### Graphs

Graphs are one of the unifying themes of computer science.

#### Graphs

- Graphs are one of the unifying themes of computer science.
- That so many different structures can be modeled using a single formalism is a source of great power to the educated programmer.

#### Graphs

- Graphs are one of the unifying themes of computer science.
- That so many different structures can be modeled using a single formalism is a source of great power to the educated programmer.
- A graph G = (V, E) is defined by a set of vertices V, and a set of edges E consisting of ordered or unordered pairs of vertices from V.

#### Road Networks

In modeling a road network, the vertices may represent the cities or junctions, certain pairs of which are connected by roads/edges.



#### **Electronic Circuits**

In an electronic circuit, with junctions as vertices & components as edges.



#### Flavors of Graphs

■ The first step in any graph problem is determining which flavor of graph you are dealing with.

#### Flavors of Graphs

- The first step in any graph problem is determining which flavor of graph you are dealing with.
- Learning to talk the talk is an important part of walking the walk.

#### Flavors of Graphs

- The first step in any graph problem is determining which flavor of graph you are dealing with.
- Learning to talk the talk is an important part of walking the walk.
- The flavor of graph has a big impact on which algorithms are appropriate and efficient.

#### Directed vs. Undirected Graphs

A graph G = (V, E) is undirected if edge  $(x, y) \in E$  implies that (y, x) is also in E.





#### Directed vs. Undirected Graphs

A graph G = (V, E) is undirected if edge  $(x, y) \in E$  implies that (y, x) is also in E.



Road networks between cities are undirected.

#### Directed vs. Undirected Graphs

A graph G = (V, E) is undirected if edge  $(x, y) \in E$  implies that (y, x) is also in E.



Road networks *between* cities are undirected. Street networks *within* cities may be directed because of one-way streets.

### Weighted vs. Unweighted Graphs

In weighted graphs, each edge (or vertex) of G is assigned a numerical value, or weight.





### Weighted vs. Unweighted Graphs

In weighted graphs, each edge (or vertex) of G is assigned a numerical value, or weight.



The edges of a road network graph might be weighted with their length, drive-time or speed limit.

#### Simple vs. Non-simple Graphs

Certain types of edges complicate the task of working with graphs.

- **11** A *self-loop* is an edge (x, x).
- 2 An edge (x, y) is a *multi-edge* if it occurs more than once in the graph.





### Sparse vs. Dense Graphs

Graphs are *sparse* when a small fraction of vertex pairs actually have edges defined between them.





### Sparse vs. Dense Graphs

Graphs are *sparse* when a small fraction of vertex pairs actually have edges defined between them.



Road networks are sparse because of road junctions.

#### Sparse vs. Dense Graphs

Graphs are *sparse* when a small fraction of vertex pairs actually have edges defined between them.



Road networks are sparse because of road junctions. Dense graphs have a quadratic number of edges while sparse graphs are linear in size.

## Cyclic vs. Acyclic Graphs

An acyclic graph does not contain any cycles. Trees are connected acyclic undirected graphs.





#### Cyclic vs. Acyclic Graphs

An acyclic graph does not contain any cycles. Trees are connected acyclic undirected graphs.



Directed acyclic graphs are called *DAGs*. They arise naturally in scheduling problems, where a directed edge (x, y) indicates that x must occur before y.

#### Implicit vs. Explicit Graphs

Many graphs are not explicitly constructed and then traversed, but built as we use them.



A good example arises in backtrack search.



#### Embedded vs. Topological Graphs

A graph is *embedded* if the vertices and edges have been assigned geometric positions.



Example: TSP or Shortest path on points in the plane.



#### Labeled vs. Unlabeled Graphs

In *labeled* graphs, each vertex is assigned a unique identifier to distinguish it from all other vertices.



An important graph problem is *isomorphism testing*, determining whether the topological structure of two graphs are in fact identical if we ignore any labels.

#### The Friendship Graph

Consider a graph where the vertices are people, and there is an edge between two people if and only if they are friends.



# If I am your friend, does that mean you are my friend?

A graph is *undirected* if (x, y) implies (y, x). Otherwise the graph is directed. The "heard-of" graph is directed since countless famous people have never heard of me!

## Am I linked by some chain of friends to the President?

A *path* is a sequence of edges connecting two vertices.

#### How close is my link to the President?

If I were trying to impress you with how tight I am with the President, I would point you to the length of the *shortest path* between me and the President.

# Is there a path of friends between any two people?

- An undirected graph is connected if there is a path between any two vertices.
- A directed graph is strongly connected if there is a directed path between any two vertices.

#### Who has the most friends?

The *degree* of a vertex is the number of edges adjacent to it.



#### What is the largest clique?

■ A social clique is a group of mutual friends who all hang around together.

#### What is the largest clique?

- A social clique is a group of mutual friends who all hang around together.
- A graph theoretic *clique* is a subset of vertices where each vertex pair has an edge between them.

#### What is the largest clique?

- A social clique is a group of mutual friends who all hang around together.
- A graph theoretic clique is a subset of vertices where each vertex pair has an edge between them.
- Within the friendship graph, we would expect that large cliques correspond to workplaces, neighborhoods, religious organizations, schools, and the like.

## How long will it take for my gossip to get back to me?

- A *cycle* is a path where the last vertex is adjacent to the first.
- A cycle in which no vertex repeats (such as 1-2-3-1 versus 1-2-3-2-1) is said to be simple.

#### Data Structures for Graphs

There are two main data structures used to represent graphs: adjacency matrices and adjacency lists.

We assume the graph G = (V, E) contains n vertices and m edges.

#### Adjacency Matrices

We can represent G using an  $n \times n$  matrix M, where element M[i,j] is 1, if (i,j) is an edge of G, and 0 if it isn't.

#### Adjacency Matrices

We can represent G using an  $n \times n$  matrix M, where element M[i,j] is 1, if (i,j) is an edge of G, and 0 if it isn't.

It uses excessive space for graphs with many vertices and relatively few edges.

Can we save space if

- (1) the graph is undirected?
- (2) if the graph is sparse?



#### Adjacency Lists

An *adjacency list* consists of an array of *n* pointers, where the *i*th element points to a linked list of the edges incident on vertex *i*.





# Adjacency Lists (2)

To test if edge (i, j) is in the graph, we search the ith list for j, which takes  $O(d_i)$ , where  $d_i$  is the degree of the ith vertex.

# Adjacency Lists (2)

To test if edge (i, j) is in the graph, we search the ith list for j, which takes  $O(d_i)$ , where  $d_i$  is the degree of the ith vertex.

 $d_i$  is much less than n when the graph is sparse.



# Comparison

| Comparison                         | Winner                    |
|------------------------------------|---------------------------|
| Faster to test if $(x, y)$ exists? | matrices                  |
| Faster to find vertex degree?      | lists                     |
| Less memory on sparse graphs?      | lists $(m+n)$ vs. $(n^2)$ |
| Less memory on dense graphs?       | matrices (small win)      |
| Edge insertion or deletion?        | matrices $O(1)$           |
| Faster to traverse the graph?      | lists $m + n$ vs. $n^2$   |
| Better for most problems?          | lists                     |

■ One of the most fundamental graph problems is to traverse every edge and vertex in a graph.

- One of the most fundamental graph problems is to traverse every edge and vertex in a graph.
- For efficiency, we must make sure we visit each edge at most twice.

- One of the most fundamental graph problems is to traverse every edge and vertex in a graph.
- For efficiency, we must make sure we visit each edge at most twice.
- For correctness, we must do the traversal in a systematic way so that we don't miss anything.

- One of the most fundamental graph problems is to traverse every edge and vertex in a graph.
- For efficiency, we must make sure we visit each edge at most twice.
- For correctness, we must do the traversal in a systematic way so that we don't miss anything.
- Since a maze is just a graph, such an algorithm must be powerful enough to enable us to get out of an arbitrary maze.



# Mazes and Graphs

## Marking Vertices

The key idea is that we must mark each vertex when we first visit it, and keep track of what have not yet completely explored.

#### Three States of a Vertex

- [ Undiscovered] the vertex in its initial state.
- Discovered the vertex after we have encountered it, but before we have checked out all its incident edges.
- [ Processed] the vertex after we have visited all its incident edges.

#### Three States of a Vertex

- [ Undiscovered] the vertex in its initial state.
- Discovered the vertex after we have encountered it, but before we have checked out all its incident edges.
- [ Processed] the vertex after we have visited all its incident edges.

Obviously, a vertex cannot be processed before we discover it, so the state of each vertex progresses from undiscovered to discovered to processed.

Need to maintain a structure containing all the vertices we have discovered but not yet completely explored.

- Need to maintain a structure containing all the vertices we have discovered but not yet completely explored.
- Initially, only a single start vertex is considered to be discovered.

- Need to maintain a structure containing all the vertices we have discovered but not yet completely explored.
- Initially, only a single start vertex is considered to be discovered.
- To completely explore a vertex, look at each edge going out of it. For each edge to an undiscovered vertex, mark it discovered and add it to the structure.

- Need to maintain a structure containing all the vertices we have discovered but not yet completely explored.
- Initially, only a single start vertex is considered to be discovered.
- To completely explore a vertex, look at each edge going out of it. For each edge to an undiscovered vertex, mark it discovered and add it to the structure.
- Each edge is considered exactly twice, when each of its endpoints are explored.

### Correctness of Graph Traversal

Every edge and vertex in the connected component is eventually visited.

## Correctness of Graph Traversal

Every edge and vertex in the connected component is eventually visited.

Suppose not, ie. there exists a vertex v which was unvisited whose neighbor u was visited. This neighbor (u) will eventually be explored so we would visit v:



#### Breadth-First Traversal

■ There are two primary traversal algorithms: breadth-first search (BFS) and depth-first search (DFS).

#### Breadth-First Traversal

- There are two primary traversal algorithms: breadth-first search (BFS) and depth-first search (DFS).
- For certain problems, it makes absolutely no difference which one you use, but in other cases the distinction is crucial.

#### Breadth-First Traversal

- There are two primary traversal algorithms: breadth-first search (BFS) and depth-first search (DFS).
- For certain problems, it makes absolutely no difference which one you use, but in other cases the distinction is crucial.
- Breadth-first search is appropriate if we are interested in shortest paths on unweighted graphs.

### By-Products of BFS

- Breadth First Tree
- 2 Shortest path from start vertex *s* to each vertex *x* in G.

#### Info associated with each node u

- color[u] : WHITE  $\Rightarrow u$  is undiscovered. GRAY  $\Rightarrow u$  is discovered. BLACK  $\Rightarrow u$  has been explored.
- $\bullet$  d[u]: distance from s to u.
- parent[u]: u's parent in BF tree.



### BFS Algorithm: Initialization

Initially, for all nodes:

- color is WHITE (GRAY for s)
- $\bullet$  d is  $\infty$  (0 for s)
- parent is nil.

Use an (initially empty) FIFO queue Q to store discovered vertices.



### BFS Algorithm

```
Enqueue(Q, s)
while (Q is not empty) do
    u = first element in Q
    for each v adjacent to u
       if (color[v] == WHITE) then
           color[v] = GRAY
           d[v] = d[u] + 1
           parent[v] = u
           Enqueue(Q, v)
    Dequeue(Q)
    color[u] = BLACK
```

#### Notes

- $\mathbf{I}$  d records length of shortest path from s to u.
- Follow parent ptrs back to s to actually retrieve the shortest path.
- Obtain Breadth First Tree by only considering edges of the form (u, parent[u]).

# BFS Example





### Connected Components

■ The connected components of an undirected graph are the separate "pieces" of the graph such that there is no connection between the pieces.

### Connected Components

- The connected components of an undirected graph are the separate "pieces" of the graph such that there is no connection between the pieces.
- Many seemingly complicated problems reduce to finding or counting connected components.

### Connected Components

- The connected components of an undirected graph are the separate "pieces" of the graph such that there is no connection between the pieces.
- Many seemingly complicated problems reduce to finding or counting connected components.
- For example, testing whether a puzzle such as Rubik's cube or the 15-puzzle can be solved from any position is really asking whether the graph of legal configurations is connected.

## Finding Connected Components

Anything we discover during a BFS must be part of the same connected component.

## Finding Connected Components

- Anything we discover during a BFS must be part of the same connected component.
- We then repeat the search from any undiscovered vertex (if one exists) to define the next component, until all vertices have been found:

## 15-Puzzle

### Two-Coloring Graphs

■ The vertex coloring problem seeks to assign a label (or color) to each vertex of a graph such that no edge links any two vertices of the same color.

### Two-Coloring Graphs

- The vertex coloring problem seeks to assign a label (or color) to each vertex of a graph such that no edge links any two vertices of the same color.
- A graph is bipartite if it can be colored without conflicts while using only two colors.

### Two-Coloring Graphs

- The vertex coloring problem seeks to assign a label (or color) to each vertex of a graph such that no edge links any two vertices of the same color.
- A graph is bipartite if it can be colored without conflicts while using only two colors.
- Bipartite graphs are important because they arise naturally in many applications.



# Finding a Two-Coloring

■ We can assign the first vertex in any connected component to be whichever color we wish.

### Finding a Two-Coloring

- We can assign the first vertex in any connected component to be whichever color we wish.
- We can augment breadth-first search so that whenever we discover a new vertex, we color it the opposite of its parent.

## Finding a Two-Coloring

- We can assign the first vertex in any connected component to be whichever color we wish.
- We can augment breadth-first search so that whenever we discover a new vertex, we color it the opposite of its parent.
- If there is a conflict, the graph is not bipartite.

■ DFS exhaustively searches all possibilities by advancing if it is possible, and backing up if it's not possible.

- DFS exhaustively searches all possibilities by advancing if it is possible, and backing up if it's not possible.
- Best understood as a recursive algorithm.

- DFS exhaustively searches all possibilities by advancing if it is possible, and backing up if it's not possible.
- Best understood as a recursive algorithm.
- Depth-first search can be thought of as breadth-first search with a stack instead of a queue.

- DFS exhaustively searches all possibilities by advancing if it is possible, and backing up if it's not possible.
- Best understood as a recursive algorithm.
- Depth-first search can be thought of as breadth-first search with a stack instead of a queue.
- The beauty of implementing DFS recursively is that recursion eliminates the need to keep an explicit stack.



### DFS Algorithm

```
\frac{\mathsf{DFS}(\mathsf{G})}{\mathsf{for\ each\ vertex}\ u \in V[\mathsf{G}]\ \mathsf{do}} \frac{\mathit{color}[\mathit{u}] = \mathit{WHITE}}{\mathit{parent}[\mathit{u}] = \mathit{nil}} time = 0 \mathsf{for\ each\ vertex}\ u \in V[\mathsf{G}]\ \mathsf{do} \mathsf{if}\ \mathit{color}[\mathit{u}] = \mathit{WHITE}\ \mathsf{then\ DFS-VISIT}[\mathit{u}]
```

### Visit Each Vertex

```
DFS-VISIT[u]
color[u] = GREY //u had been white/undiscovered
d[u] = time = time + 1
for each v \in Adi[u] do
     if color[v] = WHITE then
           parent[v] = u
           DFS-VISIT(v)
color[u] = BLACK //  now finished with u
f[u] = time = time + 1
```

## DFS Example on Directed Graph

Do on board!



## DFS Example on Undirected Graph

In a DFS of an undirected graph, we assign a direction to each edge from the vertex which discovers it.



### Parenthesis Theorem

Define vertex u's range to be [d[u], f[u]].

For any pair of vertices u and v, exactly one of the following holds:

- $\mathbf{I}$  u's range and v's range are disjoint.
- u's range is contained in v's range (u is a descendant of v in DFT).
- v's range is contained in u's range (v is a descendant of u in DFT).



# Edge Classification for DFS (a)

Every edge is either:



1. A Tree Edge



2. A Back Edge to an ancestor

# Edge Classification for DFS (b)



3. A Forward Edge to a descendant



4. A Cross Edge to a different node

On any DFS or BFS of a directed or undirected

## Edge Classification Implementation

Modify DFS to classify edges: edge (u, v) can be classified by the color of v that is reached by exploring the edge.

- WHITE ⇒ tree (or just check v's parent ptr)
- GRAY ⇒ back
- BLACK  $\Rightarrow$  forward or cross.

## DFS: Tree Edges and Back Edges Only

In a DFS of an UNDIRECTED graph, every edge is either a tree edge or a back edge.

### No Forward Edges in DFS

Suppose we have a forward edge. We would have encountered (4,1) when expanding 4, so this would be classified a back edge.



## No Cross Edges in DFS

#### Suppose we have a cross-edge



When expanding 2, we would discover 5, so the tree would look like:



## DFS Application: Finding Cycles

Back edges are the key to finding a cycle in a graph. Any back edge going from x to an ancestor y creates a cycle with the path in the tree from y to x.

### Another DFS Application

Suppose you are in charge of network security. Which station do you think a terrorist would blow up to disrupt operations?



### **Articulation Vertices**

■ An *articulation vertex* is a vertex of a connected graph whose deletion disconnects the graph.

### **Articulation Vertices**

- An articulation vertex is a vertex of a connected graph whose deletion disconnects the graph.
- Clearly connectivity is an important concern in the design of any network.

### **Articulation Vertices**

- An articulation vertex is a vertex of a connected graph whose deletion disconnects the graph.
- Clearly connectivity is an important concern in the design of any network.
- Articulation vertices can be found in O(n(m+n)) just delete each vertex and do a DFS/BFS on the remaining graph to see if it is connected.

# A Faster O(n+m) DFS Algorithm

#### Run DFS once and work with resulting DFS tree:



Leaves cannot be articulation vertices

The root is a special case since it has no ancestors.

X is an articulation vertex since the right subtree does not have a back edge to a proper ancestor.



## Topological Sorting on DAGs



A topological sort of a graph is an ordering on the vertices so that all edges go from left to right (e.g. G, A, B, C, F, E, D).



## Applications of Topological Sorting

Topological sorting is often useful in scheduling jobs in their proper sequence. In general, we can use it to order things given precedence constraints.

Example: Courses in curriculum.

## Algorithm

A directed graph is a DAG if and only if no back edges are encountered during a depth-first search.

## Algorithm

A directed graph is a DAG if and only if no back edges are encountered during a depth-first search.

**Theorem**: Arranging vertices in decreasing order of DFS finish times gives a topological sort of a DAG.

## Algorithm

A directed graph is a DAG if and only if no back edges are encountered during a depth-first search.

**Theorem**: Arranging vertices in decreasing order of DFS finish times gives a topological sort of a DAG.

Thus, topological sorting takes O(n+m) time.



### Proof of Theorem

Consider any directed edge u, v, when we encounter it during the exploration of vertex u:

- If *v* is white we start (and finish) a DFS of *v* before we continue with *u*.
- If v is grey then u, v is a back edge, which cannot happen in a DAG.
- If v is black we have already finished with v, so f[v] < f[u].

