# Learning Sentence Embeddings through Tensor Methods

#### Anima Anandkumar



Joint work with Dr. Furong Huang

**ACL Workshop 2016** 

#### Representations for Text Understanding



- Word embeddings: Incorporates short range relationships, Easy to train.
- Sentence embeddings: Incorporates long range relationships, hard to train.

# **Various Frameworks for Sentence Embeddings**

#### Compositional Models (M. lyyer etal '15, T. Kenter '16)

- Composition of word embedding vectors: usually simple averaging.
- Compositional operator (averaging weights) based on neural nets.
- Weakly supervised (only averaging weights based on labels) or strongly supervised (joint training).

#### Paragraph Vector (Q. V. Le & T. Mikolov '14)

- Augmented representation of paragraph + word embeddings.
- Supervised framework to train paragraph vector.

#### For both frameworks

- Pros: Simple and cheap to train. Can use existing word embeddings.
- Cons: Word order not incorporated. Supervised. Not universal.



# **Skip thought Vectors for Sentence Embeddings**

 Learn sentence embedding based on joint probability of words, represented using RNN.



# **Skip thought Vectors for Sentence Embeddings**

 Learn sentence embedding based on joint probability of words, represented using RNN.



- Pros: Incorporates word order, unsupervised, universal.
- Cons: Requires contiguous long text, lots of data, slow training time. Cannot use domain specific training.

R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, A. Torralba, R. Urtasun, S. Fidler, "Skip-Thought Vectors," NIPS 2015



(N. Kalchbrenner, E. Grefenstette, P. Blunsom '14)



(N. Kalchbrenner, E. Grefenstette, P. Blunsom '14)



- Pros: Incorporates word order. Detect polysemy.
- Cons: Supervised training. Not universal.



(F. Huang & A. '15)



(F. Huang & A. '15)



- Pros: Word order, polysemy, unsupervised, universal.
- Cons: Difficulty in training.

#### Intuition behind Convolutional Model

 Shift invariance natural in images: image templates in different locations.



Dictionary elements

Image

#### Intuition behind Convolutional Model

 Shift invariance natural in images: image templates in different locations.



 Shift invariance in language: phrase templates in different parts of the sentence

# **Learning Convolutional Dictionary Models**

• Input x, phrase templates (filters)  $f_1, f_2$ , activations  $w_1, w_2$ 

# **Learning Convolutional Dictionary Models**

- Input x, phrase templates (filters)  $f_1, f_2$ , activations  $w_1, w_2$
- Training objective:  $\min_{f_i, w_i} \|x \sum_i f_i * w_i\|_2^2$

# **Learning Convolutional Dictionary Models**

- Input x, phrase templates (filters)  $f_1, f_2$ , activations  $w_1, w_2$
- ullet Training objective:  $\min_{f_i,w_i} \|x \sum_i f_i * w_i\|_2^2$

#### Challenges

- Nonconvex optimization: no guaranteed solution in general.
- ullet Alternating minimization: Fix  $w_i$ 's to update  $f_i$ 's and viceversa.
- Not guaranteed to reach global optimum (or even a stationary point!)
- Expensive in large sample regime: needs updating of  $w_i$ 's.



# Convex vs. Non-convex Optimization

Guarantees for mostly convex..



But non-convex is trending!



Images taken from https://www.facebook.com/nonconvex

#### **Convex vs. Nonconvex Optimization**





- Unique optimum: global/local.
- Multiple local optima

Guaranteed approaches for reaching global optima?

# Non-convex Optimization in High Dimensions

Critical/statitionary points:  $x : \nabla_x \bar{f}(x) = 0$ .

- Curse of dimensionality: exponential number of critical points.
- Saddle points slow down improvement.
- Lack of stopping criteria for local search methods.



#### **Outline**

- Introduction
- 2 Why Tensors?
- 3 Tensor Decomposition Methods
- Other Applications
- Conclusion

#### **Example: Discovering Latent Factors**



- List of scores for students in different tests
- Learn hidden factors for Verbal and Mathematical Intelligence [C. Spearman 1904]

$$Score (student,test) = student_{verbal-intlg} \times test_{verbal} \\ + student_{math-intlg} \times test_{math}$$

# Matrix Decomposition: Discovering Latent Factors



- Identifying hidden factors influencing the observations
- Characterized as matrix decomposition

# **Matrix Decomposition: Discovering Latent Factors**



- Decomposition is **not** necessarily **unique**.
- Decomposition cannot be overcomplete.



# **Tensor: Shared Matrix Decomposition**



- Shared decomposition with different scaling factors
- Combine matrix slices as a tensor



#### **Tensor Decomposition**



Outer product notation:

$$T = u \otimes v \otimes w + \tilde{\mathbf{u}} \otimes \tilde{\mathbf{v}} \otimes \tilde{\mathbf{w}}$$

$$\updownarrow$$

$$T_{i_1, i_2, i_3} = u_{i_1} \cdot v_{i_2} \cdot w_{i_3} + \tilde{\mathbf{u}}_{i_1} \cdot \tilde{v}_{i_2} \cdot \tilde{\mathbf{w}}_{i_3}$$

# **Identifiability under Tensor Decomposition**



#### Uniqueness of Tensor Decomposition [J. Kruskal 1977]

- Above tensor decomposition: unique when rank one pairs are linearly independent
- Matrix case: when rank one pairs are orthogonal





# **Identifiability under Tensor Decomposition**



#### Uniqueness of Tensor Decomposition [J. Kruskal 1977]

 Above tensor decomposition: unique when rank one pairs are linearly independent



• Matrix case: when rank one pairs are orthogonal









# **Identifiability under Tensor Decomposition**



#### Uniqueness of Tensor Decomposition [J. Kruskal 1977]

 Above tensor decomposition: unique when rank one pairs are linearly independent



• Matrix case: when rank one pairs are orthogonal









#### **Moment-based Estimation**

#### Matrix: Pairwise Moments

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$  is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1, i_2} = \mathbb{E}[x_{i_1} x_{i_2}].$
- For matrices:  $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^{\top}].$
- $\bullet$   $M = uu^{\top}$  is rank-1 and  $M_{i,j} = u_i u_j$ .



#### Tensor: Higher order Moments

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$  is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$
- $T = u \otimes u \otimes u$  is rank-1 and  $T_{i,j,k} = u_i u_j u_k$ .



# **Moment forms for Linear Dictionary Models**

# **Moment forms for Linear Dictionary Models**

#### Independent components analysis (ICA)

- Independent coefficients, e.g. Bernoulli Gaussian.
- Can be relaxed to sparse coefficients with limited dependency.

Fourth order cumulant: 
$$M_4 = \sum_{j \in [k]} \kappa_j a_j \otimes a_j \otimes a_j \otimes a_j$$
.

# Convolutional dictionary model





(a) Convolutional model

(b) Reformulated model

$$x = \sum_{i} f_i * w_i = \sum_{i} \operatorname{Cir}(f_i) w_i = \mathcal{F}^* w^*$$

#### Moment forms and optimization

$$x = \sum_i f_i * w_i = \sum_i \operatorname{Cir}(f_i) w_i = \mathcal{F}^* w^*$$

- Assume coefficients  $w_i$  are independent (convolutional ICA model)
- Cumulant tensor has decomposition with components  $\mathcal{F}_i^*$ .



Learning Convolutional model through Tensor Decomposition

#### **Outline**

- Introduction
- 2 Why Tensors?
- Tensor Decomposition Methods
- Other Applications
- Conclusion

#### **Notion of Tensor Contraction**

Extends the notion of matrix product

# Matrix product $Mv = \sum_{i} v_{j} M_{j}$



# **Tensor Decomposition - ALS**

ullet Objective:  $\|T - \sum_i a_i \otimes b_i \otimes c_i\|_2^2$ 



#### **Tensor Decomposition - ALS**

- ullet Objective:  $\|T-\sum_i a_i\otimes b_i\otimes c_i\|_2^2$
- Key observation: If  $b_i, c_i$ 's are fixed, objective is linear in  $a_i$ 's.



#### **Tensor Decomposition - ALS**

- ullet Objective:  $\|T-\sum_i a_i\otimes b_i\otimes c_i\|_2^2$
- Key observation: If  $b_i, c_i$ 's are fixed, objective is linear in  $a_i$ 's.
- Tensor unfolding



## **Tensor Decomposition - ALS**

- ullet Objective:  $\|T-\sum_i a_i\otimes b_i\otimes c_i\|_2^2$
- Key observation: If  $b_i, c_i$ 's are fixed, objective is linear in  $a_i$ 's.
- Tensor unfolding

## **Tensor Decomposition - ALS**

- ullet Objective:  $\|T-\sum_i a_i\otimes b_i\otimes c_i\|_2^2$
- Key observation: If  $b_i, c_i$ 's are fixed, objective is linear in  $a_i$ 's.
- Tensor unfolding



## **Tensor Decomposition - ALS**

- ullet Objective:  $\|T-\sum_i a_i\otimes b_i\otimes c_i\|_2^2$
- Key observation: If  $b_i, c_i$ 's are fixed, objective is linear in  $a_i$ 's.
- Tensor unfolding



# **Convolutional Tensor Decomposition**

- ullet Objective:  $\|T-\sum_i a_i\otimes a_i\otimes a_i\|_2^2$
- Constraint:  $A := [a_1, a_2, ...]$  is concatenation of circulant matrices.

# **Convolutional Tensor Decomposition**

- ullet Objective:  $\|T \sum_i a_i \otimes a_i \otimes a_i\|_2^2$
- Constraint:  $A := [a_1, a_2, ...]$  is concatenation of circulant matrices.

## Modified Alternating Least Squares Method

• Project onto set of concatenated circulant matrices in each step.

# **Convolutional Tensor Decomposition**

- ullet Objective:  $\|T \sum_i a_i \otimes a_i \otimes a_i\|_2^2$
- Constraint:  $A := [a_1, a_2, ...]$  is concatenation of circulant matrices.

## Modified Alternating Least Squares Method

- Project onto set of concatenated circulant matrices in each step.
- Our contribution: Efficient computation through FFT and blocking.

# **Comparison with Alternating Minimization**

- L is the number of filters.
- n is the dimension of filters.
- ullet N is the number of samples.

### Computation complexity

| Methods              | Running Time                             | Processors                             |
|----------------------|------------------------------------------|----------------------------------------|
| Tensor Factorization | $O(\log(n) + \log(L))$                   | $O(L^2 n^3)$                           |
| Alt. Min             | $O(\max(\log(n)\log(L), \log(n)\log(N))$ | $O(\max( \mathbf{N}nL, \mathbf{N}nL))$ |

Complexity for tensor method independent of sample size



# **Analysis**

- Non-convex optimization: guaranteed convergence to local optimum
- Local optima are shifted filters



# **Experiments using Sentence Embeddings**

| Dataset         | Domain              | N               |
|-----------------|---------------------|-----------------|
| Review          | Movie Reviews       | 64720           |
| SUBJ            | Obj/Subj comments   | 1000            |
| MSRpara         | news sources        | 5801×2          |
| STS-MSRpar      | newswire            | $1500 \times 2$ |
| STS-MSRvid      | video caption       | 1500×2          |
| STS-OnWN        | glosses             | 750×2           |
| STS-SMTeuroparl | machine translation | 1193×2          |
| STS-SMTnews     | machine translation | 399×2           |

# **Experiments using Sentence Embeddings**

| Dataset         | Domain              | N      |
|-----------------|---------------------|--------|
| Review          | Movie Reviews       | 64720  |
| SUBJ            | Obj/Subj comments   | 1000   |
| MSRpara         | news sources        | 5801×2 |
| STS-MSRpar      | newswire            | 1500×2 |
| STS-MSRvid      | video caption       | 1500×2 |
| STS-OnWN        | glosses             | 750×2  |
| STS-SMTeuroparl | machine translation | 1193×2 |
| STS-SMTnews     | machine translation | 399×2  |

#### Sentiment Analysis

| Method            | MR   | SUBJ |
|-------------------|------|------|
| Paragraph-vector  | 74.8 | 90.5 |
| Skip-thought      | 75.5 | 92.1 |
| ConvDic+DeconvDec | 78.9 | 92.4 |

- Paragraph vector weakly supervised.
- Skip thought and our method unsupervised



## **Paraphrase Detection Results**

| Method            | Outside Information | F score |
|-------------------|---------------------|---------|
| Vector Similarity | word similarity     | 75.3%   |
| RMLMG             | syntacticinfo       | 80.5%   |
| ConvDic+DeconvDec | none                | 80.7%   |
| Skip-thought      | book corpus         | 81.9%   |

- Paraphrase detected: (1) Amrozi accused his brother, whom he called the witness, of deliberately distorting his evidence. (2) Referring to him as only the witness, Amrozi accused his brother of deliberately distorting his evidence.
- Non-paraphrase detected: (1) I never organised a youth camp for the diocese of Bendigo. (2) I never attended a youth camp organised by that diocese.

# **Semantic Textual Similarity Results**

|          |      | Supervised |      |        | Unsupervised |      |
|----------|------|------------|------|--------|--------------|------|
| Dataset  | DAN  | RNN        | LSTM | S-CBOW | Skip-thought | Ours |
| MSRpar   | 40.3 | 18.6       | 9.3  | 43.8   | 16.8         | 36.0 |
| MSRvid   | 70.0 | 66.5       | 71.3 | 45.2   | 41.7         | 61.8 |
| SMT-eur  | 43.8 | 40.9       | 44.3 | 45.0   | 35.2         | 37.5 |
| OnWN     | 65.9 | 63.1       | 56.4 | 64.4   | 29.7         | 33.1 |
| SMT-news | 60.0 | 51.3       | 51.0 | 39.0   | 30.8         | 72.1 |

## **Outline**

- Introduction
- 2 Why Tensors?
- 3 Tensor Decomposition Methods
- 4 Other Applications
- Conclusion

## **Tensor Sketches for Multilinear Representations**

- Randomized dimensionality reduction through sketching.
  - Complexity independent of tensor order: exponential gain!



## **Tensor Sketches for Multilinear Representations**

- Randomized dimensionality reduction through sketching.
  - Complexity independent of tensor order: exponential gain!



### State of art results for visual Q & A



Wang, Tung, Smola, A. "Guaranteed Tensor Decomposition via Sketching", NIPS'15.

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding by

A. Fukui, D.H. Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, CVPR=2016

# **Tensor Methods for Topic Modeling**



- Topic-word matrix  $\mathbb{P}[\mathsf{word} = i | \mathsf{topic} = j]$
- Linearly independent columns

## Moment Tensor: Co-occurrence of Word Triplets



## Tensors vs. Variational Inference

Criterion: Perplexity =  $\exp[-likelihood]$ .

### Learning Topics from PubMed on Spark, 8mil articles





### **Tensors vs. Variational Inference**

Criterion: Perplexity =  $\exp[-likelihood]$ .

### Learning Topics from PubMed on Spark, 8mil articles





### Learning network communities from social network data

Facebook  $n\sim 20k$ , Yelp  $n\sim 40k$ , DBLP-sub  $n\sim 1e5$ , DBLP  $n\sim 1e6$ .





## Tensors vs. Variational Inference

Criterion: Perplexity =  $\exp[-likelihood]$ .

## Learning Topics from PubMed on Spark, 8mil articles





## Learning network communities from network data





## Reinforcement Learning

- Rewards from hidden state.
- Actions drive hidden state evolution.



## Reinforcement Learning

- Rewards from hidden state.
- Actions drive hidden state evolution.



### Partially Observable Markov Decision Process

Learning using tensor methods under memoryless policies



## Reinforcement Learning

- Rewards from hidden state.
- Actions drive hidden state evolution.



## Partially Observable Markov Decision Process

Learning using tensor methods under memoryless policies





#### Average Reward vs. Time.



POMDP model with 3 hidden states (trained using tensor methods)
 vs. NN with 3 hidden layers 10 neurons each (trained using RmsProp).

K. Azzizade, Lazaric, A, Reinforcement Learning of POMDPs using Spectral Methods, COLT16.



Average Reward vs. Time.



POMDP model with 8 hidden states (trained using tensor methods)
 vs. NN with 3 hidden layers 30 neurons each (trained using RmsProp).

K. Azzizade, Lazaric, A, Reinforcement Learning of POMDPs using Spectral Methods, COLT16.



vs. NN with 3 hidden layers 30 neurons each (trained using RmsProp).

K. Azzizade, Lazaric, A, Reinforcement Learning of POMDPs using Spectral Methods, COLT16.

# Local Optima in Backpropagation

"..few researchers dare to train their models from scratch.. small miscalibration of initial weights leads to vanishing or exploding gradients.. poor convergence..\*"





Exponential (in dimensions) no. of local optima for backpropagation

P. Krahenbhl, C. Doersch, J. Donahue, T. Darrell "Data-dependent Initializations of Convolutional Neural Networks", ICLR 2016.



## **Training Neural Networks with Tensors**



M. Janzamin, H. Sedghi, and A., "Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods," June. 2015.

## **Training Neural Networks with Tensors**



Given input pdf 
$$p(\cdot)$$
,

Given input pdf 
$$p(\cdot)$$
,  $\mathcal{S}_m(x) := (-1)^m \frac{\nabla^{(m)} p(x)}{p(x)}$ 

Gaussian  $x \Rightarrow$  Hermite polynomials.

M. Janzamin, H. Sedghi, and A., "Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods," June. 2015.



## **Outline**

- Introduction
- 2 Why Tensors?
- 3 Tensor Decomposition Methods
- Other Applications
- Conclusion

### **Conclusion**

### Unsupervised Convolutional Models for Sentence Embedding

- Desirable properties: incorporates word order, polysemy, universality.
- Efficient training through tensor methods.
- Faster and better performance in practice.

### **Conclusion**

## Unsupervised Convolutional Models for Sentence Embedding

- Desirable properties: incorporates word order, polysemy, universality.
- Efficient training through tensor methods.
- Faster and better performance in practice.

## Steps Forward

- Universal embeddings using tensor methods on large corpus.
- More challenging setups: multilingual, multimodal (e.g. image and caption embeddings) etc.
- Bias-free embeddings? Can gender/race and other undesirable biases be avoided?

## **Research Connections and Resources**

#### Collaborators

Rong Ge (Duke), Daniel Hsu (Columbia), Sham Kakade (UW), Jennifer Chayes, Christian Borgs, Alex Smola (CMU), Prateek Jain, Alekh Agarwal & Praneeth Netrapalli (MSR), Srinivas Turaga (Janelia), Allesandro Lazaric (Inria), Hossein Mobahi (Google).



 Podcast/lectures/papers/software available at http://newport.eecs.uci.edu/anandkumar/