#### 2012 西安交通机械设计基础试题(回忆版)

- 一、 判断题(共20题)
- 二、 选择题 (共15题)(没有选项,只题干)
  - 1. 移动副几何特征\_\_\_
  - 2. 机构运动简图是研究机构\_\_\_\_
  - 3. L<sub>AB</sub>=70 , L<sub>BC</sub>=90 , L<sub>CD</sub>=110 , L<sub>AD</sub>=40 , 为使其为双曲柄机构 , 应选\_\_\_为 机架
  - 4. 曲柄主动时,极位角为
  - 5. 定轴轮系中,输出构件的转向取决于\_\_\_\_
  - 6. 三心定理
  - 7. V 带正确位置
  - 8. 使往复运动变为单向间隙运动的机构
  - 9. 蜗杆轮齿的承载能力计算针对\_\_\_\_
  - 10. 提高螺栓在变载荷作用下的疲劳强度,应\_\_\_\_
  - 11. 下列为非接触式动密封的密封件\_\_\_\_
  - 12. 如图齿轮传动,其齿根齿面应力变化\_\_\_\_



- 13. 平键应力计算
- 14.
- 15.

## 三、填空题

- 1. 曲柄摇杆机构中,只有当\_\_\_为主动件时,才有可能出现死点位置,处于死点位置时,传动角γ=\_\_\_。
- 2. 曲柄滑块机构中,极位角θ是指\_\_\_之间的夹角,在\_\_\_条件下,曲柄滑块具有急回特性。
- 3. 和齿轮传动相比,蜗杆传动的相对滑动速度,导致传动,低。
- 4. 在两带轮材料相同的情况下,根据\_\_\_\_的分析结果可以推出带传动的打滑只会发生在\_\_\_\_上。
- 5. 列举 4 种实现从动件作间歇运动的机构\_\_\_、\_\_、\_\_、\_\_。并列举两个工程应用实例\_\_\_、\_\_。
- 6. 螺纹防松按工作原理可分为两类\_\_\_、\_\_\_。各举1实例\_\_\_、\_\_\_。
- 7. 6310 轴承查手册知 C=48400N, 其含义。
- 8. 轴的弯扭合成强度公式中的  $M_v = \sqrt{M^2 + (\alpha T)^2}$ , 其 $\alpha$ 的含义\_\_\_\_。
- 9. 额定载荷是指\_\_\_\_, 计算载荷是指\_\_\_\_。
- 10. 一般情况下,一对齿轮传动中,两齿轮齿面的接触应力是\_\_\_\_,齿根弯曲应力是\_\_\_\_。

#### 四、简答题

- 1. 为什么在设计带传动时,要限制小带轮?
- 2. 在选择联轴器时,主要考虑哪些因素?
- 3. 由双速电机驱动的 V 带传动,若电动机输出功率不变,则 V 带传动应按哪种转速设计,为什么?
- 4. 有一支架用四个普通螺栓固接于底座上,试述确定该螺栓组连接的预紧力 F '时应考虑哪些因素?



- 5. 齿轮传动中有哪些设计理论?各针对哪些失效形式?
- 6. 图示盘形凸轮机构,凸轮主动
  - a) 其偏置是有利偏置还是无利偏置,理由?
  - b) 若将该凸轮廓线作为滚子移动从动件的理论廓线,其滚子半径 R=8mm,该凸轮廓线会产生什么问题?为什么?为了保证从动件 实现同样的运动规律,应采取何种措施?



### 五、 计算题、综合题

- 一对标准渐开线直齿圆柱齿轮,已
  知:M=4mm,Z<sub>1</sub>=25,Z<sub>2</sub>=35,h<sub>a</sub>\*=1,C\*=0.25, α=20°.安装中心距比标准中 心距大 2mm,试用图解法或解析法求:
  - a) 中心距 a'
  - b) 啮合角α′
  - c) 有无齿侧间隙
  - d) 径向间隙 C

2. 一钢制厚度 B=10mm 的凸轮,其质量 m=0.8kg.质心 S 离轴心的偏距 e=2mm.为了平衡此凸轮,拟在 R=30mm 的圆周上钻 3 个互错  $60^{\circ}$ 相 同直径的圆柱孔.试求应钻孔的直径 d.(已知钢的密度 $\gamma$ =7.8× $10^{\circ}$  6kg/mm³)



3. 一机器在工作时,已知在一个工作循环内等效驱动力矩 Mva 和等效阻力矩 Mvc 的变化曲线如图示.两曲线包围的面积所代表的功( $N\cdot M$ )的大小为 A1=50,A2=550, $A_3=100$ , $A_4=125$ , $A_5=500$ , $A_6=25$ ,  $A_7=50$ .画出能量指示图,并求最大盈亏功  $W_y$ 



# 4. 图示为某机构模型,圆盘1为主动件,画出机动示意图。



## 5. 计算图示机构自由度



6. 如图所示,轮1, n<sub>1</sub>=600r/min,求 n<sub>7</sub>及其转向。



7. 分析卷扬机各轴载荷,并判断各轴类型(不计轴自重及摩擦)。



8. 曲柄摇杆机构 ABCD , K=1.4 , 机架  $L_{AD}$ =40mm, $L_{CD}$ =50mm,摆角 $\psi$ =40° , 用图解法设计机构 , 并标出最小传动角。

- 10. 某工地打算用一根绳子绕过架在空中的圆木杠拉起重物。设物体重 W=2000N,绳子与圆木的摩擦系数为 0.26,绳重不计,试求:
  - a) 拉起重物所需最小拉力 F
  - b) 拉起重物后为防止其下落所需最小拉力 F<sub>min</sub> (6分)



- 11. 图示轴承,采用一对 7312AC 的轴承(轴承的附加轴向力计算公式 S=0.7Fr),求:
  - a) 该轴承的类型和内径
  - b) 各轴承所受轴向载荷 Fa'