Estimation by the EM algorithm

Yun-Hsiang Chan

June 2021

A commonly used method of finding maximum-likelihood estimates of HMMs is the EM algorithm. The tools we need to do so are the forward and the backward probabilities.

I. Forward and backwward probabilities

Recall the row vector α_t , for t = 1, 2, ..., T as follows:

$$\alpha_t = \delta P(x_1) \Gamma P(x_2) ... \Gamma P(x_t) = \delta P(x_1) \prod_{s=2}^t \Gamma P(x_s)$$

with δ denoting the initial distribution of the Markov chain. We have referred to the elements of α_t as **forward probabilities**, but we have not yet justified their description as probabilities.

 $\alpha_t(j)$, the jth component of α_t , is indeed a probability, the joint probability $Pr(X_1 = x_1, X_2 = x_2, ..., X_t = x_t, C_t = j)$.

We shall also need the vector of **backward probabilities** β_t which , for t = 1, 2, ..., T is defined by

$$\beta'_t = \Gamma P(x_{t+1}) \Gamma P_{x_{t+2}} ... \Gamma P(x_T) 1' = (\Pi_{s=t+1}^T \Gamma P(x_s)) 1'$$

with the convention that an empty product is the identity matrix; the case t=T therefore yields $\beta_T=1$.

 $\beta_t(j)$, the jth component of β_t , can be identified as the conditional probability $Pr(X_{t+1} = x_{t+1}, ..., X_T = x_T | C_t = j)$.

It will then follow that, for t = 1, ..., T

$$\alpha_t(j)\beta_t(j) = Pr(X^{(T)} = x^{(T)}, C_t = j)$$

Proof. Since $\alpha_1 = \delta \mathbf{P}(x_1)$, we have

$$\alpha_1(j) = \delta_i p_i(x_1) = \Pr(C_1 = j) \Pr(X_1 = x_1 \mid C_1 = j),$$

hence $\alpha_1(j) = \Pr(X_1 = x_1, C_1 = j)$; that is, the proposition holds for t = 1. We now show that, if the proposition holds for some $t \in \mathbb{N}$, then it also holds for t + 1:

$$\alpha_{t+1}(j) = \sum_{i=1}^{m} \alpha_{t}(i)\gamma_{ij}p_{j}(x_{t+1}) \quad (\text{see } (4.3))$$

$$= \sum_{i} \Pr(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_{t} = i) \Pr(C_{t+1} = j \mid C_{t} = i)$$

$$\times \Pr(X_{t+1} = x_{t+1} \mid C_{t+1} = j)$$

$$= \sum_{i} \Pr(\mathbf{X}^{(t+1)} = \mathbf{x}^{(t+1)}, C_{t} = i, C_{t+1} = j) \quad (4.4)$$

$$= \Pr(\mathbf{X}^{(t+1)} = \mathbf{x}^{(t+1)}, C_{t+1} = j),$$

as required. The crux is the line numbered (4.4); equation (B.1) provides the justification thereof. $\hfill\Box$

Figure 1: Proof of Proposition 1

1. Forward probabilities

It follows immediately from the definition of α_t that , for t=1,...,T-1, $\alpha_{t+1}=\alpha_t\Gamma P(x_{t+1})$ or, in scalar form,

$$\alpha_{t+1}(j) = (\sum_{i=1}^{m} \alpha_t(i)\gamma_{ij})p_j(x+1)$$

Proposition 1

For t = 1, ..., T and j = 1, ..., m

$$\alpha_t(j) = Pr(X^{(t)} = x^{(t)}, C_t = j)$$

The proof is in Figure 1.

2. Backward probabilities

It follows immediately from the definition of β_t that $\beta_t' = \Gamma P(x_{t+1})\beta_{t+1}'$, for t = 1, ..., T-1

Proposition 2

For t = 1, ..., T - 1, and i = 1, 2, ..., m

$$\beta_t(i) = Pr(X_{t+1} = x_{t+1}, X_{t+2} = x_{t+2}, ..., X_T = x_T | C_t = i)$$

provided that $Pr(C_t = i) > 0$. In a more compact notation,

$$\beta_t(i) = Pr(X_{t+1}^T = x_{t+1}^T | C_t = i)$$

where X_a^b denotes the vector $(X_a, X_{a+1}, ..., X_b)$

This proposition identifies $\beta_t(i)$ as a conditional probability: the probability of the observations being $x_{t+1}, ..., x_T$, given that the Markov chain is in state i at time t.

The entire proof is in the textbook.

3. Properties of forward and backward probabilities

We now establish a result relating the forward and backward probabilities $\alpha_t(i)$ and $\beta_t(i)$ to the probabilities $Pr(X^{(T)} = x^{(T)}, C_t = i)$. This we shall use in applying the EM algorithm to HMMs, and in local decoding.

Proposition 3

For t = 1, ..., T and i = 1, ..., m

$$\alpha_t(i)\beta_t(i) = Pr(X^{(T)} = x^{(T)}, C_t = i)$$

and consequently $\alpha_t \beta_t' = Pr(X^{(T)} = x^{(T)} = L_T)$, for each such t.

Proposition 5

Firstly, for t = 1, ..., T

$$Pr(C_t = j | X^{(T)} = x^{(T)}) = \alpha_t(j)\beta_t(j)/L_T$$

and secondly, for t = 2, ..., T

$$Pr(C_{t-1} = j, C_t = k | X^{(T)} = x^{(T)}) = \alpha_{t-1}(j)\gamma_{jk}p_k(x_t)\beta_t(k)/L_T$$

II. The EM algorithm

Since the sequence of states occupied by the Markov-chain component of an HMM is not observed, a natural approach to parameter estimation in HMMs is to treat those states as missing data and to employ the EM algorithm for finding maximum likelihood estimates of the parameters.

2.1 EM in general

The EM algorithm is an iterative method for performing maximum likelihood estimation when some of the data are missing, and exploits the fact that the complete-data log-likelihood may be staightforward to maximize even if the likelihood of ther obserd data is not.

- E Step

Compute the conditional expectations of the missing data given the observations and given current estimate of θ .

- M step

Maximize, with respect to θ , the CDLL with the functions of the missing data replaced in it by their conditional expectations.

2.2 EM for HMMs

In the case of an HMM it is convenient to represent the sequence of states $c_1, ..., c_T$ followed by the Markov chain by the zero-one random variables defined as follows:

$$u_i(t) = 1$$
 if and only if $c_t = j$ $(t = 1, ..., T)$

and

$$v_{jk}(t) = 1$$
 if and only if $c_{t-1} = j$ and $c_t = k$ $(t = 2, ..., T)$

With this notation, the CDLL of an HMM is given by

$$log(Pr(x^{(T)}, c^{(T)})) = log(\delta_{c1} \Pi_{t=2}^{T} \gamma_{c_{t-1}, c_t} \Pi_{t=1}^{T} p_{c_t}(x_t))$$
(1)

$$= \log \delta_{c_1} + \sum_{t=2}^{T} \log \delta_{c_{t-1}, c_t} + \sum_{t=1}^{T} \log p_{c_t}(x_t)$$
 (2)

$$= \sum_{j=1}^{m} u_j(1) \log \delta_j + \sum_{j=1}^{m} \sum_{k=1}^{m} (\sum_{t=2}^{T} v_{jk}(t)) \log \gamma_{jk} + \sum_{j=1}^{m} \sum_{t=1}^{T} u_j(t) \log p_j(x_t)$$

$$= term1 + term2 + term3 \tag{4}$$

- E step

Replace all the quantities $v_{jk}(t)$ and $u_j(t)$ by their conditional expectations given the observations $x^{(T)}$

$$\hat{u_j}(t) = Pr(C_t = j|x^{(T)}) = \alpha_t(j)\beta_t(j)/L_T$$

and

$$\hat{v_{jk}}(t) = Pr(C_{t-1} = j, C_t = k|x^{(T)}) = \alpha_{t-1}(j)\gamma_{jk}p_k(x_t)\beta_t(k)/L_T$$

- M step

Having replace $v_{jk}(t)$ and $u_j(t)$ by the estimates, maximize the CDLL with respect to the three sets of parameters: the initial distribution δ , the t.p.m Γ and the parameters of the state-dependent distributions (e.g. $\lambda_1, ..., \lambda_m$)

The M step splits neatly into three separate maximizations, since term 1 depends on only δ , term 2 on the t.p.m Γ , and term 3 on the 'state-dependent

parameters'. We must therefore maximize:

- 1. $\sum_{j=1}^{m} \hat{u_j}(1) \log \delta_j$ with respect to δ
- 2. $\sum_{j=1}^{m}\sum_{k=1}^{m}(\sum_{t=2}^{T}\hat{v_{jk}}(t))$ with respect to Γ
- 3. $\sum_{j=1}^{m} \sum_{t=1}^{T} \sum_{t=2}^{T} \hat{u_j}(t) \log p_j(x_t)$ with respect to state-dependent parameters

- The solutions is as follows: 1. Set $\delta_j = \hat{u_j}(1)/\sum_{j=1}^m \hat{u_j}(1) = \hat{u_j}(1)$
- 2. Set $\gamma_{jk} = f_{jk} / \sum_{k=1}^{m} f_{jk}$, where $f_{jk} = \sum_{t=2}^{T} \hat{v_j} k(t)$.
- 3. The maximization of the third term may be easy or difficult, depending on the nature of the state-dependent distributions assumed. It is essentially the standard prblem of maximum likelihood estimation for the distributions concerned.