ECE 113: Communication Electronics

Meeting 11: Impedance Matching I

February 27, 2019

RF Impedance Matching

Maximum power transfer between source and load

$$Z_{L,opt} = Z_S^*$$

- Perfect match can only occur at one frequency (Resonance)
- At resonance, maximum power transfer occurs between R_S and R_L at 50% efficiency

LC Matching

 The input impedance looking into the matching network becomes

$$Z_{in} = j300 + (100 - j300) = 100$$

- System is matched and maximum power transfer occurs
- Without the matching network, *loss* = 4.8*dB*

The L-Network

Example

Design a circuit to match a 100Ω source resistance to a 1000Ω load resistance at 100 MHz. Assume also that a DC voltage must also be transferred from source to load and that all elements are ideal.

Example

Design a circuit to match a 100Ω source resistance to a 1000Ω load resistance at 100 MHz. Assume also that a DC voltage must also be transferred from source to load and that all elements are ideal.

The matching circuit

$$Q_s=Q_p=\sqrt{rac{1000}{100}-1}=3$$
 $X_s=\omega L
ightarrow L=rac{X_s}{\omega}=477nH$ $X_s=Q_sR_s=300\Omega$

$$X_p = \frac{R_p}{\Omega} = 333\Omega$$
 $X_p = \frac{1}{\omega C} \rightarrow C = \frac{1}{\omega X_p} = 4.8pF$

Complex Source and Load Impedances

- Previous examples deal with real source and load impedances
- In practice, source and load impedances are complex
- Two basic methods in matching complex loads/sources
 - Absorption Method
 - Stray source/load reactances can be absorbed into the impedance matching network by proper placement of matching elements
 - Resonance Method
 - Stray source/load reactances can be resonated with equal and opposite reactances at the frequency of interest

Absorption Method (Example)

 Use absorption method to match the source and load impedances at 100MHz.

Ignore stray reactances and solve for the matching network.

From the previous example

$$L = 477 nH$$
 $C = 4.8 pF$

• The new element values L' and C' are given by:

$$L' = L - L_{stray} = 277 nH$$

 $C' = C - C_{stray} = 2.8 pF$

• The complete circuit will be

Resonance Method (Example)

• Use resonance method to design a matching network that will match a source resistance of 50Ω to a capacitive load at 75MHz. The matching network should block DC at the output.

Resonate shunt 40pF with shunt inductor

$$\omega L_1 = \frac{1}{\omega C} \rightarrow L_1 = 112.6$$
nH

• Match the 50Ω source with the 600Ω load.

$$Q_s=Q_p=\sqrt{rac{600}{50}-1}=3.32$$
 $X_s=Q_sR_s=166\Omega o C=rac{1}{\omega X_s}$ $X_p=rac{R_p}{Q_p}=181\Omega o L_2=rac{X_p}{\omega}=384nH$

• Combining the inductors in parallel

$$L_{tot} = \frac{L_1 L_2}{L_1 + L_2} = 87nH$$

Notes on L-Matching Network

 Major limitation with 2-element matching networks is restriction on circuit Q

$$Q_s = Q_p = \sqrt{\frac{R_p}{R_s} - 1}$$

- R_S and R_L determine circuit Q
- Designer does not have freedom to specify circuit Q
- Becomes an issue for high-Q (narrow bandwidth) and even for low-Q applications

3-Element Matching

- Addresses the issue regarding flexibility of Q
 - Designer can specify practical circuit Q required
 - Can achieve larger Q than what can be achieved using L-network
- Two basic types
 - Pi-Network
 - T-Network

Pi-Network

- The two L-networks are designed to match with a smaller virtual resistance between source and load resistances
 - Analyze each branch using the usual L-network matching
 - Shunt elements must have opposite types with their corresponding series elements

Pi-Network

- Virtual resistance can have any value as long as it is smaller than both R_S and R_L .
- Start with L-branch with higher terminating resistance (R_S or R_L).
- Approximate expression for the circuit Q of the Pi-Network is given as:

$$Q = \sqrt{\frac{R_{higer}}{R_{virtual}} - 1}$$

Pi-Network (Example)

Design a Pi-matching network to match a 100Ω source to a 1000Ω load. The loaded Q must be 15.

• Determine value of the virtual resistance. Start with the load since $R_L > R_S$

$$R_{virtual} = \frac{R_L}{Q^2 + 1} = \frac{1000}{226} = 4.42\Omega$$

• Solve for the L-networks to match to this virtual resistance

• For the network connected to the load resistance

$$X_{P2} = \frac{R_P}{Q_P} = \frac{R_L}{Q} = \frac{1000}{15} = 66.7\Omega$$

$$X_{S1} = QR_{virtual} = 15(4.42) = 66.3\Omega$$

For the network connected to the source resistance

$$Q = \sqrt{\frac{R_{S}}{R_{virtual}} - 1} = \sqrt{\frac{100}{4.42} - 1} = 4.6$$

- \bullet This Q is different with the specified Q? \to The circuit Q is defined with the branch with the highest Q
- Determining the reactance values

$$X_{P1} = \frac{R_S}{Q} = \frac{100}{4.6} = 21.7\Omega$$

$$X_{S1} = QR_{virtual} = 4.6(4.46) = 20.51\Omega$$

• You are left to specify what types of elements to use.

• Different Pi-matching network implementations

T-Network

- Designed to match with a larger virtual resistance between source and load resistances.
- Design of T-Network is the same as that of Pi-Network
- Difference is that the virtual resistance must be larger than both R_S and R_L
- Q of network is approximated by:

General Steps: 3-element Matching

- ullet R_S and R_L values
 - ullet High-valued o use Pi-network
 - ullet Low-valued o use T-network
- Determine the value of the virtual resistance R_{virtual}
- Proceed with L-network matching starting with branch with larger/smaller terminating resistance for Pi/T respectively.
- Solve for the reactances of the other branch using the new Q defined by R_{virtual}
- Decide the types of X_{S1} , X_{P1} , X_{S2} , and X_{P2}
- Combine elements to reduce number of elements to 3
- Compute for actual capacitance and inductance values.

Low-Q Matching Network

- Pi- and T- matching networks are usually used for narrow bandwidth (high-Q) applications
- For low-Q applications, L-networks must be stacked end-to-end
- Maximum bandwidth can be achieved when

$$R_{virtual} = \sqrt{R_S R_L}$$

Low-Q Matching Network

The loaded Q of the network

$$Q = \sqrt{\frac{R_{\textit{virtual}}}{R_{\textit{small}}} - 1} = \sqrt{\frac{R_{\textit{large}}}{R_{\textit{virtual}}} - 1}$$

- For even wider bandwidths, we can cascade more L networks end-to-end
- Optimum bandwidth is obtained when ratios between successive resistances are equal

$$\frac{R_1}{R_{small}} = \frac{R_2}{R_1} = \frac{R_3}{R_2} = \dots = \frac{R_{large}}{R_N}$$

END