Chapter 10 Algorithm Efficiency

CS 302 - Data Structures

M. Abdullah Canbaz

M

Reminders

- Assignment 3 is available
 - Due Feb 28th at 2pm
 - What to do?
- TA
 - Athanasia Katsila,

Email: akatsila [at] nevada {dot} unr {dot} edu,

Office Hours: Thursdays, 10:30 am - 12:30 pm at SEM 211

- Quiz 5 will be available
 - Wednesday between 4pm to 11:59pm

Complexity

Algorithm Efficiency

- There are often many approaches (algorithms) to solve a problem.
 - How do we choose between them?

- At the heart of computer program design are two (sometimes conflicting) goals
 - To design an algorithm that
 - is easy to understand, code, debug.
 - makes efficient use of the resources.

Algorithm Efficiency (cont)

 Goal (1) is the concern of Software Engineering.

 Goal (2) is the concern of data structures and algorithm analysis.

- When goal (2) is important,
 - how do we measure an algorithm's cost?

What Is a Good Solution?

- A program incurs a real and tangible cost.
 - Computing time
 - Memory required
 - Difficulties encountered by users
 - Consequences of incorrect actions by program
- A solution is good if ...
 - The total cost incurs …
 - Over all phases of its life ... is minimal

What Is a Good Solution?

- Important elements of the solution
 - Good structure
 - Good documentation
 - Efficiency
- Be concerned with efficiency when
 - Developing underlying algorithm
 - Choice of objects and design of interaction between those objects

Measuring Efficiency of Algorithms

- Important because
 - Choice of algorithm has significant impact

- Examples
 - Responsive word processors
 - Grocery checkout systems
 - Automatic teller machines
 - Video machines
 - Life support systems

Measuring Efficiency of Algorithms

- Analysis of algorithms
 - The area of computer science that provides tools for contrasting efficiency of different algorithms
 - Comparison of algorithms should focus on significant differences in efficiency
 - We consider comparisons of algorithms, not programs

Measuring Efficiency of Algorithms

- Difficulties with comparing programs (instead of algorithms)
 - How are the algorithms coded
 - What computer will be used
 - What data should the program use

- Algorithm analysis should be independent of
 - Specific implementations, computers, and data

The Execution Time of Algorithms

- An algorithm's execution time is related to number of operations it requires.
 - Algorithm's execution time is related to number of operations it requires.

- Example: Towers of Hanoi
 - Solution for n disks required $2^n 1$ moves
 - If each move requires time m
 - Solution requires $(2^n 1) \times m$ time units

Execution Time of Algorithm

Traversal of linked nodes – example:

```
Node<ItemType>* curPtr = headPtr; \leftarrow 1 \ assignment
while (curPtr != nullptr) \leftarrow n + 1 \ comparisons
{
   cout << curPtr->getItem() < endl; \leftarrow n \ writes
   curPtr = curPtr->getNext(); \leftarrow n \ assignments
} // end while
```

 Displaying data in linked chain of n nodes requires time proportional to n

Algorithm Growth Rates

- Measure an algorithm's time requirement as function of problem size
- Most important thing to learn
 - How quickly algorithm's time requirement grows as a function of problem size

Algorithm A requires time proportional to n² Algorithm B requires time proportional to n

Demonstrates contrast in growth rates

Algorithm Growth Rates

Time requirements as a function of the problem size n

Best, Worst, Average Cases

- Not all inputs of a given size take the same time to run.
- Sequential search for K in an array of n integers:
 - Begin at first element in array and look at each element in turn until K is found
 - Best case:
 - Worst case:
 - Average case:

Time Analysis

• Provides upper and lower bounds of running time.

Worst Case

- Provides an <u>upper bound</u> on running time.
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are.

Best Case

- Provides a <u>lower bound</u> on running time.
- Input is the one for which the algorithm runs the fastest.

Average Case

- Provides an estimate of "average" running time.
- Assumes that the input is random.
- Useful when best/worst cases do not happen very often
 - i.e., few input cases lead to best/worst cases.

Which Analysis to Use?

- While average time appears to be the fairest measure,
 - it may be difficult to determine.

When is the worst case time important?

How to Measure Efficiency?

- Critical resources:
 - Time, memory, battery, bandwidth, programmer effort, user effort

- Factors affecting running time:
 - For most algorithms, running time depends on "size" of the input.
 - Running time is expressed as T(n) for some function T on input size n.

| How do we analyze an algorithm?

- Need to define objective measures.
 - (1) Compare execution times? Empirical comparison (run programs) **Not good**: times are specific to a particular machine.
 - (2) Count the number of statements? **Not good:** number of statements varies with programming language and programming style.

How do we analyze an algorithm?

(3) Express running time t as a <u>function</u> of problem size n (i.e., t=f(n))

Asymptotic Algorithm Analysis

- Given two algorithms having running times f(n) and g(n),
 - find which functions grows faster
- Such an analysis is <u>independent</u> of machine time, programming style, etc.

Comparing algorithms

 Given two algorithms having running times f(n) and g(n), how do we decide which one is faster?

Compare "rates of growth" of f(n) and g(n)

M Understanding Rate of Growth

 The low order terms of a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50$$

Approximation:

 n^4

Highest order term determines rate of growth!

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing **function** eventually becomes larger...

Analysis and Big O Notation

- Algorithm A is said to be order f (n),
 - Denoted as O(f(n))
 - Function f(n) called algorithm's growth rate function
 - Notation with capital O denotes order

- Algorithm A of order denoted O(f(n))
 - Constants k and n_0 exist such that
 - -A requires no more than $k \times f(n)$ time units
 - For problem of size $n \ge n_0$

Rate of growth

• The graphs of $3 \times n^2$ and $n^2 - 3 \times n + 10$

Rate of Growth ≡ Asymptotic Analysis

- Using rate of growth as a measure to compare different functions implies comparing them asymptotically
 - i.e., as n $\rightarrow \infty$

- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit
 - i.e., for large enough values of x

Complexity

- Let us assume two algorithms A and B that solve the same class of problems.
- The time complexity of A is 5,000n,
 the one for B is \[\begin{aligned} \begin{align
- For n = 10,
 - A requires 50,000 steps,
 - but B only 3,
 - so B seems to be superior to A.
- For n = 1000, A requires 5.10⁶ steps,
 - while B requires 2.5·10⁴¹ steps.

Names of Orders of Magnitude

O(1) bounded (by a constant) time

O(log₂N) logarithmic time

O(N) linear time

 $O(N*log_2N)$ $N*log_2N$ time

O(N²) quadratic time

O(N³) cubic time

O(2^N) exponential time

Asymptotic Notations

```
bool IsFirstElementNull(IList<string> elements)
                                                      O(1)
     return elements[0] == null;
                     bool ContainsValue(IList<string> elements, string value)
bool Contains Duplicates (ILast<string> elements)
    for (var outer = 0; outer < element == value) return true;</pre>
        for (var inner = 0; einper fale ements. Count; inner++)
            // Don't compare with self
            if (outer == inner) continue;
            if (elements[outer] == elements[inner]) return true;
    return false;
```


Order of growth of common functions

$$O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$

A comparison of growth-rate functions

N	log_2N	N*log ₂ N	N^2	2 ^N
1	0	0	1	2
2	1	2	4	4
4	2	8	16	16
8	3	24	64	256
16	4	64	256	65,536
32	5	160	1024	4.29*10 ⁹
64	6	384	4096	1.84*10 ¹⁹
128	7	896	16,384	3.40*10 ³⁸

A comparison of growth-rate functions

				n 人		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log_2n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
$n \times log_2 n$	30	664	9,965	105	10 ⁶	10 ⁷
n²	10 ²	104	10 ⁶	108	1010	10 ¹²
n^3	10³	10 ⁶	10 ⁹	1012	1015	10 ¹⁸
2 ⁿ	10³	1030	1030	1 103,01	0 1030,	103 10301,030

M Example

Rank the following **functions** by order of growth from the slowest to the fastest (notation: lgn=log₂n)

1000, 10lgn, 4n², n², 2ⁿ, 100n, 2^{lgn}

10lgn 2^{lgn} 100n n² 4n² 2ⁿ 1000 (Slowest → Fastest)

Sample Execution Times

n	$f(n) = \lg n$	j(n) = n	$f(n) = n \lg n$	$f(n)=n^2$	$f(n)=n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 gs	1 μs	μs
20	0.004 μs	0.02 µs	0.086 μs	0.4 gs	8 μs	l ms†
30	0.005 μs	0.03 µs	0.147 μs	0.9 gs	27 μs	s
40	0.005 μs	0.04 µs	0.213 µs	1.6 gs	64 μs	18.3 mir
50	0.005 μs	0.05 µs	0.282 μs	2.5 µs	.25 μs	13 days
10^{2}	0.007 µs	0.10 µs	0.664 μs	10 μs	1 ms	4×10^{15} years
10^{3}	0.010 µs	1.00 µs	9.966 µs	1 ms	1 s	
104	0.013 µs	.0 μs	130 µs	100 ms	16.7 min	
105	0.017 µs	0.10 ms	1.67 ms	10 s	11.6 days	
10 ⁶	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 years	
10^{7}	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10 ⁸	0.027 µs	0.10 s	2.66 s	115.7 days	3.17 × 10' years	
10°	0.030 µs	1 s	29.90 s	31.7 years		

^{*1} $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

The Growth of Functions

- A problem that can be solved with polynomial worst-case complexity is called tractable
- Problems of higher complexity are called intractable
- Problems that no algorithm can solve are called unsolvable

M

Analysis and Big O Notation

- Definition:
 - Algorithm A is order f(n)
 - Denoted O(f (n))
 - If constants k and n_0 exist

– Such that A requires no more than $k \times f(n)$ time units to solve a problem of size $n \ge n_0$.

Analysis and Big O Notation

- Worst-case analysis
 - Worst case analysis usually considered
 - Easier to calculate, thus more common

- Average-case analysis
 - More difficult to perform
 - Must determine relative probabilities of encountering problems of given size

Asymptotic Notation

O notation: asymptotic "less than":

(used in worst-case analysis)

*formal definition in CS477/677

M Asymptotic Notation

 Ω notation: asymptotic "greater than":

$$f(n) = Ω (g(n)) implies: f(n) "≥" c g(n) in the limit* c is a constant$$

(used in best-case analysis)

*formal definition in CS477/677

Asymptotic Notation

Θ notation: asymptotic "equality":

$$f(n) = \Theta (g(n)) \text{ implies:} f(n) "=" c g(n) in the limit" c is a constant$$

(provides a tight bound of running time) (best and worst cases are same)

*formal definition in CS477/677

More on big-O

O(g(n)) is a set of functions f(n)

 $f(n) \in O(g(n))$ if " $f(n) \le cg(n)$ "

O(NlogN) 5N+10 2N-1 10NlogN-10N+1 Nlogn+100N

A Common Misunderstanding

Confusing worst case with upper bound

Upper bound refers to a growth rate

 Worst case refers to the worst input from among the choices for possible inputs of a given size

| Algorithm speed vs function growth

 An O(n²) algorithm will be slower than an O(n) algorithm (for large n).

But an $O(n^2)$ function will grow faster than an O(n)

function.

Keeping Your Perspective

- Choosing implementation of ADT
 - Consider how frequently certain operations will occur
 - Seldom used but critical operations must also be efficient
- If problem size is always small
 - Possible to ignore algorithm's efficiency
- Weigh trade-offs between
 - Algorithm's time and memory requirements
- Compare algorithms for style and efficiency

Faster Computer or Algorithm?

- Suppose we buy a computer 10 times faster.
 - n: size of input that can be processed in one second on <u>old</u> computer
 - in 1000 computational units
 - n': size of input that can be processed in one second on <u>new</u> computer

T(n)	n	n'	Change	n '/n
10 <i>n</i>	100	1,000	n'=10n	10
$10n^{2}$	10	31.6	$n' = \sqrt{10n}$	3.16
10 ⁿ	3	4	n' = n + 1	1 + 1/n

How do we find f(n)?

- (1) Associate a "cost" with each statement
- (2) Find total number of times each statement is executed
- (3) Add up the costs

Properties of Growth-Rate Functions

Ignore low-order terms

 Ignore a multiplicative constant in the highorder term

• O(f(n)) + O(g(n)) = O(f(n) + g(n))

Be aware of worst case, average case

M

Running Time Examples

```
i = 0;
while (i<N) {
  X=X+Y;
                        // O(1)
  result = mystery(X); // O(N)
                       // O(1)
  İ++;

    The body of the while loop: O(N)

                                  N times

    Loop is executed:

                              N \times O(N) = O(N^2)
```

Running Time Examples

```
if (i<j)
 for ( i=0; i<N; i++ ) X = X+i;
else
X=0; O(1)
Max (O(N), O(1)) = O(N)
```


Running Time Examples (cont.' d)

Algorithm 1 Cost

$$arr[0] = 0;$$
 c_1

$$arr[1] = 0;$$
 c_1

$$arr[2] = 0;$$
 c_1

. . .

$$arr[N-1] = 0;$$
 c_1

$$C_1 + C_1 + ... + C_1 = C_1 \times N$$

Algorithm 2 Cost
for(i=0; ic_2

$$arr[i] = 0;$$
 c_1
 $(N+1) \times c_2 + N \times c_1 = (c_2 + c_1) \times N + c_2$

M

Running Time Examples (cont.' d)

$$cost$$

 $sum = 0;$ c_1
 $for(i=0; i c_2
 $for(j=0; j c_2
 $sum += arr[i][j];$ $c_3$$$

 $c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N \times N$

56

Complexity Examples

What does the following algorithm compute?

```
int who knows(int a[n]) {
     int m = 0;
     for {int i = 0; i<n; i++}
          for {int j = i+1; j < n; j++}
                if ( abs(a[i] - a[j]) > m )
                     m = abs(a[i] - a[j]);
     return m;
returns the maximum difference between any two
numbers in the input array
Comparisons: n-1 + n-2 + n-3 + ... + 1 = (n-1)n/2 = 0.5n^2 - 0.5n
Time complexity is O(n^2)
```

| Complexity Examples

Another algorithm solving the same problem:

```
int max diff(int a[n]) {
    int min = a[0];
    int max = a[0];
    for {int i = 1; i<n; i++}
         if (a[i] < min )
             min = a[i];
        else if ( a[i] > max )
             max = a[i];
    return max-min;
```

Comparisons: 2n - 2

Time complexity is O(n)

Examples of Growth Rate

```
/* @return Position of largest value in "A" */
static int largest(int[] A) {
  int currlarge = 0; // Position of largest
  for (int i=1; i<A.length; i++)
   if (A[currlarge] < A[i])
      currlarge = i; // Remember position
  return currlarge; // Return largest postn
}</pre>
```

Examples (cont)

```
sum = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
   sum++;</pre>
```

Time Complexity Examples (1)

```
a = b;
```

This assignment takes constant time, so it is $\Theta(1)$.

```
sum = 0;
for (i=1; i<=n; i++)
  sum += n;
```

Time Complexity Examples (2)

```
sum = 0;
for (j=1; j \le n; j++)
  for (i=1; i<=j; i++)
    sum++;
for (k=0; k< n; k++)
  A[k] = k;
```

Time Complexity Examples (3)

```
sum1 = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
    sum1++;
sum2 = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=i; j++)
    sum2++;
```

Time Complexity Examples (4)

```
sum1 = 0;
for (k=1; k \le n; k \ge 2)
  for (j=1; j \le n; j++)
    sum1++;
sum2 = 0;
for (k=1; k \le n; k \le 2)
  for (j=1; j<=k; j++)
    sum2++;
```

Example

Compare the two functions n² and 2ⁿ/4 for various values of n. Determine when the second becomes larger than the first.

$$n^2 7 2^n/4$$
 for $n \leq 8$
So, $2^n/4$ Secomes larger for $n79$

Analyze the complexity of the following code

```
(b) sum = 0; \theta(t)
         (a) sum = 0; Q(i)
                                      O(n*)for(i=1; i<=n*n; i++)
     O(2\eta) for(i=1; i<=2*n; i++)
                                        O(r) \rightarrow sum = sum + 1;
     D() - sum = sum + 1;
                                         Total: 0(n2)
        Total: 0/2n)=0(n)
                                        (e) sum = 0; 0(1)
         (d) sum = 0; \theta(t)
                                         D(1) for(i=1; i<=100; i++)
                                        o(n) for(j=1; j<=n; j++)
          for(i=1; i<=n i++)</pre>
                                            0(i) sum = sum + i;
            for(j=1; j<=i; j++)
                                        Total: O(n)
            \theta(i) sum = sum + i;
            jel 1 time

jel 2 times

jen n times
When i=1
                Total 1+2+...+n=n(n+1)=0(n2)
```

Chapter 10 Algorithm Efficiency

The End

Out of the Box

Design a URL Shortener (TinyURL) System

From previous classes

Encode and Decode TinyURL

https://leetcode.com/problems/encode-and-decode-tinyurl/description/