University of Primorska

Prof. Dr. M. Lavrauw

Ł,	inal	exam	Al	gel	ora	L	V	,
----	------	------	----	-----	-----	---	---	---

Koper, 20 June 2024

Name: Student number:

Time: 3 hours.

The questions are to be answered with adequate explanation.

- 1. (4 points) Give the definition of the following notions:
 - (a) an ideal of a commutative ring R;
 - (b) a principal ideal domain (PID);
 - (c) the Galois group G(K/F) of an extension field K of F;
 - (d) a separable extension K of a field F.
- 2. (8 points) State and prove primitive element theorem.
- 3. (8 points) Let F be a field. Prove the following statement.

Every polynomial in F[X] has a root in some extension field of F.

4. (8 points) Prove the following statement.

Let α, β be algebraic over a field F with $n = \deg(\alpha, F) = \deg(\beta, F)$. The map

$$\psi_{\alpha,\beta} : F(\alpha) \to F(\beta) : \sum a_i \alpha^i \mapsto \sum a_i \beta^i$$

is an isomorphism if and only if α and β are conjugate over F.

- 5. (2 points) Find all prime and maximal ideals in $\mathbb{Z}_2 \times \mathbb{Z}_4$.
- 6. (10 points)
 - (a) Give a construction of a field F with 27 elements.
 - (b) Determine a primitive element α in F (a generator of the multiplicative group).
 - (c) Give a basis B for the field F as a vector space over \mathbb{Z}_3 .
 - (d) Write α^{11} as a linear combination of the elements of B.
 - (e) Determine the order of the element $\alpha^4 + \alpha^7$ in the multiplicative group of F.
- 7. (10 points) Let K denote the splitting field of $f(X) = X^4 + 1$ over \mathbb{Q} .
 - (a) Determine whether f(X) is irreducible over \mathbb{Q} .
 - (b) Determine $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$.
 - (c) Describe the elements of the Galois group $G(K/\mathbb{Q})$, in terms of the element α determined in (b).
 - (d) For each subgroup H of $G(K/\mathbb{Q})$ of order two, and determine its fixed field (as a subfield of K).
 - (e) Write each of the subfields of K determined in (d) as a simple extension of \mathbb{Q} .