Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-52. (Canceled)
- 53. (Currently Amended) A color filter comprising a colored layer as colored pixels provided on a transparent substrate, said colored layer containing a pyrrolo[3,4-c]pyrrole derivative produced by converting at least one ketopyrrole group in a pyrrolo[3,4-c]pyrrole of formula

wherein A and B are each independently of the other a group of formula

$$R_{1}$$
 R_{2}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{6}
 R_{6}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{6}

wherein R_1 and R_2 are each independently of the other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylmercapto, C_1 - C_{18} alkylamino, -CN, -NO₂, phenyl, trifluoromethyl, C_5 - C_6 cycloalkyl, -C=N-(C_1 - C_{18} alkyl), a group of formula

imidazolyl, pyrrazolyl, triazolyl, piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl, or pyrrolidinyl; G is $-CH_2$ -, $-CH(CH_3)$ -, $-CH(CH_3)$ -, -CH=N-, -N=N-, -O-, -S-, -SO-, $-SO_2$ -, or $-NR_7$ -; R_3 and R_4 are each independently of the other hydrogen, halogen, C_1 - C_{18} alkoxy, or -CN; R_5 and R_6 are each independently of the other hydrogen, halogen, or C_1 - C_6 alkyl; and R_7 is hydrogen or C_1 - C_6 alkyl; and

D and E are each independently of the other hydrogen, a group of formula

wherein, in the formulae (II), (III), and (IV), m, n, and p are each independently of one another a number of 0 or 1; X is C_1 - C_{14} alkylene or C_2 - C_6 alkenylene; Y is a group -V- $(CH_2)_q$ -; Z is a group -V- $(CH_2)_r$ -; V is C_3 - C_6 cycloalkylene; q is an integer from 1 to 6; r is an integer from 0 to 6; R_8 and R_9 are each independently of the other hydrogen, C_1 - C_6 alkyl, C_1 -

 C_4 alkoxy, halogen, CN, NO_2 , unsubstituted phenyl or phenoxy, or phenyl or phenoxy which is substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or halogen; and Q is hydrogen, CN, $Si(R_8)_3$, a group $C(R_{12})(R_{13})(R_{14})$ wherein R_{12} , R_{13} , and R_{14} are halogen, a group of formula

wherein R_8 and R_9 are as defined above, a group SO_2R_{15} or SR_{15} wherein R_{15} represents phenyl which is substituted by a C_1 - C_4 alkyl, a C_1 - C_4 alkoxy, or a halogen,

or a group of formula

 R_{10} and R_{11} are each independently of the other hydrogen, C_1 - C_{18} alkyl, or a group of formula

; and

$$-(x)_{\overline{m}}(Y)_{\overline{n}}$$

wherein X, Y, R_8 , R_9 , m, and n are as defined above, or R_{10} and R_{11} , together with the linking nitrogen atom, form pyrrolidinyl, piperidinyl, or morpholinyl radical; and D-may be hydrogen, with the proviso that, if D and/or E are a group of formula (III), Q is hydrogen, and n is 0, m must be 1 and X must be a C_2 - C_{14} alkylene or C_2 - C_8 alkenylene group which is branched at the carbon atom attached to the oxygen atom,

said at least one ketopyrrole group being converted to

wherein A may be B with the proviso that, if A is B, D is E; and R' is C₁-C₅ alkyl.

54. (Currently Amended) The color filter according to claim 53, wherein A and B in formula (V) are each independently of the other a group of formula

$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7

wherein R_1 and R_2 are each independently of the other hydrogen, chloro, bromo, C_1 - C_4 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylamino, CN, or phenyl; G is -O-, -NR₇-, -N=N-, or -SO₂-; R_7 is hydrogen, methyl, or ethyl; and R_3 and R_4 are hydrogen.

- 55. (Currently Amended) The color filter according to claim 53, wherein A and B in formula (V) are identical to each other.
- 56. (Currently Amended) The color filter according to claim 55, wherein A and B in formula (V) are a group of formula

wherein R_1 and R_2 are each independently of the other hydrogen, methyl, tertbutyl, chloro, bromo, CN, or phenyl.

57. (Previously Presented) The color filter according to claim 53, wherein D is E, and E is a group of formula

or formula (IV) wherein, in formulae (VI), (VII), and (IV), m is 0 or 1; X is C_1 - C_4 alkylene or C_1 - C_5 alkenylene; R_8 and R_9 are each independently of the other hydrogen, C_1 - C_4 alkyl, methoxy, chloro, or -NO₂-; Q is hydrogen, CN, CCl₃, a group of formula

wherein R₈ and R₉ are as defined above,

 SO_2 , SH_3 , or SCH_3 ; R_{10} and R_{11} are each independently of the other hydrogen, C_1 - C_4 alkyl, or a group of formula

or R_{10} and R_{11} , taken together, form a piperidinyl radical, with the proviso that, if D and/or E are a group of formula (VII) and Q is hydrogen, X is a group of formula

58. (Currently Amended) The color filter according to claim 53, wherein D and E in formula (V) are identical to each other and are a group of formula

$$CO - CH_2 - CO - C(CH_3)_3$$
,

 $CO - CH_2 - CO - C(CH_3)_3$,

59. (Currently Amended) The color filter according to claim 53, wherein the pyrrolo[3,4-c]pyrrole derivative of formula (V) is produced by reacting the pyrrolo[3,4-c]

c]pyrrole of formula (I) in a solvent including a lower alcohol and in the presence of a base as a catalyst.

- 60. (Previously Presented) The color filter according to claim 59, wherein the reaction is carried out at a temperature of 0 to 400°C for 2 to 80 hr.
 - 61-62. (Canceled)
- 63. (Previously Presented) The color filter according to claim 59, wherein the reaction is carried out at a temperature of 20 to 200°C.