Lecture 27

Diffie-Hellman Key Exchange Section 3.5

Diffie-Hellman Key Exchange

- No third party involved
- After a common shared key, is established, it can be used to encrypt message
- A common shared key is symmetric

The Diffie-Hellman Key Exchange

From B's view

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key *YB* in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

Example

- A computes B computes
- Then communication key exchange ,
- A receives . B receives
- A computes
 - B computes

Attack

- Adversary gets ,
- She needs to compute either or
- Secure?

Discrete Log Problem

Two cryptographic assumptions:

- Discrete logarithm problem (discrete log problem): Given for random , it is computationally hard to find
- **Diffie-Hellman assumption**: Given and for random, , no polynomial time attacker can distinguish between a random value R and.
 - Intuition: The best known algorithm is to first calculate and then compute, but this requires solving the discrete log problem, which is hard!
- Note: Multiplying the values doesn't work, since you get