Ejercicio De Circuitos Eléctricos: Calculo De Compuertas Lógicas

Objetivos del ejercicio:

- Implementar el uso de compuertas lógicas para obtener resultados booleanos
- Aprender el uso de tablas de verdad por las que se interpreten las compuertas lógicas
- Comprender e implementar el uso de compuertas lógicas en los circuitos eléctricos

Recursos necesarios:

- Estado Lógico (Logicstate)
- Led Color Amarillo (Led-Biby)
- Ground
- Compuerta Lógica NOT (7404)
- Compuerta Lógica OR (7432)
- Compuerta Lógica NOR (7402)
- Compuerta Lógica AND (7408)
- Compuerta Lógica NAND (7400)
- Compuerta Lógica XNOR (74136)
- Cableado estándar

Ejemplo:

En la compuerta NOT, el estado de la salida es inversa a la entrada proporcionando un resultado contradictorio a la entrada generando , una negación

Α	Z
0	1
1	0

Completa las siguientes tablas de verdad para responde las preguntas:

Compuerta Lorica OR:

El valor de salida estará en estado de 1 cuando cualquier entrada o ambas estén en 1

A	В	Z
0	0	
0	1	
1	0	
1	1	

A)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

B)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

C)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

Compuerta Lorica NOR:

El valor de salida estará en estado de 1 cuando las dos entradas estén estado 0

Α	В	Z
0	0	
0	1	
1	0	
1	1	

A)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

B)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

C)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

Compuerta Lorica AND:

El valor de salida estará en estado de 1 cuando solo las dos entradas se encuentran en estado 1

A	В	Z
0	0	
0	1	
1	0	
1	1	

A)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

B)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

C)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

Compuerta Lorica NAND:

El valor de salida estará en estado de 1 cuando cualquier entrada o ambas estén en 0

A	В	Z
0	0	
0	1	
1	0	
1	1	

A)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

B)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :_____ por que?

C)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

Compuerta Lorica XOR:

El valor de salida estará en estado de 1 cuando las dos entradas se encuentren en estados diferentes

Α	В	Z
0	0	
0	1	
1	0	
1	1	

A)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

B)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

C)Haciendo uso del la tabla de verdad el valor mostrado en el circuito encenderá el led :____ por que?

