Solutions due by 10.30am Friday 19th March.

1. Consider the growth problem with full capital depreciation ($\delta = 1$)

$$\max_{\{c_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t \log(c_t)$$
s.t. $c_t + k_{t+1} = Ak_t^{\alpha}$

- a) Write the problem's Bellman equation.
- b) Guess and verify that $V(k_t) = a + b \log k_t$.
- c) Find the optimal policies for k_{t+1} and c_t .

Solution: a)

$$V(k_t) = \max_{c_t} \{\log(c_t) + \beta V(Ak_t^{\alpha} - c_t)\}$$

b) The first order condition tells us that

$$\frac{1}{c_t} = \beta V'(Ak_t^{\alpha} - c_t)$$

Plugging in $V(k_t) = a + b \log k_t$ gives:

$$\frac{1}{c_t} = \beta \frac{b}{Ak_t^{\alpha} - c_t} \implies c_t^* = \frac{1}{1 + \beta b} Ak_t^{\alpha} \implies k_{t+1}^* = \frac{\beta b}{1 + \beta b} Ak_t^{\alpha}$$

Substituting this into the Bellman equation yields

$$a + b \log k_t = \log \left[\frac{1}{1 + \beta b} A k_t^{\alpha} \right] + \beta \left(a + b \log \left[\frac{\beta b}{1 + \beta b} A k_t^{\alpha} \right] \right)$$

Expanding and grouping terms gives

$$a + b \log k_t = (1 + \beta b) \log A + \beta b \log(\beta b) - (1 + \beta b) \log(1 + \beta b) + \beta a + \alpha (1 + \beta b) \log k_t$$

Equating coefficients on the log k_t terms gives $b = \frac{\alpha}{1-\alpha\beta}$ (which in turn gives $\beta b = \frac{\alpha\beta}{1-\alpha\beta}$ and $1 + \beta b = \frac{1}{1-\alpha\beta}$).

Substituting out and equating the constant terms gives

$$a = \frac{\log A + \alpha \beta \log(\alpha \beta) + (1 - \alpha \beta) \log(1 - \alpha \beta)}{(1 - \beta)(1 - \alpha \beta)}$$

- c) Plugging those constants into the first order condition gives $c_t^* = (1 \alpha \beta) A k_t^{\alpha}$) and $k_{t+1}^* = \alpha \beta A k_t^{\alpha}$. That is, save a proportion $\alpha \beta$ of total output, consume the rest.
- 2. Consider the growth model with labor:

$$\max_{\{c_t, \ell_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t [\log(c_t) + \eta \log(1 - \ell_t)]$$
s.t. $c_t + k_{t+1} = Ak_t^{\alpha} \ell^{1-\alpha}$

Show that the model has the following steady state:

$$\bar{\ell} = \frac{1}{1 + \frac{\eta}{1 - \alpha} (1 - \frac{\alpha \beta \delta}{1 - \beta(1 - \delta)})}$$

$$\bar{k} = \bar{\ell} \left[\frac{\alpha \beta A}{1 - \beta(1 - \delta)} \right]^{\frac{1}{1 - \alpha}}$$

$$\bar{c} = A \bar{k}^{\alpha} \bar{\ell}^{1 - \alpha} - \delta \bar{k}$$

Solution: The steady state Euler equation, intra-temporal consumption-leisure tradeoff, and resource constraint are:

$$1 = \beta \left[\alpha A \bar{k}^{\alpha - 1} \bar{\ell}^{1 - \alpha} + 1 - \delta \right] \tag{1}$$

$$\frac{\eta \bar{c}}{1 - \bar{\ell}} = (1 - \alpha) A \bar{k}^{\alpha} \bar{\ell}^{-\alpha} \tag{2}$$

$$\bar{c} = A\bar{k}^{\alpha}\bar{\ell}^{1-\alpha} - \delta\bar{k} \tag{3}$$

The Euler equation and resource constraint directly give two of the equations above. The tricky one is finding steady state labor. First, define $\bar{Y} = A\bar{k}^{\alpha}\bar{\ell}^{1-\alpha}$. Substitute consumption out of the labor condition using the resource constraint:

$$\eta[\bar{Y} - \delta \bar{K}] = (1 - \bar{\ell})(1 - \alpha)\frac{\bar{Y}}{\bar{\ell}}$$

$$\therefore \eta[1 - \delta \frac{\bar{K}}{\bar{Y}}]\bar{\ell} = (1 - \bar{\ell})(1 - \alpha)$$

$$\therefore \bar{\ell}\left(1 + \frac{\eta}{1 - \alpha}[1 - \delta \frac{\bar{K}}{\bar{Y}}]\right) = 1$$

$$\therefore \bar{\ell} = \frac{1}{1 + \left(\frac{\eta}{1 - \alpha}\right)\left[1 - \delta \frac{\bar{K}}{\bar{Y}}\right]}$$

Noting that
$$\frac{\bar{k}}{\bar{Y}} = \frac{1}{A\bar{k}^{\alpha-1}\bar{l}^{1-\alpha}} = \frac{1}{A\left(\bar{\ell}\left[\frac{\alpha\beta A}{1-\beta(1-\delta)}\right]^{\frac{1}{1-\alpha}}\right)^{\alpha-1}\bar{l}^{1-\alpha}} = \frac{\alpha\beta}{1-\beta(1-\delta)}$$
 finishes it.

- 3. Consider a tree whose growth is determined by a function h. This is, if k_t is the size of the tree in period t, then $k_{t+1} = h(k_t)$, $t = 0, 1, \ldots$ Suppose h is strictly increasing, strictly conneave, and h(0) > 0. Assume that the price of wood and the interest rate are constant over time, with p = 1 and $\beta = \frac{1}{1+r}$. Assume further that it is costless to cut down the tree. If the tree cannot be replanted, present value maximization leads to the functional equation $V(k_t) = \max\{k_t, \beta V(h(k_{t+1}))\}$.
 - a) Show that the above operator satisfies Blackwell's conditions for a contraction mapping.
 - b) Let k_0 be the height of the tree that solves $\beta h(k_0) = k_0$. Show that the rule "cut down the tree if $k \geq k_0$, leave it standing otherwise" is optimal.

Solution:

- a) Let $f(x) \leq g(x) \ \forall x$. Then $\max\{k_t, \beta f(h(k_t))\} \leq \max\{k_t, \beta g(h(k_t))\}$ (B1). $T(f(x) + a) = \max\{k_t, \beta f(h(k_t) + a)\} = \max\{k_t, \beta f(h(k_t)) + \beta a\} \leq \max\{k_t + \beta a, \beta f(h(k_t)) + \beta a\} = \max\{k_t, \beta f(h(k_t))\} + \beta a = T(f) + \beta a$ (B2). Therefore the operator is a contraction mapping.
- b) Note that we have $\beta h(k_t) > k_t$ if $k_t < k_0$, and $\beta h(k_t) < k_t$ if $k_t > k_0$.

Suppose $k_t < k_0$. Then

$$V(k_t) = \max\{k_t, \beta V(h(k_t))\}$$

$$> \max\{k_t, \beta V(k_t/\beta)\}$$

$$= \beta \max\{k_t/\beta, V(k_t/\beta)\}$$

$$= \beta V(k_t/\beta)$$

$$> \beta k_t/\beta$$

$$= k_t$$

So if $k_t < k_0$, then $V(k_t) > k_t$. So we should leave the tree up. By the same logic in the other direction, we should take the tree down if $k_t \ge k_0$.

4. [Challenge Problem] You don't have to submit this one if you don't want to.

Check out the setup of an odd game here:

https://www.youtube.com/watch?v=6_yU9eJ0NxA&ab_channel=Numberphile.

We can define the expected payoff of this game recursively with value functions. Let $V(R_t)$ be the expected payoff of the game.

a) Show that

$$V(R_t) = 1 + \mathbb{P}(d_t \le R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \le R_t) V\left(\sqrt{R_t^2 - x^2}\right) dx$$

where R_t is the current radius of the board, and d_t is the distance the dart lands from the origin.

- b) Find expressions for $\mathbb{P}(d_t \leq R_t)$ and $\mathbb{P}(d_t = x \mid d_t \leq R_t)$.
- c) Verify that the above operator satisfies the Blackwell conditions.
- d) Guess $V^0 = 0$ and manually perform 3 value function iterations.
- e) Make a guess for the value function and verify it.
- f) What's the expected score for the game with dart board of initial radius 1?

Solution:

a) For a given radius R_t , we get to throw one dart; so the period payoff is 1. If we fail to hit the board, the game ends and our future payoff is zero. If we do hit the board,

which happens with $\mathbb{P}(d_t \leq R_t)$ (probability that the distance the dart lands is within R_t of the origin), we continue the game with a board of new radius $R_{t+1} = \sqrt{R_t^2 - d_t^2}$. Since d_t is random, we must take expectation over future values $\mathbb{E}[V(R_{t+1})]$. The expectation is over the conditional density, $\mathbb{P}(d_t = x \mid d_t \leq R_t)$, since we must condition on the dart hitting the board.

b) $\mathbb{P}(d_t \leq R_t)$ is the area of the board divided by the area the dart could land in. The dart could land in a 2×2 square centered at the origin, so $\mathbb{P}(d_t \leq R_t) = \frac{\pi R_t^2}{4}$.

By similar logic, $\mathbb{P}(d_t \leq x \mid d_t \leq R_t)$ is the probability that the dart lands in a circle of radius x given than it lands in the board of radius R_t . So $\mathbb{P}(d_t \leq x \mid d_t \leq R_t) = \frac{\pi x^2}{\pi R_t^2} = \frac{x^2}{R_t^2}$. Differentiating gives $\mathbb{P}(d_t = x \mid d_t \leq R_t) = \frac{2x}{R_t^2}$.

c) Let $f(x) \leq g(x) \ \forall x$. By monotonicity of integrals: $1 + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) f\left(\sqrt{R_t^2 - x^2}\right) dx \leq 1 + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) g\left(\sqrt{R_t^2 - x^2}\right) dx$ (B1).

 $T(f(x)+a) = 1 + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) \left[f\left(\sqrt{R_t^2 - x^2} + a\right) \right] dx = 1 + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) f\left(\sqrt{R_t^2 - x^2}\right) dx + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) a dx = 1 + \mathbb{P}(d_t \leq R_t) \int_0^{R_t} \mathbb{P}(d_t = x \mid d_t \leq R_t) f\left(\sqrt{R_t^2 - x^2}\right) dx + \mathbb{P}(d_t \leq R_t) a = T(f) + \mathbb{P}(d_t \leq R_t) a.$ Since $\mathbb{P}(d_t \leq R_t) < 1$, the discounting property is satisfied (B2).

d) Plugging in the probabilities we found above, the value function is:

$$V(R_t) = 1 + \frac{\pi}{2} \int_0^{R_t} x V(\sqrt{R_t^2 - x^2}) dx$$

If we begin with $V^0(R_t) = 0$, then $V^1(R_t) = 1$.

$$V^{2}(R_{t}) = 1 + \frac{\pi}{2} \int_{0}^{R_{t}} x dx = 1 + \frac{\pi R_{t}^{2}}{4}$$

$$V^{3}(R_{t}) = 1 + \frac{\pi}{2} \int_{0}^{R_{t}} x \left(1 + \frac{\pi(\sqrt{R_{t}^{2} - x^{2}})^{2}}{4}\right) dx = 1 + \frac{\pi}{2} \int_{0}^{R_{t}} x + \frac{x\pi R_{t}^{2}}{4} - \frac{x^{3}}{4} dx = 1 + \frac{\pi}{2} \left[\frac{1}{2}x^{2} + \frac{x^{2}\pi R_{t}^{2}}{8} - \frac{x^{4}}{16}\right]_{0}^{R_{t}} = 1 + \frac{\pi R_{t}^{2}}{4} + \frac{\pi^{2}R_{t}^{4}}{32} = 1 + \left(\frac{\pi R_{t}^{2}}{4}\right) + \frac{1}{2} \left(\frac{\pi R_{t}^{2}}{4}\right)^{2}.$$

e) This is starting to look like the Taylor series for $\exp\{\frac{\pi R_t^2}{4}\}$. So guess $V(R_t) = \exp\{\frac{\pi R_t^2}{4}\}$.

$$1 + \frac{\pi}{2} \int_{0}^{R_{t}} x \exp\{\frac{\pi(\sqrt{R_{t}^{2} - x^{2}})^{2}}{4}\} dx = 1 + \frac{\pi}{2} \int_{0}^{R_{t}} x \exp\{\frac{\pi R_{t}^{2}}{4}\} \exp\{-\frac{\pi x^{2}}{4}\} dx$$

$$= 1 + \exp\{\frac{\pi R_{t}^{2}}{4}\} \int_{0}^{R_{t}} \frac{\pi x}{2} \exp\{-\frac{\pi x^{2}}{4}\} dx$$

$$= 1 + \exp\{\frac{\pi R_{t}^{2}}{4}\} \left[-\exp\{-\frac{\pi x^{2}}{4}\}\right]_{0}^{R_{t}}$$

$$= 1 + \exp\{\frac{\pi R_{t}^{2}}{4}\} \left[-\exp\{-\frac{\pi R_{t}^{2}}{4}\} + 1\right]$$

$$= 1 - 1 + \exp\{\frac{\pi R_{t}^{2}}{4}\}$$

$$= \exp\{\frac{\pi R_{t}^{2}}{4}\}$$

$$= \exp\{\frac{\pi R_{t}^{2}}{4}\}$$

So we've confirmed that our guess is a fixed point. Therefore we've found the value function.

f)
$$V(1) = e^{\pi/4} \approx 2.2$$
.