Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

6 de diciembre de 2020

Transformaciones Lineales

Matrices Especiales Una matriz $A \in \mathbb{K}(m, n)$ es llamada

- Diagonal, si $a_{ij} = 0$ para $i \neq j$.
- Triángular superior, si $a_{ij} = 0$ para j < i.
- Triángular inferior, si $a_{ij} = 0$ para i < j.
- simétrica, si ${}^tA = [a_{ji}] = A = [a_{ij}]$, y m = n.
- anti-simétrica, si ${}^tA=[a_{ji}]=-A=-[a_{ij}]$, y m=n.
- Hermitiana, si $A^* = [\overline{a_{jj}}] = A = [a_{ij}]$, y m = n, $\mathbb{K} = \mathbb{C}$.
- anti-Hermitiana, si $A^* = [\overline{a_{ji}}] = -A = -[a_{ij}]$, y m = n, $\mathbb{K} = \mathbb{C}$.

Matrices Especiales

- Ortogonal, si ${}^tAA = I$ de orden n.
- Unitaria, si $A^*A = I$ de orden n, y $\mathbb{K} = \mathbb{C}$.
- Normal, si $A^*A = AA^*$, m = n, y $\mathbb{K} = \mathbb{C}$.
- Idemponte, si $A^2 = A$, m = n.
- Nilponte, si $A^r = 0$ para algún y $r \in \mathbb{N}$, m = n.
- Definida Positiva (respec. Definida Negativa), si ${}^t x A x > 0$ (respec. ${}^t x A x < 0$), para todo $x \in \mathbb{K}(n,1)$ no nulo y m=n.
- Semi-definida Positiva (respec. Semi-definida negativa), si ${}^txAx \geq 0$ (respec. ${}^txAx \leq 0$), para todo $x \in \mathbb{K}(n,1)$ y m=n.

De aquí en adelante denotaremos A^t en lugar de t^A .

Existen operaciones elementales sobre filas y columnas que son muy importantes y permiten ciertas operaciones con cierta facilidad, estas son llamadas **operaciones elementales**.

Veamos las operaciones elementales en $\mathbb{K}(n,n)$ por fila

1. $E_i(\lambda)$ es una matriz obtenida de la matriz identidad I, multiplicando la i-ésima fila por $\lambda \in \mathbb{K}$ no-nulo. Por ejemplo

$$n=2: E_1(\lambda) = \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix}, \quad E_2(\lambda) = \begin{bmatrix} 1 & 0 \\ 0 & \lambda \end{bmatrix}$$

$$n=3: E_1(\lambda) = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

2. $E_{ij}(\lambda)$ es una matriz obtenida de la matriz identidad I, sumando a la i-ésima fila, la j-ésima fila multiplicada por λ , con $i \neq j$. Por ejemplo

$$n=2: E_{12}(\lambda) = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}, \quad E_{21}(\lambda) = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$$

$$n=3: E_{12}(\lambda) = \begin{bmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{13}(\lambda) = \begin{bmatrix} 1 & 0 & \lambda \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{21}(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

similar la las matrices $E_{23}(\lambda)$, $E_{31}(\lambda)$ y $E_{32}(\lambda)$.

3. E_{ij} es una matriz obtenida de la matriz I, intercambiando la i-ésima fila con la j-ésima fila con $i \neq j$. Por ejemplo

$$n=2:E_{12})=\begin{bmatrix}0&1\\1&0\end{bmatrix}=E_{21}$$

$$n = 3 : E_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_{21}, E_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = E_{31},$$

$$E_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_{32}.$$

Proposición

Dada una matriz $A = [a_{ij}] \in \mathbb{K}(m, n)$, y consideremos a^1, a^2, \dots, a^m los vectores filas de A, y las matrices elementales $E_i(\lambda), E_{i,j}(\lambda), E_{ij}$ de orden $m \times m$ y $\lambda \in \mathbb{K}$ no nulo. Entonces

1.
$$E_i(\lambda)A = \begin{bmatrix} a^1 \\ \vdots \\ \lambda a^j \\ \vdots \\ a^m \end{bmatrix}$$
 es la matriz obtenida de A multiplicando la j -ésima por λ .

2.
$$E_{ji}(\lambda)A = \begin{bmatrix} a^1 \\ \vdots \\ a^j + \lambda a^i \\ \vdots \\ a^m \end{bmatrix}$$

2. $E_{ji}(\lambda)A = \begin{bmatrix} a^1 \\ \vdots \\ a^j + \lambda a^i \\ \vdots \\ a^m \end{bmatrix}$ es la matriz obtenida de A sumando la j-ésima fila, la i-ésima multiplicada por λ

3.
$$E_{ij}A = \begin{bmatrix} a^1 \\ \vdots \\ a^j \\ \vdots \\ a^i \\ \vdots \\ a^m \end{bmatrix} \rightarrow i$$
 es la matriz obtenida de A intercambiando i —ésima con la j —ésima. $\rightarrow j$

Prueba: Ejercicio.

Proposición

Toda matriz elemental es inversible y su inversa es matriz elemental del mismo tipo, donde se verifica

1.
$$\left[E_i(\lambda)\right]^{-1} = E_i(\lambda^{-1})$$
, con $\lambda \neq 0$, $i = 1, 2, \dots, m$.

2.
$$\left[E_{ij}(\lambda)\right]^{-1} = E_{ij}(-\lambda)$$
, con $\lambda \neq 0$, $i, j = 1, 2, \cdots, m$, $e \mid i \neq j$.

3.
$$[E_{ij}]^{-1} = E_{ij}, i, j = 1, 2, \dots, m, e i \neq j.$$

Prueba:

1. Una forma de probar es la siguiente forma: En particular para n=2 se tiene consideremos $E_1(\lambda)$, $\lambda \neq 0$ y matriz

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

entonces

$$E_1(\lambda)B = \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \lambda a & \lambda b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

de donde $a = \lambda^{-1}$, b = 0 = c, d = 1. Por tanto

$$\begin{bmatrix} \lambda^{-1} & 0 \\ 0 & 1 \end{bmatrix} = E_1(\lambda^{-1}) = \left[E_1(\lambda) \right]^{-1}.$$

También pruebe probarlo usando la proposición anterior.

- 2. Pruebe probarlo usando la proposición anterior.
- 3. Pruebe probarlo usando la proposición anterior.

Proposición

Sea $A \in \mathbb{K}(n,n)$ una matriz tal que $L_A : \mathbb{K}(n,1) \longrightarrow \mathbb{K}(n,1)$ es una aplicación inyectiva, entonces existen matrices E_j tales que

$$E_k E_{k-1} \cdots E_1 A = I.$$

Prueba:

La prueba la haremos por inducción sobre n.

• Si n=1, entonces, entonces la matriz de orden 1×1 tiene la forma $A = [\lambda]$, con $\lambda \in \mathbb{K}$ y definamos la aplicación $L_A(x) = Ax = \lambda x, \ \lambda \neq 0$.

Como deseamos que L_A sea inyectiva, entonces sean $x, y \in \mathbb{K}(n, 1)$ tales que $L_A(x) = L_A(y)$, entonces $\lambda x = \lambda y$, esto implica que x = y.

Luego hacemos $E_1 = [\lambda^{-1}]$, de donde $E_1 A = A E_1 = [1]$.

◆□ → ◆周 → ◆ 章 → ◆ 章 → ◆ 9 へ ○

- Supongamos que el enunciado es válido para matriz hasta de orden n = k.
- Ahora veamos que el enunciado es válido para n=k+1. Consideremos la matriz $A \in \mathbb{K}(k+1,k+1)$.

Notamos que algún elemento de la primera columna de A debe ser diferente de cero, caso contrario tendremos

$$Ae^1 = [a^1a^2 \cdots a^{k+1}]e^1 = Ae^1 = [\mathbf{0}a^2 \cdots a^{k+1}]e^1 = \mathbf{0},$$

de donde L_A no es inyectiva, lo cual es una contradicción. Por tanto, la columna a^1 (primera) de A posee algún elemento no nulo, entonces tenemos

Si $a_{j1} \neq 0$, entonces matriz $E_{1j}A = [a_{ij}]$ se tiene que $a_{11} \neq 0$.

Luego, multiplicamos por $E_2 = E_2(a_{11}^{-1})$ obtenemos

$$E_{2}E_{1}A = \begin{bmatrix} 1 & * & \cdots & * \\ a_{21} & * & \cdots & * \\ \vdots & \vdots & \cdots & \vdots \\ a_{21} & * & \cdots & * \end{bmatrix}$$

Queda como ejercicio los siguientes pasos.

Con las hipótesis de la proposición anterior, la matriz A es inversible.

Prueba:

De la identidad

$$E_k E_{k-1} \cdots E_1 A = I$$
,

obtenida de la proposición anterior, multiplicamos en forma sucesiva por la izquierda las matrices $E_k^{-1}, E_{k-1}^{-1}, \cdots, E_1^{-1}$, obteniéndose

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1}.$$

Luego multiplicamos sucesivamente por la derecha las matrices E_k, \dots, E_k de donde

$$AE_kE_{k-1}\cdots E_1=I.$$

Por tanto la matriz $B = E_k E_{k-1} \cdots E_1$ es la inversa de A.

Si $A \in \mathbb{K}(n, n)$ posee inversa a la izquierda, entonces A es inversible.

Prueba:

Por hipótesis, existe la inversa por la izquierda, sea $B \in \mathbb{K}(n,n)$ tal que BA = I.

Supongamos que $Ax = \mathbf{0}$, entonces

$$x = Ix = B(Ax) = B\mathbf{0} = \mathbf{0} \Longrightarrow x = \mathbf{0},$$

luego $\mathcal{N}(L_A) = \{\mathbf{0}\}$, por tanto L_A inyectiva, es decir, A es inversible.

Si $A \in \mathbb{K}(n, n)$ posee inversa a la derecha, entonces A es inversible.

Por hipótesis, A posee inversa por la derecha, entonces existe $B \in \mathbb{K}(n,n)$ tal que AB = I y por el corolario anterior, tenemos que B es inversible. Entonces

$$A = A(BB^{-1}) = (AB)B^{-1} = IB^{-1} = B^{-1}.$$

Por tanto A es inversible.

Corolario

Si la matriz $A \in \mathbb{K}(n, n)$ es inversible si, y solo si L_A es inyectiva.

Prueba: Ejercicio.

Toda matriz inversible es producto de un número finito de matrices elementales.

Prueba:

Si $A \in \mathbb{K}(n, n)$ es inversible, entonces L_A es invectiva, luego por el primer corolario de la proposición anterior tenemos

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1},$$

y como la inversa de una matriz elemental también es una matriz elemental, por tanto, el corolario es verdadero.