Departamento de Análisis Matemático, Universidad de Granada

Prueba intermedia de Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Ejercicio 1. (**4 puntos**) Probar que la serie $\sum_{n\geqslant 0}\frac{\mathrm{sen}(nz)}{2^n}$ converge absolutamente en todo punto del dominio $\Omega=\{z\in\mathbb{C}: -\ln(2)<\mathrm{Im}\,z<\ln(2)\}$. Estudiar la convergencia uniforme en subconjuntos de Ω . Probar que la función $g:\Omega\to\mathbb{C}$ dada por

$$g(z) = \sum_{n=0}^{\infty} \frac{\operatorname{sen}(nz)}{2^n} \qquad (z \in \Omega)$$

es continua en Ω y calcular $\int_{C(0,1)} \frac{g(z)}{z} dz$.

Ejercicio 2. (2 puntos) Estudiar la derivabilidad de la función $f: \mathbb{C} \to \mathbb{C}$ dada por

$$f(z) = e^{\overline{z}}$$
 $(z \in \mathbb{C}).$

Ejercicio 3. Sea $\Omega \subset \mathbb{R}^2 \equiv \mathbb{C}$ un abierto. Decimos que una función $\phi \colon \Omega \longrightarrow \mathbb{R}$ es armónica en Ω si $\phi \in C^2(\Omega)$ y

$$\frac{\partial^2 \phi}{\partial x^2}(x,y) + \frac{\partial^2 \phi}{\partial y^2}(x,y) = 0 \qquad \forall (x,y) \in \Omega.$$

a) (1.5 puntos) Sea $\phi: \Omega \longrightarrow \mathbb{R}$ armónica en Ω . Probar que la función $g: \Omega \longrightarrow \mathbb{C}$ dada por

$$g(x+iy) = \frac{\partial \phi}{\partial x}(x,y) - i\frac{\partial \phi}{\partial y}(x,y)$$

es holomorfa en Ω .

- b) (1.5 puntos) Suponiendo que Ω es un dominio estrellado probar que existe $f \in \mathcal{H}(\Omega)$ de modo que Re $f = \emptyset$ y que f es única salvo una constante.
- c) (1 punto) Deducir que una función armónica en un dominio estrellado es, de hecho, de clase C^{∞} .