Cycle-GAN

•••

github.com/gvsakashb/cyc-gan

Akash

Contents

- Re-implementation
- Changes and tweaks
- Metrics and output
- Status update
- Deliverables

Re-implementation & extensibility

- 1. Achieved images comparable to best results and reconstructions.
 - a. Improvements in *horse2zebra* and *yosemite* images generated after changes in util, options directory for helper files.
 - i. Reconstruction errors and results have also been generated for the report.
- 2. Comparison of various models (parameter tuning) and the images,
 - a. Best metrics for content_loss, --netG, normalization, etc. have been illustrated.
- 3. Tabulated the losses for D, G and developed new models with resized convolutions.
 - a. Initial changes to train_options.py file and data directory's codebase.
 - b. A separate implementation from scratch, mainly to assess and study the architecture...

Best results

Monet2Photo

Summer2Winter_Yosemite

models

util

options

scripts

data

simple-cg

.py files (main, model, tests, util)

Tweaks

- The original repo has been explored by modifying various parameters in each iteration of the datasets.
- A new directory (<u>simple-cg</u>) has been developed with trained models and submitted.
- Improvements observed include clarity, dehazing and reducing noise.
- Developed a separate model to log and save the adversarial losses and the analysis for various runs changing the lr-policy & --netG parameters.

Metrics

Identity loss (optional): lambda_identity * ($||G_A(B) - B||$ * lambda_B + $||G_B(A) - A|$

Also, in contrast to the basic model (70x70 PatchGAN), we usually tune n_layers in the discriminator for in the options directory.

Here, we eliminate that compelxity by just modifying the code in model.py and trainpy accordingly for our models as needed.

In [10]: !python main.py -	-training 1	Fruenorm 'batch'	
дроси: (49) (21/ 30)	Generator Loss:0.23eT00	DISCLIMINATOR POSS:2.216-01
Epoch: (49) (22/ 30)	Generator Loss:6.91e+00	Discriminator Loss:6.18e-01
Epoch: (49) (23/ 30)	Generator Loss:6.31e+00	Discriminator Loss:5.11e-01
Epoch: (49) (24/ 30)	Generator Loss:5.88e+00	Discriminator Loss:4.32e-01
Epoch: (49) (25/ 30)	Generator Loss:5.56e+00	Discriminator Loss:3.21e-01
Epoch: (49) (26/ 30)	Generator Loss:5.43e+00	Discriminator Loss:3.29e-01
Epoch: (49) (27/ 30)	Generator Loss:8.67e+00	Discriminator Loss:2.70e-01
Epoch: (49) (28/ 30)	Generator Loss:9.99e+00	Discriminator Loss:4.74e-01
Epoch: (49) (29/ 30)	Generator Loss:5.23e+00	Discriminator Loss:4.88e-01
Epoch: (49) (30/ 30)	Generator Loss:7.73e+00	Discriminator Loss:3.01e-01
learning rate = 0	.0005000		•
Epoch: (50) (1/ 30)	Generator Loss:7.01e+00	Discriminator Loss:4.59e-01
Epoch: (50) (2/ 30)	Generator Loss:6.48e+00	Discriminator Loss:5.37e-01
Epoch: (50) (3/ 30)	Generator Loss:6.30e+00	Discriminator Loss:4.42e-01
Epoch: (50) (4/ 30)	Generator Loss:6.05e+00	Discriminator Loss:3.03e-01
Epoch: (50) (5/ 30)	Generator Loss:5.92e+00	Discriminator Loss:1.36e-01
Epoch: (50) (6/ 30)	Generator Loss:5.48e+00	Discriminator Loss:2.33e-01
Epoch: (50) (7/ 30)	Generator Loss:6.35e+00	Discriminator Loss:2.95e-01
Epoch: (50) (8/ 30)	Generator Loss:6.93e+00	Discriminator Loss:4.42e-01
Epoch: (50) (9/ 30)	Generator Loss:5.64e+00	Discriminator Loss:4.63e-01

<u>Task</u>	<u>dataset</u>	<u>metric</u>	<u>value</u>
Img-to-img translation	ukiyoe	Class IoU score	0.1012
Img-to-img translation	monet-photo	Quality	0.408
Img-to-img translation	horse-zebra	Per-pixel accuracy /ablation study score	0.52
Img-to-img translation	horse-zebra	Per-class accuracy	0.17

Re-implementation results ^

From newer implementation:

Reconstruction (results)

Status:

- Successful implementations and models for h2z, monet, ukiyoe and seasonal datasets have been done.
- 2. A simpler version of cycle-gan model, with easier access to parameter tuning has been developed and trained.
 - a. Two approaches with better latency, to compare batch vs instance norm.
- 3. Comparative analysis of loss of G & D against each epoch in training has been tabulated.
- 4. Improved latency with changes to train & model.py files.

Issues:

- Setup and latency of the nvidia-docker image for the official docker file, resorted to AWS and then deploying to Docker.
- Object transfiguration and some errors in hue and tint of images (especially Ukiyo-e)

Deliverables:

- Repository with both versions
 - Re-implementation & simple-cg directories
 - Trained notebooks and code
- Deep Learning AMI
 - Ready to deploy / trained models for each dataset (h2z, monet, seasonal & art styles)
 - Simple-cg implementation and tabulated metrics(losses)
 - Access key for AMI and readme for opening the EC2 instance
- Final report & documentation, results

• Additional: Working on scaling AMI upon Docker image* (with accompanying file)