Proposiciones matemáticas

¿Qué es una proposición?

Una *proposición* es una expresión bien definida, que puede ser verdadera (= 1) o falsa (= 0), pero NUNCA ambas al mismo tiempo.

Ejemplo 1.

p: El timer da miedo. Esta frase es un ejemplo de una expresión que **no está bien definida.** La razón es que depende de las preferencias de cada persona; a algunos les dará miedo y a otros no.

q: Hoy es viernes. Esta frase es un ejemplo de una proposición; es falsa.

¿Qué es una proposición abierta?

Una *proposición abierta* es una expresión que contiene una (o más) variable y que al ser sustituida con algún valor determinado, dicha expresión se «convierte» en una proposición.

Ejemplo 2.

p(x): x + 1 = 0. Por ejemplo, si x = 0 p es falsa y si x = -1 p es verdadera.

¿Qué es un conectivo lógica?

Un *conectivo lógico* es un operador que se utiliza para «conectar» dos (o más) proposiciones. Estos están representados por símbolos inequívocos. Son ejemplos de conectivos:

- la negación; símbolo: ¬p («no» o «not»)
- la conjunción; símbolo: $p \land q$ («y» o «and»)
- la disyunción; símbolo: $p \lor q$ («o» u «or»)
- la implicación; símbolo: $p \rightarrow q$ («si..., entonces...»)
- la doble implicación; símbolo: $p \leftrightarrow q$ («..., si y solo si, ...»)

Caracterización de los conectivos lógicos

Usamos tablas de verdad para caracterizar (describir) los conectivos lógicos.

Negación							
	p		-	p	/ ~p)	
	o			1	l		
	1			()		

Conjunción			Disyunción				
p	q	$p \wedge q$	_	p	q	$p \lor q$	_
o	О	О		o	o	О	٠
o	1	О		O	1	1	
1	О	О		1	o	1	
1	1	1		1	1	1	

Implicación				Doble implicación			
p	q	$p \rightarrow q$	_	p	q	$p \leftrightarrow q$	
0	O	1		0	0	1	
О	1	1		O	1	О	
1	O	О		1	0	О	
. 1	1	1		1	1	1	
			1,				

Caracterización de conectivos lógicos usando tablas de verdad

