CS7800: Advanced Algorithms

Lecture 9: Generalizing Network Flow

- Minimum cost bipartite matching

Jonathan Ullman

10-07-22

Minimum Cost Perfect Matching

Input: A bipartite graph G=(LUR, E) and edge costs {cle}}

(1) c(e) 70 (2) ILI=IRI (3) G has a perfect matching

Output: A perfect matching M of minimum cost $\sum_{e\in M} c(e)$

Flashback: Maximum Bipartite Matching

What actually happens when we reduce matchings to flows?

Adding Costs to the Matching

- Let M be a matching, Gm be the residual graph

cost(M') = cost(M) + cost(P)

- Let P be an augmenting path in Gn Let M' be the new matching

1M' | = |M (+)

Understanding Negative Cycles

- Any cycle gives a way to go from Mto M'

 cost (M') = cost (M) + cost (C)
- => A negative cycle implies that your matching is not a mm cost matching.

Understanding Negative Cycles

Claim! A perfect matching M has minimum cost if and only if Gr contains no negative cost cycles

Proof: ("If direction")

Let M be "your matching," let MI be a stretly lower cost matching. Then MOM' contains a neg-cost cycle

If M, M' are
perfect matchings
then M@M'
is a union of
cycles.

Our Algorithm: Ensuring no negative weight cycles

Let M = Ø

While (M is not perfect):

Find a min cost path P in GM Augment along P to get M¹

Want to somehow maintain the invariant that M' has no negative cycles

Using prices to guide the search

Using prices to guide the search

graph G and matching M with compatible prizes and adjusted costs

For any alternating cycle the total cost doent change.

Compatible prizes:

$$\bigcirc$$
 if $x \in L$ is unmatched, $p(x) = 0$

② for all edges
$$e = (x,y)$$

 $c_p(e) = c(e) + p(x) - p(y) > 0$

(3) for all edges
$$e = (x,y) \in M$$

 $c_p(e) = c(e) + p(x) - p(y) = 0$

Claim: If there exist compatible prizes for M, then Gm has no negative weight cycles $\sum_{e \in C} C_p(e) = \sum_{e \in C} C_p(e)$

Our Algorithm: Ensuring no negative weight cycles

Let
$$M = \emptyset$$

Let $p(x) = 0$ for $x \in L$

Let $p(y) = \min_{e \text{ into } y} c(e)$ for $x \in L$

While $(M \text{ is not perfect})$:

Find a min cost path $P \text{ in } G_M$

Augment along $P \text{ to } get M^{1}$

Find new compatible prees

How can we get new porces?

Then p'(v) = p(v) + de, m(v)

3 compatible for M'

Case 1:
$$e' = (x', y) \in M$$

 $d_{P,M}(x') = d_{P,M}(y) - c_{P}(e')$
 $d_{P,M}(x') = d_{P,M}(y)$
 $c_{P'}(e') = c_{P}(e') = 0$

Case 2:
$$e^{-(x,y)} \in M' \setminus M$$
 $d_{p,m}(y) = d_{p,m}(x) + c_{p}(e)$
 $c_{p}(e) - c_{p}(e) = d_{p,m}(x) - d_{p,m}(y)$
 $= c_{p}(e)$

Interpreting the Prices

Goal: minmire E ele)

A matching is in equilibrium if every node on the left is maximizing the reward ply) - clx,y)

V (γ,y) εM ρ(y) - c(κ,y) >, ρ(y') - c(κy)