本科生期末试卷 (四)

一、选择题(每小题 1 分, 共 15 分)

1 运算器的核心功能部件是()。

	A	数据总线		В	ALU					
	С	状态条件	寄存器		D	通用寄	存器			
2	某 单)。	单片机字长	32位,	其存	E储容 量	为 4MB。	若按字	编址,	它的寻址	上范围是
	A	1M	B 4	MB	С	4M	D	1MB		
3 R/W#,		SRAM 芯片, 片的管脚弓					原和接地	也端外,	控制端	有E和
	A	20	B 2	8	С	30	D	32		
4	双站	岩口存储器	所以能	进行	高速读/	/写操作,	是因为	万采用	() 。	
A	高	速芯片	В	新	型器件					
С	流	水技术	D	两	套相互	独立的读	写电路			
5 以外,		也址指令中 个数常需3				算术运算	,除地	址码指	明的一个	操作数
A	堆	栈寻址方式	J	В	立即	寻址方式	s.			
С	隐	含寻址方式	t	D	间接	寻址方式	<u>.</u>			
6	为硕	角定下一条	微指令	的地	址,通常	常采用断	定方式,	其基本	本思想是	()
	A	用程序计	数器 PC	来产	生后组	微指令出	地址			
	В	用微程序	计数器	μPC ?	来产生	 后继微指	令地址			
控制产	C 生后	通过微指 继微指令地	• • • • •	控制生	字段由于	公 计者指	定或由	设计者	指定的判	別字段
	D	通过指令	中指定	一个-	专门字。	没来控制]产生后	继微指	令地址	
7	微科	呈序控制器	中,机	器指	令与微:	指令的关	系是() 。		

	A	每一条机器指令由一条微指令来执行
	В	每一条机器指令由一段用微指令编成的微程序来解释执行
	С	一段机器指令组成的程序可由一条微指令来执行
	D	一条微指令由若干条机器指令组成
8	CPU	中跟踪指令后继地址的寄存器是()。
	A	地址寄存器 B 程序计数器
	С	指令寄存器 D 通用寄存器
9	某等	序存器中的数值为指令码,只有 CPU 的()才能识别它。
	A	指令译码器 B 判断程序
	С	微指令 D 时序信号
10	为	实现多级中断,保存现场信息最有效的方法是采用()。
	A	通用寄存器 B 堆栈 C 主存 D 外存
11 时间。	采	用 DMA 方式传送数据时,每传送一个数据,就要占用一个()的
	A	指令周期 B 机器周期
	С	存储周期 D 总线周期
12 述中不		IEEE1394 串行标准接口与 SCSI 并行标准接口进行比较,指出下面陈的项是()。
A	前	者数据传输率高
В	前	者数据传送的实时性好
С	前	者使用6芯电缆,体积小
D	前	者不具有热插拔能力
13	下	面陈述中,不属于虚存机制要解决的问题项是()。
A	调	度问题

E	3 地址映射问题
(替换与更新问题
Ι	扩大物理主存的存储容量和字长
14	4 进程从运行状态转入就绪状态的可能原因是()。
A	A 被选中占有处理机时间
E	3 等待某一事件发生
(等待的事件已发生
Γ) 时间片已用完
15	5 安腾处理机的一组指令中,可以并行执行的指令是()。
A	A Id8 r1=[r3] B add r6=r8, r9
(SUB r3=r1, r4 D add r5=r3, r7
_,	填空题(每小题 2 分,共 20 分)
1 电路组	计算机系统的层次结构从下至上可分为五级,即微程序设计级(或逻辑级)、一般机器级、操作系统级、()级、()级。
2 者主 [§]	十进制数在计算机内有两种表示形式: ()形式和()形式。前要用在非数值计算的应用领域,后者用于直接完成十进制数的算术运算。
	一个定点数由符号位和数值域两部分组成。按小数点位置不同,定点数)和()两种表示方法。
	对存储器的要求是容量大、速度快、成本低,为了解决这三方面的矛盾, 机采用多级存储体系结构,即()、()、()。
5 举出 ³	高级的 DRAM 芯片增强了基本 DRAM 的功能,存取周期缩短至 20ns 以下。 三种高级 DRAM 芯片,它们是()、()。
	一个较完善的指令系统,应当有()、()、()、() 类指令。
	机器指令对四种类型的数据进行操作。这四种数据类型包括()型数()型数据、()型数据、()型数据。

- **8** CPU 中保存当前正在执行的指令的寄存器是(),指示下一条指令地址的寄存器是(),保存算术逻辑运算结果的寄存器是()和()。
 - 9 虚存系统中,通常采用页表保护、段表保护和键保护以实现()保护。
- 10 安腾体系结构采用分支推断技术,将传统的()分支结构转变为无分支的()代码,避免了错误预测分支而付出的代价。

三、简答题(每小题8分,共16分)

- 1 PCI 总线中三种桥的名称是什么?简述其功能。
- 2 安腾处理机采用的6种增强并行性功能的技术措施是什么?

四、证明题(12分)

设
$$|x| < (2^{n}-1)$$
, $|y| < (2^{n}-1)$, $|x+y| < (2^{n}-1)$
求证: $[x]_{ab}+[y]_{ab}=[x+y]_{ab}$ (mod 2^{n+1})

五、计算题(10分)

设存储器容量为 64M 字,字长为 64 位,模块数 m=8,分别用顺序和交叉方式进行组织。存储周期 T=100ns,数据总线宽度为 64 位,总线传送周期τ=50ns。

求: 顺序存储器和交叉存储器的带宽各是多少?

六、分析题(12分)

一种二进制 RS 型 32 位的指令结构如下:

6位	3 位	6 位	17 位
OP	Х	通用寄存器	位移量D

其中 OP 为操作码字段, X 为寻址模式字段, D 为偏移量字段, 其寻址模式定义为有效地址 E 算法及说明列表如下:

寻址方式

寻址方式	Х	有效地址E算法	说明	
(1)	000	E=D		
(2)	001	E=(PC)+D	PC 为程序计数器	
(3)	010	E=(R ₂)+D	R ₂ 为变址寄存器	
(4)	011	E=(R ₁)+D	R ₁ 为基址寄存器	
(5)	100	E=(D)		
(6)	111	E=(R ₃)		

请写出6种寻址方式的名称。

七、设计题(15分)

CPU 的数据通路如图 1 所示。运算器中 $R_0 \sim R_3$ 为通用寄存器,DR 为数据缓冲寄存器,PSW 为状态字寄存器。D-cache 为数据存储器,I-cache 为指令存储器,PC 为程序计数器(具有加 1 功能),IR 为指令寄存器。单线箭头信号均为微操作控制信号(电位或脉冲),如 LR_0 表示读出 R_0 寄存器, SR_0 表示写入 R_0 寄存器。

机器指令 "LDA(R3), R0"实现的功能是:以(R3)的内容为数存单元地址,读出数存该单元中数据至通用寄存器 R0 中。请画出该取数指令周期流程图,并在 CPU 周期框外写出所需的微操作控制信号。(一个 CPU 周期有 $T_1 \sim T_4$ 四个时钟信号,寄存器打入信号必须注明时钟序号)

