Introducción a la Criptografía Moderna Introducción "Básica" de Teoría de Números, Álgebra Abstracta, Aritmética de Cuerpos Finitos,

"Lo necesario para el curso"

Rodrigo Abarzúa[†],

[†] Universidad de Santiago de Chile rodrigo.abarzua@usach.cl

April 4, 2014

1 / 33

- Divisibilidad
- Máximo Común Divisor, GCD
- Aritmética Modular
- $oldsymbol{\Phi}$ Aritmética en \mathbb{Z}_n
- 5 Exponenciación Modular

Definición

- Si a y b son enteros, diremos que a divide a b (denotado por a | b) si existe un entero c tal que b=ac.
- Si no existe este c entonces a no divide a b (denotado por $a \nmid b$).
- ullet Si ullet divide a ullet entonces diremos que ullet es un divisor de ullet y que ullet es divisible por ullet a.

Lema

Suponga que a, b, c, x, y son enteros.

- **1** Si a|b y x|y entonces ax|by.
- 2 Si a|b y b|c entonces a|c.
- \bullet Si a|b y $b \neq 0$, entonces $|a| \leq |b|$.
- Si a|b y a|c entonces a|bx + cy.

Definición

Un entero positivo p > 1 es un número primo si y solo si los divisores de p son 1 y p. Si p no es primo, entonces se dice un número compuesto.

Teorema

Dados dos números enteros ${\bf a}$ y ${\bf b}$ con ${\bf b} {\neq 0}$, existe únicos enteros ${\bf q}$ y ${\bf r}$ tal que

$$a = bq + r$$
 y $0 \le r < |b|$

Observación

Recordar que el número ${\bf q}$ es el cuociente de ${\bf a}$ dividido por ${\bf b}$, y ${\bf r}$ es el resto.

Máximo Común Divisor, GCD

Definición

El máximo común divisor (GCD en inglés) de dos números \mathbf{a} y \mathbf{b} no ambos cero, es el entero más grande que divide ambos \mathbf{a} y \mathbf{b} . Denotaremos por $\gcd(a,b)$ como el máximo común divisor de \mathbf{a} y \mathbf{b} .

7 / 33

Máximo Común Divisor, GCD

Definición

Dos enteros \mathbf{a} y \mathbf{b} se dicen que son primos relativos o coprimos si el gcd(a,b)=1.

Lema

El máximo común divisor de dos enteros satisface las siguientes condiciones:

- gcd(a,b) = gcd(a-b,b).
- Si gcd(a, b) = d, entonces gcd(a/d, b/d) = 1

8 / 33

Algoritmo Euclideano

Teorema

Dados dos números enteros **a** y **b**, si a = bq + r, y $0 \le r < b$, entonces gcd(a,b) = gcd(b,r).

Algoritmo Euclideano para el cálculo de gcd(a, b)

Algorithm 1: gcd(a, b)

Input: Dos enteros no negativos a y b con $a \ge b$.

Output: El gcd(a, b).

- 1. While $b \neq 0$ do
- 2. $r \leftarrow a \mod b, a \leftarrow b, b \leftarrow r$.
- 3. End While
- 4. Return a

Observación

El Algoritmo anterior tiene complejidad $O((\lg(n))^2)$ operaciones de bit.

Algoritmo Euclideano

Ejemplo

Utilice el algoritmo Euclideano para calcular el gcd (4864, 3458)

$$4864 = 1 \cdot 3458 + 1406$$

$$3458 = 2 \cdot 1406 + 646$$

$$1406 = 2 \cdot 646 + 114$$

$$646 = 5 \cdot 114 + 76$$

$$114 = 1 \cdot 76 + 38$$

$$76=2\cdot 38+0.$$

Luego el gcd(4864, 3458) = 38

Algoritmo Euclideano Extendido

Teorema

Para dos enteros **a** y **b** existen **m** y **n** tal que ma + nb = gcd(a, b).

Algoritmo Euclideano Extendido

Algorithm 2: gcd(a, b) y enteros x e y tal que satisface ax + by = d.

Input: Dos enteros no negativos $a y b \operatorname{con} a \geq b$.

Output: d = gcd(a, b) y enteros $x \in y$ que satisfacen ax + by = d.

- 1. Si b = 0 entonces $d \leftarrow a, x \leftarrow 1, y \leftarrow 0$
- 2. Return(d, x, y).
- 3. $x_2 \leftarrow 1, x_1 \leftarrow 0, y_2 \leftarrow 0, y_1 \leftarrow 1.$
- 4. While b > 0 do
- 5. $q \leftarrow \lfloor a/b \rfloor$, $r \leftarrow a qb$, $x \leftarrow x_2 qx_1$, $y \leftarrow y_2 qy_1$.
- 6. $a \leftarrow b, b \leftarrow r, x_2 \leftarrow x_1, x_1 \leftarrow x, y_2 \leftarrow y_1, e y_1 \leftarrow y$.
- 7. End While
- 8. $d \leftarrow a, x \leftarrow x_2, y \leftarrow y_2$.
- 9. **Return**(d, x, y).

Observación

El Algoritmo anterior tiene complejidad $O((\lg(n))^2)$ operaciones de bit.

Ejercicios

Utilizar el algoritmo Euclideano extendido para calcular el gcd (4864, 3458) y x, y tal que

$$4864x + 3458y = gcd(4864, 3458)$$

Solución: El $gcd(4864, 3458) = 38 \ y(4864)(32) + (3458)(-45) = 38$

12 / 33

En esta sección presentaremos una pequeña introducción de la aritmética modular

Definición

Supongamos que a, b y m son enteros, se dice que a es congruente a b modulo m denotado como

$$a \equiv b \pmod{m}$$

si m divide a a-b. El entero m es llamada el modulo de la congruencia.

Ejemplo

Observar los siguientes ejemplos:

- Como 9 = 23 14, por la definición implica que 23 \equiv 14(mod9). De hecho, cualquiera de dos números de la siguiente lista $\{\ldots, -4, 5, 14, 23, \ldots\}$ son congruentes modulo 9.
- Claramente si $a \equiv b \pmod{m}$ es lo mismo que $a \equiv b \pmod{-m}$. Desde que solo se considera m un entero positivo.

Observación

La congruencia $a \equiv b \pmod{m}$ significa que ambos a y b tienen el mismo resto al dividirlos por m. En efecto, podemos escribir

$$a = q_1 m + r_1 \ y \ b = q_2 m + r_2$$

donde $r_1 = a \mod m \ y \ r_2 = b \mod m$.

Por lo tanto

$$a-b=q_1m+r_1-(q_2m+r_2)=(q_1-q_2)m+(r_1-r_2),$$

como r_1 y r_2 son menores que m, entonces $(r_1 - r_2)$ también.

Como $a \equiv b \pmod{m}$ entonces a - b = km para algún entero k entonces $r_1 - r_2 = 0$.

Observaciones

Cuando se utilice la notación

a mod m

(sin parentesis) sera para denotar el resto cuando a es dividido por m, es decir, r_1 en la observación de arriba. Si reemplazamos a por a mod m, diremos que a es reducido modulo m.

② Algunos lenguajes de programación definen a mod m como el resto en el rango $-m+1,\ldots,m-1$ teniendo el mismo signo de a. Por ejemplo, -18 mod 7 podría ser -4, pero también puede ser 3. En este curso siempre se definira a mod m como no-negativo.

Teorema

Para todo $a, a_1, b, b_1, c \in \mathbb{Z}$. Las siguientes propiedades se cumple:

- $a \equiv b \pmod{n}$ Si y solo si a y b tienen el mismo resto cuando se divide por n.
- $a \equiv a \pmod{n}$ (Reflexibidad).
- Si $a \equiv b \pmod{n}$ entonces $b \equiv a \pmod{n}$ (Simetria).
- Si $a \equiv b \pmod{n}$ y $b \equiv c \pmod{n}$ entonces $a \equiv c \pmod{n}$ (Transitividad).
- Si $a \equiv a_1 \pmod{n}$ $y \ b \equiv b_1 \pmod{n}$, entonces $a + b \equiv a_1 + b_1 \pmod{n}$ $y = ab \equiv a_1b_1 \pmod{n}$.

Ahora definiremos la aritmética modular o modulo $m: \mathbb{Z}_m$ se define como el conjunto $\{0,\ldots,m-1\}$, dotado de dos operaciones la adición + y la multiplicaón *. Estas operaciones sobre \mathbb{Z}_m operan exactamente como en los números reales, excepto que el resultado es reducido modulo m.

Ejemplo

Supongamos que calculamos 11*13 en \mathbb{Z}_{16} . Sabemos que 11*13=143, al reducirlo modulo 16 es decir, escribimos 143=8*16+15, entonces 143 mod 16=15, luego 11*13=15 en \mathbb{Z}_{16} .

18 / 33

Existe una manera para representar un grupo finito. Utilizando las tablas de Cayley.

Ejemplo

La tabla de Cayley para el grupo \mathbb{Z}_6 es:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

Adición en \mathbb{Z}_n

Sea n un entero positivo. Dado que $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Si dados $a, b \in \mathbb{Z}_n$, entonces

$$(a+b) \bmod n = egin{cases} (a+b) & ext{if } a+b < n, \ (a+b)-n & ext{if } a+b \geq n. \end{cases}$$

La definición de la adición y la multiplicación en \mathbb{Z}_m satisface algunas propiedades que presentaremos sin demostración:

- 1 La adición es *cerrada*, es decir, para todo $a, b \in \mathbb{Z}_m$, $a + b \in \mathbb{Z}_m$.
- 2 La adición es *conmutativa*, es decir, para todo $a,b\in\mathbb{Z}_m$, a+b=b+a.
- 3 La adición es *asociativa*, es decir, para todo $a, b, c \in \mathbb{Z}_m$, (a+b)+c=a+(b+c).
- 4 El neutro aditivo es el 0, es decir, para todo $a \in \mathbb{Z}_m$, a + 0 = 0 + a = a.
- 5 El *inverso aditivo* para algún $a \in \mathbb{Z}_m$ es m a, es decir, a + (m a) = (m a) + a = 0 para todo $a \in \mathbb{Z}_m$.

Multiplicación en \mathbb{Z}_n

Sea n un entero positivo. Si dados $a, b \in \mathbb{Z}_n$, entonces

$$(a*b) \bmod n = \begin{cases} (a*b) & \text{if } a+b < n, \\ (a*b) \bmod n & \text{if } a+b \ge n. \end{cases}$$

La definición de la adición y la multiplicación en \mathbb{Z}_m satisface algunas propiedades que presentaremos sin demostración:

- 6 La multiplicación es *cerrada* es decir, si a y $b \in \mathbb{Z}_m$, entonces $ab \in \mathbb{Z}_m$
- 7 La multiplicación es *conmutativa*, es decir, para cada $a,b\in\mathbb{Z}_m$ entonces ab=ba.
- 8 La multiplicación es asociativa, es decir, para cada $a,b,c\in\mathbb{Z}_m$ entonces (ab)c=a(bc)
- 9 La *identidad multiplicativa* es el 1, es decir, para cada $a \in \mathbb{Z}_m$ a*1=1*a=a.
- 10 La multiplicación es distributiva sobre la adición, es decir,

$$a, b, c \in \mathbb{Z}_m, (a + b)c = (ac) + (ab) y a(b + c) = (ab) + (ac)$$

Observaciones

Las propiedades:

- 1, 3-5 Se dice que \mathbb{Z}_m forma una estructura algebraica llamada grupo, con la operación adición del grupo. Si se cumple la propiedad $\mathbf{2}$ se dice que el grupo es conmutativo.
 - 1-10 Establecen que \mathbb{Z}_m es un anillo, algunos ejemplos de anillos de cardinalidad infinita son \mathbb{Z} , \mathbb{R} , \mathbb{C} . En criptografía se esta interesado en anillos finitos.

Observación

Como en \mathbb{Z}_m existe el inverso aditivo, entonces podemos restar o sustraer elementos en \mathbb{Z}_m . Se define $(a-b) \in \mathbb{Z}_m$ como a+m-b mod m. De manera equivalente podemos calcular el a-b y luego reducir modulo m.

Ejemplo

Calcular $11 - 18 \in \mathbb{Z}_{31}$, $11 + 13 \mod 31 = 24$.

Definición

Sea $\mathbf{a} \in \mathbb{Z}_n$. El inverso multiplicativo de \mathbf{a} modulo \mathbf{n} es un entero $x \in \mathbb{Z}_n$ tal que $ax \equiv 1 \pmod{n}$. Si este número existe, es único y diremos que \mathbf{a} es invertible o una unidad, el inverso de \mathbf{a} se denota por \mathbf{a}^{-1} .

Definición

Dados $a, b \in \mathbb{Z}_n$. La división de **a** por **b** modulo **n** es el producto de **a** y \mathbf{b}^{-1} modulo **n** y si y solo si **b** es invertible modulo **n**.

Teorema

Sea $a \in \mathbb{Z}_n$. Entonces a es invertible si y solo si gcd(a, n) = 1.

Observación

Recordemos que el algoritmo Euclideano extendido nos permite calcular el gcd(a, n) y p, q tal que

$$ap + nq = gcd(a, b).$$

Dado el teorema anterior si el gcd(a, n) = 1 entonces el inverso

$$a^{-1}(\bmod n)=p$$

Definición

El grupo multiplicativo de \mathbb{Z}_n es $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n | gcd(a, n) = 1\}$. En particular si \mathbf{n} es primo, entonces $\mathbb{Z}_n^* = \{a | 1 \le a \le n - 1\}$.

Ejemplo

Consideremos el cuerpo finito $GF(5) = \{0, 1, 2, 3, 4\}$ las siguientes tablas describen como sumar y multiplicar dos elementos

Observar que los inversos aditivos son: -0 = 0, -1 = 4, -2 = 3, -3 = 2, -4 = 1

Observar que los inversos multiplicativos son: 0^{-1} no existe, $1^{-1}=1$, $2^{-1}=3$, $3^{-1}=2$,

Un importante ejemplo de cuerpos primos es GF(2), que es el cuerpos finito mas pequeño que existe.

Ejemplo

Consideremos el cuerpo finito $GF(2)=\{0,1\}$. La aritmetica del cuerpo es:

Adición					
+	0	1			
0	0	1			
1	1	0			

Multiplicación					
*	0	1			
0	0	0			
1	0	1			

28 / 33

Calculo del inverso multiplicativo en \mathbb{Z}_n

Calculo del inverso multiplicativo en \mathbb{Z}_n

Algorithm 3: Dado $a \in \mathbb{Z}_n$ Calcula $a^{-1} \mod n$ si existe.

Input: $a \in \mathbb{Z}_n$.

Output: $a^{-1} \mod n$ si existe.

- 1. Use el algoritmo Euclideano extendido para encontrar los enteros x e y tal que ax + ny = d donde d = gcd(a, n).
- 2. If d > 1, them
- 3. $a^{-1} \mod n$ no existe.
- 3. **else**
- 4. Return x

Exponenciación Modular

El cálculo $a^k \mod n$, es decir, la exponenciación modular es un algoritmo crucial para varios protocolos criptograficos, el siguiente algoritmo hace uso de la siguiente observación.

Dado k en su representacón binaria $k=\sum_{i=0}^t k_i 2^i$, donde cada $k_i\in\{0,1\}$. Entonces

$$a^k = \prod_{i=0}^t a^{k_i 2^i} = (a^{2^0})^{k_0} (a^{2^1})^{k_1} \cdots (a^{2^t})^{k_t}$$
.

Exponenciación Modular

Algoritmo Cuadrados-y-Multiplicaciones para $a^k \mod n$

Algorithm 4: Exponenciación Modular

Input: $a \in \mathbb{Z}_n \text{ y } k \in \mathbb{Z}_n \text{ con } 0 \le k < n \text{ y } k = \sum_{i=0}^t k_i 2^i$.

Output: El $a^k \mod n$.

- 1. $b \leftarrow 1$.
- 2. **If** k = 0 **do**
- 3. Return b.
- 4. $A \leftarrow a$.
- 5. For i from 1 to t do
- 6. $A \leftarrow A^2 \mod n$.
- 7. If $k_i = 1$ then
- 8. $b \leftarrow A \cdot b \mod n$.
- 4. Return b

Exponenciación Modular

Ejemplo

Utilizando el algoritmo anterior 5⁵⁹⁶ mod 1234 = 1013

Complejidad de operaciones en \mathbb{Z}_n

Operación		Complejidad bit
Adición Modular	$(a+b) \mod n$	O(lg n)
Sustracción Modular	$(a-b) \mod n$	$O(\lg n)$
Multiplicación Modular	$(a \cdot b) \mod n$	$O((\lg n)^2)$
Inversión Modular	$a^{-1} \mod n$	$O((\lg n)^2)$
Exponenciación Modular	$a^k \mod n, \ k < n$	$O((\lg n)^3)$