Rank-43 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 = 0$$

General information

Number of lines	6
Number of points	29
Number of singular points	1
Number of Eckardt points	2
Number of double points	3
Number of single points	18
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{6}
Type of lines on points	$3^2, 2^3, 1^{18}, 0^6$

Singular Points

The surface has 1 singular points:

$$0:\,P_1=\mathbf{P}(0,1,0,0)=\mathbf{P}(0,1,0,0)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{32}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{19} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{19} = \mathbf{Pl}(0, 0, 2, 0, 1, 0)_{39}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{18} = \mathbf{Pl}(0,0,3,0,1,0)_{46}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{Pl}(0,0,0,1,0,1)_{129}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{339} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{339} = \mathbf{Pl}(0,0,0,3,0,1)_{143}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

Rank of lines: (17, 19, 18, 337, 339, 338)

Rank of points on Klein quadric: (32, 39, 46, 129, 143, 136)

Eckardt Points

The surface has 2 Eckardt points: $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0),$ $1: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0).$

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{38} = (0, 0, 1, 1) = \ell_0 \cap \ell_3$$

 $P_{53} = (0, 0, 2, 1) = \ell_1 \cap \ell_4$

 $P_{69} = (0,0,3,1) = \ell_2 \cap \ell_5$

Single Points

The surface has 18 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_0 \\ 1: \ P_{40} = (2,0,1,1) \ \text{lies on line} \ \ell_0 \\ 2: \ P_{41} = (3,0,1,1) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_3 \\ 4: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_3 \\ 5: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_3 \\ 6: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_1 \\ 7: \ P_{55} = (2,0,2,1) \ \text{lies on line} \ \ell_1 \\ 8: \ P_{56} = (3,0,2,1) \ \text{lies on line} \ \ell_1 \\ 9: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_4 \end{array}$

 $\begin{array}{l} 10:\ P_{61}=(0,2,2,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_4\\ 11:\ P_{65}=(0,3,2,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_4\\ 12:\ P_{70}=(1,0,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_2\\ 13:\ P_{71}=(2,0,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_2\\ 14:\ P_{72}=(3,0,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_2\\ 15:\ P_{73}=(0,1,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_5\\ 16:\ P_{77}=(0,2,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_5\\ 17:\ P_{81}=(0,3,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_5\\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_{12} = (1,1,1,0) & 4: \, P_{32} = (2,2,0,1) \\ 1: \, P_{17} = (2,2,1,0) & 5: \, P_{37} = (3,3,0,1) \\ 2: \, P_{22} = (3,3,1,0) & & \\ 3: \, P_{27} = (1,1,0,1) & & \end{array}
```

Line Intersection Graph

	012345
$\overline{0}$	011100
1	101010
2	110001
3	100011
4	010101
5	$\begin{matrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{matrix}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_0	P_{38}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_0	P_{53}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5
in point	P_0	P_0	P_{69}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5
in point	P_{38}	P_1	P_1

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5
in point	P_{53}	P_1	P_1

Line 5 intersects

Line	ℓ_2	ℓ_3	ℓ_4
in point	P_{69}	P_1	P_1

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	10: $P_{40} = (2, 0, 1, 1)$	$20: P_{61} = (0, 2, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$11: P_{41} = (3,0,1,1)$	$21: P_{65} = (0, 3, 2, 1)$
$2: P_{12} = (1, 1, 1, 0)$	$12: P_{42} = (0, 1, 1, 1)$	$22: P_{69} = (0, 0, 3, 1)$
$3: P_{17} = (2, 2, 1, 0)$	13: $P_{45} = (0, 2, 1, 1)$	$23: P_{70} = (1, 0, 3, 1)$
$4: P_{22} = (3, 3, 1, 0)$	$14: P_{49} = (0, 3, 1, 1)$	$24: P_{71} = (2,0,3,1)$
$5: P_{27} = (1, 1, 0, 1)$	$15: P_{53} = (0,0,2,1)$	$25: P_{72} = (3, 0, 3, 1)$
$6: P_{32} = (2, 2, 0, 1)$	16: $P_{54} = (1, 0, 2, 1)$	$26: P_{73} = (0, 1, 3, 1)$
$7: P_{37} = (3, 3, 0, 1)$	17: $P_{55} = (2, 0, 2, 1)$	$27: P_{77} = (0, 2, 3, 1)$
$8: P_{38} = (0,0,1,1)$	$18: P_{56} = (3, 0, 2, 1)$	$28: P_{81} = (0, 3, 3, 1)$
$9: P_{39} = (1,0,1,1)$	19: $P_{57} = (0, 1, 2, 1)$	