Topic 31 - Multiple Logistic Regression

STAT 525 - Fall 2013

STAT 525

Outline

- Multiple Logistic Regression
 - Model
 - Inference
 - Diagnostics and remedies
- Polytomous Logistic Regression
 - Ordinal
 - Nominal

Topic 31

STAT 525

Multiple Logistic Regression

- Easy extension to multiple predictors using matrix notation
- Same diagnostics used for simple logistic regression
- Likelihood ratio/deviance test to look at collections of predictors
- Similar model building strategies
 - Stepwise
 - Forward
 - Backward
 - Score (best)

STAT 525

Example Page 573

- Want to understand epidemic outbreak of a disease spread by mosquitoes
- Randomly sampled individuals within two sectors of city
- Assessed whether individual had symptoms of disease and obtained other info
 - $-X_{i1}$ is age
 - $-X_{i2}$ is socioeconomic status
 - $-X_{i3}$ is the sector
 - $-Y_i$ is whether they had symptoms

Topic 31

3

SAS Commands

```
data a3;
  infile 'u:\.www\datasets525\APPENC10.txt';
  input case age socioecon sector Y savings;
  if case < 99; drop savings;

proc logistic data=a3 descending;
  class sector socioecon;
  model Y = age sector socioecon;

proc logistic data=a3 descending;
  class sector;
  model Y = age sector;
  run;</pre>
```

Topic 31

Response Profile Ordered Total

Output - Full Model

 Ordered
 Total

 Value
 Y
 Frequency

 1
 1
 31

 2
 0
 67

Probability modeled is Y=1.

Class Level Information

	Design			
Class	Value	Varia	bles	
sector	1	1		
	2	-1		
socioecon	1	1	0	
	2	0	1	
	3	-1	-1	

***Notice the different choice ***of design vectors in Proc

***logistic compared to Proc GLM

Topic 31

STAT 525

Output - Full Model

Model Fit Statistics

Intercept

	Intercept	and
Criterion	Only	Covariates
AIC	124.318	111.054
SC	126.903	123.979
-2 Log L	122.318	101.054

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	21.2635	4	0.0003
Score	20.4067	4	0.0004
Wald	16.6437	4	0.0023

STAT 525

Output - Full Model

Type 3 Analysis of Effects

Wald

Effect	DF	Chi-Square	Pr > ChiSq
age	1	4.8535	0.0276
sector	1	9.8543	0.0017
socioecon	2	1.2053	0.5474

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.4909	0.4411	11.4215	0.0007
age	1	0.0297	0.0135	4.8535	0.0276
sector 1	1	-0.7873	0.2508	9.8543	0.0017
socioecon 1	1	-0.0345	0.3367	0.0105	0.9183
socioecon 2	1	0.3742	0.3662	1.0439	0.3069

Topic 31 7 Topic 31

Output - Reduced Model

Model Fit Statistics

		${\tt Intercept}$
	Intercept	and
Criterion	Only	Covariates
AIC	124.318	108.259
SC	126.903	116.014
-2 Log L	122.318	102.259

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	20.0583	2	<.0001
Score	19.5250	2	<.0001
Wald	16.1851	2	0.0003

Type 3 Analysis of Effects

Wald

Effect	DF	Chi-Square	Pr > ChiSq
age	1	4.9455	0.0262
sector	1	11.7906	0.0006

Topic 31

Output - Reduced Model

Analysis of Maximum Likelihood Estimates

				Standard	Wald	
Parameter	:	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	;	1	-1.4984	0.4342	11.9102	0.0006
age		1	0.0293	0.0132	4.9455	0.0262
sector	1	1	-0.8367	0.2437	11.7906	0.0006

Odds Ratio Estimates

	Point	95% Wald	
Effect	Estimate	Confidence Limits	
age	1.030	1.003 1.057	•
sector 1 vs 2	0.188	0.072 0.488	3

Association of Predicted Probabilities and Observed Responses

Percent	Concordant	77.9	Somers' D	0.562
Percent	Discordant	21.6	Gamma	0.565
Percent	Tied	0.5	Tau-a	0.246
Pairs		2077	С	0.781

Topic 31

STAT 525

Topic 31

GENMOD Commands

```
proc genmod data=a3 descending;
  class sector socioecon;
model Y = age socioecon sector / link=logit noscale dist=bin;
  contrast 'age' age 1;
  contrast 'sector' sector 1 -1;
  contrast 'socioecon' socioecon 1 -1 0 , socioecon 1 0 -1;
  run;

proc genmod data=a3 descending;
  class sector socioecon;
  model Y = age socioecon sector / link=logit noscale dist=bin aggregate;
  contrast 'age' age 1;
  contrast 'sector' sector 1 -1;
  contrast 'socioecon' socioecon 1 -1 0 , socioecon 1 0 -1;
  run;
```

STAT 525

Output - No Aggregate

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Log Likelihood		-50.5271	
Full Log Likelihood		-50.5271	
AIC (smaller is better)		111.0542	
AICC (smaller is better)		111.7063	
BIC (smaller is better)		123.9790	

Analysis Of Maximum Likelihood Parameter Estimates

Standard	Wald	95% Confidence	Wald

Parameter	DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept	1	-1.0434	0.6524	-2.3221	0.2352	2.56	0.1097
age	1	0.0298	0.0135	0.0033	0.0562	4.85	0.0276
socioecon 1	1	0.3053	0.6041	-0.8788	1.4893	0.26	0.6134
socioecon 2	1	0.7140	0.6537	-0.5672	1.9953	1.19	0.2747
sector 1	1	-1.5747	0.5016	-2.5579	-0.5916	9.86	0.0017

Contrast Results

Contrast	DF	Chi-Square	Pr > ChiSq	Туре
age	1	5.15	0.0233	LR
sector	1	10.45	0.0012	LR
socioecon	2	1.21	0.5474	LR

Output - Aggregate

Criteria For	Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	80	94.4625	1.1808
Scaled Deviance	80	94.4625	1.1808
Pearson Chi-Square	80	82.6652	1.0333
Scaled Pearson X2	80	82.6652	1.0333
Log Likelihood		-50.5271	
Full Log Likelihood		-48.7353	
AIC (smaller is better)		107.4706	
AICC (smaller is better)		108.1228	
BIC (smaller is better)		120.3955	

Analysis Of Maximum Likelihood Parameter Estimates

			Standard	walu 50%	, contraen	ce waru	
Parameter	DF	'Estimate	Error	Lim	its	Chi-Square Pr	> ChiSq
Intercept	1	-1.0434	0.6524	-2.3221	0.2352	2.56	0.1097
age	1	0.0298	0.0135	0.0033	0.0562	4.85	0.0276
socioecon	1 1	0.3053	0.6041	-0.8788	1.4893	0.26	0.6134
socioecon	2 1	0.7140	0.6537	-0.5672	1.9953	1.19	0.2747
sector	1 1	-1.5747	0.5016	-2.5579	-0.5916	9.86	0.0017

Contrast Results

Contrast	DF	Chi-Square	Pr > ChiSq	Туре
age	1	5.15	0.0233	LR
sector	1	10.45	0.0012	LR
socioecon	2	1.21	0.5474	LR

Topic 31

Hypothesis Testing

- Can use deviance to compare models
- Models must be hierarchical (Full/Reduced)

$$\begin{array}{lcl} \mathrm{DEV}(X_{q},...,X_{p-1}|X_{0},...,X_{q-1}) & = & \mathrm{DEV}(X_{0},...,X_{q-1}) \\ \\ & - & \mathrm{DEV}(X_{0},...,X_{p-1}) \end{array}$$

- Partial deviance approx χ^2 with p-q df
- Must compute by hand or with GENMOD
- For example: Testing H_O : Socioeconomic=0 DEV(Socioecon|Age,Sector) = 102.259-101.054 = 1.205 Pvalue = 0.5474

Topic 31

14

STAT 525

Topic 31

GLIMMIX Commands

```
proc glimmix data=a3;
  class sector socioecon;
model Y(descending) = age socioecon sector / chisq link=logit dist=bin;
contrast 'age' age 1;
contrast 'sector' sector 1 -1;
contrast 'socioecon' socioecon 1 -1 0, socioecon -1 0 1;
run;
```

STAT 525

Output

]	Fit Statis	tics				
-2 Log Like	lihood		101.05			
AIC (smalle	er is bette	er)	111.05			
AICC (smalle	er is bette	er)	111.71			
BIC (smalle	er is bette	er)	123.98			
CAIC (smalle	er is bette	er)	128.98			
HQIC (smalle	er is bette	er)	116.28			
Pearson Chi	-Square		92.24			
Pearson Chi	-Square / 1	DF	0.99			
		Туре	III Tests of	Fixed Effec	ts	
	Num	Den				
Effect	DF	DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
age	1	93	4.85	4.85	0.0276	0.0300
socioecon	2	93	1.21	0.60	0.5472	0.5493
sector	1	93	9.86	9.86	0.0017	0.0023
	Cor	ntrasts				
	Niim	Den				
Label	DF	DF	F Value	Pr > F		
age	1	93	4.85	0.0300		
sector	1	93	9.86			
socioecon	2	93	0.60	0.5493		

Logistic Residuals

- Distribution of residuals under correct model is unknown and thus common residual plot uninformative.
- Pearson residual is the ordinary residual divided by the standard error of Y_i . Sum of squared residuals equals Pearson X^2

$$r_{P_i} = \frac{Y_i - \hat{\pi}_i}{\sqrt{\hat{\pi}_i (1 - \hat{\pi}_i)}}$$

• Studentized Pearson residual is similar but divided by its standard error (includes hat matrix diagonal element) so they have unit variance

Topic 31

STAT 525

Topic 31

Diagnostics

- "Residual" analysis
 - Can plot residual by predicted value: A flat lowess smooth to this plot suggests the model is correct
 - Can generate half-normal probability plot with simulated envelope to examine the linearity and identifying outliers
 - * kth ordered absolute residual plotted against $z\left(\frac{k+n-1/8}{2n+1/2}\right)$
 - * Outliers appear at the top right separated from others
 - * Simulated envelope created by simulating data using \hat{pi}_i
 - * Deviations from the mean of many simulations suggest model misfit
- DFFITS, DFBETAS
- SAS contains influence and iplots options

proc logistic data=a1 descending; model renew = increase / iplots influence lackfit clparm=both clodds=both; run;

STAT 525

• Deviance residual is the signed square root of the observation's contribution to the model deviance

$$DEV(X_0, ..., X_{p-1}) = -2 \sum \left(Y_i log \left(\frac{\hat{\pi}_i}{Y_i} \right) + (1 - Y_i) log \left(\frac{1 - \hat{\pi}_i}{1 - Y_i} \right) \right)$$
$$= -2 \sum \left(Y_i log \left(\hat{\pi}_i \right) + (1 - Y_i) log \left(1 - \hat{\pi}_i \right) \right)$$

• Sign depends on $Y_i - \hat{\pi}_i$

$$\sum{(\mathit{dev}_i)^2} = \mathrm{DEV}(X_0,...,X_{p-1})$$

Topic 31

STAT 525

Output

Regression Diagnostics

							Confidence	Confidence
	Covariates			Hat			Interval	Interval
Case		Pearson	Deviance	Matrix	Intercept	increase	Displacement	Displacement
Number	increase	Residual	Residual	Diagonal	DfBeta	DfBeta	C	CBar
1	30.0000	0.5900	0.7729	0.1040	0.1945	-0.1798	0.0451	0.0404
2	30.0000	-1.6948	-1.6455	0.1040	-0.5587	0.5165	0.3720	0.3334
3	30.0000	0.5900	0.7729	0.1040	0.1945	-0.1798	0.0451	0.0404
4	31.0000	0.6281	0.8155	0.0941	0.1902	-0.1740	0.0453	0.0410
5	32.0000	0.6686	0.8597	0.0841	0.1831	-0.1654	0.0448	0.0411
6	33.0000	0.7118	0.9054	0.0743	0.1732	-0.1539	0.0440	0.0407
7	34.0000	-1.3197	-1.4203	0.0651	-0.2792	0.2425	0.1297	0.1213
8	35.0000	0.8066	1.0012	0.0568	0.1441	-0.1213	0.0415	0.0392
9	35.0000	0.8066	1.0012	0.0568	0.1441	-0.1213	0.0415	0.0392
10	35.0000	-1.2397	-1.3645	0.0568	-0.2215	0.1864	0.0981	0.0925
11	36.0000	-1.1646	-1.3092	0.0497	-0.1689	0.1353	0.0746	0.0709
12	37.0000	0.9141	1.1021	0.0442	0.1013	-0.0746	0.0404	0.0386
13	38.0000	0.9731	1.1543	0.0404	0.0744	-0.0456	0.0415	0.0398
26	47.0000	-0.5853	-0.7676	0.0788	0.1240	-0.1415	0.0318	0.0293
27	48.0000	-0.5498	-0.7268	0.0869	0.1306	-0.1469	0.0315	0.0288
28	49.0000	1.9361	1.7651	0.0946	-0.5053	0.5619	0.4324	0.3915
29	50.0000	-0.4852	-0.6502	0.1017	0.1370	-0.1509	0.0297	0.0267
30	50.0000	-0.4852	-0.6502	0.1017	0.1370	-0.1509	0.0297	0.0267

Topic 31

STAT 525Influence/Residual plots Influence Diagnostics 0.10 -0.08 e 0.06 0.04 0.02 Case Number renew o 1 o 0

Topic 31

STAT 525

Influence/Residual plots

4.1399

0.2621

0.2621

3.5071

0.4495

0.4495

29

STAT 525

Topic 31

Ordinal Logistic Regression

- Have more than two possible outcomes on ordered scale (e.g., rating scale like Likert 1-5)
- Ordinal often called **proportional odds** model

$$\log\left(\frac{\Pr(Y \le j)}{1 - \Pr(Y \le j)}\right) = \beta_{0j} + \beta_1 X_i$$

• Results in constant β_1 value

Topic 31

25

STAT 525

Output

Response Profile				
Ordered		Total	Total	
Value	symptoms	Frequency	Weight	
1	None	4	73.000000	
2	Mild	4	31.000000	
3	Severe	4	87.000000	
Probs modele	d are cumulat	ed over the lower	r Ordered Values.	

Intercent &

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq 0.1674 1 0.6825

Model Fit Statistics

	Intercebt	Intercebt &
Criterion	Only	Covariates
AIC	393.986	364.658
SC	394.956	366.113
-2 Log L	389.986	358.658

Example : SAS Commands

```
DATA:
   INPUT dose symptoms $ n @@;
   ldose = LOG10(dose);
CARDS;
                                Mild
                                            7
10
        None
                   33 10
        Severe
                   10 20
                                None
                                           17
10
20
        Mild
                                Severe
                                           17
                                Mild
30
        None
                   14 30
30
        Severe
                   28 40
                                None
                                            9
        Mild
                                Severe
                                           32
proc logistic order = data;
   class symptoms;
   model symptoms = ldose;
   freq n;
   output out=b2 predprobs=i;
run;
```

pic 31

Topic 31

STAT 525

Output

28

 Testing Global Null Hypothesis: BETA=0

 Test
 Chi-Square
 DF
 Pr > ChiSq

 Likelihood Ratio
 31.3281
 1
 <.0001</td>

 Score
 29.6576
 1
 <.0001</td>

 Wald
 28.5177
 1
 <.0001</td>

Analysis of Maximum Likelihood Estimates

Wald Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept None 4.1734 0.8862 22.1759 <.0001 Intercept Mild 4.9372 0.9083 29.5473 <.0001 1 -3.5207 0.6593 ldose 28.5177 <.0001

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

ldose 0.030 0.008 0.108

Topic 31 27 Topic 31

Output- Predicted Probs

0bs	IP_None2	IP_Mild2	IP_Severe2
1	0.65761	0.14717	0.19522
2	0.65761	0.14717	0.19522
3	0.65761	0.14717	0.19522
4	0.39958	0.18863	0.41179
5	0.39958	0.18863	0.41179
6	0.39958	0.18863	0.41179
7	0.26363	0.17090	0.56547
8	0.26363	0.17090	0.56547
9	0.26363	0.17090	0.56547
10	0.18739	0.14370	0.66891
11	0.18739	0.14370	0.66891
12	0.18739	0.14370	0.66891

Topic 31

29

STAT 525

SAS Commands

```
proc logistic data=b1 order=data;
    freq n;
    class symptoms(ref=last);
    model symptoms = ldose / link=glogit;
    output out=b1a predprobs=I;
run;

proc catmod data=b1 order=data;
    direct ldose;
    weight n;
    model symptoms = ldose / prob itprint;
run;
```

Topic 31

STAT 525

Nominal Logistic Regression

- ullet For polytomous or multicategory, consider there are J response categories
- Select one as baseline or reference category (call it J)

$$\log\left(\frac{\pi_{ij}}{\pi_{i,I}}\right) = X_i'\beta_{jJ}$$

• Results in J-1 parameter vectors

Topic 31

30

STAT 525

Output

Response	Profile
----------	---------

Ordered		Tota
Value	symptoms	Frequency
1	None	73
2	Mild	3:
3	Severe	8

Logits modeled use symptoms='Severe' as the reference category.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	393.986	366.891
SC	400.491	379.900
-2 Log L	389.986	358.891

Output

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	31.0948	2	<.0001
Score	29.6579	2	<.0001
Wald	26.4676	2	<.0001

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq ldose 2 26.4676 <.0001

Analysis of Maximum Likelihood Estimates

				Standard	Wald	
Parameter	symptoms	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	None	1	5.3897	1.0998	24.0165	<.0001
Intercept	Mild	1	2.3076	1.3681	2.8448	0.0917
ldose	None	1	-4.1488	0.8066	26.4600	<.0001
ldose	Mild	1	-2.4128	0.9902	5.9373	0.0148

Topic 31

33

STAT 525

Overdispersion

• Binomial/Bernoulli Model

$$E(Y_i) = \pi_i$$

$$Var(Y_i) = \pi_i(1 - \pi_i)$$

• Beta-Binomial Model

$$\begin{split} E(Y_i) &= \pi_i \\ Var(Y_i) &= \sigma^2 \pi_i (1 - \pi_i) \end{split}$$

- Mean unaffected but $Cov(\hat{\beta}) \approx \sigma^2(X'WX)^{-1}$
- Can show $E(\chi^2/(N-p)) \approx \sigma^2$

Output

Odds Ratio Estimates

Odds Ratio Estimates							
		95% Wa	ld				
Effec	t sympt	oms	Estimate		Confidence Limits		
ldose	None		0	.016	0.003	0.077	
ldose	Mild		0.090		0.013	0.624	
Obs	ldose	IP_No	ne	IP_Mild	IP_Seve	re	
1	1.00000	0.645	41	0.16798	0.1866	1	
4	1.30103	0.408	866	0.17937	0.4119	7	
7	1.47712	0.271	.08	0.16153	0.56740)	
10	1.60206	0.190	29	0.14086	0.6688	5	

Topic 31

STAT 525

SAS Commands

```
options nocenter;
goptions colors=('none');

data a1;
infile 'u:\.www\datasets525\CH14PR06.DAT';
input norenew increase;
renew=1-norenew;

proc genmod data=a1 descending;
model renew = increase / dist=binomial noscale link=logit;

proc genmod data=a1 descending;
model renew = increase / dist=binomial scale=2 link=logit;
run;
```

Topic 31 35 Topic 31

31

Output

Analysis Of Parameter Estimates

			Standard	Chi-	
Parameter	DF	Estimate	Error	Square	Pr > ChiSq
Intercept	1	4.8075	2.6558	3.28	0.0703
increase	1	-0.1251	0.0668	3.51	0.0610
Scale	0	1.0000	0.0000		

Analysis Of Parameter Estimates

			Standard	CHI-	
Parameter	DF	Estimate	Error	Square	Pr > ChiSq
Intercept	1	4.8075	5.3115	0.82	0.3654
increase	1	-0.1251	0.1335	0.88	0.3489
Scale	0	2.0000	0.0000		

Topic 31

SAS Commands

```
data ingots;
input heat soak r n @@;
cards;
7 1.0 0 10  14 1.0 0 31  27 1.0 1 56  51 1.0 3 13
7 1.7 0 17  14 1.7 0 43  27 1.7 4 44  51 1.7 0  1
7 2.2 0  7  14 2.2 2 33  27 2.2 0 21  51 2.2 0  1
7 2.8 0 12  14 2.8 0 31  27 2.8 1 22  51 4.0 0  1
7 4.0 0  9  14 4.0 0 19  27 4.0 1 16
;

proc genmod data = ingots;
model r/n = heat soak / dist=binomial link=logit scale=p;
proc genmod data = ingots;
model r/n = heat soak / dist=binomial link=logit scale=d;
run;
```

Topic 31

STAT 525

Output

	Criteria	For	Assessing	Goodness	s Of	Fit
Criterion		DI	F Va	alue V	alue	e/DF
Deviance		16	6 13.7	'526	0.8	3595
Scaled Dev	iance	16	6 16.2	2476	1.0	155
Pearson Ch	i-Square	16	6 13.5	3431	0.8	3464
Scaled Pear	rson X2	16	6 16.0	0000	1.0	0000
Log Likelil	nood		-56.3	3214		

Analysis Of Parameter Estimates

			Standard	Chi-	
Parameter	DF I	Estimate	Error	Square	Pr > ChiSq
Intercept	1	-5.5592	1.0301	29.12	<.0001
heat	1	0.0820	0.0218	14.11	0.0002
soak	1	0.0568	0.3047	0.03	0.8522
Scale	0	0.9200	0.0000		
NOTE: The	scale	parameter	was estima	ated by th	he square roo

of Pearson's Chi-Square/DOF.

STAT 525

Background Reading

- KNNL Chapter 14
- knnl570.sas
- KNNL Chapter 14

Topic 31 39 Topic 31