2. gett:
$$R^2 = r_{xy}$$

Brunn: $R^2 = \frac{2}{2}(\hat{y}_1 - \hat{y})^2 = \frac{2}{2}(\hat{m}x_1 + \hat{b} - (\hat{m}x_2 + \hat{b})^2)^2$

Brunn: $R^2 = \frac{2}{2}(\hat{y}_1 - \hat{y})^2 = \frac{2}{2}(\hat{m}x_1 + \hat{b} - (\hat{m}x_2 + \hat{b})^2)^2$
 $(n-1)s_y^2 = (n-1)s_y^2 = \frac{2}{2}(k_1 - k_2)^2$
 $(n-1)s_y^2 = (n-1)s_y^2 = (n-1)s_y^2$
 $n = \frac{s_xy}{s_x}$
 $s_y^2 = r_{xy}^2 = (-0.879)^2 \approx 0.77$

Al., 77% du Gesemet veriation home direct direct empache direct 2 green very model ($\hat{y} = -0.077 \times + 6.09$) which will have direct \hat{x}_1 and \hat{y}_2 and \hat{y}_3 and \hat{y}_4 and \hat{y}_4 and \hat{y}_5 and \hat{y}_6 are \hat{y}_6 and \hat{y}_6 and \hat{y}_6 and \hat{y}_6 and \hat{y}_6 are \hat{y}_6 and \hat{y}_6