# IIC2685 Robótica Móvil I – 2022

Capítulo 4.1

## Fundamentos de Robótica Probabilística

Profesor: Gabriel Sepúlveda V. grsepulveda@ing.puc.cl

# Agenda

- Conceptos de probabilidades para robótica móvil
  - Probabilidades ( repaso )
  - Regla de Bayes
- Fundamentos de Robótica Probabilística
  - Modelo oculto de Markov (HMM)
  - Filtros bayesianos
- Todos los capítulos relacionados con robótica probabilística que trataremos en este curso, estarán basados en:
  - "Probabilistic Robotics" (Thrun, Burgard y Fox )

- <u>Probabilidad</u>: medida de la certidumbre asociada a la ocurrencia de un suceso al realizar un experimento de naturaleza aleatoria.
- Un experimento está compuesto por dos etapas:
  - Procedimiento (ej: lanzar una moneda)
  - > Observaciones (ej: observar que lado de la moneda queda hacia arriba)
- <u>Resultado</u>: Un resultado de un experimento es cualquier posible <u>observación</u> de ese experimento (ej: salió cara, salió sello).

- <u>Espacio muestral</u>: El espacio muestral de un experimento es el conjunto de todos los posibles resultados que cumplen con:
  - Estar en su mayor estado de granularidad
  - Ser mutuamente excluyentes
  - Ser colectivamente exhaustivos



- Evento: Un evento es un conjunto de resultados de un experimento
  - > Ej: Lanzar un dado y que el resultado sea mayor o igual a 4 = { 4, 5, 6 }



- Espacio de eventos: Un espacio de eventos es un conjunto de eventos que cumplen con:
  - Ser mutuamente excluyentes
  - Colectivamente exhaustivos



#### Axiomas de Probabilidad

Una medida de probabilidad P[·] es una función que mapea eventos en el espacio muestral a número reales que representan su nivel de certidumbre, tal que:

- **Axioma 1:** Para todo evento A, P[A] ≥ 0
- Axioma 2: P[S] = 1
- Axioma 3: Para cualquier colección contable de eventos mutuamente excluyentes A<sub>1</sub>, A<sub>2</sub>, ..., se tiene que:

$$P[A_1 \cup A_2 \cup ...] = P[A_1] + P[A_2] + ...$$

Para eventos NO mutuamente excluyentes, se tiene que:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$



Relación entre evento y su complemento a través de los axiomas:

$$P[A \cup A^c] = P[A] + P[A^c] - P[A \cap A^c]$$
$$P[S] = P[A] + P[A^c] - P[\emptyset]$$
$$1 = P[A] + P[A^c]$$

$$P[A^c] = 1 - P[A]$$



#### **Variable Aleatoria**

- Una variable aleatoria consiste en:
  - Un experimento con medida de probabilidad P[·] definida en un espacio muestral S
  - Una función que asigna un número real a un resultado en el espacio muestral S del experimento

#### Variable Aleatoria

- Una variable aleatoria X puede ser:
  - Variable discreta: Función de Masa de Probabilidad ( PMF )

$$P[X = x]$$
 o  $P_X(x)$ 

Variable continua: Función de Densidad de Probabilidad ( PDF )

$$f[X=x]$$
 o  $f_X(x)$ 





- Axiomas caso discreto: Para una variable aleatoria X con PMF  $P_X(x)$  y rango  $S_X = \{x_1, x_2, ...\}$ :
  - Para todo x,  $P_X(x) \ge 0$

$$\sum_{x \in S_X} P_X(x) = 1$$

Para cualquier evento  $B \subset S_X$  la probabilidad de que X se encuentre en el conjunto B es:

$$P[B] = \sum_{x \in B} P_X(x)$$

- **Axiomas caso continuo:** Para una variable aleatoria continua X confunción de densidad de probabilidad  $f_X(X)$ :
  - Para todo x,  $f_X(x) \ge 0$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Función de Distribución Acumulada ( $\mathit{CDF}$ ):  $F_X(x) = \int_{-\infty}^x f_X(u) du$ 

## **Probabilidad Conjunta**

 Probabilidad de ocurrencia de resultados comunes a dos o más eventos

$$P[X = x \cap Y = y] = P[x, y]$$



#### **Probabilidad Condicional**

 Probabilidad de que el evento X ocurra dado que se supone (asume) que Y ocurre

$$P[x|y] = \frac{P[x,y]}{P[y]}$$



#### **Probabilidad Condicional**

$$P[x|y] = \frac{P[x,y]}{P[y]}$$

• ¿ Si *X* es independiente de *Y* ?

$$P[x,y] = P[x] \cdot P[y]$$
$$P[x|y] = P[x]$$

• También es posible obtener P[y|x]

$$P[y|x] = \frac{P[x,y]}{P[x]}$$

### **Probabilidad Marginal**

• Caso discreto: Sean X e Y variables aleatorias con PMF  $P_{X,Y}(x,y)$ :

$$P_X(x) = \sum_{y} P_{X,Y}(x,y)$$
  $P_Y(y) = \sum_{x} P_{X,Y}(x,y)$ 

• Caso continuo: Sean X e Y variables aleatorias con PDF  $f_{X,Y}(x,y)$ :

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$$



## Ley de Probabilidad Total

• Caso discreto: Sean X e Y variables aleatorias con PMF  $P_{X,Y}(x,y)$ :

$$P_X(x) = \sum_{y} P_{X|Y}(x|y) \cdot P_Y(y)$$

• Caso continuo: Sean X e Y variables aleatorias con PDF  $f_{X,Y}(x,y)$ :

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) \cdot f_Y(y) dy$$



$$P(x|y) = \frac{P(x,y)}{P(y)}$$

$$P(y|x) = \frac{P(x,y)}{P(x)}$$

#### **REGLA DE BAYES**

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x|y)P(y)}{\sum_{y_i} P(x|y_i)P(y_i)}$$

### **Ejemplo**

 Cierto artículo se manufactura en tres fábricas Fab1, Fab2 y Fab3. Se sabe que Fab2 y Fab3 producen el mismo número de artículos, mientras que Fab1, produce el doble de artículos que Fab2 y que Fab3. Se sabe también que el 2% de los artículos producidos por las dos primeras es defectuoso (D), mientras que el 4% de los manufacturados por la tercera es defectuoso. Todos los artículos producidos por las tres fábricas se colocan en una fila y se escoge uno al azar.

```
D = {artículo defectuoso}F1 = {artículo fabricado en Fab1}F2 = {artículo fabricado en Fab2}F3 = {artículo fabricado en Fab3}
```

### **Ejemplo**

¿ Cuál es la probabilidad de que este artículo sea defectuoso ?

Causa (fábrica con falla) Efecto (artículo defectuoso)

```
P[D] = P[D \cap F1] + P[D \cap F2] + P[D \cap F3]
= P[D|F1] \cdot P[F1] + P[D|F2] \cdot P[F2] + P[D|F3] \cdot P[F3]
= 0.02 \cdot 0.5 + 0.02 \cdot 0.25 + 0.04 \cdot 0.25
= 0.025
```

### **Ejemplo**

Supongamos que se escoge un artículo del total y se encuentra uno defectuoso. ¿ Cuál es la probabilidad de que se haya producido en la fábrica Fab1 ?

Efecto (artículo defectuso) ———— Causa (fábrica con falla)

$$P[F1|D] = (P[D|F1] \cdot P[F1]) / P[D]$$
  
=  $(0.02 \cdot 0.5) / 0.025$   
= 0.4

Bayes con conocimiento previo

$$P(y|x,z) = \frac{P(x|y,z)P(y|z)}{P(x|z)}$$

Independencia condicional

$$P(x, y|z) = P(x|z)P(y|z)$$

Modelo de interacción de robot con el ambiente ("mundo")



- Objetivo: estimación del estado actual del ambiente a partir de los sensores
- Estado del ambiente
  - Dinámicos
  - Estáticos
- Variables del estado:  $X_t$ 
  - Pose
  - > Velocidad
  - Estado de actuadores
  - Estado de sensores
  - Ubicación y velocidad de objetos circundantes
  - > etc.



- Medición de sesores:  $Z_t$ 
  - Parcial
  - Indirecta
  - Ruidosa/Corrupta
- Acciones de Control:  $U_t$ 
  - Movimiento
  - Manipulación
  - Inacción



- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score



- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$ 



- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$ 

$$p[Z_t = sense\_open|X_t = open] = 0.6$$
  
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



- Estado del mundo (x<sub>t</sub>): open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$ 

$$p[Z_t = sense\_open|X_t = open] = 0.6$$
  
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[X_0 = open|Z_0 = sense\_open] = ?$$
  
 $p[X_0 = closed|Z_0 = sense\_open] = ?$ 

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$   
 $p[Z_t = sense\_open|X_t = open] = 0.6$   
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[X_0 = open|Z_0 = sense\_open] = \frac{p[Z_0 = sense\_open|X_0 = open] \cdot p[X_0 = open]}{p[z_0 = sense\_open]}$$

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$   
 $p[Z_t = sense\_open|X_t = open] = 0.6$   
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[Z_0 = sense\_open] = p[Z_0 = sense\_open|X_0 = open] \cdot p[X_0 = open] + p[Z_0 = sense\_open|X_0 = closed] \cdot p[X_0 = closed]$$

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$   
 $p[Z_t = sense\_open|X_t = open] = 0.6$   
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[Z_0 = sense\_open] = p[Z_0 = sense\_open|X_0 = open] \cdot p[X_0 = open] + p[Z_0 = sense\_open|X_0 = closed] \cdot p[X_0 = closed] = 0.6 \cdot 0.5 + 0.2 \cdot 0.5 = 0.4$$

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$   
 $p[Z_t = sense\_open|X_t = open] = 0.6$   
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[X_0 = open|Z_0 = sense\_open] = \frac{p[Z_0 = sense\_open|X_0 = open] \cdot p[X_0 = open]}{p[z_0 = sense\_open]}$$
 $= \frac{0.6 \cdot 0.5}{0.4}$ 
 $= 0.75$ 

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score

$$p[X_0 = open] = 0.5$$
  
 $p[X_0 = closed] = 0.5$ 

$$p[Z_t = sense\_open|X_t = open] = 0.6$$
  
 $p[Z_t = sense\_closed|X_t = closed] = 0.8$ 



$$p[X_0 = open|Z_0 = sense\_open] = 0.75$$
  
 $p[X_0 = closed|Z_0 = sense\_open] = 0.25$ 

 Para una medición particular z<sub>t</sub>, el denominador es solo un factor de normalización

$$\eta = \left(\sum_{x_i} P(z|x_i) \cdot P(x_i)\right)^{-1} \qquad P(x_i|z) = \eta \cdot P(z|x_i) \cdot P(x_i)$$

- · Bayes en la práctica
  - Calcular el likelihood para cada x<sub>i</sub>
  - $\rightarrow$  Multiplicar cada *likelihood* por el conocimiento previo de  $x_i$
  - $\succ$  Sumar el resultado anterior para calcular  $\eta$

- Hasta ahora hemos encontrado una metodología para modelar las mediciones, pero ...
- ¿ Cómo podemos incorporar las acciones ut, para junto a las mediciones zt, obtener el estado (belief) xt ?



### Modelo Oculto de Markov (HMM)

• Supongamos ahora que tenemos una secuencia de acciones  $u_{1:t}$ , observaciones  $z_{1:t}$  y sus respectivos estados del mundo  $x_{0:t}$ , tal que:

$$u_{1:t} = u_1, u_2..., u_t$$
  
 $z_{1:t} = z_1, z_2..., z_t$   
 $x_{0:t} = x_0, x_1..., x_t$ 



- Es posible definir:
  - Modelo de acción ( o transición de estado ):

$$P[x_t|x_{0:t-1},z_{1:t-1},u_{1:t}]$$

Modelo de sensor:

$$P[z_t|x_{0:t},z_{1:t-1},u_{1:t}]$$

### Modelo Oculto de Markov (HMM)

- Aplicando la propiedad de independencia condicional, tenemos:
  - Modelo de acción ( o transición de estado ):

$$P[x_t|x_{0:t-1},z_{1:t-1},u_{1:t}]=P[x_t|x_{t-1},u_t]$$

Modelo de sensor:

$$P[z_t|x_{0:t},z_{1:t-1},u_{1:t}]=P[z_t|x_t]$$

### Modelo Oculto de Markov (HMM)

- Aplicando la propiedad de independencia condicional, tenemos:
  - Modelo de acción ( o transición de estado ):

$$P[x_t|x_{0:t-1},z_{1:t-1},u_{1:t}]=P[x_t|x_{t-1},u_t]$$

Modelo de sensor:

$$P[z_t|x_{0:t},z_{1:t-1},u_{1:t}]=P[z_t|x_t]$$

Podemos concluir que:

El futuro depende del pasado solo a través del presente



- Queremos estimar el estado x<sub>t</sub> de un mundo dinámico
- Contamos con:
  - Acciones y observaciones:  $u_1, z_1, ..., u_t, z_t$
  - $\rightarrow$  Modelo de acción:  $P[x_t|x_{t-1}, u_t]$
  - $\rightarrow$  Modelo de sensor:  $P[z_t|x_t]$
  - $^{\triangleright}$  Conocimiento previo (*prior*):  $P[x_t]$

- ¿ Qué buscamos ?
  - Estimar la distribución posterior  $P[x_t|u_1, z_1, ..., u_t, z_t]$
  - Ésta es comúnmente llamada *belief*, y representa el conocimiento interno que posee el robot acerca del estado del ambiente:

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$



- ¿ Qué buscamos ?
  - Estimar la distribución posterior  $P[x_t|u_1, z_1, ..., u_t, z_t]$
  - Ésta es comúnmente llamada *belief*, y representa el conocimiento interno que posee el robot acerca del estado del ambiente:

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$

- Supuestos:
  - Propiedad markoviana en observaciones (observaciones condicionalmente independientes del pasado, dado el mundo)
  - Un mundo "estático"
  - Modelos "perfectos"

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$

$$= \eta \cdot P[z_t|u_1, z_1, ..., u_t, x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$$

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$

Bayes
$$= \eta \cdot P[z_t|u_1, z_1, ..., u_t, x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$$

Markov
$$= \eta \cdot P[z_t|x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$$

#### **Filtros Bayesianos**

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$

Bayes
$$= \eta \cdot P[z_t|u_1, z_1, ..., u_t, x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$$

Markov
$$= \eta \cdot P[z_t|x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$$

#### **Probabilidades Totales**

$$= \eta \cdot P[z_t|x_t] \cdot \int P[x_t|u_1, z_1, ..., u_t, x_{t-1}] \cdot P[x_{t-1}|u_1, z_1, ..., u_t] dx_{t-1}$$

#### **Filtros Bayesianos**

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$
 $= \eta \cdot P[z_t|u_1, z_1, ..., u_t, x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$ 
 $= \eta \cdot P[z_t|x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$ 

#### **Probabilidades Totales**

$$P[z_t|x_t] \cdot \int P[x_t|u_1, z_1, ..., u_t, x_{t-1}] \cdot P[x_{t-1}|u_1, z_1, ..., u_t] dx_{t-1}$$

#### Markov

$$= \eta \cdot P[z_t|x_t] \cdot \int P[x_t|u_t, x_{t-1}] \cdot P[x_{t-1}|u_1, z_1, ..., z_{t-1}] dx_{t-1}$$

#### **Filtros Bayesianos**

$$Bel[X_t] = P[x_t|u_1, z_1, ..., u_t, z_t]$$
 $= \eta \cdot P[z_t|u_1, z_1, ..., u_t, x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$ 
 $= \eta \cdot P[z_t|x_t] \cdot P[x_t|u_1, z_1, ..., u_t]$ 

#### **Probabilidades Totales**

$$= \eta \cdot P[z_t|x_t] \cdot \int P[x_t|u_1, z_1, ..., u_t, x_{t-1}] \cdot P[x_{t-1}|u_1, z_1, ..., u_t] dx_{t-1}$$

Markov

$$= \eta \cdot P[z_t|x_t] \cdot \int P[x_t|u_t, x_{t-1}] \cdot P[x_{t-1}|u_1, z_1, ..., z_{t-1}] dx_{t-1}$$

$$Bel[x_t] = \eta \cdot P[z_t|x_t] \cdot \int P[x_t|u_t, x_{t-1}] \cdot Bel[x_{t-1}] dx_{t-1}$$

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- $\rightarrow$  Medición ( $z_t$ ): clasificador que entrega un score
- Robot no ejecuta acciones (u<sub>t</sub>)

$$P[z_t = sense\_open | x_t = open] = 0.6$$
  
 $P[z_t = sense\_closed | x_t = closed] = 0.8$ 

$$P[x_0 = open] = Bel[x_0 = open] = 0.5$$
  
 $P[x_0 = closed] = Bel[x_0 = closed] = 0.5$ 



- $\rightarrow$  Estado del mundo  $(x_t)$ : open o closed
- Medición (z<sub>t</sub>): clasificador que entrega un score
- Robot no ejecuta acciones (u<sub>t</sub>)

$$P[z_t = sense\_open | x_t = open] = 0.6$$
  
 $P[z_t = sense\_closed | x_t = closed] = 0.8$ 

$$P[x_0 = open] = Bel[x_0 = open] = 0.5$$
  
 $P[x_0 = closed] = Bel[x_0 = closed] = 0.5$ 



$$Bel[x_2 = open] = P[x_2 = open|u_2 = do\_nothing, z_2 = sense\_open] = ?$$

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

```
\overline{bel}(X_1 = open) = p(X_1 = open|X_0 = open) * bel(X_0 = open) + p(X_1 = open|X_0 = closed) * bel(X_0 = closed) = 1 * 0.5 + 0 * 0.5 = 0.5
```

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

$$\overline{bel}(X_1 = open) = p(X_1 = open|X_0 = open) * bel(X_0 = open)$$

$$+ p(X_1 = open|X_0 = closed) * bel(X_0 = closed)$$

$$= 1 * 0.5 + 0 * 0.5 = 0.5$$

$$bel(X_1 = open) = p(X_1 = open|Z_1 = open)$$

$$= \frac{p(Z_1 = open|X_1 = open) * \overline{bel}(X_1 = open)}{p(Z_1 = open|X_1 = open) * p(X_1 = open) + p(Z_1 = open|X_1 = closed) * p(X_1 = closed)}$$

$$= \frac{0.6 * 0.5}{0.6 * 0.5 + 0.2 * 0.5} = 0.75$$

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

$$\overline{bel}(X_2 = open) = p(X_2 = open|X_1 = open) * bel(X_1 = open)$$

$$+ p(X_2 = open|X_1 = closed) * bel(X_1 = closed)$$

$$= 1 * 0.75 + 0 * 0.25 = 0.75$$

$$bel(X_2 = open) = p(X_2 = open|Z_2 = open)$$

$$= \frac{p(Z_2 = open|X_2 = open) * \overline{bel}(X_2 = open) }{p(Z_2 = open|X_2 = open) * p(X_2 = open) + p(Z_2 = open|X_2 = closed) * p(X_2 = closed) }$$

$$= \frac{0.6 * 0.75}{0.6 * 0.75 + 0.2 * 0.25} = 0.9$$

• ¿ Qué pasa con  $Bel(x_t)$  cuando agregamos mediciones  $z_t$ ?

- ¿ Qué pasa con  $Bel(x_i)$  cuando agregamos mediciones  $z_i$ ?
  - Como vimos en el ejemplo, aumenta la certeza!

- ¿ Qué pasa con  $Bel(x_i)$  cuando agregamos mediciones  $z_i$ ?
  - Como vimos en el ejemplo, aumenta la certeza!
- ¿ Qué pasa con  $Bel(x_t)$  cuando agregamos una acción  $u_t$ ?
  - Acción efectuada por el robot
  - Acción efectuada por un agente externo
  - Tiempo
  - ... algo que cambie el estado del mundo

- ¿ Qué pasa con  $Bel(x_i)$  cuando agregamos mediciones  $z_i$ ?
  - Como vimos en el ejemplo, aumenta la certeza!
- ¿ Qué pasa con  $Bel(x_t)$  cuando agregamos una acción  $u_t$ ?
  - Acción efectuada por el robot
  - Acción efectuada por un agente externo
  - Tiempo
  - ... algo que cambie el estado del mundo
  - Disminuye la certeza!

- ¿ Qué pasa con  $Bel(x_t)$  cuando agregamos mediciones  $z_t$ ?
  - Como vimos en el ejemplo, aumenta la certeza!
- ¿ Qué pasa con Bel(x<sub>t</sub>) cuando agregamos una acción u<sub>t</sub>?
  - Acción efectuada por el robot
  - Acción efectuada por un agente externo
  - Tiempo
  - ... algo que cambie el estado del mundo
  - Disminuye la certeza!

Mediciones aumentan la certeza del robot, acciones la bajan!

 Queremos ver cómo cambia el mundo x producto de una "acción" u a partir de un mundo x'. Esto se demonina como ACTION MODEL

- Ejemplo: robot avanza 1 [m] cada vez, hasta recorrer 10 [m]
  - Error ángulo: 5°
  - Error distancia: 0.05 [m]



### Resumen

- Las probabilidades nos acompañarán el resto del curso
  - Movimientos no son exactos
  - Percepción no es exacta
  - Razonamiento debe incorporar la incerteza
- Regla de Bayes
  - No memorizar. Entender e interpretar.
- Filtros bayesianos
  - Bayes + Markov
  - Genérico, muy utilizado en la práctica

# Bibliografía

• Probabilistic Robotics, Thrun, S., Burgard, W., Fox, D.