METODA ELEMENTÓW SKOŃCZONYCH

<u>Przykład 1.</u> Kratownica płaska – formalizm MES. <u>Dane</u>: $A=15 \times 10^{-4} \text{ m}^2$, $E=2.0 \times 10^{11} \text{ Pa}$

Rys.1.

1. **Dyskretyzacja**. W kratownicy podział jest oczywisty – pręt jest elementem, węzeł kratowy węzłem w rozumieniu MES. Przy podziale na węzły i elementy w układzie globalnym X,Y numery elementów oznaczono przez e (e=1,2,...5), numery węzłów przez i (i=1,...4); 5 elementów, 4 węzły. Węzły ponumerowano tak, aby znane stopnie swobody (nieruchome równe 0) były na końcu wektora **r**. Jest to wygodne w obliczeniach ręcznych, niekoniecznie przy analizie komputerowej. Dla dalszych potrzeb rozróżniamy prawoskrętny układ globalny X,Y,Z oraz prawoskrętny lokalny x,y,z związany z elementem. Początek układu lokalnego umieszczamy w węźle o niższym numerze, a zwroty osi z i Z powinny być zgodne.

Wektory węzłowych stopni swobody \mathbf{r} i sił węzłowych \mathbf{R} mają następującą postać:

$$\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \\ r_7 \\ r_8 \end{bmatrix} = \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 = 0 \\ u_4 = 0 \\ v_4 = 0 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 0 \\ -12 \\ 0 \\ 0 \\ V_B \\ H_A \\ V_A \end{bmatrix}$$

2. Macierz sztywności elementu kratownicy płaskiej k_e w globalnym układzie współrzędnych z równania Q_e = $k_e \cdot q_e$

Rys.2.

Na rysunku 2.a przedstawiono typowy element o numerze ${\bf e}$ i dwóch węzłach. Węzeł o numerze niższym oznaczono literą ${\bf a}$, a o wyższym literą ${\bf b}$.

Długość pręta
$$l = \sqrt{(Y_b - Y_a)^2 + (X_b - X_a)^2}$$

$$c = \cos \alpha = \frac{1}{l} (X_b - X_a)$$
$$s = \sin \alpha = \frac{1}{l} (Y_b - Y_a).$$

Na rysunku 2.b pokazano przemieszczenia pręta określone przez przesuniecia końców mierzone w globalnym układzie współrzędnych, tzn. wektor przemieszczeń węzłowych elementu e jest postaci

$$q_e = \begin{bmatrix} u_a \\ v_a \\ u_b \\ v_b \end{bmatrix}$$

Wydłużenie pręta obliczamy jako różnicę rzutów przesunięć końców na jego kierunek

$$\Delta l = (u_b - u_a)c + (v_b - v_a)s, \qquad \Delta l = [-c - s c s] \cdot \begin{bmatrix} u_a \\ v_a \\ u_b \\ v_b \end{bmatrix}.$$

W elemencie jest stała siła podłużna N , której rzuty H_i i V_i , (i=a,b), w węzłach podano na rysunku 2.c . Wektor sił węzłowych \mathbf{Q}_e odpowiadający wektorowi \mathbf{q}_e ma postać:

$$\mathbf{Q}_{e} = \begin{bmatrix} \mathbf{H}_{a} \\ \mathbf{V}_{a} \\ \mathbf{H}_{b} \\ \mathbf{V}_{b} \end{bmatrix} = \begin{bmatrix} -\mathbf{N} \ \mathbf{c} \\ -\mathbf{N} \ \mathbf{s} \\ \mathbf{N} \ \mathbf{c} \\ \mathbf{N} \ \mathbf{s} \end{bmatrix} = \mathbf{N} \begin{bmatrix} -\mathbf{c} \\ -\mathbf{s} \\ \mathbf{c} \\ \mathbf{s} \end{bmatrix}$$

Z prawa Hooke'a $N = \frac{EA}{l} \Delta l$ zatem

$$\mathbf{Q}_{e} = \frac{EA}{1} \begin{bmatrix} -c \\ -s \\ c \\ s \end{bmatrix} \cdot \begin{bmatrix} -c & -s & c & s \end{bmatrix} \cdot \mathbf{q}_{e}$$

z tego zapisu ostatecznie otrzymamy

$$\mathbf{k}_{e} = \frac{EA}{l} \begin{bmatrix} c & c & c & -c & c & -c & s \\ s & c & s & s & -s & c & -s & s \\ -c & c & -c & s & c & c & c & s \\ -s & c & -s & s & s & c & s & s \end{bmatrix}$$

Należy zauważyć, że w elemencie przyjęto stałą siłę N. Ponieważ N=A·E· ϵ to ϵ =const i $\frac{d\epsilon}{dx} = \frac{d^2u}{dx^2} = 0$. Zatem $u(x) = A_o + A_1 x$. Oznacza to, że w elemencie dokonano liniowej aproksymacji pola przemieszczeń, które może być zapisane w postaci $u(x) = N_1(x) \Delta_a + N_2(x) \Delta_b$, gdzie $N_2(x) = \frac{x}{1}$, $N_1(x) = 1 - \frac{x}{1}$, a Δ_a i Δ_b są przesunięciami końców elementu wzdłuż osi pręta.

Macierze sztywności poszczególnych elementów są następujące:

<u>element 1</u>							<u>element 4</u>								
$\cos\alpha=-1$; $\sin\alpha=0$; $l=4m$,					$\cos \alpha = -0.8$; $\sin \alpha = 0.6$; $l = 5 m$,					$\cos\alpha = 0.8$; $\sin\alpha = 0.6$; $l = 5 m$,					
k_1 = EA	r_1 $0,25$ 0	r ₂ 0 0	r ₇ -0,25	r ₈ 0 0	$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$	k ₃ = EA	r ₃ r ₄ 0,128 -0,09 0,07	0,128 -0,096 -0,128 0,096 r ₃ 0,072 0,096 -0,072 r ₄		k_4 = EA	r ₃ 0,128	r_3 r_4 r_5 r_6 128 $0,096$ $-0,128$ $-0,096$ r_3 $0,072$ $-0,096$ $-0,072$ r_4			
	0	0	0,25	0	r ₇		Sym _{er}	0,128	0,072		*	J. M.	e _r	0,128	0,096

element 5						element 2						
$\cos\alpha=0$; $\sin\alpha=-1$; $l=3m$,					$\cos\alpha=1$; $\sin\alpha=0$; $l=4$ m ,							
r_1 r_2 r_3 r_4					r_1 r_2 r_5 r_6					Na bokach macierzy		
k_s = EA	0 0 0			0	r_1		0,25	0	-0,25	0	r_1	poszczególnych elementów zapisano globalne stopnie
		0,333	0	-0,333	$k_2 = EA$	k_2 = EA	S.L. N.	0	0	0	r_2	swobody odpowiadające
	SLA	e _{tria}	0	0				De Tria	0,25	0	r ₅	numerom kolumn i wierszy.
		'ria		0,333			Tria		0	r_6		

3. Macierz sztywności konstrukcji – "zszywanie" elementów: połączenia i równowaga.

Wykorzystujemy równania równowagi poszczególnych węzłów oraz zgodność przemieszczeń w węzłach. Zgodność przemieszczeń zapewnia się przez przyjęcie globalnej numeracji stopni swobody w każdym elemencie (np. dla elementu 5 $u_1=r_1$, $v_1=r_2$, $u_2=r_3$, $v_2=r_4$ – patrz rysunek).

Rys.3.

Przykładowo równowaga węzła 1 (dwa pierwsze równania równowagi, węzeł wspólny dla elementów nr 1, 2 i 5):

$$Q_{e=1}^{2} \downarrow Q_{e=2}^{12 \text{ kN}}$$

$$Q_{e=1}^{1} \downarrow Q_{e=2}^{1}$$

$$Q_{e=1}^{1} \downarrow Q_{e=2}^{1}$$

$$Q_{e=2}^{1} \downarrow Q_{e=2}^{1}$$

$$\sum X = 0 \implies Q_{e=1}^{1} + Q_{e=2}^{1} + Q_{e=5}^{1} = 0$$

$$\sum Y = 0 \implies Q_{e=1}^{2} + Q_{e=2}^{2} + Q_{e=5}^{2} = -12 \text{ kN}$$

Występujące w równaniach siły węzłowe elementów wyrażamy za pomocą zależności $\mathbf{Q}_e = \mathbf{k}_e \cdot \mathbf{q}_e$ wykorzystując warunki połączenia (zgodności przemieszczeń):

$$\begin{array}{l} Q_{e=1}^1 = EA(0,25r_1-0,25r_7) \;\;,\;\; Q_{e=2}^1 = EA(0,25r_1-0,25r_5) \quad\;, \quad Q_{e=5}^1 = 0 \\ r\'ownanie 1 \colon \quad EA(0,5r_1-0,25r_5-0,25r_7) = 0 \\ Q_{e=1}^2 = 0 \;\;,\;\; Q_{e=2}^2 = 0 \quad\;, \quad Q_{e=5}^2 = EA(0,333r_2-0,333r_4) \\ r\'ownanie 2 \colon \quad EA(0,333r_2-0,333r_4) = -12 \end{array}$$

W podobny sposób można uzyskać pozostałe równania. Po zbudowaniu układu równań tj. macierzy sztywności konstrukcji oprócz macierzy sztywności poszczególnych elementów w układzie globalnym potrzebne są także globalne numery wierszy i kolumn wynikające ze sposobu połączeń. Budowa (agregacja) macierzy sztywności konstrukcji polega na sumowaniu wyrazów o tych samych numerach globalnych wierszy i kolumn – jest to tzw. dodawanie z alokacją.

	1	2	3	4	5	6	7	8				
1	$\begin{bmatrix} k_{11}^1 + \\ k_{11}^2 \end{bmatrix}$				k_{13}^2		k_{13}^1		r_1		0	
2		k_{22}^{5}		k_{24}^{5}					r ₂		-12	
3			$k_{11}^3 + k_{11}^4$	$k_{12}^3 + k_{12}^4$	k ₁₃	k_{14}^4	k_{13}^{3}	k_{14}^{3}	r ₃		0	
4				$k_{22}^3 + k_{44}^5$	k_{23}^{4}	k_{24}^4	k_{23}^{3}	k_{24}^{3}	r ₄		0	
5	k ₃₁ ²	v,			$k_{33}^2 + k_{33}^4$	k ₃₄			r ₅	=	0	
6		S) Mo	ria			k_{44}^{4}			r ₆		$V_{\scriptscriptstyle B}$	
7	k ₃₁						$k_{33}^1 + k_{33}^3$	k_{34}^{3}	r ₇		H _A	
8								k ₄₄	r ₈		V _A	

Zatem macierz sztywności konstrukcji ma postać (w macierzy elementy zerowe opuszczono):

 $\mathbf{K} \cdot \mathbf{r} = \mathbf{R}$

Rozwiązanie równań równowagi – uwzględnianie warunków brzegowych.

Rozwiązanie jest możliwe po uwzględnieniu sposobu podparcia konstrukcji. Równanie (1) zapiszemy w postaci blokowej rozróżniając stałe (nieruchome) stopnie swobody ($r_6 = r_7 = r_8$) oraz ruchome, nieznane stopnie swobody (pozostałe).

$$\begin{bmatrix} & & & & & & & & & & & & \\ K_{11} & & & & & & & \\ K_{12} & & & & & & \\ K_{21} & & & & & & \\ & & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & & \\ & & & & & \\ \end{bmatrix}$$

$$\mathbf{r}_0 = \begin{bmatrix} \mathbf{r}_6 \\ \mathbf{r}_7 \\ \mathbf{r}_8 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \emptyset$$

$$\begin{cases} \mathbf{K}_{11} \ \mathbf{r}_1 + \mathbf{K}_{12} \ \mathbf{r}_0 = \mathbf{R}_1 & \Rightarrow & \mathbf{r}_1 = \mathbf{K}_{11}^{-1} \mathbf{R}_1 & \Rightarrow & \mathbf{R}_0 = \mathbf{K}_{21} (\mathbf{K}_{11}^{-1} \ \mathbf{R}_1) \\ \mathbf{K}_{21} \ \mathbf{r}_1 + \mathbf{K}_{22} \ \mathbf{r}_0 = \mathbf{R}_0 & \text{tzn. po obliczeniu ruc hom ych stopni swobody obliczamy reakcje.} \end{cases}$$

$$K_{11}^{-1} = \frac{1}{EA} \begin{bmatrix} 4 & 2.667 & 2 & 2.667 & 4 \\ 2.667 & 13.503 & 2.667 & 10.5 & 5.333 \\ 2 & 2.667 & 5.906 & 2.667 & 4 \\ 2.667 & 10.5 & 2.667 & 10.5 & 5.333 \\ 4 & 5.333 & 4 & 5.333 & 8 \end{bmatrix} \qquad r_1 = K^{-1} R_1 = \frac{1}{EA} \begin{bmatrix} -32 & r_1 \\ -162.036 & r_2 \\ -32 & r_3 \\ -126 & r_4 \\ -64 & r_5 \end{bmatrix}$$

Reakcje:
$$R_0 = K_{21} r_1 = \begin{bmatrix} V_B \\ H_A \\ V_A \end{bmatrix} = \begin{bmatrix} 6 \\ 10^{-15} \\ 6 \end{bmatrix}$$

5. Obliczanie sił przekrojowych.

Obliczamy je z zależności $\mathbf{Q}_e = \mathbf{k}_e \ \mathbf{q}_e$.

Element 1

$$\mathbf{q}_{1} = \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{7} \\ \mathbf{r}_{8} \end{bmatrix} = \frac{1}{EA} \begin{bmatrix} -32 \\ -162.036 \\ 0 \\ 0 \end{bmatrix}$$

Ponieważ $\mathbf{Q}_1 = \mathbf{k}_1 \ \mathbf{q}_1$, możemy zapisać i wyliczyć

Element 5

 $\overline{\text{Ponieważ}} \, \mathbf{Q}_5 = \mathbf{k}_5 \, \mathbf{q}_5$, możemy zapisać i wyliczyć

$$\mathbf{q}_{5} = \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \\ \mathbf{r}_{4} \end{bmatrix} = \frac{1}{EA} \begin{bmatrix} -32 \\ -162.036 \\ -32 \\ -126 \end{bmatrix}$$

Ostatecznie wykres sił przekrojowych (rys. 4a) oraz przemieszczeń (rys. 4b) są następujące:

Rys. 4b.