

PHYC90045 Introduction to Quantum Computing Reminder: Measuring Observables	Į INI
IN QM an observable (eg. energy) is represented by a Hermitian matrix. The values measured of when measuring the observable are the eigenvalues of the corresponding matrix.	
In the simplest case, the matrix is a diagonal matrix and the eigenvalues are listed down the diagonal:	
H stands for "Hamiltonian" $H=Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$ Energy of the $ 0\rangle$ state $H=Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$ Energy of the $ 1\rangle$ state	
In more complicated cases you may have to <i>diagonalize</i> the matrix first, using an eigenvalue decomposition.	

PHYC90045 Introduction to Quantum Computing Mapping the Spin Glass form to QC		
Optimisation problems can often be cast into an equivalent "spin glass" form:		
$E=\sum_{i eq j}J_{ij}z_iz_j+\sum_iB_iz_i$ This is convert to a convenient form to map onto a quantum co	omputer:	
Ising coupling local "field	1 "	
$H = \sum_{i \neq j} J_{ij} Z_i Z_j + \sum_i B_i Z_i$	In QM, energy is represented as a matrix!	
The \mathbf{Z}_i are now operators defined as per our definitions with (which can be mapped to binary variables 0/1)	eigenvalues +/-1	

5, 5, 5	
into two disjoint partitions, such that s is the same?	t
and {3, 6, 5, 5}	
i	into two disjoint partitions, such tha is the same?

PHYC9004	5 Introduction t			itionin	g to Q	UBO		MELBOURNE
			1,	3, 8, 10, 6,	5, 5			
	$\begin{vmatrix} 1 \\ \downarrow \\ x_1 \rangle \end{vmatrix}$	$\downarrow \\ x_2\rangle$	$\downarrow \\ x_3\rangle$	$\downarrow \\ x_4\rangle$	$\downarrow \\ x_5\rangle$	$\downarrow \\ x_6\rangle$	\downarrow $ x_7\rangle$	
We assign a qubit to each number. The qubit being zero indicates it is one partition. The qubit being one indicates it is in the other. $ \text{Qubits are } 0\rangle \text{ if they're in partition 0, } 1\rangle \text{ if they're in partition 1} $								

PHYC90045 Introduction to Quantum Computing Solution for our Number Partitioning	MELKALINE
$H = 4Z_1Z_2 + 6Z_1Z_3 + 12Z_2Z_3 + 14I$	
Two degenerate solutions: $ 110 angle\; 001 angle$	
E = 4 - 6 - 12 + 14 = 0	
And of course, they correctly partition the numbers: 1+2 = 3	
1 77	
Other combinations go worse, eg, $ 111 angle$	
E = 4 + 6 + 12 + 14 = 36	

PHYC90045 Introduction to Quantum Computing Even numbers in each subset	ALLECCIANE
$H_A = \left(\sum_i Z_i\right)^2$ As before, having an equal number of terms in each partition will evaluate zero. Unequal numbers result in a positive value.	e to

PHYCS0045 Introduction to Quantum Computing Number of edges joining the subsets	MELECUSINE
$H_B = \sum_{i,j \in E} \frac{I - Z_i Z_j}{2}$ Evaluates to 0 if the edge is in the same partition, but +1 if the edge goe between partitions. In total ${\rm H_B}$ counts the number of edges between the partitions.	

PHYC90045 Introduction to Quantum Computing Total Hamiltonian	MELECURAT
$H_A = \left(\sum_i Z_i ight)^2$	Same number of vertices in each partition.
$H_B = \sum_{i,j \in E} \frac{I - Z_i Z_j}{2}$	Number of edges between partitions.
In total then, with A>>B:	
$\boxed{ H = AH_A + BH_B }$	

Energy Per	nalties
------------	---------

Each city appears exactly once in the cycle:

$$H_{city} = \sum_{v} \left(1 - \sum_{i} x_{v,i} \right)^{\frac{1}{2}}$$

Each step has exactly one city:

$$H_{step} = \sum_{i} \left(1 - \sum_{v} x_{v,i}\right)^2$$

Only paths between cities with edges between them are taken:

$$H_{cycle} = \sum_{i} \sum_{u \to v \notin E} x_{u,i} x_{v,i+1}$$

Any path making a cycle will have energy, E=0, with all other combinations

Speed up of optimization algorithms

A

It is proven (Aharononv, Kempe, et al) that you can map any circuit onto an equivalent optimization problem, with only a polynomial difference in resources (including time required to solve).

Their cost functions involve more than just "Z" – carefully worked out "gadgets".

Just because we can find an encoding of a problem in a way which a quantum computer could solve it, doesn't say anything about the speed up.

Typically, we when considering hard problems such as NP-Complete problems (e.g. TSP) we expect to achieve a quadratic speedup in accordance with quantum search on unstructured problems.

Given the power of classical heuristics to attack such problems, the development and power of "quantum heuristics" is an open question.

PHYC90045 Introduction to Quantum Computin

Week 9

Lecture 17

Optimization problems, Encoding problems as energies, Quadratic Binary Optimization (QUBO), Problem embedding

Lecture 18

Adiabatic Quantum Computing

Lab 9

Using DWave machines