弗兰克-赫兹实验报告

孙骐阳 行健-车辆 1 2021012989 2023年3月7日

一、实验目的

- 1、理解玻尔原子模型和弗兰克-赫兹实验原理;
- 2、测量氩原子的第一激发电位;
- 3、练习使用自动实验数据采集系统和使用 Excel、Origin 等常用软件进行实验数据处理。

二、实验原理

玻尔的原子模型理论认为原子是由原子核和核外电子组成的,包含定态假设和跃迁假设。定态假设认为:核外电子在半径不连续的一些轨道上做稳定圆周运动,其能量稳定分立且不连续。跃迁假设认为:电子通过发射或吸收光子改变自身能量,从而改变自身所处轨道和能级。因此电子跃迁时发射(或吸收)的光子能量(用光子频率表示)与电子跃迁前后的定态能量满足如下关系:

$$hv = E_n - E_m \tag{1}$$

其中 $h = 6.63 \times 10^{-34} J \cdot s$ 为普朗克常数。

一般情况下常态原子的电子绝大多数都处于基态。如需使其电子发生跃迁,则所需能量最低为基态与第一受激态之间的能量差值,称之为**临界能量**。当电子与原子碰撞时,如果其能量小于临界,则发生弹性碰撞:电子带着原能量弹开;若大于临界,则发生非弹性碰撞:原子直接吸收跃迁所需能量,电子带着剩余能量弹开。又因为原子在受激态并不稳定,此后会快速发射光子回到基态,并以电磁辐射的形式释放出所获得的能量,形成原子发光的现象。其辐射光子频率ν与光波波长λ满足下列关系:

$$hv = eU_g$$
 (2)

$$\chi = \frac{c}{\nu} \tag{3}$$

故有
$$\lambda = \frac{h \cdot c}{e \cdot U_g} \tag{4}$$

实验利用弗兰克-赫兹管进行探究。弗兰克-赫兹管是具有双栅极结构的柱面

型充氯四极管。其电路工作原理大致如下:

- (1) 灯丝电流 I_f 加热灯丝 F,使旁热式阴极 K 被加热,产生慢电子。
- (2) 栅极电压 U_g 加在第一栅极 G_1 与阴极 K 之间,用于消除空间电荷对阴极电子发射的影响,提高发射效率。
- (3) 扫描电压 U_a 加在第二栅极 G_2 与阴极 K 之间,用于建立电子加速场,使阴极发出的电子穿过氩气与之发生多次碰撞,向栅极 G_2 运动。
- (4) 拒斥电压 U_R 加在第二栅极 G_2 与极板 P之间,用于拒斥和淘汰到达 G_2 附近但能量小于 eU_R 的电子。
- (5) 穿过拒斥电压场的电子到达极板 P 产生微电流 I_p ,其值用微电流放大器 A 测量,与从阴极到达极板的电子数正相关。

随着扫描电压的逐渐升高,电子能量也逐渐升高,通过拒斥电场到达板极的电子数也就逐渐增多;当加速后的电子能量增加到氩原子跃迁的临界能量时,大部分电子就会在与氩原子的碰撞中失去几乎所有能量,从而难以通过拒斥电场达到板极,造成电子数下降。此后因为一次碰撞中氩原子吸收的能量不变,随着扫描电压的继续增加,电子能量也继续增加,于是到达板极的电子数又逐渐增多;直到其碰撞后剩余能量又能与氩原子再次进行非弹性碰撞,其剩余能量再次被氩原子吸收,回到低值,周而复始。

实验中通过保持 U_R 和 U_g 不变,测量绘制板极电流 I_p 随扫描电压 U_a 变化的关系,可以测量氩原子的激发电位。曲线的多个峰值理论上对应氩原子激发电位的不同整数倍,通过线性拟合可以获得氩原子的激发电位。

三、 实验仪器

弗兰克-赫兹实验仪、弗兰克-赫兹管箱、一体机电脑、导线若干。

图 1 弗兰克-赫兹实验仪器

四、 实验任务及步骤

- 1. 连接导线并检查线路, 打开总电源开关和灯丝电流开关。
- 2. 根据参考数据调试最佳实验条件,等待灯丝加热。
- 3. 利用数据自动采集软件,扫描获得板极电流 I_p 随扫描电压 \mathbf{U}_a 变化的关系曲线。
- 4. 仅改变 U_R 的值,获得三条不同 U_R 下板极电流 I_p 随扫描电压 U_a 变化的关系曲线。
 - 5. 导出实验数据,分别利用 Excel 和 Origin 进行数据处理和线性拟合。
 - 6. 实验完毕,关闭电源、软件、电脑,整理导线。

五、 数据处理

1. 测量板极电流I_p随扫描电压U_a变化的关系曲线。

表 1: 测量板极电流 I_p 随扫描电压 U_a 变化关系的实验条件及部分实验结果

实验条件									
灯丝电流(A):	0.833	拒斥场电压(V):	控制栅电压(V):	1.5					
实验日期:		2023年03月02日	版本号:	2.1.0					
开始扫描时间:	14:27:35	结束扫描时间:	扫描用时(s):	40					
扫描电压(V):	90	数据点数:	点间延时(ms):	200					
实验结果									

谷值数量:	6	相邻谷值电压差(V):	12.018
峰值数量:	6	相邻峰值电压差(V):	11.762

以下是分别使用 Excel 和 Origin 软件绘制的板极电流 I_p 及归一化板极电流 I_p 随扫描电压 U_a 变化的关系曲线:

图 2 Ip~Ua变化曲线(Excel)

图 3 归一化 $I_p \sim U_a$ 变化曲线(Excel)

图 4 $I_p \sim U_a$ 变化曲线(Origin)

图 5 归一化 $I_p \sim U_a$ 变化曲线(Origin)

可以观察到数据曲线整体成上升趋势,有六个明显的峰值和谷值,规律与理论预测相吻合。

2. 测量 Ar 原子的第一激发电位 U_g 。

图 6 扫描电压 V 与测量次数 n 的线性拟合曲线

利用线性回归公式进行线性拟合,

$$U = nU_g + U_0 \tag{5}$$

采用 Origin 软件直接得到斜率和截距:

$$U_g = 11.80597V$$
 (6)
$$U_0 = 5.2276V$$

拟合系数r²为:

$$r^2 = 0.99859 \tag{7}$$

接下来计算 U_g 的不确定度。首先是 A 类不确定度:

$$\Delta_A = S_b = b \cdot \sqrt{\frac{2(1-r)}{n-2}} = 0.2217V$$
(8)

其次是B类不确定度:

$$\Delta_B = 0.1\%b + 0.01 = 0.022V \tag{9}$$

总的不确定度:

$$\Delta U_g = \sqrt{\Delta_A^2 + \Delta_B^2} = \sqrt{0.2217^2 + 0.022^2} = 0.22V \tag{10}$$

最终得到电压 U_q :

$$U_q = 11.81 \pm 0.22V \tag{11}$$

3. 氩原子受激后回到基态辐射出的光波波长*λ*计算。

由上述线性拟合结果可知,氩原子第一激发态电位 $U_g=11.81V$ 。

代入(4)式,得

$$\lambda = \frac{h \cdot c}{e \cdot U_g} = 105.3 \text{nm} \tag{12}$$

因此氩原子受激后回到基态辐射出的光波波长为 105.3nm。

六、 实验小结

1. 实验内容

初步探索了弗兰克赫兹实验测量氩原子第一激发电位的最佳实验条件,通过电流峰值的数据拟合测量了氩原子第一激发电位为11.81V,探究了不同拒斥电压对极板电流-加速电压曲线的影响。

2. 实验思考

利用实验原理部分所述玻尔模型理论计算, 氩原子的第一激发电位实际上是13.08V, 高于实验所测得值11.8V。实际上经过大量实验证明, 电子能量到达11.8eV 时确实就可以与氩原子发生非弹性碰撞产生跃迁。这说明玻尔原子模型还可以细化改进。

经过文献调查,我了解到根据量子力学和光波粒二象性理论的最新发展,包含氩原子在内的某些原子在基态与第一激发态之间还存在一些亚稳态,于氩原子则存在 11.55V 和 11.72V 两个亚稳态,且原子在这些亚稳态的停留时长(~10⁻³s)远长于在第一激发态的停留时长(~10⁻⁸s)。电子与氩原子实际碰撞过程中,氩原子先被激发到第一激发态,再迅速停留到两个亚稳态之一。反馈到发生非弹性碰撞的电子上,实际上失去的能量只有该亚稳态与基态的电势差对应的能量。

因此实验测得的电位实际上是三者电位的混合,主要受上述两个亚稳态电位主导。

3. 实验展望

利用不同温度下电子平均自由程的相关知识,缩短两加速极板间的距离,可以极大减少电子在加速过程中与氩原子发生碰撞的概率,从而使得大部分原子可以在未发生碰撞时达到激发氩原子至更高激发态所需能量,测得氩原子更高激发电位(或亚稳态电位)。

4. 改革建议

希望能够实时看到灯管发光现象,并配备相应的设备测量其波长。

最后,感谢宋飞老师思路清晰的讲解,以及在实验过程中给予的帮助和指导。

七、思考题

a) 为什么 $I_p \sim U_a$ 呈周期性变化?

答:根据前面的实验原理,每当电子的剩余能量达到足够激发氩原子的水平时,就会在碰撞中被氩原子吸收能量,使剩余能量重新回到低值开始增加,从而产生周期性变化。

b) 根据前面的实验原理,扫描电压达到 U_g 时就应该发生碰撞,为什么第一个峰 U_{g1} 大于 U_g ?

答:考虑弗兰克一赫兹实验管的阴极和栅极是由不同的金属材料制成,由于逸出功不同会产生接触电势差,理论上接触电势差为阴极和栅极功函数的差值;同时还存在空间电荷对加速电压的屏蔽作用,因此加在电子上的加速电压是 U_a 和这些因素电压的代数和,这将使整个实验曲线平移。峰位序数n与对应加速电压具有线性关系,即 $U_g=a+bn$,其中 a 为接触电势差等因素引起的电势差,b 为氩原子的第一激发电位。²

c) Ar 原子的更高的激发电位大约比第一激发电位高 0.1~2V 左右,实验中加速电压会远大于第二激发电位,为什么只观察到第一激发态电位?

¹ 何彪,徐富新,李新梅等.弗兰克-赫兹实验教学内容的设计与实践[J].大学物理实验,2020,33(06):51-54.DOI:10.14139/j.cnki.cn22-1228.2020.06.014.

² 张里荃,马艳梅,郝二娟.弗兰克-赫兹实验最佳实验条件及第一激发电位的研究[J].物理实验,2011,31(08):37-38+46.

答:因为电子在一个自由程当中通过加速电场获得能量,在室温常压的实验条件下,电子的平均自由程数量级小于将电子加速 0.1~2V 所需的路程长度。即电子达到第一激发态能量之后,能够继续获得能量达到更高激发态所需能量再发生碰撞的概率很小。因此我们主要观察到的仍是氩原子的第一激发电位。³

d) 特斯拉点亮 LED 灯泡、节能灯管、8 种气体的机理是什么?

答:特斯拉线圈接交流电源,经过变压器升压,输出的电压充入并联电容器,使得电容器电压不断升高,直到可以击穿后端空气间隙。交流电一个周期能让电容充电两次,实现频率升高。然后给初级线圈通电,进而在次级线圈中感应出高频、高压电能,并向外辐射高频高压电磁波,将周围空气电离,因此只能在很近的范围内才能点亮灯泡。

特斯拉线圈点亮的8种气体分别是氧、氮、汞蒸气、氢、氮、氖、氩、氪、氙。气体原子原本呈中性不带电,在线圈周围被电离的空气中受激,发生电子跃迁到达高激发态,此后迅速回到基态并以辐射光子的形式释放能量,因此看到发光的现象。

LED 灯泡和节能灯都是利用荧光粉发光的,其主要工作原理都是基于惰性气体在一定电压作用下的气体放电现象。荧光物质吸收电磁辐射后受到激发,受激发原子或分子在去激发过程中再发射特定波长的辐射。

八、参考文献

[1]钮婷婷,张志华,于婷婷,方恺,赫丽.影响弗兰克-赫兹实验激发电位的因素探究[J]. 物理实验,2018,38(S1):11-15+18.DOI:10.19655/j.cnki.1005-4642.2018.S1.004.

[2]孙桂芳,阮树仁,盛淑芳,钱霞.弗兰克-赫兹实验中氩原子第一激发电位的研究[J].物理实验.2017,37(S1):1-3+8.

[3]张里荃,马艳梅,郝二娟.弗兰克-赫兹实验最佳实验条件及第一激发电位的研究[J]. 物理实验,2011,31(08):37-38+46.

[4]朱筱玮,陈永丽.充氩弗兰克-赫兹实验研究[J].大学物

理,2007(07):46-48.DOI:10.16854/j.cnki.1000-0712.2007.07.013.

[5]何彪,徐富新,李新梅等.弗兰克-赫兹实验教学内容的设计与实践[J].大学物理实

³ 张里荃,马艳梅,郝二娟.弗兰克-赫兹实验最佳实验条件及第一激发电位的研究[J].物理实验,2011,31(08):37-38+46.

九、 原始数据(见后页)

表 1: 测量板极电流 I_p 随扫描电压 U_a 变化关系

	姓名:	孙骐阳	学号:	2021	012989	仪器组号:	14			
			实验	 佥条件						
ık⊤ bb	由 汰 (^) ·	0.022	拒斥场电	_	7.01	控制栅电压	1.5			
火] 22	电流(A):	0.833	压 (V)	1	7.01	(V)	1.5			
实员	验日期:	20	023年03月	02 日		版本号:	2.1.0			
开机	始扫描时	14:27:35	结束扫描	1.4	28:16	扫描用时:	40 秒			
	间:	14.27.33	时间:	14.	.20.10	7年7年7年91.	40 AV			
3	扫描电压	90	数据点	,	200	点间延时	200			
	(V) :	90	数:	4	200	(ms)	200			
	实验结果									
公	相邻谷值电压差			12.018						
70.1	且奴里:	0		(V):		12.010				
峰	査数量 :	6	相邻峰值	直电压差 11.762						
*+1	·	0		(V):		11.1 02				
		寻峰结果		寻谷结果						
序	峰值电	板极电流	 实际电流		谷值电	板极电流	实际电			
/· 号	压 (V)	(归一化值)		序号	压 (V)	(归一化	流值			
)_I: (v)	()-1 ()-1.	ia (uni)		<u> </u>	值)	(uA)			
1	18.051	0.203	4.171	1	22.54	0.122	2.141			
2	28.385	0.429	8.89	2	34.227	0.122	1.753			
3	40.048	0.596	12.444	12.444 3 45.90		0.128	1.552			
4	51.742	0.71	14.729 4 57.563		57.563	0.175	2.447			
5	64.2	0.772	15.913 5 70.138		70.138	0.279	4.36			
6	76.865	0.853	17.398	6	82.633	0.463	8.146			

表 2: 不同拒斥电压 U_r 下板极电流 I_p 随扫描电压 U_a 变化关系

		Ur=7.5V		Ur=5.0V		Ur=6.0V	
序号	Ua(V)	normalized Ip	Ip(uA)	normalized Ip	Ip(uA)	normalized Ip	Ip(uA)
1	0.01	0.008	0.164	0.006	0.164	0.006	0.164
2	0.088	0.008	0.164	0.006	0.164	0.006	0.164
3	0.535	0.008	0.167	0.006	0.164	0.006	0.164
4	0.986	0.008	0.164	0.006	0.164	0.006	0.164
5	1.437	0.008	0.164	0.006	0.164	0.006	0.164
6	1.887	0.008	0.167	0.006	0.164	0.006	0.164
7	2.338	0.008	0.164	0.006	0.164	0.006	0.164
8	2.791	0.008	0.164	0.006	0.164	0.006142857	0.164
9	3.242	0.008	0.164	0.006	0.164	0.006163266	0.164
10	3.692	0.008	0.167	0.006	0.164	0.006329446	0.164
11	4.143	0.008	0.164	0.006	0.164	0.006519367	0.167
12	4.594	0.008	0.167	0.006	0.164	0.006573154	0.164
13	5.044	0.008	0.167	0.006	0.164	0.006774567	0.167
14	5.495	0.008	0.167	0.006	0.164	0.006838155	0.167
15	5.945	0.008	0.167	0.006	0.164	0.006883697	0.167
16	6.396	0.008	0.167	0.006	0.164	0.00692806	0.167
17	6.846	0.008	0.167	0.006	0.164	0.006949988	0.17
18	7.294	0.008	0.167	0.008571428	0.164	0.006965964	0.17
19	7.744	0.008	0.167	0.01308163	0.164	0.006977716	0.17
20	8.195	0.008	0.167	0.01995044	0.164	0.00698481	0.17
21	8.642	0.008	0.167	0.02951479	0.63	0.009132641	0.17
22	9.093	0.008	0.167	0.03936384	0.909	0.0130136	0.173
23	9.54	0.01	0.167	0.05026129	1.208	0.01916158	0.173
24	9.988	0.01342857	0.17	0.06187713	1.517	0.02818683	0.534
25	10.438	0.01863265	0.167	0.07378604	1.845	0.03805171	0.777

		_					
26	10.886	0.02643732	0.446	0.08598921	2.171	0.04948573	1.065
27	11.333	0.03492836	0.598	0.09837891	2.511	0.06210347	1.379
28	11.768	0.04514262	0.777	0.1107363	2.825	0.07552013	1.722
29	12.231	0.05707261	1.015	0.1231578	3.145	0.08958705	2.08
30	12.678	0.07002051	1.285	0.1354676	3.468	0.1040301	2.438
31	13.126	0.08403368	1.575	0.1474802	3.782	0.1187339	2.799
32	13.573	0.09858955	1.878	0.1593008	4.09	0.1333359	3.16
33	14.021	0.1133777	2.189	0.1708927	4.392	0.1478714	3.518
34	14.468	0.1282858	2.5	0.1820962	4.683	0.1621345	3.87
35	14.919	0.1428933	2.802	0.1927557	4.964	0.175906	4.207
36	15.363	0.1569367	3.098	0.2026778	5.229	0.1888445	4.536
37	15.813	0.1700165	3.386	0.2113614	5.478	0.2006979	4.844
38	16.258	0.1814066	3.632	0.2183993	5.686	0.2110641	5.12
39	16.708	0.1909086	3.852	0.2236341	5.857	0.2195152	5.352
40	17.156	0.1979045	4.017	0.2266278	5.965	0.2257539	5.525
41	17.606	0.2020314	4.128	0.2272373	6.006	0.2293333	5.648
42	18.051	0.2031206	4.172	0.2254999	5.98	0.2300861	5.689
43	18.504	0.2010081	4.143	0.2213379	5.865	0.2278819	5.642
44	18.949	0.1960229	4.04	0.2152964	5.692	0.223043	5.525
45	19.402	0.1883074	3.873	0.2080192	5.463	0.2158587	5.334
46	19.847	0.1784769	3.653	0.2008076	5.193	0.2066834	5.082
47	20.3	0.1671153	3.395	0.1951605	4.92	0.1965122	4.797
48	20.744	0.1549857	3.113	0.1925696	4.703	0.1864363	4.483
49	21.195	0.1430825	2.825	0.1942197	4.615	0.1779474	4.169
50	21.642	0.1325976	2.549	0.2005643	4.706	0.173128	3.908
51	22.096	0.1250951	2.309	0.2116219	4.97	0.1733588	3.758
52	22.54	0.1225393	2.142	0.2266294	5.387	0.1796335	3.791
53	22.994	0.1268903	2.077	0.2448308	5.921	0.19216	4.04
54	23.442	0.1393607	2.194	0.2650117	6.528	0.2101646	4.492

55	23.892	0.1601129	2.544	0.2863531	7.159	0.2327083	5.099
56	24.339	0.188052	3.13	0.3078851	7.793	0.2582904	5.813
57	24.79	0.2212179	3.888	0.32875	8.401	0.2854519	6.578
58	25.231	0.2571975	4.75	0.3485698	8.964	0.3130644	7.347
59	25.688	0.2936382	5.625	0.3666007	9.478	0.3396867	8.087
60	26.132	0.3285791	6.455	0.3824172	9.918	0.3646004	8.764
61	26.586	0.360345	7.198	0.3956554	10.296	0.3869074	9.372
62	27.03	0.3875089	7.834	0.4056676	10.593	0.4055992	9.882
63	27.487	0.4087761	8.342	0.4119629	10.81	0.4200153	10.296
64	27.928	0.4229471	8.697	0.413898	10.915	0.4292174	10.578
65	28.385	0.4290332	8.891	0.4107898	10.892	0.4324045	10.722
66	28.832	0.4265366	8.897	0.4023787	10.728	0.4292339	10.701
67	29.286	0.4153596	8.703	0.3885809	10.402	0.4195508	10.502
68	29.727	0.3959899	8.318	0.3698213	9.897	0.4034556	10.117
69	30.184	0.3695552	7.749	0.3471116	9.26	0.3817486	9.56
70	30.632	0.3375578	7.027	0.321502	8.512	0.3555364	8.867
71	31.082	0.3020147	6.209	0.2944907	7.711	0.3262487	8.06
72	31.533	0.2650182	5.346	0.2683006	6.881	0.2955048	7.2
73	31.98	0.2286558	4.495	0.2454705	6.1	0.2651843	6.349
74	32.431	0.1948127	3.694	0.2287517	5.422	0.237134	5.531
75	32.878	0.1652124	2.996	0.220789	4.962	0.213689	4.8
76	33.329	0.1418115	2.426	0.2228587	4.824	0.1977153	4.204
77	33.773	0.1268338	2.001	0.2351999	5.055	0.1916483	3.832
78	34.227	0.1229797	1.754	0.2566925	5.66	0.1970075	3.767
79	34.668	0.1326607	1.745	0.2852502	6.543	0.214053	4.093
80	35.125	0.1569249	2.068	0.3185918	7.597	0.241387	4.809
81	35.631	0.1946522	2.796	0.3540764	8.718	0.2767782	5.804
82	36.023	0.2431768	3.89	0.3898455	9.838	0.3174598	6.98
83	36.461	0.2986791	5.226	0.4242162	10.874	0.3606607	8.236

84	36.917	0.3567869	6.643	0.4558769	11.81	0.4038427	9.486
85	37.359	0.413949	8.031	0.4839912	12.626	0.4448519	10.645
86	37.818	0.4669164	9.301	0.5077263	13.295	0.4821936	11.687
87	38.256	0.5129503	10.396	0.5265135	13.832	0.5144126	12.576
88	38.716	0.5502594	11.279	0.5398902	14.214	0.540494	13.295
89	39.154	0.5773037	11.916	0.5471614	14.448	0.5594429	13.826
90	39.614	0.5929305	12.306	0.547795	14.516	0.5704785	14.152
91	40.049	0.5963562	12.444	0.5412638	14.413	0.5727736	14.269
92	40.512	0.5872272	12.318	0.5270315	14.099	0.5656707	14.149
93	40.954	0.565502	11.907	0.5054415	13.565	0.5492747	13.826
94	41.413	0.532155	11.226	0.4769624	12.811	0.523817	13.204
95	41.845	0.4889835	10.293	0.4427765	11.857	0.4906803	12.347
96	42.308	0.4383772	9.155	0.4048829	10.748	0.4516817	11.3
97	42.74	0.3836451	7.893	0.3653745	9.566	0.4087399	10.111
98	43.213	0.3280008	6.581	0.3271477	8.368	0.3643003	8.867
99	43.635	0.274289	5.314	0.2934864	7.242	0.3208174	7.641
100	44.107	0.2254193	4.166	0.2677155	6.273	0.2809797	6.484
101	44.552	0.1836727	3.183	0.2529071	5.581	0.2480139	5.46
102	45.012	0.151483	2.397	0.2508727	5.296	0.224973	4.65
103	45.434	0.1320821	1.842	0.2617851	5.481	0.2145666	4.137
104	45.906	0.128034	1.552	0.2843664	6.121	0.2183648	4.034
105	46.354	0.1413713	1.616	0.316432	7.112	0.2361292	4.398
106	46.804	0.1723553	2.133	0.3550833	8.336	0.2664372	5.196
107	47.255	0.2186801	3.107	0.3975545	9.671	0.3067045	6.338
108	47.702	0.2769153	4.46	0.4412957	11.036	0.353753	7.699
109	48.153	0.3425644	6.03	0.4839905	12.339	0.4045564	9.164
110	48.597	0.4110228	7.673	0.5241201	13.53	0.4561448	10.642
111	49.048	0.4783575	9.29	0.5603437	14.586	0.5060649	12.051
112	49.492	0.541135	10.763	0.5917792	15.478	0.5522523	13.339

113	49.946	0.596645	12.051	0.6176062	16.212	0.593066	14.454
114	50.387	0.6427339	13.113	0.6371042	16.767	0.6271976	15.393
115	50.844	0.6779305	13.92	0.6497842	17.142	0.6535023	16.112
116	51.282	0.7009013	14.466	0.6549278	17.321	0.6711094	16.611
117	51.742	0.7107951	14.73	0.6521166	17.312	0.6792585	16.869
118	52.177	0.7072324	14.71	0.6409755	17.075	0.6772672	16.881
119	52.627	0.6899899	14.401	0.6214314	16.593	0.6649479	16.629
120	53.09	0.6595739	13.797	0.593932	15.886	0.6424962	16.098
121	53.538	0.6173995	12.911	0.5593342	14.944	0.610673	15.305
122	53.985	0.5655662	11.778	0.5193853	13.806	0.5711596	14.269
123	54.426	0.5069342	10.466	0.4759502	12.529	0.5256184	13.049
124	54.883	0.4447	9.04	0.4319528	11.2	0.4766359	11.702
125	55.337	0.3821715	7.594	0.3907555	9.882	0.4267734	10.314
126	55.778	0.3224008	6.206	0.3558083	8.679	0.3788611	8.949
127	56.225	0.2684675	4.947	0.3306452	7.705	0.3364672	7.693
128	56.673	0.22372	3.87	0.3173156	7.092	0.3030145	6.596
129	57.133	0.1916555	3.01	0.316967	6.945	0.2814775	5.798
130	57.564	0.1756918	2.447	0.3291326	7.242	0.2737085	5.402
131	58.062	0.1778668	2.28	0.3522022	7.916	0.2803144	5.466
132	58.472	0.1984591	2.591	0.3843288	8.905	0.3002143	5.956
133	58.929	0.2357168	3.383	0.4229519	10.094	0.3317482	6.819
134	59.354	0.2864347	4.56	0.4654976	11.403	0.3724681	7.969
135	59.827	0.3469444	5.974	0.5099683	12.744	0.4196329	9.31
136	60.252	0.4131565	7.535	0.5540597	14.058	0.4705499	10.748
137	60.731	0.4813622	9.137	0.5962179	15.293	0.5226644	12.201
138	61.147	0.548209	10.687	0.6353208	16.426	0.5736925	13.609
139	61.626	0.6106754	12.121	0.6699427	17.412	0.621701	14.927
140	62.064	0.6666067	13.383	0.6993545	18.251	0.6650082	16.098
141	62.53	0.7140701	14.457	0.7226597	18.92	0.7020574	17.11
	•	•	-	•		•	

142	62.94	0.751336	15.299	0.7389938	19.41	0.7318238	17.923
143	63.422	0.7772875	15.898	0.7477154	19.695	0.7531271	18.521
144	63.86	0.7910991	16.244	0.7484813	19.768	0.7651441	18.888
145	64.329	0.7919604	16.309	0.7407415	19.622	0.7674422	18.997
146	64.754	0.7799067	16.1	0.7245626	19.22	0.7595305	18.853
147	65.227	0.7554238	15.622	0.7005408	18.589	0.7417309	18.436
148	65.671	0.7193273	14.865	0.6692635	17.735	0.7148148	17.758
149	66.119	0.6736654	13.879	0.6323381	16.696	0.6797252	16.849
150	66.566	0.6203452	12.699	0.5917346	15.508	0.6383244	15.748
151	67.017	0.5619054	11.4	0.5500481	14.243	0.5924092	14.513
152	67.458	0.5012737	10.041	0.5104458	12.978	0.544637	13.19
153	67.915	0.4413606	8.674	0.4760326	11.813	0.498053	11.86
154	68.365	0.3859343	7.368	0.4495038	10.868	0.4558713	10.59
155	68.809	0.3387955	6.197	0.4327118	10.235	0.4213659	9.486
156	69.26	0.3035843	5.234	0.4266069	9.95	0.3967557	8.662
157	69.704	0.2831877	4.592	0.4311175	10.023	0.3838561	8.189
158	70.139	0.2790811	4.36	0.4456337	10.428	0.3831397	8.084
159	70.599	0.2911219	4.56	0.4687654	11.112	0.3941074	8.333
160	71.056	0.3180558	5.129	0.498931	12.013	0.4160147	8.914
161	71.5	0.3576084	6.03	0.5344757	13.063	0.4470374	9.771
162	71.944	0.4071123	7.159	0.5734532	14.225	0.4853085	10.83
163	72.389	0.4635395	8.465	0.6142657	15.42	0.5290515	12.036
164	72.855	0.5237514	9.85	0.6554564	16.614	0.5759139	13.319
165	73.284	0.5852005	11.25	0.6954536	17.764	0.6238963	14.619
166	73.744	0.6452131	12.597	0.7330251	18.841	0.671266	15.904
167	74.182	0.7014521	13.859	0.7669907	19.812	0.7160109	17.113
168	74.651	0.7521237	14.997	0.7962099	20.658	0.756739	18.222
169	75.073	0.7953984	15.965	0.8197466	21.341	0.792288	19.176
170	75.546	0.8298535	16.743	0.8368496	21.855	0.8211483	19.965

171	75.993	0.8544822	17.304	0.8468294	22.178	0.8424536	20.57
172	76.447	0.8683906	17.65	0.8492036	22.283	0.8554128	20.954
173	76.882	0.8709609	17.744	0.8438404	22.183	0.8594307	21.106
174	77.301	0.8624048	17.591	0.8308391	21.855	0.854471	21.018
175	77.777	0.8429652	17.201	0.8108404	21.315	0.8407592	20.687
176	78.237	0.8136187	16.585	0.7846457	20.581	0.8189515	20.132
177	78.671	0.7757127	15.772	0.7539036	19.683	0.7898831	19.384
178	79.131	0.7307566	14.786	0.7207699	18.689	0.7552277	18.454
179	79.566	0.6810126	13.691	0.6871884	17.635	0.7170089	17.4
180	80.036	0.6290689	12.52	0.6556945	16.626	0.6774457	16.277
181	80.461	0.5781198	11.329	0.6285219	15.737	0.6393832	15.159
182	80.918	0.5313144	10.188	0.6070579	15.012	0.6049768	14.129
183	81.359	0.4920719	9.187	0.5928963	14.51	0.5765437	13.263
184	81.828	0.4627866	8.421	0.5867823	14.261	0.5559862	12.611
185	82.251	0.4453104	7.931	0.5885338	14.275	0.5440724	12.204
186	82.708	0.4404527	7.749	0.5981732	14.525	0.5416574	12.086
187	83.146	0.4480785	7.87	0.6149271	14.997	0.5485309	12.233
188	83.606	0.4675488	8.286	0.6379477	15.651	0.5640373	12.623
189	84.041	0.4971543	8.943	0.6661497	16.467	0.5874608	13.239
190	84.454	0.5353974	9.803	0.6982892	17.389	0.6174327	14.041
191	84.926	0.5803001	10.807	0.7331981	18.386	0.6527044	14.988
192	85.33	0.6295503	11.91	0.7693767	19.422	0.6916568	16.027
193	85.758	0.6813211	13.06	0.8058377	20.461	0.7329705	17.133
194	86.199	0.733453	14.22	0.8412018	21.476	0.7750474	18.254
195	86.622	0.7839035	15.338	0.8743452	22.424	0.8162392	19.352
196	87.022	0.8310968	16.379	0.9043407	23.284	0.8553225	20.414
197	87.435	0.8733505	17.318	0.9301268	24.035	0.8908013	21.374
198	87.817	0.9093359	18.128	0.9509732	24.637	0.9213375	22.198
199	88.217	0.962	18.765	0.985	25.091	0.965	22.882

200	88.665	0.986	19.231	0.996	25.367	0.987	23.392
201	89.09	1	19.493	1	25.461	0.999	23.7