GO-BACK-N:

GGBXXGBXX two state channel 0 = good 1 = Sad voti: when bad tx, we retry in stots laker, i.e., we skip in-1 stots. let C = (900 901) be the matrix of the Pro pr) two-state channel. $CM = \begin{cases} Pop(m) & Pol(m) \\ Plo(m) & Pulm) \end{cases}$ Markov chain for the proposal Por Co By Proposition of the B 710(m) time unificient la state 5 and un for B. TB= m, Tc=1

Surces methors: RB=0, RG=1

3)

Du mapia for the embedded Markov cham is:

$$\overline{N}_{\mathcal{B}} = \frac{p_{01}}{p_{01} + p_{10}(u)} \overline{n}_{\mathcal{G}} = \frac{p_{10}(u)}{p_{01} + p_{10}(u)}$$

www juggen feed Back errors . w. mahir (900 901) (
910 911). lad slot: Not alse etter way to compted. state: 00 01 10
form. feedback. 00 01 10 11 trivi. matix; 00 pooqoo pooqoo pooqoo pooqoo Poolun 7910(m) Pow 191/m) 10 Plo(m) 200 (m) Pro(m) 20(m) ... - John to get the my's # Throughput: our reward is gained when viziling state oo, $\frac{\sum_{i} \overline{n_{i}} R_{i}}{\sum_{i} \overline{n_{i}} \overline{n_{i}}} = \frac{\overline{n_{oo}}}{\overline{n_{oo}} + m(1 - \overline{n_{oo}})}$

Stabishies of successful stots up to hime n: Let the error process be Markov, two-state Xn 0 = correct + x } 1 = error neous + x. Aig(k, n)=P[k good slots In O,1,..., n-1, and j'n n | vino] $= P\left[\sum_{m=0}^{\infty} I\{X_m = 0\} = k, X_n = j \mid X_o = i\right]$ Condition on last transition: $\phi_{ij}(k,n) = \phi_{io}(k-1,n-1)p_{oj} + \phi_{i1}(k,n-1)p_{ij}, \sum_{k=0}^{n>0}$ $\Phi_{ij}(k, 0) = \{ | per i=j, k=0, n=0 = Lij L(n) J(k) \}$ $\phi_{ij}(k,n) = 0$ k=0 oppme n<0 o k>n. Flually: φ_{ij}(k,n) = φ_{i0}(k-1,n-1)p_{ij} + φ_{i1}(k,n-1)p_{ij} + f_{ij} f(n)f(k) In matrix form: φ(k,n) = (φ_{i0}(k,n) φ_i(k,n)) φ_{i0}(k,n) φ_i(k,n) $\phi(k,n) = \phi(k-1,n-1) \begin{pmatrix} P_{00} & P_{01} \\ 0 & 0 \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} 0 & 0 \\ P_{10} & P_{11} \end{pmatrix} +$ + f(n) f(k) I let P(0)= (00 0) and P(1) = (P00 P01)

Therefore: $\phi(k,n) = \phi(k-1,n-1)P(1) + \phi(k,n-1)P(0) +$ + 1(n)+(k) I, n20 vole: P(1) contains good notarishous (starting from 0)
P(0) n bad n n (n n 1) The corresponds to i successes, i=0,1.

We can apply the same analytic to any finite-state

Markov chain where we want to count transitions

of a certain typevote: if we condition on first bour; Aoj(k, n)= Poo Aoj(k-1, n-1)+ Po1Aij(k-1, n-1)+ doj S(n) f(k) 4j(k,n)= Protoj(k,n-1)+ Protoj(k,n-1)+dijf(n)f(k) lu matrix form: n-1 +Ck, n7 = P(1) +(k-1, m) +P(0) +(k, m) + J(n/J/k) I n>0 * compared to the other equation, the order of the matrix products is reverted

* then matrix equations are convolutions-

How to solve these equations: (3)1) compute recursively 2) use transforms. $\varphi(s,z) = \sum_{k=0}^{\infty} s^k \sum_{n=0}^{\infty} z^n \varphi(k,n)$ q(s,z) = y(s,z)p(1)sz + q(s,z)p(0)z + I $y(s,z) = [I - P(1)sz - P(0)z]^{-1} = [I-z(P(1)s+P(0))]^{-1}$ $= \sum_{n=0}^{+\infty} \left[P(1)s + P(0) \right]^n z^n$ $-\mu \left((s,n) \right) = \sum_{k=0}^{+\infty} s^{k} \varphi(k,n) = \text{for agiven } n$ $= \left(P(1)s + P(0)\right)^n$ which in principle could be inverted. Example: arenge muster of good slots in 0,1,2,..., n-1, given mitial state i: of the number of himes state 0 is his bed in 0,1,2,..., n-1, given that we start in i Cuole i ve weed to sum over 3). The a mage muster of visits is obtained by taking the fint den nahm for S=1.

Remark: me found the equation: (T) $\phi(k,n) = \phi(k-1,n-1)P(1) + \phi(k,n-1)P(0) + f(n)f(k)I$ where we identified two types of transitions (good and bad, i.e., one or zero successes). Suppose we associate an integer websit to each transition. Let P(e) be the matrix that contains all elements of P that come kand to a "reward" of l. We have: $\phi(k,n)=$ \leq $\frac{\partial \phi}{\partial x}\phi(k-l,n-l)N(l+I)I(n)f(k)$ with transform $\psi(s,z) = \psi(s,z)\psi(s)z + I$ where $\psi(s) = \sum_{l=0}^{+\infty} p(l)s^l$ As before. $y(s,z) = [I - \psi(s)z]^{-1}$ $\varphi(s,n) = [\varphi(s)]^n$.

wole : 1. we can find average runn der of oluards In 0,1,..., n-1 as before (it was a particular case when \$(s)=P(a)+P(1/s) 72. each transition ij has a "label " (5) 3, in $\varphi(s,z)$, s labels successes and z labels he he number of transitions. 4. hu label on each transition does not weed to be a single term. That is, we come have $f(s) = \sum_{l=0}^{\infty} P_{lj}(l) S^{l}$ where Pig(l) is the probability of transilien inj and that he welfire has the value l. roperties of tights):

a) $\psi_{ij}(1) = P_{ij}$; $\psi(1) = P$

Pij hedistrish hor of the me tric.

given the franciscon.

e) $\psi'(1) = \frac{d\psi'(1)}{ds} = P''_{ij}$ average metric on ij

d) if the webris to the reward, Ri = & Yig(1)

(average reward for a wirt to state i) in

c) let $S(A) = S_1 S_2$. It while of the k-the website that corresponds to the event A.

d) we have:

$$\psi_{ij}(\underline{s}) = \sum_{A \in \mathcal{E}(i,j)} P(A) \underline{s}(A)$$

wheheat $\psi_{ij}(\underline{l}) = \sum_{A \in \mathcal{E}(i,j)} P(A) = P_{ij}$

example: GBN with lid feedback temen (prob. f).

tak et por ble event:

from	to	prob.	reward	1 him	
6	G	(1-8) poo	1		
G	B	(1- 1) Por		1	
G	G	1 2 poo (m)	ρ	щ	
6	B	1 200 (m)	0	ın	
B	C-	(1-1) p10 (m)	ρ	m	
B	B	(1-8) P10(m)	0	m	
B	G	1 p10 (m)	<i>(</i> 0	m	
\ B	B	f p11 (m)	0	m	
		1			
1	l .	1	1	_	

 $\psi(s_{1},s_{2}) = \begin{cases} (1-s)\gamma_{00}s_{1}s_{2} + 4\gamma_{00}(m)s_{2}^{m} & (1-d)\gamma_{01}s_{1}s_{2} + 4\gamma_{0}(m)s_{2}^{m} \\ \gamma_{10}(m)s_{2} & \gamma_{11}(m)s_{2} \end{cases}$

$$P = \frac{|V(I)|}{|P(I)|} = \frac{|(I-S)|P(I)|}{|P(I)|} + \frac{|P(I)|}{|P(I)|} + \frac{|P(I)|}{|P(I$$