Analyse I – Corrigé de la Série 1

Partie I : Algèbre.

1. a) 81 b)
$$-81$$
 c) $\frac{1}{81}$ d) 25 e) $\frac{9}{4}$ f) $\frac{1}{8}$

2. a)
$$6\sqrt{2}$$
 b) $48a^5b^7$ c) $\frac{x}{9y^7}$

3. a)
$$11x - 2$$
 b) $4x^2 + 7x - 15$ c) $a - b$ d) $4x^2 + 12x + 9$ e) $x^3 + 6x^2 + 12x + 8$ f) $a^2 + 1$

4. a)
$$(2x-5)(2x+5)$$
 b) $(2x-3)(x+4)$ c) $(x-3)(x-2)(x+2)$
d) $x(x+27)$ e) $3x^{-1/2}(x-1)(x-2)$ f) $xy(x-2)(x+2)$

5. a)
$$\frac{x+2}{x-2}$$
 b) $\frac{x-1}{x-3}$ c) $\frac{1}{x-2}$ d) $-(x+y)$

6. a)
$$5\sqrt{2} + 2\sqrt{10}$$
 b) $\sqrt{9+h} - 3$

8. a) $(x+\frac{1}{2})^2+\frac{3}{4}$ b) $2(x-3)^2-7$

7. La réponse est $a^p b^q$ dans tous les cas.

9. a)
$$x = 6$$
 b) $x = 1$ c) $x_1 = -3$ et $x_2 = 4$ d) $x_{1,2} = -1 \pm \frac{\sqrt{2}}{2}$ e) $x_{1,2} = \pm 1$ et $x_{3,4} = \pm \sqrt{2}$ f) $x_1 = \frac{22}{3}$, $x_2 = \frac{2}{3}$ g) $x = \frac{12}{5}$

10. a)
$$x \in [-4, 3[$$
 b) $x \in]-2, 4[$ c) $x \in]-2, 0[\cup]1, \infty[$ d) $x \in]1, 7[$ e) $x \in]-1, 4[$

11.
$$a$$
) Faux. b) Vrai. c) Faux. d) Faux. e) Vrai. f) Faux. g) Vrai. h) Vrai.

12. Les indications ci-après ne sont bien sûr pas les seules manières de vérifier les identités.

- a) Commencer par la partie droite.
- b) Pour la partie gauche, ne pas développer la somme parce qu'elle devient télescopique après la multiplication. Pour la partie droite, utiliser la troisième identité remarquable. Le résultat est $1-a^8$.
- 13. On trouve $A=b^{2m(2m-1)}$. Pour b=2, on obtient à partir de $2^{2m(2m-1)}=16^5$ que m(2m-1)=10. Comme m doit être entier, la seule possibilité est m=-2.

 ${\bf Partie\ II: Trigonom\'etrie.}$

1.
$$a) \quad \frac{5\pi}{3}$$
 $b) \quad -\frac{\pi}{10}$

2. a)
$$150^{\circ}$$
 b) $\frac{360^{\circ}}{\pi} \approx 114.6^{\circ}$

- 3. $2\pi \text{ cm}$
- **4.** a) $-\frac{1}{2}$

- **5.** $a = 24\sin(\theta), b = 24\cos(\theta)$
- **6.** $\frac{1}{15}(4+6\sqrt{2})$
- 7. Développer les parties gauches en utilisant la définition de la fonction tan.
- **8.** $x \in \{0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi\}$
- 9.

Partie III : Fonctions réelles.

- 1. a) -2
- b) 3

- c) -3, 1 d) -2, 0 e) Domaine [-3, 3], image [-2, 3]
- **2.** $12 + 6h + h^2$
- **3.** a) $]-\infty, -2[\cup]-2, 1[\cup]1, \infty[$ b) $[0, \infty[^1$ c) $]-\infty, -1]\cup [1, 4]$

- **4.** a) Réflexion par rapport à l'axe Ox.
 - b) Etirement vertical de facteur 2, suivi d'une translation d'une unité vers le bas.
 - c) Translation de trois unités vers la droite, puis de deux unités vers le haut.
- **5.** *a*)

b)

d)

e)

f)

^{1.} Dans [DZ, 6.4], les puissances avec exposants arbitraires non-entiers sont définies seulement pour les nombres strictement positifs. Mais dans le cas $f(x) = x^{1/n}$, n naturel positif, on peut la définir comme la fonction réciproque de $g(x) = x^n$ sur $[0, \infty[$. Avec cette définition on a $D(f) = [0, \infty[$.

g)

h)

6. *b*)

6. a) f(-2) = -3, f(1) = 3

b) Ci-dessus (à la fin de l'Ex. 5).

7. a) $4x^2 - 8x + 2$

b) $2x^2 + 4x - 5$

c) 8x - 21

8. La réponse est a^pb^q dans tous les cas.

9. Remarques générales (ou plutôt rappel) :

— Le domaine $D(f^{-1})$ de la fonction réciproque f^{-1} est l'image de f. En effet, I a été choisi pour que f soit inversible entre I et son image.

— Une fois qu'on a tracé le graphe de f, on peut trouver le graphe de f^{-1} géométriquement en faisant une réflexion par rapport à la droite y=x.

a) $D(f^{-1}) = [-1, 1]$

 $\frac{\pi}{2} \int_{-\infty}^{\infty} f^{-1}(x) = \arcsin(x)$

b) $D(f^{-1}) = [-1, 1]$

 $\pi - f^{-1}(x) = \arccos(x)$

Tourner la page pour les exercices restants...

C)

A y

$$f(x) = \tan(x)$$

4

3

2

1

 $\frac{\pi}{2} - 1$
 $\frac{\pi}{2} - 1$

$$D(f^{-1}) = \mathbb{R}$$

$f) D(f^{-1}) =]0, \infty[$

