# → CO2 Emissions

Héctor Manuel Cárdenas Yáñez | A01634615

Siddhartha López Valenzuela | A00227694

Álvaro Morán Errejón | A01638034

Isaí Ambrocio | A01625101

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
from scipy.stats import norm, uniform, skewnorm
sns.set_theme()

df = pd.read_csv("/content/CO2 Emissions_Canada.csv")
```

df.head()

|   | Make  | Model         | Vehicle<br>Class | Engine<br>Size(L) | Cylinders | Transmission | Fuel<br>Type | Fuel Consumption City (L |
|---|-------|---------------|------------------|-------------------|-----------|--------------|--------------|--------------------------|
| 0 | ACURA | ILX           | COMPACT          | 2.0               | 4         | AS5          | Z            |                          |
| 1 | ACURA | ILX           | COMPACT          | 2.4               | 4         | M6           | Z            |                          |
| 2 | ACURA | ILX<br>HYBRID | COMPACT          | 1.5               | 4         | AV7          | Z            |                          |
| 3 | ACURA | MDX 4WD       | SUV - SMALL      | 3.5               | 6         | AS6          | Z            |                          |
| 4 | ACURA | RDX AWD       | SUV - SMALL      | 3.5               | 6         | AS6          | Z            |                          |

```
df.isna().sum()
```

| Make                             | 0 |
|----------------------------------|---|
| Model                            | 0 |
| Vehicle Class                    | 0 |
| Engine Size(L)                   | 0 |
| Cylinders                        | 0 |
| Transmission                     | 0 |
| Fuel Type                        | 0 |
| Fuel Consumption City (L/100 km) | 0 |
| Fuel Consumption Hwy (L/100 km)  | 0 |
| Fuel Consumption Comb (L/100 km) | 0 |
| Fuel Consumption Comb (mpg)      | 0 |
| CO2 Emissions(g/km)              | 0 |
| dtype: int64                     |   |
|                                  |   |

df.describe()

|       | Engine Size(L) | Cylinders   | Fuel Consumption City (L/100 km) | Fuel Consumption Hwy (L/100 km) | Fuel Consumptic |
|-------|----------------|-------------|----------------------------------|---------------------------------|-----------------|
| count | 7385.000000    | 7385.000000 | 7385.000000                      | 7385.000000                     |                 |
| mean  | 3.160068       | 5.615030    | 12.556534                        | 9.041706                        |                 |
| std   | 1.354170       | 1.828307    | 3.500274                         | 2.224456                        |                 |
| min   | 0.900000       | 3.000000    | 4.200000                         | 4.000000                        |                 |
| 25%   | 2.000000       | 4.000000    | 10.100000                        | 7.500000                        |                 |
| 50%   | 3.000000       | 6.000000    | 12.100000                        | 8.700000                        |                 |
| 75%   | 3.700000       | 6.000000    | 14.600000                        | 10.200000                       |                 |
| max   | 8.400000       | 16.000000   | 30.600000                        | 20.600000                       |                 |

# ▼ Best Variable

After testing with all possible variables, we noticed that the best was Fuel Consumption City (L/100 km) acording to  $\mathbb{R}^2$ .

```
x_FCCity = df["Fuel Consumption City (L/100 km)"]
x_FCCity_const = sm.add_constant(x_FCCity)

y = df["C02 Emissions(g/km)"]

model_FCCity = sm.OLS(y, x_FCCity_const)
result_FCCity = model_FCCity.fit()

print(result_FCCity.summary())
```

### OLS Regression Results

| Dep. Variable:    | CO2 Emissions(g/km) | R-squared:          | 0.846     |
|-------------------|---------------------|---------------------|-----------|
| Model:            | OLS                 | Adj. R-squared:     | 0.846     |
| Method:           | Least Squares       | F-statistic:        | 4.045e+04 |
| Date:             | Fri, 06 Oct 2023    | Prob (F-statistic): | 0.00      |
| Time:             | 23:02:47            | Log-Likelihood:     | -33630.   |
| No. Observations: | 7385                | AIC:                | 6.726e+04 |
| Df Residuals:     | 7383                | BIC:                | 6.728e+04 |
| Df Model:         | 1                   |                     |           |

Covariance Type: nonrobust

| eoval zamee Types                       |                                      |                |                |                   |                                    |                  |                  |
|-----------------------------------------|--------------------------------------|----------------|----------------|-------------------|------------------------------------|------------------|------------------|
|                                         | =======                              | coef           | std err        | t                 | P> t                               | [0.025           | 0.975]           |
| const<br>Fuel Consumption City (L/100   |                                      | .5599<br>.3725 | 0.996<br>0.076 | 57.772<br>201.122 | 0.000<br>0.000                     | 55.607<br>15.223 | 59.513<br>15.522 |
| Omnibus: Prob(Omnibus): Skew: Kurtosis: | 3089.403<br>0.000<br>-1.963<br>9.161 |                | ,              | :                 | 1.913<br>16424.392<br>0.00<br>48.8 |                  |                  |
|                                         | =======                              | ======         |                |                   | ========                           |                  |                  |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## result\_FCCity.params

const 57.559903 Fuel Consumption City (L/100 km) 15.372459

dtype: float64

#### Scatter plot and trend line

```
B_0_FCCity = result_FCCity.params[0]
B_1_FCCity = result_FCCity.params[1]

# Crea una línea con los valores de B_0 y B_1
x_range_FCCity = np.linspace(min(x_FCCity), max(x_FCCity))
y_pred_FCCity = B_0_FCCity + B_1_FCCity * x_range_FCCity

plt.scatter(x_FCCity, y)
plt.title("Dispertion")
plt.xlabel("Fuel Consumption City (L/100 km)")
plt.ylabel("CO2 Emissions(g/km)")
plt.plot(x_range_FCCity, y_pred_FCCity, color="red") # Agrega la línea al gráfico
plt.show()
```



#### Studentized residuals



# QQ graphs

```
fig = sm.qqplot(standardized_residuals_FCCity, dist = norm, line = "q")
plt.title ("QQ Graph - normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()
```



Uniform distribution

```
fig = sm.qqplot(standardized_residuals_FCCity, dist = uniform, line = "q")
plt.title ("QQ Graph - Uniform distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()
```



# Positive skew normal distribution

```
fig = sm.qqplot(standardized_residuals_FCCity, dist = skewnorm(2), line = "q")
plt.title ("QQ Graph - positive skew normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()
```



# Negative skew normal distribution

```
fig = sm.qqplot(standardized_residuals_FCCity, dist = skewnorm(-2), line = "q")
plt.title ("QQ Graph - positive skew normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()
```



# ▼ Transformación de la variable "y"(CO2 Emissions(g/km)")

# 



# Y squared - Transformed data

Original - Positive skew

```
y_root = np.sqrt(y + abs(min(y)))
plt.hist(y_root, density=True, bins="auto", histtype="stepfilled", alpha = 0.4)
plt.title("Y squared - Transformed data")
plt.show()
```

### Y squared - Transformed data

## Log - Transformed data

```
 y\_log = np.log10(1 + y + abs (min(y))) \\ plt.hist(y\_log, density=True, bins="auto", histtype="stepfilled", alpha=0.4) \\ plt.title("Log - Transformed data") \\ plt.show ()
```

Territoria de la compansa del compansa de la compansa del compansa de la compansa



### Original - Negative skew



# Root squared - Transformed data

```
y_positive = y + abs (min(y))
r_root = np.sqrt(max(y_positive) - y_positive)
plt.hist(y_root, density=True, bins="auto", histtype="stepfilled", alpha=0.4)
plt.title ("Root squared - Transformed data")
plt.show()
```



y\_log = np.log10(1 + max(y\_positive) - y\_positive)
plt.hist(y\_log, density=True, bins="auto", histtype="stepfilled", alpha=0.4)
plt.title("Log - Transformed data")
plt.show()



From the graphs we can see that the best transformation for the variable y was root, because it is the one that is closest to a standard normal deviation.

# Multiple Linear Regresion

# OLS Regression Results

| ===========       |                     |                     |           |
|-------------------|---------------------|---------------------|-----------|
| Dep. Variable:    | CO2 Emissions(g/km) | R-squared:          | 0.904     |
| Model:            | OLS                 | Adj. R-squared:     | 0.904     |
| Method:           | Least Squares       | F-statistic:        | 1.157e+04 |
| Date:             | Sat, 07 Oct 2023    | Prob (F-statistic): | 0.00      |
| Time:             | 02:58:41            | Log-Likelihood:     | -31880.   |
| No. Observations: | 7385                | AIC:                | 6.377e+04 |
| Df Residuals:     | 7378                | BIC:                | 6.382e+04 |
| Df Model:         | 6                   |                     |           |
| Covariance Type:  | nonrobust           |                     |           |
|                   |                     |                     |           |

|       |          | std err | t      | P> t  | [0.025  | 0.975]  |
|-------|----------|---------|--------|-------|---------|---------|
| const | 227.8928 | 4.200   | 54.255 | 0.000 | 219.659 | 236.127 |

| Engine Size(L) Cylinders Fuel Consumption City (L/100 km) | 4.9936<br>7.5385<br>-0.0238 | 0.456<br>0.319<br>2.738 | 10.962<br>23.657<br>-0.009 | 0.000<br>0.000<br>0.993 | 4.101<br>6.914<br>-5.391 | 5.887<br>8.163<br>5.344 |
|-----------------------------------------------------------|-----------------------------|-------------------------|----------------------------|-------------------------|--------------------------|-------------------------|
| Fuel Consumption Hwy (L/100 km)                           | 4.4906                      | 2.260                   | 1.987                      | 0.047                   | 0.061                    | 8.920                   |
| Fuel Consumption Comb (L/100 km)                          | 1.6730                      | 4.969                   | 0.337                      | 0.736                   | -8.069                   | 11.415                  |
| Fuel Consumption Comb (mpg)                               | -3.4235                     | 0.079                   | -43.545                    | 0.000                   | -3.578                   | -3.269                  |
|                                                           |                             | =======                 |                            | ========                |                          |                         |
| Omnibus: 1193.                                            | 702 Durbi                   | n-Watson:               |                            | 1.618                   |                          |                         |
| Prob(Omnibus): 0.                                         | 000 Jarqu                   | e-Bera (JB)             | :                          | 7810.498                |                          |                         |
| Skew: -0.                                                 | 609 Prob(                   | JB):                    |                            | 0.00                    |                          |                         |
| Kurtosis: 7.                                              | 889 Cond.                   | No.                     |                            | 987.                    |                          |                         |
| =======================================                   | .=======                    | ========                |                            | =======                 |                          |                         |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In this model we use the y with no transportation. How ever, in the next one we use  $y_{root}$  and we noticed that our model has a small improved. It went from a R-squared: 0.904 to a R-squared: 0.915 as you can see below.

#### OLS Regression Results

| Dep. Variable:    | CO2 Emissions(g/km) | R-squared:          | 0.915     |
|-------------------|---------------------|---------------------|-----------|
| Model:            | OLS                 | Adj. R-squared:     | 0.915     |
| Method:           | Least Squares       | F-statistic:        | 1.328e+04 |
| Date:             | Sat, 07 Oct 2023    | Prob (F-statistic): | 0.00      |
| Time:             | 03:06:32            | Log-Likelihood:     | -4635.1   |
| No. Observations: | 7385                | AIC:                | 9284.     |
| Df Residuals:     | 7378                | BIC:                | 9333.     |
| Df Model:         | 6                   |                     |           |
| Covariance Type:  | nonrobust           |                     |           |

|                                  | coef    | std err | t       | P> t  | [0.025 | 0.975] |
|----------------------------------|---------|---------|---------|-------|--------|--------|
| const                            | 19.4368 | 0.105   | 185.164 | 0.000 | 19.231 | 19.643 |
| Engine Size(L)                   | 0.1331  | 0.011   | 11.687  | 0.000 | 0.111  | 0.155  |
| Cylinders                        | 0.1856  | 0.008   | 23.303  | 0.000 | 0.170  | 0.201  |
| Fuel Consumption City (L/100 km) | -0.0060 | 0.068   | -0.087  | 0.931 | -0.140 | 0.128  |
| Fuel Consumption Hwy (L/100 km)  | 0.1182  | 0.056   | 2.093   | 0.036 | 0.007  | 0.229  |
| Fuel Consumption Comb (L/100 km) | -0.0062 | 0.124   | -0.050  | 0.960 | -0.250 | 0.237  |
| Fuel Consumption Comb (mpg)      | -0.1191 | 0.002   | -60.623 | 0.000 | -0.123 | -0.115 |

 Omnibus:
 1399.064
 Durbin-Watson:
 1.617

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7822.151

 Skew:
 -0.794
 Prob(JB):
 0.00

 Kurtosis:
 7.786
 Cond. No.
 987.

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
x_complete_backward_const = sm.add_constant(x_complete_backward)
```

```
model_backward = sm.OLS(y_root, x_complete_backward_const)
result_backward = model_backward.fit()
```

print(result\_backward.summary())

# OLS Regression Results

| ===========       |                     |                     |           |
|-------------------|---------------------|---------------------|-----------|
| Dep. Variable:    | CO2 Emissions(g/km) | R-squared:          | 0.915     |
| Model:            | OLS                 | Adj. R-squared:     | 0.915     |
| Method:           | Least Squares       | F-statistic:        | 1.991e+04 |
| Date:             | Sat, 07 Oct 2023    | Prob (F-statistic): | 0.00      |
| Time:             | 03:06:23            | Log-Likelihood:     | -4636.1   |
| No. Observations: | 7385                | AIC:                | 9282.     |
| Df Residuals:     | 7380                | BIC:                | 9317.     |
| Df Model:         | 4                   |                     |           |
| Covariance Type:  | nonrobust           |                     |           |

|                             | c        | oef    | std err    | t        | P> t     | [0.025 | 0.975] |
|-----------------------------|----------|--------|------------|----------|----------|--------|--------|
| const                       | 19.3     | 676    | 0.092      | 209.826  | 0.000    | 19.187 | 19.549 |
| Engine Size(L)              | 0.1      | 313    | 0.011      | 11.606   | 0.000    | 0.109  | 0.154  |
| Cylinders                   | 0.1      | .830   | 0.008      | 23.624   | 0.000    | 0.168  | 0.198  |
| Fuel Consumption Hwy (L/100 | km) 0.1  | .078   | 0.005      | 19.768   | 0.000    | 0.097  | 0.119  |
| Fuel Consumption Comb (mpg) | -0.1     | 177    | 0.002      | -70.478  | 0.000    | -0.121 | -0.114 |
|                             | ======== | ====== |            | ======== | =======  |        |        |
| Omnibus:                    | 1452.486 | Durbin | n-Watson:  |          | 1.623    |        |        |
| Prob(Omnibus):              | 0.000    | Jarque | e-Bera (JB | ):       | 8021.114 |        |        |
| Skew:                       | -0.832   | Prob(  | JB):       |          | 0.00     |        |        |
| Kurtosis:                   | 7.827    | Cond.  | No.        |          | 530.     |        |        |
|                             |          |        |            |          |          |        |        |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

As we can see, after removing the highest p values Fuel Consumption City (L/100 km) & Fuel Consumption Comb (L/100 km) the  $R^2$  remains the same with less variables. That means that those variables are not significant for the model. So, the model is simpler and the model retains its 0.915 score (*Principle of parsimony*). So, we accept the hypothesis.

#### Studentized Residuals

```
influence_backward = result_backward.get_influence()
standardized_residuals_backward = influence_backward.resid_studentized_internal
print(standardized_residuals_backward)
     [-0.25076434 -0.06239508 -0.09337724 ... 0.48004602 0.58626641
       0.67521799]
residuals = standardized_residuals_backward
# Gráfica de dispersión de "Valor predicho" vs "Residuos estandarizados" para
# los residuos originales.
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(y_root, residuals)
plt.axhline(y=0, color='red', linestyle='--', linewidth=1)
plt.title("Dispersión de 'Valor Predicho'vs'Residuos Estandarizados' (Original)")
plt.xlabel("Valor Predicho")
plt.ylabel("Residuos Estandarizados")
plt.show()
```

# Dispersión de 'Valor Predicho'vs'Residuos Estandarizados' (Original)



# Normal distribution

fig = sm.qqplot(standardized\_residuals\_backward, dist = norm, line = "q")

plt.title ("QQ Graph - normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()



#### Uniform distribution

fig = sm.qqplot(standardized\_residuals\_backward, dist = uniform, line = "q")
plt.title ("QQ Graph - Uniform distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()



# Positive skew normal distribution

```
fig = sm.qqplot(standardized_residuals_backward, dist = skewnorm(2), line = "q")
plt.title ("QQ Graph - positive skew normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()
```



### Standarized residuals Quantiles

¥ ---

fig = sm.qqplot(standardized\_residuals\_backward, dist = skewnorm(-2), line = "q")

plt.title ("QQ Graph - positive skew normal distribution")
plt.ylabel("Standarized residuals Quantiles")
plt.show()



As we can see, the distribution that align better with the line, is the Uniform Distribution. This indicates that the data have a uniform distribution. That is, all the values in the data set have approximately the same probability of occurring.