COMP353 Databases

Logical Query Languages: Datalog

Logical Query Languages (Section 5.3)

Motivation

- Logical *if-then* rules extend rather "naturally" and easily to recursive queries; Relational algebra doesn't!
 - Recursion is considered in SQL3
- Logical rules (Datalog) form a basis for development of many concepts and techniques in database and knowledge base systems, with many applications such as data integration

Datalog

AlongMovie(Title, Year) ← movie(Title, Year, Length, Type), Length >= 100.

- The head the left hand side of the arrow/implication
- The body the right hand side is a conjunction (AND) of predicates (called subgoals)
- NOTE: The book uses AND in the rule bodies instead of commas.

AlongMovie(Title, Year) ← movie(Title, Year, Length, Type) AND Length >= 100.

- The head is a positive predicate (atom) and the subgoals in the rule body are Atoms
- Atom a formula of the form $p(T_1,...,T_n)$, where **p** is a predicate and T_i 's are terms
 - Predicate normal (ordinary) relation name (e.g., movie, p) or built-in predicates (e.g., >= in the above example)
 - Terms (arguments) In Datalog, T_i is either a *variable* or a *constant*
 - Subgoals in the rule body may be "negated" using NOT

Datalog

longMovie(Title, Year) ← movie(Title, Year, Length, Type), Length >= 100.

- A variable in a rule body is called *local* if it appears only in the rule body, e.g., Length and Type
- The head is "true" if there are values for local variables that make every subgoal (in the rule body) true
- If the body includes no negation, then the rule can be viewed as a join of relations in the rule body followed by a projection on the head variable(s)

Datalog

longMovie(Title, Year) ← movie(Title, Year, Length, Type), Length >= 100.

■ This rule may be expressed in RA as:

 $\rho_{\text{longMovie}}(\pi_{\text{Title,Year}}(\sigma_{\text{Length}\geq 100}(\text{movie})))$

Variable-Based Interpretations of Rules

- In principle, given the rule
- $r: H \leftarrow B1,...,Bk$. we consider all possible assignments \mathcal{I} of values (constants in the domain) to the variables in the rule.
- \blacksquare Such assignments \mathcal{I} are called interpretations.
- For every interpretation \(\mathcal{I}\) of the rule, if the body is true under \(\mathcal{I}\), we add to the head relation, the tuple defined by H under \(\mathcal{I}\).
 (we only consider ground interpretations/substitutions).
 - That is, if $\mathcal{I}(Bi)$ is true, $\forall i \in \{1,...,k\}$, then $\mathcal{I}(H)$ is true.
 - In this case, we say that " Γ satisfies r" or " Γ is a model for r", (this is denoted as $\Gamma \vdash r$)

$$s(X, Y) \leftarrow r(X, Z), r(Z, Y), NOT r(X, Y).$$

Instance r:

Α	В
1	2
2	3

The only assignments that make the first subgoal true are:

1.
$$I_1: X \rightarrow 1, Z \rightarrow 2$$

2.
$$I_2$$
: $X \rightarrow 2$, $Z \rightarrow 3$.

In case (1),

Instance s:

- \longrightarrow Y \longrightarrow 3 makes the second subgoal r(Z,Y) true
- Since (1, 3) ∉ r, then "NOT r(X,Y)" is also true
- Thus, we infer tuple (1, 3) for the head relation, s
- In case (2),
 - No value of "Y" makes the second subgoal true

Tuple-Based Interpretations of Rules

- Consider tuple variables for each positive normal subgoals that range over their relations
 - For each assignment of tuples to each of these subgoals, we determine the implied assignment θ of values to variables
 - If the assignment *I* is:
 - consistent and also
 - satisfies all the subgoals (normal and built-ins) in the body then we add to the head relation, the tuple defined by the head H under \mathcal{I}

$$s(X, Y) \leftarrow r(X, Z), r(Z, Y), NOT r(X, Y).$$

Instance r:

Have 4 assignments of tuples to subgoals:

Α	В
1	2
2	3

- 1. (1, 2) (1, 2)
- 2. (1, 2) (2, 3)
- **3**. (2, 3) (1, 2)

Instance s:

Α	В
1	3

4. (2, 3) (2, 3)

Only the second assignment

- is consistent for the value assigned to Z and satisfies the negative subgoal "NOT r(X,Y)"
 - \rightarrow (1,3) is the only tuple we get for s

Datalog Programs

- A datalog program is a finite collection of rules
- Note: while standard datalog does not allow negation, in our presentation here, the programs and rules are actually in datalog extended with negation and built-in predicates.
- Predicates/relations can be divided into two classes
 - **EDB** Predicates (input relations), also called *FACTS*
 - Extensional database = relations stored explicitly in DB
 - **IDB** Predicates (derived/output relations), defined by rule(s)
 - Intensional database
 - They are similar to views in relational databases
- Note: EDB predicates appear only in the rule body and IDBs appear in the head and possibly in the body

- The usual set operations
- Consider relation schemas r(X,Y) and s(X,Y)
 - Intersection
 - RA: Q=r∩s
 - Datalog: q(X,Y) ← r(X,Y), s(X,Y).
 - Union
 - RA: Q = r ∪ s
 - Datalog: the following two rules:
 - 1. $q(X,Y) \leftarrow r(X,Y)$.
 - 2. $q(X,Y) \leftarrow s(X,Y)$.
 - Difference
 - RA: Q = r s
 - Datalog: $q(X,Y) \leftarrow r(X,Y)$, **NOT** s(X,Y).

Projection operation

- RA: $p = \pi_x(r)$
- Datalog: $p(X) \leftarrow r(X,Y)$.

Selection operation

- RA: $s = \sigma_{x > 10 \text{ AND } y = 5}(r)$
- Datalog: $s(X,Y) \leftarrow r(X,Y), X > 10, Y = 5.$

- Selection operation. Recall the schema of r(X,Y).
 - RA: $s = \sigma_{x > 10 \text{ OR } y = 5}(r)$
 - Datalog: the following two rules:
 - 1. $s(X, Y) \leftarrow r(X, Y), X > 10$.
 - 2. $s(X, Y) \leftarrow r(X, Y), Y = 5$.

Note: the following Datalog program is equivalent to the above.

- 1. $s(A,B) \leftarrow r(A,B), A>10.$
- 2. $s(C,D) \leftarrow r(C,D), D = 5$.

- Cartesian Product operation
- Consider relation schemas r(A, B) and s(C, D)
 - RA: $Q = r \times s$
 - Datalog: $q(X, Y, Z, W) \leftarrow r(X,Y), s(Z,W)$.

- Join operation
 - Theta-join with an AND condition, e.g., "c₁ AND c₂"
 - RA: $tj1 = r \triangleright \triangleleft_{x > z \text{ AND } y < w} s$
 - Datalog: $tj1(X, Y, Z, W) \leftarrow r(X,Y), s(Z,W), X > Z, Y < W$.
 - Theta-join with an OR condition, e.g., "c₁ OR c₂"
 - RA: $tj2 = r \triangleright \triangleleft_{x > z \text{ OR } y < w} s$
 - Datalog: the following two rules:

$$tj2(X, Y, Z, W) \leftarrow r(X,Y), s(Z, W), X > Z.$$

 $tj2(X, Y, Z, W) \leftarrow r(X,Y), s(Z,W), Y < W.$

- Join operation
 - Equi-join
 - RA: $ej3 = r \triangleright \triangleleft_{Y=Z} s$
 - Datalog: ej3(X,Y,Z,W) ← r(X,Y), s(Z,W), Y = Z.
 OR even better (simpler): ej3(X,Y,Y,W) ← r(X,Y), s(Y,W).

- Join operation
 - Natural join
 - RA: $nj4 = r \triangleright \triangleleft s$
 - Datalog: $nj4(X,Y,W) \leftarrow r(X,Y), s(Y,W)$.

Example: Datalog Queries/Programs

- Database schema:
 movie(<u>Title</u>, <u>Year</u>, Length, FilmType, StudioName)
 starsIn(<u>Title</u>, <u>Year</u>, <u>StarName</u>)
- Query: Find the names of stars of movies that are at least 100 minutes long
- Relational Algebra Expression:

```
Q = \pi_{starName}(\sigma_{length \ge 100}(movie)) > < starsIn)
```

Datalog program:

```
r1(Title, Year, Length, Type, Studio) ←
movie(Title, Year, Length, Type, Studio), Length >= 100.
r2(Title, Year, Length, Type, Studio, Name) ←
r1(Title, Year, Length, Type, Studio), starsIn(Title, Year, Name).
q(Name) ← r2(Title, Year, Length, Type, Studio, Name).
```

As in RA case, we could express this query using just one rule, as follows:

```
q(Name) ← movie(Title, Year, Length, Type, Studio), Length >= 100, starsIn(Title, Year, Name).
```

Expressive Power of Datalog

- Relational algebra = Nonrecursive Datalog+ negation
- Datalog can express SQL SELECT-FROM-WHERE statements that do not use aggregation and/or grouping
- The SQL-99 standard supports recursion but it is not part of the "core" SQL-99 standard that every DBMS should support
- Some DBMS implementations, e.g. DB2, support linear recursion

trainSchedule(From,To)

Datalog:

- Find every cities that can be reached from Montreal by train
- fromMontreal(C) ← trainSchedule('Montreal', C).
- fromMontreal(TC) ← fromMontreal(C), trainSchedule(C,TC).

trainSchedule:

From	То
Toronto	Calgary
NYC	Boston
NYC	Albany
Chicago	Detroit
Montreal	Toronto
Montreal	NYC
Boston	Quebec City

fromMontreal:

Toronto	
NYC	
Calgary	
Boston	
Albany	
Quebec City	

Evaluation of Recursive Rules

Relation Schema: sequelOf(Movie, Sequel)

Instance:

Movie	Sequel
Star wars	Star wars II
Naked Gun	Naked Gun 2
Naked Gun 2	Naked Gun 2 ½
Star wars II	Star wars III
Naked Gun 2 ½	Naked Gun 3

For a given movie, find all the follow-up movies, i.e., a sequel, a sequel of a sequel, and so on

Relation Schema: sequelOf(Movie, Sequel)

Instance:

Movie	Sequel
Star wars	Star wars II
Naked Gun	Naked Gun 2
Naked Gun 2	Naked Gun 2 ½
Star wars II	Star wars III
Naked Gun 2 ½	Naked Gun 3

followUp(X, Y) \leftarrow sequelOf(X,Y). followUp(X, Y) \leftarrow sequelOf(X,Z), followUp(Z,Y).

Recursion

- Let P be any datalog program
- We say an IDB predicate r in P depends on predicate s if there is a rule in P with r as the head and s as a subgoal in the rule body
- Construct the (dependency) graph of P:
 - Nodes -- IDB predicates in P
 - Arcs -- an arc from node r to s if r depends on s
 - Label the arc with '—' for negated subgoals
- P is recursive iff its dependency graph has a cycle

```
followUp(X, Y) \leftarrow sequelOf(X,Y).
followUp(X, Y) \leftarrow sequelOf(X,Z), followUp(Z, Y).
```


Safety

- It is possible to write a rule that makes "no sense".
- Example of such rules:
 - \blacksquare s(X) \leftarrow r(Y).
 - $s(X) \leftarrow NOT r(X)$.
 - $s(X) \leftarrow r(Y), X < Y$.
- In each of these rules, the IDB relation **s** (output relation) could be infinite, even if (the input) relation **r** is finite
- Such rules are said to be not safe

Safety

- For a rule to be safe, the following conditions must hold:
 - If a variable X appears in the rule head, then X must appear in an "ordinary" predicate in the body or be equal to such a variable (directly or indirectly), e.g., X=Y, and Y appears in an ordinary predicate in the rule body.

Recall: the predicates could be ordinary or built-in.