Méthodes d'adjoint pour le contrôle optimal sous contrainte EDP

Yannick Privat

IRMA, univ. Strasbourg

M2 CSMI - contrôle optimal

Plan

- Rappels sur l'optimisation dans les espaces de Hilbert
- Contrôle optimal des problèmes elliptiques
 - Contrôle distribué
 - Contrôle frontière

3 Contrôle optimal de l'équation de la chaleur

Sommaire

- Rappels sur l'optimisation dans les espaces de Hilbert
- Contrôle optimal des problèmes elliptiques
- Contrôle optimal de l'équation de la chaleur

Fonctions convexes/fortement convexes

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) .

Fonction convexe

Une fonction $J: H \to \mathbb{R}$ est convexe si

$$\forall u, v \in H, \ \forall \theta \in [0,1], \quad J(\theta u + (1-\theta)v) \leq \theta J(u) + (1-\theta)J(v),$$

et strictement convexe si

$$\forall u \neq v \in H, \ \forall \theta \in]0,1[, \quad J(\theta u + (1-\theta)v) < \theta J(u) + (1-\theta)J(v).$$

Proposition: fonctions convexes différentiables

Soit $J: H \to \mathbb{R}$ une fonction différentiable. Alors

1 J est convexe si et seulement si

$$J(v) \ge J(u) + (\nabla J(u), v - u), \quad \forall u, v \in H.$$

2 J est strictement convexe si et seulement si

$$J(v) > J(u) + (\nabla J(u), v - u), \quad \forall u \neq v \in H.$$

Fonctions convexes/fortement convexes

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) .

Fonctions fortement convexes

Une fonction $J:H\to\mathbb{R}$ est dite fortement convexe ou lpha-convexe s'il existe lpha>0 tel que

$$J\Big(\theta u + (1-\theta)v\Big) \leq \theta J(u) + (1-\theta)J(v) - \frac{\alpha}{2}\theta(1-\theta)\|v - u\|^2, \qquad \forall u, v \in H.$$

Remarque : J fortement convexe $\Rightarrow J$ strictement convexe (pourquoi?)

Proposition: fonctions fortement convexes différentiables

Soit $J:H\to\mathbb{R}$ une fonction différentiable. Alors les propositions suivantes sont équivalentes

- J est fortement convexe
- 2 la fonction $J \frac{\alpha}{2} ||\cdot||^2$ est convexe
- **3** J est α -elliptique, autrement dit

$$(\nabla J(v) - \nabla J(u), v - u) \ge \alpha ||v - u||^2, \quad \forall u, v \in H.$$

Fonctions convexes/fortement convexes

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) .

Proposition: fonctions fortement convexes différentiables

Soit $J:H\to\mathbb{R}$ une fonction différentiable. Alors les propositions suivantes sont équivalentes

- J est fortement convexe
- 2 la fonction $J \frac{\alpha}{2} \| \cdot \|^2$ est convexe
- **3** J est α -elliptique, autrement dit

$$(\nabla J(v) - \nabla J(u), v - u) \ge \alpha ||v - u||^2, \quad \forall u, v \in H.$$

Preuve: posons $g(x) = J(x) - \frac{\alpha}{2} ||x||^2$. En développant $||tx + (1-t)y||^2$ et en regroupant les termes correctement, on trouve

$$tg(x) + (1-t)g(y) - g(tx + (1-t)y) = tJ(x) + (1-t)J(y) - f(tx + (1-t)y) - \frac{\alpha}{2}t(1-t)||x-y||^2,$$

ce qui prouve la première équivalence annoncée.

La deuxième équivalence résulte du la proposition : si $g:H\to\mathbb{R}$ est différentiable, alors g est convexe si, et seulement si

$$g(y) \ge g(x) + \langle \nabla g(x), y - x \rangle, \quad \forall (x, y) \in H^2$$

ou encore si, et seulement si $\langle \nabla g(y) - \nabla g(x), y - x \rangle \ge 0$, $\forall (x,y) \in H_2^2$.

Théorème d'existence, inéquation d'Euler

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) . Soit \mathcal{U}_{ad} un sous-ensemble convexe fermé de H.

Théorème : existence d'un minimum de fonction α -convexe

Soient $J: H \to \mathbb{R}$ une fonction continue, α -convexe et \mathcal{U}_{ad} une partie non-vide convexe fermée. Alors le problème inf $\{J(v), v \in \mathcal{U}_{ad}\}$ admet une unique solution.

La α -convexité de J implique que

$$\frac{\alpha}{4} \|u_k - u_l\|^2 \le J(u_k) + J(u_l) - 2J\left(\frac{u_k + u_l}{2}\right) \le J(u_k) + J(u_l) - 2\inf_{v \in \mathcal{U}_{ad}} J(v),$$

puisque $\frac{u_k+u_l}{2}\in\mathcal{U}_{ad}$ qui est convexe.

On en déduit que la suite (u_k) est de Cauchy dans H, i.e. $||u_k-u_l||^2 \to 0$ si $k,l \to +\infty$. L'ensemble \mathcal{U}_{ad} étant fermé, la suite de Cauchy (u_k) converge vers une élément $u \in \mathcal{U}_{ad}$. Il s'ensuit que

$$J(u) = \lim_{k \to +\infty} J(u_k) = \inf_{v \in \mathcal{U}_{ad}} J(v).$$

L'unicité découle de la stricte convexité de la fonctionnelle J.

Remarque: ce résultat reste valable en remplaçant "J continue" par l'hypothèse plus générale "J est s.c.i.".

Théorème d'existence, inéquation d'Euler

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) . Soit \mathcal{U}_{ad} un sous-ensemble convexe fermé de H.

C.N.S. d'optimalité

Supposons que $J: H \to \mathbb{R}$ est une fonction différentiable et convexe. Alors $u \in \mathcal{U}_{ad}$ est solution du problème inf $\{J(v), v \in \mathcal{U}_{ad}\}$ si et seulement s'il satisfait l'inéquation d'Euler

$$(\nabla J(u), v - u) \geq 0, \quad \forall v \in \mathcal{U}_{ad}.$$

Preuve : supposons que $u \in \mathcal{U}_{ad}$ satisfait l'inéquation d'Euler. Alors la convexité de J implique

$$J(v) \geq J(u) + (\nabla J(u), v - u) \geq J(u), \quad \forall v \in \mathcal{U}_{ad}.$$

Réciproquement, supposons que u est solution de $\inf\{J(v),\ v\in\mathcal{U}_{ad}\}$. Alors pour tout $0\leq\theta\leq1$, la convexité de \mathcal{U}_{ad} implique $u+\theta(v-u)=(1-\theta)u+\theta v\in\mathcal{U}_{ad}$. Par minimalité de J(u), on a $J(u)\leq J(u+\theta(v-u))$. Puisque J est dérivable, la formule de Taylor fournit

$$J(u) \le J(u) + \theta(\nabla J(u), v - u) + o(\theta).$$

La conclusion s'obtient en simplifiant par $\theta > 0$, puis en faisant $\theta \to 0^+$ dans la relation ci-dessus.

Théorème d'existence, inéquation d'Euler

Soit H un espace de Hilbert muni de la norme $\|\cdot\|$ et du produit scalaire (\cdot,\cdot) . Soit \mathcal{U}_{ad} un sous-ensemble convexe fermé de H.

Cas $\mathcal{U}_{ad} = H$

Si $\mathcal{U}_{ad}=H$, l'inéquation d'Euler

$$(\nabla J(u), v - u) \ge 0, \qquad \forall v \in \mathcal{U}_{ad}.$$

se réécrit $\nabla J(u) = 0$.

Preuve : en effet, choisissons $v=u-\nabla J(u)\in H$. Alors l'inéquation d'Euler se réécrit

$$-\|\nabla J(u)\|^2 \geq 0$$

d'où le résultat.

Sommaire

- Rappels sur l'optimisation dans les espaces de Hilbert
- Contrôle optimal des problèmes elliptiques
 - Contrôle distribué
 - Contrôle frontière
- 3 Contrôle optimal de l'équation de la chaleur

Soit Ω un ouvert borné de \mathbb{R}^n qui représente un corps thermiquement conducteur.

- État du système : champ y des températures dans Ω .
- Température maintenue constante ^a sur le bord : condition de Dirichlet homogène
- On impose une source de chaleur sur laquelle aucune action n'est possible : f
- Contrôle v1ω: représente une source de chaleur sur un sous-domaine ω afin d'agir sur la température dans tout le domaine Ω.

La fonction $y:\Omega\to\mathbb{R}$ solution de l'équation de la chaleur stationnaire

$$\begin{cases} -\Delta y(x) = f(x) + v(x) \mathbb{1}_{\omega}(x) & x \in \Omega \\ y(x) = 0 & x \in \partial \Omega \end{cases}$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

a. constante utilisée comme origine pour l'échelle de températures

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases}
-\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\
y = 0 & x \in \partial \Omega
\end{cases}$$

- → Comment calculer la différentielle de J?
- Comment écrire des conditions d'optimalité pour ce problème?
- → Quelle méthode numérique en déduire?

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

 $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\ y = 0 & x \in \partial \Omega \end{cases}$$

Outils fondamentaux : intégrations par parties

Soit Ω , un ouvert de \mathbb{R}^d de classe \mathcal{C}^1 par morceaux. Soit n, la normale sortante au domaine Ω

1 Si u et v sont deux fonctions de $H^1(\Omega)$, on a

$$\int_{\Omega} \frac{\partial u}{\partial x_i} v \, dx = -\int_{\Omega} \frac{\partial v}{\partial x_i} u \, dx + \int_{\partial \Omega} uv \qquad \underbrace{n_i} \qquad d\sigma.$$

② Soit $u \in H^2(\Omega)$ et $v \in H^1(\Omega)$. On a

$$\int_{\Omega} \Delta u v \, dx = -\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, d\sigma.$$

4 □ ト 4 □ ト 4 □ ト 4 □ ト 3 ■ 9 9 9 9

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

 $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\ y = 0 & x \in \partial \Omega \end{cases}$$

Remarque préliminaire

On note y(v) la solution du problème précédent. L'application $L^2(\Omega) \ni v \mapsto y(v) \in H^1_0(\Omega)$ est bien définie a (théorème de Lax-Milgram).

Soient $u \in \mathcal{U}_{ad}$ et h telle que $u + \varepsilon h \in \mathcal{U}_{ad}$ si $\varepsilon > 0$ est assez petit. On peut montrer que cette application est différentiable en u. Si c'est le cas, sa différentielle dans la direction h est définie par

$$y'(h) = \lim_{\varepsilon \searrow 0} \frac{y(u + \varepsilon h) - y(u)}{\varepsilon}$$

a. Si $\omega = \Omega$, l'application $L^2(\Omega) \ni v \mapsto y(v) \in H^1_0(\Omega) \cap H^2(\Omega)$ est même un isomorphisme.

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\ y = 0 & x \in \partial \Omega \end{cases}$$

Notons que
$$\delta:=\frac{1}{\varepsilon}(y(u+\varepsilon h)-y(u))$$
 satisfait $\left\{ \begin{array}{ll} -\Delta\delta(x)=h(x)\mathbb{1}_{\omega}(x) & x\in\Omega\\ \delta(x)=0 & x\in\partial\Omega \end{array} \right.$ δ ne dépend pas de ε donc $\delta=y'(h)$ si $v\mapsto y(v)$ est différentiable.

 δ ne depend pas de ε donc $\delta = y'(h)$ si $v \mapsto y(v)$ est differentiable De plus, il existe $C_0 > 0$ telle que

$$\|\delta\|_{H^1(\Omega)} \leq C_{\Omega} \|h\|_{L^2(\Omega)}$$

donc $\mathcal{U}_{ad} \ni h \mapsto \delta \in H^1(\Omega)$ est continue. Finalement,

 $L^2(\Omega) \ni v \mapsto y(v) \in H^1_0(\Omega)$ est différentiable de différentielle $y'(h) = \delta$.

← ← → ← 回 → ← 三 → へ ○ へ ○

Théorème

Soient $u \in L^2(\Omega)$ et h telle que $u + \varepsilon h \in \mathcal{U}_{ad}$ si $\varepsilon > 0$ est assez petit. On a

$$DJ(u) \cdot h = \int_{\Omega} (\mathbb{1}_{\omega} p(u)(x) + \alpha u(x)) h(x) dx$$
 (i.e. $\nabla J(u) = p(u) + \alpha u$)

où $p(u) \in H_0^1(\Omega)$ désigne la variable adjointe, solution de

$$\begin{cases} -\Delta p(u) = y(u) - z_d, & \text{dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{cases}$$

Le problème (\mathcal{P}) possède une unique solution u^* caractérisée par

$$\int_{\Omega} \left(\mathbb{1}_{\omega}(x) p(u^*)(x) + \alpha u^*(x) \right) (v(x) - u^*(x)) \geq 0 \qquad \forall v \in \mathcal{U}_{ad}.$$

Preuve du théorème

Inéquation d'Euler

Soient $u\in\mathcal{U}_{ad}$ solution du problème et $v\in\mathcal{U}_{ad}$. Par convexité, $(1-\varepsilon)u^*+\varepsilon v\in\mathcal{U}_{ad}$. On a

$$J(\varepsilon v + (1-\varepsilon)u^*) \geq J(u^*)$$

si $\varepsilon > 0$ est assez petit. Par conséquent,

$$\underbrace{\lim_{\varepsilon \searrow 0} \frac{J(\varepsilon v + (1 - \varepsilon)u^*) - J(u^*)}{\varepsilon}}_{=DJ(u^*) \cdot (v - u^*)} \ge 0$$

Inéquation d'Euler

Si u^* solution du problème (\mathcal{P}) , alors

$$DJ(u^*) \cdot (v - u^*) \ge 0, \qquad v \in \mathcal{U}_{ad}.$$

Posons $h = v - u^*$ et notons $DJ(u^*) \cdot h = \nabla J(u^*) \cdot h$.

Preuve du théorème

Soit $u \in \mathcal{U}_{ad}$. On calcule

$$DJ(u) \cdot h = (y(u) - z_d, y'(h))_{L^2(\Omega)} + \alpha(u, h)_{L^2(\Omega)}.$$

Remarquons que y'(v - u) = y(v) - y(u).

Alors, on a

$$\nabla J(u) \cdot (v-u) = (y(u)-z_d, y'(v-u))_{L^2(\Omega)} + \alpha(u, v-u)_{L^2(\Omega)}$$

et

$$(\nabla J(v) - \nabla J(u), v - u) = (y(v) - y(u), y'(v - u))_{L^{2}(\Omega)} + \alpha(v - u, v - u)_{L^{2}(\Omega)}$$

$$= (y(u^{*}) - z_{d}, y(v) - y(u))_{L^{2}(\Omega)} + \alpha(v - u, v - u)_{L^{2}(\Omega)}$$

$$\geq \alpha ||v - u||^{2}.$$

Donc J est α -convexe. D'après le théorème d'existence d'un minimum de fonctions α -convexes, il existe un unique contrôle $u^* \in \mathcal{U}_{ad}$ qui minimise la fonction J sur \mathcal{U}_{ad} .

Preuve du théorème

Rappelons que la variable adjointe p(u) est donnée par

$$\begin{cases} -\Delta p(u) = y(u) - z_d, & \text{dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{cases}$$

En utilisant l'équation sur $p(u^*)$, on obtient

$$(\nabla J(u^*), v - u^*) = (-\Delta p(u^*), y(v) - y(u^*))_{L^2(\Omega)} + \alpha(u^*, v - u^*)_{L^2(\Omega)}$$

$$= (-\Delta p(u^*), y(v) - y(u^*))_{L^2(\Omega)} + \alpha(u^*, v - u^*)_{L^2(\Omega)}.$$

En utilisant la formule de Green et les conditions aux bords, il vient

$$\int_{\Omega} \Delta p(u^*) \big(y(v) - y(u^*) \big) dx = \int_{\Omega} p(u^*) \Delta \big(y(v) - y(u^*) \big) dx.$$

et par conséquent

$$(\nabla J(u^*), v - u^*) = (p(u^*), -\Delta(y(v) - y(u^*)))_{L^2(\Omega)} + \alpha(u^*, v - u^*)_{L^2(\Omega)}$$

= $(\mathbb{1}_{\omega} p(u^*), v - u^*)_{L^2(\Omega)}.$

←□ → ←□ → ←□ → ←□ → ○

Preuve du théorème

L'inéquation d'Euler se réécrit donc

$$(\mathbb{1}_{\omega}p(u^*) + \alpha u^*, v - u^*)_{L^2(\Omega)} \geq 0 \qquad \forall v \in \mathcal{U}_{ad}.$$

Preuve du théorème

Cas sans contrainte : $\mathcal{U}_{ad} = L^2(\Omega)$

La condition d'optimalité devient $u=-\frac{1}{\alpha}p\mathbb{1}_{\omega}$, si bien que y et p satisfont

$$\left\{ \begin{array}{ll} \Delta y + \frac{1}{\alpha} \rho \mathbb{1}_{\omega} = f, & \text{dans } \Omega, \\ \Delta p - y = -z_d, & \text{dans } \Omega, \\ y = 0, & p = 0 & \text{sur } \partial \Omega. \end{array} \right.$$

Par régularité elliptique, le contrôle u appartient à $H^2(\Omega)$.

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{\text{attache aux données}} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{\text{coût du contrôle/régularisation}}$$

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases}
-\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\
y = 0 & x \in \partial \Omega
\end{cases}$$

On a montré que

$$DJ(u) \cdot h = \int_{\Omega} (\mathbb{1}_{\omega}(x)p(u)(x) + \alpha u(x)) h(x) dx$$

et
$$p(u)$$
 résout $\left\{ \begin{array}{ll} -\Delta p(u) = y(u) - z_d, & \text{dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{array} \right.$

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\left[\inf_{v\in\mathcal{U}_{ad}}J(v)\right] \tag{\mathcal{P}}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2$$
attache aux données coût du contrôle/régularisation

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\ y = 0 & x \in \partial \Omega \end{cases}$$

Algorithme de type gradient

 $\rightarrow u^0 \in \mathcal{U}_{ad}$ donné.

 $\rightarrow u^k \in \mathcal{U}_{ad}$ étant connu, on le met à jour par la formule

$$u^{k+1} = \Pi_{\mathcal{U}_{ad}} \left(u^k - \rho^k (\mathbb{1}_{\omega} p(u^k) + \alpha u^k) \right)$$

où $\Pi_{\mathcal{U}_{ad}}$ est l'opérateur de projection sur \mathcal{U}_{ad} .

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\left[\inf_{v\in\mathcal{U}_{ad}}J(v)\right] \tag{\mathcal{P}}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Omega)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{\text{attache aux données}} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2}_{\text{coût du contrôle/régularisation}}$$

 $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y = f + v \mathbb{1}_{\omega} & x \in \Omega \\ y = 0 & x \in \partial \Omega \end{cases}$$

À chaque itération de l'algorithme, on doit

- → résoudre l'état,
- → PUIS résoudre l'adjoint,
- → effectuer l'étape de projection,
- \sim chercher le pas ρ^k de l'algorithme.

Soit Ω un ouvert borné de \mathbb{R}^n qui représente un corps thermiquement conducteur.

- État du système : champ y des températures dans Ω .
- On impose une source de chaleur sur laquelle aucune action n'est possible : f
- Contrôle v: représente une source de chaleur sur le bord $\Sigma = \partial \Omega$ afin d'agir sur la température dans tout le domaine Ω .

La fonction $y:\Omega\to\mathbb{R}$ solution de l'équation elliptique

$$\begin{cases} -\Delta y(x) + y(x) = f(x) & x \in \Omega \\ y(x) = v(x) & x \in \partial \Omega \end{cases}$$

Le problème de contrôle optimal $(\Sigma := \partial \Omega)$

$$\left| \inf_{v \in \mathcal{U}_{ad}} J(v) \right| \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Sigma)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Sigma)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

ment de v et résout l'EDP :

$$\begin{cases}
-\Delta y + y = f & x \in \Omega \\
y = v & x \in \partial\Omega
\end{cases}$$

Donnons un sens clair aux solutions du système non homogène. Grâce à la théorie des équations elliptiques (opérateur de trace et relèvement), on montre que pour toutes données $v \in L^2(\Sigma)$ et $f\in L^2(\Omega)$, le système ci-dessus admet une seule solution $y\in L^2(\Omega)$. En particulier, l'application affine

$$L^2(\partial\Omega) \ni v \to y(v) \in L^2(\Omega)$$

est continue pour les topologies correspondantes. Ainsi la fonction J est bien définie.

Le problème de contrôle optimal $(\Sigma := \partial \Omega)$

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Sigma)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{2} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Sigma)}^2}_{2}$$

attache aux données coût du contrôle/régularisation

 $z_d \in L^2(\Omega)$ et y dépend implicitement de v et résout l'EDP :

$$\begin{cases} -\Delta y + y = f & x \in \Omega \\ y = v & x \in \partial \Omega \end{cases}$$

Soit
$$(u,v) \in \mathcal{U}_{ad}^2$$
. On définit $y'(v-u) = \lim_{\varepsilon \searrow 0} \frac{y(u+\varepsilon(v-u))-y(u)}{\varepsilon}$.

Lemme

On a
$$y'(v - u) = y(v) - y(u)$$
.

De plus, $L^2(\Sigma) \ni u \mapsto y(u)$ est différentiable en u de différentielle y'.

Preuve : $L^2(\Sigma) \ni u \mapsto y(u)$ est différentiable en u car elle est affine continue. La première égalité provient du fait que y'(v-u) résout le problème

$$\begin{cases} -\Delta y'(v-u) + y'(v-u) = 0 & x \in \Omega \\ y'(v-u) = v - u & x \in \partial \Omega \end{cases}$$

Théorème

Soient $u \in L^2(\Sigma)$ et h tel que $u + \varepsilon h \in \mathcal{U}_{ad}$ si $\varepsilon > 0$ est assez petit. On a

$$DJ(u) \cdot h = \int_{\Sigma} \left(-\partial_n p(u)(x) + \alpha u(x) \right) h(x) dx$$
 (i.e. $\nabla J(u) = p(u) + \alpha u$)

où $p(u) \in H^1(\Omega)$ désigne la variable adjointe, solution de

$$\begin{cases} -\Delta p(u) + p(u) = y(u) - z_d, & \text{dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{cases}$$

Le problème (\mathcal{P}) possède une unique solution u^* caractérisée par

$$\int_{\Sigma} \left(-\partial_n p(u^*)(x) + \alpha u^*(x) \right) (v(x) - u^*(x)) \ge 0 \qquad \forall v \in \mathcal{U}_{ad}.$$

Preuve du théorème

Soit $u \in \mathcal{U}_{ad}$ et h = v - u. On calcule

$$DJ(u) \cdot h = (y(u) - z_d, y'(h))_{L^2(\Omega)} + \alpha(u, h)_{L^2(\Sigma)}.$$

Remarquons que y'(v - u) = y(v) - y(u).

Alors, on a

$$\nabla J(u)\cdot (v-u)=(y(u)-z_d,y'(v-u))_{L^2(\Omega)}+\alpha(u,v-u)_{L^2(\Sigma)}$$

et

$$(\nabla J(v) - \nabla J(u), v - u) = (y(v) - y(u), y'(v - u))_{L^{2}(\Omega)} + \alpha(v - u, v - u)_{L^{2}(\Sigma)}$$

$$= (y(u^{*}) - z_{d}, y(v) - y(u))_{L^{2}(\Omega)} + \alpha(v - u, v - u)_{L^{2}(\Sigma)}$$

$$\geq \alpha \|v - u\|_{L^{2}(\Sigma)}^{2}.$$

Donc J est α -convexe et continue sur $L^2(\Sigma)$. D'après le théorème d'existence d'un minimum de fonctions α -convexes, il existe un unique contrôle $u^* \in \mathcal{U}_{ad}$ qui minimise la fonction J sur \mathcal{U}_{ad} .

Preuve du théorème

Rappelons que la variable adjointe p(u) est donnée par

$$\begin{cases} -\Delta p(u) + p(u) = y(u) - z_d, & \text{dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{cases}$$

En utilisant l'équation sur $p(u^*)$, on obtient

$$\begin{aligned} (\nabla J(u^*), v - u^*) &= (-\Delta p(u^*), y(v) - y(u^*))_{L^2(\Omega)} + \alpha(u^*, v - u^*)_{L^2(\Sigma)} \\ &+ (p(u^*), y(v) - y(u^*))_{L^2(\Omega)} \\ &= ((-\Delta + \mathsf{Id})p(u^*), y(v) - y(u^*))_{L^2(\Omega)} + \alpha(u^*, v - u^*)_{L^2(\Sigma)}. \end{aligned}$$

A l'aide de la formule de Green et les conditions aux bords, on a

$$\int_{\Omega} \Delta p(u^*) \big(y(v) - y(u^*) \big) \, dx = \int_{\Omega} p(u^*) \Delta \big(y(v) - y(u^*) \big) - \int_{\Sigma} \frac{\partial}{\partial \nu} p(u^*) (v - u^*) \, d\Gamma.$$

et par conséquent

$$(\nabla J(u^*), v - u^*) = (-\partial_n p(u^*), y(v) - y(u^*))_{L^2(\Sigma)} + \alpha (u^*, v - u^*)_{L^2(\Sigma)}$$

$$= (\alpha u^* - \partial_n p(u^*), v - u^*)_{L^2(\Sigma)}.$$

Preuve du théorème

L'inéquation d'Euler se réécrit donc

$$(\alpha u^* - \partial_n p(u^*), v - u^*)_{L^2(\Sigma)} \ge 0 \qquad \forall v \in \mathcal{U}_{ad}.$$

Cas sans contrainte : $\mathcal{U}_{ad} = L^2(\Sigma)$

La condition d'optimalité devient $u^* = -\frac{1}{\alpha}\partial_n p$, si bien que y et p satisfont

$$\left\{ \begin{array}{ll} -\Delta y + y = f, & \text{dans } \Omega, \\ -\Delta p + p - y = -z_d, & \text{dans } \Omega, \\ y = -\frac{1}{\alpha}\partial_n p, & p = 0 & \text{sur } \partial \Omega. \end{array} \right.$$

Par régularité elliptique, le contrôle u appartient à $H^2(\Omega)$.

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Sigma)$ et

$$J(v) = \frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|v\|_{L^2(\Sigma)}^2$$
attache aux données coût du contrôle/régularisation

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v via l'EDP :

$$\begin{cases} -\Delta y + y = f & x \in \Omega \\ y = v & x \in \partial \Omega \end{cases}$$

On a montré que

$$DJ(u) \cdot h = \int_{\Sigma} (-\partial_n p(u)(x) + \alpha u(x)) h(x) dx$$

$$\text{et } p(u) \text{ résout } \left\{ \begin{array}{ll} -\Delta p(u) + p(u) = y(u) - z_d, & \text{ dans } \Omega, \\ p(u) = 0 & \text{sur } \partial \Omega. \end{array} \right.$$

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\left[\inf_{v\in\mathcal{U}_{ad}}J(v)\right] \tag{\mathcal{P}}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Sigma)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{\text{attache aux données}} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Sigma)}^2}_{\text{coût du contrôle/régularisation}}$$

 (\mathcal{P}) $z_d \in L^2(\Omega)$ et y dépend implicitement de v via l'EDP :

$$\begin{cases} -\Delta y + y = f & x \in \Omega \\ y = v & x \in \partial \Omega \end{cases}$$

Algorithme de type gradient

 $\rightarrow u^0 \in \mathcal{U}_{ad}$ donné.

 $\rightarrow u^k \in \mathcal{U}_{ad}$ étant connu, on le met à jour par la formule

$$u^{k+1} = \Pi_{\mathcal{U}_{ad}} \left(u^k - \rho^k (-\partial_n p(u^k) + \alpha u^k) \right)$$

où $\Pi_{\mathcal{U}_{ad}}$ est l'opérateur de projection sur \mathcal{U}_{ad} .

Approche numérique

Récapitulons :

Le problème de contrôle optimal

$$\left[\inf_{v\in\mathcal{U}_{ad}}J(v)\right] \tag{\mathcal{P}}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(\Sigma)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y - z_d\|_{L^2(\Omega)}^2}_{\text{attache aux données}} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(\Sigma)}^2}_{\text{coût du contrôle/régularisation}}$$

 $z_d \in L^2(\Omega)$ et y dépend implicitement de v via l'EDP :

$$\begin{cases} -\Delta y + y = f & x \in \Omega \\ y = v & x \in \partial \Omega \end{cases}$$

À chaque itération de l'algorithme, on doit

- → résoudre l'état,
- → PUIS résoudre l'adjoint,
- → effectuer l'étape de projection,
- \sim chercher le pas ρ^k de l'algorithme.

Sommaire

- Rappels sur l'optimisation dans les espaces de Hilbert
- Contrôle optimal des problèmes elliptiques
- 3 Contrôle optimal de l'équation de la chaleur

Un mot sur le caractère "bien posé" de l'équation de la chaleur

Le modèle

- Ω : ouvert connexe borné de bord C^2 ,
- T > 0, horizon de temps. On utilisera les notations $Q =]0, T[\times \Omega \text{ et } \Sigma =]0, T[\times \partial \Omega.$

Considérons l'équation de la chaleur avec les conditions au bord de Dirichlet

$$\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f & \text{dans } Q \\ y = 0 & \text{sur } \Sigma \\ y(0, \cdot) = y_0(\cdot) & \text{dans } \Omega. \end{cases}$$

Posons $H=L^2(\Omega),\ V=H^1_0(\Omega).$ On intégre par parties l'équation principale et on trouve :

$$\frac{d}{dt}\int_{\Omega}y\phi dx + \underbrace{\int_{\Omega}\nabla y\nabla\phi dx}_{=a(y(t),\phi))} = \int_{\Omega}f\phi dx, \qquad \forall \phi \in V.$$

On cherche une fonction $y \in C^0(0, T; H) \cap L^2(0, T; V)$ satisfaisant l'équation variationnelle

$$\frac{d}{dt}(y(t),\phi) + a(y(t),\phi) = (f(t),\phi), \qquad y(0) = y_0$$
 (1)

au sens des distributions sur]0, T[pour toute fonction test $\phi \in V$. Une telle fonction y est appelée solution (faible) du problème variationnel.

Un mot sur le caractère "bien posé" de l'équation de la chaleur

Le modèle

- Ω : ouvert connexe borné de bord C^2 ,
- T > 0, horizon de temps. On utilisera les notations $Q =]0, T[\times \Omega$ et $\Sigma =]0, T[\times \partial \Omega$.

Considérons l'équation de la chaleur avec les conditions au bord de Dirichlet

$$\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f & \text{dans } Q \\ y = 0 & \text{sur } \Sigma \\ y(0, \cdot) = y_0(\cdot) & \text{dans } \Omega. \end{cases}$$

Existence, unicité, régularité

Soient $y_0 \in H$ et $f \in L^2(0, T; H)$. On suppose que

- ullet V et H sont deux espaces de Hilbert tels que $V\subset H$ avec injection dense et compacte
- $a(\cdot,\cdot)$ est une forme bilinéaire symétrique continue sur H et coercive a

Alors, ce problème variationnel admet une unique solution faible. De plus, l'application

$$H \times L^{2}(0, T; H) \ni (y_{0}, f) \mapsto y \in C^{0}(0, T; H) \cap L^{2}(0, T; V)$$

est continue pour les normes correspondantes.

a. au sens où :
$$\exists \lambda \geq 0, \ \alpha > 0$$
 t.q. $a(y,y) + \lambda |y|^2 \geq \alpha ||y||^2, \quad \forall y \in V.$

Un mot sur le caractère "bien posé" de l'équation de la chaleur

Le modèle

- Ω : ouvert connexe borné de bord C^2 ,
- T > 0, horizon de temps. On utilisera les notations $Q =]0, T[\times \Omega \text{ et } \Sigma =]0, T[\times \partial \Omega.$

Considérons l'équation de la chaleur avec les conditions au bord de Dirichlet

$$\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f & \text{dans } Q \\ y = 0 & \text{sur } \Sigma \\ y(0, \cdot) = y_0(\cdot) & \text{dans } \Omega. \end{cases}$$

Conséquence : l'équation de la chaleur ci-dessus possède une unique solution faible. De plus, $L^2(Q) \ni f \mapsto y \in L^2(Q)$ est continue.

Cas de conditions au bord de Neumann : considérons l'équation de la chaleur ci-dessus avec des conditions aux bords de Neumann homogènes, i.e. $\frac{\partial y}{\partial \nu}=0$ sur Σ . Le théorème abstrait s'applique à nouveau avec $V=H^1(\Omega),\ H=L^2(\Omega)$ et fournit l'existence d'une unique solution faible si $y_0\in L^2(\Omega)$ et $f\in L^2(0,T;L^2(\Omega))$.

Cas de conditions au bord non-homogènes

Théorème (conditions de Dirichlet non-homogènes)

Soient $y_0 \in L^2(\Omega)$, $v \in L^2(\Sigma)$ et $f \in L^2(0, T; L^2(\Omega))$.

Alors l'équation de la chaleur avec conditions aux bords de Dirichlet non-homogènes

$$\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f & \text{dans } Q \\ y = v & \text{sur } \Sigma \\ y(0, \cdot) = y_0(\cdot) & \text{dans } \Omega. \end{cases}$$
 (2)

admet une unique solution faible $y \in L^2(0, T; H_0^1(\Omega))$, i.e.

$$||y||_{L^{2}(0,T;L^{2}(\Omega))} \leq C(||y_{0}||_{L^{2}(\Omega)} + ||v||_{L^{2}(0,T;L^{2}(\partial\Omega))} + ||f||_{L^{2}(0,T;L^{2}(\Omega))}),$$

$$\int_{0}^{T} \int_{\Omega} yh \ dxdt = \int_{\Omega} y_{0}\phi(0) \ dx + \int_{0}^{T} \int_{\Omega} f\phi \ dxdt - \int_{0}^{T} \int_{\partial\Omega} v \frac{\partial \phi}{\partial \nu} \ d\Gamma dt$$
(3)

pour toute fonction $h \in L^2(\Omega)$.

Ce qui importe ici :

La fonction $L^2(\Sigma) \ni v \mapsto y(v) \in L^2(0, T; H^1_0(\Omega))$

Cas de conditions au bord non-homogènes

Théorème (conditions de Neumann non-homogènes)

Soient $y_0 \in L^2(\Omega), v \in L^2(0, T; L^2(\Sigma))$ et $f \in L^2(0, T; L^2(\Omega))$.

De façon analogue, l'équation de la chaleur avec les conditions aux bords de Neumann non-homogènes.

$$\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f & \text{dans } Q, \\ \frac{\partial y}{\partial \nu} = v & \text{sur } \Sigma, \\ y(0, \cdot) = y_0(\cdot) & \text{dans } \Omega. \end{cases}$$

admet une unique solution faible telle que $y \in L^2(0, T; H^1(\Omega))$.

On admet ces deux résultats (la preuve repose sur un argument de dualité).

Ce qui importe ici :

La fonction
$$L^2(\Sigma) \ni v \mapsto y(v) \in L^2(0, T; H^1(\Omega))$$

Le problème de contrôle optimal

Le problème de contrôle optimal

$$\inf_{v \in \mathcal{U}_{ad}} J(v) \tag{P}$$

où \mathcal{U}_{ad} sous-espace convexe fermé de $L^2(Q)$ et

$$J(v) = \underbrace{\frac{1}{2} \|y(v) - z_d\|_{L^2(Q)}^2}_{\text{attache aux données}} + \underbrace{\frac{\alpha}{2} \|v\|_{L^2(Q)}^2}_{\text{coût du contrôle}}$$

 $y_0 \in L^2(), z_d \in L^2(Q) \text{ et } y = y(v)$ résout l'EDP: $\begin{cases} \frac{\partial y}{\partial t} - \Delta y = f + v & \text{dans } Q, \\ y = 0 & \text{sur } \Sigma, \\ y(0, x) = y_0(x) & \text{dans } \Omega. \end{cases}$

Analyse du problème :

- différentiabilité du critère (donc différentiabilité de $v \mapsto y(v)$
- calcul du gradient $DJ(v) \cdot h$ et conditions d'optimalité
- algorithme de résolution

Différentiabilité du critère

Soit $(u, v) \in \mathcal{U}_{ad}^2$. Puisque \mathcal{U}_{ad} est convexe, $(1 - \varepsilon)u + \varepsilon v \in \mathcal{U}_{ad}$ si $\varepsilon \in [0, 1]$ et si $\varepsilon > 0$ est assez petit, il vient que $u + \varepsilon(v - u)$ est admissible (appartient à \mathcal{U}_{ad}).

On définit $y'(v-u) = \lim_{\varepsilon \searrow 0} \frac{y(u+\varepsilon(v-u))-y(u)}{\varepsilon}$. Il est clair que y'(v-u) résout

$$\begin{cases} \frac{\partial y'(v-u)}{\partial t} - \Delta y'(v-u) = v-u & \text{dans } Q, \\ y'(v-u) = 0 & \text{sur } \Sigma, \\ y'(v-u)(0,x) = 0 & \text{dans } \Omega. \end{cases}$$

En en déduit que y'(v-u) = y(v)-y(u). Il reste à montrer que y'(v-u) est la différentielle de y en u dans la direction v-u.

On a vu que l'application affine $L^2(Q) \ni v \mapsto y(v) \in L^2(Q)$ est continue (donc différentiable, puisque elle est affine). Par conséquent,

$$L^2(Q) \ni v \mapsto y(v) \in L^2(Q)$$
 est différentiable de différentielle $y'(v-u)$

Différentiabilité du critère

Par composition, la fonction J est différentiable sur $L^2(0,T;L^2(\Omega))$. On note $(\nabla J(u),v-u)$ la différentielle de J en u dans la direction v - u.

On a

$$(\nabla J(u), v - u) = \lim_{\varepsilon \searrow 0} \frac{J(u + \varepsilon(v - u)) - J(u)}{\varepsilon}.$$

il vient :

$$(\nabla J(u), v - u) = \underbrace{(y(u) - z_d, y(v) - y(u))_{L^2(0,T;L^2(\Omega))}}_{\text{terme implicite en } v - u} + \underbrace{\alpha(u, v - u)_{L^2(0,T;L^2(\Omega))}}_{\text{terme explicite en } v - u}.$$

terme explicite en v - u

et par conséquent

$$(\nabla J(v) - \nabla J(u), v - u)) = \|y(v) - y(u)\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \alpha \|v - u\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}$$

$$\geq \|v - u\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}.$$

Ceci montre que J est α -convexe sur $L^2(0, T; L^2(\Omega))$.

Différentiabilité du critère

De plus, J est continue sur $L^2(Q)$ par composition $v\mapsto \|v\|_{L^2(Q)}$ est bien sûr continue et $L^2(Q)\ni v\mapsto y(v)\in L^2(Q)$ l'est aussi comme on l'a vu.

Existence et caractérisation du minimiseur

Le problème de contrôle optimal admet une seule solution qui est caractérisée par l'inéquation d'Euler :

$$\forall v \in \mathcal{U}_{ad}, \qquad (\nabla J(u), v - u) \geq 0.$$

Souvenons-nous que dans le cas où $\mathcal{U}_{ad}=L^2(\Omega)$, l'inéquation d'Euler devient

$$\nabla J(u) = 0$$

(adapter les résultats vus au début de ce chapitre pour s'en convaincre)

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

Voici les étapes à suivre :

- On cherche l'EDP résolue par la différentielle y'(v-u). Elle s'écrit sous la forme Ly'(v-u) = second membre, où L est un opérateur différentiel.
- On introduit un état adjoint p solution de $L^*p = F$ où L^* est l'opérateur adjoint de L, au sens des distributions.

Exemple : si $L = \partial_x$, alors $L^* = -\partial_x$. Si $L = \Delta$, alors $L^* = \Delta$, etc.

• On multiplie l'équation sur y'(v-u) par p et on intègre par parties. On choisit alors F et les conditions au bord de façon à obtenir une relation de la forme

$$(\nabla J(u), v-u) = (\text{quantit\'e ind\'ependante de } v, v-u)_{L^2(Q)}$$

Dans l'exemple traité, $\frac{\partial y'(v-u)}{\partial t} - \Delta y'(v-u) = v-u$ dans Q, donc

$$L = \partial_t - \Delta, \qquad L^* = -\partial_t - \Delta$$

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

On choisit donc l'état adjoint p solution d'une équation de la forme

$$(-\partial_t - \Delta)p = F$$

où F est un second membre à préciser.

On multiplie l'équation sur y'(v-u) par p et on intègre.

$$\int_0^T\!\!\int_\Omega \left(\frac{\partial}{\partial t} - \Delta\right) y'(v-u) p \, dx dt = \int_0^T\!\!\int_\Omega (v-u) p \, dx dt$$

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

On intègre par parties :

$$\int_{0}^{T} \int_{\Omega} (v - u) p \, dx dt = \int_{\Omega} \left[p y'(v - u) \right]_{p=0}^{t=T} - \int_{0}^{T} \int_{\Omega} \frac{\partial p}{\partial t} y'(v - u) \, dx dt$$
$$- \int_{0}^{T} \int_{\partial \Omega} \frac{\partial y'(v - u)}{\partial n} p + \int_{0}^{T} \int_{\Omega} \nabla p \cdot \nabla y'(v - u) \, dx dt$$

Intégrons par parties une deuxième fois en espace. il vient

$$\int_{0}^{T} \int_{\Omega} (v - u) p \, dx dt = \int_{\Omega} p(T, \cdot) y'(v - u)(T, \cdot) + \int_{0}^{T} \int_{\Omega} \left(-\frac{\partial}{\partial t} - \Delta \right) p y'(v - u) \, dx dt$$
$$- \int_{0}^{T} \int_{\partial \Omega} \frac{\partial y'(v - u)}{\partial n} p$$

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

Puisque $\left(-\frac{\partial}{\partial t} - \Delta\right) p = F$ et y'(v - u) = y(v) - y(u), on trouve :

$$\int_{\Omega} p(T,\cdot)y'(v-u)(T,\cdot) + \int_{0}^{T} \int_{\Omega} F(y(v)-y(u)) \, dxdt - \int_{0}^{T} \int_{\partial\Omega} \frac{\partial y'(v-u)}{\partial n} p = \int_{0}^{T} \int_{\Omega} (v-u)p \, dxdt$$

Dans cette expression, on cherche à reconnaître $(\nabla J(u), v - u)$ en choisissant judicieusement F et $p(T, \cdot)$.

Rappelons que

$$(\nabla J(u), v - u) = (y(u) - z_d, y(v) - y(u))_{L^2(0,T;L^2(\Omega))} + \alpha(u, v - u)_{L^2(0,T;L^2(\Omega))}$$

On choisit...?

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

Puisque $\left(-\frac{\partial}{\partial t} - \Delta\right) p = F$ et y'(v - u) = y(v) - y(u), on trouve :

$$\int_{\Omega} p(T,\cdot)y'(v-u)(T,\cdot) + \int_{0}^{T} \int_{\Omega} F(y(v)-y(u)) - \int_{0}^{T} \int_{\partial\Omega} \frac{\partial y'(v-u)}{\partial n} p = \int_{0}^{T} \int_{\Omega} (v-u)p$$

$$= (y(u)-z_{d},y(v)-y(u))_{L^{2}(0,T;L^{2}(\Omega))}$$

Dans cette expression, on cherche à reconnaître $(\nabla J(u), v - u)$ en choisissant judicieusement F et $p(T, \cdot)$.

Rappelons que

$$(\nabla J(u), v - u) = (y(u) - z_d, y(v) - y(u))_{L^2(0,T;L^2(\Omega))} + \alpha(u, v - u)_{L^2(0,T;L^2(\Omega))}$$

On choisit:

$$F=y(u)-z_d, \qquad p(T,\cdot)=0, \qquad p(t,\cdot)=0 \text{ sur } \partial\Omega,$$

de sorte que

$$(y(u)-z_d,y(v)-y(u))_{L^2(0,T;L^2(\Omega))}=\int_0^1\int_{\Omega}(v-u)p\,dxdt$$

Problématique : réécrire $(y(u)-z_d,y'(v-u))_{L^2(0,T;L^2(\Omega))}$ explicitement en fonction de v-u (cf. théorème de Riesz). On rappelle que y'(v-u)=y(v)-y(u).

Bilan

On a montré que

$$(\nabla J(u), v - u) = (y(u) - z_d, y(v) - y(u))_{L^2(0,T;L^2(\Omega))} + \alpha(u, v - u)_{L^2(0,T;L^2(\Omega))}$$

$$= \int_0^T \int_{\Omega} (v - u) (p + \alpha u) \, dx dt$$

où p = p(u) résout l'équation de la chaleur rétrograde

$$\begin{cases} -\frac{\partial p(u)}{\partial t} - \Delta p(u) = y(u) - z_d & \text{dans } Q, \\ p(u) = 0 & \text{sur } \Sigma, \\ p(u)(T) = 0 & \text{dans } \Omega \end{cases}$$

ce qui signifie en particulier que

$$\nabla J(u) = p(u) + \alpha u.$$

Résumons-nous

Théorème (conditions d'optimalité)

Le problème de contrôle optimal admet une unique solution u qui est caractérisée par

• l'équation de la chaleur

$$\begin{cases} \frac{\partial y(u)}{\partial t} - \Delta y(u) = f + u & \text{dans } Q, \\ y(u) = 0 & \text{sur } \Sigma, \\ y(0) = y_0 & \text{dans } \Omega \end{cases}$$
 (4)

l'équation adjointe rétrograde

$$\begin{cases} -\frac{\partial p(u)}{\partial t} - \Delta p(u) = y(u) - z_d & \text{dans } Q, \\ p(u) = 0 & \text{sur } \Sigma, \\ p(u)(T) = 0 & \text{dans } \Omega \end{cases}$$
 (5)

la condition d'optimalité

$$(p(u) + \alpha u, v - u)_{L^{2}(0,T;L^{2}(\Omega))} \ge 0, \qquad \forall v \in \mathcal{U}_{ad}.$$
 (6)

Résumons-nous

Cas sans contrainte

Lorsque $\mathcal{U}_{ad} = L^2(0, T; L^2(\Omega))$, l'inéquation d'Euler s'écrit

$$u = -\frac{1}{\alpha} p(u)$$
 dans Q .

Le système d'optimalité devient

$$\begin{cases} \frac{\partial y(u)}{\partial t} - \Delta y(u) + \frac{1}{\alpha} p(u) = f & \text{dans } Q, \\ -\frac{\partial p(u)}{\partial t} - \Delta p(u) - y(u) = -z_d & \text{dans } Q, \\ y(u) = p(u) = 0 & \text{sur } \Sigma, \\ y(0) = y_0, \quad p(u)(T) = 0 & \text{dans } \Omega. \end{cases}$$

Algorithme numérique de résolution

Algorithme de type gradient

 $\rightarrow u^0 \in \mathcal{U}_{ad}$ donné.

 $ightarrow u^k \in \mathcal{U}_{ad}$ étant connu, on le met à jour par la formule

$$u^{k+1} = \Pi_{\mathcal{U}_{ad}} \left(u^k - \rho^k (p(u^k) + \alpha u^k) \right)$$

où $\Pi_{\mathcal{U}_{ad}}$ est l'opérateur de projection sur \mathcal{U}_{ad} .

Ce calcul nécessite de résoudre à chaque itération le système

$$\left\{ \begin{array}{ll} \frac{\partial y(u^k)}{\partial t} - \Delta y(u^k) = f + u^k & \text{dans } Q, \\ -\frac{\partial p(u^k)}{\partial t} - \Delta p(u^k) = y(u^k) - z_d & \text{dans } Q, \\ y(u^k) = p(u^k) = 0 & \text{sur } \Sigma, \\ y(0) = y_0, \quad p(u^k)(T) = 0 & \text{dans } \Omega. \end{array} \right.$$

NB : pour résoudre le problème adjoint (rétrograde), on peut poser $\tilde{p}(u)(t,x) = p(u)(T-t,x)$, $\tilde{y}(u)(t,x) = y(u)(T-t,x)$, $\tilde{z}_d(t,x) = z_d(T-t,x)$ et on se ramène à la résolution du problème

$$\begin{cases} \frac{\partial y(u^k)}{\partial t} - \Delta y(u^k) = f + u^k & \text{dans } Q, \\ \frac{\partial \tilde{p}(u^k)}{\partial t} - \Delta \tilde{p}(u^k) = \tilde{y}(u^k) - \tilde{z}_d & \text{dans } Q, \\ y(u^k) = \tilde{p}(u^k) = 0 & \text{sur } \Sigma, \\ y(0) = y_0, \quad \tilde{p}(u^k)(0) = 0 & \text{dans } \Omega. \end{cases}$$