

Department of Electrical and Computer Engineering University of Central Florida

Middle Term Demo EEL4915 - Fall 2022 Group 10

Nicholas Leon - Electrical Engineer Mariana Lozano - Electrical Engineer Austen Ordos - Electrical Engineer Hamzah Ullah - Computer Engineer

Part I. Automated Indoor Nursery Design Part II. Key Engineering Specifications Part III. Overall Functionality Demonstration

Basic Structure

- PVC Pipe with elbows and T-fittings
- Corrugated Sheets
- Vinyl
- Drain Pan
- Drip Irrigation System
- Pots
- Tubing

Design

- Weather shield (Temp/pressure/humidity)
- Light sensor
- Camera module
- Water level
- pH sensor
- Wifi module

Advanced Design

Web Application

- > MERN Stack Application
- NoSQL Database MongoDB
- > React Application
- Progressive Web Application
- Deployed through Heroku

https://automatic-indoor-garden.herokuapp.com/

Market Specifications

- **♦** Weight TBD
- Size: 24" x 26" x 26" = 9.39 cubic feet
- Drain Pan: 24" x 24" with 2" depth
- ♦ Maximum input voltage = 12VDC
- Website displays necessary data

Market	Value	
System must be of reasonable weight	<30 lbs	
System must be of reasonable size	<10 cubic feet	
System must moderate pH level	Approx. 1 degree of precision	
System must hold an approximate voltage supply	Approx. 24 VDC	
System must hold a reasonable power consumption	<400 Watts	
System must treat segments of water to send to the herbs	2 Gallons	
Software must display the necessary data	Water amount, light, pH levels, humidity levels	
System shall be able to communicate with a device for controls and data and control system remotely	WiFi Module	
Unit must not leak	N/A	

Engineered Specifications

- Still figuring out the correct readings via recalibration
- Require individual power supplies for each 16x16 light
- WiFi Module to be tested upcoming week with new PCB
- Water is controlled through drip system
- Water must be filled to a certain level for pump to continue working

Engineering	Value		
System must be able to change and detect pH levels	Approx. 1 degree of precision		
System must measure and control ambient light	Approx. 3 degree of precision		
Units must be able to communicate information back through the system	WiFi Module		
System must control flow of water	1-2 Gallons per minute (GPM)		
System will be able to monitor the quantity of water in the reservoir	Approx. 0.5 gallons of precision		

Functionality: WeatherShield

- Temperature
- Humidity
- Pressure

Functionality: Light Sensor

Functionality: Camera

- Still a work in progress
- Brought in required packages for integrating the code
- Front end UI and data storage still needs to be created to handle images
- Testing methodology through image bitbucket vs base64 encoding

•

Functionality: Drip Irrigation System

Test Run	V	Pot 1 Response Time (sec)	Pot 2 Response Time (sec)	Pot 3 Response Time (sec)	Pot 4 Response Time (sec)
1		10.92	13.5	9.95	10.17
2		10.98	9.4	10.65	10.89
3		11.12	9.06	10.12	11.02
4		10.87	9.67	10.32	10.65
5		11.07	9.75	10.7	11.24
6		10.86	9.63	9.46	9.26
7		10.96	9.4	9.82	9.89
8		10.7	9.71	9.63	9.74
9		10.32	9.95	10.02	9.87
10		10.5	10.02	9.96	10.04
Average		10.83	10.009	10.063	10.277

Results for the Drip Irrigation System Demo. The average for each pot to receive an inch of water was approximately 10.29 seconds.

1

Functionality: pH Sensor

Dipped in -

regular water: 10.40

> soap water: 9.03

lemon water: 10.35

Functionality: LED Lights

Liquid Level Sensor

Functionality: Website

- Persist Data
- React state loading data to reduce page reloads
- Website caching through webpack
- Page load time optimizations
- * Progressive web application for an optimized mobile experience

Website

Demonstration

- Individualized users with authorization function (login)
- Adding multiple devices
- Adding multiple plants
- > Data stored in database
- Optimized desktop experience through PWA

Demonstration video in upcoming slide

Chart functionality

- Still part of our final goals
- Requires up to date sensor data to use with our application
- Database in place to ingest data from sensor to apply to our charts
- UI and page can be designed once live sensor data is sent to the website via the Wi-Fi module

Simple yet flexible JavaScript charting for designers & developers

Multi Axis Line Chart

PCB functionality

- 1. MCU Arduino 2560
- 2. Relays
- 3. USB type B Flashing
- 4. Barrel plug

Functionality: PCB

- 5. 5v peristaltic pump and RGB squares
- 6. 5V water pump
- 7. Voltage regulators
- 8. Wifi module

