BipartiteGraph

Clase que representa un grafo bipartito. Por sí solo no hace nada.

REQUIERE: Graph, NaturalNumber **REQUERIDO POR:** BipartiteMatcher #pragma once // maybe not needed, only "Neighbor" and "Edge" are needed. #include "Graph.hpp" class BipartiteGraph public: using size_type = std::int64_t; using Vertex = std::int64_t; using weight t = std::int64 t; // something larger than weight t, for when you have that weight t doesn't // properly hold a sum of weight_t (for example, if weight_t = char). using sumweight t = std::int64 t; using Neighbor = Graph::Neighbor; // Represents a half-edge (vertex, weight) using Edge = Graph::Edge; // (from, to, weight) using neighbor list = std::vector<Neighbor>; using neighbor const iterator = neighbor list::const iterator; using neighbor iterator = neighbor list::iterator; /***** END using definitions *****/ public: BipartiteGraph(size_type x, size_type y) : m_X(x), m_Y(y) {} size type degreeX(Vertex x) const { return m X[x].size(); } size type degreeY(Vertex y) const { return m Y[y].size(); } size_type num_verticesX() const { return m_X.size(); } size_type num_verticesY() const { return m_Y.size(); } size_type num_vertices() const { return num_verticesX() + num_verticesY(); } using all vertices = basic natural number<Vertex>; auto verticesX() const { return all vertices(num verticesX()); }

```
auto verticesY() const { return all vertices(num verticesY()); }
const auto& X() const { return m_X; }
const auto& Y() const { return m_Y; }
const neighbor list& neighborsX(Vertex a) const { return m X[a]; }
const neighbor_list& neighborsY(Vertex a) const { return m_Y[a]; }
void add edge(Vertex x, Vertex y, weight t w = 1)
   m_X[x].emplace_back(y, w);
   m Y[y].emplace back(x, w);
   ++m numedges;
   m_neighbors_sorted = false;
}
void add_edge(const Edge& E) { add_edge(E.from, E.to, E.weight()); }
template <class EdgeContainer>
void add edges(const EdgeContainer& edges)
   for (auto& e : edges)
        add_edge(e);
}
void add_edges(const std::initializer_list<Edge>& edges)
   for (auto& e : edges)
        add edge(e);
}
void FlipXandY() { std::swap(m X, m Y); }
void sort_neighbors()
{
   if (m_neighbors_sorted)
        return;
   for (auto& x : m X)
        std::sort(std::begin(x), std::end(x));
   for (auto& y : m_Y)
        std::sort(std::begin(y), std::end(y));
   m_neighbors_sorted = true;
```

```
}
    Graph UnderlyingGraph() const
        Graph G(num_vertices());
        for (Vertex v = 0; v < num_verticesX(); ++v)</pre>
            for (auto u : neighborsX(v))
                G.add_edge(v, u + num_verticesX(), u.weight());
            }
        }
        return G;
    }
private:
    std::vector<neighbor_list> m_X{};
    std::vector<neighbor_list> m_Y{};
    size_type m_numedges{0};
    bool m_neighbors_sorted{false};
};
```