Optimization of CPU & GPU in Physics Engines

By: Justin Nguyen

TABLE OF CONTENTS PRODUCT OVERVIEW

TABLE OF CONTENTS

1	What are CPUs
2	What are GPUs
3	Physics Engines
4	Optimization
5	Effects on Games
6	Conclusion: The Future
7	Thank You

What are CPUs?

- A CPU (Central Processing Unit) is the primary component of a computer that performs most of the processing.
- The CPU executes instructions from software and applications, processes data, runs applications, and manage system operations.
- Every action you perform on a computer whether opening a file, browsing the web, or running software is processed by the CPU.
- Functions of a CPU
 - FETCH
 - DECODE
 - EXECUTE
 - STORE

What are GPUs?

- A GPU (Graphic Processing Unit) is a specialized processor designed to handle graphics rendering.
- Initially developed just for rendering images, videos, and animations, but now are widely used in applications like gaming, artificial intelligences, and scientific computations.
- Functions of a GPU
 - Rendering Graphics
 - Parallel Processing

 - Video Editing and Rendering
 Data Processing & Scientific Computing

Physics Engines

- Physic Engines are software component that simulates physical interactions in a virtual environment.
- Typically used in video games, simulations, animations, and scientific computing to create realistic movements, collisions, and forces.
- Physic Engines Task
 - Collision Detection & Response
 - **Rigid Body Dynamics**

 - Soft Body Dynamics
 Ragdoll Physics
 Fluid & Particle Simulation
 - Vehicle Physics

Optimization using CPUs and GPUs

- CPU Optimization is responsible for managing physics calculations, updating object states, and handling interactions.

 O Prioritize CPU power for rigid bodies (cars, walls) while delegating soft bodies (cloth, fluids) to the GPU.
- GPU Optimization is designed for massive parallelism, making it ideal for particle effects, fluid dynamics, and soft-body simulations.
 - Ideal for debris, explosions, cloth, smoke, and liquid simulations.
 - Often used in Al physics simulations and real time destruction

mechanics.

Effect on Gaming Industries

- Optimizing CPUs and GPUs in physics engines enhances the performance, realism, and scalability of video games.
- Efficient use of these processors allows for more complex physics simulations, smoother gameplay, and improved visual fidelity.
- Enhance Game Realism
 - Realistic Collisions & Interactions
 - Seamless Open Worlds
- Performance Improvement & Smooth Gameplay
 - Efficient Parallel Processing
 - Reduced Lag & Frame Drops

Conclusion: Potential Future

- CPU and GPU performance will play a crucial role in achieving more realistic simulations while maintaining high efficiency.
- Physics Learning will include AI models predicting physics behaviors, reducing the need for real time calculations.
- As hardware and software continue evolving, physics simulations will become more realistic, efficient, and scalable, pushing the boundaries of gaming, VR, AI training, and scientific modeling.

Sources

D. Both, "The central processing unit (CPU): Its components and functionality," *Red Hat Blog*, Jul. 2020 redhat.com

E. Sperling, "New Approaches For Processor Architectures," SemiEngineering, Aug. 2021 semiengineering.com

NVIDIA Blog, "CPU vs GPU: What's the Difference?" (K. Krewell, updated) blogs.nvidia.com

ASUS Tech Blog, "Discrete vs Integrated GPU – Which to Choose," Aug. 2023 asus.com

NVIDIA, Ampere GA102 GPU Architecture Whitepaper, 2020 nvidia.com

Wikipedia, "Physics engine – Definition and usage" en.wikipedia.org

SegaRetro, "Havok – physics engine used in 600+ games," 2013 segaretro.org

Wikipedia, "Hardware acceleration of physics (GPGPU)" en.wikipedia.org

M. Humphries, "Nvidia Announces PhysX 5.0," *PCMag*, Dec. 2019 pcmag.com

IndustryWeek, "Product Development 2025: Al and Simulation," Oct. 2023 industryweek.com

Genesis Engine (MIT/Columbia U.), "High-Performance GPU Physics for AI," Dec. 2022 genesis-embodied-ai.github.io

NVIDIA Developer (T. Harada et al.), *GPU Gems 3*, "Physics Simulation on GPUs," 2007 developer.nvidia.com

THANK YOU!