一类多边形最大面积的数值计算

李 明

(中国医科大学 数学教研室、沈阳 110001)

摘 要: 针对 n 条边长给定的 n+1 边形的最大面积 $S_{n+1,\max}$ 进行了定量讨论($n \ge 2$). 当 n=2 、 n=3 及给定的 n 条边全都相等且 $n \ge 4$ 时,给出了相应的最大面积 $S_{3,\max}$ 、 $S_{4,\max}$ 及 $S_{n+1,\max}$ 的准确计算公式; 当给定的 n 条边长不全相等且 $n \ge 4$ 时,给出了 $S_{n+1,\max}$ 的一种数值计算方法.

关键词: n+1 边形; 最大面积; 数值方法; 相对误差

中图分类号: O178 文献标识码: A 文章编号: 1672-5298(2009)04-0010-03

The Mathematical Calculation to the Maximal Area of A Kind of Polygon

LI Ming

(Department of Mathematics, China Medical University, Shenyang 110001, China)

Abstract: A quantitative discussion to the maximal area $S_{n+1,\max}$ of an n+1-gon with n given sides ($n \ge 2$) is presented in this paper. When n=2, n=3 and the n given sides are all equal with $n \ge 4$, this paper presents the corresponding accurate formulas of the maximal area $S_{3,\max}$, $S_{4,\max}$ and $S_{n+1,\max}$; When the n given sides are not all equal with $n \ge 4$, this paper presents a kind of mathematical algorithm to $S_{n+1,\max}$.

Key words: n+1-gon; maximal area; numerical method; relative error

在涉及几何图形面积的极大极小问题中,许多定理往往只是定性地描述出这些几何图形在取到面积 最值时的条件和形状,却很少定量的给出这些面积最值的计算公式.事实上,这些计算公式往往简单明了, 稍加推导便可得知;但也有另一些定理,它们所涉及的面积最值计算公式决非显而易见,因此需要我们详 加推导,得出公式以方便应用.本文就将针对一个面积最大值定理进行这方面的工作.

1 定理引发的面积最大值计算问题

有这样一个涉及多边形最大面积的定理 [1]: n 条边长给定的 n+1 边形($n \ge 2$), 当且仅当第 n+1 条边 是此 n+1 边形的外接圆直径时,此 n+1 边形的面积最大.

此定理仅定性地给出了n条边长给定的n+1边形在取到最大面积时的形状($n \ge 2$),为计算此n+1边形的最大面积,显然只需先算出面积最大时第n+1条边的长度,亦即外接圆直径. 为此,我们先对该定理中的一些量进行设定:

- (1) 设给定的n条边长依次为 $a_1, a_2, \dots, a_n (n \ge 2)$;
- (2) 设此 n+1 边形面积最大时, 第 n+1 条边的长度为 d (即外接圆直径的长度), 面积最大值为 $S_{n+1,\max}$.

依据定理和上述设定,我们画出此n+1边形在取到最大面积时的几何图形(图 1), 由图 1, 因为各边所对应的圆周角之和为 $\frac{\pi}{2}$, 所以d是如下方程的唯一解:

$$\sum_{i=1}^{n} \arcsin \frac{a_i}{x} = \frac{\pi}{2} \tag{1}$$

收稿日期: 2009-08-19

作者简介: 李 明(1981-), 男, 辽宁沈阳人, 硕士, 中国医科大学数学教研室讲师. 主要研究方向: 不等式

(3)

又因为面积最大值等于以圆心O为顶点而给定的n条边分别为底边的n个三角形的面积之和,所以d还是如下方程的唯一解:

$$\sum_{i=1}^{n} \frac{a_i}{4} \sqrt{x^2 - a_i^2} = S_{n+1,\text{max}}$$
 (2)

有了(1)、(2)两个方程,我们便可以对 $S_{n+1,\max}$ 的计算公式分情况进行讨论了.

2 S_{n+1,max} 可用公式准确计算的三种情形

2.1 n=2 的情形 此时,图 1 简化为图 2,易知 $x=\sqrt{a_1^2+a_2^2}$, $S_{3,\max}=\frac{1}{2}a_1a_2$.

2.2 n=3的情形

此时,图 1 简化为图 3,由方程(1)得 $\arcsin \frac{a_1}{x} + \arcsin \frac{a_2}{x} + \arcsin \frac{a_3}{x} = \frac{\pi}{2}$,即

$$\arcsin \frac{a_1}{x} + \arcsin \frac{a_2}{x} = \frac{\pi}{2} - \arcsin \frac{a_3}{x}$$

两边用余弦函数作用,不难知道 $\sqrt{1-(\frac{a_1}{x})^2}\cdot\sqrt{1-(\frac{a_2}{x})^2}-\frac{a_1a_2}{x^2}=\frac{a_3}{x}$,化简,得 $x^3-(a_1^2+a_2^2+a_3^2)x-2a_1a_2a_3=0$

记 $p = \sqrt{\frac{a_1^2 + a_2^2 + a_3^2}{3}}$, $q = \sqrt[3]{a_1 a_2 a_3}$, $\varphi = \arccos(\frac{q}{p})^3$, 由一元三次方程的求根公式^[2],方程(3)的解为 $x = 2p\cos\frac{\varphi}{3}$,代人(2)式,得

$$S_{4,\text{max}} = \sum_{i=1}^{3} \frac{a_i}{4} \sqrt{(2p\cos\frac{\varphi}{3})^2 - a_i^2} .$$

2.3 给定的 n 条边全都相等且 n ≥ 4 的情形

此时,图 1 简化为图 4,不妨设 $a_1 = a_2 = \dots = a_n = a$,代入方程(1),解得 $x = a \csc \frac{\pi}{2n}$.于是,由方程(2)得

$$S_{n+1,\max} = \frac{na^2}{4} \cot \frac{\pi}{2n} .$$

3 S_{nul max} 宜用数值方法近似计算的情形

除了上述三种可用公式来准确计算 $S_{n+1,\max}$ 的情形外,只有给定的 n 条边长不全相等且 $n \geq 4$ 的情形尚未予以讨论(见图 1). 这种情形通常难以求得 $S_{n+1,\max}$ 的准确计算公式,那么能否用数值计算的方法来求出 $S_{n+1,\max}$ 的近似值 $S_{n+1,\max}^*$,且要求相对误差 $\delta = \frac{\left|S_{n+1,\max}^* - S_{n+1,\max}\right|}{S_{n+1,\max}}$ 可以小于事先给定的任意小的正数 ε 呢?下面将说明这是可以办到的.

记 $m = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ 、 $M = a_1 + a_2 + \dots + a_n$,则 $d \in (m, M)$.设 $x^* \in (m, M)$ 是 d 的近似值,即方程(1) 的近似解.记方程(1)的右端 $\sum_{i=1}^n \arcsin \frac{a_i}{x} = f(x)$,而方程(2)的右端 $\sum_{i=1}^n \frac{a_i}{4} \sqrt{x^2 - a_i^2} = S(x)$.

显然,函数 f(x) 和 S(x) 在闭区间 $[d,x^*]$ 或 $[x^*,d]$ 上可导,且 $f'(x) \neq 0$,由柯西中值定理^[3],存在 $\xi \in (d,x^*)$ (或 (x^*,d)) \subset (m,M),使得

$$\left| \frac{S(x^*) - S(d)}{f(x^*) - f(d)} \right| = \left| \frac{S'(\xi)}{f'(\xi)} \right| = \frac{1}{4} \, \xi^2 \,,$$

即

$$\left| \frac{S_{n+1,\max}^* - S_{n+1,\max}}{f(x^*) - \frac{\pi}{2}} \right| = \frac{1}{4} \, \xi^2 \, .$$

因此, 欲使

$$\delta = \frac{\left|S_{n+1,\max}^* - S_{n+1,\max}\right|}{S_{n+1,\max}} = \frac{\left|\xi^2 \left|f(x^*) - \frac{\pi}{2}\right|}{4S(d)} < \frac{M^2 \left|f(x^*) - \frac{\pi}{2}\right|}{4S(m)} < \varepsilon$$

 $(\varepsilon(>0)$ 是事先给定的且可以任意小的相对误差限),只须

$$\left| f(x^*) - \frac{\pi}{2} \right| < \frac{4\varepsilon}{M^2} S(m)$$

即

$$\left| \sum_{i=1}^{n} \arcsin \frac{a_i}{x^*} - \frac{\pi}{2} \right| < \frac{\varepsilon}{M^2} \sum_{i=1}^{n} a_i \sqrt{m^2 - a_i^2}$$
 (4)

即可.

综上所述,我们找到了解决前面问题的一个方案,即: 事先给定一个我们需要的较小的相对误差限 ε ,通过二分法求得方程(1)的近似解 x^* ,使其满足(4)式,.再将 x^* 代入方程(2)的右端,即可求得最大面积 $S_{n+1,\max}$ 的近似值 $S_{n+1,\max}^* = \sum_{i=1}^n \frac{a_i}{4} \sqrt{(x^*)^2 - a_i^2}$,且满足相对误差

$$\delta = \frac{\left|S_{n+1,\max}^* - S_{n+1,\max}\right|}{S_{n+1,\max}} < \varepsilon .$$

参考文献

- [1] 笥部贞市朗. 几何学辞典[M]. 高清仁, 舒玉兴, 胡广春, 等译. 上海: 上海教育出版社, 1984: 1003
- [2] H.奈茨. 数学公式[M]. 石胜文译. 北京: 海洋出版社, 1983: 45
- [3] 同济大学数学系. 高等数学[M]. 第 5 版. 北京: 高等教育出版社, 2002: 131