Topics

- Introduction
- A Brief Introduction to Predicate Calculus
- Predicate Calculus and Proving Theorems
- An Overview of Logic Programming

Introduction

- Programs in logic languages are *Declarative* rather that *procedural*:
 - Only specification of *results* are stated (not detailed *procedures* for producing them)
- Programs are expressed in a form of symbolic logic
- A logical inferencing process is used to produce results

Symbolic Logic

- Logic which can be used for the basic needs of formal logic:
 - Express propositions
 - Express relationships between propositions
 - Describe how new propositions can be inferred from other propositions
- Particular form of symbolic logic used for logic programming called (first order) predicate calculus

Proposition

- A logical statement that may or may not be true
 - Consists of objects and relationships of objects to each other
- Example: parent(bob, jake)

Object Representation

- Objects in propositions are represented by simple terms: either constants or variables
- Constant: a symbol that represents an object
- Variable: a symbol that can represent different objects at different times
 - Different from variables in imperative languages
- For example: parent(bob, jake), parent(x, jake), parent(bob, y), parent(x, y)

Compound Terms

- Atomic propositions are compound terms
- Compound term: one element of a mathematical relation, written like a mathematical function

Parts of a Compound Term

- Compound term composed of two parts
 - Functor: function symbol that names the relationship
 - Ordered list of parameters (tuple)

Examples:

```
student(jon)
like(seth, OSX)
like(nick, windows)
like(jim, linux)
```

Forms of a Proposition

- Propositions can be stated in two forms:
 - Fact. proposition is assumed to be true
 - Query. truth of proposition is to be determined
- Compound proposition:
 - Have two or more atomic propositions
 - Propositions are connected by operators

Logical Operators

Name	Symbol	Example	Meaning
negation		¬ a	not a
conjunction	\cap	a ∩ b	a and b
disjunction	U	a∪b	a or b
equivalence	=	a ≡ b	a is equivalent to b
implication	\supset	$a \supset b$	a implies b
		$a \subset b$	b implies a

Quantifiers

Name	Example	Meaning
universal	∀X.P	For all X, P is true
existential	∃Х.Р	There exists a value of X such that P is true

Clausal Form

- Too many ways to state the same thing
- Use a standard form for propositions
- Clausal form:
- $B_1 \cup B_2 \cup ... \cup B_n \subset A_1 \cap A_2 \cap ... \cap A_m$
- means if all the As are true, then at least one B is true
- Antecedent: right side
- Consequent. left side
- •likes(bob, trout) \subset likes(bob, fish) \cap fish(trout)

Predicate Calculus and Proving Theorems

- Predicate calculus provides a way to represent collections of propositions
- A use of propositions is to discover new theorems that can be inferred from known axioms and theorems
- Resolution: an inference to allow inferred propositions to be computed from given propositions

Resolution

- Unification: finding values for variables in propositions that allows matching process to succeed
- Instantiation: assigning temporary values to variables to allow unification to succeed
- After instantiating a variable with a value, if matching fails, may need to backtrack and instantiate with a different value

Proof by Contradiction

- Hypotheses: a set of pertinent propositions
- Goal: negation of theorem stated as a proposition
- Theorem is proved by finding an inconsistency

Theorem Proving->Logical Programming

- Basis for logic programming
- When propositions used for resolution, only restricted form can be used
- Horn clause can have only two forms
 - Headed: single atomic proposition on left side
 - Headless: empty left side (used to state facts)
- Most propositions can be stated as Horn clauses

Overview of Logic Programming

- Declarative semantics
 - Each statement in a logical program is declarative
 - Simpler than the semantics of imperative languages
- Programming is nonprocedural
 - Programs do not state now a result is to be computed, but rather the form of the result

Example: Sorting a List

 Describe the characteristics of a sorted list, not the process of rearranging a list

```
sort(old_list, new_list) ⊂ permute (old_list, new_list) ∩ sorted (new_list)
```

```
sorted (list) \subset \forall_j such that 1 \le j < n, list(j) \le list (j+1)
```

Review questions

- Constant and variable
- Simple term and compound term
- Atomic proposition and compound proposition
- Facts and queries
- Clausal forms and Horn clauses
- Resolution, unification and instantiation
- Instantiation and backtracking