```
Задание. Создать ноутбук, который содержит следующие разделы: Текстовое описание выбранного Вами набора данных. Основные
характеристики датасета. Визуальное исследование датасета. Информация о корреляции признаков.
```

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks")

data = pd.read csv('C:/Users/maxim/OneDrive/Paбочий стол/archive/rice wheat corn prices.csv', sep=',')

# data.head()

|   | Year | Month | Price_wheat_ton | Price_rice_ton | Price_corn_ton | Inflation_rate | Price_wheat_ton_infl | Price_rice_ton_infl | Price_corn_ton_infl |
|---|------|-------|-----------------|----------------|----------------|----------------|----------------------|---------------------|---------------------|
| 0 | 1992 | Feb   | 170.12          | 278.25         | 113.62         | 89.59          | 322.53               | 527.53              | 215.41              |
| 1 | 1992 | Mar   | 161.44          | 277.20         | 117.00         | 89.59          | 306.07               | 525.54              | 221.82              |
| 2 | 1992 | Apr   | 153.07          | 278.00         | 108.52         | 89.59          | 290.21               | 527.06              | 205.74              |
| 3 | 1992 | May   | 139.72          | 274.00         | 109.64         | 89.59          | 264.90               | 519.48              | 207.87              |
| 4 | 1992 | Jun   | 140.36          | 268.80         | 110.90         | 89.59          | 266.11               | 509.62              | 210.26              |

data.shape

(359, 9)

data.columns

Index(['Year', 'Month', 'Price\_wheat\_ton', 'Price\_rice\_ton', 'Price\_corn\_ton', 'Inflation\_rate', 'Price\_wheat\_ton\_infl', 'Price\_rice\_ton\_infl', 'Price\_corn\_ton\_infl'], dtype='object')

data.dtypes

int64 Year Month object float64 Price\_wheat\_ton float64 Price\_rice\_ton Price corn ton float64 float64 Inflation\_rate Price wheat ton infl float64 Price rice ton infl float64 Price\_corn\_ton\_infl float64 dtype: object

## for col in data.columns:

# Количество пустых значений - все значения заполнены temp\_null\_count = data[data[col].isnull()].shape[0] print('{} - {}'.format(col, temp\_null\_count))

Year - 0 Month - 0 Price\_wheat\_ton - 0 Price rice ton - 0 Price\_corn\_ton - 0 Inflation\_rate - 0 Price\_wheat\_ton\_infl - 0 Price\_rice\_ton\_infl - 0 Price\_corn\_ton\_infl - 0

data.describe()

In [2]:

In [1]:

In [3]:

Out[3]:

In [4]:

Out[4]: In [5]:

Out[5]:

In [6]:

Out[6]:

In [7]:

In [8]:

|       | Year        | Price_wheat_ton | Price_rice_ton | Price_corn_ton | Inflation_rate | Price_wheat_ton_infl | Price_rice_ton_infl | Price_corn_ton_infl |
|-------|-------------|-----------------|----------------|----------------|----------------|----------------------|---------------------|---------------------|
| count | 359.000000  | 359.000000      | 359.000000     | 359.000000     | 359.000000     | 359.000000           | 359.000000          | 359.000000          |
| mean  | 2006.540390 | 185.302869      | 363.930418     | 155.165376     | 36.316685      | 241.726769           | 474.038384          | 201.211086          |
| std   | 8.645592    | 64.985279       | 131.508817     | 62.370286      | 26.605378      | 65.234300            | 133.776144          | 61.727752           |
| min   | 1992.000000 | 85.300000       | 163.750000     | 75.270000      | -1.290000      | 136.220000           | 246.020000          | 116.280000          |
| 25%   | 1999.000000 | 137.315000      | 261.250000     | 104.155000     | 12.370000      | 193.010000           | 397.500000          | 159.015000          |
| 50%   | 2007.000000 | 175.270000      | 343.750000     | 149.340000     | 28.300000      | 228.310000           | 455.540000          | 186.020000          |
| 75%   | 2014.000000 | 220.260000      | 444.500000     | 176.010000     | 59.700000      | 275.835000           | 540.180000          | 220.940000          |
| max   | 2021 000000 | 419 610000      | 907 000000     | 333 050000     | 89 590000      | 518 470000           | 1120 690000         | 385 910000          |

In [9]:

Out[8]:

data['Year'].unique()

array([1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021], type=int64)

In [11]:

Out[9]:

fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Price\_wheat\_ton', y='Price\_rice\_ton', data=data)

Out[11]:





In [12]:

fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='Price\_wheat\_ton', y='Price\_rice\_ton', data=data, hue='Year')





fig, ax = plt.subplots(figsize=(10,10))sns.distplot(data['Price\_wheat\_ton'])

C:\Users\maxim\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a futur e version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Price\_wheat\_ton', ylabel='Density'>



Out[14]:

In [14]:

sns.jointplot(x='Price\_wheat\_ton', y='Price\_rice\_ton', data=data)

In [15]:

Out[15]:

<seaborn.axisgrid.JointGrid at 0x2a49e2fc9d0>



sns.jointplot(x='Price\_wheat\_ton', y='Price\_rice\_ton', data=data, kind="hex")

<seaborn.axisgrid.JointGrid at 0x2a49e3cf970>



sns.jointplot(x='Price\_wheat\_ton', y='Price\_rice\_ton', data=data, kind="kde")

In [16]:

Out[16]:

In [17]:





sns.pairplot(data)

In [19]:



sns.pairplot(data, hue="Month")



sns.boxplot(x=data['Year'])

<AxesSubplot:xlabel='Year'>



In [23]:

Out[22]:



sns.boxplot(x='Year', y='Month', data=data)

<AxesSubplot:xlabel='Year', ylabel='Month'>



sns.violinplot(x=data['Price\_wheat\_ton'])

<AxesSubplot:xlabel='Price\_wheat\_ton'>



$$\label{eq:fig_ax} \begin{split} &\text{fig, ax = plt.subplots(2, 1, figsize=(10,10))} \\ &\text{sns.violinplot(ax=ax[0], x=data['Price_wheat_ton'])} \\ &\text{sns.distplot(data['Price_wheat_ton'], ax=ax[1])} \end{split}$$

In [24]:

Out[23]:

Out[24]:

In [27]:

Out[27]:

In [28]:

<AxesSubplot:xlabel='Price\_wheat\_ton', ylabel='Density'>



sns.violinplot(x='Year', y='Price\_wheat\_ton', data=data)

100

200

300

Price\_wheat\_ton

400

500

0.000

<AxesSubplot:xlabel='Year', ylabel='Price\_wheat\_ton'>



sns.catplot(y='Price\_wheat\_ton', x='Year', data=data, kind="violin", split=True)

In [30]:

Out[28]:

Out[30]:

In [32]:

<seaborn.axisgrid.FacetGrid at 0x2a4aabb9a90>



In [33]:

data.corr()

|                      |          |                 |                |                |                |                      |                     | Out[33]:            |
|----------------------|----------|-----------------|----------------|----------------|----------------|----------------------|---------------------|---------------------|
|                      | Year     | Price_wheat_ton | Price_rice_ton | Price_corn_ton | Inflation_rate | Price_wheat_ton_infl | Price_rice_ton_infl | Price_corn_ton_infl |
| Year                 | 1.000000 | 0.614216        | 0.612864       | 0.601719       | -0.985230      | 0.102244             | 0.129089            | 0.190547            |
| Price_wheat_ton      | 0.614216 | 1.000000        | 0.747221       | 0.892489       | -0.630568      | 0.838342             | 0.536606            | 0.762467            |
| Price_rice_ton       | 0.612864 | 0.747221        | 1.000000       | 0.808799       | -0.632244      | 0.528453             | 0.856352            | 0.669503            |
| Price_corn_ton       | 0.601719 | 0.892489        | 0.808799       | 1.000000       | -0.622761      | 0.696853             | 0.612011            | 0.890928            |
| Inflation_rate       | 0.985230 | -0.630568       | -0.632244      | -0.622761      | 1.000000       | -0.121858            | -0.152360           | -0.217992           |
| Price_wheat_ton_infl | 0.102244 | 0.838342        | 0.528453       | 0.696853       | -0.121858      | 1.000000             | 0.600255            | 0.821319            |
| Price_rice_ton_infl  | 0.129089 | 0.536606        | 0.856352       | 0.612011       | -0.152360      | 0.600255             | 1.000000            | 0.707511            |
| Price_corn_ton_infl  | 0.190547 | 0.762467        | 0.669503       | 0.890928       | -0.217992      | 0.821319             | 0.707511            | 1.000000            |

In [34]:

data.corr(method='pearson')

|                      |          |                 |                |                |                |                      |                     | Out[34]:            |
|----------------------|----------|-----------------|----------------|----------------|----------------|----------------------|---------------------|---------------------|
|                      | Year     | Price_wheat_ton | Price_rice_ton | Price_corn_ton | Inflation_rate | Price_wheat_ton_infl | Price_rice_ton_infl | Price_corn_ton_infl |
| Year                 | 1.000000 | 0.614216        | 0.612864       | 0.601719       | -0.985230      | 0.102244             | 0.129089            | 0.190547            |
| Price_wheat_ton      | 0.614216 | 1.000000        | 0.747221       | 0.892489       | -0.630568      | 0.838342             | 0.536606            | 0.762467            |
| Price_rice_ton       | 0.612864 | 0.747221        | 1.000000       | 0.808799       | -0.632244      | 0.528453             | 0.856352            | 0.669503            |
| Price_corn_ton       | 0.601719 | 0.892489        | 0.808799       | 1.000000       | -0.622761      | 0.696853             | 0.612011            | 0.890928            |
| Inflation_rate       | 0.985230 | -0.630568       | -0.632244      | -0.622761      | 1.000000       | -0.121858            | -0.152360           | -0.217992           |
| Price_wheat_ton_infl | 0.102244 | 0.838342        | 0.528453       | 0.696853       | -0.121858      | 1.000000             | 0.600255            | 0.821319            |
| Price_rice_ton_infl  | 0.129089 | 0.536606        | 0.856352       | 0.612011       | -0.152360      | 0.600255             | 1.000000            | 0.707511            |
| Price_corn_ton_infl  | 0.190547 | 0.762467        | 0.669503       | 0.890928       | -0.217992      | 0.821319             | 0.707511            | 1.000000            |

In [35]:

data.corr(method='kendall')

Out[35]: Price\_wheat\_ton Price\_rice\_ton Price\_corn\_ton Inflation\_rate Price\_wheat\_ton\_infl Price\_rice\_ton\_infl Price\_corn\_ton\_infl Year Year 1.000000 0.461176 0.423723 0.432980 -0.995377 0.085667 0.080066 0.096277 Price\_wheat\_ton 0.461176 1.000000 0.621697 0.776169 -0.464463 0.630291 0.403515 0.550994 Price\_rice\_ton 0.423723 0.621697 1.000000 0.668084 -0.425810 0.389846 0.661939 0.480850 Price\_corn\_ton 0.547066 0.776169 0.668084 1.000000 -0.436457 0.453341 0.668519 0.432980 -0.425810 1.000000 -0.088891 -0.082152 -0.099691 Inflation\_rate -0.464463 -0.436457 0.995377 0.630291 Price\_wheat\_ton\_infl 0.085667 0.389846 0.547066 -0.088891 1.000000 0.488561 0.705246 0.403515 -0.082152 0.488561 1.000000 Price\_rice\_ton\_infl 0.080066 0.661939 0.453341 0.556476 Price\_corn\_ton\_infl 0.096277 0.550994 0.480850 0.668519 -0.099691 0.705246 0.556476 1.000000

In [36]:

Out[36]:

sns.heatmap(data.corr())

## <AxesSubplot:>



In [37]:

 $sns.heatmap(data.corr(),\,annot = \pmb{True},\,fmt = '.3f')$ 

### <AxesSubplot:>



Out[37]:

In [38]:

sns.heatmap(data.corr(), cmap='YIGnBu', annot=True, fmt='.3f')





In [39]:

Out[39]:

mask = np.zeros\_like(data.corr(), dtype=np.bool)
mask[np.tril\_indices\_from(mask)] = **True**sns.heatmap(data.corr(), mask=mask, annot=**True**, fmt='.3f')

C:\Users\maxim\AppData\Local\Temp/ipykernel\_6468/1053490320.py:1: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool\_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations mask = np.zeros\_like(data.corr(), dtype=np.bool)

# <AxesSubplot:>



In [40]:

fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=**True**, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=**True**, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=**True**, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set\_text('Pearson') ax[1].title.set\_text('Kendall') ax[2].title.set\_text('Spearman')

#### Корреляционные матрицы, построенные различными методами Pearson Kendall Spearman - 1.00 - 1.00 Year -1.00 0.61 0.61 0.60 0.99 0.10 0.13 0.19 **-1.00** 0.46 0.42 0.43**-1.00** 0.09 0.08 0.10 -1.00 0.68 0.68 0.66 <mark>-1.00</mark> 0.11 0.12 0.17 - 0.75 - 0.75 - 0.75 Price\_wheat\_ton -0.61 1.00 0.75 0.89 0.63 0.84 0.54 0.76 0.46 <mark>1.00 0.62 0.78-0.46</mark> 0.63 0.40 0.55 -0.68 1.00 0.83 0.94 0.69 0.79 0.57 0.75 - 0.50 - 0.50 - 0.50 Price\_rice\_ton -0.61 0.75 1.00 0.81 0.63 0.53 0.86 0.67 -0.42 0.62 <mark>1.00</mark> 0.67<mark>-0.43</mark> 0.39 0.66 0.48 -0.68 0.83 1.00 0.87 0.68 0.56 0.80 0.67 - 0.25 - 0.25 - 0.25 -0.66 0.94 0.87 1.00 <mark>-0.67</mark> 0.72 0.63 0.83 Price\_corn\_ton - 0.60 0.89 0.81 1.00 0.62 0.70 0.61 0.89 0.43 0.78 0.67 <mark>1.00</mark>-0.44 0.55 0.45 0.67 - 0.00 - 0.00 - 0.00 Inflation\_rate = 0.990.630.630.621.00-0.120.150.22 -1.00-0.460.43-0.44<mark>1.00-</mark>0.09-0.080.10 -1.00-0.69-0.680.67<mark>1.00</mark>-0.11-0.12-0.18 **-** -0.25 - -0.25 - -0.25 Price\_wheat\_ton\_infl - 0.10 0.84 0.53 0.70 0.12 1.00 0.60 0.82 <mark>-0.11</mark> 0.79 <mark>0.56 0.72 <mark>-0.11</mark> 1.00 0.67 0.89</mark> - -0.50 <del>-</del> -0.50 - -0.50 Price\_rice\_ton\_infl = 0.13 0.54 0.86 0.61 0.15 0.60 1.00 0.71 -0.08 0.40 0.66 0.45-0.08 0.49 1.00 0.56 -0.12 0.57 0.80 0.63 <mark>-0.12</mark> 0.67 1.00 0.76 -0.75 -0.75 -0.75 Price\_corn\_ton\_infl - 0.19 0.76 0.67 0.89 0.22 0.82 0.71 1.00 -0.10 0.55 0.48 0.67<mark>-0.10</mark>0.71 0.56 1.00 -<mark>0.17</mark> 0.75 0.67 0.83<mark>-0.18</mark> 0.89 0.76 1.00 Price\_rice\_ton Price\_wheat\_ton\_infl Price\_wheat\_ton\_infl Price\_corn\_ton\_infl Price\_com\_ton Price rice ton infl Price corn ton infl Price\_wheat\_ton Price\_rice\_ton Price\_rice\_ton\_infl Price\_wheat\_ton Price\_rice\_ton Price\_com\_ton Price\_wheat\_ton\_infl Price\_rice\_ton\_infl Price\_wheat\_ton Price\_com\_ton Inflation\_rate Price\_com\_ton\_infl Inflation\_rate

In [ ]: