INF721

2023/2

Aprendizado em Redes Neurais Profundas

A21: Transformers

Logística

Avisos

▶ Entrega da PF: Proposta de Problema nesta quarta-feira (18/10)!

Última aula

Mecanismo de Atenção em RNNs

Plano de Aula

- Transformers
- Auto-Atenção (Self-Attention)
- Atenção com Múltiplcas Cabeças (Multi-head Attention)
- Codificação de Posição
- ► Treinamento (Masked Multi-head Attention)

Tradução Automática

Conjunto de dados

Pares de sentenças de um idioma origem (x) para um idoma destino (y)

Português	Inglês	
See you!	Nos vemos!	
The book is on the table.	O livro está em cima da mesa.	
Lucas is visiting Chile in January.	Lucas irá visitar o Chile em Janeiro.	
Lucas is visiting Chile in January.	Em Janeiro, Lucas irá visitar o Chile.	
••••	••••	

Problemas com RNNs

- São pouco paralelizaveis
- Não conseguem capturar dependências longas

Attention is all you need

Transformers são uma arquitetura de rede neural para processamento de sequências completamente baseada em atenção.

Inicialmente proposta para o problema de tradução automática, mas se mostrou muito geral, resolvendo problemas em:

- Processamento de Linguagem Natural
- Visão Computacional
- Aprendizado por Reforço
- ..

Removendo Recorrência

RNNs Atenção Aditiva

Transformers Auto-Atenção (Self Attention)

Auto-Atenção

O mecanismo de auto-atenção aprende um vetor de contexto $c^{< t>}$ para cada elemento $x^{< t>}$ da sequência x com base nela mesma.

Auto-Atenção

Query(Q)	Key(K)	Value (V)
q<1>	k <1>	V<1>
q<2>	k <2>	V<2>
• • •	• • •	• • •
q <tx></tx>	K <lx></lx>	V<_X>

A representação $C = \{c^{<1>}, \ldots, c^{<T_x>}\}$ da entrada x é calculada de forma vetorizada empacotando os vetores $q^{<t>}$, $k^{<t>}$, $v^{<t>}$ em matrizes Q, K e V

Auto-Atenção

$$C = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{(d_k)}})V$$

Multi-Head Attention

 $c_i^{<1>}$

 $q^{<1>}, k^{<1>}, v^{<1>}$

Lucas

A camada de Multi-Head Attention aprende hrepresentações independentes C_i (chamada de cabeça) com Auto-Atenção

is

 $C_i^{<3>}$

Encoder

Entrada: uma sequência $x = \{x^{<1>}, \dots, x^{< T_x>}\}$

Saída: uma representação contextual $c = \{c^{<1>}, \dots, c^{< T_x>}\}$ para x

Para isso, ele aplica uma camada *Multihead* seguida de uma *Feed Forward Neural Network* (MLP). Ambas são normalizadas (*Norm*) e conectadas com as camadas anteriores residualmente (*Add*)

Decoder

Entrada: 0 contexto c e os tokens $\{\hat{y}^{<1>}, \dots, y^{<t-1>}\}$ gerados até t-1

Saída: A previsão do próximo token $\hat{y}^{< t>}$

 $\hat{y} = {\hat{y}^{<1>}, \dots, y^{<t-1>}}$

 $\hat{\mathbf{y}}^{< t>}$

<SOS>

<SOS>Lucas is visiting Chile in January<EOS>

 $c = \{c^{<1>}, \dots, c^{<8>}\}$

 $e_x = \{e_x^{<1>}, \dots, e_x^{<8>}\}$

Codificação de Posição

 $\{1,...,T_x\}$

Nx Encoder $c = \{c^{<1>}, ..., c^{<8>}\}$

Add & Norm

Feed Forward

Neural Network

Add & Norm

Multihead(Q, K, V)

<SOS>Lucas is visiting Chile in January<EOS>

<SOS> Lucas irá visitar o Chile em Janeiro

<SOS>Lucas is visiting Chile in January<EOS>

<SOS> Lucas irá visitar o Chile em Janeiro

<SOS>Lucas is visiting Chile in January<EOS>

<SOS> Lucas irá visitar o Chile em Janeiro

 \hat{y} = <SOS>Lucas irá visitar o Chile em Janeiro<EOS>

Codificação de Posição

O mecâmismo de Auto-Atenção não considera as informações de posição das palavras.

$$C = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{(d_k)}})V$$

Para adicionar essa informação à representação aprendida c, o Encoder adiciona uma informação de posição à cada elemendo $x^{< t>}$ da entrada $x = \{x^{< 1>}, \dots, x^{< T_x>}\}$

Codificação de Posição

Se
$$i$$
 impar
$$PE_{(t,2i+1)} = cos(\frac{t}{10000^{\frac{2i}{d}}})$$

Treinamento (Masked Multi-head Attention)

Treinamento (Masked Multi-head Attention)

Pesos de atenção da palavra $m{i}$ para a palavra $m{j}$ após aplicacação da máscara

Próxima aula

A22: Estudo de Casos de Transformers

BERT e GPT

