Aula 7 - Continuidade

Muller Moreira S Lopes

Universidade Federal do Rio Grande do Norte

28 de agosto de 2023

Funções contínuas

- Ao estudar o comportamento de uma função em um ponto, geralmente temos que $\lim_{x\to a}f(x)=f(a)$, mas isso nem sempre ocorre.
- Define-se o conceito de continuidade para classificar funções "bem comportadas" em torno de x=a.
- Noção intuitiva (sem rigor matemático): Uma função contínua pode ter se gráfico desenhado sem que o lápis deixe de "encostar no papel"

Funções contínuas

- Ao estudar o comportamento de uma função em um ponto, geralmente temos que $\lim_{x\to a}f(x)=f(a)$, mas isso nem sempre ocorre.
- Define-se o conceito de continuidade para classificar funções "bem comportadas" em torno de x=a.
- Noção intuitiva (sem rigor matemático): Uma função contínua pode ter se gráfico desenhado sem que o lápis deixe de "encostar no papel".

Funções contínuas em um ponto a

Uma função f(x) é dita contínua em um ponto a se as seguintes condições são satisfeitas

- f é definida em a.
- $\lim_{x\to a} f(x)$ existe.
- $\bullet \lim_{x \to a} f(x) = f(a).$
- Geralmente se testa apenas a terceira condição, pois ela só pode ser válida se as outras duas também forem.
- Uma função contínua em todos os seus pontos é chamada de função contínua.

Funções contínuas em um ponto a

Uma função f(x) é dita contínua em um ponto a se as seguintes condições são satisfeitas

- f é definida em a.
- $\lim_{x\to a} f(x)$ existe.
- $\bullet \lim_{x \to a} f(x) = f(a).$
- Geralmente se testa apenas a terceira condição, pois ela só pode ser válida se as outras duas também forem.
- Uma função contínua em todos os seus pontos é chamada de função contínua.

Tipos de descontinuidades

• Exemplos de funções que não são contínuas no ponto x=a:

Tipos de descontinuidades

- 1) e 3): Descontinuídade removível.
 - Pode ser removida com uma redefinição em f(a).
- 2): Descontinuidade tipo salto.
- 4): Descontinuidade **infinita**.
 - Algum dos limites laterais tende a $\pm \infty$.

Funções contínuas: Propriedades

Sejam f(x) e g(x) funções contínuas em um ponto x=a, então:

- f(x) + g(x) é contínua em x = a.
- f(x) g(x) é contínua em x = a.
- f(x)g(x) é contínua em x = a.
- $\frac{f(x)}{g(x)}$ é contínua em x = a desde que $g(a) \neq 0$.

- Funções polinômiais são contínuas para todo número real. Exemplos:
 - $f(x) = x^3$ e $g(x) = x^4 + 3x^3 5x^2 + 3$ são contínuas.
- Funções racionais são contínuas para todo número real definido em seu domínio. Exemplos:
 - $f(x) = \frac{x^3}{x^2 1}$ é contínua em todos os pontos, exceto em $x = \pm 1$.
 - $g(x) = \frac{1}{x}$ é contínua em todos os pontos, exceto em x = 0.
- As funções trigonométricas f(x) = sen(x) e g(x) = cos(x) são contínuas para todo número real.
- A função exponencial $f(x)=e^x$ é contínua para todo número real.
- A função inversa de uma função contínua é contínua nos pontos do dominio em que é definida.
 - Seja $f(x)=e^x$ uma função contínua em \mathbb{R} , então $f^{-1}(x)=\ln(x)$ para todo $x\in\mathbb{R}_+^*$, onde a função \ln é definida.

- Funções polinômiais são contínuas para todo número real. Exemplos:
 - $f(x) = x^3$ e $g(x) = x^4 + 3x^3 5x^2 + 3$ são contínuas.
- Funções racionais são contínuas para todo número real definido em seu domínio. Exemplos:
 - $f(x) = \frac{x^3}{x^2 1}$ é contínua em todos os pontos, exceto em $x = \pm 1$.
 - $g(x) = \frac{1}{x}$ é contínua em todos os pontos, exceto em x = 0.
- As funções trigonométricas f(x) = sen(x) e g(x) = cos(x) são contínuas para todo número real.
- A função exponencial $f(x) = e^x$ é contínua para todo número real.
- A função inversa de uma função contínua é contínua nos pontos do dominio em que é definida.
 - Seja $f(x)=e^x$ uma função contínua em \mathbb{R} , então $f^{-1}(x)=\ln(x)$ para todo $x\in\mathbb{R}_+^*$, onde a função \ln é definida.

- Funções polinômiais são contínuas para todo número real. Exemplos:
 - $f(x) = x^3$ e $g(x) = x^4 + 3x^3 5x^2 + 3$ são contínuas.
- Funções racionais são contínuas para todo número real definido em seu domínio. Exemplos:
 - $f(x) = \frac{x^3}{x^2 1}$ é contínua em todos os pontos, exceto em $x = \pm 1$.
 - $g(x) = \frac{1}{x}$ é contínua em todos os pontos, exceto em x = 0.
- As funções trigonométricas f(x) = sen(x) e g(x) = cos(x) são contínuas para todo número real.
- A função exponencial $f(x)=e^x$ é contínua para todo número real.
- A função inversa de uma função contínua é contínua nos pontos do dominio em que é definida.
 - Seja $f(x)=e^x$ uma função contínua em \mathbb{R} , então $f^{-1}(x)=\ln(x)$ para todo $x\in\mathbb{R}_+^*$, onde a função \ln é definida.

- Funções polinômiais são contínuas para todo número real. Exemplos:
 - $f(x) = x^3$ e $g(x) = x^4 + 3x^3 5x^2 + 3$ são contínuas.
- Funções racionais são contínuas para todo número real definido em seu domínio. Exemplos:
 - $f(x) = \frac{x^3}{x^2 1}$ é contínua em todos os pontos, exceto em $x = \pm 1$.
 - $g(x) = \frac{1}{x}$ é contínua em todos os pontos, exceto em x = 0.
- As funções trigonométricas f(x) = sen(x) e g(x) = cos(x) são contínuas para todo número real.
- A função exponencial $f(x)=e^x$ é contínua para todo número real.
- A função inversa de uma função contínua é contínua nos pontos do dominio em que é definida.
 - Seja $f(x)=e^x$ uma função contínua em \mathbb{R} , então $f^{-1}(x)=\ln(x)$ para todo $x\in\mathbb{R}_+^*$, onde a função \ln é definida.

Continuidade em intervalo fechado

Uma função f(x) é dita contínua dentro de um intervalo fechado $\left[a,b\right]$ se:

- $\lim_{x\to a^+} f(x) = f(a)$. (f é contínua à direita no ponto a)
- $\lim_{x\to b^-} f(x) = f(b)$. (f é contínua à esquerda no ponto b)
- f é contínua no intervalo aberto (a,b).

Exemplo: Seja a função
$$f(x) = \frac{x}{x^2-9}$$

f(x) é contínua no intervalo aberto (a,b), mas não no intervalo [a,b].

Continuidade em intervalo fechado

Uma função f(x) é dita contínua dentro de um intervalo fechado $\left[a,b\right]$ se:

- $\lim_{x\to a^+} f(x) = f(a)$. (f é contínua à direita no ponto a)
- $\lim_{x\to b^-} f(x) = f(b)$. (f é contínua à esquerda no ponto b)
- f é contínua no intervalo aberto (a,b).

Exemplo: Seja a função $f(x) = \frac{x}{x^2-9}$

f(x) é contínua no intervalo aberto (a,b), mas não no intervalo [a,b].

Avalie a continuidade da função:

$$f(x) = \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1}$$

- Domínio de f(x): $x \in [-3,3]$, exceto as raízes de $3x^4 + 5x^2 + 1$.
- Raízes reais de $3x^4 + 5x^2 + 1$: nenhuma.
- Tomando $c \in (-3,3)$, temos:

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1} = \frac{\sqrt{9 - c^2}}{3c^4 + 5c^2 + 1} = f(c)$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{\sqrt{9 - (3^{-})^{2}}}{3(3^{-})^{4} + 5(3^{-})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(3)$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \frac{\sqrt{9 - (-3^{+})^{2}}}{3(-3^{+})^{4} + 5(-3^{+})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(-3)$$

Avalie a continuidade da função:

$$f(x) = \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1}$$

- Domínio de f(x): $x \in [-3,3]$, exceto as raízes de $3x^4 + 5x^2 + 1$.
- Raízes reais de $3x^4 + 5x^2 + 1$: nenhuma.
- Tomando $c \in (-3,3)$, temos:

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1} = \frac{\sqrt{9 - c^2}}{3c^4 + 5c^2 + 1} = f(c)$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{\sqrt{9 - (3^{-})^{2}}}{3(3^{-})^{4} + 5(3^{-})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(3)$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \frac{\sqrt{9 - (-3^{+})^{2}}}{3(-3^{+})^{4} + 5(-3^{+})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(-3)$$

Avalie a continuidade da função:

$$f(x) = \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1}$$

- Domínio de f(x): $x \in [-3,3]$, exceto as raízes de $3x^4 + 5x^2 + 1$.
- Raízes reais de $3x^4 + 5x^2 + 1$: nenhuma.
- Tomando $c \in (-3,3)$, temos:

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1} = \frac{\sqrt{9 - c^2}}{3c^4 + 5c^2 + 1} = f(c)$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{\sqrt{9 - (3^{-})^{2}}}{3(3^{-})^{4} + 5(3^{-})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(3)$$

$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} \frac{\sqrt{9 - (-3^+)^2}}{3(-3^+)^4 + 5(-3^+)^2 + 1} = \frac{0^+}{289^-} = 0 = f(-3)$$

Avalie a continuidade da função:

$$f(x) = \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1}$$

- Domínio de f(x): $x \in [-3,3]$, exceto as raízes de $3x^4 + 5x^2 + 1$.
- Raízes reais de $3x^4 + 5x^2 + 1$: nenhuma.
- Tomando $c \in (-3,3)$, temos:

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1} = \frac{\sqrt{9 - c^2}}{3c^4 + 5c^2 + 1} = f(c)$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{\sqrt{9 - (3^{-})^{2}}}{3(3^{-})^{4} + 5(3^{-})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(3)$$

$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} \frac{\sqrt{9 - (-3^+)^2}}{3(-3^+)^4 + 5(-3^+)^2 + 1} = \frac{0^+}{289^-} = 0 = f(-3)$$

Avalie a continuidade da função:

$$f(x) = \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1}$$

- Domínio de f(x): $x \in [-3,3]$, exceto as raízes de $3x^4 + 5x^2 + 1$.
- Raízes reais de $3x^4 + 5x^2 + 1$: nenhuma.
- Tomando $c \in (-3,3)$, temos:

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sqrt{9 - x^2}}{3x^4 + 5x^2 + 1} = \frac{\sqrt{9 - c^2}}{3c^4 + 5c^2 + 1} = f(c)$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{\sqrt{9 - (3^{-})^{2}}}{3(3^{-})^{4} + 5(3^{-})^{2} + 1} = \frac{0^{+}}{289^{-}} = 0 = f(3)$$

$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} \frac{\sqrt{9 - (-3^+)^2}}{3(-3^+)^4 + 5(-3^+)^2 + 1} = \frac{0^+}{289^-} = 0 = f(-3)$$

Teorema do valor intermediário

Se f(x) é contínua dentro de um intervalo [a,b] e L é um número tal que $f(a) \leq L \leq f(b)$ ou $f(a) \geq L \geq f(b)$, então existe um valor de $x \in [a,b]$ tal que f(x) = L.

• Este teorema ilustra a idéia de que uma função contínua é aquela em que seu gráfico pode ser desenhado sem que "o lápis deixe de tocar o papel". (o gráfico não possui interrupções)

Teorema do valor intermediário

Se f(x) é contínua dentro de um intervalo [a,b] e L é um número tal que $f(a) \leq L \leq f(b)$ ou $f(a) \geq L \geq f(b)$, então existe um valor de $x \in [a,b]$ tal que f(x) = L.

 Este teorema ilustra a idéia de que uma função contínua é aquela em que seu gráfico pode ser desenhado sem que "o lápis deixe de tocar o papel". (o gráfico não possui interrupções)

10 / 12

Corolário

Se f(x) é contínua em [a,b] e se f(a) e f(b) tiverem sinais opostos, então existe pelo menos um número c entre a e b tal que f(c)=0

• Este corolário é usado para assegurar a existência de raizes da função estudada dentro de um intervalo [a, b].

Corolário

Se f(x) é contínua em [a,b] e se f(a) e f(b) tiverem sinais opostos, então existe pelo menos um número c entre a e b tal que f(c)=0

• Este corolário é usado para assegurar a existência de raizes da função estudada dentro de um intervalo [a,b].

Observações:

- Esse corolário garante que existe **ao menos** uma raiz no intervalo [a,b].
- Se f(a) e f(b) tem o mesmo sinal, o corolário **não garante** que não existe uma raiz no intervalo.