Assessment I – April 2, 2025 Model Answers

Consider a **Real-Time System** in which there are three tasks. Their period and execution time are as follows:

Processes	Execution time, e	Period, p	
P1	35	100	
P2	10	50	
P3	30	150	

The total utilization of processor is ________%.

Solution

$$35/100+10/50+30/150 = 0.35+0.2+0.2 = 0.75 = 75\%$$

Assume that there are 4 processes, P1 through P4, and 3 resource types: A, B and C. At time T0, let consider the following snapshot of the system:

Process	Allocation			Max			Available		
	Α	В	С	Α	В	С	Α	В	С
P1	0	1	0	7	5	5	2	3	0
P2	3	0	2	3	2	2			
Р3	3	0	2	9	0	2			
P4	2	1	1	2	2	2			

The system is currently in a safe state.

What is the execution order of the processes so that the system remains in a safe state?

- a. P2 P4 P3 P1
- b. P2 P1 P3 P4
- c. P1 P2 P3 P4

- d. P1 P3 P2 P4
- e. P3 P1 P4 P2
- f. P4 P1 P2 P3
- g. P3 P1 P2 P4
- h. P4 P3 P1 P2

Solution

 $\overline{\text{Available resource (A B C)}} = (2 3 0)$

Process	Need			
	A	В	C	
P1	7	4	5	
P2	0	2	0	
P3	6	0	0	
P4	0	1	1	

P2:
$$(2\ 3\ 0) + (3\ 0\ 2) = (5\ 3\ 2)$$

P4:
$$(2\ 1\ 1) + (5\ 3\ 2) = (7\ 4\ 3)$$

P3:
$$(3\ 0\ 2) + (7\ 4\ 3) = (10\ 4\ 5)$$

P1:
$$(0\ 1\ 0) + (10\ 4\ 5) = (10\ 5\ 5)$$

Calculate the predicted burst time using exponential averaging for the **fifth** process if the predicted burst time for the first process is 10 units and actual burst time of the first four processes is 2, 4, 6 and 8 units respectively, given $\alpha = 0.5$.

Solution

Predicted burst time for $\underline{1^{st} \text{ process}} = 10 \text{ units}$ Actual burst time of the first four processes = 2, 4, 6, 8 $\alpha = 0.5$

Predicted burst time for $\frac{2^{nd} process}{2^{nd} process} = \alpha x$ Actual burst time of 1^{st} process $+ (1-\alpha) x$ Predicted burst time for 1^{st} process

$$= 0.5 \times 2 + 0.5 \times 10 = 1 + 5 = 6 \text{ units}$$

Predicted burst time for $\underline{\mathbf{3^{rd}\ process}} = \alpha\ x$ Actual burst time of 2^{nd} process + $(1-\alpha)\ x$ Predicted burst time for 2^{nd} process

$$= 0.5 \times 4 + 0.5 \times 6 = 2 + 3 = 5 \text{ units}$$

Predicted burst time for $\underline{\mathbf{4^{th}\ process}} = \alpha\ x\ \text{Actual burst time of } 3^{rd}\ process + (1-\alpha)\ x\ Predicted burst time for <math>3^{rd}\ process$

$$= 0.5 \times 6 + 0.5 \times 5 = 3 + 2.5 = 5.5$$
 units

Predicted burst time for $\underline{5^{th} \ process} = \alpha \ x \ Actual \ burst time of 4^{th} \ process + (1-\alpha) \ x \ Predicted burst time for 4^{th} \ process$

$$= 0.5 \times 8 + 0.5 \times 5.5 = 4 + 2.75 = 6.75$$
 units

Consider the following scenario of processes and the First-Come First-Served (FCFS) scheduling algorithm.

Calculate **the average waiting time** of the system.

Process ID	Arrival time (ms)	Burst time (ms)
P1	0	12
P2	2	4
P3	5	2
P4	8	10
P5	10	6

Answer:

The average waiting time of the system is

The Gant chart

	P1	P2	P3	P4	P5
0	12	16	18	28	34

```
The waiting time of P1 = 0

The waiting time of P2 = 12-2=10

The waiting time of P3 = 16-5=11

The waiting time of P4 = 18-8=10

The waiting time of P5 = 28-10=18

The average waiting time = (0 + 10 + 11 + 10 + 18)/5 = 49/5 = 9.8
```

A number is said to be a **palindrome** number if it reads the same forward and backward i.e., on reversing the digits of the number we get the same number.

Write a C program that starts by reading the number and then the program should display whether a given number is palindrome or not.

Test Case 1:

Input:

121

Output:

121 is a palindrome number.

Test Case 2:

Input:

342

Output:

342 is not a palindrome number.

Solution

```
#include <stdio.h>
int main() {
```

```
int number, original, reversed = 0, remainder;
scanf("%d", &number);
original = number;
while (number != 0) {
    remainder = number % 10;
    reversed = reversed * 10 + remainder;
    number /= 10;
}

if (original == reversed) {
    printf("%d is a palindrome number.\n", original);
} else {
    printf("%d is not a palindrome number.\n", original);
}

return 0;
}
```