Best Vision Paper

고재훈

Reliable Conflictive Multi-View Learning

Cai Xu, Jiajun Si, Ziyu Guan, Wei Zhao, Yue Wu, Xiyue Gao

AAAI 2024, Outstanding Paper Award

Contents

- **Problem**
- II Background
- **III** Method
- IV Experiments
- V Conclusion

Problem

- 1. 기존의 Multi-View Learning은 모든 View가 엄격하게 정렬되어있다고 가정하고, 충돌되는 데이터를 제거하거나 교체하는 방식을 사용해왔음
- 2. 하지만 현실에서는 이러한 가정이 항상 보장되지는 않고, 충돌되는 View가 존재하는 상황에서 판단을 내려야함
- 3. 판단 결과와 신뢰도를 함께 활용하는 Reliable Conflictive Multi-view Learning(RCML) 문제와, 이를 해결하기 위한 Evidential Conflictive Multi-view Learning (ECML) 방법을 제안함

Background Multi-View Learning

- 단일 대상에 대한 다양한 관점(Multiple Views)으로부터 얻은 정보를 통합하여 학습 결과를 도출하는 방식
- 다양한 관점에는 각도, 특징, 모달리티 등이 포함될 수 있음.

Background Dirichlet Distribution

- 1. 합이 1인 K차원 양의 실수 벡터의 확률 분포 $S_K = \left\{ \mathbf{p} | \sum_{k=1}^K p_k = 1 \text{ and } 0 \le p_1, ..., p_k \le 1 \right\}$
- 2. ECML에서는 각 클래스별 확률 조합의 확률 분포를 모델링하는 데 사용

$$D(\mathbf{p}|\boldsymbol{\alpha}) = \begin{cases} \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} p_k^{\alpha_k - 1}, & for \ \mathbf{p} \in \mathcal{S}_K \\ 0, & otherwise, \end{cases} \quad \boldsymbol{\alpha} = (\alpha_1, ..., \alpha_k)^{\top}$$

Method Overview

ECML에서는 각 View에서 얻은 증거를 종합하여 판단 결과의 신뢰도를 계산

Method View-specific Evidential Deep Learning

- 1. 각 DNN의 softmax를 ReLU로 대체 $\{m{e}_n^v\}$
- 2. Dirichlet strength $S = \sum_{k=1}^K (e_k + 1) = \sum_{k=1}^K \alpha_k$ 계산

3.
$$b_k = \frac{e_k}{S} = \frac{\alpha_k - 1}{S}, \ u = \frac{K}{S} \Rightarrow \sum_{k=1}^K b_k + u = 1, \forall k \in [1, ..., K]$$

Method Evidential Multi-view Fusion via Conflictive Opinion Aggregation

Definition 1. Conflictive Opinion Aggregation

Definition 2. Conflictive Degree

$$egin{aligned} c(oldsymbol{w}^A, oldsymbol{w}^B) &= c_p(oldsymbol{w}^A, oldsymbol{w}^B) \cdot c_c(oldsymbol{w}^A, oldsymbol{w}^B) \ c_p(oldsymbol{w}^A, oldsymbol{w}^B) &= rac{\sum_{k=1}^K \left| p_k^A - p_k^B
ight|}{2} \ c_c(oldsymbol{w}^A, oldsymbol{w}^B) &= (1 - u^A)(1 - u^B) \end{aligned}$$

Method Loss Function

Adapted Cross-Entropy : 정답에 대한 증거가 많아지도록 유도

$$L_{ace}(\boldsymbol{lpha}_n) = \int \left[\sum_{j=1}^{K} -y_{nj} \log p_{nj} \right] rac{\prod_{j=1}^{K} p_{nj}^{lpha_{nj}-1}}{B\left(\boldsymbol{lpha}_n
ight)} d\mathbf{p}_n$$

$$D(\mathbf{p}|\boldsymbol{\alpha}) = \begin{cases} \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} p_k^{\alpha_k - 1}, & for \ \mathbf{p} \in \mathcal{S}_K \\ 0, & otherwise, \end{cases}$$

Method Loss Function

KL Divergence : 잘못된 예측에 대해 높은 증거 값을 갖는 것을 방지

$$L_{KL}(\boldsymbol{\alpha}_n) = KL\left[D(\boldsymbol{p}_n|\tilde{\boldsymbol{\alpha}}_n) \parallel D(\boldsymbol{p}_n|\mathbf{1})\right]$$

Consistency Loss: 서로 다른 View가 일관되게 예측하도록 유도

$$L_{con} = rac{1}{V-1} \sum_{p=1}^{V} \left(\sum_{q
eq p}^{V} c(oldsymbol{w}_{n}^{p}, oldsymbol{w}_{n}^{q})
ight) - c(oldsymbol{w}^{A}, oldsymbol{w}^{B}) = c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) \cdot c_{c}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) - c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) + c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) - c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) + c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) - c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) + c_{p}(oldsymbol{w}^{A}, oldsymbol{w}^{B}) - c_{p}$$

$$egin{align} c_p(oldsymbol{w}^A, oldsymbol{w}^B) &= rac{\sum_{k=1}^K \left| p_k^A - p_k^B
ight|}{2} \ c_c(oldsymbol{w}^A, oldsymbol{w}^B) &= (1 - u^A)(1 - u^B) \ \end{array}$$

Experiments Result for Normal Dataset

Data	DCCAE	CPM-Nets	DUA-Nets	TMC	TMDL-OA	Ours	$\Delta\%$
HandWritten	95.45±0.35	94.55±1.36	98.10 ± 0.32	98.51 ± 0.13	99.25 ± 0.45	99.40 ± 0.00	0.15
CUB	85.39 ± 1.36	89.32 ± 0.38	80.13 ± 1.67	90.57 ± 2.96	95.43 ± 0.20	98.50 ± 2.75	3.21
HMDB	49.12 ± 1.07	63.32 ± 0.43	62.73 ± 0.23	65.17 ± 2.42	88.20 ± 0.58	90.84 ± 1.86	2.99
Scene15	55.03 ± 0.34	67.29 ± 1.01	68.23 ± 0.11	67.71 ± 0.30	75.57 ± 0.02	76.19 ± 0.12	0.82
Caltech101	89.56 ± 0.41	$90.35{\pm}2.12$	93.43 ± 0.34	92.80 ± 0.50	$\overline{94.63\pm0.04}$	95.36 ± 0.38	0.77
PIE	81.96 ± 1.04	88.53 ± 1.23	90.56 ± 0.47	91.85 ± 0.23	92.33 ± 0.36	94.71 ± 0.02	2.57

HandWritten: 0부터 9까지의 손으로 쓴 아라비아 숫자 이미지 데이터셋

CUB: 다양한 종류의 새 이미지 데이터셋으로, 보통 이미지 자체 특징과 새의 속성(attribute) 정보를 다른 관점으로 사용.

HMDB: 사람의 다양한 행동을 담은 비디오 클립 데이터셋

Scene15: 15가지 다른 실내 및 실외 장면 카테고리(예: 부엌, 숲, 사무실 등)의 이미지 데이터셋.

Caltech101: 101가지 사물 카테고리(비행기, 얼굴, 오토바이 등)의 이미지 데이터셋.

PIE (CMU PIE Face Database): 다양한 조명, 표정, 포즈 변화를 포함하는 사람 얼굴 이미지 데이터셋

Experiments Result for Conflictive Dataset

Data	DCCAE	CPM-Nets	DUA-Nets	TMC	TMDL-OA	Ours	$\triangle\%$
HandWritten	82.85 ± 0.38	83.34 ± 1.07	87.16 ± 0.34	92.76 ± 0.15	93.05 ± 0.05	94.40 ± 0.05	1.45
CUB	63.57 ± 1.28	68.82 ± 0.17	60.53 ± 1.17	73.37 ± 2.16	74.43 ± 0.26	$\textbf{76.50} \pm \textbf{1.15}$	2.78
HMDB	29.62 ± 1.79	42.62 ± 1.43	43.53 ± 0.28	47.17 ± 0.15	$\overline{67.62\pm0.28}$	$\textbf{70.84} \pm \textbf{1.19}$	4.76
Scene15	25.97 ± 2.86	29.63 ± 1.12	26.18 ± 1.31	42.27 ± 1.61	48.42 ± 1.02	56.97 ± 0.52	17.66
Caltech101	60.90 ± 2.32	66.54 ± 2.89	75.19 ± 2.34	90.16 ± 2.50	90.63 ± 2.05	92.36 ± 1.48	1.91
PIE	26.89 ± 1.10	53.19 ± 1.17	56.45 ± 1.75	61.65 ± 1.03	68.16 ± 0.34	84.00 ± 0.14	23.24

Conclusion Why Best Paper?

• 충돌적 다중 뷰 데이터에 대한 결정 결과와 관련 신뢰도를 명시적으로 제공해야 하는 RCML 문제를 새롭게 정의함.

• 증거적 학습과 새로운 충돌적 의견 집계 전략을 사용하는 ECML 방법을 제안함.

• 다중 뷰들의 충돌 시 불확실성 증가 가능성을 효과적으로 모델링함

• 6개 데이터셋에 대한 실험을 통해 정확도, 신뢰도 추정, 강건성 측면에서 ECML의 효과를 실증적으로 검증함.