

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Finite State Machines 1
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Finite State Machines
 - Mealy and Moore Machines

What is a Finite State Machine?

• The mathematical foundation for combinational logic circuits is Boolean functions. What about sequential logic circuits?

What is a Finite State Machine?

• The mathematical foundation for combinational logic circuits is Boolean functions. What about sequential logic circuits?

Finite State Machine (FSM)

What is a Finite State Machine?

• The mathematical foundation for combinational logic circuits is Boolean functions. What about sequential logic circuits?

Finite State Machine (FSM)

CL

The CL block contains only combinational logic

What is a Finite State Machine?

• The mathematical foundation for combinational logic circuits is Boolean functions. What about sequential logic circuits?

Finite State Machine (FSM)

CL

clk

State

- The CL block contains only combinational logic
- The state block contains only memory elements

What is a Finite State Machine?

The mathematical foundation for combinational logic circuits is Boolean functions.
 What about sequential logic circuits?

Finite State Machine (FSM)

clk

State

- The CL block contains only combinational logic
- The state block contains only memory elements
 - Memory elements always D flip-flops in this course

What is a Finite State Machine?

The mathematical foundation for combinational logic circuits is Boolean functions.
 What about sequential logic circuits?

Finite State Machine (FSM)

- The CL block contains only combinational logic
- The state block contains only memory elements
 - Memory elements always D flip-flops in this course
- Each arrow represents wires

What is a Finite State Machine?

The mathematical foundation for combinational logic circuits is Boolean functions.
 What about sequential logic circuits?

Finite State Machine (FSM)

- The CL block contains only combinational logic
- The state block contains only memory elements
 - Memory elements always D flip-flops in this course
- Each arrow represents wires
- Essentially any sequential logic circuit (from a simple counter to a complex microprocessor) can be represented as a Finite State Machine
- Fundamental concept in Computer Science and Engineering
 - Studied as Finite Automaton in Automata Theory course

PES UNIVERSITY

• What about input and output?

- What about input and output? Four possibilities
 - ► Input to flip-flops not very useful

PES UNIVERSITY

- What about input and output? Four possibilities
 - ► Input to flip-flops not very useful

PES UNIVERSITY

- What about input and output? Four possibilities
 - ▶ Input to flip-flops not very useful

PES UNIVERSITY

- What about input and output? Four possibilities
 - ► Input to flip-flops not very useful

- What about input and output? Four possibilities
 - ► Input to flip-flops not very useful

- What about input and output? Four possibilities
 - Input to flip-flops not very useful

FINITE STATE MACHINES - 1 Mealy and Moore Finite State Machines

Think About It

- Classify the following two logic circuits into Mealy machine, Moore machine or neither
 - Also partition the logic into next state, output and state blocks

