

Rule-Based Reordering on Multiple Syntactic Levels in SMT

Ge Wu | September 3, 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

<ロ > < 部 > < 目 > < 目 > 目 ≥ 目 ≥ り へ ○

Outline

- Introduction
- Multi-Level-Tree (MLT) Reordering
 - Extension of tree rule based reordering to multiple syntactic levels
- Evaluation
 - English to Chinese: 1.61 Improvement of BLEU score
 - Chinese to English: 2.16 Improvement of BLEU score
- Conclusion

Introduction

- Rule-based pre-ordering approaches [Rottmann and Vogel 2007; Niehues and Kolss 2009; Herrmann et al. 2013]
- Hierarchical phrase-based model [Chiang 2007]
- More adaptive pre-ordering approach for Chinese based on syntactic structures

Preordering System

Rreordering Rules

Short rules

after the accident -> the accident after (0.5)

WRB MD DT -> DT WRB DT (0.3)

Rreordering Rules

- Short rules
- Long rules

$$NN * MD -> * MD NN (0.14)$$

Rreordering Rules

- Short rules
- Long rules
- Tree rules

NP (ADJP JJ NN) -> JJ NN ADJP (0.16)

Evaluation

Premodifier instead of postmodifier

- Adverbials
- Relative clauses
- Preposition phrases

- Premodifier instead of postmodifier
- Questions

- Premodifier instead of postmodifier
- Questions
- Special sentence constructions

There aren't many people around that are really involved with architecture as clients.

Never would India have thought on this scale before.

- Premodifier instead of postmodifier
- Questions
- Special sentence constructions

Ge Wu - Rule-Based Reordering on Multiple Syntactic Levels in SMT

Long distance position change

I find this very much disturbing when we are talking about what is going on right and wrong with democracy these days.

现在,每当我跟别人讨论我们的民主什么是对的,什么是错的我都为此觉得很无力。

Reordering on multiple syntactic levels

Extension of tree rule based reordering to multiple syntactic levels

Root #Level Pattern


```
Root #Level Pattern
            NP ( NP PP ) -> 1 0
```



```
Root #Level Pattern

1    1    NP ( NP PP ) -> 1 0

1    2    NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1
```



```
Root #Level Pattern

1     1     NP ( NP PP ) -> 1 0

1     2     NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1
```

1 3 NP (NP (JJ NNS) PP (IN NP (JJ NNS)) -> 3 4 2 0 1


```
Root #Level Pattern
            NP ( NP PP ) -> 1 0
1
            NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1
     3
            NP ( NP ( JJ NNS ) PP ( IN NP ( JJ NNS ) ) ) -> 3 4 2 0 1
```



```
Root #Level Pattern

1    1    NP ( NP PP ) -> 1 0

1    2    NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1

1    3    NP ( NP ( JJ NNS ) PP ( IN NP ( JJ NNS ) ) ) -> 3 4 2 0 1

3    1    PP ( IN NP ) -> 1 0
```



```
Root #Level Pattern

1    1    NP ( NP PP ) -> 1 0

1    2    NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1

1    3    NP ( NP ( JJ NNS ) PP ( IN NP ( JJ NNS ) ) ) -> 3 4 2 0 1

3    1    PP ( IN NP ) -> 1 0

3    2    PP ( IN NP ( JJ NNS ) ) -> 1 2 0
```



```
Root #Level Pattern

1    1    NP ( NP PP ) -> 1 0

1    2    NP ( NP ( JJ NNS ) PP ( IN NP ) ) -> 3 2 0 1

1    3    NP ( NP ( JJ NNS ) PP ( IN NP ( JJ NNS ) ) ) -> 3 4 2 0 1

3    1    PP ( IN NP ) -> 1 0

3    2    PP ( IN NP ( JJ NNS ) ) -> 1 2 0
```

Rule Extraction

Search from all nodes with all possible depths

Evaluation

Rule Extraction

- Search from all nodes with all possible depths
- Search depth increases

Rule Extraction

- Search from all nodes with all possible depths
- Search depth increases
- Rule probability

Rule Application

Search from all nodes with all possible depths

Rule Application

- Search from all nodes with all possible depths
- Search depth decreases

```
PP ( IN NP ) -> NP IN
PP ( IN NP ( JJ NNS ) ) -> JJ NNS IN
```

Rule Application

- Search from all nodes with all possible depths
- Search depth decreases

```
PP ( IN NP ) -> NP IN
PP ( IN NP ( JJ NNS ) ) -> JJ NNS IN
```

Reordering as path in word lattice

Results: English -> Chinese

	BLEU Score	Improvement	TER
Baseline	12.07		72.15
+Short Rules	12.50	0.43	71.41
+Long Rules	12.99	0.92	70.71
+Tree Rules	13.38	1.31	68.27
+MLT Rules	13.81	1.74	68.20
Oracle Reordering	18.58	6.51	62.13
Long Rules	12.31	0.24	71.81
Tree Rules	13.30	1.23	70.42
MLT Rules	13.68	1.61	70.25

Results: Chinese -> English

	BLEU Score	Improvement	TER
Baseline	21.80		62.09
+Short Rules	22.90	1.10	61.64
+Long Rules	23.13	1.33	61.43
+Tree Rules	23.84	2.04	60.95
+MLT Rules	24.14	2.34	60.79
Oracle Reordering	26.80	5.00	56.97
Long Rules	22.10	0.30	62.21
Tree Rules	23.35	1.55	61.52
MLT Rules	23.96	2.16	60.83

Conclusion

- Better translation quality
- Better syntactic structure
- Space for further improvement

September 3, 2014

Outlook

- Better reordering approaches
- Vector presentation instead of POS tags as features
 - More possible reorderings
 - Improvement for more complicated reorderings
- Reordering with less information

September 3, 2014

Thank you for your attention

Ge Wu - Rule-Based Reordering on Multiple Syntactic Levels in SMT

Evaluation

References I

- Alexandra Birch. "Reordering Metrics for Statistical Machine Translation". In: (2011).
- Alexandra Birch, Miles Osborne, and Phil Blunsom. "Metrics for MT Evaluation: Evaluating Reordering". In: Machine Translation 24.1 (Mar. 2010). ISSN: 0922-6567. DOI: 10.1007/s10590-009-9066-5. URL: http://dx.doi.org/10.1007/s10590-009-9066-5.
- Phil Blunsom, Edward Grefenstette, Nal Kalchbrenner, et al. "A Convolutional Neural Network for Modelling Sentences". In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014.

References II

- David Chiang. "Hierarchical Phrase-Based Translation". In: *computational linguistics* 33.2 (2007), pp. 201–228.
- Michael Collins, Philipp Koehn, and Ivona Kučerová. "Clause Restructuring for Statistical Machine Translation". In: *Proceedings of the 43rd annual meeting on association for computational linguistics*. Association for Computational Linguistics. 2005, pp. 531–540.
- Josep M Crego and Nizar Habash. "Using Shallow Syntax Information to Improve Word Alignment and Reordering for SMT". In: *Proceedings of the Third Workshop on Statistical Machine Translation*. Association for Computational Linguistics. 2008, pp. 53–61.

References III

- Marie-Catherine De Marneffe, Bill MacCartney,
 Christopher D Manning, et al. "Generating Typed Dependency
 Parses from Phrase Structure Parses". In: *Proceedings of LREC*.
 Vol. 6. 2006, pp. 449–454.
- Nizar Habash. "Syntactic Preprocessing for Statistical Machine Translation". In: *MT Summit XI* (2007), pp. 215–222.
- Teresa Herrmann, Jan Niehues, and Alex Waibel. "Combining Word Reordering Methods on Different Linguistic Abstraction Levels for Statistical Machine Translation". In: *Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in Statistical Translation*. Atlanta, Georgia: Association for Computational Linguistics, June 2013, pp. 39–47. URL: http://www.aclweb.org/anthology/W13-0805.

4□ > 4륜 > 4분 > 4분 = 900

References IV

- Teresa Herrmann et al. Analyzing the Potential of Source Sentence Reordering in Statistical Machine Translation. 2013.
- Philipp Koehn. *Statistical Machine Translation*. 1st. New York, NY, USA: Cambridge University Press, 2010. ISBN: 0521874157, 9780521874151.
- Philipp Koehn et al. "Edinburgh System Description for the 2005 IWSLT Speech Translation Evaluation". In: IWSLT. 2005, pp. 68–75.
- Uri Lerner and Slav Petrov. "Source-Side Classifier Preordering for Machine Translation". In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP '13). 2013.
- Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. "Building a Large Annotated Corpus of English: The Penn Treebank". In: *Computational linguistics* 19.2 (1993), pp. 313–330.

References V

- Tomas Mikolov et al. "Efficient Estimation of Word Representations in Vector Space". In: arXiv preprint arXiv:1301.3781 (2013).
- Jan Niehues and Muntsin Kolss. "A POS-Based Model for Long-Range Reorderings in SMT". In: *Proceedings of the Fourth Workshop on Statistical Machine Translation*. Association for Computational Linguistics. Athens, Greece, 2009, pp. 206–214.
- Kishore Papineni et al. "BLEU: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics. 2002, pp. 311–318.
- Maja Popovic and Hermann Ney. "POS-Based Word Reorderings for Statistical Machine Translation". In: *International Conference on Language Resources and Evaluation*. 2006, pp. 1278–1283.

References VI

- Kay Rottmann and Stephan Vogel. Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model. 2007.
- Beatrice Santorini. "Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd revision)". In: (1990).
- Christoph Tillmann. "A Unigram Orientation Model for Statistical Machine Translation". In: *Proceedings of HLT-NAACL 2004: Short Papers*. Association for Computational Linguistics. 2004, pp. 101–104.
- Chao Wang, Michael Collins, and Philipp Koehn. "Chinese Syntactic Reordering for Statistical Machine Translation". In: *EMNLP-CoNLL*. Citeseer. 2007, pp. 737–745.

References VII

Yuqi Zhang, Richard Zens, and Hermann Ney. "Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation". In: *Proceedings of the NAACL-HLT 2007/AMTA Workshop on Syntax and Structure in Statistical Translation*. Association for Computational Linguistics. 2007, pp. 1–8.