Modeling extreme water waves with Firedrake

Onno Bokhove with Yang Lu, Wajiha Rehman & Junho Choi

£€₩: EPSRC/STW Fast Ships, EU Surfs-Up/Eagre-Aegir, Sejong Science fellowship

Leeds Institute for Fluid Dynamics; Totnes' Firedrake Workshop 2023

Summary with movies

Firedrake extreme wave modelling of *Benney-Luke (BL) eqns*:

- horizontally $\Phi(x, y, t)$, $\eta(x, y, t)$: CG1, CG2-2-CG4; space-time discrete variational principle (VP),
- discrete VP: wave-amplitude & phase-space conservation,
- x-periodic mesh, 3 weak forms,
- mesh refinement needed; other element types?

Refs

Summary

Firedrake modelling of (driven) potential-flow (PF) water waves:

- ▶ space-time discrete VP, variables h(x, y, t), $\tilde{\phi}(x, y, t) = \phi(x, y, b(x, y) + h(x, y, t), t)$, $\phi(x, y, z, t)$ with mixed horizontal and vertical coordinates,
- transformation to fixed domain,
- now, vertical z: one vertical element with Lagrange/Chebychev polynomials: user-arranged,
- space-time discrete VP in horizontal: CG1 polynomials; 3 to 5 weak forms.
- ▶ In progress: FD implementation of VPs for complicated moving domains in x, y, z.

- Origin 2010 bore-soliton-splash:
- To what extent do exact but idealised extreme- or rogue-wave solutions survive in more realistic settings?
- **Rogue wave:** $A_r \ge 2.2 \times A_{ambient}$.
- ▶ Will such extreme waves fall apart due to dispersion or other mechanisms?
- ▶ Use $4 \times \& 9 \times KP$ amplifications of interacting solitons/cnoidal waves.
- What do you think: will we be able to reach the ninefold wave amplification in more realistic calculations or in reality?

Mathematical hierarchy: BL and KP approximations

- ► Kadomtsev & Petviashvili (1970) eqn: unidirectional in2DH
- ▶ Benney-Luke (1964) egns −BL: bidirectional in 2DH

$$\begin{split} \partial_t \eta - \frac{\mu}{2} \partial_t \nabla^2 \eta + \nabla \cdot \left(\left(1 + \epsilon \eta \right) \nabla \Phi \right) - \frac{2\mu}{3} \nabla^4 \Phi &= 0 & \text{in } \Omega \\ \partial_t \Phi - \frac{\mu}{2} \partial_t \nabla^2 \Phi + \frac{\epsilon}{2} \left| \nabla \Phi \right|^2 + \eta &= 0 & \text{in } \Omega \\ \mathbf{n} \cdot \nabla \Phi &= 0 \text{ on } \partial \Omega \quad \text{and} \quad \mathbf{n} \cdot \nabla (\nabla^2 \Phi) &= 0 & \text{on } \partial \Omega \end{split}$$

Maximum 9-fold amplification in KP & BL?

 $\qquad \mathsf{Amplification:} \ \, \frac{u(X_*,Y_*,\tau_*)}{\tilde{A}} = \frac{(\sqrt{\lambda}+2)^2}{\lambda} + \mathcal{O}(\sqrt{\delta}) \xrightarrow[\delta=0,\lambda\to 1]{} 9$

- ▶ Seed BL with KP-solution prior to maximum reached.
- Wave amplitude & phase space volume preserved via space-time discrete VP: no loss of amplitude.

Results BL-simulation three-soliton interaction

Results simulation three-soliton interaction (dimensional)

Crossing seas (4 or 8 domains combined -YouTube)

Results simulation three-soliton interaction (dimensional)

Cnoidal waves with periodicity in x, y, t (max. vs. t & x-y tracks):

Summary

- Nine-fold soliton amplification shown theoretically, but only in limit $\delta \to 0$
- Web-soliton amplification KP≈ 8.4, simulated for BL≈ 7.8

- Amplifications achieved as simulated cnoidal crossing seas
- ▶ Local *p* or *h* mesh-refinement needed in *x*-periodic channel.
- Can amplifications survive in potential-flow equations?

Firedrake for potential flow water waves

Water-wave equations

$$\nabla^{2}\phi = 0 \quad \text{in} \quad \Omega$$

$$\partial_{t}\eta + \nabla\phi \cdot \nabla\eta - \partial_{z}\phi = 0 \quad \text{at} \quad z = H_{0} + \eta$$

$$\partial_{t}\phi + \frac{1}{2}|\nabla\phi|^{2} + g\eta = 0 \quad \text{at} \quad z = H_{0} + \eta$$

$$\mathbf{n} \cdot \nabla\phi = 0 \quad \text{on} \quad z = 0 \text{ and } \partial\Omega$$

Current strategy: Firedrake in horizontal domain

Current strategy (Gidel 2018; Gidel et al. 2022/23)

- Time-dependent free surface & piston wavemaker, transformed to fixed domain.
- One element in vertical Lagrange/Chebychev p = 4,9; user-arranged.
- ► Firedrake: space-time discrete VP in horizontal with CG1/CG2, Störmer-Verlet.
- ► Time-dependent VP, non-autonomous Hamiltonian.
- Good comparison with experimental data (Gidel et al 2022/23); soliton amplification similation in progress.

Future strategy: Firedrake via VPs

Goal: implement (time-discrete) VP & derive weak forms automatically.

- Why: VPs in moving domains complicated, e.g. wave tank with waveflap, wave-beam FSI, numerical mesh motion.
- ▶ Simple case; nonlinear PF in $\{x,z\}$, $\partial_y = 0$, $W = L_w \le L_x$, no wavemaker:

$$0 = \delta \int_0^T \int_0^{L_x} \int_0^{H_0} - \left[\frac{1}{2} \frac{L_W^2}{W} h(\phi_x + (z/h)h_x)\phi_z)^2 + \frac{1}{2} W \frac{H_0^2}{h} (\phi_z)^2 \right] dz dx$$
$$+ \int_0^{L_x} -g H_0 W h(\frac{1}{2}h - H_0) + H_0 W \phi|_{z=H_0} h_t dx dt$$

Time-discrete version, coupled surface-interior system, use *fd.derivative*: δh^{n+1} , $\delta \varphi^{n+1}$, explicit fderivative ϕ^{n+1} :

$$0 = \delta \int_0^{L_x} \int_0^{H_0} - \left[\frac{1}{2} \frac{L_w^2}{W} h^n (\phi_x^{n+1} + (z/h^n) h_x^n) \phi_z^{n+1})^2 + \frac{1}{2} W \frac{H_0^2}{h^n} (\phi_z^{n+1})^2 \right] dz dx$$
$$+ \int_0^{L_x} -g H_0 W h^n (\frac{1}{2} h^n - H_0) + H_0 W \phi^{n+1}|_{z=H_0} \frac{(h^{n+1} - h^n)}{\Delta t} + H_0 W \phi^n|_{z=H_0} \frac{h^n}{\Delta t} dx$$

Future strategy: Firedrake for complicated VPs

Why? Complexity of eqns associated with VP for waveflap-driven water waves:

$$\begin{split} z^{n+1} = & \eta h^{n+1}/H_0, \quad z_k^{n+1,n} = \frac{(L_w - W^{n+1,n})}{L_w} + \frac{\eta}{H_0} W_x^{n+1,n} \frac{(L_w - \xi)}{L_w} h_\xi^{n+1}, \quad (2.69a) \\ x_\eta^{n+1,n} = & \frac{(L_w - \xi)}{L_w} W_x^{n+1,n} \frac{h^{n+1}}{h^{n+1}}, \quad (2.69c) \\ z_\xi^{n+1,n} = & \frac{(L_w - \xi)}{L_w} W_x^{n+1,n} \frac{h^{n+1}}{h^{n+1}} H_0, \quad (2.69c) \\ W_x^{n+1,n} = & \frac{(L_w - \xi)}{h^{n+1}} H_0, \quad (2.69c) \\ W_x^{n+1,n} = & \frac{(L_w - \xi)}{h^{n+1}} \frac{(L_w - \xi)}{h^{n+1}} \frac{(L_w - \xi)}{h^{n+1}} \frac{(L_w - \xi)}{h^{n+1}}, \quad (2.69c) \\ W_x^{n+1,n} = & \frac{(L_w - \xi)}{h^{n+1}} \frac{(L_w - \xi)}{h^{n+$$

In the above, the definitions in the first lines are short-hands for substitution in the VP in the last line. The two weak formulation following from the variations $\delta\Pi^{\mu}, \delta\varphi^{\nu}$ of $\overline{\mathbb{Z}}$ 699) are solved in unison, solving $\delta\Pi^{\mu}, \delta^{\mu}$ and φ^{ν} , followed by the explicit solver step in the weak formulation resulting from the variation $\delta \delta \Pi^{\mu}, \delta \varphi^{\nu}$ for $\overline{\mathbb{Z}}$ 690). These variations will be undertaken automatically within Firedrule as well as the associated iterative solver for the coupled two weak formulations and the explicit solver for the last

Challenges Firedrake via VPs

Computational-science challenges within Firedrake?

- Coupled interior-free-surface system, two sets of mixed partially canonical variables.
- Weak forms automatically generated: via *fd.derivatives* wrt $\{h^{n+1}(x), \varphi^{n+1}(x,z)\}$ for $\{\phi^{n+1}(x,H_0), \varphi(x,z)^{n+1}\}$, and via
- fd.derivative wrt $\phi^{n+1}(x, H_0)$ for $h^{n+1}(x)$.
- Use linearised system as stepping stone, then add nonlinearity, add piston wavemaker, add waveflap wavemaker,

Outlook

- Firedrake simulation for extreme 3-soliton amplifications: speed-increase needed & MPI.
- Efficiency gain via Firedfrake implemenation via VPs & fd.derivative.
- Moving meshes for water waves within VPs (B 2022), overturning & breaking waves, FSI.

References

- ► Gidel et al. 2022/23: EarthArxiv link (has GitHub link).
- Choi, B, Kalogirou, Kelmanson (2022) Water Waves 4 (has GitHub/Zenodo links).
- ▶ Gidel 2018: PhD thesis Leeds. https://etheses.whiterose.ac.uk/21730/
- B, Kalogirou 2016: Variational Water Wave Modelling: from Continuum to Experiment. Theory of Water Waves, London Math. Soc. 426. preprint link.
- Choi et al 2022: Crossing seas YouTube movie –link.

