Cálculo Numérico: Lista de Método de Newton

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150519.2

1 Formulário

Sequência

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Critérios de parada

- 1. Número máximo de iterações (passos) k
- 2. Precisão: distância entre duas aproximações consecutivas ε

$$\varepsilon = |x_k - x_{k-1}|$$

3. Precisão: valor absoluto da função ε

$$\varepsilon = |f(x_k)|$$

2 Exercícios

1. Encontre uma aproximação para a raiz das funções abaixo, com cada ponto inicial dado. Use o método de Newton até atingir a precisão de $\varepsilon < 10^{-2}$ ou k=4 passos, o que ocorrer primeiro. Identifique na sua resposta a sequência x_k obtida, e use o último x_k como resposta aproximada \bar{x} :

(a)
$$f(x) = x^2 - 4$$
, com $x_0 = 5$

(b)
$$f(x) = x^3$$
, com $x_0 = -3$

(c)
$$f(x) = x^3 - 1.5x$$
, com $x_0 = 6$

(d)
$$f(x) = xe^x$$
, com $x_0 = 1.1$

(e)
$$f(x) = \sin x$$
, com $x_0 = 1$

- 2. Aplique o critério de parada do valor absoluto da função $(\varepsilon = |f(x)|)$ nos itens do exercício 1, e identifique em que casos serão exigidas menos iterações.
- 3. Determine o erro absoluto e o erro relativo da aproximação \bar{x} encontrada em cada item do exercício 1, considerando que as soluções exatas são:

(a)
$$x = 2$$

(b)
$$x = 0$$

(c)
$$x = \sqrt{1.5}$$

(d)
$$x = 0$$

(e)
$$x = 0$$

3 Problemas

- 4. (Comparação entre Bissecção e Newton) Entenda como se compara a eficiência entre os métodos da Bissecção e Newton.
 - (a) Estime quantas iterações são necessárias para o Método da Bissecção achar a raiz da função $f(x)=\ln x$ em [0.5,3.5] com precisão $\varepsilon<10^{-2}$
 - (b) Aplique o Método de Newton com valor inicial $x_0 = 2$ até esta precisão.
 - (c) Compare o número de iterações necessário.
 - (d) (Perspectiva) Qual é a raiz exata desta função no intervalo acima?
- 5. O número π pode ser aproximado usando o método de Newton usando a função $f(x) = \cos x + 1$ e o valor inicial $x_0 = 3.14$. Encontre uma aproximação com precisão de $\varepsilon < 10^{-4}$
- 6. (Conjugação de métodos) Quando não se tem um bom ponto de partida x_0 para se aplicar o Método de Newton, podemos usar algumas iterações do Método da Bissecção para obtê-la. Considere a função $f(x) = e^{2x}(x^3 15x^2 + 1)$. Vamos encontrar uma aproximação para a raiz desta função contida no intervalo [-1, 0.1] com precisão de $\varepsilon < 0.001$.
 - (a) Qual é a derivada desta função?
 - (b) Verifique que a função troca de sinais no intervalo [-1,0.1], e portanto o método da Bissecção pode ser aplicada para encontrar uma raiz aproximada para ela.
 - (c) Aplique o Método da Bissecção por duas iterações, e encontre x_2 no intervalo [-1,0.1]. Verifique que para este método, você precisaria de 12 iterações para atingir a precisão de 0.001
 - (d) Use o valor do item anterior como valor inicial x_0 do Método de Newton, e encontre uma aproximação com precisão de 0.001. (Obs: se você utilizar o critério de parada $\varepsilon = |f(x_n)|$, você precisará de 2 iterações. Se você utilizar o critério $\varepsilon = |x_n x_{n-1}|$ precisará de 3 iterações.)