Exercise 3: Threat modeling and risk management framework

TDT4237 2025 Group 41 Gard Huse Storebø, Arthur Marc Jacques Saunier, Kjetil André Woll Vik

Abstract

This report presents a threat modeling and risk analysis of a web-based cybersecurity risk assessment tool designed to support Air Traffic Management (ATM) systems. The analysis follows a structured approach based on the STRIDE framework, misuse case diagrams, and a detailed Data Flow Diagram (DFD) created using OWASP Threat Dragon. Key business assets, goals, and risks were identified, followed by a comprehensive assessment of technical threats. Ten major technical risks were linked to misuse scenarios and business impacts, from SQL injection to broken access control. Based on the findings, ten corresponding security requirements were defined, and a test plan was designed to verify mitigation strategies. This work ensures a more robust and trustworthy risk assessment tool, reinforcing both system safety and operational resilience in the ATM domain.

Keywords: Security, Risk Analysis, STRIDE, Threat Modeling, Air Traffic Management, Web Application, Misuse Cases, Data Flow Diagram

Contents

Pa	art 1: Risk management framework
2.1	Identified Business Assets
2.2	2 Identified Business Goals
2.3	Risk Scales and Dimensions
2.4	Identified Business Risks
2.5	Misuse Case Diagram
2.6	Data Flow Diagram
2.7	' Identified Technical Risks
2.8	Security requirements
2.9	Test plan

1. Introduction

This report presents a threat model and risk management framework for a web-based cyber security risk assessment tool designed to support Air Traffic Management (ATM) solutions. The tool is part of the SESAR Joint Undertaking's efforts to modernize and secure European airspace systems by simplifying the process of performing standardized risk assessments on technologies such as drones, air taxis, and conventional aircraft systems.

The goal of this report is twofold: first, to identify and analyze business and technical risks associated with the tool itself, and second, to ensure the tool supports secure and efficient risk assessments for other ATM solutions. To accomplish this, we apply established risk management methodologies and threat modeling techniques, including misuse case diagrams and a data flow diagram (DFD) created with OWASP Threat Dragon.

The report is structured as follows: Section 1 defines key business assets and goals. Section 2 outlines the chosen risk scales and dimensions. Section 3 presents identified business and technical risks, including their relationships. Section 4 includes security requirements and a test plan derived from the analysis. The report concludes with a summary of findings. All models and diagrams are included as figures in the respective sections.

2. Part 1: Risk management framework

2.1. Identified Business Assets

	Business Assets				
ID	Description				
BA01	Stored data from completed risk assessments				
BA02	Lists of known items (assets, threats, issues) used for assessments				
BA03	The website/tool used to do the risk assessments				

2.2. Identified Business Goals

Business Goals				
ID	Description			
BG01	Make risk assessments for air traffic systems easier and faster			
BG02	Help improve the security and safety of air traffic management			
BG03	Be a trusted and reliable tool for users performing assessments			

2.3. Risk Scales and Dimensions

Likelihood						
Low	Low Medium High Extreme					
Very unlikely Unlikely		Likely	Very likely			
(e.g., ; once/5yrs)	(e.g., once/1-5yrs)	(e.g., few times/yr)	(e.g., weekly/daily)			

Impact Dimensions					
Dimension Low		Medium	High	Extreme	
Safety Impact	Minor procedure issue, no safety effect	Increased staff workload, slight safety reduction possible	Potential for significant incident (near miss)	Potential for accident, loss of life or major damage	
Operational Impact	Minor annoyance, easy workaround	Tool partly unusable, some disruption	Tool mostly unusable, major work disruption	Tool completely down, work stops	
Data Impact (Confidential- ity / Integrity)	Minor error or small leak, easily fixed	Some data loss/leak, needs effort to fix	Major data loss/leak for one system	Critical data lost or major leak affecting many systems	

2.4. Identified Business Risks

	Business Risks				
ID	Description	Likelihood	Impact	Risk ranking	
BR01	Unauthorized access to stored risk as-	Medium	High (Data Impact)	High	
	sessments may expose sensitive infor-				
	mation about ATM system vulnerabil-				
	ities.				
BR02	Failure of the web tool (e.g., due to a	Low	Extreme (Operational Impact)	High	
	DoS attack or server outage) leads to				
	full disruption of ongoing risk assess-				
	ments.				
BR03	Inaccurate risk scoring due to misuse	Medium	Extreme (Safety Impact)	Critical	
	or misunderstanding of the tool could				
	result in underestimating threats, com-				
	promising air traffic safety.				
BR04	Loss or corruption of catalog data (as-	Low	High (Operational/Data Impact)	Medium	
	sets, threats, vulnerabilities) makes the				
	tool unusable or reduces its reliability.				
BR05	Users lose trust in the tool due to past	Medium	Medium (Operational/Safety Impact)	Medium	
	performance issues or lack of trans-				
	parency, leading to low adoption and				
	reduced usage in the ATM ecosystem.				

2.5. Misuse Case Diagram

Figure 1: Misue diagram showing where Unauthorized actors could access

2.6. Data Flow Diagram

Figure 2: Data Flow Diagram

The threats listed below are based on the Data Flow Diagram of the system. The diagram shows how users interact with the tool, how data flows between components, and where attackers could target the system. It helped identify potential STRIDE threats on each element.

Threats					
Component	Threat title	Type (STRIDE)	Description		
Authenti- cated User	Identity Spoofing	Spoofing	An attacker could impersonate a legitimate user to access sensitive risk assessment data.		
Risk Inputs	Credential Intercep- tion	Information Disclosure	Credentials could be intercepted during transmission, allowing unauthorized access.		
Web Frontend	Lack of Traceabil- ity	Repudiation	Actions performed by users could not be properly logged, allowing them to deny malicious activities.		
Web Frontend	Privilege Escalation	Elevation of Privilege	A user could exploit flaws to gain higher-level privileges than intended.		
Risk Assessment Database	Data Tampering	Tampering	An attacker could modify stored risk assessments, leading to incorrect security measures being implemented.		
Risk Assessment Database	Sensitive Data Leak- age	Information Disclosure	Confidential information about air traffic system vulnerabilities could be leaked from the database.		
Catalog Database	Denial of Service on Catalog	Denial of Service	The catalog database could be rendered unavailable, preventing risk assessments from being performed.		
Catalog Database	Catalog Corruption	Tampering	An attacker could inject false assets or threats into the catalog, degrading assessment quality.		
Attack Exploit Attempts	Login Exploitation	Spoofing	Attackers could bypass authentication mechanisms to gain unauthorized access to the frontend.		
DB Attack	Database Flooding Attack	Denial of Service	Attackers could flood the database with requests, causing it to crash or become unavailable.		

2.7. Identified Technical Risks

	Technical Risks					
ID	Description	Likelihood	Impact	Related Business Risk		
TR1	SQL Injection Vulnerabilities	High	Extreme (depending on the attacker's goal; the impact could be extreme if sensitive data is accessed, risk assessments are modified, or privileges are escalated)	BR01 & BR03 & BR04		
TR2	Denial- of-Service (DoS) At- tacks	High	High (making the tool unavailable for a limited time, leading to the disruption of risk assessments)	BR2		
TR3	Insecure Data Storage	Low	High (unencrypted data leaks ATM vulnerabilities or catalog details)	BR01 & BR04		
TR4	Weak Authentica- tion	High	High (unauthorized actors by- pass login, exposing ATM vul- nerabilities and reducing user trust)	BR1 & BR5		
TR5	Insecure APIs	Medium	High (unsecured endpoints let attackers bypass the frontend to leak data or alter risk logic)	BR01 & BR03		
TR6	Lack of log- ging	Medium	High (Undetected breaches and difficult incident response)	BR1 & BR5		
TR7	Cross-Site Scripting XSS	Medium	High (Session Hijacking, data exfiltration)	BR1 & BR5		
TR8	Vulnerable and Out- dated Compo- nents	High	High (known exploits that can lead to compromise)	BR3 & BR4		
TR9	Unvalidated input handling	Medium	High (leading to injection)	BR1 & BR3		
TR10	Broken access control	High	High(user gaining unauthorized access, leading to information leak)	BR1 & BR3 & BR5		

2.8. Security requirements

Security requirements				
Technical risk ID	Requirement ID	Requirement		
TR1	SR1	Database queries must be strictly validated and sanitized.		
TR2	SR2	Rate limiting and traffic filtering can mitigate Denial-of-Service (DoS) attacks.		
TR3	SR3	Data storage can be encrypted using strong encryption or kept in offline storage systems.		
TR4	SR4	Implement Multi-Factor Authentication (MFA) and enforce strong password policies.		
TR5	SR5	Ensure proper API endpoint authentication and input validation.		
TR6	SR6	Implement comprehensive, tamper-evident logging of user and admin actions. Log sensitive events like failed logins, privilege changes, and data access.		
TR7	SR7	Sanitize and encode all user-generated content output to prevent XSS. Implement Content Security Policy (CSP) headers.		
TR8	SR6	Regularly update and patch software and libraries to latest stable release. Perform vulnerability scanning.		
TR9	SR9	Validate and sanitize all user inputs across the entire stack. Use allow-lists where possible instead of block-lists.		
TR10	SR10	Implement robust access control mechanisms. Enforce the principle of least privilege. Perform access control checks server-side, not just client-side.		

2.9. Test plan

Security Requirement ID	Test ID	Test Priority (1-3)	Test Description
SR1	T1	1	Perform automated SQL injection testing on all
			user inputs using tools like SQLMap. Manually
			review database access patterns to confirm pre-
			pared statements are used.
SR2	T2	2	Simulate DoS attacks with tools like LOIC or
			Slowloris. Confirm rate limits and mitigation
			triggers. Analyze server resource exhaustion
			thresholds.
SR3	Т3	1	Review database configuration for encryption
			settings. Attempt unauthorized access to en-
			crypted data and verify decryption fails without
			keys.
SR4	T4	1	Attempt brute force password attacks. Verify
			MFA enforcement. Ensure password lockout
			policies trigger after repeated failures.
SR5	T5	2	Use Postman or Burp Suite to send malformed
			or unauthorized API requests. Validate correct
			401/403 responses and input validation errors.
SR6	Т6	2	Perform simulated breach scenarios. Con-
			firm that critical user actions (login, password
			change, privilege escalation) are logged and au-
ap=			dit logs are protected.
SR7	T7	2	Inject common XSS payloads into input fields.
			Verify output encoding/sanitization and CSP
			header enforcement using browser developer
CDO	mo	0	tools.
SR8	Т8	3	Run dependency vulnerability scans using
			OWASP Dependency-Check, npm audit, pip-
			audit, etc. Review project libraries for un-
SR9	Т9	2	patched CVEs. Perform fuzz testing on form fields, API end-
SK9	19	2	points, and URL parameters. Validate that no
			injection or unexpected behavior occurs.
SR10	T10	1	Attempt privilege escalation scenarios by ma-
51(10	110	1	nipulating requests. Confirm access control
			checks prevent unauthorized access to restricted
			resources.
	1		resources.

3. Summary of Findings

Using the risk management framework helped us better understand the possible threats to the risk assessment tool. By identifying business assets and goals early, we were able to spot relevant risks and threats using STRIDE and misuse cases. We then linked these threats to technical risks and created a set of security requirements to address them. Finally, we made a test plan to verify if the protections work as expected. This process gave us a structured way to analyze the system and improve its security.