A student is taking a multiple choice test with 600 questions. Each question has 4 choices. You want to detect whether the student does better than random guessing, so you decide to run a hypothesis test with a significance level of 0.1.

Then, the student takes the test and gets 161 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think the student did better than random guessing?

A student is taking a multiple choice test with 300 questions. Each question has 3 choices. You want to detect whether the student does better than random guessing, so you decide to run a hypothesis test with a significance level of 0.01.

Then, the student takes the test and gets 121 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think the student did better than random guessing?

A null hypothesis claims a population has a mean $\mu = 220$. You decide to run two-tail test on a sample of size n = 451 using a significance level $\alpha = 0.02$. You then collect the sample and find it has mean $\bar{x} = 227.36$ and standard deviation s = 63.31.

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

A null hypothesis claims a population has a mean μ = 150. You decide to run two-tail test on a sample of size n = 45 using a significance level α = 0.02. You then collect the sample and find it has mean \bar{x} = 163.23 and standard deviation s = 37.77.

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

A null hypothesis claims a population has a mean μ = 210. You decide to run two-tail test on a sample of size n = 9 using a significance level α = 0.02.

You then collect the sample:

306.7	257.7	232.3	226.6	268.5
223.4	183	239	262.1	

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

A null hypothesis claims a population has a mean μ = 190. You decide to run two-tail test on a sample of size n = 10 using a significance level α = 0.02.

You then collect the sample:

187.9	195.6	194.5	204.8	208.4
200.1	188.9	186.7	202.8	198.6

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

1. This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{4} = 0.25$$

State the hypotheses.

$$H_0$$
 claims $p = 0.25$
 H_A claims $p > 0.25$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.25(1-0.25)}{600}} = 0.0177$$

Determine the sample proportion.

$$\hat{p} = \frac{161}{600} = 0.268$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.268 - 0.25}{0.0177} = 1.02$$

The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.268)$
= $P(Z > 1.02)$
= $1 - P(Z < 1.02)$
= 0.1539

Compare *p*-value to α (which is 0.1).

$$p$$
-value $> \alpha$

Make the conclusion: we retain the null hypothesis.

We think the student might just be guessing.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.25 and H_A claims p > 0.25.
- (c) The *p*-value is 0.1539
- (d) We retain the null hypothesis.
- (e) We think the student might just be guessing.

2. This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{3} = 0.333$$

State the hypotheses.

$$H_0$$
 claims $p = 0.333$
 H_A claims $p > 0.333$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.333(1 - 0.333)}{300}} = 0.0272$$

Determine the sample proportion.

$$\hat{p} = \frac{121}{300} = 0.403$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.403 - 0.333}{0.0272} = 2.57$$

The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.403)$
= $P(Z > 2.57)$
= $1 - P(Z < 2.57)$
= 0.0051

Compare *p*-value to α (which is 0.01).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.333 and H_A claims p > 0.333.
- (c) The *p*-value is 0.0051
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.

$$H_0$$
 claims $\mu = 220$

$$H_A$$
 claims $\mu \neq 220$

Determine the degrees of freedom.

$$df = 451 - 1 = 450$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{63.31}{\sqrt{451}} = 2.981$$

Make a sketch.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{227.36 - 220}{2.981} = 2.47$$

Find the p-value.

$$p$$
-value = $P(|T| > 2.47)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 450.)

$$P(|T| > 2.59) = 0.01$$

$$P(|T| > 2.33) = 0.02$$

Basically, because t is between 2.59 and 2.33, we know the p-value is between 0.01 and 0.02.

$$0.01 < p$$
-value < 0.02

Compare the *p*-value and the significance level ($\alpha = 0.02$).

p-value
$$< \alpha$$

Yes, we reject the null hypothesis.

- (a) 0.01 < p-value < 0.02
- (b) Yes, we reject the null hypothesis.

$$H_0$$
 claims $\mu = 150$

$$H_A$$
 claims $\mu \neq 150$

Determine the degrees of freedom.

$$df = 45 - 1 = 44$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{37.77}{\sqrt{45}} = 5.63$$

Make a sketch.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{163.23 - 150}{5.63} = 2.35$$

Find the p-value.

$$p$$
-value = $P(|T| > 2.35)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 44.)

$$P(|T| > 2.41) = 0.02$$

$$P(|T| > 2.12) = 0.04$$

Basically, because t is between 2.41 and 2.12, we know the p-value is between 0.02 and 0.04.

$$0.02 < p$$
-value < 0.04

Compare the *p*-value and the significance level ($\alpha = 0.02$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) 0.02 < p-value < 0.04
- (b) No, we do not reject the null hypothesis.

$$H_0$$
 claims $\mu = 210$

$$H_A$$
 claims $\mu \neq 210$

Find the mean and standard deviation of the sample.

$$\bar{x} = 244.367$$

$$s = 34.741$$

Determine the degrees of freedom.

$$df = 9 - 1 = 8$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{34.741}{\sqrt{9}} = 11.58$$

Make a sketch.

Find the t score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{244.367 - 210}{11.58} = 2.97$$

Find the *p*-value.

$$p$$
-value = $P(|T| > 2.97)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 8.)

$$P(|T| > 3.36) = 0.01$$

$$P(|T| > 2.9) = 0.02$$

Basically, because t is between 3.36 and 2.9, we know the p-value is between 0.01 and 0.02.

$$0.01 < p$$
-value < 0.02

Compare the *p*-value and the significance level ($\alpha = 0.02$).

p-value
$$< \alpha$$

Yes, we reject the null hypothesis.

- (a) 0.01 < p-value < 0.02
- (b) Yes, we reject the null hypothesis.

$$H_0$$
 claims $\mu = 190$

$$H_A$$
 claims $\mu \neq 190$

Find the mean and standard deviation of the sample.

$$\bar{x} = 196.83$$

$$s = 7.446$$

Determine the degrees of freedom.

$$df = 10 - 1 = 9$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{7.446}{\sqrt{10}} = 2.355$$

Make a sketch.

Find the t score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{196.83 - 190}{2.355} = 2.9$$

Find the *p*-value.

$$p$$
-value = $P(|T| > 2.9)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 9.)

$$P(|T| > 3.25) = 0.01$$

$$P(|T| > 2.82) = 0.02$$

Basically, because t is between 3.25 and 2.82, we know the p-value is between 0.01 and 0.02.

$$0.01 < p$$
-value < 0.02

Compare the *p*-value and the significance level ($\alpha = 0.02$).

p-value
$$< \alpha$$

Yes, we reject the null hypothesis.

- (a) 0.01 < p-value < 0.02
- (b) Yes, we reject the null hypothesis.