UNIDAD 4 D -TRANSFORMACIONES IDEALES DE UN GAS IDEAL

Bibliografía: Calderón L. – Unidad 3

UNIDAD 4 - D: TRANSFORMACIONES

4.D Transformaciones o Procesos. Transformaciones ideales de un gas ideal para Sistemas Cerrados y Abiertos en Régimen Estacionario: ecuaciones características de las isocóras, isóbaras, isotérmicas, adiabáticas y politrópicas. Representación gráfica en el plano dinámico. Calculo de los cambios energéticos en cada transformación considerando los calores específicos constantes con la temperatura

TRANSFORMACIONES

Un sistema termodinámico sufre una transformación cuando el valor de alguna de las propiedades varía, pasando de un estado de equilibrio inicial a un estado de equilibrio final.

GAS

TRANSFORMACIONES

El sistema se transforma debido a que aparece una fuerza impulsora originada en un desequilibrio con los alrededores.

El tipo de transformación se relaciona con las características del sistema y con las de los límites que lo separan del medio.

Cuando el sistema pasa por sucesivos estados de equilibrio decimos que la transformación es cuasiestática.

SISTEMAS: GASES IDEALES

Para todos los estados del proceso se cumple que:

$$⋄$$
P $v = Rp$ T $v = volumen específico$

$$◆$$
P v = R_u T v = volumen molar

$$du = c_v dT$$
 $u = f(T)$

$$dh = c_p dT$$
 $h = f(T)$

$$c_p - c_v = R^{(1)}$$
 Relación de Mayer

(1): R_u ó R_p en función de las unidades de los c_p y c_v

TRANSFORMACIONES: CUASIESTÁTICAS

$$dw = P dv$$

$$dw_c = - v dP$$

$$dq = c dT$$

BALANCE DE ENERGÍA:

SISTEMAS CERRADOS:

$$dq = du + dw$$

$$dq = du + P dv$$

como h = u + pv; du=dh - P dv - v dP, luego: dq = dh - v dP

S.A.R.E.: $dh + de_c + de_p = dq - dw_c$

 $dw_c = -v dP$

(Si de_c≅0 y de_p≅0) ;

dq = dh - v dP

TRANSFORMACIONES IDEALES (CUASIESTÁTICAS)

- T. Isocórica: volumen constante
- T. Isobárica: Presión constante
- *T. Isotérmica: Temperatura constante
- *T. Adiabática: Se impide la transferencia de calor
- T. Politrópica: sin ninguna restricción anterior, aplica a gases

7

TRANSFORMACIONES ESQUEMA SEGUIDO PARA SU ANÁLISIS

Para presentar el análisis de cada transformación, seguiremos el siguiente orden:

1. Ecuación de estado que la caracteriza, relacionando estados inicial y final

Sistemas cerrados:

- 2. Cálculo de la variación de la energía interna
- 3. Cálculo del trabajo de frontera móvil (expansión compresión)
- 4. Cálculo del calor intercambiado
- 5. Cálculo de la variación de entalpía

Sistemas abiertos (SARE):

6. Sólo haremos referencia al cálculo del Trabajo de eje o de circulación (Wc), dado que el resto de las ecuaciones aplicables a sistemas cerrados, siguen teniendo validez (de_c=0 y de_p=0)

TRANSFORMACIONES ISOCÓRICAS V = CONSTANTE

$$P v = R_u T$$

 $v = constante$

$$P_1/T_1 = P_2/T_2 = P/T$$

TRANSFORMACIONES ISOCÓRICAS

- * Rel Prop.: $P_1/T_1 = P_2/T_2 = P/T$
- du= c_v dT
- $\cdot \cdot dw = P dv = 0$
- $dq_v = c_v dT$
- $dq = du + Pdv = du = c_v dT$
- ⋄ dh= c_P dT
- ϕ dh= du + d(pv)= c_v dT + v dP

SARE:

 $w_c = -v dP ; w_c = -v (P_2 - P_1)$

TRANSFORMACIONES ISOBÁRICAS (P = CONSTANTE)

 $P v = R_u T$ P = constante

$$v_1/T_1 = v_2/T_2 = v/T$$

TRANSFORMACIONES ISOBÁRICAS

•
$$dw = P dv ; w = P (v_2 - v_1)$$

$$dq_p = c_p dT = dh$$

$$\bullet$$
 dq= du + Pdv = c_v dT + P dv

$$dh = c_p dT$$

$$\bullet$$
 dh = du + d(pv)= c_v dT + P dv

SARE:

$$dq_p = dh + vdP = dh = c_p dT$$

$$dw_c = -v dP = 0$$

TRANSFORMACIONES ISOTÉRMICAS (T = CONSTANTE)

13

TRANSFORMACIONES ISOTÉRMICAS

- * Rel. Prop.: $P_1 v_1 = P_2 v_2 = P v = R_u T = ctte$
- $\cdot \cdot du = c_v dT = 0 \rightarrow u = ctte$

- He
- * dw= P dv = R_u T/v dv = R_u T dv/v = P v dv/v
- $w_{1-2} = P_1 v_1 \ln v_2 / v_1 = P_1 v_1 \ln P_1 / P_2$
- $\cdot \cdot dh = c_p dT = 0 \rightarrow h = ctte$

SARE:

- $\cdot \cdot dW_c = v dP = R_u T/P dP = R_u T dP/P = P v dP/P$
- $w_c = P_1 v_1 \ln P_1 / P_2 = w_{1-2}$

TRANSFORMACIONES ADIABÁTICAS (Q = 0)

TRANSFORMACIONES ADIABÁTICAS (Q =0)

Primer Principio: $dq = du + Pdv = 0 = c_v dT + P dv \Rightarrow c_v dT = - P dv$ (Si T\(\frac{1}{2}\), $v \downarrow$)

Como
$$P = R_u T/v \Rightarrow c_v dT = -R_u T/v dv \Rightarrow c_v dT/T = -R_u dv /v$$

Como
$$R_u = c_p - c_v \Rightarrow dT/T = (c_v - c_p) / c_v dv/v \Rightarrow dT/T = (1 - c_p/c_v) dv/v$$

Como
$$K = c_p/c_v \Rightarrow dT/T = (1 - K) dv/v$$

In
$$T_2/T_1 = \ln (v_2/v_1)^{(1-K)}$$

In
$$T_2/T_1 = In (v_1/v_2)^{(K-1)}$$

$$T_1 v_1^{(K-1)} = T_2 v_2^{(K-1)} = T v^{(K-1)} = constante$$

Como
$$T = P v/R_u \Rightarrow T v^{(K-1)} = [Pv/R_u] v^{(K-1)} = [P/R_u] v^K = ctte$$

$$\Rightarrow$$
 P v K = constante

Como v = R_u T/P
$$\Rightarrow$$
 T (R_u T/P) (K-1) = T (1+K-1) P (1-K) = ctte \Rightarrow T P (1-K)/K = ctte

TRANSFORMACIÓN ADIABÁTICA

- ❖ Rel Prop.: Pv $K = P_1v_1$ K = ctte; $T v^{k-1} = ctte$; $T P^{(1-k)/k} = ctte$
- **⋄** K= $c_p/c_v > 1$ (Gases monoatómicos: K=1,67; Gases biatómicos: K≈1,4; gases poliatómicos sencillos: K ≈ 1,3)
- ⋄ du= c_v dT
- * dw= P dv = $P_1v_1^K$ dv/ v_1^K ; $w = [P_1v_1^K/(-K+1)][v_2^{(-k+1)}-v_1^{(-k+1)}]$ $w = [P_1v_1^K v_1^{(1-K)}/(-K+1)][(v_2^{(1-K)}/v_1^{(1-K)})-1]$
 - $W = [P_1 v_1/(1-K)] [(v_2^{(1-K)}/v_1^{(1-K)})-1]$
 - $W = [P_1 V_1 / (K-1)] [(1 (V_2 / V_1)^{(1-K)}]$
 - $W = [P_1 v_1/(K-1)] [(1-(v_1/v_2)^{(K-1)}] ; (v_1/v_2)^{(K-1)} = T_2/T_1$

$$W = [P_1 V_1/(K-1)] [(1-T_2/T_1] = [R_u T_1/(K-1)] [(1-T_2/T_1]]$$

TRANSFORMACIÓN ADIABÁTICA

- Rel Prop.: Pv K = ctte; $T v^{k-1}$ = ctte; $T P^{(1-k)/k}$ = ctte
- \star K= c_p/c_v
- \bullet du= c_v dT
- \bullet dw= P dv = P₁v₁^K dv/ v^K
- $w = [P_1 v_1/(K-1)] (1-T_2/T_1)$
- $* dw = du = c_v dT = c_v (T_2 T_1)$
- \bullet dh = c_p dT

SARE:

 $* dw_c = - v dP$; $w_c = k w$

$$P_1v_1^n = Pv^n = Cte$$
; $Tv_1^{n-1} = Cte$; $TP_1^{(1-n)/n} = Cte$

$$P_1v_1^n = Pv^n = Cte$$
; $Tv_1^{n-1} = Cte$; $TP_1^{(1-n)/n} = Cte$

* Rel Prop. $P_1v_1^n = Pv^n = ctte$ $T v^{n-1} = ctte$; $T P^{(1-n)/n} = ctte$

Conociendo las propiedades P y v de dos estados:

$$P_1v_1^n = P_2v_2^n \Rightarrow log P_1+n logv_1= log P_2+n logv_2$$

 $n (logv_1 - logv_2) = log P_2 - log P_1$

$$\mathbf{n} = \frac{\log \frac{P_2}{P_1}}{\log \frac{v_1}{v_2}}$$

- ♦ du= c_v dT
- \bullet dw= P dv = P₁v₁ⁿ dv/ vⁿ
- $w_{1-2} = [P_1 v_1/(n-1)] (1- T_2/T_1)$
- ⋄ dq= du + dw
- dq = c dT c=?

$$\begin{aligned} q_{1-2} &= \widehat{c} \left(T_2 - T_1 \right) \\ q_{1-2} &= \left(u_2 - u_1 \right) + w_{1-2} = \left(u_2 - u_1 \right) + R_u \, T_1 \, / (n-1) \, \right] \left[(1 - T_2 / T_1) \right] \\ c &\left(T_2 - T_1 \right) = c_v \, \left(T_2 - T_1 \right) + \left[R_u \, T_1 \, / (n-1) \, \right] \left[(T_1 - T_2) / T_1 \right) \right] \\ c &\left(T_2 - T_1 \right) = c_v \, \left(T_2 - T_1 \right) - \left[R_u \, / (n-1) \, \right] \left(T_2 - T_1 \right) \\ c &\left(T_2 - T_1 \right) = c_v \, \left(T_2 - T_1 \right) - \left[(c_p - c_v) \, / (n-1) \, \right] \left(T_2 - T_1 \right) \\ c &\left(T_2 - T_1 \right) = \left(T_2 - T_1 \right) \left[c_v - \left(c_p - c_v \right) \, / (n-1) \, \right] \\ c &\left(T_2 - T_1 \right) = \left(T_2 - T_1 \right) \left[\left(nc_v - c_v - c_p + c_v \right) \, / (n-1) \, \right] \\ c &\left(T_2 - T_1 \right) = \left(T_2 - T_1 \right) \left[\left(nc_v - kc_v \right) \, / (n-1) \, \right] \end{aligned}$$

$$\mathbf{c} = \mathbf{c}_{\mathbf{v}} \frac{(\mathbf{n} - \mathbf{k})}{(\mathbf{n} - \mathbf{1})}$$

- ♦ Rel Prop. $P_1v_1^n = Pv^n = ctte$ $T v^{n-1} = ctte ; T P^{(1-n)/n} = ctte$
- \bullet du= c_v dT
- \bullet dw= P dv = P₁v₁ⁿ dv/ vⁿ
- $w_{1-2} = [P_1 v_1/(n-1)] (1- T_2/T_1)$
- ϕ dq= c dT = du + dw
- $* c = c_v (n-k) / (n-1)$
- $Arr dh = c_p dT$

SARE:

 $w_c = n w$

FIN