Weekly Meeting

Topic: property lpha with k=6; property eta for k=4

Presenter: Heng-Tse Chou @ NTHU STAT

Date: Jun. 5, 2024

Issues

- 1. s111 stratification for property lpha with k=6.
- 2. Construct property β .

Property α

 $\mathrm{SOA}(n,m,27,3)$ has property lpha iff:

- 1. A is resolution IV.
- 2. (B, B', B'') is resolution III, i.e., no repeated columns.

Property β

 $\mathrm{SOA}(n,m,27,3)$ has property β iff:

- 1. A is resolution IV.
- 2. $(B, B', B'') \subseteq \bar{A}$.
- 3. (B, B', B'') contains no 2fi from A.

Grouping with k=6 from last week

α	eta	$lpha \cdot eta$	$lpha \cdot eta^2$
$5\cdot A$	$6 \cdot B$	$56 \cdot AB$	$56^2 \cdot AB^2$
$5 \cdot A^2$	$6\cdot B^2$	$56 \cdot A^2 B^2$	$56^2 \cdot A^2 B$
$5 \cdot B$	$6\cdot A^2$	$56 \cdot A^2 B$	$56^2 \cdot AB$
$5 \cdot B^2$	$6 \cdot A$	$56 \cdot AB^2$	$56^2 \cdot A^2 B^2$
$6 \cdot AB$	$5 \cdot AB^2$	$56 \cdot A^2$	$5^26\cdot B^2$
$6 \cdot A^2 B^2$	$5 \cdot A^2 B$	$56 \cdot A$	$5^26\cdot B$
$6 \cdot AB^2$	$5 \cdot A^2 B^2$	$56 \cdot B$	$5^26\cdot A^2$
$6 \cdot A^2 B$	$5 \cdot AB$	$56 \cdot B^2$	$5^26\cdot A$

Grouping with k=6 from last week

One of the bad combinations: #1, #3, #23.

• #1 = 145, #3 = 245, $#23 = 1^22^245$.

Grouping with k=4

α	β	$lpha \cdot eta$	$lpha\cdoteta^2$
14	23	1234	12^23^24
1^24	2^23	1^22^234	1^223^24
24	1^23	1^2234	$123^{2}4$
2^24	13	$12^{2}34$	$1^2 2^2 3^2 4$
123	12^24	$1^{2}34$	2^234^2
$1^2 2^2 3$	$1^{2}24$	134	234^2
$12^{2}3$	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	$2^{2}34$	134^2

Grouping with k=4

$$A_{(1)} = (14, 1^24, 24, 2^24)$$

$$A_{(2)} = (123, 1^22^23, 12^23, 1^223)$$

$$B_{(1)}=(23,2^23,1^23,13)$$

$$B_{(2)} = (12^24, 1^224, 1^22^24, 124)$$

Grouping with k=6

α	eta	$lpha \cdot eta$	$lpha\cdoteta^2$
$5\cdot A_{(1)}$	$6 \cdot B_{(1)}$	$56\cdot A_{(1)}B_{(1)}$	$56^2 \cdot A_{(1)} B_{(1)}^2$
$5^2 \cdot A_{(1)}$	$6^2 \cdot B_{(1)}$	$oxed{5^26^2\cdot A_{(1)}B_{(1)}}$	$5^26\cdot A_{(1)}B_{(1)}^2$
$6\cdot A_{(1)}$	$5^2 \cdot B_{(1)}$	$5^26\cdot A_{(1)}B_{(1)}$	$56 \cdot A_{(1)} B_{(1)}^2$
$6^2 \cdot A_{(1)}$	$5 \cdot B_{(1)}$	$56^2 \cdot A_{(1)} B_{(1)}$	$\left 5^2 6^2 \cdot A_{(1)} B_{(1)}^2 \right $
$56\cdot A_{(2)}$	$56^2 \cdot B_{(2)}$	$5^2 \cdot A_{(2)} B_{(2)}$	$6^2 \cdot A_{(2)} B_{(2)}^2$
$5^26^2\cdot A_{(2)}$	$5^26\cdot B_{(2)}$	$5\cdot A_{(2)}B_{(2)}$	$6\cdot A_{(2)}B_{(2)}^2$
$56^2 \cdot A_{(2)}$	$oxed{5^26^2\cdot B_{(2)}}$	$6\cdot A_{(2)}B_{(2)}$	$5^2 \cdot A_{(2)} B_{(2)}^2$
$5^26\cdot A_{(2)}$	$56 \cdot B_{(2)}$	$6^2 \cdot A_{(2)} B_{(2)}$	$5\cdot A_{(2)}B_{(2)}^2$

Construct property eta for s=2

```
P_0= all combinations of e_3,\dots,e_k. P=(I,P_0) A=e_1P B=e_2P B'=e_1e_2P	o S=(P_0,A,B,B')
```

Construct property β for s=3

```
P_0= all combinations of e_3,\dots,e_k. P=(I,P_0,P_0^2) A=e_1P B=e_2P B'=e_1e_2P B''=e_1e_2^2P	o S=(P_0,A,B,B',B'')
```