A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EQ

Bookmark

Show all steps: (

ON

Problem

As a provisional definition, let us call a finite abelian group "decomposable" if there are elements $a_1, ..., a_n \in G$ such that:

(DI) For every $x \in G$, there are integers $k_1, ..., k_n$ such that $\mathbf{x} = \mathbf{a_1^{k_1} a_2^{k_2} \dots a_n^{k_n}}$ (D₂) If there are integers $l_1, ..., l_n$ such that

$$a_1^{l_1}a_2^{l_2}\cdots a_n^{l_n}=e^{\text{then }}a_1^{l_1}=a_2^{l_2}=\cdots=a_n^{l_n}=e^{-\frac{1}{n}}$$

If (D_1) and (D_2) hold, we will write $G = [a_1, a_2, ..., a_n]$. Assume this in parts 1 and 2.

Prove: $G \cong \langle a_1 \rangle \times G'$. Conclude that $G \cong \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \square_n$

In the remaining exercises of this set, let p be a prime number, and assume G is a finite abelian group such that the order of every element in G is some power of p. Let $a \in G$ be an element whose order is the highest possible in G. We will argue by induction to prove that G is "decomposable." Let $H = \langle a \rangle$.

Step-by-step solution

Step 1 of 4

Assume that a finite abelian group G, of order $p^k m$, is decomposable. That is, if a_1 , $a_n \in G$ and both the conditions D1, D2 holds, then $G = [a_1, a_2, a_n]$.

Objective is to prove that $G \cong \langle a_1 \rangle \times G'$ and then $G \cong \langle a_1 \rangle \times \langle a_2 \rangle \times \times \langle a_n \rangle$.

Consider the following result:

If G is an internal direct product of H_1 , H_k , then $G \cong H_1 \times H_k$.

Comment

To show the required result, prove that G is an internal direct product of $\langle a_1 \rangle$, G'.

Since *G* is an abelian group, so all subgroups of *G* will be normal.

Let $x \in G$. Then

$$x = a_1^{k_1} a_2^{k_2} \quad a_n^{k_n}$$

for some integers k_1 , k_2 , , k_n , and $a_1^{k_1} \in \langle a_1 \rangle$, $a_2^{k_2}$ $a_n^{k_n} \in G'$.

Now, the remaining work is to prove that groups $\langle a_1 \rangle$, G' are distinct. If $x \in \langle a_1 \rangle$ G', then by the D2 from the decomposable definition will lead to a contradiction.

Thus, $G \cong \langle a_1 \rangle \times G'$.

Comment

Step 3 of 4

Now use induction to prove that $G \cong \langle a_1 \rangle \times \langle a_2 \rangle \times \times \langle a_n \rangle$.

Define $G^{(m)} = \left\{ a_{m+1}^{l_{m+1}} a_{m+2}^{l_{m+2}} \quad a_n^{l_n} \mid l_{m+1}, ..., l_n \in Z \right\}$ for $m \in \{0, 1, ..., n-1\}$ such that

 $G=G^{(0)},\,G'=G^{(1)}.$ Then one have $G\cong \left\langle a_{1}\right\rangle \times G^{(1)}.$ Next, assume, as an induction step, that $G\cong \left\langle a_{1}\right\rangle \times \\ \times \left\langle a_{m-1}\right\rangle \times G^{(m-1)}.$

If $G^{(m-1)}\cong\langle a_m\rangle\times G^{(m)}$, then it implies that $G\cong\langle a_1\rangle\times \quad \times\langle a_m\rangle\times G^{(m)}$. Note that this isomorphism holds for all $m\in\{0,1,...,n-1\}$, thus, one can conclude that

$$G \cong \langle a_1 \rangle \times \times \langle a_{n-1} \rangle \times G^{(n-1)}$$

where $G^{(n-1)} = \langle a_n \rangle$.

Comment

Step 4 of 4

Hence, $G \cong \langle a_1 \rangle \times \langle a_2 \rangle \times \times \langle a_n \rangle$.

Comment