8	emps 101 HW5	
	$T(n) \begin{cases} 6 & 1 \leq n \leq 3 \\ 2T(\lfloor \frac{n}{3} \rfloor) + n & n \geq 3 \end{cases}$	
	a) $T(n) = n + 2T(\lfloor \frac{n}{3} \rfloor)$ = $n + 2(\lfloor \frac{n}{3} \rfloor + 2T(\lfloor \frac{n}{3^2} \rfloor))$	
	$= \frac{\ln n}{4} \left(\frac{1}{3^{2}} + \frac{2}{3} + \frac{2}{$	
	$= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$ $= 2^{\kappa} T(\lfloor \frac{n}{3} \kappa \rfloor) + \sum_{i=0}^{\kappa-1} 2^{i} \lfloor \frac{n}{3} \ell \rfloor$	=> 3*5 n (3*+1 k = log3n (k+1
0	= 2 KT [] + 2 [] terminates i=0 terminates [] x x x x x x x x x	K=Lloggh]
	$T(n) = 2^{\lfloor \log_3 n \rfloor} (6) + \sum_{i=1}^{\lfloor \log_3 n - 1 \rfloor} 2^i \lfloor \frac{n}{3^i} \rfloor$	
	T(n) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$	
	$= n^{\log 5} \left(6\right) + n \leq \left(\frac{1}{3}\right)^{2}$	
	$= 6n^{1093^2} + 10\left(\frac{1}{1-3}\right) = 6n^{1093^2} + 3n = 0(n)$	
•		

c) Moster Theorem to pour Timz=Ocnj Letting 2=2, b=3, The= log (=)=0.63 <) setting &=1-10032 thus EDO $\begin{array}{c}
\vdots \quad f(n) = n = \Omega \cdot \left(n^{10} 93^{2} + \varepsilon \right) \\
\hline
\left(s_{25c} 3 \right) \quad a \quad f\left(\frac{n}{6} \right) \leq c \cdot f(n) \\
= 7 \quad \frac{2}{3} \quad n \leq c \cdot n \quad \text{is true as long as} \\
c \quad is \quad chosen \quad to \quad sals fy \quad \frac{2}{3} < c < 1
\end{array}$ this w/ case 3 of the Master Theor T (n)=0(n) 20 a) T(n) = 7 T(=1) +n ~ 1 2=7, b=4, log6(a)=1.403>1 ethen & = log (00 - | => &700 ... f (h) = n = 0 (109 = 9 - E) with case(1) applies and J(n)=O(nlog42) b) T(n) = 9T(n/3) + n2 2=9, b=3 $\log_{10}(a)=2$ $\therefore f(n)=n^{2}=0 (n^{\log_{10}a})$ so dry case (2) Tan= 0 (n2 log (n)

c) T(n) = 6T(n) + n2 a=6,6=5 |09,6= 1.113. <2 Set E=2-logs we get fin = n2 = \(\Omega(n^6)^66-\(\varepsilon\) 6f(=) 4 cf(n) 6 n2 4 cn2 4 6 4 6 1 w/casc(3), Tins = O(n2) d) T(n) = 6T (=) + nlog(n) 8=6,6=5 log,2 = 1.113... 71 Let E= 10986-1 fing = nloging = 0 (nlogs = E) and $T(n) = \Theta(n^{\log 6})$ e) T(n) = 7T (=) + n2 2=7, b=2 logs = 0.301. 12 set &=2-log; rue have & >0 and fing=n2=SQ(nlog; +6) 7 f (=) 4 c f (m) Zn Lon chu ZECKI by car (3) Trn = 0 n2

	f) San=2 S(3)+n2
	now comparing n2 to nlogg2
	·
	case(1) e supragnal sto 376 must be
	so log 3 72 and T(n)=O(nlogra)
	isse(2) 0=16 so log 16=2
	Truj= \text{O(n2 logon)}
	(h logh)
	each acl 54 100 267
	ease(3) a < 16 show $\log 4^2 \angle 2$ and $T(n) = \Theta(n^2)$
9 3	Alg. A -7 T(n)=7T(n)+n2
	find a so Sh = o(Tm)
	Alg B-7 Sm=25[7] fn2
	by the master theom, the receivene for Aly. I's on the
	is $Tm_1 = \theta \left(n^{\log e^2} \right)$
	log27 = 10g4 x => 7=49
	0
	thus the bayest integer whe for 'a' such that
	thus the bayest integrable for 'a' such that the B is a faster alg. than A (asymptotically speaking) is when
	ahn
	2:48

4 Let Ton = 2T() + fan ; fan is a polynomial deg (f) > logo(2) case 3 botas 3 b oply logo Proof: Let d= dely(f) and replace f(n) w/ nd
using Master Thrm. we compare nd and nlog 62)
Let E=d-log (2) which is positive since d> log 62) 00 d= logb(2) + = secretalist hypother of com 3. To prove the regularity cond. Let c be in a/60 = CKI. Then for any n21 we have a(n/b) =(a/6) not sch thus holds the transmitted condition 5) The Handshah Lemma sous that any H of hours shaken at a party of trice the # of hardshakes TO FIVE V(E) Assume & is igraph containing an odd number odd vertices knowing each edge his two egges vertices S deg(x) = 2 | E(G) | The sum of all degrees of a graph is even. If we sum over only the vertices of odd degrees we ship get an even the since we would be subdirecting out terms each of which on even