Experiment #1 - Clock and Periodic Signal Generation

Moein Karami, 810198540

I. CLOCK GENERATION USING ICS AND ANALOG COMPONENTS

A. Ring Oscillator

Fig. 1 Output waveform

Fig. 2 Circuit simulated

- 1) Propagation Delay of the Chain: 18,67ns
- 2) Delay of a Single Inverter: 1.867ns

TABLE I 74HCT04 PROPAGATION DELAYS

Symbol	Parameter	Test Conditions	Vcc	T _A = +25°C			-40°C to +85°C	-40°C to +125°C	Unit
				Min	Тур	Max	Max	Max	UIII
t _{PD}	Propagation Delay A _N to Y _N	Figure 1 C _L = 50pF	4.5V	-	12	22	24	29	ns
ŧ	Transition time	Figure 1 C _L = 50pF	4.5V	-	7	29	29	29	ns

B. LM555 Timer

Fig. 3 Output waveform

Fig. 4 Circuit

First of all we need to add a voltage power generator(V1) and connect it to GND and Vcc port to generate continuous rectangular pulse then we just need to calculate clock and duty cycle frequency using waveform.

- 1) Clock Frequency & Duty Cycle: 1.416KHz, 50.15%
- 2) Produce Different Clock Frequencies: Related waveform for each resistor shown below.

Fig. 5 R2 = 1 Kohm

♦ Clock frequency:

• Expected: 1/0.693 * (3Kohm) * 10nF = 48.1KHz

• Simulated result: 1 / 21.203us = 47.16KHz

♦ Duty cycle:

• Expected: 2/3 = 66.66%

• Simulated result: 65.51%

Fig. 6 R2 = 10Kohm

♦ Clock frequency:

• Expected: 1 / 0.693 * (21Kohm) * 10nF = 6.87KHz

• Simulated result: 1 / 146.90us = 6.8KHz

♦ Duty cycle:

Expected: 11/21 = 52.38%Simulated result: 51.95%

Fig. 7 R2 = 100 Kohm

 \Diamond Clock frequency:

• Expected: 1 / 0.693 * (201Kohm) * 10nF =

717.91Hz

• Simulated result: 1 / 1.40446ms = 712.01Hz

♦ Duty cycle:

• Expected: 101 / 201 = 50.24%%

• Simulated result: 49.92%

C. Schmitt Trigger Oscillator

1) Try Different Resistors: Related waveform for each resistor shown below.

Fig. 8 R = 470 ohm

♦ Clock frequency = 277.349KHz $\rightarrow \alpha = 1.3$

Fig. 9 R = 1 Kohm

♦ Clock frequency = 139.532KHz $\rightarrow \alpha = 1.3$

Fig. 10 R = 2.2 Kohm

 \Diamond Clock frequency = 65.643KHz \Rightarrow α = 1.4 2) $\alpha \sim 1.33$

II. FPGA DESIGN

A. Simulated Ring Oscillator Frequency = 53.56MHz

Fig. 11 Simulated waveform

B. New Frequency

New Frequency = 478.233KHz which is ring oscillator's frequency / 112

C. T Flip-Flop

We should add JK Flip-Flop like Fig. 14.

III. BAUD RATE GENERATOR FOR UART SERIAL COMMUNICATION

A. Automatic Baud Rate Calculator

1) Controller state diagram has shown in Fig. 15

Fig. 15 State Diagram

Fig. 12 MSB CO waveform

Fig. 13 New waveform after insert T Flip-Flop

Fig. 14 Circuit after insert JK Flip-/flop

Fig. 15 Final BRGCKT schematic design

Fig. 16 BRGCKT test bench waveform

- ♦ BRGout frequency = 1.21 MHz
- ♦ BRGCLK = 53.56 MHz

Calculate expected fBaud frequency theoretically: k=1, $N=11 \rightarrow fBaud=53.56*10^6/(11*2^1*2)=1.21MHz$ which is equal to BRGout frequency.