Lec. 9 (10/20/2022) Example: Prove that the function f: 1R" × S++ given by: $f(x, Y) := x^T Y^{-1} x \text{ is convex over dom } G.$ dom(f) = IR" x S" is a convex set.

For n=1, reduces to Last Lecture's example: Quadratic - over - limber. (χ^2/y) over $dom(f) = R \times R_{ro}$

set convexity to prove function Let's use Convexity: epi(f):= {(x, Y, t) | Y>0, xTY-1x & t} ~ Intersection of LMIS (convex sets) (Appendix A'5'5 in textbook) - . epi(f) is convex set \Leftrightarrow f is a convex f^{4} .

Sehuer complement Lemma: Let $X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \in S^M$ and $det(A) \neq 0$. Define S := C - BTA-1B Sehur complement of A in

Matrix X The following statements are equivalent:

• $\times > 0 \Leftrightarrow A > 0 \text{ and } S > 0$.
• If A > 0 then $\times > 0 \Leftrightarrow S > 0$.

One application of School complement;

Computing block determinants:

X = [A B] det(A) +0, compute det(X).

$$X = \begin{bmatrix} a & b \\ b & e \end{bmatrix} \longrightarrow \det(x) = \underbrace{ae - b^2}_{= a(e - b^2/a)}$$

$$= \underbrace{a(e - b^2/a)}_{= a(e - b^2/a)}$$

$$= \det(A) \det(C - B^TA^TB)$$

$$= \det(A) \det(S)$$

characterization/condition of Revisting Zeroth order Convex functions:

 \forall $0 \leq \hat{\theta} \leq 1$ Hx, y E dom (f)

inequality Jensen's (Multi-point version): $f\left(\sum_{i=1}^{K}\theta_{i} \propto i\right) \leq \sum_{i=1}^{K}\theta_{i} f\left(\sum_{i=1}^{K}\theta_{i} \times i\right) \leq \sum_{i=1}^{K}\theta_{i} = 1$ and $\sum_{i=1}^{K}\theta_{i} = 1$ We can intempret this inequality in a probabilistie manner:

 $\underline{x} \in \{\underline{x}_{1}, \underline{x}_{2}, \dots, \underline{x}_{K}\}$

random $P(x = x_i) = \theta_i + i = 1,...,k$

f(E[z]) < E[f(z)] for f(.)
convex

 $\forall z \in dom(t)$

Also holds for continuous spaces: $p: \mathbb{R}^n \mapsto \mathbb{R}$, p(z) > 0, $\int p(z)dz$

Then Jensen's inequality: $f\left(\int x p(x) dx\right) \leq \int f(x) p(x) dx$

f convex function

Operations preserving function convexity: · Non-neg. weighted sum: $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$, where $f_1, f_2, ..., f_m$ are all convex Then $g(x) = \frac{\pi}{2}w_i + (x)$, $w_i > 0$ is also a convex function. Also vorles for continuem: Then $\int_{\mathcal{Y}} \mathbb{Y}(\underline{x}, \underline{y})$ is convex in \underline{x} , and $\mathbb{W}(\underline{y}) > 0$ Then $\int_{\mathcal{Y}} \mathbb{W}(\underline{y}) f(\underline{x}, \underline{y}) d\underline{y}$ is convex in \underline{x} . · Composition with affine map: Let f: IR" HR be a convex familion. Let $A \in \mathbb{R}^{m \times n}$ b $\in \mathbb{R}^n$ Then $g(x) := \int (Ax + b)$ is a convex function in x. $dom(g) = \{ \underline{x} \in \mathbb{R}^n \mid A\underline{x} + \underline{b} \in dom(\underline{f}) \}$ Pointroise max on sup: If f(x), ..., $f_m(x)$ are convex functions, $(x) := \max\{f_1(x), \dots, f_m(x)\}$ m dom(fi) f(x)epi(f) = 0 epi(fi)

Pointwise suf. over uncountable.
Convex functions is also convex: If f(z,z) is convex in x then g(x) := sup f(x, y) is also convex in x.

Simularly, pointaise int over concave femotions is concave

Example:
Consider the function $f(X) = \lambda_{max}(X)$ There $X \in S^n$.

There $X \in S^n$.

The sum of $X \in S^n$ is the sum of $X \in S^n$. For $X \in S^n$, we have:

min (X) $\leq \frac{x^T \times x}{x^T \times x}$ From $X = VDV^T$ (eig., value decomposition) $\leq \lambda_{\max}(X)$ \forall $z \in \mathbb{R}^{n}$.

 $\|\underline{x}\|_{2} = 1$ $\frac{\lambda_{\text{max}}(X) = \text{sub}}{\|x\|_{2} = 1}$ is convex function in XESM Pointvise sup of linear (convex) functions

· Composition: $f(x) = h \circ g(x)$ $h: \mathbb{R}^k \mapsto \mathbb{R}^k$ $g: \mathbb{R}^n \mapsto \mathbb{R}^k$ f=hog; Rh HR When is the composite nonlinear for hog convex? [b. 84-87 in textbook.] Minimization: If is convex in (x, y)From and S is a convex set $f(x) = \inf f(x, y) \text{ is eonvex in } x.$ $y \in S$

Distance between a point and a set & Example: g(z) = dist(z, s):= inf | x - y|,

YES Jointly convex convex in (x, z)

· · g(x) is a Convex function in x.

Convex conjugates/Legend-re-Fenchel transform: $f(\underline{x}): \mathbb{R}^n \mapsto \mathbb{R}$ Definition: $f^*(\underline{Y})$:= Sup $\{\underline{Y}^T\underline{x}-f(\underline{x})\}$ $\underline{x}\in dom(\underline{f})$ Need not be convex $f^*(\underline{\underline{\vee}}):\mathbb{R}^n\mapsto \mathbb{R}$ Conjugate or Legendore-Fenchel Conjugate of the function f

Example: (please check this)

affine:
$$f(x) = \langle a, x \rangle + b$$
, $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
 $f^*(x) = sup(x^n - a^n x - b)$
 $x \in \mathbb{R}^n$

$$= \begin{cases} -b & \text{for } \underline{y} = \underline{a} \\ + \infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} -b & \text{for } \underline{y} = \underline{a} \\ + \infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} -b & \text{for } \underline{y} = \underline{a} \\ + \infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} -b & \text{for } \underline{y} = \underline{a} \\ + \infty & \text{otherwise} \end{cases}$$

then f*(y) = \frac{1}{2} y \tau^{-1} y.