HW10 Corrections (CSCI-C241)

Lillie Donato

17 April 2024

• Question Four

- Claim: For every positive real number a where $a \geq e$, there exists $m \in \mathbb{N}$ such that for all $n \geq m$,

Proof.

Choose
$$a \in \mathbb{R}$$
 such that $a \ge e$ (1)

Suppose
$$m \in \mathbb{N}$$
 such that $n \ge m$ (2)

Since half of the numbers that are being multiplied in n! are greater than $\frac{n}{2}$, (3)

we know $\frac{n}{2}$ numbers of n! are greater than $\frac{n}{2}$

Since
$$\frac{n}{2}$$
 numbers are greater than $\frac{n}{2}$, we know $n! > \left(\frac{n}{2}\right)^{\frac{n}{2}}$ (4)

Since
$$n! > \frac{n}{2}$$
, we know $n! > \left(\frac{n}{2}\right)^{\frac{n}{2}}$ (5)

Since
$$n \ge m$$
, we know $\left(\frac{n}{2}\right)^{\frac{n}{2}} \ge \left(\frac{m}{2}\right)^{\frac{n}{2}}$ (6)

Since
$$\left(\frac{n}{2}\right)^{\frac{n}{2}} \ge \left(\frac{m}{2}\right)^{\frac{n}{2}}$$
, we know $n! > \left(\frac{m}{2}\right)^{\frac{n}{2}}$ (7)

Since
$$\left(\frac{m}{2}\right)^{\frac{n}{2}} = \left(\sqrt{\frac{m}{2}}\right)^n$$
, we know $n! > \left(\sqrt{\frac{m}{2}}\right)^n$ (8)

Let
$$m = 2a^2$$
 (9)

Since
$$m = 2a^2$$
, we know $\frac{m}{2} = a^2$ (10)

Since
$$\frac{m}{2} = a^2$$
, we know $\sqrt{\frac{m}{2}} = a$ (11)

Since
$$\sqrt{\frac{m}{2}} = a$$
, we know $\left(\sqrt{\frac{m}{2}}\right)^n = a^n$ (12)

Since
$$n! > \left(\sqrt{\frac{m}{2}}\right)^n$$
 and $\left(\sqrt{\frac{m}{2}}\right)^n = a^n$, we know $n! > a^n$ (13)

• Question Seven

- Claim: For any non-empty set A of size n and any integer r with $n \geq r \geq 1$, there are $\frac{n!}{(n-r)!}$ permutations of length r using values taken from A

Proof. (induction on n) (Base Step, r = 1):

$$\frac{n!}{(n-1)!} = \frac{n \cdot (n-1)!}{(n-1)!}
= \frac{n}{1}$$
(1)

$$= \frac{n}{1} \tag{2}$$

$$= n$$
 (3)

For a permutation of length 1 for some set of length n, since said permutation would have a single item, this item could be any item of the set of length n. (Inductive Step):

Assume there are $\frac{n!}{(n-k)!}$ permutations for some length $k \geq 1$ using values taken from A, a set of length n

$$\frac{n!}{(n-k)!} \cdot (n-k) = \frac{n!}{\frac{(n-k)\cdot(n-k-1)!}{(n-k)}}$$

$$= \frac{n!}{(n-k-1)!}$$

$$= \frac{n!}{(n-k-1)!}$$

$$= \frac{n!}{(n-(k+1))!}$$
(2)

$$= \frac{n!}{(n-k-1)!} \tag{2}$$

$$= \frac{n!}{(n-(k+1))!}$$
 (3)

Since there are $\frac{n!}{(n-k)!}$ permutations for some length k (by the Induction Hypothesis), there are n-k possibilities to create a new permutation of length k+1 from every permutation of length k, therefore there are $\frac{n!}{(n-k)!} \cdot (n-k)$ permutations for length k+1