Introduction to Distance Sampling

Overview of wildlife population assessment methods

Plot sampling

Distance sampling

Basic idea

Types of distance sampling

Wildlife Population Assessment

How many are there?

What are their trends?

Why?

Vital rates (survival, fecundity, etc)

What might happen if...?

Scenario planning

Risk assessment

Decision support

Rapid assessment methods and indices

Perhaps emphasis is just on trends

Questionnaire surveys

e.g. UK adder survey

Presence/absence

e.g. UK otter surveys

Index methods

e.g., Point counts for birds (US Breeding Bird Survey)

Warning!

For estimating trends, must assume no trend in proportion detected

Methods of estimating abundance

- Complete census
- Plot sampling
- Distance sampling
- •Mark-recapture
- Removal method

Complete census

Let

N = population size (abundance)

A = size of study region = 5000

D = animal density = N/A

Method: count everything!

N = 412

D = 412/5000 = 0.0824

Rarely possible in practice!

Plot sampling (or strip transect)

Let

k = number of strips = 5

L = total line length = 50x5 = 250

From this, how do we estimate abundance?

Intuitive estimator of abundance

I saw 36 animals

I covered $500/5000 = 1/10^{th}$ of the study region

So, I estimate there are 36/(1/10) = 36x10 = 360 animals

$$\hat{N} = \frac{n}{\frac{a}{A}} = \frac{nA}{a} = \frac{36 \times 5000}{500} = 360$$

(Hat "^" means an estimate.)

Concept – Plot sampling

Step 1: How many in <u>covered</u> region, N_a ?

Plot sampling: $N_a = n$

Step 2: Given N_a , how many in study region, N

ow many in study region, NIf transects placed at random: $\hat{N} = \frac{N_a}{A}$

Overall:
$$\hat{N} = \frac{n}{a/\Delta} = \frac{nA}{a} = \frac{nA}{2wL}$$
 for strip transects

Distance (line transect) sampling

- An extension of plot sampling where not all animals in the covered region are detected
- Here

w = 2 (strip can be wider, as don't have to see everything)

a = 1000

n = 68 (more animals seen)

Let

 P_a = proportion of animals detected within covered region

• Imagine we know (or can estimate) $\hat{P}_a = 0.7$

Intuitive estimator of abundance

I saw 68 animals

The estimated proportion seen was 0.7

So, I estimate the true number of animals in the strips was 68/0.7 = 97.1

I covered 1000/5000 = 1/5th of the study region

So, I estimate there are 97.1/(1/5) = 485.7 animals

$$\hat{N} = \frac{\hat{P}_a}{A} = \frac{nA}{a\hat{P}_a} = \frac{68 \times 5000}{1000 \times 0.7} = 485.7$$

Concept – Distance sampling

Step 1: How many in <u>covered</u> region, N_a ?

Distance sampling:
$$\hat{N}_a = n/\hat{P}_a$$

Step 2: Given N_a , how many in study region, N

Step 2: Given
$$N_a$$
, how many in study region, N

If transects placed at random: $\hat{N} = \frac{\hat{N}_a}{a/A}$

Overall: $\hat{N} = \frac{\hat{P}_a}{a/A} = \frac{nA}{a\hat{P}_a} = \frac{nA}{2wL\hat{P}_a}$ for line transects

So how do we estimate P_a ?

Record perpendicular distance, x, from transect line to each observed object

Estimating P_a

Estimating Pa

Area of rectangle = 12x2 = 24

Area under curve = 0.25x(12+11.5+11+10.5+9+7+4+3) = 17

$$\hat{P}_a = \frac{17}{24} = 0.7$$

