CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

Limitations of OTP

- Key is as long as message
 - Cannot decide message size in advance
 - Why not share the message directly while sharing the key
- Use each key only once

$$c \oplus c' = (m \oplus k) \oplus (m' \oplus k) = m \oplus (k \oplus k) \oplus m'$$
$$= m \oplus \{0\}^{\lambda} \oplus m' = m \oplus m'$$

$$k = m \oplus c$$

OTP is Optimal

- OTP is optimal for perfect secrecy
 - Key size is the <u>smallest</u> we can get
- If perfectly secret, then key space size $|\mathcal{K}|$ must be greater than or equal to message space size $|\mathcal{M}|$
- Prove $|\mathcal{K}| < |\mathcal{M}|$ cannot be perfectly secret
 - Uniformly distribution over message space ${\mathcal M}$
 - A ciphertext c occurs with non-zero probability

- OTP is optimal but still not practical
- Relax the security (but slightly weaker still sufficient)
 - Computational security instead of perfect security
 - Can win with 1/2+p, but p is extremely small
 - It will take a very, very, very long time.
- Not perfect but good enough for real applications
 - E.g., win with 1/2 + 1/100000000 using 200 years

- Assumptions on an <u>adversary</u>:
 - Knows distribution over message space ${\mathcal M}$
 - Knows Enc and Dec algorithm, can eavesdrop
 - Does not know key k
 - Has <u>limited</u> computational power
 - Run efficient (polynomial-time) algorithms
 - Can win <u>negligibly better than 1/2</u>
 - Negligible probability: extremely small

- Big O notation:
 - The performance/complexity of an algorithm
 - O(n): n steps in worst case scenario
 - Keep dominating factor:
 - $n^3 + n^2 + n$ steps —> $O(n^3)$
 - n + log(n) steps —> O(n)
 - Remove constants:
 - 3n + 200 steps —> O(n)
 - 1000000*n steps —> O(n)
 - 100 steps —> O(1)

- Practice: what are the complexity of following algo?
 - Algo 1: 4n³ + 20n² steps
 - Algo 2: 3000000*n + 2ⁿ steps
 - Algo 3: 20*log(n) + 3*n steps
- Answer:
 - Algo 1: O(n³)
 - Algo 2: O(2ⁿ)
 - Algo 3: O(n)

- Polynomial-time (efficient) algorithm
 - Complexity: O(n^k), k>1,
 - Algorithm takes n^k steps in worst case
 - E.g., O(n²), O(n⁵), O(n²⁰) are polynomial-time
 - E.g., O(2ⁿ) is not polynomial-time
- Probabilistic polynomial-time algorithm
 - Complexity is polynomial-time
 - Outputs are probabilistic

 A negligible function is one that is <u>asymptotically</u> <u>smaller</u> than any inverse polynomial-time function.

Def. A function f is negligible if for every positive polynomial p there is an N such that for all integers n > N it holds that $f(n) < \frac{1}{p(n)}$.

- E.g., 2^{-n} , $2^{-\sqrt{n}}$, $n^{-\log n}$
- Approach zero given a large n

$$2^{-n}, 2^{-\sqrt{n}}, n^{-\log n}$$

- Negligible functions approach zero at different rates
 - The min value of n, s.t. function is smaller than n⁻⁵
 - $2^{-n} < n^{-5}$, get $n > 5 \log n$, min is 23
 - $2^{-\sqrt{n}} < n^{-5}$, get $n > 25 \log^2 n$, min is 3500
 - $n^{-\log n} < n^{-5}$, get $\log n > 5$, min is 33
 - Asymptotically, they are the same

Properties of negligible functions

Let negl₁ and negl₂ be negligible functions. Then

- If $negl_3(n) = negl_1(n) + negl_2(n)$, $negl_3(n)$ is negligible.
- For any positive polynomial p, if $negl_4(n) = p(n) \cdot negl_1(n)$, $negl_4(n)$ is negligible.

- Practice: Assume p₁(n), p₂(n) are negligible
 - Are the following algo. negligible?
 - Algo 1: $q(n) = p_1(n) p_2(n) > 0$
 - Algo 2: $q(n) = 3000*p_1(n)$
 - Algo 3: $q(n) = 2^{n*}p_1(n)$
 - Algo 1: negligible
 - Algo 2: negligible
 - Algo 3: not negligible (2ⁿ is not polynomial time)

- Security: for a <u>sufficiently large n</u>
 - Example: if adversary runs n³ minutes can break a system with probability of 2⁴⁰2⁻ⁿ
 - n=40, 40³ minutes (6 weeks), break with 1
 - n=50, 50³ minutes (3 months), break with 1/1000
 - Practice: what if n=500?
 - 500³ minutes (200 years), break with 2⁻⁴⁶⁰
- Increase n (key length) to defend against the increase on computational power

- A faster computer makes adversary's job harder
- Example: An encryption scheme
 - Alice/Bob: encryption time 10⁶n² cycles
 - Attacker: break with 108n4 cycles with 2-n
 - All use 2GHz computers, n=80(1GHz=109cycles/s)

2GHz, n=80	Cycles	Time	Probability
Alice/Bob	802106	3.2 seconds	NA
Attacker	804108	3 weeks	2-80

- A faster computer makes adversary's job harder
- Example: An encryption scheme
 - Alice/Bob: encryption time 10⁶n² cycles
 - Attacker: break with 108n4 cycles with 2-n
 - All update to 8GHz computers, n=160

8GHz, n=160	Cycles	Time	Probability
Alice/Bob	160 ² 10 ⁶	3.2 seconds	NA
Attacker	1604108	13 weeks	2-160

- A faster computer makes adversary's job harder
- Practice: An encryption scheme
 - Alice/Bob: encryption time 10⁶n² cycles
 - Attacker: break with 108n4 cycles with 2-n
 - 16GHz computers, n=240 (1GHz=109 cycles/s)

16GHz, n=240	Cycles	Time	Probability
Alice/Bob	?????	?????	NA
Attacker	?????	?????	?????

- A faster computer makes adversary's job harder
- Practice: An encryption scheme
 - Alice/Bob: encryption time 10⁶n² cycles
 - Attacker: break with 10⁸n⁴ cycles with 2⁻ⁿ
 - All update to 16GHz computers, n=240

16GHz, n=240	Cycles	Time	Probability
Alice/Bob	240 ² 10 ⁶	3.6 seconds	NA
Attacker	2404108	34 weeks	2-240

Computational Security Game

Ciphertexts of m₀, m₁ are negligibly distinguishable.

Given $\Pi = (\mathsf{KeyGen}, \mathsf{Enc}, \mathsf{Dec}), \mathbf{security} \ \mathbf{game} \ \mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$:

- 1. Adversary \mathcal{A} outputs $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$
- 2. Challenger flips a coin $b \in \{0, 1\}$, compute $c_b \leftarrow \mathsf{Enc}_k(m_b)$, where $k \leftarrow \mathsf{KeyGen}(1^n)$, an return c_b to \mathcal{A}
- 3. \mathcal{A} guesses a bit b'
- 4. Output 1 if b' = b, otherwise 0; \mathcal{A} wins if it is 1

Computational Security Game

Random guess is 1/2, and can do <u>negligibly</u> better

Def. $\Pi = (\text{KeyGen}, \text{Enc}, \text{Dec})$ is **indistinguishable** if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function **negl** such that, for all n

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

Adversary's advantage is <u>negligible</u>

$$\mathrm{Adv}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = \left| \Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] - \frac{1}{2} \right| \leq \mathsf{negl}(n)$$

Computational v.s. Perfect

	Computational security	Perfect security
A's computation power	Polynomial-time	Unlimited
Prob. of Win	1/2 + negligible	1/2
Practical?	Yes (K << M)	No (K = M)

Pseudorandom

- Pseudorandom
 - Is not random (i.e., not uniformly distributed)
 - Negligibly distinguish from random
 - More practical than random in crypto design
- Building Blocks for Symmetric-Key Encryption
 - Pseudorandom Generator (PRG)
 - Pseudorandom Function (PRF)

- Pseudorandom Generator (PRG)
 - Efficient (polynomial-time), deterministic function
 - Use a <u>short</u> random string to generate a <u>long</u> pseudorandom string
 - Polynomial-time adversary can only negligibly distinguish PRG's output from random

Def. Let $G(s) \to \{0,1\}^{l(n)}$ be a deterministic polynomial-time function, where $s \in \{0,1\}^n$. We say G is a PRG if

- Expansion: For every n, l(n) > n.
- **Pseudorandomness:** For any PPT algorithm D, there is a negligible function such that

$$|\Pr[D(G(s)) = 1] - \Pr[D(r) = 1]| \le \operatorname{negl}(n)$$

where s is uniformly selected from $\{0,1\}^n$ and r is uniformly selected from $\{0,1\}^{l(n)}$.

- Why a PRG's output is not random (uniformly distributed)?
 - E.g. input size n and output size l(n) = 2n
 - Uniform distribution on {0,1}²ⁿ, 2²ⁿ strings with a probability 2⁻²ⁿ each
 - Input {0,1}ⁿ and deterministic function, 2ⁿ possible outputs at most; In other words, at least 2²ⁿ 2ⁿ = 2ⁿ(2ⁿ -1) strings in {0, 1}²ⁿ will not occur.

- Practice: input: n=20 and output I(n)=32
 - 1. How many strings in $\{0, 1\}^{32}$?
 - 2. How many strings output by G(s), s in $\{0,1\}^{20}$?
 - 3. At least how many strings in $\{0, 1\}^{32}$ will not occur in the outputs of G(s)?
- (1) $2^{32} = 4.294.967.296$; (2) $2^{20} = 1.048.576$;
- (3) $2^{32} 2^{20} = 4,293,918,720$ or $(2^{32}-2^{20})/2^{32} = 0.99976$

Additional Reading

Chapter 3, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition