]		
Név:				Jegy:		
	Számítás	${ m selm\'elet/Bevezet\'es}$ a számításelméletbe - Vizsg ${ m \it Minta~vizsga}$	adolgozat	t		
Osztályzat.	: 0-23 pon	t ightarrow 1, 24-32 pont $ ightarrow 2$, 33-41 pont $ ightarrow 3$, 42-50 pont -	→ 4, 51-60	0 pont -	$\rightarrow 5.$	
Ü	ísa és po	vleges vizsgadolgozatok (rendes és elővizsga egy nthatárai kis mértékben el fognak térni (pl. kev kből, helyette lesznek a-b-c-d feleletválasztós ke	vesebb le		,	
	e el mely á lezze! (15x	illítások igazak és melyek hamisak! Válaszát a megfel al pont)	elő négyze	tbe tet	t jellel	
Igaz	Hamis					
		Minden Chomsky normálformájú grammatikával generálható nyelv generálható környezetfüggő grammatikával is.				
		Minden hossznemcsökkentő grammatika egyben Kuroda normálformájú grammatika is.				
		Az $x \wedge y \vee z$ ítéletlogikai formula helyes zárójelezése $((x \wedge y) \vee z)$.				
		Algoritmikusan eldönthető, hogy egy zárt elsőrendű logikai formula tautológia-e.				
		L_{Halt} komplementere $RE \setminus R$ -ben van.				
		Ha az M egyszalagos, determinisztikus Turing gép három lépésben elfogadja az abc inputszót, akkor az $abcabc$ inputszót 6 lépésben fogadja el.				
		Egy L nyelvet eldöntő NTG egy u inputszóhoz tartozó nemdeterminisztikus számításifájának minden levele elfogadó konfiguráció.				
		Minden reguláris nyelv felismerhető lineárisan korlátolt automatával.				
		Tetszőleges G_1 és G_2 CF grammatikák esetén algoritmikusan eldönthető, hogy $L(G_1) \subseteq L(G_2)$.				
		Minden $L_1, L_2 \in R$ esetén, ha $L_1 \leq_p L_2$, akkor $\overline{L}_2 \leq_p L_2$	R esetén, ha $L_1 \leq_p L_2$, akkor $\overline{L}_2 \leq_p \overline{L}_1$.			
		Minden egyszerű, 8 csúcsú, összefüggő G gráfban ha van 3 csúcsból álló klikk, akkor van a gráfban 5 csúcsból álló független ponthalmaz.				
		Ismert, hogy a 3SAT probléma P-teljes.				
		Az $\left\{\frac{a}{ab}, \frac{abc}{c}, \frac{b}{ca}, \frac{ca}{a}, \frac{dd}{e}\right\}$ dominókészletnek van megoldása.				
		$SPACE(log(n)) \subseteq NSPACE(log(n)).$				
		A $(x \vee \neg y \vee \neg z) \wedge (\neg x \vee y) \wedge (\neg y \vee z) \wedge \neg z$ formula a egy hamis példánya.	a Horn-SA	T prob	léma	

2. a) Definiálja formálisan az $M=(Q,\Sigma,\Gamma,\delta,q_0,q_i,q_n)$ nemdeterminisztikus Turing gép által elfogadott L(M) nyelvet! b) Lehetséges-e megadni egy olyan M' determinisztikus TG-t, amire L(M)=L(M') teljesül? c) Igaz-e, hogy ha $q_0u \vdash_M^* xq_ny$, akkor $u \not\in L(M')$ $(u \in \Sigma^+, x, y \in \Gamma^+)$? (5 pont)

3. a) Definiálja mit értünk egy X ábécé feletti szavak hossz-lexikografikus (shortlex) rendezése alatt! b) Állítsa sorba az alábbi, az $\{a \prec b \prec c\}^*$ rendezett ábécé feletti szavakat: $\{bacacb, abaabc, cacbb, bbaaab, cbacaa, bcca\}!$ (5 pont)

4. a) A Turing gépek előadáson ismertetett elkódolása alapján hány (darab) karakter írja le az alábbi átmenetet: $(q_1,0) \rightarrow (q_2, \sqcup, L)$? b) Mi az elkódolás következménye a Turing-felismerhető nyelvek számosságát illetően? (5 pont)

5. a) Mit értünk az alatt, hogy egy Turing gép kiszámít egy $f: \Sigma^* \to \Delta^*$ szófüggvényt? b) Adja meg a visszavezethetőség definícióját! (5 pont)

	Név:	IEPTUN:
6.	a) Definiálja mit értünk egy Σ ábécé feletti D dominókészleten! dominókészletnek van megoldása! Következik-e ebből, hogy egynél $Post\ Megfelelkezési\ Probléma\ (PMP)\ R\ vagy\ RE$ -beli (esetleg mino	több megoldása van? c) A
7.	a) Definiálja a $SPACE(f(n)),\ NSPACE(f(n)),\ L$ és NL tárbon Milyen tartalmazási reláció áll fenn L és NL között? c) Miért? (5 p	
8.	a) Definiálja a <i>Részletösszeg</i> problémát! b) Melyik a legszűkebb probléma tartozik (ismerten)? c) Adja meg a probléma egy-egy ig (legalább 6 eleme legyen a halmazoknak)! (5 pont)	_ * .

9. a) Definiálja a többszalagos ($k \ge 2$) Turing gép átmenetfüggvényét! b) Mondja ki és bizonyítsa be a többszalagos Turing gépek egyszalagos TG-vel való szimulálhatóságára vonatkozó tételt (az időigény romlással együtt)! (10 pont)