DIPLÔME NATIONAL DU BREVET SESSION 2019

MATHÉMATIQUES

Série professionnelle

Durée de l'épreuve : 2 h 00 – 100 points

Dès que le sujet vous est remis, assurez-vous qu'il soit complet.

Ce sujet comporte 8 pages numérotées de la 1/8 à la page 8/8.

ATTENTION LES ANNEXES pages 7/8 et 8/8 sont à rendre avec la copie.

L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé. L'utilisation du dictionnaire est interdite

Code sujet: 19PROMATMEAG1 Page 1 sur 8

Le cinéma

Indication portant sur <u>l'ensemble du sujet</u>

Pour chaque question, si le travail n'est pas terminé, laisser tout de même une trace de la recherche (calcul, schéma, explication, ...). Elle sera prise en compte dans la notation

Exercice 1 (18 points)

L'écran d'une salle de cinéma est représenté en annexe 7/8.

Pour un bon confort visuel, l'image projetée doit recouvrir au moins 85 % de l'écran. L'objectif de cet exercice est de vérifier si l'image projetée vérifie cette condition.

- 1. Donner la longueur et la hauteur de l'écran.
- 2. L'image projetée sur cet écran est un rectangle de longueur 15 m et de hauteur 9 m.

Placer l'image projetée sur l'annexe de telle sorte qu'elle soit centrée sur l'écran.

- 3. Calculer l'aire de l'image en m².
- 4. Indiquer, en le justifiant, si l'image projetée apporte le confort visuel attendu.

Exercice 2 (16 points)

Emma achète à l'entrée du cinéma, un paquet de bonbons colorés.

Le paquet contient 7 bonbons de chaque couleur : bleu, orange, rouge, marron, vert et jaune. Emma n'aime pas la couleur verte.

Elle tire au hasard un bonbon et espère ne pas tomber sur un bonbon vert.

- 1. Calculer la probabilité de tomber sur un bonbon vert. Donner le résultat sous la forme d'une fraction irréductible.
- 2. Chaque fois qu'elle tire un bonbon vert, Emma la remet dans le paquet. S'il n'est pas vert, elle le mange.
 - Elle a mangé trois bonbons rouges, deux jaunes, deux bleus, trois marrons et quatre oranges, puis elle tire au hasard un nouveau bonbon.
 - Calculer la probabilité de tomber sur un bonbon vert. Donner le résultat sous la forme d'une fraction irréductible.
- 3. Si Emma continue ainsi, donner la valeur que la probabilité « de tomber sur un bonbon vert » va finir par atteindre. Justifier votre réponse.

Code sujet: 19PROMATMEAG1 Page 2 sur 8

Exercice 3 (15 points)

Dans le cinéma d'une ville on projette un film d'animation. Le projectionniste veut vérifier les bonnes conditions de diffusion du film.

- Le projecteur permet de diffuser des films tournés en 48 images au maximum par seconde. La durée du film est de 2 h 50 min et il contient 489 600 images.
 Vérifier que le projecteur est adapté à ce film. Justifier votre réponse par un calcul.
- 2. Ce film est projeté sur un écran de 10 m de haut. Le schéma ci-dessous indique la position du projecteur par rapport à l'écran.
 - a. Calculer la hauteur h de l'image.
 - b. En déduire si la hauteur de l'image projetée est adaptée à l'écran.

Exercice 4 (18 points)

Au mois de mai 2018, un nouveau cinéma a ouvert ses portes dans la zone commerciale d'une ville. Un autre cinéma est déjà présent dans le centre-ville. Une étude statistique a été menée sur la fréquentation mensuelle, c'est-à-dire le nombre d'entrées par mois, des deux cinémas en 2018.

Les objectifs de ce nouveau cinéma sont les suivants :

- Une fréquentation mensuelle moyenne supérieure à 10 000 entrées ;
- Une fréquentation totale supérieure à celle du cinéma du centre-ville sur la période mai à décembre;
- Aucune fréquentation mensuelle inférieure à 7 000 entrées.
- 1. En annexe 8/8, compléter le tableau pour le cinéma du centre-ville.
- 2. En **annexe 8/8**, compléter le diagramme en bâtons pour le cinéma de la zone commerciale.
- 3. Vérifier le premier objectif du nouveau cinéma en le justifiant.
- 4. Vérifier que les 2 autres objectifs sont atteints. Justifier vos réponses.

Code sujet: 19PROMATMEAG1 Page 3 sur 8

Exercice 5 (15 points)

Pour éviter des mouvements de têtes lors du visionnage du film, une personne doit avoir un angle de vision inférieur à 90°.

Une personne arrive dans une salle de cinéma. Il ne reste que les places A et D comme indiqué sur le schéma ci-dessous. Elle choisit la place D.

Le but de l'exercice est de vérifier si elle a fait le bon choix.

On donne DH = 7 m et DB = DC = 10,26 m et $\widehat{BAC} = 37^{\circ}$.

Le schéma n'est pas à l'échelle

- 1. Donner la nature du triangle BDC.
- 2. Calculer en degré la mesure de l'angle BDH. Arrondir à l'unité.
- 3. En déduire la mesure de l'angle BDC, angle de vision de la personne assise à la place D.
- 4. Expliquer en le justifiant si le choix de la personne est le bon.

Formules:

$$\cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure de l'hypoténuse}} \; ; \; \sin\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure de l'hypoténuse}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté opposé}}{\textit{mesure du côté adjacent}} \; ; \; \tan\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \sin\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \; ; \; \cos\alpha = \frac{\textit{mesure du côté adjacent}}{\textit{mesure du côté adjacent}} \;$$

Page 4 sur 8

Exercice 6 (18 points)

Dans une salle de cinéma, on projette des films en 3D. Le prix de la place sans l'achat des lunettes 3D est de 11 €, le prix avec l'achat des lunettes 3D est 12 €.

Une borne permet d'acheter des places. Elle fonctionne grâce à l'algorithme ci-dessous : il calcule le prix à payer et le nombre de places restantes dans la salle.

1. Donner le nombre de places initial de cette salle.

```
quand est cliqué
mettre places restantes à 150

répéter jusqu'à places restantes = 0 ou places restantes < 0

dire regroupe il reste regroupe places restantes places dans la salle pendant 2 secondes
lunettes
prix à payer

mettre places restantes à places restantes - nombre avec lunettes + nombre sans lunettes

définir lunettes

demander nombre de personne avec achat de lunettes 3D 2 et attendre
mettre nombre avec lunettes à réponse

demander nombre de personne sans achat de lunettes 3D 2 et attendre
mettre nombre sans lunettes à réponse
```

Page 5 sur 8
CODE SUJET: 19PROMATMEAG1

2. Un bloc d'instructions « prix à payer » est dans l'algorithme. Parmi les trois propositions suivantes, choisir le bloc qui comporte les bonnes informations. Justifier.

- 3. Une famille arrive à la borne pour acheter des places. Il reste 86 places dans la salle. Trois membres de la famille n'ont pas de lunettes 3D. Ils payent 80 € au total.
 - a. La résolution de l'équation 11x + 36 = 80 permet de déterminer le nombre x de personnes ayant leurs lunettes 3D. Résoudre cette équation.
 - b. En déduire le nombre de places restantes après leur achat.
 - c. Les messages affichés par la borne lors de cet achat sont présentés en **annexe 7/8** par des vignettes données dans le désordre. Numéroter de 1 à 5 les vignettes sur l'annexe dans l'ordre chronologique d'apparition sur la borne.

ANNEXES A RENDRE AVEC LA COPIE

Exercice 1: Questions 1 et 2

Exercice 6: Question 3.c

Page 7 sur 8

Exercice 4 : Questions 1 et 2

Cinéma du centre-ville

Mois	Jan.	Fev.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.	Dec.
Fréquentation (nombre d'entrées)		14 230		13 220	11 255	11 054	8 600	9 251	13 134	10 622	12 942	10 578

Cinéma de la zone commerciale

Mois	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Dec.
Nombre d'entrées	15 850	11 400	8 320	9 015	12 000	10 548	12 987	8 000

