

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why it is useful to us to understand text?

How do we extract meaning from text?

We use **Natural Language Processing** (NLP), a field of computer science interested on making computers extract useful information from text

Feature Representation and Knowledge Discovery

How do we represent text for the machine to understand?

What techniques do we use to discover meaning from text?

Three common ways to represent text

Introduction

- $\boldsymbol{\cdot}$ Three common ways to represent text
 - Lexical

Introduction

- Three common ways to represent text
 - Lexical
 - Syntactic

- Three common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree

- $\boldsymbol{\cdot}$ Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Working Example

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - · Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - · Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - · Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

Text Representation Models

- Words and features can be represented by means of graph-based models matrices
- Or directly with (sparse) matrices

Leveraging the Network Structure

We can find communities of similar words according to their meaning

Text Representation Models

- Words and features can be represented by means of graph-based models matrices
- Or directly with (sparse) matrices

Leveraging the Network Structure

We can find communities of similar words according to their meaning

1. What type of model can we employ to represent a corpus using heterogeneous features?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Work Overview

Contributions in Detail

Hypergraph Linguistic Model

How do we represent textual data?

- How do we represent textual data?
 - Network Models [MTFo4]

- How do we represent textual data?
 - · Network Models [MTF04]
 - Vector Space Models [MS+99]

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- We choose network models

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- · We choose network models
 - Used in a large quantity of NLP tasks [MR11]

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- We choose network models
 - Used in a large quantity of NLP tasks [MR11]
 - Graphs structures can give us a clearer view into the relations of words within a text [CM09]

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- We choose network models
 - Used in a large quantity of NLP tasks [MR11]
 - Graphs structures can give us a clearer view into the relations of words within a text [CM09]
 - Ultimately graphs are transformed to a vectorial representation through the adjacency/incidence matrices

Hypergraph Linguistic Model Classic Language Networks

The report contains copies of the minutes of these meetings

The report contains copies of the minutes of these meetings

Lexical Networks

Classic Language Networks

The report contains copies of the minutes of these meetings

Syntactic Networks

Dependency Tree

Classic Language Networks

The report contains copies of the minutes of these meetings

Syntactic Networks

Constituency Tree

The report contains copies of the minutes of these meetings

Semantic Networks

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

10/48

Hypergraph Linguistic Model

Limitations and Proposition

- · Limitations of existing representations
 - Language networks generally employ a single type of textual information

- Limitations of existing representations
 - Language networks generally employ a single type of textual information
 - The edges of the network may relate maximum two words at each time

- · Limitations of existing representations
 - Language networks generally employ a single type of textual information
 - The edges of the network may relate maximum two words at each time
- Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

 Represent together linguistic co-occurrences through a hypergraph model

· Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

- Represent together linguistic co-occurrences through a hypergraph model
 - Link together three different types of networks, using lexical and syntactic data

· Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

- Represent together linguistic co-occurrences through a hypergraph model
 - Link together three different types of networks, using lexical and syntactic data
 - Get a semantic overview at three different levels: short range (with dependency functions), medium range (phrase constituency membership), and long range (lexical co-occurrence)

Hypergraph Linguistic Model **Proposed Model**

• Explain (grpahically/with the working exampleh) we use lexical and syntactic info and the build a fusion of them with a hypergraph.

Contributions in Detail

Combining Features and Dealing with Sparsity

Multimedia Fusion Techniques [Atr+10; ABL10]:

Definition

- Set of techniques used in multimedia analysis tasks to integrate multiple media
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot), X_{F}(\cdot)$
- α and β : Assign an importance weight to each of their operators
- $\gamma \! :$ number of top similar items to take from the similarity space

Early and Late Fusion

Cross Fusion

Put here some very visual way of representing hybrid fusion.

In fact, early and late fusion should be presented with the working example also.

Put here some very visual way of representing hybrid fusion.

In fact, early and late fusion should be presented with the working example also.

Combining Features and Dealing with Sparsity **Leveraging the network communities**

 Show a large (with more text than that of my example) image of the hypergraph model

17/48

Contributions in Detail

Finding Communities in the Network

- 1. Link some words together with a color overlay to represent possible communities (clusters/groups) of same sense words.
- Argue that thanks to the heterogeneous info contained in the structure, we can relate words according to different linguistic properties

Leveraging the network communities 2

- 1. Link some words together with a color overlay to represent possible communities (clusters/groups) of same sense words.
- Argue that thanks to the heterogeneous info contained in the structure, we can relate words according to different linguistic properties

Hypergraph Model Instantiation

Applications to NLP

Applications

- We instantiate our proposed linguistic resource
 - Based on the English Wikipedia corpus
- Use the proposed model to solve two NLP tasks:
 - · Named Entity Recognition
 - Word Sense Induction and Disambiguation
- These experiments have two main objectives:
 - Test the effectiveness of fusion enriched representations (heterogeneity + less sparse spaces)
 - Leverage the structure of the network built following our proposed model

Hypergraph Model Instantiation

- Introduction to SAEWD
- Motivation
- Characteristics
- Show small diagram of the process

Hypergraph Model Instantiation

 Image with how the hypergraph corpus is stored in files and how we can access the information via key-value pairs to select nouns or verbs or types of noun phrases etc

Wikipedia Feature Enriched Spaces

	Lexical Features (5.49%)	Syntactic Features (4.97%)	Early Fusion (5.23%) $E(M^{L}, M^{S})$	X _F Fusion (16.75%) X _F (S ^s , M ^L)	X _F Fusion (13.45%) X _F (S ^L , M ^S)
priest	priests	monk	sailor	vassal	sailor
	nun	regent	regent	regent	fluent
	canton	aedile	nuclei	nun	dean
	sailor	seer	nun	sailor	nuclei
	burial	meek	relic	monk	chorus

Applications to NLP

Solving Named Entity Recognition

Definition and Objectives

- The goal is to automatically discover mentions that belong to a well-defined semantic category.
- The classic task of NER involves detecting among four types of entities and a non-entity class:
 - · Location (LOC)
 - Organization (ORG)
 - · Person (PER)
 - · Miscellaneous (MISC)
 - None (O)
- We assess the effectiveness of the classic fusion methods and propose new hybrid combinations
- ** Show here graphical presentation of entities**

Lexical Space (L)

Word	Features
Australian	word:Australian, word+1:scientist, word+2:discovers
scientist	word-1:Australian, word:scientist, word+1:discovers, word+2:star
discovers	word-2:Australian, word-1:scientist, , word+2:telescope
star	word-2:scientist, word-1:discovers, word:star,, word+2:telescope
with	word-2:discovers, word-1:star, word:with, word+1:telescope
telescope	word-2:star, word-1:with, word:telescope

Syntactic Space (S)

Word	Contexts
Australian	scientist/NN/amod_inv
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv
discovers	scientist/NN/nsubj, star/NN/dobj, telescope/NN/nmod:with
star	discovers/VBZ/dobj_inv
telescope	discovers/VBZ/nmod:with_inv

Standard Features Space (T)

- · Each word
- · Whether it is capitalized
- Prefix and suffix (of each word their surroundings)
- Part of Speech tag

Experimental Protocol

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- Annotation Scheme
 - Beginning, Inside, Outside
- Learning Algorithm
 - Structured Perceptron [Colo2]
- Evaluation Metrics
 - Precision, Recall, F-measure

Evaluation

- Best Fusion operators on the F-measure over the three datasets.
- Achieved using a higher Degree fusion operator
- · Notice the comparison with the Early Fusion baseline
- Visually show the best fusion operator, not with the formula.

		Triple Early Double Late Cross Feature Fusion (EEELX _F LX _F)		
		CONLL	WNER	WGLD
M^L	$\boldsymbol{\hat{b}_{\text{eeelx}_{\text{f}}\text{Lx}_{\text{f}}}}$	65.01	78.02	62.34
$M_{\alpha=0.95}^{L}$	$\boldsymbol{\hat{b}_{\text{eeelx}_{\text{f}}\text{Lx}_{\text{f}}}}$	79.67	81.79	67.05
EF Basel	line	78.90	80.04	63.20

Analyzing the Best Fusion Operator

Decompose best fusion in four models:

- ① M^{ι} used to train model M_1 .
- ② $E(\alpha_1 M^{\iota}, \alpha_2 M^{\tau})$ used to train model M_2 , with $\alpha_1 = 0.95, \alpha_2 = 0.05$
- (3) $E_{\alpha}(\alpha_1 M^{\perp}, \alpha_2 M^{\dagger}, \alpha_3 L(M^{\dagger}, X_F(S^s, M^{\dagger})))$ used to train model M_3 , with $\alpha_1 = 0.95, \alpha_2 = \alpha_3 = 0.05$
- (4) $E_{\alpha}(\alpha_1 M^{\perp}, \alpha_2 M^{\intercal}, \alpha_3 L(M^{\intercal}, X_F(S^s, M^{\intercal})), \alpha_4 L(M^{\perp}, X_F(S^s, M^{\perp})))$ used to train model M_4 , with $\alpha_1 = 0.95, \alpha_2 = \alpha_3 = \alpha_4 = 0.05$

We focus on the word *Kory*, and its performance from model M_1 to M_2

Analyzing the Best Fusion Operator

We focus on the word *Green*, and its performance from model M_3 to M_4

Applications to NLP

Solving Word Sense Induction and Disambiguation

Solving Word Sense Induction and Disambiguation Introduction

• Introduction to WSI/WSD

Experimental Protocol

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering
- Evaluation Metrics
 - · Supervised: F-score
 - · Unsupervised: Recall
 - Proposed: H-score

Solving Word Sense Induction and Disambiguation WSI/WSD: Evaluation

• Results for WSI/WSD with spectral clustering

Finding Senses in the Network

How to exploit a linguistic network to solve word sense induction and disambiguation?

- · Similar approaches
 - Hyperlex [Vó4]
 - · University of York (UoY) [KMO7]
- · Limitations of existing approaches
 - · Single typed networks
 - · Large number of parameters
- Features
 - Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
 - Keep the number of parameters low and allow for their automatic adjusting according to the network's nature

Pavel SORIANO-MORALES February 7th, 2018 36/48

Pavel SORIANO-MORALES February 7th, 2018 37/48

Solving Word Sense Induction and Disambiguation **Semeval Results**

• Semeval 2007 results table

Solving Word Sense Induction and Disambiguation WSI/WSD: Evaluation

- Verbs and nouns behaviors
- · Insight into senses found by the algorithm

Conclusions

Conclusions

Conclusions Insights From our Contributions

Future Work

Conclusions

References

References

Christopher D Manning, Hinrich Schütze, et al. Foundations of statistical natural language processing. Vol. 999. MIT Press, 1999.

References II

Michael Collins. "Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms". In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10. EMNLP '02. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp. 1–8. DOI: 10.3115/1118693.1118694.

Erik F. Tjong Kim Sang and Fien De Meulder. "Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition". In: *CoNLL*. ACL, 2003, pp. 142–147.

References III

Rada Mihalcea, Paul Tarau, and Elizabeth Figa. "PageRank on Semantic Networks, with Application to Word Sense Disambiguation". In: Proceedings of the 20th International Conference on Computational Linguistics. COLING '04. Geneva, Switzerland: Association for Computational Linguistics, 2004. DOI: 10.3115/1220355.1220517.

Jean Véronis. "HyperLex: lexical cartography for information retrieval". In: Computer Speech & Language 18.3 (2004), pp. 223 –252. ISSN: 0885-2308. DOI: 10.1016/j.csl.2004.05.002.

References IV

Ioannis P. Klapaftis and Suresh Manandhar. "UOY: A Hypergraph Model for Word Sense Induction & Disambiguation". In: *Proceedings of the 4th International Workshop on Semantic Evaluations*. SemEval '07. Prague, Czech Republic: Association for Computational Linguistics, 2007, pp. 414–417.

Ioannis P. Klapaftis and Suresh Manandhar. "Word Sense Induction Using Graphs of Collocations". In: *Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence*. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2008, pp. 298–302. ISBN: 978-1-58603-891-5.

Conclusions

References V

Dominic Balasuriya et al. "Named Entity Recognition in Wikipedia". In: Proceedings of the 2009 Workshop on The People's Web Meets NLP: Collaboratively Constructed Semantic Resources. People's Web '09. Suntec, Singapore: Association for Computational Linguistics, 2009, pp. 10–18. ISBN: 978-1-932432-55-8. URL: http://dl.acm.org/citation.cfm?id=1699765.1699767.

Monojit Choudhury and Animesh Mukherjee. "The Structure and Dynamics of Linguistic Networks". English. In: *Dynamics On and Of Complex Networks*. Ed. by Niloy Ganguly, Andreas Deutsch, and Animesh Mukherjee. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, 2009, pp. 145–166. ISBN: 978-0-8176-4750-6. DOI: 10.1007/978-0-8176-4751-3_9.

References VI

Joel Nothman, Tara Murphy, and James R. Curran. "Analysing Wikipedia and Gold-standard Corpora for NER Training". In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. EACL '09. Athens, Greece: Association for Computational Linguistics, 2009, pp. 612–620.

Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. "Link communities reveal multiscale complexity in networks". In: *Nature* 466.7307 (2010), pp. 761–764.

Pradeep K. Atrey et al. "Multimodal fusion for multimedia analysis: a survey". In: *Multimedia Syst.* 16.6 (2010), pp. 345–379.

References VII

Rada F. Mihalcea and Dragomir R. Radev. *Graph-based Natural Language Processing and Information Retrieval*. 1st. New York, NY, USA: Cambridge University Press, 2011. ISBN: 0521896134, 9780521896139.