

Integration of Offline Partial Deduction and Functional Conversion for miniKanren

Aleksandr Shefer, Ekaterina Verbitskaia

JetBrains Research, Programming Lanuages and Program Analysis Lab

April 7, 2024

Search is More Complicated than Verification

The Tower of Hanoi Puzzle

verify
$$[1 \rightarrow 2, 1 \rightarrow 3, 2 \rightarrow 3] \Rightarrow \text{True}$$
 verify $[1 \rightarrow 2, 1 \rightarrow 2] \Rightarrow \text{False}$

solve True
$$\Rightarrow$$
 [1 \rightarrow 2, 1 \rightarrow 3, 2 \rightarrow 3, ...]

Search is Dual to Verification

solve
$$pprox verify^{-1}$$

Logic Programming Highlights the Duality

hanoio candidate result

$$verify = run \ q \ (hanoi^o \ [1 \rightarrow 2, 1 \rightarrow 3, 2 \rightarrow 3] \ q) \ \Rightarrow q = True$$

solve = run q (hanoi^o q True)
$$\Rightarrow$$
 q = $[1 \rightarrow 2, 1 \rightarrow 3, 2 \rightarrow 3, ...]$

Program Interpretation and Synthesis

Verifier

```
eval st (Conj x y) =
  eval st x && eval st y
...
```

Solver

```
\begin{array}{l} \text{synth st res} = \text{do} \\ (\text{u, v}) \leftarrow [(\text{u, v}) \mid \\ \text{u} \leftarrow [\text{False, True}], \\ \text{v} \leftarrow [\text{False, True}], \\ \text{u && v == res}] \\ \text{x} \leftarrow \text{synth st u} \\ \text{y} \leftarrow \text{synth st v} \\ \text{return } (\text{Conj x y}) \\ \dots \end{array}
```

Relational Interpreters for Search

```
eval st (Conj x y) =
  eval st x && eval st y
...
```

```
eval<sup>o</sup> st fm u = fresh (x y v w)

(fm \equiv Conj x y \land

eval<sup>o</sup> st x v \land

eval<sup>o</sup> st y w \land

and<sup>o</sup> v w u);

...
```


Relational Interpreters for Search: the Issue

It is slow

Relational Programming in MINIKANREN

- Pure logic programming
- Complete search: interleaving

```
relation eval° st fm u = fresh (x y v w z)

(fm \equiv Conj x y \land eval° st x v \land eval° st y w \land and° v w u) <math>\lor

...
```

${\tt MINIKANREN} \ {\sf Syntax}$

```
relation
      eval^o st fm u =
          fresh (x y v w z)
            (fm \equiv Conj x y \land
             eval^o st x v \land
             eval^{o} st y w \wedge
            \rightarrow and ^{o} v w u) \vee
relation call
```


Sources of Inefficiency

- Running backwards is slow
- Order of clauses influences performance
- Constant arguments (eval^o [] q True)

Solution: specialization

Specialization Scheme

Specialization Scheme

Specialization Scheme

Mode Analysis

Variable modes:

• Ground term: True

• Free variable: x

 $\verb"eval" [] fm True \to \verb"eval" g f g"$

```
eval° st fm u =
  fresh (x y v w z)
  (fm = Conj x y \( \)
    eval° st x v \( \)
    eval° st y w \( \)
    and° v w u) \( \) u = True
    ...
```

```
eval° st fm u =

fresh (x y v w z)

(and° v w u \land u = True

eval° st x v \land v = True

eval° st y w \land w = True

fm \equiv Conj x y) \lor
```

Partial Deduction

```
eval° st fm u =
safe and° a b u &
unsafe eval° st x a &
unsafe eval° st y b &
fm ≡ Conj x y |
...
eval° [] fm true
```

Partial Deduction

Partial Deduction

Partial Deduction: Trees Construction

Binding Time Analysis

Call annotations:

- <u>Safe</u>: continue unfolding
- <u>Unsafe</u>: **possibly** stop unfolding

```
eval° st fm u =
fresh (x y v w z)
(safe and° a b u &
  unsafe eval° st x a &
  unsafe eval° st y b &
  fm ≡ Conj x y) |
...
```

Partial Deduction with Annotations

Functional Conversion

```
\begin{array}{lll} eval\_true^o \ fm = & \Rightarrow & eval\_true = do \\ fresh \ (x \ y) & x \leftarrow eval\_true \\ (eval\_true^o \ x \ \land & y \leftarrow eval\_true \\ eval\_true^o \ y \ \land & return \ (Conj \ x \ y) \\ fm \equiv Conj \ x \ y) \ \lor & \dots \end{array}
```

Evaluation

- Functional Conversion
- Online Partial Deduction and Functional Conversion
- Our approach: Offline Partial Deduction and Functional Conversion

Evaluation: Propositional Evaluator

	Functional conversion	Translation with partial deduction	
		Online	Offline
10 formulas	4.05 μs	0.33 μs	0.37 μs
100 formulas	56.00 μs	7.40 µs	7.73 µs
1000 formulas	645.00 µs	108.00 µs	108.00 µs

Evalutaion: the Tower of Hanoi puzzle

	Functional	Translation with	
	conversion	partial deduction	
		Online	Offline
3 disks	153 000.00 μs	125 000.00 μs	1.67 µs
4 disks	• timeout	©timeout	$3.12\mu s$

Evalutaion: Other Benchmarks (DPPD¹)

	Functional	Translation with	
	conversion	partial deduction	
		Online	Offline
appLast	1.13 µs	0.08 µs	0.09 µs
contains	14.70 µs	0.78 μs	$0.77 \mu s$
doubleAppend	©timeout	2910.00 μs	2.00 µs
exDepth	Otimeout	Otimeout	3.09 µs
nthOpt	0.10 μs	0.08 µs	0.10 µs

¹Dozens of Problems for Partial Deduction benchmark: https://github.com/leuschel/DPPD

Conclusion

- We integrated the Functional Conversion and Offline Partial Deduction approaches
- We conducted a preliminary evaluation of the approach
- The effectiveness of the integration has been shown