

9월 업무일지

서울시립대학교 컴퓨터과학부 2017920036 양다은 인턴 활동/ 업무일지

$9/1 \sim 9/2$

- l. 청라중학교 강의 영상 제작
 - 1. Adobe Premiere Pro 사용하기
 - 2. 촬영 및 녹음하기 노트북은 Xbox 프로그램, 아이패드는 RECGO 앱 다운로드
 - 3. OFOI패드-굿노트로 ppt 설명하기
 - 4. 노트북-실습 과정 설명하기
 - 5. 2,3강 각각의 20분 정도의 강의 제작
 - 6. 저작권 문제를 OF기하는 폰트나 음원 사용하지 않기

2. 2강. App Inventor를 활용한 원격제어 코딩

- l. 아두이노에 포함된 함수들 요약
- 2. code.org에 접속하여 코딩공부를 다양하게 가능
- 3. Appinventor 실행하기 위한 환경 설정
- 4. Appinventor 프로그램 사용하는 방법
- 5. smart_home 프로젝트 제작-Designer와 Block 부분

$9/3 \sim 9/4$

- 3. 3강. App Inventor를 이용한 GET방식의 연동 실습
 - l. smart_home 프로젝트의 Block 부분 코드 설명하기
 - I. ListPickerl
 - 2. LEDI, LED2
 - 3. DOOR
 - 2. GET방식과 POST 방식 비교하기, GET방식을 이용한 이유
 - 3. GET방식을 이용하고자 필요한 프로그램 소개
 - 4. Google chart api 활용
 - 5. Google_home_chart.html 코딩
 - l. Get방식을 이용하여 값 가져오기
 - 2. 온도, 습도 센서 가져오기
 - 3. 센서 값을 구글 차트에 적용하기
 - 6. Google_home_chart.html 적용하기-get방식 데이터 전달
 - 7. Appinventor, 중학생들 실습하기
 - 8. 안드로이드폰이나 애뮬레이터 프로그램으로 제작한 앱 실행하기

** 데이터를 클라이언트(Client)에서 서버(Server)로 보내는 방식 2가지

1 GFT 반신

- 데이터를 주소에 묻혀서 보내짐. -> 보안성 취약.

- 게시판 글 조회나 검색 같이 정보를 가져올 필요점이 있을 때 사용.

- 전송가능한 데이터의 최대 크기는 브라우저별로 다르지만 , 크기가 정해져 있음.(2048byte)

http://emotionreport.co.kr/google_chart.html?t=12&h=23&t1=45&h1=45&t2=14&h2=98

1 2

GET 방식 데이터 전날 (key= value

2. POST 밤식

- 데이터를 주소에 묻혀 보내지 않고, 전송 객체의 메세지안에 담아서 전달. -> 보안성에 강함.
- 비밀번호나 주민번호 등 private한 데이터를 전송할 때 사용.
- 데이터 양의 제한이 없음. -> 대량의 데이터 전송 가능
- #. GET 밤식이 POST 밤식보다 좋은 이유?
- 속도가 빠르다. 하지만 이유를 아는 것이 중요하다.
- GET 방식의 요점은 캐싱이 있기 때문이다.
- · 캐싱: 한번 접근한 후, 재요청 시 빠른 접근을 위해 데이터를 저장시켜 놓는 것

$9/7 \sim 9/11$

- I. SmartFarm 제작 영상 촬영
 - 1. 이영옥팀장님과 아무이노 쉴드를 이용하여 smartfarm KIT 제작하기

2. SmartFarm 영상 편집

- I. Adobe Premiere Pro 사용하기
- 2. KIT 부품 check와 smartfarm KIT 제작과정

$9/7 \sim 9/11$

- 3. SmartFarm 강의자료 업데이트
 - I. Fritzing 프로그램 이용하여 회로도 변경하기
 - 2. smartfarm KIT 제작과정(회로도 포함) 자료 수정하기

4. SmartFarm 도서 회로도 업데이트

- l. Adobe InDesign 사용하기
- 2. smartfarm KIT 제작과정(회로도, 제작단계 설명 포함) 자료 수정하기

- l. Raspberry Pi 작동법
 - Ⅰ. 전원 on -> cd Desktop/ free camera/ (파일 경로 변경)-> python3 ~~.py -> 프로그램 실행 -> ctrl+C 마침
 - 2. Tab 클릭하면 자동완성
 - 3. raspistill -o ~.jpg (카메라 프로그램 실행)
 - 4. ls (파일 찿기)
 - 5. sudo reboot (라즈베리파이 리셋)

2. 자동차를 인식할 카메라 위치 선정하기

- 1. 위에 설치
 - I. Dataset안에 자동차 윗면 이미지가 없어 자동차를 인식하지 못한다.
 - 2. 실제로 하늘에 신호등을 달 수 없고, 비효율적이다.
- 2. 사거리 중앙에 설치
 - 최소 두대 이상의 카메라를 설치해야 한다.
- 3. 옆면에 설치, 현 신호등 위치
 - 1. 자동차 옆면 이미지를 제대로 파악한다.
 - 2. 효율적인 위치
 - 3. 결정!

3. 카메라를 옆면에 설치할 때, 야기될 문제점

- l. I차선인 경우는 크게 무리 없지만, 2차선 이상일 경우 카메라와 가까운 차선의 자동차만 인식 가능
- 2. 빠르게 움직이는 자동차는 인식하지 못한다. -> 정차된 상태에 자동차 수 측정하기
- 3. 자동차 색깔, 크기에 따라 인식될 정확도가 달라진다. -> 밝은 색과 뚜렷한 자동차 모형만 사용하기
- 4. 대표님 왈, 중요한 점은 알고리즘을 제작하는 것이다. 세세한 단점들은 이후에 보완할 점들이다.

4. 신호등 제작하기

- I. 신호등 변환 효과를 제어하는 마이크로 회로 기판 사용하고자 했으나, 코딩으로 신호등 제어가 불가능하여 포기
- 2. 수작업 납땜하여 신호등 on/off 확인하기
- 3. 빨간색, 초록색 LED 센서 각 두 개씩 이용하여 브레드보드에 설치하기(저항, 점퍼선, 스위치 등등 사용)
- 4. 라즈베리 파이와 연결하면 핀번호가 BCM/Board 마다 다르다는 점을 알게 되었다. -> BCM의 GPIO번호 사용

- 5. 카메라로 측정된 Frame 분할하기
 - 왼쪽, 오른쪽 각각의 차선에 자동차 수를 측정하기 위해 화면을 반으로 분할하고자 한다.
 - 2. 처음엔 빨간 신호에 따라 정차된 자동차 수를 count하고자 했으나, 측정되는데 시간이 지연되는 문제점 발생하여 포기
 - 3. 측정된 자동차의 (startX, startY) 좌표와 (endX, endY) 좌표 값을 출력하기 -> frame을 나눌 기준선(width, height) 잡기

- 6. Raspberry Pi-OpenCV 신호등 알고리즘 제작
 - l. Raspberry Pi-OpenCV 신호등 알고리즘 제작
 - 2. OpenCV를 이용하여 카메라로 자동차 인식하기-적절한 카메라 위치 선정&class 인식가능한 코딩
 - 3. 왼쪽, 오른쪽 자동차 수를 각각 countət여 비교하기-Lcount, Rcount를 비교하여 초록색 LED 센서 지연 시간 (extratime) 발생하는 코딩
 - 4. 지연되는 신호등 시간을 LED센서에 적용하기─traffic_light.py의 light_timer 함수를 이용하여 LED sleep 시간 조절하는 코딩

9월 18일 금요일

CAC

- 1. 10:10 ~ 12:10
 - I. Raspberry Pi-OpenCV 신호등 알고리즘 제작
 - 2. Python 으로 코딩 완성!
 - I. traffic_light.py
 - 2. real-time-detection-fin.py
 - 3. Desktop/free camera/ 파일안에 real-time-detection-fin.py
 - 4. car와 bus의 개수를 count하여 왼쪽, 오른쪽 신호등 지연시간 조절하기
- 2. 12:10 ~ 12:50
 - 1. 점심식사-'미스사이공'에서 베트남볶음밥
- 3. 13:00 ~ 14:30
 - l. cardboardcollege.com 자료실에 있는 smart_farm.pdf 수정하기
 - 2. 브레드보드를 포함한 키트 설명에 부품이름 추가하기
- 4. 15:00 ~ 16:30
 - 1. 대표님께 구현한 사거리 신호등 설명하기
- 5. 17:10 ~ 18:40
 - 1. 다음주 보조강사에 사용할 unity에 대해 공부하기

9월 21일 월요일

- 1. 9:50 ~ 10:30
 - l. 이사님과 업무회의
 - I. 신호등 알고리즘-yolo이용, 차 갯수에 따른 자동 제어 (완료)
 - 2. 축구공 + 녹색판 인식하기-yolo, custom Dataset으로 설정
 - 3. 흙 + 좌표값 -> 포크레인 작동-yolo, custom
 - 4. Unity 야광봉 따라잡기
 - 5. 서버 NLP 하나씩 upload
 - 6. Unity touchdesigner/madmapping
 - 기. (YOLO)_Training YOLO v3 for Objects Detection with Custom Data 파일에서 별(*)표 있는 강의영상 위주로 공부
- 2. 10:40 ~ 12:30
 - I. Yolo custom 학습하기
- 3. 13:10 ~ 13:40
 - 1. 점심식사-구내식당

9월 22일 화요일

🏄 CAC

- 1. 8:20 ~ 8:40
 - 1. 동인천고 진로캠프 강의 시 유의사항과 필수사항 숙지
- 2. 8:50 ~ 11:40(1학년-1분반)
 - I. VR원리체험 수업 진행-보조강사
 - 2. Unity hub, 2018.4.27fl unity, VirtualAqua 등 프로그램과 필요 파일 모든 노트북(20개이상)에 설치
 - 3. Cardboard VR 제작 및 VR 참여
 - 4. Unity 기본 동작법과 Asset Store 활용하기
 - 5. VirtualAqua 파일 열어서 함께 물고기 활용하기
- 3. 11:50 ~ 12:40(1학년-2분반)
- 4. 12:40 ~ 13:30
 - I. 점심시간-면사무소
- 5. 13:30 ~ 15:20(1학년-2분반)

9월 23일 수요일

l. 아버지가 보건소가서 코로나검사를 받아야하기 때문에, 고등학교로 보조강사로 활동하기 어려워 일단 대기

2. 9월 월차 1회 사용

3. 아버지 음성판정. 그래도 고등학교로 출근 못하고 내일 회사로 다시 출근

9월 24일 목요일

- 1. 9:50 ~ 10:30
 - l. 화재경보기 설치ing
- 2. 10:30 ~ 11:30
 - l. 대표님과 프로젝트 진행
 - l. essayfitapp 프로그램제작
 - 2. ai_showingtelling.py 주어진 문장이 묘사(showing)인지, 설명(telling)인지 분류
 - 3. Label: 0 -> showing/ I -> telling
- 3. 11:40 ~ 12:30
 - l. 점심식사-구내식당
- 4. 12:40 ~ 15:20
 - l. ai_showingtelling.py 입력된 전체 문장(contents)을 . 를 기준으로 개별문장(input_text_df)으로 분리

9월 25일 금요일

🍊 CAC

- 1. 9:55 ~ 12:30
 - 1. 포크레인 프로젝트 진행
 - l. 흙 + 좌표값 -> 포크레인 작동-yolo, custom
 - 2. YOLO custom 학습하기
- 2. 12:30 ~ 14:00
 - I. 점심식사-쭈꾸미볶음
- 3. 14:10 ~ 18:30
 - I. YOLO custom 학습하기
 - 2. vscode에 OpenCV 설치하기(완료X)

9월 28일 월요일

CAC

- 1. 9:50 ~ 11:20
 - l. 포크레인 프로젝트 진행
 - 2. YOLO custom training 개발환경 설치하기
- 2. 11:30 ~ 12:20
 - I. 점심식사-김밥천국
- 3. 12:20 ~ 18:30
 - I. YOLO custom training 개발환경 설치하기
 - 2. vscode에 OpenCV 설치하기(완료X) -> 동작은 가능
 - 3. YOLO / YOLO custom 어느정도 숙지
 - 4. Ubuntu 설치할 usb 메모리 가져오기
 - 5. Train/Test / Validation set 차이 -> 축구공 + 녹색판 이미지(또는 영상)을 Validation set에 담기
 - 6. 내일 오전까지 스마트팜 아이디어 구상하기

9월 29일 화요일

🏄 CAC

- 1. 10:00 ~ 10:30
 - l. 이사님과 업무회의 포크레인 프로젝트
 - I. Raspberry Pi-OpenCV 이용하여 person과 background 인식
 - 2. person -> 기계동작 멈춤 / background -> 기계동작 실행
 - 3. 서브모터 *4*개 로봇 팔 움직임 구현 가능
 - 4. 기어모터 4개 포크레인 본체 바퀴 이동 구현 가능
 - 5. 1602 LCD 센서d와 Raspberry Pi 연결하기 -> 작동 체크
- 2. 10:30 ~ 12:40
 - 1. 1602 LCD 센서d와 Raspberry Pi 연결하기
- 3. 13:00 ~ 14:40
 - l. 점심식사-제육볶음
 - 2. 성훈이사님과 대화하기
 - 1. 업무일지 피드벡
 - 2. 일을 하면서 제대로 역할 잡기

9월 29일 화요일

- 4. 15:00 ~ 18:00
 - l. 1602 LCD 센서와 Raspberry Pi 연결하기
 - I. 사용중인 라즈베리파이 모델: RPI3 모델 B+
 - 2. I602 LCD 센서의 SDA와 SCL 핀을 알맞은 Raspberry Pi gpio 핀번호에 연결하기

I. gpio readall # gpio 상태 확인

2. sudo apt-get install python3-smbus # python3-smbus 라이브러리 설치

3. i2cetect -y l # i2c 장치 연결 확인

- 3. Vscode와 라즈베리파이 연결방법
 - l. Veiw -> command palette -> ftp-simple:Config-FTP connection setting -> host 변경하기(24번)
 - 2. Veiw \rightarrow command palette \rightarrow ftp-simple:Remote directory $\sim\sim$ \rightarrow pi
 - 3. Terminal -> New Terminal -> ssh <u>pi@168.192.0.24</u> -> password:1234
- 4. 파일 RPi_I2C_LCD_driver 다운하기 ->...흠 연결은 되었지만 LCD 화면에 출력 안됨

9월 29일 화요일


```
pi@pi: ~/Desktop/RPi_I2C_LCD_driver/original_example
File Edit Tabs Help
camp.jpg Documents MagPi Pictures Templates
 esktop Downloads Music Public
                                               Videos
pi@pi:~ $ cd Desktop/
pi@pi:~/Desktop $ cd ROi
bash: cd: ROi: No such file or directory
pi@pi:~/Desktop $ cd RPi_I2C_LCD_driver/
pi@pi:~/Desktop/RPi_I2C_LCD_driver $ python3 example.py
python3: can't open file 'example.py':/[Errno 2] No such file or directory pi@pi:~/Desktop/RPi_I2C_LCD_driver $ cd or r
bash: cd: or: No such file or directory

pi@pi:~/Desktop/RPi_I2C_LCD_driver $ cd original_example/
pi@pi:~/Desktop/RPi_I2C_LCD_driver/original_example $ python3 examples.py
                                                                   circuit_image
```