Wektory losowe

Joanna Czarnowska¹

¹Uniwersytet Gdański Instytut Informatyki

Rozkład wektora losowego dyskretnego

Niech X i Y będą zmiennymi losowymi. Parę (X,Y) nazywamy wektorem losowym dwuwymiarowym.

Mówimy, że wektor jest typu dyskretnego, jeśli zmienne losowe X i Y są typu dyskretnego.

Definicja

Niech X będzie zmienną losową przyjmującą wartości $\{x_1,x_2,x_3,\dots\}$, a Y zmienną losową o wartościach $\{y_1,y_2,y_3,\dots\}$. Przez p_{kl} oznaczmy prawdopodobieństwo

$$p_{kl} = P(X = x_k, Y = y_l), k, l = 1, 2,$$

Zbiór $\{(x_k, y_l), p_{kl}\}_{k,l \ge 1}$ nazywamy rozkładem wektora (X, Y).

Rozkład wektora losowego dyskretnego – przykład

Rozkład wektora dwuwymiarowego dyskretnego można przedstawić w tabeli.

Przykład 1. Rozkład wektora (X, Y).

$_{Y}\backslash ^{X}$	-1	0	1	P(Y = y)
-1	0, 2	0	0, 2	
0	0	0, 2	0	
1	0, 2	0	0, 2	
P(X=x)				

Z tabeli odczytujemy na przykład, że prawopodobieństwo zdarzenia w którym jednocześnie X i Y przyjmuje wartość -1 wynosi: P(X=-1,Y=-1)=0,2.

Rozkłady brzegowe

Mając dany rozkład wektora (X, Y), możemy wyznaczyć rozkłady zmiennych losowych X i Y, czyli rozkłady brzegowe

$$P(X=x_i) = P(X=x_i, Y=y_1) + P(X=x_i, Y=y_2) + \ldots = \sum_{j=1}^{\infty} P(X=x_i, Y=y_j),$$

$$P(Y=y_j) = P(X=x_1, Y=y_j) + P(X=x_2, Y=y_j) + \ldots = \sum_{i=1}^{\infty} P(X=x_i, Y=y_j).$$

Rozkłady brzegowe – przykład

Rozkład łączny wektora (X, Y) i rozkłady brzegowe (na brzegach tabeli)

$Y \setminus X$	-1	0	1	P(Y = y)
-1	0,2	0	0, 2	0,4
0	0	0, 2	0	0,2
1	0,2	0	0,2	0,4
P(X=x)	0,4	0, 2	0,4	

Rozkłady brzegowe, a rozkład wektora

Powstaje pytanie, czy znając rozkłady brzegowe, czyli rozkłady zmiennych X i Y można wyznaczyć rozkład wektora (X,Y)?

Odpowiedź brzmi, że w ogólnym przypadku – nie. Możemy to zrobić, gdy zmienne X i Y są niezależne.

Niezależność zmiennych losowych

Definicja

Dyskretne zmienne losowe X i Y nazywamy niezależnymi, jeśli

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y) \tag{1}$$

dla wszystkich $x,y\in\mathbb{R}.$ Zmienne losowe które nie są niezależne, nazywamy zależnymi.

Niezależność zmiennych losowych – przykład

Przykład 1 c.d. Rozkład wektora (X, Y).

$Y \setminus X$	-1	0	1	P(Y = y)
-1	0, 2	0	0, 2	0, 4
0	0	0, 2	0	0, 2
1	0, 2	0	0, 2	0, 4
P(X=x)	0, 4	0, 2	0,4	

Zmienne losowe X i Y są zależne

$$P(X = -1, Y = -1) = 0, 2, \quad P(X = -1) \cdot P(Y = -1) = 0, 4 \cdot 0, 4 = 0, 8,$$

a zatem
$$P(X = -1, Y = -1) \neq P(X = -1) \cdot P(Y = -1)$$
.

Niezależność zmiennych losowych – przykład

Przykład 2. W tabeli podany jest rozkład wektora (X, Y). Zmienne losowe X i Y są niezależne.

$Y \setminus X$	1	0	P(Y = y)
1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$
2	$\frac{1}{4}$	$\frac{1}{2}$	3/4
P(X=x)	$\frac{1}{3}$	2/3	

Wartość oczekiwana iloczynu zmiennych losowych

Wartość oczekiwaną iloczynu dyskretnych zmiennych losowych $X \in \{x_1, x_2, \ldots\}$ i $Y \in \{y_1, y_2, \ldots\}$ możemy obliczyć korzystając z zależności

$$E(XY) = \sum_{k,l \geqslant 1} x_k y_l \cdot P(X = x_k, Y = y_l).$$

Twierdzenie

Jeżeli zmienne losowe X i Y są niezależne, to

$$E(XY) = EX \cdot EY$$
.

Niezależność zmiennych losowych – przykład

Przykład 2. c.d. Zmienne losowe X i Y są niezależne.

$_{Y}\setminus ^{X}$	1	0	P(Y = y)
1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$
2	$\frac{1}{4}$	$\frac{1}{2}$	3 4
P(X=x)	$\frac{1}{3}$	<u>2</u> 3	

$$EX = 1/3$$
,
 $EY = 1/4 + 6/4 = 7/4$
 $E(XY) = 1/12 + 2/4 = 7/12 = EXEY$

Kowariancja. Współczynnik korelacji Pearsona

Do opisu zależności między zmiennymi losowymi, wykorzystuje się kowariancję oraz współczynnik korelacji Pearsona.

Oznaczmy $EX = \mu_1$ i $EY = \mu_2$.

Kowariancją zmiennych losowych X i Y nazywamy liczbę

$$cov(X, Y) = E(X - \mu_1)(Y - \mu_2).$$

Siłę zależności mierzy współczynnik korelacj Pearsona, definiowany jako wartość oczekiwana iloczynu zmiennych losowych standaryzowanych

$$\rho(X,Y) = E\left(\frac{X-\mu_1}{\sigma_1}\frac{Y-\mu_2}{\sigma_2}\right) = \frac{\text{cov}(X,Y)}{\sigma_1\sigma_2},$$

 $\mathsf{gdzie}\ \sigma_1^2 = \mathsf{Var} X\ \mathsf{i}\ \sigma_2^2 = \mathsf{Var} Y.$

Kowariancja. Współczynnik korelacji Pearsona

Fakt

Dla dowolnych zmiennych losowych X i Y mamy

- a) cov(X, Y) = E(XY) EXEY,
- b) cov(X, X) = Var(X), cov(X, Y) = cov(Y, X),
- c) jeśli X i Y są zmiennymi niezależnymi, to cov(X,Y)=0 oraz $\rho(X,Y)=0.$

Dowód a) Korzystająć z własności wartości oczekiwanej, mamy

$$\begin{aligned} \cos(X, Y) &= E(X - \mu_1)(Y - \mu_2) \\ &= E(XY - \mu_2 X - \mu_1 Y + \mu_1 \mu_2) \\ &= E(XY) - E(\mu_2 X) - E(\mu_1 Y) + E(\mu_1 \mu_2) \\ &= E(XY) - \mu_2 EX - \mu_1 EY + E(\mu_1 \mu_2) \\ &= E(XY) - \mu_2 \mu_1 - \mu_1 \mu_2 + \mu_1 \mu_2 \\ &= E(XY) - \mu_1 \mu_2. \end{aligned}$$

Współczynnik korelacji Pearsona

Współczynnik ρ przyjmuje wartości z przedziału $\langle -1, 1 \rangle$.

- Jeżeli ρ > 0 mówimy, że zmienne są skorelowane dodatnio,
- jeżeli ρ < 0 skorelowane ujemnie,
- lacktriangle w przypadku, gdy ho=0 mówimy, że zmienne są nieskorelowane.

Zachodzą zależności

- $ho = 1 \iff P(Y = aX + b) = 1$, dla pewnych stałych $a > 0, b \in \mathbb{R}$,
- ▶ $\rho = -1 \iff P(Y=aX+b)$, dla pewnych stałych $a < 0, b \in \mathbb{R}$.

Można też łatwo wykazać, że wariancja sumy zmiennych losowych jest równa sumie wariancji oraz podwojonej wartości kowariancji

$$Var(X + Y) = VarX + VarY + 2cov(X, Y)$$
$$= \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2.$$

Współczynnik korelacji Pearsona – przykład

Przykład 1. c.d. Zmienne losowe X i Y mają taki sam rozkład. Mamy

$$EX = EY = 0$$
, $E(X^2) = E(Y^2) = 0$, 8, $E(XY) = 0$,

ightharpoonup VarX = VarY = 0, 8.

Stąd $\rho = 0$. Zauważmy, że zmienne X i Y są zależne.

$Y \setminus X$	-1	0	1	P(Y = y)
-1	0, 2	0	0, 2	0, 4
0	0	0, 2	0	0, 2
1	0, 2	0	0, 2	0, 4
P(X=x)	0, 4	0, 2	0, 4	

Uwaga.

- \triangleright X, Y niezależne \Rightarrow X, Y nieskorelowane.
- \triangleright X, Y nieskorelowane \Rightarrow X, Y niezależne.

Współczynnik korelacji Pearsona – przykład

Przykład 3. W tabeli podany jest rozkład łączny wektora (X, Y) oraz rozkłady zmiennych X i Y (rozkłady brzegowe).

$Y \setminus X$	-1	0	1	P(Y = y)
-1	0, 2	0	0, 2	0, 4
0	0	0,4	0	0, 4
1	0	0	0, 2	0, 2
P(X=x)	0, 2	0,4	0,4	

Współczynnik korelacji $ho \approx$ 0, 43.

Dystrybuanta

Definicja

Dystrybuantą wektora (X,Y)nazywamy funkcję $F:\mathbb{R}^2\to\mathbb{R}$ taką, że

$$F(x,y)=P(X\leqslant x,Y\leqslant y),$$

dla każdego $x, y \in \mathbb{R}$.

Rozkłady dwuwymiarowe ciągłe

Mówimy, że wektor (X,Y) o dystrybuancie F jest typu ciągłego, jeśli istnieje funkcja nieujemna $f:\mathbb{R}^2\to\mathbb{R}$ taka, że

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

dla każdego $x, y \in \mathbb{R}$.

Funkcję f nazywamy gęstością rozkładu wektora (X, Y). Mamy

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y).$$

Rozkłady dwuwymiarowe ciągłe

Fakt

Funkcja fjest gęstością rozkładu pewnego wektora $(X,\,Y)$ wtedy i tylko wtedy, gdy

- ▶ $f(x,y) \ge 0$, dla każdego $(x,y) \in \mathbb{R}$,

Prawdopodobieństwo, że wektor (X,Y) przyjmuje wartości ze zbioru $D\subset\mathbb{R}^2$ obliczamy, korzystając z zależności

$$P((X,Y) \in D) = \iint_D f(x,y) \, dxdy.$$

Rozkłady dwuwymiarowe ciągłe

Przykład 4. Wektor (X, Y) ma rozkład o gęstości

$$f(x,y) = \left\{ \begin{array}{ll} \mathrm{e}^{-x-y}, & \text{ dla } x > 0 \text{ i } y > 0, \\ 0, & \text{ dla pozostałych wartości.} \end{array} \right.$$

$$P((X, Y) \in (1, 2) \times (1, 3)) = \int_{1}^{2} \int_{1}^{3} e^{-x - y} dx dy$$
$$= (e^{-1} - e^{-2})(e^{-1} - e^{-3}) \approx 0.07.$$

Rozkłady brzegowe

Fakt

Jeśli wektor (X,Y) jest typu ciagłego o gestości f, to zmienne losowe X i Y też są typu ciągłego i ich gęstości możemy wyznaczyć z zależności

$$f_1(x) = \int_{-\infty}^{\infty} f(x,y)dy, \qquad f_2(y) = \int_{-\infty}^{\infty} f(x,y)dx,$$

gdzie f_1 jest gęstością zmiennej losowej X, a f_2 zmiennej losowej Y.

Przykład 4 c.d.

$$f_1(x) = \int_0^\infty e^{-x-y} dy = e^{-x}, \text{ dla } x > 0$$

$$f_2(x) = \int_0^\infty e^{-x-y} dx = e^{-y}, \text{ dla } y > 0$$

Niezależność zmiennych losowych

Definicja

Zmienne losowe X i Y nazywami niezależnymi, jeśli

$$F(x,y) = F_1(x) \cdot F_2(x),$$

gdzie F_1 , F_2 i F są odpowiednio dystrybuantami zmiennych X i Y oraz wektora (X,Y).

Dla rozkładów ciągłych, powyższa definicja jest równoważna warunkowi

$$f(x,y) = f_1(x) \cdot f_2(x), \tag{2}$$

gdzie f_1 , f_2 i f są gęstościami zmiennych X i Y oraz wektora (X,Y), natomiast dla rozkładów dyskretnych, warunkowi (1).

Zmienne losowe z Przykładu 4 spełniają warunek (2), zatem są niezależne.

Rozkład normalny standardowy

Gęstość wektora $Z=(Z_1,Z_2)^T$, gdzie zmienne losowe Z_1,Z_2 są niezależne o jednakowym rozkładzie normalnym standardowym N(0,1), jest zgodnie z (2) iloczynem gęstości rozkładów brzegowych

$$f(x_1, x_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2}{2}} = \frac{1}{2\pi} e^{-\frac{x_1^2 + x_2^2}{2}}.$$
 (3)

Rozkład o gęstości f, nazywamy rozkładem normalnym standardowym, dwuwymiarowym.

Rozkład normalny standardowy dwuwymiarowy

Opisując wektor normalny standardowy $Z=(Z_1,Z_2)$, podajemy wektor wartości oczekiwanych oraz macierz kowariancji, która niesie informacje o zależnościach między zmiennymi.

Wektor warości oczekiwanych: $E(Z) = (EZ_1, EZ_2) = (0, 0)$.

Macierz kowariancji:

$$\begin{split} \Sigma &= \left[\begin{array}{cc} \text{cov}(Z_1,Z_1) & \text{cov}(Z_1,Z_2) \\ \text{cov}(Z_2,Z_1) & \text{cov}(Z_2,Z_2) \end{array} \right] \\ &= \left[\begin{array}{cc} \text{Var}(Z_1) & \text{cov}(Z_1,Z_2) \\ \text{cov}(Z_2,Z_1) & \text{Var}(Z_2) \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = I_2 \end{split}$$

ightharpoonup Zauważ, że zmienne Z_1 i Z_2 są niezależne, zatem $cov(Z_1,Z_2)=0$.

Piszemy $Z \sim \textit{N}(0, I_2)$, gdzie I_2 oznacza macierz jednostkową w \mathbb{R}^2 .

Rozkład normalny dwuwymiarowy

Niech $Z = (Z_1, Z_2) \sim N_2(0, I_2)$.

Mówimy, że wektor $X=(X_1,X_2)$ ma rozkład normalny dwuwymiarowy (rozkład Gaussowski), jeżeli jest transormacją liniową

$$\begin{cases} X_1 = \mu_1 + a_{11}Z_1 + a_{1k}Z_2 \\ X_2 = \mu_2 + a_{21}Z_1 + a_{2k}Z_2 \end{cases}$$
 (4)

lub w postaci macierzowej

$$X = \mu + AZ$$
.

gdzie $\mu = (\mu_1, \mu_2) \in \mathbb{R}^2$ jest wektorem stałych oraz

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

gdzie A jest macierzą nieosobliwą.

Dwuwymiarowy Rozklad Normalny

Dwuwymiarowy Rozklad Normalny

Rozkład normalny dwuwymiarowy

Jeśli wektor X ma rozkład normalny, to wartość oczekiwana EX i macierz kowariancji Σ jednoznacznie wyznaczają rozkład tego wektora.

Wartość oczekiwana:
$$\mu = EX = (EX_1, EX_2) = (\mu_1, \mu_2)$$

Macierz kowariancji:

$$\Sigma = \left[\begin{array}{cc} \mathsf{cov}(X_1, X_1) & \mathsf{cov}(X_1, X_2) \\ \mathsf{cov}(X_2, X_1) & \mathsf{cov}(X_2, X_2) \end{array} \right] = \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right],$$

gdzie σ_1 , σ_2 są odchyleniami standardowymi, a ρ jest współczynnikiem korelacji.

Można wykazać też, że $\Sigma = AA^T$.

Piszemy $(X_1, X_2) \sim N(\mu, \Sigma)$ lub $(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$.

Gęstość rozkładu normalnego dwuwymiarowego

Mając gęstość rozkładu dwuwymiarowego standardowego (3) oraz definicję (4) można wykazać, że gęstość rozkładu normalnego dwuwymiarowego dana jest wzorem

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} \right] \right).$$
 (5)

Na przykład gęstość rozkładu $\mathit{N}(0,0,1,1,0.9)$ dana jest wzorem

$$f(x_1,x_2) = \frac{5\sqrt{19}}{19\pi} \exp\left(-\frac{50}{19} \left(x_1^2 - \frac{9}{5}x_1x_2 + x_2^2\right)\right).$$

Wykres gęstości na kolejnym slajdzie.

Rozkład normalny dwuwymiarowy – wybrane gestości

Gestości rozkładów N(0, 0, 1, 1, -0.7,), N(0, 0, 1, 1, 0), N(0, 0, 1, 1, 0.9).

Próby wygenerowane z powyższych rozkładów.

0.20-

Rozkłady brzegowe

Fakt

Niech $(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$. Wtedy

- rozkłady brzegowe są też rozkładami normalnymi $X_1 \sim N(\mu_1, \sigma_1), \qquad X_2 \sim N(\mu_2, \sigma_2),$
- ightharpoonup zmienne X_1 i X_2 są niezależne wtedy i tylko wtedy, gdy są nieskorelowane.

Dla $\rho = 0$ z (5) mamy

$$\begin{split} f(x_1, x_2) &= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right) \\ &= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{\sigma_1^2} \right) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right) = f_1(x_1) \cdot f_2(x_2). \end{split}$$

Rozkład normalny d-wymiarowy

Analogicznie do rozkładu dwuwymiarowego (4), możemy zdefiniować rozkład normalny d-wymiarowy o wartości oczekiwanej $EX = (EX_1, \dots, EX_d)$ i macierzy kowariancji

$$\Sigma = \begin{bmatrix} \mathsf{cov}(X_1, X_1) & \mathsf{cov}(X_1, X_2) & \cdots & \mathsf{cov}(X_1, X_d) \\ \mathsf{cov}(X_2, X_1) & \mathsf{cov}(X_2, X_2) & \cdots & \mathsf{cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{cov}(X_d, X_1) & \mathsf{cov}(X_d, X_2) & \cdots & \mathsf{cov}(X_d, X_d) \end{bmatrix}$$

które też jednoznacznie wyznaczają ten rozkład.

► Gęstość rozkładu normalnego *d*-wymiarowego

$$f(x_1,...,x_d) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right],$$
 (6)

gdzie $\mathbf{x} = (x_1, \dots, x_d)^T$, $\mu = (EX_1, \dots, EX_d)^T$, a $|\Sigma|$ jest wyznacznikiem macierzy kowariancji.

Rozkład normalny d-wymiarowy

- ▶ Jeśli wektor $(X_1,...,X_d)$ ma rozkład normalny d-wymiarowy (6), to rozkłady brzegowe też są rozkładami normalnymi $X_i \sim N(\mu_i, \sigma_i^2)$.
- Wektor (X_1, X_2, \dots, X_d) ma rozkład normalny d-wymiarowy wtedy i tylko wtedy, gdy każda kombinacja liniowa

$$Y = a_1X_1 + a_2X_2 + \ldots + a_dX_d,$$

ma rozkład normalny. Czyli, dla dowolnego wektora a $\in \mathbb{R}^d$, zmienna losowa $Y = \mathbf{a}^T \mathbf{X}$ ma rozkład normalny.