Fair and Accurate Regression

Anna Deza¹, Andrés Gómez², Alper Atamtürk¹

¹Department of Industrial Engineering and Operations Research, University of California, Berkeley

²Department of Industrial and Systems Engineering, University of Southern California

ICCOPT 2025

Table of Contents

Introduction

Formulating Exact Fair Regression

Proposed Methods for Fair Regression

Numerical Results

Supervised Learning: Training Problem

Data: observations i = 1, ..., m, consisting of:

 x_i n-dimensional feature vector

 y_i target label

Train a model f by optimizing loss function over training data

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{m} \mathcal{L}(f(\mathbf{x}_i), y_i).$$

Supervised Learning: Training Problem

Data: observations i = 1, ..., m, consisting of:

 x_i n-dimensional feature vector

 y_i target label

Train a model f by optimizing loss function over training data

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{m} \mathcal{L}(f(\mathbf{x}_i), y_i).$$

ightarrow What if training data is *biased?* An accurate model may amplify bias in training data ...

Model predicts scores 0-100 used for college admission process. Fair?

Deza, Gómez, & Atamtürk Fair and Accurate Regression 4

Model predicts scores 0-100 used for college admission process. Fair?

$$P(\text{score} > 75) = 0.35$$

 $P(\text{score} > 75|\text{rural}) = 0.32$

Model predicts scores 0-100 used for college admission process. Fair?

$$P(\text{score} > 75) = 0.35$$

 $P(\text{score} > 75|\text{rural}) = 0.32$

$$P(\text{score} > 70) = 0.52$$

 $P(\text{score} > 70|\text{rural}) = 0.38$

Model predicts scores 0-100 used for college admission process. Fair?

- Fair Classification: fairness at a single b, vast existing literature
- Fair Regression: fairness at all b, far less work \rightarrow problem we address

Fairness: Demographic Parity

Suppose population is segmented according to attribute a which we do not believe should influence the prediction $\hat{y} = f(x)$.

Demographic Parity: $\hat{y} \perp a$

Deza, Gómez, & Atamtürk Fair and Accurate Regression 5

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \ \max_{b \in \mathbb{R}} \left(\hat{P}(\hat{y} > b) - \hat{P}(\hat{y} > b|a = 1) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \ \max_{b \in \mathbb{R}} \left(\hat{P}(\hat{y} > b) - \hat{P}(\hat{y} > b|a = 1) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \ \max_{b \in \mathbb{R}} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b) - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m \mathbb{1}(\hat{y}_i > b) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \max_{b \in \mathbb{R}} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b) - \frac{1}{m_1} \sum_{i=1: a_i=1}^m \mathbb{1}(\hat{y}_i > b) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

Training problem:

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b_j) - \frac{1}{m_1} \sum_{i=1: a_i=1}^m \mathbb{1}(\hat{y}_i > b_j) \right)$$

Discretize \mathbb{R} , only consider fairness at ℓ points $b_1 < b_2 < \ldots < b_\ell$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

Training problem:

$$\min \sum_{i=1}^m \mathcal{L}_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i) + \lambda \max_{j \in 1, ...\ell} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j) - \frac{1}{m_1} \sum_{i=1:a_i=1}^m \mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j) \right)$$

Discretize \mathbb{R} , only consider fairness at ℓ points $b_1 < b_2 < \ldots < b_\ell$

We will focus on **linear regression**: $\hat{y}_i = \mathbf{w}^{\top} \mathbf{x}_i$, $\mathcal{L}_i(\mathbf{w}^{\top} \mathbf{x}_i) = (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$.

Literature Overview

$$\min \sum_{i=1}^{m} \mathcal{L}(\hat{y}_{i}, y_{i}) + \lambda \max_{j \in 1, ... \ell} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) \right)$$

Literature Overview

$$\min \sum_{i=1}^{m} \mathcal{L}(\hat{y}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) \right)$$

Existing methods:

- Convex proxies for fairness: Berk et al. (2017), Do et al. (2022)
- Reduction-based algorthims: Agarwal, Dudik & Wu (2019)
- MIO approach: Ye, Hanasusanto & Xie (2024)

Table of Contents

Introduction

Formulating Exact Fair Regression

Proposed Methods for Fair Regression

Numerical Results

A First Formulation for Fair Regression

Introduce $z_{ij} \in \{0,1\}$ to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\min \sum_{i=1}^{m} \mathcal{L}(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \max_{j \in 1, ... \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right)$$
s.t. $(\mathbf{w}^{\top} \mathbf{x}_{i} - b_{j}) z_{ij} \geq 0$ $j \in [\ell], i \in [m]$
 $(\mathbf{w}^{\top} \mathbf{x}_{j} - b_{j}) (1 - z_{ij}) \leq 0$ $j \in [\ell], i \in [m]$
 $\mathbf{z} \in \{0, 1\}^{m \times \ell}.$

A First Formulation for Fair Regression

Introduce $z_{ij} \in \{0,1\}$ to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\begin{aligned} & \min \ \sum_{i=1}^m \mathcal{L}(\boldsymbol{w}^\top \boldsymbol{x}_i, y_i) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ & \text{s.t. } (\boldsymbol{w}^\top \boldsymbol{x}_i - b_j) z_{ij} \geq 0 \qquad \qquad j \in [\ell], \ i \in [m] \quad z_{ij} = 1 \Rightarrow \boldsymbol{w}^\top \boldsymbol{x}_i \geq b_j \\ & (\boldsymbol{w}^\top \boldsymbol{x}_j - b_j) (1 - z_{ij}) \leq 0 \qquad \qquad j \in [\ell], \ i \in [m] \quad z_{ij} = 0 \Rightarrow \boldsymbol{w}^\top \boldsymbol{x}_i \leq b_j \\ & \boldsymbol{z} \in \{0, 1\}^{m \times \ell}. \end{aligned}$$

A First Formulation for Fair Regression

Relax $z_{ij} \in \{0,1\}$ to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\min \sum_{i=1}^{m} \mathcal{L}(\boldsymbol{w}^{\top}\boldsymbol{x}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right)$$
s.t. $(\boldsymbol{w}^{\top}\boldsymbol{x}_{i} - b_{j})z_{ij} \geq 0$ $j \in [\ell], i \in [m]$ $z_{ij} = 1 \Rightarrow \boldsymbol{w}^{\top}\boldsymbol{x}_{i} \geq b_{j}$
 $(\boldsymbol{w}^{\top}\boldsymbol{x}_{j} - b_{j})(1 - z_{ij}) \leq 0$ $j \in [\ell], i \in [m]$ $z_{ij} = 0 \Rightarrow \boldsymbol{w}^{\top}\boldsymbol{x}_{i} \leq b_{j}$

$$\boldsymbol{z} \in [0, 1]^{m \times \ell}.$$

Uninformative relaxation:

- Continuous relaxation solution is vanilla regression with no fairness
- Why? The closure of the convex hull has no links between \boldsymbol{w} and \boldsymbol{z}

Reformulation: Exploiting Objective

$$\begin{aligned} \min \sum_{i=1}^{m} s_{i} + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right) \\ \text{s.t. } \mathcal{L}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s_{i}, & i \in [m] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{ij} \geq 0, & j \in [\ell], \ i \in [m] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{ij}) \leq 0, & j \in [\ell], \ i \in [m] \\ z_{ij} \in \{0, 1\}, & j \in [\ell], \ i \in [m] \end{aligned}$$

Reformulation: Exploiting Objective

$$\min \sum_{i=1}^{m} s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^{m} z_{ij} \right)$$
s.t.
$$\mathcal{L}(\boldsymbol{w}^{\top} \boldsymbol{x}_i) \leq s_i,$$

$$(\boldsymbol{w}^{\top} \boldsymbol{x}_i - b_j) z_{ij} \geq 0,$$

$$(\boldsymbol{w}^{\top} \boldsymbol{x}_i - b_j) (1 - z_{ij}) \leq 0,$$

$$z_{ij} \in \{0, 1\},$$

$$j \in [\ell],$$

$$i \in [m]$$

$$i \in [m]$$

$$i \in [m]$$

 \rightarrow Obtain strong reformulation by deriving a **compact extended formulation** for cl conv(X_i)

 X_i : single observation (m=1) fair regression

X_i : Epigraph of loss and indicators of prediction i

$$X_{i} = \{(\mathbf{w}, \mathbf{z}, \mathbf{s}) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\mathbf{w}^{\top} \mathbf{x}_{i}) \leq \mathbf{s} \\ (\mathbf{w}^{\top} \mathbf{x}_{i} - b_{j}) z_{j} \geq 0 \quad j \in [\ell] \\ (\mathbf{w}^{\top} \mathbf{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \}$$

$$b_{1} \quad b_{2} \quad b_{3} \quad b_{4}$$

X_i : Epigraph of loss and indicators of prediction i

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq 0 \quad j \in [\ell] \} \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \} \xrightarrow{p_{0}} \begin{array}{c} b_{1} & b_{2} & b_{3} & b_{4} \end{array}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (p_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \\ \boldsymbol{w}^\top x_i = b_1 + \sum_{j=1}^\ell p_j - p_0 \\ (b_{j+1} - b_j) z_{j+1} \le p_j \le (b_{j+1} - b_j) z_j, \ j \in [\ell - 1] \\ p_0 z_1 = 0, p_\ell (1 - z_\ell) = 0 \\ \mathcal{L}_i(\boldsymbol{w}^\top x_i) \le s \}$$

$cl conv(X_i)$

Write as disjunction: $X_i = \bigcup_{j=0}^\ell X_i^j$

$$X_i =$$

$$\left\{ (\boldsymbol{w},\boldsymbol{z},s) \in \mathbb{R}^n \times \{0,1\}^\ell \times \mathbb{R} : \exists (p_0,\boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \right.$$

$$\mathbf{w}^{\top}\mathbf{x}_i = b_1 + \sum_{i=1}^{\ell} p_j - p_0$$

$$(b_{j+1}-b_j)z_{j+1} \leq p_j \leq (b_{j+1}-b_j)z_j, \ j \in [\ell-1]$$

$$p_0 z_1 = 0, \ p_{\ell}(1 - z_{\ell}) = 0, \ \mathcal{L}_i(\mathbf{w}^{\top} \mathbf{x}_i) \leq s$$

$\operatorname{cl} \operatorname{conv}(X_i)$

Write as disjunction: $X_i = \bigcup_{i=0}^{\ell} X_i^j$

$$cl conv(X_i) =$$

$$\left\{ (\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^n \times [0, 1]^{\ell} \times \mathbb{R} : \exists (\boldsymbol{\rho}_0, \boldsymbol{\rho}) \in \mathbb{R}_+^{\ell+1} : \right.$$

$$\mathbf{w}^{\top}\mathbf{x}_{i} = b_{1} + \sum_{i=1}^{\ell} p_{j} - p_{0}$$

$$(b_{j+1}-b_j)z_{j+1} \leq p_j \leq (b_{j+1}-b_j)z_j, \ j \in [\ell-1]$$

$$(1-z_1)\mathcal{L}\left(b_1 - \frac{p_0}{1-z_1}\right) + \sum_{i=1}^{\ell-1} (z_j - z_{j+1})\mathcal{L}\left(b_i + \frac{p_i - z_{i+1}(b_{i+1} - b_i)}{z_i - z_{i+1}}\right) + z_\ell \mathcal{L}\left(b_\ell + \frac{p_\ell}{z_\ell}\right) \leq s \right\}$$

$cl conv(X_i)$

Proposition

An extended formulation for cl $conv(X_i)$ is

$$\left\{ (\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^{n} \times [0, 1]^{\ell} \times \mathbb{R} : \exists (\rho_{0}, \boldsymbol{p}) \in \mathbb{R}_{+}^{\ell+1} : \\ \boldsymbol{w}^{\top} \boldsymbol{x}_{i} = b_{1} + \sum_{j=1}^{\ell} \rho_{j} - \rho_{0} \\ (b_{j+1} - b_{j})z_{j+1} \leq \rho_{j} \leq (b_{j+1} - b_{j})z_{j}, \ j \in [\ell - 1] \\ (1 - z_{1})\mathcal{L}\left(b_{1} - \frac{\rho_{0}}{1 - z_{1}}\right) + \sum_{i=1}^{\ell-1} (z_{j} - z_{j+1})\mathcal{L}\left(b_{i} + \frac{\rho_{i} - z_{i+1}(b_{i+1} - b_{i})}{z_{i} - z_{i+1}}\right) + z_{\ell}\mathcal{L}\left(b_{\ell} + \frac{\rho_{\ell}}{z_{\ell}}\right) \leq s \right\}$$

Strong Reformulation

Applying the strengthening to the fair regression problem:

$$\begin{aligned} \min \sum_{i=1}^m s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ \text{s.t. } (\boldsymbol{w}, \boldsymbol{z}_i, s_i) \in X_i & i \in [m] \\ \boldsymbol{z}_i \in \{0, 1\}^{\ell} & i \in [m] \end{aligned}$$

Strong Reformulation

Applying the strengthening to the fair regression problem:

$$\begin{aligned} \min \sum_{i=1}^m s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ \text{s.t. } (\boldsymbol{w}, \boldsymbol{z}_i, s_i) \in \mathbf{cl} \ \mathbf{conv}(\mathbf{X}_i) & i \in [m] \\ \boldsymbol{z}_i \in \{0, 1\}^{\ell} & i \in [m] \end{aligned}$$

Computational Results on Synthetic Data

n=10 features, $\ell=40$, $m=\{15,30,50,100\}$, 5 random instances per m

Table: Branch-and-bound performance of Big-M vs Strong for least squares regression

λ	Big-M				Strong			
	Relax Gap	End Gap	Time	Nodes	Relax Gap	End Gap	Time	Nodes
0.01	45.3%	2.1%	487	4,010,293	1.9%	0.0%	252	223,581
0.02	60.8%	9.0%	1,654	19,895,563	5.4%	0.7%	908	1,079,684
0.04	73.2%	19.1%	2,040	20,405,258	8.3%	1.9%	950	902,741
0.05	76.6%	28.4%	2,681	29,063,625	11.3%	2.6%	1,212	1,058,541
0.06	78.8%	30.7%	2,759	28,508,133	13.1%	2.9%	1,507	1,447,340
0.08	81.5%	38.1%	3,023	32,654,651	14.0%	4.0%	1,673	1,284,442
0.10	83.4%	47.4%	3,196	35,020,673	16.0%	4.6%	1,803	1,275,695
0.20	87.7%	55.3%	3,147	28,630,313	22.9%	8.6%	1,625	683,419
0.30	89.5%	62.8%	3,295	29,468,759	31.2%	10.8%	1,555	507,315
0.50	91.7%	73.6%	3,600	31,892,472	45.5%	12.7%	1,611	437,835
Avg	76.9%	36.6%	2588	25,954,974	16.9%	4.9%	1310	890,059

Computational Results on Synthetic Data

n = 10 features, $\ell = 40$, $m = \{15, 30, 50, 100\}$, 5 random instances per m

Table: Branch-and-bound performance of Big-M vs Strong for least squares regression

λ	Big-M				Strong			
	Relax Gap	End Gap	Time	Nodes	Relax Gap	End Gap	Time	Nodes
0.01	45.3%	2.1%	487	4,010,293	1.9%	0.0%	252	223,581
0.02	60.8%	9.0%	1,654	19,895,563	5.4%	0.7%	908	1,079,684
0.04	73.2%	19.1%	2,040	20,405,258	8.3%	1.9%	950	902,741
0.05	76.6%	28.4%	2,681	29,063,625	11.3%	2.6%	1,212	1,058,541
0.06	78.8%	30.7%	2,759	28,508,133	13.1%	2.9%	1,507	1,447,340
0.08	81.5%	38.1%	3,023	32,654,651	14.0%	4.0%	1,673	1,284,442
0.10	83.4%	47.4%	3,196	35,020,673	16.0%	4.6%	1,803	1,275,695
0.20	87.7%	55.3%	3,147	28,630,313	22.9%	8.6%	1,625	683,419
0.30	89.5%	62.8%	3,295	29,468,759	31.2%	10.8%	1,555	507,315
0.50	91.7%	73.6%	3,600	31,892,472	45.5%	12.7%	1,611	437,835
Avg	76.9%	36.6%	2588	25,954,974	16.9%	4.9%	1310	890,059

 \rightarrow Relaxation is solved in 0.25s on average.

Table of Contents

Introduction

Formulating Exact Fair Regression

Proposed Methods for Fair Regression

Numerical Results

Proposed Methodologies

Three methodologies to obtain *high quality* solutions, balancing **optimality** and **computational costs**.

Proposed Methodologies

Three methodologies to obtain *high quality* solutions, balancing **optimality** and **computational costs**.

- 1. Convex relaxation: Relax integrality constraints of the strong reformulation, solve to optimality and use \mathbf{w}^* solution.
 - → Solves a single convex problem, efficient and fast with commercial solvers

Proposed Methodologies

Three methodologies to obtain *high quality* solutions, balancing **optimality** and **computational costs**.

- Convex relaxation: Relax integrality constraints of the strong reformulation, solve to optimality and use w* solution.
 - ightarrow Solves a single convex problem, efficient and fast with commercial solvers
- Coordinate descent: Initializing with w*, iteratively improve by optimizing one coordinate at a time.
 - \rightarrow We propose an efficient coordinate descent method, motivated by convex-hull representation of X_i

Proposed Methodologies

Three methodologies to obtain *high quality* solutions, balancing **optimality** and **computational costs**.

- 1. Convex relaxation: Relax integrality constraints of the strong reformulation, solve to optimality and use \mathbf{w}^* solution.
 - → Solves a single convex problem, efficient and fast with commercial solvers
- Coordinate descent: Initializing with w*, iteratively improve by optimizing one coordinate at a time.
 - \rightarrow We propose an efficient coordinate descent method, motivated by convex-hull representation of X_i
- 3. **Mixed Integer Program**: Use strong convex relaxation with branch-&-bound to solve the exact fair regression problem.
 - \rightarrow Substantially improves over MIO methods based on natural big-M formulations, produces better estimators, but currently does not scale

Goal: given w, improve by updating one coordinate w_k at a time

Goal: given \mathbf{w} , improve by updating one coordinate w_k at a time

Recall: Single-Observation Fair Regression

m = 1 observations, n features

Have convex hull representation for X_i , where we model indicators

$$\mathbb{1}(\mathbf{w}^{\top}\mathbf{x} > b_j), \quad j = 1, \ldots, \ell$$

Goal: given w, improve by updating one coordinate w_k at a time

Recall: Single-Observation Fair Regression

m = 1 observations, n features

Have convex hull representation for X_i , where we model indicators

$$\mathbb{1}(\mathbf{w}^{\top}\mathbf{x} > b_j), \quad j = 1, \ldots, \ell$$

Now: Single-Feature Fair Regression

m observations, n = 1 features

$$\mathbb{1}\left(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}\right) = \mathbb{1}\left(w_{k}x_{ik} + \sum_{u \neq k} w_{u}x_{iu} > b_{j}\right) = \mathbb{1}\left(w_{k} > \tilde{b}_{ij}\right),$$

where
$$\tilde{b}_{ij} = \frac{b_j - \sum_{u \neq k} w_u x_{iu}}{|x_{ik}|} \quad \forall j = 1, \dots, \ell, \ i = 1, \dots, m.$$

Goal: given w, improve by updating one coordinate w_k at a time

Recall: Single-Observation Fair Regression

m = 1 observations, n features

Have convex hull representation for X_i , where we model indicators

$$\mathbb{1}(\mathbf{w}^{\top}\mathbf{x} > b_j), \quad j = 1, \ldots, \ell$$

Now: Single-Feature Fair Regression

m observations, n = 1 features

$$\mathbb{1}\left(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}\right) = \mathbb{1}\left(w_{k}x_{ik} + \sum_{u \neq k} w_{u}x_{iu} > b_{j}\right) = \mathbb{1}\left(w_{k} > \tilde{b}_{ij}\right),$$

where
$$\tilde{b}_{ij} = \frac{b_j - \sum_{u \neq k} w_u x_{iu}}{|x_{ik}|} \quad \forall j = 1, \dots, \ell, \ i = 1, \dots, m.$$

ightarrow Equivalent to a *single-observation* fair-regression problem with $m \times \ell$ thresholds, enabling efficient iterations

Table of Contents

Introduction

Formulating Exact Fair Regression

Proposed Methods for Fair Regressio

Numerical Results

Real Data Experiments

Application: Price of fairness,
$$\widehat{\mathrm{DP}} = \max_{b \in \mathbb{R}} \left| \hat{P}(\hat{y} > b) - \hat{P}(\hat{y} > b | a = 1) \right|$$
.

We compare our methodologies with FR-Reduction (Agarwal, Dudik & Wu (2019), an algorithm which solves a sequence of weighted classification problem.

Figures present the accuracy-fairness curves attained by different methods on testing data. Accuracy is shown as the relative % increase in loss over a vanilla linear regression.

Results on Real Data: Communities and Crime

Data: $n = 119, m = 1,994, \ell = 40$

Average training time reduced from $\approx 200s$ to 5s

Results on Real Data: Law School

Data: n = 12, m = 2,000, $\ell = 40$

Average training time reduced from $\approx 136s$ to 4s (convex relaxation) / 45s (coordinate descent)

Deza, Gómez, & Atamtürk Fair and Accurate Regression 22

Results on Real Data: Adult

Data: $n=103,\ m=2,000,\ \ell=40.$ Now, we are solving a **logistic regression** problem

Average training time reduced from $\approx 1,417s$ to 56s (convex relaxation)

Deza, Gómez, & Atamtürk Fair and Accurate Regression

Conclusion

- **Versatile** framework: proposed methods can be adapted for generalized linear regression (ex: logistic regression) and for other popular fairness metrics
- Key substructure: piecewise convex function with indicators on intervals
- Relaxation + Coordinate Descent produce models competitive with state of the art at a fraction of the time

Our Convex Relaxation vs Convex Approximations

Existing approaches consider convex approximations of the fairness measure
We better capture the shape of true objective by considering the **joint structure**of the loss function and fairness

Synthetic Data: Optimality Gaps of Different Methods

λ	relax	CD-0	CD-unfair	CD-relax	MICQO
0.01	7.9	6.3	3.5	2.1	0.0
0.02	13.4	9.0	5.9	4.1	0.7
0.04	19.5	13.6	10.0	7.8	1.9
0.05	24.0	16.1	10.9	8.6	2.6
0.06	24.6	16.3	11.9	9.3	2.9
0.08	26.3	22.2	17.0	13.3	4.0
0.10	32.1	23.9	21.7	15.8	4.6
0.20	44.1	37.1	31.0	24.6	8.6
0.30	50.0	57.5	38.3	28.9	10.8
0.50	56.2	65.4	44.2	36.5	12.7
Avg	29.8	26.7	19.4	15.1	4.9

Overcoming 'too relaxed to be fair'

Idea: approximate fair classification $\ell=1, b_1=0$ with a fair regression relaxation that artificially adds levels. This gives us a convex problem that can still produce fair models.

Overcoming 'too relaxed to be fair'

Idea: approximate fair classification $\ell=1, b_1=0$ with a fair regression relaxation that artificially adds levels. This gives us a convex problem that can still produce fair models.

Discretized Fairness vs Exact Fairness Measures

Figure: Training discretized unfairness (left) vs training exact unfairness (right).