Brückenkurs – Tag 4 – "Fancy Friday"

3 Binomialkoeffizienten

$$k \in \mathbb{N}_0: \binom{x}{k} = \frac{x \cdot (x-1) \cdot (x-2) \dots (x-k+1)}{k!}$$

Dabei gilt:

$$\binom{n}{0} = 1, \quad \binom{0}{0} = 1, \quad \binom{0}{k} = 0$$

Spezialfall $0 \le k \le n \in \mathbb{N}_0$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \in \mathbb{Q}$$

Durch Experiment: $\in \mathbb{N}_0$

Aufgabe $\binom{x}{k} = \binom{x-1}{k-1} + \binom{x-1}{k}$ für $k \ge 1$ [Beispiel für rekursive Berechnung von $\binom{5}{3}$]

$$\binom{5}{3} = \binom{4}{2} + \binom{4}{3} = \binom{3}{1} + \binom{3}{2} + \binom{3}{2} + \binom{3}{3} = \dots = \binom{0}{1} + \dots + \binom{0}{1} = \dots$$

Satz Seien $k, n \in \mathbb{N}_0$. Dann ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge M durch $\binom{n}{k}$ gegeben.

Beweis mit Induktion über n n=0: $M=\emptyset$. Anzahl der k-elementigen Teilmengen von $M=\begin{cases} 1 & \text{für } k=0 \\ 0 & \text{für } k>0 \end{cases}$ n=>n+1: Sei $M=\{a_0,a_1,\ldots,a_n\}$ n-1-elementigen Teilmengen von $M=\{a_0,a_1,\ldots,a_n\}$ n-1 n-1

Sei $L \subseteq M$ eine k-elementige Teilmenge. Dann ist entweder $L = a_0 \cup L'$ mit $L' \subseteq (k-1)$ -elementig oder $L \subseteq M'$, k-elementig. und alle k-elementigen Teilmengen $L \subseteq M$ entstehen eindeutig auf diese Weise.

Damit ist die Anzahl der k-elementigen Teilmengen von $M \stackrel{IV}{=} \binom{n}{k-1} + \binom{n}{k} \stackrel{Aufg.}{=} \binom{n+1}{k}$ Fall k = 0 trivial, daher k > 0.

q.e.d.

3.1 Anwendung

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

Beispiel

$$(x+y)^2 = {2 \choose 0} x^2 y^0 + {2 \choose 1} x^1 y^1 + {2 \choose 2} x^0 y^2 = x^2 + 2xy + y^2$$
$$(x+y)^3 = {3 \choose 0} x^3 y^0 + {3 \choose 1} x^2 y^1 + {3 \choose 2} x^1 y^2 + {3 \choose 3} x^0 y^3 = x^3 + 3x^2 y + 3xy^2 + y^3$$

Begründung

$$(x+y)^n = (x+y)(x+y)\dots(x+y) = \Sigma n$$
-fache Produkte $= \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

Verständnisfrage: Was ist $\sum_{k=0}^{n} {n \choose k}$? = $|P(M)| = 2^n$ = Anzahl der Teilmengen einer n-elementigen Menge

4 Der euklidische Algorithmus

Im Folgenden: $d, n \in \mathbb{N}_0$

4.1 Definition

Die Zahl d teilt n, geschrieben d|n, falls $n = b \cdot d$ für ein $b \in \mathbb{Z}$.

Beispiele 2|100, 11|165, -13|169, 5X21.

4.2 Regeln

- 1. 1|n, n|n, d|0
- $2. \ 0|d \implies d = 0, \ d|1 \implies d = \pm 1$
- 3. $d|n, n|m \implies d|m$
- 4. $d|a,d|b \implies d|(ax+bx)$ für alle $x,y \in \mathbb{Z}$
- 5. $bd|bn, b \neq 0 \implies d|n$
- 6. $d|n, n \neq 0 \implies |d| \leq |n|$ Jedes $n \neq 0$ hat nur endlich viele Teiler; insbesondere 1.
- 7. $d|n, n|d \implies d = \pm n$

Beweis von 4. Es gelte also d|a,d|b d.h. a=sd,b=td für $s,t\in\mathbb{Z}$ Damit ist $ax+by=sdx+tdy=(sx+ty)\cdot d$, also d|ax+by

Konsequenz Aus diesen Regeln ergibt sich, dass jede Zahl endlich viele Teiler hat, also haben je zwei $a, b \in \mathbb{Z}$ einen größten gemeinsamen Teiler, ggT(a, b), wobei ggT(0, 0) := 0.

Es gilt

- ggT(a,b)|a, ggT(a,b)|b.
- $d|a, d|b \implies d|ggT(a,b).$

Beispiel ggT(11, 14) = 1, ggT(21, 14) = 7, ggT(110, 140) = 10, ggT(210, 140) = 70.

4.3 Satz: Division mit Rest

 $a, b \in \mathbb{Z}, b \neq 0$. Dann existieren eindeutige $q, r \in \mathbb{Z}$ mit a = bq + r mit $0 \leq r < |b|$.

Beweis $R = \{a - bq \mid q \in \mathbb{Z}\} \cap \mathbb{N}_0$ ist nicht leer. Diese besitzt ein kleinstes Element, welches das gesuchte r = a - bq für das gewünschte q ist.

Bleibt zu zeigen: r < |b|. Dies folgt aus der Minimalität von $r \in R$. q.e.d.

Folgerung Seien $a, b \in \mathbb{Z}$, d = ggT(a, b). Dann $(d) := \{d \cdot n \in \mathbb{Z}\} = \{ax + by | x, y \in \mathbb{Z}\} =: (a, b)$. Insbesondere läßt sich d in der Form d = ax + by für gewisse $x, y \in \mathbb{Z}$ schreiben. (Beispiel: $ggT(9, 6) = 3 = 9 \cdot 1 + 6 \cdot (-1)$)

Beweis " \supseteq " $ax + by \in (d) \Leftrightarrow d|(ax + by)$ (wg. 4. und d|a, d|b)

"⊆" Es reicht zu zeigen, dass $d \in (a, b)$. Der Fall a = 0 ist einfach: Also sei $a \neq 0$.

Die Menge $M := ax + by | x, y \in \mathbb{Z} \cap \mathbb{N}_{\geq 1}$ ist nicht leer; damit besitzt sie ein kleinstes Element $m \geq 1$. Wir wissen schon (4.), dass d|m. Division mit Rest liefert a = mq + r, $0 \leq r < m$.

Annahme r > 0. Dann ist $r = a - mq \in M$! Widerspruch! Also r = 0, also a = mq, daher m|a.

Analog (mit b anstelle von a) erhalten wir m|b, also ist m gemeinsamer Teiler von a und b. Damit $m \le d$. Zusammen mit $d \le m$ folgt d = m. Somit $d \in (a, b)$.

$$m \mid a, m \mid b \stackrel{iv}{\Longrightarrow} m \mid ggT(a, b) \square$$

4.4 Praktische Bestimmung des qqT

Verbleibende Zahl 3 = ggT(117, 33).

4.5 Satz über den euklidischen Algorithmus

Seien $a, b \in \mathbb{N}_0, a \ge b \ne 0$.

5 Primzahlen

5.1 Definition

Ein $p \in \mathbb{N}_0$ heißt **Primzahl**, wenn sie genau zwei positive Teiler besitzt.

5.2 Lemma von Euklid

Seien p eine Primzahl, $a, b \in \mathbb{Z}$. Dann: $p \mid (a \cdot b) \implies p \mid a \wedge p \mid b$

5.2.1 Beweis

Sei d = ggT(p, a). Dann d|p. Nach Voraussetzung ist dann d = 1 oder d = p.

Fall 1: d = p Dann p|a, da p = ggT(p, a).

Fall 2: d = 1 Damit ist 1 = px + ay mit $x, y \in \mathbb{Z}$. $\stackrel{b}{\Longrightarrow} b = bpx + aby \stackrel{p|ab}{\Longrightarrow} p|b$

5.3 Fundamentalsatz der Arithmetik

Satz Jede natürliche Zahl $n \geq 1$ besitzt eine eindeutige Primfaktorzerlegung ("PFZ"), d.h. es existieren eindeutig bestimmte Zahlen $\nu_p(n) \in \mathbb{N}_0$ mit

$$n = \prod_{p \in \mathbb{P}} p^{\nu_p(n)}$$

Beispiel $60 = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^0 \dots$ hier bspw.: $\nu_3(60) = 1$

Beweis

Existenz Sei $M = \{n \in \mathbb{N} \text{ mit } n \geq 1 \text{ ohne } PFZ\}$. Zu zeigen: $M = \emptyset$. Sei $n \in M$. Dann ist jedenfalls n keine Primzahl, also existieren $2 \leq a, b < n$ mit n = ab. Damit muss $a \in M \vee b \in M$. Insbesondere ist n in M nicht kleinstes Element.

Also hat M kein kleinstes Element und $M = \emptyset$.

Eindeutigkeit Sei $n = p_1 \cdot p_2 \dots p_r = q_1 \cdot q_2 \dots q_s$ mit p_i, q_j Primzahlen. $p_1 \mid p_1 \dots p_r \implies p_1 \mid q_1 \dots q_s \stackrel{Euklid}{\Longrightarrow} p_1 \mid q_j$ für ein j. Da p_1, q_j Primzahlen $\implies p_1 = q_j$. Dann kürze mit $p_1 (= q_j)$ und mache mit p_2 weiter, ...