1 Задачи работы

Для каждой пары чисел найти наибольший общий делитель и его линейное представление, используя следующие алгоритмы:

- 1. Расширенный алгоритм Евклида.
- 2. Расширенный бинарный алгоритм Евклида.
- 3. Расширенный алгоритм Евклида с «усечёнными» остатками.

Привести все итерации алгоритмов (последовательность остатков и две последовательности коэффициентов линейного представления). При числе итераций больше 20 привести первые 5 и последние 5 элементов каждой последовательности. Итерации должны быть пронумерованы.

При получении различных линейных представлений одного и того же наибольшего общего делителя обосновать корректность полученных результатов. Привести формулу для вычисления линейных представлений.

Привести сравнение быстродействия реализованных алгоритмов и объяснить полученные результаты.

2 Теоретические сведения

Определение НОД:

Целое число $d\neq 0$ называется *наибольшим общим делителем* целых чисел $a_1, a_2,..., a_k$ (обозначается $d=HO\mathcal{L}(a_1, a_2,..., a_k)$), если выполняются следующие условия:

- 1. Каждое из чисел $a_1, a_2,..., a_k$ делится на d;
- 2. Если $d_1 \neq 0$ другой общий делитель чисел $a_1, a_2,..., a_k$, то d делится на d_1 .

Теорема (о существовании и линейном представлении наибольшего общего делителя):

Для любых целых чисел $a_1, a_2,..., a_k$ существует наибольший общий делитель d, и его можно представить в виде линейной комбинации этих чисел:

$$d = c_1 a_1 + c_2 a_2 + \ldots + c_k a_k$$
, где $c_i \in \mathbb{Z}$

Линейное представление ax + by = d не единственно. Выведем общий вид коэффициентов х и у.

Пусть есть другое представление ax' + by' = HOД(a,b). Тогда a(x'-x) + b(y'-y) = 0. Найдем такие целые числа s, t, для которых as = bt. Запишем $a = a_1 \cdot \text{HOД}(a,b)$, где $\text{HOД}(a_1,b_1) = 1$. Отсюда $a_1s = b_1t$, и это равенство выполняется для $s = b_1k$, $t = a_1k$, где k – произвольно целое число. Получаем

$$x' = x + \frac{bk}{HOD(a,b)}, y' = y - \frac{ak}{HOD(a,b)}$$

для произвольного целого числа k.

2.1 Расширенный алгоритм Евклида

Расширенный алгоритм Евклида находит НОД(a,b) и его линейное представление, то есть целые числа x и y, для которых ax+by=d. Для доказательства корректности алгоритма Евклида понадобятся две леммы.

Лемма 1:

Если числа a и b целые и a делится на b, то b = HOД(a, b).

Лемма 2:

Для любых целых чисел a, b, c выполняется равенство HOД(a + cb, b) = <math>HOД(a, b).

Теорема 1:

Для любых a, b > 0 алгоритм Евклида останавливается и выдаваемое им число d является наибольшим общим делителем чисел a и b.

Расширенный алгоритм Евклида находит наибольший общий делитель d чисел a и b и его линейное представление, то есть целые числа x и y, для которых ax + by = d, и не требует «возврата».

Сложность алгоритма Евклида равна $O(log^2a)$.

Лемма 3:

На каждой итерации расширенного алгоритма Евклида выполняется равенство $ax_i + by_i = r_i$ при $i \geq 0$, где r_i – остатки от деления на каждом шаге алгоритма.

2.2 Расширенный бинарный алгоритм Евклида

Этот вариант алгоритма Евклида оказывается более быстрым при реализации на компьютере, поскольку использует двоичное представление чисел а и b. Бинарный алгоритм Евклида основан на следующих свойствах HOД(a,b) $(0<b\le a)$:

- 1. Если оба числа а и b четные, то $HOД(a,b) = 2 \cdot HOД(\frac{a}{2}, \frac{b}{2});$
- 2. Если число а нечетное, а b четное, то $HOД(a, b) = (a, \frac{b}{2});$
- 3. Если оба числа а и b нечетные, a > b, то HOД(a, b) = HOД(a b, b);
- 4. Если a = b, то HOД(a, b) = a.

Сложность этого алгоритма — $O(log^2a)$. Здесь по аналогии с леммой 3 предыдущего пункта на каждом шаге выполняются соотношения u=aA+bB и v=aC+bD. Если все три числа u, A и B четные, то обе части равенства u=aA+bB можно разделить на 2. Если же при четном u хотя бы одно из чисел A, B нечетное, то соотношение u=aA+bB преобразуется в u=aA+bB+ab-ab=a(A+b)+b(B-a). То же справедливо и для чисел v, C, D.

2.3 Расширенный алгоритм Евклида с «усечёнными» остатками

Данная модификация алгоритма Евклида основывается на следующем утверждении: если $r_{i+1} > \frac{r_i}{2}$, то $r_{i+1} = r_i - r_{i+1}$. Сложность данного алгоритма не отличается от сложности расширенного алгоритма Евклида.

3 Ход работы

3.1 Результаты работы программы

Разработанная программа была запущена для всех наборов чисел. Результаты работы программы представлены на Рисунок 1—9.

```
_____EXTENDED EUCLID ALGORITHM__
Search for GCD((18560553142075070783, 7725867344442366293)):
   18560553142075070783
    7725867344442366293
    3108818453190338197
    1508230438061689899
     92357577066958399
     30509204990355515
       829962095891854
                            -9118
       630569538248771
                                        21905
       199392557643083
                                      -22508 3
        32391865319522
                                      89429 6
         5041365725951
                          232719
                                      -559082 6
          2143670963816
                                      3443921
          754023798319 3099797
                                    -7446924 2
          635623367178 -7633133 18337769 1
          118400431141 10732930 -25784693 5
           31158008195 133328496 -320307161
           12463203278 -194626279
                                   467568395 2
18
            6231601639 522581054 -1255443951 2
                     0 -1239788387 2978456297
gGCD(18560553142075070783, 7725867344442366293) = 6231601639
y = -1255443951
[INFO] Check is correct: 18560553142075070783 * 522581054 + 7725867344442366293 * -1255443951 = 6231601639
Time consumed: 0.007609128952026367 sec
```

Рисунок 1 — Результат работы программы для расширенного алгоритма Евклида, набор чисел №1

```
Earch for GCD((128260935023581176035370606222706151131, 734804759503482093243321114491967761681)):

r x y q

1 1734804759503482093243321114491967761681 0 1 1

2 3934561755200979082792049491730738389450 1 -1 1

3 34134858398338301065127162761229372231 -1 2 1

4 521075915367160723407777868969509017219 2 -3 6

....>

39 10712201970706751852017 -24608845583285961 37785818298741668 2

40 325316328828404611558 678477777906830379 -104177329216210611 32

41 3020794481978804282161 -2195737738601858089 3377460353271481220 1

42 23236880630600329397 2263588516598688468 -34756378682433591831 13

43 0 -31622349455214808173 48554750224855475023 0

gGCD(1128260935023581176035370606222706151131, 734804759503482093243321114491967761681) = 23236880630600329397

x = 2263585516508688468

y = -34756378624335691831

[INFO] Check is correct: 1128260935023581176035370606222706151131 * 2263585516508688468 + 734804759503482093243321114491967761681 * -3475637682433691831 = 23236880630600329397

Time consumed: 0.0026073455810546875 sec
```

Рисунок 2 – Результат работы программы для расширенного алгоритма Евклида, набор чисел №2

Рисунок 3 – Результат работы программы для расширенного алгоритма Евклида, набор чисел №3

Рисунок 4 — Результат работы программы для расширенного бинарного алгоритма Евклида, набор чисел №1

```
Search for GCD((1128260935023581176035370606222706151131, 734804759503482093243321114491967761681)):

V A B

1 1128260935023581176035370606222706151131 734804759503482093243321114491967761681 1 0

1 1128260935023581176035370606222706151131 734804759503482093243321114491967761681 1 0

2 3934561755200990827920494917307308389450 1 0

3 196728087760049541396024745865369194725 734804759503482093243321114491967761681 567402379751741046621660557245983880841 -56413046751179058801768530311353075566

4 - 5380766717434325518472963684624598564956 - -3467

4 - 5380766717434325518472963684624598564956 - -3467

5 - 54613046751179058801768530311353075566

4 - 546130467511790588017685303111353075566

5 - 3467

5 - 546130467511790588017685303111353075566

6 - 546130467511790588017685303111353075566

6 - 54613046751790588017685303111353075566

6 - 54613046751790588017685303111353075566

6 - 54613046751790588017685303111353075566

7 - 646130467517434325518472963684624598564956

8 - 6461304675117905880176853031135307568282510296273525247058241634

8 - 646137412621280658794 - -6461522591070373941709186839919279971 1066585733970246751765387216884764352295

9 - 647137412621280658794 - -6461522591070373941709186839919279997 1066585733970246751765387216884764352295

9 - 647137412621280658794 - -6461522591070373941709186839919279971 1066585733970246751765387216884764352295

9 - 6471633827568282510296273525247058241634

9 - 6471633827568282510296273525247058241634

9 - 6471633827568282510296273525247058241634

9 - 1061973835762057075424855979559506407697

1 - 1061973835762057075424855979559506407697

1 - 1061973835762057075424855979559506407697

1 - 1061973835762057075424855979559506407697

1 - 106197383576205707542485597955906407697

1 - 106197383576205707542485597955906407697

1 - 106197383576205707542485597955906407697
```

Рисунок 5 — Результат работы программы для расширенного бинарного алгоритма Евклида, набор чисел №2

Рисунок 6 – Результат работы программы для расширенного бинарного алгоритма Евклида, набор чисел №3

```
EXTENDED REMAIN EUCLID ALGORITHM

F X Y Q

18560553142075070783 1 0 -

1 7725867344442366293 0 1 2

2 3108818453190338197 0 1 2

3 1508230438061689899 1 -2 2

4 92357577066958399 -2 5 16

5 30509204990355515 5 -12 3

6 829962095891854 -82 197 36

7 199392557643083 251 -603 4

8 32391865319522 9369 -22508 6

9 5041365725951 -37225 89429 6

10 2143670963816 232719 -559082 2

11 754023798319 -1433539 3443921 2

12 118400451141 3099797 -7446924 6

13 43621211473 10732930 -25784693 2

14 12463203278 -61297783 147261234 3

15 6231601639 -194626279 467568395 2

16 0 522581054 -1255443951 -

gGCD(185605553142075070783, 7725867344442366293) = 6231601639

x = 522581054

y = -1255443951

[IHF0] Check is correct: 18560553142075070783 * 522581054 + 7725867344442366293 * -1255443951 = 6231601639

Time consumed: 0.0057163238525390625 sec
```

Рисунок 7 — Результат работы программы для расширенного алгоритма Евклида с "усеченными" остатками, набор чисел №1

Рисунок 8 – Результат работы программы для расширенного алгоритма Евклида с "усеченными" остатками, набор чисел №2

Рисунок 9 – Результат работы программы для расширенного алгоритма Евклида с "усеченными" остатками, набор чисел №3

3.2 Сравнение алгоритмов

Результаты работы программы в соответствие с входным набором чисел также занесены в Таблица 1. Можно заметить, что бинарный алгоритм дал иные коэффициенты линейного представления, которые также оказались верны для равенства ax + by = d. Это можно объяснить тем, что во время работы бинарный алгоритм использует другие операции – битовые сдвиги, которые дают иной результат.

Таблица 1 – Сравнение результатов работы программы

Набор чисел		Значение данных для алгоритма			
$(\mathfrak{N}_{\mathfrak{D}}\Pi \setminus \Pi),$		Расширенного	Расширенного	Расширенного	
категория		алгоритма Евклида	бинарного алгоритма	алгоритма Евклида	
выходных			Евклида	с «усечёнными»	
данных				остатками	
1	НОД(a, b)	6231601639	6231601639	6231601639	
	X	522581054	278257519680954003	522581054	
	у	-1255443951	-668483323744295470	- 1255443951	
	Проверка	Пройдена	Пройдена	Пройдена	
	Число	19	50	16	
	итераций				
2	НОД(a, b)	2323688063060032	232368806306003293	2323688063060032	
		9397	97	9397	
	X	2263585516508688	691633827568282510	2263585516508688	
		468	296273525247058241	468	
			634		
	у	-	-	-	
		3475637682433691	106197383576205707	3475637682433691	
		831	542485597955950640	831	
			7697		
	Проверка	Пройдена	Пройдена	Пройдена	
	Число	43	104	29	
	итераций				
3	НОД(a, b)	2318426252568279	231842625256827952	2318426252568279	
		5274593286874592	745932868745927677	5274593286874592	
		76771961	1961	76771961	
	X	-	-	-	
		5284900728745742	145994346590514454	5284900728745742	

	5105781649356063	811126961287285178	5105781649356063
	2800759	991271952497812959	2800759
		624544691756192279	
		8639867	
у	8571245889177155	236778987399075285	8571245889177155
	9799078635458935	376118610969039334	9799078635458935
	3358084	210458876897987535	3358084
		206994236980345740	
		9681280	
Проверка	Пройдена	Пройдена	Пройдена
Число	88	196	60
итераций			

Измерения времени работы алгоритмов отражены в Таблица 2. Результаты при первом запуске программы показали противоречивые данные — простой расширенный алгоритм на двух наборах данных оказался быстрее своих улучшенных версий. Было выдвинуто предположение, что причина тому — фиксация результатов каждой итерации и последующий вывод этих данных.

Таблица 2 – Сравнение времени работы алгоритмов

Набор	Время работы алгоритма(сек)				
чисел	Расширенного	Расширенного	Расширенного		
(№ п\п	алгоритма Евклида	бинарного алгоритма	алгоритма Евклида с		
)		Евклида	«усечёнными»		
			остатками		
1	0.007609128952026367	0.003221988677978515	0.005716323852539062		
		6	5		
2	0.002607345581054687	0.003330707550048828	0.002848386764526367		
	5				
3	0.002401590347290039	0.006136655807495117	0.00272369384765625		

Для того, чтобы проверить предположение, был проведён повторный замер времени «чистой» работы алгоритмов, не включающей запись и вывод данных о промежуточных результатах каждой итерации. Вывод программы показан на рисунках, а сравнение времени – в Таблица 3.

Рисунок 10 – Результаты новых замеров времени, расширенный алгоритм Евклида

Рисунок 11 — Результаты новых замеров времени, расширенный бинарный алгоритм Евклида

```
Search for GCD((18560553142075070783, 7725867344442366293)):
gGCD(18560553142075070783, 7725867344442366293) = 6231601639
= 522581054
[INFO] Check is correct: 18560553142075070783 * 522581054 + 772586734
ime consumed: 2.3603439331054688e-05 sec
               __EXTENDED REMAIN EUCLID ALGORITHM__
Search for GCD((1128260935023581176035370606222706151131, 73480475950
gGCD(1128260935023581176035370606222706151131, 7348047595034820932433
= 2263585516508688468
INFO] Check is correct: 1128260935023581176035370606222706151131 * 2
ime consumed: 3.981590270996094e-05 sec
      _____EXTENDED REMAIN EUCLID ALGORITHM_____
Search for GcD((10540471889338057301186033515422097986577273562400307
gGCD(1709492400870841535547704933489285751086991404757653566811004671
 = -528490072874574251057816493560632800759
[INFO] Check is correct: 17094924008708415355477049334892857510869914
```

Рисунок 12 — Результаты новых замеров времени, расширенный алгоритм Евклида с "усеченными" остатками

Таблица 3 – Сравнение времени "чистой" работы алгоритмов

Набор	Время работы алгоритма(сек)				
чисел	Расширенного	Расширенного	Расширенного		
(№п\п	алгоритма Евклида	бинарного алгоритма	алгоритма Евклида с		
)		Евклида	«усечёнными»		
			остатками		
1	3.719329833984375e-05	6.794929504394531e-05	2.3603439331054688e		
			-05		
2	5.53131103515625e-05	0.0001175403594970703	3.981590270996094e-		
		1	05		
3	0.0001142024993896484	0.0002870559692382812	7.2479248046875e-05		
	4	5			

Исходя из полученных данных, можно сделать вывод, что при реализации на языке Python наиболее эффективным показывает себя расширенный алгоритм

Евклида с «усеченными» остатками. Это объясняется тем, что по сравнению с другими алгоритмами он выполняет гораздо меньше итераций, и преимущество бинарного алгоритма в скорости вычисления на каждой итерации не настолько велико, чтобы компенсировать большую разницу в числе итераций.

4 Выводы

В ходе выполнения лабораторной работы были реализованы три различных алгоритма для нахождения наибольшего общего делителя (НОД) двух чисел и их линейного представления. При запуске программы было показано на практике, что линейное представление НОД не единственно и зависит от последовательности действий при нахождении коэффициентов. Результаты измерения времени работы программы при использовании различных алгоритмов показали, что на полученных наборах входных данных наиболее эффективным оказался расширенный алгоритм Евклида с «усеченными» остатками по причине малого числа итераций в сравнении с другими алгоритмами.