Actividad 7: A7-Introducción a series de tiempo

Code ▼

Yolanda Elizondo Chapa A01137848: 14 de noviembre del 20222

A7-Introducción a series de tiempo

Usa los datos de las ventas de gasolina en una estación de servicio para analizar modelos de pronósticos de la serie de tiempo:

```
Hide t = c(1,2,3,4,5,6,7,8,9,10,11,12) \text{ # Vector de tiempo} y = c(17,21,19,23,18,16,20,18,22,20,15,22) \text{ # Valores observados} n = 12 \text{ # Número de observaciones}
```

1) Utiliza los métodos de suavizamiento:

Promedios móviles

```
k = 3 # Número de promedios móviles
p = NA # Pronósticos
e = NA # Error de pronóstico

# For loop para cálculo de los pronósticos y los errores
for(i in 1:(n-3)){
   p[i+3]=(y[i]+y[i+1]+y[i+2])/3;
   e[i+3] = p[i+3] - y[i+3]
}

T=data.frame(t,p,y,e^2) # Organizar Tabla
T
```

e.2 <dbl></dbl>	y <dbl></dbl>	p <dbl></dbl>	t <dbl></dbl>
NA	17	NA	1
NA	21	NA	2
NA	19	NA	3
16	23	19	4
9	18	21	5
16	16	20	6
1	20	19	7

t <dbl></dbl>	p <dbl></dbl>	y <dbl></dbl>	e.2 <dbl></dbl>
8	18	18	0
9	18	22	16
10	20	20	0
1-10 of 12 rows		Previous	1 2 Next

```
CME=mean(e^2,na.rm=TRUE)
cat("CME = ", CME)
```

$$CME = 10.22222$$

Hide

```
plot(t, y, type="o", col="red")
x = (3+1):n
lines(x,p[x],type="o",col="blue")
```


Promedios móviles ponderados

```
p2 = NA # Pronósticos
e2 = NA # Error de pronóstico
# For loop para cálculo de los pronósticos y los errores
for(i in 1:(n-3)){
 p2[i+3] = (1/6)*y[i]+(2/6)*y[i+1]+(3/6)*y[i+2];
 e2[i+3] = p2[i+3] - y[i+3]
}
T2 = data.frame(t,p2,y,e2^2) # Organizar Tabla
T2
```

t <dbl></dbl>	p2 <dbl></dbl>	y <dbl></dbl>	e2.2 <dbl></dbl>
1	NA	17	NA
2	NA	21	NA
3	NA	19	NA
4	19.33333	23	13.444444
5	21.33333	18	11.1111111
6	19.83333	16	14.6944444
7	17.83333	20	4.6944444
8	18.33333	18	0.1111111
9	18.33333	22	13.444444
10	20.33333	20	0.1111111
1-10 of 12 rows			Previous 1 2 Next

```
Hide
```

```
CME2=mean(e2^2,na.rm=TRUE)
cat("CME = ", CME2)
```

```
CME = 11.49074
```

```
plot(t, y, type="o", col="red")
x = 1:n
lines(x,p2[x],type="o",col="blue")
```


Método de suavizamiento exponencial

Hide p3 = NA # Pronósticos e3 = NA # Error de pronóstico p3[1]=y[1] p3[2]=y[1] a=0.2 # For loop para cálculo de los pronósticos y los errores for(i in 2:n){ p3[i] = a*y[i-1]+(1-a)*p3[i-1];e3[i] = y[i] - p3[i]} T3 = data.frame(t,p3,y,e3^2) # Organizar Tabla Т3

e3.2 <dbl></dbl>	y <dbl></dbl>	p3 <dbl></dbl>	t <dbl></dbl>
NA	17	17.00000	1
16.0000000	21	17.00000	2
1.4400000	19	17.80000	3
24.6016000	23	18.04000	4
1.0650240	18	19.03200	5
7.9840154	16	18.82560	6

t <dbl></dbl>	p3 <dbl></dbl>	y <dbl></dbl>	e3.2 <dbl></dbl>
7	18.26048	20	3.0259298
8	18.60838	18	0.3701311
9	18.48671	22	12.3432263
10	19.18937	20	0.6571279
1-10 of 12 rows			Previous 1 2 Next

CME3 = mean(e3^2,na.rm=TRUE) cat("CME = ", CME3)

CME = 8.982231

Hide

plot(t, y, type="o", col="red") x = 1:nlines(x,p3[x],type="o",col="blue")

Utiliza varios valores de en el método de suavizamiento hasta encontrar el valor de que minimice el CME.

```
# Meter un for dentro del for para variar el alfa y colocarlo en la tabla
p4 = NA # Pronósticos
e4 = NA # Error de pronóstico
p4[1]=y[1]
p4[2]=y[1]
a = .1
aArray = NA
# For loop para cálculo de los pronósticos y los errores
for(i in 2:n){
 p4[i] = a*y[i-1]+(1-a)*p4[i-1];
 e4[i] = y[i] - p4[i];
 aArray[i] = a;
 a = a+.1;
}
T4 = data.frame(t,p4,y,e4^2,aArray) # Organizar Tabla
T4
```

t <dbl></dbl>	p4 <dbl></dbl>	y <dbl></dbl>	e4.2 <dbl></dbl>	aArray <dbl></dbl>
1	17.00000	17	NA	NA
2	17.00000	21	16.000000	0.1
3	17.80000	19	1.440000	0.2
4	18.16000	23	23.425600	0.3
5	20.09600	18	4.393216	0.4
6	19.04800	16	9.290304	0.5
7	17.21920	20	7.732849	0.6
8	19.16576	18	1.358996	0.7
9	18.23315	22	14.189144	0.8
10	21.62332	20	2.635152	0.9
1-10 of 12 rows			Previous 1	2 Next

```
Hide
```

```
CME4 = mean(e4^2,na.rm=TRUE)
cat("CME = ", CME4)
```

```
CME = 14.70139
```

```
plot(t, y, type="o", col="red")
x = 1:n
lines(x,p4[x],type="o",col="blue")
```


2) Concluye sobre cuál de los modelos usados es el mejor

Para este problema en particular se puede observar que el promedio de los cuadrados de los errores (CME) más pequeño es el del método 3: Método de suavizamiento exponencial, por lo tanto este es el mejor método a usar.

		Hid
data.frame(CME,CME2,CME3)		
СМЕ	CME2	CME3
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
10.22222	11.49074	8.982231
1 row		

3) Predice cuáles son las ventas de gasolina esperadas para la semana 13.

```
Y12 = 22
F12 = 18.48119
F13 = a*Y12 + (1-a)*F12
cat("La predicción para la semana 13 es = ", F13)
```

La predicción para la semana 13 es = 19.18495