Section One: Calculator-free

35% (51 Marks)

This section has **seven (7)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Question 1

(6 marks)

(a) Determine the number of real solutions to the equation $x^2 + x + 1 = 0$.

(1 mark)

(b) Determine all complex solutions to the equation $x^2 + 2x + 10 = 0$.

(2 marks)

(c) x_1 and x_2 are the complex solutions to the equation $4x^2 = 20x - 41$. If $x_1 = 2.5 + 2i$, plot x_1 , x_2 and $x_1 + x_2$ in the complex plane below. (3 marks)

(7 marks)

(3 marks)

SO = 4×20

Three vectors are given by $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$.

Determine

16

(a) a unit vector \mathbf{d} , parallel to $\mathbf{a} + 2\mathbf{b}$.

a+2b =
$$\begin{pmatrix} 4 \\ -8 \end{pmatrix}$$
, $|a+2b| = \sqrt{80} = 4\sqrt{5}$
unit vector $\hat{a} = \frac{1}{4\sqrt{5}} \left(\frac{4}{8} \right) \left[\frac{1}{180} \left(\frac{4}{8} \right) \right]$
= $\left(\frac{1}{5} \right)$

(b) the value(s) of k so that the magnitude of the vector $\mathbf{a} + k\mathbf{b}$ is 4. (4 marks)

$$|a+kb| = |(2+k)|$$

$$= \sqrt{(2+k)} + (-2-3k)^{2} = 4$$

$$= 4+4k+k^{2} + 4+12k+9k^{2} = 16$$

$$= 10k^{2} + 16k - 8 = 0$$

$$= 5k^{2} + 8k - 4 = 0$$

$$= (5k^{2} - 2)(k + 2) = 0$$

$$= (5k^{2} - 2)(k + 2) = 0$$

Consider the matrices $A = \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & -5 \end{bmatrix}$.

It is possible to form the product of all four matrices. State the dimensions of the resulting (a) product. (2 marks)

Determine the matrix $\frac{1}{2}DC$. (b)

(2 marks)

(c) Determine the inverse of matrix *A*. (2 marks)

$$dut A = 8 - 6 = 2$$

$$A' = \frac{1}{2} \left[\frac{4}{2} \right] = \left[\frac{2}{1} \right] \cdot 5$$

Clearly show use of matrix algebra to solve the system of equations 2x - 3y + 3 = 0 and (d) 4y = 2x + 2.

Let $z_1 = 2 - 2i$ and $z_2 = 3 + i$.

(a) Simplify

(i)
$$2z_1 - z_2$$
.

(7 marks)

(ii)
$$(z_1^3)$$
 $(z_1)^3$ $= 8[(1-i)(1-i)(1-i)]$

(iii)
$$z_1^3$$
. $(z_1)^3$ $(z_2-z_1)^3$ $(z_1-z_1)^3$ $(z_2-z_1)^3$ $(z_1-z_1)^3$ $(z_$

(iii)
$$\frac{z_1}{z_2}$$
.

$$\frac{2-2i}{3-i}$$

$$\frac{3-i}{3-i}$$

$$= \frac{4+i(-6-2)}{10} = \frac{4}{10} - \frac{8}{10}i$$

$$= \frac{2}{5} - \frac{4}{5}i$$

(b) Show that
$$\overline{z_1} \times \overline{z_2} = \overline{z_1 \times z_2}$$
.

$$\frac{2}{2}x^{2} = (2+2i)(3+i) = 8+4i$$
 $\frac{2}{2}x^{2} = (2-2i)(3+i)$
 $\frac{8}{2}x^{2} = 8+4i$
 $\frac{1}{2}x^{2} = 8+4i$

Solve the equation $\tan\left(\frac{x+25^{\circ}}{2}\right) = \sqrt{3}$ for $0^{\circ} \le x \le 540^{\circ}$. (a)

$$\frac{x+25}{2} = 60^{\circ}, 240^{\circ}, 40^{\circ}$$

(7 marks)

(4 marks)

LHS = 1 + secn - um - um secn = 49xt +1 - Win - LOTA

Prove that $(1 - \cos x)(1 + \sec x) = \sin x \tan x$.

(7 marks)

Determine the value(s) of a for which the matrix $\begin{bmatrix} a & a \\ 3 & 2a \end{bmatrix}$ is singular. (a)

- The non-singular matrix B is such that $\begin{bmatrix} -3 & 2 \end{bmatrix} \times B = \begin{bmatrix} 8 & 3 \end{bmatrix}$ and $\begin{bmatrix} 2 & 6 \end{bmatrix} \times B = \begin{bmatrix} 10 & 4 \end{bmatrix}$. (b)
 - Use these results to show that $\begin{bmatrix} -1 & 8 \end{bmatrix} \times B = \begin{bmatrix} 18 & 7 \end{bmatrix}$. (i)

(2 marks)

$$[-32]B + [26]B = [87]$$

$$[-32]+[26]B = [87]$$

$$[-18]B = [87]$$

Question 7 (8 marks)

Prove that the sum of any three consecutive terms of an arithmetic sequence with first (a) term a and common difference d is always a multiple of three, for $a, d \in \mathbb{N}$. (3 marks)

a, a+d, a+2d Jun = 3a+3d = 3(a+d) = multiple of]

Use mathematical induction to prove that $7^{2n-1} + 5$ is always divisible by 12, for $n \in \mathbb{N}$. (b)

n=1, 7+5= 12 + 12 -+ fre for n=1 / (5 marks) asome he has nock

ie 7161+5 = 12P, PEZ

Noke 72(KH)-1+5 = 7k=1+2+5

= 49.72k-1+5

= (48+1)721-1

248.7 + 12P

= 12 [4.7 t p]: true for n=k+1

iby for of MI

End of questions