Kevin Many	4-5-20
7.1 Real Gases and	Ideal Gases
	mpressed to a volume less
The first law of thermoc	lynamics is applied here.
7.2 Equations of State Range of Applicability	for Real Gases and Their
van der Waals equation -	$\frac{D=RT}{V_{m-b}} \frac{Q}{V_{m}^{2}} = \frac{nRT}{V-nb} \frac{n^{2}Q}{V^{2}}$
	P=RT - 19 - 11-11 n2a Vm-b TkVm(Vn+b) V-nb Tk1 (V+nb)
a= strength of intermolecular b= minimum volume a molecular can occupy Vm = volume (constant mass)	T=temperature (K) R=pressure (bar) (bor) (L) V=volume (L) malk
Beathe-Bridgeman equation where $A = Ao(1 - \frac{\pi}{V_m})$	$-P = RT \left(1 - \frac{1}{\sqrt{m}}\right) \left(\frac{1}{\sqrt{m}}\right) \left(\frac{1}{\sqrt{m}}\right) = \frac{1}{\sqrt{m}}$ $R = B_0 \left(1 - \frac{1}{\sqrt{m}}\right)$
c, Ag Bo, A, B= parameters	
virial equation- P=RT	$\frac{1}{m} + \frac{B(T)}{V_m^2} + \frac{a}{mT} = \frac{B(T) = b - a}{RT}$
The first law of thermodyna	unics is applied here.

7.3 The Compression Factor

 $Z = \frac{Vm}{Vm} = \frac{PVm}{RT}$ Vm = volume (constant mass) (ideal gas)

Z= compression factor

 $\left(\frac{\partial z}{\partial P}\right) = \left(\frac{\partial z}{\partial (RVVm)}\right) = \frac{1}{RT} \left(\frac{\partial z}{\partial (I/Vm)}\right) = \frac{b}{RT} \left(\frac{c}{RT}\right)^{R}$

TB = a TB = Boyle Temperature
Rb

The first law of thermodynamics is applied here.

7.4 The Law of Corresponding States

 $P_r = \frac{8Tr}{3Vmr - 1} - \frac{3}{V_{mr}^2}$ where $T_r = \frac{1}{V_{mr}} = \frac{V_{mr}}{V_{mr}^2}$

2 gases are in the same asmesponding state it

error= 2-1 (100%)

The first law of Hermodynamics is applied here.

7.5 Figurity and the Equilibrium Constant for Real Gases $\ln f = \ln P + \int \frac{z-1}{P'} dP' \longrightarrow f = P + e^{\int \frac{z-1}{P'} dP'} = \gamma (P,T)P$

7-fugacity constant f=fugacity (efficient pressure)

The first law of Hermodynamics is applied here. 8.1 What Determines the Relative Stability of the Solids Liquids and Gas Phase? (24) - In (24) - Vm where M= (26) G=Gibbs

(24) - In (27) - Vm where M= (26) G=Gibbs (kJ/mol) M= chemical potential S= entropy (Jmol-1K-1) 5m > 5m > 5m The second law of Hermodynamics is applied here. 8.2 The Pressure-Temperature Phase Diagram 14- Albublimation= Attasion+ Attraporization H= exthalpy (KJ/mol) The first law of thermodynamics is applied here 8.3 The Phase Rule F=3-p F= degrees of freedom p= phise The first law of thermodynamics is applied here. 8.4 The Pressure-Volume and Pressure-Volume-Temperature Phase Diagrams The first law of thermodynamics is applied here.

T I I Down for the P-T
8.5 Providing a Theoretical Basis for the P-T Phase Dugram
Claperyron equation - dP - ASm AGrusion = AHrusion - TASiusion = O
The second law of thermodynamics is applied here.
8.6 Using the Claysius-Clapeyron Equation to T
Clarkins-Clapeyron equation- dP ASvap. Athan PAthon PTV
Feb Attrap of mp = - Attrap (TE-Ti)
The first law of thermodynamics is applied here.
8.7 The Vapor Pressure of a Rure Substance Depends on the Applied Pressure
RTIn (P) = $V_m(P-P^*)$ P^* - pressure of a pure substance (bar)
The first law of Hermodynamics is applied here.
8,8 Surface Tension
Pinner = Pout + 27caso h= 27caso
7= surface tension r= radius (m) [Point a fight
p.gh=gravitational field The first low of Hermodynam.

References Engel, T.; Reid P. Students solutions maryal [to accompany] Physical Chemistry third edition, 3rd ed.; Pearson: Boston, 2012; pp. 165-176, 181-200.