Functional Encryption (Introduction)

Public Key Encryption (PKE)

Drawback:

• Decryption is "all" or "nothing" affair!

Homomorphic Encryption (HE)

Drawback:

• Interaction with Bob!

Example

- f is + operator, $c_1 = \mathsf{Enc}(\mathsf{pk}, m_1)$ and $c_2 = \mathsf{Enc}(\mathsf{pk}, m_2)$ $\mathsf{Eval}(f, c_1, c_2) = \mathsf{Enc}(\mathsf{pk}, f(m_1, m_2)) = \mathsf{Enc}(\mathsf{pk}, m_1 + m_2)$
- Useful to outsource private computations (cloud computing)
- Partially homomorphic cryptosystems RSA, ElGamal, GM, Paillier
- Fully homomorphic encryption supports arbitrary computation on ciphertexts (lattice-based cryptography)

Functional Encryption (FE)

(Delegates decryption capabilities)

Functional Encryption (FE)

ifEval $(SK_{SpamFilter}, c) = True$ then "Move to the Spam Folder"

Advantages

- Decryption does not require interaction with Bob!
- Fine-Grained Access Control of Decryption Capabilities!

FE: Credit Card Transaction Alert

• Credit Card Tranaction Alert (SK_{Alert})

$$if$$
Eval $(SK_{Alert}, c) = True$
 $then$ "Fire an Alarm"

Alert: Transactions over Rs. 1.0 Lakhs

FE: Credit Card Fraud Investigation

• Credit Card Fraud Investigation ($SK_{f_{Auditing}}$)

$$if \mathsf{Eval}(\mathsf{SK}_{f_{\mathsf{Auditing}}}, c) = \mathsf{True}$$

$$then \text{ "Fire an Alarm"}$$

 f_{Auditing} : Transactions over Rs. 1.0 Lakhs which took place in November and originated from Kolkata.

FE: Online dating

Bob has specific attributes and will receive a secret key that can only decrypt profiles for which the attributes match the dating preferences.

FE: Online dating

• profile m is encrypted under the dating preferences (access structure) W = [Age > 35 and Education = PhD or Height > 180)]

FE: Online dating - Collusion Resistance

- profile m is encrypted under the dating preferences (access structure) W = [Age > 35 and (Education = PhD or Height > 180)]
- primitive should withstand collusion attack

Current Lines of Work

- Efficient functional encryption for access control
- Functional encryption for all circuits
- Efficient constructions for expressive functionalities

FE: Definition

A Functional Encryption (FE) scheme for the functionality \mathcal{F} consists of the following algorithms:

$$(\mathsf{mpk}, \mathsf{msk}) \longleftarrow \mathsf{Setup}(1^{\lambda}, \mathcal{F})$$
 $\mathsf{SK}_f \longleftarrow \mathsf{KeyDer}(\mathsf{msk}, f)$ $\mathsf{CT} \longleftarrow \mathsf{Enc}(\mathsf{mpk}, m)$ $f(m) \longleftarrow \mathsf{Dec}(\mathsf{SK}_f, \mathsf{CT})$

Examples of Functionalities

- (Hierarchical) Identity-Based Encryption
- Fuzzy Identity-Based Encryption
- Attribute-Based Encryption
- Predicate Encryption
- etc.

Identity-Based Encryption (IBE)

Generalized Hierarchical IBE (HIBE)

