Growth Functions and Asymptotic Analysis (I)

Instructor: Krishna Venkatasubramanian

CSC 212

Announcements

Go to office hours.

Next Quiz Sept 24 (next Tuesday).

 Everything covered on Sept 12 and this week are fair game for the quiz.

Same format as today's quiz.

Running Time of Algorithms

- Running time of algorithm determines how "quickly" it executes.
- Computed based on # of basic steps in the algorithm that are executed
 - Loops result in repeated computational sets leading to larger running time than those without
- Size of the inputs can also affect number of basic steps
 - Sorting longer arrays need more time than shorter ones!
 - In such cases, size of input usually dictates # of basic steps!

Runtime affected by # of Basic Steps

- Two algorithms for performing the same tasks can have different running times depending upon # of steps it has
- Here, the size of the input is the same --- 1 number --- but the presence of loops dictates running time.

```
import time
def SumOfN(n):
  start = time.time()
  theSUM = 0
                                                     Sum of N with for loop
  for i in range(1,n+1):
                      w/ FOR LOOP
     theSUM +=i
                                                     Sum is 500000500000 required
                                                                                           0.0627120 seconds
  end = time.time()
                                                                                           0.0636330 seconds
                                                     Sum is 500000500000 required
                                                     Sum is 500000500000 required
                                                                                           0.0593448 seconds
  return theSUM, end-start
                                                     Sum is 500000500000 required
                                                                                           0.0563250 seconds
def directSumOfN(n):
                                                     Sum is 500000500000 required
                                                                                           0.0615969 seconds
  start = time.time()
                                                     Sum of N function direct
  theSUM = (n*(n+1))/2
                    DIRECT SUMMATION
  end = time.time()
                                                     Sum is 500000500000 required
                                                                                           0.0000012 seconds
  return theSUM,end-start
                                                     Sum is 500000500000 required
                                                                                           0.0000000 seconds
                                                     Sum is 500000500000 required
                                                                                           0.0000000 seconds
def main():
                                                                                           0.0000012 seconds
                                                     Sum is 500000500000 required
  print("Sum of N with for loop")
                                                     Sum is 500000500000 required
                                                                                           0.0000007 seconds
  for i in range(5):
     print("Sum is %d required %10.7f seconds"%SumOfN(1000000))
  print("Sum of N function direct ")
  for i in range(5):
     print("Sum is %d required %10.7f seconds"%directSumOfN(1000000))
```

Runtime affected by input size: Insertion Sort (Recap)

```
Assume n elements
                                                                          Cost
                                                                                      Times
def InsertionSort(A)
                                                                            c1
                                                                                        n
          for k in range(1, len(A))
                                                                            c2
                                                                                        n-1
                     kev = A \lceil k \rceil
                                                                                        n -1
                                                                             c4
                    i = k - 1
                                                                                           WHY?
                                                                                       \sum_{i=1}^{n} t_i
                    while i > 0 and A[i] > key
                                                                            c5
                                                                                       \sum_{i=1}^{n} (t_i - 1)
                                                                             c6
                               A \Gamma i + 17 = A \Gamma i 7
                               i = i - 1
                                                                                      \sum_{i=1}^{n} (t_i - 1)
                                                                            c7
                    A \Gamma i + 17 = kev
                                                                             c8
                                                                                        n-1
```

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5\sum_{j=1}^{n} t_j + c6\sum_{j=1}^{n} (t_j - 1) + c7\sum_{j=1}^{n} (t_j - 1) + c8(n-1)$$

Θ-notation

- **Definition:** For a given function g(n), $\Theta(g(n))$ is a **set of functions** such that
 - $\Theta(g(n)) = \{f(n): \text{ there exists positive constants c1, c2, and n0 s.t. } 0 \le c1g(n) \le f(n) \le c2g(n) \text{ for all n} \ge n0 \}$
- This is called an asymptotic tightbound for f(n)
 - Really, $f(n) \in \Theta(g(n))$
- For all values of $n \ge n0$ the value of f(n) is between the c1g(n) and c2g(n) belt.
- Focus on large values of n

Θ-notation: Example

- Assume $f(n) = 1/2n^2 3n$
- We say $f(n) = \Theta(n^2)$, if this is true then
 - $c1n^2 <= 1/2n^2 3n <= c2n^2$
 - c1 <= 1/2 3/n <=c2

Remember:

c1,c2 and n are positive constants

- The right inequality is true for n>=1 and $c2>=\frac{1}{2}$
- The left inequality is true for n>=7 and c1 <= 1/14
- Thus if we choose
 - c1 = 1/14, $c2 = \frac{1}{2}$, and c1 = 7 we can make the inequality true
- Thus $f(n) = \Theta(n^2)$
- Note, other c1, c2, and n0 may also exist that make the inequality true
- Suffice it to say, that we can find one groups of values

Θ-notation

- In the running time of an algorithm, lower order terms are ignored.
 - For large values of n, the lower order terms become minuscule compared to the highest-order term
 - E.g., For $T(n) = an^2 + bn + c$, the value of n^2 will dominate values of b^*n or c or a for large values of n
- More generally, for any polynomial

```
p(n) = \sum_{i=0}^{d} a_i n^i where a_i is a constant and a_d > 0, p(n) = \Theta(n^i)
```

• Similarly, for a zero—degree polynomial q(n) or a constant function --- e.g., a given algorithm step

$$q(n) = \Theta(n^0) = \Theta(1)$$

- Called the Asymptotic Tight-bound!
 - Asymptotic means for large n
 - Tight-bound because we have found the function that describes the algorithm's running time to with a constant multiple above and below

O-notation

- **Definition:** For a given function g(n), O(g(n)) is a **set** of functions such that
 - $O(g(n)) = \{f(n): \text{ there exists } positive constants c, and n0 s.t. } 0 \le f(n) \le cg(n) \text{ for all } n \ge n0$
- This is called an asymptotic upper-bound for f(n)
- For all values of $n \ge n0$ the value of f(n) is always <= cg(n)
- Focus on large values of n

n >> n0

O-notation: Example

- Assume $f(n) = 1/2n^2 3n$
- We say $f(n) = O(n^2)$, if this is true then
 - $0 \le 1/2n^2 3n \le cn^2$
 - 0 <= 1/2 3/n <=c

- Remember: c and n are positive constants
- The right inequality is true for n>=1 and c >= 1/2
- The left inequality is true for n >=4
- Thus if we choose
 - $c = \frac{1}{2}$, and n0 = 4 we can make the inequality true
- Thus $f(n) = O(n^2)$
- Called the Asymptotic Upper-bound!
 - Asymptotic means for large n
 - Tight-bound because we have found the function that describes the algorithm's running time to with a constant multiple above

Practice

• What is the Asymptotic Relationship (O or Θ – notation) between

- n^k in terms of c^n (assuming c > 1 and k > 1)
- Ig n lg 17 in terms of lg 17 lg n
- log₂n in terms of log₈n --- [tricky work it out]
- 3nlog₈n in terms of n³lg n

