Modern Control Systems

Assignment Translation

for the Second Lesson

Automatic Control Systems, Second Edition

Page 34

1. For the following differential equations of linear time-invariant systems, find the transfer functions G(s) = Y(s)/U(s) of the systems, where u(t) and y(t) are the input and output of the system, respectively.

(1)
$$y^{(3)}(t) + 3\ddot{y}(t) + 4\dot{y}(t) + y(t) = 2\dot{u}(t) + u(t)$$

(2) $y^{(4)}(t) + 6\ddot{y}(t) + 10\dot{y}(t) + 3y(t) = 7u(t)$
(3) $y^{(3)}(t) + 2\ddot{y}(t) + 8\dot{y}(t) + y(t) + 5\int_{0}^{t} y(\tau)d\tau = 3\dot{u}(t) + u(t)$

2. Please find the transfer function of the circuit shown in Fig. T2.1 (b), where $u_i(t)$ and $u_o(t)$ are the input and output voltages, respectively.

Fig. T2.1 (b)

3. In the mechanical system shown in Fig. T2.2 (c), $x_i(t)$ and $x_o(t)$ are the input and output displacement, respectively. In the schematic diagram, k_1 , k_2 denote the stiffness coefficients of the springs and μ_1 , μ_2 denote the friction coefficients of the dampers. Please find the differential equation and the transfer function of the system.

Fig. T2.2 (c)

Page 35

5. The signal-flow graph of a control system is shown in Fig. T2.4 (b). Please find the transfer function of the system.

Fig. T2.4 (b)

6. The block diagram of a control system is shown in Fig. T2.5 (c). Please find the transfer function of the system.

Fig. T2.5 (c)

Page 36

9. The block diagram of a system is shown in Fig. T2.8. Please find the following transfer functions: $\frac{Y_1(s)}{R_1(s)}$, $\frac{Y_2(s)}{R_1(s)}$, $\frac{Y_2(s)}{R_2(s)}$, $\frac{Y_2(s)}{R_2(s)}$.

Fig. T2.8