Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский Университет ИТМО» Факультет безопасности информационных технологий

Дисциплина:

«Разработка систем аутентификации и криптографии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «Реализация алгоритма шифрования Эль-Гамаля»

Выполнили:

July 1

Магистрант гр. N42514c Э.Р. Кочкаров

Санкт-Петербург 2020 г.

1.Цель работы (задача) — создать программу, которая реализует криптографический алгоритм по схеме Эль-Гамаля.

2.Описание выбранных средств реализации и обоснования выбора

В качестве языка программирования был выбран С# поскольку есть опыт реализации других криптографических алгоритмов на данном языке.

С# является объектно-ориентированным языком программирования, разработанный компанией Microsoft в качестве языка для разработки приложений для платформы Microsoft .NET Framework. В свою очередь, .NET Framework - это программная платформа, т. е. некая "среда выполнения", в которой должен работать код, написанный для данной платформы. Таким образом, чтобы работала программа, написанная на С#, необходима установленная .NET Framework.

В качестве среды разработки будет использована Microsoft Visual Studio 2019. В данном случае можно сказать, что других вариантов просто нет при разработке на Windows. Это официальная, самая "правильная", функциональная среда разработки, в которой есть все что необходимо.

3. Описание алгоритма.

Схема Эль-Гамаля (Elgamal) — криптосистема с открытым ключом, основанная на трудности вычисления дискретных логарифмов в конечном поле. Криптосистема включает в себя алгоритм шифрования и алгоритм цифровой подписи. Схема Эль-Гамаля лежит в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94).

А) Генерация ключей.

- 1. Генерируется случайное простое число р
- 2. Выбирается целое число \mathbf{g} первообразный корень \mathbf{p} .

- 3. Выбирается случайное целое число, взаимно простое с (**p-1**), **x** такое, что 1 < x < p-1
 - 4. Вычисляется $y = g^x mod p$
 - 5. Открытым ключом является y, закрытым ключом число x.

Б) Шифрование

Сообщение **М** должно быть меньше числа **р**. Сообщение шифруется следующим образом:

- 1. Выбирается сессионный ключ случайное целое число, взаимно простое с (**p-1**), **k** такое, что 1 < k < p-1
 - 2. Вычисляются числа $a = g^x \mod p$ и $b = y^k M \mod p$
 - 3. Пара числе (**a**, **b**) являются шифротекстом.

В) Расшифрование

Зная закрытый ключ \mathbf{x} , исходное сообщение можно вычислить из шифротекста (\mathbf{a}, \mathbf{b}) по формуле:

$$M = b(a^x)^{-1} \bmod p$$

4.Ссылка на сходный код.

https://github.com/elmurza/crypto/blob/main/task1/Form1.cs

5.Выводы

В результате выполнения лабораторной работы была изучена схема построения криптографических алгоритмов на основе открытых ключей. Изучены проблемы генерации больших простых чисел, рассмотрены плюсы и минусы алгоритмов с открытыми ключами.

Стойкость схемы Эль-Гамаля основана на (гипотетической) сложности задачи дискретного логарифмирования по основанию g. Однако стойкость этой схемы в предположении сложности дискретного логарифмирования по основанию пока не доказана. Очевидно, что это предположение необходимо для стойкости схемы Эль-Гамаля, так как в противном случае противник сможет полностью раскрыть схему, вычислив секретный ключ по известному открытому.