Уравнения продуктивности системы взаимовлияющих скважин в резервуаресекторе на установившемся режиме

Представленный модуль по расчету продуктивности системы взаимовлияющих скважин в резервуаре-секторе на установившемся режиме был разработан для использования уравнений и зависимостей полученных в ходе исследования "Jing Lu, Shawket Ghedan, and Tao Zhu, The Petroleum Institute; and Anh Dinh, Schlumberger; and Djebbar Tiab, University of Oklahoma" описанных в соответствующей SPE статье на данную тему.

Для конкретной информации касающейся методики расчета, уравнений или их применимости, просьба обращаться к первоисточнику (статье).

ВНИМАНИЕ

Для корректной работы приложений следует использовать Python 3.9.

Обозначения величин

- P_e (P e) давление на границах пласта, MPa;
- Φ (PHI) угол раскрытия сектора, границы : [0, 360], °(deg);
- Q (Q) дебит скважины, m^3/d ;
- r_e (r_e) радиус резервуара-сектора, m;
- *H* эффективная толщина пласта, *m*;
- K_r (K_r) радиальная проницаемость, μm^2 ;
- K_z (K_z) вертикальная проницаемость, μm^2 ;
- μ (mu) вязкость нефти, $mPa\cdot s$;
- ullet B объемный коэффициент нефти, m^3/m^3 ;
- $p_w f$ (P_wf) забойное давление скважины, MPa;
- r_i (r_i) радиус вектор расположения скважины от центра сектора, m;
- φ (phi_i) угол расположения скважины, $\circ(deg)$;
- r_w (r_w) радиус скважины, m;
- S (skin) скин-фактор скважины.

Использованные в методике допущения

- 1. В начальный момент времени t=0, пластовое давление равномерно распределено по всему резервуару и равно начальному P_{ini} ;
- 2. Все скважины параллельны вертикальной оси z и их эффективная мощность равна эффективной толщине пласта, также нижние границе пласта полностью не проницаемые;
- 3. Подразумевается движение однофазной среды с небольшой и постоянной сжимаемостью C_f и постоянной вязкостью μ , а также постоянным объёмным коэффициентом B. Свойства жидкости не зависят от давления. Силы тяжести пренебрежимо малы;
- 4. Система скважин находится и резервуаре формы сектора с постоянной горизонтальной проницаемостью K_h , вертикальной проницаемость K_z и эффективной толщиной H. Горизонтальная проницаемость K_h равна радиальной проницаемости K_r . На границах резервуара-сектора принято постоянное давление. $P_e = P_{ini}$, и границы пласта не проницаемые.
- 5. В каждый отдельный промежуток времени принято постоянные: кол-во скважин, их радиус и механический скин-фактор.

Описание файлов и их применения

Библиотека функций

ssp_eq_mws_sfr.py :

Питон файл в котором применены все описанные в статье уравнения необходимые для расчета.

Их правильность была проверена на данных из статьи и представленных в ней аналитических и численных решений.

Все вычисления проводятся в единицах СИ.

.ехе файлы

В папке **dist** находятся файлы с названиями, соответствующим python-файлам, с идентичным функционалом, но с возможностью запуска на любой Windows системе (для этого требуется только один .exe файл).

Замечание: довольно долгий запуск приложений (5-10 сек). В приложении с графическим интерфейсом отсутствуют картинки.

Расчетный модуль с графическим интерфейсом

calculaion_app_gui.py :

Главный файл модуля в котором реализован весь функционал приложения. Разрабатывался максимально понятным с целью упрощения работы с ним. По умолчанию все ячейки заполнены значениями для **"Example One,** *Case 1"* из статьи SPE.

Описание функционала кнопок

- find Q устанавливает режим расчета в том случае когда известен скин-фактор каждой скважины их высчитывает расход $(Q,m^3/d)$ и суммарный дебит по
- find S устанавливает режим расчета в том случае когда известны дебиты скважин ($Q, m^3/d$) и высчитывает их *скин-фактор* ;
- +, - кнопка добавления/удаления скважины;
- Calculate производит сам расчет;
- Save results создает Excel-файл с именем 'manual_save_test.xlsx' в который записывается все входные и выходные данные последнего проведенного расчета в папку в которой была запущена программа;
- Calculate from excel реализует функционал файла 'cmd_only_excel_mode.py' (описание см. ниже) и сохраняет результат в Excel-файл с именем
 'output_solution_example.xlsx' в той папке в которой была запущена программа.

Ошибки

Все **распространенные** ошибки (неправильный разделитель десятичных знаков (п*равильный - moчка : .*), деление на ноль, неправильный путь к файлу и т.д.) были учтены и вынесены в *'исключения'*, чтобы уберечь приложения от неожиданных сбоев.

В случае возникновения одной из ошибок соответствующее сообщение будет выведено в командую строку.

Расчет Excel-файла из командной строки

cmd_only_excel_mode.py:

Для ускорения расчетов можно избегать запуска полноценного приложения и обойтись только взаимодействием с командной строкой. На вход подается только путь соответствующего Excel-файла, который требуется рассчитать.

Результат будет сохранен в Excel-файл с именем 'cmd_solution.xlsx' в той же папке, откуда был запущен скрипт.

Шаблоны Excel-файлов

Шаблон для входного расчетного файла

• input_data_template.xlsx :

Данный шаблон позволяет рассчитать разом необходимое кол-во 'кейсов'.

Входной файл необходимо формировать точно как в шаблоне для того, чтобы расчет прошел корректно.

- Для каждого 'кейса' должны быть определены его границы путем написания метки 'START' и 'END' в соответствующих местах (см. input_data_template.xlsx);
- Также должны присутствовать метки данных для резервуара 'RESV' и для скважин 'WELL';
- Заголовки свойств менять не следует, также как и их порядок. Кроме колонки 'SKIN', ее можно заменить на 'Q', соответствующая метка будет определят тип данных и тип расчета;
- Не допускается наличие пустых строк между метками 'START' и 'END', в то время как между *'кейсами'* может быть все что угодно (лучше чтобы не было);
- Кол-во скважин может быть сколь угодно большим.

Пути к файлам

Если запускаемый скрипт и файл находятся в одной папке, то можно указывать только его имя с расширением. В противном случае следует указывать абсолютный путь (рекомендуется делать так всегда).

Выходные файлы

Файлы созданные в процессе сохранения результатов расчета формируются автоматически и сохраняются в той же папке откуда был запущен соответствующий скрипт. Если они получились пустыми, то значит в процессе расчета пошло что-то не так и надо проверить или шаблон входных данных или см. пук **Ошибки**.

- output solution example.xlsx
- manual_save_test.xlsx
- cmd_solution.xlsx

Замечание: результаты всегда сохраняются с одним и тем же именем, а также в них записывается информация только о последнем проведенном расчете, это значит, что они могут перезаписываться.

Дополнительно

- папка **images** : папка с картинками используемыми в приложении;
- calculation_app_gui.ui : файл интерфейса, созданного в PyQt5 Designer;
- requirements.txt: список требований к используемым библиотекам.

Опечатки найденные в статье

- в формуле (22) степень $^{1/2}$ ошибочная, правильная степень : $^1.$