Robot ramasseur de fruits

On étudie un robot ramasseur de fruits. Il permet à un agriculteur de cueillir, de manière automatique, les fruits mûrs dans les arbres, et de les mettre dans un conteneur spécifique.

Le bras 1 tourne autour de l'axe $(O_0, \overline{z_0})$ par rapport au bâti 0. Le bras 2 tourne autour de l'axe $(O_1, \overline{z_0})$ par rapport à 1. Le bras 3 tourner autour de l'axe $(O_2, \overline{z_0})$ par rapport à 2. On pose :

$$-\overrightarrow{O_0O_1} = R\overrightarrow{x_1};$$

$$-\overrightarrow{O_1O_2} = R\overrightarrow{x_2};$$

Exigences techniques	Critère	Niveau
Exigence 1.4	Vitesse d'approche du fruit	< 3 cm/s

Question 1

Construire les figures planes de repérage/paramétrage puis exprimer les vecteurs vitesse instantanée de rotation $\overline{\Omega(1/0)}$, $\overline{\Omega(2/1)}$, $\overline{\Omega(3/2)}$.

Question 2

Déterminer $\overrightarrow{V(O_1 \in 1/0)}$.

Question 3

Déterminer $\overrightarrow{V(O_2 \in 2/0)}$.

Question 4

Déterminer $\overrightarrow{V(M \in 3/0)}$.

Question 5

Dans la configuration de rapprochement horizontal, $(\theta_2 = \pi - 2\theta_1 \text{ et } \theta_3 = \theta_1 - \frac{\pi}{2})$ montrer que $V(M \in 3/0)$. $\overrightarrow{x_0} = 0$ et déterminer $||V(M \in 3/0)||$.

Question 6

Déterminer la valeur numérique de la vitesse maximale (R=48 cm, L=72 cm et $\dot{\theta}_1=0,08$ t r/min) et conclure quant à la capacité du robot à satisfaire le critère de vitesse d'approche du fruit du cahier des charges.