

Tidy Time Series & Forecasting in R

4. Seasonality and trends

robjhyndman.com/workshop2020

Outline

- 1 Time series decompositions
- 2 Lab Session 7

Outline

- 1 Time series decompositions
- 2 Lab Session 7

Time series decomposition

Trend-Cycle aperiodic changes in level over time.

Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Additive decomposition

$$y_t = S_t + T_t + R_t$$

where y_t = data at period t

 T_t = trend-cycle component at period t

 S_t = seasonal component at period t

 R_t = remainder component at period t

STL decomposition

- STL: "Seasonal and Trend decomposition using Loess"
- Very versatile and robust.
- Seasonal component allowed to change over time, and rate of change controlled by user.
- Smoothness of trend-cycle also controlled by user.
- Optionally robust to outliers
- Not trading day or calendar adjustments.
- Only additive.
- Take logs to get multiplicative decomposition.
- Use Box-Cox transformations to get other decompositions.

Australian holidays

```
holidays %>% autoplot(Trips) +
  ylab("thousands of trips") + xlab("Year") +
  ggtitle("Australian domestic holiday nights")
```


500 -

250 -

500 -

250 -0 --250 -

2000

2005

0 **-**-250 **-**

```
holidays %>%
  STL(Trips ~ season(window="periodic"), robust=TRUE) %>%
  autoplot()
    STL decomposition
    Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                 State
  0 -
3000 -
                                                                                     ACT
2000 -
                                                                                     New South Wales
1000 -
                                                                                     Northern Territory
  0 -
                                                                                     Queensland
```

2010

Quarter

South Australia

Tasmania

Victoria Western Australia

remainder

2015

```
holidays %>%
   STL(Trips ~ season(window = 5), robust = TRUE) %>%
   autoplot()
     STL decomposition
     Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                            State
  0 -
3000 -
                                                                                                 ACT
2000 -
                                                                                                 New South Wales
1000 -
                                                                                                 Northern Territory
  0 -
                                                                                                 Queensland
 500 -
                                                                                                 South Australia
 250 -
                                                                                                 Tasmania
  0 -
-250 -
                                                                                                 Victoria
-500 -
                                                                                                 Western Australia
 500 -
                                                                                       remainder
 250 -
  0 -
-250 -
-500 -
                                                                      2015
               2000
                                  2005
                                                    2010
                                         Quarter
```

STL decomposition

```
holidays %>%
STL(Trips ~ trend(window=15) + season(window=13),
    robust = TRUE)
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- STL() chooses season(window=13) by default
- A large seasonal window is equivalent to setting window="periodic".
- Odd numbers should be used for symmetry.

```
dcmp <- holidays %>% STL(Trips)
dcmp
```

```
## # A dable:
                    640 x 7 [10]
                      State [8]
## # Kev:
## # STL Decomposition: Trips = trend + season_year +
      remainder
## #
##
     State
             Quarter Trips trend season_year remainder
##
     <chr>
               <atr> <dbl> <dbl>
                                     <fdb1>
                                              <fdb>>
##
   1 ACT
             1998 01 196.
                           171.
                                     -6.60
                                              32.3
##
   2 ACT
             1998 Q2 127. 156.
                                     10.3
                                             -39.7
##
   3 ACT
             1998 03 111. 142. -13.9
                                             -17.2
             1998 04 170.
                                      9.76
                                              30.3
##
   4 ACT
                           130.
##
   5 ACT
             1999 01
                     108.
                           135.
                                     -6.35
                                              -20.7
##
   6 ACT
             1999 02
                     125.
                           148.
                                     10.5
                                              -33.9
   7 ACT
             1999 03
                     178.
                           166.
                                    -13.2
                                              25.5
##
##
   8 ACT
             1999 04
                      218.
                           177.
                                     8.56
                                              32.0
##
   9 ACT
             2000 01
                     158.
                           169.
                                     -6.09
                                              -4.74
## 10 ACT
             2000 02
                      155.
                           151.
                                     10.7
                                              -7.00
```

dcmp %>% gg_subseries(season_year)


```
autoplot(dcmp, trend, scale_bars=FALSE) +
autolayer(holidays, alpha=0.4)
```


Outline

- 1 Time series decompositions
- 2 Lab Session 7

Lab Session 7

Repeat the decomposition using

```
holidays %>%
STL(Trips ~ season(window=7) + trend(window=11)) %>%
autoplot()
```

```
What happens as you change season(window = ???) and trend(window = ???)?
```