Nombre de la asignatura: Teoría de Sistemas Lineales

LGAC: Control de procesos energéticos

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	M.C. José Antonio Hernández Reyes	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. Marcos Alonso Méndez Gamboa	

2. Prerrequisitos y correquisitos.

Básica

3. Objetivo de la asignatura.

El alumno obtendrá las herramientas necesarias para el análisis y diseño de sistemas lineales y su

aplicación a la ingeniería de control.

4. Aportaciones al perfil del graduado.

Conocimientos y habilidades para el análisis y diseño de sistemas lineales electrónicos para su uso en ingeniería de control y sistemas realimentados.

5. Contenido temático.

Se establece el temario (temas y subtemas) que conforman los contenidos delprograma de estudio, debiendo estar organizados y secuenciados. Además de que los temas centralesconduzcan a lograr el objetivo de la materia.

UNIDAD	TEMA	SUBTEMAS
I	Ingeniería de control Conceptos básicos de control clásico	1.1 Lazo abierto 1.2 Lazo cerrado 1.3 Seguimiento 1.4 Especialidad 1.5 Incertidumbre en mdelo 1.6 Perturbaciones
II	Análisis de Sistemas Lineales Diseño de controladores	2.1 Superposición 2.2 Modelado de sistemas dinámicos (cuaciones diferenciales y función de trasnferencia)

		2.3 Constante de tiempo
		2.4 Tiempo de establecimiento
		2.5 Coeficiente de amortiguamiento
		2.6 Análisis de estabilidad
		2.7 Respuesta en la frecuencia.
III	Diseño de	3.1Encendido apagado
	compensadores de	3.2 PID y sintonización
	adelanto y atraso	3.3 Uso de lugar de las raíces
	0	3.4 Uso de diagramas de Bode
	Criterios de diseño	3.5 Modelo interno
IV	Realimentación de	4.1 Ecuaciones de Estado
	estado.	4.2 Estabilidad
	Controlabilidad	4.3 Reguladores con error estacionario cero
	Observabilidad y	
	observadores	

6. Metodología de desarrollo del curso.

Se establecen las estrategias y las actividades que sean funcionales y adecuadas para lograr el aprendizaje de los estudiantes.

Conferencia interactiva utilizando pizarrón. Se hacen ejemplos en computadora y en equipo de laboratorio analizando los modelos matemáticos de sistemas físicos y diseñando sistemas de control lineales con base en su modelo matemático.

7. Sugerencias de evaluación.

Se evalúa con los ejercicios de tarea, los proyectos presentados y el resultado de tres exámenes

8. FUENTES DE INFORMACIÓN

Se enumerarán la bibliografía y el software de apoyo recomendado, además de las fuentes de información de distinta índole (hemerográficas, videográficas, electrónicas, etc.).

- Ogata, K.; Discrete Time Control Systems, Prentice Hall
- Kuo, Benjamin; Sistemas Automáticos de Control; Prentice Hall
- Proakis J., Manolakis D.; Digital Signal Processing; McMillan
- Jackson L.; Signals, Systems and Transforms; Addison Wesley
- Matlab con Simulink, módulo de control

9. Actividades propuestas

Se deberán desarrollar las prácticas que se consideren necesarias por tema.

UNIDAD	PRACTICAS	
II	Obtención de una función de transferencia de unsistema físico en forma	
	experimental.	
	Analizar la respuesta en la frecuencia de unsistema por medio de su	
	modelo matemático ysimulación.	
	Comprobar experimentalmente el tiempo deestablecimiento calculado para	
	un sistema.	
III	Diseñar e implementar un controlador PID y revisarsu comportamiento.	
	Sintonizar un controlador PID para un sistema.	
IV	IV Diseñar e implementar un sistema realimentado por estado.	
	Diseñar e implementar un sistema realimentado usando observador para	
	estimación de estado.	

10. Nombre y firma de los catedráticos responsab	les.
--	------

M.C. José Antonio Hernández Reyes	
M.C. Marcos Alonso Méndez Gamboa	