PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

1) International Patent Classification 6:		(11) Enternational Publication Number:	WO 96/23499	
A61K 31/44, 9/20	A1	(43) Yaternational Publication Date:	8 August 1996 (08.08.96)	

ΝZ

PCT/CA96/00056 (21) International Application Number: 19 January 1996 (19.01.96) (22) International Filing Date:

2 February 1995 (02.02.95) 270439 (71)(72) Applicant and Inventor: SHERMAN, Bernard, Charles

[CA/CA]; 50 Oldcolony Road, Willowdale, Ontario M2L

(74) Agent: JOHNSTON, N., Malcolm, S.; Malcolm Johnston & Associates, Suite 505, 133 Richmond Street West, Toronto, Ontario M5H 2L3 (CA).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

54) Title: EXTENDED-RELEASE SOLID ORAL DOSAGE FORMS OF DRUGS HAVING LOW SOLUBILITY IN WATER

57) Abstract

(30) Priority Data:

2K1 (CA).

Extended-release solid oral dosage forms of a drug having low solubility in water are obtained by dissolving the drug in polyethylene slycol having a mean molecular weight of at least 1000 and adding thereto a hydrophillic gel-forming polymer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GВ	United Kingdom	MW	Malawi
AT.	Austria	GE	Georgia	MX	Mexico
	Australia	GN	Guinea	NE	Niger
AU		GR	Greece	NL	Netherlands
BB	Barbados	HU	Hungary	NO	Norway
BE	Belgium	-	- -	NZ	New Zealand
BF	Burkina Faso	IE	Ireland	PL	Poland
BG	Bulgaria	IT	Italy		
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	· KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland .	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	и	Liechtenstein	SK	Slovakia
CM	Cameropo	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
		MR	Mauritania	VN	Viet Nam
GA	Gabon	147 24	tatom merine	***	

PCT/CA96/00056

WO 96/23499

5

10

15

20

25

EXTENDED-RELEASE SOLID ORAL DOSAGE FORMS OF DRUGS HAVING LOW SOLUBILITY IN WATER

FIELD OF INVENTION

The present invention is related to pharmaceutical extended release compositions for oral administration containing a drug having low solubility in aqueous media.

BACKGROUND

Pharmaceuticals with low solubility in water cause formulation problems due to their poor rate and extent of dissolution in aqueous media (including gastrointestinal fluids), which results in low absorption into systemic circulation after oral ingestion.

Examples of drugs with low solubility in water are some substituted dihydropyridine compounds, such as nifedipine, felodipine, nimodipine, isradipine, nitrendipine, nicardipine, niludipine, nisoldipine, and amlodipine. These compounds are classified as calcium antagonists, which are widely used for the treatment of cardiovascular disorders such as hypertension.

In order to make a composition containing such a drug that will enable maximum absorption from the gastro-intestinal tract, it is necessary to incorporate in the composition a feature that increases the solubility of the drug to enable it to dissolve in the gastrointestinal fluids.

Several ways to increase the solubility have been described in prior literature. One way is described in U.S. patent 4673564, wherein nicardipine is used in its amorphous form in order to obtain increased dissolution and absorption. British patent 1456618 discloses improving the dissolution and absorption of

nifedipine by preparation of a solid solution of nifedipine in polyethylene glycol in the presence of a surface active agent.

U.S. patent 4412986 discloses improving the dissolution and absorption of nifedipine by preparing a co-precipitate with a water-soluble polymer.

A feature that increases the solubility of a drug and thereby increases the extent of absorption will generally also increase the rate of absorption of the drug. If a drug is absorbed rapidly, and particularly if it is also eliminated rapidly, it becomes necessary to administer the drug frequently (i.e. several times per day) in order to maintain uniform blood levels. This is an undesirable situation, as frequent dosing is inconvenient for the patient and may lead to noncompliance by the patient.

To overcome this problem, it is necessary to include in the composition, in addition to a first feature to increase solubility of the drug, a second feature to slow down and control the rate at which the drug is released from the composition and made available for dissolution and absorption. A composition with such a feature is referred to in the trade as "extended release" or "controlled release".

The prior literature discloses numerous ways to make extended release compositions which slow-down and control the rate of dissolution and absorption of a drug. Such formulations usually include a substance such as a wax, fatty material, or polymer which causes the composition (usually in the form of a tablet) to erode or dissolve slowly in gastrointestinal fluids thereby slowly releasing the drug contained in the composition.

25

Especially preferred substances to slow-down the dissolution are hydrophillic gel-forming polymers (usually water-soluble cellulose derivatives). When a composition containing sufficient quantity of such a polymer is ingested and comes into contact with the gastrointestinal fluids, the hydrophillic gel-forming polymer nearest the surface of the composition hydrates to form a viscous gel layer around the surface of the solid mass. Because of the high viscosity, the viscous layer dissolves away only gradually, exposing the material below to the same process. The mass thus dissolves away only slowly, thereby slowly releasing the active ingredient into the gastrointestinal fluid.

10

5

In order to produce an extended release composition of a drug having very low solubility in water, it is necessary to have one feature as aforesaid to increase the solubility and a second feature as aforesaid to slow down and control the rate of dissolution.

15

20

25 ..

The prior art also discloses numerous compositions which include a feature of each type to achieve extended release of a drug having low solubility in water.

European patent application 0557-244-A1 discloses compositions which contain nifedipine which has been micronized to small crystals to increase solubility, along with a hydrophillic gel-forming polymer to slow-down and control the rate of dissolution and absorption from the composition. A problem with the compositions disclosed in this patent is the smallest size to which nifedipine can be micronized using conventional equipment is about 1 micron, and this particle size is still not small enough to enable full dissolution and absorption of the nifedipine. Moreover, unless the crystal size is carefully controlled to be the same in every batch of tablets, release characteristics may vary from batch to batch.

U.S. patent 4765989 discloses extended release formulations of nifedipine in the form of an osmotic device, which is relatively difficult and expensive to manufacture.

Accordingly, it is the object of this invention to provide an extended release composition for oral administration of a drug having low solubility which can be manufactured by simple and inexpensive techniques, which does not require micronization of the drug.

It is a further object to provide an extended release composition for oral administration of a drug having low solubility for which the dissolution and absorption characteristics of the compositions are not affected by the crystal form or the particle size distribution of the drug used to make the composition.

15 **DESCRIPTION OF THE INVENTION**

One feature of the invention is that the drug is solubilized by dispersing it in polyethylene glycol having mean molecular weight of at least 1000. Such polyethylene glycols are solids at normal room temperatures.

20

25

Such polyethylene glycols are sold, for example, under the tradename Carbowax by Union Carbide Corporation. Carbowax 1000 has an average molecular weight of about 1000 and a melting point of about 38°C. Carbowax 1450 has an average molecular weight of about 1450 and a melting point of about 56°C. Carbowax 3350 has an average molecular weight of about 3350 and a melting point of about 56°C, and Carbowax 8000 has an average molecular weight of about 8000, and a melting point of about 61°C.

'n

<u>*</u> 5

The drug is dispersed in the polyethylene glycol by heating the polyethylene glycol to a temperature above its melting point, adding the drug, blending the mixture so as to dissolve all or at least most of the drug in the molten polyethylene glycol, and cooling the mixture so that it is again solidified.

5

It will be thus understood that the compositions and processes of the within invention are applicable to drugs that have low solubility in water but are adequately soluble in polyethylene glycols to enable the drug to be dissolved in the molten polyethylene glycol.

10

For drugs having only moderate solubility in polyethylene glycols, the amount dissolved can be increased by blending at higher temperatures. For example, the drug nifedipine can be fully dissolved at concentrations as much as 1 gram of drug per gram of polyethylene glycol by blending at temperatures between 100°C and 150°C.

15

As the molten mass cools and solidifies, the solution may become supersaturated.

However, because of the high viscosity of the blend, the drug, once dissolved at elevated temperatures, will generally remain well dispersed in the resolidified material.

无重点 有一种 1000 managed 1000 1200 managed 1000 managed 1000

20

Because the drug is dissolved in the process as aforesaid, the properties of the composition are independent of the crystal form or particle size of the drug at the beginning of the process. Hence, any need to control the crystal form or particle size of the drug is eliminated.

25

The amount of polyethylene glycol used will usually be at least equal to the amount of the drug by weight. Preferably the amount of polyethylene glycol

the the second of the second second

. 5

10

15

20

25

will be from 1.5 to 10 times the amount of the drug by weight, and most preferably from 2 to 5 times the amount of the drug by weight.

After the molten material has been cooled and has solidified, it is ground up into granules. The granules can then be mixed with other inactive ingredients and compressed into tablets.

Although polyethylene glycol having an average molecular weight as low as 1000 may be used, is as preferred to use polyethylene glycol with an average molecular weight of at least about 3350, because the higher melting point makes it easier to grind the resolidified product into granules.

Another feature of the invention is that, in addition to containing the drug dispersed in polyethylene glycol having a mean molecular weight of at least 1000, the composition also contains a hydrophillic gel-forming polymer, which serves to slow down and control the rate of dissolution in gastrointestinal fluids.

As explained previously, the result of including a suitable hydrophillic gelforming polymer in sufficient quantity is that, when the composition is ingested and comes into contact with the gastrointestinal fluids, the hydrophillic gelforming polymer nearest the surface hydrates to form a viscous gel layer around the surface of the solid mass. Because of the high viscosity, the viscous layer dissolves away only gradually, exposing the material below to the same process. The mass thus dissolves away only slowly, thereby slowly releasing the active ingredient into the gastrointestinal fluids.

Suitable hydrophillic gel-forming polymers include, but are not necessarily limited to, hydroxypropyl methylcellulose, hydroxypropyl cellulose,

Y

È

methylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, and polyethylene oxide. For any given polymer type, use of a material with higher average molecular weight provides higher viscosity in aqueous solution of any given concentration; hence use of a higher molecular weight generally enables use of a lesser quantity of polymer to accomplish the required retardation of dissolution. The polymers used will usually but not necessarily be those that give a viscosity of more than 100 cps in 2 percent aqueous solution.

Preferred hydrophillic gel-forming polymers are selected from hydropropyl methylcellulose, hydroxypropyl cellulose and hydroxyethyl cellulose. Especially preferred is hydroxypropyl methylcellulose having 19-24% methoxyl substitution and 7-12% hydroxypropyl substitution, and having a number average molecular weight of at least 20,000.

Such polymers include those sold by Dow Chemical Co. under the tradenames Methocel K4M, Methocel K15M and Methocel K100M.

The hydrophillic gel-forming polymer may be incorporated into the composition in either of two ways.

STANDER OF THE REAL MARKET OF THE STANDARD OF THE STANDARD

20

One way is to blend either part or all of the hydrophillic gel-forming polymer, along with the drug, into the molten polyethylene glycol before it is solidified and ground into granules.

The other way is to add part or all of the hydrophillic gel-forming polymer by mixing it with the solid dispersion of the drug in polyethylene glycol after it is solidified and ground into granules.

It will also be understood that the dosage forms according to the invention may contain other ingredients in addition to the active drug, polyethylene glycol, and the hydrophillic gel-forming polymer.

For example, there may be included a lubricant necessary to avoid sticking of the material to the punches in the tabletting process. Suitable lubricants include but are not limited to stearic acid, magnesium stearate and other metal stearates.

Further it will be understood that, as is the case with the hydrophillic gel-forming polymer, the lubricant and other inactives may be incorporated by blending these into the molten polyethylene glycol along with the drug. Alternatively, the lubricant and other ingredients may be mixed with the solid dispersion of drug in polyethylene glycol after it is solidified and ground into granules.

15

20

10

Dosage forms according to the present invention may take the form of tablets, which may be produced by compressing the final mix of granules and/or powders into tablets on tablet press. The tablets may be uncoated or may have a film-coating applied to their surfaces using any of a number of polymer systems and processes well known in the art.

A film coating, if used, may be a coating that does not further delay release of the drug from the tablet, or it may be an insoluble but permeable coating that further retards dissolution.

25

A film coating having no delaying action may consist, for example, of a film-former, plasticizer, and pigments. The film-former may consist of a water-soluble polymer such as low-viscosity hydroxypropyl methylcellulose; for

10

15

20

25

- 9

HAR TO BE THE SAID CAN THE STORY OF THE SAID CAN AND A SAID

example Methocel E5 or E15 (brand names of Dow Chemicals Ltd.).

A film coating having delaying action may consist of water-insoluble but water-permeable polymers. Preferred water insoluble polymers are derivatives of methacrylic acid, such as Eudragit RS or RL or L (brand names of Rohm Pharma GmbH).

As aforesaid, the film coating may also contain excipients customary in film coating procedures, such as light-protecting pigments; for example iron oxides or titanium dioxide, and plasticizers.

Alternatively, dosage forms according to the present inventions may take the form of capsules, which may be made by filling empty capsule shells either with granules of the solid dispersion or with a mix of granules of solid dispersion and other ingredients.

Alternatively, dosage forms according to the present invention may take the form of capsules made by filling empty capsule shells with a dispersion of the drug and hydrophillic gel-forming polymer in molten polyethylene glycol when it is still in molten form and allowing it to cool and solidify after the capsules are filled.

The production of compositions within the scope of the invention will be further illustrated by the following examples, which are intended to be illustrative but not limiting of the scope of the invention.

to the early of the control of the EXAMPLE 1 of the control of the control of

文旗 化二十二烷 医二十二烷 医

Tablets were made using ingredients in the following proportions:

5	Carbowax 8000	- ·	50.
	nifedipine	-	20.
	stearic acid	-	5.
	Methocel K100M	-	<u>15.</u>
			90.

10

The Carbowax 8000 was melted and further heated while stirring to a temperature of 120°C. The nifedipine was added and the mixture was stirred until the nifedipine was fully dissolved. The stearic acid was added and mixing was continued until the stearic acid melted and was dissolved in the mixture.

15

The methocel K100M was then added and mixing continued for several minutes. The mixture was then poured into trays and allowed to cool and solidify.

The solid was then removed from the trays and ground into granules. The granules were than made into tablets having a tablet weight of 90 mg each.

Each tablet thus contained 20 mg of nifedipine.

A film coating then was applied by spraying onto the tablets an aqueous solution containing Methocel E5 as polymer, Carbowax 3350 as plasticizer and iron oxide and titanium dioxide as pigments.

The rate of absorption of nifedipine from these tablets was determined in a study in which tablets were ingested by human volunteers, and blood samples were drawn and tested.

It was found that the time to peak blood levels for this formulation was about 3 hours, (versus under 1 hour for an immediate release composition), so that this formulation is suitable for twice daily administration.

10

EXAMPLE 2

Tablets were made using ingredients in the following proportions:

			Carbowax 8000	- .	97.
15			nifedipine	•	33.
	ets sp	7	Methocel K100M (Part 1)	. <u>.</u>	40.
	, · · .		magnesium stearate	• • • • • • • • • • • • • • • • • • •	0.6
			colloidal silicon dioxide	-	0.4
	·		Methocel K100M (Part 2)	Same of the same of the	<u>79. </u>
20			State of the state of the second	production of the	250.

The Carbowax 8000 was melted and further heated while stirring to a temperature of 120°C. The nifedipine was added and the mixture was stirred until the nifedipine was fully dissolved.

25

The Methocel K100M (part 1) was then added and mixing continued for several minutes. The mixture was then poured into trays and allowed to cool and solidify.

15

The solid was then removed from the trays and ground into granules.

The granules were placed into a mixer, along with the magnesium stearate, colloidal silicon dioxide and Methocel K100M (part 2) and all these ingredients were mixed together.

This mixture of granules and powders was then made into tablets having a weight of 250 mg each. Each tablet thus contained 33 mg of nifedpine.

A film coating was then applied to the tablets using Eudragit L as polymer, triethyl citrate as plasticizer and iron oxide and titanium dioxide as pigments.

The rate of absorption of nifedipine from these tablets was determined in a study in which tablets were ingested by human volunteers, and blood samples were drawn and tested. It was found that the time to peak blood levels for this formulation was about 12 hours, so that this formulation is suitable for one daily administration.

Contract the second of the sec

÷ . ,

material of the first of the

٧

6

- 1. A solid pharmaceutical composition for oral administration which provides extended release of a drug having a solubility of less than 0.1 per cent by weight in water at 20°C characterized in the following two ways:
 - The drug is dissolved or dispersed in a polyethylene glycol having i) a mean molecular weight of at least 1000;
- 10 The composition also contains a hydrophillic gel-forming polymer. ii)
 - A composition as in claim 1 wherein the drug is a substituted 2. dihydropyridine. State of the state
- 15 3. A composition as in claim 2 wherein the drug is nifedipine.
 - 4. A composition according to any one of claims 1 to 3 when made by a process which includes melting the polyethylene glycol, blending the drug into the polyethylene glycol in the molten state, and cooling the molten material so as to render it solid.
 - 5. A composition according to claim 4 wherein the ratio of the weight of the polyethylene glycol to the weight of drug is at least sufficient so that at the temperature at which the drug is blended into the polyethylene glycol, all or at least most of the drug dissolves in the polyethylene glycol.

20

25

- 6. A composition according to claim 4 or claim 5 wherein some or all of the hydrophillic gel-forming polymer is blended into the molten mass before it is cooled.
- 7. A composition according to claim 4 or claim 5 wherein some or all of the hydrophillic gel-forming polymer is added after the molten mass is resolidified and ground into granules.
- 8. A composition according to any one of claims 1 to 7 wherein the hydrophillic gel-forming polymer is a cellulose derivative.
 - 9. A composition according to claim 8 wherein the hydrophillic gel-forming polymer is a hydroxypropyl methylcellulose.
- 15 10. A composition according to claim 9 wherein the hydroxypropyl methylcellulose has a hydroxypropyl content of 4-12% by weight.
- 11. A composition according to claim 10 wherein the hydroxypropyl methylcellulose has a methoxyl content of 19-24% by weight and a hydroxypropyl content of 7-12% by weight.
 - 12. A composition according to any one of claims 1 to 10 in the form of a tablet.

tional Application No

PCT/CA 96/00056 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 A61K31/44 A61K9/ A61K9/20 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED 40 / 39**05** 10 Minimum documentation searched (classification system followed by classification symbols) A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ DATABASE WPI 1-6.8 Section Ch, Week 8143 Derwent Publications Ltd., London, GB; Class A96, AN 81-78661 XP002002076 & JP,A,56 115 726 (KAKEN CHEM KK) see abstract X WO, A, 94 23700 (RIJKSUNIVERSITEIT GENT 1-6,8 LABORATORIUM VOOR PHARMACEUTISCHE TECHNOLOGIE) 27 October 1994 see claims 1,5-7 see page 2, line 33 - page 3, line 10 see page 10; example 1 see page 19; example 9 Secretary State of the State of Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date document defining the general state of the art which is not considered to be of particular relevance or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention considered to involve an inventive step when the document is considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 3 May 1996 10.05.96 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Ventura Amat, A

INTERNATIONAL SEARCH REPORT Ir tronal Application No PCT/CA 96/00056

	nunuuton) DOCUMENTS CONSIDERED TO BE RELEVANT						
	Course of document with indication, where appropriate, of the relevant passages	935	Relevant to claim, No.				
tegory *	Citation of document, with indication, where appropriate, or the		Service Servic				
,х	DATABASE WPI Section Ch, Week 9602 Derwent Publications Ltd., London, GB; Class A96, AN 96-017127 XP002002077 & JP,A,07 291 854 (TANABE SEIYAKU) see abstract		1-6,8-11				
•							

1.

INTERNATIONAL SEARCH REPORT In tonal Application No

Information on patent family members

PCT/CA 96/00056

Patent document cited in search report no	Publication date	Patent	family per(s)	Publication date	i kalendaria
WO-A-9423700	27-10-94	BE-A- AU-B- CA-A- EP-A-	1006990 6421594 2161016 0695172	07-02-95 08-11-94 27-10-94 07-02-96	

Form PCT/ISA/210 (patent family annex) (July 1992)

n de la company de la company

e de la familia de la familia

سم والماسات