HW #1

Sam Fleischer

January 15, 2015

Exercise 1.1

Complete the proof of the the Monotone Class Theorem.

Lemma 1. The arbitrary intersection of monotone classes in a monotone class.

Proof. Let S be the arbitrary intersection of monotone classes M_j for $j \in J$, where J is an index set. Then let $S_1 \subset S_2 \subset S_3 \subset \ldots$ and $S_i \in S \ \forall i = 1, 2, \ldots$. Then since each $S_i \in M_j$ for each M_j and each M_j is a monotone class, then $\bigcup_{i=1}^{\infty} S_i \in M_j$ for each M_j . Thus $\bigcup_{i=1}^{\infty} S_i \in S$. Now let $S_1 \supset S_2 \supset S_3 \supset \ldots$ and $S_i \in S \ \forall i = 1, 2, \ldots$. Then since $S_i in M_j$ for each M_j and each M_j is a monotone class, then $\bigcap_{i=1}^{\infty} S_i \in M_j$ for each M_j . Thus $\bigcap_{i=1}^{\infty} S_i \in S$. Thus S is a monotone class.

Theorem 1 (Monotone Class Theorem). Let Ω be a set a let \mathcal{A} be an algebra of subsets of Ω such that $\Omega, \emptyset \in \mathcal{A}$. Then there exists a smallest monotone class \mathcal{S} that contain \mathcal{A} . That class, \mathcal{S} , is also the smallest sigma-algebra that contains \mathcal{A} .

Proof. Let S be the intersection of all monotone classes M_i that contain \mathcal{A} . By Lemma 1, S is a monotone class, and thus the smallest monotone class containing \mathcal{A} .

Pick $A \in \mathcal{A}$ and construct $C(A) = \{B \in \mathcal{S} \mid B \cup A \in \mathcal{S}\}$. By construction, $C(A) \subset \mathcal{S}$. Since \mathcal{A} is an algebra, \mathcal{A} is closed under finite unions, and thus $\mathcal{A} \subset C(A)$. Now we show C(A) is a monotone class, which would show $\mathcal{S} \subset C(A)$, implying $C(A) = \mathcal{S}$. Take $B_1 \subset B_2 \subset B_3 \subset \ldots$ and $B_i \in C(A) \ \forall i = 1, 2, \ldots$ Then $B_i \cup A \in \mathcal{S} \ \forall i = 1, 2, \ldots$ and $(B_1 \cup A) \subset (B_2 \cup A) \subset \ldots$. Then since \mathcal{S} is a monotone class, $\bigcup_{i=1}^{\infty} (B_i \cup A) \in \mathcal{S}$, but $\bigcup_{i=1}^{\infty} (B_i \cup A) = (\bigcup_{i=1}^{\infty} B_i) \cup A$. Thus $\bigcup_{i=1}^{\infty} B_i \in C(A)$. Similarly, take $D_1 \supset D_2 \supset \ldots$ and $D_i \in C(A) \ \forall i = 1, 2, \ldots$ Then $D_i \cup A \in \mathcal{S} \ \forall i = 1, 2, \ldots$ and $(D_1 \cup A) \supset (D_2 \cup A) \supset \ldots$ Then since \mathcal{S} is a monotone class, $\bigcap_{i=1}^{\infty} (D_i \cup A) \in \mathcal{S}$, but $\bigcap_{i=1}^{\infty} (D_i \cup A) = (\bigcap_{i=1}^{\infty} D_i) \cup A$. Thus $\bigcap_{i=1}^{\infty} D_i \in C(A)$. This proves that C(A) is a monotone class, and thus $C(A) = \mathcal{S}$.

Now we extend the definition of C(A) to be defined for any $A \in \mathcal{S}$. Pick $A' \in \mathcal{S}$. Then since $A' \in C(A) \ \forall A \in \mathcal{A}$, then $A \in C(A') \ \forall A' \in \mathcal{A}$. Thus $\mathcal{A} \subset C(A')$. Now we show C(A') is a monotone class, which would show $\mathcal{S} \subset C(A')$, implying $C(A') = \mathcal{S}$. Take $B_1 \subset B_2 \subset B_3 \subset \ldots$ and $B_i \in C(A') \ \forall i = 1, 2, \ldots$ Then $B_i \cup A' \in \mathcal{S} \ \forall i = 1, 2, \ldots$ and $(B_1 \cup A') \subset (B_2 \cup A') \subset \ldots$. Then since \mathcal{S} is a monotone class, $\bigcup_{i=1}^{\infty} (B_i \cup A') \in \mathcal{S}$, but $\bigcup_{i=1}^{\infty} (B_i \cup A') = (\bigcup_{i=1}^{\infty} B_i) \cup A'$. Thus $\bigcup_{i=1}^{\infty} B_i \in C(A')$. Similarly, take $D_1 \supset D_2 \supset \ldots$ and $D_i \in C(A') \ \forall i = 1, 2, \ldots$ Then $D_i \cup A' \in \mathcal{S} \ \forall i = 1, 2, \ldots$ and $(D_1 \cup A') \supset (D_2 \cup A') \supset \ldots$ Then since \mathcal{S} is a monotone class, $\bigcap_{i=1}^{\infty} (D_i \cup A') \in \mathcal{S}$, but $\bigcap_{i=1}^{\infty} (D_i \cup A') = (\bigcap_{i=1}^{\infty} D_i) \cup A'$. Thus $\bigcap_{i=1}^{\infty} D_i \in C(A')$. This proves that C(A') is a monotone class, and thus $C(A') = \mathcal{S}$. Thus \mathcal{S} is closed under finite unions.

Now define $C = \{B \in \mathcal{S} \mid B^C \in \mathcal{S}\}$. Since \mathcal{A} is an algebra, \mathcal{A} is closed under complimentation, and thus $\mathcal{A} \subset C$. Now take $B_1 \subset B_2 \subset \ldots$ and $B_i \in C \ \forall i = 1, 2, \ldots$. Then since $B_1^C \supset B_2^C \supset \ldots$ and $B_i^C \in \mathcal{S} \ \forall i = 1, 2, \ldots$, and since \mathcal{S} is a monotone class, then $\bigcap_{i=1}^{\infty} \left(B_i^C\right) \in \mathcal{S}$. However, $\bigcap_{i=1}^{\infty} \left(B_i^C\right) = \left(\bigcup_{i=1}^{\infty} B_i\right)^C$, and thus $\bigcup_{i=1}^{\infty} B_i \in C$. Then take $D_1 \supset D_2 \supset \ldots$ and $D_i \in C \ \forall i = 1, 2, \ldots$. Then since $D_1^C \subset D_2^C \subset \ldots$ and $D_i^C \in \mathcal{S}$, and since \mathcal{S} is a monotone class, then $\bigcup_{i=1}^{\infty} \left(D_1^C\right) \in \mathcal{S}$. However, $\bigcup_{i=1}^{\infty} \left(D_i^C\right) = \left(\bigcap_{i=1}^{\infty} D_C\right)^C$, and thus $\bigcap_{i=1}^{\infty} D_i \in C$. Thus C is a monotone class containing \mathcal{A} , and thus $\mathcal{S} \subset C$, proving $C = \mathcal{S}$. Thus \mathcal{S} is closed under complementation.

Now we show S is closed under countable unions and intersections. Consider a sequene of sets $\{A_i\}_{i=1}^{\infty} \in S$. Then form $B_n = \bigcup_{i=1}^n$. Since each B_n is a finite union of elements in S, then each $B_n \in S$. Also, $B_1 \subset B_2 \subset \ldots$. Since S is a monotone class, $\bigcup_{n=1}^{\infty} B_n \in S$, but $\bigcup_{i=1}^{\infty} A_i = \bigcup_{n=1}^{\infty} B_n$, and thus S is closed under countable unions. Similarly, form $D_n = \bigcup_{i=1}^n A_i^C$. Since each D_i is a finite union of elements in S (S is closed under complementation), then each $D_i \in S$. Also, $D_i \subset D_i \subset \ldots$. Since S is a monotone class, $\bigcup_{n=1}^{\infty} D_n \in S$, but $\bigcup_{n=1}^{\infty} D_n = \bigcup_{i=1}^{\infty} (A_i^C) = (\bigcap_{i=1}^{\infty} A_i)^C$. Again, since S is closed under complementation, $\bigcap_{i=1}^{\infty} A_i \in S$. Thus S is closed under countable unions and intersections.

This proves \mathcal{S} is a σ -algebra. However, every σ -algebra is a monotone class, and thus \mathcal{S} must be the smallest σ -algebra containing \mathcal{A} since it is defined as the smallest monotone class containing \mathcal{A} .

Exercise 1.2

With regard to the remark about continuous functions in Section 1.5, show that f is continuous (in the sense of the usual ε , δ definition) if and only if f is both upper and lower semicontinuous. Show that f is upper semicontinuous at x if and only if, for every sequence x_1, x_2, \ldots converging to x, we have $f(x) \geq \overline{\lim}_{n\to\infty} f(x_n)$.

Definition Consider $f: \Omega \to \mathbb{R}$, and define $L_f(t) = \{x \in \Omega \mid f(x) > t\}$ and $U_f(t) = \{x \in \Omega \mid f(x) < t\}$. Then f is lower semicontinuous if $L_f(t)$ is open $\forall t \in \mathbb{R}$ and f is upper semicontinuous if $U_f(t)$ is open $\forall t \in \mathbb{R}$.

Theorem 2. Let $f: \Omega \to \mathbb{R}$. Then f is continuous if and only if f is both upper and lower semincontinuous.

Proof. Let f a continuous function. Then $\forall x \in \Omega$ and $\varepsilon > 0$, $\exists \delta > 0$ such that $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Fix $t \in \mathbb{R}$ and let $x_L \in L_f(t)$. Then $f(x_L) = t + \ell$ for some $\ell > 0$. Now take $\varepsilon = \ell$. Then by the continuity of f, $\exists \delta_{\ell}$ such that $f(B_{\delta_{\ell}}(x_L)) \subset B_{\ell}(t+\ell)$. But since $t_0 \in B_{\ell}(t+\ell) \Longrightarrow t_0 > t$, then $B_{\delta_{\ell}}(x_L) \subset L_f(t)$. Thus $L_f(t)$ is open. Now let $x_U \in U_f(t)$. Then $f(x_U) = t - u$ for some u > 0. Again, take $\varepsilon = u$, and again by the continuity of f, $\exists \delta_u$ such that $f(B_{\delta_u}(x_U)) \subset B_u(f(x_U))$. But since $t_0 \in B_u(t-u) \Longrightarrow t_0 < t$, then $B_{\delta_u}(x_U) \subset U_f(t)$. Thus $U_f(t)$ is open. Thus f is both upper and lower semicontinuous.

Now let f be both upper and lower semicontinuous. Thus $\forall t \in \mathbb{R}$, $L_f(t)$ and $U_f(t)$ are open. Then pick $x \in \Omega$ and let t = f(x). Choose $\varepsilon > 0$ and let $t_1 = t - \varepsilon$ and $t_2 = t + \varepsilon$. Then $x \in L_f(t_2)$ and $x \in U_f(t_1)$. Since $L_f(t_2)$ and $U_f(t_1)$ are open, then $\exists \delta_L$ and δ_U such that $f(B_{\delta_L}(x)) \subset B_{\varepsilon}(t_2)$ and $f(B_{\delta_U}(x)) \subset B_{\varepsilon}(t_1)$. Choose $\delta = \min(\delta_L, \delta_U)$ and let $x_0 \in B_{\delta}(x)$. Then $t_1 < f(x_0) < t_2$, which shows $f(x_0) \in B_{\varepsilon}(t)$, and thus f is continuous.

Thus f is continuous if and only if f is both lower and upper semicontinuous.

Theorem 3. Let $f: \Omega \to \mathbb{R}$. Then f is upper semicontinuous at x if and only if for every sequence $\{x_i\} \in \Omega$ such that $x_i \to x$, we have $f(x) \ge \overline{\lim}_{i \to \infty} f(x_i)$.

Proof. Fix $x \in \Omega$ and let f by upper semicontinuous at x. Then $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $d_{\Omega}(x,y) < \delta \implies f(y) - f(x) < \varepsilon$, i.e. $f(y) < f(x) + \varepsilon$. Now consider a sequence $\{x_i\} \in \Omega$ such that $x_i \to x$. Then consider a sequence ε_k such that $\varepsilon_k \to 0$. By the upper semicontinuity of f, then for each $k = 1, 2, \ldots, \exists \delta_k$ such that $d_{\Omega}(x,y) < \delta \implies f(y) < f(x) + \varepsilon$. But by the convergence of $\{x_i\}$, $\exists I_k$ such that $\forall i \geq I_k$, $d_{\Omega}(x,x_i) < \delta_k$ for each $k = 1, 2, \ldots$. This is equivalent to $\sup_{i \geq I_k} \{f(x_i)\} \leq f(x) + \varepsilon_k$ for each $k = 1, 2, \ldots$. Since we cannot guarantee $I_k \to \infty$, form a sequence $L_k = \max\{k, I_k\}$ and note $L_k \to \infty$, $L_k \geq I_k$, and $L_k \geq k$ for each $k = 1, 2, \ldots$. Then

$$\sup_{i \ge L_k} \{f(x_i)\} \le \sup_{i \ge I_k} \{f(x_i)\} \le f(x) + \varepsilon_k$$

$$\implies \lim_{k \to \infty} \left(\sup_{i \ge L_k} \{f(x_i)\} \right) \le \lim_{k \to \infty} \left(f(x) + \varepsilon_k \right)$$

$$\implies \lim_{k \to \infty} \left(\sup_{i \ge k} \{f(x_i)\} \right) \le f(x) + 0 = f(x)$$

$$\implies \overline{\lim}_{i \to \infty} f(x_i) \le f(x)$$

Now assume f is not upper semicontinuous at x. Then $\exists \varepsilon$ such that $\forall \delta$, $\exists y$ such that $d_{\Omega}(x,y) < \delta$ and $f(x) + \varepsilon \leq f(y)$. Consider $\{\delta_k\}$ such that $\delta_k \to 0$. For each δ_k , pick x_k such that $d_{\Omega}(x,x_k) < \delta_k$ but $f(x) + \varepsilon \leq f(x_k)$. Then clearly $x_k \to x$ but $\lim_{k \to \infty} f(x_k) \geq f(x) + \varepsilon$. Then

$$\lim_{k \to \infty} f(x_k) \ge f(x) + \varepsilon$$

$$\implies \overline{\lim}_{k \to \infty} f(x_k) \ge f(x) + \varepsilon > f(x)$$

Thus, by contrapositive, for every sequence $\{x_i\} \in \Omega$ such that $x_i \to x$, we have $f(x) \ge \overline{\lim}_{k \to \infty} f(x_k)$.

Exercise 1.3

Prove the assertion made in Section 1.5 that for any Borel set $A \subset \mathbb{R}$ and any σ -algebra Σ the set $\{x \mid f(x) \in A\} = f^{-1}(A)$ is Σ -measurable whenever the function f is Σ -measurable.

Definition Consider $f: \Omega \to \mathbb{R}$ and let Σ be a σ -algebra on Ω . We say that f is a measurable function (with respect to Σ) if the set $L_f(t) = \{x \in \Omega \mid f(x) > t\} = f^{-1}((t, \infty))$ is measurable, i.e. $L_f(t) \in \Sigma$, for every $t \in \mathbb{R}$.

Theorem 4. Let $f: \Omega \to \mathbb{R}$. Let \mathcal{B} be the Borel σ -algebra on \mathbb{R} and let $A \in \mathcal{B}$. Then the set $P_A = \{x \mid f(x) \in A\} = f^{-1}(A)$ is Σ -measurable whenever f is Σ -measurable.

Proof. Consider the interval $(a,b) \subset \mathbb{R}$ (a < b). Note that

$$(a,b) = (-\infty,b) \cap (a,\infty)$$
$$= [b,\infty)^C \cap (a,\infty)$$
$$= \left[\bigcap_{i=1}^{\infty} (b-2^{-i},\infty)\right]^C \cap (a,\infty)$$

This shows that any open ball in \mathbb{R} is countably σ -algebraicly generated from sets of the form (t, ∞) . Due to the properties of preimages,

$$f^{-1}((a,b)) = f^{-1} \left(\left[\bigcap_{i=1}^{\infty} (b - 2^{-i}, \infty) \right]^{C} \cap (a, \infty) \right)$$

$$= \left[\bigcap_{i=1}^{\infty} f^{-1}(b - 2^{-i}, \infty) \right]^{C} \cap f^{-1}((a, \infty))$$

$$= \left[\bigcap_{i=1}^{\infty} L_{f}(b - 2^{-i}) \right]^{C} \cap L_{f}(a)$$

Thus, since Σ is closed under countable unions, countable intersections, and complements, $f^{-1}((a,b)) \in \Sigma$.

Now consider the set $L = \{B \in \mathcal{B} \mid f^{-1}(B) \in \Sigma\}$. Next we show L is a monotone class.

Consider $L_1 \subset L_2 \subset \ldots$ where $L_i \in L$ for $i = 1, 2, \ldots$. Then $f^{-1}(L_i) \in \Sigma$ for each i. Since Σ is a σ -algebra, $\bigcup_{i=1}^{\infty} [f^{-1}(L_i)] \in \Sigma$. But by the properties of preimages, $f^{-1}(\bigcup_{i=1}^{\infty} L_i) = \bigcup_{i=1}^{\infty} [f^{-1}(L_i)]$, and thus $f^{-1}(\bigcup_{i=1}^{\infty} L_i) \in \Sigma$, showing $\bigcup_{i=1}^{\infty} L_i \in L$.

Now consider $L_1 \supset L_2 \supset \ldots$ where $L_i \in L$ for $i = 1, 2, \ldots$ Then $f^{-1}(L_i) \in \Sigma$ for each i. Since Σ is a σ -algebra, $\bigcap_{i=1}^{\infty} [f^{-1}(L_i)] \in \Sigma$. But by the properties of preimages, $f^{-1}(\bigcap_{i=1}^{\infty} L_i) = \bigcap_{i=1}^{\infty} [f^{-1}(L_i)]$, and thus $f^{-1}(\bigcap_{i=1}^{\infty} L_i) \in \Sigma$, showing $\bigcap_{i=1}^{\infty} L_i \in L$.

Thus, L is a monotone class. By the above calculation, we know $B_r(x) \in L$ for all r > 0 and $x \in \mathbb{R}$. Thus L contains all open intervals. But \mathcal{B} is, by definition, the smallest σ -algebra (and hence smallest monotone class) containing the open intervals. Thus $L = \mathcal{B}$.

This shows $f^{-1}(A)$ is measurable whenever f is measurable.

Problem 4

Let $\phi: \mathbb{C} \to \mathbb{C}$ be a Borel measurable function and let the complex-valued function f be Σ -measurable. Prove that $\phi(f(x))$ is Σ -measurable.

Lemma 2. Let $f: \Omega \to \mathbb{C}$. Let $\mathcal{B}_{\mathbb{C}}$ be the Borel σ -algebra on \mathbb{C} and let $A \in \mathcal{B}_{\mathbb{C}}$. Then the set $P_A = \{x \mid f(x) \in A\} = f^{-1}(A)$ is Σ -measurable whenever f is Σ -measurable.

Proof. Assume f is Σ -measurable and let $f_{\mathbb{R}} + if_{\mathbb{C}} = f$ where $f_{\mathbb{R}} : \Omega \to \mathbb{R}$ and $f_{\mathbb{C}} : \Omega \to \mathbb{R}$. By the definition of measurable complex-valued functions, $f_{\mathbb{R}}$ and $f_{\mathbb{C}}$ are measurable, and thus $\forall t \in \mathbb{R}$, $f_{\mathbb{R}}^{-1}((t,\infty)) \in \Sigma$ and $f_{\mathbb{C}}^{-1}((t,\infty)) \in \Sigma$.

Consider the set $L = \{A \in \mathcal{B}_{\mathbb{C}} : f^{-1}(A) \in \Sigma\}$ and an arbitrary rectangle $R_{a,b,c,d} = \{x + iy \in \mathbb{C} : x \in A_1 \text{ and } y \in A_2\}$ where $A_1, A_2 \in \mathcal{B}$. Since $f_{\mathbb{R}}$ and $f_{\mathbb{C}}$ are measurable, $f_{\mathbb{R}}^{-1}(A_1) \in \Sigma$ and $f_{\mathbb{C}}^{-1}(A_2) \in \Sigma$. Then $f^{-1}(R_{a,b,c,d}) = f_{\mathbb{R}}^{-1}((a,b)) \cup f_{\mathbb{C}}^{-1}((c,d)) \in \Sigma$ since Σ is closed under countable unions. Thus L contains all rectangles in $\mathcal{B} \times \mathcal{B}$.

Now consider $L_1 \subset L_2 \subset \ldots$ where $L_i \in L$ for each i. Then $f^{-1}(L_i) \in \Sigma$ for each i. Then $f^{-1}[\bigcup_{i=1}^{\infty} L_i] = \bigcup_{i=1}^{\infty} f^{-1}(L_i) \in \Sigma$. Thus $\bigcup_{i=1}^{\infty} L_i \in L$.

Then consider $L_1 \supset L_2 \supset \ldots$ where $L_i \in L$ for each i. Then $f^{-1}(L_i) \in \Sigma$ for each i. Then $f^{-1}[\bigcap_{i=1}^{\infty} L_i] = \bigcap_{i=1}^{\infty} f^{-1}(L_i) \in \Sigma$. Thus $\bigcap_{i=1}^{\infty} L_i \in L$.

Thus L is a monotone class. Since L is a subset of $B_{\mathbb{C}}$, which is defined as the smallest σ -algebra containing rectangles, and since the rectangles are contained in L, then by the Monotone Class Theorem, $L = \mathcal{B}_{\mathbb{C}}$.

This shows $f^{-1}(A)$ is Σ -measurable whenever f is Σ -measurable.

Theorem 5. Let $\phi : \mathbb{C} \to \mathbb{C}$ be a Borel measurable function and let $f : \Omega \to \mathbb{C}$ be Σ -measurable. Prove that $\phi(f(x))$ is Σ -measurable.

Proof. Pick $A \in \mathcal{B}_{\mathbb{C}}$. Then since ϕ is a Borel measurable function, $\phi^{-1}(A) \in \mathcal{B}_{\mathbb{C}}$. Then, by Lemma 2, $f^{-1}(\phi^{-1}(A)) \in \Sigma$. However, $f^{-1}(\phi^{-1}(A)) = [\phi f]^{-1}(A)$. Thus ϕf is Σ -measurable.

Problem 5

Prove eauation (2) in Theorem 1.6 (monotone convergence)

Theorem 6. Let f_1, f_2, \ldots be an increasing sequence of summable functions on (Ω, Σ, μ) , with f equal to the pointwise limit of f_j $(f(x) = \lim_{j \to \infty} f_j(x))$ and $I = \lim_{j \to \infty} I_j = \lim_{j \to \infty} \int_{\Omega} f_j d\mu$. Then f is measurable and, moreover, I is finite if and only if f is summable, in which case $I = \int_{\Omega} f d\mu$.

Show the following:

$$\lim_{j \to \infty} \int_0^\infty F_{f_j}(t) dt = \int_0^\infty F_f(t) dt$$
 (2)

where

$$F_{f_j}(t) = \mu(f_j^{-1}(t, \infty))$$

Proof. Consider the case where $\int_{\Omega} f d\mu < \infty$. Then $\forall \varepsilon > 0$, $\exists B_{\varepsilon} \in \mathbb{R}$, $B_{\varepsilon} > 0$, such that $F_f(B_{\varepsilon}) = \mu(f^{-1}(B_{\varepsilon}, \infty)) < \varepsilon$. However, since $f_j(x) \leq f(x)$ for each j, $F_{f_j}(B_{\varepsilon}) = \mu(f_j^{-1}(B_{\varepsilon}, \infty)) \leq F_f(B_{\varepsilon}) < \varepsilon$ for each j. Since F_f , and each F_{f_j} , is non-negative and monotone decreasing, $F_{f_j}(t) \leq F_f(t) < \varepsilon$ $\forall t \geq B_{\varepsilon}$. Thus,

$$\int_{\Omega} f d\mu = \int_{0}^{\infty} F_{f}(t) dt = \int_{0}^{B_{\varepsilon}} F_{f}(t) dt + \int_{B_{\varepsilon}}^{\infty} F_{f}(t) dt, \text{ and, for each } j,$$

$$\int_{\Omega} f_{j} d\mu = \int_{0}^{\infty} F_{f_{j}}(t) dt = \int_{0}^{B_{\varepsilon}} F_{f_{j}}(t) dt + \int_{B_{\varepsilon}}^{\infty} F_{f_{j}}(t) dt$$

Since $\int_{\Omega} f d\mu < \infty$, then $\int_{B_{\varepsilon}}^{\infty} F_{f_j}(t) dt < \infty$ and $\int_{B_{\varepsilon}}^{\infty} F_f(t) dt < \infty$. In fact, as $\varepsilon \to 0$, then $\int_{B_{\varepsilon}}^{\infty} F_{f_j}(t) dt \to 0$ and $\int_{B_{\varepsilon}}^{\infty} F_f(t) dt \to 0$.

So we need only consider the integrals with finite limits, and thus we can approximate $\int_{\Omega} f d\mu$ with Riemann sums. Denote the upper Riemann sums of a function g under partition P as $R_U(g, P)$ and the lower Riemann sums of a function g under partition P as $R_L(g, P)$.

Now, choose any $\varepsilon > 0$ and a partition P_{ε} of [0, B] such $R_U(F_f, P_{\varepsilon}) - R_L(F_f, P_{\varepsilon}) < \varepsilon$. Then consider the integral

$$\int_0^B F_f(t) - F_{f_j}(t) \mathrm{d}t$$

Note that since $\{f_j\}_j$ is an increasing sequence for each $x \in \Omega$, that $\{F_{f_j}\}_j$ is an increasing sequence of t for each $t \in [0, B]$. Thus,

$$\int_{0}^{B} F_{f}(t) - F_{f_{j}}(t) dt \leq R_{U}(F_{f}, P_{\varepsilon}) - R_{L}(F_{f_{j}}, P_{\varepsilon})$$

$$\implies \lim_{j \to \infty} \left[\int_0^B F_f(t) - F_{f_j}(t) dt \right] \le \lim_{j \to \infty} \left[R_U(F_f, P_\varepsilon) - R_L(F_{f_j}, P_\varepsilon) \right]$$

$$\implies \lim_{j \to \infty} \left[\int_0^B F_f(t) - F_{f_j}(t) dt \right] \le R_U(F_f, P_\varepsilon) - R_L(F_f, P_\varepsilon), \text{ by the linearity of limits}$$

$$\implies \lim_{j \to \infty} \left[\int_0^B F_f(t) - F_{f_j}(t) dt \right] < \varepsilon$$

Since ε was arbitrary,

$$\lim_{j \to \infty} \left[\int_0^B F_f(t) - F_{f_j}(t) \right] = 0$$

$$\implies \lim_{j \to \infty} \int_0^B F_f(t) dt = \lim_{j \to \infty} \int_0^B F_{f_j}(t) dt$$

$$\implies \lim_{j \to \infty} \int_0^B F_{f_j}(t) dt = \int_0^B F_f(t) dt$$

Thus,

$$\lim_{j \to \infty} \int_{\Omega} f_j d\mu = \lim_{j \to \infty} \int_{0}^{B} F_{f_j}(t) dt = \int_{0}^{B} F_f(t) dt = \int_{\Omega} f d\mu$$

Now consider the case when $\int_{\Omega} f d\mu = \infty$. Since F_{f_j} is nonnegative,

$$\int_{0}^{n} F_{f_{j}}(t) dt \leq \int_{0}^{\infty} F_{f_{j}}(t) dt$$

$$\implies \lim_{j \to \infty} \int_{0}^{n} F_{f_{j}}(t) dt \leq \lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt$$

By the first case, limits can pass through integrals with finite limits.

$$\int_{0}^{n} F_{f}(t) dt \leq \lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt$$

$$\implies \lim_{n \to \infty} \left[\int_{0}^{n} F_{f}(t) dt \right] \leq \lim_{n \to \infty} \left[\lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt \right]$$

$$\implies \int_{0}^{\infty} F_{f}(t) dt \leq \lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt$$

$$\implies \infty = \int_{0}^{\infty} F_{f}(t) dt \leq \lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt$$

$$\implies \lim_{j \to \infty} \int_{0}^{\infty} F_{f_{j}}(t) dt = \infty = \int_{0}^{\infty} F_{f}(t) dt$$

Thus,

$$\lim_{j \to \infty} \int_{\Omega} f_j d\mu = \lim_{j \to \infty} \int_{0}^{\infty} F_{f_j}(t) dt = \int_{0}^{\infty} F_f(t) dt = \int_{\Omega} f d\mu$$