# Implementation of Cross-Resonance System for Universal Quantum Computing

1215047 S. Shirai

Department of Physics, Tokyo University of Science. Center of Emergent Matter Science, RIKEN.

### Introduction

### Universal quantum computing



fig.1 example of quantum circuit

According to the Solovay-Kitaev theorem, arbitrary N-qubit unitary operators can be approximated with "universal gate set". {S, H, T, CNOT} is one of universal set.

CNOT gate is so-called two-qubit entangling gate. It is difficult to realize two-qubit gates compared to one-qubit gates. So, implementing a precise 2-qubit gate is one of the big challenges.

### Theory of circuit QED



Cavity Quantum electrodynamics (cavity QED) is the study of the interaction between light and atom. The case of a single 2-level atom in the cavity is mathematically described by the Jaynes-Cummings model. On the other hand, by using the macroscopic quantum effect appearing in the superconductor, it is possible to construct a system of cavity QED by the solid element. Such a system is called a "circuit QED" system.

 $H = \sum_{i} \omega_{j} |j\rangle\langle j| + \omega_{r} a^{\dagger} a + \left(\sum_{i} g_{i,i+1} |i\rangle\langle i+1| a^{\dagger} + H.c.\right)$ 

# Superconducting Qubit





Josephson

Tunability

• Noise sorce

fig. Potential energy and circuit

### Cross-Resonance Gate

# Cross-Resonance interaction



fig. Cross-Resonance system

Resonator + SC qubit are smallest set of cQED system. The above system Hamiltonian can be written as bellow.

$$H_{5} = \sum_{l=1,2,b} \omega_{l}^{r} a_{l}^{\dagger} a_{l} + \sum_{q=1,2} \sum_{k_{q}=0}^{N-1} \omega_{k}^{q} |k_{q}\rangle\langle k_{q}|$$

$$+ \sum_{l=1,b} g_{l}^{01} (a_{l}^{\dagger} c_{1} + a_{l} c_{1}^{\dagger}) + \sum_{l=2,b} g_{l}^{01} (a_{l}^{\dagger} c_{2} + a_{l} c_{2}^{\dagger})$$

After performing the two-level approximation, unitary transformation and perturbative expantion are performed and the following interaction Hamiltonian is obtained while irradiating microwaves from the outside under the condition of  $\{|J/\omega 1-\omega 2| \le 1\}$ .

$$\tilde{H}_{rot2} = \underbrace{\frac{\Omega(t)}{2} \left( \sigma_x^1 \cos \left( \frac{\tilde{\omega}_1 - \tilde{\omega}_2}{2} t \right) - \sigma_y^1 \sin \left( \frac{\tilde{\omega}_1 - \tilde{\omega}_2}{2} t \right) \right) - \underbrace{\frac{J\Omega(t)}{2\Delta_{12}} \sigma_z^1 \sigma_x^2}_{=A(t)}$$
fast oscillating term

When the time evolution by microwave irradiation of the system is sufficiently long, the effect of the vibration term is reduced.

#### Time evolution for CNOT



fig. truth table When the value of the control bit is 1, the gate that inverts the value of the target bit is called "Controled-NOT gate" (Simply, CNOT).

Time evolution by 
$$H(t)$$
: 
$$|\psi(0)\rangle \to |\psi(t)\rangle = e^{-i\int_0^t H(\tau)d\tau} |\psi(0)\rangle$$
 
$$\frac{\pi}{2} = \int_0^{T_{gate}} A(\tau)d\tau$$
 
$$[ZX]^{1/2} = e^{-i\frac{\pi}{2}\sigma_z^1\sigma_x^2}$$

We get CNOT by combining with one qubit gates.

 $CNOT=[ZI]^{-1/2}[ZX]^{1/2}[IX]^{-1/2}$ 

ref. 10.1103/PhysRevB.81.134507

# Fabricated Sample



## Experimental Result

### Pulsed spectroscopy

Procedure:

- 1. Irradiate the microwave for a long time. 2. The state of the qubit becomes classical mixed state by the microwave.
- 3. The resonance frequency of the resonator varies according to the state of the qubit.
- 4. The change in the reflection signal of the resonator due to the change of the resonance



#### Rabi oscillation



time



0.08

0.075

0.065

Qupow= -30dbm Curr= 0.4\_0.01\_0.8 mA freq= 6.91\_-0.001\_6.65 GHz 1903 Smag

- 1. Irradiate the microwave pulse to the qubit. 2. Read the state of the qubit through the
  - resonator. 3. Repeat steps 1 and 2 while changing irradiation time of microwave pulse.
- Fitting function:

### Conclusion and Future Work

Probe

The sample could not work in the regime of CR gate. However, I could confirm the existence of coupling between qubits.

Next time, I would like to fabricate the qubits with better coherence time in CR gate regime.

# Acknowledgment

This work supported by JST CREST Grant Number JPMJCR1676, Japan.