

SN54HC595, SN74HC595

ZHCSP36J - DECEMBER 1982 - REVISED OCTOBER 2021

具有三态输出寄存器的 SNx4HC595 8 位移位寄存器

1 特性

- 8 位串行输入/并行输出移位寄存器
- 2V 至 6V 的宽工作电压范围
- 高电流三态输出最多可驱动 15 个低功耗肖特基晶 体管-晶体管逻辑器件 (LSTTL) 负载
- 低功耗:80 µA(最大值)I_{CC}
- t_{nd} = 13ns (典型值)
- 电压为 5V 时,输出驱动为 ±6mA
- 低输入电流: 1 µ A (最大值)
- 移位寄存器具有直接清零功能
- 对于符合 MIL-PRF-38535 标准的产品, 所有参数均经过测试,除非另外注明。对于所有其 他产品,生产流程不一定包含对所有参数的测试。

2 应用

- 网络交换机
- 电力基础设施
- LED 显示屏
- 服务器

3 说明

SNx4HC595 器件包含对 8 位 D 类存储寄存器进行馈 送的8位串行输入/并行输出移位寄存器。存储寄存器 具有并行三态输出。移位寄存器和存储寄存器分别有单 独的时钟。移位寄存器具有一个直接覆盖清零 (SRCLR) 输入以及用于级联结构的串行 (SER) 输入和 串行输出。当输出使能端 (OE) 输入为高电平时,输出 处于高阻抗状态。

哭件信息

器件型号	封装 ⁽¹⁾	封装尺寸(标称值)			
SN54HC595FK	LCCC (20)	8.89mm × 8.89mm			
SN54HC595J	陶瓷双列直插封装 (CDIP) (16)	21.34mm × 6.92mm			
SN74HC595N	PDIP (16)	19.31 mm × 6.35 mm			
SN74HC595D	SOIC (16)	9.90mm × 3.90mm			
SN74HC595DW	SOIC (16)	10.30mm x 7.50mm			
SN74HC595DB	SSOP (16)	6.20mm x 5.30mm			
SN74HC595PW	TSSOP (16)	5.00mm × 4.40mm			

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

功能方框图

Table of Contents

1 特性	1	8.2 Functional Block Diagram	11
. · · · <u>· · · · · · · · · · · · · · · ·</u>		8.3 Feature Description	12
- <i>—,,,</i> 3 说明		8.4 Device Functional Modes	12
4 Revision History		9 Application and Implementation	13
5 Pin Configuration and Functions		9.1 Application Information	13
6 Specifications		9.2 Typical Application	13
6.1 Absolute Maximum Ratings		10 Power Supply Recommendations	15
6.2 ESD Ratings		11 Layout	15
6.3 Recommended Operating Conditions		11.1 Layout Guidelines	15
6.4 Thermal Information		11.2 Layout Example	15
6.5 Electrical Characteristics		12 Device and Documentation Support	16
6.6 Timing Requirements		12.1 Documentation Support	16
6.7 Switching Characteristics		12.2 支持资源	16
6.8 Operating Characteristics		12.3 Trademarks	
6.9 Typical Characteristics		12.4 静电放电警告	16
7 Parameter Measurement Information		12.5 术语表	
8 Detailed Description		13 Mechanical, Packaging, and Orderable	
8.1 Overview		Information	16
45			
4 Revision Historv			

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision H (November 2009) to Revision I (August 2015) Page 添加了应用部分、器件信息表、引脚配置和功能部分、ESD等级表、热性能信息表、特性说明部分、器件 功能模式、应用和实施部分、电源相关建议部分、布局部分、器件和文档支持部分以及机械、封装和可订购 *信息* 部分.......1

向*特性* 列表中添加了"军用免责声明"。......1

Changes from Revision I (August 2015) to Revision J (October 2021)

5 Pin Configuration and Functions

D, N, NS, J, DB, or PW Package 16-Pin SOIC, PDIP, SO, CDIP, SSOP, or TSSOP Top View

FK Package 20-Pin LCCC Top View

表 5-1. Pin Functions

	PIN			
NAME	SOIC, PDIP, SO, CDIP, SSOP, or TSSOP	LCCC	I/O ⁽¹⁾	DESCRIPTION
GND	8	10	_	Ground Pin
ŌĒ	13	17	1	Output Enable
Q _A	15	19	0	Q _A Output
Q _B	1	2	0	Q _B Output
Q_C	2	3	0	Q _C Output
Q_D	3	4	0	Q _D Output
Q _E	4	5	0	Q _E Output
Q _F	5	7	0	Q _F Output
Q_G	6	8	0	Q _G Output
Q _H	7	9	0	Q _H Output
Q _{H'}	9	12	0	Q _H ' Output
RCLK	12	14	I	RCLK Input
SER	14	18	I	SER Input
SRCLK	11	14	I	SRCLK Input
SRCLR	10	13	I	SRCLR Input
		1		
NC		16		No Connection
NC		11		NO CONNECTION
		16		
V _{CC}	_	20	_	Power Pin

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		- 0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	V _I < 0 or V _I > V _{CC}		±20	mA
I _{OK}	Output clamp current (2)	V _O < 0 or V _O > V _{CC}		±20	mA
Io	Continuous output current	$V_{\rm O}$ = 0 to $V_{\rm CC}$		±35	mA
	Continuous current through V _{CC} or GND			±70	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	V Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
V _(ESD) Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1000	v	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN	54HC59	5	SN	74HC59	5	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
V _{CC}	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
V _{IH}	V _{IH} High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 6 V	4.2			4.2			
		V _{CC} = 2 V			0.5			0.5	
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V			1.35			1.35	V
		V _{CC} = 6 V			1.8			1.8	
VI	Input voltage		0		V _{CC}	0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	0		V _{CC}	V
		V _{CC} = 2 V			1000			1000	
∆ t/ ∆ v	Input transition rise or fall time ⁽²⁾	V _{CC} = 4.5 V			500			500	ns
		V _{CC} = 6 V			400			400	
T _A	Operating free-air temperature		- 55		125	- 40		85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ If this device is used in the threshold region (from V_{IL}max = 0.5 V to V_{IH} min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾		SN74HC595						
			DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT	
			16 PINS	16 PINS	16 PINS	16 PINS	16 PINS		
R ₀ JA	Junction-to-ambient thermal resistance	73	82	57	67	64	108	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V _{cc}	T _A = 25°C			SN54H	C595	SN74HC595		UNIT
PARAMETER	IE.	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
		I _{OH} = -20 μA	2 V	1.9	1.998		1.9		1.9		
			4.5 V	4.4	4.499		4.4		4.4		
			6 V	5.9	5.999		5.9		5.9		
V_{OH}	$V_I = V_{IH}$ or V_{IL}	$Q_{H'}$, $I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		V
		$Q_A - Q_H$, $I_{OH} = -6 \text{ mA}$	4.0 V	3.98	4.3		3.7		3.84		
		$Q_{H'}$, $I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
		$Q_A - Q_H, I_{OH} = -7.8 \text{ mA}$] "	5.48	5.8		5.2		5.34		
		I _{OL} = 20 μ A 4.5	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1		0.1		0.1	
			6 V		0.001	0.1		0.1		0.1	
V _{OL}	$V_I = V_{IH}$ or V_{IL}	$Q_{H'}$, I_{OL} = 4 mA	4.5 V		0.17	0.26		0.4		0.33	V
		$Q_A - Q_H$, $I_{OL} = 6 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	
		$Q_{H'}$, I_{OL} = 5.2 mA	6 V		0.15	0.26		0.4		0.33	
		$Q_{A} - Q_{H}, I_{OL} = 7.8 \text{ mA}$			0.15	0.26		0.4		0.33	
I _I	$V_I = V_{CC}$ or 0	V _I = V _{CC} or 0			±0.1	±100	,	±1000		±1000	nA
I _{OZ}	$V_O = V_{CC}$ or 0, $Q_A - Q_H$		6 V		±0.01	±0.5		±10		±5	μΑ
I _{CC}	$V_I = V_{CC}$ or 0, I_O	= 0	6 V			8		160		80	μΑ
C _i			2 V to 6 V		3	10		10		10	pF

6.6 Timing Requirements

over operating free-air temperature range (unless otherwise noted)

			V _{CC}	T _A = 2	25°C	SN54H	C595	SN74HC595		UNIT	
			V CC	MIN	MAX	MIN	MAX	MIN	MAX	UNII	
			2 V		6		4.2		5		
f_{clock}	Clock frequency	,	4.5 V		31		21		25	MHz	
			6 V		36		25		29		
			2 V	80		120		100			
		SRCLK or RCLK high or low	4.5 V	16		24		20			
	Dulas duration		6 V	14		20		17			
t _w	Pulse duration		2 V	80		120		100		ns	
		SRCLR low	4.5 V	16		24		20			
			6 V	14		20		17			
			2 V	100		150		125			
		SER before SRCLK †	4.5 V	20		30		25			
			6 V	17		25		21			
		SRCLK↑ before RCLK↑ (1)	2 V	75		113		94			
			4.5 V	15		23		19			
	Cat un tima		6 V	13		19		16			
t _{su}	Set-up time		2 V	50		75		65		ns	
		SRCLR low before RCLK ↑	4.5 V	10		15		13			
			6 V	9		13		11			
			2 V	50		75		60			
		SRCLR high (inactive) before SRCLK †	4.5 V	10		15		12			
			6 V	9		13		11			
		•	2 V	0		0		0			
t _h	Hold time, SER	after SRCLK ↑	4.5 V	0		0		0		ns	
			6 V	0		0		0			

⁽¹⁾ This set-up time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

图 6-1. Timing Diagram

6.7 Switching Characteristics

Over recommended operating free-air temperature range.

PARAMETER	FROM	то	LOAD	V	TA	= 25°C		SN54H	C595	SN74H	C595	UNIT
PARAWETER	(INPUT)	(OUTPUT)	CAPACITANCE	V _{CC}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
				2 V	6	26		4.2		5		
f _{max}			50 pF	4.5 V	31	38		21		25		MHz
				6 V	36	42		25		29		
				2 V	1	50	160		240		200	
	SRCLK	$Q_{H'}$	50 pF	4.5 V	1	17	32		48		40	
				6 V		14	27		41		34	
t _{pd}				2 V		50	150		225		187	ns
	RCLK	Q _A - Q _H	50 pF	4.5 V		17	30		45		37	
				6 V		14	26		38		32	
				2 V		51	175		261		219	
t _{PHL}	SRCLR	$Q_{H'}$	50 pF	4.5 V		18	35		52		44	ns
				6 V		15	30		44		37	
				2 V		40	150		255		187	
t _{en}	ŌĒ	Q _A - Q _H	50 pF	4.5 V		15	30		45		37	ns
				6 V		13	26		38		32	
				2 V		42	200		300		250	ns
t _{dis}	ŌĒ	Q _A - Q _H	50 pF	4.5 V		23	40		60		50	
				6 V		20	34		51		43	
				2 V		28	60		90		75	
		Q _A - Q _H	50 pF	4.5 V		8	12		18		15	
				6 V		6	10		15		13	
t _t				2 V		28	75		110		95	ns
		$Q_{H'}$	50 pF	4.5 V		8	15		22		19	
				6 V		6	13		19		16	
				2 V		60	200		300		250	
t _{pd}	RCLK	Q _A - Q _H	150 pf	4.5 V		22	40		60		50	ns
				6 V		19	34		51		43	
				2 V		70	200		298		250	
t _{en}	ŌĒ	Q _A - Q _H	150 pf	4.5 V	1	23	40		60		50	ns
				6 V	1	19	34		51		43	
				2 V		45	210		315		265	
t _t		Q _A - Q _H	150 pf	4.5 V		17	42		63		53	ns
		1		6 V		13	36		53		45	

6.8 Operating Characteristics

T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load	400	pF

6.9 Typical Characteristics

7 Parameter Measurement Information

LOAD CIRCUIT

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6 \text{ ns}$, $t_f = 6 \text{ ns}$.
- D. For clock inputs, $f_{\mbox{max}}$ is measured when the input duty cycle is 50%.
- E. The outputs are measured one at a time, with one input transition per measurement.
- F. tpLz and tpHz are the same as tdis.
- G. tpzL and tpzH are the same as ten.
- H. tpLH and tpHL are the same as tpd.

图 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SNx4HC595 is part of the HC family of logic devices intended for CMOS applications. The SNx4HC595 is an 8-bit shift register that feeds an 8-bit D-type storage register.

Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

8.2 Functional Block Diagram

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

8.3 Feature Description

The SNx4HC595 devices are 8-bit Serial-In, Parallel-Out Shift Registers. They have a wide operating current of 2 V to 6 V, and the high-current 3-state outputs can drive up to 15 LSTTL Loads. The devices have a low power consumption of 80- μ A (Maximum) I_{CC}. Additionally, the devices have a low input current of 1 μ A (Maximum) and a \pm 6-mA Output Drive at 5 V.

8.4 Device Functional Modes

表 8-1 lists the functional modes of the SNx4HC595 devices.

表 8-1. Function Table

		INPUTS				
SER	SRCLK	SRCLR	RCLK	ŌĒ	FONCTION	
Х	X	Х	X	Н	Outputs Q _A - Q _H are disabled.	
Х	Х	Х	Х	L	Outputs Q _A - Q _H are enabled.	
Х	Х	L	Х	Х	Shift register is cleared.	
L	1	Н	х	х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.	
Н	1	Н	х	х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.	
Х	Х	Х	†	Х	Shift-register data is stored in the storage register.	

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

9 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The SNx4HC595 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs.

9.2 Typical Application

图 9-1. Typical Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- · Recommended input conditions
 - Specified high and low levels. See (V $_{IH}$ and V $_{IL})$ in $\,\#\,6.3\,\text{table}.$
 - Specified high and low levels. See (V_{IH} and V_{IL}) in # 6.3 table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- · Recommend output conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part
 - Outputs should not be pulled above V_{CC}

9.2.3 Application Curves

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in # 6.3 table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ f is recommended; if there are multiple V_{CC} pins, then 0.01 μ f or 0.022 μ f is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ f and a 1 μ f are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. 3 11-1 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

11.2 Layout Example

图 11-1. Layout Diagram

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application brief

12.2 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.4 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

www.ti.com 13-Jul-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-86816012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 86816012A SNJ54HC 595FK	Samples
5962-8681601EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8681601EA SNJ54HC595J	Samples
5962-8681601VEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8681601VE A SNV54HC595J	Samples
5962-8681601VFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8681601VF A SNV54HC595W	Samples
SN54HC595J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC595J	Samples
SN74HC595D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBRE4	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DBRG4	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DE4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DRE4	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 85		Samples
SN74HC595DRG3	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DT	ACTIVE	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DW	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 13-Jul-2022

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HC595DWR	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595DWRE4	ACTIVE	SOIC	DW	16	2000	TBD	Call TI	Call TI	-40 to 85		Samples
SN74HC595DWRG4	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-40 to 85	SN74HC595N	Samples
SN74HC595NE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC595N	Samples
SN74HC595NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SN74HC595PWRE4	ACTIVE	TSSOP	PW	16	2000	TBD	Call TI	Call TI	-40 to 85		Samples
SN74HC595PWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC595	Samples
SNJ54HC595FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 86816012A SNJ54HC 595FK	Samples
SNJ54HC595J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8681601EA SNJ54HC595J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

www.ti.com 13-Jul-2022

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC595, SN54HC595-SP, SN74HC595:

Catalog: SN74HC595, SN54HC595

Enhanced Product: SN74HC595-EP, SN74HC595-EP

Military: SN54HC595

• Space: SN54HC595-SP

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

Military - QML certified for Military and Defense Applications

Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

www.ti.com 9-Aug-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC595DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74HC595DR	SOIC	D	16	2500	330.0	16.4	6.6	9.3	2.1	8.0	16.0	Q1
SN74HC595DR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG3	SOIC	D	16	2500	330.0	16.4	6.6	9.3	2.1	8.0	16.0	Q1
SN74HC595DRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC595DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74HC595DWRG4	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74HC595NSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74HC595NSR	SO	NS	16	2000	330.0	16.4	8.45	10.55	2.5	12.0	16.2	Q1
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.85	5.45	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC595PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 9-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC595DBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74HC595DR	SOIC	D	16	2500	366.0	364.0	50.0
SN74HC595DR	SOIC	D	16	2500	364.0	364.0	27.0
SN74HC595DR	SOIC	D	16	2500	356.0	356.0	35.0
SN74HC595DR	SOIC	D	16	2500	356.0	356.0	35.0
SN74HC595DRG3	SOIC	D	16	2500	366.0	364.0	50.0
SN74HC595DRG3	SOIC	D	16	2500	364.0	364.0	27.0
SN74HC595DRG4	SOIC	D	16	2500	340.5	336.1	32.0
SN74HC595DRG4	SOIC	D	16	2500	356.0	356.0	35.0
SN74HC595DRG4	SOIC	D	16	2500	356.0	356.0	35.0
SN74HC595DWR	SOIC	DW	16	2000	350.0	350.0	43.0
SN74HC595DWRG4	SOIC	DW	16	2000	350.0	350.0	43.0
SN74HC595NSR	so	NS	16	2000	367.0	367.0	38.0
SN74HC595NSR	so	NS	16	2000	356.0	356.0	35.0
SN74HC595PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74HC595PWR	TSSOP	PW	16	2000	366.0	364.0	50.0
SN74HC595PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74HC595PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC595PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74HC595PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0

www.ti.com 9-Aug-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-86816012A	FK	LCCC	20	1	506.98	12.06	2030	NA
5962-8681601EA	J	CDIP	16	1	506.98	15.24	13440	NA
5962-8681601VEA	J	CDIP	16	1	506.98	15.24	13440	NA
5962-8681601VFA	W	CFP	16	1	506.98	26.16	6220	NA
SN74HC595D	D	SOIC	16	40	506.6	8	3940	4.32
SN74HC595D	D	SOIC	16	40	507	8	3940	4.32
SN74HC595DE4	D	SOIC	16	40	506.6	8	3940	4.32
SN74HC595DE4	D	SOIC	16	40	507	8	3940	4.32
SN74HC595DG4	D	SOIC	16	40	507	8	3940	4.32
SN74HC595DG4	D	SOIC	16	40	506.6	8	3940	4.32
SN74HC595DW	DW	SOIC	16	40	506.98	12.7	4826	6.6
SN74HC595N	N	PDIP	16	25	506.1	9	600	5.4
SN74HC595N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC595N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC595NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC595NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC595NE4	N	PDIP	16	25	506.1	9	600	5.4
SN74HC595PW	PW	TSSOP	16	90	530	10.2	3600	3.5
SNJ54HC595FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54HC595J	J	CDIP	16	1	506.98	15.24	13440	NA

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

SOIC

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOP

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司