

Datenübersicht

Datensatz zum BIP pro Kopf (bip) und dem Kapitalstock pro Kopf (k) von 133 verschiedenen Ländern weltweit in USD für das Jahr 2014. Daten stammen aus den <u>Penn World Tables</u>.

♣ Zudem: Dummy Variable (dummy_k), für jedes Land mit:

```
## -- Variable type: numeric
## skim_variable n_missing complete_rate
           0 1 22009. 23156.
## 1 bip
                                                      570. 7106. 15913.
## 2 k
                                   1 82935.
                                             80522.
                                                      1105. 17785. 51825.
## 3 dummy_k
                                        0.361
                                                 0.482 0
## 4 dummy k1
                                        0.256
                                                0.438 0
## 5 dummy_k2
                                        0.248
                                                0.434
## 6 dummy_k3
                                        0.248
                                                0.434 0
## 7 dummy k4
                                        0.248
                                                 0.434 0
## # i 3 more variables: p75 <dbl>, p100 <dbl>, hist <chr>
```

LINEAR-LINEAR MODELL (STANDARDFALL)

$$y = \beta_0 + \beta_1 * x + u$$

	Dependent variable:
	bip
k	0.244***
	(0.013)
Constant	1,768.036
	(1,533.344)
Observations	133
R^2	0.720
Adjusted R ²	0.718
Residual Std. Error	12,294.180 (df = 131)
F Statistic	337.270*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

LINEAR-LINEAR MODELL (STANDARDFALL)

$$y = \beta_0 + \beta_1 * x + u$$

	Dependent variable:
	bip
k	0.244***
	(0.013)
Constant	1,768.036
	(1,533.344)
Observations	133
R^2	0.720
Adjusted R ²	0.718
Residual Std. Error	12,294.180 (df = 131)
F Statistic	337.270*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β_1 Einheiten in Verbindung gebracht.

LOG-LOG MODELL (LOGARITHMIERTE ABHÄNGIGE UND ERKLÄRENDE VARIABLE)

$$log(y) = \beta_0 + \beta_1 * log(x) + u$$

	Dependent variable:
	log(bip)
log(k)	0.815***
	(0.024)
Constant	0.776***
	(0.263)
Observations	133
R^2	0.895
Adjusted R ²	0.894
Residual Std. Error	0.368 (df = 131)
F Statistic	1,113.512*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

LOG-LOG MODELL (LOGARITHMIERTE ABHÄNGIGE UND ERKLÄRENDE VARIABLE)

$$log(y) = \beta_0 + \beta_1 * log(x) + u$$

	Dependent variable:
	log(bip)
log(k)	0.815***
	(0.024)
Constant	0.776***
	(0.263)
Observations	133
R^2	0.895
Adjusted R ²	0.894
Residual Std. Error	0.368 (df = 131)
F Statistic	1,113.512*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um β_1 Prozent in Verbindung gebracht.

LOG-LINEAR MODELL (LOGARITHMIERTE ABHÄNGIGE VARIABLE)

$$log(y) = \beta_0 + \beta_1 * x + u$$

	Dependent variable:
	log(bip)
k	0.00001*** (0.00000)
Constant	8.556 ^{***} (0.085)
Observations	133
R^2	0.642
Adjusted R ²	0.639
Residual Std. Error	0.680 (df = 131)
F Statistic	234.609*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

LOG-LINEAR MODELL (LOGARITHMIERTE ABHÄNGIGE VARIABLE)

$$log(y) = \beta_0 + \beta_1 * x + u$$

	Dependent variable:
	log(bip)
k	0.00001***
	(0.0000)
Constant	8.556***
	(0.085)
Observations	133
R^2	0.642
Adjusted R ²	0.639
Residual Std. Error	0.680 (df = 131)
F Statistic	234.609*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

Eine Erhöhung von x um eine Einheit, wird im Durchschnitt mit einer Erhöhung von y um β_1*100 Prozent in Verbindung gebracht.

LINEAR-LOG MODELL (LOGARITHMIERTE ERKLÄRENDE VARIABLE)

$$y = eta_0 + eta_1 * log(x) + u$$

	Dependent variable:
	bip
log(k)	12,422.670***
	(1,092.941)
Constant	-110,876.500***
	(11,778.320)
Observations	133
R^2	0.497
Adjusted R ²	0.493
Residual Std. Error	16,493.040 (df = 131)
F Statistic	129.192*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

LINEAR-LOG MODELL (LOGARITHMIERTE ERKLÄRENDE VARIABLE)

$$y = \beta_0 + \beta_1 * log(x) + u$$

	Dependent variable:
	bip
log(k)	12,422.670***
	(1,092.941)
Constant	-110,876.500 ^{***}
	(11,778.320)
Observations	133
R^2	0.497
Adjusted R ²	0.493
Residual Std. Error	16,493.040 (df = 131)
F Statistic	129.192*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

Eine Erhöhung von x um ein Prozent, wird im Durchschnitt mit einer Erhöhung von y um $\frac{\beta_1}{100}$ Einheiten in Verbindung gebracht.

DUMMYVARIABLE ALS ERLÄRENDE VARIABLE

$$y = \beta_0 + \beta_1 * I_x + u$$

	Dependent variable:
	bip
dummy_k	32,933.830***
	(3,054.932)
Constant	10,122.740***
	(1,835.255)
Observations	133
R^2	0.470
Adjusted R ²	0.466
Residual Std. Error	16,920.210 (df = 131)
F Statistic	116.220*** (df = 1; 131)
Note:	*p<0.1; **p<0.05; ***p<0.01

DUMMYVARIABLE ALS ERLÄRENDE VARIABLE

$$y = \beta_0 + \beta_1 * I_x + u$$

	Dependent variable:
	bip
dummy_k	32,933.830***
	(3,054.932)
Constant	10,122.740***
	(1,835.255)
Observations	133
R^2	0.470
Adjusted R ²	0.466
Residual Std. Error	16,920.210 (df = 131)
F Statistic	116.220*** (df = 1; 131)
Note:	*p<0.1; ***p<0.05; ****p<0.01

Alle Beobachtungen bei denen x = 1 ist, wird im Durchschnitt mit einem höherem y von β_1 Einheiten in Verbindung gebracht.

MEHRERE DUMMYVARIABLEN ALS ERLÄRENDE VARIABLE

$$y = \beta_0 + \beta_1 * I_{x1} + \beta_2 * I_{x2} + \beta_3 * I_{x3} + u$$

	Dependent variable:
	bip
dummy_k1	-44,545.740***
	(3,919.828)
dummy_k2	-36,450.900***
	(3,948.972)
dummy_k3	-25,008.320***
	(3,948.972)
Constant	48,645.540***
	(2,792.345)
Observations	133
R^2	0.531
Adjusted R ²	0.520
Residual Std. Error	16,040.800 (df = 129)
F Statistic	48.690*** (df = 3; 129)
Note:	*p<0.1; **p<0.05; ***p<0.0

MEHRERE DUMMYVARIABLEN ALS ERLÄRENDE VARIABLE

$$y = \beta_0 + \beta_1 * I_{x1} + \beta_2 * I_{x2} + \beta_3 * I_{x3} + u$$

	Dependent variable:
- -	bip
dummy_k1	-44,545.740 ^{***}
	(3,919.828)
dummy_k2	-36,450.900 ^{***}
	(3,948.972)
dummy_k3	-25,008.320 ^{***}
	(3,948.972)
Constant	48,645.540***
	(2,792.345)
Observations	133
R^2	0.531
Adjusted R ²	0.520
Residual Std. Error	16,040.800 (df = 129)
F Statistic	48.690*** (df = 3; 129)
Note:	*p<0.1; **p<0.05; ***p<0.01

Alle Beobachtungen bei denen x1 = 1 ist, wird im Durchschnitt mit einem höherem/niedrigerem y von β_1 Einheiten über/unter dem Basislevel in Verbindung gebracht.