Selección de atributos

Hugo Andrés Dorado B.

Muchas mediciones

- ¿Necesitamos tanta información de variables en para nuestro algoritmo de aprendizaje?
- ¿Puedo mejorar mi algoritmo de aprendizaje sí remuevo algunas variables, como escojo cuales?

- ¿Cómo puedo reducir el tiempo de ejecución de mi algoritmo de aprendizaje?

Selección de atributos

Otros nombres:

Selección de variables, selección de característica o selección de subconjunto de variables...

Propósito principal:
$$Conjunto$$
 $X_1, X_2, ..., X_{50} \rightarrow Y$

$$X_1, X_2, \dots, X_{50} \rightarrow Y$$

$$(X_2, X_{13}, X_{25}, X_{28}, X_{41}, X_{50} \rightarrow Y)$$

En este proceso se escoge un subconjunto de variables relevantes de acuerdo a ciertos criterios para un modelo el cual se está a punto de construir.

Porque hacer selección de atributos.

- ✓ Remover y reducir efectos de variables poco importantes.
- ✓ Reducir la dimensionalidad.
- ✓ Mejorar el desempeño predictivo.
- ✓ Facilitar la interpretación de resultados.
- ✓ Construir modelos más eficientemente.

Campos de aplicación en la selección de atributos

Minería de texto

Genética

Industria

• •

Algunos conceptos

• Un atributo es *irrelevante* si no afecta de ninguna forma al desempeño del modelo.

 Un atributo es redundante si no añade nada nuevo al modelo.

• Un atributo se considera *relevante* si no es irrelevante o redundante.

Ejemplo de selección de atributos

Supongamos que tenemos 3 atributos A, B, C y un clasificador M, entonces queremos predecir a T.

Selección de atributos	Clasificación	Desempeño	
{A,B,C}	M	98.0%	
{A,B}	M	92.1%	
{A,C}	M	98.0%	→ Mejor desempeño
{B,C}	M	56.3%	
{A}	M	97.5%	→ Simplicidad
{B}	M	90.3%	
{C}	M	91.2%	
	M	85.1%	

Pasos en la selección de atributos

- 1. Generación de subconjuntos candidatos (estrategia de búsqueda o **función criterio**).
- 2. Evaluación de subconjuntos posibles.
- 3. Criterio de parada. (Número de iteraciones, número de atributos, poca mejora al añadir o quitar, alcanzar el desempeño deseado.)
- 4. Validación de los resultados (Atributos conocidos como relevantes, comparando el error en la clasificación o una línea base sin la selección de atributos).

Clasificación de métodos de selección de atributos

Se distinguen por la forma de evaluar atributos en tres clases:

- **Filtros:** La selección de atributos es independiente del algoritmo de aprendizaje, usando medidas de distancia, información o dependencia.
- Wrappers: La estrategia de búsqueda utilizada es el propio conjunto de reglas generadas por el algoritmo de aprendizaje que posteriormente se usará en el modelo.
- Embebidos: La selección de atributos está integrada dentro del mismo modelo de aprendizaje supervisado (No se exploran varias soluciones).

Wrappers versus Filtros versus Embebidos

Desempeño del MAS

Wrappers

Embebidos

Filtros

Número de variables

Wrappers

Filtros

Embebidos

Tiempo de ejecución

Filtros

Embebidos

Wrappers

Algoritmos tipo filtros

Algoritmos tipo wrapper

Estrategias de búsqueda

Pretende guiar la forma en que se selecciona los subconjuntos posibles

¿Porque implementar una estrategia de búsqueda?

Para k atributos existen 2^k subcojuntos posibles, entonces a veces son demasiadas pruebas (k=30 => 2^{30} = 1.073.741.824)...

Punto de partida

Puede ser un subconjunto vacío, o el subconjunto completo, una cantidad estimada de atributos o aleatoria.

Estrategias de búsqueda clásicas

• Forward: Se parte de un subconjunto vacío de atributos, y se va adicionando atributos (Rápido pero a veces poco eficiente).

$$\emptyset \Rightarrow X_2 \Rightarrow X_2 X_5 \Rightarrow X_2 X_5 X_7 \Rightarrow X_2 X_5 X_7 X_{15}$$

• **Backward:** Se eliminan progresivamente variables. (Contrario al anterior)

$$X_1X_2 \dots X_{50} \Rightarrow X_1X_3 \dots X_{50} \Rightarrow X_1X_3 \dots X_{49} \Rightarrow X_1X_3 \dots X_{49}$$

• Bi direccional: Se pueden añadir o quitar atributos a partir de un subconjunto inicial.

$$\emptyset \Rightarrow X_2 \Rightarrow X_2 X_5 \Rightarrow X_2 X_5 X_7 \Rightarrow X_2 X_5 X_{15}$$

Otras estrategias de búsqueda

- Búsqueda aleatoria, donde luego se le une un algoritmo de optimización. (Ej: Ranmdon restar hill-climbing) ó (Simulated anneling).
- Se pueden usar diversas variantes de búsqueda: local search, tabú search, ant colony optimization, algoritmos genéticos, swarm optimization, etc.

 Existen búsquedas completas (No necesariamente exhaustivas), heurísticas o aleatorias.

Evaluación de subconjuntos

- Se puede hacer de manera independiente, como es el caso de los filtros; en los cuales se usan medidas de distancia, dependencia o consistencia. (Correlación, información mutua, variación, entropía cruzada..)
- De manera dependiente, como es el caso de los wrappers y se evalúa a partir del modelo de machine learning empleado. (luego un indicador de precisión tal como Kappa, instancias correctamente clasificadas, AIC...)
- En el caso de clustering se utilizan medidas de calidad de agrupamiento, por ejemplo un coeficiente entre la inercia inter clase e intraclase.

Algoritmos embebidos

Métodos de poda: Entrenar un modelo con todas las variables y luego descartar algunas cuya eliminación mantenga o aumente el desempeño del MAS.

Mecanismos integrados: Internamente en el aprendizaje, filtran o dan prioridad a las variables más informativas, por ejemplo ID3, CART y C4.

Modelos de regularización: contienen funciones que llevan a los coeficientes de algunas variables a valores bajos o incluso a cero, al mismo tiempo que buscan minimizar el error de ajuste. Regression Lasso o Elastic Net.

Bibliografía

- Eduardo Morales, Jesús González. Selección de atributos. INAOE. Mayo, 2010.
- libGen—Descarga de libros
- S. B. Kotsiantis, "Feature selection for machine learning classification problems: a recent overview," 2011.
- W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, "Feature Selection, Encyclopedia of Systems Biology," no. 1, 2013, pp. 1889– 2113.
- Ramos, R. M., Palmero, M. R. M. R., Ávalos, R. G., & Lorenzo, M. M. G. (2007). Aplicación de métodos de selección de atributos para determinar factores relevantes en la evaluación nutricional de los niños. Gaceta Médica Espirituana, 9(1), 1.