Exercises to Section 5

Exercises in red are from the list of the typical exercises for the exam. Exercises marked with a star * are for submission to your tutor.

Monotonicity and extrema

- 1. For the following functions, determine the intervals of monotonicity and local extrema in the natural domain:
 - (a) $f(x) = 2 + x x^2$
 - (b) $f(x) = \frac{2x}{1+x^2}$
 - (c) $f(x) = x^2 2^{-x}$
 - (d) $f(x) = x^m (1-x)^n$ (n and m are positive even integers)

Convexity

- 2. Prove that:
 - (a) the functions x^{α} (with $\alpha > 1$), e^{x} , $x \log x$ are convex on $(0, \infty)$
 - (b) the functions x^{α} (with $0 < \alpha < 1$), $\log x$ are concave on $(0, \infty)$
- 3. Using the previous exercise, prove the inequalities
 - (a) $\frac{1}{2}(x^{\alpha}+y^{\alpha})\geqslant\left(\frac{x+y}{2}\right)^{\alpha}$, where $\alpha>1,\,x>0,\,y>0$
 - (b) $x \log x + y \log y > (x+y) \log \frac{x+y}{2}$, where x > 0 and y > 0
- 4. Let f be a convex function on an interval Δ , let $x_1, \ldots, x_n \in \Delta$ and let $\theta_1, \ldots, \theta_n$ be positive numbers such that $\theta_1 + \cdots + \theta_n = 1$.
 - (a) Prove that $\theta_1 x_1 + \cdots + \theta_n x_n \in \Delta$.
 - (b) Prove that

$$f(\theta_1 x_1 + \dots + \theta_n x_n) \leq \theta_1 f(x_1) + \dots + \theta_n f(x_n).$$

Hint: use induction in *n*

Global extrema

- 5. Find the maximal and minimal values of the function on the given interval:
 - (a)* $f(x) = x^2 4x + 6$ on [-3, 10]
 - (b)* $f(x) = |x^2 3x + 2|$ on [-10, 10]
 - (c) $f(x) = x + \frac{1}{x}$ on [0.01, 100]

Graph sketching

- 6. Following the plan given in the notes, sketch the graphs of the following functions on their natural domain:
 - (a) $f(x) = (x+1)(x-2)^2$

(b)*
$$f(x) = \frac{x-2}{\sqrt{x^2+1}}$$

(c)
$$f(x) = x^p e^{-x}, x \ge 0, 0$$

(d)
$$f(x) = \frac{e^x}{1+x}$$

Challenging exercises

- 7. Using the Mean Value Theorem, prove that if f is differentiable and unbounded on a bounded interval (a, b), then the derivative f' must also be unbounded on (a, b).
- 8. Give an example of a differentiable function $f:(0,\infty)\to\mathbb{R}$ such that $\lim_{x\to\infty}f(x)$ exists, but $\lim_{x\to\infty}f'(x)$ does not exist.
- 9. Let x_1, \ldots, x_n be positive numbers. Using convexity, prove the "AM-GM inequality", i.e. the inequality between the arithmetic mean and the geometric mean:

$$\frac{1}{n} \sum_{k=1}^{n} x_k \geqslant \left(\prod_{k=1}^{n} x_k\right)^{1/n}.$$

10. Let f be a bounded convex function on (a, b). Prove that f is continuous on (a, b).