The Value of Community Information for Pricing under Network Externalities

Calvin Roth

Department of Industrial and Systems Engineering University of Minnesota

Joint work with Ankur Mani and Jiali Huang

INFORMS 2023 December 8, 2023

Motivation

The use of social network information in marketing has become prevalent

 Many e-commerce websites use some form of social information to provide personalization — offering personalized products, prices, etc

Fundamental questions: Is it really worthwhile to seek and use network information for pricing? What information is useful and how to use partial information?

Deterministic Model

- Product is divisible
- n independent customers

- n customers in binary network G
- $u_i = ax_i x_i^2 + \sum_{j \neq i} \frac{4\rho x_i G_{ij} x_j}{\|G + G^T\|} p_i x_i^1$
- **Externalities coefficient:** $\rho \in (0,1)$

$$\mathbf{x}^*(\mathbf{p}) = \frac{1}{2} \left(I - \frac{2\rho G}{\|G + G^T\|} \right)^{-1} (a\mathbf{1} - \mathbf{p})$$

¹Candogan et. al. 2012, Bloch and Querou 2013, Fainmesser 2015

Deterministic Model

Monopolist: $\max_{\mathbf{p}} (\mathbf{p} - c\mathbf{1})^T \mathbf{x}^*(\mathbf{p})$

Consumption Equilibria and Optimal Prices

Consumption equilibrium:

$$\mathbf{x}^*(\mathbf{p}) = \frac{1}{2} \left(I - \frac{2\rho}{\|G + G^T\|} G \right)^{-1} (a\mathbf{1} - \mathbf{p})$$

Optimal price vector:

$$\begin{aligned} \mathbf{p}^* &= \left(\frac{a+c}{2}\right) \mathbf{1} & \text{Common} \\ &+ \left(\frac{a-c}{2}\right) \frac{\rho G}{\|G+G^T\|} \mathcal{K}\left(\frac{2\rho}{\|G+G^T\|} \left(G+G^T\right), \frac{1}{2}\right) & \text{Markup} \\ &- \left(\frac{a-c}{2}\right) \frac{\rho G^T}{\|G+G^T\|} \mathcal{K}\left(\frac{2\rho}{\|G+G^T\|} \left(G+G^T\right), \frac{1}{2}\right) & \text{Discount} \end{aligned}$$

where $\mathcal{K}(G, \alpha) = (I - \alpha G)^{-1} \mathbf{1} = \sum_{i=0}^{\infty} (\alpha G)^{i} \mathbf{1}$ is the Bonacich centrality vector.

Optimal profit of the monopolist:

$$\pi^* = \frac{1}{2} \left(\frac{\mathsf{a} - \mathsf{c}}{2} \right)^2 \mathbf{1}^T \left(I - \frac{\rho}{\|\mathsf{G} + \mathsf{G}^T\|} (\mathsf{G} + \mathsf{G}^T) \right)^{-1} \mathbf{1}$$

Proportional to weighted sum of number of walks of different lengths in multigraph $G + G^T$

Optimal Uniform Prices

- **O**ptimal uniform price vector: $\mathbf{p}_0 = \frac{a+c}{2}\mathbf{1}$
- ▶ Profit of the monopolist under \mathbf{p}_0 :

$$\pi_0 = \frac{1}{2} \left(\frac{\mathsf{a} - \mathsf{c}}{2} \right)^2 \mathbf{1}^\mathsf{T} \left(\mathsf{I} - \frac{2\rho}{\|\mathsf{G} + \mathsf{G}^\mathsf{T}\|} \mathsf{G} \right)^{-1} \mathbf{1}$$

- ► Proportional to weighted sum of number of walks of different lengths in graph *G*
- The optimal uniform price vector doesn't depend on the network information.
 - ▶ Network effects still play a role in determining the consumption equilibrium and the profit.

The Value of Price Discrimination

Monopolist's regret under optimal uniform pricing, i.e. -

$$R(\mathbf{p}_0) = \frac{1}{2} \left(\frac{a-c}{2} \right)^2 \left[\mathbf{1}^T \left(I - \frac{\rho}{\|G + G^T\|} \left(G + G^T \right) \right)^{-1} \mathbf{1} \right]$$
$$-\mathbf{1}^T \left(I - \frac{2\rho}{\|G + G^T\|} G \right)^{-1} \mathbf{1} \right].$$

 Monopolist's fractional regret under optimal uniform pricing, i.e. -

$$R_{F}(\mathbf{p}_{0}) = 1 - \frac{\mathbf{1}^{T} \left(I - \frac{2\rho}{\|G + G^{T}\|}G\right)^{-1} \mathbf{1}}{\mathbf{1}^{T} \left(I - \frac{\rho}{\|G + G^{T}\|}(G + G^{T})\right)^{-1} \mathbf{1}}.$$

Equivalent to value of network information

Is There Any Value of Price Discrimination?

Unbalanced graph: Yes

Is There Any Value of Price Discrimination?

Balanced graph: No

Random Networks

Now we move to random networks. We consider a sequence of networks G(n) indexed by the number of consumers in the network

▶ Utility for consumer i in the n_{th} network

$$u_i(n) = ax_i - x_i^2 + 4\rho x_i \sum_{j \neq i} \frac{G_{ij}(n)}{\|G(n) + G(n)^T\|} x_j - p_i x_i$$

Goal: Evaluate the asymptotic value of price discrimination for a sequence of random networks

Directed Erdös-Renyi Networks

There has been focus on a special class of random networks — directed Erdös-Renyi (E-R) networks

- n nodes in the network
- For each i and j, $g_{ij} = 1$ with probability p(n) and 0 with probability 1 p(n)
- Usually not symmetric

Results: Huang et. al. 2022

Huang et.al. obtained the following results for E-R networks

Network Density	Expected Regret	Expected Fractional Regret
$O\left(n^{-(1+\epsilon)} ight)$	$\Theta\left(n^2p(n)\right)$	$\Theta(np(n))$
$\Theta\left(n^{-1} ight)$	$\Theta\left(\frac{\log\log n}{\log n}n\right)$	$\Theta\left(\frac{\log\log n}{\log n}\right)$
$\omega\left(\frac{\log n}{n}\right)$	$\Theta\left(p(n)^{-1}\right)$	$\Theta\left(n^{-1}p(n)^{-1}\right)$

Furthermore, given any sequence of network densities, p(n), for the sequence of Erdös-Renyi random networks, the expected regret $\mathbf{E}_G[R(\mathbf{p}_0)] = o(n)$, and the expected fractional regret $\mathbf{E}_G[R_F(\mathbf{p}_0)] = o(1)$.

When Does Network Information Matter?

Consider a network with communities (Stochastic Blockmodel)

- m blocks, B ∈ [0,1]^{m×m}, B is not price discrimination free.
 B_{kI} is the probability of link from block k to block I
- ▶ *n* members in each block, $p(n) \in (0,1)$ is the decay factor If *i* in community *k* and *j* in community *l* then $P(G_{ij} = 1) = p(n)B_{kl}$

 $p(n) = \omega(\frac{\log(n)}{n})$

When Does Network Information Matter?

Optimal price with community level price discrimination

$$\begin{split} \mathbf{p}^* &= \left(\frac{a+c}{2}\right)\mathbf{1} + \left(\frac{a-c}{2}\right)\frac{\rho B}{\|B+B^T\|}\mathcal{K}\left(\frac{1}{\|B+B^T\|}\left(B+B^T\right),\rho\right) \\ &- \left(\frac{a-c}{2}\right)\frac{\rho B^T}{\|B+B^T\|}\mathcal{K}\left(\frac{1}{\|B+B^T\|}\left(B+B^T\right),\rho\right) \end{split}$$

where $\mathcal{K}(B,\alpha) = (I - \alpha B)^{-1} \mathbf{1} = \sum_{i=0}^{\infty} (\alpha B)^{i} \mathbf{1}$ is the Bonacich centrality vector.

Information requirement:
$$\Theta\left(\underbrace{mn\log(m)}_{\text{Community identity}} + \underbrace{m^2}_{\text{Matrix B}}\right)$$

Result

A directed stochastic block model has expected fractional regret:

Community Level Pricing	Uniform Pricing
$\Theta\left(n^{-1}p(n)^{-1}\right)$	Θ(1)

Fractional regret of community level pricing is o(1) and for uniform pricing is constant.

When Does Network Information Matter?

Consider a network with communities (Stochastic Blockmodel) (4 communities, a=6, c=4, p(n)=0.9)

Application

Consider pricing across neighborhoods in California

Figure: Neighborhoods of Los Angeles. Using block prices we set a price for each neighborhood.

Conclusions

- ► For a large class of random network models, the asymptotic fractional regret going to 0.
- ► For stochastic blockmodels, network information is useful but knowledge of community membership and community influence structure is sufficient.

Thank You!