Содержание

1	Лекция от 08.02.17. Случайные блуждания				
	1.1	Понятие случайного блуждания	3		
	1.2	Случайные блуждания	4		
	1.3	Исследование случайного блуждания с помощью характери-			
		стической функции	6		
2	Лекция от 15.02.17. Ветвящиеся процессы и процессы вос-				
	ста	новления	9		
	2.1	Модель Гальтона-Ватсона	6		
	2.2	Процессы восстановления	13		
3	Лекция от 22.02.17. Пуассоновские процессы				
	3.1	Процессы восстановления (продолжение)	14		
	3.2	Сопоставление исходного процесса восстановления со вспомо-			
		гательным	14		
	3.3	Элементарная теорема восстановления	16		
	3.4	Пуассоновский процесс как процесс восстановления	18		
4	Лei	кция от 01.03.17. Точечные процессы	20		
	4.1	Независимость приращений пуассоновского процесса	20		
	4.2	Пространственный пуассоновский процесс	21		
	4.3	Функционал Лапласа точечного процесса	26		
	4.4	Маркирование пуассоновских процессов	26		
5	Лекция от 15.03.17. Процессы с независимыми приращени-				
	ямі		27		
	5.1	Функционал Лапласа точечного процесса (продолжение)	27		
	5.2	Теорема Колмогорова о согласованных распределениях	32		
	5.3	Процессы с независимыми приращениями	34		
	5.4	Модификация процесса	34		
6	Лекция от 22.03.17. Винеровский процесс 35				
	6.1	Фильтрации. Марковские моменты	35		
	6.2	Строго марковское свойство	36		
	6.3	Функции Хаара и Шаудера	40		
	6.4	Винеровские процессы	42		
7	Лекция от 29.03.17. Свойства винеровского процесса 45				
	7.1	Недифференцируемость траекторий броуновского движения.	45		
	7.2	Принцип отражения	47		
	7.3	Теорема Башелье	48		
8	Лекция от 05.04.17. Мартингалы				
	8.1	Мартингалы. Определения. Примеры	50		
	8.2	Разложение Дуба	52		
	8.3	Φ ормула Танаки	53		
	8 4	Теорема Луба об остановке	56		

9	Лек	ция от 12.04.17. Марковские процессы	59
	9.1	Задача о разорении игрока	59
	9.2	Марковские процессы	61
	9.3	Свойства переходных вероятностей	63
10	Лек	ция от 19.04.17. Свойства марковских процессов	65
	10.1	Компьютерное моделирование марковских цепей с дискрет-	
		ным временем и конечным числом состояний	65
	10.2	Предельное поведение переходных вероятностей	67
	10.3	Генератор марковской цепи с непрерывным временем	71
	10.4	Инфинитезимальная матрица конечной марковской цепи	72
11	Лек	ция от 26.04.17. Применения марковских цепей	73
	11.1	Формулировка теоремы Дуба о консервативных цепях. Ста-	
		ционарные марковские цепи	73
	11.2	Обратимые цепи	74
	11.3	Метод Монте-Карло, использующий цепи Маркова	75
f 12	Лек	ция от 03.05.17. Слабая сходимость вероятностных мер.	
	Ков	ариационные функции	76
	12.1	Слабая сходимость и сходимость по распределению	76
	12.2	Функциональные предельные теоремы	78
	12.3	Критерий согласия Колмогорова	79
		Гауссовские процессы	80
		Свойства ковариационных функций	82
Ст	іисоі	к литературы	84

1 Лекция от 08.02.17

Случайные блуждания

1.1 Понятие случайного блуждания

Определение 1.1. Пусть V — множество, а \mathscr{A} — σ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение 1.2. Пусть есть (V, \mathscr{A}) и (S, \mathscr{B}) — два измеримых пространства, $f \colon V \to S$ — отображение. f называется $\mathscr{A} \mid \mathscr{B}$ -измеримым, если $\forall B \in \mathscr{B} \ f^{-1}(B) \in \mathscr{A}$. Обозначение: $f \in \mathscr{A} \mid \mathscr{B}$.

Определение 1.3. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F}|\mathscr{B}$, то Y называется *случайным элементом*.

Определение 1.4. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y: \Omega \to S$ — случайный элемент. Pac-пределение вероятностей, индуцированное случайным элементом Y, - это функция на множествах из \mathscr{B} , задаваемая равенством

$$\mathsf{P}_Y(B) := \mathsf{P}(Y^{-1}(B)), \quad B \in \mathscr{B}.$$

Определение 1.5. Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством,— это семейство случайных элементов $X = \{X(t), t \in T\}$, где

$$X(t): \Omega \to S_t, \ X(t) \in \mathscr{F}|\mathscr{B}_t \ \forall t \in T.$$

Здесь T — это произвольное параметрическое множество, (S_t, \mathscr{B}_t) — произвольные измеримые пространства.

Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение 1.6. Случайные элементы X_1,\ldots,X_n называются *независимыми*, если $P\left(\bigcap_{k=1}^n \{X_k \in B_k\}\right) = \prod_{k=1}^n P(X_k \in B_k) \ \forall B_1 \in \mathscr{B}_1,\ldots,B_n \in \mathscr{B}_n.$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathcal{B}_t, \mathsf{Q}_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathscr{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathscr{F}|\mathscr{B}_t$ таких, что $\mathsf{P}_{X_t} = \mathsf{Q}_t, \ t \in T$.

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathsf{Q})_{t \in T}$ произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности \forall конечного поднабора.

1.2 Случайные блуждания

Определение 1.7. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \geq 0\}$ $(n \in \mathbb{Z}_+)$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка);
$$S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$$

Определение 1.8. *Простое случайное блуждание в* \mathbb{Z}^d — это такое случайное блуждание, что

$$P(X = e_k) = P(X = -e_k) = \frac{1}{2d},$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_{i}, 0, \dots, 0), \ k = 1, \dots, d.$$

Определение 1.9. Введем $N:=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\}\ (\leqslant\infty)$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S==\{S_n,n\geqslant 0\}$ называется возвратным, если $\mathsf{P}(N=\infty)=1;$ невозвратным, если $\mathsf{P}(N<\infty)=1.$

Замечание. Далее считаем, что начальная точка случайного блуждания—

Определение 1.10. Число $\tau := \inf\{n \in \mathbb{N} : S_n = 0\}$ ($\tau := \infty$, если $S_n \neq 0$ $\forall n \in N$) называется моментом первого возвращения в θ .

Замечание. Следует понимать, что хотя определение подразумевает, что $P(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

Лемма 1.2. Для $\forall n \in \mathbb{N}$

$$P(N = n) = P(\tau = \infty) P(\tau < \infty)^{n-1}.$$

Доказатель ство. При n=1 формула верна: $\{N=1\}=\{\tau=\infty\}$. Докажем по индукции.

$$P(N = n + 1, \tau < \infty) = \sum_{k=1}^{\infty} P(N = n + 1, \tau = k) =$$

$$= \sum_{k=1}^{\infty} P\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_{m+k} - S_k = 0\} = n, \tau = k\right) =$$

$$= \sum_{k=1}^{\infty} P\left(\sum_{m=0}^{\infty} \mathbb{I}\{S'_m = 0\} = n\right) P(\tau = k) =$$

$$= \sum_{k=1}^{\infty} \mathsf{P}(N'=n) \, \mathsf{P}(\tau=k),$$

где N' определяется по последовательности $X_1'=X_{k+1},\,X_2'=X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$P(N = n + 1, \tau < \infty) = P(N = n) P(\tau < \infty).$$

Заметим теперь, что

$$P(N = n + 1) = P(N = n + 1, \tau < \infty) + P(N = n + 1, \tau = \infty),$$

где второе слагаемое обнуляется из-за того, что $n+1\geqslant 2$. Из этого следует, что

$$P(N = n + 1) = P(N = n) P(\tau < \infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty) P(\tau < \infty)^n$$

что и завершает доказательство леммы.

Следствие. $\mathsf{P}(N=\infty)$ равно θ или 1. $\mathsf{P}(N<\infty)=1\Leftrightarrow\mathsf{P}(\tau<\infty)<1$.

Доказательство. Пусть $P(\tau < \infty) < 1$. Тогда

$$\begin{split} \mathsf{P}(N<\infty) &= \sum_{n=1}^{\infty} \mathsf{P}(N=n) = \sum_{n=1}^{\infty} \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \frac{\mathsf{P}(\tau=\infty)}{1-\mathsf{P}(\tau<\infty)} = \\ &= \frac{\mathsf{P}(\tau=\infty)}{\mathsf{P}(\tau=\infty)} = 1. \end{split}$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$\mathsf{P}(\tau < \infty) = 1 \Rightarrow \mathsf{P}\left((\tau = \infty) = 0\right) \Rightarrow \mathsf{P}(N = n) = 0 \ \forall \, n \in \mathbb{N} \Rightarrow \mathsf{P}(N < \infty) = 0.$$
 Следствие доказано.

Теорема 1.3. Простое случайное блуждание в \mathbb{Z}^d возвратно \Leftrightarrow $\mathsf{E} N = \infty$ (соответственно, невозвратно \Leftrightarrow $\mathsf{E} N < \infty$).

Доказательство. Если $\mathsf{E} N<\infty,$ то $\mathsf{P}(N<\infty)=1.$ Пусть теперь $\mathsf{P}(N<<\infty)=1.$ Это равносильно тому, что $\mathsf{P}(\tau<\infty)<1.$

$$\begin{split} \mathsf{E} N &= \sum_{n=1}^\infty n \, \mathsf{P}(N=n) = \sum_{n=1}^\infty n \, \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \\ &= \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \, \mathsf{P}(\tau<\infty)^{n-1}. \end{split}$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = \left(\sum_{n=1}^{\infty} p^n\right)' = \left(\frac{1}{1-p}\right)' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$\mathsf{P}(\tau = \infty) \sum_{n=1}^{\infty} n \, \mathsf{P}(\tau < \infty)^{n-1} = \frac{\mathsf{P}(\tau = \infty)}{(1 - \mathsf{P}(\tau < \infty))^2} = \frac{1}{1 - \mathsf{P}(\tau < \infty)},$$

что завершает доказательство теоремы.

3амечание. Заметим, что поскольку $N=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\},$ то

$$EN = \sum_{n=0}^{\infty} EI\{S_n = 0\} = \sum_{n=0}^{\infty} P(S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

$$S$$
 возвратно $\Leftrightarrow \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \infty.$

Следствие. S возвратно $npu \ d = 1 \ u \ d = 2.$

Доказательство.
$$P(S_{2n}=0)=(\frac{1}{2d})^{2n}\sum_{\substack{n_1,\ldots,n_d\geqslant 0\\n_1+\ldots+n_d=n}}\frac{(2n)!}{(n_1!)^2\ldots(n_d!)^2}$$

Случай
$$d=1$$
: $P(S_{2n}=0)=\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}$.

Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$P(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

 \Rightarrow ряд $\sum\limits_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается $cnyua\check{u} \ d=2$:

$$P(S_{2n} = 0) = \dots = \left\{ \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \right\}^2 \sim \frac{1}{\pi n}$$

 \Rightarrow ряд тоже разойдется \Rightarrow блуждание возвратно (подробнее см. [2], т.1, стр. 354). Теорема доказана. $\hfill\Box$

1.3 Исследование случайного блуждания с помощью характеристической функции

Теорема 1.4. Для простого случайного блуждания в \mathbb{Z}^d

$$\mathsf{E} N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \; \mathrm{d}t,$$

 $z \partial e \varphi(t) - x a p a \kappa m e p u c m u ч e c \kappa a я ф y н к u u я X, t \in \mathbb{R}^d$.

Доказатель ство.
$$\int_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$$
. Следовательно,

$$\mathbb{I}\{S_n = 0\} = \prod_{k=1}^d \mathbb{I}\{S_n^{(k)} = 0\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{E}\mathbb{I}(S_n = 0) = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \; \mathrm{d}t = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \; \mathrm{d}t.$$

Заметим, что

$$\mathsf{E} e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{E}\mathbb{I}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \left(\varphi\left(t\right)\right)^n \, \mathrm{d}t.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int\limits_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, \, \mathrm{d}t, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leqslant c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n = 0) = \mathsf{E} N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие. При $d\geqslant 3$ простое случайное блуждание невозвратно.

Доказательство. Запишем характеристическую функцию X в явном виде:

$$\varphi(t) = \mathsf{E} e^{i(t,X)} = \sum_{k=1}^d \left(\frac{1}{2d} e^{it_k} + \frac{1}{2d} e^{-it_k} \right) = \frac{1}{d} \sum_{k=1}^d \cos(t_k).$$

Тогда

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_d))} \, dt.$$

Из вида подынтегрального выражения ясно, что расходимость может происходить только из-за особенности t=0. Введем обозначения

$$B_{\delta} := (-\delta, \delta)^d, \ V_{\delta} := [-\pi, \pi]^d \setminus B_{\delta}.$$

Ясно, что

$$\forall d \in \mathbb{N} \quad \int_{V_c} \frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_d))} \, dt < \infty.$$

Поэтому для того чтобы понять, сходится интеграл или нет, достаточно смотреть на интеграл по замыканию малой окрестности нуля B_{δ} . Воспользуемся разложением косинуса в ряд Тейлора:

$$\frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_k))} \sim \frac{1}{1 - \frac{1}{d}(1 - \frac{1}{t_1^2} + \ldots + 1 - \frac{1}{t_d^2})} \sim \frac{d}{\|t\|^2},$$

где

$$c \uparrow 1, t \to 0.$$

Поскольку якобиан перехода к d—мерной сферической системе координат содержит множитель R в степени d-1, то интеграл сойдется $\Leftrightarrow d \geqslant 3$. Теорема доказана.

Доказательство (комбинаторное). Заметим, что

$$\begin{split} \mathsf{P}\left(S_{2n} = 0\right) &= \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{2n!}{(n_1!)^2 \dots (n_d!)^2} \left(\frac{1}{2d}\right)^{2n} = \\ &= \frac{(2n)!}{n!n!} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \left(\frac{n!}{n_1! \dots n_d!}\right)^2 \left(\frac{1}{2d}\right)^{2n} \leqslant \\ &\leqslant \frac{(2n)!}{n!n!} \left(\frac{1}{2d}\right)^{2n} \frac{n!}{\left(\left(n/d\right)!\right)^d} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n + \dots + n_d = n}} \frac{n!}{n_1! \dots n_d!} = \Theta\left(n^{-d/2}\right) \end{split}$$

по формуле Стирлинга. Соответственно, при $d\geqslant 3$ ряд из вероятностей сходится, что и требовалось доказать (подробнее см. [2], т.1, стр. 354). \square

Замечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i:\Omega\to\mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение 1.11. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *множество возвратности* случайного блуждания S—это множество

$$R(S) = \bigcap_{\varepsilon>0} \left\{ x \in \mathbb{R}^d : \text{ блуждание возвратно в } \varepsilon\text{--окрестности точки } x
ight\}$$

Определение 1.12. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *точки, достижимые случайным блужданием* S,- это множество P(S) такое,

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n: \ P(\|S_n - z\| < \varepsilon) > 0.$$

Теорема 1.5 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \emptyset$. Замечание. Подробнее см. [1], стр. 65.

$\mathbf{2}$ Лекция от 15.02.17

Ветвящиеся процессы и процессы восстановления

2.1Модель Гальтона-Ватсона

Описание модели Пусть $\{\xi, \xi_{n,k}, n, k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \geqslant 0, \quad m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega) := 1,$$

$$Z_n(\omega) := \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega) \quad \text{для } n \in \mathbb{N}.$$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\colon \exists\, n=n(\omega),\; Z_n(\omega)=0\}$ — событие вырожедения nonyляции. Заметим, что если $Z_n(\omega)=0$, то $Z_{n+1}(\omega)=0$. Таким образом, $\{Z_n=0\}\subset\{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^\infty\{Z_n=0\}.$ По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение 2.1. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum\limits_{n=0}^{\infty}a_n=1$. Производящая функция для этой последовательности — это

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \leqslant 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = P(Y = k), k = 0, 1, \dots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k P(Y = k) = Es^Y, \quad s \in [0, 1].$$

Пемма 2.1. Вероятность $\mathsf{P}(A)$ является корнем уравнения $\psi(p)=p,\ \emph{г}\emph{d}\emph{e}$ $\psi = f_{\xi} \ u \ p \in [0, 1].$

Доказательство.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\}\subset \sigma\{\xi_{m,k},\ m=1,\ldots,r,\ k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k},\ k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения (на самом деле все тут понятно: первый множитель под матожиданием является борелевской функцией от $\xi_{n,\bullet}$, а второй — от $\xi_{i,\bullet}$, $i=1,\ldots,n-1$, эти два множества случайных величин независимы)), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \{ Z_{n-1} = j \} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P} (Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \, \mathsf{P} (Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \, \mathsf{P} (Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi}(s) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)), \quad s \in [0, 1].$$

Подставим s = 0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}\left(\psi_{\varepsilon}(0)\right)$$

Заметим, что

$$\begin{split} f_{Z_n}(s) &= f_{Z_{n-1}}(\psi_\xi(s)) = f_{Z_{n-2}}\left(\psi_\xi\left(\psi_\xi\left(s\right)\right)\right) = \ldots = \underbrace{\psi_\xi(\psi_\xi\ldots(\psi_\xi))\ldots)}_{n \text{ итераций}} = \\ &= \psi_\xi(f_{Z_{n-1}}(s)). \end{split}$$

Тогда при s=0 имеем, что

$$P(Z_n = 0) = \psi_{\xi} \left(P\left(Z_{n-1} = 0 \right) \right).$$

Но $\mathsf{P}(Z_n=0)\nearrow\mathsf{P}(A)$ при $n\to\infty$ и ψ_ξ непрерывна на [0,1]. Переходим к пределу при $n\to\infty$. Тогда

$$P(A) = \psi_{\varepsilon}(P(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\mathcal{E}}(p), p \in [0, 1].$

Теорема 2.2. Вероятность р вырождения процесса Гальтона-Ватсона есть **наименьший** корень уравнения

$$\psi(p) = p, \quad p \in [0, 1], \tag{1}$$

 $r\partial e \ \psi = \psi_{\mathcal{E}}.$

Доказательство. Пусть $p_0 := P(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi\geqslant 1)=1,\quad \mathsf{P}\left(\bigcap_{n,k}\left\{\xi_{n,k}\geqslant 1\right\}\right)=1.$$

Поэтому $Z_n \geqslant 1$ при $\forall n$, то есть $\mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть теперь $p_0 = 1$. Тогда $\mathsf{P}(\xi = 0) = 1 \Rightarrow \mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть, наконец, $0 < p_0 < 1$. Из этого следует, что $\exists m \in \mathbb{N}$: $p_m > 0$, а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n . Пусть $s\in\Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (1) нет корней на $\Delta_n \, \forall \, n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, P(A)), \quad \psi_n(0) \nearrow P(A).$$

По лемме 2.1 P(A) является корнем уравнения (1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 2.3. 1. Вероятность вырождения P(A) есть нуль $\Leftrightarrow p_0 = 0$. 2. Пусть $p_0 > 0$. Тогда при $E\xi \leqslant 1$ имеем P(A) = 1, при $E\xi > 1$ имеем P(A) < 1.

- Доказательство. 1. Пусть P(A)=0. Тогда $p_0=0$, потому что иначе была бы ненулевая вероятность вымирания $P(A)>P(Z_1=0)=p_0$. В другую сторону, если $p_0=0$, то вымирания не происходит (почти наверное) из-за того, что у каждой частицы есть как минимум один потомок (почти наверное).
 - 2. Знаем, что

$$\psi_{\xi}(s) = \sum_{k=0}^{\infty} s^k p_k, \quad \psi_{\xi}(1) = 1, \quad \exists \psi'_{\xi}(s), \ s \in (0, 1).$$

Воспользуемся формулой Лагранжа:

$$\forall s \in (0, 1) \ \psi_{\varepsilon}(1) - \psi_{\varepsilon}(s) = \psi_{\varepsilon}'(\theta)(1 - s), \ \theta \in (s, 1).$$

Формулой Лагранжа можно пользоваться, поскольку $\psi_{\xi}(s)$ непрерывна на отрезке [0, 1] и дифференцируема на интервале (0, 1). Тогда

$$\psi_{\xi}(s) - s = 1 - s - \psi'_{\xi}(\theta)(1 - s) = (1 - s)\left(1 - \psi'_{\xi}(\theta)\right).$$

Знаем, что при $s \in (0, 1)$

$$\psi'_{\xi}(s) = \sum_{k=1}^{\infty} k s^{k-1} p_k, \quad \psi''_{\xi}(s) = \sum_{k=2}^{\infty} k(k-1) s^{k-2} p_k.$$

Заметим, что если $\exists p_k > 0, \ k \geqslant 2$, то $\psi_\xi''(s) > 0, \ s \in (0, 1)$, а значит, $\psi_\xi'(s)$ строго возрастает на $s \in (0, 1)$. Будем сначала рассматривать этот случай.

(a) Пусть $\mathsf{E}\xi=\psi_{\xi}'(1)\leqslant 1$. Из этого следует, что $\psi_{\xi}'(\theta)<1$. Тогда получаем, что

$$\psi_{\xi}(s) - s \ = \ 1 - s - \psi_{\xi}'(\theta)(1 - s) \ = \ (1 - s)\left(1 - \psi_{\xi}'\left(\theta\right)\right) > 0 \ \forall s \in (0, 1),$$

причем $\psi_\xi(0)-0=p_0>0$ по условию. Из этого следует, что наименьшим корнем уравнения $\psi_\xi(s)-s=0$ будет s=1.

(b) Пусть $\mathsf{E}\xi=\psi_\xi'(1)>1.$ Тогда для всех s, достаточно близких к 1,

$$\psi_{\xi}'(\theta) > 1, \ \theta \in (s, 1),$$

в силу непрерывности производящей функции на отрезке [0, 1]. Тогла

$$\psi_{\xi}(s) - s = 1 - s - \psi'_{\xi}(\theta)(1 - s) = (1 - s)\left(1 - \psi'_{\xi}(\theta)\right) < 0,$$

при этом $\psi_{\xi}(0) - 0 = p_0 > 0$ по условию. Это значит, что на интервале (0, 1) найдется корень уравнения $\psi_{\xi}(s) - s = 0$ в силу непрерывности производящей функции.

(c) Рассмотрим теперь случай $p_k = 0 \ \forall k \geqslant 2$. В рамках этого предположения

$$\psi_{\varepsilon}(s) = p_0 + (1 - p_0)s,$$

а значит.

$$\psi_{\xi}(s) - s = p_0 + (1 - p_0)s - s = p_0(1 - s) > 0 \ \forall s < 1.$$

Из этого следует, что у уравнения $\psi_{\xi}(s)-s=0$ наименьший корень на отрезке [0,1]— это s=1. Теорема доказана.

Следствие. Пусть $\mathsf{E}\xi < \infty$. Тогда $\mathsf{E}Z_n = (\mathsf{E}\xi)^n, \ n \in \mathbb{N}$.

Доказательство. Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \, \mathsf{E} \xi \, \mathsf{P}(Z_{n-1} = j) = \mathsf{E} \xi \, \mathsf{E} Z_{n-1} = \left(\mathsf{E} \xi \right)^n.$$

Определение 2.2.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi=1$ процесс называется критическим.

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение 2.3. Пусть $S_n = X_1 + \ldots + X_n, n \in \mathbb{N}, X, X_1, X_2, \ldots$ независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

 $Z(t) := \sup\{n \in \mathbb{N} : S_n \le t\}, \quad t > 0.$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{ n \in \mathbb{N} : S_n(\omega) \leq t \}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется процессом восстановления.

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\{S_n \leqslant t\}, \ t > 0.$$

Определение 2.4. Рассмотрим вспомогательный процесс восстановления $\{Z^*(t), t \geq 0\}$, который строится по Y, Y_1, Y_2, \ldots независимым одинаково распределенным случайным величинам, где

$$P(Y = \alpha) = p \in (0, 1); P(Y = 0) = q = 1 - p.$$

Исключаем из рассмотрения случай, когда Y=C=const: если C=0, то $Z(t)=\infty \ \forall \, t>0$; если же C>0, то $Z(t)=\left[\frac{t}{c}\right]$.

Лемма 2.4.

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j \, p^{j+1} q^{m-j}, \ \mathrm{ide} \ j = \left[\frac{t}{\alpha}\right] &, \ \mathrm{echu} \ m \geqslant j; \\ 0 &, \ \mathrm{echu} \ m < j, \end{cases}$$

 $r\partial e \ m = 0, 1, 2, \dots$

Определение 2.5. U имеет *геометрическое распределение* с параметром $p \in (0,1)$, если $P(U=k) = (1-p)^k p, \ k=0,1,2,\dots$

Замечание. Наглядная иллюстрация этой случайной величины такова: это число неудач до первого успеха, если вероятность успеха равна p, а вероятность неудачи, соответственно, равна 1-p.

Пемма 2.5. Рассмотрим независимые геометрические величины U_0, \ldots, U_{j+m} с параметром $p \in (0,1)$. Тогда $\forall t \geqslant \alpha$ и $m \geqslant j$

$$P(j + U_0 + ... + U_j = m) = P(Z^*(t) = m).$$

3 Лекция от 22.02.17

Пуассоновские процессы

3.1 Процессы восстановления (продолжение)

Доказательство. Заметим, что

$$P(U_0 + \ldots + U_j = m - j) = \sum_{\substack{k_0, \ldots, k_j \geqslant 0 \\ k_0 + \ldots + k_j = m - j}} P(U_0 = k_0, \ldots, U_j = k_j).$$

В силу независимости U_i получаем, что

$$\sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0,\dots,U_j=k_j) = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0)\dots\mathsf{P}(U_j=k_j) = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p(1-p)^{k_0}\dots p(1-p)^{k_j} = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{k_0+\dots+k_j} = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{m-j} = p^{j+1}(1-p)^{m-j}\#M,$$

где M — множество всевозможных упорядоченных наборов целых чисел k_j , удовлетворяющих условию под знаком суммы, а #M — мощность этого множества. Заметим, что задача нахождения #M эквивалентна "задаче о перегородках" из курса теории вероятностей с числом элементов m-j и числом перегородок j. Таким образом,

$$\#M = C_m^j$$

и, соответственно,

$$P(U_0 + \ldots + U_j = m - j) = C_m^j p^{j+1} (1 - p)^{m-j},$$

что и требовалось доказать.

3.2 Сопоставление исходного процесса восстановления со вспомогательным

Лемма 3.1. $\Pi y cmv \ t > \alpha$. $Tor \partial a$

$$\mathsf{E}Z^{\star}(t) \leqslant At, \ \mathsf{E}(Z^{\star}(t))^2 \leqslant Bt^2,$$

$$e \partial e A = A(p, \alpha) > 0, B = B(p, \alpha) > 0.$$

Доказательство. По лемме 2.5

$$EZ^*(t) = E(i + U_0 + ... + U_i) = i + (i + 1)EU$$

где

$$\mathsf{E} U = \sum_{k=0}^{\infty} k(1-p)^k p = a(p) < \infty.$$

Следовательно,

$$j + (j+1)\mathsf{E}U = j + (j+1)a(p) \leqslant (j+1)\left(a(p)+1\right) \leqslant \frac{2t}{\alpha}\left(a(p)+1\right) = At,$$

поскольку $j=\left[\frac{t}{\alpha}\right]\leqslant \frac{t}{\alpha},$ а $t>\alpha;$ здесь $A=\frac{2(a(p)+1)}{\alpha}.$ Рассмотрим теперь $\mathsf{E}\left(Z^\star(t)\right)^2.$

$$\mathsf{E}\left(Z^{\star}(t)\right)^{2} = \mathsf{D}Z^{\star}(t) + \left(\mathsf{E}Z^{\star}(t)\right)^{2} = (j+1)\mathsf{D}U + \left(\mathsf{E}Z^{\star}(t)\right)^{2}.$$

Обозначим через $\sigma^2(p) := \mathsf{D} U.$ Используя оценку выше для $\mathsf{E} Z^\star(t),$ получаем, что

$$(j+1)\mathsf{D} U + \left(\mathsf{E} Z^\star(t)\right)^2 \leqslant (j+1)^2 \left(\sigma^2(p) + \left(a(p)+1\right)^2\right) \leqslant Bt^2,$$

так как $(j+1)^2 \geqslant (j+1)$. Лемма доказана.

Замечание. Пусть случайная величина $X\geqslant 0,\ X$ отлична от константы. Тогда

$$\exists \alpha > 0 : \mathsf{P}(X > \alpha) = p \in (0, 1).$$

Определим тогда по X вспомогательный процесс восстановления $Z^{\star} = \{Z^{\star}(t), \ t \geqslant 0\}$: пусть

$$Y_n = \begin{cases} \alpha, & X_n > \alpha \\ 0, & X_n \leqslant \alpha \end{cases}$$

По построению $Y_n \leqslant X_n \implies Z(t) \leqslant Z^{\star}(t) \ \forall t \geqslant 0$. Тогда $\forall \alpha > t$

$$\mathsf{E}Z(t)\leqslant \mathsf{E}Z^{\star}(t)<\infty,\ \mathsf{E}\left(Z(t)\right)^{2}\leqslant \mathsf{E}\left(Z^{\star}(t)\right)^{2}\Rightarrow Z(t)<\infty$$

почти наверное.

Следствие. $P(\forall t \ge 0 \ Z(t) < \infty) = 1.$

Доказательство. Z является неубывающим процессом:

$$s\leqslant t\to Z(s)\leqslant Z(t)\Rightarrow \mathsf{P}\left(Z(n)<\infty\;\forall n\in\mathbb{N}\right)=\mathsf{P}\left(\bigcap_{n=1}^{\infty}\{Z(n)<\infty\}\right).$$

Поскольку счетное пересечение множеств вероятности 1 имеет вероятность 1, то

$$\mathsf{P}\left(\bigcap_{n=1}^{\infty}\{Z(n)<\infty\}\right)=1,$$

что и завершает доказательство.

Следствие. $\mathsf{E} Z(t) \leqslant At; \;\; \mathsf{E} \left(Z(t) \right)^2 < Bt^2, \; t > \alpha.$

3.3 Элементарная теорема восстановления

Пемма 3.2. Пусть X, X_1, X_2, \ldots — независимые одинаково распределенные случайные величины, $X \geqslant 0$. Тогда

$$\frac{S_n}{n} \xrightarrow{n.n.} \mu \in [0, \infty], \ n \to \infty,$$

 $r\partial e \ \mu = \mathsf{E} X.$

Доказатель ство. Если $\mu < \infty$, то утверждение следует из УЗБЧ. Пусть теперь $\mu = \infty$. Положим для c>0

$$V_n(c) := X_n \mathbb{I}\{X_n \leqslant c\}.$$

Тогда по УЗБЧ

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\xrightarrow{\text{\tiny II.H.}} \mathsf{E} X\mathbb{I}\{X\leqslant c\}.$$

Возьмем $c=m\in\mathbb{N}$. Тогда

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\ \geqslant\ \liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n V_k\ =\ \mathsf{E}X\mathbb{I}\{X\leqslant m\}\ \text{почти наверное}.$$

Тогда по теореме о монотонной сходимости

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\ \geqslant\ \lim_{m\to\infty}\mathsf{E}X\mathbb{I}\{X\leqslant m\}=\mathsf{E}X=\mu=\infty,$$

что и завершает доказательство леммы.

Теорема 3.3. Пусть $Z = \{Z(t), \ t \geqslant 0\}$ — процесс восстановления, построенный по последовательности независимых одинаково распределенных случайных величин $X, X_1, X_2, \ldots, X \geqslant 0$. Тогда

$$\frac{Z(t)}{t} \xrightarrow{n.n.} \frac{1}{\mu}, \ t \to \infty;$$

$$\frac{\mathsf{E}Z(t)}{t} \xrightarrow[]{n.n.} \frac{1}{\mu}, \ t \to \infty,$$

 $\operatorname{ede}\,\tfrac{1}{0} := \infty,\ \tfrac{1}{\infty} := 0.$

Доказательство. Если $\mu=0$, то $X_n=0$ почти наверное, поэтому утверждение теоремы верно $(Z(t)=\infty \ \forall t).$

Далее $\mu > 0$. Заметим, что для t > 0

$$S_{Z(t)} \leqslant t < S_{Z(t)+1}. \tag{2}$$

Поскольку $Z(t_n, \omega) = n$, если $t_n = S_n(\omega)$, то $Z(t) \to \infty$ почти наверное (Z монотонна по t). Итак, рассмотрим (t, ω) такие, что

$$0 < Z(t, \omega) < \infty$$
 почти наверное.

Тогда для этих (t, ω) поделим обе части неравенства (2) на Z(t):

$$\frac{S_{Z(t)}}{Z(t)} \, \leqslant \, \frac{t}{Z(t)} \, \leqslant \, \frac{S_{Z(t)+1}}{Z(t)+1} \frac{Z(t)+1}{Z(t)}.$$

Согласно лемме 3.2.

$$\frac{S_{Z(t)}}{Z(t)} \xrightarrow{\text{п.н.}} \mu, \ \frac{S_{Z(t)+1}}{Z(t)+1} \xrightarrow{\text{п.н.}} \mu, \ \frac{Z(t)+1}{Z(t)} \xrightarrow{\text{п.н.}} 1.$$

Следовательно,

$$\frac{t}{Z(t)} \xrightarrow[]{\text{п.н.}} \mu, \ t \to \infty.$$

Таким образом,

$$\frac{Z(t)}{t} \xrightarrow[]{\text{\tiny fi.h.}} \frac{1}{\mu}, \ t \to \infty,$$

что завершает доказательство первого утверждения теоремы.

Следует понимать, что второе утверждение из первого нельзя получить, попросту "навесив" на него сверху матожидание: вообще говоря,

$$\xi_t \xrightarrow{\text{п.н.}} \xi \not\Rightarrow \mathsf{E}\xi_t \xrightarrow{\text{п.н.}} \mathsf{E}\xi, \ t \to \infty$$
:

наглядным примером является последовательность

$$\xi_t(\omega) = \begin{cases} t, & \omega \in [0, 1/t] \\ 0, & \omega \notin [0, 1/t] \end{cases}.$$

Для того чтобы завершить доказательство теоремы, введем следующее понятие.

Определение 3.1. Семейство случайных величин $\{\xi_t, t > \alpha\}$ называется равномерно интегрируемым, если

$$\sup_{t \to \alpha} \mathsf{E}\left(|\xi_t| \, \mathbb{I}\left\{|\xi_t| > c\right\}\right) \to 0, \ \ c \to \infty.$$

Без доказательства предлагаются следующие утверждения.

Теорема 3.4. Если $\{\xi_t, t > \alpha\}$ равномерно интегрируемо, то $\mathsf{E}\xi_t \to \mathsf{E}\xi$. Для неотрицательных случайных величин это условие является необходимым и достаточным.

Теорема 3.5 (де ла Валле Пуссена). $\{\xi_t, t > \alpha\}$ равномерно интегрируемо $\Leftrightarrow \exists$ неубывающая функция g такая, что

$$\frac{g(t)}{t} \to \infty, \ t \to \infty \quad u \quad \sup_t \mathsf{E} g\left(|\xi_t|\right) < \infty.$$

Возьмем $g(t):=t^2,\; \xi_t:=rac{Z(t)}{t},\; t>0.$ Тогда по лемме 3.1

$$\mathsf{E}\left(\xi_{t}\right)^{2} = \frac{\mathsf{E}\left(Z(t)\right)^{2}}{t^{2}} \leqslant \frac{Bt^{2}}{t^{2}} = B < \infty,$$

что позволяет нам использовать теорему 3.5 и получить по теореме 3.4 второе утверждение теоремы 3.3, что и требовалось сделать.

3.4 Пуассоновский процесс как процесс восстановления

Определение 3.2. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные величины такие, что $X \sim \text{Exp}(\lambda)$, $\lambda > 0$, то есть

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}.$$

Тогда пуассоновский процесс интенсивности $\lambda N = \{N(t), t \ge 0\}$ есть процесс восстановления, построенный на $\{X_i\}$.

Определение 3.3. Определим для t > 0

$$X_1^t := S_{N(t)+1} - t,$$

 $X_k^t := X_{N(t)+k}, \ k \geqslant 2.$

Пемма 3.6. Для $\forall t>0$ величины $N(t),~X_1^t,~X_2^t,\dots$ независимы, причем

$$N(t) \sim \text{Poiss}(\lambda t), \ X_k^t \sim \text{Exp}(\lambda), \ k = 1, 2, \dots$$

Доказательство. Для доказательства независимости достаточно показать, что для $\forall k \in \mathbb{N}, \ \forall n \in \mathbb{Z}_+, \ \forall u_1, \dots, u_k \geqslant 0$

$$P(N(t) = n, X_1^t \geqslant u, \dots, X_k^t \geqslant u_k) =$$

$$= P(N(t) = n) P(X_1^t \geqslant u_1) \dots P(X_k^t \geqslant u_k).$$

Будем доказывать это равенство по индукции по k. Докажем базу индукции: k=1:

$$\begin{split} \mathsf{P}\left(N(t) = n, \ X_1^t \geqslant u_1\right) &= \mathsf{P}\left(S_n \leqslant t, \ S_{n+1} > t, \ S_{N(t)+1} - t \geqslant u_1\right) = \\ &= \mathsf{P}\left(S_n \leqslant t, \ S_{n+1} \geqslant t + u_1\right), \end{split}$$

поскольку

$${S_n \leqslant t, \ S_{n+1} > t} = {N(t) = n}.$$

Из курса теории вероятностей известно, что если

$$S_n = X_1 + \ldots + X_n,$$

где X_i независимы и $X_i \sim \text{Exp}(\lambda)$, то

$$p_{S_n}(x) = \begin{cases} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} , & x \geqslant 0 \\ 0 & , x < 0 \end{cases}.$$

Следовательно,

$$P(S_n \le t, S_{n+1} \ge t + u_1) = P(S_n \le t, S_n + X_{n+1} \ge t + u_1) = 0$$

$$= \iint\limits_{\substack{0 \leqslant x \leqslant t \\ x+y \geqslant t+u_1}} p_{S_n}(x) p_{X_n+1}(y) \, dx \, dy =$$

$$= \iint\limits_{\substack{0 \leqslant x \leqslant t \\ x+y \geqslant t+u_1 \\ y \geqslant t+u_1}} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda y e^{-\lambda y} \, dx \, dy$$

в силу независимости S_n и X_{n+1} . Воспользуемся теоремой Фубини, чтобы вычислить этот интеграл:

$$\iint_{\substack{0 \leqslant x \leqslant t \\ x+y \geqslant t+u_1 \\ y \geqslant 0}} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda y e^{-\lambda y} \, dx \, dy = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \, dx \int_{t+u_1-x}^{\infty} \lambda y e^{-\lambda y} \, dy = \int_{t+u_1-x}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda (t+u_1-x)} \, dx = e^{-\lambda (t+u_1)} \int_{0}^{t} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} \, dx = \int_{t+u_1-x}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} \, dx = \int_$$

Таким образом, получаем, что

$$P\left(N(t) = n, \ X_1^t \geqslant u_1\right) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1}.$$
 (3)

Возьмем в равенстве (3) $u_1 = 0$ и получим, что

$$P\left(N(t) = n\right) = \frac{(\lambda t)^n}{n!}e^{-\lambda t},$$

то есть

$$N(t) \sim \text{Poiss}(\lambda t)$$
.

Теперь просуммируем равенство (3) по всем $n \in \mathbb{Z}_+$:

$$\begin{split} \sum_{n=0}^{\infty} \mathsf{P}\left(N(t) = n, \; X_1^t \geqslant u_1\right) &= \mathsf{P}\left(X_1^t \geqslant u_1\right) \\ &= \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1} \\ &= e^{-\lambda u_1} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} \\ &= e^{-\lambda u_1}, \end{split}$$

то есть

$$X_1^t \sim \text{Exp}(\lambda).$$

Таким образом, полностью доказана база индукции. Перейдем к доказательству индуктивного перехода: пусть $k\geqslant 2$:

$$\begin{split} &\mathsf{P}\left(N(t)=n,\; X_1^t\geqslant u,\dots,\; X_k^t\geqslant u_k\right) = \\ &= \mathsf{P}\left(\underbrace{S_n\leqslant t,\; S_{n+1}>t,\; S_{n+1}-t\geqslant u_1}_{\text{зависят от }X_1,\dots,X_{n+1}},\; \underbrace{X_{n+2}\geqslant u_2,\dots,\; X_{n+k}\geqslant u_k}_{\text{зависят от }X_{n+2},\dots}\right) = \end{split}$$

$$= \mathsf{P}\left(N(t) = n\right) \underbrace{\mathsf{P}\left(X_1 \geqslant u_1\right)}_{=e^{-\lambda u_1}} e^{-\lambda u_2} \dots e^{-\lambda u_k} = \mathsf{P}\left(N(t) = n\right) e^{-\lambda u_1} \dots e^{-\lambda u_k}$$

по предположению индукции. Таким образом, доказано, что

$$X_k^t \sim \text{Exp}(\lambda),$$

а также показана независимость. Теорема доказана.

Замечание (парадокс времени ожидания). Из доказанного следует, что

$$X_1^t \sim \text{Exp}(\lambda), \ X_{N(t)+1} \sim \text{Exp}(\lambda),$$

несмотря на то что отрезок длины $X_{N(t)+1}$ содержит отрезок длины X_1^t по определению. Можно привести следующую иллюстрацию: пусть автобусы подходят на остановку в случайные моменты времени S_n , то есть между последовательными прибытиями автобусов на остановку проходят случайные промежутки времени X_i , а мы пришли на остановку в момент времени t и хотим понять, как распределено время нашего ожидания следующего автобуса; в частности, нам интересно, сколько в среднем мы будем этот автобус ждать. Из достигнутого выше результата следует, что время ожидания нами этого автобуса распределено так же (и имеет то же среднее), как и время между прибытиями автобусов. Разгадка этого "парадокса" заключается в том, что концы отрезков также случайны.

4 Лекция от 01.03.17

Точечные процессы

4.1 Независимость приращений пуассоновского процес-

Определение 4.1. Процесс $\{Y(t), t \geqslant 0\}$ имеет независимые приращения, если

$$\forall 0 \leq t_0 \leq t_1 \leq \ldots \leq t_n \ \forall n \in \mathbb{N}$$

случайные величины

$$Y(t_0), Y(t_1) - Y(t_0), \dots, Y(t_n) - Y(t_{n-1})$$

независимы в совокупности.

Теорема 4.1. Пуассоновский процесс интенсивности λ имеет независимые приращения.

$$N^{t}(s) := \sup \left\{ n : \sum_{k=1}^{n} X_{k}^{t} \leqslant s \right\}, \ s \geqslant 0.$$

Из доказанного ранее следует, что $\{N^t(s), s \geqslant 0\}$ — пуассоновский процесс интенсивности λ . Заметим, что по определению

$$N^t(s) \in \sigma \left\{ X_1^t, X_2^t, \ldots \right\},\,$$

из чего следует, что N(t) независима с $N^t(s)$ $\forall \, s.$ Но

$$N^t(s) = N(t+s) - N(t),$$

а значит, для n=1 утверждение доказано: $t_0=t,\,t_1=t+s$. Тем самым получена база индукции. Перейдем к доказательству индуктивного перехода. Зафиксируем t_0 и рассмотрим $N^{t_0}(s)$. Заметим, что

$$\begin{split} N^{t_0}\left(t_k - t_0\right) - N^{t_0}\left(t_{k-1} - t_0\right) &= \\ &= N\left(t_k - t_0 + t_0\right) - N(t_0) - \left(N\left(t_{k-1} - t_0 + t_0\right) - N\left(t_0\right)\right) = \\ &= N(t_k) - N(t_{k-1}). \end{split}$$

Тогда можем заменить последовательность случайных величин

$$N_{t_0}$$
, $N(t_1) - N(t_0)$, ..., $N(t_n) - N(t_{n-1})$

на равную ей последовательность

$$N_{t_0}, N^{t_0}(s_1), \ldots, N^{t_0}(s_n) - N^{t_0}(s_{n-1}),$$

где $s_k=t_k-t_0,\,k=1,\,\ldots,\,n$. Но поскольку мы знаем, что N_{t_0} независима с $N^t(s)$ $\forall\,s,$ мы можем перейти к предположению индукции для случайных величин

$$N^{t_0}(s_1), \ldots, N^{t_0}(s_n) - N^{t_0}(s_{n-1}),$$

рассматривая их как приращения нововведенного пуассоновского процесса интенсивности λ $N^t(s)$. Таким образом, доказана независимость. Теорема доказана.

4.2 Пространственный пуассоновский процесс

Определение 4.2. Пусть (S, \mathcal{B}) — измеримое пространство, а μ — σ -конечная мера на нем, то есть

$$S = \bigcup_{q=1}^{\infty} S_q, \ S_q \in \mathcal{B}, \ \mu(S_q) < \infty \ \forall q.$$

Тогда процесс $N = \{N(B), B \in \mathcal{B}\}$ называется пространственным пуассоновским процессом с мерой интенсивности μ , если выполнены два условия: во-первых,

$$N(B) \sim \text{Poiss} (\mu(B)), B \in \mathcal{B};$$

во-вторых,

$$\forall n \in \mathbb{N}$$
 и $\forall B_1, \ldots, B_n \in \mathscr{B}$ таких, что $B_i B_j = \emptyset$ при $i \neq j$, $\mu(B_i) < \infty \ \forall i = 1, \ldots, n$, выполнено, что $N(B_1), \ldots, N(B_n)$ независимы.

Замечание. В определении выше сознательно не отбрасывались случаи $\mu(B)=0$ и $\mu(B)=\infty$. Положим по определению, что если $\xi\sim {\rm Poiss}({\bf a}),$ то

$$a=0 \;\;\Rightarrow\;\; \xi=0$$
 почти наверное; $a=\infty \;\;\Rightarrow\;\; \xi=\infty$ почти наверное;

$$0 < a < \infty \implies \mathsf{P}(\xi = k) = \frac{a^k}{k!} e^{-a}, \ k = 0, 1, 2, \dots$$

Определение 4.3. Пусть (S,\mathscr{B}) — измеримое пространство, а μ — σ -конечная мера на нем. Пусть $\mu(S)<\infty$. Введем независимые случайные величины Y,X_1,X_2,\ldots такие, что

$$Y: \Omega \to \mathbb{Z}_+, \ Y \sim \text{Poiss}\left(\mu\left(S\right)\right),$$

$$X_i: \Omega \to S, \ X \in \mathscr{F}|\mathscr{B}, \ \mathsf{P}\left(X_1 \in B\right) = \frac{\mu\left(B\right)}{\mu\left(S\right)}.$$

Возможность введения такого семейства случайных величин объясняется теоремой Ломницкого-Улама. Определим тогда

$$N(B) = \sum_{n=1}^{Y} \mathbb{I}_{B}(X_{n}), B \in \mathcal{B}.$$

Более подробно,

$$N\left(B,\omega\right) = \sum_{n=1}^{Y(\omega)} \mathbb{I}_{B}\left(X_{n}(\omega)\right), \ B \in \mathcal{B}, \ \omega \in \Omega.$$

Замечание. $\sum_{1}^{0} := 0$.

Теорема 4.2. В терминах определения **4.3** $\{N(B), B \in \mathcal{B}\}$ есть пространственный пуассоновский процесс с мерой интенсивности μ .

Доказательство. Возьмем

$$\forall n \in \mathbb{N}$$
 и $\forall B_1, \ldots, B_n \in \mathscr{B}$, что $B_i \cap B_j = \emptyset$, если $i \neq j$.

Заметим, что

$$\mu(B_i) < \mu(S) < \infty.$$

Убедимся, что $\forall m_1, \ldots, m_n \in \mathbb{Z}_+$

$$\begin{split} \mathsf{P}\left(N\left(B_{1}\right) = m_{1}, \, \dots, \, N\left(B_{n}\right) = m_{n}\right) = \\ &= \mathsf{P}\left(N\left(B_{1}\right) = m_{1}\right), \, \dots, \, \mathsf{P}\left(N\left(B_{n}\right) = m_{n}\right) = \\ &= \frac{\mu\left(B_{1}\right)^{m_{1}}}{m_{1}!} e^{-\mu\left(B_{1}\right)} \, \dots \, \frac{\mu\left(B_{n}\right)^{m_{n}}}{m_{n}!} e^{-\mu\left(B_{n}\right)}. \end{split}$$

Действительно,

$$P(N(B_1) = m_1, ..., N(B_n) = m_n)) =$$

$$= \sum_{k=0}^{\infty} P(N(B_1) = m_1, ..., N(B_n) = m_n, Y = k) =$$

$$= \sum_{k=0}^{\infty} P\left(\sum_{i=1}^{k} \mathbb{I}_{B_1}(X_i) = m_1, ..., \sum_{i=1}^{k} \mathbb{I}_{B_n}(X_i) = m_n\right) P(Y = k)$$

по формуле полной вероятности. Введем следующие обозначения:

$$m := m_1 + \ldots + m_n;$$

$$m_0 := k - m;$$

 $B_0 := S \setminus \left(\bigcup_{i=1}^n B_i\right).$

Заметим, что сейчас фактически происходит следующее: у нас есть случайные величины ("частицы") $X_i,\,i=1,\ldots,k$, которые нужно расположить в попарно непересекающихся множествах ("ящиках") $B_j,\,j=0,\ldots,n$; мы хотим узнать, какова вероятность того, что в каждом ящике будет ровно m_j частиц. Такая задача эквивалентна хорошо известной задаче о ящиках из курса теории вероятностей. Воспользуемся ее решением, а также тем, что Y—пуассоновская случайная величина:

$$\begin{split} \sum_{k=0}^{\infty} \mathsf{P} \left(\sum_{i=1}^{k} \mathbb{I}_{B_1}(X_i) = m_1, \, \dots, \, \sum_{i=1}^{k} \mathbb{I}_{B_n}(X_i) = m_n \right) \mathsf{P} \left(Y = k \right) = \\ &= \sum_{k=0}^{\infty} \mathsf{P} \left(\sum_{i=1}^{k} \mathbb{I}_{B_1}(X_i) = m_1, \, \dots, \, \sum_{i=1}^{k} \mathbb{I}_{B_n}(X_i) = m_n \right) \frac{\mu(S)^k}{k!} e^{-\mu(S)} = \\ &= \sum_{k=m}^{\infty} \frac{k!}{m_0! \dots m_n!} \left(\frac{\mu(B_0)}{\mu(S)} \right)^{m_0} \dots \left(\frac{\mu(B_n)}{\mu(S)} \right)^{m_n} \frac{\mu(S)^k}{k!} e^{-\mu(S)} = \\ &= e^{-\mu(S)} \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} \sum_{k=m}^{\infty} \frac{\mu(B_0)^{k-m}}{(k-m)!}. \end{split}$$

Поскольку ряд в последней строчке— это ряд для экспоненты, а множества B_j попарно не пересекаются, цепочку равенств можно продолжить следующим образом:

$$e^{-\mu(S)} \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} \sum_{k=m}^{\infty} \frac{\mu(B_0)^{k-m}}{(k-m)!} =$$

$$= e^{-\mu(S)} \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} e^{\mu(B_0)} =$$

$$= \frac{\mu(B_1)^{m_1}}{m_1!} e^{-\mu(B_1)} \dots \frac{\mu(B_n)^{m_n}}{m_n!} e^{-\mu(B_n)},$$

потому что

$$e^{-\mu(S)}e^{\mu(B_0)} = e^{-(\mu(B_1) + \dots + \mu(B_n))}.$$

Теорема доказана.

Лемма 4.3. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, $\xi_k \sim \text{Poiss}(\lambda k), k \in \mathbb{N}$. Тогда

$$\sum_{k=1}^{\infty} \xi_k \sim \text{Poiss}\left(\sum_{k=1}^{\infty} \lambda_k\right),\,$$

где ряд может расходиться.

Доказательство. Если некоторое $\lambda_k=\infty,$ то $\xi_k=\infty,$ как и вся левая часть. Далее все $\lambda_k<\infty.$

1. Пусть

$$\sum_{k=1}^{\infty} \lambda_k < \infty.$$

Имеем

$$\mathsf{E}\left(\sum_{k=1}^{\infty}\xi_{k}\right)=\sum_{k=1}^{\infty}\mathsf{E}\xi_{k}=\sum_{k=1}^{\infty}\lambda_{k}<\infty$$

по теореме о монотонной сходимости (здесь важно, что ξ_k неотрицательны). Из этого следует, что

$$\sum_{k=1}^{\infty} \xi_k = \xi < \infty$$

почти наверное. Заметим, что

$$\sum_{k=1}^{n} \xi_k \xrightarrow{\text{m.H.}} \xi \implies \sum_{k=1}^{n} \xi_k \xrightarrow{d} \xi.$$

Тогда

$$\varphi_{\sum_{k=1}^{n} \xi_{k}}(u) = \prod_{k=1}^{n} \varphi_{\xi_{k}}(u) = \prod_{k=1}^{n} e^{\lambda_{k} (e^{iu} - 1)} =$$

$$= \exp \sum_{k=1}^{n} \lambda_{k} (e^{iu} - 1) \to \exp \sum_{k=1}^{\infty} \lambda_{k} (e^{iu} - 1), \ n \to \infty.$$

Тогда из непрерывного соответствия между характеристическими функциями и функциями распределения заключаем, что

$$\xi = \sum_{k=1}^{\infty} \xi_k \sim \text{Poiss}\left(\sum_{k=1}^{\infty} \lambda_k\right).$$

2. Пусть теперь

$$\sum_{k=1}^{\infty} \lambda_k = \infty.$$

Находим последовательность r_i со свойством

$$\sum_{k=r_j}^{r_{j+1}} \lambda_k \geqslant 1,$$

которая существует в силу расходимости ряда и неотрицательности его членов. Введем обозначение

$$\eta_j := \sum_{k=r_j}^{r_{j+1}} \xi_k;$$

Тогда η_1, η_2, \ldots независимы, к тому же

$$\eta_j \sim \text{Poiss}\left(\sum_{k=r_j}^{r_{j+1}} \lambda_k\right).$$

Отсюда вытекает, что

$$P(\eta_i \ge 1) = 1 - P(\eta_i = 0) \ge 1 - e^{-1} > 0.$$

Тогда по лемме Бореля-Кантелли, поскольку

$$\sum_{j=1}^{\infty} \mathsf{P}(\eta_j \geqslant 1) = \infty,$$

то

$$\sum_{j=1}^{\infty} \eta_j = \infty$$

почти наверное. Лемма доказана.

Определение 4.4. Пусть (S, \mathcal{B}) — измеримое пространство, а μ — σ -конечная мера на нем, то есть

$$S = \bigcup_{q=1}^{\infty} S_q, \ S_q \in \mathcal{B}, \ \mu(S_q) < \infty \ \forall q.$$

Пусть теперь $\mu(S)=\infty$. Для каждого S_q вводим множество независимых случайных величин (все как в определении 4.3):

$$Y_{q}: \Omega \to \mathbb{Z}_{+}, \ Y_{q} \sim \operatorname{Poiss}\left(\mu\left(S_{q}\right)\right),$$

$$X_{q_{i}}: \Omega \to S_{q}, \ X \in \mathscr{F}|\mathscr{B} \cap S_{q}, \ \mathsf{P}\left(X_{q_{i}} \in C\right) = \frac{\mu\left(C\right)}{\mu\left(S_{q}\right)},$$

где

$$C \in \mathscr{B} \cap S_q \in \mathscr{B}$$
.

Строим процесс

$$N_q(C) := \sum_{n=1}^{Y_q} \mathbb{I}_C \left(X_{q,n} \right).$$

Положим

$$N(B) := \sum_{q=1}^{\infty} N_q \left(B \cap S_q \right), \ B \in \mathscr{B}.$$

Заметим, что все члены ряда независимы, а также что

$$N_q (B \cap S_q) \sim \text{Poiss} (\mu(B \cap S_q))$$
.

Тогда по лемме 4.3

$$N(B) \sim \text{Poiss}\left(\sum_{q=1}^{\infty} \mu(B \cap S_q)\right) = \text{Poiss}\left(\mu\left(B\right)\right).$$

4.3 Функционал Лапласа точечного процесса

Определение 4.5. Процесс $\{X(B), B \in \mathcal{B}\}$ называется *(простым)* точечным процессом, если

$$X(B) = \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n), \ B \in \mathcal{B},$$

где

$$Z_n: \Omega \to S, \ Z_n \in \mathscr{F}|\mathscr{B}.$$

Определение 4.6. Пусть $\mu(S)=\infty,\ \mu-\sigma$ -конечная мера на $(S,\mathscr{B}),\$ а также

$$N(B) = \sum_{q=1}^{\infty} \sum_{n=1}^{Y_q} \mathbb{I}_{B \cap S_q} \left(X_{q,n} \right).$$

Пусть

$$V_0 := 0, \ V_k := \sum_{j=1}^k Y_j.$$

Введем $Z_n, n \in \mathbb{N}$. Пусть для $\omega \in \Omega$

$$V_{k-1}(\omega) \leqslant n < V_k(\omega).$$

Определим

$$Z_n(\omega) := X_{k,n-V_{k-1}(\omega)}(\omega).$$

Тогда

$$N(B) = \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n).$$

Определение 4.7. Пусть $f: S \to \mathbb{R}_+, f \in \mathscr{B}|\mathscr{B}(\mathbb{R}_+)$. Тогда функционал Лапласа $\mathscr{L}(f)$ определяется следующим образом:

$$\mathscr{L}(f) := \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} f(Z_n)},$$

где $e^{-\infty} := 0$.

4.4 Маркирование пуассоновских процессов

Определение 4.8. Рассмотрим T, T_1, T_2, \ldots — независимые одинаково распределенные неотрицательные случайные величины. Пусть $\{T_n\}_{n=1}^{\infty}$ независима с $\{S_n\}_{n=1}^{\infty}$. На следующей лекции будет показано, что процесс, заданный элементами

$$Z_n := (S_n, T_n)_{n \ge 1},$$

является пространственным пуассоновским процессом с мерой

$$\lambda\nu\otimes\mathsf{G}$$
,

где ν — мера Лебега на $B(\mathbb{R}_+)$, G — мера, задаваемая распределением T.

Замечание. Наглядно: модель массового обслуживания. Пусть S_n — время начала работы с клиентом, T_n — время работы с клиентом, Y_t — число клиентов, обслуживание которых происходит в момент t. Такая модель называется моделью $M|G|\infty$: M указывает на то, что процесс пуассоновский, G (general) указывает на то, что распределение времени обслуживания клиента произвольно, а ∞ означает, что имеется бесконечное число приборов (в том смысле, что не создается очередей: работа с клиентом начинается в момент его прихода). Тогда

$$Y_{t} = \# \left\{ n : S_{n} \leqslant t < S_{n} + T_{n} \right\} = \# \left\{ n : \left(S_{n}, T_{n} \right) \in B_{t} \right\} =$$

$$= \sum_{n=1}^{\infty} \mathbb{I}_{B_{t}}(S_{n}, T_{n}) \sim \operatorname{Poiss}\left(\left(\lambda \nu \otimes \mathsf{G} \right) \left(B_{t} \right) \right),$$

где

$$B_t := \{(x, y): 0 \leqslant x \leqslant t < x + y\},\$$

а точка (x, y) задается парой (S_n, T_n) . Вычислим:

$$\begin{split} \left(\lambda\nu\otimes\mathsf{G}\right)(B_t) &= \iint\limits_{\mathbb{R}^2_+} \mathbb{I}_{B_t}(x,\,y)\,\lambda\nu(dx)\mathsf{G}(dy) = \\ &= \int\limits_0^t \mathsf{G}(dy)\int\limits_{t-y}^t \lambda\,dx + \int\limits_t^\infty \mathsf{G}(dy)\int\limits_0^t \lambda\,dx = \int\limits_0^t \lambda y\,\mathsf{G}(dy) + \int\limits_t^\infty \lambda t\,\mathsf{G}(dy) = \\ &= \lambda\int\limits_0^\infty \min(t,y)\,\mathsf{G}(dy). \end{split}$$

Итак.

$$Y_t \sim \operatorname{Poiss}\left(\lambda \int\limits_0^\infty \min(t,y) \operatorname{\sf G}(dy)
ight) \ \ orall t>0.$$

Если $ET < \infty$, то

$$\operatorname{Poiss}\left(\lambda\int\limits_0^\infty \min(t,y)\,\mathsf{G}(dy)\right) \,\to\, \operatorname{Poiss}(\lambda\mathsf{E} T),\ t\to\infty.$$

5 Лекция от 15.03.17

Процессы с независимыми приращениями

5.1 Функционал Лапласа точечного процесса (продолжение)

Hanoминание. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Z_n: \Omega \to S, \ Z_n \in \mathscr{F}|\mathscr{B}.$ Пусть также есть точечный процесс

$$N(B, \omega) := \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n(\omega)), B \in \mathscr{B}$$

согласно определению **4.5**. Введем для него функционал Лапласа согласно определению **4.7** по следующей формуле:

$$\mathscr{L}(f) := \mathsf{E}e^{-\sum_{n=1}^{\infty} f(Z_n)} < \infty,$$

где $f:S\to\mathbb{R}_+,\ f\in\mathscr{B}|\mathcal{B}_+,\ e^{-\infty}:=0,\ \mathcal{B}_+$ — борелевская σ –алгебра на $\mathbb{R}_+.$

Теорема 5.1. $N = \{N(B), B \in \mathcal{B}\}$ является пространственным пуассоновским процессом с σ -конечной мерой интенсивности $\mu \Leftrightarrow$

$$\mathscr{L}(f) = \exp\left[\int\limits_{S} \left(e^{-f(x)} - 1\right) \,\mu(dx)\right].$$

Доказательство. Сначала докажем **необходимость** (\Rightarrow). Возьмем простую функцию f. Пусть $N = \{N(B), B \in \mathcal{B}\}$ — пространственный пуассоновский процесс с мерой μ . Сначала положим

$$f(x) := \sum_{k=1}^{m} a_k \mathbb{I}_{B_k(x)}, \quad a_i \geqslant 0, \quad i = 1, \dots, k,$$
(4)

где

$$B_i \cap B_j = \emptyset \ \forall i \neq j; \ B_i \in \mathcal{B}, \ i = 1, \dots, m; \ \mu(B_i) < \infty, \ i = 1, \dots, m.$$

Тогда

$$\mathscr{L}(f) = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty}\sum\limits_{k=1}^{m}a_{k}\mathbb{I}_{B_{k}}(Z_{n})} = \mathsf{E} e^{-\sum\limits_{k=1}^{m}a_{k}\sum\limits_{n=1}^{\infty}\mathbb{I}_{B_{k}}(Z_{n})} = \mathsf{E} e^{-\sum\limits_{k=1}^{m}a_{k}N(B_{k})},$$

где перестановка знаков суммы возможна в силу неотрицательности членов ряда. Заметим, что если $\xi \sim \text{Poiss}(a)$, то

$$\mathsf{E} e^{-v\xi} \; = \; \sum_{r=0}^{\infty} e^{-vr} \, \mathsf{P}(\xi=r) \; = \; e^{a(e^{-v}-1)}.$$

Воспользуемся также независимостью в совокупности $N(B_k)$ в силу того, что множества B_i попарно не пересекаются. Тогда получим, что

$$\mathsf{E} e^{-\sum\limits_{k=1}^{m} a_k N(B_k)} = \prod\limits_{k=1}^{m} \mathsf{E} e^{-a_k N(B_k)} = \prod\limits_{k=1}^{m} e^{\mu(B_k) \left(e^{-a_k} - 1\right)} = \\ = e^{\sum\limits_{k=1}^{m} \mu(B_k) \left(e^{-a_k} - 1\right)} = e^{\int\limits_{S} \left(e^{-f(x)} - 1\right) \mu(dx)}.$$

Для продолжения доказательства теоремы сформулируем и докажем две леммы.

Лемма 5.2. Пусть (S, \mathscr{B}) — измеримое пространство с σ -конечной мерой μ , $f: S \to \mathbb{R}_+$ — измеримая функция на нем. Тогда существует последовательность $(f_j)_{j=1}^\infty$ простых функций вида (4) таких, что

$$f_j \nearrow f$$
 на S npu $j \to \infty$.

Доказатель ство. Как и на прошлой лекции, разобьем S на множества $S_q,\ \mu(S_q)<\infty,$ что возможно ввиду σ -конечности меры μ . Определим

$$f_{q,j}(x) = \mathbb{I}_{S_q}(x) \left(\sum_{r=0}^{2^{2j}-1} r 2^{-j} \mathbb{I} \left\{ r 2^{-j} \leqslant f(x) < (r+1)2^{-j} \right\} + 2^j \mathbb{I} \left\{ f(x) \geqslant 2^j \right\} \right).$$

Тогда несложно проверить, что

$$0 \leqslant f_{q,\,j} \leqslant f_{q,\,j+1}, \ \ 0 \leqslant f_j = \sum_{q=1}^j f_{q,\,j} \nearrow f$$
 на S .

Замечание. Про это (с несколько другим построением простых функций) также можно почитать в [3] (страница 189).

Лемма 5.3. $\Pi y cmb \ 0 \leqslant a_{n,j} \nearrow a_n$. Тогда

$$\sum_{n=1}^{\infty} a_{n,j} \nearrow \sum_{n=1}^{\infty} a_n, \ j \to \infty.$$

Доказательство. Рассмотрим два случая.

1. Пусть

$$\sum_{n=1}^{\infty} a_n < \infty.$$

Тогда $\forall \epsilon > 0 \; \exists N : \forall m > N$

$$\sum_{n=m}^{\infty} a_n < \frac{\epsilon}{3}.$$

Из монотонной сходимости и предельного перехода в неравенстве получаем, что

$$\sum_{n=m}^{\infty} a_{n,j} < \frac{\epsilon}{3} \ \forall j.$$

Зафиксируем N. Из сходимости следует, что

$$\forall n \ \exists N(n) : \forall m(n) > N(n) \ |a_{n, m(n)} - a_n| < \frac{\epsilon}{3N}.$$

Возьмем

$$M := \max_{n=1,\dots,N} N(n).$$

Тогда для любого j > M

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_{n,j} \right| \leqslant \left| \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} a_{n,j} \right| + \left| \sum_{n=N+1}^{\infty} a_n - \sum_{n=N+1}^{\infty} a_{n,j} \right| \leqslant$$

$$\leqslant \sum_{n=1}^{N} \left| a_n - a_{n,j} \right| + \frac{2\epsilon}{3} \leqslant N \frac{\epsilon}{3N} + \frac{2\epsilon}{3} = \epsilon.$$

Таким образом, показано, что $\forall \epsilon \; \exists M : \forall j > M$

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_{n,j} \right| \leqslant \epsilon,$$

то есть показана требуемая сходимость.

2. Пусть

$$\sum_{n=1}^{\infty} a_n = \infty.$$

Тогда $\forall C > 0 \; \exists N : \forall m > N$

$$\sum_{n=1}^{m} a_n > 2C.$$

Снова зафиксируем N. Из сходимости следует, что

$$\forall n \ \exists N(n) : \forall m(n) > N(n) \ |a_{n, m(n)} - a_n| < \frac{C}{N}.$$

Возьмем

$$M := \max_{n=1}^{N} N(n).$$

Тогда для любого j > M

$$\sum_{n=1}^{\infty} a_{n,j} \geqslant \sum_{n=1}^{N} a_{n,j} \geqslant \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} |a_n - a_{n,j}| \geqslant 2C - N\frac{C}{N} = C,$$

чем снова показана требуемая сходимость. Лемма доказана.

Вернемся к доказательству теоремы. Возьмем $0\leqslant f_j\nearrow f$ по лемме 5.2. Тогда

$$\sum_{n=1}^{\infty} f_j(Z_n) \to \sum_{n=1}^{\infty} f(Z_n), \ j \to \infty,$$

по лемме 5.3. Тогда

$$\mathsf{E} e^{-\sum\limits_{n=1}^{\infty} f_j(Z_n)} \to \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} f(Z_n)}$$

по теореме Лебега. Итак,

$$\mathscr{L}(f) = \lim_{j \to \infty} \exp \left[\int_{S} \left(e^{-f_j(x)} - 1 \right) \mu(dx) \right] = \exp \left[\int_{S} \left(e^{-f(x)} - 1 \right) \mu(dx) \right],$$

поскольку

$$\int_{S} \left(e^{-f_j(x)} - 1 \right) \mu(dx) \to \int_{S} \left(e^{-f(x)} - 1 \right) \mu(dx), \quad j \to \infty,$$

ввиду неотрицательности подынтегрального выражения. Перейдем к доказательству достаточности (\Leftarrow). Пусть

$$\mathscr{L}(f) = \exp \left[\int_{S} \left(e^{-f(x)} - 1 \right) \mu(dx) \right].$$

Возьмем

$$f = \sum_{k=1}^{m} a_k \mathbb{I}_{B_k}, \ B_i \cap B_j = \emptyset \ \forall i \neq j.$$

Тогда

$$\mathcal{L}(f) = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} f(Z_n)} = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} \sum\limits_{k=1}^{m} a_k \mathbb{I}_{B_k}(Z_n)} = \mathsf{E} e^{-\sum\limits_{k=1}^{m} a_k N(B_k)}$$

Если $f = \mathbb{I}_B$, то

$$\mathsf{E} e^{-\sum_{k=1}^{m} a_k N(B_k)} = \mathsf{E} e^{-aN(B)} = e^{\mu(B)(e^{-a}-1)},$$

из чего следует, что $\{N(B), B \in \mathscr{B}\}$ — пространственный пуассоновский процесс с мерой интенсивности μ в силу непрерывного соответствия между преобразованием Лапласа и функциями распределения. Теорема доказана. \square

Приведем доказательство утверждения, которое было дано без доказательства в конце прошлой лекции.

Теорема 5.4. Пусть $(S_n, T_n)_{n=1}^{\infty}$ — точечный процесс, причем (S_n) и (T_n) независимы, где (S_n) — пуассоновский процесс с мерой интенсивности ν , где ν — мера Лебега. Тогда (S_n, T_n) — пространственный пуассоновский процесс с мерой интенсивности $\nu \otimes \mathsf{G}$, где G — распределение T_i .

Доказательство. Вспомним, что

$$\mathscr{L}(f) = \mathsf{E}e^{-\sum\limits_{n=1}^{\infty} f(S_n, T_n)}.$$

Из курса математической статистики известно, что

$$\mathsf{E}\left(g(\xi,\eta)\mid \xi=u\right) = \mathsf{E}g(u,\,\eta),$$

если ξ независима с η . Тогда

$$\mathsf{E}\left(e^{-\sum\limits_{n=1}^{\infty}f(S_{n},T_{n})}\,\Big|\,S_{1}=u_{1},S_{2}=u_{2},\,\ldots\right)=\mathsf{E}e^{-\sum\limits_{n=1}^{\infty}f(u_{n},T_{n})}=\\ =\prod\limits_{n=1}^{\infty}\mathsf{E}e^{-f(u_{n},T_{n})}$$

в силу независимости (T_i) . Введем обозначение

$$g(u) := \mathsf{E}e^{-f(u, T_n)} = \int_{\mathbb{R}_+} e^{-f(u, x)} \, \mathsf{G}(dx).$$

Заметим, что $0 < g(u) \leqslant 1$. Из курса математической статистики известно, что

$$\mathsf{E}\left(g(\xi,\,\eta)\right) = \mathsf{E}\left(\mathsf{E}\left(g(\xi,\,\eta)\,|\,\xi\right)\right).$$

Тогда

$$\mathscr{L}(f) \, = \, \mathsf{E} \prod_{n=1}^{\infty} g\left(S_n\right) \, = \, \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} \left(-\log g(S_n)\right)} \, = \, \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} h(S_n)},$$

где $h := -\log g \geqslant 0$. Воспользуемся тем, что (S_n) — пуассоновский процесс:

$$\begin{split} \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} h(S_n)} &= \exp\left[\int\limits_{\mathbb{R}_+} (e^{-h(x)} - 1) \, \nu(dx)\right] = \exp\left[\int\limits_{\mathbb{R}_+} (g(x) - 1) \, \nu(dx)\right] = \\ &= \exp\left[\int\limits_{\mathbb{R}_+} \left(\int\limits_{\mathbb{R}_+} e^{-f(x,y)} \mathsf{G}(dy) - 1\right) \, \nu(dx)\right] = \\ &= \exp\left[\int\limits_{\mathbb{R}_+^2} \left(e^{-f(x,y)} - 1\right) \, \mathsf{G}(dy) \nu(dx)\right]. \end{split}$$

Соответственно, в силу теоремы 5.1, процесс (S_n, T_n) является пространственным пуассоновским процессом. Теорема доказана.

5.2 Теорема Колмогорова о согласованных распределениях

Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S_t, \mathscr{B}_t) — семейство измеримых пространств, T— произвольное множество. Введем случайный процесс

$$X := \{X_t, t \in T\}, X_t : \Omega \to S_t, X_t \in \mathscr{F} | \mathscr{B}_t \ \forall t \in T.$$

Рассмотрим упорядоченный набор

$$\tau := (t_1, \ldots, t_n), \ t_i \neq t_i \ \forall i \neq j.$$

Определим тогда

$$S_{\tau} := S_{t_1} \times \ldots \times S_{t_n}, \quad \mathscr{B}_{\tau} := \mathscr{B}_{t_1} \otimes \ldots \otimes \mathscr{B}_{t_n}.$$

Введем прямоугольник

$$(B_{t_1} \times \ldots \times B_{t_n}), B_{t_i} \in \mathcal{B}_{t_i}, i = 1, \ldots, n.$$

Введем также случайный элемент

$$X_{\tau}: \Omega \to S_{\tau}, \ X_{\tau} \in \mathscr{F} | \mathscr{B}_{\tau} \ (\Leftrightarrow X_{t_k} \in \mathscr{F} | \mathscr{B}_{t_k}, \ k = 1, \ldots, n).$$

Распределение X_{τ} обозначим через $\mathsf{P}_{\tau} = \mathsf{P}_{t_1...t_n}$, где набор $t_1,\,\ldots,\,t_n$ упорядочен.

Определение 5.1. Семейство мер $P_{t_1...t_n}$, где

$$t_1, \ldots, t_n \in T, n \in \mathbb{N}, t_i \neq t_i \forall i \neq j,$$

называется семейством конечномерных распределений $X = \{X_t, t \in T\}$.

Рассмотрим прямоугольник $B = B_{t_1} \times \ldots \times B_{t_n}$.

$$\begin{aligned} \mathsf{P}_{t_{1}...t_{n}}\left(B_{t_{1}}\times\ldots\times B_{t_{n}}\right) &= \mathsf{P}\left((X_{t_{1}},\,\ldots,\,X_{t_{n}})\in B\right) = \\ &= \mathsf{P}\left(X_{t_{1}}\in B_{t_{1}},\,\ldots,\,X_{t_{n}}\in B_{t_{n}}\right) &= \mathsf{P}\left(X_{t_{i_{1}}}\in B_{t_{i_{1}}},\,\ldots,\,X_{t_{i_{n}}}\in B_{t_{i_{n}}}\right) = \\ &= \mathsf{P}_{t_{i_{1}}...t_{i_{n}}}\left(B_{t_{i_{1}}}\times\ldots\times B_{t_{i_{n}}}\right) \end{aligned}$$

для любой перестановки (i_1, \ldots, i_n) . Таким образом, получили свойство:

Свойство 5.1. $\forall n \ \forall$ перестановки (i_1, \ldots, i_n) индексов $(1, \ldots, n)$

$$\mathsf{P}_{t_{i_1}...t_{i_n}}\left(B_{t_{i_1}}\times\ldots\times B_{t_{i_n}}\right)=\mathsf{P}_{t_1...t_n}\left(B_{t_1}\times\ldots\times B_{t_n}\right).$$

Рассмотрим теперь

$$\mathsf{P}_{t_{1}...t_{k}...t_{n}} \left(B_{t_{1}} \times \dots B_{t_{k-1}} \times S_{t_{k}} \times B_{t_{k+1}} \times \dots \times B_{t_{n}} \right) =$$

$$= \mathsf{P}_{t_{1}...t_{k-1}} t_{k+1}...t_{n}} \left(B_{t_{1}} \times \dots B_{t_{k-1}} \times B_{t_{k+1}} \times \dots \times B_{t_{n}} \right),$$

поскольку $\{X_{t_k} \in S_{t_k}\} = \Omega$. Таким образом, получили еще одно свойство:

Свойство 5.2.

$$\mathsf{P}_{t_{1}...t_{k}...t_{n}} \left(B_{t_{1}} \times ... B_{t_{k-1}} \times S_{t_{k}} \times B_{t_{k+1}} \times ... \times B_{t_{n}} \right) =$$

$$= \mathsf{P}_{t_{1}...t_{k-1}t_{k+1}...t_{n}} \left(B_{t_{1}} \times ... B_{t_{k-1}} \times B_{t_{k+1}} \times ... \times B_{t_{n}} \right).$$

Определение 5.2. Свойства 5.1 и 5.2 называются *условиями согласованности*.

Определение 5.3. Измеримые пространства (S, \mathcal{B}) и (V, \mathcal{A}) изоморфны, если

$$\exists h : S \to V, \ h \in \mathscr{B}|\mathscr{A},$$

$$\exists h^{-1} : V \to S, \ h^{-1} \in \mathscr{A}|\mathscr{B}.$$

Определение 5.4. Измеримое пространство (S, \mathcal{B}) называется *борелевским*, если оно изоморфно борелевскому подмножеству отрезка [0, 1].

Определение 5.5. Метрическое пространство (X, ρ) называется *польским*, если оно является полным и сепарабельным.

Замечание. Любое борелевское подмножество польского пространства является борелевским пространством.

Теорема 5.5 (Колмогорова). Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство борелевских пространств. Пусть $\mathsf{P}_{t_1...t_n}$ — мера на $(S_{t_1} \times \ldots \times S_{t_n}, \mathcal{B}_{t_1} \otimes \ldots \otimes \mathcal{B}_{t_n})$, которая удовлетворяет условиям согласованности 5.1 и 5.2. Тогда на некотором вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ существует случайный процесс $X = \{X_t, t \in T\}$ такой, что $X_t : \Omega \to S_t, X_t \in \mathcal{F} | \mathcal{B}_t \ \forall t \in T$ и конечномерные распределения которого — это меры $\mathsf{P}_{t_1...t_n}$.

Доказательство. Теорема предлагается без доказательства.

Замечание. В отличие от теоремы Ломницкого-Улама, в этой теореме накладываются ограничения топологического характера.

Определение 5.6. Пусть Q — мера на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Характеристической функцией меры Q называется

$$\varphi_{\mathsf{Q}}(u) := \int_{\mathbb{R}^n} e^{i(u, x)} \, \mathsf{Q}(dx), \quad u \in \mathbb{R}^n.$$

3амечание. Если $\xi = (\xi_1, \ldots, \xi_n)$, то

$$\varphi_\xi(u) := \varphi_{\mathsf{P}_\xi}(u) = \int\limits_{\mathbb{R}^n} e^{i(u,\,x)} \,\, \mathsf{P}_\xi(dx) = \int\limits_{\Omega} e^{i(u,\,\xi)} \, d\, \mathsf{P} = \mathsf{E} e^{i(u,\,\xi)}.$$

Теорема 5.6. Пусть $\varphi_{t_1...t_n}$ — семейство характеристических функций мер на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Тогда существует случайный процесс $X = \{X_t, t \in T\}$, $X_t : \Omega \to \mathbb{R}, \ t \in T$, для которого $\varphi_{t_1...t_n}$ — характеристические функции конечномерных распределений, в том и только в том случае, когда

1.
$$\varphi_{t_1...t_n}(u_1, \ldots, u_n) = \varphi_{t_{i_1}...t_{i_n}}(u_{i_1}, \ldots, u_{i_n}) \ \forall n \in \mathbb{N} \ \forall (i_1, \ldots, i_n) - nepecmanosku (1, \ldots, n);$$

2.
$$\varphi_{t_1...t_k...t_n}(u_1, \ldots, u_{k-1}, 0, u_{k+1}, \ldots, u_n) = \varphi_{t_1...\widehat{t_k}...t_n}(u_1, \ldots, \widehat{0}, \ldots, u_n).$$

Доказательство. Теорема предлагается без доказательства.

Замечание. Если $X = \{X_t, t \in T\}$, где $T \subset \mathbb{R}$, то достаточно рассмотреть $\mathsf{P}_{t_1 \dots t_n}, \ t_1 < \dots < t_n.$

Замечание. Про эти теоремы почитать подробнее можно в [1].

5.3 Процессы с независимыми приращениями

Теорема 5.7. Для того чтобы существовал процесс $X=\{X_t, t\geqslant 0\}$ с независимыми приращениями такой, чтобы характеристическая функция случайной величины X(t)-X(s) была равна $\varphi(s,t,\cdot)$, необходимо и достаточно, чтобы

$$\varphi(s, t, v) = \varphi(s, u, v) \varphi(u, t, v) \quad \forall 0 < s < u < t \ \forall v \in \mathbb{R}.$$

 Πpu этом начальное распределение процесса P_0 может быть выбрано любым.

Замечание (от наборщика). Судя по всему, знание доказательства этой теоремы является обязательным. Доказательство см. [1], стр. 47.

5.4 Модификация процесса

Определение 5.7. Процесс $Y = \{Y_t, t \in T\}$ называется модификацией процесса $X = \{X_t, t \in T\}$, если

$$\mathsf{P}\left(Y_{t} = X_{t}\right) = 1 \ \forall t \in T.$$

Лемма 5.8. Из теоремы 5.6 следует, что существует процесс с независимыми приращениями $N=\{N_t,\,t\geqslant 0\}$ такой, что

$$N_t - N_s \sim \text{Poiss} (\lambda(t-s)) \quad \forall \ 0 < s < t.$$

Доказательство. Вспомним, что если $\xi \sim \mathrm{Poiss}(a)$, то характеристическая функция ξ равна

$$\varphi_{\xi}(v) = e^{a\left(e^{iv} - 1\right)}.$$

Тогда запишем

$$\varphi_{N_t-N_s}(v) = e^{\lambda(t-s)(e^{iv}-1)} = \varphi(s, t, v).$$

Но тогда

$$\varphi(s, t, v) = \varphi(s, u, v) \varphi(u, t, v),$$

что и требовалось показать.

Замечание. Можно доказать, что у построенного процесса существует такая модификация, что ее траектории обладают следующими свойствами:

- они неубывают;
- они непрерывны справа;
- они имеют предел слева;
- все их скачки имеют величину 1;
- длина промежутков между скачками распределена экспоненциально;
- промежутки между скачками независимы.

Таким образом, этот процесс можно рассматривать как процесс восстановления.

Пример 5.1. Рассмотрим вероятностное пространство ([0, 1], $\mathcal{B}[0, 1], \nu$), где ν — мера Лебега, и измеримое пространство ([0, 1], $\mathcal{B}[0, 1]$). Введем случайные процессы $X = \{X_t, t \in T\}$ и $Y = \{Y_t, t \in T\}$ следующим образом:

$$X(t,\,\omega)\equiv 0,\quad Y(t,\,\omega)=\begin{cases} 1,\;t=w\\ 0,\;t\neq w\end{cases},\quad t,\,\omega\in[0,\,1].$$

Тогда все тра
ектории X непрерывны, а все тра
ектории Y разрывны, но вместе с этим

$$P(X_t \neq Y_t) = \nu(\{t\}) = 0,$$

то есть Y является модификацией X. Таким образом, отношение эквивалентности, порождаемое свойством 'быть модификацией друг друга', не сохраняет непрерывности траекторий.

6 Лекция от 22.03.17

Винеровский процесс

6.1 Фильтрации. Марковские моменты

Определение 6.1. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство. Семейство σ —алгебр $(\mathscr{F}_t)_{t\in T}$ на этом вероятностном пространстве, где $T\subset \mathbb{R}$, называется ϕ иль трацией, если $\forall \, s< t, \, s, \, t\in T$,

$$\mathscr{F}_s \subset \mathscr{F}_t \subset \mathscr{F}$$
.

Определение 6.2. Естественная фильтрация процесса $X = (X_t, t \in T)$, $T \subset \mathbb{R},$ — это семейство

$$\mathscr{F}_t := \sigma \{X_s, s \leqslant t, s \in T\}, t \in T.$$

Определение 6.3. Отображение $\tau:\Omega\to T\cup\{\infty\}$ называется марковским моментом относительно фильтрации $(\mathscr{F}_t)_{t\in T}$, если

$$\forall t \in T \ \left\{ \omega : \tau(\omega) \leqslant t \right\} \in \mathscr{F}_t.$$

Марковский момент τ называется моментом остановки, если $\tau < \infty$ почти наверное.

3амечание. Если au — марковский момент, то $\forall t \in T \ \{ au = t \} \in \mathscr{F}_t$, поскольку

$$\{\tau = t\} = \{\tau \leqslant t\} \setminus \{\tau < t\}, \ \{\tau < t\} = \bigcup_{k=1}^{\infty} \left\{\tau \leqslant t - \frac{1}{k}\right\}.$$

3амечание. Если $(\mathscr{F}_n)_{n\in\mathbb{Z}_+},$ то

$$\tau$$
 — марковский момент $\Leftrightarrow \forall n \in \mathbb{Z}_+ \{ \tau = n \} \in \mathscr{F}_n$.

Пример 6.1. Рассмотрим действительный процесс с дискретным временем $X = \{X_n, n \in \mathbb{Z}_+\}$. Пусть $B \in \mathcal{B}(\mathbb{R})$. Введем

$$\tau_B(\omega) := \inf_n \{ n : X_n(\omega) \in B \}, \ \mathscr{F}_n = \sigma \{ X_0, X_1, \dots, X_n \}, \ n \in \mathbb{Z}_+$$

(если $X_n \notin B \ \forall n=0,\,1,\,2,\ldots$, то $\tau=\infty$). Тогда τ_B — марковский момент относительно $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$: проверим, что $\{\tau=n\}\in\mathscr{F}_n\ \forall n\in\mathbb{Z}_+$:

- n = 0: $\{\tau = 0\} = \{X_0 \in B\} \in \sigma\{X_0\} = \mathscr{F}_0;$
- $n \ge 1$: $\{\tau = n\} = \{X_0 \notin B, \dots, X_{n-1} \notin B, X_n \in B\} \in \sigma\{X_0, X_1, \dots, X_n\} = \mathscr{F}_n$.

Определение 6.4. Пусть τ — марковский момент относительно фильтрации $(\mathscr{F}_t)_{t\in T}$. Определим σ -алгебру

$$\mathscr{F}_{\tau} := \left\{ A \in \mathscr{F} : \ A \cap \left\{ \tau \leqslant t \right\} \in \mathscr{F}_t \ \forall t \in T \right\}.$$

Эта σ -алгебра называется σ -алгеброй событий, наблюдаемых до момента τ .

Упражнение 6.1. Доказать, что объект из определения $6.4 - \sigma$ -алгебра.

6.2 Строго марковское свойство

Определение 6.5. Процесс $X = \{X_t, t \in T\}$, $T \subset \mathbb{R}$, имеет *стационарные* приращения, если $\forall t_0 < t_1 < \ldots < t_n \ \forall n \in \mathbb{Z} \ \forall h : t_0, \ldots, t_n, t_0 + h, \ldots, t_n + h \in T$

$$\operatorname{Law}\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right) = \\ = \operatorname{Law}\left(X_{t_{1}+h}-X_{t_{0}+h}, \ldots, X_{t_{n}+h}-X_{t_{n-1}+h}\right) \quad (5)$$

3амечание. Если процесс X имеет еще и независимые приращения, то

$$(5) \Leftrightarrow \operatorname{Law}(X_t - X_s) = \operatorname{Law}(X_{t+h} - X_{s+h}) \ \forall t, s, t+h, s+h \in T, s < t.$$

Замечание. Пуассоновский процесс интенсивности $\lambda > 0$ — процесс со стационарными независимыми приращениями.

Лемма 6.1. Пусть $X = \{X_t, t \ge 0\}$ — процесс с независимыми приращениями. Тогда \forall константы a > 0 процесс $Z(t) := X(t+a) - X(a), t \ge 0$, имеет независимые приращения u

$$\{Z_t, t \geqslant 0\}$$
 независим с $\mathscr{F}_a = \sigma \{X_s, s \leqslant a\}$.

Доказательство. Докажем независимсть приращений по определению: возьмем $0 \le t_0 < t_1 < \ldots < t_n$ и рассмотрим

$$Z(t_0), Z(t_1) - Z(t_0), \ldots, Z(t_n) - Z(t_{n-1}).$$

Заметим, что по определению Z(t)

$$Z(t_0) = X(t_0 + a) - X(a), \ Z(t_k) - Z(t_{k-1}) = X(t_k + a) - X(t_{k-1} + a);$$

из этого получаем, что приращения Z независимы вследствие независимости приращений X, которая есть по условию леммы. Докажем второе утверждение леммы: заметим, что σ -алгебра \mathscr{F}_a порождается системой событий

$$\{X_{s_1} \in B_1, \dots, X_{s_m} \in B_m\}, \ 0 \leqslant s_1 < \dots < s_m \leqslant a.$$

Поэтому достаточно проверить, что независимы векторы

$$\xi = (X_{s_1}, \ldots, X_{s_m})$$
 if $\eta = (Z_{t_1}, \ldots, Z_{t_n}), 0 \leqslant t_1 < \ldots < t_n$

Заметим, что

$$\xi = \begin{pmatrix} X_{s_1} \\ X_{s_2} \\ \vdots \\ X_{s_m} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} X_{s_1} \\ X_{s_2} - X_{s_1} \\ \vdots \\ X_{s_m} - X_{s_{m-1}} \end{pmatrix}.$$

Введем обозначение $\zeta:=(X_{s_1},\,X_{s_2}-X_{s_1},\,\ldots,\,X_{s_m}-X_{s_{m-1}})$. Тогда ζ и η независимы, поскольку X имеет независимые приращения. Но ξ —это борелевская функция от ζ , следовательно, ξ независим с η .

Теорема 6.2 (строго марковское свойство). Пусть $X = \{X_t, t \ge 0\} - npo-$ цесс со стационарными независимыми приращениями такой, что его траектории непрерывны справа. Пусть τ — момент остановки относительно естественной фильтрации X. Введем

$$Y(t, \omega) := \begin{cases} X(t + \tau(\omega), \omega) - X(\tau(\omega), \omega), & \tau(\omega) < \infty, \\ 0, & \tau(\omega) = \infty. \end{cases}$$

По сути, $Y(t) = X(t+\tau) - X(\tau)$, $t \geqslant 0$. Тогда процесс $Y = \{Y_t, t \geqslant 0\}$ независим с \mathscr{F}_{τ} и имеет те же конечномерные распределения, что и процесс $\{X_t - X_0, t \geqslant 0\}$.

Доказательство. Покажем сначала, что процесс Y корректно задан. Пополним исходное вероятностное пространство $(\Omega, \mathscr{F}, \mathsf{P})$ классом нулевых событий $\mathcal N$ и получим $(\Omega, \bar{\mathscr{F}}, \bar{\mathsf{P}})$, то есть

$$\forall A : P(A) = 0 \ \forall C \subset A \ C \in \mathcal{N}, \bar{P}(C) := 0,$$

где новая σ -алгебра определяется как

$$\bar{\mathscr{F}} = \sigma \{\mathscr{F}, \mathcal{N}\}.$$

Известно, что

$$\bar{\mathscr{F}} = \mathscr{F} \cup \mathcal{N}, \ \bar{\mathsf{P}}(A \cup C) = \mathsf{P}(A) \ \forall A \in \mathscr{F}, C \in \mathcal{N}.$$

Поэтому можно считать, что с самого начала рассматривалось пополненное вероятностное пространство $(\Omega, \bar{\mathscr{F}}, \bar{\mathsf{P}})$, которое и будет дальше обозначаться просто $(\Omega, \mathscr{F}, \mathsf{P})$. Дальше считаем, что все σ –алгебры также пополнены классом нулевых событий.

Если τ — марковский момент относительно $(\mathscr{F}_t)_{t\in T}$ и $\alpha=\tau$ почти наверное, то α — тоже марковский момент относительно $(\mathscr{F}_t)_{t\in T}$. Поэтому далее можем считать, что $\tau<\infty$ на Ω .

Покажем, что Y(t) — случайная величина $\forall t \geqslant 0$. Введем

$$\tau_n := \sum_{k=1}^{\infty} k 2^{-n} \, \mathbb{I}_{A_{n,k}},$$

где

$$\begin{split} A_{n,\,1} &:= \left\{ \omega : \tau(\omega) \leqslant 2^{-n} \right\}, \\ A_{n,\,k} &:= \left\{ \omega : (k-1)2^{-n} < \tau(\omega) \leqslant k2^{-n} \right\}, \quad k \geqslant 2. \end{split}$$

Тогда $\tau_n \searrow \tau$ на всем Ω . Заметим, что τ_n — марковские моменты относительно $(\mathscr{F}_t)_{t \geq 0}$:

$$\{\tau_n \leqslant t\} = \{\tau \leqslant k2^{-n}\} \in \mathscr{F}_{k2^{-n}} \subset \mathscr{F}_t,$$

где $k := \sup \{r: r2^{-n} \leqslant t\}.$

Поскольку траектории X непрерывны справа почти наверное, то

$$X(t + \tau_n(\omega), \omega) \to X(t + \tau(\omega), \omega), n \to \infty \quad \forall t \ge 0.$$

Заметим, что

$$\left\{\omega: X\left(t+\tau_n(\omega), \omega\right) \leqslant z\right\} = \bigcup_{k=1}^{\infty} \left\{X\left(t+k2^{-n}, \omega\right) \leqslant z, \ \tau_n = k2^{-n}\right\}.$$

Поскольку

$$\left\{X\left(t+k2^{-n},\,\omega\right)\leqslant z\right\}\in\mathscr{F},\,\left\{\tau_n=k2^{-n}\right\}\in\mathscr{F},$$

то $X(t+\tau_n)$ — случайная величина $\forall n$. Поскольку $X(t+\tau_n) \xrightarrow{\text{п.н.}} X(t+\tau)$, то $X(t+\tau)$ — тоже случайная величина из полноты случайного пространства.

Таким образом, показали, что $Y(t) = X(t+\tau) - X(\tau) -$ случайная величина $\forall t \geqslant 0.$

Докажем, что Y независим с \mathscr{F}_{τ} . Для этого достаточно проверить, что

$$\mathsf{P}\left(A \cap \left\{\xi \in C\right\}\right) = \mathsf{P}\left(A\right) \mathsf{P}\left(\xi \in C\right) \ \forall A \in \mathscr{F}_{\tau}, \ C \in \mathcal{B}\left(\mathbb{R}^{m}\right),$$

где

$$\xi := (Y(t_1), \ldots, Y(t_m)), \quad 0 \leqslant t_1 < \ldots < t_m.$$

Воспользуемся свойством регулярности вероятностной меры: $\forall \varepsilon > 0 \ \forall C \in \mathcal{B}(\mathbb{R}^m) \ \exists$ открытое множество G и замкнутое множество F такие, что $F \subset C \subset G$ и $\mathsf{P}\left(G \setminus F\right) < \varepsilon$ (доказательство см., например, [4], стр. 4). Соответственно, достаточно рассматривать только замкнутые C. Покажем, что

$$P(A \cap \{\xi \in C\}) = P(A) P(\xi \in C) \Leftrightarrow EI_A f(\xi) = EI_A Ef(\xi)$$

для любой непрерывной ограниченной $f: \mathbb{R}^m \to \mathbb{R}$. Заметим, что импликация слева направо (\Rightarrow) следует из того, что если σ -алгебры, индуцированные на вероятностное пространство двумя случайными величинами, независимы, то матожидание произведения этих случайных величин распадается в произведение соответствующих матожиданий. Докажем импликацию справа налево (\Leftarrow). Положим

$$\varphi(t) := \begin{cases} 1 & , \ t \leq 0, \\ 1 - t \, , \ t \in [0, 1], \\ 0 & , \ t > 1. \end{cases}$$

Определим $\rho(x, B) := \inf_{y \in B} \rho(x, y)$, где $\rho(x, y)$ — евклидово расстояние между точками. Заметим, что $\rho(x, B)$ — непрерывная функция от x. Положим

$$f_i(x) := \varphi(j\rho(x, B)), j \in \mathbb{N}.$$

Тогда $f_j(x) \searrow \mathbb{I}_B, \ j \to \infty$ (здесь важно, что B— замкнутое множество!). Поэтому по теореме Лебега о мажорируемой сходимости

$$\begin{split} & \mathbb{E} \mathbb{I}_A f_j(\xi) \ \to \ \mathbb{E} \mathbb{I}_A \mathbb{I}_{\{\xi \in B\}} \ = \ \mathsf{P} \left(A \cap \{\xi \in B\} \right), \\ & \mathbb{E} \mathbb{I}_A \mathsf{E} f_j(\xi) \ \to \ \mathbb{E} \mathbb{I}_A \mathsf{E} \mathbb{I}_{\{\xi \in B\}} \ = \ \mathsf{P} \left(A \cap \{\xi \in B\} \right). \end{split}$$

Таким образом, импликация справа налево доказана. Положим

$$\xi_n := (X(t_1 + \tau_n) - X(\tau_n), \dots, X(t_m + \tau_n) - X(\tau_n)).$$

Тогда $\xi_n \xrightarrow{\text{п.н.}} \xi$, поскольку $\tau_n \searrow \tau$. Следовательно, $\mathsf{E}\mathbb{I}_A f(\xi) = \lim_{n \to \infty} \mathsf{E}\mathbb{I}_A f(\xi_n)$. Положим

$$\xi_{n,k} := \left(X \left(t_1 + k 2^{-n} \right) - X \left(k 2^{-n} \right), \dots, X \left(t_m + k 2^{-n} \right) - X \left(k 2^{-n} \right) \right).$$

Заметим, что

$$A \cap \{\tau_n = k2^{-n}\} = A \cap A_{n,k} = A \cap \{(k-1)2^{-n} < \tau \leqslant k2^{-n}\} =$$

$$= A \cap \left\{ \tau \leqslant k2^{-n} \right\} \setminus A \cap \left\{ \tau \leqslant (k-1)2^{-n} \right\} \in \mathscr{F}_{k2^{-n}}.$$

По лемме 6.1 $\xi_{n,\,k}$ независим с $\mathscr{F}_{k2^{-n}}$. Тогда получаем, что

$$\begin{split} \mathsf{E}\mathbb{I}_A f(\xi_n) &= \sum_{k=1}^\infty \mathsf{E}\mathbb{I}_A f(\xi_n) \mathbb{I}_{\{\tau_n = k2^{-n}\}} = \sum_{k=1}^\infty \mathsf{E}\mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} f(\xi_{n,\,k}) = \\ &= \sum_{k=1}^\infty \mathsf{E}\mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} \mathsf{E} f(\xi_{n,\,k}). \end{split}$$

Заметим, что

$$\xi_{n,k} \stackrel{\text{law}}{=} (X(t_1) - X(0), \dots, X(t_n) - X(0)) =: \gamma.$$

Тогда получаем, что

$$\begin{split} \sum_{k=1}^{\infty} \mathsf{E} \mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} \mathsf{E} f(\xi_{n,\,k}) &= \mathsf{E} f(\gamma) \sum_{k=1}^{\infty} \mathsf{E} \mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} = \mathsf{E} f(\gamma) \mathsf{E} \mathbb{I}_A = \\ &= \mathsf{E} f(\gamma) \, \mathsf{P} \left(A\right). \end{split}$$

Таким образом, получили, что $\mathsf{EI}_A f(\xi) = \mathsf{EI}_A \mathsf{E} f(\gamma) \ \forall A \in \mathscr{F}_\tau$. Осталось взять $A = \Omega$: тогда получится, что $\mathsf{E} f(\xi) = \mathsf{E} f(\gamma)$ и, как следствие,

$$\mathsf{E}\mathbb{I}_A f(\xi) = \mathsf{E}\mathbb{I}_A \mathsf{E} f(\xi) \ \forall A \in \mathscr{F}_\tau.$$

6.3 Функции Хаара и Шаудера

Определение 6.6. Функции Хаара $H_k(x)$ задаются следующими формулами на [0, 1]:

$$\begin{split} H_0(x) &\equiv 1; \\ H_1(x) &= \mathbb{I}_{\left[0, \frac{1}{2}\right]}(x) - \mathbb{I}_{\left(\frac{1}{2}, 1\right]}(x); \\ H_k(x) &= 2^{n/2} \left(\mathbb{I}_{\left(\frac{k-2^n}{2^n}, \frac{1/2+k-2^n}{2^n}\right]}(x) - \mathbb{I}_{\left(\frac{1/2+k-2^n}{2^n}, \frac{1+k-2^n}{2^n}\right]}(x) \right), \quad 2^n \leqslant k < 2^{n+1}, \\ n &\in \mathbb{N}; \quad H_{2^n}(0) = 1 \ \forall n \in \mathbb{N}. \end{split}$$

Замечание. Известно, что $\big\{H_k(x)\big\}_{k\in\mathbb{N}}$ — полная ортонормированная система в $\mathrm{L}^2[0,\,1].$

Определение 6.7. Функции Шаудера $S_k(t)$ задаются следующими формулами на $[0,\,1]$:

$$S_k(t) = \int_{[0,t]} H_k(u) \, \mathrm{d}u = \left\langle H_k, \, \mathbb{I}_{[0,t]} \right\rangle_{\mathrm{L}^2}, \quad k \in \mathbb{Z}_+,$$

где $H_k(u)$ — функции Хаара.

3амечание. Известно, что $S_k(t)$ непрерывны $\forall k \in \mathbb{Z}_+$.

Лемма 6.3. Пусть $a_k = O(k^{\varepsilon})$ при $k \to \infty$, где $0 < \varepsilon < 1/2$. Тогда ряд

$$\sum_{k=1}^{\infty} a_k S_k(t)$$

сходится равномерно на [0, 1].

Доказательство. Будем доказывать равномерную сходимость к нулю хвостов ряда. Перепишем хвост ряда:

$$\sum_{k>2^n} a_k S_k(t) \; = \; \sum_{m=n}^{\infty} \; \sum_{2^n < k \leqslant 2^{n+1}} \!\! a_k S_k(t).$$

Заметим, что

$$S_k(t) \leq 2^{-\frac{n}{2}-1}, \ 2^n < k \leq 2^{n+1}.$$

Поскольку $|a_k| = O(k^{\varepsilon})$, то

$$|a_k| \leqslant Ck^{\varepsilon},$$

где C — некоторая фиксированная константа. Оценим:

$$\sum_{2^n < k \leqslant 2^{n+1}} \!\!\! |a_k| S_k(t) \; \leqslant \; C 2^{(n+1)\varepsilon} \!\!\! \sum_{2^n < k \leqslant 2^{n+1}} \!\!\! S_k(t).$$

Поскольку носители $S_k(t)$ не пересекаются при $2^n < k \leqslant 2^{n+1}$, то

$$C2^{(n+1)\varepsilon} \sum_{2^n < k \leqslant 2^{n+1}} S_k(t) \leqslant C2^{(n+1)\varepsilon} 2^{-\frac{n}{2}-1} = C2^{\varepsilon - n(\frac{1}{2} - \varepsilon)}.$$

Вернемся к исходному хвосту ряда:

$$\sum_{k>2^n} |a_k| S_k(t) \leqslant \sum_{m=n}^{\infty} C \, 2^{\varepsilon - n\left(\frac{1}{2} - \varepsilon\right)} \to 0, \quad n \to \infty,$$

так как $\varepsilon < \frac{1}{2}$. Таким образом, поскольку оценка является числовым рядом, не зависящим от t, показана равномерная сходимость хвостов ряда к нулю, то есть его равномерная сходимость. Лемма доказана.

Замечание. Из леммы 6.3 и теоремы Вейерштрасса следует, что этот ряд сходится к непрерывной функции.

Лемма 6.4. Пусть $\xi_1, \, \xi_2, \, \ldots - c$ лучайные величины на некотором вероятностном пространстве $(\Omega, \, \mathscr{F}, \, \mathsf{P}), \, \xi_k \sim \mathcal{N}(0, \, 1), \, k \in \mathbb{N}$. Тогда $\forall c > \sqrt{2}$ и для почти всех $\omega \in \Omega \, \exists N_0(c \, \omega)$:

$$|\xi_k| \leqslant c (\ln k)^{\frac{1}{2}} \quad \forall k \geqslant N_0(c, \omega).$$

Доказательство. Поскольку $\xi_k \sim \mathcal{N}(0, 1)$, то

$$\mathsf{P}\left(\xi \geqslant x\right) = \frac{1}{\sqrt{2\pi}} \int\limits_{x}^{\infty} e^{\frac{-u^2}{2}} \, \mathrm{d}u \ \forall x > 0.$$

Оценим этот интеграл:

$$\frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-u^{2}}{2}} du = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \frac{u}{u} e^{\frac{-u^{2}}{2}} du \leqslant \frac{1}{x} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} u e^{\frac{-u^{2}}{2}} du =$$

$$= \frac{1}{x} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} -de^{\frac{-u^{2}}{2}} = \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{\frac{-u^{2}}{2}}.$$

Тогда получаем, что

$$\mathsf{P}\left(|\xi|\geqslant x\right) \;\leqslant\; \frac{1}{x}\sqrt{\frac{2}{\pi}}\,e^{\frac{-u^2}{2}}.$$

Воспользуемся леммой Бореля-Кантелли:

$$\sum_{k=2}^{\infty} \mathsf{P}\left(|\xi_k| \geqslant c \, (\ln k)^{\frac{1}{2}}\right) \; \leqslant \; \sum_{k=2}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{c \, (\ln k)^{\frac{1}{2}}} e^{\frac{-c^2 \ln k}{2}} \; \leqslant \; \widetilde{c} \, \sum_{k=2}^{\infty} k^{\frac{-c^2}{2}} < \infty.$$

Поскольку ряд из вероятностей сошелся почти наверное, то событий происходит конечное число почти наверное. Из этого следует, что для каждого фиксированного ω можно выбрать k, после которого события выполняться перестают. Лемма доказана.

6.4 Винеровские процессы

Определение 6.8. Процесс $W = \{W(t), t \ge 0\}$ называется винеровским, если

- 1. W(0) = 0 почти наверное;
- $2. \ W$ имеет независимые приращения;
- 3. $W(t) W(s) \sim \mathcal{N}(0, t s) \ \forall \ 0 \leq s < t;$
- 4. траектории W непрерывны почти наверное.

Теорема 6.5 (явная конструкция винеровского процесса). Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, $\xi_k \sim \mathcal{N}(0, 1), \ k \in \mathbb{N}$. Введем

$$W(t, \omega) := \sum_{k=1}^{\infty} \xi_k(\omega) S_k(t), \ t \in [0, 1],$$

где $S_k(t)$ — функции Шаудера. Тогда $W = \{W(t), t \in [0, 1]\}$ — винеровский процесс на [0, 1].

Доказатель ство. Будем доказывать свойства 1. – 4. для построенного процесса. Свойство 1. выполнено, так как $S_k(0)=0$. Заметим, что согласно лемме 6.3

$$\sum_{k=1}^{n} \xi_k S_k(t) \xrightarrow{\text{II.H.}} W(t), \quad n \to \infty.$$

Более того, согласно лемме **6.4** сходимость равномерна на [0, 1], что дает непрерывность траекторий почти наверное. Таким образом, свойство 4.

тоже получено. Проверим независимость приращений этого процесса. Для этого нужно проверить независимость случайных величин

$$W(t_0), W(t_1) - W(t_0), \dots, W(t_m) - W(t_{m-1}), \ 0 \le t_0 < t_1 < \dots < t_m.$$

Заметим, что случайные величины $\sum\limits_{k=1}^n \xi_k S_k(t)$ имеют предел в $\mathrm{L}^2\left(\Omega,\,\mathscr{F},\,\mathsf{P}\right)$: поскольку

$$\mathsf{E}\xi_k\xi_l = \begin{cases} 1, & k = l, \\ 0, & k \neq l, \end{cases}$$

то

$$\mathsf{E}\left|\sum_{k=1}^n \xi_k S_k(t) - \sum_{k=1}^r \xi_k S_k(t)\right|^2 = \mathsf{E}\left|\sum_{k=r+1}^n \xi_k S_k(t)\right|^2 = \mathsf{E}\left|\sum_{k=r+1}^n S_k^2(t)\right|^2 \to 0,$$

$$r, n \to \infty$$

как часть хвоста сходящегося ряда, поскольку $S_k(t) \leqslant 2^{-\frac{n+2}{2}}$. Таким образом, показано, что последовательность частичных сумм фундаментальна в $L^2(\Omega, \mathscr{F}, \mathsf{P})$. Известно, что это пространство полно; тогда обозначим

$$V(t) := (L^2) \lim_{n \to \infty} \sum_{k=1}^{n} \xi_k S_k(t).$$

Из этого следует, что V(t) = W(t) почти наверное, и частные суммы сходятся к W(t) не только почти наверное, но и в L^2 (потому что из сходимости почти наверное, равно как и из сходимости в L^2 , следует сходимость по вероятности, предел которой определен однозначно).

Рассмотрим теперь вектор из приращений частных сумм:

$$U_n := \left(\sum_{k=1}^n \xi_k S_k(t_0), \dots, \sum_{k=1}^n \xi_k S_k(t_{j+1}) - \sum_{k=1}^n \xi_k S_k(t_j), \dots \right)$$
$$\dots, \sum_{k=1}^n \xi_k S_k(t_m) - \sum_{k=1}^n \xi_k S_k(t_{m-1}).$$

Сразу отметим, что этот вектор является гауссовским, так как он является линейным преобразованием гауссовского вектора из независимых нормальных случайных величин ξ_i . Введем также предельный вектор

$$U := \left(\sum_{k=1}^{\infty} \xi_k S_k(t_0), \dots, \sum_{k=1}^{\infty} \xi_k S_k(t_{j+1}) - \sum_{k=1}^{\infty} \xi_k S_k(t_j), \dots \right)$$
$$\dots, \sum_{k=1}^{\infty} \xi_k S_k(t_m) - \sum_{k=1}^{\infty} \xi_k S_k(t_{m-1}).$$

Тогда по доказанному выше

$$U_n \xrightarrow{\Pi.H.} U, \ U_n \xrightarrow{L^2(\Omega)} U.$$

Поскольку $U_n = (U_n^1, \ldots, U_n^m)$ — гауссовский вектор, его характеристическая функция имеет известный вид:

$$\varphi_{U_n}(\lambda) = e^{i(\lambda, a) - \frac{1}{2}(C\lambda, \lambda)}$$

где a — математическое ожидание U_n , а C — матрица ковариаций U_n . Заметим, что $\mathsf{E} U_n = 0$. Разберемся с матрицей ковариаций:

$$\operatorname{cov}\left(U_{n}^{j}, U_{n}^{r}\right) = \operatorname{E}U_{n}^{j}U_{n}^{r} = \sum_{k=1}^{n} S_{k}(t_{j+1})S_{k}(t_{r+1}) - \sum_{k=1}^{n} S_{k}(t_{j})S_{k}(t_{r+1}) - \sum_{k=1}^{n} S_{k}(t_{j})S_{k}(t_{r}) - \sum_{k=1}^{n} S_{k}(t_{j+1})S_{k}(t_{r}) + \sum_{k=1}^{n} S_{k}(t_{j})S_{k}(t_{r}).$$

Поскольку $\mathsf{E} U_n^j U_n^r$ —это скалярное произведение в L^2 , которое обладает свойством непрерывности, то

$$\operatorname{cov}\left(U_{n}^{j}, U_{n}^{r}\right) = \operatorname{E} U_{n}^{j} U_{n}^{r} \to \sum_{k=1}^{\infty} S_{k}(t_{j+1}) S_{k}(t_{r+1}) - \sum_{k=1}^{\infty} S_{k}(t_{j}) S_{k}(t_{r+1}) - \sum_{k=1}^{\infty} S_{k}(t_{j+1}) S_{k}(t_{r}) + \sum_{k=1}^{\infty} S_{k}(t_{j}) S_{k}(t_{r}), \quad n \to \infty.$$

Рассмотрим одно из слагаемых, воспользовавшись представлением функций Шаудера через функции Хаара (образующие базис в прострастве L^2), а также равенством Парсеваля:

$$\sum_{k=1}^{\infty} S_k(t) S_k(v) = \sum_{k=1}^{\infty} \left\langle H_k, \mathbb{I}_{[0,t]} \right\rangle_{\mathbf{L}^2} \left\langle H_k, \mathbb{I}_{[0,v]} \right\rangle_{\mathbf{L}^2} = \left\langle \mathbb{I}_{[0,t]}, \mathbb{I}_{[0,v]} \right\rangle_{\mathbf{L}^2} = \min(v,t).$$

Тогда в предположении $t_i < t_r$ получаем, что

$$\operatorname{cov}\left(U_{n}^{j}, U_{n}^{r}\right) \to \min(t_{j+1}, t_{r+1}) - \min(t_{j}, t_{r+1}) - \min(t_{j+1}, t_{r}) + \min(t_{j}, t_{r}) = t_{j+1} - t_{j} - t_{j+1} + t_{j} = 0.$$

Так как сходимость почти наверное влечет сходимость характеристических функций и так как из-за сходимости в L^2 есть сходимость моментов, из этого следует, что матрица ковариаций вектора U диагональна, что в свою очередь влечет независимость его компонент U^1, \ldots, U^m ; также предельным переходом получаем явный вид характеристической функции вектора U, что доказывает гауссовость вектора. Теорема доказана.

Следствие (построение W на $[0, \infty)$). Для каждого $j \in \mathbb{N}$ берем ξ_1^j, ξ_2^j, \ldots независимые одинаково распределенные $\mathcal{N}(0, 1)$ случайные величины. Определяем

$$W^{j}(t, \omega) := \sum_{k=1}^{\infty} \xi_{k}^{j}(\omega) S_{k}(t).$$

Дальше склеиваем эти процессы последовательно и непрерывно:

$$W(t) := W^{j}(t) + W(j-1), W(0) \equiv 0, j \in \mathbb{N}.$$

Tогда W-винеровский процесс.

Доказательство. Доказательство будет дано позднее.

7 Лекция от 29.03.17

Свойства винеровского процесса

7.1 Недифференцируемость траекторий броуновского движения

Теорема 7.1 (Винера – Пэли – Зигмунда). С вероятностью 1 траектории винеровского процесса $W = \{W(t), t \ge 0\}$ не дифференцируемы ни в одной точке $\mathbb{R}_+ = [0, \infty)$.

Доказательство. Рассмотрим промежуток $[k, k+1), k \in \mathbb{Z}_+$. Допустим, что $W(\cdot, \omega)$ дифференцируем в точке $s \in [k, k+1)$. Тогда существует правая производная $W(\cdot, \omega)$ в точке s. Из этого следует, что

$$\exists\, l,\, q\in \mathbb{N}: \ \left|W(t,\, \omega)-W(s,\, \omega)\right|\leqslant l(t-s) \text{ при } |t-s|<\frac{1}{q}, \ t>s.$$

Зафиксируем $k \in \mathbb{Z}_+$ и введем событие

$$A_{l,n,i} := \left\{ \omega : \left| W\left(k + \frac{j+1}{n}, \omega\right) - W\left(k + \frac{j}{n}, \omega\right) \right| \leqslant \frac{7l}{n}, \quad j = i, i+1, i+2 \right\}.$$

Пусть $\frac{4}{n}<\frac{1}{q}$, то есть n>4q. Тогда если ω — точка дифференцируемости W в точке s, то $\exists i=i(s,\,n),$ что

$$\left| W\left(k + \frac{j+1}{n}, \omega\right) - W\left(k + \frac{j}{n}, \omega\right) \right| \le$$

$$\le \left| W(s, \omega) - W\left(k + \frac{j}{n}, \omega\right) \right| + \left| W\left(k + \frac{j+1}{n}, \omega\right) - W(s, \omega) \right| \le$$

$$\le \frac{4l}{n} + \frac{3l}{n} = \frac{7l}{n}, \quad j = i, i+1, i+2,$$

поскольку в разрешенный промежуток длины $\frac{1}{q}$ точно попадет целиком хотя бы 3 отрезка длины $\frac{1}{n}$ (i выбирается таким образом, чтобы $k+\frac{i-1}{n}\leqslant i<<< k+\frac{i}{n}$). Таким образом, если $\omega\in D_k$, где D_k —таким ω , что $W(\cdot,\omega)$ дифференцируема в точка $s\in[k,k+1)$, то по показанному выше

$$D_k \subset \bigcup_{l=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{n>4q} \bigcup_{i=1}^{n-3} A_{l,n,i}.$$

Покажем, что

$$\mathsf{P}\left(\bigcap_{n>4q}\bigcup_{i=1}^{n-3}A_{l,\,n,\,i}\right)=0\ \forall l,\,q\in\mathbb{N};$$

если мы это сделаем, то тогда автоматически получится, что $\mathsf{P}(D_k)=0$, что и доказывает утверждение теоремы. Для начала заметим, что

$$P\left(\bigcap_{n}B_{n}\right)\leqslant\liminf_{n}P\left(B_{n}\right),$$

поскольку пересечение вложено в каждый из отдельно взятых элементов. Поэтому

$$\mathsf{P}\left(\bigcap_{n>4q}\bigcup_{i=1}^{n-3}A_{l,\,n,\,i}\right)\,\leqslant\, \liminf_n\mathsf{P}\left(\bigcup_{i=1}^nA_{l,\,n,\,i}\right)\,\leqslant\, \liminf_n\sum_{i=1}^n\mathsf{P}\left(A_{l,\,n,\,i}\right).$$

Оценим общий член этой суммы. Так как приращения винеровского процесса независимы и стационарны, то

$$\mathsf{P}\left(A_{l,\,n,\,i}\right) = \left(\mathsf{P}\left(\left|W\left(1/n\right) - W(0)\right| \leqslant \frac{7l}{n}\right)\right)^3 = \left(\mathsf{P}\left(\frac{\left|W(1/n)\right|}{\sqrt{1/n}} \leqslant \frac{7l}{\sqrt{n}}\right)\right)^3.$$

Введем обозначение

$$\xi := \frac{\left| W\left(\frac{1}{n}\right) \right|}{\sqrt{\frac{1}{n}}} \, \sim \, \mathcal{N}(0, \, 1).$$

Тогда воспользуемся тем, что

$$\mathsf{P}\left(|\xi| \leqslant z\right) \,=\, \frac{1}{\sqrt{2\pi}} \int\limits_{-z}^{z} e^{\frac{-u^2}{2}} \,\mathrm{d}u \,\leqslant\, \frac{2z}{\sqrt{2\pi}} \,=\, z\,\sqrt{\frac{2}{\pi}},$$

и продолжим цепочку неравенств:

$$\left(\mathsf{P}\left(\frac{\left|W(1/n)\right|}{\sqrt{1/n}}\leqslant\frac{7l}{\sqrt{n}}\right)\right)^3\,\leqslant\,\left(\frac{7l}{\sqrt{n}}\,\sqrt{\frac{2}{\pi}}\right)^3.$$

Тогда, возвращаясь к сумме, получаем, что

$$\mathsf{P}\left(\bigcap_{n>4q}\bigcup_{i=1}^{n-3}A_{l,\,n,\,i}\right)\leqslant \liminf_n n\left(\frac{7l}{\sqrt{n}}\sqrt{\frac{2}{\pi}}\right)^3\,=\,0.$$

Теорема доказана.

Замечание. Это доказательство (точно такое же, но с картинками) можно посмотреть в [1], стр. 76.

Замечание. Из последнего шага доказательства становится ясно, почему нужно было брать именно три отрезка, а не один или два.

7.2 Принцип отражения

Теорема 7.2 (принцип отражения). Пусть $W = \{W_t, t \ge 0\}$ — винеровский процесс, τ — момент остановки относительно естественной фильтрации процесса W. Введем новый (отраженный) процесс

$$Z(t, \omega) = \begin{cases} W(t, \omega), & t \leq \tau(\omega), \\ 2W(\tau(\omega), \omega) - W(t, \omega), & t > \tau(\omega) \end{cases}$$

для всех $\omega \in \{\tau < \infty\}$; для всех остальных ω определим $Z(t, \omega) \equiv 0$. Иными словами,

$$Z(t, \omega) = W(t, \omega) \mathbb{I} \left\{ t \leqslant \tau(\omega) \right\} + \left(2W(\tau(\omega), \omega) - W(t, \omega) \right) \mathbb{I} \left\{ t > \tau(\omega) \right\}.$$

Тогда $Z = \{Z_t, t \geqslant 0\}$ — винеровский процесс.

Доказатель ство. Введем польское (то есть метрическое полное сепарабельное) пространство $C_0(\mathbb{R}_+) = \{f: f \in C(\mathbb{R}_+), f(0) = 0\}$ с метрикой

$$\rho(f, g) := \sum_{n=1}^{\infty} 2^{-n} \frac{\sup_{t \in [0, n]} |f(t) - g(t)|}{1 + \sup_{t \in [0, n]} |f(t) - g(t)|}.$$

Введем два вспомогательных процесса $X=\left\{X(t),\,t\geqslant0\right\}$ и $Y=\left\{Y(t),\,t\geqslant0\right\}$:

$$X(t, \omega) := W\left(\min\left(t, \tau(\omega)\right), \omega\right),$$

$$Y(t, \omega) := W(t + \tau, \omega) - W(\tau).$$

Смысл этих процессов таков: X — это процесс W, остановленный после момента τ ; Y — это процесс W, отсеченный в момент τ . Сразу отметим, что Y — винеровский процесс по строго марковскому свойству (теорема 6.2). Введем для всех $b \in \mathbb{R}_+$, $f, g \in C_0(\mathbb{R}_+)$ отображение "склеивания" h функций f и g в точке b:

$$h(b, f(\cdot), g(\cdot))(t) := f(t)\mathbb{I}_{[0,b]}(t) + (f(b) + g(t-b))\mathbb{I}_{(b,\infty)}(t).$$

Отметим, что

$$h: (\mathbb{R}_+ \times \mathrm{C}_0[0, \infty) \times \mathrm{C}_0[0, \infty), \widetilde{\rho}) \to (\mathrm{C}_0[0, \infty), \rho),$$

где метрика $\widetilde{\rho}$ вводится следующим образом:

$$\widetilde{\rho} := \max\{\rho_1, \rho_2, \rho_3\},$$

где ρ_1 — евклидова метрика на \mathbb{R}_+ , а ρ_2 и ρ_3 совпадают с метрикой ρ , является непрерывным отображением. Заметим, что тогда для всех $\omega \in \{\tau < \infty\}$

$$h(\tau(\omega), X(\cdot, \omega), Y(\cdot, \omega)) = W(\cdot, \omega),$$

$$h(\tau(\omega), X(\cdot, \omega), -Y(\cdot, \omega)) = Z(\cdot, \omega).$$

Таким образом, для завершения доказательства теоремы достаточно показать, что

$$h(\tau(\omega), X(\cdot, \omega), Y(\cdot, \omega)) \stackrel{\text{law}}{=} h(\tau(\omega), X(\cdot, \omega), -Y(\cdot, \omega)),$$

для чего достаточно доказать, что элементы (τ, X, Y) и $(\tau, X, -Y)$ имеют одинаковое распределение, в силу непрерывности h. Перейдем к этому. Сначала докажем, что вектор (τ, X) \mathscr{F}_{τ} -измерим. Для этого достаточно доказать, что \mathscr{F}_{τ} -измеримы его компоненты. \mathscr{F}_{τ} -измеримость τ очевидна. Перейдем к доказательству \mathscr{F}_{τ} -измеримости X. Для этого построим последовательность сходящихся к X \mathscr{F}_{τ} -измеримых случайных элементов X_n . Введем величины

$$a_n(\omega) := \sum_{k=0}^{\infty} k 2^{-n} \mathbb{I}_{\left[k2^{-n}, (k+1)2^{-n}\right)} \left(\tau(\omega)\right) \nearrow \tau(\omega), \quad n \to \infty, \quad \forall \omega.$$

Построим по ним

$$X_n(\omega) := W\left(\min\left(t, a_n(\omega)\right), \omega\right).$$

Тогда $X_n \mathscr{F}_{\tau}$ —измеримы и, как следствие, $X \mathscr{F}_{\tau}$ —измерим. Тогда и весь вектор $(\tau, X) \mathscr{F}_{\tau}$ —измерим. По строго марковскому свойству Y независим с \mathscr{F}_{τ} и, как следствие, с вектором (τ, X) . Вследствие этого получаем, что

$$\operatorname{Law}((\tau, X, Y)) = \operatorname{Law}((\tau, X)) \otimes \operatorname{Law}(Y) = \operatorname{Law}((\tau, X)) \otimes \operatorname{Law}(W).$$

Поскольку Y — винеровский процесс, то

$$\operatorname{Law}((\tau, X, -Y)) = \operatorname{Law}((\tau, X)) \otimes \operatorname{Law}(-Y) = \operatorname{Law}((\tau, X)) \otimes \operatorname{Law}(W).$$

Замечание. Доказательство взято из [1], стр. 85.

7.3 Теорема Башелье

Лемма 7.3. Пусть $W = \{W(t), t \ge 0\}$ — винеровский процесс. Положим

$$\tau_y := \inf \left\{ t \geqslant 0 : W(t) = y \right\}.$$

Тогда $\forall t, x, y \geqslant 0$

$$P(\tau_u \leqslant t, W(t) < y - x) = P(W(t) > y + x).$$

Доказатель ство. При y=0 теорема верна, поскольку равенство в ее формулировке превращается в равенство Р $(W(t)\leqslant -x)=$ Р $(W(t)\leqslant x)$. Пусть теперь y>0. Согласно обязательной задаче 6.2 τ_y — момент остановки относительно естественной фильтрации W. Построим отраженный процесс $Z=\left\{Z(t),\,t\geqslant 0\right\}$ так же, как в теореме 7.2, используя τ_y в качестве момента отражения τ . Введем

$$\sigma_y := \inf \{ t \geqslant 0 : Z(t) = y \}.$$

Очевидно, тогда $au_y \equiv \sigma_y$ для всех $\omega \in \{ au_y < \infty\}$. Заметим, что

$$\mathsf{P}\left(\tau_y \leqslant t, \, W \in B\right) \, = \, \mathsf{P}\left(\sup_{s \in [0, \, t]} W(s) \geqslant y, \, W \in B\right) \, = \, \mathsf{P}\left(W \in \widetilde{B} \cap B\right)$$

 $\forall B \in \mathscr{B}\left(\mathrm{C}[0,\infty)\right),\ t\geqslant 0,$ где

$$\widetilde{B} = \left\{ f \in \mathcal{C}[0, \infty) : \sup_{s \in [0, t]} f(s) \geqslant y \right\}.$$

Аналогично получаем, что

$$\mathsf{P}\left(\sigma_{y}\leqslant t,\,Z\in B\right) \,=\, \mathsf{P}\left(Z\in\widetilde{B}\cap B\right) \,=\, \mathsf{P}\left(W\in\widetilde{B}\cap B\right)$$

по теореме 7.2. Таким образом, показали, что случайные элементы (τ_y, W) и (σ_y, Z) имеют одинаковые распределения. Из этого следует, что $\forall x \in \mathbb{R}, t, y \geqslant 0$

$$P(\tau_y \leqslant t, W(t) < y - x) = P(\sigma_y \leqslant t, Z(t) < y - x).$$

В силу непрерывности траекторий W имеем $W\left(\tau_y(\omega),\,\omega\right)=y,\,y\geqslant 0.$ Поэтому для $t\geqslant\sigma_y(\omega)$ по определению Z получаем, что

$$Z(t, \omega) = 2W(\tau_y(\omega), \omega) - W(t, \omega) = 2y - W(t, \omega).$$

Таким образом, при всех $y \ge 0$ получаем, что

$$\begin{split} \mathsf{P}\left(\tau_y \leqslant t,\, W(t) < y - x\right) \; &= \; \mathsf{P}\left(\sigma_y \leqslant t,\, Z(t) < y - x\right) \; = \\ &= \; \mathsf{P}\left(\sigma_y \leqslant t,\, W(t) > y + x\right) \; = \; \mathsf{P}\left(\tau_y \leqslant t,\, W(t) > y + x\right). \end{split}$$

Тогда при $x \ge 0$ получаем, что

$$P(\tau_y \le t, W(t) < y - x) = P(\tau_y \le t, W(t) > y + x) = P(W(t) > y + x),$$

что и требовалось доказать.

Замечание. Доказательство взято из [1], стр. 89.

Теорема 7.4 (Башелье). Пусть $W = \{W_t, t \geqslant 0\}$ — винеровский процесс. Тогда

$$\mathsf{P}\left(\sup_{s\in[0,\,t]}W_s\geqslant y\right)\,=\,2\,\mathsf{P}\left(W_t\geqslant y\right)\,=\,\mathsf{P}\left(|W_t|\geqslant y\right).$$

Доказательство. Возьмем x=0 в лемме 7.3. Тогда получим, что

$$\mathsf{P}\left(\tau_y \leqslant t, \, W(t) < y\right) \, = \, \mathsf{P}\left(\sup_{s \in [0, \, t]} W(s) \geqslant y, \, W(t) < y\right) \, = \, \mathsf{P}\left(W(t) > y\right).$$

Поэтому

$$\begin{split} \mathsf{P}\left(\sup_{s \in [0,\,t]} W(s) \geqslant y\right) &= \\ &= \, \mathsf{P}\left(\sup_{s \in [0,\,t]} W(s) \geqslant y,\, W(t) < y\right) + \mathsf{P}\left(\sup_{s \in [0,\,t]} W(s) \geqslant y,\, W(t) \geqslant y\right) = \\ &= \, \mathsf{P}\left(W(t) > y\right) + \mathsf{P}\left(W(t) \geqslant y\right) = 2\, \mathsf{P}\left(W(t) \geqslant y\right), \end{split}$$

что и требовалось доказать.

Замечание. Доказательство взято из [1], стр. 90.

8 Лекция от 05.04.17 Мартингалы

8.1 Мартингалы. Определения. Примеры

Определение 8.1. Действительный процесс $X = \{X_t, t \in T\}$, $T \subset \mathbb{R}$, называется мартингалом относительно фильтрации $(\mathscr{F}_t)_{t\in T},$ если выполнены три условия:

- 1. $X_t \in \mathscr{F}_t \mid \mathcal{B}(\mathbb{R}) \ \forall t \in T;$
- 2. $E|X_t| < \infty \ \forall t \in T;$
- 3. $\mathsf{E}\left(X_{t} \mid \mathscr{F}_{s}\right) \stackrel{\text{\tiny II.H.}}{=} X_{s} \ \forall s, t \in T, \ s \leqslant t.$

X называется $\mathit{субмартингалом}$ относительно $(\mathscr{F}_t)_{t\in T},$ если

- 1. $X_t \in \mathscr{F}_t \mid \mathcal{B}(\mathbb{R}) \ \forall t \in T;$
- 2. $\mathsf{E}\left|X_{t}\right| < \infty \ \forall t \in T;$ 3. $\mathsf{E}\left(X_{t}\right|\mathscr{F}_{s}) \overset{\text{fi.H.}}{\geqslant} X_{s} \ \forall s, t \in T, \ s \leqslant t.$

X называется $\mathit{cynepmapmuhranom}$ относительно $(\mathscr{F}_t)_{t\in T},$ если

- $$\begin{split} &1.\ X_{t}\in\mathscr{F}_{t}\,|\,\mathcal{B}\left(\mathbb{R}\right)\ \forall t\in T;\\ &2.\ \mathsf{E}\left|X_{t}\right|<\infty\ \forall t\in T;\\ &3.\ \mathsf{E}\left(X_{t}\,|\,\mathscr{F}_{s}\right)\overset{\text{\tiny II.H.}}{\leqslant}X_{s}\ \forall\,s,\,t\in T,\,\,s\leqslant t. \end{split}$$

Замечание. Дальше будем также использовать для мартингала обозначение $(X_t, \mathscr{F}_t)_{t \in T}$.

Пример 8.1. Пусть $X = \{X_t, t \in T\}$ — процесс с независимыми приращениями, $\mathscr{F}_t := \sigma\{X_s, s \leqslant t, s \in T\}, t \in T, -$ естественная фильтрация процесса. Тогда X — мартингал относительно фильтрации $(\mathscr{F}_t)_{t\in T}$ тогда и только тогда, когда $\mathsf{E} X_t = \mathsf{E} X_s \ \forall s, t \in T$, то есть $\mathsf{E} X_t = \mathrm{const.}$

Доказательство. Действительно, пусть X — мартингал, $s \leq t$. Тогда

$$\mathsf{E}\left(X_{t}\,|\,\mathscr{F}_{s}\right) \,=\, \mathsf{E}\left(X_{t}\,-\,X_{s}\,+\,X_{s}\,|\,\mathscr{F}_{s}\right) \,=\, \mathsf{E}\left(X_{t}\,-\,X_{s}\,|\,\mathscr{F}_{s}\right) + \mathsf{E}\left(X_{s}\,|\,\mathscr{F}_{s}\right).$$

Известны следующие свойства условного математического ожидания: вопервых, если случайная величина ξ независима с σ -алгеброй \mathscr{F} , то

$$\mathsf{E}(\xi \mid \mathscr{F}) = \mathsf{E}\xi;$$

во-вторых, если случайная величина η измерима относительно σ -алгебры \mathscr{F} , то

$$\mathsf{E}\left(\eta\,|\,\mathscr{F}\right)\,=\,\eta.$$

Воспользуемся в силу независимости приращений этими свойствами с $\xi = X_s$ и $\eta = X_t - X_s$:

$$\mathsf{E}\left(X_{t} - X_{s} \mid \mathscr{F}_{s}\right) + \mathsf{E}\left(X_{s} \mid \mathscr{F}_{s}\right) = \mathsf{E}X_{t} - \mathsf{E}X_{s} + X_{s} = X_{s}$$

по условию 3. Из этого и получаем, что $\forall t, s \in T$

$$\mathsf{E} X_t = \mathsf{E} X_s.$$

Для доказательства утверждения в обратную сторону достаточно провести то же рассуждение в обратном порядке. \Box

Следствие. Винеровский процесс $W = \{W_t, t \ge 0\}$ — мартингал относительно естественной фильтрации, поскольку $\mathsf{E}W_t \equiv 0$.

Пуассоновский процесс интенсивности λ $N=\{N_t,t\geqslant 0\}$ не является мартингалом относительно естественной фильтрации, поскольку $\mathsf{E} N_t=$ $=\lambda t\neq \mathrm{const.}$ Однако процесс $\{N_t-\mathsf{E} N_t,t\geqslant 0\}$ является мартингалом относительно естественной фильтрации.

Замечание. Если X— мартингал относительно какой-то фильтрации, то он заведомо является мартингалом относительно естественной фильтрации процесса.

Пример 8.2. Пусть ξ_1, ξ_2, \ldots — независимые случайные величины такие, что $\mathsf{E}|\xi_k| < \infty \ \, \forall k \in \mathbb{N}$. Построим по ним процесс $S_n := \xi_1 + \ldots + \xi_n$. Тогда $(S_n)_{n\geqslant 1}$ — мартингал относительно естественной фильтрации $(\mathscr{F}_n)_{n\geqslant 1}$ процесса S (которая совпадает с естественной фильтрацией последовательности ξ_1, ξ_2, \ldots) $\Leftrightarrow \mathsf{E}\xi_2 = \mathsf{E}\xi_3 = \ldots = 0$ (при этом $\mathsf{E}\xi_1$, вообще говоря, может быть любым). Если величины ξ_k при этом еще и одинаково распределены, то тогда и $\mathsf{E}\xi_1$ обязано равняться нулю.

Пример 8.3 (мартингал Леви). Пусть $(\mathscr{F}_t)_{t\in T}$, $T\subset\mathbb{R}$, — фильтрация, ξ — случайная величина, $\mathsf{E}|\xi|<\infty$. Тогда

$$X_t := \mathsf{E}\left(\xi \,|\, \mathscr{F}_t\right),\, t \in T,\, -$$
 мартингал относительно $\left(\mathscr{F}_t\right)_{t \in T}.$

Доказательство. Проверим свойства 1.–3. из определения мартингала:

- 1. $X_t \in \mathscr{F}_t \mid \mathcal{B}(\mathbb{R})$ по определению условного матожидания;
- 2. $\mathsf{E} |X_t| < \infty$, так как

$$\mathsf{E}\left(\left|\mathsf{E}\left(\xi\,|\,\mathscr{F}_{t}\right)\right|\right)\,\leqslant\,\,\mathsf{E}\left(\mathsf{E}\left(\left|\xi\right|\,|\,\mathscr{F}_{t}\right)\right)=\mathsf{E}|\xi|<\infty;$$

3. $\mathsf{E}\left(X_t\,|\,\mathscr{F}_s\right)=X_s$ по телескопическому свойству условного матожидания

$$\mathsf{E}\left(\mathsf{E}\left(\xi\,|\,\mathscr{A}_{1}\right)\,\big|\,\mathscr{A}_{2}\right)\,=\,\mathsf{E}\left(\xi\,|\,\mathscr{A}_{2}\right)\;\,\forall\,\mathscr{A}_{2}\subset\mathscr{A}_{1}\subset\mathscr{F},$$

примененному к $\mathscr{A}_2 = \mathscr{F}_s$, $\mathscr{A}_1 = \mathscr{F}_t$.

Пример 8.4. Пусть $\xi_1, \, \xi_2, \, \dots -$ независимые одинаково распределенные величины, $\mathsf{E}\xi_k=1 \ \, \forall k\in\mathbb{N}.$ Построим по ним процесс $X_n\coloneqq \xi_1\cdot\ldots\cdot\xi_n.$ Тогда $(X_n)_{n\geqslant 1}$ — мартингал относительно естественной фильтрации (как и в примере 8.2, в этом случае $\mathscr{F}_n = \sigma \, \{ \xi_1, \, \ldots, \, \xi_n \}).$

Доказательство. Проверим свойства 1.—3. из определения мартингала:

- 1. $X_t \in \mathscr{F}_t \mid \mathcal{B}(\mathbb{R})$ по определению \mathscr{F}_t ;
- 2. $E|X_t| = 1 < \infty$;
- 3. $\mathsf{E}\left(\xi_{1}\cdot\ldots\cdot\xi_{t}\,|\,\mathscr{F}_{s}\right)=\mathsf{E}\left(\xi_{1}\cdot\ldots\cdot\xi_{s}\cdot\ldots\cdot\xi_{t}\,|\,\mathscr{F}_{s}\right)=\xi_{1}\cdot\ldots\cdot\xi_{s}\,\mathsf{E}\left(\xi_{s+1}\cdot\ldots\cdot\xi_{t}\right)=\xi_{1}\cdot\ldots\cdot\xi_{s}=X_{s}.$

8.2Разложение Дуба

Определение 8.2. Процесс $A = \{A_n, n \in \mathbb{Z}_+\}$ называется *предсказуемым*, если A_n измерим относительно $\mathscr{F}_{n-1}\ orall n\geqslant 0$. Здесь полагаем $\mathscr{F}_{-1}:=\{\emptyset,\,\Omega\}.$

Теорема 8.1 (Дуба). Пусть $X=\{X_n,\,n\in\mathbb{Z}_+\}-$ случайный процесс такой, что $\mathsf{E}\left|X_{n}\right|<\infty\ \forall n,\left(\mathscr{F}_{n}\right)_{n\in\mathbb{Z}_{+}}-$ фильтрация, причем $X_{n}\in\mathscr{F}_{n}\left|\mathcal{B}\left(\mathbb{R}\right)\right.\ \forall n\in\mathbb{R}$ $\in \mathbb{Z}_+$. Tor ∂a

$$X = M + A$$
.

то есть

$$X_n = M_n + A_n \ \forall n \in \mathbb{Z}_+,$$

 $e \partial e$

$$M=(M_n)_{n\in\mathbb{Z}_+}-$$
 мартингал относительно фильтрации $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$, $A=(A_n)_{n\in\mathbb{Z}_+}-$ предсказуемый процесс такой, что $A_0\equiv 0$.

Это представление процесса X в виде суммы мартингала и предсказуемого процесса однозначно почти наверное.

Доказательство. Теорема утверждает существование и единственность (почти наверное) такого разложения. Сначала предположим, что существование доказано, и выведем единственность.

Положим $\Delta X_n \coloneqq X_n - X_{n-1}$. Тогда $\Delta X_n = \Delta M_n + \Delta A_n$, то есть $\Delta A_n =$ $=\Delta X_n-\Delta M_n$. Из предсказуемости процесса A получаем, что

$$\Delta A_n \; = \; \mathsf{E} \left(\Delta A_n \, | \, \mathscr{F}_{n-1} \right) \; = \; \mathsf{E} \left(\Delta X_n \, | \, \mathscr{F}_{n-1} \right) - \mathsf{E} \left(\Delta M_n \, | \, \mathscr{F}_{n-1} \right),$$

$$\mathsf{E}(\Delta M_n | \mathscr{F}_{n-1}) = \mathsf{E}(M_n - M_{n-1} | \mathscr{F}_{n-1}) = \mathsf{E}(M_n | \mathscr{F}_{n-1}) - M_{n-1} = 0$$

по свойству 3. из определения мартингала. Таким образом, получаем, что

$$\Delta A_n = \mathsf{E}\left(\Delta X_n \mid \mathscr{F}_{n-1}\right),$$

из чего вытекает, что

$$A_n = \sum_{k=1}^n \mathsf{E}\left(\Delta X_k \,|\, \mathscr{F}_{k-1}\right),\,$$

то есть A_n определяется по X однозначно (почти наверное, как и вообще равенство случайных величин); тогда и $M_n = X_n - A_n$ тоже определяется однозначно по X, то есть разложение единственно.

Теперь докажем существование. Рассуждение выше подсказывает нам явный вид A_n . Положим

$$A_n = \sum_{k=1}^n \mathsf{E}\left(\Delta X_k \,|\, \mathscr{F}_{k-1}\right), \ n \geqslant 1; \ A_0 \equiv 0.$$

Тогда $(A_n)_{n\in\mathbb{Z}_+}$ — предсказуемый процесс. Тогда

$$M_n := X_n - A_n \Rightarrow \Delta M_n := \Delta X_n - \Delta A_n = \Delta X_n - \mathsf{E} \left(\Delta X_n \mid \mathscr{F}_{n-1} \right),$$

из чего получаем, что

$$\mathsf{E}\left(\Delta M_n \,|\, \mathscr{F}_{n-1}\right) \,=\, 0,$$

то есть $(M_n)_{n\in\mathbb{Z}_+}$ — мартингал. Теорема доказана.

Замечание. Несмотря на то что все равенства случайных величин в теореме 8.1 считаются равенствами почти наверное, в формулировке теоремы A_0 полагается тождественно равным нулю. Это делается, чтобы обеспечить измеримость A_0 относительно антидискретной σ -алгебры \mathscr{F}_{-1} . Если договориться, что все σ -алгебры пополняются классом нулевых событий, то можно считать, что $A_0=0$ почти наверное.

При этом если $(X_t, \mathscr{F}_t)_{t \in T}$ — мартингал, то и $(X_t, \bar{\mathscr{F}}_t)_{t \in T}$ — мартингал, где $\bar{\mathscr{F}}_t$ — σ -алгебра \mathscr{F}_t , пополненная классом нулевых событий.

8.3 Формула Танаки

Пемма 8.2. Пусть $(X_n,\mathscr{F}_n)_{n\in\mathbb{Z}_+}$ —мартингал, $h:\mathbb{R}\to\mathbb{R}$ —выпуклая вниз функция. Тогда

$$\left(h\left(X_{n}\right),\,\mathscr{F}_{n}\right)_{n\in\mathbb{Z}_{+}}$$
 — субмартингал.

Доказательство. Воспользуемся неравенством Йенсена для условного матожидания:

$$\mathsf{E}\left(h\left(X_{n}\right)\,\big|\,\mathscr{F}_{n-1}\right)\,\geqslant\,h\left(\mathsf{E}\left(X_{n}\,|\,\mathscr{F}_{n-1}\right)\right)\,=\,h\left(X_{n-1}\right).$$

Пример 8.5 (формула Танаки). Пусть $\varepsilon_1, \, \varepsilon_2, \, \ldots$ — независимые одинаково распределенные случайные величины такие, что $\mathsf{P}\,(\varepsilon_k=-1)=\mathsf{P}\,(\varepsilon_k=1)=1/2$. Построим по ним процесс $S_n:=\varepsilon_1+\ldots+\varepsilon_n, \, n\in\mathbb{N}, \, S_0:=0$. Тогда из примера 8.1 следует, что $(S_n)_{n\in\mathbb{Z}_+}$ — мартингал, а из леммы 8.2 следует, что $(|S_n|)_{n\in\mathbb{Z}_+}$ — субмартингал относительно фильтрации, состоящей из σ -алгебр вида $\mathscr{F}_n=\sigma\,\{\varepsilon_1,\ldots,\,\varepsilon_n\}$.

Найдем разложение Дуба для этого субмартингала, подходящего под условия теоремы 8.1.

Знаем из 8.1, что

$$A_n = \sum_{k=1}^n \mathsf{E}\left(\Delta X_k \,|\, \mathscr{F}_{k-1}\right), \ X_k = |S_k|,$$

то есть

$$A_n \ = \ \sum_{k=1}^n \mathsf{E}\left(\left|S_k\right| - \left|S_{k-1}\right| \, \middle| \, \mathscr{F}_{k-1}\right) \ = \ \sum_{k=1}^n \left(\mathsf{E}\left(\left|S_k\right| \, \middle| \, \mathscr{F}_{k-1}\right) - \left|S_{k-1}\right|\right).$$

Рассмотрим первое слагаемое члена суммы, зная, что S_{k-1} \mathscr{F}_{k-1} -измеримо, что ε_k независимо с \mathscr{F}_{k-1} и что $\mathsf{E}\varepsilon_k=0,\,|\varepsilon|=1$ почти наверное:

$$\begin{split} \mathsf{E}\left(|S_{k}|\,\big|\,\mathscr{F}_{k-1}\right) &= \mathsf{E}\left(|S_{k-1}+\varepsilon_{k}|\,\big|\,\mathscr{F}_{k-1}\right) = \\ &= \mathsf{E}\left(|S_{k-1}+\varepsilon_{k}|\,\mathbb{I}\,\{S_{k-1}>0\} + |S_{k-1}+\varepsilon_{k}|\,\mathbb{I}\,\{S_{k-1}=0\} + \right. \\ &+ |S_{k-1}+\varepsilon_{k}|\,\mathbb{I}\,\{S_{k-1}<0\}\,\,\big|\,\mathscr{F}_{k-1}\right) = \mathsf{E}\left((S_{k-1}+\varepsilon_{k})\,\,\mathbb{I}\,\{S_{k-1}>0\}\,\,\big|\,\mathscr{F}_{k-1}\right) + \\ &+ \mathsf{E}\left(|\varepsilon_{k}|\,\mathbb{I}\,\{S_{k-1}=0\}\,\,\big|\,\mathscr{F}_{k-1}\right) - \mathsf{E}\left((S_{k-1}+\varepsilon_{k})\,\,\mathbb{I}\,\{S_{k-1}<0\}\,\,\big|\,\mathscr{F}_{k-1}\right) = \\ &= \mathbb{I}\,\{S_{k-1}>0\}\,\mathsf{E}\left((S_{k-1}+\varepsilon_{k})\,\,\big|\,\mathscr{F}_{k-1}\right) + \mathbb{I}\,\{S_{k-1}=0\} - \\ &- \mathbb{I}\,\{S_{k-1}<0\}\,\mathsf{E}\left((S_{k-1}+\varepsilon_{k})\,\,\big|\,\mathscr{F}_{k-1}\right) = \\ &= S_{k-1}\,\mathbb{I}\,\{S_{k-1}>0\} + \mathbb{I}\,\{S_{k-1}=0\} - S_{k-1}\,\mathbb{I}\,\{S_{k-1}<0\}\,. \end{split}$$

Итак, получили, что

$$\mathsf{E}\left(\left|S_{k}\right|\,\middle|\,\mathscr{F}_{k-1}\right) = S_{k-1}\,\mathbb{I}\left\{S_{k-1} > 0\right\} \,+\, \mathbb{I}\left\{S_{k-1} = 0\right\} \,-\, S_{k-1}\,\mathbb{I}\left\{S_{k-1} < 0\right\}.$$

Заметим, что

$$|S_{k-1}| = S_{k-1} \mathbb{I} \{S_{k-1} > 0\} - S_{k-1} \mathbb{I} \{S_{k-1} < 0\}.$$

Из двух равенств выше получаем, что

$$\mathsf{E}\left(|S_k| \, \big| \, \mathscr{F}_{k-1}\right) - |S_{k-1}| \, = \, \mathbb{I}\left\{S_{k-1} = 0\right\},$$

то есть

$$A_n = \sum_{k=1}^n \mathbb{I} \{ S_{k-1} = 0 \}.$$

Рассмотрим M_n (напомним, что $S_0 \equiv 0$):

$$M_{n} = X_{n} - A_{n} = \sum_{k=1}^{n} (|S_{k}| - |S_{k-1}| - \mathbb{I} \{S_{k-1} = 0\}) =$$

$$= \sum_{k=1}^{n} (|S_{k-1} + \varepsilon_{k}| - |S_{k-1}| - \mathbb{I} \{S_{k-1} = 0\}) =$$

$$= \sum_{k=1}^{n} (\varepsilon_{k} \mathbb{I} \{S_{k-1} > 0\} - \varepsilon_{k} \mathbb{I} \{S_{k-1} < 0\} + |\varepsilon_{k}| \mathbb{I} \{S_{k-1} = 0\} - \mathbb{I} \{S_{k-1} = 0\}) =$$

$$= \sum_{k=1}^{n} (\varepsilon_{k} \mathbb{I} \{S_{k-1} > 0\} - \varepsilon_{k} \mathbb{I} \{S_{k-1} < 0\}) = \sum_{k=1}^{n} \varepsilon_{k} \operatorname{sign} S_{k-1},$$

где

$$sign x := \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1, & x < 0. \end{cases}$$

Таким образом, получили, что

$$\underbrace{|S_n|}_{X_n} = \underbrace{\sum_{k=1}^n \mathbb{I}\{S_{k-1} = 0\}}_{A_n} + \underbrace{\sum_{k=1}^n \Delta S_k \operatorname{sign} S_{k-1}}_{M_n}.$$

Это разложение Дуба и называется формулой Танаки.

Следствие. Обозначим через $L_n(0)$ число нулей последовательности $(S_k)_{0 \leqslant k < n}$. Из формулы выше явно видно, что $L_n(0) = A_n$. Верно следующее утверждение:

$$\mathsf{EL}_n(0) \sim \sqrt{\frac{2}{\pi} n}, \ n \to \infty.$$

Доказательство. Так как $\mathsf{E} M_n=0\ \forall n,$ то $\mathsf{E} A_n=\mathsf{E}\,|S_n|$. Поскольку $S_n==\varepsilon_1+\ldots+\varepsilon_n,$ то

$$\frac{S_n}{\sqrt{n}} \xrightarrow{\text{law}} Y \sim \mathcal{N}(0, 1), \quad n \to \infty$$

по центральной предельной теореме. Тогда

$$\frac{|S_n|}{\sqrt{n}} \xrightarrow{\text{law}} |Y|.$$

Как было показано в теореме 3.3,

$$\xi_n \xrightarrow{\text{law}} \xi \not\Rightarrow \mathsf{E}\xi_n \to \mathsf{E}\xi, \ n \to \infty.$$

Согласно теоремам 3.4 и 3.5, для того чтобы показать сходимость матожиданий, достаточно найти $\delta>0$ такое, что

$$\sup_{n} \mathsf{E} \left| \xi_{n} \right|^{1+\delta} < \infty.$$

Возьмем $\delta=1$. Тогда

$$\mathsf{E}\left(\frac{S_n}{\sqrt{n}}\right)^2 = \mathsf{E}\frac{S_n^2}{n} = \frac{\mathsf{D}S_n}{n} = \frac{n\mathsf{D}\varepsilon_1}{n} = 1 < \infty.$$

Тогда

$$\mathsf{E}\,\frac{|S_n|}{\sqrt{n}}\,\to\,\mathsf{E}\,|Y|=\sqrt{\frac{2}{\pi}},\ n\to\infty,$$

то есть

$$\mathsf{EL}_n(0) \to \sqrt{\frac{2}{\pi} n},$$

что и требовалось доказать.

8.4 Теорема Дуба об остановке

Теорема 8.3. Пусть X_n измерима относительно \mathscr{F}_n $\forall n, \ (\mathscr{F}_n)_{n \in \mathbb{Z}_+} - \phi$ ильтрация, $\mathsf{E} \, |X_n| < \infty \, \forall n.$ Тогда следующие утверждения эквивалентни:

- 1. (X_n, \mathscr{F}_n) мартингал;
- 2. \forall марковских моментов $0\leqslant \sigma\leqslant \tau\leqslant m,$ где $m\in\mathbb{N}$ фиксированное число,

$$\mathsf{E}\left(X_{\tau}\,\big|\,\mathscr{F}_{\sigma}\right) \,=\, X_{\sigma}.$$

Доказатель ство. Докажем $1. \Rightarrow 2.$

Пусть $X = \{X_n, n \in \mathbb{Z}_+\}$ — мартингал. Заметим, что

$$\mathsf{E} \, |X_\tau| \, = \, \mathsf{E} \sum_{k=0}^m |X_\tau| \, \mathbb{I} \, \{\tau = k\} \, \leqslant \, \sum_{k=0}^m \mathsf{E} \, |X_k| \, < \, \infty,$$

поэтому вообще целесообразно говорить о матожидании из утверждения 2. Для того чтобы доказать, что $\mathsf{E}\left(X_{\tau}\,\middle|\,\mathscr{F}_{\sigma}\right)=X_{\sigma},$ необходимо и достаточно проверить, что $X_{\sigma}-\mathscr{F}_{\sigma}$ -измеримая случайная величина, а также что $\forall A\in\mathscr{F}_{\sigma}$

$$\mathsf{E} X_{\tau} \mathbb{I} (A) = \mathsf{E} X_{\sigma} \mathbb{I} (A) \,,$$

то есть что выполнено интегральное свойство.

Покажем \mathscr{F}_{σ} -измеримость X_{σ} . Для этого по определению \mathscr{F}_{σ} нужно показать, что \forall борелевских B и $\forall k$

$${X_{\sigma} \in B} \cap {\sigma \leqslant k} \in \mathscr{F}_k.$$

Заметим, что

$$\{X_{\sigma} \in B\} \cap \{\sigma \leqslant k\} = \bigcup_{r=0}^{m} \{X_{\sigma} \in B\} \cap \{\sigma = r\} \cap \{\sigma \leqslant k\} =$$

$$= \bigcup_{r=0}^{\min(m, k)} \{X_{r} \in B\} \cap \{\sigma = r\}.$$

При этом $\{X_r\in B\}\in \mathscr{F}_r$ и $\{\sigma=r\}\in \mathscr{F}_r$, поскольку σ — марковский момент. Тогда, поскольку $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$ — фильтрация,

$${X_r \in B} \cap {\sigma = r} \in \mathscr{F}_r \subset \mathscr{F}_{\min(m, k)} \subset \mathscr{F}_k.$$

Измеримость доказана.

Проверим **интегральное свойство**. Напомним, что для этого нужно доказать равенство

$$\mathsf{E} X_{\tau} \mathbb{I}(A) = \mathsf{E} X_{\sigma} \mathbb{I}(A)$$

 $\forall A \in \mathscr{F}_{\sigma}$. Сначала заметим, что, поскольку $\sigma \leqslant \tau$ почти наверное,

$$\mathbb{I}\{\sigma \leqslant \tau\} \stackrel{\text{\tiny II.H.}}{=} 1.$$

Тогда

$$\mathsf{E} X_\sigma \mathbb{I}_A \ = \ \mathsf{E} X_\sigma \, \mathbb{I}_A \, \mathbb{I} \{ \sigma \leqslant \tau \} \ = \ \sum_{k=0}^m \mathsf{E} X_\sigma \, \mathbb{I}_A \, \mathbb{I} \{ \sigma = k \} \, \mathbb{I} \{ \sigma \leqslant \tau \}.$$

Обозначим $\mathbb{I}_A \mathbb{I} \{ \sigma = k \} = \mathbb{I}_{A \cap \{ \sigma = k \}} = \mathbb{I}_{B_k}$. Тогда

$$\begin{split} \sum_{k=0}^m \mathsf{E} X_\sigma \, \mathbb{I}_A \, \mathbb{I}\{\sigma = k\} \, \mathbb{I}\{\sigma \leqslant \tau\} \; &= \; \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k\} \; = \\ &= \; \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \left(\mathbb{I}\{\tau = k\} + \mathbb{I}\{\tau \geqslant k+1\} \right) \; = \\ &= \; \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\}. \end{split}$$

Поскольку X — мартингал, то

$$\mathsf{E}\left(X_{k+1}\,\big|\,\mathscr{F}_k\right) \,=\, X_k.$$

Тогда продолжим цепочку равенств:

$$\begin{split} \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\} \, = \\ &= \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} \left[\mathsf{E} \left(X_{k+1} \, \big| \, \mathscr{F}_k \right) \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\} \right]. \end{split}$$

Поскольку $\{ \tau \geqslant k+1 \} = \Omega \setminus \{ \tau \leqslant k \} \in \mathscr{F}_k$, так как τ — марковский момент, и $B_k \in \mathscr{F}_k$, то

$$\begin{split} \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} \left[\mathsf{E} \left(X_{k+1} \, \big| \, \mathscr{F}_k \right) \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\} \right] \, = \\ &= \sum_{k=0}^m \mathsf{E} X_\tau \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} \left[\mathsf{E} \left(X_{k+1} \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\} \, \big| \, \mathscr{F}_k \right) \right] \, = \\ &= \sum_{k=0}^m \mathsf{E} X_\tau \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} + \sum_{k=0}^m \mathsf{E} \left(X_{k+1} \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\} \right). \end{split}$$

Таким образом, получили, что

$$\sum_{k=0}^{m} \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k\} \, = \, \sum_{k=0}^{m} \mathsf{E} X_\tau \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau = k\} \, + \, \sum_{k=0}^{m} \mathsf{E} X_{k+1} \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k+1\}.$$

Продолжая далее, расписывая $\{\tau \geqslant k+1\} = \{\tau = k+1\} + \{\tau \geqslant k+2\}$ и так далее, получаем, что

$$\sum_{k=0}^{m} \mathsf{E} X_k \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau \geqslant k\} \, = \,$$

$$\begin{split} &= \sum_{k=0}^m \mathsf{E} X_k \, \mathbb{I}_{B_k} \left(\mathbb{I}\{\tau=k\} + \mathbb{I}\{\tau=k+1\} + \ldots + \mathbb{I}\{\tau=m\} \right) \, = \\ &= \sum_{k=0}^m \mathsf{E} X_\tau \, \mathbb{I}_{B_k} \, \mathbb{I}\{\tau\geqslant k\} \, = \sum_{k=0}^m \mathsf{E} X_\tau \, \mathbb{I}_A \mathbb{I}\{\sigma=k\} \, \mathbb{I}\{\tau\geqslant k\} \, = \\ &= \, \mathsf{E} X_\tau \, \mathbb{I}_A \, \mathbb{I}\{\tau\geqslant \sigma\} \, = \, \mathsf{E} X_\tau \, \mathbb{I}_A, \end{split}$$

поскольку, как указывалось выше, $\mathbb{I}\{\tau\geqslant\sigma\}=1$. Таким образом, интегральное свойство доказано, а значит, доказано $1.\Rightarrow 2.$ Докажем $1.\Leftarrow 2.$

Пусть известно, что \forall моментов остановки $\sigma \leqslant \tau \leqslant m, m \in \mathbb{N}$,

$$\mathsf{E}\left(X_{\tau}\,\big|\,\mathscr{F}_{\sigma}\right) = X_{\sigma},$$

и нужно доказать, что $(X_n)_{n\in\mathbb{Z}_+}$ — мартингал относительно фильтрации $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$. Проверим свойство 3.: возьмем $i< j,\,\sigma\equiv i,\,\tau\equiv j$. Тогда $\mathscr{F}_\sigma\equiv\mathscr{F}_i,\,\mathscr{F}_\sigma\equiv\mathscr{F}_i,\,$ а значит, $(X_n)_{n\in\mathbb{Z}_+}$ — мартингал. Теорема доказана.

Следствие. Пусть выполнены условия теоремы 8.3. Тогда для любого ограниченного марковского момента $\tau \leqslant m \in \mathbb{N}$

$$\mathsf{E} X_{\tau} = \mathsf{E} X_0$$
,

поскольку 0 — ограниченный марковский момент, $0 \leqslant \tau$.

Следствие. $\mathit{Hycmb} \left| X_{\min(\tau,\,n)} \right| \leqslant C \; \forall n \geqslant 0. \; \mathit{Torda}$

$$\mathsf{E} X_{\tau} = \mathsf{E} X_0$$
.

Доказательство. Заметим, что $\tau_n := \min(\tau, n)$ — это ограниченный марковский момент. Значит, для него и нуля применима теорема 8.3 и, следовательно.

$$\mathsf{E} X_{\tau_n} \ = \ \mathsf{E} X_0.$$

Заметим также, что $X_{\tau_n} \xrightarrow{\text{п.н.}} X_{\tau}$, поскольку для каждой реализации процесса (то есть для каждой $\omega \in \Omega$) найдется достаточно большое n такое, что $n > \tau(\omega)$ и что, следовательно, $\min \left(n, \tau(\omega)\right) = \tau(\omega)$. При этом по условию $\left|X_{\min(\tau, n)}\right| \leqslant C \ \forall n \geqslant 0$. Поэтому применима теорема Лебега о мажорируемой сходимости, по которой

$$\mathsf{E} X_0 = \mathsf{E} X_{\tau_n} \to \mathsf{E} X_{\tau}, \ n \to \infty,$$

что и требовалось доказать.

Теорема 8.4 (первое тождество Вальда). Пусть ξ_1, ξ_2, \ldots — независимые одинаково распределенные случайные величины, $\mathsf{E}\,|\xi_1| < \infty, \, \tau$ — марковский момент относительно естественной фильтрации $\mathscr{F}_n = \sigma\,\{\xi_1, \ldots, \, \xi_n\}, \, \mathsf{E} \tau < \infty$. Тогда

$$\mathsf{E}\left(\sum_{i=1}^\tau \xi_i\right) \; = \; \mathsf{E}\xi_1 \mathsf{E}\tau.$$

Доказательство. Несложно видеть, что

$$\sum_{i=1}^{\tau} \xi_i = \sum_{k=1}^{\infty} \xi_k \mathbb{I}\{\tau \geqslant k\}.$$

Заметим, что

$$\{\tau \geqslant k\} = \Omega \setminus \{\tau \leqslant k - 1\} \in \mathscr{F}_{n-1}.$$

Поэтому, поскольку ξ_i — независимые случайные величины, ξ_k независима с $\mathbb{I}\{\tau\geqslant k\}$. Тогда

$$\begin{split} \mathsf{E}\left(\sum_{i=1}^{\tau}\xi_{i}\right) &= \mathsf{E}\sum_{k=1}^{\infty}\xi_{k}\mathbb{I}\{\tau\geqslant k\} = \sum_{k=1}^{\infty}\mathsf{E}\xi_{k}\mathbb{I}\{\tau\geqslant k\} = \sum_{k=1}^{\infty}\mathsf{E}\xi_{k}\mathsf{E}\mathbb{I}\{\tau\geqslant k\} = \\ &= \mathsf{E}\xi_{1}\sum_{k=1}^{\infty}\mathsf{E}\mathbb{I}\{\tau\geqslant k\} = \mathsf{E}\xi_{1}\sum_{k=1}^{\infty}\mathsf{P}\left(\tau\geqslant k\right). \end{split}$$

Заметим, что

$$\sum_{k=1}^{\infty} \mathsf{P}\left(\tau \geqslant k\right) \, = \, \sum_{p=1}^{\infty} p \, \mathbb{I}\{\tau = p\},$$

то есть

$$\mathsf{E}\left(\sum_{i=1}^{\tau} \xi_i\right) \ = \ \mathsf{E}\xi_1 \mathsf{E}\tau,$$

что и требовалось доказать.

9 Лекция от 12.04.17 Марковские процессы

9.1 Задача о разорении игрока

Пример 9.1 (задача о разорении игрока). Пусть $\xi_1, \, \xi_2, \, \ldots$ — независимые одинаково распределенные случайные величины, $\mathsf{P}\,(\xi_1=1)=p,$ $\mathsf{P}\,(\xi_1=-1)=1-p=:q.$ Возьмем целые числа $x,\,a,\,b$ такие, что $a < b,\,x \in (a,\,b).$ Положим

$$S_0 := x,$$

$$S_n := x + \xi_1 + \ldots + \xi_n.$$

Сразу отметим, что $(S_n,\mathscr{F}_n)_{n\in\mathbb{Z}_+}$ —мартингал, поскольку это процесс с независимыми приращениями и постоянным матожиданием. Введем также

$$\tau_a := \inf\{n : S_n = a\},$$

$$\tau_b := \inf\{n : S_n = b\},$$

$$\tau := \inf\{n : S_n \notin (a, b)\}.$$

Заметим, что все они являются марковскими моментами относительно естественной фильтрации процесса $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$, где $\mathscr{F}_n:=\sigma\{\xi_1,\ldots,\xi_n\},\ n\geqslant 1$, а $\mathscr{F}_0:=\{\emptyset,\Omega\}$. Также отметим, что τ — это момент остановки (это следует из обязательной задачи 1.1).

Задача состоит в том, чтобы найти $P(\tau_a < \tau_b)$.

Рассмотрим сначала отдельно (являющийся особым) случай p=q=1/2. Заметим, что

$$|S_{\tau_n}| := \left| S_{\min(\tau, n)} \right| \leqslant \max(|a|, |b|),$$

поскольку либо момент τ первого выхода на границу интервала (a, b) наступил до n, и тогда неравенство верно, либо не наступил, тогда верно даже строгое неравенство (потому что все еще находимся внутри интервала). Это означает, что можно применить следствие 2 из теоремы 8.3 и сказать, что

$$\mathsf{E} S_{\tau} = \mathsf{E} S_0 = x.$$

При этом

$$\mathsf{E} S_{\tau} = a \, \mathsf{P} \left(S_{\tau} = a \right) + b \, \mathsf{P} \left(S_{\tau} = b \right).$$

Поскольку τ — момент (первого) выхода на границу интервала (a,b), то $\mathsf{P}(S_{\tau}=a)+\mathsf{P}(S_{\tau}=b)=1.$ Таким образом,

$$x = a P(S_{\tau} = a) + b (1 - P(S_{\tau} = a)),$$

то есть

$$P(\tau_a < \tau_b) = P(S_\tau = a) = \frac{b - x}{b - a}.$$

Теперь рассмотрим случай $p \neq q$.

Положим

$$X_n := \left(\frac{q}{p}\right)^{S_n}, \ n \in \mathbb{Z}_+.$$

Тогда $(X_n,\mathscr{F}_n)_{n\in\mathbb{Z}_+}$ — мартингал. Действительно, проверим три свойства из определения мартингала:

- 1. X_n измерим относительно \mathscr{F}_n ;
- 2. $\mathsf{E}|X_n|<\infty$, так как

$$\mathsf{E}|X_n| = \sum_{k=1}^{x+n} \left| \frac{q}{p} \right|^k \mathsf{P}\left(S_n = k\right);$$

3.

$$\begin{split} \mathsf{E}\left(X_{n+1} \,\middle|\, \mathscr{F}_n\right) &= \mathsf{E}\left(\left(\frac{q}{p}\right)^{\xi_1 + \ldots + \xi_n + \xi_{n+1}} \,\middle|\, \mathscr{F}_n\right) = \left(\frac{q}{p}\right)^{S_n} \mathsf{E}\left(\frac{q}{p}\right)^{\xi_{n+1}} = \\ &= \left(\frac{q}{p}\right)^{S_n} \left(p\frac{q}{p} + q\frac{p}{q}\right) = \left(\frac{q}{p}\right)^{S_n} = X_n. \end{split}$$

Таким образом, показали, что это мартингал. При этом

$$|X_n| \le \max\left(\left(\frac{q}{p}\right)^a, \left(\frac{q}{p}\right)^b\right).$$

Тогда, как и выше, применимо следствие 2 из теоремы 8.3 и, следовательно,

$$\mathsf{E} X_\tau \ = \ \mathsf{E} X_0 \ = \ \left(\frac{q}{p}\right)^x.$$

Вместе с этим

$$\mathsf{E}X_{\tau} = \left(\frac{q}{p}\right)^{a} \mathsf{P}\left(S_{\tau} = a\right) + \left(\frac{q}{p}\right)^{b} \mathsf{P}\left(S_{\tau} = b\right)$$

И

$$P(S_{\tau} = a) + P(S_{\tau} = b) = 1,$$

то есть

$$\left(\frac{q}{p}\right)^a \mathsf{P}\left(S_\tau = a\right) + \left(\frac{q}{p}\right)^b \left(1 - \mathsf{P}\left(S_\tau = a\right)\right) \; = \; \left(\frac{q}{p}\right)^x,$$

или

$$\mathsf{P}\left(\tau_{a} < \tau_{b}\right) \, = \, \mathsf{P}\left(S_{\tau} = a\right) \, = \, \frac{\left(\frac{q}{p}\right)^{b} - \left(\frac{q}{p}\right)^{x}}{\left(\frac{q}{p}\right)^{b} - \left(\frac{q}{p}\right)^{a}} \, .$$

9.2 Марковские процессы

Определение 9.1. Введем σ -алгебру $\mathscr{F}_{\geqslant s} = \sigma\{X_u, u \geqslant s, u \in T\}$. Тогда процесс $X = \{X_t, t \in T\}$, согласованный с фильтрацией $(\mathscr{F}_t)_{t \in T}$, называется марковским процессом, если $\forall s \in T$ и $\forall B \in \mathscr{F}_{\geqslant s}$

$$P(B \mid \mathscr{F}_s) = P(B \mid X_s).$$

Замечание (эквивалентное определение 1). Пусть $X_t:\Omega\to S_t$, где $(S_t,\mathscr{B}_t)_{t\in T}$ — семейство борелевских пространств. Тогда процесс $X==\{X_t,\,t\in T\}$ является марковским процессом тогда и только тогда, когда для любых $s\leqslant t,\,s,\,t\in T$ и для любой \mathscr{B}_t —измеримой функции $f:S_t\to\mathbb{R}$

$$\mathsf{E}\left(f\left(X_{t}\right)\,\big|\,\mathscr{F}_{s}\right)\,=\,\mathsf{E}\left(f\left(X_{t}\right)\,\big|\,X_{s}\right).$$

Доказательства на лекции не было, на экзамене его знать не обязательно; его можно почитать в [1], стр. 184. \Box

Замечание (эквивалентное определение 2). Марковость относительно своей естественной фильтрации процесса $X=\{X_t,\,t\in T\}$, принимающего при каждом $t\in T$ значения в борелевском пространстве $(S_t,\,\mathcal{B}_t)$, равносильна следующему свойству: для любого $m\geqslant 1$ и всех $s_1<\ldots< s_m< s\leqslant t$, где $s,\,t$ и все s_i лежат в T, а также для произвольной ограниченной \mathcal{B}_t -измеримой функции f

$$\mathsf{E}\left(f\left(X_{t}\right) \mid X_{s_{1}}, \ldots, X_{s_{m}}, X_{s}\right) = \mathsf{E}\left(f\left(X_{t}\right) \mid X_{s}\right).$$

Последнее соотношение эквивалентно тому, что для любого множества $B \in \mathscr{B}_t$

$$\mathsf{P}\left(X_{t} \in B \,\big|\, X_{s_{1}},\, \ldots,\, X_{s_{m}},\, X_{s}\right) \,=\, \left(X_{t} \in B \,\big|\, X_{s}\right).$$

Доказательства на лекции не было, на экзамене его знать не обязательно; его можно почитать в [1], стр. 185.

Теорема 9.1. Пусть $X = \{X_t, t \in T\}$, $T \subset \mathbb{R}$ – процесс с независимыми приращениями. Тогда X – марковский процесс относительно своей естественной фильтрации.

Доказатель ство. Будем показывать, что выполнены условия замечания выше. Возьмем $\forall s_1, \ldots, s_m \in T < t \in T \ \forall m \in \mathbb{N}$. Положим $\zeta_1 := X_{s_1}, \zeta_2 := X_{s_2} - X_{s_1}, \ldots, \zeta_m := X_{s_m} - X_{s_{m-1}}, \eta := X_t - X_{s_m}$. Тогда $\sigma \{X_{s_1}, \ldots, X_{s_m}\} = \sigma \{\zeta_1, \ldots, \zeta_m\}$, поскольку связь линейна и невырождена. Следовательно,

$$\mathsf{E}\left(f\left(X_{t}\right) \mid X_{s_{1}}, \ldots, X_{s_{m}}\right) = \mathsf{E}\left(f\left(\zeta_{1} + \ldots + \zeta_{m} + \eta\right) \mid \zeta_{1}, \ldots, \zeta_{m}\right).$$

Обозначим

$$\zeta := (\zeta_1, \dots, \zeta_m); \quad g(\zeta, \eta) := f(\zeta_1 + \dots + \zeta_m + \eta).$$

Тогда ζ и η независимы, g — борелевская функция и

$$\mathsf{E}\left(f\left(\zeta_{1}+\ldots+\zeta_{m}+\eta\right)\mid\zeta_{1}=x_{1},\ldots,\zeta_{m}=x_{m}\right) = \mathsf{E}\left(g\left(\zeta,\eta\right)\mid\zeta=x\right) = \mathsf{E}g\left(\eta,x\right),$$

поскольку ζ и η независимы. Обозначим

$$\varphi\left(\sum_{i=1}^m x_i\right) := \mathsf{E} f\left(\sum_{i=1}^m x_i + \eta\right).$$

Тогда для любой ограниченной измеримой функции $f \varphi$ — измеримая ограниченная функция (это нуждается в дополнительном доказательстве). Таким образом,

$$\mathsf{E}\left(f\left(\zeta_{1}+\ldots+\zeta_{m}+\eta\right)\,\middle|\,\zeta_{1}=x_{1},\,\ldots,\,\zeta_{m}=x_{m}\right)\,=\,\varphi\left(x\right),$$

то есть

$$\mathsf{E}\left(f\left(X_{t}\right) \left| X_{s_{1}}, \ldots, X_{s_{m}}\right) \right. = \left. \varphi\left(\sum_{i=1}^{m} \zeta_{i}\right).\right.$$

Заметим тогда, что по телескопическому свойству условного матожидания

$$\begin{split} &\mathsf{E}\left(f\left(X_{t}\right) \, \left|\, X_{s_{m}}\right) \, = \, \mathsf{E}\left(f\left(X_{t}\right) \, \left|\, \sum_{i=1}^{m} \zeta_{i}\right.\right) \, = \\ &= \, \mathsf{E}\left(\mathsf{E}\left(f\left(X_{t}\right) \, \left|\, \zeta_{1}, \, \ldots, \, \zeta_{m}\right.\right) \, \left|\, \sum_{i=1}^{m} \zeta_{i}\right.\right) \, = \, \mathsf{E}\left(\varphi\left(\sum_{i=1}^{m} \zeta_{i}\right) \, \left|\, \sum_{i=1}^{m} \zeta_{i}\right.\right) \, = \end{split}$$

$$= \varphi\left(\sum_{i=1}^{m} \zeta_{i}\right) = \mathsf{E}\left(f\left(X_{t}\right) \left| X_{s_{1}}, \ldots, X_{s_{m}}\right),\right.$$

то есть

$$\mathsf{E}\left(f\left(X_{t}\right) \,\middle|\, \mathscr{F}_{s}\right) \,=\, \mathsf{E}\left(f\left(X_{t}\right) \,\middle|\, X_{s_{1}},\, \ldots,\, X_{s_{m}}\right) \,=\, \mathsf{E}\left(f\left(X_{t}\right) \,\middle|\, X_{s_{m}}\right),$$

что и требовалось доказать.

Следствие. Случайное блуждание, пуассоновский процесс и винеровский процесс являются марковскими процессами.

Определение 9.2. Пусть $X = \{X_t, t \in T\}$ — марковский процесс, при этом $X_t : \Omega \to S$, S конечно или счетно. Тогда X называется марковской цепью.

 $\it 3$ амечание. В данном случае будем отождествлять каждый элемент $\it S$ с его номером.

Замечание. Если $X_t:\Omega\to S$, где S конечно или счетно, то определение марковости можно переписать в следующей эквивалентной формулировке: $\forall m\ \forall\ s_1<\ldots< s_m< t,\ s_i,\ t\in T,\ \forall\ i_1,\ldots,i_m,\ j\in S$

$$P(X_t = j | X_{s_1} = i_1, ..., X_{s_m} = i_m) = P(X_t = j | X_{s_m} = i_m)$$

при условии, что

$$P(X_{s_1} = i_1, ..., X_{s_m} = i_m) \neq 0.$$

9.3 Свойства переходных вероятностей

Определение 9.3. Пусть $X = \{X_t, t \in T\}$ — марковский процесс, причем $X_t: \Omega \to S$. Обозначним

$$\mathbb{S}_t := \{i : P(X_t = i) \neq 0\}.$$

Введем для $s \leqslant t, i \in \mathbb{S}_s, j \in \mathbb{S}_t$

$$p_{ij}(s, t) := P\left(X_t = j \mid X_s = i\right).$$

Число $p_{ij}(s,t)$ называется nepexodной eeposmhocmью (из i в момент s в j в момент t).

Теорема 9.2 (свойства переходных вероятностей). Если X — марковская цепь, то $\mathbf{p}_{ij}(s,t)$ обладают следующими свойствами:

- 1. $p_{ij}(s, t) \ge 0$;
- $2. \sum_{j \in \mathbb{S}_t} \mathbf{p}_{ij}(s, t) = 1;$
- 3. $p_{ij}(s, s) = \delta_{ij}$;
- 4. $\forall s < u < t \, \mathbf{p}_{ij}(s, t) = \sum_{k \in \mathbb{S}_{-}} \mathbf{p}_{ik}(s, u) \, \mathbf{p}_{kj}(u, t).$

Доказательство. Проверим свойства.

- 1. Следует из определения: вероятности неотрицательны.
- 2. Следует из формулы полной вероятности.
- 3. Следует из определения.
- 4. По определению

$$\begin{split} \mathbf{p}_{ij}(s,\,t) \, &= \, \mathsf{P}\left(X_t = j \,\big|\, X_s = i\right) \, = \, \frac{\mathsf{P}\left(X_t = j,\, X_s = i\right)}{\mathsf{P}\left(X_s = i\right)} \, = \\ &= \, \sum_{k \in S} \frac{\mathsf{P}\left(X_t = j,\, X_u = k,\, X_s = i\right)}{\mathsf{P}\left(X_s = i\right)} \, = \\ &= \, \sum_{k:\, \mathsf{P}(X_u = k,\, X_s = i) \neq 0} \mathsf{P}\left(X_t = j \,\big|\, X_u = k,\, X_s = i\right) \frac{\mathsf{P}\left(X_u = k,\, X_s = i\right)}{\mathsf{P}\left(X_s = i\right)} \end{split}$$

Поскольку X — марковская цепь, то

$$P(X_t = j \mid X_u = k, X_s = i) = P(X_t = j \mid X_u = k).$$

Тогда продолжим цепочку равенств:

$$\begin{split} \sum_{k:\,\mathsf{P}(X_u=k,\,X_s=i)\,\neq\,0} \mathsf{P}\left(X_t=j\,\big|\,X_u=k,\,X_s=i\right) \frac{\mathsf{P}\left(X_u=k,\,X_s=i\right)}{\mathsf{P}\left(X_s=i\right)} \,= \\ &= \sum_{k:\,\mathsf{P}(X_u=k,\,X_s=i)\,\neq\,0} \mathsf{P}\left(X_t=j\,\big|\,X_u=k\right) \frac{\mathsf{P}\left(X_u=k,\,X_s=i\right)}{\mathsf{P}\left(X_s=i\right)} \,= \\ &= \sum_{k\in\mathbb{S}_u} \mathsf{P}\left(X_t=j\,\big|\,X_u=k\right) \mathsf{P}\left(X_u=k\,\big|\,X_s=i\right) = \\ &= \sum_{k\in\mathbb{S}_u} \mathsf{p}_{ik}(s,\,u)\,\mathsf{p}_{kj}(u,\,t). \end{split}$$

Замечание (доопределение переходных вероятностей). В определение 9.3 переходные вероятности $p_{ij}(s,t)$ вводились не для всех возможных состонний $i,j\in S$, а только для $i\in \mathbb{S}_s,\,j\in \mathbb{S}_t$. Доопределим для всех $i,j\in S,\,s<< t\in T$ следующим образом:

- 1. если $i \in \mathbb{S}_s$, $j \notin \mathbb{S}_t$, то $p_{ij}(s, t) := 0$;
- 2. если $i \notin \mathbb{S}_s$, то выбираем и фиксируем произвольное $i_0 = i_0(s) \in \mathbb{S}_s$ и определяем $p_{ij}(s, t) := p_{i_0j}(s, t)$.

В случае s=t по определению полагаем $\mathbf{p}_{ij}(s,\,t)\coloneqq\delta_{ij}.$

Тогда для так определенных переходных вероятностей выполнены свойства 1.—4. из теоремы 9.2.

Теорема 9.3. Конечномерные распределения цепи Маркова $X = \{X_t, t \in T\}$, где $0 \in T \subset [0, \infty)$, однозначно определяются начальным распределением $\mathsf{P}(X_0 = i)$ и переходными вероятностями $\mathsf{p}_{ij}(s,t)$.

Доказательство. Действительно, возьмем $\forall t_1 < \ldots < t_n$ и $i_1, \ldots, i_n \in S$. Тогда запишем

$$\begin{split} \mathsf{P}\left(X_{t_{1}} = i_{1}, \, \dots, \, X_{t_{n}} = i_{n}\right) &= \\ &= \mathsf{P}\left(X_{t_{n}} = i_{n} \, \big| \, X_{t_{1}} = i_{1}, \, \dots, \, X_{t_{n-1}} = i_{n-1}\right) \mathsf{P}\left(X_{t_{1}} = i_{1}, \, \dots, \, X_{t_{n-1}} = i_{n-1}\right) = \\ &= \, \mathsf{P}\left(X_{t_{n}} = i_{n} \, \big| \, X_{t_{n-1}} = i_{n-1}\right) \mathsf{P}\left(X_{t_{1}} = i_{1}, \, \dots, \, X_{t_{n-1}} = i_{n-1}\right), \end{split}$$

поскольку X — марковская цепь. Продолжаем таким же образом далее и получаем, что

$$\begin{split} \mathsf{P}\left(X_{t_{1}} = i_{1}, \, \dots, \, X_{t_{n}}\right) &= \\ &= \, \mathsf{P}\left(X_{t_{n}} = i_{n} \, \middle| \, X_{t_{n-1}} = i_{n-1}\right) \dots \mathsf{P}\left(X_{t_{2}} = i_{2} \, \middle| \, X_{t_{1}} = i_{1}\right) \, \mathsf{P}\left(X_{t_{1}} = i_{1}\right) \, = \\ &= \, \mathsf{P}\left(X_{t_{1}} = i_{1}\right) \, \mathsf{p}_{i_{1}i_{2}}(t_{1}, \, t_{2}) \, \dots \, \mathsf{p}_{i_{n-1}i_{n}}(t_{n-1}, \, t_{n}). \end{split}$$

Вместе с этим

$$\begin{split} \mathsf{P}\left(X_{t_{1}} = i_{1}\right) \, = \, \sum_{k \in S} \mathsf{P}\left(X_{t_{1}} = i_{1} \, \big| \, X_{0} = k\right) \mathsf{P}\left(X_{0} = k\right) \, = \\ & = \, \sum_{k \in S} \mathsf{p}_{ki_{1}}(0, \, t_{1}) \, \mathsf{P}\left(X_{0} = k\right), \end{split}$$

что и требовалось доказать.

10 Лекция от 19.04.17

Свойства марковских процессов

10.1 Компьютерное моделирование марковских цепей с дискретным временем и конечным числом состояний

Определение 10.1. Пусть $n \in \mathbb{Z}_+$. Введем

$$p_{ij}^{(n)} := P(X_{n+1} = j | X_n = i).$$

3амечание. Тогда $\mathbf{p}_{ij}^{(n)} \geqslant 0$, $\sum_{j \in S} \mathbf{p}_{ij}^{(n)} = 1$. Аналогично рассуждению в теореме 9.3 получаем, что

$$P(X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) =$$

$$= P(X_0 = i_0) p_{i_0 i_1}(0, 1) \dots p_{i_{n-1} i_n}(n-1, n) = p_{i_0}(0) p_{i_0 i_1}^{(0)} \dots p_{i_{n-1} i_n}^{(n-1)}$$

то есть вероятность цепочки состояний определяется начальным распределением и переходными вероятностями за единицу времени.

Лемма 10.1. Пусть $X_0, U_0, U_1 \ldots$ независимые случайные величины, $X_0: \Omega \to S, U_i$ равномерно распределены на $[0, 1], i \in \mathbb{Z}_+$. Введем

$$X_{n+1} := h_n(X_n, U_{n+1}), n \in \mathbb{Z}_+.$$

 $\epsilon de\ h_n-$ измеримая функция. Тогда $X_0,\,X_1,\,\ldots-$ цепь Маркова.

Доказательство. Проверим, что

$$\mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{1},\,\ldots,\,X_{n}\right)\,=\,\mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{n}\right)$$

для любой ограниченной измеримой функции f. Заметим, что по определению X_{n+1}

$$\mathsf{E}\left(f\left(X_{n+1}\right) \mid X_{1}, \ldots, X_{n}\right) = \mathsf{E}\left(f\left(h_{n}\left(X_{n}, U_{n+1}\right)\right) \mid X_{1}, \ldots, X_{n}\right).$$

Поскольку для любых независимых случайных величин ξ и η и любой измеримой функции g

$$\mathsf{E}\left(g\left(\xi,\,\eta\right)\,\left|\,\xi=x\right)\right. = \,\mathsf{E}g\left(x,\,\eta\right)$$

и поскольку по построению $X_n=H_n\left(X_0,\,U_0,\,\dots,\,U_n\right)$ независим с $U_{n+1},$ где H_k — измеримая функция, то

$$\mathsf{E}\left(f\left(h_{n}\left(X_{n},\,U_{n+1}\right)\right)\,\big|\,X_{1}=x_{1},\,\ldots,\,X_{n}=x_{n}\right)\,=\,\mathsf{E}f\left(h_{n}\left(x_{n},\,U_{n+1}\right)\right).$$

По той же самой причине

$$\mathsf{E}\left(f\left(h_{n}\left(X_{n},\,U_{n+1}\right)\right)\,\big|\,X_{n}=x_{n}\right)\,=\,\mathsf{E}f\left(h_{n}\left(x_{n},\,U_{n+1}\right)\right).$$

Таким образом, доказали, что

$$\mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{1}=x_{1},\,\ldots,\,X_{n}=x_{n}\right)\,=\,\mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{n}=x_{n}\right),$$

что эквивалентно тому, что

$$\mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{1},\,\ldots,\,X_{n}\right) \,=\, \mathsf{E}\left(f\left(X_{n+1}\right)\,\big|\,X_{n}\right).$$

Лемма доказана.

Пример 10.1 (модель марковской цепи). Как выбрать h_n так, чтобы построенная марковская цепь имела заданное начальное распределение $\mathbf{p}_i(0)$ и заданные переходные вероятности $\mathbf{p}_{ij}^{(n)}$? Для начального распределения $\mathbf{p}_i(0), i \in S, \#S = N$, рассмотрим следую-

Для начального распределения $p_i(0), i \in S, \#S = N$, рассмотрим следующее разбиение отрезка [0, 1]:

$$\Delta_{1} := [0, p_{1}(0)),
\Delta_{2} := [p_{1}(0), p_{1}(0) + p_{2}(0)),
\vdots
\Delta_{N} := [p_{1}(0) + ... + p_{N-1}(0), 1].$$

Определим для $x \in [0, 1]$ f(x) := k, если $x \in \Delta_k$. Положим

$$X_0 := f(U_0).$$

Тогда

$$P(X_0 = i) = P(f(U_0) = i) = P(U_0 \in \Delta_i) = |\Delta_i| = p_i(0).$$

Для переходных вероятностей $\mathbf{p}_{ij}^{(n)}$ рассмотрим аналогичное разбиение отрезка $[0,\,1]$:

$$\begin{split} \Delta_{i1}^{(n)} &:= \left[0, \, \mathbf{p}_{i1}^{(n)}\right), \\ \Delta_{i2}^{(n)} &:= \left[\mathbf{p}_{i1}^{(n)}, \, \mathbf{p}_{i1}^{(n)} + \mathbf{p}_{i2}^{(n)}\right), \\ &\vdots \\ \Delta_{iN}^{(n)} &:= \left[\mathbf{p}_{i1}^{(n)} + \ldots + \mathbf{p}_{i(N-1)}^{(n)}, \, 1\right]. \end{split}$$

Снова определим для $x \in [0, 1]$ $g_n(i, x) := j$, если $x \in \Delta_{ij}^{(n)}$. Положим

$$X_{n+1} := g_n(X_n, U_{n+1}), n \in \mathbb{Z}_+.$$

Тогда по лемме $10.1\ X_0,\ X_1,\ \ldots$ — марковская цепь с пространством состояний S, причем $P(X_0=i)=p_i(0),\ i\in S$, то есть начальное распределение получилось именно таким, каким мы его хотели. То же самое верно и для переходных вероятностей: поскольку по построению X_n независим с U_{n+1} , то

$$\begin{split} \mathsf{P}\left(X_{n+1} = j \, \big| \, X_n = i\right) \, &= \, \mathsf{P}\left(g_n\left(X_n, \, U_{n+1}\right) = j \, \big| \, X_n = i\right) \, = \\ &= \, \mathsf{P}\left(g_n\left(i, \, U_{n+1}\right)\right) \, = \, \mathsf{P}\left(U_{n+1} \in g_n^{-1}\left(i, \, \{j\}\right)\right) \, = \, \left|\Delta_{ij}^{(n)}\right| \, = \, \mathsf{p}_{ij}^{(n)} \end{split}$$

по построению. Таким образом, для любых наперед заданных переходных вероятностей и начального распределения смогли в явном виде предъявить цепь Маркова, соответствующую им.

Замечание. Фактически это означает, что все цепи Маркова с дискретным временем и конечным числом состояний устроены именно так.

Замечание. Для компьютерного моделирования с помощью этого метода подходят только цепи Маркова с относительно малым числом N.

10.2 Предельное поведение переходных вероятностей

Определение 10.2. Марковская цепь $X = \{X_t, t \in T\}$ называется *однородной* (во времени), если

$$p_{ij}(s, t) = p_{ij}(s+h, t+h)$$

$$\forall s < t, \ s, \ t, \ s+h, \ t+h \in T, \ \ \forall i, j \in S.$$

Замечание. Это определение означает именно то, что переходные времени зависят только от длины промежутка времени, за который происходит переход, а не от его начала или конца. Поэтому вместо $\mathbf{p}_{ij}(s,t)$ для однородных цепей будем писать $\mathbf{p}_{ij}(t-s),\,t>s.$

Так что дальше будем рассматривать $p_{ij}(t)$, $i, j \in S$, $t \in T$.

Замечание (переформулировка свойств марковской цепи). Для однородной цепи переформулируем свойства марковской цепи из теоремы 9.2:

- 1. $p_{ij}(t) \geqslant 0$;
- $2. \sum_{j \in S} p_{ij}(t) = 1;$
- 3. $p_{ij}(0) = \delta_{ij};$ 4. $p_{ij}(s+t) = \sum_{k \in S} p_{ik}(s) p_{kj}(t).$

Определение 10.3. Введем для однородной марковской цепи матрицы

$$P(t) := \left(\mathbf{p}_{ij}(t) \right)_{i, j \in S}, \ i, j \in S.$$

Замечание. Переформулируем для этих матриц свойства однородной марковской цепи:

- 1. элементы P(t) неотрицательны;
- 2. $\sum_{i \in S} P_{ij}(t) = 1;$
- 3. P(0) = I;
- 4. P(s+t) = P(s)P(t).

Определение 10.4. Введем вектор-строку $p := (p_1(0), p_2(0), \ldots)$. Тогда, соответственно,

$$P(X_t = j) = p P(t) = \sum_{i \in S} p_i(0) p_{ij}(t).$$

Распределение вероятностей, задаваемое вектором p, называется cmauuoнарным, если

$$p P(t) = p \ \forall t \in T.$$

Теорема 10.2 (эргодичности). Пусть $X = \{X_t, t \geqslant 0\} - o\,\partial$ норо ∂ ная марковская цепь такая, что для некоторого $j_0 \in S$ и некоторых h>0 и $0 < \varepsilon \leqslant 1$

$$p_{ij_0}(h) \geqslant \varepsilon \ \forall i \in S.$$

Тогда для любого вектора µ, задающего начальное распределение цепи, существует и единственнен вектор π , задающий стационарное распределение вероятностей, такой, что для любого начального распределения μ

$$\|\mu P(t) - \pi\|_{l_1} \leqslant 2(1-\varepsilon)^{\left[\frac{t}{h}\right]}.$$

Доказательство. Для доказательства теоремы сформулируем и докажем лемму.

Пемма 10.3. Пусть выполнены условия теоремы и $\sum_i
ho_i = 0$. Тогда

$$\left\|\rho P(t)\right\|_{l_1} = \left\|\rho\right\|_{l_1} (1-\varepsilon)^{\left[\frac{t}{h}\right]}.$$

Доказательство будем проводить по индукции. База индукции: пусть $t \in [0, h)$. Тогда [t/h] = 0. Вместе с этим

$$\|\rho P(t)\|_{l_{1}} = \sum_{j} \left| \left(\rho P(t)\right)_{j} \right| = \sum_{j} \left| \sum_{i} \rho_{i} p_{ij}(t) \right| \leq \sum_{j} \sum_{i} |\rho_{i}| \left| p_{ij}(t) \right| =$$

$$= \sum_{i} \sum_{j} |\rho_{i}| p_{ij}(t) = \sum_{i} |\rho_{i}| \sum_{j} p_{ij}(t) = \sum_{i} |\rho_{i}| = \|\rho\|_{l_{1}} = \|\rho\|_{l_{1}} (1 - \varepsilon)^{\left[\frac{t}{h}\right]},$$

где перемена порядка суммирования возможна в силу абсолютной сходимости ряда. Таким образом, для $t \in [0, h)$ лемма справедлива.

Индуктивный переход: пусть лемма верна для для $t \in [0, mh), m \in \mathbb{N}$; покажем, что она верна для $t \in [mh, (m+1)h)$. При таких t

$$\rho P(t) = \rho P(t-h)P(h).$$

Поскольку

$$\sum_{j} (\rho P(t-h))_{j} = \sum_{j} \sum_{i} \rho_{i} p_{ij}(t-h) = \sum_{i} \rho_{i} \sum_{j} p_{ij}(t-h) = \sum_{i} \rho_{i} = 0,$$

$$\begin{split} \left(\rho P(t-h)P(h)\right)_{j} \; &=\; \sum_{i} \left(\rho P(t-h)\right)_{i} \mathbf{p}_{ij}(h) \; = \\ &=\; \sum_{i} \left(\rho P(t-h)\right)_{i} \left(\mathbf{p}_{ij}(h) - \varepsilon \delta_{jj_{0}}\right) \end{split}$$

 (j_0) здесь берется из формулировки теоремы!). Тогда

$$\begin{split} \left\| \rho P(t) \right\|_{l_1} &= \sum_{j} \left| \left(\rho P(t-h) P(h) \right)_{j} \right| = \\ &= \sum_{j} \left| \sum_{i} \left(\rho P(t-h) \right)_{i} \left(\mathbf{p}_{ij}(h) - \varepsilon \delta_{jj_0} \right) \right| \leqslant \\ &\leqslant \sum_{i} \sum_{j} \left| \left(\rho P(t-h) \right)_{i} \right| \left| \mathbf{p}_{ij}(h) - \varepsilon \delta_{jj_0} \right|. \end{split}$$

Заметим, что $(p_{ij}(h) - \varepsilon \delta_{jj_0}) \geqslant 0$, поскольку $p_{ij_0}(h) \geqslant \varepsilon$ по условию теоремы, так что модуль можно снять. Тогда

$$\sum_{j} \sum_{i} \left| \left(\rho P(t-h) \right)_{i} \right| \left| \mathbf{p}_{ij}(h) - \varepsilon \delta_{jj_{0}} \right| =$$

$$= \sum_{i} \left| \left(\rho P(t-h) \right)_{i} \right| \sum_{j} \left(\mathbf{p}_{ij}(h) - \varepsilon \delta_{jj_{0}} \right) = \sum_{i} \left| \left(\rho P(t-h) \right)_{i} \right| (1 - \varepsilon).$$

При этом, поскольку (t-h) < mh, применимо предположение индукции, и поэтому

$$\sum_{i} \left| \left(\rho P(t-h) \right)_{i} \right| (1-\varepsilon) \leqslant \|\rho\|_{l_{1}} (1-\varepsilon)^{\left[\frac{t-h}{h}\right]} (1-\varepsilon) = \|\rho\|_{l_{1}} (1-\varepsilon)^{\left[\frac{t}{h}\right]},$$

то есть

$$\left\|\rho P(t)\right\|_{l_1} \, \leqslant \, \left\|\rho\right\|_{l_1} (1-\varepsilon)^{\left[\frac{t}{h}\right]},$$

что и требовалось доказать.

Вернемся к доказательству теоремы. Возьмем произвольный вектор μ , задающий начальное распределение цепи. Тогда $\mu_i \geqslant 0$ и $\sum_i \mu_i = 1$. Покажем, что последовательность $\mu P(n)$ фундаментальна по норме l_1 : поскольку

$$\sum_{i} \left(\left(\mu P(u) \right)_{i} - \mu_{i} \right) = 0,$$

то можно применить лемму 10.3 с $\rho = (\mu P(u) - \mu)$:

$$\begin{split} \left\| \mu P(t+u) - \mu P(t) \right\|_{l_1} &= \left\| \mu P(u) P(t) - \mu P(t) \right\|_{l_1} = \left\| \left(\mu P(u) - \mu \right) P(t) \right\|_{l_1} \leqslant \\ &\leqslant \left\| \mu P(u) - P(t) \right\|_{l_1} (1-\varepsilon)^{\left[\frac{t}{h}\right]} \leqslant 2(1-\varepsilon)^{\left[\frac{t}{h}\right]}, \end{split}$$

поскольку оба вектора $\mu P(u)$ и μ задают вероятностное распределение. Фундаментальность последовательности показали. В силу полноты пространства l_1 существует вектор π такой, что

$$\|\mu P(t) - \pi\|_{l_1} \to 0, \ t \to \infty.$$

Тогда $\pi_i \geqslant 0 \ \forall i$ (иначе бы l_1 -норма разности была всегда больше модуля отрицательного π_i и, следовательно, не сходилась бы к нулю) и $\|\pi\|_{l_1}=1$, поскольку $\|\mu P(t)\|_{l_1}=1$ то есть π задает вероятностное распределение. Докажем, что вектор π задает стационарное распределение. Для этого нужно показать, что $\forall t \in T \ \pi P(t)=\pi$. По лемме $10.3 \ \forall t \in T$

$$\begin{split} \left\|\mu P(u+t) - \pi P(t)\right\|_{l_1} &= \left\|\mu P(u) P(t) - \pi P(t)\right\|_{l_1} = \left\|\left(\mu P(u) - \pi\right) P(t)\right\|_{l_1} \leqslant \\ &\leqslant \left\|\mu P(u) - \pi\right\|_{l_1} (1 - \varepsilon)^{\left[\frac{t}{h}\right]} \to 0, \ u \to \infty; \end{split}$$

вместе с этим

$$\|\mu P(u+t) - \pi\|_{l_1} \to 0, \ u \to \infty.$$

Тогда получаем, что

$$\begin{split} \left\|\pi-\pi P(t)\right\|_{l_1} &= \left\|\pi-\mu P(u+t)+\mu P(u+t)-\pi P(t)\right\|_{l_1} \leqslant \\ &\leqslant \left\|\mu P(u+t)-\pi\right\|_{l_1} + \left\|\mu P(u+t)-\pi P(t)\right\|_{l_1} \to 0, \ u \to \infty, \end{split}$$

что и означает, что $\forall t \in T \ \pi P(t) = \pi$. Теперь покажем единственность такого вектора π . От противного: пусть существует еще один задающий вероятностное распределение вектор ν такой, что $\nu P(t) = \nu$. Тогда по лемме 10.3

$$\|\pi-\nu\|_{l_1} \,=\, \big\|\pi P(t) - \nu P(t)\big\|_{l_1} \,=\, \big\|(\pi-\nu)\,P(t)\big\|_{l_1} \,\leqslant\, 2(1-\varepsilon)^{\left[\frac{t}{h}\right]} \to 0, \ t \to \infty,$$
 то есть $\nu=\pi$. Теорема доказана.

Следствие. Возъмем $\mu = \left(0, \ldots, 0, \underbrace{0}_i, 0, \ldots\right)$. Тогда $\forall i$ существует

 $\lim_{t\to\infty} \mathrm{p}_{ij}(t) = \pi_j$ (который не зависит от i). Таким образом, система за большое время как бы "забывает" состояние, из которого она стартовала.

Замечание. В теореме 10.2 показано, что π не зависит от μ , хотя изначально он от μ зависел по построению. О других следствиях этой теоремы можно почитать в [1], стр. 198.

10.3 Генератор марковской цепи с непрерывным временем

Определение 10.5. Однородная марковская цепь называется *стандартной*, если

$$P(t) \to P(0) = I, t \to 0+,$$

то есть

$$p_{ij}(t) \rightarrow \delta_{ij}, t \rightarrow 0 + .$$

Теорема 10.4. Пусть однородная марковская цепь стандартна. Тогда $\forall i \neq j$

1. существует конечный

$$\lim_{t \to 0+} \frac{\mathbf{p}_{ij}(t)}{t} = \lim_{t \to 0+} \frac{\mathbf{p}_{ij}(t) - \mathbf{p}_{ij}(0)}{t - 0} =: q_{ij};$$

2. существует

$$\lim_{t \to 0+} \frac{\mathbf{p}_{ii}(t) - 1}{t} \ =: \ q_{ii} \in [-\infty, \, 0].$$

Определение 10.6. Однородная марковская цепь называется консервативной, если матрица $Q := \left(q_{ij}\right)_{i, j \in S}$ (называемая генератором или инфинитезимальной матрицей) содержит только конечные элементы и

$$\sum_{j \in S} q_{ij} = 0.$$

Замечание. Если однородная марковская стандартная цепь имеет конечное число состояний, то она консервативна: в силу свойства 2 переходных вероятностей

$$\sum_{i=1}^{N} \mathbf{p}_{ij}(t) = 1,$$

то есть $\forall t > 0$

$$\frac{1 - \mathbf{p}_{ij}(t)}{t} = \frac{\sum_{i \neq j} \mathbf{p}_{ij}}{t}.$$

По теореме 10.4 для $i \neq j$ существует конечный предел

$$\lim_{t \to 0+} \frac{\mathbf{p}_{ij}(t)}{t} = q_{ij},$$

то есть существует (поскольку сумма конечна) конечный предел

$$\lim_{t \to 0+} \frac{\sum_{i \neq j} p_{ij}(t)}{t} = \sum_{i \neq j} q_{ij},$$

а значит, существует и конечный предел

$$\lim_{t \to 0+} \frac{1 - \mathbf{p}_{ii}(t)}{t} \; = \; -q_{ii} \; = \; \sum_{i \neq j} q_{ij},$$

то есть

$$\sum_{j \in S} q_{ij} = 0,$$

что и доказывает, что цепь консервативна.

10.4 Инфинитезимальная матрица конечной марковской цепи

Теорема 10.5. Пусть дана матрица $Q = \left(q_{ij}\right)_{i,\,j \in S}$ такая, что $Q \in \operatorname{Mat}(N \times N)$, $\forall i \neq j \; q_{ij} \geqslant 0 \; u \; \sum\limits_{j=1}^N q_{ij} = 0.$ Тогда существует однородная марковская цепь с генератором Q и пространством состояний мощности N.

Доказательство. Напомним определение матричной экспоненты:

$$e^B := \sum_{n=0}^{\infty} \frac{B^n}{n!},$$

при этом $B^0 := I$. Следовательно,

$$e^{tB} = \sum_{n=0}^{\infty} \frac{t^n B^n}{n!}.$$

Известно следующее свойство матричной экспоненты: если BC = CB, то

$$e^{B+C} = e^B e^C$$
.

Положим по определению

$$P(t) := e^{tQ}, t \geqslant 0.$$

Докажем, что P(t) обладает свойствами 1.—4., которыми должна обладать матрица переходных вероятностей однородной марковской цепи.

1. Проверим, что $\mathbf{p}_{ij}(t)\geqslant 0 \ \, \forall i,\,j\in S \ \, \forall t\geqslant 0.$ Обозначим

$$\gamma = \min_{i=1, N} q_{ii}.$$

Введем также обозначение

$$\widetilde{Q} = (\widetilde{q}_{ij}) := Q - \gamma I_N.$$

Тогда $\widetilde{q}_{ij}\geqslant 0 \;\; \forall i,\, j. \; \Pi$ усть

$$\widetilde{P}(t) := e^{t\widetilde{Q}}.$$

Тогда $\widetilde{P}(t)$ имеет неотрицательные элементы по определению. Заметим, что

$$e^{t\widetilde{Q}} = e^{tQ - t\gamma I_N} = e^{tQ} e^{-t\gamma I_N} = P(t)e^{-t\gamma I_N},$$

то есть

$$P(t) = \widetilde{P}(t)e^{t\gamma I_N}.$$

Вместе с этим у обеих матриц справа элементы неотрицательны. Значит, и у матрицы P(t) элементы также неотрицательны.

2. Проверим, что $\forall i = 1, \ldots, N$

$$\sum_{j=1}^{N} \mathbf{p}_{ij}(t) = 1.$$

Обозначим через α единичный вектор—столбец. Тогда по определению $Q\alpha=0$. Тогда

$$P(t)\alpha = \left(\sum_{n=0}^{\infty} \frac{t^n Q^n}{n!}\right) \alpha = \sum_{n=0}^{\infty} \frac{t^n Q^n \alpha}{n!} = I_N \alpha = \alpha,$$

что и означает, что $\forall i=1,\,\ldots,\,N$

$$\sum_{j=1}^{N} \mathbf{p}_{ij}(t) = 1.$$

- 3. $P(0) = e^{0 \cdot Q} = I_N$ по определению.
- 4. $P(s+t) = e^{s+t}Q = e^{sQ}e^{tQ} = P(s)P(t)$.

Таким образом, выполнены свойства 1.—4., а значит (см. [1], стр.190—191), существует (однородная) марковская цепь с инфинитезимальной матрицей Q. \Box

Замечание. Заметим, что условия, наложенные на матрицу Q в формулировке теоремы, являются не только достаточными, но и необходимыми, что видно из замечания после определения консервативной марковской цепи.

11 Лекция от 26.04.17

Применения марковских цепей

11.1 Формулировка теоремы Дуба о консервативных цепях. Стационарные марковские цепи

Замечание. Известно (см. обязательную задачу 9.2), что пуассоновский процесс интенсивности λ является марковской цепью, причем между скачками проходит время, распространенное экспоненциально. Оказывается, это верно для всех однородных консервативных марковских цепей.

Теорема 11.1 (Дуба о консервативных цепях). Пусть $X = \{X_t, t \in T\}$ — однородная консервативная марковская цепь с инфинитезимальной матрицей Q. Тогда

$$\mathsf{P}\left(X(u) = i, \, s \leqslant u \leqslant s + t \, \big| \, X(s) = i\right) \, = \, e^{q_{ii}t},$$

то есть время ожидания между переходами из состояния в состояние распределено экспоненциально.

Доказательства на лекции не было, знать на экзамене его не обязательно; его можно почитать в [1], стр. 217. \Box

Определение 11.1. $X = \{X_t, t \in T\}$ — строго стационарный процесс, если $\forall n \in \mathbb{N} \ \forall t_1 < \ldots < t_n, \ t_1 + h < \ldots < t_n + h \in T$

$$(X_{t_1}, \ldots, X_{t_n}) \stackrel{\text{law}}{=} (X_{t_1+h}, \ldots, X_{t_n+h}).$$

Теорема 11.2. Пусть однородная марковская цепь $X = \{X_t, t \in T\}$ имеет начальное распределение π , которое также является стационарным распределением для нее. Тогда X — строго стационарный процесс.

Доказательство. Заметим, что

$$P(X_{t_1}=i_1,\ldots,X_{t_n}=i_n)=P(X_{t_1}=i_1)\,\mathrm{p}_{i_1i_2}(t_2-t_1)\ldots\mathrm{p}_{i_{n-1}i_n}(t_n-t_{n-1});$$
 с другой стороны,

$$P(X_{t_1+h} = i_1, ..., X_{t_n+h} = i_n) =$$

$$= P(X_{t_1+h} = i_1) p_{i_1 i_2}(t_2 + h - t_1 - h) ... p_{i_{n-1} i_n}(t_n + h - t_{n-1} - h) =$$

$$= P(X_{t_1+h} = i_1) p_{i_1 i_2}(t_2 - t_1) ... p_{i_{n-1} i_n}(t_n - t_{n-1}).$$

Вместе с этим в силу стационарности начального распределения π

$$P(X_t = i_1) = (\pi P(t))_{i_1} = (\pi P(t+h))_{i_1} = P(X_{t+h} = i_1),$$

что и завершает доказательство леммы.

11.2 Обратимые цепи

Определение 11.2. Пусть $X = \{X_n, n \in \mathbb{Z}_+\}$ — однородная марковская цепь с переходными вероятностями за единицу времени p_{ij} . Тогда вектор π , задающий распределение вероятностей, называется *обратимым*, если $\forall i, j \in S$

$$\pi_i \mathbf{p}_{ij} = \pi_j \mathbf{p}_{ji}.$$

Марковская цепь называется *обратимой*, если у нее есть обратимый вектор.

Пример 11.1 (случайные блуждания на графах). Рассмотрим граф (\mathbb{V} , \mathbb{E}), где \mathbb{V} — множество вершин графа, а \mathbb{E} — множество его ребер. Две вершины v_i и v_i из \mathbb{V} будем называть соседними, если их соединяет ребро из \mathbb{E} . Пусть

 d_i — кратность вершины v_i , то есть число инцидентных ей ребер. Введем переходные вероятности (из i в j):

$$\mathbf{p}_{ij} = egin{cases} rac{1}{d_i}, & ext{ если } v_i \text{ и } v_j \text{ соседние;} \ 0, & ext{ иначе.} \end{cases}$$

Введем также вектор π , задающий вероятностное распределение:

$$\pi_i = \frac{d_i}{\sum_{i \in S} d_i}.$$

Тогда π — обратимый вектор:

$$\pi_i \mathrm{p}_{ij} = \pi_j \mathrm{p}_{ji} = rac{1}{d} \mathbb{I} \left\{ v_i \ \mathrm{u} \ v_j - \mathrm{coceдu}
ight\}.$$

Заметим, что если цепь обратима и π — ее обратимый вектор, то π задает стационарное распределение:

$$(\pi P(t))_j = \sum_{i \in S} \pi_i \mathbf{p}_{ij} = \sum_{i \in S} \pi_j \mathbf{p}_{ji} = \pi_j.$$

11.3 Метод Монте-Карло, использующий цепи Маркова

Замечание (от наборщика). Этот раздел будет до- и переписан после ближайшей консультации.

Пример 11.2 (алгоритм Метрополиса–Хастингса). Возьмем связный граф с вершинами из S такой, что $d_i < \infty \ \forall i$ и введем на нем цепь:

$$\mathbf{p}_{ij} \, := \, \begin{cases} \frac{1}{d_i} \min \left\{ \frac{\pi_j d_i}{\pi_i d_j}, \, 1 \right\}, & v_i \, \, \text{и} \, \, v_j \, \, \text{соседние} \, ; \\ 0, & v_i \, \, \text{и} \, \, v_j \, \, \text{не соседние} \, ; \\ 1 - \sum_i \frac{1}{d_i} \min \left\{ \frac{\pi_j d_i}{\pi_i d_j}, \, 1 \right\}, & i = j. \end{cases}$$

Такая цепь обратима, причем ее обратимое распределение есть π . Действительно, проверим, что $\forall\,i,\,j$

$$\pi_i \mathbf{p}_{ij} = \pi_j \mathbf{p}_{ji}$$

Пусть сначала $\frac{\pi_j d_i}{\pi_i d_j} \geqslant 1$. Тогда $\frac{\pi_i d_j}{\pi_j d_i} \leqslant 1$ и

$$\pi_i p_{ij} = \pi_i \frac{1}{d_i} = \pi_j \frac{1}{d_j} \frac{\pi_i d_j}{\pi_j d_i} = \pi_j p_{ji}.$$

Пусть теперь $rac{\pi_j d_i}{\pi_i d_j} \leqslant 1$. Тогда $rac{\pi_i d_j}{\pi_j d_i} \geqslant 1$ и

$$\pi_i p_{ij} = \pi_i \frac{1}{d_i} \frac{\pi_j d_i}{\pi_i d_j} = \pi_j \frac{1}{d_i} = \pi_j p_{ji}.$$

Определение 11.3. Пусть $G = (\mathbb{V}, \mathbb{E})$ —граф с конечным числом вершин. Пусть также $X = \{X_t, t \in \mathbb{V}\}$ —случайное поле, $X_t : \Omega \to S$, где S конечно. Поле X называется марковским, если $\forall t \in \mathbb{V}$ таких, что

$$P(X_s = x_s, s \neq t) \neq 0$$

выполнено

$$P(X_t = x_t | X_s = x_s, s \neq t) = P(X_t = x_t | X_s = x_s, s \in \delta\{t\}),$$

где $\delta\{t\}$ — множество соседних с t вершин.

Определение 11.4. Энергией называется любая функция $E: S^{\mathbb{V}} \to \mathbb{R}$, где $S^{\mathbb{V}}$ — множество функций из \mathbb{V} в S.

Определение 11.5. Распределение вероятностей на $S^{\mathbb{V}}$

$$\mathsf{P}\left(B\right) \, := \, \begin{cases} \sum\limits_{\omega \in B} \frac{e^{-E\left(\omega\right)}}{\sum\limits_{\omega \in S^{\mathbb{V}}} e^{-E\left(\omega\right)}}, & B \neq \emptyset; \\ 0, & B = \emptyset, \end{cases}$$

называется гиббсовским полем.

Определение 11.6. Потенциалом называется любая действительная функция $V_A(\omega): \mathbb{V} \times S^{\mathbb{V}} \to \mathbb{R}$ такая, что $V_A(\omega) = 0 \ \forall \omega \in S^{\mathbb{V}}$, если $A = \emptyset$.

Замечание. Известно, что любая энергия представляется с помощью потенциала:

$$E(\omega) = \sum_{A \subset \mathbb{V}} V_A(\omega).$$

Определение 11.7. Потенциал $V_A(\omega)$ называется *потенциалом ближай-ших соседей*, если

$$V_A(\omega) = 0 \ \forall \omega \in S^{\mathbb{V}},$$

когда A не является кликой, то есть множеством вершин таким, что любые две вершины в нем соединены ребром.

Теорема 11.3 (Аверинцева-Клиффорда-Хэммерсли). *Следующие утверждения эквивалентны*:

- 1. мера P на $(S^{\mathbb{V}}, A)$ является распределением марковского поля относительно графа (\mathbb{V}, E) и $P(B) > 0, B \neq \emptyset;$
- 2. мера Р на $(S^{\mathbb{V}}, A)$ является мерой Гиббса с потенциалом ближайших соседей.

12 Лекция от 03.05.17

Слабая сходимость вероятностных мер. Ковариационные функции

12.1 Слабая сходимость и сходимость по распределению

Определение 12.1. Пусть (S, \mathcal{B}) — метрическое пространство с метрикой $\rho, \mathcal{B} = \mathcal{B}(S) - \sigma$ -алгебра борелевских подмножеств S. Пусть $Q, Q_n, n \in \mathbb{N}$ — вероятностные меры на (S, \mathcal{B}) . Говорят, что Q_n слабо сходятся к Q,

если для любой непрерывной ограниченной функции $f:S \to \mathbb{R}$

$$\int_{S} f(x) Q_{n}(dx) = \int_{S} f(x) Q(dx), \quad n \to \infty.$$

Обозначается $Q_n \Rightarrow Q$, $n \to \infty$.

3амечание. Множество непрерывных ограниченных функций $f:A \to B$ будем иногда дальше обозначать $C_b(A, B)$.

Определение 12.2. Пусть $X_n:\Omega\to S,X\in\mathscr{F}|\mathscr{B},n\in\mathbb{N},X:\Omega\to S$ случайные величины на вероятностном пространстве $(\Omega,\mathscr{F},\mathsf{P})$. Говорят, что X_n сходятся по распределению к X, если

$$P_{X_n} \Rightarrow P_X, n \to \infty,$$

где P_{X_n} — вероятностная мера, задаваемая случайной величиной X_n по фор-

$$\mathsf{P}_{X_{n}}\left(B\right) \to \mathsf{P}\left(X_{n}^{-1}\left(B\right)\right).$$

Обозначается

$$X_n \xrightarrow{\text{law}} X, \ n \to \infty.$$

Замечание. Поскольку

$$\int_{S} f(x) P_{X_n}(\mathrm{d}x) = \int_{O} f(X_n) P,$$

то

$$X_n \xrightarrow{\text{law}} X \iff \mathsf{E}f\left(X_n\right) \to \mathsf{E}f\left(X\right)$$

для любой $f \in C_b(S, \mathbb{R})$.

Лемма 12.1. Пусть $X_n \xrightarrow{law} X$, $n \to \infty$. Пусть $h: S \to \mathbb{R}$ — непрерывная функция. Тогда

$$h(X_n) \xrightarrow{law} h(X), n \to \infty.$$

Доказательство. По определению, так как $f \circ h$ — непрерывная ограниченная функция для любой $f \in C_b(\mathbb{R}, \mathbb{R})$.

Теорема 12.2 (Александрова). *Следующие утверждения эквивалентны:*

- 1. $Q_n \Rightarrow Q$;
- 2. $\limsup Q_n(F) \leqslant Q(F)$ для любого замкнутого $F \subset S$;
- 3. $\lim_{n}^{n} Q_{n}(G) \leqslant Q(G)$ для любого открытого $G \subset S$; 4. $\lim_{n} Q_{n}(B) = Q(B)$ для любых $B \in \mathcal{B}$ таких, что $Q(\delta B) = 0$.

Доказательство. Теорема предлагается без доказательства.

3амечание. Поскольку δB замкнуто, то оно заведомо борелевское, а значит, на нем определена мера Q.

12.2 Функциональные предельные теоремы

Определение 12.3. Семейство вероятностных мер $\{Q_{\alpha}, \alpha \in \Lambda\}$ называется *слабо относительно компактным*, если из любой последовательности $(Q_{\alpha_n})_{n\in\mathbb{N}}$ можно выделить слабо сходящуюся подпоследовательность:

$$Q_{\alpha'_n} \Rightarrow Q, n \to \infty.$$

(Q здесь не подразумевается обязательно принадлежащим семейству мер $\{Q_{\alpha}, \alpha \in \Lambda\}$).

Определение 12.4. Семейство вероятностных мер $\{Q_{\alpha}, \alpha \in \Lambda\}$ называется *плотным*, если $\forall \varepsilon > 0$ существует компакт K_{ε} такой, что $\forall \alpha \in \Lambda$

$$Q_{\alpha}(K_{\varepsilon}) \geqslant 1 - \varepsilon.$$

Теорема 12.3 (Прохорова). Пусть (S, ρ) — польское (то есть метрическое полное сепарабельное) пространство (с метрикой ρ). Тогда семейство вероятностных мер $\{Q_{\alpha}, \alpha \in \Lambda\}$ слабо относительно компактно тогда и только тогда, когда оно полно.

Доказательство. Теорема предлагается без доказательства.

Пример 12.1. Пусть X_1, X_2, \ldots независимые одинаково распределенные случайные величины, $\mathsf{E} X_n = 0, \, \mathsf{D} X_n = 1, \, n \in \mathbb{N}.$ Построим по ним случайные ломаные: введем

$$s_{0,0} := 0,$$

 $s_{n,m} := X_1(\omega) + \ldots + X_m(\omega), \ \omega \in \Omega, \ m = 0, \ldots, n.$

Возьмем случайные точки (узлы будущей ломаной)

$$x_{n,m} := \left(\frac{m}{n}, \frac{s_{n,m}}{\sqrt{n}}\right), \quad m = 0, \dots, n$$

и соединим для каждого фиксированного n отрезками $x_{n,m}$ с $x_{n,m+1}$ для всех $m=0,\ldots,n-1$, то есть положим

$$S_n(t, \omega) := \frac{s_{n,m}}{\sqrt{n}} + \frac{t - \frac{m}{n}}{\frac{1}{n}} \frac{X_{m+1}}{\sqrt{n}}, \ t \in \left[\frac{m}{n}, \frac{m+1}{n}\right].$$

Таким образом, получили последовательность случайных ломаных $S_n(t,\omega)$, $t\in[0,1]$ (точнее, ломаными являются графики этих функций при фиксированном ω). Тогда $S_n=\left\{S_n(t),\,t\in[0,1]\right\}$ — случайный элемент в пространстве $\mathrm{C}[0,1]$. Обозначим через P_n распределение элемента S_n в пространстве $\left(\mathrm{C}[0,1],\,\mathscr{B}\left(\mathrm{C}[0,1]\right)\right)$. Тогда верна

Теорема 12.4 (Донскера). $P_n \Rightarrow W$, где W – это распределение винеровского процесса $W = \{W(t), t \in [0, 1]\}$.

Доказательство. Теорема предлагается без доказательства.

3амечание. Распределения X_n не важны, поэтому этот результат иногда называют принципом инвариантности.

Замечание. Пусть $h: C[0,1] \to \mathbb{R}$ — непрерывное отображение такое, что $h(X(\cdot)) := X(1)$. Тогда по теореме 12.4 и лемме 12.1

$$h\left(S_n(\cdot)\right) = \frac{S_n}{\sqrt{n}} \xrightarrow{\text{law}} h\left(\left\{W(t), t \in [0, 1]\right\}\right) = W(1) \sim \mathcal{N}(0, 1),$$

что является утверждением обычной центральной предельной теоремы.

Теорема 12.5. $X_n \xrightarrow{law} X$ в пространстве C[0, 1] тогда и только тогда, когда выполнены следующие условия:

1. все конечномерные распределения X_n сходятся к конечномерным распределениям X, то есть $\forall\,t_1,\ldots,t_r\in[0,1]$

$$(X_n(t_1), \ldots, X_n(t_r)) \xrightarrow{law} (X(t_1), \ldots, X(t_r)), n \to \infty;$$

2. семейство $(\mathsf{P}_{X_n})_{n\in\mathbb{N}}$ полно.

Доказательство. Теорема предлагается без доказательства.

Замечание. Теорема Донскера обобщается на серии независимых случайных величин $X_{n,1}, \ldots, X_{n,m_n}$, удовлетворяющих условию Линдеберга: $\forall \varepsilon > 0$

$$\frac{1}{B_n^2} \sum_{j=1}^{m_n} \mathsf{E} \left(X_{n,\,j} - \mathsf{E} X_{n,\,j} \right)^2 \mathbb{I} \left\{ \left| X_{n,\,j} - \mathsf{E} X_{n,\,j} \right| > \varepsilon B_n \right\} \,\, \to \,\, 0, \ \, n \to \infty,$$

где

$$B_n^2 = \sum_{j=1}^{m_n} \mathsf{D} X_{n,\,j}, \ t_{n,\,j} = \frac{\sum\limits_{l=1}^{j} \mathsf{D} X_{n,\,l}}{B_n^2}.$$

Этот результат и называется принципом инвариантности Донскера-Прохорова.

12.3 Критерий согласия Колмогорова

Определение 12.5. Пусть случайный процесс $W = \{W(t), t \in [0, 1]\}$ — винеровский процесс на отрезке [0, 1]. Тогда броуновским мостом называется процесс

$$W_0 := \{W(t) - tW_1, t \in [0, 1]\}.$$

 $3 a M e vanue. W_0(0) = W_0(1) = 0$ почти наверное.

Определение 12.6. Функция

$$K(z) := \begin{cases} 1 - 2 \sum_{k=1}^{\infty} (-1)^k e^{-2k^2 z^2}, & z > 0 \\ 0, & z \leqslant 0 \end{cases}$$

называется функцией распределения Колмогорова.

Лемма 12.6.
$$P\left(\sup_{t \in [0, 1]} |W_0(t)| \leqslant z\right) = K(z).$$

Доказательство. Лемма предлагается без доказательства.

Следствие (критерий согласия Колмогорова). Пусть $\xi_1, \, \xi_2, \, \dots, \, \xi_n$ — независимые одинаково распределенные случайные величины, F(x) — функция распределения ξ_1 . Пусть F(x) непрерывна на всей \mathbb{R} . Тогда

$$\mathsf{P}\left(\sup_{x\in\mathbb{R}}\sqrt{n}\left|F_n(x)-F(x)\right|\leqslant z\right)\;\to\;K(z),\;\;n\to\infty,$$

 $e \partial e$

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ \xi_i \leqslant x \} -$$

— эмпирическая функция распределения.

Доказательство. Обозначим

$$X_n := \sqrt{n} |F_n(x) - F(x)|.$$

Тогда (по теореме 12.5, полное обоснование см. [5], гл. 2, §13)

$$X_n \xrightarrow{\text{law}} W_0.$$

Поскольку $\sup_{x\in\mathbb{R}}|x|$ является непрерывным отображением, то по лемме 12.1

$$\sup_{x \in \mathbb{R}} |X_n| \xrightarrow{\text{law}} \sup_{t \in [0, 1]} |W_0(t)|.$$

Тогда из леммы 12.6 получаем утверждение, которое требуется доказать.

Замечание. Более полное доказательство (которое называется наброском и занимает 3 страницы) можно почитать в [1], стр. 161.

12.4 Гауссовские процессы

Определение 12.7. Случайный вектор (ξ_1, \ldots, ξ_n) называется *гауссовским*, если его характеристическая функция $\varphi_{\xi}(t)$ имеет вид

$$\varphi_{\xi}(t) \, = \, \exp \left\{ i(a,\,t) - \frac{1}{2} \left(Ct,\,t\right) \right\},$$

где $a \in \mathbb{R}^n$ — вектор, $C \in \mathrm{Mat}_{n \times n}$ — симметрическая неотрицательно определенная матрица, то есть $(Ct,\,t) \geqslant 0 \ \forall t \in \mathbb{R}^n$.

Определение 12.8. Процесс $X = \{X_t, t \in T\}$, $X_t : \Omega \to \mathbb{R}$, называется *гауссовским*, если $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n$ вектор

$$(X_{t_1},\ldots,X_{t_n})$$

является гауссовским.

Определение 12.9. Пусть $X = \{X_t, t \in T\}$ — гауссовский процесс. Его функцией среднего называется

$$a(t) := \mathsf{E}X(t),$$

а его ковариационной функцией называется

$$r(s, t) := \operatorname{cov} (X(s), X(t)).$$

Определение 12.10. Функция $f: T \times T \to \mathbb{R}$ называется неотрицательно определенной, если $\forall t_1, \ldots, t_n \in T$ матрица

$$(r(t_m, t_j))$$

является неотрицательно определенной, или, что то же самое, $\forall \, \lambda_1, \, \dots, \, \lambda_n \in \mathbb{R}$

$$\sum_{m, j=1}^{n} r(t_m, t_j) \lambda_m \lambda_j \geqslant 0.$$

Теорема 12.7. Пусть a(t) — произвольная действительная функция $T \to \mathbb{R}$, r(s,t) — действительная функция $T \times T \to \mathbb{R}$, являющаяся симметричной и неотрицательно определенной. Тогда существует гауссовский процесс $X = \{X_t, t \in T\}$ с функцией среднего а и ковариационной функцией r.

Доказательство. Для $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n \in T$ введем гауссовские меры $Q_{t_1 \ldots t_n}$, задаваемые характеристическими функциями

$$\varphi_{t_1...t_n}(u_1, \ldots, u_n) = \exp \left\{ i \sum_{j=1}^n a(t_j) u_j - \frac{1}{2} \sum_{m, j=1}^n r(t_m, t_j) u_j u_m \right\}.$$

По теореме 5.6 искомый процесс X существует, поскольку выполнены условия согласованности характеристических функций (и он, само собой, будет гауссовским, поскольку характеристическая функция конечномерных распределений имеет требуемый вид).

Замечание. Пусть имеется L₂-процесс $X = \{X_t, t \in T\}$, то есть такой процесс, что $\mathsf{E} \, |X_t|^2 < \infty, \ t \in T$. Тогда функция $r(s,t) := \mathrm{cov} \, \big(X(s), \, X(t) \big)$ является неотрицательно определенной. Действительно,

$$\sum_{m,j=1} \operatorname{cov} (X(t_m), X(t_j)) \lambda_m \lambda_j = \operatorname{cov} \left(\sum_{m=1}^n \lambda_m X(t_m), \sum_{j=1}^n \lambda_j X(t_j) \right) = \\ = \operatorname{cov} (\xi, \xi) \geqslant 0.$$

Следовательно, требования теоремы 12.7 являются необходимыми, так что гауссовский процесс задается функциями a и r.

Определение 12.11. Процесс $X = \{X_t, t \in T\}$ называется комплекснозначным гауссовским процессом, если $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n \in T$ вектор

$$(\operatorname{Re}X_{t_1}, \operatorname{Im}X_{t_1}, \ldots, \operatorname{Re}X_{t_n}, \operatorname{Im}X_{t_n})$$

является гауссовским вектором в \mathbb{R}^{2n} .

Определение 12.12. Комплекснозначная функция $R(s,t): T \times T \to \mathbb{C}$ называется неотрицательно определенной, если $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n \in T$ и $\forall z_1, \ldots, z_n \in \mathbb{C}$

$$\sum_{m,j=1}^{n} R(t_m, t_j) z_m \overline{z_j} \geqslant 0.$$

Теорема 12.8. Класс неотрицательно определенных функций $T \times T \to \mathbb{C}$ совпадает с классом ковариационных функций L_2 -процессов и, более того, совпадает с классом ковариационных функций комплекснозначных гауссовских процессов.

Доказательство. См. [1], стр. 53.

Определение 12.13. Функция $K(s,\,t),\,s,\,t\in T$, называется воспроизводящим ядром гильбертова пространства H, состоящего из функций $f:T\to\mathbb{C},$ если

- 1. $K(\cdot, t) \in H \ \forall t \in T;$
- 2. $(f, K(\cdot, t))_H = f(t) \ \forall t \in T, f \in H.$

Теорема 12.9 (Ароншайна). Функция K(s,t), s, $t \in T$, является неотрицательно определенной тогда и только тогда, когда она представляет собой воспроизводящее ядро некоторого гильбертова пространства функций, заданных на T и принимающих значения в \mathbb{C} .

Доказательство. Теорема предлагается без доказательства.

12.5 Свойства ковариационных функций

Определение 12.14. Пусть ξ , η — комплекснозначные случайные величины. Тогда

$$\operatorname{cov}(\xi, \eta) := \mathsf{E}(\xi - \mathsf{E}\xi) \overline{(\eta - \mathsf{E}\eta)}.$$

Теорема 12.10. Пусть $K, K_1, \ldots, K_n, \ldots$ — неотрицательно определенные функции и $a_1, \ldots, a_n \geqslant 0$. Тогда

- 1. K(cs, ct) неотрицательно определенная функция $\forall c \in \mathbb{R}$;
- 2. $a_1K_1 + \ldots + a_nK_n$ неотрицательно определенная функция;
- 3. $K_1 \cdot ... \cdot K_n$ неотрицательно определенная функция;
- 4. если $K_n(s,t) \to K_0(s,t) \ \forall s,t \in T,$ то K_0 неотрицательно определенная функция.

Доказательство. 1. Следует из определения.

2. Возьмем независимые гауссовские процессы $X_1(t), \ldots, X_n(t)$ с ковариационными функциями K_1, \ldots, K_n ; рассмотрим

$$X(t) := \sqrt{a_1}X_1(t) + \ldots + \sqrt{a_n}X_n(t).$$

Тогда

$$cov(X(s), X(t)) = a_1K_1(s, t) + ... + a_nK_n(s, t).$$

3. Повторим шаг 2 с

$$X(t) := \overline{X_1(t) \cdot \ldots \cdot X_n(t)}.$$

4. Поскольку предельный переход сохраняет нестрогие неравенства,

$$0 \leqslant \sum_{m,j=1}^{n} K_n(t_m, t_j) z_m \overline{z_j} \to \sum_{m,j=1}^{n} K_0(t_m, t_j) z_m \overline{z_j} \geqslant 0.$$

Определение 12.15. Функция одного переменного $R(t), t \in T$ называется *неотрицательно определенной*, если функция

$$R(s, t) := R(s-t)$$

неотрицательно определена.

Теорема 12.11 (Герглотца). Функция R(n) неотрицательно определена тогда и только тогда, когда

$$R(n) = \int_{[-pi, \, pi]} e^{in\lambda} \, \mathsf{Q}(\mathrm{d}\lambda),$$

где Q- конечная мера на $\mathcal{B}[-\pi,\,\pi]$.

Доказательство. Теорема предлагается без доказательства.

Список литературы

- [1] Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: ФИЗ-МАТЛИТ, 2005
- [2] Феллер В. Введение в теорию вероятностей и ее приложения.
- [3] Ширяев А. Н. Вероятность.
- [4] Шашкин А. П. Слабая сходимость вероятностных мер. МГУ, 2013
- [5] Биллингсли П. Сходимость вероятностных мер.