

Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification

Eric Bach ^{1,∞}, Simon Rogers ², John Williamson ², and Juho Rousu ¹

¹Helsinki institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland ²School of Computing Science, University of Glasgow, Glasgow, UK

Small Molecule Identification in Untargeted Metabolomics

- Liquid chromatography (LC) coupled with tandem mass spectrometry (MS²) widely utilized in untargeted metabolomics studies
- Challenge: Annotation of LC-MS peaks with potential molecular structures
- Most automated machine learning based approaches utilize MS information only [CITATION]
- LC retention time (RT) is valueable additional information for the annotation [CITATION], e.g.

Retention Time (RT) Utilization

- Multiple approaches to utilize RT for molecule annotation exist
- (utilization of RT information, scalable, cross laboratories (LC-systems), RT reference free)
- 1) Compare measured RTs with in-house reference RTs
- 2) Compare measured RTs with projected reference RTs
- 3) Compare measured RTs with predicted RTs
- 4) Compare measured RTs with predicted RTs proxies, e.g. LogP
- 5) Compare measured retention orders with predicted ones
- Fully supported: ✓, Partially supported: ●, Not supported: ✗
- RT comparison to prune candidate lists or (re)ranking [CITATION]

LC-MS Experiment Data and its Formal Representation

- Assume data arises from LC-MS experiment (after peak-picking and alignment)
- Available information: MS^1 , RT and (etwaige only for some peaks) MS^2
- Molecular candidate lists are assumed to be given as well
- MS²scores, e.g. MetFrag [CITATION] or CSI:FingerID [CITATION], computed
- Data from LC-MS considered as set of N MS features:

$$\mathcal{D} = \{(x_i, t_i, \mathcal{C}_i)\}_{i=1}^{N}$$

- x_i : MS² spectrum (or MS¹, if no fragmentation available)
- t_i: Measured RT
- C_i : Potentail molecular annotations for feature i, e.g. exact mass search

Probabilistic Framework to integrate MS and Retention Orders

- Definition of a probabilistic graphical model superimposed on the LC-MS data
- Let G = (E, V) be a complete graph
- Nodes $i \in V$ represent the MS features, Edes $(i, j) \in E$ the feature pairs
- Association of each node with discrete random variable $z_i \in \mathcal{Z}_i = \{1, \dots, n_i\}$ $(n_i = |\mathcal{C}_i| \text{ number of candidates})$
- Molecule annotation for complete data $\mathbf{z} = \{z_i \mid i \in V\} \in \mathcal{Z}_1 \times \ldots \times \mathcal{Z}_N = \mathbf{Z}_N$
- Intuitively: Random variable denotes which candidate is assigned to each feature.
- Pairwise Markov Random Field as probabilsitic model ?:

$$p(\mathbf{z}) = \frac{1}{Z} \prod_{i \in V} \psi_i(z_i) \prod_{(i,j) \in E} \psi_{ij}(z_i, z_j)$$

Ranking molecular candidates via max-marginals:

$$p_{\max}(z_i = r) = \max_{\{\mathbf{z}' \in \mathcal{Z} \mid z_i' = r\}} p(\mathbf{z}')$$

- Intuitively, maxmimum probabilsity a candidate assignment with $z_i=r$ can achive
- Rank all candidates $r \in \{1, \dots, n_i\}$ according to there max-marginals

Fig. 2: From the MRF probability distribution to the candidate ranking: MS feature i=3 and candidate 4 (m_{34}) .

Node and Edge Potentials

 \checkmark , X, \bullet , X

 \checkmark , \checkmark , \bigcirc ,

 \checkmark , \checkmark , \checkmark

lacksquare, \checkmark , \checkmark , \checkmark

- Node potential function $\psi_i: \mathcal{Z}_i \to \mathbb{R}_{>0}$: goodness of the match between measured spectrum x_i and candidates of feature i
- Edge potential function $\psi_{ij}: \mathcal{Z}_i \times \mathcal{Z}_j \to \mathbb{R}_{>0}$: consistency between the observed retention order of feature i and j with the predicted retention order of the candidates z_i and z_j

Node and Edge Potential Calculation

Spanning Tree Approximation

- \bullet Marginal inference intractable in practice due to exponentail sized candidate assignment space $\mathcal Z$
- Exact inference is feasible if G is tree-like [CITATION]
- Resort to infer the max-marginals a set of trees $\mathbf{T} = \{T_t\}_{t=1}^L$ sampled from G
- Each tree $T_t = (V, E_t)$ is connected graph with all nodes of G but reduces edges set $E_t \subseteq E$
- Avergaged marginals used for ranking

$$\bar{p}_{\max}(z_i = r \mid \mathbf{T}) = \frac{1}{L} \sum_{t=1}^{L} p_{\max}(z_i = r \mid T_t)$$

5. Experiments and Results

- Dataset description
- Show table 4 from the paper
- Show figure 3 from the paper

References