PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C22C 5/06, 5/08, 1/03

(11) International Publication Number:

WO 96/22400

A1 |

(43) International Publication Date:

25 July 1996 (25.07.96)

(21) International Application Number:

PCT/AU96/00019

(22) International Filing Date:

16 January 1996 (16.01.96)

(30) Priority Data:

PN 0606

18 January 1995 (18.01.95)

ΑU

(71) Applicant (for all designated States except US): APECS IN-VESTMENT CASTINGS PTY. LTD. [AU/AU]; 17 Harker Street, Burwood, VIC 3125 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): ECCLES, Anthony, Philip [AU/AU]; MS 424, Peachester Road, Beerwah, QLD 4519 (AU).

(74) Agent: PIZZEYS PATENT AND TRADE MARK ATTOR-NEYS; Level 6, Trustee House, 444 Queen Street, Brisbane, QLD 4001 (AU). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SILVER ALLOY COMPOSITIONS

(57) Abstract

Firescale resistant bright silver alloys are provided exhibiting lack of significant firescale formation under normal casting an hot working conditions and a comparatively high copper content. A deoxidizing additive (silicon) provides the facility of high copper content without significant firescale production in the absence of the usual aggressive deoxidizers such as zinc. Germanium is alloyed in the composition to provide work hardening characteristics. Copper proportions of from 2.5 % by weight to 19.5 % by weight are attained. Compositions of silver, copper, silicon and germanium are disclosed, together with compositions modified by the addition of indium, boron or tin.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
UA	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IZ	Ireland	NZ	New Zealand
BG	Bulgaria	n	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	ш	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ.	Swaziland
CS	Czechoslovakia	LT	Lithuania	110	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	II	Trinidad and Tobego
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzhekistan
GA	Gabon	MIR	Mauritania	VN	Viet Nam

10

15

20

25

30

35

1

SILVER ALLOY COMPOSITIONS

FIELD OF THE INVENTION

This invention relates to silver alloy compositions.

This invention has particular reference to sterling silver alloy compositions of silver content of at least 92.5% for jewellery, flatware, coinage and other applications where a work hardening alloy is required and for illustrative purposes reference will be made to this application. However, it is to be understood that this invention could be used to produce other types of silver alloys suitable for use as for example, electrical contacts or the like.

BACKGROUND OF THE INVENTION

In general, silver as a material for the production of silver jewellery, certain coinage and the like is specified to be sterling silver comprising at least 925 parts per thousand by weight fine silver and is specified as ".925 silver". .925 silver accordingly typically comprises an alloy 92.5% by weight silver, generally alloyed with copper for hardness traces of other metals as additives or impurities.

Conventional silver alloys of the .925 type have several disadvantages in manufacturing jewellery and other materials engineering contexts. Principal limitations include a characteristic firescale formation attributed to oxidation of copper and other metals at the surface of cast or hot worked pieces, and poor work hardening characteristics relative to traditional .925 silvers.

Several formulations have been proposed to overcome one or the other of the aforementioned disadvantages. United States Patent Nos. 5039479 and 4973446 disclose alloys of silver and master alloys for the production of such silver alloys having superior qualities over conventional alloys, and including, in addition to silver, controlled amounts of copper and zinc, together with minor amounts of tin, indium, boron and silicon.

10

15

20

25

30

35

2

The compositions exhibit reduced porosity, grain size and fire scale production, and have acquired wide utilization in silver jewellery production. It is presumed but not established that the addition of zinc to such compositions provides at least a degree of antioxidant properties to the compositions when hot worked and improves colour, thus allegedly limiting the formation of copper oxide based fire scale, and reducing silver and copper oxide formation resulting in formation of pores in the cast or recast alloys. Silicon appears also to function as an antioxidant, and apparently reduces firescale formation.

A disadvantage of the hereinbefore described firescale resisting alloys is that the alloys exhibit poor work hardening qualities thus not achieving the mechanical strength of traditional worked .925 silver goods. A further disadvantage of the prior art alloys is that formulations in accordance therewith are generally limited to modest copper content, thus reducing the potential as-cast hardness.

International Patent Application No. PCT/AU94/00351 discloses improved .925 silver alloys exhibiting firescale resistance and work hardening characteristics comparable to traditional .925 silvers. Again, the alloys are characterised by a relatively low copper content of about 0.5 by weight, about 0.02 - 7% by weight of a firescale resisting additive selected from one or a mixture of zinc and silicon, and about 0.01 - 2.5% by weight germanium.

However, in some applications a high copper alloy is desired for its hardness. Such high copper alloys were generally regarded as firescale prone due to elevated levels of copper oxide being formed at the metal surface. It has unexpectedly been discovered by the applicant that such high copper alloys can be formulated to exhibit firescale resistance.

DISCLOSURE OF THE INVENTION

The present invention aims to provide high copper silver

10

15

20

25

30

35

alloy compositions which substantially alleviate at least one of the foregoing disadvantages. A further object of the present invention is to provide high copper silver alloys having the desirable properties of reduced fire scale, reduced porosity and oxide formation and reduced grain size relative to traditional sterling silver alloys whilst providing improved work hardening performance over the current firescale resistant alloys. Other objects and advantages of this invention will hereinafter become apparent.

With the foregoing and other objects in view, this invention in one aspect resides broadly in silver alloy compositions comprising:-

- 2.5 19.5% by weight copper;
- 0.02 2% by weight of silicon;
- 0.01 3.3% by weight germanium, and silver to 100%.

Like the prior art firescale resistant bright sterling alloys, alloys in accordance with the present invention do not exhibit significant firescale under normal casting and hot working conditions. Unlike the previous bright sterling alloys, the present alloys are comparatively high in copper content and are accordingly harder as cast and with working. As it is accepted belief that firescale is a copper oxide and that high copper alloys are inherently firescale prone, to create a high copper content, firescale free sterling silver is quite contrary to expectation.

In particular it is unexpectedly found that the choice of deoxidizing additive (silicon) provides the facility of high copper content without significant firescale production, whereas the more common aggressive deoxidizers such as zinc do not. Firescale resistance is of particular importance for hot working for hardness and in this context the use of germanium as an alloying agent provides alloys which are both firescale resistant and work hardenable, and which in any

10

15

20

25

30

35

case are harder than prior art alloys due to their elevated copper content.

Preferably, the alloy contains a proportion of silver required for the graded application to which the alloy is to be put, such as .925 silver, that is at least 92.5% by weight, for sterling silver applications and at least 90% by weight for coinage.

The copper content of the alloys may be selected to provide a desirable as-cast hardness of the product alloys. Below about 2.5% by weight, the alloy does not attain an appreciable hardness benefit. Over 19.5% copper, the compositions do not exhibit the required firescale resistance, at the maximum practical usage of silicon deoxidizer. Preferably, the copper content of the alloy is in the region of 6 to 16% by weight.

The germanium content of the alloy results in alloys having work hardening characteristics of a kind with those exhibited by conventional .925 silver alloys, together with the firescale resistance of the hereinbefore described firescale resistant alloys. In general, it has been determined that amounts of germanium in the alloy of from about 0.04 to 2.0% by weight provide modified work hardening properties relative to alloys of the firescale resistant kind not including germanium. However, it is noted that the hardening performance is not linear with increasing germanium nor is the hardening linear with degree of work.

The alloys of the present invention may also include rheology modifying and other additives to aid in improving the castability and/or wetting performance of the molten alloy. As described hereinafter, the modified alloys of the present invention are described in terms of weight percentage of additive added to the defined composition of the aforementioned alloys of the present invention.

For example, about 0.0 to 3.5% by weight of a modifying additive selected from one or a mixture of indium and boron

10

20

30

may be advantageously added to the alloy to provide grain refinement and/or reduce surface tension, thereby providing greater wettability of the molten alloy. Where used, preferably the amount of boron utilized in the composition is from about 0 to 2% by weight boron and/or about 0 to 1.5% by weight indium.

Accordingly, in a further aspect this invention resides in silver alloy compositions comprising 0.0 to 3.5% by weight of a modifying additive selected from one or a mixture of indium and boron alloyed with a composition selected from alloys comprising:-

- 2.5 19.5% by weight copper;
- 0.02 2% by weight of silicon;
- 0.01 3.3% by weight germanium, and
- 15 silver to 100%.

Of particular utility in alloys of the present invention is the addition of tin, used up to about 6% by weight of the compositions as defined. Accordingly, in a further aspect this invention resides broadly in silver alloy compositions comprising tin in an amount of 0-6% by weight alloyed with a composition selected from alloys comprising:-

- 2.5 19.5% by weight copper;
- 0.02 2% by weight of silicon;
- 0.01 3.3% by weight germanium, and
- 25 silver to 100%.

The selection of alloys have particular application to jewellery manufacture and plate work and in a further aspect this invention relates to a method of producing cast and hot worked jewellery and plate including working an alloy comprising:

- 2.5 19.5% by weight copper;
 - 0.02 2% by weight of silicon;
 - 0.01 3.3% by weight germanium, and
 - silver to 100%.
- In the production of alloys in accordance with the

25

present invention, the alloys are generally worked up by the melt addition of a master alloy to fine silver. Accordingly, in a further aspect this invention resides broadly in a method of producing silver alloy compositions comprising alloying to at least 80 wt% silver with a master alloy comprising:

43.0 - 99.85% by weight copper;

0.1 - 44.3% by weight silicon, and

0.05 - 56.7% by weight germanium.

The invention will be further described with reference to the following example.

EXAMPLE 1

Three alloys were prepared in accordance with the compositions of Table 1:

15		TABLE I - ALLOYS					
	······································	B16	B20	<u>830</u> *			
	Ag	92.5	92.5	83			
	Cu	7.0	6.8	16.5			
	Si	.2	.3	.2			
20	Ge	.3	.2	.3			
	Sn		.2				

* 830 is a standard grade

Amounts of alloying constituents are given as percentages by weight of alloy. The compositions were then tested for hardness, as cast, after rolling to reduce thickness of a cast ingot by 50% and 75% of its original dimension, and annealed. The hardness characteristics of the alloys is given in Table 2, the tests being done in triplicate:

10

15

20

7
TABLE II - HARDNESS HV10

ALLOY	AS CAST	50% ROLLED	75% ROLLED	ANNEALED
B16	86.9	164	170	73.3
	88.4	162	180	73.6
	92.4	163	181	73.6
B20	78.8	151	167	71
	73.6	151	161	70.2
	76.3	145	168	70.7

Alloys in accordance with the above embodiments resist production of firescale under normal casting and hot working conditions. The alloys are relatively high in copper content and are accordingly harder as cast and with working. As it is accepted belief that firescale is a copper oxide, to create a high copper content, firescale free sterling silver is quite contrary to expectation. The alloys achieve their object with fewer alloying components than is generally accepted to be desirable, fewer components providing the added advantage of a more stable grain structure.

It will of course be realised that while the above has been given by way of illustrative example of this invention, all such and other modifications and variations thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of this invention as defined in the claims appended hereto.

CLAIMS: -

- 1. Silver alloy compositions comprising:-
 - 2.5 19.5% by weight copper;
 - 0.02 2% by weight of silicon;
 - 0.01 3.3% by weight germanium, and silver to 100%.
- 2. Silver alloy compositions according to Claim 1, wherein the silver content of the alloy is at least 83.0% by weight.
- 3. Silver alloy compositions according to Claim 2, wherein the silver content of the alloy is at least 92.5% by weight.
- 4. Silver alloy compositions according to Claim 1, wherein the copper content of the alloy is in the region of 6 to 16% by weight.
- 5. Silver alloy compositions in accordance with any one of the preceding Claims, wherein the germanium content of the alloy is from about 0.04 to 2.0% by weight.
- 6. Silver alloy compositions comprising an alloy in accordance with any one of Claims 1 to 5 and having alloyed therewith a modifying additive in an amount of 0.0 to 3.5% by weight of the original composition, said modifying additive being selected from one or a mixture of indium and boron.
- 7. Silver alloy compositions according to Claim 6, wherein said boron content is from about 0 to 2% by weight and said indium content is about 0 to 1.5% by weight.
- 8. Silver alloy compositions comprising an alloy in accordance with any one of Claims 1 to 5 and having alloyed therewith tin in an amount of 0.0 to 6.0% by weight of the compositions as defined.

- 9. A silver alloy composition comprising:-
 - 92.5 wt% silver
 - 7.0 wt% copper
 - 0.2 wt% silicon
 - 0.3 wt% germanium
- 10. A silver alloy composition comprising:-
 - 92.5 wt% silver
 - 6.8 wt% copper
 - 0.3 wt% silicon
 - 0.2 wt% germanium
 - 0.2 wt% tin
- 11. A silver alloy composition comprising:-
 - 83.0 wt% silver
 - 16.5 wt% copper
 - 0.2 wt% silicon
 - 0.3 wt% germanium
- 12. A method of producing silver alloy compositions comprising alloying to at least 80 wt% silver with a master alloy comprising:
 - 43.0 99.85% by weight copper;
 - 0.1 44.3% by weight silicon, and
 - 0.05 56.7% by weight germanium.

A. CLASSIFICATION OF SUBJECT MATTER

Int Cl⁶: C22C 5/06, 5/08, 1/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C22C 5/06, 5/08, 1/03, 9/00, 9/10, 28/00, 30/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AU: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DERWENT: IPC as above and (Cu or copper) and (Si or silicon) and (Ge or germanium)

JAPIO: as above

C .	DOCUMENTS CONSIDERED TO BE RELEVAN	Т	
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
P,X	WO 95/14112 (APECS INVESTMENT CAST see claims 1, 7, 13 Patent Abstracts of Japan, M192, page 156, JP	•	1-3, 5-8, 13
x	HONTEN KK) 17 November 1982 see Abstract		1-5, 9, 11
A	US 5039479 A (BERNHARD et al) 13 August Abstract, column 3 line 55 - column 4 line 11,	1991 claims	1-12
X	Further documents are listed in the continuation of Box C	X See patent family annex	<u> </u>
"A" docum not co "E" earlier intern "L" docum or whi anothe "O" docum exhibi "P" docum	ational filing date tent which may throw doubts on priority claim(s) ich is cited to establish the publication date of ir citation or other special reason (as specified) tent referring to an oral disclosure, use, tion or other means	later document published after the ir priority date and not in conflict with understand the principle or theory us document of particular relevance; the be considered novel or cannot be considered to involve an inventive combined with one or more other succombination being obvious to a persect.	the application but cited to inderlying the invention e claimed invention cannot isidered to involve an itaken alone e claimed invention cannot e step when the document is ch documents, such on skilled in the art
Date of the acti 27 March 1990	nal completion of the international search	Date of mailing of the international sear	•
Name and mail AUSTRALIAN PO BOX 200 WODEN ACT AUSTRALIA	ing address of the ISA/AU INDUSTRIAL PROPERTY ORGANISATION 2606 Facsimile No.: (06) 285 3929	Authorized officer ROGER HOWE	

Telephone No.: (06) 283 2159

Facsimile No.: (06) 285 3929

AUSTRALIA

International Application No.

	PCT/AU 96/0	6/00019		
C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	GB 2255348 A (METHALEUROP RECHERCHE) 04 November 1992 Abstract, page 1 paragraph 4 - page 3 paragraph 2	1-5		
A	US 4124380 A (YOUDELIS) 07 November 1978 Abstract, column 1 lines 56-67, column 3 lines 19-34	1-5, 8		
A	Patent Abstracts of Japan, C39, page 165, JP 55-138042 A, 28 October 1980 Abstract	1-5, 8		
••		1-5,0		
	·			

INTERNATIONAL SEARCH REPORT Information on patent family members

International Application No. PCT/AU 96/00019

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Paten	t Family Member		
wo	9514112	AU	70629/94		**************************************		
GB	2255348	DE	4213897	FR	2675817		
US	4124380	CA	1082492	IN	150271		
JP	55138042	CA GB SE	1129680 2029446 7905304	DE US	2924238 4279649	FR NL	2428904 7904752

END OF ANNEX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.