Mathematics for Machine Learning

Solution of the Exercises

Stefan Thaut (1800351)
Department 20 - Computer Science
May 6, 2019

Solution 2 Linear Algebra

Solution 2.1

Solution 2.1.1

1. We have to show, that $\mathbb{R} \setminus \{-1\}$ is closed under *, the associativity, the existence of a neutral and inverse elements and the commutativity.

For the closure of $\mathbb{R} \setminus \{-1\}$ we can use the closure of the addition and multiplication in \mathbb{R} . Then we have to show that there are no a and b in $\mathbb{R} \setminus \{-1\}$, so that a*b=-1.

Assuming that $\exists a, b \in \mathbb{R} \setminus \{-1\}$ with a * b = -1. Then it is

$$a*b = ab + a + b = -1$$

$$\iff ab + a = -1 - b$$

$$\iff a(b+1) = -(b+1)$$

$$\iff a = -\frac{b+1}{b+1} = -1$$

So we got a contradiction and that shows that there are no $a, b \in \mathbb{R} \setminus \{-1\}$ so that a * b = -1. Consider $a, b, c \in \mathbb{R} \setminus \{-1\}$. Then it is

$$(a*b)*c = (ab+a+b)*c$$

$$= (ab+a+b)c + (ab+a+b) + c$$

$$= abc + ac + bc + ab + a + b + c$$

$$= abc + ab + ac + a + bc + b + c$$

$$= a(bc+b+c) + a + (bc+b+c)$$

$$= a*(bc+b+c) = a*(b*c)$$

That shows the associativity of *.

The neutral element is 0, because:

$$a*0 = a \cdot 0 + a + 0 = 0 + a + 0 = a$$
 and
 $0*a = 0 \cdot a + 0 + a = 0 + 0 + a = a$

for any $a \in \mathbb{R} \setminus \{-1\}$.

Consider $a^{-1} = -a/(a+1)$. Then it is

$$a * a^{-1} = a * -\frac{a}{a+1}$$

$$= a(-\frac{a}{a+1}) + a + (-\frac{a}{a+1})$$

$$= \frac{-a^2}{a+1} + a - \frac{a}{a+1}$$

$$= \frac{-a^2 - a}{a+1} + \frac{a(a+1)}{a+1}$$

$$= \frac{-a^2 - a}{a+1} + \frac{a^2 + a}{a+1} = 0$$

The proof of $a^{-1} * a = 0$ works analogously.

The proof of the commutativity is straight forward and based on the commutativity of the addition and multiplication in \mathbb{R} . Consider $a, b \in \mathbb{R} \setminus \{-1\}$. Then it is

$$a * b = ab + a + b = ba + b + a = b * a$$

So we have shown all axioms of an Abelian group.

2. It is

$$3*x*x = (3x+3+x)*x$$

$$= (4x+3)*x$$

$$= (4x+3)x + (4x+3) + x$$

$$= 4x^2 + 3x + 4x + 3 + x = 4x^2 + 8x + 3$$

We can now solve the quadtratic formula $4x^2 + 8x + 3 = 15 \iff 4x^2 + 8x - 12 = 0$ using the completing the square method proposed by Hoehn in [1]:

$$x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot (-12)}}{2 \cdot 4}$$

$$= \frac{-8 \pm \sqrt{64 + 192}}{8}$$

$$= \frac{-8 \pm \sqrt{256}}{8}$$

$$= \frac{-8 \pm 16}{8} = -1 \pm 2$$

Thus the solution of the equation is $x_1 = -3$ and $x_2 = 1$.

Solution 2.1.2

1. At first we have to be careful, because (\mathbb{Z}_n, \oplus) would not be a group with the unmodified given mapping, because \mathbb{Z}_n would not be closed under \oplus : Let n=3, then $\mathbb{Z}_3=\{\overline{0},\overline{1},\overline{2}\}$. So consider $\overline{1},\overline{2}\in\mathbb{Z}_3$, then:

$$\overline{1} \oplus \overline{2} = \overline{1+2} = \overline{3} \notin \mathbb{Z}_2$$

Thus we have to modify the mapping by adding a modulo to the addition:

$$\overline{a} \oplus \overline{b} = \overline{a+b \mod n} \tag{1}$$

Now \mathbb{Z}_n is closed under \oplus .

(Associativity) Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$. Then it is

$$(\overline{a} \oplus \overline{b}) \oplus \overline{c} = \overline{a+b \mod n} \oplus \overline{c}$$

$$= \overline{(a+b \mod n) + c \mod n}$$

$$= \overline{a+b+c \mod n}$$

$$= \overline{a \mod n + (b+c \mod n)}$$

$$= \overline{a} \oplus \overline{b+c \mod n} = \overline{a} \oplus (\overline{b} \oplus \overline{c})$$

(Neutral Element) The neutral element is $\overline{0} \in \mathbb{Z}_n$. Let $\overline{a} \in \mathbb{Z}_n$, then it is:

$$\overline{a} \oplus \overline{0} = \overline{a + 0 \mod n} = \overline{a \mod n} = \overline{a}$$

and

$$\overline{0} \oplus \overline{a} = \overline{0 + a \mod n} = \overline{a \mod n} = \overline{a}$$

(Inverse Element) Let $\overline{a} \in \mathbb{Z}_n$. Then the inverse element of \overline{a} is $\overline{a}^{-1} = \overline{n-a}$. It is

$$\overline{a} \oplus \overline{a}^{-1} = \overline{a} \oplus \overline{n-a}$$

$$= \overline{a + (n-a) \mod n}$$

$$= \overline{n \mod n} = \overline{0}$$

The proof of $\overline{a}^{-1} \oplus \overline{a}$ works analogously.

(Commutativity) For the proof of the commutativity in \mathbb{Z}_n we use the commutativity of the addition in \mathbb{Z} . Let $\overline{a}, \overline{b} \in \mathbb{Z}_n$. Then it is

$$\overline{a} \oplus \overline{b} = \overline{a+b \mod n} = \overline{b+a \mod n} = \overline{b} \oplus \overline{a}$$

We have shown, that (\mathbb{Z}_n, \oplus) is an Abelian Group.

2. Firstly we also have to modify the mapping for mathematical correctness:

$$\overline{a} \otimes \overline{b} = \overline{a \cdot b \mod n} \tag{2}$$

In table 1 we can see that for each elements $\overline{a}, \overline{b} \in \mathbb{Z}_5 \setminus \{\overline{0}\}$ the result of $\overline{a} \otimes \overline{b} \in \mathbb{Z}_5 \setminus \{\overline{0}\}$. The neutral element

Table 1: The times table of $\mathbb{Z}_5 \setminus \{\overline{0}\}$ under \otimes

\otimes	$\overline{1}$	$\overline{2}$	3	4
$\overline{1}$	$\overline{1}$	$\overline{2}$	3	4
$\overline{2}$	$\overline{2}$	4	$\overline{1}$	3
$\frac{1}{2}$ $\frac{3}{4}$	$\frac{1}{2}$ $\frac{3}{4}$	$\frac{2}{4}$ $\frac{1}{3}$	$\frac{\overline{3}}{\overline{1}}$ $\frac{\overline{3}}{\overline{4}}$	$\frac{4}{3}$ $\frac{2}{1}$
4	4	3	$\overline{2}$	$\overline{1}$

of this mapping is $\overline{1}$, because $\overline{a} \otimes \overline{1} = \overline{a \cdot 1} \mod \overline{5} = \overline{a}$. We can read the inverse elements of each element in $\mathbb{Z}_5 \setminus \{\overline{0}\}$ out of table 1, where the result is $\overline{1}$. And the commutativity follows directly from the commutativity of the multiplication in \mathbb{Z} .

3. Consider $\overline{4} \in \mathbb{Z}_8 \setminus \{\overline{0}\}$. If we multiply $\overline{4}$ with all elements of $\mathbb{Z}_8 \setminus \{\overline{0}\}$, we get the following results:

$$\overline{4} \otimes \overline{1} = \overline{4}$$
 $\overline{4} \otimes \overline{2} = \overline{0}$ $\overline{4} \otimes \overline{3} = \overline{4}$ $\overline{4} \otimes \overline{4} = \overline{0}$ $\overline{4} \otimes \overline{5} = \overline{4}$ $\overline{4} \otimes \overline{6} = \overline{0}$ $\overline{4} \otimes \overline{7} = \overline{4}$

Hence we see, that there is no inverse element of $\overline{4}$ in $\mathbb{Z}_8 \setminus \{\overline{0}\}$. Thus $(\mathbb{Z}_8 \setminus \{\overline{0}\})$ is not a group.

4. The key point for showing that $(\mathbb{Z}_n \setminus \{\overline{0}\}, \otimes)$ is a group, is to show the existence of an inverse element for each element $\overline{a} \in \mathbb{Z}_n \setminus \{\overline{0}\}$.

Assuming $n \in \mathbb{N} \setminus \{0\}$ is prime. Hence a and n are relatively prime and with that we know from Bézout theorem that there are two integers u and v such that au + nv = 1. That implies $\overline{au} \otimes \overline{nv} = \overline{1}$ and also $\overline{a} \otimes \overline{u} = \overline{1}$. Thus the inverse element of \overline{a} is \overline{u} .

Assuming $(\mathbb{Z}_{\underline{n}} \setminus \{\overline{0}\}, \otimes)$ is a group. Also assuming n is not prime, i.e. $\exists k, l \in \mathbb{N}$ such that 1 < k, l < n and n = kl. We see that $\overline{k}, \overline{l} \in \mathbb{Z}_n \setminus \{\overline{0}\}$. But it is $\overline{k} \otimes \overline{l} = \overline{k \cdot l} \mod n = \overline{n} \mod n = \overline{0} \notin \mathbb{Z}_n \setminus \{\overline{0}\}$. Hence $\mathbb{Z}_n \setminus \{\overline{0}\}$ would not be closed under \otimes and would therefore be no group. Thus n has to be prime.

References

[1] Larry Hoehn. A more elegant method of deriving the quadratic formula. *Mathematics Teacher*, 68(5):442–443, 1975.