

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-03-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[함수의 연속]

함수 f(x)가 실수 a에 대하여 다음 조건을 모두 만족시킬 때, 함수 f(x)는 x = a에서 연속이라 한다.

- (1) 함수 f(x)가 x=a에서 정의되어 있다.
- 즉 함숫값 f(a)가 존재한다.
- (2) 극한값 $\lim_{x \to \infty} f(x)$ 가 존재한다.
- (3) $\lim_{x \to a} f(x) = f(a)$

[함수의 불연속]

함수 f(x)가 x = a에서 연속이 아닐 때, f(x)는 x = a에서

- **1.** 함수 $f(x) = \begin{cases} -x+1 & (x<0) \\ x+2 & (x\geq 0) \end{cases}$ 가 x=k에서 불연 속일 때, 가능한 상수 k의 개수는?
 - 1 0
- 2 1
- 3 2
- (4) 3
- (5) 4

[문제]

- **2.** 다음 함수 중 x=2에서 불연속인 함수는?

 - ① $f(x) = x^2 4x$ ② $f(x) = \frac{2x+1}{x-1}$
 - ③ $f(x) = \frac{x^2 3x + 2}{x 2}$ ④ $f(x) = \sqrt{x + 2}$
 - $(5) f(x) = \begin{cases} x-2 & (x<2) \\ \sqrt{x-2} & (x \ge 2) \end{cases}$

[문제]

- **3.** 함수 $f(x) = \begin{cases} x^2 + ax 4 & (x < 2) \\ \sqrt{x 1} + 3 & (x \ge 2) \end{cases}$ 가 x = 2에서 연속이기 위한 상수 a의 값은?
 - \bigcirc 1

② 2

③ 3

(4) 4

(5) 5

[문제]

4. 다음 집합을 구간의 기호로 나타낸 것으로 옳지 않은 것은?

①
$$\{x | 1 \le x \le 2\} \rightarrow [1, 2]$$

②
$$\{x | 3 < x < 4\} \rightarrow (3, 4)$$

$$(3) \{x | -1 \le x < 3\} \rightarrow [-1, 3)$$

$$(4) \{x|x>2\} \rightarrow (2, \infty)$$

⑤
$$\{x|x<4\} \to (-\infty,4]$$

[문제]

- **5.** 다음 x 값 중 함수 $f(x) = \sqrt{-x+3}$ 가 불연속이 되게 하는 값은?
 - (1) 0
- 2 1
- 3 2

(4) 3

⑤ 4

- **6.** 다음 구간 중 함수 $f(x) = \frac{x-4}{x-2}$ 가 연속인 구간 은?
 - ① [-3, 1]
- \bigcirc [-2, 2]
- $\Im [-1, 3]$
- \bigcirc [0, 4]
- ⑤ [1, 5]

[문제]

 어느 주차장의 주차 요금은 시간제로 책정된다. 하루 이용을 기준으로 자동차의 주차 요금은 아래 표와 같다.

기본 요금	2시간 이내	5,000원
추가 요금	2시간 초과 3시간 이내	10분당 1,000원
	3시간 초과	10분당 500원

이 주차장에서 x시간을 주차하였을 때의 주차 요금 을 f(x)원이라고 하자. 0 < x < 3일 때, 함수 f(x)가 불연속이 되는 x 값의 개수는?

- ① 3
- ② 4
- 3 5
- **(4)** 6

(5) 7

평가문제

8. 함수
$$f(x) = \begin{cases} 2x+k & (x<-1) \\ x^2 & (x\geq -1) \end{cases}$$
가 $x=-1$ 에서

연속이기 위한 상수 k의 값은?

① 3

② 5

- ③ 7
- **4** 9
- (5) 11

9. 함수
$$f(x) = \begin{cases} \frac{x-2}{x^2-3x+2} & (x \neq 2) \\ k & (x=2) \end{cases}$$
가 모든 실수에

서 연속일 때, 상수 k의 값은?

- (1) 0
- 3 2
- **(4)** 3
- ⑤ 4

[중단원 학습 점검]

10. 함수
$$f(x) = \begin{cases} \frac{x^2 + 4x + a}{x - 1} & (x \neq 1) \\ b & (x = 1) \end{cases}$$
 $x = 1$ 에서

연속이 되도록 하는 두 상수 a, b에 대하여 a+b의 값은?

- (1) 2
- $\bigcirc -1$
- ③ 0
- (4) 1
- ⑤ 2

[중단원 학습 점검]

- **11.** 함수 $f(x) = \begin{cases} x^2 + ax + b & (|x| < 1) \\ -x(x-1) & (|x| \ge 1) \end{cases}$ 가 모든 실수 x에서 연속이 되도록 하는 두 상수 a,b에 대하여 *ab*의 값은?
 - $\bigcirc -2$
- 3 0
- **4** 1

(5) 2

[대단원 학습 점검]

- 12. 실수 전체의 집합에서 연속인 함수 f(x)가 $(x-2)f(x) = x^2 + 2x + k$ 를 만족시킬 때, f(2)의 값 은? (단, k는 상수이다.)
 - ① 2
- ② 3
- 3 4
- **(4)** 5

(5) 6

- [대단원 학습 점검]
- 13. 함수 f(x)의 그래프가 다음과 같을 때, $\langle 보기 \rangle$ 에서 옳은 것만을 있는 대로 고른 것은?

- \neg . $\lim_{x \to 0} \{f(x) + f(-x)\} = 0$
- L . 함수 f(x) + f(-x)는 x = 1에서 연속이다.
- \Box . 함수 f(x)+f(-x)는 x=0에서 연속이다.

- ③ ┐, ∟
- ④ ¬, ⊏
- ⑤ ┐, ∟, ⊏

[대단원 학습 점검]

14. 함수

$$f(x) = \begin{cases} \frac{\sqrt{x-1}+a}{x-2} & (x \neq 2) \\ b & (x = 2) \end{cases}$$

가 모든 실수 x에서 연속일 때, 두 상수 a, b에 대하여 a+b의 값은?

- 1 -1
- $2 \frac{1}{2}$
- 3 0
- $4 \frac{1}{2}$

⑤ 1

유사문제

15. 실수 전체의 집합에서 연속인 함수 f(x)가

$$(x^2-1) f(x) = x^3 + ax + b$$

를 만족시킬 때, f(1) + f(2)의 값은?

- ① 3
- 2 4
- 3 5
- **4** 6
- ⑤ 7

16. 함수 $f(x) = \begin{cases} x^2 + a & (x \ge 1) \\ 2x + 1 & (-1 \le x < 1)$ 가 모든 실 $x + b & (x < -1) \end{cases}$

수 x에서 연속일 때, f(2) + f(-2)의 값은?

- 1 0
- ② 1
- 3 2
- 4 3
- (5) 4

17. 다음 중 모든 실수에서 연속인 함수가 <u>아닌</u> 것 은?

①
$$y = 3x^2 + 2x + 6$$

②
$$y = \frac{x}{x^2 - 2x + 3}$$

$$\textcircled{4} \ y = \begin{cases} \frac{x^2 + 3x + 2}{x + 1} & (x \neq -1) \\ 3 & (x = -1) \end{cases}$$

(5)
$$y = |x^2 - 2x - 2|$$

18. 열린구간 (-2,2)에서 정의된 함수 f(x) 중에서 x=0에서 연속이 아닌 함수는?

- ① $f(x) = x^2 + x$
- ② f(x) = |x|
- $\Im f(x) = \frac{x+1}{x^2-4}$

$$(4) f(x) = \begin{cases} -3x & (-2 < x < 0) \\ x^2 + 1 & (0 \le x < 2) \end{cases}$$

19. 함수 $f(x) = x^2 - 8x + a$ 에 대하여 함수 g(x)를

$$g(x) = \begin{cases} 2x + a & (x \ge 1) \\ 4x - 3a & (x < 1) \end{cases}$$

라 할 때, 합성함수 $(f \circ g)(x)$ 가 실수 전체의 집합에 서 연속이 되도록 하는 정수 a의 값은?

- ① -2
- $\bigcirc -1$
- 3 1
- 4) 2
- **⑤** 3

20. 함수 $f(x) = \begin{cases} x^2 + 3x - 1 & (x \ge 1) \\ -x + k & (x < 1) \end{cases}$ 가 실수 전체

- 의 집합에서 연속일 때, 상수 k의 값은?
- 1 1

2 2

- 3 3
- (4) 4
- **⑤** 5

9

정답 및 해설

1) [정답] ②

[해설] 함수 f(x)에 대하여

- (i) f(0) = 2이므로 x = 0에서 정의되어 있다.
- (ii) $\lim_{x \to 0-} f(x) = \lim_{x \to 0-} (-x+1) = 1,$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+2) = 2$$

이므로 함수 f(x)는 x=0에서 불연속이다.

- 그 이외의 값에서는 다항함수이므로 연속이다.
- 즉, 가능한 상수 k는 1개다.

2) [정답] ③

[해설] ① 함수 f(x)는 다항함수이므로 모든 실수 x 에서 연속이다.

②
$$\lim_{x\to 2} f(x) = \frac{2 \times 2 + 1}{2 - 1} = 5$$
이고 $f(2) = 5$ 이므로

함수 f(x)는 x=2에서 연속이다.

(3)
$$f(x) = \frac{x^2 - 3x + 2}{x - 2} \stackrel{\leftharpoonup}{\sqsubseteq}$$

x = 2에서 정의되지 않으므로

x=2에서 불연속이다.

④
$$\lim_{x\to 2} f(x) = \sqrt{4} = 2$$
이고 $f(2) = 2$ 이므로

함수 f(x)는 x=2에서 연속이다.

$$\lim_{x \to 2+} f(x) = \lim_{x \to 2+} \sqrt{x-2} = 0$$

f(2) = 0이므로

함수 f(x)는 x=2에서 연속이다.

3) [정답] ②

[해설]
$$f(x) = \begin{cases} x^2 + ax - 4 & (x < 2) \\ \sqrt{x - 1} + 3 & (x \ge 2) \end{cases}$$
가 $x = 2$ 에서

연속이려면

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x) = f(2)$ 가 성립해야 한다.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^2 + ax - 4) = 2a$$

$$\lim_{x \to 2+} f(x) = \lim_{x \to 2+} (\sqrt{x-1} + 3) = 4$$

$$f(2) = \sqrt{2-1} + 3 = 4$$
이므로

2a = 4

 $\therefore a = 2$

4) [정답] ⑤

[해설] 집합 $\{x|x<4\}$ 을 구간의 기호로 나타내면 $(-\infty,4)$ 가 된다.

5) [정답] ⑤

[해설] ⑤ x = 4에서는 근호 안의 값이 음수이므로 함수가 정의되지 않아 연속이 아니다.

6) [정답] ①

[해설] 함수 f(x)는 $x \neq 2$ 인 실수 전체에서 연속이므

로 ① [-3,1]에서는 연속이다.

7) [정답] ④

[해설] 자동차를 t분 주차했을 때, t = 60x이고 0 < x < 3이므로 0 < t < 180이다.

이때 주차요금은

$$g(t) = \begin{cases} 5000 & (t \le 120) \\ 5000 + 1000 \times \left\langle \frac{t - 120}{10} \right\rangle & (120 < t \le 180) \\ 11000 + 500 \times \left\langle \frac{t - 180}{10} \right\rangle & (t > 180) \end{cases}$$

(단, < t >는 t보다 작지 않은 최소의 정수이다.) 0 < t < 180에서 함수 g(t)의 그래프를 그려보면 다음과 같다.

그래프에서 t의 값이 120, 130, 140, 150, 160, 170일 때 g(t)는 불연속이다.

$$x = \frac{t}{60} \circ | \underline{\Box} \, \underline{c}$$

0 < x < 3에서 주차요금 f(x)가 불연속이 되는 x의 값의 개수는 6이다.

8) [정답] ①

[해설]
$$f(x) = \begin{cases} 2x+k & (x<-1) \\ x^2 & (x \ge -1) \end{cases}$$
이 $x = -1$ 에서 연

속이려면

$$\lim_{x \to -1-} f(x) = \lim_{x \to -1+} f(x) = f(-1)$$
이어야 한다.

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (2x+k) = k-2$$

$$\lim_{x \to -1+} f(x) = \lim_{x \to -1+} x^2 = 1$$

$$f(-1) = (-1)^2 = 1$$
이므로

-2+k=1

 $\therefore k = 3$

9) [정답] ②

[해설] 함수 f(x)가 x=2에서 연속이므로

$$\lim_{x \to 0} f(x) = f(2)$$

$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{x-2}{x^2 - 3x + 2}$$

$$= \lim_{x \to 2} \frac{x-2}{(x-1)(x-2)}$$

$$= \lim_{x \to 2} \frac{1}{x - 1}$$

=1이고

$$f(2) = k$$
이므로 $k = 1$

10) [정답] ④

[해설] 함수
$$f(x) = \begin{cases} \frac{x^2 + 4x + a}{x - 1} & (x \neq 1) \\ b & (x = 1) \end{cases}$$

$$x=1$$
에서 연속이므로

$$\lim_{x\to 1} f(x) = f(1)$$

$$\lim_{x\to 1} \frac{x^2 + 4x + a}{x - 1} = b$$

$$\lim_{x\to 0} (x-1) = 0$$
이므로

$$\lim_{x \to 1} (x^2 + 4x + a) = 0$$

즉,
$$5+a=0$$
이므로 $a=-5$

$$b = \lim_{x \to 1} \frac{x^2 + 4x - 5}{x - 1} = \lim_{x \to 1} (x + 5) = 6$$

$\therefore a+b=1$

11) [정답] ①

[해설] 함수 f(x)가 모든 실수 x에서 연속이려면 x=-1, x=1에서 연속이어야 한다.

(i)
$$f(-1) = -2$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \{-x(x-1)\} = -2,$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} (x^2 + ax + b) = 1 - a + b$$

즉,
$$1-a+b=-2$$
이므로 $a-b=3$ ··· ①

(ii)
$$f(1) = 0$$
,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 + ax + b) = 1 + a + b,$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \{-x(x-1)\} = 0$$

즉,
$$1+a+b=0$$
이므로 $a+b=-1$ ··· ©

⊙과 ⓒ을 연립하면

$$a = 1, b = -2$$

$$\therefore ab = -2$$

12) [정답] ⑤

$$x \neq 2$$
일 때, $f(x) = \frac{x^2 + 2x + k}{x - 2}$ 이고

함수 f(x)가 x=2에서 연속이므로

 $\lim_{x\to 2} f(x) = f(2)$ 이어야 한다.

이때
$$\lim_{x\to 2} \frac{x^2 + 2x + k}{x - 2} = f(2)$$
에서

$$\lim_{x\to 2} (x-2) = 0$$
이므로

$$\lim_{x\to 2} (x^2 + 2x + k) = 8 + k = 0, \quad \stackrel{\sim}{\neg} \quad k = -8$$

따라서
$$f(2) = \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2} = \lim_{x \to 2} (x + 4)$$
이므로
$$\therefore f(2) = 6$$

13) [정답] ④

[해설] y = f(-x)의 그래프는 다음과 같다.

$$\neg$$
. $\lim_{x \to 0} \{f(x) + f(-x)\} = 0 + 0 = 0$

$$L. f(1) + f(-1) = 1$$

$$\lim_{x \to 1} \{f(x) + f(-x)\} = 0$$

따라서 함수
$$f(x)+f(-x)$$
는 $x=1$ 에서 불연속이다.

$$\Box . \lim_{x \to 0+} \{f(x) + f(-x)\} = 0$$

$$\lim_{x \to 0} \{f(x) + f(-x)\} = 0$$

$$f(0) + f(0) = 0$$
이므로

함수 f(x)+f(-x)는 x=0에서 연속이다.

이상에서 ㄱ, ㄷ이 옳다.

14) [정답] ②

[해설] 함수 f(x)가 모든 실수 x에서 연속이므로 x=2에서도 연속이다.

즉,
$$\lim_{x\to 2} f(x) = f(2)$$
가 성립한다.

$$\lim_{x\to 2}\frac{\sqrt{x-1}+a}{x-2}=b\text{ on }k$$

$$\lim_{x\to 2} (x-2) = 0$$
이므로 $\lim_{x\to 2} (\sqrt{x-1} + a) = 0$

$$a = -1$$

$$b = \lim_{x \to 2} \frac{\sqrt{x - 1} - 1}{x - 2}$$

$$= \lim_{x \to 2} \frac{x-2}{(x-2)(\sqrt{x-1}+1)}$$

$$=\lim_{x\to 2}\frac{1}{\sqrt{x-1}+1}$$

$$=\frac{1}{2}$$

$$\therefore a + b = -\frac{1}{2}$$

15) [정답] ①

[해설]
$$x^2 \neq 1$$
일 때, $f(x) = \frac{x^3 + ax + b}{x^2 - 1}$

이때 f(x)가 실수 전체의 집합에서 연속이므로 $x^3 + ax + b$ 는 $x^2 - 1$ 으로 나누어떨어진다.

즉 상수 k에 대하여

$$x^{3} + ax + b = (x^{2} - 1)(x + k) = x^{3} + kx^{2} - x + k$$

이때
$$k=0$$
이므로 $a=-1$, $b=0$

따라서
$$f(x) = \frac{x(x^2-1)}{x^2-1} = x$$
이므로

$$f(1) + f(2) = 1 + 2 = 3$$

16) [정답] ⑤

[해설] 모든 실수 x에서 연속이므로 $x=1, \ x=-1$ 에서 연속이다. $\lim_{x\to 1+} (x^2+a) = \lim_{x\to 1-} (2x+1) \qquad \therefore \ a=2$ $\lim_{x\to -1+} (2x+1) = \lim_{x\to -1-} (x+b) \qquad \therefore \ b=0$ $\therefore \ f(2)+f(-2)=4+a-2+b=4$

17) [정답] ④

[해설] ④에서 x=-1일 때, y=3이고, $\lim_{x\to -1}\frac{x^2+3x+2}{x+1}=\lim_{x\to -1}(x+2)=1\neq 3$ 이므로 ④의 함수는 x=-1에서 연속이 아니다.

18) [정답] ④

[해설] ④의 f(x)에 대해서 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} -3x = 0$, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x^2+1) = 1$ 이므로 $\lim_{x\to 0} f(x)$ 의 값이 존재하지 않는다. 따라서 ④의 f(x)는 x=0에서 연속이 아니다.

19) [정답] ②

20) [정답] ④

[해설] 함수 f(x)는 실수 전체에서 연속이므로 x=1에서 $\lim_{x\to 1+}f(x)=\lim_{x\to 1-}f(x)$ $1^2+3-1=-1+k\qquad \therefore k=4$

