

TITLE OF THE INVENTION

CONTAINER PLUG ATTACHING DEVICE

BACKGROUND OF THE INVENTION

It's A P The present invention relates to a container plug attaching device for use with containers, such as cartons to be filled with sake or the like, for attaching a plug to an edge portion of the container defining an outlet thereof.

As disclosed, for example, in the publication of JP-A No. 10-77012, devices of the type mentioned are already known which comprise two anvils, a horizontal rotary shaft having mounted thereon the two anvils as spaced apart from each other by 180 degrees and projecting radially of the shaft, drive means for driving the rotary shaft intermittently through 180 degrees at a time so as to stop the two anvils alternately in a downward sealing posture and an upward supply posture, a sealing member to be opposed to the anvil as stopped in the sealing posture, and a chute for supplying a plug to the anvil as stopped in the supply posture.

Since the conventional device described has two anvils, the two anvils need to be adjusted individually so that each anvil will be stopped accurately in both the sealing posture and the supply posture. However, the

adjusting work is cumbersome and requires much time.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a container plug attaching device wherein an anvil or anvils
5 are adjustable easily within a short period of time.

The present invention provides a container plug attaching device for attaching to an edge portion of a container defining an outlet thereof a tubular plug having an opening at one end and a flange around an edge portion
10 defining the opening, the device having an anvil and a sealing member for clamping therebetween the container edge portion and the flange as pressed against the container edge portion for sealing, the container plug attaching device being characterized in that at least one
15 anvil is mounted on a rotary shaft so as to project radially thereof, the rotary shaft being intermittently drivable by drive means so as to stop the anvil in a sealing posture, anvils being equal in number to the number of sealing postures when provided and to the number
20 of sealing members, the sealing member or each of the sealing members being positionable as opposed to a clamping face of the anvil or each of the anvils as halted in the sealing posture.

With the container plug attaching device of the
25 present invention, only one anvil is used for one sealing

member, and the anvil needs only to be stopped in one sealing posture. The anvil is therefore adjustable easily within a short period of time.

The drive means is so controlled as to stop the anvil
5 only in the sealing posture, and the plug is supplied to the anvil in rotation. Since the anvil needs to be stopped only when it is in the sealing posture, the anvil is adjustable with greater ease.

The drive means may be so controlled as to stop the
10 anvil in a supply posture different from the sealing posture. The plug is supplied to the anvil as stopped in the supply posture.

The clamping face of the anvil is provided with an engaging projection for fitting the plug thereover, and
15 supply means has a plug transport member having a delivery opening opposed to a path of movement of the projection for transporting the plug with the end opening thereof facing toward the same direction as the delivery opening.

The plug transport member is provided with delivery means
20 for pushing out the plug from the delivery opening so as to fit the plug over the projection as moved to the position of the delivery opening. The plug can then be supplied to the anvil during rotation.

The delivery means has a pushing-out member movable
25 through the delivery opening toward or away from the path

of movement of the projection, and the pushing-out member has a plug suction face opposed to the path of movement of the projection. The suction face is so shaped as to gradually approach the path of movement of the projection

5 from an upstream side thereof with respect to the path toward a downstream side thereof. The distance between the clamping face of the anvil and the path downstream side of the suction face of the pushing-out member as moved toward the path is equal to the height of the plug.

10 The plug can then be engaged with the projection in movement by utilizing the movement of the projection, thereafter rotated and thereby reliably fitted over the projection.

The rotary shaft extends horizontally, the anvil is

15 directed downward when in the sealing posture, and a container transport conveyor is provided at a level below the rotary shaft and has a container transport path extending in a direction transverse to the rotary shaft and joining a lower end of the path of movement of the

20 projection. The anvil and the conveyor are driven in synchronism so as to insert an outer end of the anvil as moved toward the sealing posture into an upper-end opening of the container and to position the container edge portion between the projection of the anvil in the sealing

25 posture and the sealing member. The container then need

not be moved up and down for attaching the plug to the container. An increased length of time is therefore available for sealing during the cessation of transport.

The anvil has a base end portion fixed to the rotary shaft and an outer end portion provided with plug holding means, and the outer end portion is offset from the base end portion axially of the rotary shaft by a distance greater than the distance corresponding to the thickness of the base end portion. For example when two anvils are used for transporting two containers by two pitches at a time, the two anvils can then be so arranged that the outer end portion of one anvil is positioned alongside the base end portion of the other anvil to juxtapose these end portions axially of the rotary shaft, whereby the pitch of anvils arranged can be diminished.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view in vertical cross section showing an arrangement including a plug attaching device according to the invention;

FIG. 2 is a view in vertical longitudinal section taken along the line II-II in FIG. 1;

FIG. 3 is a perspective view of an anvil and a pushing-out member of the device;

FIG. 4 includes diagrams for illustrating containers and the anvil as moved by the device;

FIG. 5 includes diagrams for illustrating the anvil and the pushing-out member as moved by the device;

FIG. 6 is an exploded perspective view of the container and a plug for use with the device;

5 FIG. 7 is a plan view of a plug attaching device of another embodiment;

FIG. 8 includes diagrams for illustrating the operation of the device;

10 FIG. 9 is a perspective view of an example of modified anvil; and

FIG. 10 is a perspective view of anvils as another modification.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described 15 below with reference to the drawings.

In the following description, the term "front" refers to the direction in which the container on the conveyor advances (as indicated by an arrow in FIGS. 1 and 2), and the term "rear" to the opposite direction. The terms 20 "left" and "right" refer respectively to the left and right sides of the device as it is seen from behind forward (i.e., the left-hand side and right-hand side of FIG. 1).

FIG. 6 shows in detail the container C and the plug P 25 for use with the device embodying the invention.

The container C is made of a paper-base laminate having a polyethylene layer over each of its opposite surfaces and in the form of a tube having a bottom and rectangular to square in cross section. The container C
5 has a circular outlet O formed in the center of a rectangular top panel for providing a top T.

The plug P comprises a plug body M and a cap K each molded integrally from a thermoplastic resin.

The plug body M comprises a cylindrical trunk wall L,
10 and an annular flange F formed at the lower end of the wall. The trunk wall L is provided with a male screw Sm formed on its outer surface.

The cap K has a skirt S so sized as to be insertable loosely through the outlet O. The skirt S is provided on
15 its inner surface with a female screw (not shown) screwed on the male screw Sm. The cap K as fitted around the trunk wall L is fitted into the outlet O from inside the container C.

FIG. 1 shows a conveyor 11 for transporting containers
20 C forward, and a plug sealing device 12 for attaching the plug P to the container C to be transported by the conveyor 11.

The conveyor 11, which is an intermittently drivable chain conveyor, comprises a pair of horizontal endless
25 chains 21, holders 22 arranged on the chains 21 at a

predetermined spacing for holding containers C while rendering the containers free to move upward or downward, and a horizontal guide rail 23 disposed below the path of movement of the container for supporting the bottom of the 5 container C thereon for guiding.

The container C is held by the holder 22, with its top T projecting upward and with its outlet O facing toward the right. The chains 21 are intermittently driven so as to stop the containers C one after another at a sealing 10 station.

The plug sealing device 12 comprises a horizontal rotary shaft 31 extending from left to right transversely of the path of transport of the container with its right end projecting to above the path, an armlike anvil 33 attached to the right end of the shaft 31 to project radially thereof and having a vertical clamping face 32 facing rightward, a vertical plug chute 35 provided at its lower end with a delivery opening 34 opposed to the clamping face 32 of the anvil 33 as positioned in a 20 vertical upward supply posture, and an ultrasonic sealer 37 having a sealing member 36 and opposed to the clamping face 32 of the anvil 33 as positioned in a downward sealing posture.

The rotary shaft 31 is supported by bearings 41 on a 25 movable body 42 in the form of a horizontal plate and

movable transversely of the container transport path. The movable body 42 is supported by slide guide members 43 on horizontal guide rails 44 extending in the transverse direction. Connected to the left end of the movable body 5 42 is the piston rod of a first fluid pressure cylinder 45 directed toward the right.

A driven sprocket 51 is fixed to the left end of the rotary shaft 31. A belt 54 is reeved around the driven sprocket 51 and a drive sprocket 53 fixed to the output 10 shaft of a servomotor 52.

As shown in detail in FIG. 3, the anvil 33 is in the form of an arm extending straight and has a projection 61 at the outer end of the clamping face 32. The projection 61 has an outer periphery so sized as to permit the trunk 15 wall L of the plug P to fit therearound snugly. The projection 61 is positioned as opposed square to the chute delivery opening 34 when the anvil 33 is in its vertical upward supply posture.

The chute 35 contains plugs P as arranged in a 20 vertical row with the openings of their truck walls L facing leftward. A pushing-out member 62 and a cutting member 63 are arranged in the vicinity of the delivery opening 34 of the chute 35. A guide member 64 (FIG. 2) is joined to a chute rear end portion around the opening 34.

25 The pushing-out member 62 is in the form of a

horizontal rod having a vacuum head 71 at its left end and extending transversely of the container transport path. The pushing-out member 62 is connected to the piston rod of a second fluid pressure cylinder 72 directed leftward 5 so as to move the vacuum head 71 into or out of the delivery opening 34 across the chute 35.

This P27 With reference to FIGS. 3 and 5, the vacuum head 71 is in the form of a generally vertical elliptical plate and has a suction face 73 facing leftward. The suction face 10 73, which is a vertical flat face, deflects gradually leftward as it extends from the front rearward, thus facing toward a leftwardly forward oblique direction. The suction face 73 is provided at its front edge with a positioning ridge 74 having a circular-arc cross section. 15 The ridge 74 has a side face 75 facing rearward, circular-arc in cross section to position along the outer periphery of the cap K of the plug P and orthogonal to the suction face 73. A suction hole 76 is formed in the center of the suction face 73. With the clamping face 32 of the anvil 20 33 opposed to the delivery opening 34 of the chute 35, the distance between the clamping face 32 and the suction face 73 gradually decreases from the front toward the rear, and the distance G [FIG. 5(d)] between the clamping face 32 and the rear edge of the suction face 73 is slightly 25 greater than the height of the plug P. The distance G is

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000

equal to the distance between the left guide face of the guide member 64 and the clamping face 32.

As shown in detail in FIG. 2, the cutting member 63 comprises a forward upper engaging round rod 81 and a 5 rearward lower engaging round rod 82 which are interconnected by a connecting bar 83 and alternately engageable with or disengageable from the plug P at a position one above the lowermost plug P within the chute 35 and the plug P overlying the former plug P. The 10 cutting member 63 is movable forward and rearward by a rodless third fluid pressure cylinder 84.

When the cutting member 63 is moved rightward and leftward by the operation of the third fluid pressure cylinder 84, the plugs P stacked in a vertical row within 15 the chute 35 are allowed to fall one by one from the lowermost position of the row.

The ultrasonic sealer 37 has a body 91 provided with the sealing member 36 projecting therefrom leftward and in the form of a horizontal round bar termed a horn and 20 serving as an element for transmitting ultrasonic waves. The sealer body 91 is supported by a slide guide member 93 on a transverse guide rail 94. A leftward fourth fluid pressure cylinder 95 has a piston rod connected to the right end of the sealer body 91. A cavity 96 opened 25 leftward for the cap K to advance thereinto is formed in

the left end of the sealing member 36.

The rotary shaft 31 is driven into counterclockwise rotation by the servomotor 52 when seen from the right side thereof. The shaft 31 is halted only when the anvil 5 33 is brought into the vertical downward sealing posture, and is held in rotation except when the anvil 33 is in this posture. Accordingly, the anvil 33 is not halted when in the supply posture, moving past the chute delivery opening 34 from the front rearward at the left side 10 thereof.

The container C is moved forward toward the sealing station. When moving toward the sealing posture, the anvil 33 is moved so as to rotate counterclockwise in the manner shown in FIG. 4 in sequence. The container and the 15 anvil are moved as timed to avoid interference therebetween. When the container C is eventually brought to the sealing station, the outer end of the anvil 33 is inserted into the upper-end opening of the container C, and the projection 61 of the anvil 33 and the cavity 96 of 20 the sealing member 36 are positioned on a line through the container outlet O.

When the second fluid pressure cylinder 72 advances its piston rod before the anvil 33 rotating upward from the sealing posture moves past the chute delivery opening 25 34, the pushing-out member 62 moves leftward, holding by

suction the top of the cap K of the plug P at the lowermost position within the chute 35. In this state, the opening of the plug trunk wall L faces toward the same leftwardly forward oblique direction as the suction face

5 73. The pushing-out member 62 is further moved leftward in this state to deliver the plug P from the opening 34 and advance the plug to a standby position in the path of movement of the projection 61. When the upwardly rotating anvil 33 moves past the chute delivery opening 34 at the
10 left side thereof, the plug trunk wall L is fitted around the projection 61. This movement is shown in FIG. 5 in sequence. First, the projection 61 engages with the rear edge of the plug trunk wall L defining the opening thereof as seen in FIG. 5(b). When the anvil 33 subsequently
15 moves rearward as shown in FIG. 5(c), the plug P is also moved in the same direction slidingly on the suction face 73 along with the projection 61. The suction face 73 pushes the top of the cap K of the moving plug P, whereby the trunk wall L of the pushed plug P is fitted around the
20 projection 61 gradually to a greater depth. The wall L is eventually fitted around the projection 61 completely and retained thereon as seen in FIG. 5(d).

The plug P moves along with the projection 61 while being guided by the guide member 64. This ensures
25 stabilized delivery of the plug P to the anvil 33,

obviating the likelihood that the plug P will inadvertently slip off the projection 61. However, the guide member 64 need not always be provided.

The anvil 33 holding the plug P on the projection 61 5 rotates from the supply posture to the sealing posture. When brought into the sealing posture, the anvil 33 is halted from rotation, whereupon the first fluid pressure cylinder 45 operates to move the anvil 33 rightward and fit the plug cap K into the outlet O of the container C 10 waiting in position. The sealing member 36 is then moved leftward by the operation of the fourth fluid pressure cylinder 95, pressing the edge portion defining the cavity 96 against the clamping face 32, with the container edge portion defining the outlet O and the flange F interposed 15 therebetween. Ultrasonic waves are produced in this state to seal the outlet-defining edge portion with the flange F.

FIG. 9 shows an anvil 33 which has a constricted portion 65 provided at an intermediate portion of its 20 length by forming a circular-arc recessed part 66 in each of its front and rear opposite sides. The anvil thus constructed can be inserted into the container more easily without interfering therewith.

The embodiment described above is used in the case 25 where containers are transported intermittently a distance

at a time which distance corresponds to one pitch of containers as arranged for feeding. The embodiment to be described below is adapted for use in the case where containers are transported two pitches at a time.

5 FIG. 7 shows two rotary shafts 31 as arranged in parallel. Each of these shafts 31 is the same as the one included in the first embodiment. The pitch P_1 of the rotary shafts 31 is equal to the pitch P_2 of adjacent containers C as arranged for transport on the conveyor
10 11. An anvil 101 is attached to the right end of each rotary shaft 31.

The anvil 101 has a clamping face 102 which is also provided with a projection 103 at the position of the same radius of gyration as the projection 61 on the straight
15 anvil 33 used in the case of the single-pitch transport.

The anvil 101 has the same length as the straight anvil 33; whereas if two straight anvils 33 are used in the present case, one anvil 33 will interfere with the other anvil 33. To avoid this, the anvil 101 is in a bent
20 form as will be described below in detail.

The anvil 101 comprises a base end portion 111 fixed to the rotary shaft 31, an outer end portion 112 provided with the projection 103, and an intermediate portion 113 between the base end portion 111 and the outer end portion
25 112. The outer end portion 112 is offset from the base

end portion 111 rightward along the axis of the shaft 31 by a distance slightly greater than the distance corresponding to the thickness T of the base end portion 111 by a small distance ϵ .

5 FIG. 8 shows in sequence how the outer ends of the anvils 101 are inserted into respective containers C brought to the sealing station in the case where the two rotary shafts 31 and two anvils 101 are used. The two containers are transported on the conveyor 11 by two
10 pitches at a time. The two shafts 31 are driven in synchronism. The two anvils are rotated in the same phase.

When two rotary shafts 31 and anvils 101 are used in the case where two containers are fed at a time to the
15 sealing station by two pitches, two containers C can be moved at a time along with the anvils 101 at the same timing as in the case of single-pitch transport of containers C. This is also true in the case where containers are fed by three or more pitches at a time.

20 In the case where containers are fed intermittently by more than one pitch at a time, the rotary shafts and anvils used are equal in number to the number of pitches, and the same number of chutes, as well as the same number of ultrasonic sealers 37, are of course used.

25 Instead of using the two rotary shafts as described

above, an arrangement may be used wherein two anvils 122 as positioned at an angle with each other are mounted on a single rotary shaft 121 as shown in FIG. 10. The two anvils 122 have respective projections 123 which are arranged with the same pitch as the pitch for feeding a single container at a time.

Furthermore, the position where plugs are fed to the anvil can be any location on the path of movement of the projection. The anvil may be halted when to be supplied 10 with the plug. The suction face 73 then need not always face toward an oblique direction but can be positioned in parallel to the path of movement of the projection.