Fundamental Algorithms Lecture #10

Cluj-Napoca January 8, 2020

Agenda

- Maximum Flow
- Connected components
- Conclusions on graphs
- **B trees** (definition & utilization; Operations next time)

OF CLUJ-NAPOCA

Computer Science

Maximum Flow – the method

- The simplest problem concerning flow networks
- Many real world applications
- The problem: Given G=(V, E), directed, weighted, s=source vertex; t=target vertex, find the greatest rate at which some material can be transported from s to t without violating the capacity constraints

Maximum Flow - formalism

- \forall (u, v) \in E, c(u, v) >= 0 (capacity from u to v)
- Define the **flow** f: V x V -> R with properties: P1 (cap constr.): \forall u, $v \in V$, f(u, v) <= c(u, v)P2 (antisymmetry): \forall u, $v \in V$, f(u, v) =- f(v, u)P3 (conservation): \forall $u \in V - \{s, t\}$, $\Sigma_{v \in V}$ f(u, v) = 0
- Def: **Network flow** $|f| = \Sigma_{v \in V} f(s, v)$ (Total flow leaving the source)
- Def: Max flow problem in a flow network G, find the max flow value from s to t.

Maximum Flow - remarks

• f(u, u) = 0

P2: f(u, v) = -f(v, u)

Apply to u, u = f(u, u) = f(u, u) = 0

If f(u, v) <>0 then (u, v) ∈ E or (v, u) ∈ E

Consequence of the previous obs.

Assume
$$(u, v) \neg \in E => c(u, v) = 0$$

 $(v, u) \neg \in E => c(v, u) = 0$
P1 => $f(u, v) <= c(u, v)$
 $f(v, u) <= c(v, u)$

$$=> f(u, v) <= 0$$
 and $f(v, u) <= 0 => f(u, v) = f(v, u) = 0!$

Maximum Flow – the method – contd.

- A method/strategy, not an alg.
- Different implementations => different running times
- Iterative approach
- Starts with no flow (value 0) on each edge
- At each iterative step increases the flow value on an augmented path (with the max allowed val)
- Repeats the above step until no augmented path exists
- The min-cut theorem proves the process computes the max flow.

Maximum Flow — additional constructs

Residual network

= defines the remaining capacity after some flow passes a given edge $(u, v) \in E$, with c(u, v), and f(u, v)

$$c_f(u, v) = c(u, v) - f(u, v)$$

flow from v to u (even in the absence of v, u capacity)

$$c_f(v, u) = c(v, u) - f(v, u) = 0$$

= 0 - f(v, u) = = f(u, v) (P2) (ex. Blackboard)

Maximum Flow — additional constructs

Augmented path

A *simple path* from s to t on which some *residual* capacity exists

By adding the residual capacity to the flow network in G, the flow will be closer to max

Repeat until no augmented path exists completes the method

Maximum Flow — additional constructs

Cut in a flow network

```
is a partition of the V set;
  def:
      (S, T), S \cup T = V, S \cap T = \emptyset, s \in S, t \in T
            f(S, T) = network flow across the cut
  Not:
            c(S, T) = capacity of the cut (ex: blackboard)
f(S, T) = f(1, 3) + f(2, 3) + f(2, 4) = 12 +
  (-4) + 11 = 19
c(S, T) = c(1, 3) + c(2, 4) = 12 + 14 = 26
Obs: flow negative components (based on
  P2), yet capacity only positive
  components
```


Properties of the flow network

Lema: Let f the flow in a flow network G, and (S, T) a cut in G, then f(S, T) = |f|

i.e. cut flow = net flow (without proof; check textbook)

Corollary: the *value of any flow f* in G is upper bounded by the *capacity of any cut* in G

Max flow min cut Theorem

If f is a flow in a flow network G, and s = source, t = target, the following conditions are equivalent:

- 1. F is the *max flow* in G
- 2. The residual network Gf contains *no* augmented path
- 3. |f| = c(S, T) for some cut (S, T)

Proof:

1=> 2 contradiction

2=> 3 contradiction + Lema

3 = > 1 Lema

Ford - Fulkerson alg.

```
Ford - Fulkerson (G, s, t)
for each edge (u, v) \in E
 do f[u, v] < 0
     f[v, u] < -0
While I a path from s to t in the residual network Gf
  do c_f(p) = min \{c_f(u,v) \mid (u,v) \in p\}
     for each edge (u, v) \in p
          do f[u, v] < -f[u, v] + c_f(p)
                f[v, u] \leftarrow f[u, v]
```


Ford - Fulkerson alg. analysis

- The running time depends on how the augmented path is found
- If a bad technique is used, the method does not converge
- bfs ensures polynomial running time
 =>Edmond-Karp method, O(V, E²)
- If all capacities are integers, for a random selection of the path, O(E |f*|), where |f*|= max flow

 $c \in Q$, transformation could be applied to meet the above mentioned conditions

Connected Components

- G=(V,E) a directed graph
- G is strongly connected
 - if $\forall u, v \in V$ (u and v are reachable from one another)
 - ∃ path(u,v) and
 - ∃ path(v,u).
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that C is strongly connected (for all u, $v \in C$, both path(u, v) and path(v, u) exist).

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^T
- 3. call DFS(G^T), considering vertices main loop in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Computer Science

- Evaluation: O(V+E)
 - O(V+E)
 - O(E)
 - O(V+E)
 - O(V)

Approach

- second DFS in decreasing order of finishing times from first DFS, vertices are visited in topologically sorted order (see seminar #7 for topo sort)
- running DFS on G^T , no ν from a u, where ν and u are in different components is visited
- G and G^T have the same SCC

Notation:

- d/f refer to discovery /finishing times of the dfs on G
- Let C_⊆V a SCC of G
- d(C) = min {d[u]| ∀ u∈C} //first discovered vertex in C
- $f(C) = \max \{f[u] | \forall u \in C\} //last finished vertex in C$

OF CLUJ-NAPOCA

Computer Science

Lema (22.14)

Let C and C' be distinct SCC's in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Justification:

- if d(C)<d(C')
 - Let $x \in C$ s.t. d[x]=d(C) (x first discovered in C)
 - At moment d[x], \forall $u' \in C$, \forall $v' \in C'$, u' and v' are white (d[x] min among all) => \exists white path(x,u') (as x and u are in the same C, and d[u'] > d[x] and d[x] = d(C) and white path(x,v') (as d(C) < d(C') and $(u,v) \in E$)
 - Existence of white path => ∀ u'∈ C, ∀ v' ∈ C' are descendants of x in depth first tree
 - Descendants + parentheses theorem => f[x]=f(C) hence max among all, therefore, f(C) > f(C')

Lema (22.14)

Let C and C' be distinct SCC's in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Justification:

- if d(C)>d(C')
 - Let y ∈ C' s.t. d[y]=d(C') (y first discovered in C')
 - At moment d[y], ∀ v' ∈ C', v' are white (d[y] min among all) => ∃
 white path(y,v') (as y and v' are in the same C)
 - =>f[y]=f(C')
 - At moment d[y], \forall u' \in C, u' are white, and NO vertex in C is reachable from y
 - =>at moment f[y] all u' ∈ C are still white
 - => \forall u' \in C f[u']>f(y) => f(C)> f(C')

• Corollary (22.15):

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

Justification:

- $(u, v) \in E^T => (v, u) \in E$
- G and G^T have the same SCC + Lema =>f(C)>f(C')

Computer Science

- Correctness just a template
 - second DFS (on G^T), starts with SCC C such that f(C) is maximum according to step 3 of the strategy (let x be in C so that d[x]=d(C))
 - It visits all vertices in C
 - By Corollary, f(C)>f(C')
 - => there is **no** edge $(u,v) \in E^T$, with $u \in C$, $v \in C'$
 - Thus, dfs visits *only* vertices in C
 - depth-first tree rooted at x contains only C vertices
 - second DFS (on G^T), continues with SCC C 'such that f(C') is maximum
 - dfs visits only vertices in C' but the only edges out of C' go to C, which were already visited.
 - Process continues the same

Graphs – instead of conclusions

- most complex DS
- Algorithm complexity in terms of both size of V and E
- Various strategies, rather than algorithms
- Strategies to derive trees (with static representation) out of graphs
- On some graph a linear ordering can be imposed, an thus graph-> tree-> list!!!

Computer Science

B-trees

- Previous DS reside in the primary memory
- Trees on secondary storage devices (disk)
- A node may have many children
- Goal: decrease the number of pages accessed when search for a node
- Store a very large number of keys
- Maintain the height of the tree under control (h very small)

B-trees - contd.

Typical pattern while working with B-trees:

```
x<-pointer to some object
Disk-Read(x)
Operations that access/modify some fields of x
Disk-Write(x)</pre>
```

- Once in memory, operations are performed fast
- Objective: as few pages read/write operations

Computer Science

B-trees – contd.

- P1: n[x] keys in node x
- P2: keys are ordered

$$key_1[x] \le key_2[x] \le ... \le key_{n[x]}[x]$$

- P3: An internal node contains n[x]+1 pointers to the children c_i[x]
- P4: is a search tree:

$$key[c_1[x]] \le key_1[x] \le keyc[_2[x]] \le$$

- P5: All leaves are at the same level = height of the tree = h
- P6: t = degree of the tree; min(t)=2. Every node (except for the root) has at least t-1 keys, and t children
- P7: Every node (except for the root) has at most 2t-1 keys, and 2t children

B-trees - contd.

- One pass procedures (top-down ONLY, NO back up; as opposed to PBT, AVL, RB trees)
- For ALL operations, the process is JUST top->down!!!
- Search
 - Straightforward generalization of BST search
 - Combined with ordered list search
 - #pages accessed (worst) O(h)
 - Access time in a page (worst) O(t)
 - Overall O(th)

B-trees – contd.

- One pass procedures (top-down ONLY, NO back up rebalance; as opposed to PBT, AVL, RB trees)
- Insert
 - Search for a LEAF position to insert
 - Insertion is performed in an EXISTING leaf
 - Along the path while searching (top-down), ensure there is space for a safe insert (split full nodes on the path down to avoid overflowing, so that the insertion is successful in an existing node!!!)
 - A key added to a full leaf will induce the migration of the median key to the parent node, and the split of the given leaf into 2 leaves
 - O(h) disk accesses, O(t) CPU time in one page =>
 O(th)

B-trees – contd.

- One pass procedures (top-down, NO back up; as opposed to AVL, RB trees)
- Delete
 - Search for the node to contain the key to be removed and identify its type (leaf/no leaf – all nodes are either internal, or leaves; the tree is complete) (z from BST)
 - Physical removal of one object which belongs to a leaf (y in BST)
 - Along the path while searching (top-down), ensure the constraints for a safe delete are met (merge nodes with degree t on the path down to avoid underflowing, so that the deletion is possible)
 - O(h) disk accesses O(t) CPU time in one page =>
 O(th)

B Trees - insert

- Like in any BST tree insert in a leaf (in a leaf, NOT as leaf)
- Stages:
 - Search the path for the position (leaf) to insert
 - Ensure the search path is safe
 - Insert the key in the corresponding leaf
- Types of nodes to store a key:
 - Leaf (key to be inserted)
 - Non-leaf (the "safe path" step = in the attempt to make room = in the split stage with median migration up)
- Possible issues
 - Attempt to store in a full node, with (2t-1) keys issue node overflows! Not allowed.
- Cases to analyze
 - Not overflowing node no issue

1/08/2020 Overflowing node — issue — needs a strategy to handle it

B Trees -insert

Strategy

- Along the searched path, ANY full node along the path (with already (2t-1) keys) is "fixed" (allowing for a potential full node to accept a new key to be added):
 - Divide the full node in 2 nodes with (t-1) keys
 - The median key in the full node is promoted to the parent node (there is room, as we proceed top-down, and an upper node was "fixed", is not overflowing)
 - if *root is full*, increase the height (by adding 1 more node = new root); the ONLY case of *height increase*.

Insert procedure

- Top-down approach (descendent)
- There is NO operation performed on return (bottom up)

B Trees – delete

Like in ANY other BST tree

- Search for the key to remove (pointed by Z)
- If in leaf, delete it
- If not in the leaf, remove (physically) a node (pointed by y; its content is moved in the node pointed by z) with one-single child (pointed by X) the predecessor/successor (in B-trees y is in a leaf, hence x points to nil)

Types of nodes containing the key to be

Leaf
 Non-leaf (i.e. internal)
 Non-leaf
 Non-leaf
 Non-leaf
 Non-leaf
 Capacity
 Leaf
 Does not underflow
 Non-leaf
 Underflows

Possible issues

Attempt to delete from a node with only (t-1) keys – issue – node underflows! Not allowed

Cases to analyze

B Trees – delete

Cases to analyze
 Issue: attempt to delete from a node with only (t-1) keys –
 node underflows! Not allowed

Node type	Capacity
Leaf	Does not underflow
Non-leaf	Underflows

- Solution
 - Similar strategy as in case of insert: prevent, rather than repair
 - In the search stage (for the key to delete), ensures that each node (along the searched path) has the ability to allow for delete (does not underflow)
 - Along the searched path, any node with only (t-1) keys is "fixed"
 - If any of the sibling nodes has at least t keys, "borrow" a key from it (promote the last/first key from the left/right brother node to the parent node, and move down the appropriate key from parent to the almost underflowing node). (see examples for case 3.1 next slide)
 - If both sibling neighbors have only (t-1) keys, merge the underflowing node with one of the 2 siblings, and put the key from the parent node in between them in the new generated (by merge) node. (see examples for case 3.2.1 next slide). Maybe a height shrink occurs (see examples for case 3.2.2 next slide).
- Delete procedure
 - Top-down approach (descendent)
 - There is no operation performed on return (bottom up)

B Trees –delete contd.

Node type	Capacity
Leaf	Does not underflow
Non-leaf	Underflows

- Cases only 3 to be considered (not 4): non-leaf/underflow is not considered (since along the path, the underflow situation is solved, anyway).
- Cases: (follow the examples blackboard)
 - Case1 key in leaf, node does not underflow
 - Simply delete the key
 - Case2 key not in leaf, node does not underflow
 - Remove pred/succ (from a leaf for a BT) like in BST. The case reduces to case 1 or 3.
 - Case3 key in leaf, node underflows
 - 3.1 sibling consistent (at least one sibling neighbor has at least t keys) sol: "borrow" from sibling
 - Promote the last/first key in consistent neighbor to parent
 - Move down the key in parent node in between the leaf and consistent sibling to the underflowing leaf
 - 3.2 neighbor siblings both with just (t-1) keys
 - Merge the underflowing leaf with one sibling neighbor by adding in the middle the key in the parent in between the leaf and sibling
 - 3.2.1 keep the height of the tree
 - 3.2.2 decrease the height of the tree (if the parent is the root and has just one single key)