Name:

ID:

#### PRINCIPLES OF EE1

### Homework #6 - Group 02

Submission deadline: December 31, 2020.

**IMPORTANT:** You should hand in a copy of your report that contains a full and detailed description of all the work done on the homework. Marks will be deducted if there are sign of violation of regulation and late submission (20% for each day). <u>You should print out this document and write down your solution directly on it.</u>

*Tip: You should draw a bounding box for your final answer. Ex:*  $I = 2 + 4 = \boxed{6A}$ 

**Problem 1**: (25 marks) A television receiver uses a cable to connect the antenna to the TV, as shown in Fig.1, with  $v_s = 4\cos\omega t \ mV$ . The TV station is received at 52 MHz. Determine the average power delivered to each TV set if:

- a) the load impedance is  $Z = 300 \Omega$ ;
- b) two identical TV sets are connected in parallel with  $Z=300\,\Omega$  for each set.



#### Problem 2: (25 marks)

Given  $R_1=0.1\Omega$ ,  $\omega L_1=0.8\Omega$ ,  $R_2=24\Omega$ ,  $\omega L_2=32\Omega$  and  $V_L=240+j0V$ .

- a. Calculate the phasor voltage  $V_s$ .
- b. Connect a capacitor C in parallel with the inductor  $L_2$ , hold  $V_L$  constant, and adjust the capacitor until the magnitude of I is a minimum. What is the capacitive reactance? What is the value of  $V_s$ ?



Fig.2

# Problem 3: (25 marks)



Fig. 3

Assume the transformer is ideal and  $|I_2|=7~mA$  and  $R_L=4k\Omega$ . Find:

a/  $V_1$ ,  $V_2$ 

b/ *I*<sub>1</sub>

c/  $P_{in}$  (average) and  $P_{out}$  (average).

## Problem 4: (25 marks)

Find the average power absorbed by the resistor 10-ohm in the given circuit of Fig.4.



Fig.4