Exercise-set 6. Solutions

- 1. a) yes,
 - b) no,
 - c) no,
 - d) yes.
- 2. a) S, G, E, A, H, B, F, C, D.
 - b) No.
- 3. a) no,
 - b) yes,
 - c) yes.
- 4. a) The edge not in the BFS spanning tree started from s whose endpoints are closest to s determines such a cycle, if the first common ancestor of its endpoints is s.
 - b) Start a BFS in G e from one of the endpoints of e.
- 5. 99 (must be a tree).
- 6. Not true.
- 7. a) $\nu(G) = 4$, $\tau(G) = 4$, $\alpha(G) = 6$, $\rho(G) = 6$.
 - b) $\nu(G) = 5$, $\tau(G) = 5$, $\alpha(G) = 7$, $\rho(G) = 7$.
 - a) $\nu(G) = 4$, $\tau(G) = 4$, $\alpha(G) = 6$, $\rho(G) = 6$.
- 8. $\chi(G) = 3$, $\nu(G) = 9$, $\tau(G) = 12$, $\alpha(G) = 6$, $\rho(G) = 9$.
- 9. $G = K_{668} \cup K_{668,669} \implies \chi(G) = 668, \ \nu(G) = 334 + 668 = 1002, \ \tau(G) = 667 + 668 = 1335, \ \alpha(G) = 1 + 669 = 670, \ \rho(G) = 334 + 669 = 1003.$
- 10. $\nu(G) = 20 = \tau(G)$.
- 11. $\alpha(G) = 86$, $\tau(G) = 14$, $\nu(G) = 14$, $\rho(G) = 86$.
- 12. $\nu(G) = 25$, $\alpha(G) = 75$.
- 13. a) $\{b, c, g, h\}$ $(\nu(G) = 4)$.
 - b) $\{b, d, f, h\}$ $(\nu(G) = 4)$.
- 14. a) $\nu(G) = 4 = \tau(G)$.
 - b) $\nu(G) = 4 = \tau(G)$.
- 15. a) By contradiction: otherwise the matching would not be maximum.
 - b) Follows from a).
 - c) Follows from b) and Gallai's theorem.
- 16. a) True.
 - b) False.
 - c) No.
- 17. G contains a Hamilton cycle $\implies \nu(G) \ge |2k+1/2| = k$, and $\nu(G) \le (2k+1)/2 = k$.
- 18. Yes (the graph contains a Hamilton cycle).
- 19. If we add the edge $\{u, v\}$ to G then it contains a Hamilton cycle.
- 20. If we add a new vertex to G connected to all the old ones then the new graph contains a Hamilton cycle + ex. 17.
- 21. det $M \neq 0 \implies \exists$ a nonzero elementary product, corresponding to a perfect matching.
- 22. $|E(G)| \le \frac{20.19}{2} + 20.80 = 1790$, and this is possible (example).
- 23. $\tau(G) = 50$.
- 24. We can choose the independent vertices greedily, one by one.
- 25. $\nu(G) \le 7 \implies \rho(G) \ge 13$.