CSCI 301, Winter 2017 Math Exercises # 3

YOUR NAME HERE

Due date: Friday, February 10, midnight.

Exercises for Section 11.1

12. Prove that the relation | (divides) on the set \mathbb{Z} is reflexive and transitive.

Exercises for Section 11.2

8. Define a relation R on \mathbb{Z} as xRy if and only if $x^2 + y^2$ is even. Prove R is an equivalence relation (prove from the definitions).

Exercises for Section 11.4

4. Write the addition and multiplication tables for \mathbb{Z}_6

Exercises for Section 12.2

8. A function $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(m,n) = (m+n,2m+n). Verify whether this function is injective and whether it is surjective.

Exercises for Section 12.3

2. Prove that if a is a natural number, then there exist two unequal natural numbers k and ℓ for which $a^k - a^\ell$ is divisible by 10.

Exercises for Section 12.5

6. The function $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by the formula f(m,n) = (5m+4n,4m+3n) is bijective. Find its inverse.

Exercises for Section 12.6

6. Given a function $f: A \to B$ and a subset $Y \subseteq B$, is $f(f^{-1}(Y)) = Y$ always true? Prove or give a counterexample.

Exercises for Section 13.1

- **A.** Show that the two given sets have equal cardinality by describing a bijection from one to the other. Describe your bijection with a formula (not as a table).
- **10.** $\{0,1\} \times \mathbb{N}$ and \mathbb{Z}

Exercises for Section 13.2

14. Suppose $A = \{(m,n) \in \mathbb{N} \times \mathbb{R} : n = \pi m\}$. Is it true that $|\mathbb{N}| = |A|$? Prove or disprove it.

Exercises for Section 13.3

8. Prove or disprove: The set $\{(a_1, a_2, a_3, \dots) : a_i \in \mathbb{Z}\}$ of infinite sequences of integers is countably infinite.