HW3 - DVA

mmendiola3

1. Theory

a. Write down the formula for computing the gradient of the loss function used in Logistic Regression. Specify what each variable represents in the equation.

Cost function:

$$J(\theta) = \sum_{i=1}^{n} log(1 + \exp(y^{i} < \theta, x^{i} >))$$

We'll add a constant 1/n to scale the update by the number of training samples. Update function:

$$\begin{aligned} \theta_j &\leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} \sum_{i=1}^n \log(1 + \exp(y^i < \theta, x^i >)) \\ &= \theta_j - \alpha \sum_{i=1}^n \frac{1}{1 + \exp(y^i < \theta, x^i >)} \cdot \frac{\partial}{\partial \theta_j} \exp(y^i < \theta, x^i >) \\ &= \theta_j - \alpha \sum_{i=1}^n \frac{\exp(y^i < \theta, x^i >) \cdot \frac{\partial}{\partial \theta_j} y^i < \theta, x^i >}{1 + \exp(y^i < \theta, x^i >)} \\ &= \theta_j - \alpha \sum_{i=1}^n \frac{\exp(y^i < \theta, x^i >) \cdot y^i x^i_j}{1 + \exp(y^i < \theta, x^i >)} \\ &= \theta_j - \alpha \sum_{i=1}^n \frac{y^i x^i}{1 + \exp(-y^i < \theta, x^i >)} \end{aligned}$$

note: $\langle \theta, x^i \rangle$ is constant with the exception of $\theta_j \cdot x_j^i$

Terms:

- θ_j : The value of the current parameter vector at feature index j
- α : The learning rate, which decreases over each training iteration
- n: The number of training samples
- y^i : The classification label for training sample index i
- x^i : The feature vector for training sample index i
- $<\theta, x^i>$: The dot product of the parameter vector and the training sample at index i

b. Write pseudocode for training a model using Logistic Regression.

Calculate negative log likelyhood for a given x, y, and theta
function calc_cost(x, y, theta):
 return 1/(log(1 + exp(y *<theta, x>)))

```
x = training matrix (n examples x d features)
y = training labels (n labels of -1 or 1)

set x^i_0 = 1 # for bias term
alpha = <some learning rate>
epsilon = <some stopping threshold value>
theta = generate random vector of size d+1 (feature count + bias)
cost = calc_cost(theta)
delta_cost = cost # tracks change in the cost function

while delta_cost > epsilon:
   theta = theta - alpha * sum((y*x) / (1 + exp(-y * <theta, x>)))
   new_cost = calc_cost(x, y, theta)
   delta_cost = cost - new_cost
   cost = new_cost
```

theta is now trained against the sample set

c. Calculate the number of operations per gradient descent iteration. (Hint: Use variable n for number of examples and d for dimensionality.)

$$\sum_{i=1}^{n} f(i) = O(n \cdot f(i))$$

$$y^{i} \cdot x^{i} = O(d)$$

$$< \theta, x^{i} > = O(d)$$

$$y^{i} \cdot h = O(d)$$

$$\frac{f() \cdot g(d)}{1 + exp(h(d))} = O(d)$$

: .

$$\sum_{i=1}^{n} \frac{y^{i} x^{i}}{1 + \exp(-y^{i} < \theta, x^{i} >)} = O(nd)$$

There are a number of computations that are linear wrt d. The summation across samples adds the multiplicative factor n.