DD の再帰演算のカタログ

川原純

2022/7/29 版

本資料の目的

- ・ZDDの再帰演算の解説と、参考文献や実装に関する 情報を提示
- ZDD の基本的な知識は既知であると仮定します。
- ・その他の情報
 - dd_documents: DD に関する情報を集約
 - <u>部分グラフ集合を扱うDD アルゴリズム</u>: DD のアルゴリズム を解説
 - ・ <u>DD ライブラリ入門</u>: DD を扱うライブラリを紹介
 - ・ DD の再帰演算のカタログ: 本資料

ZDD の構築法: ボトムアップ

・ZDD の再帰構造を利用した ZDD 構築法を ボトムアップ構築法、または Apply 演算という

ボトムアップ構築法の例: 和集合 差集合 共通部分集合 superset subset hitting set 頂点・辺両方が故障する 可能性のあるネットワーク信頼性評価 [Kawahara+ 2019]

ZDD の構築法: ボトムアップ: ZDD の再帰構造

・根の 0枝の先から到達可能なノードもまたZDD とみなせる

ZDD の構築法: ボトムアップ: ZDD の再帰構造

・同様に、根の 1枝の先から到達可能なノードも また ZDD とみなせる

これは要素 1 を含む集合の族。 ただし、要素 1 自体は削除される

 $\{ \{1\}, \{2\}, \{3\}, \{1, 2, 3\} \}$

ZDD の構築法: ボトムアップ: ZDD の再帰構造

集合族を1を含むものと含まないものに 分解できる

2つの集合族の共通部分を計算 {{1}, {2}, {3}, {1, 2, 3}} ∩ {{1}, {1, 2}, {1, 2, 3}}= {{1}, {1, 2, 3}}

2つの集合族の共通部分を計算 {{1}, {2}, {3}, {1, 2, 3}} ∩ {{1}, {1, 2}, {1, 2, 3}}= {{1}, {1, 2, 3}}

考え方: 再帰構造を用いる

集合族 \mathcal{P}, \mathcal{Q} に対し、Intersec(\mathcal{P}, \mathcal{Q}) = $\mathcal{P} \cap \mathcal{Q}$ とする

 \mathcal{P}_0

1を含まない集合

 $\{\{1\}\}\times \mathcal{P}_1$

1を含む集合

 Q_0

1を含まない集合

 $\{\{1\}\} \times Q_1$

1を含む集合

Intersec($\mathcal{P}_0, \mathcal{Q}_0$)

1を含まない集合

 $\{\{1\}\} \times Intersec(\mathcal{P}_1, \mathcal{Q}_1)$

1を含む集合

Intersec(\mathcal{P}, \mathcal{Q})⁸

 ${\mathcal P}$

Q

・2つの集合族の共通部分を計算

 \mathcal{P}_0 $\mathbf{1}$ を含まない集合

 $\{\{1\}\} \times \mathcal{P}_1$

1を含む集合

 Q_0

1を含まない集合

 $\{\{1\}\} \times Q_1$

1を含む集合

Intersec(\mathcal{P}_0 , \mathcal{Q}_0)

1を含まない集合

 $\{\{1\}\} \times Intersec(\mathcal{P}_1, \mathcal{Q}_1)$

1を含む集合

Intersec(\mathcal{P}, \mathcal{Q}) 9

 ${\mathcal P}$

Q

・2つの集合族の共通部分を計算 Intersec(

再帰の末端 Intersec(<mark>1</mark> , **1**) = **1**

 \mathcal{P}_0 1を含まない集合

 $\{\{1\}\} \times \mathcal{P}_1$

1を含む集合

 Q_0

1を含まない集合

 $\{\{1\}\} \times Q_1$

1を含む集合

Intersec($\mathcal{P}_0, \mathcal{Q}_0$)

1を含まない集合

 $\{\{1\}\} \times Intersec(\mathcal{P}_1, \mathcal{Q}_1)$

1を含む集合

Q Intersec(\mathcal{P}, \mathcal{Q})⁰

 ${\mathcal P}$

演算カタログ

- ・以下では、各演算をカタログ形式で紹介する。
- 2 つの ZDD に対する演算と、1 つの ZDD の演算がある
- 2つの ZDD が与えられた場合、根の変数ラベルが同じ場合と異なる場合で挙動が異なる。また、片方の ZDD が 0/1-終端の場合も特別な動作をする場合が多い。本ドキュメントでは省略することもある
- ・再帰の末端は書いていないことがある
- ・集合族は花文字(\mathcal{F}, \mathcal{G} など)、集合は大文字(\mathcal{F}, \mathcal{G} など)、要素は小文字(\mathcal{F}, \mathcal{G} など)で書く

Intersection

• Intersec(\mathcal{F}, \mathcal{G}) = { $A \mid A \in \mathcal{F}$ and $A \in \mathcal{G}$ }

Union

• Union $(\mathcal{F}, \mathcal{G}) = \{ A \mid A \in \mathcal{F} \text{ or } A \in \mathcal{G} \}$

Difference

• Diff $(\mathcal{F}, \mathcal{G}) = \{ A \mid A \in \mathcal{F} \text{ and } A \notin \mathcal{G} \}$

SAPPOROBDD

operator-(ZBDD f, ZBDD g);

Symmetric Difference

Sim diff($\mathcal{F}_0, \mathcal{G}_0$)

• Simdiff(\mathcal{F}, \mathcal{G}) = { $A \mid (A \in \mathcal{F} \text{ and } A \notin \mathcal{G})$

Simdiff($\mathcal{F}_1, \mathcal{G}_1$)

15

Join

• $Join(\mathcal{F}, \mathcal{G}) = \{ F \cup G \mid (F \in \mathcal{F} \text{ and } G \in \mathcal{G}) \}$

Meet

• Meet(\mathcal{F}, \mathcal{G}) = { $F \cap G \mid (F \in \mathcal{F} \text{ and } G \in \mathcal{G})$ }

SAPPOROBDD

ZBDD_Meet(ZBDD f, ZBDD g);

Disjoint Join

• DisjointJoin $(\mathcal{F}, \mathcal{G}) = \{ F \cup G \mid \begin{pmatrix} F \in \mathcal{F} \text{ and } G \in \mathcal{G} \\ \text{and } F \cap G = \emptyset \end{pmatrix} \}$

Disjoint Join $(\mathcal{F}_1, \mathcal{G}_0)$

Joint Join

• JointJoin $(\mathcal{F}, \mathcal{G}) = \{ F \cup G \mid \begin{pmatrix} F \in \mathcal{F} \text{ and } G \in \mathcal{G} \\ \text{and } F \cap G \neq \emptyset \end{pmatrix} \}$

Restrict

• Restrict(\mathcal{F}, \mathcal{G}) = { $F \in \mathcal{F} \mid \exists G \in \mathcal{G}, F \supseteq G$ }

Permit

• Permit(\mathcal{F}, \mathcal{G}) = { $F \in \mathcal{F} \mid \exists G \in \mathcal{G}, F \subseteq G$ }

Not Superset

• NotSupSet(\mathcal{F}, \mathcal{G}) = { $F \in \mathcal{F} \mid \forall G \in \mathcal{G}, F \supseteq G$ }

Not Subset

• NotSubSet(\mathcal{F}, \mathcal{G}) = { $F \in \mathcal{F} \mid \forall G \in \mathcal{G}, F \subseteq G$ }

NotSubSet($\mathcal{F}_0, \mathcal{G}_0$) NotSubSet($\mathcal{F}_1, \mathcal{G}_1$) \cap NotSubSet($\mathcal{F}_0, \mathcal{G}_1$)

Minimal

• Minimal(\mathcal{F}) = { $F \in \mathcal{F} \mid \forall A \in \mathcal{F}, (A = F \text{ or } A \subseteq F)$ }

SAPPOROBDD

= Minimal(\mathcal{F}_1) 24

Maximal

• Maximal(\mathcal{F}) = { $F \in \mathcal{F} \mid \forall A \in \mathcal{F}, (A = F \text{ or } A \supseteq F)$ }

 $G_1 = Maximal(\mathcal{F}_1)$

Superset

• Superset(\mathcal{F}) = { $A \mid \exists F \in \mathcal{F}, A \supseteq F$ }

Subset

• Subset(\mathcal{F}) = { $A \mid \exists F \in \mathcal{F}, A \subseteq F$ }

SAPPOROBDD

U.Permit(f) // U は power set

27

$$\mathcal{G}_1 = \operatorname{Subset}(\mathcal{F}_1)$$

Hitting set

• Hitting(\mathcal{F}) = { $A \mid \forall F \in \mathcal{F}, A \cap F \neq \emptyset$ }

SAPPOROBDD
