API functions Respond Time

Reset	4945
Login	3073
Register	2718
db	200
Addtoproduct	87
ModifyOrder	37
getOrder	35
getOrderDetails	30
deleteOrderDet ails	29
AddtoCart	29
CartMinus	29
CartAdd	26
Serach	16

Database Request Respond Time

•	•
Login	362ms
Register	313ms
Reset	310ms
getOrder	308ms
getOrderDetails	287ms
ModifyOrder	284ms
deleteOrderDetails	290ms
Register	314ms
Reset	325ms
Addtoproduct	289ms
AddtoCart	276ms
db	304ms
Serach	292ms
CartAdd	306ms
CartMinus	301ms

For the database performance, is far away for reach the bottleneck. Although the above figure shows the Database have very fast respond speed (about 0.3 second), this is because in the database only have few datas exist. If added more datas in the time difference for each Database request will gradually become larger. For example, the workload for use joins will be much larger than use use select functions. In this situation, I can think about two ways to increase the respond (search) speed. First one is to add index for each attributes, if the database use index for search will be a lot faster. Another way is to refactoring the PSQL code, to subdivider the long PSQL code into serval shorter code to done one small things each time.