R per l'analisi statistica multivariata

Unità G: analisi descrittiva dei dati TITANIC

Tommaso Rigon

Università Milano-Bicocca

Unità G

Argomenti affrontati

- Dati qualitativi
- Tabelle di contingenza
- Distribuzioni condizionate
- Indipendenza e indice di connessione χ^2
- Esercizi R associati: https://tommasorigon.github.io/introR/exe/es_2.html

Descrizione del problema

- Dopo il disastro del Titanic, una commissione d'inchiesta del British Board of Trade ha compilato una lista di tutti i 1316 passeggeri includendo le seguenti aggiuntive:
 - l'esito (salvato, non salvato)
 - la classe (I, II, III) in cui viaggiavano
 - il sesso, l'età, etc.
- In questa unità ci limitiamo a considerare le informazioni sull'esito e la classe.
- Nota. Ovviamente, si tratta degli stessi dati considerati nell'unità O del corso Statistica I.

l dati grezzi (editor d<u>i testo)</u>

```
"Salvato", "Classe"
"Si","I"
"Si","I"
"Si","I"
"Si","I"
"Si", "I"
"Si","I"
"Si","I"
"Si", "I"
"Si","I"
"Si","I"
"Si","I"
"Si","I"
"Si", "I"
"Si","I"
"Si","I"
"Si","I"
"Si","I"
```

Importazione dei dati titanic

- Come fatto in precedenza, anzitutto è necessario scaricare il file titanic.csv e salvarlo nel proprio computer.
- Link al file: https://tommasorigon.github.io/introR/data/titanic.csv.
- In alternativa, possiamo scaricare il file direttamente da internet nel modo seguente:

Le frequenze assolute e relative (marginali)

Possiamo ottenere le frequenze assolute (marginali) delle due variabili usando il comando summary:

 Ovviamente, possiamo ottenere le frequenze assolute e relative anche usando il comando table. Ad esempio per la variabile classe, possiamo

```
freq_abs_classe <- table(titanic$Classe)
freq_rel_classe <- freq_abs_classe / sum(freq_abs_classe)
tab_summary <- cbind(freq_abs_classe, freq_rel_classe)
tab_summary
# freq_abs_classe freq_rel_classe
# I 325 0.2469605
# II 285 0.2165653
# III 706 0.5364742</pre>
```

Frequenze congiunte

- Una sintesi che possiamo operare consiste nel costruire una tabella, detta tabella di contingenza oppure tabella a doppia entrata.
- In R si usa anche in questo caso il comando table, con due argomenti:

■ In questa tabella sono riportate le frequenze congiunte, ad esempio, il valore 203 rappresenta il numero di passeggeri che viaggiavano in I classe e che sono sopravvissuti.

Tabella di contingenza

- Siano x ed y due variabili aventi modalità c_1, \ldots, c_h e d_1, \ldots, d_k , rispettivamente.
- Una tabella di contingenza (a due variabili) per le coppie di dati $(x_1, y_1), \ldots, (x_n, y_n)$ si presenta nella seguente forma:

Variabile x	d_1	 d_j	 d_k	Totale
<i>c</i> ₁	n ₁₁	 n_{1j}	 n_{1k}	n_{1+}
:	:	÷	:	:
Ci	n _{i1}	 n _{ij}	 n _{ik}	n_{i+}
•	:	:	:	:
C_h	n_{h1}	 n_{hj}	 n_{hk}	n_{h+}
Totale	n ₊₁	 n_{+j}	 n_{+k}	n

■ La frequenza n_{ij} è il numero di unità statistica che presentano contemporaneamente le modalità c_i e d_i .

Tabella di contingenza, frequenze relative

■ Dividendo per *n* ciascun termine della precedente tabella, si ottiene inoltre:

Variabile x	d_1	 riabile d _j	 d_k	Totale
<i>C</i> ₁	f ₁₁	 f_{1j}	 f_{1k}	f_{1+}
:	:	:	:	:
Ci	f _{i1}	 f_{ij}	 f_{ik}	f_{i+}
:	:	:	:	:
Ch	f_{h1}	 f_{hj}	 f_{hk}	f_{h+}
Totale	f_{+1}	 f_{+j}	 f_{+k}	1

■ La frequenza relativa $f_{ij} = n_{ij}/n$ è quindi la frazione di osservazioni che presentano contemporaneamente le modalità c_i e d_j .

Frequenze congiunte & marginali

■ Le tabelle descritte nelle slides precedenti si ottengono in R come segue:

addmargins(tab) # Aggiunge le distribuzioni marginali (assolute)

```
Sum
             167
                       817
   No
   Si
        203
             118
                  178 499
   Sum 325
             2.85
                  706 1316
tab rel <- prop.table(tab) # Comando alternativo: table(tab) / sum(tab)
tab rel
                  II
#
   No 0.09270517 0.12689970 0.40121581
#
   Si 0.15425532 0.08966565 0.13525836
addmargins(tab_rel) # Aggiunge le distribuzioni marginali relative
#
                                               Sum
   No 0.09270517 0.12689970 0.40121581 0.62082067
#
   Si 0.15425532 0.08966565 0.13525836 0.37917933
    Sum 0.24696049 0.21656535 0.53647416 1.00000000
```

Distribuzioni condizionate I

Distribuzione condizionata $(x \mid y = d_i)$

■ La j-esima colonna mostra la distribuzione di x condizionata ad $y = d_j$ oppure, equivalentemente, la distribuzione di x dato $y = d_j$.

Distribuzione $x \mid y = d_j$	<i>c</i> ₁	 Ci	 Ch	Totale
Frequenze assolute Frequenze relative	n_{1j} n_{1j}/n_{+j}	 n_{ij} n_{ij}/n_{+j}	 $n_{hj} \over n_{hj}/n_{+j}$	n_{+j}

Distribuzione condizionata $(y \mid x = c_i)$

■ La *i*-esima colonna mostra la distribuzione di y condizionata ad $x = c_i$ oppure, equivalentemente, la distribuzione di y dato $x = c_i$.

Distribuzione $y \mid x = c_i$	d_1	 d_{j}	 d_k	Totale
Frequenze assolute Frequenze relative	n_{i1} n_{i1}/n_{i+}	 $n_{ij} \ n_{ij}/n_{i+}$	 $n_{ik} \ n_{ik}/n_{i+}$	$egin{pmatrix} n_{i+} \ 1 \end{pmatrix}$

Distribuzioni condizionate II

- Il comando prop.table consente anche di calcolare le frequenze condizionate relative.
- La distribuzione di ciascuna classe, condizionata all'esito è:

La distribuzione di ciascun esito, condizionata alla classe è:

Esercizio di riepilogo

■ Le contingenze sono pari alla differenza tra frequenze osservate e frequenze attese, sotto l'ipotesi di indipendenza:

(contingenza_{ii}) =
$$n_{ij} - \hat{n}_{ij}$$
, $i = 1, ..., h$, $j = 1, ..., k$.

- Si consulti l'unità O di Statistica I per la definizione di frequenze attese.
- Indice χ^2 di Pearson. L'indice di connessione χ^2 è definito come

$$\chi^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}} = n \left(\sum_{i=1}^h \sum_{j=1}^k \frac{f_{ij}^2}{f_{i+}f_{+j}} - 1 \right).$$

■ Nota. Si scriva una funzione R chiamata chi_squared(x, y) che calcola l'indice χ^2 di Pearson.

Soluzione

■ La soluzione seguente fa uso sia delle funzioni apply e outer.

```
chi squared <- function(x, y) {
 nn <- table(x, y)
 n \le sum(nn)
 ff <- nn / n
 f_x <- apply(ff, 1, sum)</pre>
 f v <- apply(ff, 2, sum)
 f_e <- outer(f_x, f_y) # Prodotto "esterno" tra vettori
 n * (sum(ff^2 / f e) - 1)
chi squared(titanic$Salvato, titanic$Classe)
# [1] 133.052
chisq.test(table(titanic$Salvato, titanic$Classe))
         Pearson's Chi-squared test
# data: table(titanic)
# X-squared = 133.05, df = 2, p-value < 2.2e-16
```

■ Si noti che la funzione chisq.test produce lo stesso risultato.