

Hiring Challenge

Engineering Mathematics Discrete Mathematics

Digital Logic and Design Computer Organizatio

Introduction of ER Model

data model: collection of conceptual tools for describing data, relationship bet'n those data, data semantics and consistency constraints.

Er model is a high level data model

Read

Discuss

The Entity Relational Model is a model for identifying entities to be represented in the database and representation of how those entities are related. The ER data model specifies enterprise schema that represents the overall logical structure of a database graphically.

The Entity Relationship Diagram explains the relationship among the entities present in the database. ER models are used to model real-world objects like a person, a car, or a company and the relation between these real-world objects. In short, ER Diagram is the structural format of the database.

Why Use ER Diagrams In DBMS?

- ER diagrams are used to represent the E-R model in a database, which makes them easy to be converted into relations (tables).
- ER diagrams provide the purpose of real-world modeling of objects which makes them intently useful.
- ER diagrams require no technical knowledge and no hardware support.
- These diagrams are very easy to understand and easy to create even for a naive user.
- It gives a standard solution for visualizing the data logically.

Symbols Used in ER Model

ER Model is used to model the logical view of the system from a data perspective which consists of these symbols:

- Rectangles: Rectangles represent Entities in ER Model.
- Ellipses: Ellipses represent Attributes in ER Model.
- Diamond: Diamonds represent Relationships among Entities.
- Lines: Lines represent attributes to entities and entity sets with other relationship types.
- Double Ellipse: Double Ellipses represent Multi-Valued Attributes.
- Double Rectangle: Double Rectangle represents a Weak Entity.

Figures	Symbols	Represents
Rectangle		Entities in ER Model
Ellipse		Attributes in ER Model
Diamond	\Diamond	Relationships among Entities
Line		Attributes to Entities and Entity Sets with Other Relationship Types
Double Ellipse		Multi-Valued Attributes
Double Rectangle		Weak Entity

Symbols used in ER Diagram

Components of ER Diagram

ER Model consists of Entities, Attributes, and Relationships among Entities in a Database System.

AD

Components of ER Diagram

Entity

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or it may be an object with a conceptual existence – a company, a job, or a university course.

Entity Set: An Entity is an object of Entity Type and a set of all entities is called an entity set. For Example, E1 is an entity having Entity Type Student and the set of all students is called Entity Set. In ER diagram, Entity Type is represented as:

Entity Set

1. Strong Entity

A <u>Strong Entity</u> is a type of entity that has a key Attribute. Strong Entity does not depend on other Entity in the Schema. It has a primary key, that helps in identifying it uniquely, and it is represented by a rectangle. These are called Strong Entity Types.

2. Weak Entity

An Entity type has a key attribute that uniquely identifies each entity in the entity set. But some entity type exists for which key attributes can't be defined. These are called <u>Weak Entity types</u>.

For Example, A company may store the information of dependents (Parents, Children, Spouse) of an Employee. But the dependents don't have existed without the employee. So Dependent will be a **Weak Entity Type** and Employee will be Identifying Entity type for Dependent, which means it is **Strong Entity Type**.

A weak entity type is represented by a Double Rectangle. The participation of weak entity types is always total. The relationship between the weak entity type and its identifying strong entity type is called identifying relationship and it is represented by a double diamond.

Strong Entity and Weak Entity

Attributes

<u>Attributes</u> are the properties that define the entity type. For example, Roll_No, Name, DOB, Age, Address, and Mobile_No are the attributes that define entity type Student. In ER diagram, the attribute is represented by an oval.

Attribute

1. Key Attribute

The attribute which uniquely identifies each entity in the entity set is called the key attribute. For example, Roll_No will be unique for each student. In ER diagram, the key attribute is represented by an oval with underlying lines.

Key Attribute

2. Composite Attribute

An attribute **composed of many other attributes** is called a composite attribute. For example, the Address attribute of the student Entity type consists of Street, City, State, and Country. In ER diagram, the composite attribute is represented by an oval comprising of ovals.

Composite Attribute

3. Multivalued Attribute

An attribute consisting of more than one value for a given entity. For example, Phone_No (can be more than one for a given student). In ER diagram, a multivalued attribute is represented by a double oval.

Multivalued Attribute

4. Derived Attribute

An attribute that can be derived from other attributes of the entity type is known as a derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, the derived attribute is represented by a dashed oval.

Derived Attribute

The Complete Entity Type Student with its Attributes can be represented as:

Entity and Attributes

Relationship Type and Relationship Set

A Relationship Type represents the association between entity types. For example, 'Enrolled in' is a relationship type that exists between entity type Student and Course. In ER diagram, the relationship type is represented by a diamond and connecting the entities with lines.

Entity-Relationship Set

A set of relationships of the same type is known as a relationship set. The following relationship set depicts S1 as enrolled in C2, S2 as enrolled in C1, and S3 as registered in C3.

Relationship Set

Degree of a Relationship Set

The number of different entity sets participating in a relationship set is called the <u>degree of a relationship set</u>.

1. Unary Relationship: When there is only ONE entity set participating in a relation, the relationship is called a unary relationship. For example, one person is married to only one person.

Unary Relationship

2. Binary Relationship: When there are TWO entities set participating in a relationship, the relationship is called a binary relationship. For example, a Student is enrolled in a Course.

Binary Relationship

3. n-ary Relationship: When there are n entities set participating in a relation, the relationship is called an n-ary relationship.

Cardinality

The number of times an entity of an entity set participates in a relationship set is known as <u>cardinality</u>. Cardinality can be of different types:

1. One-to-One: When each entity in each entity set can take part only once in the relationship, the cardinality is one-to-one. Let us assume that a male can marry one female and a female can marry one male. So the relationship will be one-to-one.

the total number of tables that can be used in this is 2.

One-to-One Cardinality

Using Sets, it can be represented as:

Set Representation of One-to-One

2. One-to-Many: In one-to-many mapping as well where each entity can be related to more than one relationship and the total number of tables that can be used in this is 2.

One to Many

Using sets, one-to-many cardinality can be represented as:

Set Representation of One-to-Many

3. Many-to-One: When entities in one entity set can take part only once in the relationship set and entities in other entity sets can take part more than once in the relationship set, cardinality is many to one. Let us assume that a student can take only one course but one course can be taken by many students. So the cardinality will be n to 1. It means that for one course there can be n students but for one student, there will be only one course.

The total number of tables that can be used in this is 3.

Many-to-One Relationship

Using Sets, it can be represented as:

Set Representation of Many-to-One

In this case, each student is taking only 1 course but 1 course has been taken by many students.

4. Many-to-Many: When entities in all entity sets can take part more than once in the relationship cardinality is many to many. Let us assume that a student can take more than one course and one course can be taken by many students. So the relationship will be many to many.

the total number of tables that can be used in this is 3.

Using Sets, it can be represented as:

Many-to-Many Set Representation

In this example, student S1 is enrolled in C1 and C3 and Course C3 is enrolled by S1, S3, and S4. So it is many-to-many relationships.

Participation Constraint

<u>Participation Constraint</u> is applied to the entity participating in the relationship set.

- **1. Total Participation** Each entity in the entity set must participate in the relationship. If each student must enroll in a course, the participation of students will be total. Total participation is shown by a double line in the ER diagram.
- **2.** Partial Participation The entity in the entity set may or may NOT participate in the relationship. If some courses are not enrolled by any of the students, the participation in the course will be partial.

The diagram depicts the 'Enrolled in' relationship set with Student Entity set having total participation and Course Entity set having partial participation.

Total Participation and Partial Participation

Using Set, it can be represented as,

Set representation of Total Participation and Partial Participation

Every student in the Student Entity set participates in a relationship but there exists a course C4 that is not taking part in the relationship.

How to Draw ER Diagram?

- The very first step is Identifying all the Entities, and place them in a Rectangle, and labeling them accordingly.
- The next step is to identify the relationship between them and pace them accordingly using the Diamond, and make sure that, Relationships are not connected to each other.
- Attach attributes to the entities properly.
- Remove redundant entities and relationships.
- Add proper colors to highlight the data present in the database.

For practice, you can refer to Quiz on ER-MODEL.

Last Updated : 01 May, 2023 513

Similar Reads

- 1. Mapping from ER Model to Relational Model
- 2. This is exactly why we still use the OSI model when we have TCP/IP Model
- 3. Difference between Bottom-Up Model and Top-Down Model
- 4. Difference between E-R Model and Relational Model in DBMS
- 5. Difference between Relational model and Document Model
- 6. Similarities between TCP/IP model and OSI model
- 7. ACID Model vs BASE Model For Database
- 8. Introduction of Relational Model and Codd Rules in DBMS
- **9.** Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)
- 10. Relational Model in DBMS

Previous Next

Article Contributed By:

GeeksforGeeks

Vote for difficulty

Current difficulty: Easy

Improved By: arorakashish0911, pkrsingh025, luizashaikh1, laxmishinde5t82, adityaarxehn

Article Tags: DBMS-ER model, DBMS, GATE CS

Practice Tags: DBMS

Improve Article

Report Issue

9th Floor, Sovereign Corporate Tower, Sector-136, Noida, Uttar Pradesh -

feedback@geeksforgeeks.org

Company **Explore**

About Us Job Fair For Students

Careers POTD: Revamped

In Media Python Backend LIVE

Contact Us Android App Development

Terms and Conditions DevOps LIVE

Privacy Policy DSA in JavaScript

Copyright Policy

Third-Party Copyright Notices

Advertise with us

Data Structures Languages

Python Array

Java String

C++ Linked List

PHP Stack

GoLang Queue

SQL Tree

Graph

R Language

Android Tutorial

Algorithms Web Development

Sorting HTML

Searching CSS

Greedy JavaScript Dynamic Programming Bootstrap

Pattern Searching ReactJS

Recursion AngularJS

Backtracking

Computer Science

GATE CS Notes

Operating Systems

Computer Network

Database Management System

Software Engineering

Digital Logic Design

Engineering Maths

Python

Python Programming Examples

Django Tutorial

Python Projects

Python Tkinter

OpenCV Python Tutorial

Python Interview Question

Data Science & ML

Data Science With Python

Data Science For Beginner

Machine Learning Tutorial

Maths For Machine Learning

Pandas Tutorial

NumPy Tutorial

NLP Tutorial

Deep Learning Tutorial

DevOps

Git

AWS

Docker

Kubernetes

Azure

GCP

Competitive Programming

Top DSA for CP

Top 50 Tree Problems

Top 50 Graph Problems

Top 50 Array Problems

Top 50 String Problems

Top 50 DP Problems

Top 15 Websites for CP

System Design

What is System Design

Monolithic and Distributed SD

Scalability in SD

Databases in SD

High Level Design or HLD

Low Level Design or LLD

Top SD Interview Questions

Interview Corner

Company Preparation

Preparation for SDE

Company Interview Corner

Experienced Interview

Internship Interview

GfG School

CBSE Notes for Class 8

CBSE Notes for Class 9

CBSE Notes for Class 10

CBSE Notes for Class 11

CBSE Notes for Class 12

Competitive Programming

English Grammar

Aptitude

Commerce

Accountancy

Business Studies

Microeconomics

Macroeconomics

Statistics for Economics

Indian Economic Development

UPSC

Polity Notes

Geography Notes

History Notes

Science and Technology Notes

Economics Notes

Important Topics in Ethics

UPSC Previous Year Papers

SSC/ BANKING

SSC CGL Syllabus

SBI PO Syllabus

SBI Clerk Syllabus

IBPS PO Syllabus

IBPS Clerk Syllabus

Aptitude Questions

SSC CGL Practice Papers

Write & Earn

Write an Article

Improve an Article

Pick Topics to Write

Write Interview Experience

Internships

Video Internship

@geeksforgeeks, Some rights reserved