Esercitazione Test scritto di Strutture Discrete (6CFU)

Giugno 2021

Nelle pagine successive troverete un esempio di esame a risposta multipla formalmente uguale a quello che troverete all'esame del 23 giugno per il corso di Strutture Discrete (6CFU) programma AA 20-21, ovvero

- 20 domande con 4 possibili risposte, di cui solo una è quella corretta
- Le domande rispecchiano in maniera paritaria le 4 parti in cui è suddiviso il corso:
 - 1. Logica Proposizionale, Insiemi e relazioni
 - 2. Fondamenti di Teoria dei Numeri e metodologie di dimostrazione
 - 3. Calcolo Combinatorio e Probabilità Discrete
 - 4. Teoria dei Grafi
- Il test è superato se rispondete esattamente ad 11 delle domande
- Il risultato in trentesimi del test si calcola con la formula $(x+1) \cdot 1, 5$ dove x è il numero di risposte esatte. Non ci sono penalità per le risposte sbagliate. Ovviamente se rispondete esattamente a tutte le domande, il risultato 31, 5 si traduce con 30 e Lode. Nel corso dell'integrazione orale, si deciderà il voto finale
- Il tempo che avrete a disposizione per l'esame è 1h e 30 minuti. Esercitatevi con il test come se fosse l'esame, ossia fermatevi dopo 1h e 30 minuti, e non consultate né gli appunti, né i lucidi delle lezioni. Fatevi i pochi conti che ci sono da fare a mano, senza utilizzare calcolatrici.

Strutture Discrete:

Test di Esercitazione

Giugno 2021

Prima parte

- 1. La formula $(a \lor b) \Rightarrow c$ è equivalente a
 - A. $\neg a \lor \neg b \lor \neg c$
 - **B.** $(\neg a \land c) \lor (\neg b \land c)$
 - C. $(\neg a \land b) \lor (\neg b \land c)$
 - D. $a \lor b \lor \neg c$
- 2. Se trasformiamo in CNF la seguente formula in DNF $(a \land b \land c) \lor (a \land b \land \neg c) \lor (a \land \neg b \land \neg c)$ otteniamo:
 - A. $(\neg b \lor c) \land (\neg c \lor b)$
 - B. $(\neg b \lor a) \land (\neg c \lor a)$
 - C. $a \wedge (\neg c \vee b)$
 - D. $a \wedge (\neg b \vee c)$
- 3. $C \setminus (A \cup B)$ **NON** è uguale a
 - A. $(C \setminus A) \cap (C \setminus B)$
 - B. $(C \setminus A) \cup (C \setminus B)$
 - C. $(C \setminus A) \setminus B$
 - D. $(C \setminus B) \setminus A$
- 4. Siano dati 2 insiemi A, B e sia R una relazione definita su $A \times B$. Tale relazione è una "funzione" da A in B se,
 - A. $\forall x \in A, \forall y \in B \text{ si ha } (x,y) \in R$
 - B. $\exists x \in A, \exists y \in B \text{ tale } (x, y) \in R$
 - C. $\forall y \in B$, esiste un solo $x \in A$ tale che
 - D. $\forall x \in A$, esiste un solo $y \in B$ tale che $(x,y) \in R$
- 5. Sia data la seguente famiglia di 4 insiemi

$$\mathcal{A} = \{\{1, 2, 3\}, \{2, 3\}, \{4, 5\}, \{2, 5\}\}$$

Se la chiudiamo rispetto all'unione, quanti insiemi avrà la famiglia ottenuta?

- A. 7
- B. 8
- **C**. 9
- D. 10

Seconda parte

- 6. Quanto vale $-121 \mod 15$?
 - A. 11
 - B. 12
 - C. 13
 - D. 14
- 7. L'assioma del buon ordinamento afferma che se A è un qualunque insieme non vuoto di numeri naturali, allora
 - A. esiste $a \in A$ tale che $a \leq b$ per ogni $b \in A$

- B. esiste $a \in A$ tale che $a \ge b$ per ogni $b \in A$
- C. esiste $a \in A$ tale che $a \leq b$ per ogni bnumero naturale
- D. Nessuna delle precedenti affermazioni è corretta
- 8. Quali dei seguenti è un numero primo?
 - A. 223
 - B. 203
 - C. 187
 - D. 91
- 9. Quanto vale $\phi(132)$?
 - A. 40
 - B. 42
 - C. 45
 - D. 48
- 10. Qual è l'inverso di 250 modulo 13?
 - A. 5
 - B. 7
 - **C**. 9
 - D. 11

Terza parte

- 11. Come conseguenza del Teorema Binomiale si ha che $\sum_{k=0}^{20} \binom{n}{k} 2^k$ è uguale a
 - A. 3^{20}
 - B. 2^{30}
 - C. $20 \cdot 2^{20}$
 - D. $(2^{20})^2$
- 12. Prendiamo 20 numeri interi positivi a caso. Quali delle seguenti affermazioni è vera
 - A. Ci sono almeno 5 numeri che sono congrui modulo 5
 - B. Ci sono almeno 4 numeri che sono congrui modulo 4
 - C. Entrambe le affermazioni precedenti sono vere
 - D. Tutte le affermazioni precedenti sono false
- 13. All'esame scritto di Strutture Discrete si presentato 10 studenti, 6 dei quali residenti in provincia di Catania. Se superano l'esame in 3 qual è la probabilità che a superarlo siano stati solo gli studenti non residenti in provincia di Catania?

 - B. $\frac{2}{15}$ C. $\frac{1}{30}$

 - D. $\frac{1}{40}$
- 14. In un urna ci sono 2 palline rosse, 3 bianche e 4 verdi e 5 blue, qual è la probabilità che estraendone 4 a caso, senza reinserimento, le palline siano tutte di colore diverso?

- A. $\frac{3}{61}$ B. $\frac{4}{71}$ C. $\frac{5}{81}$ D. $\frac{6}{91}$
- 15. Il 60% degli studenti di Informatica, che sono il 5% degli studenti di UNICT, conosce il Teorema di Bayes, mentre solo il 10% degli studenti totali di UNICT lo conosce. Qual è la probabilità che uno studente scelto a caso e che conosce il Teorema di Bayes sia uno studente di Informatica?

 - B. $\frac{3}{10}$ C. $\frac{4}{10}$

 - D. $\frac{5}{10}$

Quarta parte

- 16. Quale delle seguenti affermazioni è vera?
 - A. Ogni sottografo di un grafo connesso è
 - B. Ogni sottografo di un grafo completo è completo
 - C. Un grafo Hamiltoniano è connesso
 - D. Tutte le affermazioni precedenti sono false

- 17. Dato il grafo G in figura, quanti archi bisogna aggiungere per avere un circuito euleriano?
 - A. 0 il grafo è euleriano
 - B. 1
 - C. 2
 - D. 3
- 18. Dato il grafo G, quali delle seguenti affermazioni è vera?
 - A. Il grafo è planare
 - B. Il grafo non è planare perché possiede un sottografo isomorfo a $K_{3,3}$
 - C. Il grafo non è planare perché possiede un sottografo omeomorfo a K_5
 - D. Tutte le affermazioni precedenti sono false
- 19. Dato il grafo G, il teorema di Brooks (versione forte) ci dice che possiamo colorarlo utilizzando al più
 - A. 3 colori
 - B. 4 colori
 - C. 5 colori
 - D. Non si può applicare il Teorema di Brooks nella sua versione forte
- 20. Dato il grafo G, qual è il numero minimo di archi da eliminare per renderlo aciclico, mantenendolo però connesso?
 - A. 8
 - B. 7
 - C. 6
 - D. 5