Задача 39. Нека $n \geq 3$ и $U = \{u_1, u_2, \dots, u_n\}$. Да се намери броя на елементите на множеството T, където T е равно на:

github.com/andy489

- а) $\{(A,B)|A,B\subseteq U,A,B\in\rho(U)\}$, където с $\rho(X)$ бележим степенното множество на множеството X;
- b) $\{(A, B) | A, B \subseteq U, |A| = 1\};$
- c) $\{(A, B) | A, B \subseteq U, |A| = k, |B| = l; k, l \le n\};$
- d) $\{(A,B)|A,B\subseteq U,A\cap B=\emptyset\}$;
- e) $\{(A,B) | A \subseteq B \subseteq U\}$;
- f) $\{(A,B) | A \cup B = U\}$;
- g) $\{(A, B) | A, B \subseteq U, A \cup B = U \& |A \cap B| \ge 2\};$
- h) $\{(A,B) | B \subseteq A \subseteq U \& |U \setminus (A \setminus B)| \ge 2\}$
- i) $\{(A, B) | A \subseteq B \subseteq U \& |A \cap B| \ge 2\};$
- $(A, B) | A \subseteq B \subseteq U \& |B \setminus A| \ge 2;$
- k) $\{(A,B)|A,B \subset U \& |A \cap B| < 2\}.$

Решение: (∧ - логическо И, ∨ - логическо ИЛИ)

- а) Тъй като броя на елементите на степенното множество на дадено изходно множество е равен на две на степен броя на елементите на изходното множество, то $|\rho(U)| = 2^n$. В случая ние избираме два елемента от ho(U) като редът има значение и са възможни повторения. $|T| = |\rho(U)| \cdot |\rho(U)| = (2^n)^2 = 4^n$.
- b) Начините, по които може да изберем A са равни на броя на начините, по които може да изберем един елемент от U, което е $C_n^1 = \binom{n}{1} = n$. Начините, по които може да изберем множеството B са 2^n (за всеки елемент от U има два варианта - или е в B или не е в B). Окончателно $|T| = C_n^1 2^n = n 2^n$.
- c) Начините, по които може да изберем множеството A са $C_n^k = \binom{n}{k}$, а начините по които може да изберем множеството B са $C_n^l = \binom{n}{l}$. Следователно $|T| = C_n^k C_n^l = \binom{n}{k} \binom{n}{l} = \frac{(n!)^2}{k!(n-k)!l!(n-l)!}.$
- d) Множествата A и B са непресичащи се и са подмножества на U, както е показано на

картинката по-горе. Начините, по които може да изберем множеството A са $C_k^n = \binom{n}{k}$, където $k \le n$ са броя на елементите на множеството A, т.е. |A| = k. За

множеството B ще избираме от останалите n-k елемента от множеството U, т.е. това са $|\rho(U \setminus A)| = 2^{n-k}$ начина, по които може да го изберем. Следователно ще имаме

общо
$$\sum_{k=0}^n \binom{n}{k} 2^{n-k} = \sum_{k=0}^n \binom{n}{k} .1^k.2^{n-k} = (1+2)^n = 3^n$$
 възможни избора. Тук използвахме бинома на Нютон: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ за $0 \le k \le n, \ x=1, \ y=2.$ Окончателно, $|T|=3^n.$

За следващите подточки ще използваме следното фундаментално разбиване:

На всяка наредена двойка (A, B) съпоставяме думата α .

 $(A,B)\longmapsto lpha=a_1a_2\dots a_n$. Конструираме следната азбука: $\sum=\{XY,X\overline{Y},\overline{X}Y,\overline{X}\overline{Y}\}$, където за всяка буква $a_k,k\leq n$ имаме:

$$a_k = \begin{cases} XY, \ ako \ u_k \in A, \ u_k \in B, \\ X\overline{Y}, \ ako \ u_k \in A, \ u_k \notin B, \\ \overline{X}Y, \ ako \ u_k \notin A, \ u_k \in B, \\ \overline{X}\overline{Y}, \ ako \ u_k \notin A, \ u_k \notin B \end{cases}$$

Съществува биекция между множеството на думите α и множеството на наредените двойки (A,B) (принцип на взаимното еднозначно съпоставяне). Всяка дума α ще е над азбуката \sum .

e)
$$T=\{(A,B)\,|\,A\subseteq B\subseteq U\}.$$
 $(A,B)\in T\Leftrightarrow A\subseteq B\subseteq U\Leftrightarrow (\forall_{k\leq n})[u_k\in A\Rightarrow u_k\in B]$ $\Leftrightarrow (\forall_{k\leq n})\neg[u_k\in A\land u_k\notin B]\Leftrightarrow (\forall_{k\leq n})\neg[a_k=X\overline{Y}]$ $\Leftrightarrow X\overline{Y}$ не участва в думата $\alpha_{(A,B)}$, т.е. $\alpha_{(A,B)}$ е дума над азбука от три типа букви $\sum \setminus \{X\overline{Y}\}\Rightarrow |T|=3^n.$

Чрез същия подход може да се върнем на подточка d) и да направим следното:

$$T = \{ (A, B) \mid A, B \in U \land A \cup B = \emptyset \}.$$

$$(A,B) \in T \Rightarrow A,B \subseteq U \land A \cup B = \emptyset$$

$$\Leftrightarrow (\forall_{k \leq n})[(u_k \in A \land u_k \not\in B) \lor (u_k \not\in A \land u_k \in B) \lor (u_k \not\in A \land u_k \not\in B)]$$

$$\Leftrightarrow (\forall_{k \le n})[a_k = X\overline{Y} \,|\, \overline{X}Y \,|\, \overline{X}\overline{Y}]$$

$$\Leftrightarrow (\forall_{k \leq n}) \neg [a_k = XY]$$

 $\Leftrightarrow XY$ не участва в думата $\alpha_{(A,B)}$, т.е. $\alpha_{(A,B)}$ е дума над азбука от три типа букви $\sum \{XY\} \Rightarrow |T| = 3^n$. Именно за това този подход е фундаментален.

f)
$$T=\{(A,B)\,|A\cup B=U\}$$
 $(A,B)\in T\Leftrightarrow A\cup B=U\Leftrightarrow (\forall_{k\leq n})[u_k\in A\vee u_k\in B]$ $\Leftrightarrow (\forall_{k\leq n})\neq [u_k\not\in A\wedge u_k\not\in B]\Leftrightarrow (\forall_{k\leq n})[a_k\neq \overline{X}\overline{Y}]$ \Leftrightarrow в $\alpha_{(A,B)}$ не се среща буквата $\overline{X}\overline{Y}$ от азбуката \sum . $|T|=|\{\alpha\,|\,\alpha$ е дума над \sum , в която не се среща $\overline{X}\overline{Y}\}|=|\{\alpha\,|\,\alpha$ е дума над азбука от три типа букви $\{XY,X\overline{Y},\overline{X}Y\}\}|=3^n$.

g) Нека $S = \{(A, B) | A, B \subseteq U, A \cup B = U\}$ и $K = \{(A, B) | A, B \subseteq U, A \cup B = U \land |A \cap B| < 2\}.$

Имаме, че $S = T \cup K$; $T, K \subseteq S$ и $T \cup K = \emptyset$. Следователно T и K са разбиване на S и от принципа на събирането имаме, че |S| = |T| + |K| или |T| = |S| - |K|.

S : От f) знаем, че $|S| = 3^n$.

$$K_0$$
 K_1

 $K: \ K = \{ \underbrace{(A,B) \, | A \cup B = U \wedge | A \cap B | = 0} \} \cup \{ \underbrace{(A,B) \, | A \cup B = U \wedge | A \cap B | = 1} \}.$ Тъй като $K_0, K_1 \subseteq K, K_0 \cap K_1 = \emptyset$ и $K = K_0 \cup K_1$, то K_0 и K_1 са разбиване на $\Rightarrow |K| = |K_0| + |K_1|$.

 $K_0: K_0 = \{(A, B) | A \cup B = U, A \cap B = \emptyset\} = \{(A, B) | B = U \setminus A\} = \emptyset$ $=\{(A,U\backslash A)\,|A\subseteq U\}\Leftrightarrow$ в $lpha_{(A,B)}=lpha_{(A,U\backslash A)}$ не се срещат букви от типа $\overline{X}\,\overline{Y}$ и XY от \sum . Следователно $|K_0| = 2^n$.

 $\overline{K_1}: \ K_1=\{(A,B)\,|\, A\cup B=U,\, |A\cap B|=1\}\Rightarrow \overline{X}\,\overline{Y}$ не участва в $lpha_{(A,B)}$ и XY се среща точно веднъж в $\alpha_{(A,B)}$.

 $extstyle \sim$ избираме позиция за буквата XY

$$|K_1| = \binom{n}{1} \cdot 2^{n-1} = n2^{n-1}$$

 $|K_1| = \binom{n}{1}.2^{n-1} = n2^{n-1}.$ запълваме останалите n-1 свободни позиции с букви от типа $\overline{X}Y$ и $\overline{X}Y$ Окончателно: $|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 2^n - n2^{n-1}$.

h) Hexa $S = \{(A, B) \mid B \subseteq A \subseteq U\}$ и $K = \{(A, B) \mid B \subseteq A \subseteq U$ и $\mid U \setminus (A \setminus B) \mid < 2\}$. Имаме, че $T \cup K = S$, $T \cap K = \emptyset$ и $T, K \subseteq S$. Следователно T и K са разбиване на S и от принципа на събирането следва, че |S| = |T| + |K|, т.е. |T| = |S| - |K|. S : Аналогично на g) $\alpha_{(A,B)}$ е дума над азбуката от три типа букви $\sum \langle \overline{X}Y \Rightarrow |S| = 3^n$.

$$K: \ K = \{(A,B) \mid B \subseteq A \subseteq U \land \mid U \backslash (A \backslash B) \mid = 0\} \cup \{(A,B) \mid B \subseteq A \subseteq U \land \mid U \backslash (A \backslash B) \mid = 1\}$$

Тъй като $K_0 \cup K_1 = K, \, K_0, K_1 \subseteq K$ и $K_0 \cap K_1 = \emptyset$, то K_0 и K_1 са разбиване на $K \Rightarrow |K| = |K_0| + |K_1|$.

 $K_0: K_0 = \{(A, B) | B \subseteq A \subseteq U \land U \setminus (A \setminus B) = \emptyset\}.$

$$\begin{cases} A \backslash B \subseteq U \\ U \backslash (A \backslash B) = \emptyset \\ \Rightarrow A \backslash B = U \\ \Rightarrow A = U, A \backslash B = U, B \subseteq A \\ \Rightarrow B = \emptyset \end{cases}$$

$$K_0=\{(U,\emptyset)\},\,K_0=\binom{n}{0}=1.$$

$$K_1:\,K_1=\{(A,B)\,|\,B\subseteq A\subseteq U,\,|\,U\,\backslash(A\backslash B)\,|\,=1\};\,U\,\backslash(A\backslash B)=(U\,\backslash A)\cup B$$

$$1=|\,U\,\backslash(A\backslash B)\,|\,=\underbrace{|\,(U\,\backslash A)\backslash B\,|\,=|\,U\,\backslash A\,|\,+\,|\,B\,|\,-\,|\,(U\,\backslash A)\cap B\,|\,.}_{=0}\,$$
 Следователно има

два случая за този елемент.

I сл.) единственият елемент е в $\{U \setminus A\}$, тогава $B = \emptyset$, т.е. $|U \setminus A| = 1$ и |B| = 0. Т.е. A не съдържа този 1 елемент.

XY: 0 пъти

 $X\overline{Y}$: n-1 пъти

 $\overline{X}Y$: 0 пъти

 $\overline{X}\overline{Y}$: 1 път

$$\binom{n}{1}.1^{n-1}=n$$
 избираме позицията за $\overline{X}\overline{Y}$

II сл.) единственият елемент е в $\{B\}$, тогава $U \setminus A = \emptyset$, т.е. $|U \setminus A| = 0$ и B = 1. Т.е. $U = A \Rightarrow \overline{X}Y = 0, \overline{X}\overline{Y} = 0$.

 $|B|=1: XY, \overline{X}Y$ - участват общо точно веднъж. $B\subseteq A\Rightarrow \overline{X}Y=0.$

XY : 1 път

 $X\overline{Y}$: 0 пъти

 $\overline{X}Y: n-1$ пъти

 $\overline{X}\,\overline{Y}$: 0 пъти

$$\binom{n}{1}.1^{n-1}=n$$
 избираме позицията за XY

Окончателно от I и II сл. :

$$|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 1 - n - n = 3^n - 2n - 1.$$

і) Нека $S = \{(A,B) | A \subseteq B \subseteq U\}$ и $K = \{(A,B) | A \subseteq B \subseteq U$ и $|A \cap B| < 2\}$. Имаме, че $S = T \cup K$, $T \cap K = \emptyset$ и K, $T \subseteq S$. Следователно T и K са разбиване на S и от принципа на събирането имаме, че |S| = |T| + |K| или |T| = |S| - |K|. S: от е) знаем, че $|S| = 3^n$.

$$K:\ K=\{\underbrace{(A,B)|A\subseteq B\subseteq U\wedge |A\cap B|=0}\}\cup\{\underbrace{(A,B)|A\subseteq B\subseteq U\wedge |A\cap B|=1}_{K_1}\}$$

Тъй като $K_0, K_1 \subseteq K, K_0 \cap K_1 = \emptyset$ и $K_0 \cup K_1 = K$, то K_0 и K_1 са разбиване на $K \Rightarrow |K| = |K_0| + |K_1|$.

 $K_0:\ K_0=\{(A,B)\,|\, A\subseteq B\subseteq U\wedge A\cap B=\emptyset\}=\{(\emptyset,B)\,|\, B\subseteq U\}$

 \Rightarrow в думата $lpha_{(A,B)}$ могат да участват само буквите $\overline{X}Y$ и $\overline{X}\overline{Y}$ \Rightarrow $|K_0|=2^n$.

 $K_1: \ K_1 = \{(A,B) \, | \, A \subseteq B \subseteq U \land |A \cap B| = 1\} = \{(A,B) \, | \, A \subseteq B \subseteq U \land |A| = 1\}$

$$(A,B)\in K_1\Leftrightarrow \underbrace{A\subseteq B\subseteq U}$$
 и $\underbrace{|A|=1}$ $X\overline{Y}$ и XY участват точно веднъж в $lpha_{(A,B)}$.

избираме позицията, на която участва
$$XY$$
 $\binom{n}{1}.2^{n-1}=n2^{n-1}$

 \sim останалите n-1 позиции след XY, в които може да слагаме $\overline{X}Y, X\overline{Y}.$

Окончателно: $|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 2^n - n2^{n-1}$.

Нека $S = \{(A, B) | A \subseteq B \subseteq U \}$ и $K = \{(A, B) | A \subseteq B \subseteq U \land |B \setminus A| < 2 \}$. Имаме, че $S = T \cup K$, $T \cap K = \emptyset$ и K, $T \subseteq S$. Следователно T и K са разбиване на S и от принципа на събирането имаме, че |S| = |T| + |K| или |T| = |S| - |K|. S : от e) знаем, че $|S| = 3^n$.

$$K: \ K=\{\underbrace{(A,B)\,|A\subseteq B\subseteq U\wedge |B\backslash A|=0}\} \cup \{\underbrace{(A,B)\,|A\subseteq B\subseteq U\wedge |B\backslash A|=1}_{K_0}\}$$
 Тъй като $K_0\cup K_1=K,\ K_0,K_1\subseteq K$ и $K_0\cap K_1=\emptyset$, то K_0 и K_1 са разбиване на K и

 $|K| = |K_0| + |K_1|$.

 $K_0:\ K_0=\{(A,B)\,|\, A\subseteq B\subseteq U\wedge\,|\, B\backslash A\,|\,=0\}=\{(A,B)\,|\, A\subseteq B\subseteq U\wedge A=B\}$ \Rightarrow в думата $lpha_{(A,B)}=lpha_{(A,A)}$ участват само буквите XY и $\overline{X}\overline{Y}$, т.е. не могат да участват $X\overline{Y}$ и $\overline{X}Y$. Следователно $lpha_{(A,A)}$ е дума над азбуката съставена от два типа букви $\Rightarrow |K_0| = 2^n$.

 $K_1: K_1=\{(A,B)\,|\, A\subseteq B\subseteq U \land |B\backslash A|=1\}$, следователно в B ще има точно един елемент повече от A, т.е. в думата $lpha_{(A,B)}$ ще има точно веднъж буква от типа $\overline{X}Y$, а останалите ще са от типа XY и $\overline{X}\overline{Y}$.

разпределяме буквата от тип
$$\overline{X}Y$$

$$\binom{n}{1}.2^{n-1}=n2^{n-1}$$
 поставяме на останалите позиции букви от типа XY и $\overline{X}\overline{Y}$

Окончателно: $|T| = |S| - |K| = |S| - |K_0| - |K_1| = 3^n - 2^n - n2^{n-1}$

k) Heka $T_0 = \{(A,B) \, | \, A,B \subseteq U \wedge |A \cap B| = 0\}, \, T_1 = \{(A,B) \, | \, A,B \subseteq U \wedge |A \cap B| = 1\}$ и $T_2 = \{(A, B) | A, B \subseteq U \land |A \cap B| = 2\}.$

Имаме, че $T=T_0\cup T_1\cup T_2$ и $T_0\cap T_1=\emptyset$, $T_1\cap T_2=\emptyset$, $T_2\cap T_0=\emptyset$, $T_1,T_1,T_2\subseteq T$, следователно $|T| = |T_0| + |T_1| + |T_2|$.

 $T_0: (A,B) \in T_0 \Leftrightarrow A,B \subseteq U$ и $A \cap B = \emptyset$, което е точно d) и от нея знаем че $|T_0| = 3^n$.

 $T_1: (A,B)T_1 \Leftrightarrow A,B\subseteq U$ и $(A\cap B)=1 \Leftrightarrow$ точно един елемент е едновременно и в Aи в B. XY участва в $\alpha_{(A,B)}$!1 (точно веднъж). $|T_1| = \binom{n}{1} 3^{n-1}$.

 $T_2: \ XY$ участва два пъти в $lpha_{(A,B)}: \ |T_2| = inom{n}{2} \, 3^{n-2}.$

Окончателно:

$$|T| = |T_0| + |T_1| + |T_2| = 3^n + \binom{n}{1} 3^{n-1} + \binom{n}{2} 3^{n-2} = \sum_{i=0}^{2} \binom{n}{i} 3^{n-i}.$$