N	ame	:	_j n:
		25/1 NISTRY	
		ory)	
		er 1	
Jι	ıly 2	2024	
		UGANDA ADVANCED CERTIFICATE OF EDUC	CATION
		S.5 E.O.T CHEMISTRY	
		Paper 1	
		2hours 45minutes	
ln	str	uctions to Candidates:	
		er ALL Questions in Section A and any Six Questions in Stions Must Be Answered in the spaces provided.	ection B. All
		SECTION A (46 Marks)	
1.	a.	$^{239}_{94}Pu + ^{4}_{2}He \rightarrow \dots + 2^{1}_{0}n$	[01 mark]
	b.	$^{250}_{98}Cf + \dots \longrightarrow ^{257}_{103}Lw + 4^{1}_{0}n$	[01 mark]
	c.	$^{214}_{83}Bi \rightarrow ^{206}_{82}Pb + \dots + 2^{4}_{2}He$	[01 mark]
	d.	5.00g of thorium was left to decay. Calculate the mass of remained after 2.500 \times 10^{10} years. (the half-life of thorium is	

2. State what would be observed and write equation for the reaction that would take place when; a. a solution of potassium carbonate is added to aqueous aluminium nitrate. [02½ marks] observations: equation: b. a mixture of acidified potassium manganate(VII) is added to hot ethane-1,2dioic acid. [02½ marks] observations: equation: 3. A hydrocarbon Q, with molecular formula C_xH_y reacts with oxygen according to the following equation. $C_xH_y + \frac{4x \cdot y}{4}O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$

When 20cm^3 of \mathbf{Q} was exploded in 200cm^3 of an excess amount of oxygen, it burnt completely with a sooty flame. The volume of the residual gas after cooling to room temperature was 160cm^3 . When aqueous potassium hydroxide was added, the gas that finally remained was 30cm^3 .

a.	Deter	rmine the molecular formula of Q .	[02½ marks]
b.		${f Q}$ was treated with bromine in the presence of anhyolide, the bromine was decolorized.	drous iron(III)
	i.	Identify Q.	[01 mark]
	ii.	Write the mechanism for the reaction that took place be and compound ${f Q}$.	etween bromine [03½ marks]

4. The energy changes that takes place during the formation of barium chloride are shown in the table below:

Process:			ΔH ^θ /Kj mol ⁻¹
Ba(s)	Α	Ba(g)	+176.00
Ba(g)	B	Ba ²⁺ (g)	+1480.00
Cl ₂ (g)	C	2Cl(g)	+242.00
Cl(g) + e-	D	Cl⁻(g)	-364.00
Ba ²⁺ (g) + 2Cl ⁻ (g)	E	BaCl₂(s)	-2018.00

a.	Name the energy changes for reaction processes:	[02½ marks]
	A:	
	B:	······································
	<i>c</i> :	······································
	D:	•••••••••••••••••••••••••••••••••••••••
	E:	······································
b.	Calculate the standard enthalpy of formation of barium chloride	
		••••••

5.	Wı	rite equation for the reaction between aqueous sodium hyd	droxide and: -	
	a.	Aluminium oxide.	[01½ marks]	
	b.	Beryllium oxide.	[01½ marks]	
	c.	Tin(II) oxide.	[01½ marks]	
6.	a.	Define the term freezing point constant of a substance.	[01½ marks]	
				· • • • • • • • • • • • • • • • • • • •
				·
	b .	A solution containing 1.54g of naphthalene, $C_{10}H_8$ in 18.0g	·	
		freezes at 148.3°C. Calculate the freezing point constant camphor is 175°C)	of camphor. (K _f f	or
				•••••
				•••••
				•••••
				•••••
			•••••	• • • • • • •

7.		bromobutane was treated with sodium ethoxide in ethanol and the mixture ated to form compound $oldsymbol{T}$.
	a.	Write the equation and suggest a mechanism for the reaction between 2-bromobutane and ethoxide ion. [$02\frac{1}{2}$ marks]
	b.	The compound T formed in(a) can be synthesized from an alcohol. Write the equation and include a mechanism for the reaction leading to the formation of T from an alcohol. [02 $\frac{1}{2}$ marks]
8.	sol ioc thi	89g of a copper ore was leached with dilute sulphuric acid and the resultant lution diluted to 250cm³. To 30cm³ of this solution was added 10% potassium lide solution. The liberated iodine required 23.5cm³ of 0.05M sodium iosulphate solution for complete reaction. Calculate the percentage of copper the ore. The reactions taking place are: -
		$2Cu^{2+}(aq) + 4I^{-} \rightarrow Cu_{2}I_{2}(s) + I_{2}(aq)$ $I_{2}(aq) + 2S_{2}O_{3}^{2-}(aq) \rightarrow 2I^{-}(aq) + S_{4}O_{6}^{2-}(aq)$

***************************************	••••••	•••••••••••••	••••••
•••••			
•••••			
•••••			

••••••			
••••••			
•••••			
•••••			
	the structure and name the sha		
state ·	the oxidation state of the chlor	rine atom.	[04½ marks]
Anion	Structure	Shape	Oxidation state
Anion	Siruciure	Shape	of chlorine
ClO ₂ -			
<i>C</i> <i>O</i> ₃ -			
ClO ₄ -			

SECTION B (54 Marks)

Attempt ANY SIX Questions from this Section. Additional Questions Shall not be marked.

	omplete the fol echanism for th		actions and in each case o	utline a
a)	CH ₃CHO + Na⊦	HSO₃ —————	→	[03 marks]
	Mechanism:			
b)	CH ₃ CH=CH ₂	Conc. H ₂ SO ₄ /H ₂ O Warm		[03 marks]
	Mechanism:			
c)	(CH₃)₃CBr	$C_2H_5O^-Na^+/C_2H_5OH$		[03 marks]
		Heat		
	Mechanism:			
	••••••			••••••

 Some thermochemical data for calcium, calciur given below: 	n chloride and chlorine ar
enthalpy of formation of calcium chloride	-763 kJmol ⁻¹ .
Enthalpy of atomization of chloride.	+121 kJmol ⁻¹ .
Enthalpy of atomization of calcium	+193 kJmol ⁻¹ .
First ionization energy of calcium	+590 kJmol ⁻¹ .
Second ionization energy of calcium.	+1145 kJmol ⁻¹ .
Electron affinity for chlorine.	-348 kJmol ⁻¹ .
ii. C alculate the lattice energy of calcium chlo	ride. [01½ m
ii. C alculate the lattice energy of calcium chlo	ride. [01½ m

c.	Calculate the enti						marks]
d.	Comment on the s	solubility	y of calcium c	hloride.		[01 n	ark]
	/rite a mechanism ffected. to	to show	how each of >—SO3H	the followin	ng conversion		narks]
b)	(CH ₃) ₂ C=CHCH ₃	to	ОН (CH3)2CCH2(CH ₃		[02 1 / ₂	marks]

c)	CH ₃ C	ECH	to	CH₃COCH₃	[03½ marks]
3.	Beryl	lium and n	nagnesium	are elements in group (I	II) of the Periodic Table.
a)	Expla	in the foll	lowing:		
	i.	The firs		n energy of beryllium is	higher than that of [02 marks]
	ii.	The pola	rizing pow	er of magnesium ions is	lower than that of beryllium [01 mark]
b)	•	lium react eaction.	rs with aqu	eous sodium hydroxide :	solution. Write equation for [01½ marks]
		•••••••••••••••••••••••••••••••••••••••			

i.	Water.	[02 marks
		L o =
ii.	Sodium hydroxide.	[02½ mar
	ssium manganate(VII) is not used a primary st	tandard in volumetric analy
and h		
	nas to be standardized.	ed as a primary standard. [01 mark]
. Ex	nas to be standardized.	ed as a primary standard. [01 mark]

C.	c. Acidified potassium manganate(VII) reacts with ethane-1,2-dioic acid.		
	i. the half -reaction equations for the reaction.	[02 mark]	
	ii. the overall equation for the reaction.	[01½ mark]	
d.	20.00cm ³ of a 0.01M manganate(VII) ion solution required exact of a solution containing 5.10g per liter of an ethanedioate, (COC Determine the atomic mass of element X.	•	
15.	During the extraction of aluminum from bauxite, $Al_2O_3.2H_2O$, t first purified.	he ore is	
a)	Name two major impurities in the ore.	[01 mark]	

b)	Write equations to show how the ore is purified.	[06 marks]
c)	Describe briefly how aluminium can be obtained after the ore	has been
	purified.	[02 marks]
pa	ame a reagent that can be used to distinguish between each of irs of compounds/ ions. In each case state what would be obser ember of the pair is treated with the reagent you have named.	_
a)	CH3CH2CECH and CH3CH2CH=CH2	[03 marks]
i.	. Reagent:	
ii.	. Observation:	

b) <((Cl and CH ₃ CH ₂ CH ₂ Cl.	[03 marks]
i.	Reagent:	
	Observation:	
c) Ca	²⁺ and Ba ²⁺	[03 marks]
ii.	Reagent:	
iii.	Observation:	
ox	compound ${f W}$ contains 37.3% manganese, 19.1% nitrogen, the ygen. Calculate the empirical formula of compound ${f W}$. In=54.9, N=14, O=16]	rest being [02½ marks]
••••		
••••		

by	0.127°C. Determine the molecular formula of ${\bf W}$.	[02 marks]
••••		
••••		
fol	hen a few drops of concentrated nitric acid were adde	
	lution was formed. Write:	504
sol i.	ution was formed. Write: formula and name of W . formula:	[01 mark]
	formula and name of \mathbf{W} .	[01 mark]
	formula and name of W . formula:	

e.	. A few drops of aqueous sodium carbonate was added to a solution of $oldsymbol{W}$.		
	i.	State was observed.	[01 mark]
	ii.	$oldsymbol{W}$ rite an equation for the reaction that took place.	[01½ marks]
		END	

Dedicated to Excellence and Destined to Win

By J.W. Ogwang