Basic Machine Learning Methods: Part 1

Christian Seberino, Ph.D. cs@autoprog.org
DAAML

Outline

• Definitions & Terminology

• Linear Regression

• K Nearest Neighbors Classification

• Machine learning is <u>automatic programming</u>.

 Machine learning programs automatically create other programs!

 Machine learning is useful when creating programs is inconvenient, impractical or <u>impossible</u> for humans.

 Humans programmers have speed and complexity limitations.

 Supervised learning is automatic programming of <u>mathematical functions</u>.

Can be vector, matrix and tensor functions.

 Requires input output pairs to "train" or "learn" a "model".

Regression implies <u>continuous</u> mathematical functions.

• Can draw plots <u>without</u> lifting your pencil.

 Examples include linear and cosine functions.

Classification implies <u>piecewise constant</u>
 mathematical functions.

• Imagine staircase plots.

 Examples include rounding and sign functions.

Linear Regression

• Automatically programs <u>linear</u> functions.

 Can be linear functions of <u>multiple</u> input and output variables!

K Nearest Neighbors Classification

Simply finds the <u>most similar</u> elements!

 Easy to understand but has performance issues with <u>large</u> datasets.

• <u>linear</u> classification method

Corresponds to an idealized neuron.

Foundation of artificial neural networks!

Perceptrons have <u>weights</u> and <u>biases</u>.

• Find the sign of $w_1i_1 + w_2i_2 + w_3i_3 + \dots + b$.

• The algorithm finds weights and biases based on given data.

- Imagine having to descend a mountain in the dark with a small flashlight.
- The mountain may have ridges, valleys and trees.

 For every input output pair (i, o), we determine l(o - P) where l is the "learning rate" and P is the output of the perceptron.

1	O	P	I(o - P)
0.01	1	1	0
0.01	1	0	0.01
0.01	0	1	-0.01
0.01	0	0	0

• The l(o - P)i vector will be added to the weights vector.

• l(o - P) will be added to the bias.