Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves

The PCRedux package authors 2019-10-31

Contents

1	Abstract	2
2	Introduction	2
3	Installation	2
4	Results for the analysis of the hookreg.rdml data set by humanrater()	3
5	Results for the analysis with hookreg() and hookregNL() 5.1 Results for the analysis of the hookreg.rdml data set with hookreg()	5 5 7
6	Comparison of the hookreg() and hookregNL() methods	9
7	Funding	11
\mathbf{R}_{0}	eferences	11

The PDF version of this document is available online.

The document is part of the publication M. Burdukiewicz, A.-N. Spiess, K.A. Blagodatskikh, W. Lehmann, P. Schierack, S. Rödiger, Algorithms for automated detection of hook effect-bearing amplification curves, Biomolecular Detection and Quantification. (2018). doi:10.1016/j.bdq.2018.08.001.

1 Abstract

This is a supplemental document for the study Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves. Quantitative real-time PCR (qPCR) is a widely used method for gene expression analysis, forensics and medical diagnostics (Dvinge and Bertone 2009; Martins et al. 2015; Sauer, Reinke, and Courts 2016).

Numerous algorithms have been developed to extract features from amplification curves such as the cycle of quantification and the amplification efficiency (Ruijter et al. 2013). There is an agreement, that these algorithms need to be evaluated and benchmarked for their performance (Kemperman and McCall 2017). But at an earlier level it is important to have a solid foundation for the data preprocessing (Spiess et al. 2015, 2016; Ronde et al. 2017). Digitalization of processes holds the promise that potential human mistakes can be spotted and that diagnostic processes can be automatized.

The aim of the study is to provide software tools and algorithms, which assists qPCR users during the analysis and quality management of their data. In particular, this study shows how it is possible to automatically detect hook effects (see Barratt and Mackay (2002)) or hook effect-like curvatures.

2 Introduction

The functions and data presented in the paper are available from https://github.com/devSJR/PCRedux. The data, including the RDML file, are part of the PCRedux package and are made available in the CSV or RDML format (Rödiger et al. 2017) for vendors independent analysis.

All analyses were implemented and conducted with the \mathbf{R} statistical computing language (R Core Team 2017; Rödiger et al. 2015) and dedicated integrated development environments such as $\mathbf{R}\mathbf{K}\mathbf{W}\mathbf{a}\mathbf{r}\mathbf{d}$ (Rödiger et al. 2012). Further documentation can be found in the help files of the \mathbf{R} packages.

3 Installation

The **hookreg()** and **hookregNL()** functions are part of the PCRedux package for the **R** statistical computing language. Download from CRAN http://cran.r-project.org/ the **R** version for the required operating system and install **R**. Then start **R** and type in the prompt:

```
# Select your local mirror
install.packages("PCRedux")
```

The PCRedux package should just install. If this fails make sure you have write access to the destination directory and follow the instructions of the R documentation:

```
# The following command points to the help for download and install of packages
# from CRAN-like repositories or from local files.
?install.packages()
```

The package can be installed as the latest development version using the devtools R package.

```
# Install devtools, if you haven't already.
install.packages("devtools")

library(devtools)
install_github("devSJR/PCRedux")
```

It is recommended to use software with an integrated development environment such as RKWard (Rödiger et al. 2012). To work with RDML data it is recommend to use the RDML package (\geq_v .0.9-9) by invoking the rdmlEdit() function (for details see Rödiger et al. (2017)) or the rdmlEdit GUI web server (section ??). The RDML file hookreg.rdml contains the amplification curve data. However, other software package (e.g., (Lefever et al. 2009; Ruijter et al. 2015)) can also be used to work with the RMDL data file format.

4 Results for the analysis of the hookreg.rdml data set by humanrater()

All calculations in the following sections were employed on the hookreg.rdml data R environment by the RDML package (Rödiger et al. 2017). An overview of the used samples and the qPCR detection chemistries and the classification by two humans ("Hook effect-like Rater 1", "Hook effect-like Rater 2") is shown in Table 1.

Loading experiment: exp1 run: run1

All amplification curves were plotted according to their experiment conditions. They differed in the target molecules (e.g., MLC-2v, BRCA1) and the detection chemistries (e.g., EvaGreen, SybrGreen, hydrolysis probes). Figure 1 shows seven plots for the corresponding experiments. The amplification curves were not preprocessed to preserve the curvature. Selected amplification curves were noisy (e.g., Figure 1F), had overshots or undershot in the background phase (e.g., Figure 1E-G), a short hook phase (e.g., Figure 1D). Amplification curves of Figure 1A, D, F and F exhibited a clearly visible hook effect or a hook like effect.

```
par(mfrow=c(4,2))
# Plot all data of the hookreq.rdml-file according to their type.
# Synthetic template, detected with Syto-13
matplot(data[, 1], data[, 2:13], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("A", cex = 1.8, side = 3, adj = 0, font = 2)
# Human MLC-2v, detected with a hydrolysis probe.
matplot(data[, 1], data[, 14:45], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("B", cex = 1.8, side = 3, adj = 0, font = 2)
# S27a housekeeping gene, detected with SybrGreen I.
matplot(data[, 1], data[, 46:69], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("C", cex = 1.8, side = 3, adj = 0, font = 2)
# Whole genome amplification, detected with EvaGreen.
matplot(data[, 1], data[, 70:71], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("D", cex = 1.8, side = 3, adj = 0, font = 2)
# Human BRCA1 gene, detected with a hydrolysis probe.
matplot(data[, 1], data[, 72:87], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("E", cex = 1.8, side = 3, adj = 0, font = 2)
# Human NRAS gene, detected with a hydrolysis probe.
matplot(data[, 1], data[, 88:95], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("F", cex = 1.8, side = 3, adj = 0, font = 2)
# Water control, detected with a hydrolysis probe.
matplot(data[, 1], data[, 96:97], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("G", cex = 1.8, side = 3, adj = 0, font = 2)
```

Printout of all measured samples, their rating by two humans (rater 1 and rater 2) with their dichotomous ratings (0, no hook; 1, hook) and their sources.

- The boggy data (qpcR::boggy) set was taken from the qpcR package (Ritz and Spiess 2008; Spiess, Feig, and Ritz 2008).
- The C127EGHP data (chipPCR::C127EGHP) set was taken from the chipPCR package (Rödiger, Burdukiewicz, and Schierack 2015).
- The testdat data (qpcR::testdat) set was taken from the qpcR package (Ritz and Spiess 2008; Spiess,

Figure 1: Amplification curves. A) Synthetic template, detected with Syto-13. B) Human MLC-2v, detected with a hydrolysis probe. C) S27a housekeeping gene, detected with SybrGreen I. D) Whole genome amplification, detected with EvaGreen. E) Human BRCA1 gene, detected with a hydrolysis probe. F) Human NRAS gene, detected with a hydrolysis probe. G) Water control, detected with a hydrolysis probe. See Table 1 for details. RFU, relative fluorescence units.

Feig, and Ritz 2008).

• Other data were prepared by Evrogen laboratory experiments.

Table 1: Overview of the used amplification curve data. The samples names, data source (origin of data either from an existing data set or prepared for this study), the detection chemistries (intercalator (Syto-13, SyberGreenI, EvaGreen), hydrolysis probes (TaqMan (Cy5/BHQ2), TaqMan (HEX/BHQ1))) and calculations by tow humans.

	nans.							
#	Sample	Data Source	Target	Chemistry	Hook effect-like Rater 1	Hook effect-like Rater 2	Rating Conformity	
1	F1.1	qpcR::boggy	synthetic template	Syto-13	1	1	1	
2	F1.2 F2.1	qpcR::boggy qpcR::boggy	synthetic template synthetic template	Syto-13 Syto-13	1	1	1	
4	F2.1	qpcR::boggy	synthetic template	Syto-13	i	i	1	
5	F3.1	qpcR::boggy	synthetic template	Syto-13	0	0	1	
6	F3.2	qpcR::boggy	synthetic template	Syto-13	0	0	1	
8	F4.1 F4.2	qpcR::boggy qpcR::boggy	synthetic template synthetic template	Syto-13 Syto-13	0	0	1	
9	F5.1	qpcR::boggy	synthetic template	Syto-13	0	0	1	
10	F5.2	qpcR::boggy	synthetic template	Syto-13	0	0	1	
11	F6.1 F6.2	qpcR::boggy	synthetic template	Syto-13	0	0	1	
12	F6.2 HP1	qpcR::boggy chipPCR::C127EGHP	synthetic template MLC-2v	Syto-13 TaqMan (Cy5/BHQ2)	0	0	1	
14	HP2	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	9	0	1	
15	HP3	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
16	HP4	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
17 18	HP5 HP6	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
19	HP7	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	9	0	1	
20	HP8	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
21	HP9	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
22 23	HP10 HP11	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
24	HP12	chipPCR::C127EGHP	MLC-2v	TagMan (Cv5/BHQ2)	0	0	1	
25	HP13	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
26	HP14	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
27 28	HP15 HP16	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
29	HP17	chipPCR::C127EGHP	MLC-2v	TagMan (Cv5/BHQ2)	0	0	1	
30	HP18	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
31	HP19	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
32 33	HP20 HP21	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
34	HP22	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	9	0	1	
35	HP23	chipPCR::C127EGHP	MLC-2v	TagMan (Cv5/BHQ2)	0	0	1	
36	HP24	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
37 38	HP25 HP26	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
39	HP26 HP27	chipPCR::C127EGHP	MLC-2V MLC-2v	TagMan (Cy5/BHQ2)	9	0	1	
40	HP28	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
41	HP29	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
42 43	HP30 HP31	chipPCR::C127EGHP chipPCR::C127EGHP	MLC-2v MLC-2v	TaqMan (Cy5/BHQ2) TaqMan (Cy5/BHQ2)	0	0	1	
44	HP32	chipPCR::C127EGHP	MLC-2V MLC-2v	TaqMan (Cy5/BHQ2)	0	0	1	
45	F1.1_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	ő	0	1	
46	F1.2_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
47 48	F1.3_td F1.4_td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I SybrGreen I	0	0	1	
48	F1.4_td F2.1 td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I	0	0	1	
50	F2.2 td	gpcR::testdat	S27a housekeeping gene	SybrGreen I	ő.	0	1	
51	F2.3_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
52 53	F2.4_td F3.1_td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I SybrGreen I	0	0	1	
54	F3.1_td F3.2 td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I	0	0	1	
55	F3.3 td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	ő	0	1	
56	F3.4_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
57 58	F4.1_td F4.2 td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I SybrGreen I	0	0	1	
59	F4.2_td F4.3_td	qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I	9	0	1	
60	F4.4_td	gpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
61	F5.1_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
62 63	F5.2_td F5.3_td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I SybrGreen I	0	0	1	
64	F5.4 td	qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I	9	0	1	
65	F6.1_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
66	F6.2_td	qpcR::testdat	S27a housekeeping gene	SybrGreen I	0	0	1	
67 68	F6.3_td F6.4_td	qpcR::testdat qpcR::testdat	S27a housekeeping gene S27a housekeeping gene	SybrGreen I SybrGreen I	0	0	1	
69	F09~WGA	Evrogen lab experiment	Whole genome amplification	EvaGreen	1	1	1	
70	F10~WGA	Evrogen lab experiment	Whole genome amplification	EvaGreen	1	1	1	
71 72	F11~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	1	1	1	
73	F12~1ng/mkl G01~100ng/mkl	Evrogen lab experiment Evrogen lab experiment	BRCA1 gene BRCA1 gene	TaqMan (HEX/BHQ1) TaqMan (HEX/BHQ1)	1	1	i	
74	G02~100ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	î	î	î	
75	G03~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	0	0	1	
76 77	G04~1ng/mkl	Evrogen lab experiment	BRCA1 gene BRCA1 gene	TaqMan (HEX/BHQ1)	0	0	1	
77	G05~100ng/mkl G06~100ng/mkl	Evrogen lab experiment Evrogen lab experiment	BRCA1 gene BRCA1 gene	TaqMan (HEX/BHQ1) TaqMan (HEX/BHQ1)	0	0	1	
79	G07~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	1	1	î	
80	G08~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	1	1	1	
81 82	G09~100ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	1	1	1	
82	G10~100ng/mkl G11~1ng/mkl	Evrogen lab experiment Evrogen lab experiment	BRCA1 gene BRCA1 gene	TaqMan (HEX/BHQ1) TaqMan (HEX/BHQ1)	1	1 0	1	
84	G12~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	ő	ő	1	
85	H01~100ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	0	0	1	
86 87	H02~100ng/mkl s1	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	0	0	1	
88	s1 s2	Evrogen lab experiment Evrogen lab experiment	NRAS gene NRAS gene	TaqMan (FAM/BHQ1) TaqMan (FAM/BHQ1)	1	1	1	
89	s3	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)	1	1	i	
90	s4	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)	1	1	1	
91 92	s5 s6	Evrogen lab experiment Evrogen lab experiment	NRAS gene NRAS gene	TaqMan (FAM/BHQ1) TaqMan (FAM/BHQ1)	1	1	1	
93	s6 s7	Evrogen lab experiment Evrogen lab experiment	NRAS gene NRAS gene	TaqMan (FAM/BHQ1) TaqMan (FAM/BHQ1)	1 0	1 0	1	
94	s8	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)	1	1	i	
95	NTC	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)	0	0	1	
96	NTC	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)	0	0	1	

5 Results for the analysis with hookreg() and hookregNL()

This section contains the results of the analysis of the amplification curve data with the **hookreg()** function and the **hookregNL()** function. As in the previous sections, all code was commented to make it reproducible. Some rows in Table 2 and Table 3 appear to be empty. This expected behavior may occur in cases where the corresponding functions were not able to calculate the coefficients due to a failed model fit or violation of the truncation criterion.

5.1 Results for the analysis of the hookreg.rdml data set with hookreg()

The following code was used to analyze the hookreg.rdml data set with hookreg() function. The hookreg() function fits a linear model to a region of interest. The linear model is used to decide if the amplification curve as a hook effect or hook effect-like curvature.

```
# Load PCRedux package to obtain the data and make the hookreg() function
# available.
library(PCRedux)
# `data` is a temporary data frame of the hook.rdml amplification curve data file.
# Apply the hookreg() function over the amplification curves and arrange the
# results in the data frame `res_hookreg`.
res_hookreg <- data.frame(sample=colnames(data)[-1],
                           t(sapply(2L:ncol(data), function(i) {
                             hookreg(x=data[, 1], y=data[, i])
                           })))
# Fetch the calculated parameters from the calculations with the hookreq()
# function as a table `res_hookreq_table`.
res_hookreg_table <- data.frame(sample=as.character(res_hookreg[["sample"]]),</pre>
                                intercept=signif(res_hookreg[["intercept"]], 2),
                                slope=signif(res_hookreg[["slope"]], 1),
                                hook.start=signif(res_hookreg[["hook.start"]], 0),
                                hook.delta=signif(res_hookreg[["hook.delta"]], 0),
                                p.value=signif(res_hookreg[["p.value"]], 4),
                                CI.low=signif(res_hookreg[["CI.low"]], 2),
                                CI.up=signif(res_hookreg[["CI.up"]], 2),
                                hook.fit=res hookreg[["hook.fit"]],
                                hook.CI=res_hookreg[["hook.CI"]],
                                hook=res_hookreg[["hook"]]
)
```

Finally a pretty printout (Table 2) of the results from the **hookreg()** function for the **hookreg.rdml** data set with the following code was prepared.

The results of the **hookreg()** function are fairly comprehensive. The meaning of the columns is as followed:

- intercept, is the intercept from the start of the potential hook to the end of the amplification curve.
- *slope* is the slope from the start of the potential hook to the end of the amplification curve. A negative slope is indicative for a hook effect.
- hook.start is the estimated starting cycle of the hook region.
- hook.delta is the number of cycles from the hook.start to the end of the amplification curve.

Table 2: Results from the hookreg() function for the hookreg.rdml data set.

:	Results	nom	tne	поокте	eg() rui	nction	IOL	tne	nookr	eg.ra	mı a
	sample	intercept	slope	hook.start	hook.delta	p.value	CI.low	CI.up	hook.fit	hook.CI	hook
	A01°F1.1 A02°F1.2	1.20 1.20	-0.01 -0.01	30.00 30.00	20.00 20.00	0.00	-0.01 -0.01	-0.01 -0.01	1.00 1.00	1.00 1.00	1.00
	A03~F2.1	1.20	-0.01	30.00	9.00	0.00	-0.01	-0.00	1.00	1.00	1.00
	A04~F2.2	1.20	-0.01	30.00	9.00	0.00	-0.01	-0.00	1.00	1.00	1.00
	A05°F3.1 A06°F3.2	1.10	-0.00	40.00 40.00	6.00	0.05	-0.01 -0.01	0.00	0.00	0.00	0.00
	A07~F4.1	0.00	0.00	0.00	0.00	0.02	-0.01	0.00	0.00	0.00	0.00
	A08~F4.2	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	A09~F5.1	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	A10°F5.2 A11°F6.1	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	A12~F6.2	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B01~HP1	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B02~HP2 B03~HP3	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B04~HP4	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B05~HP5	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B06~HP6 B07~HP7	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B08~HP8	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B09~HP9	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B10~HP10 B11~HP11	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	B12~HP12	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C01~HP13	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C02"HP14 C03"HP15	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C04~HP16	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C05~HP17	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C06~HP18 C07~HP19	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C08"HP20	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C09~HP21	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C10~HP22 C11~HP23	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	C11"HP23 C12"HP24	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D01~HP25	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D02~HP26	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D03~HP27	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D04~HP28 D05~HP29	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D06~HP30 D07~HP31	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D07"HP31 D08"HP32	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	D09~F1.1 td	1.00	-0.00	30.00	7.00	0.01	-0.00	0.00	0.00	0.00	0.00
	D10°F1.2_td D11°F1.3_td	1.10	-0.00	30.00	10.00	0.00	-0.00	-0.00	1.00	1.00	1.00
	D11~F1.3_td	0.73	-0.02 -0.00	10.00	30.00 40.00	0.05 0.42	-0.05 -0.02	0.01	0.00	0.00	0.00
	D12~F1.4_td E01~F2.1_td	1.00	-0.00	30.00	7.00	0.42	-0.02	0.01	0.00	0.00	0.00
	E02~F2.2_td	1.10	-0.00	40.00	5.00	0.15	-0.01	0.01	0.00	0.00	0.00
	E03~F2.3_td E04~F2.4_td	-0.13 3.10	0.00	20.00 30.00	20.00 8.00	0.90	-0.06 -0.36	0.06	0.00	0.00	0.00
	E04 F2.4_td E05~F3.1_td	0.00	0.00	0.00	0.00	0.24	-0.36	0.21	0.00	0.00	0.00
	E06 F3.2_td E07 F3.3_td	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	E07~F3.3_td	0.55	-0.02	10.00	30.00	0.09	-0.05	0.02	0.00	0.00	0.00
	E08~F3.4_td E09~F4.1_td	0.11	-0.00	10.00	30.00 0.00	0.84	-0.04	0.03	0.00	0.00	0.00
	E10~F4.2_td	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	E11~F4.3_td	2.90	-0.08	30.00	10.00	0.14	-0.29	0.13	0.00	0.00	0.00
	E12~F4.4_td F01~F5.1_td	0.26	-0.02 0.00	6.00 0.00	40.00 0.00	0.08	-0.06	0.02	0.00	0.00	0.00
	F02~F5.2 td	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	F03~F5.3_td	2.20	-0.06	30.00	10.00	0.06	-0.17	0.05	0.00	0.00	0.00
	F04~F5.4_td F05~F6.1_td	-0.08 0.00	0.00	20.00 0.00	20.00 0.00	0.89	-0.06	0.06	0.00	0.00	0.00
	F06~F6.2_td	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	F07~F6.3_td	0.67	-0.02	20.00	20.00	0.24	-0.07	0.04	0.00	0.00	0.00
	F08~F6.4_td F09~WGA	0.09	-0.00	4.00 0.00	40.00	0.73	-0.03	0.02	0.00	0.00	0.00
	F10~WGA	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	F10~WGA F11~1ng/mkl F12~1ng/mkl	2.40	-0.04	40.00	20.00	0.00	-0.06	-0.02	1.00	1.00	1.00
	G01~100 ng/mkl	2.30 1.60	-0.04 -0.03	40.00 30.00	20.00 20.00	0.00	-0.07 -0.04	-0.02 -0.01	1.00	1.00	1.00
	G02~100 ng/mkl	1.70	-0.03	30.00	20.00	0.00	-0.05	-0.02	1.00	1.00	1.00
	G03~1ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	G04~1ng/mkl G05~100 ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	G06~100 ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	G07~lng/mkl	3.00	-0.05	40.00	10.00	0.00	-0.06	-0.04	1.00	1.00	1.00
	G08~1ng/mkl G09~100 ng/mkl	3.00 2.50	-0.05 -0.04	40.00 30.00	10.00 20.00	0.00	-0.06 -0.05	-0.04 -0.04	1.00	1.00	1.00
	G10~100 ng/mkl	2.60	-0.05	30.00	20.00	0.00	-0.05	-0.04	1.00	1.00	1.00
	G11~1ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	G12~1ng/mkl H01~100 ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	H02~100 ng/mkl	0.00	0.00	0.00	0.00				0.00	0.00	0.00
	H03~s1	2.40	-0.05	30.00	20.00	0.00	-0.07	-0.03	1.00	1.00	1.00
	H04~s2 H05~s3	2.20 4.10	-0.05 -0.08	30.00 40.00	20.00 10.00	0.00	-0.07 -0.13	-0.02 -0.03	1.00	1.00	1.00
	H06~s4	4.60	-0.09	40.00	10.00	0.00	-0.15	-0.04	1.00	1.00	1.00
	H07~s5	1.60	-0.02	30.00	20.00	0.00	-0.04	-0.01	1.00	1.00	1.00
	H08~s6 H09~s7	1.80	-0.02 0.00	40.00 0.00	9.00 0.00	0.00	-0.03	-0.01	1.00 0.00	1.00 0.00	1.00 0.00
	H09"s7 H10"s8	1.50	-0.01	40.00	8.00	0.00	-0.02	-0.00	1.00	1.00	1.00
	H11"NTC	0.92	-0.03	10.00	30.00	0.00	-0.05	-0.01	1.00	1.00	1.00
_	H12"NTC	0.50	-0.01	10.00	30.00	0.19	-0.05	0.02	0.00	0.00	0.00

- p.value describes the significant relationship between the variables in the linear regression model.
- CI.low and CI.up is the confidence interval (low and up) for the slope parameters in the fitted linear model.
- hook.fit is a logical parameter indicating if the fit is significant at a default threshold of 0.005.
- hook.CI is a logical parameter indicating if the slope of fitted linear model is within the confidence interval (0.995).
- *hook* is a logical parameter, which combines the significance test and confidence interval test (negative slope).

5.2 Results for the analysis of the hookreg.rdml data set with hookregNL()

The following code was used to analyze the hookreg.rdml data set with hookregNL() function. The procedure is similar to the analysis with the hookreg() function.

The hookreg() function fits a six parameter sigmoidal model to amplification curve. The non-linear model

$$f(x) = c + k \cdot x + \frac{d - c}{(1 + exp(b(log(x) - log(e))))^f}$$

is used to decide, based on the k parameter, if the amplification curve as a hook effect or hook effect-like curvature.

```
# Note that the PCRedux package needs to be loaded (see above).
# Load the gpcR package to prevent messages during the start.
suppressMessages(library(qpcR))
# `data` is a temporary data frame of the hook.rdml amplification curve data file.
# Apply the hookreqNL() function over the amplification curves and arrange the
# results in the data frame `res_hookreqNL`.
# Not that `suppressMessages()` to prevent warning messages from the gpcR package.
res_hookregNL <- data.frame(sample=colnames(data)[-1],</pre>
                            t(suppressMessages(sapply(2L:ncol(data), function(i) {
                              hookregNL(x=data[, 1], y=data[, i])
                            }))))
res_hookregNL_table <- data.frame(sample=as.character(res_hookregNL[["sample"]]),</pre>
                                  slope=signif(as.numeric(res hookregNL[["slope"]]), 1),
                                  CI.low=signif(as.numeric(res_hookregNL[["CI.low"]]), 2),
                                  CI.up=signif(as.numeric(res hookregNL[["CI.up"]]), 2),
                                  hook.CI=unlist(res_hookregNL[["hook"]])
```

Finally we prepare a pretty printout (Table 3) of the results from the **hookregNL()** function for the **hookreg.rdml** data set with the following code with the code shown next.

The results of the **hookregNL()** function are less comprehensive then from the **hookreg()** function . The meaning of the columns is as followed:

- *slope* is the slope from the start of the potential hook to the end of the amplification curve that was fitted by a six parameter model. A negative slope is indicative for a hook effect.
- CI.low and CI.up is the confidence interval (low and up) for the slope parameters in the fitted linear model.
- *hook* is a logical parameter, which combines the significance test and confidence interval test (negative slope).

Table 3: Results from the hookregNL() function for the hookreg.rdml data set.

110011105	12()	Idii	701011	101 01
sample	slope	CI.low	CI.up	hook.CI
A01°F1.1 A02°F1.2	-0.10	-0.16	-0.12	1.00
A02~F1.2	-0.20	-0.20	-0.15	1.00
A03°F2.1 A04°F2.2	-0.09	-0.13	-0.06	1.00
A04°F2.2 A05°F3.1	-0.09 -0.02	-0.12 -0.05	-0.06	1.00 0.00
A067E2 2	-0.02	-0.05	0.00	0.00
A07 F4.1 A08 F4.2	0.00	-0.00	0.01	0.00
A08°F4.2	0.00			0.00
A09°F5.1 A10°F5.2	0.01			0.00
A10~F5.2	0.01			0.00
A 1 1 7 F/6 1	0.00			0.00
A12°F6.2	0.00			0.00
B01~HP1 B02~HP2	0.01			0.00
B02~HP2	0.08			0.00
B03~HP3 B04~HP4	0.06			0.00
B04~HP4	0.03			0.00
B05~HP5 B06~HP6	0.04			0.00
B06"HP6 B07"HP7	-0.10			0.00
Decampo	0.03			0.00
BOS HPS	0.05			0.00
B08 HP8 B09~HP9 B10~HP10	0.05			0.00
B11°HP11	0.06			0.00
B12~HP12	0.07			0.00
B10"HP10 B11"HP11 B12"HP12 C01"HP13 C02"HP14	0.05			0.00
C02~HP14	-0.04			0.00
	0.08			0.00
C04~HP16	0.09			0.00
C04 HP16 C05"HP17 C06"HP18	0.05			0.00
C06"HP18 C07"HP19	0.03			0.00
C07 HP19 C08 HP20	0.10			0.00
C08 HP20 C09~HP21	0.02			0.00
CHOSTIPOO	0.01			0.00
C10 HP22 C11~HP23 C12~HP24	0.10			0.00
C12 HP24	0.06			0.00
D01"HP25 D02"HP26	0.09			0.00
D02~HP26	0.10			0.00
D03~HD27	0.10			0.00
D04~HP28	0.10			0.00
D05 HP29	0.20			0.00
D06"HP30 D07"HP31	0.10			0.00
D07"HP31 D08"HP32	0.10			0.00
D08 HP32				
D09°F1.1_td D10°F1.2_td	0.09			0.00
D11 F1.3_td	-0.03			0.00
				0.00
	0.10	0.06	0.23	0.00
	0.05			0.00
E03 F2.3_td	-0.00			0.00
				0.00
E05~F3.1_td	0.10	0.06	0.21	0.00
E06 F3.2_td E07 F3.3_td	0.09	0.04	0.15	0.00
E07~F3.3_td	-0.00			0.00
E08°F3.4_td E09°F4.1_td	-0.00 0.10	0.02	0.17	0.00
E10°F4.1_td	0.10	0.02	0.17	0.00
DIATER OF LA	-0.00	0.02	0.13	0.00
E12 F4.4_td E12 F5.1_td	0.00			0.00
F01~F5.1_td	0.05	0.01	0.10	0.00
F02 F5.2_td F03 F5.3_td	0.05			0.00
F03~F5.3_td	-0.01			0.00
F04"F5.4_td F05"F6.1_td	-0.00			0.00
F05~F6.1_td	0.03			0.00
	0.03			0.00
F07 F6.3_td	.0.04			0.00
F08~F6.4_td F09~WGA	-0.04 -20.00	-45.00	-8.80	0.00 1.00
F10°WGA	-20.00 -20.00	-45.00 -37.00	-8.80 -9.30	1.00
F10°WGA F11°1ng/mkl	-20.00	-31.00	-9.30	0.00
F12~lng/mkl	-0.40			0.00
F11~1ng/mkl F12~1ng/mkl G01~100 ng/mkl G02~100 ng/mkl	-0.40			0.00
G02~100 ng/mkl	-0.40			0.00
G02~100 ng/mkl G03~1ng/mkl G04~1ng/mkl G05~100 ng/mkl G06~100 ng/mkl G07~1ng/mkl G08~1ng/mkl	0.02	-0.00	0.03	0.00
G04~1ng/mkl	-0.01			0.00
G05~100 ng/mkl	0.03			0.00
G06~100 ng/mkl	0.10			0.00
G07 Ing/mkl	-1.00			0.00
G08~1ng/mkl	-1.00			0.00
G08"1ng/mkl G09"100 ng/mkl G10"100 ng/mkl G11"1ng/mkl	-1.00 -1.00			0.00
G11~1ng/mkl	-0.03			0.00
G11"1ng/mkl G12"1ng/mkl H01"100 ng/mkl H02"100 ng/mkl H03"s1 H04"s2	-0.02			0.00
H01~100 ng/mkl	-0.10			0.00
H02~100 ng/mkl	0.01			0.00
H03~s1	-4.00			0.00
H04°s2 H05°s3	-4.00			0.00
H05~s3	-5.00			0.00
H06°s4 H07°s5	-8.00			0.00
HU7 s5	-0.80	0.05	0.10	0.00
H08 ⁻ s6 H09 ⁻ s7	-0.50 0.05	-0.93 0.01	-0.10 0.09	1.00
H10~e8	-0.05	0.01	0.09	0.00
H11"NTC	40.00			0.00
H12"NTC	40.00			0.00

6 Comparison of the hookreg() and hookregNL() methods

The decisions from the human classification (see Table 1) and the results from the machine decision (section 5.1 and section 5.2) were aggregated in Table 4.

Finally a pretty printout (Table 4) of the aggregated data set with the following code was prepared:

The performance of the **hookreg()** and **hookregNL()** functions was analyzed with the **performeR()** function of the PCRedux package (Table 5). The methods were adopted from Brenner and Gefeller (1997) and Kuhn (2008). Note that the formula for the calculations of the sensitivity, specificity, precision, Negative predictive value, fall-out, false negative rate, false discovery rate, Accuracy, F1 score, Matthews correlation coefficient and kappa by Cohen are described in the documentation of the PCRedux package.

```
res_performeR <- signif(t(rbind(</pre>
  hookreg=performeR(res_out[["hookreg"]], res_out[["Human rater"]]),
  hookregNL=performeR(res_out[["hookregNL"]], res_out[["Human rater"]]),
  combined_hookreg=performeR(res_out[["hookreg and hoohkreNL combined"]],
                             res_out[["Human rater"]])
)), 4)
colnames(res_performeR) <- c("hookreg", "hookregNL", "hookreg and hookregNL")</pre>
library(xtable)
options(xtable.comment=FALSE)
print(xtable(res_performeR, digits=4,
             caption = "Analysis of the performance of both algorithms. The
performance of the individual test and the combination of the tests is shown.
Note that the classification improved if the hookreg() and hookregNL() function
were combined by a logical statement. The measure were determined with the
\\textit{performeR()} function from the \\texttt{PCRedux} package. Sensitivity,
TPR; Specificity, SPC; Precision, PPV; Negative predictive value, NPV; Fall-out,
FPR; False negative rate, FNR; False discovery rate, FDR; Accuracy, ACC; F1
score, F1; Matthews correlation coefficient, MCC, Cohen's kappa (binary
classification), $\\kappa$", label='res_performeR'),
size = "normalsize",
include.rownames = TRUE,
include.colnames = TRUE,
caption.placement = "top",
comment=FALSE,
table.placement = "!ht", scalebox='0.75'
```

7 Funding

This work was funded by the Federal Ministry of Education and Research (BMBF) InnoProfile-Transfer-Project 03IPT611X and in part by "digilog: Digitale und analoge Begleiter für eine alternde Bevölkerung" (Gesundheitscampus Brandenburg, Brandenburg Ministry for Science, Research and Culture). We thank Franziska Dinter (BTU) for reevaluation of the amplification curve data and Maria Tokarenko (Evrogen JSC) for wet lab experiments conduction.

References

Barratt, Kevin, and John F. Mackay. 2002. "Improving Real-Time PCR Genotyping Assays by Asymmetric Amplification." *Journal of Clinical Microbiology* 40 (4): 1571–2. https://doi.org/10.1128/JCM.40.4.1571-1572. 2002.

Brenner, Hermann, and Olaf Gefeller. 1997. "Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence." Statistics in Medicine 16 (9): 981–91 http://www.floppybunny.org/robin/web/virtualclassroom/stats/basics/articles/odds_risks/odds_sensitivity)likelihood_ratios_validity_brenner_1997.pdf.

Dvinge, Heidi, and Paul Bertone. 2009. "HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R." *Bioinformatics* 25 (24): 3325–6. https://doi.org/10.1093/bioinformatics/btp578.

Kemperman, Lauren, and Matthew N. McCall. 2017. "miRcomp-Shiny: Interactive assessment of qPCR-based microRNA quantification and quality control algorithms." F1000Research 6 (November): 2046. https://f1000research.com/articles/6-2046/v1.

Kuhn, Max. 2008. "Building Predictive Models in R Using the caret Package." *Journal of Statistical Software* 28 (5). http://www.jstatsoft.org/v28/i05/.

Lefever, Steve, Jan Hellemans, Filip Pattyn, Daniel R. Przybylski, Chris Taylor, René Geurts, Andreas Untergasser, Jo Vandesompele, and RDML on behalf of the Consortium. 2009. "RDML: structured language and reporting guidelines for real-time quantitative PCR data." *Nucleic Acids Research* 37 (7): 2065–9. https://doi.org/10.1093/nar/gkp056.

Martins, C., G. Lima, Mr. Carvalho, L. Cainé, and Mj. Porto. 2015. "DNA quantification by real-time PCR in different forensic samples." Forensic Science International: Genetics Supplement Series 5 (December): e545–e546. https://doi.org/10.1016/j.fsigss.2015.09.215.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Ritz, Christian, and Andrej-Nikolai Spiess. 2008. "qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis." *Bioinformatics* 24 (13): 1549–51. https://doi.org/10.1093/bioinformatics/btn227.

Rödiger, Stefan, Michał Burdukiewicz, Konstantin A. Blagodatskikh, and Peter Schierack. 2015. "R as an Environment for the Reproducible Analysis of DNA Amplification Experiments." The R Journal 7 (2): 127-50. http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

Rödiger, Stefan, Michał Burdukiewicz, and Peter Schierack. 2015. "chipPCR: an R package to pre-process raw data of amplification curves." Bioinformatics~31~(17):~2900-2902.~https://doi.org/10.1093/bioinformatics/btv205.

Rödiger, Stefan, Michał Burdukiewicz, Andrej-Nikolai Spiess, and Konstantin Blagodatskikh. 2017. "Enabling reproducible real-time quantitative PCR research: the RDML package." Bioinformatics, August. https://doi.org/10.1093/bioinformatics/btx528.

Rödiger, Stefan, Thomas Friedrichsmeier, Prasenjit Kapat, and Meik Michalke. 2012. "RKWard: a comprehensive graphical user interface and integrated development environment for statistical analysis with R." *Journal of Statistical Software* 49 (9): 1–34. https://www.jstatsoft.org/article/view/v049i09/v49i09.pdf.

Ronde, Maurice W. J. de, Jan M. Ruijter, David Lanfear, Antoni Bayes-Genis, Maayke G. M. Kok, Esther E. Creemers, Yigal M. Pinto, and Sara-Joan Pinto-Sietsma. 2017. "Practical data handling pipeline improves performance of qPCR-based circulating miRNA measurements." RNA 23 (5): 811–21. https://doi.org/10.1261/rna.059063.116.

Ruijter, Jan M., Steve Lefever, Jasper Anckaert, Jan Hellemans, Michael W. Pfaffl, Vladimir Benes, Stephen A. Bustin, Jo Vandesompele, Andreas Untergasser, and RDML on behalf of the Consortium. 2015. "RDML-Ninja and RDMLdb for standardized exchange of qPCR data." *BMC Bioinformatics* 16 (1): 197. https://doi.org/10.1186/s12859-015-0637-6.

Ruijter, Jan M., Michael W. Pfaffl, Sheng Zhao, Andrej N. Spiess, Gregory Boggy, Jochen Blom, Robert G. Rutledge, et al. 2013. "Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications." *Methods* 59 (1): 32–46. https://doi.org/10.1016/j.ymeth.2012.08.011.

Sauer, Eva, Ann-Kathrin Reinke, and Cornelius Courts. 2016. "Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR." Forensic Science International: Genetics 22 (May): 89–99. https://doi.org/10.1016/j.fsigen.2016.01.018.

Spiess, Andrej-Nikolai, Claudia Deutschmann, Michał Burdukiewicz, Ralf Himmelreich, Katharina Klat, Peter Schierack, and Stefan Rödiger. 2015. "Impact of Smoothing on Parameter Estimation in Quantitative DNA Amplification Experiments." *Clinical Chemistry* 61 (2): 379–88. https://doi.org/10.1373/clinchem.2014. 230656.

Spiess, Andrej-Nikolai, Caroline Feig, and Christian Ritz. 2008. "Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry." *BMC Bioinformatics* 9 (1): 221. https://doi.org/10.1186/1471-2105-9-221.

Spiess, Andrej-Nikolai, Stefan Rödiger, Michał Burdukiewicz, Thomas Volksdorf, and Joel Tellinghuisen. 2016. "System-specific periodicity in quantitative real-time polymerase chain reaction data questions threshold-based quantitation." *Scientific Reports* 6 (December): 38951. https://doi.org/10.1038/srep38951.

Table 4: Aggregated decisions from the human classification and the results from the machine decision of the hookreg() and hookregNL() functions.

egN	$\mathrm{L}()$ function	ns.			
	Sample	Human rater	hookreg	hookregNL	hookreg and hoohkreNL combined
1	F1.1	1	1	1	1
2	F1.2	1	1	1	1
3	F2.1	1	1	1	1
4	F2.2	1	1	1	1
5	F3.1	0	0	0	0
6	F3.2 F4.1	0	0	0	0
7 8	F4.1 F4.2	0	0	0	0
9	F5.1	0	0	0	0
10	F5.2	0	0	0	0
11	F6.1	0	ő	0	0
12	F6.2	0	0	0	0
13	HP1	0	0	0	0
14	HP2	0	0	0	0
15	HP3	0	0	0	0
16	HP4	0	0	0	0
17	HP5	0	0	0	0
18	HP6	0	0	0	0
19	HP7	0	0	0	0
20	HP8	0	0	0	0
21 22	HP9 HP10	0	0	0	0
23	HP11	0	0	0	0
24	HP12	0	0	0	0
25	HP13	0	0	0	0
26	HP14	0	0	0	0
27	HP15	0	0	0	0
28	HP16	0	0	0	0
29	HP17	0	0	0	0
30	HP18	0	0	0	0
31	HP19	0	0	0	0
32	HP20	0	0	0	0
33	HP21	0	0	0	0
34 35	HP22 HP23	0	0	0	$0 \\ 0$
36	HP24	0	0	0	0
37	HP25	0	0	0	0
38	HP26	0	0	0	0
39	HP27	0	0	0	0
40	HP28	0	0	0	0
41	HP29	0	0	0	0
42	HP30	0	0	0	0
43	HP31	0	0	0	0
44	HP32	0	0	0	0
45	F1.1_td	0	0	0	0
46	F1.2_td	0	1	0	1
47 48	F1.3_td F1.4_td	0	0	0	0
49	F2.1_td	0	0	0	0
50	F2.2 td	0	ő	0	0
51	F2.3_td	0	0	0	0
52	$F2.4$ _td	0	0	0	0
53	F3.1_td	0	0	0	0
54	F3.2_td	0	0	0	0
55	F3.3_td	0	0	0	0
56	F3.4_td	0	0	0	0
57	F4.1_td	0	0	0	0
58	F4.2_td	0	0	0	0
59 60	F4.3_td F4.4_td	0	0	0	0
61	F5.1_td	0	0	0	0
62	F5.2 td	0	0	0	0
63	F5.3_td	0	0	0	0
64	F5.4_td	0	0	0	0
65	F6.1_td	0	0	0	0
66	$F6.2_td$	0	0	0	0
67	F6.3_td	0	0	0	0
68	F6.4_td	0	0	0	0
69	F09~WGA	1	0	1	1
70	F10~WGA	1 1	0	1 0	1
71 72	F11~1ng/mkl F12~1ng/mkl	1	1	0	1 1
73	G01~100ng/mkl	1	1	0	1
74	G02~100ng/mkl	1	1	0	1
75	G03~1ng/mkl	0	0	0	0
76	G04~1ng/mkl	0	0	0	0
77	G05~100ng/mkl	0	0	0	0
78	G06~100ng/mkl	0	0	0	0
79	$G07^{-}1ng/mkl$	1	1	0	1
80	G08~1ng/mkl	1	1	0	1
81	G09~100ng/mkl	1	1	0	1
82	G10~100ng/mkl	1	11	0	1
83	G11~1ng/mkl	0	0	0	0
84 85	G12~1ng/mkl	0	0	0	0
86 86	H01~100ng/mkl H02~100ng/mkl	0	0	0	0
87	s1	1	1	0	1
00		1	1	0	1

Table 5: Analysis of the performance of both algorithms. The performance of the individual test and the combination of the tests is shown. Note that the classification improved if the hookreg() and hookregNL() function were combined by a logical statement. The measure were determined with the performeR() function from the PCRedux package. Sensitivity, TPR; Specificity, SPC; Precision, PPV; Negative predictive value, NPV; Fall-out, FPR; False negative rate, FNR; False discovery rate, FDR; Accuracy, ACC; F1 score, F1; Matthews correlation coefficient, MCC, Cohen's kappa (binary classification), κ

hookreg hookregNL hookreg and hookregNL TPR 0.9048 0.3333 1.0000 SPC 0.9733 1.0000 0.9733 PPV 0.9048 1.0000 0.9130 NPV 0.9733 0.8427 1.0000 FPR 0.0267 0.0000 0.0267 FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000 counts 96.0000 96.0000 96.0000						
SPC 0.9733 1.0000 0.9733 PPV 0.9048 1.0000 0.9130 NPV 0.9733 0.8427 1.0000 FPR 0.0267 0.0000 0.0267 FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 75.0000 73.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000		hookreg	hookregNL	hookreg and hookregNL		
PPV 0.9048 1.0000 0.9130 NPV 0.9733 0.8427 1.0000 FPR 0.0267 0.0000 0.0267 FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	TPR	0.9048	0.3333	1.0000		
NPV 0.9733 0.8427 1.0000 FPR 0.0267 0.0000 0.0267 FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	SPC	0.9733	1.0000	0.9733		
FPR 0.0267 0.0000 0.0267 FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	PPV	0.9048	1.0000	0.9130		
FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	NPV	0.9733	0.8427	1.0000		
FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 75.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	FPR	0.0267	0.0000	0.0267		
ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 75.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	FNR	0.0952	0.6667	0.0000		
F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	FDR	0.0952	0.0000	0.0870		
MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	ACC	0.9583	0.8542	0.9792		
LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	F1	0.9048	0.5000	0.9545		
kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	MCC	0.8781	0.5300	0.9427		
TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	LRp	33.9300	Inf	37.5000		
TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	kappa	0.8781	0.4386	0.9411		
FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000	TP	19.0000	7.0000	21.0000		
FN 2.0000 14.0000 0.0000	TN	73.0000	75.0000	73.0000		
	FP	2.0000	0.0000	2.0000		
counts 96.0000 96.0000 96.0000	FN	2.0000	14.0000	0.0000		
	counts	96.0000	96.0000	96.0000		