590 HW1

Austin Turvy Derek Holste Mason Carhart

4/13/2021

```
# Load data
af = read_dta(here("afghanistan_anonymized_data.dta"))
```

1. An outlier observation is someone who had more than 50 sheep or goats owned by the household in 2007 and in the fall of 2007 or had more than 10 jeribs of land owned by the household in the fall of 2007 or had more than 20 poeple in the houdcount in fall of 2007 or a person that has number of people in a household greater than 20 and are observed in summer of 2008. Or if number of jerribs of land counted is more than 10 and are observed in summer of 2008. Lastly if the number of sheep and goats is above 50 and they are observed in summer of 2008.

```
mytable <- table(af$nonoutlier,af$nonoutlier)
mytable</pre>
```

There are 76 non-outliers in the data given the specifications prior.

Table 1: Regression Results

	Dependent variable:						
	Girl Enro	lled in Formal School Fall 2007					
	(1)	(2)					
Treatment	0.517***	0.372^{***}					
	(0.091)	(0.094)					
chagcharan	0.178**	0.086					
	(0.085)	(0.090)					
Constant	0.087^{*}	0.328***					
	(0.051)	(0.057)					
Observations	667	707					
\mathbb{R}^2	0.335	0.167					
Note:		*p<0.1; **p<0.05; ***p<0.01					
		S.E Clustered by village					

f07_test_observed == 1))

```
# Run girls regression table 4 column 1 with controls
reg5 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
# Run girls regression table 4 column 1 with controls
reg6 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
```

Table 2: Regression Results

Girls (2) 0.372*** (0.094) 0.086	(3) 0.511*** (0.083)
0.372*** (0.094)	0.511***
(0.094)	
,	(0.083)
0.096	
0.000	0.156*
(0.090)	(0.082)
0.328***	-0.159
(0.057)	(0.256)
707	667
0.167	0.366

Question 3:

Question 4:

```
# girls regression column 4
reg9 = felm(f07_both_norma_total ~ treatment + chagcharan + f07_heads_child_cnt +
```

```
f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
# boys regression column 4
reg10 = felm(f07_both_norma_total ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
```

Question 4b:

```
# girls regression for column 6
reg11 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08 test observed == 1))
# boys regression for column 6
reg12 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# girls regression for column 7
reg13 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 7
reg14 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
```

```
# Getting mean values for column 1
col 1 = af \%
  filter(treatment == 1 & nonoutlier == 1 & f07 observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Getting mean values for column 2
col 2 = af \%
  filter(treatment == 0 & nonoutlier == 1 & f07 observed == 1) %>%
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Create regression functions for column 3
reg_function_coef = function(x){
   reg = felm(x ~ treatment | 0 | 0 | clustercode,
               data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
    coef = coef(reg)[2]
   return(coef)
}
# Regression function for SE
reg_function_se = function(x){
 reg = felm(x ~ treatment | 0 | 0 | clustercode,
            data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
  se = sqrt(diag(vcov(reg)))[2]
 return(se)
```

```
}
# Obtain column 3 coefficients
col 3 coefs = af \%>%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_coef)
  ) %>% head(., 1) %>% unlist(.)
# Obtain column 3 SE
col_3_se = af \%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_se)
  ) %>% head(., 1) %>% unlist(.)
# Regression for column 7
col_7 = felm(f07_formal_school ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
             data = af \%
               filter(nonoutlier == 1 & f07_observed == 1 & treatment == 0))
# Regression for column 8
col_8 = felm(f07_both_norma_total ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
```

```
data = af %>%
               filter(nonoutlier == 1 & f07_observed == 1 &
                        f07_test_observed == 1 & treatment == 0))
# further analysis regression
reg_fa = felm(f07_formal_school ~ f07_girl_cnt +
         f07_nearest_scl + f07_girl_cnt*f07_nearest_scl +
         I(f07_nearest_scl^2) | 0 | 0 | clustercode,
         data = af %>% filter(treatment==0 &
                              f07 observed == 1 &
                              nonoutlier == 1))
\# ggplot(af, aes(x = f07\_nearest\_scl, fill = as.factor(f07\_girl\_cnt))) +
  geom_histogram(color = "grey", bins = 60, alpha = .9) +
   scale_fill_viridis_d(option = "C") +
  theme modern rc(ticks = TRUE, plot title size = 13) +
    labs(x = "Miles From School", y = "Count", fill = "Is Girl",
         title = "Distribution of Distance from School By Gender")
af = af %>% mutate(dist_near = if_else(f07_nearest_scl < 2, 1, 0),</pre>
               dist_close = if_else(f07_nearest_scl >= 2 & f07_nearest_scl < 3, 1, 0),</pre>
               dist_nclose = if_else(f07_nearest_scl >= 3 & f07_nearest_scl < 4, 1, 0),</pre>
               dist_far = if_else(f07_nearest_scl >= 4, 1, 0))
# Regression for near individuals
reg_near_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
# Regression for close individuals
reg_close_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_close == 1
                              ))
# Regression for not close individuals
reg_nclose_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07 girl cnt == 1 &
                              dist nclose == 1
                              ))
```

```
# Regression for far individuals
reg_far_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist far == 1
# Regression for near individuals
reg_near_b= felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
                              ))
# Regression for close individuals
reg_close_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_close == 1
                              ))
# Regression for not close individuals
reg_nclose_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist nclose == 1
# Regression for far individuals
reg_far_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_far == 1
                              ))
```

Regression for near individuals

reg_test_near_g = felm(f07_both_norma_total ~ treatment +

chagcharan | 0 | 0 | clustercode,

```
data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
# Regression for close individuals
reg_test_close_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_close == 1
# Regression for not close individuals
reg_test_nclose_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist nclose == 1
                              ))
# Regression for far individuals
reg_test_far_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_far == 1
# Regression for near individuals
reg_test_near_b= felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
# Regression for close individuals
reg_test_close_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
```

```
f07_girl_cnt == 0 &
                              dist_close == 1
# Regression for not close individuals
reg_test_nclose_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_nclose == 1
# Regression for far individuals
reg_test_far_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07 girl cnt == 0 &
                              dist far == 1
                              ))
# Table 4.1
stargazer(reg1, reg2, reg5, reg6, reg7, reg8, reg9, reg10,
          keep.stat = c('n', 'rsq'),
          title = "Table 4: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan"),
          \#dep.var.labels = c(""),
          type = 'latex', header = F, float = TRUE,
          notes =c("S.E Clustered by village"))
# Table 4b
stargazer(reg11, reg12, reg13, reg14,
          keep.stat = c('n', 'rsq'),
          title = "Table 4b: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan"),
          \#dep.var.labels = c(""),
          omit = c("f07_heads_child_cnt", "f07_girl_cnt", "f07_age_cnt",
                   "f07_duration_village_cnt", "f07_farsi_cnt",
                   "f07_tajik_cnt", "f07_farmer_cnt", "f07_age_head_cnt",
                   "f07_yrs_ed_head_cnt", "f07_num_ppl_hh_cnt",
                   "f07_jeribs_cnt", "f07_num_sheep_cnt", "f07_nearest_scl"),
          type = 'latex', header = F, float = TRUE,
          notes =c("S.E Clustered by village"))
# Table 2
stargazer(col_1, col_2, col_3_coefs, col_3_se, col_7, col_8,
          keep.stat = c('n', 'rsq'),
          title = "Table 4: Treatment Effects by Gender",
          covariate.labels = c("Household head's child", "Girl",
```

Table 3: Table 4: Treatment Effects by Gender

	10010 0.	14010 4. 110							
				Depende	ent variable:				
		f07_form	mal_school		$f07_both_norma_total$				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(
Treatment	0.517*** (0.091)	0.372*** (0.094)	0.511*** (0.083)	0.351*** (0.088)	0.691*** (0.130)	0.424*** (0.107)	0.654*** (0.123)	0.40	
chagcharan	0.178** (0.085)	0.086 (0.090)	$0.156* \\ (0.082)$	0.094 (0.083)	0.282** (0.123)	0.113 (0.104)	0.275** (0.117)	0. (0.	
f07_heads_child_cnt			-0.049 (0.057)	0.028 (0.051)			-0.156 (0.168)	0. (0.	
f07_age_cnt			0.035** (0.016)	0.064*** (0.019)			0.243*** (0.030)	0.30	
f07_duration_village_cnt			-0.001 (0.001)	-0.001 (0.002)			-0.003 (0.002)	-0 (0.	
f07_farsi_cnt			-0.084 (0.051)	0.009 (0.069)			-0.115 (0.097)	0. (0.	
f07_tajik_cnt			-0.070 (0.069)	0.087** (0.037)			-0.005 (0.079)	0.1′ (0.	
$f07_farmer_cnt$			-0.016 (0.035)	-0.083^* (0.044)			0.0002 (0.076)	-0 (0.	
f07_age_head_cnt			0.0001 (0.002)	-0.002 (0.002)			-0.001 (0.004)	0. (0.	
f07_yrs_ed_head_cnt			0.002 (0.006)	0.004 (0.005)			0.026** (0.011)	0.04 $(0.$	
f07_num_ppl_hh_cnt			$0.009 \\ (0.007)$	-0.002 (0.008)			$0.007 \\ (0.007)$	-0 (0.	
f07_jeribs_cnt			-0.009 (0.013)	0.020 (0.013)			0.016 (0.030)	0. (0.	
$f07_num_sheep_cnt$			$0.005 \\ (0.004)$	0.004 (0.003)			$0.008 \\ (0.008)$	0.0	
f07_nearest_scl			-0.005 (0.022)	-0.061^{***} (0.023)			$0.001 \\ (0.050)$	-(0.	
Constant	0.087^* (0.051)	0.328^{***} (0.057)	-0.159 (0.256)	$0.060 \\ (0.254)$	-0.486^{***} (0.097)	0.267*** (0.091)	-2.421^{***} (0.600)	-3.0	
Observations R ²	667 0.335	707 0.167	667 0.366	707 0.251	667 0.167	707 0.045	667 0.357	7	

*p<0.1; **p<0.05; ***p S.E Clustered by v

Table 4: Table 4b: Treatment Effects by Gender

		Depende	nt variable:	
		s08_both_	norma_total	
	(1)	(2)	(3)	(4)
Treatment	0.735*** (0.093)	0.380*** (0.129)	0.661*** (0.090)	0.413*** (0.099)
chagcharan	0.182** (0.086)	$0.206 \ (0.125)$	0.204** (0.084)	0.228*** (0.085)
s08_heads_child_cnt			-0.036 (0.136)	-0.064 (0.154)
$s08_age_cnt$			0.273*** (0.033)	0.396*** (0.025)
s08_duration_village_cnt			-0.001 (0.003)	-0.005 (0.003)
s08_farsi_cnt			0.065 (0.086)	$0.090 \\ (0.097)$
$s08_tajik_cnt$			$0.060 \\ (0.052)$	-0.083 (0.095)
$s08_farmer_cnt$			-0.073 (0.092)	-0.104 (0.081)
s08_age_head_cnt			0.001 (0.003)	0.001 (0.004)
s08_yrs_ed_head_cnt			0.026** (0.012)	0.065*** (0.014)
s08_num_ppl_hh_cnt			0.030*** (0.011)	0.024 (0.019)
s08_jeribs_cnt			-0.055^{***} (0.018)	-0.022 (0.028)
s08_num_sheep_cnt			-0.001 (0.003)	0.011** (0.005)
$s08_nearest_scl$			0.013 (0.040)	-0.073^* (0.040)
Constant	-0.458^{***} (0.066)	0.281*** (0.089)	-3.052^{***} (0.460)	-3.144^{***} (0.302)
Observations \mathbb{R}^2	689 0.165	712 0.042	687 0.378	709 0.410

 $^{*}p<0.1; \ ^{**}p<0.05; \ ^{***}p<0.01$ S.E Clustered by village

```
"Age", "Years family in village", "Farsi",

"Tajik", "Farmers", "Age of household head",

"Years of education of household head",

"Jeribs of land", "Number of sheep",

"Distance to nearest formal school"),

#dep.var.labels = c(""),

type = 'latex', header = F, float = TRUE,

notes =c("S.E Clustered by village"))
```

Table 5: Table 4: Treatment Effects by Gender

Household head's child	Girl	Age	Years family in village	Farsi	Tajik	Farmers	Age of household head
0.935	0.474	8.321	30.302	0.208	0.243	0.717	40.142

S.E Clustered by village

Table 6: Table 4: Treatment Effects by Gender

Household head's child	Girl	Age	Years family in village	Farsi	Tajik	Farmers	Age of household head
0.911	0.455	8.312	27.594	0.209	0.208	0.727	39.970

S.E Clustered by village

Table 7: Table 4: Treatment Effects by Gender

Household head's child	Girl	Age	Years family in village	Farsi	Tajik	Farmers	Age of household head
0.024	0.020	0.009	2.709	-0.001	0.035	-0.010	0.172

S.E Clustered by village

Table 8: Table 4: Treatment Effects by Gender

Household head's child	Girl	Age	Years family in village	Farsi	Tajik	Farmers	Age of household head
0.015	0.020	0.040	1.605	0.054	0.049	0.034	1.101

S.E Clustered by village

Table 9: Table 4: Treatment Effects by Gender

	Depend	lent variable:
	f07_formal_school	f07_both_norma_total
	(1)	(2)
Household head's child	0.038	-0.090
	(0.061)	(0.113)
Girl	-0.208***	-0.682***
	(0.080)	(0.102)
Age	0.046***	0.287***
	(0.017)	(0.018)
Years family in village	-0.001	-0.005**
	(0.001)	(0.002)
Farsi	-0.039	0.074
	(0.074)	(0.119)
Tajik	-0.006	0.042
	(0.078)	(0.065)
Farmers	-0.050	-0.020
	(0.081)	(0.120)
Age of household head	-0.004	-0.004**
	(0.003)	(0.002)
Years of education of household head	0.001	0.036***
	(0.006)	(0.007)
Jeribs of land	0.004	-0.004
	(0.006)	(0.011)
Number of sheep	0.022***	0.056***
	(0.008)	(0.011)
Distance to nearest formal school	0.010***	0.016**
	(0.002)	(0.007)
f07_nearest_scl	-0.060	-0.089**
	(0.043)	(0.037)
Constant	0.246	-1.649***
	(0.324)	(0.369)
Observations	708	653
\mathbb{R}^2	0.155	0.401

 $^{*}p<0.1; \ ^{**}p<0.05; \ ^{***}p<0.01$ S.E Clustered by village

Table 10: Regression Results

				Dependen	t variable:							
		Whether or not the Individual is in a Formal School										
	Short	Med-Short	Med-Long	Long	Short	Med-Short	Med-Long	Long				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Treatment	0.448***	0.528***	0.696***	0.481***	0.319*	0.447***	0.235**	0.504***				
	(0.122)	(0.140)	(0.073)	(0.066)	(0.190)	(0.160)	(0.093)	(0.092)				
chagcharan	0.404***	0.192	-0.156	0.368***	0.377**	0.028	0.058	0.153				
	(0.069)	(0.117)	(0.126)	(0.064)	(0.150)	(0.152)	(0.111)	(0.094)				
Constant	0.128	0.022	0.072	0.049	0.357*	0.332***	0.414***	0.094				
	(0.124)	(0.026)	(0.067)	(0.046)	(0.203)	(0.063)	(0.060)	(0.084)				
Observations	94	272	204	123	88	328	232	149				
R^2	0.173	0.400	0.403	0.420	0.225	0.213	0.068	0.310				

*p<0.1; **p<0.05; ***p<0.01

S.E Clustered by village 1-4 (Female), 5-8 (Male).

Both groups have increasing distance as the number increases.

Table 11: Regression Results

		Dependent variable:											
		Total Normalized Test Score, Fall 2007											
	Short	Med-Short	Med-Long	Long	Short	Med-Short	Med-Long	Long					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)					
Treatment	1.126*** (0.262)	0.789*** (0.233)	0.853*** (0.198)	0.563*** (0.065)	0.103* (0.061)	0.512*** (0.159)	0.202* (0.116)	0.895*** (0.152)					
chagcharan	0.773*** (0.248)	0.360^* (0.184)	-0.277 (0.197)	0.445*** (0.066)	-0.027 (0.053)	$0.146 \\ (0.114)$	-0.111 (0.194)	0.371*** (0.121)					
Constant	-1.169^{***} (0.295)	-0.496^{***} (0.134)	-0.399** (0.177)	-0.559^{***} (0.070)	0.396*** (0.048)	0.281*** (0.040)	0.497*** (0.121)	-0.351^{***} (0.080)					
Observations \mathbb{R}^2	91 0.217	259 0.212	196 0.174	121 0.193	81 0.002	290 0.069	198 0.006	138 0.221					

Note:

*p<0.1; **p<0.05; ***p<0.01

S.E Clustered by village 1-4 (Female), 5-8 (Male).

Both groups have increasing distance as the number increases.