The correctness of Fusy's algorithm

Sander Beekhuis, nr: 0972717

September 15, 2016

The algorithm will always maintain the following three invariants

Invariants 1

- (II) The cycle C contains the two edges S_rS_b and S_rN_b .
- (I2) No edge in the interior of C connects two vertices in $C \setminus S_r$
- (I3) All inner edges of T outside of \mathcal{C} are colored and oriented in such that the innnervertex condition holds.

A cycle satisfying these three invariants will have the same general shape as in figure ??. We note that the cycle has at least 4 vertices because otherwise a seperating triangle is created.

Figure 1: An example of a cycle \mathcal{C} satisfying the invariants

It is also nice to note that the union of the cycle and it's interior form a triangulation of the n-gon since it is a induced subgraph of a triangulation of the 4-gon.

If we remove S_r from \mathcal{C} we are left with a path from N_b to S_b . We can then order nodes of the path by their distance (over the path) to S_b . Thus N_b is maximal while S_R is minimal. For any two vertices v > v' in this path we will denote by [v, v'] the subpath from v to v'.

Definition (internal path). We call a path \mathcal{P} an internal path of \mathcal{C} if all its edges are in the interior of C and it connects two distinct vertices of \mathcal{C}

Definition (eligible path). We call an internal path \mathcal{P} from v to v' eligible if

- (E1) Neither v or v' is S_r
- (E2) The paths \mathcal{P} and [v, v'] both have at least 3 vertices ¹
- (E3) Each edge in the interior to $\mathcal{C}_{\mathcal{P}}$ connects a vertex of $\mathcal{P} \setminus v, v'$ and $[v, v'] \setminus v, v'$. In particular $\mathcal{C}_{\mathcal{P}}$ is a non-separating cycle.
- (E4) The cycle \mathcal{C}' obtained by replacing [v, v'] by \mathcal{P} in \mathcal{C} has no interior edge connecting the two vertices of $C \setminus S_r$.

1 If the invariants are satisfied there always is an *eligible* internal path

We will show the following proposition.

Proposition 2. When the algorithm's invariant (1(I1) - 1(I3)) are satisfied and the cycle C is separating then there exist a eligible internal path.

Proof. We will first show that there always exists an internal path \mathcal{P} . We will then show that a internal path can be found that satisfies conditions (E1)-(E4). In the proof we will often use that a

Let us first note that if the cycle C is separating (i.e has a non-empty interior), there is at least one interior vertex v. Since the triangulation of a n-gon is 2-connected there are two ways to go from v to (say) S_r . Hence there is an

internal path \mathcal{P}_0 .

If this path does not satisfy (E1) we can use the following construction. The other vertex where P_0 intersects \mathcal{C} is not S_r . Let us call this vertex x and it's neighbour on the path y. The vertex x might be N_b or S_b but can't be both, hence it has at least one neighbour z on the cycle that is not S_r . Because the triangulation of a n-gon is internally maximally planar we have that yz is an edge. Now xyz is an internal path satisfying (E1). See also figure 3, here we made a choice on which side of y the vertex z lies, but this choice can be made without losing generality.

Hence we have now constructed, or already had, a path that satisfies (E1). Let us for the remainder of the proof denote this path by \mathcal{P}_1 .

If \mathcal{P}_1 satisfies (E2) we set $\mathcal{P}_2 = \mathcal{P}_1$ otherwise we will create a path that satisfies (E1) and (E2). If the path \mathcal{P}_1 does not satisfy (E2) ² then there are two possibilities a) \mathcal{P}_1 does not have interior vertices and/or b) [v,v'] does not have interior vertices. If a) would be true the existence of P_0 would contradict Invariant 1(I2). Hence the only problem can be that b) occurs.

If $v = N_b$ and $v' = S_b$ we have found a separating triangle given by $S_r N_b S_b$ in original graph. Hence at least one of v or v' is not N_b or S_b . If we call this vertex x its neighbour on the path y and it's neighbour outside [v, v'] z. We see that by the interior of \mathcal{C} being maximally planar yz must be an edge. If we now adapt P_1 by replacing yx by yz we have made [v, v'] one vertex longer and hence created a path satisfying (E2). In figure 2 we show this procedure in two cases. Executing this procedure does not change that S_r is not one of the

¹that is, they have an interior vertex

²which will be the case if the above construction has been used

 $^{^3 {\}rm this}$ is the cycle ${\mathcal C}$ which is separating

Figure 2: Creating a path satisfying (E2). The dotted line is the edge we take in the new path \mathcal{P}_2

endpoints of the path. Hence we have now created a path \mathcal{P}_2 that satisfies (E1) and (E2).

If \mathcal{P}_2 satisfies (E3), we take $\mathcal{P}_3 = \mathcal{P}_2$. Otherwise we will remedy the defect. We separate five different cases of offending edges. All of the five cases will be easy to remedy giving a path \mathcal{P}'_2 still satisfying (E1) and (E2) such that $\mathcal{C}_{\mathcal{P}'_2}$ is strictly contained in $\mathcal{C}_{\mathcal{P}_2}$

- a) edges from $[v, v'] \setminus v, v'$ to $[v, v'] \setminus v, v'$
- b) edges from $\mathcal{P} \setminus v, v'$ to $\mathcal{P} \setminus v, v'$
- c) edges incident to v or v and some other vertex on $\mathcal{C}_{\mathcal{P}_2}$
- d) edges from [v, v'] to some internal vertex
- e) edges from $\mathcal{P} \setminus v, v'$ to some internal vertex

The existence of an edge as in a) is forbidden by Invariant 1 (I2). If b) occurs we can simply shortcut our original path \mathcal{P}_2 with this edge. If c) occurs this edge can't go to another vertex in [v, v'] since that would offend Invariant 1 (I2). Hence they go to a vertex in \mathcal{P}_2 and we can shortcut the path as in b).

If d) occurs we simply make a new path and if e) occurs we take a slightly adapted interior path. See figures

Since all of the moves shrink $\mathcal{C}_{\mathcal{P}_2}$ while keeping (E1) and (E2) intact and we can't idenfinitly shrink this means at a certain point no more moves are availble. Since every offending edges allows a move this means that there are no more offending edges. Hence this version of \mathcal{P}'_2 satisfies (E3). For the final step of the proof we take $\mathcal{P}_3 = \mathcal{P}'_2$.

Suppose that \mathcal{P}_3 does not satisfy (E4). Then we can just take the would be interior edge and take this for a nwe path. This is again a finite procedure reducing the sum of $|\mathcal{P}_3| - |[v, v']|$. In the end we have a path satisfying (E1) - (E4).

Figure 3: Constructing a path satisfying (E1)