

Revision Notes

Class - 12 Maths

Chapter 2 - Inverse Trigonometric Functions

Domain and range of all inverse trigonometric functions

Function	Domain	Range
1. $y = \sin^{-1} x \text{ if } x = \sin y$	$-1 \le x \le 1$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
2. $y = \cos^{-1} x \text{ if } x = \cos y$	$-1 \le x \le 1$	$[0,\pi]$
3. $y = \tan^{-1} x \text{ if } x = \tan y$	$-\infty < X < \infty$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$4. y = \cot^{-1} x \text{ if } x = \cot y$	-∞ < x < ∞	$(0,\pi)$
5. $y = \csc^{-1}x$ if $x = \csc y$	$(-\infty,-1]\cup[1,\infty)$	$\left[-\frac{\pi}{2},0\right) \cup \left(0,\frac{\pi}{2}\right]$
6. $y = \sec^{-1} x \text{ if } x = \sec y$	$(-\infty,-1]\cup[1,\infty)$	$\left[0,\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\pi\right]$

• We must note that inverse trigonometric functions cannot be expressed in terms of trigonometric functions as their reciprocals. For example,

$$\sin^{-1} x \neq \frac{1}{\sin x}.$$

- The **principal value** of a trigonometric function is that value which lies in the range of principal branch.
- The functions $\sin^{-1} x \& \tan^{-1} x$ are increasing functions in their domain.
- The functions $\cos^{-1} x & \cot^{-1} x$ are decreasing functions in over domain.

Graphs of inverse trigonometric functions

a) Graph of $\sin^{-1} x$ is shown below,

b) Graph of $\cos^{-1} x$ is shown below,

c) Graph of tan⁻¹ x is shown below,

d) Graph of cosec⁻¹x is shown below,

e) Graph of $sec^{-1}x$ is shown below,

f) Graph of cot⁻¹ x is shown below,

Properties of inverse trigonometric functions

1. Property I

a)
$$\sin^{-1}\left(\frac{1}{\mathbf{x}}\right) = \cos \operatorname{ec}^{-1}\mathbf{x}$$
, for all $\mathbf{x} \in (-\infty, 1] \cup [1, \infty)$

Let us prove this by considering $\csc^{-1} x = \theta$ (i)

Taking cosec on both sides,

$$x = \cos ec\theta$$

Using reciprocal identity,

$$\Rightarrow \frac{1}{x} = \sin \theta$$

$$\left\{ :: \mathbf{x} \in \left(-\infty, -1\right] \cup \left[1, \infty\right) \right\} \Rightarrow \frac{1}{\mathbf{x}} \in \left[-1, 1\right] \left\{0\right\}$$

$$cosec^{-1}x = \theta \Rightarrow \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}$$

$$\Rightarrow \theta = \sin^{-1}\left(\frac{1}{x}\right)$$
(ii)

From (i) and (ii), we get

$$\sin^{-1}\left(\frac{1}{x}\right) = \cos ec^{-1}x$$

Hence proved.

b)
$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x$$
, for all $x \in (-\infty, 1] \cup [1, \infty)$

Let us prove this by taking $\sec^{-1} x = \theta$ (i)

Taking sec on both sides,

$$\Rightarrow$$
 x = sec θ

Using reciprocal identity,

$$\Rightarrow \frac{1}{x} = \cos \theta$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{1}{x}\right)$$
(ii)

Then,
$$x \in (-\infty, 1] \cup [1, \infty)$$
 and $\theta \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$

$$\begin{cases} \because \mathbf{x} = (-\infty, -1] \cup [1, \infty) \\ \Rightarrow \frac{1}{\mathbf{x}} \in [-1, 1] - \{0\} \text{ and } \theta \in [0, \pi] \end{cases}$$

From (i) and (ii), we get

$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$$

Hence proved.

c)
$$\tan^{-1}\left(\frac{1}{\mathbf{x}}\right) = \begin{cases} \cot^{-1}\mathbf{x}, & \text{for } \mathbf{x} > 0\\ -\pi + \cot^{-1}\mathbf{x}, & \text{for } \mathbf{x} < 0 \end{cases}$$

Let us prove this by taking $\cot^{-1} x = \theta$. Then $x \in \mathbb{R}, x \neq 0$ and $\theta \in [0, \pi]$ (i)

Now there are two cases that arise:

Case I: When x > 0

In this case, we have $\theta \in \left(0, \frac{\pi}{2}\right)$

Considering $\cot^{-1} x = \theta$

Taking cot on both sides,

$$\Rightarrow$$
 x = cot θ

Using reciprocal property,

$$\Rightarrow \frac{1}{x} = \tan \theta$$

$$\theta = \tan^{-1}\left(\frac{1}{x}\right)$$
(ii)

From (i) and (ii), we get
$$\left\{ \because \theta \in \left(0, \frac{\pi}{2}\right) \right\}$$

$$\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1} x$$
, for all $x > 0$

Case II: When x < 0

7

In this case, we have $\theta \in \left(\frac{\pi}{2}, \pi\right)$ $\left\{\because x = \cot \theta < 0\right\}$

Now,
$$\frac{\pi}{2} < \theta < \pi$$

$$\Rightarrow -\frac{\pi}{2} < \theta - \pi < 0$$

$$\Rightarrow \theta - \pi \in \left(-\frac{\pi}{2}, 0\right)$$

$$\therefore \cot^{-1} x = \theta$$

Taking cot on both sides,

$$\Rightarrow x = \cot \theta$$

Using reciprocal property,

$$\Rightarrow \frac{1}{x} = \tan \theta$$
$$\Rightarrow \frac{1}{x} = -\tan(\pi - \theta)$$

$$\Rightarrow \frac{1}{x} = \tan(\theta - \pi) \quad \{\because \tan(\pi - \theta) = -\tan\theta\}$$

$$\Rightarrow \theta - \pi = \tan^{-1} \left(\frac{1}{x} \right) \qquad \left\{ \because \theta - \pi \in \left(-\frac{\pi}{2}, 0 \right) \right\}$$

$$\Rightarrow \tan^{-1}\left(\frac{1}{x}\right) = -\pi + \theta$$
(iii)

From (i) and (iii), we get

$$\tan^{-1}\left(\frac{1}{x}\right) = -\pi + \cot^{-1}x$$
, if $x < 0$

Hence it is proved that
$$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1} x, \text{ for } x > 0\\ -\pi + \cot^{-1} x, \text{ for } x < 0 \end{cases}$$

2. Property II

a)
$$\sin^{-1}(-x) = -\sin^{-1}(x)$$
, for all $x \in [-1,1]$

b)
$$\tan^{-1}(-x) = -\tan^{-1}x$$
, **for all** $x \in R$

c)
$$\cos ec^{-1}(-x) = -\cos ec^{-1}x$$
, for all $x \in (-\infty, -1] \cup [1, \infty)$

Clearly,
$$-x \in [-1,1]$$
 for all $x \in [-1,1]$

Let us prove a) by taking $\sin^{-1}(-x) = \theta$

Then, taking sin on both sides, we get

$$-x = \sin \theta$$
(i)

$$\Rightarrow$$
 x = $-\sin\theta$

$$\Rightarrow x = \sin(-\theta)$$

$$\Rightarrow -\theta = \sin^{-1} x$$

$$\left\{ \because x \in [-1,1] \text{ and } -\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \text{ for all } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right\}$$

$$\Rightarrow \theta = -\sin^{-1}x$$
(ii)

From (i) and (ii), we get

$$\sin^{-1}(-x) = -\sin^{-1}(x)$$

Hence proved.

The b) and c) properties can also be proved in the similar manner.

3. Property III

a)
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$
, for all $x \in [-1,1]$

b)
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$
, for all $x \in (-\infty, -1] \cup [1, \infty)$

c)
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$
, for all $x \in R$

Clearly,
$$-x \in [-1,1]$$
 for all $x \in [-1,1]$

Let us prove it by taking $\cos^{-1}(-x) = \theta$ (i)

Then, taking cos on both sides, we get

$$-x = \cos \theta$$

$$\Rightarrow$$
 x = $-\cos\theta$

$$\Rightarrow$$
 x = cos($\pi - \theta$)

$$\{ : x \in [-1,1] \text{ and } \pi - \theta \in [0,\pi] \text{ for all } \theta \in [0,\pi] \}$$

$$\cos^{-1} x = \pi - \theta$$

$$\Rightarrow \theta = \pi - \cos^{-1} x$$
(ii)

From (i) and (ii), we get

$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

Hence Proved.

The b) and c) properties can also be proved in the similar manner.

4. Property IV

a)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
, for all $x \in [-1,1]$

Let us prove it by taking $\sin^{-1} x = \theta$ (i)

Then,
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 $\left[\because x \in [-1,1] \right]$

$$\Rightarrow -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} \le -\theta \le \frac{\pi}{2}$$

$$\Rightarrow 0 \le \frac{\pi}{2} - \theta \le \pi$$

$$\Rightarrow \frac{\pi}{2} - \theta \in [0, \pi]$$

Now we consider $\sin^{-1} x = \theta$

Taking sin on both sides, we get

$$\Rightarrow x = \sin \theta$$

Changing functions, we get

$$\Rightarrow$$
 x = cos $\left(\frac{\pi}{2} - \theta\right)$

$$\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \theta$$

$$\left\{ \because x \in [-1,1] \text{ and } \left(\frac{\pi}{2} - \theta\right) \in [0,\pi] \right\}$$

$$\Rightarrow \theta + \cos^{-1} x = \frac{\pi}{2}$$
(ii)

From (i) and (ii), we get

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

Hence proved.

b)
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
, for all $x \in R$

Let us prove it by taking $tan^{-1}x = \theta$ (i)

Then,
$$\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 $\left\{\because x \in R\right\}$

$$\Rightarrow -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} < -\theta < \frac{\pi}{2}$$

$$\Rightarrow 0 < \frac{\pi}{2} - \theta < \pi$$

$$\Rightarrow \left(\frac{\pi}{2} - \theta\right) \in (0, \pi)$$

Now consider $\tan^{-1} x = \theta$

Taking tan on both sides, we get

$$\Rightarrow$$
 x = tan θ

$$\Rightarrow$$
 x = cot $\left(\frac{\pi}{2} - \theta\right)$

$$\Rightarrow \cot^{-1} x = \frac{\pi}{2} - \theta \quad \left\{ \because \frac{\pi}{2} - \theta \in (0, \pi) \right\}$$

$$\Rightarrow \theta + \cot^{-1} x = \frac{\pi}{2}$$
(ii)

From (i) and (ii), we get

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

c)
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$
, for all $x \in (-\infty, -1] \cup [1, \infty)$

Let us prove it by taking $\sec^{-1} x = \theta$ (i)

Then,
$$\theta \in [0,\pi] - \left\{ \frac{\pi}{2} \right\} \quad \left\{ \because x \in (-\infty,-1] \cup [1,\infty) \right\}$$

$$\Rightarrow 0 \le \theta \le \pi, \theta \ne \frac{\pi}{2}$$

$$\Rightarrow -\pi \le -\theta \le 0, \theta \ne \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} \le \frac{\pi}{2} - \theta \le \frac{\pi}{2}, \frac{\pi}{2} - \theta \ne 0$$

$$\Rightarrow \left(\frac{\pi}{2} - \theta\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{\pi}{2} - \theta \neq 0$$

Now considering $\sec^{-1} x = \theta$

Taking sec on both sides, we get

$$\Rightarrow$$
 x = sec θ

$$\Rightarrow$$
 x = cos ec $\left(\frac{\pi}{2} - \theta\right)$

$$\Rightarrow \cos ec^{-1}x = \frac{\pi}{2} - \theta$$

$$\left\{ \because \left(\frac{\pi}{2} - \theta \right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \frac{\pi}{2} - \theta \neq 0 \right\}$$

$$\Rightarrow \theta + \cos ec^{-1}x = \frac{\pi}{2}$$
(ii)

From (i) and (ii), we get

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

5. Property V

a)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$$

b)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, xy > -1$$

c)
$$\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy > 1; x, y = 0$$

Let us prove a) by taking $\tan^{-1} x = \theta$ and $\tan^{-1} y = \phi$.

Taking tan on both sides for both terms, we get $x = \tan \theta$ and $y = \tan \phi$.

Using formula for $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$, we can write

$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$$

Writing in terms of x and y,

$$\tan\left(\theta + \phi\right) = \frac{x + y}{1 - xy}$$

$$\Rightarrow \theta + \phi = \tan^{-1} \left(\frac{x + y}{1 - xy} \right)$$

Therefore $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$.

Hence proved.

The properties b) and c) can be proved in similar manner by considering y as -y and y as x respectively in the above proof.

6. Property VI

a)
$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}, |x| \le 1$$

b)
$$2\tan^{-1} x = \cos^{-1} \frac{1 - x^2}{1 + x^2}, x \ge 0$$

c)
$$2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}, -1 < x < 1$$

Let us prove a) by taking $tan^{-1}x = y$.

Taking tan on both sides, we get x = tan y

We can write
$$\sin^{-1}\frac{2x}{1+x^2}$$
 as $\sin^{-1}\frac{2\tan y}{1+\tan^2 y}$.

Using formula
$$\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$$
, we get

$$\sin^{-1}\frac{2x}{1+x^2} = \sin^{-1}(\sin 2y)$$

Using $\sin^{-1}(\sin x) = x$, this can be written as

$$\sin^{-1}\frac{2x}{1+x^2} = 2y$$

$$\Rightarrow \sin^{-1}\frac{2x}{1+x^2} = 2\tan^{-1}x$$

Hence proved.

The same process can be followed to prove properties b) and c) as well.

7. Property VII

a)
$$\sin(\sin^{-1} x) = x$$
, for all $x \in [-1,1]$

b)
$$\cos(\cos^{-1} x) = x$$
, **for all** $x \in [-1,1]$

c)
$$\tan(\tan^{-1}x) = x$$
, for all $x \in R$

d)
$$\csc(\csc^{-1}x) = x$$
, for all $x \in (-\infty, -1] \cup [1, \infty)$

e)
$$\sec(\sec^{-1}x) = x$$
, for all $x \in (-\infty, -1] \cup [1, \infty)$

f)
$$\cot(\cot^{-1}x) = x$$
, for all $x \in R$

Let us prove a). We know that, if $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ exists such that $fof^{-1}(y) = f(f^{-1}(y)) = y$ for all $y \in B$.

Clearly, all these results are direct consequences of this property.

Aliter: Let
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 and $x \in [-1,1]$ such that $\sin \theta = x$.

Taking sin on both sides, $\theta = \sin^{-1} x$

$$\therefore x = \sin \theta = \sin \left(\sin^{-1} x \right)$$

Hence, $\sin(\sin^{-1} x) = x$ for all $x \in [-1,1]$ and we proved it.

We can prove properties from b) to f) in a similar manner.

It should be noted that,
$$\sin^{-1}(\sin\theta) \neq \theta$$
, if $\notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Let us understand this better. The function $y = \sin^{-1}(\sin x)$ is periodic and has period 2π .

To draw this graph, we should draw the graph for one interval of length 2π and repeat the entire values of x.

As we know,

$$\sin^{-1}(\sin x) = \begin{cases} x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ (\pi - x); & -\frac{\pi}{2} \le \pi - x < \frac{\pi}{2} \left(i.e., \frac{\pi}{2} \le x \le \frac{3\pi}{2} \right) \end{cases}$$

$$\Rightarrow \sin^{-1}(\sin x) = \begin{cases} x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \frac{3\pi}{2}, \end{cases}$$

This is plotted as

Thus, we can note that the graph for $y = \sin^{-1}(\sin x)$ is a straight line up and a straight line down with slopes 1 and -1 respectively lying between $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

The below result for the definition of $\sin^{-1}(\sin x)$ must be kept in mind.

$$y = \sin^{-1}(\sin x) = \begin{cases} x + 2\pi; & -\frac{5\pi}{2} \le x \le -\frac{3\pi}{2} \\ -\pi - x; & -\frac{3\pi}{2} \le x \le -\frac{\pi}{2} \end{cases}$$

$$x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\pi - x; & \frac{\pi}{2} \le x \le \frac{3\pi}{2}$$

$$x - 2\pi; & \frac{3\pi}{2} \le x \le \frac{5\pi}{2} \text{ ...and so on}$$

Now we consider $y = \cos^{-1}(\cos x)$ which is periodic and has period 2π .

To draw this graph, we should draw the graph for one interval of length 2π and repeat the entire values of x of length 2π

As we know,

$$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & 0 \le 2\pi - x \le \pi, \end{cases}$$
$$\Rightarrow \cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi, \end{cases}$$

Thus, it has been defined for $0 < x < 2\pi$ that has length 2π . So, its graph could be plotted as;

Thus, the curve $y = \cos^{-1}(\cos x)$ and we can not the results as

$$\cos^{-1}(\cos x) = \begin{cases} -x, & \text{if } x \in [-\pi, 0] \\ x, & \text{if } x \in [0, \pi] \\ 2\pi - x, & \text{if } x \in [\pi, 2\pi] \\ -2\pi + x, & \text{if } x \in [2\pi, 3\pi] \text{ and so on.} \end{cases}$$

Next, we consider $y = \tan^{-1}(\tan x)$ which is periodic and has period π .

To draw this graph, we should draw the graph for one interval of length π and repeat the entire values of x.

We know
$$\tan^{-1}(\tan x) = \left\{x; -\frac{\pi}{2} < x < \frac{\pi}{2}\right\}$$
. Thus, it has been defined for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ that has length π .

The graph is plotted as

Thus, the curve for $y = \tan^{-1}(\tan x)$, where y is not defined for $x \in (2n+1)\frac{\pi}{2}$. The below result can be kept in mind.

$$\tan^{-1}(\tan x) = \begin{cases} -\pi - x, & \text{if } x \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2} \right] \\ x, & \text{if } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ x - \pi, & \text{if } x \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \\ x - 2\pi, & \text{if } x \in \left[\frac{3\pi}{2}, \frac{5\pi}{2} \right] \text{ and so on.} \end{cases}$$

Additional formulas

a.
$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right)$$

b.
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right)$$

c.
$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left(xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right)$$

d.
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left(xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right)$$

e.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z - xyz}{1 - xy - yz - zx} \right]$$
, if $x > 0, y > 0, z > 0 & xy + yz + zx < 1$

f.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$
 when $x + y + z = xyz$

g.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
 when $xy + yz + zx = 1$

h.
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$
; $x = y = z = 1$

i.
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$$
; $x = y = z = -1$

j.
$$\tan^{-1} 1 + \tan^{-1} 2 + 2 \tan^{-1} 3 = \tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$$