

What is claimed:

1. A digital x-ray imaging device comprising:
 2. a top electrode layer;
 3. a dielectric layer under the top electrode layer;
 4. a sensor layer under the dielectric layer, comprising a photoconductive layer and a plurality of pixels, each pixel comprising a charge-collecting electrode;
 6. a thin film transistor readout matrix connected to the charge-collecting electrodes; and
 8. a variable power supply adapted to provide a range of voltages between the top electrode layer and the readout matrix.
1. The digital x-ray imaging device of claim 1 wherein the variable power supply comprises a programmable power supply.
1. The digital x-ray imaging device of claim 1 wherein the photoconductive layer comprises an element selected from the group consisting of: selenium, lead iodide, thallium bromide, indium iodide, and cadmium telluride.
1. The digital x-ray imaging device of claim 3 wherein the photoconductive layer is about 100 to about 1000 microns thick.
1. The digital x-ray imaging device of claim 4 wherein the photoconductive layer comprises a layer of selenium about 500 microns thick.

1 6. The digital x-ray imaging device of claim 1 wherein the power
2 supply is adapted to provide a range of voltages with at least approximately a 2:1
3 turndown ratio.

1 7. The digital x-ray imaging device of claim 5 wherein the power
2 supply is adapted to provide a range of voltages between about 1.5 kV and about 3.0
3 kV.

1 8. In a digital x-ray imaging device having a top electrode layer and
2 a readout matrix, the improvement comprising a variable power supply adapted to
3 provide a range of voltages between the top electrode layer and the readout matrix.

1 9. A method for providing a broad dynamic range for a digital x-ray
2 imaging device comprising a top electrode layer; a dielectric layer; a sensor layer
3 comprising a photoconductive layer and a plurality of pixels, each pixel comprising a
4 charge-collecting electrode; a thin film transistor readout matrix connected to the
5 charge-collecting electrodes; and a power supply for supplying a voltage between the
6 top electrode layer and the readout matrix; the method comprising varying the voltage
7 between the top electrode layer and the readout matrix to provide an acceptable signal-
8 to-noise ratio over a greater range of exposures than provided at a single voltage.

1 10. The method of claim 9 further comprising using the method for
2 non-destructive testing of one or more objects.

1 11. The method of claim 10 further comprising performing the non-
2 destructive testing on an object selected from the group consisting of: a printed circuit
3 board, a wax casting, a metal casting, a turbine blade, and a rocket cone.

1 12. The method of claim 9 comprising varying the voltage in a range
2 between about 1.5 kV and about 3.0 kV.

1 13. The method of claim 9 comprising using the digital imaging x-
2 ray device with a range of x-ray energies from about 10 KeV to about 10 MeV.

1 14. The method of claim 9 comprising providing a signal-to-noise
2 ratio of at least about 50.