LAPORAN TUGAS REPRESENTASI SINYAL 1D DAN 2D

Dosen Pengampuh Mata kuliah:

Al-Ustadz Dr. Oddy Virgantara Putra, S.Kom., M.T.

Fayshal Karan Athilla / 442023611088

Iqbal Maulana / / 442023611094

Jauhan Ahmad / 442023611090

Ahmad Nugrahadi / 442023611092

FAKULTAS SAINS DAN TEKNOLOGI
PROGRAM STUDI TEKNIK INFORMATIKA
UNIVERSITAS DARUSSALAM GONTOR, PONOROGO
TAHUN AKADEMIK: 1446-1447 H / 2025-2026 M

1. Pendahuluan

Notebook ini membahas representasi sinyal satu dimensi (1D) dan dua dimensi (2D) menggunakan Python. Visualisasi sinyal dan pemahaman dasar tentang bentuk gelombang seperti sinus dan kosinus menjadi fokus utama.

2. Tools Yang Digunakan

Berikut adalah tools yang digunakan dalam pengerjaan tugas:

- NumPy: untuk manipulasi numerik.
- Pandas: digunakan bila perlu untuk data tabular.
- Matplotlib: untuk visualisasi sinyal

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

3. Visualisasi Sinyal 1D

Notebook ini memuat fungsi untuk memplot sinyal 1D:

```
def plot_signal(signal, sr=1000, t=1, samples_to_show=500, title="Signal", xlabel="Time (s)", ylabel="Amplitude"):
    plt.figure(figsize=(10, 4))
    time_axis = np.linspace(0, t, len(signal)) # ensure time axis matches signal length
    plt.plot(time_axis[:samples_to_show], signal[:samples_to_show])
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```

Fungsi ini membuat visualisasi sinyal berdasarkan parameter seperti:

- sr = sampling rate
- t = durasi
- samples_to_show = jumlah sample yang ditampilkan

4. Sinval Sinus & Kosinus

Sinyal sinus dan kosinus adalah bentuk gelombang dasar dan berulang yang penting dalam analisis sinyal, dengan perbedaan utama terletak pada fase awal.

Contoh kosinus:

Contoh sinus:

```
A = 1 # amplitudo
sine_signal = A * np.sin(2 * np.pi * freq * t)
plot_signal(sine_signal, sr, t=duration, samples_to_show=2000)
```

5. Hasil-hasil visualisasi sinyal

