Fig. 1A

	10	20	30	40	5 0	60
BTHKURHD flsynbt.fin bssyn	ATGGATAACAATCCC	C C	GC.	.CCC	CC.GC	CG
	70 *	80	90	100	110	120
BTHKURHD flsynbt.fin bssyn	GTAGAAGTATTAGG GGGC.G(GGGC.G(CCGC.C	CGC.	.C	CC	CAG.C
	130	140	150	160	170	180
BTHKURHD flsynbt.fin bssyn	TCGCTAACGCAATT AGCGCGC AGCGCGC	CGCC	GCG.	CC	CCC.(3CG
	190	200	210	220	230	240
BTHKURHD flsynbt.fin bssyn	GTTGATATAATATGGGCCC	C C C	C., AGC.	.G	C C G C	J., G., C
	250	260	270	280	290	300
BTHKURHD flsynbt.fin bssyn	GAACAGTTAATTAA(GC.GC GC.GC	GC C C	G G	.cc.c	GCAG	JC.CC.G
	310	320	330	340	350	360
BTHKURHD flsynbt.fin bssyn	GAAGGACTAAGCAA' GCG(GCG(י כ כ	C = C	. UAGG U.C.		J C C
	370 *	380	390	400	410	420
BTHKURHD flsynbt.fin bssyn	CCTACTAATCCAGC	CC GC.CG	C .	.C G		
	430	440	450 *	460	470	480
BTHKURHD flsynbt.fin bssyn	CTTACAACCGCTAT		[ممتامينا بيان	しょうしょうけんき	D. OUNE
	490	500	510 *	520	530 *	540
BTHKURHD flsynbt.fin bssyn	TATGTTCAAGCTGC	CC.GC	C.GAGCGC	C . C C	CAGC	٠.,٥,,٥
	550 *	560	570 *	580	59 0	600
BTHKURHD flsynbt.fin bssyn	AGGTGGGGATTTGA'C.CCCC	7 C C	C C .			J G U

Fig. 1B

	610	620	630	640	65Q	660
BTHKURHD flsynbt.fin bssyn	GGCAACTATACAGAT	CCC0		.CCCC.	G	GT
	670 *	680 *	690 *	700	710	720
BTHKURHD flsynbt.fin bssyn	CCGGATTCTAGAGATCCAGCC.CC	C C 6	G C C G.	.CC.CC.C	GC.GC(GCG
	730	740	750 *	760	770	780 *
BTHKURHD flsynbt.fin bssyn	TTAGATATCGTTTCTC.GCGAGCC.GCGAGC	TGCC	l C C .	.CC.CC	CCC(CCG
	790	800	810	820	830	840
BTHKURHD flsynbt.fin bssyn	TCCCAATTAACAAGA AGGC.GCC.C AGGC.GCC.C	CG(:CC.	.GC.GG	U., U., U., (U., U., L
	850	860	87 <u>0</u>	880	890	900
BTHKURHD flsynbt.fin bssyn	CGAGGCTCGGCTCAC .CAGCC	C 0	4 C C CC	. C C C	CC	UUU
	910	920	930	940	95 0	960
BTHKURHD flsynbt.fin bssyn	AACAGTATAÂCCATO		' C CC.C.	. C. a Gaaliaa	U AUU !	UUU
	970	980	990	1000	1010	1020
BTHKURHD flsynbt.fin bssyn	ATAATGGCTTCTCCCCCCCCCCCCCCCCCCCCCCCCCCC	י ר ר ('AGCCC.	. (7	C C G !	U.,U.,U
	1030	1040	1050	1060	1070	1080
BTHKURHD flsynbt.fin bssyn	ATGGGAAATGCAGC	א יוי א	2 (* (* (*	A	L	
	1090	1100	1110	1120	1130	1140
BTHKURHD flsynbt.fin bssyn	ACATTATCGTCCACT CC.GAGCAGC	יר כב רכיי	PCC.	محاممان مالمم	U U U '	GGG
	1150	1160	1170	1180	1190	1200
BTHKURHD flsynbt.fin bssyn	TCTGTTCTTGACGGGAGCGG	7 CG(1 C C U .	AG . AGC	CCCAG	

Fig. 1C

	1:	210	1220	1230	1240	1250	1260
BTHKURHD flsynbt.fin bssyn	TACAGAA.	AAAGCGGAZ .GC .GC	ACGGTAGATT CGCA CGCA	CGCTGGATGA GCC(GCC(AATACCGCCAC GCT. GCT.	CAGAATAACA	AACGTG
	1:	270	1280	1290	1300	1310	1320
BTHKURHD flsynbt.fin bssyn	(A G C		GATTAAGCCA' .TC.G(.TC.G(GAGC	.CCAGT	C
	1	330	1340	1350 -	1360	1370	1380
BTHKURHD flsynbt.fin bssyn	C C	C	C C	GAGCTCCTATO .TA .TA	AGC	. T C C	C
	1.	390	1400	1410	1420	1430	
BTHKURHD flsynbt.fin bssyn	ב ר	\mathcal{C}	C G	CACAAATTA GCGC GCGC	C G C	CC_*G_* . C_*	.GAGC.
1	440	1450	1460	1470	1480	1490	
BTHKURHD flsynbt.fin bssyn	C	C ACC	C CAGC.	CGTTAAAGGA(GGGC GGC	C C C		
	500	1510	1520	1530	1540	1550	
BTHKURHD flsynbt.fin bssyn	- C - CC -	r ('Δ(±C'	['	TTCAACCTTA CAGCC.GC CAGCC.GC	معناه مثلم منامن		· CC · GA
1	560	1570	1580	1590	1600	1610	
BTHKURHD flsynbt.fin bssyn	ככ ככ	ר ר	CC C C	CTACGCTTCTZ CAGC CAGC			. U UA
1	620	1630	1640	1650	1660	1670	
BTHKURHD flsynbt.fin bssyn	GC C	CC . C .	. C C C	GGGGAATTTT' CCC. CC.	1 6666.		
1	680	1690	1700	1710	1720	1730	
BTHKURHD flsynbt.fin bssyn	CCC	AC C	- $ -$	TGTAGGTTTT CGCC CGCC		C_{\bullet}	60C.
. 1	740	1750	1760	1770	1780	1790	
BTHKURHD flsynbt.fin bssyn	ርልርር ፣	C G C	\cdot CC \cdot G \cdot \cdot C \cdot \cdot	TCATGTCTTCA CCG CCG	CAGC		

Fig. 1D

	1800	1810	1820	1830	1840	1850	
BTHKURHD flsynbt.fin bssyn		C C G C.	.GCC(G G C	CG.	ATGATTTAGAAAG .CCC.GG .CCC.GG.	G.
	1860	1870	1880	1890	1900	1910	
BTHKURHD flsynbt.fin bssyn	ነ ጥ	G C	. C (C.,CAGCAG.		GGTTAAAAACAGA .CC.GGC .CC.GGC.	
	1920	1930	1940	1950	1960	1970	
BTHKURHD flsynbt.fin bssyn	ì	CGGATTATCATA .CCCC. .CCCC.	.ÇG(ATCCAATTTA GAGCC.G	GTTGAGTGTT' GCC	PATCTGATGAATT .GAGCCG	TT C.
-	1980	1990	2000	2010	2020	2030	
BTHKURHD flsynbt.fir bssyn		TGGATGAAAAAA CGG.	AAGAATTGTC .GGCAG	CGAGAAAGTC GG	AAACATGCGAA GCC.	AGCGACTTAGTGA	ATG .C.
	2040	2050	2060	2070	2080	2090	
BTHKURHD flsynbt.fir bssyn	AGC	GGAATTTACTTC .CCC.GG.	AAGATCCAAA .GCC	CTTTAGÄGGG CC.CC	ATCAATÄGAC	AACTAGACCGTGG .GGC	CT
	2100	2110	2120	2130	2140	2150	
BTHKURHD flsynbt.fir bssyn	GGA	AGGAAGTACGG .CCCC.	ATATTACCAT	CCAAGGÂGGC GC	GATGACGTAT CG.	TCAAAGAGAATTA GC	ACG
boo ₁	2160	2170	2180	2190	2200	2210	
BTHKURHD flsynbt.fir bssyn	TTA n .G.	CGCTATTGGGTA .CGCC.	CCTTTGATGA CC	GTGCTATCCA CC	ACGTATTTAT.	ATCAAAAAATAGA .CGGC	ATG .C.
boo'in	2220	2230	2240	2250	2260	2270	
BTHKURHD flsynbt.fir bssyn	AGT	X CGAAATTAAAAG GCGC.GG.	CCTATACCCG	TTACCAATTA CGC.G	AGAGGGTATA C.CCC.	TCGAAGATAGTCA	AAG .G.
2201	2280	2290	2300	2310	2320	2330	
BTHKURHD flsynbt.fir bssyn	ACT	TAGAAATCTATT .GGCC	TAATTCGCTA .GC	CAATGCCAAA CG	CACGAAACAG GC.	TAAATGTGCCAGG .GCC	GTA .C.
2001.1	2340	2350	2360	2370	2380	2390	
BTHKURHD flsynbt.fir bssyn	CĞG	GTTCCTTATGGC .CAG.C.G	CGCTTTCAGC .CGAGC	CCCAAGTCCA	ATCGGAAAAT CG.	GTGCCCATCATTC	CCC

Fig. 1E

BTHKURHD flsynbt.fi							2450 GACTTAGGTGTAT C.GCG.
bssyn BTHKURHD flsynbt.fi		460 GGGTGAT	2470 ATTCAAGATT	2480 AAGACGCAAG	2490 ATGGCCATGC	2500 AAGACTAGGA	2510 AATCTAGAATTTC
bssyn BTHKURHD	2	520 * TCGAAGA	 2530 GAAACCATTA	2540 GTAGGAGAAG	 2550 CACTAGCTCG	 2560 TGTGAAAAGA	2570 GCGGAGAAAAAAT
flsynbt.fi		 580 *	 2590 *	2600	2610 2610	2620 2620	CGG. 2630 AAAGAGGCAAAAG
BTHKURHD flsynbt.fi bssyn		640	GCG 2650	2660 2660	GC 2670 *	CCGC 2680 *	2690 *
BTHKURHD flsynbt.fi bssyn		AATCTGT .GAGC 700	AGATGCTTTA GCCC.G 2710	TTTGTAAACTCGA	CTCAATATGA GCGC 	TAGATTACAA CC.CC.GG 	GCGGATACCAACA CC 2750
BTHKURHD flsynbt.fi: bssyn	n	* TCGCGAT	CCC	CCG.	GC		GCTTATCTGCCTG CCC.
BTHKURHD flsynbt.fi: bssyn		760 AGCTGTC AG	2770 TGTGATTCCG CCC	2780 GGTGTCAATG CGC.	2790 CGGCTATTTT .CC	2800 TGAAGAATTA CGGC.G	2810 GAAGGGCGTATTT GCCC.
BTHKURHD flsynbt.fi		820 TCACTGC	2830 ATTCTCCCTA CAGG	2840 TATGATGCGA	2850 GAAATGTCAT .CCG	2860 TAAAAATGGT CGCC	2870 GATTTTAATAATG CCC.
bssyn BTHKURHD flsynbt.fir		880 GCTTATC	2890 CTGCTGGAAC	2900 GTGAAAGGGC	2910 ATGTAGATGT	2920 AGAAGAACAA GGGG	2930 AACAACCACCGTT
bssyn BTHKURHD		940 * CGGTCCT	 2950 тсттсттссс	 2960 * GAATGGGAAG	 2970 2876 CAGAAGTGTC	2980 * ACAAGAAGTT	2990 CGTGTCTGTCCGG
flsynbt.fin bssyn	n	GCG	GGGC 	GG.	.CGAG		CGCC.

Fig. 1F

3	3000	3010	3020	3030	3040	3050
BTHKURHD flsynbt.fin bssyn	GTCGTGG	CTATATCCTT	CGTGTCACAG CGC.	CGTACAAGGA .C	GGGATATGGA	GAAGGTTGCGTAA GCG.
3	3060	3070	3080	3090	3100	3110
BTHKURHD flsynbt.fin bssyn	CCATTCA	TGAGATCGAG C	AACAATACAG CC.	ACGAACTGAA GC	GTTTAGCAAC C	TGTGTAGAAGAGG CGG
_	3120	3130	3140	3150	3160	3170
BTHKURHD flsynbt.fin bssyn	AAGTATA .GG	TCCAAACAAC CC	ACGGTAACGT	GTAATGATTA .CCC	TACTGCGACT	CAAGAAGAATATG
_	3180	3190	3200	3210	3220	3230
BTHKURHD flsynbt.fin bssyn	AĜGGTAC	GTACÂCTTCT CCAGC	ССТААТССАС	GATATGACGG .CC	AGCCTATGAA CCG	AGCAATTCTTCTG CAGCAGC.
-	3240	3250	3260;	3270	3280	3290
BTHKURHD flsynbt.fin bssyn	TÂCCAGC .GC	TGATTATGCA	TCAGCCTATG AGCC.	AAGAAAAAGC .GGG	ATATACAGAT	GGACGAAGAGACA
-	3300	3310	3320	3330	3340	3350
BTHKURHD flsynbt.fin bssyn	ATCCTTG	TGAATCTAAC CGAGC	AGAGGATATO C.CCC.	GGGATTACAC .CC	CACCACTACCA	AGCTGGCTATGTGA
_	3360	3370	3380	3390	3400	3410
BTHKURHD flsynbt.fin bssyn	CAAAAGA .CG	ATTAGAGTAC GC.G	TTCCCAGAAA	CCGATAAGGT	'ATGGATTGAG GC	GATCGGAGAAACGG
-	3420	3430	3440	3450	3460	
BTHKURHD flsynbt.fin bssyn	<u>አ</u> አርርአአር	ል ጥጥር <mark>ል ጥር ር</mark> ጥር	GACAGCGTGG	GAATTACTTCT .GC.GG	TATGGAGGAA G0 TO	J G

Fig. 2A

	10	20	30	40	5 0	60
BTHKURHD bssyn	ATGGATAACAATCO	GAACATCAAT	GAATGCATTC	CTTATAATTG .CCC	TTTAAGTAAC CC.GC	CCTGAA CG
	70	80	90	100	110	120
BTHKURHD bssyn	GTAGAAGTATTAGG GGGC.G	TGGAGAAAGA CCGC.C	ATAGAAACTO CGC.	GTTACACCCC .C	AATCGATATT CCC	TCCTTG AG.C
	130	140	150	160	170	180
BTHKURHD bssyn	TCGCTAACGCAATT AGCGCG	TCTTTTGAGT CGCC	GAATTTGTTC GCG.	CCGGTGCTGG	ATTTGTGTTA CCC.G	GGACTA CG
	190	200	210	220	230	240
BTHKURHD bssyn	GTTGATATAATATG GCCC	GGGAATTTTT CCC	GGTCCCTCTC CAGC.	AATGGGACGC .G	ATTTCTTGTA CCGG	CAAATT GC
	250	260	270 *	280	290	300
BTHKURHD bssyn	GAACAGTTAATTAA GC.GC	CCAAAGAATA GC.CC	GAAGAATTCG GG	CTAGGAACCA .CC.C	AGCCATTTCT GCAGC	AGATTA C.CC.G
	310	320	330	340	35 0	360
BTHKURHD bssyn	GAAGGACTAAGCAA GCG	TCTTTATCAA CGC	ATTTACGCAG CC.	GAGCCC.	AGAGTGGGAA CG	
	37 <u>0</u>	380	390 *	400	410	420
BTHKURHD bssyn	CCTACTAATCCAGC	ATTAAGAGAA CC.GC.C.	GAGATGCGTA	.CG	TGACATGAAC C	C
	430	440	450 *	460	470	480
BTHKURHD bssyn	CTTACAACCGCTAT	TCCTCTTTTTCCCC	GCAGTTCAAA CCGG.	ATTATCAAGT .CCG	GCGC.G	AGCG
	490	50 <u>0</u>	510	520 *	530	540
BTHKURHD bssyn	TATGTTCAAGCTGC	CCC.GC	TTATCAGTTT C.GAGCGC	TGAGAGATGT	CAGCC	
	55 <u>0</u>	560	570 *	580 *	590	600
BTHKURHD bssyn	AGGTGGGGATTTGA C.CCC.	TGCCGCGACT	:	GTTATAATGA .CCC.	CC.GCC.C	
	610	62 0 *	630 *	640 *	650	660
BTHKURHD bssyn	GGCAACTATACAGA	TCATGCTGTA CCCG	CGCTGGTACA	ATACGGGATT .CCCC.	AGAGCGTGTA GCG	:T
	67 <u>0</u> *	68 <u>0</u>	69 0	700	710	720
BTHKURHD bssyn	CCGGATTCTAGAGA CCAGCC.C	TTGGATAAGA CCG	TATAATCAAT CCG.	TTAGAAGAGA .CC.CC.C	ATTAACACTA GC.GCG	ACTGTA CG

Fig. 2B

	730	740	750	760	770	780
BTHKURHD bssyn	TTAGATATCGTTT C.GCGA	CTCTATTTCC(GCGC(GAACTATGATA	AGTAGAACGTA CC.CC	TCCAATTCGACCC	AACAGTT CCG
	790	800	810	820	830	840
BTHKURHD bssyn	TCCCAATTAACAA AGGC.GCC	GAGAAATTTA' .CG(TACAAACCCA(CCC	GTATTAGAAAA GC.GG	TTTTGATGG'	PAGTTTT CCC
	85 <u>0</u>	860	870	880	890	900
BTHKURHD bssyn	CGAGGCTCGGCTCCAGCC.	AGGGCATAGA C	AGGAAGTATTA GCCC	AGGAGTCCACA C.CCC	TTTGATGGA' CC	PATACTT CCG
	910	920	930	940	95 0	960
BTHKURHD bssyn	AACAGTATAACCA	TCTATACGGA!	TGCTCATAGA(CCCC.C	GGAGAATATTA CGC	TTGGTCAGG(CAGC	GCATCAA CCG
	97 <u>0</u>	980	990	1000	1010	1020
BTHKURHD bssyn	ATAATGGCTTCTCCCAGC.	CTGTAGGGTT' .CCC	TTCGGGGCCAC CAGCCC	GAATTCACTTI GC	TCCGCTATA'	TGGAACT CCC
	1030	1040	1050	1060	1070	1080
BTHKURHD bssyn	ATGGGAAATGCAGCT.	CTCCACAACA .ATG	ACGTATTGTT(GCCG	GCTCAACTAGG AGG	TCAGGGCGT CA	GTATAGA CC.C
	1090	1100	1110	1120	1130	1140
BTHKURHD bssyn	ACATTATCGTCCA	CTTTATATAGA .CC.GCC.	AAGACCTTTTA ICC	AATATAGGGAT CCC.	AAATAATCA CCC	ACAACTA GGG
	1150	1160	1170	1180	1190	1200
BTHKURHD bssyn	TCTGTTCTTGACG AGCGG	GGACAGAATT' .CCG	TGCTTATGGAA CCC	ACCTCCTCAAA AG.AGC	TTTGCCATC CCCAG	CGCTGTA CG
	1210	1220	1230	1240	1250	1260
BTHKURHD bssyn	TACAGAAAAAGCG	GAACGGTAGA' .CCG	TTCGCTGGATC CAGCC	GAAATACCGCC GCC	CACAGAATAA TC.	CAACGTG
	1270	1280	1290	1300	1310	1320
BTHKURHD bssyn	CCACCTAGGCAAGC.AG.	GATTTAGTCA .CCC	TCGATTAAGC(CTC.G	CATGTTTCAAT CGAGC	GTTTCGTTCCCAG	AGGCTTT TC
	1330	1340	1350	1360	1370	1380
BTHKURHD bssyn	AGTAATAGTÄGTG	TAAGTATAAT. .GCC	AAGAGCTCCT CC.TA	ATGTTCTCTTC AGC	1	TAGTGCT CC
	1390	1400	1410	1420	1430	
BTHKURHD bssyn	GAATTTAATAATA GCCC.	TAATTCCTTC. .CC	ATCACAAA' .GGCG.	TTACACAAATA .CCGC	CCTTTAACA	AAATCTA GAGC.

Fig. 2C

	1440	1450	1460	1470	1480	1490
BTHKURHD bssyn	CTAATC' .CC.	TTGGCTCTGGA .GAGC(AACTTCTGTC CCAGCG	GTTAAAGGACC GGC	AGGATTTACA CCCC	GGAGGAGATATTC CCC.
	1500	1510	1520	1530	1540	1550
BTHKURHD bssyn	TTCGAA .GCC	GAACTTCACC' .CCAGC	TGGCCAGATT CC	TCAACCTTAAG AGCC.GC.	AGTAAATATT CGCC	ACTGCACCATTAT
	1560	1570	1580	1590	1600	1610
BTHKURHD bssyn	CACAAA GCGC	GATATCGGGT7 .CCC	AAGAATTCGC CC.CC	TACGCTTCTAC	CACAAATTTA CCC.G	CAATTCCATACAT
	1620	1630	1640	1650	1660	1670
BTHKURHD bssyn	CAATTG GCC.	ACGGAAGACC'	TATTAATCAG CCC	GGGAATTTTTC CCCAG	CAGCAACTATG GCCC	AGTAGTGGGAGTA CCCC.
	1680	1690	1700	1710	1720	1730
BTHKURHD bssyn	ATTTAC.CC.G.	AGTCCGGAAG AGC	CTTTAGGACT CC.CC	GTAGGTTTTAC GCC	CTACTCCGTTT CCC	AACTTTTCAAATG
	1740	1750	1760	1770	1780	1790
BTHKURHD bssyn	GATCAA .CAGC.	GTGTATTTAC .CGC	GTTAAGTGCT CC.GCC	CATGTCTTCAA CG	ATTCAGGCAAT CAGCC	GAAGTTTATATAG GGCC.
	1800	1810	1820	1830	1840	1850
BTHKURHD bssyn	ATCGAA .CC.	TTGAATTTGT .CGC	TCCGGCAGAA GCCG	GTAACCTTTGA GC.	AGGCAGAATAT	GATTTAGAAAGAG C.CC.GGG.
	1860	1870	1880	1890	1900	1910
BTHKURHD bssyn	CACAAA .TG.	AGGCGGTGAA'	TGAGCTGTTT CC	ACTTCTTCCAA CAGCAG	ATCAAATCGGG .CGC	TTAAAAACAGATG C.GGCC.
	1920	1930	1940			
BTHKURHD bssyn	TGACGG	ATTATCATAT .CCC	TGATCAAGTA CGG	TCC .AG		

Fig. 3A

	10	20	30	40	50 *	60 *
syn1T.mze bssyn synful.mod	ATGGACAACAACC	CCAACATCAAC	GAGTGCATC(CCCTACAACTG	CCTGAGCAA	CCCCGAG
o ₁ nzuzvou	70	80	90	100	110	120
syn1T.mze bssyn synful.mod	GTGGAGGTGCTGG	GCGGCGAGCGC	ATCGAGÁCC(GGCTACACCCC	CATCGACAT	CAGCCTG
Syntat.moa	130	140	150	160	170	180
syn1T.mze bssyn synful.mod	AGCCTGACCCAGTT					GGGCCTG
	190	200	210	220	230	240
syn1T.mze bssyn synful.mod	GTGGACATCATCT	GGGCATCTTC	:GGCCCCAGC(CAGTGGGACGC	CTTCCTGGT	GCAGATC
oyntarimoa	250	260	270	280	290	300
syn1T.mze bssyn synful.mod	GAGCAGCTGATCA	ACCAGCGCATC	GAGGAGTTC	GCCGCAACCA	GGCCATCAG	CCGCCTG
Symrar.moa	310	320	330	340	350	360
syn1T.mze bssyn	GAGGGCCTGAGCAA	ACCTGTACCAG	ATCTACGCC(GAGAGCTTCCG	CGAGTGGGA(GGCCGAC
synful.mod	370	380	390	400	410	420
syn1T.mze bssyn synful.mod	CCCACCAACCCCGC					CAGCGCC
Syllur.mod	430	440	450	460	470	480
syn1T.mze bssyn	CTGACCACCGCCAT			AACTACCAGGT	GCCCCTGCT	GAGCGTG
synful.mod	490	500 *	510	520	530	540
syn1T.mze bssyn	TACGTGCAGGCCG				GAGCGTGTT(CGGCCAG
synful.mod	550 *	560 *	570	580	590	600
syn1T.mze	CGCTGGGGCTTCG	ACGCCGCCACC		CGCTACAACGA	CCTGAĈCCG	CCTGATĈ
bssyn synful.mod						

Fig. 3B

	610	620	630	640	65 0	660
syn1T.mze bssyn synful.mod	GGCAACTACÂCCG	••		AACACCGGCC	GGAGCGCGT	GTGGGGC T
<i>5</i> 1	670	680	69 <u>0</u>	700	710	720
syn1T.mze bssyn synful.mod	CCCGACAGCCGCG	ACTGGATCCG A.	~	TTCCGCCGCGA	AGCTGACCCT(GACCGTG
o fill al fillioa	730	740	750	760 *	77 <u>0</u>	780 *
syn1T.mze bssyn synful.mod	CTGGACATCGTGA	GCCTGTTCCC	CAACTACGAC	AGCCGCACCT!	ACCCCATCCG	CACCGTG
	790	800	810	820	830	840
syn1T.mze bssyn synful.mod	AGCCAGCTGACCC	GCGAGATCTA T T	CACCAACCCC	GTGCTGGAGA!	ACTTCGACGG	CAGCTTC
_	85 0	860	870	880	890	900
syn1T.mze bssyn synful.mod	CGCGGCAGCGCCC			CGCAGCCCCCA	ACCTGATGGA	CATCCTG
•	910	920	930	940	95 <u>0</u>	960
syn1T.mze bssyn synful.mod	AACAGCATCÂCCA		CGCCCACCGC	GGCGAGTACT	ACTGGAGCGG(CCACCAG
1	970	980	990	1000	1010	1020
syn1T.mze bssyn synful.mod	ATCATGGCCÄGCC	CCGTGGGCTT C	CAGCGGCCCC	GAGTTCACCT	rcccctgta(CGGCACC
	1030	1040	1050	1060	1070	1080
syn1T.mze bssyn synful.mod	ATGGGCAACGCCG	CCCCCCAGCA .AT .AT	GCGCATCGTG	GCCCAGCTGG(A	GCCAGGGCGT A	GTACCGC
•	1090	1100	1110	1120	1130	1140
syn1T.mze bssyn synful.mod	ACCCTGAGCÂGCA		CCGCCCCTTC TAT TAT	AACATCGGCA!	CAACAACCA	GCAGCTG
	1150	1160	1170	1180	1190	1200
syn1T.mze bssyn synful.mod	AGCGTGCTGGACG	GCACCGÂGTT	CGCCTACGGC		ACCTGCCCAG	CGCCGTG

Fig. 3C

1.00	1210	1220	1230	1240	1250	1260
syn1T.mze bssyn synful.mod	TACCGCAAGAGCG	JCACCGTGGA	CAGCCTGGAC	GAGATCCCCC	CCCAGAACAA .T .T	CAACGTG
	1270	1280	1290	1300	1310	1320
syn1T.mze bssyn synful.mod	CCCCCCCGCCAGGC	GCTTCAGCCA	CCGCCTGAGC T	CACGTGAGCA'	TGTTCCGCAG	CGGCTTC T
-	1330	1340	1350	1360	1370	1380
syn1T.mze bssyn synful.mod	AGCAACAGCAGCG'	rgagcatcat	$\begin{array}{c} CCGCGCCCCC \\ \dots \\ T \dots \\ A \dots \\ T \end{array}$	ATGTTCAGCT	GGATCCACCG T	CAGCGCC T
-	1390	1400	1410	1420	1430	1440
syn1T.mze bssyn synful.mod	GAGTTCAACAACA!	TCATCCCCAG	CAGCCAGATC	ACCCAGATCC	CCCTGACCAA	GAGCACC
- ,	1450	1460	1470	1480	1490	1500
syn1T.mze bssyn synful.mod	AACCTGGGCÂGCG	***	GGTGAAGGGC(CCGGCGGCGA	CATCCTG
1	1510	1520	1530	1540	1550	1560
syn1T.mze bssyn synful.mod	CGCCGCACCÂGCC	CCGGCCAGAT	CAGCACCCTG(TCACCGCCCC	CCTGAGC
	1570	1580	1590	1600	1610	1620
syn1T.mze bssyn synful.mod	CAGCGCTACCGCG'	rgcgcatccg .C .C				
.	1630	1640	1650	1660	1670	1680
syn1T.mze bssyn synful.mod	ATCGACGGCCGCCC	CCATCAACCA	GGGCAACTTC	AGCGCCACCA	TGAGCAGCGG	CAGCAAC
Jiiz wz vimo w	1690	1700	1710	1720	1730	1740
syn1T.mze bssyn synful.mod	CTGCAGAGCGGCA				TCAACTTCAG	CAACGGC
Dynizaz imoa	1750	1760	1770	1780	1790	1800
syn1T.mze bssyn synful.mod	AGCAGCGTGTTCAG					CATCGAC

Fig. 3D

	1810	1820	1830	1840	1850	1860
syn1T.mze	CGCATCGAGTTCG	TGCCCGĈCGA	GGTGACCTTC	GAGGCCGAGT	ACGACCTGGA	GCGCGCC
bssyn synful.mod					• • • • • • • • • • •	.A.GT
	1870	1880	1890	1900	1910	1920
syn1T.mze	CAGAAGGCCGTGA	ACGAGCTGTT	CACCAGCAGC	AACCAGATCG	GCCTGAAGAC	CGACGTG
bssyn synful.mod				• • • • • • • • • •	• • • • • • • • • •	
-	1930	1940	1950	1960	1970	1980
syn1T.mze	ACCGACTACCACA		GAGCAACCTG	GTGGAGTGCC'	TGAGCGACGA	GTTCTGC
bssyn synful.mod		T				• • • • • • •
-	1990	2000	2010	2020	2030	2040
syn1T.mze	CTGGACGAGAAGA	AGGAGCTGAG		•-	AGCGCCTGAG	CGACGAG
bssyn synful.mod						• • • • • •
	2050	2060	2070	2080	2090	2100
syn1T.mze	CGCAACCTGCTGC	AGGACCCCAA	CTTCCGCGGC	ATCAACCGCC.	AGCTGGACCG	CGGCTGG
bśsyn synful.mod				• • • • • • • • • •	• • • • • • • • •	
	2110	2120	2130	2140	2150	2160
syn1T.mze	CGCGGCAGCACCG	ACATCACCAT	CCAGGGCGGC	GACGACGTGT	TCAAGGAGAA	CTACGTG
bśsyn synful.mod				• • • • • • • • • • • • • • • • • • • •		• • • • • •
	2170	2180	2190	2200	2210	2220
synlT.mze	ACCCTGCTGGGCA	CCTTCGACGA	GTGCTACCCC	ACCTACCTGT	ACCAGAAGAT	CGACGAG
bšsyn synful.mod						
	2230	2240	2250	2260	2270	2280
syn1T.mze	AGCAAGCTGAAGG	CCTACACCC	CTACCAGCT	CGCGGCTACA	TCGAGGACAG	CCAGGAC
bšsyn synful.mod						• • • • • •
	2290	2300	2310	2320	2330	2340
syn1T.mze	CTGGAGATCTACC	TGATCCGCTA	CAACGCCAAG	CACGAGACCG	TGAACGTGCC	CGGCACC
bšsyn synful.mod						• • • • • •
	2350	2360	2370	2380	2390	2400
synlT.mze	GGCAGCCTGTGGC	CCCTGAGCGC	CCCCAGCCC	CATCGGCAAGT	GCGCCCACCA	CAGCCAC
bssyn synful.mod						

Fig. 3E

	2410	2420	2430	2440	2450	2460
syn1T.mze	CACTTCAGCCTGG	ACATCGACGT	GGGCTGCACC	GACCTGAACG	AGGACCTGGG	CGTGTGG
bšsyn synful.mod					2510	2520
	2470	2480	2490	2500 ***********************************	2510	2520
syn1T.mze bssyn	GTGATCTTCAAGA	I'CAAGACCCA	GGACGGCCAC			
synful.mod	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •			0570	0500
	2530	2540	2550 :	2560	2570	2580
syn1T.mze bssyn	GAGGAGAAGCCCC	TGGTGGGCGA	GGCCCTGGCC	CGCGTGAAGC	GCGCCGAGAA 	GAAGTGG
synful.mod				• • • • • • • • •	• • • • • • • •	
	2590	2600	2610	2620 *	2630	2640
syn1T.mze bssyn	CGCGACAAGCGCG	AGAAGCTGGA	GTGGGAGACC	AACATCGTGT.	ACAAGGAGGC	CAAGGAG
synful.mod						• • • • • •
	2650	2660	2670	2680	2690	2700
syn1T.mze	AGCGTGGACGCCC	TGTTCGTGAA	CAGCCAGTAC	GACCGCCTGC	AGGCCGACAC	CAACATC
bssyn synful.mod				• • • • • • • • • •		
	2710	2720	2730	2740	2750	2760 *
syn1T.mze	GCCATGATCCACG	CCGCCGACAA	GCGCGTGCAC	AGCATCCGCG	AGGCCTACCT	GCCCGAG
bśsyn synful.mod		;		T	• • • • • • • • •	
	2770	2780	2790	2800	2810	2820
syn1T.mze	CTGAGCGTGATCC		CGCCGCCATC	TTCGAGGAGC	TGGAGGGCCG	CATCTTC
bssyn synful.mod						• • • • • •
	2830	2840	2850	2860	2870	2880
syn1T.mze	ACCGCCTTCÂGCC	TGTACGACGC	CCGCAACGTC	GATCAAGAACG	GCGACTTCAA	CAACGGC
bssyn synful.mod						• • • • • • •
	2890	2900	2910	2920	2930	2940
syn1T.mze	CTGAGCTGCTGGA	ACGTGAAGGG	CCACGTGGAC	GTGGAGGAGC	AGAACAACCA	CCGCAGC
bssyn synful.mod						• • • • • •
	2950	2960	2970	2980	2990	3000
syn1T.mze	GTGCTGGTGGTGC	CCGAGTGGGA	GGCCGAGGTG	GAGCCAGGAGG	TGCGCGTGTG	CCCCGGC
bšsyn synful.mod				• • • • • • • • • • • • • • • • • • • •		• • • • • •

Fig. 3F

	3010	3020	3030	3040	3050	3060
synlT.mze	CGCGGCTACATCC	TGCGCGTGAC	CGCCTACAAG	GAGGGCTACG	GCGAGGGCTG	CGTGACC
bssyn synful.mod						
	3070	3080	3090	3100	3110	3120
syn1T.mze	ATCCACGAGATCG	AGAACAACAC		AAGTTCAGCA	ACTGCGTGGA	GGAGGAG
bšsyn synful.mod			C			
	3130	3140	3150	3160	3170	3180
syn1T.mze	GTGTACCCCAACA	ACACCGTGAC	CTGCAACGAC	TACACCGCCA	CCCAGGAGGA	GTACGAG
bssyn synful.mod						
	3190	3200	3210	3220	3230	3240
syn1T.mze	GGCACCTACACCA		CGGCTACGAC	GGCGCCTACG	AGAGCAACAG	CAGCGTG
bssyn synful.mod		• • • • • • • • •				
	3250	3260 ;	3270	3280	3290	3300
syn1T.mze	CCCGCCGACTACG	CCAGCGCCTA	CGAGGAGAAG	GCCTACACCG	ACGGCCGCCG	CGACAAC
bśsyn synful.mod		• • • • • • • • •				2260
	3310	3320	3330	3340	3350	3360
syn1T.mze bssyn	CCCTGCGAGAGCA	ACCGCGGCTA	CGGCGACTAC	ACCCCCCTGC	CCGCCGGCTA	
synful.mod					2410	2420
	3370	3380	3390	3400	3410	3420
syn1T.mze bssyn	AAGGAGCTGGAGT	ACTTCCCCGA	GACCGACAAG	GTGTGGATCG	AGAICGGCGA	
synful.mod			2450	2460	• • • • • • • •	
	3430	3440	3450	3460 ************************************	አር ጥ እር	
syn1T.mze bssyn	GGCACCTTCATCG	TGGACAGCGT		CIGNIGONGO		
synful.mod		• • • • • • • • •				

Fig. 4A

	10	20	30	40	50	60
BTHKURHD	ATGGATAACAATCC	GAACATCAAT	GAATGCATTC	CTTATÄATTG	TTTAAGTAAC	CCTGAA
PMONBT bssyn	CC	ŽČ	ĠĊ.	.ccc	čċ.Ġċ	∷Ĉ∷Ġ
	70	80	90	100	110	120
BTHKURHD PMONBT bssyn	GTAGAAGTATTAGG' TC.T GGGC.G(rggagāaaga C.C.C.C C.C.GC.C	АТАСАААСТС	GTTACACCCC	AATCGATATT	TCCTTG
<u>.</u>	130	140		160	170	180
BTHKURHD PMONBT bssyn	TCGCTAACGCAATT CT.GAG AGCGCG	CTTTTGAGT	GAATTÎGTTC	CCGGTGCTGG	17 L I L. L	
<u>-</u>	190	200	210	220	230	240
BTHKURHD PMONBT bssyn	GTTGATATATATGGCCC	GGGAATTTTT TCĊ	GGTCCCTCTC cA dc.	'AATGGGACGC	ATTTCTTGTA CGG CCGG	CAAATT ĠĊ
-	250	260	270	280	290	300
BTHKURHD PMONBT bssyn	GAACAGTTAATTAA GGC. GC.GC.	CCAAAĞAATA GGC GC.CC	GAAGAÄTTCG G	CTAGGAACCA CC.C	AGCCATTTCT GC. GCAGC	AGATTA G.G CCCCG
	310	320	330	340	350	36 <u>0</u>
BTHKURHD PMONBT bssyn	GAAGGACTAAGCAA T.G GCG	$C \cdot C$	C '11'	(7A(7U U		
	370	380	390	400	410	420
BTHKURHD PMONBT bssyn	CCTACTAATCCAGC	ATTAAGAGAA	. A		U	č
	430	440	450 *	460	470 *	480
BTHKURHD PMONBT bssyn	CTTACAACCGCTAT T.GCA GCC					
_	490	500	510 *	52 0	53 0	540 *
BTHKURHD PMONBT bssyn	TATGTTCAAGCTGC CA CGGC	יט יעייט עד	C CALC Lat	I. Tt	. AU	
	55 0	560	57 <u>0</u>	580	59 <u>0</u>	600
BTHKURHD PMONBT bssyn	AGGTGGGGATTTGA	ים אורי	('			

Fig. 4B

		_				
	610	620	630	640	650	660
BTHKURHD	GGCAACTATÂCAGAT	TCATGCTGTA	CGCTGGTACA	ATACGGGATT	'AGAGCGTGT.	ATGGGGA
PMONBT bssyn	ACCC	CCT CCCG	' T	.CTC	GC.	CT GT
200111	670	680	690	700	710	720
DMITTER	*	*	*	*	*	*
BTHKURHD PMONBT	CCGGATTCTAGAGAT	T	CCG.	.CG	GC	CAT
bssyn	ččAĠĊĊ.ĊĊ	CCG		.cc.cc.c	GC.GC	GCG
	730	740	750 -	760 *	77 <u>0</u> *	78 0 *
BTHKURHD	TTAGATATCGTTTCT	CTATTTCCG	AACTATGATA	GTAGAACGTA	TCCAATTCG	AACAGTT
PMONBT bssyn	GCTG C.GCGAG			.cc.cc	čcč	ĊċĞ
,	790	800	810	820	830	840
BTHKURHD	* TCCCAATTAACAAGA	* AGAAATTTAT	* 'ACAAACCCAG	ТАТТАСААА	TTTTGATGG	TAGTTTŢ
PMONBT	AGGC.GCC.	C	' '	.TC.TG	U., U., U.,	
bssyn			870	880	890	900
	850	*	*	*	*	*
BTHKURHD PMONBT	CGAGGCTCGGCTCAC	ነ ሞ ሮ	CTCC . C .			UUI.G
bssyn	càĠĊč	CG	cccc	.ccc	CC	CCG
	910	920	930	940	950 *	960
BTHKURHD	AACAGTATAACCATO	CTATACGGAI	GCTCATAGAG	GAGAATATTA	TTGGTCAGG	GCATCAA A C G
PMONBT bssyn	CT	C C C	ċčċ.ċ.	.cgc	ČAGC	ĊčĞ
	970	980	990	1000	1010	1020
BTHKURHD	* ATAATGGCTTCTCC	⋆ ₽Ġ₽₽ĠĠŢŢŢ	* TCGGGGCCAG	* AATTCACTTI	TCCGCTATA	TGGAACT
PMONBT	.CCAGCG	3. Т А. С	:AGC	$\cdot \cdot $	1	
bssyn					1070	1080
	1030	1040	1050	1060	*	*
BTHKURHD	ATGGGAAATGCAGC		('			U U
PMONBT bssyn	ccTi	АТGС	ċĕĠ.	.AGG.	CA	cc.c
-	1090	1100	1110	1120	1130	1140
BTHKURHD	ACATTATCGTCCAC	TTATATAGA	AGACCTTTTA	ATATAGGGAI	'AAATAATCA	ACAACTA
PMONBT bssyn	CGT(י כי כי	C C.			G
рэзүн	1150	1160	1170	1180	1190	1200
	*	*	*	*	*	*
BTHKURHD PMONBT	TCTGTTCTTGACGGG	A (2 ()	' ('			
bssyn	ÁĠČĠĠĆ	CCGC	ccc.	AG.AGC	CCCAG	

Fig. 4C

	1	210	1220	1230	1240	1250	1260
BTHKURHD	TACAGAA	AAAGCGGA	ACGGTAGATI	CGCTGGATG	AAATACCGCC	ACAGAATAAC	AACGTG
PMONBT bssyn	ċ.ċ.	.GC	CGCA	ĠČČ.	.ĠĊĊ'	rč	
		270	1280	1290	1300	1310	1320
BTHKURHD PMONBT bssyn	<u>ر</u>		- CTCCCA	\	ATGTTTCAAT .CGC .CGAGC		AU
•	1	.330	1340	1350	1360	1370	1380
BTHKURHD PMONBT bssyn	AGTAATA CC.	GTÄGTGTA TCCG .CCG	AGTATAATAA CCC. CC.	AGAGCTCCTA'	rgttctcttg àgc	GATACATCGT Tċċ	AGTGCT CĊ
		.390	1400	1410		1430	
BTHKURHD PMONBT bssyn	GAATTTA GC. GC.	AATAATATA .CC	ATTCCTTCAT	rca caaat' t ggcg	TACACAAATA CCC CCGC	CCTTTAACAA AGC. CC.GC.	AAATCTA .G .GAGC.
	1440	1450	1460	1470	1480	1490	
BTHKURHD PMONBT bssyn	CTAATCT .cc.	TTGGCTCT(. A . ĠĀĠĊ	GGAACTTCTG' ∴Ċ∴ĊĀĠĊ	ICGTTAAAGG. G . G G G	ACCAGGATTT CCC CCC	ACAGGAGGAC ccc	GATATTC cc.
	1500	1510	1520	1530	1540	1550	
BTHKURHD PMONBT bssyn	TTCGAAG .AĊĊ	AACTŤCA(.ċċàĠĊ	CCTGGCCÂGA'	TTTCAACCTT AGCC. .CAGCC.	AAGAGTAAAT CTC GC.CGC	ATTACTGCA(CCC	CCATTAT C.T. CC.GA
_	1560	1570	1580	1590	1600	1610	
BTHKURHD PMONBT bssyn	CĂCAAA(ĠC∷ĠĊ	GATATĈGG(.ccc	GTAAGAATTC CGC. CC.CC.	GCTACGCTTC .TA .CAG	TACCACAAAT TC CC	TTACAATTC	CATACAT CC. CCA
	1620	1630	1640	1650	1660	1670	
BTHKURHD PMONBT bssyn	C - C		CCTATTAATC ccc.	1	TTCAGCAACT CCC CAGCCC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-	1680	1690	1700	1710	1720	1730	
BTHKURHD PMONBT bssyn					TACTACTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		
-	1740	1750	1760	1770	1780	1790	
BTHKURHD PMONBT bssyn					CAATTCAGG(cagc		

Fig. 4D

	1800	1810	1820	1830	1840	
BTHKURHD PMONBT bssyn	.CT	G	.GTC	TC	GAGGCAGAATA TG CG	CGACCTGGAGAGGG
BTHKURHD PMONBT bssyn	CTCAG	 AAGGCCGTGA	 ACGAGCTGTT	CACCAGCAGC	AACCAGATCGG	CCTGAAGACCGACG
BTHKURHD PMONBT bssyn	TGACC	GACTACCACA	' TCGATCAGGT	T C GTAG		

Fig. 5A

	10	20	30	40	50 *	60
PMONBT bssyn	ATGGACAACAACCC	AAACATCAAC C	GAATGCATTO	CATACAACTG .C	CTTGAGTAAC .CC	CCAGAA CG
•	70	80	90	100	110	120
PMONBT bssyn	GTTGAAGTACTTGG	TGGAGAACGC CCG	ATTGAAACCO CG	GTTACACTCC .CC	CATCGACATC	TCCTTG AG.C
	130	140	150	160	170	180
PMONBT bssyn	TCCTTGACACAGTT AG.CC	TCTGCTCAGC	GAGTTCGTGC	CCAGGTGCTGG .CCC	GTTCGTTCTC CGG	GGACTA CG
	190	200	210	220	230	240
PMONBT bssyn	GTTGACATCATCTG	GGGTATCTTT CC	GGTCCATCTC CCAGC.	CAATGGGATGC .GC	ATTCCTGGTG C	GCAAATT GC
-	250 *	260	27 0	280	290	300
PMONBT bssyn	GAGCAGTTGATCAA C	CCAGAGGATCC.C	GAAGAGTTCO G	GCCAGGAACCA C.C	GGCCATCTCTAGC	AGGTTG C.CC
zoo i u	310	320	330	340	35 <u>0</u>	360
PMONBT bssyn	GAAGGATTGAGCAA	TCTCTACCAA CG	ATCTATGCAC	GAGAGCTTCAG C.	AGAGTGGGAA C	GCCGAT C
1	370 *	380	390	400	410	420
PMONBT bssyn	CCTACTAACCCAGO	TCTCCGCGAG	GAAATGCGT <i>I</i>	ATTCAATTCAA CG	CGACATGAAC	AGCGCC
1	430	440	450	460	470	480
PMONBT bssyn	TTGACCACAGCTAT	CCCATTGTT(CGCAGTCCAGA CG	AACTACCAAGT	TCCTCTCTTC GCGC	AG
	490	50 <u>0</u>	510	52 0	530	540
PMONBT bssyn	TACGTTCAAGCAG(CTAATCTTCA(.CCG	CTCAGCGTG(CTTCGAGACGI GC	TAGCGTGTT C	GGGCAA
Dooyn	550	560	57 <u>0</u>	580	590	60 <u>0</u>
PMONBT bssyn	AGGTGGGGATTCGA	ATGCTGCAAC(CATCAATAGC	CGTTACAACGA C	ACCTTACTAG(GCC.(GCTGATT CC
2001	610	620	630	640	65 <u>0</u>	660
PMONBT bssyn	GGAAACTACACCGA	ACCACGCTGT	CGTTGGTAC	AACACTGGCTT	rggagcgtgt(TGGGGT
	670	680	690	70 <u>0</u>	710	720
PMONBT bssyn	CCTGATTCTAGAGA	ATTGGATTAGA .cc	TACAACCAG'	TTCAGGAGAGA C.CC.C.	AATTGACCCT(.GC(CACAGTT GCG

Fig. 5B

	730	740	750	760	770	780
PMONBT bssyn	TTGGACATTGTGTC	CTCTCTTCCC	GAACTATGAC	TCCAGAACCTA AG.C.C	ACCCTATCCG'	TACAGTG
	790	800	810	820	830	840
PMONBT bssyn	TCCCAACTTACCA AGGG	GAGAAATCTAT	TACTAACCCA CCC	GTTCTTGAGAA GG	ACTTCGACGG'	PAGCTTC
	850 *	860	870 *	880	89 <u>0</u>	900
PMONBT bssyn	CGTGGTTCTGCCC	CAAGGTATCGAA .GC	AGGCTCCATC 3AG	AGGAGCCCACA C.CC.	ACTTGATGGA	CATCTTG
	910	920	930	940	950	960
PMONBT bssyn	AACAGCATAACTA	TCTACAGCGAT	rgctcacaga CCC.C	GGAGAGTATTA CC.	ACTGGTCTGG AGC	ACACCAG C
	970 *	980	990	1000	1010	1020
PMONBT bssyn	ATCATGGCCTCTC	CAGTTGGATTC .CCC	CAGCGGGCCC	GAGTTTACCT	TTCCTCTCTA' .CCG(rggaact ccc
	1030	1040	1050	1060	1070	1080
PMONBT bssyn	ATGGGAAACGCCC	GCTCCACAACAA .ATG(CGTATCGTT CG	GCTCAACTAGO AGG.	TCAGGGTGT CA	CTACAGA GC.C
	1090	1100	1110	1120	1130	1140
PMONBT bssyn	ACCTTGTCTTCCACAGCAG	ACCTTGTACAGA	AAGACCCTTC	AATATCGGTA'	rcaacaacca · · · · · · · · · ·	GCAACTT GG
	1150	1160	1170	1180	1190	1200
PMONBT bssyn	TCCGTTCTTGACCAGGG	GGAACAGAGTT(.CC	CGCCTATGGA CC	ACCTCTTCTAL AGCAGC.	ACTTGCCATC CCAG	CGCTGTT CG
	1210	1220	1230	1240	1250	1260
PMONBT bssyn	TACAGAAAGAGCC	GGAACCGTTGAT	TTCCTTGGAC CAG.C	GAAATCCCAC GC.	CACAGAACAA .T	CAATGTG C
_	1270	1280	1290	1300	1310	1320
PMONBT bssyn	CCACCCAGGCAACTC.AG	GGATTCTCCCA(.CAG	CAGGTTGAGC .C.TC	CACGTGTCCA'	rgttccgttc CAG	CGGATTC TC
	1330	1340	1350	1360	1370	1380
PMONBT bssyn	AGCAACAGTTCCC	STGAGCATCAT(CAGAGCTCCT .C.TA	ATGTTCTCATO	GGATTCATCGC	TAGTGCT CC
•	1390	1400	1410	1420	1430	1440
PMONBT bssyn	GAGTTCAACAATA	ATCATTCCTTC(CTCTCAAATC .AGCG	ACCCAAATCC	CATTGACCAA .CC	GTCTACT .AGCC

Fig. 5C

	1450	1460	1470	1480	1490	1500
PMONBT bssyn	AACCTTGGATCTGC	GAACTTCTGT .CCAGC	CGTGAAAGGAC GGC	CCAGGCTTCA(CAGGAGGTGA'	TATTCTT CCG
	1510	1520	1530 ¹	1540	1550	1560
PMONBT bssyn	AGAAGAACTTCTCCCC.C.CAGC.	CTGGCCÄGAT .C	TAGCACCCTCA	AGAGTTAACA' C.CG	CACTGCACCC	ACTTTCT CGAGC
	1570	1580	1590	1600	1610	1620
PMONBT bssyn	CAAAGATATCGTG' GC.CCC.	CAGGATTCG	TTACGCATCTA CCAGC	ACCACTAACT CC	rgcaattcca g	CACCTCC AG.
	1630	1640	1650	1660	1670	1680
PMONBT bssyn	ATCGACGGAAGGC	CTATCAATCA .CC	GGGTAACTTC	rccgcaacca agc	TGTCAAGCGG AGC	CAGCAAC
•	1690	1700	1710	1720	1730	1740
PMONBT bssyn	TTGCAATCCGGCA	GCTTCAĜAAC C.C.	CGTCGGTTTC GC	ACTACTCCTT CCC.	TCAACTTCTC AG	TAACGGA CC
-	1750	1760	1770	1780	1790	1800
PMONBT bssyn	TCAAGCGTTTTCA AGCG	CCCTTAGCGĆ	TCATGTGTTC.	AATTCTGGCA CAGC	ATGAAGTGTA .CG	CATTGAC
	1810	1820	1830	1840		
PMONBT bssyn	CGTATTGAGTTTG	TGCCTGCCGA	AGTTACCTTC GG	GAGGCTGAGT	AA .CGACCTGGA	GAGGGCT
PMONBT bssyn	CAGAAGGCCGTGA	ACGAGCTGTT	CACCAGCAGC.	AACCAGATCG	GCCTGAAGAC	CGACGTG
PMONBT bssyn	ACCGACTACCACA	TCGATCAGGT	C CGTAG			

Fig. 6A

	64	ATGGACCTGC TGCCCGACGC CCGCATCGAG MetAspLeu LeuProAsp AlaArgIleGlu	GACAGCCTGT GCATCGCCGA GGGCAACAAC AspSerLeu CysIleAla GluGlyAsnAsn
	124	ATCGACCCCT TCGTGAGCGC CAGCACCGTG IleAspPro PheValSer AlaSerThrVal	
	184	CTGGGCGTGC TGGGCGTGCC CTTCGCCGGC LeuGlyVal LeuGlyVal ProPheAlaGly	CAGCTGGCCA GCTTCTACAG CTTCCTGGTG GlnLeuAla SerPheTyr SerPheLeuVal
	244	GGCGAGCTGT GGCCCCGCGG CCGCGACCAG GlyGluLeu TrpProArg GlyArgAspGln	TGGGAGATCT TCCTGGAGCA CGTGGAGCAG TrpGluIle PheLeuGlu HisValGluGln
	304	CTGATCAACC AGCAGATCAC CGAGAACGCC LeuIleAsn GlnGlnIle ThrGluAsnAla	CGCAACACCG CCCTGGCCCG CCTGCAGGGC ArgAsnThr AlaLeuAla ArgLeuGlnGly
	364	CTGGGCGACA GCTTCCGCGC CTACCAGCAG LeuGlyAsp SerPheArg AlaTyrGlnGln	AGCCTGGAGG ACTGGCTGGA GAACCGCGAC SerLeuGlu AspTrpLeu GluAsnArgAsp
	424	GACGCCCGCA CCCGCAGCGT GCTGTACACC AspAlaArg ThrArgSer ValLeuTyrThr	CAGTACATCG CCCTGGAGCT GGACTTCCTG GlnTyrIle AlaLeuGlu LeuAspPheLeu
	484	AACGCCATGC CCCTGTTCGC CATCCGCAAC AsnAlaMet ProLeuPhe AlaIleArgAsn	CAGGAGGTGC CCCTGCTGAT GGTGTACGCC GlnGluVal ProLeuLeu MetValTyrAla
	544	CAGGCCGCCA ACCTGCACCT GCTGCTGCTG GlnAlaAla AsnLeuHis LeuLeuLeuLeu	CGCGACGCCA GCCTGTTCGG CAGCGAGTTC ArgAspAla SerLeuPhe GlySerGluPhe
	604	GGCCTGACCA GCCAGGAGAT CCAGCGCTAC GlyLeuThr SerGlnGlu IleGlnArgTyr	TACGAGCGCC AGGTGGAGCG CACCCGCGAC TyrGluArg GlnValGlu ArgThrArgAsp
	664	TACAGCGACT ACTGCGTGGA GTGGTACAAC TyrSerAsp TyrCysVal GluTrpTyrAsn	ACCGGCCTGA ACAGCCTGCG CGGCACCAAC ThrGlyLeu AsnSerLeu ArgGlyThrAsn
	724	GCCGCCAGCT GGGTGCGCTA CAACCAGTTC AlaAlaSer TrpValArg TyrAsnGlnPhe	CGCCGCGACC TGACCCTGGG CGTGCTGGAC ArgArgAsp LeuThrLeu GlyValLeuAsp
	784	CTGGTGGCCC TGTTCCCCAG CTACGACACC LeuValAla LeuPhePro SerTyrAspThr	CGCACCTACC CCATCAACAC CAGCGCCCAG ArgThrTyr ProlleAsn ThrSerAlaGln
	844	CTGACCCGCG AGGTGTACAC CGACGCCATC LeuThrArg GluValTyr ThrAspAlaIle	GGCGCCACCG GCGTGAACAT GGCCAGCATG GlyAlaThr GlyValAsn MetAlaSerMet
	904	AACTGGTACA ACAACAACGC CCCCAGCTTC AsnTrpTyr AsnAsnAsn AlaProSerPhe	AGCGCCATCG AGGCCGCCGC CATCCGCAGC SerAlaIle GluAlaAla AlaIleArgSer
	964	CCCCACCTGC TGGACTTCCT GGAGCAGCTG ProHisLeu LeuAspPhe LeuGluGlnLeu	ACCATCTTCA GCGCCAGCAG CCGCTGGAGC ThrIlePhe SerAlaSer SerArgTrpSer
1	1024	AACACCCGCC ACATGACCTA CTGGCGCGGC AsnThrArg HisMetThr TyrTrpArgGly	CACACCATCC AGAGCCGCCC CATCGGCGGC HisThrIle GlnSerArg ProIleGlyGly

Fig. 6B

1084	GGCCTGAACA CCAGCACCCA CGGCGCCACC GlyLeuAsn ThrSerThr HisGlyAlaThr	AACACCAGCA TCAACCCCGT GACCCTGCGC AsnThrSer IleAsnPro ValThrLeuArg
1144	TTCGCCAGCC GCGACGTGTA CCGCACCGAG PheAlaSer ArgAspVal TyrArgThrGlu	AGCTACGCCG GCGTGCTGCT GTGGGGCATC SerTyrAla GlyValLeu LeuTrpGlyIle
1204	TACCTGGAGC CCATCCACGG CGTGCCCACC TyrLeuGlu ProIleHis GlyValProThr	GTGCGCTTCA ACTTCACCAA CCCCCAGAAC ValArgPhe AsnPheThr AsnProGlnAsn
1264		CAGCCCTACG AGAGCCCCGG CCTGCAGCTG GlnProTyr GluSerPro GlyLeuGlnLeu
1324	AAGGACAGCG AGACCGAGCT GCCCCCGAG LysAspSer GluThrGlu LeuProProGlu	ACCACCGAGC GCCCCAACTA CGAGAGCTAC ThrThrGlu ArgProAsn TyrGluSerTyr
1384		CTGCAGAGCC GCGTGAACGT GCCCGTGTAC LeuGlnSer ArgValAsn ValProValTyr
1444		AACACCATCG GCCCCAACCG CATCACCCAG AsnThrIle GlyProAsn ArgIleThrGln
1504	ATCCCCATGG TGAAGGCCAG CGAGCTGCCC IleProMet ValLysAla SerGluLeuPro	CAGGGCACCA CCGTGGTGCG CGGCCCCGGC GlnGlyThr ThrValVal ArgGlyProGly
1564	TTCACCGGCG GCGACATCCT GCGCCGCACC PheThrGly GlyAspIle LeuArgArgThr	AACACCGGCG GCTTCGGCCC CATCCGCGTG AsnThrGly GlyPheGly ProIleArgVal
1624	ACCGTGAACG GCCCCCTGAC CCAGCGCTAC ThrValAsn GlyProLeu ThrGlnArgTyr	CGCATCGGCT TCCGCTACGC CAGCACCGTG ArgIleGly PheArgTyr AlaSerThrVal
1684	GACTTCGACT TCTTCGTGAG CCGCGGCGGC AspPheAsp PhePheVal SerArgGlyGly	ACCACCGTGA ACAACTTCCG CTTCCTGCGC ThrThrVal AsnAsnPhe ArgPheLeuArg
1744	ACCATGAACA GCGGCGACGA GCTGAAGTAC ThrMetAsn SerGlyAsp GluLeuLysTyr	GGCAACTTCG TGCGCCGCGC CTTCACCACC GlyAsnPhe ValArgArg AlaPheThrThr
1804	CCCTTCACCT TCACCCAGAT CCAGGACATC ProPheThr PheThrGln IleGlnAspIle	ATCCGCACCA GCATCCAGGG CCTGAGCGGC IleArgThr SerIleGln GlyLeuSerGly
1864	AACGGCGAGG TGTACATCGA CAAGATCGAG AsnGlyGlu ValTyrIle AspLysIleGlu	ATCATCCCCG TGACCGCCAC CTTCGAGGCC IleIlePro ValThrAla ThrPheGluAla
1924	GAGTACGACC TGGAGCGCGC CCAGGAGGCC GluTyrAsp LeuGluArg AlaGlnGluAla	GTGAACGCCC TGTTCACCAA CACCAACCCC ValAsnAla LeuPheThr AsnThrAsnPro
1984	CGCCGCCTGA AGACCGACGT GACCGACTAC ArgArgLeu LysThrAsp ValThrAspTyr	CACATCGACC AGGTGAGCAA CCTGGTGGCC HislleAsp GlnValSer AsnLeuValAla
2044	TGCCTGAGCG ACGAGTTCTG CCTGGACGAG CysLeuSer AspGluPhe CysLeuAspGlu	AAGCGCGAGC TGCTGGAGAA GGTGAAGTAC LysArgGlu LeuLeuGlu LysValLysTyr

Fig. 6C

2104	GCCAAGCGCC TGAGCGACGA GCGCAACCTG AlaLysArg LeuSerAsp GluArgAsnLeu	CTGCAGGACC CCAACTTCAC CAGCATCAAC LeuGlnAsp ProAsnPhe ThrSerIleAsn
2164	AAGCAGCCCG ACTTCATCAG CACCAACGAG LysGlnPro AspPheIle SerThrAsnGlu	CAGAGCAACT TCACCAGCAT CCACGAGCAG GlnSerAsn PheThrSer IleHisGluGln
2224	AGCGAGCACG GCTGGTGGGG CAGCGAGAAC SerGluHis GlyTrpTrp GlySerGluAsn	ATCACCATCC AGGAGGGCAA CGACGTGTTC IleThrile GinGluGly AsnAspValPhe
2284	AAGGAGAACT ACGTGACCCT GCCCGGCACC LysGluAsn TyrValThr LeuProGlyThr	TTCAACGAGT GCTACCCCAC CTACCTGTAC PheAsnGlu CysTyrPro ThrTyrLeuTyr
2344	CAGAAGATCG GCGAGAGCGA GCTGAAGGCC GlnLysIle GlyGluSer GluLeuLysAla	TACACCCGCT ACCAGCTGCG CGGCTACATC TyrThrArg TyrGlnLeu ArgGlyTyrIle
2404	GAGGACAGCC AGGACCTGGA GATCTACCTG GluAspSer GlnAspLeu GluIleTyrLeu	ATCCGCTACA ACGCCAAGCA CGAGACCCTG IleArgTyr AsnAlaLys HisGluThrLeu
2464	GACGTGCCCG GCACCGAGAG CCTGTGGCCC AspValPro GlyThrGlu SerLeuTrpPro	CTGAGCGTGG AGAGCCCCAT CGGCCGCTGC LeuSerVal GluSerPro IleGlyArgCys
2524	GGCGAGCCCA ACCGCTGCGC CCCCCACTTC GlyGluPro AsnArgCys AlaProHisPhe	GAGTGGAACC CCGACCTGGA CTGCAGCTGC GluTrpAsn ProAspLeu AspCysSerCys
2584	CGCGACGGCG AGAAGTGCGC CCACCACAGC ArgAspGly GluLysCys AlaHisHisSer	CACCACTTCA GCCTGGACAT CGACGTGGGC HisHisPhe SerLeuAsp IleAspValGly
2644	TGCACCGACC TGCACGAGAA CCTGGGCGTG CysThrAsp LeuHisGlu AsnLeuGlyVal	TGGGTGGTGT TCAAGATCAA GACCCAGGAG TrpValVal PheLysIle LysThrGlnGlu
2704	GGCCACGCCC GCCTGGGCAA CCTGGAGTTC GlyHisAla ArgLeuGly AsnLeuGluPhe	ATCGAGGAGA AGCCCCTGCT GGGCGAGGCC IleGluGlu LysProLeu LeuGlyGluAla
2764	CTGAGCCGCG TGAAGCGCGC CGAGAAGAAG LeuSerArg ValLysArg AlaGluLysLys	TGGCGCGACA AGCGCGAGAA GCTGCAGCTG TrpArgAsp LysArgGlu LysLeuGlnLeu
2824	GAGACCAAGC GCGTGTACAC CGAGGCCAAG GluThrLys ArgValTyr ThrGluAlaLys	GAGGCCGTGG ACGCCCTGTT CGTGGACAGC GluAlaVal AspAlaLeu PheValAspSer
2884		ATCGGCATGA TCCACGCCGC CGACAAGCTG IleGlyMet IleHisAla AlaAspLysLeu
2944		GAGCTGCCCG TGATCCCCGG CGTGAACGCC GluLeuPro ValllePro GlyValAsnAla
3004	GAGATCTTCG AGGAGCTGGA GGGCCACATC GluIlePhe GluGluLeu GluGlyHisIle	ATCACCGCCA TCAGCCTGTA CGACGCCCGC IleThrAla IleSerLeu TyrAspAlaArg

Fig. 6D

3064	AACGTGGTGA AGAACGGCGA CTTCAACAAC AsnValVal LysAsnGly AspPheAsnAsn	GGCCTGACCT GCTGGAACGT GAAGGGCCACGlyLeuThr CysTrpAsn ValLysGlyHis
3124	GTGGACGTGC AGCAGAGCCA CCACCGCAGC ValAspVal GlnGlnSer HisHisArgSer	GACCTGGTGA TCCCCGAGTG GGAGGCCGAG AspLeuVal IleProGlu TrpGluAlaGlu
3184	GTGAGCCAGG CCGTGCGCGT GTGCCCCGGC ValSerGln AlaValArg ValCysProGly	TGCGGCTACA TCCTGCGCGT GACCGCCTACCCYSGlyTyr IleLeuArg ValThrAlaTyr
3244	AAGGAGGGCT ACGGCGAGGG CTGCGTGACC LysGluGly TyrGlyGlu GlyCysValThr	ATCCACGAGA TCGAGAACAA CACCGACGAG IleHisGlu IleGluAsn AsnThrAspGlu
3304	CTGAAGTTCA AGAACCGCGA GGAGGAGGAG LeuLysPhe LysAsnArg GluGluGluGlu	GTGTACCCCA CCGACACCGG CACCTGCAAC ValTyrPro ThrAspThr GlyThrCysAsn
3364	GACTACACCG CCCACCAGGG CACCGCCGGC AspTyrThr AlaHisGln GlyThrAlaGly	TGCGCCGACG CCTGCAACAG CCGCAACGCC CysAlaAsp AlaCysAsn SerArgAsnAla
3424	GGCTACGAGG ACGCCTACGA GGTGGACACC GlyTyrGlu AspAlaTyr GluValAspThr	ACCGCCAGCG TGAACTACAA GCCCACCTAC ThrAlaSer ValAsnTyr LysProThrTyr
3484	GAGGAGGAGA CCTACACCGA CGTGCGCCGC GluGluGlu ThrTyrThr AspValArgArg	GACAACCACT GCGAGTACGA CCGCGGCTAC AspAsnHis CysGluTyr AspArgGlyTyr
3544	GTGAACTACC CCCCCGTGCC CGCCGGCTAC ValAsnTyr ProProVal ProAlaGlyTyr	GTGACCAAGG AGCTGGAGTA CTTCCCCGAG ValThrLys GluLeuGlu TyrPheProGlu
3604	ACCGACACCG TGTGGATCGA GATCGGCGAG ThrAspThr ValTrpIle GluIleGlyGlu	ACCGAGGGCA AGTTCATCGT GGACAGCGTG ThrGluGly LysPhelle ValAspSerVal
3664	GAGCTGCTGC TGATGGAGGA GTAG GluLeuLeu LeuMetGlu Glu	

....li Lesine

901

Fig. 7A

SEQUENCE OF THE FULL-LENGTH HYBRID SYNTHETIC/NATIVE CRYIA(B) CHIMERIC GENE The fusion point between the synthetic and native coding sequences is indicated by a slash (/) in the sequence.

icated by a stash (/) in the sequence.					
1		ATCCCCTACA ACTGCCTGAG CAACCCCGAG IleProTyr AsnCysLeu SerAsnProGlu			
61		ACCGGCTACA CCCCCATCGA CATCAGCCTG ThrGlyTyr ThrProIle AspIleSerLeu			
121		GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG ValProGly AlaGlyPhe ValLeuGlyLeu			
181	GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro	AGCCAGTGGG ACGCCTTCCT GGTGCAGATC SerGlnTrp AspAlaPhe LeuValGlnIle			
241	GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu	TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG PheAlaArg AsnGlnAla IleSerArgLeu			
301	GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr	GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC AlaGluSer PheArgGlu TrpGluAlaAsp			
361	CCCACCAACC CCGCCCTGCG CGAGGAGATG ProThrAsn ProAlaLeu ArgGluGluMet	CGCATCCAGT TCAACGACAT GAACAGCGCC ArgIleGln PheAsnAsp MetAsnSerAla			
421	CTGACCACCG CCATCCCCCT GTTCGCCGTG LeuThrThr AlaIlePro LeuPheAlaVal	CAGAACTACC AGGTGCCCCT GCTGAGCGTG GlnAsnTyr GlnValPro LeuLeuSerVal			
481	TACGTGCAGG CCGCCAACCT GCACCTGAGC TyrValGln AlaAlaAsn LeuHisLeuSer	GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG ValleuArg AspValSer ValPheGlyGln			
541	CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn	AGCCGCTACA ACGACCTGAC CCGCCTGATC SerArgTyr AsnAspLeu ThrArgLeulle			
601	GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp	TACAACACCG GCCTGGAGCG CGTGTGGGGT TyrAsnThr GlyLeuGlu ArgValTrpGly			
661	CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn	CAGTTCCGCC GCGAGCTGAC CCTGACCGTG GlnPheArg ArgGluLeu ThrLeuThrVal			
721	CTGGACATCG TGAGCCTGTT CCCCAACTAC LeuAspIle ValSerLeu PheProAsnTyr	GACAGCCGCA CCTACCCCAT CCGCACCGTG AspSerArg ThrTyrPro IleArgThrVal			
781	AGCCAGCTGA CCCGCGAGAT TTACACCAAC SerGinLeu ThrArgGlu IleTyrThrAsn	CCCGTGCTGG AGAACTTCGA CGGCAGCTTC ProValLeu GluAsnPhe AspGlySerPhe			
841	CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ArgGlySer AlaGlnGly IleGluGlySer	ATCCGCAGCC CCCACCTGAT GGACATCCTG IleArgSer ProHisLeu MetAspIleLeu			

AACAGCATCA CCATCTACAC CGACGCCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln

Fig. 7B

961	ATCATGGCCA GCCCCGTCGG CTTCAGCGGC IleMetAla SerProVal GlyPheSerGly	CCCGAGTTCA CCTTCCCCCT GTACGGCACC ProGluPhe ThrPhePro LeuTyrGlyThr
1021	ATGGGCAACG CTGCACCTCA GCAGCGCATC MetGlyAsn AlaAlaPro GlnGlnArgIle	GTGGCACAGC TGGGCCAGGG AGTGTACCGC ValAlaGln LeuGlyGln GlyValTyrArg
1081	ACCCTGAGCA GCACCCTGTA CCGTCGACCT ThrLeuSer SerThrLeu TyrArgArgPro	TTCAACATCG GCATCAACAA CCAGCAGCTG PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141	AGCGTGCTGG ACGGCACCGA GTTCGCCTAC SerValLeu AspGlyThr GluPheAlaTyr	GGCACCAGCA GCAACCTGCC CAGCGCCGTG GlyThrSer SerAsnLeu ProSerAlaVal
1201	TACCGCAAGA GCGGCACCGT GGACAGCCTG TyrArgLys SerGlyThr ValAspSerLeu	GACGAGATCC CCCCTCAGAA CAACAACGTG AspGluIle ProProGln AsnAsnAsnVal
1261	CCACCTCGAC AGGGCTTCAG CCACCGTCTG ProProArg GlnGlyPhe SerHisArgLeu	AGCCACGTGA GCATGTTCCG CAGTGGCTTC SerHisVal SerMetPhe ArgSerGlyPhe
1321	AGCAACAGCA GCGTGAGCAT CATCCGTGCA SerAsnSer SerValSer IleIleArgAla	CCTATGTTCA GCTGGATTCA CCGCAGTGCC ProMetPhe SerTrpIle HisArgSerAla
1381	GAGTTCAACA ACATCATCCC CAGCAGCCAG GluPheAsn AsnIleIle ProSerSerGln	ATCACCCAGA TCCCCCTGAC CAAGAGCACC IleThrGln IleProLeu ThrLysSerThr
1441	AACCTGGGCA GCGGCACCAG CGTGGTGAAG AsnLeuGly SerGlyThr SerValValLys	GGCCCCGGCT TCACCGGCGG CGACATCCTG GlyProGly PheThrGly GlyAspIleLeu
1501	CGCCGCACCA GCCCCGGCCA GATCAGCACC ArgArgThr SerProGly GlnIleSerThr	CTGCGCGTGA ACATCACCGC CCCCCTGAGC LeuArgVal AsnIleThr AlaProLeuSer
1561	CAGCGCTACC GCGTCCGCAT CCGCTACGCC GlnArgTyr ArgValArg IleArgTyrAla	AGCACCACCA ACCTGCAGTT CCACACCAGC SerThrThr AsnLeuGln PheHisThrSer
1621	ATCGACGGCC GCCCCATCAA CCAGGGCAAC IleAspGly ArgProIle AsnGlnGlyAsn	TTCAGCGCCA CCATGAGCAG CGGCAGCAAC PheSerAla ThrMetSer SerGlySerAsn
1681	CTGCAGAGCG GCAGCTTCCG CACCGTGGGC LeuGlnSer GlySerPhe ArgThrValGly	TTCACCACCC CCTTCAACTT CAGCAACGGC PheThrThr ProPheAsn PheSerAsnGly
1741	AGCAGCGTGT TCACCCTGAG CGCCCACGTG SerSerVal PheThrLeu SerAlaHisVal	TTCAACAGCG GCAACGAGGT GTACATCGAC PheAsnSer GlyAsnGlu ValTyrIleAsp
1801	CGCATCGAGT TCGTGCCCGC CGAGGTGACC ArgIleGlu PheValPro AlaGluValThr	TTCGAGGCCG AGTACGACCT GGAGAGGGCT PheGluAla GluTyrAsp LeuGluArgAla
1861	CAGAAGGCCG TGAACGAGCT GTTCACCAGC GlnLysAla ValAsnGlu LeuPheThrSer	AGCAACCAGA TCGGCCTGAA GACCGACGTG SerAsnGln IleGlyLeu LysThrAspVal

Fig. 7C

	1921	ACCGACTACC ACATCGAT/CA AGTATCCAATThrAspTyr HislleAsp/GlnValSerAsn	r TTAGTTGAGT GTTTATCTGATGAATTTTGT LeuValGlu CysLeuSer AspGluPheCys
•	1981	CTGGATGAAA AAAAAGAATT GTCCGAGAAA LeuAspGlu LysLysGlu LeuSerGluLys	
2	2041	CGGAATTTAC TTCAAGATCC AAACTTTAGA ArgAsnLeu LeuGlnAsp ProAsnPheArg	GGGATCAATA GACAACTAGA CCGTGGCTGG GlylleAsn ArgGlnLeu AspArgGlyTrp
2	2101	AGAGGAAGTA CGGATATTAC CATCCAAGGA ArgGlySer ThrAspIle ThrIleGlnGly	GGCGATGACG TATTCAAAGA GAATTACGTT GlyAspAsp ValPheLys GluAsnTyrVal
2	2161	ACGCTATTGG GTACCTTTGA TGAGTGCTAT ThrLeuLeu GlyThrPhe AspGluCysTyr	CCAACGTATT TATATCAAAA AATAGATGAG ProThrTyr LeuTyrGln LysIleAspGlu
2	2221	TCGAAATTAA AAGCCTATAC CCGTTACCAA SerLysLeu LysAlaTyr ThrArgTyrGln	TTAAGAGGGT ATATCGAAGA TAGTCAAGAC LeuArgGly TyrIleGlu AspSerGlnAsp
2	2281	TTAGAAATCT ATTTAATTCG CTACAATGCC LeuGlulle TyrLeulle ArgTyrAsnAla	AAACACGAAA CAGTAAATGT GCCAGGTACG LysHisGlu ThrValAsn ValProGlyThr
2	2341	GGTTCCTTAT GGCCGCTTTC AGCCCCAAGT GlySerLeu TrpProLeu SerAlaProSer	CCAATCGGAA AATGTGCCCA TCATTCCCAT ProlleGly LysCysAla HisHisSerHis
2	2401	CATTTCTCCT TGGACATTGA TGTTGGATGT HisPheSer LeuAspIle AspValGlyCys	ACAGACTTAA ATGAGGACTT AGGTGTATGG ThrAspLeu AsnGluAsp LeuGlyValTrp
2	2461	GTGATATTCA AGATTAAGAC GCAAGATGGC ValllePhe LysIleLys ThrGlnAspGly	CATGCAAGAC TAGGAAATCT AGAATTTCTC HisAlaArg LeuGlyAsn LeuGluPheLeu
2	2521	GAAGAGAAAC CATTAGTAGG AGAAGCACTA GluGluLys ProLeuVal GlyGluAlaLeu	GCTCGTGTGA AAAGAGCGGA GAAAAAATGG AlaArgVal LysArgAla GluLysLysTrp
2	581	AGAGACAAAC GTGAAAAATT GGAATGGGAA ArgAspLys ArgGluLys LeuGluTrpGlu	ACAAATATTG TTTATAAAGA GGCAAAAGAA ThrAsnIle ValTyrLys GluAlaLysGlu
2	641	TCTGTAGATG CTTTATTTGT AAACTCTCAA SerValAsp AlaLeuPhe ValAsnSerGln	TATGATAGAT TACAAGCGGA TACCAACATC TyrAspArg LeuGlnAla AspThrAsnIle
2	701	GCGATGATTC ATGCGGCAGA TAAACGCGTT Ala e Ile HisAlaAla AspLysArgVal	CATAGCATTC GAGAAGCTTA TCTGCCTGAG HisSerIle ArgGluAla TyrLeuProGlu
2	761	CTGTCTGTGA TTCCGGGTGT CAATGCGGCT LeuSerVal IleProGly ValAsnAlaAla	ATTTTTGAAG AATTAGAAGG GCGTATTTTC IlePheGlu GluLeuGlu GlyArgIlePhe
2	821	ACTGCATTCT CCCTATATGA TGCGAGAAAT ThrAlaPhe SerLeuTyr AspAlaArgAsn	GTCATTAAAA ATGGTGATTT TAATAATGGC VallleLys AsnGlyAsp PheAsnAsnGly

Fig. 7D

2881		GATGTAGAAG AACAAAACAA CCACCGTTCG AspValGlu GluGlnAsn AsnHisArgSer
2941	GTCCTTGTTG TTCCGGAATG GGAAGCAGAA ValLeuVal ValProGlu TrpGluAlaGlu	GTGTCACAAG AAGTTCGTGT CTGTCCGGGT ValSerGln GluValArg ValCysProGly
3001	CGTGGCTATA TCCTTCGTGT CACAGCGTAC ArgGlyTyr IleLeuArg ValThrAlaTyr	AAGGAGGGAT ATGGAGAAGG TTGCGTAACC LysGluGly TyrGlyGlu GlyCysValThr
3061		CTGAAGTTTA GCAACTGTGT AGAAGAGGAA LeuLysPhe SerAsnCys ValGluGluGlu
3121	GTATATCCAA ACAACACGGT AACGTGTAAT ValTyrPro AsnAsnThr ValThrCysAsn	GATTATACTG CGACTCAAGA AGAATATGAG AspTyrThr AlaThrGln GluGluTyrGlu
3181	GGTACGTACA CTTCTCGTAA TCGAGGATAT GlyThrTyr ThrSerArg AsnArgGlyTyr	GACGGAGCCT ATGAAAGCAA TTCTTCTGTA AspGlyAla TyrGluSer AsnSerSerVal
3241	CCAGCTGATT ATGCATCAGC CTATGAAGAA ProAlaAsp TyrAlaSer AlaTyrGluGlu	AAAGCATATA CAGATGGACG AAGAGACAAT LysAlaTyr ThrAspGly ArgArgAspAsn
3301	CCTTGTGAAT CTAACAGAGG ATATGGGGAT ProCysGlu SerAsnArg GlyTyrGlyAsp	TACACACCAC TACCAGCTGG CTATGTGACA TyrThrPro LeuProAla GlyTyrValThr
3361	AAAGAATTAG AGTACTTCCC AGAAACCGAT LysGluLeu GluTyrPhe ProGluThrAsp	AAGGTATGGA TTGAGATCGG AGAAACGGAA LysValTrp IleGluIle GlyGluThrGlu
3421	GGAACATTCA TCGTGGACAG CGTGGAATTA GlyThrPhe IleValAsp SerValGluLeu	CTTCTTATGG AGGAATAA LeuLeuMet GluGlu

Fig. 9A

- 1 ATGGACAACA ACCCCAACAT CAACGAGTGC ATCCCCTACA ACTGCCTGAG CAACCCCGAG MetAspAsn AsnProAsn IleAsnGluCys IleProTyr AsnCysLeu SerAsnProGlu
- 61 GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ACCGGCTACA CCCCCATCGA CATCAGCCTG ValGluVal LeuGlyGly GluArgIleGlu ThrGlyTyr ThrProIle AspIleSerLeu
- 121 AGCCTGACCC AGTTCCTGCT GAGCGAGTTC GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG SerLeuThr GlnPheLeu LeuSerGluPhe ValProGly AlaGlyPhe ValLeuGlyLeu
- 181 GTGGACATCA TCTGGGGCAT CTTCGGCCCC AGCCAGTGGG ACGCCTTCCT GGTGCAGATC ValAspIle IleTrpGly IlePheGlyPro SerGinTrp AspAlaPhe LeuValGlnIle
- 241 GAGCAGCTGA TCAACCAGCG CATCGAGGAG TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG GluGlnLeu IleAsnGln ArgIleGluGlu PheAlaArg AsnGlnAla IleSerArgLeu
- 301 GAGGGCCTGA GCAACCTGTA CCAAATCTAC GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC GluGlyLeu SerAsnLeu TyrGlnIleTyr AlaGluSer PheArgGlu TrpGluAlaAsp
- 361 CCCACCAACC CCGCCCTGCG CGAGGAGATG CGCATCCAGT TCAACGACAT GAACAGCGCC ProThrAsn ProAlaLeu ArgGluGluMet ArgIleGln PheAsnAsp MetAsnSerAla
- 421 CTGACCACCG CCATCCCCCT GTTCGCCGTG CAGAACTACC AGGTGCCCCT GCTGAGCGTG LeuThrThr AlaIlePro LeuPheAlaVal GlnAsnTyr GlnValPro LeuLeuSerVal
- 481 TACGTGCAGG CCGCCAACCT GCACCTGAGC GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG
 TyrValGln AlaAlaAsn LeuHisLeuSer ValLeuArg AspValSer ValPheGlyGln
- 541 CGCTGGGGCT TCGACGCCGC CACCATCAAC AGCCGCTACA ACGACCTGAC CCGCCTGATC ArgTrpGly PheAspAla AlaThrIleAsn SerArgTyr AsnAspLeu ThrArgLeuIle
- 601 GGCAACTACA CCGACCACGC CGTGCGCTGG TACAACACCG GCCTGGAGCG CGTGTGGGGT GlyAsnTyr ThrAspHis AlaValArgTrp TyrAsnThr GlyLeuGlu ArgValTrpGly
- 661 CCCGACAGCC GCGACTGGAT CAGGTACAAC CAGTTCCGCC GCGAGCTGAC CCTGACCGTG ProAspSer ArgAspTrp IleArgTyrAsn GlnPheArg ArgGluLeu ThrLeuThrVal
- 721 CTGGACATCG TGAGCCTGTT CCCCAACTAC GACAGCCGCA CCTACCCCAT CCGCACCGTG LeuAspIle ValSerLeu PheProAsnTyr AspSerArg ThrTyrPro IleArgThrVal
- 781 AGCCAGCTGA CCCGCGAGAT TTACACCAAC CCCGTGCTGG AGAACTTCGA CGGCAGCTTC SerGlnLeu ThrArgGlu IleTyrThrAsn ProValLeu GluAsnPhe AspGlySerPhe
- 841 CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ATCCGCAGCC CCCACCTGAT GGACATCCTG ArgGlySer AlaGlnGly IleGluGlySer IleArgSer ProHisLeu MetAspIleLeu
- 901 AACAGCATCA CCATCTACAC CGACGCCCAC CGCGGCGAGT ACTACTGGAG CGGCCACCAG AsnSerIle ThrIleTyr ThrAspAlaHis ArgGlyGlu TyrTyrTrp SerGlyHisGln
- 961 ATCATGGCCA GCCCCGTCGG CTTCAGCGGC CCCGAGTTCA CCTTCCCCCT GTACGGCACC IleMetAla SerProVal GlyPheSerGly ProGluPhe ThrPhePro LeuTyrGlyThr

Fig. 9B

1021	ATGGGCAACG (CTGCACCTCA	GCAGCGCATC	GTGGCACAGC	TGGGCCAGG	G AGTGTACCGC
	MetGlyAsn Al	laAlaPro G	lnGlnArgIle	ValAlaGln	LeuGlyGln	GlyValTyrArg
		~~~ ~~~~~	000m007.00m	mman nanaa	CCAMCAACA	A CCACCACCMC

- 1081 ACCCTGAGCA GCACCCTGTA CCGTCGACCT TTCAACATCG GCATCAACAA CCAGCAGCTG ThrLeuSer SerThrLeu TyrArgArgPro PheAsnIle GlyIleAsn AsnGlnGlnLeu
- 1141 AGCGTGCTGG ACGGCACCGA GTTCGCCTAC GGCACCAGCA GCAACCTGCC CAGCGCCGTG SerValLeu AspGlyThr GluPheAlaTyr GlyThrSer SerAsnLeu ProSerAlaVal
- 1201 TACCGCAAGA GCGGCACCGT GGACAGCCTG GACGAGATCC CCCCTCAGAA CAACAACGTG TyrArgLys SerGlyThr ValAspSerLeu AspGluIle ProProGln AsnAsnAsnVal
- 1261 CCACCTCGAC AGGGCTTCAG CCACCGTCTG AGCCACGTGA GCATGTTCCG CAGTGGCTTC ProProArg GlnGlyPhe SerHisArgLeu SerHisVal SerMetPhe ArgSerGlyPhe
- 1321 AGCAACAGCA GCGTGAGCAT CATCCGTGCA CCTATGTTCA GCTGGATTCA CCGCAGTGCC SerAsnSer SerValSer IleIleArgAla ProMetPhe SerTrpIle HisArgSerAla
- 1381 GAGTTCAACA ACATCATCCC CAGCAGCCAG ATCACCCAGA TCCCCCTGAC CAAGAGCACC GluPheAsn AsnIleIle ProSerSerGln IleThrGln IleProLeu ThrLysSerThr
- 1441 AACCTGGGCA GCGGCACCAG CGTGGTGAAG GGCCCCGGCT TCACCGGCGG CGACATCCTG AsnLeuGly SerGlyThr SerValValLys GlyProGly PheThrGly GlyAspIleLeu
- 1501 CGCCGCACCA GCCCCGGCCA GATCAGCACC CTGCGCGTGA ACATCACCGC CCCCTGAGC ArgArgThr SerProGly GlnIleSerThr LeuArgVal AsnIleThr AlaProLeuSer
- 1561 CAGCGCTACC GCGTCCGCAT CCGCTACGCC AGCACCACCA ACCTGCAGTT CCACACCAGC GlnArgTyr ArgValArg IleArgTyrAla SerThrThr AsnLeuGln PheHisThrSer
- 1621 ATCGACGGCC GCCCCATCAA CCAGGGCAAC TTCAGCGCCA CCATGAGCAG CGGCAGCAAC IleAspGly ArgProIle AsnGlnGlyAsn PheSerAla ThrMetSer SerGlySerAsn
- 1681 CTGCAGAGCG GCAGCTTCCG CACCGTGGGC TTCACCACCC CCTTCAACTT CAGCAACGGC LeuGlnSer GlySerPhe ArgThrValGly PheThrThr ProPheAsn PheSerAsnGly
- 1741 AGCAGCGTGT TCACCCTGAG CGCCCACGTG TTCAACAGCG GCAACGAGGT GTACATCGAC SerSerVal PheThrLeu SerAlaHisVal PheAsnSer GlyAsnGlu ValTyrIleAsp
- 1801 CGCATCGAGT TCGTGCCCGC CGAGGTGACC TTCGAGGCCG AGTACGACCT GGAGAGGGCT ArgIleGlu PheValPro AlaGluValThr PheGluAla GluTyrAsp LeuGluArgAla
- 1861 CAGAAGGCCG TGAACGAGCT GTTCACCAGC AGCAACCAGA TCGGCCTGAA GACCGACGTG GlnLysAla ValAsnGlu LeuPheThrSer SerAsnGln IleGlyLeu LysThrAspVal
- 1921 ACCGACTACC ACATCGATCA AGTATCCAAT TTAGTTGAGT GTTTATCTGA TGAATTTTGT ThrAspTyr HislleAsp GlnValSerAsn LeuValGlu CysLeuSer AspGluPheCys
- 1981 CTGGATGAAA AAAAAGAATT GTCCGAGAAA GTCAAACATG CGAAGCGACT TAGTGATGAG LeuAspGlu LysLysGlu LeuSerGluLys ValLysHis AlaLysArg LeuSerAspGlu

#### Fig. 9C

2041	CGGAATTTAC TTCAAGATCC AAACTTTAGA ArgAsnLeu LeuGlnAsp ProAsnPheArg	GGGATCAATA GACAACTAGA CCGTGGCTGG GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101	AGAGGAAGTA CGGATATTAC CATCCAAGGA ArgGlySer ThrAspIle ThrIleGlnGly	GGCGATGACG TATTCAAAGA GAATTACGTT GlyAspAsp ValPheLys GluAsnTyrVal
2161	ACGCTATTGG GTACCTTCGA CGAGTGCTAC ThrLeuLeu GlyThrPhe AspGluCysTyr	CCCACCTACC TGTACCAGAA GATCGACGAG ProThrTyr LeuTyrGln LysIleAspGlu
2221	AGCAAGCTGA AGGCCTACAC CCGCTACCAG SerLysLeu LysAlaTyr ThrArgTyrGln	CTGCGCGGCT ACATCGAGGA CAGCCAGGAC LeuArgGly TyrIleGlu AspSerGlnAsp
2281	CTGGAAATCT ACCTGATCCG CTACAACGCC LeuGluIle TyrLeuIle ArgTyrAsnAla	AAGCACGAGA CCGTGAACGT GCCCGGCACC LysHisGlu ThrValAsn ValProGlyThr
2341	GGCAGCCTGT GGCCCCTGAG CGCCCCCAGC GlySerLeu TrpProLeu SerAlaProSer	CCCATCGGCA AGTGCGGGGA GCCGAATCGA ProlleGly LysCysGly GluProAsnArg
2401	CysAlaPro HisLeuGlu TrpAsnProAsp	CTAGACTGCA GCTGCAGGGA CGGGGAGAAG LeuAspCys SerCysArg AspGlyGluLys
2461	CysAlaHis HisSerHis HisPheSerLeu	GACATCGACG TGGGCTGCAC CGACCTGAAC AspIleAsp ValGlyCys ThrAspLeuAsn
2521	GAGGACCTGG GCGTGTGGGT GATCTTCAAG GluAspLeu GlyValTrp ValIlePheLys	ATCAAGACCC AGGACGGCCA CGCCCGCCTG IleLysThr GlnAspGly HisAlaArgLeu
2581	GGCAATCTAG AATTTCTCGA AGAGAAACCA GlyAsnLeu GluPheLeu GluGluLysPro	Leuvaldry Gluaraneu Alaargvarnys
2641	AGAGCGGAGA AAAAATGGAG AGACAAACGT ArgAlaGlu LysLysTrp ArgAspLysArg	Glubysbeu Glulipelu inikamilevar
2701	TyrLysGlu AlaLysGlu SerValAspAla	LeuPheval AshSerGIn TyrAspArgLed
	GlnAlaAsp ThrAsnile Alametilenis	GCGGCAGATA AACGCGTTCA TAGCATTCGA AlaAlaAsp LysArgVal HisSerIleArg
	GluAlaTyr LeuProGlu LeuServallle	CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA ProGlyVal AsnAlaAla IlePheGluGlu
	LeuGluGly ArgliePhe ThrAlaPheSer	CTATATGATG CGAGAAATGT CATTAAAAAT LeuTyrAsp AlaArgAsn ValIleLysAsn
2941	GGTGATTTTA ATAATGGCTT ATCCTGCTGG GlyAspPhe AsnAsnGly LeuSerCysTrp	AACGTGAAAG GGCATGTAGA TGTAGAAGAA AsnValLys GlyHisVal AspValGluGlu

3001 CAAAACAACC ACCGTTCGGT CCTTGTTGTT CCGGAATGGG AAGCAGAAGT GTCACAAGAA GlnAsnAsn HisArgSer ValLeuValVal ProGluTrp GluAlaGlu ValSerGlnGlu

#### Fig. 9D

- 3061 GTTCGTGTCT GTCCGGGTCG TGGCTATATC CTTCGTGTCA CAGCGTACAA GGAGGGATAT ValArgVal CysProGly ArgGlyTyrIle LeuArgVal ThrAlaTyr LysGluGlyTyr
- 3121 GGAGAAGGTT GCGTAACCAT TCATGAGATC GAGAACAATA CAGACGAACT GAAGTTTAGC GlyGluGly CysValThr IleHisGluIle GluAsnAsn ThrAspGlu LeuLysPheSer
- 3181 AACTGTGTAG AAGAGGAAGT ATATCCAAAC AACACGGTAA CGTGTAATGA TTATACTGCG AsnCysVal GluGluU ValTyrProAsn AsnThrVal ThrCysAsn AspTyrThrAla
- 3241 ACTCAAGAAG AATATGAGGG TACGTACACT TCTCGTAATC GAGGATATGA CGGAGCCTAT ThrGlnGlu GluTyrGlu GlyThrTyrThr SerArgAsn ArgGlyTyr AspGlyAlaTyr
- 3301 GAAAGCAATT CTTCTGTACC AGCTGATTAT GCATCAGCCT ATGAAGAAAA AGCATATACA GluSerAsn SerSerVal ProAlaAspTyr AlaSerAla TyrGluGlu LysAlaTyrThr
- 3361 GATGGACGAA GAGACAATCC TTGTGAATCT AACAGAGGAT ATGGGGATTA CACACCACTA AspGlyArg ArgAspAsn ProCysGluSer AsnArgGly TyrGlyAsp TyrThrProLeu
- 3421 CCAGCTGGCT ATGTGACAAA AGAATTAGAG TACTTCCCAG AAACCGATAA GGTATGGATT ProAlaGly TyrValThr LysGluLeuGlu TyrPhePro GluThrAsp LysValTrpIle
- 3481 GAGATCGGAG AAACGGAAGG AACATTCATC GTGGACAGCG TGGAATTACT TCTTATGGAG GluIleGly GluThrGlu GlyThrPheIle ValAspSer ValGluLeu LeuLeuMetGlu
- 3541 GAATAA Glu---



#### Fig. 11A

1	ATGGACAACA ACCCCAACAT CAACGAGTGC MetAspAsn AsnProAsn IleAsnGluCys	ATCCCCTACA ACTGCCTGAG CAACCCCGAG IleProTyr AsnCysLeu SerAsnProGlu
61	GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ValGluVal LeuGlyGly GluArgIleGlu	ACCGGCTACA CCCCCATCGA CATCAGCCTG ThrGlyTyr ThrProIle AspIleSerLeu
121	AGCCTGACCC AGTTCCTGCT GAGCGAGTTC SerLeuThr GlnPheLeu LeuSerGluPhe	GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG ValProGly AlaGlyPhe ValLeuGlyLeu
181	GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro	AGCCAGTGGG ACGCCTTCCT GGTGCAGATC SerGlnTrp AspAlaPhe LeuValGlnIle
241	GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu	TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG PheAlaArg AsnGlnAla IleSerArgLeu
301	GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr	GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC AlaGluSer PheArgGlu TrpGluAlaAsp
361	CCCACCAACC CCGCCCTGCG CGAGGAGATG ProThrAsn ProAlaLeu ArgGluGluMet	CGCATCCAGT TCAACGACAT GAACAGCGCC ArgIleGln PheAsnAsp MetAsnSerAla
421	CTGACCACCG CCATCCCCCT GTTCGCCGTG LeuThrThr AlaIlePro LeuPheAlaVal	CAGAACTACC AGGTGCCCCT GCTGAGCGTG GlnAsnTyr GlnValPro LeuLeuSerVal
481	TACGTGCAGG CCGCCAACCT GCACCTGAGC TyrValGln AlaAlaAsn LeuHisLeuSer	GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG ValLeuArg AspValSer ValPheGlyGln
541	CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn	AGCCGCTACA ACGACCTGAC CCGCCTGATC SerArgTyr AsnAspLeu ThrArgLeuIle
601	GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp	TACAACACCG GCCTGGAGCG CGTGTGGGGT TyrAsnThr GlyLeuGlu ArgValTrpGly
661	CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn	CAGTTCCGCC GCGAGCTGAC CCTGACCGTG GlnPheArg ArgGluLeu ThrLeuThrVal
721	CTGGACATCG TGAGCCTGTT CCCCAACTAC LeuAspIle ValSerLeu PheProAsnTyr	GACAGCCGCA CCTACCCCAT CCGCACCGTG AspSerArg ThrTyrPro IleArgThrVal
781	AGCCAGCTGA CCCGCGAGAT TTACACCAAC SerGlnLeu ThrArgGlu IleTyrThrAsn	CCCGTGCTGG AGAACTTCGA CGGCAGCTTC ProValLeu GluAsnPhe AspGlySerPhe
841	CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ArgGlySer AlaGlnGly IleGluGlySer	ATCCGCAGCC CCCACCTGAT GGACATCCTG IleArgSer ProHisLeu MetAspIleLeu
901	AACAGCATCA CCATCTACAC CGACGCCCAC AsnSerIle ThrIleTyr ThrAspAlaHis	CGCGGCGAGT ACTACTGGAG CGGCCACCAG ArgGlyGlu TyrTyrTrp SerGlyHisGln
961	ATCATGGCCA GCCCCGTCGG CTTCAGCGGC IleMetAla SerProVal GlyPheSerGly	CCCGAGTTCA CCTTCCCCCT GTACGGCACC ProGluPhe ThrPhePro LeuTyrGlyThr

#### Fig. 11B

1021	ATGGGCAACG CTGCACCTCA GCAGCGCATC MetGlyAsn AlaAlaPro GlnGlnArgIle	GTGGCACAGC TGGGCCAGGG AGTGTACCGC ValAlaGln LeuGlyGln GlyValTyrArg
1081	ACCCTGAGCA GCACCCTGTA CCGTCGACCT ThrLeuSer SerThrLeu TyrArgArgPro	TTCAACATCG GCATCAACAA CCAGCAGCTG PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141	SerValLeu AspGlyThr GluPheAlaTyr	GGCACCAGCA GCAACCTGCC CAGCGCCGTG GlyThrSer SerAsnLeu ProSerAlaVal
1201	TACCGCAAGA GCGGCACCGT GGACAGCCTG TyrArgLys SerGlyThr ValAspSerLeu	GACGAGATCC CCCCTCAGAA CAACAACGTG AspGluIle ProProGln AsnAsnAsnVal
1261	ProProArg GlnGlyPhe SerHisArgLeu	AGCCACGTGA GCATGTTCCG CAGTGGCTTC SerHisVal SerMetPhe ArgSerGlyPhe
1321	SerAsnSer SerValSer IleIleArgAla	CCTATGTTCA GCTGGATTCA CCGCAGTGCC ProMetPhe SerTrpIle HisArgSerAla
1381	GluPheAsn AsnIleIle ProSerSerGIn	ATCACCCAGA TCCCCCTGAC CAAGAGCACC IleThrGln IleProLeu ThrLysSerThr
1441	AsnLeuGly SerGlyThr SerValValLys	GGCCCCGGCT TCACCGGCGG CGACATCCTG GlyProGly PheThrGly GlyAspIleLeu
1501	ArgArgThr SerProGly GinlieSerThr	CTGCGCGTGA ACATCACCGC CCCCCTGAGC LeuArgVal AsnIleThr AlaProLeuSer
1561	GlnArgTyr ArgValArg lleArgTyrAla	AGCACCACCA ACCTGCAGTT CCACACCAGC SerThrThr AsnLeuGln PheHisThrSer
1621	IleAspGly ArgProlle AshGlnGlyAsh	TTCAGCGCCA CCATGAGCAG CGGCAGCAAC PheSerAla ThrMetSer SerGlySerAsn
1681	LeuGlnSer GlySerPhe ArgThrvalGly	TTCACCACCC CCTTCAACTT CAGCAACGGC PheThrThr ProPheAsn PheSerAsnGly
1741	SerSerVal PheThrLeu SerAlaHisval	TTCAACAGCG GCAACGAGGT GTACATCGAC PheAsnSer GlyAsnGlu ValTyrIleAsp
1801	ArgIleGlu PheValPro AlaGiuvaiThi	TTCGAGGCCG AGTACGACCT GGAGAGGGCT PheGluAla GluTyrAsp LeuGluArgAla
1861	GlnLysAla ValAsnGlu LeuPneThrSel	AGCAACCAGA TCGGCCTGAA GACCGACGTG SerAsnGln IleGlyLeu LysThrAspVal
1921	ThrAspTyr HisIleAsp GinVaiSerAsn	CTGGTGGAGT GCTTAAGCGA CGAGTTCTGC LeuValGlu CysLeuSer AspGluPheCys
1981 :	CTGGACGAGA AGAAGGAGCT GAGCGAGAAG LeuAspGlu LysLysGlu LeuSerGluLys	GTGAAGCACG CCAAGCGCCT GAGCGACGAG VallysHis AlaLysArg LeuSerAspGlu

### Fig. 11C

2041		GGCATCAACC GCCAGCTGGA CCGCGGCTGG GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101	CGAGGCAGCA CCGATATCAC CATCCAGGGC ArgGlySer ThrAspIle ThrIleGlnGly	GGCGACGACG TGTTCAAGGA GAACTACGTG GlyAspAsp ValPheLys GluAsnTyrVal
2161	ACCCTGCTGG GCACCTTCGA CGAGTGCTAC ThrLeuLeu GlyThrPhe AspGluCysTyr	CCCACCTACC TGTACCAGAA GATCGACGAG ProThrTyr LeuTyrGln LysIleAspGlu
2221	AGCAAGCTGA AGGCCTACAC CCGCTACCAG SerLysLeu LysAlaTyr ThrArgTyrGln	CTGCGCGGCT ACATCGAGGA CAGCCAGGAC LeuArgGly TyrileGlu AspSerGlnAsp
2281	CTGGAAATCT ACCTGATCCG CTACAACGCC LeuGluIle TyrLeuIle ArgTyrAsnAla	AAGCACGAGA CCGTGAACGT GCCCGGCACC LysHisGlu ThrValAsn ValProGlyThr
2341	GGCAGCCTGT GGCCCCTGAG CGCCCCCAGC GlySerLeu TrpProLeu SerAlaProSer	CCCATCGGCA AGTGCGGGGA GCCGAATCGA ProlleGly LysCysGly GluProAsnArg
2401	TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CysAlaPro HisLeuGlu TrpAsnProAsp	CTAGACTGCA GCTGCAGGGA CGGGGAGAAG LeuAspCys SerCysArg AspGlyGluLys
2461	TGCGCCCACC ACAGCCACCA CTTCAGCCTG CysAlaHis HisSerHis HisPheSerLeu	GACATCGACG TGGGCTGCAC CGACCTGAAC AspIleAsp ValGlyCys ThrAspLeuAsn
2521	GAGGACCTGG GCGTGTGGGT GATCTTCAAG GluAspLeu GlyValTrp ValllePheLys	ATCAAGACCC AGGACGGCCA CGCCCGCCTG IleLysThr GlnAspGly HisAlaArgLeu
2581	GGCAATCTAG AATTTCTCGA AGAGAAACCA GlyAsnLeu GluPheLeu GluGluLysPro	TTAGTAGGAG AAGCACTAGC TCGTGTGAAA LeuValGly GluAlaLeu AlaArgValLys
2641	AGAGCGGAGA AAAAATGGAG AGACAAACGT ArgAlaGlu LysLysTrp ArgAspLysArg	GAAAAATTGG AATGGGAAAC AAATATTGTT GluLysLeu GluTrpGlu ThrAsnIleVal
2701	TATAAAGAGG CAAAAGAATC TGTAGATGCT TyrLysGlu AlaLysGlu SerValAspAla	TTATTTGTAA ACTCTCAATA TGATAGATTA LeuPheVal AsnSerGln TyrAspArgLeu
2761	CAAGCGGATA CCAACATCGC GATGATTCAT GlnAlaAsp ThrAsnIle AlaMetIleHis	GCGGCAGATA AACGCGTTCA TAGCATTCGA AlaAlaAsp LysArgVal HisSerIleArg
2821	GAAGCTTATC TGCCTGAGCT GTCTGTGATT GluAlaTyr LeuProGlu LeuSerValIle	CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA ProGlyVal AsnAlaAla IlePheGluGlu
2881	TTAGAAGGGC GTATTTTCAC TGCATTCTCC LeuGluGly ArgIlePhe ThrAlaPheSer	CTATATGATG CGAGAAATGT CATTAAAAAT LeuTyrAsp AlaArgAsn VallleLysAsn
2941	GGTGATTTTA ATAATGGCTT ATCCTGCTGG GlyAspPhe AsnAsnGly LeuSerCysTrp	AACGTGAAAG GGCATGTAGA TGTAGAAGAA AsnValLys GlyHisVal AspValGluGlu
3001	CAAAACAACC ACCGTTCGGT CCTTGTTGTT GlnAsnAsn HisArgSer ValLeuValVal	CCGGAATGGG AAGCAGAAGT GTCACAAGAA ProGluTrp GluAlaGlu ValSerGlnGlu

### Fig. 11D

3061		CTTCGTGTCA CAGCGTACAA GGAGGGATAT LeuArgVal ThrAlaTyr LysGluGlyTyr
3121		GAGAACAATA CAGACGAACT GAAGTTTAGC GluAsnAsn ThrAspGlu LeuLysPheSer
3181		AACACGGTAA CGTGTAATGA TTATACTGCG AsnThrVal ThrCysAsn AspTyrThrAla
3241	ACTCAAGAAG AATATGAGGG TACGTACACT ThrGlnGlu GluTyrGlu GlyThrTyrThr	TCTCGTAATC GAGGATATGA CGGAGCCTAT SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301	GAAAGCAATT CTTCTGTACC AGCTGATTAT GluSerAsn SerSerVal ProAlaAspTyr	GCATCAGCCT ATGAAGAAAA AGCATATACA AlaSerAla TyrGluGlu LysAlaTyrThr
3361	GATGGACGAA GAGACAATCC TTGTGAATCT AspGlyArg ArgAspAsn ProCysGluSer	
3421	CCAGCTGGCT ATGTGACAAA AGAATTÄGAG ProAlaGly TyrValThr LysGluLeuGlu	
3481	GAGATCGGAG AAACGGAAGG AACATTCATC GluIleGly GluThrGlu GlyThrPheIle	
3541	GAATAA Glu	



#### Fig. 13A

1	ATGGACAACA ACCCCAACAT CAACGAGTGC MetAspAsn AsnProAsn IleAsnGluCys	ATCCCCTACA ACTGCCTGAG CAACCCCGAG IleProTyr AsnCysLeu SerAsnProGlu
61		ACCGGCTACA CCCCCATCGA CATCAGCCTG ThrGlyTyr ThrProlle AspIleSerLeu
121	AGCCTGACCC AGTTCCTGCT GAGCGAGTTC SerLeuThr GlnPheLeu LeuSerGluPhe	GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG ValProGly AlaGlyPhe ValLeuGlyLeu
181	GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro	AGCCAGTGGG ACGCCTTCCT GGTGCAGATC SerGlnTrp AspAlaPhe LeuValGlnIle
241	GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu	TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG PheAlaArg AsnGlnAla IleSerArgLeu
301	GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr	GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC AlaGluSer PheArgGlu TrpGluAlaAsp
361	CCCACCAACC CCGCCCTGCG CGAGGAGATG ProThrAsn ProAlaLeu ArgGluGluMet	CGCATCCAGT TCAACGACAT GAACAGCGCC ArgIleGln PheAsnAsp MetAsnSerAla
421	CTGACCACCG CCATCCCCCT GTTCGCCGTG LeuThrThr AlaIlePro LeuPheAlaVal	CAGAACTACC AGGTGCCCCT GCTGAGCGTG GlnAsnTyr GlnValPro LeuLeuSerVal
481	TACGTGCAGG CCGCCAACCT GCACCTGAGC TyrValGln AlaAlaAsn LeuHisLeuSer	GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG ValLeuArg AspValSer ValPheGlyGln
541	CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn	AGCCGCTACA ACGACCTGAC CCGCCTGATC SerArgTyr AsnAspLeu ThrArgLeuIle
601	GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp	TACAACACCG GCCTGGAGCG CGTGTGGGGT TyrAsnThr GlyLeuGlu ArgValTrpGly
661	CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn	CAGTTCCGCC GCGAGCTGAC CCTGACCGTG GlnPheArg ArgGluLeu ThrLeuThrVal
721	CTGGACATCG TGAGCCTGTT CCCCAACTAC LeuAspIle ValSerLeu PheProAsnTyr	GACAGCCGCA CCTACCCCAT CCGCACCGTG AspSerArg ThrTyrPro IleArgThrVal
781	AGCCAGCTGA CCCGCGAGAT TTACACCAAC SerGlnLeu ThrArgGlu IleTyrThrAsn	CCCGTGCTGG AGAACTTCGA CGGCAGCTTC ProValLeu GluAsnPhe AspGlySerPhe
841	CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ArgGlySer AlaGlnGly IleGluGlySer	ATCCGCAGCC CCCACCTGAT GGACATCCTG IleArgSer ProHisLeu MetAspIleLeu
901	AACAGCATCA CCATCTACAC CGACGCCCAC AsnSerIle ThrIleTyr ThrAspAlaHis	CGCGGCGAGT ACTACTGGAG CGGCCACCAG ArgGlyGlu TyrTyrTrp SerGlyHisGln
961	ATCATGGCCA GCCCCGTCGG CTTCAGCGGC IleMetAla SerProVal GlyPheSerGly	CCCGAGTTCA CCTTCCCCCT GTACGGCACC ProGluPhe ThrPhePro LeuTyrGlyThr

#### Fig. 13B

1021	MetGlyAsn AlaAlaPro GlnGlnArgIle	ValAlaGin LeuGiyGin GiyvaityrAig
1081	ThrLeuSer SerThrLeu TyrArgArgPro	PheAsnile GlylleAsn AshGinGinLeu
1141	SerValLeu AspGlyThr GluPheAlaTyr	GlyThrSer SerAshLeu ProsetAtavar
1201	TyrArgLys SerGlyThr ValAspSerLeu	AspGIUITE Proprogin AshAshAshVai
1261	ProProArg GlnGlyPhe SerHisArgLeu	Sernisval Sermetrie Arguerdrythe
1321	SerAsnSer SerValSer HelleArgAla	CCTATGTTCA GCTGGATTCA CCGCAGTGCC ProMetPhe SerTrpIle HisArgSerAla
1383	GluPheAsn AsnIleIle ProSerSerGin	ATCACCCAGA TCCCCCTGAC CAAGAGCACC IleThrGln IleProLeu ThrLysSerThr
1443	AsnLeuGly SerGlyThr ServalvallyS	GGCCCCGGCT TCACCGGCGG CGACATCCTG GlyProGly PheThrGly GlyAspIleLeu
150	ArgArgThr SerProGly GinileSerThr	CTGCGCGTGA ACATCACCGC CCCCCTGAGC LeuArgVal AsnIleThr AlaProLeuSer
156	GlnArgTyr ArgValArg lleArgTyrAla	AGCACCACCA ACCTGCAGTT CCACACCAGC SerThrThr AsnLeuGln PheHisThrSer
162	IleAspGly ArgProlle AshGlnGlyAsh	TTCAGCGCCA CCATGAGCAG CGGCAGCAAC PheSerAla ThrMetSer SerGlySerAsn
168	LeuGlnSer GlySerPhe ArginivalGly	TTCACCACCC CCTTCAACTT CAGCAACGGC PheThrThr ProPheAsn PheSerAsnGly
174	SerSerVal PheThrLeu SerAlaHisVal	TTCAACAGCG GCAACGAGGT GTACATCGAC PheAsnSer GlyAsnGlu ValTyrIleAsp
180	ArgIleGlu PhevalPro AlaGluvalIni	TTCGAGGCCG AGTACGACCT GGAGAGGGCT PheGluAla GluTyrAsp LeuGluArgAla
186	GlnLysAla ValAsnGlu LeuPheThrSer	AGCAACCAGA TCGGCCTGAA GACCGACGTG SerAsnGln IleGlyLeu LysThrAspVal
192	ThrAspTyr HisIleAsp GinvalSerAsh	CTGGTGGAGT GCTTAAGCGA CGAGTTCTGC LeuValGlu CysLeuSer AspGluPheCys
198	1 CTGGACGAGA AGAAGGAGCT GAGCGAGAAG LeuAspGlu LysLysGlu LeuSerGluLys	GTGAAGCACG CCAAGCGCCT GAGCGACGAG ValLysHis AlaLysArg LeuSerAspGlu

#### Fig. 13C

CGCAACCTGC TGCAGGACCC CAACTTCCGC	GGCATCAACC GCCAGCTGGA CCGCGGCTGG
ArgAsnLeu LeuGlnAsp ProAsnPheArg	GlyIleAsn ArgGlnLeu AspArgGlyTrp
CGAGGCAGCA CCGATATCAC CATCCAGGGC	GGCGACGACG TGTTCAAGGA GAACTACGTG
ArgGlySer ThrAspIle ThrIleGlnGly	GlyAspAsp ValPheLys GluAsnTyrVal
ACCCTGCTGG GCACCTTCGA CGAGTGCTAC ThrLeuLeu GlyThrPhe AspGluCysTyr	CCCACCTACC TGTACCAGAA GATCGACGAG ProThrTyr LeuTyrGln LysIleAspGlu
AGCAAGCTGA AGGCCTACAC CCGCTACCAG	CTGCGCGGCT ACATCGAGGA CAGCCAGGAC
SerLysLeu LysAlaTyr ThrArgTyrGln	LeuArgGly TyrIleGlu AspSerGlnAsp
CTGGAAATCT ACCTGATCCG CTACAACGCC	AAGCACGAGA CCGTGAACGT GCCCGGCACC
LeuGluIle TyrLeuIle ArgTyrAsnAla	LysHisGlu ThrValAsn ValProGlyThr
GGCAGCCTGT GGCCCCTGAG CGCCCCCAGC	CCCATCGGCA AGTGCGGGGA GCCGAATCGA
GlySerLeu TrpProLeu SerAlaProSer	ProlleGly LysCysGly GluProAsnArg
TGCGCTCCGC ACCTGGAGTG GAACCCGGAC	CTAGACTGCA GCTGCAGGGA CGGGGAGAAG
CysAlaPro HisLeuGlu TrpAsnProAsp	LeuAspCys SerCysArg AspGlyGluLys
TGCGCCCACC ACAGCCACCA CTTCAGCCTG CysAlaHis HisSerHis HisPheSerLeu	GACATCGACG TGGGCTGCAC CGACCTGAAC AspileAsp ValGlyCys ThrAspLeuAsn
GAGGACCTGG GCGTGTGGGT GATCTTCAAG GluAspLeu GlyValTrp ValllePheLys	ATCAAGACCC AGGACGCCA CGCCCGCCTG IleLysThr GlnAspGly HisAlaArgLeu
GGCAATCTAG AGTTCCTGGA GGAGAAGCCC	CTGGTGGGCG AGGCCCTGGC CCGCGTGAAG
GlyAsnLeu GluPheLeu GluGluLysPro	LeuValGly GluAlaLeu AlaArgValLys
CGCGCCGAGA AGAAGTGGCG CGACAAĠCGC	GAGAAGCTGG AGTGGGAGAC CAACATCGTG
ArgAlaGlu LysLysTrp ArgAspLysArg	GluLysLeu GluTrpGlu ThrAsnIleVal
TACAAGGAGG CCAAGGAGAG CGTGGACGCC	CTGTTCGTGA ACAGCCAGTA CGACCGCCTG
TyrLysGlu AlaLysGlu SerValAspAla	LeuPheVal AsnSerGln TyrAspArgLeu
CAGGCCGACA CCAACATCGC CATGATCCAC GlnAlaAsp ThrAsnIle AlaMetIleHis	GCCGCCGACA AGCGCGTGCA CAGCATTCGC AlaAlaAsp LysArgVal HisSerIleArg
GAGGCCTACC TGCCCGAGCT GAGCGTGATC GluAlaTyr LeuProGlu LeuSerVallle	CCCGGCGTGA ACGCCGCCAT CTTCGAGGAA ProGlyVal AsnAlaAla IlePheGluGlu
CTCGAGGGCC GCATCTTCAC CGCCTTCAGC LeuGluGly ArgIlePhe ThrAlaPheSer	CTGTACGACG CCCGCAACGT GATCAAGAAC LeuTyrAsp AlaArgAsn VallleLysAsn
GGCGACTTCA ACAACGGCCT GAGCTGCTGG	AACGTGAAGG GCCACGTGGA CGTGGAGGAG
GlyAspPhe AsnAsnGly LeuSerCysTrp	AsnValLys GlyHisVal AspValGluGlu
CAGAACAACC ACCGCAGCGT GCTGGTGGTG	CCCGAGTGGG AGGCCGAGGT GAGCCAGGAG
GlnAsnAsn HisArgSer ValLeuValVal	ProGluTrp GluAlaGlu ValSerGlnGlu
	CGAGGCAGCA CCGATATCAC CATCCAGGGC ArgGlySer ThrAspIle ThrIleGInGly ACCCTGCTGG GCACCTTCGA CGAGTGCTAC ThrLeuLeu GlyThrPhe AspGluCysTyr AGCAAGCTGA AGGCCTACAC CCGCTACCAG SerLysLeu LysAlaTyr ThrArgTyrGln CTGGAAATCT ACCTGATCCG CTACAACGCC LeuGluIle TyrLeuIle ArgTyrAsnAla GGCAGCCTGT GGCCCCTGAG CGCCCCAGC GlySerLeu TrpProLeu SerAlaProSer TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CysAlaPro HisLeuGlu TrpAsnProAsp TGCGCCCACC ACAGCCACCA CTTCAGCCTG CysAlaHis HisSerHis HisPheSerLeu GAGGACCTGG GCGTGTGGGT GATCTTCAAG GluAspLeu GlyValTrp ValIlePheLys GGCAATCTAG AGTTCCTGGA GGAGAAGCCC GlyAsnLeu GluPheLeu GluGluLysPro CGCGCCGAGA AGAAGTGGCG CGACAAĠCGC ArgAlaGlu LysLysTrp ArgAspLysArg TACAAGGAGG CCAAGAGAG CGTGGACGCC TyrLysGlu AlaLysGlu SerValAspAla CAGGCCGACA CCAACATCGC CATGATCCAC GlnAlaAsp ThrAsnIle AlaMetIleHis GAGGCCTACC TGCCCGAGCT GAGCGTGATC GluAlaTyr LeuProGlu LeuSerValIle CTCGAGGGCC GCATCTTCAC CGCCTTCAGC LeuGluGly ArgIlePhe ThrAlaPheSer GGCGACTCA ACAACGGCCT GAGCTGCTGG GIyAspPhe AsnAsnGly LeuSerCysTrp

### Fig. 13D

3061	GTGCGCGTGT GCCCCGGCCG CGGCTACATC ValArgVal CysProGly ArgGlyTyrIle	
3121	GGCGAGGGCT GCGTGACCAT CCACGAGATC GlyGluGly CysValThr IleHisGluIle	GAGAACAACA CCGACGAGCT CAAGTTCAGGGluAsnAsn ThrAspGlu LeuLysPheSen
3181	AACTGCGTGG AGGAGGAGGT GTACCCCAAC AsnCysVal GluGluGlu ValTyrProAsn	
3241	ACCCAGGAGG AGTACGAGGG CACCTACACC ThrGlnGlu GluTyrGlu GlyThrTyrThr	AGCCGCAACC GCGGCTACGA CGGCGCCTAC SerArgAsn ArgGlyTyr AspGlyAlaTyn
3301	GAGAGCAACA GCAGCGTGCC CGCCGACTAC GluSerAsn SerSerVal ProAlaAspTyr	GCCAGCGCCT ACGAGGAGAA GGCCTACACC AlaSerAla TyrGluGlu LysAlaTyrThr
3361	GACGGCCGCC GCGACAACCC CTGCGAGAGC AspGlyArg ArgAspAsn ProCysGluSer	AACCGCGGCT ACGGCGACTA CACCCCCCTG AsnArgGly TyrGlyAsp TyrThrProLeu
3421	CCCGCCGGCT ACGTGACCAA GGAGCTGGAG ProAlaGly TyrValThr LysGluLeuGlu	TACTTCCCCG AGACCGACAA GGTGTGGATCTYrPhePro GluThrAsp LysValTrpIle
3481	GAGATCGGCG AGACCGAGGG CACCTTCATC GluIleGly GluThrGlu GlyThrPheIle	GTGGACAGCG TGGAGCTGCT GCTGATGGAG ValAspSer ValGluLeu LeuLeuMetGlu
3541	GAG Glu	



Fig 12

#### Fig. 15A

ATGGACAACA ACCCCAACAT CAACGAGTGC MetAspAsn AsnProAsn IleAsnGluCys	ATCCCCTACA ACTGCCTGAG CAACCCCGAG IleProTyr AsnCysLeu SerAsnProGlu
	ACCGGCTACA CCCCCATCGA CATCAGCCTG ThrGlyTyr ThrProIle AspIleSerLeu
AGCCTGACCC AGTTCCTGCT GAGCGAGTTC SerLeuThr GlnPheLeu LeuSerGluPhe	GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG ValProGly AlaGlyPhe ValLeuGlyLeu
GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro	AGCCAGTGGG ACGCCTTCCT GGTGCAGATC SerGlnTrp AspAlaPhe LeuValGlnIle
GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu	TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG PheAlaArg AsnGlnAla IleSerArgLeu
GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr	GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC AlaGluSer PheArgGlu TrpGluAlaAsp
CCCACCAACC CCGCCCTGCG CGAGGAGATG ProThrAsn ProAlaLeu ArgGluGluMet	CGCATCCAGT TCAACGACAT GAACAGCGCC ArgIleGln PheAsnAsp MetAsnSerAla
LeuThrThr AlaIlePro LeuPheAlaVal	CAGAACTACC AGGTGCCCCT GCTGAGCGTG GlnAsnTyr GlnValPro LeuLeuSerVal
TACGTGCAGG CCGCCAACCT GCACCTGAGC TyrValGln AlaAlaAsn LeuHisLeuSer	GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG ValLeuArg AspValSer ValPheGlyGln
CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn	AGCCGCTACA ACGACCTGAC CCGCCTGATC SerArgTyr AsnAspLeu ThrArgLeuIle
GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp	TACAACACCG GCCTGGAGCG CGTGTGGGGT TyrAsnThr GlyLeuGlu ArgValTrpGly
CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn	CAGTTCCGCC GCGAGCTGAC CCTGACCGTG GlnPheArg ArgGluLeu ThrLeuThrVal
LeuAspIle ValSerLeu PheProAsnTyr	GACAGCCGCA CCTACCCCAT CCGCACCGTG AspSerArg ThrTyrPro IleArgThrVal
AGCCAGCTGA CCCGCGAGAT TTACACCAAC SerGlnLeu ThrArgGlu IleTyrThrAsn	CCCGTGCTGG AGAACTTCGA CGGCAGCTTC ProValLeu GluAsnPhe AspGlySerPhe
CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ArgGlySer AlaGlnGly IleGluGlySer	ATCCGCAGCC CCCACCTGAT GGACATCCTG IleArgSer ProHisLeu MetAspIleLeu
AsnSerIle ThrIleTyr ThrAspAlaHis	CGCGGCGAGT ACTACTGGAG CGGCCACCAG ArgGlyGlu TyrTyrTrp SerGlyHisGln
ATCATGGCCA GCCCCGTCGG CTTCAGCGGC IleMetAla SerProVal GlyPheSerGly	CCCGAGTTCA CCTTCCCCCT GTACGGCACC ProGluPhe ThrPhePro LeuTyrGlyThr
	Metaspasn AsnProAsn IleAsnGluCys GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ValGluVal LeuGlyGly GluArgIleGlu AGCCTGACCC AGTTCCTGCT GAGCGAGTTC SerLeuThr GlnPheLeu LeuSerGluPhe GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr CCCACCAACC CCGCCCTGCG CGAGGAGATG ProThrAsn ProAlaLeu ArgGluGluMet CTGACCACCG CCATCCCCCT GTTCGCCGTG LeuThrThr AlaIlePro LeuPheAlaVal TACGTGCAGG CCGCCAACCT GCACCTGAGC TyrValGln AlaAlaAsn LeuHisLeuSer CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn CTGGACATCG TGAGCCTGTT CCCCAACTAC LeuAspIle ValSerLeu PheProAsnTyr AGCCAGCTGA CCCGCGAGAT TTACACCAAC SerGInLeu ThrArgGlu IleTyrThrAsn CGCGGCAGCG CCCAGGGCAT CGAGGGCAGC ArgGlySer AlaGlnGly IleGluGlySer AACAGCATCA CCATCTACAC CGACGCCCAC AsnSerIle ThrIleTyr ThrAspAlaHis

#### Fig. 15B

1021	ATGGGCAACG CTGCACCTCA GCAGCGCATC MetGlyAsn AlaAlaPro GlnGlnArgIle	GTGGCACAGC TGGGCCAGGG AGTGTACCGC ValAlaGln LeuGlyGln GlyValTyrArg
1081		TTCAACATCG GCATCAACAA CCAGCAGCTG PheAsnIle GlyIleAsn AsnGlnGlnLeu
1141	AGCGTGCTGG ACGGCACCGA GTTCGCCTAC SerValLeu AspGlyThr GluPheAlaTyr	GGCACCAGCA GCAACCTGCC CAGCGCCGTG GlyThrSer SerAsnLeu ProSerAlaVal
1201	TACCGCAAGA GCGGCACCGT GGACAGCCTG TyrArgLys SerGlyThr ValAspSerLeu	GACGAGATCC CCCCTCAGAA CAACAACGTG AspGluIle ProProGln AsnAsnAsnVal
1261	CCACCTCGAC AGGGCTTCAG CCACCGTCTG ProProArg GlnGlyPhe SerHisArgLeu	AGCCACGTGA GCATGTTCCG CAGTGGCTTC SerHisVal SerMetPhe ArgSerGlyPhe
1321	AGCAACAGCA GCGTGAGCAT CATCCGTGCA SerAsnSer SerValSer IleIleArgAla	CCTATGTTCA GCTGGATTCA CCGCAGTGCC ProMetPhe SerTrpIle HisArgSerAla
1381	GAGTTCAACA ACATCATCCC CAGCAGCCAG GluPheAsn AsnIleIle ProSerSerGln	ATCACCCAGA TCCCCCTGAC CAAGAGCACC IleThrGln IleProLeu ThrLysSerThr
1441	AACCTGGGCA GCGGCACCAG CGTGGTGAAG AsnLeuGly SerGlyThr SerValValLys	GGCCCCGGCT TCACCGGCGG CGACATCCTG GlyProGly PheThrGly GlyAspIleLeu
1501	CGCCGCACCA GCCCCGGCCA GATCAGCACC ArgArgThr SerProGly GlnIleSerThr	CTGCGCGTGA ACATCACCGC CCCCCTGAGC LeuArgVal AsnIleThr AlaProLeuSer
1561	CAGCGCTACC GCGTCCGCAT CCGCTACGCC GlnArgTyr ArgValArg IleArgTyrAla	AGCACCACCA ACCTGCAGTT CCACACCAGC SerThrThr AsnLeuGln PheHisThrSer
1621	ATCGACGGCC GCCCCATCAA CCAGGGCAAC IleAspGly ArgProIle AsnGlnGlyAsn	TTCAGCGCCA CCATGAGCAG CGGCAGCAAC PheSerAla ThrMetSer SerGlySerAsn
1681	CTGCAGAGCG GCAGCTTCCG CACCGTGGGC LeuGlnSer GlySerPhe ArgThrValGly	TTCACCACCC CCTTCAACTT CAGCAACGGC PheThrThr ProPheAsn PheSerAsnGly
1741	AGCAGCGTGT TCACCCTGAG CGCCCACGTG SerSerVal PheThrLeu SerAlaHisVal	TTCAACAGCG GCAACGAGGT GTACATCGAC PheAsnSer GlyAsnGlu ValTyrlleAsp
1801	CGCATCGAGT TCGTGCCCGC CGAGGTGACC ArgIleGlu PheValPro AlaGluValThr	TTCGAGGCCG AGTACGACCT GGAGAGGGCT PheGluAla GluTyrAsp LeuGluArgAla
1861	CAGAAGGCCG TGAACGAGCT GTTCACCAGC GlnLysAla ValAsnGlu LeuPheThrSer	AGCAACCAGA TCGGCCTGAA GACCGACGTG SerAsnGln IleGlyLeu LysThrAspVal
1921	ACCGACTACC ACATCGATCA AGTATCCAAT ThrAspTyr HislleAsp GlnValSerAsn	TTAGTTGAGT GTTTATCTGA TGAATTTTGT LeuValGlu CysLeuSer AspGluPheCys
1981	CTGGATGAAA AAAAAGAATT GTCCGAGAAA LeuAspGlu LysLysGlu LeuSerGluLys	GTCAAACATG CGAAGCGACT TAGTGATGAG VallysHis AlaLysArg LeuSerAspGlu
i		

## Fig. 15C

2041	CGGAATTTAC TTCAAGATCC AAACTTTAGA ArgAsnLeu LeuGlnAsp ProAsnPheArg	GGGATCAATA GACAACTAGA CCGTGGCTGG GlyIleAsn ArgGlnLeu AspArgGlyTrp
2101		GGCGATGACG TATTCAAAGA GAATTACGTT GlyAspAsp ValPheLys GluAsnTyrVal
2161		CCAACGTATT TATATCAAAA AATAGATGAG ProThrTyr LeuTyrGln LysIleAspGlu
2221	TCGAAATTAA AAGCCTATAC CCGTTACCAA SerLysLeu LysAlaTyr ThrArgTyrGln	TTAAGAGGGT ATATCGAAGA TAGTCAAGAC LeuArgGly TyrIleGlu AspSerGlnAsp
2281	TTAGAAATCT ATTTAATTCG CTACAATGCC LeuGluIle TyrLeuIle ArgTyrAsnAla	AAACACGAAA CAGTAAATGT GCCAGGTACG LysHisGlu ThrValAsn ValProGlyThr
2341	GGTTCCTTAT GGCCGCTTTC AGCCCCAAGT GlySerLeu TrpProLeu SerAlaProSer	CCAATCGGCA AGTGCGGGGA GCCGAATCGA ProlleGly LysCysGly GluProAsnArg
2401	TGCGCTCCGC ACCTGGAGTG GAACCCGGAC CysAlaPro HisLeuGlu TrpAsnProAsp	CTAGACTGCA GCTGCAGGGA CGGGGAGAAG LeuAspCys SerCysArg AspGlyGluLys
2461	TGCGCCCACC ACAGCCACCA CTTCAGCCTG CysAlaHis HisSerHis HisPheSerLeu	GACATCGACG TGGGCTGCAC CGACCTGAAC AspIleAsp ValGlyCys ThrAspLeuAsn
2521	GAGGACCTGG GCGTGTGGGT GATCTTCAAG GluAspLeu GlyValTrp ValllePheLys	ATCAAGACCC AGGACGGCCA CGCCCGCCTG IleLysThr GlnAspGly HisAlaArgLeu
2581	GGCAATCTAG AATTTCTCGA AGAGAAACCA GlyAsnLeu GluPheLeu GluGluLysPro	TTAGTAGGAG AAGCACTAGC TCGTGTGAAA LeuValGly GluAlaLeu AlaArgValLys
2641	AGAGCGGAGA AAAAATGGAG AGACAAACGT ArgAlaGlu LysLysTrp ArgAspLysArg	GAAAAATTGG AATGGGAAAC AAATATTGTT GluLysLeu GluTrpGlu ThrAsnIleVal
2701	TATAAAGAGG CAAAAGAATC TGTAGATGCT TyrLysGlu AlaLysGlu SerValAspAla	TTATTTGTAA ACTCTCAATA TGATAGATTA LeuPheVal AsnSerGln TyrAspArgLeu
2761	CAAGCGGATA CCAACATCGC GATGATTCAT GlnAlaAsp ThrAsnIle AlaMetIleHis	GCGGCAGATA AACGCGTTCA TAGCATTCGA AlaAlaAsp LysArgVal HisSerIleArg
2821	GAAGCTTATC TGCCTGAGCT GTCTGTGATT GluAlaTyr LeuProGlu LeuSerVallle	CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA ProGlyVal AsnAlaAla IlePheGluGlu
2881	TTAGAAGGGC GTATTTTCAC TGCATTCTCC LeuGluGly ArgIlePhe ThrAlaPheSer	CTATATGATG CGAGAAATGT CATTAAAAAT LeuTyrAsp AlaArgAsn VallleLysAsn
2941	GGTGATTTTA ATAATGGCTT ATCCTGCTGG GlyAspPhe AsnAsnGly LeuSerCysTrp	AACGTGAAAG GGCATGTAGA TGTAGAAGAA AsnValLys GlyHisVal AspValGluGlu
3001	CAAAACAACC ACCGTTCGGT CCTTGTTGTT GlnAsnAsn HisArgSer ValLeuValVal	CCGGAATGGG AAGCAGAAGT GTCACAAGAA ProGluTrp GluAlaGlu ValSerGlnGlu

#### Fig. 15D

3061		CTTCGTGTCA CAGCGTACAA GGAGGGATAT LeuArgVal ThrAlaTyr LysGluGlyTyr
3121		GAGAACAATA CAGACGAACT GAAGTTTAGC GluAsnAsn ThrAspGlu LeuLysPheSer
3181		AACACGGTAA CGTGTAATGA TTATACTGCG AsnThrVal ThrCysAsn AspTyrThrAla
3241		TCTCGTAATC GAGGATATGA CGGAGCCTAT SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301		GCATCAGCCT ATGAAGAAAA AGCATATACA AlaSerAla TyrGluGlu LysAlaTyrThr
3361		AACAGAGGAT ATGGGGATTA CACACCACTA AsnArgGly TyrGlyAsp TyrThrProLeu
3421	CCAGCTGGCT ATGTGACAAA AGAATTAGAG ProAlaGly TyrValThr LysGluLeuGlu	TACTTCCCAG AAACCGATAA GGTATGGATT TyrPhePro GluThrAsp LysValTrpIle
3481	GAGATCGGAG AAACGGAAGG AACATTCATC GlulleGly GluThrGlu GlyThrPheIle	
3541	GAATAAG Glu	















Fig. 23A

#### CrylA(b) Protein Levels in Transgenic Maize

#### ELISA Bt Values of Field Plants:

INBRED X PARENT	ABRU PLANT Number	ng Bt/mg protein
2ND01X171-4A	1646	29
5N984X171-4A	857	1705
5N984X171-4A	870	1760
5N984X171-13	969	22
5N984X171-15	1468	17
5N984X171-15	1470	28
5N984X171-14A	1502	180
5N984X171-14A	1529	1500
5N984X176-11	1667	408
5N984X176-11	1671	1270
5N984X176-11	1673	1522
5N984X176-11	1675	943
5N984X176-11	1679	967
5N984X171-4B	['] 1942	15
5N984X171-4B	1946	16
5NA56X171-16ABX	1101	30
5NA89X176-11	1622	959
5NA89X176-11	1630	1172
5NA89X176-11	1635	1100
6F010X171-4	825	103
6F010X171-4	832	1298

⁻Bt levels are in ng crylA(b)/mg total protein.

⁻Data are from progeny of the described maize transformants expressing the crylA(b) protein.

⁻ELISA analysis of transgenic plant material was carried out using standard procedures as described elsewhere.

Bioassay of European corn borer, Ostrinia nubilalis, and sugarcane borer, Diatraea saccharalis Fig. 23B

					Percent Mortality	Aortality
Plasmid	Promoter	Cross	Plant No.	Bt Gene	Ostrinia	Diatraea
pCIB4431	PEPC	5N984 X 176-8B	21 22 40	+ 1 +	100 0 100	100
pCIB4431	PEPC	5N984 X 176-11	95 96 98	+ + +	100 100	100
pCIB4418	358	5N984 X 171-14A	45 64 68	1 + +	0 100 	10 90 100
pCIB4431	PEPC	2N217AF X 176-8B	− w 4	. + +	0 100 100	100
pCIB4418	358	2N217AF X 171-15	5 70 83 88	ı + +	10 90 90	0 80 100

Fig. 23C

#### CrylA(b) Protein Levels in Transgenic Maize

#### Greenhouse plants

35S LINE 6F010 x 171-4A 5N984 x 171-14A 6F010 x 171-16AB 5N984 x 171-13 5NA89 x 171-13 5N984 x 171-18 6N615 x 171-16AB	LEAF -409 + 288 256 + 159 240 + 174 201 + 94 37 + 7 7.7 + 3 7.5 + 3	PITH NT 191 221 NT 150 NT 0	ROOT NT 198 271 NT 0 NT 0	POLLEN NT 30 NT NT NT NT NT
PEPC LINE				
6N615 x 176-11 6F010 x 176-10 5N984 x 176-11	1126 + 419 774 + 159 719 + 128	41 NT 16	19 NT 20	NT 130 186

-Bt levels are in ng crylA(b)/mg total protein.

Data are from progeny of the described maize transformants expressing the crylA(b) protein.

ELISA analysis of transgenic plant material was carried out using standard procedures as described elsewhere.

Bioassay of European corn borer, Ostrinia nubilalis, on Pith:SynBt maize Fig. 23D

Percent Mortality	90 80 90 75 85	70 65 85 95	0 0 2
Plant No.	- e t t t t c	3 4 7 17	7 7 8
Event	JS21A-Top	JS22D-Mid	Control
Promoter	Pith	Pith	
Plasmid	pCIB4433	pCIB4433	

#### Fig. 23E

# EXPRESSION OF THE CRYIA(b) GENE IN TRANSGENIC MAIZE USING THE PITH-PREFERRED PROMOTER

Leaf samples from small plantlets transformed with pCIB4433 using procedures described elsewhere were analyzed for the presence of the crylA(b) protein using ELISA. All plants expressing crylA(b) were found to be insecticidal in the standard European corn borer bioassay.

Note that the pith-preferred promoter has a low, but detectable level of expression in leaf tissue of maize. Detection of CrylA(b) protein is consistent with this pattern of expression.

PLANT NUMBER	ng crylA(b)/mg protein
JS21A-1 TOP	169
JS21A-2 TOP	0
JS21A-3 TOP	113
JS21A-11 TOP	127
JS21A-12 TOP	' 112
JS21A-13 TOP	97
JS21A-14 TOP	118
JS21A-19 TOP	82
JS21A-24 TOP	0
JS21A-28 TOP	154
JS22D-3 MID	2946
JS22D-4 MID	5590
JS22D-11 MID	215
JS22D-17 MID	3004

#### Fig. 24A

1 61 121	GAATTCGGATCCATTAAAGAAGTCTTTGAACAGATTCTAGAGATCTAGTTTAATGAGCTC CCAAAAGTCTTGAAAAAATTCAGCGGGGGGGCCATTAGGGCAGGGGTACTGTTATGTTTT AAAGAGAACACCACTTTCTTGATCTCTTCTAAAGAGAAATGTTTTGTAAGAAGGATCCTG	60 120 180
181 241 301 361	TCCTCCTCATCCAACCTTTTCATCGGCAAATTTTTCATAGAGATATTAGAGGCAAGAGAGGGGCCAAAAAGATCCATGTAAATGGAAGTGGCCACCTGGTTGATACCTCCCTC	240 300 360 420
421 481 541 601	CAATTTGCTTTCTCTTGATCCCTTCTGCAGCCACCATGTTTCTTAAATTCCACTCCATAT CAAGCTTTTCCAATCTATCAGAATCTGAGATGGCTGCAATCTCTCTC	480 540 600 660
661 721 781 841	TACATTTCCTGCTCCTCACAGGTAAGGACGAGCTTTCAAAAAACCTTCTGCTTTAAAGTC AGGTCTGAGCCTCCAGCAAAGCTCACATATCTAAAGTCCCTCTTCTTAGTTGGGACAGAG TCAGTGCTAAGACACATGGGAACATGACCAGAAAAAAAAA	720 780 840 900
901 961 1021 1081	CAAATGTGTTGGGATGTCAAGTATATAGACTATTCATCAGCTTCCAACTCTATCAAACTGT GCAGCTCAATTATAGAGTTGAATAAAGTGCTCCATCTATTTGTTCTTATCCTCATATTTG GTTAAGATATTAAAATCACCTCCCACCAACATTTAAAGTGCACCATTTAAAGTGGCTCGC GAGCACCAAACCGCTGAAAACCGGAAATGTTTAGCACGTTGGCAGCGGGACCCTTTTCTA	960 1020 1080 1140
1141 1201	TCTCATCGTGTTCTTCGTTGTCCACCACGGCCCACGGCCCAACGCTCCTCCATCCTGTAG TGTAGAGTATATTCCATTTGCGACCGAGCCGAG	1200 1260
1261 -465	CAGCCAGCCATGTGGCACTCCTACGTATACTACGTGAGGTGAGATTCACTCAC	1320 -405
1321 1381	GGGACCGAGATATTTTACTGCTGTGGTTGTGTGAGAGATAATAAAGCATTTATGACGATT GCTGAACAGCACACCATGCGTCCAGATAGAGAAAGCTTTCTCTCTTTATTCGCATGCA	1380 1440
1441 -285	TGTTTCATTATCTTTTATCATATATATATAACACATATTAAATGATTCTTCGTTCCAATT	1500 -226
1501 -225	TATAATTCATTTGACTTTTTTATCCACCGATGCTCGTTTTATTAAAAAAAA	1560 -166
1561 -165	TATTGTTACTTTTTGTTGTAATATTGTTTAGCA <u>TATAAT</u> AAACTTTGATACTAGTATGTT 49	1620 -106
1621 -105	TCCGAGCAAAAAAAATATTAATATTTAGATTACGA <u>GCCCATTAATTAATTATTCG</u> AG	1680 -46
1681 -45	ACAAGCGAAGCAAAGCAAAGCAAGCTAATGTTGCCCCTGCTGTGCATGCA	1740 +15
1741 +16	CTTGCTATAAACGAGGCAGCTAGACGCGACTCGACTCATCAGCCTCATCAACCTCGACGA	1800 +75
L801 +76	AGGAGGAACGAACGGACAGGTTGTTGCACAGAAGCGACATGGCTTTCGCGCCCAAAACGT	1860 +135

### Fig. 24B

1861 +126	CCTC	CTC S	CTC S	CTC( S	GCT( L	GTC( S	CTC( S	GGC A	GTT L	GCA Q	GGC A	AGC A	TCA Q	GTC S	GCC P	GCC P	GCI L	GCT L	CCTGA L R	1920 +195
1921 +196	GGCG R	GAT	GTC(	GTC( S	GAC(	CGC <i>I</i> A	AACA T	ACC( P	GAG. R	ACG R	GAG R	GTA Y	.CGA D	.CGC A	40 GGC A	CGT	ĊĠΊ		CACTA T T	
1981 +256		CAC T	CAC! T	rgc: A											CGC A				GCAGG Q A	2040 +315
2041 +316	CGGG G											GC <u>G</u>			GCA Q			GAG S	\$ <u>CC</u> GTC R P	2100 +375
2101 +376	CGGT V		GGA( D			GGC( A							CAA K	GGT	TCG	TAT	AGT	'ACG	CGCGC	2160
2161 2221	GTGT GCTA	CGT( GAT(	CGT(	CGTT	FAT: FGC	TTTO AGAO T	GCGC CGGC A	CATA CGT!	AGG( CA:	CGC CCC P	GGA CGT Y	ACA	TCA	CGT CCG A	CCG	GCG	ACC	CGG.	TAACA ACCTA L	2220 2280
2281		CGA(			AGG( A		rgco R					GCT C		GCG A		ACG V			AGCTG L	2340
2341	GGGG G V		CCT( C	GCT( S	CGG <i>I</i> D	ACCO P	CCT <i>P</i> Y	ACA!	rcgz D	ACG( G	GGC P	CCA I	TCA I	TCC Q	AGG A	CGT S	CGG V	TGG A	CGCGG R	2400
2401	GCTC A L						CAT M	GG <i>I</i> D	ACG( A	CCG' V	rgc' L	TGG. E	AGA M	TGC L	TGA R			TGA T	CGCCG P	2460
2461	GAGC E L	TGT( S	CGT( C	GCCC P	CCG1 V	rggr V	GCT L	CCI L	CT( S	CCTA Y	ACT. Y	ACA. K	AGC P	CCA I	TCA' M	IGT S	CTC R		GCTTG L	2520
2521	GCCG. A E		rga <i>i</i> K					CC <i>I</i> H	ACG(	GTA	ACT.	ATA	GCT.	AGC	TCT'	rcc	GAT	CCC	CCTTC	2580
2581 2641	AATT GGTC G L	AATT TATT I	l'AA'I l'AG'I V	TTT? TGCC P	ATAC CTG <i>P</i> D	TAC ATCI L	TCC CCC P	GTF	CAT CGT V	rgg(	GATO CCGO A	CGC	ACT	TGT CGC L	TGT	TCT GGA S	TTT GTG E	AAG	TGACA CCAAG K	2640 2700
2701	AACA N N	ACA? N	ACCI L	TGGA E	AGCT L	GGT	'AGC	TTC	GAAT	TAT?	AGT'	ľGA'	TGC.	ATG	TGA'	rga'	TTT	ATG'	FAGCT	2760
2761	AGAT	CGAC	GCT <i>P</i>	AGCI	ATA	ITA	'AGG	AGC	CATA	ATCA	AGG'. V	rgc' L	TGC' L	TGA T	CAA( T	CAC P	CAG A	CCA'	racca P	2820
2821	GAAGA E D	ACAG R	GAT M	GAA K	GGA E	GAT I	'CAC T	CAA K	AGGC A	CTT( S	CAGZ E	AAG( G	GCT' F	rcg' V	TCTA Y	ACC'	TGG	TAG!	ATATI	2880
2881 2941	TGTA! TCTG	PAT <i>A</i> CAGA	ATAC AGAC	SATG SGAC	GAC GAA	GAC GAC	GTA CAC	ACT GAC	CAT GAC	TCC	CAG( CTA <i>l</i>	CCC( ACA(	CAT( CTA(	GCA' GCT	TAT <i>I</i> AGG(	ATG( GGC(	GAG GTA	GCT:	rcaat rgcag	2940 3000
3001		GCGI V				'GAC T												AGTO S	CACTC L	3060

#### Fig. 24C

3061	ATCCAGGAGGTTAAGAAGGTGACTAACAAGCCCGTTGCTGTTGGCTTCGGCATATCCAAGIQEVKKVTNKPVAVGFGISK	3120
3121	CCCGAGCACGTGAAGCAGGTACGTACGTAGCTGACCAAAAAAAA	3180
3181	TTTGACAAGCCGGCTACTAGCTAGCTAACAGTGATCAGTGACACACAC	3240
3241	TGCGCAGTGGGGCGCTGACGGGGTGATCATCGGCAGCGCCATGGTGAGGCAGCTGGGCGAAAAAAAA	3300
3301	AGCGGCTTCTCCCAAGCAAGGCCTGAGGAGGCTGGAGGAGTATGCCAGGGGCATGAAGAA A A S P K Q G L R R L E E Y A R G M K N	3360
3361	+++ CGCGCTGCCATGAGTCCATGACAAAGTAAAACGTACAGAGACACTTGATAATATCTATC	3420
3421	A L P ATCATCTCGGAGAAGACGACCGACCAATAAAAATAAGCCAAGTGGAAGTGAAGCTTAGCT	3480
3481 3541 3601	GTATATACACCGTACGTCGTCGTCGTCGTTCCGGATCGATC	3540 3600 3660
3661	${\tt CGAAGAAGCTGGCTAGCCGTCTCGATCGTATATGTACTGATTAATCTGCAGATTG\underline{A}}$	3720
3721 3781 3901 3961 4021 4261 4261 4321 4381 4561 4681 4741 4801	ATAAAAACTACAGTACGCATATGATGCGTACGTACGTGTGTATAGTTTGTGCTCATATAT GCTCCTCATCACCTGCCTGATCTGCCCATCGATCTCTCTC	3780 3840 3960 4020 4080 4140 4260 4320 4380 4440 4560 4680 4740 4817
	The reguence of the maire TrpA gone with introns	

Entire sequence of the maize TrpA gene, with introns and exons, transcription and translation strats, start and stop of cDNA.

\$ = start and end of cDNA; +1 = transcription start; 73****** = primer extension primer; \(\nsigma = \text{start of translation; +++ = stop codon;} \)

= CCAAT Box, TATAA Box, poly A addition site.

# above underlined sequences are PCR primers.





Northern blot showing differential expression of TrpA gene in maize tissues. 2 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25A





Northern blot showing differential expression of TrpA gene in maize tissues. 4 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25B





Northern blot showing differential expression of TrpA gene in maize tissues. 18 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25C



Northern blot showing differential expression of TrpA gene in maize tissues. 48 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 25D



Northern blot showing maize TrpA gene expression in Funk lines 211D and 5N984 leaf and pith and the absense of expression in 211D seed total RNA. 65 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 26



Genomic southern of Funk line 211D probed with the TrpA cDNA 8-2. B = BamHI, E = EcoRI, EV = EcoRV, H = HindIII and S = SacI. 120 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 27



Primer extension showing the transcription start of TrpA gene and sequencing ladder.

1 hour exposure against film at -80C with Dupont Cronex

intensifying screens.

Fig. 28A



RNase protection of region from +2 bp to +387 bp with three annealing temperatures.

16 hour exposure against film at -80C with Dupont Cronex intensifying screens.

Fig. 28B

#### Fig. 30B

969 CTG GAT AGA GAA GAG CAC CTT TAC ACA GCA TTC CAG TAT TTC GAC AAG GAC AAC AGC 323▶Leu Asp Arg Glu Glu His Leu Tyr Thr Ala Phe Gln Tyr Phe Asp Lys Asp Asn Ser

1026 GGG TAC ATT ACT AAA GAA GAG CTT GAG CAC GCC TTG AAG GAG CAA GGG TTG TAT GAC 342▶Gly Tyr Ile Thr Lys Glu Glu Leu Glu His Ala Leu Lys Glu Gln Gly Leu Tyr Asp

1083 GCC GAT AAA ATC AAA GAC ATC ATC TCC GAT GCC GAC TCT GAC AAT GAT GGA AGG ATA 361▶Ala Asp Lys Ile Lys Asp Ile Ile Ser Asp Ala Asp Ser Asp Asn Asp Gly Arg Ile

1140 GAT TAT TCA GAG TTT GTG GCG ATG ATG AGG AAA GGG ACG GCT GGT GCC GAG CCA ATG 380 Asp Tyr Ser Glu Phe Val Ala Met Met Arg Lys Gly Thr Ala Gly Ala Glu Pro Met

#### Fig. 30A

Maize Pollen CDPK cDNA sequence sequence contained in clones pCIB3168 and pCIB3169

1 TG CAG ATC ATG CAC CAC CTC TCC GGC CAG CCC AAC GTG GTG GGC CTC CGC GGC GCG 1▶Gln Ile Met His His Leu Ser Gly Gln Pro Asn Val Val Gly Leu Arg Gly Ala

57 TAC GAG GAC AAG CAG AGC GTG CAC CTC GTC ATG GAG CTG TGC GCG GGC GGG GAG CTC 19▶Tyr Glu Asp Lys Gln Ser Val His Leu Val Met. Glu Leu Cys Ala Gly Glu Leu

Aval

114 TTC GAC CGC ATC ATC GCC CGG GGC CAG TAC ACG GAG CGC GGC GCC GCG GAG CTG CTG 38▶Phe Asp Arg Ile Ile Ala Arg Gly Gln Tyr Thr Glu Arg Gly Ala Ala Glu Leu Leu

171 CGC GCC ATC GTG CAG ATC GTG CAC ACC TGC CAC TCC ATG GGG GTG ATG CAC CGG GAC 57▶Arg Ala Ile Val Gln Ile Val His Thr Cys His Ser Met Gly Val Met His Arg Asp

Aval

228 ATC AAG CCC GAG AAC TTC CTG CTG CTC AGC AAG GAC GAG GAC GCG CCG CTC AAG GCC 76 lle Lys Pro Glu Asn Phe Leu Leu Leu Ser Lys Asp Glu Asp Ala Pro Leu Lys Ala

285 ACC GAC TTC GGC CTC TCC GTC TTC TTC AAG GAG GGC GAG CTG CTC AGG GAC ATC GTC 95▶Thr Asp Phe Gly Leu Ser Val Phe Phe Lys Glu Gly Glu Leu Leu Arg Asp Ile Val

Aval

342 GGC AGC GCC TAC TAC ATC GCG CCC GAG GTG CTC AAG AGG AAG TAC GGC CCG GAG GCC 114▶Gly Ser Ala Tyr Tyr Ile Ala Pro Glu Val Leu Lys Arg Lys Tyr Gly Pro Glu Ala

399 GAC ATC TGG AGC GTC GGC GTC ATG CTC TAC ATC TTC CTC GCC GGC GTG CCT CCC TTC 133▶Asp Ile Trp Ser Val Gly Val Met Leu Tyr Ile Phe Leu Ala Gly Val Pro Pro Phe

456 TGG GCA GAG AAC GAG AAC GGC ATC TT€ ACC GCC ATC CTG CGA GGG CAG CTT GAC CTC 152▶Trp Ala Glu Asn Glu Asn Gly Ile Phe Thr Ala Ile Leu Arg Gly Gln Leu Asp Leu

513 TCC AGC GAG CCA TGG CCA CAC ATC TCG CCG GGA GCC AAG GAT CTC GTC AAG AAG ATG 171▶Ser Ser Glu Pro Trp Pro His Ile Ser Pro Gly Ala Lys Asp Leu Val Lys Lys Met

570 CTC AAC ATC AAC CCC AAG GAG CGG CTC ACG GCG TTC CAG GTC CTC AAT CAC CCA TGG 190▶Leu Asn Ile Asn Pro Lys Glu Arg Leu Thr Ala Phe Gln Val Leu Asn His Pro Trp

627 ATC AAA GAA GAC GGA GAC GCG CCT GAC ACG CCG CTT GAC AAC GTT GTT CTC GAC AGG 209 lle Lys Glu Asp Gly Asp Ala Pro Asp Thr Pro Leu Asp Asn Val Val Leu Asp Arg

684 CTC AAG CAG TTC AGG GCC ATG AAC CAG TTC AAG AAA GCA GCA TTG AGG ATC ATA GCT 228▶Leu Lys Gln Phe Arg Ala Met Asn Gln Phe Lys Lys Ala Ala Leu Arg Ile Ile Ala

741 GGG TGC CTA TCC GAA GAG GAG ATC ACA GGG CTG AAG GAG ATG TTC AAG AAC ATT GAC 247▶Gly Cys Leu Ser Glu Glu Glu Ile Thr Gly Leu Lys Glu Met Phe Lys Asn Ile Asp

798 AAG GAT AAC AGC GGG ACC ATT ACC CTC GAC GAG CTC AAA CAC GGG TTG GCA AAG CAC 266▶Lys Asp Asn Ser Gly Thr Ile Thr Leu Asp Glu Leu Lys His Gly Leu Ala Lys His

855 GGG CCC AAG CTG TCA GAC AGC GAA ATG GAG AAA CTA ATG GAA GCA GCT GAC 285▶Gly Pro Lys Leu Ser Asp Ser Glu Met Glu Lys Leu Met Glu Ala Ala Asp Ala Asp

EcoRI

912 GGC AAC GGG TTA ATT GAC TAC GAC GAA TTC GTC ACC GCA ACA GTG CAT ATG AAC AAA 304 Gly Asn Gly Leu Ile Asp Tyr Asp Glu Phe Val Thr Ala Thr Val His Met Asn Lys

Fig. 29 **EcoRI** 1.0 kb pCIB3168 (II-1.0) -EcoRI EcoRI 1.0 kb **EcoRI** 0.5 kb EcoRI EcoRI 0.5 kb TypeII cDNA clone pCIB3169 (II-.5) -ÉcoRI 0.6 kb EcoRI EcoRI II-.6 0.6 kb EcoRI



inner leaf sheath
inner leaf whorl
green leaf
anther
pollen
silk
kernel
pith

Fig. 31



### Fig. 37C

2641	AGAGCGGAGA 2VGWkTGGAG AGACAAACGT ArgAlaGlu LysLysTrp ArgAspLysArg	GAAAAATTGG AATGGGAAAC AAATATTGTT GluLysLeu GluTrpGlu ThrAsnIleVal
2701	TATAAAGAGG CAAAAGAATC TGTAGATGCT TyrLysGlu AlaLysGlu SerValAspAla	TTATTTGTAA ACTCTCAATA TGATAGATTA LeuPheVal AsnSerGln TyrAspArgLeu
2761	CAAGCGGATA CCAACATCGC GATGATTCAT GlnAlaAsp ThrAsnIle AlaMetIleHis	GCGGCAGATA AACGCGTTCA TAGCATTCGA AlaAlaAsp LysArgVal HisSerIleArg
2821	GAAGCTTATC TGCCTGAGCT GTCTGTGATT GluAlaTyr LeuProGlu LeuSerVallle	CCGGGTGTCA ATGCGGCTAT TTTTGAAGAA ProGlyVal AsnAlaAla IlePheGluGlu
2881	TTAGAAGGGC GTATTTTCAC TGCATTCTCC LeuGluGly ArgIlePhe ThrAlaPheSer	CTATATGATG CGAGAAATGT CATTAAAAAT LeuTyrAsp AlaArgAsn ValIleLysAsn
2941	GGTGATTTTA ATAATGGCTT ATCCTGCTGG GlyAspPhe AsnAsnGly LeuSerCysTrp	AACGTGAAAG GGCATGTAGA TGTAGAAGAA AsnValLys GlyHisVal AspValGluGlu
3001	CAAAACAACC ACCGTTCGGT CCTTGTTGTT GlnAsnAsn HisArgSer ValLeuValVal	CCGGAATGGG AAGCAGAAGT GTCACAAGAA ProGluTrp GluAlaGlu ValSerGlnGlu
3061	GTTCGTGTCT GTCCGGGTCG TGGCTATATC ValArgVal CysProGly ArgGlyTyrIle	CTTCGTGTCA CAGCGTACAA GGAGGGATAT LeuArgVal ThrAlaTyr LysGluGlyTyr
3121	GGAGAAGGTT GCGTAACCAT TCATGAGATC GlyGluGly CysValThr IleHisGluIle	GAGAACAATA CAGACGAACT GAAGTTTAGC GluAsnAsn ThrAspGlu LeuLysPheSer
3181	AACTGTGTAG AAGAGGAAGT ATATCCAAAC AsnCysVal GluGluGlu ValTyrProAsn	AACACGGTAA CGTGTAATGA TTATACTGCG AsnThrVal ThrCysAsn AspTyrThrAla
3241	ACTCAAGAAG AATATGAGGG TACGTACACT ThrGlnGlu GluTyrGlu GlyThrTyrThr	TCTCGTAATC GAGGATATGA CGGAGCCTAT SerArgAsn ArgGlyTyr AspGlyAlaTyr
3301	GAAAGCAATT CTTCTGTACC AGCTGATTAT GluSerAsn SerSerVal ProAlaAspTyr	GCATCAGCCT ATGAAGAAAA AGCATATACA AlaSerAla TyrGluGlu LysAlaTyrThr
3361	GATGGACGAA GAGACAATCC TTGTGAATCT AspGlyArg ArgAspAsn ProCysGluSer	AACAGAGGAT ATGGGGATTA CACACCACTA AsnArgGly TyrGlyAsp TyrThrProLeu
3421	CCAGCTGGCT ATGTGACAAA AGAATTAGAG ProAlaGly TyrValThr LysGluLeuGlu	TACTTCCCAG AAACCGATAA GGTATGGATT TyrPhePro GluThrAsp LysValTrpIle
3481	GAGATCGGAG AAACGGAAGG AACATTCATC GluIleGly GluThrGlu GlyThrPheIle	GTGGACAGCG TGGAATTACT TCTTATGGAG ValAspSer ValGluLeu LeuLeuMetGlu
3541	GAATAA Glu	

### Fig. 37B

	CCACCTCGAC AGGGCTTCAG CCACCGTCTG ProProArg GlnGlyPhe SerHisArgLeu	Sernisval Sermetrne Argserglyrne
	AGCAACAGCA GCGTGAGCAT CATCCGTGCA SerAsnSer SerValSer IleIleArgAla	Prometrie Settipite hisardsetata
	GAGTTCAACA ACATCATCCC CAGCAGCCAG GluPheAsn AsnIleIle ProSerSerGln	Tiemidin fierroned implyoccim
1441	AACCTGGGCA GCGGCACCAG CGTGGTGAAG AsnLeuGly SerGlyThr SerValValLys	GGCCCCGGCT TCACCGGCGG CGACATCCTG GlyProGly PheThrGly GlyAspIleLeu
1501	CGCCGCACCA GCCCCGGCCA GATCAGCACC ArgArgThr SerProGly GlnIleSerThr	CTGCGCGTGA ACATCACCGC CCCCCTGAGC LeuArgVal AsnIleThr AlaProLeuSer
	CAGCGCTACC GCGTCCGCAT CCGCTACGCC GlnArgTyr ArgValArg IleArgTyrAla	Delillin mondeden management
1621	ATCGACGGCC GCCCCATCAA CCAGGGCAAC IleAspGly ArgProlle AsnGlnGlyAsn	Fliebely19 Illinecoel colory
1681	CTGCAGAGCG GCAGCTTCCG CACCGTGGGC LeuGlnSer GlySerPhe ArgThrValGly	Fueluliur fromewen ruccerra-1
1741	AGCAGCGTGT TCACCCTGAG CGCCCACGTG SerSerVal PheThrLeu SerAlaHisVal	TTCAACAGCG GCAACGAGGT GTACATCGAC PheAsnSer GlyAsnGlu ValTyrIleAsp
1801	CGCATCGAGT TCGTGCCCGC CGAGGTGACC ArgIleGlu PheValPro AlaGluValThr	TTCGAGGCCG AGTACGACCT GGAGAGGGCT PheGluAla GluTyrAsp LeuGluArgAla
	CAGAAGGCCG TGAACGAGCT GTTCACCAGC GlnLysAla ValAsnGlu LeuPheThrSer	AGCAACCAGA TCGGCCTGAA GACCGACGTG SerAsnGln IleGlyLeu LysThrAspVal
	ACCGACTACC ACATCGATCA AGTATCCAAT ThrAspTyr HislleAsp GlnValSerAsn	Heavarer of a contract of
1981	CTGGATGAAA AAAAAGAATT GTCCGAGAAA LeuAspGlu LysLysGlu LeuSerGluLys	valuyshis Alabyshig houseling
2041	ArgAsnLeu LeuGinAsp ProAsnPheArg	GGGATCAATA GACAACTAGA CCGTGGCTGG GlyIleAsn ArgGlnLeu AspArgGlyTrp
	AGAGGAAGTA CGGATATTAC CATCCAAGGA ArgGlySer ThrAspIle ThrIleGlnGly	Orlinophiop 1
	ACGCTATTGG GTACCTTTGA TGAGTGCTAT ThrLeuLeu GlyThrPhe AspGluCysTyr	riomrigi nourreum -1
	TCGAAATTAA AAGCCTATAC CCGTTACCAA SerLysLeu LysAlaTyr ThrArgTyrGln	100111190-1
	LeuGlulle TyrLeulle ArgiylASHALA	AAACACGAAA CAGTAAATGT GCCAGGTACG LysHisGlu ThrValAsn ValProGlyThr
	GlySerLeu TrpProLeu SerAlaPloSel	CCAATCGGAA AATGTGGGGA GCCGAATCGA ProlleGly LysCysGly GluProAsnArg
•	CysAlaPro HisLeuGiu TipAshrioAsp	CTAGACTGCA GCTGCAGGGA CGGGGAGAAG LeuAspCys SerCysArg AspGlyGluLys
	TGCGCCCATC ATTCCCATCA TTTCTCCTTG CysAlaHis HisSerHis HisPheSerLeu	TOPITOTOP
	Gluaspren Glanguith Agrifernenda	ATTAAGACGC AAGATGGCCA TGCAAGACTA IleLysThr GlnAspGly HisAlaArgLeu
2581	GGAAATCTAG AATTTCTCGA AGAGAAACCA GlyAsnLeu GluPheLeu GluGluLysPro	TTAGTAGGAG AAGCACTAGC TCGTGTGAAA LeuValGly GluAlaLeu AlaArgValLys

#### Fig. 37A

1	ATGGACAACA ACCCCAACAT CAACGAGTGC NetAspAsn AsnProAsn IleAsnGluCys	ATCCCCTACA ACTGCCTGAG CAACCCCGAG IleProTyr AsnCysLeu SerAsnProGlu
61	GTGGAGGTGC TGGGCGGCGA GCGCATCGAG ValGluVal LeuGlyGly GluArgIleGlu	ACCGGCTACA CCCCCATCGA CATCAGCCTG ThrGlyTyr ThrProIle AspIleSerLeu
121	AGCCTGACCC AGTTCCTGCT GAGCGAGTTC SerLeuThr GlnPheLeu LeuSerGluPhe	GTGCCCGGCG CCGGCTTCGT GCTGGGCCTG ValProGly AlaGlyPhe ValLeuGlyLeu
181	GTGGACATCA TCTGGGGCAT CTTCGGCCCC ValAspIle IleTrpGly IlePheGlyPro	AGCCAGTGGG ACGCCTTCCT GGTGCAGATC SerGlnTrp AspAlaPhe LeuValGlnIle
241	GAGCAGCTGA TCAACCAGCG CATCGAGGAG GluGlnLeu IleAsnGln ArgIleGluGlu	TTCGCCCGCA ACCAGGCCAT CAGCCGCCTG PheAlaArg AsnGlnAla IleSerArgLeu
301	GAGGGCCTGA GCAACCTGTA CCAAATCTAC GluGlyLeu SerAsnLeu TyrGlnIleTyr	GCCGAGAGCT TCCGCGAGTG GGAGGCCGAC AlaGluSer PheArgGlu TrpGluAlaAsp
		Argitedin Pheashasp Metashberma
	LeuThrThr AlaIlePro LeuPheAlaVal	CAGAACTACC AGGTGCCCCT GCTGAGCGTG GlnAsnTyr GlnValPro LeuLeuSerVal
	TyrValGln AlaAlaAsn LeuHisLeuSer	GTGCTGCGCG ACGTCAGCGT GTTCGGCCAG ValLeuArg AspValSer ValPheGlyGln
541	CGCTGGGGCT TCGACGCCGC CACCATCAAC ArgTrpGly PheAspAla AlaThrIleAsn	AGCCGCTACA ACGACCTGAC CCGCCTGATC SerArgTyr AsnAspLeu ThrArgLeuIle
601	GGCAACTACA CCGACCACGC CGTGCGCTGG GlyAsnTyr ThrAspHis AlaValArgTrp	Tyrashihi Giyheddia Aigvariiperi
	CCCGACAGCC GCGACTGGAT CAGGTACAAC ProAspSer ArgAspTrp IleArgTyrAsn	GINPHEATS ALGGRADED INFlication
	LeuAspIle ValSerLeu PherroAshTyr	GACAGCCGCA CCTACCCCAT CCGCACCGTG AspSerArg ThrTyrPro IleArgThrVal
	SerGlnLeu ThrArgGlu lleTyrThrAsh	CCCGTGCTGG AGAACTTCGA CGGCAGCTTC ProValLeu GluAsnPhe AspGlySerPhe
	ArgGlySer AlaGInGly lieGluGlySer	ATCCGCAGCC CCCACCTGAT GGACATCCTG IleArgSer ProHisLeu MetAspIleLeu
	AsnSerIle ThrileTyr Thraspalanis	CGCGGCGAGT ACTACTGGAG CGGCCACCAG ArgGlyGlu TyrTyrTrp SerGlyHisGln
	IleMetAla SerProval GlyPheSerGly	CCCGAGTTCA CCTTCCCCCT GTACGGCACC ProGluPhe ThrPhePro LeuTyrGlyThr
	MetGlyAsn AlaAlaPro GinGinArgile	GTGGCACAGC TGGGCCAGGG AGTGTACCGC ValAlaGln LeuGlyGln GlyValTyrArg
	ThrLeuSer SerThrLeu TyrArgargero	TTCAACATCG GCATCAACAA CCAGCAGCTG PheAsnIle GlyIleAsn AsnGlnGlnLeu
	SerValleu AspGiyThr GluPheAlalyt	GGCACCAGCA GCAACCTGCC CAGCGCCGTG GlyThrSer SerAsnLeu ProSerAlaVal
1201	TACCGCAAGA GCGGCACCGT GGACAGCCTG TyrArgLys SerGlyThr ValAspSerLeu	G GACGAGATCC CCCCTCAGAA CAACAACGTG A AspGluIle ProProGln AsnAsnAsnVal



## Fig. 35E

pol CDPK gene Map (1 > 4165) Site and Sequence	
TCAGCCGACAAACTAAACTATAGAAACCACATCATGATATCAAATTTTGAGGTGGCGGTGCTACAGAAATAGAACCCAGT	3600
INTRON 6-	,
ACACCAAAATGACTAACTTGTCATGATTAGTTGTTCCTCGTAACTGAACATTTGTGTTCTTAGTTTCTTATTGTTAAACC	3680
INTRON 6	
AAAGACTTAAATTCACTTTTGCACATGCAGGATGGAAGGATAGATTATTCAGAGTTTGTGGCGATGATGAGGAAAGGGAC	3760
INTRON 6— EXON 7—	
GGCTGGTGCCGAGCCAATGAACATCAAGAAGAGGCGAGACATAGTCCTATAGTGAAGTGAAGCAGWAAGTGTGTAATGTA	3840
ATGTGTATAGCAGCTCAAACAAGCAAATTTGTACATCTGTACACAAATGCAATGGGGTTACTTTTGCAACTTAGTTCATG	3920
GATGGTTGTGTACGTTGTGCTATTGATTGCAAGTGATTTGAAAGACATGCATACTTAGGAACTGAGAAAGATAGAT	4000
TACTGCTAGAGACAATAGGATKKYAATTCAGYAAGTGYGTATTTCAGAAGACTACAGCTGGCATCTATTATTCTC	4080
ATTGTCCTCGCAAAAATACTGATGATGCATTTGAGAGAACAATATGCAACAAGATCGAGCTCCCTATAGTGAGTCGTATT	4160
AGGCC 4165	

Fig. 35D



# Fig. 35C

ol CDPK gene Map (1 > 4165)	Site and Sequence	
	Ava I	
CGTGCAGATCGTGCACACCTGCCACTCCATG	GGGGTGATGCACCGGGACATCAAGCCCGAGAACTTCCTGCTGCTCAGCA	2160
	EXON 1	
AGGACGAGGACGCGCCGCTCAAGGCCACCGA	CTTCGGCCTCTCCGTCTTCTTCAAGGAGGGCGAGCTGCTCAGGGACATC	2240
	EXON 1	
Ava I		
GTCGGCAGCGCCTACTACATCGCGCCCGAGG	TGCTCAAGAGGAAGTACGGCCCGGAGGCCGACATCTGGAGCGTCGGCGT	2320
	EXON 1	
	EXON I	
	Bam H I	
CATGCTCTACATCTTCCTCGCCGGCGTGCCT	CCCTTCTGGGCAGGTCGGATCCGTCCGTGTTCGTCCTAGACGATATACA	2400
	<b>———</b>	
EXON 1	INTRON 1	•
GAACCCGACGATGGATTTGCTTCTCAGCCCT	GTTCTTGCATCACCAGAGAACGAGAACGGCATCTTCACCGCCATCCTGC	2480
INTEGNA	EXON 2	
INTRON 1		
GAGGGCAGCTTGACCTCTCCAGCGAGCCATG	GCCACACATCTCGCCGGGAGCCAAGGATCTCGTCAAGAAGATGCTCAAC	2560 -
	EXON 2	<u>.</u>
		r
ATCAACCCCAAGGAGCGGCTCACGGCGTTCC	CAGGTCCTCAGTAAGTACCCAGATCGTTGCTGTCATACACTCATATGAAT	- 2640
EXON 2	INTRON 2	-
TGTATCGTTCATGAGCAACGATCGAGCGGAT	TTTGGTGAACTTGTAGATCACCCATGGATCAAAGAAGACGGAGACGCGCC	2720
		-
INTRON 2	EXON 3	<b>-</b>
TGACACGCCGCTTGACAACGTTGTTCTCGAC	CAGGCTCAAGCAGTTCAGGGCCATGAACCAGTTCAAGAAAGCAGCATTGA	\ - 2800
		- -
	EXON 3	-

# Fig. 35B

ool CDPK gene Map (1 > 4165) Site and Sequence	
Xba I	
CAAAATCTAGAAACCTTTTTTTTCCTCCCGATACGCCCCTCCATCTCTCGCCGTTCATGTCCGTGGCTGGC	1440
· · · · · · · · · · · · · · · · · · ·	,
mRNA start J	
GTGGGAGCAGGCGGCCGCACTCGTTCCCCGCCGCAGCCATGGGCCAGTGCTGCTCCAAGGGCGCCGGAGAGGCCCCGCCA	1520
EXON 1	
CCGAGGCGCCAAACGGCAGGCGCCAAGCCGCGGGCGTCCGCGAACAACGCCGACGACAACGGGCGTCGTCCTCGTCCGC	1600
EVOL	
EXON 1	
GGTGGCTGCTGCTGCTGCTGCTGGTGGTGGTGGCGGCGCACGACGAAGCCGGCCTCACCCACC	1680
EXON 1	
CCAGCTCCGGCAGCAAACCGGCGGCGGCCGTGGGCCACGGTGCTGGGCCGGCC	1760
EXON 1	
Ave 1	
AVA I  ATGGGCAAGGAGCTCGGGCGGGCAGTTCGGCGTGACGCACCTGTGCACGCAC	
ATGGGCAAGGAGCTCGGGCAGTTCGGCATGACGAACGAGCAGTTCGGCATGACGAACGA	1840
EXON 1	
CAAGACGATCGCGAAGCGGAAGCTGGCGGCCAGGGAGGACGTGGACGACGTGCGGCGGGAGGTGCAGATCATGCACCACC	
CAAGACGATCGCGAAGCTGGCGGCCAGGGAAGCTGGCGCAGGGAAGCTGGCGCAGGGAAGCTGGCGGCAGGGAAGCTGGCGCAGGGAAGCTGGCGCAGGGAAGCTGGCGCAGGGAAGCTGGCGCAGGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTGGCAGGAAGCTAGGAAGCTGGCAGGAAGCTAGGAAGCTAGGAAGCAAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCAAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCAAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCAAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGCTAGGAAGAAGCTAGGAAGAAGAAGCTAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	1920
EXON 1	
TCTCCGGCCAGCCCAACGTGGTGGGCCTCCGCGGCGCGTACGAGGACAAGCAGAGCGTGCACCTCGTCATGGAGCTGTGC	
	2000
EXON 1	
Ava I	
cccccccccccccccccccccccccccccccccccccc	0000
	2080
EXON 1	

#### Fig. 35A

pol CDPK gene Map (1 > 4165)

Site and Sequence

Enzymes:

6 of 198 enzymes (Filtered)

Circular, Certain Sites Only, Standard Genetic Code TTAGTAACACCTCTCCAATCGCTTGGGTTGGCACATTCTTAGCTTTTATCACATTTTAAGAAATAGAGTTCACCACCTTC 80 AAAATATGCCTATACAATGAATGATGCTTGGATGCAATATAGCTAGATTCAACTAGCTATATATGGTCAATAGAACCCTG TGAGCACCTCACAAACACGACTTCAATTTTGAGACCCTAAGCGAGTAAATGGTTAAAGTCCTCTTATTATTAGTCTTAGG CTAGGGTATCTCAAAGGCCTAGTCACAACAATTCTCAACAGTATTTAATTTTATACATGTATGAACAGTGTAGGAATTTG AGTGCCCAACCCAAGAGTGGGAGGTGTAAATTGGGTAGCTAAACTTAAATAGGGCTCTTCTTATTTAGGTTTATCTAGTC TCTACTTAGACTAATTCAGAAAGAATTTTACAACCTATGGTTAATCATATCTCTAGTCTAAGCAAATTTAGGAAAGTTAA TGTGGTGGTATATCCCAATGATATTAGATGCCAGAATATAGGGGGGGAAATCGATGTATACCATCTCTACCAGGATACCTG TGCGGACTGTGCAACTGACACATGGACCATGGTGTCTTCTTAGATTTGGTTATTAGCTAATTGCGCTACAACTTGTTCAA GGCTAGACCAAATTAAAAAACTAATATTAAACATAAAAAGTTAGGCAAACTATAGTAAATTATGCAGCGATCCAACAACA AGCCATGTCTCGTGGGTCATGAGCCACGCGTCGGCCATACACCCACATGATGTTTCCATACGGATGGTCCTTATGCAATT TTGTCTGCAAAACACAAGCCTTAATACAGCCACGCGACAATCATGGAAGTGGTCGTTTTAGGTCCTCATCATGAAGTTCA GGGAAAACGCATCAAATGTAATGCAGAGAAATGGTATTTCTTCTCTTGTAAATCAGGGAGAGGAGTACCATCAGTACAGA EcoR I TTCAGAATCAGAATTCAGTCTTCCAACGACAATAATCGCAGCATCTTGTAAAAATTTGCAGAAACTTCTGTTTGACTTGT AGCCCTGACCTTTGCAAATATTTGAAGTTGTGCCTGCTGACACAACTTCAATCTGGAAGTGCTGTTGATCAGTTTTGCCA 

# Fig. 34

Lipman-Pearson Gap Penalty: 2; Seq1 pol CDPK ptn	Protein Alignmen Gap Length Pen Seq2 soybean CDPK p	alty: 12 Similarity otn Index	Number		Length		
1>551	1>509	62.4	1	1	464		
pol CDPK ptn soybean CDPK ptn	VLGRPMEDVRATYSMGKI    :. :::  .: : VLPQRTQNIREVYEVGR	ELGRGQFGVTHLCTH .  :        : KLGQGQFGTTFECTR	RTSGEKLAC  :  . :   RASGGKFAC	KTIAKRKLA  : :    CKSIPKRKLL	AREDVDDVRREVQIMH    :  :       CKEDYEDVWREIQIMH	HLSG    . HLSE	150 91
pol CDPK ptn soybean CDPK ptn	QPNVVGLRGAYEDKQSV ::    :  :    :   HANVVRIEGTYEDSTAV	3 4 1 1 3 1 1 1 1 1 1 1 1 1 1	1		3111111111111	1 . 1 1	220 161
pol CDPK ptn soybean CDPK ptn	ENFLLLSKDEDAPLKAT     :::          ENFLFDTIDEDAKLKAT	111111111	1 • [   ] •   [ •	• • • • • • • •		1:11	290 231
pol CDPK ptn soybean CDPK	PPFWAENENGIFTAILR	GQLDLSSEPWPHISF  :  :          GKLDFHSEPWPSISI	GAKDLVKKN :    ::   SAKDLIRKN	MLNINPKERI   :    .   MLDQNPKTRI	TAFQVLNHPWIKEDGI    :  .     : . TAHEVLRHPWIVDDNI	DAPDT    . IAPDK	360 301
pol CDPK ptn soybean CDPK ptn	PLDNVVLDRLKQFRAMN		1111 [11]	1 • 1		1:.1	430 371
pol CDPK ptn soybean CDPK ptn	SDSEMEKLMEAADADGN :  :  :      : MESEIKDLMDAADIDKS			. •		1	
pol CDPK ptn soybean CDPK ptn	YDADKIKDIISDADSDN   . : .:      -DDIHIDDMIKEIDQDN	11:111:11.1111	1.:1	.::			

Fig. 33

Lipman-Pearso Gap Penalty: Seq1 pol CDPK ptn	on Protein Alignment 2; Gap Length Pena Seq2 humcama ptn		-	Gap Length	Consensus Length	
1>551	1>150	40.3	2	2	142	
pol CDPK ptn humcama ptn	LSEEFITGLKEMFKNIDKDNSG L:EF:I:.:KE F. :DKDG LTEEQIAEFKEAFSLFDKDGDG	TIT .EL : . G.	: :::E::::	::DADGNO	G ID: EF:T .	
pol CDPK ptn humcama ptn	HMNKL-DREEHLYTAFQYFDKDI ; M:. D.EE:: .AF: FDKD RKMKDTDSEEEIREAFRVKDKD	.:GYI: .EL H.:.:	G	::I.:AD [	D.DG:::Y.EFV.	
pol CDPK ptn humcama ptn	MM 530 MM MM 146					

### Fig. 32

			rson Protein Alig		_				
Gar	p Per	nalty	y: 2; Gap Length	Penalty: 1	2	<b>C</b>	<b>Q</b>		
Sec	i CDI IT	OK ni	Seq2 tn rat pk2 ptn	Similarity	Mumber	Gap	Consensus Length		
1>:	551		1>528	36.5	4	4	297		
nal	CDDK	ntn	YSMGKELGRGQFGVTHLCTH	IDMCCERT XCRMTYR	מו א א סדר <i>ו</i> י	יטוזיםסטוטטוי	TMUUT CCODNIVICT D	CAVE 16	(2
bor	CDER	pen	Y: .ELG:G.F:V.: C	:TS.:. A K.I	:KL:AR::	RE.:	I: L. :PN:V L:	SALE IO	12
rat	pk2	ptn	YQLFEELGKGAFSVVRRCVF	KKTSTQEYAAKI INT	KKLSARDH-	-QKLEREAR	ICRLLK-HPNIVRLH	DSIS 81	
pol	CDPK	ptn	DKQSVHLVMELCAGGELFDF						12
	.10		:LV.:::GGELF:						1
rat	pĸz	ptn	EEGFHYLVFDLVTGGELFE	)I VAKEI I SEADASH	CIUÕITE2/	\NHTHÑHNT,	AHKNTKKENTTTV2V	CKGA IS	I
201	CDDA	ntn	PLKATDFGLSVFFK-EGELI	DDTUCCAVVTADEU	ז _עסעערטנ	いっしょうしょう	AT VTET XCUDDEWXE	MENC 30	n
por	CDFN	ptn	::K:DFGL:: ::						υ
rat	pk2	ptn	AVKLADFGLAIEVQGEQQAW	FGFAGTPGYLSPEV	LRKDPYGKE	PVDIWACGVI	LYILLVGYPPFWDE	DQHK 22	1
pol	CDPK	ptn	IFTAILRGQLDLSSEPWPHI						0
wa t	m le 2	ntn	:: .I G. D::S W :					:: L	1
rat	pkz	hru	LYQQIKAGAYDFPSPEWDTV	I LEWKNITI NÕMPITI	NAWKT LAP	MATUUTAN	n talynniniohv i cang	VECT 77.	1

pol CDPK ptn KQFRAMNQFKKAALRII 387 ::F.A..::K A L .: rat pk2 ptn RKFNARRKLKGAILTTM 308