Quiz 3

Due Apr 14 at 11:59pm Point	s 14 Questions 14	Available Apr 6 at 12am - Apr 18 at 11:59pm 13 days	Time Limit 60 Minutes
-----------------------------	-------------------	---	-----------------------

Instructions

Answer the following multiple choice questions.

This quiz is no longer available as the course has been concluded.

Attempt History

Correct!

	Attempt	Time	Score
LATEST	Attempt 1	40 minutes	13 out of 14

Score for this quiz: **13** out of 14 Submitted Apr 14 at 9:10pm This attempt took 40 minutes.

	Question 3 1
	For a constrained optimization problem in which there are active constraints, the quadratic penalty function solution has the fo properties:
	The solution of the penalty problem approaches the true constrained solution as the penalty parameter decreases. The unconstrained solution approaches the true solution from the feasible space.
	The solution of the penalty problem approaches the true constrained solution as the penalty parameter increases. The unconstrained solution approaches the true solution from the feasible space.
	The solution of the penalty problem approaches the true constrained solution as the penalty parameter increases. The unconstrained solution approaches the true solution from the infeasible space.
	The solution of the penalty problem approaches the true constrained solution as the penalty parameter decreases. The unconstrained solut approaches the true solution from the infeasible space.

Ī	Question 4	1 / 1 pts
	For a constrained optimization problem in which there are active constraints, the log-barrier function solution has the follow properties:	ving
rrect!	⊚	
	The solution of the log-barrier problem approaches the true constrained solution as the barrier parameter decreases. The unconstrained solution approaches the true solution from the feasible space.	ed
	The solution of the log-barrier problem approaches the true constrained solution as the barrier parameter decreases. The unconstrained solution approaches the true solution from the infeasible space.	ed
	The solution of the log-barrier problem approaches the true constrained solution as the barrier parameter increases. The unconstrained solution approaches the true solution from the infeasible space.	d
	The solution of the log-barrier problem approaches the true constrained solution as the barrier parameter increases. The unconstrained solution approaches the true solution from the feasible space.	d

/ 1 pts

Correct!

Correct!

Q	Question 6	1 / 1
TI	The $m{\ell_1}$ penalty function is	
	An exact penalty function that is not differentiable	
	A direct penalty function that is smooth	
	An exact penalty function that is smooth	
	An inexact penalty function	

Question 9 0 / 1 pts

Question 8

1 / 1 pts

	Full-space methods are a formulation for simulation-based optimization problems best described as:
	 Including both the design variables and state variables in the optimization problem formulation. The governing equations are ignored.
You Answered	
	Including only the design variables in the optimization problem formulation. The governing equations are included as a set of equality constraints.
	Including only the state variables in the optimization problem formulation. The governing equations are included as a set of equality constraints.
Correct Answer	
	Including both the design variables and state variables in the optimization problem formulation. The governing equations are included as a set of equality constraints.
L	

	Question 10	/ 1 pts
	The reduced space method handles the state variables associated with the governing equations in the following manner:	
	Considering the state variables as independent variables along with the design variables. The governing equations are satisfied at each ne design point by appending them as equality constraints.	ew
Correct!	Considering the state variables as an implicit function of the design variables. The governing equations are satisfied at each new design portion.	oint.
	Considering both state and design variables as independent. The governing equations are never satisfied.	
	Considering the state variables as an implicit function of the design variables, however the governing equations are only satisfied at the fin optimized design point.	nal,

	Question 11 1 pts
	Finite-difference methods suffer from subtractive cancellation and truncation error. These errors are best described as follows:
	Truncation errors occur due to floating point arithmetic. Subtractive cancellation arises due to Taylor series approximations.
	Subtractive cancellation and truncation error both decrease as the step size decreases. It is good practice to select a very small step size for finite-difference computations.
Correct!	•
	Subtractive cancellation increases as the step size decreases while truncation error decreases as the step size decreases. Both errors cannot be eliminated simultaneously.
	It's best to use matlab so that you avoid subtractive cancellation and truncation errors.

Question 12 1 / 1 pts

The complex-step method can provide accurate derivative estimates since

Correct!

lt d	oes not suffer from subtractive cancellation so very small step sizes can be used to reduce truncation error.
Col	mplex types can represent small numbers better than real types.
O It d	oes not use finite-precision arithmetic.
	oes not suffer from truncation error so very small step sizes can be used to reduce subtractive cancellation.

Question 13	1 / 1 pts
Algorithmic differentiation can provide accurate derivatives by	
Systematically applying the chain rule to all the operations in a simulation code, thereby providing the derivative of outputs with res inputs.	pect to
Using extended precision arithmetic to avoid subtractive cancellation.	
Systematically applying finite-difference methods throughout a simulation code to provide the required derivatives.	
Emulating your simulation on a virtual machine using matlab.	

	The adjoint method provides an efficient way to compute the derivative of an output quantity of interest with respect to the variables within the context of a reduced-space design optimization formulation. The steps involved in the adjoint are be	
as		
	Compute the partial derivatives of the function of interest using finite-difference methods, then assemble the total derivative.	
	Solve the direct sensitivity equations to obtain the matrix of adjoint variables. This adjoint matrix is independent of the function of interest	
	Solve the adjoint equations to obtain the adjoint variables, and use the adjoint variables to compute the total derivative. The adjoint equation are always linear in the adjoint variables.	

Quiz Score: 13 out of 14