SI231B - Matrix Computations, Spring 2022-23

Homework Set #3

Prof. Ziping Zhao

Acknowledgements:

1) Deadline: 2023-04-08 23:59:59

2) Please submit your assignments via Blackboard.

3) You can write your homework using latex/word or you can write in handwriting and submit the scanned pdf.

Problem 1. (20 points)

For the matrix below

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & -1 & -1 \\ 3 & 1 & -1 \\ 4 & -2 & 1 \end{array} \right]$$

1) Calculate the characteristic polynomial of A. (5 points)

2) Find the eigenvalues of A. (5 points)

3) Find a basis for each eigenspace of A. (5 points)

4) Determine whether or not **A** is diagonalizable. If **A** is diagonalizable, then find an invertible matrix **V** and a diagonal matrix Λ such that $\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$. (5 points)

Problem 2. (20 points)

1) Let A be the adjacency matrix of an undirected graph G = (V, E) and λ_1 the largest eigenvalue of A, and

$$a_{i,j} = \left\{ \begin{array}{l} 1, \text{ if vertex } i \text{ and vertex } j \text{ are adjacent;} \\ 0, \text{ otherwise.} \end{array} \right.$$

Show that λ_1 is at least the average degree of the vertices in G. (10 points)

2) Let **A** be a symmetric matrix with the largest eigenvalue α_1 . Let **B** be the matrix obtained by removing the last row and column from **A**. And β_1 is the largest eigenvalue of **B**. Show that $\alpha_1 \geq \beta_1$. (10 points) (*Hint:* You can use the Rayleigh quotient to prove the two problems.)

Problem 3. (20 points)

Let ${\bf A}$ be an $n \times n$ square matrix.

- 1) Suppose that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} . (5 points)
- 2) Prove that if $A^2 = I$, then the eigenvalue of A must be 1 or -1. (5 points)
- 3) Suppose that λ_1 and λ_2 are two distinct eigenvalues of \mathbf{A} . And suppose that \mathbf{x}_1 is an eigenvector of \mathbf{A} under λ_1 , and \mathbf{x}_2 is an eigenvector of \mathbf{A} under λ_2 . Prove that there dose not exists any real number t such that $t\mathbf{x}_1 = \mathbf{x}_2$. (5 points)
- 4) Suppose that λ_1 and λ_2 are two distinct eigenvalues of **A**. And suppose that \mathbf{x}_1 is an eigenvector of **A** under λ_1 , and \mathbf{x}_2 is an eigenvector of **A** under λ_2 . Prove that $\mathbf{x}_1 + \mathbf{x}_2$ is not an eigenvector of **A**. (5 points)

Problem 4. (20 points) For $\mathbf{A} \in \mathbb{R}^{m \times n}$, prove that $\mathbf{A}^T \mathbf{A}$ and \mathbf{A}^T have the same range space.

Problem 5. (20 points) Time-of-arrival (TOA) based source localization is a scenario in which the location of a target sensor is determined based on the TOA measurements of the target sensor collected by many anchors.

Define $\mathbf{x}^* \in \mathbb{R}^n$ be the unknown true position of the target sensor. Define $\{\mathbf{a}_i\}_{i=1}^m \subseteq \mathbb{R}^n$ be the known position of the *i*th anchor and suppose that the vectors $\{\mathbf{a}_i - \mathbf{a}_1\}_{i=1}^m$ span \mathbb{R}^n $(m \ge n+1)$. Then the TOA based range measurement between the target and the *i*th anchor is modeled as

$$r_i = \|\mathbf{x}^* - \mathbf{a}_i\|_2 + \omega_i, \quad i = 1, ..., m,$$

where $\{\omega_i\}_{i=1}^m\subseteq\mathbb{R}$ is the noise.

1) Suppose there is no noise, i.e, $\omega_i = 0$ for i = 1, ..., m. Prove that \mathbf{x}^* can be recovered based on the following linear least squares problem:

$$\mathbf{x}_{LS} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

i.e., $\mathbf{x}_{LS} = \mathbf{x}^*$ in the noiseless case, where

$$\mathbf{A} = \begin{bmatrix} (\mathbf{a}_2 - \mathbf{a}_1)^T \\ \vdots \\ (\mathbf{a}_m - \mathbf{a}_{m-1})^T \end{bmatrix}, \quad \mathbf{b} = \frac{1}{2} \begin{bmatrix} \|\mathbf{a}_2\|_2^2 - \|\mathbf{a}_1\|_2^2 + r_1^2 - r_2^2 \\ \vdots \\ \|\mathbf{a}_m\|_2^2 - \|\mathbf{a}_{m-1}\|_2^2 + r_{m-1}^2 - r_m^2 \end{bmatrix}.$$

Besides, derive the solution of the estimator x_{LS} . (10 points)

2) Suppose the noise ω_i satisfies $\omega_i \ll \|\mathbf{x}^* - \mathbf{a}_i\|_2$ for i = 1, ..., m. We can estimate \mathbf{x}^* based on the following nonlinear least squares problem:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^m (\|\mathbf{x} - \mathbf{a}_i\|_2 - r_i)^2.$$

Define $\boldsymbol{\omega} = [\omega_1, ..., \omega_m]^T$ and suppose $\|\boldsymbol{\omega}\|_2 \leq c\sqrt{m}\sigma$ where $c, \sigma > 0$ are some constants. Prove that the following result holds:

$$\|\hat{\mathbf{x}} - \mathbf{x}^*\|_2 \le K_1 \sqrt{m}\sigma + K_2 m\sigma^2$$

for some constants $K_1, K_2 > 0$ which are determined by $\{\mathbf{a}_i\}_{i=1}^m$, c, and \mathbf{x}^* . (10 points) Hint for 2):

- You can find the upper bound of $\|\mathbf{x}_{LS} \mathbf{x}^*\|_2$ and $\|\mathbf{x}_{LS} \hat{\mathbf{x}}\|_2$ and then combine them to get the result.
- Based on 1), you may need to define $r_i^* = \|\mathbf{x}^* \mathbf{a}_i\|_2$ (resp. $\hat{r}_i = \|\hat{\mathbf{x}} \mathbf{a}_i\|_2$) and let \mathbf{b}^* (resp. $\hat{\mathbf{b}}$) be the vector obtained by replacing r_i with r_i^* (resp. \hat{r}_i) in \mathbf{b} , and then \mathbf{x}^* (resp. $\hat{\mathbf{x}}$) satisfies $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} \mathbf{b}^*\|_2^2$ (resp. $\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} \hat{\mathbf{b}}\|_2^2$).
- You may need the relation $f(\hat{\mathbf{x}}) = \sum_{i=1}^{m} (\|\hat{\mathbf{x}} \mathbf{a}_i\|_2 r_i)^2 \le f(\mathbf{x}^*)$