TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOLUNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ELECTRONICS AND TELECOMMUNICATIONS

VIỆN ĐIỆN TỬ - VIỆN THÔNG

KỸ THUẬT VI XỬ LÝ **BĂM XUNG PWM**

Nhóm trợ giảng K58

Hà Nội, 3/2018

NỘI DUNG

- Giới thiệu PWM
- PWM với PIC 16F877a
- Ví dụ

GIỚI THIỆU PWM

- Là phương pháp điều chế dựa trên sự thay đổi độ rộng của chuỗi xung vuông [1].
- Duty cycle: Là tỷ lệ % thời gian xung ở mức CAO trong 1 chu kỳ.

Duty cycle = Turn ON time/ (Turn ON time + Turn OFF time)

Image source: http://gg.gg/9i09n

- Sử dụng module CCP (Compare Capture PWM)
- Độ phân giản: 10 bit (0 1023)
 - $-0 \Leftrightarrow \text{duty cycle} = 0\%$
 - 1023 ⇔ duty cycle = 100%
- 2 module: CCP1 & CCP2
- Các thanh ghi cần thiết
 - CCP1CON (CCP1 control Register)
 - T2CON (Timer 2 Control Register)
 - PR2 (Timer 2 modules Period Register)
 - CCPR1L (CCP Register 1 Low)

Duty Cycle

TMR2 = PR2

TMR2 = Duty Cycle

TMR2 = PR2

Timer 2 Block Diagram

PWM output

Các bước:

Set PWM period • PR2 register CCPR1L register Set PWM duty cycle • CCP1CON<5:4> bits • TRISC<2> bit cleared Make CCP1: output Set TMR2 prescale T2CON & enable Timer2

• 2 bước quan trọng nhất:

PWM_Init()

Khởi tạo các thanh ghi (register)

PWM_Duty()

Đặt giá trị duty cycle

```
PWM_Initialize()
{
    PR2 = (_XTAL_FREQ/(PWM_freq*4*TMR2PRESCALE)) - 1; //Setting the PR2 formulae using Datasheet
    CCP1M3 = 1; CCP1M2 = 1; //Configure the CCP1 module
    T2CKPS0 = 1;T2CKPS1 = 0; TMR2ON = 1; //Configure the Timer module
    TRISC2 = 0; // make port pin on C as output
}
```

CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS 17h/1Dh)												
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0					
bit 7							bit 0					
bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, every 16th rising edge 1001 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)												

T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)											
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
bit 7							bit 0				
bit 1-0	T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16										

```
PWM Period = [(PR2) + 1] * 4 * TOSC * (TMR2 Prescale Value)
```

```
PR2 = (Period / (4 * Tosc * TMR2 Prescale )) - 1
```

Mà:

```
Period = (1/PWM_freq)
Tosc = (1/ XTAL FREQ)
```

VÍ DỤ

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

CẢM ƠN CÁC BẠN ĐÃ THEO DÕI!