

Class 05 Joules's Law

1

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Three Forms

$$I = \frac{E}{R}$$
 $E = IR$ $R = \frac{E}{I}$

Where

E = potential difference (Volts)

I = current (Amperes)

R = resistance (Ohms)

- Units of Measurement
 - Work
 - Force applied through a distance (W = F x d)
 - Energy
 - Electric, thermal, nuclear, magnetic, gravitational, radiant
 - Derived Units
 - Joule (Newton x meter)

3

MECH 10 Fundamentals of Electronics

- Electrical Units
 - Power
 - The rate of doing work
 - Work/Energy per second
 - Newton meter per second
 - Derived Unit watts
 - joules per second

4

SDG 2

Mechatronics Real Skills Real Jobs

- Electrical Power
 - Global Power Consumption 15 terawatts (15E12)
 - Electromagnetic Induction
 - Photoelectric
 - 89 petawatts (89E15)
 - Electrochemical

5

MECH 10 Fundamentals of Electronics

- Joule's Law
 - Power consumed by a circuit is directly proportional to current and potential difference.

$$P = V \times I$$

Power v Current (V Constant)

1200.00
1000.00
800.00
400.00
200.00
0.00
200.00
Current (I)

Where:

P = power (watts)

I = current (amperes)

E = potential difference (volts)

Mechatronics Real Skills Real Jobs

- Joules's Law
 - Power consumed by a circuit is directly proportional to current and potential difference.

$$P = V \times I$$

Power v Potential (I Constant)

100.00
90.00
80.00
70.00
40.00
30.00
20
40
60
80
100
Potential (V)

Where:

P = power (watts)

I = current (amperes)

E = potential difference (volts)

7

MECH 10 Fundamentals of Electronics

- Joules's Law
 - Three Forms

$$P = \frac{V^2}{R}$$

$$P = I^2 \times R$$

$$P = V \times I$$

Where

P = power (watts)

V = potential difference (volts)

I = current (Amperes)

R = resistance (Ohms)

Mechatronics

Joules's Law

$$P = V \times I$$
 $P = I^2 \times R$ $P = \frac{V^2}{R}$

 $P = V \times I = 12V \times 48mA = 576mW$

- Examples
 - P = ? W
 - V = 12V
 - I = 48mA

Where

P = power (watts)

V = potential difference (volts)

I = current (Amperes)

R = resistance (Ohms)

9

MECH 10 Fundamentals of Electronics

Joules's Law

$$P = V \times I$$
 $P = I^2 \times R$ $P = \frac{V^2}{R}$

- Examples
 - P = ? W

$$P = I^2 \times R = (48mA)^2 \times 250\Omega = 576mW$$

• $R = 250\Omega$

I = 48mA

Where

P = power (watts)

V = potential difference (volts)

I = current (Amperes)

R = resistance (Ohms)

Mechatronics.
Real Skills Real Jobs

Joules's Law

$$P = V \times I$$
 $P = I^2 \times R$ $P = \frac{V^2}{R}$

- Examples
 - P=?W
 - V = 12V
 - $R = 250\Omega$

$$P = \frac{V^2}{R} = \frac{(12V)^2}{250\Omega} = 576mW$$

Where

P = power (watts)

V = potential difference (volts)

I = current (Amperes)

R = resistance (Ohms)

11

MECH 10 Fundamentals of Electronics

- Electronic Hand Soldering
 - The joining of components with fusible alloys
 - < 840° F
 - Electronic Solder
 - Filler Metals typically lead / tin alloy
 - Flux typically naturally occurring from pine trees resins

12

SDG 6

Mechatronics

- Electronic Hand Soldering
 - Filler Metals
 - Eutectic alloy
 - Alloy % composition that provide the lowest solidification temperature
 - An alloy that rapidly changes from liquid to solid and back
 - Leaded 63/37 tin/lead ratio
 - 360°F solidification
 - Unleaded (ROHS) tin, copper, silver, bismuth, indium, zinc, antimony

13

MECH 10 Fundamentals of Electronics

- Electronic Hand Soldering
 - Filler Metals
 - Health Effects tin / lead alloys
 - Lead Oxide high level exposure
 - Loss of appetite, indigestion, nausea, vomiting, constipation, headache, abdominal cramps, nervousness, and insomnia.
 - Exposure
 - Respiratory
 - Threshold limit value 0.05 mg / m³
 - Hand to mouth

14

SDG 7

Mechatronics Real Skills Real Jobs

- Electronic Hand Soldering
 - Filler Metals
 - **Precautions** tin / lead alloys
 - Occupational exposure
 - Elimination
 - Substitution
 - Engineering controls (ventilation)
 - Administrative training
 - Personal protective equipment
 - Limited exposure
 - Ventilation
 - Personal hygiene

15

MECH 10 Fundamentals of Electronics

- Electronic Hand Soldering
 - Flux cleans, prevents oxidation, improves solder flow
 - Rosin naturally occurring, pine tree extracts
 - Type R rosin only, least active, requires clean surfaces, very little residue
 - Type RMA rosin mildly activated, enhanced cleaning & de-oxidation, little residue
 - Type RA rosin activated, fully activated, superior cleaning & deoxidation, significant residue requires special cleaners

- Electronic Hand Soldering
 - Flux cleans, prevents oxidation, improves solder flow
 - Water Soluble
 - Organic most active, highly corrosive, chemically active residue, cleaning required
 - Inorganic moderately active, inactive residue, cleaning required

17

MECH 10 Fundamentals of Electronics

- Electronic Hand Soldering
 - Flux
 - Health Effects
 - Rosin occupational exposure
 - Asthma, dermatitis; nose, sinus & throat irritation; rash
 - Water Soluble occupational exposure
 - Respiratory irritation, fever, chills, muscular pain, headache, vomiting and sweating, dermatitis, corneal damage

- Electronic Hand Soldering
 - Flux
 - Precautions Fluxes
 - Occupational exposure
 - Elimination
 - Substitution
 - Engineering controls (ventilation)
 - Administrative training
 - Personal protective equipment
 - Limited exposure
 - Ventilation
 - Personal hygiene

19

MECH 10 Fundamentals of Electronics

Mechatronics

Electronic Hand Soldering

Ideal solder

material

- Techniques
 - Clean, clean, clean
 - Heat transfer
 - Solder bridge

Fig 1 - Poor heat transfer

Fig 2 – Solder bridge

Fig 3 - Ideal solder joint

Terminal Wire

Minimal solder

20

SDG 10

Excess solder volume

Lab 05 – Make-A-Toy