6521603795 Patiphat Aiamram lab 10

```
import pandas as pd
 In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LinearRegression
In [28]: # import insurance dataset จาก kaggle
         df = pd.read_csv('insurance.csv')
         df.head()
Out[28]:
                         bmi children smoker
           age
                                                region
                                                           charges
                   sex
            19 female 27.900
                                   0
                                         yes southwest 16884.92400
             18
                 male 33.770
                                              southeast
                                                        1725.55230
            28
                 male 33.000
                                              southeast
                                                        4449.46200
         3
            33
                 male 22.705
                                   0
                                         no northwest 21984.47061
            32
                 male 28.880
                                   0
                                                        3866.85520
                                          no northwest
In [29]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1338 entries, 0 to 1337
       Data columns (total 7 columns):
            Column Non-Null Count Dtype
                     _____
           age 1338 non-null int64
        0
        1
           sex
                    1338 non-null object
        2
           bmi
                    1338 non-null float64
           children 1338 non-null int64
        3
        4 smoker 1338 non-null object
        5 region 1338 non-null
                                    object
        6 charges 1338 non-null
                                     float64
       dtypes: float64(2), int64(2), object(3)
       memory usage: 73.3+ KB
```

Data preprocessing

```
Out[32]:
                             bmi children smoker
             age
                                                        region
                                                                    charges
                      sex
                                         0
                  female 27.900
                                                                16884.92400
          0
               19
                                                0.0
                                                     southwest
                    male 33.770
          1
               18
                                         1
                                                1.0
                                                     southeast
                                                                 1725.55230
          2
               28
                    male
                         33.000
                                         3
                                                1.0
                                                     southeast
                                                                 4449.46200
          3
                                                     northwest 21984.47061
               33
                    male 22.705
                                         0
                                                1.0
          4
               32
                    male 28.880
                                         0
                                                1.0
                                                     northwest
                                                                 3866.85520
In [33]: # ordinal encoding 'sex' column
          order = ['female', 'male']
          OE = OrdinalEncoder(categories=[order])
          df['sex'] = OE.fit_transform(df[['sex']])
          df.head()
Out[33]:
                          bmi children smoker
                                                     region
             age sex
                                                                 charges
                                      0
          0
               19
                   0.0 27.900
                                             0.0 southwest
                                                            16884.92400
          1
               18
                   1.0 33.770
                                      1
                                             1.0
                                                  southeast
                                                              1725.55230
          2
               28
                   1.0 33.000
                                      3
                                             1.0
                                                  southeast
                                                              4449.46200
          3
               33
                   1.0 22.705
                                             1.0
                                                  northwest 21984.47061
          4
               32
                   1.0 28.880
                                      0
                                             1.0 northwest
                                                              3866.85520
In [34]: # one hot encoding 'region' column
          OHE = OneHotEncoder(handle_unknown='ignore',
                                sparse_output=False,
                               ).set_output(transform='pandas')
          OHE_region_df = OHE.fit_transform(df[['region']])
          OHE_region_df
Out[34]:
                 region\_nor the ast \quad region\_nor thwest \quad region\_southeast \quad region\_southwest
```

	3	9	9	9
	0 .0	0.0	0.0	1.0
	1 0.0	0.0	1.0	0.0
	2 0.0	0.0	1.0	0.0
	3 0.0	1.0	0.0	0.0
	4 0.0	1.0	0.0	0.0
133	0.0	1.0	0.0	0.0
133	1.0	0.0	0.0	0.0
133	0.0	0.0	1.0	0.0
133	0.0	0.0	0.0	1.0
133	0.0	1.0	0.0	0.0

1338 rows × 4 columns

```
In [35]: df = pd.concat([ df, OHE_region_df] , axis =1)
    df
```

Out[35]:		age	sex	bmi	children	smoker	region	charges	region_northeast	region_northwest
	0	19	0.0	27.900	0	0.0	southwest	16884.92400	0.0	0.0
	1	18	1.0	33.770	1	1.0	southeast	1725.55230	0.0	0.0
	2	28	1.0	33.000	3	1.0	southeast	4449.46200	0.0	0.0
	3	33	1.0	22.705	0	1.0	northwest	21984.47061	0.0	1.0
	4	32	1.0	28.880	0	1.0	northwest	3866.85520	0.0	1.0
	•••									
	1333	50	1.0	30.970	3	1.0	northwest	10600.54830	0.0	1.0
	1334	18	0.0	31.920	0	1.0	northeast	2205.98080	1.0	0.0
	1335	18	0.0	36.850	0	1.0	southeast	1629.83350	0.0	0.0
	1336	21	0.0	25.800	0	1.0	southwest	2007.94500	0.0	0.0
	1337	61	0.0	29.070	0	0.0	northwest	29141.36030	0.0	1.0
	1220									

1338 rows × 11 columns

```
In [36]: df.drop(columns= 'region', inplace=True)
    df.head()
```

Out[36]:		age	sex	bmi	children	smoker	charges	region_northeast	region_northwest	region_southe
	0	19	0.0	27.900	0	0.0	16884.92400	0.0	0.0	
	1	18	1.0	33.770	1	1.0	1725.55230	0.0	0.0	
	2	28	1.0	33.000	3	1.0	4449.46200	0.0	0.0	
	3	33	1.0	22.705	0	1.0	21984.47061	0.0	1.0	
	4	32	1.0	28.880	0	1.0	3866.85520	0.0	1.0	

```
In [39]: # scaling data
         scaler = StandardScaler()
         df[['age',
              'sex',
             'bmi',
              'children',
              'smoker',
              'charges',
              'region_northeast',
              'region_northwest',
              'region_southeast',
              'region_southwest']] = scaler.fit_transform(df[['age',
              'sex',
              'bmi',
              'children',
              'smoker',
              'charges',
              'region_northeast',
              'region_northwest',
              'region_southeast',
              'region_southwest']])
         df.head()
```

]:		age	sex	bmi	children	smoker	charges	region_northeast	region_northwest
	0	-1.438764	-1.010519	-0.453320	-0.908614	-1.970587	0.298584	-0.565267	-0.566418
	1	-1.509965	0.989591	0.509621	-0.078767	0.507463	-0.953689	-0.565267	-0.566418
	2	-0.797954	0.989591	0.383307	1.580926	0.507463	-0.728675	-0.565267	-0.566418
	3	-0.441948	0.989591	-1.305531	-0.908614	0.507463	0.719843	-0.565267	1.765481
	4	-0.513149	0.989591	-0.292556	-0.908614	0.507463	-0.776802	-0.565267	1.765481

In [40]: sns.pairplot(df)

Out[39]

Out[40]: <seaborn.axisgrid.PairGrid at 0x17c7f66f680>


```
In [64]: X = df[['bmi']]
y = df['charges']

model = LinearRegression()
model.fit(X,y)
```

```
LinearRegression()
In [65]: y_pred = model.predict(X)
In [66]: plt.scatter(X, y)
         plt.plot(X, y_pred, color='red')
Out[66]: [<matplotlib.lines.Line2D at 0x17c0bcfa480>]
          3
          2
          1
          0
        -1
                   -2
                             -1
                                        0
                                                                       3
                                                  1
                                                             2
In [67]: from sklearn.metrics import mean_squared_error
In [68]: # evaluate model
         score = mean_squared_error(y ,y_pred)
         print(f'mse : {score} ')
        mse : 0.9606608600821375
In [ ]:
```

Out[64]:

LinearRegression 🗓 😲