Carnegie Mellon University

Introductory Numerical Methods for Simulating Dynamic Systems

Dr. Joshua Pulsipher

Learning Outcomes

1. The relative advantages/disadvantages of using explicit and implicit Euler methods

2. How to implement explicit/implicit Euler to **simulate ODEs** using common computation environments (e.g., Julia)

3. How to simulate **reaction networks** using numerical methods

4. A familiarity of other **numerical methods/tools** for simulating ODEs

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

Simulating Dynamic Systems

Simulating dynamic systems is vital for enabling engineering applications

- Simulate using numerical methods to approximate dynamics (e.g., differential equations)
- Enables us to computationally experiment and implement automation

Differential Equations

Types

- Ordinary differential equations (ODEs)
 - Today's focus

$$\frac{dy(t)}{dt} = f(y(t), t)$$
$$y(0) = y_0$$

Partial differential equations (PDEs)

$$\frac{\partial y_c(t,x)}{\partial t} = \xi(x) \left(\frac{\partial^2 y_c(t,x)}{\partial x_1^2} + \frac{\partial^2 y_c(t,x)}{\partial x_2^2} \right) + y_g(t,x)$$
$$y_c(0,x), y_c(t, \text{boundary}) = 0$$

Applications

Transient flow balance

$$\frac{df(t)}{dt} = f_{in}(t) - f_{out}(t) + f_{gen}(t)$$

Heat/mass transfer

$$\frac{\partial T(t)}{\partial t} - \alpha \frac{\partial^2 T(t)}{\partial x^2} = 0$$

Fluid flow

$$\rho \frac{DV(t,x)}{Dt} = -\nabla p + \rho g(x) + \mu \nabla^2 V(t,x)$$

Kinetics

$$\frac{dc(t)}{dt} = kc(t)^{\alpha}$$

Analytical vs. Numerical Methods

Analytical Methods

Separate and integrate

$$g(y)\frac{dy}{dx} = h(x)$$
 \longrightarrow $\int g(y)dy = \int h(x)dx + C$

ODEs of special forms

$$\frac{dy}{dx} = \frac{x+y}{x-y} \longrightarrow \frac{1}{2}\log\left(\frac{y^2}{x^2} + 1\right) - \tan^{-1}\left(\frac{y}{x}\right) = C - \log(x)$$

Solving general ODEs is often difficult or not possible

Numerical Methods

- Seek to numerically approximate the solution
- Finite difference methods are common

- More advanced methods are available
 - Not the focus of today

My Teaching Philosophy

Idea: Promote a tutorial-like format that encourages active engagement.

Active Learning

- Mastery comes through deliberate practice
- Magnify class time to gain guided hands-on experiences

In-Class Exercises

- We will be using Jupyter notebooks with a Julia and/or a Python kernel today
- No downloads/installation are/is needed
- https://pulsipher.info/teaching/courses.html

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

The Basics

Methodology

Consider a 1st order ODE

$$\frac{dy(t)}{dt} = f(y(t), t)$$
$$y(0) = y_0$$

• Define time steps Δt

$$t \in [t_0, t_f] \qquad t_k = t_0 + k\Delta t$$

Approximate derivative as finite difference

$$\left. \frac{dy(t)}{dt} \right|_{t_k} \approx \frac{\tilde{y}(t_{k+1}) - \tilde{y}(t_k)}{\Delta t}$$

Define update rule

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + f(y(t_k), t_k) \Delta t$$

Exercise 1

Problem Setup

Solve the ODE

$$\frac{dy(t)}{dt} = e^{-t}$$
$$y(0) = -1$$

- Specifications
 - $t \in [0, 1]$
 - $\Delta t = 0.1$
- Plot the result against the analytical answer
- **Bonus:** Experiment with varied Δt

Simulating a System of ODEs

System of 1st order ODEs

General representation

$$\frac{dy_1(t)}{dt} = f_1(y_1, y_2, \dots, y_n)$$

$$\frac{dy_2(t)}{dt} = f_2(y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$\frac{dy_n(t)}{dt} = f_n(y_1, y_2, \dots, y_n)$$

$$y_1(0) = y_{1,0}, y_2(0) = y_{2,0}, \dots, y_n(0) = y_{n,0}$$

Vectorize

$$\frac{d\mathbf{y}(t)}{dt} = \mathbf{f}(\mathbf{y}(t), t)$$
$$\mathbf{y}(0) = \mathbf{y_0}$$

We can represent a higher order ODE as a 1st order system

Vectorized Explicit Euler

Update rule uses vectorized representation

$$\tilde{\mathbf{y}}(t_{k+1}) = \tilde{\mathbf{y}}(t_k) + \mathbf{f}(\mathbf{y}(t_k), t_k) \Delta t$$

• Exercise 2: Simulate coupled ODEs w/ $\Delta t = 0.01$ and $t \in [0, 1]$

$$\frac{dx(t)}{dt} = -5x(t) + 5y(t)$$
$$\frac{dy(t)}{dt} = 14x(t) - 2y(t)$$
$$x(0) = y(0) = 1$$

Properties: Error

Local Truncation Error (LTE)

Recall update rule

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + f(y(t_k), t_k) \Delta t$$

Taylor series expansion of analytic solution

$$y(t_k + \Delta t) = y(t_k) + \Delta t \frac{dy(t)}{dt} \Big|_{t_k} + O(\Delta t^2)$$

Difference w/ explicit Euler

$$y(t_k + \Delta t) - \tilde{y}(t_{k+1}) = O(\Delta t^2)$$

Hence, the error incurred after one step is

$$O(\Delta t^2)$$

Global Truncation Error (GTE)

The number of steps

$$\frac{t - t_0}{\Delta t} \propto \frac{1}{\Delta t}$$

Multiplying this with the LTE, we get GTE that is

$$O(\Delta t)$$

Hence, explicit Euler is a first order method

Higher order methods are available

Properties: Stability

Exercise 3

• Simulate ODE w/ $\Delta t = 0.1$ in $t \in [0, 1]$

$$\frac{dy(t)}{dt} = -20y(t)$$
$$y(0) = 1$$

Compare w/ analytic answer

Linear Stability

Consider the linear ODE

$$\frac{dy(t)}{dt} = \lambda y(t)$$

For a stable solution we must have

$$|1 + \lambda \Delta t| < 1$$

Stiff ODEs

- Systems that exhibit numerical instability
- Precise mathematical definition is nontrivial
- Common with reaction systems
 - Coexistence of small and large rate constants
- So, what can we do?

Outline

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

The Basics

Methodology

Consider a 1st order ODE

$$\frac{dy(t)}{dt} = f(y(t), t), \quad y(0) = y_0$$

• Define time steps Δt

$$t \in [t_0, t_f] \qquad t_k = t_0 + k\Delta t$$

Approximate derivative as finite difference

$$\left. \frac{dy(t)}{dt} \right|_{t_{k+1}} \approx \frac{\tilde{y}(t_{k+1}) - \tilde{y}(t_k)}{\Delta t}$$

Define the update rule

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + \frac{f(y(t_{k+1}), t_{k+1})}{\Delta t}$$

• Implicit equation \rightarrow need to solve nonlinear eq.

 $\Delta t = 0.1 \text{ in } t \in [0, 1]$

System of ODEs

Generalize Methodology

Generalize implicit Euler for a system of ODEs

$$\frac{dy_1(t)}{dt} = f_1(y_1, y_2, \dots, y_n)$$

$$\frac{dy_2(t)}{dt} = f_2(y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$\frac{dy_n(t)}{dt} = f_n(y_1, y_2, \dots, y_n)$$

$$y_1(0) = y_{1,0}, y_2(0) = y_{2,0}, \dots, y_n(0) = y_{n,0}$$

We vectorize

$$\tilde{\mathbf{y}}(t_{k+1}) = \tilde{\mathbf{y}}(t_k) + \mathbf{f}(\mathbf{y}(t_{k+1}), t_{k+1}) \Delta t$$

Now we must solve a system of nonlinear equations

Exercise 5

• Simulate coupled ODEs w/ $\Delta t = 0.01$ and $t \in [0, 1]$

$$\frac{dx(t)}{dt} = -5x(t) + 5y(t)$$
$$\frac{dy(t)}{dt} = 14x(t) - 2y(t)$$
$$x(0) = y(0) = 1$$

Properties

Error

- Local truncation error
 - Taylor series expansion

$$y(t_{k+1} - \Delta t) = y(t_{k+1}) - \Delta t \frac{dy(t)}{dt} \Big|_{t_{k+1}} + O(\Delta t^2)$$

Difference with rule gives

$$y(t_{k+1}) - \tilde{y}(t_{k+1}) = -O(\Delta t^2)$$

- Global truncation error
 - Multiply LTE with $\frac{1}{\Delta t} \rightarrow O(\Delta t)$
 - This is a 1st order method

Stability

Linear stability

$$\frac{dy(t)}{dt} = \lambda y(t) \qquad \frac{1}{1 - \lambda \Delta t} < 1$$

- Typically, stable for stiff systems
- Some exceptions (usually in certain PDEs)
 - e.g., diffusion with nonlinear diffusivity

Explicit vs. Implicit Euler

Explicit Euler

Simple and low computational cost

- Often unstable for stiff systems
- 1st order numerical method

Implicit Euler

- Increased computational cost due to solving nonlinear equation at each step
- Stable for stiff systems
- 1st order numerical method

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

Reaction Network Modeling

Simple ODE Model

Arrhenius equation for species i and reaction j

$$k_{ij}(t) = A_{ij} \exp\left(\frac{-E_{a,ij}}{RT(t)}\right)$$

Reaction rates

$$r_j(\mathbf{c},t) = \sum_{i \in I} k_{ij}(t) c_i^{\beta_{ij}}(t)$$

Species balances

$$\frac{dc_i(t)}{dt} = \sum_{j \in J} \gamma_{ij} r_j(\mathbf{c}, t), \quad i \in I$$

$$c_i(0) = c_{i,0}, i \in I$$

Example

A ↔ B

$$\frac{dc_1(t)}{dt} = c_2(t)k_2(t) - c_1(t)k_1(t)$$

$$\frac{dc_2(t)}{dt} = c_1(t)k_1(t) - c_2(t)k_2(t)$$

$$c_1(0) = 1, \ c_2(0) = 0$$

Simulate with $t \in [0, 1]$ at T = 325

Exercise: Batch Reactor

Exercise 6

• Simulate the following reaction system using explicit Euler for $t \in [0, 1]$

$$A \rightleftharpoons B$$
$$A \rightleftharpoons C$$

• Experiment with different choices of Δt

Problem Information

$$R = 1.987$$

$$A = \begin{bmatrix} 3.6362e6 & 190.6879 \\ -2.5212e16 & 0 \\ 0 & -8.7409e24 \end{bmatrix}$$

$$E_a = \begin{bmatrix} 10000 & 5000 \\ 25000 & 0 \\ 0 & 40000 \end{bmatrix} \qquad \beta = 1 \qquad \gamma = \begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$T(t) = \begin{cases} 333, & t < 0.5 \\ 325, & t \ge 0.5 \end{cases} \qquad \mathbf{c}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Optimizing Reaction Networks

- We can optimize certain outcomes using numerical approximations of ODEs and optimization software
- For instance, let's maximize the final concentration of B by controlling T(t)

$$\max \quad c_2(t_f)$$
s.t.
$$\frac{dc_i(t)}{dt} = \sum_{j \in J} \gamma_{ij} r_j(\mathbf{c}, t), \quad t \in [0, 1]$$

$$0 \le \mathbf{c}(t) \le 1, \qquad t \in [0, 1]$$

$$\underline{T} \le T(t) \le \overline{T}, \qquad t \in [0, 1]$$

$$\mathbf{c}(0) = \mathbf{c}_0$$

- Motivation
- Explicit Euler
- Implicit Euler
- Reaction Networks
- Other Methods

More Advanced Methods

Runge-Kutta

- Family of explicit and implicit iterative methods
- Various orders based on GTE $O(h^p)$
 - 1st order methods are the Euler methods
 - 4th order methods are popular

Orthogonal Collocation over Finite Elements

- The discretization uses finite elements
- We approximate the solution in each element as a polynomial function
- End up solving a system of linear equations

Common Simulation Tools

ODE Integrators

- Common in scripting languages
- Provide numerical solutions to ODE systems

Symbolic Solvers

- Can provide analytic solutions when possible
- Typically, not used for large problems

Optimization Tools

 Can incorporate differential equations when solving optimization problems

Problem Specific

Simulate dynamics for particular systems

Carnegie Mellon University

Introductory Numerical Methods for Simulating Dynamic Systems

Dr. Joshua Pulsipher