University of Oslo : Department of Informatics

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Context-Free Grammars & Parsing

Stephan Oepen & Murhaf Fares

Language Technology Group (LTG)

November 3, 2016

Overview

Last Time

- Sequence Labeling
- Dynamic programming
- Viterbi algorithm
- Forward algorithm

Overview

Last Time

- Sequence Labeling
- Dynamic programming
- Viterbi algorithm
- Forward algorithm

Today

- Grammatical structure
- Context-free grammar
- Treebanks
- Probabilistic CFGs

Recall: Ice Cream and Global Warming

Recall: Viterbi Algorithm

To find the best state sequence, maximize:

$$P(s_1 \dots s_n | o_1 \dots o_n) = P(s_1 | s_0) P(o_1 | s_1) P(s_2 | s_1) P(o_2 | s_2) \dots$$

The value we cache at each step:

$$v_i(s) = \max_{k=1}^{L} \left[v_{i-1}(k) \cdot P(s|k) \cdot P(o_i|s) \right]$$

- ► The variable $v_i(s)$ represents the maximum probability that the *i*-th state is s, given that we have seen O_1^i .
- At each step, we record backpointers showing which previous state led to the maximum probability.

Recall: Dynamic Programming

- Dynamic programming algorithms
 - solve large problems by compounding answers from smaller sub-problems
 - record sub-problem solutions for repeated use

Recall: Dynamic Programming

- Dynamic programming algorithms
 - solve large problems by compounding answers from smaller sub-problems
 - record sub-problem solutions for repeated use
- They are used for complex problems that
 - can be described recursively
 - require the same calculations over and over again

Recall: Dynamic Programming

- Dynamic programming algorithms
 - solve large problems by compounding answers from smaller sub-problems
 - record sub-problem solutions for repeated use
- They are used for complex problems that
 - can be described recursively
 - require the same calculations over and over again
- Examples:
 - Dijkstra's shortest path
 - minimum edit distance
 - longest common subsequence
 - Viterbi decoding

Η Η

Recall: Using HMMs

The HMM models the process of generating the labelled sequence. We can use this model for a number of tasks:

- \triangleright P(S,O) given S and O
- ► P(O) given O
- ► S that maximizes P(S|O) given O
- $ightharpoonup P(s_x|O)$ given O
- We learn model parameters from a set of observations.

- which string is most likely:
 - How to recognize speech vs. How to wreck a nice beach
- which tag sequence is most likely for flies like flowers:
 - NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

- ▶ which string is most likely: √
 - How to recognize speech vs. How to wreck a nice beach
- which tag sequence is most likely for flies like flowers:
 - NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

- ▶ which string is most likely: √
 - How to recognize speech vs. How to wreck a nice beach
- ▶ which tag sequence is most likely for flies like flowers: √
 - NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

- ▶ which string is most likely: √
 - How to recognize speech vs. How to wreck a nice beach
- ▶ which tag sequence is most likely for *flies like flowers*: √
 - NNS VB NNS vs. VBZ P NNS
- which syntactic structure is most likely:

From Linear Order to Hierarchical Structure

- The models we have looked at so far:
 - n-gram models (Markov chains).
 - Purely linear (sequential) and surface-oriented.
 - sequence labeling: HMMs.
 - Adds one layer of abstraction: PoS as hidden variables.
 - Still only sequential in nature.

From Linear Order to Hierarchical Structure

- The models we have looked at so far:
 - ► *n*-gram models (Markov chains).
 - Purely linear (sequential) and surface-oriented.
 - sequence labeling: HMMs.
 - Adds one layer of abstraction: PoS as hidden variables.
 - Still only sequential in nature.
- Formal grammar adds hierarchical structure.
 - In NLP, being a sub-discipline of AI, we want our programs to 'understand' natural language (on some level).
 - Finding the grammatical structure of sentences is an important step towards 'understanding'.
 - Shift focus from sequences to grammatical structures.

Why We Need Structure (1/3)

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
 - interchangeable in similar syntactic environments.
 - can be co-ordinated
 - can be moved within a sentence as a unit

Why We Need Structure (1/3)

Constituency

- Words tends to lump together into groups that behave like single units: we call them constituents.
- Constituency tests give evidence for constituent structure:
 - interchangeable in similar syntactic environments.
 - can be co-ordinated
 - can be moved within a sentence as a unit
- (4) Kim read [a very interesting book about grammar]_{NP}. Kim read [it]_{NP}.
- (5) Kim [read a book] $_{VP}$, [gave it to Sandy] $_{VP}$, and [left] $_{VP}$.
- (6) [Read the book] $_{VP}$ I really meant to this week.

Why We Need Structure (2/3)

Constituency

Constituents are theory-dependent, and are not absolute or language-independent.

Why We Need Structure (2/3)

Constituency

- Constituents are theory-dependent, and are not absolute or language-independent.
- A constituent usually has a head element, and is often named according to the type of its head:
 - ► A noun phrase (NP) has a nominal (noun-type) head:
 - (9) [a very interesting book about grammar $]_{NP}$
 - A verb phrase (VP) has a verbal head:
 - (10) [gives books to students] $_{\rm VP}$

Why We Need Structure (3/3)

Grammatical functions

► Terms such as *subject* and *object* describe the grammatical function of a constituent in a sentence.

Why We Need Structure (3/3)

Grammatical functions

- Terms such as subject and object describe the grammatical function of a constituent in a sentence.
- Agreement establishes a symmetric relationship between grammatical features.

The <u>decision</u> of the Nobel committee member<u>s</u> surprise<u>s</u> most of us.

Why would a purely linear model have problems predicting this phenomenon?

Why We Need Structure (3/3)

Grammatical functions

- Terms such as subject and object describe the grammatical function of a constituent in a sentence.
- Agreement establishes a symmetric relationship between grammatical features.

The <u>decision</u> of the Nobel committee member<u>s</u> surprises most of us.

- Why would a purely linear model have problems predicting this phenomenon?
- Verb agreement reflects the grammatical structure of the sentence, not just the sequential order of words.

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, giving us a way to:

judge or predict well-formedness

Kim was happy because _____ passed the exam.

Kim was happy because _____ final grade was an A.

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, giving us a way to:

judge or predict well-formedness

Kim was happy because _____ passed the exam.

Kim was happy because _____ final grade was an A.

make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with {chopsticks|tuna}.

Grammars: A Tool to Aid Understanding

Formal grammars describe a language, giving us a way to:

judge or predict well-formedness

Kim was happy because	passed the exam.
Kim was happy because	. final grade was an A

make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with {chopsticks|tuna}.

derive abstract representations of meaning

Kim gave Sandy a book.

Kim gave a book to Sandy.

Sandy was given a book by Kim.

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow \text{"en"}$

The Grammar of Spanish

```
S \rightarrow NP VP
VP \rightarrow V NP
VP \rightarrow VP PP
PP \rightarrow P NP
NP \rightarrow "nieve"
NP → "Juan"
NP → "Oslo"
V → "amó"
```


The Grammar of Spanish

 $S \to NP \ VP$ $VP \to V \ NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow \text{"en"}$

The Grammar of Spanish

$S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow \text{"en"}$

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow$ "en"

(Juan amó nieve en Oslo)

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow \text{"en"}$

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow$ "en"

(Juan amó nieve en Oslo)

The Grammar of Spanish

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

NP → "nieve"

NP → "Juan"

NP → "Oslo"

V → "amó"

 $P \rightarrow$ "en"

[Juan amó nieve en Oslo]

The Grammar of Spanish

```
S \rightarrow NP VP
                              {VP(NP)}
VP \rightarrow V NP
                                {V(NP)}
VP \rightarrow VP PP
                              {PP(VP)}
                                {P(NP)}
PP \rightarrow P NP
NP → "nieve"
                                   { snow }
NP → "Juan"
                                   {John}
NP → "Oslo"
                                   {Oslo}
V \rightarrow "amó" {\lambda b \lambda a adore (a, b)}
P \rightarrow \text{"en"}
            \{\lambda d\lambda c \text{ in } (c,d)\}
```


Meaning Composition (Still Very Simplified)

Another Interpretation


```
S: {adore (John, in (snow, Oslo)}
NP: {John}
                     VP: \{\lambda a \text{ adore } (a, \text{in } (\text{snow}, \text{Oslo}))\}
    Juan
            V:\{\lambda b\lambda a \text{ adore } (a,b)\}\ NP:\{in (snow, Oslo)\}\
                         amó
                                       NP:{snow}
                                                                 PP:\{\lambda c \text{ in } (c, Oslo)\}
                                           nieve
                                                      P:\{\lambda d\lambda c \text{ in } (c,d)\}
                                                                                     NP:{Oslo}
                                                                                         Oslo
                                                                  en
                                                          NP \rightarrow NP PP \{ PP(NP) \}
```


- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
 - natural languages, programming languages, communication protocols, ...

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
 - natural languages, programming languages, communication protocols, ...
- Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
 - When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.

- Formal system for modeling constituent structure.
- Defined in terms of a lexicon and a set of rules
- Formal models of 'language' in a broad sense
 - natural languages, programming languages, communication protocols, ...
- Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
 - When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.
- Powerful enough to express sophisticated relations among words, yet in a computationally tractable way.

- ► *C* is the set of categories (aka *non-terminals*),
 - ► {S, NP, VP, V}

- ► C is the set of categories (aka *non-terminals*),
 - ► {S, NP, VP, V}
- \triangleright Σ is the vocabulary (aka *terminals*),
 - ► {Kim, snow, adores, in}

- ► C is the set of categories (aka *non-terminals*),
 - ► {S, NP, VP, V}
- \triangleright Σ is the vocabulary (aka *terminals*),
 - {Kim, snow, adores, in}
- ► *P* is a set of category rewrite rules (aka *productions*)

$$S \rightarrow NP \ VP$$
 $NP \rightarrow Kim$ $VP \rightarrow V \ NP$ $NP \rightarrow snow$ $V \rightarrow adores$

Formally, a CFG is a quadruple: $G = \langle C, \Sigma, P, S \rangle$

- C is the set of categories (aka non-terminals),
 - ► {S, NP, VP, V}
- \triangleright Σ is the vocabulary (aka *terminals*),
 - {Kim, snow, adores, in}
- P is a set of category rewrite rules (aka productions)

$$S \rightarrow NP \ VP$$
 $NP \rightarrow Kim$ $VP \rightarrow V \ NP$ $NP \rightarrow snow$ $V \rightarrow adores$

▶ $S \in C$ is the *start symbol*, a filter on complete results;

- ► C is the set of categories (aka *non-terminals*),
 - ► {S, NP, VP, V}
- \triangleright Σ is the vocabulary (aka *terminals*),
 - {Kim, snow, adores, in}
- ► *P* is a set of category rewrite rules (aka *productions*)

$$S \rightarrow NP \ VP$$
 $NP \rightarrow Kim$ $VP \rightarrow V \ NP$ $NP \rightarrow snow$ $V \rightarrow adores$

- ▶ $S \in C$ is the *start symbol*, a filter on complete results;
- ▶ for each rule $\alpha \rightarrow \beta_1, \beta_2, ..., \beta_n \in P$: $\alpha \in C$ and $\beta_i \in C \cup \Sigma$

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_G is defined as the set of strings that can be derived from S.
- ► To derive w_1^n from S, we use the rules in P to recursively rewrite S into the sequence w_1^n where each $w_i \in \Sigma$

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_G is defined as the set of strings that can be derived from S.
- ▶ To derive w_1^n from S, we use the rules in P to recursively rewrite S into the sequence w_1^n where each $w_i \in \Sigma$
- The grammar is seen as generating strings.
- Grammatical strings are defined as strings that can be generated by the grammar.

Generative Grammar

Top-down view of generative grammars:

- For a grammar G, the language \mathcal{L}_G is defined as the set of strings that can be derived from S.
- ▶ To derive w_1^n from S, we use the rules in P to recursively rewrite S into the sequence w_1^n where each $w_i \in \Sigma$
- The grammar is seen as generating strings.
- Grammatical strings are defined as strings that can be generated by the grammar.
- The 'context-freeness' of CFGs refers to the fact that we rewrite non-terminals without regard to the overall context in which they occur.

Treebanks

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Treebanks

Generally

- A treebank is a corpus paired with 'gold-standard' (syntactico-semantic) analyses
- Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)

- About one million tokens of Wall Street Journal text
- ► Hand-corrected PoS annotation using 45 word classes
- Manual annotation with (somewhat) coarse constituent structure

One Example from the Penn Treebank

One Example from the Penn Treebank

One Example from the Penn Treebank

Elimination of Traces and Functions

Probabilitic Context-Free Grammars

We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6 $S \rightarrow NP VP PP$ 0.4
- ► These are conditional probabilities the probability of the right hand side (RHS) given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$

Probabilitic Context-Free Grammars

- We are interested, not just in which trees apply to a sentence, but also to which tree is most likely.
- Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
 - $S \rightarrow NP VP$ 0.6 $S \rightarrow NP VP PP$ 0.4
- ► These are conditional probabilities the probability of the right hand side (RHS) given the left hand side (LHS)
 - ▶ $P(S \rightarrow NP VP) = P(NP VP|S)$
- We can learn these probabilities from a treebank, again using Maximum Likelihood Estimation.


```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```


 $RB \rightarrow Still$

1

```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```



```
(S
   (ADVP (RB "Still"))
   (|,|",")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```



```
(S
   (ADVP (RB "Still"))
   (|,|",")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```

```
\begin{array}{ccc} RB \rightarrow Still & 1 \\ ADVP \rightarrow RB & 1 \\ |,|\rightarrow, & 1 \\ NNP \rightarrow Time & 1 \end{array}
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```

```
\begin{array}{ccc} RB \rightarrow Still & 1 \\ ADVP \rightarrow RB & 1 \\ |,|\rightarrow, & 1 \\ NNP \rightarrow Time & 1 \\ POS \rightarrow \mbox{'s} & 1 \\ \end{array}
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```

```
\begin{array}{ccc} RB \rightarrow Still & 1 \\ ADVP \rightarrow RB & 1 \\ |,|\rightarrow, & 1 \\ NNP \rightarrow Time & 1 \\ POS \rightarrow \mbox{'s} & 1 \\ NP \rightarrow NNP \mbox{ POS} & 1 \\ \end{array}
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well")))))
   (\. "."))
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well"))))
   (\. "."))
```



```
(S
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
         (VBG "being")
         (VP
           (VBN "received")
           (ADVP (RB "well"))))
   (\. "."))
```



```
RB \rightarrow Still
                                                        ADVP \rightarrow RB
(S
                                                        |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                        NNP → Time
    (|.| ".")
                                                        POS \rightarrow 's
    (NP
                                                        NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                        NN \rightarrow move
        (NN "move"))
                                                        NP \rightarrow NP NN
     (VP
                                                        VBZ \rightarrow is
        (VBZ "is")
                                                        VBG → being
        (VP
            (VBG "being")
            (VP
               (VBN "received")
              (ADVP (RB "well")))))
```



```
(S
                                                  |,| \rightarrow ,
   (ADVP (RB "Still"))
   (|.| ".")
                                                  POS \rightarrow 's
   (NP
       (NP (NNP "Time") (POS "'s"))
       (NN "move"))
    (VP
                                                  VBZ \rightarrow is
       (VBZ "is")
       (VP
                                                  VBN → received
           (VBG "being")
           (VP
             (VBN "received")
             (ADVP (RB "well"))))
   (\. "."))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
NNP \rightarrow Time
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBG → being
```



```
RB \rightarrow Still
                                                         ADVP \rightarrow RB
(S
                                                         |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                         NNP → Time
    (|.| ".")
                                                         POS \rightarrow 's
    (NP
                                                         NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                         NN \rightarrow move
        (NN "move"))
                                                         NP \rightarrow NP NN
     (VP
                                                         VBZ \rightarrow is
        (VBZ "is")
                                                         VBG → being
        (VP
                                                         VBN → received
            (VBG "being")
                                                         RB \rightarrow well
            (VP
               (VBN "received")
```

(ADVP (RB "well")))))


```
(S
                                               |,| \rightarrow ,
   (ADVP (RB "Still"))
   (|.| ".")
   (NP
      (NP (NNP "Time") (POS "'s"))
      (NN "move"))
    (VP
      (VBZ "is")
      (VP
          (VBG "being")
          (VP
            (VBN "received")
            (ADVP (RB "well")))))
```

```
RB \rightarrow Still
ADVP \rightarrow RB
NNP → Time
POS \rightarrow 's
NP \rightarrow NNP POS
NN \rightarrow move
NP \rightarrow NP NN
VBZ \rightarrow is
VBG → being
VBN → received
RB \rightarrow well
```



```
RB \rightarrow Still
                                                       ADVP \rightarrow RB
(S
                                                       |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                       NNP → Time
    (|.| ".")
                                                       POS \rightarrow 's
    (NP
                                                       NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                       NN \rightarrow move
        (NN "move"))
                                                       NP \rightarrow NP NN
     (VP
                                                       VBZ \rightarrow is
        (VBZ "is")
                                                       VBG → being
        (VP
                                                       VBN → received
            (VBG "being")
                                                       RB \rightarrow well
            (VP
                                                       VP → VBN ADVP
              (VBN "received")
              (ADVP (RB "well")))))
```



```
RB \rightarrow Still
                                                         ADVP \rightarrow RB
(S
                                                         |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                         NNP \rightarrow Time
    (|.| ".")
                                                         POS \rightarrow 's
    (NP
                                                         NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                         NN \rightarrow move
        (NN "move"))
                                                         NP \rightarrow NP NN
     (VP
                                                         VBZ \rightarrow is
        (VBZ "is")
                                                         VBG → being
        (VP
                                                         VBN → received
            (VBG "being")
                                                         RB \rightarrow well
            (VP
                                                         VP → VBN ADVP
               (VBN "received")
                                                         VP \rightarrow VBG VP
               (ADVP (RB "well")))))
```



```
RB \rightarrow Still
                                                           ADVP \rightarrow RB
(S
                                                           |.| \rightarrow .
    (ADVP (RB "Still"))
                                                           NNP \rightarrow Time
    (|.| ".")
                                                           POS \rightarrow 's
    (NP
                                                           NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                           NN \rightarrow move
        (NN "move"))
                                                           NP \rightarrow NP NN
     (VP
                                                           VBZ \rightarrow is
        (VBZ "is")
                                                           VBG → being
        (VP
                                                           VBN → received
             (VBG "being")
                                                           RB \rightarrow well
             (VP
                                                           VP → VBN ADVP
               (VBN "received")
                                                           VP \rightarrow VBG VP
               (ADVP (RB "well")))))
                                                           \backslash . \rightarrow .
    (\. "."))
```



```
RB \rightarrow Still
                                                             ADVP \rightarrow RB
(S
                                                             |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                             NNP \rightarrow Time
    (|.| ".")
                                                             POS \rightarrow 's
    (NP
                                                             NP \rightarrow NNP POS
         (NP (NNP "Time") (POS "'s"))
                                                             NN \rightarrow move
         (NN "move"))
                                                             NP \rightarrow NP NN
      (VP
                                                             VBZ \rightarrow is
         (VBZ "is")
                                                             VBG → being
         (VP
                                                             VBN → received
             (VBG "being")
                                                             RB \rightarrow well
             (VP
                                                             VP → VBN ADVP
                (VBN "received")
                                                             VP \rightarrow VBG VP
                (ADVP (RB "well")))))
                                                             \backslash . \rightarrow .
    (\. "."))
                                                             S \rightarrow ADVP \mid,\mid NP VP \setminus.
```



```
RB \rightarrow Still
                                                            ADVP \rightarrow RB
(S
                                                            |,| \rightarrow ,
    (ADVP (RB "Still"))
                                                            NNP \rightarrow Time
    (|.| ".")
                                                            POS \rightarrow 's
    (NP
                                                            NP \rightarrow NNP POS
        (NP (NNP "Time") (POS "'s"))
                                                            NN \rightarrow move
        (NN "move"))
                                                            NP \rightarrow NP NN
     (VP
                                                            VBZ \rightarrow is
        (VBZ "is")
                                                            VBG → being
        (VP
                                                            VBN → received
             (VBG "being")
                                                            RB \rightarrow well
             (VP
                                                            VP → VBN ADVP
                (VBN "received")
                                                            VP \rightarrow VBG VP
                (ADVP (RB "well")))))
                                                            \backslash . \rightarrow .
    (\. "."))
                                                            S \rightarrow ADVP \mid NP VP \mid
                                                            START \rightarrow S
```


$S \rightarrow ADVP , NP VP \setminus.$	50	$S \rightarrow NP VP \setminus$.	400
$S \rightarrow NP \ VP \ PP \setminus$.	350	$S \rightarrow VP$!	100
$S \rightarrow NP \ VP \ S \setminus$.	200	$S \rightarrow NP VP$	50

$$S \rightarrow ADVP \mid, \mid NP \ VP \mid.$$
 50 $S \rightarrow NP \ VP \mid.$ 400 $S \rightarrow NP \ VP PP \mid.$ 350 $S \rightarrow VP \mid.$ 100 $S \rightarrow NP \ VP S \mid.$ 200 $S \rightarrow NP \ VP$ 50

$$P(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.) \approx \frac{C(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.)}{C(S)}$$

$$P(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.) \approx \frac{C(S \rightarrow ADVP \mid, \mid NP \mid VP \mid.)}{C(S)}$$

$$= \frac{50}{1150}$$

$$= 0.0435$$