COMBINATIONAL LOGIC CIRCUITS

INSTRUCTORS: NAME :N.A.S.HARSHIMA

MS.G.H.T. RANEESHA REGISTRATION NO :EN109012

MS.K.K.N. SADARA INDEX NO :22/ENG/108

GROUP :04

PRACTICAL DATE :20/10/2024

SUBMISSION DATE:08/11/2024

PRELIMINARY WORK

11 1

Table 1: Truth table of an exclusive-OR/exclusive-NOR gate

In	out	Output		
i spor V zob (В			
	D	XOR	XNOR	
0	0	0	1	
0	1	1	0	
. 1	0	1	0	
7)		0		
	D			

XOR - even parity generator xNOR - odd parity generator

- 2) i. Odd parity generator

 This adds a special bit (called a parity bit) to the data to make sure the total number of 15 in the data is odd. it helps to detect errors when sending data
 - ii. Even parity generator

 This adds a parity bit to the data to make sure the total number of 13 even. It also helps in catching errors during data transmission.
 - This checks if the number of 1s in the received data is odd. If it is not odd, it means there might be an error in the data.

iv Even parity checker.

This checks if the number of 15 in the received data is even. If it is not even, it means there might be a mistake in the data.

3 i. Table 2: Truth lable for parity generator with 3 bit inputs.

		2			100	1
	Inp			A + B	C ⊕S	Output.
A	В	C	5EL			
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	- vol = g	0 56	» - O	1	1
0	0	1	13	0	0	0
0	1	0	0: 17	ired.	0	J 1 12
0	. de 1	. 0	I_{i}	o pi si	. 1	0
0	1	. 1. 1.	0	$c \cdot I$ (a)	1 1. k ini	0
0	W 3	11 1 h	to 11 %	visiti.	0.	n il
1	0	0	0	,	0	1
1	0	0	1, 3	1	1	0
	0	1 50	0	1.	1	0
1	0	[/ L	1	to beat	0	
1	1	0.	0	0	0	0
1	1	0	1	0	1	1
1	1 - 1	1	0	0	1 . 1 11	~ 1
1.1	1	1	1	0	0	0
	0 0 0 0	A B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C O O O O O O O O O O O O O O O O O O O	A B C SEL 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	A B C SEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B C SEL O O O O O O O O O O O O O O O O O O O

ii. When SEL = 1 (ON) it works as an even parity generator

(A) . Sending data over the internet (Data transmission)
Memory Systems (RAM)

ìi.

	5			
Table 3	: Truth	table for	a 4-bit	even parity checker
Α	8	C	ρ	Even parity check
				1-Yes/0-No
0	0	0	0	1
٥	0	0	1	0
0	0	1 1	01	0
0	0	1	1	1
0	d in	0	,0	1 1 O 1 3 1 1 1 1
0	ď	0	1	1 .
0 -	. 0	1	0	t age 1
0	1	1	1	0
1	0	0	0	0
-1,	0	0	1	1 1
4	0	1,	0	1 4
ı	0	1	1	0
4	t :	0	0	0 1 0
1	1	0	1	0
1	$I(\cdot,\cdot)$	1	0	0
		1 1	1163	

Figure 01: 4-bit even parity checker using 3XNOR gates

25/10/24

(5) Table 4: Truth table of a half adder

Inp	ut	Outpu	it
Ao	β.	5.	Co
0	0	0	0
0	400	4	0
01	0		0
0.1	1 1	0	1.

Table 5: Truth table of full adder

	Input				out
A۰	С в.	1	Cin	6.	Co
0	0	D	0	0	0
0	1		0	9	0
-1	1 0		0	47)	0
1	0 1		0	0	1
O	0	1	1 0	1.6.	0
0	1	1	1 0	0	l l
1	0	i	1 4	0	1
1	1 1		1	2 12	Ì

- (i) carry propagation delay
- (11) In ALU (arithmetic and logic unit)

 To compute calculations (addition)

In audio processing, Digital Signal Processors use adders to combine signals in noise cancelling headphones. for cancelout external sounds, improving the quality of the audio output

PRACTICAL WORK

A.Parity Circuits

1.

Table 06: Data table of the odd/even parity generator circuit

	Input					
SEL	С	В	A	P		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	0		
0	1	1	0	0		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	0		

c) even parity generator

2. a) I. A ⊕ B

II.C⊕ GND

III. A \bigoplus B \bigoplus C \bigoplus GND

 $IV.A \oplus B \oplus C \oplus GND \oplus P$

b)

Table 07: Data table on the odd/parity checker

	Input					
P	С	В	A	Output CHK		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	0		
0	1	1	0	0		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	0		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	0		

B. Half Adders and Full Adders

1.a)

Table 08: Tuth table of half adder

Input		Output		
A_0	B_0	S_0	C_0	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

2.

Table 09: Truth table for full adder

Input			Output		
A_0	B_0	C_{in}	S_0	C_0	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

a)
$$S_0 = \overline{A_0} \cdot \overline{B_0} \cdot C_{in} + \overline{A_0} \cdot B_0 \cdot \overline{C_{in}} + A_0 \cdot \overline{B_0} \cdot \overline{C_{in}} + A_0 \cdot B_0 \cdot C_{in}$$

$$= \overline{A_0} (\overline{B_0} \cdot C_{in} + B_0 \cdot \overline{C_{in}}) + A_0 (\overline{B_0} \cdot \overline{C_{in}} + B_0 \cdot C_{in})$$

$$= \overline{A_0} (B_0 \oplus C_{in}) + A_0 (\overline{B_0} \oplus \overline{C_{in}})$$

$$= A_0 \oplus B_0 \oplus C_{in}$$

b)
$$C_0 = \overline{A_0} \cdot B_0 \cdot C_{in} + A_0 \cdot \overline{B_0} \cdot C_{in} + A_0 \cdot B_0 \cdot \overline{C_{in}} + A_0 \cdot B_0 \cdot C_{in}$$

= $B_0 \cdot C_{in} + A_0 \cdot (B_0 \oplus C_{in})$

3.

Table 09: Truth table of a 2-bit adder

Input					Output	
A_1	A_0	B_1	B_0	C_1	S_1	S_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0