INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4316Quad bilateral switches

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT4316

FEATURES

• Low "ON" resistance:

160 Ω (typ.) at V_{CC} – V_{EE} = 4.5 V 120 Ω (typ.) at V_{CC} – V_{EE} = 6.0 V 80 Ω (typ.) at V_{CC} – V_{EE} = 9.0 V

 Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals

• Typical "break before make" built in

· Output capability: non-standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4316 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4316 have four independent analog switches. Each switch has two input/output terminals (nY, nZ) and an active HIGH select input (nS). When the enable input (\overline{E}) is HIGH, all four analog switches are turned off.

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $V_{CC} >> (V_Y, V_Z) >> V_{EE}$. Inputs nY and nZ are electrically

 $V_{CC} >> (V_Y, V_Z) >> V_{EE}$. Inputs nY and nZ are electrically equivalent terminals.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (\overline{E} and nS). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT.

The analog inputs/outputs (nY and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 10.0 V.

See the "4016" for the version without logic level translation.

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	PICAL	UNIT
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	ONII
t _{PZH}	turn "ON" time	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$			
	Ē to V _{OS}	$V_{CC} = 5 V$	19	19	ns
	nS to V _{OS}		16	17	ns
t _{PZL}	turn "ON" time				
	Ē to V _{OS}		19	24	ns
	nS to V _{OS}		16	21	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time				
	Ē to V _{OS}		20	21	ns
	nS to V _{OS}		16	19	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	13	14	pF
Cs	max. switch capacitance		5	5	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \}$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

$$\sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \} = \text{sum of outputs}$$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

74HC/HCT4316

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	1Z to 4Z	independent inputs/outputs
2, 3, 11, 12	1Y to 4Y	independent inputs/outputs
7	Ē	enable input (active LOW)
8	GND	ground (0 V)
9	V _{EE}	negative supply voltage
15, 5, 6, 14	1S to 4S	select inputs (active HIGH)
16	V _{CC}	positive supply voltage

74HC/HCT4316

FUNCTION TABLE

INPL	CMITCH	
Ē	nS	SWITCH
L	L	off
L	Н	on
Н	X	off

Note

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

74HC/HCT4316

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: –40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals Z, no V_{CC} current will flow out of terminal Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

OVMDOL	PARAMETER		74HC	,		74HC	Γ		CONDITIONS	
SYMBOL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS	
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7	
V_{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7	
VI	DC input voltage range	GND		V _{CC}	GND		V_{CC}	V		
Vs	DC switch voltage range	VEE		V _{CC}	V _{EE}		V_{CC}	V		
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS	
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$	

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4316

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4316.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4316.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

		T _{amb} (°C)										ONDIT	IONS	,
				7	4HC/H	СТ				V _{CC}		_		
SYMBOL	SYMBOL PARAMETER		+25			−40 to +85		o +125	125 UNIT		V _{EE} (V)	Ι _S (μ A)	V _{is}	VI
		min.	typ.	max.	min.	max.	min.	max.						
R _{ON}	ON resistance		_	_		_		_	Ω	2.0	0	100	V _{CC}	V_{IH}
	(peak)		160	320		400		480	Ω	4.5	0	1000	to	or
			120	240		300		360	Ω	6.0	0	1000	VEE	V_{IL}
			85	170		215		255	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		160	_		_		_	Ω	2.0	0	100	VEE	V_{IH}
	(rail)		80	160		200		240	Ω	4.5	0	1000		or
			70	140		175		210	Ω	6.0	0	1000		V_{IL}
			60	120		150		180	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		170	_		_		_	Ω	2.0	0	100	V _{CC}	V _{IH}
	(rail)		90	180		225		270	Ω	4.5	0	1000		or
			80	160		200		240	Ω	6.0	0	1000		V_{IL}
			65	135		170		205	Ω	4.5	-4.5	1000		
ΔR_{ON}	maximum ∆ON		_						Ω	2.0	0		Vcc	V_{H}
	resistance		16						Ω	4.5	0		to	or
	between any		9						Ω	6.0	0		VEE	V_{IL}
	two channels		6						Ω	4.5	-4.5			

Notes

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear.
 Therefore it is recommended that these devices are used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

74HC/HCT4316

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°	°C)				•	TEST CONDITIONS				
	PARAMETER				74H0	:									
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE} (V)	V _I	OTHER		
		min.	typ.	max.	min.	max.	min.	max.							
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.3		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0					
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0					
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND			
±I _S	analog switch OFF-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)		
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)		
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}		

74HC/HCT4316

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TEST CONDITIONS			
					74H	3			UNIT				
SYMBOL	PARAMETER	+25			- 40 1	to +85	−40 to	-40 to +125		V _{CC} (V)	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation		17	60		75		90	ns	2.0	0	$R_L = \infty$; $C_L = 50 \text{ pF}$	
	delay		6	12		15		18		4.5	0	(see Fig.18)	
	V _{is} to V _{os}		5	10		13		15		6.0	0		
			4	8		10		12		4.5	-4.5		
t _{PZH} / t _{PZL}	turn "ON" time		61	205		255		310	ns	2.0	0	$R_L = 1 k\Omega;$	
	E to V _{os}		22	41		51		62		4.5	0	C _L = 50 pF	
			18	35		43		53		6.0	0	(see Figs 19, 20 and	
			19	37		47		56		4.5	-4.5	21)	
t _{PZH} / t _{PZL}	turn "ON" time		52	175		220		265	ns	2.0	0	$R_L = 1 k\Omega;$	
	nS to V _{os}		19	35		44		53		4.5	0	C _L = 50 pF	
			15	30		37		45		6.0	0	(see Figs 19, 20 and	
			17	34		43		51		4.5	-4.5	21)	
t _{PHZ} / t _{PLZ}	turn "OFF"		63	220		275		330	ns	2.0	0	$R_L = 1 k\Omega;$	
	time		23	44		55		66		4.5	0	C _L = 50 pF	
	E to V _{os}		18	37		47		56		6.0	0	(see Figs 19, 20 and	
			21	39		49		59		4.5	-4.5	21)	
t _{PHZ} / t _{PLZ}	turn "OFF"		55	175		220		265	ns	2.0	0	$R_L = 1 k\Omega;$	
	time		20	35		44		53		4.5	0	C _L = 50 pF	
	nS to V _{os}		16	30		37		45		6.0	0	(see Figs 19, 20 and	
			18	36		45		54		4.5	-4.5	21)	

74HC/HCT4316

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

				7	Γ _{amb} (°	C)					TEST	COND	ITIONS
					74HC	Γ			UNIT				
SYMBOL	PARAMETER	+25			-40 t	-40 to +85		-40 to +125		V _{CC} (V)	V _{EE} (V)	V _I	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	0	V _{CC} or GND	
±I _S	analog switch OFF-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

Note

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nS	0.50
Ē	0.50

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4316

74HC/HCT4316

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				Т	EST C	ONDITIONS
					74HC	T						
SYMBOL	PARAMETER	+25			-40 7	-40 TO +85 -40 f			UNIT	V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		6 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH}	turn "ON" time E to V _{os}		22 21	44 42		55 53		66 63	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
t _{PZL}	turn "ON" time E to V _{os}		28 21	56 42		70 53		84 63	ns	4.5 4.5	0 -4.5	(see Figs 19, 20 and 21)
t _{PZH}	turn "ON" time nS to V _{os}		20 17	40 34		53 43		60 51	ns	4.5 4.5	0 -4.5	
t _{PZL}	turn "ON" time nS to V _{os}		25 17	50 34		63 43		75 51	ns	4.5 4.5	0 -4.5	(see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time Ē to V _{os}		25 23	50 46		63 58		75 69	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time nS to V _{os}		22 20	44 40		55 50		66 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)

74HC/HCT4316

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.80 0.40	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	2.40 1.20	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz; (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF};$ $f = 1 \text{ MHz} (\overline{E} \text{ or nS},$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \text{ ns})$ (see Fig.17)
f _{max}	minimum frequency response (-3 dB)	150 160	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
Cs	maximum switch capacitance	5	pF				

Notes

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

General note

 V_{is} is the input voltage at an nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY or nZ terminal, whichever is assigned as an output.

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4316

Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

Fig.16 Test circuit for measuring crosstalk between any two switches. (a) channel ON condition; (b) channel OFF condition.

74HC/HCT4316

AC WAVEFORMS

74HC/HCT4316

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V _{CC}
t _{PZL}	V _{CC}	V _{EE}
t _{PHZ}	V _{EE}	V _{CC}
t _{PLZ}	V _{CC}	V _{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

Definitions for Figs 20 and 21:

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 t_r = t_f = 6 ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".