Stone's Theorem, Shift Group, and Fourier Transform

Definitions

Shift Group: For $f \in L^2(\mathbb{R})$, define the family of unitary operators $(S_t)_{t \in \mathbb{R}}$ by

$$(S_t f)(x) = f(x+t).$$

Generator of Shift Group: Define $A = \frac{d}{dx}$ on the domain

$$D(A) = \{ f \in L^2(\mathbb{R}) : f' \in L^2(\mathbb{R}) \},$$

where f' is in the distributional sense.

Momentum Operator: Define $P = -i A = -i \frac{d}{dx}$ on the same domain D(P) = D(A).

Fourier Transform:

$$\mathcal{F}[f](\omega) = \hat{f}(\omega) := \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx.$$

Theorems and Proofs

Theorem 1. [Stone's Theorem Applied to Shift Group] The strongly continuous unitary group (S_t) on $L^2(\mathbb{R})$ has a densely defined skew-adjoint generator $A = \frac{d}{dx}$ such that $S_t = e^{tA}$. The generator satisfies

$$A f = \lim_{h \to 0} \frac{S_h f - f}{h}$$

in the L^2 topology on the domain D(A).

Proof. Let $f \in D(A)$. Then

$$\frac{S_h f(x) - f(x)}{h} = \frac{f(x+h) - f(x)}{h} \to f'(x)$$

as $h \to 0$ in L^2 norm. Thus, the infinitesimal generator of S_t is $A = \frac{d}{dx}$.

To verify A is skew-adjoint, for $f, g \in D(A)$:

$$\langle A f, g \rangle = \int_{-\infty}^{\infty} f'(x) \overline{g(x)} dx \tag{1}$$

$$= f(x)\overline{g(x)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x)\overline{g'(x)}dx$$
 (2)

$$=0 - \int_{-\infty}^{\infty} f(x)\overline{g'(x)}dx \tag{3}$$

$$= -\langle f, Ag \rangle \tag{4}$$

Therefore $A^* = -A$, confirming A is skew-adjoint.

Theorem 2. [Relation Between Generators] The shift group is generated by both the skew-adjoint operator $A = \frac{d}{dx}$ and the self-adjoint momentum operator P = -i A:

$$S_t = e^{tA} = e^{-itP}$$

Proof. Since P = -i A, we have $-i t P = -i t (-i A) = -i^2 t A = t A$. Therefore:

$$e^{-itP} = e^{tA}$$

For $f \in D(A)$, using the Taylor expansion:

$$e^{tA} f(x) = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n f(x) = \sum_{n=0}^{\infty} \frac{t^n}{n!} f^{(n)}(x) = f(x+t) = S_t f(x)$$

Theorem 3. [Complex Exponentials Are Eigenfunctions] For any $\omega \in \mathbb{R}$:

- 1. $A e^{i\omega x} = i \omega e^{i\omega x}$ (eigenvalue $i \omega$ for skew-adjoint A)
- 2. $Pe^{i\omega x} = \omega e^{i\omega x}$ (eigenvalue ω for self-adjoint P)

Proof. Direct calculations:

1.
$$A e^{i\omega x} = \frac{d}{dx} e^{i\omega x} = i \omega e^{i\omega x}$$

2.
$$Pe^{i\omega x} = -i\frac{d}{dx}e^{i\omega x} = -i(i\omega)e^{i\omega x} = \omega e^{i\omega x}$$

Theorem 4. [Spectral Decomposition via Fourier Transform] Under the Fourier transform \mathcal{F} :

- 1. The self-adjoint momentum operator becomes multiplication by ω : $\mathcal{F}[Pf](\omega) = \omega \hat{f}(\omega)$
- 2. The shift group becomes multiplication by a phase: $\mathcal{F}[S_t f](\omega) = e^{i\omega t} \hat{f}(\omega)$

Proof. For part 1, if $f \in D(P)$:

$$\mathcal{F}[Pf](\omega) = \int_{-\infty}^{\infty} (-if'(x)) e^{-i\omega x} dx$$
 (5)

$$=-i\int_{-\infty}^{\infty} f'(x) e^{-i\omega x} dx$$
 (6)

Integration by parts (boundary terms vanish):

$$=-i\left[0+i\,\omega\,\hat{f}(\omega)\right]=\omega\,\hat{f}(\omega)\tag{7}$$

For part 2:

$$\mathcal{F}[S_t f](\omega) = \int_{-\infty}^{\infty} f(x+t) e^{-i\omega x} dx$$
 (8)

Let u = x + t, so x = u - t, dx = du:

$$= \int_{-\infty}^{\infty} f(u) e^{-i\omega(u-t)} du$$
 (9)

$$=e^{i\omega t} \int_{-\infty}^{\infty} f(u) e^{-i\omega u} du = e^{i\omega t} \hat{f}(\omega)$$
(10)

Theorem 5. [Eigenfunction Property of Shift Group] Complex exponentials are eigenfunctions of the shift group:

$$S_t e^{i\omega x} = e^{i\omega t} e^{i\omega x}$$

with eigenvalue $e^{i\omega t}$.

Proof.
$$S_t e^{i\omega x} = e^{i\omega(x+t)} = e^{i\omega x} e^{i\omega t} = e^{i\omega t} e^{i\omega x}$$

Corollary 6. [Consistency Check] The eigenvalue relationships are consistent:

$$S_t e^{i\omega x} = e^{tA} e^{i\omega x} = e^{t(i\omega)} e^{i\omega x} = e^{i\omega t} e^{i\omega x}$$

since A has eigenvalue $i \omega$ on $e^{i\omega x}$.

Conclusion

Stone's theorem ensures that the shift group (S_t) has a **skew-adjoint generator** $A = \frac{d}{dx}$, whose eigenfunctions are the complex exponentials $e^{i\omega x}$ with purely imaginary eigenvalues $i\omega$. The related **self-adjoint momentum operator** P = -iA has the same eigenfunctions but with real eigenvalues ω .

The Fourier transform provides the spectral decomposition that diagonalizes both operators:

- P becomes multiplication by ω (real eigenvalues)
- S_t becomes multiplication by $e^{i\omega t}$ (unitary eigenvalues on the unit circle)

This mathematical structure underlies all of Fourier analysis: complex exponentials are the fundamental building blocks because they are precisely the functions that transform simply under shifts, making them the natural basis for analyzing translation-invariant systems. The distinction between the skew-adjoint generator A (with imaginary eigenvalues) and the self-adjoint momentum operator P (with real eigenvalues) is crucial for understanding why unitary groups arise from self-adjoint operators via Stone's theorem.