WHAT IS CLAIMED IS:

1	1. A compressor comprising:
2	a compressor mechanism, said compressor mechanism having a
3	function for compressing and vomiting a refrigerator, and
4	a motor driving said compression mechanism;
5	wherein said motor includes a stator core having a plurality of teeth
6	parts, a concentrated winding applied over each teeth part of said plurality of teeth
7	parts and a rotor incorporating a plurality of permanent magnets;
8	said stator core is formed in an annular form by combining said
9	plurality of core elements, and
10	each of said plurality of permanent magnets is provided at a larger
11	pitch than the stator coil pitch.
1	2. The compressor of claim 1, wherein said rotor further
2	includes an iron as a flux of magnetic induction, said iron being disposed between
3	said each permanent magnet.
1	3. A compressor comprising:
2	a compression mechanism, said compressor mechanism having a
3	function for compressing and vomiting a refrigerator, and
4	a motor driving said compression mechanism,

5	wherein said motor includes a stator core having a plurality of teeth
6	parts, a concentrated winding applied over each teeth part of said plurality of teeth
7	parts and a rotor incorporating a plurality of permanent magnets,
8	said stator core is formed in an annular form by combining said
9	plurality of core elements, and
10	each of said plurality of permanent magnets is provided at a larger
11	pitch than the stator coil pitch.
1	4. The compressor of claim 3 wherein said each teeth part
2	includes an outer circumference part, and said each teeth part is combined by
- 3	fitting parts disposed at end portion of said outer circumference part.
1	5. A compressor comprising:
2	a compression mechanism, said compressor mechanism having a
3	function for compressing and vomiting a refrigerator, and
4	a motor driving said compression mechanism,
5	wherein said motor includes a stator core having a plurality of teeth
6	parts, a concentrated winding applied over each teeth part of said plurality of teeth
7	parts and a rotor incorporating a plurality of permanent magnets,
8	each of said plurality of permanent magnets is provided at a larger
9	pitch than the stator coil pitch,
10	said plurality of permanent magnet are arranged around a center
11	thereof,

12

13

14

1

2

3

4

forward portion and a magnet backward portion each having respective surfaces

A compressor comprising:

at least one of said plurality of permanent magnets has a magnet

a compression mechanism, said compressor mechanism having a

	2	a compression mechanism, said compressor mechanism having a
	3	function for compressing and vomiting a refrigerator, and
	4	a motor driving said compression mechanism,
	5	wherein said motor includes a stator core having a plurality of teeth
	6	parts, a concentrated winding applied over each teeth part of said plurality of teeth
	7	parts and a rotor incorporating a plurality of permanent magnets,
The second that the second that the second that	8	each of said plurality of permanent magnets is provided at a larger
	9	pitch than the stator coil pitch,
\$4 \$4	10	said plurality of permanent magnet are arranged around a center
	11	thereof, and
The time that the	12	at least one of said plurality of permanent magnets has a side facing
	13	said stator core which is indented inward towards the center.
	1	7. A compressor comprising:

function for compressing and vomiting a refrigerator, and

a motor driving said compression mechanism,

facing said stator core and angled toward each other.

6.

5	wherein said motor includes a stator core having a plurality of teeth
6	parts, a concentrated winding applied over each teeth part of said plurality of teeth
7	parts and a rotor incorporating a plurality of permanent magnets,
8	each of said plurality of permanent magnets is provided at a larger
9	pitch than the stator coil pitch, and
10	a first outer periphery portion of said rotor is different shape than a
11	second outer periphery portion of said rotor without said second outer periphery
12	portion being situated directly between any of said magnet.
1	8. An air-conditioner comprising:
2	a compressor of claim 1,
3	a heat exchanger, and
4	a refrigerating cycle connecting said compressor and said heat
5	exchanger.
1	9. A refrigerator comprising:
2	a compressor of claim 1,
3	a heat exchanger, and
4	a refrigerating cycle connecting said compressor and said heat
5	exchanger.