CONSTRUCTION PARASISMIQUE

Tipe 2021-2022

PLAN: CONSTRUCTION MODELISATION PARASISMIQUE: THEORIQUE DES INTRODUCTION Définition et principe **MOUVEMENTS** Types de solutions D'UNE STRUCTURE adoptées **SOUMISE A UN** • L'amortisseur à masse SEISME accordée **PHENOMENE SISMIQUE:** Causes et origines Caractéristiques **MODELISATION CONCLUSION** Ondes sismiques **EXPERIMENTALE**

I-INTRODUCTION:

Fig 1.1

Séisme d'HAITI: 12 Janvier 2010 23 000 MORTS Magnitude: 7,3

Fig 1.2 Séisme d'**AGADIR AU MAROC**:

29 Février 1960 **12 000** MORTS **Magnitude**: 5,7

Fig 1.3

Séisme de TOKYO AU JAPON:

1^{er} Septembre **100 000** MORTS **Magnitude**: 8,2

Le territoire marocain est soumis à une activité sismique appréciable due à l'interaction entre les plaques tectoniques africaine et eurasienne

Fig1.4: Sismicité historique et instrumentale du Royaume du Maroc et des régions voisines [1]

II-PHENOMENE SISMIQUE:

II-PHENOMENE SISMIQUE:

Un séisme est caractérisé par:

- Foyer ou hypocentre
- Epicentre
- Magnitude mesurée sur l'échelle de Richter
- Intensité

II-PHENOMENE SISMIQUE:

III-MODELISATION THEORIQUE DES MOUVEMENTS D'UNE STRUCTURE SOUMISE A UN SEISME

Fig 3 : comportement du bâtiment suite à une force sismique

Bilan des forces:

F1(t) = -ku(t): force de rappel du ressort

F2(t) = -c u'(t): résistance de l'amortisseur

p(t):force extérieure imposée

D'après la 2ème loi de Newton:

$$\ddot{u} + \frac{c}{m}\dot{u} + w^2u = \frac{1}{m}p(t)$$
 [2]

k: la raideur du système(N/m)

m:la masse du système(kg) c: coefficient d'amortissement (N.s/m)

u le déplacement de la masse par rapport à la position d'équilibre

ii sa vitesse

ü son accélération

Oscillateur forcé

$$d(t) = u(t) + d_g(t)$$

D'après la **2**^{ème} **loi de Newton à la masse m**:

$$m u''(t) + c u'(t) + ku(t) = -m d_g''(t)$$

Avec:

dg(t): déplacement du sol au point A variable dans le temps

u(t): le déplacement de la masse par rapport à la position d'équilibre

IV-EXPERIENCE

Maquette représentant la

réponse suite à une vibration des

bâtiments de : Largeur: 10 cm Longueur: 15 cm

Hauteur: 40cm pour la 1ère

20cm pour la 2ème

Matériaux : bois

La fréquence propre du bâtiment dépend de sa hauteur

IV-EXPERIENCE

Maquette représentant la réponse suite à une vibration

des bâtiments de:

Largeur: 10 cm Longueur: 15 cm Hauteur: 20 cm

Matériau : bois

Masse: 80 g pour la 1^{ère}

110 g pour la 2^{ème}

Plus la masse du bâtiment augmente plus sa vibration diminue

IV-EXPERIENCE

Maquette représentant la réponse des bâtiments suite à une vibration:

Largeur: 10 cm Longueur: 15 cm Hauteur:20 cm Matériau : bois

V-CONSTRUCTION PARASISMIQUE

Fig 5.1:Qasr Al-Bint de Pétra

La construction parasismique (ou antisismique): regroupe l'étude du comportement des bâtiments et structures sujets à un changement dynamique du type sismique et la réalisation de bâtiments et infrastructures résistant aux séismes.

Fig 5.2: Pagode de Sakyamuni du temple Fogong

5.1/-Isolation parasismique

Isolation parasismique - Schéma

Schéma modélisant l'isolation d'une structure

Il s'agit d'introduire un système en interface entre la construction et le sol susceptible de filtrer les oscillations sismiques d'où le terme d'isolation sismique

Il existe plusieurs **types d'isolateurs à** la base:

- > Appuis à déformations
- > Appuis à glissement
- > Appuis à roulement

5.2/- Amortisseurs parasismiques

L'amortissement est le principe d'absorbance d'énergie produite par une vibration d'un matériau

Il existe également plusieurs types d'amortisseurs dont on cite principalement:

- Amortisseurs à frottements
- Amortisseurs visqueux
- Amortisseurs magnétiques
- Amortisseurs à masse accordée

L'excitation du sol est définie par:

$$x_g(t) = x_0 \sin \overline{\omega} t$$

K	Raideur associée à la structure
k	Raideur associée au TMD
М	Masse de la structure
m	Masse du TMD
$x_1(t)$	Déplacement de la structure
$x_2(t)$	Déplacement du TMD

En appliquant la **2**^{ème} **loi de Newton** aux systèmes **{structure}** et **{TMD}** on obtient:

$$M\ddot{x}_1 + (K+k)x_1 - kx_2 = M\overline{\omega}^2 x_0 \sin\overline{\omega}t$$
 [3]
$$m\ddot{x}_2 + k(x_2 - x_1) = m\overline{\omega}^2 x_0 \sin\overline{\omega}t$$

$$x_1(t) = a_1 \sin \overline{\omega} t$$

$$x_2(t) = a_2 \sin \overline{\omega} t$$

En simplifiant on obtient:

$$a_1 \left(1 + \frac{k}{K} - \frac{\overline{\omega}^2}{\Omega_n^2} \right) - a_2 \frac{k}{K} = \frac{\overline{\omega}^2}{\Omega_n^2} x_0$$

$$-a_1 + a_2 \left(1 - \frac{\overline{\omega}^2}{\omega_a^2} \right) = \frac{\overline{\omega}^2}{\omega_a^2} x_0$$

$$\Omega_n^2 = \frac{K}{M}$$

Avec : $\Omega_n^2 = \frac{K}{M}$: Pulsation propre de la structure

$$\omega_a^2 = \frac{k}{m}$$
 : Pulsation propre du

Le résultat optimal du TMD est donné par la condition:

$$\frac{1}{\Omega_a^2} \left(1 - \frac{\overline{\omega}^2}{\omega_a^2} \right) + \frac{1}{\omega_a^2} \left(\frac{k}{K} \right) = 0$$

$$\omega_a = \frac{\overline{\omega}}{\sqrt{1 + \mu}}$$

$$\mu = m/M$$
Taux d'amortissement optimal
$$\xi = \frac{c}{2m\omega}$$

CONCLUSION

- > Ce n'est pas le séisme qui tue, ce sont les constructions
- Eviter toute cassure ou tout effondrement de la structure lié à un séisme
- L'efficacité du principe d'amortisseurs et d'isolation parasismique
- Les bonnes performances du TMD

MERCI POUR VOTRE ATTENTION

ANNEXE

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as sp
W=4
m = 100
C=0
psi=C/(2*m*w)
def F(z,t):
   return np.array([z[1],np.sin(w*t)/m-w**2*z[0]-2*psi*w*z[1]])
t=np.linspace(0,20,1000)
#conditions initiales:u(0)=0 et u'(0)=4000
sol=sp.odeint(F,[0,4000],t)
plt.plot(t,sol[:,0])
plt.title("oscillations libres non amorties")
plt.xlabel("t")
plt.ylabel("u(t)")
plt.show()
```

REMARQUE:

On reprend le même script pour la deuxième courbe puis on change la valeur de c: c=100

Références

- [1]:Les ouvrages d'art et le risque sismique : M.BOUCETTA
- [2]:https://orbi.uliege.be/bitstream/2268/61649/4 /Chapitre%202%20R%C3%A9ponse%20%C3%A9las tique.pdf
- [3]: Principles of passive supplementel damping and seismic isolation : C.CHRISTOPOULOS, A.FILIATRAULT