

招商银行信用卡中心

金融数据大赛答辩

队伍: X-Driver

名次: A榜冠军 / B榜冠军

成员: 陈瑀 晏世凯 孙万彤

团队曾获荣誉

- 2018搜狐内容识别算法大赛 第7名

[CCF、搜狐联合举办,参赛队伍612支]

- 2017中国高校计算机大赛大数据挑战赛 第3名

[教育部教指委、清华大学、腾讯联合举办,参赛队伍1222支]

- IJCAI-17 Customer Flow Forecasts on Koubei.com 第9名

[IJCAI、阿里巴巴联合举办,参赛队伍4046支]

- 2016 CCF大数据与计算智能大赛O2O优惠券使用预测 第9名

[CCF、阿里巴巴联合举办,参赛队伍1505支]

CONTENTS

赛题分析

算法模型

应用前景

参赛总结

数据:

》 掌上生活APP的一个月的操作行为

个人属性与信用卡消费数据

目标:

✓ 预测未来一周用户是否购买优惠券

分析:

- 单个用户重复一个行为
- 多个用户具有相同的行为

特征工程 (常规特征)

主要按照特征群进行提取:基础统计特征,离散特征,时序相关特征

用户总的点击次数 用户有多少天点击 基础统 用户每天平均点击量 用户各种行为类型次数对总次数的占比 计特征 用户对于第三级模块分别离散 用户在各个小时的点击量 离散 用户在各个周几的点击量 用户对于各个事件类型的次数 特征 用户点击的时间间隔 用户最大连续点击天数 时序相 用户最后一次点击距离最后一天的间隔 对于最后一天的统计 关特征

→ 特征工程 (亮点一: 时序特性)

时序特性:

特征权重随时间衰减

不同时间范围内用户购买比例图

用差值反应购买趋势

购买(红)与非购买(蓝)用户的行为 增长趋势分布图

▶ 特征工程(亮点二:NLP特征)

基本思想:将每个模块看成一个词,一个用户的所有操作就成了一篇文档。

USRID_2: word_1 word_2 word_3 word_4 word_5 word_5 word_5 word_6 word_4

NLP特征:

- ➤ Bag of words 特征 (未能考虑行为的顺序)
- ➤ Word2vec 均值向量特征 (行为顺序信息)

可解释性:

- 用户的行为具有一定规律性
- 文字的表达具有一定规律性

USRID	OCC_TIM	EVT_LBL	转换为词语
2	2018/3/13 23:26	38-115-117	word_1
2	2018/3/13 23:26	520-1836-3640	word_2
2	2018/3/13 23:26	0-231-277	word_3
2	2018/3/13 23:30	359-1234-2004	word_4
2	2018/3/13 23:30	326-1041-1678	word_5
2	2018/3/13 23:31	326-1041-1678	word_5
2	2018/3/13 23:33	326-1041-1678	word_5
2	2018/3/13 23:33	359-1233-2003	word_6
2	2018/3/14 19:25	359-1234-2004	word_4

特征选择:

- ➤ 基于XGB的特征重要性 先训练一个XGBoost模型,输出其特征重要性,然后 将重要性为0的特征删除,即完成了特征选择。
- ▶ 基于wrapper的方式 基于贪心算法,寻找最优特征子集,如右图所示。

目的:

降维,使模型泛化能力更强,减少过拟合。

XGBOOST:

参数	值
booster	gbtree
max_depth	3
eta	0.03
objective	rank:pairwise
min_child_weight	6
scale_pos_weight	3176 / 76824

- 针对指标AUC,使用了rank:pairwise
- 样本不平衡的处理,设置 scale_pos_weight为正负样本比例

LIGHTGBM:

参数	值
boosting_type	gbtree
num_leaves	31
learning_rate	0.01
objective	binary
feature_fraction	0.8
bagging_fraction	0.8

- 可以加速训练,节省内存
- 对于类别特征的决策规则

→ 模型融合 (基于Rank)

USRID	RST
1391	0.8613208
3679	0.4235010
4176	0.5986956

USRID	RANK
1391	1
3679	2
4176	3

USRID	RST
1391	0.813208
3679	0.9035010
4176	0.6386956

比赛评价标准: AUC, 其本质为排序优化问题 概率得分线性加权存在问题

潜力:

- 特征具有可解释性
- ▶ 模型的验证方法具有稳定性
- ▶ 随着数据量的增大,Word2vec特征会有更好的效果。
- 自然语言处理领域中成熟的方法可应用到用户行为识别中。

价值:

- ▶ 商家广告精准投放。
- 个性化推荐优惠信息。

参赛总结

不足:

- > 对于agg表只进行了简单的二元化和rank处理,没有深度发掘。
- ▶ 模型的融合的权重是根据线上成绩,其实可以采用线性回归的方式得到。

收获:

- > NLP和普通机器学习的结合
- > 坚持的重要性
- > 团队协作能力都得到了较大的提升

感谢招商银行信用卡中心给予的宝贵机会

感谢Datafountain平台的工作人员

感 谢 观 看 请 您 提 问