1 Монотонные экстремумы

Теорема 1. Критерий монотонности

$$f \in C(\langle a, b \rangle)$$
, дифф. в (a, b)
Тогда f — возрастает $\Leftrightarrow \forall x \in (a, b) \ f'(x) \geq 0$

Доказательство. "
$$\Rightarrow$$
" По определению $f' = \frac{f(x+h)-f(h)}{h} \ge 0$ " \Leftarrow " $x_1 > x_2$, по т. Лагранжа: $\exists c: f(x_1) - f(x_2) = f'(c)(x_1 - x_2) \ge 0$

Следствие. $f:\langle a,b\rangle\to\mathbb{R}$, тогда:

$$f = \text{const} \Leftrightarrow (f \in C(\langle a, b \rangle) - \text{дифф. на } \langle a, b \rangle, f' \equiv 0)$$

Cледствие. $f \in C\langle a, b \rangle$, дифф. на (a, b). Тогда:

f строго возрастает \Leftrightarrow ① и ②

- ① $f' \ge 0$ на (a, b)
- (2) $f' \not\equiv 0$ ни на каком промежутке

Доказательство. "⇒" очевидно

"⇐" По лемме о возрастании в отрезке

Следствие. О доказательстве неравенств

$$g,f\in C([a,b
angle)$$
, дифф. в (a,b)

$$f(a) \le g(a); \forall x \in (a, b) \ f'(x) \le g'(x)$$

Тогда
$$\forall x \in [a,b) \ f(x) \leq g(x)$$

Доказательство.
$$g-f$$
 — возр., $g(a)-f(a) \geq 0$

Определение. $f:E\subset\mathbb{R}\to\mathbb{R}, x_0\in E$ — локальный максимум функции, если

$$\exists U(x_0) \ \forall x \in U(x_0) \cap E \ f(x) \leq f(x_0)$$

Аналогично определеяется минимум.

Определение. Экстремум — точка минимума либо максимума.

Теорема 2.
$$f:\langle a,b\rangle\to\mathbb{R}$$
 $x_0\in(a,b)$ $f-\partial u\phi\phi$. на (a,b) Тогда:

- 1. $x_0 \pi$ ок. экстремум $\Rightarrow f'(x_0) = 0$
- 2. f-n раз дифф. в x_0

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

$$E$$
сли $f^{(n)}(x_0)>0$, то $\begin{cases} n-$ чет. : x_0- локальный максимум $n-$ нечет. : x_0- не экстремум

$$\mathit{Если}\ f^{(n)}(x_0) < 0,\ \mathit{mo}\ \begin{cases} n-\mathit{чет.}: & x_0-\mathit{локальный минимум} \\ n-\mathit{нечет.}: & x_0-\mathit{не}\ \mathit{экстремум} \end{cases}$$

Доказательство. 1. т. Ферма

2. ф. Тейлора

$$f(x) = \operatorname{Tn}(f, x_0)(x) + o((x - x_0)^n)$$
$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

при x, близких к x_0 :

$$sign(f(x) - f(x_0)) = sign\left(\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n\right)$$

2 Интеграл

2.1 Неопределенный интеграл

Определение. $F, f: \langle a, b \rangle \to \mathbb{R}$ F — первообразная f на $\langle a, b \rangle$

$$\forall x \in \langle a, b \rangle \quad F'(x) = f(x)$$

Теорема 3. О существовании первообразной

 $f \in C(\langle a,b \rangle)$ тогда у f существует первообразная.

Доказательство. Чуть позже.

Теорема 4. F — первообразная f на $\langle a,b \rangle$. Тогда:

- 1. $\forall c \in \mathbb{R}$ F+c тоже первообразная
- 2. Никаких других первообразных нет, т.е. если G перв. f , то $\exists c \in \mathbb{R}: G = F + c$

Доказательство. 1. очевидно

2.
$$F' = f, G' = f \quad (G - F)' \equiv 0 \Rightarrow G - F = \text{const}$$

Определение. Неопределенный интеграл f на $\langle a,b \rangle$ — множество всех первообразных f:

$$\{F+c,c\in\mathbb{R}\}$$
, где F — первообразная

Обозначается $\int f = F + c$ или $\int f(x) dx$

$$\int x^n dx = \frac{x^{(n+1)}}{n+1}, n \neq -1$$
$$\int \frac{1}{x} dx = \ln x$$
$$\int \sin x dx = -\cos x$$
$$\int \cos x dx = \sin x$$

$$\int e^x dx = e^x$$

$$\int \frac{1}{\sqrt{1-x^2}} = \arcsin x$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \ln(x+\sqrt{1+x^2}) -$$
 длинный логарифм
$$\int \frac{1}{\cos^2 x} = \operatorname{tg} x$$

$$\int \frac{1}{\sin^2 x} = -\operatorname{ctg} x$$

Почему где-то нет dx? Кохась забыл?

Теорема 5. f, g имеют первообразную на $\langle a, b \rangle$. Тогда

1. Линейность:

$$\int (f+g) = \int f + \int g$$
$$\forall \alpha \in \mathbb{R} \quad \int \alpha f = \alpha \int f$$

2. $\varphi(c,d) \to \langle a,b \rangle$

$$\int f(\varphi(t)) \cdot \varphi'(t) dt = \left(\int f(x) dx \right)|_{x = \varphi(t)} = F(\varphi(t))$$

Частный случай: $\alpha, \beta \in \mathbb{R}$:

$$\int f(\alpha t + \beta)dt = \frac{1}{\alpha}F(\alpha t + \beta)$$

3. f,g- дифф. на $\langle a,b \rangle$; f'g- имеет первообр.

Тогда fg' имеет первообразную и

$$\int fg' = fg - \int f'g$$

Доказательство. 1. Опущено

2.
$$(F(\varphi(t)))' = f(\varphi(t)) \cdot \varphi'(t)$$

3.
$$(fg - \int f'g)' = f'g + fg' - f'g = fg'$$

Примечание. Если φ обратима, то:

$$\int f(x)dx = \left(\int f(\varphi(t))\varphi'(t)dt\right)|_{t:=\varphi^{-1}(x)}$$

df := f'(x)dx

$$\begin{split} \int \frac{1}{\sqrt{1+x^2}} dx &= [x := \operatorname{tg} t] = \int \frac{1}{\sqrt{1+\operatorname{tg}^2 t}} \cdot \frac{1}{\cos^2 t} dt = \int \frac{1}{\sqrt{\frac{\cos^2 t + \sin^2 t}{\cos^2 t}}} \cdot \frac{1}{\cos^2 t} dt = \int \frac{1}{\frac{1}{\cos t}} \cdot \frac{1}{\cos^2 t} dt = \\ &= \int \frac{\cos t dt}{\cos^2 t} = \int \frac{\cos t dt}{1-\sin^2 t} = [y := \sin t] = \int \frac{dy}{1-y^2} = \int \frac{1}{1-y} \cdot \frac{1}{1+y} = \int \frac{1}{2} \left(\frac{1}{1-y} + \frac{1}{1+y} \right) dy = \\ &= \frac{1}{2} \left(-\ln(1-y) + \ln(1+y) \right) = \frac{1}{2} \ln \frac{1+y}{1-y} = \frac{1}{2} \ln \frac{1+\sin t}{1-\sin t} = \frac{1}{2} \ln \frac{1+\sin \cot x}{1-\sin \cot x} \end{split}$$

M3137y2019

2.2 Гиперболические тригонометрические функции

$$\operatorname{sh} t = \frac{e^t - e^{-t}}{2} \quad \operatorname{ch} t = \frac{e^t + e^{-t}}{2}$$

Они полезны тем, что по ним висит нить, закрепленная в двух точках.

$$\sinh 2t = 2 \sinh t \cot t$$

$$(\cot t)^2 + \left(\frac{\sinh t}{i}\right)^2 = 1$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = [x = \sinh t] = \int \frac{1}{\sqrt{ch^2t}} cht dt = \int 1 dt = t$$

2.3 Равномерно непрерывные функции

Определение. $f:\langle a,b\rangle\subset\mathbb{R}\to\mathbb{R}$ равномерно непрерывна на $\langle a,b\rangle$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \varepsilon$$

Или для метрического пространства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \ \rho(x_1, x_2) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Пример. 1. f(x) = x равномерно непрерывна.

2.
$$f(x)=x^2\ \langle a,b\rangle=\mathbb{R}\ \ \ \varepsilon:=1\ \ \exists ?\delta$$

$$x_1:=\frac{1}{\delta}+\frac{\delta}{2}, x_2:=\frac{1}{\delta}$$

$$x_1^2-x_2^2=1+\frac{\delta^2}{4}>1\Rightarrow f$$
— не равномерно непрерывна.

Теорема 6. $f: X \to Y, X - \kappa$ омп., $f - \mu$ епр. на X Тогда $f - \mu$ епр.

Доказательство. От противного.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x_{\delta}, \overline{x}_{\delta} : \rho(x_{\delta}, \overline{x}_{\delta}) < \delta \quad \rho(f(x_{\delta}), f(\overline{x}_{\delta})) \ge \varepsilon$$
$$\delta := \frac{1}{n} \ \exists x_{n}, \overline{x}_{n} : \rho(x_{n}, \overline{x}_{n}) < \delta \quad \rho(f(x_{n}), f(\overline{x}_{n})) \ge \varepsilon$$

Выберем $x_{n_k} \to \tilde{x}, \overline{x}_{n_k} \to \tilde{\tilde{x}}$ $\rho(\tilde{x}, \tilde{\tilde{x}}) \leq 0$, т.е. $\tilde{x} = \tilde{\tilde{x}}$. Тогда $f(x_{n_k}) \to f(\tilde{x}), f(\overline{x}_{n_k}) \to f(\tilde{x})$, противоречие с $\rho(f(x_n), f(\overline{x}_n)) \geq \varepsilon$

Пример.
$$f(x) = \sqrt{x}$$
 $X = [0, +\infty)$

По т. Кантора: f равномерно непрерывна на [0,1]

При $x \geq \frac{1}{2} \quad |\sqrt{x_1} - \sqrt{x_2}| = \frac{1}{2\sqrt{c}}|x_1 - x_2| < |x_1 - x_2|$, т.е. тоже равномерно непрерывна.

2.4 Конфетка: т. Брауэра о неподвижной точке

Статья от Matousek, Zigler, Bjorner (arxiv: 1409.7890v1)

Игра Нех: два игрока — чёрный и белый, на своем ходе красят один шестиугольник в свой цвет. Условие выигрыша — путь искомого цвета с одной стороны в сторону нужного цвета — две противоположные стороны имеют черный цвет, две другие — белый.

Теорема 7. Дана доска для Hex- параллелограм $k \times l$, покрашенная в 2 цвета. Это выигрышная доска для одного из игроков.

Доказательство. Рассмотрим первый ряд (прилегающий к чёрной стороне). Если в нём нет черных клеток, белый выиграл. Пойдём по границе черных и белых клеток так, что справа всегда черная клетка, слева белая. В этом пути нет самопересечений, т.к. в точке самопересечения с обеих сторон черные клетки, мы так не идём.

Представим доску в виде прямоугольной сетки, где вершины соединены, если из соответствующего шестиугольника можно прийти в другой соответствующий шестиугольник. \Box

Теорема 8. $f:[0,1]\times[0,1]\to[0,1]\times[0,1]$, непр. Тогда $\exists x\in[0,1]^2:f(x)=x$, т.е. есть неподвижная точка. Обобщенный вариант:

1.
$$f:[0,1]^m \to [0,1]^m$$
 — μ enp.

2.
$$f: B(0,1) \subset \mathbb{R}^m \to B(0,1)$$
 — Henp.

3.
$$f: S(0,1) \subset \mathbb{R}^m$$
 — непр.

Доказательство. $\rho:[0,1]^2 \to \mathbb{R}$

$$ho(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$$
 — непр. в $[0,1]^2$

От противного — пусть $\forall x \in [0,1]^2$ $f(x) \neq x$

Тогда
$$\forall x \quad \rho(f(x),x)>0 \quad x\mapsto \rho(f(x),x)$$
 — непр., >0

По т. Вейерштрасса $\exists \varepsilon > 0 \ \, \forall x \in [0,1] \ \, \rho(f(x),x)) \geq \varepsilon$

По т. Кантора для f: для этого $\varepsilon \;\; \exists \delta < \varepsilon :$

$$\forall x, \overline{x} : ||x - \overline{x}|| < \delta \quad ||f(x) - f(\overline{x})|| < \varepsilon$$

Можно писать не $||\cdot||$, а ρ .

Возьмём $n: \frac{\sqrt{2}}{n} < \delta$

Построим доску Hex(n+1,n+1), где n+1- число узлов.

Логические координаты узла (v_1, v_2) $v_1, v_2 \in \{0 \dots n\}$ имеют физические координаты, то есть узлу сопоставляется точка на квадрате с координатами $(\frac{v_1}{n}, \frac{v_2}{n})$

$$K(V) := \min\{i \in \{1,2\} : |f(\frac{v}{n}) - \frac{v_i}{n}| \ge \varepsilon\}$$

Продолжение на следующей лекции.