Math 110A Homework 7

Jiaping Zeng

3/1/2021

1. Write out the addition and multiplication tables for the congruence class ring F[x]/(p(x)). In each case, is F[x]/(p(x)) a field?

(a)
$$F = \mathbb{Z}/2\mathbb{Z}, p(x) = x^3 + x + 1$$

Δ	nswe	r·

+		[0]	[1]	[x]	[x+1]]	$[x^2]$	$[x^2 + 1]$	$[x^2 + 3]$	$[x^2 + x + 1]$
[0]		[0]	[1]	[x]	[x+1]]	$[x^2]$	$[x^2 + 1]$	$[x^2 + x^2]$	$[x^2 + x + 1]$
[1]		[1]	[0]	[x+1]	[x]		$[x^2 + 1]$	$[x^2]$	$[x^2 + x -$	$+1] \qquad [x^2+x]$
[x]		[x]	[x + 1]	[0]	[1]		$[x^{2} + x]$	$[x^2 + x +$	$[x^2 +$	$[x^2 + 1]$
[x + 1]	[2	(x + 1]	[x]	[1]	[0]		$[x^2 + x + 1]$	$] \qquad [x^2 + x$	$[x^2 + 1]$	$[x^2]$
$[x^2]$		$[x^2]$	$[x^2 + 1]$	$[x^2 + x]$	$[x^2 + x -$	⊦ 1]	[0]	[1]	[x]	[x+1]
$[x^2 + 1]$	[x]	$^{2}+1]$	$[x^2]$	$[x^2 + x +$	$[x^2 + 1]$	c]	[1]	[0]	[x+1]	[x]
$[x^2 + x]$	[x]	$^{2} + x$]	$[x^2 + x +$	$[x^2]$	$[x^2 + 1]$	L]	[x]	[x + 1]	[0]	[1]
$[x^2 + x + 1]$	x^2	+x+1	$] \qquad [x^2 + x$	$[x^2 + 1]$	$[x^2]$		[x + 1]	[x]	[1]	[0]
		[0]	[1]	[x]	[x+1]		$[x^2]$	$[x^2 + 1]$	$[x^{2} + x]$	$[x^2 + x + 1]$
[0]		[0]	[0]	[0]	[0]		[0]	[0]	[0]	[0]
[1]		[0]	[1]	[x]	[x+1]		$[x^2]$	$[x^2 + 1]$	$[x^{2} + x]$	$[x^2 + x + 1]$
[x]		[0]	[x]	$[x^2]$	$[x^{2} + x]$	[x]	+1]	[1]	$[x^2 + x + 1]$	$[x^2 + 1]$
[x+1]]	[0]	[x+1]	$[x^2+x]$	$[x^2 + 1]$	$[x^2 \dashv$	-x+1]	$[x^2+$	[1]	[x]
$[x^2]$		[0]	$[x^2]$	[x + 1]	$[x^2 + x + 1]$	$[x^2]$	$[x^2 + x]$	[x]	$[x^2 + x]$	[1]
$[x^2 + 1]$	L]	[0]	$[x^2 + 1]$	[1]	$[x^2]$		[x] $[x]$	$x^2 + x + 1]$	[x + 1]	$[x^2 + x]$
$[x^2 + x]$	[x]	[0]	$[x^2 + x]$	$[x^2 + x + 1]$	[1]	$[x^2]$	[2 + 1]	[x+1]	[x]	$[x^2]$
$[x^2 + x +$	+ 1]	[0]	$x^2 + x + 1]$	$[x^2 + 1]$	[x]		[1]	$[x^2 + x]$	$[x^2]$	[x + 16]

(b) $F = \mathbb{Z}/3\mathbb{Z}, p(x) = x^2 + 1$

Answer:

(c) $F = \mathbb{Z}/2\mathbb{Z}, p(x) = x^2 + 1$

Answer:

+	[0]	[1]	[x]	[x + 1]
[0]	[0]	[1]	[x]	[x + 1]
[1]	[1]	[0]	[x+1]	[x]
[x]	[x]	[x + 1]	[0]	[1]
[x + 1]	[x+1]	[x]	[1]	[0]
•	[0]	[1]	[x]	[x+1]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[x]	[x+1]
[x]	[0]	[x]	[1]	[x+1]
[x+1]] [0]	[x+1]	[x+1]	[0]

2. Find a fourth-degree polynomial in $(\mathbb{Z}/2\mathbb{Z})[x]$ whose roots are the four elements of the field $(\mathbb{Z}/2\mathbb{Z})[x]/(x^2+x+1)$.

Answer: As shown in Example 3, the four elements of $(\mathbb{Z}/2\mathbb{Z})[x]/(x^2+x+1)$ are [0], [1], [x], [x+1]. Then we have $x(x+1)(x^2+x+1)=x^4+2x^3+2x^2+x\equiv x^4+x$. Therefore the roots of $p(x)=x^4+x$ are the four elements of $(\mathbb{Z}/2\mathbb{Z})[x]/(x^2+x+1)$.

3. (a) Show that $(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x+1)$ is a field.

Answer: By substitution, neither of 0 or 1 is a root of $x^3 + x + 1$ (p(0) = 1, p(1) = 1). Therefore

 $x^3 + x + 1$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$ by Corollary 4.19. Then by Theorem 5.10 $(\mathbb{Z}/2\mathbb{Z})[x]/(x^3 + x + 1)$ is a field.

- (b) Show that $(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x+1)$ contains all three roots of x^3+x+1 . **Answer**: $[x], [x^2], [x^2+x]$ are roots of x^3+x+1 in $(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x+1)$. Therefore $(\mathbb{Z}/2\mathbb{Z})[x]/(x^3+x+1)$ contains all three roots of x^3+x+1 .
- 4. Show that $\mathbb{Q}[x]/(x^2-2)$ is not isomorphic to $\mathbb{Q}[x]/(x^2-3)$.

Answer: Suppose there is a solution to $a^2 = 2$ in $\mathbb{Q}[x]/(x^2 - 3)$, which would imply that $\sqrt{2} \in \mathbb{Q}$ which is a contradiction. Therefore $\mathbb{Q}[x]/(x^2 - 2)$ is not isomorphic to $\mathbb{Q}[x]/(x^2 - 3)$.

- 5. Show that $\mathbb{Q}[x]/(x^2-2)$ is isomorphic to $\mathbb{Q}[x]/(x^2+2x-1)$. **Answer:** Let f(x) = x+1 and $\varphi(f(x)) = f(x+1)$, then $\varphi^{-1}(f(x)) = f(x-1)$. Note that $\varphi(x^2-2) = (x+1)^2-2 = x^2+2x-1$ and $\varphi(x^2+2x-1) = (x-1)^2+2(x-1)-1 = x^2-2$. Therefore $\mathbb{Q}[x]/(x^2-2)$ is isomorphic to $\mathbb{Q}[x]/(x^2+2x-1)$.
- 6. (a) Show that the set $I = \{(k,0) | k \in \mathbb{Z}\}$ is an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$. **Answer**: Take $(p,q) \in \mathbb{Z} \times \mathbb{Z}$ and $(k,0) \in I$, we have $(p,q)(k,0) = (kp,0) \in I$ and $(k,0)(p,q) = (kp,0) \in I$. Therefore I is an ideal.
 - (b) Show that the set $I = \{(k,k)|k \in \mathbb{Z}\}$ is *not* an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$. **Answer**: Take $(1,2) \in \mathbb{Z} \times \mathbb{Z}$ and $(k,k) \in I$, we have (1,2)(k,k) = (k,2k) which is not in I for nonzero k. Therefore I is not an ideal.
- 7. List all distinct principal ideals in each ring:
 - (a) $\mathbb{Z}/5\mathbb{Z}$

Answer: $(0) = \{0\}.$

(b) $\mathbb{Z}/9\mathbb{Z}$

Answer: $(0) = \{0\}, (3) = \{3\}.$

(c) $\mathbb{Z}/12\mathbb{Z}$

Answer: $(0) = \{0\}, (2) = \{2, 4, 6, 8, 10, 0\}, (3) = \{3, 6, 9, 0\}, (4) = \{4, 8, 0\}, (6) = \{6, 0\}.$

8. (a) If I and J are ideals of R, prove that $I \cap J$ is also an ideal.

Answer: Take $a, b \in I \cap J$ and $r \in R$, then $a - b \in I$ and $a - b \in J$ since I and J are ideals, so $a - b \in I \cap J$. We also have $ar \in I$ and $ra \in I$ since I is an ideal; Similarly, we also have $ar \in J$ and $ra \in J$ since J is an ideal. Therefore $ar \in I \cap J$ and $ra \in I \cap J$, so $I \cap J$ is an ideal by Theorem 6.1.

(b) If $\{I_k\}_{k\in S}$ is a (possibly infinite) family of ideals in R, prove that the intersection $\bigcap_{k\in S}I_k$ is also an ideal in R.

Answer: By induction on the number of elements n;

Base case: n = 2, $\{I_1, I_2\}$ is a family of ideals in R, then $I_1 \cap I_2$ is an ideal by part (a).

Inductive step: Suppose that the statement holds for n-1 elements, we want to show that it will also hold for n elements. Let $A = \bigcap_{k=1}^{n-1} I_k$, then A is an ideal by inductive hypothesis. Then

 $A \cap I_n = \bigcap_{k=1}^n I_k$ is also an ideal by part (a).

Therefore $\bigcap_{k \in S} I_k$ is an ideal in R.

(c) Give an example in \mathbb{Z} to prove that if I and J are ideals, that $I \cup J$ might not be an ideal (or even a subring).

Answer: Take $I=2\mathbb{Z}$ and $J=3\mathbb{Z}$, then $2\in I$ and $3\in J$ but $3-2=1\notin I\cup J$. So $I\cup J$ is not a subring.