Identification of the Curie Temperature Distribution from Temperature Dependent Magnetisation Data

Jonathon Waters¹, Hans Fangohr¹, Denis Kramer¹, Andreas Berger² and Ondrej Hovorka¹

¹Engineering and the Environment, University of Southampton, UK ²Somewhere

Introduction

In HAMR¹:

 $ightharpoonup T_C$ distribution affects the noise performance.

In Magnetic Hyperthermia²:

► Low T_C reduces tissue damage.

Ângela Andrade, Roberta Ferreira, José Fabris and Rosana Domingues (2011). Coating Nanomagnetic Particles for Biomedical Applications

Dieter Weller et al. "A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in". In: IEEE

²I Apostolova and JM Wesselinowa. "Possible low-TC nanoparticles for use in magnetic hyperthermia treatments". In: *Solid State Communications* 149,25 (2009), pp. 986–990

Finite Sized T_C

Correlation length $\propto |T-T_C^b|^{u}$ Grain size, $D \propto |T_C(D)-T_C^b|^{u}$

$$f_D(D) \Longrightarrow f_{T_C}(T_C)$$

Previous Methods

2 Types:

- ► Explicit measurement of individual grains.³
- ► Implicit calculation using global measurements.⁴
 - ► Single measurement with magnetometer
 - ► Integral measure
 - ► Uses bulk relations

³ Simone Pisana et al. "Curie temperature distribution in FePt granular media". In: Magnetics, IEEE

⁴Andreas Berger et al. "Critical exponents of inhomogeneous ferromagnets". In: *Journal of applied physics* 91.10 (2002), pp. 8303–8305

Objectives

- ▶ Develop a method to identify the T_C distribution which incorporates the finite size effects of the individual grains.
- ► Test this method against benchmark data in order to verify it's effectiveness for different distributions.

Our Method

EPSRC
Engineering and Physical Science
Research Council

Southampton

Aggregate Magnetisation:

$$M(T) = M_0 \int_0^\infty D^d m(D, T) f_D(D) dD$$

Scaling Ansatz:

$$m(D,T) \propto D^{-\beta/
u} \mu \left(D^{1/
u} rac{T - T_C^b}{T_C^b}
ight)$$

Change of Variables:

$$D=d_{
m o}\left(rac{t}{T_C^b}
ight)^{-
u} \quad t\equiv T_C^b-T_C(D)$$

Final Result:

$$M(T) = M_{\mathrm{o}}^* \int_{\mathrm{o}}^{T_C^b} t^{-d
u + eta} \mu\left(d_{\mathrm{o}}^{rac{1}{
u}} rac{T - T_C^b}{t}
ight) f_t(t) dt$$

2.6

 J/k_B

Finding f_t

$$M(T) = M_{\mathrm{o}}^* \int_{\mathrm{o}}^{T_C^b} t^{-d
u + eta} \mu\left(d_{\mathrm{o}}^{rac{1}{
u}} rac{T - T_C^b}{t}
ight) f_t(t) dt$$

- \blacktriangleright M(T): To be fitted
- d, ν, β, μ : Known information about the material
- $ightharpoonup d_0, T_C^b$: May be known, otherwise taken from fit
- $ightharpoonup M_0^*, f_t [\bar{t}, \sigma_t]$: Taken from the fit

Test Case: 2D Ising Model

Southampton

Used 2D Ising model as a benchmark:

- ► Easilly simulated
- Analytical results for β , ν , T_C^b ...

Tested against different f_D :

- ightharpoonup All mean $\bar{D} = 100$
- ► Standard deviation $\sigma_D = 10, 20, 30, 40$

Test Case: 2D Ising Model

Introduce constraint from:

$$D=d_{
m o}\left(rac{t}{T_C^b}
ight)^{-\iota}$$

$$\sigma_t^2 \Rightarrow \sigma_t^2 = \overline{t}^2 \left(\left(1 + rac{\sigma_D^2}{ar{D}^2}
ight)^{1/
u^2} - 1
ight)$$

Works much better!

Conclusions

- ightharpoonup Presented a universal method to find size dependent T_C distribution.
- ► Based upon fitting ensemble magnetisation:

$$M(T) = M_0^* \int_0^{T_C^b} t^{-d
u + eta} \mu \left(d_0^{rac{1}{
u}} rac{T - T_C^b}{t}
ight) f_t(t) dt$$

▶ Successfully tested against different size distributions f_D , given certain constraints.

Acknowledgements

In the completion of this work, we acknowledge financial support from the EPSRC Centre for Doctoral Training grant EP/Loo6766/1.

We also acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton.

Contact: J.M.Waters@soton.ac.uk