

Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data

Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin Liu and Xuanzhe Liu

Increasing Concerns on User Privacy

Cybersecurity Law of the People's Republic of China

General Data Protection Regulation (GDPR)

California Consumer Privacy Act (CCPA)

Emerging Federated Learning (FL)

- A. Personalize the local model
- B. Upload updates to the cloud
- C. Aggregate and form a global model

Heterogeneity – One of the Core Challenges

Hardware heterogeneity

	CPU	RAM	Battery	•••
Device A	Kirin 990	12GB	4000mAh	•••
Device B	Snapdragon 630	4GB	3000mAh	•••
•••	•••	•••	•••	•••

Heterogeneity – One of the Core Challenges

Hardware heterogeneity

	CPU	RAM	Battery	
Device A	Kirin 990	12GB	4000mAh	•••
Device B	Snapdragon 630	4GB	3000mAh	•••
•••	•••	•••	•••	•••

State heterogeneity

A device participates only when it won't negatively impact user's experience

Required state criteria:

- CPU idle
- Charging
- Connected to WiFi
- •

Heterogeneity is Not Fully Considered

Leaf

PySyft

Machine Learning without Centralized Training Data

TensorFlow Federated

Paddle Federated Learning

Heterogeneity is Not Fully Considered

PySyft

Federated Learning: Collaborative Machine Learning without Centralized Training Data

TensorFlow Federated

Paddle Federated Learning

Homogeneous devices:

- Uniform hardware capacity
- Always available for training

Impacts of Heterogeneity?

Incorporate Heterogeneity

We need

- Data that describe heterogeneity
- Heterogeneity-aware FL platform

Data Collection

Data that describe heterogeneity

We collect data from large scale real-world users through a commercial input method application

Describe State Heterogeneity

• State traces determine devices' checking in and dropping out

Describe State Heterogeneity

• State traces determine devices' checking in and dropping out

Describe Hardware Heterogeneity

• Capacity data determine devices' computational and communication capacity

Heterogeneity-aware FL Platform

FLASH -- designed according to industrial FL systems

- Available devices check-in with the FL server
- Model and configuration are sent to selected devices
- ③ Devices perform training and report back model update
- Devices check if it drops out or misses the deadline during training/communicating
- Server validates model updates according to 4 and aggregates updates
- 6 Devices that fail to upload will wait until the next round

Differences from other platforms:

- Various training/communication time
- Check in and drop out

Algorithms and Metrics

Algorithms	Accuracy	Training Time/Round	Compression Ratio	Variance of Accuracy
FedAvg	✓	√	-	-
Structured Updates	✓	√	√	-
GDrop	✓	\checkmark	\checkmark	-
SignSGD	✓	\checkmark	\checkmark	-
q-FedAvg	✓	√	-	√
FedProx	✓	√	-	-

FedAvg's Accuracy on Four Datasets under Heter-aware/unaware Settings

Accuracy for q-FedAvg and FedAvg. q-FedAvg is designed for addressing fairness issues.

Dataset	Heterogeneity	Algorithm	Average	Worst 10%	Best 10%	Var. ×10 ⁻⁴
	Unaware	FedAvg	82.1%	61.1%	97.2%	213
Commist		q-FedAvg	82.7%	64.7%	95.1%	157 (26.3% ↓)
Femnist	Aware	FedAvg	81.2%	61.1%	94.9%	203
		q-FedAvg	81.2%	64.7%	95.1%	159 (21.7% ↓)
M-Type		FedAvg	8.2%	2.3%	13.5%	19.2
	Unaware	q-FedAvg	7.8%	2.3%	13.0%	17.2 (10.5% ↓)
	Aware	FedAvg	7.5%	2.3%	12.3%	16.2
		q-FedAvg	7.5%	2.3%	12.4%	15.6 (3.7% ↓)

Accuracy for q-FedAvg and FedAvg. q-FedAvg is designed for addressing fairness issues.

Dataset	Heterogeneity	Algorithm	Average	Worst 10%	Best 10%	Var. ×10 ⁻⁴
Femnist	Lleanna	FedAvg	82.1%	61.1%	97.2%	213
	Unaware	q-FedAvg	82.7%	64.7%	95.1%	157 (26.3 % ↓) 203
	Aware	FedAvg	81.2%	61.1%	94.9%	203
		q-FedAvg	81.2%	64.7%	95.1%	159 (21.7% ↓)
M-Type	Unaware	FedAvg	8.2%	2.3%	13.5%	19.2
	Ullawale	q-FedAvg	7.8%	2.3%	13.0%	17 . 2 (10.5% ↓)
	A	FedAvg	7.5%	2.3%	12.3%	16.2
	Aware	q-FedAvg	7.5%	2.3%	12.4%	15.6 (3.7% ↓)

Accuracy for q-FedAvg and FedAvg. q-FedAvg is designed for addressing fairness issues.

Dataset	Heterogeneity	Algorithm	Average	Worst 10%	Best 10%	Var. ×10 ⁻⁴
Femnist		FedAvg	82.1%	61.1%	97.2%	213
	Unaware	q-FedAvg	82.7%	64.7%	95.1%	157 (26.3% ↓)
				= 10	94.9%	203
				rs q-FedAvg ness issues	95.1%	159 (21.7% ↓)
M-Type	Unaware	II OIII auui	essing rain	11633 133U63	13.5%	19.2
	Ullawale	q-FedAvg	7.8%	2.3%	13.0%	17.2 (10.5% 1)
	Aware	FedAvg	7.5%	2.3%	12.3%	16.2
		q-FedAvg	7.5%	2.3%	12.4%	15.6 (3.7% ↓)

Reasons for Negative Impacts?

Which Type is More Influential?

Disable hardware heterogeneity

Which Type is More Influential?

Disable state heterogeneity

Which Type is More Influential?

State heterogeneity

A breakdown of the impacts of different types of heterogeneity.

What Causes the Performance Drop?

The prevalence of different failure reasons.

The overall proportion of the failed devices reaches 11.6% on average

What Causes the Performance Drop?

Participation bias

Percentage of participating devices over time.

Up to 30% devices have not participated in FL process

Heterogeneity makes devices attend FL in a biased manner

Consider heterogeneity

Consider heterogeneity

Reduce device failures through a "proactive alerting" technique

Consider heterogeneity

Reduce device failures through a "proactive alerting" technique

Apply guided participant selection

- **Consider heterogeneity**
- Reduce device failures through a "proactive alerting" technique
- **Apply guided participant selection**
- **Optimize on-device training**

Take Away

- A large-scale real-world dataset that describes heterogeneity in FL
- The first heterogeneity-aware FL platform
- Significant impacts of heterogeneity on FL

Thanks!

Data and platform:

https://github.com/PKU-Chengxu/FLASH

yangchengxu@pku.edu.cn

