Introduction to Computer Networks

Rate and Delay Guarantees (§5.4.4)

Topic

- Guaranteeing performance for traffic flows across in the network
 - This is "hard QOS" with a firm guarantee for a traffic flow

Motivation

- Sometimes we want guaranteed service – like the telephone network
 - Minimum rate and maximum delay regardless of how other flows behave

Motivation (2)

- Could provision a dedicated circuit (or build a network), but expensive
- Can we have statistical multiplexing together with hard guarantees?

Admission Control

- Suppose we have a <u>flow</u> E that needs rate ≥R Mbps and delay ≤D secs
- We must decide whether to admit or reject it from the network
 - This is admission control
 - Rejecting should be infrequent
- Key point is we need the ability to control load to make guarantees

Router Rate Guarantee

- WFQ can guarantee rate at a router
 - What rate will Flow F get?

Router Rate Guarantee (2)

- Consider N flows with weight 1
 - Each flow gets 1/Nth share under load
 - Or at least 100/N Mbps

Router Rate Guarantee (3)

- Consider flow F with weight 10
 - Suppose weight of all flows is 100

Router Rate Guarantee (4)

- Consider flow F with weight 10
 - Flow F gets \geq (10/100).100 = 10 Mbps

Network Rate Guarantee

 We can guarantee a minimum rate for a network path by guaranteeing it at each router

Network Rate Guarantee (2)

Condition for each router:

Delay Guarantee

- What about the queuing delay?
 - How <u>much larger</u> than latency might the delay be, given rate guarantee?
- t depends on the traffic flow
 - If exceeds R Mbps then queues may build and delay will grow ...
- Need to shape traffic for guarantee
 - We'll use token buckets ☺

Router Delay Guarantee

 Assume traffic flow F is shaped by an (R, B) token bucket

Long-term rate ≤R Mbps

Short-term burst ≤B bits

Router Delay Guarantee (2)

- What is delay of flow F at a router?
 - Traffic shaped by (R, B) token bucket
 - WFQ with weight set for rate ≥ R Mbps

Router Delay Guarantee (3)

- In worst case B arrives all at once
 - So queuing delay is ≤B/R seconds

Network Delay Guarantee

- What is the delay across N routers?
 - This is tricky! Each router add delays
 - Bound of N*B/R is too loose
 - Intuitive argument follows ...

Network Delay Guarantee (2)

- If traffic is perfectly smooth at rate R (no bursts) then queuing delay is zero
 - Packet enters router just in time to leave
 - Delay is latency (propagation, transmission)

Network Delay Guarantee (3)

- Observe if traffic pays for <u>burst B</u> at one router, it is smoothed for the next
 - Burst delay is only paid once!

Network Delay Guarantee (4)

Delay across N routers:

Delay ≤ Latency terms + B/R

Rate/Delay Guarantee

- Given a network with:
 - (R, B) shaped traffic flow
 - WFQ routers with proper weights
 - Sharing via statistical multiplexing
- We can guarantee the flow a minimum rate and maximum delay
 - Rate is ≥R Mbps
 - Delay is ≤ latency + B/R secs
 - Regardless of how other flows behave

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey