

Plankton-Image-Classifier

Bourges Julian, Hahn Sandro, Schmalzl Maximilian

Aufgabenstellung:

- Gegeben sind gelabelte Bilder von Plankton-Spezies
- Problem: Klassen sind deutlich "unbalanced"
- Aufgabe:
- Verwendung mehrerer Verfahren, möglichst gute Klassifikation, Validierung und Evaluation

Daten

- ~219.000 .png Dateien
- 124.000 train, 95.000 test

Diatom

Noctiluca roi

Zoea larvae

Problem:

Test-Bilder haben einen leichten Grünstich

=>Klassifikation schwierig

Problem:

 Plankton-Spezies unterschiedlich stark vertreten

Lösung:

- Eigenen Train-Test Split
- Over- & Undersampling
- Data Augmentation

0	snow	81523	snow	61772
1	pluteus	17558	pluteus	11416
2	diatoms	8335	diatoms	3552
3	copepods	2695	copepods	2997
4	worms	2510	worms	1655
5	blurry	1416	blurry	2428
6	appendicularia_house	999	appendicularia_house	1373
7	noctiluca	995	noctiluca	4064
8	polychaeta	957	polychaeta	401
9	mnemiopsis	882	mnemiopsis	152
10	appendicularia	650	appendicularia	373
11	unknown	608	unknown	1142
12	bipinnaria	565	bipinnaria	98
13	eggs	496	eggs	5
14	medusae	470	medusae	244
15	malacostraca	449	malacostraca	152
16	zoea_larvae	327	zoea_larvae	59
17	rod	315	rod	2870
18	veliger_larvae	297	veliger_larvae	81
19	larvae	275	larvae	23
20	actinotrocha	248	actinotrocha	16
21	pilidium	169	pilidium	75
22	pteropods	701	pteropods	0
23	amphipods	288	amphipods	0
24	phaeocystis	267	phaeocystis	0
25		119	echinodermata	0

Output

```
--- test ---
snow=61772
pluteus=11416
noctiluca=4064
diatoms=3552
copepods=2997
rod=2870
blurry=2428
worms=1655
appendicularia house=1373
unknown=1142
polychaeta=401
appendicularia=373
medusae=244
malacostraca=152
mnemiopsis=152
bipinnaria=98
veliger larvae=81
pilidium=75
zoea larvae=59
larvae=23
actinotrocha=16
eggs=5
IntSummaryStatistics{count=22, sum=94948, min=5, average=4315,818182, max
```

```
--- trainina ---
snow=81523
pluteus=17558
diatoms=8335
copepods=2695
worms=2510
blurry=1416
appendicularia house=999
noctiluca=995
polychaeta=957
mnemiopsis=882
pteropods=701
appendicularia=650
unknown=608
bipinnaria=565
eggs=496
medusae=470
malacostraca=449
zoea larvae=327
rod=315
veliger larvae=297
amphipods=288
Larvae=275
phaeocystis=267
actinotrocha=248
pilidium=169
echinodermata=119
IntSummaryStatistics{count=26, sum=124114, min=119, average=4773,615385, max=81
```


Problem

Bilder haben verschiedene Größen

=> Resizing auf Größe 200x200

```
Widths:
0: 21592 (9,86%)
1: 72812 (33,24%)
2: 93711 (42,78%)
3: 15954 (7,28%)
4: 7324 (3,34%)
5: 3609 (1,65%)
6: 1838 (0,84%)
7: 973 (0,44%)
8: 558 (0,25%)
9: 317 (0,14%)
10: 213 (0,10%)
11: 74 (0,03%)
12: 34 (0,02%)
13: 53 (0,02%)
Heights:
0: 19926 (9,10%)
1: 60609 (27,67%)
2: 99519 (45,43%)
3: 19706 (9,00%)
4: 9451 (4,31%)
5: 4675 (2,13%)
6: 2415 (1,10%)
7: 1297 (0,59%)
8: 692 (0,32%)
9: 380 (0,17%)
10: 287 (0,13%)
11: 47 (0,02%)
12: 20 (0,01%)
13: 38 (0,02%)
```


Resizing

```
public static void resizeImage(int targetWidth, int targetHeight, File input, File output) throws Exception {
   BufferedImage bufferedImage = ImageIO.read(input);
   boolean fitHeight = bufferedImage.getHeight() > bufferedImage.getWidth();
   Scalr.Mode scaleMode = fitHeight ? Scalr.Mode.FIT_TO_HEIGHT : Scalr.Mode.FIT_TO_WIDTH;
   BufferedImage scaledImage = resizeImage(bufferedImage, targetWidth, targetHeight, scaleMode);
   int y_val = (int) ((targetHeight/2.0D) - (scaledImage.getHeight()/2.0D));
   int x_val = (int) ((targetWidth/2.0D) - (scaledImage.getWidth()/2.0D));
   BufferedImage newImage = new BufferedImage(targetWidth, targetHeight, BufferedImage.TYPE_INT_RGB);
   Graphics2D graphics2D = newImage.createGraphics();
   graphics2D.setPaint(new Color(r:0, g:0, b:0));
   graphics2D.fillRect(x:0, y:0, newImage.getWidth(), newImage.getHeight());
       graphics2D.drawImage(scaledImage, x_val, y: 0, observer: null);
       graphics2D.drawImage(scaledImage, x: 0, y_val, observer: null);
   graphics2D.dispose();
   ImageIO.write(newImage, formatName: "png", output);
```


Datenaufbereitung mit Java

Data Augmentation

```
# this is the augmentation configuration we will use for training
train datagen = ImageDataGenerator(
        rescale=1./255,
        rotation range=10, # Rotation
        width shift range=0.2, # horizontaler Shift
        height shift range=0.2, # vertikaler Shift
        zoom range=0.2, # zoom
        horizontal flip=True) # flipping
```


Data Augmentation Beispiel

"Fertiger" Datensatz

Training Data			Test Data	
Class ID	Name	Amount	Name	Amount
0	snow	1000	snow	200
1	pluteus	1000	pluteus	200
2	diatoms	1000	diatoms	200
3	copepods	1000	copepods	200
4	worms	1000	worms	200
5	blurry	1000	blurry	200
6	appendicularia_house	1000	appendicularia_house	200
7	noctiluca	1000	noctiluca	200
8	polychaeta	1000	polychaeta	200
9	mnemiopsis	1000	mnemiopsis	200
10	appendicularia	1000	appendicularia	200
11	unknown	1000	unknown	200
12	bipinnaria	1000	bipinnaria	200
13	eggs	1000	eggs	200
14	medusae	1000	medusae	200
15	malacostraca	1000	malacostraca	200
16	zoea_larvae	1000	zoea_larvae	200
17	rod	1000	rod	200
18	veliger_larvae	1000	veliger_larvae	200
19	larvae	1000	larvae	200
20	actinotrocha	1000	actinotrocha	200
21	pilidium	1000	pilidium	200
21	pilialum	1000	piliulum	200

■ Trainingsmenge: 22.000

■ Testmenge: 4.400

Decision Trees


```
trScore = tree.score(trainX, trainY, sample_weight=None)
    testScore = tree.score(testX, testY, sample_weight=None)
    print("Train score:", trScore, "; Test Score:", testScore)

rain score: 0.0227272727272728; Test Score: 0.0227272727272728
```


Neural Network


```
root path = "D:/KI Plankton/Output200-TrainTest/"
   training files = [f for f in sorted(listdir(root path)) if "training" in f]
   image list = list()
   for file name in training files:
       #image list.append(imread(root path + file name).astype('uint8')) #does not work because dtype is float (uses too much ram)
       image list.append(np.asarray(Image.open(root path + file name)))
   trainings arr = np.asarray(image list)
   print(len(trainings arr))
   print(trainings_arr.shape)
   print(trainings arr.dtype)
22000
(22000, 200, 200, 3)
uint8
```

```
Save Trainings Data

np.save("D:/KI_Plankton/trainings_arr", trainings_arr)
```


Labels einlesen

```
files = [f for f in sorted(listdir(root_path)) if "training" in f]
   label_list = list()
   for file_name in files:
      if "snow" in file_name:
      elif "worms" in file_name:
      elif "appendicularia_house" in file_name:
      elif "mnemiopsis" in file_name:
      elif "actinotrocha" in file name:
          Label List.append([21])
   training labels arr = np.asarray(label list, dtype='uint8')
   print(training labels arr)
   print(training_labels_arr.shape)
[[20]
(22000, 1)
```


1-hot-encoding

```
1-hot-encoding of labels
    train labels = np.load("D:/KI Plankton/trainings labels arr.npy")
    test_labels = np.load("D:/KI_Plankton/test_labels_arr.npy")
    # one hot encode target values
    trainY = to categorical(train labels)
    testY = to categorical(test labels)
    print(np.shape(trainY))
    print(np.shape(testY))
 (22000, 22)
 (4400, 22)
```


Quelle: https://www.youtube.com/watch?v=BecEHOVmx9o

Daten in floats konvertiert und normalisiert

```
# in floats konvertieren
trainX = train_images.astype('float32')
testX = test images.astype('float32')
# auf einen range von 0-1 normalisieren
trainX = trainX / 255.0
testX = testX / 255.0
```

```
MemoryError

Traceback (most recent call last)

Cell In[8], line 15

12 test_images = np.load("D:/KI Plankton/test_arr.npy")

14 # in floats konvertieren

---> 15 trainX = train_images.astype('float32')

16 testX = test_images.astype('float32')

18 # auf einen range von 0-1 normalisieren

MemoryError: Unable to allocate 55.5 GiB for an array with shape (124114, 200, 200, 3) and data type float32
```

Probleme

Neural Network

Neural Network

loss: 1.3954 - accuracy: 0.5514 - val_loss: 1.5090 - val_accuracy: 0.5195

https://github.com/xShadoow/ml-plankton

