Anomaly Detection

- Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines.
- Your model uses

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2)$$

- You have two features $x_1 = vibration intensity$, and $x_2 = heat generated$.
- Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_2 \approx x_2$.
- One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values.
- What additional feature x_3 should you create to capture these types of anomalies:

Solution Options

• $x_3 = x_1 + x_2$ This could take on large or small values for both normal and anomalous examples, so it is not a good feature.