Practice with the second loopy question

init

!B && P

!B && P implies R

Introduction

We practice finding a loop condition B by using the second loopy question: Is $!B \&\& P \Rightarrow R$ true? Thus, we look for !B that makes $!B \&\& P \Rightarrow R$ true and complement !B to get B.

Here's the invariant P and postcondition for our first example.

loop condition at $k \le n$ if we want. Thus, we use either

fore, !B is k = n, so the loop condition B is k != n. Looking at the restriction on k in invariant P, we can write the

while $(k != n) \{ ... \}$ or **while** $(k < n) \{ ... \}$

A second example

Here are the invariant and postcondition for a loop to calculate the minimum value in array segment b[0..n-1]:

P:
$$v = minimum \text{ of } b[0..k-1]$$
 and $0 \le k \le n$
R: $v = minimum \text{ of } b[0..n-1]$

Using reasoning like we did the first example, you can see that we get the same answer for B as in the previous example.

while
$$(k != n) \{ ... \}$$
 or **while** $(k < n) \{ ... \}$

Computing $z = b^c$

Here are the invariant and postcondition for a loop to store b^c in z, given $c \ge 0$:

P:
$$b^c = z * x^y \text{ and } y \ge 0$$

R: $z = b^c$

Again doing pattern matching, we see that R will be true when P is true and $x^y = 1$. That last formula, $x^y = 1$, is true, when y = 0. So our loop condition is $y \neq 0$:

while
$$(y != 0) \{ ... \}$$

Exercises

In the two examples below, find the loop condition. Answers are at the end of the pdf script for this video.

1. P: s is the sum of k..n-1 and
$$m \le k \le n$$

R: s is the sum of m..n-1 2. P: $v = \text{minimum of b[k..n]}$ and $0 \le k \le n$
R: $v = \text{minimum of b[0..n]}$ and $0 \le k \le n$

Answers

In the first exercise, doing pattern matching on P and R, we see that k = m is needed. Therefore the loop condition is k = m. This can be written as m < k if you want, since $m \le k \le n$:

while
$$(k != m) \{ \dots \}$$
 or while $(m < k) \{ \dots \}$

In the second exercise, pattern matching on P and R, we see that k = 0 is needed. Therefore, the loop condition condition is k = 0. This can be written as $0 \le k$ if you want, since $0 \le k \le n$:

while
$$(k != 0) \{ ... \}$$
 or **while** $(m < k) \{ ... \}$