Unconstrained minimization

Mathématiques Informatique et Statistique Appliquées (MISA) Université d'Antananarivo

Unconstrained minimization problems

minimize f(x)

where $f: \mathbb{R}^N \to \mathbb{R}$ is convex and twice differentiable. We assume that the optimal value $p^* = \inf_x f(x)$ is attained (and finite).

Optimality condition

f is differentiable and convex, a point x^* is optimal iff $\nabla f(x^*) = 0$.

Sometimes, we can analytically solve the optimality equation but usually the problem must be solved by an **iterative algorithm**.

Descent methods

We want to produce a minimizing sequence $x^{(k)}$, k=1,..., where $x^{(k+1)}=x^{(k)}+t^{(k)}\Delta x^{(k)}$ with $f(x^{(k+1)})< f(x^{(k)})$

- $ightharpoonup \Delta x^{(k)}$ is the search direction
- $ightharpoonup t^{(k)} > 0$ is the **step size**

Descent direction

 $\Delta x^{(k)}$ is a **descent direction** if $\nabla f(x^{(k)})^{\top} \Delta x^{(k)} < 0$ (from convexity).

Algorithm 1: General descent method

Start at a point $x \in \mathbf{dom} \ f$

repeat

Determine a descent direction Δx

Choose a step size t > 0

Update $x = x + t\Delta x$

until stopping criterion is satisfied;

Choosing the step size - Line search

Exact line search

Choose t to minimize f along the ray $\{x + t\Delta x | t > 0\}$

$$t = \arg\min_{t>0} f(x + t\Delta x)$$

Backtracking line search

An inexact line search approach that chooses t just to reduce f enough. It depends on two constants $\alpha \in (0,0.5)$ and $\beta \in (0,1)$.

Algorithm 2: Backtracking line search

Gradient descent

It is a descent method with search direction $\Delta x = -\nabla f(x)$.

Algorithm 3: Gradient descent

Start at a point $x \in \mathbf{dom} \ f$

repeat

$$\Delta x = -\nabla f(x)$$

Choose a step size t > 0

Update $x = x + t\Delta x$

until stopping criterion is satisfied;

The stopping criterion is usually of the form $||\nabla f(x)||_2 < \epsilon$.

Newton's method

It is a descent method with search direction $\Delta x = -(\nabla^2 f(x))^{-1} \nabla f(x)$.

We can say that $v = \Delta_x$

minimizes the second order approximation

$$f(x+v) \approx f(x) + \nabla f(x)^{\top} v + \frac{1}{2} v^{\top} \nabla^2 f(x) v$$

or equivalently solves the linearized optimality condition

$$\nabla f(x+v) \approx \nabla f(x) + \nabla^2 f(x)v = 0$$

More

Explore further

- ► Steepest descent methods (generalizes gradient descent)
- Quasi-Newton methods (like BFGS, L-BFGS)
- Convergence analysis
- Self-concordance
- Gradient-free optimization