DATE: 2023-09-10

LAB 9: Completely Randomized Design (CRD)

Four different designs for a digital computer circuit are being studied to compare the amount of noise present. The following data have been obtained:

Circuit Design		Noise Observed						
1	19	20	19	30	08			
2	80	61	73	56	80			
3	45	26	25	35	50			
4	95	46	83	78	97			

- (a) Carryout one-way ANOVA to determine whether same amount of noise present for all four designs? Use α =0.05
- (b) Which circuit design would you select for use? Low noise is best.

One-way ANOVA: Noise Level versus Circuit Design

Method

Null hypothesis All means are equal Alternative hypothesis Not all means are equal

Significance level $\alpha = 0.05$

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels Values
Circuit Design	4 1, 2, 3, 4

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Circuit Design	3	12102	4033.9	22.18	0.000
Error	16	2910	181.9		
Total	19	15012			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
13.4870	80.61%	76.98%	69.71%

Means

4		٠		_		• ,	
	١.	1	r	C	п	11	Г

Design	N	Mean	StDev	95% CI
1	5	19.20	7.79	(6.41, 31.99)
2	5	70.00	11.02	(57.21, 82.79)

```
3 5 36.20 11.17 (23.41, 48.99)
4 5 79.80 20.51 (67.01, 92.59)
```

 $Pooled\ StDev = 13.4870$

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Circuit Design N Mean Mean Grouping 4 5 79.80 A 2 5 70.00 A 3 5 36.20 B 1 5 19.20 B

Means that do not share a letter are significantly different.

WORKSHEET 1

General Linear Model: Tensile Strength versus Chemical Agents, Bolt Type

Method

Factor coding (-1, 0, +1)

Factor Information

Factor	Type	Levels Values
Chemical Agents	Fixed	4 1, 2, 3, 4
Bolt Type	Fixed	5 1, 2, 3, 4, 5

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Chemical Agents	3	25.20	8.400	4.33	0.028
Bolt Type	4	179.50	44.875	23.11	0.000
Error	12	23.30	1.942		
Total	19	228.00			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.39344	89.78%	83.82%	71.61%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	72.000	0.312	231.08	0.000	
Chemical Agents					
1	-1.400	0.540	-2.59	0.023	1.50
2	-0.600	0.540	-1.11	0.288	1.50
3	0.400	0.540	0.74	0.473	1.50
Bolt Type					
1	2.750	0.623	4.41	0.001	1.60
2	-3.500	0.623	-5.62	0.000	1.60
3	3.500	0.623	5.62	0.000	1.60
4	0.750	0.623	1.20	0.252	1.60

Regression Equation

 $\label{tensile Strength} \begin{array}{lll} \text{Tensile Strength} &=& 72.000 - 1.400 \text{ Chemical Agents_1} - 0.600 \text{ Chemical Agents_2} \\ &+& 0.400 \text{ Chemical Agents_3} + 1.600 \text{ Chemical Agents_4} + 2.750 \text{ Bolt Type_1} \\ &-& 3.500 \text{ Bolt Type_2} + 3.500 \text{ Bolt Type_3} + 0.750 \text{ Bolt Type_4} \\ &-& 3.500 \text{ Bolt Type_5} \end{array}$

CONCLUSION

- 1. Since p-value = $0.000 < \alpha = 0.05$, we reject the null hypothesis at 5% level of significance. It means that noise level is not same for four digital circuit type.
- 2. Model summary shows that the R^2 = 80.61%, which means that linear model is good fit.
- 3. Lowest mean noise level is of circuit type 1 (19.20) and highest mean noise level is of circuit type 4 (79.80).
- 4. Tukey's comparison shows that there are two cluster groups, first comprising of circuit type 3 and 1, producing lowest noise levels and second comprising of circuit type 4 and 2, producing highest noise levels. It means that there is no significant difference between circuit type 3 and 1 in regard to noise level produced by them. In second group, there is no significant difference between circuit type 4 and 2.
- 5. Error distribution is not normal, rather it is left skewed as shown by the graph.
- 6. Homogeneity of variance is not met well.
- 7. Random pattern of errors in graph of error vs observation order, shows that errors are not related.