forms of first-order linear equations; Method of separation of variables; Charpit's method for solving non-linear PDEs.

UNIT – II: Classification and Solutions of Second-Order Linear PDEs (12 hours)

Classification (hyperbolic, parabolic, and elliptic), reduction to canonical forms, and general solutions of second-order linear PDEs; Higher order linear partial differential equations with constant coefficients.

UNIT – III: Applications of Partial Differential Equations (18 hours)

Mathematical models: The vibrating string, vibrating membrane, conduction of heat in solids, the gravitational potential, conservation laws and the Burgers equation, Traffic flow; Cauchy problem and wave equations: Solutions of homogeneous wave equations with initial boundary-value problems, and non-homogeneous boundary conditions, Cauchy problem for non-homogeneous wave equations.

Essential Readings

- 1 Myint-U, Tyn & Debnath, Lokenath. (2007). Linear Partial Differential Equations for Scientists and Engineers (4th ed.). Birkhäuser. Indian Reprint.
- 2 Sneddon, Ian N. (2006). Elements of Partial Differential Equations, Dover Publications. Indian Reprint.

Suggestive Readings

- Abell, Martha & Braselton, J.P. (2004) Differential Equations with Mathematica, Elsevier, Academic Press, Third Edition.
- Stavroulakis, Ioannis P & Tersian, Stepan A. (2004). Partial Differential Equations: An Introduction with Mathematica and MAPLE (2nd ed.). World Scientific.

Practical (30 hours)- Practical / Lab work to be performed in a Computer Lab:

Modeling of the following similar problems using SageMath/Python/Mathematica/MATLAB/Maple/Maxima/Scilab:

- 1. General solution of first and second order partial differential equations.
- 2. Solution and plotting of Cauchy problem for first order PDEs.
- 3. Plotting the characteristics for the first order partial differential equations.
- 4. Solution of vibrating string problem using D'Alembert formula with initial conditions.
- 5. Solution of heat equation $u_t = k u_{xx}$ with initial conditions.
- 6. Solution of one-dimensional wave equation with initial conditions:

i.
$$u(x,0) = f(x), u_t(x,0) = g(x), x \in \mathbb{R}, t > 0$$

ii.
$$u(x,0) = f(x), u_t(x,0) = g(x), u(0,t) = 0, x \in \mathbb{R}, t > 0$$

iii.
$$u(x,0) = f(x), u_t(x,0) = g(x), u_x(0,t) = 0, x \in \mathbb{R}, t > 0$$

7. Solution of traffic flow problem with given initial conditions, and plotting of the characteristic base curves and the traffic density function.

B.Sc. (Hons) Mathematics, Semester-V, DSE-Courses

DISCIPLINE SPECIFIC ELECTIVE COURSE - 3(i): MATHEMATICAL DATA SCIENCE

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Credits Credit distribution of the c	ourse Eligibility Pre-re	equisite of
---	--------------------------	-------------

Code		Lecture		Practical/ Practice		the course (if any)
Mathematical Data Science	4	3	0	1	with Mathematics	Basic knowledge of R/Python DSC-3: Probability & Statistics

Learning Objectives: The main objective of this course is to:

- Introduce various types of data and their sources, along with steps involved in data science case-study, including problems with data and their rectification and creation methods.
- Cover dimensionality reduction techniques, clustering algorithms and classification methods.

Learning Outcomes: The course will enable the students to:

- Gain a comprehensive understanding of data science, its mathematical foundations including practical applications of regression, principal component analysis, singular value decomposition, clustering, support vector machines, and k-NN classifiers.
- Demonstrate data analysis and exploration, linear regression techniques such as simple, multiple explanatory variables, cross-validation and regularization using R/Python.
- Use real-world datasets to practice dimensionality reduction techniques such as PCA, SVD, and multidimensional scaling using R/Python.

SYLLABUS OF DSE-3(i)

UNIT-I: Principles of Data Science

(12 hours)

Types of Data: nominal, ordinal, interval, and ratio; Steps involved in data science case-study: question, procurement, exploration, modeling, and presentation; Structured and unstructured data: streams, frames, series, survey results, scale and source of data – fixed, variable, high velocity, exact and implied/inferred; Overview of problems with data – dirty and missing data in tabular formats – CSV, data frames in R/Pandas, anomaly detection, assessing data quality, rectification and creation methods, data hygiene, meta-data for inline data-description-markups such as XML and JSON; Overview of other data-source formats – SQL, pdf, Yaml, HDF5, and Vaex.

Unit-II: Mathematical Foundations

(15 hours)

Model driven data in Rⁿ, Log-likelihoods and MLE, Chebyshev, and Chernoff-Hoeffding inequalities with examples, Importance sampling; Norms in Vector Spaces—Euclidean, and metric choices; Types of distances: Manhattan, Hamming, Mahalanobis, Cosine and angular distances, KL divergence; Distances applied to sets—Jaccard, and edit distances; Modeling text with distances; Linear Regression: Simple, multiple explanatory variables, polynomial, cross-validation, regularized, Lasso, and matching pursuit; Gradient descent.

Unit-III: Dimensionality Reduction, Clustering and Classification (18 hours)

Problem of dimensionality, Principal component analysis, Singular value decomposition (SVD), Best k-rank approximation of a matrix, Eigenvector and eigenvalues relation to SVD, Multidimensional scaling, Linear discriminant analysis; Clustering: Voronoi diagrams, Delaunay triangulation, Gonzalez's algorithm for k-center clustering, Lloyd's algorithm for k-means clustering, Mixture of Gaussians, Hierarchical clustering, Density-based clustering

and outliers, Mean shift clustering; Classification: Linear classifiers, Perceptron algorithm, Kernels, Support vector machines, and k-nearest neighbors (k-NN) classifiers.

Essential Readings

- 1. Mertz, David. (2021). Cleaning Data for Effective Data Science, Packt Publishing.
- 2. Ozdemir, Sinan. (2016). Principles of Data Science, Packt Publishing.
- 3. Phillips, Jeff M. (2021). Mathematical Foundations for Data Analysis, Springer. (https://mathfordata.github.io/).

Suggestive Readings

- Frank Emmert-Streib, et al. (2022). Mathematical Foundations of Data Science Using R. (2nd ed.). De Gruyter Oldenbourg.
- Wes McKinney. (2022). Python for Data Analysis (3rd ed.). O'Reilly.
- Wickham, Hadley, et al. (2023). R for Data Science (2nd ed.). O'Reilly.

Practical (30 hours)- Practical work to be performed in Computer Lab using R/Python:

- 1. To explore different types data (nominal, ordinal, interval, ratio) and identify their properties.
- 2. To deal with dirty and missing data, such as imputation, deletion, and data normalization.
- 3. Use the real-world datasets (https://data.gov.in/) to demonstrate the following:
 - a) Data analysis and exploration, linear regression techniques such as simple, multiple explanatory variables, cross-validation, and regularization.
 - b) Dimensionality reduction techniques such as principal component analysis, singular value decomposition (SVD), and multidimensional scaling.
 - c) Clustering algorithms such as *k*-means, hierarchical, and density-based clustering and evaluate the quality of the clustering results.
 - d) Classification methods such as linear classifiers, support vector machines (SVM), and *k*-nearest neighbors (*k*-NN).

DISCIPLINE SPECIFIC ELECTIVE COURSE – 3(ii): LINEAR PROGRAMMING AND APPLICATIONS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Credits	Credit distribution of the course				Pre-requisite
Code		Lecture		Practical/ Practice		of the course (if any)
Linear Programming and Applications	4	3	1	0	Class XII pass with Mathematics	DSC-4: Linear Algebra

Learning Objectives: Primary objective of this course is to introduce:

- Simplex Method for linear programming problems.
- Dual linear programming problems.
- The applications of linear Programming to transportation, assignment, and game theory.

Learning Outcomes: The course will enable the students to: