# How similar are Indonesian Embassies based on their location

boy.setiawan April 4<sup>th</sup>, 2021

#### 1. Introduction

# 1.1. Problem Description

An Embassy is a representative of a country in other countries, their existence helps to indicate a relation among countries and serve as a way to communicate or strengthen the ties. Their location follows a strict and complex requirements both from the country it comes from and the country it resides, usually in a special diplomatic compound or district. Despite all of the careful planning and requirements, the decision to establish an embassy could have come from other necessities such as certain neighborhood/district/area, near to and close from certain amneties, places that could support the embassy mission etc.

The knowledge of how a certain embassies are similar or different could **help give a bigger view to Indonesian Foreign Affairs Officials** to understand the general environment their embassies are located. Should a certain embassies need to be treated differently, do embassies with certain criteria experience the same or different stress level of working for their staffs, do certain embassies experience certain disturbance etc.

The task to find and group embassies into their own similar group could be a daunting task. From forming the basic data, to gathering and analyzing the data must be done without bias and subjectivity. The end result must be able to give an insight of what the embassies really are so they can be interpreted and understand as a whole new information or to strengthen the already known facts.

### 1.2. Data Description

In order to accomplish the analysis, we will need data on Indonesian Embassies abroad and their latitude and longitude so we can combine it with data about venues surrounding the embassies which we intend to explore from FourSquare API to give a better understanding about the embassy's neighborhood, venues and places.

### 1.3. Solution

Our solution is to cluster the embassies and see the differences and similarities between them based on the data gathered about venues surrounding the embassies.

## 1.4. Methodology

## A. Data Gathering

#### 1. List of Indonesian Embassies Abroad

Apparently to get data about the list of Indonesian Embassies abroad is going to be a bit difficult, this is because the Ministry of Foreign Affairs website doesn't display the data to be easily analyzable. But with the help of google and wikipedia we find a page that we could extract the data that we need as a starting point.

# https://id.wikipedia.org/wiki/Kedutaan besar Republik Indonesia



After scraping the page with BeautifulSoup we manage to import the data in a Data Frame as so. There are 98 Indonesian Embassies according to our data. As we can see the data needs to be cleaned since the scrapping process leave us with some characters we need to eliminate.

```
Clean the data to avoid problems later

1. Get rid of the '\n'
2. Get rid of the []

df_ID_embassies['Country'] = df_ID_embassies['Country'].replace(f'(\n)', '', regex=True)
df_ID_embassies['Capital'] = df_ID_embassies['Capital'].replace(f'(\n)', '', regex=True)
df_ID_embassies['Capital'] = df_ID_embassies['Capital'].replace(f'(\[\d+\])', '', regex=True) #inside [] with one more digits
```

After we clean the Data Frame we need to change some values and drop some rows from the Data Frame. This is because some of the data used pronunciation of capitals in Indonesian language, others not so common name and data that does not interest us such as Indonesian representatives for the United Nations.

The final tally is 93 Indonesian Embassies abroad.

## 2. The Embassies Address

It would be nice if everything was served on a plate but in this task, we need to have some wits up our sleeves. What we need are longitudes and latitudes of the embassies, as with the problem above it is not readily available to us. But there is hope since the address is available for us to extract from the Ministry of Foreign Affairs website for they have a common URL that we can explore.

# https://kemlu.go.id/CAPITAL

with this information we need to iterate this URL with our Data Frame and do another scrapping to get the all the addresses.



|    | Country                | Capital             | Address                                        |
|----|------------------------|---------------------|------------------------------------------------|
| 0  | Afganistan             | Kabul               | Shah-re-Naw Ministry of Interior Street Kabul  |
| 1  | Afrika Selatan         | Pretoria            | 949 Francis Baard Street Hatfield. Pretoria    |
| 2  | Aljazair               | Algiers             | Avenue Souidani Boudjemaa 61 Algiers           |
| 3  | Amerika Serikat        | Washington          | 2020 Massachusetts Avenue NW. Washington DC    |
| 4  | Arab Saudi             | Riyadh              | Diplomatic Quarter. Riyadh                     |
| 5  | Argentina              | Buenos Aires        | Mariscal Ramon Castilla 2901. Buenos Aires     |
| 6  | Australia              | Canberra            | 8 Darwin Avenue Yarralumla. Canberra           |
| 7  | Austria                | Wina                | Gustav Tschermakgasse 5-7 Vienna               |
| 8  | Azerbaijan             | Baku                | Azer Aliyev 3 Nasimi Baku                      |
| 9  | Bahrain                | Manama              | Villa 2113 Road 2432 Manama                    |
| 10 | Bangladesh             | Dhaka               | Road No 53 Plot No 14 Gulshan Dhaka            |
| 11 | Belanda                | Den Haag            | Tobias Asserlaan 8 Den Haag                    |
| 12 | Belgia                 | Brussels            | Boulevardde la Woluwe 38 Brussels              |
| 13 | Bosnia dan Herzegovina | Sarajevo            | Splitska 9. Sarajevo                           |
| 14 | Brasil                 | Brasilia            | SES Avenida Das Nacoes Quadra 805 Brasilia-Di  |
| 15 | Britania Raya          | London              | 30 Great Peter Street. London                  |
| 16 | Brunei                 | Bandar Seri Begawan | Jalan Kebangsaan Kampung Kawasan Diplomatik Mu |
| 17 | Bulgaria               | Sofia               | Simeonovsko Shosse Sofia                       |

After looking at the result we need to take a decision to save the data frame and edit the address manually since the format is not unison. Not a very satisfying task but something we need to take since creating regex rules does not look like a viable solution for this problem. After that we integrate it with our Data Frame and voila a list of Indonesian Embassies abroad with their address.

#### 3. The Embassies Geo Location



As our initial data requirement is to have a list of embassies with their geolocation, we need to translate the address into latitude and longitude coordinate. To do that we use a common library in python called geocoder and loop through the address.

And then format the result in a Data Frame and combine with our embassies Data Frame.

|    | Country         | Capital      | Address                                       | latitude   | longitude  |
|----|-----------------|--------------|-----------------------------------------------|------------|------------|
| 0  | Afganistan      | Kabul        | Shah-re-Naw Ministry of Interior Street Kabul | 0.000000   | 0.000000   |
| 1  | Afrika Selatan  | Pretoria     | 949 Francis Baard Street Hatfield. Pretoria   | -25.745801 | 28.240627  |
| 2  | Aljazair        | Algiers      | Avenue Souidani Boudjemaa 61 Algiers          | 0.000000   | 0.000000   |
| 3  | Amerika Serikat | Washington   | 2020 Massachusetts Avenue NW. Washington DC   | 38.910279  | -77.046149 |
| 4  | Arab Saudi      | Riyadh       | Diplomatic Quarter. Riyadh                    | 24.677103  | 46.625145  |
| 5  | Argentina       | Buenos Aires | Mariscal Ramon Castilla 2901. Buenos Aires    | -34.579190 | -58.399681 |
| 6  | Australia       | Canberra     | 8 Darwin Avenue Yarralumla. Canberra          | -35.303568 | 149.115401 |
| 7  | Austria         | Wina         | Gustav Tschermakgasse 5-7 Vienna              | 0.000000   | 0.000000   |
| 8  | Azerbaijan      | Baku         | Azer Aliyev 3 Nasimi Baku                     | 0.000000   | 0.000000   |
| 9  | Bahrain         | Manama       | Villa 2113 Road 2432 Manama                   | 26.222771  | 50.588948  |
| 10 | Bangladesh      | Dhaka        | Road No 53 Plot No 14 Gulshan Dhaka           | 0.000000   | 0.000000   |

Unfortunately, there are some embassies without geolocation information.



In this case, 40 embassies are still without geolocation information.

To overcome this obstacle and after googling about free forward geocoding, we stumble open positionstack.com which offer a diverse and rich API in their service. After following the instruction and documentation, we translate the remaining address to get their latitude and longitude.

And do the process all over again and see if there is any embassy without geolocation information, which there are and decide to do it manually since the number is quite small.

|    | Country     | Capital     | Address                                           | latitude | longitude |
|----|-------------|-------------|---------------------------------------------------|----------|-----------|
| 0  | Afganistan  | Kabul       | Shah-re-Naw Ministry of Interior Street Kabul     | 0.0      | 0.0       |
| 8  | Azerbaijan  | Baku        | Azer Aliyev 3 Nasimi Baku                         | 0.0      | 0.0       |
| 10 | Bangladesh  | Dhaka       | Road No 53 Plot No 14 Gulshan Dhaka               | 0.0      | 0.0       |
| 28 | Irak        | Baghdad     | Salhiya Hay Al-I'lam 220 Zukak 5 Baghdad          | 0.0      | 0.0       |
| 33 | Kamboja     | Phnom Penh  | Street 268 Preah Suramarit Boulevard Phnom Penh   | 0.0      | 0.0       |
| 35 | Kazakhstan  | Astana      | Saraishyk Street Diplomatic town. Nur-Sultan      | 0.0      | 0.0       |
| 39 | Korea Utara | Pyongyang   | Munsudong Taedonggang Distric Pyongyang           | 0.0      | 0.0       |
| 42 | Kuwait      | Kuwait City | Daiya Block 1 Rashed Ahmed Al-Roumi Street        | 0.0      | 0.0       |
| 44 | Lebanon     | Beirut      | Presidential Palace Avenue Rue 68 Sector 3 Beirut | 0.0      | 0.0       |
| 45 | Libya       | Tripoli     | Hay Al Karamah Qobri Taariq Al Sari Tripoli       | 0.0      | 0.0       |
| 55 | Oman        | Muscat      | Al-Shatty Qurum Building Way 3015 Muscat          | 0.0      | 0.0       |
| 60 | Polandia    | Warsawa     | ulica Estoska 3 Warsawa                           | 0.0      | 0.0       |
| 74 | Suriah      | Damascus    | al-Madina al-Munawara Street Block 270A Buildi    | 0.0      | 0.0       |

Let's see if we get our geolocation data right with displaying a sample.



### 4. The Embassies Venues

Now let's get venues data surrounding the embassies from FourSquare.



Which resulted in an astonishing 2.329 venues which we can work on.

## **B.** Data Exploration

|   | Embassy  | Embassy Latitude | Embassy Longitude | Venue                      | Venue Latitude | Venue Longitude | Venue Category       |
|---|----------|------------------|-------------------|----------------------------|----------------|-----------------|----------------------|
| 0 | Kabul    | 34.531210        | 69.179090         | Kabul Star Hotel           | 34.531202      | 69.177159       | Hotel                |
| 1 | Kabul    | 34.531210        | 69.179090         | Green Beans Coffee         | 34.529924      | 69.179781       | Coffee Shop          |
| 2 | Kabul    | 34.531210        | 69.179090         | Bukhara Restaurant         | 34.529789      | 69.179680       | Afghan Restaurant    |
| 3 | Kabul    | 34.531210        | 69.179090         | Spinneys Supermarket       | 34.533478      | 69.178270       | Supermarket          |
| 4 | Pretoria | -25.745801       | 28.240627         | Royal Danish Icecream      | -25.742076     | 28.242174       | Ice Cream Shop       |
| 5 | Pretoria | -25.745801       | 28.240627         | Namaskar Indian Restaurant | -25.742667     | 28.242235       | Indian Restaurant    |
| 6 | Pretoria | -25.745801       | 28.240627         | Gautrain Hatfield Station  | -25.747655     | 28.237484       | Train Station        |
| 7 | Pretoria | -25.745801       | 28.240627         | Steers                     | -25.744297     | 28.245228       | Fast Food Restaurant |
| 8 | Pretoria | -25.745801       | 28.240627         | KFC Gordon Road            | -25.743100     | 28.242200       | Fried Chicken Joint  |
| 9 | Pretoria | -25.745801       | 28.240627         | Dros                       | -25.744867     | 28.236806       | Pub                  |

To get a better understanding of the data, we need to explore our data. Let's see what kind of data we have exactly. We can see that each embassy has venues and their

categories. The one we will be using is the value in the Venue Category, because this value will be available across embassies. Let's see how many categories there are in our Data Frame.

|             | Embassy Latitude | Embassy Longitude | Venue | Venue Latitude | Venue Longitude | Venue Category |
|-------------|------------------|-------------------|-------|----------------|-----------------|----------------|
| Embassy     |                  |                   |       |                |                 |                |
| Manila      | 100              | 100               | 100   | 100            | 100             | 100            |
| Mexico City | 100              | 100               | 100   | 100            | 100             | 100            |
| Washington  | 95               | 95                | 95    | 95             | 95              | 95             |
| Moscow      | 93               | 93                | 93    | 93             | 93              | 93             |
| Seoul       | 87               | 87                | 87    | 87             | 87              | 87             |
| Rome        | 84               | 84                | 84    | 84             | 84              | 84             |
| Berlin      | 71               | 71                | 71    | 71             | 71              | 71             |
| Santiago    | 62               | 62                | 62    | 62             | 62              | 62             |
| London      | 61               | 61                | 61    | 61             | 61              | 61             |
| Paramaribo  | 2                | 2                 | 2     | 2              | 2               | 2              |
| Doha        | 2                | 2                 | 2     | 2              | 2               | 2              |
| Beirut      | 2                | 2                 | 2     | 2              | 2               | 2              |
| Ottawa      | 1                | 1                 | 1     | 1              | 1               | 1              |
| Addis Ababa | 1                | 1                 | 1     | 1              | 1               | 1              |
| Abu Dhabi   | 1                | 1                 | 1     | 1              | 1               | 1              |

We can see that that the biggest venues are in Manila, Mexico City and Washington. And the least venues are in Ottawa, Addis Ababa and Abu Dhabi.

## Let's see how many categories we have in the Data Frame.

There are 325 categories and if we see some are generally the same. A Restaurant might have specialty but basically it is a restaurant, so we have to gather identical categories into a more general category so we can have a better model as a result.

```
restaurants = [data for data in venues if "Restaurant" in data]

for restaurant in restaurants:
    enbassies_venues['Venue Category'] = enbassies_venues['Venue Category'].replace(f'(^.*{restaurant}.*s)', "Restaurant",regex=True)
```

We do this repeatedly for the categories we want until we are satisfied that there no more ambiguous data in the Data

## Frame.

print('There are {} uniques categories.'.format(len(embassies\_venues['Venue Category'].unique())))
There are 143 uniques categories.

In this case from 325 we managed to shrink it to 143 categories. For the last exploration let's find out if there is any embassy with no venues at all.



Apparently, there are 4 embassies with no venues data. So, we will disregard these embassies in the final result.

| embas |          |     | nead(10)             | ieno e i i z | xed_columns] |                 | bussy_one | hot.co                       | lumns[:-1])             |                       |                   |                                  |                        |       |       |                  |            |
|-------|----------|-----|----------------------|--------------|--------------|-----------------|-----------|------------------------------|-------------------------|-----------------------|-------------------|----------------------------------|------------------------|-------|-------|------------------|------------|
| En    | nbassy   | АТМ | Accessories<br>Store | Airport      | Amphitheater | Antique<br>Shop | Aquarium  | Arts<br>&<br>Crafts<br>Store | Arts &<br>Entertainment | Athletics<br>& Sports | <br>Theme<br>Park | Tourist<br>Information<br>Center | Toy /<br>Game<br>Store | Track | Trail | Train<br>Station | Ti<br>Stat |
| )     | Kabul    | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 1     | Kabul    | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 2     | Kabul    | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 3     | Kabul    | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 1 F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 5 F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| B F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 1                |            |
| 7 F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| B F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
| 9 F   | Pretoria | 0   | 0                    | 0            | 0            | 0               | 0         | 0                            | 0                       | 0                     | <br>0             | 0                                | 0                      | 0     | 0     | 0                |            |
|       | vs × 144 |     |                      |              |              |                 |           |                              |                         |                       |                   |                                  |                        |       |       |                  |            |

The next step is to make the categories into their own column in the Data Frame.

Which resulted in 2.329 rows and 144 columns. In the current state our Data Frame can be used to make a

cluster.

If we looked back, our first data consist of 93 embassies and after exploring FourSquare

```
embassy_grouped = embassy_onehot.groupby('Embassy').mean().reset_index()
                                                        0.0 0.0 0.0 0.0 0.0 0.0
                              0.0 0.0
                                        0.0 0.0 ... 0.0
                    0.0 0.0
                                        0.0 0.0 ... 0.0
                                                        0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.00
                    0.0 0.0
                                        0.0 0.0 ... 0.0
                                                        0.0 0.0 0.0 0.0 0.0 0.0
4 Amman 0.0
                              0.0 0.0
5 rows x 144 columns
(89, 144)
```

we end up with 4 embassies with no venues data. So, if our calculation is correct, we need to sum up 2.329 rows into 89 rows. We do that by grouping the Data Frame by the embassy column and count the mean of each column in the group.

Now let's find out what are the most common venues in each embassy.

|    | Embassy                | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most<br>Common Venue | 5th Most<br>Common Venue | 6th Most<br>Common Venue | 7th Most<br>Common Venue | 8th Most<br>Common Venue | 9th Most<br>Common Venue | 10th Most<br>Common Venue |
|----|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| 0  | Abu Dhabi              | Grocery Store            | NaN                       |
| 1  | Abuja                  | Hotel                    | Restaurant               | Grocery Store            | Food Shop                | Lounge                   | Shopping Mall            | Food Court               | Café                     | Supermarket              | Multiplex                 |
| 2  | Addis Ababa            | Food Shop                | NaN                       |
| 3  | Algiers                | Restaurant               | Metro Station            | Food Shop                | NaN                       |
| 4  | Amman                  | Food Shop                | Restaurant               | Grocery Store            | Café                     | Intersection             | Supermarket              | Salon                    | Spa                      | Drink Shop               | Hotel                     |
| 5  | Ankara                 | Restaurant               | Food Shop                | Café                     | Drink Shop               | Bar                      | Grocery Store            | Park                     | Meyhane                  | Multiplex                | Scenic Lookout            |
| 6  | Astana                 | Restaurant               | Drink Shop               | Bar                      | Spa                      | Café                     | Bookstore                | Hotel                    | Stationery Store         | Food Shop                | NaN                       |
| 7  | Athena                 | Food Shop                | Restaurant               | Café                     | Hotel                    | Drink Shop               | Supermarket              | Grocery Store            | Gym                      | Theater                  | Club                      |
| 8  | Baghdad                | Hostel                   | Hotel                    | Bus Station              | NaN                       |
| 9  | Baku                   | Restaurant               | Hotel                    | Gym                      | Club                     | Lounge                   | Food Shop                | Spa                      | Food Court               | Park                     | Pet Store                 |
| 10 | Bandar Seri<br>Begawan | Restaurant               | Drink Shop               | Hotel                    | Park                     | Café                     | Garden                   | Shopping Mall            | Museum                   | Food Shop                | Pedestrian Plaza          |



We can see from the Data Frame that Restaurant comes up a lot on the 1<sup>st</sup> Most Common Venue. Let's count how many of them.

We can see that 50 embassies have Restaurant as their 1<sup>st</sup> most common venue and Food Shop in second.



What's the most 2<sup>nd</sup> Most Common Venue?. Apparently is the same as before with Restaurant and Food Shop as the top two.

What's the most 3<sup>rd</sup> Most Common Venue?. Looks like Hotel comes up with 13 embassies have it as their 3<sup>rd</sup> Most Common Venue.

# C. Clustering

Before we begin clustering, we must answer the question "do we know how many clusters the data have?". Based on the problem domain and your knowledge of the data, usually we can answer the question. But if we are clueless about the cluster in the data, there are tools that can help us. First let's see if our data have any hierarchy in them and built our cluster in a hierarchy.





the ordinary.

We can see that the embassy in Wina and Warsawa is very close in venues with the embassy in Santiago. Combine they are very close with the embassies in Buenos Aires, Berlin, Vatican, Washington and Ankara. What's interesting in the hierarchy, the embassies in the orange hierarchy will eventually resemble the embassies in the green hierarchy. Let's combine the embassies in the green hierarchy and see what their top venues are to get a better understanding of the hierarchy. We can see that most of them are something that we are expected from the data and nothing is out of

Now let's cluster our embassies with a question like 'an embassy is in a group all together if there are at least 7 embassies with the same value, if not then they are an outlier?'. We can do that with the help of DBSCAN which clusters based on the data and the parameters we wanted and also produce a set of outlier data that doesn't belong to any of the generated clusters. We can see the result below.

|    | Embassy      | Address                                           | latitude   | longitude  | colors  |
|----|--------------|---------------------------------------------------|------------|------------|---------|
| 0  | Abu Dhabi    | Sultan Bin Zayed Street Str 32 Abu Dhabi          | 24.365906  | 54.582223  | #8000ff |
| 2  | Addis Ababa  | Egypt Street Mekanissa Road Woreda 05 Addis A     | 9.018947   | 38.746032  | #8000ff |
| 8  | Baghdad      | Salhiya Hay Al-l'lam 220 Zukak 5 Baghdad          | 33.319590  | 44.386390  | #8000ff |
| 13 | Beirut       | Presidential Palace Avenue Rue 68 Sector 3 Beirut | 33.845390  | 35.541880  | #8000ff |
| 18 | Brasilia     | SES Avenida Das Nacoes Quadra 805 Brasilia-DF     | -16.793428 | -49.295322 | #8000ff |
| 25 | Canberra     | 8 Darwin Avenue Yarralumla. Canberra              | -35.303568 | 149.115401 | #8000ff |
| 33 | Dili         | Rua Karketu Mota-Ain No 02 Dili                   | -8.550615  | 125.569168 | #8000ff |
| 34 | Doha         | Al Salmiya Street Zone 66 Street 943 Onaiza       | 25.333074  | 51.511092  | #8000ff |
| 38 | Helsinki     | Kuusisaarentie 3. Helsinki                        | 60.187281  | 24.868059  | #8000ff |
| 39 | Islamabad    | Diplomatic Enclave I Street 5 Islamabad           | 33.721480  | 73.043290  | #8000ff |
| 59 | Ottawa       | 55 Parkdale Avenue. Ottawa                        | 45.410317  | -75.734033 | #8000ff |
| 64 | Port Moresby | Sir John Giuse Drive Lot 12 Section 410 Port M    | -9.434881  | 147.208705 | #8000ff |
| 67 | Quito        | CALLE QUITEO LIBRE E15 QUITO                      | -0.229850  | -78.524950 | #8000ff |
|    |              |                                                   |            |            |         |

The embassies in the list are outliers, they are the embassies whose values are very far apart from the rest of the data and doesn't have at least 7 embassies with similar data.

|    | Embassy      | Address                                       | latitude   | longitude  | colors  |
|----|--------------|-----------------------------------------------|------------|------------|---------|
| 1  | Abuja        | Katsina Ala Crescent 10 Abuja                 | 9.068530   | 7.483750   | #2c7ef7 |
| 9  | Baku         | Azer Aliyev 3 Nasimi Baku                     | 40.395740  | 49.821620  | #2c7ef7 |
| 15 | Berlin       | Lehrter 16 Berlin                             | 52.524636  | 13.369861  | #2c7ef7 |
| 23 | Buenos Aires | Mariscal Ramon Castilla 2901. Buenos Aires    | -34.579190 | -58.399681 | #2c7ef7 |
| 41 | Khartoum     | Street 60 Block No 12 Al Riyadh Area Khartoum | 15.551770  | 32.532410  | #2c7ef7 |
| 42 | Kopenhagen   | Alle 1 Hellerup Copenhagen                    | 55.722238  | 12.559591  | #2c7ef7 |
| 45 | Kyiv         | 17 Universytetska Street. Kyiv                | 50.419465  | 30.480809  | #2c7ef7 |
| 46 | Lima         | Avenida Las Flores 334-336 San Isidro. Lima   | -12.096272 | -77.047005 | #2c7ef7 |
| 50 | Manama       | Villa 2113 Road 2432 Manama                   | 26.222771  | 50.588948  | #2c7ef7 |
| 54 | Moscow       | Novokuznetskaya Ulitsa No 12 Moscow           | 55.741469  | 37.615561  | #2c7ef7 |
| 61 | Paramaribo   | Van Brussellaan 3 Paramaribo                  | 5.824594   | -55.193191 | #2c7ef7 |
| 65 | Praha        | Nad Budankami II 7. Praha                     | 50.071131  | 14.372931  | #2c7ef7 |
| 77 | Tashkent     | YahyoGulomov Street 73 Tashkent               | 41.264650  | 69.216270  | #2c7ef7 |
| 78 | Tehran       | Ghaemmagham 180 Tehran                        | 35.694390  | 51.421510  | #2c7ef7 |
| 79 | Tokyo        | 4 Chome1 Yotsuya Shinjuku City.Tokyo          | 35.680587  | 139.720589 | #2c7ef7 |
| 80 | Vatican      | Via Marocco 1000144. Roma                     | 41.820634  | 12.466099  | #2c7ef7 |
| 88 | Zagreb       | Ulica Medveak 56 Zagreb                       | 45.806026  | 15.976218  | #2c7ef7 |

These are the first cluster, as we can see some of the embassies from the green hierarchy are here like Moscow, Tehran, Berlin and Buenos Aires belong in this cluster.

|    | Embassy             | Address                                         | latitude   | longitude  | colors  |
|----|---------------------|-------------------------------------------------|------------|------------|---------|
| 3  | Algiers             | Avenue Souidani Boudjemaa 61 Algiers            | 36.743950  | 3.083627   | #2adddd |
| 5  | Ankara              | Prof Dr Aziz Sancar 10 Ankara                   | 39.885977  | 32.858080  | #2adddd |
| 6  | Astana              | Saraishyk Street Diplomatic town. Nur-Sultan    | 51.134260  | 71.425820  | #2adddd |
| 10 | Bandar Seri Begawan | Jalan Kebangsaan Kampung Kawasan Diplomatik Mu  | 4.889737   | 114.941695 | #2adddd |
| 11 | Bangkok             | Petchburi Road 600 Bangkok                      | 13.755181  | 100.526715 | #2adddd |
| 12 | Beijing             | Dong Zhi Men Wai Da Jie No 4 Chaoyang District  | 39.939696  | 116.438361 | #2adddd |
| 17 | Bogota              | Calle 70 Bogota                                 | 4.704367   | -74.123511 | #2adddd |
| 19 | Bratislava          | Brnianska 31. Bratislava                        | 48.164030  | 17.085551  | #2adddd |
| 21 | Bucharest           | 19 Aleea Alexandru Sector 1. Bucharest          | 44.456520  | 26.089180  | #2adddd |
| 22 | Budapest            | Varosligeti fasor 26. Budapest                  | 47.509719  | 19.076236  | #2adddd |
| 24 | Cairo               | Aisha El Taymouria Street 13 Garden City Cairo  | 30.079694  | 31.323437  | #2adddd |
| 27 | Colombo             | Sarana Road 400/50 Colombo                      | 6.910436   | 79.892990  | #2adddd |
| 29 | Damascus            | al-Madina al-Munawara Street Block 270A Buildi  | 33.497650  | 36.251010  | #2adddd |
| 30 | Dar es Salaam       | 299 Ali Hassan Mwinyi Road. Dar es Salaam       | -6.796460  | 39.281544  | #2adddd |
| 31 | Den Haag            | Tobias Asserlaan 8 Den Haag                     | 52.086144  | 4.288699   | #2adddd |
| 32 | Dhaka               | Road No 53 Plot No 14 Guishan Dhaka             | 23.796150  | 90.412780  | #2adddd |
| 35 | Hanoi               | 50 Ngo Quyen Street. Hanoi                      | 21.026050  | 105.855536 | #2adddd |
| 36 | Harare              | Duthie Avenue 3 Harare                          | -17.796650 | 31.046799  | #2adddd |
| 40 | Kabul               | Shah-re-Naw Ministry of Interior Street Kabul   | 34.531210  | 69.179090  | #2adddd |
| 43 | Kuala Lumpur        | Jalan Tun Razak 233 Kualalumpur                 | 3.146757   | 101.721745 | #2adddd |
| 47 | Lisabon             | Avenida Dom Vasco da Gama no 40 Lisbon          | 38.699396  | -9.224974  | #2adddd |
| 48 | London              | 30 Great Peter Street, London                   | 51.496893  | -0.129560  | #2adddd |
| 49 | Madrid              | Calle de Agastia No 65. Madrid                  | 40.444792  | -3.650197  | #2adddd |
| 51 | Manila              | Salcedo Street 185 Manila                       | 14.554002  | 121.015910 | #2adddd |
| 53 | Mexico City         | Julio Verne No 27 Mexico City                   | 19.427980  | -99.197181 | #2adddd |
| 56 | Nairobi             | Menengai Rd Upper Hill. Nairobi                 | -1.300961  | 36.811411  | #2adddd |
| 57 | New Delhi           | 50-A Kautilya Marg Chanakyapuri. New Delhi      | 28.604079  | 77.189826  | #2adddd |
| 58 | Oslo                | Fritzners gate 12. Oslo                         | 59.916488  | 10.704865  | #2adddd |
| 60 | Panama              | Casa no 15 y Ricardo Arango Urbanizacion Obarr  | 8.984590   | -79.520240 | #2adddd |
| 63 | Phnom Penh          | Street 268 Preah Suramarit Boulevard Phnom Penh | 11.557290  | 104.930180 | #2adddd |
| 66 | Pretoria            | 949 Francis Baard Street Hatfield. Pretoria     | -25.745801 | 28.240627  | #2adddd |
| 68 | Rabat               | Rue Beni Boufrah 63 Rabat                       | 34.013250  | -6.832550  | #2adddd |
| 70 | Rome                | Via Campania 55. Roma                           | 41.910390  | 12.493463  | #2adddd |
| 71 | Santiago            | Avenida Las Urbinas 160 Providencia. Santiago   | -33.422172 | -70.612054 | #2adddd |
| 72 | Sarajevo            | Splitska 9. Sarajevo                            | 43.850707  | 18.403550  | #2adddd |
| 73 | Seoul               | 380 Yeouidaebang-ro Yeongdeungpo-gu. Seoul      | 37.518528  | 126.930767 | #2adddd |
| 74 | Singapura           | 7 Chatsworth Road. Singapore                    | 1.300208   | 103.821990 | #2adddd |
| 75 | Stockholm           | Kungsbroplan 1. Stockholm                       | 59.331717  | 18.049393  | #2adddd |
| 76 | Suva                | Marama Building 91 Gordon Street Fiji           | -18.144302 | 178.426665 | #2adddd |
| 81 | Vientiane           | Kaysone Phomvihane Avenue. Vientiane            | 17.978149  | 102.627226 | #2adddd |
| 82 | Warsawa             | ulica Estoska 3 Warsawa                         | 52.236640  | 21.048470  | #2adddd |
| 83 | Washington          | 2020 Massachusetts Avenue NW. Washington DC     | 38.910279  | -77.046149 | #2adddd |
| 85 | Wina                | Gustav Tschermakgasse 5-7 Vienna                | 48.198674  | 16.348388  | #2adddd |
| 86 | Windhoek            | 103 Nelson Mandela Avenue. Windhoek             | -22.571877 | 17.103135  | #2adddd |
| 87 | Yangon              | Pyiudaungsu Yeiktha Road 100 Yangon             | 16.805280  | 96.156110  | #2adddd |

And this is the second cluster of our embassies where the rest of the green hierarchy belongs such as Ankara, Washington, Wina, Warsawa, Vatican and Santiago.

|    | Embassy     | Address                                        | latitude   | longitude  | colors  |
|----|-------------|------------------------------------------------|------------|------------|---------|
| 4  | Amman       | Ali Seedo Al-Kurdi Street 13 Amman             | 31.947359  | 35.873896  | #80ffb4 |
| 7  | Athena      | Marathonodromon Street 15452 Athens            | 37.959118  | 23.715552  | #80ffb4 |
| 14 | Beograd     | Bulevar Kneza Aleksandra Karadjordjevica No 18 | 44.794199  | 20.448512  | #80ffb4 |
| 16 | Bern        | Elfenauweg 51. Bern                            | 46.937197  | 7.466099   | #80ffb4 |
| 20 | Brussels    | Boulevardde la Woluwe 38 Brussels              | 50.843183  | 4.371755   | #80ffb4 |
| 26 | Caracas     | Avenida El Paseo Caracas                       | 10.452583  | -66.879828 | #80ffb4 |
| 28 | Dakar       | Avenue Cheikh Anta Diop BP. DAKAR              | 14.698848  | -17.468628 | #80ffb4 |
| 37 | Havana      | 5ta Avenida 1607 Miramar. La Habana            | 23.114127  | -82.433124 | #80ffb4 |
| 44 | Kuwait City | Daiya Block 1 Rashed Ahmed Al-Roumi Street     | 29.354400  | 48.009860  | #80ffb4 |
| 52 | Maputo      | Streets No 141 Sommerschield Maputo            | -25.965530 | 32.583220  | #80ffb4 |
| 55 | Muscat      | Al-Shatty Qurum Building Way 3015 Muscat       | 23.605810  | 58.450130  | #80ffb4 |
| 62 | Paris       | 47-49 rue Cortambert. Paris                    | 48.861150  | 2.279244   | #80ffb4 |
| 69 | Riyadh      | Diplomatic Quarter. Riyadh                     | 24.677103  | 46.625145  | #80ffb4 |
| 84 | Wellington  | 70 Gien Road Kelburn .Wellington               | -41.288417 | 174.763033 | #80ffb4 |

This is a cluster of other embassies that have similarities between them and form their own hierarchy.

Let's visualize our clusters and the outliers together.



What if we have a certain number of clusters in mind, let's say we want to cluster our data into 4 clusters based on a certain knowledge previously known to us. We can use KMeans and see what the results are and visualize our new clusters. As we can see in general the result is quite consistent with the previous cluster.



#### 1.5. Discussion

The result of our cluster shows there are some similarities between the Indonesian Embassies. We based the similarities on venues around the embassies, although we could also based it on any other data according to the problem we are trying to solve. The conclusion of the result of an unlabeled data cluster like we have, usually ends out in the domain knowledge of our intended research in this case the staff on Indonesian Foreign Ministry. But the general audience also can enjoy the result with knowing that their embassies in Australia, Timor Leste and Papua Nugini are almost similar based on the venues around them compare with the embassies in south east asia. Majorities of the embassies in the south and east asia are alike in both clusters.

Another improvements we need to consider is to get get data about public venues such as embassy, government building, public services which usually common around an embassy. Unfortunately we couldn't get the data without resorting to paid services, which is beyond our reach at the moment.