Devoir de Mathématiques n°2 - DH2 - à rendre le lundi 17/09/2007

Exercice 1 : propriété du polygone régulier

On appelle A₁,...,A_n les n sommets d'un polygone régulier inscrit dans un cercle de rayon R ; soit M un

point quelconque de ce cercle. Montrer que $MA_1^2 + + MA_n^2$

est un nombre indépendant de M.

Exercice 2 : un lieu géométrique classique

LYCEE FABERT - MPSI1

Montrer que les projections orthogonales d'un point M sur les côtés d'un triangle ABC sont alignées si

et seulement si M appartient au cercle circonscrit au triangle ABC

Exercice 3 : une somme trigonométrique et une somme hyperbolique

Pour a,b réels et n€N - {0,1}, évaluer :

a)S = $\sum_{k=0}^{n} \binom{n}{k} \sin((k+1)\theta)$

 $b)S' = \sum_{k=0}^{n} \binom{n}{k} sh(a+kb)$

 $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$ (formule du binôme de Newton)

Rappel: pour tout entier naturel n, pour tous complexes a et b, on a:

Exercice 4: droite d'Euler, cercle d'Euler d'un triangle

Soient trois points non alignés A₁,A₂,A₃ d'affixes respectives a₁,a₂,a₃; on désigne par O le centre du cercle circonscrit à ce triangle que l'on prendra pour origine du plan rapporté à un repère orthonormal

(O, i, j). On appelle G et H le centre de gravité et l'orthocentre du triangle $A_1A_2A_3$. On admettra que

l'affixe de H est a₁+a₂+a₃ 1°)Montrer que les points O,G,H sont alignés et que \vec{OH} =3 \vec{OG} . La droite obtenue s'appelle la droite

2°)Soit ω le centre du cercle circonscrit (γ) au triangle M₁,M₂,M₃ , M₁,M₂,M₃ étant les milieux respectifs des segments $[A_2A_3]$, $[A_3A_1]$, $[A_1A_2]$. Trouver son affixe et en déduire que $O\omega = \frac{1}{2}OH$

3°)a)Montrer que le symétrique de l'orthocentre d'un triangle par rapport à chacun de ses côtés appartient au cercle circonscrit au triangle

appartient au cercle circonscrit au triangle b)Montrer que l'affixe
$$k_1$$
 du pied K_1 de la perpendiculaire abaissée de A_1 sur la droite (A_2A_3) est $k_1 = \frac{1}{2} \left(a_1 + a_2 + a_3 - \frac{a_3 a_2}{a_1} \right)$

°\Donner une conclusion générale

c)Montrer que le cercle (γ) passe par K₁. d)En conclure que le cercle (γ) passe par les pieds K₁,K₂,K₃ des hauteurs du triangle A₁,A₂,A₃ 4°)Calculer le rayon du cercle (γ) . Que peut-on en déduire par rapport au rayon du cercle circonscrit

au triangle A₁A₂A₃ ? 5°)Soit P₁ le milieu du segment [HA₁]. Montrer que le cercle (γ) passe par P₁. En déduire que le cercle (γ) passe par les milieux des segments [HA₁], [HA₂], [HA₃], ce qui justifie le nom du cercle (γ) appelé

cercle des neufs points du triangle A₁,A₂,A₃