COMP 546

Lecture 10

depth from X: defocus blur and binocular disparity

Tues. Feb. 13, 2018

Depth from defocus blur

The eye controls f_{lens} , so it "knows" $Z_{focalplane}$.

$$\frac{1}{f_{cornea}} + \frac{1}{f_{lens}} = \frac{1}{Z_{focalplane}} + \frac{1}{Z_{sensor}}$$

 $Z_{focalplane}$

Recall: Depth and Defocus Blur

blur width = aperture
$$\left| \frac{1}{Z_{focalplane}} - \frac{1}{Z_0} \right|$$

(See Exercise 2 Q 6 & Assignment 1)

Estimating Depth from Defocus Blur

blur width = aperture
$$\left| \frac{1}{Z_{focalplane}} - \frac{1}{Z_0} \right|$$

2.) measured

(details omitted)

1.) known

(controlled by vision system)

3.) estimated

Estimating Depth from Defocus Blur

blur width = aperture
$$\left| \frac{1}{Z_{focalplane}} - \frac{1}{Z_0} \right|$$

There is a two-fold depth ambiguity.

Estimating Depth from Defocus Blur

Varying accommodation resolves the two-fold ambiguity.

Blur on a slanted plane

focal plane intersection

blur gradient

Blur on a slanted plane

Blur on a slanted plane

See lecture notes: blur width (radians) =
$$A \frac{m}{Z_0} \left| \frac{y}{f} \right|$$

ASIDE: tricks with a tilt-shift lens in photography

We next examine how defocus blur is related to binocular disparity.

Recall: Binocular disparity and depth

disparity
$$\equiv \frac{x_l}{f} - \frac{x_r}{f} = \frac{T_x}{Z_0}$$

Recall: Binocular vergence

Vergence angle $heta_v$ determines depth

$$\theta_v \equiv \theta_l - \theta_r \approx \frac{x_l}{f} - \frac{x_r}{f} = \frac{T_x}{Z_v}$$

Binocular disparity of vergence point is 0 (obvious).

$$\left(\frac{x_l}{f} - \theta_l\right) - \left(\frac{x_r}{f} - \theta_r\right) = 0 - 0 = 0$$

Binocular disparity depends on distance (diopters) from vergence depth.

$$disparity = T_{\chi}(\frac{1}{Z_c} - \frac{1}{Z_v}) > 0$$

Binocular disparity depends on distance (diopters) from vergence depth.

$$disparity = T_{\chi}(\frac{1}{Z_{u}} - \frac{1}{Z_{v}}) < 0$$

Binocular Fusion ("Cyclopean Vision")

If disparity is *sufficiently* small, then we fuse the left and right eye images.

Otherwise, we perceive two images ("diplopia").

Panum's fusional area

Panum's fusional area in disparity space

Binocular disparity and blur

disparity =
$$IOD$$
 $\left(\frac{1}{\text{object dist}} - \frac{1}{\text{vergence dist}}\right)$

interocular distance or T_X

blur width = aperture
$$\frac{1}{\text{object dist}} - \frac{1}{\text{focal dist}}$$

Binocular disparity and blur

disparity =
$$IOD$$
 $\left(\frac{1}{\text{object dist}} - \frac{1}{\text{vergence dist}}\right)$

blur width = aperture
$$\frac{1}{\text{object dist}} - \frac{1}{\text{focal dist}}$$

If vergence distance = focal distance then

$$\frac{|\text{ disparity }|}{\text{blur}} = \frac{\text{IOD}}{\text{aperture}} \approx 10$$

Vergence and accommodation systems are coupled.

We verge at the same depth as we focus (even if one eye is closed) and vice-versa.

Monocular

Binocular

Limitations on 3D cinema

3D stereo displays can create accommodation-vergence conflict

How to study binocular stereo vision?

Neuroscience

 Show cats or monkeys different images to the left and right eyes and measure brain activity.

Computational modelling

 Write a computer program that finds matching points in left and right images, in a biologically plausible way

Psychology

• Show people different images to the left and right eyes and measure how well the people judge depth.

Random Dot Stereogram

Bela Julesz, "Binocular depth perception without familiarity cues" Science 1964.

How to make a random dot stereogram?

image for image for left eye right eye 1.) shift patch left 2.) Fill empty patch

Disparity Space

Disparity Space

Q: where are the eyes verging?