lunes, febrero 15, 2021

Trazor las curvas que son soluciones del sistema; es decir, graficar las curvas formadas por los puntos

Diagrama de Fases

X: Crecimiento de X cuando crece t

x = f(x,y): determine la trayectoria de la particula con respecto a X

Lo mismo pora Y.

Pasos Generales

1) Despejor la curva

 $\dot{x}=0$ \longrightarrow f(x,y)=0 $\dot{y}=0$ \longrightarrow g(x, y)=0

2) Determinar las regiones :

$$\frac{\partial x}{\partial \dot{x}}$$
, $\frac{\partial y}{\partial \dot{y}}$, $\frac{\partial x}{\partial \dot{y}}$, $\frac{\partial y}{\partial \dot{x}}$, $\frac{\partial y}{\partial \dot{x}}$ > 0

3) Graficar

Para un desurrollo matemático del diagramo de fases, revisor el desarrollo del ejercicio 2 de la PD 2

Ejercicio 1

Paros:

(1) y=ay+bx +h-> y=0 -> 0=ay +bx+h $\lambda = -\frac{a}{p}x - \frac{a}{y}$, $\frac{3x}{3\lambda} = -\frac{a}{p} = m^{\lambda}$

 $\dot{x}=(\lambda+qx+k\rightarrow\dot{x}=0\rightarrow0=c\lambda+q\lambda+K$ $\lambda = -\frac{\alpha}{C} \times -\frac{C}{C}$, $\frac{3\lambda}{3\lambda} = -\frac{\alpha}{C} = m^{\chi}$

 $2 \frac{3\dot{y}}{3\dot{y}} = q$

2a) a, c, d > 0 , b < 0

$$\frac{3\lambda}{3\lambda} > 0 - \begin{bmatrix} \lambda < \lambda, \rightarrow \lambda \\ \lambda > \lambda, \rightarrow \lambda \end{bmatrix} \qquad \begin{array}{c} w^{\lambda} < 0 \\ w^{\lambda} > 0 \end{array}$$

26) b, c>0 y a, d<0

$$\frac{3\lambda}{3\lambda} < 0 - \begin{bmatrix} \lambda < \lambda_{*} \longrightarrow \lambda \\ \lambda > \lambda_{*} \longrightarrow \lambda \end{bmatrix} \qquad w^{\lambda} > 0$$

$$\frac{3\lambda}{3\lambda} < 0 - \begin{bmatrix} \lambda < \lambda_{*} \longrightarrow \lambda \\ \lambda > \lambda_{*} \longrightarrow \lambda \end{bmatrix} \qquad w^{\lambda} > 0$$

3**b)**

20) (>0, b<0,

$$\frac{3x}{3x} = 0 \longrightarrow \frac{0\lambda}{0x} = 0 \longrightarrow \frac{0\lambda}{0x} = 0 \longrightarrow 0$$

 $\left[\begin{array}{c} X > X_{\kappa} \longrightarrow \lambda \end{array}\right]$ $\frac{3\dot{\lambda}}{3\dot{\lambda}} = 0 \rightarrow \frac{3\dot{\lambda}}{3\dot{\lambda}} = 9<0$

Ejercicio 2

a) $\dot{y} = -3y + y^2 + 2$

Pasos: 1. y=0 -> 0=-3y+y2+2 -> y=2 , y=1

2. $3\dot{y} = -3 + 2y = 0$ $y = 3 \longrightarrow \dot{y} \longrightarrow \dot{y} = -1$ (Puntos críticos)

= 1 > 0 : inestable

= -1 < 0 : estable

3. Gráfica

b) y = 84 - 5 y2

1. $\dot{Y} = 0 \rightarrow 0 = 8 Y - 2 Y^2 \rightarrow Y(Y - Y) = 0 \rightarrow Y_1 = 0$, $\dot{Y}_2 = Y_1$

2. <u>3</u>9 = 8-4y=0 -> y=2 -> y=8

 $\frac{\partial^2 \dot{y}}{\partial y^2} = -4 < 0 \qquad \text{max}$

= 8 > 0 inestable

= -8 < 0 estable

Ejercicio 3

b) $\dot{X} = Y - X^2 + 3$

1. $\dot{X} = 0 = Y - X^2 + 3 \longrightarrow Y = x^2 - 3$ (Parábola)

 $\dot{y} = 0 = y - x + 1 \longrightarrow y = x - 1$ (Recta)

intersección $X^2-3 = X-1 \longrightarrow X^2-X-2=0$

x,=2 ---> Y, = 1

 $\chi_2 = -1 \longrightarrow \gamma_2 = -2$ $\lambda > \lambda_{x} \rightarrow x \longrightarrow$ $\frac{\partial \dot{X}}{\partial \dot{X}} = -2\dot{X} \longrightarrow \frac{\partial \dot{X}}{\partial \dot{X}} = 1 > 0$

 $[X > X_x \longrightarrow X]$ $\frac{\partial \dot{y}}{\partial \dot{y}} = 1 \longrightarrow \frac{\partial \dot{x}}{\partial \dot{x}} = -1 < 0 - \left(\frac{\dot{x}}{\dot{x}} \right)$

 $C) \dot{X} = Y - X^3$ $\dot{y} = 1 - \chi y$

> Pasos: 1. $\dot{x} = 0 = Y - X^3 \longrightarrow Y = X^3$ $\dot{y} = 0 = 1 - xy \longrightarrow Y = 1$

Intersección $x^3 = \frac{1}{X} \longrightarrow X^4 = 1 \longrightarrow X^4 - 1 = 0$ $(X^2+1)(X^2-1)=0$ $(\chi^2+1)(\chi+1)(\chi-1)=0$

 $X_i = 1 \longrightarrow Y_i = 1$ X2 = -1 -> Y2 = -1

2. $\frac{\partial X}{\partial y} = 1 > 0 \begin{cases} y > y^x \rightarrow X \\ y < y^x \rightarrow X \end{cases}$

 $X > X^* \longrightarrow Y$ L >>0 →< 0 - $\chi < \chi^* \longrightarrow \gamma$

Ejercicio 4

x f() = e V(aN-bN2- N)

 $f_{N} = (c)(a-25N)e^{-\beta t}$

fi = V(c)(-1)e-pt

2 fi =- V(c) ce + pe - pt (c)

* Euler: V(a) (a-25N)c = - 1)(c) c e + pe pt v(c) c = <u>U'(c)</u> (β+25N-a)
<u>V'(c)</u>

i = a N - b N2 - C

Pasos:
1.
$$\dot{c} = 0 = \frac{U'(c)}{U''(c)} (P + 25N - a) \longrightarrow N = \frac{a - P}{2b}$$

----> C = a N2 - b N $\dot{N} = O = \alpha N - b N^2 - C$

 $N_1 = 0$ \wedge $N_2 = \frac{1}{2}$

 $N > N^* \longrightarrow C$ $\frac{\partial \dot{c}}{\partial N} = \frac{V'(c)}{V''(c)} 25 < 0$

(> (→ N ← <u> 3N</u> = -1<0 ---

Ejercicio 5

 $\dot{\rho} = \propto \left[\mathcal{D}(\rho) - \mathcal{O}(\rho^e) \right] \qquad \dot{\rho}^e = \beta \left(P - P^e \right)$

Paso 1: 1. $\dot{\rho} = 0 = \propto \left[\mathcal{D}(\rho) - (\partial(\rho^e)) \right] \longrightarrow \mathcal{D}(\rho) - 0 (\rho^e) = 0$

Por teorema de la función implícita D'(p) dp - O'(pe) dpe = 0

 $\frac{\mathsf{q}\,\mathsf{b}_{\mathsf{e}}}{\mathsf{q}\,\mathsf{b}_{\mathsf{e}}} = \frac{\mathsf{D}_{\mathsf{s}}(\mathsf{b}_{\mathsf{e}})}{\mathsf{D}_{\mathsf{s}}(\mathsf{b})} < 0 < 0$

<u>Ejercicio 6</u>

1. $\dot{Y} = 0 \implies Y = E(Y-T, r) + G$ dy = DE dy + DE dr

dy = Eydy + Er dr

(1-Ey)dy = Erdr

 $\frac{dY}{dr} = \frac{(1-E_Y)}{E_Y} < 0 : IS$

r=0 -> L(Y,r) = M/p

 $dl = \frac{\partial L}{\partial r} dy + \frac{\partial L}{\partial r} dr = 0$

dl= lydy + Lrdr=0

 $\frac{dY}{dt} = \frac{-lr}{l_v} > 0 : LM$

Ejercicio 7

f(.) = Ln(c)e = Ln(AK-k-sk)e

a) Condiciones necesarias : Condición de Euley

 $x f_{K} = L(A-S)e^{-pt}$ fκ = <u>2 fk</u> 2 t $\int_{C} \frac{1}{r} (A-b)e^{-pt} = \frac{c}{c^{2}}e^{-pt} + \frac{p}{c}e^{-pt}$ f_k = 1 (-1) e 3fi = -c (-1)c + pe c = (A-δ-β) C

(A-S-9)t

* K = AK - SK - C K - (A-8)K = -C J-(A-5)dt -(A-8)t FI: e -(A-&) t

6) Condiciones de transversalidad

t=0 -> K(0) = 10 = H1 + H2

% K(1)= H1 0

 $t=\infty \neq t=T$

-> Lim $[f_{\hat{7}}] = 0$, valor terminal desconocido

 $Lim [Y(t)] = Y_{\infty}, 11 11$ cono ci do

El segundo es una alternativa del primero, so lo cuando el horizonte de tiempo es infininito

(A-S)t H₂ e = 0 H2= ()

(A- S-P) t 00 K(t) = 10 P C C(t) = 1090 (A-8-9)T

c) Condiciones suficientes

fix = c (A-8) e - pt

 $H_2 = C^{-4}(A-5)^2 e^{-2pt} - C^{-4}(A-5)^2 e^{-2pt} = 0$

00 Función (oncava -> Max local

1. c = 0 ----> (A-S-P) c = 0

d) Diagrama de Fases

K = 0 ----> AK-SK-C = 0 c = (A - S) K

[c > c* → C ↓ 2. <u>3c</u> = (A-8-9) < 0 $\frac{\partial K}{K} = (A - S) > 0 - \begin{cases} K > K^* \longrightarrow K \longrightarrow K \end{cases}$

