Scilab Textbook Companion for Principles And Applications Of GSM by V. K. Garg And J. E. Wilkes¹

Created by
Rajat Gupta
B.Tech
Electronics Engineering
Amity University Uttar Pradesh (Noida)
College Teacher
Asst. Prof. Anil Kumar Shukla
Cross-Checked by

May 19, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles And Applications Of GSM

Author: V. K. Garg And J. E. Wilkes

Publisher: Pearson Education Inc., New Delhi

Edition: 1

Year: 2011

ISBN: 978-81-775-8879-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
3	Access Technologies	5
4	Cellular Communications Fundamentals	9
6	Radio Link Features in GSM Systems	12
13	Propagation Path Loss and Propagation Models	14
14	Planning and Design of a GSM Wireless Network	18
17	An Overview of Signaling System 7	22
18	Telecommunication Traffic Engineering	24

List of Scilab Codes

Exa 3.1	Spectral Efficiency	5
Exa 3.2	Spectral Efficiency of TDMA	6
Exa 3.3	Frame Efficiency of TDMA	6
Exa 3.4	Frame Efficiency of TDMA	7
Exa 4.1	GSM Parameters	9
Exa 4.2	GSM Parameters	9
Exa 4.3	GSM Parameters	10
Exa 4.4	GSM Parameters	11
Exa 6.1	Adaptive Array Elements	12
Exa 13.1	Level Crossing Rate	14
Exa 13.2	Received Power	15
Exa 13.3	SNR	15
Exa 13.4	Signal Sensitivity	16
Exa 13.5	Mean Path Loss	16
Exa 14.2	Planning of Wireless Network	18
Exa 14.3	Determine Signal power	19
Exa 14.4	Cellular System	19
Exa 14.5	PCS System	20
Exa 14.6	TDMA frame for Cellular System	21
Exa 17.1	Mean STP message transfer time	22
Exa 17.2	EN Bloc and Overlap Signalling	22
Exa 18.1	Traffic Measurement Units	24
Exa 18.2	Offered Load	24
Exa 18.3	Traffic Intensity	25
Exa 18.4	Traffic Intensity	25
Exa 18.5	Traffic Intensity	26
Exa 18.6	Data Collection Categories	26
Exa 18.7	Offered Load	27

Exa 18.8 GSM Users	28	3
--------------------	----	---

Access Technologies

Scilab code Exa 3.1 Spectral Efficiency

```
1 //Determine the spectral efficiency using the given
       parameters
3 \text{ Bw} = 12.5\text{e}+3;
4 \text{ Cd} = 200;
6 A = 8;
7 \text{ At} = 4000;
8 N = 4;
9 F = 4;
10
11 C = Bw/Cd;
12 Tc = C*A;
13 \text{ Ts} = 3;
14 \text{ Tc1} = ((\text{Tc/F}) - \text{Ts});
15 \text{ N1} = At/A;
16 \text{ T1} = 108.4
17
18 N = (T1*N1*1e+3)/(At*Bw);
19
20 disp(C, 'No. of 200 Khz channels')
```

Scilab code Exa 3.2 Spectral Efficiency of TDMA

```
1 // Determine the efficiency of the TDMA system
2
3 e = 13;
4 d = 16.2
5 \text{ Tf} = 40;
6 \text{ Mt} = 6;
7 \text{ Bu} = 30;
8 \text{ Nu} = 395;
9 \text{ Bw} = 12.5e+3;
10
11 t = (e/d)*(Tf/Mt);
12 Na = ((t*Mt)/Tf)*((Bu*Nu)/Bw)
13 Op = (1 - Na)*100;
14
15 disp(t, 'Time slot duration (in ms)')
16 disp(Op, 'Percentage Overhead portion of the frame (
      in %)')
```

Scilab code Exa 3.3 Frame Efficiency of TDMA

```
// Determine the capacity & spectral efficiency of a
    TDMA system

Nb = 0.9;
u = 2;
Bw = 12.5e+6;
Vf = 1;
R = 16.2e+3;
N = 19;
Nu = (((Nb*u)/Vf) * (Bw/(R*N)));
N1 = ((Nu*R) / (Bw));

disp(Nu, 'Nu')
disp(N1, 'Spectral Efficiency (in bits/sec/Hz)')
```

Scilab code Exa 3.4 Frame Efficiency of TDMA

```
1 // Determine the frame efficiency & no. of channels
      per frame of GSM TDMA system
3 \text{ Nr} = 2;
4 \text{ Br} = 148*8;
5 \text{ Nt} = 24;
6 \text{ Bp} = 34*8;
7 \text{ Bg} = 8.25;
8 \text{ Tf} = 120e-3;
9 \text{ Rrf} = 270.8333e+3;
10 R = 22.8;
11
12 B0 = ((Nr*Br) + (Nt*Bp) + (Nt+Nr)*Bg);
13 Bt = Tf * Rrf;
14 N = (1 - (B0/Bt))*100 ;
15 Ncf = ((N*Rrf)/(R*1e+5));
16
```

```
17 disp(B0, 'B0')
18 disp(Bt, 'Bt')
19 disp(N, 'Frame Efficiency of TDMA system (in %)')
20 disp(Ncf, 'No. of channels/frame')
```

Cellular Communications Fundamentals

Scilab code Exa 4.1 GSM Parameters

```
//Determine following parameters

// Determine following parameters

N = 4;
Lo = 85.26;

Cn = (Lo*3600)/120;
SI = 10*log10((3.5^4)/6);

disp(Cn, 'No. of calls per cell site per hour')
disp(2558, 'No. of calls per cell site per hour (apprx.)')

disp(SI, 'Mean S/I ratio for cell reuse factor 4 (in db)')
```

Scilab code Exa 4.2 GSM Parameters

```
1 // Determine following parameters
2
3 N = 4;
4 Lo = 107.8
5
6 Cn = (Lo*3600)/120;
7 SI = 10*log10((3.5^4)/6);
8
9 disp(Cn, 'No. of calls per cell site per hour')
10 disp(SI, 'Mean S/I ratio for cell reuse factor 4 (in db)')
```

Scilab code Exa 4.3 GSM Parameters

```
1 // Determine following parameters
3 N = 7;
4 A = 1200;
5 \text{ Ct} = 395;
6 \text{ Ts} = 9597;
7 \text{ Tc} = 358;
8 \text{ Te} = 287.9;
9 \text{ Nc} = 8637;
10
11 As = Ts/Tc;
12 E = Te/A;
13 Sd = Ts/A;
14 Cd = Nc/A;
15 Ae = A/N;
16 \text{ Cn} = \text{Tc/Ct};
17
18
19 disp(As, 'Avg. No. of subscribers/channel')
20 disp(E, 'Erlangs/mile2)')
21 disp(Sd, 'Subscriber Density (in Subscribers/mile2)'
```

```
)
22 disp(Cd, 'Call Density (in calls/mile2)')
23 disp(Ae, 'Area of each cell (in miles2)')
24 disp(Cn, 'Channel Reuse factor')
```

Scilab code Exa 4.4 GSM Parameters

```
// Determine following parameters

N = 7;
C = 395;

Nc = C/N;
Se1 = 39.8/63.1;
Se2 = 5.8648/1.384;

disp(Nc, 'No. of voice channels/cell site')
disp(Se1, 'Spectral Efficiency in analog system')
disp(Se2, 'Spectral Efficiency in digital system')
```

Radio Link Features in GSM Systems

Scilab code Exa 6.1 Adaptive Array Elements

```
1 // Consider GSM system with following data and show
       the advantage of adaptive array antennas
3 kT = -174;
4 \text{ Bw} = 200e+3;
5 F = 7;
6 \text{ SI} = 12;
8 W = 29;
9 \text{ Lc} = 2;
10 \text{ fm} = 10;
11 \text{ Gbs} = 20;
12 \text{ Gm} = 0;
13
14 \text{ Gamma} = 4;
15 \text{ PLmax} = 139;
16 \quad I0 = 80;
17
18 \text{ Acover} = 6e+4;
```

```
19
20 PRmin = kT + (10*log10(Bw)) + F + SI;
21 PLmax = W - PRmin - Lc - fm + Gbs + Gm;
22 R = (PLmax - I0)^(1/4);
23 N = Acover/(2.6*R^2);
24
25 disp(PRmin, 'Required minimum received power is (in dBm)')
26 disp(PLmax, 'Max. allowable path loss is (in dB)')
27 disp(R, 'Cell Radius (in miles)')
28 disp(N, 'No. of cells required')
```

Propagation Path Loss and Propagation Models

Scilab code Exa 13.1 Level Crossing Rate

```
1 // Determine level-crossing rate, avg. duration of
      fade for a cellular system and a vehicle speed.
3 f = 900e+6;
4 c = 3e + 8;
5 v = 6.67;
6 \text{ rho} = 0.3162;
8 \quad lambda = c/f;
9 \text{ fm} = v/lambda;
10
11 n0 = sqrt(2*\%pi)*fm;
12 Tr = (1.105-1)/(n0*rho);
13 Tr1 = (1/(3*v)) * (rho/sqrt(2*%pi));
14
15 disp(n0, 'Level-crossing rate')
16 disp(Tr, 'Avg. duration of fade (in s)')
17 disp(Tr1, 'Avg. duration of fade, using appx. exp. (
      in s)')
```

Scilab code Exa 13.2 Received Power

```
1 // Determine received signal power at MS receiver and
        SNR of received signal
 3 \text{ lamda} = 0.2;
4 d = 8000;
 5 \text{ Gt} = 8;
6 L0 = 8;
 7 \text{ TO} = 1.38e-23;
8 \text{ Bw} = 0.2e+6;
9 T = 1160+290;
10
11
12 Lp = -20*log10(lamda/(4*%pi*d));
13 \text{ Pr} = \text{Lp} + \text{Gt} - \text{LO};
14 \text{ Pn1} = \text{T0*T*Bw};
15 Pn = 10*log10(Pn1);
16
17 SNR = -Pr-Pn;
18
19 disp(-Pr, 'Recieved Signal power (in dBW)')
20 disp(SNR, 'SNR of received signal (in dB)')
```

Scilab code Exa 13.3 SNR

```
5 \text{ Gt} = 8;
6 L0 = 8;
7 \text{ TO} = 1.38e-23;
8 \text{ Bw} = 0.2e+6;
9 T = 1160+290;
10
11
12 Lp = -20*log10(lamda/(d^2));
13 \text{ Pr} = \text{Lp} + \text{Gt} - \text{LO};
14 \text{ Pn1} = \text{T0*T*Bw};
15 Pn = 10*log10(Pn1);
16
17 SNR = -Pr-Pn;
18
19 disp(-Pr, 'Recieved Signal power (in dBW)')
20 disp(SNR, 'SNR of received signal (in dB)')
```

Scilab code Exa 13.4 Signal Sensitivity

```
//Determine the probability that the signal exceeds
the receiver senstivity

Smin = 100;
Pr = -110;
Pr = 0.5 - 0.5*((Pr + Smin)/(10*1.414));

disp(Ps, 'Probability that the signal exceeds the receiver senstivity is')
```

Scilab code Exa 13.5 Mean Path Loss

1 // Determine mean path loss by two models

```
2
3 Lr = 31.7;
4 gamma1 = 5.22;
5 gamma2 = 3.27;
6 R = 30;
7 R0 = 1;
8 FAF = 24.4;
9
10
11 Ls1 = Lr + 10*gamma1*log10(R/R0);
12 Ls2 = Lr + 10*gamma1*log10(R/R0) + FAF;
13
14 disp(Ls1, 'Mean path loss by 1st model (in dB)')
15 disp(Ls2, 'Mean path loss by 2nd model (in dB)')
```

Planning and Design of a GSM Wireless Network

Scilab code Exa 14.2 Planning of Wireless Network

```
1 //Determine the following parameters.
3 t = 120;
4 d = 24;
5 \text{ BH = 5};
6 \text{ BW} = 5000;
7 \text{ RFw} = 200;
8 S = 60000;
9 A = 500;
10
11 E = t/(d*BH*60);
12 \text{ Nrf} = BW/RFw;
13 Srf = Nrf/(4*3);
14 TCH = Srf*8;
15 Tbts = 9.82*3; //Using Erlang B table
16 Sbts = (Tbts*1000)/TCH;
17 \text{ BTSn} = \text{S/Sbts};
18 R = sqrt(A/(BTSn*Srf));
```

```
20 disp(E, 'Erlangs per subscriber')
21 disp(TCH, 'Traffic Channels per sector')
22 disp(BTSn, 'No. of BTS in a zone')
23 disp(R, 'Avg. Hexagonal cell radius (in Km)')
```

Scilab code Exa 14.3 Determine Signal power

```
1 // Determine the minimum signal power required
3 \text{ K} = 1.38e-20;
4 T = 290;
5 \text{ Nf} = 5;
6 \text{ EbNt} = 13.5;
7 \text{ Rb} = 271;
8 \text{ Bc} = 200;
9 \text{ Tg = 0};
10 \text{ Rg} = 12;
11 R1 = 2.5;
12 \text{ Fm} = 10;
13
14 \text{ Nt} = 10*\log 10 (K*T) + Nf;
15 SNr = EbNt + 10*log10(Rb/Bc);
16 Smin = EbNt + 10*log10(Rb*1000) + Nt;
17 Lpmax = 30 - Smin + (Tg+Rg) - (R1+Fm);
18
19 disp(Smin, 'Min. Signal Power Required (in dBm)')
20 disp(Lpmax, 'Max. allowable path loss (in dB)')
```

Scilab code Exa 14.4 Cellular System

```
1 // Design a cellular system using GMSK modulation
2
3 Smin = -102;
```

```
4 \text{ fc} = 900;
5 \text{ ht} = 160;
6 \text{ ahr} = 2.69;
7 d = 10;
8 \text{ Gt} = 16;
9 \text{ Gr} = 1;
10 \text{ Lft} = 1;
11 \text{ Lfr} = 1;
12 \text{ fm} = 10.5;
13
14 Lp = 69.55 + 26.16 * log10 (fc) - 13.83 * log10 (ht) - ahr
        + (44.9 - 6.55*log10(ht))*log10(d);
15 Pt = Smin - (Gt+Gr) + (Lft + Lfr + fm) + Lp;
16
17 disp(Lp, 'Path Loss (in dB)')
18 disp(Pt, 'Required transmitted power for a GMSK MS (
      in dBm)')
```

Scilab code Exa 14.5 PCS System

```
+ (44.9 - 6.55*log10(ht))*log10(d);
15 Pt = Smin - (Gt+Gr) + (Lft + Lfr + fm) + Lp;
16
17 disp(Lp, 'Path Loss (in dB)')
18 disp(Pt, 'Required transmitted power for a GMSK MS (in dBm)')
```

Scilab code Exa 14.6 TDMA frame for Cellular System

```
1 // Design a TDMA frame for a cellular system
 3 \text{ Nca1} = 1
 4 \text{ Nca2} = 2;
 5 \text{ Rbmin} = 8;
 6 \text{ a1} = 0.1;
 7 \text{ nf} = 0.75;
 8 \text{ Rc} = 0.5;
 9
10 \text{ Nslot1} = 16/\text{Nca1};
11 Nslot2 = 16/Nca2;
12 Rs1 = (Rbmin*(1+a1)*Nslot1)/(nf*Rc);
13 Rs2 = (Rbmin*(1+a1)*Nslot2)/(nf*Rc);
14
15 disp(Nslot1, 'Nslot for Nca=1')
16 disp(Nslot2, 'Nslot for Nca=2')
17 disp(Rs1, 'Rs for Nca=1 (in ksymbols/s)')
18 disp(Rs2, 'Rs for Nca=2 (in ksymbols/s)')
```

An Overview of Signaling System 7

Scilab code Exa 17.1 Mean STP message transfer time

```
// Determine the mean STP message transfer time using
ITU-T recommendations

Tph = 22;
Tod = 8.2;

t = Tph + Tod ;

disp(t, 'STP Message Transfer Time (in ms)')
```

Scilab code Exa 17.2 EN Bloc and Overlap Signalling

```
4 \text{ Hs} = 150;
5 U = 1-S;
6 \text{ Hu} = 20;
7
8 \text{ SC} = 0.8;
10 \text{ Ns} = 11;
11 Nu = 4;
12
13 D = S*Hs + U*Hu;
14 BHCA = (3600*SC)/D; //Using value from table - <math>3600
15 N = Ns*S + Nu*U ;
16 \text{ M1} = ((95/2)*S + (63/2)*U);
                                        //From Table given
17 \text{ M2} = ((114/2)*S + (63/2)*U);
18 \text{ N1} = (8000*3600*0.2)/(M1*BHCA);
19 N2 = (8000*3600*0.2)/(M2*BHCA);
20
21 disp(D, 'Mean duration of a call (in s)')
22 disp(BHCA, 'No. of Busy Hour Call Attempts (BHCA)
      per circuit')
23 disp(N+0.1, 'Mean no. of digits dialed per call (
      apprx.) ')
24 disp(N1, 'No. of circuits serviced by En Bloc
      Signalling');
25 disp(N2, 'No. of circuits serviced by Overlap
      Signalling');
```

Telecommunication Traffic Engineering

Scilab code Exa 18.1 Traffic Measurement Units

```
// Determine the usage in seconds, CCS and Erlangs
which has accumulated on the piece of the
        equipment

U = (450-0)*(5/3600)

disp(U, 'Usage in Erlangs')
disp(U*36, 'Usage in CCS')
disp(U*36*100, 'Usage in seconds')
```

Scilab code Exa 18.2 Offered Load

```
1 // Determine the offered load
2
3 CCS = 2900;
4 p = 0.05;
```

```
5
6 U = CCS/(1-p);
7
8 disp(U, 'Offered Load (in CCS)');
```

Scilab code Exa 18.3 Traffic Intensity

```
1 // Determine the traffic intensity
2
3 t = 120;
4
5 I = (2*t)/3600;
6
7 disp(I*36, 'Traiffic Intensity (in CCS)');
```

Scilab code Exa 18.4 Traffic Intensity

Scilab code Exa 18.5 Traffic Intensity

```
1 ///Determine the traffic intensity during the eight
     -hour period and the busy hour
3 n = 11;
4 t = 8;
5 \text{ Cd1} = 3+10+7+10+5+5+1+5+15+34+5;
6 \text{ Cd2} = 34+5;
7 CAR2 = 2;
9 \text{ CAR1} = n/t;
10 Hbar1 = Cd1/(n*60);
11 Hbar2 = Cd2/(CAR2*60);
12
13 I1 = CAR1 * Hbar1 ;
14 I2 = CAR2 * Hbar2 ;
15
16 disp(I1*36, 'Traiffic Intensity (in CCS)')
17 disp(I2*36, 'Traiffic Intensity during busy hour (in
       CCS)')
```

Scilab code Exa 18.6 Data Collection Categories

```
8 CRb = 3;
9 \text{ CRh} = 10;
10 \text{ HTr} = 140;
11 HTb = 160;
12 \text{ HTh} = 200;
13
14 RLp = RL/n;
15 BLp = BL/n;
16 HLp = HL/n;
17 CCSrl = CRr * (HTr/100);
18 CCSbl = CRb * (HTb/100);
19 CCShl = CRh * (HTh/100);
20 SCR = (CRr*RLp) + (CRb*BLp) + (CRh*HLp);
21 Sccs = (CCSrl*RLp) + (CCSbl*BLp) + (CCShl*HLp);
22
23 Aht = (Sccs/SCR)*100;
24 ABSc = SCR*n;
25 \text{ ABSu} = (Sccs*n)/36;
26
27 \text{ Dcc} = 1.5*ABSc;
28 De = 1.5*ABSu;
29
30 disp(Dcc, 'Design call capacity based on HD')
31 disp(De, 'Design erlangs based on HD')
```

Scilab code Exa 18.7 Offered Load

```
1 // Determine the offered load and channels required
2
3 CPH = 4000;
4 ACH = 150
5
6 A = (CPH*ACH)/3600;
7
8 disp(A, 'Offered Load');
```

```
9 disp(182, 'Channels REquired (using Erlang B table)'
```

Scilab code Exa 18.8 GSM Users

```
// Determine the no. of users supported

BHA = 1.2;
ACH = 120;

C = 40.26;    // from Erlang B table

At = (BHA*ACH)/3600;
N = C/At;

disp(N, 'No. of users supported');
```