Problem 2.9: Analytical solution to M/D/1 queue

- Constant service time:
 - o Lambda = 1 unit/minute → interarrival-time = 1 minute between units
 - Mu = 1/0.9 unit/minute \rightarrow E(S) = 0.9 minute between units
 - Sigma = 0; since no variation
 - \circ Wq = lambda * (sigma^2 + 1/mu^2) / (2 * (1 lambda/mu)) = 0.81 / 0.2 = 4.05 minutes
 - \circ W = Wq + E(S) = 4.95 minutes
 - L = lambda * W = 4.95 units
 - Lq = lambda * Wq = 4.05 units
 - o Rho = lambda / (c * mu) = 0.9
- Non-constant service time (e.g. M/M/1):
 - o Rho = 0.9; unchanged
 - o L = 9 units; much higher than 4.95 units in M/D/1 scenario
 - o W = 9 minutes; much higher than 4.95 minutes in M/D/1 scenario
 - o Wg = 8.1 minutes; much higher than 4.05 minutes in M/D/1 scenario
 - o Lq = 8.1 units; much higher than 4.05 units in M/D/1 scenario
- Takeaway removing variation in service/processing time dramatically reduces overall units and time in system and in queue

Problem 4.15: Simio-based simulation of M/D/1 queue

- Experiment: 30 hour total runtime; 20 hour warm-up time; 500 replications
- As illustrated below, the 95% confidence intervals for all metrics include the analytically calculated values
- A screenshot of the model is also included, with the constant 0.9 minute processing time highlighted

