ISS numerical exercise 3 — Operations with discrete signals and filtering basics

Honza Černocký, October 2022

Nejprve si procvičíme základní operace s diskrétním signálem. Mějme diskrétní signál o délce N=4 vzorky / Let us first exercise basic operations with discrete signals. Let us have a discrete signal with N=4 samples: x[n]=[3, 2, 1, -1].

1. Napište signál / Write down signal y[n] = x[n-2].

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

2. Napište signál / Write down signal y[n] = x[n+3].

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

3. Napište signál / Write down signal y[n] = x[-n].

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

4. Napište signál / Write down signal y[n] = x[-n-1].

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

5. Napište signál / Write down signal y[n] = x[-n+3].

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

Pokud si u otočených a posunutých signálů nejte jisti, proveďte kontrolu / In case you are not sure about flipped and shifted signals, run a check:

- vyberte v posunutém signálu vzorek / select a sample in the modified signal.
- provedte pro jeho čas časovou modifikaci / evaluate the time modification for its time.
- podívejte se do originálního signálu, zda na tomto čase "sedí" ten samý vzorek / look in the original signal, whether you'll see the same sample at the resulting time.

V dalších cvičeních prozkoušíme kruhové posunutí v rámci bufferu o délce N=4 vzorky. Okénková funkce $R_4[n]$ ořezává výsledek opět pouze na 4 vzorky. / In the following exercises, we will examine circular shifts within a buffer of N=4 samples. The window function $R_4[n]$ truncates the result again to only 4 samples.

6. Napište signál / Write down signal $y[n] = R_4[n]x[\text{mod}_4(n-2)]$.

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
x[n]						3	2	1	-1		
y[n]											

7. Napište signál / Write down signal $y[n] = R_4[n]x[\text{mod}_4(n+3)].$

n		-5	-4	-3	-2	-1	0	1	2	3	4	5
x[[n]						3	2	1	-1		
y[[n]											

V další části cvičení se zaměříme na filrování pomocí konvoluce. Je dán signál vstupní (stejný jako v minulém cvičení) o délce N=8 vzorků a impulsní odezva filtru / In the next part, we will focus on filtering using convolution. We are given the input signal (the same as in the previous exercise) and the impulse response of a filter:

$$x[n] = [1; 1; 1; 0; 0; 0.5; 0.5; 0].$$

 $h[n] = [1; -1; 0; 0; 0; 0; 0; 0].$

8. Provedte konvoluci / perform convolution

$$x[n] \star h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Využijte metodu posouvání proužku papíru s otočenou impulsní odezvou. / Use the paper strip shifting method, making use of a paper strip with flipped impulse resposne.

n	-2	-1	0	1	2	3	4	5	6	7	8	9
x[n]			1	1	1	0	0	0.5	0.5	0		
h[n]			1	-1								
y[n]												

9. Ověřte komutativitu konvoluce / verify the commutativity of convolution

$$h[n] \star x[n] = \sum_{k=-\infty}^{+\infty} x[n-k]h[k]$$

Využijte metodu posouvání proužku papíru s otočeným signálem. / Use the paper strip shifting method, making use of a paper strip with flipped signal.

n	-2	-1	0	1	2	3	4	5	6	7	8	9
x[n]			1	1	1	0	0	0.5	0.5	0		
h[n]			1	-1								
y[n]												

10. Komentujte výsledek filtrace - funguje filtr jako detektor hran? / Comment the result of the filtering - is the filter working as an edge detector?

V poslední části cvičení ověříme vztah mezi filtrací a DFT spektry. Pokud se v čase konvoluuje, ve spektru se má násobit. Ověříme, zda platí / In the last part, we will verify the relationship between filtering and DFT spectra. If we convolve in time, we should multiply in the spectrum. We will verify whether it works:

$$y[n] = x[n] \star h[n] \longrightarrow Y[k] = X[k]H[k]$$

- 11. Vzpomeňte si na výpočet DFT signálu x[n] v minulém cvičení výsledky jsou v tabulce níže. / Remeber computation of DFT of signal x[n] at the last exercise the results are given in the table below.
- 12. Výpočtěte ručně spektum H[k] impulsní odezvy h[n] pozor, počítejte DFT s N=8 vzorky. Výsledky napište také do tabulky níže. / Compute spectrum H[k] of impulse reponse h[n] by hand attention, use DFT with N=8 samples. Write the results also to the table below.

$$H[k] = \sum_{n=0}^{N-1} h[n]e^{-j2\pi \frac{k}{N}n}$$

n	0	1	2	3	4	5	6	7	
h[n]	1	-1	0	0	0	0	0	0	H[k]
$e^{-j2\pi\frac{0}{N}n}$									
$h[n]e^{-j2\pi\frac{0}{N}n}$									
$e^{-j2\pi\frac{1}{N}n}$									
$h[n]e^{-j2\pi\frac{1}{N}n}$									
$e^{-j2\pi\frac{2}{N}n}$									
$h[n]e^{-j2\pi\frac{2}{N}n}$									
$e^{-j2\pi\frac{3}{N}n}$									
$h[n]e^{-j2\pi\frac{3}{N}n}$									
$e^{-j2\pi\frac{4}{N}n}$									
$h[n]e^{-j2\pi\frac{4}{N}n}$									

13. Výpočtěte spektum Y[k] výstupního signálu y[n] - pozor, počítejte DFT s N=8 vzorky. Tady už použíjte programovatlenou kalkulačku nebo Python NB. Výsledky také napište do tabulky níže. / Compute spectrum Y[k] of output signal y[n] - attention, use DFT with N=8 samples. Here, use a programmable calculator. Write the results also to the table below.

$$Y[k] = \sum_{n=0}^{N-1} y[n]e^{-j2\pi \frac{k}{N}n}$$

14. Ověřte / Verify that Y[k] = X[k]H[k]. Opět použijte programovatelnou kalkulačku nebo Python NB. / Again, use a programmable calculator or Python NB.

k	0	1	2	3	4
X[k]	4	1.35 - 0.85j	-0.5 - 1.5j	0.65 + 0.15j	1
H[k]					
Y[k]					
X[k]H[k]					
		3			

15. Jak se situace změní, pokud bude impulsní odezva vypadat takto / How does the situation change in case the impulse response is:

h[n] = [1; 0; -1; 0; 0; 0; 0; 0].