Série 5 (Corrigé)

L'exercice 1 sera discuté pendant le cours du lundi 24 octobre. L'exercice 4 (*) peut être rendu le jeudi 27 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a) Déterminer si les énoncés proposés sont vrais ou faux.			
•	Soit $A \in M_{n \times n}(\mathbb{R}[t])$. S'il existe $B \in M_{n \times n}(\mathbb{R}[t])$ telle que existe $\tilde{B} \in M_{n \times n}(\mathbb{R}[t])$ telle que $\tilde{B}A = I_n$.	$AB = I_n,$	alors il
		🔾 vrai	\bigcirc faux
•	Soit $A \in M_{n \times n}(\mathbb{F}_2)$. S'il existe $B \in M_{n \times n}(\mathbb{F}_2)$ telle que $AB =$ il existe $\tilde{B} \in M_{n \times n}(\mathbb{F}_2)$ telle que $\tilde{B}A = I_n$.	I_n , alors	
		🔾 vrai	\bigcirc faux
•	Soit $f \in \mathbb{C}[t]$ et soit $a \in \mathbb{C}$. Alors $t - a$ divise $f(t) - f(a)$.		
		O vrai	O faux
•	Le polynôme $t^4 + 4 \in \mathbb{F}_5[t]$ est scindé dans $\mathbb{F}_5[t]$.	_	
		() vrai) faux
•	Deux polynômes $f, g \in \mathbb{C}[t]$ à coefficients complexes sont pren n'ont aucune racine commune.	niers entre	eux s'ils
		🔾 vrai	O faux
(b) Soit	$A \in M_{n \times n}(\mathbb{R})$. Lesquelles des assertions suivantes sont correct	tes?	
0	\bigcirc Supposons que $Ax = b$ n'a pas de solution dans \mathbb{R}^n pour un vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que $Ax = b$.		
0	\bigcirc Supposons que $Ax = b$ a une seule solution dans \mathbb{R}^n pour chaque vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que $Ax = b$.		
\circ	Supposons que $Ax = b$ a plusieurs solutions dans \mathbb{R}^n pour ut Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que $Ax = b$.	ın vecteur	$b \in \mathbb{R}^n$.
Indice : Considérer les parties réelles et imaginaires de l'expression $A(\text{Re}(x)+i\text{Im}(x))$.			

Sol.:

- (a) Déterminer si les énoncés proposés sont vrais ou faux.
 - Soit $A \in M_{n \times n}(\mathbb{R}[t])$. S'il existe $B \in M_{n \times n}(\mathbb{R}[t])$ telle que $AB = I_n$, alors il existe $\tilde{B} \in M_{n \times n}(\mathbb{R}[t])$ telle que $\tilde{B}A = I_n$.

• Soit $A \in M_{n \times n}(\mathbb{F}_2)$. S'il existe $B \in M_{n \times n}(\mathbb{F}_2)$ telle que $AB = I_n$, alors il existe $\tilde{B} \in M_{n \times n}(\mathbb{F}_2)$ telle que $\tilde{B}A = I_n$.

• Soit $f \in \mathbb{C}[t]$ et soit $a \in \mathbb{C}$. Alors t - a divise f(t) - f(a).

vrai \bigcirc faux

• Le polynôme $t^4 + 4 \in \mathbb{F}_5[t]$ est scindé dans $\mathbb{F}_5[t]$.

• Deux polynômes $f, g \in \mathbb{C}[t]$ à coefficients complexes sont premiers entre eux s'ils n'ont aucune racine commune.

(b) Soit $A \in M_{n \times n}(\mathbb{R})$. Lesquelles des assertions suivantes sont correctes?

• Supposons que Ax = b n'a pas de solution dans \mathbb{R}^n pour un vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que Ax = b.

 $igoplus Supposons \ que \ Ax = b \ a \ une \ seule \ solution \ dans \ \mathbb{R}^n \ pour \ chaque \ vecteur \ b \in \mathbb{R}^n.$ Alors il n'existe pas $de \ x \in \mathbb{C}^n \backslash \mathbb{R}^n \ tel \ que \ Ax = b.$

 \bigcirc Supposons que Ax = b a plusieurs solutions dans \mathbb{R}^n pour un vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que Ax = b.

Exercice 2

Soient $A \in M_{m \times n}(\mathbb{C})$ et $B \in M_{n \times p}(\mathbb{C})$. Montrer que $(AB)^* = B^*A^*$.

Sol.: Il est facile de voir que, pour $a, b \in \mathbb{C}$ on a $\overline{ab} = \overline{ba}$. Maintenant, on a,

$$(AB)_{i,j}^* = \overline{(AB)_{j,i}} = \sum_{k=1}^n \overline{A_{j,k}B_{k,i}} = \sum_{k=1}^n \overline{B_{k,i}} \ \overline{A_{j,k}} = (B^*A^*)_{i,j},$$

 $i = 1, \dots, m, j = 1, \dots, p, ainsi (AB)^* = B^*A^*.$

Exercice 3

i) Pour quelle(s) valeur(s) de $\alpha, \beta, \gamma \in \mathbb{R}$ la matrice suivante est-elle hermitienne?

$$A = \begin{pmatrix} 2 & 1 + \alpha i & 4 - \beta i \\ 1 + \alpha i & 0 & \gamma - 3i \\ 4 + 2i & \beta + 3i & -1 \end{pmatrix}$$

ii) Soit $A \in M_{n \times n}(\mathbb{C})$ une matrice hermitiene et $v \in M_{n \times 1}(\mathbb{C})$. Montrer que v^*Av est réel.

Sol.:

- i) Pour que A soit hermitienne, il faut que $4 \beta i = \overline{4 + 2i}$, donc $\beta = 2$. De plus on doit avoir, $\gamma 3i = \overline{\beta + 3i}$ qui donne $\gamma = \beta = 2$. $1 + \alpha i = \overline{1 + \alpha i}$ et donc $\alpha = 0$.
- ii) En utilisant l'exercice 2 avec v*Av, on trouve

$$(v^*Av)^* = v^*(v^*A)^* = v^*A^*v = v^*Av.$$

Comme v^*Av est une matrice de taille 1×1 et qu'elle est hermitienne, on peut conclure que v^*Av est réel.

Exercice 4 (*)

Montrer les parties ii) et iv) du Théorème 2.36 du cours (voir la version du Chapitre 2 actualisée 20.10.2016.).

Sol.:

- ii) On montre que $(\mathbb{N}_{< p}, \odot)$ est un monoïde commutatif.
 - Soient $a, b \in \mathbb{N}_{\leq p} = \{0, 1, 2, \dots, p-1\}$. Comme $a \odot b$ est la reste dans la division euclidienne de ab par p, donc $0 \leq a \odot b \leq p-1$.
 - L'associativité: soient $a, b, c \in \mathbb{N}_{\leq p}$. Par la definition de la division euclidienne, il existe $k_1, k_2 \in \mathbb{N}$ et $r_1, r_2 \in \mathbb{N}_{\leq p}$ tels que $ab = k_1p + r_1$, i.e. $a \odot b = ab k_1p$ et $bc = k_2p + r_2$, i.e. $b \odot c = bc k_2p$. Donc,

$$(a \odot b) \odot c = (ab - k_1p) \odot c = reste \ de \ la \ division \ eucl. \ de \ (ab - k_1p)c \ par \ p$$

 $a \odot (b \odot c) = a \odot (bc - k_2p) = reste \ de \ la \ division \ eucl. \ de \ a(bc - k_2p) \ par \ p$

On observe que $(ab - k_1p)c$ et $a(bc - k_2p)$ diffère d'un multiple de p. Cela implique que $(a \odot b) \odot c$ = reste de la division eucl. de abc par p et $a \odot (b \odot c)$ reste de la division eucl. de abc par p. Donc, l'associativité est satisfaite.

- L'élément neutre est 1.
- La commutativité découle de la commutativité dans N.
- iv) On montre que $(\mathbb{N}_{\leq p}, \oplus, \odot)$ est un anneau commutatif.
 - La stabilité de ⊙ est vérifiée comme précédemment.
 - D'après Théorème 2.36, partie i) (et l'exercices de geometrie), $(\mathbb{N}_{\leq p}, \oplus)$ est un groupe abélien.
 - L'associativité de ⊙ est deja montrée.
 - L'élément neutre pour \odot est 1.
 - La distributivité : soient $a, b, c \in \mathbb{N}_{\leq p}$. Donc,
 - il existe $k_1 \in \mathbb{N}$, $r_1 \in \mathbb{N}_{\leq p}$ tels que $a+b=k_1p+r_1$, i.e. $a \oplus b=a+b-k_1p$;
 - il existe $k_2 \in \mathbb{N}$, $r_2 \in \mathbb{N}_{\leq p}$ tels que $ac = k_2p + r_2$, i.e. $a \odot c = ac k_2p$;
 - il existe $k_3 \in \mathbb{N}$, $r_3 \in \mathbb{N}_{\leq p}$ tels que $bc = k_3p + r_3$, i.e. $b \odot c = bc k_3p$.

On obtient alors, en utilisant la distributivité dans N,

$$(a \oplus b) \odot c = (a + b - k_1 p) \odot c$$

= reste de la division eucl. de $(a + b - k_1 p)c$ par p
= reste de la division eucl. de $(ac + bc - k_1 pc)$ par p. (1)

En utilisant la distributivité et la commutativité dans N, on obtient

$$(a \odot c) \oplus (b \odot c) = (ac - k_2 p) \oplus (bc - k_3 p)$$

$$= reste \ de \ la \ division \ eucl. \ de \ (ac + bc - (k_2 + k_3)p) \ par \ p.$$
(2)

On observe que (1) et (2) diffère d'un multiple de p. Cela implique que la distributivé est satisfaite.

Exercice 5

Soient $p \in K[t]$ et $c \in K$. Montrer que p s'écrit sous la forme p(t) = g(t)(t - c) + p(c), où $g \in K[t]$. En particulier, déduire que c est une racine de p si et seulement si p(c) = 0.

Sol.: Soit q(t) = t - c. Par le Théorème 2.40, on obtient que p(t) = g(t)(t - c) + r(t) pour unique couple $g, r \in K[t]$. On a que $\deg(r) < \deg(q) = \deg(t - c) = 1$, ainsi $\deg(r) \le 0$. En évaluant p en c, l'on a p(c) = g(c)(c - c) + r(c) qui implique p(c) = r(c). c est une racine de p si et seulement si (t - c) divise p, i.e. p(c) = 0.

Exercice 6

Décomposer les polynômes ci-dessous en produit de facteurs irréductibles dans chacun des cas suivants : $\mathbb{C}[t]$, $\mathbb{R}[t]$, $\mathbb{Q}[t]$, $\mathbb{F}_3[t]$ et $\mathbb{F}_7[t]$

$$t^3 + 2t$$
 et $t^2 + t + 1$.

Sol.: Quel que soit le corps considéré, on a toujours :

$$t^3 + 2t = t(t^2 + 2).$$

On peut aussi remarquer que 0 est racine de t^3+2t . Le discriminant de t^2+2 est -8 < 0, donc ce polynôme n'a pas de racine dans \mathbb{R} , donc pas non plus dans \mathbb{Q} . Comme il est de degré 2, il est irréductible dans $\mathbb{R}[t]$, et aussi dans $\mathbb{Q}[t]$. Ainsi $t^3+2t=t(t^2+2)$ dans $\mathbb{R}[t]$ et dans $\mathbb{Q}[t]$.

Dans \mathbb{C} , les racines de $t^2 + 2$ sont $\pm i\sqrt{2}$. Par conséquent $t^3 + 2t = t(t + i\sqrt{2})(t - i\sqrt{2})$ dans $\mathbb{C}[t]$. Dans $\mathbb{F}_3[t]$, le polynôme $t^3 + 2t$ devient :

$$t^3 + 2t = t(t^2 + 2) = t(t+1)(t+2),$$

car les racines de $t^2 + 2$ dans \mathbb{F}_3 sont 1 et 2.

Le polynôme $t^2 + 2$ n'a pas de racines dans \mathbb{F}_7 , car on vérifie directement que $a^2 + 2 \neq 0$ pour chaque $a \in \mathbb{F}_7$. Comme il est de degré 2, il est donc irréductible dans $\mathbb{F}_7[t]$. La décomposition cherchée est donc $t^3 + 2t + 3 = t(t^2 + 2)$ dans $\mathbb{F}_7[t]$.

L'autre polynôme t^2+t+1 vaut $(t+\frac{1}{2}+i\frac{\sqrt{3}}{2})(t+\frac{1}{2}-i\frac{\sqrt{3}}{2})$ dans $\mathbb{C}[t]$. Il est irréductible dans $\mathbb{R}[t]$ et dans $\mathbb{Q}[t]$ car il est de degré 2 sans racines. Il vaut $(t+2)^2$ dans $\mathbb{F}_3[t]$, car $t^2+t+1=t^2+4t+1=(t+2)^2$.

Si le corps considéré est \mathbb{F}_7 , on obtient la decomposition $t^2 + t + 1 = (t+5)(t+3)$ dans $\mathbb{F}_7[t]$.

Exercice 7

- Soient $p(t) = 3t^4 5t^3 + 2t + 1$ et q(t) = t 1. Effectuer la division euclidienne du polynôme p par q dans $\mathbb{R}[t]$.
- Soient $p(t) = t^4 + t^3 + t + 1$ et q(t) = t + 1. Effectuer la division euclidienne du polynôme p par q dans $\mathbb{F}_2[t]$.

Sol.:

— D'abord on calcule $(3t^4 - 5t^3 + 2t + 1) : (t+1)$ dans $\mathbb{R}[t]$.

Donc, $3t^4 - 5t^3 + 2t + 1 = (3t^3 - 2t^2 - 2t)(t - 1) + 1$.

— Maintenant, on calcule $(t^4 + t^3 + t + 1) : (t+1)$ dans $\mathbb{F}_2[t]$.

Donc, $(t^4 + t^3 + t + 1) = (t^3 + 1)(t + 1)$.

Exercice 8

- i) Soit $a \in \mathbb{C}$. Définissons $f(t) = (t a)(t \bar{a}) \in \mathbb{C}[t]$. Montrer que $f \in \mathbb{R}[t]$.
- ii) Soit $g \in \mathbb{R}[t]$. Montrer que si $z \in \mathbb{C}$ est une racine de g, alors il en est de même pour son conjugé \bar{z} .
- iii) Déterminer tous les polynômes irréductibles unitaires dans $\mathbb{R}[t]$.

Sol.:

i) Comme

$$f(t) = (t - a)(t - \bar{a}) = t^2 - (a + \bar{a})t + a\bar{a},$$

il suffit de montrer que $a + \bar{a}$, $a\bar{a} \in \mathbb{R}$. Soit a = x + iy avec $x, y \in \mathbb{R}$. Alors $\bar{a} = x - iy$ et donc $a + \bar{a} = 2x \in \mathbb{R}$. Par ailleurs $a\bar{a} = x^2 + y^2 \in \mathbb{R}$. Donc tous les coefficients de f(t) sont réels, c'est-à-dire $f \in \mathbb{R}[t]$.

ii) Comme z est une racine de g(t), on a g(z)=0, et on doit montrer que $g(\bar{z})=0$. Supposons que g(t) soit de la forme $g(t)=\sum_{i=0}^n a_i t^i$ avec $a_0,a_1,\ldots,a_n\in\mathbb{R}$. On a alors $g(z)=\sum_{i=0}^n a_i z^i=0$. On obtient que

$$g(\bar{z}) = \sum_{i=0}^{n} a_i \bar{z}^i = \sum_{i=0}^{n} \overline{a_i} \bar{z}^i = \sum_{i=0}^{n} \overline{a_i} \overline{z^i} = \sum_{i=0}^{n} a_i z^i = \overline{g(z)} = \bar{0} = 0,$$

où on a utilisé $\overline{a_i} = a_i$ (car $a_i \in \mathbb{R}$), ainsi que les formules $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ et $\overline{z_1 z_2} = \overline{z_1}$ $\overline{z_2}$.

iii) Soit $f \in \mathbb{R}[t]$ un polynôme irréductible unitaire de degré $n \geq 1$. Comme tout polynôme de degré $n \geq 1$ admet une racine dans \mathbb{C} , on prend z une racine de f dans \mathbb{C} . Ainsi t-z divise f dans $\mathbb{C}[t]$.

 $Si\ z \in \mathbb{R}$, alors t-z divise f dans $\mathbb{R}[t]$ et donc f(t)=t-z, car $t-z \in \mathbb{R}[t]$ et f est irréductible et unitaire dans $\mathbb{R}[t]$.

Si $z \notin \mathbb{R}$, son conjugé \bar{z} est aussi une racine de f(t) d'après ii), et donc $t - \bar{z}$ divise aussi f(t) dans $\mathbb{C}[t]$. Il s'en suit que $(t-z)(t-\bar{z})$ divise f(t). Comme $(t-z)(t-\bar{z}) \in \mathbb{R}[t]$ d'après i), et comme f est irréductible dans $\mathbb{R}[t]$, on doit avoir $f(t) = (t-z)(t-\bar{z})$. Notons que le polynôme $(t-z)(t-\bar{z})$, de degré 2, a un discriminant négatif car les deux racines ne sont pas réelles.

Les polynômes irréductibles unitaires dans $\mathbb{R}[t]$ sont donc ou bien de la forme t+a avec $a \in \mathbb{R}$, ou bien de la forme t^2+bt+c , avec $b,c \in \mathbb{R}$, et sans racine réelle (c'est-à-dire tels que $b^2-4c<0$).