& 5.1 - Areas + Distance

Big unanswered question for us as math students: How do we compute the area under a graph?

First, we will try to make an accurate guess.

Ex: Approximate the area under $y = x^2$ between x = 0 and x = 2

I will approx this area with 4 rectasks + right endpoints.

Area = Sum of 4 dectasly

= b_1 h_1 + b_2 h_2 + b_3 h_3 + b_4 h_4

= \(2 \left(\left(\frac{1}{2} \right)^2 + (1)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{4} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{4} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{4} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{4} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1}{2} \right)^2 + 2^2 \right)

= \(2 \left(\frac{1} \right)^2 + 2^2 \right)

=

Same thing, but left-endpoints Area = Sum of rectarsles = 12 (02+1/4+1+1/4) - 12(14)=74=1.75 Acture 1.75 < Actual Area < 3.75 Our ultimate good is to make this suess exactly correct. Area is approx the sum of rectagles $= \sum_{i=1}^{n} p_i \cdot h_i - p_i = \nabla x = \frac{p-a}{p}$ = \(\frac{1}{2} \) f(xi) \(\text{X} \), \(\text{X} is any point \)
In the its subinteral. The Riemann Sum is $\sum_{i=1}^{n} f(x_i^*) \Delta x$, $\Delta x = \frac{b-1}{n}$, $\sum_{i=1}^{n} f(x_i^*) \Delta x$, $\sum_{i=1}^{n} f(x_i^$ in it introd and it approximates the area under fix) between YES + XES.

Ex: Suppose the velocity of a car out certain times is given in the chart:

+1	Os	103	205	303
The second second		8~17	1 113	3 ~13

Use 3 equal subintervals and right endpoints to approximate the area under the relocity graph

$$\sum_{i=1}^{3} f(x_i^*) \cdot \frac{30-0}{3} = \sum_{i=1}^{3} f(x_i^*) \cdot 10$$

$$= (1/(10) + 1/(20) + 1/(30)) = (8+1+3) \cdot 10$$

$$= (120^{4})$$

If v(t) is the velocity function, and v(t)

is positive, then the wree under vct) is
distance traveled.