

2020-2021 Spring Semester

Lab-4 Preliminary Report

Course Name: CS223

Section: 1

Lab: 4

Name: Alper

Surname: Mumcular

Student ID: 21902740

Date: 07.04.2021

Trainer Pack: 19

1.1) Moore Finite State Machine Transition Diagram

1.2) State Encodings

1.3) State Transition Table

S2	S,	So	SA	SB	52	S,	S.'	(
0	0	0	1	X	0	Ô	Ò	
0	0	0	0	×	0	0	1	
0	0	1	X	X	0	1	0	
0	1	0	X	X	0	1	1	
0	1	1	X	X	1	0	0	
1	0	0	X	11	1	0	0	
1	0	0	X		1	0	1	
1	0	1	X	X	1	1	0	Ī
1	1	0	X	. X	1	1	1	1
1	1 1	1	X	.\X		0 0	0	

1.4) Output Table

Sa	S	S	LAR	LAY	LAG	LBR	LBY	LBE	
0	0	0		1	1	1	0	0	L
0	0	1	1	1	0	1	0	0	
0	1	0	1	0	0	1	0	0	1
0	1	1	1	0	0	1	1	0	
1	0	0	1	0	0	1	1	1	
1	0	1	1	0	0	1	1	0	
1	1	0	1	0	0	1	0	0	
1	1	1	1	1	0	1	0	0	

1.5) Next State & Output Equations

1.6) FSM Circuit Schematic

2) We need 3 flip-flops to implement this problem because we have 3 state variables.

