Software tools for Maximum Likelihood Estimation

Lesson 2 - first RTMB & Derivatives

Click here to view presentation online

Jim Bence 16 December 2024

Outline:

- Demos of using nlminb and RTMB to estimate parameters
- Explanation of what happened in RTMB
- Simple exercises adapting RTMB examples
- All that derivative stuff
 - derivatives, partial derivatives, second derivatives, cross derivatives (aka mixed second derivatives), gradient vector and Hessian
- Methods to calculate/approximate derivatives
- Exercise: finite difference derivatives
- How the Hessian and gradient vector are used
- RTMB Nonlinear regression vonb example

First Demos of RTMB

- Sneak turtle detection probability just using nlminb and using RTMB
- Mean and SD assuming normal distribution
 - Grid search mainly to hint why not grid searches
 - Iterative parameter search using RTMB

"Magic" when we used MakeADFun in RTMB

- Converts your parameter list and NLL function into new inputs for nlminb (and lots of hidden stuff)
 - obj\$par: your parameter values as vector
 - obj\$fn: function pointing to memory location where NLL function result is stored
 - obj\$gr: function pointing to memory location where gradient stored
- IMPORTANT! obj\$fn and obj\$gr use hidden copy (created by MakeADFun) of any variables used in your NLL function

Exercise - change model to assume gamma rather than normal (in breakout groups)

Hints - Estimate logscale and logshape, where scale and shape are parameters of gamma distribution - Use dgamma instead of dnorm or dbinom - Starting values could be based on starting values for mean and variance. Use the following relationships - $X\sim gamma(shape,scale)$ then (from help(dgamma)) - $E(X)=shape*scale\ V(X)=shape*scale^2$ - scale=V(X)/E(X) - shape=E(X)/scale

What is a derivative

$$rac{df(heta)}{d heta} = \lim h o 0 rac{f(heta+h)-f(heta)}{h}$$

Partial derivative

Function with multiple arguments but we treat all but one of them as constants, and calculate derivative with respect to just one! E.g.,

[Math Processing Error]

Second derivative

Just a derivative of a derivative

$$rac{\partial^2 f}{\partial heta^2} = rac{\partial rac{\partial f}{ heta}}{\partial heta}$$

Visualizing second derivatives

Concave function with negative second derivative

Visualizing second derivatives

Convex function with positive second derivative

Cross derivative (mixed second derivs)

$$rac{\partial^2 f}{\partial heta_1 \partial heta_2} = rac{\partial rac{\partial f}{\partial heta_1}}{\partial heta_2}$$

An important and convenient fact:

$$\frac{\partial^2 f}{\partial \theta_1 \partial \theta_2} = \frac{\partial^2 f}{\partial \theta_2 \partial \theta_1}$$

Methods for calculating derivatives

- Analytical derivatives. Gold standard but not available for many complex models.
- Finite difference methods. Intuitive but slow and propogate errors.
- Automatic differentiation. Fast and accurate but requires specialized software.

Finite difference derivatives

Widely used, e.g., default of nlminb and Excel solver

Forward difference

[Math Processing Error]

h is semi-arbitrary but small relative to θ_i .

Central differences

[Math Processing Error]

Exercise - finite difference derivatives

- For g(X) = a + b X + sin X, use finite difference methods to calculate the derivative of g(X) with respect to (wrt) X
 - for X=1, with a=2 and b=0.5. Answer approximately 1.040.
 - Repeat for X=2, a=1, and b=1. Answer approximately 0.5839.
- For a=2, b=0.5, X=1, and same function, use finite differences to find the second derivative wrt X (answer approximately -0.8415)

Automatic differentiation

Uses repeated applications of chain rule:

$$\partial z/\partial heta = [\partial z/\partial y][\partial y/\partial heta]$$

- ullet Simplest case. y=f(heta), z=g(y), i.e., z=g(f(heta))
- General case we care about:

$$NLL = f_1(f_2(f_3(\ldots f_k(\theta)\ldots)))$$

Gradient

Just a fancy term to mean the vector of derivatives of the NLL function with respect to each parameters (so if k parameters, then k elements)

[Math Processing Error]

Hessian - a square symmetric marix

[Math Processing Error]

$$h_{i,j} = h_{j,i} = rac{\partial^2 f}{\partial heta_i \partial heta_j} = rac{\partial^2 f}{\partial heta_j \partial heta_i}$$

If the NLL were a quadratic function as it would be for linear normal model...

$$heta_{
m min} = heta_{
m start} \, + H^{-1} g$$

where H^{-1} in the matrix inverse of H and $H^{-1}g$ is the product of the inverse of the Hessian and the gradient

Because our models generally not normal and linear, iterative searches...

- 1. specify starting values for parameters, $heta_0$
- 2. Replace $\underline{\theta_0}$ by $\underline{\theta_1} = \underline{\theta_0} + \delta_0$
- 3. Check gradient and Hessian and if at a minimum stop otherwise...
- 4. Return to step 2 but each time $\underline{\theta_{i+1}} = \underline{\theta_i} + \delta_i$
- Newton step: $\underline{\delta}_i = H^{-1}\underline{\mathbf{g}}$ evaluated at current params
- Quasi-Newton method uses $\underline{\delta}_i = \lambda H^{-1} \underline{g}$ with Hessian approximated using search path, and λ a number less than 1

Using the Hessian to calculate asymptotic standard errors

- First some reminders
 - Parameter estimates are random variates that result from estimators (random variables)
 - The variance describes the variability of results from applying the estimation method, namely the expected squared deviation between an estimate and its expected value
 - What we report as a standard error for a parameter is the square-root of this variance.

The variance-covariance matrix

[Math Processing Error]

The asymptotic variance-covariance matrix

$$\hat{\Sigma} = H^{-1}$$

- Square-root of diagonal gives standard errors
- Off-diagonals are covariances
- The Hessian needs to be positive definite for the calculation
- If the Hessian is not positive definite its a problem!
- Delta method used to obtain SEs for derived quantities (using $\hat{\Sigma}$)

Musky vonB example

musky_vonb.dat

von Bertalanffy model

[Math Processing Error]
[Math Processing Error]

Influence of Linf

Influence of K

Musky vonB setup code

```
1 library(RTMB);
2
3 gmRdat = read.table("lesson2/data/musky_vonb.dat",head=T);
4
5 #Set up the data and starting value of parameters for RTMB
6 datlst = list(lenobs=gmRdat[,"Length"],age=gmRdat[,"Age"]);
7 parlst = list(loglinf=7,logvbk=-1.6,t0=0,logsd=4);
```

code for NLL for Musky vonb example

```
1  f = function(parlst) {
2    getAll(datlst,parlst);
3    linf = exp(loglinf);
4    vbk = exp(logvbk);
5    sd = exp(logsd);
6    lenpred = linf * (1 - exp(-vbk * (age - t0)));
7    atagepred = linf * (1 - exp(-vbk * ((1:11) - t0)))
8    REPORT(atagepred);
9    -sum(dnorm(lenobs, lenpred, sd, TRUE));
10 }
```

Create model object and print predicted lengths before fitting model

```
1 obj = MakeADFun(f,parlst);
2
3 GMreport=obj$report();
4 GMreport

$atagepred
[1] 200.4870 364.3209 498.2026 607.6080 697.0118 770.0708 829.7731 878.5606
```

[9] 918.4287 951.0082 977.6314

fit the model

```
1 fit = nlminb(obj$par, obj$fn, obj$gr);
outer mgc:
           3572.344
           115.0372
outer mgc:
           306.8376
outer mgc:
           101.0471
outer mgc:
outer mgc:
           30.69436
           135.1418
outer mgc:
           120.5931
outer mgc:
outer mgc: 25.99566
           197.1401
outer mgc:
           122.5854
outer mgc:
           66.52428
outer mgc:
outer mgc:
           36.54847
           3.778352
outer mgc:
           19.59957
outer mgc:
outer mgc:
           1.539833
            0 000001
```

Get parameter uncertainties and convergence diagnostics

```
1 \text{ sdr} = \text{sdreport}(obj)
outer mgc: 0.0001970265
outer mgc: 19.77567
            19.71682
outer mgc:
outer mgc: 9.178336
            9.171702
outer mgc:
outer mgc: 2.35869
            2.358392
outer mgc:
            0.1198859
outer mgc:
            0.1201142
outer mgc:
  1 sdr #summary(sdr)
sdreport(.) result
          Estimate Std. Error
loglinf 7.1488714 0.04083255
logvbk -1.2456407 0.16950408
t0
   -0.7710237 0.35092437
logsd 3.8876390 0.09128707
Maximum gradient component: 0.0001970265
```

Predicted lengths at age after model fitting

1170.6709 1196.1760 1215.3035 1229.6480

```
1 GMreport = obj$report();
2 GMreport
$atagepred
[1] 508.1491 699.3217 842.6904 950.2090 1030.8420 1091.3122 1136.6614
```

vonB Exercises

- Change REPORT(atagepred) to ADREPORT(atagepred) and look at sdreport and summary of the sdreport
- Calculate a new variable equal to vbk*linf as ADREPORT
- If time: change the model so data are assumed gamma distributed (with expected value given by vonB equation and constant variance)

Probalistic notation

- You can use notation that looks more like other package model statements
- E.g.,
 - x %~% dnorm(0,1) #Add the neg log of N(0,1) density for x to fn return
- See probnotation.R in lesson 2 R folder
- Positives: automatically uses log and gets sign right
- Makes it a bit harder to test bits of your function