GGPLOT2

Outil de visualisation de données

Pourquoi utiliseer une librairie de visualisation?

- 1. Transformer des données brutes en informations visuelles compréhensibles.
- 2. Aider à **explorer les données**, détecter des tendances, anomalies, corrélations.
- 3. Faciliter la communication des résultats à un public non technique.
- 4. Produire des graphes reproductibles et personnalisables via du code.
- 5. Gagner du **temps** et assurer la **cohérence** dans la présentation des graphiques.

Comment fonctionne ces librairies?

Elles utilisent une logique de couches :

- 1 On fournit les données.
- 2 On définit les variables à représenter (axes, couleurs, tailles...).
- 3 On ajoute des **éléments visuels** (*geom_point*, *geom_bar*, etc.).
- 4 On personnalise le **style** (titres, thèmes, échelles...).

Exemples de librairies de visualisation

ggplot2

matplotlib, seaborn, plotly

D3.js, Chart.js

Makie.jl, Plots.jl

Source: Comptes économiques rapides - ISPF, INSEE

GGPLOT2

TP Démo

Objectif de ce TP

Présentation des différents graphiques

Exercice 1 - Base de données

```
# install.packages("ggplot2") # à faire une seule fois
# install.packages("Amelia")
# install.packages("tinytex")
library(dplyr)
library(Amelia)
library(ggplot2) # charger la librairie
data(mpg)
```

```{r}		⊕ ≚ ▶
head(mpg)		
***		

A tibble: 6 x 11

manufacturer <chr></chr>	model <chr></chr>	displ <dbl></dbl>	year <int></int>	cyl <int></int>	trans <chr></chr>	drv <chr></chr>	cty <int></int>	hwy <int></int>	fl <chr></chr>	•
audi	a4	1.8	1999	4	auto(I5)	f	18	29	р	
audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	
audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	
audi	a4	2.0	2008	4	auto(av)	f	21	30	р	
audi	a4	2.8	1999	6	auto(I5)	f	16	26	р	
audi	a4	2.8	1999	6	manual(m5)	f	18	26	p	

```
```{r}
str(mpg)
                                                                                                                  A ×
tibble [234 \times 11] (S3: tbl_df/tbl/data.frame)
 $ manufacturer: chr [1:234] "audi" "audi" "audi" "audi" ...
               : chr [1:234] "a4" "a4" "a4" "a4" ...
 $ model
 $ displ
               : num [1:234] 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
               : int [1:234] 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
 $ year
               : int [1:234] 4 4 4 4 6 6 6 4 4 4 ...
 $ cyl
                : chr [1:234] "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
 $ trans
               : chr [1:234] "f" "f" "f" "f" ...
 $ drv
 $ cty
               : int [1:234] 18 21 20 21 16 18 18 18 16 20 ...
 $ hwy
               : int [1:234] 29 29 31 30 26 26 27 26 25 28 ...
               : chr [1:234] "p" "p" "p" "p" ...
 $ f1
 $ class
               : chr [1:234] "compact" "compact" "compact" "compact" ...
                               manufacturer : constructeur de la voiture
                               model : modèle
                               displ : cylindrée (L)
                               year : année
                               cyl : nombre de cylindres
                               trans : type de transmission
                               drv: type de traction (f avant, r arrière, 4 4 roues)
                               cty: consommation ville (mpg)
                               hwy: consommation route (mpg)
```

class : catégorie de véhicule (suv, compact, etc.)

fl: type de carburant

```
```{r}
 (6) X
mpg <- mpg %>%
 mutate(drv = recode(drv,
 "4" = "4 roues",
 "f" = "traction avant".
 "r" = "traction arrière"))
mpg <- mpg %>%
 mutate(f1 = recode(f1,
 "p" = "essence premium",
 "r" = "essence regular",
 "d" = "diesel",
 "e" = "ethanol",
 "c" = "CNG")
str(mpg)
 A ×
tibble [234 \times 11] (S3: tbl_df/tbl/data.frame)
 $ manufacturer: chr [1:234] "audi" "audi" "audi" "audi" ...
 : chr [1:234] "a4" "a4" "a4" "a4" ...
 $ model
 $ displ
 : num [1:234] 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
 : int [1:234] 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
 $ year
 $ cyl
 : int [1:234] 4 4 4 4 6 6 6 4 4 4 ...
 : chr [1:234] "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
 $ trans
```

: chr [1:234] "traction avant" "traction avant" "traction avant" "traction avant" ...

: chr [1:234] "essence premium" "essence premium" "essence premium" "essence premium" ...

: int [1:234] 18 21 20 21 16 18 18 18 16 20 ...

: int [1:234] 29 29 31 30 26 26 27 26 25 28 ...

: chr [1:234] "compact" "compact" "compact" "compact" ...

\$ drv

\$ cty

\$ hwy \$ fl

\$ class





## Syntaxe de GGPLOT2

```
ggplot(data = <DATA>) +
<GEOM FUNCTION>(
 mapping = aes(<MAPPINGS>),
 stat = <STAT>,
 position = <POSITION>)+
<COORDINATE_FUNCTION>+
<FACET FUNCTION>+
<SCALE FUNCTION>+
<THEME_FUNCTION>
```

#### Elements obligatoires

```
ggplot(data = <DATA>) +
<GEOM FUNCTION>(
 mapping = aes(<MAPPINGS>),
 stat = <STAT>,
 position = <POSITION>)+
<COORDINATE FUNCTION>+
<FACET FUNCTION>+
<SCALE FUNCTION>+
<THEME FUNCTION>
```

<DATA> Jeu de données

<GEOM_FUNCTION> Géométrie ou type de graphe Exemple : bar,scatter

<MAPPING> Correspondance visuelle entre les variables

Exemple: x,y,color,fill,size,shape

#### Elements non obligatoires

```
<STAT> Transformation statistique
ggplot(data = <DATA>) +
 Exemple:
<GEOM FUNCTION>(
 stat = "identity" : valeur par défaut
 mapping = aes(<MAPPINGS>),
 stat = "count" : compter le nombre d'occurence
 stat = "density" : calculer une densité
 stat = <STAT>,
 <POSITION> Position des éléments graphiques quand ils se
 position = <POSITION>)+
 chevauchent
<COORDINATE FUNCTION>+
 Exemple:
 position = "stack" : empiler les barres
<FACET FUNCTION>+
 position = "dodge" : côte à côte
 position = "fill" : empiler en normalisant
<SCALE FUNCTION>+
 <COORDINATE FUNCTION> SYSTEME DE COORDONNEES
 <FACET FUNCTION> CREATION DE SOUS-GRAPHIQUE
<THEME FUNCTION>
 <SCALE FUNCTION> PERSONALISER LES AXES,
 COULEURS, ETC
 <THEME FUNCTION> APPARENCE GENERAL DU
 GRAPHIQUE
```

#### Histogramme

```
ggplot(mpg) +
 geom_histogram(aes(x=hwy),binwidth = 5, fill = "skyblue", color = "black") +
 scale_x_continuous(breaks = seq(0,50,5)) +
 labs(
 title = "Répartition de la consommation sur autoroute (miles par gallon)",
 x = "Consommation sur autoroute (miles par gallon)",
 y = "Nombre de véhicule"
)
```

#### Répartition de la consommation sur autoroute (miles par gallon)



```
geom_histogram(aes(x=hwy),binwidth = 5, fill = "<mark>skyblue</mark>", color = "black")
```

```
3. scale_x_{continuous}(breaks = seq(0,50,5)) +
```

ggplot(mpg) +

```
labs(
 title = "Répartition de la consommation sur autoroute (miles par gallon)",
 x = "Consommation sur autoroute (miles par gallon)",
 y = "Nombre de véhicule"
)
```

#### Fonction de densité

```
ggplot(mpg) +
 geom_density(aes(x=hwy),fill = "skyblue") +
 labs(
 title = "Répartition de la consommation sur autoroute (miles par gallon)",
 x = "Consommation sur autoroute (miles par gallon)",
 y = "Nombre de véhicule"
)
```



## Histogramme et fonction de densité



#### Histogramme et fonction de densité

```
```{r}
# Largeur des classes pour histogramme
binwidth <- 2
# Histogramme avec densité sur axe secondaire
ggplot(mpg, aes(x = hwy)) +
 geom_histogram(aes(y = ...count..), binwidth = binwidth,
                 fill = "lightblue", color = "black", alpha = 0.6) +
 geom_density(aes(y = ..density.. * nrow(mpg) * binwidth), # conversion pour correspondre aux counts
              color = "red", size = 1.2) +
 scale_v_continuous(
   name = "Nombre de véhicules",
   sec.axis = sec_axis(~ . / (nrow(mpg) * binwidth), name = "Densité")
  labs(title = "Nombre de véhicules et densité selon la consommation sur autoroute",
      x = "Consommation sur autoroute (mpg)") +
 theme minimal()
```

Boite à moustache

```
ggplot(mpg) +
  geom_boxplot(aes(x=hwy),color="red") + labs(
    title = "Boite à moustache de la consommation sur autoroute",
     X = NULL
      y = NULL
    Boite à moustache de la consommation sur autoroute
 0.4-
 0.2-
 0.0-
-0.2-
                                                       30
                                                                                 40
```


Boite à moustache

```
ggplot(mpg) +
  geom_boxplot(aes(x=hwy),color="red") +
scale_y_continuous(breaks = NULL) + labs(
  title = "Boite à moustache de la consommation sur autoroute",
  x = "Litres",
  y = "Consommation"
```

Boite à moustache de la consommation sur autoroute

Litres

Graphique en bar pour variable qualitative norminale

Graphique en bar pour variable qualitative ordinale

```
# Création d'une variable ordinale (catégories de consommation)
mpg$conso_cat <- cut(
   mpg$hwy,
   breaks = c(0, 20, 30, 45),
   labels = c("faible", "moyenne", "élevée"),
   ordered_result = TRUE
)</pre>
```

L'ordre des modalités d'une variable est à réaliser dans la base de données. Ci-dessous, une autre méthode pour ordonner les modalités

Graphique en bar pour variable qualitative ordinale

Boite à moustache : quantitative x qualitative nominale

```
ggplot(mpg) +
    geom_boxplot(aes(x=class,y=hwy),color="black") +
    labs(title = "Consommation sur autoroute selon le type de véhicule",
        x = "Type de véhicule",
        y = "Consommation en miles par gallon") +
    theme_minimal()
```


Boite à moustache : quantitative x qualitative nominale

```
ggplot(mpg) +
    geom_boxplot(aes(x = class, y = hwy, fill=class),color = "black") +
    labs(title = "Consommation sur autoroute selon le type de véhicule",
        x = "Type de véhicule",
        y = "Consommation en miles par gallon") +
    theme_minimal()
```


Proportion des tractions selon le type de carburant Mauvais graphique : les proportions sont difficilement visibles


```
ggplot(mpg) +
  geom_bar(
  labs(
    title = "Proportion des tractions selon le type de carburant",
    y = "Nombre de véhicule (en proportion)",
    x = "Type de carburant"
) +
  theme_minimal()
```



```
ggplot(mpg) +
  geom_bar(aes(fl, fill=drv)) +
labs(
   title = "Proportion des tractions selon le type de carburant",
   y = "Nombre de véhicule",
   x = "Type de carburant"
) +
theme_minimal()
```

Proportion des tractions selon le type de carburant

Graphe pour quantitative x quantitative

Geom\_Point : Points se superposent

```
ggplot(mpg)+
   geom_point(aes(displ,cty)) +
   labs(title = "Evolution de la consommation en ville par la taille de la cylindré",
        x = "Consommation en ville",
        y = "Taille de la cylindré")
```


Geom\_Jitter : Petite dispersion aléatoire des points

```
gaplot(mpa)+
  geom_jitter(aes(displ,cty)) +
  labs(title = "Evolution de la consommation en ville par la taille de la cylindré",
       x = "Consommation en ville",
      y = "Taille de la cylindré")
```


Courbe de tendance par régression locale

```
ggplot(mpq,aes(displ,cty))+
    geom_jitter() +
    geom_smooth() +
    labs(title = Evolution de la consommation en ville par la taille de la cylindré",
        x = "Consommation en ville",
        y = "Taille de la cylindré")
```


Courbe de tendance par régression linéaire

Merci pour votre attention

GGPLOT2

TP Etude des ménages