Lab 3: Essential Matrix and Epipolar Lines

Due date: March 17, 2021

Prelab work:

- Read Lecture 10.
- Get the camera parameters from Lab 2 (focal length, C_x , C_y , ...).
- Familiarize yourself with SVD function in MATLAB

A. Calculate the essential matrix:

- 1. Calculate H c2 c1 from the known H m c1 and H m c2.
- 2. From that extract R c2 c1 and Pc2org c1.
- 3. Calculate E from Pc2org_c1 and R_c2_c1 using the skew symmetric matrix technique. It should be something like this:

true
$$E = 0.5125$$
 -8.0263 0.1489 0.7072 0.1954 12.7048 0.6222 -9.8417 0.0727

B. Draw epipolar lines:

Compute el=E*p2 where el=[a,b,c] and the equation of the line is ax+by+c=0

Figure 1. Epipilar lines

C. Use 8-point algorithm to compute E

Note that the calculated E is correct up to a scale. It should be something like this:

calculated	\mathbf{E}	after	scaling =
0.5109	-8	3.0393	0.1060
0.8696	-1	L.6487	13.5279
0.6188	-9	3.8417	0.0130

Submission: You need to submit:

- 1. A report including results (pdf or word),
- 2. The MATLAB code,

to the D2L DropBox folder by the deadline of this assignment.