TD3 - Codage (couche physique)

NB: Dans les exercices qui suivent, les signaux d'horloge sont implicitement donnés par la représentation binaire des informations à transmettre (« *temps bit* »)

Relecture de cours (10 minutes)

Avant de commencer le TD, vous devez relire le cours 2 sur les principes de transmission des informations au niveau de la couche Physique (diapos 26 à 42). L'objectif est de comprendre :

- Les notions : Valence (V), Moment élémentaire (Tm), vitesse de modulation (Rm) et le calcul du débit binaire (D)
- La différence entre la transmission en bande de base et la transmission par modulation

1. Transmissions numériques - Codage en bande de base

Soit S1 une information binaire à transmettre sur une liaison numérique.

En appliquant les conventions vues en cours, dessinez ci-dessous le signal transmis en respectant à chaque fois le procédé de codage indiqué. Donnez dans chacun des cas la valence de la voie (\mathbf{V}) et le débit (\mathbf{D}) de communication utilisée (la valence correspond au nombre d'états logiques différends transmissibles sur une voie et le débit calculé en fonction de la vitesse de modulation R_m formule vue dans le cours).

INF S1	ORMATIC	ON 0	1	1	0	1	0	0	0	1	<u></u>
NR S2	Z 0	0	1	1	0	1	0	0	0	1	-
BIP S3	OLAIRE 0	0	1	1	0	1	0	0	0	1	<u>_</u>
MA S4	NCHESTI	ER 0	1	1	0	1	0	0	0	1	<u></u>
MA S5	NCHESTI	ER DIFFÉ 0	RENTIEI	1	0	1	0	0	0	1	<u></u>

2. Transmissions analogique - Codage par modulation

==> soit les caractéristiques suivantes pour la porteuse :

$$\Upsilon(t) = A\sin(2\Pi f t + \phi)$$

ou A est l'amplitude, f est la fréquence initiale et ϕ est la phase, (On rappelle que f = 1/T, T étant la période).

Soient S1 l'information numérique à transmettre sous forme analogique et S2 la porteuse.

Dessinez dans chacun des cas suivants, en respectant les conventions données ci-après, l'onde analogique utilisée pour la transmission du signal représentée en S2.

CONVENTIONS:

Modulation d'amplitude (S3) 0--> amplitude = 0 1--> amplitude = A

Modulation de fréquence (S4) 0--> fréquence = 2f 1--> fréquence = f

Modulation de phase (S5) 0--> phase = ϕ · 1--> phase = ϕ + 180°

3. Transmissions analogique - Codage par modulation en treillis

==> Soient les mêmes caractéristiques que précédemment pour la porteuse

==> Soit le procédé de modulation suivant :

Déphasage = 0°	Fréquence = <i>f</i>	==> 00
Déphasage = 0°	Fréquence = $2f$	==> 01
Déphasage = 180°	Fréquence = f	==> 10
Déphasage = 180°	Fréquence = $2f$	==> 11

==> Soient S1 la porteuse et S2 le signal modulé d'après ce procédé :

Indiquez-en S3, le signal analogique produit par la modulation de S1 avec la porteuse S2.

4. Modulations

On désire mettre en place un modem dont la vitesse de modulation serait de 28000 bauds et qui proposerait un débit de 56 kbit/s.

a. Proposer les spécifications d'un modem utilisant une modulation par saut d'amplitude et satisfaisant les caractéristiques ci-dessus.

b. Proposer les spécifications d'un modem utilisant une modulation par saut de fréquence et satisfaisant les caractéristiques ci-dessus.

c. Donner une représentation du signal émis sur cette ligne lorsque le message envoyé est : 101111100001, à partir des modulations définies ci-dessus.