

Введение в синтаксический анализ *LL*-грамматики

Автор: Григорьев Семён

Санкт-Петербургский государственный университет Математико-Механический факультет Кафедра системного программирования

22 февраля 2012г.

LL(k)-грамматики

Definition

Пусть $G = (V_N, V_T, P, S)$ – контекстно-свободная грамматика.

Определим функцию $\mathit{FIRST}^{\mathcal{G}}_k(\alpha) = \{ w \in V_T | \text{ либо } |w| < k \text{ и } \alpha \overset{*}{\underset{\mathcal{G}}{\Longrightarrow}} w,$

либо |w|=k и $lpha \overset{*}{\underset{G}{\Rightarrow}} wx$ для некоторой цепочки $x \in V_{\mathcal{T}} \}.$

Здесь $k \geq 0$ – целое, $\alpha \in (V_N \cup V_T)^*$.

LL(k)-грамматики

Definition

Пусть $G = (V_N, V_T, P, S)$ – контекстно-свободная грамматика. Говорят, что G есть LL(k)-грамматика для некоторого фиксированного k, если для любых двух левосторонних выводов вида

в которых $FIRST_k^G(x) = FIRST_k^G(y)$, имеет место равенство $\beta = \gamma$.

Definition

Говорят, что контекстно-свободная грамматика G есть LL-грамматика, если она LL(k) для некоторого $k \geq 0$.

4D + 4B + 4B + B + 900

Простые LL(1)-грамматики

Definition

Говорят, что контекстно-свободная грамматика G является простой LL(1)-грамматикой, если в ней нет ε -правил, и все альтернативы для каждого нетерминала начинаются с терминалов и притом различных.

Свойства LL(k)-грамматик

Theorem

Чтобы контекстно-свободная грамматика $G=(V_N,V_T,P,S)$ была LL(k)-грамматикой, необходимо и достаточно, чтобы

$$FIRST_k^G(\beta\alpha) \cap FIRST_k^G(\gamma\alpha) = \varnothing$$

для всех α,β,γ , таких, что существуют правила $A o \beta, A o \gamma\in P, \beta
eq \gamma$ и существует вывод $S\overset{*}{\Longrightarrow}$ wAlpha .

$FOLLOW_k^G$

Definition

Пусть $G = (V_N, V_T, P, S)$ – контекстно-свободная грамматика, и $\beta \in V^*$. Определим функцию

$$FOLLOW_k^G(\beta) = \{ w \in V_T | S \stackrel{*}{\underset{G}{\Rightarrow}} \gamma \beta \alpha, w \in FIRST_k^G(\alpha) \}$$

Здесь $k \ge 0$ — целое.

Свойство LL(1)-грамматик

Theorem

Чтобы контекстно-свободная грамматика $G=(V_N,V_T,P,S)$ была LL(1)-грамматикой, необходимо и достаточно, чтобы

$$\mathit{FIRST}_1^{\mathit{G}}(\beta \mathit{FOLLOW}_1^{\mathit{G}}(\mathit{A})) \cap \mathit{FIRST}_1^{\mathit{G}}(\gamma \mathit{FOLLOW}_1^{\mathit{G}}(\mathit{A})) = \varnothing$$

для всех $A\in V_N, \beta, \gamma\in (V_N\cup V_T)^*$, таких, что существуют правила $A\to\beta, A\to\gamma\in P, \beta\neq\gamma$ и существует вывод $S\stackrel{*}{\underset{lm}{\Longrightarrow}}wA\alpha$.

Пояснение: $FIRST_1^G(W) = \bigcup_{s \in W} FIRST_1^G(s)$.

Свойство LL(1)-грамматик

Consequence

Эту теорему можно переформулировать следующим образом: KC-грамматика G является LL(1)-грамматикой тогда и только тогда, когда для каждого множества A-правил: $A \to \alpha_1 |\alpha_2| ... |\alpha_n|$ выполняются следующие условия:

- $FIRST_1^{\mathcal{G}}(\alpha_i) \cap FIRST_1^{\mathcal{G}}(\alpha_j) = \emptyset$, при $i \neq j, 0 \leq i, j \leq n$;
- ② если $\alpha_i=\varepsilon$, то $FIRST_1^{\mathcal{G}}(\alpha_j)\cap FIRST_1^{\mathcal{G}}(A)=0$, для всех $j:0\leq j\leq n, j\neq i$.

Леворекурсивные и LL(k)-грамматики

Theorem

Если $G = (V_N, V_T, P, S)$ — контекстно-свободная грамматика, и G — леворекурсивна, то G — не LL(k)-грамматика ни при каком k.

Леворекурсивные и LL(k)-грамматики

Theorem

Если $G = (V_N, V_T, P, S)$ — контекстно-свободная грамматика, и G — леворекурсивна, то G — не LL(k)-грамматика ни при каком k.

Consequence

Мы имеем два достаточных признака для того, чтобы считать KC-грамматику не LL-грамматикой. Это — неоднозначность и леворекурсивность.