Khôlles: Maths

Kylian Boyet, George Ober

11 novembre 2023

Résumé

Ce pdf sera vraisemblablement sujet à de nombreuses maj. Je vais essayer à partir de maintenant de faire un pdf contenant toutes les khôlles de la 6-ième semaine à la dernière (j'espère avoir le temps). De plus, il peut arriver que je propose une solution originale à une question, seulement ladite solution n'aura sans doute été vérifiée par personne, si vous constatez une ou plusieurs erreur.s tachez de m'en faire part, d'ailleurs si vous relevez une erreur quelconque dans ce document je vous prie de faire de même. Enfin, les semaines 3 et 5 resteront hors de ce document car leur insertion est **BEAUCOUP TROP** compliquée pour moi donc j'ai laissé tombé... Si vous les voulez, faîtes moi signe. Aussi, si plusieurs démonstrations sont présentes dans le cours et que nous avons la possiblité de choisir celle.s que nous voulons, je prendrai toujours celle.s qui me paraît.ssent la.es plus naturelle.s et "facile.s" car je n'aime pas apprendre des choses inutilement compliquées, tout comme je prendrai parfois la liberté de laisser certaines choses au lecteur car certains passages sont trop évidents pour être traités. Finalement, si vous avez des questions sur ce que j'ai écrit ou si vous voulez des informations sur le code LaTeX, (ou Tikz), n'hésitez pas. Bonne lecture.

Table des matières

1	1 Semaine 6	:	2
	1.1 Montrer que si f est impaire et bijective, al	ors f^{-1} est aussi impaire. Donnez un/des	_
	exemples	$(\ln x)^{\alpha}$	2
	1.2 Limite (et preuve) lorsque x tend vers $+\infty$	$de \stackrel{\checkmark}{\underset{x^{\beta}}{}} pour \alpha, \beta \in (\mathbb{R}_{+}^{*}) \dots \dots$	4
	1.3 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ s		
	$\left(\mathbb{R}_+^*\right)^2\dots\dots\dots\dots\dots$		3
	1.4 Présentation exhaustive de la fonction arcs		5
	1.5 Présentation exhaustive de la fonction arco		5
	1.6 Présentation exhaustive de la fonction arct 1.7 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$ sur		6
	tation géométrique du cercle trigonométric		7
	1.8 Présentation analytique rapide des fonction		8
2	Semaine 7		9
3	3 Semaine 8	•	9
4	4 Semaine 9	•	9
5	5 Semaine 10	•	9
6	6 Semaine 11	,	9
7	7 Semaine 12	,	9
8	8 Semaine 13	,	9
9	9 Semaine 14	,	9
10	10 Semaine 15	•	9
11	11 Semaine 16	•	9

1 Semaine 6

1.1 Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples.

Soit $f: I \to F$, avec I, F deux parties non-vides de \mathbb{R} , une telle fonction et notons f^{-1} sa bijection réciproque. Si f est impaire sur I, alors pour tout $x \in I$, $-x \in I$, ainsi I est centré en 0 et on a :

$$\forall x \in I, \ f(-x) = -f(x).$$

Ainsi, prenons $y \in F$, alors $-y \in F$ par imparité et bijectivité de f. On a donc :

$$\begin{array}{lcl} f^{-1}(-y) & = & f^{-1}(-f(f^{-1}(y))) \\ & = & f^{-1}(f(-f^{-1}(y))) \\ & = & -f^{-1}(y). \end{array}$$

D'où l'imparité de f^{-1} .

Pour ce qui est de l'exemple, prenons notre fonction bijective impaire préférée, la fonction $\sin|_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}^{\left[-1,1\right]}$ que l'on notera $\widetilde{\sin}$. Sa bijection réciproque est bien entendu arcsin : $\left[-1,1\right] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

De la même manière que dans la démonstration du cas général, prenons $y \in [-1, 1]$, comme [-1, 1] est centré en $0, -y \in [-1, 1]$, on a dès lors :

$$\begin{aligned} \arcsin(-y) &= \arcsin(-\widetilde{\sin}(\arcsin(y))) \\ &= \arcsin(\widetilde{\sin}(-\arcsin(y))) \\ &= -\arcsin(y). \end{aligned}$$

Ce qui suffit.

1.2 Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in (\mathbb{R}_{+}^{*})^{2}$.

Premièrement, posons:

$$\forall (x, \alpha, \beta) \in [1, +\infty[\times (\mathbb{R}_+^*)^2, \quad f_{\alpha, \beta}(x) = \frac{(\ln x)^{\alpha}}{x^{\beta}}.$$

Deuxièmement, montrons que :

$$\frac{\ln(x)}{x^2} \xrightarrow[n \to +\infty]{} 0.$$

Soit $x \in [1, +\infty[$ = \mathcal{A} . Nous savons que la fonction ln est concave sur \mathbb{R}_+^* , donc en particulier sur \mathcal{A} . Ainsi, ln est en dessous de toutes ses tangentes, d'où :

$$\forall x \in \mathcal{A}, \quad 0 \le \ln(x) \le x - 1.$$

2

Illustration de l'inégalité :

Figure 1. ln en rouge et la première bissectrice en bleu.

On peut alors diviser par x^2 (car $x \neq 0$):

$$\forall x \in \mathcal{A}, \quad 0 \le \underbrace{\frac{\ln(x)}{x^2}}_{f_{1,2}(x)} \le \underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{x^2}}_{x \to +\infty}.$$

Donc par théorème d'encadrement $f_{1,2}(x) \xrightarrow[x \to +\infty]{} 0$.

Dernièrement, le cas général. Soit $x \in \mathcal{A}$ et soient $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On fait une preuve directe.

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} = \left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

$$= \underbrace{\left(\frac{2\alpha}{\beta}\right)^{\alpha}}_{c^{\underline{te}} \text{ (définie!)}} \cdot \underbrace{\left[\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)}{\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}\right]_{x \to +\infty}^{\alpha}}_{\text{par composition des limites}}.$$

$$\xrightarrow[x \to +\infty]{\text{par produit}}$$

Ce qui conclut.

1.3 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha,\beta) \in \left(\mathbb{R}_+^*\right)^2$.

Montrons que $\frac{1-\cos(x)}{x^2} \xrightarrow[x\to 0]{} \frac{1}{2}$.

On fait toujours une preuve directe.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{2x}{2}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{2}\right)}{\frac{x}{2} \cdot \left(\frac{x}{2}\right)}$$

$$= \lim_{x \to 0} \frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{2}\right)$$

$$= \lim_{x \to 0} \frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{2}\right)$$

$$= \frac{1}{2}$$

Trouvons la limite, sous réserve d'existence, de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ suivant $n \in \mathbb{R}_+$

Remarquons que si $q \leq 0$, il est *nécessaire* d'avoir $\alpha \in \mathbb{Z}^*$ sinon l'expression n'a tout simplement *aucun sens*. De fait, on supposera q > 0 tout le long, les cas q < 0 se font naturellement (convergence pour $q \in \mathbb{R}_-$).

Soit donc 0 < q < 1, ce cas est immédiat, $((q^n)^\alpha)_{n \in \mathbb{N}} = ((q^\alpha)^n)_{n \in \mathbb{N}}$, donc il s'agit de la suite géométrique de raison $q^\alpha \in]0,1[$ et de premier terme $q^{\min_I(n)\alpha}$ ($\min_I(n)$, avec I une partie non vide de \mathbb{N} , car la suite ne démarre pas forcément à 0), donc elle converge vers 0.

Si $q \ge 1$, on montre le cas trivial $\alpha = \beta = 1$:

$$\forall n \in \llbracket \lfloor q \rfloor + 1, +\infty \llbracket, \quad 0 \leq \frac{q^n}{n!} = \underbrace{\frac{q}{1} \times \frac{q}{2} \times \cdots \times \frac{q}{\lfloor q \rfloor}}_{= \ \lambda \ \text{(une constante)}} \times \underbrace{\frac{q}{\lfloor q \rfloor + 1}}_{\leq 1} \times \cdots \times \underbrace{\frac{q}{n-1}}_{\leq 1} \times \underbrace{\frac{q}{n}}_{n \to +\infty} \times \underbrace{\frac{q}{n$$

Par théorème d'existence de limite par encadrement, $\left(\frac{q^n}{n!}\right)_{n\in\mathbb{N}}$ converge et sa limite est 0.

Soient $(\alpha, \beta) \in \mathbb{R}_+^*$, montrons le cas général pour $q \geq 1$.

$$\forall n \in \mathbb{N}, \quad \frac{(q^n)^{\alpha}}{(n!)\beta} = \left(\frac{\left(q^{\frac{\alpha}{\beta}}\right)^n}{n!}\right)^{\beta} = \underbrace{\left(\frac{q^{\frac{\alpha}{\beta}}\right)^n}{n!}}_{\substack{n \to +\infty \\ n \to +\infty}} \underbrace{0}_{\substack{c \text{'est le cas trivial}}}_{\substack{n \to +\infty}}$$

Ce qui termine la preuve.

1.4 Présentation exhaustive de la fonction arcsin.

Premièrement, ladite fonction est la bijection réciproque de la fonction $\widetilde{\sin}$ (voir 1.). D'où :

$$\arcsin = \begin{cases} [-1,1] & \to & [-\frac{\pi}{2}, \frac{\pi}{2}] \\ x & \mapsto & (\widetilde{\sin})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arcsin(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\sin}$:

- 1. arcsin est impaire.
- 2. arcsin est strictement croissante sur [-1, 1].
- 3. $\arcsin \in C^0([-1,1],[-\frac{\pi}{2},\frac{\pi}{2}]).$
- 4. $\arcsin \in \mathcal{D}^1(]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 5. $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 6. arcsin admet deux demi-tangentes verticales en -1 et 1.

Graphe de arcsin :

Figure 2. arcsin en bleu, sin en vert et la première bissectrice en rouge.

On a aussi, grâce au taux d'accroissement en 0 d'arcsin :

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1.$$

Puis finalement (visible sur le graphe):

$$\forall x \in [0,1], \quad \arcsin(x) \ge x.$$

1.5 Présentation exhaustive de la fonction arccos.

Premièrement, la dite fonction est la bijection réciproque de la fonction $\cos|_{[0,\pi]}^{[-1,1]}:=\widetilde{\cos}.$ D'où :

$$\arccos = \begin{cases} [-1,1] & \to [0,\pi] \\ x & \mapsto (\widetilde{\cos})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$, $\cos(\theta) = x$.

5

Il découle alors naturellement des propriétés héréditairement acquises de cos :

- 1. arccos est strictement décroissante sur [-1, 1].
- 2. $\arccos \in C^0([-1,1],[0,\pi]).$
- 3. $\arccos \in \mathcal{D}^1(] 1, 1[,]0, \pi[).$
- 4. $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}} \text{ pour tout } x \in]-1,1[.$
- 5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos:

Figure 3. arccos en vert, $\widetilde{\cos}$ en violet, la première bissectrice en rouge et $y = \frac{\pi}{2} - x$ en rose.

1.6 Présentation exhaustive de la fonction arctan.

Premièrement, la dite fonction est la bijection réciproque de la fonction $\tan |_{]-\frac{\pi}{2},\frac{\pi}{2}[}:=\widetilde{\tan}.$ D'où:

$$\arctan = \begin{cases} \mathbb{R} & \to & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\widetilde{\tan}\right)^{-1} (x) \end{cases}$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\tan(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de tan :

- 1. arctan est impaire.
- 2. $\arctan \in \mathcal{C}^0\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$.
- 3. $\arctan \in \mathcal{D}^1\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2} \right[\right)$. 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan:

Figure 4. arctan en vert, tan en bleu, la première bissectrice en rouge, et les fonctions $y=\pm\frac{\pi}{2}$ et $x=\pm\frac{\pi}{2}$ en noir.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \le x.$$

Et enfin:

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

Ce qui conclut les présentations exhaustives.

1.7 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ sur } [-1, 1]$, dont une basée sur une interprétation géométrique du cercle trigonométrique.

L'interprétation géométrique sur [0,1], celle sur [-1,0] est laissée au lecteur car il s'agit du même principe modulo des détails :

Figure 5.

Preuve formelle:

Soit $x \in [-1, 1]$. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi:

$$\arcsin(x) + \arccos(x) = \varphi + \arccos(\sin(\varphi)) = \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$
 or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où $\arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :
$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

1.8 Présentation analytique rapide des fonctions cosh et sinh.

• Domaine de définition et symétries. \sinh et \cosh sont définies \sup \mathbb{R} .

De plus,

(ii) $\forall x \in \mathbb{R}$, $\begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} & \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes ($\mathcal{C}_{\rm sinh}$ et $\mathcal{C}_{\rm cosh}$) de ces fonctions sur \mathbb{R} à partir de ceux ($\mathcal{C}_{\rm sinh}^+$ et $\mathcal{C}_{\rm cosh}^+$) obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe $(O, \overrightarrow{\jmath})$:

$$C_{\sinh} = C_{\sinh}^{+} \cup s\left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r\left(C_{\cosh}^{+}\right)$

- Variations : triviales.
- Branches infinies en $+\infty$ et position relative de \mathcal{C}_{sinh} et \mathcal{C}_{cosh} .

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} 0 \xrightarrow{x \to +\infty} +\infty$$

Donc le graphe de cosh admet une branche parabolique de direction asymptotique $(O, \overrightarrow{\jmath})$. On a:

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Donc les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

• Tangente au graphe de sinh à l'origine et position relative.

Cette étude est aussi triviale, il s'agira d'étudier $g:x\in\mathbb{R}_+\mapsto\sinh(x)-x$, de remarquer sa dérivabilité d'en étudier les variations puis de conclure, en précisant que cette étude révèle l'inflexion du graphe de sinh en 0.

- 2 Semaine 7
- 3 Semaine 8
- 4 Semaine 9
- 5 Semaine 10
- 6 Semaine 11
- 7 Semaine 12
- 8 Semaine 13
- 9 Semaine 14
- 10 Semaine 15
- 11 Semaine 16