Differentiating Data, Features, Targets & Models

Ravikiran Srinivasulu
SOFTWARE CONSULTANT
ravikirans.com | go.ravikirans.com/YouTube

Agenda

Customer Id	Customer Name	Last Order Date
14097	Anna	12-10-2019

Raw Data

Customer Id	Customer Name	Last Order Date	
14097	Anna	12-10-2019	

- Learning with Counts
- Binning

Feature Engineering

Customer Id	Customer Name	Last Order Date	
14097	Anna	12-10-2019	

- Learning with Counts
- Binning

Feature Engineering

Customer Id	Customer Name	Last Order Date	Days Since the Last Order
14097	Anna	12-10-2019	5

- Filter Based Feature Selection
- Fisher LDA

• ...

Feature Selection

Feature Matrix

6 Characteristics of a Good Feature

6 Characteristics of a Good Feature

Features Must Be Related to the Problem

Features Must Be Related to the Problem

Age	Cholesterol	Sugar	Family History	Marital Status	Heart Disease?
33	200	125	0	0	1
54	199	115	1	1	0
45	162	127	1	1	0
60	198	129	0	1	1
38	212	132	0	0	0
44	198	130	1	1	1
72	240	140	0	0	0

6 Characteristics of a Good Feature

Features Must Be Related to the Problem Features Values
Must Be Known At
Prediction Time

Features Must Be Known at Prediction Time

Age	Cholesterol	Sugar	Family History	Aspirin Consumption	Heart Disease?
33	200	125	0	1	1
54	199	115	1	0	0
45	162	127	1	0	0
60	198	129	0	1	1
38	212	132	0	0	0
44	198	130	1	1	1
72	240	140	0	0	0

Features Must Be Known at Prediction Time

Features Must Be Known at Prediction Time

Age	Cholesterol	Sugar	Family History	Aspirin Consumption	Heart Disease?
33	200	125	0	1	1
54	199	115	1	0	0
45	162	127	1	0	0
60	198	129	0	1	1
38	212	132	0	0	0
44	198	130	1	1	1
72	240	140	0	0	0

6 Characteristics of a Good Feature

Features Must Be Related to the Problem Features Must Be Known At Prediction Time

6 Characteristics of a Good Feature

Features Must Be Related to the Problem Features Must Be Known At Prediction Time Feature Values
Should Have
Enough Variation

Features Should Not Be Highly Correlated

Features Should Not Be Highly Correlated

Predict Student Grades

6 Characteristics of a Good Feature

Features Must Be Related to the Problem Features Must Be Known At Prediction Time Feature Values
Should Have
Enough Variation

Features Should Not Be Highly Correlated

Features Should Be Simple

Features Should Be Simple

Date Time: 29-05-2019 11:44:12 -> Day of the Week

6 Characteristics of a Good Feature

Features Must Be Related to the Problem Features Must Be Known At Prediction Time Feature Values
Should Have
Enough Variation

Features Should Not Be Highly Correlated

Features Should Be Simple

Features Should Have Enough Examples

Features Should Have Enough Examples

Amount (in \$)	Zip Code	Target
330	80201	1
54	32501	0
670	60602	0
1200	52808	0
5600	52804	0
207	50321	1
700	83254	0

Define Target for ML Problems

Regression

Classification

Anomaly Detection - Credit Card Fraud

- Non-fraudulent transaction
- Fraudulent transaction

Clustering

Demo

Explore datasets for different ML problems

Algorithm vs. Model

Algorithm vs. Model

6 observations

$$a_1X_1 + a_2X_2 + a_3X_3 = y$$

Feature Vector

$$\begin{bmatrix} X_{17} & X_{27} & X_{37} \\ New Observation & a_2 \\ a_3 & a_3 \end{bmatrix} = y \quad \begin{array}{c} \textbf{Predicted Value} \\ \textbf{Predicted Val$$

Model Parameters

Demo

Modify the metadata of dataset

Summary

Data Quality is fundamental to ML

Dataset => Set of features + Target

Features => Input predictors

ML models predict different Target values

Raw Data can be directly used as features

Use Feature Selection to select relevant features

