CSCI 160

CLASS 4

HW from class 3: Why does this algorithm work?

Justification

n

$$N_{(r-1)c} = r^n - r^{-m} - N$$

1)
$$M + N_{(r-1)c} = M + r^n - r^{-m} - N$$

2) Whether we follow a) or b) depends on the presence of an e. a. c.

What is the magnitude of the e.a.c.? It's an 'overflow' for our representation above:

m

e.a.c.: 10 o [= rⁿ] On <u>branch a)</u> there is an e. a. c., which means we have:

$$\langle -- \rangle M - N > 0$$
 or $M > N$

It also means, that the case when

M - N = 0 takes branch b), which means that 0 will be expressed as -0 by this Algorithm. We continue by justifying the computations in the branch a) and then branch b).

Remember:

$$N_{(r-1)c} = r^n - r^{-m} - N$$

m

Alg (M-N):

1)
$$M + N_{(r-1)c}$$

a) e.a.c. -> add it to l.s.d.

integer part

b) no e.a.c. \rightarrow compute -(r-1)'s compl. of 1)

branch a) - continued

Branch a) says: "add the e.a.c. to the l.s.d.". This means (s. ex) we have to subtract the value of the e.a.c., which is r^n and add a 1 to the l.s.d., which has the value r^{-m} to the value from 1): Here it is: $M + r^n - r^{-m} - N - r^n + r^{-m} = M - N > 0$, which is what we wanted.

branch b) is taken when there is no e.a.c.. From the Hint (class 3) we know that this is the case when $M - N \le 0$

Branch b) says: compute the (r-1)'s complement from the result at 1) and give it a negative sign: $-(M+N_{(r-1)c})_{(r-1)c} = -(M+r^n-r^{-m}-N)_{(r-1)c} = -(r^n-r^{-m}-(M+r^n-r^{-m}-N)) =$ $= -(r^n-r^{-m}-M-r^n+r^{-m}+N) = -(-M+N) = -|M-N| \le 0 \text{ for } -M+N \ge 0.$

This is what we wanted. Note: 0 will be expressed as -0 by this Alg., as mentioned before.

Example in decimal

Remember:

$$N_{(r-1)c} = r^n - r^{-m} - N$$

Alg (M-N):

1)
$$M + N_{(r-1)c}$$

- 2)
- a) e.a.c. -> add it to l.s.d.
- b) no e.a.c. \rightarrow compute -(r-1)'s compl. of 1)

i)
$$r = 10$$
, $n = 4$, $m = 2$

ii) Swap M <-> N, to get to case 2-b)

$$r - 1 = 9$$

M: 32.1

N: .64

1 1 1 1

N_{9C}: 9999.35

->case2-**α**)

0031.46

M: .64

N: 32.1

1) M: 0000.64 +

N_{9C}: 9967.89

9968.**53** no e.a.c. ->case2-b)

-> −9's compl.:

-0031.46

NOTE: Use this table describing various binary codes, for the last 3 exercises on the next page.

TableFour Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Obtain the 1's and 2's complement	nts of the followin	g binary numbers:	:
(a) 10000000	4. 1	00000000	
(c) 11011010	(d)	01110110	
(e) 10000101	(f)	11111111.	
Find the 9's and the 10's complen	nent of the followi	ng decimal numb	ers:
(a) 52,784,630	(b)	63,325,600	
(c) 25,000,000	(d)	00,000,000.	
Formulate a weighted binary code	for the decimal d	igits, using weigh	nts
(a) *6, 3, 1, 1			
(b) 6, 4, 2, 1			
	137 in (a) BCD,	(b) excess-3 code	, (c) 2421 code, and (d) a
The state of a 12-bit register is 10	0010010111. Wha	at is its content if	it represents
(a) three decimal digits in BCD?			
(b) three decimal digits in the exc	cess-3 code?		
(c) three decimal digits in the 84-	-2-1 code?		
(d) a binary number?			
	(a) 10000000 (c) 11011010 (e) 10000101 Find the 9's and the 10's complem (a) 52,784,630 (c) 25,000,000 Formulate a weighted binary code (a) *6, 3, 1, 1 (b) 6, 4, 2, 1 Represent the decimal number 5, 6311 code. The state of a 12-bit register is 10 (a) three decimal digits in BCD? (b) three decimal digits in the exception.	(a) 10000000 (b) (c) 11011010 (d) (e) 10000101 (f) Find the 9's and the 10's complement of the followir (a) 52,784,630 (b) (c) 25,000,000 (d) Formulate a weighted binary code for the decimal displayed (a) *6, 3, 1, 1 (b) 6, 4, 2, 1 Represent the decimal number 5,137 in (a) BCD, (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (d)	(c) 11011010 (e) 10000101 (f) 11111111. Find the 9's and the 10's complement of the following decimal numb (a) 52,784,630 (b) 63,325,600 (c) 25,000,000 (d) 00,000,000. Formulate a weighted binary code for the decimal digits, using weigh (a)*6, 3, 1, 1 (b) 6, 4, 2, 1 Represent the decimal number 5,137 in (a) BCD, (b) excess-3 code 6311 code. The state of a 12-bit register is 100010010111. What is its content if (a) three decimal digits in BCD? (b) three decimal digits in the excess-3 code? (c) three decimal digits in the 84-2-1 code?

r's Complement-Representation

n

m

 $N_{(r-1)c} = r^n - r^{-m} - N$

n, m = number of locations

Definition

r = 2

How did you compute N_{2c} = 2's complement of N? By swapping 0 <-> 1, and adding 1 to l.s.d., which is equivalent to computing the 1's complement and adding a 1 to l.s.d., which equals 2-m

Remember:

$$N_{2c} = N_{1c} + 2^{-m} = 2^{n} - 2^{-m} - N + 2^{-m} = 2^{n} - N$$

Base r:

$$N_{rc} = r^n - N$$

In our base r representation, where we allocate n digits to the integer part and m digits to the fraction part, we define the r's complement of a number N as follows:

$$N_{rc} = r^n - N$$

Show that in the above representation, given two non-negative numbers M and N as inputs, the algorithm below computes the value of M-N, in the same representation. Compute all steps of the algorithm below in the boxes, as indicated. **Justify each step in its box. Compare** M-N to 0 in each of the branches of step 2) below, and show the exact inequality covered by each branch in the places indicated.

ALGORITHM to compute M-N:

- 1) Compute $M + N_{rc}$
- 2) (a) If there is an e.a.c. then ignore it. Stop.
 - (b) If there is no e.a.c. then compute:

$$-(M+N_{rc})_{rc}$$

where $(M + N_{rc})$ is already computed at step 1) above. Stop.

Justification

Step 1):

Step 2) (a): For this step you got: M-N=0

Step 2) (b): For this step you got: M-N=0

Addendum to Q1.2

Answer this **Addendum to Q1.2** before you answer the other Quiz 1.2 questions.

Suppose M = N.

After we apply the two subtraction algorithms we studied:

- 1. (r-1)'s complement representation, and
- 2. r's complement representation,

which sign (+, or –) should the exact result have in each of the above two algorithms?

Encircle the appropriate sign in spaces below:

1.
$$(r-1)$$
's complement

$$M - N = + - 0$$

$$M - N = + - 0$$