- 一、填空题(共 6 题, 每题 3 分, 共 18 分)
- 1. 向量 $\alpha = (3,1,4)^{\mathrm{T}}$, $\beta = (2,-1,0)^{\mathrm{T}}$, $\gamma = (1,-2,-1)^{\mathrm{T}}$, 则 $\alpha 2\beta + 3\gamma = ($).
- 2. 设 A 为 m 阶方阵, B 是 n 阶方阵, 且 $\begin{vmatrix} A & O \\ O & B \end{vmatrix} = a \neq 0$, $\begin{vmatrix} O & B \\ A & O \end{vmatrix} = b$,

则
$$\frac{b}{a} = ($$
).

3. 设
$$A\begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -2 \\ 4 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$
, 则 $|A| = ($).

- 4. α_1 , α_2 , α_3 , α_4 均为 4 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,且 α_2 , α_3 , α_4 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$; 如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,则 $Ax = \beta$ 的一般解为().
- 5. 设 3 阶实对称方阵 A 满足 $A^2 = A$,且 r(A) = 2,则 |A + I| = ().
- 6. 设实二次型 $f(x_1, x_2, x_3) = 4x_1^2 + 2x_2^2 + bx_3^2 + 4x_1x_2 + 2x_1x_3$ 是正定的, 则 b 的取值范围是()).
- 二、选择题(共 6 题, 每题 3 分, 共 18 分)
- 1. 设 A 为 $m \times n$ 矩阵,B 为 $n \times p$ 矩阵,则下列条件中,不能推出线性方程组 (AB)x = 0 有非零解的是().

(A)
$$m < p$$

(B)
$$m < n$$

(C)
$$n < p$$

(B)
$$m < n$$
 (C) $n < p$ (D) $r(B) < p$

(A)
$$-\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
;

(A)
$$-\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
; (B) $\left(-\frac{1}{2}\right)^{2019}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$;

(C)
$$-\frac{1}{2}\begin{pmatrix}1&1\\1&1\end{pmatrix}^{2019}$$
;

(C)
$$-\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^{2019};$$
 (D) $\left(-\frac{1}{2}\right)^{2019} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^{2019}$

3. 设 α 为 n 维列向量, $\alpha^{T}\alpha = 1$, $B = I - 2\alpha\alpha^{T}$,则下列说法错误的是().

- (A) B 是对称阵 (B) B 是可逆阵 (C) B 是正交阵 (D) B 是对角阵
- 4. $\alpha_1, \alpha_2, \cdots, \alpha_m (\alpha_i \in \mathbb{R}^n, i = 1, \cdots, m, m > 2)$ 线性相关,下列说法正确的是().
 - (A) 对任意常数 k_1, k_2, \cdots, k_m ,均有 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$.
 - (B) 任意 k 个向量 α_{i_1} , α_{i_2} , …, α_{i_k} 线性相关.
 - (C)对任意 $\beta \in \mathbb{R}^n$, α_1 , α_2 , ..., α_m , β 线性相关.
 - (D) 任意 k 个向量 α_{i_1} , α_{i_2} , …, α_{i_k} 线性无关.

- (A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似
- 6. 设二次型 $f(x_1, x_2, x_3)$ 在正交变换 x = Py 下的标准型为 $2y_1^2 + y_2^2 y_3^2$, 其中 $P = (\alpha_1, \alpha_2, \alpha_3);$ 若 $Q = (\alpha_1, -\alpha_3, \alpha_2),$ 则 $f(x_1, x_2, x_3)$ 在正交变换 x = Qy 下 的标准型为().

(A)
$$2y_1^2 - y_2^2 + y_3^2$$

(B)
$$2y_1^2 + y_2^2 - y_3^2$$

(C)
$$2y_1^2 - y_2^2 - y_3^2$$

(D)
$$2y_1^2 + y_2^2 + y_3^2$$

- 三、计算题(共 4 题, 第 1, 2 题每题 8 分, 第 3, 4 题每题 6 分, 共 28 分)
- 1. 计算 n 阶行列式 $\begin{vmatrix} 2 & 0 & 0 & 0 & 0 & 2 \\ -1 & 2 & 0 & \cdots & 0 & 2 \\ 0 & -1 & 2 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & 2 \\ 0 & 0 & \cdots & -1 & 2 & 2 \\ 0 & 0 & \cdots & 0 & 1 & 2 \end{vmatrix}$
- 2. 设向量组 $\alpha_1 = (1,2,1,3)^T$, $\alpha_2 = (-1,-1,0,-1)^T$, $\alpha_3 = (1,4,3,7)^T$,

 $\alpha_4 = (-1, -2, 1, -1)^T$, $\alpha_5 = (1, 4, 5, 9)^T$; 求向量组的秩及一个极大线性无关组,

并将其余向量用极大线性无关组线性表示.

3. 已知 \mathbb{R}^3 的两组基为 $\mathbb{B}_1 = \{\alpha_1, \alpha_2, \alpha_3\}, \ \mathbb{B}_2 = \{\beta_1, \beta_2, \beta_3\}, \ \mathrm{其中}$

$$\alpha_1 = (1,2,0)^T, \ \alpha_2 = (1,0,1)^T, \ \alpha_3 = (0,1,-1)^T;$$

$$\beta_1 = (0,1,1)^T$$
, $\beta_2 = (1,1,0)^T$, $\beta_3 = (1,0,2)^T$;

- (1) 求基 B_1 到基 B_2 的过渡矩阵;
- (2) 若 3 维向量 γ 在基 $\mathbf{B_2}$ 下的坐标为 $(1,3,1)^{\mathrm{T}}$,求 γ 在基 $\mathbf{B_1}$ 下的坐标.

4. 已知
$$A = \begin{pmatrix} 1 & -1 & 1 \\ a & 4 & -2 \\ -3 & -3 & b \end{pmatrix}$$
是可对角化的, $\lambda = 2$ 是 A 的二重特征值,求 a, b .

四、证明题(共 1 题, 共 8 分)

设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关,并且

$$\beta_1 = \alpha_1 + \alpha_2$$
, $\beta_2 = \alpha_2 + \alpha_3$, ..., $\beta_m = \alpha_m + \alpha_1$;

证明: 当m为偶数时, β_1 , β_2 ,…, β_m 线性相关;

当m为奇数时, $\beta_1,\beta_2,\cdots,\beta_m$ 线性无关.

五、解方程组(共1题,14分)

讨论
$$a,b$$
 取何值时,线性方程组
$$\begin{cases} x_1+x_2+2x_3-x_4=1\\ x_1-x_2-2x_3-5x_4=3\\ (a-1)x_2+2x_3+bx_4=b-3\\ x_1+x_2+2x_3+(b-2)x_4=b+3 \end{cases}$$

无解、有无穷多解、有唯一解,并且在有无穷多解时写出方程组的通解.

六、二次型(共1题,14分)

已知二次型 $f(x_1, x_2, x_3) = x^T A x$,利用正交变换法可化为标准型 $y_1^2 + y_2^2$,

相应的正交矩阵 Q 的第三列为 $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^T$;

- (1)写出 A 的全部特征值;
- (2) 求出二次型 $f(x_1, x_2, x_3)$.