitraire wijze, door welbepaalde grenzen,	
systeem	ingegeven door de doelstellingen vh experiment, vd rest vh universum	
	afgezonderd wordt.	
Open systeem	Kan zowel E als materie uitwisselen met de omgeving	
Gesloten systeem	Kan met zijn omgeving E, maar geen materie uitwisselen.	
Geïsoleerd systeem	Kan noch materie noch E uitwisselen met de omgeving.	
Thermodynamische	Grootheden die nodig zijn om een systeem te beschrijven. Als alle	
eigenschappen	eigenschappen vh systeem volledig gespecifieerd zijn dan is de toestand vh systeem gekend. (= toestandsvariabelen)	
Extensieve variabelen	Grootheden waarvan de waarde afhangt vd uitgebreidheid vh systeem.	
Intensieve variabelen	Grootheden die niet afhangen vd uitgebreidheid vh systeem, en dus	
	welbepaalde waarden hebben in ieder klein gebied vh systeem.	
Thermodynamisch evenwicht	Een systeem heeft een thermodynamisch evenwicht bereikt als het in fur van de tijd geen neiging tot veranderen vertoont. 3 voorwaarden; i) Thermisch evenwicht; temperatuur is dezelfde in alle delen vertoont.	
	systeem	
	ii) Mechanisch evenwicht; geen macroscopische beweging binnen	
	het systeem zelf en met omgeving.	
	iii) Chemisch evenwicht; samenstelling vh systeem blijft	
	onveranderd in functie van de tijd.	
Isotherm proces	Temperatuur in het systeem is constant.	
Isobaar proces	Druk in het systeem is constant.	
Isochoor proces	Volume van het systeem is constant.	
Adiabatisch proces	Proces in een systeem, afgesloten vd omgeving met thermisch	
·	ondoordringbare wanden geen warmte (wel E bv. Arbeid) uitwisseling met	
	isobaar jood jisotherm adiabatisch	
	de omgeving thermische isolatie.	
Kringproces	Bij het beëindigen van het proces hebben alle eigenschappen van het systeem dezelfde waarde als bij de aanvang ervan.	
Toestandsfunctie	Alle toestandsvariabelen (p, V en T) waarvoor de waarde na het kringproces	
	hetzelfde is als ervoor.	
	Verandering van $Y = \int_{begin}^{cinder} dY$ Elk proces is een opeenvolging van kleine stapjes die limiet infinitisemaal groot zijn.	
	totale verandering die infinitesimale verandering in Y infinitesimale verandering in Y	
Totale differentiaal	2 eigenschappen: 1) Stel Y (dan kan dY geschreven worden als	
	$dY = \sum_{i=1}^{n} \frac{\partial Y}{\partial x_i} dx_i$	

	2) De hamadala integral contestado differente di
	 De bepaalde integraal ve totale differentiaal kan geschreven mbv de functiewaarden in de aangegeven boven- en ondergrens
	$\int\limits_{begin} dY = Y_{einde} - Y_{begin} = \Delta Y$ ΔY is onafhankelijk van de gevolgde weg!
Spontaan proces	Proces dat verloopt zonder tussenkomst van buitenaf. In een spontaan
	proces is het systeem niet in evenwicht, behalve in begin- en eindtoestand.
	Ten gevolge van dit onevenwicht evolueert het systeem vanuit het
	oorspronkelijke evenwicht in de richting vh nieuwe evenwicht.
Reversibel proces	Een proces verloopt reversibel wanneer het systeem een continue reeks
	evenwichtstoestanden doorloopt en voortdurend in evenwicht is met zijn
	omgeving.
	- Vervang continue expansie door stapsgewijze expansie:
	- Doorlopen ve oneindige reeks infinitesemale p verlagingen
	 Na iedere p verlaging wachten tot systeem terug in evenwicht is ⇒ Proces wordt dan ononderscheidbaar van reversibel proces
	 ⇒ Proces wordt dan ononderscheidbaar van reversibel proces ⇒ Duurt oneindig lag, en is dus experimenteel onuitvoerbaar
Quasistatisch proces	Proces waarbij het systeem een continue reeks evenwichtstoestanden
Quasistatistii proces	doorloopt. Evenwicht met de omgeving is niet vereist.
Irreversibel proces	leder proces dat niet reversibel verloopt. => alle spontane processen zijn
in eversiber proces	irreversibel. 3 soorten:;
	i) Geen intern en geen extern evenwicht
	ii) Wel intern, maar geen extern evenwicht
	iii) Geen intern, maar wel extern evenwicht
Hoofdstuk 12: Eigensch	
Druk van het gas	De kracht die het gas uitoefent op een eenheid van oppervlakte vd wanden
-	vd kamer waarin het opgesloten is.
	$mg \rho Vg \rho Ahg$
	$p = \frac{mg}{A} = \frac{\rho Vg}{A} = \frac{\rho Ahg}{A} = \rho hg$
Nulde hoofdwet	Wanneer een systeem A in thermisch evenwicht is met een systeem B, en
	wanneer een systeem B in thermisch evenwicht is met een systeem C, dan is
	A in thermisch evenwicht met C.
Temperatuur	Eigenschap van materie, die onafhankelijk is vd aard en vd hoeveelheid
	materie, en waarmee we kunnen uitdrukken of 2 beschouwde lichamen al
	dan niet in thermisch evenwicht zijn.
Celsiusschaal	Temperatuur van smeltend en kokend water waaraan de waarden 0 en 100
	toegekend werden.
Wet van Boyle	Voor eenzelfde hoeveelheid gas is bij een constante temperatuur het volume
	omgekeerd evenredig met de druk.
	pV = Cte (hoeveelheid gas en temperatuur zijn constant)
Kelvinschaal	Ideale gassen temperatuurschaal; T= 273,15 + t. (t = °C)
Wet van Charles	Het volume van een gegeven hoeveelheid gas is bij constante druk recht
	evenredig met de Kelvintemperatuur.
	$V = \alpha_0 V_0 T$
Wet van Amontons	Bij eenzelfde hoeveelheid gas en constant volume zijn druk en
	Kelvintemperatuur recht evenredig.
	p = cte . T
Ideale gas	Hypothetische gas dat over het hele druk- en temperatuurinterval wel aan de
	wetten van Boyle en Charles (die slechts een benaderende beschrijving van
	een gas bieden) voldoet.
Gecombineerde	Combinatie van de wetten van Charles, Boyle en Amontons:
gaswet	waarbij C = constante

Wet van Avogadro	Gelijke volumes van verschillende gassen bevatten bij gelijke temperatuur en druk eenzelfde aantal moleculen. V = cte.n	
Mol	Eén mol stof is de hoeveelheid van die stof die evenveel elementaire entiteiten bevat als er atomen zijn in 0,012kg van het koolstofisotoop ¹² C.	
Molair volume	Bij STP (273.15 K en 1000 hPa) is het volume Vm ingenomen door 1 mol ideaal gas gelijk aan 22.711 x 10^{-3} m ³ = 22.711 L	
Ideale gaswet	pV = nRT (waarbij R = gasconstante)	
Wet van Dalton	De totale druk uitgeoefend door een gasmengsel is de som van de drukken die ieder vd samenstellende gassen zou uitoefenen indien het alleen in het beschouwde volume aanwezig was. $p = \left(\sum_{i=1}^{s} p_i\right) \qquad p_i = x_i p$	
Kinetische gastheorie	 Wiskundige beschrijving vd microscopische processen van gassen. 5 Postulaten; i) Gassen zijn samengesteld uit moleculen waarvan de afmetingen verwaarloosbaar klein zijn in vergelijking met de gemiddelde afstand tussen moleculen. ii) De moleculen ve gas bewegen voortduren in alle richtingen en vertonen hierbij uiteenlopende snelheden. iii) De wisselwerkingen tussen de moleculen ve gas zijn verwaarloosbaar zwak, tenzij op het ogenblik ve botsing. iv) De botsingen tussen moleculen onderling, en tussen moleculen en de wand vd kamer waarin het gas opgesloten zit, zijn elastisch. v) De gemiddelde kinetische E ve molecule ve gas is recht evenredig met de absolute T vh gas. 	
Interpretatie vd gaswetten	Uit postulaat 2 volgt dat moleculen ve gas voortdurend botsen met de wanden vd kamer, waarbij door postulaat 4 de K vd botsende moleculen behouden blijft. ⇒ Door de botsing met de wand verandert de impuls vd molecule van richting ⇒ Er wordt een kracht uitgeoefend op de wanden: ⇒ Deze kracht is niets ander dan de druk die door het gas wordt uitgeoefend. 2 factoren bepalen de druk; - Botsingfrequentie f(T, concentratie) - Grootte van de impulsverandering = f(T)	
Evenredigheids- constante	Of de <i>constante van Boltzmann</i> is gelijk aan de ideale gasconstante gedeeld door het aantal atomen of moleculen in 1 mol gas.	
Vrijheidsgraad	leder van de onafhankelijke bewegingsmogelijkheden voor de moleculen.	

Snelheidsverdeling van Maxwell	$dn = 4\pi N \left[\frac{m}{2\pi kT} \right]^{3/2} v^2 e^{-(mv^2/2kT)} dv \qquad \text{aantal moleculen dn op een totaal van N moleculen, die, bij} \\ \text{temperatuur T, een snelheid hebben gelegen tussen v en v+dv}$
	$F(v) = \frac{\frac{1}{N} dn}{dv} = 4\pi \left[\frac{m}{2\pi kT} \right]^{3/2} v^2 e^{-(mv^2/2kT)}$ waarschijnlijkheidsdistributie; geeft aan welke de waarschijnlijkheid is dat een molecule een snelheid heeft die gelegen is tussen v en v+dv
	Uit het model van Bernouilli
	kennen we de gem
	kennen we de gem kwadratische snelheid vd
	moleculen. Maar welke verdeling vd snelheid?
	Asymmetrische curve; hoe
	smaller de grafiek hoe minder
	snelheid (m/s) moleculen met een hoge
	snelheid De plaats vh max hangt af vd T°
	Snelheden zijn zeer hoog
Belang van de	- We worden voortduren gebombardeerd door moleculen met een
snelheidsverdeling	hoge snelheid, en toch voelen we die niet, omdat de massa's vd
	deeltjes zo klein zijn Waterplassen verdwijnen zelfs al is het 2°C, de moleculen zitten in
	de vloeistoffase en die zitten daar goed, maar een paar atomen aan
	het opp hebben een veel grotere snelheid waardoor die naar de
	gasfase gaan, distributie verandert distributie wordt hersteld door
	andere moleculen er opnieuw snellere moleculen die gaan
Effusie	ontsnappen enzovoort tot er geen moleculen meer zijn. Het proces waarbij een gas uit een kamer naar de geëvacueerde ruimte
Litudic	Thet proces waarbij een gas dit een kantel naar de geevaedeerde rainte
	stroomt doorheen 1 of meerdere kleine gaatjes.
Effusiewet van Graham	De effusiesnelheid is omgekeerd evenredig met de vierkantswortel uit de dichtheid van het gas en dus met de massa van de moleculen.
	effusiesnelheid gas 1 m ₂
	$\frac{g_{1}}{effusiesnelheid gas 2} = \sqrt{\frac{m_{1}}{m_{1}}}$
Diffusie	Het proces waarbij 2 gassen, wanneer ze met elkaar in contact gebracht
	worden, spontaan met elkaar zullen mengen zonder hulp van buitenaf (zoals
	roeren).
Compressiefactor	Compressiefactor z is een functie van druk en temperatuur
Compressience	20
	p "laag": V _{reëel} < V _{ideaal gas} oorzaak: onderlinge aantrekking
	p "groot": V _{reëel} > V _{ideaal gas}
	oorzaak: moleculen nemen niet-verwaarloosbaar volume in
	0.0 400 800 <i>p</i> /bar
Lenard-Jones	Het interactiegedrag tussen moleculen vertoont 2 kenmerken:
potentiaal	- Het is attractief op middelgrote afstanden
	 Repulsief op kleine afstanden ⇒ De juiste vorm hangt af vd aard van de interagerende moleculen.
	Het eenvoudigste geval is de interactie tussen 2 edelgassen. Voor de
	beschrijving hiervan wordt de Lenard-Jones potentiaal gebruikt;

	Deze geeft aan hoe de pot. E V(r) tussen 2 atomen vh edelgas verloopt als functie van hun onderlinge afstand. $V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$ $V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$ $V(r) = 0; \text{ toestand op zeer grote onderlinge afstand overgaat van aantrekkend naar repulsief.}$ $V(r) = 0; \text{ toestand op zeer grote onderlinge afstand overgaat van aantrekkend naar repulsief.}$
	De 1 ^e term (+) is repulsief, 2e term (-) is attractief.
Van de Waals vergelijking	$ (p+a\frac{n^2}{V^2})(V-nb)=nRT $ b = eigenvolume van 1 mol van het beschouwde gas. a = correctieterm van druk. Reële is lager dan de ideale.
Viriaalvergelijking	$pV_m = RT \left(1 + \frac{B(T)}{V_m} + \frac{C(T)}{V_m^2} + \frac{D(T)}{V_m^3} + \dots \right)$ Nog nauwkeurigere beschrijving voor reële gassen dan de Van der Waals vergelijking. Uitgedrukt in 1 mol zodat het V gelijk wordt aan
Viriaalcoëfficiënt	Functie van de temperatuur van het gas. (karakteristiek voor de interactie tussen de atomen/ moleculen waaruit het gas bestaat).
Hoofdstuk 13: De hoo	fdwetten van de thermodynamica
Inwendige E	De som van alle soorten energie in het systeem opgeslagen. Het is een toestandsfunctie. Symbool: U
Eerste hoofdwet	De verandering vd inwendige energie U ve gesloten systeem als gevolg ve proces wordt gegeven als de som vd warmte q die het systeem tijdens het proces opgenomen heeft, en de arbeid w die tijdens het proces op het systeem uitgeoefend werd. $\Delta U = q + w$
Arbeid	Klassieke mechanica: Wanneer een systeem een kracht F uitoefent op een lichaam waardoor het lichaam verplaatst wordt over een afstand dr, dan heeft het systeem een arbeid W = F . dr geleverd aan het lichaam. Thermodynamische conventie: w>0 voor arbeid verricht op het systeem => arbeid geleverd door het systeem = - $w = -\int_{r_0}^{r_0} F_g dr$ met $F_g = p_g A$ => Arbeid geleverd door het systeem: negatieve grootheid!

Theorema	Wanneer een systeem een proces op reversibele wijze uitvoert, dan levert
THEOLEINA	het maximale arbeid.
	\\
	 bewegende zuiger => pg (de druk net onder de zuiger) is tijdens een spontane expansie altijd de laagste in het systeem (en dus lager dan mocht het systeem in evenwicht zijn) de geleverde arbeid moet dus kleiner zijn dan voor een reversibel uitgevoerde expansie algemeen geldig, niet alleen voor gasexpansie
Isobare expansie	Op ieder ogenblik vd expansie is de druk in het systeem dezelfde, en dus
	kunnen we vervangen door de constante druk p. (curve geeft absolute waarde van uitgewisselde w_p arbeid)
Enthalpie H	Inwendige E van het systeem + de E die nodig is om ruimte te maken voor
	het systeem met een gegeven volume en druk;
	H = U + pV
	H is een toestandsfunctie
ΔH bij een isobaar	ΔH ve gesloten systeem bij een isobaar proces waarin enkel (p,V) arbeid
proces	wordt uitgewisseld, wordt gegeven door de warmte die het systeem tijdens
Warmte	dit proces uitwisselt met de omgeving.
	 Massa M laten zakken: omzetten potentiële energie in rotatie-energie van het rad Na experiment: Teind > Tbegin Alleen de temperatuur is veranderd => potentiële energie is omgezet in warmte => warmte is een verschijningsvorm van energie Eenheid energie: 1 J
Temperatuur vs	- T hangt niet af van de uitgebreidheid vh systeem en is dus een
warmte	intensieve toestandsvariabele.
	 q hangt af van de massa van het systeem en is dus een extensieve grootheid.
Warmtecapaciteit	De hoeveelheid warmte die moet geïnvesteerd worden om de T vh systeem
	één Kelvin te verhogen. Symbool: C
	$C = \lim_{\Delta T \to 0} \frac{q}{\Delta T} = \frac{dq}{dT}$
Isochore	đ is de hoeveelheid warmte die nodig is om bij constant volume de T vh
warmtecapaciteit	systeem te doen toenemen met een hoeveelheid dT
	$C_v = \frac{dq_v}{dT}$ of $dq_v = C_v dT$ $C_v = \left(\frac{\partial U}{\partial T}\right)_v$
	meet de temperatuursafhankelijkheid vd inwendige E vh systeem
Isobare	đ is de hoeveelheid warmte die nodig is om bij constante druk de T vh
warmtecapaciteit	systeem te doen toenemen met een hoeveelheid dT
	$C_p = \frac{q_p}{dT}$ of $q_p = C_p dT$ $C_p = \left(\frac{\partial H}{\partial T}\right)_p$
	meet de temperatuursafhankelijkheid vd enthalpie vh systeem

Molaire	Warmtecapaciteit gemeten per eenheid van mol. (intensieve grootheid)
warmtecapaciteit	$C_{V,m} = \frac{C_V}{n}$ en $C_{p,m} = \frac{C_p}{n}$
Soortelijke warmte	Warmtecapaciteit gemeten er eenheid van massa (intensieve grootheid) $c_V = \frac{C_V}{M} \qquad en \qquad c_P = \frac{C_P}{M}$
Translatie, rotatie en vibratie van moleculen	Voor een diatomische molecules moeten er in totaal 7 onderscheiden energietermen in rekening gebracht worden, overeenkomend met 7 vrijheidheidsgraden (3 translatie, 2 rotatie, 2 vibratie vrijheidsgraden in een diatomische molecule)
	Wanneer q wordt toegevoegd zal dit niet alleen gebruikt worden om de translatie-E te verhogen maar ook opgeslagen worden als rotatie en vibratie eenzelfde hoeveelheid q verhoogt de translatie-E van polyatomisch gas minder dan monoatomisch gas K is een directe maat voor T° (5e postulaat) hoeveel q die nodig is om T°1 met 1° te laten toenemen bij een polyatomisch gas < voor monoatmisch gas.
Equipartitie principe	Toegevoegde E wordt gelijk opgeslagen in alle mogelijke componenten (translaties, rotaties en vibraties).
Reactiewarmte	Som van alle warmte die tijdens de reactie door het systeem met de omgeving uitgewisseld worden, en de warmte die na afloop vd reactie moet uitgewisseld worden om het systeem terug op zijn begintemperatuur te brengen. - Cte druk; reactiewarmte = enthalpieverandering - Cte volume; reactiewarmte = verandering inwendige E
Exotherme reactie	Reactie waarbij warmte vrijkomt. q<0
Endotherme reactie	Reactie waarbij warmte wordt opgenomen. q>0
Reactie-enthalpie	Reactiewarmte bij constante druk (omgevingsdruk). Δ Grootte van de reactie-enthalpie hangt af van de temperatuur.
Faselabels	 Gas = g Vloeistof = I (liquidus) Vast = s (solidus) Waterige oplossing = aq (aqua)
Wet van Hess	De isobare reactiewarmte ve chemische reactie die kan uitgevoerd worden als een som van deelreacties is gelijk aan de som vd isobare reactiewarmten vd deelreacties.
	$C(\text{grafiet}) + 1/2 \text{ O}_2(\text{g}) \longrightarrow CO(\text{g}) \qquad \Delta H_r = -110.5 \text{ kJ}$ $+ \frac{CO(\text{g}) + 1/2 \text{ O}_2(\text{g})}{C(\text{grafiet}) + \text{O}_2(\text{g})} \longrightarrow CO_2(\text{g}) \qquad \Delta H_r = -283 \text{ kJ}$ $+ \frac{CO(\text{g}) + 1/2 \text{ O}_2(\text{g})}{C(\text{grafiet}) + \text{O}_2(\text{g})} \longrightarrow CO_2(\text{g}) \qquad \Delta H_r = -393.5 \text{ kJ}$ Born-Haber cyclus is een toepassing op deze wet
Wet van Kirchhoff	De reactie-enthalpie hangt af van de temperatuur. $\Delta H_r(T_2) = \Delta H_r(T_1) + \int\limits_{T_1}^{T_2} \Delta C_p dT$
	Specificatie van T en p is noodzakelijk!

	De reactie-enthalpie hangt eveneens af van de druk.
	$\mathbf{H} \uparrow \qquad \stackrel{H_2(g) + 1/2 \text{ O}_2(g)}{\uparrow} \qquad \stackrel{\Delta H(T_2)}{\uparrow} \qquad \stackrel{H_2O(I)}{\uparrow} \qquad T = 90 ^{\circ}C$
	$\mathbf{H} \uparrow \qquad \overset{H_{2}(g) + 1/2 \text{ O}_{2}(g)}{} \xrightarrow{\Delta H(T_{2})} \qquad \overset{H_{2}O(I)}{} \qquad T = 90 ^{\circ}C$ $q_{begin} = \int_{T_{1}}^{T_{2}} \overset{\uparrow}{C}_{p,b} dT \qquad q_{eind} = \int_{T_{1}}^{T_{2}} \overset{\uparrow}{C}_{p,e} dT \qquad = $ $H_{2}(g) + 1/2 O_{2}(g) \xrightarrow{\Delta H(T_{1})} \qquad H_{2}O(I) \qquad T = 10 ^{\circ}C$
	$H_2(g) + 1/2 O_2(g) \xrightarrow{\Delta H(T_1)} H_2O(I)$ T = 10 °C
Vormingsenthalpie	Reactie die de vorming voorstelt van 1 mol vd beschouwde verbinding uit de samenstellende atomen, waarbij deze zich bevinden in hun vorm die zij vertonen bij de gekozen p en T.
Nut van de vormingsenthalpie	Voor iedere reacte waarin een bepaalde stof voorkomt, kunnen we gebruik maken van dezelfde vormingsenthalpie vd stof. Dus, ipv oneindig lange lijst van reacties maken we gebruik ve beperkte lijst van vormingsenthalpieën (zelfs bij reacties die experimenteel nog niet werden onderzocht)
Nood aan de tweede hoofdwet	Eerste hoofdwet alléén volstaat niet om het gedrag van de natuur te beschrijven: er moet nog een wet werkzaam zijn, die de richting aangeeft waarin een proces spontaan kan verlopen.
Intrigerende factor	- Reversibele arbeid = -1/p; de factor waarmee het product van een intensieve factor met een niet-totale differentiaal wordt omgezet tot een totale differentiaal ve extensieve toestandsfunctie De intensieve factor, p, is de eigenschap die er voor zorgt dat de arbeid geleverd kan worden
	- Reversibele warmte = 1/T; analoog voor arbeid $\frac{1}{T} dq_{rev} = dS$ de intensieve factor, T, is de eigenschap die er voor zorgt dat er q kan worden uitgewisseld.
Tweede hoofdwet	leder spontaan proces gaat gepaard met een toename van de entropie van het universum.
	$\Delta S_{\text{totaal}} = \Delta S_{\text{omgeving}} + \Delta S_{\text{systeem}}$ $\Delta S_{\text{systeem}} = nR \ln \frac{V_f}{V_i} \qquad \left(\frac{q_{\text{os}} = nRT \ln \frac{V_f}{V_i}}{V_i} \right)$ $\Delta S_{\text{omgeving}} = q_{\text{omgeving}}/T = -q_{\text{systeem}}/T = -nR \ln \frac{V_f}{V_i}$ ("isentropisch")
	S is toestandsfunctie => $\Delta S_{\text{systeem}} = nR \ln \frac{V_f}{V_i}$ adiabatisch proces => $\Delta S_{\text{orgeving}} = 0$
Totale omgeving	Alle voorwerpen waartussen warmte uitgewisseld kan worden. De totale omgeving omvat dus het hele universum.
Hoofdwetten volgens Clausius	De energie van onze wereld is constant. De entropie van onze wereld streeft naar een maximum.

Entropie	De maat voor de dispersie (van energie en van de hoeveelheid materie en die energie blijft constant) bij een spontaan proces. Het is een toestandsfunctie.
	- S is de drijvende kracht achter alle reacties
	- S bepaalt de spontaniteit van de reacties
Microtoestand	Volledige specificatie van alle microscopische vrijheidsgraden in een systeem.
Formule van	Verband tussen de macroscopische entropie van het systeem, en het aantal
Boltzmann	mogelijk microtoestanden W van het systeem:
Ordelijke toestand	Een macrotoestand van een systeem, die slechts wordt door een beperkt aantal microtoestanden gerealiseerd wordt.
Wanordelijke toestand	Macrotoestand die wordt gerealiseerd door vele microtoestanden. Entropie wordt meestal geassocieerd met wanorde: de entropie is een maat voor de wanorde in een systeem.
Chemische toepassing op wanorde	Bij deze toepassingen beperken we ons tot het afschatten van ΔS vh systeem en niet vh universum (want die is uiteraard altijd +).
	De wanorde en dus de entropie neemt toe wanneer:
	1) Een reactie waarbij een molecule splits in 2 kleiner moleculen
	2) Een reactie waarbij het aantal mol gas toeneemt. 3) Jodges gyergang van een vaste stef naar een vlagistef of naar een
	3) ledere overgang van een vaste stof naar een vloeistof of naar een gas en iedere overgang van een vloeistof naar een gas.
Derde hoofdwet	Het is onmogelijk om het absolute nulpunt te bereiken in een eindig aantal
Derde Hoordwet	stappen. (Niet op examen)
Hoofdstuk 14: Toenassii	ngen van de thermodynamica
Onbruikbare arbeid	De expansie-arbeid die niet benut wordt voor het verdere proces.
Maximale bruikbare E	Die door het systeem tijdens een reversibel proces wordt uitgewisseld wordt
	bepaald door de vrije energie.
Vrije energie	- Helmholtz vrije energie:
, ,	$\Rightarrow A = U - TS$
	⇒ Bij isochore en isotherme randvoorwaarden
	⇒ Toestandsfunctie van het systeem
	\Rightarrow Voor een reversibel proces dat isotherm en isochoor verloopt is $\Delta A =$
	maximale bruikbare arbeid
	- Gibbs vrije energie:
	⇒ G = H – TS
	⇒ Bij isotherme en isobare randvoorwaarden
	 ⇒ Toestandsfunctie van het systeem ⇒ Voor een reversibel proces dat isobaar en isotherm verloopt is ΔG =
	maximale bruikbare arbeid
Nadeel entropie	leder spontaan proces in een adiabatisch systeem gaat gepaard met een
Nadeel endopie	entropieverhoging. Bij niet adiabatische processen moet ook rekening
	gehouden worden met de entropie vd omgeving
	⇒ Moeilijk
	⇒ Daarom gaat men vaker gebuik maken vd Gibbs E
Eigenschap Gibbs E	Een spontaan proces dat isobaar en isotherm verloopt in een gesloten
	systeem dat met zijn omgeving slechts expansie-arbeid uitwisselt, gaat
	gepaard met een <u>daling</u> van Gibbs energie van het systeem.
	Alternations formularing ud 20 handlust
	⇒ Alternatieve formulering vd 2 ^e hoofdwet
	 ⇒ Alternatieve formulering vd 2° noordwet ⇒ Nuttiger, want heeft allen betrekking op het systeem, maar minder algemeen door de randvoorwaarden.

Evenwichts-	Een systeem is in evenwicht wanneer zijn <i>Gibbs energie</i> , als functie van de
voorwaarde	voortgang van mogelijke processen, minimaal is.
voorwaarde	eind
	$\Delta G = \int_{begin} dG$ < 0 voor een spontaan proces
Spontaniteit bepaald	$\Delta G = \Delta H - T\Delta S$, bij spontane reacties moet $\Delta G < 0$
door Gibbs	Mogelijke tekencombinaties van ΔH en ΔS:
	1) $\Delta H + \text{en } \Delta S +$; $\Delta G > 0$ de reactie is niet spontaan
	2) ΔH + en ΔS - ;
	\Rightarrow Voor lage T is T Δ S < Δ H en dus Δ G > 0 (niet spontaan)
	\Rightarrow Voor hoge T is TΔS > ΔH en dus ΔG < 0 (spontaan)
	3) ΔH – en ΔS +;
	⇒ Voor lage T is TΔS (absolute waarde) < ΔH en dus ΔG < 0
	\Rightarrow Voor hoge T is TΔS (absolute waarde) > ΔH en dus ΔG > 0 4) Δ H – en Δ S -; Δ G < 0 (spontaan)
Gibbs E van een ideaal	
gas	dG = Vdp - SdT In een gesloten systeem is G functie van 2
Pas	onafhankelijke variabelen, <i>p</i> en <i>T</i>
	- Isotherm: dT = 0 => dG = Vdp
Chemsiche potentiaal	Gibbs energie per mol van het gas. Symbool:
	Voor een ideaal gas:
	$\mu(T) = \mu^{\circ}(T) + RT \ln p$
	Voor een reëel gas:
	$\mu(T) = \mu^{\circ}(T) + RT \ln f$
	⇒ Chemisch potentiaal ve ideaal gas stijgt met de p vh gas.
Fugaciteit	Effectieve druk. Symbool:
i ugaciteit	Gassen zullen zich meer en meer ideaal gedragen naarmate de p daalt dus,
	= 1
Partieel molaire	$(\partial Y) =$
waarden	$\left(\frac{\partial I}{\partial n_i}\right)_{i=1} = \overline{Y}_i$
Partieel molaire	Bv. Molaire volume ingenomen door juist één mol, molaire entropie etc.
grootheden	by. Wolaire volume ingenomen door juist een moi, molaire entropie etc.
Partieel molaire Gibbs	= het chemisch potentiaal van een de stof i
energie	(∂G)
J	$\left(\frac{\partial n_i}{\partial n_i}\right)_{i=1} = \mu_i$
Evenwichts-	Bij evenwicht tussen de fasen van een systeem moet de <i>chemische</i>
voorwaarde	potentiaal voor elke stof eenzelfde waarde hebben in iedere fase.
Vorderingsgraad	Variabele symbool:
Evenwichtsconstante	Tanabele symboon
	Bij chemisch evenwicht!
Reactie quotiënt	Wanneer de reactie niet in chemisch evenwicht is, noteren we;
	3 gevallen;
	1) Indien < Q, verschuift de reactie naar rechts
	2) Indien > Q, verschuift de reactie naar links
	3) Indien =Q, reactie is in evenwicht.
Reële gasreacties	Voor een chemische reactie die optreedt in reële gassen, gedragen de
Reële gasreacties	·

Wet van Le Châtelier	Bij verandering van één vd grootheden die de ligging van een dynamisch evenwicht bepalen, verschuift het evenwicht zodanig dat het effect vd verandering zoveel mogelijk wordt tegengewerkt.
Invloed van druk	1. $a+b > c+d$ $=> (c+d-a-b) < 0 \text{ en dus: als } p / dan p^{c+d-a-b} \setminus $ $=> x_C^c x_D^d / x_A^a x_B^b / \text{ want } K_p \text{ is constant!} $ $\begin{cases} x_C, x_D \uparrow \\ x_A, x_B \downarrow \end{cases} \text{ evenwicht verschuift in de richting van het kleinste aantal moleculen (want a+b > c+d)}$
	=> drukdaling, tegengesteld aan de opgelegde verandering
	2. a+b < c+d
	$=> (c+d-a-b)>0 \text{en dus: als} p \not \mid \text{dan } p^{c+d-o-b} \not \mid \qquad \qquad x_C, x_D \downarrow \qquad \text{evenwicht verschuift in de richting van het kleinste aantal moleculen (want a+b < c+d)}$
	=> drukdaling, tegengesteld aan de opgelegde verandering
Invloed van temperatuur	 Verhoging van temperatuurr: Exotherme reactie; evenwicht verschuift naar links, in de richt waarin het systeem warmte opneemt en dus de T doet dalen. Endotherme reactie; evenwicht verschuift naar rechts, dus doet de T stijgen. Daling temperatuur; omgekeerde
Vergelijking van Van 't Hoff	Uitdrukking die de temperatuursafhankelijkheid van Kwantitatief weergeeft. $\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta H^{\ominus}}{RT^2}$
Haber-Bosh proces	Nitrogen From the air Nitrogen And Hydrogen 1:3 by volume Hydrogen From natural gas Unesacted gases Recycled To storage/industrial use