Local Search Constraint Satisfaction Problems

Russell and Norvig: Chapter 4

CSE 240: Winter 2023

Lecture 9

Guest Lecturer: Prof. Razvan Marinescu

Announcements

- This week: Prof. Marinescu will lecture (Prof. Gilpin at AAAI)
- Prof. Gilpin will *briefly* go over Assignment 3 (posted on Canvas with instructions).

Agenda and Topics

- Assignment 3 Overview
- Local search and optimization algorithms.
 - Genetic Algorithms
 - Local search in continuous space
- Constraint Satisfaction Problems

Assignment 3

Genetic Algorithms

Genetic Algorithms

- Quicker but randomized searching for an optimal parameter vector
- Operations
 - Crossover (2 parents -> 2 children)
 - Mutation (one bit)
- Basic structure
 - Create population
 - Perform crossover & mutation (on the fittest)
 - Keep only fittest children

Genetic Algorithms

- State = a string over a finite alphabet (an individual)
 - A successor state is generated by combining two parent states
- Start with <u>k randomly generated states</u> (population)
- Evaluation function (fitness function): Higher values for better states.
- Select individuals for next generation based on fitness
 - P(indiv. in next gen) = indiv. fitness / total population fitness
- Crossover: fit parents to yield next generation (offspring)
- Mutate the offspring randomly with some low probability

Describe an Individual

- Describe the individual (or state) as a string
- Fitness function: number of non-attacking pairs of queens
 - 24 in this example.

Crossover

To select some part of the state from one parent and the rest from another

Mutation

To change a small part of one state with a small probability

- P(pick child_1 for next gen.) = fitness_ $1/(\Sigma_i fitness_i) = 24/78 = 31%$
- P(pick child_2 for next gen.) = fitness_2/(Σ _i fitness_i) = 23/78 = 29%; etc

Comments On Genetic Algorithm

- Genetic algorithm is a variant of "stochastic beam search"
- Positive points:
 - Random exploration can find solutions that local search cannot
 - Appealing connection to human evolution
- Negative points:
 - Large number of tunable parameters
 - Not convincing that the algorithm performs better than hill-climbing with random restart in general

Local Search in Continuous Space

Example of a Continuous Landscape

Gradient Descent

- Choose an initial state: $\theta = [\theta_0, \theta_1]$ (for this 2 dimensional example).
- Until we reach a global/local minimum:
 - Move to a better successor state
 - Choose a new value of θ to reduce $Cost(\theta)$

Gradient Descent Algorithm

- Initialize θ
- Repeat until convergence:

$$\theta \leftarrow \theta - \alpha \frac{\partial Cost(\theta)}{\partial \theta}$$

• α is the learning rate.

Constraint Satisfaction Problems

Constraint Satisfaction Problems

states
partial assignment

goal test complete; satisfies constraints successor function assign an unassigned variable

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully-observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All goals at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Exercise: Sudoku

• But, before we get into all that, let's do a puzzle...

http://www.sudokuwiki.org/sudoku.htm

 Each <u>Sudoku</u> has a unique solution that can be reached logically without guessing. Enter digits from 1 to 9 into the blank spaces. Every row must contain one of each digit. So must every column, as must every 3x3 square.

Take 5 minutes

CE 9: Sudoku Puzzle

	1	2	3	4	5	6	7	8	9
1	7		5	1	6	4		2	8
2	4		6		7			1	5
3	1				3		6	7	4
4	2	4	9	3	8	1	7	5	6
5	3	8	7	2	5		1	4	9
6	5	6	1	7	4	9	8	3	2
7	8	5	2	6	1	7	4	9	3
8	9	1	4	8	2	3	5	6	7
9	6	7	3	4	9	5	2	8	1

Problem Formulation

- What is the state space?
- What is the initial state?
- What is the successor function?
- What is the goal test?

CSP as a Search Problem

- Initial state: empty assignment
- Successor function: a value is assigned to any unassigned variable
- Goal test: the assignment is complete and consistent

We can do better.....

What else is needed?

- Not just a successor function and goal test
- But also a means to propagate the constraints imposed by one move on the others and an early failure test
- Explicit representation of constraints and constraint manipulation algorithms

What is Search For?

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problem

- Set of variables {X₁, X₂, ..., X_n}
- Each variable Xi has a domain Di of possible values
 - Usually D_i is discrete and finite
- Set of constraints {C₁, C₂, ..., C_p}
 - Each constraint C_k involves a subset of variables and specifies the allowable combinations of values of these variables
- Goal: Assign a value to every variable such that all constraints are satisfied

Example: Sudoku CSP

• variables: X₁₁, ..., X₉₉

- domains: {1,...,9}
- constraints:
 - row constraint: $X_{11} \neq X_{12}, ..., X_{11} \neq X_{19}$
 - col constraint: $X_{11} \neq X_{21}, ..., X_{11} \neq X_{91}$
 - block constraint: $X_{11} \neq X_{12}, \dots, X_{11} \neq X_{33}$
- Goal: Assign a value to every variable such that all constraints are satisfied

Example: Map Coloring

- 7 variables {WA,NT,SA,Q,NSW,V,T}
- Each variable has the same domain {red, green, blue}
- No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• $\underline{Domains}$: $D = \{red, green, blue\}$

• Constraints: adjacent regions must have different colors

Implicit: WA \neq NT

Explicit: $(WA, NT) \in \{(red, green), (red, blue), ...\}$

Solutions are assignments satisfying all constraints, e.g.:

```
{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}
```


Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary Constraint Graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent sub-problem!

•

Example: N-Queens

• Formulation 1:

- Variables: X_{ij}
- Domains: {0, 1}
- Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, ... N\}$

Constraints:

Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

-or-

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

• • •

Example: Cryptarithmetic

• Variables: $F T U W R O X_1 X_2 X_3$

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints:

$$O + O = R + 10 \cdot X_1$$

• • •

Sudoku Constraint Graph

- Variables:
 - Each (open) square
- Domains:
 - **•** {1,2,...,9}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

CSP Problem Formulation

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
- Unary Constraints
- Binary Constraints
- N-ary Constraints

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
- Initial state: the empty assignment, {}
- Successor function (Actions): assign a value to an unassigned variable
- Goal test: the current assignment is complete (all variables have assigned values) and consistent (satisfies all constraints)
- Path cost: not important
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

- What would DFS do?
- What would BFS do?
- What problems does naïve search have?

Summary and Next Time

- Assignment 3 Overview
- Local search and optimization algorithms.
 - Genetic Algorithms
 - Local search in continuous space
- Constraint Satisfaction Problems

- Constraint Satisfaction Problems
 - Algorithms
 - Backtracking
 - Arc Consistency
 - Path Consistency