

Bayesian analysis

2024-09-27

Welcome!

- Who we are
- What we do
- How we hope to help you

Benchmarks for success

By the end of this session, participants will be able to:

- Understand how to derive Bayes' Rule from the laws of probability
- Understand how to interpret Bayes' Rule in the context of a data analysis
- Understand how thinking like a Bayesian follows the scientific method and should be a normal part of our thinking about the world

Benchmarks for success

Bonus content:

- Setting Bayesian priors as qualitative research
- Naive Bayes'
- Expectation Maximization

Level Set

Deriving Bayes' Rule

The Frequentist and the Bayesian

Frequentist hypothesis test: $P(data > data_{observed} | H_0)$

The likelihood: P(data|model)

The posterior probability: P(model|data)

Bayesian analysis requires us to update our beliefs in light of new data

Bayes' Rule

Consider two overlapping events A and B occurring within a universe U.

$$P(A) = rac{A}{U}$$
 $P(AB) = rac{AB}{U}$

How much of A is in B?

$$P(A|B) = rac{P(AB)}{P(B)}$$
 $P(AB) = P(A|B)P(B)$

How much of B is in A?

$$P(B|A) = rac{P(AB)}{P(A)}$$
 $P(AB) = P(B|A)P(A)$

Putting the two together

We can put the two identities together and solve for A|B:

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

And that's it. That's Bayes' Rule.

Bayes' Rule as an analytical tool

We just used the laws of probability to derive Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Now let's use this in the context of a data analysis

$$P(model|data) = rac{P(data|model)P(model)}{P(data)}$$

Using Bayes' Rule

$$P(model|data) = rac{P(data|model)P(model)}{P(data)}$$

P(model|data): probability of a hypothesis given data P(data|model): the likelihood of our data for each hypothesis P(model): the prior probability of the model, before data

Bayesian inference - example problem

- 40 subjects, half randomly assigned a treatment
- The treatment is expected to reduce the probability of an event
- What is the probability p that an observed event occurred within the treatment group?

Setting up our hypotheses

 $H_0: p=50\%$ No treatment effect

 $H_1:p<50\%$ Treatment effect

- 20 events 4 events in the treatment group and 16 events in the control group
- How likely are these four events to have occurred within the treatment group?

Setting up the Bayesian engine

- 1. Set a range of plausible values (the model space)
- 2. Calculate the likelihood of the data for each plausible value
- 3. Set the prior probability of each plausible value
- 4. Multiply the likelihood by the prior (numerator)
- 5. Divide by the denominator to get the posterior probability

Results of the Bayesian engine

hypothesis	likelihood	prior	numerator	posterior
10%	0.090	6%	0.005	17.5%
20%	0.218	6%	0.013	42.5%
30%	0.130	6%	0.008	25.4%
40%	0.035	6%	0.002	6.8%
50%	0.005	52%	0.002	7.8%
60%	0.000	6%	0.000	0.1%
70%	0.000	6%	0.000	0.0%
80%	0.000	6%	0.000	0.0%
90%	0.000	6%	0.000	0.0%

A treatment effect of 20 percent is most likely

But notice that we get back an entire distribution, not just a point estimate

From prior to posterior

Bayesian analysis as science

- Recall what we learned as kids about the scientific method:
 - Observe a state of the world
 - Develop a hypothesis about how the world works
 - Test your hypothesis with new data
 - Update your beliefs and repeat

Think like a Bayesian

- Using Bayes' Rule to conduct inference follows the scientific method!
- Let's think like a Bayesian
- Stay tuned for Bayes' Rule used in machine learning

Thank you!

Bonus content

- Setting Bayesian priors as qualitative research
- Naive Bayes Classifier
- Expectation Maximization (EM) algorithm