Introduction_to_spatial_statistics__#2

May 2, 2018

0.1 Lezione :: Analisi statistica spaziale di alcune proprietà dei suoli

0.1.1 Laurea magistrale in scienze forestali ed ambientali.Corso di Geografia e Valutazione del suolo

Giuliano Langella glangella@unina.it

Tobler's Low of Geography (1970): "Everything is related to everything else, but near things are more related than distant things".

0.1.2 LINKS:

https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf http://www.rspatial.org http://pakillo.github.io/R-GIS-tutorial/#iovec http://www.nickeubank.com/wp-content/uploads/2015/10/ http://neondataskills.org/R/extract-raster-data-R/#method-3-extract-values-using-a-shapefile

0.2 Step #2: Esercizio in R sulla geostatistica

Nota:Il kernel utilizzato per Jupyter è R per cui il codice è in tale linguaggio. Ai fini dello studio degli argomenti annotare i comandi necessari per eseguire le analisi (geo)statistiche proposte. Argomenti trattati:

EXCEL

Illustrare la procedura in Excel, e consegnarla agli studenti (assegnare esercizio a casa

GSTAT: esempio built-in

Prendiamo confidenza mediante l'uso di GSTAT con (i) l'analisi variografica (variogramma
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf

GSTAT: esempio applicativo in Valle Telesina

ul>

Entriamo in R, installiamo il pacchetto gstat e creiamo lo schema di campionamento
Entriamo in GIS (SAGA, QGIS, ...), importiamo il DEM, importiamo le coordinate dei punti d
Equipariamo mentalmente il processo di "estrazione" dei dati di quota dal DEM come all'int

```
Aprire RStudio

li>Importare i dati di quota estratti (ovvero di C.O. misurati) nei punti di campionamento
li>Costruire un variogramma sperimentale
li>Eseguire il fitting mediante un variogramma teorico autorizzato (sferico ed esponenziale
li>Utilizzare il modello di variogramma per l'interpolazione mediante kriging
li>Confrontare le mappe di kriging utilizzando i diversi modelli di variogramma
li>Confrontare una mappa di kriging con il DEM originale
(li>(nel caso del campionamento pedologico, è come se potessimo confrontare le nostre interp
```

0.3 2. GSTAT: esempio built-in

Is projected: NA

Dati meuse di tipo vettoriale (come se fosse uno shapefile):

1. 'x' 2. 'y' 3. 'cadmium' 4. 'copper' 5. 'lead' 6. 'zinc' 7. 'elev' 8. 'dist' 9. 'om' 10. 'ffreq' 11. 'soil' 12. 'lime' 13. 'landuse' 14. 'dist.m'

La funzione "coordinates", quando utilizzata (es. = ~x+y), promuove il "data.frame" meuse in un tipo "SpatialPointsDataFrame" (SPDF), che ha consapevolezza circa le proprie coordinate spaziali:

proj4string : [NA] Number of points: 155

Data attributes:

cadmium	copper	Lead	zınc
Min. : 0.200	Min. : 14.00	Min. : 37.0	Min. : 113.0
1st Qu.: 0.800	1st Qu.: 23.00	1st Qu.: 72.5	1st Qu.: 198.0
Median : 2.100	Median : 31.00	Median :123.0	Median : 326.0
Mean : 3.246	Mean : 40.32	Mean :153.4	Mean : 469.7
3rd Qu.: 3.850	3rd Qu.: 49.50	3rd Qu.:207.0	3rd Qu.: 674.5
Max. :18.100	Max. :128.00	Max. :654.0	Max. :1839.0

elev dist ffreq soil lime omMin. : 5.180 Min. :0.00000 : 1.000 0:111 Min. 1:84 1:97 1st Qu.: 7.546 1st Qu.:0.07569 1st Qu.: 5.300 2:48 1: 44 2:46 Median : 8.180 Median :0.21184 Median : 6.900 3:23 3:12

Mean : 8.165 Mean : 0.24002 Mean : 7.478

 Mean
 : 0.165
 Mean
 : 0.24002
 Mean
 : 7.476

 3rd Qu.: 8.955
 3rd Qu.: 0.36407
 3rd Qu.: 9.000

 Max.
 :10.520
 Max.
 :0.88039
 Max.
 :17.000

NA's :2

landuse dist.m Min. : 10.0 W :50 1st Qu.: 80.0 Ah :39 :22 Median: 270.0 Am :10 Mean : 290.3 Fw Ab : 8 3rd Qu.: 450.0 Max. :1000.0 (Other):25

NA's : 1

	x	y
1	181072	333611
2	181025	333558
3	181165	333537
4	181298	333484
5	181307	333330

zinc concentrations (ppm)

Dati meuse di tipo grid o raster:

x	у	part.a	part.b
Min. :178460	Min. :329620	Min. :0.0000	Min. :0.0000
1st Qu.:179420	1st Qu.:330460	1st Qu.:0.0000	1st Qu.:0.0000
Median :179980	Median :331220	Median :0.0000	Median :1.0000
Mean :179985	Mean :331348	Mean :0.3986	Mean :0.6014
3rd Qu.:180580	3rd Qu.:332140	3rd Qu.:1.0000	3rd Qu.:1.0000
Max. :181540	Max. :333740	Max. :1.0000	Max. :1.0000
dist	soil ffred		

```
Min.
        :0.0000
                 1:1665
                           1: 779
1st Qu.:0.1193
                2:1084
                           2:1335
Median :0.2715
                 3: 354
                           3: 989
Mean
      :0.2971
3rd Qu.:0.4402
       :0.9926
 Max.
In [8]: class(meuse.grid) # stampa il tipo di dato di "meuse.grid"
  'data.frame'
In [9]: coordinates(meuse.grid) = ~x+y # assegna a meuse.grid le coordinate
        class(meuse.grid)
                                       # stampa il tipo di dato di "meuse.grid"
  'SpatialPointsDataFrame'
In [10]: gridded(meuse.grid) = TRUE
                                        # assegna a meuse.grid il tipo "grid"
         class(meuse.grid)
                                        # stampa il tipo di dato di "meuse.grid"
   'SpatialPixelsDataFrame'
In [11]: par( mfrow = c(2, 2)) # divide lo spazio dei grafici in 2 righe e 2 colonne
         image(meuse.grid["dist"]);title("distance to river (red = 0)")
                                                                              # row 1 col 1
         image(meuse.grid["soil"]);title("soil type")
                                                                               # row 1 col 2
         image(meuse.grid["part.a"]);title("geology type 'a' (red = FALSE)") # row 2 col 1
         image(meuse.grid["part.b"]);title("geology type 'b' (red = FALSE)") # row 2 col 2
```

distance to river (red = 0)

geology type 'a' (red = FALSE geology type 'b' (red = FALSE

0.3.1 Inverso della distanza

In [12]: library(gstat) # carica il pacchetto GSTAT

$$\mathbf{1} \quad z_u\left(p\right) = \frac{\sum_{i=1}^{n} \left(\frac{z_i}{d_i^p}\right)}{\sum_{i=1}^{n} \left(\frac{1}{d_i^p}\right)}$$

```
meuse.grid) # dove interpolare? (nei pixel meuse.grid)
class(zinc.idw) # stampa il tipo di dato restituito da GSTAT
```

[inverse distance weighted interpolation]

'Spatial Pixels Data Frame'

zinc IDW interpolation

1.0.1 Variografia (ossia analisi geostatistica dei dati per mezzo del variogramma)

Comparando il grafico a bolle delle misure di zinco con la mappa della distanza dal fiume, diventa evidente che le concentrazioni maggiori del metallo sono misurate in prossimità del fiume. Seguono la correlazione e lo scatterplot con linea di tendenza sui dati grezzi:

Correlazione -0.644

Il grafico sopra evidenzia un andamento non lineare. Questa relazione può essere linearizzata mediante una trasformazione logaritmica delle concentrazioni di zinco, e prendendo la radice quadrata della distanza dal fiume:

Correlazione -0.799

Analisi della presenza di "struttura spaziale" nei dati. Ossia costruzione del variogramma sperimentale ed osservazione (grafica o numerica) dell'andamento della varianza ($gamma, \gamma$) all'aumentare della distanza nelle coppie di punti.

np	dist	gamma	dir.hor	dir.ver	id
57	79.29244	0.1234479	0	0	var1
299	163.97367	0.2162185	0	0	var1
419	267.36483	0.3027859	0	0	var1
457	372.73542	0.4121448	0	0	var1
547	478.47670	0.4634128	0	0	var1
533	585.34058	0.5646933	0	0	var1
574	693.14526	0.5689683	0	0	var1
564	796.18365	0.6186769	0	0	var1
589	903.14650	0.6471479	0	0	var1
543	1011.29177	0.6915705	0	0	var1
500	1117.86235	0.7033984	0	0	var1
477	1221.32810	0.6038770	0	0	var1
452	1329.16407	0.6517158	0	0	var1
457	1437.25620	0.5665318	0	0	var1
415	1543.20248	0.5748227	0	0	var1

Si esegue il fitting del variogramma sperimentale (lzn.vgm) con un modello teorico ammissibile. Abbiamo visto nella precedente lezione diversi modelli ('Sph', 'Exp', ...). I parametri {sill,nugget,range} del variogramma sperimentale devono essere passati alla funzione fit.variogram() che crea il variogramma di fitting. In R+GSTAT, il passaggio dei parametri è mediato dalla funzione vgm(sill,model,range,nugget). In definitiva, la funzione di fitting del variogramma è così fatta: - fit.variogram(exp_vgm, mod_vgm, ...) - ... indica altri parametri, come appresso indicato - fit.sills [DEFAULT = TRUE] - fit.ranges [DEFAULT = TRUE] - fit.method [DEFAULT = 7]

model	psill	range	kappa	ang1	ang2	ang3	anis1	anis2
Nug	0.05066243	0.0000	0.0	0	0	0	1	1
Sph	0.59060780	897.0209	0.5	0	0	0	1	1

Invece della media costante - denotata da ~1, possiamo specificare una funzione media, ad esempio utilizzando ~sqrt(dist) come predittore:

model	psill	range	kappa	ang1	ang2	ang3	anis1	anis2
Nug	0.05712231	0.0000	0.0	0	0	0	1	1
Exp	0.17641559	340.3201	0.5	0	0	0	1	1

In [21]: plot(lznr.vgm, lznr.fit)

1.0.2 Interpolazione spaziale mediante kriging:

- ordinary kriging [~1]
- universal kriging [~sqrt(dist)]

Ordinary Kriging [~1]

Universal Kriging [~sqrt(dist)]

1.1 3. GSTAT: esempio applicativo in Valle Telesina

- importare un raster (DEM) in R
- creare un griglia regolare di punti di campionamento, metodo artigianale
- creazione di un raster, metodo rapido
- creare la lista di punti da esportare per uso in GIS (saltiamo)
- estrazione della ELEV nei punti di campionamento (in R, con/senza buffer)
- variogramma e fitting della ELEV
- interpolazione spaziale (kriging) della ELEV
- valutazione critica dei risultati dell'analisi

Caricare i pacchetti R richiesti dalla procedura seguente:

Dai metadati del DEM in ambiente GIS ricaviamo le coordinate del Bounding Box Il DEM è della Valle Telesina. Nel corso degli esperimenti statistici affronteremo lo studio di un dataset pedologico ottenuto in Valle Telesina. Per questa ragione eseguiremo le nostre analisi in questo areale.

In [29]: extent(DEM)

class : Extent xmin : 453000 xmax : 477000 ymin : 4556000 ymax : 4572320

In [30]: bbox(DEM)

	min	max
s1	453000	477000
s2	4556000	4572320

Incolliamo le coordinate del Bounding Box della nostra area di studio, avendo cura di riconoscere opportunamente le dimensioni X (Easting) ed Y (Northing). Possiamo ottenere le info del bbox sia in R con extent(*GRID*) sia in GIS.

```
In [31]: xmin = 453000 #ămetri

ymin = 4556000 #ămetri

xmax = 477000 #ămetri

ymax = 4572320 #ămetri
```

Calcoliamo l'estensione dell'area studio lungo X ed Y:

Creare una griglia regolare di campionamento Si divide il dominio XY (=2D, ossia in termini matematici $\mathfrak{D}^2 \subset \mathfrak{R}^2$) dell'area studio in una griglia regolare di $N_x \times N_y$ punti di campionamento. Significa dividere per $N_x - 1$ l'estensione lungo X e per $N_y - 1$ l'estensione lungo Y.

```
In [33]: Nlen = 20
    Nlen = 20
    dx = (xmax-xmin) / Nlen
    dy = (ymax-ymin) / Nlen
```

Scriviamo le coordinate dei punti lungo i due transetti X ed Y. La funzione seq crea una sequenza regolare di valori, partendo da xmin fino ad xmax con uno step pari a dx. (abbiamo che il vettore xtransect è costituito da 101 elementi, come ytransect)

Replichiamo il vettore transect a formare una matrice per ogni dimensione del dominio spaziale (quindi X ed Y):

NULL

441

[1,] 21 21

Manipolazione dei vettori Xgrid ed Ygrid per formare le matrici 2D di N_x righe e N_y colonne:

```
In [36]: Xgrid = matrix( Xgrid, Nx, Ny )
         Xgrid = t(Xgrid)
         Ygrid = matrix( Ygrid, Nx, Ny )
         # Osserviamo le differenza rispetto alle stampe effettuate in precedenza su Xgrid:
         class(Xgrid) # ad un oggetto R "matrix" possiamo chiedere sia "length" che "dim"
         length(Xgrid) # infatti "length" restituisce il numero di elementi (Nx*Ny)
         dim(Xgrid) # "dim" restituisce il numero di elementi distinti per dimensione X ed Y
   'matrix'
   441
   1. 21 2. 21
   Il punto P di coordinate matriciali [1,1] è definito come P_1_1 ed ha le seguenti coordinate
x(1,1) ed y(1,1):
In [37]: pi = paste("P_",1,"_",1,sep="")
        xi = Xgrid[1,1]
         yi = Ygrid[1,1]
        print( cbind(pi,xi,yi) )
           хi
                      уi
[1,] "P_1_1" "453000" "4556000"
```

Il punto di campionamento P_1_2 è ubicato uno step dx a destra lungo l'asse X ed è fermo lungo l'asse Y:

per cui ha la stessa coordinata Y di P_1_1 ma la coordinata X è quella di P_1_1 + dx Il punto di campionamento P_2_1 è ubicato uno step sotto lungo l'asse Y ed è fermo lungo l'asse X:

per cui ha la stessa coordinata X di P_1_1 ma la coordinata Y è quella di P_1_1 + dy

Metodo rapido per la creazione di un raster Leggere il CRS con codice EPSG:32632 in formato PROJ4 dal portale spatialreference.org: http://spatialreference.org/ref/epsg/32633/proj4/ In alternativa è possibile chiedere il CRS al DEM precedentemente importato in R:

```
In [40]: proj4string(DEM)
  '+proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0'
In [41]: GRID <- raster(ncol = Nx, nrow = Ny, xmn = xmin, xmx = xmax, ymn = ymin, ymx = ymax,</pre>
                        crs="+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
         GRID
class
           : RasterLayer
dimensions : 21, 21, 441 (nrow, ncol, ncell)
resolution : 1142.857, 777.1429 (x, y)
         : 453000, 477000, 4556000, 4572320 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs +towgs84=0,0,0
In [42]: hasValues(GRID) # esiste il grigliato ma non è valorizzato!
  FALSE
In [43]: # Note Nx*Ny is the total number of cells in the grid
         values(GRID) <- 1:(Nx * Ny)</pre>
         options(repr.plot.width=5,repr.plot.height=4)
         plot(GRID)
```


Creazione della lista di punti di coordinate X ed Y in corrispondenza dei quali eseguire il campionamento Nel nostro caso specifico, l'estrazione dei valori di quota dal DEM in ambiente GIS mediante l'uso di Points.txt

Costruzione del campo etichetta dei punti Pi di campionamento, es. P1, P2, ec

```
# Stampa del valore di coordinata X ed Y
                 Xi[i] = Xgrid[row,col]
                 Yi[i] = Ygrid[row,col]
                 #print(Pi[i])
                 #print(Xi[i])
                 #print(Yi[i])
             }
         }
In [45]: Points = cbind(Pi,Xi,Yi)
         #creare la matrice XY e salvare su disco per poi importarla in GIS (QGIS/SAGA)
         write.table(Points, file = "data/Points.txt", append = FALSE, quote = FALSE, sep = ",",
                     eol = "\n", na = "NA", dec = ".", row.names = FALSE,
                     col.names = TRUE, qmethod = c("escape", "double"),
                     fileEncoding = "")
In [46]: class(Points)
   'matrix'
```

1.2 Estrarre i dati di quota dal DEM (plugin :: Point Sampling Tool)

Pi[i] = paste("P_",row,"_",col, sep="")

1.2.1 In QGIS:

Importare in GIS la tabella Points.txt appena creata e campionare il DEM (i suoli) nei punti della griglia di campionamento. - http://www.qgistutorials.com/it/docs/sampling_raster_data.html - https://pvanb.wordpress.com/2010/02/15/sampling-raster-values-at-point-locations-in-qgis/

1.2.2 In R:

http://neondataskills.org/R/extract-raster-data-R/#method-3-extract-values-using-a-shapefile

Si crea un oggetto R del tipo Spatial Points, assegnando opportuno CRS:

	Xi	Yi
P_1_1	453000	4556000
P_1_2	454200	4556000
P_1_3	455400	4556000
P_1_4	456600	4556000
P_1_5	457800	4556000
P_1_6	459000	4556000

```
Coordinates:
       min
               max
Xi 453000 477000
Yi 4556000 4572320
Is projected: NA
proj4string : [NA]
Number of points: 441
In [49]: # CRS : Coordinate Reference System
         proj4string(XY_sp) <- '+proj=utm +zone=33 +datum=WGS84</pre>
                                 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0'
         summary(XY_sp)
Object of class SpatialPoints
Coordinates:
       min
               max
Xi 453000 477000
Yi 4556000 4572320
Is projected: TRUE
proj4string :
[+proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84
+towgs84=0,0,0]
Number of points: 441
Estrazione del valore della variabile in corrispondenza della griglia di campionamento:
In [50]: ELEV <- extract(DEM,</pre>
                                   # raster layer
                                   # SPDF with centroids
```

Object of class SpatialPoints

```
'simple')#ămethod = {'simple' or 'bilinear'}
        ELEV_buf <- extract(DEM, # raster layer</pre>
                                    # SPDF with centroids for buffer
                XY_sp,
                buffer = 400,
                                    # buffer size, units depend on CRS, in our case meters
                                    # what value to extract (min, mean, max, myfun(),...)
                fun=max,
                df=FALSE)
                                    # return a dataframe?
In [51]: summary(ELEV)
        summary(ELEV_buf)
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                         Max.
  31.2 114.5 233.7
                         348.2 508.4 1297.5
  Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
  40.3 156.4 315.2
                        426.2 620.0 1386.8
```

Confrontare i valori campionati con la sorgente primaria (DEM):

```
In [52]: # crea matrice da vettore
          mELEV
                  = matrix(ELEV,Nx,Ny)
          mELEV_buf = matrix(ELEV_buf,Nx,Ny)
          # traspone matrice
          mELEV
                     = t(mELEV)
          mELEV_buf = t(mELEV_buf)
          # ribalta la matrice up/down
          mELEV
                     = apply(mELEV, 2, rev)
          mELEV_buf = apply(mELEV_buf, 2, rev)
          # scrivi i valori di quota sul grigliato mappa
          GRID_buf = GRID
          values(GRID) <- mELEV</pre>
          values(GRID_buf) <- mELEV_buf</pre>
In [53]: options(repr.plot.width=7,repr.plot.height=4)
          par(mfrow = c(2, 2))
                         main="Valori campionati [pixel]")
          plot(GRID,
         plot(GRID_buf,main="Valori campionati [max,r=400m]")
                         main="Sorgente primaria (DEM)")
         plot(DEM,
              Valori campionati [pixel]
                                                     Valori campionati [max,r=400m]
         4560000 4570000
                                                   4560000 4570000
          450000
                   460000
                           470000
                                   480000
                                                     450000
                                                             460000
                                                                     470000
                                                                              480000
              Sorgente primaria (DEM)
         4560000 4570000
          450000
                   460000
                           470000
                                   480000
```

Correlation = 0.983

1.2.3 Costruire il variogramma sperimentale (su ELEV)

Υi

Abbiamo le coordindate in XY ed i valori della variabile in ELEV.

Xi

```
Min.
      :453000
                Min.
                       :4556000
1st Qu.:459000
              1st Qu.:4560080
Median: 465000 Median: 4564160
Mean :465000
              Mean
                       :4564160
3rd Qu.:471000
                3rd Qu.:4568240
Max.
      :477000
                Max.
                       :4572320
```

[1] "ELEV"

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 31.2 114.5 233.7 348.2 508.4 1297.5
```

'data.fra	me'		
	Xi	Yi	ELEV
P_1_1	453000	4556000	31.2
P_1_2	454200	4556000	37.7
P_1_3	455400	4556000	48.3
P_1_4	456600	4556000	149.7
P_1_5	457800	4556000	231.2
P_1_6	459000	4556000	191.3

Χi	Ĺ	Y	i	EL	ΕV	I
Min.	:453000	Min.	:4556000	Min.	:	31.2
1st Qu.:	:459000	1st Qu.	:4560080	1st Qu.	:	114.5
Median :	:465000	Median	:4564160	Median	:	233.7
Mean :	:465000	Mean	:4564160	Mean	:	348.2
3rd Qu.:	:471000	3rd Qu.	:4568240	3rd Qu.	:	508.4
Max. :	:477000	Max.	:4572320	Max.	: 1	297.5

La funzione "coordinates", quando utilizzata (es. sul lato sinistro di un segno = oppure <-), promuove il data.frame in un a SpatialPointsDataFrame, che ha consapevolezza circa le sue coordinates geospaziali:

'SpatialPointsDataFrame'

In [58]: summary(Points)

```
Object of class SpatialPointsDataFrame
Coordinates:
       min
               max
Xi 453000 477000
Yi 4556000 4572320
Is projected: NA
proj4string : [NA]
Number of points: 441
Data attributes:
      F.I.F.V
Min. : 31.2
 1st Qu.: 114.5
Median : 233.7
 Mean : 348.2
 3rd Qu.: 508.4
 Max.
      :1297.5
   Possiamo assegnare ai punti il CRS corretto (con EPSG:32633):
In [59]: proj4string(Points) <- "+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"</pre>
         summary(Points)
Object of class SpatialPointsDataFrame
Coordinates:
       min
Xi 453000 477000
Yi 4556000 4572320
Is projected: TRUE
proj4string :
[+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+towgs84=0,0,0]
Number of points: 441
Data attributes:
      ELEV
Min. : 31.2
 1st Qu.: 114.5
Median : 233.7
Mean : 348.2
 3rd Qu.: 508.4
 Max. :1297.5
Evidenziare la presenza di un gradiente lineare e smussato The plotting function used, bubble,
assumes that the x- and y-axis are the spatial coordinates:
```

col=c("#00ff0088", "#00ff0088"), main = "elevation (m)")

In [60]: options(repr.plot.width=7,repr.plot.height=4)

bubble(Points, "ELEV",

1.2.4 NOTA: creare un GRID 2 o 4 volte meno denso del DEM (se troppo pesante)

Costruzione del GRID di interpolazione, con lo stesso grigliato del DEM (differente da ELEV)

```
In [61]: DEM
class
            : RasterLayer
dimensions : 3264, 4800, 15667200 (nrow, ncol, ncell)
resolution : 5, 5 (x, y)
            : 453000, 477000, 4556000, 4572320 (xmin, xmax, ymin, ymax)
extent
coord. ref. : +proj=utm +zone=33 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : /Users/giuliano/git/Didattica/jupyter/data/dem5m.tif
            : dem5m
names
In [62]: xy=as.data.frame(coordinates(DEM))
         class(xy)
  'data.frame'
In [63]: coordinates(xy)=~x+y
         class(xy)
  'SpatialPoints'
```

```
'SpatialPixels'
```

```
In [65]: proj4string(xy) <- "+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
         summary(xy)
Object of class SpatialPixels
Coordinates:
     min
             max
x 453000 477000
y 4556000 4572320
Is projected: TRUE
proj4string :
[+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+towgs84=0,0,0]
Number of points: 15667200
Grid attributes:
  cellcentre.offset cellsize cells.dim
                           5
                                  4800
          453002.5
Х
                           5
                                  3264
         4556002.5
У
In [66]: summary(Points)
Object of class SpatialPointsDataFrame
Coordinates:
       min
               max
Xi 453000 477000
Yi 4556000 4572320
Is projected: TRUE
proj4string :
[+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+towgs84=0,0,0]
Number of points: 441
Data attributes:
     ELEV
Min. : 31.2
 1st Qu.: 114.5
Median : 233.7
Mean : 348.2
 3rd Qu.: 508.4
Max. :1297.5
In [67]: elev.idw = idw(ELEV~1, Points, newdata=xy)
[inverse distance weighted interpolation]
In [68]: \#par(mfrow = c(2, 2))
         options(repr.plot.width=5,repr.plot.height=3)
```

```
plot(GRID,main="Valori campionati")
plot(DEM, main="Sorgente primaria (DEM)")
spplot(elev.idw["var1.pred"], main = "ELEV IDW interpolation")
```


ELEV IDW interpolation

np	dist	gamma	dir.hor	dir.ver	id
420	816.000	8357.42	0	0	var1
2379	1620.689	18956.68	0	0	var1
2979	2641.119	33065.65	0	0	var1
5125	3767.210	53226.32	0	0	var1
4466	4822.958	65469.04	0	0	var1
6390	5871.565	82022.20	0	0	var1
7094	7050.894	95182.81	0	0	var1
5731	8103.642	101599.59	0	0	var1
6071	9035.502	106212.90	0	0	var1
6701	10032.662	107410.44	0	0	var1
7569	11167.861	108677.88	0	0	var1
5923	12270.723	104455.90	0	0	var1
6201	13315.492	106429.99	0	0	var1
5710	14422.137	102484.69	0	0	var1
4954	15504.799	95864.11	0	0	var1

elev.fit3
elev.fit4

model	psill	rang	je	kappa	ang1	ang2	ang3	anis1	anis2
Nug	0.0	0.00		0.0	0	0	0	1	1
Sph	108686.6	1132	5.86	0.5	0	0	0	1	1
model	psill	rang	je	kappa	ang1	ang2	ang3	anis1	anis2
Nug	0.0	0.00		0.0	0	0	0	1	1
Sph	108687.3	1132	5.98	0.5	0	0	0	1	1
model	psill	rang	je	kappa	ang1	ang2	ang3	anis1	anis2
model Nug	psill 0.0	rang 0.00	ge	kappa 0.0	ang1	ang2	ang3	anis1	anis2
	1	0.00						anis1 1 1	anis2 1 1
Nug	0.0 105376.2	0.00		0.0	0 0	0 0	0 0	1 1	1 1
Nug Sph	0.0 105376.2	0.00 1017 ange	8.26	0.0	0 0	0 0	0 0	1 1	1 1

default & automatic

fit.method=7

fit.method=1

