import random

import pandas as pd

import seaborn as sns

import matplotlib

pd.set_option('display.max_columns',None)

import numpy as np

df=pd.read_csv(r"E:\Data Analyst RoadMap\CodesOnBytes1 new folder\netflix.csv",parse_dates=["date_added"])

df.set_index('date_added',inplace=True)

df.head()

df.describe()

sns.distplot(df['release_year'])

#to watch outliers clearly

sns.boxplot(df['release_year'])

Z -SCORE METHOD

```
upp_limit=df['release_year'].mean()+3*df['release_year'].std()
low_limit=df['release_year'].mean()-3*df['release_year'].std()
print('upper limit:',upp_limit)
print('lower limit:',low_limit)
```


#find the outliers

df.loc[(df['release_year']>upp_limit)|(df['release_year']<low_limit)]

trimming: Delete the outliers data

new_df=df.loc[(df['release_year']<upp_limit)&(df['release_year']>low_limit)]

print ('removing outliers before:' ,len(df))

print ('removing outliers after:', len(new_df))

print ('detected outliers:',len(df)-len(new_df))

Output:

removing outliers before: 8790 removing outliers after: 8573

detected outliers: 217

sns.boxplot(new_df['release_year'])

#capping: Change the outlier values to Upper or lower limit values

```
new_df=df.copy()
new_df.loc[(new_df['release_year']>upp_limit),'release_year']=upp_limit
new_df.loc[(new_df['release_year']<low_limit),'release_year']=low_limit
sns.boxplot(new_df['release_year'])</pre>
```


len(new_df)

8790

#IQR METHOD

I1=df['release_year'].quantile(0.25)

I3=df['release_year'].quantile(0.75)

iqr=l3-l1

I1,I3,iqr

upp_limit=l3+(1.5*iqr)

 $low_limit=11-(1.5*iqr)$

low_limit,upp_limit

sns.boxplot(df['release_year'])

#find the outliers

df.loc[(df['release_year']>upp_limit)|(df['release_year']<low_limit)]

#trim the outliers

new_df=df.loc[(df['release_year']<upp_limit)&(df['release_year']>low_limit)]
print ('removing outliers before:' ,len(df))
print ('removing outliers after:', len(new_df))

print ('detected outliers:',len(df)-len(new_df))

sns.boxplot(new_df['release_year'])

#capping the outliers

new_df=df.copy()

new_df.loc[(new_df['release_year']>upp_limit),'release_year']=upp_limit
new_df.loc[(new_df['release_year']<low_limit),'release_year']=low_limit
sns.boxplot(new_df['release_year'])</pre>

#PERCENTILE METHOD

upp_limit=df['release_year'].quantile(0.99)

low_limit=df['release_year'].quantile(0.11)

print('upper limit:',upp_limit)

print('lower limit:',low_limit)

sns.boxplot(df['release_year'])

#find the outliers

df.loc[(df['release_year']>upp_limit)|(df['release_year']<low_limit)]

#trim the outliers

new_df=df.loc[(df['release_year']<upp_limit)&(df['release_year']>low_limit)]

print ('removing outliers before:',len(df))

print ('removing outliers after:', len(new_df))

print ('detected outliers:',len(df)-len(new_df))

sns.boxplot(df['release_year'])

#capping the outliers

new_df=df.copy()

new_df.loc[(new_df['release_year']>upp_limit),'release_year']=upp_limit
new_df.loc[(new_df['release_year']<low_limit),'release_year']=low_limit
sns.boxplot(new_df['release_year'])</pre>

sns.distplot(df['release_year'])

sns.distplot(new_df['release_year'])

