DSC 640: Weeks 9 - 10

Author: Yousof Rahimian

Date: February 18,2023

Exercise 5.2 Heat Map, Spatial Chart, and contour Chart/Funnel Chart

Heat Map

Python

Heat Map 2008 NBA Dwyane Wade 0.91 1.9 1.5 1.5 1.3 -1.2 LeBron James 1.2 1.1 -0.91 Kobe Bryant 0.91 -0.79 0.96 -0.16 -0.28 Dirk Nowitzki 0.14 1.1 -0.65 -0.21 Danny Granger -0.32 -0.79 -0.42 -0.21 -0.41 1.8 Name Kevin Durant 1.2 -0.29 -2 -1.9 Kevin Martin -1.6 -1.6 1.9 1.6 1.3 Al Jefferson -1.7 -0.51 0.96 -1.9 -1.5 -1.7 -1.7 Chris Paul -0.76 1.2 -0.53 -0.65 -0.39 Carmelo Anthony -0.4 -2 -0.76 -0.39 -0.49 -0.29 -0.67 G MIN PTS FGM FGA FGP FTM FTA FTP 3PM

```
### Heat Map
 ```{r}
 #| label: firsten
 # Use only the first 10 rows and first 10 columns
 ppg_ten_df <- ppg_df[c(1:10), c(1:11)]
 head(ppg_ten_df)
 ```{r}
#| label: normalize
# copy dataset
ppg_df_norm <- data.frame(ppg_ten_df)</pre>
# normalize the columns
ppg_df_norm[c(2:11)] \leftarrow scale(ppg_df_norm[c(2:11)])
head(ppg_df_norm)
```{r}
#| label: pivottable
ppg_df_long <- ppg_df_norm %>% pivot_longer(!Name,
 names_to = 'Type',
 values_to = 'Stat')
head(ppg_df_long)
#| label: heatmap
y = Name, fill = Stat)) +
 geom_tile(show.legend = FALSE) +
 geom_text(aes(label = round(Stat, digits = 2)), color = 'white', size = 3) +
 coord_fixed() +
 guides(fill = guide_colorbar(barwidth = 20, barheight = 0.5)) +
 ggtitle("Heat Map - R\n2008 NBA Performance") +
 xlab('Stat')
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1,
 size = 8),
 legend.position = 'top')
fig
```



# Tableau

Name	3PM	3PP	FGA	FGM	FGP	FTM	G	MIN	PTS
Monta Ellis	0.30	0.31	17.20	7.80	0.45	3.10	25.00	35.60	19.00
Nate Robinson	1.70	0.33	13.90	6.10	0.44	3.40	74.00	29.90	17.20
O.J. Mayo	1.80	0.38	15.60	6.90	0.44	3.00	82.00	38.00	18.50
Pau Gasol	0.00	0.50	12.90	7.30	0.57	4.20	81.00	37.10	18.90
Paul Pierce	1.50	0.39	14.60	6.70	0.46	5.70	81.00	37.40	20.50
Rashard Lewis	2.80	0.40	13.80	6.10	0.44	2.80	79.00	36.20	17.70
Ray Allen	2.50	0.41	13.20	6.30	0.48	3.00	79.00	36.30	18.20
Richard Hamilton	1.00	0.37	15.60	7.00	0.45	3.30	67.00	34.00	18.30
Richard Jefferson	1.40	0.40	14.90	6.50	0.44	5.10	82.00	35.90	19.60
Rudy Gay	1.10	0.35	16.00	7.20	0.45	3.30	79.00	37.30	18.90
Shaquille O'neal	0.00	0.00	11.20	6.80	0.61	4.10	75.00	30.10	17.80
Stephen Jackson	1.70	0.34	16.90	7.00	0.41	5.00	59.00	39.70	20.70
Tim Duncan	0.00	0.00	14.80	7.40	0.50	4.50	75.00	33.70	19.30
Tony Parker	0.30	0.29	17.50	8.90	0.51	3.90	72.00	34.10	22.00
Vince Carter	1.90	0.39	16.80	7.40	0.44	4.20	80.00	36.80	20.80
Yao Ming	0.00	1.00	13.40	7.40	0.55	4.90	77.00	33.60	19.70
Zachary Randolph	0.60	0.33	17.50	8.30	0.48	3.60	50.00	35.10	20.80

#### **Spatial Chart**

#### **Python**

```
Reading the PopCenterCounty_US shapefile
states = gpd.read_file(r'PopCenterCounty_US.shp')
type(states)
crs = {'init':'EPSG:4326'}
geometry = [Point(xy) for xy in zip(costcos_df['Longitude'], costcos_df['Latitude'])]
geo_df = gpd.GeoDataFrame(costcos_df, crs = crs, geometry = geometry)
#remove warning
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
fig, ax = plt.subplots(figsize = (20, 20))
Plot United States
states.to_crs(epsg = 4326).plot(ax = ax, cmap = 'YlOrBr')
Plot Costcos Cities
geo_df.plot(ax = ax, alpha = 0.5, edgecolor = 'black', color = 'blue')
ax.set_title('Spatial Chart - Python\nUSA Costco Locations', fontsize = 20)
ax.set_axis_off()
```

Spatial Chart - Python USA Costco Locations



```
Spatial Chart
```{r}
#| label: readshape
# reading the dataset in via "sf"
sf::st_read("PopCenterCounty_US.shp")
```{r}
#| label: transform
latLong <- data.frame(lon = costcos_df$Longitude, lat = costcos_df$Latitude)</pre>
transformed_data <- usmap_transform(latLong)
transformed_data
```{r}
#| label: spatialchart
# map the counties
fig <- plot_usmap(regions = "states") +
  labs(title = "Spatial Chart - R", subtitle = "USA Costco Locations") +</pre>
 theme(panel.background=element_blank()) +
 geom\_point(data = transformed\_data, aes(x = x, y = y), color = 'blue', alpha = 0.5)
fig
```

Spatial Chart - R USA Costco Locations

Tableau

Contour Chart

Python

```
# create meshgrid for basketball games and points
[X, Y] = np.meshgrid(ppg_ten_df['MIN'], ppg_ten_df['PTS'])

# Create Z
Z = np.sqrt(X ** 2 + Y ** 2)

fig, ax = plt.subplots()

test = ax.contourf(X, Y, Z, 16, cmap='pink')
cbar = fig.colorbar(test)

ax.set_title('Contour Map - Python\n2008 NBA Performance: Minutes vs Points', fontsize = 20)
ax.set_xlabel('Minutes')
ax.set_ylabel('Points')

plt.show()
```


R

Contour Map - R 2008 NBA Performance: Minutes vs Points

Tableau

