NUME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menţionându-se explicit numărul problemei şi subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar** numele şi prenumele studentului, precum şi grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 11:00-13:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fișier PDF, împreună cu fișierul cu subiectele examenului la adresa liviu.marin@fmi.unibuc.ro (Prof. dr. Liviu MARIN);
 - vor avea următoarea linie de subiect:
 Examen AnNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: joi, 28 ianuarie 2021, orele 14:00.

Analiză Numerică Examen – Anul III – Subiectul#27

- I. Fie A > 0 și funcția $\phi(x) = 2x Ax^2$.
 - (a) Arătați că dacă metoda iterativă de punct fix asociată funcției ϕ converge către o limită nenulă, atunci această limită este 1/A.
 - (b) Determinați o vecinătate a lui 1/A pentru care metoda iterativă de punct fix asociată funcției ϕ converge dacă aproximarea inițială x_0 se găsește în această vecinătate.
- II. Fie $f: [-1,1] \longrightarrow \mathbb{R}, f(x) = \frac{2}{1+x^2}$.
 - (a) Determinați polinomul de interpolare Hermite $H_3(x)$, $x \in [-1,1]$, asociat funcției f și nodurilor de interpolare $x_0 = -1$ și $x_1 = 1$.
 - (b) Calculați $I(f) = \int_{-1}^{1} f(x) dx$.
 - (c) Calculați $\int_{-1}^{1} H_3(x) dx$.
 - (d) Calculați cuadratura Simpson asociată funcției f și nodurilor $y_0 = -1$, $y_1 = 0$ și $y_2 = 1$, i.e. $I_2(f)$.
- III. Să se determine $x_0, x_1 \in [0, 1]$ şi $w_1 \in \mathbb{R}$ astfel încât formula de cuadratură $\widetilde{I}(f) = \frac{1}{2} f(x_0) + w_1 f(x_1)$ să aibă grad maxim de precizie pentru aproximarea integralei $I(f) = \int_0^1 f(x) dx$.
- IV. Fie funcția pondere $w:(-1,1) \longrightarrow \mathbb{R}$, w(x)=1. Determinați cea mai bună aproximare polinomială $p_n \in \mathbb{P}_n$, n=0,1,2, în norma $\|\cdot\|_{2,w}$ a funcției

$$f: (-1,1) \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} -1, & x \in (-1,0) \\ 0, & x = 0 \\ 1, & x \in (0,1). \end{cases}$$
 (1)