understanding Linear Convolutional Neural Networks via sparse factorizations of real polynomials

Kathlén Kohn

joint work with

Guido Montúfar MPI MiS Leipzig & UCLA

Vahid Shahverdi KTH

Matthew Trager

Amazon Alexa Al, NYC

feedforward neural networks

feedforward neural networks

are parametrized families of functions

$$\mu: \mathbb{R}^{N} \longrightarrow \mathcal{M},$$

$$\theta \longmapsto f_{L,\theta} \circ \ldots \circ f_{1,\theta}$$

feedforward neural networks

are parametrized families of functions

$$\mu: \mathbb{R}^{N} \longrightarrow \mathcal{M},$$
 $\theta \longmapsto f_{L,\theta} \circ \ldots \circ f_{1,\theta}$

 $\mathcal{M}=$ function space / neuromanifold, L=# layers $|\ \ \ \ \ \ \ \ \ \ \ |$

training a network

Given training data \mathcal{D} , the goal is to minimize the loss

$$\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$$

training a network

Given training data \mathcal{D} , the goal is to minimize the loss

$$\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

training a network

Given training data \mathcal{D} , the goal is to minimize the loss

$$\mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}.$$

Geometric questions:

- How does the network architecture affect the geometry of the function space?
- How does the geometry of the function space impact the training of the network?

In this talk:

What is the impact of changing from dense layers to convolutional layers?

linear dense networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

linear dense networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

$$\mathcal{M} = \{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\}$$

linear dense networks

In this example:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

$$\mathcal{M} = \{ W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \le 2 \}$$

In general:

$$\mu: \mathbb{R}^{k_1 \times k_0} \times \mathbb{R}^{k_2 \times k_1} \times \ldots \times \mathbb{R}^{k_L \times k_{L-1}} \longrightarrow \mathbb{R}^{k_L \times k_0},$$
$$(W_1, W_2, \ldots, W_L) \longmapsto W_L \cdots W_2 W_1.$$

 $\mathcal{M} = \{W \in \mathbb{R}^{k_L \times k_0} \mid \operatorname{rank}(W) \leq \min(k_0, \dots, k_L)\}$ is an algebraic variety and we know its singularities etc.

$$\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$
 $(u,v) \longmapsto \mathcal{T}_{v,1} \mathcal{T}_{u,2}, ext{ where }$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$

$$T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$$

$$\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$

$$(u, v) \longmapsto \mathcal{T}_{v,1} \mathcal{T}_{u,2}, \text{ where }$$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$

$$T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$$

In general:
$$\mu:(w_1,\ldots,w_L)\mapsto T_{w_L,s_L}\cdots T_{w_1,s_1}$$
, where

$$T_{w,s} = \begin{bmatrix} w_0 & \cdots & w_s & \cdots & w_{k-1} \\ & w_0 & & \cdots & & w_{k-1} \\ & & & \ddots & & & \ddots \\ & & & & w_0 & & \cdots & w_{k-1} \end{bmatrix}$$

$$\mu: \mathbb{R}^3 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^5,$$
 $(u,v) \longmapsto \mathcal{T}_{v,1}\mathcal{T}_{u,2}, ext{ where }$

$$T_{u,2} = \begin{bmatrix} u_0 & u_1 & u_2 & 0 & 0 \\ 0 & 0 & u_0 & u_1 & u_2 \end{bmatrix}$$

$$T_{v,1} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$$

In general:
$$\mu:(w_1,\ldots,w_L)\mapsto T_{w_L,s_L}\cdots T_{w_1,s_1}$$
, where

is a convolutional matrix of stride s with filter w

Observation: $\mu(w_1, \dots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$.

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{\mathcal{S}}: \mathbb{R}^k \longrightarrow \mathbb{R}[x^{\mathcal{S}}]_{\leq k-1},$$

$$v \longmapsto v_0 x^{\mathcal{S}(k-1)} + v_1 x^{\mathcal{S}(k-2)} + \ldots + v_{k-2} x^{\mathcal{S}} + v_{k-1}$$

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{\mathcal{S}}: \mathbb{R}^k \longrightarrow \mathbb{R}[x^{\mathcal{S}}]_{\leq k-1},$$

$$v \longmapsto v_0 x^{\mathcal{S}(k-1)} + v_1 x^{\mathcal{S}(k-2)} + \ldots + v_{k-2} x^{\mathcal{S}} + v_{k-1}$$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{\mathcal{S}}: \mathbb{R}^k \longrightarrow \mathbb{R}[x^{\mathcal{S}}]_{\leq k-1},$$

$$v \longmapsto v_0 x^{\mathcal{S}(k-1)} + v_1 x^{\mathcal{S}(k-2)} + \ldots + v_{k-2} x^{\mathcal{S}} + v_{k-1}$$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

$$\pi_1(\mu(w_1,\ldots,w_L)) = \pi_{S_L}(w_L)\cdots\pi_{S_1}(w_1), \text{ where } S_i := s_1\cdots s_{i-1}.$$

Observation: $\mu(w_1, \ldots, w_L) = T_{w_L, s_L} \cdots T_{w_1, s_1}$ is again a convolutional matrix of stride $s_1 \cdots s_L$. Its filter can be computed via polynomial multiplication:

For $S \in \mathbb{Z}_{>0}$, let

$$\pi_{\mathcal{S}}: \mathbb{R}^k \longrightarrow \mathbb{R}[x^{\mathcal{S}}]_{\leq k-1},$$

$$v \longmapsto v_0 x^{\mathcal{S}(k-1)} + v_1 x^{\mathcal{S}(k-2)} + \ldots + v_{k-2} x^{\mathcal{S}} + v_{k-1}$$

and $\pi_S(T_{w,s}) := \pi_S(w)$. Then:

$$\pi_1(\mu(w_1,\ldots,w_L)) = \pi_{S_L}(w_L)\cdots\pi_{S_1}(w_1), \text{ where } S_i := s_1\cdots s_{i-1}.$$

Hence, we reinterpret μ as

$$\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d_1 S_1 + \ldots + d_L S_L},$$
$$(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$$

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d}$$
, where $d:=\sum_i d_i S_i$
 $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$,

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} imes \ldots imes \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d}, ext{where } d:=\sum_i d_i S_i$$
 $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1,$

Theorem: The function space $\mathcal{M}_{d,S} = \operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_1 + \ldots + d_L + 1$.

$$\mu: \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4}$$

$$\mu: \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x]_{\leq 1} \times \mathbb{R}[x^2]_{\leq 1} \to \mathbb{R}[x]_{\leq 4}$$

LCN function spaces

$$\mu: \mathbb{R}[x^{S_1}]_{\leq d_1} \times \ldots \times \mathbb{R}[x^{S_L}]_{\leq d_L} \longrightarrow \mathbb{R}[x]_{\leq d}$$
, where $d:=\sum_i d_i S_i$
 $(P_1, \ldots, P_L) \longmapsto P_L \cdots P_1$,

Theorem: The function space $\mathcal{M}_{d,S} = \operatorname{im}(\mu)$ is a semi-algebraic, Euclidean-closed subset of $\mathbb{R}[x]_{\leq d}$ of dimension $d_1 + \ldots + d_L + 1$.

Corollary: $\mathcal{M}_{d,S}$ is full-dimensional in $\mathbb{R}[x]_{\leq d}$ if and only if all strides $s_i = 1$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	
. 本意文語		•	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$		non-empty	
$\mu(\mathrm{Crit}(\mathcal{L}_{\mathcal{D}}))$		often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$\left\ \ \mu(\mathrm{Crit}(\mathcal{L}_{\mathcal{D}})) \ ight\ $		often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \stackrel{\mu}{\longrightarrow} \mathcal{M} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$Sing(\mathcal{M}^\circ)$	non-empty		
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \stackrel{\mu}{\longrightarrow} \mathcal{M} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\exists i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$??

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}} : \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

training with the squared error loss

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}}: \mathbb{R}^{k_L \times k_0} \longrightarrow \mathbb{R},$$

$$T \longmapsto \sum_{i=1}^N \|Y_i - TX_i\|^2.$$

training with the squared error loss

Given training data $\mathcal{D} = \{(X_i, Y_i) \in \mathbb{R}^{k_0} \times \mathbb{R}^{k_L} \mid i = 1, ..., N\}$, the squared error loss on the function space is

$$\ell_{\mathcal{D}}: \mathbb{R}^{k_{L} \times k_{0}} \longrightarrow \mathbb{R},$$

$$T \longmapsto \sum_{i=1}^{N} \|Y_{i} - TX_{i}\|^{2}.$$

Training an LCN minimizes the squared error loss on the parameter space:

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_L} \xrightarrow{\mu} \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathbb{R}^{k_L \times k_0} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R},$$
$$(w_1, \ldots, w_L) \longmapsto T_{w_L, s_L} \cdots T_{w_1, s_1} \longmapsto \ell_{\mathcal{D}}(T_{w_L, s_L} \cdots T_{w_1, s_1})$$

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$.

For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$.

For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- \bullet $\mu(\mathbf{w}) = 0$, or
- $\mu(\mathbf{w})$ is a smooth, interior point of $\mathcal{M}_{\mathbf{d},\mathbf{S}}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial\mathcal{M}$
		West of the second	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \stackrel{\mu}{\longrightarrow} \mathcal{M} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}.$

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial \mathcal{M}$
	De la companya della companya della companya de la companya della	9.2	

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial \mathcal{M}$
critical points spurious?	often		

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	¿ Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial \mathcal{M}$
critical points spurious?	often	often	almost never

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$.

For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- $\mu(w)$ is a smooth, interior point of $\mathcal{M}_{d,S}$ and w is a regular point of μ .

training LCNs with the squared error loss

$$\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{d_1} imes \ldots imes \mathbb{R}^{d_L} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{m{d},m{S}} \stackrel{\ell_{\mathcal{D}}}{\longrightarrow} \mathbb{R}$$

Theorem

Consider an LCN with all strides > 1. Let $N \ge \sum_i d_i S_i + 1$. For almost all data $\mathcal{D} \in (\mathbb{R}^{k_0} \times \mathbb{R}^{k_L})^N$, every critical point \boldsymbol{w} of $\mathcal{L}_{\mathcal{D}}$ satisfies one of the following:

- $\mu(\mathbf{w}) = 0$, or
- $\mu(\mathbf{w})$ is a smooth, interior point of $\mathcal{M}_{\mathbf{d},\mathbf{S}}$ and \mathbf{w} is a regular point of μ . In particular, $\mu(\mathbf{w})$ is a critical point of $\ell_{\mathcal{D}}|_{\mathrm{Reg}(\mathcal{M}_{\mathbf{d},\mathbf{S}}^{\circ})}$.

reducing LCNs

reducing LCNs

Given an LCN $(\boldsymbol{d},\boldsymbol{S})$, merging neighboring layers with the same S_i yields an LCN $(\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}})$ with $1=\tilde{S_1}<\tilde{S_2}<\tilde{S_3}<\dots$ (i.e., all strides >1), called the reduced LCN.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let (d, S) be a reduced LCN with L layers.

• If L=1 (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x]_{\leq d}$.

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let (d, S) be a reduced LCN with L layers.

- If L=1 (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x]_{\leq d}$.
- If L > 1, $\deg \overline{\mathcal{M}}_{d,S} > 1$ and

$$\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}},$$

where
$$D:=\{m{d}'\in\mathbb{Z}_{\geq 0}^L\mid \overline{\mathcal{M}}_{m{d}',m{S}}\subsetneq \overline{\mathcal{M}}_{m{d},m{S}}\}$$

Lemma: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}}$ and $\overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$, where $\bar{\cdot}$ denotes the Zariski closure inside $\mathbb{R}[x]_{\leq d}$.

Theorem Let (d, S) be a reduced LCN with L layers.

- If L=1 (i.e., any associated non-reduced LCN has all strides equal 1), then $\overline{\mathcal{M}}_{d,S}=\mathbb{R}[x]_{\leq d}$.
- If L > 1, $\deg \overline{\mathcal{M}}_{d,S} > 1$ and

$$\operatorname{Sing}(\overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}}) = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \overline{\mathcal{M}}_{\boldsymbol{d}',\boldsymbol{S}} = \{0\} \cup \bigcup_{\boldsymbol{d}' \in D} \mathcal{M}_{\boldsymbol{d}',\boldsymbol{S}},$$

where
$$D := \{ \mathbf{d}' \in \mathbb{Z}_{\geq 0}^L \mid \overline{\mathcal{M}}_{\mathbf{d}', \mathbf{S}} \subsetneq \overline{\mathcal{M}}_{\mathbf{d}, \mathbf{S}} \}$$

= $\{ \mathbf{d}' \in \mathbb{Z}_{\geq 0}^L \mid \mathbf{d}' \neq \mathbf{d}, \sum_{i=1}^L d_i' S_i = \sum_{i=1}^L d_i S_i, \forall I : \sum_{i=I}^L d_i' S_i \geq \sum_{i=I}^L d_i S_i \}$

Example

$$\begin{array}{l} \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} \to \mathcal{M}_{(2,1),(1,2)} \\ \operatorname{Sing}(\overline{\mathcal{M}}_{(2,1),(1,2)}) = \end{array}$$

Example

$$\begin{split} \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x^2]_{\leq 1} &\to \mathcal{M}_{(2,1),(1,2)} \\ \mathrm{Sing}(\overline{\mathcal{M}}_{(2,1),(1,2)}) &= \mathcal{M}_{(0,2),(1,2)} = \mathbb{R}[x^2]_{\leq 2} \end{split}$$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

 $\text{Recall: } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \subseteq \mathcal{M}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}} \subseteq \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} = \overline{\mathcal{M}}_{\tilde{\boldsymbol{d}},\tilde{\boldsymbol{S}}}$

 $\partial \mathcal{M}_{m{d},m{S}} = \text{points in } \mathcal{M}_{m{d},m{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{m{d},m{S}} \setminus \mathcal{M}_{m{d},m{S}}.$

Recall: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}} \subseteq \overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$

- ullet reduced boundary points: limits in $\mathcal{M}_{m{d},m{S}}$ of sequences in $\overline{\mathcal{M}}_{m{d},m{S}}\setminus\mathcal{M}_{m{ ilde{d}},m{ ilde{S}}}$
- ullet stride-1 boundary points: limits in $\mathcal{M}_{m{d},m{S}}$ of sequences in $\mathcal{M}_{ ilde{m{d}},m{ ilde{S}}}\setminus\mathcal{M}_{m{d},m{S}}$

 $\partial \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} = \text{points in } \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}} \text{ that are limits of sequences in } \overline{\mathcal{M}}_{\boldsymbol{d},\boldsymbol{S}} \setminus \mathcal{M}_{\boldsymbol{d},\boldsymbol{S}}.$

Recall: $\mathcal{M}_{d,S} \subseteq \mathcal{M}_{\tilde{d},\tilde{S}} \subseteq \overline{\mathcal{M}}_{d,S} = \overline{\mathcal{M}}_{\tilde{d},\tilde{S}}$

- ullet reduced boundary points: limits in $\mathcal{M}_{m{d},m{S}}$ of sequences in $\overline{\mathcal{M}}_{m{d},m{S}}\setminus\mathcal{M}_{m{ ilde{d}},m{ ilde{S}}}$
- ullet stride-1 boundary points: limits in $\mathcal{M}_{d,S}$ of sequences in $\mathcal{M}_{\tilde{d},\tilde{S}}\setminus\mathcal{M}_{d,S}$

reduced boundary points have at least codimension 2 stride-1 boundary points (if existent) have codimension 1

***	linear	LCN	LCN
	dense	$\forall i: s_i = 1$	$\forall i: s_i > 1$
\mathcal{M}	algebraic variety	semialgebraic &	¿ Euclidean closed
		full-dimensional	low-dimensional
$\partial \mathcal{M}$	Ø	non-empty	non-empty
$Sing(\mathcal{M}^\circ)$	non-empty	Ø	non-empty
$\mu(\operatorname{Crit}(\mathcal{L}_{\mathcal{D}}))$	often in $Sing(\mathcal{M})$	often in $\partial \mathcal{M}$	almost never in $Sing(\mathcal{M}^\circ)$ or $\partial \mathcal{M}$
critical points spurious?	often	often	almost never

training a network = minimizing the loss $\mathcal{L}_{\mathcal{D}}: \mathbb{R}^{N} \xrightarrow{\mu} \mathcal{M} \xrightarrow{\ell_{\mathcal{D}}} \mathbb{R}$.

