Multi-Granularity Self-Attention for Neural Machine Translation

Yang Wei 51184506043 godweiyang@gmail.com godweiyang.com

Computer Science and Technology East China Normal University

Multi-Granularity Self-Attention for Neural Machine Translation

Jie Hao*

Xing Wang

Florida State University

Tencent AI Lab

haoj8711@gmail.com

brightxwang@tencent.com

Shuming Shi

Jinfeng Zhang

Zhaopeng Tu

Tencent AI Lab

Florida State University

Tencent AI Lab

shumingshi@tencent.com

jinfeng@stat.fsu.edu

zptu@tencent.com

Motivations

- SANs generally focus on disperse words and ignore continuous phrase patterns, which have proven essential in both SMT and NMT.
- The power of multiple heads in SANs is not fully exploited.
- Thus this paper (MG-SA) assigns several attention heads to attend over phrase fragments at each granularity.

Framework

• word-level \rightarrow phrase-level memory:

$$H_g = F_h(H).$$

• single head self-attention:

$$Q^h, K^h, V^h = HW_Q^h, H_gW_K^h, H_gW_V^h \ O^h = ext{ATT}(Q^h, K^h)V^h$$

final output of MG-SA:

$$\mathrm{MG\text{-}SA}(H) = [O^1, \ldots, O^N].$$

Phrase Partition

• split sentence x into M phrases:

$$P_x=(p_1,\ldots.p_M).$$

• partition strategies: n-gram or syntactic.

Phrase Composition

phrase representation:

$$g_m = \mathrm{COM}(p_m),$$

where $COM(\cdot)$ is the composition function with shared parameters to all phrases (e.g. CNN, LSTM and SAN).

phrase-level memory:

$$G_x=(g_1,\ldots,g_M).$$

Phrase Interaction

model the latent structure of the phrase sequence:

$$H_g = \operatorname{REC}(G_x),$$

where $\operatorname{REC}(\cdot)$ is the recurrence function (e.g. LSTM and ON-LSTM).

Training

phrase tag supervision:

$$p = softmax(W_t g_i + b_t) \ \mathcal{L}_{tag} = -\sum_{i=1}^{M} t_i \log p(t_i)$$

• training loss:

$$\mathcal{L} = -\sum_{i=1}^{L} y_i \log P(y_i) + \lambda \mathcal{L}_{tag}.$$

Three Questions

- Does the integration of the proposed MG-SA into the state-ofthe-art TRANSFORMER improve the translation quality in terms of the BLEU score?
- Does the proposed MG-SA promote the generation of the target phrases?
- Does MG-SA capture more phrase information at the various granularity levels?

Phrase Composition

Phrase Modeling	# Para.	Speed	BLEU
n/a	88.0M	1.28	27.31
MAX-POOLING	88.0M	1.27	27.56
SANS	90.4M	1.26	27.69
LSTM	96.1M	1.14	27.58

Encoder Layers

Encoder Layers	# Para.	Speed	BLEU
$\boxed{[1-6]}$	90.4M	1.26	27.69
[1-3]	89.2M	1.27	27.74
[1]	88.4M	1.28	27.83

Phrase Partition, Tag Supervision and Phrase Interaction

#	Model Architecture	# Para.	Speed	BLEU	Δ
1	TRANSFORMER-BASE	88.0M	1.28	27.31	-
2	+ N-gram Phrase	88.4M	1.28	27.83	+0.52
3	+ Syntactic Phrase	88.4M	1.24	28.01	+0.70
4	+ Syntactic Phrase + \mathcal{L}_{tag}	88.4M	1.23	28.07	+0.76
5	+ LSTM Interaction	89.5M	1.20	28.14	+0.83
6	+ ON-LSTM Interaction	89.9M	1.19	28.28	+0.97

Main Results

Architecture	En ⇒ De		Zh⇒En					
Arcintecture	# Para.	BLEU	# Para.	MT03	MT04	MT05	MT06	Avg
Existing NMT systems								
Vaswani et al. (2017)	213M	28.4	n/a	n/a	n/a	n/a	n/a	n/a
Zhang et al. (2019)	n/a	n/a	n/a	40.45	42.76	40.09	39.67	40.74
Our NMT systems								
TRANSFORMER-BASE	88.0M	27.31	73.4M	41.88	44.48	42.21	41.93	42.60
+MG-SA	89.9M	28.28^{\uparrow}	75.3M	43.98↑	45.60↑	44.28↑	44.00^{\uparrow}	44.46
Transformer-Big	264.1M	28.58	234.8M	45.30	46.49	45.21	44.87	45.47
+MG-SA	271.5M	29.01^{\uparrow}	242.2M	45.76^{\uparrow}	46.81^{\uparrow}	45.77^{\uparrow}	46.48↑	46.21

Phrasal Pattern Evaluation

Visualization of Attention

(a) Vanilla Multi-Head Self-Attention

(b) Multi-Granularity Self-Attention

Multi-Granularity Phrases Evaluation

#	Model	Label Granularity: Large $ o$ Small								
		Voice	Tense	TSS	SPC	POS	Avg			
	Pre-Trained NMT Encoder									
1	BASE	73.38	73.73	72.72	92.81	93.73	81.27			
2	N-Gram Phrase	73.06	72.83	72.11	96.42	96.34	82.15			
3	Syntactic Phrase	73.37	73.62	75.60	96.72	96.68	83.19			
4	Syntactic Phrase + Interaction	73.20	74.78	75.24	96.78	96.56	83.31			
(A) (A)	Train From Scratch									
5	BASE	83.46	85.39	83.44	96.35	96.12	88.95			
6	N-Gram Phrase	83.55	85.62	85.21	96.23	96.17	89.36			
7	Syntactic Phrase	84.70	87.52	97.42	96.95	96.24	92.57			
8	Syntactic Phrase + Interaction	86.45	87.65	99.07	96.99	96.40	93.31			

Multi-Granularity Phrases Evaluation

- Models trained from scratch consistently outperform NMT encoder probing on all tasks.
- The models with syntactic information significantly perform better than those models without incorporating syntactic information.
- For NMT probing, the proposed models outperform the baseline model especially on relative small granularity of phrases information.
- Models trained from scratch achieve more improvements on predicting larger granularities of labels.

Conclusions

- MG-SA indeed captures useful phrase information.
- MG-SA promotes the generation of target phrases.
- MG-SA can be applied to many other tasks.