7 - Colour theorem

We know about 1 - colour theorem:

Any planar graph is four-colourable (vertex).

=> (considering dual of the graph): no more than four colours are required to colour map on a plane

There is an analougus version for maps on torus

Def: A ring toras is homeomorphic to cartesian product of two isomorphism, continuous inverse

circles $S^1 \times S^1$. It has genus 1.

Thm [Seven colour theorem]: We only need 7 colours to colour a

graph on torus.

A conversion is needed:

We consider the surface as vertices. There is an edge

iff the two surfaces are neighbours.

Note that this graph would be a connected graph.

Note that, since each edge borders at most two faces & each face borders at least 3 edges => 3F \(= 2 \) E

Thm:
$$V-E+F=a-ag$$
, g is the no of holes in $\geq \chi$ polyhedron

proof: Induction to the planar case.

Main proof: let
$$\chi(\alpha) = k$$
 . Note $\delta(\alpha) \ge k-1$.

Note
$$V-E+F=X \Rightarrow V-X=E-F \Rightarrow V-X=E=3$$

Note
$$\frac{f}{3} \geqslant \frac{1}{6} (k-1) \gamma \Rightarrow 1-\frac{\chi}{n} \geqslant \frac{1}{6} (k-1) \Rightarrow 1-\frac{\chi}{k} \geqslant \frac{1}{6} (k-1)$$

$$\Rightarrow k^2 - k \leq 6(k - \chi)$$

$$\Rightarrow 0 \geqslant k^2 - 7k + 6\chi \Rightarrow k \leq \left\lfloor \frac{7 + \sqrt{49 - 2h\chi}}{2} \right\rfloor$$

Torus has $\chi = \lambda - \lambda g = 0$, so k = 7!

In Torus, bound 7 is minimum.