EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

- Clippers \rightarrow networks that employ diodes
 - clip away portion of input signal
 - don't distort remaining part of applied waveform.
- Example → half-wave rectifier +ve or -ve region of applied signal is clipped off.

Two categories →

- 1) Series: diode is in series with load
- 2) Parallel: diode in branch parallel to load.

Series clippers →

Series clippers with dc supply \rightarrow

Transition voltages
$$\rightarrow$$
 $v_i = V$ and $v_o = 0$

"on" and "off" regions \rightarrow

Diode in "on" state \Rightarrow $v_o = v_i - V$ $v_{opeak} = V_m - V$

Promble-15:

Determine the output waveform for the sinusoidal input of Fig. 15.

Transition voltages →

$$v_i = -5 \ V \text{ and } v_o = 0$$

"on" and "off" regions \rightarrow

Diode in "on" state \rightarrow

$$\begin{aligned} v_o &= v_i + 5 \ V \\ v_{opeak} &= V_m + 5 \ V \end{aligned}$$

Promble-16:

Find the output voltage for the network in Fig. 16.

For $v_i = 20 \text{ V } (0 \sim T/2) \Rightarrow$ diode is in short-circuit state, and $v_o = 20 \text{ V} + 5 \text{ V} = 25 \text{ V}$.

For $V_i = -10 \text{ V}$ ($T/2 \sim T$) \Rightarrow diode is in "off" state, and $V_o = i_R R = (0)R = 0 \text{ V}$. V = 5 V $V_i = -10 \text{ V}$ V_i

Parallel clipper \rightarrow

Promble-17:

Determine v_o for the network of Fig. 17.

Promble-18:

Determine v_o for the network of Fig. 18 using a silicon diode with $V_K = 0.7$ V.

Simple series clippers:

POSITIVE

NEGATIVE

Biased series clippers:

