

The University of Maryland's Kazakh-English Neural Machine Translation System at WMT2019

Eleftheria Briakou and Marine Carpuat

University of Maryland

INTRODUCTION

- **♦** Shared Task
 - ♦ News translation task
 - ★ Kazakh → English
 - ◆ Low-resource MT
- **♦** Submission Overview
 - → Joint-BPEs [1]
 - ◆ Transfer learning [2]
 - **♦** Back-Translation [3]
 - **♦** Ensemble

APPROACH

- ◆ Baseline model: NMT trained only on Kazakh-English parallel data
- ◆ Train on additional data
 - Parallel from Transfer Learning
 Parent language: Turkish → low-resource but related language
 Child language: Kazakh
 - Synthetic from Back-translation

Encoding	Or	iginal	Rom	anized
Word BPEs	molekül mol_ek_ül	молекула мол_ек_ ул_а	molekuel mol_ek_uel	molekula mol_ek_ula
Word BPEs	fosfor fos_for	фосфор ф_ос_фор	fosfor fos_for	fosfor fos_for

lexical relatedness; different scripts

EXPERIMENTAL STUDY

- 1 different lexical representations; maximize parameter sharing across languages
 - ◆ Joint-Byte Pair Encoding learned on concatenation of child-parent(JBPEs) [4]
 - ◆ Separate-Byte Pair Encoding learned separately on child-parent (SBPEs) [4]
 - ◆ N-gam Encoding (Soft-Decoupled Encoding and variants) [5]
- 2 romanization; increase overlap between Turkish and Kazakh
- 3 synthetic training data obtained by back-translation

RESULTS

Method	Romanization	Overlap
IDDEs	✓	0.44
JBPEs	X	0.13
CDDE	✓	0.18
SBPEs	X	0.04
N-gram	✓	0.61

Method	Original	Romanized
Baseline	4.33 ± 0.16	4.49 ± 0.02
JBPEs	9.35 ± 0.10	9.89 ± 0.14
SBPEs	7.10 ± 0.26	9.70 ± 0.28
N-gram	_	9.17 ± 0.21

Method	Synthetic	BLEU
Transfer		9.89
+ Back-Translation		9.38
+ ensemble(4)		9.94

REFERENCES

- [1] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. In ACL, 2016. [2] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning for low-resource neural machine translation. In EMNLP, 2016.
- [3] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with monolingual data. In ACL. [4] Graham Neubig and Junjie Hu. 2018. Rapid adaptation of neural machine translation to new languages. In EMNLP, 2018.
- [5] Xinyi Wang, Hieu Pham, Philip Arthur, and Graham Neubig. 2019. Multilingual neural machine translation with soft decoupled encoding. In ICLR, 2019.

EXPERIMENTAL SETUP

Neural Model

- Seq2Seq Encoder-Decoder
- ▶ 1-layer LSTM with attention

Data

Parallel:

- Kazakh-English: ~100K from News
 Commentary Corpus and English-Kazakh crawled corpus
- ► Turkish-English: ~200K from Setimes2 Corpus

Monolingual:

► English: ~100K from News Commentary corpus

Preprocessing

- Tokenization and Truecasing
- ▶ 32K merge operations for BPEs
- ▶ 64K 5-grams for N-gram encoding

CONCLUSIONS

- 1 transfer learning benefits BLEU even when transferring from low-resource and related language
- ② best BLUE → maximum surfacelevel parameter sharing between child-parent language pairs
- ③ NMT sensitive to the quality of the back-translation