Prática 2 - Bioinspirados

Rodrigo José Zonzin Esteves

28 de abril de 2025

1 Introdução

Modelos matemáticos são representações abstratas que utilizam linguagem e estruturas matemáticas para descrever fenômenos do mundo real, permitindo sua análise, compreensão e previsão. Eles são amplamente empregados em diversas áreas do conhecimento, como física, biologia, economia, engenharia etc. Equações Diferenciais, Redes Complexas, Autômatos Celulares, Cadeias de Markov e Algoritmos Genéticos são exemplos desses modelos.

Dentro do amplo espectro dos modelos matemáticos, os algoritmos genéticos (AG) destacam-se como uma classe de métodos de otimização e busca inspirados nos mecanismos de seleção natural e evolução biológica. Esses algoritmos utilizam princípios como seleção, recombinação e mutação para iterativamente refinar soluções para problemas, modelando o processo evolutivo de forma computacional.

Dessa forma, o objetivo desse trabalho é implementar um AG de representação real para otimizar uma função sem restrição em seu domínio.

2 Métodos

Para a implementação do AG, foi utilizado uma classe Gene, que contém os atributos **alelos** (um vetor de floats) e **dim_alelos** (dimensão do vetor de alelos). Alguns métodos foram implementados para manipulação da estrutura de dados.

Além disso, uma classe AG reúne os atributos essenciais para a representação computacional do AG: um vetor de Genes, inicializado aleatoriamente, o número de indivíduos, o intervalo de busca, as taxas de mutação etc. O Anexo A apresenta a implementação completa.

O objetivo da prática consiste em otimizar a Função de Ackley, dada pela Equação 1, por meio de um AG com representação real. A Figura 1 apresenta o plot da função objetivo, onde o valor ótimo pode ser observado como $f(\vec{0}) = 0$.

$$f(\vec{x}) = -20e^{-0.2\sqrt{\frac{1}{n}\sum x_i^2}} - e^{\frac{1}{n}\sum \cos(2\pi x_i)} + 20 + e \tag{1}$$

Figura 1: Plot da Equação 1

3 Resultados

A Figura 2 apresenta os resultados obtidos para os seguintes hiperparâmetros em 20 execuções. Para cada execução, um arquivo de texto foi utilizado para salvar o vetor de população, o melhor indivíduo e o fitness associado a ele.

• Tamanho da População: 20

Dimensão do Gene: 5Taxa de Mutação: 0.1

• Intervalo de Busca: $-2 \le x \le 2$

• Gerações: 60

Figura 2: Resultados obtidos

Como se observa, o AG convergiu na maior parte dos testes. Em algumas execuções, no entanto, há indícios de que o AG tenha se estagnado em um mínimo local com imagem entre 0 e 1.5. A consistência dos resultados indica que o AG é suficientemente robusto para a otimização de funções congêneres.

A Figura 3 apresenta o comportamento do fitness ao longo das gerações para diferentes valores de taxas de mutação: 0.001, 0.01, 0.5, 0.1 e 0.2. A taxa de 0.001 não foi capaz de obter o mínimo global, enquanto a taxa de 0.15 obteve o valor ótimo mais rapidamente. De maneira intermediária, a taxa 0.05 foi convergiu, mas mais lentamente.

Figura 3: Fitness vs Gerações vs Taxa de Mutação

Por fim, para uma otimização de parâmetros mais aprofundada, testou-se uma combinação dos seguintes parâmetros:

taxa de Mutação: 1%, 5%, 10%Cruzamento: 60%, 80%, 100%

População: 25, 50, 100Gerações: 25, 50, 100

Os resultados são apresentados nas páginas 9–12, onde a melhor combinação foi dada por Mutacão = 0.1, Cruzamento = 0.6, Populacão = 100, Geracões = 100 e MelhorFitness = 2.57841929540703e - 06.

Observa-se ainda que o fitness tende a melhorar com o aumento do número de gerações e da população, independentemente da configuração de mutação ou cruzamento. Isso é esperado, pois mais gerações e populações maiores favorecem uma exploração mais abrangente do espaço de busca, permitindo uma convergência mais refinada.

A taxa de mutação de 0.01 apresentou desempenhos consideráveis, particularmente em combinações de maiores populações e gerações. Por exemplo, valores de fitness próximos de 10^{-6} foram alcançados com $pop_size = 100$ e geracoes = 50,100. Por outro lado, taxas de mutação mais elevadas $(0,05 \ e \ 0,1)$ demonstraram comportamentos mistos: enquanto evitaram a estagnação em mínimos locais em alguns casos, em outros impediram a adequada convergência ao ótimo, evidenciado por fitness relativamente elevados mesmo em execuções longas.

Quanto à taxa de cruzamento, a variação entre $0,6,\ 0,8$ e 1,0 influenciou moderadamente o desempenho. Cruzamentos completos (crossover=1.0) não garantiram melhores resultados em todas as circunstâncias; em alguns casos, a combinação de (crossover=0.8) e taxa de mutação baixa (0.01) resultou em valores de fitness mais precisos.

O efeito da população é bastante direto: populações maiores (100 indivíduos) associadas a um número elevado de gerações (100) permitiram alcançar fitness mínimos extremamente baixos, destacando a importância da diversidade genética inicial e da manutenção de variedade durante a evolução.

Em resumo, a configuração que mais favoreceu o algoritmo envolveu baixas taxas de mutação, taxas de cruzamento moderadamente elevadas (0,8) e combinações de populações grandes com um número expressivo de gerações.

4 Conclusão

A Código completo

```
1 import numpy as np
2 import random
3 import math
4 import matplotlib.pyplot as plt
5 import matplotlib as mpl
6 import sys
 class Gene:
      def __init__(self, alelos):
          self.alelos = alelos
          self.alelos_dim = len(self.alelos)
12
13
      def __str__(self):
14
          return str(self.alelos)
      def shape(self):
17
          return self.alelos_dim
18
19
20
  class AG:
21
      def __init__(self, pop_size=10, gene_size=40, taxa_mutacao=0.01,
22
     intervalo=(-2, 2), minMaxIndiv = (-20, 20)):
          self.pop_size = pop_size
23
          self.gene_size = gene_size
24
          self.intervalo = intervalo
25
          self.minMaxIndiv = minMaxIndiv
          self.pop = self._gerar_populacao()
          self.taxa_mutacao = taxa_mutacao
28
20
      def _gerar_populacao(self):
31
          vmin, vmax = self.minMaxIndiv
32
          return [Gene([random.uniform(vmin, vmax) for _ in range(self.
33
     gene_size)]) for _ in range(self.pop_size)]
34
      def print_pop(self):
35
          for gene in self.pop:
36
               print(gene)
37
      def fitness(self, gene):
39
          x = gene.alelos
40
          n = len(x)
41
          sum1 = sum([xi ** 2 for xi in x])
          sum2 = sum([math.cos(2 * math.pi * xi) for xi in x])
43
44
          parte1 = -20 * math.exp(-0.2 * math.sqrt(sum1 / n))
          parte2 = -math.exp(sum2 / n)
45
          return parte1 + parte2 + 20 + math.e
```

```
def roleta(self):
48
          valores_fitness = np.array([1 / self.fitness(gene) for gene in
49
      self.pop])
          valores_fitness = valores_fitness / np.sum(valores_fitness)
          return self.pop[np.random.choice(a=range(self.pop_size),
     replace=False, p=valores_fitness)]
52
53
      def crossoverBLXAlphaBeta(self, paiX, paiY, alpha=0.75, beta=0.25)
          filhos = []
54
          d = [abs(paiX.alelos[i] - paiY.alelos[i]) for i in range(self.
56
     gene_size)]
57
          for _ in range(2):
               alelos_filho = []
59
               for i in range(self.gene_size):
                   if self.fitness(paiX) <= self.fitness(paiY):</pre>
61
                       x1 = \max(paiX.alelos[i] - alpha * d[i], self.
     intervalo[0])
                       x2 = min(paiY.alelos[i] + beta * d[i], self.
63
     intervalo[1])
                   else:
64
                       x1 = max(paiY.alelos[i] - beta * d[i], self.
65
     intervalo[0])
                       x2 = min(paiX.alelos[i] + alpha * d[i], self.
     intervalo[1])
                   alelos_filho.append(random.uniform(x1, x2))
67
               filhos.append(Gene(alelos_filho))
68
          return filhos[0], filhos[1]
70
71
      def mutacao(self, gene):
72
          pmin, pmax = self.intervalo
          for i in range(len(gene.alelos)):
74
               if random.random() < self.taxa_mutacao:</pre>
                   gene.alelos[i] = random.uniform(pmin, pmax)
          return gene
77
78
79
      def mutacao_suave(self, gene):
          for i in range(len(gene.alelos)):
80
               if random.random() < self.taxa_mutacao:</pre>
81
                   perturbacao = random.gauss(0, 0.1)
82
                   gene.alelos[i] += perturbacao
83
84
                   gene.alelos[i] = max(self.intervalo[0], min(self.
85
     intervalo[1], gene.alelos[i]))
          return gene
86
87
88
```

```
def nova_geracao(self):
           nova_pop = []
90
           while len(nova_pop) < self.pop_size:</pre>
91
                pai1 = self.roleta()
92
                pai2 = self.roleta()
93
                while pai1 == pai2:
94
                    pai2 = self.roleta()
95
96
97
                filho1, filho2 = self.crossoverBLXAlphaBeta(pai1, pai2)
98
                nova_pop.append(self.mutacao_suave(filho1))
99
100
                if len(nova_pop) < self.pop_size:</pre>
                    nova_pop.append(self.mutacao_suave(filho2))
           self.pop = nova_pop
104
       def nova_geracao_elitismo(self):
106
           nova_pop = [self.melhor_individuo()]
           while len(nova_pop) < self.pop_size:</pre>
                pai1 = self.roleta()
110
                pai2 = self.roleta()
111
112
                filho1, filho2 = self.crossoverBLXAlphaBeta(pai1, pai2)
113
114
                nova_pop.append(self.mutacao(filho1))
116
                if len(nova_pop) < self.pop_size:</pre>
117
                    nova_pop.append(self.mutacao(filho2))
118
119
           self.pop = nova_pop
120
       def melhor_individuo(self):
           return min(self.pop, key=self.fitness)
124
125
  if __name__ == "__main__":
126
       #random.seed(42)
127
128
       ag = AG(pop_size=30, gene_size=10, taxa_mutacao=0.1, intervalo
      =(-2, 2)
       \#gene_0 = Gene(alelos = [0]*6)
130
       #print('Gene 0:', gene_0)
       #print(f"Fitness(0) = {ag.fitness(gene_0)} ")
132
       #ag.print_pop()
       fitness_result = []
135
136
137
       geracoes = 100
       for i in range(geracoes):
138
```

```
print(f"\nGera o {i}")
139
           ag.print_pop()
140
141
           melhor = ag.melhor_individuo()
142
           print(f"\nMelhor indiv duo: {melhor}")
           print(f"Fitness: {ag.fitness(melhor)}\n")
144
145
           fitness_result.append(ag.fitness(melhor))
146
147
           ag.nova_geracao_elitismo()
148
149
150
       plt.figure(figsize=(15, 10))
151
       plt.scatter(x=range(geracoes), y=fitness_result)
152
       plt.savefig('fitness.png')
```

Listing 1: Implementação do AG Real

Melhor Fitness	Mutação	Cruzamento	População	Gerações
0.4995819462101889	0.01	0.6	25	25
0.14837328929753157	0.01	0.6	25	50
0.042084457104256234	0.01	0.6	25	100
0.008238042712335858	0.01	0.6	50	25
9.975171277876171e-06	0.01	0.6	50	50
0.0001083352294668493 7	0.01	0.6	50	100
0.000995672108239365	0.01	0.6	100	25
0.004319949914247889	0.01	0.6	100	50
0.0003013678300480826 5	0.01	0.6	100	100
0.09139586440326442	0.01	0.8	25	25
0.22239554512224702	0.01	0.8	25	50
0.01986914863357514	0.01	0.8	25	100
0.004051963473298503	0.01	0.8	50	25
0.11037286206869057	0.01	0.8	50	50
0.020590464399245167	0.01	0.8	50	100
0.0030407922917992103	0.01	0.8	100	25
0.0019903655382091934	0.01	0.8	100	50
0.0005773190060982536	0.01	0.8	100	100
0.2064058651301406	0.01	1.0	25	25
0.08308839393834377	0.01	1.0	25	50
0.07852813467089037	0.01	1.0	25	100
0.17831647991896604	0.01	1.0	50	25
0.07307157412632082	0.01	1.0	50	50
0.018762004016001033	0.01	1.0	50	100
0.03717449651673066	0.01	1.0	100	25
3.938768970090933e-06	0.01	1.0	100	50
0.19009053681179156	0.01	1.0	100	100
0.09723823348332461	0.05	0.6	25	25
0.09761710722175154	0.05	0.6	25	50
0.03192822664426176	0.05	0.6	25	100
0.02023222799476132	0.05	0.6	50	25
0.09416246093639602	0.05	0.6	50	50
0.025087009194550536	0.05	0.6	50	100
0.08406138788166162	0.05	0.6	100	25
0.00514066323429363	0.05	0.6	100	50
0.0005782284643101043	0.05	0.6	100	100

0.03479647168612532	0.05	0.8	25	25
0.029537026327976168	0.05	0.8	25	50
0.015011765866070892	0.05	0.8	25	100
0.031381897465430075	0.05	0.8	50	25
0.029741187991540574	0.05	0.8	50	50
0.004414946227495609	0.05	0.8	50	100
0.01780970963622197	0.05	0.8	100	25
0.015544796975938358	0.05	0.8	100	50
0.0015182703671396958	0.05	0.8	100	100
1.217109456344247	0.05	1.0	25	25
0.04318351997217862	0.05	1.0	25	50
0.008686126078619072	0.05	1.0	25	100
0.017828474812799033	0.05	1.0	50	25
0.023824725655949397	0.05	1.0	50	50
0.0419897578759465	0.05	1.0	50	100
0.021342968204721036	0.05	1.0	100	25
0.018366940331525416	0.05	1.0	100	50
0.010571019717762642	0.05	1.0	100	100
0.11457558844530924	0.1	0.6	25	25
0.03586794847405317	0.1	0.6	25	50
0.021615767912031902	0.1	0.6	25	100
0.00302519082825059	0.1	0.6	50	25
0.0019504198376236737	0.1	0.6	50	50
0.013438926495223047	0.1	0.6	50	100
0.08210904009233433	0.1	0.6	100	25
0.02406344955671047	0.1	0.6	100	50
2.5784192954070306e-0 6	0.1	0.6	100	100
0.005846014697315827	0.1	0.8	25	25
0.02161961673417112	0.1	0.8	25	50
0.049088816148799896	0.1	0.8	25	100
0.024937954326266	0.1	0.8	50	25
0.0454187983412635	0.1	0.8	50	50
0.015810355648842478	0.1	0.8	50	100
0.002392933772061401	0.1	0.8	100	25
0.0001915914072836422	0.1	0.8	100	50
0.0060580713855000745	0.1	0.8	100	100
0.0010319679553494332	0.1	1.0	25	25

0.023518979670300144	0.1	1.0	25	50
0.0014420787758280262	0.1	1.0	25	100
0.0026335418226826057	0.1	1.0	50	25
0.0001376812976556785	0.1	1.0	50	50
0.0003018729281376586 5	0.1	1.0	50	100
0.0001776548689105261 8	0.1	1.0	100	25
0.0003511152422146502	0.1	1.0	100	50
7.008326064239512e-05	0.1	1.0	100	100

.