Жизнь сама и есть наука, Эти пальчики считали, но ни разу не устали

> Ежемесячные Маленькие Шоти(Little Shoti)

Задача 1. Являются ли кольцом и полем следующие множества

- 1. Комплексные числа с целыми коэффициентами
- 2. Φ ункции, непрерывные на отрезке [-1,1] относительно поточечных сложения и умножения

Pewehue. Пункт 1 Пункт 2 \square

Задача 2. Пусть X - множество. Докажите, что 2^X (множество всех подмножеств X) является кольцом относительно операции симметрической разности $A\Delta B = (A \backslash B) \cup (B \backslash A)$ и пересечения, взятых в качестве сложения и умножения соответственно. Есть ли единица в данном кольце? Является ли оно полем?

Решение. Докажем, что является кольцом. Проверим некоторые неочевидные аксиомы:

- 1. $A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$
- $2. \ (A\triangle B)\cap C=(A/B\cup B/A)\cap C=(A\cap C)/(B\cap C)\cup (B\cap C)/(A\cap C)=(A\cap C)\triangle (B\cap C)$
- 3. X абелева : $A \triangle B = B \triangle A$, $(A \triangle B) \triangle C = A \triangle (B \triangle C) = A \triangle B \triangle C$
- 4. Нейтральные элемент "1" $x:A\cup x=A$ $\forall A\subseteq x$

Не является полем. Отсутствует обратый элемент: $A\subset X$ не существует $B:A\cap B=X,$ так как $A\cap B\subseteq A\subset X$ \square

Задача 3. Докажите, что множество конечных подмножеств множества X образует подкольцо в кольце из предыдущей задачи. Является ли подкольцо идеалом?

Решение. Решение □

Задача 4. Докажите, что множество нильпотентных элементов коммутативного кольца вместе с θ образуют идеал.

Решение. Решение 🗆

Задача 5. Доказать, что в кольце квадратных матриц порядка n c элементами из \mathbb{R} вырожденные матрицы и только они являются делителями нуля.

Решение. Решение \square