

### **ICSE 2025 EXAMINATION**

## **SPECIMEN QUESTION PAPER**

# **MATHEMATICS**

Maximum Marks: 80

Time allowed: Two and half hours

Answers to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Attempt all questions from Section A and any four questions from Section B.

All working, including rough work, must be clearly shown, and must be done on the same sheet as the rest of the answer.

Omission of essential working will result in loss of marks.

The intended marks for questions or parts of questions are given in brackets []

Mathematical tables are provided.

#### Instruction for the Supervising Examiner

Kindly read aloud the Instructions given above to all the candidates present in the Examination Hall.

T25 511 – SPECIMEN 1 of 12

#### **SECTION A**

#### (Attempt all questions from this Section.)

### Question 1

Choose the correct answers to the questions from the given options.

[15]

(Do not copy the question, write the correct answers only.)

- (i) A polynomial in 'x' is divided by (x a) and for (x a) to be a factor of this polynomial, the remainder should be:
  - (a) -a
  - (b) 0
  - (c) a
  - (d) 2a

[Analyze]

(ii) Radha deposited ₹400 per month in a recurring deposit account for 18 months.

The qualifying sum of money for the calculation of interest is:

- (a) ₹ 3600
- (b) ₹ 7200
- (c) ₹ 68,400
- (d) ₹ 1,36,800

[Application]

(iii) In the adjoining figure, AC is a diameter of the circle.

AP = 3 cm and PB = 4 cm and  $QP \perp AB$ .

If the area of  $\Delta APQ$  is  $18~cm^2$ , then the area of shaded portion QPBC is:

- (a)  $32 \text{ cm}^2$
- (b)  $49 \text{ cm}^2$
- (c)  $80 \text{ cm}^2$
- (d)  $98 \text{ cm}^2$



[Understanding & Analysis]

(iv) In the adjoining diagram, O is the centre of the circle and PT is a tangent. The value of x is:











[Application]

(v) In the adjoining diagram the length of PR is:

(a)  $3\sqrt{3}$  cm

(b)  $6\sqrt{3}$  cm







[Application]

(vi) A solid sphere is cut into two identical hemispheres.

**Statement 1:** The total volume of two hemispheres is equal to the volume of the original sphere.

**Statement 2:** The total surface area of two hemispheres together is equal to the surface area of the original sphere.

Which of the following is valid?

(a) Both the statements are true.

(b) Both the statements are false.

(c) Statement 1 is true, and Statement 2 is false.

(d) Statement 1 is false, and Statement 2 is true.

[Analysis]

(vii) Given that the sum of the squares of the first seven natural numbers is 140, then their mean is:

(a) 20

(b) 70

(c) 280

[Understanding

& Evaluation]

(d) 980

- (viii) A bag contains 3 red and 2 blue marbles. A marble is drawn at random.

  The probability of drawing a black marble is:
  - (a) 0
  - (b)  $\frac{1}{5}$
  - (c)  $\frac{2}{5}$
  - (d)  $\frac{3}{5}$

[Application]

(ix) If  $A = \begin{bmatrix} 3 & -2 \end{bmatrix}$  and  $B = \begin{bmatrix} -1 & 4 \\ 2 & 0 \end{bmatrix}$ 

Assertion (A): Product AB of the two matrices A and B is possible.

**Reason (R):** Number of columns of matrix A is equal to number of rows in matrix B.

- (a) A is true, R is false.
- (b) A is false, R is true.
- (c) Both A and R are true, and R is the correct reason for A.
- (d) Both A and R are true, and R is incorrect reason for A.

[Analysis]

(x) A mixture of paint is prepared by mixing 2 parts of red pigments with 5 parts of the base. Using the given information in the following table, find the values of a, b & c to get the required mixture of paint.

| Parts of red pigment | 2 | 4 | b    | 6 |
|----------------------|---|---|------|---|
| Parts of base        | 5 | a | 12.5 | c |

(a) 
$$a = 10, b = 10, c = 10$$

(b) 
$$a = 5, b = 2, c = 5$$

(c) 
$$a = 10, b = 5, c = 10$$

[Application &

(d) a = 10, b = 5, c = 15

**Evaluation**]



- (i) While factorizing a given polynomial, using remainder & factor theorem, [4] a student finds that (2x + 1) is a factor of  $2x^3 + 7x^2 + 2x 3$ .
  - (a) Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial?
  - (b) Give a valid reason for your answer.

    [Analysis & Also, factorize the given polynomial completely.

    Application]
- (ii) A line segment joining P (2, -3) and Q (0, -1) is cut by the x-axis at the point R. A line AB cuts the y axis at T(0,6) and is perpendicular to PQ at S.

  Find the:
  - (a) equation of line PQ
  - (b) equation of line AB
    (c) coordinates of points R and S.
    [Analysis & Evaluation]
- (iii) In the given figure AC is the diameter of the circle with centre O. CD is parallel to BE.

 $\angle AOB = 80^{\circ}$  and  $\angle ACE = 20^{\circ}$ . Calculate

- (a) ∠ BEC
- (b) ∠ BCD
- (c) ∠CED



[Analysis & Evaluation]

#### Question 3

(i) In a Geometric Progression (G.P.) the first term is 24 and the fifth term is

[4]

8. Find the ninth term of the G.P.

[Analysis & Evaluation]

(ii) In the adjoining diagram, a tilted right circular cylindrical vessel with base diameter 7 cm contains a liquid. When placed vertically, the height of the liquid in the vessel is the mean of two heights shown in the diagram. Find the area of wet surface, when the cylinder is placed vertically on a horizontal surface. (Use  $\pi = \frac{22}{7}$ ).



[Application & Evaluation]

[4]

[5]

- (iii) Study the graph and answer each of the following:
  - (a) Write the coordinates of points A, B, C & D.
  - (b) Given that, point C is the image of point A. Name and write the equation of the line of reflection.
  - (c) Write the coordinates of the image of the point D under reflection in y-axis.
  - (d) What is the name given to a point whose image is the point itself?
  - (e) On joining the points A, B, C, D and A in order, a figure is formed.

    Name the closed figure.



[Analyze & Application]

**T25 511 – SPECIMEN** 

7 of 12

#### **SECTION B**

(Attempt any four questions from this Section.)

#### **Question 4**

- (i) A man buys 250, ten-rupee shares each at ₹ 12.50. If the rate of dividend is[3]7%, find the:
  - (a) dividend he receives annually.

[Application &

(b) percentage return on his investment.

**Evaluation** 

(ii) Solve the following inequation, write the solution set and represent it on the real number line. [3]

$$5x - 21 < \frac{5x}{7} - 6 \le -3\frac{3}{7} + x, x \in \mathbb{R}.$$

[Evaluation]

(iii) Prove the following trigonometry identity:

[4]

$$(\sin\theta + \cos\theta) (\csc\theta - \sec\theta) = \csc\theta \cdot \sec\theta - 2 \tan\theta$$

[Application &

**Analysis**]

[3]

#### Question 5

(i) In the given figure (drawn not to scale)
chords AD and BC intersect at P,
where AB = 9 cm, PB = 3 cm and PD = 2 cm.



(a) Prove that  $\triangle APB \sim \triangle CPD$ .

[Application &

(b) Find the length of CD.

**Evaluation**]

(c) Find area  $\triangle APB$ : area  $\triangle CPD$ .

- [3]
- (ii) Mr. Sameer has a recurring deposit account and deposits ₹ 600 per month for 2 years. If he gets ₹ 15600 at the time of maturity, find the rate of interest earned by him.
- [Application & Evaluation]

(ii) Using step-deviation method, find mean for the following frequency distribution

| Class     | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
|-----------|--------|---------|---------|---------|---------|---------|
| Frequency | 3      | 4       | 7       | 6       | 8       | 2       |

[Application & Evaluation]

[4]

#### Question 6

(i) Find the coordinates of the centroid P of the  $\triangle ABC$ , whose vertices are A(-1, 3), B(3, -1) and C(0, 0). Hence, find the equation of a line passing through P and parallel to AB.

[3]
[Analysis &
Evaluation]

(ii) In the given figure PT is a tangent to the circle.

[3]

Chord BA produced meets the tangent PT at P.

Given PT=20cm and PA= 16cm.

- (a) Prove  $\triangle PTB \sim \triangle PAT$
- (b) Find the length of AB.



[Analysis & Evaluation]

(iii) The following bill shows the GST rate and the marked price of articles:

[4]

| Rajdhani Departmental Store |                          |        |          |         |  |  |  |  |
|-----------------------------|--------------------------|--------|----------|---------|--|--|--|--|
| S. No.                      | Item                     | Marked | Discount | Rate of |  |  |  |  |
|                             |                          | Price  |          | GST     |  |  |  |  |
| (a)                         | Dry fruits (1 kg)        | ₹ 1200 | ₹100     | 12%     |  |  |  |  |
| (b)                         | Packed Wheat flour (5kg) | ₹ 286  | Nil      | 5%      |  |  |  |  |
| (c)                         | Bakery products          | ₹ 500  | 10%      | 12%     |  |  |  |  |

[Application & Evaluation]

Find the total amount to be paid (including GST) for the above bill.

(i) A vertical tower standing on a horizontal plane is surmounted by a vertical flagstaff. At a point 100m away from the foot of the tower, the angle of elevation of the top and bottom of the flagstaff are 54° and 42° respectively. Find the height of the flagstaff. Give your answer correct to nearest metre.



[Application & Evaluation]

[5]

[5]

(ii) The marks of 200 students in a test were recorded as follows:

| Marks<br>%      | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
|-----------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| No. of students | 5      | 7       | 11      | 20      | 40      | 52      | 36      | 15      | 9       | 5        |

Using graph sheet draw ogive for the given data and use it to find the,

- (a) median,
- (b) number of students who obtained more than 65% marks

[Application,

Analysis &

(c) number of students who did not pass, if the pass percentage was 35.

**Evaluation** 

### **Question 8**

- (i) In a TV show, a contestant opts for video call a friend life line to get an answer from three of his friends, named Amar, Akbar & Anthony. The question which he asks from one of his friends has four options. Find the probability that:
- [3]

(a) Akbar is chosen for the call.

[Analysis &

(b) Akbar couldn't give the correct answer.

**Evaluation** 

(ii) If x, y and z are in continued proportion, Prove that:

[3]

 $\frac{x}{y^2 \cdot z^2} + \frac{y}{z^2 \cdot x^2} + \frac{z}{x^2 \cdot y^2} = \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}$ 

[Application & Analysis]

(iii) A manufacturing company prepares spherical ball bearings, each of radius 7 mm and mass 4 gm. These ball bearings are packed into boxes. Each box can have maximum of 2156 cm<sup>3</sup> of ball bearings. Find the:

maximum number of ball bearings that each box can have.

[Analysis,

[4]

(b) mass of each box of ball bearings in kg.

Application &

(use 
$$\pi = \frac{22}{7}$$
)

**Evaluation**]

### **Question 9**

(a)

(i) The table given below shows the runs scored by a cricket team during the overs of a match. [3]

| Overs   | Runs scored |
|---------|-------------|
| 20 – 30 | 37          |
| 30 – 40 | 45          |
| 40 – 50 | 40          |
| 50 - 60 | 60          |
| 60 – 70 | 51          |
| 70 - 80 | 35          |

Use graph sheet for this question.

Take 2 cm = 10 overs along one axis and 2 cm = 10 runs along the other axis.

(a) Draw a histogram representing the above distribution.

[Application &

(b) Estimate the modal runs scored.

Evaluation]

(ii) An Arithmetic Progression (A.P.) has 3 as its first term. The sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference of the A.P.

[Analysis,

[3]

Application &

**Evaluation**]

(iii) The roots of equation  $(q-r) x^2 + (r-p) x + (p-q) = 0$  are equal.

[4]

Prove that: 2q = p + r, that is, p, q & r are in A.P.

[Application &

Analysis]

- (i) A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.
- [Analysis,
  Application &
  Evaluation]
- (ii) Given matrix,  $X = \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix}$  and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ , prove that  $X^2 = 4X + 5I$  [3] [Application &
- (iii) Use ruler and compasses for the following question taking a scale of 10 m=1 cm.
  [4] A park in a city is bounded by straight fences AB, BC, CD and DA.
  Given that AB = 50 m, BC = 63 m, ∠ABC = 75°. D is a point equidistant from the fences AB and BC. If ∠BAD = 90°, construct the outline of the park ABCD.
  - Also locate a point P on the line BD for the flag post which is equidistant from the corners of the park A and B. [Analysis & Creativity]

T25 511 – SPECIMEN 12 of 12



# **ICSE 2025 SPECIMEN**

## **DRAFT MARKING SCHEME – MATHEMATICS**

| Questi | on 1                                                          |      |
|--------|---------------------------------------------------------------|------|
| (i)    | (b) 0                                                         | [15] |
| (ii)   | (c) ₹ 68,400                                                  | -    |
| (iii)  | (c) $80 \text{ cm}^2$                                         | 1    |
| (iv)   | (a) 20°                                                       |      |
| (v)    | (b) $6\sqrt{3}$ cm                                            |      |
| (vi)   | (c) Statement 1 is true, and Statement 2 is false.            | 1    |
| (vii)  | (a) 20                                                        |      |
| (viii) | (a) 0                                                         |      |
| (ix)   | (c) Both A and R are true, and R is the correct reason for A. |      |
| (x)    | (d) $a = 10, b = 5, c = 15$                                   | _    |
| (xi)   | (d) ₹86.40                                                    |      |
| (xii)  | (c) ₹1925                                                     | 1    |
| (xiii) | (d) ±1                                                        | 1    |
| (xiv)  | (b) $x - y = 7$                                               | -    |
| (xv)   | (a) Ø                                                         | -    |
| Ouesti |                                                               |      |

### Question 2

(i) 
$$f(x) = 2x^{3} + 7x^{2} + 2x - 3$$

$$f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^{3} + 7\left(-\frac{1}{2}\right)^{2} + 2\left(-\frac{1}{2}\right) - 3 \neq 0$$

$$\therefore (2x+1) \text{ is not a factor of } f(x).$$

$$f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^{3} + 7\left(\frac{1}{2}\right)^{2} + 2\left(\frac{1}{2}\right) - 3 = 0$$

$$\therefore (2x-1) \text{ is a factor of } f(x)$$



| -      |                                                                                                                                                                        |     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | $   \begin{array}{r}     x^2 + 4x + 3 \\     2x - 1 \overline{\smash{\big)}2x^3 + 7x^2 + 2x - 3}   \end{array} $                                                       |     |
|        | $2x^3 - x^2$                                                                                                                                                           |     |
|        | $8x^2 + 2x$                                                                                                                                                            |     |
|        | $8x^2-4x$                                                                                                                                                              |     |
|        | 6x-3                                                                                                                                                                   |     |
|        | 6x-3                                                                                                                                                                   |     |
|        | ××                                                                                                                                                                     |     |
|        | $f(x) = (2x - 1)(x^2 + 4x + 3)$                                                                                                                                        |     |
|        | f(x) = (2x - 1)(x + 3)(x + 1)                                                                                                                                          | -   |
| (ii)   | (a) Slope of $PQ = -1$                                                                                                                                                 | [4] |
|        | Equation of PQ: $x + y + 1 = 0$                                                                                                                                        |     |
|        | (b) Slope of $AB = 1$                                                                                                                                                  |     |
|        | $\therefore Eq of line AB, x - y + 6 = 0$                                                                                                                              |     |
|        | (c) $R(-1,0)$                                                                                                                                                          | -   |
|        | $S\left(-\frac{7}{2},\frac{5}{2}\right)$                                                                                                                               |     |
|        | 2'2)                                                                                                                                                                   |     |
| (iii)  | (a) $\angle BOC = 180^{\circ} - 80^{\circ} = 100^{\circ} \rightarrow \angle BEC = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$                                         | [4] |
|        | ( $\angle$ at centre is twice the $\angle$ in remaining segment)                                                                                                       |     |
|        | (b) $\angle BCD = \angle BCA + \angle ACE + \angle ECD = 40^{\circ} + 20^{\circ} + 50^{\circ} = 110^{\circ}$                                                           |     |
|        | (c) $\angle CED = 180^{\circ} - 110^{\circ} - 50^{\circ} = 20^{\circ}$                                                                                                 |     |
|        |                                                                                                                                                                        |     |
| Questi | on 3                                                                                                                                                                   |     |
| (i)    | $a = 24 \text{ and } T_5 = 8 \rightarrow ar^4 = 8 \rightarrow r^4 = \frac{1}{3}, \therefore T_9 = ar^8 \rightarrow 24 \times \left(\frac{1}{3}\right)^2 = \frac{8}{3}$ | [4] |
| (ii)   | $h = \frac{1}{2}(1+6), given \rightarrow h = \frac{7}{2}$                                                                                                              | [4] |
|        | Area of wet surface = $\pi r^2 + 2\pi rh \rightarrow \pi r(r+2h)$                                                                                                      |     |
|        | $= \frac{22}{7} \times \frac{7}{2} \left( \frac{7}{2} + 2 \times \frac{7}{2} \right) = 115.5 \ cm^2$                                                                   |     |
|        | $=\frac{7}{7} \times \frac{1}{2} (\frac{1}{2} + 2 \times \frac{1}{2}) = 115.5 \text{ cm}^{-1}$                                                                         |     |
| (iii)  | (a) $A(3,3), B(-2,1), C(3,-1)$ and $D(0,1)$                                                                                                                            | [5] |
|        | (b) $BD$ and $y = 1$ is the line of reflection.                                                                                                                        |     |
|        | (c) $D(0,1)$                                                                                                                                                           |     |
|        | (d) Invariant point.                                                                                                                                                   |     |
|        | (e) Concave Quadrilateral or Arrowhead.                                                                                                                                |     |
|        |                                                                                                                                                                        |     |

T25 511 - SPECIMEN Page 2 of 8



### SECTION - B

| Quest  | ion 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (i)    | (a) Annual Dividend = $250 \times 10 \times \frac{7}{100} = ₹175$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [3] |
|        | (b) Return $\% = \frac{7 \times 10}{12.50} = 5.6 \%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| (ii)   | $5x - 21 < \frac{5x}{7} - 6 \le -3\frac{3}{7} + x, x \in R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [3] |
|        | $5x - 21 < \frac{5x}{7} - 6 \qquad \qquad \frac{5x}{7} - 6 \le -3\frac{3}{7} + x$                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | $5x - \frac{5x}{7} < -6 + 21$ $\frac{5x}{7} - x \le -\frac{24}{7} + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |
|        | $\frac{35x - 5x}{7} < 15 \qquad \qquad \frac{5x - 7x}{7} \le \frac{-24 + 42}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|        | $30x < 105 \qquad \qquad -2x \le 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |
|        | $x < 3.5 \qquad x \ge -9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|        | $\left\{x: -9 \le x < \frac{7}{2}, x \in R\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| (iii)  | $LHS = (\sin\theta + \cos\theta)(\csc\theta - \sec\theta)$ $= (\sin\theta + \cos\theta)\left(\frac{1}{\sin\theta} - \frac{1}{\cos\theta}\right) = (\sin\theta + \cos\theta)\left(\frac{\cos\theta - \sin\theta}{\sin\theta \cdot \cos\theta}\right)$ $= \frac{\cos^2\theta - \sin^2\theta}{\sin\theta \cdot \cos\theta} = \frac{1 - 2\sin^2\theta}{\sin\theta \cdot \cos\theta} = \frac{1}{\sin\theta \cdot \cos\theta} - \frac{2\sin^2\theta}{\sin\theta \cdot \cos\theta}$ $= \csc\theta \cdot \sec\theta - 2\tan\theta = RHS$ | [4] |
| Questi | on 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| (i)    | (a) In $\triangle APB$ and $\triangle CPD$ , $\angle BAP = \angle DCP$ ( $\angle s$ on same segment) $\angle ABP = \angle CDP \ (\angle s \ on \ same \ segment)$ $\therefore \triangle APB \sim \triangle CPD \ (AA \ axiom)$                                                                                                                                                                                                                                                                                                   | [3] |
|        | (b) $\frac{AB}{CD} = \frac{3}{2} \therefore CD = 6cm$<br>(c) $\frac{area (\Delta APB)}{area \Delta CPD} = \frac{BP^2}{DP^2} = \frac{9}{4} \rightarrow 9:4$                                                                                                                                                                                                                                                                                                                                                                       |     |



| (ii)    | 0                                                      | <i>c</i> · <i>c</i>            | $n = \frac{600 \times 24}{2}$                  | × 25                 | 1 00 000              |   | [3] |
|---------|--------------------------------------------------------|--------------------------------|------------------------------------------------|----------------------|-----------------------|---|-----|
|         | 1                                                      |                                |                                                |                      |                       |   |     |
|         | Intere                                                 |                                |                                                |                      |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
|         |                                                        |                                | ty Value = ₹<br>24 + 150r = ₹                  |                      |                       |   |     |
|         |                                                        |                                |                                                |                      | 00                    |   |     |
|         | 150r :                                                 | = ₹15600                       | <b>-</b> ₹14400 →                              | $r = \frac{12}{15}$  | $\frac{30}{60} = 8\%$ |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
| (iii)   | Class                                                  | x                              | u = d/i                                        | f                    | fu                    |   | [4] |
|         | 0 – 15                                                 | 7.5                            | -3                                             | 3                    | -9                    |   |     |
|         | 15 – 30                                                | 22.5                           | -2                                             | 4                    | - 8                   |   |     |
| æ       | 30 – 45                                                | 37.5                           | -1                                             | . 7                  | -7                    |   |     |
|         | 45 – 60                                                | 52.5                           | 0                                              | 6                    | 0                     |   |     |
|         | 60 – 75                                                | 67.5                           | 1                                              | 8                    | 8                     |   |     |
|         | 75 – 90                                                | 82.5                           | 2                                              | 2                    | 4                     |   |     |
|         |                                                        | *:                             |                                                | 30                   | -12                   |   |     |
|         | Mean = A                                               | -                              |                                                |                      |                       |   |     |
|         |                                                        | $\sum f$                       |                                                | 30                   | 0210                  |   |     |
|         |                                                        |                                | = 46.50                                        |                      |                       |   |     |
|         | A 3                                                    |                                |                                                |                      |                       |   |     |
| 0 4:    |                                                        |                                |                                                |                      |                       |   |     |
| Questio |                                                        | 1)+0 )                         | (2.2)                                          |                      |                       | 1 | [2] |
| (i)     | (a) $P\left(\frac{-1+3+0}{3}, \frac{3+(-3)}{3}\right)$ | $\left(\frac{1}{1}\right) = P$ | $\left(\frac{2}{3},\frac{2}{3}\right)$         |                      |                       |   | [3] |
|         | (b) $m_{AB} = \frac{-1-(3)}{3-(-1)} =$                 | $=\frac{-4}{4}=-1$             | $m_{CD} = -$                                   | -1                   |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
|         | Required equ                                           | ation, y —                     | $\frac{1}{3} = -1\left(x - \frac{1}{3}\right)$ | $(3) \rightarrow 3x$ | +3y=4                 |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
| (ii)    | (a) In $\triangle PTB$ and $\triangle$                 | PAT,∠PTA                       | $A = \angle PBT$ (a                            | lt. segm             | ent th.)              |   | [3] |
|         |                                                        | $\angle TPA =$                 | ∠BPT (com                                      | mon ∠)               |                       |   |     |
|         |                                                        | ∴ ∆PTB ·                       | $\sim \Delta PAT$ (AA                          | axiom)               |                       |   |     |
|         | (b) $PA \times PB = PT^2$                              | $^2 \rightarrow 16(16$         | + AB) = 400                                    | <b>→</b> 16 +        | AB = 25               |   |     |
|         | $\rightarrow AB = 9 cm$                                |                                |                                                |                      |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |
|         |                                                        |                                |                                                |                      |                       |   |     |



| (iii)   |                                                                                                 | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                 |                                       |     |
|---------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-----|
|         | S.<br>No.                                                                                       | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marked<br>Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Discounted<br>Price                                                                                                                                      | GST             | Tax                                   |     |
|         | 1.                                                                                              | Dry Fruits (1kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₹ 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹ 1100                                                                                                                                                   | 12%             | $\frac{12 \times 1100}{100} = 132$    |     |
|         | 2.                                                                                              | Wheat<br>Flour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₹ 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹ 286                                                                                                                                                    | 5%              | $\frac{5 \times 286}{100} = 14.30$    |     |
|         | 3.                                                                                              | Bakery<br>Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹ 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹ 450                                                                                                                                                    | 12%             | $\frac{12 \times 450}{100} = 54$      |     |
|         | Total                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹1836                                                                                                                                                    |                 | ₹ 200.30                              |     |
|         | Grand                                                                                           | d total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹                                                                                                                                                        | 2036.30         |                                       |     |
| Questio | n 7                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                 |                                       |     |
|         | <del></del> =                                                                                   | $0.9004 \rightarrow A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B = 90.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lm                                                                                                                                                       |                 |                                       |     |
|         | $In \Delta P$ $\frac{AF}{100} =$                                                                | $= 0.9004 \rightarrow A$ $AF,  \frac{AF}{PA} = 1$ $= 1.3764 \rightarrow A$ $= 137.64 m - 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $tan 54^{\circ}$ $F = 137.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54 m                                                                                                                                                     | 48 m            |                                       |     |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$                                                                | $AF$ , $\frac{AF}{PA} = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $tan 54^{\circ}$ $F = 137.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54 m                                                                                                                                                     | 48 m            |                                       | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$                                                                | $AF,  \frac{AF}{PA} = 1$ $= 1.3764 \rightarrow A$ $= 137.64 m - 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f = 137.6 $f = 137.6$ $f = 137.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54 m                                                                                                                                                     | 48 m            |                                       | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$                                                         | $AF,  \frac{AF}{PA} = 1$ $= 1.3764 \rightarrow A$ $137.64 m - 9$ $= 1.3764 m - 9$ $= 1.3764 m - 9$ $= 1.3764 m - 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f = 137.6 $f = 137.6$ $f = 137.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64 m $47.60 m = 4$                                                                                                                                       |                 | $n = 53 \pm 1$                        | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $Marks$                                                 | $AF,  \frac{AF}{PA} = 1$ $= 1.3764 \rightarrow A$ $137.64 m - 9$ $= 1.3764 m - 9$ | f = 137.6 $f = f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64 m $47.60 m = 4$ $cf$                                                                                                                                  | Media           | $n = 53 \pm 1$ $than 65\% = 46 \pm 2$ | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $Marks$ $0 -$                                           | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow A$ = 137.64 $m - 9$ = $8 (\%)$ = $10$ = $20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $tan 54^{\circ}$ $F = 137.6$ $90.04 m = \frac{f}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64 m $47.60 m = 6$ $cf$ $5$ $(a)$                                                                                                                        | Media<br>More t |                                       | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $Marks$ $0 -$ $10 -$                                    | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow$ A = 137.64 $m - 9$ = (%) = 10 = 20 = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $tan 54^{\circ}$ $F = 137.6$ $90.04 m = \frac{f}{5}$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64 m $47.60 m = 4$ $cf$ $5$ $(a)$ $12$ $(b)$                                                                                                             | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $Marks$ $0 -$ $10 -$ $20 -$                             | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow$ A = 137.64 $m - 9$ = (%) = 10 = 20 = 30 = 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $tan 54^{\circ}$ $F = 137.6$ $90.04 m = \frac{f}{5}$ $7$ $11$ $20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                   | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $0 -$ $10 -$ $20 -$ $30 -$                              | $AF, \frac{AF}{PA} = 1$ $= 1.3764 \rightarrow A$ $= 137.64 m - 9$ $= 8 (\%)$ $= 10$ $= 20$ $= 30$ $= 40$ $= 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $tan 54^{\circ}$ $F = 137.6$ $90.04 m = $ $f$ $5$ $7$ $11$ $20$ $40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                   | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $0 -$ $10 -$ $20 -$ $30 -$ $40 -$                       | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow$ A 137.64 $m - 9$ s (%) 10 - 20 - 30 - 40 - 50 - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $tan 54^{\circ}$ $F = 137.6$ $90.04 m = $ $\frac{f}{5}$ $\frac{7}{11}$ $\frac{20}{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c} 64 m \\ 47.60 m = 4 \\ \hline cf \\ 5 \\ 12 \\ 0 \\ 0 \\ 0 \end{array} $ (a) (b) (c) $ \begin{array}{c c} 43 \\ 83 \\ \end{array} $ | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $0 -$ $10 -$ $20 -$ $30 -$ $40 -$ $50 -$                | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow$ A 137.64 $m - 9$ s (%)  10 -20 -30 -40 -50 -60 -70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f = 137.6 $f = 137.6$ $f = 137.6$ $f = 11$ $f = 11$ $f = 13$ $f = 11$ $f = 13$ $f = 11$ $f = 13$ $f$ | $ \begin{array}{c c} 64 m \\ 47.60 m = 4 \\ \hline cf \\ 5 \\ 12 \\ 0 \\ 0 \\ 0 \end{array} $ (a) (b) 23 (c) 43 83                                       | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |
| (ii)    | $In \Delta P$ $\frac{AF}{100} =$ $FB =$ $Marks$ $0 -$ $10 -$ $20 -$ $30 -$ $40 -$ $50 -$ $60 -$ | $AF, \frac{AF}{PA} = 1$ = 1.3764 $\rightarrow$ A 137.64 $m - 9$ s (%)  10 -20 -30 -40 -50 -60 -70 -80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f = 137.6 $90.04 m = $ $f = 137.6$ $7$ $11$ $20$ $40$ $52$ $36$ $15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                   | Media<br>More t | than 65% = 46 $\pm$ 2                 | [6] |

T25 511 - SPECIMEN Page 5 of 8





(i). (a) 
$$P(Akbar) = \frac{1}{3}$$
 [3]

(b)  $P(not\ correct\ answer) = 1 - \frac{1}{4} = \frac{3}{4}$ 

(ii) 
$$\frac{x}{y} = \frac{y}{z} \to y^2 = xz$$

$$LHS = \frac{x}{y^2 \cdot z^2} + \frac{y}{z^2 \cdot x^2} + \frac{z}{x^2 \cdot y^2} = \frac{x^3 + y^3 + z^3}{x^2 \cdot y^2 z^2}$$

$$\frac{x^3 + y^3 + z^3}{x^3 z^3} = \frac{x^3}{x^3 z^3} + \frac{y^3}{x^3 z^3} + \frac{z^3}{x^3 z^3}$$

$$= \frac{1}{z^3} + \frac{y^3}{y^6} + \frac{1}{x^3} = \frac{1}{z^3} + \frac{1}{y^3} + \frac{1}{x^3} = RHS$$



| (iii) | (a) No. of ball bearings = $\frac{2156}{\frac{4}{3} \times \pi \times r^3} = \frac{2156}{\frac{4}{3} \times \frac{22}{7} \times \left(\frac{7}{10}\right)^3}$ | [4] |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | $= \frac{2156 \times 3 \times 7 \times 10 \times 10 \times 10}{4 \times 22 \times 7 \times 7 \times 7} = 1500$                                                |     |
|       | (b) Mass of each box = $4 gm \times 1500 = 6 kg$                                                                                                              |     |



(ii) 
$$a = 3$$
,  $S_8 = 2S_5 \rightarrow \frac{8}{2}[2 \times 3 + (8 - 1)d] = 2\{\frac{5}{2}[2 \times 3 + (5 - 1)d]\}$   $\{6 + 7d\} = 5[6 + 4d] \rightarrow 24 + 28d = 30 + 20d \rightarrow d = \frac{3}{4}$ 

(iii) 
$$a = q - r, b = r - p \text{ and } c = p - q$$

$$for equal roots, b^{2} = 4ac \rightarrow (r - p)^{2} = 4 (q - r)(p - q)$$

$$r^{2} + p^{2} - 2pr = 4[pq - q^{2} - pr + qr)$$

$$r^{2} + p^{2} - 2pr + 4pr = 4[pq - q^{2} + qr]$$

$$(p + r)^{2} = 4[q(p + r) - q^{2}]$$
[4]



|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coc. 7 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | $(p+r)^2 - 4q(p+r) + 4q^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|          | let(p+r) = y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|          | $y^2 - 4qy + 4q^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|          | $(y-2q)^2=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|          | y-2q=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|          | or p + r = 2q $proved$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Question | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| (i)      | $\frac{72}{x} + \frac{81}{x+6} = 3 \to \frac{24}{x} + \frac{27}{x+6} = 1 \to \frac{24(x+6) + 27x}{x(x+6)} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3]    |
|          | $x^2 - 45x - 144 = 0 \rightarrow (x - 48)(x + 3) \rightarrow x = 48 \frac{km}{hr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4      |
| (ii)     | $X^{2} = \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 \times 1 + (1) \times (8) & 1 \times (1) + (1) \times 3 \\ (8) \times 1 + 3 \times (8) & (8) \times (1) + 3 \times 3 \end{bmatrix}$ $= \begin{bmatrix} 1 + 8 & 1 + 3 \\ 8 + 24 & 8 + 9 \end{bmatrix}$ $\therefore X^{2} = \begin{bmatrix} 9 & 4 \\ 32 & 17 \end{bmatrix}$ $and 4X = 4 \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 32 & 12 \end{bmatrix}$ $4X + 5I = \begin{bmatrix} 4 & 4 \\ 32 & 12 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 9 & 4 \\ 32 & 17 \end{bmatrix}$ $\therefore X^{2} = 4X + 5I,  proved$ | [3]    |
| (iii)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |