

Algoritmos UFCD 0804 – 1.2

Nelson Santos nelson.santos.0001376@edu.atec.pt

Agenda

- Variáveis e constantes
- Tipos de dados

Conceitos genéricos

Resumo da aula anterior

Primeiro exercício

```
1  programa
2  {
3     funcao inicio ()
4     {
5         escreva("Olá Mundo")
6     }
7     }
8
9
```


Binário/Decimal

- Para que seja possível armazenar e manipular dados no computador é necessário representá-los internamente de alguma forma. Por norma, nós seres humanos, representamos os números através de um sistema que chamamos de sistema decimal (ou sistema na base 10).
- Esse sistema, que teve origem no fato de utilizarmos os 10 dedos das mãos, possui 10 dígitos distintos para representar as infinitas quantidades e valores que desejamos (012345678e9).

Explicação

- Nos caso dos computadores digitais, a notação que é utilizada possui apenas 2 algarismos ou dígitos para representar uma quantidade desejada, o 0 e o 1
- Este sistema de representação é chamado de sistema binário (ou sistema na base 2) e utiliza uma notação binária (0/1, verdadeiro/falso, sim/não)
- Outras formas de representação auxiliares também são utilizadas nos computadores, como por exemplo a representação pelo sistema hexadecimal (ou sistema na base 16) que utiliza 16 dígitos (0 1 2 3 4 5 6 7 8 9 A B C D E F)

$$(11111)_2 = (15)_{10}$$

- 101?
- 1010?
- 100000000?

- · 101
 - $(101)_2 = (5)_{10}$
- 1010
 - $(1010)_2 = (10)_{10}$
- · 10000000
 - $(100000000)_2 = (256)_{10}$

Exercícios Decimal/Binário – método usando as posições

Base	Número a dividir	Resto
2 _	17	1
2	8	0
2	4	0
2	2	0
	1	

17/2 = 8 | resto 1 8/2 = 4 | resto 0 4/2 = 2 | resto 0

2/2 = 1

17

resto 0

 $(17)_{10} = (10001)$

Exercícios Decimal/Binário – método usando as posições

Base	Número a dividir	Resto
2 _	25	1
2	12	0
2	6	0
2	3	1
2	1	

$$(25)_{10} = (11001)$$

Exercícios Decimal/Binário – método usando as posições

- 248?
- 575?
- (56)₁₀?

Exercícios Decimal/Binário – método usando as posições

- 248?
 - $(248)_{10} = (111111000)_2$
- 575?
 - $(575)_{10} = (10001111111)_2$
- (56)₁₀?
 - $(56)_{10} = (111000)_2$

Decimal/hexadecimal/binário

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
Α	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

Explicação

- Um "bit" é atómico: a unidade mais pequena de armazenamento
- O bit apenas tem valor 1 ou 0
- "Para o computador é tudo 0's e 1's" ... Bits
- Um bit é demasiado pequeno para ser usado
- Grupos de 8 bits fazem um byte

Explicação

- Um byte pode guardar um character: "A", "1", "\$"
- Combinações possíveis?

Bit							
0	1	0	1, ,	0	0	1	0
			Byte				

8 bits = 1 Byte

Número de bits	Combinações possíveis
1	0 ou 1
2	00 ou 01 ou 10 ou 11
4	000 ou 001 ou 010 ou 011 ou 100 ou 101 ou 110 ou 111
n	2 ⁿ combinações possíveis

Explicação

Dec	Hex	Bi	nary	Char	Dec	Hex	Binary	Char	Dec	Hex	Binary	Char	Dec	Hex	Binary	Char
0	0x00	00 (00000	NUL	32	0x20	01 00000	SPACE	64	0x40	10 00000	0 @	96	0x60	11 00000	
1	0x01	00	00001	SOH	33	0x21	01 0000		65	0x41	10 00001	l A	97	0x61	11 00001	а
2	0x02	00 (00010	STX	34	0x22	01 0001) "	66	0x42	10 00010) В	98	0x62	11 00010	b
3	0x03	00 (00011	ETX	35	0x23	01 0001	#	67	0x43	10 00011	C	99	0x63	11 00011	c
4	0x04	00 (00100	EOT	36	0x24	01 0010	\$	68	0x44	10 00100	D	100	0x64	11 00100	d
5	0x05	00 (00101	ENQ	37	0x25	01 0010	L %	69	0x45	10 0010	L E	101	0x65	11 00101	е
6	0x06	00 (00110	ACK	38	0x26	01 00110		70	0x46	10 00110) F	102	0x66	11 00110	f
7	0x07	00 (00111	BEL	39	0x27	01 0011		71	0x47	10 00111	L G	103	0x67	11 00111	g
8	0x08	00	01000	BS	40	0x28	01 01000	(72	0x48	10 01000	Н	104	0x68	11 01000	h
9	0x09	00	01001	нт	41	0x29	01 0100)	73	0x49	10 0100	I	105	0x69	11 01001	i
10	0x0a	00	01010	LF	42	0x2a	01 01010	*	74	0x4a	10 01010) J	106	0x6a	11 01010	j
11	0x0b	00 (01011	VT	43	0x2b	01 0101	+	75	0x4b	10 01011	K	107	0x6b	11 01011	k
12	0x0c	00 (01100	FF	44	0x2c	01 0110	,	76	0x4c	10 01100) L	108	0x6c	11 01100	1
13	0x0d	00 (01101	CR	45	0x2d	01 0110	ı <u>-</u>	77	0x4d	10 0110	L M	109	0x6d	11 01101	m
14	0x0e	00	01110	so	46	0x2e	01 01110		78	0x4e	10 01110	N	110	0x6e	11 01110	n
15	0x0f	00 (01111	SI	47	0x2f	01 0111	1	79	0x4f	10 01111	0	111	0x6f	11 01111	0
16	0x10	00	10000	DLE	48	0x30	01 10000	0	80	0x50	10 10000) P	112	0x70	11 10000	р
17	0x11	00	10001	DC1	49	0x31	01 1000	1	81	0x51	10 1000	Q	113	0x71	11 10001	q
18	0x12	00	10010	DC2	50	0x32	01 1001	2	82	0x52	10 10010	R	114	0x72	11 10010	r
19	0x13	00	10011	DC3	51	0x33	01 1001	3	83	0x53	10 10011	S	115	0x73	11 10011	s
20	0x14	00	10100	DC4	52	0x34	01 1010	4	84	0x54	10 10100	T	116	0x74	11 10100	t
21	0x15	00	10101	NAK	53	0x35	01 1010	. 5	85	0x55	10 1010	U	117	0x75	11 10101	u
22	0x16	00	10110	SYN	54	0x36	01 10110	6	86	0x56	10 10110	v	118	0x76	11 10110	v
23	0x17	00	10111	ETB	55	0x37	01 1011	7	87	0x57	10 10111	L W	119	0x77	11 10111	w
24	0x18	00	11000	CAN	56	0x38	01 1100	8	88	0x58	10 11000	x	120	0x78	11 11000	x
25	0x19	00	11001	EM	57	0x39	01 1100	9	89	0x59	10 1100	Y Y	121	0x79	11 11001	y
26	0x1a	00	11010	SUB	58	0x3a	01 1101	:	90	0x5a	10 11010) z	122	0x7a	11 11010	z
27	0x1b	00	11011	ESC	59	0x3b	01 1101	,	91	0x5b	10 11011] [123	0x7b	11 11011	{
28	0x1c	00	11100	FS	60	0x3c	01 1110	<	92	0x5c	10 11100) \	124	0x7c	11 11100	1
29	0x1d	00	11101	GS	61	0x3d	01 1110	-	93	0x5d	10 1110	1 1	125	0x7d	11 11101	}
30	0x1e	00	11110	RS	62	0x3e	01 11111	>	94	0x5e	10 11110	^	126	0x7e	11 11110	-
31	0x1f	00	11111	US	63	0x3f	01 1111	?	95	0x5f	10 11111	1	127	0x7f	11 11111	DEL

Explicação

10100111110000...

Explicação

- Dentro de um algoritmo podemos encontrar basicamente duas classes diferentes de dados, os dados **constantes** e os **variáveis**.
- Um dado é uma constante quando seu valor não se altera ao longo do tempo em que o algoritmo é executado, ou seja, permanece o mesmo desde o inicio até ao final da execução.
- Por outro lado, um dado que pode ter o seu valor a alterar durante a execução do programa é designado de **variável**.

Explicação

- O computador armazena os dados que são utilizados nos programas e algoritmos na memória de trabalho ou memória RAM (*Random Access Memory*). A memória do computador é sequencial e dividida em posições. Cada posição de memória permite armazenar uma palavra (conjunto de bytes) de informação e possui um número que indica o seu endereço.
- No fundo, são espaços alocados na memória que recebe um nome (identificador) e tem um tipo onde se armazena um valor
- As variáveis podem ser entendidas como sendo apelidos para as posições de memória
- Vamos supor que queremos fazer um programa que solicita para um usuário digitar a sua idade e exibe a ele quantos anos faltam para ele atingir 100 anos de idade.
 Precisaremos armazenar a idade do usuário para depois realizar o cálculo 100 idade_usuario e depois armazenar também o resultado

Explicação/Exemplo

São espaços alocados na memória que recebe um **nome** (identificador) e tem um **tipo** (inteiro, etc), onde se armazena um **valor**.

Exemplo

```
programa
         inteiro variavel
         funcao inicio()
             inteiro outra variavel
11
             real altura = 1.79
12
13
             cadeia frase = "Isso é uma variável do tipo cadeia"
             caracter inicial = 'P'
             logico exemplo = verdadeiro
             //Imprime 1.79, valor obtido na variável altura
21
             escreva(altura)
```

São espaços alocados na memória que recebe um **nome** (identificador) e tem um **tipo** (inteiro, etc), onde se armazena um **valor**.

Constantes

Explicação

- Existem algumas situações em que precisamos que um determinado parâmetro não tenha seu valor alterado durante a execução do programa. Para isso, existem as constantes. Constante é um identificador cujo valor associado não pode ser alterado pelo programa durante a sua execução
- Para declarar uma constante basta adicionar a palavra reservada const seguida do tipo de dado, pelo nome da constante e atribuir um valor a ela.

Constantes

Exemplo

Variáveis/Constantes

Boas práticas

Regras para os nomes das variáveis e constantes:

- Os nomes das variáveis e constantes devem representar o que será guardado dentro dela;
- O primeiro caracter de um nome deverá ser sempre alfabético.
- Não podem ser colocados espaços em branco no nome de variáveis ou constantes, usar o UNDERSCORE "_";
- Não podem utilizar palavras reservadas (inteiro, real, função, etc);
- As constantes são usualmente em LETRA MAIUSCULA;

Variáveis/Constantes

Boas práticas

Bad Variable Names to Avoid // Avoid Single Letter Names let n = 'use name instead' // Avoid Acronyms let cra = 'no clue what this is' // Avoid Abbreviations let cat = 'cat or category??' // Avoid Meaningless Names let foo = 'what is foo??'

Tipos primitivos

- Inteiro: São os números pertencentes ao conjunto dos Inteiros, isto é, que não possuem parte fracionária. Podem ser positivos, nulos ou negativos.
 - Exemplos: 2 laranjas, calçado tamanho 42, 65535 grãos, 0 pessoas na fila, multa de 2 pontos no campeonato.

Tipos primitivos

- Real: São os números pertencentes ao conjunto dos Reais, isto é, que podem possuir parte fracionária. Também são chamados de ponto flutuante devido a maneira como o computador os armazena.
- Exemplos: 2.12 litros de gasóleo, -3.5° C, π = 3.141592654, saldo de 10000.52, e = 2.7182818284590451.

Tipos primitivos

- Caracter: São os valores pertencentes ao conjunto de todos os caracteres numéricos (0...9), alfabéticos (a...z, A...Z) e especiais (! @ # \$ % &).
- Este conjunto também é conhecido como o conjunto de caracteres alfanuméricos.
 Os caracteres alfanuméricos são armazenados internamente no computador na forma numérica (binário) utilizando o padrão ASCIII.

Tipos primitivos

 Lógico: O tipo lógico é utilizado para representar informações que só podem assumir dois valores, o valor verdadeiro (V) ou o valor falso (F). Estes valores também podem ser entendidos como: ligado/desligado, 1/0, alto/baixo, fechado/aberto, verdadeiro/falso.

• Exemplos de informações que podem ser representadas utilizando o tipo lógico são: O fogão está apagado, a televisão está ligada, o portão está aberto, o produto foi

encontrado?

```
programa

{
    funcao inicio()
    {
        logico teste
        inteiro num
        escreva ("Digite um valor para ser comparado :")
        leia (num)

        teste = (num>0)

        escreva ("O número digitado é maior que zero? ", teste)
}

}
```


Input e output

```
programa
         funcao inicio()
         inteiro idade
         real salario, nota1, nota2, nota3
         cadeia nome, sobrenome
         escreva("Informe a sua idade: ")
         leia (idade)
11
12
         escreva("Informe seu salario: ")
13
         leia (salario)
         escreva("Informe o seu nome e sobrenome: ")
         leia (nome, sobrenome)
                                 //lê o valor digitado para "nome" e "sobrenome"
17
         escreva("Informe as suas três notas: ")
         leia (nota1, nota2, nota3) //lê o valor digitado para "nota1", "nota2" e "nota3"
         escreva("Seu nome é:"+nome+" "+sobrenome+"\n")
21
         escreva("Você tem "+idade+" anos e ganha de salario "+salario+"\n")
22
         escreva("Suas três notas foram:\n")
         escreva("Nota 1: "+nota1+"\n")
         escreva("Nota 2: "+nota2+"\n")
         escreva("Nota 3: "+nota3+"\n")
```


Operação	Símbolo	Prioridade
Adição	+	1
Subtração	-	1
Multiplicação	*	2
Divisão	/	2
Resto da divisão inteira	%	2

Primeiro são executadas as operações de prioridade mais elevada e depois da esquerda para a direita

$$3 + 4 / 2 = 5$$

$$(1+3)*4=$$
 16

Ordem	Operação	
1 <u>a</u>	Parênteses	
$2^{\underline{\mathbf{a}}}$	Potenciação ** No Portugol é uma funçã	íc
$3^{\underline{a}}$	Multiplicação, Divisão, Resto e Divisão Inteira	
4 <u>a</u>	Adição, Subtração	

Tabela de compatibilidade de tipos da operação de multiplicação

Operando Esquerdo	Operando Direito	Tipo Resultado	Exemplo	Resultado
inteiro	inteiro	inteiro	6 * 8	48
inteiro	real	real	4 * 1.11	4.44
real	inteiro	real	6.712 * 174	1167.888
real	real	real	207.65 * 1.23	255.4095

Tabela de compatibilidade de tipos da operação de divisão

Operando Esquerdo	Operando Direito	Tipo Resultado	Exemplo	Resultado
inteiro	inteiro	inteiro	5/2	2
inteiro	real	real	125 / 4.5	27.777777
real	inteiro	real	785.4 / 3	261.8
real	real	real	40.351 / 3.12	12.9333333

Tabela de	Tabela de compatibilidade de tipos da operação de subtração									
	Operando Esquerdo	Operando Direito	Tipo Resultado	Exemplo	Resultado					
	inteiro	inteiro	inteiro	20 - 10	10					
	inteiro	real	real	90 - 0.5	89.5					
	real	inteiro	real	11.421 - 3	8.421					
	real	real	real	12.59 - 24.59	-12.0					

Operando Esquerdo	Operando Direito	Tipo Resultado	Exemplo	Resultado
inteiro	inteiro	inteiro	45 % 7	3

Tabela de compatibilidade de tipos da operação de adição

Operando Esquerdo	Operando Direito	Tipo Resultado	Exemplo	Resultado
cadeia	cadeia	cadeia	"Oi" + " mundo"	"Oi mundo"
cadeia	caracter	cadeia	"Banan" + 'a'	"Banana"
cadeia	inteiro	cadeia	"Faz um" + 21	"Faz um 21"
cadeia	real	cadeia	"Altura: " + 1.78	"Altura: 1.78"
cadeia	logico	cadeia	"Help bom =" + verdadeiro	"Help bom = verdadeiro"
caracter	cadeia	cadeia	'P' + "anqueca"	"Panqueca"
caracter	caracter	cadeia	'C' + 'a' + 'd' + 'e' + 'i' + 'a'	"Cadeia"
inteiro	cadeia	cadeia	22 + " de agosto"	"22 de agosto"
inteiro	inteiro	inteiro	12 + 34	46
inteiro	real	real	76 + 3.25	79.25
real	cadeia	cadeia	3.24 + " Kg"	"3.24 Kg"
real	inteiro	real	9.87 + 1	10.87
real	real	real	9.87 + 0.13	10.0
logico	cadeia	cadeia	verdadeiro + " amigo"	"verdadeiro amigo"

Exercício 1

- Elabore um algoritmo no Portugol e respetivo diagrama onde se solicita duas variáveis reais (r e r1), duas inteiras (i e i2). Depois escreva no ecrã:
 - A soma dos dois reais;
 - A soma dos dois inteiros;
 - A divisão de r por i;
 - A divisão de i2 por i;
 - O módulo de i por i2;
 - A divisão da soma dos números reais por i2;
 - A multiplicação de todos os números;

Decisão condicional simples


```
programa
              funcao inicio()
 6
            inteiro num
            escreva ("Digite um número: ")
 8
            leia (num)
10
            se (num==0)
11
12
             escreva ("O número digitado é O")
13
14
15
16
17
18
```


Exercício 2

• Elabore um algoritmo no Portugol que solicite um número inteiro ao utilizador e diga se é par. Caso não seja, não escreve nada. Fazer o diagrama no *flowchart*.

even
$$\equiv 0 \pmod{2}$$

$$odd \equiv 1 \pmod{2}$$

```
Par = 0 se mod 2 => número % 2 = 0 ? É par

Impar = 1 se mod 2 => número % 2 = 1 ? É impar

Operador resto da divisão: %
```


Decisão condicional composta


```
programa
       funcao inicio()
         inteiro hora
         escreva ("Digite a hora: ")
         leia (hora)
10
         se (hora >= 6 e hora <= 18)
11
12
           escreva ("É dia")
13
14
15
         senao
           escreva ("É noite")
17
19
20
21
22
```


Exercício 3

• Elabore um algoritmo no Portugol que solicite um número inteiro ao utilizador e diga se é par ou ímpar. Fazer o diagrama no *flowchart*.

even
$$\equiv 0 \pmod{2}$$

$$odd \equiv 1 \pmod{2}$$

```
Par = 0 se mod 2 => número % 2 = 0 ? É par

Impar = 1 se mod 2 => número % 2 = 1 ? É impar

Operador resto da divisão: %
```


Decisão condicional composta 2

Exercício 4

• Elabore um algoritmo no Portugol que solicite ao utilizador dois números inteiros e escreva se o primeiro número é maior, menor ou igual que o segundo.

3 Questões

PALMELA

Edifício ATEC · Parque Industrial da Volkswagen Autoeuropa 2950-557 · Quinta do Anjo

Tel. 212 107 300 | info@atec.pt

PORTO

Edifício Siemens · Av. Mário Brito (EN107), nº 3570 · Freixieiro 4456-901 · Perafita

Tel. 220 400 500 | infoporto@atec.pt

