Control Engineering (SC42095)

Lecture 7, 2020

Tamás Keviczky, Azita Dabiri

Delft Center for Systems and Control Faculty of Mechanical Engineering Delft University of Technology The Netherlands

e-mail: t.keviczky@tudelft.nl, a.dabiri@tudelft.nl

Lecture outline

- Redesign of continuous-time controllers
- First-order holds
- PID control
- Implementation issues

So far: system from computer's viewpoint

Computer implementation of analog controllers

G(s) is designed by using continuous-time techniques

Want to get

$$A/D + Algorithm + D/A \approx G(s)$$

Approximation of derivatives

Forward difference (Euler method)

$$px(t) = \frac{dx(t)}{dt} \approx \frac{x(t+h) - x(t)}{h} = \frac{q-1}{h}x(t)$$

Backward difference

$$px(t) = \frac{dx(t)}{dt} \approx \frac{x(t) - x(t - h)}{h} = \frac{q - 1}{qh}x(t)$$

Trapezoidal method (Tustin, bilinear)

$$\frac{dx(t)}{dt} \approx \frac{\dot{x}(t+h) + \dot{x}(t)}{2} \quad \Rightarrow \quad px(t) = \frac{2}{h} \cdot \frac{q-1}{q+1}x(t)$$

Approximation of transfer functions

$$H(z) = G(s)$$

with the substitutions:

 $s = \frac{z-1}{h}$ (forward difference or Euler method)

 $s = \frac{z-1}{zh}$ (backward difference)

 $s = \frac{2}{h} \frac{z-1}{z+1}$ (Tustin or bilinear approximation)

Note: The frequency scale gets distorted with these approximations (warping effect)!

See page 295 of CCS book about frequency prewarping.

Stability of the approximations

 \forall unstable CT \rightarrow unstable DT

 \forall stable CT \rightarrow stable DT

 \forall unstable CT \rightarrow unstable DT

 \exists stable CT \rightarrow unstable DT

 \exists unstable $CT \rightarrow$ stable DT

 \forall stable CT \rightarrow stable DT

Signal reconstruction

Shannon's sampling theorem:

If a signal f(t) has frequency content $\omega < \omega_N$, where the ω_N Nyquist frequency is half of the sampling frequency ω_s , then it is uniquely determined by its sample points.

$$f(t) = \sum_{-\infty}^{\infty} f(k) \frac{\sin(\omega_s(t - kh)/2)}{\omega_s(t - kh)/2}$$

Shannon reconstruction with

$$h(t) = \frac{\sin(\omega_s t/2)}{\omega_s t/2}$$
 is not causal!

Shannon reconstruction (exact)

Zero-order hold

$$u(t) = u(t_k), \quad t_k \le t < t_{k+1}$$

$$\frac{1 - e^{-hs}}{s}$$

First-order hold

$$u(t) = u(t_k) + \frac{t - t_k}{t_k - t_{k-1}} \Big(u(t_k) - u(t_{k-1}) \Big), \quad t_k \le t < t_{k+1}$$
$$\frac{s + 1}{s^2} (1 - 2e^{-hs} + e^{-2hs})$$

Predictive first order hold

$$u(t) = u(t_k) + \frac{t - t_k}{t_k - t_{k-1}} \Big(u(t_{k+1}) - u(t_k) \Big), \quad t_k \le t < t_{k+1}$$

Input linear between samples, rather than constant (different sampling formulas).

PID control

The "textbook" version

$$u(t) = K \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right)$$

Common modifications:

Filter on the derivative

$$sT_d \approx \frac{sT_d}{1 + sT_d/N}$$

- Derivative of -y not of $e = u_c y$
- Only fraction of u_c in the P-term (reduce overshoot)

More realistic PID controller

$$U(s) = K \left(bU_c(s) - Y(s) + \frac{1}{sT_i} (U_c(s) - Y(s)) - \frac{sT_d}{1 + sT_d/N} Y(s) \right)$$

Other modifications:

- high-frequency roll-off (extra filter)
- ullet nonlinearities, e.g., Ke|e|
- anti-windup (later)

Discrete-time PID

P-term: $P(k) = K(bu_c(k) - y(k))$

I-term: $I(k+1) = I(k) + \frac{Kh}{T_i}e(k)$

D-term:
$$D(k) = \frac{T_d}{T_d + Nh} D(k-1) - \frac{KT_dN}{T_d + Nh} \left(y(k) - y(k-1)\right)$$

$$u(k) = P(k) + I(k) + D(k)$$

special case of RST: $R(q)u(k) = T(q)u_c(k) - S(q)y(k)$

table for R(q), S(q) and T(q) (page 309)

Discrete-time PID (cont'd)

Simple position form:

$$u(k) = K \left(1 + \frac{h}{T_i} \frac{1}{q - 1} + \frac{T_d q - 1}{h} \right) e(k)$$

$$\downarrow \downarrow$$

$$\Delta u(k) = u(k) - u(k-1)$$

Simple velocity form:

$$\Delta u(k) = K\left(\frac{q-1}{q} + \frac{h}{T_i}\frac{1}{q-1} + \frac{T_dq-1}{h}\right)e(k)$$

Integrator windup (due to actuator saturation)

Solution: reset the integrator

- stop integrating (when actuator saturates)
- tracking schemes

Tracking scheme for anti-windup

Tracking scheme for anti-windup

Bumpless transfer manual-automatic

Bumpless parameter change

Use:

$$x_I = \int_{-\infty}^{t} \frac{K}{T_i} e(s) ds$$

instead of

$$x_I = \frac{K}{T_i} \int_{-\infty}^{t} e(s) ds$$

Tuning of PID controllers

K, T_i , T_d and other parameters: N, T_t , u_{low} , u_{high} , h, b

- N = 10 typically
- ullet T_t equal to T_i or 0.1–0.5 times T_i
- \bullet u_{low} and u_{high} close to true saturation values
- Sampling period h

For PI :
$$\frac{h}{T_i} \approx 0.1 - 0.3$$

For PID :
$$\frac{hN}{T_d} \approx 0.2 - 0.6$$

 \bullet b < 1 to decrease overshoot after setpoint changes

Ziegler-Nichols tuning rules

1. Step-response method

$$a = RL$$
, $a \longrightarrow K$, T_i , T_d (page 315)

Ziegler-Nichols tuning rules - cont'd

2. Ultimate-sensitivity method

Use a P controller and increase the gain $\Rightarrow K_u$, T_u

$$K_u, T_u \longrightarrow K, T_i, T_d \text{ (page 316)}$$

Use with care (poor damping, $\zeta \approx 0.2$)

Many other tuning methods (including pole placement)

Implementation

Real-time operating systems, multi-tasking

Computational delay

Keep it constant, include in the process model.

Numerical aspects

- \bullet Word-length, computer, A/D and D/A converters
- Fixed or floating point computations (IEEE standard)

example:
$$(100 1 100)(100 1 -100)^T$$

- Use higher precision for internal calculations
- Influence of noise and quantization
- Choice of realization (different sensitivity, see on extra slides)

Effects of roundoff and quantization

Nonlinear phenomena

$$Q(a+b) \neq Q(a) + Q(b)$$

- Limit cycles and/or bias
- Analysis tools
 - Nonlinear analysis
 - Describing function approximation
 - Model quantization as stochastic processes

Effect of roundoff

Without quantization: asymptotically stable for K < 2

With quantization

a)
$$K = 0.8$$
,

b)
$$K = 1.2$$

a)
$$K = 0.8$$
, b) $K = 1.2$, c) $K = 1.6$

Summary

- Redesign of continuous-time controllers
- First-order holds
- PID control
- Implementation issues