

Giacomo Bighin

Università degli Studi di Padova

December 2, 2014

Plan of the talk

- Ultracold Fermi gases: condensate fraction for an unbalanced Fermi gas. Role of the fluctuations throughout the BCS-BEC crossover. (supervisor: prof. Luca Salasnich)
- A gauge approach to superfluid density in cuprates (prof. Pieralberto Marchetti)
- Other activities/future plans.

Ultracold Fermi gases (1/3)

- Ultracold gases: experimental observation of quantum properties of matter. Vortices in a superfluid, BEC.
- Bose-Einstein condensation (1995), degenerate Fermi gas and fermionic condensate (2003).
- Very clean experimental environment: control over the temperature, the number of particles, the interaction.

Ultracold Fermi gases (2/3)

Why are ultracold Fermi gases interesting? The fermion-fermion interaction can be tuned (using a Feshbach resonance), from weakly to strongly interacting: the **BCS-BEC crossover**.

BCS regime: coherence in momentum space.

BEC regime: coherence in coordinate space.

Ultracold Fermi gases (3/3)

Balanced Fermi gas

Polarized Fermi gas

Path integral and the partition function

$$\mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S[\psi,\bar{\psi}]}$$
$$S\left[\psi,\bar{\psi}\right] = \int_0^\beta d\tau \sum_{\mathbf{k}} \sum_{\sigma=\uparrow,\downarrow} \bar{\psi}_{\mathbf{k}\sigma}(\partial_\tau + \xi_{\mathbf{k}})\psi_{\mathbf{k}\sigma} + \frac{g}{\Omega} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} \bar{\psi}_{\mathbf{k}+\mathbf{q}\uparrow}\bar{\psi}_{-\mathbf{k}\downarrow}\psi_{-\mathbf{k}'+\mathbf{q}\downarrow}\psi_{\mathbf{k}'\uparrow}$$

- Hubbard-Stratonovich transformation, introducing the pairing field $\Delta(\mathbf{r}, \tau) \sim \bar{\psi}\psi$
- The fermionic variables are integrated out, the pairing field integration is replaced by the mean field approximation:

$$\Delta(\mathbf{r},\tau) = \Delta_0 + \delta(\mathbf{r},\tau)$$

• Gap equation/number equation:

$$\frac{\partial \Omega}{\partial \Delta_0} = 0$$
 $n = -\frac{\partial \Omega}{\partial \mu}\Big|_{T,\zeta}$ $\Omega = -\frac{1}{\beta} \ln Z$

Condensate fraction (1/2)

• Why? The condensate fraction is *the* fundamental signature of Bose-Einstein condensation: a finite fraction of particles occupying the ground state.

$$N_0 = 2\sum_{\mathbf{k}} u_{\mathbf{k}}^2 v_{\mathbf{k}}^2 = \sum_{\mathbf{k}} \frac{\Delta_0^2}{4E_{\mathbf{k}}^2}$$
 $E_{\mathbf{k}} = \sqrt{\left(\hbar^2 \frac{k^2}{2m} - \mu\right)^2 + \Delta_0^2}$

Condensate fraction (2/2)

Paper (published in J. Phys. B): a study of the condensate fraction across the BCS-BEC crossover for an unbalanced Fermi gas, in the uniform and trapped cases.

Journal of Physics B: Atomic, Molecular and Optical Physics

Journal of Physics B: Atomic, Molecular and Optical Physics > Volume 47 > Number 19

Pair condensation of polarized fermions in the BCS-BEC crossover

- G Bighin^{1,2}, G Mazzarella^{1,3}, L Dell'Anna^{1,3} and L Salasnich^{1,3,4}
 Show affiliations
- G Bighin et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 195302. doi:10.1088/0953-4075/47/19/195302 Received 5 May 2014, accepted for publication 21 August 2014. Published 24 September 2014. © 2014 IOP Publishina Ltd

I will briefly review the main results from this paper.

Condensate fraction for an unbalanced Fermi gas: theory

Figure: Condensate density profile $n_0(z)$ (solid line) and total density profile n(z) (dashed line) in the axial direction z for three different scattering lengths. From left to right: y = -0.44, y = 0.0, y = 0.11, where $y = (k_F a_s)^{-1}$ with $k_F = (3\pi^2 n(\mathbf{0}))^{\frac{1}{3}}$ and $n(\mathbf{0})$ the total density at the center of the trap. Number of atoms $N = 2.3 \times 10^7$ and polarization $P = (N_{\uparrow} - N_{\downarrow})/N = 0.2$. Here $a_z = \frac{1}{\sqrt{m\omega_z}}$ is the characteristic length of the axial harmonic confinement.

Condensate fraction for an unbalanced Fermi gas: theory vs. experiments

Figure: Condensate fraction ϕ as a function of the absolute value of the polarization $P = (N_{\uparrow} - \bar{N}_{\downarrow})/(N_{\uparrow} + N_{\downarrow})$ for two values of the dimensionless. interaction parameter $y = (k_F a_s)^{-1}$: y = -0.44 (open circles) and y = 0.0 (filled circles), T=0. y is a measure of the interaction strength $(y \gg 1$ corresponding to the deep-BEC regime, and $y \ll -1$ corresponding to the deep-BCS regime). Circles with error bars are experimental data of 6Li atoms taken from MIT experiment. Solid lines are our theoretical calculations for the trapped system.

The role of the fluctuations in the BCS-BEC crossover (1/2)

A natural extension consists of improving the mean-field theory with Gaussian fluctuations for the pairing field. (supervisor: Luca Salasnich, in collaboration with Flavio Toigo, Pieralberto Marchetti, Luca Dell'Anna)

We go back to the path integral formulation; now we retain the order parameter fluctuations up to Gaussian order:

$$\mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}ar{\psi}\mathcal{D}\Delta\mathcal{D}ar{\Delta}e^{-S[\psi,ar{\psi},\Delta,ar{\Delta}]} = \int \mathcal{D}\Delta\mathcal{D}ar{\Delta}e^{-eta F[\Delta,ar{\Delta}]}$$

The dynamics of the pairing field Δ are determined by the effective potential $F[\Delta, \bar{\Delta}]$

The role of the fluctuations in the BCS-BEC crossover (2/2)

The effective potential F reads (modulo a constant factor, note that g < 0):

$$F = -\frac{1}{\beta} \sum_{n} \sum_{\mathbf{k}} \log \left(1 + \frac{\Delta \bar{\Delta}}{\omega_n^2 + \xi_{\mathbf{k}}^2} \right) + \frac{V}{g} \Delta \bar{\Delta}$$

$$F^{(4)} \approx \frac{V}{g} \Delta \bar{\Delta} + \frac{7}{16} \zeta(3) \frac{\rho V}{(\pi T)^2} (\Delta \bar{\Delta})^2$$

In the broken symmetry phase $(T < T_c)$ we expect a phase (Goldstone) mode and an amplitude (Higgs) mode.

The Goldstone mode

• It is the usual Bogoliubov excitation spectrum:

$$\hbar\omega_{\mathbf{q}} = \sqrt{\frac{\hbar^2q^2}{2m}\left(\frac{\hbar^2q^2}{2m} + 2gn\right)}$$

• Beliaev decay: does it define a natural cutoff scale?

The Higgs mode

Higgs mode mass as a function of the interaction parameter $y = (k_F a_s)^{-1}$.

Open questions:

- Stability of the Higgs mode. Calculation of the decay width.
- Full spectrum.

High- T_c superconductivity in cuprates

Main reference: P. A. Marchetti, F. Ye, Z. B. Su, and L. Yu Phys. Rev. B 84, 214525

Cuprates: an overview (1/2)

- Superconducting cuprates: a class of superconducting materials with very high critical temperatures (up to 135 °K).
- Discovered in 1986 by J. G. Bednorz e K. A. Müller; Nobel prize awarded in 1987, the fastest in history.
- Very active research field: more than 100,000 research articles in ~ 25 years.
- Up to date, the microscopical mechanism behind SC in cuprates is not completely understood.

Figure: Unitary cell for La₂CuO₄.

Cuprates: an overview (2/2)

 Different chemical compositions (YBCO, LSCO, BSSCO) the only common chemical features being the CuO₂ planes. ⇒ The CuO₂ planes are believed to be the main seat of superconductivity.

- Dependence on doping and universality for the **phase diagram**.
- BCS theory can not account for SC in cuprates.

From the CuO_2 planes to the t/J model

CuO₂ planes in terms of Zhang-Rice singlets:

ZR: Doping-induced hole reside (primarily) on combinations of four oxygen p orbitals centered around a copper site.

From ZR singlets to the t/J model:

- Strong on-site repulsion (P_G)
- Nearest neighbour hopping $(t \approx 0.3 \,\text{eV})$
- Anti-ferromagnetic Heisenberg term $(J \approx 0.1 \text{ eV})$

$$H_{\mathrm{t/J}} = \sum_{\langle i,j \rangle} P_G \left[-t \sum_{\alpha} c_{i\alpha}^{\dagger} c_{j\alpha} + h.c. + J \mathbf{S}_i \cdot \mathbf{S}_j \right] P_G$$

"Doping a Mott insulator", P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 18 of 28

Spin-charge separation

The electron creation/annihilation operators are decomposed as follows:

$$\hat{c}_{i,\alpha} = \hat{s}_{i,\alpha} \hat{h}_i^{\dagger}$$

• \hat{h}_i is a spinless fermion (holon): the P_G constraint is where: automatically satisfied due to Pauli exclusion principle.

• $\hat{s}_{i,\alpha}$ is a spin $\frac{1}{2}$ boson (spinon).

Local invariance introduced by this process:

$$U(1)_{h/s} \begin{cases} \hat{s}_{i,\alpha} \longrightarrow \hat{s}_{i,\alpha} e^{i\phi(x)} \\ \hat{h}_{i} \longrightarrow \hat{h}_{i} e^{i\phi(x)} \end{cases}$$

Emergent U(1) gauge field: $A_{\mu} \approx s_{\alpha}^* \partial_{\mu} s_{\alpha} + \cdots$

Effective action

Effective action for the model:

- Holons are (formally) relativistic Dirac fermions.
- Spinons are described by a non-linear massive σ model, with $m \sim |\delta \ln \delta|$.
- The gauge field A_{μ} is minimally coupled to holons and spinons: it corresponds to the h/s symmetry: it provides a "gauge glue" between the two electron components.

 \longrightarrow we have an effective description of the t/J model in terms of holons and spinons.

Towards superconductivity

The electron has a composite structure: spinon + holon

Superconductivity is achieved in three stages:

- Holon pairing
- Spinon pairing
- Phase coherence

The pairing process

Figure: The attractive potential between the spinons, essential for the SC, is mediated by a gauge field "binding" holon and spinons, and by the holon attraction.

The superconductivity is achieved in **three steps**: holon pairing (T_{ph}) , spinon pairing (T_{ps}) , phase coherence (T_c) :

$$\Delta_c \sim \frac{|\Delta^s|}{|\Delta^h|} e^{\mathrm{i}(\overbrace{\phi_s - \phi_h}^{\equiv \phi})}$$

$$SC \Longleftrightarrow \langle \Delta_c \rangle \neq 0$$

The direct spinon-spinon interaction is repulsive, the gauge fluctuations play a key role.

Superfluid density

I studied the superfluid density within this model.

- Superfluid density (ρ_s) . $S_{\text{EFF}} = \frac{\rho_s}{2} \int d\tau d^d r (\nabla \theta)^2 + \cdots$
- Importance:
 - Lots of experimental data, $\rho_s \propto \lambda^{-2}$.
 - Very different from BCS.
 - Empirical relations (Uemura relation: $\rho_s(T=0) \propto T_c$).

Results:

• Summation formula (~ Ioffe-Larkin)

$$\rho_s = \frac{\rho_s^s \rho_s^h}{\rho_s^s + \rho_s^h}$$

• Very good agreement with experimental data. The critical exponent is exactly reproduced: $\rho_{\rm s} \sim \left|\frac{T-T_c}{T}\right|^{\frac{2}{3}}$ for $T \to T_c$

"A gauge approach to superfluid density in cuprates"

These results led to a paper (recently submitted); we also compared our theoretical model with experimental data.

Gauge approach to superfluid density in cuprates

P.A. Marchetti^{1,2} and G. Bighin^{1,2}

¹Dipartimento di Fisica e Astronomia "Galileo Galilei",

Università di Padova, Via Marzolo 8, 35131 Padova, Italy

²Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

(Dated: November 9, 2014)

We prove that a gauge approach based on a composite structure of the hole in hole-doped cuprates is able to capture analytically many features of the experimental data on superfluid density in the moderate-underdoping to optimal doping region, including critical exponent, Uemura relation and almost universality of the normalized superfluid density.

PACS numbers: 71.10.Hf, 71.27.+a, 11.15.-q, 74.25.-q, 74.72.Gh

Comparison with experimental data (1/3)

Figure: The normalized superfluid density vs. $\frac{T}{T_c}$. Our theoretical calculation (solid line, $\delta = 0.12$) is compared with a pure 3D XY model (dashed line), squares corresponding to the near-universal YBCO behavior for superfluid density, circles for $\delta = 0.075$ LSCO, triangles for near-optimal-doping BSCCO. The near-universal behavior of our ρ_s is shown in the inset.

Comparison with experimental data (2/3)

Figure: Uemura et al. (Phys. Rev. Lett. **62**, 2317 (1989)) observed strong linearity between $\rho_s(T=0)$ and T_c in underdoped cuprates $(0 \le \delta \le 0.15)$. Theoretically calculated T=0 superfluid density (solid line, arbitrary units) and critical temperature (dashed line) vs. δ exhibits an approximate Uemura.

Activities of the second year

- I spent a two months research period at University of Antwerp, Belgium, working with the Theory of quantum systems and complex systems (TQC) group. I gave a talk there.
- Conference: "Multi-Condensate Superconductivity and Superfluidity in Solids and Ultracold Gases", June 24-27, 2014, University of Camerino
- International School of Physics "Enrico Fermi": "Quantum Matter at Ultracold Temperatures", June 30-July 14, 2014, Varenna (LC)
- Last exam: "Processi stocastici e dinamica dei mercati" (A. Stella, F. Baldovin), due before the end of the year.

Thanks for your attention.

