Queensborough Community College The City University Of New York Department of Engineering Technology

ET 110 – Introduction to circuit analysis

Pre-Exam2 Due date: Wed	nesdav 10	/26/	/16
-------------------------	-----------	------	-----

Student's name:	

Academic dishonesty is prohibited in The City University of New York and is punishable by penalties, including failing grades, suspension, and expulsion. Some examples of academic dishonesty are cheating, plagiarism, Internet plagiarism, obtaining unfair advantage, falsification of records and official documents, and collusion.

Instruction

- ✓ Show all work and calculation
- Round off all your answer in engineering notation to the hundredth place.
- ✓ All answers should have units, otherwise points will be deducted.
- ✓ Write your answer in the underline and box/circled your answer in your calculations.

Multiple choices: circle only ONE answer

For the following network (2 points each):

Which resistor will have 12 V drop?

- a. All of them
- b. R4
- c. R3
- d. R2
- e. R1

Which of the following resistors share *the same current*?

- a. R3 and R4
- b. R1 and R2
- c. R2 and R3
- d. R6 and R7
- e. R7 and R8

Which of the following resistors share *the same voltage*?

- a. R1 and R3
- b. R1 and R4
- c. R3 and R7
- d. R5 and R8
- e. R8 and R9

Question 1

For the following circuit, solve for:

- a. Resistance in R₃ (3 points)
- b. Voltage source, E (4 points)_____

Question 2

For the following circuit, solve for:

- a. Current source, I_s (4 points)
- b. Voltage drop in R₁, V_{R1} (3 points)
- c. Voltage drop in R₂, V_{R2} (3 points)_____
- d. Voltage drop in R₃, V_{R3} (3 points)_____
- e. Show the direction of the current within the closed path and

the polarity of each voltage drop for each resistor in the series circuit (2.5 points)

Question 3

For the following circuit:

- a. Voltage source, E (4 points)_____
- b. Total resistance, R_T (3 points) _____
- c. Resistance in R₃ (3 points) ______
- d. Resistance in R₁ (3 points) _____

Question 4

For the following circuit, find:

- a. Total resistance, R_T (4 points)______
- b. Current source, I_s (3 points) _____
- c. Current through R₃ (3 points) _____

Question 5

For the following series-parallel circuit, find

- a. Total resistance, R_T (6 points)
- b. Voltage in R₁, V_{R1} (2 points)
- c. Voltage in R₂, V_{R2} (2 points)
- d. Voltage in R₃, V_{R3} (2 points)_____
- e. Voltage in R₄, V_{R4} (3 points)
- f. Voltage in R₅, V_{R5} (3 points)_____
- g. Voltage in R₆, V_{R6} (2 points)
- h. Current through R₁, I_{R1} (2 points)
- i. Current through R₂, I_{R2} (2 points)_____
- j. Current through R₃, I_{R3} (2 points)
- k. Current through R₄, I_{R4} (3 points)_____
- I. Current through R₅, I_{R5} (3 points)_____
- m. Current through R₆, I_{R6} (3 points)_____