

Minimum Spanning Tree

Alfieri Giuseppe; Cannavale Achille; Colacicco Nunziamaria; La Torre Noemi

Università Degli Studi di Cassino e del Lazio Meridionale Corso Di Laurea Magistrale in Ingegneria Informatica

Abstract: In questo studio abbiamo sviluppato un'infrastruttura di rete wireless per connettere 20 nodi in un'area montuosa, ottimizzando i costi con gli algoritmi di Kruskal e Prim per il Minimum Spanning Tree (MST). Abbiamo analizzato tre scenari: montagna, zona sismica e ottimizzazione energetica, adattando i pesi degli archi per migliorare efficienza e resilienza. I risultati evidenziano come la configurazione della rete vari in base alle condizioni ambientali, garantendo prestazioni ottimali.

1 Introduzione

In questa tesina, abbiamo sviluppato un'infrastruttura di rete wireless per connettere 20 nodi strategici in un'area montuosa, minimizzando i costi e garantendo un'efficienza ottimale. Per fare questo, abbiamo applicato gli algoritmi di Kruskal e Prim per determinare il Minimum Spanning Tree (MST), il quale assicura una connessione ottimale di tutti i nodi con il minor costo possibile.

2 Algoritmi Utilizzati

Abbiamo inserito la possibilità di scegliere l'utilizzo di due algoritmi differenti per la costruzione del MST:

2.1 Algoritmo di Kruskal

L'algoritmo di Kruskal seleziona gli archi in ordine crescente di peso e li aggiunge al MST evitando la creazione di cicli.

```
KRUSKAL(G):
MST = Empty Set
foreach v in G.V:
    MAKE_SET(v)
sort G.E by weight ascending
foreach (u,v) in G.E:
    if FIND_SET(u) NOT EQUAL FIND_SET(v):
    MST = MST UNION {(u,v)}
    UNION(u,v)
return MST
```

Kruskal Pseudocode

2.2 Algoritmo di Prim

L'algoritmo di Prim inizia da un nodo e aggiunge progressivamente gli archi a costo minore che connettono nodi non ancora inclusi.

```
PRIM(G, start):
foreach v in G.V:
    key[v] = infinity
    parent[v] = NULL
key[start] = 0
Q = G.V
while Q NOT EQUAL 0:
    u = EXTRACT_MIN(Q)
    foreach v in Adj[u]:
    if v in Q and w(u,v) < key[v]:
         parent[v] = u
         key[v] = w(u,v)
return parent[]</pre>
```

Prim Pseudocode

3 Costo Archi Base

Il grafo ha una configurazione di pesi base che tengono conto di:

- Distanza euclidea tra basi
- · Differenza di elevazione
- Difficoltà territoriali

4 Implementazione e Scenari

4.1 Montagna

Per questo scenario, abbiamo assegnato un peso maggiore agli archi che attraversano zone soggette a problematiche meteorologiche, secondo la seguente formula:

$$Cost = Costo Base * \underbrace{1.0 + \left(\frac{avg \ elevation}{1000}\right)^{2}}_{Weather \ Factor}$$

4.2 Zona Sismica

In questo secondo scenario abbiamo considerato la vulnerabilità sismica dei nodi e favorito soluzioni con maggiore ridondanza delle connessioni. La robustezza della rete è stata migliorata evitando collegamenti a rischio e garantendo percorsi alternativi per prevenire guasti in caso di terremoti, utilizzando la seguente formula:

$$Cost = Costo \ Base * \underbrace{1.0 + (vuln \ score * 2)}_{Vulnerability \ Factor} * \underbrace{Redundancy \ Factor}_{2 \ if \ vulnerability \ score} > 0.7 \ else \ 1.5$$

4.3 Ottimizzazione Energetica

In questo scenario, abbiamo applicato un costo energetico ai collegamenti per limitare l'uso di nodi con alto consumo di energia, utilizzando la seguente formula:

$$Cost = Costo \ Base * 1.0 + \underbrace{\left(\frac{power\ requirement}{power\ capacity}\right)}_{Avg\ Power\ Factor}$$

5 Conclusioni

L'analisi della rete wireless in tre diversi scenari ha evidenziato come la configurazione della rete vari in base alle condizioni ambientali e alle esigenze operative.

- Average Elevation Change
- Betweenness Centrality

Il seguente comportamento è dovuto alla strutturalità della rete, che in ogni scenario rimane la stessa.

- Scenario Montagna: La rete è efficiente e ha un costo contenuto, mantenendo una penalità elevata tra nodi che presentano una grande differenza di elevazione.
- Scenario Sismico: Si registra un significativo aumento del costo totale della rete, il più alto tra i tre scenari. Questo incremento è dovuto alla penalizzazione dei collegamenti più vulnerabili e all'adozione di percorsi alternativi per garantire la continuità del servizio.
- Scenario di Ottimizzazione Energetica: Il costo totale della rete in questo caso risulta solo leggermente superiore a quello dello scenario montano. Questo approccio rappresenta un buon compromesso tra efficienza e sostenibilità, risultando particolarmente vantaggioso in termini di efficienza energetica.

Nella Tabella 1 presentiamo un confronto tra le metriche di ciascuno scenario preso in considerazione.

Metrica	Scenario Montagna	Scenario Sismico	Scenario Ottimizzazione Energetica
Total Distance	1900.00m	1900.00m	1900.00m
Max Elevation Difference	500.00m	500.00m	500.00m
Average Elevation Change	79.47m	79.47m	79.47m
Maximum Edge Cost	328.96	1707.75	324.00
Betweenness Centrality	Node 0	Node 0	Node 0
Vulnerability Score	-	1.48	-
Power Capacity	=	=	1900.00W
Total Cost	3062.94	10727.22	3130.53

Tabella 1: Comparison of Different Scenarios

In tutti e tre gli scenari possiamo notare l'uguaglianza dei valori di:

- Total Distance
- Max Elevation Difference

Qui di seguito sono rappresentati gli schemi degli MST risultanti nello scenario Montuoso (fig. 1), Sismico (fig. 2) e Energy (fig. 3):

Figura 1: MST-Mountain

Figura 2: MST-Seismic

Figura 3: MST-Energy