Teoría de las Comunicaciones

Claudio Enrique Righetti- Rodrigo Castro -Segundo Cuatrimestre de 2017

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina

Redes Compartidas

Redes Inalámbricas

"Wi-Fi" en 1942?

HEDY LAMARR INVENTOR

Actress Devises 'Red-Hot' Apparatus for Use in Defense

Special to THE NEW YORK TIMES.

HOLLYWOOD, Calif., Sept. 30—
Hedy Lamarr, screen actress, was revealed today in a new role, that of an inventor. So vital is her discovery to national defense that government officials will not allow publication of its details.

Colonel L. B. Lent, chief engineer of the National Inventors Council, classed Miss Lamarr's invention as in the "red hot" category. The only inkling of what it might be was the announcement that it was related to remote control of apparatus employed in warfare.

http://ethw.org/Hedy_Lamarr

"Wi-Fi" en mi vida

Hace mas 25 años se formo el grupo de trabajo 802. I I del IEEE

- Papa Wi-Fi no anda! (Chiara 7 años, mi hija)
- al final el problema es el wi-fi, me corrieron de lugar el modem, pero ahora no veo en el dormitorio (SIC) (Dr. John Doe, mi cardiólogo

El ecosistema de Wi-Fi cambio en este cuarto de siglo

Wi-Fi en el 2020?

http://www.comsoc.org/blog/5g-summit-coming-you-brooklyn-new-york

Antecedentes

ALOHA (Abramson, 1970)

- Transmite siempre que lo necesite
- Pasa a escuchar durante un T= 2*tp + deltaT
- Si recibe ACK → OK
- Sino RTX

▶ ALOHA ranurado (Roberts, 1972)

Ninguna de las dos aprovechan el hecho que el tiempo de propagación entre estaciones es pequeño con respecto al tiempo de transmisión de las tramas. Con lo cual apenas comience a transmitir un nodo los demás los sabrán casi inmediatamente. Con lo cual las colisiones no serán habituales

Organización del grupo IEEE 802

Evolución de 802.11 a.k.a Wi-Fi

El "primer Wi-Fi" :WaveLAN

El "padre del wi-fi" Vic Vayes

http://ethw.org/Vic_Hayes#Biography

Evolución de 802.11

Arquitectura LAN 802

Modelo de Referencia de 802.11

Tecnologías Inalámbricas (Wireless)

- La intensidad de la señal disminuye con la distancia
- Fuentes de Ruido mas impredecibles que en medios guiados (wired , cableados) , con lo cual :
 - Tasa de errores elevadas
 - Entramado y confiabilidad
- Wireless en dispositivos móviles : energía es un nuevo desafío
- Acceso Compartido (Multiacceso)

Tecnologías Inalámbricas (Wireless)

- Quien regula la potencia con que puedo transmitir ?
 - Depende de la banda del espectro electromagnético
 - En Argentina la CNC (en USA FCC)
- Existen bandas del espectro donde necesito licencias para transmitir (AM, FM, TV, Celulares, etc) y otras que denominadas "no licenciadas"
- El medio naturalmente permite "pinchar" una comunicación (eavesdropping)
 - Debo encriptar los datos

Bandas No Licenciadas (IMS, Industrial, Scientific & Medical)

Wireless en bandas no licenciadas

- Están sujetadas a limitaciones en la potencia de transmisión
 - Con lo cual limito la distancia y además afectan las interferencias de otros dispositivos
- Además cuando el espectro es compartido por muchas aplicaciones y dispositivos
 - Surge la idea de usar espectro disperso (spread-spectrum)

Nivel MAC en 802.11

Otro enfoque

Protocolo Wireless LAN MAC

- Resumiendo las causas por las cuales no podemos utilizar el mecanismo Collision Detection (CD) en una wireless LAN.
 - Requiere la implementación de un radio full duplex que incrementa los costos significativamente
 - No todas las estaciones pueden "escucharse" una con otras en un ambiente wireless (que todos "escuchan" es la premisa de CD).

IEEE 802.11

IEEE 802.11 MAC define dos métodos de acceso, Distributed Coordination Function (DCF) el cual es el mecanismo base y Point Coordination Function (PCF) opcional

DCF MAC

- DCF MAC parte de IEEE 802.11 esta basado CSMA-CA con rotación de backoff window.
- Escucha el canal, si esta libre TX
- Si esta ocupado espera hasta que finalice la TX mas un periodo de contención es cual es un tiempo random que asegura un acceso al medio equitativo (fairness)
- Contention period se cuantifica mediante un back-off counter
- > => Cuando un nodo recibe un frame para TX, este elige un valor random backoff, el cual determina cuanto tiempo el nodo debe esperar hasta que esta permitido TX el frame. El nodo almacena este valor de backoff en un backoff counter. La probabilidad que dos nodos elijan el mismo factor de backoff es pequeña con la cual las colisiones entre tramas se minimizan.

DCF MAC: La ventana de contención

- Mientras el canal esta libre el nodo decrementa el backoff counter (caso contrario se mantiene) .Si backoff counter= 0 => el Source nodo TX el frame.
- Si la TX no es exitosa no ACK, la ventana de contención (contention window), se selecciona de una intervalo random que es el doble del intervalo previo, este proceso se repite hasta que el canal esta libre

CSMA/CA Back off Algorithm

DIFS (Distributed Control Function Interframe)

▶ DIFS = \underline{SIFS} + (2 * Slot time)

PHY Option	Slot time (µs)	DIFS (µs)
802.11b	20	50
802.11a	9	34
802.11g	9 or 20	28 or 50

Protocolo Básico - "Listen Before Talk"

²³ Ejemplo presentado para I Mbps en el Workshop Wireless Local Area Networks Bruce Kraemer Chair 802. I I – Marzo 2011 Singapure

Mecanismos para evitar la colisión

Problema:

- Dos nodos, ocultos el uno del otro, transmiten TRAMAS completas a la estación base.
- > ¡Ancho de banda desperdiciado durante mucho tiempo!

Solución:

- Pequeños paquetes de reserva.
- Intervalos de reserva de camino de nodo con vector de reserva de red (NAV) interno.

Resumiendo

802.11 CSMA: emisor

- Si detecta el canal vacío por DISF segundos, entonces transmite la trama completa (sin detección de colisión).
- -Si detecta el canal ocupado entonces backoff binario

802.11 CSMA receptor

Si se recibe bien
 devuelve ACK tras SIFS
 (ACK es necesario por el
 problema del terminal oculto ??).

Evitar la colisión: Intercambio RTS-CTS

El emisor transmite paquetes
RTS (request to send) cortos: Fuente indica la duración de la transmisión.

 El receptor responde con paquetes CTS (clear to send) cortos.

Notificando nodos (posiblemente ocultos).

 Los nodos ocultos no transmitirán por una duración determinada: NAV.

Evitar colisión: intercambio RTS-CTS

RTS y CTS cortos:

 Colisiones menos probables y de menor duración.

 Resultado final similar a la detección de colisión

▶ IEEE 802.11 permite:

- CSMA.
- CSMA/CA: reservas.
- ▶ Elegir desde AP.

CSMA (Carrier Sense Multiple Access Protocols)

CSMA/CA

CSMA/CA (Collision Avoidance)

Antes de transmitir, una estación debe determinar el estado del medio (libre o ocupado)

Si el canal no está ocupado, se realiza una espera adicional llamada espaciado entre tramas (IFS)

Si el canal se encuentra ocupado o se ocupa durante la espera, se ha de esperar hasta el final de la transacción actual

Tras finalizar la transacción actual se ejecuta el algoritmo de Backoff

Determina una espera adicional y aleatoria escogida uniformemente en un intervalo llamado ventana de contención (CW)

Se mide en ranuras temporales (slots) (Contention Timer)

CSMA/CA (Collision Avoidance)

- Si durante esta espera el medio no permanece libre durante un tiempo igual o superior a IFS, dicha espera queda suspendida hasta que se cumpla dicha condición
- Si se transmitió una trama, se espera recibir un ACK
- Si no se recibe, se asume que se perdió en una colisión y lo retransmite
- Previamente elige un timer de contención

Medios Compartidos

2 Parte IEEE 802.11

Atenuación

IEEE 802.11n vs 802.11ac

	802.11n	802.11n IEEE Specification	802,11ac Wave 1 Today	802.11ac Wave2 WFA Certification	802.11ac
Band	2.4 GHz & 5 GHz	2.4 GHz & 5 GHz	5 GHz	Process Continues 5 GHz	5 GHz
мімо	Single User (SU)	Single User (SU)	Single User (SU)	Multi User (MU)	Multi User (MU)
PHY Rate	450 Mbps	600 Mbps	1.3 Gbps	2.34 Gbps - 3.47 Gbps	6.9 Gbps
Channel Width	20 or 40 MHz	20 or 40 MHz	20, 40, 80 MHz	20, 40, 80, 80-80, 160 MHz	20, 40, 80, 80-80, 160 MHz
Modulation	64 QAM	64 QAM	256 QAM	256 QAM	256 QAM
Spatial Streams	3	4	3	3-4	8
MAC Throughout*	293 Mbps	390 Mbps	845 Mbps	1.52 Gbps- 2.26 Gbps	4.49 Gbps

^{*} Assuming a 65% MAC efficiency with highest MCS

Esquemas de Modulación

MCS	Index -	802	11n	and	802 11	20
IVICO	iliuex -	OUZ.	1 111	allu	002.1	ac

0	α	11	-	90	2 1	1ac

HT	VHT				20MHz		40MHz		80MHz		160MHz	
MCS	MCS	Spatial			Data Rate							
Index	Index	Streams	Modulation	Coding	No SGI	SGI						
0	0	1	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65
1	1	1	QPSK	1/2	13	14.4	27	30	58.5	65	117	130
2	2	1	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195
3	3	1	16-QAM	1/2	26	28.9	54	60	117	130	234	260
4	4	1	16-QAM	3/4	39	43.3	81	90	175.5	195	351	390
5	5	1	64-QAM	2/3	52	57.8	108	120	234	260	468	520
6	6	1	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585
7	7	1	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650
	8	1	256-QAM	3/4	78	86.7	162	180	351	390	702	780
	9	1	256-QAM	5/6	n/a	n/a	180	200	390	433.3	780	866.7
8	0	2	BPSK	1/2	13	14.4	27	30	58.5	65	117	130
9	1	2	QPSK	1/2	26	28.9	54	60	117	130	234	260
10	2	2	QPSK	3/4	39	43.3	81	90	175.5	195	351	390
11	3	2	16-QAM	1/2	52	57.8	108	120	234	260	468	520
12	4	2	16-QAM	3/4	78	86.7	162	180	351	390	702	780
13	5	2	64-QAM	2/3	104	115.6	216	240	468	520	936	1040
14	6	2	64-QAM	3/4	117	130.3	243	270	526.5	585	1053	1170
15	7	2	64-QAM	5/6	130	144.4	270	300	585	650	1170	1300
	8	2	256-QAM	3/4	156	173.3	324	360	702	780	1404	1560
	9	2	256-QAM	5/6	n/a	n/a	360	400	780	866.7	1560	1733.3
16	0	3	BPSK	1/2	19.5	21.7	40.5	45	87.8	97.5	175.5	195
17	1	3	QPSK	1/2	39	43.3	81	90	175.5	195	351	390
18	2	3	QPSK	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585
19	3	3	16-QAM	1/2	78	86.7	162	180	351	390	702	780
20	4	3	16-QAM	3/4	117	130	243	270	526.5	585	1053	1170
21	5	3	64-QAM	2/3	156	173.3	324	360	702	780	1404	1560
22	6	3	64-QAM	3/4	175.5	195	364.5	405	n/a	n/a	1579.5	1755
23	7	3	64-QAM	5/6	195	216.7	405	450	877.5	975	1755	1950
	8	3	256-QAM	3/4	234	260	486	540	1053	1170	2106	2340
	9	3	256-QAM	5/6	260	288.9	540	600	1170	1300	n/a	n/a

802.11n introduce: MIMO

 Antes SISO : Single Input Single Output Radio (con un Rx de diversidad opcional)

 Multiple Input Multiple Output (MIMO)Tx y Rx reciben múltiples señales de radio simultáneamente en el mismo espectro

Multiplexación por división espacial

Múltiples streams de datos independientes son enviados entre las antenas del Tx y Rx para poder enviar mas "bits" en determinado ancho de Banda

"Multi-path Fading"

Propagación Multi-path en a/b/g

 Multi-path produce interferencia inter-simbolica (ISI) impactando en el throughput y el alcance

Multi-path en 802.11n

La Multiplexación espacial transforma la propagación multi-path en un beneficio logrando un aumento del throughput y alcance

802.11ac introduce: MU-MIMO

MIMO Multiusuario

SU-MIMO beamforming (a) downlink MU-MIMO beamforming (b)

MIMO no es trivial

Notación MIMO

$T \times R : S$

- T: cantidad de antenas transmisoras
- R: cantidad de antenas receptoras
- S: cantidad de streams espaciales

Performance vs Atenuación

Los jugadores por un mejor Wi-Fi

WFA: Wi-Fi Alliance

http://www.wi-fi.org/

Wi-Fi certified ac : un segunda realese

- MU MIMO
- Mayor ancho de banda (de 80 a 160 Mhz)
- Cuatro streams espaciales
- Certificaciones durante el 2016

Velocidades (PHY) Teóricas

IEEE 802.11ac					
Channel Size	MIMO Configuration	Maximum Data Rates Supported (Gbps)	802.11ac; 80Mhz (3x3:3 and higher)		
80MHz	3x3:3	1.3	(Currently available in the market)		
332	4x4:4	1.73	K		
	2x2:2	1.73	802.11ac; 80+80 / 160Mhz (2x2:2 and higher)		
160MHz	3x3:3	2.3	-802.11ac wave 2		
	4x4:4	3.5	-Potential Wi-Fi certs in early 2016 -Enterprise grade APs available as of		
	8x8:8	6.9	2015		
•	1	I	Source: http://mcsindex.com/		

Alta performance en la conectividad del hogar

- Dispositivos WiGig CERTIFIED permitirán una nueva clase de aplicaciones a multi-gigabit rates, operando a 60 Ghz
- Se estima el 30% de los chipset que se vendan en el 2019 (ABI Research) WiGig®
- Certificaciones a fines del 2016

EDX Signal Pro

Atenuación

Expandiendo nuestras fronteras: 802.11ah

- Dado que apunta dispositivos para IoT (Internet of Things) "Ideal"
- Consumo mínimo, mayor alcance y mas dispositivos por nodo
- ▶ IP Nativo
- "Government-grade security"
- Tri-band 802.11ah (2.4 GHz / 5 GHz / 900 MHz) opera con miles de millones de dispositivos Wi-Fi CERTIFIED
- Certificación programada para el 2018

Expandiendo nuestras fronteras: 802.11ah

Power efficient, long range, scalable Wi-Fi

https://www.qualcomm.com/invention/research/projects/wi-fi-evolution/80211ah

Y como estamos con los dispositivos?

Tablets Apple iPad Air™ and Mini™ Dual Band 2x2:2 a/b/g/n/ac Samsung Galaxy Tab™ Dual Band 2x2:2 a/b/g/n/ac Lenovo Yoga Pad™ Dual Band 2x2:2 a/b/g/n upgradeable to ac ASUS Transformer T100™ Dual Band 1x1:1 a/b/g/n/ac ASUS P1801-T™ Dual Band 2x2:2 a/b/g/n only Microsoft Surface Pro 3™ Dual Band 2x2:2 a/b/g/n

upgradeable to ac

htc One M9	Dual Band 2x2:2 a/b/g/n/ac	
iPhone 6 and iPhone6s	Dual Band 1x1:1 a/b/g/n/ac	
LG G4	Dual Band 1x1:1 a/b/g/n/ac	
Google Nexus 6	Dual Band 2x2:2 a/b/g/n/ac	
Samsung Galaxy Note 4, S6, S6 Edge	Dual Band 2x2:2 a/b/g/n/ac	
Sony Xperia Z3	Dual Band 1x1:1 a/b/g/n/ac	

Smartphones

Protocolos de acceso múltiple

Medios Compartidos- Bridges y LAN Switches

Problema de la estación oculta

Primero considere lo que ocurre cuando A transmite a B. Si C detecta el medio no escuchará a A porque está fuera de su alcance, y por lo deducirá tanto erróneamente que puede transmitir. Si C comienza transmitir, interferirá en eliminando la trama de A. El problema de que una estación no puede detectar a un competidor potencial por el medio, puesto que el competidor esta demasiado lejos, se denomina problema de la estación oculta.

Problema de la estación expuesta

Ahora consideremos la situación inversa: B transmite a A. Si C. detecta el medio, escuchará una transmisión y concluirá que no puede enviar a D. Cuando de hecho tal transmisión causaría una mala recepción solo en la zona entre B y C, en la que no está localizado ninguno de los receptores pretendidos. Esta situación se conoce como problema de estación expuesta

OFDM

Una nueva (?) técnica de acceso al medio

Introducción a OFDM

Figure 5.6 Time and frequency representation of the SC and OFDM. In OFDM, N data symbols are transmitted simultaneously on N orthogonal subcarriers

OFDM

Figure 5.7 Generation of an OFDM signal (simplified)

OFDM

Figure 5.8 Presentation of the OFDM subcarrier frequency

FDM vs OFDM

FDM vs OFDM

EXTRAS

Tips de Wi-Fi

Atenuaciones típicas

Attenuation Properties of Common Building Materials				
Building Material	2.4 GHz Attenuation	5 GHz Attenuation		
Solid Wood Door 1.75"	6 dB	10 dB		
Hollow Wood Door 1.75"	4 dB	7 dB		
Interior Office Door w/Window 1.75"/0.5"	4 dB	6 dB		
Steel Fire/Exit Door 1.75"	13 dB	25 dB		
Steel Fire/Exit Door 2.5"	19 dB	32 dB		
Steel Rollup Door 1.5"	11 dB	19 dB		
Brick 3.5"	6 dB	10 dB		
Concrete Wall 18"	18 dB	30 dB		
Cubical Wall (Fabric) 2.25"	18 dB	30 dB		
Exterior Concrete Wall 27"	53 dB	45 dB		
Glass Divider 0.5"	12 dB	8 dB		
Interior Hollow Wall 4"	5 dB	3 dB		
Interior Hollow Wall 6"	9 dB	4 dB		
Interior Solid Wall 5"	14 dB	16 dB		
Marble 2"	6 dB	10 dB		
Bullet-Proof Glass 1"	10 dB	20 dB		
Exterior Double Pane Coated Glass 1"	13 dB	20 dB		
Exterior Single Pane Window 0.5"	7 dB	6 dB		
Interior Office Window 1"	3 dB	6 dB		
Safety Glass-Wire 0.25"	3 dB	2 dB		
Safety Glass-Wire 1.0"	13 dB	18 dB		

Atenuaciones típicas

ARRIS SCTE 2015

Donde no poner el AP

Tecnologías

- Dual band concurrente
- Turbo QAM
- Band Steering
- Airtime Fairness
- MIMO y MU-MIMO
- Beamforming
- ▶ Tri-Band
- Mesh

Equidad en el Aire (AirTime Fairness)

Balanceo de carga entre bandas (Band Steering)

Balanceo de carga entre bandas

Band Steering

Beamforming

802.11ah no es la tecnología Tri-Banda

Tri-Band Technology with SmartConnect

Distributes traffic over 3 dedicated Wi-Fi radios for optimized network performance and reliability.

802.11ah no es la tecnología Tri-Banda

Asus RT-AC3200 Tri-Band Wireless Gigabit Router

Asus RT-AC3200 Tri-Band Wireless Gigabit Router
Número de parte: RT-AC3200

\$277.99 a \$287.83

DÓNDE COMPRARLO

Amazon Marketplace \$277.99 VER

Amazon.com \$278.48 VER

Security & Antivirus Center

Check out 9 malware defenders -

