Resolucion TP5:

Ejercicio 3 - b

Tomando $F(x,y) = sen(x) + cos(y) + 2y - \pi = 0$ Determinar si la ecuación dada define una función implícita y = f(x) en $P = (0, \frac{\pi}{2})y$ si es así calcular su derivada.

Herramientas:

- Se deben cumplir las 3 condiciones del teorema para F(x, y) = 0 e y = f(x)
 - $\circ P \epsilon F(x, y) = 0$
 - \circ Las derivadas F_x y F_y son continuas en el entorno del punto.
 - $\circ F_{\nu}(P) \neq 0$
- Si se cumple TFI entonces existe y = f(x) y vale $f_x(x_0) = -\frac{F_x(P)}{F_y(P)}$

Para empezar:

• Evidentemente $sen(x) + cos(y) + 2y - \pi = 0$ no es algo que se pueda despejar. No es explicita.

Resolviendo para $F(x,y) = sen(x) + cos(y) + 2y - \pi$ en $P = (0,\frac{\pi}{2})$

• $\xi P \epsilon F(x, y) = 0$?

$$sen(x) + cos(y) + 2y - \pi = 0$$

$$sen(0) + cos(\frac{\pi}{2}) + 2\frac{\pi}{2} - \pi = 0$$

$$0 + 0 + \pi - \pi = 0$$

Se cumple el primer enunciado.

• ¿Son F_x y F_y continuas en R^2 ?

$$F_x = cos(x)$$

$$F_y = -sen(y) + 2$$

Al ser funciones trigonométricas son continuas y se cumple el segundo enunciado.

$$F_y(P) = -sen(\frac{\pi}{2}) + 2 = -1 + 2 = 1$$

Al ser $F_{\nu}(P) = 1$ se cumple el tercer enunciado.

Se cumple TFI por lo tanto existe y=f(x) y vale $f_x(x_0)=-\frac{F_x(P)}{F_y(P)}$

$$f_{x}(x_{0}) = -\frac{F_{x}(P)}{F_{y}(P)}$$

$$f_{x}(0) = -\frac{F_{x}\left(0, \frac{\pi}{2}\right)}{1}$$

$$f_{x}(0) = -\frac{\cos(0)}{1}$$

$$f_{x}(0) = -\frac{1}{1}$$

$$f_{x}(0) = -1$$