Grothendieck - Riemann - Roch

Note Title 6/21/2009

Ref: Le théorème de Riemann-Roch. A. Borel and J. P. Serre. Bulletin de la S.M.F.

§1. K-Groups On Algebraic Varieties

Let X be a projective variety over an algebraically closed field.

Def. $K(X)=\oplus \mathbb{Z}[\mathcal{F}]/\sim$, where [F] denotes the isomorphism classes of coherent sheaves on X, and \sim " is generated by $[\mathcal{F}]-[\mathcal{F}']-[\mathcal{F}']$ whenever $0\longrightarrow \mathcal{F}'\longrightarrow \mathcal{F}\longrightarrow \mathcal{F}''\longrightarrow 0$

Def. $K_1(X) = \bigoplus \mathbb{Z}[\Xi]/\sim$, where $[\Xi]$ denotes the isomorphism classes of locally free sheaves on X, and \sim is generated by $[\Xi] - [\Xi'] - [\Xi'']$ whenever $0 \to \Xi' \to \Xi \to \Xi'' \to 0$

Thm 1. The canonical map $\varepsilon: K_i(x) \longrightarrow K(x)$ is an isomorphism.

Idea: Any $\mathcal{F} \in Coh(X)$ can be resolved by locally frees of length $\leq dim X$. $0 \longrightarrow L_n \longrightarrow \cdots \longrightarrow L_o \longrightarrow \mathcal{F} \longrightarrow 0$

Then define an inverse γ , of ϵ by γ , ([F]) = $\Sigma_{i=0}^{0}(-1)^{i}$ [Li]. It can be checked that γ_{i} is well-defined.

Operations On K(X)

(1). Ring structure on K(X): \mathcal{F} , $G \in Coh(X)$. Define $[\mathcal{F}], [G] \longmapsto \sum_{i=1}^{n} (-1)^{i} [Tor^{Ox}(\mathcal{F}, G)]$

Then it's additive in both $\mathcal F$ and $\mathcal G$ and thus define a product structure $K(X)\otimes K(X)\longrightarrow K(X)$.

Equivalently in $K_i(X)$, we may just take locally free resolutions of $\mathcal F$ and G, and then form the tensor complex, and take the Euler characteristic.

By constructing the associative Tor-functor Tor(F, G, H) and using the spectral sequences

 $E_{P,q}^2 = Tor_P(\mathcal{F}, Tor_Q(\mathcal{G}, \mathcal{H})) \Longrightarrow Tor(\mathcal{F}, \mathcal{G}, \mathcal{H}) \iff \widetilde{E}_{P,q}^2 = Tor_P(Tor_Q(\mathcal{F}, \mathcal{G}), \mathcal{H})$ and the fact that Euler characteristic is constant within a spectral sequence

we have:

• The product on K(X) is associative and commutative. (In $K_1(X)$ the associativity is obvious; commutativity is obvious in both cases).

(2). λ-operations

Given a s.e.s. of locally free sheaves on
$$X$$
 o $\longrightarrow E' \longrightarrow E \longrightarrow E'' \longrightarrow o$

we have a filtration

so that in KI(X), we have:

$$\lambda^{p}(\mathcal{E}) = \sum_{r \in \mathbb{F}_{p}} \lambda^{r}(\mathcal{E}') \lambda^{s}(\mathcal{E}'')$$

$$\Rightarrow \qquad \qquad \sum \lambda^{p}(\mathcal{E}) t^{p} = (\sum \lambda^{r}(\mathcal{E}') t^{r}) (\sum \lambda^{s}(\mathcal{E}'') t^{s})$$

 \Rightarrow $E \mapsto \sum \lambda^{p}(E)t^{p}$ is an additive map from $K_{i}(x) \longrightarrow K_{i}(x)$ [t], with image in the multiplicative subgroup $\{1+a_{i}t+a_{2}t^{2}+\cdots \mid a_{i}\in K_{i}(x)\}$. This in turn induces

(3). f! and f!

Let $f: Y \to X$ be any morphism (not necessarily proper). $\forall \in Locally free on X, f^-(E)$ is locally free on Y. This is an additive function, and thus induces $f!: K(X) \cong K(X) \to K(Y) \cong K(Y)$

We may also define this directly on K(X) via the Tor-formula: given $F \in Gh(X)$, $f^!(F) \triangleq \sum_i (-1)^i [Tor_i^{O_X}(O_X, F)]$

which is additive on Coh(X).

Next suppose $f: Y \to X$ is proper. A fundamental result of Grothendieck states that:

Thus we may define:

$$f_{!}(\mathcal{F}_{i}) \triangleq \Sigma_{:(-1)^{i}}[R^{2}f_{!}(\mathcal{F}_{i})]$$

which is an additive functor on $Coh(Y) \longrightarrow K(X)$.

f! is not a ring homomorphism, but we have the projection formula:

•
$$f_!(y \cdot f_!(x)) = f_!(y) \cdot x$$

where $y \in K(Y)$, $x \in K(X)$. This follows from the projection formula for $F \in Gh(Y)$. E locally free on X:

$$R^{q}f(\mathcal{T}\otimes o_{Y}f^{\dagger}\mathcal{E})\cong R^{q}f(\mathcal{T})\otimes o_{X}\mathcal{E}$$

By definition, if $Z\xrightarrow{g}Y\xrightarrow{f}X$, then
• $(f\circ q)^{!}=g^{!}\cdot f^{!}$.

If both f and g are proper, then

This follows from the spectral sequence: $\forall \mathcal{F} \in Gh(\mathcal{Z})$: $R^{p}f(R^{q}g(\mathcal{F}_{1})) \Longrightarrow R^{p+q}f_{q}(\mathcal{F}_{1})$

Chem Classes

Let A(X) be the Chow ring of X. (Or we may use $H^*(X.Z)$ if X(C). Chem classes can be extended to $K(X) \cong K_i(X)$ since the Chem polynomial

$$C(E)_t = 1 + C_1(E)_t + C_2(E)_t^2 + \cdots$$

is an additive function. Given $x \in K(X)$, let its Chem polynomial be Ti:(1+ait) (bearing in mind the splitting principal).

Def. (Todd Class). $Td(x) \triangleq TI : \frac{ai}{1-e^{-ai}} (\in A(X) \otimes_{\mathbb{Z}} \mathbb{Q}).$

Def. (Chem Character) $Ch(x) \triangleq rank(x) + \sum (e^{ai} - 1) (\in A(X) \otimes_{\mathbb{Z}} \mathbb{Q})$. (Note that rank is well-defined on $K_1(X) \cong K(X)$.)

We have, for x, y ∈ K(X):

- Td(x+y) = Td(x) · Td(y)
- ch(x+y) = ch(x) + ch(y); $ch(x\cdot y) = ch(x) + ch(y)$

§2. The Theorem

Let $f\colon Y \to X$ be a proper morphism between non-singular quasi-projective varieties. Denote $T(X)\in A(X)\otimes \mathbb{Q}$ the Todal class of the tangent bundle of X.

Thm 2 (Grothendieck - Riemann - Roch)

$$K(Y) \xrightarrow{ch} A(Y) \otimes \mathbb{Q}$$

$$\downarrow f! \qquad \qquad \downarrow f_*$$

$$K(X) \xrightarrow{ch} A(X) \otimes \mathbb{Q}$$

The lack of commutativity is measured by the formula $f_*(ch(y), Td(Y)) = ch(f_!(y)), Td(X)$

X = Speck. Then $A(X) \cong \mathbb{Z} \cong I$ /), and taking chover X is just counting the dim over k. Furthermore, if $\mathcal{F} \in Gh(Y)$, then $f(\mathcal{F}) = \Sigma(-1)^i [H^i(Y, \mathcal{F})]$. Thus

Cor. (Hirzebruch-Riemann-Roch)

$$\Sigma(-1)^{i}h^{i}(Y, \mathcal{T}) = \int_{Y} ch(\mathcal{T}) \cdot Td(Y)$$

Special cases

(1).
$$Y = \mathbb{P}^r$$
, $X = pt$. $\mathcal{F} = \mathcal{O}(n)$.

In this case, let $x = C_1(O(1))$. Then we have $C_1(Y) = (1 + tx)^{r+1}$, and thus $T(|D^r) = \frac{x^{r+1}}{(1 - e^{-x})^{r+1}}$, $Ch(O(n)) = e^{nx}$. Hence R - R in this case reads: $\binom{n+r}{r} = \chi(O(n)) \stackrel{?}{=} deg \ r \ term \ in \ \frac{e^{nx} \cdot x^{r+1}}{(1 - e^{-x})^{r+1}}$

$$(n+r) = \chi(O(n)) \stackrel{?}{=} deg r term in \frac{e^{nx} \cdot \chi^{r+1}}{(1-e^{-x})^{r+1}}$$

$$= deg (-1) term in \frac{e^{nx}}{(1-e^{-x})^{r+1}}$$

$$= Res \left(\frac{e^{nx}}{(1-e^{-x})^{r+1}} dx\right)$$

$$= Res \frac{dy}{(1-y)^{n+1} y^{r+1}} \qquad (y=1-e^{-x})$$

$$= deg r term in (1-y)^{-(n+1)}$$

$$= (-1)^{r} {n-1 \choose r}$$

$$= {n+r \choose r}.$$

(2).
$$Y = Curve$$
 $X = Speck$, $y = Y(O_1(D))$ with D a divisor. Then:

$$h^0(D) - h^1(D) = (Ch(O_1(D)) \cdot Td(Y))$$

$$= ((1+D) \cdot \frac{(-K)}{1-e^K})$$

$$= (1+D) \cdot (1-\frac{K}{2})$$

$$= deg(D) - \frac{1}{2} deg(K)$$

Letting D=0. $g=h^1(O_1)$, we see that degK=2g-2, and thus $h^0(D)-h^1(D)=degD-(g-1)$

(3). Y= Surface X= Speck.
$$y=P(O_{Y}(D_{1}), with D a divisor$$

$$h^{0}(D_{1})-h^{1}(D_{1})+h^{2}(D_{2})=[(1+D+\frac{D^{2}}{3})(1+\frac{1}{2}C_{1}(Y_{1})+\frac{1}{12}(C_{1}^{2}+C_{2}))]_{2}(C_{1}=C_{1}(TY_{1}))$$

$$=\frac{1}{2}D\cdot(D+C_{1}(Y_{1}))+\frac{1}{12}(C_{1}^{2}+C_{2})$$

$$=\frac{1}{2}D\cdot(D-K_{1})+\frac{1}{12}(K^{2}+C_{2})$$

Taking D=0, $Pa = \frac{1}{12}(K^2+C_2)$, which is Noether's formula.

§. Proof of Theorem

We reduce the proof to two special cases: (1). projection. (2). injection.

First reductions.

Lemma 1. Let $Z \xrightarrow{g} Y \xrightarrow{f} X$ be proper morphisms. Let $z \in K(z)$ (1). If GRR is true for (g,z) and $(f,g_!(z))$, then it's true for (fg,z).
(2). If GRR is true for (fg,z) and $(f,g_!(z))$, $f_*:A(Y) \longrightarrow A(X)$ is injective, then it's true for (g,z).

Pf: (1). By assumption, we have

$$g_*(ch(z) \cdot Td(z)) = ch(g_!(z)) \cdot Td(Y) \qquad (1)$$

$$f_*(ch(g_!(z)) Td(Y)) = ch(f_!(g_!(z))) \cdot Td(X) \qquad (2)$$

$$\Rightarrow (fg)_*(ch(z) \cdot Td(Z)) = f_*(g_*(ch(z) \cdot Td(Z)))$$

$$= f_*((ch(g_!(z)) \cdot Td(Y))$$

$$= ch(f_!(g_!(z)) \cdot Td(X))$$

$$= ch(fg)_!(z) \cdot Td(X)$$

(2). By assumption

and

 $f_*(g_*(ch(z)\cdot Td(z))) = f_*(ch(g_!(z))\cdot Td(Y)). \text{ Since } f_* \text{ is injective, we have } g_*(ch(z)\cdot Td(z)) = ch(g_!(z))\cdot Td(Y)$

Lemma 2. Let $f: Y \longrightarrow X$. $f': Y' \longrightarrow X'$ be proper morphisms, $y \in K(Y)$, $y' \in K(Y')$ If GRR is true for (f, y), (f', y'), then it's true for $(f \times f', y \otimes y')$. Pf: We shall use the following Künneth type formula:

$$(f \times f'): (y \otimes y') = f:(y) \otimes f:(y')$$

 $(f \times f') * (z \otimes z') = f*(z) \otimes f*(z') \quad \forall z \in A(Y'), z' \in A(Y')$

Furthermore, for Chern characters, we have $ch(y \otimes y') = ch(y) \otimes ch(y')$

Now given $f: Y \longrightarrow X$ proper morphism between projective varieties, we can factor it as

where i is a closed immersion and p is the projection. By lemma I can, we are reduced to show for the following two cases:

(i).
$$Y = X \times IP^{\Gamma} \longrightarrow X$$
 is the projection

(ii). $Y \longrightarrow X$ is a closed immersion.

Projection Case.

By lemma 2, we are further reduced to the case $IP^r \longrightarrow pt$ if we have $K(X) \otimes K(IP^n) \longrightarrow K(X \times IP^n)$ is surjective (GRR is trivially true for $X \longrightarrow X$), which we have dealt with as an example before. We list some basic K theory properties:

(1).
$$X' \hookrightarrow X$$
 closed subscheme, $U = X \setminus X'$. Then $K(X') \longrightarrow K(X) \longrightarrow K(U) \longrightarrow 0$

is exact.

(2). $P: X \times A' \longrightarrow X$. Then $P': K(X) \xrightarrow{\cong} K(X \times A')$. Inductively $K(X) \xrightarrow{\cong} K(X \times A')$.

Lemma 3. X: projective variety. $K(X) \otimes K(IP^r) \longrightarrow K(X \times IP^r)$ is surjective. Pf: By induction on r. r=0 trivial. By (1), we have a commutative diagram:

$$K(X \times |P^{r-1}) \longrightarrow K(X \times |P^r) \longrightarrow K(X \times |A^r) \longrightarrow 0$$

$$\uparrow (by inducition) \uparrow \varepsilon \qquad \qquad \uparrow \cong (by (2))$$

$$K(X) \otimes K(|P^r|) \longrightarrow K(X) \otimes K(|P^r|) \longrightarrow K(X) \otimes K(|A^r|) \longrightarrow 0$$

 \Rightarrow ϵ is surjective by diagram chasing

A Special Case of Injection.

In case $Y \hookrightarrow X$ is a divisor, any $y \in K(Y)$ is of the form y = i!(x), $x \in K(X)$, we can check GRR as follows.

For an injection, we have $0 \longrightarrow \frac{\text{I}^{\gamma}/\text{I}_{\gamma}^{2}}{\longrightarrow} \Omega_{x}|_{\gamma} \longrightarrow 0$. Dualizing gives $0 \longrightarrow \text{TY} \longrightarrow \text{TX}|_{\gamma} \longrightarrow E \longrightarrow 0$ where E is the normal bundle. Then $i_{*}(ch(y), \text{Td}(\gamma)) \stackrel{?}{=} ch(i_{*}(y)), \text{Td}(\chi)$

L.H.S. = $i*(ch(y) \cdot Td(E)^{-1} \cdot Td(TX|y)) = i*(ch(y) \cdot Td(E)^{-1} \cdot i*Td(X)) = i*(ch(y) \cdot Td(E)^{-1}) \cdot Td(X)$ Thus it suffices to show that

In the special case where Y is a smooth divisor, by adjunction formula, $E \cong O_Y(Y)$. Let $y = i^t(x)$. We have:

 $l.h.s = ch(i:i'(x)) = ch(x \cdot i:(i)) = ch(x) \cdot ch(i:(IOy3))$

But we have $0 \longrightarrow O_X(-Y) \longrightarrow O_X \longrightarrow O_Y \longrightarrow 0 \Rightarrow i!([O_Y]) = [O_X] - [O_X(-Y)]$. and thus

 $l.h.s = ch(x) \cdot (1 - e^{-Y})$

On the other hand,

 $r.h.s = i*(ch(i!(x)) \cdot Td(O_{Y}(Y))) = i*(i*ch(x) \cdot Td(i*O_{X}(Y))) = i*(i*(ch(x) \cdot Td(O_{X}(Y))))$ $= ch(x) \cdot Td(O_{X}(Y))^{-1} \cdot i*(i)$ $= ch(x) \cdot \frac{1-e^{-Y}}{Y} \cdot Y$ $= ch(x) \cdot (1-e^{-Y})$ = (.h.s.)

Cor. GRR is true for $Y \hookrightarrow Y \times IP^r$, $a \mapsto (a,p_0)$, where p_0 is a fixed point of IP. Pf: Since this morphism is the composition of $id_Y: Y \longrightarrow Y$ and $p_0 \longleftrightarrow IP^r$, by lemma 2, it suffices to check for the latter case. Let Y = pt, $K(Y) \cong \mathbb{Z}$, and it suffices to show for $I \in K(Y)$. But $I \in i!(K(IP))$. Thus if r = I, the result follows from the divisorial case above. Now we induct on r.

Let H be a hyperplane in IP containing po, $H \cong IP^{r-1}$ $i: \{P_0\} \subset U \to IP^r$

By induction hypothesis GRR is true for (u, 1). Since v is the inclusion of a divisor, if $u(x) \in v^{1}(K(IP^{n}))$, GRR will be true for (v, u(x)) by the divisorial case. It then follows from lemma (v) that GRR is true for (i, 1).

Now in w.l.o.g. assume $H \cong \mathbb{P}^{r-1} = \{X_r = 0\}$, we have a Koszul complex: $0 \longrightarrow \mathbb{O}_H(-r+1) \longrightarrow \mathbb{O}_H(-r+2) \longrightarrow \mathbb{O}_H(-r) \longrightarrow \mathbb{O}_H($

Cor. To prove GRR in general, it suffices to show for $Y \longrightarrow X$ with codim Y >> dim Y (we just need codim $Y \ge dim Y + 2$).

Pf: Take the composition $Y \longrightarrow X \longrightarrow X \times IP^N$ for $N \gg 0$. By assumption GRR is true for the composition and $X \longrightarrow X \times IP^N$. Moreover $i*: A(X) \longrightarrow A(X \times IP^N)$ is injective. By lemma 1 (b), GRR is true for $Y \longrightarrow X$.

Rmk: The general case of injection will follow from the divisorial case by blowing up X along Y, so that the strict transform of Y is a divisor. By the cor above, we only need to consider Y of large enough codimension, which is needed for technical reasons.