Roll No.

2006

B.E. 3rd Sem. (ECE)

Examination, December, 2013 DATA STRUCTURE & ALGORITHM

'E' Scheme

Paper: CSE-201-F

Time: Three hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt any five questions.

- 1. (a) What do you mean by Primitive and nonprimitive data structures? Differentiate between them.
 - (b) What are stacks? What are various operations performed on stacks.
- (a) What is a circular linked list? What are its advantages over linear linked list? Write algorithm to insert a node at desired position in a circular linked list.
 - (b) What is doubly ended Queue ? Write algorithm to implement doubly ended queue.10
- 3. Describe the following briefly:

20

	(1) Binary Tree Traversals		
	(ii)	Dynamic Implementation of a Binary Tree.	
	(iii)	Operations on Binary Trees.	
١.	(a)	Write algorithms for B.F.T. & D.F.T. of graphs. 10	
v te	(b)	What do you mean by Heap? Explain operations of Heap.	
1.	(a)	What do you mean by divide and conquer approach? Explain one sorting algorithm based on this approach.	
ă.	(b)	Write Recursive algorithm for Binary Search. 10	
).	(a)	What do you mean by Hashing? What is collision? Describe various collision resolution techniques with example.	
	(b)	Write a Program/algorithm to sort n numbers using binary search.	
,	(a)	Trace the heap sort algorithm for the following data:	
	E1	1, 2, 3, 5, 4, 7, 12, 9, 8	
	(b)	Write an algorithm for Linear search. 5	
3.	Wr	ite short notes on (any two): $2 \times 10 = 20$	
9	(i) I	Big O notations	
	(ii)	AVL Trees	
	(iii)	Skip Lists.	3