(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年1月27日(27.01.2005)

PCT

(10) 国際公開番号 WO 2005/007923 A1

(51) 国際特許分類7:

C23C 14/34, C22C 5/06

(21) 国際出願番号:

PCT/JP2004/010380

(22) 国際出願日:

2004年7月14日(14.07.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-275621 2003年7月16日(16.07.2003)

(71) 出願人(米国を除く全ての指定国について): 株式会 社神戸製鋼所 (KABUSHIKI KAISHA KOBE SEIKO SHO) [JP/JP]; 〒6518585 兵庫県神戸市中央区脇浜 町2丁目10番26号 Hyogo (JP). 株式会社コベル □科研 (KOBELCO RESEARCH INSTITUTE, INC.) [JP/JP]; 〒6510073 兵庫県神戸市中央区脇浜海岸通 1丁目5番1号 Hyogo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 高木 勝寿 (TAK-AGI, Katsutoshi) [JP/JP]; 〒6512271 兵庫県神戸市西区 高塚台 1 丁目 5 番 5 号 株式会社神戸製鋼所神戸総合 技術研究所内 Hyogo (JP). 中井 淳一 (NAKAI, Junichi) [JP/JP]; 〒6512271 兵庫県神戸市西区高塚台1丁目 5番5号株式会社神戸製鋼所神戸総合技術研究所 内 Hyogo (JP). 田内 裕基 (TAUCHI, Yuuki) [JP/JP]; 〒 6512271 兵庫県神戸市西区高塚台1丁目5番5号株 式会社神戸製鋼所神戸総合技術研究所内 Hyogo (JP). 松崎均 (MATSUZAKI, Hitoshi) [JP/JP]; 〒6768670 兵 庫県高砂市荒井町新浜2丁目3番1号 株式会社コ ベルコ科研内 Hyogo (JP). 藤井 秀夫 (FUJII, Hideo)

- (54) Title: Ag BASE SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
- (54) 発明の名称: Ag系スパッタリングターゲット及びその製造方法

- A...THREE-DIMENSIONAL DISPERSION OF CRYSTAL GRAIN DIAMETER (%)
- **B...THIN-FILM SURFACE UNIFORMITY (%)**
- C...DISPERSION OF COMPONENT COMPOSITION
- D...EXTENT OF FILM THICKNESS VARIATION
- E...DEPTH

(57) Abstract: Ag base sputtering target (6) exhibiting a three-dimensional dispersion of crystal grain diameter of 18% or less. The three-dimensional dispersion of crystal grain diameter is as follows. The sputtering target is sliced with a plane parallel to a sputtering face to thereby expose multiple sputtering faces. Multiple spots are selected on each of the exposed sputtering faces. The value A1 and value B1 are calculated according to the following formulae from the crystal grain diameters at all the selected spots. The larger one of these values A1 and B1 is referred to as the three-dimensional dispersion of crystal grain diameter. A1 = $(D_{max}-D_{ave})/D_{ave} \times 100$ (%) B1 = $(D_{ave}-D_{min})/D_{ave} \times 100$ (%) D_{max} : maximum of the crystal grain diameters (D) at all selected spots D_{min} : minimum of the crystal grain diameters (D) at all selected spots Dave: average of the crystal grain diameters (D) at all selected spots

[毓葉有]

3

- [JP/JP]; 〒6768670 兵庫県高砂市荒井町新浜2丁目 3番1号株式会社コペルコ科研内 Hyogo (JP).
- (74) 代理人:河宫治,外(KAWAMIYA, Osamu et al.); 〒 5400001 大阪府大阪市中央区城見1丁目3番7号 IMPビル青山特許事務所 Osaka (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG. CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

Ag系スパッタリングターゲット6は、スパッタリング面と平行する面で切断して複数のスパッタリ ング面を露出させ、露出したスパッタリング面毎に複数箇所を選択し、全ての選択箇所の結晶粒径に基づいて以下 の式により値A1及び値B1を算出し、これら値A1及び値B1のうち大きい方を結晶粒径の3次元ぱらつきと称 したとき、該結晶粒径の3次元ばらつきが18%以下である。 $A 1 = (D_{max} - D_{ave}) / D_{ave} \times 100$ (%) $B 1 = (D_{ave} - D_{min}) / D_{ave} \times 100 (\%)$