Øving 7

Håvard Solberg Nybøe

MA0301 - 7. mars 2022

Tallene a_0, a_1 og a_2 er alle multiplum av 3, 0(3), 2(3), 3(3), altså er de delelig på 3. Formelen $a_n = a_{n-1} + a_{n-3}$ legger kun sammen leddene ergo vil summen alltid være et multiplum av 3 og dermed delelig på 3. \square

2

Grunnsteg:
$$p_0: a=1, b=1, 3 \cdot 1+5 \cdot 1=8$$

 $p_1: a=3, b=0, 3 \cdot 3+5 \cdot 0=9$
 $p_2: a=0, b=2, 3 \cdot 0+5 \cdot 2=10$
 $p_3: a=2, b=1, 3 \cdot 2+5 \cdot 1=11$
 $p_4: a=4, b=0, 3 \cdot 4+5 \cdot 0=12$
 $p_5: a=1, b=2, 3 \cdot 1+5 \cdot 2=13$
 $p_6: a=3, b=1, 3 \cdot 3+5 \cdot 1=14$
 $p_7: a=0, b=3, 3 \cdot 0+5 \cdot 3=15$
Bevis: Anta $k=3a+5b,$
 $p_7: a=0, b=3, 3 \cdot 0+5 \cdot 3=15$
 $k=3 \cdot (a_{p_k \bmod 8} + \frac{k-(k \bmod 8)}{8} - 1) + 5 \cdot (b_{p_k \bmod 8} + \frac{k-(k \bmod 8)}{8} - 1)$
ex.: $33=3 \cdot (3+4-1)+5 \cdot (0+4-1)$
 $33=3 \cdot (3+4-1)+5 \cdot (0+4-1)$

33 = 33

4 Primtall t.o.m. 11: $\{2, 3, 5, 7, 11\}$

Grunnsteg:
$$4 = 2 \cdot 2$$

$$6 = 2 \cdot 3$$

$$8 = 2 \cdot 4$$

$$9 = 3 \cdot 3$$

$$10 = 2 \cdot 5$$

Bevis: Anta at det finnes minst ett heltall a > 1

som ikke kan skrives som et produkt av primtall

hvis et tall b kan skrives som 1 < b < a

så kan b skrives som et produkt av primtall $p_1 \cdot p_2 \cdots p_n$

da er a åpenbart ikke et primtall

- siden hvis det var det kunne det skrives som a = a
- $7 b \rightarrow c \rightarrow c \rightarrow d$ siden c er refleksiv.
- 8 (a) a: inn = $b \rightarrow a$, ut = $a \rightarrow c$

b: inn =
$$d \rightarrow b$$
, ut = $b \rightarrow a, b \rightarrow c$

c: inn =
$$a \rightarrow c$$
, ut = $c \rightarrow d$, $c \rightarrow e$

d: inn =
$$c \to d$$
, $a \to d$, ut = $d \to b$, $d \to e$

e: inn =
$$c \rightarrow e, d \rightarrow e$$

(b) $a \to b \to c \to d \to a$,

$$b \to c \to d \to b$$

en sykel passerer gjennom a, to sykler passerer gjennom b, c, d, ingen sykler passerer gjennom e

- (c)
- (d) $4, a \to c \to d \to b \to a,$ $a \to d \to b \to c \to e$