Содержание

1	Teo	рия булевых функций	1
	1.1	Определение булевой функции (Б Φ). Количество Б Φ от n переменных. Таблица истинности Б Φ	1
	1.2	Булевы функции одной и двух переменных (их таблицы, названия)	-
	1.3	Формулы логики высказываний. Представление Б Φ формулами	-
	1.4	Эквивалентные формулы. Основные эквивалентности теории булевых функций	4
	1.5	Тождественно истинные (ложные) и выполнимые Б Φ	
	1.6	ДНФ и КНФ, алгоритмы приведения	
	1.7	СДНФ и СКНФ, теоремы существования и единственности, алгоритмы приведения	4
	1.8	Минимизация нормальных форм (карты Карно)	Ę
	1.9	Полином Жегалкина, его существование и единственность. Алгоритм построения	Ę
	1.10		Ę
		Полные системы булевых функций, базисы	Ę
		Классы T_0, T_1 (функции, сохраняющие 0 и 1)	Ę
		Класс S самодвойственных функций, определение двойственной Б Φ	(
		Класс монотонных функций	(
		Класс линейных функций	(
		Леммы о несамодвойственной, немонотонной, нелинейной функциях	,
		Теорема Поста о полноте системы булевых функций	,
	1.18	Релейно-контактные схемы: определение, примеры, функция проводимости. Анализ и синтез РКС	
		(умение решать задачи)	(
2	Поп	ика высказываний	
2		ика высказывании Парадоксы в математике. Парадоксы Г. Кантора и Б. Рассела	•
	$\frac{2.1}{2.2}$	Логическое следование в логике высказываний. Проверка логического следования с помощью таблиц	;
	2.2	истинности и эквивалентных преобразований.	(
	2.3	Понятия прямой теоремы, а также противоположной, обратной и обратной к противоположной теорем	;
	$\frac{2.3}{2.4}$	Понятия прямои теоремы, а также противоположной, обратной и обратной к противоположной теорем Понятия необходимых и достаточных условий	(
	$\frac{2.4}{2.5}$	Формальные системы. Выводы в формальных системах. Свойства выводов	
	$\frac{2.5}{2.6}$	Исчисление высказываний (ИВ) Гильберта. Примеры выводов	
	$\frac{2.0}{2.7}$	Теорема о дедукции для ИВ	(
	2.8	Теорема о полноте и непротиворечивости ИВ	
	$\frac{2.0}{2.9}$	ИВ Генцена, его полнота	
	2.10	Метод резолюций для логики высказываний (без обоснования корректности)	
	2.10	nicio, pessino, im Am vici min Buchas Buthin (cos cocono Bannin nopponinocin)	
3	Лог	ика предикатов	ę
	3.1	Понятие предиката и операции, их представления, примеры	9
	3.2	Сигнатура, интерпретация сигнатуры на множестве, алгебраические системы	(
	3.3	Язык логики предикатов, термы, формулы логики предикатов	10
	3.4	Свободные и связанные переменные. Замкнутые формулы	10
	3.5	Истинность формул на алгебраической системе	10
	3.6	Изоморфизм систем. Теорема о сохранении значений термов и формул в изоморфных системах. Ав-	
		томорфизм	1.
	3.7	Элементарная теория алгебраической системы. Элементарная эквивалентность систем. Связь поня-	
		тий изоморфизма и элементарной эквивалентности	1
	3.8	Выразимость свойств в логике предикатов. Умение записать формулой различные свойства систем и	
		элементов систем	1
	3.9	Эквивалентность формул логики предикатов	1
	3.10	Тождественно истинные (ложные) и выполнимые формулы	1
	3.11	Пренексный вид формулы	1:
		Основные эквивалентности логики предикатов	1
	3.13	Классы формул $\Sigma_n, \Pi_n, \Delta_n$. Соотношения между классами	1
		Нормальная форма Сколема, ее построение (на примерах)	11
		Проверка существования вывода методом резолюций (алгоритм)	1
		Логическое следование в логике предикатов	1
		Исчисление предикатов (ИП) Гильберта. Свойства выводов	1
		Теория. Модель теории	1
	3.19	Непротиворечивая теория. Полная теория. Свойства непротиворечивых и полных теорий	11

3.20	Теорема о существовании модели (без доказательства)	11
3.21	Теорема о связи выводимости и противоречивости	11
3.22	Теоремы о корректности и полноте ИП	11
3.23	Теорема компактности	11
3.24	Аксиоматизируемые и конечно аксиоматизируемые классы. Конечно аксиоматизируемые теории	11
3.25	Обоснование нестандартного анализа (построение алгебраической системы, элементарно эквивалент-	
	ной полю вещественных чисел, содержащей бесконечно малые элементы)	11
3 26	Метол резолюций для дорики предикатов (без доказательства корректности)	11

1 Теория булевых функций

1.1 Определение булевой функции (БФ). Количество БФ от
 n переменных. Таблица истинности БФ

Определение. Булева функция от n переменных - это отображение $\{0,1\}^n \to \{0,1\}$

3амечание. Количество Б Φ от n переменных - 2^{2^n}

Доказательство. Каждая булева функция определяется своим столбцом значений. Столбец является булевым вектором длины m=2n, где n – число аргументов функции. Число различных векторов длины m (а значит и число булевых функций, зависящих от n переменных) равно $2^m=2^{2^n}$

1.2 Булевы функции одной и двух переменных (их таблицы, названия)

- отрицание (¬), f_4 - тождественная 1

	X	у	0	\wedge	\rightarrow'	\boldsymbol{x}	\leftarrow'	y	+	\vee	\downarrow	\leftrightarrow	y'	\leftarrow	x'	\rightarrow		1
	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Булевы функции двух переменных	0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- 1. ∧ конъюнкция
- 2. \leftarrow антиимпликация
- 3.
 ightarrow импликация
- 4. ∨ дизъюнкция
- 5. | штрих Шеффера
- 6. ↓ стрелка Пирса
- 7. + взаимоисключающее или, сложение по модулю 2 (XOR)

1.3 Формулы логики высказываний. Представление БФ формулами

Определение. Формула логики высказываний - слово алфавита логики высказываний, построенное по следующим правилам:

- 1. символ переменной формула
- 2. символы 0 и 1 формулы
- 3. если Φ_1 и Φ_2 формулы, то слова $(\Phi_1\&\Phi_2), (\Phi_1\leftrightarrow\Phi_2), (\Phi_1\to\Phi_2), (\Phi_1|\Phi_2), \dots, \Phi_1'$ тоже формулы

Очевидно, что каждой формуле логики высказываний можно поставить в соответствие булеву функцию, причем если формуле F_1 соответствует функция f_2 , а формуле F_2 функция f_2 и $F_1 \equiv F_2$, то $f_1 \equiv f_2$.

Каждая формула $\Phi(x_1,\ldots,x_n)$ логики высказываний однозначно определяет некоторую булеву функцию $f(x_1,\ldots,x_n)$ Это булева функция, определенная таблицей истинности формулы Φ .

1.4 Эквивалентные формулы. Основные эквивалентности теории булевых функций

Определение. Формулы логики высказываний $\Phi(x_1, x_2, ..., x_n)$ и $\Psi(x_1, x_2, ..., x_n)$ эквивалетные, если для всех наборов значений $a_1, ..., a_n \in \{0, 1\}$ $\Phi(a_1, ..., a_n) = 1$

Теорема 1.1 (Об эквивалентных формулах). 1. Если $\Phi(x_1,...,x_n) \equiv \Psi(x_1,...,x_n)$ и $\theta_i(x_1,...,x_k)$, i=1,...,n, формулы логики высказываний, то $\Phi(\theta_1,...,\theta_n) \equiv \Psi(\theta_1,...,\theta_n)$

2. Если в формуле Φ заменить подформулу Ψ на эквивалетную формулу Θ , то результат замены эквивалентен Φ .

Доказательство. 1. После подстановки в $\Phi(x_1,...,x_n)$ формул $\theta_i(x_1,...,x_k)$ получим формулу от k переменных:

$$\Phi(\theta_1, ..., \theta_n)(x_1, ..., x_k) = \Phi(\theta_i(x_1, ..., x_k), ..., \theta_n(x_1, ..., x_k))$$

и аналогично для Ψ . Выберем произвольный набор элементов $a_1,...,a_k \in \{0,1\}$ и подставим:

$$\Phi(\theta_1(a_1,...,a_k),...,\theta_n(a_1,...,a_k)) = \Phi(b_1,...,b_n), b_i = \theta_i(a_1,...,a_k),$$

$$\Psi(\theta_1(a_1,...,a_k),...,\theta_n(a_1,...,a_k),...,\theta_n(a_1,...,a_k)) = \Psi(b_1,...,b_n).$$

Т.к. $\Phi \equiv \Psi, \Phi(b_1,...,b_n) = 1 \leftrightarrow \Psi(b_1,...,b_n) = 1$, значит и $\Phi(\theta_1,...,\theta_n)(a_1,...,a_k) = 1 \leftrightarrow \Psi(\theta_1,...,\theta_n)(a_1,...,a_k)$, т.е. $\Phi(\theta_1,...,\theta_n) \equiv \Psi(\theta_1,...,\theta_n)$.

2. По условию $\Psi \equiv \Theta$. Обозначим результат замены в формуле Φ подформулы Ψ на Θ через $\Phi[\Psi/\Theta]$.

Индукцию по числу логических связанок в формуле Ф. Пусть k - число связок в подфомруле Ψ.

Заметим, что, если формула Φ содержит менее k связок, то в ней нет подформулы Ψ . А если формула Φ имеет ровно k связок, то единственный случай, когда она содержит подформулу Ψ - это $\Phi = \Psi$ База индукции.

- (а) Формула Φ содержит не более k связок и при этом $\Phi \neq \Psi$. Тогда Φ не содержит подформулы Ψ , поэтому при данной операции не меняется: $\Phi[\Psi/\Theta] = \Phi$, отсюда $\Phi[\Psi/\Theta] \equiv \Phi$
- (b) Формула Φ содержит k связок и $\Phi=\Psi$. Тогда $\Phi[\Psi/\Theta]=\Theta$ результат замены эквивалентен исходной формуле $\Phi=\Psi$

Шаг индукции.

Рассмотрим формулу $\Phi(x_1,...,x_n)$ содержающую m + 1 связки, считая, что для формул из не более, чем m связок, утверждение доказано. Тогда Φ имеет вид $\Phi_1 \wedge \Phi_2, \Phi_1 \vee \Phi_2$ и т.д.

Рассмотрим случай конъюнкции(остальные аналогично). Выберем набор элементов $a_1, ..., a_n \in \{0, 1\}$ и подставим в формулы:

$$\Phi(a_1, ..., a_n) = \Phi_1(a_1, ..., a_n) \wedge \Phi_2(a_1, ..., a_n),$$

$$\Phi[\Psi/\Theta](a_1, ..., a_n) = \Phi_1[\Psi/\Theta](a_1, ..., a_n) \wedge \Phi_2[\Psi/\Theta](a_1, ..., a_n).$$

По индукционному допущению формулы $\Phi_1 \equiv \Phi_1[\Psi/\Theta]$ аналогично для Φ_2 Поэтому

$$\Phi(a_1,...,a_n) = \Phi_1(a_1,...,a_n) \wedge \Phi_2(a_1,...,a_n),$$

$$\Phi[\Psi/\Theta](a_1,...,a_n) = \Phi_1[\Psi/\Theta](a_1,...,a_n) \wedge \Phi_2[\Psi/\Theta](a_1,...,a_n),$$

T.e. $\Phi \equiv \Phi[\Psi/\Theta]$

Теорема 1.2. Справедливы следующие эквивалетности

- 1. $a \lor b \equiv b \lor a$ симметричность
- 2. $a \wedge b \equiv b \wedge a$
- 3. $a \lor (b \lor c) \equiv (a \lor b) \lor c$ ассоциативность
- 4. $a \wedge (b \wedge c) \equiv (a \wedge b) \wedge c$
- 5. $a \wedge (b \vee c) \equiv a \wedge b \vee a \wedge c$ транзитивность
- 6. $a \lor b \land c \equiv (a \lor b) \land (a \lor c)$

- 7. $a \vee a \equiv a \ u \partial e m nome + m + o c m b$
- 8. $a \wedge a \equiv a$
- $9. \ \overline{(a \lor b)} \equiv \overline{a} \land \overline{b}$ законы де Моргана
- 10. $\overline{(a \wedge b)} \equiv \overline{a} \vee \overline{b}$
- 11. $\overline{\overline{a}} \equiv a$ двойное отрицание
- 12. $a \lor a \land b \equiv a$ поглощение
- 13. $a \wedge (a \vee b) \equiv a$
- 14. $a \vee \overline{a} \wedge b \equiv a \vee b$ слабое поглощение
- 15. $a \wedge (\overline{a} \vee b) \equiv ab$
- 16. $a \lor 0 \equiv a$
- 17. $a \wedge 0 \equiv 0$
- 18. $a \lor 1 \equiv 1$
- 19. $a \wedge 1 \equiv a$
- 20. $a \vee \overline{a} \equiv 1$
- 21. $a\overline{a} \equiv 0$
- 22. $a \rightarrow b \equiv \overline{a} \lor b$
- 23. $a \leftrightarrow b \equiv \overline{a} \land \overline{b} \lor a \land b \equiv (a \to b) \land (b \to a)$
- 24. $a + b \equiv \overline{a \leftrightarrow b} \equiv \overline{a} \land b \lor a \land \overline{b}$
- 25. $a|b \equiv \overline{a \wedge b}$
- 26. $a \downarrow b \equiv \overline{a \lor b}$

Доказательство. Доказательство сводится к построению таблиц истинности для левой и правой частей каждой эквивалентности
▶

1.5 Тождественно истинные (ложные) и выполнимые БФ

Определение. Формула $\Phi(x_1,\ldots,x_n)$ называется тождественно истинной (ложной), если для любого набора значений $\Phi(x_1,\ldots,x_n)=1$ (0)

Определение. Формула $\Phi(x_1,\ldots,x_n)$ называется выполнимой, если существует набор значений, для которого $\Phi(x_1,\ldots,x_n)=1$

1.6 ДНФ и КНФ, алгоритмы приведения

Определение. Литера - это переменная или отрицание переменной

Определение. Конъюнкт (элементарная конъюнкция) - это либо литера, либо конъюнкция литер

Определение. Дизъюнктивная нормальная форма $(ДН\Phi)$ - это либо конъюнкт, либо дизъюнкия конъюнктов

Определение. Дизъюнкт(элементарная дизъюнкция) - это либо литера, либо дизъюнкция литер

Определение. Конъюнктивная нормальная форма $(KH\Phi)$ - это либо дизъюнкт, либо конъюнкция дизъюнктов

Замечание. Алгоритм построения ДНФ(КНФ) по заданной ТИ

- 1. Выбрать в таблице все строки со значением функции $f=1\ (f=0)$
- 2. Для каждой такой строки $(x, y, z) = (a_1, a_2, a_3)$ выписать конъюнкт (дизъюнкт) по принципу: пишем переменную с отрицанием, если ее значение 0(1), иначе пишем переменную без переменную без отрицания.

3. берем дизъюнкцию (конъюнкцию) построенных конъюнктов (дизъюнктов)

Замечание. Алгоритм приведения формулы к ДНФ/КНФ методом эквивалентностей

- 1. Выразить все связки в формуле через конъюнкцию, дизъюнкцию и отрицание.
- 2. Внести все отрицания внутрь скобок
- 3. Устранить двойные отрицания
- 4. Применять свойство дистрибутивности, пока это возможно

1.7 СДНФ и СКНФ, теоремы существования и единственности, алгоритмы приведения

Определение. Совершенный конъюнкт от переменных $x_1, ..., x_n$ - это конъюнкт вида $x_1^{a_1} \wedge ... \wedge x_n^{a_n}$, где $(a_1, ..., a_n) \in \{0, 1\}^n$.

Определение. Совершенный дизъюнкт от переменных $x_1, ..., x_n$ - это конъюнкт вида $x_1^{a_1} \lor ... \lor x_n^{a_n}$, где $(a_1, ..., a_n) \in \{0, 1\}^n$.

Замечание.

$$x^a = \begin{cases} \overline{x} & \text{если a} = 0, \\ x & \text{если a} = 1. \end{cases}$$

Определение (СДНФ). Совершенная дизъюнктивная нормальная форма(СДНФ) от переменных $x_1,...,x_n$ - это дизъюнкция совершенных конъюнктов от $x_1,...,x_n$, в которой нет попарно эквивалентных слагаемых

Определение (СКНФ). Совершенная конъюктивная нормальная форма(СКНФ) от переменных $x_1,...,x_n$ - это конъюнкция совершенных дизъюнктов от $x_1,...,x_n$, в которой нет попарно эквивалентных слагаемых.

Теорема 1.3 (о существовании и единственности СДНФ). Любая булева функция $f(x_1,...,x_n) \neq 0$ определяется формулой, находящейся в СЛНФ, причем эта СДНФ единственная с точностью до перестановок слагаемых и множителей в слагаемых

Доказательство. 1. Существование. По следствию к теореме о разложении получаем для $f(x_1,...,x_n) \neq 0$

$$f = \bigvee_{\substack{(a_1, \dots, a_n) \in \{0,1\}^n \\ f(a_1, \dots, a_n) = 1}} x_1^{a_1} \dots x_n^{a_n}$$

2. Единственность. Пусть, у функции $f(x_1,...,x_n) \neq 0$ две СДНФ, обозначим их Ф и Ψ . Так как они определяют одну и ту же функцию, то $\Phi \equiv \Psi$

Выберем в Φ произвольное слагаемое $x_1^{a_1}...x_n^{a_n}$. По лемме о совершенных конъюнктах это слагаемое истинно при $(x_1,...,x_n)=(a_1,...,a_n)$. Тогда и вся дизъюнкция $\Phi(a_1,...,a_n)=1$, а в силу эквивалентности формул и $\Psi(a_1,...,a_n)=1$

Но тогда в Ψ есть слагаемое $x_1^{b_1}...x_n^{b_n}$, истинное на наборе $(a_1,...,a_n)$. Снова по лемме это возможно только при $(a_1,...,a_n)=(b_1,...,b_n)$.

Получаем, что все слагаемые СДН Φ Φ есть в Ψ . Рассуждая симметрично, получаем, что и Ψ содержится в Φ , т.е. они равны

Замечание (Лемма о совершенных конъюнктах). 1. Пусть $\Phi(x_1,...,x_n)=x_1^{a_1}...x_n^{a_n}$ - совершенный конъюнкт. Тогда для любого набора значений $(b_1,...,b_n)\in\{0,1\}^n$

$$\Phi(b_1, ..., b_n) = 1 \leftrightarrow (b_1, ..., b_n) = (a_1, ..., a_n).$$

2. Два совершенных конъюнкта от перменных $x_1, ..., x_n$ эквивалентны тогда и только тогда, когда они равны с точностью до перестановки литер.

Замечание. Рассуждая двойственным образом, можно получить теорему о СКНФ

Замечание. Алгоритм приведения формулы к СДНФ(СКНФ)

1. Строим ДНФ(КНФ) формулы.

- 2. Вычеркиваем тождественно ложные (истинные) слагаемые (множители).
- 3. В каждое слагаемое(множитель) добавляем переменны по правилам:

СДНФ:
$$\Phi(x_1, ..., x_n) \equiv \Phi(y \vee \overline{y}) \equiv \Phi \wedge y \vee \Phi \wedge \overline{y}$$

СКНФ: $\Phi(x_1, ..., x_n) \equiv \Phi \vee y \wedge \overline{y} \equiv (\Phi \vee y) \wedge (\Phi \vee \overline{y})$

4. Вычеркиваем повторяющиеся слагаемые(множители).

1.8 Минимизация нормальных форм (карты Карно)

1.9 Полином Жегалкина, его существование и единственность. Алгоритм построения

1.10 Суперпозиция булевых функций. Замкнутые классы булевых функций

1.11 Полные системы булевых функций, базисы

Определение. Система булевых функций является полной(в классе K), если ее замыкание равно классу всех булевых функций(классу K)

Пример (Примеры полных систем). 1. $M = \{ \neg x, xy, x \lor y \}$ каждая БФ может быть записана в виде ДНФ

- 2. $M = \{ \neg x, x \lor y \}$ выражаем xy через отрицание и дизъюнкцию по закону де Моргана
- 3. $M = \{ \neg x, xy \}$
- 4. $M = \{ \oplus, *, 1 \}$ полином Жегалкина
- $5. \ \{\leftrightarrow,\lor,0\}$ навесить отрицание на функции из предыдущей системы
- 6. $M=\{x|y\}, \neg x\equiv x|x,xy\equiv \neg (x|y)\equiv (x|y)|(x|y)$ аналогично стрелка Пирса

Определение. Полная (в классе K) система функций называется базисом (класса K), если никакая ее подсистема не будет полной (в классе K).

Пример (Примеры базисов). 1. $M = \{x|y\}, \ \neg x \equiv x|x, xy \equiv \neg (x|y) \equiv (x|y)|(x|y)$ аналогично стрелка Пирса

- 2. $M=\{\&,'\}$, аналогично $\{\lor,'\}$ Мы не могли вычеркнуть отрицание, так как xy и $x\lor y\in T_0 \implies [xy,x\lor y]\subseteq T_0$ и $1\notin T_0 \implies \neg x\in [xy,x\lor y] \implies \{\lor,\&\}$ не полна
- 3. $M = \{ \oplus, *, 1 \}$ полином Жегалкина

Замечание. Никакой базис не может содержать более 4 функций.

Доказательство. Из доказательства теоремы Поста $g_0(x)$ (не сохраняющая 0 функция $f(x_1,\ldots,x_n)$, в которую подставлили одну и ту же переменную х) либо несамодвойственна, либо немонотонна, \Longrightarrow полной будет система из 4 функций. Этим доказано, что всякая полная система содержит полную подсистему не более чем из четырёх функций. В базисе нет собственных полных подсистем, поэтому в нём не более четырёх функций.

Оценку нельзя уменьшить, так как существует система $\{0,1,xy,x\oplus y\oplus z\}$. Построим таблицу с классами Поста, видим, что система полна и никакая ее собственная подсистема не полна.

1.12 Классы T_0, T_1 (функции, сохраняющие 0 и 1)

Определение. Класс $T_0 = \{f(x_1, \dots, x_n) \mid f(0, \dots, 0) = 0\}$

Определение. Класс $T_1 = \{f(x_1, \dots, x_n) \mid f(1, \dots, 1) = 1\}$

	T_0	T_1	S	Μ	L
0	+	-	-	+	+
1	-	+	-	+	+
X	+	+	-	+	+
$\neg x$	-	-	+	-	+
xy	+	+	-	+	-
$x \vee y$	+	+	-	+	-
$x \oplus y$	+	_	_	-	+
$x \leftrightarrow y$	-	+	_	-	+
$x \rightarrow$	-	+	-	-	-
x y	-	-	-	-	-
$x \downarrow y$	_	_	-	_	-

3 амечание. Классы T_0, T_1 являются замкнутыми.

Доказательство. Докажем для T_0 . Достаточно взять булевы функции $g, g_1, \ldots, g_n \in T_0$ и доказать, что их суперпозиция из класса T_0 .

$$g(g_1(0,\ldots,0),\ldots,g_n(0,\ldots,0))=g(0,\ldots,0)=0$$

1.13 Класс S самодвойственных функций, определение двойственной БФ

Определение. Булева функция $g(x_1, ..., x_n)$ называется двойственной к БФ $f(x_1, ..., x_n)$ (обозначается $g = f^*$), если $g(x_1, ..., x_n) = f'(x'_1, ..., x'_n)$.

Из закона двойного отрицания следует, что $(f^*)^* = f$

Определение. Булева функция f называется самодвойственной, если $f = f^*$.

Определение. Класс самодвойственных функций = $\{f \mid f = f^*\}$

Замечание. Класс S является замкнутым.

Доказатель ство. Возьмем Б Φ $g, g_1, \dots g_k \in S$ и докажем, что их суперпозиция будет также из класса S.

Если $F(x_1, \ldots, x_n) = g(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)),$

TO $F^*(x_1, ..., x_n) = \neg F(\neg x_1, ..., \neg x_n) = \neg g(g_1(\neg x_1, ..., \neg x_n), ..., g_k(\neg x_1, ..., \neg x_n)).$

Так как $g_i \in S$, то $g_i(x_1, \dots, x_n) = \neg g_i(\neg x_1, \dots, \neg x_n)$, что эквивалентно $\neg g_i(x_1, \dots, x_n) = g_i(\neg x_1, \dots, \neg x_n)$. Следовательно, $F^*(x_1, \dots, x_n) = \neg g(\neg g_1(x_1, \dots, x_n), \dots, \neg g_k(x_1, \dots, x_n))$.

Так как $g \in S$, то $\neg g(\neg g_1(x_1, \dots, x_n), \dots, \neg g_k(x_1, \dots, x_n)) = (g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)) \implies f^*(x_1, \dots, x_n) = F(x_1, \dots, x_n)$

1.14 Класс монотонных функций

Определение. Назовем два набора из 0 и 1 $a=(a_1,\ldots a_n),b=(b_1,\ldots b_n)$ **соседними**, если все их координаты (кроме одной) совпадают.

Определение. Пусть k - номер единственной координаты, по которой отличаются соседние наборы a, b. Если $a_k = 0, b_k = 1$, то мы будем говорить, что набор a **меньше** набора b $(a \prec b)$

Определение (Монотонная функция). БФ $f(x_1, \dots x_n)$ называется монотонной, если \forall соседних наборов a, b таких, что $a \prec b \implies f(a) \leq f(b)$

Замечание. Класс М является замкнутым.

Доказательство. $g, g_1, \dots g_k \in M, F(x_1, \dots, x_n) = g(g_1, \dots g_k)$ и рассмотрим два произвольных набора $a \prec b$. Пусть $c_1 = g_1(a), d_1 = g_1(b), \dots \ c_k = g_k(a), \dots d_k = g_k(b)$

$$g_i \in M \implies c_i \le d_i$$

Если наборы $c=(c_1,\ldots,c_k)$ и $d=(d_1,\ldots,d_k)$ - соседние, то и $F(c)\leq F(d)$

В противном случае легко показать, что \exists цепочка

$$c \prec e_1 \prec \cdots \prec e_l \prec d$$

(то есть наши наборы сравнимы по определению Ашаева)

и
$$g(c) \le g(d) \implies F(c) \le F(d) \implies F \in M$$

1.15 Класс линейных функций

Определение. Б Φ называется линейной, если ее полином Жегалкина линеен, т.е не содержит конъюнкции т.е его степень не выше 1.

Лемма 1.1. Класс L является замкнутым.

 \mathcal{A} оказательство. При подстановке линейных функций в линейную функцию не может появиться конъюнкции. $f(x_1,\ldots,x_n)=a_0\oplus a_1(f_1(x_1,\ldots,x_n)\cdots\oplus a_mf_m(x_1,\ldots,x_n)=a_0\oplus a_1(b_0^1\oplus b_1^1x_1\cdots\oplus b_n^1x_n)\ldots\cdots\oplus a_m(b_0^m\oplus b_1^mx_1\cdots\oplus b_n^mx_n)=(a_0\oplus a_1b_0^1\cdots\oplus a_mb_0^m)\oplus (a_1b_1^1\oplus\cdots\oplus a_mb_1^m)x_1\oplus\cdots\oplus (a_1b_n^1\oplus\cdots\oplus a_mb_n^m)x_n.$

1.16Леммы о несамодвойственной, немонотонной, нелинейной функциях

Лемма 1.2 (о несамодвойственной функции). Если $\mathcal{D}\Phi$ $f(x_1,\ldots,x_n)$ несамодвойственна, то замыкание класса $[f, \neg x]$ содержит тождественно ложную $\mathcal{B}\Phi$ 0 и тождественно истинную $\mathcal{B}\Phi$ 1.

Доказательство. Так как f несамодвойственна, то существует набор a_1, \ldots, a_n значений аргументов такой, что $f(a_1,\ldots,a_n) \neq \neg f(\neg a_1,\ldots,\neg a_n)$

Так как БФ принимают только значения 0 и 1, то $f(a_1, ..., a_n) = f(\neg a_1, ..., \neg a_n)$

Составим функцию $g(x) = f(x^{a_1}, \dots, x^{a_n})$, где

$$x^a = \begin{cases} x & \text{если } a = 1\\ \neg x & \text{если } a = 0 \end{cases}$$

Очевидно, что $g \in [f, \neg x]$, так как является их суперпозицией.

$$g(0) = f(0^{a_1}, \dots, 0^{a_n}) = f(\neg a_1, \dots, \neg a_n), \ g(1) = f(1^{a_1}, \dots, 1^{a_n}) = f(a_1, \dots, a_n),$$

 $g(0) = g(1)$ - g - константа, g и $\neg g$ принимают значения 0 и 1 чтд.

Лемма 1.3 (О немонотонной функции). *Если* $f(x_1, ..., x_n)$ *немонотонна, то* $x' \in [f, 0, 1]$

Доказатель ство. Из немонотонности f следует существование двух соседних наборов $a=(a_1,\ldots,a_n) \prec (b_1,\ldots,b_n)=$ b такие, что f(a) > f(b). Б.О.О считаем, что они отличаются только в первой координате

$$a_1 = 0$$
$$b_1 = 1$$
$$a_i = b_i$$

$$\forall g(x, a_2, \dots, a_n) \in [f, 0, 1]$$

 $g(0) = f(a) = 1$, $g(1) = f(b) = 0 \implies g \equiv x'$

Лемма 1.4 (О нелинейной функции). $f(x_1, ..., x_n) \notin L \implies xy \in [f, 0, 1, x']$

Доказательство. $f(x_1,\ldots,x_n)\notin L\implies$ полином Жегалкина функции f содержит конъюнкцию двух переменных x_1 и x_2

$$\implies f(x_1, \dots, x_n) = x_1 x_2 h_{12}(x_3, \dots x_n) + x_1 h_1(x_3, \dots x_n) + h_0(x_3, \dots x_n)$$
 $f \notin L \implies h_{12} \neq 0 \implies \exists (a_3, \dots a_n) h_{12}(a_3, \dots a_n) = 1$ Подставим этот набор в ПЖ f :

Подставим этот набор в ПЖ f:

$$g(x_1,x_2)=f(x_1,x_2,a_3\dots a_n)=x_1x_2h_{12}(a_3,\dots a_n)+x_1h_1(a_3,\dots a_n)+h_0(a_3,\dots a_n)$$
 $h_i\in\{0,1\}\implies\exists 8$ вариантов того, как выглядит полином Жегалкина

- 1. Система функций $[g, \neg, 0, 1]$ полна и содержит конъюнкцию
- 2. g конъюнкция
- 3. $xy = g(x, y') \lor xy = g(x', y) \implies xy \in$ замыкание

Т.к g выражается через $f(x_1, \dots x_n), 0, 1$, то конъюнкция также лежит в замыкании $[f, \neg, 0, 1]$

1.17Теорема Поста о полноте системы булевых функций

Теорема 1.4 (Теорема Поста). Система $B\Phi$ является полной тогда и только тогда, когда она не лежит целиком ни в одном из классов Π оста.

Доказательство.

- \Rightarrow Пусть все функции из 1 класса, б.о.о. они из T_0 . Так как он замкнут, то замыкание этих функций не совпадает $c \mathcal{B} \implies$ набор не полон.
- \Leftarrow Если набор $f_1 \dots f_k$ не содержится полностью ни в одном из классов Поста, то существуют БФ $f_0 \notin T_0, f_1 \notin$ $T_1, f_S \notin S, f_M \notin M, f_L \notin L$

Заменим все переменные этих функций на х и получим функцию одного аргумента

$$g_0(x) = f_0(x, x, \dots, x), g_1(x) = f_1(x, x, \dots, x), g_S(x) = f_S(x, x, \dots, x), g_M(x) = f_M(x, x, \dots, x), g_L(x) = f_L(x, x, \dots, x).$$

Все БФ из замыкания этих функций $G \in [f_1, \dots, f_k]$ (переименовали переменные). Докажем полноту набора [G] через полноту $[\neg x, xy]$:

Для
$$g_0,g_1:g_0(0)=1,g_1(1)=0$$

$$\begin{array}{c|cccc} g_0(1) & g_1(0) \\ \hline 0 & 0 & g_0\equiv\neg x,g_1\equiv 0 \\ 0 & 1 & g_0\equiv\neg x,g_1\equiv\neg x \\ 1 & 0 & g_0\equiv 1,g_1\equiv 0 \\ 1 & 1 & g_0\equiv 1,g_1\equiv\neg x \\ \end{array}$$

- 1. $[G] \ni \neg x, 0, 1$ по лемме о нелинейной функции содержит xy
- 2. $[G] \ni \neg x \implies$ по лемме о несамодвойственной функции содержит 0 и 1 \implies по лемме о нелинейной функции содержит xy
- 3. $[G] \ni 0,1 \implies$ по лемме о немонотонной функции содержит $\neg x \implies$ по лемме о нелинейной функции содержит xy
- 4. $[G] \ni \neg x, 0, 1$ по лемме о нелинейной функции содержит xy

Предполные классы

Определение. Предполным классом K называется неполный класс, при добавлении любой функции, которая не принадлежит ему, получается класс полный.

Утверждение. Предполный класс является замкнутым.

Доказательство. Пусть класс A не замкнут. Значит, найдется функция $f \in [A] \setminus A$. Получаем: $[A \cup f] = [A]$. $A \neq \mathcal{B}$, но при добавлении f получаем полную систему (по определению) \implies противоречие. Значит, A — замкнутый класс.

Утверждение (Максимальные замкнутые классы). Классы Поста являются максимальными замкнутыми классами (предполными) и других нет.

Доказательство. Докажем максимальность T_0 . Пусть он не максимален, т.е существует замкнутый класс A такой, что $T_0 \subset A \subset \mathcal{B}$, тогда $[T_0] \subseteq A$

Пусть $f_0 \in A \setminus T_0$, тогда $g(x) = f(x, ..., x) \notin T_0$. Если $g(1) = 0, g \equiv \neg(x)$, иначе $g \equiv 1$. Так как $T_0 \ni 0, xy$, немонотонные и несамодвойственные функции, $[T_0, f] = \mathcal{B}$, а это противоречит $[T_0, f] \subseteq A$. Остальные классы аналогично.

- 1.18 Релейно-контактные схемы: определение, примеры, функция проводимости. Анализ и синтез РКС (умение решать задачи)
- 2 Логика высказываний
- 2.1 Парадоксы в математике. Парадоксы Г. Кантора и Б. Рассела
- 2.2 Логическое следование в логике высказываний. Проверка логического следования с помощью таблиц истинности и эквивалентных преобразований.
- 2.3 Понятия прямой теоремы, а также противоположной, обратной и обратной к противоположной теорем
- 2.4 Понятия необходимых и достаточных условий
- 2.5 Формальные системы. Выводы в формальных системах. Свойства выводов
- 2.6 Исчисление высказываний (ИВ) Гильберта. Примеры выводов
- 2.7 Теорема о дедукции для ИВ
- 2.8 Теорема о полноте и непротиворечивости ИВ
- 2.9 ИВ Генцена, его полнота
- 2.10 Метод резолюций для логики высказываний (без обоснования корректности)
- 3 Логика предикатов
- 3.1 Понятие предиката и операции, их представления, примеры

Определение. п-местный предикат на множестве A - это отображение вида $P:A^n \to \{0,1\}$

Определение. n-местная операция на множестве A - это отображение вида $f:A^n o A$

Предикат можно задать как множество тех аргументов, на которых он является истинным

Пример.
$$P = \{1, 3\} : P = 1 \Leftrightarrow x = 1 \lor x = 3$$

Пример.
$$Q = \{(1,2), (3,4), (5,6)\}$$

Способы задания:

- 1. описательный
- 2. множество (отношения)
- 3. таблица (истинности)
- 4. графы

```
для предиката P(x,y) ребро (x,y) обозначает P(x,y)=1 для операции f(x) дуга (x,y) обозначает y=f(x)
```

3.2 Сигнатура, интерпретация сигнатуры на множестве, алгебраические системы

Определение. Сигнатура - набор предикатных, функциональных и константных символов с указанием местностей

Пример.
$$\sigma = \{P^{(1)}, Q^{(2)}, f^{(1)}, g^{(2)}, c\}$$

Определение. Две сигнатуры считаем *равными*, если в них одинаковое кол-во символов каждого сорта и местности соответствующих символов равны

Определение. Интерпретация сигнатуры σ на множестве A - это отображение, которое

1. каждому n-местному предикатному символу $P^{(n)} \in \sigma$ сопоставляет n-местный предикат на A

- 2. каждому n-местному функциональному символу $f^{(n)} \in \sigma$ сопоставляет n-местную операцию на A
- 3. каждому константному символу сопоставляет элемент множества А

Определение. Алгебраическая система - набор, состоящий из множества A, сигнатуры σ и интерпретации σ на A. Множество A называют основным множеством системы ($\mathfrak{a} = < A, \sigma >$)

3.3 Язык логики предикатов, термы, формулы логики предикатов

Зафиксируем сигнатуру σ . Алфавит логики предикатов сигнатуры σ — это множество $\sigma_{A\Pi\Pi} = \sigma \cup \{x_1, x_2, \dots, \&, \lor, \to, \leftrightarrow, \neg, \lor, \exists, (,), =, ,\}$

Определение. Терм - слово алфавита логики предикатов, построенное по правилам:

- 1. символ переменной терм
- 2. константный символ терм
- 3. если $t_1, \ldots t_n$ термы, $f^{(n)} \in \sigma$, то и $f(t_1, \ldots, t_n)$ терм

Определение. Атомарная формула сигнатуры σ - это слово одного из двух видов:

- 1. $t_1 = t_2$, где t_1, t_2 термы
- 2. предикат $P(t_1, ..., t_n), P^{(n)} \in \sigma, t_1, ...t_n$ термы

Определение. Формула ЛП сигнатуры σ - слово, построенное по правилам:

- 1. атомарная формула формула
- 2. если ϕ_1 и ϕ_2 формулы, то слова $(\phi_1 \& \phi_2), (\phi_1 \lor \phi_2), (\phi_1 \leftrightarrow \phi_2), (\phi_1 \to \phi_2), \neg \phi_1$ тоже формулы
- 3. если ϕ формула, то слова ($\forall x \phi$) и ($\exists x \phi$) тоже формулы

3.4 Свободные и связанные переменные. Замкнутые формулы

Определение. Вхождение переменной х в формулу ϕ связанное, если х попадает в область действия квантора $\exists x/\forall x$, в противном случае вхождение х свободное

Определение. Переменная х **свободна** в формуле ϕ , если есть хотя бы одно свободное вхождение х в ϕ , в противном случае она **связанная**

Определение. Формула замкнутая, если она не содержит свободных переменных.

3.5 Истинность формул на алгебраической системе

Каждый терм $t(x_1, \ldots, x_n)$ определяет в системе \mathfrak{a} функцию $t_{\mathfrak{a}}: A^n \to A$ следующим образом: в терме все функциональные и константные символы заменяются на их интерпретации в системе A, после чего вычисляется полученная суперпозиция от входных аргументов.

Пусть также $\phi(x_1,\ldots,x_n)$ — формула со свободными переменными x_1,\ldots,x_n . Определим понятие истинности формулы ϕ на наборе элементов $a_1,\ldots a_n\in\mathfrak{a}$ в алгебраической системе \mathfrak{a} (обозначение: $\mathfrak{a}\models\phi(a_1,\ldots a_n)$) следующим образом.

Определение. 1. Пусть ϕ имеет вид $t_1 = t_2$. Тогда $A \models \phi(a_1, \dots a_n) \Leftrightarrow t_{1A}(a_1, \dots a_n) = t_{2A}(a_1, \dots a_n)$ (здесь t_{iA} — функция, определяемая термом t_i в системе A).

- 2. Пусть ϕ имеет вид $P(t_1,\ldots,t_k)$. Тогда $A\models\phi(a_1,\ldots a_n)\Leftrightarrow P_A(t_{1A}(a_1,\ldots a_n),\ldots,t_{kA}(a_1,\ldots a_n))=1$, где P_A интерпретация предикатного символа P в системе A.
- 3. Пусть ϕ имеет вид $(\phi_1 \& \phi_2), (\phi_1 \lor \phi_2), (\phi_1 \to \phi_2), (\phi_1 \leftrightarrow \phi_2), \neg \phi_1$. Тогда истинность формулы ϕ определяется по значениям $\phi_1(a_1, \dots a_n)$ и $\phi_2(a_1, \dots a_n)$ по таблицам истинности логических связок.
- 4. Пусть $\phi(x_1, \dots, x_n)$ имеет вид $(\forall x \phi(x, x_1, \dots x_n))$. Тогда $A \models \phi(a_1, \dots a_n) \Leftrightarrow$ для всех элементов $b \in A$ выполнено $A \models \phi(b, a_1, \dots a_n)$.
- 5. Пусть $\phi(x_1, \dots, x_n)$ имеет вид $(\exists x \phi(x, x_1, \dots x_n))$. Тогда $A \models \phi(a_1, \dots a_n) \Leftrightarrow$ для некоторого элемента $b \in A$ выполнено $A \models \phi(b, a_1, \dots a_n)$.

Определение. Формула $\phi(x_1, ..., x_n)$ сигнатуры σ тождественно истинная (ложна) в алгебраической системе $A = < A, \sigma >$, если для всех наборов элементов $a_1 ... a_n \in A$ выполнено $A \models \phi(a_1 ... a_n)(A \not\models \phi(a_1 ... a_n))$.

Определение. Формула $\phi(x_1, ..., x_n)$ выполнима в алгебраической системе $A = < A, \sigma >$, если для хотя бы одного набора элементов $a_1 ... a_n \in A$ выполнено $A \models \phi(a_1 ... a_n)$.

Определение. Формула ϕ сигнатуры σ тождественно истинная (ложна), если ϕ тождественно истинна (ложна) во всех алгебраических системах сигнатуры σ .

Определение. Формула ϕ сигнатуры σ выполнима, если ϕ выполнима хотя бы в одной алгебраической системе сигнатуры σ .

- 3.6 Изоморфизм систем. Теорема о сохранении значений термов и формул в изоморфных системах. Автоморфизм
- 3.7 Элементарная теория алгебраической системы. Элементарная эквивалентность систем. Связь понятий изоморфизма и элементарной эквивалентности
- 3.8 Выразимость свойств в логике предикатов. Умение записать формулой различные свойства систем и элементов систем
- 3.9 Эквивалентность формул логики предикатов
- 3.10 Тождественно истинные (ложные) и выполнимые формулы
- 3.11 Пренексный вид формулы
- 3.12 Основные эквивалентности логики предикатов
- 3.13 Классы формул $\Sigma_n, \Pi_n, \Delta_n$. Соотношения между классами
- 3.14 Нормальная форма Сколема, ее построение (на примерах)
- 3.15 Проверка существования вывода методом резолюций (алгоритм)
- 3.16 Логическое следование в логике предикатов
- 3.17 Исчисление предикатов (ИП) Гильберта. Свойства выводов
- 3.18 Теория. Модель теории
- 3.19 Непротиворечивая теория. Полная теория. Свойства непротиворечивых и полных теорий
- 3.20 Теорема о существовании модели (без доказательства)
- 3.21 Теорема о связи выводимости и противоречивости
- 3.22 Теоремы о корректности и полноте ИП
- 3.23 Теорема компактности
- 3.24 Аксиоматизируемые и конечно аксиоматизируемые классы. Конечно аксиоматизируемые теории
- 3.25 Обоснование нестандартного анализа (построение алгебраической системы, элементарно эквивалентной полю вещественных чисел, содержащей бесконечно малые элементы)
- 3.26 Метод резолюций для логики предикатов (без доказательства корректности)