DN-DETR: Accelerate DETR Training by Introducing Query DeNoising

CVPR 2022 Oral

Feng Li*, Hao Zhang*, Shilong Liu, Jian Guo, Lionel M. Ni, and Lei Zhang, IEEE Fellow

- Feng Li and Hao Zhang are with the Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong.
- Shilong Liu is with the Department of Computer Science and Engineering, Tsinghua University, Beijing.
- Lionel Ni is the president of The Hong Kong University of Science and Technology (Guangzhou).
- Jian Guo and Lei Zhang are with IDEA.
- * denotes equal contribution.

Object Detection on COCO test-dev

Leaderboard Dataset All models View box mAP ∨ by Date for 80 DyHead (Swin-L, multi scale, self-training) 60 DetectoRS (ResNeXt-101-64x4d, multi=scale) NAS-FPN (AmoebaNet-D, learned aug) D-RFCN + SNIP (DPN-98 with flip, multi-scale) **BOX MAP** Mask R-CNN (ResNeXt-101-FPN) 2016 2017 2020 2022 2018 2019 2021 2023 Other models
 Models with highest box mAP

Problems & Challenges

Classic detectors:

Handcraft components like NMS and anchors

DETR-like models: (Detection transformer)

- Set-based prediction
- Bipartite matching
- End-to-end optimization

DETR: End-to-End Object Detection with Transformers

Problems:

- Slow training convergence.
- No clear meaning for positional queries.
- Sub performances.

DETR: End-to-End Object Detection with Transformers

Decoder embeddings:

- Decoder self-attention output
- Encoded image feature
- A content part

Learnable queries:

- Object queries (100*256)
- Position embedding
- A position part

Bipartite Graph Matching

- What is Bipartite Graph?
- What is Hungarian matching?
 - Worker: a, b, c
 - Work: x、y、z
 - When given a cost matrix, assign different workers to work, so as to minimize final total cost.

Bipartite Graph Matching

- $\mathcal{L}_{\text{match}}\left(y_i, \hat{y}_{\sigma(i)}\right) =$
- $-\mathbb{1}_{\{c_i\neq\emptyset\}}\hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i\neq\emptyset\}}\mathcal{L}_{\text{box}}\left(b_i,\hat{b}_{\sigma(i)}\right)$

where c_i may be \emptyset (no object)

DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

Contributions:

Figure 13: Convergence curves of DETR, Conditional DETR, and our DAB-DETR. All models are trained under the R50(DC5) setting.

- A deeper understanding of the role of queries.
- Solving the problem of slow convergence and improved performance in DETR

Why Is DETR Training Slow?

Instability of bipartite graph matching

• A small change in the cost matrix may cause an enormous change in the matching result, which will further lead to inconsistent optimization goals for decoder queries.

How To Address This Problem?

- Anchor box reconstruction:
 - Input: GT boxes as Anchor boxes
 - Output: Predict Box and Cls for each anchor
 Without bipartite graph matching.
- It did not work until we add noises to anchor boxes.
- The anchor box formulation makes this task very easy and straightforward to setup.

DN-DETR framework

Attention mask to stop

• we leverage a denoising task as a training shortcut to make relative offset learning easier, as the denoising task bypasses bipartite matching.

Denoising: Noised Boxes

Box Noising in two ways:

center shifting

$$|\Delta x| = \lambda_1 w/2$$
 $|\Delta y| = \lambda_1 h/2$ $\lambda_1 \epsilon(0,1)$

box scaling

$$|\Delta w| = \lambda_2 w$$
 $|\Delta h| = \lambda_2 h$ $\lambda_2 \epsilon(0,1)$

Denoising: Noised Labels

- Label embedding:
 - DN-DETR specify the decoder embedding as label embedding and add an indicator to differentiate denoising task and matching task.

- Label Noising
 - adopt label flipping, which means we randomly flip some ground-truth labels to other labels

Denoising: DN Groups

• Each group is a noised version of all GT objects.

$$q = \{g_0, g_1, ..., g_{P-1}\}$$

• Each denoising group contains M queries where M is the number of GT objects in the image.

$$\mathbf{g_p} = \{q_0^p, q_1^p, \dots, q_{M-1}^p\}$$

• gt -> query : one to many

	No Group	1 Group	5 Groups			
R50	42.2	43.4	44.1			
R50-DC5	44.5	45.6	46.3			
R101	43.5	45.0	45.2			
R101-DC5	45.8	46.5	47.3			

Denoising: Attention Mask

- Two types of potential information leakage:
 - the matching part may see the noised GT objects and easily predict GT objects.
 - one noised version of a GT object may see another version.
- Attention mask:
 - aij = 1 means the i-th query cannot see the j-th query and aij = 0 otherwise.

Box Denoising	Label Denoising	Attention Mask	AP
√	✓	✓	43.4
✓		✓	43.0
		✓	42.2
	✓		24.0

Analysis of Training Instability

Fig. 2. The IS of DAB-DETR and DN-DETR during training. For each method, we train 12 epoch on the same setting. We test the change of the Hungarian matching between each two epochs on the Validation set as the IS.

• IS (InStability)

$$IS^i = \sum_{j=0}^N \mathbf{1}ig(V_n^i
eq V_n^{i-1}ig) \ V_n^i = egin{cases} m, & ext{if } O_n^i ext{ matches } T_m \ -1, & ext{if } O_n^i ext{ matches nothing} \end{cases}$$

 IS is used to evaluate how many queries are matched with different targets after one epoch of parameter updating.

Main Results - 50 Epochs

Model	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params	
DETR-R50 [1]	500	42.0	62.4	44.2	20.5	45.8	61.1	86	41M	
Faster RCNN-FPN-R50 [15]	108	42.0	62.1	45.5	26.6	45.5	53.4	180	42M	
Anchor DETR-R50 [18]	50	42.1	63.1	44.9	22.3	46.2	60.0	_	39M	- R50
Conditional DETR-R50 [12]	50	40.9	61.8	43.3	20.8	44.6	59.2	90	44M	NOU
DAB-DETR-R50 [11]	50	42.2	63.1	44.7	21.5	45.7	60.3	94	44M	
DN-DETR-R50	50	44.1(+1.9)	64.4	46.7	22.9	48.0	63.4	94	44M	
DETR-R101 [1]	500	43.5	63.8	46.4	21.9	48.0	61.8	152	60M	
Faster RCNN-FPN-R101 [15]	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60M	
Anchor DETR-R101 [18]	50	43.5	64.3	46.6	23.2	47.7	61.4	_	58M	D4.04
Conditional DETR-R101 [12]	50	42.8	63.7	46.0	21.7	46.6	60.9	156	63M	► R101
DAB-DETR-R101 [11]	50	43.5	63.9	46.6	23.6	47.3	61.5	174	63M	
DN-DETR-R101	50	45.2(+1.7)	65.5	48.3	24.1	49.1	65.1	174	63M	
DETR-DC5-R50 [1]	500	43.3	63.1	45.9	22.5	47.3	61.1	187	41 M	
Anchor DETR-DC5-R50 [18]	50	44.2	64.7	47.5	24.7	48.2	60.6	151	39M	
Conditional DETR-DC5-R50 [12]	50	43.8	64.4	46.7	24.0	47.6	60.7	195	44M	⊢ R50-DC5
DAB-DETR-DC5-R50 [11]	50	44.5	65.1	47.7	25.3	48.2	62.3	202	44M	
DN-DETR-DC5-R50	50	46.3(+1.8)	66.4	49.7	26.7	50.0	64.3	202	44M	
DETR-DC5-R101 [1]	500	44.9	64.7	47.7	23.7	49.5	62.3	253	60M	
Anchor DETR-R101 [18]	50	45.1	65.7	48.8	25.8	49.4	61.6	_	58M	
Conditional DETR-DC5-R101 [12]	50	45.0	65.5	48.4	26.1	48.9	62.8	262	63M	► R101-DC5
DAB-DETR-DC5-R101 [11]	50	45.8	65.9	49.3	27.0	49.8	63.8	282	63M	
DN-DETR-DC5-R101	50	47.3(+1.5)	67.5	50.8	28.6	51.5	65.0	282	63 M	

Main Results - 12 Epochs(1x)

	Model	MultiScale	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params
•	Faster R50-FPN 1x [15]	✓	12	37.9	58.8	41.1	22.4	41.1	49.1	180	40 M
	DETR-R50 1x [1]		12	15.5	29.4	14.5	4.3	15.1	26.7	86	41 M
•	DAB-DETR-DC5-R50 [11]		12	38.0	60.3	39.8	19.2	40.9	55.4	216	44M
•	DN-DETR-DC5-R50		12	41.7(+3.7)	61.4	44.1	21.2	45.0	60.2	216	44M
•	Deformable DETR-R50 1x [20]	✓	12	37.2	55.5	40.5	21.1	40.7	50.5	173	40M
	Dynamic DETR-R50 [†] 1x (without dynamic encoder)	✓	12	40.2	58.6	43.4		_	_	_	_
•	Dynamic DETR-R50 [†] 1x [4]	\checkmark	12	42.9	61.0	46.3	24.6	44.9	54.4	_	_
•	DN-Deformable-DETR-R50 [4]	\checkmark	12	43.4	61.9	47.2	24.8	46.8	59.4	195	48M
	DAB-DETR-DC5-R101 [11]		12	40.3	62.6	42.7	22.2	44.0	57.3	282	63M
	DN-DETR-DC5-R101		12	42.8(+2.5)	62.9	45.7	23.3	46.6	61.3	282	63M
	Faster R101 FPN [15]	✓	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60M
	DN-Deformable-DETR-R101	\checkmark	12	44.1	62.8	47.9	26.0	47.8	61.3	275	67M

R50-DC5

R50+ Deformable

Convergence Curves

Fig. 7. (a) Convergence curves of DAB-DETR and DN-DETR with ResNet-DC5-50. Before learning rate drop, DN-DETR achieves 40 AP in 20 epochs, while DAB-DETR needs 40 epochs. (b) Convergence curves of multi-scale models with ResNet-50. With learning rate drop, DN-Deformable-DETR achieves 47.8 AP in 30 epochs, which is 0.9 AP higher than the converged DAB-Deformable-DETR.

Thanks for your listening