## Álgebra Lineal

Victoria Torroja Rubio

9/10/2024 -

# Índice general

|    | 0.1. Introducción                  |   | 2  |
|----|------------------------------------|---|----|
| 1. | Espacios Vectoriales               |   | 7  |
|    | 1.1. Subespacios vectoriales       |   | 8  |
|    | 1.2. Bases de un espacio vectorial |   | 11 |
|    | 1.3. Suma directa de subespacios   | 1 | 16 |

#### 0.1. Introducción

El cuerpo de los números reales cumple los siguientes requisitos:

 $(\mathbb{R},+)$  es un grupo abeliano: Definimos suma y producto como

$$+: \mathbb{R}^2 \to \mathbb{R}$$

$$(a,b) \to a+b$$

$$\cdot: \mathbb{R}^2 \to \mathbb{R}$$

$$(a,b) \to a \cdot b.$$

1. La suma es asociativa

$$\forall a, b, c \in \mathbb{R}, \ (a+b) + c = a + (b+c).$$

2. Existe un elemento neutro

$$\exists ! 0 \in \mathbb{R}, \ \forall a \in \mathbb{R}, \ 0 + a = a + 0 = a.$$

3. Existe el opuesto

$$\forall a \in \mathbb{R}, \ \exists -a \in \mathbb{R}, \ a + (-a) = (-a) + a = 0.$$

4. La suma es conmutativa

$$\forall a, b \in \mathbb{R}, \ a+b=b+a.$$

5. El producto es asociativo,

$$\forall a, b, c \in \mathbb{R}, \ a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

6. El producto es distributivo con respecto a la suma (distributivo por la izquierda y por la derecha),

$$\forall a, b, c \in \mathbb{R}, \ a \cdot (b+c) = a \cdot b + a \cdot c.$$

7. Existe la unidad,

$$\exists ! 1 \in \mathbb{R}, \forall a \in \mathbb{R}, 1 \cdot a = a \cdot 1 = a.$$

8. Existe la inversa,

$$\forall a \in \mathbb{R} - \{0\}^1, \exists a^{-1} \in \mathbb{R}, a \cdot a^{-1} = a^{-1} \cdot a = 1.$$

**Definición 0.1** (Anillo). Se denomina **anillo** a un conjunto y dos operaciones  $(R, +, \cdot)$  que verifica las propiedades (1)-(6). Si se verifica también (7), se llama **anillo con unidad**.

<sup>&</sup>lt;sup>1</sup>Utilizamos la notación  $\mathbb{R}^*$  por sencillez para denotar  $\mathbb{R} - \{0\}$ 

**Definición 0.2** (Cuerpo). Se denomina **cuerpo** a un conjunto con al menos dos elementos  $(1 \neq 0)$  y dos operaciones  $(R, +, \cdot)$  que cumple las propiedades (1)-(8). Si también se verifica que la multiplicación es commutativa, decimos que se trata de un **cuerpo abeliano**.

**Definición 0.3.** Un conjunto  $V \neq \emptyset$  es un  $\mathbb{R}$ -espacio vectorial si existen dos operaciones

$$+: V \times V \to V, \ (\vec{x}, \vec{y}) \to \vec{x} + \vec{y}$$
  
  $\cdot: \mathbb{R} \times V \to V, \ (a, \vec{x}) \to a \cdot \vec{x}$ 

que verifican que

- (i) (V, +) es un grupo abeliano.
- (ii) Se cumple la propiedad distributiva,

$$\forall a \in \mathbb{R}, \forall \vec{x}, \vec{y} \in V, \ a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}.$$

(iii) Se cumple otra propiedad distributiva,

$$\forall a, b \in \mathbb{R}, \ \vec{x} \in V, \ (a+b) \vec{x} = a\vec{x} + b\vec{x}.$$

(iv) Se cumple la propiedad asociativa,

$$\forall a, b \in \mathbb{R}, \ \vec{x} \in V, \ a(b\vec{x}) = (a \cdot b) \vec{x}.$$

(v)  $\exists 1 \in \mathbb{R}, \forall \vec{x} \in V, \ 1 \cdot \vec{x} = \vec{x}.$ 

**Definición 0.4.** Se define  $\mathbb{R}^n$ , con  $n \in \mathbb{N}$ , como

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}.$$

**Definición 0.5.** Se define la suma + en  $\mathbb{R}^n$  de la siguiente manera:

$$\forall \vec{x}, \vec{y}, \vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Utilizamos las propiedades de  $\mathbb R$  como cuerpo abeliano para justificar que  $(\mathbb R^n,+)$  es un grupo abeliano.

**Definición 0.6.** Definimos el producto escalar en  $\mathbb{R}^n$  de la siguiente manera,

$$\forall a \in \mathbb{R}, \forall \vec{x} \in \mathbb{R}^n, \ a \cdot \vec{x} = (a \cdot x_1, a \cdot x_2, \dots, a \cdot x_n).$$

Una consecuencia clara de esto es que para todo  $\vec{x} \in \mathbb{R}^n$  se cumple que

$$0 \cdot \vec{x} = \vec{0}$$
.

Al igual que antes, podemos utilizar las propiedades de  $(\mathbb{R}, +, \cdot)$  como cuerpo abeliano para justificar que  $\mathbb{R}^n$  es un  $\mathbb{R}$ -espacio vectorial.

Por las definiciones anteriores tenemos que para todo  $\vec{x} \in \mathbb{R}^n$ ,

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

$$= (x_1, 0, \dots, 0) + (0, x_2, \dots, 0) + \dots + (0, \dots, x_n)$$

$$= x_1 (1, 0, \dots, 0) + x_2 (0, 1, \dots, 0) + \dots + x_n (0, \dots, 1) \dots$$

Además, podemos concluir que si

$$x_1(1,\ldots,0) + x_2(0,1,\ldots,0) + \cdots + x_n(0,\ldots,1) = y_1(1,\ldots,0) + y_2(0,1,\ldots,0) + \cdots + y_n(0,\ldots,1),$$
  
entonces  $\forall i, 1 \le i \le n, x_i = y_i.$ 

**Definición 0.7** (Sistema de ecuaciones homogéneo). Sea H un sistema de ecuaciones homogéneo:

$$a_1^1 x_1 + a_2^1 x_2 + \dots + a_n^1 x_n = 0$$

$$\vdots$$

$$a_1^m x_1 + a_2^m + \dots + a_n^m x^n = 0.$$

donde  $m, n \in \mathbb{N}$  y  $a_i^j \in \mathbb{R}$ . Definimos L como el conjunto de soluciones de H:

$$L=\left\{\left(x_0^1,x_0^2,\ldots,x_0^n\right)\ :\ x_0^1,x_0^2,\ldots,x_0^n \text{ es solución de } H\ \right\}\subset\mathbb{R}^n.$$

a

**Teorema 0.1.** Si  $\vec{x_0}, \vec{y_0} \in L$ , se cumple que

$$\vec{x_0} + \vec{y_0} \in L$$
.

 $aa_{j}^{i}$  no es exponente sino una forma de numeración.

Demostración. Tenemos que  $\forall i, 1 \leq i \leq m$ ,

$$a_{1}^{i}\left(x_{0}^{1}+y_{0}^{1}\right)+\cdots+a_{n}^{i}\left(x_{0}^{n}+y_{0}^{n}\right)$$

$$=a_{1}^{i}x_{0}^{1}+a_{1}^{i}y_{0}^{1}+\cdots+a_{n}^{i}x_{0}^{n}+a_{n}^{i}y_{0}^{n}$$

$$=\underbrace{\left(a_{1}^{i}x_{0}^{1}+a_{2}^{i}x_{0}^{2}+\cdots+a_{n}^{i}x_{0}^{n}\right)}_{0}+\underbrace{\left(a_{1}^{i}y_{0}^{1}+a_{2}^{i}y_{0}^{2}+\cdots+a_{n}^{i}y_{0}^{n}\right)}_{0}$$

$$=0.$$

**Teorema 0.2.** Si  $\vec{x_0} \in L$  y  $a \in \mathbb{R}$ , se cumple que

$$a\vec{x_0} = (ax_0^1, ax_0^2, \dots, ax_0^n) \in L.$$

Demostración. Tenemos que para  $\forall i, 1 \leq i \leq m$ ,

$$a_1^i (ax_0^1) + a_2^i (ax_0^2) + \dots + a_n^i (ax_0^n)$$

$$= a \underbrace{(a_1^i x_0^1 + a_2^i x_0^2 + \dots + a_n^i x_0^n)}_{0}$$

$$= a \cdot 0$$

$$= 0.$$

**Teorema 0.3.** Por lo visto anteriormente,  $L \subset \mathbb{R}^n$  es un subespacio vectorial sobre  $\mathbb{R}$ .

Demostración. Muchas de las propiedades de un espacio vectorial automáticamente se heredan a un subespacio vectorial. Las únicas excepciones son la definición de la suma, del producto y la existencia del elemento neutro 0. En este caso, hemos comprobado que la suma está definida en L y que existe la multiplicación  $\cdot : \mathbb{R} \times L \to L$  definida en L. Además,  $\vec{0} \in L$  es una solución trivial.  $\square$ 

Consideramos un sistema de ecuaciones no homogéneo S:

$$a_1^1 x_1 + a_2^1 x_2 + \dots + a_n^1 x_n = b^1$$

$$\vdots$$

$$a_1^m x_1 + a_2^m + \dots + a_n^m x^n = b^m.$$

Consideramos que  $\mathcal{L} \subset \mathbb{R}^n$  es el conjunto de las soluciones.

$$\mathcal{L} = \{ (x_0^1, x_0^2, \dots, x_0^n) : x_0^1, x_0^2, \dots, x_0^n \text{ es solución de } S \}.$$

Entonces, ya no se cumple necesariamente que la suma de dos soluciones también es solución. Si  $\vec{x_0}, \vec{y_0} \in \mathcal{L}, \, \forall j, \, 1 \leq j \leq m,$ 

$$\begin{aligned} a_1^j \left( x_0^1 + y_0^1 \right) + a_2^j \left( x_0^2 + y_0^2 \right) + \dots + a_0^j \left( x_0^n + y_0^n \right) \\ &= \left( a_1^j x_0^1 + a_2^j x_0^2 + \dots + a_n^j x_0^n \right) + \left( a_1^j y_0^1 + a_2^j y_0^2 + \dots + a_n^j y_0^n \right) \\ &= b^j + b^j = 2b^j \neq b^j. \end{aligned}$$

Si  $\vec{X_0} \in L$  y  $\vec{x_0} \in \mathcal{L}$ , tenemos que

$$\vec{X_0} + \vec{x_0} = b^j \in \mathcal{L}.$$

## Capítulo 1

## **Espacios Vectoriales**

Consideramos un cuerpo conmutativo con característica distinta de 2, es decir,  $1+1 \neq 0$ . A este cuerpo lo llamaremos  $\mathbb{K}$ .

**Definición 1.1** (  $\mathbb{K}$ -Espacio vectorial). Un conjunto  $V \neq \emptyset$  es un  $\mathbb{K}$ -espacio vectorial si se tienen definidas dos aplicaciones

$$\begin{aligned} + : V \times V &\to V \\ (\vec{x}, \vec{y}) &\to \vec{x} + \vec{y} \\ \cdot : \mathbb{K} \times V &\to V \\ (a, \vec{x}) &\to a \cdot \vec{x}, \end{aligned}$$

tales que verifican que

(1) (V, +) es un cuerpo abeliano.

[Commutatividad.] 
$$\forall \vec{x}, \vec{y} \in V, \ \vec{x} + \vec{y} = \vec{y} + \vec{x}.$$

[Asociatividad.] 
$$\forall \vec{x}, \vec{y}, \vec{z} \in V, \ (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$$
.

[Existencia del elemento neutro.]  $\exists \vec{0} \in V, \forall \vec{x} \in V, \ \vec{0} + \vec{x} = \vec{x}.$ 

[Existencia del opuesto.]  $\forall \vec{x} \in V, \exists -\vec{x} \in V, \; \vec{x} + (-\vec{x}) = \vec{0}.$ 

- (2)  $\forall \vec{x}, \vec{y} \in V, \forall a \in \mathbb{K}, \ a \cdot (\vec{x} + \vec{y}) = a \cdot \vec{x} + a \cdot \vec{y}.$
- (3)  $\forall \vec{x} \in V, \forall a, b \in \mathbb{K}, (a+b) \cdot \vec{x} = a \cdot \vec{x} + b \cdot \vec{x}.$
- (4)  $\forall \vec{x} \in V, \forall a, b \in \mathbb{K}, (a \cdot b) \cdot \vec{x} = a \cdot (b \cdot \vec{x}).$
- (5)  $\forall \vec{x} \in V, \ 1 \cdot \vec{x} = \vec{x}.$

Si considero a  $\mathbb{R}$  como un cuerpo, tenemos que  $\mathbb{C}$  es un  $\mathbb{R}$ -espacio vectorial (dimensión 2) y un  $\mathbb{C}$ -espacio vectorial (dimensión 1).

 $<sup>^</sup>a$ En la propiedad del elemento neutro y del opuesto, como la conmutatividad es un requisito no hay que especificar que el elemento neutro funciona por ambos lados, al igual que el opuesto.

**Teorema 1.1.** Sea V un  $\mathbb{K}$ -espacio vectorial, entonces se verifica que:

- (a)  $\forall \vec{x} \in V, \ 0 \cdot \vec{x} = \vec{0}.$
- **(b)**  $\forall \vec{x} \in V, \forall a \in \mathbb{K}, (-a) \cdot \vec{x} = -a \cdot \vec{x}.$
- (c)  $\forall a \in \mathbb{K}, \ a \cdot \vec{0} = \vec{0}.$
- (d)  $a \cdot \vec{x} = \vec{0} \Rightarrow \vec{x} = \vec{0} \lor a = 0.$

Demostración. (a)

$$\begin{split} \vec{x} &= (1+0) \cdot \vec{x} = 1 \cdot \vec{x} + 0 \cdot \vec{x} = \vec{x} + 0 \cdot \vec{x} \\ \Longleftrightarrow &- \vec{x} + \vec{x} = -\vec{x} + \vec{x} + 0 \cdot \vec{x} \\ \Longleftrightarrow &0 = 0 \cdot \vec{x}. \end{split}$$

Se puede hacer de otra manera:

$$0 \cdot \vec{x} = (0+0) \cdot \vec{x} = 0 \cdot \vec{x} + 0 \cdot \vec{x} \iff 0 = 0 \cdot \vec{x}.$$

(b)

$$\begin{aligned} 0 \cdot \vec{x} &= (a + (-a)) \cdot \vec{x} = a \cdot \vec{x} + (-a) \cdot \vec{x} \\ &\iff -a \cdot \vec{x} = -a \cdot \vec{x} + a \cdot \vec{x} + (-a) \cdot \vec{x} \\ &\iff -a \cdot \vec{x} = (-a) \cdot x. \end{aligned}$$

(c) 
$$a \cdot \vec{x} = a \cdot (\vec{x} + \vec{0}) = a \cdot \vec{x} + a \cdot \vec{0} \iff -a \cdot \vec{x} + a \cdot \vec{x} = -a \cdot \vec{x} + a \cdot \vec{x} + a \cdot \vec{0}.$$
$$\therefore \vec{0} = a \cdot \vec{0}.$$

También se puede hacer de la siguiente manera:

$$a\cdot\vec{0}=a\cdot\left(\vec{0}+\vec{0}\right)=a\cdot\vec{0}+a\cdot\vec{0}\iff0=a\cdot\vec{0}.$$

(d) Si a = 0, hemos ganado. Si  $a \neq 0$ ,  $\exists \frac{1}{a} \in \mathbb{K}$ . Por tanto,

$$\vec{0} = \frac{1}{a} \cdot \vec{0} = \frac{1}{a} \cdot (a \cdot \vec{x}) = \left(\frac{1}{a} \cdot a\right) \cdot \vec{x} = \vec{x}.$$

1.1. Subespacios vectoriales

**Definición 1.2** (Subespacio vectorial). Un conjunto  $L \neq \emptyset$  y  $L \subset V$  es parte estable si

- (i)  $\forall \vec{x}, \vec{y} \in L, \ \vec{x} + \vec{y} \in L.$
- (ii)  $\forall a \in \mathbb{K}, \forall \vec{x} \in V, \ a \cdot \vec{x} \in L.$

**Teorema 1.2.** Sea  $L \neq \emptyset$  y  $L \subset V$ , entonces L es parte estable si y sólo si L es subespacio vectorial.

Demostración. (i) Si L es un subespacio vectorial es trivial.

(ii) Si L es parte estable, tenemos que para  $\vec{x} \in L$  se verifica la propiedad conmutativa, asociativa, etc, dado que  $L \subset V$ . Además, dado que  $\cdot : \mathbb{K} \cdot L \to L$  y  $(-1) \cdot \vec{x} = -\vec{x}$ , tenemos que si  $\vec{x} \in L$  entonces  $-\vec{x} \in L$ . Además,  $\vec{x} + (-\vec{x}) = \vec{0} \in L$ . El resto de propiedades se derivan de que  $L \subset V$ .

**Definición 1.3** (Combinación lineal).  $\vec{x} \in V$  es la **combinación lineal** de  $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p$  con coeficientes  $a^1, a^2, \dots, a^p$  si existen  $\vec{x}_i \in V$  y  $a^i \in \mathbb{K}$ , con  $p \in \mathbb{N}$   $(1 \le i \le p)$  tales que:

$$\vec{x} = a^1 \cdot \vec{x}_1 + a^2 \cdot \vec{x}_2 + \dots + a^p \cdot \vec{x}_p.$$

a

**Nota.** Podemos apreciar que, dadas las condiciones del subespacio vectorial, cualquier combinación lineal de vectores  $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p \in L$  es un vector de L.

**Teorema 1.3.** Sea  $H \subset V$  con  $H \neq \emptyset$ . Definimos L(H) como el conjunto de todas las combinaciones lineales finitas de H, es decir:

$$L(H) = \left\{ a^{1}\vec{x}_{1} + a^{2}\vec{x}_{2} + \dots + a^{p}\vec{x}_{p} : p \in \mathbb{N}, \vec{x}_{i} \in H, a^{i} \in \mathbb{K} \right\}.$$

Se verifica que

- (1)  $H \subset L(H)$ .
- (2) L(H) es un espacio vectorial sobre  $\mathbb{K}$ .
- (3) L(H) es el menor subespacio vectorial que contiene a H. Es decir, si L es un subespacio vectorial y  $H \subset L$ , entonces  $L(H) \subset L$ .

Demostración. (1) Tenemos que si  $\vec{x} \in H$  entonces

$$\vec{x} = \underbrace{1 \cdot \vec{x}}_{\text{combinación lineal}} \in L(H).$$

CAPÍTULO 1. ESPACIOS VECTORIALES

 $<sup>^</sup>a\mathrm{Los}~a^i$ no denotan exponente sino que se trata de una forma de numeración.

(2) Sean  $\vec{x}, \vec{y} \in L(H)$ , queremos ver que  $\vec{x} + \vec{y} \in L(H)$ . Dado que  $\vec{x}, \vec{y} \in L(H)$ , se pueden expresar como combinación lineal de otros vectores en H.

$$\exists p \in \mathbb{N}, \ \exists \vec{x}_1, \vec{x}_2, \dots, \vec{x}_p \in H, \ \exists a^1, a^2, \dots, a^p \in \mathbb{K},$$

tales que

$$\vec{x} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

De manera similar, como  $\vec{y} \in L(H)$ ,

$$\exists q \in \mathbb{N}, \ \exists \vec{y_1}, \vec{y_2}, \dots, \vec{y_q} \in H, \ \exists b^1, b^2, \dots, b^p \in \mathbb{K},$$

tales que

$$\vec{y} = b^1 \vec{y}_1 + b^2 \vec{y}_2 + \dots + b^q \vec{y}_q.$$

Entonces,

$$\vec{x} + \vec{y} = (a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p) + (b^1 \vec{y}_1 + b^2 \vec{y}_2 + \dots + b^q \vec{y}_q).$$

Como  $\forall \vec{x}_i, \vec{y}_i \in H$ , tenemos que  $\vec{x} + \vec{y} \in L(H)$ .

A continuación, demostramos que si  $\vec{x} \in L(H)$  entonces  $a \cdot \vec{x} \in L(H)$ . Como  $\vec{x} \in L(H)$ ,

$$\exists p \in \mathbb{N}, \ \exists \vec{x}_1, \vec{x}_2, \dots, \vec{x}_p \in H, \ \exists a^1, a^2, \dots, a^p \in \mathbb{K},$$

tales que

$$\vec{x} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

Por tanto,

$$a \cdot \vec{x} = a \cdot (a^{1} \vec{x}_{1} + a^{2} \vec{x}_{2} + \dots + a^{p} \vec{x}_{p})$$

$$= a \cdot (a^{1} \vec{x}_{1}) + a \cdot (a^{2} \vec{x}_{2}) + \dots + a \cdot (a^{p} \vec{x}_{p})$$

$$= (a \cdot a^{1}) \cdot \vec{x}_{1} + (a \cdot a^{2}) \cdot \vec{x}_{2} + \dots + (a \cdot a^{p}) \cdot \vec{x}_{p}.$$

Aprovechamos las propiedades de V como espacio vectorial y el hecho de que  $H \subset V$  (hemos utilizado la propiedad distributiva). Como  $\forall a \cdot a^i \in \mathbb{K}$  y  $\vec{x}_i \in H$ ,  $a \cdot \vec{x}$  se trata de una combinación lineal y, por tanto,  $a \cdot \vec{x} \in L(H)$ .

(3) Si  $\vec{x} \in L(H)$ , tenemos que  $\exists p \in \mathbb{N}, \ \exists \vec{x}_i \in H, \ \exists a^i \in \mathbb{K} \ \text{con } 1 \leq i \leq p$ , tales que

$$\vec{x} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

Como  $H \subset L$ ,  $x_i \in L$  y, como L es un subespacio vectorial, tenemos que  $a^1\vec{x}_1 + a^2\vec{x}_2 + \cdots + a^p\vec{x}_p \in L$ , por lo que  $\vec{x} \in L$ .

**Definición 1.4.** L(H) es el subespacio generado por H o H es un sistema de generadores de de L(H). Si L(H) = V diremos que H es sistema de generadores.

### 1.2. Bases de un espacio vectorial

**Definición 1.5.** V es **finito generado** si existe un sistema de generadores formado por un número finito de vectores. Es decir, si  $\exists \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\} = H$  tal que V = L(H), es decir,  $\exists \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\} \subset V$  tales que  $\forall \vec{x} \in V, \exists a^1, a^2, \dots, a^p \in \mathbb{K}$  tales que

$$\vec{x} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

**Definición 1.6.** Una familia de vectores  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  es **linealmente dependiente** si uno de ellos es combinación lineal de los otros.

$$\exists i = 1, 2, \dots, p, \ \vec{x}_L \in L(\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}).$$

Es decir,

$$\exists i = 1, 2, \dots, p, \ \exists a^1, a^2, \dots, a^{i-1}, a^{i+1}, \dots, a^p \in \mathbb{K}$$
$$\vec{x}_i = a^1 \vec{x}_1 + \dots + a^{i-1} \vec{x}_{i-1} + a^{i+1} \vec{x}_{i+1} + \dots + a^p \vec{x}_p.$$

Es decir, si  $\vec{x}_j = \vec{0}$ ,  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  es dependiente, pues

$$\vec{0} = 0 \cdot \vec{x}_1 + \dots + 0 \cdot \vec{x}_{j-1} + 0 \cdot \vec{x}_{j+1} + \dots + 0 \cdot \vec{x}_p$$

**Teorema 1.4.** Sea  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\} \subset V$ . Son linealmente dependientes si y solo si  $\exists a^1, a^2, \dots, a^p \in \mathbb{K}$  no todos nulos tales que

$$\vec{0} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

Demostración. (i) Supongamos que la familia es linealmente dependiente. Por tanto,  $\exists i = 1, \ldots, p$  tal que  $\vec{x}_i \in L(\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_{i-1}, \vec{x}_{i+1}, \ldots, \vec{x}_p\})$ . Por tanto, existen  $a^i \in \mathbb{K}$  tales que

$$\vec{x}_i = a^1 \vec{x}_1 + \dots + a^{i-1} \vec{x}_{i-1} + a^{i+1} \vec{x}_{i+1} + \dots + a^p \vec{x}_p.$$

Si sumamos el opuesto a ambos lados tenemos que

$$\vec{0} = \vec{x}_i - \vec{x}_i = a^1 \vec{x}_1 + \dots + a^{i-1} \vec{x}_{i-1} + (-1) \vec{x}_1 + a^{i+1} \vec{x}_{i+1} + \dots + a^p \vec{x}_p.$$

(ii) Suponemos que  $\exists a^1, a^2, \dots, a^p \in \mathbb{K}$  no todos nulos tales que

$$a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p = \vec{0}.$$

Como no todos los escalares son nulos, podemos encontrar  $a^i \neq 0$ , y  $a^i$  tiene inversa.

$$\therefore (-1) a^{i} \vec{x}_{i} = a^{1} \vec{x}_{1} + a^{2} \vec{x}_{2} + \dots + a^{i-1} \vec{x}_{i-1} + a^{i+1} \vec{x}_{i+1} + \dots + a^{p} \vec{x}_{p}.$$

Aprovechando las propiedades:

$$\vec{x}_i = \frac{-a^1}{a^i} \vec{x}_1 + \dots + \frac{-a^{i-1}}{a^i} \vec{x}_{i-1} + \frac{-a^{i+1}}{a^i} \vec{x}_{i+1} + \dots + \frac{-a^p}{a^i} \vec{x}_p.$$

Corolario 1.1. La familia de vectores  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\} \subset V$  es linealmente independiente si y solamente si

$$a^{1}\vec{x}_{1} + a^{2}\vec{x}_{2} + \dots + a^{p}\vec{x}_{p} = \vec{0} \Rightarrow a^{1} = a^{2} = \dots = a^{p} = 0.$$

**Teorema 1.5.** Una familia de vectores  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  es linealmente independiente si y solamente si  $\forall \vec{x} \in L(\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}), \exists! a^1, a^2, \dots, a^p \in \mathbb{K}$  tales que

$$\vec{x} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \dots + a^p \vec{x}_p.$$

Demostración. (i) Si  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  es linealmente independiente y sea  $\vec{x} \in L(\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\})$ . Supongamos que existen otros escalares  $b^1, b^2, \dots, b^p \in \mathbb{K}$  tales que

$$\vec{x} = b^1 \vec{x}_1 + \dots + b^p \vec{x}_p.$$

Tenemos que

$$\vec{0} = \vec{x} - \vec{x} = (a^1 \vec{x}_1 + \dots + a^p \vec{x}_p) - (b^1 + \dots + b^p \vec{x}_p)$$
$$= (a^1 - b^1) \vec{x}_1 + \dots + (a^p - b^p) \vec{x}_p.$$

Como se trata de una familia linealmente independiente, tenemos que  $\forall i, 1 \leq i \leq p$ ,

$$a^i - b^i = 0 \iff a^i = b^i$$
.

(ii) Recíprocamente, tenemos que si  $a^1, a^2, \dots, a^p \in \mathbb{K}$  tales que

$$a^1\vec{x}_1 + \dots + a^p\vec{x}_n = \vec{0}.$$

Esto puede pasar si  $a^1 = a^2 = \cdots = a^p = 0$ . Como  $a^i$  son únicos, tenemos que si hay alguno no nulo, la combinación lineal no va a ser nula. Por tanto, será linealmente independiente.

**Definición 1.7** (Base). Una base de un espacio vectorial V es un sistema de generadores linealmente independientes.

Corolario 1.2. Una familia de vectores  $B \subset V$  es una base de E si y solo si  $\forall \vec{x} \in V$  se expresa de manera única como combinación lineal de elementos de B.

**Teorema 1.6.** Si  $V \neq \{0\}$ , es finitamente generado, entonces  $\exists \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$  es base de V. Es decir, todo espacio vectorial  $V \neq \{0\}$  generado por un número finito de vectores tiene una base finita.

Demostración. Sea  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  un sistema de generadores de V. Si  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  son linealmente independientes, forman una base (hemos ganado). Sino, uno se puede expresar como combinación lineal de los otros, por lo que  $\exists i=1,2,\dots,p$  tal que  $\vec{x}_i \in L\left(\{\vec{x}_1,\vec{x}_2,\dots,\vec{x}_{i-1},\vec{x}_{i+1},\dots,\vec{x}_p\}\right)$ , por lo que  $\exists b^1,b^2,\dots,b^p \in \mathbb{K}$ 

$$\vec{x}_i = b^1 \vec{x}_1 + b^2 \vec{x}_2 + \dots + b^{i-1} \vec{x}_{i-1} + b^{i+1} \vec{x}_{i+1} + \dots + b^p \vec{x}_p.$$

Dado que  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  es un sistema de generadores de  $V, \forall \vec{x} \in V, \exists a^1, a^2, \dots, a^p \in \mathbb{K}$  tales que

$$\vec{x} = a^{1}\vec{x}_{1} + a^{2}\vec{x}_{2} + \dots + a^{p}\vec{x}_{p}$$

$$= a^{1}\vec{x}_{1} + \dots + a^{i-1}\vec{x}_{i-1} + a^{i}\left(b^{1}\vec{x}_{1} + b^{2}\vec{x}_{2} + \dots + b^{i-1}\vec{x}_{i-1} + b^{i+1}\vec{x}_{i+1} + \dots + b^{p}\vec{x}_{p}\right) + a^{i+1}\vec{x}_{i+1} + \dots + a^{p}\vec{x}_{p}$$

$$= \left(a^{1} + a^{i}b^{1}\right)\vec{x}_{1} + \dots + \left(a^{i-1} + a^{i}b^{i-1}\right)\vec{x}_{i-1} + \left(a^{i}b^{i+1} + a^{i+1}\right)\vec{x}_{i+1} + \dots + \left(a^{i}b^{p} + a^{p}\right)\vec{x}_{p}.$$

Por tanto, el conjunto  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\} - \{x_i\}$  también es un sistema de generadores de V. Si  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{i-1}, \vec{x}_{i+1}, \vec{x}_p\}$  es linealmente independiente, es un sistema de generadores de V. Si es linealmente dependiente repetimos el proceso hasta tener  $\{\vec{x}_i\}$ , que no puede ser 0, porque  $V \neq 0$ , y  $\{x_i\}$  es linealmente independiente.

Observación. De esto podemos concluir que todo sistema de generadores contiene una base.

**Teorema 1.7** (Teorema de Steinitz). Sea  $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_p\} \subset V$  una base de V y sea  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_q\} \subset V$  linealmente independiente, entonces  $q \leq p$  y se puede obtener una nueva base sustituyendo q de los vectores  $\vec{y}_i$  por  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ .

*Demostración.* Se trata de introducir uno por uno los vectores  $\{\vec{y}_1, \dots, \vec{y}_p\}$  por los vectores de la base dada. Sea  $\vec{x}_1 \in V$ , entonces  $\exists a^1, a^2, \dots, a^p \in \mathbb{K}$  tales que

$$\vec{x}_1 = a^1 \vec{y}_1 + a^2 \vec{y}_2 + \dots + a^p \vec{y}_p = \sum_{i=1}^p a^i \vec{y}_i.$$

Existe al menos un  $a^i \neq 0$  (porque  $\vec{x}_1$  no es nulo). Sea  $a^1 \neq 0$ .

$$\vec{y}_1 = (a^1)^{-1} \vec{x}_1 - \sum_{i=2}^{p} (a^1)^{-1} a^i \vec{y}_i$$

Entonces,  $\forall x \in V, \exists b^1, b^2, \dots, b^p \in \mathbb{K}$ ,

$$\begin{aligned} \vec{x} &= b^1 \vec{y}_1 + b^2 \vec{y}_2 + \dots + b^p \vec{y}_p \\ &= b^1 \left( \frac{1}{a^1} \vec{x}_1 + \left( -\frac{a^2}{a^1} \right) \vec{y}_2 + \dots + \left( -\frac{a^p}{a^1} \right) \vec{y}_p \right) + b^2 \vec{y}_2 + \dots + b^p \vec{y}_p \\ &= \frac{b^1}{a^1} \vec{x}_1 + \left( b^1 \left( -\frac{a^2}{b^1} \right) + b^2 \right) \vec{y}_2 + \dots + \left( b^1 \left( -\frac{a^p}{a^1} \right) + b^p \right) \vec{y}_p. \end{aligned}$$

Hemos llegado a la conclusión de que  $\{\vec{x}_1, \vec{y}_2, \dots, \vec{y}_p\}$  forman un sistema de generadores de V. Además, son linealmente independientes, pues

$$\vec{0} = b^1 \vec{x}_1 + b^2 \vec{y}_2 + \dots + b^p \vec{y}_p \Rightarrow b^1 \left( \sum_{i=1}^p a^i \vec{y}_i \right) + b^2 \vec{y}_2 + \dots + b^p \vec{y}_p = \vec{0}$$

$$b^1 a^1 \vec{y}_1 + \sum_{i=2}^p \left( b^1 a^i + b^i \right) \vec{y}_i = \vec{0}$$

$$\Rightarrow b^1 a^1 = 0, \ b^1 a^i + b^i = 0, \ i \ge 2.$$

pues  $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_p\}$  son una base. Como  $a^1 \neq 0$ , tenemos que  $b^1 = b^i = 0$ . Por tanto,  $\{\vec{x}_1, \vec{y}_2, \dots, \vec{y}_p\}$  es una base de V.

Supongamos que  $i<\min(p,q)$  y que  $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_{i-1},\vec{x}_i,\vec{y}_{i+1},\ldots,\vec{y}_p\}$  es sistema de generadores. Entonces,  $\exists c^1,c^2,\ldots,c^i,d^{i+1},\ldots,d^p\in\mathbb{K}$  tales que

$$\vec{x}_{i+1} = c^1 \vec{x}_1 + c^2 \vec{x}_2 + \dots + c^i \vec{x}_i + d^{i+1} \vec{y}_{i+1} + \dots + d^p \vec{y}_p = \sum_{i=1}^i c^j \vec{x}_j + \sum_{j=i+1}^p d^j \vec{y}_j.$$

El procedimiento anterior nos asegura que podemos sustituir  $\vec{x}_{i+1}$  por cualquier vector con coeficiente no nulo. Por tanto, tenemos que demostrar que existe un coeficiente del segundo sumatorio no nulo. Si fueran todos nulos, tendríamos que  $\vec{x}_{i+1}$  se puede expresar como combinación lineal de los vectores  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ , esto contradice que sean linealmente independientes.

Corolario 1.3. Si el espacio vectorial V tiene una base finita, todas las bases de V tienen el mismo número de vectores.

Demostración. Sean  $B_1 = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  y  $B_2 = \{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_q\}$  dos bases de V. Como  $B_1$  es una base y  $B_2$  es un conjunto de vectores linealmente independientes, tenemos que todas las bases de V han de ser finitas. Entonces, como  $B_1$  y  $B_2$  son bases y, consecuentemente, linealmente independientes, tenemos que  $p \leq q$  y  $q \leq p$ , por lo que p = q.

**Definición 1.8** (Dimensión). La dimensión de un espacio vectorial V sobre un cuerpo  $\mathbb{K}$  es el número de elementos de sus bases, si son finitas. Si no lo son, diremos que V es de dimensión infinita.

Corolario 1.4. La dimensión de un espacio vectorial coincide con el número máximo de elementos linealmente independientes, y también con el número mínimo de generadores.

Corolario 1.5. Todo conjunto de vectores linealmente independientes puede completarse hasta obtener una base.

**Lema 1.1.** Si  $S \subset V$  es linealmente independiente y  $\vec{x} \in V$  y  $\vec{x} \notin L(S)$ , tenemos que la familia  $S \cup \{\vec{s}\}$  es linealmente independiente.

Demostración. Sean  $a, a^i \in \mathbb{K}$  y

$$a\vec{x} + a^1\vec{x}_1 + \dots + a^p\vec{x}_p = \vec{0}.$$

Si  $a \neq 0$ , entonces  $\vec{x}$  se puede expresar como combinación lineal de S, pero por hipótesis esto no es posible. Por tanto, debe ser que a=0 y, consecuentemente,  $\forall a^i=0$ , pues S es linealmente independiente. Por tanto,  $S \cup \{\vec{x}\}$  también es linealmente independiente.

**Proposición 1.1.** Si V es finitamente generado y L es subespacio vectorial de V, entonces L es infinitamente generado y

$$\dim L \leq \dim V$$
.

Además,

$$\dim L = \dim V \iff L = V.$$

Demostración. Si  $L = \{0\}$  no hay nada que probar (no tiene bases). En caso contrario, existe  $\vec{x}_1 \in L$ . Si  $L = L(\{\vec{x}_1\})$ , tenemos que  $\vec{x}_1$  es una base. En caso contrario, existe  $\vec{x}_2 \in L$  con  $\vec{x}_2 \notin L(\{\vec{x}_1\})$ . Si  $L = L(\{\vec{x}_1, \vec{x}_2\})$ ,  $\{\vec{x}_1, \vec{x}_2\}$  forman una base. Sabemos que son linealmente independientes por el lema anterior. En algún momento llegaremos a que  $L(\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\})$  forman una base, pues un corolario anterior nos dice que hay un número máximo de vectores linealmente independientes.

Además, si dim L = n y  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$  es una base de L, por el teorema de Steinitz, también es una base de V. Por tanto,

$$L = L(\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}) = V.$$

**Teorema 1.8** (Teorema de apliación de base). Sea L un suespacio vectorial de V y sea  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$  una base de L. Entonces existe  $\{\vec{u}_{p+1}, \vec{u}_{p+2}, \dots, \vec{u}_n\} \subset V$  tales que  $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p, \vec{u}_{p+1}, \vec{u}_{p+2}, \dots, \vec{u}_n\}$  son base de V.

Demostración. Si dim V=n tenemos que existe un número finito de generadores que forman una base de V, y consideramos que los vectores  $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_p\}$  forman una base de L. Entonces,  $p \leq n$  y, por el teorema de Steinitz, se puede obtener una nueva base sustituyendo  $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_p\}$  por p vectores de  $\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\}$ .

CAPÍTULO 1. ESPACIOS VECTORIALES

### 1.3. Suma directa de subespacios.

Notación.

$$\mathcal{P}(V) = \{A : A \subset V\}.$$

$$\mathcal{L}\left(V\right) = \left\{L \in \mathcal{P}\left(V\right) : L \text{ es subespacio vectorial de } V \right\}.$$

Por tanto,

$$\mathcal{L}(V) \subset \mathcal{P}(V)$$
.

**Teorema 1.9.**  $\forall I$  conjunto,  $\forall i \in I$ , si  $L_i \in \mathcal{L}(V)$  entonces

$$\bigcap_{i\in I}L_{i}\in\mathcal{L}\left( V\right) .$$

Es decir, la intersección de espacios vectoriales es un espacio vectorial.

 $Demostraci\'on. \ \forall \vec{x}, \vec{y} \in \bigcap_{i \in I} L_i \text{ implica que } \vec{x}, \vec{y} \in L_i, \forall i \in I. \text{Como } L_i \text{ son subespacios vectoriales:}$ 

$$\vec{x} + \vec{y} \in L_i, \forall i \in I \ \Rightarrow \ \vec{x} + \vec{y} \in \bigcap_{i \in I} L_i.$$

Similarmente, si  $\vec{x} \in \bigcap_{i \in I} L_i$  y  $a \in \mathbb{K}$ , tenemos que  $\vec{x} \in L_i, \forall i \in I$ . Como  $L_i$  son subespacios vectoriales, son parte estable, por lo que

$$a \cdot \vec{x} \in L_i, \forall i \in I \implies a \cdot \vec{x} \in \bigcap_{i \in I} L_i.$$

**Observación.** Sin embargo, no tiene que cumplirse necesariamente que  $L_1 \cup L_2 \in \mathcal{L}(V)$  si  $L_1, L_2 \in \mathcal{L}(V)$ .

**Ejemplo 1.** Sean  $\{\vec{u}, \vec{v}\} \subset V$  linealmente independientes y  $L_1 = L(\{\vec{u}\})$  y  $L_2 = L(\{\vec{v}\})$  las rectas que generan. Asumamos que  $\vec{u} + \vec{v} \in L_1 \cup L_2$ . Sin pérdida de generalidad,  $\vec{u} + \vec{v} \in L_1$ . Por tanto,  $\exists a \in \mathbb{K}$  tal que  $\vec{u} + \vec{v} = a\vec{u}$ . De esta manera,

$$(a-1)\vec{u} + \vec{v} = \vec{0}.$$

Esto es absurdo, pues hemos dicho que estos vectores son linealmente independientes.

**Definición 1.9.** Si  $L_1, L_2 \in \mathcal{L}(V)$ , definimos  $L_1 + L_2$  al menor subespacio vectorial generado por la unión.

$$L_1 + L_2 = L\left(L_1 \cup L_2\right).$$

**Teorema 1.10.** Sean  $L_1, L_2 \in \mathcal{L}(V)$  y sea  $L' = \{\vec{x}_1 + \vec{x}_2 : \vec{x}_1 \in L_1, \vec{x}_2 \in L_2\}$ . Tenemos que  $L' = L_1 + L_2$ .

Demostración. Si  $\vec{x}_1 \in L_1$ , tenemos que  $\vec{x}_1 = \vec{x}_1 + \vec{0} \in L'$ , pues  $\vec{x}_1 \in L_1$  y  $\vec{0} \in L_2$ . Por tanto,  $L_1 \subset L'$ . Similarmente,  $L_2 \subset L'$ . Consecuentemente,  $L_1 \cup L_2 \subset L'$ .

Además, tenemos que  $L' \in \mathcal{L}(V)$ , pues  $\forall \vec{x}, \vec{y} \in L'$  tenemos que  $\exists \vec{x}_1, \vec{y}_1 \in L_1 \text{ y } \exists \vec{x}_2, \vec{y}_2 \in L_2$ .

$$\vec{x} + \vec{y} = (\vec{x}_1 + \vec{x}_2) + (\vec{y}_1 + \vec{y}_2) = \underbrace{(\vec{x}_1 + \vec{y}_1)}_{\in L_1} + \underbrace{(\vec{x}_2 + \vec{y}_2)}_{\in L_2}.$$

Por tanto,  $\vec{x} + \vec{y} \in L'$ . Similarmente, si  $a \in \mathbb{K}$  y  $\vec{x} \in L'$  tenemos que existen  $\vec{x}_1 \in L_1$  y  $\vec{x}_2 \in L_2$  tales que

$$a \cdot \vec{x} = a \cdot (\vec{x}_1 + \vec{x}_2) = \underbrace{a\vec{x}_1}_{\in L_1} + \underbrace{a\vec{x}_2}_{\in L_2}.$$

Por tanto,  $a \cdot \vec{x} \in L'$ . Por tanto,  $L' \in \mathcal{L}(V)$ .

A continuación demostramos que si  $L \in \mathcal{L}(V)$  y  $L_1 \cup L_2 \subset L$ , entonces  $L' \subset L$ . Tenemos que  $\forall \vec{x} \in L'$  existen  $\vec{x}_1 \in L_1$  y  $\vec{x}_2 \in L_2$  tales que  $\vec{x} = \vec{x}_1 + \vec{x}_2$ . Por tanto,  $\vec{x} \in L$ .

$$\therefore L' \subset L.$$

Por todo ello,  $L' = L_1 + L_2$ .