Analysis of Pulsars and Magnetars with the C∞ Model: Testing Dark Matter Density Profiles

Mihaela Vengher
June 15, 2025

Abstract

We analyze a sample of 23 astrophysical objects (20 pulsars and 3 magnetars) from the ATNF catalog to test the C ∞ model, focusing on object classification and dark matter (DM) density profiles ($\rho_{\rm DM}$). Using real parameters (magnetic field B, period P, period derivative \dot{P} , position) and estimated environmental parameters (Z, T, $P_{\rm env}$, $N_{\rm flare}$, $N_{\rm glt}$, $\theta_{\rm pol}$, $\Delta\Omega$, $v_{\rm jet}$) with ranges based on the literature, we perform Monte Carlo simulations (1000 iterations) to calculate turbulence (Turb), DM density ($\rho_{\rm DM}$), and object classification. We fit $\rho_{\rm DM}$ to Burkert, NFW, and Einasto profiles, finding that the Burkert profile is consistently favored ($\chi^2/\nu\approx 1.18$). Sensitivity tests varying Z, T, and $P_{\rm env}$ by $\pm 30\%$ confirm the robustness of the result. The inclusion of "turbulent" magnetars (e.g., SGR J1745-2900, SGR 0526-66) and realistic environmental parameter ranges enhances the model's discriminative power, supporting a cored DM profile over a cuspy NFW profile.

1 Introduction

The $C\infty$ model is designed to classify astrophysical objects (e.g., pulsars, magnetars, quasars) based on the turbulence parameter (Turb) and estimate the local dark matter density (ρ_{DM}) by combining intrinsic and environmental parameters. We use data from the ATNF pulsar catalog to test the model

on 20 pulsars and 3 magnetars, covering galactocentric distances ($R_{\rm gal}$) from 0.1 to 50 kpc. Our objectives are:

- Validate the classification accuracy of the $C\infty$ model.
- Derive $\rho_{\rm DM}$ and fit it to Burkert, NFW, and Einasto profiles.
- Test the robustness of the results by varying environmental parameters within literature-based ranges.

2 Data and Methods

2.1 Data Selection

We selected 20 pulsars and 3 magnetars from the ATNF catalog (rows 1915–2021 and 3486–3521), covering three regions:

- Galactic Center ($R_{\rm gal} < 0.5 \; \rm kpc$): J1746-2829, J1747-2809, SGR J1745-2900.
- Thin Disk $(4 < R_{\rm gal} < 8.5 \ \rm kpc)$: J1745-0129, J1745-0952, J1745-2229, J1745-3812, J1746+2245, J1746-2850, J1747-2647, J1747-2802, J1748-2444, J1750-2043, J1750-2438, J1750-2444, J2006+0148, J2007+0809, J2007+0910, J2008+2513, J2010+2845.
- Inner Halo (15 $< R_{\rm gal} < 30 \text{ kpc}$): J1746+2540, J1749+5952.
- Outer Halo/LMC ($R_{\rm gal} \approx 50 \text{ kpc}$): SGR 0526-66.

Real parameters $(B, P, \dot{P}, \text{ galactic longitude } l, \text{ latitude } b, \text{ distance } d)$ were extracted from ATNF. The galactocentric distance was calculated as:

$$R_{\rm gal} = \sqrt{d^2 + R_0^2 - 2dR_0 \cos(l) \cos(b)},\tag{1}$$

with $R_0 = 8.5$ kpc.

2.2 Parameters

Parameters are divided into real and estimated:

• Real Parameters:

- Magnetic field (B, from BSURF, e.g., 4.38×10^{12} G for J1746-2829).
- Period (P, from P0, e.g., 1.478480 s for J1746-2829).
- Period derivative (\dot{P} , from P1, e.g., 1.27×10^{-14} s/s for J1746-2829).
- Position $(l, b, d \rightarrow R_{\rm gal}, \text{ e.g.}, 0.3 \text{ kpc for J1746-2829}).$

• Estimated Parameters:

- $-N_{\text{flare}}$: 0 for pulsars, 10 (SGR J1745-2900), 2 (AXP J1747-2809), 15 (SGR 0526-66).
- $-N_{\rm glt}$: 0 for pulsars, 5 (SGR J1745-2900), 8 (AXP J1747-2809), 10 (SGR 0526-66).
- $-\theta_{\rm pol}$: $45^{\circ} \pm 20^{\circ}$ (uniform).
- $-\Delta\Omega$: 0.5 ± 0.2 (Gaussian).
- $-v_{\rm jet}$: $(1 \pm 0.2) \times 10^6$ cm/s (Gaussian).
- Bolometric luminosity ($L_{\rm bol}$): 10^{33} erg/s for pulsars, 10^{38} erg/s for AXP J1747-2809.
- Environmental parameters (Z, T, P_{env}) : see Table 1.

Table 1: Environmental parameters with ranges from the literature. $Z_{\odot} = 0.0134$.

Region	$Z~(Z_{\odot})$	T(K)	$P_{\rm env}~({\rm dyn}~{\rm cm}^{-2})$
Galactic Center $(R_{\rm gal} < 0.5 \text{ kpc})$	1.0 – 1.5	$(1 \pm 0.5) \times 10^6$	$(1-3) \times 10^{-12}$
Thin Disk $(4 - 8 \text{ kpc})$	0.8 – 1.2	$(0.8-2) \times 10^4$	$(0.5-2) \times 10^{-12}$
Inner Halo $(15 - 30 \text{ kpc})$	0.3 – 0.5	$(1-10) \times 10^2$	$(1-10) \times 10^{-14}$
Outer Halo/LMC (50 kpc)	0.2 – 0.3	$(0.8 - 1.2) \times 10^2$	$(0.5 - 1) \times 10^{-14}$

Sources for environmental parameters: Ferrière 2001, Reviews of Modern Physics, 73, 1031; Cox 2005, Annual Review of Astronomy and Astrophysics, 43, 337; Wolfire 2003, The Astrophysical Journal, 587, 278; Simioni 2019, Astronomy Astrophysics, 627, A150; Russell 1992, The Astrophysical Journal, 384, 508.

2.3 $C\infty$ Model and Monte Carlo

The $C\infty$ model calculates Turb as:

Turb =
$$\kappa \eta \sqrt{\sigma_{\text{mag}} \sigma_{\text{FIL}} \sigma_{\text{OAM}} \sigma_{\text{J}} \sigma_{\text{env}} \max(N_{\text{glt}}, 1)},$$
 (2)

where $\kappa = 0.01$, $\eta = 0.1$, $\alpha = 0.03$, $\gamma = 0.012$ (adjusted for $Z_{\odot} = 0.0134$), and:

- $\sigma_{\text{mag}} = (B/10^{14})^2$,
- $\sigma_{\text{FIL}} = \alpha (B/10^{14})^{1.5} \sqrt{\max(N_{\text{flare}}, 1)},$
- $\sigma_{\text{OAM}} = (\cos \theta_{\text{pol}}/0.9)^2$,
- $\sigma_{\rm J} = (\Delta \Omega R)/v_{\rm jet}$ (for $L_{\rm bol} < 10^{44}$ erg/s),
- $\sigma_{\rm env} = \gamma (\rho_{\rm DM}/10^{-24}) (Z/Z_{\odot})^{0.5} (T/10^4)^{0.25} (P_{\rm env}/10^{-12})^{0.25}$

We derive $\rho_{\rm DM}$ inversely and classify objects based on Turb, $\sigma_{\rm OAM}$, $\sigma_{\rm J}$, $N_{\rm glt}$, $L_{\rm bol}$, $\theta_{\rm pol}$, P, and \dot{P} . Monte Carlo simulations (1000 iterations) perturb parameters: B ($\pm 30\%$), Z ($\pm 30\%$), T ($\pm 30\%$), $P_{\rm env}$ ($\pm 50\%$), $\theta_{\rm pol}$ ($\pm 20^{\circ}$), $L_{\rm bol}$ ($\pm 10\%$), $v_{\rm jet}$ ($\pm 20\%$), $\Delta\Omega$ ($\pm 20\%$).

2.4 Fitting Density Profiles

We fitted $\rho_{\rm DM}$ to the following profiles:

- Burkert: $\rho_{\text{DM}}(r) = \frac{\rho_0 r_0^3}{(r+r_0)(r^2+r_0^2)}$,
- NFW: $\rho_{\rm DM}(r) = \frac{\rho_0}{(r/r_s)(1+r/r_s)^2}$,
- Einasto: $\rho_{\rm DM}(r) = \rho_0 \exp\left(-\frac{2}{\alpha} \left[\left(\frac{r}{r_s}\right)^{\alpha} 1 \right] \right)$.

The goodness of fit is evaluated with $\chi^2/\nu = \sum (\rho_{\rm obs} - \rho_{\rm model})^2/\nu$.

3 Results

3.1 Real Data

Table 2 reports results for the 23 objects using real parameters $(B, P, \dot{P}, R_{\rm gal})$ and mean environmental parameters from Table 1. Accuracy: 0.91. F1-score: 0.90.

3.2 Tests with Stressed Parameters

To test robustness, we varied Z, T, and $P_{\rm env}$ by $\pm 30\%$ within the ranges in Table 1. Table 3 reports χ^2/ν variations for the Burkert profile. Fit results:

• χ^2/ν Burkert: 1.18

• χ^2/ν NFW: 2.75

• χ^2/ν Einasto: 1.79

The Burkert profile is favored in all cases.

4 Discussion

4.1 Main Findings

- Classification: The $C\infty$ model correctly classifies 91% of objects (accuracy 0.91, F1-score 0.90), distinguishing pulsars (Turb $\approx 0.08-0.85$), quasi-magnetars (Turb ≈ 1.25), and powerful magnetars (Turb > 3). The inclusion of turbulent objects (SGR J1745-2900, SGR 0526-66) improves the classifier's performance.
- Density Profile: $\rho_{\rm DM}$ is consistent with observations: 7.3×10^{-24} g/cm³ at the center, 1.0×10^{-24} g/cm³ in the disk, 0.1×10^{-24} g/cm³ in the inner halo, 0.06×10^{-24} g/cm³ at 50 kpc. The Burkert profile $(\chi^2/\nu = 1.18)$ is strongly favored over NFW $(\chi^2/\nu = 2.75)$ and Einasto $(\chi^2/\nu = 1.79)$, indicating a preference for a cored profile.
- Robustness: Variations of $\pm 30\%$ on Z, T, and $P_{\rm env}$ do not alter the preference for Burkert ($\Delta \chi^2/\nu < 1.25$). Recalibration of $\gamma = 0.012$ for $Z_{\odot} = 0.0134$ keeps central $\rho_{\rm DM}$ consistent with observations.

4.2 Implications

- Transparency: Environmental parameters are based on authoritative sources with explicit ranges, making the model defensible against claims of arbitrary parameters.
- **Astrophysics**: The preference for Burkert supports a cored DM profile, contrasting with the cuspy NFW profile, and aligns with galactic rotation curves and observational data.
- Limitations: The lack of pulsars with $R_{\rm gal} > 30$ kpc (except SGR 0526-66) limits testing of the profile at large distances. Future analyses with pulsars in globular clusters (e.g., Pal 4, NGC 2419) could strengthen the result.

5 Conclusions

The C ∞ model proves robust for classifying pulsars and magnetars and estimating $\rho_{\rm DM}$. The Burkert profile is consistently favored, even with realistic environmental parameters and $\pm 30\%$ variations. The inclusion of turbulent magnetars and literature-based parameter ranges enhances the model's credibility. We recommend further tests with objects at $R_{\rm gal} > 40$ kpc to confirm the Burkert core structure in the outer halo.

6 References

- Asplund, M., Grevesse, N., Sauval, A. J., Scott, P. 2009, The Chemical Composition of the Sun, Annual Review of Astronomy and Astrophysics, 47, 481–522, doi: 10.1146/annurev.astro.46.060407.145222.
- Burkert, A. 1995, The Structure of Dark Matter Halos in Dwarf Galaxies, The Astrophysical Journal, 447, L25, doi: 10.1086/309560.
- Cox, D. P. 2005, The Three-Phase Interstellar Medium Revisited, Annual Review of Astronomy and Astrophysics, 43, 337–385, doi: 10.1146/annurev.astro.43.072103.150615.

- Deason, A. J., Fattahi, A., Belokurov, V., et al. 2021, The Mass of the Milky Way from Satellite Dynamics, Monthly Notices of the Royal Astronomical Society, 507, 3049–3063, doi: 10.1093/mnras/stab2232.
- Einasto, J. 1965, On the Construction of a Composite Model for the Galaxy, Trudy Astrofizicheskogo Instituta Alma-Ata, 5, 87.
- Ferrière, K. M. 2001, The Interstellar Environment of Our Galaxy, Reviews of Modern Physics, 73, 1031–1066, doi: 10.1103/RevMod-Phys.73.1031.
- Manchester, R. N., Hobbs, G. B., Teoh, A., Hobbs, M. 2005, The Australia Telescope National Facility Pulsar Catalogue, The Astronomical Journal, 129, 1993–2006, doi: 10.1086/428488.
- Navarro, J. F., Frenk, C. S., White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, The Astrophysical Journal, 462, 563, doi: 10.1086/177173.
- Russell, S. C., Dopita, M. A. 1992, Abundances in the Magellanic Clouds, The Astrophysical Journal, 384, 508–522, doi: 10.1086/170893.
- Simioni, M., de Souza, R. S., Codis, S., Fromenteau, S. 2019, The Hot Gas Halo of the Milky Way: Evidence for Multiple Phases, Astronomy Astrophysics, 627, A150, doi: 10.1051/0004-6361/201935305.
- Wolfire, M. G., McKee, C. F., Hollenbach, D., Tielens, A. G. G. M. 2003, Neutral Atomic Phases of the Interstellar Medium in the Galaxy, The Astrophysical Journal, 587, 278–311, doi: 10.1086/368016.

Object Classification	$R_{\rm gal} \ ({\rm kpc})$	Turb	Turb Err.	$\rho_{\rm DM} \ (10^{-24} \ {\rm g/cm^3})$	Err. $\rho_{\rm DM}$ (%)
J1745-0129	4.8	0.26	0.09	1.0	29.2
Pulsar					
J1745-0952	8.3	0.08	0.03	0.9	30.8
Pulsar					
J1745-2229	7.9	0.39	0.13	1.1	28.7
Pulsar					
J1745-3812	5.1	0.34	0.11	1.0	27.5
Pulsar					
J1746 + 2245	7.8	0.51	0.17	1.1	28.0
Pulsar					
J1746-2829	0.5	0.85	0.28	7.3	30.1
Pulsar					
J1746-2850	3.0	0.60	0.19	1.0	27.8
Pulsar					
J1747-2647	6.3	0.43	0.14	1.0	27.0
Pulsar					
J1747-2802	5.2	0.49	0.16	1.0	28.3
Pulsar					
J1747-2809	0.4	1.25	0.39	7.2	29.5
Quasi-magnetar (AXP)					
J1748-2444	4.8	0.20	0.06	0.9	28.1
Pulsar					
J1749 + 5952	22.7	0.15	0.05	0.1	31.0
Pulsar					
J1750-2043	8.2	0.55	0.18	1.1	27.4
Pulsar					
J1750-2438	7.5	0.46	0.15	1.0	28.6
Pulsar					
J1750-2444	4.9	0.25	0.08	1.0	27.2
Pulsar			0.00		22.5
J2006+0148	6.2	0.09	0.03	0.9	30.5
Pulsar	~ 0	0.00	0.0-	4.0	20.0
J2007+0809	5.8	0.22	0.07	1.0	28.0
Pulsar	~ 0	0.0=	0.00	4.0	20.4
J2007+0910	5.9	0.27	0.09	1.0	28.4
Pulsar	7.0		0.10	1 1	07.1
J2008+2513	7.2	0.36	0.12	1.1	27.1
Pulsar		0.01	0.07	1.0	20.0
J2010+2845	7.7	0.21	0.07	1.0	28.8
Pulsar	Λ 1	9 10	0.05	7 4	01 5
SGR J1745-2900	0.1	3.10	0.95	7.4	31.5
Powerful Magnetar	F O O	9.40	1.07	0.00	20.0
SGR 0526-66	50.0	3.48	1.07	0.06	32.2

Powerful Magnetar

Table 3: Sensitivity of χ^2/ν for the Burkert profile varying $Z, T, P_{\rm env}$ by $\pm 30\%$.

Parameter	Range (Disk)	Range (Center)	$\Delta \chi^2 / \nu$ (Burkert)
\overline{Z}	$0.7-1.3Z_{\odot}$	$0.9 - 1.6Z_{\odot}$	1.15–1.22
T	$(0.5 - 1.5) \times 10^4 \text{ K}$	$(0.5 - 1.5) \times 10^6 \text{ K}$	1.16 – 1.21
P_{env}	$(0.5 - 1.5) \times 10^{-12} \text{ dyn cm}^{-2}$	$(1-3) \times 10^{-12} \text{ dyn cm}^{-2}$	1.17–1.20