FILTRAGEM ESPACIAL (PARTE 1)

ES235 - Aula 04 João Marcelo Teixeira Willams Costa

PROBLEMAS COMUNS EM IMAGENS

- Pouco contraste devido à falta de iluminação ou dispositivo de captura
- Ruído do sensor de captura
- Efeitos de serrilhamento (aliasing) devido à amostragem inadequada
- Borramento devido a movimentos

DEFINIÇÃO

- Filtragem é o processo de substituição de um pixel por outro valor com base em alguma operação ou função.
- As operações ou funções aplicadas na imagem original podem ser chamadas de filtros, máscaras, kernels, templates, janelas...
- A filtragem espacial manipula diretamente os pixels no plano da imagem.

Point Processing Methods

g(x,y) = T[f(x,y)]T operates on 1 pixel

Area or Mask Processing Methods

g(x,y) = T[f(x,y)]

T operates on a neighborhood of pixels

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	D	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	D	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	8	0	0	0
0	0	90	0	0	0	C	0	0	0
0	0	ð	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Completar com zeros

Acesso circular

APLICAÇÕES

- Enhancement: melhora contraste
- Smoothing: remove ruído
 - Salt and pepper (pixels brancos e pretos)
 - Impulse noise (ocorrências aleatórias de pixels brancos)
 - Gaussian noise (ocorrências aleatórias mas a intensidade vem de uma distribuição gaussiana)
- Template matching: detecta padrões conhecidos

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	60	90	90	90	60	30
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
10	20	30	30	30	30	20	10
10	10	10	0	0	0	0	0

F

G

0	0	0
0	1	0
0	0	0

Original

Identical image

0	0	0
1	0	0
0	0	0

=

Original

Shifted left By 1 pixel

Original

1	1	1		
1	1	1	=	
1	1	1		

Blur (with a mean filter)

Original

Sharpening filter (accentuates edges)

SHARPENING FILTER

before after

FILTRO GAUSSIANO

Filtered image

Input image

Filter function

FILTRO GAUSSIANO

$$G(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

Discrete approximation to Gaussian function with $\sigma = 1.0$

FILTRO GAUSSIANO

input

Gaussian filter

FILTRO DE MEDIANA

98 103 105 108 97 103 105 108 97 98 103 105 103 99 255 105 105	100
99 255 102 101 95 99 255 105	108 97
	101 95
101 103 107 255 93 107 108 101 103 107	255 93
93 101 112 108 107 255 93 101 112	108 10

FILTRO DE MEDIANA

input

Gaussian filter

Median filter

FILTRO DE MEDIANA

input

Median 7X7

COMPARAÇÃO ENTRE FILTRO DE MÉDIA, MEDIANA E GAUSSIANO

 Mean: blurs image, removes simple noise, no details are preserved

• Gaussian: blurs image, preserves details only for small σ .

 Median: preserves some details, good at removing strong noise

FILTROS SEPARÁVEIS

FILTROS SEPARÁVEIS

Filtering with a 2D Gaussian can be implemented using two 1D Gaussian horizontal filters as follows:

- first filter with an 1D Gaussian
- take the transpose of the result
- convolve again with the same filter
- transpose the result

Filtering with two 1D Gausians is faster !!

REFERÊNCIAS

```
Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
```

http://www.intelligence.tuc.gr/~petrakis/courses/computervision/temp/filtering.ppt

http://faculty.cs.tamu.edu/jchai/csce441_spring13/lectures/image-filtering.ppt

https://www.cse.unr.edu/~bebis/CS485/Lectures/ImageFiltering.ppt

http://www.cs.cornell.edu/courses/cs6670/2011sp/lectures/lec02_filter.ppt

http://www.cs.uwindsor.ca/~imran/courses/60-520/chen.ppt

https://courses.cs.washington.edu/courses/cse455/10au/notes/Filtering.ppt

http://www.eee.bham.ac.uk/spannm/Teaching%20docs/Computer%20Vision%20Course/Image%20Enhancement%20and%20Filtering.ppt