CS 5180 Fall 2022

Exercise 5: Temporal-Difference Learning

Hongyan Yang

111

ш

1.	RL Ze b.2 Temporal difference us Monte-Carlo
Y Y	Based on Savele 6. 1, Monie-Corlo approach wight be better than TD in the
	following example: We would like to Focusion a small subset of the states
	such as the experted travel time from "leaving office". Then the value
	function of this state can be occurately evaluated without accurately evaluating
	the rest of the state set like TD will do Because TD requires bootstrap
l li	While Morte-Carlo does not
2,	RLZe 6.11, 6.12 Q-learning us SARSA
	Q-learning is considered an off-policy control method because
	1) It use behavior policy such as E-greedy to chose A from S while
	apply a greedy method to update Q values. So it's an off-policy method.
	2 It use a GPI method to find an optimal policy. So it's a control method.
	1 1 3
(b)	Suppose action selection is greedy. Q-learning's behavior policy and target
	policy will be the same and makes it the same algorithm as SARSA. In the
	limit in SARSA's Q function update yQ(s', A'), A' will be the greedy action
	the same as y max Q(S, a). And they will make the same action selections
	and weight opdates.
	3 - 7 - 1 - 1

4. 4 points. (RL2e 6.9) Windy gridworld.

Time Steps

ò

5. 2 points. [5180] Bias-variance trade-off.

(b) Written:

From my observation from the histograms:

- 1. Monte-Carlo method is unbiased but has a fat left tail due to its sampling nature and has a high-variance because each sample is i.i.d.
- 2. TD method is obviously biased but it's more clustered in the center and have a low variance.
- 3. After trained with more episodes. TD method performs better with lower variance.
- 4. Monte-Carlo method does not depend on the number of training because it's target G does not depend on other state values, it does not bootstrap.

(c) [Extra credit. 0.5 points]:

If we considered the scenario of control, Monte-Carlo method will still be unbiased and with relatively high variance. And on-policy TD(0) method will still suffer from it's bootstrap nature and mathematically affected by the parameter alpha. The result will not be changed.