Forward School

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE DEVELOPMENT

Title: Exe26 - Clusters of Grain

Name: Ooi Caaron

IC Number:990701-07-5837

Date :1/8/23

Introduction: Learning clusters of grain

Conclusion:

How many clusters of grain?

This exercise is taken and modified from https://github.com/benjaminwilson/python-clustering-exercises)

This is a class to choose a good number of clusters for a dataset using the k-means inertia graph. You are given a dataset of the measurements of samples of grain. What's a good number of clusters in this case?

This dataset was obtained from the <u>UCI (https://archive.ics.uci.edu/ml/datasets/seeds)</u>.

Step 1: Load the dataset (written for you).

In [1]:

```
import pandas as pd

seeds_df = pd.read_csv('seeds.csv')
# forget about the grain variety for the moment - we'll use this later
del seeds_df['grain_variety']
```

Step 2: Display the DataFrame to inspect the data. Notice that there are 7 columns - so each grain sample (row) is a point in 7D space! Scatter plots can't help us here.

In [3]:

```
seeds_df.head()
```

Out[3]:

	area	perimeter	compactness	length	width	asymmetry_coefficient	groove_length
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175

Step 3: Extract the measurements from the DataFrame using its .values attribute:

In [4]:

```
measurements_array = seeds_df.values
measurements_array
```

Out[4]:

```
array([[15.26 , 14.84 , 0.871 , ..., 3.312 , 2.221 ,
                                                      5.22 ],
      [14.88 , 14.57 , 0.8811, ..., 3.333 , 1.018 ,
                                                      4.956 ],
      [14.29 , 14.09 , 0.905 , ..., 3.337 ,
                                             2.699 ,
                                                      4.825 ],
      . . . ,
             , 13.66 , 0.8883, ..., 3.232 , 8.315 ,
      [13.2
                                                      5.056],
                        0.8521, ..., 2.836 , 3.598 ,
                                                      5.044],
      [11.84 , 13.21 ,
      [12.3
             , 13.34 ,
                        0.8684, ..., 2.974 , 5.637 ,
                                                      5.063 ]])
```

Step 4: (Written for you). Measure the quality of clusterings with different numbers of clusters using the inertia. For each of the given values of k, perform the following steps:

- Create a KMeans instance called model with k clusters.
- Fit the model to the grain data samples.
- Append the value of the inertia_ attribute of model to the list inertias.

In [5]:

```
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans

inertias = []

for k in range(1, 11):
    model = KMeans(n_clusters=k)
    model.fit(seeds_df.values)
    inertias.append(model.inertia_)

print(inertias)
```

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu

ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

[2719.852410177952, 1011.7123453151191, 587.3186115940429, 471.02714568221 09, 386.0421139658138, 323.27027205797947, 277.56117926703195, 240.5667293 168427, 220.39950681378002, 202.48459939311235]

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Step 5: Plot the inertia to see which number of clusters is best. Remember: lower numbers are better!

In [6]:

```
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6))
plt.plot(range(1, 11), inertias, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('Inertia vs. Number of Clusters')
plt.xticks(range(1, 11))
plt.grid(True)
plt.show()
```


Excellent work! You can see from the graph the "best" number of clusters. Use this value for the next steps.

Step 6: Create a KMeans model called model with the best value from the above steps.

In [7]:

```
best_k = 3  # You need to set this to the value of k that you find best from the plot

# Create the KMeans model with the best value of k
model = KMeans(n_clusters=best_k)

# Fit the model to the grain data samples
model.fit(seeds_df.values)
```

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

super()._check_params_vs_input(X, default_n_init=10)

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Out[7]:

```
KMeans
KMeans(n_clusters=3)
```

Step 7: Use the .fit_predict() method of model to fit it to samples and derive the cluster labels.

Calling .fit_predict() is the same as calling .fit() and then calling .predict().

In [8]:

```
cluster_labels = model.fit_predict(seeds_df.values)

# Print the cluster labels for each sample (grain)
print(cluster_labels)
```

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1412: FutureWarning: The default value of `n_init` will ch ange from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to sup press the warning

```
super()._check_params_vs_input(X, default_n_init=10)
```

C:\Users\User\anaconda3\envs\python-dscourse\Lib\site-packages\sklearn\clu ster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak o n Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Step 8: Create a DataFrame df with two columns named 'labels' and 'varieties', using labels and varieties, respectively, for the column values.

In [10]:

```
df = pd.DataFrame({'labels': cluster_labels, 'varieties': seeds_df.index})
df
```

Out[10]:

	labels	varieties
0	2	0
1	2	1
2	2	2
3	2	3
4	2	4
205	1	205
206	1	206
207	1	207
208	1	208
209	1	209

210 rows × 2 columns

Step 9: Use the pd.crosstab() function on df['labels'] and df['varieties'] to count the number of times each grain variety coincides with each cluster label. Assign the result to ct.

In [12]:

```
ct = pd.crosstab(df['labels'], df['varieties'])
```

Step 10: Display ct by evaluating it - and inspect your cross-tabulation! You'll see that your clustering is pretty good.

In [13]:

ct

Out[13]:

varieties 0 1 2 3 4 5 6 7 8 9 ... 200 201 202 203 204 205 206 207 208 20 labels $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$ 1 1 1 1 1 1 1 1 1 1 ...

3 rows × 210 columns

Now you are done. If you wish, you can also try to plot the clusters to visualize it.

In []: