MATH312: Homework 6 (due Nov. 15)

손량(20220323)

Last compiled on: Wednesday 15th November, 2023, 03:31

1 Chapter 9 #16

Using the given example, we can write

$$f'(t) = 1 + 4t \sin\left(\frac{1}{t}\right) - 2\cos\left(\frac{1}{t}\right)$$

for $t \neq 0$. Also,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{1}{h} \left(h + 2h^2 \sin\left(\frac{1}{h}\right) \right)$$
$$= \lim_{h \to 0} \left(1 + 2h \sin\left(\frac{1}{h}\right) \right)$$

As $|h\sin(1/h)| \le |h|$ for all h, $\lim_{h\to 0} h\sin(1/h) = 0$ by sandwich theorem. Thus, f'(0) = 1. By using triangle inequality, for $t \ne 0$,

$$|f'(t)| = \left|t + 2t^2 \sin\left(\frac{1}{t}\right)\right| \le |t| + 2t^2 \left|\sin\left(\frac{1}{t}\right)\right| \le |t| + 2t^2$$

Since $|t| + 2t^2$ is a continuous function, it is bounded in [-1,1] so it is also bounded in $(-1,1) \setminus \{0\}$. Since f'(0) = 1, we know that f' is bounded in (-1,1). Now, consider two sequences, $\{a_n\}$ and $\{b_n\}$ such that $a_n = 1/(2n\pi)$ and $b_n = 2/[(1+4n)\pi]$. Then, for $n \ge 1$,

$$f'(a_n) = 1 + \frac{2}{n\pi}\sin(2n\pi) - 2\cos(2n\pi) = -1$$
$$f'(b_n) = 1 + \frac{8}{(4n+1)\pi}\sin\left(\frac{(4n+1)\pi}{2}\right) - 2\cos\left(\frac{(4n+1)\pi}{2}\right) = 1 + \frac{8}{(4n+1)\pi}$$

Then, $\lim_{n\to\infty} f'(a_n) = -1$ and $\lim_{n\to\infty} f'(b_n) = 1$. However, since a_n and b_n converges to zero as $n\to\infty$, f'(t) is not continuous at t=0. Suppose that there exists an open set $U\subset\mathbb{R}$ such that $0\in U$, $f:U\to V$ is one-to-one and V=f(U). Then, f must be strictly increasing or decreasing. Since U is open, there exists r>0 such that $(-r,r)\subset U$. Fix $x\in(0,r)$. Then, as f is one-to-one, $f(x)\neq f(0)$ holds and one of f(x)>f(0) and f(x)< f(0) holds. Consider the f(x)>f(0) case. As $a_n\to 0$ as $n\to\infty$, there exists $k\in\mathbb{N}$ such that $0< a_k< x$. As f' is continuous on (0,r), there exists some open ball $B(a_k,s)\subset(0,r)$ with radius s>0 which is centered at a_k such that for all $z\in B(a_k,s)$, f'(z)<0 holds. Then, f is strictly decreasing in $B(a_k,s)$, so f is not strictly monotonic in (-r,r), which is a contradiction. For f(x)< f(0) case, there exists $B(b_k,s)\subset(0,r)$ such that f'(z)>0 holds for all $z\in B(b_k,s)$, so f is not strictly monotonic in (-r,r), which is also a contradiction. Thus, f cannot be one-to-one in U so such U cannot exist.

From this, we can conclude that the continuity of f' at one point is needed for inverse function theorem to hold.

2 Chapter 9 #17

2.1 Solution for (a)

Take $(a,b) \neq (0,0)$, let $r = \sqrt{a^2 + b^2}$. Then, for a/r, b/r, $(a/r)^2 + (b/r)^2 = 1$ so (a/r, b/r) is a point on unit circle centered at (0,0). Then, there exists y such that $(\cos y, \sin y) = (a/r, b/r)$. Also, as r > 0, by taking $x = \log r$, $e^x = r$ and $f_1(x,y) = a, f_2(x,y) = b$ holds. Thus, (a,b) is in the range of \mathbf{f} . Since the choice of (a,b) was arbitrary, the range of \mathbf{f} contains all $(a,b) \neq (0,0)$. If $f_1(x,y) = 0$, $e^x > 0$ so $\cos y = 0$, then $\sin y \neq 0$ so $f_2(x,y) \neq 0$. From this, we know that there is no x,y such that $\mathbf{f}(x,y) = (0,0)$. In conclusion, the range of \mathbf{f} is $\mathbb{R}^2 \setminus \{(0,0)\}$.

2.2 Solution for (b)

Since the partial derivatives of **f** exist and are continuous, **f** is continuously differentiable. Then for $\mathbf{x} = (x_1, x_2)$, we can write

$$\mathbf{f}'(\mathbf{x}) = \begin{pmatrix} (D_1 f_1)(\mathbf{x}) & (D_2 f_1)(\mathbf{x}) \\ (D_1 f_2)(\mathbf{x}) & (D_2 f_2)(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} e^{x_1} \cos x_2 & -e^{x_1} \sin x_2 \\ e^{x_1} \sin x_2 & e^{x_1} \cos x_2 \end{pmatrix}$$

Then the Jacobian can be written as

$$J_{\mathbf{f}}(\mathbf{x}) = \det \mathbf{f}'(\mathbf{x}) = \det \begin{pmatrix} e^{x_1} \cos x_2 & -e^{x_1} \sin x_2 \\ e^{x_1} \sin x_2 & e^{x_1} \cos x_2 \end{pmatrix} = e^{2x_1}$$

Since $e^{x_1} > 0$ for all $x_1 \in \mathbb{R}$, the Jacobian is not zero at any point of \mathbb{R}^2 . This implies that $\mathbf{f}'(\mathbf{x})$ is invertible everywhere. By inverse function theorem, for all $\mathbf{x} \in \mathbb{R}^2$, there exists a neighborhood of \mathbf{x} in which \mathbf{f} is one-to-one. However, as $\mathbf{f}(0,0) = \mathbf{f}(0,2\pi) = (1,0)$, \mathbf{f} is not one-to-one on \mathbb{R}^2 .

2.3 Solution for (c)

Write **g** as follows:

$$\mathbf{g}(\mathbf{y}) = (g_1(\mathbf{y}), g_2(\mathbf{y})) = \left(\log \sqrt{y_1^2 + y_2^2}, \arctan\left(\frac{y_2}{y_1}\right)\right)$$

where $\mathbf{y} = (y_1, y_2) \in (0, \infty)^2$, and $\arctan x$ is the inverse of $\tan : (-\pi/2, \pi/2) \to \mathbb{R}$. Then, for all $\mathbf{x} = (x_1, x_2) \in \mathbb{R} \times (0, \pi/2)$, we can write

$$\mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{g}(e^{x_1}\cos x_2, e^{x_1}\sin x_2) = \left(\log\sqrt{e^{2x_1}}, \arctan\left(\frac{\sin x_2}{\cos x_2}\right)\right) = (x_1, x_2)$$

so **g** is an inverse of $\mathbf{f} : \mathbb{R} \times (0, \pi/2) \to (0, \infty)^2$. Since $\mathbf{b} = \mathbf{f}(\mathbf{a}) = (1/2, \sqrt{3}/2) \in (0, \infty)^2$ and $(0, \infty)^2$ is open, **g** is defined in a neighborhood of **b**. Let $\mathbf{b} = (b_1, b_2)$ then

$$\begin{aligned} \mathbf{f}'(\mathbf{a}) &= \begin{pmatrix} e^0 \cos(\pi/3) & -e^0 \sin(\pi/3) \\ e^0 \sin(\pi/3) & e^0 \cos(\pi/3) \end{pmatrix} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \\ \mathbf{g}'(\mathbf{b}) &= \begin{pmatrix} (D_1 g_1)(\mathbf{b}) & (D_2 g_1)(\mathbf{b}) \\ (D_1 g_2)(\mathbf{b}) & (D_2 g_2)(\mathbf{b}) \end{pmatrix} = \begin{pmatrix} b_1/(b_1^2 + b_2^2) & b_2/(b_1^2 + b_2^2) \\ -b_2/(b_1^2 + b_2^2) & b_1/(b_1^2 + b_2^2) \end{pmatrix} = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix} \end{aligned}$$

Since we can write

$$\mathbf{g'}(\mathbf{b})\mathbf{f'}(\mathbf{a}) = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so the formula is verified.

2.4 Solution for (d)

For constant value of x, $\mathbf{f}(x, y)$ gives a circle centered on (0, 0) with radius e^x , parametrized by y. Thus, the images of lines parallel to y axis are circles. For constant value of y, $\mathbf{f}(x, y)$ gives a ray with its initial point at (0, 0) removed, forming an angle of y. Thus, the image of lines parallel to x axis are rays with with its initial point removed.

3 Chapter 9 #18

Let $\mathbf{f}(x, y) = (u(x, y), v(x, y)).$

3.1 Solution for (a)

We can write

$$u + iv = (x + iy)^2$$

Then, for all $(a,b) \in \mathbb{R}^2$, the fundamental theorem of algebra implies that there exists some $z \in \mathbb{C}$ such that $z^2 = a + bi$ holds. By taking $x = \operatorname{Re} z, y = \operatorname{Im} z$, $\mathbf{f}(x,y) = (a,b)$ so (a,b) is in the range of \mathbf{f} .

3.2 Solution for (b)

Since the partial derivatives of \mathbf{f} exist and are continuous, \mathbf{f} is continuously differentiable. For $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, we can write

$$\mathbf{f}'(\mathbf{x}) = \begin{pmatrix} (D_1 u)(\mathbf{x}) & (D_2 u)(\mathbf{x}) \\ (D_1 v)(\mathbf{x}) & (D_2 v)(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 2x_1 & -2x_2 \\ 2x_2 & 2x_1 \end{pmatrix}$$

Then the Jacobian can be calculated as

$$J_{\mathbf{f}}(\mathbf{x}) = \det \mathbf{f}'(\mathbf{x}) = \det \begin{pmatrix} 2x_1 & -2x_2 \\ 2x_2 & 2x_1 \end{pmatrix} = 4x_1^2 + 4x_2^2$$

From this, we can know that the Jacobian is nonzero everywhere except (0,0). Thus, $\mathbf{f}'(\mathbf{x})$ is invertible everywhere except (0,0). Thus, by inverse function theorem for all $\mathbf{x} \in \mathbb{R}^2 \setminus \{(0,0)\}$, there exists some neighborhood of \mathbf{x} in which \mathbf{f} is one-to-one. However, as $\mathbf{f}(1,0) = \mathbf{f}(-1,0) = 1$ so \mathbf{f} is not one-to-one in \mathbb{R}^2 .

3.3 Solution for (c)

Here, let's use $\mathbf{a} = (2, 1)$ and $\mathbf{b} = \mathbf{f}(\mathbf{a}) = (3, 4)$. Write \mathbf{g} as follows:

$$\mathbf{g}(u,v) = \left((u^2 + v^2)^{1/4} \cos\left(\frac{1}{2}\arctan\frac{v}{u}\right), (u^2 + v^2)^{1/4} \sin\left(\frac{1}{2}\arctan\frac{v}{u}\right) \right)$$
$$= (g_1(u,v), g_2(u,v))$$

where $(u, v) \in (0, \infty)^2$ and $\arctan x$ is the inverse of $\tan : (-\pi/2, \pi/2) \to \mathbb{R}$. Then, for all $\mathbf{x} = (x_1, x_2) \in U$, where $U = \{(x, y) \mid 0 < y < x, x \in (0, \infty)\}$, we can write

$$\mathbf{g}(\mathbf{f}(\mathbf{x})) = \sqrt{x_1^2 + x_2^2} \left(\sqrt{\frac{1 + \left(1 + \frac{v^2}{u^2}\right)^{-1/2}}{2}}, \sqrt{\frac{1 - \left(1 + \frac{v^2}{u^2}\right)^{-1/2}}{2}} \right)$$
$$= \sqrt{x_1^2 + x_2^2} \left(\sqrt{\frac{x_1^2}{x_1^2 + x_2^2}}, \sqrt{\frac{x_2^2}{x_1^2 + x_2^2}} \right) = (x_1, x_2)$$

so **g** is indeed an inverse of $\mathbf{f}: U \to V$, where $V = (0, \infty)^2$. Then, we can write

$$\mathbf{f}'(\mathbf{a}) = \begin{pmatrix} 4 & -2 \\ 2 & 4 \end{pmatrix}$$

$$\mathbf{g}'(\mathbf{b}) = \begin{pmatrix} (D_1 g_1)(\mathbf{b}) & (D_2 g_1)(\mathbf{b}) \\ (D_1 g_2)(\mathbf{b}) & (D_2 g_2)(\mathbf{b}) \end{pmatrix} = \begin{pmatrix} 1/5 & 1/10 \\ -1/10 & 1/5 \end{pmatrix}$$

Since we can write

$$\mathbf{g'}(\mathbf{b})\mathbf{f'}(\mathbf{a}) = \begin{pmatrix} 4 & -2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1/5 & 1/10 \\ -1/10 & 1/5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and the formula is verified.

3.4 Solution for (d)

For constant value of x, $\mathbf{f}(x,y)$ gives a parabola which is symmetric with respect to u axis, which stretches towards -u direction. For constant value of y, $\mathbf{f}(x,y)$ gives a parabola which is also symmetric with respect to u axis, which stretches towards +u direction. Thus, the images of lines parallel to axes are parabola.

4 Chapter 9 #19

Let $\mathbf{f}: \mathbb{R}^4 \to \mathbb{R}^3$ as follows:

$$\mathbf{f}(x, y, u, z) = (f_1(x, y, u, z), f_2(x, y, u, z), f_3(x, y, u, z))$$

$$f_1(x, y, u, z) = 3x + y - z + u^2$$

$$f_2(x, y, u, z) = x - y + 2z + u$$

$$f_3(x, y, u, z) = 2x + 2y - 3z + 2u$$

Since $\mathbf{f}(0,0,0,0) = (0,0,0)$ and,

$$\det \begin{pmatrix} 3 & 1 & 0 \\ 1 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \neq 0$$

so by implicit function theorem, there exists some open sets $U \subset \mathbb{R}^4$ and $W \subset \mathbb{R}$ with $(0,0,0,0) \in U$ and $0 \in W$, such that for every $z \in W$ there exists $\mathbf{F}(z)$ such that $\mathbf{F}(0) = (0,0,0)$ and $\mathbf{f}(\mathbf{F}(z),z) = 0$. Then, we can take $x = F_1(z), y = F_2(z), u = F_3(z)$ where

 $\mathbf{F}(z) = (F_1(z), F_2(z), F_3(z))$ and get the desired solution. By similar logic, we can define \mathbf{g} and \mathbf{h} with same domain and codomain with \mathbf{f} as follows:

$$\mathbf{g}(x, z, u, y) = (g_1(x, z, u, y), g_2(x, z, u, y), g_3(x, z, u, y))$$

$$g_1(x, z, u, y) = f_1(x, y, u, z), \quad g_2(x, z, u, y) = f_2(x, y, u, z), \quad g_3(x, z, u, y) = f_3(x, y, u, z)$$

$$\mathbf{h}(y, z, u, x) = (h_1(y, z, u, x), h_2(y, z, u, x), h_3(y, z, u, x))$$

$$h_1(y, z, u, x) = f_1(x, y, u, z), \quad h_2(y, z, u, x) = f_2(x, y, u, z), \quad h_3(y, z, u, x) = f_3(x, y, u, z)$$

Since $\mathbf{g}(0,0,0,0) = \mathbf{h}(0,0,0,0) = (0,0,0)$ and,

$$\det\begin{pmatrix} 3 & -1 & 0 \\ 1 & 2 & 1 \\ 2 & -3 & 2 \end{pmatrix} \neq 0, \quad \det\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & -3 & 2 \end{pmatrix} \neq 0$$

so similarly, there exists $W' \subset \mathbb{R}$ and $W'' \subset \mathbb{R}$ such that $0 \in W' \cap W''$, and for every $z \in W'$ there exists $\mathbf{G}(z)$ such that $\mathbf{G}(0) = (0,0,0)$ and $\mathbf{g}(\mathbf{G}(z),z) = 0$. Likewise, for every $z \in W''$ there exists $\mathbf{H}(z)$ such that $\mathbf{H}(0) = (0,0,0)$ and $\mathbf{h}(\mathbf{H}(z),z) = 0$. Then \mathbf{G} and \mathbf{H} are the solutions we are looking for.

On the other hand, we can write

$$\begin{pmatrix} 3 & 1 & -1 \\ 1 & -1 & 2 \\ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -u^2 \\ -u \\ -2u \end{pmatrix}$$

Since the determinant of the 3-by-3 matrix on the left hand side is zero, x, y, z cannot be solved in terms of u.

5 Chapter 9 #20

Take (a,b) such that f(a,b) = 0 and $(D_1 f)(a,b)$ is invertible, there exists $U \subset \mathbb{R}^2$ and $W \subset \mathbb{R}$ such that for all $y \in W$ there exists a unique x such that $(x,y) \in U$ and f(x,y) = 0. Such x can be defined to be g(y) and $g: W \to \mathbb{R}$ is continuously differentiable. Then, g(b) = a and f(g(b), b) = 0 holds.

Graphically, we can argue that if f(a,b) = 0 and $(D_1 f)(a,b)$ is invertible, that is, nonzero, then the curve from f does not have a vertical tanget at (a,b) and there exists a function y = g(x) whose graph near x = a is same as the graph of f.

6 Chapter 9 #23

We know that f(0,1,-1)=0 by simple calculation, and

$$(D_1 f)(x, y_1, y_2) = 2xy_1 + e^x$$

so $(D_1f)(0,1,-1)=1\neq 0$. Then, by the implicit function theorem, there exists open sets $U\subset\mathbb{R}^3$ and $W\subset\mathbb{R}^2$ with $(0,1,-1)\in U, (1,-1)\in W$, such that for every $(y_1,y_2)\in W$ there exists a unique x such that $(x,y_1,y_2)\in U$ and $f(x,y_1,y_2)=0$. Let $g(y_1,y_2)$ be such x. Then g is a continuously differentiable mapping of W to \mathbb{R} , and g(1,-1)=0. Then, by definition, $f(g(y_1,y_2),y_1,y_2)=0$ holds for $(y_1,y_2)\in W$ and we get the desired result.