ANOVA: One-way ANOVAs (practice)

Research Methods for Human Inquiry
Andrew Perfors

This lecture:

- How to do the ANOVA in R
- Which groups actually differ from one another

Reminder

- One data frame, d_new
- Five variables:
 - plot... code uniquely identifying each plot of land
 - type... type of land: pasture, rich, or hilly
 - cows, berries, corns... units of each food

> d_new

	plot	type	COWS	berries	corn
1	9Jx21zaa	pasture	4	58.7	28.2
2	Qp72PepB	pasture	14	57.1	28.3
3	5YIxvYbz	pasture	11	31.6	27.9
4	OnZuUW5M	pasture	9	34.8	19.9
5	rLMa3j90	pasture	4	52.8	23.0
6	k3Hb2fUa	pasture	16	57.9	35.8

Reminder

 Are there significantly more cows on pasture right now, as you'd expect if people were allocating land sensibly?

Analysis of variance

- ANOVA is performed in stages
 - 1. aov() calculates the SS values etc
 - 2. summary() runs the hypothesis tests
 - 3. other functions to pull out other things of interest
- The aov() function
 - This is the main "workhorse" function
 - It creates an "aov" object (i.e. variable), which contains lots of quantities of interest relating to ANOVA
 - Let's see how this works in practice...

Using the aov() function

Store the output as a variable called cows1waynewModel

This tells R to look for the variables inside the d_new tibble

What precisely is this thing?

- Our cows1waynewModel variable is an "aov object"
 - It's a special kind of variable that stores a whole bunch of information relevant to an ANOVA
 - Printing an aov object will show you only some of the information in it — good because most of it we don't care about!
 - We use "extractor" functions to pull out the important bits

One way ANOVA

- > cows1waynewModel <- aov(cows ~ type, data = d_new)</pre>
- > cows1waynewModel

Call:

 $aov(formula = cows \sim type, data = d_new)$

R has calculated the quantities needed for the F-test

Terms:

$$MS_w = \frac{SS_w}{N - G}$$
 $MS_b = \frac{SS_b}{G - 1}$

$$F = \frac{MS_b}{MS_w}$$

Doing the hypothesis test

Use the function summary()

```
> cows1waynewModel <- aov( cows ~ type, data = d_new )
> summary(cows1waynewModel)

Df Sum Sq Mean Sq F value Pr(>F)
type 2 68.8 34.4 1.495 0.233
Residuals 57 1311.2 23.0
```

The ANOVA table

A simple measure of effect size

- The η^2 (eta-squared) statistic is conventional
- It's calculated by dividing SS_b by SS_{tot}

$$\eta^2 = \frac{SS_b}{SS_{tot}}$$

- It's interpreted as the proportion of the total variance attributable to the grouping variable
 - e.g., $\eta^2 = 0.07$ means 7% of the variation in the outcome variable is explained by the groups, which isn't very much.

How to calculate it in R

- Assuming you've already run an ANOVA and stored it as a variable, then it's really easy
 - Use the etaSquared() function [lsr package].
 - It only has one argument, the aov object itself:

```
> etaSquared(cows1waynewModel)
eta.sq eta.sq.part
type 0.04985507 0.04985507
```

This is the part of the output that matters for our purposes. Partial eta-squared is identical to eta-squared for a one-way ANOVA, so we can ignore the second column

Adding effect sizes to your write up?

 It's a good idea to add a measure of effect size to the "stat block". So, instead of writing this...

$$F(2,57) = 1.50, p = .233$$

We would write this...

$$F(2,57) = 1.50, p = .233, \eta^2 = .05$$

 ... and we might comment that "land type" explains 5% of the variance in the # of cows ranched on that land. It's a good idea to include effect size and its interpretation!

What does this mean?

There's no significant difference between land types in # of cows right now, which suggests that maybe they aren't using the land optimally

Can do the exact same analysis on the old data...

Can do the exact same analysis on the old data...

```
> cows1wayoldModel <- aov( cows ~ type, data = d_old )</pre>
> summary(cows1wayoldModel)
           Df Sum Sq Mean Sq F value Pr(>F)
      2 302.7 151.35 10.91 9.73e-05 ***
type
Residuals 57 790.7 13.87
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
> etaSquared(cows1wayoldModel)
        eta.sq eta.sq.part
type 0.2768429 0.2768429
```

This is significant

Analysis suggests that 15 years ago, land type explained 27% of the variance in # of cows - perhaps they used land more optimally back then

