High-Resolution Virtual Try-On with Misalignment and Occlusion-Handled Conditions

Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan Choi, Jaegul Choo

ECCV 2022

Presenter - Gyojung Gu

Image-based Virtual Try-on

Reference Images

Target Clothes

Dataset

VITON dataset

VITON-HD dataset

256 x 192

512 x 384

1024 x 768

Virtual Try-on architectures

VTNFP

Segmentation generation ->

Virtual Try-on architectures

VITON-HD

Motivation

Misalignment

Motivation

TPS transformation

Appearance flow

Motivation

Body part occlusion

Architecture

Fig. 2: Overview of the proposed framework.

Architecture – condition generator

Fig. 3: Architecture of try-on condition generator.

Architecture – condition generator

(B) Feature Fusion Block

Architecture – condition generator

$$\hat{S}_{logit}^{k,i,j} = \begin{cases} \hat{S}_{raw}^{k,i,j} & \text{if } k \neq C \\ \hat{S}_{raw}^{k,i,j} \cdot W(c_m, F_{f_4}) & \text{if } k = C \end{cases}$$

Training – condition generator

$$\mathcal{L}_{L1} = \sum_{i=0}^{3} w_i \cdot ||W(c_m, F_{f_i}) - S_c||_1 + ||\hat{S}_c - S_c||_1,$$

$$\mathcal{L}_{VGG} = \sum_{i=0}^{3} w_i \cdot \phi(W(c, F_{f_i}), I_c) + \phi(\hat{I}_c, I_c),$$

$$\mathcal{L}_{TV} = ||\nabla F_{f_4}||_1$$

$$\mathcal{L}_{TOCG} = \lambda_{CE} \mathcal{L}_{CE} + \mathcal{L}_{cGAN} + \lambda_{L1} \mathcal{L}_{L1} + \mathcal{L}_{VGG} + \lambda_{TV} \mathcal{L}_{TV},$$

Training – condition generator

$$\mathcal{L}_{L1} = \sum_{i=0}^{3} w_i \cdot ||W(c_m, F_{f_i}) - S_c||_1 + ||\hat{S}_c - S_c||_1,$$

$$\mathcal{L}_{VGG} = \sum_{i=0}^{3} w_i \cdot \phi(W(c, F_{f_i}), I_c) + \phi(\hat{I}_c, I_c),$$

$$\mathcal{L}_{TV} = ||\nabla F_{f_4}||_1$$

Fig. 15: Effects of the multi-scale L1/VGG losses. 1st row: w/ multi-scale losses. 2nd row: w/o multi-scale losses.

$$\mathcal{L}_{TOCG} = \lambda_{CE} \mathcal{L}_{CE} + \mathcal{L}_{cGAN} + \lambda_{L1} \mathcal{L}_{L1} + \mathcal{L}_{VGG} + \lambda_{TV} \mathcal{L}_{TV},$$

Discriminator rejection

	256×192			512×384				1024×768			
	$ \text{LPIPS}_{\downarrow} $	SSIM _↑ FID	↓ KID↓	$\text{LPIPS}_{\downarrow}$	SSIM_{\uparrow}	$\mathrm{FID}_{\downarrow}$	$\mathrm{KID}_{\downarrow}$	$\mathrm{LPIPS}_{\downarrow}$	SSIM_{\uparrow}	$\mathrm{FID}_{\downarrow}$	$\mathrm{KID}_{\downarrow}$
CP-VTON	0.159	0.739 30.1	1 2.034	0.141	0.791	30.25	4.012	0.158	0.786	43.28	3.762
ACGPN	0.074	0.833 11.3	3 0.344	0.076	0.858	14.43	0.587	0.112	0.850	43.29	3.730
VITON-HD	0.084	0.811 16.3	6 0.871	0.076	0.843	11.64	0.300	0.077	0.873	11.59	0.247
Ours	0.062	0.864 9.3	8 0.153	0.061	0.878	9.90	0.188	0.065	0.892	10.91	0.179

Table 1: Quantitative comparison with baselines. We describes the KID as a value multiplied by 100.

Fig. 6: Synthesis results and corresponding misaligned regions indicated by yellow colored areas. VITON-HD suffers from the artifacts caused by misalignment.

Fig. 7: Effects of the body part occlusion handling. The green colored areas indicate the pixel-squeezing artifacts.

Method	FID↓	${ m KID}_{\downarrow}$
PF-AFN	14.01	0.588
Ours	10.91	0.179
w/o Post-Processing	12.05	0.356
∟ w/o Fusion Block	12.41	0.381
	12.73	0.415

Figure 3. Qualitative results of our model on the images in the wild setting (*i.e.*, complex background).

Thank you