Questao_2

February 28, 2021

1 Questão 2

```
In [6]: import pandas as pd
        import numpy as np
        %matplotlib inline
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
In [11]: path = "teste_smarkio_lbs.xls"
         df1 = pd.read_excel(path, 'Análise_ML')
In [12]: df1.head()
Out[12]:
            Pred_class
                       probabilidade
                                                  True_class
                                          status
                     2
         0
                              0.079892
                                        approved
                                                          0.0
                     2
         1
                              0.379377
                                        approved
                                                         74.0
         2
                     2
                                                         74.0
                              0.379377
                                        approved
         3
                     2
                              0.420930
                                        approved
                                                         74.0
                              0.607437
                                                         {\tt NaN}
                                        approved
In [13]: #Separando apenas os approved
         df_ap = df1[df1['status']=='approved']
In [14]: #Substituindo os NaN pela classe correta
         df1['True_class'] = np.where(df1['True_class'].isnull(),\
                                       df1['Pred_class'],df1['True_class'])
In [15]: df1.head()
Out [15]:
            Pred_class probabilidade
                                          status
                                                  True_class
                     2
                              0.079892
                                        approved
                                                          0.0
         1
                     2
                             0.379377
                                        approved
                                                         74.0
         2
                     2
                              0.379377
                                        approved
                                                         74.0
         3
                     2
                                                         74.0
                              0.420930
                                        approved
         4
                     2
                             0.607437
                                                          2.0
                                        approved
In [16]: df1['True_class'].isnull().value_counts()
Out[16]: False
                  643
         Name: True_class, dtype: int64
```

1.1 Métricas

Considerando:

- VP = verdadeiros positivos
- FP = falsos posistivos
- FN = falsos negativos
- VF = verdadeiros falsos

Vamos utilizar as seguintes métricas:

- A Acurácia, que mede o numero de predições corretas em relação ao total de predições ((VP+VF) / (VP+FP+FN+VF))
- A Precisão, que quantifica o número de verdadeiros positivos dentre todas as previsões positivas (VP/(VP+FP))
- O **Recall**, que quantifica o numero de verdadeiros positivos dentro todos os exemplos positivos do dataset (VP/(VP+FN))
- O F1, que é um média harmonica entre a Precisão e o Recall (2 * Precisao * Recall /(Precisao+Recall))

Uma vez que estamos tratando de um problema de múltiplas classes, vamos considerar as weighted averages da **Precisão**, do **Recall** e do **F1**, fazendo assim uma média ponderada dos indicadores por classe. Estas métricas podem ser encontradas abaixo:

	precision	recall	f1-score	support
0.0	0.00	0.00	0.00	54
2.0	0.77	0.77	0.77	61
3.0	0.79	0.83	0.81	60
4.0	0.78	0.86	0.82	21
11.0	0.44	1.00	0.62	4
12.0	0.83	0.71	0.77	7
15.0	0.67	0.67	0.67	3
17.0	0.86	0.75	0.80	8
19.0	0.40	0.40	0.40	5
21.0	0.00	0.00	0.00	0
22.0	0.67	0.91	0.77	11
24.0	0.71	0.62	0.67	16
25.0	0.83	1.00	0.91	10
26.0	0.33	0.50	0.40	2
28.0	0.50	1.00	0.67	1
29.0	1.00	1.00	1.00	7
30.0	0.60	1.00	0.75	3
31.0	0.00	0.00	0.00	0
32.0	0.25	0.50	0.33	4
33.0	0.00	0.00	0.00	0

36.0	1.00	1.00	1.00	1
39.0	0.67	1.00	0.80	4
40.0	1.00	0.78	0.88	9
43.0	0.50	1.00	0.67	3
46.0	1.00	1.00	1.00	1
48.0	0.50	0.25	0.33	4
49.0	0.00	0.00	0.00	0
50.0	0.00	0.00	0.00	0
52.0	0.30	1.00	0.46	6
54.0	1.00	1.00	1.00	2
55.0	0.82	0.93	0.87	15
56.0	1.00	1.00	1.00	3
58.0	1.00	0.50	0.67	2
59.0	0.25	1.00	0.40	1
60.0	0.81	0.89	0.85	28
62.0	0.75	0.60	0.67	5
63.0	1.00	1.00	1.00	2
64.0	0.00	0.00	0.00	0
65.0	0.33	0.50	0.40	2
66.0	0.00	0.00	0.00	1
68.0	0.67	1.00	0.80	2
69.0	1.00	1.00	1.00	1
70.0	1.00	0.75	0.86	4
73.0	0.50	0.50	0.50	2
74.0	0.95	0.72	0.82	78
76.0	1.00	0.80	0.89	10
77.0	0.77	0.83	0.80	29
78.0	1.00	1.00	1.00	3
79.0	1.00	0.43	0.60	7
81.0	0.60	0.33	0.43	9
82.0	1.00	1.00	1.00	5
84.0	1.00	1.00	1.00	1
85.0	0.43	0.60	0.50	10
86.0	0.33	0.20	0.25	5
87.0	1.00	0.67	0.80	6
88.0	1.00	1.00	1.00	3
90.0	0.67	1.00	0.80	2
92.0	0.20	0.50	0.29	2
93.0	1.00	1.00	1.00	1
94.0	1.00	1.00	1.00	1
95.0	0.00	0.00	0.00	0
96.0	0.90	0.90	0.90	21
98.0	1.00	0.71	0.83	7
99.0	0.57	0.80	0.67	10
100.0	1.00	1.00	1.00	1
102.0	1.00	0.62	0.77	8
103.0	0.67	1.00	0.80	6
104.0	0.25	1.00	0.40	1

105.0	0.00	0.00	0.00	0
106.0	0.25	1.00	0.40	1
107.0	1.00	1.00	1.00	1
108.0	0.69	0.90	0.78	10
109.0	0.00	0.00	0.00	0
110.0	0.69	1.00	0.81	11
111.0	0.33	1.00	0.50	1
112.0	0.50	0.67	0.57	3
113.0	1.00	1.00	1.00	1
114.0	1.00	1.00	1.00	1
115.0	0.80	0.80	0.80	5
116.0	1.00	0.67	0.80	3
117.0	0.00	0.00	0.00	3
118.0	0.40	1.00	0.57	2
accuracy			0.72	643
macro avg	0.63	0.70	0.64	643
weighted avg	0.72	0.72	0.70	643

In []: