Linear Algebra for MLDS - Homework 4

Vectors Spaces, Subspaces, Basis and Dimension

Make sure to read and follow the "Homework Submission Instructions" file

Submit by: May 19, 2022 at 23:59

Exercise 1: For each of the following, determine whether it is a subspace of the given vector space, if it is, find a its dimension

1.
$$\left\{ \begin{pmatrix} a \\ 2 \\ c \end{pmatrix} \middle| a+c=0 \right\} \subset \mathbb{R}^3$$

- 2. $\{A \in \mathbb{R}^{2 \times 2} \mid A \text{ is upper triangular } \} \subset \mathbb{R}^{2 \times 2}$
- 3. $\{A \in \mathbb{R}^{3\times 3} \mid A \text{ is invertible } \} \subset \mathbb{R}^{3\times 3}$

4.
$$\left\{ A \in \mathbb{R}^{2 \times 2} \mid A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$

Exercise 2: Given: $v_1 = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, v_4 = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, v_5 = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix}$ Look at the following sets: $S_1 = \{v_1, v_2\}, S_2 = \{v_3, v_4\}, S_3 = \{v_1, v_2, v_3\}, S_4 = \{v_2, v_4, v_5\}, S_5 = \{v_1, v_2, v_3, v_5\}, S_6 = \{v_2, v_3, v_4, v_5\}$

- 1. Which of S_1, \ldots, S_6 form bases to \mathbb{R}^3 ?
- 2. For the rest, find the dimension of span(S_i)

Exercise 3: In the vector space $V = \mathbb{R}^{2 \times 2}$, define $U = \{A \in V \mid A^t = A\}, W = \{A \in V \mid A^t = -A\}$

- 1. Prove that U, W are subspaces of V
- 2. Find $\dim(U)$, $\dim(W)$
- 3. Prove that U + W = V

Exercise 4: For $V = \mathbb{R}^3$, define $U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a+b+c=0 \right\} W = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a-b+2c=0 \right\}$

- 1. Find bases for U, W
- 2. Find a basis for $U \cap W$
- 3. Find a basis for U + W

Exercise 5: Prove the following claims:

- 1. If S is a linearily independent set and $T \subseteq S$ then T is linearily independent
- 2. Let v_1, v_2, v_3, v_4 be vectors such that $v_4 \in \text{span}\{v_1, v_2, v_3\}$ then $\text{span}\{v_1, v_2, v_3, v_4\} = \text{span}\{v_1, v_2, v_3\}$
- 3. Any two scalar 5×5 matrices are linearly dependent.
- 4. For any two vectors u, v in a vector space V, $\{u, v\}$ is linearly independent if and only if $\{u + v, u v\}$ is linearly independent.
- 5. Let U, W be subspaces of a vector space V such that $\{v_1, v_2\}$ is a basis for U and $\{v_2, v_3, v_4\}$ is a basis for W, then $\dim(U+W) \leq 4$