The Configuration Space

Algorithms and Data Structures 2 – Motion Planning and its applications
University of Applied Sciences Stuttgart

Dr. Daniel Schneider

Introduction

- Motion planning is not done in the workspace.
- Motion planning is done in the so-called configuration space.
- The configuration space is an additional space in the algorithm.
- All algorithms are defined in the configuration space.

Definition of the configuration space

Definition: Configuration space

For a robot $\mathcal{A} \subset \mathcal{W}$ with n total motion DOFs, the configuration space \mathcal{C} is a space with one dimension per DOF.

Remarks:

- This implies that the configuration space is not related to the workspace \mathcal{W} itself, but to the motion definition of the robot \mathcal{A} .
- In most cases the configuration space is consists of:
 - Rotational DOFs
 - Translational DOFs

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

First DOF: Translation in x

Second DOF: Translation in y

Third DOF: Rotation in φ

Amount of DOF: 3 Notation: SE(2)

First DOF: Translation in x

Second DOF: Translation in ψ

Third DOF: Translation in z

Fourth DOF: Rotation in φ

Fifth DOF: Rotation in ϑ

Sixth DOF: Rotation in ψ

Amount of DOF: 6

Notation: SE(3)

First DOF: Translation in xSecond DOF: Translation in yThird DOF: Translation in zFourth DOF: Rotation in φ Fifth DOF: Rotation in ϑ Sixth DOF: Rotation in ψ

Amount of DOF: 6 Notation: SE(3)

Sources:

Planning Algorithms—LaValle - http://planning.cs.uiuc.edu/

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

First DOF: Translation in x

Second DOF: Translation in 4

Third DOF: Translation in *z*

Fourth DOF: Rotation in φ

Fifth DOF: Rotation in ϑ

Sixth DOF: Rotation in ψ

Amount of DOF: 6

Notation: SE(3)

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

Exercise:

What are the configuration spaces of these two examples?

Sources:

Planning Algorithms – LaValle - http://planning.cs.uiuc.edu/

For the car:

First DOF: Translation in xSecond DOF: Rotation in φ

Amount of DOF: 2

For the trailer:

First DOF: Translation in xSecond DOF: Rotation in φ

Amount of DOF: 2

Car:

The car can turn its front wheels and the engines turn one pair of wheels.

Trailer:

This is the same for the trailer. The angle between trailer and truck is not a DOF. It is resulting from the forces of the truck from start to end.

Docking process:

First DOF: Translation in x

Second DOF: Translation in 4

Third DOF: Translation in *z*

Fourth DOF: Rotation in φ

Fifth DOF: Rotation in ϑ

Sixth DOF: Rotation in ψ

Amount of DOF: 6

Notation: SE(3)

BUT:

The motion is constrainted by energy

functions → very challenging.

Note: Constraints \rightarrow workspace.

One turning wheel:

First DOF: Translation in xSecond DOF: Rotation in φ

Amount of DOF: 2

Two turning wheels:

First DOF: Translation in \boldsymbol{x}

Second DOF: Translation in 4

Amount of DOF: 2

Sources:

Robot Motion Planning-Wolfram Burgard et al. -

http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/18-robot-motion-planning.pdf

Sources:

A Journey of Robots, Digital Actors, Molecules and Other Artifacts – Jean Claude Latombe_ https://robotics.stanford.edu/~latombe/projects/motion-planning.ppt First DOF: Rotation in φ

Second DOF: Rotation in ϑ

Third DOF: Rotation in ψ

Fourth DOF: Translation in x

Fifth DOF: Rotation in ω

Sixth DOF: Translation in ψ

Amount of DOF: 6

Sources:

Simultaneous Grasp and Motion Planning – Nikolaus Vahrenkamp et al_ https://h2t.anthropomatik.kit.edu/pdf/Vahrenkamp2012.pdf 1-5: Rotational DOFs for finger

6: Rotational DOF for hand

7: Rotational DOF for elbow

8: Rotational DOF for shoulder

Amount of DOF: 8

BUT:

The motion is constrained by a physical force simulation → very challenging.

Note: Constraints → workspace.

Notes

- When programming not the whole configuration space is programmed.
- In most cases the workspace has some limits. These limits are then applied to the possible motions of the robot. → So the configuration space is also limited.

What is \mathcal{C}_{free} and \mathcal{C}_{obs}

- Recap: The configuration space C is the space of all possible configurations (movements) of the robot A.
- The configurations space is subdivided into two sets of configurations.
 - 1. There are configurations where the robot is in collision with its environment. \mathcal{C}_{obs}
 - 2. And in addition there are the configuration where the robot is free of collision. C_{free}

Definition of \mathcal{C}_{free} and \mathcal{C}_{obs}

Definition 2.2 (C_{obs} , C_{free}) Let A(q) be the robot in configuration $q \in C$ and O the forbidden region in W. The obstacle region $C_{obs} \subset C$ is defined by

$$C_{obs} = \{ q \in C : A(q) \cap O \neq \emptyset \}. \tag{2.1}$$

The leftover configurations of C are defined as $C_{free} = C \setminus C_{obs}$.

• Note: Each configuration is either part of \mathcal{C}_{free} or \mathcal{C}_{obs} . The sets are disjunct.

Special configurations, c_{init} , c_{goal} and C_{goal}

- In the motion planning problem the robot starts it journey at a given configuration. This configuration is called c_{init} .
- Moreover, the goal is to reach one certain configuration c_{goal} or a set of configurations C_{goal} .

Definition of a path, the solution to the motion planning problem.

```
    Definition 2.3 (Path) A function σ[0,1] → ℝ<sup>d</sup> is called,
    a path, if it is continuous,
    a collision-free path, if it is a path and σ(τ) ∈ C<sub>free</sub>∀τ ∈ [0,1],
    and a feasible path, if it is a collision-free path and σ(0) = x<sub>init</sub> and σ(1) ∈ X<sub>goal</sub>.
```

Note:

Computing a continuous path in real world examples is not possible (in reasonable computing times) caused by the amount of DOFs. Therefore an sufficient precise discretization is computed.

Finally the definition of the motion planning problem

Definition 1 (Motion Planning Problem (Single-Query))

Given $c_{init} \in C_{free}$, the valid initial configuration of D, and $c_{goal} \in C_{free}$, the valid goal configuration of D. The single-query motion planning problem is to find a continuous path $\sigma: [0,1] \to C_{free}$ with $\sigma(0) = c_{init}$ and $\sigma(1) = c_{goal}$, if one exists.

Note:

- We mainly consider the single-query motion planning problem. In this problem we are only interested in a single path from start to goal. In the multi-query variant we are interested in multiple paths.
- The difference is that some algorithms used in single-query motion planning are (due to performance) not used in multi-query motion planning.

Why do we introduce the configuration space at all?

Configuration Space Idea

Sources:

Configuration Space Configuration Space for Motion Planning—Prof. Seth Teller _ http://courses.csail.mit.edu/6.141/spring2010/pub/lectures/Lec10-ConfigurationSpace.pdf

How does the configuration space looks like?

Exercise: Draw \mathcal{C}_{obs}

- Give coordinates of the lowest left point of \mathcal{C}_{obs}
- Give coordinates of the uppest right point of \mathcal{C}_{obs}

How does the configuration space looks like?

Some Theory

- What you have just done is computing the Minkowski Sum of the robot and its obstacle.
- Note that for solving motion planning problem with the Minkowski Sum for non symmetric robots → the robot has to be mirrored to the origin.

Computation of C-obstacles

- · Inputs: robot polygon R and obstacle shape S
- · Output: c-space obstacle c-obstacle(S, R)

C-obstacle Computation

- 1. Reflect robot R about its origin to produce R'
- 2. Compute Minkowski sum of R' and obstacle S

Sources:

 $Configuration \ Space \ Configuration \ Space \ for \ Motion \ Planning-Prof. \ Seth \ Teller-\underline{http://courses.csail.mit.edu/6.141/spring2010/pub/lectures/Lec10-ConfigurationSpace.pdf}$

How does the configuration space looks like in higher Dimensions?

Workspace (x, y)

C-space (x, y, θ)

A Robot

Sources:

Configuration Space Configuration Space for Motion Planning—Prof. Seth Teller <u>http://courses.csail.mit.edu/6.141/spring2010/pub/lectures/Lec10-ConfigurationSpace.pdf</u>

Video from Dror Atariah

https://www.youtube.com/watch?v=SBFwgR4K1Gk

Summary

- In lower dimensions(<=3) C_{obs} can be computed <=3.
- This is very complex and starting from 3 DOFs it is getting hard to imagine.
- Until the late 90s, computing \mathcal{C}_{obs} was the way to go.
- This is often called "continuous motion planning" or "combinatorial motion planning" or "classical motion planning".
- Newer algorithms are not longer computing \mathcal{C}_{obs} \rightarrow These algorithms we will consider.

How to find a path if \mathcal{C}_{obs} computed

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

How to find a path if \mathcal{C}_{obs} computed

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf