ALGORITHMICS\$APPLIED

APPLIEDALGORITHMICS\$

CS\$APPLIEDALGORITHMI

DALGORITHMICS\$APPLIE

EDALGORITHMICS\$APPLIE

GORITHMICS\$APPLIEDAL

HMICS\$APPLIEDALGORITHMICS\$APPLIE

9

Range-Minimum Queries

04 May 2021

Sebastian Wild

Outline

9 Range-Minimum Queries

- 9.1 Introduction
- 9.2 RMQ, LCP, LCE, LCA WTF?
- 9.3 Sparse Tables
- 9.4 Cartesian Trees
- 9.5 "Four Russians" Table

9.1 Introduction

Range-minimum queries (RMQ)

__array/numbers don't change

- ► Given: Static array A[0..n) of numbers (ony or oved objects)
- ► **Goal:** Find minimum in a range;

 A known in advance and can be preprocessed

- ► Nitpicks:
 - ▶ Report *index* of minimum, not its value
 - ▶ Report *leftmost* position in case of ties

Clicker Question

sli.do/comp526

Click on "Polls" tab

Rules of the Game

- ► comparison-based → values don't matter, only relative order
- ► Two main quantities of interest: p space usage $\leq P(n)$
 - **1. Preprocessing time**: Running time P(n) of the preprocessing step
 - **2. Query time**: Running time Q(n) of one query (using precomputed data)
- ▶ Write $\langle P(n), Q(n) \rangle$ **time solution** for short

Clicker Question

What do you think, what running times can we achieve? For a $\langle P(n), Q(n) \rangle$ time solution, enter "<**P**(n), **Q**(n)>".

sli.do/comp526

Click on "Polls" tab

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 6

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

The $longest\ common\ extension\ (LCE)$ data structure:

- ▶ **Given:** String T[0..n-1]
- ► **Goal:** Answer LCE queries, i. e., given positions *i*, *j* in *T*,

how far can we read the same text from there?

formally: LCE
$$(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$$

 \rightsquigarrow use suffix tree of T!

longest common prefix of ith and jth suffix

- ► In \mathcal{T} : LCE $(i, j) = \text{LCP}(T_i, T_j) \rightarrow \text{same thing, different name!}$ = string depth of | lowest common ancester (LCA) of | leaves i | and j |
- ▶ in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(i, j))$

15

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ▶ Could store all LCAs in big table \longrightarrow $\Theta(n^2)$ space and preprocessing \bigcirc

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- ▶ a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

- \rightarrow for now, use O(1) LCA as black box.
- \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

16

Finally: Longest common extensions

- ▶ In Unit 6: Left question open how to compute LCA in suffix trees
- ▶ But: Enhanced Suffix Array makes life easier!

$$LCE(i,j) = LCP[\underline{RMQ_{LCP}}(\min\{R[i], R[j]\} + 1, \max\{R[i], R[j]\})]$$

RMQ Implications for LCE

- ightharpoonup Recall: Can compute (inverse) suffix array and LCP array in O(n) time
- \rightarrow A $\langle P(n), Q(n) \rangle$ time RMQ data structure implies a $\langle P(n), Q(n) \rangle$ time solution for longest-common extensions

9.3 Sparse Tables

► Two easy solutions show extreme ends of scale:

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i...j], keeping track of min

$$\rightsquigarrow \langle O(1), O(n) \rangle$$

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- ightharpoonup answer RMQ(i, j) by scanning through A[i..j], keeping track of min

$$\rightsquigarrow \langle O(1), O(n) \rangle$$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]

$$\rightsquigarrow \langle O(n^3), O(1) \rangle$$

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- ightharpoonup answer RMQ(i, j) by scanning through A[i..j], keeping track of min
- $\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j] $Arr \langle O(n^3), O(1) \rangle$

RMQ (; ,5) = RMQ/(:,;-1)

▶ Preprocessing can reuse partial results \rightsquigarrow $\langle O(n^2), O(1) \rangle$

7