On Two Distinct Sources of Nonidentifiability in LP RGM's

Abstract

there are two types of nonidentifiabilities: subspace nonidentifiability (SN) and model-based (MBN). This paper talks about them.

Introduction

SN has to do with basis corresponding to a specific subspace, MBN has to do with the representation of the latent variables.

SN: we're only able to choose the basis for the eigenspace corresponding to non-unique eigenvalues up to orthogonal transformation

MBN: if $k(X_i, X_j) = X_i^TX_jk(X_i, X_j) = X_i^TX_j$, then $k(\text{W}X_i, \text{W}X_i, \text{W}X_j) = k(X_i, X_j)$ $k(\text{W}X_i, \text{W}X_j) = k(X_i, X_j)$ for orthogonal matrices W where k: \Omega \times \Omega \rightarrow [0, 1] $k: \Omega \times \Omega \to [0, 1]$ is some function of the latent positions

Setting

Draw a bunch of X_i, ..., X_nXi, ..., Xn iid, where X_i \in R^dXi \in Rd. Let \textbf{P}_{ij} = k(X_i, X_j)Pij = k(Xi, Xj)