Algorithmique des graphes

David Pichardie

18 Avril 2018

Bilan du CM7

- Arbres couvrants minimaux (ACM)
 - Propriété de la coupure
 - Algorithme glouton abstrait
 - Algorithme de Prim
 - Algorithme de Kruskal

Longueur d'un chemin

Définition

Dans un graphe G orienté pondéré, la *longueur* d'un chemin est la somme des poids des arcs qui composent ce chemin.

Exemple

Distance minimum

Définition

Dans un graphe G orienté pondéré, la distance minimum $\delta(i,j)$ entre deux sommets i et j est le minimum ($\in \mathbb{Z} + \{-\infty, +\infty\}$) des longueurs des chemins entre i et j.

Exemple

Distance minimum

Définition

Dans un graphe G orienté pondéré, la distance minimum $\delta(i,j)$ entre deux sommets i et j est le minimum ($\in \mathbb{Z} + \{-\infty, +\infty\}$) des longueurs des chemins entre i et j.

Exemple

cycle de poids négatif

Distance minimum

Définition

Dans un graphe G orienté pondéré, la distance minimum $\delta(i,j)$ entre deux sommets i et j est le minimum ($\in \mathbb{Z} + \{-\infty, +\infty\}$) des longueurs des chemins entre i et j.

Exemple

pas de chemin entre i et j

Plus courts chemins

Définition

Dans un graphe G orienté pondéré, un *plus court chemin* entre deux sommets i et j est **un** chemin de i à j dont la longueur ($\in \mathbb{Z}$) est la distance minimum entre i et j.

Exemple

Question

Définition

Dans un graphe G orienté pondéré, un *plus court chemin* entre deux sommets i et j est **un** chemin de i à j dont la longueur ($\in \mathbb{Z}$) est la distance minimum entre i et j.

Si j est accessible depuis i, est-ce qu'il y a forcément un plus court chemin entre i et j?

Plus courts chemins

Définition

Dans un graphe G orienté pondéré, un *plus court chemin* entre deux sommets i et j est **un** chemin de i à j dont la longueur ($\in \mathbb{Z}$) est la distance minimum entre i et j.

Contre-exemple

pas de plus-court chemin entre i et j

Calcul des plus courts chemins

- Applications
 - Calcul d'itinéraire sur une carte
 - Ordonnancement de tâche

Calcul des plus courts chemins

- Plusieurs versions
 - chemins entre deux sommets i et j
 - chemins à partir d'une origine unique
 - chemins entre tous couples de sommets

on s'appuie sur le calcul de tous les chemins à partir i

Calcul des plus courts chemins à partir d'une origine

- Les plus courts chemins,
 à partir de s, forment un
 arbre on suppose qu'il n'y a pas de cycle de poids négatif et que tous les sommet sont accessibles depuis s
- On souhaite calculer deux tableaux

- dist[i] : distance minimal de s à i
- pred[i] : prédécesseur de i dans un chemin minimal de s à i

```
v s 2 3 4 5 6 7 t
dist[] 0 9 32 45 34 14 15 50
ored[] s s 6 5 3 s s 5
```

on impose pred[s]=s

i doit être adjacent à pred[i]

Calcul des plus courts chemins à partir d'une origine

Théorème

Si j est un prédécesseur de i dans un chemin minimal de s à i, alors $\delta(s,i) = \delta(s,j) + w(j,i)$


```
v s 2 3 4 5 6 7 t
dist[] 0 9 32 45 34 14 15 50
pred[] s s 6 5 3 s s
```

Théorème

Si j est un prédécesseur de i dans un chemin minimal de s à i, alors $\delta(s,i) = \delta(s,j) + w(j,i)$

Preuve

- Supposons que j est un prédécesseur de i dans un chemin minimal de s à i, et montrons l'égalité.
 - Considérons un tel chemin qui va de s à i en passant par j puis l'arc (j,i). Il est de longueur δ(s,i).
 - Ce chemin de s à j est minimal sinon on pourrait construire un chemin de s à i strictement plus court que δ(s,i).
 - Le chemin considéré (de s à i) a donc pour longueur δ(s,j)
 +w(j,i).
 - Donc $\delta(s,i) = \delta(s,j) + w(j,i)$

Théorème

on suppose qu'il n'y a pas de cycle de poids négatif et que tous les sommet sont accessibles depuis s

Le graphe formé par la relation pred est un arbre

Preuve

- Montrons que ce graphe est acyclique.
 - S'il existait un cycle passant par un sommet i, cela signifierait qu'il existe un plus court chemin de s à i, passant par i, et même par s lui même (un sommet a un unique prédécesseur choisi)
 - C'est impossible car s est son propre prédécesseur.
- Montrons que le graphe est connexe.
 - Pour l'instant nous savons que c'est une forêt.
 - Mais si un arbre de cette forêt n'avait pas s pour racine, cela signifierai qu'il n'y a pas de chemin minimal de s à cette racine dans le graphe de départ. C'est en contradiction avec notre hypothèse.

Algorithme ordinal

- on se restreint à un graphe acyclique
- on parcours le graphe selon un ordre topologique
- à chaque étape, on examine le sommet i, mais on a déjà calculé dist[j] pour tous les prédécesseurs j de i dans le graphe.

```
dist[i] = min { dist[j] + w(j,i) | j prédécesseur de i }
```

Correct d'après les théorèmes précédents

Algorithme ordinal Version en arrière

```
ORDINAL(G,s)=
  n ← nombre de sommets de G
  ord ← TRI_TOPOLOGIQUE(G)
  dist ← [+oo, ..., +oo ]
  pour k=0 à n-1
     i \leftarrow ord[k]
     si i=s alors dist[i] ← 0
     sinon
         pour tout j∈Adj [i]
           si dist[j]+w(j,i)<dist[i]</pre>
           alors
              dist[i] \leftarrow dist[j]+w(j,i)
              pred[i] \leftarrow j
```

Algorithme ordinal

k	ord[k]	dist[s]	dist[2]	dist[6]	dist[7]	dist[3]	dist[5]	dist[4]	dist[t]
O	S	0	+∞	+∞	+∞	+∞	+∞	+∞	+∞
1	2	0	9	+∞	+∞	+∞	+∞	+∞	+∞
2	6	0	9	14	+∞	+∞	+∞	+∞	+∞
3	7	0	9	14	15	+∞	+∞	+∞	+∞
4	3	0	9	14	15	32	+∞	+∞	+∞
5	5	0	9	14	15	32	34	+∞	+∞
6	4	0	9	14	15	32	34	45	+∞
7	t	0	9	14	15	32	34	45	50

Algorithme ordinal Version en avant

```
ORDINAL(G,s)=
  n ← nombre de sommets de G
  ord ← TRI_TOPOLOGIQUE(G)
  dist ← [+00, ..., +00]
  dist[s] \leftarrow 0
                                    Correction: lorsqu'on traite i, sa distance est
                                           déjà correctement calculée
  pour k=0 à n-1
      i \leftarrow ord[k]
      pour tout j∈Adj [i]
          si dist[i]+w(i,j)<dist[j]</pre>
          alors
             dist[j] \leftarrow dist[i]+w(i,j)
             pred[j] \leftarrow i
```


k	ord[k]	dist[s]	dist[2]	dist[6]	dist[7]	dist[3]	dist[5]	dist[4]	dist[t]
O	S	0	9	14	15	+∞	+∞	+∞	+∞
1	2	0	9	14	15	33	+∞	+∞	+∞
2	6	0	9	14	15	32	44	+∞	+∞
3	7	0	9	14	15	32	35	+∞	59
4	3	0	9	14	15	32	34	+∞	51
5	5	0	9	14	15	32	34	35	50
6	4	0	9	14	15	32	34	35	50
7	t	0	9	14	15	32	34	45	50

Algorithme de Dijkstra

on se restreint à un graphe sans poids négatifs

```
DIJKSTRA(G,s)=
  dist \leftarrow [+00, ..., +00]
  dist[s] \leftarrow 0
  S ← {}
  S' ← tous les sommets de G
  tant que S' non vide
      i ← choisir i∈S', tel que dist[i] minimal
      S' \leftarrow S' - \{i\}
      S \leftarrow S+\{i\}
      pour tout j∈Adj [i]
            si dist[i]+w(i,j)<dist[j]</pre>
            alors
                dist[j] \leftarrow dist[i]+w(i,j)
               pred[j] \leftarrow i
```

Idée: S va toujours contenir les sommets dont nous avons déjà correctement calculé la distance minimale.

La correction n'est plus aussi évidente que pour l'algorithme ordinal car le graphe peut contenir des cycles

1 2 6 G E ∞ C ∞ D ∞ Η ∞ I ∞ J ∞ K ∞ L ∞ M ∞

M 5

E | 5

G 6

J 7

K | ∞

Н ∞

E 5
G 6
7

Н ∞

 ∞

K

G 6

J 7

K ∞

Η ∞

J

H 9

K ∞

K 8

H 9

9

H 9

