Algebra Universal e Categorias

Exercícios - Folha 2 -

7. Seja (R, \leq) o reticulado representado ao lado.

Considere este reticulado interpretado como uma estrutura algébrica $(R; \wedge, \vee)$ e indique as tabelas das operações \wedge e \vee .

8. Considere o reticulado (R, \leq) a seguir representado.

Para cada um dos conjuntos R' a seguir indicados, diga se $(R', \leq_{|R'})$ é um subrreticulado de (R, \leq) .

(a)
$$R' = \{a, b, c, d\}$$

(b)
$$R' = \{b, c, f, g\}$$

(a)
$$R' = \{a, b, c, d\}.$$
 (b) $R' = \{b, c, f, g\}.$ (c) $R' = \{a, b, f, g, h\}.$

- 9. Seja $(R; \land, \lor)$ um reticulado. Um subconjunto não vazio I de R diz-se um ideal de R se
 - 1. $(\forall x, y \in R)$ $x, y \in I \Rightarrow x \lor y \in I$;
 - 2. $(\forall x \in I)(\forall y \in R) \ y \land x = y \Rightarrow y \in I$.

Mostre que $\mathcal{I}=(I;\wedge_{\mathcal{I}},\vee_{\mathcal{I}})$ é um subrreticulado de R, onde I é um ideal de \mathcal{R} e $\wedge_{\mathcal{I}}$ e $\vee_{\mathcal{I}}$ são as correspondências de I^2 em I definidas por

$$x \wedge_{\mathcal{I}} y = x \wedge y, \quad x \vee_{\mathcal{I}} y = x \vee y, \ \forall x, y \in I,$$

10. Sejam $\mathcal{R} = (R; \wedge, \vee)$ um reticulado, $\operatorname{Sub}(\mathcal{R}) = \{K \subseteq R \mid K \text{ \'e subrreticulado de } \mathcal{R}\}, \emptyset \neq X \subseteq R$ e

$$Sg^{\mathcal{R}}(X) = \bigcap \{ K \in \text{Sub}(\mathcal{R}) | X \subseteq K \}.$$

Mostre que $Sq^{\mathcal{R}}(X) = (Sq^{\mathcal{R}}(X); \wedge', \vee')$, onde

$$x \wedge' y = x \wedge y, \quad x \vee' y = x \vee y, \ \forall x, y \in Sg^{\mathcal{R}}(X),$$

é o menor subrreticulado de $\mathcal R$ que contém X. Ao reticulado $\mathcal Sg^{\mathcal R}(X)$ dá-se a designação de subrreticulado de \mathcal{R} gerado por X.

- 11. (a) Sejam (R_1, \leq_1) e (R_2, \leq_2) reticulados. Mostre que o par $(R_1 \times R_2, \leq)$ é um reticulado, onde \leq é a relação binária em $R_1 \times R_2$ definida por: $(a_1,a_2) \leq (b_1,b_2)$ sse $a_1 \leq_1 b_1$ e $a_2 \leq_2 b_2$.
 - (b) Considerando que (R_1, \leq_1) e (R_2, \leq_2) representam os reticulados a seguir indicados, desenhe o diagrama de Hasse do reticulado $(R_1 \times R_2, \leq)$:

- 12. Considerando os reticulados $(\mathbb{N}, m.d.c, m.m.c)$ e $(\mathcal{P}(\mathbb{N}), \cap, \cup)$, diga se cada uma das aplicações a seguir definidas é um homomorfismo de reticulados.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ definida por f(x) = nx, para todo $x \in \mathbb{N}$ (com $n \in \mathbb{N}$ fixo).
 - (b) $g: \mathbb{N} \to \mathbb{N}$ definida por g(x) = x + 2, para todo $x \in \mathbb{N}$.
 - (c) $h: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definida por $h(\emptyset) = \emptyset$ e $h(A) = \mathbb{N}$, para todo $A \in \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$.
 - (d) $k: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definida por $k(A) = A \cap \{1, 2\}$, para todo $A \in \mathcal{P}(\mathbb{N})$.