Practical 1

AIM: Configure Routers

- a. OSPF MD5 authentication.
- b. NTP.
- c. to log messages to the syslog server.
- d. to support SSH connections.

Solution:

Topology

Pc Configuration

Server configuration

Router configurations

OSPF and MD5 authentication

Commands for ospf configuration

Router 0:

Router>enable
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#router ospf 1
Router(config-router)#network 192.168.1.0 0.255.255.255 area 1
Router(config-router)#network 192.168.2.0 0.255.255.255 area 1

Router 1:

Router>enable

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#router ospf 1

Router(config-router)#network 192.168.3.0 0.255.255.255 area 1

Router(config-router)#network 192.168.2.0 0.255.255.255 area 1

MD5 authentication commands

Commands for router 0:

Router(config)#interface gigabitEthernet0/1
Router(config-if)#ip ospf authentication message-digest
Router(config-if)#ip ospf message-digest-key 1 md5 sweet

Commands for router 1:

Router(config)#interface gigabitEthernet0/1
Router(config-if)#ip ospf authentication message-digest
Router(config-if)#ip ospf message-digest-key 1 md5 sweet

Verifying configuration

Command: show ip ospf interface gigabitEthernet0/1

NTP configuration

Commands (for both routers):

Router>enable
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ntp server 192.168.1.3
Router(config)#ntp update-calendar

Turn off all services in server (192.168.1.3) except NTP

OUTPUT:

Syslog services

Turn off all services in server (192.168.1.2) except syslog

Commands

Router>enable Router#conf t

Enter configuration commands, one per line. End with CNTL/Z. Router(config)#logging 192.168.1.2

OUTPUT

SSH

Type following commands in Routerl:
enable
conf t
ip domain-name sweet.com
hostname R1
line vty 0 4
transport input ssh
login local
exit
username sweet privilege 15 password sweet

Now open cmd of PC and type following command: Ssh -1 sweet 192.168.3.1

Hence SSH is verified.

Practical 2

AIM: Configure AAA Authentication

- a. Configure a local user account on Router and configure authenticate on the console
 - and vty lines using local AAA
- b. Verify local AAA authentication from the Router console and the PC-A client

Solution:

Topology

Router configuration (CLI)

Commands:

Router>enable Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#aaa new-model

Router(config)#tacacs-server host 192.168.2.2 key panda

Router(config)#radius-server host 192.168.2.3 key panda

Router(config)#aaa authentication login moon group tacacs+ group radius local

Router(config)#line vty 0 4

Router(config-line)#login authentication moon

Router(config-line)#exit

Router(config)#exit

Verifying using pc:

Commands

telnet 192.168.2.1

To verify RADIUS, go to tacacs server and turn off the AAA service and turn on AAA service from RADIUS server

Sweta Prajapati T.20.112

Verification using pc

Practical 3

AIM: Configuring Extended ACLs

a. Configure, Apply and Verify an Extended Numbered ACL

Solution:

Topology

PC Configurations

Server configurations

Router configurations

RIP routing

Check the connection using ping command

enable

conf t

Router(config)#access-list 100 permit tcp host 192.168.3.2

Router(config)#access-list 100 permit tcp host 192.168.3.2 host 192.168.1.2 eq ftp

Router(config)#access-list 100 permit tcp host 192.168.3.2 host 192.168.1.2 eq ftp

Router(config)#interface gigabitEthernet0/1

Router(config-if)#ip access-group 100 in

Router(config-if)#ip access-group 100 out

Practical 4

AIM: Configure IP ACLs to Mitigate Attacks and IPV6 ACLs

- a. Verify connectivity among devices before firewall configuration.
- b. Use ACLs to ensure remote access to the routers is available only from management station PC-C.
- c. Configure ACLs on to mitigate attacks.
- d. Configuring IPv6 ACLs

Solution:

Topology

Turn off router and add HWIC-2T module to all 3 routers:

Configure RIP routing:

Verifying:

```
Physical Config Desktop Programming Attributes

Command Prompt

Packet Tracer PC Command Line 1.0
C:\Pping 192.169.1.2

Pinging 192.169.1.2 with 32 bytes of data:

Papply from 192.169.1.2: bytes=32 time=5ms TTL=125

Seply from 192.169.1.2: bytes=32 time=5ms TTL=125

Seply from 192.169.1.2: bytes=32 time=5ms TTL=125

Papply from 192.169.1.2: bytes=32 time=5ms TTL=125

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in militi=seconds:

Minimum = Sms, Maximum = Sms, Average = Sms

C:\D|

Top
```

Commands:

enable
conf t
ip domain-name <u>sweet.com</u>
hostname r0
crypto key generate rsa
512
line vty 0 4
transport input ssh
login local
exit
username admin
username admin privilege 15 password <password>
exit
exit

Then, type these commands in all three routers:

```
enable
conf t
access-list 10 permit host 192.168.4.2
```

line vty 0 4 access-class 10 in

Ssh enable commands for pc terminal
Ssh -l admin <router-ip>
Ssh -l admin 192.168.3.2

IPv6

PC Configurations

Server Configuration

Router commands for ipv6 addressing and routing

Routerl:

Router>enable

Router#conf t

Router(config)#ipv6 unicast-routing

Router(config)#interface gigabitEthernet0/0

Router(config-if)#ipv6 address 2001::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#ipv6 unicast-routing

Router(config)#interface gigabitEthernet0/1

Router(config-if)#ipv6 address 2002::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#ipv6 unicast-routing

Router(config)#interface Serial0/1/0

Router(config-if)#ipv6 address 2003::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

ROUTER 0 commands:

Router>

Router>enable

Router#conf t

Router(config)#ipv6 unicast-routing

Router(config)#interface Serial0/1/0

Router(config-if)#ipv6 address 2003::2/64
Router(config-if)#ipv6 rip a enable
Router(config-if)#no shutdown
Router(config-if)#
Router(config-if)#exit
Router(config)#ipv6 unicast-routing
Router(config)#interface Serial0/1/1
Router(config-if)#ipv6 address 2004::1/64
Router(config-if)#ipv6 rip a enable
Router(config-if)#no shutdown
Router(config-if)#

ROUTER 2 commands

Router*enable
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ipv6 unicast-routing
Router(config)#interface Serial0/1/0
Router(config-if)#ipv6 address 2004::2/64
Router(config-if)#ipv6 rip a enable
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config)#ipv6 unicast-routing
Router(config)#interface gigabitEthernet0/0
Router(config-if)#ipv6 address 2005::1/64
Router(config-if)#ipv6 rip a enable
Router(config-if)#no shutdown
Router(config-if)#no shutdown
Router(config-if)#

Verifying using ping command on PC

Ping 2005::2

Connection is established.

Configuring ACL

```
enable
conf t
ipv6 access-list sweet
deny tcp any host 2005::2 eq www
deny tcp any host 2005::2 eq 443
permit ipv6 any any
exit
interface serial0/1/1
ipv6 traffic-filter sweet in
exit
```


Verifying the configuration by accessing www service from the browser of both pc (expects failure)

Now if we ping it should be successful.

Practical 5

AIM: Configuring a Zone-Based Policy Firewall

Solution:

Topology

Static routing

Router 1 (Left one)

Router 0 (Centre)

Router 2 (Right one)

Verifying routes using ping command from pc to server

Part 2

Configuring ssh on router 0 (center one)

Commands for router 0:

- > enable
- > conf t
- > ip domain-name sweet.com
- > hostname R2
- > crypto key generate rsa
- > line vty 0 4
- > transport input ssh
- > login local
- > exit
- > username admin privilege 15 password admin

Verifying SSH using pc

PART 3: Create firewall zones on Router2 (Right one)

>en #conf t #zone security in-zone #exit #zone security out-zone #exit #access-list 101 permit ip 192.168.4.0 0.0.0.255 any #class-map type inspect match-all in-map #match access-group 101 #exit #policy-map type inspect in-out #class type inspect in-map #exit #exit #zone-pair security in-out-zone source in-zone destination out-zone #service-policy type inspect in-out #interface gigabitEthernet0/0 #zone-member security in-zone

#interface Serial0/1/0

#exit
#exit

#zone-member security in-zone

PART 4: Testing firewall functionality (From in-zone to out-zone)
Step 1: Pinging SERVER from PC (Success)

Step 2: Start an SSH session from PC to router 1

Step 3: Type following command in Router 2

#show policy-map type inspect zone-pair sessions

PART 5: Testing the firewall functionality (From out-zone to in-zone)
Pinging pc from server (Failure)

Hence the firewall functionality is verified.

Practical 6

AIM: Configure IOS Intrusion Prevention System (IPS) Using the CLI

- a. Enable IOS IPS.
- b. Modify an IPS signature.

Solution:

Topology

Now, configure RIP Routing on All routers:

Router 0:

Router 1:

Router 2:

Now, verifying the routing using ping command from pc

PART 1: Enable IOS IPS (Router 1)

Type following commands

Router>enable

```
Router#conf t
Router(config)#license boot module c1900 technology-package securityk9
Router#reload
```

```
Router#clock set 11:47:56 MARCH 3 2020
Router#mkdir sweet
Create directory filename [sweet]?
Created dir flash:sweet
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip ips config location flash:sweet
Router(config)#ip ips name iosips
Router(config)#ip ips notify log
Router(config)#ip ips signature-category
Router(config-ips-category)#category all
Router(config-ips-category-action)#retired false
Router(config-ips-category-action)#exit
Router(config-ips-category)#category ios_ips basic
Router(config-ips-category-action)#retired false
Router(config-ips-category-action)#exit
Router(config-ips-category)#exit
Do you want to accept these changes? [confirm]
Applying Category configuration to signatures ...
```

```
%IPS-6-ENGINE_BUILDING: atomic-ip - 288 signatures - 6 of 13 engines %IPS-6-ENGINE_READY: atomic-ip - build time 30 ms - packets for this engine will be scanned Router(config)#interface Serial0/1/0 Router(config-if)#ip ips iosips out Router(config-if)#exit
```

PART 2: Modify the Signature

```
Type following commands in Router 1 again,
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip ips signature-definition
Router(config-sigdef)#signature 2004 0
Router(config-sigdef-sig)#status
Router(config-sigdef-sig-status)#retired false
Router(config-sigdef-sig-status)#enabled true
Router(config-sigdef-sig-status)#exit
Router(config-sigdef-sig)#engine
Router(config-sigdef-sig-engine)#event-action produce-alert
Router(config-sigdef-sig-engine)#event-action deny-packet-inline
Router(config-sigdef-sig-engine)#exit
Router(config-sigdef-sig)#exit
Router(config-sigdef)#exit
Do you want to accept these changes? [confirm]
%IPS-6-ENGINE_BUILDS_STARTED:
%IPS-6-ENGINE BUILDING: atomic-ip - 303 signatures - 3 of 13 engines
%IPS-6-ENGINE_READY: atomic-ip - build time 480 ms - packets for this engine
will be scanned
%IPS-6-ALL_ENGINE_BUILDS_COMPLETE: elapsed time 648 ms
Router(config)#
```

Verifying IPS configuration: First pinging Server(192.168) from PC1(192.168.4.2) (The ping will fail)

Pinging PC1(192.168.4.2) from Server(192.168.1.2)

Practical 7

AIM: Layer 2 Security

- a. Assign the Central switch as the root bridge.
- b. Secure spanning-tree parameters to prevent STP manipulation attacks.
- c. Enable port security to prevent CAM table overflow attacks.

Solution:

Topology

We'll use this topology with given port numbers.

PART 1: Root Bridge is set up

Go to MultilayerSwitch's CLI and type following commands:

enable

show spanning-tree

Switch connected on GI0/1 is root, Go to, switch connected to the port GI0/1 and type these commands

enable

show spanning-tree

Here we can see that another switch connected to Switchl's port Fa0/1 is root. Open that switch and type command: enable

show spanning-tree

This is the root, we have to change the root to MultilayerSwitch for that type this command:

erase startup-config

Now, go-to multilayerSwitch and type following commands: conf t spanning-tree vlan 1 root primary do show spann

MultilayerSwitch is primary now.

PART 2: Protect Against STP Attack

Open CLI of SwitchA and type following commands enable conf t interface range fastEthernet0/1-2 switchport mode access spanning-tree portfast

For SwitchB also type same commands

Commands for Switchl and Switch 2: enable conf t interface range fastEthernet0/23-24 spanning-tree guard root

Now open cli of SwitchA and SwitchB and type following command: spanning-tree bpdguard enable

PART 3: Enable port security

Type these commands in SwitchA and SwitchB's cli.

```
switchport port-security
switchport port-security maximum 2
switchport port-security mac-address sticky
switchport port-security violation shutdown
```


Verifying using command:

Shutting down the remaining ports conf t interface range f0/3-22 shutdown

Practical 8

AIM: Configure and Verify a Site-to-Site IPsec VPN Using CLI

Solution:

Topology

Pc0 configuration

Pcl Configuration

Pc2 Configuration

Router0 configuration

Routerl configuration

Router2 configuration

Part 1: Configuring RIP on each router

Router 0

Router 1

Router 2

Now check the connectivity by ping command PC0 (192.168.1.2) to PC2 (192.168.5.2)

PC1 (192.168.4.2) to PC0 (192.168.1.2)

Part 2: Configure IPSec parameters on router0

In order to configure the IPSec parameters on router0 we go by the following steps

Step 1: Enable the security package on router0 through the following commands in CLI

mode

Router>enable

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#license boot module c1900 technology-package securityk9 Router(config)#do write

Building configuration...

[OK]

Router(config)#exit

Router#reload

Now we need to check if the security package is enabled

Router>enable

Router#show version

The above shows that the security package has been enabled

Step 2: Configuring IKA phase 1 ISAKMP policy on router0

Type the following command in CLI mode of router 0

```
Router#conf t
```

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#access-list 110 permit ip 192.168.1.0 0.0.0.255

192.168.4.0 0.0.0.255

Router(config)#crypto isakmp policy 10

Router(config-isakmp)#encryption aes 256

Router(config-isakmp)#authentication pre-share

Router(config-isakmp)#group 5

Router(config-isakmp)#exit

Router(config)#crypto isakmp key sweet address 192.168.3.2

Router(config)#crypto ipsec transform-set vpn-set esp-aes esp-sha-hmac

Router(config)#crypto map vpn-map 10 ipsec-isakmp

% NOTE: This new crypto map will remain disabled until a peer

and a valid access list have been configured.

Router(config-crypto-map)#set peer 192.168.3.2

Router(config-crypto-map)#set transform-set vpn-set Router(config-crypto-map)#match address 110 Router(config-crypto-map)#exit Router(config)# Router(config)#interface serial0/1/0 Router(config-if)#crypto map vpn-map *Jan 3 07:16:26.785: %CRYPTO-6-ISAKMP ON OFF: ISAKMP is ON Router(config-if)#exit

Part 3: Configure IPSec parameters on router

Step 1: Enable the security package on router1 through the following command.

Router>enable

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#license boot module c1900 technology-package securityk9 Router(config)#do write

Building configuration...

Router(config)#exit

Router#reload

Now we need to check if the security package is enabled

Router>enable

Router#show version

Step 2: Configuring IKA phase 1 ISAKMP policy on router1

```
Router#conf t
```

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#access-list 110 permit ip 192.168.4.0 0.0.0.255

192.168.1.0 0.0.0.255

Router(config)#crypto isakmp policy 10

Router(config-isakmp)#encryption aes 256

Router(config-isakmp)#authentication pre-share

Router(config-isakmp)#group 5

Router(config-isakmp)#exit

Router(config)#crypto isakmp key sweet address 192.168.2.1

Router(config)#crypto ipsec transform-set vpn-set esp-aes esp-sha-hmac

Router(config)#crypto map vpn-set 10 ipsec-isakmp

% NOTE: This new crypto map will remain disabled until a peer

and a valid access list have been configured.

Router(config-crypto-map)#description vpn

Router(config-crypto-map)#set peer 192.168.2.1

Router(config-crypto-map)#set transform-set vpn-set

Router(config-crypto-map)#match address 110
Router(config-crypto-map)#exit
Router(config)#
Router(config)#interface serial0/1/0
Router(config-if)#crypto map vpn-set
*Jan 3 07:16:26.785: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON
Router(config-if)#

Part 4: Verify the IPSec VPN

Step 1: Type the following command in the CLI mode of router 0 Router>enable Router#show crypto ipsec sa

OUTPUT:

```
interface: Serial0/1/0
Crypto map tag: vpn-map, local addr 192.168.2.1

protected vrf: (none)
local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.4.0/255.255.255.0/0/0)
```

```
current peer 192.168.3.2 port 500
PERMIT, flags={origin is acl,}
#pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0
#pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 0, #recv errors 0
local crypto endpt.: 192.168.2.1, remote crypto endpt.:192.168.3.2
path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0
current outbound spi: 0x0(0)
inbound esp sas:
inbound ah sas:
inbound pcp sas:
outbound esp sas:
outbound ah sas:
outbound pcp sas:
Router#
```

Step 2: Ping PC1 from PC0

```
Physical Config Desktop Programming Attributes

Command Prompt

Reply from 192.168.5.2: bytes=32 time=10ms TTL=126
Reply from 192.168.5.2: bytes=32 time=7ms TTL=126
Ping statistics for 192.168.5.2:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
Minimum = 7ms, Maximum = 10ms, Average = 9ms

C:\>ping 192.168.4.2
Pinging 192.168.4.2 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.4.2: bytes=32 time=16ms TTL=126
Ping statistics for 192.168.4.2:
Packets: Sent = 4, Received = 1, Lost = 3 (75% loss),
Approximate round trip times in milli-seconds:
Minimum = 16ms, Maximum = 16ms, Average = 16ms

C:\>ping 192.168.4.2
Pinging 192.168.4.2: bytes=32 time=17ms TTL=126
Reply from 192.168.4.2: bytes=32 time=19ms TTL=126
Reply from 192.168.4.2: bytes=32 time=19ms TTL=126
Reply from 192.168.4.2: bytes=32 time=16ms TTL=126
Ping statistics for 192.168.4.2: bytes=32 time=16ms TTL=126
Ping
```

And now we check the router 0 by typing the following command Router#show crypto ipsec sa

```
interface: Serial0/1/0
Crypto map tag: vpn-map, local addr 192.168.2.1
protected vrf: (none)
local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.4.0/255.255.255.0/0/0)
current_peer 192.168.3.2 port 500
PERMIT, flags={origin is acl,}
#pkts encaps: 7, #pkts encrypt: 7, #pkts digest: 0
#pkts decaps: 6, #pkts decrypt: 6, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 1, #recv errors 0
local crypto endpt.: 192.168.2.1, remote crypto endpt.:192.168.3.2
path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0
current outbound spi: 0x0322E684(52618884)
inbound esp sas:
spi: 0xC1647660(3244586592)
transform: esp-aes esp-sha-hmac,
in use settings ={Tunnel, }
conn id: 2004, flow id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/3487)
IV size: 16 bytes
replay detection support: N
Status: ACTIVE
inbound ah sas:
inbound pcp sas:
outbound esp sas:
spi: 0x0322E684(52618884)
transform: esp-aes esp-sha-hmac,
in use settings ={Tunnel, }
conn id: 2005, flow_id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/3487)
IV size: 16 bytes
replay detection support: N
Status: ACTIVE
outbound ah sas:
outbound pcp sas:
```

Router#

Ping again PC1 from PC0

Now check again the following command on router 0 Router#show crypto ipsec sa

```
interface: Serial0/1/0
Crypto map tag: vpn-map, local addr 192.168.2.1
protected vrf: (none)
local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.4.0/255.255.255.0/0/0)
current peer 192.168.3.2 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 11, #pkts encrypt: 11, #pkts digest: 0
#pkts decaps: 10, #pkts decrypt: 10, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 1, #recv errors 0
local crypto endpt.: 192.168.2.1, remote crypto endpt.:192.168.3.2
path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0
current outbound spi: 0x0322E684(52618884)
inbound esp sas:
spi: 0xC1647660(3244586592)
transform: esp-aes esp-sha-hmac,
in use settings ={Tunnel, }
conn id: 2004, flow_id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/3314)
IV size: 16 bytes
replay detection support: N
```

inbound ah sas:
inbound pcp sas:

outbound esp sas:
spi: 0x0322E684(52618884)
transform: esp-aes esp-sha-hmac ,
in use settings ={Tunnel, }
conn id: 2005, flow_id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/3314)
IV size: 16 bytes
replay detection support: N
Status: ACTIVE
outbound ah sas:
outbound pcp sas:
Router#

Ping PC2 from PC0

Now check the following command on **Router 0**Router#show crypto ipsec sa

interface: Serial0/1/0

Crypto map tag: vpn-map, local addr 192.168.2.1

```
protected vrf: (none)
local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.4.0/255.255.255.0/0/0)
current_peer 192.168.3.2 port 500
PERMIT, flags={origin is acl,}
#pkts encaps: 11, #pkts encrypt: 11, #pkts digest: 0
#pkts decaps: 10, #pkts decrypt: 10, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 1, #recv errors 0
local crypto endpt.: 192.168.2.1, remote crypto endpt.:192.168.3.2
path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0
current outbound spi: 0x0322E684(52618884)
inbound esp sas:
spi: 0xC1647660(3244586592)
transform: esp-aes esp-sha-hmac,
in use settings ={Tunnel, }
conn id: 2004, flow_id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/2170)
IV size: 16 bytes
replay detection support: N
Status: ACTIVE
inbound ah sas:
inbound pcp sas:
outbound esp sas:
spi: 0x0322E684(52618884)
transform: esp-aes esp-sha-hmac,
in use settings ={Tunnel, }
conn id: 2005, flow id: FPGA:1, crypto map: vpn-map
sa timing: remaining key lifetime (k/sec): (4525504/2170)
IV size: 16 bytes
replay detection support: N
Status: ACTIVE
outbound ah sas:
outbound pcp sas:
Router#
```