Model Checking Real-Time Systems

Vincent Trélat

Technical University of Munich

December 12, 2022

1. Timed Automata

- 1.1 Preliminaries
- 1.2 Timed Automata
- 1.3 Regions and zones
- 1.4 Extensions

2. Model Checking Real-Time Systems

- 2.1 TLTL
- 2.2 Timed Games
- 3. Language-Theoretic Properties
- 4. References

Timed Automata Preliminari

1. Timed Automata

- 1.1 Preliminaries
- 1.2 Timed Automata
- 1.3 Regions and zones
- 1.4 Extensions
- 2. Model Checking Real-Time Systems
 - 2.1 TLTL
 - 2.2 Timed Games
- Language-Theoretic Properties
- 4. References

Set of time values: $\mathbb{R}_{\geq 0}$

Timed words over $\Sigma \times \mathbb{R}_{\geq 0}$

Set of *valuations* over a set of clocks $C: \mathbb{R}_{\geq 0}^C$

Constraints over $C: \varphi := x \odot k \mid \varphi \land \varphi$ where $x \in C$, $k \in \mathbb{Z}$ and $\odot \in \{<, \leq, =, \geq, >\}$

Set of valuations satisfying φ : $\llbracket \varphi \rrbracket_C = \{ v \in \mathbb{R}_{>0}^C \mid v \models \varphi \}$

Timed Automata Timed Automata

Definition 1

A *Timed Automaton* (TA) \mathcal{A} is the tuple $(L, \ell_0, C, \Sigma, I, E)$ where:

- L is a finite set of *locations* with initial location $\ell_0 \in L$
- C is a finite set of clocks
- Σ is a finite set of *actions*
- $I: L \to \Phi(C)$ is an invariant mapping
- $E \subseteq L \times \Phi(C) \times \Sigma \times 2^C \times L$ is a set of edges.

Edges are denoted by $\ell \xrightarrow{\varphi,a,r} \ell'$.

Example of a TA with 3 locations, 2 clocks and 2 actions (letters):

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases}$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v')$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v') \qquad \begin{cases} v'(x) = 0 \\ v'(y) = 1.3 \end{cases}$$

provided that:

$$\ell \xrightarrow{\varphi,a,r} \ell'$$
 is a transition in the TA
$$\forall t \in [0,d], \ v+t \models I(\ell)$$

$$v+d \models I(\ell')$$

Timed Automata Timed Automa

Operational Semantics

Definition 2

The operational semantics of a TA $A = (L, \ell_0, C, \Sigma, I, E)$ is the infinite-state timed transition system $[\![A]\!] = (S, s_0, \Sigma \times \mathbb{R}_{\geq 0}, T)$, where

$$S := \{(\ell, v) \in L \times \mathbb{R}^{\mathsf{C}}_{\geq 0} \mid v \models I(\ell)\}, \quad s_0 := (\ell_0, \mathbf{0}_{\mathsf{C}}),$$

$$T := \{(\ell, v) \xrightarrow{d, a} (\ell', (v + d)[r]) \mid d \in \mathbb{R}_{\geq 0},$$

$$\forall d' \in [0, d], v + d' \models I(\ell) \land \exists \ell \xrightarrow{\varphi, a, r} \ell' \in E, v + d \models \varphi\}$$

Timed Automata Regions and zon

1. Timed Automata

- 1.1 Preliminaries
- 1.2 Timed Automata
- 1.3 Regions and zones
- 1.4 Extensions
- 2. Model Checking Real-Time Systems
 - 2.1 TLTL
 - 2.2 Timed Games
- Language-Theoretic Properties
- 4. References

Region Equivalence

Definition 3

Two valuations $v,v'\in\mathbb{R}_{\geq 0}^{\mathcal{C}}$ are region equivalent, i.e $v\cong_{M}v'$ iff:

- $\forall x \in C, \lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \lor v(x), v'(x) > M_x$
- $\forall x \in C, \langle v(x) \rangle = 0 \Leftrightarrow \langle v'(x) \rangle = 0 \lor v(x) \geq M_x$
- $\forall x, y \in C, \langle v(x) \rangle \leq \langle v(y) \rangle \Leftrightarrow \langle v'(x) \rangle \leq \langle v'(y) \rangle \vee v(x) > M_x \vee v(y) > M_y$

Region Equivalence

Definition 3

Two valuations $v,v'\in\mathbb{R}_{\geq 0}^{\mathcal{C}}$ are region equivalent, i.e $v\cong_{M}v'$ iff:

- $\forall x \in C, \lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \lor v(x), v'(x) > M_x$
- $\forall x \in C, \langle v(x) \rangle = 0 \Leftrightarrow \langle v'(x) \rangle = 0 \lor v(x) \geq M_x$
- $\forall x, y \in C, \langle v(x) \rangle \leq \langle v(y) \rangle \Leftrightarrow \langle v'(x) \rangle \leq \langle v'(y) \rangle \vee v(x) > M_x \vee v(y) > M_y$

Definition 4 (Region Automaton)

 $\mathcal{R}_{\cong_M}(A) = (S, s_0, \Sigma, T)$ is the region automaton of A, where:

•
$$S := (L \times \mathbb{R}^{C}_{\geq 0})_{/\cong_{M}}, \ s_0 := \mathbf{0}_{C}$$

•
$$T := \{ [\ell, v]_{\cong_M} \xrightarrow{a} [\ell', v']_{\cong_M} \mid \exists d \in \mathbb{R}_{\geq 0}, (\ell, v) \xrightarrow{d, a} (\ell', v') \}$$

Definition 4 (Region Automaton)

 $\mathcal{R}_{\cong_M}(A) = (S, s_0, \Sigma, T)$ is the region automaton of A, where:

- $S := (L \times \mathbb{R}^{\mathcal{C}}_{\geq 0})_{/\cong_{\mathcal{M}}}, \ s_0 := \mathbf{0}_{\mathcal{C}}$
- $T := \{ [\ell, v]_{\cong_M} \xrightarrow{a} [\ell', v']_{\cong_M} \mid \exists d \in \mathbb{R}_{\geq 0}, (\ell, v) \xrightarrow{d, a} (\ell', v') \}$
- |S| is exponential in the number of clocks and in the maximal constants of the timed automaton
- Is there a way to reduce the number of states?

Timed Automata Regions and zones

Definition 5 (Zone)

A set of valuations $Z \subseteq \mathbb{R}^{\mathcal{C}}_{\geq 0}$ is a zone iff: $\exists \varphi \in \Phi_d(\mathcal{C}), Z = \llbracket \varphi \rrbracket_{\mathcal{C}}$ In this case, we define:

- the *delay* of $Z \colon Z^{\uparrow} \triangleq \{v+d \mid V \in Z \land d \in \mathbb{R}_{\geq 0}\}$
- the *reset* of Z: $Z[r] \triangleq \{v[r] \mid v \in Z\}$ for $r \subseteq C$

Definition 6 (Zone automaton)

The zone automaton $[\![A]\!]_Z$ of A is the tuple $(S, s_0, \Sigma \cup \{\delta\}, T)$, where:

$$S := \{(\ell, Z) \mid \ell \in L, Z \in \mathbb{R}^{\mathsf{C}}_{\geq 0} \text{ is a zone}\}, \quad s_0 := (\ell_0, \llbracket \mathbf{0}_{\mathsf{C}} \rrbracket)$$

$$T := \{ (\ell, Z) \stackrel{\delta}{\leadsto} (\ell', Z^{\uparrow} \cap \llbracket I(\ell) \rrbracket_{\mathcal{C}}) \} \cup \{ (\ell, Z) \stackrel{a}{\leadsto} (\ell', (Z \cap \llbracket I(\ell) \rrbracket_{\mathcal{C}})[r] \cap \llbracket I(\ell') \rrbracket_{\mathcal{C}}) \mid \ell \xrightarrow{\varphi, a, r} \ell' \in E \}$$

References