import matplotlib.pyplot as plt In [4]: import pandas as pd import numpy as np from sklearn.impute import SimpleImputer df = pd.read csv(r'C:\Users\SAHIL PANDITA\OneDrive\Documents\RAW DATA\covid 19 data.csv') In [6]: In [9]: df.head(50) Out[9]: SNo ObservationDate Province/State Country/Region Last Update Confirmed Deaths Recovered 0 01/22/2020 Anhui Mainland China 1/22/2020 17:00 1.0 0.0 0.0 2 Mainland China 1/22/2020 17:00 0.0 01/22/2020 Beijing 14.0 0.0 2 3 01/22/2020 6.0 0.0 0.0 Chongqing Mainland China 1/22/2020 17:00 3 4 01/22/2020 Fujian Mainland China 1/22/2020 17:00 1.0 0.0 0.0 4 5 01/22/2020 Gansu Mainland China 1/22/2020 17:00 0.0 0.0 0.0 5 6 Guangdong Mainland China 1/22/2020 17:00 0.0 0.0 01/22/2020 26.0 7 6 01/22/2020 Mainland China 1/22/2020 17:00 0.0 0.0 Guangxi 2.0 8 7 01/22/2020 Guizhou Mainland China 1/22/2020 17:00 1.0 0.0 0.0 8 9 01/22/2020 Hainan Mainland China 1/22/2020 17:00 4.0 0.0 0.0 9 10 01/22/2020 Hebei Mainland China 1/22/2020 17:00 1.0 0.0 0.0 11 10 01/22/2020 Mainland China 1/22/2020 17:00 0.0 0.0 0.0 Heilongjiang 11 12 01/22/2020 Henan Mainland China 1/22/2020 17:00 5.0 0.0 0.0 13 12 01/22/2020 Hong Kong Hong Kong 1/22/2020 17:00 0.0 0.0 0.0 13 14 01/22/2020 Hubei Mainland China 1/22/2020 17:00 444.0 17.0 28.0 15 14 01/22/2020 Hunan Mainland China 1/22/2020 17:00 4.0 0.0 0.0 16 01/22/2020 Mainland China 1/22/2020 17:00 0.0 0.0 0.0 15 Inner Mongolia 17 01/22/2020 0.0 0.0 16 Mainland China 1/22/2020 17:00 1.0 Jiangsu 17 18 01/22/2020 Jiangxi Mainland China 1/22/2020 17:00 2.0 0.0 0.0

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
18	19	01/22/2020	Jilin	Mainland China	1/22/2020 17:00	0.0	0.0	0.0
19	20	01/22/2020	Liaoning	Mainland China	1/22/2020 17:00	2.0	0.0	0.0
20	21	01/22/2020	Macau	Macau	1/22/2020 17:00	1.0	0.0	0.0
21	22	01/22/2020	Ningxia	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
22	23	01/22/2020	Qinghai	Mainland China	1/22/2020 17:00	0.0	0.0	0.0
23	24	01/22/2020	Shaanxi	Mainland China	1/22/2020 17:00	0.0	0.0	0.0
24	25	01/22/2020	Shandong	Mainland China	1/22/2020 17:00	2.0	0.0	0.0
25	26	01/22/2020	Shanghai	Mainland China	1/22/2020 17:00	9.0	0.0	0.0
26	27	01/22/2020	Shanxi	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
27	28	01/22/2020	Sichuan	Mainland China	1/22/2020 17:00	5.0	0.0	0.0
28	29	01/22/2020	Taiwan	Taiwan	1/22/2020 17:00	1.0	0.0	0.0
29	30	01/22/2020	Tianjin	Mainland China	1/22/2020 17:00	4.0	0.0	0.0
30	31	01/22/2020	Tibet	Mainland China	1/22/2020 17:00	0.0	0.0	0.0
31	32	01/22/2020	Washington	US	1/22/2020 17:00	1.0	0.0	0.0
32	33	01/22/2020	Xinjiang	Mainland China	1/22/2020 17:00	0.0	0.0	0.0
33	34	01/22/2020	Yunnan	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
34	35	01/22/2020	Zhejiang	Mainland China	1/22/2020 17:00	10.0	0.0	0.0
35	36	01/22/2020	NaN	Japan	1/22/2020 17:00	2.0	0.0	0.0
36	37	01/22/2020	NaN	Thailand	1/22/2020 17:00	4.0	0.0	2.0
37	38	01/22/2020	NaN	South Korea	1/22/2020 17:00	1.0	0.0	0.0
38	39	01/22/2020	Unknown	China	1/22/2020 17:00	0.0	0.0	0.0
39	40	01/23/2020	Anhui	Mainland China	1/23/20 17:00	9.0	0.0	0.0
40	41	01/23/2020	Beijing	Mainland China	1/23/20 17:00	22.0	0.0	0.0
41	42	01/23/2020	Chongqing	Mainland China	1/23/20 17:00	9.0	0.0	0.0
42	43	01/23/2020	Fujian	Mainland China	1/23/20 17:00	5.0	0.0	0.0

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
43	44	01/23/2020	Gansu	Mainland China	1/23/20 17:00	2.0	0.0	0.0
44	45	01/23/2020	Guangdong	Mainland China	1/23/20 17:00	32.0	0.0	2.0
45	46	01/23/2020	Guangxi	Mainland China	1/23/20 17:00	5.0	0.0	0.0
46	47	01/23/2020	Guizhou	Mainland China	1/23/20 17:00	3.0	0.0	0.0
47	48	01/23/2020	Hainan	Mainland China	1/23/20 17:00	5.0	0.0	0.0
48	49	01/23/2020	Hubei	Mainland China	1/23/20 17:00	444.0	17.0	28.0
49	50	01/23/2020	Heilongjiang	Mainland China	1/23/20 17:00	2.0	0.0	0.0

In [10]:

df.tail(50)

Out[10]:

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
285257	285258	05/02/2021	Valle d'Aosta	Italy	2021-05-03 04:20:39	11013.0	459.0	9856.0
285258	285259	05/02/2021	Valle del Cauca	Colombia	2021-05-03 04:20:39	238813.0	7376.0	226123.0
285259	285260	05/02/2021	Valparaiso	Chile	2021-05-03 04:20:39	85927.0	2309.0	80180.0
285260	285261	05/02/2021	Varmland	Sweden	2021-05-03 04:20:39	16697.0	198.0	0.0
285261	285262	05/02/2021	Vasterbotten	Sweden	2021-05-03 04:20:39	20903.0	178.0	0.0
285262	285263	05/02/2021	Vasternorrland	Sweden	2021-05-03 04:20:39	23802.0	458.0	0.0
285263	285264	05/02/2021	Vastmanland	Sweden	2021-05-03 04:20:39	24678.0	343.0	0.0
285264	285265	05/02/2021	Vastra Gotaland	Sweden	2021-05-03 04:20:39	171187.0	2294.0	0.0
285265	285266	05/02/2021	Vaupes	Colombia	2021-05-03 04:20:39	1278.0	13.0	1229.0
285266	285267	05/02/2021	Veneto	Italy	2021-05-03 04:20:39	413142.0	11365.0	380037.0
285267	285268	05/02/2021	Veracruz	Mexico	2021-05-03 04:20:39	59870.0	9582.0	0.0
285268	285269	05/02/2021	Vermont	US	2021-05-03 04:20:39	23126.0	247.0	0.0
285269	285270	05/02/2021	Vichada	Colombia	2021-05-03 04:20:39	1552.0	23.0	1521.0
285270	285271	05/02/2021	Victoria	Australia	2021-05-03 04:20:39	20523.0	820.0	19682.0

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
285271	285272	05/02/2021	Vinnytsia Oblast	Ukraine	2021-05-03 04:20:39	68117.0	1516.0	52069.0
285272	285273	05/02/2021	Virgin Islands	US	2021-05-03 04:20:39	3138.0	27.0	0.0
285273	285274	05/02/2021	Virginia	US	2021-05-03 04:20:39	661314.0	10791.0	0.0
285274	285275	05/02/2021	Vladimir Oblast	Russia	2021-05-03 04:20:39	32055.0	1116.0	29599.0
285275	285276	05/02/2021	Volgograd Oblast	Russia	2021-05-03 04:20:39	57100.0	1119.0	54556.0
285276	285277	05/02/2021	Vologda Oblast	Russia	2021-05-03 04:20:39	44917.0	1010.0	41988.0
285277	285278	05/02/2021	Volyn Oblast	Ukraine	2021-05-03 04:20:39	57526.0	1003.0	49171.0
285278	285279	05/02/2021	Voronezh Oblast	Russia	2021-05-03 04:20:39	80874.0	2662.0	76252.0
285279	285280	05/02/2021	Wakayama	Japan	2021-05-03 04:20:39	2221.0	27.0	1822.0
285280	285281	05/02/2021	Wales	UK	2021-05-03 04:20:39	211573.0	5550.0	0.0
285281	285282	05/02/2021	Wallis and Futuna	France	2021-05-03 04:20:39	444.0	7.0	44.0
285282	285283	05/02/2021	Walloon Brabant	Belgium	2021-05-03 04:20:39	38008.0	0.0	0.0
285283	285284	05/02/2021	Washington	US	2021-05-03 04:20:39	404709.0	5499.0	0.0
285284	285285	05/02/2021	West Bengal	India	2021-05-03 04:20:39	845878.0	11447.0	717772.0
285285	285286	05/02/2021	West Flanders	Belgium	2021-05-03 04:20:39	89704.0	0.0	0.0
285286	285287	05/02/2021	West Virginia	US	2021-05-03 04:20:39	153918.0	2686.0	0.0
285287	285288	05/02/2021	Western Australia	Australia	2021-05-03 04:20:39	1008.0	9.0	972.0
285288	285289	05/02/2021	Wisconsin	US	2021-05-03 04:20:39	661685.0	7567.0	0.0
285289	285290	05/02/2021	Wyoming	US	2021-05-03 04:20:39	58142.0	707.0	0.0
285290	285291	05/02/2021	Xinjiang	Mainland China	2021-05-03 04:20:39	980.0	3.0	977.0
285291	285292	05/02/2021	Yamagata	Japan	2021-05-03 04:20:39	1537.0	34.0	1308.0
285292	285293	05/02/2021	Yamaguchi	Japan	2021-05-03 04:20:39	1890.0	46.0	1545.0
285293	285294	05/02/2021	Yamalo-Nenets Autonomous Okrug	Russia	2021-05-03 04:20:39	38581.0	416.0	37367.0
285294	285295	05/02/2021	Yamanashi	Japan	2021-05-03 04:20:39	1242.0	19.0	1076.0
285295	285296	05/02/2021	Yaroslavl Oblast	Russia	2021-05-03 04:20:39	38796.0	536.0	37038.0

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
285296	285297	05/02/2021	Yucatan	Mexico	2021-05-03 04:20:39	37319.0	3636.0	0.0
285297	285298	05/02/2021	Yukon	Canada	2021-05-03 04:20:39	81.0	2.0	79.0
285298	285299	05/02/2021	Yunnan	Mainland China	2021-05-03 04:20:39	344.0	2.0	291.0
285299	285300	05/02/2021	Zabaykalsky Krai	Russia	2021-05-03 04:20:39	42364.0	630.0	40903.0
285300	285301	05/02/2021	Zacatecas	Mexico	2021-05-03 04:20:39	30059.0	2750.0	0.0
285301	285302	05/02/2021	Zakarpattia Oblast	Ukraine	2021-05-03 04:20:39	60151.0	1527.0	54174.0
285302	285303	05/02/2021	Zaporizhia Oblast	Ukraine	2021-05-03 04:20:39	96531.0	1919.0	78700.0
285303	285304	05/02/2021	Zeeland	Netherlands	2021-05-03 04:20:39	26045.0	233.0	0.0
285304	285305	05/02/2021	Zhejiang	Mainland China	2021-05-03 04:20:39	1344.0	1.0	1322.0
285305	285306	05/02/2021	Zhytomyr Oblast	Ukraine	2021-05-03 04:20:39	84641.0	1597.0	68529.0
285306	285307	05/02/2021	Zuid-Holland	Netherlands	2021-05-03 04:20:39	359327.0	4138.0	0.0

```
df.drop(['SNo','Last Update'],axis=1,inplace=True)
In [15]:
In [21]:
           df.rename(columns={'ObservationDate':'Date','Province/State':'State','Country/Region':'Country'},inplace=True)
           df['Date'] = pd.to_datetime(df['Date'])
In [22]:
In [24]:
           df.describe()
                    Confirmed
Out[24]:
                                    Deaths
                                               Recovered
                 2.853070e+05
                              285307.000000
                                            2.853070e+05
          count
                 7.662923e+04
                                1867.334661
                                            4.478423e+04
          mean
                 2.466176e+05
                                5905.565551
                                            1.788030e+05
            std
                -3.028440e+05
                                -178.000000 -8.544050e+05
           25%
                 9.700000e+02
                                  12.000000
                                            1.100000e+01
```

172.000000

1.552000e+03

50%

9.181000e+03

```
4.561800e+04
                              1181.000000
           max 5.605532e+06 112182.000000
                                         6.399531e+06
In [25]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 285307 entries, 0 to 285306
         Data columns (total 6 columns):
              Column
                          Non-Null Count
                                           Dtype
              Date
                          285307 non-null datetime64[ns]
              State
                          212318 non-null object
              Country
                          285307 non-null object
              Confirmed 285307 non-null float64
              Deaths
                          285307 non-null float64
              Recovered 285307 non-null float64
         dtypes: datetime64[ns](1), float64(3), object(2)
         memory usage: 13.1+ MB
          imputer=SimpleImputer(strategy='constant')
In [27]:
          df2=pd.DataFrame(imputer.fit transform(df),columns=df.columns)
          df3=df2.groupby(['Country','Date'])[['Country','Date','Confirmed','Deaths','Recovered']].sum().reset index()
In [30]:
          df3.head(3)
In [31]:
                           Date Confirmed Deaths Recovered
Out[31]:
               Country
             Azerbaijan 2020-02-28
                                      1.0
                                             0.0
                                                       0.0
         1 ('St. Martin',) 2020-03-10
                                      2.0
                                             0.0
                                                       0.0
          2 Afghanistan 2020-02-24
                                      1.0
                                             0.0
                                                       0.0
          Countries=df3['Country'].unique()
In [32]:
          len(Countries)
```

Out[32]: 228

Confirmed

Deaths

Recovered

1.793500e+04

```
In [35]:
    for idx in range(0,len(Countries)):
        c= df3[df3['Country']==Countries[idx]].reset_index()
        plt.scatter(np.arange(0,len(c)),c['Confirmed'],color='blue',label='Confirmed')
        plt.scatter(np.arange(0,len(c)),c['Recovered'],color='green',label='Recovered')
        plt.scatter(np.arange(0,len(c)),c['Deaths'],color='red',label='Deaths')
        plt.title(Countries[idx])
        plt.xlabel('Days since the first suspect')
        plt.ylabel('Number of cases')
        plt.legend()
        plt.show()
```



```
df4=df2.groupby(['Date'])[['Date','Confirmed','Deaths','Recovered']].sum().reset_index()
In [36]:
          df4.head(5)
In [37]:
Out[37]:
                 Date Confirmed Deaths Recovered
          0 2020-01-22
                           557.0
                                   17.0
                                             30.0
          1 2020-01-23
                          1097.0
                                   34.0
                                             60.0
          2 2020-01-24
                          941.0
                                   26.0
                                             39.0
          3 2020-01-25
                          1437.0
                                   42.0
                                             42.0
          4 2020-01-26
                          2118.0
                                   56.0
                                             56.0
          C=df4
In [39]:
          plt.scatter(np.arange(0,len(C)),C['Confirmed'],color='blue',label='Confirmed')
           plt.scatter(np.arange(0,len(C)),C['Recovered'],color='green',label='Recovered')
           plt.scatter(np.arange(0,len(C)),C['Deaths'],color='red',label='Deaths')
           plt.title('WORLD')
           plt.xlabel('Days since the first suspect')
           plt.ylabel('Number of cases')
```

```
plt.legend()
plt.show()
```


In []: