

Page : 1 of 27 Issued date : Februa

FCC ID

: February 2, 2011 : Y8PSSPLF03

RADIO TEST REPORT

Test Report No.: 31DE0263-HO-02-A

Applicant : Fuji Heavy Industries Ltd.

Type of Equipment : Smart LF Oscillator

Model No. : SSPLF03

FCC ID : Y8PSSPLF03

Test regulation : FCC Part 15 Subpart C 2010

Section 15.207, Section 15.209

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

January 12 and 13, 2011

Representative test engineer:

Motoya Imura

Engineer of WiSE Japan, UL Verification Service

Approved by:

Shinya Watanabe

Leader of WiSE Japan, UL Verification Service

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page

: 2 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

CONTENTS	PAGE
SECTION 1: Customer information	
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	7
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	
SECTION 6: -26dB Bandwidth	
SECTION 7: 99% Occupied Bandwidth	10
APPENDIX 1: Photographs of test setup	
Radiated emission	
Worst Case Position	
APPENDIX 2: Data of EMI test	16
Radiated Emission below 30MHz (Fundamental and Spurious Emission)	
Radiated Emission above 30MHz (Spurious Emission)	
-26dB Bandwidth and 99% Occupied Bandwidth	
APPENDIX 3: Test instruments	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 27
Issued date : February 2, 2011
FCC ID : Y8PSSPLF03

SECTION 1: Customer information

Company Name : Fuji Heavy Industries Ltd.

Address : 1-7-2, Nishishinjuku, Shinjuku, Tokyo, 160-8316 Japan

Contact Person : Takashi Nishida

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Smart LF Oscillator

Model No. : SSPLF03

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC12.0V (Max 0.5A) Receipt Date of Sample : January 11, 2011

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Smart LF Oscillator, model: SSPLF03 is a transmitter that is installed in a motor vehicle and is used as part of Smart System.

Radio Specification

Radio Type : Transmitter
Frequency of Operation : 134.2kHz
Modulation : ASK
Method of Frequency Genenration : Crystal
Antenna type : Coil Antenna
Duty Cycle : up to 100 %

Smart LF Oscillator (model: SSPLF03) consists of the following parts:

- Computer Assy, Smart Key (ECU)
- Door Antenna
- Trunk Antenna
- Room Antenna / Luggage Antenna

UL Japan, Inc.
Head Office EMC Lab.

Head Office ENIC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Page : 4 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part15 Subpart C: 2010, final revised on December 6, 2010 and effective

January 5, 2011

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted Emission

Section 15.209 Radiated emission limits, general requirements

FCC 15.31 (e)

The stable voltage (DC2.3 to $6.2V^*$) is constantly provided to RF Part through the regulator regardless of voltage fluctuation of car battery(DC12V). Therefore, this EUT complies with the requirement.

*The regulated voltage value differs depending on connected LF antennas.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic> RSS-Gen 7.2.4</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 7.2.4</ic></fcc>	-	N/A *1)	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.8, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	21.7dB 0.13420MHz, AV, 0deg. (Door Antenna)	Complied
	Electric Field Strength of Spurious Emission		<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	12.9dB 0.67100MHz, QP, (Door Antenna)	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic></ic></fcc>	<fcc> Reference data <ic> -</ic></fcc>	Radiated	N/A	N/A	N/A

Note: UL Japan, Inc.'s EMI Work Procedures No.QPM05 and QPM15.

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99% Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Page : 6 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room		Radiated emission											
(semi-		(3m*)	(<u>+</u> dB)	(1m*))(<u>+</u> dB)	$(0.5\text{m*})(\pm \text{dB})$							
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz						
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz						
No.1	3.5dB	5.1dB	5.2dB	4.8dB	5.1dB	4.4dB	4.3dB						
No.2	4.0dB	5.1dB	5.2dB	4.8dB	5.0dB	4.3dB	4.2dB						
No.3	4.2dB	4.7dB	5.2dB	4.8dB	5.0dB	4.5dB	4.2dB						
No.4	4.0dB	5.0dB	5.1dB	4.8dB	5.0dB	5.1dB	4.2dB						

^{*3}m/1m/0.5m = Measurement distance

Radiated emission test(3m)

The data listed in this test report has enough margin, more than the site margin.

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration Number	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, and Test instruments

Refer to APPENDIX 1 to 3.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The mode is used: 1) Transmitting mode (Tx) 134.2kHz (Door Antenna, Trunk Antenna,

Room Antenna / Luggage Antenna, Maximum Output)

2) Transmitting mode (Tx) 134.2kHz (Room Antenna / Luggage Antenna only, Minimum Output)

* LF output power is controlled by Component Assy, Smart Key.

Justification : The system was configured in typical fashion (as a customer would normally use it)

for testing.

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark
A	Computer Assy, Smart Key (ECU)	-	001	-	EUT
В	Door Antenna	-	001	-	EUT
С	Room Antenna / Luggage Antenna	-	001	-	EUT
D	Trunk Antenna	-	001	-	EUT
Е	Jig Box	-	-	-	-

List of cables used

No.	Name	Length (m)	Sh	ield	Remark
			Cable	Connector	
1	DC Cable	2.8	Unshielded	Unshielded	-
2	ECU Cable	2.0	Unshielded	Unshielded	-
3	Door Ant Cable	2.0	Unshielded	Unshielded	-
4	Room Ant / Luggage Ant Cable	2.0	Unshielded	Unshielded	-
5	Trunk Ant Cable	2.0	Unshielded	Unshielded	-

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 27 Issued date : February 2, 2011

Issued date FCC ID

: Y8PSSPLF03

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

The Radiated Electric Field Strength intensity has been measured on No 2 and 4 semi anechoic chambers with a ground plane and at a distance of 3m.

Frequency: From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0deg., 45deg., 90deg., 135deg and 180deg.)

and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30MHz to 1GHz at distance 3m

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

Measurements were performed with a QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver (below 1GHz).

	From 9kHz	From	From	From	From
	to 90kHz	90kHz	150kHz	490kHz	30MHz to
	and	to 110kHz	to 490kHz	to 30MHz	1GHz
	From 110kHz				
	to 150kHz				
Detector Type	PK/AV	QP	PK/AV	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz

⁻ The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

With the position, the noise levels of all the frequencies were measured.

* Part 15 Section 15.31 (f)(2) (9kHz-30MHz)

[Limit at 3m]=[Limit at 300m]- $40 \times \log (3[m]/300[m])$ [Limit at 3m]=[Limit at 30m]- $40 \times \log (3[m]/30[m])$

Test data : APPENDIX 2

Test result : Pass

Date: January 12 and 13, 2011 Test engineer: Satofumi Matsuyama

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Figure 1: Direction of the Loop Antenna

.....

Top View (Horizontal)

Antenna was not rotated.

.....

Front side: 0 deg.

Forward direction: clockwise

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

SECTION 6: -26dB Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test data : APPENDIX 2

Test result : Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test data : APPENDIX 2

Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 27
Issued date : February 2, 2011
FCC ID : Y8PSSPLF03

APPENDIX 1: Photographs of test setup

Radiated emission

Door Antenna

Photo 1

Photo 2

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated emission Trunk Antenna

Photo 1

Photo 2

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 27
Issued date : February 2, 2011
FCC ID : Y8PSSPLF03

Radiated emission Room Antenna / Luggage Antenna

Photo 1

Photo 2

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Worst Case Position

Door Antenna Below 30MHz:X-axis Above 30MHz(Hori:X-axis /Vert:X-axis)

Trunk Antenna **Below 30MHz:X-axis** Above 30MHz(Hori:X-axis /Vert:X-axis) X-axis

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Worst Case Position

Room Antenna / Luggage Antenna Below 30MHz:X-axis Above 30MHz(Hori:Z-axis /Vert:Y-axis)

ECU
Below 30MHz:X-axis
Above 30MHz(Hori:X-axis /Vert:X-axis)
X-axis

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 16 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

APPENDIX 2: Data of EMI test

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Door Antenna

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.2 Semi Anechoic Chamber Date: 2011/01/12

Report No. : 31DE0263-H0-02

Temp. / Humi. : 23deg. C / 32%
Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Door Antenna Worst-axis(Ant:X-axis, ECU:X-axis)

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
0. 13420	99.2	PEAK	19.9	6. 1	32. 1	93. 1	125. 0	31.9	0	Α	0	Worst
0.13420	89.4	AV	19. 9	6. 1	32. 1	83. 3	105. 0	21. 7	0	Α	0	
0.13420	97.2	PEAK	19. 9	6. 1	32. 1	91.1	125. 0	33. 9	45	В	329	
0. 13420	87.5	AV	19. 9	6. 1	32. 1	81.4	105. 0	23. 6	45	В	329	
0. 13420	94.1	PEAK	19. 9	6. 1	32. 1	88. 0	125. 0	37. 0	90	C	288	1
0.13420	84.3	AV	19.9	6. 1	32. 1	78. 2	105.0	26. 8	90	C	288	
0. 13420	97.3	PEAK	19. 9	6. 1	32. 1	91. 2	125. 0	33. 8	135	Α	22	
0. 13420	87.5	AV	19. 9	6. 1	32. 1	81.4	105. 0	23. 6	135	Α	22	
0. 13420	98.9	PEAK	19. 9	6. 1	32. 1	92. 8	125. 0	32. 2	180	Α	0	
0. 13420	89.1	AV	19. 9	6. 1	32. 1	83. 0	105. 0	22. 0	180	Α	0	
0.13420	95.0	PEAK	19. 9	6. 1	32. 1	88. 9	125. 0	36. 1	135	Α		Loop:Hori
0. 13420	81.7	AV	19. 9	6. 1	32. 1	75. 6	105. 0	29. 4	135	A	26	Loop:Hori
0.40260	76.1	PEAK	19. 5	6. 1	32. 1	69. 6	115. 5	45. 9	0	A	0	
0.40260	63.0	AV	19. 5	6. 1	32. 1	56. 5	95. 5	39. 0	0	A	0	١
0.67100	64.7	QP	19.4	6. 2	32. 1	58. 2	71. 1	12. 9	0	A	0	
0. 93940	53.1	QP	19.4	6. 2		46. 7	68. 1	21. 4	0	A	0	
1. 20780	46.2	QP	19.4	6. 2	32. 0	39. 8	65. 9	26. 1	0	Α	0	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 17 of 27 Issued date : February

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Trunk Antenna

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date : 2011/01/12

Report No. : 31DE0263-H0-02

Temp. / Humi. : 23deg. C / 32%
Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Trunk Antenna Worst-axis (Ant:X-axis, ECU:X-axis)

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	
[MHz]	[dBuV]	DET	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	Comment
0. 13420		PEAK	19.9	6. 1	32. 1	92. 9	125. 0	32. 1	O	A		Worst
0. 13420	89. 2	AV	19. 9	6. 1	32. 1	83. 1	105. 0	21. 9	0	A	0	
0. 13420	97.0	PEAK	19. 9	6. 1	32. 1	90. 9	125. 0	34. 1	45	В	324	MOLSE
0. 13420	87. 0 87. 2	AV	19. 9	6. 1	32. 1	81. 1	105. 0	23. 9	45	В	324	
0. 13420	93.9	PEAK	19. 9	6. 1	32. 1	87. 8	125. 0	37. 2	90	C	275	
	93. 9 84. 2	AV	19. 9	6. 1	32. 1	78. 1	105. 0	26.9	90			
0.13420										C	275 33	
0.13420	97.0	PEAK	19.9	6. 1	32. 1	90. 9	125. 0	34. 1	135	A	33	
0. 13420	87.4	AV	19.9	6. 1	32. 1	81.3	105.0	23. 7	135	A		
0. 13420	98.8	PEAK	19.9	6. 1	32. 1	92. 7	125. 0	32. 3	180	A	0	
0. 13420	89.0	AV	19.9	6. 1	32. 1	82. 9	105. 0	22. 1	180	A	0	
0. 13420	96.4	PEAK	19. 9	6. 1	32. 1	90. 3	125. 0	34. 7	90	A	0	
0. 13420	83.0	AV	19. 9	6. 1	32. 1	76. 9	105. 0	28. 1	90	Α	0	
0.40260	73.5	PEAK	19. 5	6. 1	32. 1	67. 0	115. 5	48. 5	0	A	0	
0.40260	60.4	AV	19. 5	6. 1	32. 1	53. 9	95. 5	41.6	0	A	0	
0.67100	54.2	QP	19.4	6. 2	32. 1	47. 7	71. 1	23. 4	0	A	0	
0.93940	54.9	QP	19.4	6. 2			68. 1	19. 6	0	A	0	
1. 20780	51.8	QP	19. 4	6. 2		45. 4	65. 9	20. 5	0	A	0	
1.47620	47.7	QP	19.4	6. 3	32. 0	41.4	64. 2	22. 8	0	A	0	
[ĺ											
1												
	·									l i		
	' I											

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Room Antenna / Luggage Antenna Maximum Output

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date: 2011/01/12

Report No. : 31DE0263-H0-02

Temp./Humi. Engineer : 23deg. C / 32% : Satofumi Matsuyama

Mode / Remarks: Tx 134.2kHz Modulation ON Room Antenna / Luggage Antenna Worst-axis (Ant:X-axis, ECU:X-axis)

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]	1	[deg]	
0.13420	98.4	PEAK	19. 9	6. 1	32. 1	92.3	125.0	32.7	0	Α	0	Worst
0.13420	88.8	AV	19.9	6. 1	32. 1	82.7	105.0	22.3	0	Α	0	Worst
0.13420	96.5	PEAK	19.9	6. 1	32. 1	90.4	125.0	34.6	45	В	325	
0.13420	86.5	AV	19.9	6. 1	32. 1	80.4	105.0	24.6	45	В	325	
0.13420	94.0	PEAK	19.9	6. 1	32. 1	87. 9	125.0	37.1	90	C	275	
0.13420	84. 1	AV	19.9	6. 1	32. 1	78.0	105.0	27.0	90	С	275	
0.13420	96.5	PEAK	19.9	6. 1	32. 1	90.4	125.0	34.6	135	Α	33	
0.13420	86.7	AV	19.9	6. 1	32. 1	80.6	105.0	24.4	135	Α	33	
0.13420	98. 2	PEAK	19.9	6. 1	32. 1	92.1	125.0	32.9	180	Α	0	
0.13420	88.2	AV	19.9	6. 1	32. 1	82.1	105.0	22.9	180	Α	0	
0.13420	94.7	PEAK	19.9	6. 1	32. 1	88.6	125.0	36.4	180	Α	0	Loop:Hori
0.13420	81.6	AV	19.9	6. 1	32. 1	75.5	105.0	29.5	180	Α	0	Loop:Hori
0.40260	65.6	PEAK	19.5	6. 1	32. 1	59.1	115.5	56.4	0	Α	0	
0.40260	52.3	AV	19.5	6. 1	32. 1	45.8	95.5	49.7	0	Α	0	
0.93940	48.7	QP	19.4	6. 2	32.0	42.3	68. 1	25.8	0	Α	0	
1.20780	46.7	QP	19.4	6. 2	32.0	40.3	65.9	25.6	0	Α	0	
	1											

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 19 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Room Antenna / Luggage Antenna Minimum Output

DATA OF RADIATED EMISSION TEST

Head Office EMC Lab. No.2 Semi Anechoic Chamber Date: 2011/01/12

Report No. : 31DE0263-H0-02

Temp. / Humi. : 23deg. C / 32% : Motoya Imura

Mode / Remarks : Tx 134.2kHz Modulation ON Room Antenna Worst-axis (Ant:X-axis, ECU:X-axis) Mini

MHz GBuV GB/m GB GB GBUV/m GBUV/m GB Geg Geg	Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
0.13420 74.3 AV 19.9 6.1 32.1 68.2 105.0 36.8 0 A 0 0.13420 82.1 PEAK 19.9 6.1 32.1 76.0 125.0 49.0 45 B 338 0.13420 79.6 PEAK 19.9 6.1 32.1 66.2 105.0 38.8 45 B 338 0.13420 79.6 PEAK 19.9 6.1 32.1 73.5 125.0 51.5 90 C 269 0.13420 69.6 AV 19.9 6.1 32.1 73.5 125.0 51.5 90 C 269 0.13420 82.2 PEAK 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 72.2 AV 19.9 6.1 32.1 77.7 125.0 47.3 180 C 222 0.13420 73.8 AV 19.	[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
0.13420	0.13420	84. 1	PEAK	19. 9	6. 1	32. 1	78. 0	125. 0	47. 0	0	Α	0	worst
0.13420 72.3 AV 19.9 6.1 32.1 66.2 105.0 38.8 45 B 338 0.13420 79.6 PEAK 19.9 6.1 32.1 73.5 125.0 51.5 90 C 269 0.13420 82.2 PEAK 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 72.2 AV 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 72.2 AV 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 73.8 PEAK 19.9 6.1 32.1 76.1 105.0 38.9 135 C 222 0.13420 73.8 PEAK 19.9 6.1 32.1 76.7 125.0 47.3 180 C 359 0.13420 73.8 PEAK 19.9 6.1 32.1 77.7 125.0 47.3 180 C 359 0.13420 73.8 AV 19.9 6.1 32.1 77.7 125.0 47.3 180 C 359 0.13420 73.8 AV 19.9 6.1 32.1 77.7 125.0 47.3 180 C 359 0.13420 73.8 AV 19.9 6.1 32.1 77.8 125.0 50.2 180 C 358 0.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 0.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 0.13420 39.4 AV 19.5 6.1 32.1 42.7 115.5 72.8 0 A 0 0 0.40260 49.2 PEAK 19.5 6.1 32.1 32.1 42.7 115.5 72.8 0 A 0 0 0.40260 49.2 PEAK 19.5 6.1 32.1 32.9 95.5 62.6 0 A 0 0 0.53976 45.3 0P 19.5 6.1 32.1 32.1 32.9 95.5 62.6 0 A 0 0 0.53976 45.3 0P 19.5 6.1 32.1 32.1 33.8 73.0 34.2 0 A 0 0 0.80520 44.9 0P 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0 0	0.13420	74. 3	AV	19. 9	6. 1	32. 1	68. 2	105.0	36.8	0	Α	0	
0.13420 79.6 PEAK 19.9 6.1 32.1 73.5 125.0 51.5 90 C 269 0.13420 69.6 AV 19.9 6.1 32.1 63.5 105.0 41.5 90 C 269 0.13420 72.2 PEAK 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 72.2 AV 19.9 6.1 32.1 66.1 105.0 38.9 135 C 2222 0.13420 73.8 AV 19.9 6.1 32.1 77.7 125.0 47.3 180 C 359 0.13420 73.8 AV 19.9 6.1 32.1 67.7 105.0 37.3 180 C 359 0.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 Hori 0.13420 67.6			PEAK	19. 9	6. 1	32. 1	76.0	125.0	49.0	45	В		
0.13420 69.6 AV 19.9 6.1 32.1 63.5 105.0 41.5 90 C 269 0.13420 82.2 PEAK 19.9 6.1 32.1 76.1 125.0 48.9 135 C 222 0.13420 83.8 PEAK 19.9 6.1 32.1 66.1 105.0 38.9 135 C 222 0.13420 83.8 PEAK 19.9 6.1 32.1 77.7 125.0 47.3 180 C 359 0.13420 83.8 PEAK 19.9 6.1 32.1 77.7 105.0 37.3 180 C 359 0.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 Hori 0.13420 67.6 AV 19.9 6.1 32.1 74.8 125.0 43.5 180 C 358 Hori 0.40260	0.13420	72.3	AV	19. 9	6. 1	32. 1	66. 2	105.0	38. 8	45	В	338	
0.13420 82. 2 PEAK 19. 9 6. 1 32. 1 76. 1 125. 0 48. 9 135 C 222 0.13420 72. 2 AV 19. 9 6. 1 32. 1 66. 1 105. 0 38. 9 135 C 222 0.13420 73. 8 AV 19. 9 6. 1 32. 1 77. 7 105. 0 47. 3 180 C 359 0.13420 80. 9 PEAK 19. 9 6. 1 32. 1 67. 7 105. 0 37. 3 180 C 359 0.13420 67. 6 AV 19. 9 6. 1 32. 1 67. 7 105. 0 37. 3 180 C 358 Hori 0.13420 67. 6 AV 19. 9 6. 1 32. 1 61. 5 105. 0 43. 5 180 C 358 Hori 0.13420 49. 2 PEAK 19. 9 6. 1 32. 1 42. 7 115. 5 72. 8 0 A 0 </td <td>0.13420</td> <td>79.6</td> <td>PEAK</td> <td>19. 9</td> <td>6. 1</td> <td>32. 1</td> <td>73. 5</td> <td>125.0</td> <td>51.5</td> <td>90</td> <td>С</td> <td>269</td> <td></td>	0.13420	79.6	PEAK	19. 9	6. 1	32. 1	73. 5	125.0	51.5	90	С	269	
0. 13420	0.13420	69.6	AV	19. 9	6. 1	32. 1	63. 5	105.0	41.5	90	С	269	
0.13420	0.13420	82. 2	PEAK	19. 9	6. 1	32. 1	76. 1	125.0	48. 9	135	С	222	
0.13420 73.8 AV 19.9 6.1 32.1 67.7 105.0 37.3 180 C 359 O.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 Hori 0.13420 67.6 AV 19.9 6.1 32.1 61.5 105.0 43.5 180 C 358 Hori 0.40260 49.2 PEAK 19.5 6.1 32.1 42.7 115.5 72.8 0 A 0 0 0.40260 39.4 AV 19.5 6.1 32.1 32.9 95.5 62.6 0 A 0 0 0.53976 45.3 QP 19.5 6.1 32.1 32.1 32.9 95.5 62.6 0 A 0 0 0.53976 45.3 QP 19.5 62.1 32.1 33.8 73.0 34.2 0 A 0 0 0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.13420	72. 2	AV	19. 9	6. 1	32. 1	66. 1	105.0	38. 9	135	C	222	
0.13420 80.9 PEAK 19.9 6.1 32.1 74.8 125.0 50.2 180 C 358 Hori 0.13420 67.6 AV 19.9 6.1 32.1 61.5 105.0 43.5 180 C 358 Hori 0.40260 49.2 PEAK 19.5 6.1 32.1 42.7 115.5 72.8 0 A 0 0.40260 39.4 AV 19.5 6.1 32.1 32.9 95.5 62.6 0 A 0 0.53976 45.3 QP 19.5 6.1 32.1 33.9 95.5 62.6 0 A 0 0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.13420	83.8	PEAK	19. 9	6. 1	32. 1	77.7	125.0	47. 3	180	С	359	
0. 13420	0.13420	73.8	AV	19. 9	6. 1	32. 1	67. 7	105.0	37. 3	180	С	359	
0.40260 49.2 PEAK 19.5 6.1 32.1 42.7 115.5 72.8 0 A 0 0.40260 39.4 AV 19.5 6.1 32.1 32.9 95.5 62.6 0 A 0 0.53976 45.3 QP 19.5 6.1 32.1 38.8 73.0 34.2 0 A 0 0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.13420	80.9	PEAK	19. 9	6. 1	32. 1	74. 8	125.0	50. 2	180	С	358	Hori
0.40260 39.4 AV 19.5 6.1 32.1 32.9 95.5 62.6 0 A 0 0.53976 45.3 QP 19.5 6.1 32.1 38.8 73.0 34.2 0 A 0 0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.13420	67.6	AV	19. 9	6. 1	32. 1	61.5	105.0	43. 5	180	C	358	Hori
0.53976 45.3 QP 19.5 6.1 32.1 38.8 73.0 34.2 0 A 0 0 0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.40260	49. 2	PEAK	19. 5	6. 1	32. 1	42.7	115.5	72. 8	0	Α	0	
0.80520 41.9 QP 19.4 6.2 32.0 35.5 69.5 34.0 0 A 0	0.40260	39.4	AV	19. 5	6. 1	32. 1	32. 9	95. 5	62. 6	0	Α	0	
	0.53976	45. 3	QP	19. 5	6. 1	32. 1	38. 8	73.0	34. 2	0	Α	0	
1. 20784 35. 5 QP 19. 4 6. 2 32. 0 29. 1 65. 9 36. 8 0 A 0	0.80520	41.9	QP	19. 4	6. 2	32. 0	35. 5	69. 5	34. 0	0	Α	0	
	1. 20784	35. 5	QP	19. 4	6. 2	32. 0	29. 1	65. 9	36. 8	0	Α	0	

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 27 **Issued date** : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission above 30MHz (Spurious Emission) **Door Antenna**

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Li

Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date: 2011/01/13

: 31DE0263-H0-02 Report No. Temp. / Humi. : 20deg.C / 25% Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Door Antenna Worst-axis (Ant Hor:X-axis / Ver:X-axis, ECU Hor:X-axis / Ver:X-axis)

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
55. 824		QP	9. 5	-24. 5				Vert.	40.0		
55. 791	23. 6	QP	9.5	-24.5	8.6	112	300	Hori.	40.0	31.4	
94. 474	35. 5	QP	9.3	-24. 1	20. 7	353	300	Hori.	43.5		
94. 478	39. 6	QP	9.3	-24. 1	24. 8	264	100	Vert.	43.5	18. 7	
	ŀ										
	ŀ										
	l										
	l										
	l										
	İ		l I								
	l										
	l										
	i									1	
	l										
	l										
	I	l	1 1		l .	1	l		I	1	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

*The limit is rounded down to one decimal place.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 21 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission above 30MHz (Spurious Emission) **Trunk Antenna**

DATA OF RADIATED EMISSION TEST

EMC Lab. No. 4 Semi Anechoic Chamber Date : 2011/01/13

Report No. : 31DE0263-H0-02 Temp. / Humi. : 20deg.C / 25% Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Trunk Antenna Worst-axis (Ant Hor:X-axis / Ver:X-axis, ECU Hor:X-axis / Ver: X-axis)

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
56. 677	31. 9	QP	9. 3	-24. 6	16. 6	252	100	Vert.	40.0	23. 4	
56. 678			9.3	-24. 6	7. 5				40.0		
115. 949			12.5	-23. 9	21.3	272	100	Vert.	43.5		
115. 948	35. 2	QP	12.5	-23. 9	23. 8	2	300	Hori.	43.5	19.7	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

*The limit is rounded down to one decimal place.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 22 of 27 **Issued date** : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission above 30MHz (Spurious Emission)

Room Antenna / Luggage Antenna Maximum Output

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC La

Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date: 2011/01/13

: 31DE0263-H0-02

Temp. / Humi. : 20deg.C / 25% Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Room Antenna Worst-axis(Ant Hor:Z-axis / Ver:Y-axis, ECU Hor:X-axis / Ver: X-axis)

Report No.

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
44. 548		QP	12. 6	-24. 7	21.8	62		Vert.	40.0		
44. 580		QP	12.5	-24. 7	13. 5	338	362	Hori.	40.0		
115. 956		QP	12.5	-23. 9	22. 2		300		43.5		
115. 955	32. 6	QP	12. 5	-23. 9	21. 2	270	100	Vert.	43.5	22. 3	
110.000	02.0	4.	12.0	20.0	21.2	2,0		10	10.0		
	1										
	1										
			1 1								
	ı										
	1										
	l		l I	I						i i	
			i i	ı						i i	
	1										
			1 1				1		1	1 1	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

*The limit is rounded down to one decimal place.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 23 of 27

Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

Radiated Emission above 30MHz (Spurious Emission)

Room Antenna / Luggage Antenna Minimum Output

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC La

Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date: 2011/01/13

: 31DE0263-H0-02

700 1000 Frequency[MHz]

Temp. / Humi. : 20deg.C / 25% Engineer : Satofumi Matsuyama

Mode / Remarks : Tx 134.2kHz Modulation ON Room Antenna Worst-axis (Ant Hor:Z-axis / Ver:Y-axis, ECU Hor:X-axis / Ver: X-axis) Power Mini

Report No.

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
39. 440	25. 5	QP	14. 8	-24. 9	15. 4	349		Hori.	40.0	24. 6	
39. 441	28. 7	QP	14.8	-24. 9	18. 6	77	100	Vert.	40.0	21.4	
98. 774		QP	10.1	-24. 1	22. 5	199	300	Hori.	43.5	21.0	
98. 775	39. 3	QP	10. 1	-24. 1	25. 3	279	100	Vert.	43.5	18. 2	
	İ										
			1 1								
l											
	l										
	 		1 1								
			1 1								
I	l										
			1 1								
	i i		1 1								
	ı		1 1								
	l		1 1								
	l		1 1								
	l l		1 1								
	ı		1 1								
			1								
			1 1								
			1 1								

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

*The limit is rounded down to one decimal place.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 24 of 27 **Issued date** : February 2, 2011 FCC ID : Y8PSSPLF03

-26dB Bandwidth and 99% Occupied Bandwidth **Door Antenna**

Head Office EMC Lab. No.2 Semi Anechoic Chamber

REPORT NO : 31DE0263-HO-02

TEST DISTANCE: 3m

: 01/12/2011 DATE TEMPERATURE : 22 deg.C

: DC 12.0V **POWER** MODE HUMIDITY : 32 % : Tx

> : Door Antenna Engineer : Motoya Imura

FREQ	-26dB Bandwidth	99% Occupied Bandwidth
[kHz]	[kHz]	[kHz]
134.2	26.141	37.114

Occupied Bandwidth 37.1139 kHz Occ BW % Pwr 99.00 % **x dB** -26.00 dB

Transmit Freq Error -3.756 kHz Occupied Bandwidth 26.141 kHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 25 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

-26dB Bandwidth and 99% Occupied Bandwidth

Trunk Antenna

Head Office EMC Lab. No.2 Semi Anechoic Chamber

REPORT NO : 31DE0263-HO-02

TEST DISTANCE: 3m

DATE : 01/12/2011 TEMPERATURE : 22 deg.C

POWER : DC 12.0V TEMPERATURE : 22 deg.C MODE : Tx HUMIDITY : 32 %

: Trunk Antenna Engineer : Motoya Imura

FREQ	-26dB Bandwidth	99% Occupied Bandwidth
[kHz]	[kHz]	[kHz]
134.2	21.919	33.671

₩ Agilent R T

Occupied Bandwidth 33.6710 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -1.672 kHz x dB Bandwidth 21.919 kHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 26 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

-26dB Bandwidth and 99% Occupied Bandwidth

Room Antenna / Luggage Antenna

Head Office EMC Lab. No.2 Semi Anechoic Chamber

REPORT NO : 31DE0263-HO-02

TEST DISTANCE: 3m

DATE : 01/12/2011 TEMPERATURE : 22 deg C

POWER : DC 12.0V TEMPERATURE : 22 deg.C MODE : Tx HUMIDITY : 32 %

: Room Antenna / Luggage Antenna Engineer : Motoya Imura

FREQ	-26dB Bandwidth	99% Occupied Bandwidth
[kHz]	[kHz]	[kHz]
134.2	21.551	29.885

* Agilent R T

Occupied Bandwidth 29.8853 kHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -396.135 Hz x dB Bandwidth 21.551 kHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 27 of 27 Issued date : February 2, 2011 FCC ID : Y8PSSPLF03

APPENDIX 3: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2010/09/01 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2010/02/09 * 12
MJM-05	Measure	PROMART	SEN1955	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2010/11/30 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2010/04/19 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2010/10/15 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D- 2W(1m)	-	RE	2010/02/22 * 12
MCC-30	Coaxial cable	UL Japan	-	-	RE	2010/07/20 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2010/03/05 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2010/11/05 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2010/02/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	RE	2010/02/09 * 12
MJM-07	Measure	PROMART	SEN1955	-	RE	-
MSA-05	Spectrum Analyzer	Advantest	R3273	160400285	RE	2010/11/18 * 12
MTR-07	Test Receiver	Rohde & Schwarz	ESCI	100635	RE	2010/10/27 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2010/10/11 * 12
MLA-08	Logperiodic Antenna	Schwarzbeck	UKLP9140-A	N/A	RE	2010/10/11 * 12
MCC-50	Coaxial cable	UL Japan	-	-	RE	2010/03/18 * 12
MAT-51	Attenuator(6dB)	Weinschel	2	AS3557	RE	2010/01/20 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN