Исследование влияния случайного равномерно распределенного возмущения на качество кубатурных формул

Бойченко Антон Владимирович, 522 гр

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель – д.ф.-м.н. Ермаков С.М. Рецензент – к.ф.-м.н. Товстик Т. М.

Санкт-Петербург 2009г

Связь отклонения с кубатурными формулами.

Формула
$$\int\limits_{D_{\epsilon}} f(X) dX pprox \sum_{j=1}^{N} C_{j} f(X_{j})$$
 называется кубатурной.

Остатком кубатурной формулы называется величина

$$R_N[f] = \int_{D_s} f(X)dX - S_N[f]$$

Существуеет оценка для остатка(неравенство Коксмы-Хлавки)

$$||R[f]|| \le \frac{V_s(f)}{N} \cdot D_N$$

Где

$$D_N = \sup_{x \in D_s} N \left| \prod_{i=1}^s x^{(i)} - \sum_{j=1}^N \frac{1}{N} \prod_{i=1}^s \Theta(x_j^{(i)} - x^{(i)}) \right|, X = (x^{(1)}, \dots, x^{(s)})$$

называется отклонением, и от его значения зависит качество формулы.

Величина $V_{s}(f)$ называется вариацией в смысле Харди-Краузе.

Последовательность Холтона.

• Пусть имеются натуральные числа числа r, n и m, и число n имеет следующее представление в r-ичной системе счисления:

$$n = a_m a_{m-1} ... a_2 a_1$$

• Последовательность чисел $p_r(n), n=1,2...$, определяется следующим образом:

$$p_r(n) = \sum_{i=1}^m a_i r^{-i}$$

• Последовательностью Холтона называется последовательность векторов

$$X(n) = (p_{r_1}(n), p_{r_2}(n), ..., p_{r_s}(n)),$$

Способы возмущения.

Пусть узлы кубатурной формулы такие:

$$(x_1^1,...,x_1^s),...,(x_N^1,...,x_N^s)$$

Возмущение одним случайным числом по каждой переменной:

$$(\{x_1^1 + \alpha\}, ..., \{x_1^s + \alpha\}), ..., (\{x_N^1 + \alpha\}, ..., \{x_N^s + \alpha\})$$

Возмущение разными числами по каждой переменной:

$$(\{x_1^1 + \alpha^1\}, ..., \{x_1^s + \alpha^s\}), ..., (\{x_N^1 + \alpha^1\}, ..., \{x_N^s + \alpha^s\})$$

Случайные числа распределены равномерно на отрезке [0,1]

Одномерный случай. Зависимость значений отклонения от числа узлов.

НВЗ – значение отклонения, подсчитанного для узлов с координатами, удовлетворяющими невозмущенной последовательности Холтона.

СР – среднее значение отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

МИН – наименьшее значение из отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

n – число итераций возмущения.

Основание последовательности Холтона 3.

Одномерный случай. Зависимость отношения возмущенных значений отклонения к невозмущенному от числа узлов.

СР – отношение среднего значения возмущенных отклонений к невозмущенному.

МИН – отношение минимального значения из возмущенных отклонений к невозмущенному.

Наблюдения:

- При числе узлов равном R^k-1 значение невозмущенного отклонения оптимально (R основание последовательности Холтона, k натуральное число). При таком числе узлов область интегрирования заполнена ими равномерно.
- Слабая зависимость от числа итераций.
- Минимум уменьшает отклонение для любого числа узлов, кроме оптимального.

Одномерный случай. Зависимость значений отклонения от числа итераций. Оптимальное число узлов.

n – число узлов.

НВЗ – невозмущенное значение отклонения.

СР – среднее значение возмущенных отклонений.

МИН – минимальное значение из возмущенных отклонений.

Наблюдения:

 Минимальное значение достаточно быстро «стабилизируется» и начинает мало отличаться от невозмущенного значения.

Выводы:

- Минимальное значение не сильно больше невозмущенного при оптимальном числе узлов.
- Затраты на использование метода небольшие, так как не требуется большого числа итераций возмущения.

Одномерный случай. Зависимость значений отклонения от числа итераций. Неоптимальное число узлов.

n – число узлов.

НВЗ –невозмущенное значение отклонения.

СР – среднее значение возмущенных отклонений.

МИН – минимальное значение из возмущенных отклонений.

Наблюдения:

- Заметное улучшение качества квадратурной формулы.
- Снова быстрая стабилизация минимума.

Выводы:

- Величина количества узлов не влияет на возможность улучшения.
- Снова небольшие затраты на использование метода.

Одномерный случай. Скорость сходимости отклонения, подсчитанного для возмущенной последовательности.

ВОЗ – корень из дисперсии отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

МИН – корень из дисперсии наименьших значений из отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

Число итераций возмущения 10.

Наблюдения:

 Скорость сходимости возмущенного отклонения и минимума из возмущенных отклонений имеет при

размерности 1 порядок $O(N^{-\frac{3}{4}})$

Многомерные случаи. Отличия от одномерного.

- Нет оптимального числа узлов.
- Два способа возмущения последовательности Холтона.
- Увеличение числа узлов сильно усложняет подсчет отклонения. Сложность подсчета порядка $O(N^s)$, где N – число узлов, а s – размерность области интегрирования.

Двухмерный случай. Зависимость значений отклонения от числа узлов.

НВЗ – значение отклонения, подсчитанного для узлов с координатами, удовлетворяющими невозмущенной последовательности Холтона.

 СР – среднее значение отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

МИН – наименьшее значение из отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

Число итераций возмущения 20.

Основания последовательности Холтона 3 и 5.

Двухмерный случай.

Зависимость отношения возмущенных значений отклонения к невозмущенному от числа узлов.

СР – отношение среднего значения возмущенных отклонений к невозмущенному.

МИН – отношение минимального из значений возмущенных отклонений к невозмущенному.

Число итераций 20.

Основания последовательности Холтона 3 и 5.

Наблюдения:

- Отсутствие оптимального количества узлов.
- Минимум уменьшает значение при любом количестве точек.

Двухмерный случай. Сравнение способов возмущения.

СР – отношение среднего значения отклонений при возмущении одним числом и среднего значения отклонений при возмущении разными числами.

МИН – отношение минимального значения из отклонений при возмущении одним числом и минимального значения из отклонений при возмущении разными числами.

Наблюдения:

 Нет ярко выраженных преимуществ одного способа перед другим.

Двухмерный случай. Зависимость значений отклонения от числа итераций.

Количество узлов 50.

НВЗ –невозмущенное значение отклонения.

СР – среднее значение возмущенных отклонений.

МИН – минимальное значение из возмущенных отклонений.

Наблюдения:

• Снова быстрая «стабилизация» минимального из возмущенных отклонений.

Выводы:

- Двухмерный случай улучшается гораздо эффективнее ввиду отсутствия оптимального числа узлов.
- Небольшие затраты на использование метода.

Двухмерный случай. Скорость сходимости отклонения, подсчитанного для возмущенной последовательности.

ВОЗ – корень из дисперсии отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

МИН – корень из дисперсии наименьших значений из отклонений, подсчитанных для узлов с координатами, удовлетворяющими возмущенной последовательности Холтона.

Число итераций возмущения 10. Наблюдения:

 Скорость сходимости отклонения и минимума не зависит от способа возмущения последовательности Холтона.

Более высокие размерности области интегрирования.

- Сложность анализа из-за высоких затрат на подсчет отклонения.
- Рост эффективности метода с ростом размерности области интегрирования, так как становится сложнее добиться равномерности расположения узлов при отсутствии возмущения.
- Скорость сходимости обоих способов рандомизации не зависит от размерности области интегрирования.

Итог.

При обоих способах рандомизации, взятие минимального из возмущенных отклонений улучшает качество кубатурных формул. При этом затраты на его применение сравнимы с обычным подсчетом отклонения.

Скорость сходимости обоих способов рандомизации не зависит от размерности

области интегрирования и имеет порядок $O(N^{-\frac{3}{4}})$