Fondamentaux théoriques du machine learning

Neither positive nor negative Hessian (saddle point)

Overview of lecture 2

Supervised learning

Excess risk

Bayes predictor

Bias-variance decomposition

Supervised learning

Excess risk

Bayes predictor

Bias-variance decomposition

Supervised learning

- ▶ The dataset D_n is a collection of n samples $\{(x_i, y_i)\}_{1 \le i \le n}$, that are independent and identically distributed draws of a joint random variable (X, Y).
- the law of (X, Y) is unknown, we can note it ρ. We assume there exists an unknown function f that relates X and Y (not necessary deterministic).
- we look for an estimator \tilde{f}_n of f. n refers to the fact that we have n samples.

A learning rule A is a application that associates a prediction function, or estimator \tilde{f}_n , to D_n .

$$\mathcal{A}: \left\{ \begin{array}{l} \cup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}} \\ D_n \mapsto \tilde{f}_n \end{array} \right.$$

Risks

Let I be a loss.

The risk (or statistical risk, generalization error, test error) of estimator f writes

$$E_{(X,Y)\sim\rho}[I(Y,f(X))]$$

The **empirical risk (ER)** of an estimator f writes

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i))$$

The risks depend on the loss 1.

Excess risk

We define the **target function** f^* by

$$f^* \in \operatorname*{arg\,min}_{f:X \to Y} R(f)$$

with $f:X\to Y$ set of measurable functions. Notation : $R(f^*)=R^*$.

Definition

Fundamental problem of Supervised Learning Estimate f^* given only D_n and I.

 \tilde{f}_n is the minimizer of the empirical risk.

Excess risk

Definition

Excess risk

The excess risk $\mathcal{R}(\tilde{f}_n)$ measures how close \tilde{f}_n is to the best possible f^* , in terms of expected risk (average / expected) error on new examples.

$$\mathcal{R}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

Definition

Consistency

The algorithm A is said to be **consistent** if

$$\lim_{n\to+\infty} E_{D_n} \mathcal{R}(\tilde{f}_n) = 0$$

Bayes predictor

Under some conditions, we can give an explicit formulation of f^* , the best predictor in $\mathcal{Y}^{\mathcal{X}}$, although we can not compute it without the knowledge of the distribution of (X,Y). In this section we assume we have access to ρ and we approximately ignore measurability issues.

Decision theory: "if we have a perfect knowledge of the underlying probability distribution of the data, what should be done?"

Bayes predictor

$$f^*(x) = \underset{z \in \mathcal{Y}}{\arg\min} \, E[I(Y, z) | X = x] \tag{1}$$

E[I(Y,z)|X=x] denotes the **conditional expectation** of I(Y,z) given that X=x.

$$E[I(Y,z)|X=x] = \int_{Y \in \mathbb{R}} I(y,z) \rho_{Y|X=x}(y) dy$$
 (2)

Bayes predictor for binary classification

- $\mathcal{Y} = \{0, 1\}.$
- $I(y,z) = 1_{y \neq z}.$

Exercice 1: What is the Bayes predictor?

Bayes predictor for binary classification

- $\mathcal{Y} = \{0, 1\}.$
- $I(y,z) = 1_{y \neq z}.$
- If $\eta(x) = P(Y = 1 | X = x)$, then

$$R^* = E[\min(\eta(x), 1 - \eta(x))] \tag{3}$$

Bayes predictor for binary classification

- $\mathcal{Y} = \{0, 1\}.$
- $I(y,z)=1_{y\neq z}.$
- If $\eta(x) = P(Y = 1 | X = x)$, then

$$R^* = E[\min(\eta(x), 1 - \eta(x))] \tag{4}$$

Exercice 2: What is the meaning of having $R^* = 0$ in that context?

Bayes predictor for regression, squared loss

- $\mathcal{Y} = \mathbb{R}, \ \mathcal{X} = \mathbb{R}.$
- ► $l(y, z) = (y z)^2$

Exercice 3: What is the Bayes predictor?

Conditional expectation

Definition

Conditional expectation

$$f^*(x) = E[Y|X = x] \tag{5}$$

Risk decomposition

We will introduce the concept of risk decomposition.

- ▶ f* : Bayes predictor
- F: Hypothesis space
- \tilde{f}_n : estimated predictor (hence in F).

$$R(\tilde{f}_n) - R^* = \left(R(\tilde{f}_n) - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right)$$
 (6)

Risk decomposition

We will introduce the concept of risk decomposition.

- f* : Bayes predictor
- F: Hypothesis space
- \tilde{f}_n : estimated predictor ($\in F$).

$$R(\tilde{f}_n) - R^* = \left(R(\tilde{f}_n) - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right)$$
(7)

However: \tilde{f}_n is a random variable, and so is $R(\tilde{f}_n)$. We can also consider the expected value of this quantity.

Risk decomposition

- ▶ f* : Bayes predictor
- F : Hypothesis space
- \tilde{f}_n : estimated predictor ($\in F$).

$$E[R(\tilde{f}_n)] - R^* = \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right) \tag{8}$$

Risk decomposition: bias term

- ▶ f* : Bayes predictor
- ► *F* : Hypothesis space
- \tilde{f}_n : estimated predictor ($\in F$).

$$E[R(\tilde{f}_n)] - R^* = \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right) \tag{9}$$

Approximation error (bias term): depends on f^* and F, not on \tilde{f}_n , D_n .

$$\inf_{f \in F} R(f) - R^* \ge 0$$

Risk decomposition: bias term

- ▶ f* : Bayes predictor
- F: Hypothesis space
- \tilde{f}_n : estimated predictor ($\in F$).

$$E[R(\tilde{f}_n)] - R^* = \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right)$$
(10)

Estimation error (variance term, fluctuation error, stochastic error) : depends on D_n , F, \tilde{f}_n .

$$E(R(\tilde{f}_n)) - \inf_{f \in F} R(f) \ge 0$$

Underfitting and overfitting

Approximation error (bias term) : depends on f^* and F, not on \tilde{f}_n , D_n .

$$\inf_{f\in F}R(f)-R^*\geq 0$$

Estimation error (variance term, fluctuation error, stochastic error) : depends on D_n , F, \tilde{f}_n .

$$E(R(\tilde{f}_n)) - \inf_{f \in F} R(f) \ge 0$$

- ▶ too small F : underfitting (large bias, small variance)
- ▶ too large *F* : overffitting (small bias, large variance)

Expected value of empirical risk

If $h \in F$ is fixed (not \tilde{f}_n), then $R_n(h)$ is an **unbiased estimator** of the generalization error R(h).

$$E[R_n(h)] = R(h) \tag{11}$$

But

$$E[R_n(\tilde{f}_n)] \neq R(\tilde{f}_n) \tag{12}$$

References I