Summation by parts, absolute convergence, addition and multiplication of series, rearrangement, limits of functions, continuous functions

Theorem
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
.

$$s_n = \sum_{k=0}^n \frac{1}{k!}, \qquad t_n = \left(1 + \frac{1}{n}\right)^n.$$

$$t_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \cdots$$

$$+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{n-1}{n}\right).$$

Hence $t_n \leq s_n$, so that

$$\limsup_{n\to\infty} t_n \le e.$$

Next, if
$$n \ge m$$
, $t_n \ge 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{m-1}{n} \right)$.

Let $n \to \infty$, keeping m fixed. We get

$$\lim_{n \to \infty} \inf t_n \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{m!},$$

so that

$$s_m \leq \liminf_{n \to \infty} t_n$$
.

Letting $m \to \infty$, we finally get

$$e \leq \liminf_{n \to \infty} t_n$$
.

Theorem (Root Test) Given $\sum a_n$, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$.

Then

- (a) if $\alpha < 1$, $\sum a_n$ converges;
- (b) if $\alpha > 1$, $\sum a_n$ diverges;
- (c) if $\alpha = 1$, the test gives no information.

Theorem (Ratio Test) The series $\sum a_n$

(a) converges if
$$\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
,

(b) diverges if
$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1$$
 for all $n \ge n_0$, where n_0 is some fixed integer.

Examples

(a) Consider the series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots,$$

for which

$$\lim_{n \to \infty} \inf \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0,$$

$$\lim_{n \to \infty} \inf \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[2n]{\frac{1}{3^n}} = \frac{1}{\sqrt{3}},$$

$$\lim_{n \to \infty} \sup \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[2n]{\frac{1}{2^n}} = \frac{1}{\sqrt{2}},$$

$$\lim_{n \to \infty} \sup \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{2} \left(\frac{3}{2}\right)^n = +\infty.$$

The root test indicates convergence; the ratio test does not apply.

(b) The same is true for the series

$$\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots,$$

where

$$\lim_{n\to\infty}\inf\frac{a_{n+1}}{a_n}=\frac{1}{8},$$

$$\limsup_{n\to\infty}\frac{a_{n+1}}{a_n}=2,$$

but

$$\lim \sqrt[n]{a_n} = \frac{1}{2}.$$

Definition Given a sequence $\{c_n\}$ of complex numbers, the series

$$\sum_{n=0}^{\infty} c_n z^n$$

is called a *power series*. The numbers c_n are called the *coefficients* of the series; z is a complex number.

Theorem Given the power series $\sum c_n z^n$, put

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}, \qquad R = \frac{1}{\alpha}.$$

(If $\alpha = 0$, $R = +\infty$; if $\alpha = +\infty$, R = 0.) Then $\sum c_n z^n$ converges if |z| < R, and diverges if |z| > R.

Proof Put $a_n = c_n z^n$, and apply the root test:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = |z| \limsup_{n\to\infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}.$$

Note: R is called the radius of convergence of $\sum c_n z^n$.

Theorem Given two sequences $\{a_n\}$, $\{b_n\}$, put

$$A_n = \sum_{k=0}^n a_k$$

if $n \ge 0$; put $A_{-1} = 0$. Then, if $0 \le p \le q$, we have

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Proof

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (A_n - A_{n-1}) b_n = \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1}$$

$$= \sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Theorem Suppose

- the partial sums A_n of Σa_n form a bounded sequence;
- (b) $b_0 \ge b_1 \ge b_2 \ge \cdots$;
- (c) $\lim b_n = 0$.

Then $\sum a_n b_n$ converges.

Proof Choose M such that $|A_n| \leq M$ for all n. Given $\varepsilon > 0$, there is an integer N such that $b_N \le (\varepsilon/2M)$. For $N \le p \le q$, we have

$$\left| \sum_{n=p}^{q} a_n b_n \right| = \left| \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \right|$$

$$\leq M \left| \sum_{n=p}^{q-1} (b_n - b_{n+1}) + b_q + b_p \right|$$

$$= 2M b_p \leq 2M b_N \leq \varepsilon.$$

Convergence now follows from the Cauchy criterion.

Taking
$$a_n = (-1)^{n+1}, b_n = |c_n|$$
, we get

Theorem Suppose

(a)
$$|c_1| \ge |c_2| \ge |c_3| \ge \cdots$$
;

(a)
$$|c_1| \ge |c_2| \ge |c_3| \ge \cdots$$
;
(b) $c_{2m-1} \ge 0, c_{2m} \le 0 (m = 1, 2, 3, ...)$;

(c) $\lim_{n\to\infty} c_n = 0$.

Then Σc_n converges.

Theorem Suppose the radius of convergence of $\sum c_n z^n$ is 1, and suppose $c_0 \ge c_1 \ge c_2 \ge \cdots$, $\lim_{n\to\infty} c_n = 0$. Then $\sum c_n z^n$ converges at every point on the circle |z| = 1, except possibly at z = 1.

Proof Put $a_n = z^n$, $b_n = c_n$. Observe that A_n is bounded, since

$$|A_n| = \left|\sum_{m=0}^n z^m\right| = \left|\frac{1-z^{n+1}}{1-z}\right| \le \frac{2}{|1-z|},$$

if
$$|z| = 1, z \neq 1$$
.

The theorem follows.

DEFINITION A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.

THEOREM The Absolute Convergence Test If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof The assertion follows from the inequality

$$\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m |a_k|,$$

plus the Cauchy criterion.

DEFINITION A series that is convergent but not absolutely convergent is called **conditionally convergent**.

Example

(a) For $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$, the corresponding series of absolute values is the convergent series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

The original series converges because it converges absolutely.

(b) For $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$, which contains both positive and negative terms, the corresponding series of absolute values is

$$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| = \frac{|\sin 1|}{1} + \frac{|\sin 2|}{4} + \cdots,$$

which converges by comparison with $\sum_{n=1}^{\infty} (1/n^2)$ because $|\sin n| \le 1$ for every n. The original series converges absolutely; therefore it converges.

(c) The alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is conditionally convergent.

Theorem If $\Sigma a_n = A$, and $\Sigma b_n = B$, then $\Sigma (a_n + b_n) = A + B$, and $\Sigma ca_n = cA$, for any fixed c.

Proof Let

$$A_n = \sum_{k=0}^n a_k, \qquad B_n = \sum_{k=0}^n b_k.$$

Then

$$A_n + B_n = \sum_{k=0}^{n} (a_k + b_k).$$

Since $\lim_{n\to\infty} A_n = A$ and $\lim_{n\to\infty} B_n = B$, we see that

$$\lim_{n\to\infty} (A_n + B_n) = A + B.$$

Definition Given $\sum a_n$ and $\sum b_n$, we put

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$
 $(n = 0, 1, 2, ...)$

and call $\sum c_n$ the *product* of the two given series.

This definition may be motivated as follows. If we take two power series $\sum a_n z^n$ and $\sum b_n z^n$, multiply them term by term, and collect terms containing the same power of z, we get

$$\sum_{n=0}^{\infty} a_n z^n \cdot \sum_{n=0}^{\infty} b_n z^n = (a_0 + a_1 z + a_2 z^2 + \cdots)(b_0 + b_1 z + b_2 z^2 + \cdots)$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0)z + (a_0 b_2 + a_1 b_1 + a_2 b_0)z^2 + \cdots$$

$$= c_0 + c_1 z + c_2 z^2 + \cdots$$

Setting z = 1, we arrive at the above definition.

$$A_n = \sum_{k=0}^n a_k, \qquad B_n = \sum_{k=0}^n b_k, \qquad C_n = \sum_{k=0}^n c_k,$$

and $A_n \to A$, $B_n \to B$, then it is not at all clear that $\{C_n\}$ will converge to AB, since we do not have $C_n = A_n B_n$.

Example The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$

converges . We form the product of this series with itself and obtain

$$\sum_{n=0}^{\infty} c_n = 1 - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{3}}\right)$$

$$- \left(\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{3}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{3}} + \frac{1}{\sqrt{4}}\right) + \cdots,$$

$$c_n = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(n-k+1)(k+1)}}.$$

From
$$(n-k+1)(k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2$$

We get
$$|c_n| \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2}$$
. Thus $\sum_{n=0}^\infty c_n$ diverges.

Theorem Suppose (a)
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely, (b) $\sum_{n=0}^{\infty} a_n = A$, (c) $\sum_{n=0}^{\infty} b_n = B$, (d) $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ $(n = 0, 1, 2, ...)$.

Then

$$\sum_{n=0}^{\infty} c_n = AB.$$

Proof Put

$$A_n = \sum_{k=0}^n a_k$$
, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$, $\beta_n = B_n - B$.

Then

$$C_n = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0)$$

$$= a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0$$

$$= a_0 (B + \beta_n) + a_1 (B + \beta_{n-1}) + \dots + a_n (B + \beta_0)$$

$$= A_n B + a_0 \beta_n + a_1 \beta_{n-1} + \dots + a_n \beta_0$$

Put

$$\gamma_n = a_0 \beta_n + a_1 \beta_{n-1} + \cdots + a_n \beta_0.$$

We wish to show that $C_n \to AB$. Since $A_n B \to AB$, it suffices to show that

$$\lim_{n\to\infty}\gamma_n=0.$$

Put

$$\alpha = \sum_{n=0}^{\infty} |a_n|.$$

[It is here that we use (a).] Let $\varepsilon > 0$ be given. By (c), $\beta_n \to 0$. Hence we can choose N such that $|\beta_n| \le \varepsilon$ for $n \ge N$, in which case

$$|\gamma_n| \leq |\beta_0 a_n + \dots + \beta_N a_{n-N}| + |\beta_{N+1} a_{n-N-1} + \dots + \beta_n a_0|$$

$$\leq |\beta_0 a_n + \dots + \beta_N a_{n-N}| + \varepsilon \alpha.$$

Keeping N fixed, and letting $n \to \infty$, we get

$$\limsup_{n\to\infty} |\gamma_n| \le \varepsilon \alpha,$$

since $a_k \to 0$ as $k \to \infty$. Since ε is arbitrary, we get

$$\lim_{n\to\infty}\gamma_n=0.$$

Theorem If the series $\sum a_n$, $\sum b_n$, $\sum c_n$ converge to A, B, C, and $c_n = a_0 b_n + \cdots + a_n b_0$, then C = AB.

Definition Let $\{k_n\}$, n = 1, 2, 3, ..., be a sequence in which every positive integer appears once and only once Putting

$$a'_n = a_{k_n}$$
 $(n = 1, 2, 3, ...),$

we say that $\sum a'_n$ is a rearrangement of $\sum a_n$.

Let ${\bf Z}^+$ be the set of non-negative integers. A bijection from ${\bf Z}^+$ to ${\bf Z}^+$ is called a permutation of ${\bf Z}^+$.

Theorem Suppose that $\sum_{j=0}^{\infty} z_j$ converges absolutely, and that $\sum_{j=0}^{\infty} z_j = s$. If σ is a permutation of \mathbf{Z}^+ then $\sum_{j=0}^{\infty} z_{\sigma(j)}$ converges to s.

Proof By considering real and imaginary parts, it is enough to consider an absolutely convergent real series $\sum_{j=0}^{\infty} a_j$. First consider the case where all the terms are non-negative. If $n \in \mathbf{Z}^+$ and $k = \sup\{\sigma(j) : 1 \le j \le n\}$ then $\sum_{j=0}^{n} a_{\sigma(j)} \le \sum_{i=0}^{k} a_i \le s$. Thus $\sum_{j=0}^{\infty} a_{\sigma(j)}$ converges, and $\sum_{j=0}^{\infty} a_{\sigma(j)} \le s$. By the same token,

$$s = \sum_{j=0}^{\infty} a_j = \sum_{j=0}^{\infty} a_{\sigma^{-1}\sigma(j)} \le \sum_{j=0}^{\infty} a_{\sigma(j)}.$$

In the general case, write $a_j = a_j^+ - a_j^-$. Then $a_{\sigma(j)} = a_{\sigma(j)}^+ - a_{\sigma(j)}^-$, so that $\sum_{j=0}^{\infty} a_{\sigma(j)}$ converges to $\sum_{j=0}^{\infty} a_{\sigma(j)}^+ - \sum_{j=0}^{\infty} a_{\sigma(j)}^-$, and

$$\sum_{j=0}^{\infty} a_{\sigma(j)} = \sum_{j=0}^{\infty} a_{\sigma(j)}^{+} - \sum_{j=0}^{\infty} a_{\sigma(j)}^{-} = \sum_{j=0}^{\infty} a_{j}^{+} - \sum_{j=0}^{\infty} a_{j}^{-} = \sum_{j=0}^{\infty} a_{j}.$$

Definition Let X and Y be metric spaces; suppose $E \subset X$, f maps E into Y, and p is a limit point of E. We write $f(x) \to q$ as $x \to p$, or

$$\lim_{x \to p} f(x) = q$$

if there is a point $q \in Y$ with the following property: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_{\mathbf{Y}}(f(\mathbf{x}), q) < \varepsilon$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta$$
.

The symbols d_X and d_Y refer to the distances in X and Y, respectively.

Theorem

(4)
$$\lim_{x \to p} f(x) = q \iff (5) \quad \lim_{n \to \infty} f(p_n) = q$$

for every sequence $\{p_n\}$ in E such that

(6)
$$p_n \neq p, \qquad \lim_{n \to \infty} p_n = p.$$

Proof Suppose (4) holds. Choose $\{p_n\}$ in E satisfying (6). Let $\varepsilon > 0$ be given. Then there exists $\delta > 0$ such that $d_Y(f(x), q) < \varepsilon$ if $x \in E$ and $0 < d_X(x, p) < \delta$. Also, there exists N such that n > N implies $0 < d_X(p_n, p) < \delta$. Thus, for n > N, we have $d_Y(f(p_n), q) < \varepsilon$, which shows that (5) holds.

Conversely, suppose (4) is false. Then there exists some $\varepsilon > 0$ such that for every $\delta > 0$ there exists a point $x \in E$ (depending on δ), for which $d_Y(f(x), q) \ge \varepsilon$ but $0 < d_X(x, p) < \delta$. Taking $\delta_n = 1/n$ (n = 1, 2, 3, ...), we thus find a sequence in E satisfying (6) for which (5) is false.

Definition (Limiting value of a function). Let (X, d_X) and (Y, d_Y) be metric spaces, let E be a subset of X, and let $f: X \to Y$ be a function. If $x_0 \in X$ is an adherent point of E, and $L \in Y$, we say that f(x) converges to L in Y as x converges to x_0 in E, or write $\lim_{x\to x_0; x\in E} f(x) = L$, if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $d_Y(f(x), L) < \varepsilon$ for all $x \in E$ such that $d_X(x, x_0) < \delta$.

Remark Some authors exclude the case $x = x_0$ from the above definition, thus requiring $0 < d_X(x, x_0) < \delta$. In our current notation, this would correspond to removing x_0 from E, thus one would consider $\lim_{x \to x_0; x \in E \setminus \{x_0\}} f(x)$ instead of $\lim_{x \in x_0; x \in E} f(x)$.

Remark The requirement that x_0 be an adherent point of E is necessary for the concept of limiting value to be useful, otherwise x_0 will lie in the exterior of E, the notion that f(x) converges to L as x converges to x_0 in E is vacuous (for δ sufficiently small, there are no points $x \in E$ so that $d(x, x_0) < \delta$).

We have two definitions about the limiting value of a map between metric spaces and shall use the second one. **Definition** Let $D \subset \mathbb{R}$ (or \mathbb{C}) and $f: D \to \mathbb{R}$ (or \mathbb{C}) be a function. We say that $\lim_{x\to p} f(x) = y$ if and only if for every sequence $(x_n)_{n\in\mathbb{N}} \subset D$ with $\lim_{n\to\infty} x_n = p$ we have $\lim_{n\to\infty} f(x_n) = y$.

Theorem

$$\lim_{x \to p} f(x) = y$$

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in D \quad with \; |x - p| < \delta :$$

$$|f(x) - y| < \varepsilon \,. \tag{1}$$

Proof. " \Leftarrow " Let $(x_n)_{n\in\mathbb{N}}\subset D$ be a sequence with $\lim_{n\to\infty}x_n=p$. We have

$$\forall \delta \ \exists N \in \mathbb{N} \ \forall n \ge N : |x_n - p| < \delta. \tag{2}$$

For $\varepsilon > 0$ we determine $\delta > 0$ as in (1) and then N as in (2): It follows that for $n \geq N$:

$$|f(x_n) - y| < \varepsilon.$$

We have therefore shown

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N : |f(x_n) - y| < \varepsilon,$$

so $\lim_{n \to \infty} f(x_n) = y$ and therefore, by definition, $\lim_{x \to p} f(x) = y.$

" \Rightarrow " If (1) is not fulfilled then

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \quad \text{with } |x - p| < \delta$$
but $|f(x) - y| > \varepsilon$. (3)

For $n \in \mathbb{N}$ we set $\delta = \frac{1}{n}$ and determine $x_n = x$ corresponding to δ as in (3). Then $|x_n - p| < \frac{1}{n}$ and so $\lim_{n \to \infty} x_n = p$, but for ε as in (3) we have

$$|f(x_n) - y| > \varepsilon,$$

and therefore
$$\lim_{n\to\infty} f(x_n) \neq y$$
.

Def. $(X,d),(Y,d_1)$ are metric spaces, the map

$$T: X \ni x \to y = Tx \in Y.$$

For $x_0 \in X$, T is continuous at x_0 iff $\forall \epsilon > 0, \exists \delta > 0$, s.t. $d(x, x_0) < \delta \Rightarrow d_1(Tx, Tx_0) < \epsilon$.

T is continuous on $D \subset X$ iff $\forall x \in D$, it is continuous at x. T is called uniformly continuous on D if δ can be the same for all $x_0 \in D$, i.e., δ is independent of $x_0 \in D$.

T is a homeomorphism iff it is bijective, and T and T^{-1} are continuous.

Remark If $f: X \to Y$ is continuous, and K is any subset of X, then the restriction $f|_K: K \to Y$ of f to K is also continuous

Proposition (Continuity preserved by composition). Let (X, d_X) , (Y, d_Y) , and (Z, d_Z) be metric spaces.

- (a) If $f: X \to Y$ is continuous at a point $x_0 \in X$, and $g: Y \to Z$ is continuous at $f(x_0)$, then the composition $g \circ f: X \to Z$, defined by $g \circ f(x) := g(f(x))$, is continuous at x_0 .
- (b) If $f: X \to Y$ is continuous, and $g: Y \to Z$ is continuous, then $g \circ f: X \to Z$ is also continuous.

Example If $f: X \to \mathbf{R}$ is a continuous function, then the function $f^2: X \to \mathbf{R}$ defined by $f^2(x) := f(x)^2$ is automatically continuous also. This is because we have $f^2 = g \circ f$, where $g: \mathbf{R} \to \mathbf{R}$ is the squaring function $g(x) := x^2$, and g is a continuous function.

Theorem
$$T$$
 is continuous at $x_0 \Leftrightarrow \forall \{x_n\} \subset X, x_n \to x_0 \Rightarrow Tx_n \to Tx_0$.

Proof. \Rightarrow It is a consequence of the definition.

 \Leftarrow : if T is not continuous at x_0 , then $\exists \epsilon_0 > 0$, s.t.

$$\forall n \in \mathbb{N}, \exists x_n \in X, d(x_n, x_0) < \frac{1}{n}, \ d_1(Tx_n, Tx_0) \ge \epsilon_0.$$

Hence, $x_n \to x_0$, $Tx_n \nrightarrow Tx_0$.

X — > Y

Theorem T is continuous $\Leftrightarrow \forall \text{ open } G \subset Y, T^{-1}(G) \text{ is open in } X.$

Proof. \Rightarrow : Let $G \subset Y$ be open, $x_0 \in T^{-1}(G)$, then $T(x_0) \in G$, so $\exists B(Tx_0, \epsilon) \subset G$. By continuity, $\exists \delta > 0$ s.t. $T(B(x_0, \delta)) \subset B(Tx_0, \epsilon)$. Thus, $B(x_0, \delta) \subset T^{-1}(B(Tx_0, \epsilon)) \subset G^{-1}(G)$. Hence, $T^{-1}(G)$ is open.

 \Leftarrow : Let $\{x_n\} \subset X, x_n \to x_0$. Fix $\epsilon > 0$. Since $T^{-1}(B(Tx_0, \epsilon))$ is open, $\exists \delta > 0$ s.t. $B(x_0, \delta) \subset T^{-1}(B(Tx_0, \epsilon))$. Thus, $T(B(x_0, \delta)) \subset B(Tx_0, \epsilon)$. From $x_n \to x_0$, $\exists N_0 \in \mathbb{N}$ s.t. $d(x_n, x_0) < \delta, \forall n \geq N_0$. Hence, $d(Tx_n, Tx_0) < \epsilon, \forall n \geq N_0$.

Corollary A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.

This follows from the theorem, since a set is closed if and only if its complement is open, and since $f^{-1}(E^c) = [f^{-1}(E)]^c$ for every $E \subset Y$.