## Задача 9.3. Пружинки.

**1.1** Два одинаковых бруска массой m каждый, соединенные легкой пружиной с коэффициентом упругости k, движутся по

коэффициентом упругости k, движутся по горизонтальной плоскости под действием постоянной горизонтальной силы  $\vec{F}$ , приложенной k одному из них. Найдите установившееся абсолютное удлинение пружины k в зависимости от модуля k



приложенной силы. Коэффициент трения брусков о плоскость —  $\mu$  . Силой сопротивления воздуха пренебречь.

**1.2** Два одинаковых шара, соединенные легкой пружиной жесткости k, движутся в вязкой среде под действием постоянной горизонтальной силы  $\vec{F}$ , приложенной к одному из них. Известно, что при движении такого шара в вязкой среде со скоростью  $\vec{\upsilon}$  на него

действует сила сопротивления  $\vec{F}_{conp} = -\beta \cdot \vec{\upsilon}$ , где  $\beta$  — некоторый постоянный для данной среды коэффициент. Найдите установившееся абсолютное удлинение пружины  $\Delta x$  в зависимости от модуля F приложенной силы. Силами сухого трения пренебречь.



**1.3** N одинаковых брусков массой m каждый, соединенные легкими пружинами с коэффициентом упругости k каждая, движутся по горизонтальной плоскости с

коэффициентом трения  $\mu$  под действием постоянной горизонтальной силы  $\vec{F}$ , приложенной к одному из брусков. Найдите суммарное



установившееся удлинение всех пружин  $\Delta x_{oбщ}$  в зависимости от модуля приложенной силы F . Силой сопротивления воздуха пренебречь.

**1.4** N одинаковых шаров, соединенных легкими пружинами жесткости k, движутся в вязкой среде. Известно, что при движении такого шара в вязкой среде со скоростью  $\vec{v}$  на него действует сила сопротивления

 $\vec{F}_{conp} = - eta \cdot \vec{\upsilon}$ , где eta — некоторый постоянный для данной среды коэффициент. Найдите зависимость



суммарного установившегося удлинения пружин  $\Delta x_{oбuq}$  от модуля приложенной силы F . Силами сухого трения пренебречь.