泛函分析读书笔记

章小明

2025年1月2日

景目

1	Hahn-Banach 定理,弱拓扑与弱 * 拓扑	1
	1.1 Hahn-Banach 定理: 分析形式	. 1
	1.2 Hahn-Banach 定理: 几何形式	. 3
	1.3 弱拓扑与弱 * 拓扑	. 4
2	符号表	5

1 Hahn-Banach 定理, 弱拓扑与弱 * 拓扑

1.1 Hahn-Banach 定理: 分析形式

首先给出一些定义上的比较:

定义 1. 范数满足:① \mathbb{F} -VS $E \to \mathbb{R}_{\geq 0}$;①正定性 $p(x) = 0 \iff x = 0$;②正齐性 $\forall \lambda \in \mathbb{F} : p(\lambda x) = |\lambda|p(x)$;③次可加性 $p(x+y) \leq p(x) + p(y)$.

半范数满足:(0)(2)(3).

次线性泛函满足:①* \mathbb{R} -VS $E \to \mathbb{R}$;②* $\forall \lambda \geq 0 : p(\lambda x) = \lambda p(x)$;③.

引理 1.1. \mathbb{R} -VS E, VS F \subset E,codim F = 1.p : E \to \mathbb{R} 次线性,f : F \to \mathbb{R} 线性. 若 f \leq $p|_F$, 则有线性延拓 \tilde{f} : E \to \mathbb{R} : $\tilde{f}|_F$ = f, \tilde{f} \leq p.

证明. 可以取 $x_0 \in E - F, E = \operatorname{span}(F, x_0)$. 可以构造线性泛函 $\tilde{f}(x + tx_0) = f(x) + t\tilde{f}(x_0)$. 仅需保证 $a = \tilde{f}(x_0)$ 的存在性.

为保证另一条件 $f(x)+ta \leq p(x+tx_0), t \in \mathbb{R}$, 通过变换可以得到不等式 $f(x/t)-p(x/t-x_0) \leq a \leq p(x/t+x_0)-f(x/t), t \geq 0$. 容易证明不等式下限小于等于上限, 因此符合条件的 a 是存在的. 因此 \tilde{f} 是存在的.

由上可知, 实际上 $\operatorname{codim} F < \infty$ 甚至可数时, 都可以作线性延拓. 下考虑任意多的 codim .

定理 1.2 (Hahn-Banach 延拓定理 (\mathbb{R})). \mathbb{R} -VS E, VS $F \subset E$. $p: E \to \mathbb{R}$ 次线性, $f: F \to \mathbb{R}$ 线性, $f \leq p|_F$, 则存在 f 的线性延拓 $\tilde{f}: E \to \mathbb{R}$, $\tilde{f}|_F = f$, $\tilde{f} \leq p$.

证明. 此定理用 Zorn 引理证. 考虑偏序集 \mathcal{F} , 其元素为 (G,g),G 是含 F 的 VS,g 是 G 上满足题设的线性泛函, 即 $g|_F=f,g\leq p|_G$.

其上的偏序关系 \leq 定义为 $(G,g) \leq (H,h) \iff G \subset H, h|_G = g$. 首先, 每条链 $\mathcal{G} \subset \mathcal{F}$ 上都有最大元 (H,h).H 是所有 VS 的并,h 是对应的线性泛函的 "粘贴". 由定义这样的 h 存在且确定, 并且 $h \leq p|_H$. 因此 $(H,h) \in \mathcal{F}$.

最后由引理可知, 存在极大元 $(M,m) \in \mathcal{F}$. 可知 E = M, 否则 M 可以用上引理延拓, 矛盾, 因此可以得到符合条件的线性泛函.

定理 1.3 (Hahn-Banach 延拓定理). \mathbb{F} -VS E, VS $F \subset E.p$ 是 E 上半范数, $f: F \to \mathbb{F}$ 线性, 且 $f \leq p|_F$. 则其有线性延拓 $\tilde{f}, \tilde{f}|_F = f, |\tilde{f}| \leq p$.

证明. \mathbb{R} 情形可直接由上定理得到相应线性泛函 $\tilde{f} \leq p$. 而 $-\tilde{f}(x) \leq p(-x) = p(x)$, 因此 $|\tilde{f}| \leq p$.

 \mathbb{C} 情形可视 E 为 \mathbb{R} -VS. 设 $\varphi = \Re f$, 其为实线性泛函. 由 f 的复线性可知 $f = \varphi - \mathrm{i}\varphi(\mathrm{i}\cdot)$. 可以认为 $f \leftrightarrow \varphi$ 建立了实线性和复线性之间的对应关系. 对 φ 可作 \mathbb{R} -VS 中的延拓 $\tilde{\varphi} \leq p$. 再取 $\tilde{f} = \tilde{\varphi} - \mathrm{i}\tilde{\varphi}(\mathrm{i}\cdot)$, 其复线性.

最后, 对 $x \in E$ 设 $|\tilde{f}|(x) = \lambda \tilde{f}(x) = \tilde{\varphi}(\lambda x) - i\tilde{\varphi}(i\lambda x) \leq p(\lambda x) = p(x)$. 其中最后一个不等号是因为模是实数, 因此可以去掉虚部. 这样就得到了我们需要的线性泛函.

接下来我们给出一系列推论. 它们很小但或许会有重要的作用.

命题 1.4. $TVS\ E,\ VS\ F\subset E,\ p$ 是 E 上连续半范数, $f:F\to\mathbb{F}$ 线性且 $|f|\le p|_F$. 因此有连续线性延拓 $\tilde{f}\in E^*, \tilde{f}|_F=f, |\tilde{f}|\le p$.

证明. 由上可得到相应延拓, 只需证其连续. 由其线性, 仅需证其在原点连续. 由 $|\tilde{f}|(x) \leq p(x) < \varepsilon$ 可知其连续. \Box

命题 1.5. LCS E, $VS F \subset E$, $f \in F^*$, 则其有延拓 $\tilde{f} \in E^*$.

证明. E 有一个半范数族, 由上 [哪里?] 有 $|f(x)| \le C \max_{i \in J} p_i(x), J$ 有限. 因此 |f| 小于连续半范数 $C \max p_i$. 由上命题1.4得证.

命题 1.6. $TVS E, p \in E$ 上连续半范数, $x_0 \in E$,则存在 $f \in E^*, f(x_0) = p(x_0)$,且 $|f| \leq p$.

证明. 可以先作 E 上的线性泛函 $g.F = \operatorname{span}(x_0), g: F \to \mathbb{F}, tx_0 \mapsto tp(x_0),$ 然后延拓之到 E 上, 结论成立.

命题 1.7. T₂ LCS E 则 E* 可分点.

证明. E 有连续半范数 $p, p(x_0) \neq 0$. 由上命题可知有 $f \in E^*, f(x_0) \neq 0$.

接下来给出一个重要的推论,VS F 上的 $f \in F^*$ 不仅可以连续延拓, 而且可以保范的连续延拓.

命题 1.8. \mathbb{F} -VS E, VS F \subset E 且 f \in F*. 则存在延拓 \tilde{f} \in E*, $\tilde{f}|_{F}$ = f, ||f|| = $||\tilde{f}||$.

证明. 首先由 $\tilde{f}|_F = f, \|f\| \le \|\tilde{f}\|$. 而 $\|f\|(x) \le \|f\| \|x\|$ 在延拓后有 $\|\tilde{f}\|(x) \le \|f\| \|x\|$. 因此有 $\|\tilde{f}\| \le \|f\|$. 因此可知保范.

命题 1.9. 赋范空间 E 中有非零元 x_0 , 存在 $f \in E^*, f(x_0) = ||x_0||, ||f|| \le 1$.

证明. $F = \text{span}(x_0)$, 在 $F \perp x \in |x|$ 其保范延拓到 $E \perp$, 为 $f \mid |f| = |g| = 1$.

为什么不是 \leq 1?

命题 1.10. 赋范空间 E, 取 $x \in E$ 有 $||x|| = \sup\{|f(x)| : f \in E^*, ||f|| \le 1\}$. 且上确界是可以达到的.

证明. 记右式为 α . 首先, $|f(x)| \le ||f|| \, ||x|| \le ||x||$, 故 $\alpha \le ||x||$. 另一方面由上命题, 有 $f_0 \in E^*$, $f_0(x) = ||x||$, $||f_0|| \le 1$. 因此 $||x|| \le \alpha$. 结论也得证.

最后我们来讨论一下二次对偶空间 E^{**} . 考虑 $B:(x,f)\mapsto f(x)$, 显然 $|B(x,f)|\leq \|x\|\,\|f\|$, 因此其连续, $B(x,\cdot)$ 连续, 即 $B(x,\cdot)\in E^{**}$ 且 $\|B(x,\cdot)\|_{E^{**}}\leq \|x\|$. 而上推论给出 $\exists f\in \overline{B}_{E^*}:\|x\|=\sup|f(x)|=\sup|B(x,f)|$, 即反向情形, 因此 $\|B(x,\cdot)\|=\|x\|$.

因此, $x \mapsto B(x, \cdot)$ 是等距同构, 此映射为 E 等距嵌入到 E^{**} 中, 记作 $E \hookrightarrow E^{**}$.

命题 1.11. E 赋范, 闭 $VS F \subset E$, $x \in E - F$. 则存在 $f \in E^*$, ||f|| = 1, $f|_F = 0$, f(x) = d(x, F).

证明. 给出 $\mathrm{span}(F,x)$ 上的线性泛函 $\varphi: \mathbb{F}x+F \to \mathbb{F}, tx+y \mapsto td(x,F).$ 显然 φ 满足上述条件. 而 $d(x,F) \leq d(x,y') = \|x-y'\|$. 更换记号 y'=-y/t, 有 $|\varphi(tx+y)| \leq \|tx+y\|$, $\|\varphi\| \leq 1$.

另一方面,取 $y_n \in F$, $||x - y_n|| < d(x, F) + \frac{1}{n}$, $\frac{|\varphi(x - y_n)|}{||x - y_n||} > \frac{d(x, F)}{d(x, F) + \frac{1}{n}}$. 因此 $\sup \frac{|\varphi(x - y_n)|}{||x - y_n||} \ge 1$. 因此 $||\varphi|| = 1$. 最后由推论1.8给出结论.

1.2 Hahn-Banach 定理: 几何形式

对 $f: E \to \mathbb{R}$ 记 $\{f < \alpha\} := \{x \in E: f(x) < \alpha\}.$

定理 1.12 (Hahn-Banach 隔离定理). TVS $E + A, B \subset E$ 非空凸且不交. 若 A + H, 则 $\exists f \in E^* \exists \alpha \in \mathbb{R} : A \subset \{\Re f < \alpha\}, B \subset \{\Re f \geq \alpha\}.$

换言之, $\Re f(a) < \alpha \leq \Re f(b), \forall a \in A, b \in B.$

本定理就是说,TVS 中不交凸集 (需要其中一个开) 射到 \mathbb{R} 上, 可以用一个 E^* 的泛函和一个常数分割开两个集合的像.

证明. 先证 \mathbb{R} 情形. 任取 $a \in A, b \in B, x_0 = b - a$, 考虑 $C = A - B + x_0$. 这是一个开凸集. 再考虑其确定的 Minkowski 泛函 p. 由前 [哪里?], 这是一个半范数. 由于 A, B 不交, $x_0 \notin C, p(x_0) \ge 1$.

由前 [哪里?], 可取 $f \in E^*, f(x_0) = p(x_0), f \leq p$. 因此

$$1 > f(0) = f(a) - f(b) + f(x_0) \ge f(a) - f(b) + 1.$$

因此 $f(a) \le f(b)$, sup $f(A) \le \inf f(B)$.

由 A, B 凸, f 线性, 因此 f(A), f(B) 凸, 即为 \mathbb{R} 上区间. 最后通过证明 f(A) 是开的来完成证明. $x \in A$ 则对足够小的 t 有 $x + tx_0 \in A$. 而 $f(x + tx_0) \in f(A)$, 随之 t 变化其构成一个小的开区间. 因此 f(A) 开.

对于开区间 $f(A), f(a) < \alpha = \sup f(A) \le \inf f(B)$, 得证.

 $\mathbb C$ 情形下先将 E 看作 $\mathbb R$ -VS, 这样由上有实的 $\varphi \in E^*$ 符合条件. 然后再取相应的复线性 $f = \varphi - \mathrm{i} \varphi(\mathrm{i} \cdot)$.

注 1. 第三段说明 TVS 中非零线性泛函都是开映射.

定理 1.13 (Hahn-Banach 严格隔离定理). T_2 LCS E 中 A, B 非空凸且不交. 若 A 紧而 B 闭, 则

$$\exists f \in E^* \exists \alpha, \beta \in \mathbb{R} : \sup \Re f(A) < \alpha < \beta < \inf \Re f(B).$$

本定理是前定理的加强, 使得两集合的像足够分离.

证明. 取 $x \in A$ 有 $x \in B^c$, 由 B^c 开可取邻域 $x+V \subset B^c$. TVS 中可取 $U_x \in N(0): U_x+U_x \subset V$, 故有 $(x+U_x+U_x)\cap B = \emptyset$.

由 A 紧, 可取有限元素及其对应 $U_k: A \subset \bigcup (x_k + U_k)$. 设 $U = \bigcap U_k$, 这是一个含原点的开凸集. 考虑开凸集 $\tilde{A} = A + U$, 其中元素 $\tilde{a} = a + u \in x_k + U_k + U$, 后者不交 B. 故 \tilde{A} 不交 B.

最后由前定理隔离 \tilde{A} 和 B, 有 $\Re f(a) \leq \Re f(\tilde{a}) < r \leq \Re f(b)$. 而 A 紧凸则 $\Re f(A)$ 紧凸,即有界闭区间 $[r_1, r_2]$,取 $r_2 < \alpha < \beta < r$ 即可.

由上两定理有一系列推论. 以下均认为 $E \stackrel{\cdot}{=} T_0 LCS$.

命题 1.14. B 是平衡闭凸集, $x_0 \in B^c$,则有 $f \in E^*$, $f(x_0) > 1$, $\sup_{x \in B} |f(x)| \le 1$.

证明. 取 $A = \{x_0\}$, 运用定理1.13, 可以得到 (方向不是本质的) $\sup \Re f(B) < \alpha < \Re f(x_0)$. 取 $g = f/\alpha$, 有

$$\sup \Re g(B) < 1 < \Re g(x_0) \le |g(x_0)| = \lambda g(x_0)$$

考虑 $h = \lambda g, |h| = |g|,$ 有

$$\sup |h|(B) = \sup |g|(B) = \sup \Re g(\lambda B) = \sup \Re g(B) < 1$$

最后一个等号是因为 B 平衡. 取 h 为所需函数即可.

证明. \Longrightarrow 显然. \Longleftrightarrow : 若否, 由上有 $f(x_0) > 1$, $\sup |f|(\overline{F}) \le 1$. 而 $\forall x \in F : |f(x)| \le 1$ 可知 $f|_F = 0$. 因此得证.

这一命题直接给出:

命题 1.16. $VS F \subset E.\overline{F} = E \iff \forall f \in E^* : f|_F = 0 \implies f = 0.$

命题 1.17 (命题1.7的重新叙述). E^* 可分点¹

证明. $F = \operatorname{span}(x)$, 分类讨论 y. 若 $y \notin F$ 则存在 $f \in E^*$ 有 $f(x) = 0 \land f(y) \neq 0$ (由反命题得到).

命题 1.18 (Mazur 定理). VS E, τ_1 , τ_2 是其上 T_2 拓扑, 且 (E, τ_1) , (E, τ_2) 均为 LCS. 若 $(E, \tau_1)^* = (E, \tau_2)^*$, 即对任意 线性 $f: E \to \mathbb{F}$, 其在两拓扑上的连续性等价. 则凸集 $A \subset E$ 在两拓扑上的闭性等价.

本定理说明具有相同的连续线性泛函的 T_2 LCS 拓扑具有相同的凸闭集.

证明. 若 A 仅在 τ_1 中闭,则 $\exists x_0 \in \overline{A}^{\tau_2} - A$. 由定理1.13可得不等式. 而 f 在 τ_2 下连续,因此 $\sup \Re f(A) < \alpha \implies \Re f(x_0) \leq \alpha$,矛盾.

1.3 弱拓扑与弱 * 拓扑

 \mathbb{F} -VS E 上某些线性泛函²生成 VS F, 我们假设其可分点.{|f|: f ∈ F} 是 E 上可分点的半范数族, 其诱导拓扑 $\sigma(E,F)$.

由前 (7.2.6)[哪里?] 知 $\sigma(E,F)$ 是与 TVSE 相容且使 F 元素连续的最弱拓扑, 下证反向结论, 即 $(E,\sigma(E,F))^*=F$.

引理 1.19. \mathbb{F} -VS E 上有有限个线性泛函 $\{f_k\}_{k=1}^n$. 有等价命题:

$$f = \sum_{k=1}^{n} \alpha_k f_k \iff \exists C \ge 0 : |f(x)| \le C \max_{k \in [n]} |f_k(x)| \iff \bigcap_{k \in [n]} \ker f_k \subset \ker f$$

证明. (1) ⇒ (2) ⇒ (3) 显然, 仅需证 (3) ⇒ (1).

考虑 $G = \{(f_1(x), \cdots, f_n(x)) : x \in E\} \subset \mathbb{F}^n$. 由线性性,G 是 VS. 再有 $\varphi : G \to \mathbb{F}, (f_1(x), \cdots, f_n(x)) \mapsto f(x)$. $(f_1(x), \cdots, f_n(x)) = (f_1(x'), \cdots, f_n(x')) \iff (f_1(x-x'), \cdots, f_n(x-x')) = 0 \implies x-x' \in \bigcap \ker f_k \subset \ker f \implies f(x) = f(x')$. 因此 φ 是映射. 显然其为线性. 由延拓定理 [哪里?] 可延拓其为线性泛函 $\tilde{\varphi} : (y_1, \cdots, y_n) \mapsto \sum \alpha_k y_k$. 因此有 $f(x) = \tilde{\varphi}|_G(f_1(x), \cdots, f_n(x)) = \sum \alpha_k f_k(x)$.

定理 1.20. $(E, \sigma(E, F))^* = F$. 即 $f \in F \iff E$ 上线性泛函 f 是 $\sigma(E, F)$ -连续的.

证明. 由前 (7.2.6)[哪里?] 显然 $F \subset (E, \sigma(E, F))^*$. 下证反向.

$$f \in (E, \sigma(E, F))^*$$
, 则由前 $(7.2.9)$ [哪里?], 有 $|f| \le C \max |f_k|, f_k \in F$. 由上即 $f = \sum \alpha_k f_k \in F$.

定义 2. E 上的弱拓扑指 $\sigma(E, E^*)$. $(E, \sigma(E, E^*))$ 是 T_2 LCS. 约定不写 $\sigma(E, E^*)$ -, 而写作 w-.

 $\forall x \in E$ 定义 $\hat{x}: E^* \to \mathbb{F}, f \to f(x)$, 记 $\hat{E} = \{\hat{x}: x \in E\}$. 定义 $\sigma(E^*, \hat{E})$ 为 E^* 上的弱 * 拓扑. $\sigma(E^*, \hat{E})$ 是 T_2 LCS. 约定不写 $\sigma(E^*, \hat{E})$ -, 而写作 w^* -.

 $E \to \hat{E}, x \mapsto \hat{x}$ 是线性双射, 即 E 线性同构于 \hat{E} . 可记 $E = \hat{E}, \sigma(E^*, \hat{E}) = \sigma(E^*, E)$.

若 E 赋范, 则 Banach 空间 E^* 上有范数拓扑 $\|\cdot\|$, 相对于 w^* -拓扑, 称 $\|\cdot\|$ 为 E^* 上强拓扑.

命题 1.21. 1. 由上定理, $(E, \sigma(E, E^*))^* = E^*, (E^*, \sigma(E^*, E))^* = E$. 2. 凸集 $A \subset E$ 有 $\overline{A} = \overline{A}^w$.

例 1.1 (缓増广义函数). Schwartz 函数类 $\mathcal{S}(\mathbb{R}^n)$ 上有半范数族 $\left\{\|\cdot\|_{\alpha,\beta}\right\}_{\alpha,\beta}, \|f\|_{\alpha,\beta} = \sup_{x\in\mathbb{R}^n} \left|x^{\alpha}D^{\beta}f(x)\right|, \alpha,\beta\in\mathbb{N}^n$. $\mathcal{S}(\mathbb{R}^n)$ 在此拓扑下是 LCS, 其对偶空间记为 $\mathcal{S}'(\mathbb{R}^n)$, 后者中元素为缓増广义函数. 下给出例子:

- Dirac 函数 $\delta_a, a \in \mathbb{R}^n : \forall f \in \mathcal{S}(\mathbb{R}^n), \delta_a(f) = f(a)$.
- $L_g(f) = \int_{\mathbb{R}^n} f(x)g(x) dx, f \in \mathcal{S}(\mathbb{R}^n)$. 容易验证 $\forall p \in [1, \infty] \forall g \in L^p(\mathbb{R}^n), L_g$ 是缓增广义函数.

最后我们来证明双极定理.

 $^{{}^{1}\}mathbb{P} \forall x, y \in E \exists f \in E^{*} : x \neq y \implies f(x) \neq f(y).$

 $^{^{2}}$ 指 $\mathcal{L}(E,\mathbb{F})$

定义 3. T_2 LCS $E, A \subset E,$ 称 $pol(A) = \{x^* \in E^* : |x^*(x)| \le 1, \forall x \in A\}$ 为 A 的极集. 相应的, $B \subset E^*$ 时,称 $pol(B) = \{x \in E : |\langle x^*, x \rangle| \le 1, \forall x^* \in B\}$ 为 B 的极集. 极集的极集记作 $pol^2(\cdot)$.

命题 1.22. 考虑 $A \subset E, B \subset E^*$.

- 1. pol(A) 和 pol(B) 均是凸平衡的, 且分别是 w^* -闭的和 w-闭的.
- $2. \operatorname{pol}(\cdot)$ 是单调递减的, 即 $A_1 \subset A_2 \Longrightarrow \operatorname{pol}(A_2) \subset \operatorname{pol}(A_2)$.
- 3. 记 A 的凸平衡包为 $\operatorname{convba}(A) = \left\{ \sum_{k=1}^n \lambda_k x_k : x_k \in A, \lambda_k \in \mathbb{F}, \sum_{k=1}^n |\lambda_k| \le 1 \right\}$,闭凸平衡包 $\operatorname{ccb}(A) = \overline{\operatorname{convba}(A)}$. 有 $\operatorname{pol}(\operatorname{ccb}(A)) = \operatorname{pol}(A)$.
- 4. 非零 $\lambda \in \mathbb{F}$ 有 $\operatorname{pol}(\lambda A) = \lambda^{-1} \operatorname{pol}(A)$.
- 5. $\operatorname{pol}\left(\bigcup A_i\right) = \bigcap \operatorname{pol}(A_i)$
- 6. $VS F \subset E$, 则 $pol(F) = \{x^* \in E^* : x^*|_F = 0\}$, 称后者为 F 的零化子 F^{\perp} . 并且 F^{\perp} 是 E^* 的 w^* -闭 VS.
- 证明. 1. 取 $\lambda x^* + (1-\lambda)y^*$ 和 λx^* , 易证其为凸平衡的. $\forall a \in A, \hat{a}$ 是 w^* -连续的, 因此 $\operatorname{pol}(A) = \bigcap_{a \in A} \hat{a}^{-1}(\overline{B}_{\mathbb{F}})$ 是 w^* -闭的.

需要说明的是 $\hat{a}^{-1}(\overline{B}_{\mathbb{F}}) = \{x^* \in E^* : |x^*(a)| \le 1\}$, 取交后即为定义.*B* 的情况同理.

- 2. 由 $pol(A) = \bigcap_{a \in A} \hat{a}^{-1}(\overline{B}_{\mathbb{F}})$ 显然.
- 3. 显然 $A \subset \operatorname{ccb}(A)$, 下证 $\operatorname{pol}(A) \subset \operatorname{pol}(\operatorname{ccb}(A))$. 注意到 $\forall x \in \operatorname{convba}(A) : x = \sum \lambda_k x_k$, 取 $x^* \in \operatorname{pol}(A)$, $\left| x^* \left(\sum \lambda_k x_k \right) \right| \leq \sum |\lambda_k| \, |x^*(x_k)| \leq 1$. 由 x 任意性且 x^* 连续, $x^* \in \operatorname{pol}(\operatorname{ccb}(A))$. 得证. 4,5,6. 易证.

最后可以注意到 $\operatorname{pol}(B) = \bigcap_{b \in B} b^{-1}(\overline{B}_{\mathbb{F}})$ 及定义, 同理可证上述性质对 B 成立.

定理 1.23 (双极定理). T_2 LCS $E, A \subset E, B \subset E^*$.

- 1. $\operatorname{pol}^2(A) = A \iff A \notin w$ -闭凸平衡的. 一般 $\operatorname{pol}^2(A) = \operatorname{ccb}(A)$.
- 2. $\operatorname{pol}^2(B) = B \iff B \neq w^*$ -闭凸平衡的. 一般 $\operatorname{pol}^2(B) = \operatorname{ccb}(B)$.

证明. 仅证 (1). \Longrightarrow 显然, 由上性质 3 得到.

 \iff : 显然 $A \subset \operatorname{pol}^2(A)$, 这是因为 $\forall a \in A \forall x^* \in \operatorname{pol}(A) : |x^*(a)| \leq 1.A$ 是闭凸平衡集, 任取 $x \in A^c$, 则由命题1.14有 $x^* \in E^*$ 满足条件. 条件给出 $x^* \in \operatorname{pol}(A)$ 而 $x \notin \operatorname{pol}^2(A)$, 因此 $\operatorname{pol}^2(A) \subset A$.

2 符号表

- LCS Locally Convex Space, 局部凸空间
- T_2 Hausdorff 空间, 即满足 $\forall x, y \exists O(x), O(y) : x \neq y \implies O(x) \cap O(y) = \emptyset.$
- TVS Topological Vector Space, 拓扑向量空间
- VS Vector Space, 向量空间