

Doing N Loads

- Harvard Method:______
- MIT Method:_______

How Computers Work Lecture 12 Page 7

A Few Definitions

Latency: Time for 1 object to pass through entire system. (= ____ for Harvard laundry)

(= _____ for MIT laundry)

Throughput: Rate of objects going through.

(= ____ for Harvard laundry)
(= ___ for MIT laundry)

How Computers Work Lecture 12 Page 8

Definition of a Well-Formed Pipeline

- Same number of registers along path from any input to every computational unit
 - Insures that every computational unit sees inputs IN PHASE
- Is true (non-obvious) whenever the # of registered between all inputs and all outputs is the same.

How Computers Work Lecture 12 Page 19

Method for Forming Well-Formed Pipelines

- Add registers to system output at will
- Propagate registers from intermediate outputs to intermediate inputs, cloning registers as necessary.

How Computers Work Lecture 12 Page 20

A Few Questions

- Assuming a circuit is pipelined for optimum throughput with 0 delay registers, is the pipelined throughput always greater than or equal to the combinational throughput?
 - A: Yes
- Is the pipelined latency ever less than combinational latency?
 - A: No
- When is the pipelined latency equal to combinational latency?
 - A: If contents of all pipeline stages have equal combinational latency

. How Computers Work Lecture 12 Page 22

Page 12 12

Page 13 13

Page 14 14

Page 15 15

Page 16 16

Page 17 17

Next Time:

- Detailed Design of
 - Bypass Paths + Control Logic
- What to do when Bypass Paths Don't Work
 - Branch Delays / Tradeoffs
 - Load/Store Delays / Tradeoffs
 - Multi-Stage Memory Pipeline

How Computers Work Lecture 12 Page 35