Endomorphic metalanguage and abstract planning for real-time intent recognition

Antoine Gréa

Lyon 2

- Dependent people need help!
 - Not annoying the person
 - Can't see everything they are doing
- How to help without asking?
 - Guessing the intent somehow
- Intent recognition
 - Observed behavior → Goal
 - Using action sequences: Plans

1 Intent Recognition

- Lattice Based
- Fast and efficient
- Exponential growth

[@avraHami_2006]

Stochastic Approach

Grammatical Approach

Invert Planning

Theory of Mind

The easier the plan, the more likely the goal

Classical Planning

- Domain
 - Fluents
 - Formula over objects
 - States
 - Properties of the world
 - Formula over fluents
 - Actions
 - Precondition
 - Effects

- Problem
 - Initial state
 - Goal state
- Plan (solution)
 - Action sequence
 - Order
 - Total
 - Partial

Having some tea, aren't we?

X General Planning Framework

Another Perspective on Planning

- States
 - And/Or trees
 - Verifying
 - Applying
- Actions
 - Precondition, Effects (States)
 - Constraints (State)
 - Cost, Duration, Probability
 - Methods (Plans)

Search Space

- Starting point s_0
- Search space S
- Solution predicate q_s*
- Iterator χ_S

General Planning Algorithm

- Π * (s * , s 0 , q s * , h, γ S , D)
 - Shortest Path Algorithm

Planning Approaches

- State-transition
 - Π * \square = Π * ((\square , A), pre (ω), eff (ω))
- Plan space
 - $-\Pi *\Pi = \Pi * (r, a 0 \rightarrow a * , \otimes(s) = \emptyset)$
- Case based
- Π C = Π * (r * , { min : π ∈ C ∧ π (pre (ω)) \models eff (ω)}, s(pre (ω)) \neq ∅)
- Probabilistic
 - Π P = Π * (pol, pre (ω), s \models eff (ω))
- Hierarchical
 - Π ω = Π * (r + , Π (ω), ⊗(s) = \emptyset Λ \forall a ∈ Λ π∈s Π (a) = \emptyset)

COLOR Framework

Thanks for listening!

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.