ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина:

«Вычислительная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

«Численное решение нелинейных уравнений и систем»

Вариант 11

Выполнил:

Студент гр. P32151 Черных Роман Александрович

Проверил:

Машина Екатерина Алексеевна

Санкт-Петербург 2023г.

Цель работы: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Используемые методы:

• Метод половинного деления:

Блок-схема

Рабочая формула: $x_i = \frac{a_i + b_i}{2}$

Критерий окончания: $|b_n - a_n| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$

 Метод простой итерации Рабочая формула:

$$x_{i+1} = \varphi(x_i)$$

Геометрический смысл:

Достаточное условие сходимости: $\varphi'(x) \le q < 1$

Критерий окончания: $|x_n - x_{n-1}| \le \varepsilon$

• Метод хорд

Рабочая формула:
$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{(f(b_i) - f(a_i))}$$

Критерий окончания: $|x_i - x_{i-1}| \le \varepsilon$ или $|a_i - b_i| \le \varepsilon$ или $|f(x_i)| \le \varepsilon$ Визуализация:

• Метод секущих

Рабочая формула:
$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

Критерий окончания: $|x_n - x_{n-1}| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$

• Метод Ньютона

Приведем систему уравнений к эквивалентному виду:

$$\begin{cases} F_1(x_1, x_2, \dots, x_n) = 0 \\ F_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ F_n(x_1, x_2, \dots, x_n) = 0 \end{cases} \begin{cases} x_1 = \varphi_1(x_1, x_2, \dots, x_n) \\ x_2 = \varphi_2(x_1, x_2, \dots, x_n) \\ \dots \\ x_n = \varphi_n(x_1, x_2, \dots, x_n) \end{cases}$$

Или, в векторной форме:
$$\pmb{X} = \pmb{\varphi}(\pmb{X})$$
 $\qquad \pmb{\varphi}(\pmb{X}) = \begin{pmatrix} \varphi_1(\pmb{X}) \\ \varphi_2(\pmb{X}) \\ \dots \\ \varphi_n(\pmb{X}) \end{pmatrix}$

Если выбрано начальное приближение: $\pmb{X}^{(0)} = x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}$, последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(k+1)} = \varphi_1(x_1^k, x_2^k, \dots, x_n^k) \\ x_2^{(k+1)} = \varphi_2(x_1^k, x_2^k, \dots, x_n^k) \\ \dots \\ x_n^{(k+1)} = \varphi_n(x_1^k, x_2^k, \dots, x_n^k) \end{cases} \qquad k = 0, 1, 2, \dots$$

Критерий окончания итерационного процесса:

$$\max_{1 < i < n} \left| x_i^{(k+1)} - x_i^k \right| \le \varepsilon$$

Вычислительная реализация задачи:

Функция:
$$y = 4,45x^3 + 7,81x^2 - 9,62x - 8,17$$

1) Отделить корни графически

- 2) Определить интервалы изоляции корней:
 - а. интервал первого корня: (-3; -2)
 - b. интервал второго корня: (-1; 0)
 - с. интервал третьего корня: (1; 2)
- 3) Уточнить корни с точностью $\varepsilon=10^{-2}$
- 4) Методы для уточнения корней:
 - а. крайний правый корень: метод половинного деления
 - b. крайний левый корень: метод простой итерации
 - с. центральный корень: метод хорд

5) Таблицы уточнений:

Метод половинного деления для правого корня

№	a	b	X	F(a)	F(b)	F(x)	a-b
шага							
0	1	2	1.5	-5.53	39.43	9.99	1
1	1	1.5	1.25	-5.53	9.99	0.7	0.5
2	1	1.25	1.12	-5.53	0.7	-2.77	0.25
3	1.12	1.25	1.19	-2.77	0.7	-1.13	0.12
4	1.19	1.25	1.22	-1.13	0.7	-0.24	0.06
5	1.22	1.25	1.23	-0.24	0.7	0.22	0.03
6	1.22	1.23	1.23	-0.24	0.22	-0.01	0.02
7	1.23	1.23	1.23	-0.01	0.22	-0.01	0.01

Метод простой итерации для левого корня

№	X_k	X_{k+1}	$F(X_{k+1})$	$ X_{k+1}-X_k $
шага				
0	-3.0	-2.54	-6.34	0.46
1	-2.54	-2.44	-2.92	0.1
2	-2.44	-2.4	-1.51	0.05
3	-2.4	-2.37	-0.82	0.02
4	-2.37	-2.36	-0.46	0.01
5	-2.36	-2.35	-0.26	0.01

Метод хорд для центрального корня

No	a	b	X	F(a)	F(b)	F(x)	a-b
шага							
0	-1.0	0.0	0.0	4.81	-8.17	-8.17	1.0
1	-1.0	-0.63	-0.63	4.81	-0.13	-0.13	0.37
2	-0.65	-0.63	-0.63	0.01	-0.13	-0.13	0.01

Примеры работы:

```
Введите 1, чтобы выбрать одно уравнение, 2, чтобы выбрать систему уравнений: 1
1 - x^3 - 3.125x^2 - 3.5x + 2.458
2 - x^2 - 3x - 2
3 - sin(x) - cos(x) + 0.2x
Введите номер желаемой функции: 1
Введите 1, чтобы ввести интервал, 2, чтобы запустить автоматический поиск интервала: 2
Найден интервал: [-1.5, -1.0]
Введите 1, чтобы найти следующий интервал, 2, чтобы выбрать этот интервал: 2
а = -1.5, b = -1.0
Введите точность: 0.001
Введите 1, чтобы выбрать метод хорд, 2 чтобы выбрать метод простой итерации: 1
Корень: -1.2496369199514272 найден за 5 итераций, f(x) = 0.0003293141735571936
```


Вывод:

В ходе выполнения лабораторной работы были изучены методы нахождения корня нелинейного уравнения и нескольких корней системы нелинейных уравнений. На практике были выявлены преимущества и недостатки каждого из методов: метод половинного деления самый простой, но зачастую требует большее количество операций, метод хорд чуть сложнее в реализации, но требует меньше операций, чем метод половинного деления, метод простых итераций оказался самым сложным среди других методов, затрачивает значительное количество операций и сложен в реализации. К достоинствам метода Ньютона для решения систем нелинейных уравнений можно отнести быструю сходимость, а к недостаткам: необходимо выбирать начальное приближение и необходимо вычислять производные на каждом из шагов. Исходя из этого, метод половинного деления лучше всего подходит для решения нелинейных уравнений, он прост в реализации и обладает высокой точностью.