ВЕКТОРИ

I Переклади та вектори

Définition n°1. Переклад, який перетворює А на В.

Розглянемо дві точки A і B площини. Ми називаємо трансляцією, яка перетворює A у B, трансформацією, яка в будь-якій точці M площини пов'язує єдину точку M' так, що [AM'] і [BM] мають однакову середину.

Точка M' є образом точки M шляхом переносу, який перетворює A в B.

Remarque n°1.

Переклад повністю визначається даними 3 частин інформації:

- Напрямок: ми рухаємося паралельно прямій (AB)
- Один напрямок: рухаються як від A до B
- A довжина: пройдена відстань дорівнює довжині *AB*.

Définition n°2.

Вектор \overline{AB} , пов'язаний із трансляцією, яка перетворює A на B.

Розглянемо дві точки A і B площини.

- Вектор \overline{AB} це дані 3 частин інформації, які характеризують переклад, який перетворює A на B.
- Він представлений стрілкою, як на Figure 1 і 2.
- A це початок вектора AB, а B його кінець.

Définition n°3.

Рівні вектори

Два вектори ϵ рівними, якщо вони визначають однаковий зсув.

Propriété n°1.

Нехай
$$A$$
, B , C i D — чотири точки.

 $\overrightarrow{AB} = \overrightarrow{CD}$ ⇔ $ABCD$ — паралелограм.

preuve:

- $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow ABDC$ est un parallélogramme
- $\overrightarrow{AB} = \overrightarrow{CD}$ \Rightarrow (AB)//(DC)
- $\overrightarrow{AB} = \overrightarrow{CD}$ \Rightarrow ABDC est non croisé.
- $\overline{AB} = \overline{CD}$ \Rightarrow AB = DC

Le quadrilatère ABDC, non croisé, a deux cotés opposés parallèles et de même longueur. C'est un parallélogramme.

• $\overrightarrow{AB} = \overrightarrow{CD} \Leftarrow ABDC$ est un parallélogramme

Figure 3

Le quadrilatère ABDC étant un parallélogramme, ses côtés opposés sont parallèles et égaux. En particulier (AB)//(DC) et AB=DC Enfin le nom ABDC nous indique que \overrightarrow{AB} et \overrightarrow{CD} ont le même sens.

Ainsi
$$\overrightarrow{AB} = \overrightarrow{CD}$$

II Vecteurs et opérations

Définition n°4. Додавання двох векторів

Нехай \vec{u} і \vec{v} , ми помічаємо $t_{\vec{u}}$ і $t_{\vec{v}}$ відповідні переклади і $t_{\vec{w}} = t_{\vec{v}} \circ t_{\vec{u}}$ (Для будь-якої точки X $t_{\vec{w}}(X) = t_{\vec{v}}(t_{\vec{u}}(X))$) $\vec{u} + \vec{v} \stackrel{\text{def}}{=} \vec{w}$

Remarque n°2.

Це дещо теоретичне визначення цього року нам не послужить. 3 іншого боку, наступна властивість буде нам набагато корисніша...

Propriété n°2.

Стосунки Чазлса

Нехай A, B і C — три точки.

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

preuve:

La translation de vecteur \overline{AB} suivie de la translation de vecteur \overline{BC} se résume par la translation de vecteur \overline{AC} .

(Pour comprendre la définition : $t_{\overrightarrow{BC}} \circ t_{\overrightarrow{AB}} = t_{\overrightarrow{AC}}$)

Figure 4

Propriété n°3. координат)

Правило паралелограма (сума двох векторів з однаковим початком

Нехай A, B і C — три точки. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ де D точка така, що ABCD ϵ паралелограмом.

preuve :

- ABDC est un parallélogramme $\Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$
- D'après la relation de Chasles $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$
- Il suffit alors de remplacer \overrightarrow{BD} par \overrightarrow{AC} dans l'égalité précédente pour obtenir $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$

(Il faut surtout retenir le dessin et l'égalité)

Figure 5

Définition n°5. Протилежний вектор, нульовий вектор

Нехай \vec{u} — вектор, ми називаємо вектор, протилежний \vec{u} і ми відзначаємо $-\vec{u}$ вектор :

- ightarrow який має той самий напрямок і ту саму довжину (або норму), що й $ec{u}$
- ightarrow але значення якого протилежне значенню \vec{u}

Ми тоді $\vec{u} + (-\vec{u}) = \vec{0}$

0 називається нульовим вектором.

Exemple n°1.

$$-\overrightarrow{AB} = \overrightarrow{BA}$$

$$-\overrightarrow{CD} = \overrightarrow{DC}$$

mais aussi

$$-\overrightarrow{CD} = \overrightarrow{EF}$$

ou encore

$$-\overrightarrow{EF} = \overrightarrow{CD}$$

(пам'ятайте, що напрямок вектора читається за стрілкою над літерами)

Figure 6

Définition n°6.

Віднімання векторів

Щоб відняти вектор, додайте його протилежний вектор.

Exemple n°2.

$$\overrightarrow{AB} - \overrightarrow{CE} = \overrightarrow{AB} + \overrightarrow{EC}$$

$$\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$

Propriété n°4.

Vecteurs et milieu

Нехай A, I і B — три точки.

$$\overrightarrow{AI} = \overrightarrow{IB} \Leftrightarrow I$$
 — середина [AB]

$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0} \Leftrightarrow I$$
 — середина $[AB]$

preuve:

Залишили як вправу. (Надихніться властивістю №1)

Définition n°7.

Множення вектора на скаляр (число)

Нехай \vec{u} і k — дійсне число. Ми називаємо добуток \vec{u} на k і ми зазначаємо $k \cdot \vec{u}$ вектор :

який має той самий напрямок, що й \vec{u} ,

що має таке саме значення, як \vec{u} , якщо k>0 , або протилежне значення, якщо k<0

i норма (довжина) якої помножена на нульову відстань k

Exemple n°3.

Ми можемо написати:

$$\overrightarrow{CD} = 2 \cdot \overrightarrow{AB}$$

$$\overrightarrow{GH} = -0.5 \cdot \overrightarrow{FE} = -\frac{1}{2} \cdot \overrightarrow{FE}$$

однак,

Немає числа k , наприклад $\overrightarrow{AB} = k \cdot \overrightarrow{EF}$

(оскільки ці вектори не мають однакового напрямку)

Figure 7

Remarque n°3.

Слід розуміти, що ми помножили вектор на число, і це не має нічого спільного з множенням двох векторів. Нам доведеться трохи просунутися в математиці, щоб говорити про це...

III Вектори і координати

У кадрі O(T;I;J) ми визначаємо два «базисні вектори»: $\overrightarrow{e_1}=\overrightarrow{OI}$ і $\overrightarrow{e_2}=\overrightarrow{OJ}$

Для будь-якого вектора \overline{AB} співвідношення Шалза дозволяє нам записати: $\overline{AB} = \overline{AC} + \overline{CB}$ при цьому С вибрано так, що (AC) // (OI) і (CB) // (OJ).

Тоді ми маємо:

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} = 6 \cdot \overrightarrow{e_1} - 4 \cdot \overrightarrow{e_2}$$

Напишемо простіше:

$$\overrightarrow{AB}$$
 (6; -4) ou \overrightarrow{AB} $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$

Figure 8

Définition n°8. Координати вектора

У кадрі (O;I;J) ми визначаємо два «базисні вектори»:

 $\overrightarrow{e_1} = \overrightarrow{OI}$ et $\overrightarrow{e_2} = \overrightarrow{OJ}$. Тоді для будь-якого вектора \overrightarrow{u} існують два числа x і y такі, що $\overrightarrow{u} = x \cdot \overrightarrow{e_1} + y \cdot \overrightarrow{e_2}$

On appellera:

x абсциса \vec{u}

y ордината \vec{u}

 $(x \ , \ y)$ або $\begin{pmatrix} x \\ y \end{pmatrix}$ координати \vec{u} у базі даних $(\vec{e_1} \ , \ \vec{e_2})$

Remarque n°4.

Що стосується балів, ми будемо відзначати байдуже $\vec{u}(x\,,\,y)$ або $\vec{u}{x\choose y}$.

Méthode n°1. Обчислити координати вектора \overrightarrow{AB}

В рамці (O;I;J) ми даємо собі $A(x_A;y_A)$ і $B(x_B;y_B)$. Координати \overline{AB} дорівнюють $\begin{pmatrix} x_B-x_A\\y_B-y_A \end{pmatrix}$

Exemple n°4.

Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ soit $\begin{pmatrix} 5 - (-1) \\ -1 - 3 \end{pmatrix}$ soit $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$

Figure 9

Propriété n°5. Координати середини відрізка

В рамці $(O\;;\;I\;;\;J)$ ми даємо собі $A(x_A\;;\;y_A)$ і $B(x_B\;;\;y_B)$. Координати K посередині $[AB]\;\epsilon\;K\Big(\frac{x_A+x_B}{2}\;;\;\frac{y_A+y_B}{2}\Big)$

preuve:

Notons $K(x_K; y_K)$.

K milieu de
$$[AB] \Leftrightarrow \overrightarrow{KA} + \overrightarrow{KB} = \overrightarrow{0}$$

$$\Leftrightarrow \begin{cases} x_A - x_K + x_B - x_K = 0 \\ y_A - y_K + y_B - y_K = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_A + x_B - 2x_K = 0 \\ y_A + y_B - 2y_K = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_A + x_B = 2x_K \\ y_A + y_B = 2y_K \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{x_A + x_B}{2} = x_K \\ \frac{y_A + y_B}{2} = y_K \end{cases}$$

Propriété n°6. Векторні операції та координати

У кадрі (O;I;J) ми задаємо собі вектори $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ і $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$, а також число k .

$$\vec{u}ig(egin{array}{c} a \\ b \end{pmatrix} + \vec{v}ig(egin{array}{c} c \\ d \end{pmatrix}$$
 має координати $\begin{pmatrix} a+c \\ b+d \end{pmatrix}$ $-\vec{u}$ має координати $\begin{pmatrix} -a \\ -b \end{pmatrix}$ $k\cdot\vec{u}$ має координати $\begin{pmatrix} k & a \\ k & b \end{pmatrix}$

preuve:

Laissée à titre d'exercice. Revenez à la définition n°8 et utilisez les définitions du deuxième paragraphe.

Exemple n°5.

Потім ми надаємо $\vec{u} \binom{-2,1}{2,3}$ і $\vec{v} \binom{3}{1,5}$, наприклад:

$$3 \cdot \vec{u} - 2 \cdot \vec{v}$$
 має координати $\begin{pmatrix} 3 \times (-2,1) - 2 \times 3 \\ 3 \times 2,3 - 2 \times 1,5 \end{pmatrix}$ Де $\begin{pmatrix} -12,3 \\ 3,9 \end{pmatrix}$

Remarque n°5.

Нульовий вектор $\vec{0}$ має координати $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Propriété n°7. Обчислення норми вектора

У позначці ORTHONORM $(O\;;I\;;J)$ ми даємо собі $\vec{u} \binom{a}{b}$ тоді норма (або довжина) \vec{u} , яка записується $\|\vec{u}\|$, виходить завдяки рівності: $\|\vec{u}\| = \sqrt{a^2 + b^2}$

preuve:

Ми використовуємо розкладання фігури $n^{\circ}8$ і застосовуємо теорему Піфагора до трикутника, який є прямим, тому що точка відліку ортонормальна.

IV Колінеарність

Définition n°9. Колінеарні вектори

У фреймі $(O\;;I\;;J)$ нам задано два вектори \vec{u} і \vec{v} Ми так говоримо

 \vec{u} і \vec{v} колінеарні якщо і тільки якщо існує таке число k, що $\vec{u} = k \cdot \vec{v}$

Нульовий вектор колінеарен усім векторам.

Remarque n°6.

Відповідно до визначення №7, колінеарні вектори — це вектори, які мають однаковий напрямок.

Définition n°10. Визначник двох векторів

Нехай $(\vec{e_1}\;;\vec{e_2})$ — ортонормований базис і два вектори $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ і $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$

Визначник \overrightarrow{u} і \overrightarrow{v} в основі $(\overrightarrow{e_1}; \overrightarrow{e_2})$ називаємо числом $det(\overrightarrow{u}, \overrightarrow{v}) = ad - bc$

Exemple n°6.

В ортонормальному базисі $(\vec{e_1}; \vec{e_2})$, для $\vec{u} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$: $det(\vec{u}, \vec{v}) = 4 \times 5 - (-2) \times 3 = 26$

Propriété n°8.

В ортонормальному базисі , $(\vec{e_1}\;;\;\vec{e_2})$ ми віддаємо себе $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ і $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$ $\vec{u}\;$ і $\vec{v}\;$ колінеарні $\iff det(\vec{u}\;,\;\vec{v}\;) = 0$

preuve:

• \vec{u} et \vec{v} sont colinéaires $\Rightarrow det(\vec{u}, \vec{v}) = 0$ Supposons \vec{u} et \vec{v} colinéaires, alors il existe un nombre k tel que $\vec{u} = k \cdot \vec{v} \Leftrightarrow a = kc$ et b = kd

- Si c=0 alors $a=k\times 0=0$ et ad-bc=0
- Si d=0 alors $b=k\times 0=0$ et ad-bc=0
- Si $c \neq 0$ et $d \neq 0$ alors $\frac{a}{c} = k = \frac{b}{d}$, d'après l'égalité des produits en

croix : ad = bc qui équivaut à ad - bc = 0

- \vec{u} et \vec{v} sont colinéaires $\Leftarrow det(\vec{u}, \vec{v}) = 0$ ad bc = 0 équivaut à ad = bc
- Si $c \neq 0$ et $d \neq 0$ alors on pose $k = \frac{a}{c} = \frac{b}{d}$

ainsi a=kc et $b=kd \Leftrightarrow \vec{u}=k\cdot\vec{v}$ et \vec{u} et \vec{v} sont colinéaires.

- Si c=0 alors ad=0 et a=0 ou d=0
 - Si d=0 alors $\vec{v}=\vec{0}$ et \vec{u} et \vec{v} sont colinéaires.
 - Si a=0 et $d \neq 0$ alors on pose $k=\frac{b}{d}$ ainsi

 $\vec{u} = k \cdot \vec{v}$ et \vec{u} et \vec{v} sont colinéaires.

• Les autres cas, d=0, a=0 et b=0 se traitent de la même façon et on obtient que \vec{u} et \vec{v} sont colinéaires.

Méthode n°2. Доведіть, що два вектори колінеарні чи ні.

Énoncé:

У ортонормальній системі (O;I;J) наступні вектори колінеарні? Якщо так, визначте коефіцієнт пропорційності.

1)
$$\vec{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -6 \\ -18 \end{pmatrix}$

$$\mathbf{2)} \qquad \vec{w} \begin{pmatrix} -5 \\ 3 \end{pmatrix} \quad \text{et} \quad \vec{z} \begin{pmatrix} 12 \\ -7 \end{pmatrix}$$

1) $det(\vec{u}, \vec{v}) = 2 \times (-18) - 6 \times (-6) = 0$ Ми виводимо, що \vec{u} і \vec{v} колінеарні.

$$\frac{2}{-6} = \frac{6}{-18} = -\frac{1}{3}$$

Уточнюється, що $\vec{u} = -\frac{1}{3} \cdot \vec{v}$

Réponse :

2)
$$det(\vec{w}, \vec{z}) = -5 \times (-7) - 3 \times 12 = -1 \neq 0$$

Ми виводимо, що \vec{w} et \vec{z} не ϵ колінеарними.

V Короткий зміст курсу

Вектор — це три частини інформації

- Напрямок (рухаємось по прямій)
- Напрямок (на цій лінії вибираємо напрямок)
- Стандарт або довжина

Нехай A, B, C і D — чотири точки.

$$\overrightarrow{AB} = \overrightarrow{CD}$$

ABCD — паралелограм.

Стосунки Чазлса

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Правило паралелограма

 $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ де D — така точка, що ABCD — паралелограм.

Протилежний вектор : $-\overrightarrow{AB} = \overrightarrow{BA}$ той же напрямок, той же стандарт, протилежний напрямок

нульовий вектор : $\vec{0} = \overrightarrow{AA} = \overrightarrow{BB} = \dots$

 $\overrightarrow{AI} = \overrightarrow{IB} \Leftrightarrow I$ знаходиться в середині [AB]

 $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0} \Leftrightarrow I$ знаходиться в середині [AB]

У кадрі $\;(O\;;I\;;J)\;\;$ ми даємо собі $\;A\!\left(x_{{}_{A}}\;;\;y_{{}_{A}}\right)\;;\;B\!\left(x_{{}_{B}}\;;\;y_{{}_{B}}\right)$

Контактні дані
$$\overline{AB}$$
 є $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

і якщо $K(x_K; y_K)$ є серединою [AB] : $K(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2})$

Ми даємо собі $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ і вектори $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$, а також число k .

$$\vec{u}ig(egin{array}{c} a \ b \ \end{array}ig) + \vec{v}ig(egin{array}{c} c \ d \ \end{array}ig)$$
 має координати $ig(egin{array}{c} a+c \ b+d \ \end{array}ig)$

 $k \cdot \vec{u}$ a pour coordonnées $\begin{pmatrix} k & a \\ k & b \end{pmatrix}$

 \vec{u} і \vec{v} колінеарні якщо і тільки якщо існує таке число k, що $\vec{u} = k \cdot \vec{v}$

$$\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$$
 і $\vec{v} \begin{pmatrix} c \\ d \end{pmatrix}$ колінеарні $\iff det(\vec{u}, \vec{v}) = ad - bc = 0$

Якщо позначка ORTHONORME $\|\vec{u}\| = \sqrt{a^2 + b^2}$