Numerik 2 - Übung 2

Florian Lüthi, i
10b March 7, 2012

Aufgabe 1

a) Der gewünschte Plot.

b) Die logarithmierten Werte.

u	v	$log_{10}u$	$log_{10}v$
57.9	88	1.76267856372744	1.94448267215017
108.2	225	2.03422726077055	2.35218251811136
149.6	365	2.17493159352844	2.56229286445647
227.9	687	2.35774432518038	2.83695673705955
778.1	4329	2.89103541531531	3.63638758581316
1428.2	10753	3.15478902873875	4.03152964580342
2837.9	30660	3.45299708801598	4.48657215051836
4488.9	60150	3.65213993065629	4.77923563167586
5876.7	90670	3.76913352095601	4.95746361572993

c)

$$\begin{array}{rcl} \log_{10} v & = & \log_{10} (\alpha u^{\beta}) \\ \log_{10} v & = & \log_{10} \alpha + \beta \log_{10} u \end{array}$$

d) Ansatz:

$$\tilde{v} = \beta \tilde{u} + \tilde{\alpha}$$

$$A = \begin{pmatrix} 1.7626 \dots & 1\\ 2.0342 \dots & 1\\ 2.1749 \dots & 1\\ \vdots & \vdots \end{pmatrix}, b = \begin{pmatrix} 1.9444\\ 2.3521\\ 2.5622\\ \vdots \end{pmatrix}, x = \begin{pmatrix} \beta\\ \tilde{\alpha} \end{pmatrix}$$

$$A^T A = \begin{pmatrix} 75.3129 & 25.2497 \\ 25.2497 & 9.0000 \end{pmatrix}, A^T b = \begin{pmatrix} 95.3375 \\ 31.5871 \end{pmatrix} \Rightarrow \begin{pmatrix} \beta^* \\ \tilde{\alpha}^* \end{pmatrix} = \begin{pmatrix} 1.5017 \\ -0.7034 \end{pmatrix}$$

$$\Rightarrow \tilde{v} = 1.5017\tilde{u} - 0.7034$$

e) $v = \alpha u^{\beta}$ $= 10^{\tilde{\alpha}} u^{\beta}$ $= 0.1980 u^{1.5017}$

f) Da die Konditionszahl ein Faktor ist, kann Linearität angenommen werden, und aus den gegebenen Fehlern erkennt man folgenden Zusammenhang:

$$F_i = |v_i - \alpha u_i^{\beta}| = 0.9 \cdot v_i \Rightarrow \alpha u_i^{\beta} = 0.1 \cdot v_i$$

$$\Rightarrow \tilde{F}_i = |\log_{10} v_i - \log_{10} (\alpha u_i^{\beta})| = \log_{10} \left(\frac{v_i}{\alpha u_i^{\beta}}\right)$$

$$= \log_{10} \left(\frac{v_i}{0.1 \cdot v_i}\right) = \log_{10} 10 = 1$$

Der Fehler der logarithmierten Funktion ist konstant 1.

g) Für die originale Funktion:

$$F_{ri} = \frac{|0.9 \cdot v_i|}{|v_i|} = 0.9$$

Für die logarithmierte Funktion:

$$\tilde{F_{ri}} = \frac{1}{|\log_{10} v_i|}$$

v	$log_{10}v$	$F_r i$	$ ilde{F_r}i$
88	1.94448267215017	0.9	0.514275603646404
225	2.35218251811136	0.9	0.425137076863801
365	2.56229286445647	0.9	0.390275449723865
687	2.83695673705955	0.9	0.352490394702487
4329	3.63638758581316	0.9	0.274998188834809
10753	4.03152964580342	0.9	0.248044808759112
30660	4.48657215051836	0.9	0.222887310501507
60150	4.77923563167586	0.9	0.209238480181264
90670	4.95746361572993	0.9	0.201716054320000

h) Unter Annahme einer derartigen Fehlerbehaftung ist die Berechnung des logarithmierten Ausgleichsproblems nicht sinnvoll. Es wird nämlich versucht, die quadrierten absoluten Fehler zu minimieren, und die sind ja konstant 1. Ergo kann das Verfahren eine beliebige Ausgleichsgerade ausspucken.

Aufgabe 2

a)

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\Rightarrow a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, ||a_1||_2 = \sqrt{3} = 1.7321$$

$$\Rightarrow v_1 = a_1 + 1.7321e_1 = \begin{pmatrix} 2.7321 \\ 1 \\ 1 \end{pmatrix}, Q_{v_1}a_1 = -1.7321e_1 = \begin{pmatrix} -1.7321 \\ 0 \\ 0 \end{pmatrix}$$

$$x_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \Rightarrow Q_{v_1}x_1 = x_1 - \frac{2}{||v_1||_2^2}(v_1^Tx_1)v_1 = x_1 - \frac{2}{9.4641}(v_1^Tx_1)v_1$$

$$= \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - 0.2113 \cdot 3v_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1.7321 \\ 0.6340 \\ 0.6340 \end{pmatrix} = \begin{pmatrix} -1.7321 \\ 0.3660 \\ 1.3660 \end{pmatrix}$$

$$\Rightarrow Q_{v_1}A = \begin{pmatrix} -1.7321 & -1.7321 \\ 0 & 0.3660 \\ 0 & 1.3660 \end{pmatrix}$$

$$\Rightarrow Q_{v_1}A = \begin{pmatrix} 0.3660 \\ 0 & 1.3660 \end{pmatrix}, ||a_2||_2 = 1.4142$$

$$\Rightarrow v_2 = a_2 + 1.4142e_1 = \begin{pmatrix} 1.7802 \\ 1.3660 \end{pmatrix}, Q_{v_2}a_2 = -1.4142e_1 = \begin{pmatrix} -1.4142 \\ 0 \end{pmatrix}$$

$$\Rightarrow R = \begin{pmatrix} -1.7321 & -1.7321 \\ 0 & -1.4142 \\ 0 & 0 \end{pmatrix}$$

b)

$$\begin{aligned} Q_1b &= b - \frac{2}{||v_1||_2^2} (v_1^T b) v_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{9.4641} \cdot 3 \begin{pmatrix} 2.7321 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1.7321 \\ 1.3660 \\ 0.3660 \end{pmatrix} \\ Q_2Q_1b &= Q_2 \begin{pmatrix} -1.7321 \\ 1.3660 \\ 0.3660 \end{pmatrix} = \begin{pmatrix} -1.7321 \\ \left(\frac{Q_1b_2}{Q_1b_3} \right) - \frac{2}{||v_2||_2^2} \left(v_2^T \begin{pmatrix} Q_1b_2 \\ Q_1b_3 \end{pmatrix} \right) v_2 \end{pmatrix} \\ &= \begin{pmatrix} -1.7321 \\ \left(\frac{1.3660}{0.3660} \right) - \frac{2}{5.0351} \cdot 2.9317 \begin{pmatrix} 1.7802 \\ 1.3660 \end{pmatrix} \right) = \begin{pmatrix} -1.7321 \\ -0.7071 \\ -1.2247 \end{pmatrix} \end{aligned}$$

$$\begin{pmatrix} -1.7321 & -1.7321 \\ 0 & -1.4142 \end{pmatrix} x^* = \begin{pmatrix} -1.7321 \\ -0.7071 \end{pmatrix}$$
$$\Rightarrow x_1^* = 0.5$$
$$x_2^* = 0.5$$
$$v(u) = 0.5u + 0.5$$

Test mit Normalgleichung:

$$A^T A = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}, A^T b = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \Rightarrow x^* = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

Und weil's so lange gedauert hat weil ich mich 1000 mal verrechnet habe, möchte ich es jetzt wirklich auskosten und mache noch ein Bildchen.

