

Digital System Design

Hajar Falahati

hfalahati@ipm.ir
hfalahati@ce.sharif.edu

A Little About Me

- Hajar Falahati
 - Postdoctoral Researcher @ Institute in Fundamental Science and Technology (IPM), Since 2016.
 - Supervised by Prof. Hamid Sarbazi-Azad, Prof. Pejman Lotfi-Kamran
 - Research Visitor @ University of Southern California (USC), Apr 2015 Apr 2016.
 - Supervised by Prof. Masoud Pedram and Prof. Muralli Annavaram
 - PhD @ Sharif University of Technology (SUT), Sep 20111 Oct 2016.
 - Supervised by Prof. Shaahin Hessabi
 - MSc @ Sharif University of Technology (SUT), Sep 2009 Sep 2011
 - Supervised by Prof. Shaahin Hessabi
 - BSc @ Isfahan University of Technology (IUT), Sep 2005 Sep 20^r
 - Supervised by Prof. Kiarash Bazargan and Mr. Nikaean.

Alithe About Me

- My Research Interest
 - Hardware Accelerators
 - Neural Networks
 - GPU Architecture
 - Processing-in-Memory
 - Bioinformatics

Welcome to Digital System Design (DSD)

Emerging Applications

Emerging Technologies

Market Share

How to Get Involved?

Applications Are Getting Complex

- How to deal with the complexity?
- Design approaches
- Abstraction levels
- Digital system modeling
 - Finite State Machine (FSM)
 - Algorithm State Machine (ASM)

Models

Requirements, constraints

How to Process These Applications?

- How to make them happy?
 - Satisfy their requirements
 - Computational demands
 - Memory demands
- Software support
 - High level language
 - Python, C
 - 0
- Hardware supports
 - CPU, GPU, FPGA, Cloud, ASIC
 - 0

Just As A Sample: Language Programming

Just As A Sample: FPGA in Embedded Marketing

Does your current embedded project incorporate an FPGA chip?

■ 2019 (N = 527) ■ 2017 (N = 696) ■ 2015 (N = 959) ■ 2014 (N = 1,295) ■ 2013 (N = 2,073)

27% of all respondents said they would use an FPGA in their **next** project. Those **not** using FPGAs in the future say they "don't need the functionality," "FPGAs are too expensive," "consume too much power," "are too difficult to program."

EE Times

embedded

Which Platforms?

Platform Trend

Application Specific Integrated Circuits

Hardware Effects on Efficiency of Programs

More details later in the course

Array-of-Structures

```
#define NPTS 1024 * 1024

struct Coefficients_AOS {
    double u[3];
    double x[3][3];
    double p;
    double rho;
    double eta;
};

Coefficients_AOS gridData[NPTS];
```

Structure-of-Arrays

```
#define NPTS 1024 *1024

struct Coefficients_SOA {
    double u[3][NPTS];
    double x[3][3][NPTS];
    double p[NPTS];
    double rho[NPTS];
    double eta[NPTS];
};

Coefficients_SOA gridData;
```

"CUDA Optimization Tips, Tricks and Techniques," by Stephen Jones, GTC17.

How to Realize the Ideas?

- Digital system design
 - While satisfying requirements
- Technology Mapping
 - Application Specific ICs (ASICs)
 - Programmable Logic Device (PLDs)
 - Field Programmable Gate Arrays (FPGA)

- ASIC
- FPGA

How to Accelerate Realizing Ideas?

- Hardware description languages (HDLs)
 - Verilog
 - VHDL
- Simulation and verification
 - Testbench
- CAD tools
 - Modelsim
 - Design Compiler

How About Job Opportunity?

- More than 80% of job opportunities in EDA companies
 - Synopsys
 - Mentor
 - Cadence

دانشگاه علم قاصعت ایران

Summary of DSD Goals

an University of Science & Technolog

Computer Aided Design

Deep Learning

How to Achieve These Goals?

IUST

Class Information

Class hour

Sun & Tue: 13:30-15:00

Instructor

Hajar Falahati

- Contact info
 - hfalahati@ipm.ir

Teaching Assistant

- TA team
 - Saba Moustofi
 - Saman Mohseny
 - Majid Taherkhani
 - Fatemeh Khashei
 - Mohammadali Pashanj

- Class TA hour
 - Will be announced

References

- Verilog® HDL: A Guide to Digital Design and Synthesis, Second edition by Samir Palnitkar
- Verilog Digital System Design , RT Level Synthesis, Testbench and Verification, Second edition by Zainalabedin Navabi
- Digital-System-Design-with-VHDL-2e, Second edition by Mark Zwlin'ski
- Digital VLSI System Design: A Design Manual for Implementation of Projects on FPGAs and ASICs using Verilog, by Seetharaman Ramachandran

Class Policy

- Attend the class on time
 - Sun & Tue: 13:30-15:00
- Cell Phones off or on silent
- Food no, Water yes!
- Ask Questions anytime
 - Don't hesitate to ask even stupid questions!!!
- •Pass me your feedback/thought
 - Anything related to the course

Design Sessions

Implement what we learn in the class

Grading (1)

• Exams: 50%

Midterm: 20%

• Final: 30%

• 1400/02/15 - 16:00 PM

- Assignments & Projects: 30 20%
 - Design Sessions
 - Theorical and practical assignments
 - Practical project
 - Bonus points for outstanding projects
 - Up to 25%

Quiz and class activity: 5%

Grading (2)

• Exams: 45%

Midterm: 15%

• Final: 30%

• 1400/02/15 - 16:00 PM

- Assignments & Projects: 35 20%
 - Design Sessions
 - Theorical and practical assignments
 - Practical project
 - Bonus points for outstanding projects
 - Up to 25%

Quiz and class activity: 5%

Assignments

- Deadlines
 - Tight!
 - 5 days late is allowed!
- Discussion is allowed

Copied assignments and academic misconduct is zero score

Academic Misconduct

- Using someone else's assignments/projects/.....
- Using code from someone who took course before or has done the project
- Cheating in exams and assignments

Evaluation Policies

- Exam contents
 - Topics of this Class and TA Classes

- Grading rules for checking yourself
 - Accepted score in assignments, project, midterm, final Exam is 50%.
 - Accepted assignment deliver rate is at least 80%.

Projects

- Project topic:
 - Check your around
 - Modeling
 - Implementation
 - Synthesis
- Project team:
 - 1-2 students

Projects: Steps

Topic Selection

Specification

- Project proposal
- Challenges

Modeling

- ASM/FSM
- Block diagram

Design

- HLL/HDL
- Documentation

Realization

- Implementation
- Synthesis

Projects: Phases

- Topic selection & proposal
- Modeling and design: 50%
 - Modeling
 - Design (50%)
 - Mid of Ordibehest
- Realization
 - Design (100%)
 - Implementation
 - Synthesis
 - Documentation

Course Syllabus at A Glance

• Digital System Design (DSD)

Course Syllabus In Detail

- Introduction on digital system design
 - Samples
- Hardware design
 - Approaches
 - FSM
 - ASM
 - Design Sample

Course Syllabus in Detail (cont'd)

- Hardware Description Languages (HDLs)
 - Why HDLs?
 - Key features of HDLs
 - Verilog
 - VHDL
- Verilog
 - Concepts
 - Modeling levels
 - Behavioral-level
 - RTL-level
 - Gate-level
 - Switch-level
 - Testing
 - Synthesis

Course Syllabus in Detail (cont'd)

- Technology Mapping
 - Application Specific Integrated Circuits (ASIC)
 - Programmable Logic Device (PLD)

- SPLDs
- CPLDS
- FPGAs

Design

Course Syllabus in Detail (cont'd)

- Test and verifications
 - Simulation
 - Testbench design
- Synthesis
 - Techniques
 - Tools
 - Samples

Tools

- Modelsim
 - Simulation
- Xilinx ISE tool set
 - FPGA synthesis
- Synopsys design compiler
 - ASIC synthesis

Thank You

