

Exercice 1 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 1.

Exercice 2 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\delta(A, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 3 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus:

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{\delta}(A, 1+2/0)$.

Corrigé voir 4.

Exercice 4 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

1

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$

Question 2 Déterminer $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 4.

Exercice 5 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

Question 1 Déterminer $R_d(2/0)$ i_1

Question 2 *Déterminer* $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 5.

Exercice 6 - Mouvement RT *

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 6.

Exercice 7 - Mouvement RR 3D **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre ${\bf 0}$ et ${\bf 1}$ permet d'actionner le solide ${\bf 1}$. Un moteur électrique positionné entre ${\bf 1}$ et ${\bf 2}$ permet d'actionner le solide ${\bf 2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g}=-g$ $\overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 7.

Exercice 8 - Mouvement RR 3D **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 8.

Exercice 9 - Mouvement RT - RSG **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 9.

Exercice 10 - Mouvement RT - RSG **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

• G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1;

• $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur exerce un couple entre les pièces 1 et 2.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 10.

Exercice 11 - Mouvement RT *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$

Corrigé voir 11.

Exercice 12 - Mouvement RR 3D **

B2-14

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \mathrm{mm}$ et $r = 10 \, \mathrm{mm}$. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre ${\bf 0}$ et ${\bf 1}$ permet d'actionner le solide ${\bf 1}$. Un moteur électrique positionné entre ${\bf 1}$ et ${\bf 2}$ permet d'actionner le solide ${\bf 2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point A en projection sur $\overrightarrow{i_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$

Corrigé voir 12.

Exercice 13 - Mouvement RR 3D **

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$; • $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2
- $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overrightarrow{k_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{j_0}$

Corrigé voir 13.

Exercice 14 - Mouvement RT - RSG ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overline{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Un ressort exerce une action mécanique entre les points A et B.

L'objectif est d'obtenir les lois de mouvement.

Question 1 Appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$

Question 2 Appliquer le théorème du moment dynamique à l'ensemble 1+2 au point I en projection sur $\overrightarrow{k_0}$.

Corrigé voir 14.

Exercice 15 - Mouvement RT - RSG ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $\begin{pmatrix}
 A_1 & 0 & 0 \\
 0 & B_1 & 0 \\
 0 & 0 & C_1
 \end{pmatrix}_{\mathcal{B}_1};$ $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$

Un moteur exerce un couple entre les pièces 1 et 2.

L'objectif est d'obtenir les lois de mouvement.

Question 1 Appliquer le théorème du moment dynamique à l'ensemble **2** au point A en projection sur $\overrightarrow{k_0}$.

Question 2 Appliquer le théorème du moment dynamique à l'ensemble **1+2** au point I en projection sur $\overrightarrow{k_0}$.

Corrigé voir 15.