Recitation 2

Wednesday 5th November, 2014

Contents

1	One-to-one Functions (Injective Functions)	2
2	Onto Functions	2
3	Strictly Monotonically Increasing Functions	2
4	Inverse Functions	2
5	Check which of the following functions are one-to-one and find their inverses $5.1 f(x) = e^{e^x} . \qquad . \qquad . \qquad . \\ 5.2 f(x) = 1 - x^3 . \qquad . \qquad . \qquad . \\ 5.3 f(x) = \frac{x}{1+x}; x \neq -1 . \qquad . \qquad . \qquad . $	2 2 2 3
6	Composition of Functions	3
7	$x \rightarrow 1$	3
	7.2 Prove: $\lim_{x \to 2} \frac{2x+6}{3x-1} = 2 \dots \dots \dots \dots \dots$	4

1 One-to-one Functions (Injective Functions)

A function $f: A \to \mathbb{R}$ is one-to-one if $\forall x, yinA, f(x) = f(y) \Rightarrow x = y$.

2 Onto Functions

 $f: A \to B$ is onto B if $\forall y \in B, \exists x \in A$, s.t. f(x) = y.

3 Strictly Monotonically Increasing Functions

A function is strictly monotonically increasing if $\forall x,y \in D(f)$, s.t., x < y, f(x) < f(y).

A strictly monotonically increasing function is always ont-to-one.

4 Inverse Functions

If $f:A\to B$ is one-to-one and onto, we can define a function $f^{-1}:B\to A$, s.t. $f^{-1}(f(x))=x$ and $f(f^{-1}(y))=y$. f^{-1} is called the inverse function of f.

5 Check which of the following functions are one-to-one and find their inverses

5.1
$$f(x) = e^{e^x}$$

f(x) is strictly monotonically increasing. Hence, it is one-to-one.

$$I(f) = D(f^{-1}) = (0, \infty)$$

$$y = e^{e^x}$$

$$\therefore \ln y = e^x$$

$$\therefore \ln \ln y = x$$

$$\therefore f^{-1}(x) = \ln \ln x$$

$$D(f^{-1})=(1,\infty)$$

5.2
$$f(x) = 1 - x^3$$

If
$$f(x) = f(y)$$
,

$$1 - x^3 = 1 - y^3$$

$$\therefore x^3 = y^3$$

$$\therefore x = y$$

Therefore, f(x) is one-to-one over \mathbb{R}

$$y = 1 - x^3$$

$$\therefore x^3 = 1 - y$$

$$\therefore x = \sqrt[3]{1-y}$$

$$\therefore f^{-1}(x) = \sqrt[3]{1-x}$$

$$D(f^{-1}) = \mathbb{R}$$

5.3
$$f(x) = \frac{x}{1+x}; x \neq -1$$

$$y = \frac{x}{1+x}$$

$$\Leftrightarrow y(1+x) = x$$

$$\Leftrightarrow y + xy = x$$

$$\Leftrightarrow x = \frac{y}{1 - y}$$

$$\therefore f^{-1}(x) = \frac{x}{1-x}$$

$$D(f^{-1}) = \mathbb{R} - \{1\}$$

Composition of Functions

If $f:A\to B,g:C\to D$ and $B\subseteq C$, then we can define the composition $d \circ f : A \to D$ as $(g \circ f)(x) = g(f(x))$.

7 **Limits of Functions**

Let f be defined in a punctured neighbourhood of x_0 .

Then the limit of f at x_0 is l. It is denoted as $\lim_{x\to x_0} f(x) = l$. If $\forall \varepsilon > 0 \exists \delta > 0$, s.t. if $|x - x_0| > \delta$ then, $|f(x) - l| < \varepsilon$

If
$$\forall \varepsilon > 0 \exists \delta > 0$$
 st if $|x - x_0| > \delta$ then $|f(x) - 1| < \varepsilon$

7.1 Prove:
$$\lim_{x\to 1} (2x+5) = 7$$

Let $\varepsilon>0.$ We have to find δ , s.t. if $|x-1|<\delta$, then, $|2x+5-7|<\varepsilon.$

$$|2x + 5 - 7| = |2x - 2|$$

$$= 2|x - 1|$$

Hence, if we take $d=\frac{\varepsilon}{2}$, we have the following. If $|x-1|<\delta$, then $|f(x)-7|=|2x+5-7|=2|x-1|<2\delta=2\frac{\varepsilon}{2}=\varepsilon$. Therefore, $\lim_{x\to 1}(2x+5)=7$

7.2 Prove: $\lim_{x\to 2} \frac{2x+6}{3x-1} = 2$

We want δ s.t.

if
$$|x-2| < \delta$$
 then $\left| \frac{2x+6}{3x-1} - 2 \right| < \varepsilon$

$$\left| \frac{2x+6}{3x-1} \right| - 2 = \left| \frac{2x+6-2(3x-1)}{3x-1} \right|$$
$$= \left| \frac{-4x+8}{3x-1} \right|$$
$$= \frac{4|x-2|}{|3x-1|}$$

We can always take $\delta \leq 1$

$$\left| \frac{2x+6}{3x-1} \right| - 2 < \frac{1}{2}4\left| x - 2 \right| < 2\delta = \varepsilon$$

Take
$$\delta = \min\left(\frac{\varepsilon}{2}, 1\right)$$
.
Then, if $|x-2| < \delta$, then

$$|f(x) - l| = \left| \frac{2x + 6}{3x} - 2 \right| = \frac{4|x - 2|}{|3x - 1|}$$