

APPLIED ECONOMETRICS I NOTES 4

NOVEMBER 11, 2024 UNIVERSITY OF NOTTINGHAM HAOLING WANG

Applied Econometrics notes 4

L11-L15

Table of Contents

Preface	3
L11 Functional form and interaction terms	4
The meaning of linear regression	4
The natural logarithm transformation	4
Note (S10)	5
Interpretation of coefficients	6
Example1	7
Example2-dependent variable (DV) is a percentage	8
Quadratic terms	9
Problem that should be noticed: multicollinearity in the model with quadratic term	10
Example	11
Functional form and model selection	12
Interaction terms	14
Q: Why do we need an interaction term?	14
Example1	
Example2	15
L12 Incorporating qualitative information in regression models	17

Binary/Dummy variables17	
Incorporating binary information in regression models18	
Example1 – one category18	
Example2- one category with multiple constant coefficients20	
Example3- multiple categories21	
Example4-Interactions involving dummy variables22	
Example5-Interactions involving dummy variables23	
Example6- sample pooled across the two times, Interactions involving dummy variables25	
Lecture 13 over-specification and under-specification26	
Example	
Lecture 15 The asymptotic properties of estimators29	
Consistency30	
Asymptotic distribution31	
The normality assumption32	
Lecture 16-17 Heteroscedasticity, Part I-II33	
Test for Homoscedasticity35The Breusch-Pagan test35The white test37	
Heteroscedasticity-consistent robust standard errors39	

Preface

This set of notes originates from my Applied Econometrics I module at UNNC. Rather than adding new material, I have reorganised the logical flow of the key points presented in the lecture slides. The module is closely linked to ECON1049 Mathematical Economics and Econometrics (SPR)—now renamed ECON1057 Introductory Econometrics—so many topics will already be familiar. If you find something related to statistics or econometrics, please go back to the lecture notes in ECON1049 (/ECON 1057). This will benefit to your memory and smooth your further study.

That said, the course should not be taken lightly. Its true value lies not in memorizing the slide-deck formulas, but in learning how to apply the statistical and econometric theory covered in Year 2 to real economic-data analysis. From a practical standpoint, I strongly recommend gaining proficiency in STATA, as intensive coding will return in Applied Econometrics II and even your final year dissertation.

Because I studied this module on exchange at UNUK, I also completed a piece of coursework. That assignment—requiring the direct application of PPT concepts, extensive STATA work, and a basic research framework—proved immensely beneficial. If you know classmates heading to UNUK, do not hesitate to ask for a look at their coursework. At UNNC, Applied Econometrics I is assessed solely by a final exam; therefore, if you are curious about econometrics or research methods, consider obtaining the UNUK coursework and experimenting with it yourself (perhaps over the summer, or even with GPT's guidance). Treat it as a scaffold for practicing real applications, but ultimately try to write the code on your own.

My guiding principle is to look beyond earning marks (though I know marks are important) for isolated knowledge points and instead ask whether each step you take builds the capabilities you will need next year or even in the future. Much like the Permanent Income Hypothesis in macroeconomics, cultivating a habit of extension and forward thinking will smooth your progression to the next stage, or if you learn repeated game in game theory, you will find out that the choices in each stage will be different depending on whether the game is one-stage or multi-stage (I think that sometimes, in real life, acting in player 1 or 2 in game theory is important, because they always have rational strategy).

This is the synthesized note 4, the last one. If you do not have the previous notes, please visiting the website: https://github.com/wang95483/notebook. And since this is just a synthesized lecture notes, its function is limited. So if you have any other ideas of how to learn this course, feel free to drop me an email first https://github.com/wang95483/notebook. And since this is just a synthesized lecture notes, its function is limited. So if you have any other ideas of how to learn this course, feel free to drop me an email first https://github.com/wang95483/notebook. And since this is just a synthesized lecture notes, its function is limited. So if you have any other ideas of how to learn this course, feel free to drop me an email first https://github.com/wang95483/mangenthia. and the previous notes, its function is limited. So if you have any other ideas of how to learn this course, feel free to drop me an email first https://github.com/wang95483/mangenthia. and the previous notes it was a synthesized lecture notes, its function is limited. So if you have any other ideas of how to learn this course, feel free to drop me an email first https://github.com/wang95483/mangenthia. and the previous notes it was a synthesized lecture notes it was a synthesized lecture notes. The previous notes it was a synthesized lecture notes it was a synthesized lecture notes. The previous notes it was a synthesized lecture notes it was a synthesized lecture notes. The previous notes it was a synthesized lecture notes it was a synthesized lec

Good luck with your Applied Econometric I study!

L11 Functional form and interaction terms

The meaning of linear regression

-linearity in variables	Cannot accommodate in OLS regression models is relationships that are non-linear in parameters.
non-linear function of other variables mple $= \ln(v) \qquad x_1 = \sqrt{w} \qquad x_2 = g^2 \qquad y = e^h$ ginal effects can be allowed to change within the same model.	$y = \beta_0 + \beta_1 x_1 + \beta_2^2 x_2 + \beta_1 \beta_2 x_3 + u$
mp = li gir ni	tole $x_1 = \sqrt{w}$ $x_2 = g^2$ $y = e^h$ and effects can be allowed to change tude and even sign.

The natural logarithm transformation

Definition

The natural logarithm transformation, denoted ln(y) or lny or log(y), is often used to introduce some non-linearity into regression models.

For small changes, the change in the natural log of a variable is approximately equal to the **proportional change** in that variable.

The formula below is a convenient way to calculate ε_y .

$$\varepsilon_y = \frac{\mathrm{d} \ln y}{\mathrm{d} \ln x}.$$

This is due to the chain rule and inverse function rule.

$$\frac{\mathrm{d} \ln y}{\mathrm{d} \ln x} \stackrel{\mathrm{chain \, rule}}{=} \frac{\mathrm{d} \ln y}{\mathrm{d} y} \frac{\mathrm{d} y}{\mathrm{d} x} \frac{\mathrm{d} x}{\mathrm{d} \ln x} \stackrel{\mathrm{inverse \, function \, rule}}{=} \frac{1}{y} \frac{\mathrm{d} y}{\mathrm{d} x} \frac{1}{\frac{\mathrm{d} \ln x}{\mathrm{d} x}} \stackrel{\mathrm{In \, rule}}{=} \frac{1}{y} \frac{\mathrm{d} y}{\mathrm{d} x} \frac{1}{\frac{1}{x}}.$$

$$\lim_{\Delta x \to 0} \left(\frac{\Delta y}{y}\right) \bigg/ \left(\frac{\Delta x}{x}\right) = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x}\right) \bigg/ \left(\frac{y}{x}\right) = \frac{\mathrm{d}y}{\mathrm{d}x} \bigg/ \left(\frac{y}{x}\right) \equiv \varepsilon_y.$$

So it is particularly useful when we want to measure relative (or percentage) changes.

$$y = \beta_0 x_1^{\beta_1}$$

the marginal effect (slope) of $x1$ varies with $x1$.	$ln(y) = ln(\beta_0) + \beta_1 ln(x_1)$
We cannot estimate this directly using OLS.	linear and can be estimated using OLS.
	$\beta_1 = \frac{\Delta \ln(y)}{\Delta \ln(x)} \approx \frac{\Delta y/y}{\Delta x/x}$ the elasticity of y with respect to x
$y \uparrow$ x_1	$\ln(y)$ $\ln(x_1)$

Note (S10)

Applying logs allows marginal effects to change magnitude but	Not all variables can be logged	It is not always useful to log a variable	percentage change vs change	percentage point
not sign.	Variables with observations that take	Variables that are already measured in	percentage change	percentage point
	zero or negative values.	proportion or percent.		change
			a change relative to	a change in a
			the initial value	percentage
			<u>Example</u>	
			If 24% of 18 year olds v	went to university in
			2014 and 30% went in	2015.
			(30-24)/24=25%	6 percentage points

Interpretation of coefficients

Model type	Equation	$oldsymbol{eta_1}$	Interpretation
Linear (level-level)	$y = \beta_0 + \beta_1 x$	$\beta_1 = \frac{\Delta y}{\Delta x}$	Linear, eta_1 is the change in y resulting from a unit change in x
Logarithmic (log-log)	$\ln(y) = \beta_0 + \beta_1 \ln(x)$	$\beta_1 = \frac{\Delta \ln(y)}{\Delta \ln(x)}$	Elasticity, eta_1 is the % change in y that results from a 1% change in x
Semi-logarithmic (log-level)	$\ln(y) = \beta_0 + \beta_1 x$	$\beta_1 = \frac{\Delta \ln(y)}{\Delta x}$	$eta_1 imes 100$ is the % change in y resulting from a unit change in x
Semi-logarithmic (level-log)	$y = \beta_0 + \beta_1 \ln(x)$	$\beta_1 = \frac{\Delta y}{\Delta \ln(x)}$	$eta_1 \div 100$ is the change in y resulting from a 1% change in x

Example1

Some researchers were interested in the effect of air pollution on house prices, so, they formulated the following econometric model:

$$\ln price = \beta_0 + \beta_1 \ln(nox) + \beta_2 rooms + u$$

price	average house price in a neighbourhood
nox	amount of nitrogen oxide in the air in the neighbourhood
rooms	average number of rooms in houses within the neighbourhood

$eta_1 = rac{\partial ln(price)}{\partial ln(nox)} pprox rac{rac{\Delta price}{price}}{rac{\Delta nox}{nox}}$	eta_1 is the elasticity of $price$ w.r.t. air pollution	Ceteris paribus, a 1% increase in nitrogen oxide changes house prices by $\beta_1\%$ (holding house size fixed).
$\beta_2 = \frac{\partial \ln(\text{price})}{\partial \text{rooms}}$	β 2(×100) is the semi-elasticity of <i>price</i> w.r.t. house size	$\beta 2 \times 100$ is the percentage change in <i>price</i> that results from a house having one extra room ($\Delta rooms = 1$) (holding pollution fixed).

$$ln(\widehat{price}) = 9.23 - 0.718 \ln nox + 0.306 rooms$$

Coefficient	Interpretation		
$\beta_0 = 9.23$	n log regressions the constant term typically has no useful interpretation.		
	The constant is the predicted value of $ln(price)$ when $ln(nox)$ and $rooms$ are zero		
$\beta_1 = -0.718$	When nox increases by 1%, price falls by $(\widehat{\beta_1})$ 0.718% (holding house size fixed). This is the house price elasticity wrt pollution.		
$\beta_2 = 0.306$	When house size increases by one room, price increases by $(\widehat{\beta}_2 \times 100)$ 30.6%, (holding pollution fixed). This is the house price		
	semi-elasticity wrt house size.		

Example2-dependent variable (DV) is a percentage

 $maths = \beta_0 + \beta_1 flunch + \beta_2 ptratio + \beta_3 expppup + \beta_4 avgtsal + \beta_5 enrol + \beta_6 grant + u$

maths	the percentage of pupils achieving a satisfactory mark in GCSE maths		
flunch	the percentage of pupils who are eligible to free school lunches	β1	Ceteris paribus, a percentage point increase in the proportion of pupils eligible for free school lunches causes a β_1 percentage point increase in the proportion of pupils who achieve a satisfactory mark in GCSE maths.
ptratio	the number of pupils per teacher	$ \beta_2 = \frac{\partial maths}{\partial \text{ptratio}} $	Ceteris paribus, one more pupil per teacher causes a β_2 percentage point increase in the proportion of pupils who achieve a satisfactory mark in GCSE maths.
ехрррир	expenditure per pupil per year, excluding teacher salaries, in thousands of pounds		
avgtsal	the average teacher's annual salary in thousands of pounds	$ \beta_4 = \frac{\partial maths}{\partial \text{avgtsal}} $	Ceteris paribus, a £1,000 increase in the average teacher's salary causes a β_4 percentage point increase in the proportion of pupils who achieve a satisfactory mark in GCSE maths.
enrol	the total number of pupils in the school		
grant	grant income per year received from charities and private sponsors		
и	the error term		

Quadratic terms

Introducing quadratic terms allows:
Marginal effects to change magnitude and sign.

Models to accommodate non-linearity in relationships involving variables with observations that **take zero or negative values**.

Model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x + \widehat{\beta_2} x^2$$

Marginal effect (slope) of x on y now depends on the value of x:

$$\frac{\Delta \widehat{y}}{\Delta x} = \widehat{\beta_1} + 2\widehat{\beta_2}x$$

Problem that should be noticed: multicollinearity in the model with quadratic term

For instance:

Exper = number of years as a professional player in the NBA

Expersq = the square of exper

exper and expersq are not independent:

expersq is the square of exper, so they are mathematically related.

This relationship likely **introduces a high correlation** between these variables.

Multicollinearity can make the coefficients of *exper* and *expersq* unstable, leading to:

Large standard errors $(se(\hat{\beta}))$ for their coefficients.

Difficulty in determining the individual contribution of each variable.

Example

In many empirical applications $\beta 1 > 0$ and $\beta 2 < 0$, implying an inverted u-shaped relationship.

The relationship between wages and experience:

$$\widehat{wage} = 3.73 + 0.298exper - 0.0061exper^2$$
(0.35) (0.041) (0.0009) (s.e.)

The relationship is inverted u-shaped because the coefficient on exper is positive and the coefficient on $exper^2$ is negative. The negative coefficient on the quadratic term captures the diminishing effect of experience on wages.

 $\frac{\Delta \widehat{wage}}{\Delta exper} = 0.298 - (2 \times 0.0061 \times exper)$ The marginal effect of each additional year of experience depends on experience:

wage is at its maximum when:

$$exper^* = \left| \frac{\widehat{\beta}_1}{2\widehat{\beta}_2} \right| = \left| \frac{0.298}{2 \times 0.0061} \right| = 24.4 \text{ years}$$

exper = 0	The effect of an additional year of experience on wage is \$0.298.
exper = 1	The effect of an additional year of experience on wage is $0.298 - 2 \times 0.0061 \times 1 = \0.286 .
<i>exper</i> = 10	The effect of an additional year of experience on wage is $0.298 - 2 \times 0.0061 \times 10 = \0.176 .

Functional form and model selection

The linear model is nested within the quadratic model.

A t test of H_0 : β_2 = 0, the model is linear, can be used to select the functional form.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

If $\beta_2 = 0$ then $y = \beta_0 + \beta_1 x + u$

All other things equal, we would prefer the model that captures the non-linearity best

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

$$y = \alpha_0 + \alpha_1 \ln(x) + e$$

Non-nested and do not contain any of the same explanatory variables.

Use $\overline{R^2}$ to select the preferred model since they have the same dependent variable.

Coefficient of correlation R²

Definition

A measure of model performance or 'fit'

The ratio of the explained variation to total variation.

The fraction of the sample variation in y that is explained by x.

A higher \mathbb{R}^2 indicates a better 'fit' of the model to the data.

Properties

 R^2 encompasses the **co-linearity of the regressors**; we cannot attribute this part of the variation in y to either x_1 alone or x_2 alone, but we can attribute it to them both and, hence, to the model.

 R^2 can be used to compare rival models as long as they have the **same dependent variable.**

Formula

Adjustment $\overline{R^2}$

$$\overline{R^2} = 1 - \left[(1 - R^2) \times \frac{n-1}{n-k-1} \right]$$

Properties

- (1) For any given model, $\overline{R^2} < R^2$.
- (2) As k increases, the size of the adjustment increases.
- (3) $\overline{R^2}$ is often used to **compare** the fit of rival models with **different** k.

Interaction terms

Definition

The effect of an explanatory variable, x_1 , on the dependent variable, y, depends on the value of another explanatory variable x_2 .

Q: Why do we need an interaction term?

A: Marginal effect of a factor is variable conditional on another factor.

Example1

Theory: in demand theory, consumer responsiveness to price (price elasticity) depends on income level.

- (1) At low incomes, consumers are price conscious and ceteris paribus, exhibit price elastic demand (elasticity of demand is high).
- (2) At high incomes, consumers are indifferent to prices, exhibit price inelastic demand (demand elasticity is low).

Model

$$ln(q) = \beta_0 + \beta_1 ln(p) + \beta_2 ln(inc) + \beta_3 ln(p) \times ln(inc) + \mu$$

q	demand
р	price
inc	income
u	error or disturbance term

Price elasticity =
$$\frac{\Delta \log(q)}{\Delta \log(p)} = \beta_1 + \beta_3 \log(inc)$$

Example2

 $price = \beta_0 + \beta_1 sqrft + \beta_2 bdrms + \beta_3 sqrft \times bdrms + \beta_4 bthrms + u$

price	House price
sqrft	Floor area of house
bdrms	Number of bedrooms
bthrms	Number of bathrooms
и	Error or disturbance term

Terms	Relationship between Terms and Coefficient	Interpretation		
bdrms	$\frac{\Delta price}{\Delta bdrms} = \beta_2 + \beta_3 \text{sqrft}$	the marginal effect of another bedroom is a function of house size	eta_3 = 0 eta_2 is now the constant marginal effect of number bedroom in a house with floor area = 0 can be set up as a null hypothesis and a t test undertaken Effect of bedrooms on price must be evaluated at meaningful values of $sqrft$ such as the mean.	
interaction term sqrft × bdrms	β_3	The marginal effect of the number of bedrooms $(bdrms)$ on house price $(price)$ depends on the size of the house $(sqrft)$ \Leftrightarrow for interaction term $sqrft \times bdrms$	$\beta_3 \neq 0$ If $\beta_3 > 0$ an extra bedroom adds more to the value of a large house compared to a small house.	
bthrms	$\beta 4 = \frac{\Delta price}{\Delta bthrms}$	the marginal effect of another bathroom		

We ca rewrite the model as:

$$price = \beta_0 + \beta_1 sqrft + (\beta_2 + \beta_3 sqrft) \times bdrms + \beta_4 bthrms + u$$

NOTE Many different types of **non-linear relationship** can be accommodated within the Classical Linear Model.

Assumption MLR1	linear in parameters
Assumption MLR2	random sampling
Assumption MLR3	no perfect collinearity (形容的是 variable 之间的,不是 variable 和 y 之间的)
Assumption MLR4	zero conditional mean
Assumption MLR5	homoscedasticity
Assumption MLR6	Normality of u

L12 Incorporating qualitative information in regression models

Binary/Dummy variables

Definition

When the qualitative information we are interested in takes an **either-or form**, i.e., each of our observations falls in **one of two categories**, then the qualitative information can be captured using a binary variable, i.e., a variable that equals either 0 or 1.

Binary variables are usually referred to as dummy variables, sometimes they are referred to as indicator variables.

Example

a power station is either coal fired or not coal fired

a university is either in the Russell Group or not

a person either owns a smart phone or does not own a smart phone

a country either has a coast or does not have a coast

Incorporating binary information in regression models

Example1 – one category

Question The gender wage gap and, specifically, in whether male and female wages differ even when education is held constant.

Model

$$wage = \beta_0 + \delta_1 female + \beta_1 educ + u$$

wage	hourly wage in \$
female	= 1 if individual female
	= 0 if individual male
	male is our base group/benchmark group/basis for comparison
educ	education in years
u	error or disturbance term

NOTE Two dummies female and male would be **redundant** and are **perfectly colinear**, so a model including both violates MLR3: No perfect collinearity. Including both is referred to as falling into the **dummy variable trap.**

要想好怎么设置 dummy variable 就把所有的 categories 全部算进去。

male	female = 0	$wage = \beta_0 + \beta_1 educ + u$
female	female = 1	$wage = (\beta_0 + \delta_1) + \beta_1 educ + u$

 $\delta_1 = E \text{ (wage|female = 1, educ)} - E \text{ (wage|female = 0, educ)}$

Example2- one category with multiple constant coefficients

Question Do male and female wages differ even when education, experience, and tenure with current employer are held constant?

Model1

$$wage = \beta_0 + \delta_1 \ female + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ tenure + u$$

$$wage = -1.57 - 1.81 female + .572 educ + .025 exper + .141 tenure$$

$$(.72) \ (.26) \ (.049) \ (.012) \ (.021) \ s. e.$$

$$n = 526, \quad R^2 = .364$$
 Do male and female wages differ?
$$wage = \beta_0 + \delta_1 \ female + e$$

$$wage = 7.10 - 2.51 female$$

$$(.72) \ (.26) \ s. e.$$

n = 526, $R^2 = .116$

Model2 Apply the **natural log transformation** to our dependent variable, our interpretation of δ_1 , the coefficient on female, has to change accordingly.

$$\ln(wage) = \beta_0 + \delta_1 \ female + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ tenure + \varepsilon$$

 $\ln(wage) = .50 - .301 female + .087 educ + .005 exper + .017 tenure$

 δ_{1} = -0.301 Ceteris paribus, women earn approximately 30% less than men per hour.

Example3- multiple categories

Question

The effect of gender on earnings, we are interested in the effect of marriage on earnings and whether that effect differs between women and men.

Model

$$ln(wage) = \beta_0 + \delta_1 marmale + \delta_2 singfem + \delta_3 marfem + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$$

Category

	Male	Female
Married	marmale = 1	marfem = 1
Single	marmale = singfem = marfem =0	singfem = 1

marmale = 1	the individual is male and married	$ln(wage) = \beta_0 + \delta_1 marmale + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$
singfem = 1	the individual is female and unmarried	$ln(wage) = \beta_0 + \frac{\delta_2 singfem}{\delta_2 singfem} + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$
marfem = 1	the individual is female and married	$ln(wage) = \beta_0 + \frac{\delta_3 marfem}{\delta_3 marfem} + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$
marmale = singfem = marfem =0	single male	$ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$

ln(wage) = .388 + .292marmale -.097singfem -.120marfem + $\beta_1 educ$ + $\beta_2 exper$ + $\beta_3 tenure$ + ϵ

marmale = 1	the individual is male and married	ln (wage) = .388 + .292 $marmale$ + $\beta_1 educ$ + $\beta_2 exper$ + $\beta_3 tenure$ + ϵ	Ceteris paribus, married men earn approximately 29% more than single men.
singfem = 1	the individual is female and unmarried	ln (wage) = .388 097$singfem + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$	Ceteris paribus, single women earn approximately 10% less than single men.
marfem = 1	the individual is female and married	ln (wage) = .388 – .120marfem + β_1 educ + β_2 exper + β_3 tenure + ϵ	Ceteris paribus, married women earn approximately 12% less than single men.
singfem = 1	the individual is female and unmarried	$ln(wage) = .388097 singfem120 marfem + \beta_1 educ +$	Ceteris paribus, married women earn approximately
marfem = 1	the individual is female and married	$\beta_2 exper + \beta_3 tenure + \epsilon$	2% less than single women. 120-(097)=023

Example4-Interactions involving dummy variables

Model

 $ln(wage) = \beta_0 + \delta_1 female + \delta_2 married + \delta_3 female * married + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$

Category

	Male	Female
Married	married=1	female=1, female * married =
		1, married=1
Single	female = married = female * married = 0	female=1

married=1	the individual is male and married	$ln(wage) = \beta_0 + \delta_2 married + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$
female=1, female * married =	the individual is female and married	$ln(wage) = \beta_0 + \delta_1 female + \delta_2 married + \delta_3 female * married + \beta_1 educ + \beta_2 exper +$
1, married=1		eta_3 tenure + $arepsilon$
female=1	the individual is female and single	$ln(wage) = \beta_0 + \delta_1 female + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$
marmale = singfem = marfem	Single male	$ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$
=0		

 $ln\left(wage\right) = .388 - .097 female + .292 married - .316 female * married + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$

married=1	the individual is male and married	ln (wage) = .388 + .292married + β_1 educ + β_2 exper + β_3 tenure + ϵ	Ceteris paribus, married men earn approximately 29 % more than single men.
female=1	the individual is female and single	In (wage) = .388097 female + β_1 educ + β_2 exper + β_3 tenure + ϵ	Ceteris paribus, single women earn approximately 10 % less than single men.
female=1, female * married = 1, married=1 female=1	the individual is female and married the individual is female and single	wage) = .388 + .292 $married316female * married+\beta1educ + \beta2exper + \beta3tenure + \epsilon$	Ceteris paribus, married women earn approximately 2% less than single women316+.292 female * married 中排除 married 的影响

NOTE

Using interactions involving dummy variables, we can also investigate differences in the **slopes** of relationships between categories.

Example5-Interactions involving dummy variables

Model

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \delta_0 female + \delta_1 female * educ + \delta_2 female * exper + \delta_3 female * tenure + \varepsilon$$

Male	female = 0	$wage = \beta 0 + \beta 1 educ + \beta 2 exper + \beta 3 tenure + \varepsilon$
Female	female = 1	$wage = (\beta_0 + \delta_0) + (\beta_1 + \delta_1)educ + (\beta_2 + \delta_2)exper + (\beta_3 + \delta_3)tenure + \varepsilon$

Question1

Whether the marginal effects of education, experience and tenure are the same for married men and married women

$$wage = -2.81 + .69educ + .03exper + .17tenure + 3.38female - .36female * educ - .03female * exper - .17female * tenure + .03exper + .03exper$$

Male	female = 0	wage = -2.81 + .69educ + .03exper + .17tenure	for married men, one more year of education increases the hourly wage by 69 cents
			for married men, one more year of tenure increases the hourly wage by 17 cents
Female	female = 1	wage =(3.38 -2.81) + (.69 36) educ + (.03 03)	for married women, one more year of education increases the hourly wage by 33
		exper + (.17 17) tenure	cents+
			for married women, one more year of tenure does not increase the hourly wage

Question2

Is the regression function for wages the same for men and for women or is it different for men and for women?

Null Hypothesis

$$H_0$$
: $\delta_0 = 0$, $\delta_1 = 0$, $\delta_2 = 0$, $\delta_3 = 0$

F test

Restricted model

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \varepsilon$$

Unrestricted model

 $wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \delta_0 female + \delta_1 female * educ + \delta_2 female * exper + \delta_3 female * tenure + \varepsilon$

→ Chow test

Definition

A statistical test used to determine whether the coefficients in two different linear regressions on different data sets are equal.

[Comparing Groups] To test if different groups (like males vs. females, different regions, or different economic periods) have the same regression relationship between dependent and independent variables.

Example 6- sample pooled across the two times, Interactions involving dummy variables

Question a country has **introduced new legislation** aimed at reducing the gender wage gap, investigating whether the legislation has been effective. 时间点不同,进行前后效果反差的对比

Model

$$wage = \beta_0 + \delta_0 Y_2 + \delta_1 female + \delta_2 Y_2 * female + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u$$

Y ₂ =0	Sample 1	collected a month before	$wage = \beta_0 + \delta_1 female + \beta_1 educ + \beta_2 exper +$	
	observations	the legislation took effect	eta_3 tenure + u	
Y ₂ =1	Sample 2	collected 12 months	$wage = (\beta_0 + \delta_0) + (\delta_1 + \delta_2) female + \beta_1 educ$	ceteris paribus, $\delta_1 + \delta_2$ = the gender wage gap after the
	observations	later	$+\beta_2 exper + \beta_3 tenure + u$	change in legislation
				δ_2 = the change in the, ceteris paribus, gender wage
				gap owing to the change in legislation

Lecture 13 over-specification and under-specification

Mis-specified \rightarrow OLS estimators may not be unbased and efficient.

	Over-specification		Under-specification			
Definition			Important regressors omitted from the model			
True model	$y = \beta_0 + \beta_1 x_1 + u$		$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$			
Our Model	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$		$y = \beta_0 + \beta_1 x_1 + u$			
0.0		$+\widehat{\beta_1}x_1+\widehat{\beta_2}x_2$		$y = \widehat{\beta_0} + \widehat{\beta_1} x_1$		
But inefficient		$E\left[\widehat{\beta_1}\right] = \beta_1$ (I) Biased if x 1 and x 2 are correlated. $E\left[\widehat{\beta_1}\right] = \beta_1 + \beta_2 \frac{cov}{vo}$ uce estimates that are imprecise. Omitted variable bias = $\beta_2 \frac{cov(x_1, x_2)}{var(x_1)}$		$= \beta_1 + \beta_2 \frac{cov(x)}{var}$	$\frac{x_1, x_2)}{r(x_1)}$	
	$\frac{\sum_{\substack{i \in \mathcal{S} \\ \text{model correctly specified}}}{\sum_{\substack{i \in \mathcal{S} \\ \text{model over-specified}}}}$		(II) Unbiased if $x1$ and $x2$ are uncorrelated. $E\left[\widehat{\beta_1}\right] = \beta_1 \text{ since } cov(x_1, x_2) = 0$ Sign of the bias $\beta_2 \frac{cov(x_1, x_2)}{var(x_1)}$ (1) Sign of β_2 , the effect of x_2 on y in the population model (correct specification). (2) $cov(x_1, x_2)$ Sign of correlation between x_1 and x_2 .			
		_	and x_2 ely correlated	x_1 and x_2 negatively correlated		
		$\beta_2 > 0$ Pos	itive bias	Negative bias		
			$\beta_2 < 0$ Neg	ative bias	Positive bias	
	The correct specification	Over-specification	The correct specification	Under-	specification	

Standard error $se(\widehat{\beta_1})$	$se(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma^2}}{\sum_{i=1}^n (x_{i1} - \overline{x_1})^2}}$	$se(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma^2}}{\sum_{i=1}^n (x_{i1} - \overline{x_1})^2 (1 - R_1^2)}}$	$se(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma^2}}{\sum_{i=1}^n (x_{i1} - \overline{x_1})^2 (1 - R_1^2)}}$	$se(\widehat{\beta_1}) = \sqrt{\frac{\widehat{\sigma^2}}{\sum_{i=1}^n (x_{i1} - \overline{x_1})^2}}$
	If there is no correlation between x_1 and x_2 (R_1^2 = 0), 'our' standard errors will be the same as had we correctly	R_1^2 : the R^2 of the regression of x_1 on x_2 . If x_1 and x_2 are correlated, 'our' standard errors will be larger.		Our $\widehat{\sigma^2}$ will be a biased estimate of σ^2 because of the underspecification.
	specified the model.	→ Over-specification inflates standard errors. ↔ over-specification renders the OLS estimators inefficient		$\widehat{\sigma^2} = Var(\widehat{u_i}) = \frac{\sum_{i=1}^n \widehat{u_i}^2}{n - (k+1)}$ No matter \mathbf{x}_1 and \mathbf{x}_2 are correlated or not, when under-specification, $\widehat{\sigma^2}$ is always biased.
t ratios	Smaller (because $se(\widehat{eta_1})$ is large	er)		,
	$t-ratio = \frac{\widehat{\beta_J}}{se(\widehat{\beta_J})}$			
	\rightarrow power is reduced			
	→ more likely to make Type II er	ror		
	Power of a test = $1 - Prob(Type)$	•		
	↔ more likely to fail to reject f			
Explanation	I	the amount of information that can	Part of the influence of x_2 on y is bei	ng attributed to x ₁ .
Extent of the	be used to estimate β_1 because relevant and irrelevant	x_1 and x_2 are correlated.	included and omitted	
problems	retevant and metevant		metaded and officed	
depends on the				
correlations				
between variables				
Conclusion	Estimation and hypothesis testi more likely.	ng are still valid, but Type II errors	Test statistics will be incorrect and of Omission of important variables is a inclusion of irrelevant ones.	_

Example

Model

$$\widehat{bwght} = \beta_0 + \beta_1 faminc + \beta_2 order + \beta_3 cigs + \beta_4 fatheduc$$

After running the regression:

$$\widehat{bwght} = 112.1 + 0.048 faminc + 1.854 order - 0.580 cigs + 0.298 fatheduc$$
 (35.90) (1.34) (2.82) (-5.29) (1.27) (t ratio) [0.000] [0.180] [0.005] [0.000] [0.205] [p-value]

The coefficient on father's education (fatheduc) is statistically insignificant.

 \rightarrow Dropping *fatheduc* and re-estimating yields:

$$\widehat{bwght} = 114.2 + 0.098 f aminc + 1.61 order - 0.477 cigs$$

$$(77.73) (3.35) (2.68) (-5.21) (t \ ratio)$$

$$[0.000] [0.001] [0.008] [0.000] [p-value]$$

Dropping fatheduc induces positive bias in the coefficient on family income (faminc) cov(fatheduc, faminc) > 0: fatheduc and faminc are positively correlated

 $\beta_4 > 0$: coefficient on father education positive

The correlation in family income and father's education is also giving rise to **multicollinearity** (low t ratios).

$$\textbf{t-ratio} = \frac{\widehat{\beta_{J}}}{se(\widehat{\beta_{J}})} = \frac{\widehat{\beta_{J}}}{\sqrt{\sum_{i=1}^{n}(x_{i1}-\overline{x_{1}})^{2}(1-R_{1}^{2})}} = \frac{\widehat{\beta_{J}}\sqrt{\sum_{i=1}^{n}(x_{i1}-\overline{x_{1}})^{2}\left(\frac{1-R_{1}^{2}}{\sigma}\right)}}{\widehat{\sigma}}$$

Lecture 15 The asymptotic properties of estimators

Important when	Properties	Explanation	Example
the finite sample properties of	unbiasedness		OLS estimator
estimators cannot be determined	Efficiency		
the assumptions of the CLM do not	Consistency	A consistent estimator of a regression coefficient,	
hold		$\widehat{\beta_k}$, has a sampling distribution that converges on	
		the true value as sample grows.	
		Captures the idea of <u>increasing precision</u> with <u>more</u>	
		information.	
		SLR5: homoscedasticity is not required to hold this.	
		But SLR2, SLR3, and SLR4 must	
		be valid.	
		As n (sample size) increases, $Var(\hat{\beta}_1)$ decreases smaller sample	
		Alliger sample larger sample $\hat{\beta}_1$	
	Asymptotically efficient		

If all of the CLM assumptions are satisfied, then we can get an unbiased, efficient, and consistent estimator.

Consistency

MLR4: zero conditional mean $E(u x_1, x_2, x_3,, x_k) = 0$			
Unbiased Consistency			
u is uncorrelated with:	$\it u$ is uncorrelated with:		
each and every explanatory variable			
with any possible function of the explanatory variables			

→ An estimator can be biased but consistent:

When the sample is small, the estimator is biased, but as the sample grows, the bias declines, and asymptotically, the bias disappears.

Asymptotic distribution

If we cannot have unbiased and efficient estimators, we seek estimators that are consistent and asymptotically efficient. i.e.

When an estimator with desirable finite sample properties cannot be found, we base our choice of estimator on large sample properties.

Consistency and asymptotic efficiency are the large sample counterparts to unbiasedness and minimum variance.

Definition

The asymptotic distribution of an estimator is the sampling distribution of that estimator when the sample size is infinitely large.

Theorem

If the asymptotic distribution of an estimator becomes **concentrated on a particular value** k, k is referred to as **the probability limit** of $\widehat{\beta}_l$:

$$plim \widehat{\beta}_j = k$$

If
$$plim \widehat{\beta}_i = \beta_i$$
, then $\widehat{\beta}_i$ is consistent.

If the **variance** of the asymptotic distribution of $\widehat{\beta}_j$ is **smaller** than any other consistent estimator, then $\widehat{\beta}_j$ is said to be asymptotically efficient.

*NOTE If MLR5, homoscedasticity, is not valid, our inferences will not be valid regardless of whether MLR6 is valid or not and regardless of whether the sample is small or large.

The normality assumption

Theorem Central Limit Theorem

Irrespective of the distribution of the parent population, the distribution of sample averages approaches the **normal** as sample size grows.

When the data are non-normal the sampling distributions of OLS estimators are **asymptotically normal**, i.e., normal when the sample is large.

→ OLS estimators are (effectively) **sample averages.**

If the population is symmetric, sample statistics are normal for $n \ge 30$.

By n = 200 normality of sample statistics is assured.

Lecture 16-17 Heteroscedasticity, Part I-II

Model errors or disturbance terms are described as **homoscedastic** if the error variance is the **same** for all the observations in the sample. Model errors or disturbance terms are described as **heteroscedastic** if the error variance is **not the same** for all observations.

Definition Heteroscedastic

Gauss-Markov assumption MLR5: Homoscedasticity is not hold.

For the general multiple linear regression model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i$$

If $Var(u_i) = \sigma_i^2$ (note: i subscript on σ^2), **the variance is not the same** for all i, the errors are **heteroscedastic**, the variance may vary systematically with one or more of the explanatory variables, $x_1, x_2, x_3, \dots x_k$.

If there is heteroscedasticity but we calculate s.e.s assuming homoscedasticity and use these when conducting hypothesis tests, our **inferences will be wrong.** When heteroscedasticity is present the s.e.s have to be calculated in a way that accounts for that heteroscedasticity.

Result

When there is Homoscedastic errors, as long as the other Gauss-Markov assumptions are valid,

(1) **OLS** still yields **unbiased** estimates of the regression parameters, β_0 , β_1 , β_2 , β_3 ... β_k , but they are **inefficient.** i.e., they are not BEST.

In the presence of heteroscedasticity, GLS is BEST.

- (2) The standard errors of the OLS estimators $se(\widehat{\beta_j}) = \sqrt{\frac{\widehat{\sigma^2}}{\sum_{i=1}^n (x_{ji} \overline{x_j})^2 (1 R_j^2)}}$ is incorrect.
- (3) Error in t-statistic, inferences could be wrong.
- (4) Inferences drawn from F-tests could be wrong.

Example

In model:

$$wage = \beta_0 + \beta_1 education + u$$

people with more education have access to a wider variety of jobs -> the variability of wages is likely to increase with education

Test for Homoscedasticity

The Breusch-Pagan test

Hypothesis	Null hypothesis	Alternative hypothesis		
	H _o : the errors are homoscedastic	H₁: there is heteroscedasticity of a specific form		
	$Var\left(u_{i} \mathbf{x}_{i}\right)=\sigma^{2}$			
Step 1	Estimate the model using OLS, generate the residuals, $\hat{u_t}$, compute the squared re	esiduals, $\widehat{u_l}^2$.		
Step 2	Decide on the variable or list of variables, Z , which you suspect are			
	responsible for the heteroscedasticity, let p = the number of variables in ${m Z}$			
Step 3	Choose a significance level, say 5%, find the critical value in the χ^2_p distribution.			
Step 4	Using OLS (again), estimate a regression model in which the dependent variable is $\widehat{u_t}^2$ and the list of explanatory variables is \mathbf{Z} , include a constant in the model. $Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$ $\widehat{u_t}^2 = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_n z_n$			
Step 5: Test	the Breusch-Pagan LM statistic			
statistic	$LM = nR^2 \sim \chi_n^2 \text{ distribution}$			
	$(R^2 \text{ is the coefficient of determination for the regression in Step 4; } n = \text{sample size})$			
Step 6	Reject the null (homoscedasticity) if $LM >$ critical value			

Example Test for Homoscedasticity

Research question: Are CEOs' salaries determined by profits?

Regression model:

$$ln(CEOpay)_i = \beta_0 + \beta_1 ln(assets)_i + \beta_2 profit_i + u_i$$

where

i indexes the observation and an observation is a company

CEOpay =the annual salary of the CEO

assets = total value of company's assets

$$profit = \left(\frac{pretax \ profits}{sales}\right) * 100$$

 $u_i = \text{error or disturbance term}$

Null hypothesis: H_0 : β_2 = 0; Alternative hypothesis: H_1 : $\beta_2 \neq 0$

The white test

imtest, white

Test for heteroscedasticity (put another way – test for the validity of the homoscedasticity assumption) and, if there is heteroscedasticity, adjust the s.e.s to account for it.

The imtest, white command is asking STATA to conduct the test. More specifically, it is asking for a White's test for heteroscedasticity of a general form.

Null hypothesis: homoscedasticity,

Alternative hypothesis: heteroscedasticity of a general form.

The test statistic has a **Chi-squared distribution** with **degrees of freedom** that depend on the **number of variables in the model** and **the nature of those variables.**

regress crime popd taxpc pctue west police parr pconv parrw pconvw, vce(hc3)

The, vce (hc3) added to the end of the regress command is asking STATA to adjust the standard errors to account for heteroscedasticity.

Hypothesis	Null hypothesis	Alternative hypothesis		
	The errors are homoscedastic, $Var(u_i x_i) = \sigma^2$	There is heteroscedasticity of a general form		
Step 1	Estimate the model using OLS, generate the residuals, \widehat{u}_i , compute	the squared residuals, $\widehat{u_{\iota}^{2}}$		
Step 2	Generate the squares and the cross-products of all the regressors (EVs) in the model. So, if the model contains two regressors, x_1 and x_2 , we generate x_1^2 , x_2^2 , and x_1x_2 . Set $Z = [x_1, x_2, x_1x_2, x_1^2, x_2^2]$. So, $p = 5$			
Step 3	Choose a significance level, say 5%, find the critical value in the χ_p^2 distribution, i.e., the chi-squared distribution with p degrees of freedom.			
Step 4	Using OLS (again), estimate a regression model in which the dependent variable is $\widehat{u_i}^2$ and the list of explanatory variables is Z , include a constant in the model.			
	$Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$ $\widehat{u_i^2} = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_n z_n$			
	$\widehat{u_i}^2 = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_n z_n$			

Step 5	the White statistic , which has a χ_p^2 distribution, i.e., a chi-squared distribution with p degrees of freedom.		
Test statistic	Calculate the White statistic:		
	$LM = nR^2$		
	where R^2 is the coefficient of determination for the regression in Step 4 and n = sample size		
Step 6	Reject the null (homoscedasticity) if White statistic > critical value		

Heteroscedasticity-consistent robust standard errors

Definition

Standard errors that have been adjusted to account for heteroscedasticity, that can be used to draw valid inferences in the presence of heteroscedasticity.

When the errors or disturbance terms are heteroscedastic, OLS estimators are no longer best, i.e., they are inefficient.

Best estimators: Weighted Least Squares Estimation

Formula

$$\widehat{Var(\widehat{\beta}_1)} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \widehat{u_i}^2}{SST_r^2}$$

Derivation

$$\hat{\beta}_{1} = \beta_{1} + \frac{Cov(x, u)}{Var(x)}$$

$$= \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(u_{i} - \bar{u})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})u_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$Var(\hat{\beta}_1) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

SLR m $y_i = \beta_0 + \beta_0$		MLR model $y_i = \beta_0 + \beta_1 x_i + \dots + \beta_k x_k + u_i$	
valid), then for the SLR model $y_i = \beta_0$ + (SLR5 invalid), for the SLR model $y_i = \beta_0$		Under MLR 1-4, in the presence of heteroscedasticity, it can be show that the following is a valid estimator	Heteroscedasticity-consistent robust standard error for $\widehat{\beta_j}$ is
$Var(\widehat{\beta_1}) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{SST_x}$ $Var(\widehat{\beta_1}) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \frac{\sigma_i^2}{SST_x^2}}{SST_x^2}$ So it can be estimated as: $Var(\widehat{\beta_1}) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \widehat{u_i}^2}{SST_x^2}$		$\widehat{\mathrm{Var}(\widehat{\beta}_{j})} = \frac{\sum_{i=1}^{n} \widehat{r_{ij}^{2}} \widehat{u_{i}^{2}}}{SSR_{j}^{2}}$ • $\widehat{r_{ij}^{2}}$ is the residual for the i^{th} obsethe other explanatory variables • SSR_{j} is the sum of the squared r	$se(\widehat{\beta_{J}}) = \sqrt{\frac{\sum_{i=1}^{n}\widehat{r_{iJ}^{2}}\widehat{u_{i}^{2}}}{SSR_{j}^{2}}}$ rvation when x_{j} is regressed on all esiduals from that regression