# BanglaTLit: A Benchmark Dataset for Back-Transliteration of Romanized Bangla

Md Fahim<sup>1,2\*</sup>, Fariha Tanjim Shifat<sup>1\*</sup>, Fabiha Haider<sup>1\*</sup>, Deeparghya Dutta Barua<sup>1</sup>, Md Sakib UI Rahman Sourove<sup>1</sup>, Md Farhan Ishmam<sup>1,3</sup>, Md Farhad Alam<sup>1</sup>

<sup>1</sup>Research and Development, Penta Global Limited, Bangladesh <sup>2</sup>CCDS Lab, Independent University, Bangladesh <sup>3</sup>Islamic University of Technology, Bangladesh

Findings of the Association for Computational Linguistics: EMNLP 2024

October 28, 2024

#### Introduction

#### Definition

- Romanized/Transliterated Bangla: Uses phonetically similar Latin scripts to represent Bangla syllables.
- **Back-transliteration:** The task of generating the native scripts corresponding to the romanized text while closely aligning to the phonetic meaning.

#### Challenges in processing Romanized Bangla -

- Due to the phonemic orthography of Bangla, the same sentence can have multiple transliterations but must back-transliterate to the same original sentence.
- Back-transliteration must adhere to the grammatical rules of the native language.
- Current Language Models (LMs) are trained on limited transliterated Bangla texts.
- No existing large-scale back-transliteration corpus in Bangla to train LMs.

## **Contributions**

- BanglaTLit-PT: A large-scale pre-training corpus comprising 245.7k romanized Bangla samples to enhance the contextualized representation in language models.
- **BanglaTLit**: 42.7k romanized Bangla and corresponding Bangla samples to fine-tune language models on the task of Bangla back-transliteration.
- Transliterated Bangla Encoders: We further pre-trained encoders on BanglaTLit-PT and achieved SOTA performance on sentiment analysis, emotion classification, and hate speech detection in romanized Bangla.
- Dual-Encoder-Decoder: We aggregate TB-encoder and T5-encoder embeddings to produce enhanced romanized Bangla representation, achieving SOTA on the BanglaTLit dataset.

### **Dataset Creation**



 $Figure:\ Pipeline\ of\ creating\ BanglaTLit-PT\ and\ BanglaTLit\ datasets.$ 

## **Dataset Statistics**



Figure: Distribution of sample categories of BanglaTLit.

| Statistics            | TL    | BTL   |  |
|-----------------------|-------|-------|--|
| Mean Character Length | 59.24 | 58.28 |  |
| Max Character Length  | 1406  | 1347  |  |
| Min Character Length  | 3     | 4     |  |
| Mean Word Count       | 10.35 | 10.51 |  |
| Max Word Count        | 212   | 226   |  |
| Min Word Count        | 2     | 2     |  |
| Unique Word Count     | 81848 | 60644 |  |
| Unique Sentence Count | 42705 | 42471 |  |

Table: Statistics of the Transliterated (TL) and Back-Transliterated (BTL) sample pairs.

# Methodology

#### Transliterated Bangla (TB) Encoder

We further pre-train using the Masked Language Modeling loss. For the dataset distribution  $\mathcal{D}$ , the sentence  $S \sim \mathcal{D}$ ,  $S = \{t_1, ..., t_T\}$ , mask indices  $m \in \mathbb{N}^M$ , and training parameters  $\theta$ , the negative log-likelihood objective is defined as,

$$\mathcal{L}_{MLM}( heta) = -\mathbb{E}_{S\sim\mathcal{D}}\left[\log P_{ heta}(t_m|t_{\setminus m})
ight].$$

#### TB Encoder Aggregated T5 Model

For a given text S, we obtain representations from the T5 and TB encoders

$$\mathsf{T5}(S) = \mathbf{h} = \{h_1, h_2, \dots, h_n\}, \text{ and } \mathsf{TB}(S) = \mathbf{e} = \{e_1, e_2, \dots, e_n\}.$$

The representations  $\mathbf{h}$  and  $\mathbf{e}$  are then aggregated using either sum-based aggregation,  $\mathbf{H}_{sum} = \mathbf{h} + \mathbf{e}$ , or concatenation-based aggregation,  $\mathbf{H}_{concat} = [\mathbf{h}; \mathbf{e}]$  and passed to the T5 decoder to produce the corresponding Bangla text.

## **Architecture & Performance Evaluation**



Figure: Model Architecture

|                           | Performance Metric |       |       |            |       |       |  |
|---------------------------|--------------------|-------|-------|------------|-------|-------|--|
| Model                     | TB-Sent TB-OLID    |       | OLID  | TB-Emotion |       |       |  |
|                           | Acc↑               | F1↑   | Acc↑  | F1↑        | Acc↑  | F1↑   |  |
| Bangla LM                 |                    |       |       |            |       |       |  |
| BanglishBERT              | 84.23              | 84.11 | 73.40 | 72.27      | 45.50 | 44.54 |  |
| BanglaBERT                | 85.38              | 85.33 | 76.30 | 75.06      | 50.25 | 48.89 |  |
| SahajBERT                 | 76.54              | 76.54 | 71.57 | 70.29      | 39.75 | 38.79 |  |
| Vac-BERT                  | 78.85              | 78.78 | 68.12 | 67.36      | 35.00 | 33.62 |  |
| Multilingual LM           |                    |       |       |            |       |       |  |
| XLM-RoBERTa               | 83.85              | 83.84 | 73.40 | 71.57      | 43.50 | 41.15 |  |
| mDeBERTa-v3               | 80.38              | 80.37 | 67.80 | 67.74      | 34.25 | 32.94 |  |
| mBERT                     | 81.15              | 81.03 | 72.80 | 70.89      | 43.50 | 43.45 |  |
| Character-based LM        |                    |       |       |            |       |       |  |
| CharBERT                  | 84.23              | 84.21 | 74.00 | 73.42      | 46.00 | 43.90 |  |
| CharRoBERTa               | 84.23              | 84.08 | 71.90 | 69.30      | 40.50 | 39.15 |  |
| Prompt-based LLM (0-shot) |                    |       |       |            |       |       |  |
| GPT 3.5 Turbo             | 85.39              | 85.38 | 71.80 | 70.96      | 40.62 | 37.24 |  |
| LLaMa3-8B                 | 69.62              | 69.61 | 56.00 | 55.96      | 21.74 | 10.55 |  |
| TB Encoder (Ours)         |                    |       |       |            |       |       |  |
| TB-BERT `                 | 84.23              | 84.13 | 74.50 | 74.29      | 49.25 | 48.89 |  |
| TB-BanglaBERT             | 85.00              | 84.92 | 77.90 | 76.54      | 52.00 | 50.26 |  |
| TB-BanglishBERT           | 86.15              | 86.07 | 74.40 | 73.58      | 51.25 | 51.08 |  |
| TB-mBERT                  | 85.77              | 85.72 | 76.30 | 75.52      | 50.25 | 48.85 |  |
| TB-XLM-R                  | 88.85              | 88.79 | 78.50 | 77.76      | 54.50 | 53.40 |  |

Table: Performance of our baselines on romanized Bangla classification tasks.

## **Performance Evaluation**

| Model                            | ROUGE Score |       | BLEU Score |        |                    | BERT            | METEOR        |       |
|----------------------------------|-------------|-------|------------|--------|--------------------|-----------------|---------------|-------|
|                                  | R-1         | R-2   | R-L        | BLEU   | Brevity<br>Penalty | Length<br>Ratio | Score<br>(F1) | Score |
| Encoder-Decoder LM               |             |       |            |        |                    |                 |               |       |
| mT5                              | 56.02       | 19.83 | 55.90      | 12.48  | 76.13              | 0.82            | 86.43         | 48.71 |
| byteT5                           | 15.40       | 1.71  | 14.91      | 6.8e-5 | 11.28              | 0.25            | 72.50         | 6.88  |
| BanglaT5-small                   | 39.59       | 8.46  | 39.58      | 4.14   | 84.29              | 0.94            | 80.65         | 32.72 |
| BanglaT5                         | 73.06       | 33.00 | 73.13      | 31.09  | 91.16              | 0.95            | 92.71         | 69.12 |
| BanglaT5_nmt_en_bn               | 75.74       | 34.84 | 76.14      | 36.19  | 98.71              | 1.08            | 94.05         | 74.07 |
| Prompt-based LLM                 |             |       |            |        |                    |                 |               |       |
| GPT-3.5 Turbo (0-shot)           | 66.21       | 26.18 | 66.64      | 20.73  | 97.94              | 1.11            | 90.06         | 59.97 |
| GPT-4 Turbo (0-shot)             | 71.71       | 31.54 | 71.96      | 26.56  | 97.27              | 1.07            | 91.65         | 65.10 |
| GPT-4o (0-shot)                  | 66.62       | 26.96 | 67.24      | 19.28  | 98.22              | 1.11            | 89.37         | 58.88 |
| LLaMa3-8B (3-shot)               | 56.05       | 17.34 | 56.56      | 11.01  | 95.80              | 1.04            | 86.61         | 46.81 |
| Dual Encoder-Decoder LM (Ours)   |             |       |            |        |                    |                 |               |       |
| TB-BanglishBERT + BanglaT5       | 75.14       | 34.65 | 75.13      | 32.82  | 92.25              | 0.96            | 93.83         | 72.34 |
| TB-BanglishBERT + BanglaT5_NMT   | 77.27       | 35.98 | 78.32      | 35.18  | 96.58              | 0.97            | 98.22         | 75.37 |
| TB-XLM_R + BanglaT5              | 76.03       | 35.14 | 76.24      | 33.18  | 95.16              | 0.96            | 94.15         | 74.42 |
| $TB\text{-}XLM_R + BanglaT5_NMT$ | 78.92       | 36.56 | 79.75      | 36.07  | 98.29              | 1.05            | 98.82         | 78.14 |

Table: Results of our baselines on the BanglaTLit test set.

# Result Analysis



Figure: Category-wise BLEU scores for the predictions on the test set using the TB-XLM\_R+BanglaT5\_NMT model.

- Non-uniform BLEU score distribution across categories.
- Demonstrate strong performance in the Hacking, Request, Help, and Disapproval categories
- Struggles with the Appreciation, Apology, and Religious categories.
- Independent to the distribution shown in Figure 2.

## **Conclusion**

#### Summary

- Transliterated Bangla Pre-training Corpus
- Back-Transliteration Dataset
- Further Pre-trained Encoders
- Dual-Encoder Decoder seq2seq Models

#### Limitations

- The majority of the BanglaTLit dataset is sourced from a single domain, i.e. tech support comments from TrickBd.
- Lack of dialect representation in the dataset.

## Thank You!