Dipl.-Ing. Michael Zimmermann

Buchenstr. 15 42699 Solingen ☎ 0212 46267

https://kruemelsoft.hier-im-netz.de

BwMichelstadt@t-online.de

Michelstadt (Bw)

Übersicht

Handregler für die Modellbahn	2
Kabelgebundene Handregler	3
FRED	3
FREDi	4
SWD-FRED	5
Kabellose Handregler	6
wiFRED	6
wiThrottle-Server – Einstellungen	7
wiThrottle-Server und F2	7
wiThrottle	8
Zusammenfassende Übersicht	9
Den FRED benutzen	9
Standardisierung der Funktionstastenbelegung	9
Dispatchen	9
Handregler-ID	10
Weitere Funktionen	11
Momentfunktionen	11
Segeln und Bremsen	11
Segeln	11
Bremsen	
Versionsgeschichte	
Anhang A: Kommerzielle Handregler	13
Roco Lokmaus2	
Roco Multimaus	13
Digitrax DT402	14

Die Nennung von Marken- und Firmennamen geschieht in rein privater und nichtgewerblicher Nutzung und ohne Rücksicht auf bestehende Schutzrechte.

Bildquellen – sofern nicht anders angegeben: FREMO

Diese Zusammenstellung wurde nach bestem Wissen und ohne Funktionsgarantie in der Hoffnung erstellt, dass sie nützlich ist. Wenn sie nicht nützlich ist – dann eben nicht.

Handregler für die Modellbahn

Seit der Verwendung des Digitalsystems DCC¹ werden bei mir und bei jedem Modultreffen Handregler verwendet, die an das LocoNET®² angeschlossen werden. Die verwendeten Handregler wurden vom FREMO³ entwickelt und werden auch weiterentwickelt werden. Diese Info stellt eine Übersicht über die bei mir im Einsatz befindlichen Handregler dar.

Typisch für die eingesetzten Handregler ist:

- ➤ Es kann keine Lokadresse eingegeben werden die Zuweisung einer Lokadresse zu einem Handregler erfolgt über das sogenannte "<u>Dispatchen</u>" mit einer LocoNET®-fähigen Zentrale:
 - o Frankenzentrale mit der Software RKDCC (DCC-Format, Unterstützung bis F8, wird auf Modultreffen nicht mehr zum Fahren eingesetzt)
 - TwinCenter von Fleischmann (DCC- und FMZ-Format, Unterstützung bis F8; für die Unterstützung von höheren Funktionen wird wenigstens V2.000 benötigt, aktuell verfügbare Version ist 2.001)
 - o Intellibox I (DCC, Selectrix- und MM-Format, Unterstützung bis F8; für die Unterstützung von höheren Funktionen wird wenigstens V2.000 benötigt)
- Alle Selbstbau-Handregler verwenden in einheitliches Gehäuse und haben die wichtigsten Steuerelemente immer an der gleichen Position (einheitliche Haptik)

Die Namensgebung der Handregler im FREMO ist einfach: der Grundbestandteil der Namen ist immer FRED: Fremos einfacher Drehregler.

3. Juni 2025

-

¹ DCC = Digital Command Control, https://de.wikipedia.org/wiki/Digital Command Control

² LocoNET® = Bussystem, https://de.wikipedia.org/wiki/LocoNet

³ FREMO = Freundeskreis europäischer Modellbahner, https://www.fremo-net.eu/

Kabelgebundene Handregler

FRED

Der (klassische) FRED ist der erste Handregler und gleichzeitig der Erste, der nachgebaut wurde. Es sind nur wenige Bedienelemente vorhanden:

- > Ein Potentiometer für die Geschwindigkeitseinstellung
- Ein Umschalter für die Fahrtrichtung
- ➤ Links daneben der NOT-Halt-Taster
- Oben drei Tasten für die Funktionen FO, F1 und F2
- Darunter eine Status-LED

https://fremodcc.sourceforge.net/diy/fred/fred d.html

Für diesen FRED gibt es auch eine Erweiterung auf vier Funktionstasten:

- > Ein Potentiometer für die Geschwindigkeitseinstellung
- Ein Umschalter für die Fahrtrichtung
- Links daneben der NOT-Halt-Taster
- Oben vier Tasten für die Funktionen F0, F1, F2 und F3
- Darunter eine Status-LED
- Je nach Tastenkombination bei der Fahrzeugübernahme ("Dispatchen") haben die Funktionstasten ein anderes Verhalten

https://fremodcc.sourceforge.net/diy/fred/4th function key.de.html

Hardwarebeschreibung (Schaltplan und Platinenlayout) und Software (inklusive Quellcode) sind frei verfügbar.

Auch Uhlenbrock hatte seinerzeit den Handregler-Trend erkannt und einen kommerziellen FRED auf den Markt gebracht.

FREDi

Vier Funktionstasten waren schnell zu wenig und im FREMO wurde eine neue Version entwickelt. Diese Version bekam – auch zur Unterscheidung von der bisherigen Version – zusätzlich ein i für inkremental im Namen: auch ein Hinweis auf die Möglichkeit, anstelle eines Potentiometers einen Impulsdrehgeber für die Geschwindigkeitseinstellung zu verwenden.

- ➤ Ein Potentiometer oder Impulsdrehgeber für die Geschwindigkeits-einstellung
- > Um den Geschwindigkeitssteller herum drei Status-LEDs
- Darunter in der Potentiometer-Version
 - Links die NOT-Halt-Taste (im Bild rot)
 - o In der Mitte ein Umschalter für die Fahrtrichtung
- ➤ In der Senkrechten 6 Tasten für die Funktionen. Die Funktionen F0 bis F4 sind direkt erreichbar, die Funktionen F5 bis F8 über die Shift-Taste (unten, im Bild gelb).

(links die Inkremental-Version, rechts die Potentiometer-Version) https://fremodcc.sourceforge.net/diy/fred2/fredi d.html

Hardware-Version

➤ V1.7

Software-Version

V1.5, von mir modifiziert zu V1.5A

Diese Version wurde mit einer zweiten Shift-Taste erweitert, um weitere Funktionen ansteuern zu können:

- Ein Potentiometer oder Impulsdrehgeber für die Geschwindigkeitseinstellung
- Um den Geschwindigkeitssteller herum drei Status-LEDs
- Darunter in der Potentiometer-Version (hier ohne Bild)
 - o Links die NOT-Halt-Taste
 - o In der Mitte ein Umschalter für die Fahrtrichtung
- ➤ In der Senkrechten 6 Tasten für die Funktionen Die Funktionen F0 bis F4 sind direkt erreichbar, die Funktionen F5 bis F8 über die Shift-Taste (unten Mitte, im Bild gelb). Mit der zweiten Shift-Taste (unten rechts versetzt neben der ersten mittleren Shift-Taste, beide im Bild gelb) sind die Funktionen F9 bis F12

Werden beide Shift-Tasten gleichzeitig betätigt, sind die Funktionen F13 bis F16 verfügbar.

(das Bild zeigt die Inkremental-Version)

https://fremodcc.sourceforge.net/diy/fred2/fredi d.html

Hardware-Version

V1.7-A (von mir passend modifizierte Platine)

Software-Versionen

- > V1.5, von mir modifiziert zu V1.5A, Funktionen F0 bis F8
- V2.0, V2.1, Funktionen F0 bis F12
- V2.2, Funktionen F0 bis F16
- V2.2.2 Bugfix für INC-Fredis

Hardwarebeschreibung (Schaltplan und Platinenlayout bis HW V1.10) und Software (inklusive Quellcode bis zu SW V1.5) sind frei verfügbar.

SWD-FRFD

Die übernächste Version⁴ vom FREMO kommt von der sogenannten SouthWest-Division innerhalb des FREMO (daher auch SWD-FRED). Bei diesem Handregler wurden der Tastenumfang erweitert und die Tasten neu angeordnet. So sind die Funktionen F0 bis F8 direkt erreichbar, die Funktionen F9 bis F12 bzw. F16 (abhängig von der Software-Version) über eine Shift-Taste. Diese Hardware unterstützt nur noch Potentiometer für die Geschwindigkeitseinstellung.

- Ein Potentiometer für die Geschwindigkeitseinstellung
- Um den Geschwindigkeitssteller herum drei Status-LEDs
- Darunter
 - Links die NOT-Halt-Taste (im Bild rot)
 - In der Mitte ein Umschalter für die Fahrtrichtung
 - Rechts die Shift-Taste (im Bild gelb)
- > Darunter in drei Reihen insgesamt neun Funktionstasten für die Funktionen.

Die Funktionen F0 bis F8 sind direkt erreichbar, die Funktionen F9 bis F12 (bzw. F16, abhängig von der Software-Version) über die Shift-Taste (im Bild gelb).

https://www.fredi.info/

Hardware-Version

> >V1.10D-SWD

Software-Versionen

- > V2.0, Funktionen F0 bis F12
- > V2.1, Funktionen F0 bis F16
- > V2.2, mit korrigiertem Verhalten beim Bremsen, Segeln und bei Not-Halt (Bugfix)

Für den SWD-FRED ist nur die Software als kompilierte HEX-Datei frei verfügbar. Quellcode, Schaltplan und Platinenlayout wurden vom FREMO nicht veröffentlicht. Der Bezug dieser Handregler ist nur über den FREMO (https://www.fredi.info/) möglich.

⁴ Die nächste Version war Hardware-Version V1.8, diese wurde quasi 'übersprungen' (heißt: die wurde nicht verwendet...)

Kabellose Handregler wiFRED

Von vielen im FREMO lange gewünscht – ein drahtloser FRED. Daher kam es zur Entwicklung des wireless-FRED – kurz wiFRED. Der wiFRED ist im Prinzip nichts anderes als ein FREDi, der über WLAN an das LocoNET® angebunden wird. Für diese Anbindung wird eine zusätzliche Hardware benötigt. Einsatz und Verwendung habe ich bereits im Krümelbahn Info 2 - WLAN für die Modellbahn (https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%202%20-%20WLAN%20für%20die%20Modellbahn.pdf) beschrieben.

- Ein Potentiometer für die Geschwindigkeitseinstellung
- Um den Geschwindigkeitssteller herum drei Status-LEDs
- Darunter
 - Links die NOT-Halt-Taste (im Bild rot)
 - o In der Mitte ein Umschalter für die Fahrtrichtung
 - Rechts die Shift-Taste (im Bild gelb)
- ➤ Darunter vier Schalter für die Fahrzeugauswahl ("1", "2", "3", "4", farbig umrandet)
- Darunter insgesamt neun Funktionstasten für die Funktionen. Die Funktionen F0 bis F8 sind direkt erreichbar, die Funktionen F9 bis F16 über die Shift-Taste (im Bild gelb).

https://www.wifred.de/ https://github.com/newHeiko/wiFred

Hardware-Version

> rev0.64

Software-Versionen

> rev0.6+

Eine höhere Software-Version ist aktuell nicht verfügbar.

Die Hardwarebeschreibung und die Software sind im GitHub des Entwicklers (H.Rosemann) frei verfügbar, aufgrund der komplexen Platine mitsamt seiner Bestückung ist hier sicherlich die Beschaffung direkt über den FREMO (https://www.wifred.de/) sinnvoll.

Meine Handregler:

Welle Hallare Biell			
Modell	MAC	Name	IP
wiFred rev0.51 LiPo	3C:61:05:D3:74:EC	wiFred-MZ-d374ec	192.168.60.91
wiFred rev0.51 LiPo	E8:DB:84:C5:EF:1D	wiFred-MZ-c5ef1d	192.168.60.84
wiFred rev0.62	68:67:25:2C:E0:22	wiFred-MZ-2ce022	192.168.60.56

wiThrottle-Server - Einstellungen

Menü: Bearbeiten → Voreinstellungen... → WiThrottle

Weitere Einstellungen zum wiThrottle-Server (z.B. WLAN-Konfiguration und WLAN-Zugangsdaten) werden über den Rechner, auf dem JMRI läuft, konfiguriert.

wiThrottle-Server und F2

Hinweis bei Nutzung des wiFRED:

1.) auch wenn – wie im obigen Dialog zu sehen – die Einstellung F2 immer momentan nicht aktiviert ist, wirkt die F2-Taste am wiFRED immer als Momentan-Funktion, d.h. sobald die Taste wieder losgelassen wird, wird die F2-Funktion wieder abgeschaltet. Abhilfe schafft hier die Einstellungen auf der wiFRED-Konfigurationsseite für die entsprechende Lok:

Function mapping for Loco: 1

Diese Einstellung wirkt nur auf die Lok, für die sie aufgerufen wurde – steht also für jede Lok 1...4 auf dem wiFRED separat zur Verfügung.

Um also F2 wie eine 'normale' Funktion zu verwenden, sind also zwei Maßnahmen erforderlich:

- In JMRI wird die Funktion F2 immer momentan abgeschaltet
- Im wiFRED wird für jedes Fahrzeug F2 Throttle controlled, force locking aktiviert

<u>Experteninfo</u>: JMRI ist ein amerikanisches Projekt und auf dem amerikanischen Markt haben viele Fahrzeugdecoder ein Signalhorn angeschlossen, welches mit F2 gesteuert wird. Und damit das Signalhorn nur aktiv ist, wenn die F2-Taste gedrückt ist, ist die Einstellung F2 immer momentan als Voreinstellung aktiviert.

- 2.) Folgende Bedienreihenfolge für das Zuweisen von Adresse ist zu empfehlen:
 - a.) Taste SHIFT und STOP gleichzeitig betätigen, um den Regler in den Konfigurationsmodus zu versetzen, es leuchten dann alle drei LED
 - b.) <u>VOR</u> der Adresseingabe immer zuerst die Auswahl Long Address? ✓ auf den gewünschten Modus setzen.

- c.) erst <u>DANACH</u> die Fahrzeugadresse eingeben und über die Schaltfläche speichern.
- Save loco config
- d.) Jetzt kann über Function mapping das Verhalten beim Betätigen der Funktionstasten (siehe oben) angepasst werden.

wiThrottle

Zeitgleich mit dem wiFRED wurde von A.Heckt in der DiMo⁵ der wiThrottle vorgestellt. Auch dies ist ein wireless-Throttle – kurz wiThrottle. Auch der wiThrottle ist im Prinzip nichts anderes als ein FREDi, der über WLAN an das LocoNET® angebunden wird. Auch für diese Anbindung wird eine zusätzliche Hardware benötigt. Einsatz und Verwendung habe ich bereits im Krümelbahn Info 2 - WLAN für die Modellbahn (https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%202%20-%20WLAN%20für%20die%20Modellbahn.pdf) beschrieben.

- ➤ Ein Potentiometer oder Impulsdrehgeber für die Geschwindigkeitseinstellung
- Um den Geschwindigkeitssteller herum drei Status-LEDs
- Darunter
 - Links die NOT-Halt-Taste (im Bild rot)
 - o In der Mitte ein Umschalter für die Fahrtrichtung
 - Rechts die Shift-Taste (im Bild gelb)
- ➤ Darunter insgesamt sechs Funktionstasten für die Funktionen. Die Funktionen F0 bis F5 sind direkt erreichbar, die Funktionen F6 bis F11 über die Shift-Taste (im Bild gelb).

https://gitlab.com/fsmd/electronics/withrottle

Hardware-Version

> rev0.91

Software-Versionen

> rev0.91

(Bildquelle: DiMo) Fine h

Eine höhere Software-Version ist aktuell nicht verfügbar.

Die Hardwarebeschreibung und die Software sind im GitLab des Entwicklers (A.Heckt) frei verfügbar.

Mein Handregler:

Modell	MAC	Name	IP
wiThrottle (A.Heckt)	98:F4:AB:13:41:94	ESP32 WiThrottle MZ	192.168.60.71

⁵ DIMO = Digitale Modellbahn, Zeitschrift des <u>Geramond-Verlags</u>

Zusammenfassende Übersicht

Merkmal	FRED	FREDi	SWD-FRED	wiFRED	wiThrottle
Analog	✓	✓	✓	✓	✓
Inkremental	-	✓	-	-	✓
Funktionen ⁶	F0F2(F3)	F0F8(F16)	F0F12(F16)	F0F16	F0F11
Momentfunktionen	möglich	möglich	möglich	möglich	-
Anzahl Fahrzeuge	1	1	1	4	1
Display	-	-	-	-	möglich
Anschluss	Kabel	Kabel	Kabel	WLAN	WLAN

Den FRFD benutzen

Standardisierung der Funktionstastenbelegung

Zu Beginn der Fahrzeugdigitalisierung konnten die meisten Decoder nur wenige Funktionen. Daher war der FRED mit seinen drei bzw. später vier Funktionstasten in vielen Fällen ausreichend. Hieraus entstammt dann auch die Empfehlung von Armin Mühl (heute Claudia Mühl) zur Ansteuerung der fahrtrichtungsabhängigen Beleuchtung: Vorbildgerechter Lichtwechsel http://www.muehlenroda.de/dcc/Hp1-1999-3 lichtwechsel.pdf.

Somit waren die Funktionen FO, F1 und F2 belegt. Hinzu kam der Rangiergang, meist auf F3.

Heutige Decoder mit vielen Funktionsausgängen und Soundmöglichkeiten benötigen Funktionen weit über F3 hinaus.

Wie diese Funktionen jetzt am besten belegt / verwendet werden, ist Geschmackssache. Ein Aspekt bei der Verteilung der Funktionen und Sounds auf die Tasten ist möglicherweise die Häufigkeit der Verwendung. So wird im Betrieb eine Glocke oder Pfeife häufiger benötigt als das Umschalten / Ändern des Spitzenlichts.

Eine einheitliche Belegung ist dabei wünschenswert, vermutlich aber nicht leicht zu erreichen. Meine Empfehlung daher: jeder sollte sich seine Fahrzeuge ansehen und möglichst innerhalb der eigenen Fahrzeuge einen "Hausstandard" aufstellen. In Absprache mit anderen kann daraus dann ein

Dispatchen

Standard werden.

Dispatchen = zuweisen eines Triebfahrzeugs zu einem Handregler.

Der eigentliche Dispatchvorgang hängt zum einen von der verwendeten Zentrale bzw. dem DISPA (aka FRANZ, https://github.com/Kruemelbahn/Dispa) ab, zum anderen vom verwendeten Handregler.

⁶ Angaben in () = Abhängig von der Software-Version

Kurzanleitungen gibt es:

hier für das TwinCenter / die Intellibox I: https://magentacloud.de/s/oyBjGZkotoj8Z8F

Kurzanleitungen für die Handregler gibt es hier:

- FREDi: https://magentacloud.de/s/38MrPRWmeS2AdMg
- SWD-FRED: https://magentacloud.de/s/Ms6JsNds3rE3FCc
- ➤ wiThrottle: https://magentacloud.de/s/RikDSZxHTjc9Lkk

Weiterhin gibt es Anleitungen für die Bedienung

- des TwinCenter / der Intellibox I:
 https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%209%20-%20TwinCenter%20-%20Bedienung%20einfach%20und%20übersichtlich.pdf
- Für den DISPA: https://github.com/Kruemelbahn/Dispa
- für JMRI:
 https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%2011%20-%20JMRI%20-%20Universalwerkzeug%20für%20die%20Modellbahn.pdf

Eine Besonderheit bei der Adresszuweisung stellen die WLAN-Handregler dar:

- Beim wiFRED erfolgt die Adressvergabe über einen Webbrowser, der Handregler stellt hierzu eine Webseite zur Konfiguration bereit.
- Beim wiThrottle wird ein Terminalprogramm zur Adresseinstellung benötigt.

Handregler-ID

Und wie merkt sich eine Zentrale den Zusammenhang / die Zuordnung eines Fahrzeugs zu einem Regler?

Jeder Handregler hat eine eigene Identifikationsnummer – die Throttle-ID. Ausnahme: wiFRED und wiThrottle benötigen diese nicht, deren Zuordnung wird innerhalb von JMRI verwaltet (siehe auch oben).

Throttle-IDs werden zentral (aktuell) von mir verwaltet und in einer Datenbank gespeichert.

Zum Aufspielen der Software⁷ ("flashen") bei den kabelgebundenen Handregler kommen zwei verschiedene vom FREMO (M.Pischky) entwickelte Programme zum Einsatz:

- FCalib10 für den FRED (Software nicht mehr frei verfügbar)
- FCalib2 für den FREDi (https://sourceforge.net/projects/fremodcc/files/FCalib2/, die Software ist frei verfügbar und enthält alle kompilierten HEX-Dateien für den AVR).

Weiterhin wird für das Flashen der Software natürlich ein passendes Programmiergerät benötigt:

- Für das Flashen eines PIC verwende ich den "Brenner 8" von J.Bredendiek (https://www.sprut.de/, der "Brenner8" sowie die zugehörige Software "USBurn" ist auf der Entwicklerwebseite nicht mehr verfügbar).
 - Natürlich ist jeder PIC-Brenner geeignet, der den AVR unterstützt.
- Für das Flashen eines AVR verwende ich den "USB Atmel ISP Programmer" von U. Radig (https://www.ulrichradig.de/home/index.php/avr/usb-avr-prog) zusammen mit der Software

 $\frac{https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%2010%20-%20Handregler%20-%20Software%20aufspielen.pdf}{}$

⁷ Dieses Thema wird behandelt in

AVRDUDE (https://github.com/avrdudes/avrdude) bzw. mit der zugehörigen grafischen Oberfläche AVRDUDESS (https://blog.zakkemble.net/avrdudess-a-gui-for-avrdude/).

Der Flashvorgang für den AVR kann bequem über FCalib2 gestartet werden.

Da in FCalib2 nur wenige Programmiergeräte auswählbar sind, habe ich die von AVRDUDE verwendete Konfigurationsdatei "avrdude.conf" entsprechend angepasst.

Die Throttle-ID wird beim flashen der Software mittels FCalib10 / FCalib2 auf den Prozessor (PIC beim FRED, AVR beim FREDi) ebenfalls gesetzt.

Der Einsatz anderer Hard- und Software zum Flashen der Software ist natürlich auch möglich.

Für das Update der AVR-Software bietet sich hier auch das Softwarepaket JMRI an, welches das Update ohne zusätzliche Hardware ermöglicht (einzige Voraussetzung: der zu aktualisierende Handregler ist über einen Locobuffer⁸ an den PC angeschlossen).

Weitere Funktionen

Momentfunktionen

Wird eine Funktionstaste betätigt, so sind zwei Reaktionen des Handreglers möglich:

- Standardmäßig wird eine Funktion mit einem Tastendruck aktiviert und mit dem nächsten Tastendruck deaktiviert. Im englischen: "Toggle".
- Es ist aber auch möglich, dass eine Funktion nur solange aktiv ist, wie die Funktionstaste betätigt ist, d.h. beim Drücken wird die Funktion aktiviert und beim Loslassen deaktiviert. Im englischen: "On while pressed".

Beide Betriebsarten der Funktionstasten können für jede Taste separat eingestellt werden. Leider geht das nicht beim "Dispatchen" – woher sollen auch die Informationen hierzu kommen?

Bei den entsprechenden Einstellungen, die im Übrigen direkt im Handregler vorgenommen werden, hilft uns JMRI. Dieses Softwarepaket ermöglicht es, sämtliche Einstellungen (CVs) eines Handreglers auszulesen, zu ändern und anschließend abzuspeichern.

Eine Anleitung gibt es in Krümelbahn Info 11 - JMRI - Universalwerkzeug für die Modellbahn (https://github.com/Kruemelbahn/Infoletter/blob/main/Krümelbahn%20Info%2011%20-%20JMRI%20-%20Universalwerkzeug%20für%20die%20Modellbahn.pdf).

Segeln und Bremsen

Im FREMO kommen immer neuen Ideen zur Verbesserung auch der Handregler auf. Zwei neue Funktionen, die wir für die Handregler (aktuell) nicht haben / einsetzen, sind "Segeln" und "Bremsen".

Segeln

Segeln ist das scheinbar antriebslose Fahren einer Lok. Das wird dadurch erreicht, indem die Fahrstufe am Fredi auf "O" gesetzt wird, und das Triebfahrzeug gemäß CV4 einen sehr langen Bremsweg verwendet. Genau das ist beabsichtigt, um den Leerlauf eines Triebfahrzeug s nachzuempfinden, weil nämlich gleichzeitig mit der Geschwindigkeit "O" auch der Sound in den Leerlauf geht. Bei einer Dampflok ist das in der Regel ein leises Klackern der Steuerung je nach Soundprojekt. Bei einer Diesellok geht der Motor in den Leerlauf.

⁸ Zum Einsatz kommen z.B. der LocoBuffer von H.Deloof (https://locohdl.synology.me/pageDE9.html) oder ein Arduino-Nano mit zusätzlicher Hard- und Software (https://github.com/Kruemelbahn/LocoBuffer-Nano)

Zur Aktivierung der Segel-Funktion wird der Richtungsschalter auf die Mittelposition gestellt (oder das Potentiometer auf Linksanschlag).

Voraussetzungen:

- Analoger Geschwindigkeitssteller (Potentiometer)
- Richtungsschalter mit Mittelstellung (EIN AUS EIN)
- Im Fahrzeugdecoder CV4 auf einen sehr großen Wert stellen
- FREDi-Softwareversion ≥ V2.0

Bremsen

Um ein Triebfahrzeug zu Bremsen, betätigt man eine vorher festgelegte Funktionstaste, was zur Folge hat, dass eine andere CV im Decoder angesprochen wird, in der ein gegenüber CV4 deutlich geringerer Bremswert eingetragen ist. Die Lok kommt also deutlich schneller zum Stehen. Wird die F-Taste losgelassen, folgt die Lok wieder dem in CV4 eingetragenen Bremsweg bis die eingestellte Geschwindigkeit erreicht ist.

Voraussetzungen:

- Taster für die Bremsfunktion
- Der eingesetzte Fahrzeugdecoder (u.a. von ESU oder Zimo) unterstützt die Funktion "Bremsen" mit wenigstens zwei CVs:
 - o Erster CV für die Funktionsnummer des Bremstasters
 - o Zweiter CV für den zu CV4 alternativen Bremsweg
- FREDi-Softwareversion ≥ V2.2

Eine Beschreibung zum Thema "Bremsen" steht in der FREMO-Vereinszeitschrift "Hp1 Modellbahn" im Heft 1/2022 ab Seite 26 Ein FREDi zum Bremsen.

Versionsgeschichte

03.08.2023	Initiale Erstellung
31.08.2023	Dokumententitel geändert
09.10.2023	redaktionelle Anpassungen und Ergänzungen
20.10.2023	FredI-Update auf V2.2, Ergänzungen zu JMRI
09.11.2023	Kommerzielle Handregler hinzugefügt
16.04.2024	Hinweis in Anhang A zu Roco-Handreglern ergänzt, Hinweis zu wiFRED ergänzt,
	Links korrigiert
02.09.2024	Links korrigiert
21.09.2024	Links korrigiert
29.11.2024	Bildquellen ergänzt
03.06.2025	Kapitel "wiThrottle – Einstellungen" hinzugefügt

Anhang A: Kommerzielle Handregler

Kommerzielle kabelgebundene Handregler finden hier Erwähnung, weil sie im Umfeld der Module verwendet werden. Allen Handreglern ist gemeinsam, dass die Lokadresse an ihnen eingegeben werden kann.

Roco Lokmaus2

Die Lokmaus2 [10760] hat nur einen Anschluss für das Roco-Xpressnet und benötigt daher einen Adapter, um an das LocoNET® angeschlossen werden zu können.

(Bildquelle: Uhlenbrock / Roco)

Zur Anwendung kommt hier der Maus-Adapter von Uhlenbrock [63840].

Einschränkungen der Lokmaus2:

- Adressbereich 1...99
- Funktionen FO...F4

Roco Multimaus

Auch die Roco Multimaus [10810] muss – da sie ebenfalls nur über einen Roco-Xpressnet-Anschluss verfügt – über einen Maus-Adapter an das LocoNET® angeschlossen werden.

(Bildquelle: Uhlenbrock / Roco)

Möglichkeiten der Multimaus:

- Adressbereich 1...9999
- Funktionen F0...F28

Hinweis zur Verwendung des Maus-Adapter von Uhlenbrock [63840]:

der Stromverbrauch beträgt laut Uhlenbrock-Dokumentation 90mA (...wobei unklar ist, für welche Mäuse der Stromverbrauch angegeben wurde...)

Tatsächlich kommt es häufig vor, dass beim Einstrecken eines Maus-Adapters das LocoNET® kurzzeitig überlastet wird und die Zentrale das LocoNET® abschaltet!

Eine Verwendung im Modulbetrieb (ständiges ein- und ausstecken) ist nicht sinnvoll möglich!

Digitrax DT402

Der Handregler von DT402 von Digitrax hat einen LocoNET®-Anschluss und kann so direkt an das LocoNET® angeschlossen werden.

(Bildquelle: Digitrax)