3 октября 2017 10 октября 2017

Лабораторная работа № 1.1.4

Измерение интенсивности радиационного фона

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

В работе используется: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

1 Теоретическая справка.

Счетчик Гейгера-Мюллера представляет собой тонкостенный металлический цилиндр со стержнем внутри, заполненный газом. Стенки цилиндра и стержень выступают в качестве электродов. Попадая в сосуд, космические частицы ионизируют газ, а также выбивают электроны из стенок сосуда. Образовавшиеся электроны ускоряются электрическим полем и выбивают новые электроны. Возникает лавина электронов, и через счетчик резко увеличивается ток.

Рис. 1: Схема счетчика Гейгера— Мюллера

Космические лучи разделяют на первичные, которые приходят на орбиту Земли из космоса, и вторичные, которые возникают благодаря взаимодействию первичных с атмосферой Земли и составляют основную часть космических лучей, доходящих до поверхности Земли.

Рис. 2: Схема счетчика Гейгера-Мюллера

Eиномиальное распределение — распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Функция вероятности задается формулой:

$$P(Y = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, \dots n$$

Рис. 3: Биномиальное распределение

При больших n и близких к нулю p биномиальное распределение апроксимируется распределением Пуассона с параметром $\lambda = np$

$$P(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

В свою очередь, при устремлении параметра λ к бесконечности распределение принимает вид нормального распределения или распределения Гаусса:

Рис. 4: Распределение Пуассона и распределение Гаусса

2 Ход работы.

N⁰	1	2	3	4	5	6	7	8	9	10
0	25	19	27	34	18	28	31	27	13	28
10	20	21	19	23	12	34	16	21	25	24
20	16	19	17	24	26	14	26	19	19	25
30	29	31	28	25	20	31	23	26	24	22
40	24	27	15	21	19	25	22	22	24	26
50	22	24	15	24	26	25	31	26	14	23
60	24	29	28	29	24	26	18	29	25	29
70	28	25	24	26	26	25	21	23	27	23
80	20	30	18	25	18	22	19	20	17	16
90	27	26	18	24	23	26	13	22	28	26
110	22	18	25	26	35	24	28	27	20	21
120	21	19	23	21	27	28	24	25	27	22
130	23	23	26	26	38	21	29	23	31	25
140	30	31	35	27	26	23	30	15	23	22
150	26	15	25	30	21	22	25	29	24	27
160	25	30	21	30	27	32	24	25	27	26
170	28	30	40	28	36	30	29	35	32	31
180	22	23	24	29	24	29	24	20	21	35
190	15	23	28	25	27	25	26	21	32	19

Таблица 1: Число срабатываний за 20 с

Число импульсов n_1	3	5	6	7	8	9	10	11	12	13
Число случаев	1	2	11	14	31	34	52	51	49	44
Доля случаев ω_n	0,003	0,005	0,027	0,035	0,078	0,085	0,13	0,1275	0,123	0,11
Число импульсов n_1	14	15	16	17	18	19	20	21	22	24
Число случаев	33	26	18	6	12	5	2	6	2	1
Доля случаев ω_n	0,083	0.065	0,045	0,015	0,03	0,013	0,005	0,015	0.005	0,003

Таблица 2: Распределения числа срабатываний счетчика за 10 с

Долю случаев рассчитаем по формуле: $\omega_n = \frac{\text{число случаев с отсчетом } n}{\text{полное число измерений } (N)}$

Определим среднее число срабатываний счетчика за 10 с:

$$\bar{n}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{4792}{400} = 11,98.$$

Найдем среднеквадратичную ошибку отдельного измерения:

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n}_i)^2} = \sqrt{\frac{2362}{400}} = 2,43.$$

Определим долю случаев, когда отклонения от среднего значения не превышают $\sigma_1, 2\sigma_1$, и сравним с теоретическими оценками (таблица 5).

Nº	1	2	3	4	5	6	7	8	9	10
0	44	61	46	58	41	41	42	46	37	49
10	35	41	40	45	44	60	53	51	49	46
20	51	36	44	44	50	46	39	51	57	37
30	53	57	50	47	54	53	50	51	44	50
40	50	43	40	39	33	53	42	49	35	54
50	42	57	52	47	49	40	51	59	55	$\mid 41 \mid$
60	40	44	55	49	49	46	52	59	52	56
70	61	62	49	45	45	41	55	43	54	51
80	55	51	59	49	53	58	68	56	64	53
90	45	53	53	44	56	38	53	52	47	51

Таблица 3: Число срабатываний за 40с

Число импульсов n_1	32	36	37	38	39	40	41	42	43
Число случаев	1	2	2	1	5	3	3	2	4
Доля случаев ω_n	0,01	0,02	0,02	0,01	0,05	0,03	0,03	0,02	0,04
Число импульсов n_1	44	45	46	47	48	49	50	51	52
Число случаев	7	6	7	11	7	3	7	3	6
Доля случаев ω_n	0,07	0,06	0,07	0,11	0,07	0,03	0,07	0,03	0,06
Число импульсов n_1	53	54	55	56	57	58	60	61	63
Число случаев	2	4	3	3	1	1	4	1	1
Доля случаев ω_n	0,02	0,04	0,03	0,03	0,01	0,01	0,04	0,01	0,01

Таблица 4: Распределения числа срабатываний счетчика за 40 с

Определим среднее число срабатываний счетчика за 10 с:

$$\bar{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{4792}{100} = 47,92.$$

Найдем среднеквадратичную ошибку отдельного измерения:

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n}_i)^2} = \sqrt{\frac{4984}{100}} = 7,06.$$

Ошибка	Число случаев	Доля случаев, %	Теоритическая оценка
$\pm \sigma_1 = \pm 2,43$	259	65	68
$\pm 2\sigma_1 = \pm 4,86$	358	90	95

Таблица 5: Сравнение с теоретическими оценками

Построим гистограммы для $\tau=10$ с и $\tau=40$ с (рис. 5 и рис. 6).

Рис. 5: Гистограмма для $\tau=10~\mathrm{c}$

Рис. 6: Гистограмма для $\tau=40~\mathrm{c}$

3 Расчет погрешностей

Определим стандартную ошибку величины \bar{n}_1 и относительную ошибку нахождения \bar{n}_1 для N=400 измерений по 10 с:

$$\sigma_{\bar{n}_1} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{2,43}{\sqrt{400}} \approx 0,12.$$

Найдем относительную ошибку:

$$\varepsilon_{\bar{n}_1} = \frac{\sigma_{\bar{n}_1}}{\bar{n}_1} \cdot 100\% = \frac{0.12}{11.98} \approx 1\%.$$

Определим стандартную ошибку величины \bar{n}_1 и относительную ошибку нахождения \bar{n}_1 для N=400 измерений по 10 с:

$$\sigma_{\bar{n}_2} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{7,06}{\sqrt{100}} \approx 0,7.$$

Найдем относительную ошибку:

$$\varepsilon_{\bar{n}_2} = \frac{\sigma_{\bar{n}_2}}{\bar{n}_2} \cdot 100\% = \frac{0.7}{47.92} \approx 1.5\%.$$

Окончательный результат:

$$n_{t=10c} = \bar{n}_1 + \sigma_{\bar{n}_1} = 11,98 \pm 0,12.$$

 $n_{t=40c} = \bar{n}_2 + \sigma_{\bar{n}_2} = 47,9 \pm 0,7.$