Robusztus kvaternió Zernike momentumok és alkalmazásuk színes képek elemzésére és felismerésére

Nagy Gergely

Eötvös Loránd Tudományegyetem, Informatikai Kar

Tudományos Diákköri Konferencia Budapest, 2020. december 16.

Témavezető: Németh Zsolt

Momentumok

Általában valamilyen numerikus, leíró érték a pixel intenzitások alapján, például geometriai momentumok:

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y).$$

Zernike momentumok: az egységkörön definiált, ortogonális Zernike függvények alapján

$$Z_{n,m}(f) = \frac{n+1}{\pi} \int_0^1 \int_0^{2\pi} f(r,\theta) R_{n,m}(r) e^{-\mathbf{i}m\theta} dr d\theta,$$

ahol $R_{n,m}(r)$ az ortogonális, sugárirányú polinomok.

Momentumok invariánsok: forgatás, skálázás és eltolás invariáns értékek konstruálhatók.

Momentumok alkalmazása színes képekre

Hagyományos megoldások:

- A kép szürkeárnyalatossá alakítása.
- A színcsatornák elemzése külön-külön.

Újabb módszer az utóbbi évtizedben:

Értelmezzük az $f:\mathbb{R}^2 o\mathbb{R}^3$ képet kvaternió értékű függvényként:

$$f(x,y) = \mathbf{i} f_R(x,y) + \mathbf{j} f_G(x,y) + \mathbf{k} f_B(x,y)$$

Különböző momentumok általánosítása kvaterniókra: QFMM (Fourier-Mellin), QG-CHFM (Csebisev-Fourier), QG-PJFM (Jacobi-Fourier), QBFM (Bessel-Fourier), QRHFM (radial-Fourier), QZM (Zernike)

Kvaternió Zernike momentumok

Zernike függvények általánosítása kvaterniókra:

$$\Phi_{n,m}(r,\theta) = R_{n,m}(r)e^{-\mu m\theta},$$

ahol μ egység hosszú, tiszta kvaternió (általában $\mu = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$). Mivel a kvaterniók szorzása nem kommutatív, így jobb- és baloldali momentumok is definiálhatók:

$$Z_{n,m}^{R}(f) = \frac{n+1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} f(r,\theta) \Phi_{n,m}(r,\theta) dr d\theta,$$

$$Z_{n,m}^L(f) = \frac{n+1}{\pi} \int_0^1 \int_0^{2\pi} \Phi_{n,m}(r,\theta) f(r,\theta) dr d\theta.$$

Invariánsok konstrukciója

B. Chen et al. Quaternion zernike moments and their invariants for color image analysis and object recognition.

Signal Processing, 92:308-318, 2012

Csak forgatás $(\Phi^m_{n,k})$, illetve forgatás, skálázás és eltolás kombinált invariánsok $(\overline{\Psi}^m_{n,k})$ konstruálása.

$$\begin{split} \Phi^{m}_{n,k}(f) &= Z^{R}_{n,m}(f)Z^{L}_{k,-m}(f) = -Z^{R}_{n,m}(f)(Z^{R}_{k,m}(f))^{*} \\ L^{R}_{m+2l,m}(f) &= \sum_{t=0}^{l} \sum_{k=t}^{l} \left(\sqrt{|Z^{R}_{0,0}(f)|} \right)^{-(m+2k+2)} c^{t,k}_{m,l} Z^{R}_{m+2t,m}(f) \\ \overline{\Psi}^{m}_{n,k}(f) &= \overline{L}^{R}_{n,m}(f)(\overline{L}^{R}_{k,m}(f))^{*} \end{split}$$

Korábbi diszkretizációs módszer

Kép transzformálása az egységkörbe: $r_{x,y} = \sqrt{(c_1x+c_2)^2+(c_1y+c_2)^2}, \quad \theta_{x,y} = \tan^{-1}\left(\frac{c_1y+c_2}{c_1x+c_2}\right),$ ahol $c_1 = \frac{\sqrt{2}}{N-1}$ és $c_2 = -\frac{1}{\sqrt{2}}$.

Ekkor a pixelek helyét alappontoknak választva:

$$Z_{n,m}^{R}(f) \approx \frac{2(n+1)}{\pi(N-1)^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \Phi_{n,m}(r_{x,y},\theta_{x,y}).$$

Új diszkretizációs módszer

Probléma a korábbi diszkretizációval: nincs diszkrét ortogonalitás.

Schipp F. és Pap M.: diszkrét ortogonális pontrendszer konstrukciója a klasszikus (komplex értékű) Zernike függvényekhez.

Ennek az ötletnek a kvaternió értékű Zernike függvényekre való kiterjesztése megfelelő pontrendszert ad.

Legyen N pozitív egész és $\rho_{k,N}$ az N-edik Legendre polinom gyökei, ekkor a pontrendszer:

$$(r_{k,N}, \theta_{j,N}) = \left(\sqrt{\frac{1+\rho_{k,N}}{2}}, \frac{2\pi j}{4N}\right), \ (k=1,\ldots,N, j=1,\ldots,4N).$$

Új diszkretizációs módszer (folyt.)

Legyen

$$A_{k,N} = \int_{-1}^{1} \ell_{k,N}(x) dx, (k = 1,...,N),$$

ahol $\ell_{k,N}$ a Lagrange interpolációs alappolinomok a $\rho_{k,N}$ pontokon. Ekkor a $w(r_{k,N},\theta_{j,N})=\frac{\mathcal{A}_{k,N}}{8N}$ súlyokkal véve az integrálközelítést:

$$\frac{1}{\pi} \int_0^1 \int_0^{2\pi} f(r,\theta) \ d\theta dr \approx \int_{X_N} f = \sum_{k=1}^N \sum_{j=1}^{4N} f(r_{k,N},\theta_{j,N}) \frac{\mathcal{A}_{k,N}}{8N}.$$

Azaz a QZM-ek közelíthetők a következő módon:

$$Z_{n,m}^{R}(f) \approx (n+1) \sum_{k=1}^{N} \sum_{i=1}^{4N} f(r_{k,N}, \theta_{j,N}) \Phi_{n,m}(r_{k,N}, \theta_{j,N}) \frac{\mathcal{A}_{k,N}}{8N}.$$

Diszkrét ortogonalitás

Tétel (Diszkrét ortogonalitás)

Legyen $n,n'\in\mathbb{N}$ természetes számok, $m,m'\in\mathbb{Z}$ egészek, úgy, hogy teljesül

$$\frac{n+n'}{2}+\min(|m|,|m'|)<2N.$$

Ekkor

$$(n+1)\int_{X_N}\Phi_{n,m}\Phi_{n',m'}^*=\delta_{n,n'}\delta_{m,m'}.$$

Így a momentumok diszkretizációs hiba nélkül előállíthatók és a képek visszaállítási pontossága és módszer hibatűrése is javult.

Képpontok becslése

A képet lineárisan transzformáljuk az egységkörre.

A függvény értékének becslése a pontokban:

- Lineáris interpoláció (sok pont esetén)
- Diszkrét integrálás a pontok környezetében (kevés pont esetén)

Gyakorlati tesztek

A következő tesztek alapján hasonlítottuk össze a régi és az új módszert:

- Invariancia teszt
- Kép visszaállítása momentumokból
- Transzformált, zajos képek felismerése

A tesztek során a Columbia Object Image Library és az Amsterdam Library of Object Images képeiből generált transzformált képeket használtuk.

Fourier momentumok

- A módszert a Fourier momentumokkal (QRHFM) is összehasonlítottuk rekonstrukció és felismerés szempontjából.
- Y. Liu et al. Accurate quaternion radial harmonic Fourier moments for color image reconstruction and object recognition.
 Pattern Analysis and Applications, 2020
- QRHFM-hez triviálisan konstruálható diszkrét ortogonális pontrendszer, polár koordinátákban egyenletesen vett pontokkal.
- Csak forgatás invariánsokat konstruáltak ezekhez a momentumokhoz, így ezeket hasonlítottuk össze.

$$R_n(r) = egin{cases} rac{1}{\sqrt{r}}, & n = 0 \ \sqrt{rac{2}{r}}\cos(\pi n r), & n ext{ páros} \ \sqrt{rac{2}{r}}\sin(\pi(n+1)r), & n ext{ páratlan} \end{cases}$$

Invariancia

Alacsony rendű momentumok modulusának, az összes transzformált képekre vett variációs koefficiense $\left(\frac{\sigma}{\mu}\right)$:

	$\frac{\sigma}{\mu}$
$ \overline{\Psi}_{1,1}^1 $	3.73%
$ \overline{\Psi}_{2,0}^0 $	0.028%
$ \overline{\Psi}_{2,2}^{0} $	0.057%
$ \overline{\Psi}_{2,2}^2 $	6.87%
$ \overline{\Psi}_{3,1}^1 $	3.71%
$ \overline{\Psi}_{3,3}^1 $	3.69%
$ \overline{\Psi}_{3,3}^3 $	9.40%

Table: Régi módszer

	$\frac{\sigma}{\mu}$	
$ \overline{\Psi}_{1,1}^1 $	3.72%	
$ \overline{\Psi}_{2,0}^{0} $	0.028%	
$ \overline{\Psi}_{2,2}^0 $	0.056%	
$ \overline{\Psi}_{2,2}^2 $	6.82%	
$ \overline{\Psi}_{3,1}^1 $	3.70%	
$ \overline{\Psi}_{3,3}^1 $	3.68%	
$ \overline{\Psi}_{3,3}^3 $	9.32%	

Table: Új módszer

Képek visszaállítása

Egy kép rekonstruálható véges számú momentumot használva a következő képlet szerint:

$$f(x,y) \approx \sum_{n=0}^{M} \sum_{m=-n}^{n} Z_{n,m}^{R}(f) \Phi_{n,m}^{*}(r_{x,y}, \theta_{x,y}).$$

Ha f az eredeti, \hat{f} a visszaállított kép, akkor a hiba (mean square error):

$$\varepsilon^{2} = \frac{\sum_{x=1}^{N} \sum_{y=1}^{N} |f(x,y) - \hat{f}(x,y)|^{2}}{\sum_{x=1}^{N} \sum_{y=1}^{N} |f(x,y)|^{2}}.$$

Képek visszaállítása

Képfelismerés

Cél: a transzformált, zajos képet felismerni az eredeti képek közül. Különböző nagyságú és típusú zaj:

- Gauss zaj
- Só-bors zaj

Alacsony rendű invariáns momentumok (kvaterniók) komponenseiből kinyert valós értékek vektorként kezelése. Osztályozás legkisebb euklideszi távolság alapján.

Forgatás, skálázás, eltolás invariancia – Gauss zaj

σ	QZM,	QZM, új –	QZM, új –	QRHFM
	régi (%)	"sok" pont	"kevés" pont	(%)
		(%)	(%)	
Nincs zaj	99.06	99.15	98.21	n.a.
1	98.98	99.49	98.81	n.a.
2	98.98	99.74	98.81	n.a.
3	98.55	99.83	98.04	n.a.
5	95.15	99.49	94.64	n.a.
7	95.15	98.72	91.67	n.a.
9	76.87	98.47	89.20	n.a.
40	52.89	88.52	51.87	n.a.
50	48.21	84.10	45.07	n.a.
60	41.58	85.80	39.12	n.a.

Forgatás, skálázás, eltolás invariancia – Só-bors zaj

р	QZM,	QZM, új –	QZM, új –	QRHFM
	régi (%)	"sok" pont	"kevés" pont	(%)
		(%)	(%)	
Nincs zaj	99.06	99.15	98.21	n.a.
0.2%	99.66	99.32	94.98	n.a.
0.4%	99.91	99.74	99.15	n.a.
0.6%	99.91	99.91	99.40	n.a.
1%	98.98	99.91	99.66	n.a.
2%	99.66	93.96	99.74	n.a.
3%	99.40	99.40	96.34	n.a.
5%	97.87	94.90	97.87	n.a.
10%	99.91	93.03	98.72	n.a.
15%	99.91	93.20	97.87	n.a.

Forgatás invariáns Zernike és Fourier momentumok

Zaj típusa		Zernike, új (%)	Fourier (%)
Nincs zaj		100.00	100.00
Gauss	80	98.12	97.52
	90	99.01	97.02
	100	98.91	96.63
	110	97.62	96.92
	120	96.23	96.63
Só-bors	10%	100.00	100.00
	15%	100.00	100.00
	20%	100.00	99.70
	25%	100.00	100.00
	30%	100.00	100.00

Alkalmazások

A momentumok sok területen alkalmazhatók, néhány példa:

- ► **Vízjelek**: a képre a momentumok szintjén helyeznek vízjelet, így ellenálló lesz különböző transzformációknak és zajnak. Ehhez fontos a rekonstrukciós pontosság. [3]
- Neurális hálók, gépi tanulás: A képekből kinyert invariáns momentumok lehet a bemeneti vektor része. A neurális hálók ismert hiányossága a zajra való érzékenység, ezen segíthetnek a momentumok. [4]
- Orvosi/optikai alkalmazások: lencsék leképezési hibáinak azonosítására, szaruhártya vizsgálatára, stb. [5]

További lehetőségek

- Meglévő alkalmazások továbbfejlesztése az új módszer szerint.
- Más függvényrendszeren alapuló momentumokra hasonló konstrukció megadása.
- További általánosítás 3-dimenzióra és alkalmazás például LiDAR pontfelhőkre.

Összefoglalás

- Diszkrét ortogonális pontrendszer konstruálása QZM-hez.
- Összehasonlítás a korábbi, valamint más momentumokon alapuló módszerrel is.
 - Invariancia
 - Rekonstrukció
 - Képfelismerés
- Jelentősen jobb rekonstrukciós képesség és robusztusság különféle zajokkal szemben.
- ► Konferencia előadás (13th Joint Conference on Mathematics and Computer Science)

Irodalomjegyzék

- B. Chen et al. Quaternion zernike moments and their invariants for color image analysis and object recognition. Signal Processing, 92:308–318, 2012.
- [2] Y. Liu et al. Accurate quaternion radial harmonic Fourier moments for color image reconstruction and object recognition. *Pattern Analysis and Applications*, 2020.
- [3] H. Shojanazeri et al. Authentication of images using Zernike moment watermarking. *Multimedia Tools and Applications*, 76:577–606, 2015.
- [4] M. Liu et al. Analyzing the Noise Robustness of Deep Neural Networks. IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 60–71, 2018.
- [5] J. C. Wyant and K. Creath. Basic Wavefront Aberration Theory for Optical Metrology. *Applied Optics and Optical Engineering*, 11:2–55, 1992.
- [6] Németh Zsolt and Nagy Gergely. Color image analysis and recognition using discrete orthogonal quaternion zernike moments. 13th Joint Conference on Mathematics and Computer Science, 2020.

KÖSZÖNÖM A FIGYELMET!

INVESTING IN YOUR FUTURE

European Union European Social Fund

