

IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA EXAMEN

Pregunta 1

Demuestre que si $f_1 \in \mathcal{O}(g_1)$ y $f_2 \in \mathcal{O}(g_2)$, entonces $f_1 + f_2 \in \mathcal{O}(\max\{g_1, g_2\})$ Solución:

Dado que $f_1(n) \in \mathcal{O}(g_1(n))$ y $f_2(n) \in \mathcal{O}(g_2(n))$, sabemos que:

- Existe $c_1 > 0, n_0^1 \in \mathbb{N}$ tal que $f_1(n) \leq c_1 \cdot g_1(n)$ para todo $n \geq n_0^1$.
- Existe $c_2 > 0, n_0^2 \in \mathbb{N}$ tal que $f_2(n) \leq c_2 \cdot g_2(n)$ para todo $n \geq n_0^2$.

Si $n_0 = max\{n_0^1, n_0^2\}$, entonces para todo $n \ge n_0$:

$$\begin{array}{ll} f_1(n) + f_2(n) & \leq c_1 \cdot g_1(n) + c_2 \cdot g_2(n) \\ & \leq c_1 \cdot \max\{g_1(n), g_2(n)\} + c_2 \cdot \max\{g_1(n), g_2(n)\} \\ & \leq C \cdot \max\{g_1(n), g_2(n)\} \end{array}$$

Queda demostrado lo pedido ya que existe un $C = c_1 + c_2$ y existe un $n_0 \in \mathbb{N}$ tal que:

$$f_1(n) + f_2(n) \in \mathcal{O}(\max\{q_1(n), q_2(n)\})$$

- (1 Puntos) Por aplicar la definición de \mathcal{O} para f_1 y f_2 .
- (1 Punto) Por escoger n_0 correctamente.
- $({\bf 1.5~Punto})$ Por acotar la suma de f_1 y f_2 por g_1 y g_2 correctamente.
- (1.5 Punto) Por acotar g_1 y g_2 por el $max\{g_1, g_2\}$.
- (1 Punto) Por escoger C correctamente y concluir.

Pregunta 2

Una fórmula proposicional α se dice que es una cláusula conjuntiva si es de la forma $\alpha = a_1 \wedge a_2 \wedge \ldots \wedge a_n$ para algún $n \geq 1$ y cada a_i es un literal con $1 \leq i \leq n$, esto es, a_i es una variable proposicional o la negación de una variable proposicional. Por ejemplo, $p \wedge \neg q \wedge r$ y $\neg q \wedge s \wedge q \wedge s$ son cláusulas conjuntivas.

Pregunta 2.1

Sea $\alpha = a_1 \wedge \ldots \wedge a_n$ una cláusula conjuntiva. Demuestre que si α es satisfacible entonces NO existen $i, j \leq n$ con $i \neq j$ tal que $a_i \equiv \neg a_j$.

Solución:

Suponga $\alpha(p_1,\ldots,p_k)$ con $k\leq n$. Como α es satisfacible, entonces existe una valuación v_1,\ldots,v_k tal que

$$\alpha(v_1, \dots, v_k) = 1 \tag{1}$$

Sin pérdida de generalidad, supongamos que existen $i \neq j$ tal que $a_i \equiv \neg a_j$. Desde (1), vemos que

$$\alpha(v_1, \dots, v_k) = 1$$
$$(a_1 \wedge \dots \wedge a_n)(v_1, \dots, v_k) = 1$$

Luego es cierto que,

$$(a_1(v_1,\ldots,v_k)=1) \land \cdots \land (a_n(v_1,\ldots,v_k)=1),$$

En particular $a_i(v_1, \ldots, v_k) = 1$ y $a_j(v_1, \ldots, v_k) = 1$. Pero esto nos dice claramente que $(\neg a_j)(v_1, \ldots, v_k) = 0$. Lo que es una contradicción ya que $a_i \equiv \neg a_j$.

Dado lo anterior la distribución de puntaje es la siguiente:

- (0.5 Puntos) Por enunciar satisfacibilidad y armar la demostración por contradicción correctamente
- (2 Puntos) Por deducir que a_i y a_j se satisfacen a partir de la satisfaciblidad de α .
- (0.5 Puntos) Por concluir la demostración mostrando contradicción correctamente.

Pregunta 2.2

Sean $\alpha = a_1 \wedge \ldots \wedge a_n$ y $\beta = b_1 \wedge \ldots \wedge b_m$ dos cláusulas conjuntivas satisfacibles, no necesariamente con el mismo conjunto de variables proposicionales. Demuestre que $\alpha \models \beta$ si, y solo si, $\{b_1, \ldots, b_m\} \subseteq \{a_1, \ldots, a_n\}$ Solución: Se procede a demostrar ambas direcciones del bicondicional.

$$\bullet \alpha \models \beta \rightarrow \{b_1, \dots, b_m\} \subseteq \{a_1, \dots, a_n\}$$

Por contrapositivo, suponemos que $\{b_1,...,b_m\} \nsubseteq \{a_1,...,a_n\}$. Entonces, existe $b \in \{b_1,...,b_m\}$ tal que también $b \notin \{a_1,...,a_n\}$. Como α es satisfacible entonces existe una valuación $v_1,...,v_k$ tal que $\alpha(v_1,...,v_k)=1$. Por el mismo argumento del ítem anterior se tiene que $a_i(v_1,...,v_k)=1$ para todo $1 \le i \le k$.

Dicho eso, existen 2 casos:

1. La variable de b no esta en α :

Nombremos como p_{k+1} a la variable presente en b. Luego para una valuación $v_1, \ldots, v_k, v_{k+1}$ con $v_{k+1} \in \{0,1\}$ siempre se cumplirá que $a_i(v_1,\ldots,v_k,v_{k+1})=1$ para $1 \leq i \leq n$. Eligiendo v_{k+1} como 0 o 1 dependiendo del literal b podemos llegar a que la valuación cumple que $\beta(v_1,\ldots,v_k,v_{k+1})=0$. Por lo que $\alpha \not\models \beta$.

- 2. La variable de b sí está en α : Como $b \not\in \{a_1,...,a_n\}$ luego existe $1 \leq j \leq n$ tal que $a_j \equiv \neg b$. Así $b(v_1,...,v_k) = 0$ y entonces $\beta(v_1,...,v_k) = 0$. Por lo tanto $\alpha \not\models \beta$.
- $\bullet \alpha \models \beta \leftarrow \{b_1, \dots, b_m\} \subseteq \{a_1, \dots, a_n\}$

Por contrapositivo suponga que $\alpha \not\models \beta$. Luego, existe una valuación $v_1,...,v_k$ tal que $\alpha(v_1,...,v_k)=1$ y $\beta(v_1,...,v_k)=0$. Es decir, $\alpha_i(v_1,...,v_k)=1$ para $1\leq i\leq n$ y existe un b_j con $1\leq j\leq m$ tal que $b_j(v_1,...,v_k)=0$.

Claramente $a_i \not\equiv b_j$ para todo $1 \leq i \leq n$. Por lo que $b_j \notin \{a_1, ..., a_n\}$ y entonces $\{b_1, ..., b_m\} \not\subseteq \{a_1, ..., a_n\}$.

- (0.3 Puntos) Por enunciar correctamente el contrapositivo en la primera dirección .
- (0.5 Puntos) Por plantear el caso en el que la variable de b_i no está en α .
- $(\mathbf{0.5} \ \mathbf{Puntos})$ Por plantear el caso en el que la variable de b_i está en α .
- (0.2 Puntos) Por concluir la demostración en la primera dirección.
- (0.5 Puntos) Por enunciar el contrapositivo en la segunda dirección y notar que $a_1(v_1,...,v_k)=1$ para $1 \le i \le n$.
- (0.5 Puntos) Por plantear la existencia de algún b_j tal que su valuación sea 0.
- (0.5 Puntos) Por concluir correctamente la demostración por contrapositivo en la segunda dirección.

Pregunta 3

Sea $f:A\to B$ una función cualquiera del conjunto A al conjunto B con $A\neq\emptyset$ y $B\neq\emptyset$.

Pregunta 3.a

Sea $R_f \subseteq A \times A$ una relación binaria sobre A tal que $(x, y) \in R_f$ si, y sólo si, f(x) = f(y). Demuestre que R_f es una relación de equivalencia.

Solución:

Se demuestra que R_f es una relacion de equivalencia si cumple ser:

- Refleja. Sea $a \in A$, como f(a) = f(a), entonces $(a, a) \in R_f$.
- Simetrica. Sean $a, b \in A$, tal que $(a, b) \in R_f$, entonces:

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow f(b) = f(a)$$

$$\Rightarrow (b, a) \in R_f$$

■ Transitiva. Sean $a, b, c \in A$, tal que $(a, b) \in R_f$ y $(b, c) \in R_f$, entonces:

$$\Rightarrow f(a) = f(b) \ y \ f(b) = f(c)$$

$$\Rightarrow f(a) = f(c)$$

$$\Rightarrow (a,c) \in R_f$$

Queda demostrado que R_f es una relacion de equivalencia.

Dado lo anterior la distribución de puntaje es la siguiente:

(2 Puntos) Por item correcto (total 6 puntos)

Pregunta 3.b

Demuestre que el conjunto cuociente de A con respecto a R_f es equinumeroso con el recorrido de f, esto es, $|A/R_f| = |\{f(a) \mid a \in A\}|$.

Solución:

Construiremos una biyección. Sea $g: A/R_f \to img(f)$ dada por:

$$g([a]_{R_f}) = f(a)$$

para $a \in A$, donde $[a]_{R_f} \in A/R_f$ es una clase de equivalencia de R_f .

 \underline{PD} : g es biyectiva

Inyectividad:

Sean $X=[a]_{R_f}, Y=[b]_{R_f}$ tales que $X\neq Y.$ Por propiedad de clases de equivalencia:

$$[a]_{R_f} \neq [b]_{R_f} \Rightarrow (a,b) \notin R_f$$

Luego, por definición de la relación R_f :

$$f(a) \neq f(b)$$

$$\Rightarrow g(X) = f(a) \neq f(b) = g(Y)$$

Como $X \neq Y \Rightarrow g(X) \neq g(Y),$ entonces ges inyectiva

Sobreyectividad:

Sea $c \in ing(f)$ cualquiera. Por definición de img(f), existe un $a \in A$ tal que:

$$c = f(a)$$

Su preimagen en g es $[a]_{R_f}$, esto es:

$$g([a]_{R_f}) = f(a) = c$$

Como c tiene preimagen en $A/R_f,\,g$ es sobreyectiva.

- $({\bf 1}\ {\bf Punto})$ Por mostrar la función g
- (3 Puntos) Por mostrar correctamente su inyectividad
- (2 Puntos) Por mostrar correctamente su sobreyectividad

Pregunta 4

Sea G = (V, E) un grafo no-dirigido. Una k-coloración de aristas de G es una función $f : E \to \{1, \dots, k\}$ tal que $f(e) \neq f(e')$ para todo par de aristas distintas $e, e' \in E$ que comparten un mismo vértice.

Pregunta 4.a

Demuestre que, para toda grafo no-dirigido G = (V, E), si f es una k-coloración de aristas de G, entonces k es mayor o igual que el grado máximo de G, esto es, $k \ge \max_{v \in V} \deg(v)$.

Solución:

Si f es una k-coloración de aristas de un grafo G(V, E) se busca demostrar que $k \ge \max_{v \in V} deg(v)$, lo que es equivalente a demostrar que $\forall v \in V$. $k \ge deg(v)$.

Por contradicción suponemos que $\exists v \in V$ tal que se cumple m = deg(v) > k. Entonces definimos las m aristas incidentes a v como $e_1, ...e_m$. Luego como m > k, es decir contamos con más aristas que colores, por principio del palomar existen los índices $i \neq j$ tales que $f(e_i) = f(e_j)$, vale decir, dos aristas que comparten un vértice tienen el mismo color. Esto presenta una contradicción sobre f como una k-coloración válida y así queda demostrado.

Dado lo anterior la distribución de puntaje es la siguiente:

- (0.5 Puntos) Por definir que se busca demostrar identificando el máximo o recorriendo V.
- (1 Punto) Por definir el vértice del caso por contradicción.
- (1.5 Puntos) Por deducir m > k y cómo esto implica la contradicción.

Pregunta 4.b

Demuestre usando inducción que para toda grafo no-dirigido G = (V, E) y para toda k-coloración de aristas f de G, se tiene que un mismo color puede ser usado por f en a lo más |V|/2 aristas, esto es, para todo color $c \in \{1, \ldots, k\}$ se cumple que:

$$|\{e \in E \mid f(e) = c\}| \le \frac{|V|}{2}.$$

Solución:

Se busca demostrar por inducción que dada la k-coloración f, para todo color se cumple que

$$|\{e \in E | f(e) = c\}| \le \frac{|V|}{2}$$

De formas análogas es posible hacer inducción sobre la cantidad de vértices o aristas, a continuación se plantea según cantidad de vértices buscando demostrar la proposición

$$P(n) := \forall G(V, E) \text{ tal que } |V| = n \forall f \text{ se cumple } |\{e \in E | f(e) = C\}| \le \frac{|V|}{2}$$

Caso base

Dado un grafo $G=(\{v\},\emptyset)$ de modo que |V|=1 entonces una k-coloración de aristas $f:\emptyset \to \{1,...,k\}$, por ende

$$|\{e \in E | f(e) = C\}| = 0 \le \frac{1}{2}$$

Caso inductivo

Sea G=(V,E) tal que |V|=n y una k-coloración de aristas $f:E\to\{1,...,k\}$. Luego se tiene un vértice v cualquiera y $e_1,...e_m$ sus aristas incidentes y dos casos:

1) Si $\forall i \leq m \ f(e_i) \neq c$, entonces se define

$$G - v = (V', E') = (V - v, E - \{e_1, ...e_m\})$$

y f' como la restricción de f sobre E'. Además por hipótesis inductiva se tiene que

$$|\{e \in E'|f'(e) = C\}| \le \frac{|V'|}{2} \le \frac{|V| - 1}{2}$$

Ahora, dado que el color c no se ocupa en ninguna de las aristas $e_1, ..., e_m$ se cumple que

$$|\{e \in E | f(e) = C\}| = |\{e \in E' | f'(e) = C\}| \le \frac{|V|}{2}$$

2) Si $\exists i \leq m$ tal que $f(e_i) = c$, entonces se define la arista $e_c = \{u, v\}$ tal que $f(e_c) = c$. Luego al considerar el grafo

$$G - e_c = (V', E') = (V - e_c, \{e' \in E | e' \cap e_c = \emptyset\})$$

y f' como la restricción de f sobre E'. Ahora, por hipótesis inductiva se tiene que

$$|\{e \in E'|f'(e) = C\}| \le \frac{|V'|}{2} = \frac{|V| - 2}{2}$$

Finalmente, dado que todas las aristas e' tales que $e' \cap e_c \neq \emptyset$ (esto es, coinciden en un vértice con e_c) no son coloreadas con el color c se tiene que

$$|\{e \in E | f(e) = C\}| = |\{e \in E' | f'(e) = C\}| + 1 \le \frac{|V| - 2}{2} + 1 = \frac{|V|}{2}$$

- (0.5 Puntos) Por definir la proposición a demostrar y sobre qué conjunto realizar la inducción.
- (0.5 Puntos) Por plantear el caso base.
- (0.5 Puntos) Por definir el grafo G v en el caso 1)
- (0.5 Puntos) Por concluir lo pedido utilizando la hipótesis inductiva.
- (0.5 Puntos) Por definir el grafo G e en el caso 2) y utilizar la hipótesis inductiva.
- (0.5 Puntos) Por concluir lo pedido comparando las cardinalidades.