Example

Theorem 0.1. Let A be an embedded n-manifold with boundary ∂A . Let v be a direction such that $h_v^A:A\to\mathbb{R}$ is a Morse function. Let the interval decomposition of the k-dimensional extended persistent homology of $h_v^{\partial A}:\partial A\to\mathbb{R}$ be

$$\mathrm{XPH}_k\left(\partial A, h_v\right) = \bigoplus_{[b_i, d_i) \in S_X} \mathcal{I}_{[b_i, d_i)}.$$

Let J_A^k be the subset of intervals $[b_i, d_i)$ such that $b_i = (h_v(p), \text{ ord})$ for some $p \in \text{Crit}(h_v^A, (k, +1))$, or $b_i = (h_v(p), \text{ rel })$ for some $p \in \text{Crit}(h_v^A, (n-k-1, -1))$. Then

$$\mathrm{XPH}_k\left(A,h_v\right) = \bigoplus_{[b_i,d_i) \in J_A^k} \mathcal{I}_{[b_i,d_i)}.$$

Example 1. Consider Figure 1. And we will compute XPH_0 .

Figure 1: Example figure

Theorem 0.2. Let $A \subset \mathbb{R}^2$ be a 2-dimensional piecewise linear manifold with boundary $X = \partial$. Fix $v \in S^1$. The 0-dimensional persistent homology of $h_v^X : X \to \mathbb{R}$ can be written as

$$\mathrm{PH}_{0}\left(X, h_{v}^{X}\right) = \bigoplus_{i=1}^{m} \mathcal{I}_{\left[h_{v}\left(y_{j_{i}}\right), d_{i}\right)}$$

where $y_{j_1}, \dots y_{j_m}$ are the set of vertex representatives, and $d_1, \dots d_m \in \mathbb{R} \cup \infty$. Here we have only included intervals with positive length.

Let J^{ord} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite and y_{j_i} is (+)critical for h_v^A . Then

$$\operatorname{Ord}_{0}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in J^{\operatorname{ord}}} \mathcal{I}_{\left[\left(h_{v}\left(y_{j_{i}}\right), \operatorname{ord}\right), \left(d_{i}, \operatorname{ord}\right)\right)}$$

Now let J^{rel} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite but y_i is not (+)-critical for $h_{\cdot \cdot \cdot}^A$.

$$\operatorname{Rel}_{1}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in Jrel} \mathcal{I}_{\left[\left(d_{i}, rel\right), \left(h_{v}\left(y_{j_{i}}\right), \ rel\ \right)\right)}$$

Theorem 0.3.

Theorem 0.4. Proposition 4.20. Let $A \subset \mathbb{R}^n$ be an n-manifold with boundary $X = \partial A$. Let v be a direction such that $h_v^A : A \to \mathbb{R}$ is a Morse function. Let $\{X_1, \dots X_k\}$ be the interior boundary components of X and $\{Y_1, \dots Y_l\}$ be the exterior boundary components of X. Then

Ess₀
$$(A, h_v) = \sum_{j=1}^{l} \mathcal{I}_{[(\min\{h_v(Y_j)\}, \text{ord}), (\max\{h_v(Y_j)\}, \text{ rel }))}$$

and

$$\operatorname{Ess}_{n-1}(A, h_v) = \sum_{i=1}^{k} \mathcal{I}_{[(\max\{h_v(X_i)\}, \operatorname{ord}), (\min\{h_v(X_i)\}, \operatorname{rel}))}$$