Будожапов Арсалан V3116.

Сортировка перемешиванием

1) Инвариант для сортировки перемешивания:

Массив A, размера N

 $A[left_idx-1] \le A[left_idx] && A[right_idx+1] >= A[right_idx]$ Доказательство:

1. До начала цикла left_idx = 0 , right_idx = N A[N] >= A[N] && A[0] <= A[0]

2. В первом внутренем цикле после первой итерации right_idx уменьшается на единицу. Тогда A[N] >= A[N-1], что справедливо, так как сравнивая элементы и меняя их местами на место A[N] встанет наибольший элемент массива.

Во втором внутреннем цикле после первой итерации left idx увеличивается на единицу. Тогда $A[0] \le A[1]$, что тоже справедливо, так как сравнивая элементы справа налево и меняя их местами на место A[0] встанет наименьший элемент.

- 3. По математической индукции наш инвариант будет справедливым в любой момент цикла, так как мы доказали правильность для нулевой итерации и для первой.
- 4. Цикл всегда отработает за конечное время, так как right_idx уменьшается и одновременно left_idx увелививается, наступит такая ситуация когда left_idx станет больше чем right_idx и цикл прекратится, инвариант останется справделивым.

2) Анализ сложности алгоритма перемешиванием.

Cost	N	Строки кода
C1	N/2	<pre>for (size_t left_idx = 0, right_idx = size - 1;left_idx < right_idx;)</pre>
C2	$\sum_{i=2}^{N/2} t[j]$	<pre>for (size_t idx = left_idx; idx < right_idx; ++idx)</pre>
C3	$\sum_{i=2}^{N/2} t[j] - 1$	if (array[idx + 1] < array[idx])
C4	$\sum_{i=2}^{N/2} t[j] - 1$	std::swap(array[idx], array[idx + 1]);
C5	(N/2)-1	right_idx;
C6	$\sum_{i=2}^{N/2} t[j]$	<pre>for (size_t idx = right_idx; idx > left_idx;idx)</pre>
C7	$\sum_{i=2}^{N/2} t[j] - 1$	<pre>if (array[idx - 1] > array[idx])</pre>
C8	$\sum_{i=2}^{N/2} t[j] - 1$	<pre>std::swap(array[idx - 1],</pre>
C9	(N/2)-1	++left_idx;

$$T(n) = C1 * N/2 + \sum_{i=2}^{N/2} t[j] * (C2 + C6) + \sum_{i=2}^{N/2} t[j] - 1 * (C3 + C4 + C7 + C8) + (N/2 - 1) * (C5 + C9)$$