СТАТИКА КОНСТРУКЦИЈА

Модул: Хидротехника и водно инжењерство околине, Саобраћајнице, Архитектонско инжењерство
– материјал за вежбе –

2024.

Нумерички поступак

Линеарна расподела оптерећења

$$P_{0} = \frac{\lambda}{6} (2p_{0} + p_{1})$$

$$P_{m} = \frac{\lambda}{6} (p_{m-1} + 4p_{m} + p_{m+1}), m = 1, 2, ..., n - 1$$

$$P_{n} = \frac{\lambda}{6} (p_{n-1} + 2p_{n})$$
(1)

Линеарна скоковита расподела оптерећења

$$P_{0} = \frac{\lambda_{1}}{6} \left(2p_{0} + p_{1}^{l} \right)$$

$$P_{m} = \frac{\lambda_{m}}{6} \left(p_{m-1}^{d} + 2p_{m}^{l} \right) + \frac{\lambda_{m+1}}{6} \left(2p_{m}^{d} + p_{m+1}^{l} \right), m = 1, 2, ..., n - 1$$

$$P_{n} = \frac{\lambda_{n}}{6} \left(p_{n-1}^{d} + 2p_{n} \right)$$

$$(2)$$

Параболична расподела оптерећења

$$P_{0} = \frac{\lambda}{24} (7p_{0} + 6p_{1} - p_{2})$$

$$P_{m} = \frac{\lambda}{12} (p_{m-1} + 10p_{m} + p_{m+1}), m = 1, 2, ..., n - 1$$

$$P_{n} = \frac{\lambda}{24} (-p_{n-2} + 6p_{n-1} + 7p_{n})$$
(3)

Примери

За све носаче са датим оптерећењима приказани на скицама потребно је срачунати реакције ослонаца и пресечне силе нумеричким поступком делећи носач у десетинама распона.

Primer

$$p_1 := 2 - \frac{kN}{m} \qquad M := 0 - kNm$$

$$p_2 := 4 \frac{kN}{m}$$

$$\underset{m}{L}:=8 \quad m \qquad \qquad \lambda:=\frac{L}{10} \qquad \qquad \lambda=0.8$$

Funkcija opterećenja:

$$p(\xi) := \mathbf{a} \cdot \xi + \mathbf{b}$$

Given

1...
$$q \cdot 0 + b = 2$$

Konstante su:
$$a := \frac{1}{4}$$
 $b := 2$

2...
$$a \cdot 8 + b = 4$$

$$p(\xi) := a \cdot \xi + b$$

$$Find(a,b) \to \begin{pmatrix} \frac{1}{4} \\ 2 \end{pmatrix}$$

$$p(\xi) \text{ simplify } \to \frac{\xi}{4} + 2$$

$$p(\xi) := \frac{\xi}{4} + 2$$

$$p(0) = 2$$

$$p(0.8) = 2.2$$

$$p(1.6) = 2.4$$

$$p(2.4) = 2.6$$

$$p(3.2) = 2.8$$

$$p(4) = 3$$

$$p(4.8) = 3.2$$

$$p(5.6) = 3.4$$

$$p(6.4) = 3.6$$

$$p(7.2) = 3.8$$

$$p(8) = 4$$

$$\xi := \begin{pmatrix} 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1 \end{pmatrix}$$

$$\xi d := \begin{bmatrix} 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \end{bmatrix}$$

$$P_0 := \frac{\lambda}{6} \cdot \left(2 \cdot p_0 + p_1 \right)$$

$$P_0 = 0.827$$

$$P_8 := \frac{\lambda}{6} \cdot \left(p_7 + 4 p_8 + p_9 \right)$$

$$P_8 = 2.88$$

$$P_1 := \frac{\lambda}{6} \cdot (p_0 + 4p_1 + p_2)$$

$$P_1 = 1.76$$

$$P_1 := \frac{\lambda}{6} \cdot \left(p_0 + 4 \, p_1 + p_2 \right) \qquad \qquad P_1 = 1.76 \qquad \qquad P_9 := \frac{\lambda}{6} \cdot \left(p_8 + 4 \, p_9 + p_{10} \right)$$

$$P_9 = 3.04$$

$$P_2 := \frac{\lambda}{6} \cdot (p_1 + 4p_2 + p_3)$$
 $P_2 = 1.92$

$$P_2 = 1.92$$

$$P_{10} := \frac{\lambda}{6} \cdot (2 \cdot p_{10} + p_9)$$

$$P_{10} = 1.573$$

$$P_3 := \frac{\lambda}{6} \cdot \left(p_2 + 4 p_3 + p_4 \right)$$
 $P_3 = 2.08$

$$P_3 = 2.08$$

$$P_4 := \frac{\lambda}{6} \cdot (p_3 + 4p_4 + p_5)$$
 $P_4 = 2.24$

$$P_4 = 2.24$$

$$P_5 := \frac{\lambda}{6} \cdot \left(p_4 + 4 \, p_5 + p_6 \right) \qquad \quad P_5 = 2.4$$

$$P_5 = 2.4$$

$$P_6 := \frac{\lambda}{6} \cdot \left(p_5 + 4 \, p_6 + p_7 \right) \qquad \quad P_6 = 2.56$$

$$P_6 = 2.56$$

$$P_7 := \frac{\lambda}{6} \cdot (p_6 + 4p_7 + p_8)$$
 $P_7 = 2.72$

$$P_7 = 2.72$$

Reakcije oslonaca:

1. od opterećenja:
$$A_P := \sum_{m \,=\, 0}^{10} \, \left(P_m \, \xi d_m \right) \qquad A_P = 10.667 \quad kN$$

$$\mathsf{B}_P := \sum_{m \,=\, 0}^{10} \, \left(\mathsf{P}_m \, \xi_m \right) \qquad \quad \mathsf{B}_P = 13.333 \quad k \mathsf{N}$$

2. od koncentrisanog momenta:

$$A_{\mbox{\scriptsize M}} := \frac{-\mbox{\scriptsize M}}{\mbox{\scriptsize L}} \qquad \qquad A_{\mbox{\scriptsize M}} = 0 \qquad \qquad k \mbox{\scriptsize N} \label{eq:Am}$$

$$\mathsf{B}_{M} := \frac{\mathsf{M}}{\mathsf{L}} \qquad \qquad \mathsf{B}_{M} = \mathsf{0} \qquad \quad \mathsf{kN}$$

Reakcije su:
$$A = A_P + A_M$$
 $A = 10.667$ kN

$$B := B_P + B_M$$
 $B = 13.333$ kN

Presečne sile:
$$T_m := T_{m-1} - P_{m-1}$$
 $T_0 := A$

$$\mathsf{M}_{\boldsymbol{m}} := \mathsf{M}_{m-1} + \mathsf{T}_{\boldsymbol{m}} {\cdot} \lambda_{\boldsymbol{m}}$$

m	λ_m	ξ_m	p_m	P_m	ξ_m'	$P_m \xi_m'$	T_m	$T_m\lambda_m$	$M_m^{(M)}$	M_m
0	0,8	0	2	0,827	1	0,827	10,667	0		0
1	0,8	0,1	2,2	1,76	0,9	1,584	9,840	7,872		7,872
2	0,8	0,2	2,4	1,92	0,8	1,536	8,080	6,464		14,336
3	0,8	0,3	2,6	2,08	0,7	1,456	6,160	4,928		19,264
4	0,8	0,4	2,8	2,24	0,6	1,344	4,080	3,264		22,528
5	0,8	0,5	3	2,4	0,5	1,200	1,840	1,472		24,000
6	0,8	0,6	3,2	2,56	0,4	1,024	-0,560	-0,448		23,552
7	0,8	0,7	3,4	2,72	0,3	0,816	-3,120	-2,496		21,056
8	0,8	0,8	3,6	2,88	0,2	0,576	-5,840	-4,672		16,384
9	0,8	0,9	3,8	3,04	0,1	0,304	-8,720	-6,976		9,408
10	0,8	1	4	1,573	0	0	-11,760	-9,408		0,000
			$\sum P_m =$	= 24	$A_P =$	10,667	-13,333	=B		

Ekvivalentno statičko opterećenje sa reakcijama i dijagramima presečnih sila

Primer

$$p_1 := 6 \frac{kN}{m}$$

$$M := 50 \quad kNm$$

$$\mathsf{p}_2 \coloneqq \mathsf{7} \ \frac{\mathsf{kN}}{\mathsf{m}}$$

$$p_3 := 12 \frac{kN}{m}$$

$$\lambda := \frac{L}{10}$$

$$\lambda = 0.8$$

Funkcija opterećenja:

$$p(\xi) := \mathbf{a} \cdot \xi^2 + b \cdot \xi + c$$

Given

1...
$$a \cdot 0^2 + b \cdot 0 + c = 6$$

Konstante su:
$$a := \frac{7}{16}$$
 $b := -\frac{11}{4}$ $c := 6$

2...
$$a \cdot 4^2 + b \cdot 4 + c = 2$$

$$p(\xi) := a \cdot \xi^2 + b \cdot \xi + c$$

3...
$$a \cdot 8^2 + b \cdot 8 + c = 12$$

$$p(\xi) \ \text{simplify} \ \rightarrow \frac{7 \cdot \xi^2}{16} - \frac{11 \cdot \xi}{4} + 6$$

Find(a,b,c)
$$\rightarrow$$

$$\begin{pmatrix} \frac{7}{16} \\ -\frac{11}{4} \\ 6 \end{pmatrix}$$

$$p(\xi) := \frac{7}{16} \cdot \xi^2 - \frac{11}{4} \cdot \xi + 6$$

$$\mathsf{t}(\xi) := 6 + \frac{6}{8} \cdot \xi$$

$$p(0) = 6$$

$$p(0.8) = 4.08$$

$$p(1.6) = 2.72$$

$$p(2.4) = 1.92$$

$$p(3.2) = 1.68$$

$$p(4) = 2$$

$$p(4.8) = 2.88$$

$$p(5.6) = 4.32$$

$$p(6.4) = 6.32$$

$$p(7.2) = 8.88$$

$$p(8) = 12$$

$$\begin{array}{c}
\begin{pmatrix}
6 \\
4.08 \\
2.72 \\
1.92 \\
1.68 \\
2 \\
2.88 \\
4.32 \\
6.32 \\
8.88 \\
12
\end{pmatrix}$$

$$\begin{cases}
0 \\
0.1 \\
0.2 \\
0.3 \\
0.4 \\
0.5 \\
0.6 \\
0.7 \\
0.8 \\
0.9 \\
1
\end{cases}$$

$$\xi d := \begin{pmatrix} 1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \end{pmatrix}$$

$$P_0 := \frac{\lambda}{24} \cdot \left(7 \cdot p_0 + 6 \, p_1 - p_2\right) \qquad P_0 = 2.125 \qquad \qquad P_8 := \frac{\lambda}{12} \cdot \left(p_7 + 10 \, p_8 + p_9\right) \qquad P_8 = 5.093$$

$$P_8 := \frac{\lambda}{12} \cdot (p_7 + 10 p_8 + p_9)$$
 $P_8 = 5.0$

$$P_1 := \frac{\lambda}{12} \cdot (p_0 + 10 p_1 + p_2)$$
 $P_1 = 3.$

$$P_1 := \frac{\lambda}{12} \cdot \left(p_0 + 10 \, p_1 + p_2\right) \qquad P_1 = 3.301 \qquad \qquad P_9 := \frac{\lambda}{12} \cdot \left(p_8 + 10 \, p_9 + p_{10}\right) \qquad P_9 = 7.141$$

$$P_2 := \frac{\lambda}{12} \cdot (p_1 + 10 p_2 + p_3)$$
 $P_2 = 2.213$

$$P_{10} := \frac{\lambda}{24} \cdot (7 \cdot p_{10} + 6 p_9 - p_8) \quad P_{10} = 4.365$$

$$P_3 := \frac{\lambda}{12} \cdot (p_2 + 10 p_3 + p_4)$$
 $P_3 = 1.573$

$$P_4 := \frac{\lambda}{12} \cdot (p_3 + 10 p_4 + p_5)$$
 $P_4 = 1.381$

$$P_5 := \frac{\lambda}{12} \cdot \left(p_4 + 10 \, p_5 + p_6 \right) \qquad P_5 = 1.637$$

$$P_6 := \frac{\lambda}{12} \cdot (p_5 + 10 p_6 + p_7)$$
 $P_6 = 2.341$

$$P_7 := \frac{\lambda}{12} \cdot (p_6 + 10 p_7 + p_8)$$
 $P_7 = 3.493$

Reakcije oslonaca:

1. od opterećenja:
$$A_P := \sum_{m \,=\, 0}^{10} \, \left(P_m \, \xi d_m \right) \qquad A_P = 13.333 \quad kN$$

$$B_P := \sum_{m \,=\, 0}^{10} \, \left(P_m \, \xi_m \right) \qquad \quad B_P = 21.333 \quad kN \label{eq:BP}$$

2. od koncentrisanog momenta:

$$A_{\mbox{\scriptsize M}} := \frac{-\mbox{\scriptsize M}}{\mbox{\scriptsize L}} \qquad \qquad A_{\mbox{\scriptsize M}} = -6.25 \quad \mbox{\scriptsize kN} \label{eq:AM}$$

$$\mathsf{B}_{M} := \frac{\mathsf{M}}{\mathsf{L}} \qquad \qquad \mathsf{B}_{M} = \mathsf{6.25} \quad \mathsf{kN}$$

$$\mathsf{B} := \mathsf{B}_P + \mathsf{B}_M \qquad \qquad \mathsf{B} = \mathsf{27.58} \qquad \mathsf{kN}$$

Presečne sile:
$$T_{m}:=T_{m-1}-P_{m-1} \qquad \qquad T_{0}:=A$$

$$M_m := M_{m-1} + T_m \cdot \lambda_m$$

m	λ_m	ξ_m	p_m	P_m	ξ_m	$P_m \xi_m'$	T_m	$T_m\lambda_m$	$M_m^{(M)}$	M_m
0	0,8	0	6	2,125	1	2,125	7,083	0		0
1	0,8	0,1	4,08	3,301	0,9	2,971	4,958	3,966		3,966
2	0,8	0,2	2,72	2,213	0,8	1,770	1,657	1,326		5,292
3	0,8	0,3	1,92	1,573	0,7	1,101	-0,556	-0,445		4,847
4	0,8	0,4	1,68	1,381	0,6	0,829	-2,129	-1,703		3,144
5	0,8	0,5	2	1,637	0,5	0,819	-3,510	-2,808		0,336
5									50	50,336
6	0,8	0,6	2,88	2,341	0,4	0,936	-5,147	-4,118		46,218
7	0,8	0,7	4,32	3,493	0,3	1,048	-7,488	-5,990		40,228
8	0,8	0,8	6,32	5,093	0,2	1,019	-10,981	-8,785		31,443
9	0,8	0,9	8,88	7,141	0,1	0,714	-16,074	-12,859		18,584
10	0,8	1	12	4,365	0	0	-23,215	-18,572		0
			$\sum P_m =$	34,663	$A_P =$	13,332	-27,580	=B		

Ekvivalentno statičko opterećenje sa reakcijama i dijagramima presečnih sila

Primer

$$p_1 := 6 \ \frac{kN}{m}$$

$$M := 60 \quad kNm$$

$$\mathsf{p}_2 \coloneqq \mathsf{7} \ \frac{\mathsf{kN}}{\mathsf{m}}$$

$$p_3 := 12 \frac{kN}{m}$$

$$\lambda := \frac{L}{10}$$

$$\lambda = 1.2$$

Funkcija opterećenja:

$$p(\xi) := \mathbf{a} \cdot \xi^2 + b \cdot \xi + c$$

Given

1...
$$a \cdot 0^2 + b \cdot 0 + c = 6$$

Konstante su:
$$a := \frac{7}{36}$$
 $b := -\frac{11}{6}$ $c := 6$

$$b := -\frac{11}{6}$$

2...
$$a \cdot 6^2 + b \cdot 6 + c = 2$$

$$p(\xi) := a \cdot \xi^2 + b \cdot \xi + c$$

3...
$$a \cdot 12^2 + b \cdot 12 + c = 12$$

$$p(\xi)$$
 simplify $\rightarrow \frac{7 \cdot \xi^2}{36} - \frac{11 \cdot \xi}{6} + 6$

Find(a,b,c)
$$\rightarrow$$

$$\begin{pmatrix} \frac{7}{36} \\ -\frac{11}{6} \\ 6 \end{pmatrix}$$

$$p(\xi) := \frac{7}{36} \cdot \xi^2 - \frac{11}{6} \cdot \xi + 6$$

$$t(\xi) := 6 + 0.5 \cdot \xi$$

$$p(0) = 6$$

$$p(1.2) = 4.08$$

$$p(2.4) = 2.72$$

$$p(3.6) = 1.92$$

$$p(4.8) = 1.68$$

$$p(6) = 2$$

$$p(7.2) = 2.88$$

$$p(8.4) = 4.32$$

$$p(9.6) = 6.32$$

$$p(10.8) = 8.88$$

$$p(12) = 12$$

$$\begin{array}{c}
\begin{pmatrix}
6 \\
4.08 \\
2.72 \\
1.92 \\
1.68 \\
2 \\
2.88 \\
4.32 \\
6.32 \\
8.88 \\
12
\end{pmatrix}$$

$$\begin{cases}
0 \\
0.1 \\
0.2 \\
0.3 \\
0.4 \\
0.5 \\
0.6 \\
0.7 \\
0.8 \\
0.9 \\
1
\end{cases}$$

$$\xi d := \begin{pmatrix} 1 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \end{pmatrix}$$

$$P_0 := \frac{\lambda}{24} \cdot \left(7 \cdot p_0 + 6 \, p_1 - p_2 \right) \quad \ P_0 = 3.188$$

$$P_8 := \frac{\lambda}{12} \cdot (p_7 + 10 p_8 + p_9)$$
 $P_8 = 7.64$

$$P_1 := \frac{\lambda}{12} \cdot \left(p_0 + 10 \, p_1 + p_2 \right) \qquad P_1 = 4.952$$

$$P_9 := \frac{\lambda}{12} \cdot (p_8 + 10 p_9 + p_{10})$$
 $P_9 = 10.712$

$$P_2 := \frac{\lambda}{12} \cdot (p_1 + 10 p_2 + p_3)$$
 $P_2 = 3.32$

$$P_2 := \frac{\lambda}{12} \cdot \left(p_1 + 10 \, p_2 + p_3\right) \qquad P_2 = 3.32 \qquad \qquad P_{10} := \frac{\lambda}{24} \cdot \left(7 \cdot p_{10} + 6 \, p_9 - p_8\right) \quad P_{10} = 6.548$$

$$P_3 := \frac{\lambda}{12} \cdot (p_2 + 10 p_3 + p_4)$$
 $P_3 = 2.36$

$$P_4 := \frac{\lambda}{12} \cdot (p_3 + 10 p_4 + p_5)$$
 $P_4 = 2.072$

$$P_5 := \frac{\lambda}{12} \cdot \left(p_4 + 10 \, p_5 + p_6 \right) \qquad P_5 = 2.456$$

$$P_6 := \frac{\lambda}{12} \cdot \left(p_5 + 10 \, p_6 + p_7 \right) \qquad P_6 = 3.512$$

$$P_7 := \frac{\lambda}{12} \cdot (p_6 + 10 p_7 + p_8)$$
 $P_7 = 5.24$

Reakcije oslonaca:

1. od opterećenja:
$$A_P := \sum_{m \,=\, 0}^{10} \, \left(P_m \, \xi d_m \right) \qquad A_P = 20 \qquad kN$$

$$B_P := \sum_{m \,=\, 0}^{10} \, \left(P_m \, \xi_m \right) \qquad \quad B_P = 32 \qquad kN \label{eq:BP}$$

2. od koncentrisanog momenta:

$$A_{M}:=\frac{-M}{L} \hspace{1cm} A_{M}=-5 \hspace{1cm} kN$$

$$\mathsf{B}_M := \frac{\mathsf{M}}{\mathsf{L}} \qquad \qquad \mathsf{B}_M = \mathsf{5} \qquad \quad \mathsf{kN}$$

Reakcije su:
$$A = A_P + A_M$$
 $A = 15$ kN

$$\mathsf{B} := \mathsf{B}_P + \mathsf{B}_M \qquad \qquad \mathsf{B} = \mathsf{37} \qquad \quad \mathsf{kN}$$

$$\mathsf{M}_{\textcolor{red}{m}} := \mathsf{M}_{m-1} + \mathsf{T}_m \!\cdot\! \lambda_m$$

m	λ_m	ξ_m	p_m	P_m	ξ_m'	$P_m \xi_m'$	T_m	$T_m \lambda_m$	$M_m^{\mathfrak{M}}$	M_m
0	1,2	0	6	3,188	1	3,188	15,000	0		0
1	1,2	0,1	4,08	4,952	0,9	4,457	11,812	14,174		14,174
2	1,2	0,2	2,72	3,32	0,8	2,656	6,860	8,232		22,406
3	1,2	0,3	1,92	2,36	0,7	1,652	3,540	4,248		26,654
4	1,2	0,4	1,68	2,072	0,6	1,243	1,180	1,416		28,070
5	1,2	0,5	2	2,456	0,5	1,228	-0,892	-1,070		27,000
Э									60	87,000
6	1,2	0,6	2,88	3,512	0,4	1,405	-3,348	-4,018		82,982
7	1,2	0,7	4,32	5,24	0,3	1,572	-6,860	-8,232		74,750
8	1,2	0,8	6,32	7,64	0,2	1,528	-12,100	-14,520		60,230
9	1,2	0,9	8,88	10,712	0,1	1,071	-19,740	-23,688		36,542
10	1,2	1	12	6,548	0	0	-30,452	-36,542		0
			$\sum P_m =$	= 52	$A_P =$	20	-37	=B		

Ekvivalentno statičko opterećenje sa reakcijama i dijagramima presečnih sila

Linear Analysis
Code : Eurocode
Case : ST1
E(W) : 1,72E-13
E(P) : 1,72E-13
E(Eq) : 3,46E-13
Comp. : Rz [kN] -15,000 -37,000 Linear Analysis
Code : Eurocode
Case : ST1
E(W) : 1,72E-13
E(P) : 1,72E-13
E(Eq) : 3,46E-13
Comp. : Vz[kN] 37.000 098'9 0,892 098'9--11,812 Linear Analysis Code : Eurocode
Case : ST1
E(W) : 1,72E-13 E (P) : 1,72E-13 E (Eq) : 3,46E-13 Comp. : My [kNm] -14,174 -12,406 -22,406 -26,654 -26,654 -28,070 -28,070 -27,000 -87,000 -82,982 -82,982 -74,750 -60,230 -60,230 -36,542 -36,542