Задача 1. Приведите пример ненулевого многочлена с рациональным коэффициентами, корнем которого является **a)** $1 + \sqrt[3]{2}$; **б)** $\sqrt{2} + \sqrt{3}$; **в)*** $\sqrt[3]{2} + \sqrt{3}$; **г)*** $(1 + \sqrt[3]{2})\sqrt{3}$.

Определение 1. Действительное число называется *алгебраическим*, если оно является корнем ненулевого многочлена с рациональными коэффициентами, и *трансцендентным* в противном случае.

Задача 2*. а) Трансцендентные числа существуют.

б)* Приведите конкретный пример трансцендентного числа.

Задача 3*. Алгебраические числа образуют поле.

Определение 2. Минимальным многочленом алгебраического числа α называется неприводимый многочлен $m_{\alpha} \in \mathbb{Q}[x]$, такой что $m_{\alpha}(\alpha) = 0$. Степенью алгебраического числа называется степень его минимального многочлена.

Задача 4. а) Любое алгебраическое число степени 2 может быть представлено в виде $a \pm \sqrt{d}$, где числа a и d рациональные. (Верно ли аналогичное утверждение для алгебраических чисел степени 4?)

б) Если $\alpha = a + \sqrt{d}$ (числа a и d рациональные), то $m_{\alpha} = (x - \alpha)(x - \bar{\alpha})$, где $\bar{\alpha} = a - \sqrt{d}$.

Задача 5. a) $\{P \in \mathbb{Q}[x] : P(\alpha) = 0\} = (m_{\alpha}).$

б) Минимальный многочлен алгебраического числа α существует и единственен (с точностью до умножения на ненулевую константу).

Задача 6. Если α — алгебраическое действительное число, то внутри действительных чисел есть подполе $\mathbb{Q}(\alpha)$, изоморфное полю $\mathbb{Q}[x]/(m_{\alpha})$.

Определение 3. Пусть L поле, K его подполе (« L/K^1 — расширение полей»). Говорят, что элемент поля L алгебраичен над K, если он является корнем ненулевого многочлена с коэффициентами в K. (Таким образом, выше шла речь об алгебраических элементах в расширении \mathbb{R}/\mathbb{Q} .)

Расширение L/K называется *алгебраическим*, если любой его элемент алгебраичен.

Задача 7. Любое конечное поле характеристики p является алгебраическим расширением поля \mathbb{F}_p .

Задача 8. Любое расширение конечных полей получается последовательностью расширений вида $K \subset L \cong K[x]/(P)$.

Задача 9. Если конечное поле имеет характеристику p, то количество элементов в нем является степенью числа p.

Задача 10. Для любого поля K и любого многочлена P над этим полем найдется расширение, в котором многочлен P **a)** имеет корень; **б)** раскладывается на линейные множители.

Задача 11. а) Если L — поле из $q=p^n$ элементов, то любой его элемент является корнем многочлена x^q-x .

- **б)** Для любого q вида p^n существует поле из q элементов.
- **в)*** Единственно ли такое поле?

1 a	1 6	1 B	1 Г	2 a	2 6	3	4 a	4 6	5 a	5 6	6	7	8	9	10 a	10 6	11 a	11 б	11 B

 $^{^{1}}$ Читается «L над K», не путать с фактором.