Solucions comentades

P1) Demostra per inducció que per tot nombre natural n, 6 divideix $n^3 + 5n$.

Demostrem per inducció sobre n que per tot $n \in \mathbb{N}$, 6 divideix $n^3 + 5n$, és a dir que per tot $n \in \mathbb{N}$, existeix $k \in \mathbb{N}$ tal que $n^3 + 5n = 6k$.

Primer provarem la propietat pel cas inicial, n=0 Així tenim que $n^3+5n=0^3+5\cdot 0=0$ i com que $0=6\cdot 0$ i $0\in\mathbb{N}$, 0 és divisible per 6.

Ara farem el pas d'inducció. Suposem que la propietat és certa per n=m amb $m \in \mathbb{N}$, i hem de demostrar que la propietat és certa per m+1:

Per tant, per hipòtesis d'inducció tenim que $m^3 + 5m = 6k$ per algun $k \in \mathbb{N}$. Com que $(m+1)^3 + 5(m+1) = m^3 + 5m + 3m^2 + 3m + 6 = 6(k+1) + 3m(m+1)$, només ens caldrà demostrar que 3m(m+1) és divisible per 6. Fem-ho per casos:

- Si m és parell aleshores m=2l per algun $l \in \mathbb{N}$ i per tant 3m(m+1)=6(l(2l+1)) i com que $l(2l+1) \in \mathbb{N}$ ja que $l \in \mathbb{N}$, 3m(m+1) és divisible per 6.
- Si m és senar aleshores m=2r+1 per algun $r\in\mathbb{N}$ i per tant 3m(m+1)=6((2r+1)(r+1)) i com que $(2r+1)(r+1)\in\mathbb{N}$ ja que $r\in\mathbb{N}$, 3m(m+1) és divisible per 6.

Com que tot nombre natural és senar o parell hem demostrat que 3m(m+1) és divisible per 6, és a dir que 3m(m+1) = 6s per algun $s \in \mathbb{N}$.

Per acabar la demostració, tenim doncs que $(m+1)^3 + 5(m+1) = 6(k+1) + 3m(m+1) = 6(k+1) + 6s = 6(k+s+1)$ i com que $k+s+1 \in \mathbb{N}$ ja que $k,s \in \mathbb{N}$, $(m+1)^3 + 5(m+1)$ és divisible per 6.

P2) Siguin *A*, *B*, *C* conjunts arbitraris. Demostra o refuta les següents igualtats.

- (a) $A \setminus (B \setminus C) = (A \setminus B) \cup C$
- **(b)** $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$

 $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$

- (a) La condició és falsa. La refutem mitjançant el següent contraexemple. Siguin $A = \{0\}$, $B = \{1\}$ i $C = \{2\}$. Aleshores $B \setminus C = \{1\}$, i per tant $A \setminus (B \setminus C) = \{0\}$. D'altra banda, tenim que $A \setminus B = \{0\}$, i per tant $(A \setminus B) \cup C = \{0,2\}$. Així doncs, $A \setminus (B \setminus C) \neq (A \setminus B) \cup C$.
- **(b)** La condició és certa. La demostrem mitjançant la següent cadena d'equivalències: $x \in A \setminus (B \setminus C) \iff x \in A \land x \not\in B \setminus C \iff x \in A \land (x \not\in B \lor x \in C) \iff$ (per la propietat distributiva: conjunció, disjunció) $(x \in A \land x \not\in B) \lor (x \in A \land x \in C) \iff$ $x \in A \setminus B \lor x \in A \cap C \iff x \in (A \setminus B) \cup (A \cap C)$. Així doncs, $A \setminus (B \setminus C)$ i $(A \setminus B) \cup (A \cap C)$ tenen els mateixos elements, i per tant

- P3) Considera els següents conjunts, $A = \{1, \{2\}, 3, 4\}, B = \{1, 2, \{3\}, 4\} \text{ i } C = \{\emptyset, 1, 2, 3\}$
 - (a) Troba $(A \setminus B) \times C$
 - **(b)** Troba $A \setminus \mathcal{P}(B)$

Digues raonadament si són certes o falses les següents afirmacions:

- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$
- (d) $\{\emptyset\} \in \mathcal{P}(C)$
- (e) $\{(1,2),(1,3)\} \in \mathcal{P}((A \times B) \cap (B \times A))$
- (f) $\{(1,2),(1,3)\}\in \mathcal{P}((A\times B)\cup (B\times A))$
- (g) $\{\{(\{3\},\emptyset),(1,2)\}\}\in \mathcal{P}(\mathcal{P}(B\times C))$
- (a) Per calcular $(A \setminus B) \times C$ primer trobarem $A \setminus B$ que no és altra cosa que $\{x \in A : x \notin B\}$. Mirant en les definicions per extensió dels conjunts A i B veiem que $1 \in A$ i $1 \in B$; $\{2\} \in A$ i $\{2\} \notin B$; $3 \in A$ i $3 \notin B$; $4 \in A$ i $4 \in B$. Per tant, tenim que $A \setminus B = \{\{2\}, 3\}$. Ara recordem la definició de producte cartesià, $(A \setminus B) \times C = \{(x,y) : x \in (A \setminus B) \text{ i } y \in C\}$. Per tant $(A \setminus B) \times C = \{(\{2\}, \emptyset), (\{2\}, 1), (\{2\}, 2), (\{2\}, 3), (3, \emptyset), (3, 1), (3, 2), (3, 3)\}$.
- **(b)** Partim de nou de la definició $A \setminus \mathcal{P}(B) = \{ x \in A : x \notin \mathcal{P}(B) \}$, a més recordem que $\mathcal{P}(B) = \{ D : D \subseteq B \}$. Ara raonem i no farà falta que calculem tot $\mathcal{P}(B)$. Observem que $\{2\} \in A$ i $\{2\} \subseteq B$ ja que tots el elements que pertanyen a $\{2\}$, és a dir el 2, també pertanyen a $\{2\}$. Els altres elements d' $\{A\}$ no són subconjunts de $\{A\}$, ja que no són conjunts formats per elements de $\{A\}$. Així $\{A\}$, $\{A\}$.
- (c) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(C))$ si i només si $\{\emptyset\} \subseteq \mathcal{P}(C)$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq \mathcal{P}(C)$ sii $\emptyset \in \mathcal{P}(C)$ per la definició de subconjunt. I això és el mateix que dir que $\emptyset \subseteq C$. Aquesta última expressió és certa, ja que per tot conjunt $X, \emptyset \subseteq X$, per tant la primera expressió és també certa.
- (d) $\{\emptyset\} \in \mathcal{P}(C)$ si i només si $\{\emptyset\} \subseteq C$ per la definició de conjunt de les parts. $\{\emptyset\} \subseteq C$ sii $\emptyset \in C$ per la definició de subconjunt. Ara bé, aquesta expressió és certa, ja que \emptyset apareix explícitament a la llista que defineix C per extensió.
- (e) $\{(1,2),(1,3)\} \in \mathcal{P}((A \times B) \cap (B \times A))$ sii $\{(1,2),(1,3)\} \subseteq (A \times B) \cap (B \times A)$ per definició de conjunt de les parts. $\{(1,2),(1,3)\} \subseteq (A \times B) \cap (B \times A)$ sii $(1,2),(1,3) \in (A \times B) \cap (B \times A)$ per la definició de subconjunt. Però això és el mateix que dir $(1,2) \in (A \times B) \cap (B \times A)$ i $(1,3) \in (A \times B) \cap (B \times A)$. Aquesta expressió és equivalent a $(1,2) \in (A \times B)$ i $(1,2) \in (B \times A)$ i $(1,3) \in (A \times B)$ i $(1,3) \in (B \times A)$ per la definició de intersecció de conjunts. Ara bé, aquesta expressió és falsa ja que $(1,2) \notin B \times A$ per la definició de producte cartesià, perquè $2 \notin A$ ja que no el trobem a la llista de la definició per extensió d' A. (Nota: $2 \neq \{2\}$). Com aquesta expressió és falsa, també ho és la primera.
- (f) $\{(1,2),(1,3)\}\in \mathcal{P}((A\times B)\cup (B\times A))$ sii $\{(1,2),(1,3)\}\subseteq (A\times B)\cup (B\times A)$ per definició del conjunt de parts. $\{(1,2),(1,3)\}\subseteq (A\times B)\cup (B\times A)$ sii $(1,2),(1,3)\in (A\times B)\cup (B\times A)$ per la definició de subconjunt. Però això es el mateix que dir

- $(1,2) \in (A \times B) \cup (B \times A)$ i $(1,3) \in (A \times B) \cup (B \times A)$. Com que $1 \in A$ i $2 \in B$ -els trobem a la llista de la definició per extensió d' A, i B respectivament-, aleshores $(1,2) \in A \times B$ i per tant $(1,2) \in (A \times B) \cup (B \times A)$. Anàlogament, com que $1 \in B$ i $3 \in A$ -els trobem a la llista de la definició per extensió de B i A respectivament-, aleshores $(1,3) \in B \times A$ i per tant $(1,3) \in (A \times B) \cup (B \times A)$. Hem vist doncs, que $(1,2) \in (A \times B) \cup (B \times A)$ i $(1,3) \in (A \times B) \cup (B \times A)$ és cert i per tant, la primera expressió és també certa.
- (g) $\{\{(3,\{\emptyset\}),(1,2)\}\}\in \mathcal{P}(\mathcal{P}(B\times C)) \text{ sii } \{\{(\{3\},\emptyset),(1,2)\}\}\subseteq \mathcal{P}(B\times C) \text{ per definició del conjunt de parts. Anàlogament, } \{\{(\{3\},\emptyset),(1,2)\}\}\subseteq \mathcal{P}(B\times C) \text{ si i només si } \{(\{3\},\emptyset),(1,2)\}\in \mathcal{P}(A\times C). \}$ ($\{(3\},\emptyset),(1,2)\}\in \mathcal{P}(B\times C) \text{ sii } \{(\{3\},\emptyset),(1,2)\}\subseteq B\times C \text{ altra vegada per definició de les parts d'un conjunt. } \{(\{3\},\emptyset),(1,2)\}\subseteq B\times C \text{ sii } (\{3\},\emptyset),(1,3)\in A\times C, \text{ és a dir } (\{3\},\emptyset)\in B\times C \text{ i } (1,2)\in B\times C. \text{ Així veiem que és certa, perquè els dos parells ordenats pertanyen a } B\times C \text{ perquè } \{3\},1\in B \text{ i } \emptyset,2\in C \text{ ja que apareixen la llista de la definició per extensió de } B \text{ i } C \text{ respectivament. Com aquesta expressió és certa i equivalent a la primera, tenim que aquella també ho és.}$

P4) Considera les relacions $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^3 = y^2\}$ i $S = \{(t^3, t^4) : t \in \mathbb{R}\}$.

- (a) Demostra que $T = \{(u^2, u^3) : u \in \mathbb{R}\}$
- **(b)** Troba el domini i recorregut (imatge) de *T* i de *S*. Digues si *T* i *S* són o no funcions.
- **(c)** De les que siguin funció, digues raonadament si són injectives, exhaustives o bijectives.
- (a) Donats dos conjunts A i B, recordem que A = B si, i només si, ambdós conjunts tenen els mateixos elements. Aquesta clausula és equivalent a dir que $A \subseteq B$ i que $B \subseteq A$. Llavors, per provar que $T = \{(u^2, u^3) : u \in \mathbb{R}\}$, caldrà que provem que $T \subseteq \{(u^2, u^3) : u \in \mathbb{R}\}$ i que $\{(u^2, u^3) : u \in \mathbb{R}\} \subseteq T$.

Per provar que $T \subseteq \{(u^2, u^3) : u \in \mathbb{R}\}$, escollim un element arbitrari $(x, y) \in T$ i provem que $(x, y) \in \{(u^2, u^3) : u \in \mathbb{R}\}$. És a dir, provarem que existeix un real u tal que $u^2 = x$ i que $u^3 = y$. En efecte, per definició, si $(x, y) \in T$ llavors $x^3 = y^2$. Notem que això implica directament que $x \ge 0$ atès que si x < 0 es tindria que $x^3 < 0$ i que per tant $x^2 < 0$, la qual cosa ens faria arribar a una contradicció. Tot plegat, concloem que $x \in \mathbb{R}$.

D'altra banda notem que

$$\exists u \in \mathbb{R}(u^2 = x \ \land \ u^3 = y) \iff \exists u \in \mathbb{R}((u = \sqrt{x} \lor u = -\sqrt{x}) \ \land \ u = \sqrt[3]{y})$$

Com per hipòtesi $x^3 = y^2$, tenim tenim dues possibilitats:

- O bé $y \ge 0$ i llavors necessàriament $\sqrt[3]{y} = \sqrt{x}$.
- O bé y < 0 i llavors necessàriament $\sqrt[3]{y} = -\sqrt{x}$.

Tot plegat, definint $u = \sqrt{x}$ o $u = -\sqrt{x}$ (segons escaiga), obtindrem un número real tal que $x = u^2$ i $y = u^3$, la qual cosa demostra que el parell (x, y) és un element de $\{(u^2, u^3) : u \in \mathbb{R}\}$. Com que (x, y) era abitrari, concloem que $T \subseteq \{(u^2, u^3) : u \in \mathbb{R}\}$.

 \supseteq Donat $(x,y) \in \{(u^2,u^3) : u \in \mathbb{R}\}$ volem que provar que $x^3 = y^2$. Per definició,

sabem que existeix $u \in \mathbb{R}$ tal que $x = u^2$ i que $y = u^3$. En eixe cas, $x^3 = u^6 = y^2$, i per tant el parell (x,y) és un element de T. Com que aquest parell era arbitrari, concloem que $\{(u^2,u^3):u\in\mathbb{R}\}\subseteq T$.

(b) Primer que tot convé definir alguns conceptes teòrics que caldrà estudiar a l'apartat. Donada una relació $R \subseteq A \times B$, definim el seu domini dom(R) i el seu recorregut rec(R) com el següents conjunts:

$$dom(R) = \{x : \exists y (x,y) \in R\}$$
$$rec(R) = \{y : \exists x (x,y) \in R\}.$$

És a dir, dom(R) s'identifica amb el conjunt de les primeres coordenades dels parells de R i rec(R) amb les segones coordenades. Passem ara a estudiar doncs els dominis de les relacions sobre $\mathbb{R} \times \mathbb{R}$, T i S.

Domini de T Al apartat anterior hem provat que $T = \{(u^2, u^3) : u \in \mathbb{R}\}$, llavors

$$dom(T) = \{u^2 \in \mathbb{R} : u \in \mathbb{R}\} = [0, \infty).$$

Recorregut de T Raonant com abans, tenim que

$$rec(T) = \{u^3 \in \mathbb{R} : u \in \mathbb{R}\} = \mathbb{R}$$

donat que per a tot nombre real la seua arrel cúbica està definida.

Domini de *S* Per la mateixa raó d'abans,

$$dom(S) = \{t^3 \in \mathbb{R} : t \in \mathbb{R}\} = \mathbb{R}.$$

Recorregut de S

$$rec(S) = \{t^4 \in \mathbb{R} : t \in \mathbb{R}\} = [0, \infty).$$

Recordem que una relació $R \subseteq A \times B$ direm que és una funció si

$$\forall x, y, z ((x, y) \in R \land (x, z) \in R \longrightarrow y = z)$$

A aquest respecte, afirmem que:

T no és una funció En efecte, simplement cal que notem que $(1,1), (1,-1) \in T$.

S sí que és una funció Per provar que S és funció fixarem $x,y,z \in \mathbb{R}$ i tot suposant que $(x,y),(x,z) \in S$ provarem que y=z. En efecte, si $(x,y),(x,z) \in S$, per definició existiran $t,t' \in \mathbb{R}$ tals que

$$(t^3 = x \wedge t^4 = y)$$

 $(t'^3 = x \wedge t'^4 = z).$

En particular, $t^3=t'^3$, i per tant $\sqrt[3]{t^3}=\sqrt[3]{t'^3}$, d'on deduïm que t=t'. Això implica que $t^4=t'^4$ o, en altres paraules, que y=z.

- **(c)** Primer que tot definim quan una funció és injectiva, exhaustiva o bijectiva. Per a $F \subseteq A \times B$ una funció, direm que:
 - F és injectiva si $\forall x, y, z ((x, z) \in F \land (y, z) \in F \longrightarrow x = y)$.
 - F és exhaustiva si rec(F) = B.
 - *F* és bijectiva si és injectiva i exhaustiva.

A aquest respecte, l'única funció és S. Notem per una banda que S no és injectiva atès que $(1,1), (-1,1) \in S$ i, per altra, que S no és exhaustiva perquè $rec(S) = [0,\infty) \neq \mathbb{R}$. Per tant, com que no és ni injectiva ni exhaustiva, S no és bijectiva.