Integrating R with GIS for Statistical Geocomputing

Jannes Muenchow

Contents

Cadmium concentration (mg kg-1 soil)

- 1. R as a GIS
- 2. R-GIS bridges
- 3. R/GIS use cases
- 4. RQGIS, RSAGA, rgrass7

Brenningsetoal. 1(2006):18 and slide sousceptibility near highways.

Contents

Cadmium concentration (mg kg-1 soil)

- 1. R as a GIS
- 2. R-GIS bridges
- 3. R/GIS examples
- 4. RQGIS, RSAGA, rgrass7

Brenningsetcal. (2005): 1keandslide sousceptibility near highways.

Contents

Cadmium concentration (mg kg-1 soil)

- 1. R as a GIS
- 2. R-GIS bridges
- 3. R/GIS examples
- 4. RQGIS, RSAGA, rgrass7

Brenningsetoal. 1(2006):18 and slide sousceptibility near highways.

RASAGIS

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.h
 tml)
- Package rgdal for importing and exporting geodata

http://r-spatial.org//2016/11/29/openeo.html

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.h
 tml)
- Package rgdal for importing and exporting geodata
- Packages sp and sf for vector geodata

Cadmium concentration (mg kg-1 soil)

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.h
 tml)
- Package rgdal for importing and exporting geodata
- Packages sp and sf for vector geodata
- Package raster for raster geodata

- 10 - 5 - 0 - -5 - -10

January minimum temperatures

Data: http://www.worldclim.org/.

10

15

20

25

30

20

40

Interactive map handling

 Interactive visualization through mapview (based on leaflet)

Defining a GIS as a system for the analysis, manipulation and visualization of geographical data (Longley, Goodchild, Maguire, and Rhind 2011), one could argue that R has become a GIS

But what about...

(digitizing)

http://www.unioneag.org

(Geodatabase-functionality and topology rules)

Computationally demanding operations

seit 1558

 Computationally demanding operations

Missing geoalgorithms

- Catchment area
- Catchment slope
- Saga Wetness Index
- Lidar processing
- ...

SAGA wetness index (Mt. Mongón)

Interface

R has been designed from the beginning as an interactive interface to other software packages (Chambers, 2016).

GIS interfaces

http://www.geocomputation.org/2000/GC009/Gc009.htm

R-GIS bridges

RSAGA

rgrass7

GIS-R bridges

Figure taken from Roger Bivand's GeoStats 2016 presentation: http://spatial.nhh.no/misc/geostat_talk16.zip

GIS-R bridges – QGIS & ArcGIS

Processing Toolbox Search... > Recently used algorithms > \$\text{\$\text{in}} \text{ GDAL/OGR [45 geoalgorithms]} GRASS commands [160 geoalgorithms] > \$\psi\$ GRASS GIS 7 commands [148 geoalgorithms] > 4 Models [0 geoalgorithms] > Orfeo Toolbox (Image analysis) [99 geoalgorithms] R scripts [2 geoalgorithms] ▼ Tools R Create new R script @ Get R scripts from on-line scripts collection ✓ User R scripts @ ggplot scatterplot Histogram Scripts [0 geoalgorithms] TauDEM (hydrologic analysis) [20 goodgorithms] Advanced interface

https://www.r-bloggers.com/combining-arcgis-and-r-clustering-toolbox/

GIS-R bridges - **GRASS**


```
😵 GRASS GIS 7.2.1 Ebenen-Manager
Datei Einstellungen Raster Vektor Bildverarbeitung 3D raster Datenbank Temporal Hilfe
 Rterm (64-bit)
                                                                      П
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
During startup - Warning messages:

    Setting LC CTYPE=de DE.cp1252 failed

2: Setting LC COLLATE=de DE.cp1252 failed
3: Setting LC TIME=de DE.cp1252 failed
4: Setting LC_MONETARY=de_DE.cp1252 failed
> library("rgrass7")
Loading required package: sp
Loading required package: XML
GRASS GIS interface loaded with GRASS version: GRASS 7.2.1 (2017)
and location: newLocation
```


R-GIS BRIDGES

Why (R)QGIS?

- One of the most-widely used Desktop GIS
- Unified interface
- Quite user-friendly

QGIS – Python API

seit 1556

Python tunnel via reticulate

Example


```
library("RQGIS")
get usage("saga:sagawetnessindex")
   ALGORITHM: Saga wetness index
          DEM <ParameterRaster>
          SUCTION <ParameterNumber>
          AREA_TYPE <ParameterSelection>
          SLOPE_TYPE <ParameterSelection>
          SLOPE_MIN <ParameterNumber>
          SLOPE_OFF <ParameterNumber>
          SLOPE_WEIGHT <ParameterNumber>
          AREA <OutputRaster>
          SLOPE <OutputRaster>
          AREA_MOD <OutputRaster>
          TWI <OutputRaster>
open help("saga:sagawetnessindex")
```

GeoStats 14.-19.08.2017 | Jannes Muenchow | R-GIS Bridges

Let's run_qgis


```
data("dem")
twi <- run_qgis(
    "saga:sagawetnessindex",
    DEM = dem,
    TWI = "twi.tif",
    load_output = TRUE)</pre>
```


Let's run_qgis

Spatial object residing in R

seit 1558

```
data("dem")
twi <- run_qgis(
   "saga:sagawetnessindex",
   DEM = dem,
   TWI = "twi.tif",
   load_output = TRUE)</pre>
```


Let's run_qgis

Spatial object residing in R

seit 1558

```
data("dem")
twi <- run_qgis/
   "saga:sagawetnessindex",
   DEM = dem,
   TWI = "twi.tif",
   load_output = TRUE)</pre>
```

Loads automatically the QGIS output back into R

(R)SAGA

- First SAGA release in 2004
- Also open-source
- Started out with a focus on raster processing

RSAGA

RSAGA interface

 The RSAGA package provides R geocomputing functions that make use of the command line interface of SAGA GIS, saga_cmd.exe, to execute SAGA GIS modules.

RSAGA structure

Geoprocessing environment

 List data structure with information on working directory, location of SAGA GIS binaries, etc.

Geoprocessor (using SAGA GIS)

 Workhorse that calls SAGA GIS and provides low-level access to all SAGA GIS modules

User-level interface functions (using SAGA GIS):

• e.g., rsaga.local.morphometry, rsaga.hillshade

Local and focal functions (written in R):

• e.g., multi.focal.function, grid.predict

Utility functions (written in R):

• e.g., pick.from.ascii.grid

The R-GRASS interface

- First released in 1984
- In the beginning developed by the US Army (1982 – 1995), also with a focus on rater processing
- Since 1997 developed by scientists

rgrass7

Use ASDAR -> show .exe files

If you want to know more...

- http://robinlovelace.net/geocompr/
- https://github.com/jannes-m/geocompr/blob/master/13-gis.Rmd

R-GIS EXAMPLES

- Add 2-3 more lomas slides
- Importance of lomas
- Fog oasis

Study area – Mount Mongón

Source: Google Earth.

Non-linear Poisson model

Predictors:

- Altitude
- catchment slope
- catchment area
- SAGA wetness index
- Curvatures
- solar radiation
- etc.

Spatial prediction of plant species diversity

Muenchow et al. (2013): Predictive mapping of species richness and plant species' distributions.

Landslide susceptibility

Brenning et al. (2015): Landslide susceptibility near highways.

Rock glaciers/permafrost

seit 1558

Computation of direct and diffuse incoming solar radiation

Azócar et al. (2017): Permafrost distribution modeling.

Geomarketing

 Unioning postal code with municipality layers

COMPARING R/GIS BRIDGES

RQGIS vs. RSAGA/rgrass7

- Unified interface to SAGA, GRASS and further 3rd-party providers
- User-friendly
 - open_help()
 - R named arguments
 - Automatic retrieval of default values
 - On-the-fly import/export of spatial objects (run_qgis)
 - Automatic data
 conversions (e.g., asc, tif, etc.)

But:

- QGIS does not provide access to all SAGA and GRASS functionalities
- RSAGA has special geocomputing functions (written in R)
- QGIS establishes a new GRASS session for each call and barely supports the GRASS geodatabase

Wrap-up

- We can use R as a GIS
- Geoprocessing is (often) better done with the help of a GIS
- R-GIS integration combines the best of two worlds
- RQGIS, RSAGA, rgrass7 are all great

Cadmium concentration (mg kg-1 soil)

