TSN1101 Computer Architecture and Organization

Section A (Digital Logic Design)

Lecture A-03
Introduction to Digital Logic and Boolean Algebra

TOPIC COVERAGE IN THE LECTURE (1)...

- Introductory Digital Concepts
 - Analog Vs Digital Quantities
 - Analog Vs Digital Electronic Systems Examples
 - Advantages and Limitations of Digital Systems
 - Hybrid Systems
 - Logic levels Positive and Negative Logic
 - Digital Waveforms Period, Frequency, Duty cycle
 - Timing Diagram
 - Types of Data Transfer Serial Vs Parallel

TOPIC COVERAGE IN THE LECTURE (2)...

- Logic Gates NOT, AND, OR, NAND, NOR, XOR, XNOR
 - Standard Logic Symbols
 - Truth Tables
 - Logic expression
 - Logical operation
 - Timing Diagram
 - Application examples
- IC Gates
 - DIP, Pin configurations

TOPIC COVERAGE IN THE LECTURE (3)

- Boolean Algebra
 - Laws and Rules of Boolean Algebra
 - Demorgan's theorems
- Boolean Analysis of Logic circuits
 - Evaluation of logic circuit output
 - Constructing a truth table for a logic circuit
- Simplification using Boolean Algebra

Introduction to Digital Logic and Boolean Algebra

Part 1 of 3

Introductory Digital Concepts

- Digital Vs Analog Systems

TOPIC COVERAGE - PART 1 of 3

- Analog Vs Digital Quantities
- Analog Vs Digital Electronic Systems Examples
- Advantages and Limitations of Digital Systems
- ☐ Hybrid Systems
- Logic levels Positive and Negative Logic
- ☐ Digital Waveforms Period, Frequency, Duty cycle
- Timing Diagram
- Types of Data Transfer Serial Vs Parallel

Analog Quantities

An analog quantity is one having continuous values.

Examples: Temperature, Pressure, Level, Position, Volume, Voltage, Current

Graph of an Analog Quantity - Temperature Vs Time

Digital Quantities

A digital quantity is one having a discrete set of values.

Examples: Digital Watch reading – (*Time of the day in minutes/seconds*)

Number of coins

Human population of a city (it changes with the time)

People travel from/ to the city

Sampled-value representation of Temperature Vs Time

Analog Electronic System

An Example

- Analog system
 - A combination of devices that manipulate values represented in an analog form
 - Here the variable is allowed to take any value in a specified range.
 - An example: A basic audio public address system.
 Sound through a microphone causes voltage changes in proportion to the amplitude of the sound waves.

Analog Electronic System

More Examples

- Automobile speedometer changes with speed
 It can have any value between zero and say, 100mph
- Mercury thermometer varies over a range of values with temperature.
 - Height of the column of mercury is proportional to the room temperature.
 - Level of the mercury represents the value of the temperature
- Magnetic Tape recording and playback equipment

Digital System

- Examples

Digital system

A combination of devices that manipulate values represented in digital form.

Examples:

- Digital Computer
- Handheld Calculator
- Digital Watch
- Telephone system
- Digital audio and video equipment

Analog Watch and Digital Watch

Advantages of Digital over Analog

- □ Data Processing and Transmission more efficient and reliable
- Data Storage more compact storage and greater accuracy and clarity in reproduction
- □ Ease of design In switching circuits, only the range in which the voltage or current fall is important not the exact values
- Accuracy and precision are easier to maintain In analog systems, voltage and current signals are affected by temperature, humidity but in digital systems, info. does not degrade
- Easy Programmable operation
- Less affected by noise since exact value is not important in digital systems
- Ease of fabrication on IC chips analog devices cannot be economically integrated.

Limitations of Digital Techniques

- The real world is analog
- The analog nature of the world requires a time consuming conversion process:
 - Convert analog inputs to digital
 - Process (operate on) the digital information
 - Convert the digital output back to analog

Digital and Analog electronics together

- Examples

Example 1: The audio CD is a typical hybrid (combination) system.

- Analog sound is converted into analog voltage.
- Analog voltage is changed into digital through an ADC in the recorder.
- Digital information is stored on the CD.
- At playback the digital information is changed into analog by a DAC in the CD player.
- The analog voltage is amplified and used to drive a speaker that produces the original analog sound.

Digital and Analog electronics together -Examples

Example 2: Temperature Control System

Binary Digits and Logic Levels

Positive Logic

HIGH = 1

Low = 0

Logic Levels - The voltages used to represent a 1 and a 0

Ex: For TTL, HIGH=2V to 5 V

LOW=0 V to 0.8 V

Negative logic

High = 0

Low = 1

Digital Waveforms

Ideal Pulse

- Digital Waveforms is made up of a series of pulses
- Digital Waveforms consist of voltage levels that are changing back and forth between HIGH and LOW states.

Digital WaveformsNon-ideal pulse

NONIDEAL PULSE CHARACTERISTICS

Rise Time – measured from 10% of the pulse amplitude to 90% of the pulse amplitude Fall Time - measured from 90% of the pulse amplitude to 10% of the pulse amplitude Pulse Width – Time interval between the 50% points on the rising and falling edges

Digital Waveforms-Characteristics

- Periodic Vs Non-periodic

Periodic pulse waveform

One that repeats itself at a fixed interval, called a period

Non-periodic pulse waveform

Composed of pulses of randomly differing time interval between pulses (pulse width)

Periodic Digital Waveforms-Characteristics

- Period Vs Frequency
- Frequency (f) is the rate at which it repeats itself - measured in cycles per second or Hertz (Hz)
- Period (T) is the time required for a periodic waveform to repeat itself
 - measured in seconds
- Relationship between frequency and period

$$f = 1/T$$

$$T = 1/f$$

Periodic Digital Waveforms-Characteristics - Duty Cycle

Duty cycle is the ratio of the pulse width to the period and expressed as a percentage

Duty cycle =
$$(t_w/T) \times 100\%$$

Example: For the above periodic waveform, determine the following

a. Period b. Frequency c. duty cycle

Solution: Period = 10 ms, Frequency = 100 Hz, Duty cycle = 10%

Representation of Bit Sequence

- •The clock is a periodic waveform in which each interval between pulses (period) equals the time for one bit (bit time)
- •Here waveform A level change occurs at the leading edge of the clock waveform

Timing Diagrams

- a graph of digital waveforms showing the actual relationship of two or more waveforms and how each waveform changes in relation to the others
- show voltage versus time.
- Horizontal scale represents regular intervals of time beginning at time zero.
- used to show how digital signals change with time.
- The oscilloscope and logic analyzer are used to produce timing diagrams.

Here waveforms A, B, and C are HIGH only during bit time 7

Binary Data Transfer

- Two types

- Serial Transfer Sent one bit at a time along a single line
 - Advantage: only one line is required
 - Disadvantage: It takes longer to transfer a given number of bits
- •Parallel Transfer all the bits in a group are sent out on separate lines at the same time

Advantage: Speed of transfer – more

Disadvantage: More lines are required

Binary Data Transfer

- Example

Problem:

Determine the total time required to serially transfer the eight bits contained in waveform A and indicate the sequence of bits. The 100kHz is used as reference. What is the total time to transfer the same eight bits in parallel

Solution:

Period T=1/f=10 microseconds Total time required for serial transfer = 8 T = 80 microseconds Bit Sequence = 11010100 Total time required for parallel transfer = 1T = 10 microseconds

Problems

Problem:

Determine the following:

- a. Rise time b. fall time
- c. Pulse width d. amplitude

Solution:

- a. Rise Time = 550 ns
- b. Fall time = 600 ns
- c. Pulse Width = 2.7 microseconds
- d. Amplitude = 10 V

Problems

Problem:

Determine the

- a. Period
- b. Frequency
- c. Duty cycle
- d. Determine the waveform is periodic or non-periodic

Solution:

- a. Period = 4 ms
- b. Frequency = 250 Hz
- c. Duty cycle= $(2ms/4ms) \times 100 \%$ = 50 %
- d. The waveform is periodic since it repeats at a fixed interval

Problems

Problem:

- a. Determine the bit sequence
- Determine the total serial transfer time for the eight bits
- c. Determine the total parallel transfer time

Solution:

- a. 10101110
- b. Each bit time = 1 microsecond

 Serial transfer time = (8 bits) × 1 microsecond/bit = 8 microseconds

 Parallel transfer time = 1 bit time = 1 microsecond

Introduction to Digital Logic and Boolean Algebra

Part 2 of 3

Logic Gates

- NOT, AND, OR, NAND, NOR, XOR, XNOR

TOPIC COVERAGE - PART 2 of 3

- Logic Gates NOT, AND, OR, NAND, NOR, XOR, XNOR
 - Standard Logic Symbols
 - Truth Tables
 - Logic expression
 - Logical operation
 - Timing Diagram
 - Application examples
- IC Gates
 - DIP, Pin configurations

Logic Gates - Introduction

- Logic gates are the building blocks of computers.
- Most of the functions in a computer are implemented with logic gates used on a very large scale.
- For example, a Microprocessor, which is the main part of the computer, is made of up of hundreds of thousands of logic gates

The Inverter (NOT gate)

The Inverter (NOT gate)

- Symbol, Truth Table, Boolean Expression, Logical Operation, Timing Diagram

Basic Logical Function:

NOT gate can have only one input and performs **logical inversion or complementation**.

Logical operation:

The output of an inverter is always the complement (opposite) of the input.

The Inverter (NOT gate)

- Problem

The output of the INVERTER is connected to the input of a second INVERTER. Determine the output level of the second INVERTER for each level of input A

The Inverter

- An example application

A group of inverters can be used to form the 1's complement of a binary number

The AND Gate

 Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

Basic Logical Function:

An AND gate can have two or more inputs and performs **logical** multiplication.

Logical Operation:

The output of an AND gate is HIGH only when all inputs are HIGH.

The AND gate (3-inputs)

3-Input AND Gate

The AND gate (4-inputs)

4-Input AND Gate

The total number of possible combinations of binary inputs to a gate is determined by the following formula:

$$N = 2^n$$

where N is the number of possible input combinations and n is the number of input variables.

For two input variables:

 $N = 2^2 = 4$ combinations

For three input variables:

 $N = 2^3 = 8$ combinations

For four input variables:

 $N = 2^4 = 16$ combinations

- Problem 1

If two waveforms, A and B are applied to AND gate inputs as shown in figure below, what is the resulting output waveform?

- Problem 2

If two waveforms, A and B are applied to AND gate inputs as shown in figure below, what is the resulting output waveform?

- An example application

- A common application of the AND gate is to enable (to allow) the passage of a signal (pulse waveform) from one point to another at certain times and to inhibit (prevent) the passage at other times.
- Example : A seat belt Alarm system

An AND gate is used to detect when the ignition switch is ON and the seat belt is unbuckled.

If the ignition switch is on, a HIGH is produced on input A of the AND gate.

If the seat belt is not properly buckled, a HIGH is produced on input B.

Also, when the ignition switch is turned on, a timer is started that produces a HIGH on input C for 30s. If all three conditions exist- that is, if the ignition is on and the seat belt is unbuckled and timer is running-the output of AND gate is HIGH and audible alarm is energized to remind the driver.

- An example application

- ➤ The AND operation is used in computer programming as a selective mask.
- ➤ If you want to retain certain bits of a binary number but reset the other bits to 0, you could set a mask with 1's in the position of the retained bits.

Example: If the binary number 10100011 is ANDed with the mask 00001111, what is the result?

Ans: 00000011

The OR Gate

The OR Gate

 Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

Distinctive shape symbol

Rectangular outline symbol

Basic Logical Function:

The OR gate can have two or more inputs and performs **logical addition**.

Logical Operation:

The output of an OR gate is LOW only when all inputs are LOW.

$$X = A + B$$

Boolean expression

Truth table

(2-input OR gate)

0 = LOW

1 = HIGH

The OR gate (3-inputs)

Note:

Boolean addition differs from binary addition in the cases where two or more 1s are added.

There is no carry in Boolean addition.

3-Input OR Gate

The OR gate (4-inputs)

4-Input OR Gate

The OR gate

- Problem 1

If two waveforms, A and B are applied to OR gate inputs as shown in figure below, what is the resulting output waveform?

The OR gate

- Problem 2

If two waveforms, A and B are applied to OR gate inputs as shown in figure below, what is the resulting output waveform?

The OR gate

- An example application

➤ The OR operation can be used in computer programming to set certain bits of a binary number to 1.

Example: What will be the result if you OR an ASCII upper case letter with the binary number 0100000?

Ans: The resulting letter will be ASCII lower case.

The NAND Gate

The NAND Gate

 Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

Α	В	Χ
0	0	1
0	1	1
1	0	1
1	1	0

$$X = \overline{AB}$$
Boolean expression

Truth table

(2-input NAND Gate)

0 = LOW1 = HIGH

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\Rightarrow A \\
B$$

Basic Logical Function:

The NAND gate can have two or more inputs and performs **inverse** of **logical multiplication**.

Logical Operation:

The output of a NAND gate is LOW only when all inputs are HIGH

The NAND gate (3-inputs)

The NAND gate (4-inputs)

4-Input NAND Gate

- Problem

If two waveforms, A and B are applied to NAND gate inputs as shown in figure below, what is the resulting output waveform?

The NAND Gate

- Negative-OR Equivalent operation

- A NAND gate produces HIGH output, when one or more inputs are LOW.
- From this view point, a NAND gate can be used for an OR operation that requires one or more LOW inputs to produce a HIGH output. This aspect of NAND operation is referred to as negative-OR

Standard symbols representing the two equivalent operations of a NAND gate

The NOR Gate

The NOR Gate

 Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

Distinctive shape symbol

$$X = \overline{A + B}$$
Boolean expression

Truth table

(2-input NOR Gate)

$$0 = LOW$$

 $1 = HIGH$

Basic Logical Function:

The NOR gate can have two or more inputs and performs **inverse** of **logical** addition.

Logical Operation:

The output of a NOR gate is HIGH only when all inputs are LOW

The NOR gate (3-inputs)

The NOR gate (4-inputs)

The NOR gate

- Problem

If two waveforms, A and B are applied to NOR gate inputs as shown in figure below, what is the resulting output waveform?

The NOR Gate

- Negative-AND Equivalent operation

- A NOR gate produces HIGH output, when all inputs are LOW.
- From this view point, a NOR gate can be used for an AND operation that requires all LOW inputs to produce a HIGH output. This aspect of NOR operation is referred to as negative-AND

Standard symbols representing the two equivalent operations of a NOR gate

The XOR Gate

The XOR (Exclusive-OR) Gate

 Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

Distinctive shape symbol

Basic Logical Function:

The XOR gate can have two or more inputs and performs **ODD function** (output is equal to 1 if the input variables have an odd number of 1's).

Logical Operation:

The output of XOR gate is HIGH whenever the two inputs are different (2-input XOR gate)

Boolean expression

Truth table

(2-input XOR gate)

0 = LOW 1 = HIGH

The XOR gate (2-inputs)

- using AND-OR-NOT Gates

The XOR gate (3-inputs)

$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$-F = x \oplus y \oplus z$
(b) 3-input gate	

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0

(c) Truth table

The XOR gate

- Problem

If two waveforms, A and B are applied to XOR gate inputs as shown in figure below, what is the resulting output waveform?

If the A and B waveforms are both inverted for the above waveforms, how is the output affected?

Ans: There is no change in the output.

The XNOR Gate

The XNOR (Exclusive-NOR) Gate

- Symbol, Truth Table, Boolean Expression, Logical operation, Timing Diagram

A B X 0 0 1 0 1 0 1 0 0 1 1 1

X = A⊕B Boolean expression

Truth table

(2-input XNOR Gate)

0 = LOW1 = HIGH

Basic Logical Function:

The XNOR gate can have two or more inputs and performs **EVEN function** (output is equal to 1 if the input variables have an even number of 1's).

Logical Operation:

The output of XNOR gate is HIGH whenever the two inputs are identical (2-input XNOR gate - can be called as equivalence gate)

The XNOR gate (3-inputs)

3-input even function

A 0 0 0 1 1 1 1	В	С	X
0	0	0	X 1 0 0 1 1 1 1 0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Truth Table

The XNOR gate

- Problem

If two waveforms, A and B are applied to XNOR gate inputs as shown in figure below, what is the resulting output waveform?

If the A waveform is inverted but B remains the same, how is the output affected?

Ans: The output will be inverted

Basic Logic Gates (Summary)

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i>	$F = x \cdot y$	x y F 0 0 0
			$\begin{array}{c cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
OR	x y F	F = x + y	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} $
			1 1 1
Inverter	<i>x</i> —— <i>F</i>	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
			x F
Buffer	<i>x</i> — <i>F</i>	F = x	0 0 1 1
NAND	<i>x</i>	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \end{array}$
			$egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \end{array}$
NOR	x y F	F = (x + y)'	x y F
			$egin{array}{cccc} 0 & 0 & 1 & \\ 0 & 1 & 0 & \\ 1 & 0 & 0 & \\ \end{array}$
			1 1 0
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	x y F
			0 0 0
			$egin{array}{c ccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \end{array}$
			1 1 0
Exclusive-NOR or equivalence	. —	F = xy + x'y'	x y F
	x		0 0 1
	y + 1	$=(x\oplus y)'$	$\begin{array}{c cccc} 0 & 1 & 0 & \\ 1 & 0 & 0 & \end{array}$
			1 1 1

Integrated Circuit (IC) Packages

DIP and surface mount chips

Dual-In-line Package Chip

Cutaway view of a DIP (Dual-In-line Package) chip:

The TTL series, available as DIPs, are popular for laboratory experiments with logic.

Pin configuration diagrams

- Common fixed-function IC gates

Introduction to Digital Logic and Boolean Algebra

Part 3 of 3

Boolean Algebra

- Laws, Rules and Theorems
- Analysis of Logic Circuits
- Simplification

TOPIC COVERAGE - PART 3 of 3

- Boolean Algebra
 - Laws and Rules of Boolean Algebra
 - Demorgan's theorems
- Boolean Analysis of Logic circuits
 - Evaluation of logic circuit output
 - Constructing a truth table for a logic circuit
- Simplification using Boolean Algebra

BOOLEAN ALGEBRA

- Rules, Laws, and Theorems

Boolean Algebra

- Boolean algebra is the mathematics of digital systems developed by George Boole in 1854.
- A basic knowledge of Boolean algebra is necessary to the study and analysis of logic circuits.
- Variable, complement and literal are terms used in Boolean algebra.
 - A variable is a symbol used to represent logical quantity. Any single variable can have a 1 or a 0 value.
 - The complement or inverse of a variable is indicated by bar or prime symbol
 - A literal is a variable or its complement.

- Commutative Law
- Associative Law
- Distributive Law

Commutative Law of Addition: A + B = B + A

 \square Commutative Law of Multiplication: A . B = B .A

 \square Associative Law of Addition: A + (B + C) = (A + B) + C

□ Associative Law of Multiplication: A . (B . C) = (A . B) . C

■ Distributive Law:

$$A(B + C) = AB + AC$$

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot A = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Rule 1

☐ Rule 2

OR Truth Table

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

$$X = A + 1 = 1$$

☐ Rule 3

□ Rule 4

AND Truth Table

$$A = 0$$

$$1$$

$$X = 0$$

$$X = A \cdot 1 = A$$

☐ Rule 5

☐ Rule 6

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$X = A + \overline{A} = 1$$

$$X = A + \overline{A} = 1$$

☐ Rule 7

☐ Rule 8

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

□ Rule 9

$$A = 0$$

$$\overline{\overline{A}} = 1$$

$$\overline{\overline{A}} = 0$$

$$\overline{\overline{A}} = 0$$

$$\overline{\overline{A}} = 1$$

$$\overline{\overline{A}} = A$$

 \square Rule 10: A + AB = A

Α	В	Χ	E
0	0	0	
0	1	0	E
1	0	0	E
1	1	1	

AND Truth Table

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

 \square Rule 11: A + AB = A + B

A	В	AB	A + AB	A + B	$A \rightarrow \bigcirc$
0	0	0	0	0	
0	1	1	1	1	
1	0	0	1	1	A
1	1	0	1 1	1	$B \longrightarrow$
			equ	al	

Α	В	Χ	E
0	0	0	
0	1	0	E
1	0	0	
1	1	1	

AND Truth Table

L	Α	В	Χ
	0	0	0
	0	1	1
	1	0	1
L	1	1	1

OR Truth Table

□ Rule 12: (A + B)(A + C) = A + BC

A	В	C	A + B	A + C	(A+B)(A+C)	ВС	A + BC	$A + \Box$
0	0	0	0	0	0	0	0	$B + \bigcup_{i \in A} A_i$
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	c———
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	↓
1	0	1	1	1	1	0	1	$A \longrightarrow D$
1	1	0	1	1	1	0	1	$B \longrightarrow C$
1	1	1 1	1	1 1	1	1	1	
					†		+	
					<u> </u>	equal		

Α	В	Χ	
0	0	0	E
0	1	0	
1	0	0	E
1	1	1	

AND Truth Table

1	4	В	Χ	
1	0	0	0	
1	0	1	1	
١.	1	0	1	
	1	1	1	

OR Truth Table

De Morgan's Theorems

De Morgan's first theorem:

The complement of a product of variables is equal to the sum of the complements of the variables.

Stated in another way,

- The complement of two or more variables ANDed is equivalent to the OR of the complements of the individual variables.
- The formula for expressing this theorem for two variables is:

$$\overline{X.Y} = \overline{X} + \overline{Y}$$

De Morgan's Theorems

De Morgan's second theorem:

➤ The complement of a sum of variables is equal to the product of the complements of the variables.

Stated in another way,

- The complement of two or more variables Ored is equivalent to the AND of the complements of the individual variables
- The formula for expressing this theorem for two variables is:

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

De Morgan's Theorem

De Morgan's theorems provide mathematical verification of the equivalency of the NAND and negative-OR gates and equivalency of the NOR and negative- AND gates.

Inputs

These theorems are extremely useful in simplifying expressions in which a product or sum of variables is inverted

X	Y	XY	$\overline{X} + \overline{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0
Ing	outs	Ou	tput
		190	7.00
x	Y	X +	Y XY
X		X +	Y XY
x	0	X +	Y XY

Output

Gate equivalencies and corresponding truth tables

BOOLEAN ANALYSIS OF LOGIC CIRCUITS

Boolean Analysis of Logic Circuits

The purpose of this section is to

- Determine the boolean expression for a combination of gates.
- Evaluate the logic operation of a circuit from the boolean expression.
- Arrive at the simplified boolean algebra expression with the given logic.

Determination of the boolean expression is done one gate at a time starting at the inputs and simplification is done using Boolean laws and rules

Solution: One gate at a time starting with the inputs

$$X = AB + (C+D)$$

$$X = AB + C + D$$

Solution:

$$X = (AB)(CD)$$

$$X = ABCD$$

Solution:

$$X = A + BCD$$

Solution:

X=ABC

Solution:

Solution (continued):

Solution (continued):

Simplification:

$$X = (\overline{A} + AB) + (\overline{B}(C+D))$$

$$X = (\overline{A} + B) + (\overline{B}(C + D))$$

$$X = (A + B) + (B C + B D)$$

$$X = \overline{A} + B + \overline{B}C + \overline{B}D$$

$$X = \overline{A} + B + C + \overline{B} D$$

$$X = \overline{A} + B + C + D$$

Solution:

$$\overline{(A + B)(CD)} = \overline{A + B} + \overline{CD}$$
$$= A + B + CD$$

SIMPLIFICATION USING BOOLEAN ALGEBRA TECHNIQUES

Simplify: A'B + A'B'C'D' + ABCD'

$$A'B + A'B'C'D' + ABCD' = A'(B + B'C'D') + ABCD'$$

= $A'(B + C'D') + ABCD'$
= $B(A' + ACD') + A'C'D'$
= $B(A' + CD') + A'C'D'$
= $A'B + BCD' + A'C'D'$

Simplify: F = A'BC + AB'C + ABC' + ABC

$$F = \overline{A}BC + A\overline{B}C + AB(\overline{C} + C)$$

$$F = \overline{A}BC + A\overline{B}C + AB(1)$$

$$F = \overline{ABC} + A\overline{BC} + AB$$

$$F = \overline{ABC} + A\overline{BC} + AB + ABC$$

$$F = \overline{A}BC + AC(\overline{B} + B) + AB$$

$$F = \overline{A}BC + AC + AB$$

$$F = \overline{A}BC + AC + AB + ABC$$

$$F = BC(\overline{A} + A) + AC + AB$$

$$F = BC + AC + AB$$

Simplify:

$$W = [M + N'P + (R + ST)'][M + N'P + R + ST]$$

Assume $X = M + N'P$ $Y = R + ST$
 $W = (X + Y')(X + Y)$
 $W = XX + XY + Y'X + Y'Y$
 $W = X \cdot 1 + XY + XY' + 0$
 $W = X + X(Y + Y') = X + X \cdot 1 = X$
 $W = M + N'P$

Express the complement f'(w,x,y,z) of the following expression in a simplified form.

$$f(w,x,y,z) = wx(y'z + yz')$$

$$f'(w,x,y,z) = w' + x' + (y'z + yz')'$$

$$= w' + x' + (y'z)'(yz')'$$

$$= w' + x' + (y + z')(y' + z)$$

$$= w' + x' + yy' + yz + z'y' + z'z$$

$$= w' + x' + 0 + yz + z'y' + 0$$

$$= w' + x' + yz + y'z'$$

Simplification using Boolean Algebra

More Problems

- Using Boolean Algebra Techniques, simplify the following expressions:
 - 1. AB+A(B+C)+B(B+C)
 - 2. [AB'(C+BD)+A'B']C
 - 3. A'BC+AB'C'+A'B'C'+AB'C+ABC
 - 4. (AB+AC)'+A'B'C

References

- □ Slides adopted from the books

 Thomas L.Floyd, "Digital Fundamentals," 10th Edition, Pearson

 Education International, 2009

 (ISBN10:0138146462/ISBN13:9780138146467)
- M.Morris Mano and Michael D. Ciletti, "Digital Design," 4th Edition, Pearson Education International, 2007
 (ISBN: 9780131989245)
- Ronald J.Tocci, Neal S.Widmer, and Gregory L.Moss, "Digital Systems- Principles and Application"- 10th Edition, Pearson Education International, 2007 (ISBN: 9780131725799)