MAS241 ANALYSIS 1 QUIZ 5

Problem 1. (15 points) In this problem, you should use Theorem 6.5.1.

Theorem 6.5.1) If $\{f_k\}$ converges uniformly to f_0 on the compact set [a,b] and if each f_k is integrable on [a,b], then f_0 is also integrable on [a,b]. Furthermore,

- (1) If $F_k(x) = \int_a^x f_k(t)dt$, then $\{F_k\}$ converges uniformly to the function $F_0(x) = \int_a^x f_0(t)dt$ on [a,b].
- (2) In particular, $\lim_{k\to\infty} \int_a^b f_k(x) dx = \int_a^b f_0(x) dx$.

Now, define a function f_0 as

$$f_0 = \begin{cases} 0 & x \in \mathbb{R}/\mathbb{Q} \\ \frac{1}{m} & x = \frac{n}{m} \in \mathbb{Q}, \gcd(m, n) = 1 \end{cases}.$$

Show that f_0 is integrable on [a,b] and evaluate $F_0(x)$ for $x \in [a,b]$.

Solution 1. Let $f_k = \frac{1}{m}$ when $x = \frac{n}{m} \in \mathbb{Q}$, gcd(m, n) = 1, $m \le k$, and $f_k = 0$ otherwise. We only need to show that f_k converges uniformly to f_0 and each f_k is integrable on [a, b].

(1) Uniform convergence

$$f_0 - f_k = \begin{cases} 0 & x \in \mathbb{R}/\mathbb{Q} \\ \frac{1}{m} & x = \frac{n}{m} \in \mathbb{Q}, \gcd(m, n) = 1, m > k \end{cases}$$

So, for all $x \in [a, b]$, we have

$$|f_0 - f_k| < \frac{1}{k}$$

since m > k. And by Archimedes Principle, for any $\epsilon > 0$, we can find k such that $\frac{1}{k} < \epsilon$. This inequality holds for all $x \in [a, b]$, we can get uniform convergence.

(2) Integrable

Since every f_k are equal to zero except at finitely many points, let the nonzero points be c_1, \dots, c_n with $c_i < c_{i+1}$. By Lemma 1 of 6.2, f_k is integrable on $[c_i, c_{i+1}]$ and therefore, it is integrable on [a, b]. Now, we can use Theorem 6.2.10 and

$$\int_{a}^{b} f_k(x)dx = \int_{a}^{b} 0dx = 0.$$

Now, we may apply the Theorem 6.5.1. So, f_0 is integrable on [a,b] and since $F_k(x) = \int_a^x f_k(t)dt = 0$, we have $F_0(x) = 0$ for all $x \in [a,b]$.

Date: april 8, 2021.

Problem 2. (15 points) Let $\{f_k\}$ be a sequence of continuously differentiable functions on [a,b] such that $\lim_{k\to\infty} f_k = f_0$ pointwisely on [a,b] and $\lim_{k\to\infty} f'_k = g$ pointwisely on [a,b]. Prove or disprove that for $x \in [a,b]$,

$$f_0(x) - f_0(a) = \int_a^x g(t)dt.$$

Solution 2. Disprove.

The counterexample is $f_k(x) = 2^{3k-2}x^3 - 3 \times 2^{2k-2}x^2 + 1$ on $[0, \frac{1}{2^{k-1}}]$ or $f_k(x) = \exp(-\frac{x^2}{(x-\frac{1}{k})^2})$. Let take f_k as first one.

$$f_k(x) = \begin{cases} 1 & x \in (-\infty, 0) \\ 2^{3k-2}x^3 - 3 \times 2^{2k-2}x^2 + 1 & x \in [0, \frac{1}{2^{k-1}}] \\ 0 & x \in (\frac{1}{2^{k-1}}, \infty) \end{cases}$$

We can easily show that $f_k(x)$ converges pointwisely to f_0 which is

$$f_0 = \begin{cases} 1 & x \in (-\infty, 0] \\ 0 & x \in (0, \infty) \end{cases}.$$

Also, f_k is differentiable for all $x \in \mathbb{R}$, and we have

$$f'_k = \begin{cases} 3 \times 2^{3k-2}x^2 - 3 \times 2^{2k-1}x & x \in (0, \frac{1}{2^{k-1}}) \\ 0 & otherwise \end{cases}.$$

Note that it is continuous and it converges pointwisely to g=0. Now, take [a,b]=[0,1]. Then, for any $x \in (0,1]$, we have $f_0(x)-f_0(a)=-1$, but $\int_a^x g(t)dt=0$ always. So, the given statement is not true.

Problem 3. (15 points) Suppose that q is defined by

$$g(x) = \begin{cases} g_1, & \text{for } 0 \le x < 1 \\ g_2, & \text{for } 1 \le x \le 2. \end{cases}$$

Here, $g_1 \neq g_2$ and $f_1 \neq f_2$.

(1) Let f be a the function defined on [0,2] by

$$f(x) = \begin{cases} f_1, & \text{for } 0 \le x < 1 \\ f_2, & \text{for } 1 \le x \le 2. \end{cases}$$

Prove or disprove that f is in RS[g;0,2]. Evaluate $\int_0^2 f(x)dg(x)$ if it exists.

(2) Let f be a the function defined on [0,2] by

$$f(x) = \begin{cases} f_1, & \text{for } 0 \le x \le 1\\ f_2, & \text{for } 1 < x \le 2. \end{cases}$$

Prove or disprove that f is in RS[g;0,2]. Evaluate $\int_0^2 f(x)dg(x)$ if it exists.

Solution 3. (1) Disprove.

Consider a partition π of [0,2] which is $\pi = \{x_0, \dots, x_p\}$. For every interval $[x_{j-1}, x_j]$ which doesn't contain 1, the increment $\Delta g_j = g(x_j) - g(x_{j-1})$ is zero. So, we only need to consider 2 cases, $1 \in (x_{j-1}, x_j)$ or $x_j = 1$ for some 0 < j < p.

If $1 \in (x_{j-1}, x_j)$, then $\Delta g_j = g_2 - g_1$. But $f(s_j) = f_1$ if $s_j < 1$ and $f(s_j) = f_2$ if $s_j \ge 1$. So, a Riemann-Stieltjes sum $S(f, g, \pi)$ can be $f_1(g_2 - g_1)$ or $f_2(g_2 - g_1)$, we cannot find a number I of definition 7.1.1.

If $x_j = 1$, then we should consider two intervals of π , which are $[x_{j-1}, 1]$ and $[1, x_{j+1}]$. On the interval $[1, x_{j+1}]$, $g(x) = g_2$ is a constant and we have $\Delta g_{j+1} = 0$. On the interval $[x_{j-1}, 1]$, $\Delta g_j = g_2 - g_1$ and

$$f(x) = \begin{cases} f_1 & s_j < 1 \\ f_2 & s_j = 1. \end{cases}$$

So, we cannot find I again and f is not (Riemann-Stieltjes) integrable.

(2) *Prove*.

Again, we consider the partition in (1) and consider two cases. For $1 \in (x_{j-1}, x_j)$, we cannot find I with same reason as above.

If $x_j = 1$, then we should consider two intervals of π , which are $[x_{j-1}, 1]$ and $[1, x_{j+1}]$. On the interval $[1, x_{j+1}]$, $g(x) = g_2$ is a constant and we have $\Delta g_{j+1} = 0$. On the interval $[x_{j-1}, 1]$, $\Delta g_j = g_2 - g_1$ and $f(x) = f_1$ is a constant. So, we can find I which is $I = f_1(g_2 - g_1)$ and f is (Riemann-Stieltjes) integrable.