CDP Ordering is Maintained Batog-based Redistribution with Corrected Stakes

Here we show that ICR ordering is preserved with corrected stakes across a liquidation event.

We make use of the first-order equivalence result, namely, that with corrected stakes:

1)
$$S_N = S_1$$

i.e:

Any N'th order system of CDPs is equivalent to a first-order system of CDPs. For a given fresh CDP with stake s_i and collateral c_i , the stake s_i is equivalent to some hypothetical first-order stake c_i which has accumulated collateral reward $x_i = (c_i - c_i)$ and debt reward $y_i = (d_i - d_i)$.

Due to this equivalence between first and N'th-order systems, if ordering is preserved for first-order systems, it is preserved for N'th order systems.

Now consider a first-order system of CDPs, with stakes equal to their initial collateral.

Let CDP₁ and CDP₂ be CDPs with initial collateral c_1 , c_2 accumulated collateral and debt rewards x_1 , y_1 and x_2 , y_2 respectively:

2)
$$ICR_1 = (c_1 + x_1) / (d_1 + x_1)$$

3) $ICR_2 = (c_2 + x_2) / (d_2 + y_2)$

Let their ICRs be such that:

Since, a first-order CDP's collateral and debt rewards are always in direct proportion to its initial collateral, we can write the accumulated rewards as:

5)
$$x_1 = Ac_1$$

6)
$$x_2 = Ac_2$$

and

7)
$$y_1 = Bc_1$$

8)
$$y_2 = Bc_2$$

Where A is the sum of all 'collateral rewards per unit staked', and B is the sum of all 'debt rewards per unit staked'. This yields ICRs:

9)
$$ICR_1 = c_1(1 + A) / (d_1 + Bc_1)$$

10) $ICR_2 = c_2(1+A) / (d_2 + Bc_2)$

And the initial ICR inequality becomes:

11)
$$c_1(1 + A) / (d_1 + Bc_1) > c_2(1 + A) / (d_2 + Bc_2)$$

Cross multiplying and cancelling the common denominator yields:

12)
$$c_1(1 + A)(d_2+Bc_2) > c_2(1+A)(d_1+Bc_1)$$

Then expanding:

13)
$$c_1(d_2 + Bc_2 + Ad_2 + ABc_2) > c_2(d_1 + Bc_1 + Ad_1 + ABc_1)$$

14) $c_1d_2 + Bc_1c_2 + Ac_1d_2 + ABc_1c_2 > c_2d_1 + Bc_1c_2 + Ad_1c_2 + ABc_1c_2$

And cancelling terms:

15)
$$c_1d_2 + Ac_1d_2 > c_2d_1 + Ad_1c_2$$

16)
$$c_1d_2(1 + A) > c_2d_1(1 + A)$$

Finally yielding the result:

17)
$$d_2/c_2 > d_1/c_1$$

We will later use this to prove that the inequality of ICRs holds across a liquidation event.

Now consider a liquidation event occurs. Upon a CDP liquidation, r_c collateral and r_d debt are distributed to all active CDPs. Each active CDP earns rewards proportional to its initial collateral, thus:

18)
$$ICR_{1 \text{ After}} = (c_1(1+A) + ac_1) / ((d_1 + Bc_1) + bc_1)$$

19) $ICR_{2 \text{ After}} = (c_2(1+A) + ac_2) / ((d_2 + Bc_2) + bc_2)$

Where:

Collecting terms:

22)
$$ICR_1 = (c_1(1 + a + A)) / (d_1 + (1 + B)c_1)$$

23) $ICR_2 = (c_2(1 + a + A)) / (d_2 + (1 + B)c_2)$

And taking reciprocals:

24) 1 / ICR_{1 After} =
$$(d_1 + (1+B)c_1) / (c_1(1+a+A))$$

25) 1/ ICR_{2 After} = $(d_2 + (1+B)c_2) / (c_2(1+a+A))$

Dividing all terms by c_1 , and separating the constant term:

26) 1 /
$$ICR_{1 \text{ After}} = [(d_1/c_1) / (1 + a + A)] + [(1 + B) / (1 + a + A)]$$

27) 1 / $ICR_{2 \text{ After}} = [(d_2/c_2) / (1 + a + A)] + [(1 + B) / (1 + a + A)]$

Recall our earlier result 17): $d_1/c_1 < d_2/c_2$. Thus:

Then taking reciprocals, finally yields:

Therefore, CDP ordering holds across a liquidation event in first-order systems, and thus holds across a liquidation event in N'th order systems.