



# KELAS BIMBINGAN PEMBANGUNAN KERANGKA DATA RAYA

10 – 12 DIS 2024 (SELASA – KHAMIS) 8:30 PAGI HINGGA 4:30 PETANG OrenG ACADEMY



Day #1

Introduction to Big Data and Types of Platforms







## **BIG DATA**

refers to extremely large and complex datasets
that are challenging to process, store, and analyze using traditional methods
due to their size, speed of generation, and variety of formats.



# **Importance of Big Data**



# **Cost Saving**

Optimize resources and reduce inefficiencies, lowering operational costs

## Time Saving

 Automated data processing and real-time analytics speed up tasks that would take hours or days manually

## Faster & Better Decision Making

 Data-driven insights enable more accurate and timely decisions, improving outcomes

# Data-Driven Policy Making

• In sectors like government, Big Data provides empirical evidence for crafting effective policies



### **Characteristics of Big Data**







Big Data Platform





What Data (Represent)?

SIMPLIFIED EXPLANATION



How Data is Stored?

How Data is Used?

Data Life Cycle/Stage





# What Data / What Data Represents?

Data is information that can be collected, stored, and analyzed





## **How Data is Stored?**

### Structured Data:

Highly organized and easily searchable within relational databases

### **Unstructured Data:**

Data that lacks a predefined model or format

### Semi-structured Data:

Data that has some organizational properties but does not fit neatly into a structured database.





## **How Data is Used?**

### **Operational Data:**

Used to run day-to-day tasks

### **Analytical Data:**

Used to find trends and make decisions

### **Real-Time Data:**

Used for live updates

### **Historical Data:**

Stored for later use





# Data Life Cycle/Stage

### **Raw Data:**

Like ingredients in the kitchen—collected but unprocessed

### **Cleaned Data:**

Prepped and ready to use—errors removed

### **Analyzed Data:**

Insights drawn—helps make decisions

### **Archived Data:**

Stored away for future reference



# **Foundation/Components of Big Data**







# **Types of Big Data Platforms**



### Data Warehouse



### Data Lake



### **Data Lakehouse**





# **Comparison of Data Management Systems**



| Feature               | Data Warehouse                                   | Data Lake                                                 | Data Lakehouse                                                     |
|-----------------------|--------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| Data Type             | Structured                                       | Structured, Semi-structured, Unstructured                 | Structured, Semi-structured, Unstructured                          |
| Use Case              | Analytical, Reporting                            | Storage, Exploration, Analytics                           | Hybrid Storage and Analytics                                       |
| Schema                | Defined                                          | No strict rules; you can dump data in any format          | A hybrid approach, combining both strict and flexible organization |
| Query Complexity      | Complex                                          | Varied                                                    | Complex                                                            |
| ACID Compliance       | Limited                                          | Typically None                                            | Provided by technologies like Delta Lake                           |
| Data Processing Tools | Business Intelligence Tools (e.g.,<br>Tableau)   | Big Data Tools (e.g., Spark, Hadoop)                      | Hybrid Approach with Big Data Tools                                |
| Scalability           | Scalable for analytics                           | Highly Scalable                                           | Scalable, but may require a robust architecture                    |
| Example Tools         | Snowflake, Redshift, BigQuery                    | Amazon S3, Azure Data Lake Storage, Hadoop                | Delta Lake, Databricks, AWS Glue                                   |
| Data Integration      | ETL and ELT (Extract, Load, Transform) processes | Often uses ETL/ELT, supports data from various sources    | ETL and ELT for structured and raw data                            |
| Common Use Cases      | Historical Sales Analysis, Reporting             | Raw data storage, Sensor Data, User-<br>generated Content | Healthcare Data, IoT Data, Financial Data                          |
| Storage Efficiency    | Optimized for query performance                  | Low-cost storage for diverse data types                   | Storage efficiency can vary based on architecture                  |

<sup>\*\*</sup> ACID is principles make sure your data processes are reliable, accurate, and protected, even when working with massive amounts of information or during unexpected problems



# **Comparison Simple Analogy**



### Database

Like a wellorganized filing cabinet

### **Data Warehouse**

Like a library where books (data) are categorized for easy access

### Data Lake

Like a giant storage room where you toss everything without sorting

### Data Lakehouse

Like a library that also has a storage room for unsorted items







## **BIG DATA**

refers to extremely large and complex datasets
that are challenging to process, store, and analyze using traditional methods
due to their size, speed of generation, and variety of formats.

## **DATA ANALYTICS**

is the **process** of examining, interpreting, and analyzing Big Data to uncover patterns, trends, correlations, and insights.



# **Simplified Definition**



| Aspect     | Big Data                                                                                   | Data Analytics                                                                           |
|------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| What it is | Large amounts of data                                                                      | Process of analyzing that data                                                           |
| Focus      | It emphasizes the storage, processing, and management of large, complex datasets           | It focuses on extracting value and actionable insights from Big Data                     |
| Purpose    | Serves as the raw material. It provides the information but doesn't derive meaning from it | Serves as the tool or technique used to interpret and make use of the raw data           |
| Example    | Collecting data from millions of users about their online shopping habits                  | Analyzing shopping habit data to recommend products to users or improve sales strategies |



# **Key Elements in Data Analysis**



### Data Sources

# Data Processing

### Data Cleaning

# Analysis & Modelling

# Visualization & Presentation

### **Objective:**

Define the problem or question and determine the required data

### Objective:

Gather raw data from identified sources

### **Objective:**

Ensure the data is accurate, consistent, and usable

### **Objective:**

Apply analytical techniques to derive insights

**Objective:** Present insights visually for clarity and impact

### **Actions:**

- Identify internal and external sources
- Classify data as structured or unstructured

- Actions:
- Web scraping
- Surveys
- Database queries
- Upload Module
- API
- IoT sensors

### **Actions:**

- Handle missing data (impute, remove, or flag)
- Remove duplicates data
- Standardize data formats

### **Actions:**

- Summarize data (mean, median, standard deviation).
- Perform statistical analysis (e.g., hypothesis testing, regression)

### **Actions:**

- Create dashboards
- Create Charts
- Create Reports



# **Types of Data Analytics**



# Descriptive Analytics

Summarizes
 past data to
 understand
 what has
 happened

# Diagnostic Analytics

 Investigates data to determine why something happened

# Predictive Analytics

Uses
 statistical
 models and
 machine
 learning to
 forecast
 future
 trends

# Prescriptive Analytics

Suggests
 actions
 based on
 predictive
 insights to
 achieve
 desired
 outcomes



# **Challenges of Data Analytics**



# Data Quality Issues

 Missing, incomplete, or unreliable data

# Volume and Variety

 Handling large and diverse datasets

### Skill Gap

 Need for expertise in programming, statistics, and domain knowledge

# Privacy and Security

 Ethical considerations and legal compliance in data handling



# **Popular Open Source Technology in Big Data**



**Data Ingestion** 

Data Storage Data Processing

**Data Sharing** 

Visualization & Presentation



































# Massive Scale Data Analytic Platform Spine-Leaf network architecture with all software running in containers





Typical Cluster Size TOTAL CPU 1,040 Core **TOTAL MEMORY 27.8Tb TOTAL STORAGE 1,704Tb TOTAL APPLIANCE 24 Nodes** 

#### 796,480 Nodes Max

Horizontally scale up to 760 Appliance per Pod, 1,048 pods per Cluster, for maximum of 796,480 Nodes of Data Analytic Nodes per Data Center. Providing long-term, low cost, on-premise, private, hyperscale technology for large scale data analytic

























≡







### 5 x Query Appliance

2x24c CPU, 2Tb Memory, 24Tb Storage TOTAL CPU 240 Core **TOTAL MEMORY 10Tb** TOTAL STORAGE 120 Tb

#### 4 x Storage Appliance

2x8c CPU, 512Gb Memory, 192/250Tb Storage TOTAL CPU 64 Core **TOTAL MEMORY 2Tb** TOTAL STORAGE 1Pb

#### 5 x Management Appliance

2x24c CPU, 1Tb Memory, 24Tb Storage TOTAL CPU 240 Core TOTAL MEMORY 5Tb TOTAL STORAGE 120 Tb

#### 5 x Data Stream Appliance

2x24c CPU, 1Tb Memory, 64Tb Storage TOTAL CPU 240 Core **TOTAL MEMORY 5Tb** TOTAL STORAGE 320 Tb

### 5 x Compute Appliance

2x24c CPU, 1Tb Memory, 24Tb Storage TOTAL CPU 240 Core **TOTAL MEMORY 5Tb** TOTAL STORAGE 120 Tb



Brainstorming Activity



# List of Datasets does KSM/Jabatan Generate or Use

