

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

ÁLGEBRA LINEAL (R211 - CE9) 2024

1.2 Espacios Vectoriales

Recordemos un poco lo visto en Álgebra y Geometría Analítica II sobre espacios vectoriales:

- $F = \mathbb{R}$ ó $F = \mathbb{C}$. $\alpha \in F$ escalar.
- El vectorial espacio de las n-uplas de escalares de $F: \mathbb{F}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{F}, i = 1, \dots, n\}$
 - Elementos: $\overline{u} = (x_1, \dots, x_n)$, $\overline{v} = (y_1, \dots, y_n)$ n-uplas o vectores. Igualdad: componente a componente.
 - Suma: $\overline{u} + \overline{v} = (x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n).$
 - Producto por escalar: $\alpha \overline{v} = \alpha(x_1, \dots, x_n) := (\alpha x_1, \dots, \alpha x_n)$.
- \blacksquare El espacio vectorial de las matrices $m \times n$ de escalares de $F \colon F^{m \times n} = \dots$
 - Elementos: $A = (a_{ij}), B = (b_{ij})$ matrices $m \times n$ a coeficientes en F. Igualdad: ...
 - Suma: $A + B = (a_{ij}) + (b_{ij}) := (a_{ij} + b_{ij}).$
 - Producto por escalar: $\alpha A = \alpha(a_{ij}) := (\alpha a_{ij})$.
- El espacio vectorial de los polinomios de grado menor o igual a n con coeficientes en $F: F_n[X]...$
 - Elementos: ...
 - Suma: ...
 - Producto por escalar: ...
- ¿qué otros conocemos?
- Ejercicio 1 Recordar los axiomas...
 - ..
 - ...
 - ...

Definición 1 Sea \mathbb{F} un cuerpo de escalares. Sea un conjunto V dotado de dos operaciones, una llamada suma, denotada por el símbolo +, que a un par de elementos v y w de V les asigna un elemento que denotamos v+w, y otra llamada producto por escalar denotada por el símbolo \cdot que a un escalar $\alpha \in \mathbb{F}$ y un elemento $v \in V$ le asigna un elemento que denotamos $v \cdot v$. Diremos que la terna $v \cdot v$ es un $v \cdot v$ es un $v \cdot v$ con vectorial si se verifican los siguientes axiomas:

- 1. Clausura de la suma: $si\ v, w \in V$ entonces $v + w \in V$.
- **2.** Asociatividad de la suma: $si\ v, w, u \in V$ entonces (v+w) + u = v + (w+u).
- 3. Existencia de elemento neutro para la suma: existe $\overline{0} \in V$ tal que $v + \overline{0} = \overline{0} + v = v$.
- **4.** Existencia de opuestos para la suma: dado $v \in V$ existe $w \in V$ tal que $v + w = w + v = \overline{0}$.
- **5.** Conmutatividad de la suma: $si\ v, w \in V$, entonces v + w = w + v.
- 6. Clausura del producto por escalar: si $\alpha \in \mathbb{F}$ y $v \in V$ entonces $\alpha \cdot v \in V$.
- 7. Asociatividad del producto por escalar: si $\alpha, \beta \in \mathbb{F}$ y $v \in V$ entonces $(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v)$.
- 8. Distributiva del producto por escalar con respecto a la suma de escalares: si $\alpha, \beta \in \mathbb{F}$ y $v \in V$ entonces $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$.
- 9. Distributiva del producto por escalar con respecto a la suma: si $\alpha \in \mathbb{F}$ y $v, w \in V$ entonces $\alpha \cdot (v + w) = \alpha \cdot v + \alpha \cdot w$.
- 10. Unitariedad del producto por escalar: $si \ v \in V$, entonces $1 \cdot v = v$.

A los elementos v de un espacio vectorial V se los denomina vectores.

Proposición 1 En un F-ev $(V, +, \cdot)$ se verifican:

- (a) El elemento neutro para la suma es único.
- **[b]** Dado un vector $v \in V$, existe un único opuesto, que denotaremos -v.
- (c) Dado un vector $v \in V$, se tiene que $0 \cdot v = \overline{0}$.
- **[d]** Dado un escalar $\alpha \in F$, se tiene que $\alpha \cdot \overline{0} = \overline{0}$.
- [e] Dado un vector $v \in V$, se tiene que $(-1) \cdot v = -v$.
- (f) Dados un escalar $\alpha \in F$ y un vector $v \in V$ que verifican que $\alpha \cdot v = \overline{0}$, se tiene que o bien $\alpha = 0$ o bien $v = \overline{0}$ (sin excluír que ambas puedan ocurrir en simultáneo).

Desafío 1 Intentar hacer las pruebas!

Ejercicio 2 Hacer las pruebas.

Ejemplos 1 1. A los sospechosos de siempre $(\mathbb{R}^n, \mathbb{C}^n)$ le agregamos $\mathbb{Q}^n, \mathbb{Z}_2^n$, etc.

- 2. De la misma forma, si F es un cuerpo, tenemos que $F^{n\times m}$, F[X] son F-ev con las sumas y productos habituales.
- 3. Sea X es un conjunto no vacío y F un cuerpo. Definimos el conjunto $\mathcal{F}^X = \{f : X \to F\}$. ¿Qué operaciones suma y producto son naturales definir? ¿Obtenemos un F-ev?
- 4. Pensemos ahora lo siquiente:
 - a) \mathbb{R} es un \mathbb{R} -ev y no es \mathbb{C} -ev (¿por qué?).
 - b) \mathbb{C} es un \mathbb{R} -ev y un \mathbb{C} -ev.
 - c) \mathbb{Q} es y no es
- 5. Ø no es ev sobre ningún cuerpo F (¿por qué?).
- 6. El espacio de las sucesiones de escalares: dado un cuerpo F definimos el conjunto F^{∞} cuyos elementos son sucesiones de escalares de F: $x = (x_1, x_2, ...), x_i \in F$ para todo $i \in \mathbb{N}$. Definimos

una suma y un producto por escalar de la forma natural: componente a componente. Así, resulta F^{∞} un F-ev. (Ejercicio: probar todas las afirmaciones).

Desafío 2 Pensar en cómo justificar esto sin probar todos los axiomas de ev.

7. $\mathbb{R}^{[0,1]} = \{f : \dots \to \dots\}$ es un \mathbb{R} -ev con la suma y producto por escalar habituales. $\sin(x), x^{23} - \sqrt{3}x^5, e^{2x-1}$ son funciones de este ev, y hay muchas más. Pero hay más, hay funciones que tienen un salto o funciones que tienen infinitos saltos.

 $C([0,1]) = \{f: [0,1] \to \mathbb{R}: f \ es \ continua \} \ es \ un \ \mathbb{R}$ -ev con la suma y producto por escalar habituales.

Tenemos que $C([0,1]) \subset \mathbb{R}^{[0,1]}$, y la suma y el producto por escalar son las mismas, y ambas resultan ser \mathbb{R} -ev. Esto no es casual, en la próximas sección formalizaremos el concepto de subespacio vectorial luego de ver algunos ejemplos más.