第九章 气候变化

9.1 气候变化的概念

9.1.1 基本概念

气候状态

气候态

9.1.1.1 气候状态等基本概念

1.5
Berkeley Earth (1850-2024.12)
ERAS (1940-2024.12)
Berkeley Earth (1850-2024.12)
ERAS (1940-2024.12)
Berkeley Earth (1850-2024.12)
Construction of the proof of the proof

1850-2024 年**全球年平均地面气温距平** (相对于 1850-1900 年气候态) 时间序列 特定时段: 年 要素及统计量: 地面气温年平均的全球平均

在太阳辐射强迫和气候系统各子系统相互作用下,地球上某一区域的天气或气候要素在<mark>特定时段内的</mark>

统计特征,可以取平均、总量、方差等例如1998年长江中下游梅雨期降水总量称为一个气候状态 气候态或气候标准态可简称为同类气候状态(要素及其统计量、每年特定时段都一样)30年的平均。

例如30年长江中下游梅雨期降水总量气候状态的平均就是一个气候态。科研常用气候态的空间分布。

气候距平 气候状态相对于其气候态的偏差,**称为气候距平**。具体使用中,气候距平、气候异常不加以区分。

气候异常 当气候距平这种偏差超过一定程度(如一倍标准差)称为气候异常(Climate anomaly)。

时间序列 由气候状态或气候距平**按年份先后顺序组成**的序列即为气候变化时间序列。有连续型和离散型。

9.1.1.2 气候变化

气候变化 气候变化时间序列<mark>的演变</mark>(变化形式)或气候状态**的变化统称为气候变化(Climate variation)**。 时间序列不是一条单调的直线,其受到多个因素的年代季调控,其形式复杂多样。

概念辨析 ① 联合国政府间气候变化专门委员会 IPCC 定义的气候变化: 气候变化是指可识别的(如统计检验显著)持续较长一段时间(典型的为几十年或更长)的气候状态的变化,包括气候平均值和变率的变化。 必须要进行统计显著检验,即必须与原来的状态具有显著差别,避免随机变化、总体特征的情况。

> ② 联合国气候变化框架公约 UNFCCC 定义的气候变化: 在可比时期内所观测到的**在自然变率之外的** 直接或间接<mark>归因与人类活动</mark>改变全球大气成分所导致的气候变化。(狭义的气候变化)

> ③ 本课程给出的气候变化概念: 是广义的气候变化, 包含较长时段气候状态的变化、由气候距平或气候状态组成的时间序列的演变, 涵盖 IPCC、UNFCCC 给出的气候变化信息, 对书上的概念有所扩展。

<mark>气候变率 大量同类气候状态间的**方差**,也经常用来专指年际及年代际(与自然因素有关)的气候变化 。</mark>

公式: $S = \frac{1}{N} \sum_{i=1}^{N} (T_i - \bar{T})^2$ $\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$ N是序列长度, n 是气候态的长度, S 为序列方差,

 T_i 为气候要素 T 的气候状态 , \overline{T} 为气候态, T_i 一 \overline{T} 即为气候距平或气候异常 变率不局限于年的变率,可以扩展到季节、月尺度等,由研究对象决定。

气候趋势 气候变化倾向,即在记录时期(特定时期)具有<mark>单调地上升或下降特点</mark>的气候变化(线性和非线性趋势) 该直线的斜率称为倾向率,越倾斜说明变化越明显。也有非线性的拟合方式(样条、二次等)

<mark>气候波动</mark> 气候状态围绕气候态(或气候距平)的<mark>波动式变化</mark>,表现为准周期性振荡特征,有年际、年代际等时 间尺度。 常常通过功率谱分析得到波动周期信息及其强度。

年代际变化序列 (PDO)

多年代际变化序列(AMO)

1 / 12

气候突变 从一种气候状态(如稳定持续的变化趋势或气候波动)<mark>跳跃式地转变</mark>到另一种气候状态的现象。

气候突变分为均值突变、趋势突变、变率突变(方差突变)、振荡周期突变(时间尺度突变)等。

注意: 突变可能与再分析资料的更新等有关(1979卫星资料更新等)

9.1.2 气候变化的表现形式

9.1.2.1 单个气候变化时间序列

表现形式 气候趋势、气候波动(年际、年代季等尺度波动)、气候突变、**随机变化**。 最终的时间序列与这些因素都有关系。

具体案例 趋势、波动或突变融合在时间序列中:研究时,可以将线性趋势和波动,以及不同时间尺度的振荡进行分离。例如关注波动研究时,需要将趋势去除。

9.1.2.2 气候波动的尺度

时间尺度 百万-几亿年 大冰期与大间冰期,振幅10℃,主要由天文、地质因素决定。

十万年 **亚冰期与亚间冰期**,振幅8 − 9°C 几万年 **副冰期与副间冰期**,振幅5 − 7°C

百千年 寒冷期 (小冰期) 与温暖期 (小间冰期),振幅2℃

数十年 世纪及世纪内的气候波动,振幅0.5℃

空间尺度 全球、半球、海洋、陆地、区域尺度。

9.1.3 气候变化的空间分布

线性趋势 空间上每个格点都有一个时间序列及其对应的变化趋势。 EOF 展开 时空数据中找出最明显的异常特征,和主成分分析类似。

中国大陆区域降水线性趋势型

夏季 SST 异常的 EOF 展开

9.2 气候变化史实

9.2.1 气候变化时期划分

9.2.1.1 地质历史温度变化情况

总体情况 当前温度处于较低的温度, 处于第四季大冰期。整个地质时期没有哪个时期像现在这样增温幅度剧烈。

LGM 末次冰期冰盛期(距今2万年)目前处于冰期回暖阶段。

YD 新仙女木事件(距今 1.2 万年)由于温盐环流减弱导致。Holocene optimum:全新世适宜期

PETM 古新世-始新世极热事件 (距今 5000 万年): 回暖过程中急剧增加的现象。

K-T 白垩纪-第三纪界线(恐龙灭绝)

9.2.1.2 具体时期的划分

划分依据 变化的时间尺度、主要特征、形成原因、资料来源、分析和研究方法

划分情况 地质时期气候变化 (利用冰芯等推测干湿冷暖情况)、历史时期气候变化、现代气候变化

9.2.2 地质时期气候变化

定义 时间尺度在**几万年以上的**气候变化。

地质年代 代→纪→世(世:时间尺度万年以上)我们目前处于全新世-第四纪-新生代的大冰期中。

历史冰期 存在三次大冰期和两次大间冰期。大冰期和大间冰期交替出现。变温幅度平均约为 10 度。

资料来源 地壳构造(化石、沉积岩层等)、生物演变

特点 大冰期与大间冰期旋回。

9.2.2.1 冰期-间冰期

旋回因子 ① 大气层组成: CO₂、CH₄等浓度

- ② **地球轨道的变化**: **米兰科维奇循环**(地轴变化)或**银河旋臂**(银河尘埃粒子等)
- ③ <mark>板块运动: 板块运动影响风(</mark>尤其是季风)、**山脉情况**(有山易成冰)、洋流、气流
- ④ 太阳输出能量的变动: 太阳活动周期性变动
- ⑤ 大陨石的撞击:造成大气层种的尘埃增加(恐龙灭绝)
- ⑥ 火山爆发:特别是超级火山的喷发

9.2.2.2 震旦纪大冰期

发生时间 在早古生代, 距今约6亿年前。

主要特点 这次冰期的影响范围几乎<mark>遍及世界五大洲</mark>,我国长江中下游地区都有**震旦纪冰碛层**(吕梁运动)

9.2.2.3 石碳-二迭纪大冰期

发生时间 距今 2.5~3 亿年(海西运动), 南极大陆向北推进。

气候特点 冰期气候影响的主要在南半球 (冈瓦纳大陆)

9.2.2.4 第四纪大冰期

发生时间 距今 240 万年前开始直到现在

主要特征 存在**亚冰期与亚间冰期的冷暖反复交替**(喜马拉雅运动)

亚冰期 大冰期中存在着很多亚冰期与亚间冰期的交替

9.2.2.5 寒武纪-石炭纪大间冰期

发生时间 距今约3~6亿年。

基本特征 雪线升高,冰川后退,气候显著变暖。<mark>石炭纪在地质史上**又称为成煤纪**。我国都处于热带气候。 氧气非常充足,植被十分茂盛,动物体型巨大(节肢动物等)。</mark>

9.2.2.6 三迭纪-第三纪大间冰期

发生时间 距今约 2.5 亿年-200 万年,包括三迭纪、侏罗纪、白垩纪和新生代的第三纪。

主要特征 三迭纪时气候炎热而干燥,其后侏罗纪的气候由干热转为湿热,有利于植物生长,造成<mark>继石炭纪之后的第二个成煤时期</mark>。出现恐龙等大型动物。

9.2.3 历史时期气候变化

定义 从第四纪大冰期中的**武木(大理)亚冰期**的最近一次副冰期之后的 1 万年至有器测资料的**冰后期气候**。 从地质年代来看,该时期也称为**全新世气候**。

资料来源 冰芯、树木年轮、珊瑚、花粉、孢粉(同位素判断)、湖泊沉积、历史文献等

特点 温暖期与寒冷期交替出现

9.2.3.1 近 2 万年以来的气候变化

近代情况 大暖期 (8.5-3.0kaBP) → **8.2kaBP** 冷事件→ 中世纪暖期 (AD 900-1300) → **小冰期** (AD 1320-1920) → **现代**增暖 (20 世纪)

发生事件 新仙女木事件: 12.2-10.5kaBP 全球冰川消退、气候回暖过程中发生的气候突变事件, 新仙女木事件结束后即进入温暖湿润的全新世。

全新世大暖期: 8.5-3.0kaBP 间冰期中最暖阶段,该阶段时限较宽,包含一些气候波动。总体上暖于现代,降水多于现代。

全新世千年尺度气候波动与气候事件:全新世存在千年尺度气候波动平均周期 1.45ka 。11kaBP 以来有 9 个寒冷期,最近一次为小冰期。

9.2.3.2 我国历史时期气候变迁(近数千年的气候史)

总体情况 中国近五千年内可以相对地**分出四个温暖期与四个寒冷期**(上图)

9.2.4 近代气候变化

9.2.4.1 全球增暖 (Global Warming)

具体情况 ① 波动阶段性上升 (不是直接线性增加)

- ② 不同区域增暖幅度不同: 高纬强于低纬, 陆地强于海洋等。
- ③ 不同季节增暖幅度不同: 冬季增暖大于夏季

定量表征 全球地表温度(海表温度或陆地表面温度 SST,GMST)或全球地表气温(GSAT)相对于一个基态(最早有足够全球及区域观测阶段-人类活动影响忽略不计阶段)的变化,如 2011-2020 阶段全球平均地表温度相对于 1850-1900 年平均增加1.09[0.95~1.20]℃

增暖震荡 从 1900 年开始: 冷期→增暖期(I)→冷期(2)→增暖期(II)→冷期(3)→**增暖期(III)** [当前阶段]

- **控制协议** 2015 年的巴黎气候大会《联合国气候变化框架公约》第 21 次缔约方会议:全球平均地表温度增加控制在1.5~2℃ 范围。(已经超过 1.5℃了)
- **现有预测** 根据研究 (观测、数值模式的模拟、评估及预估), 2030 年全球平均地表温度增加很可能超过 1.5 C, 2041-2060 年可能达到2℃。
- 增暖特点 ① 陆地增暖显著强于海洋,高纬强于低纬(反馈循环)。
 - ② 对流层低层增暖,平流层低层降温(对流层吸收更多辐射,提供给平流层的辐射减少)。
 - ③ 中国区域的增暖超过全球平均情况,冬季增暖幅度更大。

9.2.4.2 降水变化

- **总体趋势** ① 近百年来,全球陆地平均降水无显著趋势变化(受到能量、潜热等制约,不受到辐射直接影响)
 - ② 1951-2005 年间降水下降趋势是7 2mm/10a。
 - ③ 1979-2005 年 GPCP,下降趋势16-13mm/10a。
 - ④ 不同数据集趋势间有明显差异,同时降水也有较大时空变率。
 - ⑤ 高纬度地区降水增加、全球降水呈现震荡现象。
- 中国情况 ① 没有明显趋势,呈现波动震荡。
 - ② 西北逐渐变得暖湿,中部、东北地区降水减少。

中国 1956-2012 降水序列和线性趋势

9.3 极端天气气候

9.3.1 基本概念

9.3.1.1 极端天气的定义

极端定义 统计意义上**极少发生**的天气事件、气候状态,一般指发生概率低于 10%或不发生概率高于 90%(两倍标准差)的**天气事件、气候状态**。

9.3.1.2 描述极端天气的事件指标

常用指标	代码	名称	定义	类型	单位
	TXx	日最高温最高值	年内日最高气温的最大值	绝对指数	°C
	TNn	日最低温最低值	年内日最低气温的最小值	绝对指数	°C
	TN10p	冷夜日数	最低气温 小于 10%分位值 的天数百分比	阈值指数	%
	TX10p	冷昼日数	最高气温小于 10%分位值的天数百分比	阈值指数	%
	TN90p	暖夜日数	最低气温大于90%分位值的天数百分比	阈值指数	%
	TX90p	暖昼日数	最高气温大于90%分位值的天数百分比	阈值指数	%
	DTR	气温日较差	年平均日最高气温和最低气温之差	绝对指数	°C
	WSDI	热持续日数	连续6日最高温大于90%分位值日数	持续指数	天
	CSDI	冷持续日数	连续6日最低温低于10%分位值日数	持续指数	天
	R10mm	大雨日数	每年日降水量>=10mm 的总日数	绝对指数	天
	R95p	强降水量	日降水量>95%分位值的年累积降水量	阈值指数	mm
	CDD	持续干燥指数	日降水量<1mm 的最长连续日数	持续指数	天

9.3.2 极端天气的概率描述及变化

9.3.2.1 广义帕累托概率分布

案例 郑州暴雨是千年一遇(即每年发生的概率是1/1000,通过理论分布:广义极值分布)

 σ 尺度参数(描述极值分布的变率) u 位置参数-阈值 ξ 形状参数(描述极值的分布情况)

9.3.2.2 概率分布的参数变化

变化类型 ① 均值(位置参数)的变化 ② 方差(尺度参数)的变化 ③ 均值和方差的变化

9.3.2.3 重现期T的变化

重现水平的估算: $x_T(t) = u(t) + \frac{\sigma(t)}{\xi} [(T\rho)^{\xi} - 1]$ 重现水平

 ρ 是每年超过阈值的平均样本数

可以通过概率计算具体值,例如判断二十年一遇的天气的具体数值。

已知**重现水平**则其重现期的估计: $T(t) = \left\{ [x_T - u(t)] * \frac{\xi}{\sigma(t)} + 1 \right\}^{1/\xi} / \rho$ 输入数值,给出时间

固定重现期内至少出现一次大于重现水平的降水概率为: $P(t) = 1 - \left\{1 - \left[1 + \xi \frac{x_T - u(t)}{\sigma(t)}\right]^{-(1/\xi)}\right\}^{\rho T}$

9.3.2.4 极端事件指数的变化

案例分析

9.4 气候变化因素

根本原因 气候变化(狭义的气候变化)的根本原因是气候系统辐射平衡被打破, IPCC-AR6 报告提到: 人类活动在 2019年引起的**净辐射强迫**相对于 1750年是 2.72 [1.96 to 3.48] W m⁻²。2006-2018年相对于 1971-2006

年,观测到气候系统的加热率从 $0.50~\mathrm{W}~\mathrm{m}^{-2}$ 增加到 $0.79~\mathrm{W}~\mathrm{m}^{-2}$

反馈会导致温度增加的幅度更大、往往占据了温度增加的主要原因。 重要原因

9.4.1 气候变化因素分类

9.4.1.1 分类思路: 自然与人为

① 银河系变化、太阳演化、太阳活动 改变短波辐射 自然原因

② 地球轨道参数(轴倾、岁差、偏心率)

同样改变短波辐射

③ 大陆漂移、造山运动、火山活动

④ 海洋(大气)环流与海-冰-气-陆相互作用

人为原因 ① 温室气体、气溶胶排放

② 土地使用、热带雨林破坏

③ 城市化

9.4.1.2 分类思路:外部强迫因子与气候系统内部因素

外部强迫 自然因素:银河系变化、太阳演化、太阳活动;地球轨道参数(轴倾、岁差、偏心率);大陆漂移、造 这些因素改变了温度,但温度不会反作用于这些因子,在模式中以参数表示。 山运动、火山活动。 人为因素: 大气成分及下垫面性质改变等。

海洋(大气)环流和大气与海-冰-陆-生相互作用。 内部因素

其是气候系统的内部变量,例如其改变了温度,温度还会存在反馈交换等,反作用于这些因素。

9.4.2 [自] 太阳辐射的变化

9.4.2.1 总体概述

米兰科维奇理论(冰期天文理论):由于天体间引力的影响,地球轨道偏心率、地轴倾斜度和岁差等地 地球轨道 球轨道参数发生变化,使地球接收到的太阳辐射产生差异,从而引起数十万年间的气候变迁。

即地球轨道参数的周期变动是造成更新世亚冰期-亚间冰期循环的主要机制。

冰期-间冰期循环(万年尺度)的形成机制:米兰科维奇理论(Milankovitch,1941) 冰期循环

参数周期 ① 地轴倾角: 4.1 万年周期 ② 岁差: 2.2 万年周期 ③ 偏心率: 9.58 万年周期

轨道偏心率的影响

9.4.2.2 地球轨道偏心率的变化

描述地球绕太阳运动轨道的圆扁程度,<mark>值越大越扁,值越小越圆</mark>。 $e = \frac{\sqrt{a^2 - b^2}}{2}$ 偏心率

① $0.00048 \sim 0.068$,现在 e = 0.0167。 变化情况

② 每隔 10 万年、地球公转轨道的偏心率变化一个周期。

目前,北半球冬季位于近日点附近,地球获得的天文辐射量比夏季约大 7%,冬半年较短。 当前情况 北半球有暖而短的冬季,长而凉爽的夏季,适合冰期。 冬季降雪可以在夏季保留。

偏心率很小时,地球公转轨道接近圆形,冬夏长度相近,接收到的太阳辐射量也相接近,不利于冰期 影响 偏心率变大时,则地球公转轨道变为椭圆形,冬夏半径长短不等,偏心率越大,两者长度差异越大, 越利干冰期产生。

9.4.2.3 地轴倾斜度(黄赤交角)的变化

22.1°~24.24°, 现在为 23.45°, 变动周期 4.1 万年 变化情况

影响因子 地轴倾斜度(黄赤交角)的改变不会改变全球接收的太阳辐射总量,但它可使**各纬度**接收的太阳辐射量 发生变化。(变化的是太阳辐射的纬度分配)

- ① **倾斜角度变小**,高纬度地区季节温度差异变小,且高纬度分配热量少,有助于**冰期形成**。
- ②倾斜大,季节性变强,直射纬度偏向高纬,高纬地区夏季很暖,不利于冰川增长。

Milankovitch cycles II: tilt of Earth's axis, seasonality, and extent of glaciation ~41.000 year cycle 倾角大的情况 More tilt - more seasonality - warmer polar summers -glaciers less likely to survive and/or grow S S 高纬温度序列 倾角小的情况 Cool summers Less tilt - less seasonality - cooler polar summers wswsws glaciers survive and/or grow

尽管最低温增加了, 但冰期累计增加了

北半球夏季近日点 Milankovitch cycles III: precession of the seasons. seasonality, and extent of glaciation ~21,000 year cycle (actually a combina-tion of two cycles, axial and apsidal Cool summers w s w s w wswsw 利于南半球冰期 Warm summers Cool summers WSWSWSW WSWSWS 当前: 南半球夏季近日点 利于北半球冰期

9.4.2.4 岁差

岁差的概念 岁差指**一个天体**的**自转轴**指向因为重力作用导致在空间中**缓慢且连续的变化**。例如,地球自转轴的方 向逐渐漂移, 追踪它摇摆的顶部, 以大约 2.3 万年的周期扫掠出一个圆锥。

① 岁差同样不会改变全球接收的太阳辐射总量,但它可使各季节接收的太阳辐射量发生变化,变化 影响因子 的是季节分配。

> ② 岁差引起地球近日点和远日点所在的季节发生变化。1 万年前,北半球冬季处于远日点,冬季比现 在长而酷寒,夏季则更短更热(不利于冰川发展),年变化加大。南半球相反。

9.4.2.5 太阳活动

活动表征 太阳黑子:太阳黑子多,太阳活动强,太阳光斑增加,太阳辐射增加。

太阳活动的**周期性特征**: 11 年 (太阳活动周)、22 年 (海尔周期)、80-100 年 (世纪尺度)。 变化情况

① 11 年周期里,地球气候表现单的和双振动现象: 如地球上雷暴频数、大气环流特征、气温等存在 影响情况 双振动现象(5-6年周期)。

- ② 地球气候表现出与太阳活动 22 年周期一致的海尔周期现象, 如气压、气温、降水、阻塞高压频率、 大气活动中心位置等。
- ③ 太阳活动世纪周期与气候振动具有密切的联系,环流强度、台风频数等。

9.4.3 [自] 火山活动

活动影响 增加大气气溶胶。使地面气温下降:火山活动的阳伞效应。

活动情况 火山灰停留时间短(几个月),硫酸气溶胶可停留数年,可长时间对地面产生<mark>净冷却效应</mark>。 火山活动呈现周期性变化。

活动指数 即尘幕指数: $DVI = 0.97 \times R \times E \times t$ 其中R表示直射量的减少,E描述覆盖面积,t表示持续时间。 其只考虑了火山灰、忽略了平流层更重要的气悬胶体。

9.4.4 [自] 下垫面变化

(1) 板块漂移改变海陆分布(盘古大陆与超级季风) 大陆漂移

- ② 影响海流和洋流,造成地球能量收支改变。大陆阻挡能够改变冷暖洋流的方向。
- ③ 造山运动,板块分裂挤压,形成冰川,岩石风化侵蚀消耗 CO₂

典型的案例是印度板块俯冲进入亚欧板块, 形成青藏高原, 利于冰期产生。 地形变化

9.4.5 [自] 环流变化

属于内强迫参数,典型案例是温盐环流导致的千年尺度气候变化 (新仙女木事件)。 海洋环流

年际和年代际尺度,大气环流是气候变化或气候异常最直接的影响因素。 大气环流

大气遥相关 通过海气耦合产生:太平洋北美型(PNA)、北太平洋涛动(NPO)、北大西洋涛动(NAO)、南半球环状模 (SAM, AAO)和北半球环状模(NAM,AO)

9.4.6 [自] 各圈层相互作用

9.4.6.1 大气与海洋-冰雪-陆面-植被相互作用

典型案例 ENSO、太平洋年代际振荡 PDO(北太平洋)IPO(整个太平洋)、热带副热带太平洋、大西洋经向模

9.4.7 [人] 温室气体、气溶胶的排放

9.4.7.1 温室气体增加的气候效应

研究课题 CO₂浓度与全球平均地表气温异常演变的关系以及人类活动对CO₂浓度的影响

当前情况 目前的 CO₂ 浓度是 42 万年来的最大值,且 83 万年来仍是最大值。

数值实验 有无人类活动强迫的数值试验对比:增加人为因素后,明显气温有所上升,

和观测一致。

归因研究 主要由**人为外强迫**导致: 二氧化碳主导了温度变化。

一部分来自于**有效辐射强迫**的变化,一部分来自于**反馈过程**。

气候效应 气候变暖、海平面升高(热膨胀+冰雪融化)、对**降水量及分布的影响**(赤道地区不明显,主要中高纬地区增加,极端降水增强)、对全球生态系统的影响(植被增加,二氧化碳的施肥效应,生长季提前)

9.4.7.2 增暖机理: 全球尺度

辐射强迫 辐射强迫是对某个因子或一组因子**对气候变化贡献大小**的物理量。

定义:大气顶部单位面积上的能量变化率(W/m²)。影响气候变化的因子改变的时候,地球-大气系统摄入和逸出能量平衡也发生改变。

正强迫:地气系统能量增加,地球表明增温。

气候系统的敏感性: 控制气候系统的外参数改变所引起的气候属性(如温度)相应的改变量。

正反馈过程 ① 冰雪面-反射率-温度正反馈 ② 水汽含量-红外逸出辐射-温度正反馈 水汽反馈效应最强,其次是地面反照率和云反馈

负反馈过程 递减率负反馈: 地面增温,不稳定度增大,容易产生对流,潜热释放,<mark>高空增温强</mark>,向外放出长波辐射,导致稳定度增大,抵消了部分初始的地表增温效应。

注意:递减率反馈极地和热带相反

Arctic warming contributions (°C)
0 4 8 12 16 北极情况

Arctic warming
Cotar eadiative fleedbacks (°C)
0 2 4 6 8

Water-vapour
Lapse-rate
Ocean heat uptake
Armospheric heat transport
Radiative feedbacks
Net cloud

北极放大 放大的冰雪**减少的正反馈过程、<mark>放大的递减率正反馈</mark>、向极大气和海洋的<mark>热量(潜热)输送增加</mark> 正反馈原因:极地<mark>大气非常稳定</mark>,地面增温强,高空增温弱,向外放出长波辐射少,<mark>热量积聚在低层</mark>。 以上三个因素共同导致北极放大效应,主要的是地面反照率反馈**。

9.4.8 [人] 地表性质的改变

9.4.8.1 下垫面性质改变的局地气候效应

具体效应 ① 改变地面的反射率,影响地表净辐射。(森林→草原,反射率变大,总体降温效应)

- ② 改变地面的热容量和水分储存,影响下垫面温度的变化、影响了土壤湿度。(城市化扩张,铺装路)
- ③ 由于①和②改变了地面与大气间的显热和潜热交换,影响气温和大气水分。
- ④ 改变下垫面的粗糙度,影响了地面风的大小,对气温、大气隆水产生一定的影响。

9.4.8.2 局地气候表现

绿洲效应 沙漠中绿化和灌溉导致的植被增加,大气变湿。

热岛效应 地表性质差异及人为热的影响,**城市气温**高于郊区的现象。

混浊岛效应 污染物质比郊区多,<mark>凝结核远多于郊区</mark>,云量多、日照时数少。

干岛湿岛 水汽压和相对湿度白天低于郊区,夜间高于郊区。

9 / 12

雨岛效应 由于城市下垫面粗糙度大、城区空气中凝结核多,使城区降水多于郊区的现象。

9.4.8.3 地表性质改变对周围及远处气候的影响

局地环流 热力差异形成局地环流,如城市热岛环流、湖陆风等

遥相关 某处温度、湿度的改变通过改变环流对远处的气候产生影响。

9.4.9 [人] 人类无意识活动

火炉效应 人为热产生**火炉效应**。

人为热:工业生产、机动车辆废热排出、居民炉灶、空调等消耗的能量迅速增大,直接增暖大气。

沙漠化效应 海洋污染形成沙漠化效应:海洋原油泄漏,阻碍海气交换,类似于沙漠气候。

温室效应 空中飞行增加水汽和云形成温室效应:飞行过程中产生大量温室气体和水汽,效果很强。

9.4.10 检测归因

问题 观测的气候变化中如何识别人类活动、温室气体等各个要素的强迫效应?

<mark>检测</mark> 证明气候状态或受气候影响的系统<mark>在某种特定**统计意义**上发生了变化</mark>,这种变化不同于自然变率,而

是与模式模拟的人类活动影响之符号相一致。 不考虑内部变率的影响过程,只考虑外强迫。

归因 即量化:估计多个因素(人类活动引起的温室气体和气溶胶浓度增加,陆地使用变化等;自然外部强 迫;内部变率)<mark>对某一观测到的变化</mark>(如全球地面温度、全球海平面变化等)或极端天气气候事件出

现频次或强度相对贡献的过程。

最优指纹法 从观测的序列中寻找外强迫的信号(指纹): $Y_{\text{观测}} = X_{\text{人类活动强迫响应}} \beta_{scaling\ factor} + \varepsilon_{\text{内部变率, 实验得到}}$ 通过回归,寻找信噪比最大的信号。 β 可以说明人类活动的影响是否可以在观测中得到检验。

结论 人类活动是导致气候系统增暖趋势的主因。

1750-2011 年全球平均辐射强迫变化: 人类活动是近期全球温度上升的主要驱动力

气候变化最大的危害是一些<mark>不可逆的变化</mark>:这些不可逆的变化会使气候系统迫近临界点。一<mark>旦越过这些临界点,气候变化将无法再恢复</mark>,甚至会顺着正反馈不断扩大。这些临界点包括格陵兰岛冰盖、南极西部冰盖、北极海冰、大西洋环流、亚马孙热带雨林、多年冻土层、北方森林等。

Tipping elements at risk:

11c-3*C

3rc-5°C

3rc-5°C

Sea-Ce

Boreal lee Sheet

Arctic winter

Sea-Ce

Sea-Ce

Permatrost

Alpine

Glaciers

El Nino Southern

Oscillation

Amazon

Amazon

Falliforest

West Antarctic

Ice Sheet

Coral

Feefs

临界点示意图

9.4.11 未来气候变化的预估

9.4.11.1 温室气体的排放情景 (Scenario)

情景 一旦情景确定了,其模式模拟的结果可信度便很高。

SSP 考虑经济结构、能源结构、人口、国家间协作能力等社会发展路径。后缀数字表示辐射强迫量值。

9.4.11.2 不确定性(Uncertainty)

人类活动 人类活动自身的不确定性: **能源排放、人口增长、土地利用**等方面的发展状况

微量气体 人类活动排放的**微量气体**在辐射过程中的作用的**复杂性**(氟氯烃等痕量气体)

气候模式 气候模式自身的不确定性(对降水、极端事件的模拟十分有限) 科学热点:降低不确定性

9.4.11.3 气候突变 (Abrupt Change)

温盐环流 全球增暖情景下模拟的大西洋温盐环流崩溃及其气候后果

9.4.11.4 全球变暖对人类与社会发展的影响

农业产量、生长的积温分布的可能变化、农作物耕作制度

林业 植被(森林)分布, 向高海拔和高纬迁移, 影响生态系统

水资源 加剧水循环、降水、径流

海洋 海平面、海洋环流、海洋生态系统

人类健康、工业运输

9.5 气候变化研究方法

9.5.1 非器测资料

地质沉积 冰川遗迹、湖泊沉积、深海岩芯、黄土沉积、极地冰芯等。

物候及生物 植物胞子和花粉、树木年轮等。

自然地理 河流流量、江河水位、湖泊结冰等。

9.5.2 器测资料

9.5.2.1 统计方法

方法 ① 分析气候及气候变化事实: 单一时间序列回归分析(趋势); 功率谱、奇异谱(SSA)及小波分析 (周期)、滑动t检验(突变检测); 场序列 EOF(空间型)、REOF(分区)

- ② 诊断不同气候要素间的统计联系: 相关分析、SVD(两个场的耦合模态)、MCA、GEFA等。
- ③ 利用要素间的统计关系,进行气候预测:建立回归统计模型。
- ④ 不能解释气候变化或相互联系的成因。
- ⑤ 统计预测一般对气候异常或气候突变的预测能力较差。

9.5.2.2 数值模拟

数值模拟 建立在**热量、动量、物质守恒基础**上的数值模式,对气候系统进行定量描述,研究<mark>气候要素变化的物</mark> 理过程及成因,进行气候敏感性研究,增强气候变化机理的理解;

模式的误差。来源于物理过程的了解不够,不能给出精确的数学描述;计算误差等。

随着计算机的发展,模式分辨率增加,对气候系统相互作用及各子系统物理过程的描述准确性的提高,数值模式的模拟及预测水平将会越来越高。新的统计及动力诊断方法应用于数值模式结果。

9.5.3 气候诊断

诊断方法 ① 中心位置: 平均值、中位数、众数

- ② 离散程度的统计量: 距平、方差与标准差。
- ③ 相关统计量: 协方差、线性相关系数

9.5.4 气候变化诊断与预测

9.5.3.1 单一变量

单个时序 ① 线性趋势估计: $x_i = a + bt_i$, i = 1,2,...n

② 突变检测:滑动 t-检验、Mann-Kendall 法

③ 准周期性分析: 功率谱、奇异谱 (SSA)、小波分析等

空间场 空间场的时间演变: 经验正交函数分析 (EOF)

9.5.3.2 两个变量

两个序列 两个变量序列间的统计关系: ① 相关系数 ② 一元 (多元) 回归空间场 奇异值分解 (SVD),最大协方差分析(MCA)

热带太平洋 SSTA 的 EOF 第一模态的空间分布(a)和时间变化(b)

冬季气温(DJF)与热带印度洋 SSTA(JAS)的 MCA 第一模态 (a)SSTA 同相回归分布 (单位: ℃); (b)气温异相回归分布(单位: ℃)