PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	HED I	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification:		(11) International Publication Number: WO 99/14998
Not classified	A2	(43) International Publication Date: 1 April 1999 (01.04.99)
(21) International Application Number: PCT/US (22) International Filing Date: 24 September 1998 ((30) Priority Data: 60/059,905 24 September 1997 (24.09.9) 60/059,963 25 September 1997 (25.09.9) 09/159,105 23 September 1998 (23.09.9) (71) Applicant (for all designated States except US): AMC [US/US]; One Amgen Center Drive, Thousand 91320–1799 (US). (72) Inventor; and (75) Inventor/Applicant (for US only): MAGAL, Ella 3022 Windrift Court, Thousand Oaks, CA 91360	(24.09.9 97) [97) [98) [GEN IN Oaks, C	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). C. A Published With declaration under Article 17(2)(a); without classification and without abstract; title not checked
(74) Agents: ODRE, Steven, M. et al.; Amgen, Inc., Or Center Drive, Thousand Oaks, CA 91320-1799 (1		en .
(54) Title: METHOD FOR PREVENTING AND TREA'	TING H	
		·
		·
	•	

- 178 -

Table XL

Cpd.	Structure and name	
278		

4-phenyl-1-butyl-1-(benzylsulfonyl)-(2R,S)-2-pipecolinate

279

1,5-diphenyl-3-pentyl-N-(a-toluenesulfonyl)pipecolate

280

1,7-diphenyl-4-heptyl-N-(para-toluene-sulfonyl)pipecolate

Cpd.	Structure and name	
281	N SO ₂	

3-(3-pyridyl)-1-propyl-(2S)-N-(a-toluenesulfonyl)-pyrrolidine-2-carboxylate

4-phenyl-1-butyl-N-(para-toluenesulfonyl)pipecolate

4-phenyl-1-butyl-N-(benzenesulfonyl)-pipecolate

4-phenyl-1-butyl-N-(a-toluenesulfonyl)pipecolate

- 180 -

VII. Carboxylic Acid Isosteres as Sensorineuro-trophic Compounds

Another especially preferred embodiment of the invention is a compound of formula (LXIV):

$$O$$
 R_1
 $(CH_2)_n$
 R_2

(LXIV)

in which:

5

n is 1-3;

X is either 0 or S;

10 R_1 is selected from the group consisting of C_1 - C_9 straight or branched chain alkyl, C_2 - C_9 straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C_1 - C_{10} straight or branched chain alkyl, C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl; and R_2 is a carboxylic acid or a carboxylic acid isostere; or a pharmaceutically acceptable salt, ester, or solvate thereof:

Preferred embodiments of this invention are where R_2 is a carbocycle or heterocycle containing any combination of CH_2 , O, S, or N in any chemically stable oxidation state, where any of the atoms of said ring structure are optionally substituted in one or more positions with R^3 .

- 181 -

Especially preferred embodiments of this invention are where R_2 is selected from the group below:

5

where the atoms of said ring structure may be optionally substituted at one or more positions with $\ensuremath{\text{R}}^3.$

Another preferred embodiment of this invention is where R2 is selected from the group consisting of -COOH, $-SO_3H$, $-SO_2HNR^3$, $-PO_2(R^3)_2$, -CN, $-PO_3(R^3)_2$, $-OR^3$, $-SR^3$, -NHCOR³, $-N(R^3)_2$, $-CON(R^3)_2$, $-CONH(O)R^3$, $-CONHNHSO_2R^3$, -5 COHNSO₂R³, and -CONR³CN wherein R³ is hydrogen, hydroxy, halo, halo- C_1 - C_6 -alkyl, thiocarbonyl, C_1 - C_6 -alkoxy, C_2 - C_6 alkenoxy, C₁-C₆-alkylaryloxy, aryloxy, aryl- C₁-C₆alkyloxy, cyano, nitro, imino, C1-C6-alkylamino, amino- C_1 - C_6 -alkyl, sulfhydryl, thio- C_1 - C_6 -alkyl, C_1 - C_6 -10 alkylthio, sulfonyl, C1-C6 straight or branched chain alkyl, C2-C6 straight or branched chain alkenyl or alkynyl, aryl, heteroaryl, carbocycle, heterocycle, and CO₂R⁴ where R⁴ is hydrogen or C₁-C₉ straight or branched chain alkyl or alkenyl.

Preferred embodiments of this invention are: (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-hydroxymethyl pyrrolidine; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinetetrazole; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinecarbonitrile; and (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-aminocarbonyl piperidine.

A compound of the present invention, especially formula LXIV, wherein n is 1, X is 0, D is a bond, R_1 is 1,1,dimethylpropyl, and R_2 is -CN, is named (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidine-carbonitrile.

25

30

Specific embodiments of the inventive compounds are presented in Tables XLI, XLII, and XLIII. The present invention contemplates employing the compounds of Tables XLI, XLII and XLIII, below.

- 183 -

Table XLI when D is a bond and R2 is COOH,

	_		zona ana nz 15 coon,
No.	Х	n	R ₁
285	0	1	3,4,5-trimethylphenyl
286	o	2	3,4,5-trimethylphenyl
287	0	1	tert-butyl
287	0	3	tert-butyl
288	0	1	cyclopentyl
289	0	2	cyclopentyl
290	0	3	cyclopentyl
291	0	1	cyclohexyl
292	0	2	cyclohexyl
293	0	3	cyclohexyl
294	0	1	cycloheptyl
295	0	2	cycloheptyl
296	0	3	cycloheptyl
297	0	1	2-thienyl
298	0	2	2-thienyl
299	0	3	2-thienyl
300	0	1	2-furyl
301	0	2	2-furyl
302	0	3	2-furyl
303	0	3	pheny1
304	0	1	1,1-dimethylpentyl
305	0	2	1,1-dimethylhexyl
306	0	3	ethyl
307			

- 184 -

Table XLII

No.	Х	n	R,	D	R ₂
308	S	1	1,1-dimethyl propyl	CH,	СООН
309	s	1	1,1-dimethyl propyl	bond	соон
310	0	1	1,1-dimethyl propyl	CH,	ОН
311	0	1	1,1-dimethyl propyl	bond	so,H
312	0	1	1,1-dimethyl propyl	CH,	CN
313	0	1	1,1-dimethyl propyl	bond	CN
314	0	1	1,1-dimethyl propyl	bond	tetrazolyl
315	s	1	phenyl	(CH ₂),	СООН
316	s	1	phenyl	(CH ₂),	СООН
317	s	2	phenyl	CH,	СООН
318	0	1	1,1-dimethyl propyl	bond	CONH,
319	0	2	1,1-dimethyl propyl	bond	CONH ₂
320	s	2	2-furyl	bond	PO ₃ H ₂
321	0	2	propyl	(CH ₂) ₂	СООН
322	0	1	propyl	(CH ₂),	СООН
323	0	1	tert-butyl	(CH ₂),	СООН
324	0	1	methyl	(CH ₂),	СООН
325	0	2	pheny1	(CH ₂) 6	СООН
326	0	2	3,4,5- trimethoxy- phenyl	CH,	СООН
327	0	2	3,4,5- trimethoxy- phenyl	CH ₂	tetrazolyl

- 185 -

TABLE XLIII

$$O$$
 R_1
 $(CH_2)_n$
 R_2

No.	n	Х	D	R,	R _:
328	1	S	bond	СООН	Phenyl
329	1	0	bond	СООН	a-MethylBenzyl
330	2	0	bond	СООН	4-MethylBenzyl
331	1	0	bond	Tetrazole	Benzyl
332	1	0	bond	SO,H	a-MethylBenzyl
333	1	0	CH ₂	COOH	4-MethylBenzyl
334	1	0	bond	SO, HNMe	Benzyl
335	1	0	bond	CN	a-MethylBenzyl
336	1	0	bond	PO ₃ H ₂	4-MethylBenzyl
337	2	0	bond	COOH	Benzyl
338	2	0	bond	COOH	a-MethylBenzyl
339	2	0	bond	COOH	4-MethylBenzyl
340	2	S	bond	СООН	3,4,5- trimethoxyphenyl
341	2	0	bond	СООН	Cyclohexyl
342	2	0	bond	PO,HEt	i-propyl
343	2	0	bond	PO, HPropyl	ethyl
344	2	0	bond	PO, (Et),	Methyl
345	2	0	bond	OMe	tert-butyl
346	1	0	bond	OEt	n-pentyl
347	2	0	bond	OPropyl	n-hexyl
348	1	0	bond	OButyl	Cyclohexyl
349	1	0	bond	OPentyl	cyclopentyl
350	1	0	bond	OHexyl	n-heptyl
351	1	0	bond	SMe	n-octyl .
352	1	0	bond	SEt	n-nonyl
353	2	0	bond	SPropyl	2-indolyl
354	2	0	bond	SButyl	2-furyl
355	2	0	bond	NHCOMe	2-thiazolyl

- 186 -

No.	n	X	D	R,	R.
356	2	0	bond	NHCOEt	2-thienyl
357	1	0	CH,	N(Me),	2-pyridyl
358	1	0	(CH ₂),	N (Me) Et	1,1- dimethylpropyl
359	1	0	(CH ₂),	CON (Me),	1,1- dimethylpropyl
360	1	0	(CH ₂)	CONHMe	1,1- dimethylpropyl
361	1	0	(CH ₂),	CONHET	1,1-dimethylpropyl
362	1	0	(CH ₂),	CONHPropyl	1,1-dimethylpropyl
363	1	0	bond	CONH (O) Me	Benzyl
364	1	0	bond	CONH (O) Et	a-Methylphenyl
365	1	0	bond	CONH(O)Propyl	4-Methylphenyl
366	1	0	(CH ₂),	COOH	Benzyl
367	1	0	bond	СООН	a-Methylphenyl
368	1	0	bond	СООН	4-Methylphenyl
369	1	0	CH,	СООН	1,1-dimethylpropyl
370	1	0	(CH ₂),	СООН	1,1-dimethylbutyl
371	1	0	(CH ₂),	СООН	1,1-dimethylpentyl
372	1	0	(CH ₂),	СООН	1,1-dimethylhexyl
373	1	0	(CH ₂),	СООН	1,1-dimethylethyl
374	1	0	(CH ₂)	СООН	iso-propyl
375 [°]	1	0	(CH ₂),	СООН	tert-butyl
376	1	0	(CH ₂)	СООН	1,1-dimethylpropyl
377	1	0	(CH ₂),	СООН	benzyl
378	1	0	(CH ₂) :9	СООН	1,1-dimethylpropyl
379	1	0	C ₂ H ₂	СООН	cyclohexylmethyl
380	1	0	2-OH, Et	СООН	1,1-dimethylpropyl
381	1	0	2-butylene	СООН	1,1-dimethylpropyl
382	1	S	i-Pro	СООН	1,1-dimethylpropyl
383	2	S	t-Bu	СООН	phenyl
384	2	0	2.NO,-hexyl	СООН	1,1-dimethylpropyl
385	.1	0	(CH ₂),	CN	1,1-dimethylpropyl
386	1	0	(CH ₂),	CN	1,1-dimethylpropyl
387	3	0	bond	CONHNHSO,Me	Benzyl
388	3	0	bond	CONHNHSO,Et	a-Methylphenyl
389	3	0	bond	CONHSO,Me	4-Methylphenyl
390	1	0	bond	CONHNHSO,Et	Phenyl
391	2	0	bond	CON (Me) CN	a-Methylphenyl
392	1	0	bond	CON(Et)CN	4-Methylphenyl
393	1	0	(CH ₂),	СООН	methyl
-	-	-	· 4: 4		-

- 187 -

No.	n	Х	D		R	2,	R _.
394	1	0	(CI	H ₂),	C	ЮН	ethyl
395	1	0	(CI	ł,) ,	C	юон	n-propyl
396	1	0	(CI	I,),	c	ю	t-butyl
397	1	0	(CI	ł,),	C	ю	Pentyl
398	1	0	(CI	ł ₂),	c	юон	Hexyl
399	1	0	(CI	ł,),	C	:00Н	Heptyl
400	1	0	(CI	H ₂),	СООН		Octyl
401	1	o	C ₂ H	2	C	юон	Cyclohexyl
	No.		n	Х	D	R ₂	R ₁
	402		2	0	bond		1,1-dimethylpropyl
	403		1	0	bond		1,1-dimethylpropyl
	404		1	0	bond	X	1,1-dimethylpropyl
	405		1	0	bond		1,1-dimethylpropyl
	406		1	0	bond	ă.	1,1-dimethylpropyl
	407		1	0	bond		1,1-dimethylpropyl
	408		1	0	bond		1,1-dimethylpropyl
	409		1	0	bond		1,1-dimethylpropyl
	410		1	0	bond		1,1-dimethylpropyl
	411		1	0	bond		1,1-dimethylpropyl

- 188 -

No.	n	Х	D	R ₂	R ₁
					
412	1	0	bond		1,1-dimethylpropyl
413	1	0	bond		1,1-dimethylpropyl
414	1	0	bond		1,1-dimethylpropyl
415	1	0	bond	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	1,1-dimethylpropyl
416	1	0	bond		1,1-dimethylpropyl
417	1	0	bond		1,1-dimethylpropyl
418	1	0	bond		1,1-dimethylpropyl
419	1	0	bond		1,1-dimethylpropyl
420	1	0	bond	+	1,1-dimethylpropyl
421	1	0	bond	СООН	1,1-dimethylpropyl
422	2	0	bond	СООН	1,1-dimethylpropyl

Another preferred embodiment of this aspect of the invention is the use for treating or preventing sensorineural hearing loss of a compound of the formula (LXV):

5

PCT/US98/19980

in which

X, Y, and Z are independently selected from the group consisting of C, O, S, or N, provided that X, Y, and Z are not all C;

n is 1-3;

A is selected from the group consisting of $L_1,\ L_2,\ L_3,$ or $L_4,$ in which

$$L_1$$
 is C_2 is C_2 is C_2 is C_2

$$O = S = O$$
 , and L_4 is N_1

10

15

and R_1 and E, independently, are selected from the group consisting of hydrogen, C_1 - C_9 straight or branched chain alkyl, C_2 - C_9 straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, and heterocycle; R_2 is carboxylic acid or a carboxylic acid isostere; wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents

- 190 -

selected from R³, where

R³ is hydrogen, hydroxy, halo, halo(C₁-C₆)-alkyl,
thiocarbonyl, (C₁-C₆)-alkoxy, (C₂-C₆)-alkenoxy, (C₁-C₆)alkylaryloxy, aryloxy, aryl-(C₁-C₆)-alkyloxy, cyano,
nitro, imino, (C₁-C₆)-alkylamino, amino-(C₁-C₆)-alkyl,
sulfhydryl, thio-(C₁-C₆)-alkyl, (C₁-C₆)-alkylthio,
sulfonyl, C₁-C₆ straight or branched chain alkyl, C₂-C₆
straight or branched chain alkenyl or alkynyl, aryl,
heteroaryl, carbocycle, heterocycle, or CO₂R⁴ where R⁴ is
hydrogen or C₁-C₉ straight or branched chain alkyl or
alkenyl;
or a pharmaceutically acceptable salt, ester, or solvate
thereof;

Preferred embodiments of this embodiment of the

invention are those in which R₂ is a carbocycle or
heterocycle containing any combination of CH₂, O, S, or N
in any chemically stable oxidation state, where any of
the atoms of said ring structure are optionally
substituted in one or more positions with R³.

Especially preferred embodiments of this aspect of the invention are the use of those compounds in which R_2 is selected from the group below: