Exercise 2

Task 1

- a) What are (1+1), $(1+\lambda)$, $(1,\lambda)$ and (μ,λ) ? They describe instances of evolutionary strategies.
- b) Explain differences between them.
 - (1+1): One parent produces one candidate solution and parent and child compete based on objective fitness for a position in the next generation.
 - $(1 + \lambda)$: One parent produces λ candidate solutions and parent and children compete based on objective fitness for a position in the next generation.
 - $(1, \lambda)$: One parent produces λ candidate solutions and only the children compete based on objective fitness for a position in the next generation while the parent is disregarded.
 - (μ, λ) : The μ fittest parents from randomly selected λ individuals from the population produce $\frac{\lambda}{\mu}$ candidate solutions each and these children form the new population.

Task 2

- a) How does Line Recombination work? Explain in detail.
- b) How can Line Recombination be extended to get Intermediate Line Recombination?
- c) Implement Intermediate Line Recombination as a python function.

Task 3

- a) What is Fitness-Proportionate Selection (FPS) and how does it work?
- b) What is Stochastic Universal Sampling (SUS) and how does it work?
- c) Implement SUS as a python function.