DAFTAR ISI

DAFTAKISI		
		Halaman
DAFTAR ISI		ii
BAB 1 PEND	AHULUAN	1
BAB 2 TINJA	AUAN PUSTAKA	3
BAB 3 TAHA	AP PELAKSANAAN	5
BAB 4 BIAY	A DAN JADWAL KEGIATAN	9
DAFTAR PUS	STAKA	10
LAMPIRAN 1	. BIODATA KETUA DAN ANGGOTA SERTA	11
	DOSEN PEMBIMBING	
LAMPIRAN 2	. JUSTIFIKASI ANGGARAN	16
LAMPIRAN 3	. SUSUNAN ORGANISASI TIM PELAKSANA	18
	DAN PEMBAGIAN TUGAS	
LAMPIRAN 4	. SURAT PERNYATAAN KETUA	20
	PELAKSANA	
LAMPIRAN 5	. GAMBARAN TEKNOLOGI YANG AKAN	21
	DITERAPKEMBANGKAN	
DAFTAR GAN	MBAR	
		Halaman
Gambar 1	Load Bank	1
Gambar 2	Lembar Pengetesan Akhir Genset Kereta Api	2
Gambar 3	Cara Kerja Sensor Thermocouple	4
Gambar 4	Sensor Thermocouple Type-K	4
Gambar 5	Sensor Hall Effect	4
Gambar 6	Arduino Nano ATmega328	5
Gambar 7	Modul Wifi ESP8266	5
Gambar 8	Flowchart	6
Gambar 9	Blok Diagram	7
Gambar 10	Gambaran Teknologi Tampak Keseluruhan	21
Gambar 11	Gambaran Teknologi dari Dalam	21
	Ç	
DAFTAR TAB	BEL	
		Halaman
Tabel 1	Luaran yang Diharapkan	3
Tabel 2	Daftar Pengujian Hardware	7
Tabel 3	Daftar Pengujian Software	8
Tabel 4	Rekapitulasi Rencana Anggaran Biaya	9
Tabel 5	Jadwal Kegiatan	9
Tabel 6	Justifikasi Anggaran Kegiatan	17
Tabel 7	Susunan Organisasi Tim Kegiatan	18

BAB 1. PENDAHULUAN

1.1. Latar Belakang

Kebutuhan listrik pada rangkaian kereta api disuplai oleh genset. Energi listrik tersebut biasanya digunakan untuk lampu penerangan, AC, televisi, audio, stop kontak, ruang masinis, kontrol panel, restorasi, dan lain- lain. Sumber listrik harus dipastikan keamanan penggunaan beban dan performanya, agar selama perjalanan, kebutuhan listrik untuk seluruh rangkaian kereta terjamin tidak padam dan bebas gangguan. Oleh karena itu genset harus diuji performan pembebanannya sebelum dipasang pada rangkaian kereta. Total beban genset yang dibutuhkan untuk memenuhi seluruh kebutuhan listik rangkaian kereta sebesar 500 kVA. Metode pengujian yang dikenal dengan Load Test yaitu membebani genset dengan beban uji load bank. Energi listrik dari genset diubah menjadi energi panas pada load bank sebagai simulasi pembebanan. Suhu pada load bank harus pada batas ambang normal saat load test. Kelebihan arus atau overload bisa disebabkan oleh sistem pendinginan (blower) tidak bekerja secara optimal yang mengakibatkan load bank berpotensi overheating dan menyebabkan kerusakan komponen serta dapat memicu ledakan dan kebakaran. Suhu load bank juga dipengaruhi oleh tegangan, arus, dan frekuensi yang masuk dari genset pada load bank.

Gambar 1. Load Bank (foto dokumentasi PT KAI 2019)

Saat ini, *load test* (tes beban) genset masih melibatkan teknisi untuk masuk ke ruangan dengan tingkat kebisingan tinggi. Teknisi akan memeriksa dan mengukur frekuensi panel genset, suhu tertinggi (*turbo, exhaust, air radiator in* dan *out,* motor *diesel, alternator,* kabel panel genset, kabel *junction box,* ETS), arus kabel (panel genset dan *junction box*), tegangan panel genset, dan indikator *load bank.* Hasil pengukuran dicatat pada Lembar Pengetesan Akhir Genset Kereta (Gambar 2), terdapat 32 kolom pengukuran, namun fokus topik PKM-KC kali ini adalah pada bagian monitoring besaran listrik pada *load bank* yang dinyatakan dalam bentuk arus listrik, frekuensi, dan tegangan.

	#5.000 per		127							LE	MBAR	PENGE	TESA	NAKE	IIR GI	ENSE	KER	ETA	P/MP	KME	/ KP						U	NIT QU	ALIT	CON	TROL
U	T. BALAI Y	ASA M	ANG	GARAI					- 0		100	1.7	G NO.	: /	FT/Q	C/BY	IRI/	/24					_	_			-		INAL.	rper	
	O. SERI CERETA	Stonion				MASUN					NO,I	D. GENSE					PENG	ESIAN TERY	0.00		VOLT							-	LIVIL	12.51	
	DIPO	None in			. TGL	TEST					TYP	GENSET	-			KVA	O	PS	1,,,,,,,,,,		BAR										
	SPAT				WAKT	UTEST	T				RPM M	TOR DIE	SEL.			RPM		CK UR	IJTAN A		SEARA	H JARU	M JAM	/ TIDAK				-	-		
				FREKU	_		1		1		HECK S	HU TER		HU KAI	2009	- 201	HU KAI	NIII.						STRIK			CHI	ECK INI	DIKATO	OR LOS	D BANK
NO	JAM	BEBAS (KW)	94	PANEL	TUR	BO (°C)	EXH	USI (°C)	RADIAT		MOTOR DIESEL	ALTERN		L GENS		JUNC	TON BO	X CC	ETS		US KAI L GENS			US KAR		TEGANGA N PANEL	ARUS	LISTR	K (A)	FREQ	TEGAN
	76.	200		GENSE T _c (HZ)	R	L	R	L	OR IN	OR OUT	(CC)	(40)	R	S	т	R	s	T	(°C)	R	s	T	R	S	т	GENNET (V)	R	#S	T	(HZ)	N (V)
1	2	3	4	15/	6	7	8	9	10	11	12	13/	16	15	16	17	18	19	20 /	21	22	2.5	24	25	26	27 /	28	29	30.	31	32
1		V	~	V	V	V	V	V			V	V	V	1	V	~	V	V	~	V	V	V	V	V	V	~	V	V	L	11	V
2																															
3																										/			-		
4										1 43																					
5																															to
6																							171.75								
7																													-		
1																		-	Seusce											-	/
9	Twell	100	16	D1	Ev	LER HUND	15	han	1	2	SIN	E	0.	lo.	- 1	L	netw		1 1	0	.1		1.	Chos		Pavel	- 1		1	h	1.
10	1.		8	Labor	-	2.00	10		-				Ya.	ense	1	00	-	*.1	(Prod	71		-	Be	-11.		0	- 4	-00	a	Ban	4
AT	ATAN:	-	N		-	-	_		-		12	-	_	Cors	1	Po	_		hover	06	nse		13.0	1		Geud					
Jan	Pertama Peri Selanjutnya I								-	->		ETAHUL ASAN,	-		1	4	PEMER	IKSA,	1	<	PF	-> SODUKS	SI,		>	PRIN	CIPAL,				
		********										distantanta	Mint				DECEMBER 1	an and a			4	******		1.	0-			and the last		5	-
	Ms 257FT										2.0	IPP.					NIPP.				PHP.			K	KIT			4			

Gambar 2. Lembar Pengetesan Akhir Genset Kereta Api

Teknisi harus keluar masuk ruang genset setiap 15 menit sekali dalam kurun waktu 6 jam. Cara tersebut tentu tidak effisien dan membahayakan teknisi karena genset menghasilkan intensitas suara lebih kurang 200 dB. Sementara nilai ambang batas (NAB) kebisingan ditempat kerja yang ditetapkan oleh Kepmenaker No. 51 pasal 3, ayat (1) tahun 1999 adalah sebesar 85 dB. Berdasarkan Tabel yang disajikan pada Lampiran II memuat lebih detil bahwa nilai ambang batas kebisingan 85 dB hanya diizinkan selama 8 jam kerja. Pekerja tidak boleh terpapar kebisingan > 140 dB meskipun sesaat. Saat ini di Balaiyasa, Manggarai pelanggaran batas kebisingan (200 dB) > 140 dB masih ditemukan. Tingkat paparan kebisingan (Juliansyah Harahap. 2017) yang berlebih akan mangakibatkan auditory effect seperti TTS (Temporary Threshold Shift). PTS (Permanent threshold shift) dan Tinnitus (bunyi berdengung pada telinga), serta non auditory effect seperti perasaan jengkel (annoyance) atau gangguan tidur. Pelanggaran tersebut harus dicarikan solusinya untuk mengantisipasi korban jiwa atau gangguan pendengaran. Permasalahan gangguan pendengaran dan sesuai hasil telusur pustaka, maka dibuatlah alat pemonitor. Desain pemonitor mengadopsi tampilan dan indikator pada load bank dengan menampilkan hasil pengukuran suhu, voltase, arus, dan frekuensi. Alat pemonitor adalah data logger berbentuk box dengan 4 port sensor, dimensinya (p x 1 x t = 15 x 15 x 4)cm. Bagian depan dari box terdapat LCD display sebagai pengkalibrasi data sensor terhadap data yang diupload ke cloud. Bagian dalam box terdapat modul/komponen pengumpul dan pemroses data hasil pengukuran Load Bank. Mikrokontroler yang terintegrasi dengan sensor dipasang pada Load Bank untuk mengukur beban yang diterima. Besaran yang diukur adalah suhu, voltase, arus, dan frekuensi yang dibebankan kepada Load Bank. Keseluruhan beban tersebut masing-masing dikoneksikan melalui kabel dari load bank ke alat pemroses data. Kemudian data tersebut diupload ke cloud dan ditampilkan pada smartphone secara real time. Bahan casing box terbuat dari polivinil yang dicetak dengan 3D print. Komponen dan modul di dalam *box* yaitu data logger (I Putu Gede Mahendra Sanjaya dkk, 2017) merupakan sebuah perangkat elektronik yang digunakan untuk mengumpulkan dan merekam data dari objek yang direkam baik secara terintegrasi dengan sensor eksternal maupun sensor internal, kemudian diintegrasikan dengan sensor *thermocouple*, *hall effect current*, *voltage transducer*, dan *frequency transducer*. Selanjutnya data hasil pengukuran sensor dari data logger tersebut ditampilkan di *smartphone*.

1.2. Identifikasi Masalah

- a. Sumber listrik pada rangkaian kereta berasal dari genset
- b. Performa genset dipastikan dengan uji beban (load test)
- c. Kebisingan ruang *load test* (200 dB) melibihi standar Kepmenaker (140 dB)
- d. Teknisi masuk dalam ruang dengan kebisingan 200 dB setiap 15 menit dalam kurun waktu 6 jam (melebihi standar Kepmenaker yaitu tidak boleh terpapar kebisingan 140 dB meskipun sesaat)
- e. Keselamatan kerja teknisi belum dilaksanakan secara optimal
- f. Pengukuran secara manual dengan memasuki ruang genset danmencatat voltase, arus, dan frekuensi dari indikator pada *load bank* tidak effisien

Cara memonitor voltase, arus, dan frekuensi konvensional sudah saatnya dimodifikasi dengan instrumen penampil data terintegrasi ke *android*. Alat pemonitor akan diuji pada model *Load Test* menggunakan genset dengan rasio daya terhadap daya genset kereta api yaitu sebesar 1 : 100 yang dihubungkan ke model *Load Bank*.

1.3. Tujuan

Merancangbangun sistem pemonitor voltase, arus dan frekuensi dari genset ke *load bank* yang terintegrasi ke *android*

1.4. Manfaat

Sarana monitor voltase, arus, dan frekuensi dari genset ke *load bank*

1.5. Luaran

Luaran W	ajib:	Luara	n Tamba	han	
1) Sistem	pemonitor	1)	Hak Cip	ota	
2) Catatar	n Harian	2)	Publikas	si Media Sosi	al
3) Lapora	n Kemajuan	3)	Draft	Artikel	Internasional
4) Lapora	n Akhir		Confere	<i>nce</i> atau Jurn	al Nasional

Tabel 1. Luaran yang Diharapkan

BAB 2. TINJAUAN PUSTAKA

Beberapa pustaka yang diperlukan dalam pembuatan *prototype* pemonitor data ukur besaran listrik dan *overheating* pada *load bank* genset terintegrasi ke *android* ini adalah arduino nano ATmega 328p dan modul *WiFi* ESP 8266 (pengolah data), *thermocouple* (sensor), *hall effect current, voltage transducer*, *frequency transducer* (sensor). Seluruh modul dipelajari spesifikasi, karakter dan cara kerjanya untuk perancangan alat.

21. Prinsip Kerja dan Karakteristik Sensor Thermocouple Type-K

Prinsip kerja *thermocouple* secara sederhana berupa dua buah kabel dari jenis logam yang berbeda ujungnya, hanya ujungnya saja, disatukan (dilas). Titik penyatuan ini disebut *hot junction*, seperti yang ada pada (Gambar 3).

Gambar 3. Cara Kerja Sensor *Thermocouple*

Gambar 4. Sensor *Thermocouple type-K*

Sensor *thermocouple* tipe K (Gambar 4) dapat mendeteksi suhu dari – 2000C sampai + 12500C (Rahman Mukmin. 2017). Bahan Logam Konduktor Positif: Nickel-Chromium, Bahan Logam Konduktor Negatif: Nickel-Aluminium.

22. Prinsip Kerja dan Output Sensor Hall Effect Current

Prinsip kerja sensor (Erryk Yustisianto Putro, Suryono. 2017) ini dengan menggunakan fenomena efek Hall, didasarkan pada efek medan magnetik terhadap partikel bermuatan yang bergerak. Arus listrik megalir pada sensor Hall yang ditempatkan pada medan magnet yang memiliki arah tegak lurus arus listrik. Muatan bergerak dan berbelok ke salah satu sisi lainnya yang akan menghasilkan medan listrik yang nilainya akan semakin membesar hingga gaya Lorentz yang berkeja pada partikel menjadi nol.

Gambar 5. Sensor Hall Effect

Perbedaan potensial antara kedua sisi perangkat disebut dengan potensial Hall. Potensial Hall ini sebanding dengan arus listrik dan medan magnet yang melewati device. Sensor hall effect (Gambar 5) memberikan output berupa tegangan yang proporsional dengan kekuatan medan magnet yang diterima oleh sensor tersebut (Novrita Idayanti, Dedi, dan Nanang Sudrajat. 2016).

23. Modul WiFi ESP8266

Mikro *wifi* akan digunakan sebagai perangkat *IoT* yang dapat diintegrasikan dengan perangkat yang akan di kontrol dan monitor melalui internet yang terhubung ke akses poin (M. Wildan Firdaus, M. Ary Murti, Ramdhan Nugraha. 2017). Pernyataan [Hidayat Nur Isnianto, Muhammad Arrofiq, dkk. 2019] mengenai Modul *WiFi* ESP 8266 (Gambar 7) digunakan untuk mengunggah data dari hasil perhitungan sensor ke dalam web berbasis html. Modul *WiFi* ESP 8266 juga sebagai server untuk melayani *client* dalam proses monitoring.

Gambar 6. Arduino Nano ATmega328 Gambar 7. Modul WiFi ESP8266

24 Mikrokontroller Arduino Nano ATmega328

Arduino Nano menggunakan mikrokontroller ATmega 328 (Gambar 6) untuk Arduino Nano 3.x dan Atmega168 untuk Arduino Nano 2.x. Varian ini (Akhiruddin. 2018) mempunyai rangkaian yang sama dengan jenis Arduino Duemilanove, tetapi dengan ukuran dan desain PCB yang berbeda. Arduino Nano tidak dilengkapi dengan soket catu daya, tetapi terdapat pin untuk catu daya luar atau dapat menggunakan catu daya dari mini USB *port*. Dalam rangkaian ini, Arduino Nano berfungsi untuk memprogram sensor dan alat lainnya.

BAB 3. TAHAP PELAKSANAAN

Realisasi alat dan program didukung pustaka hasil penelitian yang diperoleh melalui studi literatur. Studi literatur, mencari pustaka (jurnal) terkait dengan sensor thermocouple, current sensor hall effect, voltage transducers, frequency transducers, arduino nano, modul wifi ESP 8266. Artikel seminar/jurnal terpublikasi dipelajari, metode, hasil, kelebihan/kekurangannya, untuk mendesai alat dan merancang sistem. Beberapa metode untuk merealisasikan alat dan sistem yang ditargetkan adalah:

3.1. Dimensi alat dan spesifikasi

1. Dimensi Alat

Model alat berbentuk box dengan (P x L x T) cm = (15 x 15 x 4) cm

2. Spesifikasi Alat

	NS	

Hall Effect Current sensor

Frequency transducer

- a. tegangan Output 4V±1%
- b. Tegangan supply ±15Vdc
- c. Range ukur $0 \sim \pm 900$ A

Single Phase Voltage Transducer

- a. tegangan Output $0 \sim \pm 5V$
- b. Tegangan supply ±24Vdc
- c. Range ukur 0 ~ 500Vac

- a. Tegangan output 0 ~ 10 Vdc
- b. Tegangan supply ± 24 Vdc
- c. Range ukur 0 ~ 65 Hz

Thermocouple

- a. Tegangan Output 0 ~ 5 Vdc
- b. Tegangan supply ±5Vdc
- c. Range ukur $0 \sim \pm 1125$ °C

DATA LOGGER

Mikrokontroller ESP8266

- a. MCU Xtensa single-core 32-bit L106
- b. Wi-Fi 802.11 tipe HT20
- c. Frekuensi 80 Mhz
- d. Total GPIO 17
- e. Resolusi ADC 10 bit

Mikrokontroller arduino nano Atmega 328P

- a. Mikrokontroler Atmega 328P
- b. Tegangan kerja optimal $\pm 7V$
- c. Flash memory 32MB
- d. SRAM 3 KB

3.2. Perencanaan

- **1.** Merencanakan kesesuaian dimensi *casing* alat pemonitor dengan instalasi *instrument* dan komponen-komponen didalamnya.
- 2. Melaksanakan troubleshoot pada data logger.

3.3. Perancangan Sistem dan Alat

a. Flowchart system

b. Blok diagram sebagai acuan untuk merealisasikan pemonitor indikator *load bank* berbasis *android*.

Gambar 9. Blok Diagram

Penjelasan tiap blok:

- 1. Output empat sensor (hall effect current, voltage transducer, thermocouple, frequency transducer) menginput sinyal ke modul pemroses data.
- 2. Pemroses data berbentuk data logger akan memperoleh data pengukuran dari *load bank*.
- 3. Data yang diperoleh akan dikirim ke instrumen pengumpul dan pengirim data lalu akan di upload ke *cloud* dan akan ditampilkan juga pada lcd *display* sebagai pengkalibrasi data.
- 4. Data dari *cloud* tersebut akan ditampilkan ke android secara *real time*.

3.4. Rancangbangun Alat dan Sistem

- 1. Tahap realisasi desain pembuatan *casing*, skematik dan *layout* rangkaian.
- 2. Pemasangan komponen sesuai dimensi dan fungsi untuk perakitan modulmodul pada papan rangkaian sebagai jaminan keberhasilan penyolderan dan pengkabelan.
- **3.** Algoritma dan Pemograman dengan Bahasa C pada Arduino IDE yang kompetibel dengan Arduino Genuino Nano ATmega 328p

3.5. Desain Alat

Tampak depan, dalam, ditampilkan di Lampiran 5 halaman 21.

3.6. Pengujian Alat dan Sistem

1. Pengujian *Hardware*

Tabel 2. Daftar Pengujian Hardware

No.	Komponen	Metode	Tujuan
1.	Arduino nano	a. Test power	Aktif dan kesesuaian
	ATmega 328P	b. mengukur tegangan	range input/output
		input/output pin	tegangan

2.	Thermocouple Tipe K	Mengukur a. range tegangan output b. resolusi sensor	Kesesuaian tegangan input dan output sesuai datasheet
3.	Hall Effect Current sensor	a. Mengukur tegangan pin outputb. uji koneksi dengan mikrokontroller	tegangan input output
4.	Modul Node MCU ESP 8266	C	Kesesuaian range tegangan pin input/output
5.	Voltage Transducer	a. pengukuran tegangan input/outputb. uji koneksi dengan mikrokontroler	Kesesuaian range tegangan input output dengan datasheet dan konektifitas ke mikrokontroler
6.	Frequency Transducer	a.pengukuran tegangan input/output b.uji koneksi dengan mikrokontroler	kesesuaian range tegangan input output dengan datasheet dan konektifitas ke mikrokontroler

2. Pengujian Software

Tabel 3. Daftar Pengujian Software

No.	Program	Metode	Tujuan
1.	Sub program pada setiap	Membuat sub program deteksi sensor, penyimpanan data, indikator, <i>display</i> di Arduino	Kesesuaian instruksi program pada setiap komponen
	komponen	IDE, kompilasi, eksekusi program ke mikrokontroler	
2.	Program keseluruhan	Membuat program deteksi sensor, penyimpanan data, indikator, <i>display</i> di Arduiono IDE, kompilasi, eksekusi	Kesesuaian keseluruhan program terhadap kerja alat dan sistem
Troul	bleshooting	program ke mikrokontroler	

3.7. Troubleshooting

1. Troubleshooting Software

- *a.* Ketidaksesuaian program: mengecek *syntax error* dan membandingkan dengan algoritma *flowchart* yang telah dibuat.
- b. Ketidaksesuaian penerimaan sinyal output semua sensor.

2. *Troubleshooting Hardware*

- a. Alat tidak aktif; mengecek ulang *power supply* dan koneksi komponen-komponen ke mikrokontroler.
- b. Mikrokontroler tidak memproses sinyal input/output; identifikasi masalah dengan mengecek tegangan input dan output pada *hardware*.
- c. Gagal pengiriman data, mengecek koneksi wiring, kesesuaian port.

3.8. Pelaporan dan dokumentasi akhir

- **1.** Pembuatan laporan kemajuan dan laporan akhir, laporan kemajuan dan *logbook*
- 2. Pembuatan artikel seminar dan dipublikasikan di Seminar Nasional
- 3. Pengajuan Hak Cipta

BAB 4. BIAYA DAN JADWAL KEGIATAN

41. Anggaran Biaya

Ringkasan Anggaran Biaya disusun dengan format Tabel 4 disusun sesuai dengan rincian anggaran pada **Lampiran 2** halaman 16

Tabel 4. Format Rekapitulasi Rencana Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1.	Perlengkapan yang diperlukan	3.930.000
2.	Bahan Habis Pakai	4.571.000
3.	Perjalanan	1.410.000
4.	Lain-lain	2.575.000
	Jumlah	12.486.000

42. Format Jadwal Kegiatan

Jadwal kegiatan dirinci sebagai *timeline* untuk dilaksanakn dan dipatuhi agar rencana terealisasi tepat waktu sesuai target capaian alat/system

Tabel 5. Jadwal Kegiatan

No	Jenis Kegiatan	В	ula	3 4		
140	Jems Regiatan	1	2	3	4	5
1	Rencana Kerja dan Studi Literatur					
2	Perancangan Alat; perhitungan rasio daya model beban,					
	simulasi rangkain,pembuatan <i>layout</i> di multisim dan uji					
	protoboard dan wiring					
3	Pembelian Komponen habis pakai dan alat; mikrokontroller,					
	sensor hall effect current, voltage transducer, frequency					
	transducer, thermocouple, PCB, HCL dan hidrogen					
	peroksida, protoboard, LCD display					
4	Uji elektrik wiring dan koneksi sensor, ke modul/komponen					

5	Realisasi Alat; Pembuatan dan print rangkaian, Etching			
	papan PCB, cetak 3D box alat, instalasi sensor ke data			
	logger, wiring			
6	Pemrograman			
7	Pengujian 1 dan Troubleshooting			
8	Pengujian 2 dan Penyempurnaan Alat			
9	Evaluasi			
10	Penyempurnaan Alat			
11	Pengelolaan dan Analisa Data			
12	Pembuatan Laporan Akhir			
14	Pengumpulan Laporan			

DAFTAR PUSTAKA

- Akhiruddin. 2018. Rancang Bangun Alat Pendeteksi Ketinggian Air Sungai Sebagai Peringatan Dini Banjir Berbasis Arduino Nano. *Juournal of Electrical Technology*. 3(3)
- Erryk Yustisianto Putro dan Suryono. 2017. Rancang Bangun Sistem Sensor Nirkabel Untuk Memantau Kecepatan dan Arah Aliran. *Youngster Physics Journal*. 6(1): 32 39
- Hidayat Nur Isnianto, Muhammad Arrofiq, Rijeqi Rahmawati, dan Bagus Mulyo Tyoso. 2019. Sistem Telemonitoring KWH Meter Menggunakan Modul Wi-Fi ESP8266 Berbasis Arduino. *Jurnal Rekayasa Elektrika*. 15(1): 25-33
- I Putu Gede Mahendra Sanjaya, Cok Gede Indra Partha, Duman Care Khrisne. 2017. Rancang Bangun Sistem Data Logger Berbasis Visual Pada Solar Cell. *Jurnal Teknologi Elektro*. 16(03)
- Juliansyah Harahap. 2017. Penentuan Tingkat Kebisingan Pada Area Pengolahan Sekam Padi, *Siltstone Crusher, Cooler* dan *Power Plant* Pada Pt Lafarge Cement Indonesia-Lhoknga Plant. *Journal of Islamic Science and Technology*. 2(2)
- M. Wildan Firdaus, M. Ary Murti, Ramdhan Nugraha. 2017. Sistem Kontrol dan Monitoring Genset Melalui Internet. *e-Proceeding of Engineering*. 4(1):36
- Mulyono, M. Rafli Alfanani. 2015. Sistem Distribusi Energi Listrik Pada Kereta Api Kelas Ekonomi, Bisnis dan Eksekutif. *Jurnal Energi*. 11 (1): 18-22
- Novrita Idayanti, Dedi, dan Nanang Sudrajat, Suyatman, Nibraz Hilda, Annas Hawa. 2016. Perancangan Instrument Ukur Torsi dan Kecepatan Pada Motor DC dengan Prinsip Nonkontak Berdasarkan Deteksi Medan Magnet. *Jurnal Instrumentasi*. 40(2)
- Rahman Mukmin. 2017. Sistem Pengendali Kecepatan Putaran Motor AC Berdasarkan *Pulse Width Modulation* dengan Monitoring Scada. *Laporan Akhir*. BAB II: 7-9
- Rizki Priya Pratama. 2017. Aplikasi Webserver ESP8266 Untuk Pengendali Peralatan Listrik. *Jurnal Inovasi Vokasional dan Teknologi*. 17(2)

Lampiran 1. Biodata Ketua dan Anggota Serta Dosen Pembimbing

Lampiran 1. Biodata Ketua dan Anggota Serta Dosen Pembimbing

A. Identitas Diri

1.	Nama Lengkap	Habib Khairul			
2.	Jenis Kelamin	Laki-laki/ Perempuan			
3.	Program Studi	Elektronika Industri			
4.	NIM	1803321056			
5.	Tempat dan Tanggal Lahir	Sungai Penuh, 22 Agustus 2000			
6.	Alamat Email	habib.kahirul32@gmail.com			
7.	Nomor Telepon	82280485849			

B. Kegiatan Mahasiswa Yang Sedang Diikuti/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.			
2.			
3.			

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pember Penghargaan	i Tahun
1.			
2.			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya siap menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu pernyataan dalm pengajuan PKM-KC

Depok,23 Desember 2019 Ketua Tim

(Habib Khairul) NIM. **18**03321056

A. Identitas Diri

1.	Nama Lengkap	Muhamad Ihsan Kamil
2.	Jenis Kelamin	Laki-laki/ Perempuan
3.	Program Studi	Elektronika Industri
4.	NIM .	1803321085
5.	Tempat dan Tanggal Lahir	Jakarta, 18 Januari 2000
6.	Alamat Email	ihsankml18@gmail.com
7.	Nomor Telepon	87771801480

B. Kegiatan Mahasiswa Yang Sedang Diikuti/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.			
2.			
3.			

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Per Penghargaan	mberi Tahun
1.			
2.			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya siap menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu pernyataan dalm pengajuan PKM-KC

Depok, 23 Desember 2019

Anggota Tim

(Muhamad Ihsan Kamil)

NIM. 1803321085

A. Identitas Diri

1.	Nama Lengkap	Brilian Nuraisah Maharani
2.	Jenis Kelamin	Laki-laki/ Perempuan
3.	Program Studi	Elektronika Indutri
4.	NIM	1903321082
5.	Tempat dan Tanggal Lahir	Karanganyar, 28 April 2001
6.	Alamat Email	ianbrilian28@gmail.com
7.	Nomor Telepon	87888383330

B. Kegiatan Mahasiswa Yang Sedang Diikuti/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.			
2.			
3.			

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Penghargaan	Pemberi	Tahun
1.				
2.				

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hokum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya siap menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu pernyataan dalm pengajuan PKM-KC

Depok, 23 Desember 2019 Anggota Tim

(Brilian Nuraisah Maharani) NIM. 1903321082

A. Identitas Diri

1	Nama Lengkap (dengan	Nana Sutarna, ST. MT. Ph.D.
1	Gelar)	
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Elektronika Industri
4	NIP/NIDN	197007122001121001 / 0012077003
5	Tempat dan tanggal lahir	Cirebon, 12 Juli 1970
6	Alamat Email	nana.sutarna@elektro.pnj.ac.id
7	Nomor Telepon/HP	87708826 / 081283255370

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Universitas	Universitas	STUST
	Brawijaya	Indonesia	
Jurusan/Prodi	Teknik Elektro	Teknik	Teknik
		Elektronika	Elektronika
		Control	Control
Tahun Masuk-Lulus	1994-1998	1996-1998	2014-2019

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Rangkaian Listrik	Wajib	2
2	Motor Listrik	Wajib	2
3	Sensor dan transducer	Wajib	2
4	Instrumentasi Industri	Wajib	2
5	Teknik Digital	Wajib	2
6	Praktek Insrumentasi Industri	Wajib	2
7	Elektronika Daya	Wajib	2
8	Praktek Elektronika Daya	Wajib	2

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
----	------------------	--------------------	-------

1	Efek Uap Bertekanan Pada Viskositas Minyak Oli Terhadap Waktu Alir	Pribadi	2015
	Dalam Mesin Simulator Injeksi Uap Berbasis Plc Dan Scada		
2	Rancang Bangun Sistem Pengolahan Limbah Urin untuk Penyiraman Urinoir Uji Regresi Hasil Pengukuran Volume Air Penyiram pada Urinoir Penentu Input Error	Riset Grand Dosen & Mahasiswa	2014

Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Perbaikan Masjid <u>Darussalam Kp.</u> Anyar Desa Urug Kec. SukaJaya Kab. Bogor	P3M, PNBP PNJ	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC

Depok, 13 Desember 2019 Dosen Pendamping

(Nana Sutarna, ST. MT. Ph.D.) NIP/NIDN. 197007122001121001

Lampiran 2. Justifikasi Anggaran Kegiatan

Tabel 6. Justifikasi Anggaran Kegiatan

1. Perlengkapan yang	Volume	Harga Satuan	Nilai (Rp)
diperlukan		(Rp)	\ 1 /
Bor Set	1 Unit	560.000	560.000
Multitester	1 Unit	280.000	280.000
Meteran	1 Unit	30.000	30.000
DGKS Iron Solder	1 Set	350.000	350.000
Station			
Stand solder	1 set	150.000	150.000
Tool Set	1 Unit	1.580.000	1.580.000
Flux solder	1 unit	50.000	50.000
Gergaji PCB	1 Unit	130.000	130.000
Penyedot Timah	1 Unit	500.000	500.000
Tang Set	1 Unit	170.000	170.000
Kikir	1 Set	100.000	100.000
Tinner	1 botol	30.000	30.000
SUB TOTAL (Rp)			3.930.000
2. Bahan Habis Pakai	Volume	Harga Satuan	Nilai (Rp)
		(Rp)	
Arduino Nano	1 Unit	350.000	350.000
Modul WiFi ESP8266	1 Unit	81.000	81.000
Hall Effect Current	1 Unit	250.000	250.000
Sensor 1000 Ampere 40			
mm windows size			
AC Voltage transducer	1 Unit	700.000	700.000
Frequency transducer	1 Unit	1.000.000	1.000.000
Clamp Tester	1 Unit	700.000	700.000
$LCD \ display \ 16 \ x \ 2 + I2C$	1 set	50.000	50.000
module			
Sewa Genset 5KVA	1 Unit	700.000	700.000
Timah	1 Gulung	70.000	70.000
Thermocouple type-k	1 Unit	230.000	230.000
Power supply 220 Vac to	I unit	125.000	125.000
12 Vdc			-0.000
PCB Board 30	1 Unit	70.000	70.000
Kabel	10 Meter	8.500	85.000
HCl	1 Botol	25.000	25.000
H202 3D Printing	1 Botol	35.000	35.000
	100 gr	1.000/gr	100.000

SUB TOTAL (Rp)	4.571.000				
3.Perjalanan	Volume	Harga Satuan	Nilai (Rp)		
		(Rp)			
Transportasi ke Balaiyasa	3 Orang	50.000	150.000		
Manggarai					
Biaya <i>shipping</i> Luar	3 sensor	100.000	300.000		
Negeri					
Transportasi Beli	3 Orang	150.000	450.000		
Komponen					
Transportasi Lainnya	3 Orang	170.000	510.000		
SUB TOTAL (Rp)			1.410.000		
4. Lainnya	Volume	Harga Satuan	Nilai (Rp)		
		(Rp)			
Pembuatan Proposal	5 Jilid	40.000	200.000		
P3K	1 Set	100.000	100.000		
Paket Internet/ Plusa	5 Bulan	180.000	900.000		
Modem					
Poster	1 Unit	270.000	270.000		
Logbook	1 buku	50.000	50.000		
Submit Hak Cipta	1	450.000	450.000		
	pengajuan				
SNTE	1	600.000	600.000		
	pemakalah				
SUB TOTAL (Rp)	2.575.000				
TOTAL 1+2+3+4(Rp)	12.486.000				
Dua Belas Juta Empat Ratus Delapan Puluh Enam Ribu					

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

Tabel 7. Susunan Organisasi Tim Kegiatan

	Tuber 7. Busunan Organisasi Tim Regiatan				
No.	Nama/NIM	Program	Bidang	Alokasi	Uraian Tugas
		Studi	Ilmu	Waktu	
				(Jam/	
				Minggu)	
1.	Habib	Elektronika	Programer	14 jam /	Persiapan,
	Khairul /	Industri		minggu	membuat
	1803321056				proposal bab 1
					dan bab 3
					Pelaksanaan,
					programer
					sistem
					Pengujian; sub
					program dan
					keselurahan
					sistem.
2.	Muhamad	Elektronika	Mekanik	14 jam /	Persiapan,
	Ihsan Kamil /	Industri		minggu	membuat
	1803321085				proposal bab 2,
					jadwal,
					lampiran-
					lampiran, cover
					daftar
					isi/table/gambar,
					pegesahan.
					Persiapan,
					mekanisasi
					modul dan alat
					Pengujian;
					menguji dan
					troubleshooting
					hardware

3.	Brilian	Elektronika	Elektronik	14 jam /	Persiapan,
	Nuraisah	Industri		minggu	membuat
	Maharani /				proposal bab 4
	1903321082				dan desain alat
					Pelaksanaan,
					instalasi modul-
					modul pada alat
					Pengujian, uji
					elektrik modul
					keseluruhan
					sistem.

Lampiran 4. Surat Pernyataan Ketua Pelaksana

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI JAKARTA

Jalan Prof. Dr. G. A. Siwabessy, Kampus UI, Depok 16245 Telepon (021) 7270036, Hunting, Fax (021) 7270034 Laman: http://www.pnj.ac.id e-pos:humas@pnj.ac.id

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Habib Khairul NIM : 1803321056

Program Studi : Elektronika Industri Fakultas : Teknik Elektro

Dengan ini menyatakan bahwa usulan PKM-KC dengan judul Pemonitor *Over Heating* Pada *Load Bank* Penampil Data Ukur besaran Listrik Genset Terintegrasi Ke Android yang diusulkan untuk tahun anggaran 2020 adalah asli karya kami dan belum pernah dibiayai oleh lembaga sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksamaan dengan pernyatan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Dosen Pendamping,

(Nana Sutarna, ST. MT. Ph.D) NIDN. 0012077003 Depok, 23 Desember 2019

Yang menyatakan

(Habib Khairul) NIM. 1803321056

Mengetahui,

Pembantu Direktur Bidang Kemahasiswaan,

(<u>Iwa Sudradjat, S.T., M.T</u>) NIP. 196106071986011002

Lampiran 5. Gambaran Teknologi Yang Akan Diterapkembangkan

Gambar 10. Gambaran Teknologi Tampak Keseleruhan

Gambar 11. Gambaran Teknologi Tampak dari Dalam