REPORT 6주차 결과보고서

과목명	신개생에너지실험
당당교수	이순명 교수님
학과	융합전가공학과
학년	4학년
학번	201910906
이름	이학민
계출일	2024.10.11.

식헌 04 포력에너지

	풍량•풍속 측정 및 DC 풍력발전기의 발전 실험
실험 목표	 - 풍력발전에 영향을 주는 풍량과 풍속에 대해 알아본다. - 풍속에 따른 전압, 전류, 전력의 변화에 대해 알 수 있다. - 풍속에 따른 출력 변화 및 효율을 알 수 있다.
준비물	풍량·풍속계, 나침반, 타이머, 송풍기, 풍력발전기, 02. HYBRID CONNECTION MODULE , 04. DC LOAD MODULE, DMM (Digital Multi Meter) 실험 A. 실제 풍속 및 풍량의 측정 실험
	① 바람이 잘 부는 환경을 선택한다. ② 실험 전 사전 환경 조건을 기록한다. ③ 풍속-풍량계를 이용하여 각 방향에 대해 10 초 간격으로 1분(60 초)간 풍속을 측정하여 [표 4-1]에 기록한다. ④ 측정 풍속을 기용하여 각 방향의 평균풍속을 구하고 그래프를 작성한다.
	실험 B. 송풍기의 풍속 및 풍량의 측정 실험
실험과정	① 송풍기와 풍량·풍속계 사이의 거리를 30cm 가 되게 한다. ② 송풍기에 전원을 인가하여 송풍기의 출력이 최대가 되도록 한다. ③ 풍량·풍속계의 센서에 표시된 화살표 방향을 송풍기 바람의 방향과 일치시킨다. ④ 풍량·풍속계의 전원을 킨다. ⑤ 풍량·풍속계의 풍속측정 모드에서 측정단위가 m/s 가 되도록 조작한다 ⑥ 측정되는 송풍기의 풍속이 10m/s 가 되도록 한다. ⑦ 바람에너지 수식에 따라 바람에너지를 계산하여 [표 4-2]에 기록한다. ⑧ 풍량·풍속계의 풍속측정 모드에서 측정단위가 m/s 가 되도록 조작한다. ⑨ 풍속이 1m/s 씩 감소되게 하며 과정⑦~⑨을 반복한다. ⑩ 표가 완성되면 풍속(m/s)에 따른 바람에너지(W)를 그래프로 작성한다.
	실험 C. 풍력발전기의 발전 실험 ① 풍력발전기를 송풍기와 일직선상 50cm 거리에 설치한다. ② Load Module 후면의 AC 전원을 인가한다. ③ 풍력발전기의 출력과 전압계와 부하저항의 배선을 다음과 같이 연결한다. 실험 C. 결선 사진 참고 • 풍력 발전기 AC 단자 3개 - 02.WIND POWER GENERATION 단자 3개 • 02.WIND POWER GENERATION (+) 단자 - 02.전압계 (+) • 02.WIND POWER GENERATION (-) 단자 - 02.전압계 (-) • 04.DC LOAD MODULEDC LOAD 3 (+) - 02.전압계 (-) • 04.DC LOAD MODULEDC LOAD 3 (-) - 02.전압계 (-) • 02.전압계 (-) - 02.전류계 (+) ④ 부하저항을 100Ω으로 맞춘다. ⑤ 송풍기의 출력이 최대가 되게 한 후, 풍속이 10m/s 가 되도록 조절한다.

[표 4-1] 실제 풍속 및 풍량 측정

풍속	방위							
[m/s]	북(N)	북동(NE)	동(E)	남동(SE)	남(S)	남서(SW)	서(W)	북서(NW)
10초	0.3	0.0	1.6	1.1	0.3	0.5	0.4	0.6
20초	0.0	0.7	1.5	1.0	0.1	0.3	0.6	0.5
30초	0.1	0.8	1.3	1.2	0.5	0.1	1.2	0.8
40초	0.4	1.0	1.1	1.3	0.4	0.3	1.0	1.5
50초	0.3	0.5	1.4	2.0	0.7	0.9	0.8	1.1
60초	0.0	0.9	1.8	1.5	0.3	0.5	0.6	1.6

[표 4-2] 송풍기의 풍속 및 풍량 측정

풍속[m/s]	바람에너지[W]		
10	7.30		
9	5.32		
8	3.74		
7	2.50		
6	1.58		
5	0.91		
4	0.47		
3	0.20		
2	0.06		
1	0.01		

[표 4-3] 풍속에 따른 전압, 전류 기록표

풍속 [m/s]	측정 풍속 [m/s]	측정 전압 [V]	측정 전류 [A]	생산 전력 [W]	바람에너지 [W]	효율 [%]	
1	0.7	0	0	0	0.01	0	
2	1.4	0	0	0	0.06	0	
3	2.1	0	0.023	0	0.20	0	
4	2.4	2	0.061	0.122	0.47	26.1%	
5	3.2	3.4	0.086	0.2924	0.91	32.0%	
6	4.3	5.3	0.134	0.7102	1.58	45.0%	
7	4.6	5.5	0.136	0.748	2.50	29.9%	
8							
9							
10							

실험결과 분석 및 시사점 작성

※ 풍속에 따라 풍력 발전의 출력과 효율의 변화를 필수로 포함하여 작성하시오.

<실험 결과 분석>

우선, 송풍기 출력의 한계로 최대 풍속이 8m/s를 넘지 않아 7m/s일 때까지만 실험을 진행하였다. 또한 풍속이 낮은 1~3m/s의 경우 풍력 발전이 제대로 이루어지지 않아 생산 전력이 0W로 측정 되어 실험 결과 분석에서 배제하였다.

수업 시간에 바람에너지 공식이 바람에너지 $(P)=rac{1}{2}pv^3, p=1.2$ 로 안내 받았으나, 이는 잘못된 공식으로 정확한 공식은 다음과 같다.

$$P_{\omega} = \frac{1}{2} \rho C_p A v_{\omega}^3 \quad [W]$$

₽□ : 풍속에서 얻어지는 전력 [W]

p : 공기 밀도 [kg/m³]

C, : 블레이드에 따른 출력계수

A : 블레이드의 회전투영 면적 [m²]

v. : 풍속 [m/s]

 C_p 는 베츠의 법칙(Betz's Law)에 의하여 최대 0.593의 값을 가질 수 있기 때문에 이번 실험에서는 $C_p=0.593$ 으로 계산하였다. 실제로 회전자에 걸리는 공기 흐름은 이상적인 상태와 달리 공기의 점성에 의한 운동량의 손실과 회전자 끝의 간섭 흐름 등의 영향으로 인해 통상적으로 약 0.35~0.5 의 값을 가진다. 실험 때 사용한 블레이드의 길이가 10cm라고 가정하여 회전투영 면적을 계산하였고 공기밀도 ρ 는 1.225로 설정하였다. 정확한 식 적용을 통해 올바른 효율 데이터를 얻을 수 있었다.

풍속이 4~7m/s인 구간에서 6m/s까지 효율이 증가하다 7m/s에서 급감하는 모습을 보였다. 송풍기 풍속을 1m/s 올린 것에 반하여 실제 측정 풍속이 0.3m/s 밖에 상승하지 않은 것이 그 원인으로 추정된다.

x축: 풍속 / 파랑: 측정 풍속 / 주황: 생산 전력 / 초록: 효율

<시사점>

일반적인 풍력 발전 시스템의 출력 특성을 보면 시스템의 기계적 관성, 마찰 및 전기적 손실 등에 의해 시동풍속(V_{cut-in})이상에서 시스템의 출력이 생산되기 시작하고, 정격풍속(V_{rated})에서의 정격출력(P_{rated})은 풍속의 세제곱에 비례하여 출력이 나타난다. 또한 정격풍속 이상의 풍속에서도 시스템의 출력이 일정하게 유지되며, 종단풍속($V_{cut-out}$)에서는 시스템 보호를 위해 출력이 멈추게된다.

풍속 자원은 변동성이 강한 에너지 자원이며 이를 활용한 풍력 발전 단지 출력은 풍속의 세제곱에 비례하는 변동성을 가짐을 수식을 통해 이해할 수 있었다. 나아가 이 변동성이 전력 품질 및 계통 안정성에 영향을 끼침을 알 수 있다.

<최적의 풍력 발전>

- 1. 블레이드 뒤에 발생하는 기류의 소용돌이가 적을수록 풍차의 변환효율이 우수하다.
- 2. 블레이드의 날개 회전 속도가 빠를수록 회전에너지의 손실이 줄어드는데, 이론적으로 블레이드의 회전 속도는 풍속의 5배 이상이 되어야 한다.
- 3. 날개가 넓어지고 개수가 많아지면 무게가 증가해 회전 속도가 떨어지고 유지비가 증가해 결국 전체적인 비용이 증가하게 된다.
- 4. 따라서 날개는 가볍고 가늘수록, 커지고 회전 면적이 넓을수록, 속도가 빠를수록 풍력 발전에 최적화된다.