Optimization

Exercises

- 1. Prove Rolle's Theorem.
- 2. Characterize the stationary point(s) of¹

$$f(x_1, x_2) = x_1^2 + x_2^2$$

Are these points maxima, minima, or saddle points?

3. Characterize local optima and solve²

$$\max_{x_1, x_2} f(x_1, x_2) = 3x_1 x_2 - x_1^3 - x_2^3$$

- 4. Prove that the least squares objective function is convex, implying that the first order conditions are sufficient to characterize the β that solves the least squares estimator.
- 5. Let $g: \mathbb{R} \to \mathbb{R}$ be a monotonic transformation of $f: X \to \mathbb{R}$. Show that $g \circ f$ has the same local maxima as f.
- 6. Consider the problem

$$\max_{x_1, x_2} \quad x_1 x_2$$
 subject to
$$x_1 + x_2 = 1$$
 (1)

Think about the geometry of the problem. What is the constraint set? Then solve it using the method of Legrange. 3

 $^{^{1}}$ Carter 5.10

 $^{^2\}mathrm{Carter}$ Example 5.8

³Carter Example 5.14