Week 5 Assignment

Sai Kumar Murarishetti Lewis ID: L30079224

- 1. On your own words, discuss (in less than one page) the differences between Multiple Regression Analysis and Multiple Discriminant Analysis.
 - Multiple Regression Analysis:
- It mainly used to model the relationship between single dependent variables and multiple independent variables.
- Used to Predict of single dependent value.
- It provides the information about the Strength and direction.
- It also determines how each explanatory factor affects the response factors.
- It also used to predict one variable from a combined knowledge of several other variables.
- It also known as Statistical Methods.
- Multiple Discriminant Analysis:
- It mainly used in objects classification into predefined groups based on variables predicted.
- It provides information on discriminant functions which are used in classification.
- It includes discriminant functional and canonical coefficients in discriminant analysis.
- For predicting the Single dependent values from the known independent variables.
- The analysis is quite sensitive to outliers and the small of group must be larger than the number of predictor variables.
- Multiple discriminant analysis also known as canonical variates analysis or canonical discriminant analysis.

- 2. For the data set associated with this homework (HBAT and HBAT_Test. Using X4 as the non-metric variable and (X6 up to X18) as the metric variables:
 - a. What does each variable represent? (go back to Week # 2)

Variable Type	Variable Description	
Non-Metric	Region	X4
Metric	Product Quality	Х6
Metric	E-commerec Activities /websites	X7
Metric	Technical Support	X8
Metric	Complaint Resolution	Х9
Metric	Advertising	X10
Metric	Product Line	X11
Metric	Sales force Image	X12
Metric	Competitive pricing	X13
Metric	Warranty & Claims	X14
Metric	New Products	X15
Metric	Ordering & Billing	X16
Metric	Price Flexibility	X17
Metric	Delivery Speed	X18

b. How many groups does X4 has?

2 Groups

- c. Apply linear discriminant analysis to the data (HBAT) and find:
 - The linear discriminant function for X4.

Variable	Label	0	1
Constant		-191.92135	-194.33409
x6	x6	8.32797	7.65248
x7	x7	4.20485	1.20101
x8	x8	-2.06370	-2.09852
x9	x9	-3.62428	-3.60295
x10	x10	-1.62571	-2.03642
x11	x11	58.68681	58.34999
x12	x12	1.69711	4.70052
x13	x13	3.64274	4.22872
x14	x14	13.54926	13.38761
x15	x15	0.00591	0.28730
x16	x16	-2.84573	-2.25264
x17	x17	62.42839	64.51335
x18	x18	-101.40047	-103.57123

• By applying the LDF to the training data (HBAT): How many observations were misclassified? What are they? Find the confusion matrix and the probability of (error)misclassification.

Training Data (HBAT)

1	0	d into x4	Classified	From x4	Obs
0.0612	0.9388		0	1	3
0.0001	0.9999		0	1	22
0.3398	0.6602		0	1	24
0.4227	0.5773		0	1	32
0.0606	0.9394		0	1	38
0.5510	0.4490		1	0	42
0.0604	0.9396		0	1	60
0.6639	0.3361		1	0	63
0.3424	0.6576		0	1	64
0.2971	0.7029	*	0	1	74
0.5166	0.4834		1	0	81
0.6830	0.3170	*	1	0	88
0.0655	0.9345		0	1	94

Finding the Confusion Matrix

Tota	1	0	From x4
100.00	10.26	35 89.74	0
100.00	52 85.25	9 14.75	1
100 100.00	56 56.00	44 44.00	Total
	0.61	0.39	Priors

• By applying the LDF to the test data (HBAT_Test): How many observations were misclassified? What are they? Find the confusion matrix and the probability of (error)misclassification.

Confusion matrix of (HBAT_Test)

