SE284: Introduction to Graph Algorithms

Katerina Taškova

Email: katerina.taskova@auckland.ac.nz
Room: 303S.483

Outline

The Graph Abstract Data Type

Basic definitions
Digraphs and data structures
Digraph ADT operations

Graph Traversals and Applications

General graph traversing
Depth/Breadth-first search of digraphs
Algorithms using traversal techniques
Topological sort, acyclic graphs, girth
Girth, connectivity, and components
Strong components, and bipartite graphs

Weighted Digraphs and Optimization Problems

Strong components, and bipartite graphs

Lecture Notes 28, Textbook 5.7-8

Acknowledgment for slide content: Michael Dinneen, Simone Linz

Graph connectivity - reminder

Definition

A graph G is connected if for each pair of vertices $u, v \in V(G)$, there is a path between them.

Definition

A graph *G* is disconnected if it is not connected and the maximal induced connected subgraphs are called the components of *G*.

Theorem

Let G be a graph and suppose that DFS or BFS is run on G. Then the connected components of G are precisely the subgraphs spanned by the trees in the search forest.

Connected components – reminder

Nice DFS application: strong components

- Nodes v and w are mutually reachable if there is a directed path from v to w and a directed path from w to v. The nodes of a digraph divide up into disjoint subsets of mutually reachable nodes, which induce strong components.
- A digraph is strongly connected if it has only one strong component.
- Components of a graph are found easily by BFS or DFS (each tree in the search forest spans a component). However, this doesn't work well for digraphs (a digraph may have a connected underlying graph yet not be strongly connected). A new idea is needed.

Nice DFS application: strong components

- Nodes v and w are mutually reachable if there is a directed path from v to w and a directed path from w to v. The nodes of a digraph divide up into disjoint subsets of mutually reachable nodes, which induce strong components.
- A digraph is strongly connected if it has only one strong component.
- Components of a graph are found easily by BFS or DFS (each tree in the search forest spans a component). However, this doesn't work well for digraphs (a digraph may have a connected underlying graph yet not be strongly connected). A new idea is needed.

Example 27.13 – reminder

Example 27.13. Find a counter-example to show that the method for finding connected components of graphs in Theorem 27.7 fails at finding strongly connected components of digraphs.

A digraph's strongly connected components

A digraph's strongly connected components

A digraph's strongly connected components

Figure 28.1: Decomposing a graph into its strongly connected components, C_1, \ldots, C_m . If each C_i is considered a single node, this decomposition is a DAG.

Reverse digraph

The strongly connected components in G are the same as those in G_r .

- ▶ Let G be a digraph, and let G_r be the reverse digraph of G obtained by reversing all arcs in G.
- ▶ Phase 1. Run DFS on G_r, to get depth-first forest F_r. For each node w in G_r, let done[w] be the time at which w turned from grey to black.
- ▶ Phase 2. Run DFS on G; when choosing a new root, choose a white node w such that done[w] is as large as possible. This gives a forest F.

The algorithm's output is *F*. Want to show that the algorithm works i.e. each strongly connected component in *G* corresponds to a tree in *F*.

Claim. A subset V' of all vertices of G is a strongly connected component (i.e. elements in V' are mutually reachable) in G if and only if V' is the node set of a tree in F.

We prove the claim in 2 steps.

Recall that the nodes of the trees in F partition the nodes of G.

Part 1. If nodes u and v are mutually reachable in G, then the algorithm reports that they are in the same component (tree).

- ▶ Wlog, assume that u is visited (marked grey) before v in Phase 2.
- Since there is a directed path from u to v, DFS will visit v after having visited u. Hence, u and v are in the same tree of F and, therefore reported as being in the same component.

Part 2. If the algorithm reports that u and v are in the same component (tree), then they are mutually reachable in G.

▶ Let *T* be the tree in *F* with root *w* that contains *u* and *v*.

Part 2. If the algorithm reports that u and v are in the same component (tree), then they are mutually reachable in G.

- Let *T* be the tree in *F* with root *w* that contains *u* and *v*.
- As w was chosen as root, we have done[w] > done[u] and done[w] > done[v] in G_r.
- ► As w was visited (marked grey) before u in G, there is a directed path from w to u in G and, hence a directed path from u to w in G_r.
- Suppose there is no directed path from w to u in G_r . Then done[u] > done[w] in G_r ; a contradiction.
- ► Hence there is a directed path from w to u in G_r and a directed path from u to w in G.
- And so, w and u are mutually reachable.

Part 2. If the algorithm reports that u and v are in the same component (tree), then they are mutually reachable in G.

- Let T be the tree in F with root w that contains u and v.
- As w was chosen as root, we have done[w] > done[u] and done[w] > done[v] in G_r.
- ► As w was visited (marked grey) before u in G, there is a directed path from w to u in G and, hence a directed path from u to w in G_r.
- Suppose there is no directed path from w to u in G_r . Then done[u] > done[w] in G_r ; a contradiction.
- ► Hence there is a directed path from w to u in G_r and a directed path from u to w in G.
- And so, w and u are mutually reachable.

- ▶ Use analogous argument to show that w and v are mutually reachable.
- ▶ Then *u* and *v* are mutually reachable.
- ▶ This completes the proof of the claim.
- Convince yourself that this is indeed true!

G has 3 strong components.

G has 3 strong components.

k-colorable graphs

Definition

Let k be a positive integer. A graph G has a k-coloring if V(G) can be partitioned into k nonempty disjoint subsets such that each edge of G joins two vertices in different subsets (colors). The smallest number of colors needed to color a graph is called chromatic number.

Bipartite graphs (digraphs)

Definition

A graph G is bipartite if V(G) can be partitioned into two nonempty disjoint subsets V_1 , V_2 such that each edge of G has one endpoint in V_1 and one in V_2 . [Similar for digraphs.]

Theorem

The following conditions on a graph G are equivalent.

- 1. G has a 2-coloring;
- 2. G is bipartite;
- 3. G does not contain an odd length cycle.

Proof: show that 1 implies 2, then 2 implies 3, and 3 implies 1.

Theorem

- 1. G has a 2-coloring;
- 2. G is bipartite;
- 3. G does not contain an odd length cycle.
- Suppose G has a 2-coloring. Let V_1 be the set of vertices with color c_1 , and let V_2 be the set of vertices with color c_2 . Then each edges joins a vertex in V_1 with a vertex in V_2 . By definition, $G = (V_1 \cup V_2, E)$ is bipartite.

Theorem

- 1. G has a 2-coloring;
- 2. G is bipartite;
- 3. G does not contain an odd length cycle.
- Suppose $G = (V_1 \cup V_2, E)$ is bipartite. Each edges joins a vertex in V_1 with a vertex in V_2 . Color each vertex in V_1 with color c_1 and each vertex in V_2 with color c_2 . Since G is bipartite, this induces a 2-coloring of G.

Theorem

- 1. G has a 2-coloring;
- 2. G is bipartite;
- 3. G does not contain an odd length cycle.
- Suppose G is bipartite. Let C be a cycle in G. Then, since G is 2-colorable, C has even length (start and end vertex have different colors). Hence, G does not contain a cycle of odd length.

Theorem

- 1. G has a 2-coloring;
- 2. G is bipartite;
- 3. G does not contain an odd length cycle.
- Suppose G has no cycle of odd length. Obtain a 2-coloring as follows: Start BFS at v, assign v to color c₁, assign all neighbors of v to color c₂, assign all neighbors of neighbors of v to color c₁ and continue in this way until all vertices are colored. Since there is no odd cycle, each cross edge joins vertices of different color. (Why?)

Deciding if a graph is bipartite

Fact

A version of BFS can be used to check if a graph is bipartite (e.g. 2-colorable).

Thank you!