The Phases of a Compiler

Symbol Table

character stream

Lexical Analyzer

token stream

Syntax Analyzer

syntax tree

Semantic Analyzer

syntax tree

Intermediate Code Generator

intermediate representation

Machine-Independent Code Optimizer

 ${\bf intermediate\ representation}$

Code Generator

target-machine code

Machine-Dependent Code Optimizer

target-machine code

- Semantic analysis and translation actions can be interlinked with parsing
- Implemented as a single module.

- Translation of languages guided by context-free grammars.
- Attach attributes to the grammar symbol
- Syntax-directed definition specifies the values of attributes
 - By associating semantic rules with the grammar productions

- Syntax-directed definition (SDD) is a context-free grammar together with attributes and rules
 - Attributes are associated with grammar symbols
 - Rules are associated with productions.
- If X is a grammar symbol and a is one of its attributes,
 - **X.a** denotes the value of the attribute X.
- Attributes may be
 - numbers, types, table references, or strings,
 - Strings may even be code in the intermediate language.

Attributes

Synthesized attribute:

- Synthesized attribute for a nonterminal A at a parse-tree node N is defined by
- Semantic rule associated with the production at N.
- The production must have A as its head.
- A synthesized attribute at node *N* is defined only in terms of attribute values at the **children of** *N* **and at** *N* **itself**.

PRODUCTION SEMANTIC RULE
$$E o E_1 + T$$
 $E.code = E_1.code \parallel T.code \parallel '+'$

Attributes

Inherited attribute:

- Inherited attribute for a nonterminal B at a parse-tree node N is defined by
- Semantic rule associated with the production at the parent of N
- Note that the production must have B as a symbol in its body.
- An inherited attribute at node N is defined only in terms of attribute values at N's parent, N itself, and N's siblings

$$T
ightarrow F T'$$
 $\Big| \ T'.inh = F.val$

$$T' \to *F T'_1 \qquad \mid T'_1.inh = T'.inh \times F.val$$

Attributes

 Synthesized attribute at node N to be defined in terms of inherited attribute values at node N itself.

$$T'
ightarrow \epsilon \hspace{1cm} T'.syn = T'.inh$$

- Do not allow an inherited attribute at node N to be defined in terms of attribute values at the children of node N
- Terminals can have synthesized attributes, but not inherited attributes.
- Attributes for terminals have lexical values that are supplied by the lexical analyzer

$$F \to \mathbf{digit}$$
 $F.val = \mathbf{digit.lexval}$

Example of SDD

Each of the Non-terminals has a **single synthesized attribute**, called **val**

	PRODUCTION	SEMANTIC RULES
1)	$L \to E \mathbf{n}$	L.val = E.val
2)	$E \rightarrow E_1 + T$	$ig E.val = E_1.val + T.val$
3)	$E \to T$	E.val = T.val
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val imes F.val$
5)	$T \to F$	T.val = F.val
6)	$F \rightarrow (E)$	F.val = E.val
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

Annotated parse tree.

A parse tree, showing the value(s) of its attribute(s) is called an *annotated* parse tree.

Input string: 3 * 5 + 4 n

- We show the resulting values associated with each node.
- Each of the nodes for the nonterminals has attribute val computed in a bottom-up order,

Annotation and Evaluation of parse tree

Annotated parse tree.

	111000	
	PRODUCTION	SEMANTIC RULES
1)	T o F T'	T'.inh = F.val T.val = T'.syn
2)	$T' \to *F T_1'$	
3)	$T' \to \epsilon$	T'.syn = T'.inh
4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

val and syn: Synthesized inh: Inherited

Annotated parse tree for 3 * 5

Evaluation Orders of SDD

- "Dependency graphs" are a useful tool for determining an evaluation order for the attribute instances in a given parse tree.
 - Depicts the flow of information among the attribute instances in a particular parse tree
 - · Directed edges
- For a node A in parse tree -> node A in dependency graph

A has a synthesized attribute b

Production Semantic Rule

A->...X.. A.b=f(.., X.c, ..)

- Edge from X.c to A.b
 - Edge from child attribute to parent attribute

PRODUCTION $E \rightarrow E_1 + T$

SEMANTIC RULE $E.val = E_1.val + T.val$

Evaluation Orders of SDD

- "Dependency graphs" are a useful tool for determining an evaluation order for the attribute instances in a given parse tree.
 - Depicts the flow of information among the attribute instances in a particular parse tree
 - · Directed edges
- For a node A in parse tree -> node A in dependency graph

B has an inherited attribute c

Production

Semantic Rule

A->...B..X..

B.c=f(.., X.a, ..)

- Edge from X.a to B.c
 - Edge from attribute a of X (parent or sibling of B) to attribute c of B (body of the production)

	PRODUCTION	SEMANTIC RULES
1)	T o F T'	T'.inh = F.val T.val = T'.syn
2)	$T' \to \ast F \: T_1'$	$T'_1.inh = T'.inh \times F.val$ $T'.syn = T'_1.syn$
3)	$T' \to \epsilon$	T'.syn = T'.inh
4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

Ordering the Evaluation of Attributes

- The dependency graph characterizes the possible evaluation orders
 - In which we can evaluate the attributes at the various nodes of a parse tree.
- If the dependency graph has an edge from node M to node N,
 - Attribute corresponding to M must be evaluated before the attribute of N.
- If there is an edge of the dependency graph from Ni to Nj, such that i < j
 - the only allowable orders of evaluation are those sequences of nodes N1, N2,...,Nk
- Embeds a directed graph into a linear order, and is called a topological sort of the graph

Topological Sort- Ordering the Evaluation

- One **topological sort** is the order in which the nodes have already been numbered: 1,2,...,9.
- There are other topological sorts as well, such as 1,3,5,2,4,6,7,8,9.

Ordering the Evaluation – Cycles

PRODUCTION

 $A \rightarrow B$

SEMANTIC RULES

$$\begin{aligned} A.s &= B.i; \\ B.i &= A.s + 1 \end{aligned}$$

These rules are circular; it is impossible to evaluate either *A.s* or *B.i*

Classes of SDD

- (a) S-Attributed Definitions
- (b) L-Attributed Definitions

Guarantee an evaluation order

S-Attributed SDD

An SDD is *S-attributed* if **every attribute is synthesized**.

	PRODUCTION	SEMANTIC RULES
1)	$L \to E \mathbf{n}$	L.val = E.val
2)	$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
3)	E o T	E.val = T.val
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$
5)	$T \to F$	T.val = F.val
6)	$F \rightarrow (E)$	F.val = E.val
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit.lexval}$

L-Attributed SDD

- The idea behind L-attributed SDD class is that,
 - Between the attributes associated with a production body, dependency-graph edges can go from left to right,
 - But not from right to left (hence "L-attributed")
- 1. Synthesized, or
- Inherited, but with the rules limited as follows. Suppose that there is a production A → X₁X₂···X_n, and that there is an inherited attribute X_i.a computed by a rule associated with this production. Then the rule may use only:
 - (a) Inherited attributes associated with the head A.
 - (b) Either inherited or synthesized attributes associated with the occurrences of symbols $X_1, X_2, \ldots, X_{i-1}$ located to the left of X_i .
 - (c) Inherited or synthesized attributes associated with this occurrence of X_i itself, but only in such a way that there are no cycles in a dependency graph formed by the attributes of this X_i .

L-Attributed SDD

	PRODUCTION	SEMANTIC RULES
1)	T o F T'	T'.inh = F.val $T.val = T'.syn$
2)	$T' \to *F T_1'$	
3)	$T' \to \epsilon$	T'.syn = T'.inh
4)	$F \to \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

PRODUCTION SEMANTIC RULES
$$A \rightarrow B \ C$$
 $A.s = B.b;$ $B.i = f(C.c, A.s)$

Side Effects

- Print a result,
- Enter the type of an identifier into a symbol table.

	PRODUCTION	SEMANTIC RULES
1)	$L \to E \mathbf{n}$	L.val = E.val
2)	$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
3)	$E \to T$	E.val = T.val
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$
5)	$T \to F$	T.val = F.val
6)	$F \rightarrow (E)$	F.val = E.val
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit.lexval}$

Side Effects – examples

- The SDD takes a simple declaration D consisting of a basic type T followed by a list L of identifiers.
- T can be int or float.
- For each identifier on the list, the **type is entered into the symbol- table** entry for the identifier.

	PRODUCTION	SEMANTIC RULES
1)	$D \to T L$	$L.inh = T.type \ lacktriangleq $ The type is passed to the attribute L.inh
2)	$T o \mathbf{int}$	$T.type = ext{integer}$ Evaluate the synthesized attribute T.type,
3)	$T o \mathbf{float}$	$T.type = { m float}$ giving it the appropriate value, integer or float.
4)	$L \to L_1$, id	$L_1.inh = L.inh$ $lacktriangle$ Passes L.inh down the parse tree
		$addType(\mathbf{id}.entry,L.inh)$ Function addType() properly installs the
5)	$L \to \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$ type L.inh as the type of the identifier.

Side Effects

inh

float id_1 , id_2 , id_3

	PRODUCTION	SEMANTIC RULES
1)	$D \to T L$	L.inh = T.type
2)	$T o \mathbf{int}$	T.type = integer
3)	$T o \mathbf{float}$	T.type = float
4)	$L \to L_1$, id	$L_1.inh = L.inh$
		addType(id.entry, L.inh)
5)	$L \to \mathbf{id}$	addType(id.entry, L.inh)

Declaration statement

Representing data types: Type Expressions

Types have structure, which we shall represent using type expressions.

- A type expression is either a basic type (boolean, char, integer, float, and void)
 or
- is formed by applying an operator called a type constructor to a type expression.
- A type expression can be formed by applying the array type constructor to a number and a type expression.

Declaration statement

- The array type int [2] [3] can be read as "array of 2 arrays of 3 integers each"
- Can be represented as a type expression array(2, array(3, integer)).
- This type is represented by the tree.

- The operator array takes two parameters, a number and a type.
 - Here the **type expression** can be formed by applying the **array type constructor** to a number and a type expression.

Declaration statement Example SDD

PRODUCTION	SEMANTIC RULES
$T \rightarrow B C$	T.t = C.t
	C.b = B.t
$B \rightarrow \text{int}$	B.t = integer
$B \rightarrow float$	B.t = float
$C \rightarrow [$ num $] C_1$	$C.t = array(\mathbf{num}.val, C_1.t)$
	$C_1.b = C.b$
$C \rightarrow \epsilon$	C.t = C.b

Type Expressions

- Nonterminal T generates either a basic type or an array type.
- Nonterminal B generates one of the basic types int and float.
- T generates a basic type when C derives €.
- Otherwise, C generates array components consisting of a sequence of integers, each integer surrounded by brackets.

Declaration statement Example SDD

PRODUCTION	SEMANTIC RULES
$T \rightarrow B C$	T.t = C.t
	C.b = B.t
$B \rightarrow int$	B.t = integer
$B \rightarrow float$	B.t = float
$C \rightarrow [$ num $] C_1$	$C.t = array(\mathbf{num}.val, C_1.t)$
	$C_1.b = C.b$
$C \rightarrow \epsilon$	C.t = C.b

Type Expressions

- The nonterminals B and T have a synthesized attribute t representing a type.
- The nonterminal C has two attributes: an inherited attribute b and a synthesized attribute t.

Declaration statement Example SDD

input string int [2][3]

PRODUCTION	SEMANTIC RULES
$T \rightarrow B C$	T.t = C.t
	C.b = B.t
$B \rightarrow \text{int}$	B.t = integer
$B \rightarrow float$	B.t = float
$C \rightarrow [\text{num}] C_1$	$C.t = array(\mathbf{num}.val, C_1.t)$
	$C_1.b = C.b$
$C \rightarrow \epsilon$	C.t = C.b

- The nonterminal *C* has two attributes: an inherited attribute *b* and a synthesized attribute *t*.
- The inherited *b* attributes pass a basic type down the tree, and the synthesized *t* attributes accumulate the result.

While() statement – Translation

While() statement – Translation

```
S \rightarrow \textbf{while} (C) S_1 \quad L1 = new(); \\ L2 = new(); \\ S_1.next = L1; \\ C.false = S.next; \\ C.true = L2; \\ S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code
```


Syntax-Directed Translation Schemes

- Syntax-directed translation schemes are a complementary notation to syntax directed definitions.
- All of the applications of syntax-directed definitions can be implemented using syntax-directed translation schemes.
- Syntax-directed translation scheme (SDT) is a context free grammar with program fragments embedded within production bodies.
- The program fragments are called semantic actions and can appear at any
 position within a production body.
- During parsing, an action in a production body is executed as soon as all the grammar symbols to the left of the action have been matched with input.

SDT's With Actions Inside Productions

An action may be placed at any position within the body of a production. It is performed mmediately after all symbols to its left are processed. Thus, if we have a production $B \to X \{a\} Y$, the action a is done after we have recognized X (if X is a terminal) or all the terminals derived from X (if X is a nonterminal). More precisely,

- If the parse is bottom-up, then we perform action a as soon as this occurrence of X appears on the top of the parsing stack.
- If the parse is top-down, we perform a just before we attempt to expand this occurrence of Y (if Y a nonterminal) or check for Y on the input (if Y is a terminal).

Syntax-Directed Translation Schemes

```
\begin{array}{ccccc} L & \rightarrow & E \ \mathbf{n} & \{ \ \mathrm{print}(E.val); \ \} \\ E & \rightarrow & E_1 + T & \{ \ E.val = E_1.val + T.val; \ \} \\ E & \rightarrow & T & \{ \ E.val = T.val; \ \} \\ T & \rightarrow & T_1 * F & \{ \ T.val = T_1.val \times F.val; \ \} \\ T & \rightarrow & F & \{ \ T.val = F.val; \ \} \\ F & \rightarrow & (E) & \{ \ F.val = E.val; \ \} \\ F & \rightarrow & \mathbf{digit} & \{ \ F.val = \mathbf{digit}.lexval; \ \} \end{array}
```

- The simplest SDD implementation occurs when we can parse the grammar bottom-up and the SDD is S-attributed.
- In that case, we can construct an SDT in which each action is placed at the end
 of the production
 - Executed along with the reduction of the body to the head of that production.
- SDT's with all actions at the right ends of the production bodies are called postfix SDT's.

SDT's With Actions Inside Productions

```
\begin{array}{ll} S \rightarrow \textbf{while} \ ( & \{ \ L1 = new(); \ L2 = new(); \ C.false = S.next; \ C.true = L2; \} \\ C \ ) & \{ \ S_1.next = L1; \ \} \\ S_1 & \{ \ S.code = \textbf{label} \ \| \ L1 \ \| \ C.code \ \| \ \textbf{label} \ \| \ L2 \ \| \ S_1.code; \ \} \end{array}
```


Application of SDD – Syntax tree construction

- Each node in a syntax tree represents a construct; the children of the node represent the meaningful components of the construct.
- A syntax-tree node representing an expression E1 + E2 has label + and two children representing the subexpressions E1 and E2

We shall implement the nodes of a syntax tree by objects with a suitable number of fields. Each object will have an *op* field that is the label of the node. The objects will have additional fields as follows:

- If the node is a leaf, an additional field holds the lexical value for the leaf.
 A constructor function Leaf(op, val) creates a leaf object.
- If the node is an interior node, there are as many additional fields as the node has children in the syntax tree. A constructor function *Node* takes two or more arguments: $Node(op, c_1, c_2, \ldots, c_k)$ creates an object with first field op and k additional fields for the k children c_1, \ldots, c_k .

Application of SDD – Syntax tree construction

Syntax tree for a-4+c

Application of SDD – Syntax tree construction

- Each node in a syntax tree represents a construct; the children of the node represent the meaningful components of the construct.
- A syntax-tree node representing an expression E1 + E2 has label + and two children representing the subexpressions E1 and E2

	PRODUCTION	SEMANTIC RULES
1)	$E \to E_1 + T$	$E.node = \mathbf{new} \ Node('+', E_1.node, T.node)$
2)	$E \to E_1 - T$	$E.node = \mathbf{new} \ Node('-', E_1.node, T.node)$
3)	$E \to T$	E.node = T.node
4)	$T \rightarrow (E)$	T.node = E.node
5)	$T o \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}.entry)$
6)	$T \to \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}. val)$

Application of SDD - Syntax tree

construction

Syntax tree for a-4+c

ituzi ti cc			
-		PRODUCTION	Semantic Rules
-	1)	$E \rightarrow E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$
	2)	$E \rightarrow E_1 - T$	$E.node = new Node('-', E_1.node, T.node)$
	3)	$E \rightarrow T$	E.node = T.node
	4)	$T \rightarrow (E)$	T.node = E.node
	5)	$T o \mathbf{id}$	T.node = new Leaf(id, id.entry)
	6)	$T \rightarrow num$	$T \ node = new \ Leaf(num, num, val)$

Application of SDD – Syntax tree

construction

to entry for a

Syntax tree for a-4+c

itua ti cc				
	PRODUCTION	Semantic Rules		
1)	$E \rightarrow E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$		
2)	$E \rightarrow E_1 - T$	$E.node = new Node('-', E_1.node, T.node)$		
3)	$E \rightarrow T$	E.node = T.node		
4)	$T \rightarrow (E)$	T.node = E.node		
5)	$T o \mathbf{id}$	T.node = new Leaf(id, id.entry)		
6)	$T \to \mathbf{num}$	T.node = new Leaf(num, num. val)		

If the rules are **evaluated** during a **postorder traversal** of the parse tree, or

with reductions during a **bottom-up parse**, then the sequence of steps

-) $p_1 = \mathbf{new} \ Leaf(\mathbf{id}, entry-a);$
- 2) $p_2 = \mathbf{new} \ Leaf(\mathbf{num}, 4);$
 - 3) $p_3 = \mathbf{new} \ Node('-', p_1, p_2);$
- 4) $p_4 = \text{new } Leaf(\text{id}, entry-c);$
 - $p_5 =$ **new** $Node('+', p_3, p_4);$