Лекция 9

Стандартное абсолютно непрерывное распределение

І. Равномерное распределение

Def. Случайная величина ξ имеет равномерное распределение $\xi \in u(a,b)$, если ее плотность на этом отрезке постоянна

Получаем функцию плотности
$$f_{\xi}(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x < b \\ 0 & x \ge b \end{cases}$$
 $\frac{1}{b-a}$ из усл. нормировки

Числовые характеристики:

Писловые характеристики.
$$E\xi = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^2}{2} \Big|_{a}^{b} = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}$$

$$E\xi^2 = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{a}^{b} x^2 \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^3}{3} \Big|_{a}^{b} = \frac{b^3 - a^3}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$$

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{b^2 - 2ab + a^2}{12} = \frac{(b-a)^2}{12}$$

$$\sigma = \sqrt{D\xi} = \frac{b-a}{2\sqrt{3}}$$

$$p(\alpha < \xi < \beta) = \frac{\beta - \alpha}{b-a}$$
 при условии, что $\alpha, \beta \in [a,b]$

Nota. Примеры равномерного распределения: задача со временем, датчики случайных чисел имеют стандартное равномерное распределение u(0,1)

II. Показательное распределение

Def. Случайная величина ξ имеет показательное (или экспоненциальное) распределение с параметром $\alpha > 0$ (обозн. $\xi \in E_{\alpha}$), если ее плотность имеет вид:

Функция распределения $F_{\xi}(x)= egin{cases} 0, & x<0 \\ \int_0^x \alpha e^{-\alpha x} = 1-e^{-\alpha x}, & x\geq 0 \end{cases}$

Числовые характеристики:

$$E\xi = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x \alpha e^{-\alpha x} dx = \begin{bmatrix} u = x & du = dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -xe^{-\alpha x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\alpha x} dx = \begin{bmatrix} u = x & du = dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -xe^{-\alpha x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\alpha x} dx = \begin{bmatrix} \lim_{x \to \infty} \frac{x}{e^{\alpha x}} - \frac{1}{\alpha} e^{-\alpha x} \Big|_{0}^{\infty} - \lim_{x \to \infty} \frac{1}{\alpha e^{\alpha x}} - \frac{1}{\alpha} (\lim_{x \to \infty} e^{-\alpha x} - 1) = \frac{1}{\alpha} \\ E\xi^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{2} \alpha e^{-\alpha x} dx = \begin{bmatrix} u = x^{2} & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} \alpha x & v = -e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} - 2x e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} - 2x e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x} \Big|_{0}^{\infty} + 2 \int_{0}^{\infty} x e^{-\alpha x} dx = \begin{bmatrix} 2 & du = 2x dx \\ dv = \alpha e^{-\alpha x} - 2x e^{-\alpha x} \end{bmatrix} = -x^{2} e^{-\alpha x}$$

Nota. Из непрерывных случайных величин только показательная обладает свойством нестарения

Th.
$$\exists \xi \in E_{\alpha}$$
. Тогда $p(\xi < x + y \mid \xi > x) = p(\xi > y)$ $\forall x, y > 0$

$$p(\xi < x + y \mid \xi > x) = p(\xi > y) = \frac{p(\xi > x + y, \xi > x)}{p(\xi > x)} = \frac{1 - p(\xi < x + y)}{1 - p(\xi < x)} = \frac{1 - F(x + y)}{1 - F(x)} = \frac{e^{-\alpha(x + y)}}{e^{-\alpha x}} = e^{-\alpha y} = 1 - (1 - e^{-\alpha y}) = 1 - p(\xi < y) = p(\xi > y)$$

- Ех. 1. Время работы надежной микросхемы до поломки
- Ех. 2. Время между появлениями двух редких событий (через схему Пуассона)

Nota. Применется в системах массового обслуживания, теория надежности

III. Нормальное распределение (Гауссовское)

Def. Случайная величина ξ имеет нормальное распределение с параметрами a и σ^2 (обозн. $\xi \in N(a, \sigma^2)$), если ее плотность имеет вид:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

Смысл параметров распределения: $a = E\xi$ - матожидание и медиана, σ - СКО, а $D\xi = \sigma^2$ Функция распределения: $F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$

Проверим корректность определения - условие нормировки. Покажем, что $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \begin{bmatrix} t = \frac{x-a}{\sigma\sqrt{2}} & dt = \frac{dx}{\sigma\sqrt{2}} \\ t(\pm\infty) = \pm\infty & dx = \sigma\sqrt{2}dt \end{bmatrix} = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-t^2} \sigma\sqrt{2}dt = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \sqrt{\pi} = 1 - \text{ Bepho}$$

Ясно, что $m_k = \int_{-\infty}^{\infty} x^k f(x) dx = \int_{-\infty}^{\infty} x^k \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$ - интеграл сходится абсолютно для

любого
$$k$$
 (степень e задавит полином)
$$E\xi = m_1 = \int_{-\infty}^{\infty} x^k \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = a \text{ в силу симметрии}$$

Найдем дисперсию при помощи дифференцирования интеграла по параметру: Из условия нормировки
$$\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = 1$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \sigma$$

$$\frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\frac{(x-a)^2}{2\sigma^2}} \left(-\frac{(x-a)^2}{2} (-\sigma^{-3}) \right) dx = 1$$

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{\infty}^{\infty} (x-a)^2 e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \sigma^2 = D\xi, \text{ получаем, что } \sigma - \text{CKO}$$

Стандартное нормальное распределение

Def. Стандартным нормальным распределением называется нормальное распределение с параметрами $a = 0, \sigma^2 = 1$: $\xi \in N(0, 1)$

Плотность:
$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 - функция Гаусса $E\xi = 0; \ D\xi = 1$

Распределение:
$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$$
 - функция стандартного нормального распределения

Заметим, что $F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 e^{-\frac{z^2}{2}} dz + \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz = \frac{1}{2} + \Phi(x)$, где $\Phi(x)$ - функция Лапласа Функция Лапласа нечетная и из соображения симметрии легко вычисляется для отрицательных x, однако большинство ПО используют $F_0(x)$

Связь между нормальным и стандартным нормальным распределениями

1)
$$\exists \xi \in N(a, \sigma^2)$$
. Тогда $F_{\xi}(x) = F_0\left(\frac{x-a}{\sigma}\right)$

$$F_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt = \begin{bmatrix} z = \frac{t-a}{\sigma} & t = \sigma z + a & dt = \sigma dz \\ z(-\infty) = -\infty & z(x) = \frac{x-a}{\sigma} \end{bmatrix} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{z^2}{2}} \sigma dz = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{z^2}{2}} dz = F_0\left(\frac{x-a}{\sigma}\right)$$

2) Если $\xi \in N(a,\sigma^2),$ то $\eta = \frac{\xi-a}{\sigma} \in N(0,1)$ (процесс $\xi \to \eta$ называется стандартизацией)

3)
$$\exists \xi \in N(a, \sigma^2)$$
. Тогда $p(\alpha < \xi < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$

$$p(\alpha < \xi < \beta) = F_{\xi}(\beta) - F_{\xi}(\alpha) = F_0\left(\frac{\beta - a}{\sigma}\right) - F_0\left(\frac{\alpha - a}{\sigma}\right) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

4) Вероятность попадания в симметричный интервал (вероятность отклонения случайной величины от матожидания) $p(|\xi - a| < t) = 2\Phi\left(\frac{t}{\sigma}\right)$

$$p(|\xi - a| < t) = p(-t < \xi - a < t) = p(a - t < \xi < a + t) = \Phi\left(\frac{a + t - a}{\sigma}\right) - \Phi\left(\frac{a - t - a}{\sigma}\right) = \Phi\left(\frac{t}{\sigma}\right) - \Phi\left(\frac{t}{\sigma}\right) = 2\Phi\left(\frac{t}{\sigma}\right)$$

Nota. Если через $F_0(x)$, то $p(|\xi - a| < t) = 2_0 \left(\frac{t}{\sigma}\right) - 1$

5) Правило 3 «сигм»: $p(|\xi - a| < 3\sigma) \approx 0.9973$ - попадание случайной величины нормального распределения в интервал $(a - 3\sigma, a + 3\sigma)$ близко к 1

$$p(|\xi - a| < 3\sigma) = 2\Phi\left(\frac{3\sigma}{\sigma}\right) = 2\Phi(3) = 2 \cdot 0.49685 = 0.9973$$

6) Свойство линейности: если случайная величина $\xi \in N(a, \sigma^2)$, то $\eta = \gamma \xi + b \in N(a\gamma + b, \gamma^2 \sigma^2)$ (можем доказать при помощи свойств ранее, но мы докажем позже, используя другие методы) 7) Устойчивость относительно суммирования: если случайные величины $\xi_1 \in N(a_1, \sigma_1^2), \xi_2 \in N(a_2, \sigma_2^2)$, и они независимы, то $\xi_1 + \xi_2 \in N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$

Коэффициенты асимметрии и эксцесса

Def. 1. Асимметрией распределения называется число $A_s = E\left(\frac{\xi - a}{\sigma}\right)^3 = \frac{\mu^3}{\sigma^3}$

Def. 2. Эксцессом распределения называется число $E_s = E\left(\frac{\xi - a}{\sigma}\right)^4 - 3 = \frac{\mu^4}{\sigma^4} - 3$

Nota. Если случайная величина $\xi \in N(a, \sigma^2)$, то $A_s = E_s = 0$, таким образом, отличие этих характеристик от нуля характеризирует степень отклонения распределения. Благодаря этим и другим параметрам, можно проверять на практике, является ли распределение нормальным