

# Know Thy Enemy: The Taxonomies That Meta Uses to Map the Offensive Privacy Space

Zach Miller - Privacy Red Team, Meta David Renardy - Privacy Red Team, Meta



### This talk is...

- About design decisions we made on offensive privacy frameworks.
- □ A reflection on the use-cases of those frameworks.
- ☐ A jumping off point for driving more discussions in the space.

### This talk is not...

- ☐ A product or service pitch.
- A takedown or criticism of preceding frameworks.
- ☐ About absolutes.



# Agenda

**O1** Who are Offensive Privacy Threats and how are they tracked?

What are their tactics? (**Privacy Adversarial Framework** - PAF)

What weaknesses do they leverage? (Meta Weakness Enumeration - MWE)

**Q4** What can I do for my organization?



### What data do you have and who wants it?

#### **Industry / Company**









Government

#### **Potential Adversaries**



Nation state actors

Private Investigation firms

Stalkers

Advertising agencies

Political campaign firms



### How do we understand threats in Cybersecurity?

- Adversary Behaviors (TTPs)
  - MITRE ATT&CK\*
- Weaknesses enumeration and root causes









| Category ID: 156                                                   |                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Summary                                                            |                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ake actions be<br>and that the o<br>dentity in suc<br>unchanged bu | ased on<br>ontent /<br>h a way<br>t the an | the lev<br>function<br>that the<br>nount o | itegory focus on malicious interactions with a target in an a<br>rel of trust that exists between the target and the other pri<br>noality is trusted by the target because of this association,<br>be target will incorrectly trust the legitimacy of the content<br>of the transaction is increased. If the recipient cannot detect<br>versary crafting the content from scratch or capturing and |  |
|                                                                    |                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Membershi                                                          | p                                          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Membershi<br>Nature                                                | Type                                       | ID                                         | Name                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                    | •                                          | ID<br>1000                                 | Name<br>Mechanisms of Attack                                                                                                                                                                                                                                                                                                                                                                       |  |
| Nature                                                             | Туре                                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Nature<br>MemberOf                                                 | Туре                                       | 1000                                       | Mechanisms of Attack                                                                                                                                                                                                                                                                                                                                                                               |  |
| Nature<br>MemberOf<br>HasMember                                    | Type                                       | 1000<br>148                                | Mechanisms of Attack<br>Content Spoofing                                                                                                                                                                                                                                                                                                                                                           |  |
| Nature<br>MemberOf<br>HasMember<br>HasMember<br>HasMember          | Type<br>V                                  | 1000<br>148<br>151                         | Mechanisms of Attack<br>Content Socofing<br>Identity Spoofing                                                                                                                                                                                                                                                                                                                                      |  |
| Nature<br>MemberOf<br>HasMember<br>HasMember                       | Type<br>V                                  | 1000<br>148<br>151<br>154                  | Mechanisms of Attack<br>Content Sacofing<br>Identity, Spoofing<br>Resource Location Spoofing                                                                                                                                                                                                                                                                                                       |  |



### Privacy friction with existing frameworks

Privacy-centric tactics or vulnerabilities not present

**OR** 

Not enough granularity on Privacy



### Privacy-centric tactics

Example: Adversary downloads data from legacy endpoints via an internet archive

Difficult to express in e.g. Mitre ATT&CK (closest is "Search Open Websites/Domains")



# Privacy-centric vulnerabilities

Example: Insufficient Anonymization

**CWE???** 



### **Insufficient Granularity**

Example: Contact point exposure

 CWE-200: Exposure of Sensitive Information to an Unauthorized Actor



### **Privacy Threat Intelligence**

- Less open reporting than in Security
- Lucky if root cause or technical weakness is identified in reporting
- Common adversary tactics not tracked across cases



### Creating our own Privacy taxonomies





### Design Decisions:

- Who are the data providers? Who are the data consumers?
- Privacy-exclusive vs. Privacy-inclusive



| <b>Agenda</b> |
|---------------|
|---------------|

O1 Who are Offensive Privacy Threats and how are they tracked?

**O2** What are their tactics? (Privacy Adversarial Framework - PAF)

What weaknesses do they leverage? (Meta Weakness Enumeration - MWE)

O4 What can I do for my organization?



### **Privacy Adversarial Framework (PAF)**

- Inspired by MITRE ATT&CK®, TTP framework for Offensive Privacy.
  - Tactics
  - Techniques
    - Subtechniques
- Designed to be privacy-exclusive and to supplement existing cybersecurity frameworks.
- Plan for public release with ATT&CK Navigator integration.





# Why Privacy-exclusive?

- Privacy threat actors don't always need a complete "kill-chain".
  - E.g. Stalker may only want to access data
- Choke points for detection and mitigations are different than for cybersecurity.
  - E.g. Spoofing User Agents



### Who provides data? Who consumes data?

Data sources (tagging examples and incidents):

- Red Team
- Threat Intel
- Investigations

#### Data sinks:

- Red Team
- Threat Intel
- Investigations
- Insights / Detections
- Purple Team



### **Privacy Adversarial Framework**





# **Using PAF**

Ex 1: Adversary downloads data from legacy endpoints via an internet archive





### **Using PAF**

Ex 2:

PTA0002 Establish Infrastructure

PT0061.003 Create Account

PT0063 Utilize Official SDK PTA0004
Detection /
Enforcement
Evasion

PT0052.002 Spoof User Agent PT0005 Access Data

PT008 Logged-In Access

PT0040.023 Scraping - Use Open Source Tooling

PT003 Access Token Abuse



### **PAF Outcomes**

- Identify common adversarial behaviors.
- Link behaviors to common products and surfaces.
- Identify emerging behaviors as they manifest.
- Find "choke points" for detection, mitigation and enforcement.
- Develop privacy threat intel feed within your org.



# Agenda

O1 Who are Offensive Privacy Threats and how are they tracked?

What are their tactics? (Privacy Adversarial Framework - PAF)

What weaknesses do they leverage? (Meta Weakness Enumeration - MWE)

O4 What can I do for my organization?



# What weaknesses do they leverage?

- Adversaries are outcome-driven
- Data is our adversaries' main target



### Meta Weakness Enumeration (MWE)

- Inspired by MITRE's CWE® and CAPEC® systems
- Designed to be privacy-inclusive
- Includes types unique to Meta and our custom, internal systems





# Why privacy-inclusive?

- Vulnerabilities encountered by security, privacy, and integrity teams often overlap
- Approaches towards detecting, preventing, and remediating vulnerabilities can also overlap



### Who do we expect to use it?

Meta Internal Processes





### Who do we expect to use it?

Who will actually be applying the taxonomy

- Engineers?
- PMs?
- Someone else?



### What specifically are we trying to measure?

- Vectors the method of abuse
- Root Weakness the underlying technical cause which enabled the Vector to exist

**Vector** 

**Contact Point Exposure** 

**Root Weakness** 

Response Side Channel



# **Summary of MWE Design**

- Privacy-inclusive system applicable across company
- Technically-focused system to identify trends, inform tech investment, spread awareness
- Categorize vectors of abuse and weaknesses that cause them



### **MWE Outcomes**

- Educational efforts on privacy-centric vulnerabilities
- Cross-organizational collaboration on shared issues
- Efficiency gains due to aligning on unified system



# **Agenda**

O1 Who are Offensive Privacy Threats and how are they tracked?

What are their tactics? (Privacy Adversarial Framework - PAF)

What weaknesses do they leverage? (Meta Weakness Enumeration - MWE)

**04** What can I do for my organization?



### What can I do?

- Investigate the Privacy threats your product / organization is up against.
- Think about privacy-inclusive vs. privacy-exclusive approaches.
- Consider adopting PAF via Mitre ATT&CK Navigator integration.
- Incorporate MWE design decisions in your own vulnerability management framework.



Let's continue the conversation.

David: <a href="mailto:drenardy@meta.com">drenardy@meta.com</a>
Zach: <a href="mailto:zjmiller@meta.com">zjmiller@meta.com</a>

