Ethernet

Aloha - prekursor

- Prekursorem sieci Ethernet była sieć komputerowa Aloha oparta na komunikacji radiowej. Sieć Aloha powstała na Uniwersytecie Hawajskim. Jej twórcą był Norman Abramson wraz z kolegami. Sieć umożliwiała komunikację między wyspami Archipelagu Hawajskiego.
 - Komputer podpięty do sieci Aloha mógł w dowolnym momencie rozpocząć nadawanie. Jeżeli po określonym czasie nie było odpowiedzi od adresata, nadawca przyjmował, że nastąpiła kolizja w wyniku jednoczesnego nadawania we współdzielonym medium.
 - W takiej sytuacji obaj nadawcy odczekiwali losowy przedział czasu zanim ponawiali nadawanie, co gwarantowało poprawną transmisję. Jednak przy zwiększającej się liczbie komputerów wykorzystanie kanału spadało do 18%, a po wprowadzeniu synchronizacji transmisji do 37%.

Historia

- Bazując na rozwiązaniach zastosowanych w sieci Aloha, Bob Matcalfe opracował nowy system, w którym znalazły się takie mechanizmy jak: wykrywanie kolizji, wykrywanie zajętości kanału, współdzielony dostęp, co doprowadziło do powstania protokółu CSMA/CD (Carrier Sense Multiple Access witch Collision Detection).
- W wyniku dalszych prac nad siecią Ethernet przeprowadzonych w firmie Xerox PARC powstała pierwsza doświadczalna sieć komputerowa Alto Aloha Network.
- Prace zostały uwieńczone publikacją w 1976 roku artykułu w Communication of the Association for Computing Machinery (CACM): Bob Matcalfe, David Boggs "Ethernet Distributed Packet Switching for Local Computer Networks" oraz uzuskaniem w 1977 roku w Urzędzie Patentowym USA patentu numer 4063220 pod nazwą: "Multipoint Data Communication System With Collision Detection".

Historia

- W 1980 roku konsorcjum DIX (Digital-Intel-Xerox)
 opublikowało standard Ethernet pracujący z prędkością
 10Mbps znany pod nazwą DIX Ethernet. Ostatnia znana
 wersja tego standardu to DIX V2.0
- W wyniku prac komisji 802.3, która wykorzystała w swoich pracach standard DIX opublikowano w 1985 roku standard IEEE pod nazwą: "IEEE 802.3 Carrier Sense Multiple Access witch Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications".
- W następnych latach opracowano całą gamę standardów 802.3 uwzględniających bieżący stan rozwoju technologii w zakresie przesyłania sygnałów.
- Do najważniejszych można zaliczyć standardy o znaczeniu przełomowym dla sieci komputerowych, jak np.
 wprowadzenie skrętki, czy kolejnych szybkości ethernetu: 100Mb, 1Gb i obecnie 10Gb.

Ethernet a model OSI

Ethernet Standards

Standard	Speed	Segment Length	Cable
10Base5	10Mbps	500m / 164ft.	RG-8 or RG-11 coaxial
10Base2	10Mbps	185m / 606ft.	RG 58 A/U or RG 58 C/U coaxial
10Base-T	10Mbps	100m / 328ft.	Category 3 or better UTP
100Base-T	100Mbps	100m / 328ft.	Cat 5 UTP or STP
100Base-TX	100Mbps	100m / 328ft.	Cat 5 UTP or STP
100Base-FX	100Mbps	2 kM	2-pair 850 nm multimode optic fibers
1000Base-T	1Gbps	100m / 328ft.	4-pair, CAT5 or CAT5e
1000Base-SX	1Gbps	550m (multimode)	2-pair fiber optic

IEEE 802 Standards

802.1	Bridging & Management		
802.2	Logical Link Control		
802.3	Ethernet - CSMA/CD Access Method		
802.4	Token Passing Bus Access Method		
802.5	Token Ring Access Method		
802.6	Distributed Queue Dual Bus Access Method		
802.7	Broadband LAN		
802.8	Fiber Optic		
802.9	Integrated Services LAN		
802.10	Security		
802.11	Wireless LAN		
802.12	Demand Priority Access		
802.14	Medium Access Control		
802.15	Wireless Personal Area Networks		
802.16	Broadband Wireless Metro Area Networks		
802.17	Resilient Packet Ring		

Wybrane standardy

Original IEEE	IEEE Shorthand Name	Informal Name(s)	Speed	Typical Cabling
802.3i	10BASE-T	Ethernet	10 Mbps	UTP
802.3u	100BASE-T	Fast Ethernet (Fast E)	100 Mbps	UTP
802.3z	1000BASE-X	Gigabit Ethernet (Gig E, GbE)	1000 Mbps	Fiber
802.3ab	1000BASE-T	Gigabit Ethernet (Gig E, GbE)	1000 Mbps	UTP
802.3ae	10GBASE-X	10 GbE	10 Gbps	Fiber
802.3an	10GBASE-T	10 GbE	10 Gbps	UTP
802.3ba	40GBASE-X	40GbE (40 GigE)	40 Gbps	Fiber
802.3ba	100GBASE-X	100GbE (100 GigE)	100 Gbps	Fiber

Podstawy działania

- Lokalną sieć komputerową (LAN) tworzą różnego rodzaju urządzenia sprzętowo-programowe, które współpracując ze sobą umożliwiają przesyłanie danych między komputerami.
- W celu poprawnej realizacji tego zadania muszą zostać spełnione ściśle określone warunki, które definiują cztery podstawowe elementy: ramkę, protokół sterujący dostępem do medium, komponenty sygnalizacji, media fizyczne.

Podstawowe elementy

- Ramka ustandaryzowany zestaw bitów umożliwiający przesyłanie danych.
- Protokół dostępu do medium (MAC protocol) zestaw reguł działania każdego interfejsu Ethernet umożliwiający współdzielenie kanału Ethernet
- Elementy sygnałowe standardowe urządzenia do transmisji sygnałów w kanale Ethernet
- Medium fizyczne kable oraz inne elementy wykorzystywane do przesyłania sygnałów między komputerami dołączonymi do sieci Ethernet

Ramka ethernet

			Obliczenie k	edu FCS		
Preambula 7	Znacznik SFD 1	Cel6	Zrodlo 6	Typ 2	Dane Wypelnienie od 46 do 1500	FCS 4
Pola ramek	Ethernet IEE	E 802				
Oktoby	Opis					
Oktoby 7	Opis Presmbuts					
		zida n				
-7	Presentula		mki (SFD)			
-7	Preambula Znacznik pod	odsorcy	mki (SFD)			
- 7 - 1 - 6	Presidentials Znacznik pod Adres MAC d Adres MAC n	odbiorcy radavicy ofygu (d	mki (SFD) lugosc, jesti v		vviejsza od 0000 szesr	asti ovo
-7 -1 -6 -8 -2	Presidentials Znacznik pod Adres MAC o Adres MAC o Pole diugoto w przedwny	odbiorcy radavecy stypu (d mradie t mniej ni	mki (SFD) lugošć, ješti v yp protokolu		vriejsza od 0600 szesr koniecznie jest dodanie	

Ramka ethernet II

Obliczenie k odu FCS						
Preambula 8	Cel6	Zrádlo 6	Typ 2		Wypelnienie 6 do 1500	Ked FC

Pola ram	ek Ethernet IEEE 802.3
Oktety	Opis
- 8	Preambula (zakończona wzorem 10101011, czyk znacznikiem SFD 802.3)
- 6	Adres MAC adbiorcy
- 0	Adres MAC radayey
- od 46 do	1500 dane (jeśli mniej niż 46 oktetów, to na końcu konieczne jest dodanie wypełnienia)
-2	Pole typu
- 4	Kod kontroliny ramki FCS (suma kontrolina CRC)

802.3 vs Ethernet II

Preambuła

- Preambuła to 7 oktetów składających się z na przemian występujących jedynek i zer. Preambuła służy do synchronizacji taktowania w systemach Ethernet o szybkości do 10Mb. Szybsze systemy Ethernet zachowały preambułę w celu zachowania zgodności.
- •Znacznik początku ramki (SFD) to jeden oktet bitów w postaci: 10101011, oznaczający koniec sekwencji synchronizującej.
- •Pole adresata zawiera MAC adres odbiorcy. Adres odbiorcy może być MAC adresem konkretnego urządzenia, adresem grupowym lub rozgłoszeniowym.
- •Pole adresu nadawcy zawiera MAC adres nadawcy. Adres nadawcy jest MAC adresem konkretnego urządznia nadającego, będącego węzłem sieci Ethernet.
- ¿Znacznik VLAN (Virtual LAN) został wprowadzony przez standard IEEE 802.1Q. Stanowi on czterooktetowy zespół dodatkowych pól w nagłówku ramki Ethernet służących do identyfikacji przynależności ramki do konkretnego VLAN'u w komunikacji miedzy urządzeniami oraz do obsługi priorytetów zgodnie z QoS (Quality of Service).

Format adresu MAC

Znacznik VLAN

- •W skład znacznika wchodzą następujące pola:
- TPID (Tag Protocol Identifier),
- •TCI (Tag Control Information): Priority,
- •CFI (Canonical Format Indicator), pole używane do zachowania kompatybilności między przełącznikami Ethernet a Tokęn Ring. Dla przełączników Ethernet wartość tego pola ustawiana jest na 0.
- VID (VLAN ID). Numer identyfikujący VLAN zgodnie z IEEE 802.1Q. Numery VLAN'ów mogą przyjmować wartości od 1 do 4094. Wartość 0 oznacza ramkę priorytetową, wartość 4095 jest zarezerwowana. W standardzie DIX pole to oznaczało typ protokołu warstwy wyższej, natomiast w pierwszej wersji standardu IEEE długość ramki. W celu zapewnienia jednoznacznej interpretacji tego pola, w kolejnym wydaniu standardu IEEE wprowadzono interpretację kontekstową. Jeżeli wartość pola jest mniejsza niż 1536 (0x0600), to wartość określa długość ramki, a identyfikację protokołu warstwy wyższej zapewnia warstwa LLC. W przeciwnym wypadku wartość pola należy interpretować jako numer protokołu warstwy wyższej. Maksymalny rozmiar pola danych wynosi 1500 oktetów, co stanowi wartość maksymalnej jednostki transmisji (MTU Maximum Transmision Unit) dla sieci Ethernet. Jeżeli całkowita długość ramki jest mniejsza niż 64 oktety, to zawartość pola danych uzupełniana jest dodatkowymi oktetami aż do osiągniecia przez ramkę minimalnej długości.
- •TPID zajmuje miejsce przeznaczone w podstawowym standardzie dla pola typ/długość i jego wartość ustawiona jest na 0x8100, co jednoznacznie identyfikuje typ ramki jako IEEE 802.1Q/802.1P. Priority trzy pierwsze bity pola TCI pozwalają na zdefiniowanie 8 poziomowego priorytetu zgodnie z IEEE 802.1P.

LLC

- Warstwa LLC służy do przenoszenia informacji dotyczącej typu ramki. Sytuacja taka występuje wtedy, gdy pole typ/długość zawiera długość ramki, albo gdy do budowy sieci LAN wykorzystano inny protokół niż Ethernet.
- Dane warstwy LLC zgodnie z IEEE 802.2 zajmują kilka pierwszych bitów pola danych. DSAP (Destination Service Access Point) identyfikuje protokół warstwy wyższej SSAP (Source Service Access Point) Dane kontrolne

LLC

Protokół MAC

- Drugim niezwykle istotnym elementem systemu LAN są zasady dostępu do medium. Określają one reguły działania urządzeń nadawczych podczas transmisji sygnałów.
- •Wyróżniamy dwa podstawowe rodzaje protokołów deterministyczne i niedeterministyczne.

Protokoły determistyczne

- •Typowymi protokołami deterministycznymi stosowanymi w sieciach LAN są rozwiązania obecne w systemach Token Ring oraz FDDI.
- •Komputery w tych systemach połączone są za pomocą topologii pierścienia, w którym krąży znacznik (token), przekazywany między komputerami. Komputer, będący w posiadaniu znacznika, może nadawać przez określony czas, po czym przekazuje znacznik następnemu komputerowi. Dzięki temu w sieci nie występują kolizje, gdyż w danym momencie tylko jeden komputer wysyła dane do sieci.

Protokoły niedetermistyczne

- .System Ethernet dla odmiany jest systemem niedeterministycznym.
- Obowiązuje tu zasada rywalizacji o dostęp do medium. W takim środowisku zjawiskiem normalnym są częste kolizje wynikające stąd, że w danym momencie dwa lub więcej urządzeń, współdzielących medium, może rozpocząć transmisję danych.
- W związku z tym, wprowadzono mechanizm umożliwiający rozwiązywanie sytuacji kolizyjnych w postaci protokołu CSMA/CD (Carrier Sense Multiple Access with Colision Detection).
- Protokół CSMA/CD opiera się na trzech prostych mechanizmach: wykrywania kanału, rozpoznawania kolizji, wyznaczania czasu po którym nastąpi próba retransmisji.

Minimalna długość ramki

- •Mechanizm wykrywania kolizji w protokole CSMA/CD zakłada, że wszystkie urządzenia sieciowe zostaną poinformowane o wystąpieniu kolizji.
- •Przyjmując skrajny przypadek, w którym kolizja wystąpiła na jednym krańcu sieci, to stacja nadawcza, znajdująca się na drugim krańcu otrzyma informację o kolizji z pewnym opóźnieniem, równym czasowi propagacji sygnału w medium o długości dwukrotnie większej niż maksymalny rozmiar sieci.
- •Do celów projektowych przyjęto z pewną nadwyżką czas propagacji sygnału przez całą sieć na poziomie 25,6us.
- •W związku z tym stacja nadająca otrzyma sygnał o wystąpieniu kolizji nie później niż 51,2us. Ponieważ projekt dotyczył sieci o szybkości 10Mbps, oznacza to że sygnał o wystąpieniu kolizji powinien dotrzeć do nadawcy nie później niż podczas wysyłania maksimum pierwszych 512 bitów (64 oktety).
- •Zatem jeżeli nadawca wyśle pierwsze 64 oktety ramki i nie otrzyma sygnału kolizji kontynuuje wysyłanie pozostałej części ramki. Jeżeli długość ramki byłaby mniejsza niż 64 oktety nadawca nie mógłby wiedzieć, czy transmisja zakończona została sukcesem, czy nie.
- Dlatego przyjęto, że minimalnym rozmiarem ramki gwarantującym pewność poprawności transmisii iest rozmiar równy **64 oktetom**.

Przerwa międzyramkowa

Szybkość	Przerwa miedzyramkowa	Wymagany czas
10 Mbps	96 bit-times	9.6 micro sec.
100 Mbps	96 bit-times	0.96 micro sec.
1 Gbps	96 bit-times	0.096 micro sec.
10 Gbps	96 bit-times	0.0096 micro sec.

Czas transmisji 1 bitu

zybkość sieci Ethernet	Czas transmisji bitu	
10 Mbps	100 ns	
100 Mbps	10 ns	
1000 Mbps = 1 Gbps	1 ns	
10,000 Mbps = 10 Gbps	.1ns	

Parametry szczeliny czasowej

Wersje technologii Ethernet pracujące z szybkością 10 Mb/s i wolniejsze są asynchroniczne.

Asynchroniczność oznacza, że każda stacja odbierająca wykorzystuje osiem oktetów informacji taktowania do zsynchronizowania obwodu odbiorczego dla nadchodzących danych, po czym odrzuca je.

Implementacje technologii Ethernet pracujące z szybkością 100 Mb/s i szybsze są synchroniczne. Synchroniczność oznacza, że informacja taktowania nie jest wymagana, lecz dla utrzymania zgodności pole preambuły i znacznik początku ramki (SFD) są obecne.

Szczelina czasowa

•We wszystkich odmianach technologii Ethernet o szybkości transmisji nieprzekraczającej 1000 Mb/s standard wyznacza minimalny czas pojedynczej transmisji nie krótszy niż szczelina czasowa.

Szybkość	Szczelina czasowa	Odstep czasu
10 Mbps	512 bit-times	512 micro sec.
100 Mbps	512 bit-times	5.12 micro sec.
1 Gbps	4096 bit-times	4.096 micro sec
10 Gbps	nie dotyczy	nie doty czy

Błędy transmisji

Błędy transmisji

Podczas transmisji danych w sieci mogą zdarzyć się różnego rodzaju sytuacje, które nie zostały przewidziane w standardzie. Tego typu przypadki traktowane są jako błędy transmisji. Należą do nich:

- Kolizja lub runt jednoczesna transmisja więcej niż jednego urządzenia przed upływem szczeliny czasowej
- Późna kolizja jednoczesna transmisja więcej niż jednego urządzenia po upływie szczeliny czasowej
- Jabber, długa ramka, błędy zakresu niedopuszczalnie długa transmisja
- Krótka ramka, fragment kolizji lub runt niedopuszczalnie krótka transmisja
- Błąd FCS uszkodzona ramka
- Błąd wyrównania zbyt duża albo zbyt mała liczba wysyłanych bitów
- Bląd zakresu liczba otrzymanych bitów różna od liczby zadeklarowanej
- Ghost lub jabber niedopuszczalnie długa preambuła lub zakłócenie.

Half-/Full Duplex

- ·Half Duplex tryb pracy, w którym urządzenie w danej chwili może tylko wysyłać lub odbierać dane.
- •Full Duplex urządzenie może zarówno wysyłać jak i odbierać dane w tym samym czasie.

Auto negocjacja

- •Procedura Ethernetu pozwalająca dwóm urządzeniom w sieci wybrać wspólne parametry pracy:
 - Prędkość
 - Full/Half-Duplex
- Działa w warstwie 1 modelu OSI

FLP (Fast Link Pulse)

- D0 D4 identyfikator technologii LAN
- D5 D12 identyfikator technologii sieciowych
- D13 wskaźnik błędu
- D14 bity potwierdzenia odbioru wiadomości
- D15 Sygnalizator kontynuacji w następnej wiadomości

FLP – identyfikatory technologii

- •A0: device supports 10BASE-T
- •A1: device supports 10BASE-T in full duplex
- •A2: device supports 100BASE-TX
- •A3: device supports 100BASE-TX in full duplex
- •A4: device supports 100BASE-T4
- •A5: pause
- •A6: asymmetric pause for full duplex
- •A7: reserved

NLP

- Sygnalizacji NLP (Normal Link Pulse) używanej w standardzie 10BASE-T do sprawdzania integralności łącza.
- Standard 10BASE-T wymaga, aby każde urządzenie wysyłało co ok. 16ms ciąg impulsów.
- Protokół auto-negocjacji NLP/FLP zaadoptował ten mechanizm do ogłaszania pełnej funkcjonalności danego interfejsu.
- •W tym celu wysyłane jest tyle 16-bitowych wiadomości ile potrzeba do opisania możliwości interfeisu.

Historia standardu ETHERNET

- •Pierwotna specyfikacja systemu Ethernet przewidywała łączenie komputerów do współdzielonego medium, którym był kabel koncentryczny.
- Zgodnie z zasadami budowy segmentu sieci w oparciu o ten typ kabla: Oba końce kabla powinny być zakończone terminatorami o oporności 50ohm,
- Minimalna odległość między punktami przyłączenia urządzeń wynosi 0.5m
- Każda stacja powinna być bezpośrednio podłączona do trójnika BNC,
- Maksymalna długość segmentu wynosi 185m.

- Standard przewidywał rozbudowę sieci lokalnej w systemie Ethernet poprzez łączenie segmentów pod następującymi warunkami:
- Łączenie segmentów dokonuje się przy pomocy wzmacniaczy dwustronnych, tzw. repeater'ów
- Maksymalna liczba repeater'ów między dowolnymi dwoma stacjami w sieci wynosi 4
- Do segmentów parzystych mogą być podłączone jedynie dwa urządzenia, którymi są repeater'y.

- Oba końce kabla koncentrycznego powinny być zakończone terminatorami o impedancji falowej 50 omów
- Minimalna odległość miedzy punktami wpiecia urzadzeń do kabla wynosi 0.5 metra.
- Każda stacja musi być bezpośrednio polaczona z trójnikiem BNC wpietym do kabla koncentrycznego.
- 4. Maksymalna długość segmentu wynosi 185 metrów.
- Do segmentów sieci pomiedzy wtornikami moga być dolaczone tylko 2 urzadzenia, ktorymi sa te wtorniki.

- •Wraz z opracowaniem standardu umożliwiającego wykorzystanie skrętki czteroparowej pojawiły się koncentratory (repeatr'y wieloportowe), umożliwiające podłączanie do sieci urządzeń w topologii gwiazdy.
- ¿Zasady łączenia tego typu segmentów w celu rozbudowy sieci ograniczają się jedynie do ograniczenia liczby koncentratorów do 4 między dwoma dowolnymi urządzeniami.
- Maksymalna długość kabla łączącego urządzenie z koncentratorem wynosi 100m.
- •W przypadku sieci pracujących z szybkością 100Mb (FastEthernet) standard dopuszcza jedynie dwa koncentratory oraz ogranicza maksymalną długość połączeń między dwoma dowolnymi stacjami do 205m.

- Stosowane dotychczas urządzenia pracowały w warstwie 1 modelu ISO/OSI i poza regeneracją sygnałów nie wnosiły żadnych innych funkcjonalności do budowy sieci.
- Dalsza rozbudowa sieci przy pomocy koncentratorów i wzmacniaczy oznaczałaby przekroczenie maksymalnej wartości opóźnienia w sieci, co spowodowałoby wadliwe działanie protokołu CSMA/CD.
- •Wraz z rozwojem technologii, do sieci podłączano coraz większą liczbę urządzeń, co doprowadzało nawet poprawnie skonstruowane sieci do załamania komunikacji z powodu nadmiernego wzrostu kolizji.
- Segment sieci, w którym wszystkie połączenia zostały zrealizowane za pomocą urządzeń biernych i aktywnych warstwy 1 modelu ISO/OSI nazwano domeną kolizyjną.

- •W celu umożliwienia dalszej rozbudowy oraz podniesienia wydajności sieci lokalnej opracowano urządzenie o nazwie most (ang. Bridge), wyposażone w dodatkową funkcjonalność w stosunku do zwykłych regeneratorów sygnałów.
- •Funkcjonalność ta polega na umiejętności rozpoznawania urządzeń pod kątem przynależności do domen kolizyjnych bezpośrednio podłączonych do mostu.
- •Most tworzy i przechowuje tablicę pozwalającą skojarzyć MAC adres urządzenia z odpowiednim portem mostu.
- Ponieważ most przetwarza ramki Ethernet zaliczany jest do urządzeń aktywnych warstwy 2 modelu ISO/OSI.

Urządzenia wykorzystywane obecnie

- •Mosty
- •Routery
- .Switche

- •Tryb pracy przełączników możemy podzielić ze względu na sposób w jaki przełącznik podejmuje decyzję o przekierowaniu ramki na dany port.
 - Cat-through
 - Store-and-forward
 - Fragment-free
 - Hybrid

Cut-through

- Przełączaniem symetrycznym (wszystkie porty przełącznika pracują z tą samą szybkością) stosowany jest tryb cat-through.
- •Tryb ten polega na podejmowaniu decyzji o przekierowaniu ramki na podstawie adresu docelowego, znajdującego się w pierwszych 6 oktetach ramki Ethernet.

Store-and-forward

- Drugi sposób stosowany bywa zazwyczaj w trybie przełączania niesymetrycznego (porty przełącznika pracują z różnymi szybkościami, co głównie występuje w przełącznikach z portami 10/100/1000Mb) i określany jest jako stor-andforward.
- Jak sama nazwa wskazuje decyzja o przekierowaniu ramki podejmowana jest dopiero wtedy, gdy przełącznik otrzyma całą ramkę i ewentualnie sprawdzi jej poprawność na podstawie pola FCS.

Fragment-free

 W przypadku gdy do portów przełącznika podłączone są segmenty sieci w postaci domen kolizyjnych, niezależnie od sposobu przełączania stosowany bywa pośredni tryb fragment-free, w którym decyzja o przekierowaniu ramki podejmowana jest po otrzymaniu przez przełącznik pierwszych 64 oktetów ramki, co pozwala upewnić się, że podczas transmisji ramki nie doszło do kolizji.

Hybrid

- W niektórych przełącznikach stosowana jest czwarta metoda, hybrydowa.
- Jeżeli poziom błędów w sieci nie przekracza pewnej wartości (ok. 10%), przełącznik stosuje tryb cat-through.
- Jeżeli poziom błędów wzrośnie ponad założoną wartość, to przełącznik przechodzi do trybu storeand-forward.

Redundancja

- Jednym z istotnych aspektów pracy sieci jest jej niezawodność (stabilność, dostępność).
- •W celu osiągnięcia możliwie wysokiego poziomu niezawodności stosuje się urządzenia o wysokim współczynniku bezawaryjności, najczęściej wyposażone w podwójne układy zasilające oraz redundantny system połączeń sieciowych umożliwiających zachowanie komunikacji w sieci pomimo awarii części urządzeń.

Protokół STP

- Obecnie jedyną techniką umożliwiającą konfigurację połączeń redundantnych kontrolowanych automatycznie przez same urządzenia jest zastosowanie protokołu STP (Spanning Tree Protocol).
- Działanie tego protokołu polega na wzajemnym informowaniu się urządzeń o bieżącym stanie połączeń za pomocą komunikatów BPDU (Bridge Protocol Data Units).
- W wyniku wymiany informacji nt. konfiguracji połączeń każdy port przełącznika może

Protokół STP

- Blocking
- Listening
- Learning
- Forwarding
- Disabled

- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

Koniec

