Mathematische Logik & Modelltheorie

Actinistia

16. September 2016

Inhaltsverzeichnis

1	September 2016	2
2	September 2012	3
3	Februar 2011	4
4	September 2010	5

1 September 2016

Dozent: Prof. Dr. George Metcalfe

Sie können zur beantwortung der Fragen das Korrektheits- , Vollständigkeits- und Kompaktheitstheorem voraussetzen.

1. (3 Punkte)

(a) Finden Sie eine Formel mit der Wahrheitstabelle.

<i>p1</i>	<i>p2</i>	р3	???
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

- (b) Beweisen Sie $\{\lor, \land, \neg\}$ ist funktional vollständig.
- (c) Beweisen Sie $\{\rightarrow, \bot\}$ ist funktional vollständig.

2. (3 Punkte)

(a) Zeigen Sie

$$\{(\exists x)(r_1x \land r_2x), (\exists x)(r_2x \land r_3x), (\exists x)(r_1x \land r_3x)\} \nvDash (\exists x)(r_1x \land r_2x \land r_3x)$$

(b) Benutzen sie Skolemisierung und Resolution, um Folgendes zu beweisen:

$$\{(\forall x)(r_1x \vee r_2x), (\forall x)(\exists y)(r_1x \rightarrow r_2y), \} \vDash (\exists x)(r_2x)$$

- 3. (4 Punkte)
 - (a) Zeigen Sie, dass die folgenden Klassen elementar sind:
 - i. die Klasse aller Gruppen
 - ii. die Klasse aller Gruppen mit höchstens zwei Elementen
 - iii. die Klasse aller unendlichen Gruppen
 - (b) Beweisen Sie : $\mathcal{K} \subseteq Str(\mathcal{L})$ ist endlich axiomatisierbar (d.h. $\mathcal{K} = Mod(\Sigma)$ für ein endliches $\Sigma \subseteq Sen(\mathcal{L})$) genau dann, wenn \mathcal{K} und $Str(\mathcal{L})\backslash\mathcal{K}$ elementar sind.

2 September 2012

Sie können zur beantwortung der Fragen das Korrektheits- , Vollständigkeitstheorem annehmen.

- 1. (a) Definieren Sie: $\Sigma \subseteq Sen(\mathcal{L})$ is widerspruchsvoll.
 - (b) Beweisen Sie, dass

$$\{(\forall x)(\forall y)(\forall z)((x+y)+z\approx x+(y+z)),(\forall x)(x+x\approx x)\} \nvdash (\forall x)(\forall y)(x+y\approx y+x)$$

.

(c) Benutzen sie Pränex Normalform, Skolemisierung und Resolution,, um Folgendes zu beweisen:

$$\{(\forall x)(\exists y)(rxy)\} \vDash (\forall x)(\exists y)(\exists z)(rxy \land ryz)$$

2. (a) Beweisen Sie, dass für $\Sigma \subseteq Sen(\mathcal{L} \text{ und } \mathcal{K} \subseteq Str(\mathcal{L})$ gilt:

$$\mathcal{K} \subseteq Mod(\Sigma)$$
 gdw. $\Sigma \subseteq Th(\mathcal{K})$

.

(b) Sei $\Sigma_1, \Sigma_2 \subseteq Sen(\mathcal{L})$ mit $Mod(\Sigma_1) = Mod(\Sigma_2)$ und Σ_1 endlich. Verwenden Sie Kompaktheit um zu zeigen, dass es eine endliche Teilmenge $\Sigma_2' \subseteq \Sigma_2$ so exisitiert, dass $Mod(\Sigma_1) = Mod(\Sigma_2')$.

3 Februar 2011

You may assume the soundness and completeness theorems for first-order logic in answering both questions.

1. Let $\Sigma = \{\alpha, \beta, \gamma\}$ where:

$$\alpha = (\forall x)(\exists y)(Rxy)$$

$$\beta = \neg(\exists x)(\exists y)(Rxy \land Ryx)$$

$$\gamma = (\forall x)(\forall y)(\forall z)((Rxy \land Ryz) \rightarrow Rxz)$$

.

- (a) Show that Σ is consistent.
- (b) Use resolution to prove that:

$$\Sigma \vdash (\forall x)(\forall y)(Rxy \rightarrow \neg(\forall z)(Ryz \rightarrow Rzx)$$

I.e., put the appropriate formulas into prenex normal form, skolemize, translate into clauses, and use resolution.

- 2. Let \mathcal{L} be the language of directed graphs, i.e., with one binary relation symbol R:
 - (a) For each $n \in \mathbb{N}$ give an \mathcal{L} -formula $\varphi_n(x, y)$ for "there is a path of length nfrom xtoy"; i.e., such that for any directed graph \mathcal{A} and assignment hinto \mathcal{A} :

$$\mathcal{A} \vDash \varphi_n(x,y)[h] \iff \text{there is a path of length } n \text{ from } h(x) \text{ to } h(y) \text{ in } \mathcal{A}$$

(A path is a sequence of vertices connected by directed edges.)

(b) Let \mathcal{L}' be \mathcal{L} extended with two extra constant symbols c_1 and c_2 . Show that there is no \mathcal{L} -formula $\varphi(x, y)$ expressing "there is a path from x to y" by considering the logical implication:

$$\{\neg \varphi_n(c_1, c_2) \mid n \in \mathbb{N}\} \vdash \neg \varphi(c_1, c_2)$$

4 September 2010

Sie können zum Beantworten beider Fragen den Korrektheits- und Vollständigkeitssatz annehmen.

1. Zeigen Sie, dass $\Sigma = \{\alpha, \beta\}$ konsistent ist, wobei:

$$\alpha = (\forall x)(\exists y)(Rxy \land \neg Ryx)$$
$$\beta = (\forall x)(\forall y)(\forall z)(Rxy \land Ryz) \to Rxz)$$

Verwenden Sie Resolution um zu zeigen

$$\Sigma \vdash (\forall x)(\exists y)(\exists z)((Rxy \land Rxz) \land \neg Ryz)$$

d.h. schreiben Sie die benötigten Formeln in pränexer Normalform, skolemisieren Sie, übersetzen Sie in Klauseln und verwenden Sie Resolution.

- 2. Beweisen sie die Äquivalenz der folgenden Aussagen für eine beliebige $\mathcal{L}\text{-Theorie}\ \Sigma.$
 - (i) Σ ist vollständig (es gibt eine \mathcal{L} -Struktur \mathcal{A} so, dass $\Sigma = Th\{\mathcal{A}\}$);
 - (ii) Σ ist maximal konsistent (Σ ist konsistent und falls $\Sigma' \supseteq \Sigma$ konsistent ist, dann gilt $\Sigma' = \Sigma$.