(Unit: mm)

PC904

Built-in Voltage Detection Circuit Type Photocoupler

* Lead forming type (I type) and taping reel type (P type) are also available. (PC904I/PC904P)

■ Features

- 1. Built-in voltage detection circuit
- 2. High isolation voltage between input and output (V_{iso} : 5 000V $_{ms}$)
- 3. Standard 8-pin dual-in-line package
- 4. Recognizerd by UL, file No. E64380

■ Applications

1. Switching power supplies

■ Outline Dimensions

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
	Anode current	IA	50	mA
T4	Anode voltage	V _A	30	V
Input	Reference input current	IREF	10	mA
	Power dissipation	P	250	mW
	Collector-emitter voltage	V _{CEO}	35	V
	Emitter-collector voltage	V ECO	6	V
Output	Collector current	Ic	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	P tot	350	mW
*1Isolation voltage		V iso	5 000	V _{rms}
Operating temperature		T opr	- 25 to + 85	°C
	Storage temperature	T stg	- 40 to + 125	°C
	*2Soldering temperature	T sol	260	°C

^{*1 40} to 60% RH AC for 1 minute

^{*2} For 10 seconds

■ Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Reference voltage	V REF	$V_K = V_{REF}$, $I_A = 10mA$	2.40	2.495	2.60	V	1
	*3Temperature change in reference voltage	V _{REF(dev)}	$V_K = V_{REF}$, $I_A = 10mA$, $Ta = -25 \text{ to} + 85^{\circ}C$	-	8	40	mV	1
	Voltage variation ratio in reference voltage	$\Delta V_{REF}/\Delta V_{A}$	$I_A = 10mA, \ \Delta V_A = 30V - V_{REF}$	-	- 1.4	- 5	mV/V	2
	Reference input current	IREF	$I_A = 10 \text{mA}$, $R_3 = 10 \text{k}\Omega$	-	2	10	μΑ	3
	*4Temperature change in reference input current	$I_{REF(dev)}$	$I_{A} = 10 mA, R_{3} = 10 k \Omega, Ta = - 25 to + 85^{\circ}C$	-	0.4	3	μΑ	3
	Minimum drive current	I _{MIN}	$V_K = V_{\text{REF}}$	-	1	2	mA	1
	OFF-state anode current	I_{OFF}	$V_A = 30V, V_{REF} = GND$	-	0.1	2	μΑ	4
	Anode-cathode forward voltage	V_F	$V_K = V_{REF}$, $I_A = 10mA$	-	1.2	1.4	V	1
Output	Collector dark current	I_{CEO}	$V_{CE} = 35V$	-	1 x 10 -9	1 x 10 -7	A	5
Transfer charac- teristics	*5Current transfer ratio	CTR	$V_K = V_{REF}$, $I_A = 5mA$, $V_{CE} = 5V$	50	-	600	%	6
	Collector-emitter saturation voltage	V _{CE(sat)}	$V_K = V_{REF}$, $I_A = 10mA$, $I_C = 1mA$	-	0.1	0.2	V	6
	Isolation resistance	R _{ISO}	40 to 60% RH, DC500V	5 x 10 ¹⁰	1 x 10 ¹¹	-	Ω	-
	Floating capacitance	$C_{\rm f}$	V = 0, $f = 1kHz$	-	0.6	1.0	pF	-

^{*3} V $_{REF(dev)} = V_{REF(MAX.)} - V_{REF(MIN.)}$

Classification table of current transfer ratio is shown below.(4 models)

Model No.	Rank mark	CTR (%)		
PC904A	A	50 to 150		
PC904B	В	100 to 300		
PC904C	C	250 to 600		
PC904	A, B or C	50 to 600		

■ Test Circuit

Fig. 1

Fig. 2

^{*4} I $_{REF(dev)} = I_{REF(MAX.)}$ - $I_{REF(MIN.)}$

^{*5} CTR = I $_{\rm C}$ / I $_{\rm A}$ x 100 (%)

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7 Anode Current vs. Ambient

Fig. 8 Input Power Dissipation vs.
Ambient Temperature

Fig. 9 Collector Power Dissipation vs.
Ambient Temperature

Fig.11 Relative Current Transfer Ratio vs.
Ambient Temperature

Fig.13-a Anode Current vs. Reference Voltage

Fig.10 Power Dissipation vs. Ambient Temperature

Fig.12 Collector Dark Current vs.
Ambient Temperature

Fig.13-b Anode Current vs. Reference Voltage

Fig.14 OFF-state Anode Current vs. Ambient Temperature

Fig.16 Reference Input Current vs.
Ambient Temperature

Fig.18-a Voltage Gain (1) vs. Frequency

Fig.15 Reference Voltage vs. Ambient Temperature

Fig.17 Reference Voltage Change vs. Anode Voltage

Test Circuit for Voltage Gain (1) vs. Frequency

Fig.18-b Voltage Gain (2) vs. Frequency

Fig.19 Anode Current vs. Load Capacitance

Fig.20 Collector-emitter Saturation Voltage vs. Ambient Temperature

Test Circuit for Voltage Gain (2) vs. Frequency

Test Circuit for Anode Current vs. Load Capacitance

Fig.21 Current Transfer Ratio vs.
Anode Current

■ Precautions for Use

Handle this product the same as with other integrated circuits against static electricity.

• As for other general cautions, refer to the chapter "Precautions for Use"