Thesis Chapter Plan

Tom Kealy

January 28, 2016

Contents

1	Introduction	2
2	Spectrum Sensing 2.1 Nyquist Approaches 2.2 Compressive Sensing 2.3 Architectures for Compressive Spectrum Sensing 2.3.1 Random Demodulator 2.3.2 Modulated Wideband Converter	2 2 3 3 3
3	Convex Optimisation 3.1 ADMM 3.2 The Proximity Operator 3.2.1 Properties 3.2.2 Motivation 3.2.3 Examples	3 3 3 3
4	Distributed Spectrum Sensing 4.1 Sensing Models	3 3
5	New Basis 5.1 Edge Detection	3
6	Compressive Inference	3
7	Numerical Results	3
8	Group Testing	3
a	Conclusions	3

1 Introduction

- Message of the Thesis
- Need for Dynamic spectrum management
- Chapter introduction

2 Spectrum Sensing

2.1 Nyquist Approaches

• Nyquist Theorem as convolution with fence post function

2.2 Compressive Sensing

- Comparison with Source coding: why are we collecting all this extra data?
- Can we colect less?
- This requires undersampling (relative to the number of Nyquist samples)
- Leads to tree questions 1 How to obtain samples, 2 how to reconstruct the signal, 3 How to perform inference on samples
- Signals which we can compress are sparse some examples
- Instead of measuring sparse coefficients measure correlations between signal and some other basis
- Incoherence
- Restricted Isometry Property
- Reconstruction: solve a linear program/do Bayesian inference.
- Example: single pixel camera

- 2.3 Architectures for Compressive Spectrum Sensing
- 2.3.1 Random Demodulator
- 2.3.2 Modulated Wideband Converter
- 3 Convex Optimisation
- 3.1 ADMM
- 3.2 The Proximity Operator
- 3.2.1 Properties
- 3.2.2 Motivation
- 3.2.3 Examples

4 Distributed Spectrum Sensing

- Why distributed sensing?
- Greedy vs Convex methods
- Why Convex Methods

4.1 Sensing Models

- Frequency Only vs Joint Frequency and Space
- 4.2 Constrained Optimisation on Graphs
- 5 New Basis
- 5.1 Edge Detection
- 6 Compressive Inference
 - What problem are we solving?
 - We can
- 7 Numerical Results
- 8 Group Testing
- 9 Conclusions