MATH 307

Chapter 5

SECTION 5.3: MATRICES FOR LINEAR TRANSFORMATIONS

Contents

Linear Transformation as A Matrix	2
Matrix of the Composition	Ę
Matrix and Evaluation of Transformations	6
Change of Basis	7
Matrix of a Change of Basis	7
Consequence on the Matrix of a Linear Transformation	Ĝ

Created by: Pierre-Olivier Parisé Summer 2022

Linear Transformation as A Matrix

EXAMPLE 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 5x + z \\ 3x + 2y - 3z \\ 5x \end{bmatrix}.$$

Give a matrix representing the linear transformation T.

General Process:

Suppose $T: V \to W$ is a linear transformation.

- Let v_1, v_2, \ldots, v_n form a basis α for V.
- Let w_1, w_2, \ldots, w_m form a basis β for W.

Since $T(v_1), T(v_2), \ldots, T(v_n)$ belongs to W and β is a basis for W, we have

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m.$$

We call the **matrix of T with respect to the bases** α **and** β the matrix $[T]^{\beta}_{\alpha}$ formed from the previous coefficients $a_{11}, a_{22}, \ldots, a_{mn}$:

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Remarks:

• With the notation introduced in Chapter 2 on basis, we have

$$[T]^{\beta}_{\alpha} = \begin{bmatrix} [T(v_1)]_{\beta} & [T(v_1)]_{\beta} & \cdots & [T(v_n)]_{\beta} \end{bmatrix}.$$

• When $T: V \to V$ is a linear transformation of V into itself and α is used for both the domain and the codomain, then we simply say the matrix of T with respect to α and we denote it by $[T]^{\alpha}_{\alpha}$.

EXAMPLE 2. Let T be the linear transformation in Example 1. Let β be the basis given by

$$\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

Find

- 1. the matrix of T with respect to the standard basis α of \mathbb{R}^3 .
- 2. the matrix of T with respect to the basis β .
- 3. $[T]_{\alpha}^{\beta}$.

Matrix of the Composition

Let $T:V \to W$ and $S:W \to U$ be linear transformations. Suppose that

- α is a basis for V;
- β is a basis for W;
- γ is a basis for U.

Then we have

$$[ST]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}.$$

MATRIX AND EVALUATION OF TRANSFORMATIONS

Given a transformation $T: V \to W$, a basis α for V and a basis β for W, we then have

$$[T(v)]_{\beta} = [T]_{\alpha}^{\beta} [v]_{\alpha}.$$

Remark: The last equality means that the vector T(v) is obtained by multiplying the matrix of T with respect to α and β by the vector of the coordinates of v in the basis α .

EXAMPLE 3. Let T, α and β be as in Example 2.

- 1. Find the coordinate vector of $v = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{\top}$ with respect to the basis α .
- 2. Find coordinate vector of T(v) with respect to the basis β .
- 3. Use the result in part (b) to find T(v) in the standard basis.

CHANGE OF BASIS

Matrix of a Change of Basis

EXAMPLE 4. Let α be the standard basis for \mathbb{R}^3 and let β be the basis in Example 2. Find a matrix that will send each vector in the basis α to the vectors in the basis β .

General Procedure:

Let α and β be two bases of V:

- α be a basis with vectors v_1, v_2, \ldots, v_n .
- β be a basis with vectors w_1, w_2, \ldots, w_n .

Write

$$w_1 = p_{11}v_1 + p_{21}v_2 + \dots + p_{n1}v_n$$

$$w_2 = p_{12}v_1 + p_{22}v_2 + \dots + p_{n2}v_n$$

$$\vdots$$

$$w_n = p_{1n}v_1 + p_{2n}v_2 + \dots + p_{nn}v_n.$$

Then the matrix

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

is called the **change of basis matrix from** α **to** β .

Fact:

• If we define I(v) = v to be the identity transformation, then in fact $P = [I]^{\alpha}_{\beta}$. So, $[v]_{\alpha} = P[v]_{\beta}$.

• If P is the change of basis matrix from a basis α to a basis β of a vector space, then the change of basis from β to α is P^{-1} . So $P^{-1} = [I]^{\beta}_{\alpha}$ and $[v]_{\beta} = P^{-1}[v]_{\alpha}$.

Consequence on the Matrix of a Linear Transformation

EXAMPLE 5. Let α be the standard basis and let β be the basis in Example 2. Suppose that a linear transformation T has the following matrix with respect to α :

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & -1 \end{bmatrix}.$$

Find $[T(v)]_{\beta}$ where $[v]_{\beta} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{\top}$.

Facts:

• If $T:V\to V$ is a linear transformation, α and β are bases for V, and P is the change of basis matrix from α to β , then

$$[T]^{\beta}_{\beta} = P^{-1}[T]^{\alpha}_{\alpha}P.$$

• If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and A is the matrix of T with respect to the standard basis of \mathbb{R}^n and \mathbb{R}^m , then

$$T(X) = AX.$$