## Connect S.P.A.



## Giovanni Mangano

Prof. Mariagrazia Scutellà

2021-2022



Il problema di Connect S.P.A. richiede una minimizzazione dei costi.

Ci sono infatti sia dei costi fissi di attivazione di un collegamento tra due nodi della rete; sia ci sono dei costi variabili che dipendono dalla quantità di Mb/s trasmessi. Ogni arco ha una capacità C di 10 Mb/s.

Il modello lineare è costruito su un grafo orientato G(V,A).

Per prima cosa definiamo V come il set dei nodi della rete ( {A,B,C,D,E,F})

Dopodiché definiamo il set A degli archi utilizzabili di cui per ciascuno è noto il costo fisso di attivazione (fij) ed il cost variabile(cij) espresso in ( $\mathfrak{E}/Mb/s$ ).

E istanziamo due famiglie di variabili, definite entrambe sull' insieme degli archi:

- Yij =
- 1 se apriamo la connessione
- 0 altrimenti
- Xij: numero di Mb/s passanti per l'arco (i,j)

Le *Xij* sono quindi presentate come le variabili tipiche del minimum *cost flow problem*; con la differenza che in questo caso è espressamente richiesto che la 7 Mb/s di connessione vadano dal nodo A all'F e viceversa 12 Mb/s dal nodo F all'A. Di conseguenza non sarà sufficiente inserire utilizzare le domande del nodo e costruire delle *conservation flow constraints*, ma viene risolto questo problema annotando per ogni nodo, il minimo numero di Mb/s che vi deve uscire ed il minimo numero di Mb/s che vi deve entrare.

Esprimiamo immediatamente la funzione obiettivo, ovvero la minimizzazione dei costi complessivi:

$$Minimize \sum_{i,j \in A} (fi \times Yij + cij \times Xij)$$

dove notiamo una somma tra quelli che sono i costi fissi ( dipendenti da Yij binaria) ed i costi variabili (dipendenti dalle variabili di flusso Xij)

Capiamo chiaramente che la spinta di questa funzione ancora priva di vincoli è contraria sia all'attivazione dei link che al passaggio di dati, di conseguenza garantisce che non ne vengano spediti inutilmente.

2021-2022 Giovanni Mangano



Fatto questo bisogna imporre per prima cosa far si che solo gli archi attivati possano essere utilizzati; ne approfittiamo per inserire nel vincolo anche la capacità C degli archi cosicché sia rispettata

$$\forall i, j \in A, Xij \leq C \times Yij$$

Poi passiamo ai vincoli sulla conservazione del flusso.

$$\forall j \in V, \quad \sum_{i,j \in BS(j)} Xij - \sum_{j,i \in FS(j)} Xji = bj$$

...dove bj è il "bilancio del nodo j", ovvero 0 per tutti i nodi, tranne che per A che ha bilancio (-7 + 12) uguale a 5, e F viceversa uguale a -5.

Oltre i tipici, avremo altre due famiglie di vincoli che garantiranno:

- Un'uscita minima da ogni nodo
- Un'entrata minima in ogni nodo

Per intenderci garantiremo nella nostra istanza che dal nodo A escano esattamente 7 Mb/s e che ne entrino 12, e per il nodo F l'opposto.

Quindi esprimiamo le due nuove constraints:

$$\forall j \in V, \sum_{i,j \in BS(j)} Xij \ge rj$$

$$\forall j \in V, \sum_{j,i \in FS(j)} Xij \ge sj$$

Con rj Mb/s che devono essere ricevuti dal nodo j (ovvero 12 per F, 7 per F, e 0 per gli altri )e mj Mb/s che devono essere mandati da j.

Aggiunte queste constraints il modello è completo e la sua implementazione in AMPL è funzionante.

2021-2022 Giovanni Mangano



Il modello è stato utilizzato per risolvere il problema di Connect S.P.A., con l'aiuto del famoso solver CPLEX.

La soluzione ottima trovata dal solutore ci mostra dei costi di 8030 €, inoltre ci permette di scoprire la configurazione ottima della nostra rete.

Nella configurazione ottima gli archi attivati sono (A,B), (B,F),(C,A),(E,C),(F,A),(F,E) e i Mb/s sono trasmessi come rappresentato nell' immagine.



2021-2022 Giovanni Mangano