CE075 - Análise de Dados Longitudinais

Silva, J.L.P.

28 de agosto, 2019

Modelos de Regressão

Notação

Seja Y_{ij} a variável resposta para i-ésimo indivíduo ($i=1,\ldots,N$) na j-ésima ocasião ($j=1,\ldots,n_i$).

Dado que temos n_i medidas repetidas da resposta no mesmo indivíduo, podemos agrupá-las em um vetor $n_i \times 1$, denotado por

$$oldsymbol{Y}_i = \left(egin{array}{c} Y_{i1} \ Y_{i2} \ dots \ Y_{in_i} \end{array}
ight),$$

ou, por conveniência,

$$\mathbf{Y}_{i} = (Y_{i1}, Y_{i2}, \dots, Y_{in_{i}})'.$$

O principal interesse está na média da resposta (em particular, em mudanças da média no tempo e como esta mudança depende de covariáveis).

Denote a média ou esperança de cada resposta Y_{ij} por $\mu_j = E(Y_{ij})$.

Adicionalmente, para permitir que a resposta média varie de indivíduo para indivíduo como função de covariáveis medidas em nível de indivíduo, requeremos $\mu_{ij}=E(Y_{ij})$.

Denotando a média condicional de Y_{ij} por μ_{ij} , a variância condicional de Y_{ij} é definida como:

$$\sigma_i^2 = E[Y_{ij} - E(Y_{ij})]^2 = E(Y_{ij} - \mu_{ij})^2.$$

A covariância condicional entre as respostas em duas ocasiões diferentes, digamos Y_{ij} e Y_{ik} , é definida por

$$\sigma_{jk} = E\left[(Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik}) \right].$$

e fornece uma medida da dependência *linear* entre Y_{ij} e Y_{ik} , dado as covariáveis.

A correlação condicional entre Y_{ii} e Y_{ik} é denotada por

$$\rho_{jk} = \frac{E\left[(Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik}) \right]}{\sigma_i \sigma_k},$$

que, por definição, assume valores entre -1 e +1.

Definimos a matriz de variância-covariância como segue

$$Cov\begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in_i} \end{pmatrix} = \begin{pmatrix} Var(Y_{i1}) & Cov(Y_{i1}, Y_{i2}) & \dots & Cov(Y_{i1}, Y_{in_i}) \\ Cov(Y_{i2}, Y_{i1}) & Var(Y_{i2}) & \dots & Cov(Y_{i2}, Y_{in_i}) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_{in_i}, Y_{i1}) & Cov(Y_{in_i}, Y_{i2}) & \dots & Var(Y_{in_i}) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1n_i} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2n_i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n_i1} & \sigma_{n_i2} & \dots & \sigma_{n_in_i} \end{pmatrix}.$$

Assumimos que as variâncias e covariâncias são constantes. Note que há simetria, ou seja, $Cov(Y_{ij}, Y_{ik}) = \sigma_{ik} = \sigma_{kj} = Cov(Y_{ik}, Y_{ij})$.

Usaremos frequentemente a notação

$$Cov(\mathbf{Y}_i) = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n_i} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n_i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n_i1} & \sigma_{n_i2} & \dots & \sigma_{n_i}^2 \end{pmatrix}.$$

Definimos a matriz de correlação em termos de

$$\mathit{Corr}(oldsymbol{Y}_i) = \left(egin{array}{cccc} 1 &
ho_{12} & \dots &
ho_{1n_i} \
ho_{21} & 1 & \dots &
ho_{2n_i} \ dots & dots & \ddots & dots \
ho_{n_i1} &
ho_{n_i2} & \dots & 1 \end{array}
ight),$$

que é simétrica, ou seja, $Corr(Y_{ij}, Y_{ik}) = \rho_{jk} = \rho_{kj} = Corr(Y_{ik}, Y_{ij})$.

Modelo Marginal

O modelo para a resposta média em cada ocasião não incorpora a dependência sobre nenhum efeito aleatório ou sobre respostas anteriores.

Apropriado quando o foco da análise é inferir sobre a população média.

- ② $Var(Y_{ij}|X_{ij}) = \phi v(\mu_{ij})$, em que ϕ é um parâmetro de dispersão e $v(\cdot)$ é uma função conhecida da média.
- **3** A correlação intra-indivíduos é função de α . Por exemplo:
 - $Corr(Y_{ij}, Y_{ik}) = \alpha^{|k-j|}$ (AR-1 para respostas contínuas);
 - $logOR(Y_{ij}, Y_{ik}) = \alpha_{jk}$ (não-estruturado para respostas categóricas).

Modelo Marginal

A caracterização de um modelo marginal envolve:

- **1** Modelar a resposta média $E(\mathbf{Y}_i)$.
- **②** Modelar a estrutura de Variância-Covariância $Var(m{Y}_i), \ i=1,\dots N.$
- Assumir uma distribuição (normal) para a resposta (dispensável).

Dois caminhos:

- Assumir resposta normal: usar MQG ou MV (usual ou restrita).
- Não assumir distribuição para a resposta: usar GEE: "Generalized Estimation Equations".

Modelos Mistos

Incluem efeitos aleatórios no modelo de efeitos fixos, em nível de indivíduo, modelando a heterogeneidade entre indivíduos e induzindo, assim, uma estrutura de covariância entre as respostas repetidas.

- $E(Y_{ij}|X_{ij},b_i)=\mu_{ij}$, com $g(\mu_{ij})=\eta_{ij}=X'_{ij}\beta+Z'_{ij}b_i$, sendo b_i o efeito aleatório associado com Y_i .
- **2** $Var(Y_{ij}|X_{ij},b_i) = \phi v(\mu_{ij}).$
- **3** Geralmente assume-se $b_i \sim N_q(0, G)$.

Modelos de Transição

A distribuição condicional de Y_{ij} é descrita como uma função explícita das respostas passadas e de um vetor de variáveis preditoras.

- $E(Y_{ij}|X_{ij},H_{ij})=\mu_{ij}$, com $H_{ij}=\{Y_{id},d=1,\ldots,j-1\}$. $g(\mu)=X'_{ij}\beta+\sum_{q=1}^Q f_q(H_{ij},\alpha)$, em que $f_q(\cdot)$ são funções conhecidas.
- $2 Var(Y_{ij}|X_{ij},H_{ij}) = \phi v(\mu_{ij}).$
- **3** A correlação entre Y_{i1}, \ldots, Y_{in_i} é avaliada através do parâmetro α que aparece na função $f_q(\cdot)$.