Package 'thermocouple'

October 14, 2022

Type Package

Title Temperature Measurement with Thermocouples, RTD and IC Sensors
Version 1.0.2
Encoding UTF-8
Description Temperature measurement data, equations and methods for thermocouples, wire RTD, thermistors, IC thermometers, bimetallic strips and the ITS-90.
License GPL (>= 3)
LazyData yes
LazyLoad yes
Depends R (>= $2.7.0$)
Author Jose Gama [aut, cre]
Maintainer Jose Gama <rxprtgama@gmail.com></rxprtgama@gmail.com>
Repository CRAN
Repository/R-Forge/Project thermocouple
Repository/R-Forge/Revision 4
Repository/R-Forge/DateTimeStamp 2015-07-18 23:20:17
Date/Publication 2015-07-19 19:44:31
NeedsCompilation no
R topics documented:
adoptedLatentHeatOfVaporizationOfLiquidHe4
BimaterialStripCurvatureRadiusFromTemperature
dielectricC.Density.ThermExpLiquid4HeSatVapPress
ds18B20TemperatureData
RTDalpha

rtdAndThermistorStandardAccuracy	10
rtdAndThermistorStandardValues	11
RTDbeta	12
RTDcoefficientA	
RTDdelta	
RTDequation	
RTDmetalResistance	
RTDmetalResistanceFromAlpha	
RTDmolybdenumResistanceFromAlpha	
RTDmolybdenumTemperatureFromAlpha	
RTDnickelIronResistanceFromAlpha	
RTDnickelIronTemperatureFromAlpha	
RTDnickelResistance	
RTDnickelResistanceFromAlpha	
RTDnickelTemperatureFromAlpha	
RTDplatinumResistance	
RTDplatinumResistanceFromAlpha	
RTDplatinumTemperature	
rtdPlatinumToleranceValues	
rtdPT100	
rtdResistanceWireComparison	
rtdResistivityAlpha	
RTDtemperatureFit	
RTDtemperatureFromResistance	
rtdTypes	
SelfHeatingError	
SensorSensitivity	
SplineEval	
tableAWGCuWire	
temperatureMeasurementDifficulty	
temperatureSensorTypes	
ThermistorAlphaApproximatedFromBeta	
ThermistorApproxDriftResistance	
ThermistorApproxDriftTime	39
ThermistorCalculateBeta	40
ThermistorCalibrationEquation	41
ThermistorCalibrationEquationHoge1	42
ThermistorCalibrationEquationHoge2	43
ThermistorCalibrationEquationHoge3	44
ThermistorCalibrationEquationHoge4	45
ThermistorCalibrationEquationHoge5	46
ThermistorConvertADCreadingToTemperatureC	47
ThermistorConvertTemperatureCtoADCreading	48
ThermistorHoge1CoeffFromMeasurements	49
thermistorMaximumMeasuringVoltage	49
ThermistorResistance	50
ThermistorResistanceDeviation	51
ThermistorResistanceSteinhartHart	52

ThermistorResistanceSteinhartHart2
ThermistorResistanceSteinhartHartUsing3T
ThermistorResistanceTolerance
ThermistorSensitivity
ThermistorSlope
ThermistorSteinhartHartCoeffFromMeasurements
ThermistorTemperature
ThermistorTemperatureAccuracy
ThermistorTemperatureDeviation
ThermistorTemperatureFitPolynomial
ThermistorTemperatureSteinhartHart
Thermistor VolumeResistivity From R25
Thermistor VolumeResistivityFromRho
thermocoupleCables
thermocoupleCoefficientsTypeB
thermocoupleColdJunctionVoltageCoeff
thermocoupleDefinitionTypes
ThermocoupleEquationTemperatureToVoltage
ThermocoupleEquationTypeB
ThermocoupleEquationTypeKrationalPolynomial
thermocoupleErrorLimits
thermocoupleExtensionCables
thermocoupleFixedPointsITS90
ThermocoupleFundamentalRelation
ThermocoupleFundamentalRelation2
thermocoupleInsulatingMaterialsCeramicPackedStock
thermocoupleInverseCoefficientsTypeB
ThermocoupleInverseEquationTypeB
thermocoupleInverseFunctionsRange
ThermocoupleLeadWireExternalResistanceUS
thermocoupleMineralInsulated
thermocoupleMounting
thermocoupleNominalSeebeckCoefficients
thermocoupleRecommendedUpperTempLimitsProtected
thermocoupleResponseTime
thermocoupleSingleLegThermoelements
ThermocoupleStemLossErrorEstimate
ThermocoupleTable10colsTo2
thermocoupleTypeBthermoelectricVoltage
thermocoupleTypesASTM
thermocoupleWireColorUnitedStatesCanadaMexico
thermocoupleWireSizeResistanceImperial
ThermocoupleWithReference
ThermocoupleWithReference2
TminusT90CCT2008
TminusT90Pavese4CubicPolynomials

4 AWGTOmm

TminusT90Pavese6CubicPolynomials	 		 	 							90)

Index 92

adopted Latent Heat Of Vaporization Of Liquid He 4

Adopted database for latent heat of vaporization of liquid 4He

Description

 $adopted Latent Heat Of Vaporization Of Liquid He4 \ is \ a \ table \ with \ the \ Adopted \ database \ for \ latent \ heat \ of \ vaporization \ of \ liquid \ He4$

Usage

adopted Latent Heat Of Vaporization Of Liquid He4

Author(s)

Jose Gama

Source

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor17.htm

References

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor17.htm

Examples

data(adoptedLatentHeatOfVaporizationOfLiquidHe4)
str(adoptedLatentHeatOfVaporizationOfLiquidHe4)

AWGTOmm

Convert American wire gauge (SWG) to mm

Description

AWGT0mm converts American wire gauge (SWG) to mm

Usage

AWGTOmm(n)

Arguments

n AWG gauge

Value

g gauge in mm

Author(s)

Jose Gama

Source

rapidtables.com, 2014 convert American wire gauge (SWG) to mm http://www.rapidtables.com/calc/wire/awg-to-mm.htm

References

rapidtables.com, 2014 convert American wire gauge (SWG) to mm http://www.rapidtables.com/calc/wire/awg-to-mm.htm

 ${\tt BimaterialStripCurvatureRadiusFromTemperature}$

curvature radius of a bimetallic strip uniformly heated from T0 to T

Description

BimaterialStripCurvatureRadiusFromTemperature curvature radius of a bimetallic strip uniformly heated from T0 to T in the absence of external forces

Usage

BimaterialStripCurvatureRadiusFromTemperature(T0, R0, T, m, n, alpha1, alpha2, thickn)

Arguments

Т0	Initial temperature
RØ	1/R0 = Initial curvature of the strip at temperature T0
T	Measured temperature
m	t1/t2, with t1 and t2 their respective thicknesses
n	E1/E2, with E1 and E2 their respective Young's moduli
alpha1	Coefficient of expansion of element 1
alpha2	Coefficient of expansion of element 2
thickn	t1 + t2 thickness of the strip

6 DiameterAWG

Value

R voltage (V)

Author(s)

Jose Gama

Source

John G. Webster, 1999 The Measurement, Instrumentation and Sensors Handbook CRC Press LLC

References

John G. Webster, 1999 The Measurement, Instrumentation and Sensors Handbook CRC Press LLC

DiameterAWG

American Wire Gauge (AWG) diameter from AWG number

Description

Diameter AWG Calculates American Wire Gauge (AWG) diameter from AWG number

Usage

DiameterAWG(AWG)

Arguments

AWG number

Value

d American Wire Gauge (AWG) diameter

Author(s)

Jose Gama

Source

Lund Instrument Engineering, Inc., 2014 Wire Gauge and Current Limits Including Skin Depth and Strength http://www.powerstream.com/Wire_Size.htm

References

Lund Instrument Engineering, Inc., 2014 Wire Gauge and Current Limits Including Skin Depth and Strength http://www.powerstream.com/Wire_Size.htm

dielectricC.Density.ThermExpLiquid4HeSatVapPress

Recommended values of the dielectric constant, density and thermal expansion coefficient of liquid 4He at saturated vapor pressure

Description

dielectricC.Density.ThermExpLiquid4HeSatVapPress is a table with the Recommended values of the dielectric constant, density and thermal expansion coefficient of liquid 4He at saturated vapor pressure

Usage

dielectricC.Density.ThermExpLiquid4HeSatVapPress

Author(s)

Jose Gama

Source

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor2.htm

References

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor2.htm

Examples

```
data(dielectricC.Density.ThermExpLiquid4HeSatVapPress)
str(dielectricC.Density.ThermExpLiquid4HeSatVapPress)
```

DS1820CalcCRCbit

Calculate 8-bit CRC for DS1820

Description

DS1820CalcCRCbit Calculates 8-bit CRC for DS1820

Usage

DS1820CalcCRCbit(shiftReg, dataBit)

Arguments

shiftReg shift register dataBit data bit

Value

b beta coefficient

Author(s)

Jose Gama

Source

Peter H. Anderson, 1998 DS1820 Digital Thermometer - Calculating an 8-bit CRC Value http://www.phanderson.com/PIC/16C84/crc.html

References

Peter H. Anderson, 1998 DS1820 Digital Thermometer - Calculating an 8-bit CRC Value http://www.phanderson.com/PIC/16C84/crc.html

ds18B20TemperatureData

Temperature/Data Relationship DS18B20

Description

ds18B20TemperatureData is a table with the Temperature/Data Relationship for the DS18B20

Usage

ds18B20TemperatureData

Author(s)

Jose Gama

Source

Maxim Integrated Products, Inc., 2014 DS18B20 datasheet REV: 042208 DS18B20 Programmable Resolution 1-Wire Digital Thermometer

References

Maxim Integrated Products, Inc., 2014 DS18B20 datasheet REV: 042208 DS18B20 Programmable Resolution 1-Wire Digital Thermometer

Examples

data(ds18B20TemperatureData)
str(ds18B20TemperatureData)

recommended Latent Heat Of Vaporization Of Liquid He 4

Recommended values of the latent heat of vaporization of liquid 4He as a function of temperature at the saturated vapor pressure

Description

recommendedLatentHeatOfVaporizationOfLiquidHe4 is a table with the Recommended values of the latent heat of vaporization of liquid 4He as a function of temperature at the saturated vapor pressure

Usage

recommended Latent Heat Of Vaporization Of Liquid He4

Author(s)

Jose Gama

Source

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor17.htm

References

Donnelly R J The Observed Properties of Liquid Helium at the Saturated Vapor Pressure http://pages.uoregon.edu/rjd/vapor17.htm

Examples

data(recommendedLatentHeatOfVaporizationOfLiquidHe4)
str(recommendedLatentHeatOfVaporizationOfLiquidHe4)

RTDalpha

RTD alpha coefficient

Description

RTDalpha calculates RTD alpha coefficient

Usage

RTDalpha(R0, R100)

Arguments

R0 resistance at 0C R100 resistance at 100C

Value

alpha RTD alpha coefficient

Author(s)

Jose Gama

Source

 $\label{lem:capgo_loss} Capgo\:Inc., 2014\:Introduction\:to\:RTDs\:http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 ${\tt Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html}$

rtdAndThermistorStandardAccuracy

Standard Accuracy for Thermocouples

Description

rtdAndThermistorStandardAccuracy is a table with standard accuracy for thermocouples

Usage

rtdAndThermistorStandardAccuracy

Author(s)

Jose Gama

Source

Veris Industries, 2009 Resources, Build-A-Sensor, Temperature Sensors http://www.veris.com/

References

Veris Industries, 2009 Resources, Build-A-Sensor, Temperature Sensors http://www.veris.com/

Examples

```
data(rtdAndThermistorStandardAccuracy)
str(rtdAndThermistorStandardAccuracy)
```

rtdAndThermistorStandardValues

Standard Values for Thermocouples

Description

rtdAndThermistorStandardValues is a table with standard values for thermocouples

Usage

rtdAndThermistorStandardValues

Author(s)

Jose Gama

Source

Veris Industries, 2009 Resources, Build-A-Sensor, Temperature Sensors http://www.veris.com/

References

Veris Industries, 2009 Resources, Build-A-Sensor, Temperature Sensors http://www.veris.com/

Examples

```
data(rtdAndThermistorStandardValues)
str(rtdAndThermistorStandardValues)
```

12 RTDbeta

RTDbeta	RTD beta coefficient	

Description

RTDbeta calculates RTD beta coefficient

Usage

```
RTDbeta(R0, Rtl, Tl, alpha, delta)
```

Arguments

delta

RØ	resistance at OC
Rtl	resistance of the sensor at the lowest temperature
T1	lowest temperature in the calibration range
alpha	RTD alpha coefficient

RTD delta coefficient

Value

beta RTD beta coefficient

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

RTDcoefficientA 13

RTDcoefficientA RTD A coefficient

Description

RTDcoefficientA calculates RTD A coefficient

RTDcoefficientB calculates RTD B coefficient

RTDcoefficientC calculates RTD C coefficient

Usage

RTDcoefficientA(alpha, delta)

Arguments

alpha RTD alpha coefficient delta RTD delta coefficient

Value

A RTD A coefficient

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

14 RTDdelta

RTDdelta	RTD delta coefficient
----------	-----------------------

Description

RTDdelta calculates RTD delta coefficient

Usage

```
RTDdelta(R0, Rth, Th,alpha)
```

Arguments

Rth resistance of the sensor at the highest temperature

Th highest temperature in the calibration range

alpha RTD alpha coefficient

Value

delta RTD delta coefficient

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

RTDequation 15

RTDequation	RTD equation with 3 constants

Description

RTDequation calculates the RTD equation

Usage

```
RTDequation(R0, T, A, B, C=NA)
```

Arguments

RØ	resistance at 0C
Т	temperature in C
A	RTD constant
В	RTD constant
С	RTD constant

Value

R resistance

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

16 RTDmetalResistance

Description

RTDmetalResistance calculates Metal RTD resistance

Usage

```
RTDmetalResistance(R0, T, A, B, C, metal=NA)
```

Arguments

R0	resistance at 0C
Т	temperature in C
Α	specific constant A
В	specific constant B
С	specific constant C
metal	optional, if chosen then A, B and C are the ones for this metal

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 $\label{lem:capgo_local_resources_temperature_RTDs/RTD.html} Capgo Inc., 2014 Introduction to RTDs \ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

 ${\tt RTDmetalResistanceFromAlpha}$

Simplified Equation for Meta RTD Resistance

Description

RTDmetalResistanceFromAlpha calculates simplified equation for Meta RTD resistance

Usage

```
RTDmetalResistanceFromAlpha(R0, T, alpha=NA, metal='nickel')
```

Arguments

RØ	resistance at OC
T	temperature in C

alpha optional resistance's temperature coefficient

metal optional metal to get alpha

Value

R RTD resistance

Author(s)

Jose Gama

Source

Capgo Inc., 2014 Introduction to RTDs http://www.capgo.com/Resources/Temperature/RTDs/RTD.html

References

 ${\tt RTDmolybdenumResistanceFromAlpha}$

Simplified Equation for Molybdenum RTD Resistance

Description

 ${\tt RTDmolybdenumResistanceFromAlpha\ calculates\ simplified\ equation\ for\ Molybdenum\ RTD\ resistance}$

Usage

RTDmolybdenumResistanceFromAlpha(R0, T, alpha=NA)

Arguments

R0 resistance at 0C
T temperature in C

alpha optional resistance's temperature coefficient

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 ${\tt RTDmolybdenumTemperatureFromAlpha}$

Simplified Equation for Molybdenum RTD temperature

Description

 ${\tt RTDmolybdenumTemperatureFromAlpha}\ calculates\ simplified\ equation\ for\ Molybdenum\ RTD\ temperature$

Usage

RTDmolybdenumTemperatureFromAlpha(R0, Rt, alpha=NA)

Arguments

R0 resistance at 0C

Rt resistance at temperature T

alpha optional resistance's temperature coefficient

Value

T RTD temperature

Author(s)

Jose Gama

Source

 $\label{lem:capgo_local_com_resources_temperature_RTDs/RTD.html} Capgo Inc., 2014 Introduction to RTDs \ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 $\label{lem:capgo_loss} \textbf{Capgo Inc., } 2014\,\textbf{Introduction to RTDs http://www.capgo.com/Resources/Temperature/RTDs/RTD.html}$

 ${\tt RTDnickelIronResistanceFromAlpha}$

Simplified Equation for Nickel-Iron RTD Resistance

Description

 ${\tt RTDnickelIronResistanceFromAlpha\ calculates\ simplified\ equation\ for\ Nickel-Iron\ RTD\ resistance}$

Usage

RTDnickelIronResistanceFromAlpha(R0, T, alpha=NA)

Arguments

R0 resistance at 0C
T temperature in C

alpha optional resistance's temperature coefficient

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

RTDnickelIronTemperatureFromAlpha

Simplified Equation for Nickel-Iron RTD temperature

Description

 ${\tt RTDnickelIronTemperatureFromAlpha\ calculates\ simplified\ equation\ for\ Nickel-Iron\ RTD\ temperature}$

Usage

RTDnickelIronTemperatureFromAlpha(R0, Rt, alpha=NA)

Arguments

R0 resistance at 0C

Rt resistance at temperature T

alpha optional resistance's temperature coefficient

Value

T RTD temperature

Author(s)

Jose Gama

Source

 $\label{lem:capgo_local_com_resources_temperature_RTDs/RTD.html} Capgo Inc., 2014 Introduction to RTDs \ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 $\label{lem:capgo_loss} Capgo\:Inc., 2014\:Introduction\:to\:RTDs\:http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

22 RTDnickelResistance

RTDnickelResistance

Simplified Equation for Nickel-Iron RTD Resistance

Description

RTDnickelResistance calculates simplified equation for Nickel-Iron RTD resistance

Usage

```
RTDnickelResistance(R0, T, A=NA, B=NA, D=NA, F=NA)
```

Arguments

RØ	resistance at 0C
T	temperature in C
Α	specific constant A (optional)
В	specific constant B (optional)
D	specific constant D (optional)
F	specific constant F (optional)

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 ${\tt RTDnickelResistanceFromAlpha}$

Simplified Equation for Nickel RTD Resistance

Description

RTDnickelResistanceFromAlpha calculates simplified equation for Nickel RTD resistance

Usage

RTDnickelResistanceFromAlpha(R0, T, alpha=NA)

Arguments

R0 resistance at 0C
T temperature in C

alpha optional resistance's temperature coefficient

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

RTDnickelTemperatureFromAlpha

Simplified Equation for Nickel RTD temperature

Description

RTDnickelTemperatureFromAlpha calculates simplified equation for Nickel RTD temperature

Usage

RTDnickelTemperatureFromAlpha(R0, Rt, alpha=NA)

Arguments

R0 resistance at 0C

Rt resistance at temperature T

alpha optional resistance's temperature coefficient

Value

T RTD temperature

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 ${\tt RTDplatinumResistance} \ \ \textit{Metal RTD resistance}$

Description

RTDplatinumResistance calculates Metal RTD resistance

Usage

```
RTDplatinumResistance(R0, T, A=NA, B=NA, C=NA, stdRTD='DIN43760')
```

Arguments

R0	resistance at 0C
Т	temperature in C
Α	specific constant A
В	specific constant B
С	specific constant C
stdRTD	standard, optional alternative to get A, B and C

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

 ${\tt RTDplatinumResistanceFromAlpha}$

Simplified Equation for Platinum RTD Resistance

Description

RTDplatinumResistanceFromAlpha calculates simplified equation for Platinum RTD resistance

Usage

```
RTDplatinumResistanceFromAlpha(R0, T, alpha=NA, stdRTD='DIN43760')
```

Arguments

RØ	resistance at 0C	
Т	temperature in C	

alpha optional resistance's temperature coefficient stdRTD standard, optional alternative way to get alpha

Value

R RTD resistance

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

${\tt RTDplatinumTemperature}$

Callendar-Van Dusen equation for platinum RTD temperature from resistance

Description

 $\label{lem:reconstruction} \textbf{RTDplatinumTemperature} \ \ calculates \ \ the \ \ Callendar-Van \ \ Dusen \ \ equation \ \ for \ \ platinum \ \ RTD \ \ temperature \ \ from \ \ resistance$

Usage

```
RTDplatinumTemperature(R0, R, alpha, beta, delta)
```

Arguments

RØ	resistance at 0C
R	Measured resistance
alpha	specific constant A
beta	specific constant B
delta	specific constant C

Value

T RTD temperature

Author(s)

Jose Gama

Source

John G. Webster, 1999 The Measurement, Instrumentation and Sensors Handbook CRC Press LLC

References

John G. Webster, 1999 The Measurement, Instrumentation and Sensors Handbook CRC Press LLC

28 rtdPT100

rtdPlatinumToleranceValues

Platinum RTD Tolerance Values

Description

rtdPlatinumToleranceValues is a table with Platinum RTD Tolerance Values

Usage

rtdPlatinumToleranceValues

Author(s)

Jose Gama

Source

Watlow Electric Manufacturing Company, 2014 Platinum RTD Tolerance Values https://www.watlow.com/reference/refdata/0315.cfm

References

Watlow Electric Manufacturing Company, 2014 Platinum RTD Tolerance Values https://www.watlow.com/reference/refdata/0315.cfm

Examples

data(rtdPlatinumToleranceValues)
str(rtdPlatinumToleranceValues)

rtdPT100

rtdPT100 Resistance vs Temperature

Description

rtdPT100 is a table with PT100 resistance vs temperature rtdPT1000 is a table with PT1000 resistance vs temperature

Usage

rtdPT100

Author(s)

Jose Gama

Source

Pavitronic, 2014 pt100 resistance / temperature. http://pavitronic.dk/eng/pt100val.html

References

Pavitronic, 2014 pt100 resistance / temperature. http://pavitronic.dk/eng/pt100val.html

Examples

```
data(rtdPT100)
str(rtdPT100)
```

 ${\tt rtdResistanceWireComparison}$

RTD Resistance Wire Comparison

Description

rtdResistanceWireComparison is a table with RTD Resistance Wire Comparison

Usage

rtdResistanceWireComparison

Author(s)

Jose Gama

Source

Watlow Electric Manufacturing Company, 2014 RTD Resistance Wire Comparison https://www.watlow.com/reference/refdata/0315.cfm

References

Watlow Electric Manufacturing Company, 2014 RTD Resistance Wire Comparison https://www.watlow.com/reference/refdata/0315.cfm

Examples

```
data(rtdResistanceWireComparison)
str(rtdResistanceWireComparison)
```

30 RTDtemperatureFit

rtdResistivityAlpha Resistivity and Alpha Coefficients for RTDs

Description

rtdResistivityAlpha is a table with Resistivity and Alpha Coefficients for RTDs

Usage

rtdResistivityAlpha

Author(s)

Jose Gama

Source

Madur Inc., 2014 Resistive temperature detectors PTxx www.madur.com

References

Madur Inc., 2014 Resistive temperature detectors PTxx www.madur.com

Examples

```
data(rtdResistivityAlpha)
str(rtdResistivityAlpha)
```

RTDtemperatureFit

RTD temperature Fit

Description

RTDtemperatureFit RTD temperature Fit

Usage

```
RTDtemperatureFit(R, R0, fitRTD='linear', alpha=0.00385)
```

Arguments

_	•	-
R	resistance at temperati	ire T

R0 resistance at 0C

fitRTD type of fitting method (linear, quadratic, cubic, polynomial)

alpha (optional) resistance's temperature coefficient

Value

T temperature (C)

Author(s)

Jose Gama

Source

 $Mosaic\ Industries, Inc., 2014\ Relating\ resistance\ to\ temperature\ http://www.mosaic-industries.\\ com/embedded-systems/microcontroller-projects/temperature-measurement/platinum-rtd-sensors/resistance-calibration-table$

References

 $Mosaic\ Industries, Inc., 2014\ Relating\ resistance\ to\ temperature\ http://www.mosaic-industries.\\ com/embedded-systems/microcontroller-projects/temperature-measurement/platinum-rtd-sensors/resistance-calibration-table$

Examples

```
data(RTDtemperatureFit)
str(RTDtemperatureFit)
```

 ${\tt RTD temperature From Resistance}$

RTD Temperature from Resistance

Description

RTDtemperatureFromResistance calculates RTD Temperature from Resistance

Usage

RTDtemperatureFromResistance(R, R0)

Arguments

R resistance measured
R0 resistance at 0C

Value

T Temperature

Author(s)

Jose Gama

32 rtdTypes

Source

Madur In., 2014 Resistive temperature detectors PTxx www.madur.com

References

Madur In., 2014 Resistive temperature detectors PTxx www.madur.com

rtdTypes

Types of RTDs

Description

rtdTypes is a table with Types of RTDs

Usage

rtdTypes

Author(s)

Jose Gama

Source

 $Capgo\ Inc., 2014\ Introduction\ to\ RTDs\ http://www.capgo.com/Resources/Temperature/RTDs/RTD.html$

References

Examples

```
data(rtdTypes)
str(rtdTypes)
```

SelfHeatingError 33

SelfHeatingError self-heating error

Description

SelfHeatingError calculates the self-heating error

Usage

```
SelfHeatingError(I, R, Ek)
```

Arguments

I intensity (A)
R resistance (ohm)

Ek self-heating coefficient(mW/C)

Value

E self-heating error

Author(s)

Jose Gama

Source

Gerd Scheller, 2003 Error Analysis of a Temperature Measurement System with worked examples JUMO, FAS 625, Edition 06.03

References

Gerd Scheller, 2003 Error Analysis of a Temperature Measurement System with worked examples JUMO, FAS 625, Edition 06.03

SensorSensitivity Sensitivity of the sensor

Description

SensorSensitivity calculates the Sensitivity of the sensor

Usage

```
SensorSensitivity(T1, E1, T2, E2)
```

34 SplineEval

Arguments

T1	measured temperature
E1	resistance (platinum sensor) or the thermoelectric emf (thermocouple) for T1
T2	measured temperature
E2	resistance (platinum sensor) or the thermoelectric emf (thermocouple) for T2

Value

Cs Sensor Sensitivity

Author(s)

Jose Gama

Source

Gerd Scheller, 2003 Error Analysis of a Temperature Measurement System with worked examples JUMO, FAS 625, Edition 06.03

References

Gerd Scheller, 2003 Error Analysis of a Temperature Measurement System with worked examples JUMO, FAS 625, Edition 06.03

SplineEval	Spline algorithm used in The Observed Properties of Liquid Helium at the Saturated Vapor Pressure
------------	---

Description

SplineEval Spline algorithm used in The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

Usage

```
SplineEval(x, knotsK, coeffsC)
```

Arguments

x Temperature	vector
---------------	--------

knotsK knots, internal and external, vector

coeffsC coefficients vector

Value

S Spline result

tableAWGCuWire 35

Author(s)

Jose Gama

Source

Donnelly, Donnelly and Hills [J. Low Temp. Phys. 44, 471 (1981)]

References

Donnelly, Donnelly and Hills [J. Low Temp. Phys. 44, 471 (1981)]

tableAWGCuWire

AWG Wire Sizes with Resistance and More

Description

tableAWGCuWire is a table with AWG Wire sizes with resistance and more

Usage

tableAWGCuWire

Author(s)

Jose Gama

Source

Lund Instrument Engineering, Inc., 2014 Wire Gauge and Current Limits Including Skin Depth and Strength http://www.powerstream.com/Wire_Size.htm

References

Lund Instrument Engineering, Inc., 2014 Wire Gauge and Current Limits Including Skin Depth and Strength http://www.powerstream.com/Wire_Size.htm

Examples

```
data(tableAWGCuWire)
str(tableAWGCuWire)
```

temperature Measurement Difficulty

temperature Measurement Difficulty

Description

temperatureMeasurementDifficulty is a table with the current state of difficulties with temperature measurements

Usage

temperatureMeasurementDifficulty

Author(s)

Jose Gama

Source

 $CapGo, 2013\ Is\ temperature\ measurement\ difficult?\ http://www.capgo.com/Resources/Temperature/Thermocouple.html$

References

 $CapGo, 2013\ Is\ temperature\ measurement\ difficult?\ http://www.capgo.com/Resources/Temperature/Thermocouple.html$

Examples

data(temperatureMeasurementDifficulty)
str(temperatureMeasurementDifficulty)

temperature Sensor Types

Temperature Sensor Types

Description

temperatureSensorTypes is a table with Temperature Sensor Types

Usage

temperature Sensor Types

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

```
data(temperatureSensorTypes)
str(temperatureSensorTypes)
```

 $The {\tt rmistorAlphaApproximatedFromBeta}$

Thermistor Alpha Approximated From Beta

Description

ThermistorAlphaApproximatedFromBeta Thermistor alpha approximated from beta

Usage

ThermistorAlphaApproximatedFromBeta(T, betaTH)

Arguments

T temperature

betaTH Beta parameter of the thermistor (calculated or from the data sheet)

Value

a parameter of the thermistor

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

References

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

Examples

data(ThermistorAlphaApproximatedFromBeta)
str(ThermistorAlphaApproximatedFromBeta)

 ${\tt ThermistorApproxDriftResistance}$

Approximation of Drift Resistance of NTC Thermistors

Description

ThermistorApproxDriftResistance Estimates the Drift Resistance of NTC Thermistors

Usage

```
ThermistorApproxDriftResistance(Ri, T, a, b)
```

Arguments

Ri	initial resistance
Т	aging time
a	intercept at T=1
b	slope (%deltaR per decade of time T)

Value

Rt resistance at time T

Author(s)

Jose Gama

Source

```
\label{lem:quality} Quality\ Thermistor,\ Inc.\ 2108\ http://www.cornerstonesensors.com/About.asp?PageCode=Stability&Print=Page
```

References

```
Quality Thermistor, Inc. 2108 http://www.cornerstonesensors.com/About.asp?PageCode=Stability&Print=Page
```

ThermistorApproxDriftTime

Approximation of Drift Time of NTC Thermistors

Description

 $\label{thm:constraints} The \textit{rmistorApproxDriftTime} \ Estimates \ the \ Drift \ Time \ of \ NTC \ Thermistors$

Usage

```
ThermistorApproxDriftTime(Ri, Rt, a, b)
```

Arguments

Ri	initial resistance
Rt	resistance at time T
a	intercept at T=1
b	slope (%deltaR per decade of time T)

Value

T aging time

Author(s)

Jose Gama

Source

```
Quality Thermistor, Inc. 2108 http://www.cornerstonesensors.com/About.asp?PageCode=Stability&Print=Page
```

References

```
\label{lem:quality} Quality\ Thermistor,\ Inc.\ 2108\ http://www.cornerstonesensors.com/About.asp?PageCode=Stability&Print=Page
```

40 ThermistorCalculateBeta

ThermistorCalculateBeta

Estimate thermistor beta coefficient from two known resistance/temperature values

Description

ThermistorCalculateBeta Estimates thermistor beta coefficient from two known resistance/temperature values

Usage

```
ThermistorCalculateBeta(R0, T0, R1, T1)
```

Arguments

R0	resistance measurement 1
Т0	temperature measurement 1
R1	resistance measurement 2
T1	temperature measurement 2

Value

b beta coefficient

Author(s)

Jose Gama

Source

RepRap wiki, 2014 Measuring Thermistor Beta http://reprap.org/wiki/MeasuringThermistorBeta

References

RepRap wiki, 2014 Measuring Thermistor Beta http://reprap.org/wiki/MeasuringThermistorBeta

ThermistorCalibrationEquation

Thermistor calibration equation

Description

ThermistorCalibrationEquation Thermistor calibration equation

Usage

ThermistorCalibrationEquation(R, R0, thCoeffs)

Arguments

R resistance measurement for temperature T

R0 resistance measurement for temperature T0

thCoeffs Thermistor coefficient

Value

T temperature

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

 $The {\it rmistor Calibration Equation Hoge 1}$

Resistance-temperature calibration equation Hoge 1

Description

ThermistorCalibrationEquationHoge1 Resistance-temperature calibration equation Hoge 1

Usage

ThermistorCalibrationEquationHoge1(Rt, A0, A1, A2)

Arguments

Rt	resistance measurement for temperature T
A0	equation coefficient A0
A1	equation coefficient A1
A2	equation coefficient A2

Value

T temperature

Author(s)

Jose Gama

Source

Chiachung Chen, 2009 Evaluation of resistance–temperature calibration equations for NTC thermistors Measurement 42, Elsevier

References

 $The {\it rmistorCalibrationEquationHoge2}$

Resistance–temperature calibration equation Hoge 1

Description

ThermistorCalibrationEquationHoge2 Resistance—temperature calibration equation Hoge 2

Usage

ThermistorCalibrationEquationHoge2(Rt, A0, A1, A2, A3)

Arguments

Rt	resistance measurement for temperature T
A0	equation coefficient A0
A1	equation coefficient A1
A2	equation coefficient A2
A3	equation coefficient A3

Value

T temperature

Author(s)

Jose Gama

Source

Chiachung Chen, 2009 Evaluation of resistance–temperature calibration equations for NTC thermistors Measurement 42, Elsevier

References

ThermistorCalibrationEquationHoge3

Resistance-temperature calibration equation Hoge 1

Description

 ${\it ThermistorCalibrationEquationHoge 3 Resistance-temperature\ calibration\ equation\ Hoge\ 3}$

Usage

ThermistorCalibrationEquationHoge3(Rt, A0, A1, A2, A3, A4)

Arguments

Rt	resistance measurement for temperature T
A0	equation coefficient A0
A1	equation coefficient A1
A2	equation coefficient A2
А3	equation coefficient A3
A4	equation coefficient A4

Value

T temperature

Author(s)

Jose Gama

Source

Chiachung Chen, 2009 Evaluation of resistance–temperature calibration equations for NTC thermistors Measurement 42, Elsevier

References

 $The {\tt rmistorCalibrationEquationHoge 4}$

Resistance–temperature calibration equation Hoge 1

Description

ThermistorCalibrationEquationHoge4 Resistance-temperature calibration equation Hoge 4

Usage

ThermistorCalibrationEquationHoge4(Rt, A0, A1, A2, A5)

Arguments

Rt	resistance measurement for temperature T
A0	equation coefficient A0
A1	equation coefficient A1
A2	equation coefficient A2
A5	equation coefficient A5

Value

T temperature

Author(s)

Jose Gama

Source

Chiachung Chen, 2009 Evaluation of resistance–temperature calibration equations for NTC thermistors Measurement 42, Elsevier

References

 $The {\tt rmistorCalibrationEquationHoge5}$

Resistance-temperature calibration equation Hoge 1

Description

ThermistorCalibrationEquationHoge5 Resistance—temperature calibration equation Hoge 5

Usage

ThermistorCalibrationEquationHoge5(Rt, C1, C2, C3)

Arguments

Rt	resistance measurement for temperature T
C1	equation coefficient C1
C2	equation coefficient C2
C3	equation coefficient C3

Value

T temperature

Author(s)

Jose Gama

Source

Chiachung Chen, 2009 Evaluation of resistance–temperature calibration equations for NTC thermistors Measurement 42, Elsevier

References

 $The {\tt rmistor} {\tt ConvertADC} reading {\tt ToTemperatureC}$

Convert ADC reading into a temperature in Celcius by using two resistors

Description

ThermistorConvertADCreadingToTemperatureC Converts ADC reading into a temperature in Celcius by using two resistors values

Usage

```
ThermistorConvertADCreadingToTemperatureC(adc, R0, T0, betaTH, R1, R2, vadc = 5.0, vcc = 5.0, ADCbits=10)
```

Arguments

adc	ADC reading
RØ	resistance measurement 1
T0	resistance temperature 1
betaTH	beta coefficient
R1	resistor value 1
R2	resistor value 2
vadc	ADC reference
vcc	supply voltage to potential divider
ADCbits	ADC bit resolution

Value

C Temperature in Celsius

Author(s)

Jose Gama

Source

Chris Palmer, 2007 Measuring temperature the easy way http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html

References

Chris Palmer, 2007 Measuring temperature the easy way http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html

 $The {\tt rmistorConvertTemperatureCtoADCreading}$

Convert temperature in Celcius into ADC reading, with two resistors

Description

ThermistorConvertTemperatureCtoADCreading Converts temperature in Celcius into ADC reading, with two resistors

Usage

```
ThermistorConvertTemperatureCtoADCreading(T, R0, T0, R1, R2, betaTH, vadc = 5.0, vcc = 5.0, ADCbits=10)
```

Arguments

Т	Temperature in Celsius
R0	resistance measurement 1
T0	resistance temperature 1

R1 resistor value 1
R2 resistor value 2
betaTH beta coefficient
vadc ADC reference

vcc supply voltage to potential divider

ADCbits ADC bit resolution

Value

adc ADC value

Author(s)

Jose Gama

Source

 $Chris\ Palmer,\ 2007\ Measuring\ temperature\ the\ easy\ way\ http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html$

References

Chris Palmer, 2007 Measuring temperature the easy way http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html

 $The {\tt rmistor Hoge 1Coeff From Measurements}$

Calculate Hogel coefficients from measurements

Description

ThermistorHoge1CoeffFromMeasurements Calculate Hoge1 coefficients from measurements

Usage

ThermistorHoge1CoeffFromMeasurements(resAndTemp)

Arguments

resAndTemp matrix with temperatures (C) in column 1 and resistance (ohm) in column 2

Value

b beta coefficient

Author(s)

Jose Gama

 $thermistor {\tt MaximumMeasuringVoltage}$

NTC thermistor Nominal Resistance and Maximum measuring voltage

Description

thermistorMaximumMeasuringVoltage is a table with NTC thermistor Nominal Resistance (Rn) and Maximum measuring voltage (V)

Usage

 $thermistor {\tt MaximumMeasuringVoltage}$

Author(s)

Jose Gama

Source

AVX Corporation, 2014 AVX NTC Thermistors v11.4 http://www.avx.com

50 ThermistorResistance

References

AVX Corporation, 2014 AVX NTC Thermistors v11.4 http://www.avx.com

Examples

```
data(thermistorMaximumMeasuringVoltage)
str(thermistorMaximumMeasuringVoltage)
```

ThermistorResistance Estimate thermistor resistance from temperature

Description

ThermistorResistance Estimates thermistor resistance from temperature

Usage

ThermistorResistance(Tx, R0, betaTH, T0)

Arguments

Tx measured temperature

R0 R0 resistance at temperature To (25C, expressed in Kelvin)

betaTH Beta parameter of the thermistor (calculated or from the data sheet)

T0 resistance temperature

Value

R resistance in ohms

Author(s)

Jose Gama

Source

Chris Palmer, 2007 Measuring temperature the easy way http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html

References

Chris Palmer, 2007 Measuring temperature the easy way http://hydraraptor.blogspot.co.uk/2007/10/measuring-temperature-easy-way.html

ThermistorResistanceDeviation

Thermistor Resistance Deviation

Description

ThermistorResistanceDeviation Thermistor Resistance Deviation

Usage

ThermistorResistanceDeviation(deltaBetaTH, deltaR25)

Arguments

```
\begin{array}{ll} \mbox{deltaBetaTH} & \mbox{delta(beta)} \\ \mbox{deltaR25} & \mbox{delta(R25)} \end{array}
```

Value

R Resistance (ohm)

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

References

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

Examples

```
data(ThermistorResistanceDeviation)
str(ThermistorResistanceDeviation)
```

 $The {\tt rmistorResistanceStein} hart {\tt Hart}$

Steinhart-Hart Equation for Thermistor Resistance

Description

ThermistorResistanceSteinhartHart Estimates the thermistor resistance using the Steinhart-Hart equation

Usage

ThermistorResistanceSteinhartHart(T, A, B, C)

Arguments

T	measured temperature for resistance R
Α	Steinhart-Hart Coefficient A (K^0)
В	Steinhart-Hart Coefficient B (K^1)
С	Steinhart-Hart Coefficient C (K^2)

Value

R resistance

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

References

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

ThermistorResistanceSteinhartHart2

Steinhart-Hart equation for thermistor resistance, calculated with Maxima

Description

ThermistorResistanceSteinhartHart2 Steinhart-Hart equation for thermistor resistance, calculated with Maxima

Usage

ThermistorResistanceSteinhartHart2(T, A, B, C)

Arguments

T	measured temperature for resistance R
A	Steinhart-Hart Coefficient A (K^0)
В	Steinhart-Hart Coefficient B (K^1)
С	Steinhart-Hart Coefficient C (K^2)

Value

R resistance

Author(s)

Jose Gama

 $The {\tt rmistorResistanceStein} hart {\tt HartUsing3T}$

Steinhart-Hart equation for thermistor resistance using 3 temperature points

Description

ThermistorResistanceSteinhartHartUsing3T Steinhart-Hart equation for thermistor resistance using 3 temperature points

Usage

ThermistorResistanceSteinhartHartUsing3T(T, T2, T3, R0, A1, B1, C1=0, D1)

Arguments

T	measured temperature for resistance R
T2	2nd measured temperature for resistance R
Т3	3rd measured temperature for resistance R
RØ	measured resistance
A1	Steinhart-Hart Coefficient A (K^0)
B1	Steinhart-Hart Coefficient B (K^1)
C1	Steinhart-Hart Coefficient C (K^2)
D1	Steinhart-Hart Coefficient D (K^3)

Value

R resistance

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

ThermistorResistanceTolerance

Thermistor relationship resistance tolerance

Description

ThermistorResistanceTolerance Thermistor relationship resistance tolerance

Usage

ThermistorResistanceTolerance(TempAccy, alpha)

Arguments

TempAccy	Temperature Accuracy
alpha	Thermistor alpha constant

Value

t Tolerance

ThermistorSensitivity 55

Author(s)

Jose Gama

Source

Spectrum Sensors & Controls Inc., 2014 NTC Thermistors Engineering Notes http://www.SpecSensors.com

References

Spectrum Sensors & Controls Inc., 2014 NTC Thermistors Engineering Notes http://www.SpecSensors.com

ThermistorSensitivity Thermistor Sensitivity

Description

ThermistorSensitivity Thermistor Sensitivity (relative change in resistance for a change in temperature)

Usage

ThermistorSensitivity(T, beta)

Arguments

T measured temperature for resistance R

beta Coefficient

Value

S Sensitivity

Author(s)

Jose Gama

Source

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

References

John G. Webster and Halit Eren, 2014 Measurement, Instrumentation, and Sensors Handbook, Second Edition Spatial, Mechanical, Thermal, and Radiation Measurement CRC Press

ThermistorSlope

Thermistor Slope (Resistance Ratio)

Description

ThermistorSlope Thermistor Slope (Resistance Ratio)

Usage

ThermistorSlope(R0, R70)

Arguments

R0 resistance at temperature To (0C, expressed in Kelvin)
R70 resistance at temperature To (70C, expressed in Kelvin)

Value

R resistance in ohms

Author(s)

Jose Gama

Source

NTC Thermistor theory BetaTHERM sensors www.betatherm.com

References

NTC Thermistor theory BetaTHERM sensors www.betatherm.com

 $The {\tt rmistorStein} hart {\tt HartCoeffFromMeasurements}$

Steinhart-Hart coefficients A, B, C from measurements

Description

 $The {\tt rmistorStein} hart {\tt HartCoeffFromMeasurements} \ \ Steinhart {\tt Hart coefficients} \ A, \ B, \ C \ from \ measurements$

Usage

ThermistorSteinhartHartCoeffFromMeasurements(resAndTemp)

ThermistorTemperature

Arguments

resAndTemp matrix with temperatures (C) in column 1 and resistance (ohm) in column 2

Value

A coefficient A
B coefficient B
C coefficient C

Author(s)

Jose Gama

Source

NTC Thermistor theory BetaTHERM sensors www.betatherm.com

References

NTC Thermistor theory BetaTHERM sensors www.betatherm.com

ThermistorTemperature RTD temperature Fit

Description

ThermistorTemperature RTD temperature Fit

Usage

ThermistorTemperature(R, R0, betaTH, T0)

Arguments

R0 resistance at 0C

R resistance measured

betaTH beta parameter of the thermistor (calculated or from the data sheet)

T0 temperature at resistance R0

Value

T temperature (C)

Author(s)

Jose Gama

Source

Mosaic Industries, Inc., 2014 ntc-thermistors http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/ntc-thermistors/resistance-equation

References

Mosaic Industries, Inc., 2014 ntc-thermistors http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/ntc-thermistors/resistance-equation

Examples

```
data(ThermistorTemperature)
str(ThermistorTemperature)
```

ThermistorTemperatureAccuracy

Thermistor relationship temperature accuracy

Description

ThermistorTemperatureAccuracy Thermistor relationship temperature accuracy

Usage

ThermistorTemperatureAccuracy(ResTol, alpha)

Arguments

ResTol Thermistor resistance tolerance alpha Thermistor alpha constant

Value

a Accuracy

Author(s)

Jose Gama

Source

Spectrum Sensors & Controls Inc., 2014 NTC Thermistors Engineering Notes http://www.SpecSensors.com

References

Spectrum Sensors & Controls Inc., 2014 NTC Thermistors Engineering Notes http://www.SpecSensors.com

ThermistorTemperatureDeviation

Thermistor temperature Deviation

Description

ThermistorTemperatureDeviation Thermistor temperature Deviation

Usage

ThermistorTemperatureDeviation(deltaBetaTH, deltaR25, alpha)

Arguments

alpha Thermistor alpha coefficient

Value

T temperature (C)

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

References

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

Examples

```
data(ThermistorTemperatureDeviation)
str(ThermistorTemperatureDeviation)
```

ThermistorTemperatureFitPolynomial RTD temperature Fit Polynomial

Description

ThermistorTemperatureFitPolynomial RTD temperature Fit Polynomial

Usage

ThermistorTemperatureFitPolynomial(R, R0, A, B, C, D)

Arguments

R	resistance measured
R0	resistance at 0C
Α	Coefficient A
В	Coefficient B
С	Coefficient C
D	Coefficient D

Value

T temperature (C)

Author(s)

Jose Gama

Source

 $Mosaic\ Industries, Inc., 2014\ ntc-thermistors\ http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/ntc-thermistors/resistance-equation$

References

Mosaic Industries, Inc., 2014 ntc-thermistors http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/ntc-thermistors/resistance-equation

Examples

```
data(ThermistorTemperatureFitPolynomial)
str(ThermistorTemperatureFitPolynomial)
```

 $The {\tt rmistorTemperatureStein} hart {\tt Hart}$

Steinhart-Hart Equation for Thermistor Temperature

Description

ThermistorTemperatureSteinhartHart Estimates the thermistor temperature using the Steinhart-Hart equation

Usage

ThermistorTemperatureSteinhartHart(R, R0, A, B, C=0, D)

Arguments

R	measured resistance for temperature T
R0	resistance at temperature To (25°C, expressed in ohms)
A	Steinhart-Hart Coefficient A1 (K^0)
В	Steinhart-Hart Coefficient B1 (K^-1)
С	Steinhart-Hart Coefficient C1 (K^-2)
D	Steinhart-Hart Coefficient D1 (K^-3)

Value

R resistance

Note

Equation ThermistorCalibrationEquation should be used instead of the Steinhart and Hart equation because the performance of this equation is affected by: 1. the thermistor's R(25 C) value 2. the unit of measurement 3. R0 5. the thermistors being connected in series or parallel

Source: John G. Webster and Halit Eren, 2014, Measurement, Instrumentation, and Sensors Handbook, Second Edition, CRC Press

Bennett, A. S., 1971, The calibration of thermistors over the range 0-30 C Deep Sea Research, 19, 157-163.

Author(s)

Jose Gama

Source

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

References

Daycounter, Inc. Engineering Services, 2014 Steinhart-Hart Thermistor Calculator http://www.daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

ThermistorVolumeResistivityFromR25

Thermistor Volume Resistivity at 25C

Description

ThermistorVolumeResistivityFromR25 Estimates thermistor Volume Resistivity at 25C

Usage

ThermistorVolumeResistivityFromR25(R25, Thck, L, W)

Arguments

R25 measured resistance 25C (ohms)

Thck thickness of the conductor (chip) (cm)

L length of the conductor (chip) (cm)

W width of the conductor (chip) (cm)

Value

r Resistivity

Author(s)

Jose Gama

Source

BetaTHERM sensors, 2014 NTC Thermistor theory www.betatherm.com

References

BetaTHERM sensors, 2014 NTC Thermistor theory www.betatherm.com

 $The \verb|rmistorVolume| Resistivity From Rho$

Thermistor Volume Resistivity at 25C

Description

ThermistorVolumeResistivityFromRho Estimates thermistor Volume Resistivity at 25C

Usage

```
ThermistorVolumeResistivityFromRho(Rho, Thck, L, W)
```

Arguments

Rho	material resistivity in ohm/cm
Thck	thickness of the conductor (chip) (cm)
L	length of the conductor (chip) (cm)

width of the conductor (chip) (cm) W

Value

Resistivity r

Author(s)

Jose Gama

Source

BetaTHERM sensors, 2014 NTC Thermistor theory www.betatherm.com

References

BetaTHERM sensors, 2014 NTC Thermistor theory www.betatherm.com

 $thermocouple {\tt Cables}$

Thermocouple Cables

Description

thermocoupleCables is a table with Thermocouple Cables

Usage

thermocoupleCables

Author(s)

Jose Gama

Source

Labfacility Limited, 2014 Thermocouple Cables https://www.labfacility.com/thermocouple-cables/

References

Labfacility Limited, 2014 Thermocouple Cables https://www.labfacility.com/thermocouple-cables/

thermocoupleCoefficientsTypeB

Polynomial Equation Coefficients for Voltage to Temperature for Thermocouple Type B

Description

 $\label{thermocoupleCoefficientsTypeB} \ Coefficients \ for \ Voltage \ to \ Temperature \ for \ Thermocouple \ Type \ B$

Usage

 $ther {\tt mocoupleCoefficientsTypeB}$

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(thermocoupleCoefficientsTypeB)
str(thermocoupleCoefficientsTypeB)

 $\label{lem:coupleCoefficientsTypeBrationalPolynomial} Polynomial\ Equation\ Coefficients\ for\ Voltage\ to\ Temperature\ for\ Thermocouple\ Type\ B$

Description

 $ther {\tt mocoupleCoefficientsTypeBrationalPolynomial\ Polynomial\ Equation\ Coefficients\ for\ Voltage\ to\ Temperature\ for\ Ther {\tt mocouple\ Type\ B}$

Usage

thermocouple Coefficients Type Brational Polynomial

Author(s)

Jose Gama

Source

Mosaic Industries, Inc., 2014 rational polynomial function approximation for Type K thermocouples http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages

References

Mosaic Industries, Inc., 2014 rational polynomial function approximation for Type K thermocouples http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages

Examples

data(thermocoupleCoefficientsTypeBrationalPolynomial)
str(thermocoupleCoefficientsTypeBrationalPolynomial)

 $thermocouple {\tt ColdJunctionVoltage Coeff}$

Thermocouple Cold Junction Voltage Coefficients

Description

thermocoupleColdJunctionVoltageCoeff is a table with Thermocouple Cold Junction Voltage Coefficients

Usage

 $thermocouple {\tt ColdJunctionVoltage Coeff}$

Author(s)

Jose Gama

Source

 $Capgo\ Pty\ Ltd,\ 2013\ Computing\ cold\ junction\ voltages\ http://www.capgo.com/Resources/Temperature/Thermocouple.html$

References

Capgo Pty Ltd, 2013 Computing cold junction voltages http://www.capgo.com/Resources/Temperature/Thermocouple.html

thermocoupleDefinitionTypes

Thermocouple Types Definitions

Description

thermocoupleDefinitionTypes is a table with Thermocouple Types Definitions

Usage

thermocoupleDefinitionTypes

Author(s)

Jose Gama

Source

 $CapGo, 2013\ Types\ of\ thermocouples\ http://www.capgo.com/Resources/Temperature/Thermocouple/Thermocouple.html$

References

 $CapGo, 2013\ Types\ of\ thermocouples\ http://www.capgo.com/Resources/Temperature/Thermocouple/Thermocouple.html$

Examples

```
data(thermocoupleDefinitionTypes)
str(thermocoupleDefinitionTypes)
```

ThermocoupleEquationTemperatureToVoltage

Thermocouple cold junction voltages

Description

ThermocoupleEquationTemperatureToVoltage Thermocouple cold junction voltages

Usage

ThermocoupleEquationTemperatureToVoltage(vT, thermocoupleType='k')

Arguments

```
vT vector with temperatures thermocoupleType

Thermocouple type
```

Value

V voltage (V)

Author(s)

Jose Gama

Source

 $Mosaic\ Industries, Inc., 2014\ Computing\ cold\ junction\ voltages\ http://www.mosaic-industries.\\ com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages$

References

 $Mosaic Industries, Inc., 2014 Computing cold junction voltages \ http://www.mosaic-industries.\\ com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages$

Examples

data(ThermocoupleEquationTemperatureToVoltage)
str(ThermocoupleEquationTemperatureToVoltage)

ThermocoupleEquationTypeB

Equation for Calculating Voltage from Temperature for Thermocouples Type B

Description

ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type B ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type E ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type J ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type K ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type N ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type R ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type S ThermocoupleEquationTypeB Calculates Voltage from Temperature for Thermocouples Type T

Usage

ThermocoupleEquationTypeB(vT)

Arguments

vT Vector with temperatures (C)

Value

V Voltage (mV)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

 $Thermocouple {\bf Equation Type Krational Polynomial}$

Thermocouple polynomial function approximation

Description

 $\label{thm:couple} The {\tt rmocouple} \ Equation {\tt TypeKrationalPolynomial} \ Thermocouple \ polynomial \ function \ approximation$

Usage

ThermocoupleEquationTypeKrationalPolynomial(vV, thermocoupleType='k')

Arguments

vV vector with voltages thermocoupleType

Thermocouple type

Value

T temperature (C)

Author(s)

Jose Gama

Source

Mosaic Industries, Inc., 2014 Rational polynomial function approximation for Type K thermocouples http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages

References

Mosaic Industries, Inc., 2014 Rational polynomial function approximation for Type K thermocouples http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/temperature-measurement/thermocouple/calibration-table#computing-cold-junction-voltages

Examples

data(ThermocoupleEquationTypeKrationalPolynomial)
str(ThermocoupleEquationTypeKrationalPolynomial)

thermocoupleErrorLimits

Limits of Error for Thermocouples

Description

thermocoupleErrorLimits is a table with Limits of Error for Thermocouples

Usage

 $thermocouple {\tt ErrorLimits}$

Author(s)

Jose Gama

Source

Jim Strothman, 2006 ISA Handbook of Measurement Equations and Tables, 2nd Edition The International Society of Automation

References

Jim Strothman, 2006 ISA Handbook of Measurement Equations and Tables, 2nd Edition The International Society of Automation

Examples

```
data(thermocoupleErrorLimits)
str(thermocoupleErrorLimits)
```

 $ther {\tt mocoupleExtensionCables}$

Thermocouple Extension Cables

Description

thermocoupleExtensionCables is a table with Thermocouple Extension Cables

Usage

 $ther {\tt mocouple} {\tt Extension} {\tt Cables}$

Author(s)

Jose Gama

Source

Mike Nager, 2014 Designing with Thermocouples: Get the Most from Your Measurements www.phoenixcontact.com

References

Mike Nager, 2014 Designing with Thermocouples: Get the Most from Your Measurements www.phoenixcontact.com

thermocoupleFixedPointsITS90

fixed Points ITS90

Description

thermocoupleFixedPointsITS90 is a table with the fixed Points of ITS90

Usage

thermocoupleFixedPointsITS90

Author(s)

Jose Gama

Source

National Institute of Standards and Technology (NIST), 2014 Table I Thermocouple Types Definitions http://srdata.nist.gov/its90/tables/table_iii.html

References

National Institute of Standards and Technology (NIST), 2014 Table I Thermocouple Types Definitions http://srdata.nist.gov/its90/tables/table_iii.html

Examples

data(thermocoupleFixedPointsITS90)
str(thermocoupleFixedPointsITS90)

ThermocoupleFundamentalRelation

Thermocouple Fundamental Relation

Description

ThermocoupleFundamentalRelation Thermocouple Fundamental Relation

Usage

ThermocoupleFundamentalRelation(S, T0, T1)

Arguments

S Seebeck coefficient (uV/C) or Sab Seebeck coefficient between materia	l a and b
---	-----------

T0 temperatures at T0 end
T1 temperatures at T1 end

Value

V voltage (V)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

```
data(ThermocoupleFundamentalRelation)
str(ThermocoupleFundamentalRelation)
```

ThermocoupleFundamentalRelation2

Thermocouple Fundamental Relation

Description

ThermocoupleFundamentalRelation2 Thermocouple Fundamental Relation

Usage

ThermocoupleFundamentalRelation2(Sa, Sb, T0, T1)

Arguments

Sa	Seebeck coefficient for material a
Sb	Seebeck coefficient for material b
TØ	temperatures at T0 end
T1	temperatures at T1 end

Value

V voltage (V)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

```
data(ThermocoupleFundamentalRelation2)
str(ThermocoupleFundamentalRelation2)
```

 $ther {\tt mocoupleInsulatingMaterialsCeramicPackedStock}$

Insulating Materials for Ceramic Packed Thermocouple Stock

Description

thermocoupleInsulatingMaterialsCeramicPackedStock is a table with Insulating Materials for Ceramic Packed Thermocouple Stock

Usage

 $thermocouple Insulating {\tt MaterialsCeramicPackedStock}$

Author(s)

Jose Gama

Source

American Society for Testing and Materials, 1981 Manual on the Use of Thermocouples in Temperature Measurement Committee E20 on Temperature Measurement and Subcommittee E20.04 on Thermocouples

References

American Society for Testing and Materials, 1981 Manual on the Use of Thermocouples in Temperature Measurement Committee E20 on Temperature Measurement and Subcommittee E20.04 on Thermocouples

Examples

data(thermocoupleInsulatingMaterialsCeramicPackedStock)
str(thermocoupleInsulatingMaterialsCeramicPackedStock)

thermocouple Inverse Coefficients Type B

Polynomial Equation Coefficients for Voltage to Temperature for Thermocouple Type B

Description

 $ther {\tt mocoupleInverseCoefficientsTypeB\ Coefficients\ for\ Voltage\ to\ Temperature\ for\ Thermocouple\ Type\ B}$

Usage

thermocouple Inverse Coefficients Type B

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(thermocoupleInverseCoefficientsTypeB)
str(thermocoupleInverseCoefficientsTypeB)

ThermocoupleInverseEquationTypeB

Equation for Calculating Temperature from Voltage for Thermocouples Type B

Description

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ B$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ E$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ J$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ K$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ N$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ R$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ S$

 $\label{thm:coupleInverseEquationTypeB} \ Calculates \ Voltage \ from \ Temperature \ for \ Thermocouples \ Type \ T$

Usage

ThermocoupleInverseEquationTypeB(vV)

Arguments

vV Vector with voltages (C)

Value

T Temperature (C)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

thermocouple Inverse Functions Range

Error range for Polynomial inverse functions for Thermocouples

Description

 $ther {\tt mocoupleInverseFunctions} Range\ Error\ range\ for\ Polynomial\ inverse\ functions\ for\ Thermocouples$

Usage

thermocouple Inverse Functions Range

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(thermocoupleInverseFunctionsRange)
str(thermocoupleInverseFunctionsRange)

Thermocouple Lead Wire External Resistance US

Calculate the external resistance to an instrument

Description

ThermocoupleLeadWireExternalResistanceUS Calculates the external resistance to an instrument

Usage

ThermocoupleLeadWireExternalResistanceUS(thermocoupleType, thermocoupleLength, thermocoupleGauge, leadWireType, leadWireLength, leadWireGauge)

Arguments

thermocoupleType

Type of thermocouple wire

thermocoupleLength

Length of thermocouple wire (feet)

thermocoupleGauge

Gauge of thermocouple wire (AWG)

leadWireType Type of lead wire

leadWireLength Length of lead wire (feet)
leadWireGauge Gauge of lead wire (AWG)

Value

R resistance (ohms)

Author(s)

Jose Gama

Source

Conax(TM) Buffalo, 2014 thermocouple wire size and resistance table www.conaxbuffalo.com

References

Conax(TM) Buffalo, 2014 thermocouple wire size and resistance table www.conaxbuffalo.com

```
# What is external resistance to my instrument if I use a 20 gauge Chromel/Alumel # thermocouple 3 feet long and 14 gauge Chromel/Alumel lead wire 20 feet in length? # Answer: 4.7002 ohms
ThermocoupleLeadWireExternalResistanceUS('k',3,20,'k',20,14)
```

 $thermocouple {\tt MineralInsulated}$

Mineral Insulated Thermocouples

Description

thermocoupleMineralInsulated is a table with Mineral Insulated Thermocouples

Usage

thermocoupleMineralInsulated

Author(s)

Jose Gama

Source

Watlow(R), 2014 Mineral Insulated Sensors by Diameter and Sheath https://www.watlow.com/downloads/en/catalogs/thermocouples.pdf

References

Watlow(R), 2014 Mineral Insulated Sensors by Diameter and Sheath https://www.watlow.com/downloads/en/catalogs/thermocouples.pdf

thermocoupleMounting Thermocouple Mounting

Description

thermocoupleMounting is a table with Thermocouple Mounting data

Usage

thermocoupleMounting

Author(s)

Jose Gama

Source

Capgo Pty Ltd, 2013 Thermocouple mounting http://www.capgo.com/Resources/Temperature/ Thermocouple/Thermocouple.html Watlow(R), 2014 Junction Types https://www.watlow.com/downloads/en/catalogs/thermocouples.pdf

References

 $\label{lem:capgo-ty-loss} Capgo \ Pty \ Ltd, 2013 \ Thermocouple \ mounting \ http://www.capgo.com/Resources/Temperature/Thermocouple/Thermocouple.html \ Watlow(R), 2014 \ Junction \ Types \ https://www.watlow.com/downloads/en/catalogs/thermocouples.pdf$

Description

thermocoupleNominalSeebeckCoefficients is a table with Nominal Seebeck Coefficients

Usage

 $ther {\tt mocouple Nominal Seebeck Coefficients}$

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(thermocoupleNominalSeebeckCoefficients)
str(thermocoupleNominalSeebeckCoefficients)

thermocouple Recommended Upper Temp Limits Protected

Recommended Upper Temperature Limits for Protected Thermocouples

Description

 $ther {\tt mocouple} Recommended {\tt UpperTempLimitsProtected}\ is\ a\ table\ with\ Recommended\ {\tt UpperTemperature}\ Limits\ for\ Protected\ Thermocouples$

Usage

thermocouple Recommended Upper Temp Limits Protected

Author(s)

Jose Gama

Source

 $CapGo, 2013\ Recommended\ upper\ temperature\ limits\ http://www.capgo.com/Resources/Temperature/Thermocouple.html$

References

CapGo, 2013 Recommended upper temperature limits http://www.capgo.com/Resources/Temperature/Thermocouple/Thermocouple.html

Examples

```
data(thermocoupleRecommendedUpperTempLimitsProtected)
str(thermocoupleRecommendedUpperTempLimitsProtected)
```

 $thermocouple {\tt ResponseTime}$

Thermocouple Response Times

Description

thermocoupleResponseTime is a table with Thermocouple Response Times

Usage

 $thermocouple {\tt ResponseTime}$

Author(s)

Jose Gama

Source

Industrial Temperature Sensors Ltd., 2014 Typical Thermocouple Response Times in seconds http://www.itsirl.com/tcresp.php

References

```
Industrial Temperature Sensors Ltd., 2014 Typical Thermocouple Response Times in seconds http://www.itsirl.com/tcresp.php
```

 $thermocouple {\tt Single Leg Thermoelements}$

Letter designations, compositions, and trade names of single-leg thermoelements

Description

thermocoupleSingleLegThermoelements is a table with the Letter designations, compositions, and trade names of single-leg thermoelements

Usage

thermocoupleSingleLegThermoelements

Author(s)

Jose Gama

Source

National Institute of Standards and Technology (NIST), 2014 Table I Thermocouple Types Definitions http://srdata.nist.gov/its90/tables/table_ii.html

References

National Institute of Standards and Technology (NIST), 2014 Table I Thermocouple Types Definitions http://srdata.nist.gov/its90/tables/table_ii.html

Examples

```
data(thermocoupleSingleLegThermoelements)
str(thermocoupleSingleLegThermoelements)
```

Thermocouple Stem Loss Error Estimate

Stem Loss Error Estimate for Thermocouple

Description

ThermocoupleStemLossErrorEstimate Stem Loss Error Estimate for Thermocouple

Usage

ThermocoupleStemLossErrorEstimate(L, h, k, r0, ri)

Arguments

L	sensor insertion depth (cm)	
_	sensor insertion depth (

h surface heat transfer coefficient (watts.cm2 C)

k thermal conductivity of sheath material (watts.cm C)

r0 sheath outer radius ri sheath inner radius

Value

E error (percent of difference between tip temperature and back-end temperature)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(ThermocoupleStemLossErrorEstimate)
str(ThermocoupleStemLossErrorEstimate)

ThermocoupleTable10colsTo2

Convert the thermocouple table for easier use

Description

ThermocoupleTable10colsTo2 converts the thermocouple table from n X 12 to m X 2

Usage

ThermocoupleTable10colsTo2(thermocoupleTable)

Arguments

thermocoupleTable

thermocouple table to be resized n X 12

Value

table

thermocouple table m X 2

Author(s)

Jose Gama

 $thermocouple {\it TypeB} thermoelectric {\it Voltage}$

Thermoelectric Voltage for Thermocouple Type B

Description

 $ther mocouple Type B ther moelectric Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ B thermocouple Type E thermoelectric Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ E thermocouple Type J thermoelectric Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ K thermocouple Type N thermoelectric Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ N thermocouple Type S thermoelectric Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ S thermocouple\ Type\ Thermoelectric\ Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ S thermocouple\ Type\ Thermoelectric\ Voltage\ Thermoelectric\ Voltage\ for\ Thermocouple\ Type\ Thermocouple\ Type\ Thermoelectric\ Voltage\ Thermoelectric\ Voltage\ Thermocouple\ Type\ Thermocouple\ Type\ Thermoelectric\ Voltage\ Thermocouple\ Type\ Thermocouple\ Type\ Thermocouple\ Type\ Thermoelectric\ Voltage\ Thermocouple\ Type\ Thermocouple\ Type\ Thermocouple\ Type\ Thermocouple\ Type\ Thermocouple\ Type\ Thermoelectric\ Voltage\ Thermocouple\ Type\ Therm$

Usage

thermocoupleTypeBthermoelectricVoltage

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

```
data(thermocoupleTypeBthermoelectricVoltage)
str(thermocoupleTypeBthermoelectricVoltage)
```

thermocoupleTypesASTM Thermocouple Wire Constituents

Description

thermocoupleTypesASTM is a table with Thermocouple Wire Constituents according to the ASTM

Usage

 $ther {\tt mocoupleTypesASTM}$

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(thermocoupleTypesASTM)
str(thermocoupleTypesASTM)

 $\label{thm:coupleVoltageContributionTwoHomogeneousWires} \begin{tabular}{ll} Voltage\ Contribution\ of\ Two\ Homogeneous\ Wires \end{tabular}$

Description

 $\label{thm:coupleVoltageContributionTwoHomogeneousWires\ Voltage\ Contribution\ of\ Two\ Homogeneous\ Wires$

Usage

ThermocoupleVoltageContributionTwoHomogeneousWires(Sab, T0, T1, T2)

Arguments

Sab	Seebeck coefficient between material a and b
T0	temperatures at T0 end
T1	temperatures at T1 end
T2	temperatures at T2 end

Value

V voltage (V)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

Examples

data(ThermocoupleVoltageContributionTwoHomogeneousWires)
str(ThermocoupleVoltageContributionTwoHomogeneousWires)

 $thermocouple {\tt WireColorUnitedStatesCanadaMexico}$

Wire Color for Thermocouples and Lead Wires

Description

thermocoupleWireColorUnitedStatesCanadaMexico Wire Color for Thermocouples and Lead Wires for the United States, Canada and Mexico

thermocoupleCompensatingExtensionWireColorUnitedStatesCanadaMexico Wire Color for Compensating Extension Wire for the United States, Canada and Mexico

thermocoupleExtensionWireColorUnitedStatesCanadaMexico Wire Color for Extension Wire for the United States, Canada and Mexico

thermocoupleAndExtensionWiresInternationalColorCodes Wire Color for Thermocouples and Extension Wires with international codes

Usage

 $thermocouple {\tt WireColorUnitedStatesCanadaMexico}$

Author(s)

Jose Gama

Source

TEMPCO Electric Heater Corporation, 2014 Temperature Sensing www.tempco.com

American Society for Testing and Materials, 1993 Manual on the Use of Thermocouples in Temperature Measurement Committee E20 on Temperature Measurement and Subcommittee E20.04 on Thermocouples

References

TEMPCO Electric Heater Corporation, 2014 Temperature Sensing www.tempco.com

American Society for Testing and Materials, 1993 Manual on the Use of Thermocouples in Temperature Measurement Committee E20 on Temperature Measurement and Subcommittee E20.04 on Thermocouples

Examples

```
data(thermocoupleWireColorUnitedStatesCanadaMexico)
str(thermocoupleWireColorUnitedStatesCanadaMexico)
```

thermocoupleWireSizeResistanceImperial

thermocouple wire size and resistance table

Description

thermocoupleWireSizeResistanceImperial is a table with thermocouple wire size and resistance

Usage

thermocoupleWireSizeResistanceImperial

Author(s)

Jose Gama

Source

Conax(TM) Buffalo, 2014 thermocouple wire size and resistance table www.conaxbuffalo.com

References

Conax(TM) Buffalo, 2014 thermocouple wire size and resistance table www.conaxbuffalo.com

```
data(thermocoupleWireSizeResistanceImperial)
str(thermocoupleWireSizeResistanceImperial)
```

ThermocoupleWithReference

Thermocouple with Reference

Description

ThermocoupleWithReference Thermocouple with Reference

Usage

ThermocoupleWithReference(Sa, Sb, T0, T1, T2)

Arguments

Sa	Seebeck coefficient for material a
Sb	Seebeck coefficient for material b
Т0	temperatures at T0 end
T1	temperatures at T1 end
T2	temperatures at T3 end

Value

V voltage (V)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

```
data(ThermocoupleWithReference)
str(ThermocoupleWithReference)
```

Ther mocouple With Reference 2

Thermocouple with Reference

Description

ThermocoupleWithReference2 Thermocouple with Reference

Usage

ThermocoupleWithReference2(Sab, T1, T2)

Arguments

Sab	Seebeck coefficient between	n material a and b
Jub	Beebeek coefficient between	i iliutciiui u uliu o

T1 temperatures at T1 end
T2 temperatures at T2 end

Value

V voltage (V)

Author(s)

Jose Gama

Source

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

References

Kerlin, T.W., 1999 Practical Thermocouple Thermometry International Society of Automation (ISA)

```
data(ThermocoupleWithReference2)
str(ThermocoupleWithReference2)
```

TminusT90CCT2008 89

TminusT90CCT2008

T - T90 computed by a polynomial

Description

TminusT90CCT2008 Thermodynamic Temperature minus the ITS-90, computed by a polynomial (CCT WG4 2008)

Usage

TminusT90CCT2008(T90K)

Arguments

T90K

ITS-90

Value

T - T90

Thermodynamic Temperature minus ITS-90

Author(s)

Jose Gama

Source

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

References

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

TminusT90Pavese4CubicPolynomials

T - T90 computed by 4 cubic polynomials

Description

TminusT90Pavese4CubicPolynomials Thermodynamic Temperature minus the ITS-90, computed by 4 cubic polynomials (CCT WG4 2008)

Usage

TminusT90Pavese4CubicPolynomials(T90K)

Arguments

T90K ITS-90

Value

T - T90 Thermodynamic Temperature minus ITS-90

Author(s)

Jose Gama

Source

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

References

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

TminusT90Pavese6CubicPolynomials

T - T90 computed by 6 cubic polynomials

Description

TminusT90Pavese6CubicPolynomials Thermodynamic Temperature minus the ITS-90, computed by 6 cubic polynomials (CCT WG4 2008)

Usage

TminusT90Pavese6CubicPolynomials(T90K)

Arguments

T90K ITS-90

Value

T - T90 Thermodynamic Temperature minus ITS-90

Author(s)

Jose Gama

Source

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

References

Franco Pavese and Gianfranco Molinar Min Beciet, 2013 Modern Gas-Based Temperature and Pressure Measurements Springer Science + Business Media pp. 42

Index

```
* datasets
    adoptedLatentHeatOfVaporizationOfLiquidHe4,
                                                   thermocoupleInverseFunctionsRange,
                                                        76
    dielectricC.Density.ThermExpLiquid4HeSatVapPressrmocoupleMineralInsulated,78
                                                   thermocoupleMounting, 78
    ds18B20TemperatureData, 8
                                                   thermocoupleNominalSeebeckCoefficients,
    recommended Latent Heat Of Vaporization Of Liquid He 4,\\
                                                   thermocoupleRecommendedUpperTempLimitsProtected,
    rtdAndThermistorStandardAccuracy,
        10
                                                   thermocoupleResponseTime, 80
    rtdAndThermistorStandardValues, 11
                                                   thermocoupleSingleLegThermoelements,
    rtdPlatinumToleranceValues, 28
    rtdPT100, 28
                                                   thermocoupleTypeBthermoelectricVoltage,
    rtdResistanceWireComparison, 29
    rtdResistivityAlpha, 30
                                                   thermocoupleTypesASTM, 84
    rtdTypes, 32
                                                   ThermocoupleVoltageContributionTwoHomogeneousWires,
    tableAWGCuWire, 35
                                                   thermocoupleWireColorUnitedStatesCanadaMexico,
    temperatureMeasurementDifficulty,
                                                   thermocoupleWireSizeResistanceImperial,
    temperatureSensorTypes, 36
    thermistorMaximumMeasuringVoltage,
                                                   ThermocoupleWithReference, 87
        49
                                                   ThermocoupleWithReference2,88
    thermocoupleCables, 64
    thermocoupleCoefficientsTypeB, 64
                                               * programming
    ther {\tt mocouple Coefficients Type Brational Polynomia} {\tt MVGTOmm}, 4
                                                   BimaterialStripCurvatureRadiusFromTemperature,
    thermocoupleColdJunctionVoltageCoeff,
                                                        5
                                                   DiameterAWG, 6
    thermocoupleDefinitionTypes, 66
                                                   DS1820CalcCRCbit, 7
                                                   RTDalpha, 10
    thermocoupleErrorLimits, 70
                                                   RTDbeta, 12
    thermocoupleExtensionCables, 70
    thermocoupleFixedPointsITS90, 71
                                                   RTDcoefficientA, 13
                                                   RTDdelta, 14
    ThermocoupleFundamentalRelation,
        72
                                                   RTDequation, 15
    ThermocoupleFundamentalRelation2,
                                                   RTDmetalResistance, 16
                                                   RTDmetalResistanceFromAlpha, 17
    thermocoupleInsulatingMaterialsCeramicPackedSRTDDMolybdenumResistanceFromAlpha,
    thermocoupleInverseCoefficientsTypeB,
                                                   RTDmolybdenumTemperatureFromAlpha,
```

19	ThermistorSensitivity, 55
RTDnickelIronResistanceFromAlpha,	ThermistorSlope, 56
20	ThermistorSteinhartHartCoeffFromMeasurements
RTDnickelIronTemperatureFromAlpha,	56
21	ThermistorTemperature, 57
RTDnickelResistance, 22	ThermistorTemperatureAccuracy, 58
RTDnickelResistanceFromAlpha, 23	ThermistorTemperatureDeviation, 59
RTDnickelTemperatureFromAlpha, 24	ThermistorTemperatureFitPolynomial,
RTDplatinumResistance, 25	60
RTDplatinumResistanceFromAlpha, 26	ThermistorTemperatureSteinhartHart,
RTDplatinumTemperature, 27	61
RTDtemperatureFit, 30	${\it Thermistor Volume Resistivity From R25},$
RTDtemperatureFromResistance, 31	62
SelfHeatingError, 33	$The {\tt rmistor Volume Resistivity From Rho},$
SensorSensitivity, 33	63
SplineEval, 34	$The {\tt rmocouple Equation Temperature To Voltage},$
ThermistorAlphaApproximatedFromBeta,	67
37	ThermocoupleEquationTypeB, 68
ThermistorApproxDriftResistance,	$The {\tt rmocouple Equation Type Krational Polynomial},$
38	69
ThermistorApproxDriftTime, 39	$The {\tt rmocouple Inverse Equation Type B},$
ThermistorCalculateBeta, 40	75
ThermistorCalibrationEquation, 41	ThermocoupleLeadWireExternalResistanceUS,
ThermistorCalibrationEquationHoge1,	77
42	ThermocoupleStemLossErrorEstimate,
ThermistorCalibrationEquationHoge2,	81
43	ThermocoupleTable10colsTo2, 82
ThermistorCalibrationEquationHoge3,	TminusT90CCT2008, 89
44	TminusT90Pavese4CubicPolynomials,
ThermistorCalibrationEquationHoge4,	89
45	TminusT90Pavese6CubicPolynomials,
ThermistorCalibrationEquationHoge5,	90
46	AWGTOmm (AWGTOmm), 4
${\tt ThermistorConvertADCreadingToTemperatureC}$	DiameterAWG (DiameterAWG) 6
47	DS1820CalcCRCbit (DS1820CalcCRCbit), 7
$The {\tt rmistorConvertTemperatureCtoADCreading}$	RTDalpha (RTDalpha), 10
48	RTDbeta (RTDbeta), 12
ThermistorHoge1CoeffFromMeasurements,	RTDcoefficientA (RTDcoefficientA), 13
49	RTDcoefficientB (RTDcoefficientA), 13
ThermistorResistance, 50	RTDcoefficientC (RTDcoefficientA), 13
ThermistorResistanceDeviation, 51	RTDdelta (RTDdelta), 14
ThermistorResistanceSteinhartHart,	RTDequation (RTDequation), 15
52	RTDtemperatureFromResistance
ThermistorResistanceSteinhartHart2,	(RTDtemperatureFromResistance),
53	31
ThermistorResistanceSteinhartHartUsing3T,	SelfHeatingError (SelfHeatingError), 33
53	SensorSensitivity (SensorSensitivity),
ThermistorResistanceTolerance 54	33

SplineEval (SplineEval), 34	(ThermistorHoge1CoeffFromMeasurements), 49
ThermistorAnyNumberOfCoeffFromMeasure	em ēhes mistorResistance
(ThermistorHoge1CoeffFromMeasurements	
49	ThermistorResistanceSteinhartHart
ThermistorApproxDriftResistance	(ThermistorResistanceSteinhartHart),
(ThermistorApproxDriftResistance),	52
38	ThermistorResistanceSteinhartHart2
ThermistorApproxDriftTime	(ThermistorResistanceSteinhartHart2),
(ThermistorApproxDriftTime), 39	53
ThermistorCalculateBeta	
(ThermistorCalculateBeta), 40	ThermistorResistanceSteinhartHartUsing3T
ThermistorCalibrationEquation	(ThermistorResistanceSteinhartHartUsing3T),
(ThermistorCalibrationEquation),	53
41	ThermistorSensitivity
ThermistorCalibrationEquationHoge1	(ThermistorSensitivity), 55
(ThermistorCalibrationEquationHoge1),	ThermistorSlope (ThermistorSlope), 56
ThermistorCalibrationEquationHoge2	ThermistorSteinhartHartCoeffFromMeasurements
(ThermistorCalibrationEquationHoge2),	(Thermistor Stein hart Hart Coeff From Measurements),
43	56
ThermistorCalibrationEquationHoge3	ThermistorTemperatureSteinhartHart
(ThermistorCalibrationEquationHoge3),	(ThermistorTemperatureSteinhartHart),
44	61
ThermistorCalibrationEquationHoge4	ThermistorVolumeResistivityFromR25
(ThermistorCalibrationEquationHoge4),	(ThermistorVolumeResistivityFromR25),
45	62
ThermistorCalibrationEquationHoge5	ThermistorVolumeResistivityFromRho
(ThermistorCalibrationEquationHoge5),	(ThermistorVolumeResistivityFromRho),
46	63
	thermocoupleCables
ThermistorConvertADCreadingToTemperat	cureC (thermocoupleCables), 64
(ThermistorConvertADCreadingToTempera	t the CmocoupleColdJunctionVoltageCoeff
47	<pre>(thermocoupleColdJunctionVoltageCoeff),</pre>
	66
ThermistorConvertTemperatureCtoADCrea	ad thg rmocoupleExtensionCables
(ThermistorConvertTemperatureCtoADCre	ading), (thermocoupleExtensionCables),
48	70
ThermistorHoge1CoeffFromMeasurements	
(ThermistorHoge1CoeffFromMeasurements), ThermocoupleLeadWireExternalResistanceUS
49	(ThermocoupleLeadWireExternalResistanceUS),
ThermistorHoge2CoeffFromMeasurements	77
(ThermistorHoge1CoeffFromMeasurements),thermocoupleMineralInsulated
49	<pre>(thermocoupleMineralInsulated),</pre>
ThermistorHoge3CoeffFromMeasurements	78
(ThermistorHoge1CoeffFromMeasurements),thermocoupleMounting
49	(thermocoupleMounting), 78
ThermistorHoge4CoeffFromMeasurements	thermocoupleResponseTime

(thermocoupleResponseTime), 80	rtdPlatinumToleranceValues, 28
ThermocoupleTable10colsTo2	rtdPT100,28
(ThermocoupleTable10colsTo2),	rtdPT1000(rtdPT100), 28
82	rtdResistanceWireComparison, 29
TminusT90CCT2008 (TminusT90CCT2008), 89	rtdResistivityAlpha,30
TminusT90Pavese4CubicPolynomials	RTDtemperatureFit, 30
<pre>(TminusT90Pavese4CubicPolynomials),</pre>	RTDtemperatureFromResistance, 31
89	rtdTypes, 32
TminusT90Pavese6CubicPolynomials	
(TminusT90Pavese6CubicPolynomials),	SelfHeatingError, 33
90	SensorSensitivity, 33
	SplineEval, 34
adoptedLatentHeatOfVaporizationOfLiquidHe4,	
4	tableAWGCuWire, 35
AWGTOmm, 4	${\tt temperature Measure ment Difficulty}, {\tt 36}$
	temperatureSensorTypes, 36
BimaterialStripCurvatureRadiusFromTemperatur 5	reŢhermistorAlphaApproximatedFromBeta, 37
BimaterialStripTemperatureFromCurvatureRadiu	SThermistorApproxDriftResistance, 38
(BimaterialStripCurvatureRadiusFromT	embermisterApproxDriftTime, 39
5	ThermistorCalculateBeta, 40
	ThermistorCalibrationEquation, 41
DiameterAWG, 6	ThermistorCalibrationEquationHoge1, 42
dielectricC.Density.ThermExpLiquid4HeSatVapF	· · · · · · · · · · · · · · · · · · ·
7	ThermistorCalibrationEquationHoge3,44
OS1820CalcCRCbit, 7	ThermistorCalibrationEquationHoge4, 45
ds18B20TemperatureData, 8	ThermistorCalibrationEquationHoge5, 46
	ThermistorConvertADCreadingToTemperatureC,
${\sf recommendedLatentHeatOfVaporizationOfLiquidHecommendedLatentHeatOfVaporizationOfLiquidHecommend}$	
9	ThermistorConvertTemperatureCtoADCreading,
RTDalpha, 10	48
rtdAndThermistorStandardAccuracy, 10	ThermistorHoge1CoeffFromMeasurements,
rtdAndThermistorStandardValues, 11	49
RTDbeta, 12	thermistorMaximumMeasuringVoltage, 49
RTDcoefficientA, 13	ThermistorResistance, 50
RTDdelta, 14	ThermistorResistanceDeviation, 51
RTDequation, 15	ThermistorResistanceSteinhartHart, 52
RTDmetalResistance, 16	ThermistorResistanceSteinhartHart2, 53
RTDmetalResistanceFromAlpha, 17	ThermistorResistanceSteinhartHartUsing3T,
RTDmolybdenumResistanceFromAlpha, 18	53
RTDmolybdenumTemperatureFromAlpha, 19	ThermistorResistanceTolerance, 54
RTDnickelIronResistanceFromAlpha, 20	ThermistorSensitivity, 55
RTDnickelIronTemperatureFromAlpha, 21	ThermistorSlope, 56
RTDnickelResistance, 22	ThermistorSteinhartHartCoeffFromMeasurements.
RTDnickelResistanceFromAlpha, 23	56
RTDnickelTemperatureFromAlpha, 24	ThermistorTemperature, 57
RTDplatinumResistance, 25	ThermistorTemperatureAccuracy, 58
RTDplatinumResistanceFromAlpha, 26	ThermistorTemperatureDeviation, 59
RTDplatinumTemperature. 27	ThermistorTemperatureFitPolynomial. 60

```
ThermistorTemperatureSteinhartHart, 61
ThermistorVolumeResistivityFromR25, 62
                                                                                                                                                                                                ther {\tt mocoupleCoefficientsTypeTrationalPolynomial}
                                                                                                                                                                                                                                  (thermocoupleCoefficientsTypeBrationalPolynomial),
ThermistorVolumeResistivityFromRho, 63
thermocoupleAndExtensionWiresInternationalColorCodes 65
                                 (thermocouple {\tt WireColorUnitedStatesCan} \verb"admention") leColdJunction {\tt VoltageCoeff},
                                                                                                                                                                                                thermocouple {\tt Compensating Extension Wire Color United States Canada and {\tt Color United States Canada a
thermocoupleCables, 64
thermocoupleCoefficientsTypeB, 64
                                                                                                                                                                                                                                  (thermocoupleWireColorUnitedStatesCanadaMexico),
thermocouple Coefficients Type Brational Polynomial,\\
                                                                                                                                                                                                thermocoupleDefinitionTypes, 66
                                  65
                                                                                                                                                                                               ThermocoupleEquationTemperatureToVoltage,
thermocoupleCoefficientsTypeE
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               ThermocoupleEquationTypeB, 68
ther mocouple Coefficients Type Erational Polynomi \cite{Lambda} \underline{\textbf{h}} ermocouple Equation Type Brational Polynomial \cite{Lambda} \underline{\textbf{h}} ermocouple Equation Type Bration Bratio
                                 (thermocouple {\tt CoefficientsTypeBrationalPolynom} \textbf{\textit{Tahe},} rmocouple {\tt EquationTypeKrationalPolynomial}),
                                                                                                                                                                                               ThermocoupleEquationTypeE
thermocoupleCoefficientsTypeJ
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               Thermocouple {\tt EquationTypeErationalPolynomial}
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeKrationalPolynomial),
thermocouple {\tt CoefficientsTypeJrationalPolynomial}
                                 (thermocoupleCoefficientsTypeBrationalPolynom691),
                                                                                                                                                                                               ThermocoupleEquationTypeJ
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
thermocoupleCoefficientsTypeK
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               Thermocouple {\tt EquationTypeJrationalPolynomial}
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeKrationalPolynomial),
thermocouple {\tt CoefficientsTypeKrationalPolynomial}
                                 (thermocoupleCoefficientsTypeBrationaTherynocoupleEquationTypeK
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
                                                                                                                                                                                               ThermocoupleEquationTypeKrationalPolynomial,
ther {\tt mocoupleCoefficientsTypeN}
                                 (thermocoupleCoefficientsTypeB),
                                 64
                                                                                                                                                                                               ThermocoupleEquationTypeN
thermocouple {\tt CoefficientsTypeNrationalPolynomial}
                                                                                                                                                                                                                                 (ThermocoupleEquationTypeB), 68
                                 (thermocouple {\tt CoefficientsTypeBrationa} \textbf{\textit{The} type on uple} {\tt EquationTypeNrationalPolynomial}) and {\tt CoefficientsTypeBrationalPolynomial} {\tt CoefficientsTypeBrationalPolynomial}). The {\tt CoefficientsTypeBrationalPolynomial} {\tt Coeffici
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeKrationalPolynomial),
thermocoupleCoefficientsTypeR
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               Thermocouple {\tt EquationTypeR}
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
ther mocouple Coefficients Type Rrational Polynomia {\bf lher} mocouple Equation Type Rrational Polynomial {\bf lher} mocouple {\bf lher} moco
                                 (thermocoupleCoefficientsTypeBrationalPolynom(ThermocoupleEquationTypeKrationalPolynomial),
ther {\tt mocoupleCoefficientsTypeS}
                                                                                                                                                                                               ThermocoupleEquationTypeS
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               Thermocouple {\bf Equation Type Srational Polynomial}
                                 64
thermocouple {\tt CoefficientsTypeSrationalPolynomial}
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeKrationalPolynomial),
                                 (thermocoupleCoefficientsTypeBrationalPolynom691),
                                 65
                                                                                                                                                                                               Thermocouple {\bf Equation Type T}
ther {\tt mocoupleCoefficientsTypeT}
                                                                                                                                                                                                                                  (ThermocoupleEquationTypeB), 68
                                 (thermocoupleCoefficientsTypeB),
                                                                                                                                                                                               Thermocouple {\tt EquationTypeTrationalPolynomial}
```

(ThermocoupleEquationTypeKrationalPo	ol yhemina bbupleInverseEquationTypeR
69	<pre>(ThermocoupleInverseEquationTypeB),</pre>
thermocoupleErrorLimits, 70	75
thermocoupleExtensionCables, 70	ThermocoupleInverseEquationTypeS
thermocoupleExtensionWireColorUnitedStatesCa	anadaMexic(ThermocoupleInverseEquationTypeB),
(thermocoupleWireColorUnitedStatesCa	
85	ThermocoupleInverseEquationTypeT
thermocoupleFixedPointsITS90,71	(ThermocoupleInverseEquationTypeB),
ThermocoupleFundamentalRelation, 72	75
ThermocoupleFundamentalRelation2, 73	thermocoupleInverseFunctionsRange, 76
thermocoupleInsulatingMaterialsCeramicPacked	
74	77
thermocoupleInverseCoefficientsTypeB,	thermocoupleMineralInsulated, 78
74	thermocoupleMounting, 78
thermocoupleInverseCoefficientsTypeE	thermocoupleNominalSeebeckCoefficients,
(thermocoupleInverseCoefficientsType	
74	thermocoupleRecommendedUpperTempLimitsProtected,
thermocoupleInverseCoefficientsTypeJ	79
(thermocoupleInverseCoefficientsType	-RthermocoupleResponseTime, 80
74	thermocoupleSingleLegThermoelements,
thermocoupleInverseCoefficientsTypeK	81
	BЉhermocoupleStemLossErrorEstimate, 81
74	ThermocoupleTable10colsTo2, 82
thermocoupleInverseCoefficientsTypeN	thermocoupleTypeBthermoelectricVoltage,
(thermocoupleInverseCoefficientsType	
74	thermocoupleTypeEthermoelectricVoltage
thermocoupleInverseCoefficientsTypeR	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
(thermocoupleInverseCoefficientsType	
74	thermocoupleTypeJthermoelectricVoltage
thermocoupleInverseCoefficientsTypeS	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
<pre>(thermocoupleInverseCoefficientsType</pre>	
74	thermocoupleTypeKthermoelectricVoltage
thermocoupleInverseCoefficientsTypeT	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
<pre>(thermocoupleInverseCoefficientsType</pre>	
74	thermocoupleTypeNthermoelectricVoltage
ThermocoupleInverseEquationTypeB, 75	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
ThermocoupleInverseEquationTypeE	83
(ThermocoupleInverseEquationTypeB),	thermocoupleTypeRthermoelectricVoltage
75	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
ThermocoupleInverseEquationTypeJ	83
(ThermocoupleInverseEquationTypeB),	thermocoupleTypesASTM, 84
75	thermocoupleTypeSthermoelectricVoltage
ThermocoupleInverseEquationTypeK	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
(ThermocoupleInverseEquationTypeB),	83
75	thermocoupleTypeTthermoelectricVoltage
ThermocoupleInverseEquationTypeN	<pre>(thermocoupleTypeBthermoelectricVoltage),</pre>
(ThermocoupleInverseEquationTypeB),	83
75	ThermocoupleVoltageContributionTwoHomogeneousWire

```
84
thermocoupleWireColorUnitedStatesCanadaMexico, 85
thermocoupleWireSizeResistanceImperial, 86
ThermocoupleWithReference, 87
ThermocoupleWithReference2, 88
TminusT90CCT2008, 89
TminusT90Pavese4CubicPolynomials, 89
TminusT90Pavese6CubicPolynomials, 90
```