AD-A112 261

TECHN	IIC	A	L
LIBR	AF	?Y	_

-	 	_
61.00		
AD		
	 _	

CONTRACT REPORT ARBRL-CR-0476

MODIFICATIONS OF OIL-TYPE COMPUTER PROGRAMS

Prepared by

Computer Code Consultants, Inc. 1680 Camino Redondo Los Alamos, NM 87544

January 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report loss not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER CONTRACT REPORT ARBRL-CR-0476 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitie) MODIFICATIONS OF OIL-TYPE COMPUTER PROGRAMS	s. Type of Report & Period Covered Final: Sep 1979-Dec 1980 6. Performing org. Report Number
7. AUTHOR(*) Wallace E. Johnson	8. CONTRACT OR GRANT NUMBER(*) DAAK11-79-C-0103
9. PERFORMING ORGANIZATION NAME AND ADDRESS Computer Code Consultants, Inc. 1680 Camino Redondo Los Alamos, NM 87544	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1L161102AH43
US Army Armament Research & Development Command US Army Ballistic Research Laboratory (DRDAR-BL) Aberdeen Proving Ground, MD 21005	JANUARY 1982 13. NUMBER OF PAGES 32
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office).	1S. SECURITY CLASS. (of this report) UNCLASSFIED 1Se. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	SCHEDULE

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)

Eulerian computer code Two-dimensional computer code Three-dimensional computer code

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

During the course of this contract, modifications for solving specific shaped-charge penetration problems were made to OIL-type computer codes that are operational at the Ballistic Research Laboratory. Set-up instructions were provided for the Ballistic Research Laboratory's versions of 2DCLAM, 3DCLAM, 2DSOIL, and 3DSOIL. The latter two codes are advanced operator splitting versions of DORF and TRIDORF. A series of tests were conducted to check-out the SOIL codes.

TABLE OF CONTENTS

																							Page
I.	INTRODUCTION .		٠		•	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	5
II.	2DCLAM INPUT .	• •	٠		•	٠	•	•	•	•	•	•	•			•	•		•	٠	•	•	6
III.	2DSOIL INPUT .				I.	•	•	•	•	•	•	•	•	•	•	•	•	•	•			I.	12
IV.	3DCLAM INPUT .		٠			•	•	•	•		•	•	•	•	•	•		•	•		•	•	18
٧.	3DSOIL INPUT .		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		24
VI.	SUMMARY AND CO	NCLU	SIC	ONS.	•	•	•	•	•	•	•	•		•	٠	٠	•	•	•	•	٠	٠	30
	DISTRIBUTION I	JIST.	•			•	•	•	•					•	•	٠	•		٠	٠	•	٠	31

I. INTRODUCTION

Target configurations for studying penetration by shaped-charge jets are becoming more complex; consequently, numerical techniques, capable of performing computations with more than two materials in a computational cell (such as the case with the DORF¹ and TRIDORF² codes), are required. The advanced operator splitting versions of DORF and TRIDORF, referred to as the 2DSOIL and 3DSOIL codes, respectively, have the capability of treating up to four materials within a computational cell.

An accurate treatment of free-surface movement is necessary for thin targets and multiple material targets. Special free-surface treatments have been incorporated into the 2DSOIL and TRIDORF codes.

For computational problems involving large stresses, the available viscosity due to material advection is adequate to accurately describe the stress, density, and velocity fields. However, at lower stresses, an artificial viscosity prescription is required to dampen the oscillatory flow results. An artificial viscosity routine which is incorporated into the solution during compression and rarefaction phases is now available in the 2DSOIL and 3DSOIL codes.

The early versions of TRIDORF and 3DSOIL contained very primitive and limited methods for generating starting data for the codes. Generator codes (similar to the $CLAM^2$ code) have been developed and checked out for the 3DSOIL and TRIDORF codes.

Test problems (Section VI, Summary and Conclusions) have been completed for the purpose of comparing two-dimensional results from a two-dimensional code to the two-dimensional results from a three-dimensional code.

Sections II thru V contain operating instructions for the Ballistic Research Laboratory's versions of the 2DCLAM, 2DSOIL, 3DCLAM, and 3DSOIL codes.

¹Johnson, W. E., "Development and Applications of Computer Programs to Hypervelocity Impact," Systems, Science and Software Report 3SR-749, July 1971.

²Johnson, W. E., "TRIDORF - A Two-Material Version of the TRIOIL Code with Strength," Computer Code Consultants Report CCC-976, September 1976.

II. 2DCLAM INPUT

Units are in jerks, grams, kev, centimeters, and shakes where 1 jerk = 10^{16} ergs and 1 shake = 10^{-8} s.

An asterisk signifies that the datum is entered in a real number format; otherwise, it is entered in an integer format.

CARD NUMBER	COLUMN	DESCRIPTION
1	2 - 72	Header card for comments
2	* 1 - 10	Problem number
	* 11 - 20	Maximum number of cells in the r-direction (IMAX)
	* 21 - 30	Maximum number of cells in the z-direction (JMAX)
	* 31 - 40	 for hydrodynamic and radiation computations or for hydrodynamic and strength computations
	* 41 - 50	 for no tracer particles or for tracer particles
	* 51 - 60	 for r-z geometry or for x-y plane-strain geometry
	* 61 - 70	Calls the REZONE routine and is equal to the tape number from ADJUST; otherwise, set to 0.
	71 - 72	Binary tape number
3 (Cell Dimension Several Number type of are massized	5	1 if this is the last DX or DY card or 0 if there are more DX or DY cards
are required.	2	0 for DX data or 1 for DY data
	3 - 4	Number of cells that will have the DX or DY value in columns 11 - 20
	5 - 6	Number of cells that will have the DX or DY value in columns 21 - 30

CARD NUMBER	COLUMN	DESCRIPTION
	7 - 8	Number of cells that will have the DX or DY value in columns 31 - 40
	9 - 10	Number of cells that will have the DX or DY value in columns 41 - 50
	* 11 - 20	Value of DX or DY
	* 21 - 30	Value of DX or DY
	* 31 - 40	Value of DX or DY
	* 41 - 50	Value of DX or DY
If DV on DV shows	· · ·	DV(I) DV(I 1) + 1DC(1)

If DX or DY above is negative, DX(I) = DX(I - 1)*ABS(value) or DY(I) = DY(I - 1)*ABS(value).

Last card of set * 21 - 30

80.

Insert data cards for CUBIT if S9 > 0.

Geometry and ρ , I, U, and V Input

CARD NUMBER	COLUMN	DESCRIPTION
1	1	Load a 1
	5 - 7	N^2 , the number of particles per cell $(1 \le N \le 20)$
	* 11 - 20	Z-coordinate for the origin of the radius vector for the FIT routines (YC)
	* 21 - 30	R-coordinate for the origin of the radius vector for the FIT routines (XC)
	* 31 - 40	FIT number (1 thru 6) to use to compute I, U, V, and ρ
	* 41 - 50	Material number (1 thru 4)
	* 51 - 60	Specific heat

Following the first card of each package are five possible data cards:

- 1. Generate geometry
- 2. Non-generate geometry
- 3. Density
- 4. Specific internal energy
- 5. Velocity (U and V)

Note: Many Number 1 and Number 2 cards may be used (maximum of 72), but only one each of cards 3, 4, and 5 may be used.

GEOMETRY	COLUMN	DESCRIPTION
1. Rectangle	1	Load a 4
	7	Load a 1 to generate Load a 0 to void
	* 11 - 20	Left X of rectangle
	* 21 - 30	Right X of rectangle
	* 31 - 40	Lower Y of rectangle
	* 41 - 50	Upper Y of rectangle
2. Triangle	1	Load a 6
	7	Load a 1 to generate Load a 0 to void
	* 11 - 20	X1-coordinate of vertex 1
	* 21 - 30	Yl-coordinate of vertex 1
	* 31 - 40	X2-coordinate of vertex 2
	* 41 - 50	Y2-coordinate of vertex 2
	* 51 - 60	X3-coordinate of vertex 3
	* 61 - 70	Y3-coordinate of vertex 3
3. Ellipse or Circle	1	Load a 4
	2	Load a 1
	7	Load a 1 to generate Load a 0 to void

GEOMETRY	COLUMN	DESCRIPTION
	* 11 - 20	Semi-axis in R of an ellipse; radius of a circle
	* 21 - 30	Semi-axis in Z of an ellipse; 0. for a circle
	* 31 - 40	R coordinate of the center of the ellipse or circle
	* 41 - 50	Z coordinate of the center of the ellipse or circle

Following the geometry cards are data cards that refer to all cells within the package:

- 1. Density card (load a 51 in columns 1-2)
- 2. Specific internal energy card (load a-52 in columns 1-2)
- 3. Velocity (U and V) card (load a 53 in columns 1-2)

The data for ρ (TABR array), I (TABI array), U (TABUV array), and V (TABUV array) are loaded in real number format in columns 11 - 20, 21 - 30, 31 - 40, 41 - 50, 51 - 60, and 61 - 70.

FIT routines are provided for analytical or table fits for each package. FIT3, FIT4, FIT5, and FIT6 are blank and are available to the user. FIT1 and FIT2 are described below. FIT numbers are specified on the first card of each package.

The FIT routine will assign a density, specific internal energy, and velocity components to each particle, N, having coordinate TTX (the r-coordinate of particle N relative to the origin of the radius vector) and coordinate TTY (the z-coordinate of particle N relative to the origin of the radius vector).

The standard output from the FIT routines is

WSR, the particle density of particle N WSI, the specific internal energy of particle N WSU, the r-velocity component of particle N WSV, the z-velocity component of particle N

FIT1

FORTRAN Expression	Analytic Expression					
WSR = TABR(1) WSI = TABI(1) WSU = TABUV(1) WSV = TABUV(2)	<pre>ρ = constant I = constant U = constant V = constant</pre>					

FIT2

FORTRAN Expression	Analytic Expression
WS = SQRT(TTX**2 + TTY**2) WSR = TABR(1) + TABR(2)*WS WSI = TABI(1) + TABI(2)*WS WSS = TABUV(1) + TABUV(2)*WS WSU = WSS*TTX/WS WSV = WSS*TTY/WS	$R = (r^{2} + z^{2})^{\frac{1}{2}}$ $\rho = a + bR$ $I = c + dR$ $S = e + fR$ $U = Sr/R$ $V = Sz/R$
	where a, b, c, d, e, and f are constants.

The last card of the geometry set will have a 2 in column 1.

Additional data cards will be called if N10 > 1.

Tracer Particle Option

COI	LUMN 1	COLUMNS 4 - 6	VARIABLE	DESCRIPTION
	2	56	L1	The number of particle packages to be generated
	1	100	14	Load a 1.0
	There	will be L1 of the	e followin	ng sets:
	2	67	N1	Number of tracer particles for this set (for a circle, the code gives 2*N1 particles
				2 "NI particles
1.	Circle (option on the state of the stat		
	1	29	S1	0. for a circle of particles
	1	30	S2	R-coordinate of the center of the circle
	1	31	S3	Z-coordinate of the center of the circle
	1	32	S4	Radius of the circle
2.	Line Seg	ment Option		
	1	29	S1	1. for a line segment of particles
	1	30	S2	X1-coordinate of an end point of the line

COLUMN 1	COLUMNS 4 - 6	VARIABLE	DESCRIPTION
1	31	S3	Y1-coordinate of an end point of the line segment
1	32	S4	X2-coordinate of an end point of the line segment
1	33	S5	Y2-coordinate of an end point of the line segment

Each of the L1 sets will end with a card:

COLUMN 1	COLUMNS 4 - 6	COLUMNS 8 - 9
1	100	1.

III. 2DSOIL INPUT

Units are in jerks, grams, kev, centimeters, and shakes where 1 jerk = 10^{16} ergs and 1 shake = 10^{-8} s.

All data loaded via the CARD routine are in a real number format. A 2 in column 1 instructs the CARD routine (data loader) to convert input real numbers to an integer format.

There are three sets of data cards. A l in column l designates a card to be the last in the second and third sets of data cards.

First Set

Card 1: Column 3 contains N, the number of header cards that are used for comments.

Next N cards: Comments in columns 2 thru 72.

Second Set

Column 1	Columns 4-6	<u>Variable</u>	Description
2	73	N7	Number of binary tape to be read
2	85	NMAX	 for no tracer particles or for tracer particles
2	96	NST	0. for hydrodynamic computations or 1. for hydrodynamic and strength
	151	PK(1)	computations Problem number
1	152	PK(2)	Cycle number for restart

Third Set

Column 1	Columns 4-6	<u>Variable</u>	Description
	6	PMIN	Minimum pressure
	9	UMIN	Minimum velocity
	10	EIMIN	Minimum specific internal energy

Column 1	Columns 4-6	<u>Variable</u>	Description
	11	RADC	O. for no radiation computations or .0137 jerks/cc/kev for radiation diffusion computations
	16	THEMIN	Minimum temperature (kev)
	17	CLITE	300 cm/shake, radiation velocity
	18	ALPHA	1., implicit coefficient for radiation flow
	21	DTOPTN	-1., the code will control the time step using the Courant and particle velocity conditions or 1., the code will use the loaded constant time step
	23	ESTAB	Early time stability
	24	EPSLN	Minimum flux (ρ) at free surface when E > EMELT
	25	FSTAB	Final time stability
	26	RHOMIN	Minimum density for cell to be checked for time change stability
	27	BGTHE	Background temperature (kev)
	28	TCUT	Use units of θ^4 If θ > TCUT, the stability (radiation) is checked if the zone is either cooling or heating, or, if θ <tcut, (radiation)="" checked="" cooling<="" if="" is="" only="" stability="" td="" the="" zone=""></tcut,>
	29	S1	.5, factor in MFLUX routine
	37	S 9	.01, epsilonics in strength
	38	S10	Projectile velocity at $t = 0$.
	43	FEF	allowable energy change, $\Delta E/E$, per cycle for radiation flow
	44	FACT	Factor for increasing ESTAB per cycle until ESTAB = FSTAB

Column 1	Columns 4-6	<u>Variable</u>	Description
	46	DMIN	Problem will stop on energy check if $ \Delta E/E/cycle < DMIN$
	47	Z(47)	Constant used in flux limiter at free surface in the radiation flow
	49	Z(49)	Minimum DX or DY

Note: L1 and L2 are right boundary values of a cell. L3 and L5 are top boundary values of a cell. L4 is the bottom boundary value of a cell.

2	54	L1	Active grid counter that is advanced or decreased after a computational cycle
2	55	L2	Active grid counter that is advanced or decreased after a computational cycle
2	56	L3	Active grid counter that is advanced or decreased after a computational cycle
2	57	L4	Active grid counter that is advanced or decreased after a computational cycle
2	58	L5	Active grid counter that is advanced or decreased after a computational cycle

Note: 1. indicates a reflective boundary condition;

-1. indicates a transmittive boundary condition.

2	59	LHL	Left hydrodynamic boundary condition
2	60	LHT	Top hydrodynamic boundary condition
			1./

Column 1	Columns 4-	6 <u>Variable</u>	Description
2	61	LHR	Right hydrodynamic boundary condition
2	62	LHB	Bottom hydrodynamic boundary condition
2	63	LRL	Left radiation boundary condition
2	64	LRT	Top radiation boundary condition
2	65	LRR	Right radiation boundary condition
2	66	LRB	Bottom radiation boundary condition
2	67	NI	Maximum number of iterations in a mixed cell to achieve pressure equilibrium
2	75	N9	0. for no strength computations or1. for strength computations
2	86	IFRAD	Maximum number of iterations (Newton-Raphson) for calculating the temperature from the energy equation
2	96	NST	 for no strength computations or for strength computations
	110	Z(110)	1.1*THETA (background for radiation-hydrodynamic computations) or 1.1*UMIN (for hydrodynamic-strength computations)
	146	TLP	Time frequency for long print
	147	DELP	Time interval for long print
	148	TDUMP	Time frequency for tape dump
	149	DELTD	Time interval for tape dump
	150	TSTOP	Time for problem to terminate normally
2	161	IDEQST(1)	Equation of state number for material 1
2	162	IDEQST(2)	Equation of state number for material 2
2	163	IDEQST(3)	Equation of state number for material 3

Column 1	Columns 4-6	Variable	Description
2	164	IDEQST(4)	Equation of state number material 4
2	170	IDEQST(10)	Total number of materials used in this problem
2	171	IDKAP(1)	Opacity routine for material 1
2	172	IDKAP(2)	Opacity routine for material 2
2	173	IDKAP(3)	Opacity routine for material 3
2	174	IDKAP(4)	Opacity routine for material 4
2	180	IDKAP(10)	0. for no artificial viscosity computations or1. for artificial viscosity computations
	181	OPCON(1)	Linear viscosity coefficient
	182	OPCON(2)	Quadratic viscosity coefficient
	183	OPCON(3)	Maximum change in velocity. If the change is greater than OPCON(3), the artificial viscosity coefficient is set to 0.

Equation of State Data

M = 25(N - 1) where N is the material number (1 thru 4).

EQSTC(M+1) thru EQSTC(M+10) are constants for Tillotson's equation of state. EQSTC(M+11) thru EQSTC(M+25) are constants that are required for any form of an equation of state.

Column 1	Columns 4-6	<u>Variable</u>	Description
	431+M	EQSTC(M+1)	ρ β (g/cc)
	432+M	EQSTC(M+2)	a
	433+M	EQSTC(M+3)	I ₀ (jerk/g)
	434+M	EQSTC(M+4)	b (jerk)
	435+M	EQSTC(M+5)	A (jerk/cc), bulk modulus

Column 1	Columns 4	-6 Variable	Description
	436+M	EQSTC(M+6)	I _s (jerk/g)
	437+M	EQSTC (M+7)	I's (jerk/g)
	438+M	EQSTC (M+8)	α
	439+M	EQSTC (M+9)	β
	440+M	EQSTC (M+10)	B (jerk/g)
	441+M	EQSTC (M+11)	Not used
	442+M	EQSTC(M+12)	Not used
	443+M	EQSTC(M+13)	Not used
	444+M	EQSTC(M+14)	Not used
	445+M	EQSTC(M+15)	10 ⁻ β*ρ ₀
	446*M	EQSTC(M+16)	10 ⁻⁶ *p ₀
	447+M	EQSTC(M+17)	IMELT (jerk/g)
	448+M	EQSTC(M+18)	Y_0 (jerk/g), yield strength in shear
1.5	449+M	EQSTC(M+19)	α in Y = (Y ₀ + α P)
	450+M	EQSTC(M+20)	μ, shear modulus
	451+M	EQSTC (M+21)	ρ/ρ_0 failure criterion
	452+M	EQSTC(M+22)	Maximum pressure in Y function above
	453+M	EQSTC (M+23)	Not used
	454+M	EQSTC (M+24)	Not used
	455+M	EQSTC (M+25)	Specific heat (jerk/g/kev)

IV. 3DCLAM INPUT

Units are in jerks, grams, kev, centimeters, and shakes where 1 jerk = 10^{16} ergs and 1 shake = 10^{-8} s.

An asterisk signifies that the datum is entered in a real number format; otherwise, it is entered in an integer format.

CARD NUMBER	COLUMN	DESCRIPTION
1	2 - 72	Header card for comments
2	* 1 - 10	Problem number
	* 11 - 20	Maximum number of cells in the x-direction (IMAX)
	* 21 - 30	Maximum number of cells in the y-direction (JMAX)
	* 31 - 40	Maximum number of cells in the z-direction (KMAX)
	* 51 - 60	 0. for hydrodynamic computations or 1. for hydrodynamic and radiation computations or -1. for hydrodynamic and strength computations
	71 - 72	Binary tape number
3 (Cell Dimension At least 3 Number 3 ty cards are required.	•	1 if this is the last DX, DY, or DZ data card or 0 if there are additional DX, DY, or DZ data cards
,	2	0 for DX data or 1 for DY data or 2 for DZ data
	3 - 4	Number of cells that will have the DX, DY, or DZ value in columns 11-20
	5 - 6	Number of cells that will have the DX, DY, or DZ value in columns 21-30
	7 - 8	Number of cells that will have the DX, DY, or DZ value in columns 31-40

CARD NUMBER	COLUMN	DESCRIPTION
	9 - 10	Number of cells that will have the DX, DY, or DZ value in columns 41-50
	* 11 - 20	Value of DX, DY, or DZ
	* 21 - 30	Value of DX, DY, or DZ
	* 31 - 40	Value of DX, DY, or DZ
	* 41 - 50	Value of DX, DY, or DZ

If DX, DY, or DZ above are negative, DX(I) = DX(I - 1)*ABS(value), DY(I) = DY(I - 1)*ABS(value), or DZ(I) = DZ(I - 1)*ABS(value), respectively.

-Last card of set

* 21 - 30 80.

Geometry and ρ , I, U, V, and W Input

Data is loaded to generate the following packages:

- 1. Parallelepiped
- 2. Tetrahedron which is triangular in the x-y plane and constant for all z planes
- 3. Sphere
- 4. Right circular cylinder with its axis parallel to the y-axis

CARD NUMBER	COLUMN	DESCRIPTION
1	1	Load a 1
	5 - 7	N^3 , the number of particles per cell $(1 \le N \le 10)$
	* 11 - 20	X-coordinate for the origin of the radius vector for the FIT routines (XC)
	* 21 - 30	Y-coordinate for the origin of the radius vector for the FIT routines (YC)
	* 31 - 40	Z-coordinate for the origin of the radius vector for the FIT routines (ZC)

CARD NUMBER	COLUMN	DESCRIPTION
	* 41 - 50	FIT number (1 thru 6) used to compute ρ , I, U, V, and W for the N particles
	* 51 - 60	Material number (1 thru 4)
	* 61 - 70	Specific heat for material number 1, 2, 3, or 4

Following the first card of each package are five other types of data cards:

- 1. Generate geometry with options below
- 2. Delete geometry with options below
- 3. Density (only one per package)
- 4. Specific internal energy (only one per package)
- 5. Velocities U, V, or W (only one per package)

The density, specific internal energy and velocity components are generated per particle in the FIT routines.

For data cards 1 and 2 above, 3DCLAM has the options for generating or deleting the following geometries:

GEOMETRY	COLUMN	DESCRIPTION
1. Parallelepiped	1	Load a 4
	7	Load a 1 to generate or load a 0 to delete or omit generating
	* 11 - 20	Left x-coordinate of parallelepiped (X1)
	* 21 - 30	Right x-coordinate of parallelepiped (X2)
	* 31 - 40	Bottom y-coordinate of parallelepiped (Y1)
	* 41 - 50	Top y-coordinate of parallelepiped (Y2)
	* 51 - 60	Back z-coordinate of parallelepiped (Z1)
	* 61 - 70	Front z-coordinate of parallelepiped (Z2)

GEOMETRY	COLUMN	DESCRIPTION
2. Tetrahedron	1	Load a 6
	7	Load a 1 to generate or load a 0 to delete or omit generating
	* 11 - 20	X-coordinate of vertex 1
	* 21 - 30	Y-coordinate of vertex 1
	* 31 - 40	X-coordinate of vertex 2
	* 41 - 50	Y-coordinate of vertex 2
	* 51 - 60	X-coordinate of vertex 3
	* 61 - 70	Y-coordinate of vertex 3
3. Sphere	1	Load a 4
	2	Load a 1
	7	Load a 1 to generate or load a 0 to delete or omit generating
	* 11 - 20	Radius of sphere
	* 21 - 30	0.
	* 31 - 40	X-coordinate of the center of the sphere
	* 41 - 50	Y-coordinate of the center of the sphere
	* 51 - 60	Z-coordinate of the center of the sphere
 Right circular cyli with axis parallel y-axis 		Load a 6
	2	Load a 1
	7	Load a 1 to generate or load a 0 to delete or omit generating
•	* 11 - 20	Radius of cylinder

GEOMETRY	COLUMN	DESCRIPTION
	* 21 - 30	X-coordinate of the center of the cylinder
	* 31 - 40	Z-coordinate of the center of the cylinder
	* 41 - 50	Y-coordinate of the bottom of the cylinder
	* 51 - 60	Y-coordinate of the top of the cylinder

Following the geometry cards are the following data cards that refer to all the particles within this package:

- 1. Density card (load a 51 in columns 1-2)
- 2. Specific internal energy card (load a 52 in columns 1-2)
- 3. Velocity card (load a 53 in columns 1-2)

If the density, specific internal energy, and velocities for this package are the same as the previous package, a 51, 52, or 53 card is not required.

The data for ρ (TABR array), I (TABI array), U (TABUV array), V (TABUV array), and W (TABUV array) are loaded in real number format in columns 11 - 20, 21 - 30, 31 - 40, 41 - 50, 51 - 60, and 61 - 70.

FIT routines are provided for analytical or table fits for each package. FIT3, FIT4, FIT5, and FIT6 are blank and are available to the user. FIT1 and FIT2 are described below. FIT numbers are specified on the first card of each package.

The FIT routine will assign a density, specific internal energy, and velocity components to each particle, N, having coordinate TX (the x-coordinate of particle N), coordinate TY (the y-coordinate of particle N), and coordinate TZ (the z-coordinate of particle N). If point (TX,TY,TZ) is other than point (0,0,0), the coordinates of particle N are relocated to point (TTX,TTY,TTZ) by

TTX = TX - XCTTY = TY - YC

TTZ = TZ - ZC

where point (XC, YC, ZC) is the origin of the position vector.

The standard output from the FIT routines is

WSR, the particle density of particle N

WSI, the specific internal energy of particle N

WSU, the x-velocity component of particle N

WSV, the y-velocity component of particle N

WSW, the z-velocity component of particle N

FIT1

FORTRAN Expression	Analytic Expression
WSR = TABR(1) WSI = TABI(1) WSU = TABUV(1) WSV = TABUV(2) WSW = TABUV(3)	<pre>p = constant I = constant U = constant V = constant W = constant</pre>
FIT2	
FORTRAN Expression	Analytic Expression
WS = SQRT(TTX**2 + TTY**2 + TTZ**2) WSR = TABR(1) + TABR(2)*WS WSI = TABI(1) + TABI(2)*WS WSS = TABUV(1) + TABUV(2)*WS WSU = WSS*TTX/WS WSV = WSS*TTY/WS WSW = WSS*TTZ/WS	$\rho = a + bR$
•	where a, b, c, d, e, and f are constants.

The last card of the geometry set will have a 2 in column 1.

V. 3DSOIL INPUT

Units are in jerks, grams, kev, centimeters, and shakes where 1 jerk = 10^{16} ergs and 1 shake = 10^{8} s.

All data loaded via the CARD routine are in a real number format. A 2 in column 1 instructs the CARD routine (data loader) to convert input real numbers to an integer format.

There are three sets of data cards. A 1 in column 1 designates a card to be the last in the second and third sets of data cards.

First Set

Card 1: Column 3 contains N, the number of header cards that are used for comments.

Next N cards: Comments in columns 2 thru 72.

Second Set

Column 1	Columns 4-6	<u>Variable</u>	Description
2	73	N7	Number of binary tape to be read
2	85	NMAX	 for no tracer particles or for tracer particles
2	96	NST	0. for hydrodynamic computations or1. for hydrodynamic and strength computations
	151	PK(1)	Problem number
1	152	PK(2)	Cycle number for restart

Third Set

Column 1	Columns 4-6	<u>Variable</u>	Description
	6	PMIN	Minimum pressure
	9	UMIN	Minimum velocity
	10	EIMIN	Minimum specific internal energy

Column 1	Columns 4-6	Variable	Description
	11	RADC	O. for no radiation computations or .0137 jerks/cc/kev for radiation diffusion computations
	12	Z(12)	Constant used in flux limiter at free surface in the radiation flow
	16	THEMIN	Minimum temperature (kev)
	17	CLITE	300 cm/shake, radiation velocity
	18	ALPHA	1., implicit coefficient for radiation flow
	21	DTOPTN	-1., the code will control the time step using the Courant and particle velocity conditions or 1., the code will use the loaded constant time step
	23	ESTAB	Early time stability
	24	EPSLN	Minimum flux (ρ) at free surface when E > EMELT
	25	FSTAB	Final time stability
	26	RHOMIN	Minimum density for cell to be checked for time change stability
	27	BGTHE	Background temperature (kev)
	28	TCUT	Use units of θ^4 If θ > TCUT, the stability (radiation) is checked if the zone is either cooling or heating, or, if θ < TCUT, the stability (radiation) is checked only if the zone is cooling
	37	S9	.01, epsilonics in strength
	38	S10	Y-component of projectile velocity at $t = 0$.
٠	43	FEF	allowable energy change, $\Delta E/E$, per cycle for radiation flow
	44	FACT	Factor for increasing ESTAB per cycle until ESTAB = FSTAB

Co1umn	1 Columns 4-6	Variable	Description	
	46	DMIN	Problem will stop on energy check if E/E/cycle < DMIN	
	49	Z(49)	Minimum DX, DY, or DZ	
Note: 1. indicates a reflective boundary condition; -1. indicates a transmittive boundary condition.				

	-1. Indicaces	a classificity	boundary condition.
2	59	LHL	Left hydrodynamic boundary condition
2	60	LHT	Top hydrodynamic boundary condition
2	61	LHR	Right hydrodynamic boundary condition
2	62	LHB	Bottom hydrodynamic boundary condition
2	63	LRL	Left radiation boundary condition
2	64	LRT	Top radiation boundary condition
2	65	LRR	Right radiation boundary condition
2	66	LRB	Bottom radiation boundary condition
2	67	NI	Maximum number of iterations in a mixed cell to achieve pressure equilibrium
2	75	N9	 for no strength computations or for strength computations
2	86	IFRAD	Maximum number of iterations (Newton-Raphson) for calculating the temperature from the energy equation
2	96	NST	 for no strength computations or for strength computations
	110	Z(110)	1.1*THETA (background for radiation-hydrodynamic computations) or 1.1*UMIN (for hydrodynamic-strength computations)
2	116	LLBB	Back hydrodynamic boundary conditions
2	117	LHF	Front hydrodynamic boundary conditions
2	118	LRBK	Back radiation boundary conditions

Column 1	Columns 4-6	Variab1e	Description
2	119	LRF	Front radiation boundary conditions
2	123	I1	Minimum active grid in the X-direction
2	124	12	Maximum active grid in the X-direction
2	125	J1	Minimum active grid in the Y-direction
2	126	Ј2	Maximum active grid in the Y-direction
2	127	K1	Minimum active grid in the Z-direction
2	128	K2	Maximum active grid in the Z-direction
	146	TLP	Time frequency for long print
	147	DELP	Time interval for long print
	148	TDUMP	Time frequency for tape dump
	149	DELTD	Time interval for tape dump
	150	TSTOP	Time for problem to terminate normally
2	161	IDEQST(1)	Equation of state number for material 1
2	162	IDEQST(2)	Equation of state number for material 2
2	163	IDEQST(3)	Equation of state number for material 3
2	164	IDEQST(4)	Equation of state number material 4
2	170	IDEQST(10)	Total number of materials used in this problem
2	171	IDKAP(1)	Opacity routine for material 1
2	172	IDKAP(2)	Opacity routine for material 2
2	173	IDKAP(3)	Opacity routine for material 3
2	174	IDKAP(4)	Opacity routine for material 4

Column 1	Columns 4-6	Variable	Description
2	180	IDKAP(10)	0. for no artificial viscosity computations or1. for artificial viscosity computations
	181	OPCON(1)	Linear viscosity coefficient
	182	OPCON(2)	Quadratic viscosity coefficient
	183	OPCON(3)	Maximum change in velocity. If the change is greater than OPCON(3), the artificial viscosity coefficient is set to 0.

Equation of State Data

M = 25(N - 1) where N is the material number (1 thru 4).

EQSTC(M+1) thru EQSTC(M+10) are constants for Tillotson's equation of state. EQSTC(M+11) thru EQSTC(M+25) are constants that are required for any form of an equation of state.

Column 1	Columns 4-6	<u>Variable</u>	Description
	431+M	EQSTC (M+1)	ρ ₀ (g/cc)
	432+M	EQSTC(M+2)	a
	433+M	EQSTC(M+3)	I ₀ (jerk/g)
	434+M	EQSTC (M+4)	b
	435+M	EQSTC (M+5)	A (jerk/cc), bulk modulus
	436+M	EQSTC(M+6)	I _s (jerk/g)
	437+M	EQSTC (M+7)	I's (jerk/g)
	438+M	EQSTC(M+8)	α
	439+M	EQSTC (M+9)	β
	440+M	EQSTC(M+10)	B (jerk/g)
	441+M	EQSTC (M+11)	Not used
	442+M	EQSTC(M+12)	Not used
	443+M	EQSTC(M+13)	Not used
			20

Column 1	Columns 4-6	<u>Variable</u>	Description
	444+M	EQSTC(M+14)	Not used
	445+M	EQSTC(M+15)	10 ⁻⁵ *p ₀
	446*M	EQSTC (M+16)	10 ⁻⁶ *p ₀
	447+M	EQSTC (M+17)	IMELT (jerk/g)
	448+M	EQSTC (M+18)	Y_0 (jerk/g), yield strength in shear
	449+M	EQSTC (M+19)	α in Y = $(Y_0 + \alpha P)(1 - I/IMELT)$
	450+M	EQSTC (M+20)	μ , shear modulus
	451+M	EQSTC (M+21)	ρ/ρ_0 failure criterion
	452+M	EQSTC(M+22)	Maximum pressure in Y function above
	453+M	EQSTC (M+23)	Not used
	454+M	EQSTC(M+24)	Not used
	455+M	EQSTC(M+25)	Specific heat (jerk/g/kev)

VI. SUMMARY AND CONCLUSIONS

Several test problems have been completed to compare the numerical results of an isothermal expansion problem and an impact problem.

For the impact problem, a plane strain (x-y) impact (run with 2DSOIL) was compared to a plane strain (x-y) impact (run with 3DSOIL) with several planes in the z-direction. These results between two-dimensional and three-dimensional numerical techniques proved to be identical thereby giving credibility to the 2DSOIL and 3DSOIL codes.

A circular isothermal expansion in plane strain (run with 2DSOIL) was compared with an equivalent circular isothermal expansion in plane strain (run with 3DSOIL) with several planes in the z-direction. The agreement was identical between the two codes.

Preliminary exploration of incorporating an elastic-plastic strength model in the operator splitting mode indicates that it is feasible. Additional calculations will be required to confirm the results.

The packaging concept (sub-dividing the computational grid into N problems and communicating the necessary information across problem boundaries) may be necessary to enable one to compute large three-dimensional problems. Another possible solution would be to pack several words into a single word. This concept can double the size of the computational cells available for any given problem.

DISTRIBUTION LIST

No. of Copies		No. of Copies	
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801		Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809 Commander
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL		US Army Tank Automotive Rsch and Development Command ATTN: DRDTA-UL Warren, MI 48090
1	Watervliet, NY 12189 Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 4300 Goodfellow Blvd	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range, NM 88002
1	St. Louis, MO 63120 Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Computer Code Consultants, Inc. ATTN: Mr. W. Johnson 1680 Camino Redondo Los Alamos, NM 87544

DISTRIBUTION LIST

Aberdeen Proving Ground

Dir, USAMSAA ATTN: DRXSY-D

DRXSY-MP, H. Cohen

Cdr, USATECOM ATTN: DRSTE-TO-F

DIR, USACSL

Bldg. E3516, EA

ATTN: DRDAR-CLB-PA

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number	
2. Does this report satisfy a need? project, or other area of interest fo	
3. How, specifically, is the report source, design data or procedure, manideas, etc.)	
Tacas, cee.,	
4. Has the information in this reportant savings as far as man-hours/contract avoided, efficiencies achieved, etc.	dollars saved, operating costs
5. General Comments (Indicate what make this report and future reports to your needs, more usable, improve	of this type more responsive
6. If you would like to be contacted this report to raise specific question please fill in the following informations.	ons or discuss the topic,
Name:	
Telephone Number:	
Organization Address:	