

Probability and Stochastic Processes

Lecture 01: Functions, Cardinality, Countability

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

29 July 2024

Functions

Definition (Function)

Given two sets A, B, a function $f : A \rightarrow B$ is a rule that maps each element of A to a unique element of B.

• For every $x \in A$,

$$f: \mathbf{x} \mapsto f(\mathbf{x}) \in B$$

- A is called the domain of f
- *B* is called the co-domain of *f*

Note

While every element of A is mapped to some element of B, the converse may not always be true.

Range of a Function

Definition (Range)

The range of a function $f: A \to B$, denoted by R(f), is the subset of B defined as

$$R(f) = \Big\{ y \in B : y = f(x) \text{ for some } x \in A \Big\}.$$

- Given $x \in A$, if f(x) = y, then y is called the image of x (under f)
- Given $y \in B$, the set $f^{-1}(y) \coloneqq \{x \in A : f(x) = y\}$ is called the pre-image of y

Image and Pre-Image

- A function $f: A \to B$ is said to be injective if f is one-one, i.e., each element of R(f) has a unique pre-image
- A function $f: A \to B$ is said to be surjective if it is onto, i.e., range = codomain
- A function $f: A \to B$ is said to be bijective if it is both injective and surjective

Note

- If $f: A \to B$ is bijective, then for each $y \in B$, there exists a unique element $x \in A$ such that $f^{-1}(y) = \{x\}$. In this case, we simply write $f^{-1}(y) = x$.
- Alternatively, if $f:A\to B$ is bijective, we have $f^{-1}:B\to A$.

Cardinality

Definition (Cardinality)

Notation: |A| = cardinality of set A

- Two sets A and B are said to be equicardinal (|A| = |B|) if there exists $f : A \to B$ bijective.
- $|B| \ge |A|$ if there exists $f: A \to B$ injective
- |B| > |A| if there exists $f: A \to B$ injective, and A and B are not equicardinal (i.e., no bijective function mapping A to B exists)

Note

|A| is representative of the number of elements in A.

Countability

- A set A is said to be finite if A is empty or $|A| = |\{1, \dots, n\}| = n$ for some $n \in \mathbb{N}$
- A set A is said to be countably infinite if $|A| = |\mathbb{N}|$, where $\mathbb{N} = \{1, 2, \ldots\}$ denotes the set of natural numbers
- A set A is countable if either $|A| < +\infty$ or $|A| = |\mathbb{N}|$

Remark

If A is countably infinite, then its elements may be listed as $A = \{a_1, a_2, \ldots\}$.

Examples of Countable Sets

- Set of odd natural numbers, set of even natural numbers
- Set of integers, $\mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$
- Set of prime numbers
- Set of rational numbers, Q

Q is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, note that

$$\mathbb{Q} \cap [0,1] = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \dots\right\}.$$

Step 2: "Countable union of countable sets is countable."

Lemma

Let \mathcal{I} be a countable index set, and let $\{A_i : i \in \mathcal{I}\}$ be a countable collection of countable sets. Then, $\bigcup_{i \in \mathcal{I}} A_i$ is countable.

Step 3: Complete the proof using the above lemma.

Examples:

$$f(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

• Image of
$$\frac{1}{2} = \begin{cases} 1, & \text{if } \frac{1}{2} \in A \\ 0, & 0 \cdot w. \end{cases}$$

• Pore-image of $\frac{1}{2} = \left\{ x \in \mathbb{R} : f(x) = \frac{1}{2} \right\} = \left\{ \frac{3}{2} = \frac{4}{3} \right\}$

· Suppose C S.R. Then,

$$f^{-1}(C) = \{x \in \mathbb{R} : f(x) \in C\}$$

remptyset

Examples:

1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $A \subseteq \mathbb{R}$

$$f(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

• Image of
$$\frac{1}{2} = \begin{cases} 1, & \text{if } \frac{1}{2} \in A \\ 0, & 0 \cdot w \end{cases}$$

• Pore-image of
$$\frac{1}{2} = \left\{ \pi \in \mathbb{R} : f(\pi) = \frac{1}{2} \right\} = \left\{ \frac{1}{2} = \frac{1}{2} \right\}$$

$$f^{-1}\left(\left[-1,2\right]\right) = \left\{\chi \in \mathbb{R}: f(\chi) \in \left[-1,2\right]\right\}$$

$$= \left\{ x \in \mathbb{R} : -1 \le f(x) \le 2 \right\}$$

$$f^{-1}\left(\left(2,\infty\right)\right) = \begin{cases} \chi \in \mathbb{R}: f(\chi) \in (2,\infty) \end{cases}$$

$$= \begin{cases} \chi \in \mathbb{R}: f(\chi) > 2 \end{cases}$$

$$= \emptyset$$

$$A_y = f^{-1}(y)$$
, $y \in R(f)$

$$\{A_y : y \in R(f)\}\$$
 - Collection of disjoint sets

$$\bigcup A_y = A$$

 $y \in R(f)$

Uncountable Sets

Definition (uncountable sets)

A set A is said to be uncountable if it is not countable, i.e., if $|A| > |\mathbb{N}|$.

Some examples of uncountable sets:

- Set of all real numbers, R

• Set of all irrational numbers,
$$\mathbb{R} \setminus \mathbb{Q}$$

$$|B| > |A|$$
 iff i) \exists injection $f: A \rightarrow B$

- Set of all infinite length binary strings, denoted commonly as $\{0,1\}^{\mathbb{N}}$ or $\{0,1\}^{\infty}$
- Power set of \mathbb{N} (collection of all subsets of \mathbb{N}), denoted $2^{\mathbb{N}}$

$\{0,1\}^{\mathbb{N}}$ is Uncountable – Proof

It suffices to demonstrate that there exists an injective map but no bijective map from $\mathbb N$

$$\mathsf{to}\{0,1\}^{\mathbb{N}}. = \mathsf{S}$$

$$2 \rightarrow 01\overline{0}$$

4

5

.

$\{0,1\}^{\mathbb{N}}$ is Uncountable - Proof

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f:\mathbb{N} o\{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

$\{0,1\}^{\mathbb{N}}$ is Uncountable - Proof

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f:\mathbb{N} o\{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g:\mathbb{N} o \{0,1\}^\mathbb{N}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots,$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

$$\bar{a}_{11} \bar{a}_{22} \bar{a}_{33} \bar{a}_{44} \cdots$$
 $\bar{a}_{jj} = 1 - \alpha_{jj}$

$\{0,1\}^{\mathbb{N}}$ is Uncountable – Proof

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f:\mathbb{N} o\{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g: \mathbb{N} \to \{0,1\}^{\mathbb{N}}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

Cantor's diagonalisation argument: Consider the binary string

$$b = \bar{a}_{11} \, \bar{a}_{22} \, \bar{a}_{33} \cdots,$$

where $\bar{a}_{jj}=1-a_{jj}$ for all $j\in\mathbb{N}$. Then, $\nexists\,n\in\mathbb{N}$ such that g(n)=b. Thus, g is not a bijection.

[0,1] is Uncountable – Proof

Let

$$\mathcal{D}=\left\{d_1=rac{1}{2},d_2=rac{1}{4},d_3=rac{3}{4},d_4=rac{1}{8},\dots
ight\} - ext{ set of dyadic rational numbers}$$

$$0 \rightarrow 0000 \cdots$$

$$1 \rightarrow 1111 \cdots$$

$$y = 0.100000 \cdots$$

$$0 \cdot a_1 a_2 a_3 a_4 \cdots$$

$$y = 0.011111 \cdots$$

$$y = 0.011111 \cdots$$

0100...

0111...

1000

0001111...

001000...

00111...1

[0, 1] is Uncountable – Proof

Let

$$\mathcal{D}=\left\{d_1=rac{1}{2},d_2=rac{1}{4},d_3=rac{3}{4},d_4=rac{1}{8},\dots
ight\} \ - \ ext{set of dyadic rational numbers}
ight.$$

Define $g:\{0,1\}^{\mathbb{N}} o [0,1]$ defined as

$$g:b=(b_1\,b_2\,\cdots)\mapsto egin{cases} \sum_{k=1}^{\infty}rac{b_k}{2^k}, & b
otin \mathcal{D},\ d_1, & b=(100\cdots)\ d_2, & b=(011\cdots)\ d_3, & b=(0100\cdots)\ d_4, & b=(0011\cdots)\ dots \end{cases}$$

Prove that g is a bijection!

- $2^{\mathbb{N}}$ is uncountable exercise!
- ullet $\mathbb R$ is uncountable Consider the function $f:[0,1] o\mathbb R$ defined via

$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right), \quad x \in [0, 1].$$

• $\mathbb{R} \setminus \mathbb{Q}$ is uncountable Write \mathbb{R} as

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}$$

Reading Exercise

To be acquainted with the formal proof of the lemma introduced on slide 7, see [Royden and Fitzpatrick, 2010, Section 1.3].

Royden, H. and Fitzpatrick, P. M. (2010). *Real Analysis*.

China Machine Press.