高等代数第五章

Copyright © 2024 Simon

第5章 特征值与特征向量

5.1 特征向量(eigenvector)与特征值(eigenvalue)

定义 A 为 $n \times n$ 矩阵, x 为非零向量, 若存在数 λ 使 $Ax = \lambda x$ 有非平凡解 x, 则称 λ 为 A 的特征值,x 称为对应于 λ 的特征向量 也可写作 $(A - \lambda I)x = 0$

定理1

三角矩阵的主对角线的元素是其特征值.

定理2

 $\lambda_1, \dots, \lambda_r$ 是 $n \times n$ 矩阵 A 相异的特征值, v_1, \dots, v_r 是与 $\lambda_1, \dots, \lambda_r$ 对应的特征向量, 那么向量集合 $\{v_1, \dots, v_r\}$ 线性无关.

• 一、逆矩阵的特征值

若矩阵A可逆, λ 是A的特征值,则 A^{-1} 的特征值是 $\frac{1}{\lambda}$,特征向量不变。

- 二、转置矩阵的特征值 矩阵A与其转置矩阵 A^T 具有相同的特征值。
- 三、伴随矩阵的特征值

若A可逆,A的特征值为 λ_i $(i=1,2,\cdots,n,\ \lambda_i\neq 0)$,则伴随矩阵 A^* 的特征值为 $\frac{|A|}{\lambda_i}$,特征向量不变。

5.2 特征方程(eigen equation)

定理(可逆矩阵定理(续))

设 $A \neq n \times n$ 矩阵,则 $A \neq n$ 起可逆的当且仅当

- a.0不是 A 的特征值.
- b.A 的行列式不等于零.

定理3 (行列式的性质)

设A和B是 $n \times n$ 矩阵.

- a. A 可逆的元要条件是 $det A \neq 0$.
- b. $\det AB = (\det A) (\det B)$.
- c. $\det A^T = \det A$.
- d. 若 A 是三角形矩阵,那么det A 是 A 主对角线元素的乘积.

e. 对 A 作行替换不改变其行列式值.作一次行交换,行列式值符号改变一次数来一行后,行列式值等于用此数来原来的行列式值.

定理4

若 $n \times n$ 矩阵 A 和 B 是相似的,那么它们有相同的特征多项式,从而有相同的特征值(和相同的重数).

5.3 对角化(diagonalize)

定理5 (对角化定理)

 $n \times n$ 矩阵 A 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量. 事实上, $A = PDP^{-1}$,D 为对角矩阵的充分必要条件是 P 的列向量是 A 的 n 个线性无关的特征向量.此时,D 的主对角线上的元素分别是 A 的对应于 P 中特征向量的特征值.

定理6

有 n 个相异特征值的 $n \times n$ 矩阵可对角化.

定理7

似乎不重要, 因为我也读不懂

定理8 (对角矩阵表示)

设 $A = PDP^{-1}$, 其中 D 为 $n \times n$ 对角矩阵,若 R^n 的基 β 由 P 的列向量组成,那么 D 是变换 $x \to Ax$ 的 β -矩阵.