Lista No. 3 Integrales impropias y aplicaciones

Instrucciones: Resuelva los ejercicios indicando con detalle la resolución de los mismos y argumentando sus respuestas.

1. Calcule el área de la región delimitada por las gráficas de:

(a)
$$y_1 = x^2 - 6x$$
 y $y_2 = 0$.

(b)
$$y_1 = x^2 - 4x + 3$$
 y $y_2 = -x^2 + 2x + 3$.

(c)
$$y_1 = 3(x^3 - x)$$
 y $y_2 = 0$.

2. En los siguientes dos ejercicios calcule el área de la región integrando con respecto a x, luego integrando con respecto a y. Compare sus resultados. ¿Cuál método es más simple? ¿Por qué?

(a)
$$x = 4 - y^2$$
 y $x = y - 2$.

(b)
$$y = x^2$$
 y $y = 6 - x$.

Trace la región acotada por las gráficas y calcule el área:

(a)
$$y = x^2 - 1$$
, $y = -x + 2$, $x = 0$, $x = 1$.

(b)
$$y = \frac{1}{2}x^3 + 2$$
, $y = x + 1$, $x = 0$, $x = 2$.

(c)
$$f(x) = x^2 - 4x$$
, $g(x) = 0$.

(d)
$$f(x) = x^2 + 2x$$
, $g(x) = x + 2$.

(e)
$$y = x$$
, $y = 2 - x$, $y = 0$.

(f)
$$f(x) = \sqrt{x} + 3$$
, $g(x) = \frac{1}{2}x + 3$.

(g)
$$f(y) = y^2$$
, $g(y) = y + 2$.

(h)
$$f(y) = y^2 + 1$$
, $g(y) = 0$, $y = -1$, $y = 2$.

(i)
$$f(x) = x(x^2 - 3x + 3), g(x) = x^2$$
.

(j)
$$f(x) = x^4 - 2x^2$$
, $g(x) = x^2 - 4$.

(k)
$$f(x) = cosx$$
, $g(x) = 2 - cosx$, $0 \le x \le 2\pi$.

(l)
$$y_1 = sen x$$
, $y_2 = x$, $y = 0$.

(m)
$$y = |x^2 - 4|, y = 0.$$

- 4. Las gráficas de $y = x^4 2x^2 + 1$ y $y = 1 x^2$ se intersecan en tres puntos. Sin embargo, el área entre las curvas puede calcularse con una sola integral. Explique por qué es posible hacerlo y calcule el área.
- 5. Formule y calcule la integral que da el volumen del sólido formado al girar la región alrededor del eje x y dibuje la región y el sólido de revolución:
 - (a) y = -x + 1, x = 0, x = 1.
 - (b) $y = \sqrt{x}, x = 1, x = 4.$
 - (c) $y = x^2$, $y = x^3$.
- 6. Formule y calcule la integral que da el volumen del sólido formado al girar la región alrededor del eje y y dibuje la región y el sólido de revolución:
 - (a) $y = x^2$, y = 0, y = 4.
 - (b) $y = x^{2/3}, y = 0, y = 1.$
- 7. Calcule el volumen del sólido generado por la región acotada por las gráficas de las ecuaciones al girar alrededor de las rectas dadas:
 - (a) $y = \sqrt{x}$, y = 0, x = 3 alrededor del eje x.
 - (b) $y = \sqrt{x}$, y = 0, x = 3 alrededor del eje y.
 - (c) $y = \sqrt{x}$, y = 0, x = 3 alrededor de la recta x = 3.
 - (d) $y = \sqrt{x}, y = 0, x = 3$ alrededor de la recta x = 6.
 - (e) $y = x^2$, $y = 4x x^2$ alrededor del eje x.
 - (f) $y = x^2$, $y = 4x x^2$ alrededor de la recta y = 3.
 - (g) $y=x,\,y=3,x=0$ alrededor de la recta y=4.
 - (h) $x=y^2, x=4$ alrededor de la recta x=5.
 - (i) $y=e^{-x},\,y=0,\,x=0,\,x=1$ alrededor del eje x.
 - (j) $y=senx,\,y=0,\,x=0,\,x=\pi$ alrededor del eje x.
- 8. Calcule la longitud del segmento de recta que une los puntos A(-2,3) y B(5,-5) empleando cálculo integral.
- 9. Calcule la longitud de arco de la curva $y=x^{3/2}$ desde el punto (1,1) hasta el punto (4,8).
- 10. Calcule la longitud de un arco senoidal desde 0 hasta π .
- 11. Calcule el área bajo la curva $y = \frac{1}{x^3}$ de x = 1 a x = t para t = 10,100 y 1000. A continuación calcule el área total bajo esta curva para $x \ge 1$.

12. Determine si cada integral es convergente o divergente. Calcule las que sean convergentes:

(a)
$$\int_3^\infty \frac{1}{(x-2)^{3/2}} dx$$
.

(b)
$$\int_{-\infty}^{-1} \frac{1}{\sqrt{2-x}} dx$$
.

(c)
$$\int_{4}^{\infty} e^{-x/2} dx$$
.

(d)
$$\int_{2\pi}^{\infty} senx \, dx$$
.

(e)
$$\int_{-\infty}^{\infty} x e^{-x^2} dx.$$

(f)
$$\int_{1}^{\infty} \frac{x+1}{x^2+2x} dx.$$

(g)
$$\int_{1}^{\infty} \frac{\ln x}{x} dx.$$

(h)
$$\int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} dx.$$

(i)
$$\int_0^1 \frac{3}{x^5} dx$$
.

(j)
$$\int_{-2}^{14} \frac{dx}{\sqrt[4]{x+2}}$$
.

(k)
$$\int_0^{33} (x-1)^{-1/5} dx$$
.

(l)
$$\int_{-1}^{1} \frac{e^x}{e^x - 1} dx$$
.

(m)
$$\int_0^2 x^2 \ln x \, dx.$$

13. Encuentre los valores de p para los cuales la integral converge y calcule la integral para esos valores de p:

$$\int_0^1 \frac{1}{x^p} dx.$$

14. Sea
$$f(x) = \begin{cases} xe^{-x} & si \quad x \ge 0 \\ 0 & si \quad x < 0 \end{cases}$$

- (a) Verifique que f sea una función de densidad de probabilidad.
- (b) Calcule $P(1 \le X \le 2)$.
- 15. Sea $f(x) = \frac{k}{1+x^2}$. ¿Para qué valor real de k es f una función de densidad de probabilidad?