Lecture 3 First-Order Logic

Zvonimir Rakamarić University of Utah

Last Time

- Propositional logic
- DPLL algorithm
 - Used in modern SAT solvers

This Time

- Encoding a problem into SAT
 - Homework assignment 1
- First-order logic
- ▶ Reading: Chapter 2

Basic Verifier Architecture

First-Order Logic (FOL)

- Extends propositional logic with predicates, functions, and quantifiers
 - More expressive than PL
 - Suitable for reasoning about computation
- Examples
 - The length of one side of a triangle is less than the sum of the lengths of the other two sides
 - $\forall x, y, z. triangle(x, y, z) \rightarrow len(x) < len(y) + len(z)$
 - All elements of array A are 0

$$\forall i. \ 0 \leq i \land i < size(A) \rightarrow A[i] = 0$$

Syntax

```
variables x, y, z,...
constants a, b, c, ...
functions f, g, h, ...
           variables, constants, or n-ary function
terms
            applied to n terms as arguments
predicates p, q, r, ...
           \top, \bot, or n-ary predicate applied to n
atom
            terms
literal
           atom or its negation
```

Syntax cont.

formula

literal, application of a logical connective $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ to formulae, or application of a *quantifier* to a formula

- Quantifiers
 - Existential: $\exists x. \ F[x]$ "there exists an x such that F[x]"
 - Universal: ∀x. F[x]
 "for all x, F[x]"

 $\forall x. \ p(f(x),x) \rightarrow (\exists y. \ p(f(g(x,y)),g(x,y))) \land q(x,f(x))$

Semantics

- An interpretation $I:(D_l,\alpha_l)$ is a pair
 - \triangleright Domain D_I
 - Non-empty set of values or objects
 - Assignment α_l maps
 - ▶ each variable x into value $x_i \in D_i$
 - ▶ each n-ary function f into $f_i: D_i^n \to D_i$
 - ▶ each n-ary predicate p into $p_i: D_i^n \rightarrow \{\text{true, false}\}$
 - Boolean connectives evaluated as in propositional logic

```
F: p(f(x,y),z) \rightarrow p(y,g(z,x))

Interpretation I: (D_I,\alpha_I) with D_I = \mathbb{Z} = \{...,-2,-1,0,1,2,...\} (integers) \alpha_I: \{f\mapsto +, g\mapsto -, p\mapsto >\}

F_I: x+y>z \rightarrow y>z-x

\alpha_I: \{x\mapsto 13, y\mapsto 42, z\mapsto 1\}

F_I: 13+42>1 \rightarrow 42>1-13
```

Compute the truth value of F under I

- 1. $I \models x + y > z$ since 13 + 42 > 1
- 2. $l \models y > z x$ since 42 > 1 13
- 3. $I \models F$ follows from 1, 2, and \rightarrow

F is true under I

Semantics of Quantifiers

- x-variant of interpretation $I:(D_I,\alpha_I)$ is an interpretation $J:(D_I,\alpha_I)$ such that
 - $D_I = D_J$
 - $\alpha_I[y] = \alpha_J[y]$ for all symbols y, except possibly xI and J agree on everything except maybe the value of x
- ▶ Denote $J: I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then
 - ▶ $I \models \forall x.F$ iff for all $v \in D_I$, $I \triangleleft \{x \mapsto v\} \models F$
 - ▶ $I \models \exists x.F$ iff there exists $v \in D_I$ such that $I \triangleleft \{x \mapsto v\} \models F$

For $D_I = \mathbb{Q}$ (set of rational numbers), consider $F: \forall x. \ \exists y. \ 2 * y = x$

Compute the value of F₁:

Let

 $J_1: I \triangleleft \{x \mapsto v\}$ be x-variant of I $J_2: J_1 \triangleleft \{y \mapsto v/2\}$ be y-variant of J_1 for $v \in \mathbb{Q}$.

Then

- 1. $J_2 \models 2 * y = x$ since 2 * v/2 = v
- 2. $J_1 \models \exists y. \ 2 * y = x$
- 3. $I \models \forall x$. $\exists y$. 2 * y = x since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

- ▶ F is satisfiable iff there exists I such that $I \models F$
- F is valid iff for all I, $I \models F$

F is valid iff $\neg F$ is unsatisfiable

▶ FOL is undecidable

- There does not exist an algorithm for deciding if a FOL formula F is valid/unsat
 - ▶ I.e., that always halts and returns "yes" if F is valid/unsat or "no" if F is invalid/sat.

▶ FOL is semi-decidable

There is a procedure that always halts and returns "yes" if *F* is valid, but may not halt if *F* is invalid.

Semantic Argument Method

- For proving validity of F in FOL
- Assume F is not valid and I is a falsifying interpretation: I ⊭ F
- Exhaustively apply proof rules
 - If no contradiction reached and no more rules are applicable
 - F is invalid
 - If in every branch of proof a contradiction reached
 - ▶ F is valid

Proof Rule

- Consists of:
 - Premises (one or more)
 - Deductions (one or more)
- Application
 - Match premises to existing facts and form deductions
 - Branch (fork) when needed
- ▶ Example proof rules for ∧

Proof Rules for Propositional Part I

$$\frac{I \models \neg F}{I \not\models F}$$

$$\frac{I \models \neg F}{I \not\models F} \qquad \frac{I \not\models \neg F}{I \models F}$$

$$\begin{array}{c|c}
I & \models F \land G \\
\hline
I & \models F \\
I & \models G
\end{array}$$

$$\begin{array}{c|cccc} I & \not \models & F \lor G \\ \hline I & \not \models & F \\ I & \not \models & G \end{array}$$

Proof Rules for Propositional Part II

$$\begin{array}{c|cc}
I & \models & F \\
\hline
I & \not\models & F \\
\hline
I & \models & \bot
\end{array}$$

Proof Rules for Quantifiers

$$\frac{I \models \forall x. F}{I \triangleleft \{x \mapsto \mathsf{v}\} \models F} \quad \text{for any } \mathsf{v} \in D_I$$

$$\frac{I \not\models \forall x. \ F}{I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F}$$

for a fresh $v \in D_I$

 $\frac{I \models \exists x. F}{I \triangleleft \{x \mapsto \mathsf{v}\} \models F} \quad \text{for a } \mathit{fresh} \; \mathsf{v} \in D_I$

any – usually use v introduced earlier in the proof

fresh – use *v* that has not been previously used in the proof

$$\frac{I \not\models \exists x. \ F}{I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F}$$

for any $v \in D_I$

 $F: (p \land q) \rightarrow (p \lor \neg q)$

$$F: (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$$

 $F: p(a) \rightarrow \exists x. \ p(x)$

 $F: (\forall x. \ p(x)) \leftrightarrow (\neg \exists x. \ \neg p(x))$

Next Lecture

- Issues with FOL
 - Validity in FOL is undecidable
 - Too general
- First-order logic theories
 - Often decidable fragments of FOL suitable for reasoning about particular domain
 - Equality
 - Arithmetic
 - Arrays