Metodologia formale secondo Bresolin

6 OBIETTIVO GENERALE

Dimostrare che un linguaggio L è indecidibile usando riduzioni da problemi noti indecidibili.

I DEFINIZIONI FONDAMENTALI

Linguaggio Indecidibile

Un linguaggio $L \subseteq \Sigma^*$ è **indecidibile** se **non esiste** una TM che lo decide, cioè non esiste una TM M tale che:

- M si ferma sempre su ogni input
- M accetta w ⇔ w ∈ L

Riduzione mediante Funzione

Un linguaggio A è **riducibile** al linguaggio B (A ≤_m B) se esiste una funzione **calcolabile** f : Σ $\rightarrow \Sigma$ tale che:

• $\forall w \in \Sigma^*$: $w \in A \iff f(w) \in B$

Proprietà Fondamentale

Se A ≤_m B e A è indecidibile, allora B è indecidibile.

METODOLOGIA STANDARD

STEP 1: Identificazione del Problema Sorgente

- Scegli un linguaggio A noto indecidibile Problemi base da usare come sorgente:
 - ATM = {(M,w) | M è una TM che accetta w}
 - HALTTM = {(M,w) | M è una TM che si ferma su w}
 - ETM = {(M) | M è una TM con L(M) = Ø}
 - REGULARTM = {(M) | M è una TM con L(M) regolare}

STEP 2: Costruzione della Riduzione

• **Definisci** funzione f : istanze di A → istanze di B • **Template**:

```
F = "Su input (istanza_A):
1. [PARSING] Estrai componenti dall'istanza di A
2. [COSTRUZIONE] Costruisci nuova TM M' che:
    • Incorpora il comportamento dell'istanza A
    • Manipola il proprio comportamento per forzare l'appartenenza a B
3. [OUTPUT] Restituisci (M') o (M', parametri)"
```

STEP 3: Dimostrazione di Correttezza

- Calcolabilità: f è calcolabile (dare algoritmo esplicito) Correttezza bidirezionale:
 - (\Rightarrow): istanza A \in A \Rightarrow f(istanza A) \in B
 - **(⇐)**: f(istanza_A) ∈ B ⇒ istanza_A ∈ A

STEP 4: Conclusione

• Poiché A ≤_m B e A indecidibile, allora B è indecidibile

📋 RIDUZIONI STANDARD DA ATM

◆ ATM ≤_m HALTTM

```
PROBLEMA: Dimostrare che HALTTM è indecidibile

RIDUZIONE:

F = "Su input (M,w):

1. Costruisci la seguente TM M':

    M' = "Su input x:

    2. Esegui M su input w

    3. Se M accetta w, ACCETTA

    4. Se M rifiuta w, vai in LOOP infinito"

5. Restituisci (M',w)"

CORRETTEZZA:

• Se (M,w) ∈ ATM (M accetta w):

    - M' esegue M su w, M accetta, M' accetta

    - M' si ferma su w, quindi (M',w) ∈ HALTTM
```

```
    Se ⟨M,w⟩ ∉ ATM (M non accetta w):

            Caso 1: M rifiuta w → M' va in loop → M' non si ferma
            Caso 2: M loop su w → M' non termina step 1 → M' non si ferma
            In entrambi i casi ⟨M',w⟩ ∉ HALTTM

    CALCOLABILITÀ: F costruisce M' in tempo finito
    CONCLUSIONE: HALTTM è indecidibile □
```

◆ ATM ≤_m ETM

```
PROBLEMA: Dimostrare che ETM è indecidibile
RIDUZIONE:
F = "Su input \langle M, w \rangle:
1. Costruisci la seguente TM M':
  M' = "Su input x:
   2. Se x \neq w, RIFIUTA
   3. Se x = w, esegui M su input w
   4. Se M accetta w, ACCETTA
   5. Se M rifiuta w, RIFIUTA"
6. Restituisci (M')"
CORRETTEZZA:
• Se ⟨M,w⟩ ∈ ATM (M accetta w):
  - M' accetta solo w, quindi L(M') = \{w\} \neq \emptyset
  - Quindi ⟨M'⟩ ∉ ETM
• Se ⟨M,w⟩ ∉ ATM (M non accetta w):
  - M' non accetta nessuna stringa, quindi L(M') = \emptyset
  – Quindi (M') ∈ ETM
CONCLUSIONE: ETM è indecidibile □
```

ATM ≤_m EQTM

```
PROBLEMA: Dimostrare che EQTM = {(M<sub>1</sub>,M<sub>2</sub>) | L(M<sub>1</sub>) = L(M<sub>2</sub>)} è indecidibile

RIDUZIONE:

F = "Su input (M,w):

1. Costruisci TM M<sub>1</sub> che rifiuta tutto: L(M<sub>1</sub>) = Ø

2. Costruisci TM M<sub>2</sub>:
```

```
M₂ = "Su input x:
3. Esegui M su input w
4. Se M accetta w, ACCETTA x
5. Se M rifiuta w, RIFIUTA x"
6. Restituisci (M₁,M₂)"

CORRETTEZZA:
• Se (M,w) ∈ ATM: L(M₂) = Σ* ≠ Ø = L(M₁), quindi (M₁,M₂) ∉ EQTM
• Se (M,w) ∉ ATM: L(M₂) = Ø = L(M₁), quindi (M₁,M₂) ∈ EQTM

CONCLUSIONE: EQTM è indecidibile □
```

RIDUZIONI AVANZATE E TECNICHE SPECIALI

Riduzione con Parametri Multipli

Esempio: INFINITETM

```
INFINITETM = {(M) | L(M) è infinito}
RIDUZIONE DA ATM:
F = "Su input (M,w):
1. Costruisci TM M':
    M' = "Su input x:
    2. Se x non è della forma 0"1" per n ≥ 0, RIFIUTA
    3. Altrimenti, esegui M su input w
    4. Se M accetta w, ACCETTA x
    5. Se M rifiuta w, RIFIUTA x"
6. Restituisci (M')"

CORRETTEZZA:
• Se M accetta w: L(M') = {0"1" | n ≥ 0} (infinito)
• Se M non accetta w: L(M') = Ø (finito)
```

Costruzioni con Codifica Specifica

Esempio: Linguaggio con Stringa Specifica

```
L1010 = {⟨M⟩ | 1010 ∈ L(M)}
RIDUZIONE DA ATM:
F = "Su input ⟨M,W⟩:
1. Costruisci TM M':
    M' = "Su input x:
    2. Se x ≠ 1010, RIFIUTA
    3. Se x = 1010, esegui M su input W
    4. Se M accetta W, ACCETTA
    5. Se M rifiuta W, RIFIUTA"
6. Restituisci ⟨M'⟩"
```

Riduzioni con Proprietà Strutturali

Esempio: REGULARTM

```
REGULARTM = {(M) | L(M) è regolare}
RIDUZIONE DA ATM:
F = "Su input \langle M, w \rangle:
1. Costruisci TM M':
   M' = "Su input x:
   2. Se x \in 0*1*, ACCETTA
   3. Se x = 10^n per qualche n \ge 0:
      • Esegui M su input w
      • Se M accetta w, ACCETTA
      • Se M rifiuta w, RIFIUTA
   4. Per tutti gli altri x, RIFIUTA"
5. Restituisci (M')"
CORRETTEZZA:
• Se M accetta w: L(M') = 0*1* ∪ {10<sup>n</sup> | n ≥ 0} = 0*1* (regolare)
• Se M non accetta w: L(M') = 0*1* (regolare)
PROBLEMA: Entrambi i casi danno linguaggio regolare!
CORREZIONE - Versione corretta:
M' = "Su input x:
1. Se x \in 0*1*, ACCETTA
2. Se x = 0^n1^n2^n per qualche n \ge 1:
   • Esegui M su input w
   • Se M accetta w, ACCETTA
```

3. Altrimenti, RIFIUTA" CORRETTEZZA CORRETTA: • Se M accetta w: $L(M') = 0*1* \cup \{0^n1^n2^n \mid n \ge 1\}$ (non regolare) • Se M non accetta w: L(M') = 0*1* (regolare)

ERRORI COMUNI DA EVITARE

X Riduzione nella Direzione Sbagliata

• Errore: Ridurre B \leq_m A invece di A \leq_m B • Correzione: Per dimostrare B indecidibile, serve A ≤_m B con A indecidibile

X Correttezza Unidirezionale

• Errore: Dimostrare solo una direzione dell'equivalenza • Correzione: Sempre dimostrare entrambe (\Rightarrow) e (\Leftarrow)

X Funzione Non Calcolabile

• Errore: Definire f che non è calcolabile • Correzione: Dare algoritmo esplicito per calcolare

X Costruzioni Inconsistenti

• Errore: TM costruita non si comporta come previsto • Correzione: Verificare attentamente il comportamento in tutti i casi

X Parametri Mal Gestiti

• Errore: Confondere parametri nella costruzione • Correzione: Tenere traccia esplicita di tutti i parametri

TEMPLATE GENERICO PER RIDUZIONI

PROBLEMA: Dimostrare che L è indecidibile

TEOREMA: L è indecidibile.

DIMOSTRAZIONE: Mostriamo ATM ≤m L.

```
RIDUZIONE:
Definiamo la seguente funzione calcolabile f:
F = "Su input (M,w):

    [COSTRUZIONE MACCHINA AUSILIARIA]

   Costruisci la seguente TM M':
   M' = "Su input x:
   2. [CONDIZIONI SU INPUT]
      • Se x soddisfa condizione_1, [comportamento_1]
      • Se x soddisfa condizione_2, [comportamento_2]
   3. [SIMULAZIONE ORIGINALE]
      • Esegui M su input w
      • Se M accetta w, [azione_accettazione]
      • Se M rifiuta w, [azione_rifiuto]"
4. [OUTPUT]
   Restituisci (M', parametri_aggiuntivi)"
CORRETTEZZA:
• CALCOLABILITÀ: F è chiaramente calcolabile in tempo finito
• DIREZIONE (\Rightarrow): Se (M,w) \in ATM, allora f((M,w)) \in L
  Dimostrazione: [argomento specifico]
• DIREZIONE (←): Se f((M,w)) ∈ L, allora (M,w) ∈ ATM
  Dimostrazione: [argomento specifico]
CONCLUSIONE:
Poiché ATM ≤ L e ATM è indecidibile, allora L è indecidibile. □
```

© PROBLEMI DI RIFERIMENTO INDECIDIBILI

Base (sempre indecidibili):

- ATM = {(M,w) | M accetta w}
- **HALTTM** = {(M,w) | M si ferma su w}
- **ETM** = $\{(M) \mid L(M) = \emptyset\}$

Derivati (dimostrati per riduzione):

- **EQTM** = $\{(M_1, M_2) \mid L(M_1) = L(M_2)\}$
- ALLTM = $\{\langle M \rangle \mid L(M) = \Sigma^*\}$
- **REGULARTM** = {(M) | L(M) è regolare}
- **CFTM** = {(M) | L(M) è context-free}
- **FINITETM** = {(M) | L(M) è finito}

III CHECKLIST FINALE

Prima di consegnare, verifica:

	inguaggio L definito formalmente
_ P	Problema sorgente A identificato (e noto indecidibile)
_ F	unzione f definita esplicitamente
_ A	algoritmo per calcolare f dato completamente
	Entrambe le direzioni della correttezza dimostrate
	Calcolabilità di f argomentata
	Costruzione TM ausiliaria corretta e completa
	Comportamento TM verificato in tutti i casi
	Conclusione esplicita di indecidibilità
01	
Str	ategie di Debugging:
	estare riduzione su esempi piccoli
_ V	/erificare comportamento TM in casi limite
	Controllare che parametri siano gestiti correttamente
_ A	Assicurarsi che direzione riduzione sia corretta