Differential expression of genes and modules

J. Shah chimeric mouse collaboration

Kim Dill-McFarland, kadm@uw.edu

version May 13, 2020

Contents

Background	1
Setup	1
Load data	2
Data exploration	3
PCA (genes)	3
Define significant genes	3
Linear model	
Gene plots	
Modules: Status and cell	4
PCA (modules)	7
Linear model	7
Summarize module model	
Module plots	
Annotate results	8
R session	8

Background

The purpose of this workflow is to identify differentially expressed (DE) genes and modules.

Setup

Load packages

```
# Data manipulation and figures
library(tidyverse)
    # Multi-panel figures for ggplot
    library(cowplot)

#Define ggplot colors
logFC.cols <- c("Down, FDR < 0.5"="lightblue",</pre>
```

```
"Down, FDR < 0.2"="blue",

"Down, FDR < 0.05"="darkblue",

"NS"="grey",

"Up, FDR < 0.5"="pink",

"Up, FDR < 0.2"="red",

"Up, FDR < 0.05"="darkred")

#Linear models
library(limma)

#Construct networks to ID modules
library(WGCNA)

# Print tty table to knit file
library(knitr)
library(kableExtra)
```

Set seed

```
set.seed(4389)
```

Scripts

```
source("https://raw.githubusercontent.com/kdillmcfarland/R_bioinformatic_scripts/master/RNAseq_module_f.
source("https://raw.githubusercontent.com/kdillmcfarland/R_bioinformatic_scripts/master/limma.extract.p.
source("scripts/RNAseq_boxplot_fxn.R")
```

Set variable names and cutoffs for this workflow.

```
#Rdata file WITHIN project directory that holds cleaned data
data.file <- "data_clean/Shah.clean.RData"

#Prefix to give file names
basename <- "Shah"

#Define variable(s) of interest

#Used in PCA plots and to select significant genes to be used in module building
vars_of_interest <- c("status", "cell")

#Gene model for use in limma

#Model MUST have intercept
model_gene <- as.formula("~ status*cell")

#Names for variables in model
#Recommend exactly match variable names in model. Have not tested other values
model_gene_names <- c("status", "cell", "status:cell")

#Maximum fdr for genes to be included in plots and modules
gene.fdr.cutoff <- 0.5
```

Load data

```
#Load data
load(data.file)
```

This includes in the following samples.

status	cell	n
Uninfected	WT	4
Uninfected	TKO	4
Infected	WT	4
Infected	TKO	4

Data exploration

PCA (genes)

Define significant genes

Linear model

```
# Define model
model <- model.matrix(model_gene, data=dat.voom$targets)
colnames(model) <- c("(Intercept)", model_gene_names)</pre>
```

Summarize gene model

	Genes with FDR <					
Variable	0.05	0.1	0.2	0.3	0.4	0.5
status	90	435	1427	2591	3898	5111
cell	157	346	768	1391	2220	3380
status:cell	1	1	1	3	3	3
total (nonredundant)	241	725	2014	3587	5342	7067

Highlight genes most significant for interaction term.

geneName	logFC	AveExpr	adj.P.Val	group
ENSMUSG00000020473	-3.231882	-4.426071	0.0201904	status:cell
ENSMUSG00000030431	-1.124078	2.641619	0.2886665	status:cell
ENSMUSG00000024935	4.583051	-3.537011	0.2886665	status:cell

Gene plots

Create expression plots of genes with at least one variable FDR < 0.5. Save in figs/gene_level

Modules: Status and cell

Define customizations for module building.

```
#Set FDR cutoff for gene inclusion in modules
mod.fdr.cutoff <- 0.3
#List variables from which significant genes will be extracted
vars_for_mods <- c("status","cell","status:cell")
#Module model for use in limma
#Model MUST have intercept
model_mod <- model_gene
#Names for variables in model
#Recommend exactly match variable names in model. Have not tested other values
model_mod_names <- model_gene_names</pre>
```

In total, 3587 of 14215 genes that significantly differed (FDR ≤ 0.3) by one or more variables of interest will be incorporated into gene modules.

```
genes.signif = genes.signif,
             Rsq.min = 0.8,
             minModuleSize = 50,
             deepSplit = 3,
             nThread = 4,
             basename = basename)
## Allowing multi-threading with up to 4 threads.
## pickSoftThreshold: will use block size 3587.
   pickSoftThreshold: calculating connectivity for given powers...
      ..working on genes 1 through 3587 of 3587
##
##
      Power SFT.R.sq
                     slope truncated.R.sq mean.k. median.k. max.k.
          1 2.08e-02 2.5800
## 1
                                      0.771 1800.00
                                                      1800.00 1900.0
## 2
          2 1.18e-02 -1.1600
                                                      1070.00 1260.0
                                      0.965 1070.00
## 3
          3 4.56e-05 -0.0423
                                      0.970 700.00
                                                       701.00 936.0
## 4
          4 1.54e-03 -0.1650
                                      0.951 490.00
                                                       489.00 734.0
## 5
         5 9.97e-03 -0.3030
                                      0.931 359.00
                                                       357.00 593.0
## 6
          6 2.04e-02 -0.3500
                                      0.911
                                             272.00
                                                       268.00 487.0
## 7
         7 4.09e-02 -0.3870
                                      0.924 211.00
                                                       206.00 406.0
## 8
         8 8.27e-02 -0.4470
                                      0.945 167.00
                                                       162.00 343.0
## 9
                                      0.950 135.00
                                                       128.00
         9 1.89e-01 -0.6450
                                                               299.0
## 10
         10 3.00e-01 -0.8140
                                      0.960 110.00
                                                       103.00
                                                               265.0
## 11
         11 4.24e-01 -0.9920
                                      0.961
                                              90.90
                                                        83.70 237.0
## 12
         12 5.07e-01 -1.1000
                                      0.971
                                              75.90
                                                        68.90 214.0
## 13
         13 5.76e-01 -1.1700
                                      0.985
                                              64.10
                                                        57.20 194.0
                                      0.990
                                                        47.70 179.0
## 14
         14 6.45e-01 -1.3000
                                              54.50
## 15
                                      0.989
                                                        40.20 166.0
         15 6.96e-01 -1.3900
                                              46.80
## 16
         16 7.39e-01 -1.4700
                                      0.988
                                              40.40
                                                        34.00 155.0
         17 7.73e-01 -1.5200
                                                        28.90 145.0
## 17
                                      0.995
                                              35.10
                                                        24.60 136.0
## 18
         18 7.98e-01 -1.5700
                                      0.990
                                              30.70
## 19
                                                        21.10 128.0
         19 8.25e-01 -1.6100
                                      0.989
                                              27.00
## 20
         20 8.46e-01 -1.6500
                                      0.988
                                              23.80
                                                        18.10 121.0
## 21
         21 8.57e-01 -1.6800
                                      0.977
                                              21.10
                                                        15.60 114.0
## 22
         22 8.73e-01 -1.7000
                                      0.976
                                              18.80
                                                        13.50 108.0
## 23
         23 8.86e-01 -1.7200
                                      0.978
                                              16.90
                                                        11.70 103.0
## 24
         24 8.96e-01 -1.7400
                                      0.976
                                              15.20
                                                        10.20
                                                                 98.3
## 25
         25 9.06e-01 -1.7500
                                      0.973
                                              13.70
                                                         8.90
                                                                 93.8
## 26
                                                         7.81
                                                                 89.7
         26 9.18e-01 -1.7600
                                      0.973
                                              12.40
## 27
         27 9.25e-01 -1.7500
                                      0.969
                                              11.20
                                                         6.90
                                                                 85.9
                                      0.966
                                              10.20
## 28
         28 9.30e-01 -1.7500
                                                         6.08
                                                                 82.4
```

make.modules(voom.dat = dat.voom,

## 29	29 9.36e-01 -1.7600	0.966	9.31	5.37	79.3
## 30	30 9.40e-01 -1.7600	0.964	8.52	4.73	76.5

A power threshold of 19 was used as it achieves high ${\bf R}^2$ and sufficient mean connectivity (${\bf R}^2=0.825248,$ mean ${\bf k}=26.9721425).$

Module	Total genes
00	43
01	438
02	349
03	259
04	233
05	229
06	228
07	181
08	177
09	173
10	172
11	166
12	161
13	150
14	145
15	136
16	133
17	121
18	93

This created 18 modules plus 43 (1.1987733%) genes not grouped into any module (e.g. in module 0).

Uninfected

Linear model

▲ TKO

Infected

Summarize module model

	Modules with FDR <					
Variable	0.05	0.1	0.2	0.3	0.4	0.5
status	14	14	15	16	16	17
cell	12	12	13	14	15	15
status:cell	8	14	15	15	16	17
total (nonredundant)	19	19	19	19	19	19

Module plots

Create expression plots of modules, and save in figs/module*

Annotate results

Add MGI symbols to results files

R. session

```
sessionInfo()
```

```
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.4
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats
                           graphics grDevices utils
                                                         datasets methods
## [8] base
##
## other attached packages:
## [1] doParallel_1.0.15
                              iterators_1.0.12
                                                    foreach_1.5.0
## [4] kableExtra_1.1.0
                              knitr_1.28
                                                    WGCNA_1.69
## [7] fastcluster_1.1.25
                              dynamicTreeCut_1.63-1 limma_3.40.6
## [10] cowplot_1.0.0
                              forcats_0.5.0
                                                    stringr_1.4.0
## [13] dplyr 0.8.5
                              purrr 0.3.4
                                                    readr 1.3.1
## [16] tidyr_1.0.3
                              tibble_3.0.1
                                                    ggplot2_3.3.0
## [19] tidyverse_1.3.0
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-147
                              matrixStats 0.56.0
                                                    fs 1.4.1
## [4] lubridate_1.7.8
                              bit64_0.9-7
                                                    webshot_0.5.2
## [7] RColorBrewer_1.1-2
                              httr_1.4.1
                                                    tools_3.6.1
## [10] backports_1.1.6
                              R6_2.4.1
                                                    rpart_4.1-15
                              DBI_1.1.0
## [13] Hmisc_4.4-0
                                                    BiocGenerics_0.30.0
                              nnet_7.3-14
## [16] colorspace_1.4-1
                                                    withr_2.2.0
```

## ##	[22]	gridExtra_2.3 bit_1.1-15.2	tidyselect_1.0.0 compiler_3.6.1	preprocessCore_1.46.0 cli_2.0.2
##	[25]	-	Biobase_2.44.0	htmlTable_1.13.3
##	[28]	_	labeling_0.3	checkmate_2.0.0
##	[31]	-	digest_0.6.25	foreign_0.8-76
##	[34]	rmarkdown_2.1	base64enc_0.1-3	jpeg_0.1-8.1
##	[37]	pkgconfig_2.0.3	htmltools_0.4.0	dbplyr_1.4.3
##	[40]	htmlwidgets_1.5.1	rlang_0.4.6	readxl_1.3.1
##	[43]	impute_1.58.0	rstudioapi_0.11	RSQLite_2.2.0
##	[46]	farver_2.0.3	generics_0.0.2	jsonlite_1.6.1
##	[49]	acepack_1.4.1	magrittr_1.5	GO.db_3.8.2
##	[52]	Formula_1.2-3	Matrix_1.2-18	Rcpp_1.0.4.6
##	[55]	munsell_0.5.0	S4Vectors_0.22.1	fansi_0.4.1
##	[58]	lifecycle_0.2.0	stringi_1.4.6	yaml_2.2.1
##	[61]	grid_3.6.1	blob_1.2.1	crayon_1.3.4
##	[64]	lattice_0.20-41	haven_2.2.0	splines_3.6.1
##	[67]	hms_0.5.3	pillar_1.4.4	codetools_0.2-16
##	[70]	stats4_3.6.1	reprex_0.3.0	glue_1.4.0
##	[73]	evaluate_0.14	latticeExtra_0.6-29	data.table_1.12.8
##	[76]	modelr_0.1.7	vctrs_0.2.4	png_0.1-7
##	[79]	cellranger_1.1.0	gtable_0.3.0	assertthat_0.2.1
##	[82]	xfun_0.13	broom_0.5.6	viridisLite_0.3.0
##	[85]	survival_3.1-12	AnnotationDbi_1.46.1	memoise_1.1.0
##	[88]	IRanges_2.18.3	cluster_2.1.0	ellipsis_0.3.0