

Extended Data Figure 5 | Effect of water vapour and H₂ on the solid sources (MoX₂ and WX₂). a, Raman spectral evolution of the MoO₂ oxide phase from both MoSe₂ and MoS₂ solid sources upon reaction with a constant flow of $N_2 + H_2O$ vapour for more than 20 min at 1,060 °C (Supplementary Table 2). b, Raman spectral evolution of different oxide phases of WX₂ upon reaction with different reactive gas environment for more than 20 min at 1,060 °C as follows. Only Ar + H₂ (5%) through H₂O (200 s.c.c.m.); the Raman spectra is composed of WSe2, most likely a Se-deficient surface as well as a mixture of complex oxide phases as indicated by the broad peak around 800 cm⁻¹ (1); first partially oxidized by $N_2 + H_2O$ (5 min) followed by $Ar + H_2$ (5%) through H_2O (200 s.c.c.m.) for 10 min. The dominant phase observed in the Raman spectra is $WO_2^{36-39,42}$ (2); completely oxidized by $N_2 + H_2O$ flow for 20 minthe dominant phase observed in the Raman spectra is W₂₀O₅₈ (3). c, d, Reduction of different metal oxide (MoO₃ and WO₃) and selenide (MoSe₂ and WSe₂) solid sources as a function of reaction time and carrier gases: in $N_2 + H_2O(c)$ and $Ar + H_2(5\%)(d)$ flow conditions at 1,060 °C. It can be observed that the weight loss of MoO₃ (38.5% in 2 min) is very rapid compared to that of WO₃ (1% in 2 min). In contrast, the reduction

rate of MoSe₂ and WSe₂ solid precursors are almost linear during H₂ exposure at high temperatures. During oxidation by H₂O, however, the weight loss of MoSe2 is two and five times faster than that of WSe2 and WO₃ respectively. **e-h**, A direct visualization of the reaction of MoSe₂ can be gained from the change in colour of the source precursor under different conditions: bulk powder of $MoSe_2$ (e); after reaction in $Ar + H_2$ (5%) through H₂O (200 s.c.c.m.) (f); after reaction in N₂ through H₂O (200 s.c.c.m.); the chocolate brown indicates the MoO₂ phase (g); the shiny surface indicates the presence of metallic molybdenum reduced from MoX₂ along with the MoO₂ phase (h). i-l, Different oxide phases of WX_2 upon reaction with different reactive gas environment for more than 20 min at 1,060 °C. Bulk powder of WSe₂ (i); only Ar + H₂ (5%) through H_2O (200 s.c.c.m.) (**j**, corresponding to spectrum 1 in **b**); first partially oxidized by $N_2 + H_2O$ (5 min) followed by $Ar + H_2$ (5%) through H_2O (200 s.c.c.m.) for 10 min (chocolate brown, k, corresponding to spectrum $(2 \text{ in } \mathbf{b})^{36-39,42}$; completely oxidized by $N_2 + H_2O$ flow for (20 min)—the dominating phase observed in the Raman spectra is $W_{20}O_{58}$ (blue-violet, **l**, corresponding to spectrum 3 in **b**). The insets of **l** show the high magnification image (left) and the materials in an alumina boat (right).