Lycée	LA	Martinière	Monplaisir
PSI*			

Année 2024/2025 Mathématiques

Feuille d'exercice n° 17 : Endomorphismes d'un espace vectoriel euclidien

I. Endomorphismes orthogonaux et matrices orthogonales

Exercice 1 ($^{\circ}$) Soit f un automorphisme orthogonal d'un espace euclidien E.

- 1) Montrer que $Ker(f Id) = Im(f Id)^{\perp}$.
- 2) En déduire que si $(f Id)^2 = 0$, alors f = Id.

Exercice 2 (\circlearrowleft) Soit E un espace euclidien. Soit $(u_j)_{j \in [\![1,n]\!]}$ et $(v_j)_{j \in [\![1,n]\!]}$ deux familles de vecteurs de E telles que :

$$\forall (i,j) \in [1,n]^2 \quad \langle u_i \mid u_j \rangle = \langle v_i \mid v_j \rangle.$$

- 1) Montrer que les familles de vecteurs $(u_j)_{j \in [\![1,n]\!]}$ et $(v_j)_{j \in [\![1,n]\!]}$ ont même rang.
- **2)** En déduire qu'il existe un automorphisme orthogonal f de E tel que $f(u_i) = v_i$ pour tout i dans [1, n].

Exercice 3 Soit E un espace euclidien. Quels sont les endomorphismes de E tels que pour tout sous-espace vectoriel V de E, $f\left(V^{\perp}\right) \subset (f(V))^{\perp}$?

Exercice 4 () Donner une CNS pour qu'une matrice réelle orthogonale soit diagonalisable.

Exercice 5 (\circlearrowleft) On munit \mathbb{R}^n de sa structure euclidienne usuelle, soit $a \in \mathcal{O}(\mathbb{R}^n)$.

- 1) Montrer que $\mathbb{R}^n = \text{Ker}(a \text{Id}) \oplus \text{Im}(a \text{Id})$.
- **2)** On définit pour tout $N \ge 1$: $b_N = \frac{1}{N} \sum_{k=0}^{N-1} a^k$. Montrer que la suite (b_N) converge et identifier sa limite.

Exercice 6 (\circlearrowleft) Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible. En interprétant A comme la matrice de passage entre une base orthonormée d'un espace euclidien et une autre base de cet espace et en orthonormalisant cette dernière, établir qu'il existe deux matrices $Q \in \mathcal{O}_n(\mathbb{R})$ et R triangulaire supérieure telles que A = QR.

II. Matrices orthogonales en dimensions 2 et 3

Exercice 7 ($^{\circ}$) Déterminer les natures et les éléments caractéristiques des transformations de \mathbb{R}^2 dont les matrices dans la base canonique sont les suivantes.

1)
$$A = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}$$
 2) $B = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ 3) $C = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$

Exercice 8 (\circlearrowleft) Soient E un espace euclidien orienté de dimension 2, r une rotation de E et s une réflexion de E. Déterminer $r \circ s \circ r$ et $s \circ r \circ s$.

Exercice 9 Soit des réels
$$a, b, c$$
. On pose $A = \begin{pmatrix} a^2 & ab-c & ac+b \\ ab+c & b^2 & bc-a \\ ac-b & bc+a & c^2 \end{pmatrix}$. A quelle condition A est-elle orthogonale?

Cette condition étant réalisée, reconnaître l'endomorphisme de \mathbb{R}^3 de matrice canonique A.

Exercice 10 () Former la matrice M dans une base o.n.d (i, j, k) de \mathbb{R}^3 , de la rotation d'axe i + j + k et d'angle $\frac{\pi}{3}[2\pi]$.

Exercice 11 (\bigcirc) Dans l'espace usuel rapporté à une base orthonormée $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$, on considère les endomorphismes de matrices :

$$A = \frac{1}{9} \begin{pmatrix} 4 & 7 & 4 \\ 1 & 4 & -8 \\ -8 & 4 & 1 \end{pmatrix} \text{ et } B = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

Déterminer la nature et les éléments caractéristiques de ces endomorphismes.

Exercice 12 Déterminer la nature de l'endomorphisme associé, dans une base orthonormée, à la matrice :

$$A = \begin{pmatrix} \cos t & -\sin t & 0\\ \cos t \sin t & \cos^2 t & -\sin t\\ \sin^2 t & \sin t \cos t & \cos t \end{pmatrix}$$

III. Endomorphismes autoadjoints et matrices symétriques

Exercice 13 Soit E un espace vectoriel euclidien de dimension n non nulle.

- 1) Soit p un projecteur orthogonal de E. Montrer que p est symétrique.
- 2) Soit p et q projecteurs orthogonaux. Montrer que $p \circ q \circ p$ est symétrique positif, et que ses valeurs propres sont dans [0, 1].
- 3) Montrer que $(\operatorname{Im} p + \operatorname{Ker} q)^{\perp} = \operatorname{Im} q \cap \operatorname{Ker} p$.
- 4) En déduire que $E = \operatorname{Im} p + \operatorname{Ker} pq$.
- **5)** Montrer que $p \circ q$ est diagonalisable et que ses valeurs propres sont dans [0,1].

Exercice 14 Soient $A \in \mathscr{M}_n(\mathbb{R})$ et $B = \frac{1}{2} \left(A^\top + A \right)$. On note α la petite valeur propre de B et β sa plus grande. Etablir $\operatorname{Sp} A \subset [\alpha, \beta]$.

Exercice 15 (\circlearrowleft) Soit E un espace euclidien de dimension n, f un endomorphisme symétrique dont les valeurs propres sont notées $\lambda_1 \leq \ldots \leq \lambda_n$.

- 1) Montrer que pour tout $x \in E$: $\lambda_1 ||x||^2 \le \langle f(x), x \rangle \le \lambda_n ||x||^2$.
- 2) Montrer que si un vecteur $x \in E$ non nul atteint une de ces bornes, alors c'est un vecteur propre de u.
- 3) Soit (e_1, \ldots, e_n) une base orthonormée de E vérifiant pour tout $1 \le i \le n : \langle f(e_i), e_i \rangle = \lambda_i$.

Que peut-on dire de cette base ?

Exercice 16

Soit $A \in \mathscr{S}_n(\mathbb{R})$ à valeurs propres dans \mathbb{R}_+ . Soit $\alpha \geqslant 0$.

- 1) Le produit de matrices carrées symétriques est-il symétrique?
- 2) Montrer que $I_n + \alpha A$ est inversible.
- 3) Montrer que $M = (I_n \alpha A)(I_n + \alpha A)^{-1}$ est symétrique.

Exercice 17 (\nearrow) On dit qu'une matrice symétrique $A \in \mathscr{S}_n(\mathbb{R})$ est définie positive si pour tout X non nul : $X^{\top}AX > 0$.

- 1) Montrer que $A \in \mathscr{S}_n(\mathbb{R})$ est définie positive si et seulement si $\mathrm{Sp}(A) \subset \mathbb{R}_+^*$.
- 2) Soit A symétrique définie positive.
 - a) Montrer qu'il existe une matrice triangulaire supérieure T telle que $A = T^{\top}T$.
 - **b)** Montrer que cette matrice T est unique si on impose la condition : $\forall 1 \leq i \leq n, t_{i,i} > 0$.
- 3) Application : montrer que si A est symétrique définie positive, $det(A) \leq a_{1,1} \dots a_{n,n}$.

Cette décomposition $A = T^{\top}T$ est appelée décomposition de Cholesky.

Exercice 18 Soit $n \in \mathbb{N}^*$. On note \mathscr{S}_n et \mathscr{S}_n^+ les ensembles des matrices réelles de taille n, symétriques et symétriques positives. Soit $A \in \mathscr{S}_n$. Montrer que $A \in \mathscr{S}_n^+ \Leftrightarrow (\forall B \in \mathscr{S}_n^+, \operatorname{tr}(AB) \geqslant 0)$.

Exercice 19 Soit $n \in \mathbb{N}^*$. On note \mathscr{S}_n , \mathscr{S}_n^+ et \mathscr{S}_n^{++} les ensembles des matrices réelles de taille n, symétriques, symétriques positives, et symétriques définies positives.

- 1) Soit $A \in \mathscr{S}_n^{++}$ et $B \in \mathscr{S}_n$. Montrer qu'il existe P inversible et Δ diagonale telles que $A = P^T P$ et $B = P^T \Delta P$.
- 2) Soit $A, B \in \mathscr{S}_n^+$. Montrer que

$$\forall \alpha \in]0,1[, (\det A)^{\alpha} (\det B)^{1-\alpha} \leqslant \det (\alpha A + (1-\alpha)B).$$

Exercice 20 Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$ et $B \in \mathscr{S}_n(\mathbb{R})$. Montrer que AB est diagonalisable (on pourra commencer par montrer qu'il existe une matrice R symétrique définie positive telle que $R^2 = A$, et que RBR).

See the Bold-Shaddow of Vrania's Glory,
Immortall in His Race, no lesse in Story:
AnArtist n uthous Error, from whose Lyne,
Both Earth and Heav ins, in sweet Proportions twine:
Behold Great EUCLID But, behold Him well.
For this in Him. Divinity dath dwell.

