Un modelo Bayesiano y no paramétrico de regresión sobre cuantiles

Tesis para obtener el título de Licenciado en Matemáticas Aplicadas

Carlos Omar Pardo Gómez

Asesor: Dr. Juan Carlos Martínez Ovando

Instituto Tecnológico Autónomo de México

20 de abril del 2018

- Introducción
- Modelos de regresión
- 3 Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

- Introducción
- Modelos de regresión
- 3 Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

 Propósito modelos de regresión: aproximar la distribución de una variable aleatoria, condicional al valor de otras variables explicativas.

$$y|x \sim \mathbb{P}(y|x)$$

 Comúnmente se supone a y como la suma de un parámetro que está en función del valor de las variables explicativas, y un error aleatorio, independiente de ellas.

$$y = f(x) + \varepsilon$$

- La **media** ha sido parámetro tradicionalmente usado, dando lugar a los **modelos de regresión a la media**.
- Ventajas:
 - Bajo costo de estimación, en tiempo y recursos.
 - Facilidad de **interpretación** de sus **parámetros** (principalmente del modelo lineal).

- Sin embargo, según Hao & Naiman (2007), estos modelos tienen 3 grandes limitaciones:
 - Inferencia puede ser acertada para la media, pero inexacta para valores lejanos a ella.
 - Los valores atípicos pueden sesgar la estimación de la media.
 - Forma funcional de los cuantiles depende de la elección del error aleatorio.

- Alternativas a los modelos de regresión a la media:
 - Modelos de regresión a la mediana (1760).
 - Modelos de regresión sobre **cuantiles**¹ (1978), siendo la mediana un caso particular. (Ya no se usa necesariamente una medida de tendencia central).

Omar Pardo (ITAM)

¹El **cuantil p-ésimo** es aquel valor, tal que el $\mathbf{p} \times 100\%$ de los valores están por **debajo** de él, y el $(1-\mathbf{p}) \times 100\%$, por **encima**.

- Objetivo: proponer un modelo:
 - De regresión sobre cuantiles
 - Bayesiano²
 - Con error no paramétrico
 - Relación **no lineal** entre variable de respuesta y covariables, **retomando** las ideas de *Kottas et al.*(2007) y *Kottas & Krnjajic* (2005).

²Esta tesis da como aceptados los axiomas de coherencia de la Teoría de la Decisión.

8 / 40

- Introducción
- 2 Modelos de regresión
- Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Modelos de regresión a la media

Modelo general

$$y = f(x) + \varepsilon$$
, tal que $\mathbb{E}[\varepsilon] = 0$
 $\implies \mathbb{E}[y|x] = f(x)$

Modelo tradicional

$$f(x) = x^T \beta$$
 (relación lineal),
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ (error paramétrico)
 $\beta, \sigma^2 \sim \mathcal{NGI}(M, V, a, b)$

Función cuantil

Definición

Sea F_y la función de distribución acumulada de la variable aleatoria y, entonces la **función que regresa su cuantil p-ésimo** se escribe

$$q_p(y) = \inf \{x \in \mathbb{R} : p \le F_y(x)\};$$

que se puede simplificar a

$$q_p(y) = F_y^{-1}(p),$$

cuando F_y es continua y estrictamente creciente en el soporte de y.

Modelos de regresión sobre cuantiles

- El modelador elige el parámetro p de su interés.
- Modelo general

$$y = f_p(x) + \varepsilon_p$$
, tal que $q_p(\varepsilon_p) = 0$
 $\implies \mathbf{q_p}(\mathbf{y}|\mathbf{x}) = \mathbf{f_p}(\mathbf{x})$

Modelo tradicional

$$f_p(x) = x^T \beta_p$$
 (relación lineal), $\varepsilon_p \sim \mathcal{AL}_p(\sigma)$ (error paramétrico) $\beta_p, \sigma \sim \mathcal{NGI}(M, V, a, b)$

Distribución asimétrica de Laplace

Figura: Función de densidad de la distribución asimétrica de Laplace, con $\sigma=1$ y p variable.

Distribución asimétrica de Laplace

Figura: Función de densidad de la distribución asimétrica de Laplace, con p=0.25 y σ variable.

- Introducción
- 2 Modelos de regresión
- 3 Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Estadística no paramétrica

Wasserman (2006)

"La idea básica de la inferencia no paramétrica es usar los datos para inferir una medida desconocida, haciendo los menos supuestos posibles. Normalmente esto significa usar modelos estadísticos de dimensión infinita. De hecho, un mejor nombre para la inferencia no paramétrica podría ser inferencia de dimensión infinita."

- Introducción
- 2 Modelos de regresión
- 3 Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Generalización de la relación lineal

- Idea: generalizar relación lineal $f_p(x) = x^T \beta_p$, a cualquier posible función.
- ullet Medida de probabilidad para $eta_{m p} o ext{Medida}$ de probabilidad para $m f_{m p}.$
- Como f_p está definida para múltiples valores de x, se trata de un conjunto de variables aleatorias que depende de variables de entrada: un proceso estocástico.
- Para el caso particular de esta tesis, se pensará que f_p sigue la ley de probabilidad de un **proceso Gaussiano**.

- Introducción
- 2 Modelos de regresión
- Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- 4 Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Error no paramétrico

Intuición de los procesos de Dirichlet

Las realizaciones $\varepsilon_1, ..., \varepsilon_n$ provienen de una **distribución** G, la cual es **desconocida** para el modelador.

Para reflejar su **incertidumbre**, le asigna una **ley de probabilidad** a los posibles valores de G, particularmente la de un **proceso de Dirichlet**.

Es decir, la realización de un proceso de Dirichlet es una distribución de probabilidad.

- Introducción
- 2 Modelos de regresión
- Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - ullet Distribución de $arepsilon_p$, mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Descripción Modelo GPDP

$$y_i|f_p(x_i), z_i, \sigma_k^* \sim \mathcal{AL}_p(\varepsilon_{p_i} = y_i - f_p(x_i)|\sigma_{z_i}), \ f_p|m, k, \lambda \sim \mathcal{GP}(m, k(\lambda)|\lambda), \ \lambda \sim GI(c_\lambda, d_\lambda), \ z_i|\pi \sim \operatorname{Mult}_{\infty}(\pi), \ \pi|\alpha \sim GEM(\alpha), \ \sigma_k^*|c_{DP}, d_{DP} \sim GI(\sigma_k|c_{DP}, d_{DP}), \ k(x_i, x_i|\lambda) = \lambda \ exp\{-\|x_i - x_i\|_2\}.$$

Paquete GPDPQuantReg en R

Github **O**: opardo/GPDPQuantReg

3 funciones públicas:

- GPDPQuantReg: ajusta el modelo con los datos que recibe
- predict: realiza predicción para un conjunto de covariables
- diagnose: diagnóstico de las cadenas de Markov del simulador de Gibbs ³

23 / 40

Omar Pardo (ITAM) Tesis Matemáticas Aplicadas 20 de abril del 2018

- Introducción
- 2 Modelos de regresión
- Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Comparación de modelos

	Modelo Tradicional	Modelo GPDP
Parámetro de regresión	A la media	Sobre cuantiles
Relación entre x y y	Lineal	No lineal
Tipo de error	Paramétrico	No paramétrico

Simulación de datos

$$y=g(x)+\omega,$$

g(x): función determinista,

 ω : variable aleatoria

$$\implies f_p(x) = g(x) + q_p(\omega)$$

Supuestos tradicionales de regresión

$$g(x) = \frac{1}{1000}x^3 - \frac{1}{40}x^2 - \frac{1}{10}x + 6,$$

$$\omega \sim \mathcal{N}(0, 1)$$

Supuestos tradicionales de regresión

Nota: La línea roja representa el valor real de cada cuantil, la línea azul representa la mediana de la distribución posterior predictiva y el área gris su intervalo de probabilidad al 95 %.

28 / 40

Supuestos tradicionales de regresión

Cuadro: Error cuadrático medio entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	0.84	0.83
0.50	0.02	0.19
0.25	0.23	0.16

Cuadro: Correlación al cuadrado entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	0.99	0.91
0.50	0.99	0.94
0.25	0.99	0.96

Cuadro: Porcentaje de valores reales dentro del intervalo de confianza al $95\,\%$

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	68 %	96 %
0.50	100 %	100 %
0.25	100 %	100 %

Error aleatorio de colas pesadas

$$g(x) = \frac{1}{4}|x| + sen(x),$$
 $\omega \sim Cauchy(0, 0.1)$

Error aleatorio de colas pesadas

Nota: La línea roja representa el valor real de cada cuantil, la línea azul representa la mediana de la distribución posterior predictiva y el área gris su intervalo de probabilidad al 95 %.

Error aleatorio de colas pesadas

Cuadro: Error cuadrático medio entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	5.42	0.18
0.50	0.61	0.75
0.25	1.89	1.12

Cuadro: Correlación al cuadrado entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	0.64	0.91
0.50	0.64	0.64
0.25	0.64	0.57

Cuadro: Porcentaje de valores reales dentro del intervalo de confianza al $95\,\%$

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	9 %	98 %
0.50	57 %	100 %
0.25	41 %	96 %

Error aleatorio asimétrico

$$g(x) = \frac{1}{5}x\cos(x) - \frac{1}{5}\exp\left(\frac{x}{10}\right),$$
$$\omega \sim Gamma(1, 1)$$

Error aleatorio asimétrico

Nota: La línea roja representa el valor real de cada cuantil, la línea azul representa la mediana de la distribución posterior predictiva y el área gris su intervalo de probabilidad al 95 %.

Error aleatorio asimétrico

Cuadro: Error cuadrático medio entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	1.69	1.23
0.50	1.65	0.64
0.25	1.53	0.44

Cuadro: Correlación al cuadrado entre mediana predictiva y cuantil real

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	0.01	0.50
0.50	0.01	0.61
0.25	0.01	0.69

Cuadro: Porcentaje de valores reales dentro del intervalo de confianza al 95 %

Cuantil	Modelo Tradicional	Modelo GPDP
0.95	58 %	100 %
0.50	46 %	100 %
0.25	52 %	100 %

Comparación de tiempos

Cuadro: Tiempo de ajuste por conjunto de datos, para cada modelo.

Datos	Tradicional (seg)	GPDP (seg)
Supuestos tradicionales	menos de 1	2,498
Colas pesadas	menos de 1	4,006
Heterocedasticidad	menos de 1	3,502
Error asimétrico	menos de 1	6,707
Discontinuidades	menos de 1	3,062

Cuadro: Tiempo de predicción por conjunto de datos, para cada modelo.

Datos	Tradicional (seg)	GPDP (seg)
Supuestos tradicionales	6	564
Colas pesadas	5	529
Heterocedasticidad	5	534
Error asimétrico	6	537
Discontinuidades	5	533

- Introducción
- 2 Modelos de regresión
- Inferencia no paramétrica
 - Distribución de f_p , mediante procesos Gaussianos
 - Distribución de ε_p , mediante procesos de Dirichlet
- Modelo GPDP
- 6 Aplicaciones
- 6 Conclusiones y trabajo futuro

Conclusiones

- Si bien los modelos de regresión a la media han sido de mucha utilidad en las últimas décadas, existen contextos en los que resultan insuficientes.
- Crear modelos que permitan una mayor flexibilidad, como aquellos que utilizan métodos no paramétricos, logrará una representación más certera de la realidad de la que provienen los datos.
- Un reto importante que presentó este trabajo fue el desarrollo del paquete en R, tanto por el planteamiento teórico del simulador de Gibbs, como por la búsqueda de una programación general y eficiente.

Trabajo futuro

- Proponer alguna manera de darle un peso distinto a cada variable explicativa, en el proceso Gaussiano. Actualmente toma una única distancia, dando igual peso a cada variable.
- Sería conveniente la inclusión de un parámetro de rango que regule dinámicamente la relación entre la distancia y la covarianza entre observaciones, en el proceso Gaussiano.
- Desarrollar una medida robusta de bondad de ajuste, que permita hacer selección de variables y comparación con otros modelos disponibles).

Un modelo Bayesiano y no paramétrico de regresión sobre cuantiles

Tesis para obtener el título de Licenciado en Matemáticas Aplicadas

Carlos Omar Pardo Gómez

Asesor: Dr. Juan Carlos Martínez Ovando

Instituto Tecnológico Autónomo de México

20 de abril del 2018