

READ DATASET

df = pd.read_csv('/content/drive/MyDrive/IBM_nalaiyathiran/spam.csv',delimiter=',',encoding='latin-1')

df.head()

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN

PREPROCESSING

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning

Text(0.5, 1.0, 'Number of ham and spam messages')


```
X = df.v2
Y = df.v1
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)
```

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.15)

```
max_words = 1000
max_len = 100
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = utils.pad_sequences(sequences,maxlen=max_len)
sequences_matrix.shape
```

sequences_matrix.ndim

(4736, 100)

2

```
sequences matrix = np.reshape(sequences matrix, (4736, 100, 1))
sequences matrix.ndim #3d shape verification to proceed to RNN LSTM
     3
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Embedding
model = Sequential()
model.add(Embedding(max words,50,input length=max len))
model.add(LSTM(units=64,input_shape = (sequences_matrix.shape[1],1),return_sequences=True))
model.add(LSTM(units=64,return sequences=True))
model.add(LSTM(units=64,return sequences=True))
model.add(LSTM(units=64))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dense(units = 1,activation = 'sigmoid'))
model.summary()
model.compile(loss='binary crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
    Model: "sequential"
      Layer (type)
                                Output Shape
                                                         Param #
     ______
     embedding (Embedding)
                                (None, 100, 50)
                                                         50000
```

(None, 100, 64)

29440

1stm (LSTM)

lstm_1 (LSTM)	(None, 100, 64)	33024
lstm_2 (LSTM)	(None, 100, 64)	33024
lstm_3 (LSTM)	(None, 64)	33024
dense (Dense)	(None, 256)	16640
dense_1 (Dense)	(None, 1)	257

Total params: 195,409 Trainable params: 195,409 Non-trainable params: 0

FIT THE MODEL

M = model.fit(sequences_matrix,Y_train,batch_size=128,epochs=7,validation_split=0.2)

SAVE THE MODEL

TEST THE MODEL

ACCURACY AND LOSS GRAPH

```
results = pd.DataFrame({"Train Loss": M.history['loss'], "Validation Loss": M.history['val_loss'], "Train Accuracy": M.history['accura
fig, ax = plt.subplots(nrows=2, figsize=(16, 9))
results[["Train Loss", "Validation Loss"]].plot(ax=ax[0])
results[["Train Accuracy", "Validation Accuracy"]].plot(ax=ax[1])
ax[0].set_xlabel("Epoch")
ax[1].set_xlabel("Epoch")
plt.show()
```


Colab paid products - Cancel contracts here

