Tools for Stat Theory HW6

1

Let A represent an m \times n matrix. Show that if A'A is idempotent, then AA' is idempotent.

If A'A is idempotent, then A'AA'A = A'A = A'AI. Based on Corollary 5.5.3, we can conclude that AA'A = AI = A. Therefore $|AA'|^2 = AA'AA' = AA'$, implying that AA' is idempotent.

$\mathbf{2}$

Let A and B represent $n \times n$ symmetric idempotent matrices. Show that if C(A) = C(B), then A = B.

If C(A) = C(B), suppose there exists matrix F_1, F_2 such that $A = BF_1$ and $A = AF_2$. Also,

$$B = B' = (AF_2)' = F_2'A' = F_2'A.$$

$$A = BBF_1 = BA = F_2'AA = F_2'A = B$$

3

Let A represent an r×m matrix and B an m×n matrix. (a) Show that B^-A^- is a generalized inverse of AB if and only if A^-ABB^- is idempotent.

(i) If A^-ABB^- is idempotent show that B^-A^- is a generalized inverse of AB.

If B^-A^- is the generalized inverse of AB, then $ABB^-A^-AB = AB$.

$$A^{-}ABB^{-}A^{-}ABB^{-} = A^{-}ABB^{-}$$
. Thus $A^{-}ABB^{-}$ is idempotent.

(ii) If B^-A^- is a generalized inverse of AB show that A^-ABB^- is idempotent.

If A^-ABB^- is idempotent, then $A^-ABB^-A^-ABB^- = A^-ABB^-$

$$AA^{-}ABB^{-}A^{-}ABB^{-}B = AA^{-}ABB^{-}B$$

$$ABB^-A^-AB = AB$$

Hence, B^-A^- is the generalized inverse of AB.

4

Show that, for any matrix A, $C(A) = \mathcal{N}(I - AA^{-})$.

Corollary 9.3.6. Let A represent an m × n matrix. Then, for any m-dimensional column vector $x, x \in C(A)$ if and only if $x = AA^-x$, and, for any n-dimensional row vector $y', y' \in R(A)$ if and only if $y' = y'A^-A$.

Let x be the column vector whose dimension equals the number of rows in A. By Corollary 9.3.6, we know $x \in C(A)$ if and only if $x = AA^-x$. Equivalently, $(I - AA^-)x = 0$ and hence if and only if $x \in \mathcal{N}(I - AA^-)$. Therefore, we can conclude that $C(A) = \mathcal{N}(I - AA^-)$.