▼ ch02 앙상블 기법- RandomForest(4)

▼ 학습 내용

01. 랜덤포레스트 모델의 시각화를 해 보기

```
import sys

if 'google.colab' in sys.modules:
  !pip install -q dtreeviz
```

▼ 라이브러리 설치

```
os.getcwd()

'/content'

import sys
import os
# add library module to PYTHONPATH
sys.path.append(f"{os.getcwd()}/../")

from sklearn.datasets import *
from dtreeviz.trees import *
from lPython.display import Image, display_svg, SVG
```

▼ 회귀 트리(Regression tree)

- 데이터 셋: boston data
- url : <u>boston house-prices dataset</u> (regression).

```
fontname="Arial",
title_fontsize=16,
colors = {"title":"purple"}
)
```

viz

▼ 이미지 스케일 조정

```
dtreeviz(regr,
    X_train,
    y_train,
    target_name='price', # this name will be displayed at the leaf node
    feature_names=boston.feature_names,
    scale=.5
)
```

▼ 분류 트리(Classification tree)

/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: return array(a, dtype, copy=False, order=order)

▼ 분류 트리(Classification tree)

Breast Cancer Wisconsin Dataset

```
target_name= cancer ,
feature_names=cancer.feature_names,
class_names=["malignant", "benign"],
orientation='LR')
```

viz

/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: return array(a, dtype, copy=False, order=order)

▼ 분류 트리(Classification tree)

• 데이터 셋 : digits dataset

regr = tree.DecisionTreeRegressor(max_depth=3)
diabetes = load_diabetes()

컬럼명	설명	데이터 유형
age	나이	숫자
sex	성별	명목형
bmi	체질량 지수	숫자
bp	평균 혈압	숫자
s1	혈청 측정값1	숫자
s2	혈청 측정값2	숫자
s3	혈청 측정값3	숫자
s4	혈청 측정값4	숫자
s5	혈청 측정값5	숫자
s6	혈청 측정값6	숫자
Υ	10개변수 측정 후, 당뇨병 진행도	숫자

X_train = diabetes.data
y_train = diabetes.target
roor_fit(Y_train_Y_train)


```
import pandas as pd
train = pd.read_csv("house_train.csv")
test = pd.read_csv("house_test.csv")
```

▼ 캐글 코리아 2차 대회 데이터 셋 데이터

• https://www.kaggle.com/c/2019-2nd-ml-month-with-kakr/data

컬럼명	의미	값(기타)
ID	집을 구분하는 번호	
date	집을 구매한 날짜	
price	집의 가격(Target variable)	
bedrooms	침실의 수	
bathrooms	화장실의 수	
sqft_living	주거 공간의 평방 피트(면적)	
sqft_lot	부지의 평방 피트(면적)	

floors 집의 층 수

waterfront 집의 전방에 강이 흐르는지 유무 (a.k.a. 리버뷰)

view 집이 얼마나 좋아 보이는지의 정도

condition 집의 전반적인 상태

grade King County grading 시스템 기준으로 매긴 집의 등급

sqft_above 지하실을 제외한 평방 피트(면적)

sqft_basement 지하실의 평방 피트(면적)

yr_built 지어진 년도

yr_renovated 집을 재건축한 년도

zipcode 우편번호 lat 위도

long 경도

sqft_living15 2015년 기준 주거 공간의 평방 피트(면적, 집을 재건축했다면, 변화가 있을 수 있음)

sqft_lot15 2015년 기준 부지의 평방 피트(면적, 집을 재건축했다면, 변화가 있을 수 있음)

from sklearn.preprocessing import MinMaxScaler

```
sel = ['sqft_living', 'sqft_lot', 'bedrooms'] # 'bedrooms' , 'bathrooms',
v = v oll[col]
```

X = X_all[sel]
y = train['price']

nor_X = MinMaxScaler().fit_transform(X) # 입력 데이터 정규화

print("정규화 : ", nor_X.shape, y.shape)

정규화 데이터 사용

X_train, X_test, y_train, y_test = train_test_split(nor_X, y,

random_state=42)

정규화: (15035, 3) (15035,)

model = RandomForestRegressor(n_estimators=100,

 $max_depth=3$.

max_features='auto',
min_samples_leaf=4,
bootstrap=True,
n_iobs=-1,

random_state=0)

model.fit(X, y)

RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',

max_depth=3, max_features='auto', max_leaf_nodes=None,

max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=4,

min_samples_split=2, min_weight_fraction_leaf=0.0,

n_estimators=100, n_jobs=-1, oob_score=False, random_state=0, verbose=0, warm_start=False)

viz

viz.save("decision_tree_house.svg")

from google.colab import files
files.download("decision_tree_house.svg")

▼ REF

- https://colab.research.google.com/github/parrt/dtreeviz/blob/master/notebooks/examples.ipynb
- https://towardsdatascience.com/4-ways-to-visualize-individual-decision-trees-in-a-random-forest-7a9beda1d1b7

교육용으로 작성된 것으로 배포 및 복제시에 사전 허가가 필요합니다. Copyright 2021 LIM Co. all rights reserved.

