FAZODA ANALITIK GEOMETRIYA. FAZODA TEKISLIK VA TO'G'RI CHIZIQ TENGLAMALARI. FAZODA TO'GRI CHIZIQ VA TEKISLIKNING O'ZARO JOYLASHUVI.

Mavzuning rejasi

- 1. Geometrik ob'yekt sifatida tekislik ta'rifi.
- 2. Tekislikning normal tenglamasi.
- 3. Tekislikning umumiy tenglamasi. Undan kesmalar bilan ifodalangan tenglamaga o'tish. Har ikkalasining (normal va kesmalar bilan ifodalangan tenglamalar) geometrik illyustrasiyasi.
- 4. Ikki tekislikning kesishuvi va ular orasidagi burchak.
- 5. Ikki tekislikning o'zaro joylashuvi (parallellik va perpendikulyarlik).
- 6. Tekislik va to'g'ri chiziq orasidagi burchak.

Tayanch so'z va iboralar: tekislik, tekislikning umumiy tenglamasi, tekislikning o'qlardagi kesmalar bo'yicha tenglamasi, tekislikning normal vektori, tekislikning normal tenglamasi, ikki tekislik orasidagi burchak, tekislik va to'g'ri chiziq orasidagi burchak, to'g'ri chiziqning fazodagi umumiy tenglamasi.

I. Ta'rif. Nuqtalar va to'g'ri chiziqlardan tuzilgan uchinchi geometrik ob'yekt tekislikdir (1-ob'yekt - nuqta, 2- ob'yekt - to'g'ri chiziq).

Demak har bir nuqtasi (x,y,z) bilan ifodalangan va

$$Ax + By + Cz + D = 0 \tag{1}$$

birinchi tartibli (chiziqli) tenglama tekislikni ifodalaydi va uning umumiy tenglamasi deyiladi. Uni quyidagicha shaklini o'zgartiramiz

$$Ax+By+Cz =-D$$

$$\frac{x}{-D} + \frac{y}{-D} + \frac{z}{-D} = 1.$$

Maxrajlarni mos ravishda a, b va c deb belgilasak

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{2}$$

hosil bo'ladi.

Agar (a; 0; 0), (0; b; 0) va (0; 0; c) nuqtalar tekislik tenglamasini

qanoatlantirishini, ya'ni unda yotishini hisobga olsak va grafigi bilan to'ldirsak (2) tekisligimiz koordinat o'qlaridan a,b, c kesmalarni kesib (ajratib) o'tayotganligini ko'ramiz. Shu sababli, (2) tenglama tekislikning koordinatalar o'qlaridan kesgan kesmalari bilan ifodalangan tenglamasi deyiladi.

II. O'rta maktab geometriyasidan quyidagi teoremani isbotsiz keltiramiz.

Teorema. Berilgan bir nuqtadan berilgan to'g'ri chiziqqa bitta va faqat bitta perpendikulyar tekislik o'tkazish mumkin.

Aytaylik,berilgan nuqtaP(m,n,p) vektorning uchi M(m,n,p) bo'lsin .Berilgan chiziq esa ,shu vektorning o'qi bo'lsin.Ihtiyoriy N (x,y,z) nuqtani o'tishi lozim bo'lgan tekislikning ixtiyoriy nuqtasi bo'lsin deylik va tekislikni Q – deb belgilaylik. Shart (ta'rif) ga ko'ra $\overline{P} \perp Q \Longrightarrow \overline{P} \perp M\overline{N}$

$$M\overline{N}(x-m, y-n, z-p) \Rightarrow m(x-m) + n(y-n) + p(z-p) = 0$$

 $mx + ny + pz - (m^2 + n^2 + p^2)$ yoki umumiy holda

$$m(x - x_0) + n(y - y_0) + p(z - z_0) = 0$$
(3)

Bu $M(x_0, y_0, z_0)$ nuqtadan o'tib, P(m, n, p) vektorga perpendikulyar bo'lgan tekislik

tenglamasidir.

Agar (3) ni
$$P = \sqrt{m^2 + n^2 + p^2}$$
 ga bo'lsak, $\frac{m}{p}x + \frac{n}{p}y + \frac{p}{p} = -P = 0 \Rightarrow$

$$\Rightarrow x\cos\alpha + y\cos\beta + z\cos\gamma - P = 0 \tag{4}$$

bunda, α , β , γ -lar mos ravishda P vektorning O_x , O_y , O_z -o'qlar bilan tashkil etgan burchaklaridir.

III. Agar (1) tenglamani (4)-ga keltirish lozim bo'lsa, uni

$$\mu = \frac{1}{\sqrt{A^2 + B^2 + C^2}}$$
 – ga ko'paytirish kifoyadir.
Bunda $p = \pm \frac{D}{\mu}$;

$$\cos \alpha = \frac{A}{p}; \cos \beta = \frac{B}{p}; \cos \gamma = \frac{C}{p}$$

Olingan (4) tenglama tekislikning normal tenglamasi deyiladi.Chunki u normalning moduli va yo'naltiruvchi burchaklari orqali Ifodalangan.

IV. Eslatma. Ikki tekislik orasidagi burchak, ularning kesishuv chizig'ida ularga o'tkazilgan normallari orasidagi burchakka teng. Demak

$$m_1(x-x_0) + n_1(y-y_0) + p_1(z-z_0) = 0$$
 (5)

$$m_2(x-x_0) + n_2(y-y_0) + p_2(z-z_0) = 0$$
 (6)

lar berilgan ikki tekislik bo'lib, ular orasidagi burchak

$$\cos\varphi = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{|\bar{p}_1| \cdot |\bar{p}_2|} \tag{7}$$

formula bilan hisoblanadi.

Xususiy holda (vektorlar nazariyasidan ma'lumki) tekisliklar o'zaro perpendikulyar bo'lganda

$$m_1 m_2 + n_1 n_2 + p_1 p_2 = 0 (8)$$

shart, parallel bo'lganda esa

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2} \tag{9}$$

shart bajariladi.

Topshiriq. Tekisliklar umumiy tenglamalari bilan berilganda (7), (8), (9) ifodalarning shaklini yozib ko'rsating.

V. Ax+By+Cz+D=0 (Q) tekislik berilgan va

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 (L) to'g'ri chiziq berilgan bo'lsin. Ular orasidagi burchak α

quyidagi formula bilan topilad:.

$$\sin \alpha = \sin(90^{0} - \varphi) = \cos \varphi = \frac{Am + Bn + Cp}{\sqrt{A^{2} + B^{2} + C^{2} \cdot \sqrt{m^{2} + n^{2} + p^{2}}}}$$
(10)

Agar bunda $L \parallel Q$ bo'lsa,

$$\alpha = 0 \Rightarrow Am + Bn + Cp = 0 \tag{11}$$

Bu to'g'ri chiziq bilan tekislikning parallelik sharti desak bo'ladi.

Aksincha,

$$\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$$

shart bajarilsa, to'gri chiziq bilan tekislik o'zaro perpendikulyar bo'ladi.

VI. Ikki tekislikning kesishuvi to'g'ri chiziq bo'lganligidan

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

sistema tekisliklarning kesishuv to'g'ri chizig'i tenglamasi bo'ladi. Oxirgi sistemada x va y larni z orqali ifodalasak, oqibatda

$$\frac{x - \frac{B_1 D_2 - B_2 D_1}{A_1 B_2 - A_2 B_1}}{B_1 C_2 - B_2 C_1} = \frac{y - \frac{A_1 D_2 - A_2 D_1}{A_1 B_2 - A_2 B_1}}{A_1 C_2 - A_2 C_1} = \frac{z - 0}{A_1 B_2 - A_2 B}$$

tenglama kelib chiqadi. Bu ikki tekislik kesishuvidan hosil bo'lgan chiziqning kanonik tenglamasi bo'ladi.

VII. Har qanday uch tekislik bitta nuqtada kesishadi. U nuqta tekisliklarning juft-juft kesishuv chiziqlari kesishmasida boladi. Bunday koordinatalarini topishni qiziquvchi talabalarning o'zlariga havola qilamiz.(agar eslay olsangiz, uch noma'lumli uchta tenglamalar sistemasining yechimini izlashdir.