Fonction dérivée de l'inverse d'une fonction polynôme - Correction fiche 1

Solutions

Solution 1 Soit f la fonction définie sur $E =]-\infty; 6[\cup]6; +\infty[$ par

$$f(x) = \frac{1}{-2x^2 + 24x - 72}.$$

Pour tout $x \in E$,

$$f'(x) = \frac{1}{(x-6)^3}.$$

Solution 2 Soit f la fonction définie sur $E =]-\infty; 3[\cup]3; +\infty[$ par

$$f(x) = \frac{1}{6 - 2x}.$$

Pour tout $x \in E$,

$$f'(x) = \frac{1}{2(x-3)^2}.$$

Solution 3 Soit f la fonction définie sur $E = \mathbb{R}$ par

$$f(x) = \frac{1}{3x^2 + 36x + 111}.$$

Pour tout $x \in E$,

$$f'(x) = -\frac{2(x+6)}{3(x^2+12x+37)^2}.$$

Solution 4 Soit f la fonction définie sur $E = \mathbb{R}$ par

$$f(x) = \frac{1}{9x^2 - 36x + 261}.$$

Pour tout $x \in E$,

$$f'(x) = -\frac{2(x-2)}{9(x^2 - 4x + 29)^2}.$$

Solution 5 Soit f la fonction définie sur $E = \left] -\infty; \frac{5}{4} \left[\cup \right] \frac{5}{4}; +\infty \left[par \right]$

$$f(x) = \frac{1}{10 - 8x}.$$

Pour tout $x \in E$,

$$f'(x) = \frac{2}{(4x-5)^2}.$$

Solution 6 Soit f la fonction définie sur $E = \mathbb{R}$ par

$$f(x) = \frac{1}{3x^2 - 60x + 312}.$$

Pour tout $x \in E$,

$$f'(x) = -\frac{2(x-10)}{3(x^2 - 20x + 104)^2}.$$

Solution 7 Soit f la fonction définie sur $E = \left] -\infty; \frac{1}{5} \right[\cup \left] \frac{1}{5}; +\infty \right[par$

$$f(x) = \frac{1}{2 - 10x}.$$

Pour tout $x \in E$,

$$f'(x) = \frac{5}{2(5x-1)^2}.$$

Solution 8 Soit f la fonction définie sur $E =]-\infty; -5[\cup]-5; 15[\cup]15; +\infty[$ par

$$f(x) = \frac{1}{-6x^2 + 60x + 450}.$$

Pour tout $x \in E$,

$$f'(x) = \frac{x-5}{3(x^2 - 10x - 75)^2}.$$

Solution 9 Soit f la fonction définie sur $E = \left] -\infty; \frac{7}{2} \right[\cup \left] \frac{7}{2}; +\infty \right[par$

$$f(x) = \frac{1}{2x - 7}.$$

Pour tout $x \in E$,

$$f'(x) = -\frac{2}{(2x-7)^2}.$$

Solution 10 Soit f la fonction définie sur $E =]-\infty; -1[\ \cup\]-1; 11[\ \cup\]11; +\infty[$ par

$$f(x) = \frac{1}{7x^2 - 70x - 77}.$$

Pour tout $x \in E$,

$$f'(x) = -\frac{2(x-5)}{7(x^2 - 10x - 11)^2}.$$