<u>Proof.</u> If $\sigma(A) = \emptyset$ there is nothing to prove, thus we can assume that s(A) = 0. In view of the lemma and A-III, Prop. 4.3(i) we can assume that s(A) is a first order pole with strictly positive residue, which we call Q. We have AQ = QA = s(A)A = 0 (see A-III, 3.6), hence

(2.18) QT(t) = T(t)Q = Q for all $t \ge 0$.

If Ah = i ah for some $\alpha \in \mathbb{R}$, $h \neq 0$, then $T(t)h = e^{i\alpha t}h$ (by A-III, Cor.6.4). Hence $|h| = |e^{i\alpha t}h| = |T(t)h| \leq T(t)|h|$, or equivalently, $T(t)|h| - |h| \geq 0$. By (2.18) we have Q(T(t)|h| - |h|) = 0. Since Q is strictly positive, it follows that T(t)|h| = |h| or A|h| = 0. Now we can apply Thm.2.4 and obtain $Ah^{[n]} = in\alpha h^{[n]}$ for every $n \in \mathbb{Z}$. This shows that $P\sigma_b(A) = \sigma(A) \cap i\mathbb{R}$ is cyclic.

If A has compact resolvent then every point of $\sigma(A)$ is a pole of the resolvent (see A-III,3.6) hence we have:

Corollary 2.10. If A has compact resolvent, then $P\sigma_b(A) = \sigma_b(A)$ is cyclic.

If it is known that the boundary spectrum of a generator is cyclic and nonvoid, the following alternative holds:

(2.19) Either $\sigma_b(A) = \{s(A)\}\$ or else $\sigma_b(A)$ is an infinite unbounded set.

If one can exclude the second alternative, then there is a unique spectral value having maximal real part. A real spectral value λ_O of a generator A is called a dominant provided that Re $\lambda<\lambda_O$ for every $\lambda\in\sigma(A)$, it is called strictly dominant if for some $\delta>0$ one has Re $\lambda\leq\lambda_O$ - δ for every $\lambda\in\sigma(A)$, $\lambda\neq\lambda_O$. The assumptions of Cor.2.10 do not imply that s(A) is dominant, the rotation semigroup (A-III,Ex.5.6) is a counterexample.

Corollary 2.11. Assume that for some $t_{o} > 0$ (hence for all t > 0) one has $r_{ess}(T(t_{o})) < r(T(t_{o}))$, e.g., that $T(t_{o})$ is compact and $r(T(t_{o})) > 0$ (see A-III,3.7).

Then s(A) is a strictly dominant eigenvalue.