Programiranje I: 3. izpit

6. september 2013

Čas reševanja je 120 minut. Veliko uspeha!

1. naloga (30 točk)

Pravimo, da je vrednost nekega vozlišča v dvojiškem drevesu *lokalni minimum*, če je manjša ali enaka vrednostim v vseh sosednjih vozliščih. Na primer, v drevesu

so lokalni minimumi števila 1, 3 in 4.

Razredu Drevo dodajte metodo naloga1(self), ki v času O(h), kjer je h višina drevesa, poišče en (katerikoli) lokalni minimum. Če lokalnega minimuma ni, naj metoda vrne None.

2. naloga (30 točk)

Dana naj bo matrika $(a_{i,j})_{i,j} \in \mathbb{R}^{m \times n}$, v kateri so elementi razporejeni tako, da so vse vrstice naraščajoče, vsi stolpci pa padajoči, na primer:

$$\begin{bmatrix} 3 & 5 & 7 & 9 \\ 2 & 4 & 5 & 8 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$

Natančneje torej velja $a_{i,j} < a_{i,j+1}$ za vse $1 \le i \le m$ in $1 \le j < n$, ter $a_{i,j} > a_{i+1,j}$ za vse $1 \le i < m$ in $1 \le j \le n$.

Sestavite funkcijo naloga2(a, x), ki vrne True, kadar se število x pojavi v matriki a, in False sicer.

```
>>> a = [[3, 5, 7, 9], [2, 4, 5, 8], [1, 3, 4, 5]]
>>> naloga2(a, 7)
True
>>> naloga2(a, 2)
True
>>> naloga2(a, 6)
False
```

Časovna zahtevnost funkcije naj boO(m+n), kjer je $m \times n$ velikost matrike a.

3. naloga (40 točk)

Zaporedje točk v ravnini

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

imenujemo pravokotni celoštevilski sprehod, kadar so vse koordinate celoštevilske, za vsaki dve zaporedni točki pa velja bodisi $x_i = x_{i+1}$ bodisi $y_i = y_{i+1}$. Na vsakem koraku se torej premaknemo bodisi vodoravno bodisi navpično.

Pravimo, da je pravokotni celoštevilski sprehod naraščajoč, kadar za vsaki dve zaporedni točki velja $x_i \le x_{i+1}$ in $y_i \le y_{i+1}$. Na vsakem koraku se torej premaknemo bodisi desno bodisi navzgor.

a) V *Mathematici* sestavite funkcijo naloga3a[sez_], ki sprejme seznam celoštevilskih točk v ravnini sez in nariše te točke ter pravokotni celoštevilski sprehod, ki jih zaporedoma obhodi.

Možnih pravokotnih celoštevilskih sprehodov skozi dane točke je neskončno in vseeno je, katerega izmed njih narišete.

b) V *Mathematici* sestavite funkcijo naloga3b[zac_, sez_, kon_], ki nariše *naraščajoči* pravokotni celoštevilski sprehod, ki se začne v točki zac, konča v točki kon in se v celoti izogne vsem točkam iz seznama sez.

Zopet je vseeno, katerega izmed možnih sprehodov narišete, predpostavite pa lahko, da obstaja vsaj eden.

