

Activités d'approche

Une première activité!

$$2 + 2 = 4$$

Sur la **demi-droite graduée** ci-dessous, quel est le nombre associé au point B? Qu'est-ce qui te permet de l'affirmer?

Ce nombre est associé à un événement historique important. Lequel? Décalque cette demidroite et place le point N associé au nombre qui correspond à l'année de la chute du mur de Berlin. Le nombre associé à un point sur une demi-droite graduée est l'**abscisse** de ce point.

Partie A : une partie de l'activité...

- 1) Calculer f(x) pour x = 10; 100; 1000; 10^4 ; 10^5 ; etc.
- 2) Que peut-on conjecturer quant à f(x) lorsque $x \to +\infty$?

Partie B: ... et une autre partie

On vient de remarquer la propriété suivante, que l'on va par la suite chercher à démontrer (ah bon).

Partie A: partie 1

Aux XVIIe et XVIIIe siècles, la notion de fonction.

Partie B: Partie 2

Au début du XIX^e siècle, Bolzano et Cauchy.

8 Chapitre C1. Exemples d'usage

Activités d'approche

Partie A : Première partie

On considère les deux fonctions u et v suivantes

Partie B: ...Seconde partie

Si u et v sont deux fonctions.

On donne les fonctions de référence a, b, c et d définies par :

Partie C: Partie 3

Rien dans cette partie :)

Et là on peut mettre un petit débat.

1. Nombres entiers et décimaux

Dans toute cette partie, \mathscr{C}_f désigne la courbe représentative de la fonction f dans un repère quelconque du plan.

A. Limite finie en l'infini

■ DÉFINITION

Soit f une fonction définie au moins sur un intervalle de $\mathbb R$ du type]a; $+\infty[$. La fonction f a pour limite ℓ en $+\infty$ si tout intervalle ouvert contenant ℓ contient toutes les valeurs de f(x) pour x assez grand. On note alors : $\lim_{x\to +\infty} f(x) = \ell$.

Exemple Soit f la fonction définie sur]0; $+\infty[$ par $f(x)=\frac{1}{x}+1.$ On a $\lim_{x\to +\infty}\left(\frac{1}{x}+1\right)=1.$ En effet, l'inverse de x se rapproche de 0 à mesure que x augmente. Soit un intervalle ouvert I tel que $1\in I$. Alors, f(x) sera toujours dans I pour x assez grand. Graphiquement, aussi étroite que soit une bande parallèle à la droite d'équation y=1 et qui la contient, il existe toujours une valeur de x au delà de laquelle \mathscr{C}_f ne sort plus de cette bande.

■ DÉFINITION : Asymptote horizontale

La droite d'équation $y = \ell$ est asymptote horizontale à \mathscr{C}_f en $+\infty$ si $\lim_{x \to +\infty} f(x) = \ell$.

Remarque: On définit de façon analogue $\lim_{x\to -\infty} f(x) = \ell$ qui caractérise une asymptote horizontale à \mathscr{C}_f en $-\infty$ d'équation $y=\ell$.

Exemple On a vu précédemment que $\lim_{x\to +\infty}\left(\frac{1}{x}+1\right)=1$. On a aussi $\lim_{x\to -\infty}\left(\frac{1}{x}+1\right)=1$. Donc, la droite d'équation y=1 est asymptote horizontale à la courbe \mathscr{C}_f en $+\infty$ et en $-\infty$.

B. Limite infinie en l'infini

DÉFINITION

La fonction f a pour limite $+\infty$ en $+\infty$ si tout intervalle de $\mathbb R$ du type]a; $+\infty[$ contient toutes les valeurs de f(x) pour x assez grand. On note alors : $\lim_{x\to +\infty} f(x) = +\infty$.

Exemple Soit f la fonction racine carrée. On a $\lim_{x \to +\infty} \sqrt{x} = +\infty$.

En effet, \sqrt{x} devient aussi grand que l'on veut à mesure que x augmente. Soit un intervalle ouvert I=]a; $+\infty[$. Alors, f(x) sera toujours dans I pour x assez grand. Graphiquement, si on considère le demi-plan supérieur de frontière une droite d'équation y=a, il existe toujours une valeur de a au delà de laquelle \mathscr{C}_f ne sort plus de ce demi-plan.

REMARQUE:

- $\qquad \text{On d\'efinit de façon analogue}: \lim_{x \to +\infty} f(x) = -\infty, \lim_{x \to -\infty} f(x) = +\infty \text{ et } \lim_{x \to -\infty} f(x) = -\infty.$
- Il existe des fonctions qui n'admettent pas de limite en l'infini. Par exemple, les fonctions sinus et cosinus n'admettent de limite ni en $+\infty$, ni en $-\infty$.
- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas forcément croissante.

MÉTHODE 1 Interpréter graphiquement les limites d'une fonction

► Ex. 1 p. 13

L'aperçu de la courbe représentative d'une fonction avec une calculatrice ou un logiciel peut aider à conjecturer une limite (et donc éventuellement une asymptote à la courbe) mais il faut paramétrer correctement la fenêtre d'affichage pour limiter les erreurs de jugement.

Exercice d'application Soit f une fonction dont on a un aperçu du graphe \mathscr{C} . Déterminer son ensemble de définition \mathscr{D} , puis conjecturer les limites aux bornes de \mathscr{D} et les asymptotes à \mathscr{C} .

1)
$$f: x \mapsto \frac{x^3 - 1}{x^3 + 1}$$

2)
$$f: x \mapsto 2x - \sqrt{4x^2 - 1}$$

Correction

1) $\mathscr{D}=\mathbb{R}\setminus\{-1\}$. A priori, on aurait : $\lim_{\substack{x\to\pm+\infty\\x<-1}}f(x)=1$; $\lim_{\substack{x\to-1\\x<-1}}f(x)=+\infty$ et $\lim_{\substack{x\to-1\\x>-1}}f(x)=-\infty$. \mathscr{C} aurait alors une asymptote horizontale d'équation y=1 en $\pm\infty$ et une asymptote verticale

d'équation x = -1.

2) $\mathscr{D} =]-\infty$; $-\frac{1}{2}[\cup]\frac{1}{2}$; $+\infty[$. On a: $\lim_{x \to -1/2} f(x) = -1$ et $\lim_{x \to 1/2} f(x) = 1$ et, il semblerait que $\lim_{x\to -\infty} f(x) = -\infty \text{ et } \lim_{x\to +\infty} f(x) = 0.$ & aurait alors une asymptote horizontale d'équation y=0 (l'axe des abscisses) en $+\infty$.

La vérification des conjectures est l'objet de l'exercice ?? page ??.

S'entraîner

 \oplus

MÉTHODE 1 p. 12

Exercice avec renvoi à une fiche méthode et corrigé. Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = x^2 \left(1 - \frac{x^2}{9} \right).$$

- 1) Conjecturer les limites de f en $+\infty$ et en $-\infty$ à partir de la représentation graphique ci-dessous obtenue à l'aide d'un logiciel.
- 2) Étudier les limites de f en $+\infty$ et en $-\infty$.
- 3) Expliquer pourquoi la conjecture était erronée.

2

INFO

Soit *g* la fonction définie par :

$$g(x) = \frac{x}{\sqrt{3x^2 + x + 7}}$$

représentée par & dans un repère.

- 1) Donner l'ensemble de définition de la fonction *g*.
- 2) À l'aide d'un logiciel de géométrie dynamique :
 - a) Tracer la courbe \mathscr{C} .
 - b) Conjecturer une valeur approchée de la limite en $+\infty$ de la fonction g.
- 3) Déterminer par calcul la valeur exacte de la limite de g en $+\infty$.
- 3 Soit *f* la fonction définie sur $\mathbb{R} \setminus \{-3, 3\}$ par :

$$f(x) = \frac{1 - 3x}{x^2 - 9}.$$

- 1) Déterminer la limite de f en $-\infty$ et $+\infty$.
 - a) Sur une calculatrice, on a tracé le graphe de f ce qui a donné l'écran suivant :
 - b) Expliquer pourquoi il semble apparaître une contradiction.

Limites: opérations

4 En -2, c'est rationnel!

Étudier la limite de la fonction f en -2.

1)
$$f(x) = \frac{x-4}{x^2+3x+2}$$
 3) $f(x) = \frac{x^2-4}{(x+2)^2}$
2) $f(x) = \frac{-x^2+x+6}{2x^2+5x+2}$ 4) $f(x) = \frac{x^3+8}{x^2-x-6}$

3)
$$f(x) = \frac{x^2 - 4}{(x+2)^2}$$

2)
$$f(x) = \frac{-x^2 + x + 6}{2x^2 + 5x + 2}$$

4)
$$f(x) = \frac{x^3 + 8}{x^2 - x - 6}$$

5 En 0, c'est radical!

Étudier la limite de la fonction f en 0.

$$\mathbf{1)}\,f(x) = \frac{\sqrt{x+1}}{x}$$

3)
$$f(x) = \frac{\sqrt{x+4}-2}{x}$$

2)
$$f(x) = \frac{\sqrt{x+1}-1}{x}$$

1)
$$f(x) = \frac{\sqrt{x+1}}{\frac{x}{x}}$$
 3) $f(x) = \frac{\sqrt{x+4}-2}{\frac{x}{x}}$ 2) $f(x) = \frac{\sqrt{x+1}-1}{x}$ 4) $f(x) = \frac{\sqrt{1-x}-1}{x^2-2x}$

Déterminer les limites suivantes.

1) $\lim_{x \to +\infty} \frac{2x+3}{3x-2}$ 3) $\lim_{x \to -\infty} \sqrt{\frac{2x-1}{x-2}}$ 2) $\lim_{\substack{x \to 1 \\ x < 1}} \frac{x-1}{x^2+x-2}$ 4) $\lim_{\substack{x \to 1 \\ x > 1}} \frac{x-1}{x^2+x-2}$

1)
$$\lim_{x \to +\infty} \frac{2x+3}{3x-2}$$

3)
$$\lim_{x \to -\infty} \sqrt{\frac{2x-1}{x-2}}$$

2)
$$\lim_{\substack{x \to 1 \\ x \le 1}} \frac{x-1}{x^2 + x - 2}$$

4)
$$\lim_{\substack{x \to 1 \\ x > 1}} \frac{x - 1}{x^2 + x - 2}$$

$$\lim_{x \to +\infty} \sqrt{5 - \frac{4}{x^2}}$$

3)
$$\lim_{x \to +\infty} (x - \sqrt{x})$$

7 Déterminer les limites suivantes.
1)
$$\lim_{x \to +\infty} \sqrt{5 - \frac{4}{x^2}}$$
 3) $\lim_{x \to +\infty} (x - \sqrt{x})$
2) $\lim_{x \to -\infty} \left(2 - \frac{1}{x}\right)^3$ 4) $\lim_{x \to 0} \sqrt{\frac{2 - x}{x}}$

4)
$$\lim_{\substack{x \to 0 \\ x > 0}} \sqrt{\frac{2-x}{x}}$$

Limites: comparaison/encadrement

- 8 Soit une fonction f telle que f(x) vérifie une inégalité ou un encadrement sur un ensemble donné. Indiquer les limites qu'on peut en déduire parmi les deux proposées.
- 1) Pour tout réel $x \neq 0$, on a $\frac{1}{x} \leqslant f(x)$.

 (a) $\lim_{\substack{x \to 0 \\ x < 0}} f(x)$ (b) $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x)$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$$

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x)$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$$

2) Pour tout réel $x \neq 0$, on a $f(x) \leqslant \frac{1}{x}$.

(a) $\lim_{\substack{x \to 0 \\ x < 0}} f(x)$ (b) $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ 3) Pour tout réel x > 1, on a $x + \frac{1}{x} \leqslant f(x) \leqslant x + 1$.

(a) $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$ (b) $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x)$

$$\lim_{\substack{x \to 1 \\ x > 1}} f(x)$$

$$\lim_{x \to +\infty} f(x)$$

4) Pour tout réel x > 0, on a $-\frac{1}{x} \leqslant f(x) \leqslant \frac{1}{x}$.

(a) $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ (b) $\lim_{\substack{x \to +\infty \\ x > 0}} f(x)$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$$

$$\lim_{x \to +\infty} f(x)$$

5) Pour tout réel $x \in]0$; 1[, on a $|f(x) - 1| \le x$.

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$$

(a)
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$$
 (b) $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$

Approfondir

 \bigoplus

Soit f une fonction définie sur un intervalle I de $\mathbb R$ et $x_0 \in I$. f est continue en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$.

9 La fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \frac{2 - \sqrt{x+3}}{x-1} & \text{si } x \neq 1\\ -\frac{1}{4} & \text{si } x = 1 \end{cases}$$

est-elle continue en 1?

10 La fonction f définie sur $[-1; +\infty[$ par :

$$f(x) = \begin{cases} \frac{x+1}{\sqrt{x+1}} & \text{si } x > -1\\ 1 & \text{si } x = -1. \end{cases}$$

est-elle continue en -1?

Soit k un entier et f une fonction définie sur \mathbb{R} . Déterminer k pour que f soit continue sur \mathbb{R} .

1)
$$f(x) = \begin{cases} x^2 - 5 & \text{si } x < 1 \\ k & \text{si } x \geqslant 1 \end{cases}$$
.

1)
$$f(x) = \begin{cases} x^2 - 5 & \text{si } x < 1 \\ k & \text{si } x \ge 1 \end{cases}$$

2) $f(x) = \begin{cases} k & \text{si } x = -1 \\ \frac{2x + \sqrt{x + 5}}{x + 1} & \text{si } x > -1 \end{cases}$

12 Soit a un réel et g la fonction définie sur \mathbb{R} par :

$$g(x) = \begin{cases} x^2 + 1 & \text{si } x \leq 1 \\ x^2 + ax + a & \text{si } x > 1 \end{cases}.$$

Peut-on déterminer a pour que g soit continue sur \mathbb{R} ?

13 « La science est l'asymptote de la vérité » 1

Rudy a remarqué qu'« une asymptote, c'est comme une tangente à l'infini ». Son professeur digresse alors.

1) Soit *f* la fonction homographique propre :

$$f(x) = \frac{ax + b}{cx + d}$$

définie sur $\mathscr{D}=\mathbb{R}\setminus\left\{-\frac{d}{c}\right\}$ avec $c\neq 0$ et $ad-bc\neq 0$. « Monsieur, pourquoi "homographique propre"? ».

De quel type serait la fonction f:

- pour c = 0?
- pour ad bc = 0?
- 2) Montrez que:

a)
$$f(x) = \frac{a}{c} - \frac{ad - bc}{c(cx + d)}$$
 pour $x \in \mathcal{D}$.

b)
$$f(x) = \left(\frac{a + bx^{-1}}{c + dx^{-1}}\right)$$
 pour $x \in \mathcal{D}^*$.

c)
$$f'(x) = \frac{ad - bc}{(cx + d)^2}$$
 pour $x \in \mathcal{D}$.

- 3) Déduisez de 2a et 2b les équations des asymptotes à la courbe représentative de f aux bornes de \mathcal{D} .
- 4) Calculez les limites suivantes :
 - a) $\lim_{x \to +\infty} f'(x)$

a) $\lim_{x \to \pm \infty} f'(x)$ b) $\lim_{x \to -d/c} f'(x)$ « Plus ou moins l'infini, vous n'en êtes pas sûr? ».

Le professeur précise qu'il veut les limites de f'(x)en $+\infty$ et $-\infty$.

5) Rapprochez les résultats du 4 de celui du 3. Concluez à propos de la remarque de Rudy.

^{1. «} La science est l'asymptote de la vérité. Elle approche sans cesse et ne touche jamais. » d'après Hugo, Victor, William Shakspeare.

À la fin de ce chapitre, je dois être capable de :

- ▶ Déterminer la limite d'une somme, d'un produit, d'un quotient ou d'une composée de deux fonctions
- Déterminer des limites par comparaison et encadrement

"n

- Faire le lien entre limites et comportement asymptotique
- Exploiter le théorème des valeurs intermédiaires (cas d'une
- fonction strictement monotone) pour résoudre un problème

 \oplus

Approcher une solution d'équation par l'algorithmique

► Appréhender la notion de continuité d'une fonction

QCM d'auto-évaluation

Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes.

- La limite en $+\infty$ de la fonction f définie sur $]-\infty$; -1[par $f(x)=\frac{1+x^2+x^3}{x(1-x^2)}$ est :
- (a) 0

(b) 1

- La limite à gauche en 0 de la fonction f définie sur [-1; 0[par $f(x) = \sqrt{-\frac{x+1}{x}}$ est :
- (a) 0

- La limite en $+\infty$ de la fonction f définie sur $\mathbb{R} \setminus \{-1; 1\}$ par $f(x) = \frac{(2x-3)(x^2+1)}{(1-x^2)^2}$ est :

- Soit f une fonction définie sur $[2; +\infty[$. Si pour tout $x \ge 2$, on a $x^2 \le f(x)$ alors :

- (a) $\lim_{x \to +\infty} f(x) = +\infty$ (b) $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ (c) $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ (d) $\lim_{x \to +\infty} \frac{f(x)}{x^2} = 1$
- La courbe représentative de la fonction $h: x \mapsto \frac{(2x-1)^2}{2(4-x^2)}$ admet une asymptote d'équation :

19 Soit ci-dessous la courbe représentative d'une fonction f.

Il est certain que la fonction f n'est pas continue :

- (a) en -1
- (**b**) en 0
- (c) en 2
- (d) en 6

Un premier TP avec un logo à droite

ALGO

A Le principe et l'algorithme

La **méthode de dichotomie** ou **méthode de la bissection** est un algorithme (voir ci-dessous) de recherche d'un zéro d'une fonction qui consiste à réitérer des partages d'un intervalle en deux moitiés puis à sélectionner celui dans lequel se trouve le zéro de la fonction.

Si cela est possible, on dégrossit le plus souvent la recherche en se plaçant initialement sur un intervalle $[a \; ; \; b]$ où la fonction est continue, strictement monotone et telle que f(a)f(b) < 0 afin d'appliquer le théorème des valeurs intermédiaires et assurer ainsi l'unicité de la solution.

- 1) Que représente la variable ε ?
- **2)** Expliquer le premier pas de l'algorithme dans les quatre cas de figures suivants :

- 1. Lire a, b, ε
- 2. Tant que (b-a)> ε
- 3. c prend la valeur (a+b)/2
- 4. Si f(a)*f(c)>0 alors
- 5. a prend la valeur c
- 6. Sinon
- 7. b prend la valeur c
- 8. Fin Si
- 9. Fin Tant Que
- 10. Afficher c

B Application : approcher le nombre d'or

Intéressons-nous au nombre d'or, solution positive de l'équation :

(E)
$$x^2 - x - 1 = 0$$

- 1) Soit la fonction $f: x \mapsto x^2 x 1$ qu'on étudie sur [1 ; 2].
 - **a)** Justifier que la fonction f est continue sur [1; 2].
 - **b)** Dresser le tableau de variation complet de *f* sur [1 ; 2].
 - c) Montrer qu'il existe une solution unique φ à l'équation f(x) = 0.
- 2) On applique l'algorithme de dichotomie à f avec a = 1, b = 2 et $\varepsilon = 10^{-5}$.
 - a) Justifier qu'après le premier pas, $\varphi \in [1,5;2]$ et, qu'après le second, $\varphi \in [1,5;1,75]$.

b) À l'aide d'AlgoBox ou d'un autre logiciel, programmer l'algorithme de dichotomie pour qu'il affiche les encadrements successifs de φ et leurs précisions.

$$1,5 < \varphi < 2$$
 0,5
 $1,5 < \varphi < 1,75$ 0,25

- 3) On définit la suite $(p_n)_{n\geqslant 0}$ par $p_0=1$ et $p_{n+1}=\frac{p_n}{2}$.
 - a) Que représente (p_n) ? Justifier qu'elle est décroissante et exprimer p_n en fonction de n.
 - **b)** Écrire puis programmer un algorithme qui prend en entrée ε et qui retourne le plus petit entier n tel que $p_n < \varepsilon$?
 - c) À l'aide du programme, déterminer le plus petit entier n tel que p_n soit inférieur à :
 - 0.1
- 0,01
- 0,001
- 0,0001
- 0.0000

Commenter l'efficacité de l'algorithme de dichotomie à partir des résultats obtenus.

Et un autre TP avec deux logos à droite

La **méthode de Newton** est une autre méthode destinée à déterminer une valeur approchée du zéro d'une fonction, sous condition de sa dérivabilité sur un intervalle réel.

Partant d'un réel x_0 de préférence proche du zéro à trouver, on approche la fonction f au premier ordre en la considérant à peu près égale à la fonction affine donnée par l'équation de la tangente à sa courbe représentative au point d'abscisse x_0 :

$$f(x) \simeq f'(x_0)(x - x_0) + f(x_0).$$

On résout alors l'équation $f'(x_0)(x-x_0)+f(x_0)=0$ pour obtenir x_1 qui, en général, est plus proche du zéro de f que x_0 . On réitère ensuite le processus.

Le but de ce TP est de déterminer une valeur approchée du nombre d'or φ comme dans le TP précédent et de comparer l'efficacité de la méthode de Newton à celle de dichotomie.

A Approche graphique

- 1) Avec un logiciel de géométrie dynamique, tracer le graphe $\mathscr C$ de $f: x \mapsto x^2 x 1$.
- **2)** Tracer la tangente à \mathscr{C} au point d'abscisse $x_0 = 1$. Elle coupe l'axe des abscisses en $A_1(x_1; 0)$.
- 3) Réitérer le processus pour obtenir x_1 puis x_2 . Est-on proche de φ ?

B Avec l'algorithmique

La construction devient vite compliquée avec l'agglomérat des tangentes successives. On souhaite ainsi s'orienter vers l'élaboration et la programmation d'un algorithme.

- 1) Justifier qu'on peut définir la suite (x_n) telle que $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- 2) Écrire et programmer l'algorithme en considérant la condition d'arrêt $|x_{n+1} x_n| < \varepsilon$.
- 3) Faire tourner l'algorithme pour ε égal à 10^{-1} , 10^{-2} , ..., 10^{-5} .
- 4) Rajouter un compteur d'itérations pour estimer l'efficacité de la méthode. Conclure.

Récréation, énigmes

Des discontinuités... en continu!

Soit x et y deux réels tels que x < y.

Définissons la suite $(d_n)_{n\geqslant 0}$ telle que $d_n=\frac{\lfloor 10^n y\rfloor}{10^n}$ où $\lfloor a\rfloor$ désigne la partie entière de a.

- 1) À quel ensemble les nombres d_n appartiennent-ils? \mathbb{N} ? \mathbb{Z} ? \mathbb{D} ? \mathbb{Q} ?
- 2) a) Montrer que pour tout $n \in \mathbb{N}$, on a l'encadrement $\frac{10^n y 1}{10^n} < d_n \leqslant y$.
 - **b)** En déduire $\lim_{n\to+\infty} d_n$.
- 3) a) Montrer que, quel que soit $\varepsilon > 0$, il existe un entier naturel N tel que pour tout $n \ge N$, $|d_n y| < \varepsilon$.
 - b) En posant $\varepsilon = y x$, en déduire que $x \le d_N \le y$.

On vient de montrer qu'entre deux réels, il existe toujours un décimal et donc toujours un rationnel. On dit que l'ensemble des rationnels \mathbb{Q} est **dense** dans l'ensemble des réels \mathbb{R} .

La fonction de Dirichlet D et la fonction de Thomae T sont deux fonctions définies sur $\mathbb R$ par :

$$D(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases} \text{ et } T(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ 1 & \text{si } x = 0 \\ \frac{1}{q} & \text{si } x = \frac{p}{q} \text{ est une fraction irréductible} \end{cases}$$

Introduite par Dirichlet² en 1829, la fonction D est discontinue partout ce que le résultat établi précédemment montre. Cette fonction est appelée aussi **fonction indicatrice des rationnels**.

Introduite par Thomae ³ en 1875, la fonction T est continue en tout nombre irrationnel mais discontinue en tout nombre rationnel. Cette fonction est appelée aussi la **fonction popcorn** (voir sa représentation ci-dessous!).

^{2.} Johann Peter Gustav Lejeune Dirichlet (1805–1859), mathématicien allemand

^{3.} Carl Johannes Thomae (1840–1921), mathématicien allemand

Activités d'approche

Partie A: Une partie

Blabla

Partie B: Une partie

Bla bla

Bla bla

À CONNAÎTRE

Bla bla

S'entraîner

Une série

1 Un peu de vocabulaire

Un exo

2 Un autre exo

Bla bla

Approfondir

3 Un exercice

4 Et un autre

Je teste mes connaissances

19

À la fin de ce chapitre, je dois être capable de :

- ▶ BlaBla1
- ▶ BlaBla2
- ▶ BlaBla3

- ▶ BlaBla4
- ▶ BlaBla5
- ▶ BlaBla6

QCM d'auto-évaluation

Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes.

5 Quelle est la bonne réponse?

(a) un

- (b) deux
- c trois

Mon super TP

Récréation, énigmes

MÉTHODES DU LIVRET 2

	Ca	lc	u	L

Interpréter graphique	ment les
limites d'une fonction	

SOLUTIONS

Chapitre C1 Exemples d'usage

S'entraîner

1 Ici on range le corrigé de l'exercice Test sur le corrigé

3 Et hop, encore un autre corrigé!

Approfondir

12 Corrigé d'un exercice de la partie approfondissement.

13 Corrigé d'un autre exercice de la partie approfondissement!!

Auto-évaluation QCM

14 C

15 d

16 b

17 a c

18 a b c

19 (a) (b)

Chapitre C2

Opérer avec les relatifs

Auto-évaluation QCM

5 a b

28 SOLUTIONS

Asymptote horizontale Page 10