Solution:To construct the truth table for a compound proposition, we work from the inside out. In each case, we will show the intermediate steps. In part (d), for example, we first construct the truth table for $p \lor q$, then the truth table for $p \lor q$, and finally combine them to get the truth table for $p \lor q$. For parts (a) and (b) we have the following table (column three for part (a), column four for part (b)).

For part (c) we have the following table.

p	q	~q	p v ∼q	$(p \vee ^{\sim}q) \rightarrow q$
Т	Т	F	Т	Т
Т	F	Т	Т	F
F	Т	F	F	T
F	F	Т	Т	F

For part (d) we have the following table.

Р	q	pVq	p∧q	$(p \lor q) \rightarrow (p \land q)$
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т

For part (e) we have the following table. This time we have omitted the column explicitly showing the negations of p and q. Note that this true proposition is telling us that a conditional statement and its contrapositive always have the same truth value.

р	q	$p \rightarrow q$	~q → ~P	$(p \rightarrow q) \leftarrow \rightarrow (^q \rightarrow ^p)$
Т	Т	T	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

For part (f) we have the following table. The fact that this proposition is not always true tells us that knowing a conditional statement in one direction does not tell us that the conditional statement is true in the other direction.

р	q	$p \rightarrow q$	q ∕ p	$(p \rightarrow q) \rightarrow (q \rightarrow p)$
Т	Т	T	T	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т