PUENTE DE WHEATSTONE

Miguel Angel Rodríguez Pozueta

El puente de Wheatstone es un método para medir resistencias bastante exacto.

En la Fig. 1 se representa el principio de funcionamiento de este puente. R_X es la resistencia a medir y R_1 , R_2 y R_3 son resistencias de valor conocido. El puente se alimenta con una fuente de tensión continua y se varía el valor de la resistencia R_3 mediante un mando hasta conseguir que el *galvanómetro* (que es un amperímetro muy sensible) indique que la corriente I_G tiene un valor nulo. En este caso se puede demostrar que se verifica la siguiente relación:

Fig. 2: Puente de Wheatstone.

- A: Mando para ajustar el valor de R₂/R₁.
- B: Mando para ajustar el valor de R₃.
- G: Galvanómetro.
- P: Pulsador para conectar la fuente de tensión continua.
- T: Terminales donde se conecta la resistencia R_x a medir.

M.A.R.Pozueta -1-

En efecto, cuando el puente está equilibrado sucede lo siguiente:

$$\begin{split} &I_{G} = 0 \ \rightarrow \ I_{1} = I_{2} \; ; \ I_{3} = I_{x} \; ; \ V_{A} = V_{B} \\ &\frac{V_{CA}}{V_{AD}} = \frac{I_{1} \; R_{1}}{I_{2} \; R_{2}} = \frac{R_{1}}{R_{2}} \; ; \qquad \frac{V_{CB}}{V_{BD}} = \frac{I_{3} \; R_{3}}{I_{x} \; R_{x}} = \frac{R_{3}}{R_{x}} \\ &V_{A} = V_{B} \ \rightarrow \ \frac{V_{CA}}{V_{AD}} = \frac{V_{CB}}{V_{BD}} \ \rightarrow \ \frac{R_{1}}{R_{2}} = \frac{R_{3}}{R_{x}} \end{split}$$

Luego, se obtiene que:

$$R_{X} = R_3 \frac{R_2}{R_1} \tag{1}$$

Normalmente el aparato posee un mando (señalado "A" en la Fig. 2) que permite variar el cociente R_2/R_1 de forma que tome los valores 10^3 , 10^2 , 10, 1, 10^{-1} , 10^{-2} ,... Por otra parte, el mando (señalado "B" en la Fig. 2) que permite variar la resistencia R_3 indica el valor de esta resistencia en cada instante.

Por lo tanto, para medir la resistencia R_X con el puente de Wheatstone se accionan los mandos que varían los valores de R_3 y R_2/R_1 hasta conseguir que la intensidad I_G sea nula y se aplica entonces la expresión (1).

Se puede demostrar que si se tiene un puente de Wheatstone equilibrado ($I_G = 0$) de tal manera que $R_1 = R_2 = R_3 = R_X = R_0$ y la resistencia R_X varía su valor en una pequeña cantidad ΔR_X , la intensidad I_G que circula por el galvanómetro es proporcional al cociente

$$\frac{\Delta R_X}{4R_0}$$

Luego, conocido R_0 , se puede obtener el valor de ΔR_X a partir de I_G .

Esta propiedad del puente de Wheatstone se aplica frecuentemente en sistemas de instrumentación. Así, por ejemplo, la medida de deformaciones en una estructura se realiza con bandas extensiométricas, cuya resistencia varía según las deformaciones que detecta. Estas variaciones de resistencia se pueden medir con puentes de Wheatstone.

M.A.R.Pozueta -2-