PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-176454

(43) Date of publication of application: 02.07.1999

(51)Int.Cl.

HO1M 8/00

H01M 8/04

(21)Application number: 09-340031

.....

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

10.12.1997

(72)Inventor: SHINDO KOJI

YAMAMOTO SATOSHI

HAMADA AKIRA

NISHIZAWA NOBUYOSHI

(54) POWER SOURCE FOR FUEL CELL ACCESSORY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a power source for a fuel cell accessory to limit the output from a fuel cell to the accessory, when characteristics of the fuel cell are deteriorated in an initial stage of starting for lowering load on the fuel cell, preventing abnormal voltage reduction of the fuel cell, and increasing the service life of a battery for starting.

SOLUTION: This device is a power source for an accessory which feeds a part of power generated by a fuel cell to the accessory necessary for sole power generation of the fuel cell, it is provided with a battery 25 for starting to which part of the power generated by the fuel cell is charged after voltage conversion by a DC/DC converter 23, and an input current limiting mechanism 13 for controlling the power from the fuel cell passing a DC/DC converter 25, and the accessory is connected to be driven by the output of the battery 25 for starting.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-176454

(43)公開日 平成11年(1999)7月2日

(51) Int.Cl. ⁶		識別記号	FΙ		
H 0 1 M	8/00		H01M	8/00	Α
	8/04			8/04	x

		審査請求	未請求 請求項の数2 OL (全 5 頁)
(21)出願番号	特願平9-340031	(71)出願人	000001889
			三洋電機株式会社
(22)出願日	平成9年(1997)12月10日		大阪府守口市京阪本通2丁目5番5号
		(72)発明者	進藤 浩二
			大阪府守口市京阪本通2丁目5番5号 三
	•		洋電機株式会社内
		(72)発明者	山本 聡史
			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
		(72)発明者	溶田 曝
			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
		(74) 代班人	弁理士 秋元 輝雄
		(13) (43)	最終頁に続く
		1	月2月75月1~10年~

(54) 【発明の名称】 燃料電池の補機用電源

(57) 【要約】

【課題】 起動初期における燃料電池の特性低下時に燃 料電池からの補機への出力を制限して、燃料電池の負荷 を下げ、燃料電池の異常な電圧低下を防ぎ、かつ起動用 電池の寿命延長を図った燃料電池の補機用電源を提供す

【解決手段】 燃料電池の発電する電力の一部を前記燃 料電池の単独発電に必要な補機に供給可能にする補機用 電源であって、前記燃料電池の発電する電力の一部がD C/DCコンバータで電圧変換された後充電される起動 用電池と、前記DC/DCコンバータを通過する前記燃 料電池からの電力を制御する入力電流制限機構とを備 え、かつ前記起動用電池の出力で前記補機を駆動可能に 接続する。

【特許請求の範囲】

【請求項1】 単独で発電可能に構成された燃料電池に おいて、この燃料電池の発電する電力の一部を前記燃料 電池の単独発電に必要な補機に供給可能にする補機用電 源であって、前記燃料電池の発電する電力の一部がDC /DCコンバータで電圧変換された後充電される起動用 電池と、前記DC/DCコンバータを通過する前記燃料 電池からの電力を制御する入力電流制限機構とを備え、 かつ前記起動用電池の出力で前記補機を駆動可能に接続 したことを特徴とする燃料電池の補機用電源。

1

【請求項2】 前記入力電流制限機構は前記燃料電池の 発電電力に基づいて前記DC/DCコンバータを通過す る電力を制御することを特徴とする請求項1記載の燃料 電池の補機用電源。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は燃料電池の運転の維 持に必要な補機類へ電力を供給する補機用電源に関する ものである。

[0002]

【従来の技術】従来より、燃料電池本体、蓄電池、燃料 供給源、制御器等を備え、燃料電池本体で発生した電力 を外部負荷に供給した後の余剰電力を蓄電池に蓄え、燃 料電池本体で発生した電力が不足の場合に蓄電池から電 力を補って外部負荷に供給する燃料電池が知られてい る。このような燃料電池は、土木建築工事用電源、家庭 用非常電源等として多くの期待が集められている。

【0003】燃料電池には酸性型燃料電池とアルカリ型 燃料電池があるが、酸性型燃料電池の1つである固体高 分子形燃料電池の特徴を次に説明する。固体高分子形燃 料電池は、図4に示すように、電解質01に高分子イオ ン交換膜(例えば、スルホン酸基を持つフッ素樹脂系イ オン交換膜)を用い、その両側に触媒電極(例えば、白 金等) 02, 03及び集電体04, 05を具備した電極 接合体06の構成からなっている。

【0004】そして、アノード極側に供給された加湿燃 料中の水素は、触媒電極(アノード極)02上で水素イ オン化され、この水素イオンは電解質 0 1 中を水の介在 のもとH'・xH2 Oとして、カソード極側へ水と共に 移動する。この移動した水素イオンは、触媒電極(カソ ード極)03上で酸化剤(例えば、空気)中の酸素及び 外部回路07を流通してきた電子と反応して水を生成す る。この生成水はカソード極03,05より残存酸化剤 に搬送されて燃料電池外へ排出されることになる。この 時、外部回路07を流通した電子の流れを直流の電気エ ネルギーとして利用することができる。

【0005】なお、電解質01となる高分子イオン交換 膜において、前述のような水素イオン透過性を実現させ るためには、この高分子イオン交換膜を常に充分なる保 剤に燃料電池の運転温度(常温~100℃程度)近傍相 当の飽和水蒸気を含ませて、すなわち加湿して燃料及び 酸化剤を電極接合体06に供給し、膜の保水状態を保つ ようにしている。また燃料電池は運転中に発熱するので 冷却する必要もある。

【0006】一方、アルカリ形燃料電池の場合は、電解 質中を水酸イオンが移動してアノード極上で燃料ガス (水素ガス) と反応して水を生成する。この生成水はア ノード極より残存燃料ガスに搬送されて燃料電池外へ排 出されることになる。

【0007】図5は、燃料電池本体へ燃料の水素および 酸化剤としての空気を供給して発電する燃料電池の説明 図である。図5において、燃料の水素を充填した燃料ガ スボンベ1から手動栓2、高圧から低圧に圧力調整する レギュレータ3、電磁弁4、4、前記低圧から燃料電池 本体への供給圧力まで圧力調整するレギュレータ5を経 て燃料電池本体6のアノード極に供給された水素ガス は、ファン7により燃料電池8の外部から取り入れて燃 料電池本体6のカソード極に送られた空気と燃料電池本 体6内で前記電気化学反応を行って発電し、反応しなか った少量の排水素と排空気は燃料電池8の外部に排出さ れる。燃料電池本体6のアノード極には水素と共に水が 供給される。10は水溜め11から水を汲み上げて燃料 電池本体6に供給するための水ポンプであり、水は循環 して使用するようになっている。

[0008]

20

【発明が解決しようとする課題】燃料電池本体6の起動 時には、先ず、燃料電池8に備えた図示しない起動用電 池から電力を補機(電磁弁4、ファン7など)に送って 燃料電池本体6を起動させ、次いで補機への電力供給を 前記起動用電池から燃料電池8に備えた図示しない補機 用DC/DCコンバータに切り替えて燃料電池本体6か ら補機への電力供給を開始する。しかし、起動後しばら くの間は燃料電池本体6の温度が低く発電能力が低いの で、補機動力を賄えない場合が生じることがあり、この ような場合は燃料電池本体6の電圧が低下して起動動作 が継続できなくなる。本発明の目的は、燃料電池本体6 の電圧低下などを起こさないでスムースに起動させるこ とができる燃料電池の補機用電源を提供することであ る。

[0009]

40

【課題を解決するための手段】すなわち、上記課題を解 決するため請求項1の発明は、単独で発電可能に構成さ れた燃料電池において、この燃料電池の発電する電力の 一部を前記燃料電池の単独発電に必要な補機に供給可能 にする補機用電源であって、前記燃料電池の発電する電 力の一部がDC/DCコンバータで電圧変換された後充 電される起動用電池と、前記DC/DCコンバータを通 過する前記燃料電池からの電力を制御する入力電流制限 水状態に保持しておく必要があり、例えば燃料又は酸化 50 機構とを備え、かつ前記起動用電池の出力で前記補機を

駆動可能に接続したことを特徴とするものである。補機用DC/DCコンバータに入力電流制限機能を設け、起動初期における燃料電池の特性低下時に燃料電池からの補機への出力を制限することによって、燃料電池の負荷を下げ、燃料電池の異常な電圧低下を防ぐことができるので、運転を継続できる。

3

【0010】本発明の請求項2の発明は、請求項1記載の燃料電池の補機用電源において、前記入力電流制限機構は前記燃料電池の発電電力に基づいて前記DC/DCコンバータを通過する電力を制御することを特徴とする。例えば、制御装置は燃料電池の電圧を監視し、その電圧が低下したとき補機用DC/DCコンバータの電流制限値を下げる設定信号を出力するようにする。制御装置から設定信号を出力することにより最適な設定が行える。

[0011]

【発明の実施の形態】以下、図面に基づいて本発明の一 実施形態を説明する。図1は、本発明の燃料電池の補機 用電源を備えた燃料電池の一実施例を示す説明図であ り、図2は、本発明の燃料電池の補機用電源を説明する 説明図であり、図3は、燃料電池本体の電圧と制御装置 からの入力電流制限設定値との関係の例を示すグラフで ある。

【0012】図1において、燃料電池8は、ケース12中に燃料ガスボンベ1が起立状態で収納してある。ケース12の後部の上段には図示しない起動用電池25や補機用DC/DCコンバータ23などを備えた制御装置13などが収納されており、中段には燃料の水素と酸化剤としての空気が供給されて電気化学反応させることにより発電する燃料電池本体6が収納されており、下段にはDC/ACインバータ14および水溜め11などが収納されている。

【0013】燃料の水素は燃料ガスボンベ1から、図示しない高圧から低圧に圧力調整するレギュレータ3、低圧から燃料電池本体6への供給圧力まで圧力調整するレギュレータ5を経て圧力調整された後、電磁弁4を経て、燃料電池本体6のアノード極に供給される。燃料電池本体6のアノード極に供給された水素ガスは、ファン7によりケース12の外部から反応空気取入口15を経てケース12内に取り入れて燃料電池本体6のカソード40極に送られた空気と燃料電池本体6内で前記電気化学反応を行って発電し、反応しなかった少量の排水素と排空気はケース12の外部に排出される。

【0014】燃料電池本体6のアノード極へ管路9から水素が供給されるとともに水が供給される。10は水溜め11から水を汲み上げて燃料電池本体6に供給するための水ポンプであり、水は循環して使用するようになっている。16は燃料電池本体6からでる排空気をケース12外へ放出するための排気ダクトてある。排気ダクト16で分離された水分は排水タンク17内に集落して、

一旦蓄えられ、排水管18を経て外部に排水される。 【0015】図2において、本発明の燃料電池の補機用 電源21は、電圧検出器22、補機用DC/DCコンバ ータ23、制御装置13、起動用電池25、電池25の 充電回路30、充電器31、商用電源に接続されるプラ グ32、およびこれらを接続するラインなどを具備して いる。そして、電圧検出器22、補機用DC/DCコン バータ23、制御装置13が直列に配置されており、補 機用DC/DCコンバータ23と制御装置13を接続す るライン24に補機用DC/DCコンバータ23と並列 に起動用電池25が接続されている。33は燃料電池本 体6の発電した電力を280Vの直流電圧まで上げるD C/DCコンバータ、34は280Vの直流電圧を10 OVのAC電力に変換するDC/ACコンバータ、35 は同コンバータで生じる高調波成分を低減させかつ直流 成分を除却するトランスである。

【0016】例えば、燃料電池本体6の起動初期におけ る特性低下時に、燃料電池本体6の電圧を検知する電圧 検出器22により電圧を検出して、信号をライン26を 経て制御装置13へ送り、この制御装置13からライン 27を経て設定信号を補機用DC/DCコンバータ23 に送ってDC/DCコンバータ23を通過する電力を制 限することによって、燃料電池本体6の負荷を下げ、燃 料電池本体6の過負荷による異常な電圧低下を防ぐこと ができる。起動用電池25は、例えば正極にニッケル電 極を用い負極にカドミウム電極を用いたNi-Сd2次 電池 (12V-40Ah) である。補機用DC/DCコ ンバータ23は、燃料電池本体6からの直流電力の電圧 (DC24~50V) を所定の電圧 (例えばDC14 V) に変換するものであり、この例では制御装置13か らの信号によって補機用DC/DCコンバータ23のチ ョッピングのデューテイが可変制御される。このONデ ューテイが0%では通過電力が0になり、ONデューテ イを大きくすることによって通過電力が大きくなる。 【0017】図3に、制御装置13からの設定信号の例 を示したように、燃料電池本体6の起動初期において、 電圧検出器22により検出した燃料電池本体6の電圧が O~所定のa値(例えば24V)までの範囲において は、DC/DCコンバータ23のONデューテイが0% であり、補機への電力は全て起動用電池25から送られ る。燃料電池本体 6 の電圧が a ~ b 値の範囲において は、補機への電力は起動用電池25と燃料電池本体6か ら送るようにするが、直線 c で示したように燃料電池本 体6からの電力を電圧に対して比例的に増加させるよう DC/DCコンバータ23のONデューテイを増加させ る。そして、燃料電池本体6の電圧がb値に達した時 に、全て補機用DC/DCコンバータ23に切り替え て、燃料電池本体6のみから補機へ電力を供給し、b~ d値の範囲で燃料電池本体6から補機へ設定値eに対応 50 する所定の電力を供給する。具体的にはDC/DCコン

5

バータ23の出力電圧が起動用電池25の定格電圧(24V)より1~2V程度高くなるようにONデューテイを設定する。

【0018】なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。また対象燃料電池も固体高分子形に限定されるものではない。

[0019]

【発明の効果】本発明の燃料電池の補機用電源は、補機用DC/DCコンバータに入力電流制限機能を設け、起 10動初期における燃料電池の特性低下時に燃料電池からの補機への出力を制限することによって、燃料電池の負荷を下げ、燃料電池の異常な電圧低下を防ぐことができるので、運転を継続できる。補機用DC/DCコンバータの出力により起動用電池を充電し、補機用DC/DCコンバータと起動用電池を並列に接続して燃料電池の出力を直接起動用電池に入力しないので、起動用電池の寿命延長を図ることができる。電流制限値を制御装置から設定する場合、制御装置は燃料電池の電圧を監視してその電圧が低下したとき補機用DC/DCコンバータの電流 20制限値を下げる設定信号を出力するようにすることにより最適な設定が行える。 **

*【図面の簡単な説明】

【図1】 本発明の燃料電池の補機用電源を備えた燃料電池の一実施例を示す説明図である。

【図2】 本発明の燃料電池の補機用電源を説明する説 明図である。

【図3】 燃料電池本体の電圧と制御装置からの入力電 流制限設定値との関係の例を示すグラフである。

【図4】 固体高分子形燃料電池の特徴を示す説明図である。

10 【図5】 水素および空気を供給して発電する燃料電池 の説明図である。

【符号の説明】

- 1 燃料ガスボンベ
- 4 電磁弁
- 6 燃料電池本体
- 7 ファン
- 8 燃料電池
- 13 制御装置
- 21 燃料電池の補機用電源
- 22 電圧検出器
 - 23 補機用DC/DCコンバータ
 - 25 起動用電池

【図1】

【図2】

【図3】

アノード側 H₂ → 2H⁺+2e⁻ カソード側 1/2 O₂+2H⁺+2e⁻→ H₂O 全反応 H₂+1/2 O₂→ H₂O

フロントページの続き

(72) 発明者 西沢 信好

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内