0.1 H17 数学必修

1 (1)

$$\frac{\partial}{\partial x}(\log\left(\sqrt{x^2+y^2}\right)) = \frac{1}{\sqrt{x^2+y^2}} \frac{1}{2} (x^2+y^2)^{-1/2} 2x = \frac{x}{x^2+y^2}$$
$$\frac{\partial^2}{\partial x^2}(\log\left(\sqrt{x^2+y^2}\right)) = \frac{1}{x^2+y^2} - \frac{x}{(x^2+y^2)^2} 2x = \frac{y^2-x^2}{(x^2+y^2)^2}$$

x, *y* について対称だから

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) (\log(\sqrt{x^2 + y^2})) = \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{x^2 - y^2}{(x^2 + y^2)^2} = 0$$

(2)x/a = s, y/b = t と変数変換する. ヤコビアンは ab である. 積分領域 D' は $D' = \{(s,t) \in \mathbb{R}^2 \mid 0 \le s, 0 \le t, s^2 + t^2 \le 1\}$ である. よって $\int_D x dx dy = \int_{D'} saabds dt = a^2 b \int_{D'} s ds dt$ である. $s = r\cos\theta, t = r\sin\theta$ と変数変換する. ヤコビアンはrである. $\int_{D'} s ds dt = \int_0^1 \int_0^{\pi/2} r^2 \cos\theta r dr d\theta = \frac{1}{3}$ である. よって $\int_D x dx dy = \frac{a^2 b}{3}$ である.

$$\boxed{2} \text{ (1)} \det A = a \begin{vmatrix} -3a+4 & -2a+3 \\ 4a-4 & 3a-3 \end{vmatrix} = a \begin{vmatrix} -3a+4 & -2a+3 \\ a & a \end{vmatrix} = a^2(-a+1) \text{ CBS}.$$

$$(2)a \neq 0, 1$$
 で $\operatorname{rank} A = 3$ である. $a = 1$ のとき $A = \begin{pmatrix} 1 & 0 & 0 \\ 5 & 1 & 1 \\ -5 & 0 & 0 \end{pmatrix}$ で $\operatorname{rank} A = 2$ である.

$$a = 0$$
 のとき $A = \begin{pmatrix} 0 & 0 & 0 \\ 5 & 4 & 3 \\ -5 & -4 & -3 \end{pmatrix}$ で $\operatorname{rank} A = 1$ である.

$$(3)a=1$$
 である. $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 12 \\ -12 \end{pmatrix}$ とすれば解を持つ. この連立方程式の解は $c_1\begin{pmatrix} -4 \\ 5 \\ 0 \end{pmatrix}+$

$$c_2 \begin{pmatrix} -3 \\ 0 \\ 5 \end{pmatrix} \quad (c_1, c_2 \in \mathbb{R})$$
 である.

 $\boxed{3} \ f$ の連続性から $f(\alpha) = \lim_{x \to \alpha - 0} f(x) \geq \lim_{x \to \alpha - 0} x = \alpha, f(\alpha) = \lim_{x \to \alpha + 0} f(x) \leq \lim_{x \to \alpha + 0} x = \alpha$ である. よって $f(\alpha) = \alpha$ である.

 $x_1 < \alpha$ のとき. $x_n < \alpha$ なら $x_n < f(x_n) = x_{n+1}, f(x_n) < f(\alpha) = \alpha$ であるから数列 $\{x_n\}_{n \geq 1}$ は有界単調増加であり収束する. $\lim_{n \to \infty} x_n = \beta$ とする. $f(\beta) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = \beta$ である. よって $\beta = \alpha$ である. $x_1 > \alpha$ のときも同様にして $\beta = \alpha$ である.

 $\boxed{4}$ $(1)(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ の積位相とは、 $\{U \times Y \mid U \in \mathcal{O}_X\} \cup \{X \times V \mid V \in \mathcal{O}_Y\}$ を開基とする位相である.

 $(2)(x_1,y_1),(x_2,y_2)\in X\times Y$ を任意にとる. X,Y は弧状連結であるから、連続写像 $c_X\colon [0,1]\to X, c_Y\colon [0,1]\to Y$ であって $c_X(0)=x_1,c_X(1)=x_2,c_Y(0)=y_1,c_Y(1)=y_2$ となるものが存在する. $c\colon [0,1]\to X\times Y$ を $c(t)=(c_X(t),c_Y(t))$ と定める.

X imes Y の開集合 W は $W = \bigcup_{i \in I} U_i imes V_i \quad (U_i \in \mathcal{O}_X, V_i \in \mathcal{O}_Y)$ とできる.

 $c^{-1}(W) = \bigcup_{i \in I} c^{-1}(U_i \times V_i) = \bigcup_{i \in I} (c_X^{-1}(U_i) \cap c_Y^{-1}(V_i))$ である. $c_X^{-1}(U_i) \cap c_Y^{-1}(V_i)$ は [0,1] の開集合であるから $c^{-1}(W)$ は開集合である. よって c は連続であるから $X \times Y$ は弧状連結.

$$(3)X imes Y = igcup_{\lambda \in \Lambda} W_{\lambda}$$
 を開被覆とする. $W_{\lambda} = igcup_{i_{\lambda} \in I_{\lambda}} U_{i_{\lambda}} imes V_{i_{\lambda}}$ とできる. このとき $X = igcup_{\lambda \in \Lambda} igcup_{i_{\lambda} \in I_{\lambda}} U_{i_{\lambda}}, Y = igcup_{\lambda \in \Lambda} igcup_{i_{\lambda} \in I_{\lambda}} U_{i_{\lambda}}$

 $\bigcup_{\lambda \in \Lambda} \bigcup_{i_{\lambda} \in I_{\lambda}} V_{i_{\lambda}}$ である。コンパクト性から有限部分集合 $S \subset \{i_{\lambda} \mid \lambda \in \Lambda, i_{\lambda} \in \lambda\}$ がとれて $X = \bigcup_{U_{i_{\lambda}} \in S} U_{i_{\lambda}}$ となる。Y についても同様の有限部分集合 T がとれる。 $S \times T$ は有限であり, $\bigcup_{(i_{\lambda},j_{\lambda}) \in S \times T} U_{i_{\lambda}} \times V_{j_{\lambda}}$ は $X \times Y$ の開被覆である。すなわち $X \times Y$ はコンパクトである。

- 5 (1) f(x) = -x, g(x) = -x + 1 である.
- (2) $f \circ g(x) = f(-x+1) = x-1$ より $f \circ g$ はマイナス方向に 1 ずらす変換である.
- (3)-x+2=g(ax+b)=-(ax+b)+1=-ax+1-b より a=1,b=-1 である. よって $g\circ f\circ g(x)=-x+2$
- (4)-x+n=g(ax+b)=-ax+1-b より a=1,b=1-n である. よって $g\circ (f\circ g)^{n-1}(x)=g(x-(n-1))=-x+n$ である.
- (5)(2),(4) より $\{ax+b\mid a,b\in\mathbb{Z}\}=H$ とわかる. $h(x)=ax+b\in H$ に対して $h^{-1}(x)=\frac{1}{a}x-\frac{b}{a}$ である. $h\circ (f\circ g)^n\circ h^{-1}=(h\circ f\circ g\circ h^{-1})^n$ より $h\circ f\circ g\circ h^{-1}\in \langle f\circ g\rangle$ を示せばよい.

 $h\circ f\circ g\circ h^{-1}(x)=h\circ f\circ g(\tfrac{1}{a}x-\tfrac{b}{a})=h\circ f(-\tfrac{x}{a}+\tfrac{b}{a}-1)=h(\tfrac{x}{a}-\tfrac{b}{a}+1)=x-b+a+b=x-a=(f\circ g)^a\in \langle f\circ g\rangle$ である.

 $(6)N=\langle x-3 \rangle$ とする. $h\circ (x-3)\circ h^{-1}(x)=h(\frac{1}{a}x-\frac{b}{a}-3)=x-b-3a+b=x-3a$ より N は H の正規 部分群. $H/N=\{[x],[x-1],[x-2],[-x],[-x-1],[-x-2]\}$ である. ここで [f] は f+N を表す. 位数 6 の群であり, $[-x-2]\circ [-x]=[x-2],[-x]\circ [-x-2]=[x-1]$ より H/N は可換でない. すなわち $H/N\cong S_3$ である.