Matemáticas II

Marcos Bujosa

Universidad Complutense de Madrid

04/04/2024

1 / 44

L-R

L-15 L-16 L-17 L-18

1 Esquema de la Lección 15

Matrices siempre cuadradas en este tema

Esquema de la Lección 15

- Autovalores, autovectores (eigen, característicos, propios)
- $|\mathbf{A} \lambda \mathbf{I}| = 0$ ecuación característica
- $ullet {
 m tr} \left({f A}
 ight), \; \det {f A}$ (demo en la próxima lección)

L-15 L-16 L-17 L-18 L-1

Puede encontrar la última versión de este material en

https://github.com/mbujosab/MatematicasII/tree/main/Esp

Marcos Bujosa. Copyright © 2008–2024
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1 / 44

L-15 L-16 L-17 L-18 L-R

2 Autovalores y autovectores

Considere la ecuación

$$\mathbf{A} \frac{\mathbf{x}}{\mathbf{x}} = \lambda \frac{\mathbf{x}}{\mathbf{x}}$$
 (con $\mathbf{x} \neq \mathbf{0}$)

- Autovalor es cualquier λ para el que existan soluciones.
- Dichas soluciones *no nulas* x se llaman *autovectores*. $x \neq 0$ tales que $\mathbf{A} x$ es un múltiplo de x

Cuando λ es 0, ¿quienes son los auto-vectores?

2/44

- 3 Un ejemplo: matriz de proyección
- Proyección ortogonal
- ¿Qué vectores son autovectores? ¿qué vectores quedan en la misma dirección?
- ¿Cuanto valen sus autovalores?
- ¿Hay más autovectores? ¿Con qué autovalor?
- Dos autoespacios

4 / 44

L-R

L-15 L-16 L-17 L-18

5 ¿Cómo calcular los autovalores y los autovectores?

¿Cómo resolver

$$\mathbf{A}x = \widehat{\lambda} \widehat{x}$$

Reescribamos ...

$$(\mathbf{A} - \lambda \mathbf{I})\boldsymbol{x} =$$

idea Para que esto ocurra ¿cómo debe ser la matriz $(\mathbf{A} - \lambda \mathbf{I})$?

¿Cuánto debe valer el determinante? $|\mathbf{A} - \lambda \mathbf{I}| =$

L-15 L-16 L-17 L-18 L-1

4 Otro ejemplo: matriz intercambio

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- ¿Un vector que no cambie tras el intercambio?
- ¿Cuál es su autovalor?
- ¿Algún autovector asociado a $\lambda_2 = -1$?

$$\mathbf{A}\boldsymbol{x}_2 = -\boldsymbol{x}_2$$

Nótese: $\operatorname{tr}(\mathbf{A}) = 0 = \lambda_1 + \lambda_2$; $\det \mathbf{A} = -1 = \lambda_1 \cdot \lambda_2$.

5 / 44

L-15 L-16 L-17 L-18 L-R

6 ¿Cómo calcular los autovalores y los autovectores?

- 1. Autovalores son los λ 's tales que: $|\mathbf{A} \lambda \mathbf{I}| =$ (Polinomio característico $P_{\mathbf{A}}(\lambda)$)
- 2. ¿Cómo calcular los x tales que $(\mathbf{A} \lambda \mathbf{I}) x = \mathbf{0}$?

Autoespacio (conjunto de autovectores + 0):

$${\cal E}_{\lambda}({f A}) = \left\{ \left. {m x} \in {\mathbb R}^n
ight| {f A} {m x} = \lambda {m x}
ight\}$$

Espectro: conjunto $\{\lambda_1, \dots \lambda_k\}$ de autovalores (raíces de $P_{\mathbf{A}}(\lambda)$)

7 Ejemplo (¡primero los autovalores!)

Buscamos determinante nulo (Polinomio característico)

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}; \qquad \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 0$$

Nótese: $\operatorname{tr}(\mathbf{A}) = 6 = \lambda_1 + \lambda_2$; $\det \mathbf{A} = 8 = \lambda_1 \cdot \lambda_2$.

8 / 44

L-R

L-15 L-16 L-17 L-18

9 Otro ejemplo: Matriz rotación 90º

$$\mathbf{Q} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- ¿Cuanto suman los autovalores?
- ¿Cuanto vale el determinante?

Dificultades

$$\lambda_1 + \lambda_2 = 0$$
 y $\lambda_1 \cdot \lambda_2 = 1$ $(+) \cdot (-) = (+)$

¿Qué vector es paralelo a si mismo tras una rotación de 90° ?

$$\det (\mathbf{Q} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 =$$

L-15 L-16 L-17 L-18 L-

8 Ejemplo (después los autoespacios)

y ahora calculamos el espacio nulo $\mathcal{N}(\mathbf{A} - \lambda \mathbf{I})$... para cada λ .

Para
$$\lambda_1 = 4$$

$$(\mathbf{A} - 4\mathbf{I}) = \begin{bmatrix} 3 - 4 & 1 \\ 1 & 3 - 4 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow$$

Para
$$\lambda_2 = 2$$

$$(\mathbf{A} - 2\mathbf{I}) = \begin{bmatrix} 3 - 2 & 1 \\ 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow$$

¿Son los dos únicos autovectores?

$$\mathbf{A} oldsymbol{x}_i = \lambda oldsymbol{x}_i; \qquad egin{bmatrix} 3 & 1 \ 1 & 3 \end{bmatrix} oldsymbol{x}_i = \lambda oldsymbol{x}_i.$$

9 / 44

L-15 L-16 L-17 L-18 L-R

10 Ejemplos aún peores

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

Autovalores

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)(3 - \lambda) = 0 \begin{cases} \lambda_1 = 3 \\ \lambda_2 = 3 \end{cases}$$

Autovectores

• para
$$\lambda_1$$
: $(\mathbf{A} - \lambda \mathbf{I}) \boldsymbol{x} = \mathbf{0} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}_1; \qquad \boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

• para λ_2 :

 $\lambda=3$ está repetido dos veces, pero $\dim \mathcal{E}_3(\mathbf{A})=1$

$$\mu(3) = 2 \neq 1 = \gamma(3)$$

Resumen:

- 1. Los autovalores λ son aquellos que hacen singular a la matriz $(\mathbf{A} - \lambda \mathbf{I})$, es decir, son las raíces del polinomio característico: $\det(\mathbf{A} - \lambda \mathbf{I})$.
- 2. Una matriz de orden $n \times n$ tiene polinomio caracteristico de grado n
- 3. Un polinomio de grado n tiene n raíces (quizá algunas raíces repetidas)
- 4. La suma de los autovalores es igual a la suma de los elementos de la diagonal de la matriz (traza)
- 5. El producto de los autovalores es igual al determinante
- 6. Los autovectores asociados a λ son los vectores no nulos de $\mathcal{N}(\mathbf{A} - \lambda \mathbf{I}).$

12 / 44

L-15

L-16

L-18

L-R

(b)

$$\mathbf{B} = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

(Strang, 2007, ejercicio 12 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 3. Si B tiene autovalores 1, 2, 3, C tiene autovalores 4, 5, 6, y D tiene autovalores 7, 8, 9, ¿Qué autovalores tiene la matriz de orden 6 por 6

 $A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$? donde B, C, D son matrices triangulares superiores.

(Strang, 2007, ejercicio 13 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 4. Encuentre los autovalores y autovectores de las siguientes matrices

(a)

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(b)

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

(Strang, 2007, ejercicio 5 del conjunto de problemas 5.1.)

L-15

L-16 Problemas de la Lección 15

(L-15) PROBLEMA 1. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} -3 & 4 & -4 \\ -3 & 5 & -3 \\ -1 & 2 & 0 \end{bmatrix}$$

(a) Los autovalores de **A** son -1, 1 y 2; y dos auto-vectores son

Compruebe que estos vectores son efectivamente auto-vectores de A. ¿Cuales son sus correspondientes autovalores?

(b) Encuentre un tercer auto-vector correspondiente al tercer auto-valor.

(L-15) PROBLEMA 2. Encuentre los valores y vectores característicos de

(a)

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

12 / 44

L-15 L-16 L-18 L-R

(L-15) PROBLEMA 5. Los autovalores de A son iguales a los autovalores A^T. Esto se debe a que $\det(\mathbf{A} - \lambda \mathbf{I})$ es igual a $\det(\mathbf{A}^{\mathsf{T}} - \lambda \mathbf{I})$.

- (a) Lo anterior es cierto porque
- (b) Demuestre con un ejemplo que, sin embargo, los auto-vectores de \mathbf{A} y \mathbf{A}^{T} no son

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 6. Sea **B** y un autovector x con autovalor asociado λ , es decir $\mathbf{B}x = \lambda x$; sea también $\mathbf{A} = (\mathbf{B} + \alpha \mathbf{I})$. Demuestre que x es también un autovector de **A**, pero con el autovalor asociado $(\lambda + \alpha)$.

(L-15) Problema 7.

- (a) Encuentre los autovalores y los auto-vectores de la matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$. Compruebe que la traza es igual a la suma de los autovalores, y que el determinante es igual a su producto.
- (b) Si consideramos una nueva matriz, generada a partir de la anterior como

$$\mathbf{B} = (\mathbf{A} - 7\mathbf{I}) = \begin{bmatrix} -6 & -1 \\ 2 & -3 \end{bmatrix}.$$

¿Cuáles son los autovalores y auto-vectores de la nueva matriz, y como están relacionados con los de A?

(Strang, 2007, ejercicio 1 y 3 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 8. Suponga que λ es un auto-valor de ${\bf A}$, y que ${\bf x}$ es un auto-vector tal que ${\bf A}{\bf x}=\lambda {\bf x}$.

- (a) Demuestre que ese mismo x es un auto-vector de $\mathbf{B} = \mathbf{A} 7\mathbf{I}$, y encuentre el correspondiente auto-valor de \mathbf{B} .
- (b) Suponga que $\lambda \neq 0$ (y que **A** es invertible), demuestre que x también es un auto-vector de \mathbf{A}^{-1} , y encuentre el correspondiente auto-valor. ¿Qué relación tiene con λ ?

(Strang, 2007, ejercicio 7 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 9. Suponga que $\bf A$ es una matriz de dimensiones $n\times n$, y que $\bf A^2=\bf A$. ¿Qué posibles valores pueden tomar los autovalores de $\bf A$?

(L-15) PROBLEMA 10. Suponga la matriz \mathbf{A} con autovalores 1, 2 y 3. Si v_1 es un auto-vector asociado al auto-valor 1, v_2 al auto-valor 2 y v_3 al auto-valor 3; entonces ¿cuanto es $\mathbf{A}(v_1+v_2-v_3)$?

(L-15) PROBLEMA 11. Proporcione un ejemplo que muestre que los auto-valores pueden cambiar cuando un múltiplo de una columna se resta de otra. ¿Por qué los pasos de eliminación no modifican los autovalores nulos? (Strang, 2007, ejercicio 6 del conjunto de problemas 5.1.)

12 / 44

L-15 L-16 L-17 L-18 L-R

(L-15) PROBLEMA 15. The equation $(\mathbf{A}^2 - 4\mathbf{I})x = b$ has no solution for some right-hand side b. Give as much information as possible about the eigenvalues of the matrix \mathbf{A} (the matrix \mathbf{A} is diagonalizable).

(L-15) PROBLEMA 16. You are given the matrix

$$\mathbf{A} = \begin{bmatrix} 0.5 & 0.2 & 0.2 \\ 0.1 & 0.5 & 0.5 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$$

One of the eigenvalues is $\lambda=1$. What are the eigenvalues of **A**? [Hint: Very little calculation required! You should be able to see another eigenvalue by inspection of the form of **A**, and the third by an easy calculation. You shouldn't need to compute $\det(\mathbf{A}-\lambda\mathbf{I})$ unless you really want to do it the hard way.]

L-15 L-16 L-17 L-18 L-R

(L-15) Problema 12. El polinomio característico de una matriz ${\bf A}$ se puede factorizar como

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda).$$

Demuestre, partiendo de esta factorización, que el determinante de ${\bf A}$ es igual al producto de sus valores propios (autovalores). Para ello haga una elección inteligente del valor de λ .

(Strang, 2007, ejercicio 8 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 13. Calcule los valores característicos (autovalores o valores propios) y los vectores característicos de $\bf A$ y $\bf A^2$:

$$\mathbf{A} = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \qquad \mathbf{y} \qquad \mathbf{A}^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}$$

 ${\bf A}^2$ tiene los mismos _____ que ${\bf A}$. Cuando los autovalores de ${\bf A}$ son λ_1 y λ_2 , los autovalores de ${\bf A}^2$ son ____. (Strang, 2007, ejercicio 22 del conjunto de problemas 5.1.)

(L-15) PROBLEMA 14. Suponga que los valores característicos de \mathbf{A} son 1, 2 y 4, ¿cuál es la traza de \mathbf{A}^2 ? ¿Cuál es el determinante de $(\mathbf{A}^{-1})^{\mathsf{T}}$? (Strang, 2007, ejercicio 10 del conjunto de problemas 5.2.)

12 / 44

L-15 L-16 L-17 L-18 L-R

1 Esquema de la Lección 16

Esquema de la Lección 16

- Matrices semejantes: $C = S^{-1}AS$
- Diagonalizando una matriz por bloques triangulares

• Matrices diagonalizables: cuando **C** es diagonal.

2 Matrices semejantes

Semejanza

A y C son semejantes si existe S invertible tal que

$$\mathbf{C} = \mathbf{S}^{\text{-}1}\mathbf{A}\mathbf{S}$$

Si A y C son semejantes (mirar demos en el libro):

- Mismo determinante: $\det \mathbf{A} = \det \mathbf{C}$
- Mismo polinomio característico: $|\mathbf{A} \lambda \mathbf{I}| = |\mathbf{C} \lambda \mathbf{I}|$
- Mismos autovalores y con las mismas multiplicidades algebraica y geométrica.
- La misma traza.

Trans. Elem. inversas espejo: $\left(\mathbf{I}_{(\tau_1\cdots\tau_k)}\right)^{-1}={}_{esp(\tau_k^{-1}\cdots\tau_1^{-1})}\mathbf{I}$

$$\mathbf{I} = \mathbf{I}_{[(-\alpha)\mathbf{j}+\mathbf{i}]} \mathbf{\tau} = \mathbf{I}_{[(\alpha)\mathbf{i}+\mathbf{j}]} \mathbf{\tau} \Rightarrow \mathbf{A} \text{ similar a } esp(\tau_1 \cdots \tau_k)^{-1} \mathbf{A}_{\tau_1 \cdots \tau_k}$$

L-16 L-18 L-R

4 Diagonalizando por bloques una matriz (matriz dentada)

Sea
$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \| & \| & \mathbf{L} \end{bmatrix} \in \mathbb{C}^{n \times n}$$
 donde

C (de orden m) es singular y **L** es triangular inferior e invertible, entonces existe S = RP (invertible) tal que

L-R

3 Diagonalizando por bloques una matriz (matriz dentada)

Sea
$$\mathbf{A} = \left[\begin{array}{c|c} \mathbf{C} & \\ \hline * & \mathbf{L} \end{array} \right] \in \mathbb{C}^{n \times n}$$
 donde

C (de orden m) es singular y L es triangular inferior e invertible; entonces existe R invertible tal que

$$\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \begin{bmatrix} & & 0 & & & & \\ & \vdots & & & & \\ & & \mathbf{m} \times (m-1) & 0 & & & & \\ \hline & & d_{m+1} & \beta_{m+1} & & & \\ & & d_{m+2} & * & \beta_{m+2} & & \\ & \vdots & * & * & \ddots & \\ & & d_n & * & * & \cdots & \beta_n \end{bmatrix}$$

 $\left(\dots \frac{\tau}{\left[\left(-\alpha_{j}\right)^{m+j}\right]}\dots\right)^{\mathbf{A}}\left(\dots \frac{\tau}{\left[\left(\alpha_{j}\right)^{j+m}\right]}\dots\right); \qquad \mathbf{j}=1,\dots,m-1.$

15 / 44

L-18 L-16

5 Un ejemplo muy sencillo

Ejemplo

Sea
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 con autovalores 0, 1 y 1.

$$\underbrace{\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}}_{\mathbf{0I}} \overset{\textbf{(-)}}{\mathbf{0I}} \leftarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (1)1+2 \\ [2]3+2 \\ [2]=3]} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{\begin{smallmatrix} \mathbf{\tau} \\ [2=3] \\ [(-2)2+3] \\ [(-1)2+1] \\ [(-1)2+1] \end{bmatrix}} \xrightarrow{\begin{smallmatrix} \mathbf{T} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{(+)}_{\underbrace{\mathbf{C}}} \begin{bmatrix} \mathbf{C} \\ \mathbf{S} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\text{diagonal}}$$

16 / 44 17 / 44

L-16

6 Un ejemplo no tan sencillo

Ejemplo

Sea
$$\mathbf{A} = \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix}$$
 con autovalores 1, 1 y 0.

$$\begin{array}{c} (-) \\ \hline 11 \\ \hline \end{array} \end{array} \overbrace{ \begin{array}{c} -3 \\ 3 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5 \\ -1 \\ 2 \\ \hline \end{array} } \xrightarrow{ \begin{array}{c} -3 \\ 5$$

18 / 44

L-R

L-16

8 De vuelta al ejemplo sencillo y "desdentado"

Sea
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 con autovalores 0, 1 y 1.

$$\underbrace{\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}}_{\mathbf{0}\mathbf{I}} \overset{(-)}{\underset{\mathbf{0}}{\mathbf{0}}} + \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{0}} \overset{\tau}{\underset{[2:3]}{\overset{[(1)1+2]}{\underset{[2:3]}{(2)3+2]}}}} + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}}_{\mathbf{0}} \overset{\tau}{\underset{[(-2)2+3]}{\overset{\tau}{\underset{[(-2)2+3]}{\overset{\tau}{\underset{[(-1)2+1]}{\overset{\tau}{\underset{0}{\mathbf{0}}}}}}}} \overset{(+)}{\underset{\mathbf{0}}{\mathbf{0}}} \overset{\mathbf{C}}{\underset{\mathbf{0}}{\mathbf{0}}} \overset{\mathbf{C}}{\underset{\mathbf{0}}} \overset{\mathbf{C}}{\underset{\mathbf{0}}{\overset{\mathbf{C}}{\underset{\mathbf{0}}{\mathbf{0}}}} \overset{\mathbf{C$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}(\mathbf{S}_{|i}) = \lambda_i(\mathbf{S}_{|i}) \quad \Rightarrow \quad \mathbf{S}_{|i} \text{ es un autovector.}$$

7 Toda matriz es semejante a otra matriz dentada

Para toda A existe S tal que

$$S^{-1}AS = C$$
 \Rightarrow $AS = SC$

donde C, dentada, tiene los autovalores en la diagonal **Ejemplo**

$$\begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix} \begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}}_{\text{dentada}}$$
Consequencias

- $\sum \lambda_i = \operatorname{tr} \left(\mathbf{A} \right)$ y $\prod \lambda_i = \det \mathbf{A}$
- $\bullet \quad \mathbf{AS}_{|j} = \mathbf{SC}_{|j} \qquad \Rightarrow \qquad \text{para } j \text{ tal que } \mathbf{C}_{|j} = \lambda_i \mathbf{I}_{|j} :$

 $\mathbf{A}(\mathbf{S}_{|i}) = \lambda_i(\mathbf{S}_{|i}) \Rightarrow \mathbf{S}_{|i}$ es un autovector.

19 / 44

L-18 L-16 9 Matrices diagonalizables

- La matriz es diagonalizable si y solo si las multiplicidades algebraicas son iguales a las geométricas para cada autovalor
- Si no hay autovalores repetidos tampoco hay "dientes"
- Cuando no hay autovalores repetidos A es diagonalizable

10 Diagonalizando una matriz

- Encuentre el espectro: $\{\lambda_1, \lambda_2, \ldots\}$
- \bullet Encuentre la multiplicidad algebraica de cada autovalor: $\mu(\lambda_i)$

luego elija una de estas alternativas:

- 1. Dentar la matrix (implementado en NAcAL)
- 2. ... o para cada λ_i
 - encuentre el autoespacio

$${\mathcal E}_{\lambda_i}({\mathsf A}) = \left\{ \left. {m x} \in {\mathbb R}^n \right| {\mathsf A} {m x} = \lambda_i {m x}
ight\} \ = \ {\mathcal N}({\mathsf A} - \lambda_i {\mathsf I}).$$

• revise $\mu(\lambda_i) = \dim {\mathcal E}_{\lambda_i}({\mathbf A})$ (multiplicidades algebráica y geométrica iguales)

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix}; \quad \mathbf{S} = \begin{bmatrix} \text{base de } \mathcal{E}_{\lambda_1}(\mathbf{A}) \text{#}\cdots \text{#} \text{base de } \mathcal{E}_{\lambda_k}(\mathbf{A}) \end{bmatrix}$$

$$S^{-1}AS = D \Leftrightarrow A = SDS^{-1}$$

22 / 44

L-15

L-16

L-17

L-18

I_R

Problemas de la Lección 16

(L-16) PROBLEMA 1. Factorice las siguientes matrices en SDS⁻¹;

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 1 & 1 \end{bmatrix}$

(b) $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

(Strang, 2007, ejercicio 15 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 2. ¿Cuáles de las siguientes matrices no se pueden diagonalizar?

(a)

$$\mathbf{A}_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$

(b)

$$\mathbf{A}_2 = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}$$

(c)

$$\mathbf{A}_3 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$

(Strang, 2007, ejercicio 5 del conjunto de problemas 5.2.)

L-16

L-18

11 Potencias de una matriz diagonalizable

Si
$$\mathbf{A}x = \lambda x$$
 entonces $\mathbf{A}^2 x = \mathbf{A} \mathbf{A} x = \mathbf{A}(\lambda x) = \lambda \mathbf{A} x = \mathbf{A}(\lambda x)$

- ¿Qué relación hay entre los autovectores de **A** y los de **A**²?
- ¿Qué relación hay entre los autovalores de **A** y los de **A**²?

Dicho en forma matricial (si **A** es diagonalizable, $\mathbf{A} = \mathbf{SDS}^{-1}$):

$$\mathbf{A}^2 = \mathbf{S}\mathbf{D}\mathbf{S}^{-1}\,\mathbf{S}\mathbf{D}\mathbf{S}^{-1} = \mathbf{S}\mathbf{D}^2\mathbf{S}^{-1}$$

En general para, $n \in \mathbb{Z}$, $n \ge 0...$ $\mathbf{A}^n =$ *i* y si \mathbf{A} es invertible?

23 / 44

.15

I -16

. .

. . .

L-R

(L-16) Problema 3. Si $\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$ encuentre \mathbf{A}^{100} diagonalizando \mathbf{A}

(Strang, 2007, ejercicio 7 del conjunto de problemas 5.2.)

- (L-16) PROBLEMA 4. Si los autovalores de ${f A}$ son 1, 1 y 2, ¿cuáles de las siguientes afirmaciones sabemos que son ciertas?
- (a) A es invertible.
- (b) A es diagonalizable.
- (c) A no es diagonalizable

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 5. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

- (a) (1^{pts}) Determine si la matriz A es diagonalizable. En caso de que lo sea, encuentre una matriz diagonal D y una matriz S tal que A = SDS⁻¹.
- (b) (0.5^{pts}) Calcule $(\mathbf{A}^6)\mathbf{v}$, donde $\mathbf{v} = (0, 0, 0, 1)$.
- (c) $(0.5^{\rm pts})$ Use los valores obtenidos en el primer apartado para justificar que ${\bf A}$ es regular (invertible).

L-15 L-16 L-17 L-18

(d) (0.5pts) ¿Qué relación hay entre los autovalores y los autovectores de ${\bf A}$ y los de ${\bf A}^{-1}$?

(L-16) PROBLEMA 6. Si $\mathbf{A} = \mathbf{SDS}^{-1}$; entonces $\mathbf{A}^3 = ($)() $\mathbf{A}^{-1} = ($)(). (Strang, 2007, ejercicio 16 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 7. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

- (a) Encuentre los autovalores de A
- (b) Encuentre los auto-vectores de A
- (c) Diagonalice **A**: escríbalo como $\mathbf{A} = \mathbf{SDS}^{-1}$.

(L-16) PROBLEMA 8. ¿Falso o verdadero? Si los autovalores de ${\bf A}$ son 2, 2 y 3 entonces sabemos que la matriz es

- (a) Invertible
- (b) Diagonalizable
- (c) No diagonalizable.

(L-16) PROBLEMA 9. Sean las matrices

$$\mathbf{A}_1 = \begin{bmatrix} 8 & \\ & 2 \end{bmatrix}; \qquad \mathbf{A}_2 = \begin{bmatrix} 9 & 4 \\ & 1 \end{bmatrix}; \qquad \mathbf{A}_3 = \begin{bmatrix} 10 & 5 \\ -5 & \end{bmatrix}$$

L-15 L-16 L-17 L-18 L-R

- (a) Encuentre los autovalores y auto-vectores de la matriz $\mathbf{A}=\begin{bmatrix}1&0&0\\-2&1&0\\1&0&1\end{bmatrix}$.
- (b) Explique por qué (o por qué no) la matriz A es diagonalizable.

(L-16) PROBLEMA 14. Sea **A** una matriz 3×3 . Asuma que sus autovalores son 1 y 0, que una base de los autovectores asociados a $\lambda=1$ son [1,0,1] y [0,0,1]; mientras que los asociados a $\lambda=0$ son paralelos a [1,1,2].

- (a) ¿Es A diagonalizable? En caso afirmativo escriba la matriz diagonal $\bf D$ y la matriz $\bf S$ tales que $\bf A = \bf S \bf D \bf S^{-1}$.
- (b) Encuentre A.

(L-16) PROBLEMA 15. Sea **A** una matriz 2×2 tal que $\binom{2}{0}$ es un autovector de **A** con autovalor 2, y $\binom{2}{-1}$ es otro autovector de **A** con autovalor -2. Si $v = \binom{1}{-1}$, calcule $(\mathbf{A}^3)v$.

L-15 L-16 L-17 L-18 L-R

- (a) Complete dichas matrices de modo que en los tres casos $\det \mathbf{A}_i = 25$. Así, la traza es en todos los casos igual a 10, y por tanto para las tres matrices el único auto-valor $\lambda = 5$ está repetido dos veces ($\lambda^2 = 25$ y $\lambda + \lambda = 10$ implica $\lambda = 5$).
- (b) Encuentre un vector característico con $\mathbf{A}x=5x$. Estas tres matrices no son diagonalizable porque no hay un segundo auto-vector linealmente independiente del primero.

(Strang, 2007, ejercicio 27 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 10. Factorice las siguientes matrices en S D S⁻¹

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$

(Strang, 2007, ejercicio 1 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 11. Encuentre la matriz **A** cuyos autovalores son 1 y 4, cuyos autovectores son $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ y $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ respectivamente. (Strang, 2007, ejercicio 2 del conjunto de problemas 5.2.)

(L-16) PROBLEMA 12. Si los elementos diagonales de una matriz triangular superior

de orden 3×3 son 1, 2 y 7, ¿puede saber si la matriz es diagonalizable? ¿Quién es D? (Strang, 2007, ejercicio 4 del conjunto de problemas 5.2.)

(L-16) Problema 13.

23 / 44

L-17 1 Esquema de la Lección 17

Esquema de la Lección 17

L-16

- Matrices simétricas A = A^T
 - Autovalores y autovectores
- Introd. formas cuadráticas y matrices definidas positivas

L-R

2 Matrices simétricas $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$

¿que hay de especial en $\mathbf{A} x = \lambda x$ cuando $\mathbf{A}_{n \times n}$ es simétrica?

- 1. Los autovalores son REALES
- 2. n autovectores *pueden elegirse* PERPENDICULARES (¡siempre diagonalizable!)

Caso diagonalizable usual:

$$S^{-1}AS = D \longleftrightarrow A = SDS^{-1}$$

Caso simétrico:

Puedo elegir autovectores orto*normales* (columnas de S = Q)

(Si
$$\mathbf{A} = \mathbf{A}^{\mathsf{T}}$$
) $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}$ Tma. espectral

Diagonalizable ortogonalmente.

25 / 44

L-15 L-16 L-17 L-18 L-R

4 Formas cuadráticas

Forma cuadrática:

$$x A x$$
; con $A^{T} = A$

Como $\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\mathsf{T}}$ (con $\mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{I}$), entonces

 $x\mathbf{A}x = x\mathbf{Q}\mathbf{D}\mathbf{Q}^{\intercal}x = (\mathbf{Q}^{\intercal}x)\mathbf{D}(\mathbf{Q}^{\intercal}x)$ (suma ponderada de cuadrados)

Forma cuadrática definida positiva:

$$x\mathbf{A}x > 0 \quad \forall x \neq \mathbf{0} \qquad \iff \qquad \lambda_i > 0, \quad i = 1:n.$$

entonces también decimos que A es definida positiva.

L-15 L-16 **L-17** L-18 L

3 Autoespacios ortogonales en las matrices simétricas

Los autovectores (correspondientes a autovalores distintos) de una matriz simétrica son ortogonales.

Demostración.

Suponga $\mathbf{A} x = \lambda_1 x$ y $\mathbf{A} y = \lambda_2 y$ (con $\lambda_1 \neq \lambda_2$). Entonces

$$\lambda_1 \boldsymbol{x} \cdot \boldsymbol{y} = \mathbf{A} \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x} (\mathbf{A}^{\intercal}) \boldsymbol{y} = \boldsymbol{x} \mathbf{A} \boldsymbol{y} = (\boldsymbol{x} \cdot \boldsymbol{y}) \lambda_2.$$

Puesto que $\lambda_1 \neq \lambda_2$ necesariamente:

$$\lambda_1(\boldsymbol{x}\cdot\boldsymbol{y}) - \lambda_2(\boldsymbol{x}\cdot\boldsymbol{y}) = 0 \implies (\lambda_1 - \lambda_2)\boldsymbol{x}\cdot\boldsymbol{y} = 0 \implies \boldsymbol{x}\cdot\boldsymbol{y} = 0.$$

26 / 44

L-15 L-16 L-17 L-18 L-R

5 Matrices definidas positivas

Significado:

$$x \mathbf{A} x > 0$$
 (excepto para $x = \mathbf{0}$)

Algunas propiedades

Suponga **A** simétrica definida positiva: ¿lo es también A^{-1} ? $A = QDQ^{-1} = QDQ^{T}$

Suponga A, B simétricas definidas positivas: ¿lo es A + B?

por tanto la respuesta es...

L-15 L-16 L-17 L-18 L-R

6 Producto de matrices A^TA

Supongamos $\mathbf{A}_{m \times n}$ rectangular. ¿Es $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ definida positiva?

$$\boldsymbol{x}(\mathbf{A}^{\intercal}\mathbf{A})\boldsymbol{x} =$$

Sólo puede ser 0 si $\mathbf{A}x$ es $\mathbf{0}$

¿Cómo garantizar que $\mathbf{A}x \neq \mathbf{0}$ cuando $x \neq \mathbf{0}$?

29 / 44

L-R

L-15 L-16 L-17 L-18

8 Matrices simétricas definidas positivas

- Todos los autovalores son:
- Todos los pivotes son:

$$\begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$$

Pivotes:

¿Signo de los autovalores?

$$\lambda^2 - 8\lambda + 11 = 0 \rightarrow \lambda = 4 \pm \sqrt{5} > 0$$

L-15 L-16 L-17 L-18 L-1

7 Matrices simétricas: signo de los autovalores

¿Son todos los λ_i positivos? ¿Son todos negativos?

Calcular autovalores de $\underset{5\times 5}{\textbf{A}}$ es imposible en general

Buenas noticias: Signo de los pivotes de la forma escalonada coincide con el de los λ_i (si no hemos cambiado el signo del determinante con transformaciones $Tipo\ II$)

núm. pivotes positivos = núm. autovalores positivos

L-15 L-16 L-17 L-18 L-R

Resumen (para matrices simétricas):

- 1. Matrices simétricas tienen autovalores reales y autovectores que se pueden elegir perpendiculares
- 2. $\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\mathsf{T}}$ con \mathbf{Q} ortogonal
- 3. A es simétricas si y solo si es ortogonalmente diagonalizable.
- 4. El signo de los autovalores coincide con el de los pivotes¹

30 / 44

L-R

Problemas de la Lección 17

(L-17) PROBLEMA 1. Escriba las matrices $\boldsymbol{A},\,\boldsymbol{B}$ y \boldsymbol{C} en la forma $\boldsymbol{Q}\boldsymbol{D}\boldsymbol{Q}^\intercal$ del teorema espectral.

(a)
$$\mathbf{A} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$\mathbf{C} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

(Strang, 2007, ejercicio 11 del conjunto de problemas 5.5.)

(L-17) Problema 2. Encuentre los autovalores y los autovectores unitarios (de longitud igual a uno) de

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(Strang, 2003, ejercicio 3 del conjunto de problemas 6.4.)

 $(L\mbox{-}17)$ Problema 3. Encuentre una matriz ortonornal ${\bf Q}$ que diagonalize la siguiente matriz simétrica:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

32 / 44

L-R

L-15

L-16

L-17

L-18

(L-17) PROBLEMA 6. Sean

- (a) Encuentre los valores característicos de **A** (recuerde que $i^2 = -1$).
- (b) Encuentre los valores característicos de B (en este caso quizá le resulte más sencillo encontrar primero los autovectores, y deducir entonces los autovalores).
- (c) De los siguientes tipos de matrices: ortogonales, invertibles, permutación, hermíticas, de rango 1. diagonalizables, de Markov ¿a qué tipos pertenece A?
- (d) ¿y **B**?

(Strang, 2007, ejercicio 14 del conjunto de problemas 5.5.)

(L-17) Problema 7. Si ${\bf A}^3={\bf 0}$ entonces los autovalores de ${\bf A}$ deben ser _____. De un ejemplo tal que ${\bf A}\neq {\bf 0}$. Ahora bien, si ${\bf A}$ es además simétrica, demuestre que entonces ${\bf A}^3$ es necesariamente ${\bf 0}$.

(Strang, 2003, ejercicio 5 del conjunto de problemas 6.4.)

L-16

(L-17) PROBLEMA 4. Suponga que **A** es una matriz simétrica de 3 por 3 con autovalores 0, 1 y 2.

(a) ¿Qué propiedades pueden garantizarse para los autovectores unitarios u, v y w correspondientes a los respectivos autovalores 0, 1 y 2?

L-17

- (b) En términos de u, v y w, describa el espacio nulo $\mathcal{N}(\mathbf{A})$, el espacio nulo por la izquierda $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$, el espacio fila $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$ y el espacio columna $\mathcal{C}(\mathbf{A})$.
- (c) Encuentre un vector x tal que Ax = v + w. ¿Es único?
- (d) ¿Qué condiciones debemos imponer sobre b para que $\mathbf{A}x=b$ tenga solución?
- (e) Si u, v y w son las columnas de S, y v es ortogonal a w; escriba las matrices $S^{-1} \vee S^{-1}AS$.

(Strang, 2007, ejercicio 13 del conjunto de problemas 5.5.)

(L-17) Problema 5. Escriba un hecho destacado sobre los valores característicos de cada uno de estos tipos de matrices:

- (a) Una matriz simétrica real.
- (b) Una matriz diagonalizable tal que $\mathbf{A}^n \to \mathbf{0}$ cuando $n \to \infty$.
- (c) Una matriz no diagonalizable
- (d) Una matriz singular

(Strang, 2007, ejercicio 16 del conjunto de problemas 5.5.)

32 / 44

L-15 L-16 L-17 L-18 L-R

(L-17) PROBLEMA 8. Sea la matriz

$$\mathbf{A} = \begin{bmatrix} a & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Demuestre que **A** no es diagonalizable cuando a=3.
- (b) ¿Es **A** diagonalizable cuando a=2? (explique su respuesta). En caso afirmativo calcule una matriz diagonal de autovalores **D** y una de autovectores **S** tales que $\mathbf{A} = \mathbf{S}\mathbf{D}\mathbf{S}^{-1}$.
- (c) ¿Es ATA diagonalizable para cualquier valor de a? ¿Es posible encontrar una base ortonormal de autovectores de ATA?
- (d) Encuentre todos los valores de a para los cuales existe ${\bf A}^{-1}$ y además la matriz es diagonalizable.

(L-17) PROBLEMA 9. Sea la matriz

$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix};$$

- (a) Exprese B en la forma $B = A = QDQ^{T}$ del teorema espectral.
- (b) ¿Es B diagonalizable? Si no lo es, diga las razones; y en caso contrario genere una matriz S que diagonalice a B.

1 Esquema de la Lección 18

Esquema de la Lección 18

- Matrices (semi)definidas positivas, (semi)definidas negativas
- Completando el cuadrado
- Diagonalización por congruencia

33 / 44

L-15 L-16 L-17 L-18 L-R

Ejemplo

¿Qué número debo poner para que la matriz A sea singular?

$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & \end{bmatrix}$$

- Autovalores:
- Menores principales:
- Para la forma cuadrática

$$q_{\mathbf{A}}(\boldsymbol{x}) = \boldsymbol{x} \mathbf{A} \boldsymbol{x} = \begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + y^2$$

¿Existe $x \neq 0$ tal que xAx = 0?

2 Formas cuadráticas

L-18

• Definida positiva: $\forall x \neq 0 \Rightarrow x A x > 0$.

L-16

- Semi-definida positiva: $\forall x \neq 0 \Rightarrow x Ax \geq 0$.
- Definida negativa: $\forall x \neq 0 \Rightarrow x A x < 0$.
- Semi-definida negativa: $\forall x \neq 0 \Rightarrow x Ax \leq 0$.
- Indefinida: ni semi-definida positiva ni semi-definida negativa.

34 / 44

L-15 L-16 L-17 **L-18** L-R

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix}$$
 entonces $\begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + ? y^2$

- ¡Hay números x y y que hagan xAx negativa?
- ¿Pasa por el origen?
- Si y = 0 y x = 1, ¿es positiva? (¿y si x = -1?)
- Si x = 0 y y = 1, ¿es positiva? (¿y si y = -1?)
- ¿Es siempre positiva?

(0,0,) **punto de silla**: mínimo en unas direcciones, y máximo en otras.

$$\lambda_1 = -2, \quad \begin{pmatrix} -6\\4 \end{pmatrix}; \qquad \lambda_1 = 11, \quad \begin{pmatrix} 6\\9 \end{pmatrix}$$

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$$
 entonces $\begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2x^2 + 12xy + 20y^2$

Definida positiva.

Pruebas de que A es definida positiva

- ¡Son los menores principales positivos?
- ¿Son los autovalores positivos?

$$q_{\mathbf{A}}(oldsymbol{x}) = oldsymbol{x} \mathbf{A} oldsymbol{x} > 0$$
 para todo $oldsymbol{x}
eq oldsymbol{0}$

37 / 44

L-15 L-16

L-11

4 Matrices congruentes

L-18

 ${f A}$ y ${f C}$ son congruentes si existe ${f B}$ invertible tal que ${f C}={f B}^{\intercal}{f A}{f B}$

Diagonalización por congruencia

Para toda **A** (simétrica) existe $\mathbf{B} = \mathbf{I}_{ au_1 \cdots au_k}$ (invertible) tal que

$$\mathbf{D} = \mathbf{B}^{\mathsf{T}} \mathbf{A} \mathbf{B} \qquad \text{es diagonal} \qquad (\mathbf{B}^{\mathsf{T}} = {}_{\tau_k \cdots \tau_1} \mathbf{I})$$

Teorema Espectral: ¡Diagonalización por semejanza y congruencia!

$$\mathbf{D} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q}.$$

Toda forma cuadrática se puede expresar como suma de cuadrados

$$oldsymbol{x} \mathbf{A} oldsymbol{x} = oldsymbol{x} oldsymbol{\left(\mathbf{B}^{-1}\right)^{\mathsf{T}} \mathbf{D} \mathbf{B}^{-1} oldsymbol{x}} = oldsymbol{y} \mathbf{D} oldsymbol{y}; \qquad \mathsf{donde} \qquad oldsymbol{y} = \mathbf{B}^{-1} oldsymbol{x}.$$

L-17 L-18

3 Completando el cuadrado

Si pudiéramos expresar q(x) como suma de cuadrados, sabríamos si q(x) es defnida positiva.

Completemos el cuadrado!

- $q(x,y) = 2x^2 + 12xy + 20y^2 = 2(x + ?y)^2 + ?$
- $q(x,y) = 2x^2 + 12xy + 7y^2$
- $q(x,y) = 2x^2 + 12xy + 18y^2$
- $q(x,y) = 2x^2 + 12xy + 200y^2$ (gráfico)

Si definida positiva: $q(x,y) = a; \quad a > 0$: elipse

įes

L-15 L-16 L-17 L-18 L-R

5 Completar el cuadrado

$$2x^{2} + 12xy + 20y^{2}$$

$$\begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}]} \begin{bmatrix} 2 & 0 \\ 6 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix};$$

por tanto tenemos que:

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \mathbf{D} = \mathbf{E}^{\mathsf{T}} \mathbf{A} \mathbf{E} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

así $\mathbf{A} = (\mathbf{E}^{\intercal})^{-1} \mathbf{D} \mathbf{E}^{-1}$ y por tanto

$$\boldsymbol{x} \mathbf{A} \boldsymbol{x} = \begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \boldsymbol{x} (\mathbf{E}^{-1})^{\mathsf{T}} \end{pmatrix} \mathbf{D} \begin{pmatrix} \mathbf{E}^{-1} \boldsymbol{x} \end{pmatrix}$$
$$= \begin{pmatrix} (x+3y), & y, \end{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{pmatrix} (x+3y) \\ y \end{pmatrix} = 2(x+3y)^2 + 2y^2$$

L-15 L-16 L-17 L-18 L

6 Ejemplo 3 por 3

¿Es
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 definida positiva?

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow[\begin{bmatrix} \left(\frac{1}{2}\right)\mathbf{1}+\mathbf{2} \right]]{\boldsymbol{\tau}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow[\begin{bmatrix} \left(\frac{1}{2}\right)\mathbf{2}+\mathbf{3} \right]]{\boldsymbol{\tau}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

$$x\mathbf{A}x = 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz > 0$$

41 / 44

 $x \mathbf{A} x = 1$: (elipsoide) Ejes en la dirección de los autovectores $\mathbf{A} = \mathbf{Q}^{\intercal} \lambda \mathbf{Q}$

L-15 L-16 L-17 **L-18** L-R

8 Otro ejemplo 3 por 3

¿Es
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 definida positiva?

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow[[(1)\mathbf{3}+1]{\textbf{7}}{[(1)\mathbf{3}+1]} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow[[(-\frac{1}{2})\mathbf{1}+\mathbf{3}]{\textbf{7}}{[(-\frac{1}{2})\mathbf{1}+\mathbf{3}]} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \xrightarrow[[\mathbf{2}=\mathbf{3}]{\textbf{2}=\mathbf{3}}]{\mathbf{2}=\mathbf{3}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz indefinida

L-15 L-16 L-17 L-18 L-R

- Matrices definidas positivas y elipsoides: ejemplo 3 por 3
- La región (xAx = a) es un (elipsoide).
- Los autovectores son los ejes principales Q.
- Longitud de los ejes determinada por los autovalores

42 / 44

L-15 L-16 L-17 L-18 L-R

9 "Clasificación" de formas cuadráticas

 $oxed{x \mathbf{A} x \overset{ ext{ ext{ iny }}}{ ext{ iny }} 0}; \quad \mathsf{para todo } x
eq \mathbf{0}$

Métodos

Mirar el signo de

- 1. Elem. diag.: $D = B^{T}AB$ (Diagonalización por congruencia)
- 2. Calcular los autovalores: (Raíces de un polinomio) ©
- 3. Menores principales: (Critero de Sylvester) 😟

Ley de inercia

el número de componentes positivas, negativas y nulas de la diagonal de $\bf D$ es un invariante de $\bf A$, i.e., no depende de $\bf B$ (La diagonalización ortogonal $\bf D=\bf Q^T\bf A\bf Q$ es un caso especial)

Problemas de la Lección 18

(L-18) PROBLEMA 1. Decida si las siguientes matrices son definidas positivas, y escriba las formas cuadráticas $f = x \mathbf{A} x$ correspondientes:

- (a) $\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$
- (c) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- (e) El determinante del apartado (b) es cero; ¿a lo largo de que recta se verifica que en todos sus puntos f(x,y) = 0?

(Strang, 2007, ejercicio 2 del conjunto de problemas 6.1.)

(L-18) PROBLEMA 2. ¿Cuál es la forma cuadrática $f = ax^2 + 2bxy + cy^2$ para cada una de las siguientes matrices? Complete el cuadrado con la finalidad de escribir fcomo una suma de uno o dos cuadrados $d_1()^2 + d_2()^2$.

- (a) $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$ (b) $\mathbf{B} = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$

(Strang, 2007, ejercicio 15 del conjunto de problemas 6.1.)

44 / 44

L-R

L-18 L-16

(L-18) PROBLEMA 6. Sean las formas cuadráticas

$$q_1(x, y, z) = x^2 + 4y^2 + 5z^2 - 4xy.$$

$$q_2(x, y, z) = -x^2 + 4y^2 + z^2 + 2xy - 2axz.$$

- (a) Demuestre que $q_1(x, y, z)$ es semi-definida positiva.
- (b) Halle, si existiese, un valor de a de manera que $q_2(x, y, z)$ sea definida negativa.

(L-18) PROBLEMA 7. Decida si las siguientes matrices son definidas positivas o no.

(a)
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$
(c) $\mathbf{C} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}^2$

(Strang, 2007, ejercicio 2 del conjunto de problemas 6.2.)

L-16 L-18 L-R

(L-18) PROBLEMA 3. ; Cuales de la siguientes matrices tienen dos autovalores positivos? Pruebe a > 0 y $ac > b^2$ (determinante mayor que cero); no calcule los autovalores. xAx < 0.

- (b) B =
- (c) C =
- (d) $\mathbf{D} = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$

(Strang, 2007, ejercicio 14 del conjunto de problemas 6.1.)

(L-18) PROBLEMA 4. Demuestre que $f(x,y)=x^2+4xy+3y^2$ no tiene un mínimo en (0,0) a pesar de que todos sus coeficientes son positivos. Escriba f(x,y) como una diferencia de cuadrados y encuentre un punto (x,y) donde f(x,y) sea negativa. (Strang, 2007, ejercicio 16 del conjunto de problemas 6.1.)

(L-18) PROBLEMA 5. Demuestre a partir de los valores característicos que si A es definida positiva, entonces también lo son $A^2 \vee A^{-1}$. (Strang, 2007, ejercicio 4 del conjunto de problemas 6.2.)

44 / 44

L-16 L-18 L-R

(L-18) PROBLEMA 8. Clasifique la forma cuadrática (ie., definida positiva, negativa, semidefinida, no definida, etc.)

$$q(x, y, z) = x^{2} + 6xy + y^{2} + az^{2};$$

en función del parámetro a.

(L-18) Problema 9. Si $\mathbf{A} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$ es definida positiva, pruebe que \mathbf{A}^{-1} es definida positiva.

(Strang. 2007, ejercicio 8 del conjunto de problemas 6.1.)

(L-18) PROBLEMA 10. Si una matriz simétrica de 2 por 2 satisface a > 0, y $ac > b^2$. demuestre que sus autovalores son reales y positivos (definida positiva). Emplee la ecuación característica y el hecho de que el producto de los autovalores es igual al

(Strang, 2007, ejercicio 3 del conjunto de problemas 6.1.)

(L-18) Problema 11. Decida si las siguientes matrices son definidas positivas, definidas negativas, semi-definidas, o indefinidas.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}$$

(b) $\mathbf{B} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}$
(c) $\mathbf{C} = -\mathbf{B}$
(d) $\mathbf{D} = \mathbf{A}^{-1}$

(L-18) PROBLEMA 12. Una matriz definida positiva no puede tener un cero (o incluso peor; un número negativo) en su diagonal principal. Demuestre que esta matriz no cumple $x\mathbf{A}x > 0$, para todo $x \neq 0$:

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{bmatrix} 4 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \text{no es positiva cuando} \quad \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

(Strang, 2007, ejercicio 21 del conjunto de problemas 6.2.)

44 / 44

L-15 L-16 L-17 L-18 L-R

(L-18) PROBLEMA 16. Considere las siguientes matrices

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & a & a \end{bmatrix} \qquad \mathbf{y} \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Se pide:

- (a) (0.5^{pts}) Calcule los autovalores de la matriz **A**.
- (b) (0.5^{pts}) Prueba que si a=2 la matriz **A** NO es diagonalizable.
- (c) (1^{pts}) Para la matriz B, encuentre una matriz diagonal D y una matriz P tal que $B = PDP^\intercal$.
- (d) (0.5^{pts}) Obtenga la expresión polinómica de la forma cuadrática asociada a la matriz B y pruebe que es definida positiva.

(L-18) PROBLEMA 17. Dada la matriz ${\bf A}=\left(\begin{smallmatrix} a&3/5\\b&4/5 \end{smallmatrix} \right),$ calcule valores (si existen) de a y b para los cuales

- (a) (0.5^{pts}) La matriz **A** es orto-normal.
- (b) (0.5^{pts}) Las columnas de la matriz **A** son independientes.
- (c) $(0.5^{\text{pts}}) \lambda = 0$ es un autovalor de **A**.
- (d) (0.5^{pts}) **A** es simétrica y definida negativa.

.-15 L-16 L-17 **L-18**

(L-18) PROBLEMA 13. Demuestre que si $\bf A$ y $\bf B$ son definidas positivas entonces $\bf A+\bf B$ también es definida positiva. Para esta demostración los pivotes y los valores característicos no son convenientes. Es mejor emplear $x(\bf A+\bf B)x>0$ (Strang, 2007, ejercicio 5 del conjunto de problemas 6.2.)

(L-18) PROBLEMA 14. Factorice las siguientes matrices simétricas en la forma $\dot{\boldsymbol{L}}\cdot\boldsymbol{D}\cdot\dot{\boldsymbol{L}}^{\mathsf{T}}.$

(a)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

(L-18) PROBLEMA 15. La forma cuadrática $f(x,y)=3(x+2y)^2+4y^2$ es definida positiva. Encuentre la matriz $\bf A$, factorícela en $\bf LDL^T$, y relacione los elementos en $\bf D$ y $\bf L$ con 3, 2 y 4 en f.

(Strang, 2007, ejercicio 9 del conjunto de problemas 6.1.)

44 / 44

L-R

L-15 L-16 L-17 L-18 L-R

(L-18) Problema 18

- (a) Obtenga la matriz \mathbf{Q} asociada a la forma cuadrática $q(x,y,z) = x^2 + 2xy + ay^2 + 8z^2$ y clasifique la matriz \mathbf{Q} (es decir, diga en que casos la matriz es no definida, definida o semidefinida, de manera positiva o negativa) para el caso en el que a es igual a uno (a=1).
- (b) Clasifíque la matriz **Q** cuando $a \neq 1$.

Problemas de la Lección opcional 2

(L-OPT-2) PROBLEMA 1. Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & a & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- (a) (0.5^{pts}) Demuestre que **A** es invertible si y sólo si $a \neq 0$.
- (b) (0.5^{pts}) ; Es la matriz **A** definida positiva cuando a=1? Justifique su respuesta.
- (c) (1^{pts}) Calcule \mathbf{A}^{-1} cuando a=2.
- (d) $(0.5^{\rm pts})$ ¿Cuantas variables pueden ser tomadas como exógenas (o libres) en el sistema $\mathbf{A}x = \mathbf{0}$ cuando a = 0? ¿Cuales?

(L-OPT-2) PROBLEMA 2. Verdadero o falso (puntuarán aquellas respuestas correctamente justificadas; una respuesta que se limite a indicar la falsedad o veracidad de cada afirmación tendrá una calificación de cero puntos)

- (a) Si A es simétrica, entonces A² también lo es.
- (b) Si $A^2 = A$ entonces $(I A)^2 = (I A)$ donde I es la matriz identidad.
- (c) Si $\lambda=0$ es un autovalor de la matriz cuadrada ${\bf A}$, entonces el sistema de ecuaciones ${\bf A}x={\bf 0}$ es compatible determinado.
- (d) Si $\lambda=0$ es un autovalor de la matriz cuadrada **A**, entonces el sistema de ecuaciones $\mathbf{A}x=\mathbf{b}$ puede ser incompatible.
- (e) Si una matriz es ortogonal (columnas perpendiculares y de norma uno) entonces su inversa también es ortogonal.

44 / 44

L-R

L-15 L-16 L-17 L-18 L-R

(L-OPT-2) PROBLEMA 4. En las preguntas siguientes $\bf A$ y $\bf B$ son matrices $n \times n$. Indique si las siguientes afirmaciones son verdaderas o falsas (incluya una breve explicación, o un contra ejemplo que justifique su respuesta):

- (a) Si A no es cero entonces $det(A) \neq 0$
- (b) Si $det(AB) \neq 0$ entonces A es invertible.
- (c) Si intercambio las dos primeras filas de A sus autovalores cambian.
- (d) Si A es real y simétrica, entonces sus autovalores son reales (aquí no es necesaria una justificación).
- (e) Si la forma reducida de echelon de (${\bf A}-5{\bf I}$) es la matriz identidad, entonces 5 no es un autovalor de ${\bf A}$.
- (f) Sea ${m b}$ un vector columna de ${\mathbb R}^n.$ Si el sistema ${f A}{m x}={m b}$ no tiene solución, entonces $\det({f A})
 eq 0$
- (g) Sea C de orden 3×5 . El rango de C puede ser 4.
- (h) Sea C de orden $n \times m$, y b un vector columna de \mathbb{R}^n . Si $\mathbf{C} x = b$ no tiene solución, entonces $\operatorname{rg}(\mathbf{C}) < n$.
- (i) Toda matriz diagonalizable es invertible.
- (i) Si A es invertible, entonces su forma reducida de echelon es la matriz identidad.

L-15 L-16 L-17 L-18 L-R

(f) Si 1 es el único autovalor de una matriz $\bf A$ de orden 2×2 , entonces $\bf A$ necesariamente tiene que ser la matriz identidad $\bf I$.

(L-OPT-2) PROBLEMA 3. complete los blancos, o responda Verdadero/Falso.

- (a) Cualquier sistema generador de un espacio vectorial contiene una base del espacio (V/F)
- (b) Que los vectores v_1, v_2, \ldots, v_n sean linealmente independientes significa que
- (c) El conjunto que sólo contiene el vector ${\bf 0}$ es un conjunto linealmente independiente. (V/F)
- (d) Una matriz cuadrada de orden n por n es diagonalizable cuando:

(e) Si
$$u = (1, 2, -1, 1)$$
, entonces $||u|| = \underline{\hspace{1cm}}$

(f) Si
$$u = (1, 2, -1, 1)$$
 y $v = (-2, 1, 0, 0)$, entonces $u \cdot v =$

44 / 44

L-15 L-16 L-17 L-18 L-R

(L-OPT-2) PROBLEMA 5. Sean

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 4 \\ 0 & 0 & 5 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}; \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 0 & 4 \\ 0 & 0 & 6 \end{bmatrix}; \quad \mathbf{D} = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Los autovalores de ${\bf B}$ son 0 y 2. Use esta información para responder a las siguientes cuestiones. Para cada matriz debe dar una explicación. Puede haber más de una matriz que cumpla la condición:

- (a) ¿ Qué matrices son invertibles?
- (b) ¿Qué matrices tienen un autovalor repetido?
- (c) ¿Qué matrices tienen rango menor a tres?
- (d) ¿ Qué matrices son diagonalizables?
- (e) ¿Para qué matrices diagonalizables podemos encontrar tres autovectores ortogonales entre si?

(L-OPT-2) PROBLEMA 6. Sea la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- (a) Calcule los autovalores y autovectores de A.
- (b) ; Es A diagonalizable?

L-15 L-16 L-17 L-18 L-R

- (c) ¿Es posible encontrar una matriz P tal que A = PDP^T, siendo D una matriz diagonal?
- (d) Calcule $|\mathbf{A}^{-1}|$.

(L-OPT-2) PROBLEMA 7. Sea **A** una matriz 3×3 y sean $\lambda_1=1,\ \lambda_2=2$ y $\lambda_3=-1$ sus autovalores. Sean $\boldsymbol{v}_1=(1,0,1)^{\mathsf{T}}$ y $\boldsymbol{v}_2=(1,1,1)^{\mathsf{T}}$ los autovectores asociados a λ_1 y λ_2 .

- (a) ¿Es A diagonalizable?
- (b) ¿Podría ser $v_3 = (-1, 0, -1)^{\mathsf{T}}$ un autovector asociado al autovalor $\lambda_3 = -1$.
- (c) Calcule $\mathbf{A}(\boldsymbol{v}_1 \boldsymbol{v}_2)$.

(L-Opt-2) Problema 8.

(a) $(0.5^{\rm pts})$ Encuentre un sistema lineal homogéneo $\mathbf{A}x=\mathbf{0}$ cuyas soluciones sean

$$\left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \ \middle| \ \exists \alpha, \beta, \gamma \in \mathbb{R} \quad \text{tales que} \ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \right\}$$

44 / 44

(b) (0.5^{pts}) Si el polinomio característico de la matriz **A** es $p(\lambda) = \lambda^5 + 3\lambda^4 - 24\lambda^3 + 28\lambda^2 - 3\lambda + 10$, encuentre el rango de **A**.

(L-OPT-2) PROBLEMA 9. Suponga una matriz cuadrada e invertible A.

L-15 L-16 L-17 L-18 L-R

- (a) ¿Cuáles son sus espacios columna $\mathcal{C}(\mathbf{A})$ y espacio nulo $\mathcal{N}(\mathbf{A})$? (no responda con la definición, diga qué conjunto de vectores compone cada espacio).
- (b) Suponga que A puede ser factorizada en A = LU:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 7 & 3 & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{12} & u_{13} \\ 0 & 0 & u_{13} \end{bmatrix}$$

Describa el primer paso de eliminación en la reducción de **A** a **U**. ¿porqué sabe que **U** es también una matriz invertible? ¿Cuanto vale el determinante de **A**?

- (c) Encuentre una matriz particular de dimensiones 3×3 e invertible **A** que no pueda ser factorizada en la forma **LU** (sin permutar previamente las filas). ¿Qué factorización es todavía posible en su ejemplo? (no es necesario que realice la factorización). ¿Cómo sabe que su matriz **A** es invertible?
- Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.
- Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.

44 / 44