IN THE CLAIMS

 (currently amended) A method for the synthesis of a KPV tripeptide diamide derivative represented by the following formula (I)

$$H_3C$$
 CH_3
 R_1
 R_1
 R_2
 CH_2
 H_2C
 CH_2
 H_2C
 CH_2
 H_2C
 CH_2
 $CH_$

or for a salt thereof, independent of stereochemistry wherein:

- a) R_1 , R'_1 and R''_1 represent, independently from each other, a hydrogen atom or
- a linear or branched $C_1\text{-}C_{22}$ alkyl moiety, optionally interrupted by a heteroatom, $_$
 - C_4 - C_{10} cycloalkyl moiety,
- a linear or branched $C_1\text{-}C_{22}$ polyfluoroalkyl or perfluoroalkyl moiety,
- an aryl moiety optionally substituted by one or more halogen atoms or more linear or branched $C_1\text{-}C_4$ alkyl moieties,
 - an aralkyl moiety,
- or R_1 and R'_1 could form with $C(R"_1)$ a saturated ring with from 3 to 7 atoms, optionally substituted by one or more linear or branched C_1 - C_4 alkyl moieties and/or optionally containing a heteroatom,

with the proviso that the $R_1(R'_1)(R''_1)CO$ group does not represent an amino acid residue or a peptide;

- b) $\ensuremath{R_2}$ and $\ensuremath{R_3}$ represent, independently from each other, a hydrogen atom or represent
- a linear or branched $C_1\text{-}C_{24}$ alkyl moiety, optionally interrupted by a heteroatom,
 - a C₄ -C₁₀ cycloalkyl moiety,
- a linear or branched $C_1\hbox{-} C_{22}$ polyfluoroalkyl or perfluoroalkyl moiety,
- an aryl moiety optionally substituted by one or more halogen atoms or one or more linear or branched $C_1\text{-}C_4$ alkyl moieties,
 - an aralkyl moiety,
- or R_2 and R_3 could form with the nitrogen atom a saturated ring with from 5 or 6 atoms optionally substituted by one or more linear or branched $C_1\text{-}C_4$ alkyl moieties, said saturated ring optionally containing a heteroatom ,

with the proviso that the $N\left(R_2\right)$ $\left(R_3\right)$ group does not represent an amino acid or a peptide;

said method comprising:

a) reacting a lysine diprotected residue having the following formula (II):

optionally salified by a mineral or organic base,

wherein P_1 and P_2 , are different and each represent independently from one another a protective group,

with a Proline proline residue having the following formula (III):

optionally salified by a mineral or organic acid,

wherein P_3 represents a protective group differing from any of the P_1 and P_2 protective groups, or wherein P_3 represents a hydroxyl group,

in the presence of an activation reagent or a coupling reagent in a solvent, so as to obtain the following compound having the formula (IV):

wherein P_1 , P_2 and P_3 have the above-mentioned meanings, b)—and, in any order,

 $\frac{1) - \text{coupling} - \text{a} - \text{valine} - \text{compound} - \text{having} - \text{the} - \text{following}}{\text{formula} - (V) - \text{on} - \text{the} - \text{C-terminal} - \text{function} - \text{of} - \text{the} - \text{Proline} - \text{residue} - \text{of}}{\text{the} - \text{compound} - \text{with} - \text{formula} - (IV) - \text{when} - P_3 - \text{represents} - \text{OH}_{\text{following}}}$

and wherein R_2 and R_3 have the same meanings as hereinabove, and removing the P_\pm protective group,

- 2) amidating the NH₂(α) group in a N-terminal position of the lysine residue by a compound having the following formula (VI-A) or (VI-B):

$$\begin{array}{c|c}
R_1 & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & R_1 \\
R_1 & C & C & C & C & R_1 \\
R_1 & C & C & C & C & R_1 \\
R_1 & C & C & C & C & R_1 \\
R_1 & C & C & C & C & R_1 \\
R_1 & C & C & C & C & R_1 \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_1 & C & C & C & C \\
R_2 & C & C & C & C \\
R_1 & C & C & C & C \\
R_2 & C & C & C & C \\
R_1 & C & C & C & C \\
R_2 & C & C & C & C \\
R_1 & C & C & C & C \\
R_2 & C & C & C & C \\
R_2 & C & C & C & C \\
R_3 & C & C & C & C \\
R_4 & C & C & C & C \\
R_5 & C & C & C & C \\
R_5 & C & C & C & C \\
R_5 & C & C & C & C \\
R_5 & C & C & C & C \\
R_5 & C & C & C & C \\$$

so as to obtain the following compound having the formula (XII):

$$\begin{array}{c|c}
R_1 \\
R_1 \\
R_1 \\
R_1 \\
R_1 \\
R_2 \\
R_3 \\
CH_2 \\
CH_3 \\
CH_2 \\
CH_3 \\
CH_3 \\
CH_3 \\
CH_3 \\
CH_4 \\
CH_3 \\
CH_4 \\
CH_5 \\$$

wherein P_2 , R_1 , R'_1 , R'_1 , R_2 and R_3 have the same meaning as hereinabove;

1) removing the P1 protective group of the compound of formula (IV) to obtain the compound of formula (IX):

2) amidating the $NH_2(\alpha)$ group of the lysine residue of the compound of the formula (IX) with a compound having formula (VI-A) or a compound having formula (VI-B) to obtain the compound of formula (X):

$$\begin{array}{c|c}
R_1 & C & C & R_1 \\
R_1 & C & C & C \\
R_2 & C & C & C \\
R_1 & C & C & C \\
R_2 & C & C & C \\
R_1 & C & C & C \\
R_2 & C & C & C \\
R_1 & C & C & C \\
R_2 & C & C & C \\
R_3 & C & C & C \\
R_4 & C & C & C \\
R_5 & C & C &$$

3) removing the P_3 protective group from the compound of formula (X) to obtain the compound of formula (XI):

4) coupling the compound of formula (XI) with the valine compound of formula (V), or the mineral or organic salt thereof, to form the compound of formula (XII):

$$R_2$$
 R_3
 CH
 CH_3
 CH_3
 (V)

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7
 R_8
 R_9
 R_9

c) removing the P_2 protective group from the compound having of the formula (XII) so as to obtain the compound having of the formula (I), optionally under the form of a mineral or organic salt or the mineral or organic salt thereof.

- (original) The method according to claim 1, wherein 2. the compound having the formula (I) is a salt selected amongst hydrochlorides, hydrobromides, sulphates, the acetates, citrates, tartrates, lactates, phosphates, hydrogenophosphates, propionates and succinates.
- (currently a mended) The method according to claims 1 wherein the Lysinelysine, Proline proline or Valine valine amino acid residues are any of the stereoisomers of such residues.
- 4. (original) The method according to claims 1 or 2, wherein the salt is obtained during step c) through introducing the corresponding acid.
- (original) The method according to claim 4, wherein 5. the acid is acetic acid, hydrochloric acid, hydrobromic acid, sulphuric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, hydrogenophosphoric acid, propionic acid or succinic acid.
- 6. (original) The method according to claim 5, wherein the acid is acetic or hydrochloric acid.
- (previously presented) The method according to claims 1 or 2, wherein the P_1 and P_2 protective groups represent, independently from each other, Adoc (1-adamantyloxycarbonyl) BOC (t-butyloxycarbonyl), 2-bromo-Z (2-bromo-benzyloxycarbonyl), 2chloro-Z (2-chloro-benzyloxycarbonyl), Fmoc (9fluorenylmethoxycarbonyl), Formyl, Nicotinoyl, 4-nitro-Z (4-toluenesulfonyl), Z(benzyloxycarbonyl) or Adpoc (1-(adamantyl)-1-methylethoxycarbonyl).
- (previously presented) The method according to claims 1 or 2, wherein the P_1 and P_2 protective groups are selected such removed respectively under distinct operating conditions.

- 9. (previously presented) The method according to claims 1 or 2, wherein the compound having the formula (II) is salified by an organic base.
- 10. (original) The method according to claims 1 or 2, wherein the compound having the formula (III) is salified by a mineral or an organic acid.
- 11. (previously presented) A method according to claims 1 or 2, wherein in step a), the peptide coupling reaction occurs in the presence of an activation or a coupling reagent selected amongst carbodiimides water-soluble carbodiimides, phosphonium salts, PyBOP ((benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate), PyBROP (bromotripyrrolidinophosphonium hexafluorophosphate), PyCloP (chlorotripyrrolidinophosphonium hexafluorophosphate), or also by means of reagents selected PyClU (chloro-N, N, N', N'amongst bis(tetramethylene)formamidinium hexafluoro-phosphate), hydroxysuccinimide, (1-ethoxycarbonyl-2-ethoxy-1,2-EEDQ dihydroquinolin), CDI (carbonyldiimidazole), or chloroformates

Claims 12 - 14 (cancelled)

- 15. (original) The method according to claims 1 or 2, wherein in the compound having the formula (II), the P_1 protective group is t-butyloxycarbonyl (BOC) and the P_2 protective group is benzyloxycarbonyl (Z).
- 16. (currently amended) The method according to claims 1 or 2, wherein in the compound of the formula (III), the P_3 protective group is the OBzl benzyl ester group.
- 17. (previously presented) The method according to claims 1 or 2, wherein in the compound having the formula (I), the R_1 , R_1 and R_1 groups represent each a hydrogen atom.

- 18. (original) The method according to claims 1 or 2, wherein in the compound having the formula (I), the R_2 and R_3 groups represent each a hydrogen atom.
- 19. (currently amended) The method according to claims 1 or 2, wherein the P_1 protective group is t-butyloxycarbonyl (BOC), the P_2 protective group is benzyloxycarbonyl (Z) and the P_3 protective group is OBzl benzyl-ester.
- 20. (withdrawn) A KPV tripeptide diamide derivative or salt thereof represented by the following formula (IA):

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_7
 R_7

wherein:

- a) R_1 , R'_1 and R''_1 represent, independently from each other, a hydrogen atom or
- a linear or branched $C_1\text{-}C_{22}$ alkyl moiety, optionally interrupted by a heteroatom,
 - C₄-C₁₀ cycloalkyl moiety,
- a linear or branched $C_1\text{-}C_{22}$ polyfluoroalkyl or perfluoroalkyl moiety,
- an aryl moiety optionally substituted by one or more halogen atoms or one or more linear or branched $C_1\text{-}C_4$ alkyl moieties,
 - an aralkyl moiety,

- or R_1 and R'_1 could form with $C(R"_1)$ a saturated ring with from 3 to 7 atoms, optionally substituted by one or more linear or branched C_1 - C_4 alkyl moieties and/or optionally containing a heteroatom,
 - hydrogen,

with the proviso that the $R_1(R'_1)(R''_1)CO$ group does not represent an amino acid residue or a peptide residue with at least one of R_1 , R''_1 , R''_1 being different from hydrogen.

- b) $\ensuremath{R_2}$ and $\ensuremath{R_3}$ represent, independently from each other, a hydrogen atom or represent
- a linear or branched $C_1\text{-}C_{24}$ alkyl moiety, optionally interrupted by a heteroatom,
 - a C₄ -C₁₀ cycloalkyl moiety,
- a linear or branched $C_1\text{-}C_{22}$ polyfluoroalkyl or perfluoroalkyl moiety,
- an aryl moiety optionally substituted by one or more halogen atoms, or one or more linear or branched $C_1\text{-}C_4$ alkyl moieties,
 - an aralkyl moiety,
- or R_2 and R_3 could form with the nitrogen atom a saturated ring with from 5 or 6 atoms optionally substituted by one or more linear or branched C_1 - C_4 alkyl moieties, said saturated ring optionally containing a heteroatom, with at least one of the residues R_2 or R_3 being different from hydrogen,

with the proviso that the $N\left(R_2\right)$ $\left(R_3\right)$ group does not represent an amino acid or a peptide residue.

- 21. (withdrawn) The KPV tripeptide diamide derivative according to claim 20, wherein the salt is selected amongst hydrochlorides, hydrobromides, sulphates, acetates, citrates, tartrates, lactates, phosphates, hydrogenophosphates, propionates and succinates.
- 22. (withdrawn) The KPV tripeptide diamide derivate according to claims 20 or 21, wherein the Lysine, Proline or

Valine amino acid residues are any of the stereoisomers of each of such residues.

- 23. (withdrawn) A composition comprising: a KPV tripeptide diamide derivative or salt thereof according to claims 20 or 21 in a physiologically acceptable medium.
- 24. (withdrawn) The composition according to claim 23, wherein the physiologically acceptable medium is a cosmetic medium and the KPV tripeptide diamide derivate or salt thereof is present in an amount ranging from 10⁻⁸ to 10⁻³ g/100g.
- 25. (withdrawn) The composition according to claim 23, wherein the physiologically acceptable medium is a pharmaceutical medium and the KPV tripeptide diamide derivate is present in an amount greater than 5.10⁻⁴ g/100g.
 - 26. (cancelled)
- 27. (original) The method according to claim 9, wherein the organic base is an organic amine.
- 28. (original) The method according to claim 1, further comprising the step of deprotecting P3 prior to coupling said valine compound of Formula (V) to said compound of Formula (IV).
- 29. (withdrawn) A method of treating dry or sensitive skin comprising: obtaining a quantity of a composition of claim 23 and applying said composition to the dry or sensitive skin of a patient.
- 30. (withdrawn) A method of treating dry or sensitive skin comprising: obtaining a quantity of a composition of claim 24 and applying said composition to the dry or sensitive skin of a patient.
- 31. (withdrawn) A method of treating dry or sensitive skin comprising: obtaining a quantity of a composition of claim 25 and applying said composition to the dry or sensitive skin of a patient.

- 32. (withdrawn) The method of claim 1 wherein R_1 , R'_1 or R''_1 are a linear or branched C_1 - C_{22} alkyl moiety interrupted by a heteroatom, said heteroatom is selected from O, N, S or Si.
- 33. (withdrawn) The method of claim 1 wherein when R_1 and R'_1 form with $C(R"_1)$ a saturated ring containing a heteroatom, said heteroatom is O, S or N.
- 34. (withdrawn) The method of claim 1 wherein when R_2 and R_3 is a linear or branched $C_1\text{-}C_{22}$ alkyl moiety interrupted by a heteroatom, said heteroatom is selected from O, N, S or Si.
- 35. (withdrawn) The method of claim 1 wherein when R_2 and R_3 form with a nitrogen atom a saturated ring containing a heteroatom, said heteroatom is O, S or N.
- 36. (withdrawn) The method of claim 9 wherein said organic base in an organic amine.
- 37. (withdrawn) The method of claim 1 wherein when R_1 , R'_1 or R''_1 are an aryl moiety optionally substituted by one or more halogen atoms, such halogen is Cl, F, Br or I.
- 38. (withdrawn) The method of claim 1 wherein when R_2 and R_3 form an aryl moiety optionally substituted by one or more halogen atoms, such halogen is Cl, F, Br or I.
- 39. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_1 , R'_1 and R''_1 represent a linear or branched C_1 - C_{22} alkyl moiety interrupted by a heteroatom, said heteroatom is O, N, S or Si.
- 40. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_1 , R'_1 and R''_1 represent an aryl moiety optionally substituted by one or more halogen atoms, such halogen is Cl, F, Br or I.
- 41. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_1 and R^{\dagger}_1 form with $C(R^{"}_1)$ a saturated ring containing a hetereoatom, said heteroatom is O, S or N.

- 42. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_2 and R_3 represent a linear or branched $C_1\text{-}C_{22}$ alkyl moiety interrupted by a heteroatom, said heteroatom is O, N, S or Si.
- 43. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_2 and R_3 represent an aryl moiety optionally substituted by one or more halogen atoms, such halogen is Cl, F, Br or I.
- 44. (withdrawn) The KPV tripeptide diamide derivative or salt thereof of claim 20 wherein, when R_2 and R_3 form with a nitrogen atom a saturated ring containing a heteroatom, said heteroatom is O, S or N.
- 45. (withdrawn) A method of making a composition useful for treating dry or sensitive skin comprising obtaining a quantity of a KPV tripeptide diamide derivative or salt thereof as claimed in claim 20 and mixing same in a physiologically acceptable medium so as to produce a dermatological composition.
- 46. (previously presented) The method of claim 1, which does not comprise a final purification step.