EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

May 16, 2022

Lecture #6B: Optimal Detection and Error Probability for QAM Signalling

- To determine the probability of error for QAM, we must specify the signal point constellation.
- Consider QAM signal sets that have M=4 points as shown in figure.

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

ullet Consider QAM signal sets that have M=4 points as shown in figure.

• The first is a four-phase modulated signal, and the second is a QAM signal with two amplitude levels, labelled A_1 and A_2 , and four phases.

EE910: Digital Communication Systems-

- Impose the condition that $d_{min} = 2A$ for both signal constellations.
- Let us evaluate the average transmitted power, based on the premise that all signal points are equally probable.
- For the four-phase signal, we have

$$\mathcal{E}_{\text{avg}} = 2A^2 \tag{1}$$

4ロト 4回ト 4 重ト 4 重ト 重 9000

Adrish Banerjee
EE910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

• For the two-amplitude, four-phase QAM, we place the points on circles of radii A and $\sqrt{3}A$. Thus, $d_{min}=2A$, and

$$\mathcal{E}_{avg} = \frac{1}{4} \Big[2(3A^2) + 2A^2 \Big] = 2A^2$$
 (2)

which is the average power as the M=4 phase signal constellation.

- Hence, the error rate performance of the two signal sets is the same.
- There is no advantage of the two-amplitude QAM signal set over M=4 phase modulation.

4 D > 4 B > 4 E > 4 E > 9 Q C

- Let us consider M = 8QAM. In this case, there are many possible signal constellations.
- We shall consider the four signal constellations shown in figure (next page) all of which consist of two amplitudes and have a minimum distance between signal points of 2A.
- The coordinates (A_{mc}, A_{ms}) for each signal point, normalized by A, are shown in figure.

4 D > 4 A > 4 B > 4 B > B = 40 Q C

EE910: Digital Communication Systems

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

EE910: Digital Communication Systems-I

• Assuming that the signal points are equally probable, the average transmitted signal energy is

$$\mathcal{E}_{avg} = \frac{1}{M} \sum_{m=1}^{M} \left(A_{mc}^{2} + A_{ms}^{2} \right)$$

$$= \frac{A^{2}}{M} \sum_{m=1}^{M} \left(a_{mc}^{2} + a_{ms}^{2} \right)$$
(3)

where (a_{mc}, a_{ms}) are the coordinates of the signal points, normalized by A.

(D) (A) (E) (E) E OQO

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

- The two signal sets (a) and (c) in the figure contain signal points that fall on a rectangular grid and have $\mathcal{E}_{avg}=6A^2$. The signal set (b) requires an average transmitted energy $\mathcal{E}_{avg}=6.83A^2$, and (d) requires $\mathcal{E}_{avg}=4.73A^2$
- The fourth signal set requires approximately 1 dB less energy than
 the first two and 1.6dB less energy than the third, to achieve the
 same probability of error.
- This signal constellation is known to be the best eight-point QAM constellation because it requires the least power for a given minimum distance between signal points.

- For $M \ge 16$, there are many more possibilities for selecting the QAM signal points in two-dimensional space.
- ullet For example, we may choose a circular multi amplitude constellation for M=16, as shown in figure

←□ → ←□ → ← □ → ← □ →

FF910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

- In this case, the signal points at a given amplitude level are phase-rotated by $\frac{1}{4}\pi$ relative to the signal points at adjacent amplitude levels.
- The circular 16-QAM constellation is not the best 16-point QAM signal constellation for the AWGN channel.

- Rectangular QAM signal constellations have the distinct advantage of being easily generated as two PAM signals impressed on the in-phase and quadrature carriers.
- Although they are not the best M-ary QAM signal constellations for $M \geq 16$, the average transmitted power required to achieve a given minimum distance is only slightly greater than the average required power for the best M-ary QAM signal constellation.
- Thus, rectangular M-ary QAM signals are most frequently used in practice.

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for ASK or PAM Signalling

- In the special case where k is even and the constellation is square, it is possible to derive an exact expression for the error probability.
- The minimum distance of this constellation is given by

$$d_{min} = \sqrt{\frac{6\log_2 M}{M - 1}\mathcal{E}_{bavg}} \tag{4}$$

• This constellation can be considered as two \sqrt{M} -ary PAM constellations in the in-phase and quadrature directions.

- An error occurs if either n_1 or n_2 is large enough to cause an error in one of the two PAM signals.
- The probability of a correct detection for this QAM constellation is therefore the product of correct decision probabilities for constituent PAM systems, i.e.,

$$P_{c,M-QAM} = P_{c,\sqrt{M}-PAM}^2 = \left(1 - P_{e,\sqrt{M}-PAM}\right)^2$$
 (5)

4 D > 4 A > 4 B > 4 B > B = 40 Q A

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

• This results in

$$P_{e,M-QAM} = 1 - \left(1 - P_{e,\sqrt{M}-PAM}\right)^{2}$$

$$= 2P_{e,\sqrt{M}-PAM}\left(1 - \frac{1}{2}P_{e,\sqrt{M}-PAM}\right)$$
(6)

From equation

$$P_{e} = \frac{1}{M} \sum_{m=1}^{M} P[error|m \ sent]$$

$$= \frac{1}{M} \left[2(M-2)Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right) + 2Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right) \right]$$

$$= \frac{2(M-1)}{M} Q\left(\frac{d_{min}}{\sqrt{2N_{0}}}\right)$$
(7)

we have

$$P_{e,\sqrt{M}-PAM} = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right) \tag{8}$$

EE910: Digital Communication Systems-

• Substituting the value for d_{min} from equation (4), we get

$$P_{e,\sqrt{M}-PAM} = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_2 M}{M-1}\frac{\mathcal{E}_{bavg}}{N_0}}\right)$$
(9)

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

• Substituting Equation (9) into Equation (6) yields

$$P_{e,M-QAM} = 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)$$

$$\times \left(1 - \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)\right) \qquad (10)$$

$$\leq 4Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)$$

4 D > 4 D > 4 E > 4 E > E 99

Adrish Banerjee EE910: Digital Communication Systems-I

- For large M and moderate to high SNR per bit, the upper bound given by above equation is quite tight.
- Although above equation is obtained for square constellations, for large M it gives a good approximation for general QAM constellations with $M=2^k$ points which are either in the shape of a square (when k is even) or in the shape of a cross (when k is odd).

4ロ > 4回 > 4 = > 4 = > = 900

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

• These types of constellations are illustrated in the below figure

EE910: Digital Communication Systems-I

Error probability of M-ary QAM as a function of SNR per bit

y(dB) ト 4回 ト 4 注 ト 4 注 ト 注 ・ から、

EE910: Digital Communication Systems-I

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

- Comparing the error performance of M-ary QAM with M-ary ASK and MPSK, we observe that unlike PAM and PSK Signalling in which in the penalty for increasing the rate was 6 dB/bit, in QAM this penalty is 3 dB/bit.
- This shows that QAM is more power efficient compared with PAM and PSK.
- The advantage of PSK is, however, its constant-envelope properties.

• QPSK can be considered as 4QAM with a square constellation. Using Equation (10) with M=4, we obtain

$$P_{4} = 2Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right)\left[1 - \frac{1}{2}Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right)\right]$$

$$\leq 2Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{N_{0}}}\right)$$
(11)

• For 16-QAM with a rectangular constellation we obtain

$$P_{16} = 3Q\left(\sqrt{\frac{4}{5}} \frac{\mathcal{E}_{bavg}}{N_0}\right) \left[1 - \frac{3}{4}Q\left(\sqrt{\frac{4}{5}} \frac{\mathcal{E}_{bavg}}{N_0}\right)\right]$$

$$\leq 3Q\left(\sqrt{\frac{4}{5}} \frac{\mathcal{E}_{bavg}}{N_0}\right)$$
(12)

Adrish Banerjee FF910: Digital Communication Systems Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

 For nonrectangular QAM signal constellations, we may upper-bound the error probability by use of the union bound as

$$P_M \le (M-1)Q\left(\sqrt{\frac{d_{min}^2}{2N_0}}\right) \tag{13}$$

where d_{min} is the minimum Euclidean distance of the constellation

• This bound may be loose when M is large. In such a case, we may approximate P_M by replacing M-1 by N_{min} , where N_{min} is the largest number of neighbouring points that are at distance d_{min} from any constellation point.

- It is interesting to compare the performance of QAM with that of PSK for any given signal size M, since both types of signals are two-dimensional.
- For M-ary PSK, the probability of a symbol error is approximated as

$$P_M \approx 2Q \left(\sqrt{(2\log_2 M) sin^2(\frac{\pi}{M}) \frac{\mathcal{E}_b}{N_0}} \right)$$
 (14)

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Optimal Detection and Error Probability for QAM Signalling

• For M - ary QAM, we may use the expression (10).

$$P_{e,M-QAM} = 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)$$

$$\times \left(1 - \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)\right)$$

$$\leq 4Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{\mathcal{E}_{bavg}}{N_0}\right)$$

$$(15)$$

4 D > 4 D > 4 E > 4 E > E 990

- Since the error probability is dominated by the argument of the Q function, we may simply compare the arguments of Q for the two signal formats.
- Thus, the ratio of these two arguments is

$$R_M = \frac{\frac{3}{M-1}}{2\sin^2(\frac{\pi}{M})} \tag{16}$$

4ロト 4回ト 4 重ト 4 重ト 重 9000

Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

- When M = 4, we have $R_M = 1$. Hence, 4 PSK and 4 QAM yield comparable performance for the same SNR per symbol.
- When M > 4, we find that $R_M > 1$, so that M ary QAM yields better performance than M ary PSK.
- The following table illustrates the SNR advantage of QAM over PSK for several values of M.

M	$10 \log \mathcal{R}_M$
8	1.65
16	4.20
32	7.02
64	9.95

