

Statistik

Vorlesung 1 - Wahrscheinlichkeitsbegriff

Prof. Dr. Sandra Eisenreich

18. März 2024

Hochschule Landshut

Zufallsexperimente und Ereignisse

- Zufallsexperiment: Ein Vorgang mit verschiedenen möglichen Ergebnissen, bei dem man nicht vorhersagen kann, welches konkrete Ergebnis eintritt.
- Ergebnis eines Zufallsexperiments: ein konkreter Ausgang
- Ergebnismenge (Bezeichnung: Ω): Die Menge der möglichen Ergebnisse.
- Ereignis $A \subset \Omega$: Eine Teilmenge von möglichen Ergebnissen. Ein Ereignis mit nur einem Ergebnis heißt Elementarereignis.
- $\Omega = \mathsf{das}\ \mathsf{sichere}\ \mathsf{Ereignis},\ \emptyset = \mathsf{das}\ \mathsf{unm\"{o}gliche}\ \mathsf{Ereignis}.$
- Die Ereignisse A und B heissen unvereinbar, wenn $A \cap B = \emptyset$.

Achtung: Ergebnis und Ereignis nicht verwechseln!

Beispiele

- Zufallsexperiment: Würfeln eines Würfels
- Ergebnis: z.B. 1
- Ergebnismenge $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Beispiel für ein Ereignis: $A = \{2, 4, 6\} =$ "das Ergebnis ist eine gerade Augenzahl", $B = \{1\}$ ist Elementarereignis.
- Das Ereignis Ω = {1,2,3,4,5,6} ist sicher, weil immer eine der Zahlen 1-6 das Ergebnis ist. Das Ereignis ∅ ist unmöglich, weil bei einmal Würfeln immer irgendein Ergebnis herauskommt.
- Die Ereignisse $A = \{2, 4, 6\} =$ "Ergebnis ist gerade Zahl" und $B = \{1, 3, 5\} =$ "Ergebnis ist ungerade Zahl" sind unvereinbar $(A \cap B = \emptyset)$.

Weitere Beispiele für Ergebnismengen

Beispiele

Würfeln: $\Omega = \{1,2,3,4,5,6\}$

Münzwurf: $\Omega = \{ Kopf, Zahl \}$

 $\Omega = \text{Menge der 6-Tupel verschiedener}$ Lotto:

Elemente aus der Menge $\{1, 2, \dots, 49\}$

Wählerbefragung: $\Omega = \{ CDU/CSU, SPD, Grüne, Linke, FDP, sonstige \}$

Temperaturmessung: $\Omega = \mathbb{R}^+$

Ereignisse = Mengen

- $A \cap B := \{ \omega \in \Omega : \omega \in A \text{ und } \omega \in B \}$: "sowohl A als auch B treten ein."
- $A \cup B := \{ \omega \in \Omega : \omega \in A \text{ oder } \omega \in B \}$: "A oder B tritt ein."
- $B \setminus A := \{ \omega \in \Omega : \omega \in B \text{ und } \omega \notin A \}$: "B tritt ein, aber A nicht."
- $\overline{A} := \Omega \setminus A$: "A tritt nicht ein"

Erinnerung: Regeln für mengentheoretische Verknüpfungen

- Kommutativgesetze: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Assoziativgesetze: $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$
- Distibutivgesetz: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Formeln von De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Beispiel

Beispiel (Würfeln):

A = Die Augenzahl ist gerade

B = Die Augenzahl ist größer als 3

$$A \cap B = \{4,6\},\$$

 $A \cup B = \{2,4,5,6\},\$
 $B \setminus A = \{5\},\$
 $\overline{A} = \{1,3,5\}$
 $\overline{B} = \{1,2,3\}$

Weiteres Beispiel

Der zweifache Würfelwurf mit der Ergebnismenge $\Omega = ?$.

- Wie viele Elemente hat Ω ?
- Ereignis "der erste Wurf ergibt eine Fünf": A =?
- Ereignis "die Augensumme aus beiden Würfen"
- ullet Ereignis "der zweite Wurf ergibt eine höhere Augenzahl als der erste Wurf": C=?
- $A \cap B = ?$
- *B* \ *C* =?
- $A \cap C = ?$

Ergebnisse

- $\Omega = \{(i,j) : i,j \in \{1,2,3,4,5,6\}\} = \{1,2,3,4,5,6\}^2$.
- 36
- $A = \{(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\}$
- $B = \{(i,j) \in \Omega : i + j \le 5\}$
- $C = \{(i,j) \in \Omega : i < j\}$
- $A \cap B = \emptyset$
- $B \setminus C = \{(i,j) \in \Omega : i+j \le 5, i \ge j\} = \{(1,1),(2,1),(3,1),(4,1),(2,2),(2,3)\}$
- $A \cap C = \{(5,6)\}$

Ereignisalgebra - Motivation

- Wahrscheinlichkeiten werden nicht für Ergebnisse berechnet, sondern für Ereignisse (z.B. Wahrscheinlichkeit für {1} oder "gerade Augenzahl")
- Die Ereignisse, für die wir Wahrscheinlichkeiten berechnen können, sind in der Ereignisalgebra zusammengefasst, die natürliche Regeln erfüllen muss.
- Die Regel, mit der wir einem Ereignis eine Wahrscheinlichkeit zuordnen = Wahrscheinlichkeitsmaß.

Ereignisalgebra

Sei Ω eine Menge. Ein System $\mathcal A$ von Teilmengen von Ω heißt Ereignisalgebra oder σ -Algebra in Ω , wenn gilt:

- (A1) $\Omega \in \mathcal{A}$.
- **(A2)** Ist $A \in \mathcal{A}$, so gilt auch $\overline{A} \in \mathcal{A}$.
- (A3) Ist $A_n \in \mathcal{A}$ für $n \in \mathbb{N}$, so ist auch $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Die Teilmengen, die zu der Ereignisalgebra ${\mathcal A}$ gehören, heißen Ereignisse.

Es folgt automatisch: \emptyset und beliebige Durchschnitte von Mengen aus $\mathcal A$ sind in $\mathcal A$.

Der Wahrscheinlichkeitsraum

 Ω sei eine Menge. Eine Funktion P, die auf einer Ereignisalgebra \mathcal{A} in Ω definiert ist und die folgenden Axiome erfüllt, heißt Wahrscheinlichkeit oder Wahrscheinlichkeitsmaß auf Ω . (Ω, \mathcal{A}, P) heißt Wahrscheinlichkeitsraum.

- **(W1)** $0 \le P(A) \le 1$ für alle Ereignisse $A \in \mathcal{A}$.
- **(W2)** $P(\Omega) = 1$.
- (W3) Sind $A_i \in \mathcal{A}$ für $i \in \mathbb{N}$ paarweise disjunkte Ereignisse, so gilt

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}).$$

Abgeleitete Rechenregeln für P

Für Wahrscheinlichkeitsraum (Ω, P) und Ereignisse $A, B, A_1, A_2, \dots A_n$ gilt:

- (a) $P(\overline{A}) = 1 P(A)$.
- (b) $P(\emptyset) = 0$.
- (c) Aus $A \subseteq B$ folgt $P(A) \le P(B)$.
- (d) Ist $A_i \cap A_j = \emptyset$ für alle $i \neq j$, so gilt:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

- (e) Insbesondere: $P(A \cup B) = P(A) + P(B)$, falls $A \cap B = \emptyset$, ansonsten gilt:
- (f) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Beispiel: Wahrscheinlichkeitsraum 1x Würfeln

- Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Ereignisalgebra $A = P(\Omega)$.
- Wahrscheinlichkeitsmaß auf Elementarereignissen: $P(\{1\}) = P(\{2\}) = P(\{3\}) = \cdots = P(\{6\}) = \frac{1}{6}$

Mit (W3) lässt sich damit für jede Teilmenge von Ω die Wahrscheinlichkeit berechnen:

- $P(\{1,2\}) = P(\{1\} \cup \{2\}) = P(\{1\}) + P(\{2\}) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$
- Genauso folgt: $P(\{1,3,4,5\}) = \frac{4}{6}$
- Wahrscheinlichkeitsmaß auf allen Ereignissen: Für ein Ereignis A gilt: $P(A) = \frac{|A|}{6}$.

Beispiel: Rechenregeln 1x Würfeln

- (a) $P(\overline{2,3}) = P(1,4,5,6) = \frac{4}{6} = \frac{2}{3} \text{ und } 1 P(2,3) = 1 \frac{2}{6} = \frac{2}{3}$
- (b) $P(\emptyset) = 0$: Die Wahrscheinlichkeit, ein unmögliches Ergebnis zu bekommen (z.B. 7), ist 0.
- (c) $A = \{1\} \subseteq B = \{1, 2, 3\} \Rightarrow P(A) = \frac{1}{6} \le P(B) = \frac{1}{2}$.
- (d) Es gilt z.B. $P(\{1\} \cup \{2\} \cup \{5\}) = P(\{1\}) + P(\{2\}) + P(\{5\})$
- (3) Es gilt z.B. $P(\{1,4\} \cup \{2,5\}) = P(\{1,4\}) + P(\{2,5\}) = \frac{2}{6} + \frac{2}{6} = \frac{2}{3}$
- (f) $P(\{1,6\} \cup \{1,4\}) = P(\{1,4,6\}) = \frac{1}{2}$ und $P(\{1,6\}) + P(\{1,4\}) P(\{1\}) = \frac{1}{3} + \frac{1}{3} \frac{1}{6} = \frac{1}{2}$.