Cohen-Macaulay type of endomorphism rings of abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

Essen Oberseminar - 23 May 2024.

Stefano Marseglia 23 May 2024 1/19

What do I do for a living?

Stefano Marseglia 23 May 2024

Abelian varieties: what are they?

Abelian varieties are connected projective group varieties.

Abelian varieties of dim. 1 are called **elliptic curves**.

Eg: over
$$\mathbb{R}, \ y^2 = x^3 - x + 1$$

We can add points:

$$P,Q \rightsquigarrow P \oplus Q$$

Equations are impractical in dim > 2.

We need a better way to represent them...

Stefano Marseglia 23 May 2024 3 / 19

Abelian varieties over \mathbb{C} vs \mathbb{F}_q

- Let A/\mathbb{C} be an abelian variety of dimension g.
- Then $A(\mathbb{C})$ is a **torus**: $T := \mathbb{C}^g / \Lambda$, where $\Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}$.
- T admits a non-degenerate Riemann form \longleftrightarrow polarization.
- In fact, $A \mapsto A(\mathbb{C})$ induces an equivalence of categories:

$$\left\{ \text{abelian varieties } / \mathbb{C} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathbb{C}^g / \Lambda \text{ with } \Lambda \simeq \mathbb{Z}^{2g} \text{ admitting} \\ \text{a Riemann form} \end{matrix} \right\}.$$

- In char. p > 0 such an equivalence cannot exist: there are (supersingular) elliptic curves with quaternionic endomorphism algebras.
- Nevertheless, as we will see later, over a finite field \mathbb{F}_q , we obtain analogous results if we restrict ourselves to certain **subcategories** of AVs.
- WARNING: all morphisms, endomorphisms, isogenies, etc. are defined over \mathbb{F}_a .

Stefano Marseglia 23 May 2024 4 / 19

Isogeny classification over \mathbb{F}_q

- An **isogeny** $A \rightarrow B$ is a surjective morphism with finite kernel.
- ullet A/\mathbb{F}_q comes with a **Frobenius** endomorphism, that induces an action

Frob_A:
$$T_{\ell}A \rightarrow T_{\ell}A$$
 for any $\ell \neq p$,

where
$$T_{\ell}(A) = \varprojlim A[\ell^n] \simeq \mathbb{Z}_{\ell}^{2g}$$
.

- $h_A(x) := \text{char}(\text{Frob}_A)$ is a q-Weil polynomial.
- Honda-Tate theory:
 - $h_A(x)$ is *the* isogeny invariant

$$A \sim_{\mathbb{F}_q} B \text{ iff } h_A(x) = h_B(x),$$

- the association

isogeny class of
$$A \mapsto h_A(x)$$

allows us to enumerate all AVs up to isogeny.

Stefano Marseglia 23 May 2024 5 / 19

Endomorphism rings

- End(A) is a free \mathbb{Z} -module of finite rank ...
- ... $\operatorname{End}(A) \subset \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$.
- Denote by $\pi_A \in \text{End}(A)$ the Frobenius endomorphism of A.
- Tate: $h_A(x)$ is squarefree \iff End(A) is commutative. (We will assume this for the rest of the talk.)
- Set $K = \mathbb{Q}[x]/(h_A) = \mathbb{Q}[\pi]$. It is an étale \mathbb{Q} -algebra (i.e. a finite product of number fields).
- The association $\pi_A \mapsto \pi$ allows us to identify End(A) with a special kind of subring of K:
- $\mathbb{Z}[\pi, q/\pi] \subseteq \operatorname{End}(A) \subseteq \mathcal{O}_K$ are orders in K(an **order** R in K is a subring $R \subset K$ such that $R \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$).
- Plan: study A by studying some comm. algebra properties of End(A).

Stefano Marseglia 23 May 2024 6 / 19

Orders and fractional ideals in étale Q-algebras

- Let R be an order in a étale \mathbb{Q} -algebra K.
- A fractional *R*-ideal is a sub-*R*-module $I \subset K$ such that $I \simeq_{\mathbb{Z}} \mathbb{Z}^{\dim_{\mathbb{Q}} K}$.
- Given fr. R-ideals I, J then

$$(I:J) = \{a \in K : aJ \subseteq I\}$$
 and $I^t = \{a \in K : \operatorname{Tr}_{K/\mathbb{Q}}(aI) \subseteq \mathbb{Z}\}$

are also fr. R-ideals.

• The order (1:1) is the multiplicator ring of I and satisfies:

$$(I:I)^t = I \cdot I^t.$$

- A fr. R-ideal I is invertible if I(R:I) = R ...
- ... or, equivalently, $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}$ as $R_{\mathfrak{m}}$ -modules for every \mathfrak{m} maximal R-ideal.

 $(R_{\mathfrak{m}} \text{ is the completion of } R \text{ at } \mathfrak{m})$

• If I is invertible, then (I:I) = R.

Stefano Marseglia 23 May 2024

7/19

Cohen-Macaulay type and Gorenstein orders

• Def: The (Cohen-Macaulay) type of R at a maximal ideal m is

$$\mathsf{type}_{\mathfrak{m}}(R) := \mathsf{dim}_{R/\mathfrak{m}} \frac{R^t}{\mathfrak{m}R^t}.$$

- Def: R is Gorenstein at m if $type_m(R) = 1$.
- Remark: these definitions coincides with the 'usual' ones.
- Ex: monogenic $\mathbb{Z}[\alpha]$ and maximal \mathcal{O}_K orders are Gorenstein. (also $\mathbb{Z}[\pi, q/\pi]$ for AVs).
- Ex: pick a prime $\ell \in \mathbb{Z}$. Then $\operatorname{type}_{\ell \mathcal{O}_K}(\mathbb{Z} + \ell \mathcal{O}_K) = \dim_{\mathbb{Q}} K 1$.

Stefano Marseglia 23 May 2024 8 / 19

Classification for orders of type ≤ 2

Theorem

Let \mathfrak{m} be a maximal ideal of R, and I a fr. R-ideal with (I:I) = R.

- If $type_{\mathfrak{m}}(R) = 1$ (Gorenstein) then $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}$ as $R_{\mathfrak{m}}$ -modules.
- ② If $type_{\mathfrak{m}}(R) = 2$ then either $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}$ or $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}^t$ as $R_{\mathfrak{m}}$ -modules.

Part 1 is contained (in a much more general form) in the "Ubiquity" paper by H. Bass.

Part 2 is new, and we give a proof.

Lemma

Let U, V, W be vectors spaces (over some field). Assume that dim $W \ge 2$, and let $m: U \otimes V \to W$ be a surjective map. Then:

- **1** ∃ $u \in U$ such that dim $(m(u \otimes V)) \ge 2$, or
- $\exists v \in V \text{ such that } \dim(m(U \otimes v)) \geq 2.$

Stefano Marseglia 23 May 2024 9 / 19

Proof of Part 2

- Put $U = I/\mathfrak{m}I$, $V = I^t/\mathfrak{m}I^t$ and $W = R^t/\mathfrak{m}R^t$.
- By assumption $R^t = I \cdot I^t$, so the map $m : U \otimes V \to W$ induced by multiplication $I \times I^t \to R^t$ is surjective.
- Moreover, dim W = 2 (because of the assumption on the type).
- By the Lemma:
 - **1** ∃x ∈ I such that $m((x+mI) \otimes V) = \frac{xI^t + mR^t}{mR^t}$ equals W. By Nakayama's lemma: $I_m^t \simeq R_m^t \iff R_m \simeq I_m,...$
 - ② ...or, $\exists y \in I^t$ such that $U \otimes m(U \otimes (y + \mathfrak{m})I^t) = W$ implying $I_{\mathfrak{m}}^t \simeq R_{\mathfrak{m}} \iff I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}^t$.

 Stefano Marseglia
 23 May 2024
 10 / 19

Back to AVs: Categorical equivalence(s)

Fix a squarefree characteristic poly h(x) of Frobenius π over \mathbb{F}_q . Put $K = \mathbb{Q}[x]/h = \mathbb{Q}[\pi]$. Let \mathscr{I}_h be the corresponding isogeny class.

Theorem

If q = p is prime or that \mathscr{I}_h is ordinary (coeff. of x^g in h(x) is $\not\equiv 0 \mod p$) then there is an **equivalence** of categories

$$\left\{ \begin{array}{l} \mathscr{I}_h \text{ with } \mathbb{F}_q \text{-morphisms} \right\} \\ \updownarrow \\ \left\{ \text{fr. } \mathbb{Z}[\pi,q/\pi] \text{-ideals with linear morphisms} \right\} \end{array}$$

Moreover, if $A \mapsto I$ then $A^{\vee} \mapsto \overline{I}^t$, where $\overline{\cdot}$ is defined by $\overline{\pi} = q/\pi$ (the CM-involution).

References: Deligne, Howe, Centeleghe-Stix, Bergström-Karemaker-M.

Stefano Marseglia 23 May 2024 11 / 19

AVs: Isomorphism classes

• We get a bijection

```
\{ \text{ isom. classes of AVs in } \mathscr{I}_h \} \longleftrightarrow \{ \text{isom. classes of fr. } \mathbb{Z}[\pi,q/\pi] \text{-ideals } \} := \mathsf{ICM}(\mathbb{Z}[\pi,q/\pi]) \text{ ideal class monoid}
```

- If $\mathbb{Z}[\pi, q/\pi] = \mathcal{O}_K$ is the maximal order then $\mathsf{ICM}(\mathbb{Z}[\pi, q/\pi]) = \mathsf{Pic}(\mathcal{O}_K)$ is a product of class groups of number fields and we are good.
- Problem: $\mathbb{Z}[\pi, q/\pi]$ might not be a Dedekind ring \rightsquigarrow non-invertible ideals.

 Stefano Marseglia
 23 May 2024
 12 / 19

ICM: Ideal Class Monoid

Let R be an **order** in an étale \mathbb{Q} -algebra K.

• Recall: for fractional R-ideals I and J

$$I \simeq_R J \Longleftrightarrow \exists x \in K^\times \text{ s.t. } xI = J.$$

We have

$$ICM(R) \supseteq Pic(R) = \{invertible \ fractional \ R-ideals\}_{\cong R}$$
 with equality $\ \ iff \ R = \mathscr{O}_K$

 Simplify the problem by localizing: weak equivalence (Dade, Taussky, Zassenhaus '62)

$$I_{\mathfrak{m}} \simeq_{R_{\mathfrak{m}}} J_{\mathfrak{m}} \text{ for every } \mathfrak{m} \in \mathsf{mSpec}(R)$$

$$\updownarrow$$

$$1 \in (I:J)(J:I) \text{ easy to check!}$$

13 / 19

Stefano Marseglia 23 May 2024

Compute ICM(R)

Let $\mathcal{W}(R)$ be the set of weak eq. classes. Partition w.r.t. the multiplicator ring:

$$W(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} W_S(R)$$

$$ICM(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} ICM_S(R)$$

the "pedix" -s means "only classes with multiplicator ring S"

Theorem (M.)

For every over-order S of R, Pic(S) acts freely on $ICM_S(R)$ and

$$W_S(R) = ICM_S(R) / Pic(S)$$
.

Repeat for every $R \subseteq S \subseteq \mathcal{O}_K \leadsto \mathsf{ICM}(R)$.

Stefano Marseglia 23 May 2024 14 / 19

Compute ICM(R)

- To compute the overorders: see Hoffman-Sircana.
- To compute Pic(S): see Klüners-Pauli.
- To compute $W(R) = \sqcup W_S(R)$:
- all representatives can be found in

$$\left\{ \text{sub-}R\text{-modules of } {}^{\text{\mathscr{O}_{K}}}_{\text{f_{R}}} \right\} \quad \text{finite}$$

where $f_R = (R : \mathcal{O}_K)$ is the conductor of R.

- Can we use the type? Write $W_S(R) = \prod_{m \in S} (W_S(R))_m$.
- We have proven that: if the type of S at \mathfrak{m} is 1 then $(W_S(R))_{\mathfrak{m}} = \{[S_{\mathfrak{m}}]\}$, while if the type of S at \mathfrak{m} is 2 then $(W_S(R))_{\mathfrak{m}} = \{[S_{\mathfrak{m}}], [S_{\mathfrak{m}}^t]\}$

Stefano Marseglia 23 May 2024 15 / 19

AVs: Group of rational points

Theorem (Springer-M.)

 \mathscr{I}_h and $K = \mathbb{Q}[\pi] = \mathbb{Q}[x]/h$ as before.

Let R be an order in K and \mathfrak{m} a maximal ideal of R (possibly but not necessarily above p). Assume:

$$type_{\mathfrak{m}}(R) \leq 2$$
 for every $\mathfrak{m} \supseteq (1-\pi)R$.

Then for every $A \in \mathcal{I}_h$ such that $\operatorname{End}(A) = R$ we have that $A(\mathbb{F}_q) \simeq_{\mathbb{Z}} R/(1-\pi)R$.

Proof: Say that
$$A \mapsto I$$
. Then $A(\mathbb{F}_q) = \ker(1 - \pi_A) = \frac{I}{(1 - \pi)I} =: M$.

$$M$$
 is finite: $M = \bigoplus_{\mathfrak{m} \supset (1-\pi)R} M_{\mathfrak{m}}$.

If
$$I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}$$
 then $M_{\mathfrak{m}} \simeq_R \frac{R_{\mathfrak{m}}}{(1-\pi)R_{\mathfrak{m}}}$.

If
$$I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}^{t}$$
 then $M_{\mathfrak{m}} \simeq_{R} \frac{R_{\mathfrak{m}}^{t}}{(1-\pi)R_{\mathfrak{m}}^{t}} \simeq_{\mathbb{Z}} \frac{R_{\mathfrak{m}}}{(1-\pi)R_{\mathfrak{m}}}$.

Stefano Marseglia 23 May 2024

16 / 19

AVs: self-duality

Theorem (Springer-M.)

 \mathscr{I}_h and $K = \mathbb{Q}[\pi] = \mathbb{Q}[x]/h$ as before.

Let R be an order in K and \mathfrak{m} a maximal ideal of R. Assume:

$$R = \overline{R}$$
, $\mathfrak{m} = \overline{\mathfrak{m}}$, and $type_{\mathfrak{m}}(R) = 2$.

Then for every $A \in \mathcal{I}_h$ such that $\operatorname{End}(A) = R$ we have that $A \not= A^{\vee}$. In particular, such an A cannot be principally polarized nor a Jacobian.

Proof: Say that $A \mapsto I$. Hence $A^{\vee} \mapsto \overline{I}^{t}$.

By the Classification: either $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}$ or $I_{\mathfrak{m}} \simeq R_{\mathfrak{m}}^t$.

In the first case: $\overline{I}_{\mathfrak{m}}^{t} = \overline{I}_{\mathfrak{m}}^{t} \simeq R_{\mathfrak{m}}^{t} \not\simeq R_{\mathfrak{m}}^{t}$.

Similarly, in the second: $\overline{I}_{\mathfrak{m}}^t = \overline{I}_{\overline{\mathfrak{m}}}^t \simeq R_{\mathfrak{m}} \not\simeq R_{\mathfrak{m}}^t$

In both cases: $I \neq \overline{I}^t \iff A \neq A^{\vee}$.

Stefano Marseglia 23 May 2024

17 / 19

Some stats and refs

How often do the hypothesis of the previous theorem $(R = \overline{R}, \text{ exists } \mathfrak{m} = \overline{\mathfrak{m}})$ with type_m(R) = 2) do occur?

We computed the isomorphism classes of AVs/ \mathbb{F}_q (see LMFDB xyz) for 615.269 isogeny classes (for $1 \le g \le 5$ and various q).

We encountered

- 3.914.908 commutative endomorphism rings, of which:
- 72.6% satisfy $R = \overline{R}$;
- 10.3% satisfy $R = \overline{R}$ and are non-Gorenstein;
- 7.4% satisfy $R = \overline{R}$, are non-Gorenstein and $\exists \mathfrak{m} = \overline{\mathfrak{m}}$ s.t. with type_m(R) = 2.

23 May 2024 18 / 19

Thank you!

Main references:

- Cohen-Macaulay type of orders, generators and ideal classes https://arxiv.org/abs/2206.03758
- Abelian varieties over finite fields and their groups of rational points with Caleb Springer, to appear in Algebra&Number Theory https://arxiv.org/abs/2211.15280
- Magma package for étale Q-algebras https://github.com/stmar89/AlgEt (also in Magma 2-28.1)

 Stefano Marseglia
 23 May 2024
 19 / 19