Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра информационных систем

Основная образовательная программа по УГСН 09.03.02 «Информационные системы и технологии» (академический бакалавриат)

Электронная презентация по дисциплине Б1.Б.18 «СИСТЕМЫ УПРАВЛЕНИЯ ЖИЗНЕННЫМ ЦИКЛОМ ИЗДЕЛИЙ»

Лектор:

Поляков Сергей Дмитриевич

доцент кафедры информационных систем, к.т.н., доцент

Системы автоматизации, управления и информационной поддержки ЖЦ изделий Лекция 9. Системы автоматизации процессов ЖЦ изделий

Структура лекции

- ✓ Основы автоматизированного проектирования (САПР)
- ✓ Автоматизированные системы проектирования и разработки изделий (САD системы)
- ✓ Системы автоматизации инженерных расчетов (САЕ системы)
- ✓ Автоматизированные системы подготовки производства изделий (САРР, САМ системы)
- ✓ Автоматизированные системы управления процессами производства изделий (APS, MES, SCADA системы)
- ✓ Программируемые системы промышленной автоматизации (PLC, CNC, DNC, HNC, PCNC системы)

Системы автоматизации процессов ЖЦ изделий

Производственный цикл изделия

Производственный цикл -

Этапы производственного цикла изделия:

- ✓ выработка концепций нового изделия;
- ✓ план создания нового изделия;
- ✓ деятельность по проектированию;
- ✓ изготовление изделия;
- ✓ операции контроля качества и отгрузки заказчику.

Основные принципы проектирования

Процесс проектирования

Автоматизированное проектирование

Система автоматизированного проектирования (САПР)

Особенности проектирования сложных систем:

- ✓ структуризация процесса проектирования;
- ✓ итерационный характер проектирования;
- ✓ типизация и унификация проектных решений и средств проектирования.

Особенности проектирования и конструирования

Проектирование -

Конструирование -

Результат проектирования -

Результат конструирования -

В процессе конструирования выполняется:

- ✓ формирование технических требования к изделию и его частям;
- ✓ создание моделей, изображений, видов изделия;
- ✓ расчет комплекса размеров с допускаемыми отклонениями;
- ✓ формирование требований к поверхностям;
- ✓ создание технической документации.

Цель проектирования и конструирования –

Стадии проектирования -

Техническое задание (Т3) -

Техническое предложение -

Эскизный проект -

Технический проект -

Разработка рабочей документации -

Проектные процедуры (например):

- ✓ подготовка трехмерных моделей и деталировочных чертежей;
- ✓ анализ кинематики;
- ✓ моделирование переходного процесса;
- ✓ оптимизация параметров и другие проектные задачи.

Операции (например):

- ✓ построение сетки конечных элементов;
- ✓ выбор или расчет внешних воздействий;
- ✓ моделирование полей напряжений и деформаций;
- ✓ представление результатов моделирования в графической и текстовой формах.

Состав и структура САПР

САПР (Система Автоматизации Проектных Работ) —

Классификация систем САПР:

- ✓ двумерное черчение и трехмерное геометрическое проектирование (CAD);
- ✓ инженерный анализ (САЕ);
- ✓ технологическая подготовка производства (САРР);
- ✓ автоматизация производства (CAM);
- ✓ управление данными об изделии (PDM);
- ✓ управление жизненным циклом изделия (PLM).

Подсистемы САПР:

- ✓ проектирующие подсистемы (объектно-ориентированные):
 - объектные;
 - инвариантные.
- ✓ обслуживающие подсистемы (объектно-независимые).

Состав и структура САПР

Классификация САПР по отраслевому назначению:

Машиностроительные САПР (MCAD англ. mechanical computer-aided design)

САПР в области архитектуры и строительства (AEC CAD (англ. architecture, engineering and construction computer-aided design) или CAAD (англ. computer-aided architectural design))

САПР электронных устройств, радиоэлектронных средств, интегральных схем, печатных плат и т. п. – EDA (англ. electronic design automation) или ECAD (англ. electronic computer-aided design)

Автоматизированные системы проектирования и разработки изделий (CAD системы)

CAD (computer-aided design) -

CADD (англ. computer-aided design and drafting) –

Функции САD-систем в машиностроении:

- ✓ двухмерное (2D) проектирование:
 - > черчение;
 - оформление конструкторской документации;
- ✓ трехмерное (3D) проектирование:
 - получение трехмерных моделей;
 - параметрические расчеты;
 - реалистичная визуализация;
 - взаимное преобразование 2D и 3D моделей.

Автоматизированные системы проектирования и разработки изделий (CAD системы)

Модульный состав CAD

Назначение базовых модулей CAD:

- ✓ твердотельное моделирование;
- ✓ поверхностное моделирование:
- ✓ синтез конструкций из базовых элементов формы;
- ✓ параметризация и ассоциативность конструкции;
- ✓ проекционное черчение;
- ✓ разработка чертежей с простановкой размеров и допусков;
- ✓ формирование библиотеки оригинальных моделей;
- ✓ синтез трехмерных моделей;
- ✓ синтез сборок.

Автоматизированные системы проектирования и разработки изделий (CAD системы)

Основные САД системы

Примеры зарубежных систем:

- ✓ CATIA (Dassault Systemes);
- ✓ UNIGRAPHICS NX (Siemens PLM Software);
- ✓ Pro/ENGINEER (PTC);
- ✓ AutoCAD Inventor Professional.

Примеры российских систем:

- ✓ КОМПАС 3D и КОМПАС-График (ASCON);
- ✓ T-FLEX (ООО «Топ Системы»);
- ✓ nanoCAD (Open Design Alliance).

Системы автоматизации инженерных расчетов (САЕ системы)

CAE (computer-aided engineering) —

Функции систем инженерного анализа (САЕ):

- ✓ анализ кинематики и динамики изделия с определением траекторий движущихся частей и действующих сил в процессе работы;
- ✓ моделирование упруго-напряженного, деформированного, теплового состояния, колебаний конструкции, определения критических нагрузок;
- ✓ стационарное и нестационарное газодинамическое и тепловое моделирование с учетом вязкости, турбулентных явлений, пограничного слоя и т.п.;
- ✓ расчет состояний и переходных процессов на макроуровне;
- ✓ имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри.

Системы автоматизации инженерных расчетов (САЕ системы)

САЕ системы

Примеры САЕ систем моделирования полей физических величин в соответствии с МКЭ:

- ✓ Ansys;
- ✓ MSC Nastran;
- ✓ NX Nastran;
- ✓ Cosmos/M;
- ✓ Nisa;
- ✓ Moldflow:
- ✓ ABAQUS;
- ✓ LS-DYNA:
- ✓ MSC.ADAMS;
- ✓ MSC:
- ✓ TFLEX Анализ.

Специализированные системы МКЭ:

- ✓ Flotran; Fluid предназначенные для моделирования гидрогазодинамических процессов;
- ✓ OPTRIS для моделирования деформаций и др.

Автоматизированные системы подготовки производства изделий (CAPP, CAM системы)

CAM (computer-aided manufacturing) –

АСТПП -

САПР ТП -

Основные функции САМ систем:

- ✓ разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ);
- ✓ моделирование процессов обработки, в том числе построение траекторий относительного движения инструмента и заготовки в процессе обработки;
- ✓ генерация постпроцессоров для конкретных типов оборудования с ЧПУ (NC Numerical Control), расчет норм времени обработки.

Автоматизированные системы подготовки производства изделий (САРР, САМ системы)

Примеры САМ систем

NX CAM (Siemens PLM Software)

SprutCAM (СПРУТ-Технология)

ADEM (Automated Design Engineering Manufacturing) (АДЕМ-инжиниринг)

EdgeCAM (Pathtrace)

PowerMill (Delcam)

Mastercam (CNC Software Inc.)

Автоматизированные системы подготовки производства изделий (CAPP, CAM системы)

CAPP (англ. computer-aided process planning) -

Основные функции САРР систем:

- ✓ разработка технологического процесса изготовления изделия:
 - разработка последовательности технологических операций изготовления детали, а также сборочных операциях;
 - выбор оборудования, используемого на каждой технологической операции;
 - выбор инструмента, при помощи которого на операциях производится обработка.

Подходы автоматизации формирования технологических процессов:

- ✓ модифицированный;
- ✓ генеративный.

Автоматизированные системы подготовки производства изделий (CAPP, CAM системы)

Примеры САРР систем

Tecnomatix (Siemens PLM Software)

Teamcenter Manufacturing (Siemens PLM Software)

Vertical (Ascon)

TechCard (НПП "ИНТЕРМЕХ")

Technologi CS (ЗАО «СиСофт Девелопмент»)

ТехноПро (Вектор-Альянс)

Уровни систем управление предприятием и производством

1. ERP (Enterprise Resource Planning) – система автоматизированного управления административно-финансовой и административно-хозяйственной деятельностью предприятия

Уровни систем управление производством

- 2. APS-системы (Advanced Planning and Scheduling) расширенное календарное и оперативное планирование на производстве
- 3. **MES-системы (Manufacturing Execution Systems) –** исполнительная система производства
- 4. SCADA (Supervisory Control And Data Acquisition) система сбора данных и оперативного диспетчерского управления
- 5. **PLC (Programmable Logic Controllers)** программируемые логические контроллеры (ПЛК)

APS-системы – программное обеспечение для расширенного календарного и оперативного планирования на производстве

APS -система (Advanced Planning and Scheduling System) или APS (Advanced Planning and Scheduling) –

Цель систем APS -

Отличительные характеристики APS-систем:

- ✓ интеграция проектировки производства в среду планирования цепи поставок;
- ✓ ориентирование плана производства потребности конечных потребителей (прогнозы, заказы);
- ✓ возможное привлечение потребителей к процессу создания плана, учету возможностей производства и времени поставки материалов и комплектующих поставщиками;
- ✓ синхронизация планов регионально разделенных производственных площадок и дистрибьюторских центров.

APS-системы

Преимущества APS-систем:

- ✓ поддержка web-ориентированных технологий;
- ✓ возможность ограничения функций и прав пользователей на удаленную работу;
- ✓ наличие мощного инструмента визуализации и генератора отчетов;
- ✓ удобные средства анализа плановой информации;
- ✓ возможность отдельной работы, так и совместно с существующей информационной средой предприятия (например, ERP-APS-MES).

APS-системы

Базовые функции и характеристики компонентов APS-систем:

- ✓ согласование планов потребностей в материалах и производственных мощностях одновременно;
- ✓ детализация модели производства и цепочек поставок;
- ✓ учет при планировании детальных характеристик конкретных единиц оборудования, штата, транспортных средств, технологических маршрутов и т. д.;
- ✓ обеспечение высокой скорости планирования и перепланирования, возможность быстрого реагирования на различные изменения в цепи поставок;
- ✓ коллективная работа внешних и внутренних участников в единой многопользовательской среде с удаленным доступом.

APS-системы

Особенности решения APS-систем:

- ✓ возможность применения к различным средам планирования;
- ✓ синхронное планирование;
- ✓ оптимизационное планирование;
- ✓ незамедлительное реагирование на изменение среды;
- ✓ распределенное планирование.

APS-системы

Известные APS-системы:

Advanced Planning & Optimization (APO), SAP AG, включает модули:

Demand Planning (DP) - выполнение функций планирования спроса.

Supply Network Planning (SNP) - планирование производства и

транспортировок по всей логистической сети предприятия.

Production Planning&Detailad Scheduling (PP/DS) – планирование производства и точное календарное планирование.

Numetrix, Chesapeake.

Berclain, ProMIRA, Enterprise Planning Systems.

Ortems (ORTEMS S.A.S.)

APS-системы, доступные в России:

Ortems APS

ИТРП:Процессное производство

Галактика AMM (Advanced Manufacturing Management)

MES системы

MES (сокр. от англ. Manufacturing Execution System) – исполнительная система производства

Основные задачи MES: синхронизация, координация, анализ и оптимизация выпуска продукции в рамках какого-либо производства

Формулировки определения MES:

- 1. Информационная и коммуникационная система производственной среды предприятия (определение APICS).
- 2. Автоматизированная система управления и оптимизации производственной деятельности, которая в режиме реального времени: инициирует; отслеживает; оптимизирует; документирует производственные процессы от начала выполнения заказа до выпуска готовой продукции (определение MESA International).
- 3. Интегрированная информационно-вычислительная система, объединяющая инструменты и методы управления производством в реальном времени (определение Michael'a McClellan'a, автора книги "Применение MES-систем").

Информационно-управляющая структура предприятия

Отличия MES систем от ERP систем

ERP системы ориентированы на планирование выполнения заказов.

MES системы оперируют более точной информацией о производственных процессах и позволяют оперативно изменять производственное расписание в течение рабочей смены столько раз, сколько это необходимо.

B ERP системах перепланирование может осуществляться не чаще одного раза в сутки.

MES системы:

- ✓ выводят на более высокий уровень организацию всей производственной деятельности;
- ✓ реализуют связь в реальном времени производственных процессов с бизнес процессами предприятия;
- ✓ формируют данные о текущих производственных показателях.

MES системы это связующее звено между ориентированными на финансово-хозяйственные операции **ERP и APS системами** и оперативной производственной деятельностью предприятия на уровне цеха, участка или производственной линии.

MES системы

MES системы могут быть интегрированы с системами:

- ✓ планирование Цепочек Поставок (SCM);
- ✓ продажи и Управления сервисом (SSM);
- ✓ планирования Ресурсов Предприятия (ERP);
- ✓ автоматизированные системы управления технологическими процессами (АСУТП).

Функции MES систем

N₂	Функция	Описание
1.	Контроль состояния и распределение ресурсов (RAS)	Управление ресурсами производства: технологическим оборудованием, материалами, персоналом, документацией, инструментами, методиками работ
2.	Оперативное/Детальное планирование (ODS)	Расчет производственных расписаний, основанный на приоритетах, атрибутах, характеристиках и способах, связанных со спецификой изделий и технологией производства.
3.	Диспетчеризация производства (DPU)	Управление потоком изготавливаемых деталей по операциям, заказам, партиям, сериям, посредством рабочих нарядов.
4.	Управление документами (DOC)	Контроль содержания и прохождения документов, сопровождающих изготовление продукции, ведение плановой и отчетной цеховой документации.
5.	Сбор и хранение данных (DCA)	Взаимодействие информационных подсистем в целях получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия
6.	Управление персоналом (LM)	Обеспечение возможности управления персоналом в ежеминутном режиме

Функции MES систем

7.	Управление качеством продукции (QM)	Анализ данных измерений качества продукции в режиме реального времени на основе информации поступающей с производственного уровня, обеспечение должного контроля качества, выявление критических точек и проблем, требующих особого внимания.
8.	Управление производственными процессами (РМ)	Мониторинг производственных процессов, автоматическая корректировка либо диалоговая поддержка решений оператора.
9.	Управление техобслуживанием и ремонтом (ММ)	Управление техническим обслуживанием, плановым и оперативным ремонтом оборудования и инструментов для обеспечения их эксплуатационной готовности.
10.	Отслеживание истории продукта (РТG)	Визуализация информации о месте и времени выполнения работ по каждому изделию. Информация может включать отчеты: об исполнителях, технологических маршрутах, комплектующих, материалах, партионных и серийных номерах, произведенных переделках, текущих условиях производства и т.п.
11.	Анализ производительности (РА)	Предоставление подробных отчетов о реальных результатах производственных операций. Сравнение плановых и фактических показателей.

MES системы

Международная ассоциация поставщиков решений для промышленных предприятий MESA (Manufacturing Enterprise Solutions Association) дает следующее определение MES:

Система оперативного управления производственными процессами (MES) — это динамическая информационная система, обеспечивающая эффективное исполнение производственных операций. Используя точные и актуальные данные, MES регулирует, инициирует и протоколирует работу предприятия в соответствии с происходящими событиями.

Преимущества MES

По данным статистики MES обеспечивает:

- ✓ снижение продолжительности цикла производства в среднем на 45%;
- ✓ сокращение времени ввода данных, обычно на 75% или более;
- ✓ сокращение количества незавершенной продукции в среднем на 24%;
- ✓ снижение объема бумажной отчетности между сменами в среднем на 61%;
- ✓ сокращение времени освоения новой продукции в среднем на 27%;
- ✓ сокращение ненужной бумажной документации в среднем на 56%;
- ✓ сокращение объема брака в среднем на 18%;
- ✓ повышение доходности предприятия в среднем в 4 раза.

Системы MES повышают:

- ✓ продуктивность;
- ✓ производительность;
- ✓ технологическую эффективность.

Система MES влияет на следующие факторы:

- ✓ увеличение производственной культуры предприятия;
- ✓ развитие инициативности служащих.

Примеры MES систем

Зарубежные MES системы:

- ✓ Easy95 ODS (Ninety-five, Бельгия);
- ✓ MEScontrol (BrightEye, Бельгия);
- ✓ Wonderware MES Software (Wonderware, США);
- ✓ MES HYDRA (MPDV, Германия);
- ✓ DIAMES (CSM, Швейцария);
- ✓ IDbox, Real-Time Data Acquisition System (СІС, Испания);
- ✓ IFS Applications (IFS, Швеция);
- ✓ JobDISPO MES (FAUSER, Германия);
- ✓ LeaderMES (Emerald, Израиль);
- ✓ MES Pharis (UNIS, a.s., Чешская республика);
- ✓ PROefficient (BDE-Engineering, Германия);
- ✓ Proficy Plant Applications (GE, США);
- ✓ Qguar MES (Quantum software, Польша);
- ✓ SAP ME (SAP, Германия);
- ✓ Simatic IT Production Suite (Siemens, Германия);
- ✓ ERP и MES система "ТЕХНОКЛАСС" (Л-Класс, Болгария).

Примеры MES систем

Российские (включая СНГ) MES системы:

- ✓ 1C:MES (1С, Россия)
- ✓ 1С:ПЛ (Терсис, Россия)
- ✓ MES/ERP-система "Большое Дело" (Астра-Софт, Белорусь)
- ✓ Галактика AMM (Корпорация Галактика, Россия)
- ✓ Zenith SPPS (Софф Трейд, Россия)
- ✓ Инфоконт (Сенсоры Модули Системы, Россия)
- ✓ IT-Enterprise APS/MES (Информационные технологии, Украина)
- ✓ Гибридная (MES & DCS) система Matrix HCS (Систем АП, Россия)
- ✓ MES-Система "MES-T2 2020" (ИнформСистем, Россия)
- ✓ Lean ERP SCMo (Райтстеп, Россия)
- ✓ Malahit.MES (Малахит, Россия)
- ✓ MES система "СПРУТ-ОКП" (СПРУТ-Технология, Россия)
- ✓ MES система "ФОБОС" (ИКТИ РАН, Россия)

SCADA системы

SCADA (Supervisory Control And Data Acquisition) система – Цель SCADA системы – Основные функции SCADA-системы:

- ✓ сбор данных от датчиков и представление их оператору в удобном для него виде, включая графики изменения параметров во времени;
- ✓ дистанционное управление исполнительными механизмами;
- ✓ ввод заданий алгоритмам автоматического управления;
- ✓ реализация алгоритмов автоматического контроля и управления (чаще эти задачи возлагаются на контроллеры, но SCADA-системы тоже способны их решать);
- ✓ распознавание аварийных ситуаций и информирование оператора о состоянии процесса;
- ✓ формирование отчетности о ходе процесса и выработке продукции.

SCADA системы

Основные подсистемы SCADA:

- ✓ драйверы или серверы ввода-вывода (СВВ) данных;
- ✓ система реального времени;
- ✓ НМІ человеко-машинный интерфейс;
- ✓ база данных реального времени;
- ✓ система логического управления;
- ✓ система управления тревогами;
- ✓ генератор отчётов;
- ✓ редактор для разработки человеко-машинного интерфейса;
- ✓ редактор для разработки пользовательских программ;
- ✓ внешние интерфейсы обмена данными между SCADA и другими приложениями (OPC, DDE, ODBC, DLL и т.д.);
- ✓ модуль удалённого контроля и управления за ходом технологического процесса с использованием Web-технологии.

SCADA системы

Средства обмена данными в SCADA системах:

- ✓ стандартные протоколы динамического обмена данными (DDE), открытый механизм взаимодействия с базами данных ODBC;
- ✓ собственные протоколы фирм-производителей SCADA систем, реально обеспечивающие самый скоростной обмен данными;
- ✓ OPC (OLE for Process Control) протокол, который является стандартным и поддерживается большинством SCADA систем.

Физические компоненты SCADA систем

Основные структурные компоненты современных SCADA систем:

- ✓ Remote Terminal Unit (RTU) удалённый терминал;
- ✓ Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (терминал)
- ✓ Communication System (CS) коммуникационная система (каналы связи)

Уровни технологической автоматизации производства

Нижний уровень – датчики и исполнительные механизмы

Средний уровень – контроллеры

На среднем уровне обеспечивается:

- ✓ прием входных данных;
- ✓ первичная обработка данных;
- ✓ автоматическое формирование и выдача управляющих воздействий на исполнительные механизмы;
- ✓ обмен информацией с верхним уровнем.

Верхний уровень – контроль и управление технологическим процессом в режиме реального времени (уровень SCADA)

На этом уровне происходит:

- ✓ сбор, обработка и хранение информации, полученной на среднем уровне;
- ✓ визуализация текущей и архивной информации в удобном оператору виде (мнемосхемы, графики, тренды, журналы сообщений);
- ✓ ввод команд оператора;
- ✓ формирование отчетности о результатах технологического процесса;
- ✓ обмен информацией со средним уровнем.

Объекты управления и представления информации в системах SCADA

Мнемосхемы технологического процесса

Архивы

Тренды

Таблицы

Графики

Гистограммы и диаграммы

Сообщения

Журналы сообщений

Контроль прав доступа

Журнал действий оператора

Отчеты

SCADA системы

Характеристики SCADA систем:

- ✓ совместимость с операционными системами;
- ✓ полнофункциональность;
- ✓ открытость;
- ✓ масштабируемость;
- ✓ поддержка промышленных протоколов (собственная драйверная подсистема);
- ✓ совместимость со стандартом ОРС (DA, HDA, UA);
- ✓ поддержка доступа через Internet;
- ✓ поддержка баз данных;
- ✓ встроенные языки программирования;
- ✓ средства защиты и надежность;
- ✓ интеграция в системы управления;
- ✓ техническая поддержка;
- ✓ простота разработки и развития;
- ✓ простота обслуживания;
- ✓ стоимость.

SCADA системы

Зарубежные (наиболее популярные в России) SCADA-системы

- ✓ WinCC (Siemens, Германия);
- ✓ InTouch (Wonderware, США);
- ✓ RSView32 (Rockwell Automation, США);
- ✓ Genesis64 (Iconics, США);
- ✓ Vijeo Citect (Schneider Electric, Франция).

Наиболее популярные **отечественные SCADA-системы**:

- ✓ MasterSCADA (ИнСАТ, Москва);
- ✓ TRACE MODE (AdAstra, Москва);
- ✓ Круг2000 (Круг, Пенза).

Промышленные контроллеры

Промышленный контроллер -

Варианты реализации промышленных контроллеров:

- ✓ программируемые логические контроллеры и близко примыкающие к ним программируемые интеллектуальные реле;
- ✓ встроенные электронные контроллеры;
- ✓ устройство управления на основе механических, гидравлических, пневматических, электрических и электронных схем.

Программируемы логические контроллеры (PLC)

Программируемый логический контроллер (ПЛК) (англ. Programmable Logic Controller, PLC) или программируемый контроллер —

Программируемы логические контроллеры (PLC)

Виды PLC:

- ✓ основные PLC;
- ✓ программируемое (интеллектуальные) реле;
- ✓ программные ПЛК на базе IBM PC-совместимых компьютеров (англ. SoftPLC);
- ✓ PLC на базе простейших микропроцессоров (i8088/8086/8051 и т. п.);
- ✓ контроллер ЭСУД (Электронная система управления двигателем).

Устройство PLC:

- ✓ центральная микросхема (микроконтроллер, или микросхема FPGA), с необходимой обвязкой;
- ✓ подсистема часов реального времени;
- ✓ энергонезависимая память;
- ✓ интерфейсы последовательного ввода-вывода (RS-485, RS-232, Ethernet);
- ✓ схемы защиты и преобразования напряжений на входах и выходах ПЛК.

Программируемы логические контроллеры (PLC)

Основные характеристики PLC:

- ✓ PLС являются устройствами реального времени;
- ✓ областью применения PLC обычно являются автоматизированные процессы промышленного производства, в контексте производственного предприятия;
- ✓ PLC ориентированы на работу с машинами и имеют развитый «машинный» ввод-вывод сигналов датчиков и исполнительных механизмов;
- ✓ PLC изготавливается как самостоятельное изделие в базе встраиваемых систем, отдельно от управляемого при его помощи оборудования;
- ✓ PLC в своём составе не имеют интерфейса для человека, типа клавиатуры и дисплея;
- ✓ программирование PLC, диагностика и обслуживание производится подключаемыми для этой цели **программаторами –**;
- ✓ PLC взаимодействуют с различными компонентами систем человекомашинного интерфейса.

Программируемы логические контроллеры (PLC)

Типовая структура PLC

- 3. Адресная шина (однонаправленная) плата с разъемами,
- 4. Шина данных (двунаправленная) плата, в которой подключены модули ввода/вывода.

Постоянное запоминающее устройство (ПЗУ) хранит системные программы, необходимые для управления процессом обработки.

В оперативном запоминающем устройстве (ОЗУ) хранятся прикладные программы, данные и результаты вычислений.

Программируемы логические контроллеры (PLC)

Виды подключений датчиков и исполнительных устройств к PLC:

- ✓ централизованно;
- ✓ по методу распределённой периферии.

Программное обеспечение PLC:

- ✓ системное программное обеспечение;
- ✓ прикладная программа.

Рабочий цикл PLC:

- 1. опрос входов;
- 2. выполнение пользовательской программы;
- 3. установку значений выходов;
- 4. некоторые вспомогательные операции (диагностика, подготовка данных для отладчика, визуализации и т. д.).

Программируемы логические контроллеры (PLC)

Рабочий цикл PLC

Время реакции ПЛК – это время, затраченное на чтение входных сигналов + время выполнения программы управления + время установки управляющего воздействия на выходах.

Время реакции системы - это время с момента изменения состояния системы до момента выработки соответствующей реакции (решения).

Время реакции ПЛК	=	Время чтения входов	+	Время выполнения программы (кода)	+	Время установки выходов
Время реакции системы	=	Время реакции ПЛК	+	Время реакции датчиков и механизмов		

Программируемы логические контроллеры (PLC)

Входы и выходы PLC

<u>дискретные</u>

предназначены для ввода / вывода информации от различных дискретных датчиков и устройств в виде параллельного кода

<u>аналоговые</u>

предназначены для ввода / вывода непрерывных сигналов: уровней напряжения и тока, соответствующих некоторой физической величине (температура, давление скорость и т.д.) в каждый момент времени

специализированные

предназначены для работы с конкретными специфическими датчиками, требующими определенных уровней сигналов, питания и специальной обработки

- Напряжение питания
 ПЛК 12 В, 24 В и 48 В.
- Источник электрической энергии промышленная сеть
 220 В, 50 Гц.

Программируемы логические контроллеры (PLC)

Классификация PLC по конструктивным признакам:

- ✓ моноблочные;
- ✓ модульные;
- ✓ распределенные.

Классификация PLC по области применения:

- ✓ универсальные общепромышленные;
- ✓ для управления роботами;
- ✓ для управления позиционированием и перемещением (для CNC);
- ✓ коммуникационные;
- ✓ ПИД-контроллеры;
- ✓ специализированные.

Программируемы логические контроллеры (PLC)

Классификация PLC по способу программирования:

- ✓ программируемые с лицевой панели контроллера;
- ✓ программируемые переносным программатором;
- ✓ программируемые с помощью дисплея, мыши и клавиатуры;
- ✓ программируемые с помощью персонального компьютера.

Классификация PLC по языкам программирования:

- ✓ на классических алгоритмических языках (C++, Visual Basic);
- ✓ на языках МЭК-61131-3.

Стандарт МЭК-61131-3 специфицирует 5 языков программирования:

- ✓ Sequential Function Chart (SFC) язык последовательных функциональных блоков;
- ✓ Function Block Diagram (FBD) язык функциональных блоковых диаграмм;
- ✓ Ladder Diagrams (LAD) язык релейных диаграмм;
- ✓ Statement List (STL) язык структурированного текста, язык высокого уровня. Напоминает собой Паскаль
- ✓ Instruction List (IL) язык инструкций, это типичный ассемблер с аккумулятором и переходам по метке.

Программируемы логические контроллеры (PLC)

Распространенные PLC:

- ✓ Siemens SIMATIC S5 и S7;
- ✓ Segnetics Pixel 2511 и SMH 2Gi;
- ✓ Omron;
- ✓ Mitsubishi серия Melsec (FX, Q);
- ✓ Schneider Electric Modicon серий Twido, M340, TSX Premium, TSX Quantum;
- ✓ Beckhoff ПЛК семейства SIMATIC S7-300

Программные PLC на базе IBM PC-совместимых компьютеров (англ. SoftPLC):

- ✓ MicroPC,
- ✓ WinCon,
- ✓ WinAC,
- ✓ CoDeSys SP/SP RTE.

PLC на базе простейших микропроцессоров (i8088/8086/80186 и т. п.):

- ✓ ICP DAS,
- ✓ Advantech.

Классификация систем числового программного управления (ЧПУ):

- ✓ NC (Numerical Control);
- ✓ SNC (Stored Numerical Control);
- ✓ CNC (Computer Numerical Control);
- ✓ DNC (Direct Numerical Control)
- ✓ HNC (Handled Numerical Control);
- ✓ VNC (Voice Numerical Control)
- ✓ PCNC (Personal Computer Numerical Control).

Применение PLC в CNC системах управления и перемещения инструмента

CNC (Computer numeric control) – компьютерное числовое управление –

Основные характеристики станков с CNC:

- ✓ два или более направления для движения (оси);
- ✓ движение по осям осуществляется точно и автоматически;
- ✓ станки с CNC оснащены сервомоторами, которые приводятся в действие системой с CNC;
- ✓ тип движения (ускоренный, линейный или круговой);
- ✓ оси перемещений, величина и скорость перемещения программируются;
- ✓ станки с CNC оправдывает себя в крупном производстве.

Схема управления линейным перемещением на станке с CNC

Применение PLC в CNC системах управления и перемещения инструмента

Характеристики PLC для создания полноценной системы CNC:

- ✓ создание решений не уступающее по быстродействию и гибкости более мощным станкам CNC;
- ✓ **PLC** разработанные для управления приводами имеют специальную структуру предназначенную для считывания и вырабатывания команд управления;
- ✓ программа, написанная с использованием G-кода, имеет жесткую структуру;
- ✓ все команды управления объединяются в кадры-группы, состоящие из одной или более команд.

Порядок команд в кадре:

- ✓ подготовительные команды;
- ✓ команды перемещения;
- ✓ выбор режимов обработки;
- ✓ технологические команды.

Применение PLC в CNC системах управления и перемещения инструмента

Обозначение команд в программе, написанная с использованием G-кода

- ✓ **основные** (называемые в стандарте подготовительными) **команды** языка начинаются с буквы G:
 - ✓ перемещение рабочих органов с заданной скоростью (G00-G04);
 - ✓ выполнение типовых последовательностей таких, как обработка отверстий и резьб (G80-G84);
 - ✓ управление параметрами инструмента, системами координат, и рабочих плоскостей (G17-G19, G53-G59);
- ✓ технологические команды языка начинаются с буквы М:
 - ✓ сменить инструмент (М06);
 - ✓ включить/выключить шпиндель(М03, М04);
 - ✓ включить/выключить охлаждение(М13, М14).

Применение PLC в CNC системах управления и перемещения инструмента

Современные конвертеры графических изображение (например, формата dxf, dwg (AutoCAD, Компас 3D) в управляющие программы, содержащие содержащую G-код:

автоматические:

✓ NCPlot (платная);АСЕ converter (бесплатная);

автоматизированные:

✓ ArtCAM, SolidCAM (платные), inkscape (бесплатная).

Пример применения PLC в CNC системах управления и перемещения инструмента

Программируемые логические контроллеры фирмы Delta Electronics DVP-PM для создания локальных систем CNC

Характеристики DVP-PM:

- ✓ 2-х или 3-осевая интерполяция;
- ✓ высокоскоростные выходы для вырабатывания сигналов управления сервоприводом;
- ✓ выходы обладают очень большой частотой срабатывания, до 500 кГц;
- ✓ высокое быстродействие всей системы;
- ✓ вычисление большого объема информации;
- ✓ способность контроллера самому анализировать записанные в него G-коды.

Среда программирования контроллеров DVP-PM – бесплатная программа PMSoft.

Языки программирования – LD или IL, стандарта IEC61131-3.

Добавление в листинг готовой программы управления основанной на G-кодах происходит путем экспортирования файла содержащего текст данной программы.

Формат файла не имеет значения, т. к. PMSoft сам его распознает, но обычно используется стандартный *.txt.

Задание начальных параметров программы:

- ✓ максимальные скорости движения;
- ✓ тип выходного импульсного сигнала;
- ✓ начальную позицию;
- ✓ систему счета;
- ✓ систему единиц.

Типы единиц:

- ✓ Машинные система оперирует импульсами.
- ✓ Механические длинна, скорость, угол перемещения задаются в единицах системы СИ.
- ✓ Комбинированные при задании координат используют механические единицы, а скорости — машинные.

В результате, инструкции и G-коды масштабируются в соответствии с выбранными нами единицами.

Начертим контур обработки в CAD программе, к примеру в Компас-3D. Получим из чертежа G-код с помощью CAM программы NCPlot v2.21

Сохраним полученный файл. Сохраняется в формате *.NC (можно открыть блокнотом и внести коррективы)

63

Следующим шагом запишем его в РМ

- ✓ 01100 Здесь разместили подготовительные команды (максимальная скорость, время разгона/замедления, система единиц);
- ✓ Р255 Подпрограмма для перемещения по оси Z (поднять/опустить) инструмент (срабатывает выход Y0);
- ✓ 0X0 G-код в подпрограмме перемещения (0X0).

Зададим следующие параметры перемещения по осям:

- ✓ систему единиц, единицы перевода;
- ✓ максимальную скорость, время разгона/замедления, скорость JOG;
- ✓ параметры логики входов и ручного задания;
- ✓ формат выходных импульсов, систему координат, начальную координату, электронный кулачковый вал.


```
0100
LD m1002
                                 G-код сразу записывается в
MOV k0 d1846
                                  подпрограмму 0Х, так как в главной
MOV h1000 d1846
LDP m1794
                                  программе инструкции
RST m1744
SET m1744
                                  позиционирования применять нельзя.
M102
                                  Удобнее G-код вызывать из
P255
DLD= d1328 k0
                                  подпрограмм с заголовком Р, а в 0Х
OUT YO
                                 записывать параметры перемещения
tim kl0;
SRET
                                 для обрабатываемого контура (скорость
OXO
                                 холостого хода, и т. п.)
BRET
dMOV K200000 D1828
dMOV K200000 D1830
                     скорости холостого хода
dMOV K200000 D1908
dMOV K200000 D1910
MOV K10 D1836
MOV K10 D1916
                  время разгона/торможения
MOV K10 D1837
MOV K10 D1917
LD M1000
DMOV K0 D1848
                 начальные координаты
DMOV KO D1928
CALL PO
                 вывов подпрограммы Р0
M2
PO
G00Z1.0
CYOX
GO1ZOFIO O
```

Загрузка программы в PLC и с помощью встроенного в PMSoft монитора XYChart (перемещение по осям). Посмотрим на перемещение инструмента по координатам XY. Жирным выделено рабочие перемещения а тонким, перемещение холостого хода.

