title 'Cyberloafing, Mike Sage'; run; ODS GRAPHICS ON; proc univariate plot data=Sage; var Cyberloafing Conscientiousness Age; Histogram / normal; PPPLot / normal; run;

The UNIVARIATE Procedure Variable: Cyberloafing (Cyberloafing)

Moments

Skewness 0.008039 **Kurtosis** -0.6908018

Basic Statistical Measures
Location Variability

Mean 22.66667 Std Deviation 9.19493

Median 23.00000 Variance 84.54667

Extreme Observations						
Lowest Highest						
Value	Obs	Value	Obs			
4	37	35	25			
6	38	37	5			
7	29	37	14			
8	50	38	19			
11	49	43	3			

Stem	Leaf	#	Boxplot
42	0	1	1
40			1
38	0	1	1
36	00	2	
34	00	2	1
32	0000	4	
30	000	3	++
28	00000	5	
26	000	3	
24	000	3	
22	000	3	*+*
20	000	3	
18	000	3	
16	0000000	7	++
14	000	3	
12	00	2	
10	00	2	
8	0	1	
6	00	2	
4	0	1	
	+		

I have not provided all of the output here but rather the most important parts. The plot option caused SAS to produce the above stem and leaf plot and boxplot, using old-fashioned methods that were designed for output to be used on a line printer. SAS also produced a normal probability plot in the old fashioned style, but I have not included it in this document. The stem and leaf plot and the boxplot indicate that the data are approximately normally distributed.

"Histogram / normal" produced a graphic showing a histogram of the observed scores with a overlaid curve of a normal distribution with the same mean and standard deviation as the observed scores. The scores in our sample appear to be close to being normally distributed.

Goodness-of-Fit Tests for Normal Distribution							
Test	Statistic p Value						
Kolmogorov-Smirnov	D	0.08408694	Pr >	D	>0.150		
Cramer-von Mises	W-Sq	0.05210904	Pr >	W-Sq	>0.250		
Anderson-Darling	A-Sq	0.29443338	Pr >	A-Sq	>0.250		

"PPPLot / normal;" caused SAS to produce table above and the graphical normal probability plot below. The table includes the results of three tests of the null hypothesis that the data came from a population that is normally distributed. I do not endorse the use of these tests for determining whether or not a normality assumption has been violated. With large sample sizes these tests will have so much power that they will produce "significant" results even when the deviation from normality is too small about which to worry, especially given that with large sample sizes correlation and regression analyses are more robust to violations of the normality assumption. With small samples sizes robustness is less and the goodness-of-fit tests may have too little power to detect a deviation from normality that is large enough to be a problem.

In the plot below, if the data are normally distributed then the line of dots will not deviate much from the solid reference line. Again, the plot indicates that the data are close to normally distributed.

Cyberloafing, Mike Sage

The UNIVARIATE Procedure Variable: Conscientiousness (Conscientiousness)

Moments

Skewness -0.2692084 Kurtosis -0.8823586

Basic Statistical Measures Location Variability

 Mean
 39.76471
 Std Deviation
 5.98862

 Median
 41.00000
 Variance
 35.86353

The conscientiousness scores are close to normal in their distribution.

Mean

Cyberloafing, Mike Sage

The UNIVARIATE Procedure Variable: Age (Age)

Moments

Skewness 0.94090779 Kurtosis -0.0914493

Basic Statistical Measures Location Variability

Median 33.00000 **Variance** 168.86824

37.82353 **Std Deviation** 12.99493

Extreme Observations						
Low	est	High	est			
Value	Obs	Value	Obs			
22	5	61	51			
22	3	63	2			
23	27	63	39			
25	37	67	46			
25	4	71	38			

The plots for age reveal a distinct positive skewness. When the absolute value of skewness (g_1) exceeds one, I usually am concerned enough to try transforming the variable to reduce the skewness. Transformations commonly used for that purpose include logarithmic, square roots, negative inverses, and ranks. The table below shows that a log transformation does a good job at reducing the skewness in age.

data transform; set Sage;
SR_Age = SQRT(Age); Log_Age = Log10(Age);
Proc Means skewness kurtosis; Var Age SR_Age Log_Age; run;

Variable	Label	Skewness	Kurtosis
Age	Age	0.9409078	-0.0914493
SR_Age		0.7178151	-0.5312523
Log_Age		0.4972690	-0.8392886

PROC CORR data=Sage; var Cyberloafing Conscientiousness Age; run; quit;

The CORR Procedure

3 Variables: Cyberloafing Conscientiousness Age

Simple Statistics								
Variable N Mean Std Dev Sum Minimum Maximum Label								
Cyberloafing	51	22.66667	9.19493	1156	4.00000	43.00000	Cyberloafing	
Conscientiousness	51	39.76471	5.98862	2028	28.00000	50.00000	Conscientiousness	
Age	51	37.82353	12.99493	1929	22.00000	71.00000	Age	

Pearson Correlation Coefficients, N = 51 Prob > r under H0: Rho=0							
Cyberloafing Conscientiousness Age							
Cyberloafing	1.00000	-0.56297	-0.46197				
Cyberloafing		<.0001	0.0006				
Conscientiousness	-0.56297	1.00000	0.14286				
Conscientiousness	<.0001		0.3173				
Age	-0.46197	0.14286	1.00000				
Age	0.0006	0.3173					

Using Cohen's guidelines, the correlations between cyberloafing and both conscientiousness and age are large. Those guidelines are .1 = small, .3 = medium, and .5 = large.

*SAS does not give you the value of *t* here. The value is
$$t = \frac{.56297\sqrt{49}}{\sqrt{1 - .56297^2}} = 4.77$$
.

I used the calculator at Vassar to get the confidence interval.

0.95 and 0.99 Confidence Intervals of rho

Lower Limit		Upper Limit
0.95	-0.725	-0.341
0.99	-0.765	-0.26

PROC REG data=Sage; A: model Cyberloafing = Conscientiousness;
B: model Cyberloafing = Conscientiousness age / scorr2 pcorr2 stb vif; run; quit;

Here is a bivariate regression, predicting cyberloafing from Conscientiousness.

The REG Procedure Model: A

Dependent Variable: Cyberloafing Cyberloafing

Number of Observations Read 51

Number of Observations Used 51

Analysis of Variance								
Source	DF	Sum of Squares		F Value	Pr > F			
Model	1	1339.80121	1339.80121	22.74	<.0001			
Error	49	2887.53213	58.92923					
Corrected Total	50	4227.33333						

Root MSE	7.67654	R-Square	0.3169
Dependent Mean	22.66667	Adj R-Sq	0.3030
Coeff Var	33.86708		

Parameter Estimates						
Variable Label DF Parameter Standard t Value Pr Estimate Error						
Intercept	Intercept	1	57.03880	7.28832	7.83	<.0001
Conscientiousness	Conscientiousness	1	-0.86439	0.18128	- <mark>4.77</mark>	<.0001

Notice that the *t* reported here is that I computed above, by hand, and the *F* is the square of that *t*.

When using *t* or *F* with a regression analysis, we assume that the residuals (score minus predicted score) are normally distributed at every value of predicted score and that the variance in the residuals is constant across levels of the predicted score. The plots to the right and below help you evaluate those assumptions as well as identify outliers that may be having great influence on the solution.

The fit plot shows the bivariate scores, the regression line, and the confidence limits. If the relationship were nonlinear, that would be evident here.

B: model Cyberloafing = Conscientiousness age / scorr2 pcorr2 stb vif; run; quit;

Now we add a second predictor, age.

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	2	1968.02919	984.01459	20.91	<.0001			
Error	<mark>48</mark>	2259.30414	47.06884					
Corrected Total	50	4227.33333						

Root MSE	6.86067	R-Square	0.4655
Dependent Mean	22.66667	Adj R-Sq	0.4433
Coeff Var	30.26768		

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Squared Semi-partial Corr Type II		Variance Inflation
Intercept	1	64.06561	6.79175	9.43	<.0001	0	·	Ē	0
Conscientiousness	1	-0.77895	0.16369	-4.76	<.0001	-0.50733	0.25213	0.32054	1.02083
Age	1	-0.27560	0.07544	-3.65	0.0006	-0.38950	0.14861	0.21757	1.02083

When we had only one predictor, Conscientiousness, the r^2 was .3169. Adding age to the model increased the R^2 by .4655 - .3169 = .1486; this is the value of the squared semipartial correlation coefficient. That increase is significant, t(48) = 3.65, p < .001.

Magnitude of the Semipartial Correlations. Some people apply Cohen's guidelines for rho to beta weights, but it is better to use the semipartial correlations. Taking square roots to get the semipartials here, the *sr* for conscientiousness is .504, a large effect, and the *sr* for age is .385, a medium to large effect.

Multicollinearity exists when a predictor can be nearly perfectly predict from a weighted linear combination of the other predictors – that is, when $R^2_{i\bullet 12...(i)...p}$ is very large. In that case, the partial statistics would be unstable, that is, they would tend to vary wildly among samples drawn from the same population. The usual solution here is to drop variables from the model to eliminate the problem with multicollinearity. The **tolerance** statistic is computed as $1 - R^2_{i\bullet 12...(i)...p}$. So multicollinearity is present when a tolerance is very low. The **variance inflation factor (VIF)** is computed as 1/tolerance, so high values of VIF indicate a problem. So, how high must VIF get before we get worried? Some say 10, some say 5, and a few say 2.5. Clearly we have no problem with these data.

Notice that the residuals plot here is residual (score value minus predicted score value) versus predicted score. This plot is used to evaluate the homoscedasticity assumption and the assumption that the residuals are normally distributed at every value of the predicted scores. The residuals histogram compares the observed residuals with those that would be expected if they are normally distributed. There are no problems apparent here. The leverage and Cook's D plots are used to detect outliers. We shall discuss these statistics later, when I cover regression diagnostics.

PROC GLM data=Sage; model Cyberloafing = Conscientiousness / EFFECTSIZE ALPHA=.1; run; quit;

The GLM Procedure

PROC GLM was used here to get a confidence interval for ρ^2 predicting cyberloafing from conscientiousness.

Proportion of Variation Accounted for					
Eta-Square	0.32				
90% Confidence Limits	(0.14,0.46)				

And here for the confidence interval for ρ^2 predicting cyberloafing from conscientiousness and age and confidence interval for the unique effects of each predictor. GLM calls the squared semipartial correlation coefficient the semipartial eta-squared. I'll explain later why this statistic is preferable to the squared partial correlation coefficient.

PROC GLM data=Sage; model Cyberloafing = Conscientiousness Age / EFFECTSIZE ALPHA=.1; *If the leading * were removed, the below statement would compute confidence intervals for predicted Cyberloafing for each subject;

*print clm cli; run; quit;

The GLM Procedure

Proportion of Variation Accounted for				
Eta-Square	0.47			
90% Confidence Limits	(0.27,0.58)			

Type III (unique) Effect Sizes

Source	DF	Partial Variation Accounted For					
		Semipartial Eta- Conservative Square 90% Confidence Limits		Partial Eta- Square	90% Con Limi		
Conscientiousness	1	0.2521	0.0916	0.3993	0.3205	0.1423	0.4580
Age	1	0.1486	0.0272	0.2955	0.2176	0.0649	0.3630

I also used my SAS program to get the confidence interval for R^2 -- Conf-Interval-R2-Regr.sas

Compute 90% Confidence Interval for R-squared, eta-squared, fixed effect ANOVA/regression

Obs	eta_squared	eta2_lower	eta2_upper
1	0.46560	0.27247	0.57713

Presenting the Results, APA-Style

Multiple correlation/regression analysis was used to predict participants' cyberloading scores from their scores on conscientiousness and age. The data were screened for possible problems with the assumptions of homoscedasticity and normality. No problems were found. The optimally weighted linear combination of conscientiousness and age was significantly associated with cyberloafing, $R^2 = .466$, F(2, 48) = 20.91, p < .001, 90% CI [.272, .577] The partial effects of both predictors were significant. For conscientiousness, t(48) = 4.76, p < .001, $\beta = -.507$, $sr^2 = .252$, 90% CI [.092, .399], and for age, t(48) = 3.65, p < .001, $\beta = -.390$, $sr^2 = .149$, 90% CI [.065, .363].

```
title 'Importance of Plotting Your Data'; run;
*From PSYPARC gopher, Phil Wood, modified by K. Wuensch;
*Originally from Anscombe (1973), American Statistician, pp 17-21;
data PW; input x1 y1 x2 y2 x3 y3 x4 y4; cards;
10 8.04 10 9.14 10 7.46
8 6.95 8 8.14 8 6.77
13 7.58 13 8.74 13 12.74
9 8.81 9 8.77 9 7.11
11 8.33 11 9.26 11 7.81
                                                  8 6.58
                                                  8 5.76
                                                 8 7.7
                                                 8 8.84
                                                8 8.47
                           14 8.84
             14 8.10
14 9.96
                                                8 7.04
6 7.24 6 6.13 6 6.08
4 4.26 4 3.10 4 5.39
12 10.84 12 9.13 12 8.15
7 4.82 7 7.26 7 6.42
                                                 8 5.25
                                              19 12.50
                                              8 5.56
                                                8 7.91
5 5.68 5 4.74 5 5.73 8 6.89
proc reg simple; A: model y1 = x1;
  B: model y2 = x2;;
  C: model y3 = x3;
  D: model y4 = x4; run; quit;
                                     Importance of Plotting Your Data
```

Descriptive Statistics									
Variable	Sum	Mean	Uncorrected SS	Variance	Standard Deviation				
Intercept	11.00000	1.00000	11.00000	0	0				
x1	99.00000	9.00000	1001.00000	11.00000	3.31662				
y1	82.51000	7.50091	660.17270	4.12727	2.03157				
x2	99.00000	9.00000	1001.00000	11.00000	3.31662				
y2	82.51000	7.50091	660.17630	4.12763	2.03166				
х3	99.00000	9.00000	1001.00000	11.00000	3.31662				
у3	82.50000	7.50000	659.97620	4.12262	2.03042				
x4	99.00000	9.00000	1001.00000	11.00000	3.31662				
y4	82.50000	7.50000	659.97840	4.12284	2.03048				

Notice that for each of the four X,Y sets, the means are 99 and 72.5 and the standard deviations are 3.3 and 2.0.

The REG Procedure Model: A Dependent Variable: y1

Analysis of Variance	Analysis of Variance				
 DE 0					

Source DF Sum of Mean F Value Pr > F

Squares Square

Model 1 27.51000 27.51000 17.99 0.0022

Error 9 13.76269 1.52919

Corrected Total 10 41.27269

 Root MSE
 1.23660
 R-Square
 0.6665

 Dependent Mean
 7.50091
 Adj R-Sq
 0.6295

Parameter Estimates								
Variable	DF	Parameter Estimate		Pr > t				
Intercept	1	3.00009	1.12475	2.67	0.0257			
x1	1	0.50009	0.11791	4.24	0.0022			

The REG Procedure Model: B Dependent Variable: y2

Analysis of Variance								
Source	DF		Mean Square	F Value	Pr > F			
Model	1	27.50000	27.50000	17.97	0.0022			
Error	9	13.77629	1.53070					
Corrected Total	10	41.27629						

Root MSE 1.23721 **R-Square** 0.6662

Parameter Estimates								
Variable	DF	Parameter Estimate		t Value	Pr > t			
Intercept	1	3.00091	1.12530	2.67	0.0258			
x2	1	0.50000	0.11796	4.24	0.0022			

The REG Procedure Model: C Dependent Variable: y3

Analysis of Variance								
Source	DF		Mean Square	F Value	Pr > F			
Model	1	27.47001	27.47001	17.97	0.0022			
Error	9	13.75619	1.52847					
Corrected Total	10	41.22620						

 Root MSE
 1.23631
 R-Square
 0.6663

 Dependent Mean
 7.50000
 Adj R-Sq
 0.6292

Parameter Estimates							
Variable DF Parameter Estimate							
Intercept	1	3.00245	1.12448	2.67 0.0256			
x3	1	0.49973	0.11788	4.24 0.0022			

The REG Procedure Model: D Dependent Variable: y4

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	27.50000	27.50000	18.03	0.0022		
Error	9	13.72840	1.52538				
Corrected Total	10	41.22840					

 Root MSE
 1.23506
 R-Square
 0.6670

 Dependent Mean
 7.50000
 Adj R-Sq
 0.6300

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard t Value Pr > Error				
Intercept	1	3.00000	1.12334	2.67 0.0	0256		
x4	1	0.50000	0.11776	4.25 0.0	0022		

Notice that for each of the X,Y pairs, the r^2 is .67, the intercept is 3, and the slope is .5. Below is the sort of plot that most researchers would anticipate for an r^2 of .67.

The residuals plot for X2, Y2 is quite revealing. It shows that there is a quadratic effect not included in the model.

Here you see that the relationship between X2 and Y2 is actually perfect, but it is not linear.

The residuals plot for X3, Y3 is also quite revealing. One observation has a very high residual. Such a case is going to have a large effect on the solution, pulling the regression line toward itself.

Here we see that were it not for that one outlier, the relationship between X3 and Y3 would have been perfect.

Here we see that the r for X4, Y4 would have been zero were it not for one outlier

Moderation Analysis – is the relationship between Y and X₁ modified by the value of X₂?

title 'Ar-Misanth Relationship for Nonidealists versus Idealists.'; run;

proc format; value I 0='NonIdealist' 1='Idealist';

data kevin2; infile 'C:\Users\Vati\Documents\StatData\potthoff.dat'; input ar misanth idealism;

format idealism I.;

proc sort; by idealism;

proc reg simple corr; model ar=misanth;

by idealism; run; quit;

The REG Procedure idealism=NonIdealist

Descriptive Statistics								
Variable	Sum	Mean	Uncorrected SS	Variance	Standard Deviation			
Intercept	91.00000	1.00000	91.00000	0	0			
misanth	216.20000	2.37582	554.44000	0.45319	0.67319			
ar	212.82100	2.33869	525.45037	0.30808	0.55505			

Correlation					
Variable	misanth	ar			
misanth	1.0000	0.3639			
ar	0.3639	1.0000			

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	3.67218	3.67218	13.59	0.0004		
Error	89	24.05535	0.27028				
Corrected Total	90	27.72753					

Root MSE	0.51989	R-Square	0.1324
Dependent Mean	2.33869	Adj R-Sq	0.1227
Coeff Var	22.22991		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	1.62581	0.20094	8.09	<.0001		
misanth	1	0.30006	0.08140	3.69	0.0004		

Now, for the idealists.

The REG Procedure Model: MODEL1 Dependent Variable: ar idealism=Idealist

Number of Observations Read 63 Number of Observations Used 63

Descriptive Statistics								
Variable	Sum	Mean	Uncorrected SS	Variance	Standard Deviation			
Intercept	63.00000	1.00000	63.00000	0	0			
misanth	141.20000	2.24127	344.40000	0.45053	0.67121			
ar	153.64900	2.43887	390.42107	0.25308	0.50307			

Correlation						
Variable misanth ar						
misanth	1.0000	0.0205				
ar	0.0205	1.0000				

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	0.00657	0.00657	0.03	0.8735		
Error	61	15.68410	0.25712				
Corrected Total	62	15.69067					

Root MSE	0.50707	R-Square	0.0004
Dependent Mean	2.43887	Adj R-Sq	-0.0160
Coeff Var	20.79102		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	2.40450	0.22432	10.72	<.0001
misanth	1	0.01533	0.09594	0.16	0.8735

Among the idealists, misanthropy was not significantly associated with support for animal rights, r(n = 63) = .02, p = .87, 95% CI [-.23, .27].

Later I shall show you more sophisticated methods of moderation analysis. Return to my SAS Lessons page.