Last name _	
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h07 Test 1 Review.

Write up a careful, complete test review and turn it in before our Test 1 on Fri., Mar. 3. **Explain** everything.

- 1. What is a *field*? Give some examples.
- 2. Write this (homogeneous) system (over \mathbb{Q}) in matrix form, use the 3 row operations to find an equivalent system of equations in *row-reduced* form. Describe the solutions.

- 3. Why is every $m \times n$ matrix A row-equivalent to a row-reduced (echelon) matrix?
- 4. Why will every 3×4 matrix A corresponded to a system of equations with some non-trivial solution?
- 5. Let A be an $n \times n$ matrix. Explain why the homogeneous system AX = 0 has non-trivial solutions if and only if A is not row-equivalent to the identity matrix I.
- 6. Let A and B be matrices. When is the product AB defined? If AB is defined, what are its entries?
- 7. If AB is defined, and $B = [B_1 \dots B_p]$, explain why $AB = [AB_1 \dots AB_p]$.
- 8. Show that $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ is invertible. Find A^{-1} .
- 9. Suppose a matrix A is invertible. Show that its inverse is unique.
- 10. What is an *elementary matrix*? Give 3 importantly different examples (with explanation).
- 11. Suppose A is a 3×3 matrix. What elementary matrix E corresponds to adding a multiple c of the 2^{nd} row to the 3^{rd} row?
- 12. Why is E invertible? What is E^{-1} ? Why is E^{-1} an elementary matrix?
- 13. $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is invertible. Show that A can be written as a product of elementary matrices.
- 14. Find A^{-1} as a product of elementary matrices—directly from your previous answer.
- 15. What is a vector space? What are prototypical examples.

- 16. Show that the set of $n \times 1$ column matrices with entries in a field \mathbb{F} is a vector space over \mathbb{F} .
- 17. What is the Subspace Criterion Theorem?
- 18. Argue that $\alpha_1 = (1, 2, 3)$ and $\alpha_2 = (1, 1, 1)$ are linearly independent in \mathbb{R}^3 . Find a vector α_3 so that $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ is a basis for \mathbb{R}^3 .
- 19. Let A be an $m \times n$ matrix. Claim: the $n \times 1$ column matrices X that are solutions to AX = 0 is a subspace of V.
- 20. Find the subspace spanned by $\alpha = (0,1)$ in \mathbb{R}^2 .
- 21. What does it mean for vectors $\alpha_1, \alpha_2, \dots, \alpha_k$ to be linearly dependent? Give an example.
- 22. Show $\alpha_1 = (1,0), \alpha_2 = (1,1) \in \mathbb{R}^2$ are linearly independent.
- 23. Let $\mathbb F$ be a subfield of $\mathbb C$. Let V be the vector space of functions from $\mathbb F$ to $\mathbb F$ of the form

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

(where $c_i \in \mathbb{F}$ and n is a non-negative integer). Let W be the set of functions in V with maximum degree at most 3. Show W is a subspace of V.

- 24. Find a basis for W.
- 25. Show your basis spans W.
- 26. Show your basis is linearly independent.
- 27. What is the dimension of W?
- 28. **Prove:** Any linearly independent set in a finite-dimensional vector space V is part of (can be extended to) a (finite) basis for V.
- 29. Find the coordinate matrix $[\alpha]_{\mathcal{B}}$ of $\alpha = (2,3)$ with respect to the basis $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(2,0), (0,1)\}$ for \mathbb{R}^2 .
- 30. Find the coordinate matrix $[\alpha]_{\mathcal{B}'}$ of $\alpha=(2,3)$ with respect to the basis $\mathcal{B}'=\{\alpha'_1,\alpha'_2\}=\{(1,0),(1,1)\}$ for \mathbb{R}^2 .
- 31. Find an invertible matrix P such that $[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$.
- 32. Give an example of two non-row-reduced—but row-equivalent—matrices A and B. Show that they are row-equivalent.
- 33. What is the *row space* of a matrix?
- 34. Describe the row space of $A = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 35. What is the row rank of a matrix?
- 36. Find the row rank of $A = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.