Funzioni

Eugenio Animali

14 09 2022

Contents

1	Studio del Dominio 1.1 Simmetria	2 2
2	Intersezione con Assi	2
3	Studio del Segno	2
4	Comportamento agli Estremi 4.1 Continuitá 4.1.1 3 teoremi sulle funzioni continue 4.2 Discontinuitá 4.3 Forme Indeterminate 4.4 Infiniti e Infinitesimi 4.4.1 Gerarchia degli Infiniti 4.4.2 Ordine di Infinitesimi 4.5 Limiti Notevoli 4.6 Asintoti 4.6.1 Asintoto Orizzontale 4.6.2 Asintoto Obliquo	3 3 3 4 4 4 4 4 5 5
5	Studio Della Derivata Prima5.1 Punti di Non Derivabilitá	
6	Studio della Derivata Seconda	6

1 Studio del Dominio

Dalle Condizioni di Esistenza troviamo il Dominio:

$$\frac{g(x)}{h(x)} \to h(x) \neq 0 \tag{1}$$

$$\sqrt[n]{g(x)} \to g(x) \ge 0 \text{ se } n \text{ pari}$$
 (2)

$$\log_{f(x)}(g(x)) \to \begin{cases} f(x) > 0 \\ g(x) > 0 \end{cases}$$
(3)

E iniziamo il grafico mettendo nel grafico i punti di discontinuitá.

- Riga verticale trattegiata per discontinuitá
- zone oscurate per zone escluse dal dominio

1.1 Simmetria

Se il Dominio é simmetrico, la funzione potrebbe essere Pari o Dispari. Studio f(-x):

$$= f(x) \rightarrow \text{Pari}$$

 $= -f(x) \rightarrow \text{Dispari}$

2 Intersezione con Assi

Per definire il segno della funzione, dobbiamo definire delle zone dove la funzione rimane o sopra o sotto all'asse x, trovando i punti di confine tra queste zone. Una funzione puó cambiare segno solo in due casi:

- 1. Funzione definita a tratti \rightarrow basta riprendere i confini definiti dalla funzione stessa
- 2. passando per $I_x \to y = 0$

Tanto vale studiare anche $I_y \to x = 0$.

3 Studio del Segno

Ora possiamo studiare il segno. Ponendo $f(x) \ge 0$, troviamo la gamma di valori x dove la funzione é positiva o uguale a zero, e possiamo oscurare in quella gamma tutta la zona sotto l'asse x, perché sappiamo che f(x) non é negativa lí. Allo stesso modo possiamo oscurare la zona positiva, lá dove f(x) é negativa.

4 Comportamento agli Estremi

Vediamo come si comporta f(x) in ogni confine nel Dominio. Per confini definiti (dove il dominio presenta una parentesi quadra), basta sostituire il valore di x per trovare il punto di confine.

Per confini non definiti (dove il Dominio presenta una parentesi tonda) e per gli estremi infiniti, dobbiamo fare il limite per x.

4.1 Continuitá

$$y = f(x)$$
 é continua in $x_0 \in D$ se $\lim_{x \to x_0} f(x) = f(x_0)$

4.1.1 3 teoremi sulle funzioni continue

1. Teorema di Weierstrass

Se f é una funzione limitata e chiusa, esitono punti massimo e minimo.

2. Teorema dell'esistenza degli zeri

Se ho una funzione che ha i due estremi di segno opposto, la funzione passa per l'asse x

3. Teorema dei valori medi

Una fuzione chiusa e limitata assume almeno una volta tutti i valori intermedi tra il massimo e il minimo.

4.2 Discontinuitá

Quando si distacca la funzione, parliamo di discontinuitá. Vi sono 3 specie da differenziare seguendo queste regole:

- 1. la funzione esiste ma salta verticalmente. prima specie
- 2. la funzione tende ad infinito da una o due parti. seconda specie
- 3. c'é un buco nella funzione. basta dare un valore al buco per eliminare la discontinuitá. Eliminabile

4.3 Forme Indeterminate

Le Forme Indeterminate sono 7: $[+\infty - \infty, \frac{\infty}{\infty}, \frac{0}{0}, \infty \cdot 0, 0^0, \infty^0, 1^\infty]$

Si risolvono in diversi modi:

- ullet Per i polinomi con x che tende ad infinito, si estrae la massima potenza di x, e tutte le altre potenze di x tenderanno a zero.
- Per $\frac{0}{0}$, bisogna estrarre un fattore che sta nel numeratore e nel denominatore.
- Per $\frac{\infty}{\infty}$, si usa la legge di De L'Hopital per cui:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

4.4 Infiniti e Infinitesimi

f(x) é infinito per $x \to x_0$ se $\lim_{x \to x_0} f(x) = \infty$

$$f(x)$$
 é infinitesimo per $x \to x_0$ se $\lim_{x \to x_0} f(x) = 0$

4.4.1 Gerarchia degli Infiniti

per
$$x \to +\infty$$
 e $a > 0$:

$$log_a x < x^{\alpha} < a^x$$

4.4.2 Ordine di Infinitesimi

Studio $\lim_{x\to x_0} \frac{f(x)}{g(x)}$

Se viene 0, f(x) arriva prima.

Se viene n, hanno lo stesso ordine.

Se viene ∞ , g(x) arriva prima e ha ordine superiore.

4.5 Limiti Notevoli

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\sin x < x < \tan x$$

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\cos x < \frac{\sin x}{x} < 1$$

per a < b < c, se a e c tendono allo stesso numero,

anche b tenderá allo stesso numero.

2.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)}$$

$$\lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)}$$

$$\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x}$$

3.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2 (1 + \cos x)}$$

$$\lim_{x \to 0} \frac{\sin^2 x}{x^2 (1 + \cos x)}$$

$$\lim_{x \to 0} \frac{\sin^2 x}{x^2} \frac{1}{1 + \cos x}$$

4.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$

4.6 Asintoti

4.6.1 Asintoto Orizzontale

Cerchiamo un asintoto orizzontale.

$$y = \lim_{x \to \infty} f(x)$$

4.6.2 Asintoto Obliquo

Se non c'é orizzontale, possiamo cercare uno obliquo.

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
$$q = \lim_{x \to +\infty} [f(x) - mx]$$

5 Studio Della Derivata Prima

5.1 Punti di Non Derivabilitá

Bisogna studiare punti di non derivabilitá solo dove f é continua, perché non ha senso studiare la derivabilitá dove f non esiste. Studiamo i limiti destro e sinistro di ogni confine incluso nella definizione a tratti della derivata:

- 1. Flesso a Tg Verticale la tangente verticale non ha coefficiente angolare. I limiti destro e sinistro della derivata vanno a \pm infinito
- 2. Cuspide spigolo di curve per cui i limiti destro e sinistro vanno uno a+infinito e uno a-infinito
- 3. Punto Angoloso limiti destro e sinistro sono diversi e almeno uno non é infinito. si chiama cosí perché ha un angolo

Per trovare di quale si tratta facciamo i limiti sinistro e destro della derivata.

5.2 Andamento

studio
$$f'(x) \ge 0$$
 per trovare:
 $f'(x) > 0 \to$ Funzione Crescente
 $f'(x) < 0 \to$ Funzione Decrescente
 $f'(x) = 0 \to$ Punto Stazionario

- 1. Cresce, Punto Stazionario, Decresce \rightarrow Massimo Relativo (M)
- 2. Decresce, Punto Stazionario, Cresce \rightarrow Minimo Relativo (m)
- 3. Decresce, Punto Stazionario, Decresce→ Flesso Orizzontale
- 4. Cresce, Punto Stazionario, Cresce \rightarrow Flesso Orizzontale

6 Studio della Derivata Seconda

$$f''(x) > 0 \to \text{Concavitá verso l'Alto}$$

 $f''(x) < 0 \to \text{Concavitá verso il Basso}$
 $f''(x) = 0 \to \text{Flesso (Cambio di Concavitá)}$

$$\lim_{x \to \infty} \frac{x}{\sin x} = 1$$