Outline

- Simulations
 - Rosenbrock Function
 - Himmelblau Function
 - Rastrigin Function
 - Ackley Function
- 2 Algorithmic Implementation of DE

0

- Data structure
- Input
- Random initial population
- Fitness assignment
- Mutant Vector
- Trial Vector
- Greedy Selection of DE
- Closure

Recap

- Differential evolution (DE)
 - Introduction
 - Mutant vector
 - Trial vector
 - Greedy selection of canonical DE
- Flow chart of DE
- DE on the generalized framework of EC techniques
- Working principles through an example
- Graphical example

0

Rosenbrock Function

Minimize $f(x_1, ..., x_n) = \sum_{i=1}^n (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$, bounds $-5 \le x_i \le 5$ and i = 1, ..., n.

• Optimal solution is $x^* = (1, ..., 1)^T$ and f(x) = 0

DE Parameters

- Number of variables: n=2
- Population size: N=40
- No. of generations: T = 200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

DE Parameters

- Number of variables: n=4
- Population size: N=60
- \bullet No. of generations: T=200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

Progress Link

DE Parameters

- Number of variables: n = 10
- Population size: N=60
- No. of generations: T = 200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

Progress Link

Himmelblau Function

Himmelblau Function

Minimize $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$, bounds $-5 < x_1 < 5$ and $-5 < x_2 < 5$.

- Multi-modal function: it has 4 minimum points
- First optimal solution is $x^* = (3, 2)^T$ and f(x) = 0
- Second optimal solution is $x^* = (-2.805, 3.131)^T$ and f(x) = 0
- Third optimal solution is $x^* = (-3.779, -3.283)^T$ and f(x) = 0
- Fourth optimal solution is $x^* = (3.584, -1.848)^T$ and f(x) = 0

Himmelblau Function

DE Parameters

- Number of variables: n=2
- Population size: N=40
- No. of generations: T=200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

- Simulation
- Progress

Rastrigin Function

Minimize $f(x_1, ..., x_n) = 10n + \sum_{i=1}^n (x_i^2 - 10\cos(2*\pi x_i)),$ bounds $-5.12 \le x_i \le 5.12$ and $i \in (1, ..., n).$

4

• Optimal solution is $x^* = (0, \dots, 0)^T$ and f(x) = 0

DE Parameters

- Number of variables: n=2
- Population size: N=40
- No. of generations: T=200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

- Simulation
- Progress

DE Parameters

- Number of variables: n=4
- Population size: N=60
- No. of generations: T = 200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

DE Parameters

- Number of variables: n = 10
- Population size: N=60
- No. of generations: T=200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

Ackley Function

Ackley Function

Minimize
$$f(x_1, x_2) = -20 \exp\left(-0.2\sqrt{(0.5(x_1^2 + x_2^2))}\right)$$

 $-\exp\left(0.5(\cos(2\pi x_1) + \cos(2\pi x_2))\right) + \exp(1) + 20, \circ$
bounds $-5 \le x_1 \le 5$ and $-5 \le x_2 \le 5$.

• Optimal solution is $x^* = (0,0)^T$ and f(x) = 0

Ackley Function

DE Parameters

- Number of variables: n=2
- Population size: N=40
- No. of generations: T = 200
- DE/rand/1/bin
- F = 0.5
- $p_c = 0.5$

- Simulation

Generalized Framework of EC Techniques

Algorithm 1 Generalized Framework for DE

- J Solution representation
- - 3/Initialize random population (P(t));
- \mathscr{A} Evaluate (P(t));
- 5. while $t \leq T$ do 6/ \rightarrow for $(i = 1; i \leq N; i + +)$ do

 - Find the mutant vector $(v_i^{(t+1)})$ for target vector (i);
- Find the mutant vector $(v_i^{(t+1)})$ for target vector (

 Find the trail vector $(u_i^{(t+1)})$ for target vector (i);

 Evaluate $(u_i^{(t+1)})$;
- 10. $x_i^{(t+1)} := Survivor(x_i^{(t)}, u_i^{(t+1)});$
- 11: oend for
- 12: t := t+1;
- 13: end while

- % Genetics **Input**: t := 1 (Generation counter), Maximum allowed generation = T
 - % Population % Evaluate objective, constraints and assign fitness
 - - → % Mutation
 - → % Crossover
 - % Selection

Data Structure for DE

Data Structure for population

- datatype Population target_vectors, mutant_vectors, trial_vectors;
 - target_vectors(j).objective_function_value;

Input to DE

Algorithm 2 Input

- 1. Population size: N
- \nearrow Number of generations: T
- 3. Number of real variables: n
- # for $(j = 1; j \le n; j + +)$ do
 - 5: Lower and upper bounds on x_j that are $x_i^{(L)}$ and $x_i^{(U)}$
 - 6: end for
- 7. Other parameters: F, p_c
- 8: Variant of DE

%For each variable

Initialize random population

Algorithm 3 Initialize random population

- **Input**: N: population size, n: number of variables
- 2: for $(i = 1; i \le N; i + +)$ do
- 3 for $(j = 1; j \le n; j + +)$ do
 - 4: $x_j =$ Generate real number randomly between $x_i^{(L)}$ and $x_i^{(U)}$
- 5: end for
- 6: end for

%For each vector in the population

%For each variable of a vector

Evaluate Particle

Algorithm 4 Evaluate Population

- 1/ Input: vector(j)
- 2: Evaluate $f(x^{(j)})$

- %Extract $x^{(j)} = (x_1, \dots, x_n)^T$ from the data structure of a vector(j)
- Assign fitness same as the function value
- target_vectors(j).objective_function_value = $f(x_1, ..., x_n)$;
- $target_vectors(j).fitness = target_vectors(j).objective_function_value;$

Mutant Vector for each target vector(i)

Algorithm 5 Mutant Vector for each target vector(i)

- 1: Input: Three random vectors (r_1, r_2, r_3) from the population such that $(r_1 \neq r_2 \neq r_3 \neq j)$
- 2: Generate mutant vector (v_j) for the target vector (x_j) using $v_j = x_{r1} + F \times (x_{r2} x_{r3})$

Trial Vector

Algorithm 6 Trial Vector(j)

- 1: Input: target vector (x_j) , mutant vector (v_j) , n: number of variables
- **2** for $(i = 1; i \le n; i + +)$ do
- 3: if (if (rand_no $\leq p_c$) or i = rnbr(j)) then
- 4: $\longrightarrow u_{j_i} = v_{j_i}$
- 5: end if
- 6: \longrightarrow if (if (rand_no > p_c) and $i \neq rnbr(j)$) then
- 7: $u_{j_i} = x_{j_i}$
- 8: end if 🤇 🦵
- 9: end for

%For each variable (i)

Greedy Selection of DE

Algorithm 7 Trial Vector(j)

- 1: Input: target vector (x_j) , trial vector (u_j)
- 2: if $(f(u_j) < f(x_j))$ then 3: $x_j = u_j$

%Comparison of fitness

%Adding trial vector

Copy Vector

Algorithm 8 Copy Vectors

- 1. Input: vector 1, vector 2
- 2/ Copy objective function value of vector 1 to vector 2
- 3. Copy fitness/rank of vector 1 to vector 2
- 4/Copy x_j of vector 1 to x_j of vector 2

• Copy the complete data structure

Closure

- Simulations
 - Rosenbrock function with n = 2, 4, 10 variables
 - Rastrigin function with n=2,4,10 variables
 - Himmelblau multi-modal function
 - Ackley function

- Algorithmic Implementation of DE
 - ✓ Data structure for DE
 - ✓ Input to DE
 - Random initial population
 - Fitness evaluation
 - Mutant vector
 - ✓ Trial vector
 - Greedy selection of canonical DE
 - · copy particle vector