实验四:移位寄存器及其应用

实验成员:

实验目的:

- 1. 进一步掌握时序逻辑电路的设计步骤和方法
- 2. 熟悉和了解移位寄存器的工作原理功能及应用方法
- 3. 熟悉中规模 4 位双向移位寄存器的逻辑功能

实验原理:

 具有寄存数据功能的逻辑电路称为寄存器。移位寄存器是指寄存器中所存的 代码能够在移位脉冲的作用下依次左移或右移。根据存取信息的方式不同移 位寄存器可分为: 串入串出、串入并出、并入串出、并入并出四种形式:

既能左移又能右移的移位寄存器称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位。根据存取信息的方式不同移位寄存器可分为: 串入串出、串入并出、并入串出、并入并出四种形式:

中规模双向移位寄存器型号为 74LS194:

其中: D_A , D_B , D_C , D_D 为并行输入端; Q_A , Q_B , Q_C , Q_D 为并行输出端; S_R 为右移串行输入端; S_L 为左移串行输入端; S_1 、 S_0 为操作模式控制端; CR 为 异步清零端; CP 为时钟脉冲输入端

74LS194 有 5 种不同操作模式: 并行送数寄存, 右移 (方向由 QA 至 QD), 左移 (方向由 QD 至 QA), 保持及清零。

 S_1 、 S_0 和 Rd 端的控制作用如下表所示:

CP↔	CR↔	Sit	S₀₽	功能₽	Q ₀ Q ₁ Q ₂ Q ₃ =
×Ψ	047	×₽	×₽	清除₽	CR=0,使 Q₀Q₁Q₂Q₀=0000,寄存器正常工作时,CR=1₽
↑ ₽	1₽	1€	1₽	送数₽	CP 上升沿作用后,并行输入数据送入寄存器。
				100000000000000000000000000000000000000	Q₀Q₁Q₂Q₃=D₀D₁D₂D₃此时串行数据(Sư、Sư)被禁止₽
↑ ₽	1↔	042	1₽	右移₽	串行数据送至右移输入端 S ₄ , CP 上升沿进行右移。
					$Q_0Q_1Q_2Q_3=D_5_0D_1D_2D_5$
↑ ₽	1₽	1€	047	左移₽	串行数据送至左移输入端 SL, CP 上升沿进行左移。→
					$Q_0Q_2Q_2Q_3 = D_0D_2D_2D_5L^{-2}$
↑ ₽	1€	047	043	保持₽	CP 作用后寄存器内容保持不变。 Q,Q,Q,Q,= Q',Q',Q',Q',Q',+
↓ 40	1€	×₽	×₽	保持₽	Q ₀ Q ₁ Q ₂ Q ₃ = Q' ₀ Q' ₁ Q' ₂ Q' ₃ + ³

实验内容:

1. 用四块 D 型触发器 (二块 74LS74)接成 4 位输出的移位寄存器 如图连接好实验电路:

1. 运用 D 触发器的器的异步清 0 端 Rd(Rd=0 时 Q=0) 和置 1 端 Sd(Sd=0 时,Q=1) 来设寄存器的初态,设置 Q_3-Q_1 分别为: 0001, 0110, 0101, 0111。 把 D_0 接 Q_3 ,记录在 CP作用下 LED 的工作状态,如下图所示:

2. 设置 $Q_3 - Q_1$ 分别为: 0000, 0101。把 D_0 接 $\overline{Q_3}$, 记录在 CP 作用下 LED 的工作状态, 如下图所示:

3. 自启动: $\overline{Q_1 \cdot Q_2} \cdot Q_3$ 记录在 CP 作用下 LED 工作状态,如下图所示:

2. 测试双向移位寄存器 74LS194 的逻辑功能:

清零端 \overline{CR} 接 1, D_0 , D_1 , D_2 , D_3 , S_1 , S_0 分别接 6 个逻辑开关, CP 接 1Hz 脉冲信号, Q_3-Q_1 分别接 4 个 LED

16 15 14 13 12 11 10 9 Vcc Q₀ Q₁ Q₂ Q₃ CP S₁ S₀ 74LS194 CR D_{SR} D₀ D₁ D₂ D₃ D_{SL} GND 1 2 3 4 5 6 7 8

74LS194功能表

CR	S_1 S_0	工作状态
0	××	置零
1	0 0	保持
1	0 1	右移
1	1 0	左移
1	1 1	置数(并行输入)

- 1. $S_1S_0 = 11$, $D_0D_1D_2D_3$ 分别取 0110 和 1001, 记录 $Q_3 Q_1$ 的工作状态。观察到 $Q_3 Q_1$ 始终为 0110 和 1001
- 2. $S_1S_0 = 00$, 观察并记录 $Q_3 Q_1$ 的状态。观察到无论怎样改变输入 $D_0D_1D_2D_3$, $Q_3 Q_1$ 始终为不变
- 3. $S_1S_0 = 01$,取初态 $Q_3 Q_1$: 1000,使 D_{SR} 与 Q_3 相连,记录 $Q_3 Q_1$ 的工作状态
- 4. $S_1S_0=10$,取初态 Q_3-Q_1 : 0001,使 D_{SL} 与 Q_0 相连,记录 Q_3-Q_1 的工作状态

- 3. 用 74LS194 组成包含启动开关的 3 位串并转换电路
 - 1. 启动前,启动开关置0,194处于置数状态, $S_1S_0 = 11$
 - 2. 启动开关置 1,194 进入右移状态($S_1S_0 = 01$),输出端 Q_3 依次输出 $D_2D_1D_00$
 - 3. 标志位 0 到达输出端后,194 再次进入置数状态 $(S_1S_0 = 11)$
 - 4. 循环输出 $N_2N_1N_00N_2N_1N_00N_2N_1N_00$...

Vcc Q₀ Q₁ Q₂ Q₃ CP S₁ S₀

74LS194功能表

CR	S_1 S_0	工作状态
0	××	置零
1	0 0	保持
1	0 1	右移
1	1 0	左移
1	1 1	置数(并行输入)

观察实验结果, 当开关置于0时, LED 状态取决于N₂

当开关置于 1 时,LED 输出 $N_2N_1N_00N_2N_1N_00N_2N_1N_00$...循环

思考题:

1. 在 N 位移位寄存器中, 串行输入 N 位二进制数需要多少个 CP? 送数的次序 应从高位至低位,还是低位至高位

只需要一个 CP 即可实现串行输出。但是需要至少 N 个 CP 可以实现并行输出。根据移位寄存器的原理,我们应该从低位开始输入

2. 设计一个按 7→14→13→11→7 循环计数的自启动四位环形计数器,画出逻辑图

状态转移图如下:

...
$$0111 \rightarrow 1110 \rightarrow 1101 \rightarrow 1011 \rightarrow 0111$$
 ...

主要状态转移图如图所示:

此思考题主体是实验内容的 1.1 部分,因此可以设计反馈电路使得自启动,根据卡诺图,我们可以修改,其中阴影部分的 Q0*是其反码:

Q1Q0 Q3Q2	00	01	11	10
00	0001	1000	1001	0001
01	0011	1011	1011	0011
11	0111	1110	1110	0111
10	0100	1100	1101	0101

截取 Q0*的卡诺图:

Q1Q0 Q3Q2	00	01	11	10
00	1	0	1	1
01	1	1	1	1
11	1	0	0	1
10	0	0	1	1

因此逻辑表达式如下:

 $Q_1^* = Q_3^{`}Q_2^{`}Q_1^{`} + Q_3^{`}Q_2^{`}Q_1Q_0 + Q_1^{`}Q_0 + Q_3Q_1^{`} + Q_3Q_2^{`} + Q_3Q_1Q_0^{`}$ 电路图如下:

