

학습 목표

프로그램의 성능을 비교하기 위한 방법을 배우고 예시를 통해 적용할 수 있다

Data Structures in Python Chapter 2 - 2

- Performance Analysis
- Big-O Notation
- Big-O Properties
- Growth Rates
- Growth Rates Examples

그러므로 나의 사랑하는 자들아 너희가 나 있을 때 뿐 아니라 더욱 지금 나 없을 때에도 항상 복종하여 두렵고 떨림으로 너희 구원을 이루라 (Continue to work out your salvation with fear and trembling.) 빌2:12

나는 인애를 원하고 제사를 원하지 아니하며 번제보다 하나님을 아는 것을 원하노라 (호6:6) 하나님은 모든 사람이 구원을 받으며 진리를 아는데에 이르기를 원하시느니라 (딤전2:4)

그런즉 너희가 먹든지 마시든지 무엇을 하든지 다 하나님의 영광을 위하여 하라 (고전10:31)

Agenda & Reading

- Performance Analysis
 - Introduction
 - Step Counts Counting Operations
- References:
 - Textbook: Problem Solving with Algorithms and Data Structures
 - Chapter 3. <u>Analysis</u>
 - Textbook: <u>www.github.idebtor/DSpy</u>
 - Chapter 2.1 ~ 3

1 Introduction - What Is Performance Analysis?

- How to compare programs with one another?
- When two programs solve the same problem but look different, is one program better than the other?
- What criteria are we using to compare them?
 - Readability?
 - Efficiency? Time vs. Memory
- Why do we need Performance Analysis or Complexity Analysis?
 - Writing a working program is not good enough.
 - The program may be inefficient!
 - If the program runs on a large data set, then the running time may become an issue.

1 Introduction - Data Structures & Algorithm

- Data Structures:
 - A systematic way of organizing and accessing data.
 - No single data structure works well for ALL purposes.
- Algorithm
 - An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
- Program
 - A program is an algorithm that has been encoded into some programming language.
- Program = data structures + algorithms

1 Introduction - Performance Analysis/Complexity

- When we analyze the performance of an algorithm, we are interested in how much of a given resource the algorithm uses to solve a problem.
- The most common resources are time (how many steps it takes to solve a problem) and space (how much memory it takes).
- We are going to be mainly interested in how long our programs take to run, as time is generally more precious resource than space.

1 Introduction - Efficiency of Algorithms

 For example, the following graphs show the execution time, in milliseconds, against sample size, n of a given problem in different computers

 The actual running time of a program depends not only on the efficiency of the algorithm, but on many other variables such as Processor speed & type, Operating system, ··· etc.

1 Introduction - Running-time of Algorithms

- In order to compare algorithm speeds experimentally
 - All other variables must be kept constant, i.e.
 - independent of specific implementations (C, C++ or Java),
 - independent of computers used, and,
 - independent of the data on which the program runs
 - Involved a lot of work (better to have some theoretical means of predicting algorithm speed)

1 Introduction - Example 1

- Task:
 - Complete the sum_of_n() function which calculates the sum of the first n natural numbers.
 - Arguments: an integer
 - Returns: the sum of the first n natural numbers
- Cases:

1 Introduction - Algorithm 1

sum_of_n

```
time_start = time.time()

sum = 0
for i in range(1,n+1):
    sum = sum + i

time_end = time.time()
time_taken = time_end - time_start
```

The timing calls embedded before and after the summation to calculate the time required for the calculation.

Set sum = 0

Add each value to sum using a for loop

Return sum

1 Introduction - Algorithm 2

sum_of_n_2

```
time_start = time.time()

sum = 0
sum = n * (n + 1) / 2

time_end = time.time()
time_taken = time_end - time_start
```

The timing calls embedded before and after the summation to calculate the time required for the calculation.

Set sum = 0

Use the equation (n(n + 1))/2, to calculate the total

Return sum

1 Introduction - Experimental Result

Using 4 different values for n: [10000, 100000, 1000000, 10000000]

	n	sum_of_n (for loop)	sum_of_n_2 (equation)		
	10000	0.0033	0.0000181		
	100000	0.0291	0.00000131		
	1000000	0.3045	0.00000107		
	10000000	2.7145	0.00000123		
Time Consuming Process!		Time increase as we increase the value of n.	NO impacted by the number of integers being added.		

 We shall count the number of basic operations of an algorithm and generalize the count.

2 Counting Operations - Example 2A

Example: Calculating the sum of the first 10 elements in the list

Total: 34 operations (steps)

2 Counting Operations - Example 2B

Example: Calculating the sum of n elements in the list.

- Total: 3n + 5 operations (steps)
- We need to measure an algorithm's time requirement as a function of the problem size, e.g., in the example above the problem size is the number of elements in the list.

2 Counting Operations - Problem size

- Performance is usually measured by the rate at which the running time increases as the problem size gets bigger,
 - i.e., we are interested in the relationship between the running time and the problem size.
 - It is very important that we identify what the problem size is.
 - For example, if we are analyzing an algorithm that processes a list, the problem size is the size
 of the list.
- In many cases, the problem size will be the **value** of a variable, where the running time of the program depends on how big that value is.

2 Counting Operations - Exercise 1

- How many operations are required to do the following tasks?
 - Adding an element to the end of a list
 - Printing each element of a list containing n elements

2 Counting Operations - Exercise 1 solution

- How many operations are required to do the following tasks?
 - Adding an element to the end of a list one operation, a constant time, or O(1)
 - Printing each element of a list containing n elements n operation, or O(n)

2 Counting Operations - Example 3

- Consider the following two algorithms:
 - Algorithm A:
 - Outer Loop: n operations
 - Inner Loop: $\frac{n}{5}$ operations
 - Total: $(n * \frac{n}{5}) = \frac{n^2}{5}$ operations

```
for i in range(0, n):
   for j in range(0, n, 5):
     print(i, j)
```

- Algorithm B:
 - Outer Loop: n operations
 - Inner Loop: 5 operations
 - Total: (n * 5) = 5 * n operations

```
for i in range(0, n):
   for j in range(0, 5):
     print(i, j)
```

2 Counting Operations - Growth Rate Function - A or B?

- Consider the following two algorithms:
 - Algorithm A: $\frac{n^2}{5}$
 - Algorithm B: 5 * n

n	5	10	15	20	24	25	26	30
Α	5	20	45	80	115	125	135	180
В	25	50	75	100	120	125	130	150

- If n is 10⁶,
 - Algorithm A's time requirement is

$$\frac{n^2}{5} = \frac{10^{12}}{5} = 2 \times 10^{11}$$

Algorithm B's time requirement is

$$5 * n = 5 * 10^6$$

• What does the growth rate tell us about the running time of the program?

2 Counting Operations - Growth Rate Function - A or B?

- For smaller values of n, the differences between algorithm A $(n^2/5)$ and algorithm B (5n) are not very big. But the differences are very evident for larger problem sizes such as for n > 1,000,000
- $2 * 10^{11}$ vs. $2 * 10^6$
- Bigger problem size produces bigger differences
- Algorithm efficiency is a concern for large problem sizes

Step Count Exercise Warming-up:

• What is the exact number of times sum += 1 executed?

```
def step(n):
    sum = 0
    for i in range(n):
        sum += 1
    return sum

if __name__ == '__main__':
    print(step(10))
```

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Exercise Warming-up:

• What is the exact number of times sum += 1 executed?

```
def step(n):
    sum = 0
    for i in range(n):
        sum += 1
    return sum

if __name__ == '__main__':
    print(step(10))
```

```
def step(n):
    sum = 0
    for i in range(n):
        for j in range(n):
            sum += 1
    return sum

if __name__ == '__main__':
    print(step(10))
```

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Exercise 1:

♦ What is the exact number of times sum += 1 executed?

```
def step(n):
    sum = 0
    for i in range(n*n):
        for j in range(i+1):
            sum += 1
    return sum

if __name__ == '__main__':
    print(step(10))
```

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Exercise 2:

♦ What is the exact number of times sum += 1 executed?

```
def step(n):
    sum = 0
    while n > 1:
        sum += 1
        n /= 2
    return sum

if __name__ == '__main__':
    print(step(128))
```

Step Count Exercise 2:

• What is the exact number of times sum += 1 executed?

```
def step(n):
    sum = 0
    while n > 1:
        sum += 1
        n /= 2
    return sum

if __name__ == '__main__':
    print(step(128))
```

We have to find the smallest k such that $n / 2^k = 1$

Step Count Exercise 3:

Compute the following series:

$$a)1 + 2 + 3 + ... + 9 + 10 =$$

b)1 + 2 + 3 + ... +
$$(N - 1) + N =$$

c)
$$1 + 2 + 4 + ... + 16 =$$

Compute the following series and express the result in term of N but without log expression. (Hint: $N = 2^{l \circ g N}$)

Then use the result and to compute the series shown above in c):

d)
$$1 + 2 + 4 + ... + N =$$

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Summary

- Performance Analysis measure an algorithm's time requirement as a function of the problem size n by using a growth-rate function.
- It is an implementation-independent (including hardware and coded language)
 way of measuring an algorithm.
- Performance(Complexity) analysis focuses on large problems.

학습 정리

1) 프로그램 및 알고리즘의 성능 평가는 시간(time)과 공간(memory, storage)의 측면에서 성능을 비교할 수 있다

2) 문제 크기에 따른 변화율(growth rate)로 알고리즘의 성능을 비교할 수 있다

