Modes of Convergence.

Let X be a set with a measure μ . Let $f_n, f: X \to \mathbb{R}$ measurable functions. Then there are some notions of convergence that do not involve the measure. The main ones are $\lim_{n\to\infty} f_n = f$ pointwise and $\lim_{n\to\infty} f_n = f$ uniformly.

Of more interest to us are the notions that involve the measure. The main ones are

- **AE** Almost everywhere: There is a set $B \subseteq X$ with $\mu(B) = 0$ and for all $x \in X \setminus B$ we have $\lim_{n\to\infty} f_n(x) = f(x)$.
- **AU** Almost uniform: For all $\varepsilon > 0$ there is a set $B \subseteq X$ with $\mu(B) < \varepsilon$ and such that $f_n \to f$ uniformly on $X \setminus B$.
- AE **Almost everywhere:** There is a set $B \subseteq X$ with $\mu(B) = 0$ such that $f_n \to f$ pointwise on $X \setminus B$.
- **M** In measure: For every $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| > \varepsilon\right\}\right) = 0.$$

(It is a good exercise to rewrite this as ε -N statement.)

 L^p In L^p : This is that

$$\lim_{n\to\infty} \|f_n - f\|_{L^p} = 0.$$

Here we assume that $1 \leq p < \infty$.

Some of these imply others. For general measure spaces the following diagram summarizes the implosions. A solid arrow means is a general implication. A dotted form condition **A** to condition **B** means that if $f_n \to f$ in the sense of **A** then there is a subsequence of $\langle f_{n_k} \rangle_{k=1}^{\infty}$ of $\langle f_n \rangle_{n=1}^{\infty}$ that converges in the sense of **B**. The absence of an arrow means there is a counterexample.

In the case $\mu(X) < \infty$ more can be said the corresponding diagrams is

In class today I made a bit of a hash of proving the following:

Proposition 1. On the measure space (X, μ) if $f_n \to f$ almost uniformly, then $f_n \to f$ almost everywhere.

Here is shorter argument.

Proof. Assume that $f_n \to f$ almost uniformly and we wish to show that $f_n \to f$ almost everywhere. Note that for each $x \in X$

$$\lim_{n \to \infty} f_n(x) = f(x) \quad \text{if and only if } \limsup_{n \to \infty} |f_n(x) - f(x)| = 0.$$

Therefore the set of points, x, where $\lim_{n\to\infty} f_n(x) \neq f(x)$ is

$$B = \{ x \in X : \limsup_{n \to \infty} |f_n(x) - f(x)| > 0. \}$$

So our goal is to show that $\mu(B) = 0$. For each positive integer let

$$B_k = \{x \in X : \limsup_{n \to \infty} |f_n(x) - f(x)| > 1/k.\}$$

Then

$$B = \bigcup_{k=1}^{\infty} B_k$$

and thus if we can show

$$\mu(B_k) = 0$$

for all k we will have shown that B is a countable union of sets of measure zero and therefore $\mu(B) = 0$.

We now use $f_n \to f$ almost uniformly. Let $\varepsilon > 0$. There there is a set $A \subseteq X$ such that $f_n \to f$ uniformly on $X \setminus A$ and with $\mu(A) < \varepsilon$. Using the uniform convergence we see there is a N such that

$$n \ge N$$
 implies $|f_n(x) - f(x)| < 1/k$ for all $x \in X \setminus A$.

This implies that if $x \in X \setminus A$, then $\limsup_{n\to\infty} |f_n(x) - f(x)| \le 1/k$ and therefore $x \in X \setminus B_k$. That is $(X \setminus A) \subseteq (X \setminus B_k)$. This in turn implies $B_k \subseteq A$. Thus

$$\mu(B_k) \leq \mu(A) < \varepsilon$$
.

This holds for all $\varepsilon > 0$ and thus $\mu(B_k) = 0$ which completes the proof. \square

Here are some proofs related to this that I wrote up for some of the review sessions in summer past.

Theorem 2 (Egoroff's Theorem). Let (X, μ) be a measure space with $\mu(X) < \infty$. Let $\langle f_n \rangle_{n=1}^{\infty}$ be a sequence of measurable functions with $\lim_{n \to \infty} f_n = f$ almost everywhere. Then $f_n \to f$ almost uniformly. That is for all $\varepsilon > 0$ there is a measurable set $E \subseteq X$ with $\mu(E) < 0$ and $f_n \to f$ uniformly on $X \setminus E$.

Proof. Let Z be the set of measure zero of points, x, where $f_n(x)$ does not converge to f(x). For each pair of positive integers n, k let $E_{n,k}$ be the measurable set

$$E_{n,k} = \bigcup_{j=k}^{\infty} \{x : |f_j(x) - f(x)| \ge 1/n\}$$

$$= \{x : \text{for some } j \ge k \text{ the inequality } |f_j(x) - f(x)| \ge 1/n \text{ holds}\}$$

and set

$$Z_n = \bigcap_{k=1}^{\infty} E_{n,k}.$$

For a fixed n, if $x \in Z_n$, then $x \in E_{n,k}$ for all k and so for any k there is a $j \geq k$ with $|f_j(x) - f(x)| \geq 1/n$ and thus $\langle f_j \rangle_{j=1}^{\infty}$ does not converge to f(x). This shows that $Z_n \subseteq Z$ which implies that $\mu(Z_n) = 0$. As $E_{n,k+1} \subseteq E_{n,k}$ we have for each n that

$$\lim_{k \to \infty} \mu(E_{n,k}) = 0.$$

(This is the step where we use $\mu(X) < \infty$.)

Now let $\varepsilon > 0$. Then for each n there is a k_n such that

$$\mu(E_{n,k_n}) < \frac{\varepsilon}{2^n}.$$

Let

$$E = \bigcup_{n=1}^{\infty} E_{n,k_n}.$$

Then

$$\mu(E) \le \sum_{n=1}^{\infty} \mu(E_{n,k_n}) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

Finally if $x \notin E$, then $x \notin E_{n,k_n}$ for all n. But this implies

$$|f_j(x) - f(x)| < \frac{1}{n}$$
 for all $j \ge k_n$.

Thus $f_j \to f$ uniformly on $X \setminus E$.

We do have that if f_n converges to f in measure on a finite measure space, then a subsequence of the sequence converges to f almost uniformly.

Theorem 3. Let (X, μ) be a measure space with $\mu(X) < \infty$. Let $\langle f_n \rangle_{n=1}^{\infty}$ be a sequence of measurable functions such that $f_n \to f$ in measure. Then there is a subsequence $\langle f_{n_k} \rangle_{k=1}^{\infty}$ with $\lim_{k \to \infty} f_{n_k}(x) = f(x)$ almost uniformly (and thus almost everywhere).

Proof. By definition $f_n \to f$ in measure means that for all $\varepsilon > 0$ that

$$\lim_{k \to \infty} \mu(\{x : |f_k(x) - f(x)| \ge \varepsilon\}) = 0.$$

Fix $\varepsilon > 0$. Then for each n > 0 there is a k_n such that

$$\mu(\{x: |f_{k_n}(x) - f(x)| \ge 1/n\}) < \frac{\varepsilon}{2^n}.$$

Let

$$E = \bigcup_{n=1}^{\infty} \{x : |f_{k_n}(x) - f(x)| \ge 1/n\}.$$

Without loss of generality we can assume that $\langle k_n \rangle_{n=1}^{\infty}$ is an increasing sequence. Using subadditivity we see

$$\mu(E) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

If $x \notin E$, then for each n we have $|f_{k_n}(x) - f(x)| < 1/n$ and thus $f_{n_k} \to f$ uniformly on $X \setminus E$.

We are not quite done, as this subsequence we have found works for ε , but if we choose a smaller value $\varepsilon' < \varepsilon$ this subsequence may not converge uniformly on the compliment of a set of measure less that ε' . One way around this is to use the Cantor diagonalization method. First find a subsequence that converges uniformly on the compliment of a set, E_1 , with $\mu(E_1) < 1/2$. Then choose a subsequence of the first subsequence that converges uniformly on the compliment of a set $E_2 \subset E_1$ with $\mu(E_2) < 1/2^2$. Choose a subsequence this second subsequence that converges uniformly on $X \setminus E_3$ and with $E_3 \subseteq E_2$ and $\mu(E_3) < 1/2^3$. Continue in this manner. Then the diagonal sequence will converge uniform on the compliment of each E_n and $\mu(E_n) < 1/2^n$. Thus the diagonal converges almost uniformly to f.

Problem 1. These results cover most of the hard implications in the diagrams. Several of the counterexamples are based on the following functions. Let $\alpha > 0$ and set

$$f_{n,\alpha} = n^{\alpha} \mathbb{1}_{(0,1/n)}$$

or a bit more explicitly

$$f_{n,\alpha}(x) = \begin{cases} n^{\alpha}, & 0 < x < 1/n; \\ 0, & \text{otherwise.} \end{cases}$$

Whow $f_{n,\alpha} \to 0$ pointwise (that thus almost everywhere) and this convergence is also almost uniform and in measure and that the L^p norms are

$$||f_{n,\alpha}||_{L^p} = n^{\alpha - \frac{1}{p}}.$$