MIPI 15.4 – Remédiation et échauffement

Exercice 1 - Etude de fonctions Etudier les fonctions suivantes sur \mathbb{R} (dérivée, sens de variation, limites, tableau de variation et primitives) :

- $f: x \mapsto \frac{1}{2}x^2 3x + 1$
- $g: x \mapsto \cos(2x) 2x$
- $h: x \mapsto |2x 1| + |x|$
- $k: x \mapsto e^{3x+2}$

Pour aller plus loin

- $f_2: x \mapsto \frac{4x}{x^2+1}$
- $g_2: x \mapsto \cos^2(x) \cos(2x)$
- $h_2: x \mapsto \ln(x^3 2x^2 x + 2)$

Exercice 2 - Dans $\mathbb C$

- 1. Simplifier: $z_1 = 2i(3-2i)$, $z_2 = (3i-2)(2i+6)$, $z_3 = (2-i)(2+i)$.
- 2. Placer dans le plan les points d'affixes z_1, z_2, z_3 .
- 3. Calculer les conjugués, inverses et modules de z_1, z_2, z_3 .
- 4. Résoudre $x^2 + x + 1 = 0$ dans \mathbb{C} .

Pour aller plus loin

- Simplifier $\frac{(i-1)^5}{(i+1)^4}$ et $(1+i)^{10}$.
- Soit $z \in \mathbb{C}$ de module 1, calculer $|1+z|^2+|1-z|^2$. Faire un dessin pour comprendre le résultat.
- Soient $z_1 = 1 + i$, $z_2 = \sqrt{3} + i$ et $z_3 = \frac{z_1}{z_2}$. Déterminer les parties réelle et imaginaire de z_3 , ainsi que son module et son argument. Trouver une formule pour $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$, puis pour $\tan(\frac{\pi}{12})$.

Exercice 3 - Suite homographique Soit la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = \frac{2u_n + 3}{u_n + 4}$

- 1. Montrer que pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 2 \frac{5}{u_n+4}$
- 2. Montrer par récurrence que pour tout entier $n \in \mathbb{N}$, $1 \leq u_n \leq 2$
- 3. Quel est le sens de variation de la suite (u_n) ? Qu'en conclure?
- 4. Illustrer graphiquement les résultats précédents (on s'aidera des graphes de $y = \frac{2x+3}{x+4}$ et de y = x).

Exercice 4 - Vecteurs et géométrie Le plan est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. On considère les points A(2;4), B(5;5), C(1;1) et D(7;3).

- 1. Faire une figure.
- 2. Donner les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{DC} .
- 3. Que remarquez vous? En déduire que le quadrilatère ABDC est un trapèze.
- 4. On note E le symétrique de C par rapport à A (donc A est le milieu de [EC]). Calculer les coordonnées de E.
- 5. Montrer que B est milieu de [ED]
- 6. Soient M et N les milieux respectifs des segments [AB] et [CD]. Déterminer les coordonnées de M et N. En déduire que les points E, M et N sont alignés.