

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение задачи линейного программирования табличным симплекс-методом. Вариант 4.1»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Дано

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases} 3x_1 - 2x_2 \ge -8 \\ 3x_1 + x_2 \ge 3 \\ x_2 \le 8 \\ x_1 \le 4 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задание

Стандратная форма

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases}
-3x_1 + 2x_2 \le 8 \\
-3x_1 - x_2 \le -3 \\
x_2 \le 8 \\
x_1 \le 4
\end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Каноническая форма

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases} 3x_1 - 2x_2 \ge -8 \\ 3x_1 + x_2 \ge 3 \\ x_2 \le 8 \\ x_1 \le 4 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0$:

$$3x_1 - 2x_2 - y_1 = -8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

2. Делаем правые части равенств положительными:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

Таким образом, задача сведена к канонической форме.

Матричная форма

$$A \times X^T = B^T$$
, где:

$$A = \begin{pmatrix} -3 & 2 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} x_1 & x_2 & y_1 & y_2 & y_3 & y_4 \end{pmatrix} \quad B = \begin{pmatrix} 8 & 3 & 8 & 4 \end{pmatrix}$$

Метод штрафов

Введём искусственную переменную — $r \ge 0$.

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 + r = 3$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

$$x_i \ge 0 \ \forall i = \overline{1,2}; \quad y_j \ge 0 \ \forall j = \overline{1,4}$$

В качестве базисных переменных возьмём y_1, r, y_3, y_4 , свободные переменный — x_1, x_2, y_2 .

Выразим базисные переменные через свободные:

$$y_1 = 8 + 3x_1 - 2x_2$$

$$r = 3 - 3x_1 - x_2 + y_2$$

$$y_3 = 8 - x_2$$

$$y_4 = 4 - x_1$$

Перепишем функцию цели:

$$f = 4x_1 + x_2 - Mr = 4x_1 + x_2 - M(3 - 3x_1 - x_2 + y_2)$$

$$f = -3M + (3M+4)x_1 + (M+1)x_2 - My_2$$

Пусть M = 100, тогда функция цели примет следующий вид: $f = -300 + 304x_1 + 101x_2 - 100y_2$

Перепишем функцию цели:

$$f - 304x_1 - 101x_2 + 100y_2 = -300$$

1 итерация

Базисные переменные: y_1, r, y_3, y_4 . Свободные переменный: x_1, x_2, y_2 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.	
								член	
f	<u>-304</u> -304	-101 -304/3	О о	100 304/3	О о	О о	0 -304/3	-300 -304	
y_1	<u>-3</u> -3	2 -1	1 о	0 1	0 о	0 о	0 -1	8 -3	$-\frac{8}{3} < 0$
r	3 1	1 1/3	0 0	-1 <u>-1/3</u>	0 0	0 0	1 1/3	3 <u>1</u>	1 - min
y_3	<u>0</u> o	1 0	0 о	0 0	1 o	0 о	0 о	8 0	$\frac{8}{0} - /0!$
y_4	1 1	0 1/3	0 о	0 -1/3	О о	1 o	0 1/3	4 1	4

Меняем свободную переменную x_1 и базисную переменную r местами.

 $x_1 \leftrightarrow r$

2 итерация

Базисные переменные: y_1, x_1, y_3, y_4 . Свободные переменный: x_2, y_2, r .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.	
								член	
f	0 о	$\frac{1}{3}$ 4/3	0 о	$-\frac{4}{3}$ -4/3	0 о	0 -4	$\frac{304}{3}$ 4/3	4 -12	
y_1	0 о	3 1	1 о	<u>-1</u> -1	0 о	0 -3	1 1	11 -9	$-\frac{11}{1} < 0$
x_1	1 0	$\frac{1}{3} 1/3$	0 о	$-\frac{1}{3}$ -1/3	0 о	0 -1	$\frac{1}{3}$ 1/3	1 -3	-3 < 0
y_3	0 о	1 0	0 о	<u>0</u> o	1 о	0 о	0 о	8 0	$\frac{8}{0} - /0$!
y_4	0 0	$-\frac{1}{3} - 1$	0 <u>o</u>	$\frac{1}{3}$ 1	0 0	1 <u>3</u>	$-\frac{1}{3} - 1$	3 9	9-min

Меняем свободную переменну y_2 и базисную переменную y_4 местами. $y_2 \leftrightarrow y_4$

3 итерация

Базисные переменные: y_1, x_1, y_2, y_3 . Свободные переменный: x_2, y_4, r .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.	
								член	
f	0 о	<u>-1</u> -1	0 о	0 о	0 -1	4 0	100 о	16 -8	
y_1	0 о	2 2	1 о	0 о	0 2	3 0	0 о	20 16	10
x_1	1 0	<u>0</u> o	0 о	0 о	0 о	1 0	0 о	4 0	$\frac{4}{0} - /0 !$
y_3	0 0	1 1	0 <u>o</u>	0 0	1 <u>1</u>	0 <u>o</u>	0 0	8 8	8-min
y_2	0 0	<u>-1</u> -1	0 0	1 0	0 -1	3 0	-1 0	9 -8	-9 < 0

Меняем свободную переменну x_2 и базисную переменную y_3 местами. $x_2 \leftrightarrow y_3$

Оптимальное решение

Базисные переменные: y_1, x_1, x_2, y_2 . Свободные переменный: y_3, y_4, r .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.
								член
f	0	0	0	0	1	4	100	24
y_1	0	0	1	0	-2	3	0	4
x_1	1	0	0	0	0	1	0	4
x_2	0	1	0	0	1	0	0	8
y_2	0	0	0	1	1	3	-1	17

Таким образом, получается:

$$f + y_3 + 4y_4 + 100r = 24 \rightarrow f = 24$$

$$y_1 - 2y_3 + 3y_4 = 4 \rightarrow y_1 = 4$$

$$x_1 + y_4 = 4 \rightarrow x_1 = 4$$

$$x_2 + y_3 = 8 \rightarrow x_2 = 8$$

$$y_2 + y_3 + 3y_4 - r = 17 \rightarrow y_2 = 17$$

$$y_3 = 0, y_4 = 0, r = 0$$

Ответ: $x_1 = 4, x_2 = 8, f = 24$

Двухэтапный метод

Целевая функция:

$$f = 4x_1 + x_2 \longrightarrow max$$

Ограничения:

$$-3x_1 + 2x_2 + y_1 = 8$$

$$3x_1 + x_2 - y_2 + r = 3 \rightarrow r = 3 - 3x_1 - x_2 + y_2$$

$$x_2 + y_3 = 8$$

$$x_1 + y_4 = 4$$

$$x_i \ge 0 \ \forall i = \overline{1,2}; \quad y_j \ge 0 \ \forall j = \overline{1,4}$$

Введём вспомогательную функцию цели:

$$\phi = r = 3 - 3x_1 - x_2 + y_2 \longrightarrow min$$

Перепишем функцию ϕ :

$$\phi + 3x_1 + x_2 - y_2 = 3$$

1 итерация

Базисные переменные: y_1, r, y_3, y_4 . Свободные переменный: x_1, x_2, y_2 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.	
								член	
ϕ	<u>3</u> 3	1 1	0 о	-1 -1	0 0	0 о	0 1	3 3	
y_1	<u>-3</u> -3	2 -1	1 0	0 1	0 о	0 о	0 -1	8 -3	$-\frac{8}{3} < 0$
r	3 1	1 1/3	0 0	-1 _{-1/3}	0 0	0 0	1 1/3	3 <u>1</u>	1 - min
y_3	<u>0</u> o	1 о	0 0	0 0	1 0	0 0	0 о	8 0	$\frac{8}{0} - /0!$
y_4	<u>1</u> 1	0 1/3	0 о	0 -1/3	0 0	1 0	0 1/3	4 1	4

Меняем свободную переменную x_1 и базисную переменную r местами.

 $x_1 \leftrightarrow r$

Оптимальное решение

Базисные переменные: y_1, x_1, y_3, y_4 . Свободные переменный: x_2, y_2, r .

БП	x_1	x_2	y_1	y_2	y_3	y_4	r	Своб.
								член
ϕ	0	0	0	0	0	0	-1	0
y_1	0	3	1	-1	0	0	1	11
x_1	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	1
y_3	0	1	0	0	1	0	0	8
y_4	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	3

r=0 и значение вспомогательной функции $\phi=0$.

Таким образом, получается:

Таким образом, получается.
$$3x_2+y_1-y_2=11$$

$$x_1+\frac{1}{3}x_2-\frac{1}{3}y_2=1 \quad \rightarrow \quad x_1=-\frac{1}{3}x_2+\frac{1}{3}y_2+1$$

$$x_2+y_3=8$$

$$-\frac{1}{3}x_2+\frac{1}{3}y_2+y_4=3$$

Выразим функцию цели через свободные переменные:

$$f = 4x_1 + x_2 = 4 - \frac{4}{3}x_2 + \frac{4}{3}y_2 + x_2 = 4 - \frac{1}{3}x_2 + \frac{4}{3}y_2$$

 \downarrow

$$f = 4 - \frac{1}{3}x_2 + \frac{4}{3}y_2 \longrightarrow max$$

Перепишем функцию цели:

$$f + \frac{1}{3}x_2 - \frac{4}{3}y_2 = 4$$

1 итерация

Базисные переменные: y_1, x_1, y_3, y_4 .

Свободные переменный: x_2, y_2 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	Своб.	
							член	
f	0 о	$\frac{1}{3}$ 4/3	0 о	$-\frac{4}{3}$ -4/3	0 о	0 -4	4 -12	
y_1	0 о	3 1	1 0	<u>-1</u> -1	0 о	0 -3	11 -9	$-\frac{11}{1} < 0$
x_1	1 0	$\frac{1}{3} 1/3$	0 0	$-\frac{1}{3}$ -1/3	0 0	0 -1	1 -3	-3 < 0
y_3	0 о	1 0	0 о	<u>0</u> o	1 0	0 о	8 0	$\frac{8}{0} - /0!$
y_4	0 0	$-\frac{1}{3} - \frac{1}{2}$	0 0	$\frac{1}{3}$ 1	0 0	1 <u>3</u>	3 <u>9</u>	9-min

Меняем свободную переменну y_2 и базисную переменную y_4 местами. $y_2 \leftrightarrow y_4$

2 итерация

Базисные переменные: y_1, x_1, y_2, y_3 .

Свободные переменный: x_2, y_4 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	Своб.	
							член	
f	0 о	<u>-1</u> -1	0 о	0 о	0 -1	4 0	16 -8	
y_1	0 о	2 2	1 о	0 о	0 2	3 0	20 16	10
x_1	1 o	<u>0</u> o	0 о	0 о	0 о	1 0	4 0	$\frac{4}{0} - /0 !$
y_3	0 0	1 1	0 0	0 0	1 <u>1</u>	0 0	8 8	8-min
y_2	0 0	<u>-1</u> -1	0 0	1 0	0 -1	3 0	9 -8	-9 < 0

Меняем свободную переменну x_2 и базисную переменную y_3 местами. $x_2 \leftrightarrow y_3$

Оптимальное решение

Базисные переменные: y_1, x_1, x_2, y_2 .

Свободные переменный: y_3, y_4 .

БП	x_1	x_2	y_1	y_2	y_3	y_4	Своб.
							член
f	0	0	0	0	1	4	24
y_1	0	0	1	0	-2	3	4
x_1	1	0	0	0	0	1	4
x_2	0	1	0	0	1	0	8
y_2	0	0	0	1	1	3	17

Таким образом, получается:

$$f + u_3 + 4u_4 = 24$$
 \rightarrow $f = 24$

$$y_1 - 2y_3 + 3y_4 = 4$$
 \rightarrow $y_1 = 4$

$$x_1 + y_4 = 4 \qquad \qquad \rightarrow \quad x_1 = 4$$

$$f + y_3 + 4y_4 = 24$$
 \rightarrow $f = 24$
 $y_1 - 2y_3 + 3y_4 = 4$ \rightarrow $y_1 = 4$
 $x_1 + y_4 = 4$ \rightarrow $x_1 = 4$
 $x_2 + y_3 = 8$ \rightarrow $x_2 = 8$

$$y_2 + y_3 + 3y_4 = 17 \qquad \to \quad y_2 = 17$$

$$y_3 = 0, y_4 = 0$$

Ответ: $x_1 = 4, x_2 = 8, f = 24$