Economía 5

Formulario · Primavera 2021

Parte I

Producción y consumo

1. El modelo estático de producción y consumo

Definición 1.1 (Función de producción). La función de producción f_j describe la relación entre la producción de bienes y la cantidad de trabajo requerido en la j-ésima empresa competitiva, y se denota:

$$y_i = f_i(l)$$
 tal que $j \in J$.

Propiedades de la función de producción

- (I) Creciente $(f'_i > 0)$, i.e. el trabajo es siempre productivo.
- (II) Cóncava $(f_j'' \le 0)$, i.e. está sujeta a la ley de rendimientos marginales decrecientes.

1.1. El problema de la firma

$$\max_{\{l\}} pf_j(l) - wl$$

$\overline{f_j}$	Función de producción
Ĭ	Nivel de empleo
n	Precio del bien final

p Precio del bien final
w Precio del trabajo (salario)

Condición de optimalidad

$$l: pf'_i(l_i(w,p)) = w.$$

Definición 1.2 (Ganancias óptimas). Definimos las ganancias óptimas de la firma j como sique:

$$\pi_j(w, p) = pf_j(l_j(w, p)) - wl_j(w, p).$$

Definición 1.3 (Demanda laboral). La solución l_j de la condición de optimalidad del problema de la firma se conoce como demanda laboral de la firma j.

Definición 1.4 (Oferta de bienes). A la función $y_j(w, p)$ se le conoce como oferta de bienes de la empresa j.

Proposición 1.1

Las funciones de **demanda laboral** y **oferta de bienes** son homogéneas de grado 0.

Proposición 1.2

La función de ganancias óptimas es homogénea de grado 1.

Definición 1.5 (Función de utilidad). Sea una función $u_i(h,c)$, esta representa la utilidad del i-ésimo consumidor por ocio y consumo si, para cualquier par de alternativas $(h_0,c_0),(h_1,c_1) \in \mathbb{R}^2$, se tiene $u_i(h_0,c_0) < h_i(h_1,c_1)$ si y solo si el consumidor en cuestión prefiere la canasta (h_1,c_1) sobre la canasta (h_0,c_0) .

Propiedades de la función de utilidad

- (I) Continuamente diferenciable, i.e. existe u_i' continua.
- (II) Creciente $(u_i' > 0)$.
- (III) Monótona.
- (IV) Cuasicóncava.

1.2. El problema de los consumidores

$$\begin{aligned} \max_{\{h,c\}} \ u_i(h,c) \\ \text{sujeto a} \quad h+n = H_i, \\ pc = wn + \sum_{j \in J} \theta_{ij} \pi_j(w,p). \end{aligned}$$

O bien,

$$\max_{\{h,c\}} u_i(h,c)$$
sujeto a
$$wh + pc = wH_i + \sum_{j \in J} \theta_{ij} \pi_j(w,p).$$

θ_{ij}	Acciones de la firma j
c	Consumo del bien final
π_i	Ganancias de la firma j
$\stackrel{\circ}{wn}$	Ingreso laboral
$\sum \theta_{ij} \pi_j(w,p)$	Ingreso no laboral o de capital
$j \in J$	
p	Precio del bien final
w	Precio del trabajo (salario)
$h + n = H_i$	Restricción de tiempo
$pc = wn + \sum \theta_{ij}\pi_j(w, p)$	Restricción presupuestal
$j \in J$	
$wH_i + \sum \theta_{ij}\pi_j(w,p)$	Riqueza
$j \in J$	
h	Tiempo dedicado al ocio
n	Tiempo dedicado al trabajo
H_i	Unidades de tiempo disponibles
wh + pc	Valor de mercado de la canasta de consumo

Condiciones de optimalidad

$$h: \frac{\partial u_i}{\partial h}(h^*, c^*) = \lambda^* w,$$

$$c: \frac{\partial u_i}{\partial c}(h^*, c^*) = \lambda^* p,$$

$$\lambda: wh^* + pc^* = wH_i + \sum_{i \in I} \theta_{ij} \pi_j(w, p).$$

Si $h^*, c^* > 0$, en el óptimo:

$$TMS(h^*, c^*) = \frac{w}{p} \text{ tal que } wh^* + pc^* = wH_i + \sum_{j \in J} \theta_{ij} \pi_j(w, p).$$

Definición 1.6 (Demanda de ocio). La demanda de ocio es una de las soluciones al problema de los consumidores y se denota:

$$h^* = h_i(w, p).$$

Definición 1.7 (Demanda de consumo). La demanda de consumo es una de las soluciones al problema de los consumidores y se denota:

$$c^* = c_i(w, p).$$

Definición 1.8 (Oferta laboral). Dadas nuestras unidades de tiempo disponibles, H_i , y nuestra demanda de consumo $h_i(w, p)$, definimos la **oferta laboral** como sique:

$$n_i(w,p) = H_i - h_i(w,p).$$

1.3. Equilibrio competitivo

Definición 1.9 (Equilibrio competitivo). Definimos el equilibrio competitivo como un vector de precios (w^*,p^*) y una asignación $\left(\left\{l_j^*,y_j^*\right\}_{j\in J},\left\{h_i^*,c_i^*\right\}_{i\in I}\right)$ tales que:

(I) Todas las cantidades son óptimas a los precios (w^*, p^*) .

Parte II Consumo en el tiempo Parte III Producción en el tiempo Parte IV Economía abierta Parte V Inversión y capital