Introdução ao Pandas

CRONOGRAMA DA AULA

1

O que é Pandas?

2

Origem e Importância 3

Primeiros Passos com Pandas 4

Series: Estrutura Unidimensional

5

Operações com Series 6

DataFrames: Estrutura Bidimensional 7

Trabalhando com DataFrames 8

Pandas na Análise Crítica e Estratégica

CRONOGRAMA DA AULA

Biblioteca de código aberto

4

Desenvolvida para a linguagem Python com foco em análise de dados.

Estruturas de dados flexíveis

Oferece ferramentas

para trabalhar com

dados estruturados ou
tabulares.

Análise eficiente

Ideal para manipular, processar e limpar grandes conjuntos de dados.

ORIGEM E IMPORTÂNCIA

Nome e Origem

O nome "pandas" deriva de "panel data", um termo da econometria.

Foi inicialmente construído para resolver problemas financeiros e de análise de negócios.

Comparação com NumPy

NumPy é adequado para dados numéricos homogêneos em arrays.

Pandas foi projetado para trabalhar com dados tabulares e heterogêneos.

Ecossistema Python

Frequentemente usado com NumPy, SciPy, matplotlib e scikit-learn.

Fundamental para preparação de dados, que ocupa 80% do tempo de análise.

PRIMEIROS PASSOS COM PANDAS

Instalação

Instale o Pandas usando pip ou através de distribuições como Anaconda.

Importação

Importe a biblioteca usando a convenção: import pandas as pd

Primeiras Operações

Experimente com exemplos simples para entender o fluxo de trabalho.

SERIES: ESTRUTURA UNIDIMENSIONAL

Definição

- Estrutura de dados unidimensional que armazena dados de qualquer tipo.
- Semelhante a um array com rótulos de índice.

Criação

- Criada passando uma lista ou array para o construtor Series.
- Exemplo: pd.Series([1, 2, 3, 4])

Indexação

- Permite seleção por posição ou pelos rótulos do índice.
- Facilita a manipulação eficiente de subconjuntos de dados.

Pandas Series

Index	Values
А	А
В	C,
В	30
	4D

Index	Values
10	10
20	30
30	40
40	40

OPERAÇÕES COM SERIES

Operações Matemáticas

Series suportam adição, subtração, multiplicação e divisão.

Operações Lógicas

Permitem filtrar dados com condições booleanas.

Alinhamento Automático

Operações entre Series alinham dados com base nos índices.

Estilo Vetorizado

Operações sem laços for, herdadas do NumPy, tornam o código eficiente.

```
pandas Series
    data = A
    data = B

{
    data = 5
    data = B C D
    data + 2
}

*example: (lamba x*2)
    data.apply(lamba x x*2)
    datas.coply squared)
}!
```

DATAFRAMES: ESTRUTURA BIDIMENSIONAL

Estrutura Tabular

Semelhante a uma planilha ou tabela de banco de dados.

Colunas Heterogêneas

Cada coluna pode ter um tipo de dado diferente.

Linhas Indexadas

Linhas são identificadas por um índice personalizado.

Dados Tabulares

Ideal para trabalhar com conjuntos de dados estruturados.

TRABALHANDO COM DATAFRAMES

PANDAS NA ANÁLISE CRÍTICA E

ESTRATÉGICA

Insights Acionáveis

Transforme dados brutos em recomendações baseadas em evidências.

Análise Aprofundada

Verifique estatísticas, calcule métricas e entenda distribuições.

Organização de Dados

Agregue e estruture dados para revelar padrões e tendências.

Base Técnica

Manipule dados de forma eficiente com estruturas tabulares.

Vamos avaliar o encontro?