Package 'ImDiallel'

April 19, 2023

Version 1.0.1	
Date 2023-04-14	
Title Linear Fixed/Mixed Effects Models for Diallel Crosses	
Maintainer Andrea Onofri <andrea.onofri@unipg.it></andrea.onofri@unipg.it>	
Depends R (>= $3.5.0$)	
Imports multcomp, plyr, sommer, tidyr	
Description Several service functions to be used to analyse datasets obtained from diallel experiments within the frame of linear models in R, as described in Onofri et al (2020) <doi:10.1007 s00122-020-03716-8="">.</doi:10.1007>	
<pre>URL https://www.statforbiology.com/lmDiallel/</pre>	
License GPL (>= 2)	
NeedsCompilation no	
Author Andrea Onofri [aut, cre], Niccolo Terzaroli [aut]	
Repository CRAN	
Date/Publication 2023-04-19 16:10:02 UTC	
R topics documented:	
	2
	3
	4
	5
•	7
	8
griffing56	9
	0
	1
Hi	3
int.matrix	J

2 blockMatrixDiagonal

	lm.diallel	14
	lmDiallel-methods	16
	lonnquist61	17
	matBlock	18
	MDD	19
	mmer.diallel	20
	model.matrixDiallel	21
	REC	22
	RGCA	23
	RSCA	24
	SCA	25
	SP	26
	SCA	27
	VEi	28
	zhang05	29
Index		31
block	latrixDiagonal Creates block diagonal matrix. It is used internally.	

Description

This function takes a list of matrices and creates a block diagonal matrix. It is used to fit multi-environment diallel models

Usage

blockMatrixDiagonal(matList)

Arguments

matList It is a list of matrices to be combined

Value

Returns a matrix object

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

DD 3

Examples

```
a <- matrix(1:16, 8, 2)
b <- matrix(1:9, 3, 3)
c <- list(a, b)
blockMatrixDiagonal(c)</pre>
```

DD

Dominant Deviation effect

Description

DD effect to fit Hayman2 model with 1m function

Usage

```
DD(P1, P2, type = "fix", data)
```

Arguments

Details

a design matrix of n-1 parentals

Value

A design matrix for the DD effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

4 diallelMET

Examples

diallelMET

Factitious dataset for Diallel analysis

Description

Multi-environment half-diallel dataset with six parentals, in five blocks and ten environments; the dataset is factitious and was obtained by Monte Carlo simulation.

Usage

```
data("diallelMET")
```

Format

A data frame with 1050 observations on the following 5 variables.

Env environment, a factor with 10 levels Block block, a factor with 5 levels Par1 male parent, a factor with 6 levels Par2 female parent, a factor with 6 levels Yield yield, a numeric vector

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

Source

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

```
data("diallelMET")
```

diallelMod-methods 5

diallelMod-methods

Functions to retreive full list of genetical effects

Description

Diallel model parameters are estimated under a set of restrictions and, therefore, the methods 'coef' and 'summary' do not return the full list of genetical parameters. Therefore, the 'glht.diallelMod' method can be used, which works by way of a series of helper functions, providing the necessary contrast matrices.

Usage

```
## S3 method for class 'diallelMod'
glht(model, linfct, ...)
```

Arguments

model a model object (OPTIONAL)
linfct a diellel.eff() function
... Other optional arguments

Details

...

Value

summary Returns the full list of genetical parameters

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

6 expand.diallel

expand.diallel

Create a Data Frame from All Combinations of Parentals

Description

This is a modification of the 'expand.grid()' function working specifically with diallel experiments. It creates a data frame from all combinations of the supplied vector of parents, depending on the mating scheme.

Usage

```
expand.diallel(pars, mating = 1)
```

Arguments

pars a vector of parentals

mating The type of mating scheme. 1: full diallel experiment; 2: no reciprocals; 3: no

selfs; 4: no reciprocals and no selfs

Value

returns a data.frame object

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

```
pars <- LETTERS[1:4]
expand.diallel(pars, mating = 3)</pre>
```

GCA 7

GCA

General Combining Ability effect

Description

GCA effect to fit Hayman1 & 2 and Griffing 1 & 2 models with 1m function

Usage

```
GCA(P1,P2,type = "fix", data)
```

Arguments

P1 a variable for the first parent P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the GCA effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

8 GCAC

GCAC

General Combining Ability without considering the selfed parents

Description

Design matrix for GCAC, useful to fit Gardner & Eberhart model 3 (GE3) with 1m function

Usage

```
GCAC(P1,P2,type = "fix", data)
```

Arguments

P1 a variable for the first parent
P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the GCAC effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

```
data("hayman54")
GCAC(Par1,Par2, data=hayman54)
```

griffing56

griffing56

Griffing's dataset for diallel analysis

Description

Data for a diallel in maize, with no selfs and no selfed parents. Data are the means of several replicates.

Usage

```
data("griffing56")
```

Format

A data frame with 36 observations on the following 5 variables

Par1 male parent, a factor with 8 levels

Par2 female parent, a factor with 8 levels

Yield Maize Yield

Cob Cob weight

Shelled Shelled corn weight

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

Source

Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Science 9, 463–493.

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

10 H.BAR

H.BAR	Average heterosis effect

Description

H.BAR effect to fit GE2 and GE3 models with 1m function

Usage

```
H.BAR(P1, P2, type = "fix", data)
```

Arguments

P1	a variable for the first parent
P2	a variable for the second parent
type	a variable for model selection. May be "fix" (fixed model) or "random" (random model).
data	a 'data.frame' where to look for explanatory variables

Value

A design matrix for the H.BAR effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

hayman54

hayman54

Hayman dataset for diallel analysis

Description

Data for a diallel in tobacco with 2 reps

Usage

```
data(hayman54)
```

Format

A data frame with 128 observations on the following 4 variables

Block block, a factor with 2 levels

Par1 male parent, a factor with 8 levels

Par2 female parent, a factor with 8 levels

Ftime mean flowering time (days), a numeric vector

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

Source

B. I. Hayman (1954a). The Analysis of Variance of Diallel Tables. Biometrics, 10, 235-244. Table 5, page 241. http://doi.org/10.2307/3001877

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

12 Hi

Ηi

Average heterosis effect

Description

H.i effect to fit GE2 Model with 1m function

Usage

```
Hi(P1, P2, type = "fix", data)
```

Arguments

```
P1 a variable for the first parent
P2 a variable for the second parent
type a variable for model selection. May be "fix" (fixed model) or "random"
(random model).
```

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the Hi effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

int.matrix 13

int.matrix	Utilities for fitting diallel models.

Description

These functions are used internally by the package, but they can also called from the outside, to fit specific needs

Usage

```
int.matrix(Xa, Xb)
checkScheme(P1, P2)
emm.diallel(obj)
```

Arguments

Ха	Incidence matrix of genetic effects
Xb	Incidence matrix for an external factor
P1	A vector with parentals
P2	A vector with parentals
obj	A glht object

Details

The function 'int.matrix()' produces the incidence matrix for the interaction between two main effects; 'Xa' and 'Xb' are two incidence matrices for two main effects. The function 'checkScheme()' takes two vectors containing the codings for parentals (P1 and P2), retrieves the mating scheme and detects whether there are missing crosses. The function 'emm.diallel()' is used with multi-environment diallel experiments to obtain the expected marginal means for genetic effects across environments.

Value

The function 'int.matrix()' returns an incidence matrix. The function 'checkScheme()' returns a list, containing the main traits of the mating scheme. The function 'emm.diallel()' retrns a data.frame with the marginal means, standard errors and t-test statistics.

Note

No further notes

Author(s)

Andrea Onofri

14 lm.diallel

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

Examples

```
data(griffing56)
head(griffing56)
checkScheme(griffing56$Par1, griffing56$Par2)
```

lm.diallel

Fitting diallel linear models

Description

Wrapper function for lm.fit and diallel models. It can be used to carry out several powerful methods for linear models, such as 'summary()', anova() or 'glht()' in the 'multcomp' package.

Usage

```
lm.diallel(formula, Block, Env, fct = "GRIFFING2", data)
```

Arguments

fct

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.' formula' uses the regular R syntax to specify the response variable and the two variables for parentals (e.g., Yield ~ Par1 + Par2)

Block used to specify an optional variable coding for blocks Env used to specify an optional variable coding for environments

a string variable coding for the selected model. 8 main diallel models: Hayman's model 1 (="HAYMAN1"), Hayman's model 2 (="HAYMAN2"), Griffing's model 1 (="GRIFFING1"), Griffing's model 2 (="GRIFFING2"), Griffing's model 3 (="GRIFFING3"), Griffing's model 4 (="GRIFFING4"), Gardner-Eberhart model 2 (="GE2") and Gardner-Eberhart model 3 (="GE3"). The strings "GE2r" and "GE3r" can be used to specify the 'enhanced' GE2 and GE3

models, including the effect of reciprocals (REC).

data a 'data.frame' where to look for explanatory variables

Details

Notations for the 8 models

Model name in 'lm.diallel()' Model notation in 'lm()'

HAYMAN1 Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) + RGCA(Par1, Par2) + RSCA(Par1, Par2)

GRIFFING1 $Y \sim GCA(Par1, Par2) + tSCA(Par1, Par2) + REC(Par1, Par2)$ Im.diallel 15

```
\begin{array}{lll} GRIFFING2 & Y \sim GCA(Par1, Par2) + tSCA(Par1, Par2) \\ HAYMAN2 & Y \sim GCA(Par1, Par2) + MDD(Par1, Par2) + DD(Par1, Par2) + SCA(Par1, Par2) + RGCA(Par1, Par2) + WE.i(Par1, Par2) + WE.i(Par1, Par2) + WE.i(Par1, Par2) + SCA(Par1, Par2) + SCA(Par1, Par2) \\ GE3 & Y \sim H.BAR(Par1, Par2) + SP(Par1, Par2) + GCAC(Par1, Par2) + SCA(Par1, Par2) \\ GE2r & Y \sim H.BAR(Par1, Par2) + VE.i(Par1, Par2) + H.i(Par1, Par2) + SCA(Par1, Par2) + RGCA(Par1, Par2) \\ GE3r & Y \sim H.BAR(Par1, Par2) + SP(Par1, Par2) + GCAC(Par1, Par2) + SCA(Par1, Par2) + RGCA(Par1, Par2) \\ \end{array}
```

Value

lm.diallel returns an object of class c("diallel", "lm"), that is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values

fitted.values the fitted mean values

rank the numeric rank of the fitted linear models

weights (only for weighted fits) the specified weights

df.residual the residual degrees of freedom

call the matched call

terms the terms object used

contrasts (only where relevant) the contrasts used

xlevels (only where relevant) a record of the levels of the factors used in fitting

call the matched call

offset the offset used (missing if none were used)

y if requested, the response used

x if requested, the model matrix used

model if requested (the default), the model frame used

na.action (where relevant) information returned by model.frame on the special handling of NAs

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

16 ImDiallel-methods

lmDiallel-methods

Methods for diallel model fitting

Description

The object returned by the 'lm.diallel()' function is of classes 'lm' and 'diallel'. Specific methods were devised to explore the 'diallel' object.

Usage

```
## S3 method for class 'diallel'
summary(object, MSE, dfr, ...)
## S3 method for class 'diallel'
vcov(object, MSE, ...)
## S3 method for class 'diallel'
anova(object, MSE, dfr, type = 1, ...)
## S3 method for class 'diallel'
model.matrix(object, ...)
```

Arguments

object an object of class diallel.

MSE Mean Square Error, when it cannot be derived from model fit

dfr Residual degrees of freedom, when they cannot be derived from model fit

type It is used to select between Type I (sequential) or Type III (marginal) F tests in

ANOVA

... Other optional arguments

Details

To be defined

lonnquist61

Value

vcov.diallel: a variance-covariance matrix summary.diallel: a data.frame of estimated parameters with standard errors anova.diallel: an ANOVA table predict.diallel: a vector of predictions from a diallel model model.matrix.diallel: a design matrix for the fitted diallel model

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

Examples

lonnquist61

Half diallel of maize dataset

Description

Diallel experiment with six maize varieties and no reciprocals. The data here are means adjusted for block effects.

Usage

```
data("lonnquist61")
```

Format

A data.frame with 21 observations on the following 3 variables.

Par1 male parent, a factor with 6 levels
Par2 female parent, a factor with 6 levels
Yield mean across blocks, a numeric vector

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

18 matBlock

Source

J. H. Lonnquist, C. O. Gardner. (1961) Heterosis in Intervarietal Crosses in Maize and Its Implication in Breeding Procedures. Crop Science, 1, 179-183. Table 1.

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

Mohring, Melchinger, Piepho. (2011). REML-Based Diallel Analysis. Crop Science, 51, 470-478. http://doi.org/10.2135/cropsci2010.05.0272

C. O. Gardner and S. A. Eberhart. 1966. Analysis and Interpretation of the Variety Cross Diallel and Related Populations. Biometrics, 22, 439-452. http://doi.org/10.2307/2528181

Examples

matBlock

Design matrix for blocks

Description

It creates a disign matrix for block effects (with sum-to-zero constraint). It is used internally

Usage

```
matBlock(formula)
```

Arguments

formula

a formula containing the block variables

Value

A design matrix for the block effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

MDD 19

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

Examples

```
data("hayman54")
matBlock(~hayman54$Block)
```

MDD

Mean Dominance Deviation effect

Description

It relates to the difference between the average yield of selfed parents and the average yield of crosses. DD effect to fit Hayman2 model with 1m function

Usage

```
MDD(P1, P2, type = "fix", data)
```

Arguments

P1 a variable for the first parent P2 a variable for the second parent

type a variable for the model

data a 'data.frame' where to look for explanatory variables

Value

A design matrix for the MDD effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

```
data("hayman54")
MDD(Par1, Par2, data = hayman54)
```

20 mmer.diallel

mmer.diallel	Fitting random diallel linear models	
mmer . drdirer	T titing random diditer tinear models	

Description

Wrapper function for the function 'mmer()' in the 'sommer' package. It can be used to fit random diallel models and retreive variance components for main effects.

Usage

```
mmer.diallel(formula, Block, Env, fct, data, type = "all")
```

Arguments

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. formula' uses the regular R syntax to specify the response variable and the two variables for parentals (e.g., Yield ~ Par1 + Par2)
used to specify an optional variable coding for blocks
used to specify an optional variable coding for environments
a 'data.frame' where to look for explanatory variables
a string variable coding for the selected model. 8 main diallel models: Hayman's model 1 (="HAYMAN1"), Hayman's model 2 (="HAYMAN2"), Griffing's model 1 (="GRIFFING1"), Griffing's model 2 (="GRIFFING2"), Griffing's model 3 (="GRIFFING3"), Griffing's model 4 (="GRIFFING4"), Gardner-Eberhart model 2 (="GE2") and Gardner-Eberhart model 3 (="GE3"). The strings "GE2r" and "GE3r" can be used to specify the 'enhanced' GE2 and GE3 models, including the effect of reciprocals (REC).
a string variable coding for the selected model. It is only used for multi-environment experiments and it is equal to "all" when both the environment and genetical effects are random or "environment" when the environment is random and genetical effects are fixed.

Value

Returns a data frame of variance components with standard errors

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Covarrubias-Pazaran, G., 2016. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLOS ONE 11, e0156744. https://doi.org/10.1371/journal.pone.0156744

model.matrixDiallel 21

Examples

model.matrixDiallel

Incidence matrices for Diallel model parametrisation

Description

model.matrixDiallel is useful to build design matrices, according to the user-defined (or default) parameterisation for lm function. It shares the same syntax of the lm.diallel function.

Arguments

formula	an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.'formula' uses the regular R syntax to specify the response variable and the two variables for parentals (e.g., Yield \sim Par1 + Par2)	
Block	used to specify an optional variable coding for blocks	
Env	used to specify an optional variable coding for environments	
data	a 'data.frame' where to look for explanatory variables	
fct	a string variable coding for the selected model. 6 main diallel models: H man's model 1 (="HAYMAN1"), Hayman's model 2 (="HAYMAN2"), Gring's model 1 (="GRIFFING1"), Griffing's model 2 (="GRIFFING2"), Gardr Eberhart model 2 (="GE2") and Gardner-Eberhart model 3 (="GE3"). Strings "GE2r" and "GE3r" can be used to specify the 'enhanced' GE2 and G	

Details

model.matrixDiallel creates a design matrix for a diallel model, as specified in the 'fct' argument.

models, including the effect of reciprocals (REC).

Value

The design matrix for a diallel model as specified in the 'fct' argument.

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

22 REC

Examples

REC

Reciprocal Effect not parted into RGCA and RSCA

Description

Build incidence matrix to fit reciprocal effects in Griffing's model 1, 2, 4 (REC) and 3 (REC.G3) with 1m function

Usage

```
REC(P1, P2, type = "fix", data)
```

Arguments

P1 a variable for the first parent P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the reciprocal (REC) effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

RGCA 23

Examples

RGCA

Reciprocal General Combining Ability

Description

RGCA effect to fit Hayman1 & 2 models with 1m function

Usage

```
RGCA(P1,P2,type = "fix", data)
```

Arguments

P1 a variable for the first parent P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the RGCA effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

24 RSCA

Examples

RSCA

Reciprocal Specific Combining Ability

Description

RSCA effect to fit Hayman 1 & 2 models with 1m function

Usage

```
RSCA(P1,P2,type = "fix",data)
```

Arguments

P1 a variable for the first parent P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of all possible combinations between parentals with no selfs and no reciprocals

Value

A design matrix for the RSCA effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

SCA 25

Examples

SCA

Specific Combining Ability

Description

SCA effect to fit Hayman2, Griffing3 (SCA.G3), GE2 and GE3 (SCA.GE) models with 1m function

Usage

```
SCA(P1, P2, type = "fix", data)
SCA.G3(P1, P2, type = "fix", data)
```

Arguments

P1	a variable for the first parent
P2	a variable for the second parent
type	a variable for model selection. May be "fix" (fixed model) or "random" (random model).
data	a 'data.frame' where to look for explanatory variables

Details

a design matrix of all possible combinations between parentals with no selfs and no reciprocals

Value

A design matrix for the SCA effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

26 SP

Examples

SP

Selfed Parents effect

Description

SP effect to fit GE3 model with 1m function

Usage

```
SP(P1, P2, type = "fix", data)
```

Arguments

P1 a variable for the first parent
P2 a variable for the second parent
type a variable for model selection. May be "fix" (fixed model) or "random"
(random model).

a 'data.frame' where to look for explanatory variables

Details

data

a design matrix of n-1 parentals

Value

A design matrix for the SP effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

```
data("hayman54")
SP(Par1,Par2, data=hayman54)
```

tSCA 27

tSCA

Total Specific Combining Ability

Description

Total SCA to fit Hayman1, Griffing1 and Griffing2 models with 1m function

Usage

```
tSCA(P1,P2,type = "fix", data)
```

Arguments

P1 a variable for the first parent
P2 a variable for the second parent
type a variable for model selection. May be "fix" (fixed model) or "random"
(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of all possible combinations between parentals with selfs but no reciprocals

Value

A design matrix for the tSCA effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

28 VEi

VEi Variety Effect

Description

VE.i effect to fit GE2 model with 1m function

Usage

```
VEi(P1, P2, type = "fix", data)
```

Arguments

P1 a variable for the first parent
P2 a variable for the second parent

type a variable for model selection. May be "fix" (fixed model) or "random"

(random model).

data a 'data.frame' where to look for explanatory variables

Details

a design matrix of n-1 parentals

Value

A design matrix for the VEi effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

zhang05

zhang05

Data for diallel analysis from Zhang (2005)

Description

Data collected in XXX with 5 parents, 2 reps and 2 environments

Usage

```
data("zhang05")
```

Format

A data frame with 60 observations on the following 6 variables.

Par1 male parent, a factor with 5 levels

Par2 female parent, a factor with 5 levels

Block block, a factor with 2 levels

Combination combination between environment and block, an integer vector

Env environment, a factor with 2 levels

Yield yield, a numeric vector

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

Source

Zhang, Y., Kang, M.S. and Lamkey, K.R. (2005), DIALLEL-SAS05: A Comprehensive Program for Griffing's and Gardner&Eberhart Analyses. Agron. J., 97: 1097-1106. https://doi.org/10.2134/agronj2004.0260

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

30 zhang05

```
 \label{eq:dMod2} $$ dMod2 <- lm(Yield ~ Env/Block + H.BAR(Par1, Par2) + VEi(Par1, Par2) + Hi(Par1, Par2) + SCA(Par1, Par2), data = zhang05) $$ summary(dMod2)$$ coefficients
```

Index

* ~diallel DD, 3 GCA, 7 GCAC, 8 H.BAR, 10 Hi, 12 matBlock, 18 MDD, 19	* diallel diallelMod-methods, 5 lm.diallel, 14 lmDiallel-methods, 16 mmer.diallel, 20 * genetic effects lm.diallel, 14 mmer.diallel, 20
model.matrixDiallel, 21 REC, 22	anova.diallel(lmDiallel-methods), 16
RGCA, 23 RSCA, 24	blockMatrixDiagonal,2
SCA, 25 SP, 26	<pre>checkScheme(int.matrix), 13</pre>
tSCA, 27 VEi, 28 * ~genetic effects DD, 3	DD, 3 diallel.eff(diallelMod-methods), 5 diallelMET, 4 diallelMod-methods, 5
GCA, 7 GCAC, 8 H.BAR, 10	emm.diallel(int.matrix), 13 expand.diallel,6
Hi, 12 matBlock, 18 MDD, 19 model.matrixDiallel, 21 REC, 22 RGCA, 23 RSCA, 24 SCA, 25 SP, 26 tSCA, 27 * ~gentic effects VEi, 28 * datasets diallelMET, 4 griffing56, 9	G1.eff (diallelMod-methods), 5 G2.eff (diallelMod-methods), 5 G3.eff (diallelMod-methods), 5 G4.eff (diallelMod-methods), 5 GCA, 7 GCAC, 8 GCAmis (GCA), 7 GE2.eff (diallelMod-methods), 5 GE2r.eff (diallelMod-methods), 5 GE3.eff (diallelMod-methods), 5 GE3r.eff (diallelMod-methods), 5 glht.diallel (lmDiallel-methods), 16 glht.diallelMod (diallelMod-methods), 5 griffing56, 9
hayman54, 11 lonnquist61, 17 zhang05, 29	<pre>H.BAR, 10 hayman1.eff (diallelMod-methods), 5 hayman2.eff (diallelMod-methods), 5</pre>

32 INDEX

```
hayman54, 11
Hi, 12
int.matrix, 13
lm.diallel, 14
lmDiallel-methods, 16
lonnquist61, 17
{\tt matBlock}, \textcolor{red}{18}
MDD, 19
MET1.eff(diallelMod-methods), 5
MET2.eff (diallelMod-methods), 5
MET3.eff (diallelMod-methods), 5
mmer.diallel, 20
model.matrix.diallel
         (lmDiallel-methods), 16
model.matrixDiallel, 21
predict.diallel(lmDiallel-methods), 16
REC, 22
RGCA, 23
RSCA, 24
SCA, 25
SCAmis (SCA), 25
SP, 26
summary.diallel(lmDiallel-methods), 16
tSCA, 27
vcov.diallel(lmDiallel-methods), 16
VEi, 28
zhang05, 29
```