Lab 7

7-Segment Display

CS1050 Computer Organization and Digital Design

RATHNAYAKE R.M.I.B 220526N

Group 41

Introduction:

Task

We have to implement a 7-segment display to present outcomes from the prebuilt 4-bit Arithmetic Unit (AU). The AU will produce a sum, a carry, and a zero flag based on the two input 4-bit numbers given to the registers in the AU. The 4-bit sum from the RCA will appear as a hexadecimal number on the 7-segment display. To achieve this, we first created a lookup table using a ROM. This table maps the output from the AU to the 7-segment display. Finally, we verified the functionality of the 7-segment display by simulating it on the BYASIS 3 board.

• Table of segments to switch on

Output from RC						Segments to Switch On							
S ₃	S ₂	S ₁	S ₀	Hex. Value	Α	В	С	D	E	F	G		
0	0	0	0	0	0	0	0	0	0	0	1		
0	0	0	1	1	1	0	0	1	1	1	1		
0	0	1	0	2	0	0	1	0	0	1	0		
0	0	1	1	3	0	0	0	0	1	1	0		
0	1	0	0	4	1	0	0	1	1	0	0		
0	1	0	1	5	0	1	0	0	1	0	0		
0	1	1	0	6	0	1	0	0	0	0	0		
0	1	1	1	7	0	0	0	1	1	1	1		
1	0	0	0	8	0	0	0	0	0	0	0		
1	0	0	1	9	0	0	0	0	1	0	0		

1	0	1	0	Α	0	0	0	1	0	0	0
1	0	1	1	В	1	1	0	0	0	0	0
1	1	0	0	С	0	1	1	0	0	0	1
1	1	0	1	D	1	0	0	0	0	1	0
1	1	1	0	E	0	1	1	0	0	0	0
1	1	1	1	F	0	1	1	1	0	0	0

1. Lookup Table

• Design source file

```
-- Company:
-- Engineer:
-- Create Date: 03/20/2024 11:06:49 AM
-- Design Name:
-- Module Name: LUT_16_7 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
```

```
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
-- library UNISIM;
--use UNISIM. VComponents. all;
entity LUT_16_7 is
    Port ( address : in STD_LOGIC_VECTOR (3 downto 0);
           data : out STD_LOGIC_VECTOR (6 downto 0));
end LUT_16_7;
architecture Behavioral of LUT_16_7 is
type rom_type is array (0 to 15) of std_logic_vector (6 downto 0);
    signal sevenSegment_ROM : rom_type := (
                             "1000000", -- 0
                             "1111001", -- 1
                             "0100100". --2
                             "0110000". --3
                             "0011001". --4
                             "0010010". --5
                             "0000010", --6
                             "1111000", --7
                             "0000000". --8
                             "0010000". --9
                             "0001000". --a
                             "0000011". --b
                             "1000110", --c
                             "0100001", --d
                             "0000110", --e
                             "0001110" --f
          );
begin
data <= sevenSegment_ROM(to_integer(unsigned(address)));</pre>
end Behavioral;
```

Elaborated design schematic

Simulation source file

-- Company: -- Engineer: -- Create Date: 03/20/2024 11:20:47 AM -- Design Name: -- Module Name: TB_LUT_16_7 - Behavioral -- Project Name: -- Target Devices: -- Tool Versions: -- Description: -- Dependencies: -- Revision:

```
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity TB_LUT_16_7 is
-- Port ();
end TB_LUT_16_7;
architecture Behavioral of TB_LUT_16_7 is
component LUT_16_7 is
    Port ( address : in STD_LOGIC_VECTOR (3 downto 0);
           data : out STD_LOGIC_VECTOR (6 downto 0));
end component;
signal address: STD_LOGIC_VECTOR (3 downto 0);
signal data: STD_LOGIC_VECTOR (6 downto 0);
```

```
begin
UUT : LUT_16_7 port map(
        address => address,
        data => data);
process begin
    address <= "1110";
    wait for 100ns;
    address <= "0110";
    wait for 100ns;
    address <= "1101";
    wait for 100ns;
    address <= "0101";
    wait for 100ns;
    address <= "0000";
    wait for 100ns;
    address <= "1111";
    wait for 100ns;
    address <= "1100";
    wait for 100ns;
    address <= "0011";
    wait for 100ns;
    address <= "1010";
    wait for 100ns;
```

```
address <= "0001";
wait for 100ns;</pre>
```

end process;

end Behavioral;

• Time diagram

2. 7-Segment Display • Design source file -- Company: -- Engineer: -- Create Date: 03/20/2024 11:46:02 AM -- Design Name: -- Module Name: AU_7_seg - Behavioral -- Project Name: -- Target Devices: -- Tool Versions: -- Description: -- Dependencies: -- Revision: -- Revision 0.01 - File Created -- Additional Comments: library IEEE; use IEEE.STD_LOGIC_1164.ALL: -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx leaf cells in this code. -- library UNISIM; --use UNISIM.VComponents.all;

```
entity AU_7_seg is
    Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
           Clk : in STD_LOGIC;
           RegSel : in STD_LOGIC;
           S_LED : out STD_LOGIC_VECTOR (3 downto 0);
           S_7Seg : out STD_LOGIC_VECTOR (6 downto 0);
           Carry : out STD_LOGIC;
           Zero : out STD_LOGIC;
           AnodeSelector : out STD_LOGIC_VECTOR (3 downto 0));
end AU_7_seg;
architecture Behavioral of AU_7_seg is
component AU is
    Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
           RegSel : in STD_LOGIC;
           clk : in STD_LOGIC;
           S : out STD_LOGIC_VECTOR (3 downto 0);
           Zero : out STD_LOGIC;
           Carry : out STD_LOGIC);
end component;
component LUT_16_7 is
    Port ( address : in STD_LOGIC_VECTOR (3 downto 0);
           data : out STD_LOGIC_VECTOR (6 downto 0));
end component;
signal AUOutput : STD_LOGIC_VECTOR (3 downto 0);
begin
AU_0 : AU
    port map (
        A \implies A
        RegSe1 => RegSe1,
```

Elaborated design schematic


```
    Simulation source file

-- Company:
-- Engineer:
-- Create Date: 03/20/2024 12:07:39 PM
-- Design Name:
-- Module Name: TB_AU_7_Seg - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
-- library UNISIM;
--use UNISIM. VComponents. all;
entity TB_AU_7_Seg is
-- Port ();
end TB_AU_7_Seg;
architecture Behavioral of TB_AU_7_Seg is
```

```
component AU_7_seg is
    Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
           Clk : in STD_LOGIC;
           RegSel : in STD_LOGIC;
           S_LED : out STD_LOGIC_VECTOR (3 downto 0);
           S_7Seg : out STD_LOGIC_VECTOR (6 downto 0);
           Carry : out STD_LOGIC;
           Zero : out STD_LOGIC;
           AnodeSelector : out STD_LOGIC_VECTOR (3 downto 0));
end component;
signal A, S_LED, AnodeSelector: STD_LOGIC_VECTOR (3 downto 0);
signal RegSel, Carry, Zero : STD_LOGIC;
signal S_7Seg : STD_LOGIC_VECTOR (6 downto 0);
signal Clk: STD_LOGIC := '0';
begin
UUT : AU_7_seg
    port map (
        A \implies A
        C7k \Rightarrow C7k
        RegSe1 => RegSe1,
        S\_LED \Rightarrow S\_LED,
        S_7Seg => S_7Seg,
        Carry => Carry,
        Zero => Zero,
        AnodeSelector => AnodeSelector
        );
process begin
    Clk <= not Clk;
    wait for 5ns;
end process;
process begin
    RegSe1 <= '1';
    A<= "1110";
    wait for 100ns:
```

```
RegSe1 <= '0';
   A<= "0110";
    wait for 100ns;
    RegSe1 <= '1';
   A<= "1101";
    wait for 100ns;
    RegSe1 <= '0';
   A<= "0101";
    wait for 100ns;
    RegSe7 <= '1';
   A<= "0000";
    wait for 100ns;
    RegSe1 <= '0';
   A<= "00000";
    wait for 100ns;
    RegSe1 <= '1';
   A<= "1111";
    wait for 100ns;
    RegSe1 <= '0';
   A<= "0011";
    wait for 100ns;
    RegSe1 <= '1';
   A<= "1010";
    wait for 100ns;
    RegSe1 <= '0';
   A<= "0001";
    wait for 100ns;
end process;
end Behavioral;
```

• Time diagram

• Implemented design schematic

Constraints file

```
## Clock signal
set_property PACKAGE_PIN W5 [get_ports Clk]
     set_property IOSTANDARD LVCMOS33 [get_ports Clk]
     create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5}
[get_ports C]k]
## Switches
set_property PACKAGE_PIN V17 [get_ports {A[0]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {A[0]}]
set_property PACKAGE_PIN V16 [get_ports {A[1]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {A[1]}]
set_property PACKAGE_PIN W16 [get_ports {A[2]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {A[2]}]
set_property PACKAGE_PIN W17 [get_ports {A[3]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {A[3]}]
set_property PACKAGE_PIN R2 [get_ports {RegSel}]
     set_property IOSTANDARD LVCMOS33 [get_ports {RegSel}]
## LEDS
set_property PACKAGE_PIN U16 [get_ports {S_LED[0]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_LED[0]}]
set_property PACKAGE_PIN E19 [get_ports {S_LED[1]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_LED[1]}]
set_property PACKAGE_PIN U19 [get_ports {S_LED[2]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_LED[2]}]
set_property PACKAGE_PIN V19 [get_ports {S_LED[3]}]
    set_property IOSTANDARD LVCMOS33 [get_ports {S_LED[3]}]
set_property PACKAGE_PIN P1 [get_ports {Carry}]
     set_property IOSTANDARD LVCMOS33 [get_ports {Carry}]
set_property PACKAGE_PIN L1 [get_ports {Zero}]
```

set_property IOSTANDARD LVCMOS33 [get_ports {Zero}]

```
##7 segment display
set_property PACKAGE_PIN W7 [get_ports {S_7Seg[0]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[0]}]
set_property PACKAGE_PIN W6 [get_ports {S_7Seg[1]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[1]}]
set_property PACKAGE_PIN U8 [get_ports {S_7Seg[2]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[2]}]
set_property PACKAGE_PIN V8 [get_ports {S_7Seg[3]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[3]}]
set_property PACKAGE_PIN U5 [get_ports {S_7Seg[4]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[4]}]
set_property PACKAGE_PIN V5 [get_ports {S_7Seg[5]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[5]}]
set_property PACKAGE_PIN U7 [get_ports {S_7Seq[6]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {S_7Seg[6]}]
set_property PACKAGE_PIN U2 [get_ports {AnodeSelector[0]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {AnodeSelector[0]}]
set_property PACKAGE_PIN U4 [get_ports {AnodeSelector[1]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {AnodeSelector[1]}]
set_property PACKAGE_PIN V4 [get_ports {AnodeSelector[2]}]
     set_property IOSTANDARD LVCMOS33 [get_ports {AnodeSelector[2]}]
set_property PACKAGE_PIN W4 [get_ports {AnodeSelector[3]}]
    set_property IOSTANDARD LVCMOS33 [get_ports {AnodeSelector[3]}]
```

Conclusion

Instead of deriving logic equations for the inputs of each segment using K-maps, we can obtain the corresponding inputs using a lookup table.

corresponding inputs using a lookap table.
We can use a 7-segment display to represent hexadecimal, decimal, octal, and binary numbers.
To illuminate a specific section of a display, the anode must be set to high, while the cathode should be set to low. However, the Basys 3 system uses transistors to supply enough current to the common anode point, which causes the anode enables to be inverted. This means that when a section is active, both the cathode and anode signals are driven low.
 As an example when we want to light up the rightmost segment, we have to give "1110" to the anode.