

Deep AntiPhish: Enterprise-Grade Phishing Detection Using Deep Learning and Feature-Rich Analysis

Shruti Singh

Texas AM University

Abstract

Phishing attacks have evolved into a sophisticated cybersecurity threat, leveraging psychological manipulation rather than system vulnerabilities. This project introduces Deep AntiPhish, a deep learning-based framework for phishing detection that combines intelligent feature engineering with metadata-aware email parsing and a custom neural network architecture.

Our system extracts textual and structural information from emails—such as body text, mail_domain, return_path, and URL patterns—and transforms them using TF-IDF and numerical encodings. The final model architecture features 9 layers with BatchNorm, ReLU, and Dropout for regularization.

We further fine-tuned the training process using Optuna-based hyperparameter optimization, exploring learning rate, weight decay, and training cycles for performance maximization. The final model achieves a validation accuracy of 99.56%, precision of 100%, and an F1-score of 99.72%, demonstrating robustness across multiple datasets and evaluation scenarios.

Data Collection

The DeepAntiPhish system was trained and validated using a diverse combination of real-world email corpora that reflect both benign and malicious communication patterns.

Datasets Utilized:

- SpamAssassin Public Corpus: A benchmark set of legitimate (ham) and spam emails, ideal for baseline separation of clean and deceptive content.
- Nazario Phishing Corpus (2005–2007): A curated archive of confirmed phishing emails collected over multiple years.
- Enron MBOX Dataset: Authentic corporate communication emails used as an unseen test set to assess generalization.

Data Split and Volume:

- Training Set: 12,350 raw emails expanded to 64,175 rows via artifact-level row expansion (URLs and attachments treated individually).
- Test Set: 5,797 raw emails expanded to 53,685 rows drawn from Enron and other held-out corpora.

Ground Truth: Labels were assigned using corpus source: SpamAssassin \rightarrow Ham, Nazario \rightarrow Phish, Enron \rightarrow Mixed (manually filtered).

This curated split ensures both high statistical power during training and realistic generalization during evaluation across heterogeneous enterprise scenarios.

System Design and Implementation

DeepAntiPhish is built as a modular, six-stage pipeline combining NLP, metadata extraction, and deep learning to detect phishing in real-world email traffic.

- Multi-source Parsing: Supports both .eml and .mbox formats, extracting headers, body, URLs, and attachments with robust error handling.
- Row Expansion: Converts each artifact (URL/attachment) into a distinct row, boosting resolution and model interpretability.
- Hybrid Feature Engineering: Applies TF-IDF and hashing on textual + structural fields (e.g., return-path, x-mailer, url_query) and scales numerical indicators.

(continued in next column)

- 7-layer Deep Neural Network: Uses batch normalization, dropout regularization, and imbalance-aware loss (BCE + pos_weight) to ensure stability and generalization
- Cyclic Training Strategy: Employs checkpointed 2-cycle training (5 epochs each) with cosine-annealed learning rate, preventing overfitting.
- Optuna-Based Tuning: Hyperparameters (LR, weight decay, cycles) optimized in ≤ 4 trials, achieving 99.56% accuracy with minimal compute cost.

The pipeline scales to thousands of emails with high fidelity, making it enterprise-ready for deployment in phishing defense infrastructures.

Figure: DeepAntiPhish 7-layer DNN Architecture with batch norm, dropout, and geometric layer decay

Training Strategy

DeepAntiPhish employs a cyclic training regime to improve generalization and reduce overfitting without long single-pass training runs.

- Checkpointed Cycles: Training is divided into 2 cycles of 5 epochs each. After every cycle, the model is evaluated and the best checkpoint is retained for the next cycle.
- Cosine Annealing LR: Within each cycle, the learning rate decays smoothly from η_0 to a minimum using cosine annealing, and is re-warmed at the next cycle start.
- Optimizer: AdamW is used with tuned parameters lr = 4.8e-3, weight_decay = 1.8e-4 discovered via Optuna.
- Class Imbalance Handling: Binary cross-entropy loss is weighted with pos_weight = ham/phish ratio, ensuring unbiased learning even with uneven class distributions.
- Regularization: Batch normalization and a dropout ladder (0.30 \rightarrow 0.02) stabilize learning and reduce co-adaptation. Gradient clipping at 1.0 ensures robustness.

This approach yields faster convergence and higher resilience across diverse corpora with minima hyperparameter tuning.

Evaluation and Results

DeepAntiPhish was evaluated on 53,000+ unseen test rows from Enron, SpamAssassin, and Nazario corpora.

- Accuracy: 99.56% Only 1 false positive and 237 false negatives.
- Precision: 1.0000 for phishing No ham emails flagged.
- Recall: 0.9945 Almost all phishing emails detected.
- F1-Score: 0.9972 Strong balance of precision and recall.
- ROC-AUC: 0.9991 Excellent separation of phishing and safe emails
- Loss Stability: Batch-wise loss remained tightly centered, showing consistent generalization across sources.

DeepAntiPhish sets a new benchmark in phishing detection, with high recall and near-zero false positive 6. D. Saxe and K. Berlin, "Deep Neural Network-Based Malware Detection," Proc. MALWARE, 2015. rate.

Figure: Confusion Matrix – Near-perfect classification

Conclusion and Future Work

DeepAntiPhish presents a robust, scalable, and interpretable deep learning framework tailored for phishing , enterprise environments. By combining rich email metadata (headers, sender fields, URLs) with semantic text feat and body TF-IDF), the system captures subtle indicators of social engineering that traditional filters miss.

The 7-layer neural architecture—reinforced by dropout, batch normalization, and class-imbalance aware loss remarkable 99.56% accuracy, with perfect precision (1.0000) and near-perfect recall (0.9945) on a real-world test set. The model consistently outperforms prior ML baselines, while also minimizing false positives to mee deployment standards.

Cyclic checkpointing and Optuna-driven hyperparameter tuning reduced training overhead and improved conv evaluation confirms generalization across three datasets (SpamAssassin, Nazario, Enron), indicating readiness for grade deployment.

Future Work Includes:

- Semantic Transfer Learning: Fine-tune transformers like BERT or RoBERTa on phishing corpora to extract de contextual cues.
- Live Deployment Integration: Adapt the system for integration with mail gateways (e.g., Microsoft 365, Gma support real-time defense.
- Adversarial Testing: Simulate content spoofing and obfuscation to evaluate robustness under targeted attack
- Explainability Enhancements: Use SHAP values or attention-based visualizations to help security analysts un model decisions.
- Multi-lingual Generalization: Extend evaluation to multilingual corpora and diverse regional phishing styles t global enterprise needs.

In summary, DeepAntiPhish is not just a high-performance classifier—it is a foundation for scalable, interpretable, and viable phishing defense.

References

- 1. Anti-Phishing Working Group, "Phishing Activity Trends Report Q4 2023," APWG, 2023. https://apwg.org/trendsreports/
- 2. J. Nazario, "Phishing Corpus," Arbor Networks, 2005. https://monkey.org/~jose/phishing
- 3. "SpamAssassin Public Corpus," Apache Software Foundation. https://spamassassin.apache.org/old/publiccorpus
- 4. W. W. Cohen, "Enron Email Dataset," Carnegie Mellon University, 2004. https://www.cs.cmu.edu/~enron
- 5. T. Akiba et al., "Optuna: A Next-Generation Hyperparameter Optimization Framework," in *Proc. 25th ACM SIGKDD*, 2019.

shruti.singh@tamu.edu UIN: 635008775 CS665 Advanced Network & Security