Math 444 Review

Leslie Rodriguez

June 17, 2015

Chapters 1 and 2.

Equivalence Relations.

Let X be a nonempy set. A relation on X is a subset of $X \times X$, where $X \times X$ is the set of ordered pairs $\{(x,y): x,y \in X\}$. We write $x \sim y$ if and only if (x,y) is a member of this relation. A relation on X that satisfies the following properties:

- Reflexivity. For each $x \in X$, we have that $x \sim x$.
- Symmetry. If $x \sim y$ for some $x, y \in X$, then it follows that $y \sim x$.
- Transitivity. If $x \sim y$ and $y \sim z$ for some $x, y, z \in X$, then it follows that $x \sim z$.

is said to be an *equivalence relation*. If we have an equivalence relation, then for $x \in X$, we let [x] denote the set of all elements of X that are related to x; that is, $[x] = \{y \in X : y \sim x\}$. The set [x] is also referred to as the *equivalence class* of x.

Exercise 1.

Prove that if n is a natural number, then

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
 (1)

Proof. We shall proceed by induction on n.

Base Case. n = 1. Since $1 = \frac{1(1+1)(2\cdot 1+1)}{6}$, it follows that (1) holds whenever n is 1.

Inductive Hypothesis. Suppose that (1) holds for some positive integer k. That is,

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}.$$
 (2)

To complete the proof, we must now show that (1) holds for k + 1. Thus

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6},$$
[From (2)]

so that (1) holds for k + 1; thus it follows by Mathematical Induction that (1) holds for all natural numbers.

Functions.

Let $f: X \to Y$ be a function. Then f is

- injective (or one-to-one) if $f(x_1) = f(x_2)$, with $x_1, x_2 \in X$, then $x_1 = x_2$.
- surjective (or onto) if for every $y \in Y$, there exists an $x \in X$ such that f(x) = y.
- well defined if $x_1 = x_2$, with $x_1, x_2 \in X$, then $f(x_1) = f(x_2)$.

A function $h: S \to T$ is called an *identity* on S if h(s) = s for all $s \in S$. Now consider the functions $f: X \to Y$ and $g: Y \to X$. The function g is an inverse function of f if $f \circ g$ is an identity on Y and if $g \circ f$ is an identity on X.

Integers mod n.

Let n be a positive integer. Define a relation on \mathbb{Z} as follows:

 $x \sim y$ if and only if there exists $k \in \mathbb{Z}$ such that x = y + kn.

Now we shall show that this is an equivalence relation on \mathbb{Z} .

Proof. Let x, y, and z be integers. We have

- Reflexivity. Clearly $x \sim x$ since $x = x + 0 \cdot n$; so this relation is reflexive.
- Symmetry. Suppose that $x \sim y$. Then it follows by definition that x = y + kn for some integer k. That is, y = x + (-k)n, so that $y \sim x$. Thus this relation is symmetric.
- Transitivity. Suppose that $x \sim y$ and $y \sim z$. By definition, we have that $x = y + k_1 n$ and $y = z + k_2 n$ for some integers k_1 and k_2 . Thus $x = (z + k_2 n) + k_1 n = z + (k_1 + k_2)n$, so that $x \sim z$. We have thus shown that this relation is transitive.

Since the relation is reflexive, symmetric, and transitive, it follows by definition that it is an equivalence relation. \Box

To emphasize the dependence of this relation on n, we usually write $x \equiv y \pmod{n}$ instead of $x \sim y$. Also the equivalence class of an integer y is denoted $[y]_n$.

Example. $[2]_{11} = \{\ldots, 2, 13, 24, 35, \ldots\}.$

Exercise 2.

Proof that addition mod n is well-defined; i.e.,

$$[a]_n + [b]_n = [a+b]_n.$$

Proof. Let $x \in [a]_n$ and $y \in [b]_n$. Then $x \equiv a \pmod{n}$ and $y \equiv b \pmod{n}$. By definition, $n \mid x - a$ and $n \mid y - b$. So, by definition, x - a = np and y - b = nq for some integers p and q. Then we have:

$$(x-a) + (y-b) = np + nq \qquad \Rightarrow (x+y) - (a+b) = n(p+q) \qquad \Rightarrow,$$

so $n \mid (x+y) - (a+b)$. Therefore, by definition, $x+y \equiv a+b \pmod{n}$, as desired.

Chapter 3.

Groups.

A group is a set G together with a binary operation * that satisfies the following:

- 1. Associativity. For all $x, y, z \in G$, we have that x * (y * z) = (x * y) * z.
- 2. Identity. There exists an element e in G such that e * x = x = x * e for all $x \in G$.
- 3. Inverses. For all $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = e = g^{-1} * g$.

Subset and Subgroups.

Let (G,*) be a group and let H be a subset of G. Then H is called a subgroup of G if:

- 1. Closure. For all $h_1, h_2 \in H$, we have that $h_1 * h_2 \in H$.
- 2. Identity. $e \in H$, where e is the identity of G.
- 3. Inverses. For all $h \in H$, there exists $h^{-1} \in H$ such that $h * h^{-1} = e = h^{-1} * h$. or, equivalently, if
 - 1. H is not empty, and
 - 2. H is closed under *; that is $h_1 * h_2 \in H$ for all $h_1, h_2 \in H$.

Some Notations.

 $M_n(\mathbb{R}) := \text{the set of all } n \times n \text{ matrices with real entries}$

 $GL_n(\mathbb{R}) :=$ the set of all $n \times n$ invertible matrices with real entries

 $SL_n(\mathbb{R}) := \text{the set of all } n \times n \text{ matrices with real entries and determinant} = 1$

When are the three sets defined above groups?

	Binary Operation		
Set	Addition	Multiplication	Is abelian?
$M_n(\mathbb{R})$	Yes	No	Yes
$GL_n(\mathbb{R})$	No	Yes	No
$SL_n(\mathbb{R})$	No	Yes	No

Theorem 3.4.

Let G be a group. If $a, b \in G$, then $(ab)^{-1} = b^{-1}a^{-1}$.

Proof. We have
$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$
. By uniqueness, $(ab)^{-1} = b^{-1}a^{-1}$.