

Scaling Novel Object Detection with Weakly Supervised Detection Transformers Tyler LaBonte^{1,2}, Yale Song¹, Xin Wang¹, Vibhav Vineet¹, Neel Joshi¹

¹Microsoft Research, ²Georgia Tech

Effortless Detection of Novel Objects

- Object detection annotation is expensive and difficult
- > Weakly supervised object detection (WSOD) uses only class labels
- > Pretrain on fully-annotated source dataset, then transfer knowledge to target dataset of novel objects with image-level class labels
- > Goal: effortless detection of novel objects without labeling

Previous Work

- Primary WSOD paradigm is multiple instance learning (MIL)
- Aggregates class features over dataset to localize objects
- 2016: Bilen and Vedaldi introduced deep learning framework for MIL [1]

- Current approaches are not scalable
- Require multiple rounds of training and refinement [3, 5, 8]
- Optimized for datasets with only 60 pretraining and 20 novel classes

Our Contributions

- We propose Weakly Supervised Detection Transformer which scales to 1000s of novel classes with a single pretrain-finetune step
- > We introduce new large-scale experimental setups for WSOD and call for the community to move beyond toy datasets to complex settings
- We also identify and rectify a weakness of a standard regularization method and explore sparsity for proposal noise reduction

Weakly Supervised Detection Transformer

Combines proposal generation of two-stage CNN model with scalability and simplicity of one-stage Transformer approach

Large-Scale Novel Object Detection Results

We utilize FSOD dataset [4] with 800 pretraining and 200 novel classes (175K boxes) constructed from ILSVRC and Open Images

 Classes maximally separated w.r.t. semantic hierarchy 	Method	mAP	AP50	mAR
	Zhong et al. [8]	20.6	32.7	34.4
	WS-DETR Base	13.9	20.0	60.1
 4X the pretraining classes and 2X the novel classes than shown previously 	WS-DETR Sparse	28.5	38.5	68.0
	WS-DETR Joint	28.6	37.8	65.3
	WS-DETR Full	28.6	38.2	67.4
	Supervised DETR [2]	47.7	64.0	76.3

- We study iNaturalist dataset [7] for species detection (560K boxes)
- 13 superclasses and **2,854 subclasses**—**5X that of Open Images**
- Less "pure" of a novel classes setting than FSOD, but realistic

Method	13 Superclasses		2,854 Subclasses		
	mAP	AP50	mAP	AP50	
Zhong et al. [8]	44.1	76.7	-	-	
WS-DETR Base	0.2	0.4	1.7	3.7	
WS-DETR Sparse	61.1	79.3	30.4	38.2	
WS-DETR Joint	54.8	70.0	22.1	29.8	
WS-DETR Full	60.7	78.7	35.4	43.5	
Supervised DETR [2]	79.2	93.6	51.5	58.8	

Joint Probability Estimation

- > We show a standard regularization technique [8] overfits to classification features [5] and we introduce a solution
- Uses pretrained "objectness" for joint probability of object and class

Standard regularization [6]

Our joint probability estimation

Scaling Study

- Can't pretrain two DETRs? No problem! Using the class-agnostic DETR in classification stream only drops performance by 1.6 mAP
- First large-scale rigorous study of WSOD scaling: *class quantity is* more important than image quantity [4, 6]

- Use noisy Web searches and generated image captions as labels
- Use Transformer attention to refine box predictions [3]
- Integrate self-supervised detection-aware pretraining [9]

References

- [1] Bilen and Vedaldi. Weakly Supervised Deep Detection Networks. CVPR, 2016.
- [2] Carion et al. End-to-End Object Detection with Transformers. ECCV, 2020.
- [3] Huang et al. Comprehensive Attention Self-Distillation for WSOD. NeurIPS, 2020.
- [4] Fan et al. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector. CVPR, 2020.
- [5] Tang et al. Multiple Instance Detection Network with Online Instance Classifier Refinement. CVPR, 2017.
- [6] Uijlings et al. Revisiting Knowledge Transfer for Training Object Class Detectors. CVPR, 2018.
- [7] Van Horn et al. The iNaturalist Species Classification and Detection Dataset. CVPR, 2018.
- [8] Zhong et al. Boosting WSOD with Progressive Knowledge Transfer. ECCV, 2020.
- [9] Zhong et al. DAP: Detection-Aware Pre-training with Weak Supervision. CVPR, 2021.