Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

2° Appello – 16 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 1* (7 punti)

Nella rete a commutazione di pacchetto in figura, al tempo t=0 sono presenti 3 pacchetti in H1 diretti alle destinazioni A, C, B e 3 pacchetti in H2 diretti alle destinazioni C, D, B (al tempo t=0 sia H1 che H2 iniziano la trasmissione). Si indichino tali pacchetti, rispettivamente, con A1, C1, B1, C2, D1, B2. Si assuma che tutti i router (R1, R2, R3 e R4) siano nodi store&forward, e che abbiano tutti ritardo di elaborazione trascurabile.

Si assuma che i pacchetti abbiano tutti dimensione fissa e pari a L=6 kbyte.

- Si utilizzi la tabella sottostante per indicare gli istanti di <u>inizio trasmissione</u> di ciascun pacchetto nei vari nodi attraversati.
- Calcolare l'istante di <u>fine ricezione</u> di ciascuno dei pacchetti, indicando tali istanti, rispettivamente, con T_{A1} , T_{C1} , T_{B1} , T_{C2} , T_{D1} , T_{B2} e riportando tali valori nell'ultima colonna della tabella sottostante.

Si riportino nello spazio vuoto al disotto della tabella i calcoli e/o i disegni necessari a determinare i risultati in tabella.

Pacchetto	inizio tx in H1 o H2	inizio tx in R1	inizio tx in R2	inizio tx in R3	inizio tx in R4	fine ricezione a destinazione
A1 (H1 → A)	$T_{AI,HI} = 0 \text{ ms}$	$T_{AI,RI} = 9 \text{ ms}$	$T_{A1,R2} = 18 \text{ ms}$		$T_{AI,R4} = 22.4 \text{ ms}$	$T_{AI} = 72.6 \text{ ms}$
C1 (H1 → C)	$T_{CI,HI} = 8 \text{ ms}$	$T_{CI,RI} = 25 \text{ ms}$	$T_{CI,R2}$ = 34 ms	$T_{CI,R3} = 47.5 \text{ ms}$		$T_{CI} = 64.8 \text{ ms}$
B1 (H1 → B)	$T_{BI,HI} = 16 \text{ ms}$	$T_{BI,RI} = 41 \text{ ms}$	$T_{B1,R2}=50 \text{ ms}$		$T_{BI,R4} = 54.4 \text{ ms}$	T_{BI} = 63.5 ms
C2 (H2 → C)	$T_{C2,H2}=0$ ms	$T_{C2,RI} = 17 \text{ ms}$	$T_{C2,R2} = 26 \text{ ms}$	$T_{C2,R3} = 31.5 \text{ ms}$		$T_{C2} = 48.8 \text{ ms}$
D1 (H2 → D)	$T_{DI,H2}=6 ms$	$T_{DI,RI} = 33 \text{ ms}$	$T_{D1,R2}=42 \text{ ms}$	$T_{DI,R3} = 47.5 \text{ ms}$		T_{DI} = 55.7 ms
B2 (H2 → B)	$T_{B2,H2} = 12 \text{ ms}$	$T_{B2,RI} = 49 \text{ ms}$	$T_{B2,R2}=58 \text{ ms}$		$T_{B2,R4} = 62.4 \text{ ms}$	$T_{B2} = 71.5 \text{ ms}$

* NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

SOLUZIONE

$$T_1 = \frac{L}{C_1} = \frac{6*8 \text{ kbit}}{6 \text{ Mbit/s}} = 8 \text{ ms}$$

$$T_2 = \frac{L}{C_2} = \frac{6 * 8 \text{ kbit}}{6 \text{ Mbit/s}} = 8 \text{ ms}$$

$$T_3 = \frac{L}{C_3} = \frac{6*8 \text{ kbit}}{16 \text{ Mbit/s}} = 3 \text{ ms}$$

$$T_4 = \frac{L}{C_4} = \frac{6 * 8 \text{ kbit}}{3 \text{ Mbit/s}} = 16 \text{ ms}$$

$$T_5 = \frac{L}{C_5} = \frac{6 * 8 \text{ kbit}}{8 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_6 = \frac{L}{C_6} = \frac{6 * 8 \text{ kbit}}{8 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_7 = \frac{L}{C_7} = \frac{6*8 \text{ kbit}}{16 \text{ Mbit/s}} = 3 \text{ ms}$$

$$T_8 = \frac{L}{C_8} = \frac{6 * 8 \text{ kbit}}{1 \text{ Mbit/s}} = 48 \text{ ms}$$

$$T_9 = \frac{L}{C_0} = \frac{6*8 \text{ kbit}}{8 \text{ Mbit/s}} = 6 \text{ ms}$$

Pacchetti verso A-B

Ouindi si ha

$$T_{A1} = T_1 + \tau_1 + T_2 + \tau_2 + T_7 + \tau_7 + T_8 + \tau_8 = 72.6 \text{ ms}$$

$$T_{B1} = T_1 + \tau_1 + 5T_2 + \tau_2 + T_7 + \tau_7 + T_9 + \tau_9 = 63.5 \text{ ms}$$

$$T_{B2} = T_1 + \tau_1 + 6T_2 + \tau_2 + T_7 + \tau_7 + T_9 + \tau_9 = T_{B2} + T_2 = 71.5 \text{ ms}$$

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

2° Appello – 16 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Pacchetti verso C-D

Quindi si ha

$$\begin{split} T_{C1} &= T_1 + \tau_1 + 2T_2 + \tau_2 + T_3 + \tau_3 + 2T_4 + \tau_4 = T_{C2} + T_4 = 64.8 \ ms \\ T_{C2} &= T_1 + \tau_1 + 2T_2 + \tau_2 + T_3 + \tau_3 + T_4 + \tau_4 = 48.8 \ ms \\ T_{D1} &= T_1 + \tau_1 + 4T_2 + \tau_2 + T_3 + \tau_3 + T_5 + \tau_5 = 55.7 \ ms \end{split}$$

Esercizio 2

(6 punti)

Un router ha la seguente configurazione (interfacce e tabella di *routing*).

Interfaccia	IP	Netmask	MTU	
Eth0	48.9.12.7	255.255.255.192	400 [byte]	48.9.12.0/26
Eth1	48.1.6.62	255.255.128.0	1500 [byte]	48.1.0.0/17
Wifi2	70.8.2.19	255.255.252.0	1600 [byte]	70.8.0.0/22

Tabella di routing:

Riga n.	Network	Netmask	Next hop	
1	220.10.123.128	255.255.255.128	48.1.12.40	Eth1
2	220.10.0.0	255.255.0.0	48.9.12.13	Eth0
3	48.9.0.0	255.255.224.0	48.1.7.25	Eth1
4	220.10.122.0	255.255.254.0	70.8.0.255	Wifi2
5	0.0.0.0	0.0.0.0	48.9.12.15	Eth0

Il router riceve al livello 3 i pacchetti elencati sotto, per ciascuno dei quali è riportato l'IP di destinazione, l'interfaccia da cui è stato ricevuto il pacchetto, la dimensione, il valore del *flag do-not-fragment* (D), ed il valore corrente del Time To Live (TTL).

Compilando la tabella sottostante, si indichi, per ciascun pacchetto, quale delle seguenti azioni viene operata: pacchetto inoltrato, pacchetto scartato, pacchetto inviato ai livelli superiori. Nel caso il pacchetto venga inoltrato, si specifichi se si tratta di un inoltro diretto o indiretto, su quale interfaccia viene inoltrato il pacchetto ed eventualmente la relativa riga della tabella di routing. Nel caso il pacchetto venga scartato, se ne specifichi il motivo, indicando anche le informazioni (tipo di inoltro, interfaccia ed eventualmente riga della tabella di routing) eventualmente usate per l'inoltro (diretto o indiretto) qualora non fosse stato necessario scartare il pacchetto.

N.	IP destinazione	Interfaccia ingresso	Dimensione	Flag D	TTL
1	48.9.12.128	Wifi2	600 [byte]	D=1	20
2	48.1.127.255	Eth1	500 [byte]	D=1	1
3	48.1.0.7	Wifi2	1800 [byte]	D=0	1
4	220.10.120.1	Eth1	600 [byte]	D=1	12
5	220.10.123.2	Eth0	1200 [byte]	D=0	15
6	70.8.4.2	Eth0	600 [byte]	D=1	25

Pacchetto n.	Azione	Inoltro (diretto/indiretto)	Riga tabella di routing	Interfaccia	Motivo di scarto
1	inoltrato	indiretto	3	Eth1	-
2	passato ai liv.	-	-	-	-
3	scartato	diretto	-	Eth1	TTL=0
4	scartato	indiretto	2	Eth0	dim <mtu d="1</td" e=""></mtu>
5	inoltrato	indiretto	4	Wifi2	-
6	scartato	indiretto	5	Eth0	dim <mtu d="1</td" e=""></mtu>

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

2° Appello – 16 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 3

(4 punti)

Una stazione A trasmette ad una stazione B un file di dimensione D = 100 kbyte sfruttando un collegamento radio diretto tra A e B. Le caratteristiche del collegamento A-B sono le seguenti:

- capacità del collegamento C = 1 Gbit/s;
- il file è trasmesso in pacchetti di lunghezza fissa, con un payload di L_p = 1000 byte e un header L_h di lunghezza uguale a 1/4 di quella del payload;
 - lunghezza dei riscontri, $L_a = 25$ byte,
 - distanza radio tra le stazioni d = 60 km.

Sul collegamento opera un protocollo ARQ di tipo go-back-n con finestra di trasmissione $W_s = 50$ pacchetti, senza NACK e timeout $T_o = 500 \mu s$ (si assuma che per un dato pacchetto il relativo timeout venga avviato all'inizio della trasmissione del pacchetto stesso). Supponendo che il penultimo pacchetto sia perso per errore, si calcoli:

- il tempo totale di trasferimento del file D (fino alla ricezione dell'ultimo riscontro);
- il corrispondente throughput dati sul collegamento, espresso in bit/s.

SOLUZIONE

Dimensione pacchetto: $L = L_p + L_h = 1250$ byte = 10 kbit \rightarrow Tempo di trasmissione di un pacchetto: T = L/C = 10 μ s. Tempo di trasmissione di un riscontro: $T_a = L_a/C = 0.2$ μ s.

Ritardo di propagazione A-B (canale radio, prop. a velocità $v = 3*10^5$ km/s): $\tau = d/v = 200 \mu s$.

$$W_s * T = 500 \ \mu s > T + 2\tau + T_a = 410.2 \ \mu s \rightarrow GBN \ con \ trasmissione \ continua.$$

Numero totale di pacchetti trasmessi: $N = D/L_p = 100$.

Poiché il penultimo pacchetto viene perso, ma il protocollo non prevede l'invio di NACK, la ritrasmissione degli ultimi due pacchetti avviene per effetto del timeout scaduto per il penultimo pacchetto (si veda la figura sotto):

Tempo totale di trasferimento:

$$T_{tot} = (N-2)*T + T_o + 2T + 2\tau + T_a = N*T + T_o + 2\tau + T_a = (1000 + 500 + 400 + 0.2) \ \mu s = 1900.2 \ \mu s$$

Throughput dati: $THR = D/T_{tot} = 800 \text{ kbit} / 1900.2 \mu s = 0.421 \text{ Gbit/s}$

Esercizio 4 - Domande

(9 punti)

- Un sistema di accesso multiplo centralizzato a divisione di tempo (TDMA) è caratterizzato da un rate trasmissivo del segnale multiplato pari a C = 10 Mbit/s. A ciascun utente è assegnato un time slot in cui viene inviato un pacchetto costituito da P = 220 bit dati e H = 20 bit di overhead. Sapendo che il tempo di guardia nel sistema è pari a $T_G = 10$ tempi di bit e che ciascun utente trasmette ad un rate R = 2000 pacchetti/s, si calcoli:
 - il tempo di trama del sistema T_T ;
 - il numero massimo di utenti N supportati dal sistema;
 - la velocità netta (dati) V di ciascuno degli N canali.

(3 punti)

SOLUZIONE

- Ciascun utente trasmette ad un rate di R pacchetti/s ovvero trasmette un pacchetto ogni 1/R secondi; poiché a ciascun utente è assegnato uno slot per trama, I/R è anche il tempo di trama $\rightarrow T_T = I/R = 0.5 \text{ ms}$.
- $\frac{N(P+H+T_G)}{T_T} \le C \Rightarrow N \le \frac{C*T_T}{(P+H+T_G)} = 20$ $V = \frac{P}{T_T} = 440 \text{ kbit/s}$
- Indicare se le seguenti osservazioni sono vere o false motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE.
 - 1 Il protocollo ICMP può essere usato da un host per ottenere il proprio indirizzo IP.
 - 2 Split Horizon con Poisonous reverse elimina sempre il problema del *count to infinity*.
 - 3 Un gruppo di host appartenenti ad uno stesso dominio di broadcast forma sempre un unico dominio di collisione.

(3 punti)

SOLUZIONE

- 1 FALSO, si usano altri protocolli, come DHCP.
- 2 FALSO, dipende dalla topologia di rete e dalla successione dei distance vector inviati/ricevuti.
- 3 FALSO, vale invece il viceversa. Oppure VERO, ma solo quando gli host sono interconnessi attraverso
- Il segnale digitalizzato non compresso di un film in HD di durata D = 90 minuti è costituito da una componente video (sequenza di immagini) ed una componente audio. La sequenza di immagini (componente video) è digitalizzata usando per ciascun frame (fotogramma) un numero di pixel pari a 1920×1080 , $b_v = 8$ bit per pixel per ciascuno dei tre colori fondamentali (codifica RGB) e una frequenza di frame (fotogrammi) di $F_f = 25 \ Hz$. La componente audio è invece digitalizzata campionando il segnale audio di banda B = 20 kHz alla frequenza di Nyquist e usando $l_a = 256$ livelli di quantizzazione. Si calcoli:
 - la dimensione totale del file L;
 - la velocità del segnale video digitale v;
 - il tempo di trasmissione dell'intero file, T, supponendo che venga inviato senza overhead attraverso un trasmettitore analogico con velocità $R = 10^7$ simboli/s e che utilizza la modulazione 64-QAM.

(3 punti)

SOLUZIONE

 $L_{video} = 3*1920*1080*b_v*D*F_f = 3*1920*1080*8*90*60*25 = 6.7185 \text{ Tbit}$

 $L_{audio} = 2B*D*log_2(l_a) = 2*20000*90*60*8 = 1.728 \ Gbit = 0.1728 \ Tbit$

- $L = L_{video} + L_{audio} = 6.8913 \ Tbit$
- v = L/D = 1.3 Gbit/s
- $T = \frac{L/\log_2 64}{R} = 114855 \text{ s}$