Table des matières

Résumé

Plan:

- 1. Courbes (plan + espace)
 - étude local
 - étude global
- 2. surfaces dans \mathbb{R}^3

1 Courbes

Lesson 1

Définition 1. Courbe et Courbe Régulière

1. Une courbe paramètre dans \mathbb{R}^3 est une function $c: I \to \mathbb{R}^n$ où I est un intervalle de \mathbb{R} et c est lisse (c est infiniment différentielle, $c \in C^{\infty}$).

$$I \ni t \mapsto c(t) \in \mathbb{R}^3$$
,

t – paramètre.

2. Une courbe paramétrée est régulièrement si

$$\dot{c}(t) = \frac{\mathrm{d}}{\mathrm{d}t}c(t) \neq 0,$$

pour tout $t \in I$.

Si une courbe est régulière, $c(t) \neq const.$ $\dot{c}(t)$ ¡diuge la tangente à la courbe en c(t).

Chaque régulière courbe est tangente à la ligne.

Définition 2. La trace d'une courbe paramètre $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est image :

$$\{c(t) \mid t \in I\} \subset \mathbb{R}^n$$
.

Une cure paramètre est plus une sa trace.

La courbe

$$R\ni t\mapsto \left(\begin{array}{c}t^3\\0\end{array}\right)\in\mathbb{R}^2,$$

 $trace = \{ \left(\begin{array}{c} x \\ 0 \end{array} \right) \ | \ x \in \mathbb{R} \}.$ Et la courbe

$$R\ni t\mapsto \left(\begin{array}{c}t\\0\end{array}\right)\in\mathbb{R}^2$$

a la même trace!

$$\dot{c}_1(t) = \left(\begin{array}{c} 3t^2 \\ 0 \end{array} \right), \ mais \ \dot{c}_2(t) = \left(\begin{array}{c} 1 \\ 0 \end{array} \right).$$

Définition 3. Si $I \ni t \mapsto c(t) \in \mathbb{R}$ est une courbe paramètre, $J \subset \mathbb{R}$ – une intervalle et $\varphi : J \to I$ une function lisse t.q. $\varphi^{-1} : J \to I$ est également lisse, on disque(?):

$$J\ni t\mapsto c^2(t)=c\circ\varphi(t)\in\mathbb{R}^n,$$

est une reparametrisation de c.

Remarque : $\dot{\tilde{c}}(t) = \dot{c} \circ \varphi(t) * \dot{\varphi}(t)$. Donc, \tilde{c} - régulière $\iff c$ est régulière.

$$\frac{d}{ds}\varphi^{-1}(s) = \frac{1}{\dot{\varphi} \circ \varphi^{-1}(s)} \neq 0$$

 $\varphi: J \to I$ est un diffeompr
phisme comme $\dot{\varphi} \neq 0$, on a

$$\left\{ \begin{array}{ll} \mathrm{soit}\ \dot{\varphi}(t) > 0, & \mathrm{pour\ tout}\ t \in J \\ \mathrm{soit}\ \dot{\varphi}(t) < 0, & \mathrm{pour\ tout}\ t \in J \end{array} \right.,$$

$$\left\{ \begin{array}{l} \varphi \text{ est } \nearrow \\ \varphi \text{ est } \searrow \end{array} \right..$$

Si φ est \nearrow on dit une la reparametrisation conserve le sens de parcours (l'orientation). Si φ est \searrow , la reparam inverse le sens de parours.

Définition 4. 1. Une courbe est une classe d'equivalence de courbes parametrie pour la selation :

 $c \sim \tilde{c} \iff \tilde{c}$ est une reparemetrisation de c

2. Une courbe on entee est une classe d'equivalence des courbes parametrie pour :

 $c \sim \tilde{c} \iff \tilde{c}$ est une reparemetrisation puservant le sense le parours de c

Définition 5. Si c est une courbe paramètre t.q. $|\dot{c}(t)| = 1$ pour tout $t \in I$. On dit que c'est paramitee pur sa louger d'arc.

Proposition 1. Si $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est une courbe param reguliere il existe une reparametrisation de c par ca long d'arc :

$$J\ni s\mapsto \tilde{c}(s)=c\circ \varphi(s)\in\mathbb{R}^n$$

$$|\dot{\tilde{c}}(s)| = 1$$
 pour tout $s \in J$.

Lemme 1. Si $J_1 \ni s \mapsto \tilde{c_1}(s)$, et $J_2 \ni s \mapsto \tilde{c_2}(s)$ sont 2 parametr de par long d'arc de la meme courbe $|\dot{c_1}(s)| = 1 = |\dot{c_2}(s)|$. alors $c_2(s) = c_1(s_0 \pm s)$, pour un $s_0 \in \mathbb{R}$ et si c_1 et c_2 ont un pos le meme suis de parcours. Si $c: [a, b] \to \mathbb{R}^n$ est une courbe parametre sa longen est :

$$L[c] = \int_{a}^{b} |\dot{c}(t)| \,\mathrm{d}t$$

$$l = \int_0^t |\dot{c}(u)| \, du = t$$

2 Lesson 2

Définition 6. Une courbe paramétrie $c: R \to R^d$ est appelie PERIODIQUE de periode p, si c(t+p) = c(t), $\forall t \in R$.

Définition 7. Une courbe fermee et appeler une COURBE FERMEE SIMPLE s'il existe une parametrisation reguliere, periodique de periode p et si : $c_{[0,p)}$ est injectif.

Définition 8. $c \in C^{\infty}(I, R^2)$ est applee Courbe Plane.

Définition 9. Soit c une courbe parametree par longueur d'arc (donc une courbe de vitess 1) (donc $||\dot{c}(t)|| = 1$). Son hamps normale est definie par :

$$N(T) := \dot{c}^{\perp}(t), \ t \in I$$

Remarque. $N(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \dot{c}(t)$. N depend de l'orientation de la courbe.

Pour chaquet lestome \dot{c} , N(t) est un base otrthonormee direct de R^2 .

Lemme 2. Soite une courbe vitesse 1, N son alors $\ddot{c}(t)$ est parallier a N(t).

Démonstration. Idee
$$||\dot{c}(t)|| = 1, \ \forall t \iff \ddot{c}(t) \perp \dot{c}(t).$$

Définition 10. Soit $c \in C^{\infty}(I, R^2)$ une courbe plane de vitesse 1, alors $\ddot{c}(t) = \varkappa(t)N(t)$, avec $\varkappa(t) := \langle \ddot{c}(t), N(t) \rangle$. $\varkappa(t)$ - scalar.

Alors $\varkappa \in C^{\infty}(I, R)$ et \varkappa est appele la courbe dec?? ($\varkappa(t)$ la courbe du point c(t))

Theorem 1. Formulles de Fenet Soit $c \in C^{\infty}(I, \mathbb{R}^2)$ une courbe de vitesse 1.

Soit $T(t):=\dot{c}(t),\ N(t):=T^\perp(t)$, $\{T(t),\ N(t)\}$ - le systeme ortogonale vecteur. Est appeli le reppere de Frenet, ou Base de Frenet. Formules de Frenet :

Remarque.

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\begin{array}{c} T \\ N \end{array} \right) = \left(\begin{array}{cc} 0 & \varkappa \\ -\varkappa & 0 \end{array} \right) = \left(\begin{array}{c} T \\ N \end{array} \right)$$

Lemme 3. Soit $c: C^{\infty}([a, b], R^2)$ une courbe plane devitesse, alors il existe $\nu \in C^{\infty}([a, b], R)$ t.q. $\dot{c}(t) = (\cos \nu(t), \sin \nu(t))$

Définition 11. Soit $c \in C^{\infty}(R, R^2)$ une courbe plane, periodique comenode L et de vitesse 1. (en partiquliere reguliere). Soit $\nu \in C^{\infty}(R, R)$. Telque $\dot{c}(t) = (\cos \nu(t), \sin \nu(t))$ (an dit : une angle de la tangente).

On define le nobn de rotation de la tangente de c : $n_c = \frac{1}{2\pi}(\nu(c) - \nu(o))$