548 Power Electronics

9.4.2 Operation with RL Load

Voltage and current waveforms for single-phase bridge inverter with RL least shown in Fig. 9.8. The operation of the circuit is explained in four-modes.

Fig. 9.8 Voltage and current waveforms

- (i) Mode-I ($t_1 < t < t_2$): At instant t_1 , the switch S_1 and S_2 are turned Switches are assumed to be ideal switches. Point P gets connected to point of d.c. Source $E_{\rm dc}$ through S_1 and point Q gets connected to negative input supply. The output voltage, $e_0 = + E_{\rm dc}$, Fig. 9.9(a). The load current increasing exponentially due to the inductive nature of the load. The instanceurrent through S_1 and S_2 is equal to the instantaneous load current. Durinterval, energy is stored in inductive load.
- (ii) Mode-II $(t_2 < t < t_3)$: Both the switches Q_1 and Q_2 are turned instant t_2 . Due to the inductive nature of the load, the load current described to zero instantaneously. There is a self-induced voltage across which maintains the flow of current in the same-direction. The polarity voltage is exactly opposite to that in mode-1, The output voltage becomes but the load current continues to flow in the same direction, through D_3 as shown in Fig. 9.9(b). Thus, in this mode, the stored energy in the load index

and back to the source. Load current decreases exponentially and goes to the t_3 when all the energy stored in the load is returned back to supply. D_3 are turned-off at t_3 .

Fig. 9.9 Equivalent circuits

- Load voltage remains negative ($-E_{dc}$) but the direction of load reverse. The current increases exponentially in the other direction again stores the energy.
- IN $(t_0 < t < t_1)$: Switches S_3 and S_4 are turned-off at instant t_0 (or inductance tries to maintain the load current in the same direction by positive-load voltage. This will forward-bias the diodes D_1 and D_2 . The load voltage becomes the load current remains negative and decreases exponentially At_1 (or t_5), the load current goes to zero and switches S_1 and S_2 can again. The conduction period with a very highly inductive load, will for all the switches as well as the diodes. The conduction period of increase towards T/2 or 180° with increase in the load power-

Analysis

Soutput voltage can be obtained from

$$E_{0\text{rms}} = \left[\frac{2}{T/2} \int_{0}^{T/2} E^2 \, dt \right]^{1/2} \quad \therefore \quad E_{0\text{rms}} = E_{dc}$$
 (9.20)