අ.පො.ස. (උ.පෙළ) විභාගය **- 2021 (2022)**

16 - ව්දුලිය, ඉලෙක්ටොනික හා තොරතුරු තාක්ෂණවේදය

ලකුණු බෙදී යාමේ ආකාරය

I පතුය - 1×50 = 50

II පතුය

A කොටස - 40

B කොටස - 30

C කොටස - <u>30</u>

100

අවසාන ලකුණු = I පතුයේ ලකුණු + <u>II පතුයේ ලකුණ</u>

2

$$=$$
 50 + $\underline{100}$

= 100

උත්තරපතු ලකුණු කිරීමේ පොදු ශිල්පීය කුම

උත්තරපතු ලකුණු කිරීමේ හා ලකුණු ලැයිස්තුවල ලකුණු සටහන් කිරීමේ සම්මත කුමය අනුගමනය කිරීම අනිවාර්යයෙන්ම කළ යුතුවේ. ඒ සඳහා පහත පරිදි කටයුතු කරන්න.

- 1. උත්තරපතු ලකුණු කිරීමට රතුපාට බෝල් පොයින්ට් පැනක් පාවිච්චි කරන්න.
- 2. සෑම උත්තරපතුයකම මුල් පිටුවේ සහකාර පරීකෳක සංකේත අංකය සටහන් කරන්න. ඉලක්කම් ලිවීමේදී **පැහැදිලි ඉලක්කමෙන්** ලියන්න.
- ඉලක්කම් ලිවීමේදී වැරදුණු අවස්ථාවක් වේ නම් එය පැහැදිලිව තනි ඉරකින් කපා හැර නැවත ලියා කෙටි අත්සන යොදන්න.
- 4. එක් එක් පුශ්නයේ අනු කොටස්වල පිළිතුරු සඳහා හිමි ලකුණු ඒ ඒ කොටස අවසානයේ \triangle ක් තුළ ලියා දක්වන්න. අවසාන ලකුණු පුශ්න අංකයත් සමඟ **රූ**ක් තුළ, භාග සංඛ්‍යාවක් ලෙස ඇතුළත් කරන්න. ලකුණු සටහන් කිරීම සඳහා පරීක්ෂකවරයාගේ පුයෝජනය සඳහා ඇති තීරුව භාවිත කරන්න.

උදාහරණ :පුශ්න අංක 03

බනුවරණ උත්තරපතු : (කවුළු පතුය)

- 1. අ.පො.ස. (උ.පෙළ) හා තොරතුරු තාක්ෂණ විභාගය සඳහා කවුළු පතු දෙපාර්තමේන්තුව මගින් සකසනු ලැබේ. නිවැරදි වරණ කපා ඉවත් කළ සහතික කරන ලද කවුළුපතක් ඔබ වෙත සපයනු ලැබේ. සහතික කළ කවුළු පතුයක් භාවිත කිරීම පරීක්ෂකගේ වගකීම වේ.
- 2. අනතුරුව උත්තරපතු හොඳින් පරීඤා කර බලන්න. කිසියම් පුශ්නයකට එක් පිළිතුරකට වඩා ලකුණු කර ඇත්නම් හෝ එකම පිළිතුරක්වත් ලකුණු කර නැත්නම් හෝ වරණ කැපී යන පරිදි ඉරක් අදින්න. ඇතැම් විට අයදුම්කරුවන් විසින් මුලින් ලකුණු කර ඇති පිළිතුරක් මකා වෙනත් පිළිතුරක් ලකුණු කර තිබෙන්නට පුළුවන. එසේ මකන ලද අවස්ථාවකදී පැහැදිලිව මකා නොමැති නම් මකන ලද වරණය මත ද ඉරක් අදින්න.
- 3. කවුළු පතුය උත්තරපතුය මත නිවැරදිව තබන්න. නිවැරදි පිළිතුර **D** ලකුණකින් ද, වැරදි පිළිතුර 0 ලකුණකින් ද වරණ මත ලකුණු කරන්න. නිවැරදි පිළිතුරු සංඛාාව ඒ ඒ වරණ තී්රයට පහළින් ලියා දක්වන්න. අනතුරුව එම සංඛාා එකතු කර මුළු නිවැරදි පිළිතුරු සංඛාාව අදාළ කොටුව තුළ ලියන්න.

වුපුනගත රචනා හා රචනා උත්තරපතු :

- 1. අයදුම්කරුවන් විසින් උත්තරපතුයේ හිස්ව තබා ඇති පිටු හරහා රේඛාවක් ඇඳ කපා හරින්න. වැරදි හෝ නුසුදුසු පිළිතුරු යටින් ඉරි අදින්න. ලකුණු දිය හැකි ස්ථානවල හරි ලකුණු යෙදීමෙන් එය පෙන්වන්න.
- ලකුණු සටහන් කිරීමේදී ඕවර්ලන්ඩ් කඩදාසියේ දකුණු පස තී්රය යොදා ගත යුතු වේ. 2.
- 3. සෑම පුශ්නයකටම දෙන මුළු ලකුණු උත්තරපතුයේ මුල් පිටුවේ ඇති අදාළ කොටුව තුළ පුශ්න අංකය ඉදිරියෙන් අංක දෙකකින් ලියා දක්වන්න. පුශ්න පතුයේ දී ඇති උපදෙස් අනුව පුශ්න තෝරා ගැනීම කළ යුතුවේ. සියලු ම උත්තර ලකුණු කර ලකුණු මුල් පිටුවේ සටහන් කරන්න. පුශ්න පතුයේ දී ඇති උපදෙස්වලට පටහැනිව වැඩි පුශ්න ගණනකට පිළිතුරු ලියා ඇත්නම් අඩු ලකුණු සහිත පිළිතුරු කපා ඉවත් කරන්න.
- පරීකෂාකාරීව මුළු ලකුණු ගණන එකතු කොට මුල් පිටුවේ නියමිත ස්ථානයේ ලියන්න. 4. උත්තරපතුයේ සෑම උත්තරයකටම දී ඇති ලකුණු ගණන උත්තරපතුයේ පිටු පෙරළමින් නැවත එකතු කරන්න. එම ලකුණ ඔබ විසින් මුල් පිටුවේ එකතුව ලෙස සටහන් කර ඇති මුළු ලකුණට සමාන දැයි නැවත පරීක්ෂා කර බලන්න.

ලකුණු ලැයිස්තු සකස් කිරීම :

සියලු ම විෂයන්හි අවසාන ලකුණු ඇගයීම් මණ්ඩලය තුළදී ගණනය කරනු නොලැබේ. එබැවින් එක් එක් පතුයට පතුයක් පමණක් ඇති විට ලකුණු ලැයිස්තුවට ලකුණු ඇතුළත් කිරීමෙන් පසු අකුරෙන් ලියන්න. අනෙකුත්

0229

සියලු ම හිමිකම් ඇව්රීණි /(மුගුටා பதிப்புரிமையுடையது /All Rights Reserved)

இவை විභාග දෙපාර්ගමේන්තුව ලී ලංකා විභාග දෙපාර්ගමේනුවල් කියලා විභාග සුදුර්දුර් කියල් දිදුවේ විභාග දෙපාර්ගමේන්තුව ඉහත්තෙයට படு කෑන නිකාශස්පතාව මුහත්තෙයට படு **இත්තෙන්තුව ගියල් විභාග විභාග දෙපාර්ගමේන්තුව** Department of Examinations, Sri Lanka Department of **இலங்கை Salifti කොළඹා අත්තෙන්ස හෝ**ය. Sri Lanka Department of Examinations Sri Lanka இනෙන්තෙයට පුරුත්වේන්තුව ලී ලංකා විභාග දෙපාර්ගමේන්තුව ලී ලෙකා දිදුවේනුවේන්තුව ලී ලංකා විභාග දෙපාර්ගමේන්තුව ලී ලංකා විභාග දෙපාර්ගමේන්තුව ඉහත්තෙයට පුරුත්වේන්තුව ලී ලංකා විභාග දෙපාර්ගමේන්තුව ලී ලෙකා දියුවේනුවේන්තුව ලී ලංකා විභාග දෙපාර්ගමේන්තුව ඉහත්තෙයට පුරුත්වේන්තුව මුහත්තයට පුරුත්වේන්තුව ලියල් සිදුවේනුවේන්තුව ලී ලේකා විභාග දෙපාර්ගමේන්තුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

ව්දලිය, ඉලෙක්ටොනික හා තොරතුරු තාක්ෂණවේදය

மின், இலத்திரன், தகவல் தொழினுட்பவியல் Electrical, Electronic and Information Technology

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ තියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🗱 උත්තර පනුයේ පිටුපස දී ඇති උපදෙස් ද සැලකිල්ලෙන් කියවා පිළිපදින්න.
- * 1 සිට 50 තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතූර තෝරාගෙන, එය උත්තර පතුයේ පසුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) යොද දක්වන්න.
- 🗱 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- මූලික ඒකකවලින් බලයේ ඒකක මොනවාද?
- (2) $kg m s^{-2}$
- (3) $kg^{-1} m^{-1} s^{-2}$
- (4) $kg^{-1} m^{-1} s^2$ (5) $m s^{-2}$
- ${f 2}$. සිසුන් කණ්ඩායමක් විසින් සකසන ලද චෝල්ටීයතා පුහව කිහිපයක් පහත දැක්වේ. A හා B අගු අතර අඩුම වෝල්ටීයතාවය දැක්වෙත පරිපථය කුමක්ද?

- $oldsymbol{3}$. සිසුන් කණ්ඩායමක් විසින් පහත දැක්වෙන පරිපථය සඳහා ධාරිතුකයක් (A), ජේරකයක් (B) හා පුතිරෝධකයක් (C)තෝරා ගත්තා ලදී. A, B හා C ට අදාළ වරණය තෝරන්න.
 - (1) A 10 k Ω
- B 1 mH C 1000 μF
- (2) A 1μ F
- B-1 mH C-1 k Ω
- (3) $A 1 k\Omega$
- B 1 μF C 1 mH
- $(4) A 1 k\Omega$

- B 1 mH C 1 mH (5) A - 1000 μF B - 1 kΩ C - 1 mH
- A ධාරිතුකය B-පේරකය C-පුතිරෝධකය
- 4. ගෘහස්ත විදුලි පරිපථයේ සාමානාසයෙන් භාවිත **නොවන** උපාංගය කුමක් ද?
 - (1) පුධාන වහුරුව (Main switch)
 - (2) ශේෂධාරා පරිපථ බිඳිනය (Residual Current Circuit Breaker)
 - (3) සිගිති පරිපථ බිඳිනය (Miniature Circuit Breaker)
 - (4) කෙවෙනි පිටවාන (Socket outlet)
 - (5) දෝලනේක්ෂය (Oscilloscope)

/දෙවැනි පිටුව බලන්න.

- 2 -

5. ධන හෝ සෘණ ස්ථිතික විදැපුත් ආරෝපණ සහිත අයිතම දෙකක් එක ළඟ ස්ථානගත කර ඇත. ඒවා මත බල කිුියාකරන දිශා නිවැරදිව දක්වා ඇති පිළිතුර තෝරන්න.

6. චෝල්ටීයතාවය, ධාරාව, සංඛාහතය සහ විදයුත් ක්ෂමතාවට අදාළ ඒකක පිළිවෙළිත් දැක්වෙන වරණය කුමක් ද?

- (1) A, V, Hz සහ W
- (2) V, A, Hz සහ W
- (3) W, A, Hz සහ V

- (4) A, W, Hz සහ V
- (5) V, W, Hz සහ A

7. රූපයේ දක්වා ඇති ආකාරයට $R_1,\,R_2,\,R_3$ හා R_4 යන පුතිරෝධක සමාන්තර හා ශ්රණිගත සංයෝජනයෙන් සම්බන්ධකර ඇති අතර එහි $R_1\!\!<\!R_2$ හා $R_3\!\!<\!\!R_4$ වේ. පරිපථයේ A හා B ලක්ෂා හරහා විහව අන්තරයක් ඇති කළ විට උපරිම ජව හානියක් ඇතිවන පුතිරෝධකය/පුතිරෝධක කුමක් ද?

- (1) R_1
- (2) R_2
- (3) R_3
- (4) R
- (5) R_2 සහ R_3

8. 'මනින ලද අගය' සහ 'සතා අගය' අතර වෙනස හැඳින්වෙන්නේ,

- (1) නියත දෝෂය ලෙස ය.
- (2) සතා දෝෂය ලෙස ය.
- (3) අහඹු දෝෂය ලෙස ය.

- (4) පද්ධති දෝෂය ලෙස ය.
- (5) අත්වැරැද්ද ලෙස ය.
- 9. වාතේ මිනුම් පටියේ තාප සංකෝචනය නිසා ඇතිවන දෝෂය පිළිබඳ නිවැරදි පුකාශය කුමක් ද?
 - (1) දෝෂය ධන වේ.
 - (2) දෝෂය නොසලකා හැරිය හැක.
 - (3) දෝෂය සෘණ වේ.
 - (4) දෝෂය උෂ්ණත්වය මත පමණක් රඳා පවතී.
 - (5) සලකා බැලිය හැකි දෝෂයක් නැත.
- 10. බල තුනක් දරන කාප්ප හැටුමක් පහත රූප සටහනේ දැක්වේ. B රෝලට දැරිය හැකි උපරිම භාරය $18~\mathrm{kN}$ නම්, කාප්පය මගින් දැරිය හැකි F බලයේ උපරිම අගය කොපමණ ද?
 - (1) $\sqrt{2}$ kN
 - (2) $1.5\sqrt{2}$ kN
 - (3) $6\sqrt{2}$ kN
 - (4) $9\sqrt{2} \text{ kN}$
 - (5) $12\sqrt{2} \text{ kN}$

/තුන්වැනි පිටුව බලන්න.

- 0229
- 11. රූපයේ දැක්වෙන ආකාරයට කුහර සහිත සමචතුරසුාකාර හරස්කඩකින් යුක්ත වානේ අවයවයක් මත එහි 'O' අක්ෂය දිගේ 100 kNක සම්පීඩා බලයකට (Axial compressive load) භාජනය වේ. බිත්තියේ ඝනකම 0.25 m වේ. මෙම වාතේ අවයවයේ පුතාහබල හා විකිුයා පිළිබඳ පුකාශ කිහිපයක් පහත දැක්වේ.
 - A අවයවය 57 kPa ක අක්ෂීය සම්පීඩා පුතාහබලයකට ලක් වේ.
 - B අවයවය 25 kPa අක්ෂීය සම්පීඩා පුත්හාබලයකට ලක් වේ.
 - C බිත්ති ඝනකම වැඩිකිරීමෙන් අක්ෂීය පුතනබලය (axial stress) අඩුකරගත හැක.
 - D අවයවය තුළ අක්ෂීය සම්පීඩා විකියාවක් දක්නට ලැබේ.
 - E සම්පීඩා පුත්යාබලය වැඩි කළහොත්, අනුරූපී අක්ෂීය විකියාව සමානුපාතිකව අඩු වේ.

ඉහත පුකාශවලින් නිවැරදි වන්නේ,

- (1) A, C හා D පමණි.
- (2) A, D හා E පමණි.
- (3) B, C so D = 5.

- (4) B, D හා E පමණි.
- (5) C, D හා E පමණි.
- $oldsymbol{12}$. පහත දැක්වෙන ජාලයේ $oldsymbol{A}$ හා $oldsymbol{B}$ අගු අතර සමක පුතිරෝධයේ අගය,
 - (1) 2 Ω කි.
 - (2) 4 Ω 岛.
 - (3) 6 Ωකි.
 - (4) 8 Ω ක.
 - (5) 10 Ωකි.

13. සරල ධාරා ජව පුභවයක්, ඩයෝඩ සහ පහනක් සමග සම්බන්ධ කර ඇති ආකාර පහත පරිපථවලින් දැක්වේ. ඒවා අතුරෙන් පහන දැල්වෙන්නේ කුමන පරිපථයේ ද?

(3)

- (1) 0.28 කි.
- (2) 0.3 කි.
- (3) 0.4 කි.
- (4) 0.56 කි.
- (5) 0.6 කි.

/ගතරවැනි පිටුව බලන්න.

-4-

15. පහත පරිපථය පුතාභවර්ත ධාරා සැපයුමකට සම්බන්ධ කර ඇත. නිවැරදි පුතිදානය සහිත පිළිතුර තෝරන්න.

- 16. පහත පුකාශ සලකන්න.
 - A ඕනෑම වර්ගයක ගින්නක් වළක්වාලීම සඳහා ජලය භාවිත කළ හැකි ය.
 - B වහා ගිනි ගන්නා සුළු දුව හා වායු වර්ගවලින් ඇතිවන ගිනි වළක්වාලීම සඳහා නිල් පැහැයෙන් යුත් ගිනි නිවන උපකරණ යෝගෳ ය.
 - C කළු පැහැති ගිනි නිවන උපකරණවල CO_2 අඩංගු නිසා විදුලියෙන් ඇතිවන ගිනි වළක්වාලීම සඳහා සුදුසු ය.
 - D පෙන ගිනි නිවන උපකරණ කොළ පැහැයක් ගනී.

ඉහත පුකාශ අතුරෙන් ගිනි නිවන උපකරණ සම්බන්ධයෙන් නිවැරදි වන්නේ,

- (1) A හා C පමණි.
- (2) A හා D පමණි.
- (3) B හා C පමණි.

- (4) B හා D පමණි.
- (5) A, B හා C පමණි.
- 17. පහත පුකාශ සලකන්න.
 - A ෆීනෝල් ෆෝමැල්ඩිහයිඩ්වලින් නිෂ්පාදනය කරන ලද පළමු කෘතුිම ප්ලාස්ටික් විශේෂය බේක්ලයිට් වේ.
 - B කැල්සියම් ක්ලෝරයිඩ් විදයුත් විච්ඡේදනයෙන් ක්ලෝරීන් නිෂ්පාදනය කළ හැකි ය.
 - C කැල්සියම් කාබතේට් සාමානා පෝට්ලන්ඩ් සිමෙන්තිවල අඩංගු පුධාන සංඝටකයකි.
 - D පොලිවයිනයිල් ක්ලෝරයිඩ් නිෂ්පාදන සඳහා බොරතෙල් උපයෝගී කර ගනී.

ඉහත පුකාශ අතුරෙන් කර්මාන්තවලදී භාවිතවන රසායනික දුවා සම්බන්ධයෙන් නිවැරදි වන්නේ,

- (1) A, B හා C පමණි.
- (2) A, B හා D පමණි.
- (3) A, C හා D පමණි.

- (4) B, C හා D පමණි.
- (5) A, B, C හා D සියල්ලම ය.
- 18. ගමානාව වෙනස්වීමේ ශීසුතාව අර්ථ දක්වන්නේ,
 - (1) ත්වරණය ලෙස ය.
- (2) බලය ලෙස ය.
- (3) ආවේගය ලෙස ය.

- (4) අවස්ථීතිය ලෙස ය.
- (5) කාර්යය ලෙස ය.

/පස්වැනි පිටව බලන්න.

YSs%,xld úNd. fomd¾;fïka;=j,yq;ifg; guPl;irj; jpizf;fsk;

w'fmd'i' ^W'fm<& uNd.h \$ f.n gh.j. (c au; j u)g; guPl;ir - 2021 /2022&

úlhwxlh ghl, yf;fk;

16

úl hh ghlk ;;

úÿ,sh" bf,lafg%dksl yd f;dr;=re ;dClKfõoh

,l=Kq §fï mámdáh \$ **Gs;s p toq; Fk ; jpl;l k;** I m;%h\$ **gj;j puk;**l

m i %ak wxlh	masş ⊭e wxlh	m‱rak wxlh	ma≼şr⊨e wxlh	m‱rk wxlh	masş ⊫e wxlh	m‱rak wxlh	m≰ş ≓e wxih	∵n¶⁄ak wx. h	ma≼ş ≢e wxlh
t pdh , y.	t pil , y.	t pdh , y.	t pil , y.	t pch , y.	t pil , y.	t pdh , y.	t pil	i pdh , y.	t pil , y.
01.	2	11.	1	21.	3	31.	,2	41.	1
02.	2	12.	3	22.	1	32.	4	42.	5
03.	2	13.	4	23.	0	33.	2	43.	2
04.	5	14.	4	24.	1	34.	2	44.	4
05.	4	15.	All	25.	1	35.	2	45.	4
06.	2	16.	3	26.	3	36.	3	46.	3
07.	All	17.	2	27.	2	37.	4	47.	2/4
08.		18.	2	28.	5	38.	All	48.	4
93.	3	19.	2	29.	5	39.	4	49.	2
10.	2	20.	2	30.	1	40.	1	50.	2

[→] úf YalW mfoi a\$ t pNrl mwpTWj;jy; (

tl amss # g \$ x U rup hd t pilf; F , I $\not\in$ q02 ne.sk a\$ Gs; spt Pk; uq , I $\not\in$ q\$ nkhj ; jg; Gs; sps ; 02 ± 50 } 100

ccțsi y eÿkqïm;a wxih fydaúfo Yat. uka n, m;a wxih

^fuhskal Ig, I=Kq6hs&

k u"jh i "ia,%% fiqel N djh", sısıkh" úfo ¥at. uka n, m;a wxlh ^fuhská dil ai `oyd 5 €, l = 1 1 €a 8

mß. KIhla \$\text{subdUcx. u yrl: khla \$\text{gi} \$\text{mß. KI hka}\text{hka}\text{a i} \text{v} \\
\text{wka; }\frac{3}{cd, myi qli} \text{ \text{fuhskall | g, | \text{kq 10 bk} \text{ }}}

QRi alEk¾hka,%hl al Barcode reader wka; %cd myi ti i ys; ms. KIhl a

vhskallg,lk≤q10b&

ksheÈksl=alrk ks, Odshd úiska; we; =; alrk úg o; a; .nvdíō-lulo Odsó Woodn & Krive or Klashw M4~JRD QYG} WKhd; ald Skuhhqt=s' ^ieks.e, fmktl alreklaioyd, lkiq 115s& fâgd fiih u`. skaSMStllifica.sdifj; heúh hqt=s'fydafrd shdo; a; mo@ishg ^fji wuúhg&we; =, ajQmiq, ndÿkaisß, awwlh ^Serial numbe&iy yeÿköjma wwlh wkqj ~?/wy/ hksl tal < hqt=s' ^, lkiq 110s &

m% by blaukatslal sfi yel bid

′kEu<mark>;ek</mark> ìisg maoOskog we,≕ ùf ïyelshdj

^fujeks;d%/sllreKlaiòyd,l=Kq10sl&

Wnøj o; a úlD; slsli j, g, la ùu Detabase can be hacked

m,% h fj ki al< yelshs

m,%M, ;keajk m.d%Ajhlaw, g m, aùu \$ryiH N.djh w.dnlald fk.dùu l ‱stud%.

wod, whosk an,;,,nd §uuq mo^Pasworo&,nd §u'

m/% hijahxl/% ij PCRhk a 1% u`.ska Updatelsĺu' m/% h t la jrla muKla ridhk d.drfha § fjki a lsĺug bv, nd § u'

wood frdashog m%Nafsh fl á mKsúv (SMS) u.ska heùu'

, ndýka tl Serial number 1mdija 3/4 a& uqmohla f, i Ndú, dlr m, 1/4 h, nd.e k 3 yelshoj'

^fujeks; d¾ sllreKq6lai|yd 5 « 6 }, l ≰ q30 h&

úNjf nÿï keUqej f yda fjda,aáh,d fnÿï keUqej

f mdy úf udapl úkHdi h

^, I ₭ q 6 h s&

^,l=Kq 05 hs&

Ψ́ Ù HŲ Ӫ҉

^,I=Kq 05 hs&

^uq; ,l =Kq 10 ba&

ύ = m%sfræði hg í ï Jshuh f h§fuka

^,I=Kq 05 hs&

^,l=Kq 05 hs&

^,I=Kq 05 hs& ^uq¿, I = Kq 15 s&

^,I=Kq 05 hs& ^,I=Kq 10hs&

LÙ ãS BHÚ Ủ Ü m**fyda0'66** mA ^,l=Kq 10 hs&

^,I=Kq 05 hs&

<u>ỗ ÷ L Ùäß ß HÚ ΰ m fyda Ùäß ß" m</u> ^,I=Kq 10 hs&

^uq; ,l =Kq 40 b&

L Û& & " m Ú Ù Ù LÙÄÙ Ù & "ßm Augustions
Alkq1008
Alkq1008
Alkq1008 fyda

÷n Lßäß"m

^,I=Kq 05 hs&

^,I=Kq 05 hs&

^,l=Kq 15 hs&

^uq¿, | ≰ q 25, %

Alkq108 Silvaning Silvanin

^, I ₭ φ05 h&

^, | ₭ q 10h&

uq¿ "nst/kdOkh

- y ksjdi WKqiqi Islu i|yd
- x f,day lemsi i|yd fhdod .ekSu
- x fudg¾ r: bkaOkhla i|yd Ndú;h
- x woykd.dr i|yd

 $^{\text{A}}$, $_{\text{A}}$ = $^{\text{A}}$ = $^{\text{A}}$ = $^{\text{A}}$ = $^{\text{A}}$

- y msmsĺï we;sùu
- y .sks .ekSï we;s ùu
- x wd.%yKh ksid frda.S ;;a;aj we;s ùu

^,I =Kq5 x 2 = 30)

- y .kaofhka ^wdfjksl .kaOhka y⊹k√.ekSu&
- x inka Èhr fhdod ngng" .ekSu milalo Isifuka

^,I = $K_{\mathbf{q}}^{\mathbf{q}}$ 0 x 2 = 40)

- y .Eia fikai¾ /:::foolhla&
- x is,skayrh wdkakfha fhdod .ekSu
- x .sk ks k WmlrK l%shd;aul ùu
- x ixfoolu.ska o;a; ,nd .ekSu

 $^{\text{I}} = \text{Ke} 50$

- y n;a msiSu\$ wdydr msiSu
- x frÈ ue§u\$ iE§u
- x j;=r fmdïm lsĺu
- Californs Silvaniko x wdydr I,a ;nd .ekSug YS;rl{h Ndú;h
- x úÿ,s mxld Ndú;h

o e Partine III. jeks .e,fmk lreKc 04 la ilyd

^,I = $K_0 5 \times 4 = 20$)

						anko
				5	Sil	anka
whsuh	whsu.K	k	cji e ml qu	ud sl. vožin	kwh	
YS;IrKh	02		500	50	60	
úÿ,s ia;%slalh	02		1500	08	24	
n;a Wÿk	01		500	10	05	
is,sx mxldj	08		80	240	153'6	
	10		40	150	60	
úÿ,s nqnq¨	04		6c)	60	14'4	
	01		70	10	1	
		tl	THE STATE OF THE S		318 tall	

uq α udisl ú β ,s n, ml β Nc β Ackh = 318kwh fyda tall = 318

'kEu m%dfhaa.sl w.hka i|yd ,l=Kq ,nd fokak'

 $^{\text{A}}$, **I** =**K** $^{\text{A}}$ 3 x 15 = 45)

i.ld ne" lreKa

YS;lrKh Ndú;h wkqj iS;, mj;ajd .ekSug ON/OFFùu iy wmj¾;l ùu

frÈ ue§ug Èkm;d ld,hla Ndú;h

oyj,a ld,fha úÿ,s mxld Ndú;

40W n,an jeämqr"60W iy 100W n,an wjYH úg

by; 'kEu 04 la i|yd o" fjk;a m%dfhda.sl ldrKdj,g o ,l=Kq ,nd fokak'

 $^{\text{A}}$, I = K $^{\text{A}}$ 5 x 04 = 20)

ksjfia uq¿ mßfNdackh 350kwhksid j.=j 02 f;dard .ksuq'

uq¿ n,an i|yd jehùu = 75.4kwh

(b)-(i) ms<s;=frka (1

fuys msßjeh 180 jeä tall fldgiska jeh jk f,i Wml,amkh Iruq' ^fjk;a idOdrK WmlrK i|yd o ,l=Kq fokak&

fuu ksjfia wdf,dal Ndrfha msßjeh = 75.4 x 45

= re' 3393.00 (10

^.l =Ka028

LED n,an Ndú;d l< úg wvq ld¾hlalu;djhlska hq,a n%;s§ma; n,anhlska ,efnk wdf,dalhu ,eîu'

Wod (40W m%;s§mk n,anhlska ,efnk) včť dalh 4W LED n,anhlska ,eîu'

^,I =Kq5&

LEDfh/ug Ndú;h

rhou . Kkk	cj w. h (w)	Ndú, h^neth&	kwh
10	04	150	06
04	06	60	1.44
01	16	10	0.6
		t I ; =j	7.6

LED n,an fhÿ miq wdf,dal Ndrfha msßjeh= 7.6 x 45 = re' 342.00

msßjeh wvq ùu

(5) (5) = re.3393.00 ±342.00 = re'_3051.00

by; (b)(i) j.=jg wod<j n,anj, Ndú;hg ksjerÈ .Kkhkag ,l=Kq ,nd fokak'

 $^{I} = K@.08$