Let K/F be Galois. let ack.

Let G = Gal(K/F), consider $G \cdot x = \{Conjugates of \alpha\}$, $\#G \cdot x = \deg x$.

Also, $\#(G \cdot \alpha) = \frac{|G|}{|H|}$ where $H = Gal(K/F(\alpha))$ $= |G \cdot H|$

 $deg_{F} \alpha = [F(\alpha):F] = [G:H].$

In particular, α generates K, $K=F(\alpha)$ iff H=1, iff $\#\{conjugates\ f\ \kappa\}=[K:F]=|G|,$ iff $\Psi(\alpha)\neq\Psi(\alpha)$ for all $\Psi\neq\Psi\in G$.

Norm fet L/F be separable. Let K/LS.t. K/F is Galois. Let $\alpha \in L$.

The norm $N_{L/F}(\alpha) = \prod \varphi(\alpha)$ where H = Gal(K/L)Set of $U_{L/F}$ Set of $U_{L/F}$

Page

$$\left(|f| L = K, \quad N_{L_{f}}(\alpha) = \prod_{\varphi \in G} \varphi(\alpha) \right).$$

Conjugates of
$$x$$
 are in 1-1 consequentes with $\{ \varphi(x), \varphi \in \mathcal{C}_{al}(x/F(x)) \}$.

So each conjugate appears a the product
$$|G/H|/|G/Gal(K/F(K))| + inces$$

$$= |Gal(K/F(K))|/|H|$$

$$= [L:F(K)]$$

Conjugates
$$f \alpha = \pm a_o$$
 where $m_{F,\alpha} = \chi^h + \cdots + a_i \chi + a_o$.

$$= \bigcap_{i=1}^n (\chi - a_i)$$
conjugates

of α .

If
$$L = F(\alpha)$$
, then $N_{L/F}(\alpha) = \prod conj. of \alpha = (-1)^n \alpha_0$

Properties: 1) Ny (a) doesn't depend on K.

2
$$N=N_{L/E}$$
 is multiplicative: $N(K\beta)=N(\alpha)N(\beta)$ $\forall \alpha, \beta \in L$

(3)
$$N_{4F}(\alpha) = detT$$
 where $T(\beta) = \alpha \beta$, $T: L \rightarrow L$.

Recall:
$$R = \mathbb{Q}(\sqrt{D})$$
, $\mathcal{N}(a+b\sqrt{D}) = a^2 - b^2 D$
= $(a+b\sqrt{D})(a-b\sqrt{D})$

$$R = Q(i)$$
, $N(a+bi) = a^2 + b^2$

$$T_{\Gamma_{L/F}}(\alpha) = \sum_{\varphi \in G/H} \varphi(\alpha) = -[L:F(\alpha)] \cdot a_{n-1}$$
.

Thronem Let F be a real field (i.e. FER). Let ne N, a & F st x n-a is irreducible. Then The only subfields of F(ta) = L are F(Ta) where d/n.

So the only subfields of Q(53) are Q(53), Q(23), and Q. If $\sqrt{2} \in \mathbb{Q}(\sqrt[8]{3})$, then $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{3})$, which is not true.

So [L: K] = n/

Lema: Any separable finite extension is simple, K = F(K)(unnecessary, as it turns out)

Let $F \subseteq K \subseteq L$. Let $\alpha = \int_{a}^{b} a$, $L = F(\alpha)$ Wt [K:P] = d Let $\beta = N_{k/L}(x) = \prod \text{ conjugates of } x \text{ over } K$ let $\omega = e^{2\pi i/n}$ all conjugates of a over Q are of the form wha for some m. $S_0 \beta = \omega^{\ell} \alpha^{n/l}$, but $\beta \in \mathbb{R}$, so $\omega^{\ell} = \pm 1$. $\beta \in K$. So $\alpha^{n/d} \in K$. So $\deg_{\kappa} \alpha \leq \frac{n}{d}$. deg $\alpha^{n/d} = d$, it is a rout of $\chi^d - a$. So $K = F(x^{n/d})$, and $\alpha^{n/d} = \sqrt[d]{a}$.

Theorem on the primitive element (The lema from above)

Any finite separable extension is simple: L/F fin. sep. \Longrightarrow L=F(x) for some $x \in L$.

Proof If F is finite, L is a finite field, so L= Fp(a) for some d.

So suppose F is infinite. Let K = Galois Closure of L/F.

Then Gal(K/F) is finite, So it has only finitely many subgroups. So K/F has finitely many subextensions. So L/F toes too, call them Li,..., Lm.

L has infinitely Many subspaces, and any $\alpha \notin \bigcup_{i=1}^{m} L_i$ generates L.

Non-separable extension:

 $L = \mathbb{F}_{p}(x_{i}y), \quad F = \mathbb{F}_{p}(x^{p}, y^{p}).$

Then Cleum L/F isn't generated by 1 element.

If $[L:F] = P^2$, but $\forall \alpha \in L$, $[F(\alpha):F] \leq P$,

Since $\alpha^{p} \in F$ since $\left(\sum a_{ij} x^{i} y^{j}\right)^{p} = \sum a_{ij} x^{ip} y^{jp}$.

L: F-vector cpace

So Gal \leq S_n where N = |Gal|formulations of conjugades of α