

Применение NGS-технологий в медицинской генетике. Эффективность. Ограничения

Скоблов Михаил Юрьевич

заведующий лабораторией функциональной геномики ФГБНУ "Медико-генетический научный центр"

Летняя школа MGNGS School'21

U.S. next generation sequencing market, by application, 2012-2022 (USD Million)

13 тысяч молекулярных анализов в 2019 году:

- 20 геномов
- 700 экзомов
- 2000 панелей
- 10 тысяч секвенирований по Сэнгеру

Применение NGS в медицинской генетике

Применение NGS в медицинской генетике

Whole genome sequencing

Whole exome sequencing

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

- Sequencing region: whole exome
- Sequencing Depth: >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective

Targeted sequencing

- Sequencing region: specific regions (could be customized)
- Sequencing Depth: >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

WES vs WGS

	Полный экзом	Полный геном
Область исследование	95% код. части генома (1-2% от всего генома)	98% всего генома
% не обнаруженных вариантов из HGMD	2,1%	0,3%
CNV	Возможна по анализу покрытия. Необходимо подтверждение другим методом	Разрешение точных границ перестроек выше XMA высокого разрешения.
Некодирующая область	-	+
мтДНК	-	С прочтением 2000Х
Детекция экспансии тринуклеотидных повторов	-	Возможна в некоторых случаях
Качество/покрытие	Хорошее/более х100	Хорошее/более х30
Реанализ данных	Делают но не на старых	Более долговечно

Количество данных получаемых при NGS

Диагностика метаболизма тиамина на основе быстрого секвенирования была сделана в течение 13 часов

DOI: 10.1056/NEJMc2100365

Какова эффективность NGS диагностики?

Panel	Total cases	Number of genes ^a	Diagnostic findings	Possible diagnostic findings	Negative findings	Diagnostic yield (%) (Diagnostic + Possible diagnostic)
Phenylketonuria	52	1	49	1	2	96
Fanconi anemia	39	1-18	30	4	5	87
Epidermolysis bullosa	27	1-13	20	3	4	85
Retinal dystrophy panel	69	32-315	40	15	14	80
Adrenoleukodystrophy	18	1	13	1	4	78
Albinism	42	1-24	20	12	10	76
Congenital hyperinsulinism	12	7–14	3	5	4	67
Craniosynostosis	13	1-20	5	2	6	54
Hearing loss (all subpanels combined)	173	2-149	50	37	86	50
Achondroplasia	10	1	5	0	5	50
Congenital myopathy	35	1-29	9	8	18	49
Alport syndrome	48	3	20	3	25	48
Stickler Syndrome	13	1-6	5	1	7	46
Ataxia/Hereditary Spastic Parapresis	23	28-101	3	7	13	43
Hereditary spastic paraparesis	26	1-74	7	4	15	42
Limb girdle muscular dystrophy	24	1-36	6	4	14	42
Ataxia	25	21-67	3	7	15	40
Carnitine acetyltransferase deficiency	10	1	1	3	6	40
Cystic fibrosis	10	1	3	1	6	40
Noonan syndrome	40	5-22	15	0	25	38
Hereditary hemorrhagic telangiectasia	11	1–4	4	0	7	36
Periodic paralysis syndromes	11	2-5	3	1	7	36
Polycystic kidney disease	11	1-9	3	1	7	36
Charcot Marie Tooth	117	1-58	32	9	76	35
Glycogen storage disease	17	1-25	5	0	12	29
Complex neurologic	45	6–266	4	8	33	27
Marfan syndrome	38	1-3	2		33	13
Li Fraumeni syndrome	25	1-3	3	0	22	12
Macrocephaly/Overgrowth	10	3–18	1	0	9	10
Hereditary breast/ovarian cancer	126	2–18	11	1	114	10
Connective tissue disorder	48	2–29	2	2	44	8
Developmental eye panel	12	14–31	1	0	11	8
Renal coloboma syndrome	13	1	1	0	12	8
Ehlers Danlos syndrome	111	1–16	5	2	104	6
Dystonia	17	1–18	1	0	16	6
Motor neuron disease	19	5–85	1	0	18	5
Myoclonus dystonia	20	1-3	1	0	19	5
https://doi.org/10.1016/j.ymgmr.2019.100464						

Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic **Testing for Inherited Retinal Disease**

Jamie M Ellingford ¹, Stephanie Barton ², Sanjeev Bhaskar ², Simon G Williams ², Panagiotis I Sergouniotis ³, Jame William G Newman 1, Paul N Bis Stuart Bayliss ², Simon C Ramsd

Affiliations + expand

> Neurology. 2021 Mar 30;96(13):e1770-e1782. doi: 10.1212/WNL.000000000011655. Epub 2021 Feb 10.

Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies

Elizabeth Emma Palmer ¹, Rani Sachdev ², Rebecca Macintosh ², Uirá Souto Melo ², Stefan Mundlos², Sarah Righetti², Tejaswi Kandula², Andre E Minoche², Clare Puttick², Velimir Gayevskiy ², Luke Hesson ², Senel Idrisoglu ², Cheryl Shoubridge ², Monica Hong Ngoc Thai ², Ryan L Davis ², Alexander P Drew ², Hugo Sampaio ², Peter Ian Andrews ², John Lawson ², Michael Cardamone ², David Mowat ², Alison Colley ², Sarah Kummerfeld ², Marcel E Dinger ², Mark J Cowley ², Tony Roscioli ², Ann Bye ², Edwin Kirk ²

- Прирост в эффективности диагностики после WES от 5 до 15%
- В основном из-за более высокого качества данных (равномерное покрытие в отличии от экзома) и различных CNV/инсерций мобильных элементов.

Почему эффективность ДНК-диагностики с применением NGS технологий сегодня около 40%?

1. Несовершенство приборов

1. Несовершенство приборов

2. Несовершенство технологий

2. Несовершенство технологий

3. Несовершенство биоинформатического анализа NGS-данных

Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets

Robert Daber*, Shrey Sukhadia, Jennifer J.D. Morrissette

Center for Personalized Diagnostics, University of Pennsylvania School of Medicine, Philadelphia, PA

The advantages of massively parallel sequencing are quickly being realized through the adoption of comprehensive genomic panels across the spectrum of genetic testing. Despite such widespread utilization of next generation sequencing (NGS), a major bottleneck in the implementation and capitalization of this technology remains in the data processing steps, or bioinformatics. Here we describe our approach to defining the limitations of each step in the data processing pipeline by utilizing artificial amplicon data sets to simulate a wide spectrum of genomic alterations. Through this process, we identified limitations of insertion, deletion (indel), and single nucleotide variant (SNV) detection using standard approaches and described novel strategies to improve overall somatic mutation detection. Using these artificial data sets, we were able to demonstrate that NGS assays can have robust mutation detection if the data can be processed in a way that does not lead to large genomic alterations landing in the unmapped data (i.e., trash). By using these pipeline modifications and a new variant caller, AbsoluteVar, we have been able to validate SNV mutation detection to 100% sensitivity and specificity with an allele frequency as low 4% and detection across a wide array of genetic anomalies, and the utility of artificial data sets demondetection across a wide array of genetic anomalies, and the utility of artificial data sets demondered.

Каждая задача решается применением уникальной комбинацией скриптов/программ/алгоритмов....

4. Сложность объекта – генома человека

- около 5-10 миллионов SNP (в зависимости от популяции);
- 25 000–50 000 редких вариантов (собственные мутации или с частотой меньше 0,5%);
- около 75 de novo мутаций, не обнаруженных в геномах родителей;
- 3-7 новых CNV приблизительно размером в 500 т.п.н. ДНК;
- 200 000-500 000 инделов (длинной от 1 до 50 п.о.) (в зависимости от численности населения);
- 500-1000 делеций размером от 1до 45 т.п.н., затрагивающих около 200 генов;
- около 150 инделов, захватывающих рамку считывания;
- около 200-250 сдвигов рамки считывания;
- 10 000-12 000 синонимичных SNP;
- 8000-11000 несинонимичных SNP в 4000-5000 генах;
- 175-500 редких несинонимичных вариантов;
- 1 de novo несинонимичная мутация;
- около 100 преждевременных стоп-кодонов;
- 40-50 вариантов, нарушающих сайт сплайсинга;
- 250–300 генов с вероятными вариантами потери функции;
- около 25 генов могут быть полностью инактивированы.

4. Сложность объекта – генома человека

⊿ A	В	C	D	Е	F	G	H	I	J	K	L	M N	0	p	Q	R	S	T	U	V	W	X	Y
1 Genor	Ct =	Start =	R(=	Δ×	UCSC =	GnomAD *	Func.refGene *	Gene.refGene\ =	GeneDetail.refGeneWithVer	ExonicFunc.refGene'	AAChange.refGeneWit CL	NS = dbsnp1	AF-exom	AF_popmax =		T AF_popmax3 =		regsn 💌 i		ID =	POSITIO *	ARIAT =	REQUE
488 ref	4	8021150	С	G (chr4:8021150	4-8021150-C-G	splicing	ABLIM2	NM_001130085.2:exon12:c.1270+779G>0			rs96066	70! -		0,0002	0,0003	0,613013699	В	off	rs12500190	8021151	C/T	0,3004
489 alt	4	8021150	С	G (chr4:8021150	4-8021150-C-G	splicing		NM_001130085.2:exon12:c.1270+779G>0			rs96066			0,0002	0,0003	0,613013699	В	off	rs12500190	8021151	C/T	0,3004
498 ref	17	56386119	Т						NM_004758.4:exon20:c.3699+1754A>G;N		TSPOAP1:NM_024418.3:exon210 .	rs75458			3,19E-05	0,0006				rs2680689	56386118	A/G	0,3021
499 alt		56386119	_				exonic;splicing		NM_004758.4:exon20:c.3699+1754A>G;N	nonsynonymous SNV	TSPOAP1:NM_024418.3:exon21:	rs75458	/	5,47E-05	3,19E-05	0,0006				rs2680689	56386118	A/G	0,3021
2846 ref	11	14369770	G			11-14369770-G-C	intronic	RRAS2				rs55662			3,19E-05					rs11023194	14369769	T/C	0,3026
2847 alt	11	14369770	G			11-14369770-G-C	intronic	RRAS2				rs55662	37: -		3,19E-05				-	rs11023194	14369769	T/C	0,3026
3054 ref		41451760	С			21-41451760-C-T	splicing		NM_001271534.3:exon25:c.4420+319G>A			-			3,19E-05					rs2297262	41451761	G/A	0,3029
3055 alt		41451760	С			21-41451760-C-T	splicing		NM_001271534.3:exon25:c.4420+319G>A			-			3,19E-05					rs2297262	41451761	G/A	0,3029
3430 ref		104135962	Т			14-104135962-T-G			NM_001130107.1:exon6:c.885+27T>G;NN			rs37372			0,0003	0,0011	0,232876712	В	off	rs12896171	104135966	A/G	0,3049
3431 alt		104135962				14-104135962-T-G			NM_001130107.1:exon6:c.885+27T>G;NN		-	rs37372		0,0007	0,0003	0,0011	0,232876712	ь	off	rs12896171	104135966	A/G	0,3049
3444 ref		31271924	G				ncRNA_exonic	OVOS2				rs99099			0,0005	0,0008				rs78263854	31271923	C/T	0,3072
3445 alt 3702 ref			G			12-31271924-G-C		OVOS2 ALOX5AP				rs99099	551 -	-	3,19E-05	0,0001				rs78263854 rs4254165	31271923 31317878	A/G	0,3072
3702 ref 3703 alt		31317879 31317879	Ť				splicing splicing		NM_001204406.1:exon3:c.242-318T>G;NI NM_001204406.1:exon3:c.242-318T>G;NI			-			3,19E-05	0.0001				rs4254165	31317878	A/G	0,3086
3734 ref	8	10481532	c		chr8:10481532		splicing		NM_178857.6:exon2:UTR5			rs10381			6,37E-05	0,0024	-			rs10090876	10481531	C/A	0,3097
3735 alt	8	10481532	C		chr8:10481532 chr8:10481532		splicing		NM_178857.6:exon2:UTR5 NM_178857.6:exon2:UTR5			rs10381			6,37E-05	0,0024				rs10090876	10481531	C/A	0,3097
3800 ref	2	69330120	6		chr2:69330120		splicing		NM_1/8857.8.exon12.0185 NM_018153.3:exon10:c.802+48G>T;NM_			1310261			3,18E-05	6,48E-05	0.20890411	В.	off	rs6710260	69330118	A/G	0,3097
3801 alt	2	69330120	G		chr2:69330120 :		splicing		NM_018153.3:exon10:c.802+48G>T;NM_ NM_018153.3:exon10:c.802+48G>T;NM_						3,18E-05	6,48E-05	0,20890411	В	off	rs6710260	69330118	A/G	0,3118
920 ref		87932356	Δ.				intronic	CNBD1	NW_018133.3.EX0110.C.802748851,NW_		1.	rs93828		· ·	3.19E-05	0.0001	0,20030422			rs6981203	87932352	A/G	0,3134
921 alt		87932356	Δ			8-87932356-A-G	intronic	CNBD1			i i	rs93828			3,19E-05	0.0001		•	•	rs6981203	87932352	A/G	0,3134
5374 ref		98792426	Δ				splicing		NM 003061.3:exon23:c.2438+1802T>G;N		1-	1393020			9.56E-05	0.0019				rs7086186	98792425	A/G	0,3148
5375 alt	10	98792426	Α				splicing		NM 003061.3:exon23:c.2438+1802T>G;N				-	-	9,56E-05	0,0019				rs7086186	98792425	A/G	0,3148
5380 ref	4	2698523	c		chr4:2698523		splicing		NM 001366316.1:exon17:c.3105+1667C>						3,19E-05	6.48E-05	0.239726027	В	off	rs4690086	2698524	G/A	0,3169
5381 alt	4	2698523			chr4:2698523		splicing		NM 001366316.1:exon17:c.3105+1667C>		i.				3.19E-05	6.48E-05	0.239726027	В	off	rs4690086	2698524	G/A	0,3169
7964 ref	19	40389740	C			19-40389740-C-T	exonic	FCGBP		synonymous SNV	FCGBP:NM 003890.2:exon18:c.G .	-			3.92E-05	0.0001		-		rs141158749	40389741	A/G	0,3169
7965 alt		40389740	c			19-40389740-C-T	exonic	FCGBP		synonymous SNV	FCGBP:NM 003890.2:exon18:c.G .	i.			3,92E-05	0,0001				rs141158749	40389741	A/G	0,3169
8010 ref	15	42378412	Т	C (chr15:42378412	15-42378412-T-C	exonic:splicing	PLA2G4D:PLA2G4I	NM 178034.4:exon2:c.118+1414A>G:NM		PLA2G4D:NM 178034.4:exon4:c	rs55146	76! 0,0052	0,0136	0,0039	0,05				rs761088353	42378409	A/C	0.3222
8011 alt	15	42378412	т			15-42378412-T-C			NM 178034.4:exon2:c.118+1414A>G;NM		PLA2G4D:NM 178034.4:exon4:c	rs55146	76: 0,0062	0,0136	0,0039	0,05				rs761088353	42378409	A/C	0,3222
8784 ref	8	144403486	С	Т (chr8:144403486	8-144403486-C-T	exonic	TOP1MT		nonsynonymous SNV	TOP1MT:NM 001258447.1:exon .	rs77591	819 8,02E-06	3,28E-05	9,57E-05	0,0002				rs11544482	144403485	G/C	0,3250
8785 alt	8	144403486	С	Т (chr8:144403486	8-144403486-C-T	exonic	TOP1MT		nonsynonymous SNV	TOP1MT:NM_001258447.1:exon(.	rs77591	819 8,02E-06	3,28E-05	9,57E-05	0,0002				rs11544482	144403485	G/C	0,3250
11102 ref	21	45454780	С	Т (chr21:45454780	21-45454780-C-T	intronic	TRAPPC10			· .	rs10132	936 -		9,55E-05	0,0002				rs2238712	45454778	A/G	0,3295
11103 alt	21	45454780	С	Т (chr21:45454780	21-45454780-C-T	intronic	TRAPPC10				rs10132	936 -		9,55E-05	0,0002				rs2238712	45454778	A/G	0,3295
11104 ref	16	84228198	G	C (chr16:84228198	16-84228198-G-C	ncRNA_exonic;s	LOC654780;ADAD	NM_001145400.2:exon2:c.559+10G>C;NN			rs20198	55(2,73E-05	0,0002	3,19E-05	0,0012				rs11864937	84228199	G/T	0,3297
11105 alt	16	84228198	G	C (chr16:84228198	16-84228198-G-C	ncRNA_exonic;s	LOC654780;ADAD	NM_001145400.2:exon2:c.559+10G>C;NN			rs20198	55(2,73E-05	0,0002	3,19E-05	0,0012			-	rs11864937	84228199	G/T	0,3297
11446 ref	16	84228197	G	Т (chr16:84228197:	16-84228197-G-T	ncRNA_exonic;s	LOC654780;ADAD	NM_001145400.2:exon2:c.559+9G>T;NM			rs76109	38: 4,56E-06	7,50E-05	3,19E-05	0,0001				rs11864937	84228199	G/T	0,3297
11447 alt	16	84228197	G	T (chr16:84228197	16-84228197-G-T	ncRNA_exonic;s	LOC654780;ADAD	NM_001145400.2:exon2:c.559+9G>T;NM			rs76109	38: 4,56E-06	7,50E-05	3,19E-05	0,0001				rs11864937	84228199	G/T	0,3297
12102 ref	11	117988536	G		chr11:11798853	11-117988536-G-T	splicing	TMPRSS4	NM_001173551.1:exon12:c.1296+367G>T			rs10204	10; -		3,19E-05	0,0001				rs671111	117988539	G/A	0,3303
12103 alt		117988536	G			11-117988536-G-T			NM_001173551.1:exon12:c.1296+367G>T			rs10204	10: -		3,19E-05	0,0001				rs671111	117988539	G/A	0,3303
12252 ref		82920904	Α				splicing		NM_001300976.2:exon4:c.331-438A>G;N						3,18E-05					rs613175	82920900	C/G	0,3314
12253 alt		82920904	Α			11-82920904-A-G	splicing		NM_001300976.2:exon4:c.331-438A>G;N						3,18E-05					rs613175	82920900	C/G	0,3314
12780 ref		30993058	Α			X-30993058-A-G	intergenic		dist=85687;dist=96292						9,19E-05	0,0003			-	rs5927653	30993057	T/C	0,3319
12781 alt	X	30993058	Α			X-30993058-A-G	intergenic		dist=85687;dist=96292						9,19E-05	0,0003				rs5927653	30993057	T/C	0,3319
13032 ref		87877249	С			16-87877249-C-T	intronic	SLC7A5				rs87935		-	6,39E-05	0,0012				rs58852522	87877246	T/C	0,3418
13033 alt		87877249	С			16-87877249-C-T	intronic	SLC7A5				rs87935	048 -		6,39E-05	0,0012				rs58852522	87877246	T/C	0,3418
13088 ref		60102508	T			11-60102508-T-G	exonic	MS4A6E		nonsynonymous SNV	MS4A6E:NM_139249.2:exon1:c1 .	-	•		3,19E-05	0,0012	-			rs2304933	60102507	G/T	0,3456
13089 alt 13156 ref		60102508	T				exonic	MS4A6E MS4A6E		nonsynonymous SNV	MS4A6E:NM_139249.2:exon1:c1 .				3,19E-05 3.19E-05	0,0012			-	rs2304933	60102507	G/T	0,3456
13156 ref 13157 alt		60102508	-			11-60102508-T-G 11-60102508-T-G	exonic	MS4A6E MS4A6E		nonsynonymous SNV	MS4A6E:NM_139249.2:exon1:c1 .	-			3,19E-05 3,19E-05	0,0012				rs2304933	60102507	G/T G/T	0,3456
1315/ art 13564 ref									NM 001289154.2:exon3:c.199+1843A>G;	nonsynonymous SNV	MS4A6E:NM_139249.2:exon1:c1 .				0.0008	0,0012				rs2304933	60102507 31380974	C/G	0,3456
13565 alt		31380979	A			6-31380979-A-G 6-31380979-A-G	splicing		NM_001289154.2:exon3:c.199+1843A>G; NM_001289154.2:exon3:c.199+1843A>G;			rs56182 rs56182		-	0.0008	0,0029			•	rs6934187 rs6934187	31380974	C/G	0,3460
14184 ref	_	132938828	T				splicing splicing		NM_001289154.2:exon3:C.199+1843A>G; NM_001037126.1:exon1:C.86+885T>G:NN		· ·	1500182			3.18E-05	0,0029				rs6980297	132938829	A/G	0,3460
14185 alt		132938828	+				splicing		NM_001037126.1.ex0n1:c.86+885T>G;NN NM_001037126.1:ex0n1:c.86+885T>G;NN						3,18E-05	0.0001				rs6980297	132938829	A/G	0,3473
15020 ref		222379493	T .			7-132938828-1-G 7-222379493-T-C	intronic	EPHA4	00203/120.1.0x0m1.0.00+883174;NN		j. -	rs53124	77'		0,0005	0,002	-			rs2710506	222379489	A/C	0,3484
15020 rei		222379493	Ť			2-222379493-T-C	intronic	EPHA4				rs53124			0.0005	0,002				rs2710506	222379489	A/C	0,3484
15436 ref		11766845	c	-	chr7:11766845		intronic	THSD7A				rs78654			0.0034	0.012				rs13311868	11766844	G/A	0,3495
15437 alt		11766845	c		chr7:11766845		intronic	THSD7A				rs78654			0.0034	0.012				rs13311868	11766844	G/A	0,3495
15708 ref	_	75185854	G			2-75185854-G-C	exonic	POLE4		nonsynonymous SNV	POLE4:NM 019896.4:exon1:c.G4: .	,5,0054			3,19E-05	0,0001				rs12366	75185856	G/T	0,3517
15709 alt		75185854				2-75185854-G-C	exonic	POLE4			POLE4:NM 019896.4:exon1:c.G4: .	<u> </u>		-	3,19E-05	0,0001				rs12366	75185856	G/T	0.3517
	_		-												-,			-					

Интерпретация NGS данных

Gilissen C. et al. Eur. J. Hum. Genet. (2012) 20:490-497.

5. Сложность объекта – заболевания человека

	Количество
Описание фенотипа с известными молекулярными основами	6'111
Описание фенотипа с неизвестными молекулярными основами	1′527
Фенотипы с предполагаемым менделевским наследованием	1'756

5. Сложность объекта – заболевания человека

	Количество	
Описание фенотипа с известными молекулярными основами	6'111	
Описание фенотипа с неизвестными молекулярными основами	1′527	
Фенотипы с предполагаемым менделевским наследованием	1'756	

6. Огромное количество всевозможных механизмов патогенеза заолеваний

До сих пор непонятно сколь генов и какие они

	RefSeq	Ensembl	Gencode (v. 29)
Total No of Genes	6118	57365	58721
Protein-coding genes	20216	20418	19940
Long non-coding RNA genes	18533	15014	16066
Small non-coding RNA genes	10333	4871	7577
Pseudogenes	16435	15195	14505

До сих пор не понятно кто что кодирует и в чем тут смысл

Protein existence in neXtProt

Патогенность вариантов известна только для небольшого их числа (меньше 1%)

Вы сейчас находитесь здесь:

- Нет прибора позволяющего получать идеальные данные
- Нет алгоритмов позволяющих идеально процессировать данные
- Слишком много функционально-значимых мест в геноме, и слишком мало мы о них знаем
- Очень много заболеваний и мало мы знаем о их механизмах

Альтернативные подходы

- Десятки разных алгоритмом предсказывающих
- Разные экспериментальные подходы позволяющие идентифицировать перестройки, химерные транскрипты, IncRNA, miRNA, конформационные изменения ДНК и т.п.
- РНК-анализ

РНК-анализ

• Локальный

• Глобальный

Преимущества использования РНК анализа

- Обнаружение нарушений структуры мРНК за счёт глубоко-интронных вариантов
- Поиск ранее не найденных вариантов
- Анализ изменения экспрессии
- Обнаружение ошибок ДНК-диагностики
- Позволяет с высокой степенью уверенности исключить ген из списка генов-кандидатов для конкретного генетического заболевания.

Черная пятница: 178 евро

Сравнение
результатов
секвенирования
индивидуальных
геномов человека
Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med. 2012;63:35-61.

ndividual
enter
Vatson
Chinese
(YH)
frican
(NA18507)*
frican
(NA18507)*
orean
(SJK)
Corean
(AK1)
hoisan
(KB1)
). Tutu
(ABT)
upski

Ploidy

2n

Ta alan ala ma	Av
Technology	Depth
Sanger	7.5×
Roche 454	7.4×
Illumina	36.0×
Illumina	40.6×
AB SOLiD	17.9×
Illumina	28.9×
Illumina	27.8×
Roche 454	10.2×
AB SOLiD	30.0×
AB SOLiD	29.6×

Total

SNPs

[M]

3.21

3.32

3.07

3.61

3.86

3.43

3.45

4.05

3.62

3.42

3'415'465 персональных вариаций

56001801066408A.snp.vcf

860 Mb

56001801066408A-6584-Phar macogenetics Report.pdf

Genetic Report

Confidential Report Number

1226918

Wellness & Longevity App

- The Report analyzes a large amount of genomic data, associating genetic variants found in the **genomic files** with variants known from the scientific literature. While this Report does not require FDA/EMA approval, we do want to point out that it has not been approved by the FDA/EMA for such use.
- We do not independently judge the validity or accuracy of such published scientific information.
- Because scientific and medical information changes over time, your risk assessment and genetically tailored prevention for one or more of the medications contained within this report may also change over time.
- Therefore, this report may not be 100% accurate (e.g., new research could mean different results) and may not predict actual results or outcomes.

GWAS Catalog

As of May 2019

- 3,989 publications
- 138,312 variant-trait associations
- >6,000 full summary statistics files

controls (n=1,000) people without heart disease

«Genetic Report» на 163 страницах

• 3'450 описанных вариаций

«Genetic Report» на 163 страницах

Lactose Intolerance

Increased risk of becoming lactose intolerant as an adult

Asthma

RISK DETECTED

No Resistance Detected

Resistance to HIV Infection

«Genetic Report» на 163 страницах

CONDITION NAME	RESULTS	MAIN MESSAGE
Ethanol	②	No variants detected
Heroin	②	No variants detected
Metformin	Ø	No variants detected
Methadone	<u> </u>	We found a variant related to your reaction to Methadone
Methotrexate		We found a variant related to your reaction to Methotrexate
Mirtazapine	<u> </u>	We found a variant related to your reaction to Mirtazapine
Morphine	<u> </u>	We found a variant related to your reaction to Morphine

Результаты данного исследования могут быть правильно интерпретированы
только врачом-генетиком.