Innovative Strategies for SMS Spam Detection

Yu-Chih (Wisdom) Chen 5 May 2024

Executive Summary

- The project successfully developed a predictive model using the SMS Spam Collection dataset to accurately classify SMS messages as spam or ham.
- The Pooled Bi-Directional GRU model demonstrated the highest accuracy, followed by the improved CNN model, with LSTM showing the least accuracy among the three.
- The methodology included preprocessing, feature engineering with tokenization and p adding, and leveraging pre-trained embeddings for model training.

Methodology

- A combination of Convolutional Neural Networks (CNNs), Long Short-Term Memory (LST M) networks, and Pooled Bi-Directional Gated Recurrent Units (GRUs) were employed to address the classification task.
- Hyperparameter tuning, regularization, and dropout adjustments were applied to optimize model performance and prevent overfitting.

Source Data

- The SMS Spam Collection dataset consists of 190K English SMS messages, each labeled as either spam or ham, sourced from various online platforms for research purposes.
- The dataset's composition reflects a real-world distribution of spam and ham messages, pr oviding a solid foundation for model training and evaluation.
- Download the data directly from https://www.kaggle.com/datasets/meruvulikith/190k-spam-ham-email-dataset-for-classification/data

Problem Statement

Objective

Leverage machine learning to develop a predictive model capable of accurately classifying SMS messages as either spam (unwanted messages) or ham (legitimate messages)

Challenge

It lies in creating a model that can effectively differentiate between these two categories with high precision and recall, using the SMS Spam Collection dataset, which comprises a set of SMS tagged messages specifically collected for SMS Spam research.

Assumptions Data & Model

01. Assumption of Data

- It accurately reflects the real-world distribution of spam and ham messages, providing a solid foundation for training and evaluating the model.
- It has undergone thorough preprocessing to ensure that the text data is clean and free from noise, which could otherwise adversely affect the model's learning process.
- It split into training and testing sets in a manner that prevents data leakage and allows for the evaluation of the model's generalization capabilities.
- The labels in the dataset (spam or ham) are correctly assigned, ensuring that the model's learning is based on accurate ground truth data.

02. Hypotheses of Model

- Advanced neural network architectures, such as LSTM and Bi-Directional GRU, are hypothesized to perform well on this text classification task due to their ability to capture sequential information and context within messages
- The Bi-Directional GRU model, in particular, is expected to outperform other models because it processes data in both directions, potentially capturing more complex patterns and dependencies in the text data.
- The performance of the models can be accurately
 assessed using metrics such as AUC, AP, accuracy,
 precision, recall, and F1-score, which provide a
 comprehensive view of the models' strengths and
 weaknesses in classifying spam and ham messages.

O1
Exploratory Data
Analysis

Spam vs. Ham

A Comparative View of Ham and Spam Emails

It is relatively balanced with 52.70% of emails classified as "Ham" and 47.30% as "Spam," which is conducive for training a machine learning model without a significant class imbalance

Overall Email Distribution Characteristics Insight

Skewness and Outlier Impact

The distribution of the number of characters, words, and sentences in both "Ham" and "Spam" emails is right-skewed, indicating that most emails are shorter with a few outliers having significantly more content

	Number of Character	Number of Words	Number of Sentence
Mean	1.839160e+03	2.805164e+02	3.690508
Median	8.120000e+02	1.290000e+02	1.000000
Maximum	1.151031e+07	1.585483e+06	3093.0000

Email Content Characteristics Insight I

Comparative Length Analysis

After removing outliers (emails with character counts beyond the upper bound defined by the interquartile range), the distributions become more normalized, which may improve the performance of the machine learning models by reducing the impact of extreme values

Email Content Characteristics Insight II

Comparative Length Analysis

"Ham" emails tend to be longer in terms of characters, words, and sentences compared to "Spam" emails, with averages of 1,087 characters, 175 words, and 2.84 sentences for "Ham" and 925 characters, 145 words, and 2.98 sentences for "Spam"

Ham					
	Number of Character	Number of Words	Number of Sentence		
Mean	1,087	175	2.84		

Spam				
	Number of Character	Number of Words	Number of Sentence	
Mean	925	145	2.98	

Comparative Analysis of SPAM and HAM Messages

Visualizing Key Terms to Differentiate Unwanted vs. Legitimate Emails

- **SPAM** messages word cloud highlights frequent terms like "escapenumber" and "professional," suggesting a focus on misleading business-related content
- Common words in SPAM also include "special offer" and "creative suite,"
 indicative of promotional content aimed at deception
- HAM messages word cloud shows a prevalence of words such as "escapenumber," "please," and "help," reflecting the more personal and direct nature of legitimate communication
- Terms like "original message" and "fax escapenumber" in the HAM word cloud suggest routine, business-related correspondence

Top words for HAM messages

Feature Engineering & Transformation

Preparing Text Data for Predictive Modeling I

Optimizing Text Data for Deep Learning I

1. Tokenization Process

- Implemented the **Keras Tokenizer** to convert raw email text into sequences of integers, enabling the model to interpret and process natural language data.
- Restricted the tokenizer's vocabulary to the 20,000 most common words to balance the complexity and performance of the model.

2. Sequence Padding

- Standardized the length of sequences using pad_sequences to a fixed size
 of 200 tokens, ensuring uniform input dimensions for the neural network.
- Restricted the tokenizer's vocabulary to the **20,000 most common words** to balance the complexity and performance of the model.

Preparing Text Data for Predictive Modeling I I

Optimizing Text Data for Deep Learning II

- 3. Embedding Matrix Creation
 - Leveraged pre-trained GloVe word embeddings to provide the model with rich, pre-learned word representations, enhancing the model's ability to capture linguistic nuances.
 - Created an embedding matrix that associates each word in the tokenizer's vocabulary with a 100-dimensional GloVe vector.
- 4. Utilization of Pre-trained Embeddings
 - Integrated GloVe embeddings into the model to benefit from existing knowledge about word relationships and semantics, which is particularly useful for the email classification task.

03

Model Deployment

Strategic Model Selection for SMS Spam Detection

Harnessing Deep Learning Architectures for Enhanced Classification

Convolutional Neural Networks

 It excel in identifying local and position-invariant patterns, which is beneficial for detecting specific keywords and phrases indicative of spam

Long Short-Term Memory

 It designed to recognize longterm dependencies and contextual relationships in sequential data, such as the order of words in SMS messages

Pooled Bi-Directional GRU

Bi-Directional GRUs
 process data in both forward
 and reverse directions,
 capturing patterns that may
 be missed when only
 considering one direction

04

Model Evaluation

Model Performance and Generalization Analysis I

Evaluating CNN Model on SMS Spam Detection

The CNN model showed high training accuracy but lower testing accuracy, suggesting potential overfitting

2	CNN Model Accuracy
0.97	train validation
0.96	-
Accuracy 86.0	-
D.94	-
0.93	-
0.92	- /
	0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Epoch

Convolutional Neural Networks		
Training Error	0.262	
Testing Error	1.067	

Classificatio	on Report for	train da	ta - CNN:	
	precision	recall	f1-score	support
0	0.98	0.93	0.95	61828
1	0.93	0.98	0.95	56316
accuracy			0.95	118144
macro avg	0.95	0.96	0.95	118144
weighted avg	0.96	0.95	0.95	118144
Classification	on Report for	test dat	a - CNN:	
	precision	recall	f1-score	support
0	0.98	0.91	0.94	30323
1	0.91	0.98	0.94	27868
accuracy			0.94	58191
macro avg	0.94	0.94	0.94	58191
weighted ava	0 95	0 91	0 91	58191

Model Performance and Generalization Analysis II

Evaluating LSTM Model on SMS Spam Detection

LSTM model displayed excellent performance with high accuracy and low errors on both training and test sets, indicating effective learning without significant overfitting

Long Short-Term Memory		
Training Error	0.105	
Testing Error	0.135	

Classific	cation	Report for	train da	ta - LSTM:		
	i	precision	recall	f1-score	support	
	0	0.97	0.94	0.95	61828	
	1	0.94	0.96	0.95	56316	
accui	racy			0.95	118144	
macro	avg	0.95	0.95	0.95	118144	
veighted	avg	0.95	0.95	0.95	118144	
Classific		Report for				
		precision	recall	f1-score	support	
	0	0.97	0.94	0.95	30323	
	1	0.93	0.96	0.95	27868	
accui	acy			0.95	58191	
macro	avg	0.95	0.95	0.95	58191	
veighted	avg	0.95	0.95	0.95	58191	

Model Performance and Generalization Analysis III

Evaluating Bi-GRU Model on SMS Spam Detection

 Bi-GRU model outperformed other models with the highest accuracy and lowest errors, showing exceptional generalization capabilities

Pooled Bi-Directional GRU		
Training Error	0.059	
Testing Error	0.050	

Tassiticaci	on Report For	rrain da	ra - BI-GK):
	precision	recall	f1-score	support
6	0.99	0.99	0.99	61828
1	0.99	0.99	0.99	56316
accuracy	•		0.99	118144
macro avg	0.99	0.99	0.99	118144
eighted avg	0.99	0.99	0.99	118144

Classific	cation	Report for	test dat	a - Bi-GRU:	
		precision	recall	f1-score	support
	0	0.98	0.99	0.98	30323
	1	0.98	0.98	0.98	27868
accur	racy			0.98	58191
macro	avg	0.98	0.98	0.98	58191
veighted	avg	0.98	0.98	0.98	58191

05

Model Improvement

Enhancements in CNN Model for SMS Spam Detection

Techniques for Boosting Performance and Generalization

1. Regularization Techniques

- L2 regularization was introduced in the convolutional layer of the improved CNN model to combat overfitting by penalizing large weights
- It helps the model generalize better to unseen data by encouraging simpler models that perform well on the validation set.

2. Dropout Rate Adjustment

 An increased dropout rate was applied in the improved CNN model to prevent overfitting by randomly dropping units during training, which forces the model to learn more robust features

Convolutional Neural Networks		
Training Error	0.249	
Testing Error	0.386	

Classification	Report for	train da	ta - CNN:	
	precision	recall	f1-score	support
0	0.05	0.04	0.04	64000
0	0.95	0.94	0.94	61828
1	0.93	0.95	0.94	56316
accuracy			0.94	118144
macro avg	0.94	0.94	0.94	118144
weighted avg	0.94	0.94	0.94	118144

Classific	catio	n Report for	test dat	a - CNN:	
		precision	recall	f1-score	support
	0	0.94	0.93	0.94	30323
	1	0.93	0.94	0.93	27868
accui	racy			0.94	58191
macro	avg	0.94	0.94	0.94	58191
weighted	avg	0.94	0.94	0.94	58191

06

Model Result

Deep Learning Model Efficacy in SMS Spam Detection

Comparative Analysis and Methodological Insights

 Model Accura 	acv Results
----------------------------------	-------------

- The improved CNN model achieved a high validation accuracy of 0.966, indicating a successful enhancement over the original model.
- The Pooled Bi-Directional GRU model exhibited the highest validation accuracy of 0.978, demonstrating its robustness and effectiveness in processing sequential data for spam detection.

2. Methodological Learnings

- The application of pre-trained embeddings and hyperparameter tuning through
 Bayesian Optimization contributed to the improved performance of the CNN model
- The superior performance of the Bi-Directional GRU model underscores the value of bidirectional processing and gated mechanisms in handling text classification challenges.

text_lemmatized	predicted_cnn	predicted_lstm	predicted_bigru
saravana kumar write yitzle write read one lis	0	0	0
jackie talk darren deal reference hpl deal dyn	0	0	0
obeisance guest commission obstruct bookshelve	0	1	1
value recipient yearas hottest accessory coach	1	1	1
enron energy service middle market east taylor	0	0	0
http describewomen hk miss unique escapelong p	1	1	1

Model Test Accuracy Comparison		
CNNs	0.966	
LSTMs	0.833	
Bi-GRU	0.978	

Future Step

- Explore the integration of additional linguistic features and more sophisticated natural language processing techniques to further enhance model accuracy.
- Investigating the impact of class imbalance and developing strategies to mitigate its effects will be a priority.
- Continuous model evaluation with real-world data will be conducted to ensure the model's r obustness and adaptability over time.
- Efforts will be made to reduce the model's complexity without compromising performance to facilitate deployment in resource-constrained environments.

Thanks!