Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Things we'll study from now on

- » Computational models (Mostly Turing machine)
- >> A little bit of computability
- >> P versus NP problem
- >> NP-complete problems
- >> Why P versus NP is so hard?

Textbook

- >> Oded Goldreich, "P, NP, and NP-completeness"
 - >> Freely available on the internet
 - >> I'll also upload a copy on the Blackboard
 - >> We'll only follow this somewhat loosely

Today

>> Turing machines

Turing machine

Alan Turing

What is computation?

- >> Or, what is a computer?
- >> Not some particular implementation, but the essence?
- >> There are at least three satisfying, equivalent answers
 - >> Alonzo Church: Lambda calculus
 - >> Kurt Gödel: Recursive function theory
 - >> Alan Turing: Turing machine

Turing machine

- >> Turing machine: an abstract formalism of computer
- >> We will define it and study it
- >> Eventually, we can define computation as what Turing machines can do
 - » Computability = Turing computability
- » And we'll learn why any particular formalism isn't that important

Turing machine

More formally

A turing machine M can be specified by
$$M = (Q, \Sigma, S, 8start, 8halt)$$
 $-Q: a finite set alled the state space.
 $-\Sigma: n = \{1, -C\} \}$
 $-S: Q \times \Sigma \rightarrow Q \times \Sigma \times \{-1, 0, 1\}$
 $-8start, 8halt \in Q$$

$$S:Q\times Z \to Q\times Z\times \{-1,0,1\}$$

 $S(Q,a) = (Q(a',-1))$

>> Zmpwt
$$X \in \{0,1\}^{\frac{1}{4}}$$
 $X = X_1 X_2 \cdots X_n$ $X_i \in \{0,1\}$
 $X_1 | X_2 | \cdots X_n$ $X_i = \{0,1\}^{\frac{1}{4}}$ $X = X_1 X_2 \cdots X_n$ $X_i \in \{0,1\}^{\frac{1}{4}}$ $X = X_1 X_1 \cdots X_n$ $X = X_1 X_1 \cdots X_$

Algorithms and Complexity, Spring 2018

The machine 3 initiatized as
$$(x, gstart, 1)$$

where x is the input string.

In most cases, (α, g, i) is updated to $(\alpha', g', i + d)$

if $S(g, a) = (g', a', d)$

and $\alpha[i] = a$
 (α', g, i) the same as α' except that $\alpha[i] = a'$

Algorithms and Complexity, Spring 2018

At the leftmost position, if it tries to more left, it halts,
$$S(9,9) = (8/9,-1)$$
 and $\Delta EIJ = a$, then, $(\alpha, 3, 1)$ buts the computation.

Algorithms and Complexity, Spring 2018

If
$$d(g,a) = (g',a',1)$$
 then,
 $(\alpha, g, |\alpha|)$ is updated to $(\alpha', g', |\alpha|+1)$
if $\alpha[|\alpha|] = \alpha$
, when $\alpha' = \alpha[1] - \cdots = \alpha[|\alpha|-1] \alpha' - \alpha'$