CEDT – Digital Logic 2023 Day 4 Combinatorial Logic Case Studies Arithmetic's

Combinational logic design case studies

- General design procedure
- Case studies
 - BCD to 7-segment display controller
 - logical function unit
 - process line controller
 - calendar subsystem
- Arithmetic circuits
 - integer representations
 - addition/subtraction
 - arithmetic/logic units

General design procedure for combinational logic

- 1. Understand the problem
 - what is the circuit supposed to do?
 - write down inputs (data, control) and outputs
 - draw block diagram or other picture
- 2. Formulate the problem using a suitable design representation
 - truth table or waveform diagram are typical
 - may require encoding of symbolic inputs and outputs
- 3. Choose implementation target
 - ROM, PAL, PLA
 - mux, decoder and OR-gate
 - discrete gates
- 4. Follow implementation procedure
 - K-maps for two-level, multi-level
 - design tools and hardware description language (e.g., Verilog)

BCD to 7-segment BCD to 7-segment display controller

- Understanding the problem
 - □ input is a 4 bit bcd digit (A, B, C, D)
 - output is the control signals
 for the display (7 outputs C0 C6)
- Block diagram

Formalize the problem

- Truth table
 - show don't cares
- Choose implementation target
 - □ if ROM, we are done
 - don't cares imply PAL/PLA may be attractive
- Follow implementation procedure
 - minimization using K-maps

Α	В	С	D	C0	C1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
I 0	0	0	1	0	1	1	0	0	0	0
2 0	0	1	0	1	1	0	1	1	0	1
O E	0	1	1	1	1	1	1	0	0	1
4 0	1	0	0	0	1	1	0	0	1	1
5 0	1	0	1	1	0	1	1	0	1	1
6 0	1	1	0	1	0	1	1	1	1	1
٦0	1	1	1	1	1	1	0	0	0	0
81	0	0	0	1	1	1	1	1	1	1
91	0	0	1	1	1	1	0	0	1	1
1	0	1	_	_	_	_	_	_	_	_
1	1	_	_	_	_	_	_	_	_	_
				I						

Implementation as minimized sum-of-products

15 unique product terms when minimized individually

Implementation as minimized S-o-P (cont'd)

Can do better

- □ 9 unique product terms (instead of 15) ⇒ Espresso
- share terms among outputs
- each output not necessarily in minimized form

			<u>'</u>	Α	
C2	1	1	X	1	
	1	1	Х	1	D
С	1	1	Х	X	
	0	1	Χ	Х	
_			В		•

PLA implementation

PAL implementation vs.

Discrete gate implementation

- Limit of 4 product terms per output
 - decomposition of functions with larger number of terms
 - do not share terms in PAL anyway (although there are some with some shared terms) C2 = B + C' + D

$$C2 = B'D + BC'D + C'D' + CD + BCD'$$

$$C2 = B' D + B C' D + C' D' + W$$
 need another input and another output

- decompose into multi-level logic (hopefully with CAD support)
 - find common sub-expressions among functions

$$C0 = C3 + A' B X' + A D Y$$

$$C1 = Y + A' C5' + C' D' C6$$

$$C2 = C5 + A' B' D + A' C D$$

$$C3 = C4 + B D C5 + A' B' X'$$

$$C4 = D' Y + A' C D'$$

$$C5 = C' C4 + A Y + A' B X$$

$$C6 = A C4 + C C5 + C4' C5 + A' B' C$$

$$V - Combinational Logic Case$$

Logical function unit

LFU - ALU

- Multi-purpose function block
 - 3 control inputs to specify operation to perform on operands
 - 2 data inputs for operands
 - 1 output of the same bit-width as operands

C0	C1	C2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	2
0	1	0	(A • B)'	logical NAND	3 control inputs: C0, C1, C2
0	1	1	A xor B	logical xor	2 data inputs: A, B
1	0	0	A xnor B	logical xnor	1 output: F
1	0	1	A • B	logical AND	
1	1	0	(A + B)'	logical NOR	
1	1	1	0	always 0	

Formalize the problem

_C0	C1	C2	Α	В	F
0	0	0	0	0	1
0	0	0	0	1 0	1
0	0	0	1		1
0	0	0	1	1	1
0	0	1	0	0	0
0 0	0	1	0		0 1 1
0	0	1	1	1 0	1
_0	0	1	1	1	1
0	1	0	0	0	1 1 1 0
0	1	0	0		1
0	1	0	1	1 0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	0	1 0	1 1
0	1	1	1	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0		0 0
1	0	0	1	1 0	0
_1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	0	1	0
1	0	1	1	1 0	0
_1	0	1	1	1	11
1	1	0	0	0	1
1	1	0	0	1	1 0
1	1	0	1	0	0
			1	1	0
1	1	0 1	0	0	0
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	0

choose implementation technology 5-variable K-map to discrete gates multiplexor implementation

Production line control

- Rods of varying length (+/-10%) travel on conveyor belt
 - mechanical arm pushes rods within spec (+/-5%) to one side
 - second arm pushes rods too long to other side
 - rods that are too short stay on belt
 - 3 light barriers (light source + photocell) as sensors
 - design combinational logic to activate the arms
- Understanding the problem
 - inputs are three sensors
 - outputs are two arm control signals
 - assume sensor reads "1" when tripped, "0" otherwise
 - call sensors A, B, C

Sketch of problem

- Position of sensors
 - □ A to B distance = specification 5%
 - A to C distance = specification + 5%

Formalize the problem

Truth table

show don't cares

Α	В	С	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

logic implementation now straightforward just use three 3-input AND gates

"too short" = AB'C'

(only first sensor tripped)

"in spec" = A B C'
(first two sensors tripped)

"too long" = A B C
(all three sensors tripped)

Calendar subsystem

- Determine number of days in a month (to control watch display)
 - used in controlling the display of a wrist-watch LCD screen
 - inputs: month, leap year flag
 - outputs: number of days
- Use software implementation to help understand the problem

```
integer number of days ( month, leap year flag)
     switch (month) {
          case 1: return (31);
               2: if (leap year flag == 1)
                      then return (29)
                      else return (28);
         case 3: return (31);
         case 4: return (30);
         case 5: return (31);
         case 6: return (30);
         case 7: return (31);
         case 8: return (31);
         case 9: return (30);
         case 10: return (31);
         case 11: return (30);
         case 12: return (31);
         default: return (0);
```

Formalize the problem

Encoding:

- binary number for month: 4 bits
- 4 wires for 28, 29, 30, and 31
 one-hot only one true at any time
- Block diagram:

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	month	leap	28	29	30	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0000	-	_	_	_	_
$egin{array}{c ccccc} 0010 & 1 & 0 & 1 & 0 & 0 \\ 0011 & - & 0 & 0 & 0 & 1 \\ \end{array}$	0001	-	0	0	0	1
0011 - 0 0 0 1	0010	0	1	0	0	0
	0010	1	0	1	0	0
0100 - 0 0 1 0	0011	-	0	0	0	1
	0100	-	0	0	1	0
0101 - 0 0 0 1	0101	-	0	0	0	1
0110 - 0 0 1 0	0110	-	0	0	1	0
0111 - 0 0 0 1	0111	-	0	0	0	1
1000 - 0 0 0 1	1000	-	0	0	0	1
1001 - 0 0 1 0	1001	-	0	0	1	0
1010 - 0 0 0 1	1010	-	0	0	0	1
1011 - 0 0 1 0	1011	-	0	0	1	0
1100 - 0 0 0 1	1100	-	0	0	0	1
1101 -	1101	-	_	_	_	_
111	111-	-	_	_	_	_

Choose implementation target and perform mapping

	Discrete	gates
--	----------	-------

$$\square$$
 28 = m8' m4' m2 m1' leap'

$$=$$
 29 = m8' m4' m2 m1' leap

$$30 = m8' m4 m1' + m8 m1$$

$$31 = m8' m1 + m8 m1'$$

Can translate to S-o-P or P-o-S

month	leap	28	29	30	31
0000	_ '	_	_	_	_
0001	_	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	_	0	0	0	1
0100	_	0	0	1	0
0101	_	0	0	0	1
0110	_	0	0	1	0
0111	_	0	0	0	1
1000	_	0	0	0	1
1001	_	0	0	1	0
1010	_	0	0	0	1
1011	-	0	0	1	0
1100	_	0	0	0	1
1101	_	_	_	_	_
111–	_	_	_	_	_

Leap year flag

- Determine value of leap year flag given the year
 - For years after 1582 (Gregorian calendar reformation),
 - leap years are all the years divisible by 4,
 - except that years divisible by 100 are not leap years,
 - but years divisible by 400 are leap years.
- Encoding the year:
 - binary easy for divisible by 4,
 but difficult for 100 and 400 (not powers of 2)
 - BCD easy for 100, but more difficult for 4, what about 400?

Parts:

- construct a circuit that determines if the year is divisible by 4
- construct a circuit that determines if the year is divisible by 100
- construct a circuit that determines if the year is divisible by 400
- combine the results of the previous three steps to yield the leap year flag

Activity: divisible-by-4 circuit

BCD coded year

YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2 YO1

- BCD coded year
 YM8 YM4 YM2 YM1 YH8 YH4 YH2 YH1 YT8 YT4 YT2 YT1 YO8 YO4 YO2 YO1
- Only need to look at low-order two digits of the year
 all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4
 - if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
 - if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6
- Translates into the following Boolean expression (where YT1 is the year's tens digit low-order bit, YO8 is the high-order bit of year's ones digit, etc.):

```
YT1'(YO8'YO4'YO2'YO1' + YO8'YO4YO2'YO1' + YO8YO4'YO2'YO1') + YT1(YO8'YO4'YO2YO1' + YO8'YO4YO2YO1')
```

Digits with values of 10 to 14 will never occur, simplify further to yield:

```
YT1'Y02'Y01' + YT1Y02Y01'
```

Divisible-by-100 and divisible-by-400 circuits

Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

 Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits

```
(YM1' YH2' YH1' + YM1 YH2 YH1')
```

(YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1')

Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

Implementation of leap year flag

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
 - doing things fast may require more logic and thus more space
 - example: carry lookahead logic
- Arithmetic and logic units
 - general-purpose building blocks
 - critical components of processor datapaths
 - used within most computer instructions

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
 - sign and magnitude
 - 1s complement
 - □ 2s complement ** **
- Assumptions
 - we'll assume a 4 bit machine word
 - 16 different values can be represented
 - roughly half are positive, half are negative

Sign and magnitude

- One bit dedicate to sign (positive or negative)
- $0\ 100 = +4$

□ sign: 0 = positive (or zero), 1 = negative

- $1\ 100 = -4$
- Rest represent the absolute value or magnitude
 - □ three low order bits: 0 (000) thru 7 (111)
- Range for n bits
 - \neg +/- 2n-1 -1 (two representations for 0)
- Cumbersome addition/subtraction
 - must compare magnitudes to determine sign of result

1s complement

- If N is a positive number, then the negative of N (its 1s complement or N') is N' = (2ⁿ – 1) – N
 - example: 1s complement of 7

$$2^{4} = 10000$$
 $1 = 00001$
 $2^{4}-1 = 1111$
 $7 = 0111$
 $1000 = -7 \text{ in 1s complement form}$

shortcut: simply compute bit-wise complement (0111 -> 1000)

1s complement (cont'd)

- Subtraction implemented by 1s complement and then addition
- Two representations of 0
 - causes some complexities in addition

High-order bit can act as sign bit

2s complement

- 1s complement with negative numbers shifted one position clockwise
 - only one representation for 0
 - one more negative number than positive numbers
 - high-order bit can act as sign bit

$$0.100 = +4$$

$$1\ 100 = -4$$

2s complement (cont'd)

- If N is a positive number, then the negative of N (its 2s complement or N*) is N* = 2ⁿ - N
 - example: 2s complement of 7

$$2^4 = 10000$$

subtract $7 = 0111$
 $1001 = \text{repr. of } -7$

□ example: 2s complement of -7

$$2^4 = 10000$$

subtract $-7 = 1001$
 $0111 = \text{repr. of } 7$

- shortcut: 2s complement = bit-wise complement + 1
 - 0111 -> 1000 + 1 -> 1001 (representation of -7)
 - 1001 -> 0110 + 1 -> 0111 (representation of 7)

2s complement addition and subtraction

- Simple addition and subtraction
 - simple scheme makes 2s complement the virtually unanimous choice for integer number systems in computers

Why can the carry-out be ignored?

- Can't ignore it completely
 - needed to check for overflow (see next two slides)
- When there is no overflow, carry-out may be true but can be ignored

$$-M + N$$
 when $N > M$: +

$$M^* + N = (2^n - M) + N = 2^n + (N - M)$$

ignoring carry-out is just like subtracting 2ⁿ

$$-M + -N$$
 where $N + M \le 2^{n-1}$

$$(-M) + (-N) = M^* + N^* = (2^n - M) + (2^n - N) = 2^n - (M + N) + 2^n$$

ignoring the carry, it is just the 2s complement representation for -(M + N)

Overflow in 2s complement addition/subtraction

Overflow conditions

- add two positive numbers to get a negative number
- add two negative numbers to get a positive number

Overflow conditions

Overflow when carry into sign bit position is not equal to carry-out

overflow

overflow

$$\begin{array}{r}
0 \ 0 \ 0 \ 0 \\
0 \ 1 \ 0 \ 1 \\
\underline{0} \ 0 \ 1 \ 0 \\
\underline{2} \ 7
\end{array}$$

$$\begin{array}{r}
1111\\
1101\\
-3\\
\underline{-5}\\
-8
\end{array}$$

no overflow

no overflow

Circuits for binary addition

- Half adder (add 2 1-bit numbers)
 - Sum = Ai' Bi + Ai Bi' = Ai xor Bi
 - □ Cout = Ai Bi
- Full adder (carry-in to cascade for multi-bit adders)
 - Sum = Ci xor A xor B
 - Cout = B Ci + A Ci + A B = Ci (A + B) + A B

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementations

Alternative implementation

$$Cout = A B + Cin (A xor B) = A B + B Cin + A Cin$$

- 5 gates
- half adder is an XOR gate and AND gate
- A A XORS, 2 ANDS, 1 OR

 A A XOR B

 A XOR B

 A XOR B

 A XOR B XOR B

 A XOR B XOR Cin

 Cout

 A A B

 Cin

 Cout

 Cin

 Cout

 Cout

 Cin

 Cout

 C

Adder/subtractor

- Use an adder to do subtraction thanks to 2s complement representation
 - \Box A-B = A+(-B) = A+B'+1
 - control signal selects B or 2s complement of B

V - Combinational Logic Case Studies

Ripple-carry adders

@+1221

Critical delay

 the propagation of carry from low to high order stages

Max (@input) + 1

Ripple-carry adders (cont'd)

Critical delay

- the propagation of carry from low to high order stages
- 1111 + 0001 is the worst case addition
- carry must propagate through all bits

Carry-lookahead logic

สร้างตัวแปรใหม่ขึ้นมา

- Carry generate: Gi = Ai Bi *
 - must generate carry when A = B = 1
- Carry propagate: Pi = Ai xor Bi *
 - carry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:

```
Si = Ai xor Bi xor Ci
= Pi xor Ci
□ Ci+1 = Ai Bi + Ai Ci + Bi Ci
= Ai Bi + Ci (Ai + Bi) ว เท่ากันเฉพาะกรณัน ั้ง
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi
```

Carry-lookahead logic (cont'd)

Re-express the carry logic as follows:

- Each of the carry equations can be implemented with two-level logic
 - all inputs are now directly derived from data inputs and not from intermediate carries
 - this allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Adder with propagate and generate outputs

Carry-lookahead implementation (cont'd)

LCU

- Carry-lookahead logic generates individual carries
 - sums computed much more quickly in parallel
 - however, cost of carry logic increases with more stages

V - Combinational Logic Case Studies

Carry-lookahead adder with cascaded carry-lookahead logic

Carry-select adder

- Redundant hardware to make carry calculation go faster
 - compute two high-order sums in parallel while waiting for carry-in
 - one assuming carry-in is 0 and another assuming carry-in is 1
 - select correct result once carry-in is finally computed

Arithmetic logic unit design specification

M = 0, logical bitwise operations

S1 S0	Function	Comment
0 0	Fi = Ai	input Ai transferred to output
0 1	Fi = not Ai	complement of Ai transferred to output
1 0	Fi = Ai xor Bi	compute XOR of Ai, Bi
1 1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi

M = 1, C0 = 0, arithmetic operations

0	0	F = A	input A passed to output
0	1	F = not A	complement of A passed to output
1	0	F = A plus B	sum of A and B
1	1	F = (not A) plus B	sum of B and complement of A

M = 1, C0 = 1, arithmetic operations

0	0	F = A plus 1	increment A
0	1	F = (not A) plus 1	twos complement of A
1	0	F = A plus B plus 1	increment sum of A and B
1	1	F = (not A) plus B plus 1	B minus A

logical and arithmetic operations

Arithmetic logic unit design (cont'd)

Sample ALU – truth table

<u>M</u>	S1	S0	l Ci	Ai	Bi ı	F i	Ci+1
0	0	0	X	0	X	0	X
	0	1	ŷ	0	Ŷ	1	X
	1	0	X X X	0 0 1	0 1 0	0 1 1	X X X
	1	1	X X X X	1 0 0 1 1	1 0 1 0 1	0 1 0 0 1	X X X X
1	0	0	00	0	X	0	X
	0	1	Ŏ	0	χ̈́	1	X
	1	0	00	0	0 1	0 1	0 0
	1	1	00000	1 0 0 1	0 1 0 1 0	1 0 1 0 0	0 1 0 1 0 0
1	0	0	1	0	X	1	0
	0	1	1	0	Ŷ	Ŏ	1
	1	0	1	0	Ô	1	0
	1	1	Ci XXXXXXXXX 000000000000000000000000000	Ai 0100110011100111001110011100111	BIXXXX0101010101010101010101010101	011001101001	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Arithmetic logic unit design (cont'd)

Sample ALU – multi-level discrete gate logic implementation

Arithmetic logic unit design (cont'd)

Sample ALU – clever multi-level implementation


```
first-level gates
 use S0 to complement Ai
     S0 = 0
                 causes gate X1 to pass Ai
     S0 = 1
                 causes gate X1 to pass Ai'
 use S1 to block Bi
     S1 = 0
                 causes gate A1 to make Bi go forward as 0
                 (don't want Bi for operations with just A)
                 causes gate A1 to pass Bi
     S1 = 1
 use M to block Ci
     M = 0
                 causes gate A2 to make Ci go forward as 0
                 (don't want Ci for logical operations)
     M = 1
                 causes gate A2 to pass Ci
other gates
 for M=0 (logical operations, Ci is ignored)
  Fi = S1 Bi xor (S0 xor Ai)
      = S1'S0' (Ai) + S1'S0 (Ai') +
        S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )
 for M=1 (arithmetic operations)
   Fi = S1 Bi xor ( (S0 xor Ai) xor Ci) =
   Ci+1 = Ci (S0 xor Ai) + S1 Bi ((S0 xor Ai) xor Ci) =
```

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

Summary for examples of combinational logic

- Combinational logic design process
 - formalize problem: encodings, truth-table, equations
 - choose implementation technology (ROM, PAL, PLA, discrete gates)
 - implement by following the design procedure for that technology
- Binary number representation
 - positive numbers the same
 - difference is in how negative numbers are represented
 - 2s complement easiest to handle: one representation for zero, slightly complicated complementation, simple addition
- Circuits for binary addition
 - basic half-adder and full-adder
 - carry lookahead logic
 - carry-select
- ALU Design
 - specification, implementation