5 What is claimed:

1. A compound of the formulae:

$$R_1$$
 R_3
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8

10 wherein:

 R_1 is selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH;

or a moiety of the formulae:

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH;

 $R_{7} \text{ is selected from -}(CH_{2})_{n}\text{-COOH, -}(CH_{2})_{n}\text{-N-}(C_{1}\text{-}C_{6} \text{ alkyl})_{2}, -(CH_{2})_{n}\text{-NH-}(C_{1}\text{-}C_{6} \text{ alkyl}), -CF_{3}, C_{1}\text{-}C_{6} \text{ alkyl}, C_{3}\text{-}C_{5} \text{ cycloalkyl, } C_{1}\text{-}C_{6} \text{ alkoxy, -NH-}(C_{1}\text{-}C_{6} \text{ alkyl}), -N-(C_{1}\text{-}C_{6} \text{ alkyl})_{2}, \text{ pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, } (CH_{2})_{n}\text{-phenyl, phenyl, -O-phenyl, -O-phenyl, -(CH_{2})_{n}\text{-phenyl-O-phenyl, -(CH_{2})_{n}\text{-phenyl-CH}_{2}\text{-phenyl, -(CH_{2})_{n}\text{-phenyl-CH}_{2}\text{-phenyl}, -(CH_{2})_{n}\text{-phenyl-CH}_{2}\text{-p$

20

10

15

n is an integer from 0 to 3;

R₂ is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

20

25

5

 R_3 is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_1 - C_6 alkyl, C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C_1 - C_6 alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -O-phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl), or a moiety of the formulae:

5
$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -S-A, or $-(CH_2)_n$ -O-A, wherein A is the moiety:

20 wherein

D is H, $C_1 - C_6$ lower alkyl, $C_1 - C_6$ lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy,

25 or -NO₂; or

a moiety of the formulae: c)

10

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF $_3$, -OH, -C $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ alkoxy, -NH $_2$, or -NO $_2$; or

d) a moiety of the formula $-L^2-M^2$, wherein:

 $L^{2} \ indicates \ a \ linking \ or \ bridging \ group \ of \ the \ formulae \ -(CH_{2})_{n}\ -, \ -S-, \ -O-, \\ -SO_{2}\ -, \ -C(O)\ -, \ -(CH_{2})_{n}\ -C(O)\ -, \ -(CH_{2})_{n}\ -C(O)\ -(CH_{2})_{n}\ -, \ -(CH_{2})_{n}\ -O-(CH_{2})_{n}\ -, \ or \ -(CH_{2})_{n}\ -S-(CH_{2})_{n}\ -, \ -C(O)C(O)X;$

where X = O,N

5

15

20

 M^2 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_1 0 alkoxy, preferably C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -30 NH₂, -CN, -CF₃ or -OH; or

iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

n is an integer from 0 to 3;

 R_s is selected from -COOH, -C(O)-COOH, -(CH $_2$) $_n$ -C(O)-COOH, -(CH $_2$) $_n$ -COOH, -CH $_2$ -phenyl-C(O)-benzothiazole,

15 (CH₂)_n-CH=CH-COOH,

5

10

15

n is an integer from 0 to 3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -10 C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

, n is an integer from 0 to 3;

 $R_9 \text{ is selected from H, halogen, -CF}_3, -OH, -(CH_2)_n-COOH, \\ -(CH_2)_n-C(O)-COOH, -C_1-C_6 \text{ alkyl, -O-C}_1-C_6 \text{ alkyl, -NH(C}_1-C_6 \text{ alkyl), -N(C}_1-C_6 \\ \text{alkyl)}_2;$

5 n is an integer from 0 to 3;

 $R_{10} \text{ is selected from the group of H, halogen, -CF}_3, \text{-OH, -(CH}_2)_n\text{-COOH,} \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl), -N(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl), -N(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl), -N(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C(O)-COOH, -C}_1\text{-C$

n is an integer from 0 to 3;

 R_{11} is selected from H, C_1 - C_6 lower alkyl, -CF3, -COOH, -(CH2)n-COOH, -(CH2)n-COOH, or

15

10

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

10 2. A compound of Claim 1 having the formula:

$$R_1$$
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5

wherein:

15

5

 R_1 is selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, phenyl, -O-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH; or R₁ is a moiety of the formulae:

$$R_7$$
 R_7
 R_6
 R_7
 R_7
 R_7

$$R_7$$
 N or

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -CF₃, or -OH;

15 R_7 is selected from $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -N- $-(C_1-C_6 \text{ alkyl})_2$, $-(CH_2)_n$ -NH- $-(C_1-C_6 \text{ alkyl})_2$, $-(CH_2)_n$ -NH- $-(C_1-C_6 \text{ alkyl})_2$, $-(CH_2)_n$ -NH- $-(C_1-C_6 \text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, $-(C_1-C_6 \text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, $-(C_1-C_6 \text{ alkyl})_2$, pyridinyl, or morpholinyl, the pyridinyl, phenyl and benzyl rings of these

groups being optionally substituted by from 1 to 3 substituents selected from halogen,

C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

n is an integer from 0 to 3;

 $R_2 \text{ is selected from H, halogen, } -CF_3, \text{ } -OH, \text{ } -C_1 - C_{10} \text{ alkyl, preferably } -C_1 - C_6 \\ \text{alkyl, } C_1 - C_{10} \text{ alkoxy, preferably } C_1 - C_6 \text{ alkoxy, } -CHO, \text{ } -CN, \text{ } -NO_2, \text{ } -NH_2, \text{ } -NH - C_1 - C_6 \\ \text{alkyl, } -N(C_1 - C_6 \text{ alkyl})_2, \text{ } -N - SO_2 - C_1 - C_6 \text{ alkyl, or } -SO_2 - C_1 - C_6 \text{ alkyl; }$

 R_3 is selected from H, -CF₃, -COOH, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, - C_1 - C_6 alkyl- C_3 - C_{10} cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

20

5 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -O-10 phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl)₂, $-CH_2$ -phenyl-C(O)-benzothiazole or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$ $(CH_2)_n$ $(CH_2)_n$ $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, - CF_3 , -OH, - C_1 - C_6 alkyl, C_1 - C_6 alkoxy, - NH_2 , - NO_2 or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -S-A, or $-(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

5

10

D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or - CF_3 ;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$; or

c) a moiety of the formulae:

10

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH_2$, or $-NO_2$; or

d) a moiety of the formula $-L^2-M^2$, wherein:

L² indicates a linking or bridging group of the formulae $-(CH_2)_n$ -, -S-, -O-, $-SO_2$ -, -C(O)-, $-(CH_2)_n$ -C(O)-, $-(CH_2)_n$ -C(O)-(CH_2)_n-, $-(CH_2)_n$ -, $-(CH_2)_n$ -, or $-(CH_2)_n$ -S-15 $-(CH_2)_n$ -, -(CO)-, where $-(CH_2)_n$ -, -(CO)-, where $-(CH_2)_n$ -, -(CO)-, $-(CH_2)_n$ -, -(CO)-, $-(CH_2)_n$ -, -(CO)-, -(CO)

 M^2 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being

20

- optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine,

pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10}

alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or

a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆, alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;
n is an integer from 0 to 3;

30 R_5 is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole,

n is an integer from 0 to 3;

 $\rm R_8$ is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

 $R_9 \text{ is selected from H, halogen, -CF}_3, \text{-OH, -(CH}_2)_n\text{-COOH,}$ $-(\text{CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl), -N(C}_1\text{-C}_6 \text{ alkyl)}_2;$

n is an integer from 0 to 3;

 R_{10} is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH,

5 $-(CH_2)_n-C(O)-COOH$, $-C_1-C_6$ alkyl, $-O-C_1-C_6$ alkyl, $-NH(C_1-C_6$ alkyl), $-N(C_1-C_6$ alkyl)₂,

n is an integer from 0 to 3;

 $R_{_{11}}$ is selected from H, $C_{_1}\text{-}C_{_6}$ lower alkyl, -CF $_{_3}$, -COOH, -(CH $_2)_{_n}$ -COOH, -(CH $_2)_{_n}$ -COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

- 3. A compound of Claim 2 wherein R₃ is H and R₁, R₂, R₄, R₅, R₆, R₇, 10 R₈, R₉, R₁₀, R₁₁, n, X, L², M², Z, A, B, C, D, and Y are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.
 - 4. A compound of Claim 2 having the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5

- wherein R₁ is benzyloxy, optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH; and R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, n, X, L², M², Z, A, B, C, D, and Y are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.
- 20 5. A compound of Claim 2

$$R_1$$
 R_3
 R_4
 R_5

wherein:

5

10

 R_1 is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R_1 is or a moiety of the formulae:

$$R_7$$
 O
 R_6
 R_6
 R_6
 R_7
 O
 O

$$R_7$$

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -CF₃, or -OH;

 R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6 \text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6 \text{ alkyl})$, $-CF_3$, $C_1-C_6 \text{ alkyl}$, $C_3-C_5 \text{ cycloalkyl}$, $C_1-C_6 \text{ alkoxy}$, $-NH-(C_1-C_6 \text{ alkyl})$, $-N-(C_1-C_6 \text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, $C_1-C_6 \text{ alkyl}$, $C_1-C_6 \text{ alkoxy}$, $-NO_2$, $-CF_3$, or -OH;

n is an integer from 0 to 3;

20

 R_3 is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

5

10

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -O-phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl), $-CH_2$ -phenyl-C(O)-benzothiazole or a moiety of the formulae:

10

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -S-A, or $-(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or - CF_3 ;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

d) a moiety of the formula $-L^2-M^2$, wherein:

 $L^{2} \text{ indicates a linking or bridging group of the formulae -}(CH_{2})_{n}-, -S-, -O-, \\ -SO_{2}-, -C(O)-, -(CH_{2})_{n}-C(O)-, -(CH_{2})_{n}-C(O)-(CH_{2})_{n}-, -(CH_{2})_{n}-O-(CH_{2})_{n}-, \text{ or -}(CH_{2})_{n}-S-(CH_{2})_{n}-, -C(O)C(O)X; \\ \text{where } X=O,N$

M² is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, or - CF₃; or

15

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or
- 30 iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,

but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole, $(CH₂)_n-CH=CH-COOH,$

ADDYKOZG DE 1808

n is an integer from 0 to 3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

R₉ is selected from H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-C_1$ -C₆ alkyl, $-O-C_1$ -C₆ alkyl, $-NH(C_1$ -C₆ alkyl), $-N(C_1$ -C₆ alkyl)₂;

n is an integer from 0 to 3;

 R_{10} is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH,

5 -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

n is an integer from 0 to 3;

 $R_{_{11}}$ is selected from H, $C_{_1}\text{-}C_{_6}$ lower alkyl, -CF $_{_3}$, -COOH, -(CH $_2)_{_n}$ -COOH, -(CH $_2)_{_n}$ -COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

6. A compound of Claim 2 having the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_4
 R_5

wherein:

5

10

15

 R_1 is selected from Halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R_1 is or a moiety of the formulae:

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -CF₃, or -OH;

 R_7 is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

n is an integer from 0 to 3;

 R_3 is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

5

10

15

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, $-(CH_2)_n$ - C_3 - C_6 cycloalkyl, $-(CH_2)_n$ - C_3 - C_5 cycloalkyl, $-(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

20

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -O-phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl), $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl), $-(CH_2)_n$ -phenyl- $(O-CH_2)_n$ -phenyl- $(O-CH_2$

$$(CH_2)_n \xrightarrow{(CH_2)_n} (CH_2)_n \xrightarrow{(CH_2)_n} (CH_2)_n \xrightarrow{Y}$$

10

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, $-CF_3$, -OH, $-C_1$ - C_6 alkyl, C_1 - C_6 alkoxy, $-NH_2$, $-NO_2$ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; n is an integer from 0 to 3;

 R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -(CH₂)_n-CH=CH-COOH,

n is an integer from 0 to 3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

. R₉ is selected from H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂;

n is an integer from 0 to 3;

 $R_{10} \text{ is selected from the group of H, halogen, -CF}_3, -OH, -(CH_2)_n-COOH, -(CH_2)_n-COOH, -C_1-C_6 \text{ alkyl}, -O-C_1-C_6 \text{ alkyl}, -NH(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl})_2,$

10

n is an integer from 0 to 3;

 $R_{_{11}}$ is selected from H, $C_{_1}\text{-}C_{_6}$ lower alkyl, -CF $_{_3}$ -COOH, -(CH $_2)_{_n}$ -COOH, or

15

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

7. A compound of Claim 2 having the formula:

10

15

5

$$R_1$$
 R_3
 R_4
 R_5
 R_4
 R_5

wherein:

 R_1 is selected from Halogen, $-NH_2$, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH; or R_1 is or a moiety of the formulae:

29 September 2000 1ED220:0CO:SRE/rlk GI-5324 P2 PATENT

- 220 -

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₂-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

5 n is an integer from 0 to 3;

 R_3 is selected from H, -CF₃, -COOH, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, - C_1 - C_6 alkyl- C_3 - C_{10} cycloalkyl, -CHO, halogen, or a moiety of the formulae:

10

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, or the groups of:

25

a) a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

10

wherein

D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or - CF_3 ;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or -NO₂;

 R_s is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole,

(CH₂)_n-CH=CH-COOH,

15

n is an integer from 0 to 3;

 $R_{_8}$ is selected from H, -COOH, -(CH_2)_n-COOH, -(CH_2)_n-C(O)-COOH, tetrazole, -C(O)-NH_2, -(CH_2)_n-C(O)-NH_2,

n is an integer from 0 to 3;

10

5

 $R_9 \text{ is selected from H, halogen, -CF}_3, -OH, -(CH_2)_n -COOH, \\ -(CH_2)_n -C(O) -COOH, -C_1 -C_6 \text{ alkyl, -O-C}_1 -C_6 \text{ alkyl, -NH}(C_1 -C_6 \text{ alkyl), -N(C}_1 -C_6 \text{ alkyl)}_2;$

n is an integer from 0 to 3;

15 R_{10} is selected from the group of H, halogen, -CF₃, -OH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂,

n is an integer from 0 to 3;

10

 $R_{_{11}}$ is selected from H, $C_{_1}\text{-}C_{_6}$ lower alkyl, -CF $_{_3}$ -COOH, -(CH $_2)_{_n}$ -COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a

moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$, or

n is an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

10 8. A compound of Claim 2 having the formula:

$$R_1$$
 R_3
 R_4
 R_5
 R_4
 R_5

wherein:

5

R₁ is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl,
N-benzyl-O-phenyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

10 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -CF₃, or -OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

10

n is an integer from 0 to 3;

 R_3 is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_2)_n$

15

20

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_1 - C_6 alkyl, C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ -25 C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

5 a moiety of the formulae: a)

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are 10 optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF $_3$, -OH, -C $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ alkoxy, -NH $_2$, or -NO $_2$; n is an integer from 0 to 3;

n is an integer from 0 to 3;

 R_{8} is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

10 R_9 is selected from H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -C(O)-COOH, $-C_1$ -C₆ alkyl, $-O-C_1$ -C₆ alkyl, $-NH(C_1$ -C₆ alkyl), $-N(C_1$ -C₆ alkyl)₂;

n is an integer from 0 to 3;

 R_{10} is selected from the group of H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -COOH, $-(C_1-C_6)_n$ -COOH,

n is an integer from 0 to 3;

10 R_{11} is selected from H, C_1 - C_6 lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, or

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R₅, R₈, R₉, R₁₀, and/or R₁₁ shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

9. A compound of Claim 2 having the formula:

$$R_1$$
 R_3
 R_4
 R_5
 R_5

15 wherein:

5

10

 R_1 is selected from halogen, $-NH_2$, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl, -N-benzyl, of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH; or R_1 is or a moiety of the formulae:

5

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, phenyl, -O-phenyl, benzyl, -10 O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -CF₃, or -OH;

 R_7 is selected from $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -N- $(C_1$ -C₆ alkyl)₂, $-(CH_2)_n$ -NH- $(C_1$ -C₆ alkyl), $-CF_3$, C_1 -C₆ alkyl, C_3 -C₅ cycloalkyl, C_1 -C₆ alkoxy, -NH- $(C_1$ -C₆ alkyl), -N- $(C_1$ -C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 -C₆ alkyl, C_1 -C₆ alkoxy, $-NO_2$, $-CF_3$, or -OH;

n is an integer from 0 to 3;

R₃ is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n \qquad (CH_2)_n \qquad (CH_2)_n$$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C₁-C₆ alkyl, C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

a) a moiety of the formula $-L^2-M^2$, wherein:

 L^2 indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-,

5 $-SO_2$ -, -C(O)-, $-(CH_2)_n$ --C(O)-, $-(CH_2)_n$ --C(O)- $(CH_2)_n$ -, $-(CH_2)_n$ -O- $(CH_2)_n$ -, or $-(CH_2)_n$ -S- $(CH_2)_n$ -, -C(O)C(O)X; where X = O,N

M² is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, preferably C₁-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₆ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or
- iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the

bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, preferably C_1 - C_6 alkyl, C_1 - C_{10} alkoxy, preferably C_1 - C_6 alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; n is an integer from 0 to 3;

 R_5 is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -CH₂-phenyl-C(O)-benzothiazole,

(CH₂)_n-CH=CH-COOH,

15

10

n is an integer from 0 to 3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂;

n is an integer from 0 to 3;

 $R_{9} \text{ is selected from H, halogen, -CF}_{3}, \text{-OH, -(CH}_{2})_{n}\text{-COOH,} \\ -(CH_{2})_{n}\text{-C(O)-COOH, -C}_{1}\text{-C}_{6} \text{ alkyl, -O-C}_{1}\text{-C}_{6} \text{ alkyl, -NH(C}_{1}\text{-C}_{6} \text{ alkyl), -N(C}_{1}\text{-C}_{6} \\ \text{alkyl)}_{2};$

5 n is an integer from 0 to 3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH,;

n is an integer from 0 to 3;

10

 $R_9 \text{ is selected from H, halogen, -CF}_3, -OH, -(CH_2)_n -COOH, \\ -(CH_2)_n -C(O) -COOH, -C_1 -C_6 \text{ alkyl, -O-C}_1 -C_6 \text{ alkyl, -NH(C}_1 -C_6 \text{ alkyl), -N(C}_1 -C_6 \text{ alkyl)}_2;$

n is an integer from 0 to 3;

 $R_{10} \text{ is selected from the group of H, halogen, -CF}_3, \text{-OH, -(CH}_2)_n\text{-COOH, -CC}_1-C_6 \text{ alkyl, -O-C}_1-C_6 \text{ alkyl, -NH(C}_1-C_6 \text{ alkyl), -N(C}_1-C_6 \text{ alkyl)}_2,$

20

n is an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

15

- 10. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 20 11. A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(2-furylmethyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.
- 12. A compound of Claim 1 which is 4-[(3-chloro-5-25 [(cyclopentylcarbonyl)amino]-2-{[(4-hydroxy-6-phenyl-2-

- 5 pyrimidinyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.
 - 13. A compound of Claim 1 which is 4-{[3-chloro-5-[(cyclopentylcarbonyl)amino]-2-({[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}methyl)-1H-indol-1-yl]methyl}benzoic acid or a pharmaceutically acceptable salt thereof.
 - 14. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2,4-dibromophenoxy)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 15. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(cyclopentylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 20 16. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(propylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 17. A compound of Claim 1 which is 4-({2-{[4-(tert-butyl)phenoxy]methyl}-3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 18. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-quinolinylsulfanyl)methyl]-1H-indol-1-
- 30 yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

- 5 19. A compound of Claim A which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(cyclopropylmethyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.
- 20. A compound of Claim 1 which is 4-({2-[(benzhydrylsulfanyl)methyl]-10 3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 21. A compound of Claim 1 which is 4-({5-[(3-carboxypropanoyl)amino]-3-chloro-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 22. A compound of Claim 1 which is 4-[(5-[(3-carboxypropanoyl)amino]-3-chloro-2-{[(3-methylbenzyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.
 - 23. A compound of Claim/ 1 which is 4-({2-({[4-(tert-butyl)benzyl]sulfanyl}methyl)-5-[(3-carboxypropanoyl)amino]-3-chloro-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 24. A compound of Claim 1 which is 4-({3-chloro-5-(3-furoylamino)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 25. A compound of Claim 1 which is 4-({5-(acetylamino)-3-chloro-2-[(2-30 naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

- 26. A compound of Claim 1 which is 4-({3-chloro-5-{[3-(diethylamino)propanoyl]amino}-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 27. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-thienylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 28. A compound of Claim 1 which is 4-({5-15 {[(benzylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 29. A compound of Claim 1 which is 4-({5-{[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-20 1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 30. A compound of Claim 1 which is 3-[({1-(4-carboxybenzyl)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}amino)carbonyl]benzoic acid or a pharmaceutically acceptable salt thereof.

31. A compound of Claim 1 which is 4-{[5-(benzyloxy)-2-[(E)-2-carboxyethenyl]-3-(2-naphthoyl)-1H-indol-1-yl]methyl}benzoic acid or a pharmaceutically acceptable salt thereof.

- 32. A compound of Claim 1 which is 4-({3-acetyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 33. A compound of Claim 1 which is 4-{[5-(benzyloxy)-2-[(2-naphthylsulfanyl) methyl]-3-(2,2,2-trifluoroacetyl)-1H-indol-1-yl]methyl}benzoic acid or a pharmaceutically acceptable salt thereof.
- 34. A compound of Claim 1 which is 4-({5-[(4-aminobutanoyl)amino]-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 35. A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 36. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(2-quinoxalinylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 25 37. A compound of Claim 1 which is 4-({3-chloro-5-[(2,2-dimethylpropanoyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 38. A compound of Claim 1 which is 4-({5-30 {[(benzyloxy)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

- 39. A compound of Claim 1 which is 4-({3-chloro-5-{[(cyclopentyloxy)carbonyl] amino}-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 40. A compound of Claim'1 which is 4-({5-(acetylamino)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 41. A compound of J Claim 1 which is 4-({5-15 {[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 42. A compound of Claim 1 which is 4-({5-{[(butylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 43. A compound of Claim 1 which is 4-({3-chloro-5-[(morpholinocarbonyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

20

44. A compound of Claim 1 which is 4-({5-(benzylamino)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

- 5 45. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-phenoxybenzyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 46. A compound of Claim 1 which is 4-({3-chloro-5-10 [(cyclopentylcarbonyl) (methyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 47. A compound of Claim 1 which is 4-({5-[acetyl(benzyl)amino]-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 48. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(tetrahydro-3-furanylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 49. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-thienylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 50. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(1-adamantylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 51. A compound of Claim-1 which is 3-[({1-(4-carboxybenzyl)-3-chloro-30 2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}amino)carbonyl]benzoic acid or a pharmaceutically acceptable salt thereof.

- 52. A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-phenylpropanoyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 53. A compound of Claim 1 which is 4-({5-amino-3-chloro-2-[(2-naphthylsulfanyl) methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 54. A compound of Claim 1 which is N-{3-chloro-1-(4-15 {[(methylsulfonyl)amino] carbonyl}benzyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
- 55. A compound of Claim 1 which is N-{3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-[4-({[(4-nitrophenyl)sulfonyl] amino}carbonyl)benzyl]-20 1H-indol-5-yl}cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

/

- 56. A compound of Claim 1 which is N-{3-chloro-1-[4-({[(2-methylphenyl) sulfonyl]amino}carbonyl)benzyl]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-5-yl}cyclo-pentanecarboxamide or a pharmaceutically acceptable salt thereof.
- 57. A compound of Claim 1 which is N-[3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-(4-{[(phenylsulfonyl)amino] carbonyl}benzyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

30

25

25

- 5 58. A compound of Claim 1 which is N-{3-chloro-2-[(2-naphthylsulfanyl)methyl]-1-[4-({[(trifluoromethyl)sulfonyl] amino}carbonyl)benzyl]-1H-indol-5-yl}cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
- 59. A compound of Claim 1 which is 4-[5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyloxy)methyl]-3-(1-pyrrolidinylcarbonyl)-1H-indol-1-yl]butanoic acid or a pharmaceutically acceptable salt thereof.
- 60. A compound of Claim 1/2 which is 4-{5-[(cyclopentylcarbonyl)amino]-3-(morpholinocarbonyl)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoic acid or a pharmaceutically acceptable salt thereof.
 - 61. A compound of Claim 1 which is N-[2-[(2-naphthyloxy)methyl]-1-(4-oxo-4-{[(trifluoromethyl)sulfonyl]amino}butyl)-3-(1-pyrrolidinylcarbonyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.
 - 62. A compound of Claim 1 which is N-[3-(morpholinocarbonyl)-2-[(2-naphthyloxy)methyl]-1-(4-oxo-4-{[(trifluoro-methyl)sulfonyl]amino}butyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

63. A compound of Claim 1/which is 5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyloxy)methyl]-1-(4-oxo-4-{[(trifluoromethyl)sulfonyl]amino}butyl)-1H-indole-3-carboxylic acid or a pharmaceutically acceptable salt thereof.

- 5 64. A compound of Claim 1 which is 2-(4-{[5-(benzyloxy)-3-(1-naphthoyl)-1H-indol-1-yl]methyl}phenyl)acetic acid or a pharmaceutically acceptable salt thereof.
- 65. A compound of Claim 1 which is 2-(4-{[5-(benzyloxy)-3-(2-10 naphthoyl)-1H-indol-1-yl]methyl}phenyl)acetic acid or a pharmaceutically acceptable salt thereof.
 - 66. A compound of Claim/1 which is 2-[4-({5-(benzyloxy)-3-[3,5-bis(trifluoromethyl)benzoyl]-1H-indol-1-yl}methyl)phenyl]acetic acid or a pharmaceutically acceptable salt thereof.
 - 67. A compound of Claim 1/which is 4-({3-benzoyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
 - 68. A compound of Claim 1 which is 4-({5-(benzyloxy)-3-isobutyryl-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 25 69. A compound of Claim 1 which is 2-{3-acetyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt thereof.
- 70. A compound of Claim 1/which is 2-{5-(benzyloxy)-3-isobutyryl-2-[(2-30 naphthylsulfanyl)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt thereof.

- 71. A compound of Claim 1 which is 4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoic acid or a pharmaceutically acceptable salt thereof.
- 72. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.
- 73. A compound of Claim 1 which is 4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}-N-[3 ({[(trifluoromethyl)sulfonyl]amino}carbonyl)phenyl]butanamide or a pharmaceutically acceptable sált thereof.
- 74. A compound of Clair 1 which is 4-[(4-{3-benzoyl-5-(benzyloxy)-2-20 [(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.
- 75. A compound of Claim 1 which is 2-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.
 - 76. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-f[(2-naphthyloxy)methyl]-1H-indol-1/-yl}butanoyl)amino]propanoic acid or a pharmaceutically acceptable salt thereof.

- 5 77. A compound of Claim 1 which is 3-[(4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)amino]propanoic acid or a pharmaceutically acceptable salt thereof.
- 78. A compound of Claim 1 which is N-(4-{3-benzoyl-5-(benzyloxy)-2-10 [(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)-2-methylbenzenesulfonamide or a pharmaceutically acceptable salt thereof.
 - 79. A compound of Claim A which is 5-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}pentanoic acid or a pharmaceutically acceptable salt thereof.
 - 80. A compound of Claim 1 which is 3-[(5-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}pentanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.
- 20 81. A compound of Claim/1 which is 5-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}-N-[3({[(trifluoromethyl)sulfonyl]amino} carbonyl)phenyl]pentanamide or a pharmaceutically acceptable salt thereof.
- 82. A compound of Claim 1 which is 2-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt thereof.
- 83. A compound of Claim 1 which is (E)-4-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}-2-butenoic acid or a pharmaceutically acceptable salt thereof.

- 5 84. A compound of Claim which is 3-({3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 85. A compound of Claim 1 which is 1-{1-[4-(1,3-benzothiazol-2-10 ylcarbonyl)benzyl]-5-(benzylsulfanyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-3-yl}-1-ethanone or a pharmaceutically acceptable salt thereof.
 - 86. A compound of Claim 1 which is 1-{1-[3-(1,3-benzothiazol-2-ylcarbonyl)benzyl]-5-(benzylsulfanyl)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-3-yl}-1-ethanone or a pharmaceutically acceptable salt thereof.
 - 87. A compound of Claim 1 which is 2-[3-({3-acetyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoyl]-1,3-benzothiazole-6-carboxylic acid or a pharmaceutically acceptable salt thereof.
 - 88. A compound of Claim/1 which is 5-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}-2-oxopentanoic acid or a pharmaceutically acceptable salt thereof.
- 89. A compound of Claim 1 which is 3-[(5-{3-benzoyl-5-(benzyloxy)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}-2-oxopentanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.
- 90. A compound of Claim, 1 which is 4-[(5-{3-benzoyl-5-(benzyloxy)-2-30 [(2-naphthyloxy)methyl]-1H-indol-1-yl}-2-oxopentanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

91. A compound of Claim 1 which is 3-({4-[5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthyloxy)methyl]-3-(1-pyrrolidinylcarbonyl)-1H-indol-1-yl]butanoyl}amino)benzoic acid or a pharmaceutically acceptable salt thereof.

- 10

92. A compound of Claim 1 which is 3-[(4-{5-[(cyclopentylcarbonyl)amino]-3-(morpholinocarbonyl)-2-[(2-naphthyloxy)methyl]-1H-indol-1-yl}butanoyl)amino]benzoic acid or a pharmaceutically acceptable salt thereof.

15

93. A compound of Claim 1 which is N-[2-[(2-naphthyloxy)methyl]-1-{4-oxo-4-[3-({[(trifluoromethyl)sulfonyl]amino}carbonyl)anilino]butyl}-3-(1-pyrrolidinylcarbonyl)-1H-indol-5-yl]cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

20

94. A compound of Claim 1 which is N-(3-(morpholinocarbonyl)-2-[(2-naphthyloxy)methyl]-1- $\{4-\infty-4-[3-(\{[(trifluoromethyl)sulfonyl]amino\}carbonyl)$ anilino]butyl $\}$ -1H-indol-5-yl)cyclopentanecarboxamide or a pharmaceutically acceptable salt thereof.

25

95. A method of inhibiting the phospholipase activity of an enzyme in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition of claim 1.

- 96. A method of treating an inflammatory response in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition of Claim 1.
- 97. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.