COMP 103

Lecture 08

Lab Prep: Design Rules & MOS Capacitance

[All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey's Digital Integrated Circuits, ©2002, J. Rabaey et al.]

COMP103-L08.1

Layout Editor: max Design Frame

Simplified Layouts

- Online design rule checking (DRC)
- Automatic fet generation (just overlap poly and diffusion and it creates a transistor)
- □ Simplified via/contact generation
 - v12, v23, v34, v45
 - ct, nwc, pwc

Design Rules

- □ Interface between the circuit designer and process engineer
- Guidelines for constructing process masks
- □ Unit dimension: minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions: micron rules
- □ Rules constructed to ensure that design works even when small fab errors (within some tolerance) occur
- □ A complete set includes
 - set of layers
 - intra-layer: relations between objects in the same layer
 - inter-layer: relations between objects on different layers

COMP103-L08.7

Why Have Design Rules?

- To be able to tolerate some level of fabrication errors such as
- Mask misalignment
- Dust
- Process parameters (e.g., lateral diffusion)

Intra-Layer Design Rule Origins

- ☐ Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fab
 - minimum line width is set by the resolution of the patterning process (photolithography)
- Minimum spaces between objects (that are not related) on the same layer to ensure they will not short after fab

CMOS Inverter: Dynamic

□ Transient, or dynamic, response determines the maximum speed at which a device can be operated.

Sources of Capacitance

intrinsic MOS transistor capacitances
extrinsic MOS transistor (fanout) capacitances
wiring (interconnect) capacitance

COMP103-L08.17

MOS Intrinsic Capacitances

- □ Structure capacitances
- Channel capacitances
- □ Depletion regions of the reversebiased *pn*-junctions of the drain and source

Ignore the lateral diffusion

Overlap capacitance (linear) ignore this

 $C_{GSO} = C_{GDO} = C_{ox} x_d W = C_o W$ Cg = Cox WL Use this

COMP103-L08.19

MOS Channel Capacitances

□ The gate-to-channel capacitance depends upon the operating region and the terminal voltages

Average Distribution of Channel Capacitance

Operation Region	C _{GCB}	C _{GCS}	C_{GCD}	C_{GC}	C_{G}
Cutoff	C _{ox} WL	0	0	C _{ox} WL	C _{ox} WL + 2C _o W
Resistive	0	C _{ox} WL/2	C _{ox} WL/2	C _{ox} WL	C _{ox} WL + 2C _o W
Saturation	0	(2/3)C _{ox} WL	0	(2/3)C _{ox} WL	(2/3)C _{ox} WL + 2C _o W

Ignore this slide

We do not want this slide

- Channel capacitance components are nonlinear and vary with operating voltage
- Most important regions are cutoff and saturation since that is where the device spends most of its time

Reverse Bias Diode

□ All diodes in MOS digital circuits are reverse biased; the dynamic response of the diode is determined by depletion-region charge or junction capacitance

Junction capacitance depends on voltage

where C_{j0} is the capacitance under zero-bias conditions (a function of physical parameters), ϕ_0 is the built-in potential (a function of physical parameters and temperature)

 $C_i = C_{i0}/((1 - V_D)/\phi_0)^m$

and m is the grading coefficient

- m = ½ for an abrupt junction (transition from n to p-material is instantaneous)
- m = 1/3 for a linear (or graded) junction (transition is gradual)
- Nonlinear dependence (that decreases with increasing reverse bias)

Drain-Bulk Capacitance: K_{eg}'s (for 2.5 μm)

■ We can simplify the diffusion capacitance calculations even further by using a K_{eq} to relate the linearized capacitor to the value of the junction capacitance under zero-bias

$$C_{eq} = K_{eq} C_{i0}$$

	high-t	o-low	low-to-high		
	K_{eqbp}	K _{eqsw}	K_{eqbp}	K_{eqsw}	
NMOS	0.57	0.61	0.79	0.81	
PMOS	0.79	0.86	0.59	0.7	

COMP103-I 08 26

MOS Capacitance Model

COMP103-L08.27

Transistor Capacitance Values for 0.25μ

Example: For an NMOS with L = 0.24 $\mu m,\,W$ = 0.36 $\mu m,\,L_D$ = L_S = 0.625 μm

$$C_{GSO} = C_{GDO} = C_{ox} x_d W = C_o W =$$

$$C_{GC} = C_{ox} WL =$$

so
$$C_{gate_cap} = C_{ox}WL + 2C_{o}W =$$

$$C_{bp} = C_j L_S W =$$

$$C_{sw} = C_{jsw} (2L_S + W) =$$

so
$$C_{diffusion_cap} =$$

	C_{ox}	C _o	C_{j}	m _j	ϕ_{b}	C_{jsw}	m _{jsw}	ϕ_{bsw}
	(fF/µm²)	(fF/µm)	(fF/µm²)		(V)	(fF/µm)		(V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

Review: Sources of Capacitance

intrinsic MOS transistor capacitances

extrinsic MOS transistor (fanout) capacitances wiring (interconnect) capacitance

COMP103-L08.29

Gate-Drain Capacitance: The Miller Effect

- M1 and M2 are either in cut-off or in saturation.
- □ The floating gate-drain capacitor is replaced by a capacitance-to-ground (gate-bulk capacitor).

A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground whose value is two times the original value

Extrinsic (Fan-Out) Capacitance

□ The extrinsic, or fan-out, capacitance is the total gate capacitance of the loading gates M3 and M4.

$$\begin{split} C_{\text{fan-out}} &= C_{\text{gate}} \text{ (NMOS)} + C_{\text{gate}} \text{ (PMOS)} \\ &= (C_{\text{GSOn}} + C_{\text{GDOn}} + W_{\text{n}} L_{\text{n}} C_{\text{ox}}) + (C_{\text{GSOp}} + C_{\text{GDOp}} + W_{\text{p}} L_{\text{p}} C_{\text{ox}}) \end{split}$$

- Simplification of the actual situation
 - \bullet Assumes all the components of C_{gate} are between V_{out} and GND (or $V_{DD})$
 - Assumes the channel capacitances of the loading gates are constant

Components of C_L (0.25 μm)

C Term	Expression	Value (fF) H→L	Value (fF) L→H
C _{GD1}	2 C _{on} W _n	0.23	0.23
C_{GD2}	2 C _{op} W _p	0.61	0.61
C _{DB1}	$K_{eqbpn}AD_nC_j + K_{eqswn}PD_nC_{jsw}$	0.66	0.90
C _{DB2}	$K_{eqbpp}AD_pC_j + K_{eqswp}PD_pC_{jsw}$	1.5	1.15
C _{G3}	$(2 C_{on})W_n + C_{ox}W_nL_n$	0.76	0.76
C _{G4}	$(2 C_{op})W_p + C_{ox}W_pL_p$	2.28	2.28
C _w	from extraction	0.12	0.12
C _L	Σ	6.1	6.0