Lecture 3: Discrete Random Variables

Professor Ilias Bilionis

The Bernoulli distribution

Example: The Bernoulli distribution

Models an experiment with two outcomes.

$$X = \begin{cases} 1 & \text{with probability } \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Notation:

$$X \sim \text{Bernoulli}(\theta)$$

• You read: "X follows a Bernoulli with parameter θ ."

Example: PMF of a Bernoulli

- Assume $X \sim \text{Bernoulli}(\theta)$.
- We have:

$$p(X = 1) = \theta$$

• From this, because of the normalization constraint:

$$p(X = 0) + p(X = 1) = 1$$

we get that: p(X = 0) =

Example: Expectation and variance of a Bernoulli

• Assume $X \sim \text{Bernoulli}(\theta)$.

The expectation is:

$$\mathbb{E}[X] = \sum_{x} p(x) = 1 \cdot p(X=L) + 0 \cdot p(X=D)$$

$$= L \cdot 9 + 0 \cdot (1-9) = 9$$

$$= L \cdot 9 + 0 \cdot (1-9) = 9$$

• The variance is: $E[X^2] = \sum_{x} x^x p(x) = 1$. $S + O^2$. (I-S) = 9

• The variance is:
$$\mathbb{E}[XX] = \mathbb{E}[XX] = \mathbb$$

