INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Resumo

Atualmente, nota-se que há uma crescente falta com o cuidado da saúde alimentar da população de São João da Boa Vista. Pensando nisso, surge em fevereiro de 2018 o Projeto Mais Saúde São João, com a finalidade de adequar os cidadãos a uma vida mais saudável e com exercícios físicos. Neste trabalho, apresenta a elaboração do banco de dados do módulo Diário de Bordo Nutricional do Projeto Mais Saúde São João. Esse mostrará nas páginas seguintes, o desenvolvimento do banco de dados deste módulo, contando com a identificação dos principais requisitos do módulo; a produção do Modelo Conceitual; a elaboração do Modelo Lógico e também do Modelo Físico; finalizando com a Elaboração do Dicionário de Dados. Vale destacar que ao término desse trabalho, foi possível obter o êxito em todas as etapas que serão exibidas a posteriori.

Sumário

1	Introdução		6
	1.1 Co	ontextualização/Motivação	6
	1.2 Ol	bjetivo Geral	8
	1.3 Ol	bjetivos Específicos	8
2	Desenvolvime	ento	9
	2.1 Le	evantamento bibliográfico	9
	2.1.1	Banco de Dados	9
	2.1.2	Identificação de Requisitos	11
	2.1.3	Modelo Conceitual	11
	2.1.4	Modelo Lógico	14
	2.1.5	Modelo Físico	14
	2.1.6	Dicionário de Dados	15
	2.2 Et	apas para o desenvolvimento da pesquisa	16
	2.2.1	Identificar os principais requisitos do módulo	16
	2.2.2	Produzir o Modelo Conceitual	20
	2.2.3	Elaborar o modelo lógico	24
	2.2.4	Elaborar Modelo Físico	25
	2.2.5	Dicionário de Dados	27
3	Conclusões e	Recomendações	31
4	Referências B	Ribliográficas	32

Lista de tabelas

Tabela 1 - Exemplode Dicionário entidade turma.	15
Tabela 2 - Exemplo de Dicionário de Dados entidade professor	15
Tabela 3 – Documento de Requisitos Diário de Bordo Nutricional	16
Tabela 4 - Modelo Físico Diário de Bordo.	25
Tabela 5 - Modelo físico entidade diarios_bordo.	27
Tabela 6 - Modelo físico entidade db_alimentos.	28
Tabela 7 - Modelo físico entidade alimentos.	28
Tabela 8 - Modelo físico entidade alimentos_favoritos.	29
Tabela 9 - Modelo físico entidade usuarios.	29
Tabela 10 - Modelo físico entidade pesos_alturas.	30
Tabela 11 - Modelo físico entidade Plano alimentar mod07.	30

Lista de Figuras

Figura 1 - Mais Saude Sao Joao - produto a ser entregue	/
Figura 2 - Documento de Visão - Diário de Bordo.	7
Figura 3 – Como transformar dados em algo compreensível [7]	9
Figura 4 – Representação do logo do MySQl [11]	10
Figura 5 – Exemplo de Entidade forte e fraca [12].	11
Figura 6 – Exemplo de Entidade forte e fraca [13].	12
Figura 7 – relacionamento de cardinalidade 1:1 [14]	12
Figura 8 – relacionamento de cardinalidade n:1 [14]	12
Figura 9 – relacionamento de cardinalidade n:n [14]	13
Figura 10 – atributo identificador e não identificador [15]	13
Figura 11 –Exemplo de Modelo Conceitual [16]	13
Figura 12 –Exemplo de Modelo Lógico [18].	14
Figura 13 – Exemplo de Modelo Físico [16].	15
Figura 14 - Modelo Conceitual do Módulo Diário de Bordo	23
Figura 15 - Modelo Relacional do Diário de Bordo	24

1 Introdução

Neste capítulo, visa mostrar a inexistência de um programa nutricional para a população de São João da Boa Vista e como, por meio do módulo Diário de Bordo, a ferramenta de banco de dados pode servir para armazenar informações.

1.1 Contextualização/Motivação

Ao observar que no município de São João da Boa Vista-SP, há a ausência de programas ou serviços nutricionais para auxiliar ou aproximar a população a ter uma vida saudável, a rede de instituição educacional, Instituto Federal de Educação Ciências e Tecnologia de São Paulo—câmpus São João da Boa Vista, se dispôs a planejar juntamente com seus alunos a contribuir de modo a instruir a sociedade a ter maior qualidade de vida [1].

Á vista disso, os alunos do curso técnico em informática integrado ao ensino médio, tem a disciplina de Projeto de Desenvolvimento de Sistemas, que aplica as matérias de todos os anos, em 2018, essa turma tem o plano de fazer um projeto para a saúde nutricional que melhore a vida dos habitantes dessa cidade. Com esse objetivo, originou-se o Projeto Mais Saúde São João, onde ao todo são nove módulos, divididos em grupos que contém: analistas, Analista de Banco de Dados (DBA), desenvolvedores e testadores, no qual cada equipe será responsável por um módulo, sendo eles: Módulo 01 – Usuários; Módulo 02 – Rede Social; Módulo 03 – Checkups; Módulo 04 – Treinos; Módulo 05 – Resultado dos Treinos; Módulo 06 – Ferramentas Esportivas; Módulo 07 – Plano Alimentas/Cardápio; Módulo 08 – Diário de Bordo e Módulo 09 – Ferramentas Nutricionais. Onde pode-se observar na figura 1, o que cada módulo ficará responsável [1].

Conforme o IBGE, a estimativa mais recente de 2017, residem no momento atual, em São João da Boa Vista, 90.089 (noventa mil e oitenta e nove) pessoas. Sendo que nesse município, há uma exorbitante falta de orientação nutricional, e de informações sobre como saber o peso ideal, a quantidade total de calorias por tipo de refeição, ou o cálculo correto do IMC (Índice de Massa Corpórea) e vários outras dúvidas [2].

Com isso, surge o módulo Diário de Bordo, que possibilita ao usuário, que ele compartilhe as suas refeições com outras pessoas e com a nutricionista; Proporcionando também o cálculo do peso ideal com base nas informações pré-cadastradas (altura e peso); a gestão de alimentos favoritos, (assim que o usuário começar a alimentar o banco com informações de seus alimentos favoritos); exibir um relatório diário tabular de calorias consumidas vs. Calorias restantes; exibir de calorias por tipo de refeição; exibir o gráfico de nutrientes; exibir dados históricos por tabela sobre consumo de calorias e nutrientes; atualizar o peso ideal, assim que o usuário começar a seguir a dieta e surtir

efeitos em sua dieta, assim ele pode atualizar seu novo peso no sistema; e exibir peso em formato de gráfico. Onde na figura 2, podem-se notar todas essas atribuições ao módulo de Diário de Bordo [3].

Figura 1 - Mais Saúde São João - produto a ser entregue.

Figura 2 - Documento de Visão - Diário de Bordo.

Por conseguinte, para armazenar todos esses dados e informações é necessário um documento que guarde os cadastros, chamado banco de dados. "Segundo Korth, um banco de dados "é uma coleção de dados inter-relacionados, representando informações sobre um domínio específico", ou seja, sempre que for possível agrupar informações que se relacionam e tratam de um mesmo assunto, posso dizer que tenho um banco de dados. "[4]

1.2 Objetivo Geral

O objetivo é apresentar o banco de dados do módulo visando produzir ao usuário o compartilhamento de seu diário alimentar com o nutricionista e outros indivíduos, frisando a relevância do módulo Diário de Bordo para o projeto Mais Saúde São João.

1.3 Objetivos Específicos

Os objetivos específicos para atingir o propósito do trabalho são:

- Identificar os principais requisitos do módulo;
- Produzir o Modelo Conceitual;
- Elaborar o Modelo Lógico;
- Elaborar o Modelo Físico:
- Elaborar o Dicionário de Dados.

2 Desenvolvimento

Este capítulo pretende mostrar demostrar e exemplificar cada um dos objetivos específicos para desenvolver o banco do módulo Diário de Bordo, apresentando uma visão geral de todo processo.

2.1 Levantamento bibliográfico

Essa sessão tem o objetivo de apresentar os conceitos e principais definições para que fique harmoniosa a explicação.

2.1.1 Banco de Dados

Com a finalidade de evidenciar por meio de levantamentos bibliográficos, o conceito de banco de dados, é indispensável, primeiramente designar a definição de informações e dados;

A ferramenta de banco de dados está presente em nosso cotidiano desde muito tempo, um exemplo clássico são as listas telefônicas, que a partir de seu lançamento em 1881 em seu modelo físico, serviram de armazenamento de informações. Assim como, as empresas faziam para armazenar dados importantes, contudo, com o surgimento dos computadores, esse armazenamento ao invés de físico passou a ser de modo digital. Possibilitando assim o aperfeiçoamento do banco de dados das empresas [5].

Por conseguinte, para maior esclarecimento, a diferença entre dados e informações. Os dados são os fatos brutos, em sua forma primária, e podem não fazer nenhum sentido quando estão isolados; já as informações são o agrupamento de dados organizados, de forma que façam sentido e gerem algum conhecimento [6].

Portanto, conclui-se que os dados sozinhos não possuem significado relevante e não conduz a compreensão alguma. Já a informação é a ordenação e alinhamento dos dados, assim transmitindo um significado que dê compreensão. Quanto maior é o afastamento dos dados, maior é a clareza. Na imagem a seguir, fica evidente este argumento.

Dado Informação Conhecimento

Figura 3 – Como transformar dados em algo compreensível [7].

Em suma, com os devidos fundamentos de dados e informações, trona-se mais esclarecer mostrar as noções de banco de dados.

"Um banco de dados (em inglês, database) é um local onde é possível armazenar dados de maneira estruturada e com a menor redundância possível. Estes dados devem poder ser utilizados por programas e usuários diferentes. Assim, a noção básica de dados é acoplada a uma rede, a fim de poder reunir estas informações, daí o nome banco. Geralmente, fala-se de um sistema de informação para designar qualquer estrutura que reúne os meios organizados para poder compartilhar dados." [8]

É de extrema importância ressaltar que para se construir um banco de dados, é necessário ter um programa para ele ser introduzido, dessa forma, temos um sistema para gerencia-lo, este sistema é um software que possui recursos capazes de manipular as informações do banco de dados e interagir com o usuário. Exemplo de SGBD (Sistema gerenciador de banco de dados): MySQL. No qual, o MySQL é o único SGBD que será utilizado para o desenvolvimento do banco de dados do projeto Mais Saúde São João [9].

Por conseguinte, o sistema gerenciador de banco de dados, MySQL é um software aberto, que funciona com o código livre, além de funcionar em um grande número de sistemas operacionais, como por exemplo: Windows, Linux e outros sistemas operacionais. Que utilizando de sua linguagem SQl, possibilita a criação do banco de dados [10].

A diferença entre MySQL e SQl, que o SQL é uma linguagem usada nos bancos de dados relacionais, enquanto que o MySQL é um sistema para gerenciamento de banco de dados e que fazem o uso da linguagem SQL e por isso levam o nome SQL [11].

Figura 4 – Representação do logo do MySQl [11].

2.1.2 Identificação de Requisitos

Primordialmente, para se elaborar um banco de dados, tem que ser feita uma análise da identificação dos requisitos que o banco deverá atender, com as principais informações é produzida uma tabela com a descrição textual macro do processo. É a parte mais importante, por conter as exigências do projeto, portanto se este documento for mal elaborado, tudo o que será feito a partir daí estará incorreto.

2.1.3 Modelo Conceitual

Com o propósito de explicar o a criação de um modelo no banco de dados, a abordagem será feita primeiramente por meio do modelo conceitual. Contudo, é indispensável o esclarecimento sobre: entidades; relacionamentos; cardinalidade; atributos;

Em vista disso, entende-se entidade como sendo um objeto ou evento (podendo ser: pessoas, lugares, organizações) do mundo real ao qual armazenaremos um dado.

As entidades são retratadas por um retângulo com seu nome escrito no centro. Tem-se dois tipos de entidade, a forte e a fraca [12]. A primeira é quando tem-se um certo grau de independência, que só pelo nome já possui um significado implícito, que não necessita de breve explicação. A segunda, precisa de uma identificação, são sempre ligadas a outra tabela através de relacionamentos.

Entidade Fraca

BANCO

Entidade Fraca

AGÊNCIA

Figura 5 – Exemplo de Entidade forte e fraca [12].

Relacionamento: Depois das entidades serem identificadas, dispõe-se o relacionamento entre elas. Nos relacionamentos, possui classificações, dentre elas, são:

Relacionamento 1..1 (um para um): cada entidade faz referencia obrigatoriamente uma a outra.

Relacionamento 1..n ou 1..* (um para muitos): acontece quando uma entidade referencia muitas unidades de outra entidade.

Relacionamento n..n ou *..* (muitos para muitos): as entidades, referenciam inúmeras unidades da outra [13].

Relacionamento binário:

EMPREGADO classificação FUNCAO Relacionamento n-ário:

PROJETO PROJETO

EMPREGADO alocação FUNCAO FUNCAO

PROJETO

PROJETO

Figura 6 – Exemplo de Entidade forte e fraca [13].

Cardinalidade: define o número de recorrências de uma entidade. Essa indica quantas ocorrências de uma entidade participam no mínimo e máximo do relacionamento. Existem dois tipos de cardinalidade, são eles, a mínima e a máxima, onde a primeira diz respeito ao saber se um relacionamento entre as entidades é obrigatório ou não. Já a segunda, define a quantidade máxima de ocorrências da entidade. Deve ser maior que zero [14].

Exemplos:

Figura 7 – relacionamento de cardinalidade 1:1 [14].

Na cardinalidade 1 para 1, expressa a ideia de que um único homem pode se casar com somente uma mulher.

Figura 8 – relacionamento de cardinalidade n:1 [14].

Na cardinalidade n para 1, exprime o raciocínio que muitos empregados podem lotar um único departamento.

Figura 9 – relacionamento de cardinalidade n:n [14].

Na cardinalidade n para n, manifesta a ideia de que vários alunos podem estar matriculares em mais de uma disciplina.

Atributos: são informações capazes de caracterizar entidades e relacionamentos. Tem-se dois tipos de atributos, os identificadores e os não identificados, o primeiro é representado por uma bola cheia, onde se concentra a informação principal. Já o segundo, diz respeito ao atributo de bola vazia que não carrega consigo a informação primordial.

Figura 10 – atributo identificador e não identificador [15].

Após o esclarecimento sobre os princípios básicos do modelo conceitual, fica pertinente demonstrar o conhecimento sobre o Modelo Conceitual.

Dentre o vasto campo de interação de um projeto, o modelo conceitual é o primeiro que representa a atividade de interação, ao analisar os requisitos (necessidades do cliente) e definir os processos que darão resultado ao produto final.

À vista disso, o modelo conceitual é o detalhamento do sistema proposto na forma de um agrupamento de ideias. [15]

É considerável ressaltar que neste modelo, temos a visão geral do negócio e facilita o entendimento entre usuários e desenvolvedores.

rma roof id_Prof

Figura 11 - Exemplo de Modelo Conceitual [16].

Neste Modelo Conceitual, nenhum ou muitos clientes podem comprar nenhum ou muitos carros, onde o cliente tem como atributo principal o CPF, e o carro tem o NVI como principal.

2.1.4 Modelo Lógico

O Modelo Lógico tem algumas limitações, em que tem que ser implementados recursos de norma padrão e nomenclatura, onde são definidas as chaves primárias e estrangeiras. Com relação ao primeiro, é quando o atributo identificador, se torna a chave primária, por carregar a informação principal. Quanto ao segundo, a chave estrangeira é aponta a chave primária de uma segunda tabela, para referencia-la. Para o Modelo Lógico deve ser feito antes o Modelo Conceitual para que esse possa ser transformado em tabela. [17]

escola

Compi: int

cidade: varchar

nome: varchar

cpf: int

(1,n)

(1,1)

professor

cpf: int

nome: varchar

fone: int

Figura 12 - Exemplo de Modelo Lógico [18].

Este é o Modelo Lógico feito a partir do Modelo Conceitual a cima, no qual tem-se as chaves primárias em amarelo com o símbolo de uma chave antes do nome do atributo, e a chave estrangeira se encontra representada por uma chave cinza antes do nome do atributo.

2.1.5 Modelo Físico

É feita uma análise mais profunda dos caracteres e recursos necessários para armazenar os dados. Expõe por meio de uma linguagem, sendo a SQL que será utilizada, a armazenagem do banco. Considerando o Modelo Lógico para essa transformação.

Figura 13 - Exemplo de Modelo Físico [16].

```
1. CREATE TABLE `turma` (
2. `idturma` INTEGER(4) NOT NULL AUTO_INCREMENT,
3. `capacidade` INTEGER(2) NOT NULL,
4. `idProfessor` INTEGER(4) NOT NULL,
5. PRIMARY KEY (`idturma`),
6. FOREIGN KEY(`idProfessor`) REFERENCES professor(idProfessor),
7. UNIQUE KEY `idturma` (`idturma`)
8. )

1. CREATE TABLE `professor` (
2. `idProfessor` INTEGER(4) NOT NULL AUTO_INCREMENT,
3. `telefone` INTEGER(10) NOT NULL,
4. `nome` CHAR(80) COLLATE NOT NULL DEFAULT '',
5. PRIMARY KEY (`idProfessor`),
6. FOREIGN KEY(`idTurma`) REFERENCES turma(idturma),
7. UNIQUE KEY `idProfessor` (`idProfessor`)
8. )
```

Neste modelo, o "Create Table" é o primwiro comando, indicando a criação de uma tabela, e logo depois os atributos vão sendo dispostos com suas informações, como por exemplo, na entidade professor, o idprofessor é um código de inteiro (integer), não podendo ser nulo (not null) e ainda, chave primária. O primary key significa que tal atributo é chave primária, o foreign key diz que o atributo veio de outra tabela e representa a informação principal, por isso é chave estrangeira.

2.1.6 Dicionário de Dados

Engloba as informações dos atributos de cada entidade. Pode ser feito em documento ou planilha que mostra as informações principais sobre os conjuntos de dados, tem o propósito de melhorar a comunicação entre os envolvidos no projeto [19].

A tabela abaixo apresenta um exemplo de Dicionário de Dados da entidade turma.

Entidade:Turma Atributo Classe Domínio Tamanho Descrição 4 Idturma Chave primária Dominante Integer Capacidade Simples Integer 2 Idprofessor Simples 4 Integer Chave estrangeira

Tabela 1 - Exemplode Dicionário entidade turma.

A tabela abaixo apresenta um exemplo de Dicionário de Dados da entidade professor.

Tabela 2 - Exemplo de Dicionário de Dados entidade professor.

Entidade:Professor				
Atributo	Classe	Domínio	Tamanho	Descrição
Idprofessor	Dominante	Integer	4	Chave primária
Telefone	Simples	Integer	40	
Nome	Simples	Char	80	

Na classe é colocada a informação do atributo, se ele é chave primária será dominante, por conter a informação principal, caso não for será adotado o nome "simples". Já o domínio, é o tipo do atrbuto, se ele é inteiro (integer), ou escrito (char, varchar), e seu respectivo tamanho que o banco disponibilizará para conter essa informação. A descrição é opcional, podendo conter a função de determinado atributo por exemplo.

2.2 Etapas para o desenvolvimento da pesquisa

Mediante isso, neste capítulo será apresentado com certa profundidade as etapas para o desfecho do banco de dados do módulo de Diário de Bordo Nutricionais, do projeto Mais Saúde São João.

2.2.1 Identificar os principais requisitos do módulo

Este segmento tem a função de demonstrar a reconhecer os requisitos primordiais para o módulo Diário de Bordo. É indispensável começar o banco de dados, sem antes definir os requisitos essenciais que irão servir de base para elaborar o banco.

Os requisitos servem para demostrar as coisas que queremos tornar como verdadeiras após a construção do sistema. Atendendo as especificações que descrevem o comportamento que o sistema deve dispor para atender os requisitos.

Para a estruturação do banco de dados, faz-se necessário observar os componentes de especificações do documento de requisitos, pois é nele que será encontrado os imprescindíveis requisitos que serão obrigatórios no banco de dados, para gerir o banco.

Abaixo está uma tabela referente aos requisitos do módulo Diário de Bordo Nutricional, ao qual apresenta como requisitos principais para originar o banco os elementos: Diário de Bordo; Pesos e Alturas; Alimentos Favoritos; Usuários; Plano Alimentar; Alimentos; DB-Alimentos (tabela formada após a junção da tabela Diário de Bordo, com a Alimentos).

Abaixo a tabela 3 mostra o documento de requisitos.

Tabela 3 – Documento de Requisitos Diário de Bordo Nutricional.

Identificador	Descrição do Requisito	
RF #01	O sistema deve ser capaz de permitir qualquer usuário cadastrado no Mais Saúde São João em calcular o respectivo peso ideal. Para calcular o peso ideal, são necessárias as seguintes informações que já virão do cadastro do usuário: sexo, altura, idade. Para calcular o peso ideal, deve-se utilizar as informações presentes na seguinte tabela:	

Sexo	Altura (h)	ldade	Peso Ideal
	>1.70	<= 20	(72.7*h) - 58
		21 a 39	(72.7*h) - 53
Masculino		>= 40	(72.7*h) - 45
1	<=1.70	<= 40	(72.7*h) - 50
		> 40	(72.7*h) - 58
	> 1.50		(62.1*h) - 44.7
Feminino		>= 35	(62.1*h) - 45
	<=1.50	< 35	(62.1*h) - 49

Caso a pessoa clique em um botão que estará disponível logo abaixo de seu peso ideal, será apresentada uma tabela suspensa com todas as categorias para que o cliente possa observar e se adequar ao peso ideal. Assim como mostrar seu IMCs que será calculado através da fórmula Peso/ (Altura) ² e mostrará em qual faixa o usuário de encaixa na tabela de IMC's abaixo:

Categoria	IMC	
Abaixo do Peso	Abaixo de 18.4	
Peso Normal	De 18.5 - 24.9	
Sobrepeso	De 25.0 - 29.9	
Obesidade Grau I	De 30.0 - 34.9	
Obesidade Grau II	De 35.0 - 39.9	
Obesidade Grau III	Acima de 40	
Sua Categoria:	Peso Normal	

O indivíduo poderá atualizar seu peso clicando em um botão que estará disponível abaixo do seu peso ideal e ao lado do botão que mostrará a tabela. O botão em questão terá por nome "Atualizar Peso" e o redirecionará para uma página onde será possível atualizar sua altura e o seu peso informando em campos de texto e clicando no botão atualizar. Assim que a pessoa o atualizar, o peso ideal também será atualizado e esta será redirecionada para a página inicial do diário de bordo, onde serão lhe apresentados seu peso ideal e a categoria em que ele encaixa atualizados.

RF #02

Será apresentado ao usuário duas opções de ações, localizado logo abaixo da área destinada ao cálculo do peso ideal. Estas ações estão resumidas a dois botões, "Adicionar alimentos favoritos" e "Visualizar alimentos favoritos". O botão relacionado a adição de alimentos funcionará com método de lista, onde após clicar por meio do dropdown exibira uma lista de alimentos pré-definidos que com um clique serão adicionados à sua lista de alimentos favoritos. Também terá a opção onde será possível adicionar novos alimentos não disponíveis na lista de favoritos. Ao lado, o botão relacionado a visualização dos alimentos será responsável por gerir os alimentos favoritos do usuário, recém adicionados, ou seja, exclusão e descrição.

RF #03

Este sistema deverá apresentar de forma individualizada

- Café da manhã;
- Almoço;
- Lanche da Tarde;
- Café da Tarde;
- Jantar;
- Lanche da Noite;

Cada uma dessas opções quando clicada redirecionará o usuário a uma página destinada para este informar que alimentos está ingerindo e a hora.

Ele poderá escolher o alimento e a quantidade, a partir de uma lista pré-definida. Basta o cliente clicar para que uma lista com todos os alimentos cadastrados que será informada e todos os dados daquele alimento estará disponível para o usuário (calorias, gorduras, açúcar, peso, etc.). Caso o alimento não esteja disponível na lista, o usuário deverá clicar em um botão

adicionar e informar o nome e todas as características acima mencionadas. Após clicar no alimento presente na lista, esse será adicionado a uma tabela logo abaixo com todos os alimentos consumidos na refeição, a quantidade e as calorias. Logo abaixo, um campo da tabela informará as quantidades de calorias totais da refeição, que serão atualizados a cada novo alimento adicionado. Após o cliente clicar em "Confirmar", os dados serão salvos e esse será novamente direcionado a página inicial do diário.

Ao fim do dia após todas as refeições terem sido adicionadas, o programa calculará o número de calorias ingeridas ao longo do dia.

RF #04

Quando selecionada a opção relacionada as calorias consumidas e calorias restantes será mostrado em formato tabular e gráfico o cálculo de consumo total do teor calórico consumido durante o dia, e a partir deste dado subtraindo da sua meta de calorias diárias chega-se a quantidade de calorias restantes.

Para demonstrar as calorias consumidas/restantes, um gráfico estará disponível para o usuário visualizar e acompanhar o seu consumo durante o dia, um gráfico de linhas, que estará disposto em: eixo x – tempo, e eixo y – calorias consumidas. No gráfico, terá uma linha fixa indicando quantas calorias devem ser consumidas pelo usuário, possibilitando assim a visualização das calorias restantes.

Ainda contando com auxílio de uma tabela que estará disposta nas colunas: hora, consumo e calorias restantes. Previamente, tendo sido inserido o nome do usuário e data a cima da tabela.

Hora	Calorias Consumidas	Calorias Restantes
10:30	500 kcal	2200
13:30	600 kcal	900
21:30	300 kcal	600

RF #05

Quando selecionada a opção relacionada as calorias por tipo de refeição, será detalhado em formato gráfico mais especificamente disposto em colunas, possuindo o eixo "Y" como "quantidades de calorias" e o eixo "X" como "nome da refeição", além da tabela que será composta por duas colunas, "nome da refeição" e "teor calórico total p/ refeição". Possuindo como opções de nomes de refeição:

- Café da manhã;
- Lanche da manhã;
- Almoço;
- Lanche da tarde;
- Café da tarde;
- Jantar;
- Lanche da noite;

A quantidade de calorias somadas por tipo de refeição será calculada a partir das informações específicas de cada alimento previamete inseridas no banco de dados. Ao final do dia, será somado a quantidade de calorias consumidas em todas as refeições, sendo exibida logo abaixo da tabela e grafico de consumo calórico por refeição.

RF #06

Quando selecionada a opção relacionada aos Nutrientes, será exibida ao usuário em formato tabular e gráfico. O gráfico em questão será arquitetado em formato de pizza, sendo exposto as porcentagens de cada nutriente diferenciado por cores em uma legenda ao lado. A tabela será composta de duas colunas, sendo a primeira referente ao tipo de nutriente, e, em seguida a coluna ao lado referente a quantidade deste nutriente.

Serão especificados os nutrientes ingeridos ao longo do dia, tais como:

- Carboidrato;
- Proteína:
- Gordura Total;
- Gordura Saturada:
- Gordura Trans:
- Sódio:
- Fibra;

RF #07

Quando selecionada a opção de "histórico de nutrientes consumidos" e "histórico de calorias consumidas" encontrado em formato tabular, referente a seu consumo de nutrientes e calorias, esta opção estará disponível logo abaixo da área referente aos "Relatórios Diários". Será necessário por parte do usuário que selecione o período que precise ter acesso, conseguindo assim, obter a uma tabela com o consumo total que havia sido enviado no respectivo dia, tabela a qual será estruturada em duas colunas "dia" e "quantidade total".

A quantidade de calorias somadas será calculada a partir das informações de cada alimento previamete inserido no banco de dados.

Em relação aos nutrientes consumidos, obterá em formato tabular as respectivas informações. A tabela será composta de três colunas, sendo a primeira referente ao dia, em seguida a coluna ao lado referente ao tipo de nutriente e por último a quantidade deste nutriente.

Serão especificados os nutrientes ingeridos ao longo do dia, tais como:

- Carboidrato;
- Proteína;
- Gordura Total;
- Gordura Saturada;
- Gordura Trans;
- Sódio;
- Fibra;

RF#08

Este sistema deverá ser capaz de manter informado e atualizado o peso e a altura do usuário, visando um controle do progresso de perca ou ganho de peso e sua evolução. Esta ação estará disponível na área referente ao cálculo do peso ideal, sendo exibido uma área de texto onde será inserido/atualizado o novo peso/altura e ao lado um botão de confirmação para envio deste dado ao sistema. Importante ferramenta, levando em conta sua responsabilidade com o avanço ou regresso em seu controle nutricional.

RF#09

Quando selecionada a opção de "histórico de Peso", este sistema deverá ser responsável por oferecer ao usuário, seu histórico de peso estruturado em uma tabela composta por duas colunas, "Data" e "Peso". Será necessário por parte do usuário que selecione o período que precise ter acesso, conseguindo assim, obter o peso que havia sido atualizado e enviado no respectivo dia, por meio do "Atualizar peso".

RF#10

No programa teremos uma área específica nomeada "Relatórios Diários", onde serão encontradas três opções em formato de links: Calorias Consumidas e calorias restantes, Calorias por refeição e Nutrientes.

RF#11

O sistema deverá ser capaz de oferecer acesso ao histórico, por meio de uma área nomeada "histórico", possuindo a opção de "histórico de nutrientes consumidos" e "histórico de calorias consumidas", além de "histórico de peso".

Nota-se que a tabela Pesos e Alturas é essencial, visto que os dados que serão guardados dessa tabela, serão responsáveis por gerar o IMC do usuário.

Consta que a tabela usuários é necessária, pois sem ela, não tem-se o acesso aos dados cadastrais das pessoas que utilizarão do sistema, e os dados dessas não seria armazenado em lugar nenhum.

Ao observar o requisito referente ao Diário de Bordo, faz-se obrigatório a sua aparição como tabela no banco, sendo que é o requisito principal para este módulo, sem ele o usuário não iria conseguir informar suas refeições diárias, o total de caloria de cada refeição (Café da manhã; Lanche da manhã; Almoço; Lanche da tarde; Café da tarde; Jantar; Lanche da noite).

Observa-se que é preciso ter uma tabela que guarde todas as informações dos alimentos que os usuários redigir sobre o diário de bordo, portanto cria-se a tabela Alimentos, para facilitar o acumulo desses dados, tais como: "Carboidrato; Proteína; Gordura Total; Gordura Saturada; Gordura Trans; Sódio; Fibra.

Visto que é importante ter uma tabela para guardar a informação de alimento favorito que o usuário digitar, decide-se criar essa tabela, que contém só o código, pois as outras informações estão nas tabelas vizinhas que estão interligadas com a Alimentos-Favoritos.

A tabela DB-Alimentos surgiu da necessidade de expressar as porções dos alimentos e o total de caloria das mesmas.

E por sim, foi emprestada uma tabela do módulo 7, de plano alimentar, em que precisava mostrar as calorias totais desse plano.

2.2.2 Produzir o Modelo Conceitual

Subsequente, será apresentado o Modelo Conceitual do módulo de Diário de Bordo Nutricional, exemplificando sua função.

A partir do documento de requisitos, consta-se alguns quesitos essenciais para que haja uma entidade capaz de armazenar as informações inseridas pelo usuário, portanto, observa-se que os seguintes requisitos: Pesos e alturas; usuários; diário de bordo; alimentos favoritos; alimentos; plano alimentar (do módulo 7).

Ademias, a tabela pesos e alturas, tem como quatro atributos, sendo um deles como chave primária, o mais importante atributo dessa entidade. Na ligação de duas tabelas, tem-se o trigrama,

que são as três letras mais representativas de cada entidade, por isso nessa tabela, p trigrama é PEA (Pe de pesos e A de altura)

Outrossim, os atributos correspondentes desta tabela são: pea_codigo (onde traz referência a tabela que ele está contido); pea_peso (é onde vai armazenar o valor do peso do usuário); pea_altura (onde guardará a altura inserida pelo usuário) e pea_data_hora_cadastro (é onde irá acumular as informações de data e hora que o usuário modificar seus dados no sistema).

Não obstante, a entidade usuários, foi incorporado junto com o Módulo de Usuários, tendo em vista que era necessário ter alguns atributos pertencentes ao módulo de diário de bordo, e é por meio dessa tabela que os dois módulos fazem ligações. São eles: usu_codigo (em que este atributo é a chave primária, contendo as principais informações da tabela); usu_altura (para guardar a altura de cada usuário); usu_avisos (para armazenar avisos que o usuário possa querer receber em seu e-mail); usu_endereço (onde contém as informações referentes ao endereço do usuário); usu_genero (gênero do usuário "masculino ou feminino"); usu_foto (guarda a foto do perfil do usuário); usu_tipo (armazena a informação de qual usuário está acessando o sistema, um administrador, nutricionista ou educador físico); usu_email (guarda o endereço de e-mail do usuário); usu_data_nascimento (arquiva a data de nascimento do usuário); usu_nome (guarda o nome do ussuário); usu_telefone (armazena o telefone de quem for cadastrado); usu_cpf (guarda o cadastro de pessoa física); usu_peso (armazena o peso o usuário); usu_senha (guarda a senha do usuário). O trigrama, dessa entidade, é USU de usuários.

Além disso, tem-se a entidade Diarios_bordo, sendo essa a tabela mais importante do módulo, pois armazena as informações do diário alimentar dos usuários. O trigrama desta tabela é DIB (Di de diário e B de bordo), as três letras, mais representativas. Os atributos são: dib_codigo (guarda o código para buscar as informações da tabela); dib_data_criacao (armazenando a data de criação do diário de bordo); dib_total_cafe_manha, dib_total_lanche_manha, dib_total_almoco, dib_total_lanche_tarde, dib_total_cafe_tarde, dib_total_jantar e dib_total_lanche_noite (demonstram as calorias totais de refeição), dib_total_dia(é o total de calorias durante o dia todo).

Além do mais, a tabela Alimentos, tem seu trigrama definido como: Ali, as três letras principais. Seus atributos são: ali_codigo (onde mostra as informações primordiais da tabela); ali_calorias (manifesta as calorias de cada alimento ingerido); ali_carboidratos (o total de carboidratos nos alimentos); ali_nome (o nome do alimento); ali_peso (o peso dos alimentos); ali_gordura_trans (a quantidade de gordura trans em cada alimento); ali_gordura_total (a quantidade de gordura de cada alimento); ali_quantidade (quantia de cada alimento); ali_porcao (é a porção do alimento); ali_gordura_saturada (quantia de gordura saturada); ali_proteinas (quantidade

de proteínas do aliemento); ali_sodio e ali_fibras (são respectivamente quantidade total de sódio e de fibras).

Desse modo, o que era para representar a ação do relacionamento (apresentado pelo losango), tornou-se uma entidade, pois ele é uma ligação entre duas entidades, isso no modelo MER. Quando este é convertido para o modelo físico, é o modelo relacional que possui apenas tabelas, então o que era a ligação também tem que se tornar tabela, e as linhas, que eram os relacionamentos são as restrições no modelo físico. Há, portanto, a entidade Db_alimentos, que é a junção da entidade Diário de bordo (trigrama db) e alimentos da tabela alimentos.

Dessarte, a entidade Db-alimentos, tem como atributos: dba_codigo (onde passa todas as informações dessa tabela); dba_cod_refeicao (em que será informado o código da refeição); dba_porcao_inteira (informa a porção inteira do alimento); dba_porcao_fracionada (informa a porção fracionada do mesmo); dba_horario (indica o horário que a pessoa se cadastrou o alimento) e dba_total_caloria (o montante de calorias).

A tabela Plano_alimentas_Mod7, foi implementa no banco através de outro módulo "Plano alimentar/ Cardápio" para que pudesse ser implementado os atributos do módulo Diário de Bordo, fazendo uma junção entre os dois módulos.

Por conseguinte, o trigrama dessa tabela é Pla ("pl" de plano e "a" de alimentos). Os atributos dessa entidade são: pla_codigo (advertindo as informações importantes dessa tabela) e pla_calorias_totais_plano (onde são apresentadas as calorias totais por plano alimentar).

E por fim, o relacionamento das entidades "usuários" e "alimentos" resulta em uma nova entidade chamada alimentos_favoritos, cujo o trigrama é alf ("al" de alimentos e "f" de favoritos), o único atributo é alf_codigo.

Figura 14 - Modelo Conceitual do Módulo Diário de Bordo.

2.2.3 Elaborar o modelo lógico

Posteriormente, será exposto o modelo relacional do módulo, como também suas aplicações.

A partir do modelo conceitual, é possível por meio de um programa BrModelo converter o modelo conceitual do relacional.

Além do mais, as chaves primárias são representadas pelo desenho da chave dourada, são elas: pea_codigo, da tabela pesos e alturas; usu_codigo, da tabela usuários; alf_codifo da tabela alimentos favoritos; ali_codigo, da tabela alimentos; dba_codigo, da tabela db alimentos; dbb_codigo da tabela diário de bordo; pla_codigo, da tabela plano alimentar.

Ademias, as chaves estrangeiras são demonstradas pelo desenho da chave prateada, lembrando que elas são as chaves primárias de outras entidades, que quando se juntam tem-se a chave estrangeira. São elas: usu_codigo, da tabela pesos e alturas; ali_codigo e usu_codigo da tabela alimentos favoritos; ali_codigo e dib_codigo da tabela db alimentos; usu_codigo da entidade diário de bordo; e usu_codigo da tabela plano alimentar.

É feito também o detalhamento das tabelas e relacionamentos, descrevendo o tipo, tamanho e obrigatoriedade. Para que assim, quando passado para o modelo físico, já estar exemplificado. Nota-se que para os tipos, tem-se: datetime (que armazenará a data e hora); decimal (só é permitido números decimais); integer (números inteiros); varchar (somente palavras); date (data); time (hora);

Figura 15 - Modelo Relacional do Diário de Bordo.

2.2.4 Elaborar Modelo Físico

A posteriori do modelo lógico finalizado, é a vez de o modelo físico ser elaborado, com isso, utiliza-se o sistema Mysql para auxiliar a criação do mesmo. Ademais, nesse estágio da produção do banco, é definido detalhes técnicos da implementação do banco de dados, como exemplo a forma como os dados serão armazenados.

O comando que inicia uma tabela é o create table. Um nome é estabelecido para cada atributo da relação, além de seu tipo, tamanho e obrigatoriedade. As restrições "not null", expressa que o atributo deve ter preenchimento obrigatório, caso contrário poderá admitir valor nulo. O termo "Unique" garante que o conteúdo da coluna assuma um valor diferente para cada linha da tabela, além de poder existir vários. Já o outro termo "Primary Key", é único por tabela, e sempre deve ser "not null", impõe exclusividade nas linhas. A "Foreign Key" é denominada chave estrangeira, e impõe integridade, é definida como um conjunto de atributos. Se for necessário que um atributo tenha um valor fixo, é utilizada a expressão "Auto_Increment". E a "references", é para referenciar de onde veio a chave estrangeira. Por fim, o comando "Alter Table" permite que o usuário inclua novos atributos em uma nova tabela.

A tabela 4 apresenta o modelo físico.

Tabela 4 - Modelo Físico Diário de Bordo.

```
CREATE DATABASE IF NOT EXISTS DIARIO BORDO;
USE DIARIO_BORDO;
CREATE TABLE IF NOT EXISTS ALIMENTOS (
ALI_PORCAO DECIMAL (10,2) NOT NULL,
ALI_QUANTIDADE DECIMAL (10,2) NOT NULL,
ALI_GORDURA_TOTAL DECIMAL (10,2) NOT NULL,
ALI_GORDURA_SATURADA DECIMAL (10,2) NOT NULL,
ALI GORDURA TRANS DECIMAL (10,2) UNIQUE,
ALI_FIBRAS DECIMAL (10,2) UNIQUE,
ALI_SODIO DECIMAL (10,2) NOT NULL,
ALI_PROTEINAS DECIMAL (10,2) NOT NULL,
ALI_CODIGO INTEGER AUTO_INCREMENT PRIMARY KEY,
ALI_CARBOIDRATOS DECIMAL (10,2) NOT NULL,
ALI_CALORICAS DECIMAL (10,2) NOT NULL,
ALI_NOME VARCHAR(30) NOT NULL,
ALI_PESO DECIMAL (10,2) NOT NULL
);
CREATE TABLE IF NOT EXISTS DIARIOS_BORDO (
DIB_TOTAL_LANCHE_NOITE DECIMAL (10,2) NOT NULL,
DIB_TOTAL_JANTAR DECIMAL (10,2) NOT NULL,
```

```
DIB_TOTAL_CAFE_TARDE DECIMAL (10,2) NOT NULL,
DIB_TOTAL_LANCHE_TARDE DECIMAL (10,2) NOT NULL,
DIB_TOTAL_ALMOCO DECIMAL (10,2) NOT NULL,
DIB_DATA_CRIACAO DATETIME NOT NULL,
DIB_TOTAL_CAFE_MANHA DECIMAL (10,2) NOT NULL,
DIB CODIGO INTEGER AUTO INCREMENT PRIMARY KEY,
DIB_TOTAL_LANCHE_MANHA DECIMAL (10,2) NOT NULL,
DIB TOTAL_DIA DECIMAL (10,2) NOT NULL,
USU_CODIGO INTEGER NOT NULL
);
CREATE TABLE IF NOT EXISTS USUARIOS (
USU NOME VARCHAR(100) NOT NULL,
USU_DATA_NASCIMENTO DATE NOT NULL,
USU_EMAIL VARCHAR (255) NOT NULL,
USU_TIPO VARCHAR (30) NOT NULL,
USU_FOTO VARCHAR (30) NOT NULL,
USU_ENDERECO VARCHAR (100) NOT NULL,
USU ALTURA DECIMAL (10,2) NOT NULL,
USU_GENERO VARCHAR (30) NOT NULL,
USU_AVISOS VARCHAR (30) NOT NULL,
USU_SENHA VARCHAR (50) NOT NULL,
USU PESO DECIMAL (30) NOT NULL,
USU_CPF VARCHAR (15) UNIQUE,
USU_TELEFONE VARCHAR (20) NOT NULL,
USU_CODIGO INTEGER AUTO_INCREMENT PRIMARY KEY
);
CREATE TABLE IF NOT EXISTS DB_ALIMENTOS (
DBA TOTAL CALORIA DECIMAL (10,2) NOT NULL,
DBA_CODIGO INTEGER AUTO_INCREMENT PRIMARY KEY,
DBA_COD_REFEICAO INTEGER NOT NULL,
DBA_PORCAO_INTEIRA INTEGER NOT NULL,
DBA_PORCAO_FRACIONADA DECIMAL (10,2) NOT NULL,
DBA_HORARIO TIME NOT NULL,
ALI_CODIGO INTEGER NOT NULL,
DIB_CODIGO INTEGER NOT NULL,
FOREIGN KEY(ALI_CODIGO) REFERENCES ALIMENTOS
(ALI_CODIGO),
FOREIGN KEY(DIB_CODIGO) REFERENCES DIARIOS_BORDO
(DIB_CODIGO)
);
CREATE TABLE IF NOT EXISTS ALIMENTOS_FAVORITOS (
ALF_CODIGO INTEGER AUTO_INCREMENT PRIMARY KEY,
```

```
ALI_CODIGO INTEGER NOT NULL,
USU CODIGO INTEGER NOT NULL,
FOREIGN KEY(ALI_CODIGO) REFERENCES ALIMENTOS
(ALI CODIGO).
FOREIGN KEY(USU_CODIGO) REFERENCES USUARIOS
(USU CODIGO)
);
CREATE TABLE IF NOT EXISTS PESOS_ALTURAS (
PEA_DATA_HORA_CADASTRO DATETIME NOT NULL,
PEA_ALTURA DECIMAL (10,2) NOT NULL,
PEA_PESO DECIMAL (10,2) NOT NULL,
PEA CODIGO INTEGER AUTO INCREMENT PRIMARY KEY,
USU_CODIGO INTEGER NOT NULL,
FOREIGN KEY(USU_CODIGO) REFERENCES USUARIOS
(USU_CODIGO)
);
CREATE TABLE IF NOT EXISTS PLANO_ALIMENTAR_MOD7
PLA_CODIGO INTEGER AUTO_INCREMENT PRIMARY KEY,
PLA_CALORIAS_TOTAIS_PLANO DECIMAL (10,2) NOT NULL,
USU CODIGO INTEGER NOT NULL,
FOREIGN KEY(USU_CODIGO) REFERENCES USUARIOS
(USU CODIGO)
ALTER TABLE DIARIOS_BORDO ADD FOREIGN
KEY(USU_CODIGO) REFERENCES USUARIOS (USU_CODIGO);
```

2.2.5 Dicionário de Dados

É imprescindível um documento com todas as explicações dos atributos de cada tabela, contendo breves explicações e organiza os elementos de dados pertinentes ao sistema.

Para tal, tem-se uma tabela dividida em três partes, sendo elas: atributo; domínio e descrição. Além de ter um campo para o nome da entidade referida.

No âmbito de atributos, coloca-se o nome do atributo que será explicado, logo em seguida o seu domínio que é o tipo de atributo juntamente com seu tamanho, e por fim a descrição que o momento de detalhar a serventia do atributo.

Tabela 5 - Modelo físico entidade diarios_bordo.

Entidade: DIARIOS_BORDO (DIB)		
Atributo	Domínio (Tamanho)	Descrição

DIB_CODIGO	INTEGER	Código do Diário de Bordo. Chave primária da Tabela.
DIB_DATA_CRIACAO	DATETIME	Data de criação do Diário de Bordo.
DIB_TOTAL_CAFE_MANHA	DECIMAL (10,2)	Totais de calorias consumidas no Café da Manhã.
DIB_TOTAL_LANCHE_MANHA	DECIMAL (10,2)	Totais de calorias consumidas no Lanche da Manhã.
DIB_TOTAL_ALMOCO	DECIMAL (10,2)	Totais de calorias consumidas no Almoço.
DIB_TOTAL_LANCHE_TARDE	DECIMAL (10,2)	Totais de calorias consumidas no Lanche da Tarde.
DIB_TOTAL_CAFE_TARDE	DECIMAL (10,2)	Totais de calorias consumidas no Café da Tarde.
DIB_TOTAL_JANTAR	DECIMAL (10,2)	Totais de calorias consumidas no Jantar.
DIB_TOTAL_LANCHE_NOITE	DECIMAL (10,2)	Totais de calorias consumidas no Lanche da Noite.
DIB_TOTAL	DECIMAL (10,2)	Total de calorias consumidas referente a um dia de alimentação (Uma soma de cada um dos atributos das refeições).

Tabela 6 - Modelo físico entidade db_alimentos.

Entidade: DB_ALIMENTOS (DBA)				
Atributo	Domínio (Tamanho)	Descrição		
DBA_CODIGO	INTEGER	Código do Relacionamento entre as Entidades do Diario de Bordo e Alimentos. Chave primária da Tabela.		
DBA_COD_REFEICAO	INTEGER	Código referente ao tipo da refeição (1- Café da Manhã; 2- Lanche da Manhã; 3- Almoço).		
DBA_PORCAO_INTEIRA	INTEGER	Parte inteira da porção.		
DBA_PORCAO_FRACIONADA	DECIMAL (10,2)	Parte fracionada da porção.		
DBA_HORARIO	DATETIME	Horário referente a refeição.		
DBA_TOTAL_CALORIA	DECIMAL (10,2)	Total de calorias por refeição.		

Tabela 7 - Modelo físico entidade alimentos.

Entidade: ALIMENTOS (ALI)				
Atributo	Domínio (Tamanho)	Descrição		
ALI_FIBRAS	DECIMAL (10,2)	A quantidade de fibras encontradas em cada porção do alimento que foi cadastrado.		
ALI_SODIO	DECIMAL (10,2)	A quantidade de sódio encontrada em cada porção do alimento que foi cadastrado.		
ALI_PROTEINAS	DECIMAL (10,2)	A quantidade de proteinas encontradas em cada porção do alimento que foi cadastrado.		
ALI_GORDURAS_SATURADAS	DECIMAL (10,2)	O valor de gordura saturada encontrada em cada porção do alimento que foi cadastrado.		

ALI_CODIGO	INTEGER	Código da tabela de ALIMENTOS. Chave primaria da tabela.
ALI_PORCAO	DECIMAL (10,2)	A quantidade de nutrientes em cada porção que foi cadastrado.
ALI_GORDURA_TOTAL	DECIMAL (10,2)	O valor de gordura total encontrada em cada porção do alimento que foi cadastrado.
ALI_QUANTIDADE	DECIMAL (10,2)	Quantidade selecionada do alimento desejado.
ALI_CALORICAS	DECIMAL (10,2)	A quantidade de calorias encontradas em cada porção do alimento que foi cadastrado.
ALI_CARBOIDRATOS	DECIMAL (10,2)	O valor de de carboidratos encontrados em cada porção do alimento que foi cadastrado.
ALI_NOME	VARCHAR (100)	Nome do alimento que foi cadastrado.
ALI_PESO	DECIMAL (10,2)	Peso do alimento selecionado.
ALI_GORDURA_TRANS	DECIMAL (10,2)	O valor de gordura trans encontrada em cada porção do alimento que foi cadastrado.

Tabela 8 - Modelo físico entidade alimentos_favoritos.

Entidade: ALIMENTOS_FAVORITOS (ALF)		
Atributo	Domínio (Tamanho)	Descrição
ALF_CODIGO	INTEGER	Código da entidade dos Alimentos Favoritos. Chave primária da Tabela.

Tabela 9 - Modelo físico entidade usuarios.

Entidade: USUARIOS (USU)		
Atributo	Domínio(Tamanho)	Descrição
USU_SENHA	VARCHAR (50)	Senha do usuário, incluindo Educador Físico, Nutricionistas.
USU_DATA_CADASTRO_ADM	DATE	Data de cadastro do Adminsitrador.
USU_DATA_NASCIMENTO	DATE	Data de nascimento do Usuário, incluindo Educador Físico e Nutrocionistas
USU_TELEFONE	VARCHAR (20)	Telefone do Usuário, incluindo Educador Físico e Nutricionistas para contato.
USU_TIPO	INTEGER	Determina o tipo de usuário cadastrado no banco: Tipo 1 - Usuário, Tipo 2 - Nutricionista e Tipo 3 - Educador Físico.
USU_CPF	VARCHAR (15)	CPF do Usuário, incluindo Educador Físico e Nutricionistas
USU_FOTO	VARCHAR (100)	Foto do usuário no portal, incluindo Educador Físico e Nutricionistas. A foto será salva em pasta no servidor, o campo apenas salva seu caminho.
USU_EMAIL	VARCHAR (255)	E-mail do Usuário, incluindo Educador Físico e Nutricionistas

USU_ENDERECO	VARCHAR (100)	Endereço do Usuário, incluindo Educador Físico e Nutricionistas.
USU_ID	INTEGER	ID é a identificação do Usuário, incluindo Educador Físico e Nutricionistas. Chave primária da tabela.
USU_GENERO	INTEGER	Gênero do Usuário, incluindo Educador Físico e Nutricionistas. Tipo 1 - Masculino, Tipo 2 - Feminino e Tipo 3 - Não Especificado.
USU_NOME	VARCHAR (100)	Nome do Usuário, incluindo Educador Físico e Nutricionistas.
USU_AVISOS	INTEGER	Determina se o Usuário deseja receber ou não avisos do portal no e-mail. Essa opção é selecionada unicamente pelo Usuário. Tipo 1 - Sim e Tipo 2 - Não.

Tabela 10 - Modelo físico entidade pesos_alturas.

Entidade: PESOS_ALTURAS (PEA)		
Atributo	Domínio(Tamanho)	Descrição
PEA_CODIGO	INTEGER	CODIGO é a identificação de determinado Peso e Altura cadastrados.
PEA_PESO	DECIMAL (10,2)	Peso do Usuário.
PEA_ALTURA	DECIMAL (10,2)	Altura do Usuário.
PEA_DATA_HORA_CADASTRO	DATETIME	Data e a hora do cadastro.

Tabela 11 - Modelo físico entidade Plano_alimentar_mod07.

Entidade: PLANO_ALIMENTAR_MOD07 (PLA)		
Atributo	Domínio (Tamanho)	Descrição
PLA_CODIGO	INTEGER	Código do Plano Alimentar do Módulo 07. Chave primária da Tabela.
PLA_CALORIAS_TOTAIS_PLANO	DECIMAL (10,2)	Calorias totais referente ao Plano Alimentar do Módulo 07.

3 Conclusões e Recomendações

Este estudo deu ênfase no componente de banco de dados, mais especificamente a análise de banco de dados do modelo Diário de Bordo Nutricional do projeto Mais Saúde São João. É sabido que o banco é uma coleção de dados e informações que permite o usuário compartilhar o seu diário alimentar com o nutricionista e com outros indivíduos cadastrados.

Através da entidade "Diário de Bordo", em conjunto com as outras entidades até mesmo de módulos distintos são possíveis garantir o partilhamento do registro diário do usuário. Os administradores devem ter acesso ao banco de dados, contudo cada usuário deve ter acesso somente o que lhe é permitido, para assim não ser prejudicada a segurança do banco.

A fim de efetivar o propósito de produzir por meio de um sistema o compartilhamento de informações com o usuário, o nutricionista e a população cadastrada, foi fundamental primeiramente identificar os principais requisitos e, posteriormente, elaborar os modelos: conceitual; lógico e físico, além do dicionário de dados para auxiliar na análise do banco.

Outrossim, já concluído os objetivos específicos, observa-se que mesmo com a quantidade de tabelas, não houve falha na versão final, em nenhuma das sete entidades. Portanto, com todas as entidades funcionando perfeitamente, ocorreu a integração das setes tabelas com o restante dos nove módulos, formando um único banco de dados.

No desenvolvimento dessa pesquisa foi utilizado a ferramenta BrModelo, ao longo de seu uso a mesma teve uma atualização e com isso prejudicou o trabalho fazendo perder algumas partes do projeto do banco, sendo ideal ter pesquisado uma ferramenta mais atual.

O fato do projeto estar em uma matéria em conjunto com outra faz com que fique muitas atividades ao mesmo tempo, dificultando a conciliação de todas as outras obrigações a serem cumpridas. Todavia, mesmo sendo em conjunto, um importante ponto positivo a destacar, é que teve o auxílio do professor servindo como um orientador. Contudo, para ser implementado em um ambiente empresarial, é sugerido uma readaptação, pois o projeto foi adequado para um ambiente acadêmico.

4 Referências Bibliográficas

[1] ROMANO, B.L. Termo de abertura do projeto Mais Saúde São João. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Câmpus São João da Boa Vista, 2018.

Disponível em: <svn.ifsp.edu.br/pds2018/Termo.pdf> Acesso em: 06/08/2018.

- [2] BRASIL. IBGE. Instituto Brasileiro de Geografia e Estatística. **São João da Boa Vista:** Instituto Brasileiro de Geografia e Estatística. 2018. Disponível em: https://www.ibge.gov.br/estatisticas-novoportal/por-cidade-estado-estatisticas.html?t=destaques&c=3549102. Acesso em: 16 ago. 2018.
- [4] REZENDE, Ricardo. **Conceitos Fundamentais de Banco de Dados:** Conheça nesta matéria os conceitos fundamentais sobre banco de dados.. 2018. Disponível em: https://www.ibge.gov.br/estatisticas-novoportal/por-cidade-estado-estatisticas.html?t=destaques&c=3549102. Acesso em: 20 ago. 2018.
- [5] EXPLORADOR, O. **A primeira lista telefônica no Brasil.** 2009. Disponível em: http://www.oexplorador.com.br/a-primeira-lista-telefonica-no-brasil/>. Acesso em: 17 set. 2018.
- [6] SILVA, Débora. **Banco de dados:** Um banco de dados é uma estrutura bem organizada de dados que permite a extração de informações. Saiba mais sobre o assunto!. 2018. Disponível em: https://www.estudopratico.com.br/banco-de-dados/>. Acesso em: 24 set. 2018.
- [7] VERAS, Manoel. **Dados, Informação e Conhecimento.** 2015. Disponível em: http://manoelveras.com.br/blog/?p=108>. Acesso em: 24 set. 2018.
- [8] PEDRO.CCM. **Bancos de dados ES FR BR Faça uma pergunta.** 2017. Disponível em: https://br.ccm.net/contents/65-bancos-de-dados. Acesso em: 24 set. 2018.
- [9] REZENDE, Ricardo. **Conceitos Fundamentais de Banco de Dados:** Conheça nesta matéria os conceitos fundamentais sobre banco de dados.. 2006. Disponível em: https://www.devmedia.com.br/conceitos-fundamentais-de-banco-de-dados/1649. Acesso em: 24 set. 2018.
- [10] PISA, Pedro. **O que é e como usar o MySQL?** 2012. Disponível em: https://www.techtudo.com.br/artigos/noticia/2012/04/o-que-e-e-como-usar-o-mysql.html. Acesso em: 24 set. 2018.
- [11] DIGITAL, Professor. **Qual a diferença entre Linguagem SQL, SQL Server e MySQL.** Disponível em: https://www.luis.blog.br/qual-a-diferenca-entre-linguagem-sql-sql-server-e-mysql/>. Acesso em: 24 set. 2018.

- [12] LOPES, Bergson. **Modelo Conceitual de Dados Aprenda a utilizar os principais mecanismos de abstração.** 2016. Disponível em: . Acesso em: 24 set. 2018.
- [13] JOEL. Modelo Entidade Relacionamento (MER) e Diagrama Entidade-Relacionamento (DER). 2014. Disponível em: https://www.devmedia.com.br/modelo-entidade-relacionamento-mer-e-diagrama-entidade-relacionamento-der/14332. Acesso em: 24 set. 2018.
- [14] BMED, Fabio. **Cardinalidade.** Disponível em: http://www.fabiobmed.com.br/cardinalidade/>. Acesso em: 24 set. 2018.
- [15] REBELO, Irla. **Modelos conceituais.** Disponível em: https://irlabr.wordpress.com/apostila-de-ihc/parte-1-ihc-na-pratica/modelos-conceituais/>. Acesso em: 24 set. 2018.
- [16] SPACEPROGRAMMER. Introdução ao Modelo de Dados e seus níveis de abstração. Disponível em: http://spaceprogrammer.com/bd/introducao-ao-modelo-de-dados-e-seus-niveis-de-abstracao/>. Acesso em: 24 set. 2018.
- [17] MACORATTI, José Carlos. **Conceitos Básicos de modelagem de dados.** Disponível em: http://www.macoratti.net/cbmd1.htm>. Acesso em: 24 set. 2018.
- [18] PLAYER, Slide. **Curso Técnico em Informática.** Disponível em: https://slideplayer.com.br/slide/2867411/>. Acesso em: 24 set. 2018.
- [19] PRATES, Wlademir Ribeiro; HOPPEN, Joni. **O que é um dicionário de dados de Data Analytics.** 2017. Disponível em: https://www.aquare.la/o-que-e-um-dicionario-de-dados-de-data-analytics/. Acesso em: 24 set. 2018.