INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

1 - LÓGICA E MÉTODOS DE PROVA

- 1.1) Elementos de Lógica Proposicional
- 1.2) Elementos de Lógica de Primeira Ordem
- 1.3) Métodos de Prova
- 1.4) Indução Matemática
- 1.5) Definições Recursivas

DEFINIÇÕES RECURSIVAS

- Algumas vezes pode ser difícil definir um objeto explicitamente, mas pode ser fácil defini-lo recursivamente.
 - Incluindo o item que está sendo definido como parte da definição.
- A recursão pode ser usada para definir sequências, funções e conjuntos.
- Exemplo: uma sequência de potências de 2 é dada por:

$$a_n = 2^n$$
, para $n = 0, 1, 2$

mas ela também pode ser definida a partir do 1o termo e de uma regra para encontrar um termo da sequência a partir do anterior, ou seja:

$$a_0=1$$

$$a_{n+1}=2.a_n, \ \mathsf{para}\ n=0,1,2,...$$

- Quando definimos uma sequência recursivamente, podemos usar indução para provar resultados sobre a sequência.
- Quando definimos um conjunto recursivamente:
 - especificamos alguns elementos iniciais em um passo básico e
 - fornecemos uma regra para construir novos elementos a partir que já temos no passo recursivo.
- Para provar resultados sobre conjuntos definidos recursivamente, utilizamos um método chamado de indução estrutural.

- A definição recursiva de uma função cujo domínio é o conjunto dos inteiros não-negativos consiste em duas etapas:
 - Passo básico: especificar o valor da função em zero.
 - Passo recursivo: fornecer uma regra para encontrar o valor da função em um inteiro a partir dos seus valores em inteiros menores.
- Esta definição é chamada de recursiva ou ainda de indutiva.

Exemplo: Suponha que f é definida recursivamente por:

$$f(0) = 3$$

 $f(n+1) = 2.f(n) + 3$

Encontre f(1), f(2), f(3) e f(4).

Solução:

$$f(1) = 2f(0) + 3 = 2.3 + 3 = 9$$

$$f(2) = 2f(1) + 3 = 2.9 + 3 = 21$$

$$f(3) = 2f(2) + 3 = 2.21 + 3 = 45$$

$$f(4) = 2f(3) + 3 = 2.45 + 3 = 93$$

- Muitas funções podem ser estudadas recursivamente.
 - Um bom exemplo é a função fatorial.
- **Exemplo**: Forneça uma definição recursiva para a função fatorial F(n) = n! e use-a para avaliar 5!

Solução:

- Definição recursiva:
 - F(0) = 1
 - F(n+1) = (n+1)F(n)
- Avaliando F(5) = 5!:

$$F(5) = 5.F(4) = 5.4.F(3) = 5.4.3.F(2) =$$

= $5.4.3.2.F(1) =$
= $5.4.3.2.1.F(0) = 5.4.3.2.1.1 = 120$

- O Princípio da indução matemática garante que funções definidas recursivamente ficam bem definidas:
 - para todo inteiro positivo, o valor da função neste inteiro é determinado de forma não ambígua
 - ou seja, obtemos o mesmo valor qualquer que seja o modo de aplicar as duas partes da definição
- Em algumas definições de funções, os valores da função nos primeiros k inteiros positivos são especificados.
 - E então é fornecida uma regra para determinar o valor da função em inteiros maiores a partir dos seus valores em alguns ou todos os inteiros que o precedem.
 - O princípio da indução forte garante que tais definições produzem funções bem definidas.

• Os **números de Fibonacci**, $f_0, f_1, f_2, ...$, são definidos pelas equações:

$$f_0 = 0, \ f_1 = 1$$
 $f_n = f_{n-1} + f_{n-2}, \ \mathsf{para} \ n = 2, 3, 4, \dots$

Exemplo: encontre os números de Fibonacci f_2, f_3, f_4, f_5 e f_6 .

Solução: segue da segunda parte da definição que:

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2$
 $f_4 = f_3 + f_2 = 2 + 1 = 3$
 $f_5 = f_4 + f_3 = 3 + 2 = 5$
 $f_6 = f_5 + f_4 = 5 + 3 = 8$

INDUÇÃO & RECURSÃO

- Existe uma conexão natural entre recursão e indução:
 - É comum ser usada uma sequência natural em definições recursivas de objetos.
 - É comum a indução ser o melhor (talvez o único) modo de provar resultados sobre objetos definidos recursivamente.

- Pode-se usar a definição recursiva dos números de Fibonacci para provar muitas propriedades destes números.
- **Exemplo:** Mostre que, sempre que $n \ge 3$, temos que $f_n > \alpha^{n-2}$, onde $\alpha = (1 + \sqrt{5})/2$.

Solução: podemos provar esta desigualdade usando indução forte:

- Seja P(n): " $f_n > \alpha^{n-2}$ "
- Queremos provar que P(n) é V sempre que $n \ge 3$.
- Passo básico:

$$2 = f_3 > \alpha$$

 $3 = f_4 > \alpha^2 = (3 + \sqrt{5})/2$

ullet de modo que P(3) e P(4) são ambas V.

Exemplo (cont.): $f_n > \alpha^{n-2}$, para $n \ge 3$

Solução:

- Passo indutivo:
 - vamos assumir que P(j) é V, ou seja: $f_j > \alpha^{j-2}$, $\forall j$, com $3 \le j \le k$, onde $k \ge 4$
 - (Temos que mostrar que P(k+1) é V, ou seja: $f_{k+1} > \alpha^{k-1}$)
 - Como α é uma solução de $x^2-x-1=0$, temos $\alpha^2=\alpha+1$
 - Portanto:

$$\alpha^{k-1} = \alpha^2 \cdot \alpha^{k-3}$$

$$= (\alpha + 1)\alpha^{k-3}$$

$$= \alpha \cdot \alpha^{k-3} + 1 \cdot \alpha^{k-3}$$

$$= \alpha^{k-2} + \alpha^{k-3}$$

ightharpoonup Pela hipótese indutiva, se $k \geq 4$, segue que:

$$f_{k+1} = f_k + f_{k-1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-1}$$

Exemplo: Considere a seguinte definição recursiva da função fatorial:

$$1! = 1$$
 $n! = n(n-1)!, \quad n > 1$

Queremos provar que: $\forall n \geq 1, \ n! \geq 2^{n-1}$

Solução: podemos provar esta desigualdade usando indução forte.

- Seja P(n): " $n! \ge 2^{n-1}$ "
- Passo básico:
 - P(1) é a proposição $1! \ge 2^0$
 - ightharpoonup o que é V, já que 1! = 1

Exemplo (cont.): Provar que: $\forall n \geq 1, n! \geq 2^{n-1}$

Solução:

- Passo indutivo:
 - Queremos provar que $P(k) \Rightarrow P(k+1)$ é uma tautologia.
 - Suponha que $k! \geq 2^{k-1}$, para algum $k \geq 1$
 - Daí, pela definição recursiva, o lado esquerdo de P(k+1) é:

$$(k+1)!=(k+1)k!$$

$$\geq (k+1)2^{k-1} \qquad \text{usando } P(k)$$

$$\geq 2\times 2^{k-1} \qquad k+1\geq 2 \text{, pois } k\geq 1$$

$$= 2^k \qquad \qquad \text{lado direito de } P(k+1)$$

• Portanto, P(k+1) é V

- ▶ Vamos agora mostrar que o algoritmo de Euclides usa O(log b) divisões para obter o mdc dos inteiros positivos a e b (onde $a \ge b$).
 - Nota (princípio do algoritmo): mdc(a, b) = mdc(b, a mod b)
- Para isto, vamos precisar do resultado a seguir.
- **▶ Teorema de Lamé:** Se a e b são inteiros positivos com $a \ge b$, o número de divisões usado pelo algoritmo de Euclides para encontrar mdc(a,b) é ≤ a 5 vezes o número de dígitos decimais em b.

▶ Teorema de Lamé: "nro de divisões no algoritmo de Euclides para mdc(a,b) é ≤ a 5 X nro de dígitos decimais em b".

Prova (1/3):

• uma aplicação do algoritmo ($a = r_0$ e $b = r_1$):

$$r_0 = r_1 q_1 + r_2$$
 $0 \le r_2 < r_1$
 $r_1 = r_2 q_2 + r_3$ $0 \le r_3 < r_2$
...
 $r_{n-2} = r_{n-1} q_{n-1} + r_n$ $0 \le r_n < r_{n-1}$
 $r_{n-1} = r_n q_n$

note que:

- n divisões foram usadas para chegar a $r_n = mdc(a,b)$
- $m{\rho} \quad q_1, q_2, \dots, q_{n-1} \text{ são todos } \geq 1$

■ Teorema de Lamé: "nro de divisões no algoritmo de Euclides para mdc(a,b) é \leq a 5 X nro de dígitos decimais em b".

Prova (2/3):

- em uma aplicação do algoritmo
 - n divisões usadas para chegar a $r_n = mdc(a,b)$
 - todos os $q_i \ge 1$, mas $q_n \ge 2$ (pois $r_n < r_{n-1}$)
- o que permite escrever:

$$r_n \ge 1 = f_2,$$
 $r_{n-1} \ge 2r_n \ge 2f_2 = f_3,$
 $r_{n-2} \ge r_{n-1} + r_n \ge f_3 + f_2 = f_4,$
 \vdots
 $r_2 \ge r_3 + r_4 \ge f_{n-1} + f_{n-2} = f_n,$
 $b = r_1 \ge r_2 + r_3 \ge f_n + f_{n-1} = f_{n+1}.$

▶ Teorema de Lamé: "nro de divisões no algoritmo de Euclides para mdc(a,b) é ≤ a 5 X nro de dígitos decimais em b".

Prova (3/3):

- logo, se n divisões são usadas pelo algoritmo:
 - temos que: $b \ge f_{n+1}$
 - ullet mas já sabemos que: $f_{n+1} > \alpha^{n-1}$ (para n > 2)
- agora suponha que b tem k dígitos decimais:
 - então: $b < 10^k \Rightarrow k = \lfloor log_{10} b \rfloor + 1$
 - de modo que: $log_{10} b < k \leq log_{10} b + 1$
- segue que: $n-1 < 5k \Rightarrow n \le 5k$

RECURSÃO X ITERAÇÃO

- Definição recursiva: expressa o valor de uma função para um inteiro positivo em termos dos valores desta função para inteiros menores.
- Em vez disto, podemos adotar o procedimento iterativo:
 - partir do valor da função para um ou mais inteiros (casos "base")
 - aplicar sucessivamente a definição recursiva para encontrar os valores desta função para inteiros maiores.
- Nota: é comum uma abordagem iterativa para a avaliação de um seqüência definida recursivamente requerer muito menos computação do que um procedimento que usa recursão.

- ▶ Voltando à demonstração de que o algoritmo de Euclides utiliza O(log b) divisões para encontrar o mdc(a,b):
 - Pelo teorema de Lamé, sabemos que:
 - nro de divisões para obter $\mathsf{mdc}(a,b) \leq 5(\log_{10} b + 1)$
 - Ou seja:

- Definições recursivas de conjuntos também têm duas partes:
 - Passo básico: uma coleção inicial de elementos é especificada.
 - Passo recursivo: regras para formar novos elementos a partir daqueles que já se sabe que estão no conjunto.
- Definições recursivas também podem incluir uma regra de extensão:
 - estipula que um conjunto definido recursivamente não contém nada mais do que:
 - os elementos especificados no passo básico
 - ou gerados por aplicações do passo indutivo
 - assumiremos que esta regra sempre vale.

- **Exemplo:** Considere o subconjunto S dos inteiros definido por:
 - Passo básico: $3 \in S$
 - Passo indutivo: se $x \in S$ e $y \in S$, então $x + y \in S$
- Elementos que estão em S:
 - 3 (passo básico)
 - aplicando o passo indutivo:
 - 3+3=6 (1ra aplicação)

 - etc...
 - Mostraremos mais tarde que S é o conjunto de todos os múltiplos positivos de 3.

- Definições recursivas são muito importantes no estudo de strings.
- **String** sobre um alfabeto Σ : sequência finita de símbolos de Σ .
- ullet O conjunto Σ^* , de **strings sobre o alfabeto** Σ pode ser definido por:
 - **Passo básico**: λ ∈ Σ * (contém a string vazia)
 - **▶ Passo recursivo**: se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$
- O passo recursivo estabelece que:
 - novas strings são produzidas pela adição de um símbolo de Σ ao final das strings já em Σ^*
 - a cada aplicação do passo recursivo, são geradas strings contendo um símbolo a mais.

- **Exemplo:** se $\Sigma = \{0, 1\}$:
 - Σ^* é o conjunto de todas as strings de bits
 - Strings que estão em Σ^* :
 - λ
 - 0 e 1 (1^a aplicação do passo recursivo)
 - ullet 00, 01, 10, 11 (após 2^a aplicação do passo recursivo)
 - etc...

- Definições recursivas podem ser usadas para definir operações ou funções sobre os elementos de conjuntos definidos recursivamente.
 - Exemplificado na combinação de duas strings mostrada a seguir.

Sejam:

- $ightharpoonup \Sigma$ um conjunto de símbolos
- Σ^* o conjunto das strings formadas com símbolos de Σ .
- ▲ concatenação de duas strings (·) é definida como:
 - $m{ ilde{\square}}$ passo básico: se $w\in \Sigma^*$, então $w\cdot \lambda=w$
 - ullet passo recursivo: se $w_1 \in \Sigma^*$ e $w_2 \in \Sigma^*$ e $x \in \Sigma$, então:

$$w_1 \cdot (w_2 x) = (w_1 \cdot w_2) x$$

- Uma aplicação repetida da definição recursiva mostra que:
 - a concatenação de duas strings w_1 e w_2 consiste dos símbolos em w_1 seguidos pelos símbolos em w_2 .
- **Exemplo**: concatenação de ab e cde:

$$(ab) \cdot (cde) = (ab \cdot cd)e$$

$$= (ab \cdot c)de$$

$$= (ab \cdot \lambda)cde$$

$$= abcde$$

Exemplo: Forneça uma definição recursiva de l(w), o comprimento de uma string w

Solução:

- \bullet $l(\lambda) = 0;$
- se $w \in \Sigma^*$ e $x \in \Sigma$:
 - l(wx) = l(w) + 1

- Um outro importante exemplo do uso de definições recursivas é na definição "fórmulas bem formadas" (FBFs) de vários tipos.
- Exemplo: FBFs para formatos de proposições compostas:
 - envolvem V, F e:
 - variáveis proposicionais
 - operadores do conjunto: $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$.
 - e são definidas como:
 - Passo básico: V, F, e p (uma variável proposicional), são fórmulas bem formadas.

$$(\neg E)$$
, $(E \land F)$, $(E \lor F)$, $(E \to F)$, e $(E \leftrightarrow F)$

- Pelo passo básico, sabemos que:
 - V, F, p e q são fórmulas bem formadas.
- Por uma aplicação inicial do passo recursivo:

$$(p \lor q), (p \to \mathbf{F}), (\mathbf{F} \to q)$$
 e $q \land \mathbf{F}$ são fórmulas bem formadas.

ullet Uma 2^a aplicação do passo recursivo mostra que são FBFs:

$$((p \lor q) \to q \land \mathbf{F}))$$
 $q \lor (p \lor q))$
 $((p \to \mathbf{F}) \to \mathbf{V})$

Note que não são fórmulas bem formadas:

$$p\neg \wedge q$$
, $pq\wedge e \neg \wedge pq$

- Exemplo: FBFs para operadores e operandos:
 - envolvem:
 - variáveis, numerais
 - operadores do conjunto $\{+,-,*,/,\uparrow\}$
 - e são definidas como:
 - Passo básico: x é uma FBF se x é um número ou variável.

$$(F+G), (F-G), (F*G), (F/G), e (F \uparrow G)$$

Pelo passo básico, sabemos que:

x, y, 0 e 3 são fórmulas bem formadas.

FBFs geradas por uma aplicação do passo recursivo incluem:

$$(x+3), (3+y), (x-y), (3-0), (x*3), (3*y)$$

 $(3/0), (x/y), (3 \uparrow x) e (0 \uparrow 3)$

ightharpoonup Uma 2^a aplicação do passo recursivo mostra que são FBFs:

$$((x+3)+3)$$
 e $(x-(3*y))$

Note que não são fórmulas bem formadas:

$$x3+, y*+x e *x/y$$

(não podem ser obtidas usando: passo básico + aplicações do recursivo)

- Um algoritmo recursivo resolve um problema reduzindo-o para uma instância do mesmo problema com dados de entrada menores.
 - Exemplo: cálculo do mdc(a, b), para a > b:

 - redução continua até que o menor dos dois seja zero, pois:

$$mdc(b,0) = b$$

- **Exemplo (1/2):** Algoritmo para computar mdc(a, b), onde a > b.
- Solução:
 - algoritmo não-recursivo:

```
function mdc(a, b)
while b \neq 0
r \leftarrow a \bmod b
a \leftarrow b
b \leftarrow r
return (a)
```

- **Exemplo (2/2):** Algoritmo para computar mdc(a, b), onde a > b.
- Solução:
 - algoritmo recursivo:

```
function mdc(a,b)

if b=0 then

m \leftarrow a

else

m \leftarrow mdc(b, a \, mod \, b)

return (m)
```

exemplo de aplicação:

$$mdc(8,5) = mdc(5,3) = mdc(3,2) = mdc(2,1) = mdc(1,0) = 1$$

- Exemplo: Algoritmo recursivo para computar aⁿ
 - onde a é um real não-nulo e n é um inteiro não-negativo.
- Solução:
 - baseada na definição recursiva de a^n :

condição inicial:
$$a^0 = 1$$

para
$$n > 0$$
: $a^{n+1} = a \cdot a^n$

algoritmo: "use o passo recursivo até que o expoente fique nulo"

function
$$power(a, n)$$

if
$$n=0$$
 then

$$p \leftarrow 1$$

else

$$p \leftarrow a \cdot power(a, n-1)$$

return
$$(p)$$

- **Exemplo (1/2):** Algoritmo recursivo para computar $a^n \mod m$
- Solução:
 - pode ser baseada em:

```
a^n \mod m = (a \cdot (a^{n-1} \mod m)) \mod m condição inicial: a^0 \mod m = 1
```

- mais eficiente:
 - n par:

```
a^n \mod m = (a^{n/2} \mod m)^2 \mod m
```

n ímpar:

```
a^n \mod m = ((a^{\lfloor n/2 \rfloor} \mod m)^2 \mod m \cdot a \mod m) \mod m
```

- **Exemplo (2/2):** Algoritmo recursivo para computar $a^n \mod m$
- Solução:

```
function mpower(\mathbf{a}, n, m)
   if n=0 then
       p \leftarrow 1
   else
        if n \not\in par then
            p \leftarrow mpower(\mathbf{a}, n/2, m)^2 \mod m
        else
            p \leftarrow (mpower(\mathbf{a}, \lfloor n/2 \rfloor, m)^2 \ mod \ m + \mathbf{a} \ mod \ m) \ mod \ m
   return (p)
```

- Pode-se usar indução para provar que um algoritmo recursivo está correto, ou seja:
 - ele produz a saída desejada para todas as entradas possíveis.
- Os exemplos a seguir ilustram este recurso...

Exemplo(1/2): Prove que está correto o algoritmo para computar a^n :

```
function power(a, n)

if n = 0 then
p \leftarrow 1

else
p \leftarrow a \cdot power(a, n - 1)

return (p)
```

- **Exemplo(2/2):** Prove que está correto o algoritmo que computa a^n :
- Solução: indução sobre o expoente n
 - Passo básico: $n = 0 \Rightarrow power(a, 0) = 1$,
 - o que está correto, pois $a^0 = 1$
 - Passo indutivo:
 - hipótese: o algoritmo computa $a^k = power(a, k)$ corretamente
 - · (a partir disto, queremos concluir que ele sempre computa a^{k+1} corretamente)
 - ullet ora, o valor a^{k+1} é computado como: $a \cdot power(a,k)$
 - $oldsymbol{\mathscr{D}}$ mas, pela hipótese, power(a,k) é sempre corretamente computado como a^k
 - logo, sabemos que sempre vale:

$$power(a, k + 1) = a \cdot power(a, k) = a \cdot a^k = a^{k+1}$$

Exemplo(1/2): Prove que está correto o algoritmo que computa potenciações modulares:

```
function mpower(a,n,m)

if n=0 then
p \leftarrow 1

else
if n \not\in par then
p \leftarrow mpower(a,n/2,m)^2 \ mod \ m

else
p \leftarrow (mpower(a,\lfloor n/2\rfloor,m)^2 \ mod \ m \ \cdot \ a \ mod \ m) \ mod \ m

return (p)
```

- **Exemplo(2/2):** Prove que está correto o algoritmo para $a^n \mod m$:
- Solução: indução forte sobre o expoente n
 - Passo básico: quando n=0, o algoritmo fixa o resultado como 1
 - ullet o que está correto, pois $a^0 \mod m = 1$
 - Passo indutivo:
 - hipótese: $mpower(a, j, m) = a^j \mod m$, $0 \le j < k$ · (se isto está correto, então deve ocorrer: $mpower(a, k, m) = a^k \mod m$)
 - ullet se k é par, temos que:

$$mpower(a, k, m) = mpower(a, k/2, m)^2 \mod m$$

= $(a^{k/2} \mod m)^2 \mod m = a^k \mod m$

ightharpoonup se k é ímpar, temos que:

$$mpower(a, k, m) = ((mpower(a, \lfloor k/2 \rfloor, m))^2 \mod m \cdot a \mod m) \mod m$$

$$= ((a^{\lfloor k/2 \rfloor} \mod m)^2 \mod m \cdot a \mod m) \mod m$$

$$= a^{2\lfloor k/2 \rfloor + 1} \mod m = a^k \mod m$$

RECURSÃO X ITERAÇÃO

- Definição recursiva: expressa o valor de uma função para um inteiro positivo em termos dos valores desta função para inteiros menores.
- Em vez disto, podemos adotar o procedimento iterativo:
 - partir do valor da função para um ou mais inteiros (casos "base")
 - aplicar sucessivamente a definição recursiva para encontrar os valores desta função para inteiros maiores.
- Nota: é comum uma abordagem iterativa para a avaliação de um seqüência definida recursivamente requerer muito menos computação do que um procedimento que usa recursão.