Probability

Definitions

- $[\pi\text{-Class}]$ A collection P is a $\underline{\pi\text{-class}}$ if:
 - *P* is nonempty
 - $\circ \quad A,B \in P \Rightarrow A \cap B \in P$
- [λ -Class] A collection L is a $\underline{\lambda}$ -class if:
 - $\circ \phi \in L$
 - \circ $A, B \in L$ with $A \subset B \Rightarrow B \setminus A \in L$
 - $\circ A_1 \subset A_2 \subset \cdots \in L \Rightarrow \bigcup_{i=1}^{\infty} A_i \in L$
- [Measurable Map] Let $X: \Omega \to S$. Then X is a <u>measurable map</u> from (Ω, \mathcal{F}) to (S, \mathcal{B}) if $X^{-1}(B) = \{\omega: X(\omega) \in B\} \in \mathcal{F} \ \forall B \in \mathcal{B}$
- [Random Vector] X is a <u>random vector</u> if X is a measurable map with $(S, \mathcal{B}) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$
- [Random Variable] X is a <u>random variable</u> if X is a measurable map with $(S, \mathcal{B}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$
- [Generates] Let S be a σ -field and A a collection of subsets of S. Then A generates S if S is the smallest σ -field containing A
 - $\circ \quad \mathcal{S} = \bigcap_{\mathcal{S}': \mathcal{A} \subset \mathcal{S}'} \mathcal{S}'$
- [σ -Field Generated by X] Let $X: (\Omega, \mathcal{F}) \to (S, \mathcal{B})$. Then, $\sigma(X)$ is the $\underline{\sigma}$ -field generated by X $\sigma(X) = \{X^{-1}(B): B \in \mathcal{B}\} = \{\{\omega: X(\omega) \in B\}: B \in \mathcal{B}\}$
- [Independence] Let $\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{F}$ be sub- σ -fields. $\mathcal{B}_1, \mathcal{B}_2$ are independent if $\mathbb{P}[B_1 \cap B_2] = \mathbb{P}[B_1]\mathbb{P}[B_2] \ \forall B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2$
- [Independence] The σ -fields $\mathcal{B}_1, \mathcal{B}_2, \dots \mathcal{B}_n$ are independent when $\mathbb{P}[\bigcap_{i=1}^n B_i] = \prod_{i=1}^n \mathbb{P}[B_i] \forall B_i \in \mathcal{B}_i$
- [Independence] The events $A_1, ..., A_n$ are independent if $\mathbb{P}[\bigcap_{i=1}^n A_i] = \prod_{i=1}^n \mathbb{P}[A_i]$
- [Independence] Two random variables X, Y are <u>independent</u> if $\sigma(X), \sigma(Y)$ are independent $\circ \mathbb{P}[B_1 \cap B_2] = \mathbb{P}[B_1]\mathbb{P}[B_2]$ for $\forall B_1 \in \sigma(X), B_2 \in \sigma(Y)$
- [Infinite Product Measure] Let $((\Omega_{\alpha}, \mathcal{F}_{\alpha}, \mathbb{P}_{\alpha}))_{\alpha \in \mathcal{A}}$ be probability spaces. \exists ! measure on \mathcal{F} . $\Omega = \prod_{\alpha \in \mathcal{A}} \Omega_{\alpha}$ is the Cartesian product. $\mathcal{F} = \sigma(\bigcup_{\alpha \in \mathcal{A}} \mathcal{F}_{\alpha})$. $\mathbb{P}[E] = \prod_{\alpha \in \mathcal{A}'} \mathbb{P}[E_{\alpha}]$ where $\mathcal{A}' \subset \mathcal{A}$ is a finite subset.

Theorems

- [1.3.1] Let $X: \Omega \to S$ and \mathcal{A} be a collection of subsets of S that generates S. If $\{\omega: X(\omega) \in A\} \subset \mathcal{F} \ \forall A \in \mathcal{A}$, then X is measurable.
- If X, Y independent, then $\sigma(X), \sigma(Y)$ are independent.
- [Kolmogorov's Extension Theorem] Suppose given probability measure μ_n on $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ that are consistent i.e. $\mu_{n+1}\big((a_1,b_1]\times...\times(a_n,b_n]\times\mathbb{R}\big)=\mu_n\big((a_1,b_1]\times...\times(a_n,b_n]\big)$, then there is a unique probability measure \mathbb{P} on $(\mathbb{R}^\mathbb{N},\mathcal{B}(\mathbb{R}^\mathbb{N}))$ with $\mathbb{P}[\{\omega:\omega\in(a_i,b_i],1\leq i\leq n\}]=\mu_n\big((a_1,b_1]\times...\times(a_n,b_n]\big)$
- [2.1.22] Let S be a Borel subset of a complete separable metric space M and S be the collection of Borel subsets of S, then (S, S) is a Borel space.
- [Dynkin's π - λ Theorem] Let P be a π -class and L be a λ -class with $P \subset L$. Then $\sigma(P) \subset L$.
- [6.1] Let X_1, X_2 be random variables with range (S_i, S_i) . The following are equivalent:
 - o X_1, X_2 are independent
 - $\circ \quad \mathbb{P}[X_1 \in B_1, X_2 \in B_2] = \mathbb{P}[X_1 \in B_1] \mathbb{P}[X_2 \in B_2] \; \forall B_i \in \mathcal{S}_i$
 - ο $\mathbb{P}[X_1 \in B_1, X_2 \in B_2] = \mathbb{P}[X_1 \in B_1]\mathbb{P}[X_2 \in B_2] \ \forall B_i \in \mathcal{A}_i$ where \mathcal{A}_i is a λ-class and $\sigma(\mathcal{A}_i) = \mathcal{S}_i$
 - o $\mathbb{E}[h_1(X_1)h_2(X_2)] = \mathbb{E}[h_1(X_1)]\mathbb{E}[h_2(X_2)]$ for all bounded measurable $h_i: S_i \to \mathbb{R}$

Convergence

Definitions

- [Uncorrelated] Let $\mathbb{E}[X_i^2] < \infty$. Then X_1, X_2 are uncorrelated if $\mathbb{E}[X_1 X_2] = \mathbb{E}[X_1] \mathbb{E}[X_2]$.
- [Convergence in Probability] $X_n \overset{\mathbb{P}}{\to} X \Rightarrow \lim_{n \to \infty} \mathbb{P}[|X_n X| > \epsilon] = 0 \ \forall \epsilon > 0$
- [Convergence in L^p] $X_n \overset{L^p}{\to} X \Rightarrow \lim_{n \to \infty} \mathbb{E}[|X_n X|^p] = 0$
- [Infinitely Often] Let $A_1, A_2, ...$ be events. Then A_n i.o = $\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j$
- [Ultimately] Let $A_1, A_2, ...$ be events. Then A_n ult = $\bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j$
 - In other words, only finite number of failures
- $[\limsup\sup a_n=\lim_{n\to\infty}\sup_{m\geq n}a_m$
- [lim sup] $\lim \sup A_n = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j = A_n$ i. o.
- [lim inf] $\lim\inf a_n = \lim\limits_{n\to\infty}\inf\limits_{m\geq n}a_m$ [lim inf] $\lim\inf A_n = \bigcup_{i=1}^{\infty}\bigcap_{j=i}^{\infty}A_j = A_n$ ult.
- [Atom] A point $x \in \mathbb{R}$ is an <u>atom</u> of distribution function F if $F(x) F(x^-) = \mathbb{P}[X = x] > 0$
- [Bernstein Polynomial] The Bernstein polynomial of degree n associated with f is: $f_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right)$
- [Truncation] Let X be a random variable. Then define the truncated random variable at $\underline{\text{level } M} \text{ to be } \bar{X} = X \mathbb{1}_{\{|X| \le M\}} = \begin{cases} X, & |X| \le M \\ 0, & |X| > M \end{cases}$

Theorems

- [6.6] Let p > 0, then $X_n \overset{L^p}{\to} X \Rightarrow X_n \overset{\mathbb{P}}{\to} X$ [L^2 WLLN 6.8] Let $(X_n)_n$ be a pairwise uncorrelated sequence of random variables for which sup $\mathbb{E}[X_n^2] \leq c$ for some constant c. Let $\mu_i = \mathbb{E}[X_i]$ and $S_n = \sum_{i=1}^n X_i$ and $\bar{\mu}_n = \sum_{i=1}^n X_i$ $\frac{1}{n}\sum_{i=1}^n \mu_i$. Then $\frac{s_n}{n} - \bar{\mu}_n \overset{L^2}{\to} 0$ and hence $\frac{s_n}{n} - \bar{\mu}_n \overset{\mathbb{P}}{\to} 0$
- [Weierstrass Approximation Theorem] Any continuous function $f:[0,1] \to \mathbb{R}$ may be approximated in the supremum norm by polynomials.
- [Bernstein's Theorem] Let $f: [0,1] \to \mathbb{R}$ be continuous. Define $f_n(x) = \sum_{m=1}^n {n \choose m} x^m (1-1)^m$ $f(x)^{n-m} f\left(\frac{m}{n}\right)$. Then $\lim_{n\to\infty} \sup_{x\in[0,1]} |f_n(x) - f(x)| = 0$.
- - o $\mathbb{P}[A_n \text{ i. o.}] \ge \limsup \mathbb{P}[A_n] \text{ i.e. } \mathbb{P}[\limsup A_n] \ge \limsup \mathbb{P}[A_n]$
 - $\mathbb{P}[A_n \text{ ult}] \leq \liminf \mathbb{P}[A_n] \text{ i.e. } \mathbb{P}[\liminf A_n] \leq \liminf \mathbb{P}[A_n]$
 - o If $\mathbb{P}[A_n] = 1 \ \forall n$, then $\mathbb{P}[\bigcap_{i=1}^{\infty} A_i] = 1$
- [Borel Cantelli I] Let $(A_i)_{i=1}^{\infty}$ be events s.t. $\sum_{i=1}^{\infty} \mathbb{P}[A_i] < \infty$. Then $\mathbb{P}[A_i \text{ i. o.}] = 0$.
- [Borel Cantelli II] Let $(A_i)_{i=1}^{\infty}$ be independent, then $\sum_{i=1}^{\infty} \mathbb{P}[A_i] = \infty$ implies $\mathbb{P}[A_i \text{ i.o.}] = 1$
- [7.5] Let $(Y_n)_n$ be a sequence of \mathbb{R} -valued random variables and $y \in (-\infty, \infty)$. If $\sum_{n=1}^{\infty} \mathbb{P}[Y_n \ge y + \epsilon] < \infty \ \forall \epsilon > 0$, then $\limsup Y_n \le y$ a.s.

 - $\sum_{n=1}^{\infty} \mathbb{P}[|Y_n| \ge \epsilon] < \infty \ \forall \epsilon > 0$, then $Y_n \to 0$ a.s.
- [SLLN 7.7] Let $(X_n)_n$ be i.i.d. Let X has the common law of X_i . Suppose $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^4] < \infty$. Write $S_n = \sum_{i=1}^n X_i$. Then:
 - $\circ \quad \mathbb{E}[S_n^4] \le 3n^2 \mathbb{E}[X^4]$
 - $\circ \quad \frac{S_n}{n} \to 0 \text{ a.s.}$
 - o If $\mathbb{E}[X] = \mu$, then $\frac{S_n}{n} \to \mu$ a.s.
- [8.1] Let F_n and F be distribution functions. Then, $\limsup |F_n(x) F(x)| = 0$ if:

- $\lim F_n(x) = F(x) \text{ for } x \in \mathbb{Q}$
- $\lim_{n\to\infty} F_n(x) = F(x) \text{ and } \lim_{n\to\infty} F_n(x^-) = F(x^-) \text{ for }$

[Glivenko-Cantelli Theorem] Let $(X_n)_n$ be i.i.d with arbitrary distribution function G. Let $G_n(\omega, x)$ be the empirical distribution of $(X_1(\omega), ..., X_n(\omega))$ with $G_n(\omega, x) =$ $\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{X_i(\omega)\leq x\}. \text{ Then } \lim_{n\to\infty}G_n(\omega,x)=G(x)$

$$\circ \quad \mathbb{P}\left[\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|G_n(\omega,x)-G(x)|=0\right]=1$$

- [8.4] Let $x_n \ge 0$ and $0 < b_n$ with $\lim_{n \to \infty} b_n = \infty$. Then $\lim \sup \frac{\max\{x_1, \dots, x_n\}}{b_n} = \lim \sup \frac{x_n}{b_n}$
- [8.6] Let $(a_n)_n$ be a sequence. Then, if \exists subsequence $(a_{n_k})_k$ s.t. $\lim_{k\to\infty}\frac{a_{n_k}}{n_k}=0$ and $\lim_{k\to\infty} \frac{\max\limits_{n_k\leq n'< n_{k+1}}\left|a_{n'}-a_{n_k}\right|}{n_k} = 0, \text{ then } \lim\limits_{n\to\infty} \frac{a_n}{n} = 0$
- [SLLN 8.7] Let $(X_n)_n$ be a sequence of random variables with $\mathbb{E}[X_i] = 0$ and $\sup \mathbb{E}[X_i^2]$ finite. Suppose $\mathbb{E}[X_i X_j] = 0$ for $i \neq j$. Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to 0$ a.s.
- [Durrett 2.3.2] $X_n \stackrel{\mathbb{P}}{\to} X$ if and only if for every subsequence $(X_{n_m})_m$, there is a further subsequence $(X_{n_{m_k}})_{t_k}$ that converges almost surely to X.
- [Durrett 2.3.4] If f is continuous and $X_n \stackrel{\mathbb{P}}{\to} X$ in probability, then $f(X_n) \stackrel{\mathbb{P}}{\to} f(X)$. If f is bounded, then $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$
- [2.3.5] Let X_1, X_2, \dots i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{E}[X_i^4] < \infty$. Let $S_n = X_1 + \dots + X_n$, then $\frac{S_n}{n} \to \mu$ a.s.
- [2.3.8] Let X_1, X_2, \dots i.i.d. with $\mathbb{E}[|X_i|] = \infty$, then $\mathbb{P}[|X_n| \ge n \text{ i. o.}] = 1$. Let $S_n = X_1 + \dots + X_n$, then $\mathbb{P}\left[\lim_{n \to \infty} \frac{S_n}{n} \in (-\infty, \infty)\right] = 0$
- [2.3.9] Let $A_1, A_2, ...$ be pairwise independent and $\sum_{n=1}^{\infty} \mathbb{P}[A_n] = \infty$, then $\frac{\sum_{i=1}^{n} \mathbb{I}_{A_m}}{\sum_{i=1}^{n} \mathbb{I}_{A_m}} \to 1$ a.s.
- [HW 5 P3] The following are equivalent:

 - $\begin{array}{ll} \circ & X_n \overset{\mathbb{P}}{\to} X \\ \circ & \exists (\epsilon_n)_n \text{ with } \lim_{n \to \infty} \epsilon_n = 0 \text{ s.t. } \mathbb{P}[|X_n X| > \epsilon_n] \leq \epsilon_n \\ \circ & \lim_{n \to \infty} \mathbb{E}[\min(|X_n X|, 1)] = 0 \end{array}$

Triangular Arrays

- [2.2.6] Let $(X_n)_n$ be any sequence of random variables and $S_n = X_1 + \cdots + X_n$. Denote $\mu_n = \mathbb{E}[S_n] \text{ and } \sigma_n^2 = \operatorname{Var}[S_n]. \text{ If } \lim_{n \to \infty} \frac{\sigma_n^2}{b_n^2} = 0, \text{ then } \frac{S_n - \mu_n}{b_n} \stackrel{\mathbb{P}}{\to} 0$
- [2.2.11] For each n, let $(X_{n,k})_{1 \le k \le n}$ be independent. Let $(b_n)_n$ be s.t. $b_n > 0$ and $\lim_{n \to \infty} b_n = 0$ ∞ and $\bar{X}_{n,k} = X_{n,k} \mathbb{1}_{\{|X_{n,k}| \leq b_n\}}$. Define $S_n = \sum_{i=1}^n X_{n,i}$ and $a_n = \sum_{k=1}^n \mathbb{E}[\bar{X}_{n,k}]$. Suppose that as $n \to \infty$, the following two conditions hold:
 - $\circ \lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{P}[|X_{n,k}| > b_n] = 0$

- [2.2.13] Let $Y \ge 0$ and p > 0. Then $\mathbb{E}[Y^p] = \int_0^\infty p y^{p-1} \mathbb{P}[Y > y] dy$
- [2.2.12] Let $X_1, X_2, ...$ be i.i.d. with $\lim_{\substack{x \to \infty \\ \mathbb{D}}} x \mathbb{P}[|X_i| > x] = 0$ as $x \to \infty$. Let $S_n = X_1 + \cdots + X_n$ and $\mu_n = \mathbb{E}[X\mathbb{1}_{\{|X| \le n\}}]$. Then $\frac{S_n}{n} - \mu_n \stackrel{\mathbb{P}}{\to} 0$

[2.2.14 WLLN] Let X_1, X_2, \dots i.i.d. with $\mathbb{E}[|X_i|] < \infty$. Let $S_n = X_1 + \dots + X_n$ and $\mu = \mathbb{E}[X_i]$. Then $\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu$

Convergence Theorems

- Let $X_1, X_2, ...$ be uncorrelated RVs with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] \leq C < \infty$. If $S_n = X_1 + \cdots + X_n = 0$ X_n , then $\frac{S_n}{n} \stackrel{L^2}{\to} \mu$ and $\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu$
- [2.2.6] Let $\mu_n = \mathbb{E}[S_n]$ and $\sigma_n^2 = \text{Var}[S_n]$. If $\lim_{n \to \infty} \frac{\sigma_n^2}{b_n^2} = 0$, then $\frac{S_n \mu_n}{b_n} \stackrel{\mathbb{P}}{\to} 0$
- [2.2.11] Let $X_{n,k}$ be independent. Let $b_n > 0$ with $\lim_{n \to \infty} b_n = \infty$ and $\bar{X}_{n,k} = X_{n,k} \mathbb{1}\{|X_{n,k}| \le 1\}$ b_n }. Define $S_n = \sum_{i=1}^n X_{n,i}$ and $a_n = \sum_{i=1}^n \mathbb{E}[\bar{X}_{n,i}]$. Suppose that:
 - $\circ \quad \lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{P}[|X_{n,k}| > b_n] = 0$
 - $0 \lim_{n \to \infty} \frac{1}{b_n^2} \sum_{k=1}^n \mathbb{E}[\bar{X}_{n,k}^2] = 0$ Then $\frac{S_n a_n}{b_n} \stackrel{\mathbb{P}}{\to} 0$

Convergence of Random Series

- [Tail σ -Field] Let $\mathcal{F}_n = \sigma(X_n, X_{n+1}, ...)$ and $\mathcal{T} = \bigcap_{t=1}^{\infty} \mathcal{F}_t$. Then \mathcal{T} is the <u>tail σ -field</u>.
 - o $A \in \mathcal{T}$ if and only if changing a finite number of random variables doesn't affect the knowledge of occurrence of A
- [Finite Permutation] A finite permutation of N is a map $\pi: \mathbb{N} \to \mathbb{N}$ s.t. $\pi(i) \neq i$ for only finitely many i
- [Permutable] An event A is permutable if $\pi^{-1}(A) \equiv \{\omega : \pi\omega \in A\} = A$ for any finite permutation π i.e. occurrence of A is not affected by rearranging finitely many of the random variables
- [Exchangeable σ -Field] ξ is the collection of permutable events.
 - ο ξ is a σ -field
- [Properties]
 - Let $A \in \sigma(X_1, ..., X_k)$ and $B \in \sigma(X_{k+1}, ...)$, then A, B are independent
- [Kolmogorov 0-1 Law] Let $X_1, X_2, ...$ be independent and $A \in \mathcal{T}$, then $\mathbb{P}[A] = 0$ or 1
- [Hewitt-Savage 0-1 Law] Let $X_1, X_2, ...$ be i.i.d. and $A \in \xi$, then $\mathbb{P}[A] = 0$ or 1
- [9.1 Kolmogorov's Maximal Inequality] Suppose $X_1, ..., X_n$ are independent with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] < \infty$. If $S_n = X_1 + \dots + X_n$, then $\mathbb{P}\left[\max_{1 \le k \le n} |S_k| \ge x\right] \le \frac{1}{x^2} \operatorname{Var}[S_n]$
- [9.2 / 2.5.6] Suppose $X_1, X_2, ...$ are independent and $\mathbb{E}[X_n] = 0$. If $\sum_{n=1}^{\infty} \text{Var}[X_n] < \infty$, then $\sum_{i=1}^{\infty} X_i$ converges a.s.
 - o i.e. $\mathbb{P}[\{\omega: \sum_{i=1}^{\infty} X_i(\omega) \text{ converges}\}] = 1$
- [Kolmogorov's Three-Series Theorem] Let $X_1, X_2, ...$ be independent. Let A > 0 and $Y_i =$ $X_i\mathbb{1}\{|X_i| \leq A\}$. $\sum_{i=1}^{\infty} X_i$ converges a.s. if and only if:
 - $\begin{array}{ll} \circ & \sum_{i=1}^{\infty} \mathbb{P}[|X_i| > A] < \infty \\ \circ & \sum_{i=1}^{\infty} \mathbb{E}[Y_i] \text{ converges} \end{array}$

 - $\circ \quad \sum_{n=1}^{\infty} \operatorname{Var}[Y_i] < \infty,$
- [9.3 Kronecker's Lemma] Let $\lim_{n\to\infty} a_n \uparrow \infty$ and $\sum_{i=1}^{\infty} \frac{x_i}{a_i}$ converges, then $\lim_{n\to\infty} \frac{1}{a_n} \sum_{i=1}^n x_i = 0$ \circ [9.4] Let $(X_n)_n$ independent with $\mathbb{E}[X_n] = 0$ and $\mathrm{Var}[X_n] < \infty$ and $S_n = \sum_{i=1}^n X_i$.
- Suppose $(a_n)_n$ is a sequence s.t. $a_n > 0$ and $\lim_{n \to \infty} a_n \uparrow \infty$ s.t. $\sum_{i=1}^n \frac{\mathbb{E}[X_n^2]}{a_n^2} < \infty$, then $\lim_{n\to\infty}\frac{s_n}{a_n}=0 \text{ a.s.}$ • [9.5 / 2.5.10 SLLN] Let $X_1,X_2,...$ be i.i.d. random variables with $\mathbb{E}[|X_i|]<\infty$. Let $\mathbb{E}[X_i]=\mu$
- and $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ a.s.

Renewal Theory

• [Set-up] Let $X_1, X_2, ...$ be i.i.d. with $0 < X_i < \infty$; consider X_i as the ith waiting time. Let $T_n = X_1 + \cdots + X_n$ be the nth occurrence of event. Call $(T_n)_n$ renewals. $N_t = \inf\{k: T_k > t\}$ is the number of renewals in [0, t] counting the one at 0.

- o N_t is a stopping time i.e. $\{N_t = k\}$ is measurable w.r.t. \mathcal{F}_k
- o $U(t) = \mathbb{E}[N_t]$ is expected number of renewals at time t
- [2.4.7] Let $\mathbb{E}[X_1] = \mu \le \infty$, then $\frac{N_t}{t} \to \frac{1}{\mu}$ a.s. as $t \to \infty$.
- [2.6.2] Let $X_1, X_2, ...$ be i.i.d. with $\mathbb{E}[|X_i|] < \infty$. If N is a stopping time with $\mathbb{E}[N] < \infty$, then $\mathbb{E}[S_N] = \mathbb{E}[X_i]\mathbb{E}[N]$
- [Renewal Measure] $U(A) = \sum_{i=0}^{\infty} \mathbb{P}[T_i \in A]$
 - $\circ \quad U(t) = U([0,t])$

Wald's Identities

- [4.8] Assume $(X_n)_n$ i.i.d. with finite first moments and T stopping time s.t. $\mathbb{E}[T] < \infty$. Then $\mathbb{E}[S_T] = \mathbb{E}[X]\mathbb{E}[T]$
- [4.10] Assume $(X_n)_n$ i.i.d. with $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] < \infty$. If T is a stopping time s.t. $\mathbb{E}[T] < \infty$, then $\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T]$

Theory of Large Deviations

- [Set-up] Let $X_1, X_2, ...$ be i.i.d. and $S_n = X_1 + \cdots + X_n$. Define $\pi_n = \mathbb{P}[S_n \ge na], \gamma(a) = \lim_{n \to \infty} \frac{\pi_n}{n}$.
- [Observation] $\pi_{m+n} \ge \pi_m \pi_n$
- [2.7.1] Let $\gamma_{m+n} \ge \gamma_m + \gamma_n$, then $\lim_{n \to \infty} \frac{\gamma}{n} = \sup_{m} \frac{\gamma_m}{m}$
- [12.1] As $n \to \infty$, $\frac{1}{n} \log \mathbb{P}\left[\frac{S_n}{n} \ge a\right] \to \inf_{\theta \in \mathbb{R}} \{\log \phi(\theta) a\theta\}$
- [12.2] $\phi'(0_+) = \mu$, $\phi'(\theta) = \mathbb{E}[Xe^{\theta X}]$, $\phi''(\theta) = \mathbb{E}[X^2e^{\theta X}]$
- [Tilted Random Variable] Fix $\theta \in (0, \infty)$. Define \hat{X} by $\mathbb{P}[\hat{X} = x] = \frac{e^{\theta x} \mathbb{P}[X = x]}{\phi(\theta)}$
- $[12.3] \mathbb{E}[\hat{X}] = \frac{d}{d\theta} \log \phi(\theta), \operatorname{Var}[\hat{X}] = \frac{d^2}{d\theta^2} \log \phi(\theta)$

Conditional

Definitions

• [Distribution] Let $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (S, \mathcal{S})$ be a random variable. X has <u>distribution or law</u> μ if $\mu(B) = \mathbb{P}[\{\omega \in \Omega: X(\omega) \in B\}] \ \forall B \in \mathcal{S}$

- o $\mu = \mathbb{P} \circ X^{-1}$ is the pushforward measure
 - Pushforward because it brings the measure \mathbb{P} in (Ω, \mathcal{F}) to measure in (S, \mathcal{S})

- [Borel Space] Let (S, S) be a measurable space. Then (S, S) is a Borel space if exists a Borel-measurable $A \subset \mathbb{R}$ and a bijection $\phi: A \to S$ s.t. ϕ and ϕ^{-1} are measurable.
 - o (S, S) can be identified as a subspace of $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
- [Product Measurable Space] Let (S_1, S_1) and (S_2, S_2) be measurable spaces. Then the product measurable space is $(S_1 \times S_2, S_1 \otimes S_2)$:
 - $\circ \quad S_1 \otimes S_2 = \sigma(A \times B : A \in S_1, B \in S_2)$
- [Kernel] A kernel Q from S_1 to S_2 is a map $Q: S_1 \times S_2 \rightarrow [0,1]$ s.t.
 - For fixed $s \in S_1$, the map $Q(s, \cdot)$ is a probability measure on S_2
 - For fixed $B \in S_2$, the map $Q(\cdot, B)$ is measurable function from S_1 to \mathbb{R}
 - Think of $Q(s_1, B)$ as $\mathbb{P}[Y \in B | X = s_1]$
- [Product Measure] Let μ_1 and μ_2 be probability measures on (S_1, S_1) and (S_2, S_2) . Then, exists product measure $\mu = \mu_1 \otimes \mu_2$ on $S_1 \times S_2$ s.t.:

 - o If $D \in \mathcal{S}_1 \otimes \mathcal{S}_2$, then $\mu(D) = \int \mu_2(D_{s_1}) d\mu_1(s_1)$
 - ο Let $h: S_1 \times S_2 \to \mathbb{R}$ be measurable, $h \ge 0$, |h| is μ -integrable, then $\int_{S_1} \int_{S_1} h(s_1, s_2) \, \mathrm{d}\mu_2(s_2) \, \mathrm{d}\mu_1(s_1)$

Borel Space Properties

- [14.6] Every complete separable metric space is a Borel space.
- [14.7] Given probability measure ν on Borel space (S, S), there exists a measurable $h: [0,1] \to S$ s.t. h(U) has distribution ν .

Propositions

- [Basic Relations] Given a probability measure μ on $S_1 \times S_2$, a probability measure μ_1 on S_1 , and a kernel Q from S_1 to S_2 . The following are equivalent:
 - $\circ \quad \mu(A \times B) = \int_A Q(s_1, B) \, \mathrm{d} \mu_1(s_1) \, \forall A \in \mathcal{S}_1, B \in \mathcal{S}_2$
 - $\circ \quad \mu(D) = \int_{S_1} Q(s_1, D_{s_1}) \, \mathrm{d}\mu_1(s_1) \; \forall D \in \mathcal{S}_1 \otimes \mathcal{S}_2$
 - $D_{s_1} = \{s_2 : (s_1, s_2) \in D\}$ is the slice of *D* across s_1
 - $\circ \int_{S_1 \times S_2} h(s_1, s_2) d\mu(s) = \int_{S_1} \int_{S_2} h(s_1, s_2) Q(s_1, ds_2) d\mu_1(s_1)$
 - Note: $Q(s_1, ds_2)$ is a probability measure over S_2
- [13.4] Let $D \in S_1 \otimes S_2$, then:
 - o $D_{s_1} \in S_2 \ \forall s_1 \in S_1$ i.e. each slice is measurable
 - The map $s_1 \mapsto Q(s_1, D_{s_1})$ is measurable
- [13.5] Let μ_1 be a probability measure on S_1 and Q a kernel from S_1 to S_2 . Then, μ is a probability measure on $S_1 \times S_2$ via $\mu(D) = \int_{S_1} Q(s_1, D_{s_1}) d\mu_1(s_1) \ \forall D \in S_1 \otimes S_2$
 - Can construct joint measure from the marginal measure and kernel
- [13.6] Let μ be a probability measure on $S_1 \times S_2$, then define the marginal measure $\mu_1(A) = \mu(A \times S_2)$. If S_2 is a Borel space, then \exists kernel Q from S_1 to S_2 satisfying the basic relations.
 - \circ Can get kernel from joint probability measure, given that S_2 is a Borel space

• [15.1] Let μ be a probability measure on $S \times \mathbb{R}$ and $X: \Omega \to S$ be a random variable. Let $U: \Omega \to [0,1]$ denote a random variable uniformly distributed on [0,1], with U, X independent. Then, exists $f: S \times [0,1] \to \mathbb{R}$ s.t. by defining Y = f(X, U), (X, Y) has distribution μ

Definitions (Conditional Expectation)

- [Conditional Expectation] Let $X: (\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ with $\mathbb{E}[|X|] < \infty$ and $\mathcal{G} \subset \mathcal{F}$. Then $\mathbb{E}[X|\mathcal{G}]$ is a random variable with $\mathbb{E}[X|\mathcal{G}]: (\Omega, \mathcal{G}, \mathbb{P}) \to \mathbb{R}$ satisfying:
 - o $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable
 - $\forall B \in \mathcal{B}(\mathbb{R}), \{\omega \in \Omega : \mathbb{E}[X|\mathcal{G}](\omega) \in B\} \in \mathcal{G}$
 - $\circ \quad \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_G] = \mathbb{E}[X\mathbb{1}_G] \ \forall G \in \mathcal{G}$
- [Conditional Variance] Let $Var[X|G] = \mathbb{E}[(X \mathbb{E}[X|G])^2|G]$
- [Conditionally Independent] Let X, Y be random variables. Then they are conditionally independent given \mathcal{G} if \forall bounded $h_1, h_2, \mathbb{E}[h_1(X)h_2(Y)|\mathcal{G}] = \mathbb{E}[h_1(X)|\mathcal{G}]\mathbb{E}[h_2(Y)|\mathcal{G}]$

Propositions (Conditional Expectation)

- [15.6] Let V be a bounded G-measurable function. Then $\mathbb{E}[V\mathbb{E}[X|G]] = \mathbb{E}[VX]$
- [15.6] Let Z be G-measurable and $\mathcal{A} \subset G$ be a π -class s.t. $G = \sigma(\mathcal{A})$. Then $Z = \mathbb{E}[X|G]$ if $\mathbb{E}[Z\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A] \ \forall A \in \mathcal{A}$

Martingale

Definitions

- [Filtration] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A <u>filtration</u> is a sequence of sub- σ -fields s.t. $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}$. Also, define $\mathcal{F}_\infty = \bigcup_{i=1}^\infty \mathcal{F}_i$.
 - o \mathcal{F}_n is the information known at time n
 - o [Natural Filtration] Let $(X_n)_n$ be a martingale. Then $(\mathcal{F}_n)_n$ where $\mathcal{F}_n = \sigma(X_0, ..., X_n)$ is the natural filtration for $(X_n)_n$
 - o [Final σ -Field] \mathcal{F}_{∞}
- [Adapted] A sequence of random variables $(X_n)_n$ is <u>adapted</u> to $(\mathcal{F}_n)_n$ i.e. $\sigma(X_n) \in \mathcal{F}_n \ \forall n$
- [Martingale] A \mathbb{R} -valued process $(X_n)_n$ is a <u>martingale</u> if:
 - \circ $\mathbb{E}[|X_n|] < \infty \ \forall n$
 - o $(X_n)_n$ is adapted to $(\mathcal{F}_n)_n$
 - \circ $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n \text{ for } 0 \le n < \infty$
- [Submartingale] $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$
 - $\circ\quad \mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]\geq 0$
- [Supermartingale] $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$
 - $\circ \quad \mathbb{E}[X_{n+1} X_n | \mathcal{F}_n] \le 0$
- [Martingale Difference Sequence] Let $\Delta_n^X := X_n X_{n-1}$. Then $(\Delta_n^X)_n$ is a martingale difference sequence.
 - o $(X_n)_n$ is a martingale if and only if:
 - $\Delta_n^X \in \mathcal{F}_n$
 - $\mathbb{E}[|\Delta_n^X|] < \infty$
 - $\mathbb{E}[\Delta_{n+1}^X | \mathcal{F}_n] = 0$

Theorems

- [18.3] Let $(X_n)_n$ be a random process adapted to $(\mathcal{F}_n)_n$, Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be convex with
 - o If $(X_n)_n$ is a martingale, then $(\phi(X_n))_n$ is a submartingale.
 - o If $(X_n)_n$ is a submartingale and ϕ increasing, then $(\phi(X_n))_n$ is also a submartingale.
- [20.1 / 4.2.10 Upcrossing Inequality] Let $(X_n)_n$ be a martingale and a < b be two thresholds. Let U_n be the number of up-crossings from a to b completed by time n. Then $(b-a)\mathbb{E}[U_n] \le \mathbb{E}[(X_n-a)^+] - \mathbb{E}[(X_0-a)^+] \le \mathbb{E}[X_n^+] + |a|.$

Martingale Convergence Theorems

- [Martingale Convergence Theorem] Let $(X_n)_n$ be a submartingale with $\sup \mathbb{E}[X_n^+] < \infty$,
 - then $X_n \to X_\infty$ a.s. for some X_∞ with $\mathbb{E}[|X_\infty|] < \infty$.
 - o If $(X_n)_n$ is a supermartingale with $X_n \ge 0$ a.s., then $X_n \to X_\infty$ a.s. for some X_∞ with $0 \le \mathbb{E}[X_{\infty}] \le \mathbb{E}[X_0]$
- [L^p Convergence Theorem] Let $(X_n)_n$ be a martingale with $\sup \mathbb{E}[|X_n|^p] < \infty$ where p > 1.
 - Then $(X_n)_n \to X$ a.s. and in L^p .

Other Results

- [Doob Decomposition] Let $(X_n)_n$ be a sequence of random variables that is adapted to $(\mathcal{F}_n)_n$ and $\mathbb{E}[|X_n|] < \infty$. Then, we construct $(Y_n)_n$ and $(Z_n)_n$ s.t.

 - $\begin{array}{ll} \circ & Z_0 = 0 \\ \circ & \Delta_n^Z = \mathbb{E}[\Delta_n^X | \mathcal{F}_{n-1}] \end{array}$

In other words, Z_n increments by the predicted change of X_n from time t = n - 1 to t = n. Y_n increments by the difference between the actual change and the predicted change.

- $\circ X_n = Y_n + Z_n$
- \circ $(Y_n)_n$ martingale

- $\circ \quad Z_n \in \mathcal{F}_{n-1}$ i.e. $(Z_n)_n$ predictable and $\mathbb{E}[|Z_n|] < \infty$
 - $(Z_n)_n$ handles the average drift in X_n
- [21.1] Let $(X_n)_n$ be a martingale s.t. $\exists K > 0$ s.t. $|X_n X_{n-1}| \le K \ \forall n$. Denote C = 1 $\left\{\omega\in\Omega: \lim_{n\to\infty}X_n(\omega)<\infty\right\} \text{ and } D=\left\{\omega\in\Omega: \limsup_nX_n(\omega)=+\infty, \liminf_nX_n(\omega)=-\infty\right\}. \text{ Then } X_n(\omega)=0.$ $\mathbb{P}[C \cup D] = 1.$
 - o i.e. for martingales with bounded differences, they either converge or oscillate infinitely
 - o i.e. cannot get a behaviour that is forever finitely sinusoidal without converging
- [21.2 Conditional Borel Cantelli] Let $(A_n)_n$ be a sequence of events adapted to filtration $(\mathcal{F}_n)_n$. Define $B = \{A_i \text{ i.o.}\} = \bigcap_n \bigcup_{m \geq n} A_m$. Then:
 - $0 \quad \{A_i \text{ i. o.}\} = \{\sum_{i=1}^{\infty} \mathbb{P}[A_i | \mathcal{F}_{n-1}] = \infty\} \text{ a.s.}$
 - $\circ \lim_{n \to \infty} \mathbb{P}[\bigcup_{m \ge n} A_m | \mathcal{F}_{n-1}] = \mathbb{1}_{\{A_i \text{ i.o.}\}} \text{ a.s.}$
 - Borel Cantelli extends to processes via conditional probability

Problem Solving

Given $(Y_n)_n$, apply some transformation h s.t. $(h(Y_n))_n$ is a martingale. Take $\mathcal{F}_n =$ $\sigma(Y_0, ..., Y_n)$. Then $(h(Y_n))_n$ is adapted to $(\mathcal{F}_n)_n$

Martingale (Inequalities)

Maximal Inequalities

[19.3] Let $(X_n)_n$ be a supermartingale, with $X_n \ge 0$ a.s. Let $X_N^* = \max_{0 \le i \le N} X_i$ and $X^* = \sup_{n \in \mathbb{N}} X_n$.

Then:

$$\begin{array}{ll} \circ & \mathbb{P}[X_N^* \geq \lambda] \leq \frac{\mathbb{E}[X_0]}{\lambda} \, \forall \lambda > 0 \\ \circ & \mathbb{P}[X^* \geq \lambda] \leq \frac{\mathbb{E}[X_0]}{\lambda} \, \forall \lambda > 0. \end{array}$$

- o Gets a handle on probability of reaching above a certain level for martingale
- [Doob L^1 Maximal Inequality] Let $(X_n)_n$ be a submartingale. Let $N \in \mathbb{N}$ and $\lambda > 0$, then $\lambda \mathbb{P}[X_N^* \geq \lambda] \leq \mathbb{E}\big[X_N \mathbb{1}_{X_N^* \geq \lambda}\big] \leq \mathbb{E}[X_N^+] = \mathbb{E}[\max(X_N, 0)]$
- [19.5] Let $(X_n)_n$ be a martingale. Then $\mathbb{P}\left[\max_{0 \le n \le N} |X_n| \ge \lambda\right] \le \frac{\mathbb{E}[|X_N|]}{\lambda}$
- [19.5] Let $(X_n)_n$ be a martingale. Then $\mathbb{P}\left[\max_{0 \le n \le N} |X_n| \ge \lambda\right] \le \frac{\mathbb{E}[X_N^2]}{\lambda^2}$ [Doob L^2 Maximal Inequality] Let $(X_n)_n$ be a martingale. Let $N \in \mathbb{N}$, $\mathbb{E}[\max(0, X_N^*)^2] \le 1$ $4\mathbb{E}[(X_N^+)^2]$
- $[L^p]$ Maximal Inequality 4.4.4] Let $(X_n)_n$ be a submartingale and let $1 . Denote <math>X_n^* = \max_{0 \le i \le n} X_i^+$. Then $\mathbb{E}[(X_n^*)^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[(X_n^+)^p]$.
 - $\quad \quad \text{Let } (Y_n)_n \text{ be a martingale, then } \mathbb{E}[|Y_n^*|^p] \leq \left(\frac{p}{n-1}\right)^p \mathbb{E}[|Y_n|^p]$
- [Azuma's Inequality] Let $S_n = \sum_{i=1}^n X_i$ be a martingale with $|X_i| \le 1$ a.s. Then $\mathbb{P}[S_n \ge \lambda \sqrt{n}] \le e^{-\frac{\lambda^2}{2}} \, \forall \lambda > 0.$
 - $\circ \quad \mathbb{P}[|S_n| \ge \lambda \sqrt{n}] \le 2e^{-\frac{\lambda^2}{2}} \text{ for } \lambda > 0$

Martingale (Stopping Time)

Definitions

- [Predictable] Let $(\mathcal{F}_n)_n$ be a filtration. Then, $(H_n)_n$ is <u>predictable</u> if $H_n \in \mathcal{F}_{n-1}$.
 - o i.e. value of H_n can be predicted with certainty from information at time n-1
- [Martingale Transform] $(H \cdot X)_n = \sum_{i=1}^n H_i(X_i X_{i-1})$
 - $\circ \quad (H \cdot X)_{n+1} = (H \cdot X)_n + H_{n+1}(X_{n+1} X_n)$
- [Stopping Time] Let $T: \Omega \to \mathbb{N} \cup \{\infty\}$ be a random variable. Then T is a <u>stopping time</u> if $\{T = n\} \in \mathcal{F}_n \ \forall n \in \mathbb{N} \cup \{\infty\}$.
 - Equivalently, $\{T \le n\} \in \mathcal{F}_n$
- [Pre-T σ -Field] Let T be a stopping time. Then the <u>pre-T σ -field is the σ -field $\mathcal{F}_T = \{A \in \mathcal{F}: A \cap \{T = n\} \in \mathcal{F}_n\}$ </u>
 - Equivalently, $\mathcal{F}_T = \{A \in \mathcal{F}: A \cap \{T \leq n\} \in \mathcal{F}_n\}$
 - o Intuitively, \mathcal{F}_T are the events that the observer knows about the random process until its stopping time (inclusive)
- [Stopped Process] Let $(X_n)_n$ be a random process adapted to $(\mathcal{F}_n)_n$ and T be a stopping time. Then $(X_{\min(n,T)})_n$ is the <u>stopped process</u> and is also adapted to $(\mathcal{F}_n)_n$.

Properties

- [Pre-T σ-Field Properties]
 - Let $(X_n)_n$ be adapted to $(\mathcal{F}_n)_n$ and T be a stopping time with $T < \infty$. Then X_T is \mathcal{F}_{T^-} measurable.
 - Let $T_1 \le T_2$ be stopping times. Then $\mathcal{F}_{T_1} \subset \mathcal{F}_{T_2}$.
 - Let T_1 , T_2 be stopping times. Then $\{T_1 = T_2\} \in \mathcal{F}_{T_1} \cap \mathcal{F}_{T_2}$
 - Intuitively, when one of the processes stop, we would know if $\{T_1 = T_2\}$ occurred.
 - If $A \subset \{T_1 = T_2\}$, then $A \in \mathcal{F}_{T_1} \Leftrightarrow A \in \mathcal{F}_{T_2}$
 - o [19.1] Let $(X_n)_n$ be a submartingale and $0 \le T_1 \le T_2$ be bounded stopping times. Then $\mathbb{E}[X_{T_n}|\mathcal{F}_{T_n}] \ge X_{T_n}$

Theorems

- [18.7 / 4.2.8] Let $(X_n)_n$ be a random process adapted to $(\mathcal{F}_n)_n$ and $(H_n)_n$ predictable and $H_i \leq c_i \ \forall i$. Consider $Y = H \cdot X$ i.e. $Y_n = X_0 + \sum_{i=1}^n H_i(X_i X_{i-1})$ i.e. $\Delta_n^Y = H_n \Delta_n^X$.
 - o If $(X_n)_n$ is a martingale, then $(Y_n)_n$ is a martingale.
 - o If $(X_n)_n$ is a submartingale and $H_n \ge 0$, then $(Y_n)_n$ is also a submartingale.
 - o If $(X_n)_n$ is a supermartingale and $H_n \ge 0$, then $(Y_n)_n$ is also a supermartingale.
- [18.8 / 4.2.9] Let $(X_n)_n$ be a (sub/super) martingale and T be a stopping time. Then $(X_{\min(T,n)})_n$ is a (sub/super) martingale.
 - o i.e. "a stopped martingale is a martingale"
 - o $H_n = 1{0 \le n \le T}$
- [Optional Sampling Theorem] Let $(X_n)_n$ be a (sub)martingale. Let $0 \le T_0 \le T_1 \le \cdots$ be stopping times, with $T_i \le t_i$ for t_i constant. Then $\left(X_{T_n}\right)_n$ is a (sub)martingale with respect to $\left(\mathcal{F}_{T_n}\right)_n$
 - Example: $T_i = \min(i, T)$ with $T \le c$
 - Basically, this theorem details conditions in which the expected value of a martingale at stopping time is equal to its initial expected value; this one being bounded stopping time.
- [4.4.1] Let $(X_n)_n$ be a submartingale and T be a stopping time s.t. $\mathbb{P}[T \le k] = 1$. Then $\mathbb{E}[X_0] \le \mathbb{E}[X_T] \le \mathbb{E}[X_k]$

Martingale (L^1 Theory)

Definitions

- [Uniformly Integrable] A family $(X_{\alpha})_{\alpha \in \mathcal{A}}$ is <u>uniformly integrable</u> if $\lim_{M \to \infty} \sup_{\alpha \in \mathcal{A}} \mathbb{E}[|X_{\alpha}| \mathbb{1}_{|X_{\alpha}| \geq M}] = 0$
 - i.e. $\forall \epsilon > 0$, $\exists M \in [0, \infty)$ s.t. $\mathbb{E}[|X_{\alpha}|\mathbb{1}_{|X_{\alpha}| \geq M}] < \epsilon \ \forall \alpha \in \mathcal{A}$
 - o Equivalently:
 - $\exists M < \infty \text{ s.t. } \mathbb{E}[|X_{\alpha}|] < M$
 - $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall \text{ measurable } A \text{ and } \forall \alpha \in \mathcal{A}, \mathbb{P}[A] < \delta \Rightarrow \mathbb{E}[|X_{\alpha}|\mathbb{1}_A] < \epsilon$

Properties

- [Uniformly Integrable Properties]
 - \circ Let $(Y_{\alpha})_{\alpha}$ be s.t. $\sup_{\alpha} \mathbb{E}[|Y_{\alpha}|^q] < \infty$ for some q > 1, then $(Y_{\alpha})_{\alpha}$ uniform integrable, and therefore $\sup_{\alpha} \mathbb{E}[|Y_{\alpha}|] < \infty$
 - o Let $(Y_n)_n$ be a random process s.t. $Y_n \to Y_\infty$ a.s. and $(Y_n)_n$ uniform integrable. Then $\mathbb{E}[|Y_\infty|] < \infty$ and $\lim_{n \to \infty} \mathbb{E}[|Y_n Y_\infty|] = 0$ (i.e. $Y_n \overset{L_1}{\to} Y_\infty$)
 - o Let $(Y_n)_n$ be a random process s.t. $Y_n \stackrel{L_1}{\to} Y_\infty$, then $(Y_n)_n$ is uniform integrable.
- Let Y be a random variable s.t. $\mathbb{E}[|Y|] < \infty$, then $(\mathbb{E}[Y|\mathcal{G}])_{\mathcal{G}}$ where $\mathcal{G} \subset \mathcal{F}$ is uniform integrable.
- [4.6.5] Let $(X_n)_n$, X be integrable random variables s.t. $(X_n)_n \to X$ in L^1 . Then $\lim_{n\to\infty} \mathbb{E}[X_n\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A]$.
- [4.6.6] Let $(X_n)_n$ be a martingale. If $(X_n)_n \to X$ in L^1 , then $X_n = \mathbb{E}[X|\mathcal{F}_n]$.
 - Used in the proof of 4.6.7

Theorems

- [4.6.1] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X \in L^1$. Then $\{\mathbb{E}[X|\mathcal{F}']\}_{\mathcal{F}'}$ is uniform integrable, where $\mathcal{F}' \subset \mathcal{F}$ is a sub- σ -field
- [4.6.2] Let $\phi \ge 0$ be a function s.t. $\lim_{x \to \infty} \frac{\phi(x)}{x} = \infty$. If $\mathbb{E}[\phi(|X_{\alpha}|)] \le \mathcal{C} \ \forall \alpha \in \mathcal{A}$, then $\{X_{\alpha}\}_{\alpha \in \mathcal{A}}$ is uniformly integrable.
- [4.6.4] Let $(X_n)_n$ be a submartingale. Then the following are equivalent:
 - o $(X_n)_n$ is uniform integrable
 - $(X_n)_n$ converges a.s. and in L^1
 - o $(X_n)_n$ converges in L^1
- [L^1 Martingale Convergence Theorem 20.5 / 4.6.7] Let $(X_n)_n$ be a martingale. Then the following are equivalent:
 - \circ $(X_n)_n$ is uniform integrable
 - $(X_n)_n$ converges a.s. and in L^1
 - \circ $(X_n)_n$ converges in L^1
 - $\exists X_{\infty}$ s.t. $\mathbb{E}[|X_{\infty}|] < \infty$ (i.e. integrable) s.t. $X_k = \mathbb{E}[X_{\infty}|\mathcal{F}_k] \ \forall k$

If any of the above conditions hold, $\exists X_{\infty}$ s.t. $X_n \to X_{\infty}$ both a.s. and in L^1

- [4.6.8] Let $\mathcal{F}_n \uparrow \mathcal{F}_\infty$. Then $\mathbb{E}[X|\mathcal{F}_n] \to \mathbb{E}[X|\mathcal{F}_\infty]$ a.s. and in L^1
 - \circ $(\mathbb{E}[X|\mathcal{F}_n])_n$ is a martingale
- [Lévy's 0-1 Law] Let $(Y_n)_n$ be a random process. Let Z be a random variable s.t. $\mathbb{E}[|Z|] < \infty$ and $Z \in \sigma(Y_1, Y_2, ...)$. Let $X_n = \mathbb{E}[Z|Y_1, ..., Y_n]$. Then $(X_n)_n$ is a uniformly integrable martingale with $X_n \to Z$ a.s. and in L^1 .
 - o Let $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ and $A \in \mathcal{F}_{\infty}$. Then $\mathbb{E}[\mathbb{1}_A | \mathcal{F}_n] \to \mathbb{1}_A$ a.s.
- [4.6.10] Let $(Y_n) \to Y$ a.s. and $|Y_n| \le Z \ \forall n$ and $\mathbb{E}[Z] < \infty$. If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$, then $\mathbb{E}[Y_n | \mathcal{F}_n] \to \mathbb{E}[Y | \mathcal{F}_\infty]$ a.s.

- [Kakutani Theorem] Let $(X_n)_n$ be independent with $X_i > 0$ and $\mathbb{E}[X_i] = 1$. Then $(M_n)_n$ is a martingale with $M_n = \prod_{i=1}^n X_i$. Hence $(M_n)_n \to M_\infty$ with $\mathbb{E}[M_\infty] \le 1$. The following are equivalent:
 - $\circ\quad \mathbb{E}[M_\infty]=1$

 - $\begin{array}{ccc} & & & & L^1 \\ \circ & & (M_n)_n \xrightarrow{L^1} M_{\infty} \\ \circ & & (M_n)_n \text{ uniform integrable} \end{array}$
 - $\circ \quad \prod_{i=1}^{\infty} \mathbb{E}\left[X_i^{\frac{1}{2}}\right] > 0$
 - $\circ \quad \sum_{i=1}^{\infty} \left(1 \mathbb{E} \left[X_i^{\frac{1}{2}} \right] \right) < \infty$

Martingale (Miscellaneous)

Reversed Martingale

- [Reversed Martingale] Let $\mathcal{G}_0 \supseteq \mathcal{G}_1 \supseteq \cdots$ and $\mathcal{G}_\infty = \bigcap_n \mathcal{G}_n$. Then $(X_n)_n$ is a <u>reversed</u> <u>martingale</u> if $\mathbb{E}[|X_n|] < \infty$, $\mathbb{E}[X_m|\mathcal{G}_n] = X_n$ for $m \le n$ and $(X_n)_n$ is adapted to $(\mathcal{G}_n)_n$. o $X_n = \mathbb{E}[X_0|\mathcal{G}_n]$ a.s.
- [24.5] Let $(X_n)_n$ be a reversed martingale. Then $(X_n)_n \to \mathbb{E}[X_0|\mathcal{G}_\infty]$ a.s. and in L^1 .
- [4.7.3] Let $\mathcal{G}_0 \supseteq \mathcal{G}_1 \supseteq \cdots$ and $\mathcal{G}_\infty = \bigcap_n \mathcal{G}_n$. Then $(\mathbb{E}[Y|\mathcal{G}_n])_n \to \mathbb{E}[Y|\mathcal{G}_\infty]$ a.s. and in L^1

Exchangeable Sequences Results

- [Permutable] Let $\omega \in S^{\mathbb{N}}$ and π be a finite permutation. Then, $\pi\omega \in S^{\mathbb{N}}$ with $(\pi\omega)_i := \omega_{\pi(i)}$. An event A is permutable if $\pi^{-1}A = A \ \forall \pi$ finite permutation i.e. $\{\omega \in S^{\mathbb{N}} : \pi\omega \in A\} = A$
 - o The occurrence of the event A is not affected by rearranging finitely many of the random variables
 - Same as permutating the random variables
- [Exchangeable σ -Field] Let \mathcal{E}_n denote the σ -field generated by events invariant under permutations leaving n+1, n+2, ... fixed. Then, $\mathcal{E} = \bigcap_{n=1}^{\infty} \mathcal{E}_n$ is the exchangeable σ -field.
 - It is exactly the collection of permutable events.
 - \circ $\mathcal{E}_{n+1} \subset \mathcal{E}_n$
- [Exchangeable] A sequence of random variables $(X_n)_n$ is exchangeable if $(X_1, ..., X_n) \sim$ $(X_{\pi(1)}, ..., X_{\pi(n)})$ in distribution $\forall n$ and permutation π .
- [Facts]
 - o If (Z_1, W) and (Z_2, W) are equal in distributions and $\mathbb{E}[|Z_1|] < \infty$, then $\mathbb{E}[Z_1|W] =$ $\mathbb{E}[Z_2|W]$ a.s.
 - $\mathbb{E}[\phi(Z_1)|W] = \mathbb{E}[\phi(Z_2)|W]$ a.s.
 - Let X be a random variable s.t. $\mathbb{E}[|X|] < \infty$ and G be a σ -field. If $X = \mathbb{E}[X|G]$ in distribution, then $X = \mathbb{E}[X|\mathcal{G}]$ a.s.
 - If $G \subset \mathcal{H}$ and $\mathbb{E}[X|G] = \mathbb{E}[X|\mathcal{H}]$ in distribution, then $\mathbb{E}[X|G] = \mathbb{E}[X|\mathcal{H}]$ a.s.
- Let X_1, X_2, \dots i.i.d. and $A_n(\phi) = \frac{1}{n_{P_k}} \sum_i \phi(X_{i_1}, \dots, X_{i_k})$. If ϕ is bounded, then $\lim_{n \to \infty} A_n(\phi) = \frac{1}{n_{P_k}} \sum_i \phi(X_{i_1}, \dots, X_{i_k})$. $\mathbb{E}[\phi(X_1,\ldots,X_k)]$ a.s.
- [24.6] Let $(X_n)_n$ be an exchangeable sequence of random variables, with $\mathbb{E}[|X_i|] < \infty$. Let $S_n = \sum_{i=1}^n X_i. \text{ Then } \lim_{n \to \infty} \frac{S_n}{n} = \mathbb{E}[X_1 | \tau] \text{ a.s. and in } L^1.$ $\circ \quad \text{Recall: } \tau = \bigcap_{i=1}^\infty \sigma(X_i, X_{i+1}, \dots) \text{ is the tail } \sigma\text{-field}$
- [24.7] Let $(X_n)_n$ be i.i.d. with $\mathbb{E}[|X_i|] < \infty$. Then τ is trivial, and hence $\mathbb{E}[X_1|\tau] = \mathbb{E}[X_1]$. Hence, $\lim_{n\to\infty} \frac{S_n}{n} = \mathbb{E}[X_1]$ a.s. and in L^1 .
- [24.8] Let $G_n = \sigma(S_n, X_{n+1}, X_{n+2}, ...)$. Then $\mathbb{E}[X_i | G_n] = \mathbb{E}[X_1 | G_n]$ a.s. for $i \in \{1, ..., n\}$
- [25.1] Let $(X_1, ..., X_n)$ be an exchangeable sequence. Let $T \in \{0, ..., n-1\}$ be a stopping time. Then $X_{T+1} = X_1$ in distribution.
- [25.2 de Finetti] Let $(X_n)_n$ be an exchangeable sequence of random variables. Let τ be the tail σ -field. Then, conditional on τ , $(X_i)_i$ are i.i.d.
 - o X_1 , ... are conditionally independent given τ
 - For each i, \exists kernel $Q(\omega, \cdot)$ s.t. $Q(\omega, \cdot)$ is the regular conditional distribution of X_i given τ for each i i.e. $\mathbb{P}[X_i \in A | \tau](\omega) = Q(\omega, A)$
- [Hewitt-Savage 0-1 Law] Let $X_1, X_2, ...$ be i.i.d. and $A \in \mathcal{E}$, then $\mathbb{P}[A] \in \{0,1\}$

Martingale (L^2 Theory)

Definitions

- [L² Bounded] Let $(M_n)_n$ be a martingale. Then $(M_n)_n$ is $\underline{L^2$ bounded if $\sup_n \mathbb{E}[M_n^2] < \infty$
 - o Equivalently, $\sum_{i=1}^{\infty}\mathbb{E}[(M_n-M_{n-1})^2]<\infty$

L² Theory

• Let $(M_n)_n$ be a L^2 bounded martingale. Then $\exists M_\infty$ s.t. $M_n \to M_\infty$ a.s. and in L^1 and in L^2 .

Martingale (L^p Theory)

Definitions

- [L^p Norm] Let (X, μ) be a measure space and $p \in [1, \infty)$. The L^p -norm of a measurable function f is $||f||_p = \left(\int_Y |f(x)|^p \, \mathrm{d}\mu\right)^{\frac{1}{p}}$
- $[L^p \text{ Functions}] f \in L^p(X) \text{ if } ||f||_p < \infty$
 - o Equivalently, $\int_{Y} |f(x)|^p d\mu < \infty$
- [L^p Norm] Let $(a_n)_n$ be a sequence with $a_n \in \mathbb{R}$ and $p \in [1, \infty)$. Then the L^p norm of $(a_n)_n$ is $\|(a_n)_n\|_p \coloneqq (\sum_{i=1}^\infty |a_i|^p)^{\frac{1}{p}}$
- [L^p Sequence] $(a_n)_n$ is a L^p sequence if $\|(a_n)_n\|_p < \infty$
 - o Equivalently, $\sum_{i=1}^{\infty} |a_i|^p < \infty$
- [L^p Cauchy] Let (X,μ) be a measure space and $(f_n)_n$ be a sequence of measurable functions on X with $p \in [1,\infty)$. Then $(f_n)_n$ is L^p Cauchy sequence if $\forall \epsilon > 0$, $\exists N > 0$ s.t. $n,m > N \Rightarrow \|f_n f_m\|_p < \epsilon$
- [Bounded L^p Variation] Let (X, μ) be a measure space and $(f_n)_n$ be a sequence of measurable functions on X with $p \in [1, \infty)$. Then $(f_n)_n$ has bounded L^p variation if $\sum_{i=1}^{\infty} ||f_{i+1} f_i||_p < \infty$
- [Convergence in L^p] Let (X, μ) be a measure space and $(f_n)_n$ be a sequence of measurable functions on X with $p \in [1, \infty)$. Then $(f_n)_n$ converges in L^p to f if $\lim_{n \to \infty} ||f_n f||_p = 0$
 - o In probability terms, $\lim_{n\to\infty} \mathbb{E}[\|X_n X\|^p]^{\frac{1}{p}} = 0$
 - $\circ \quad \text{Equivalently, } \lim_{n \to \infty} \mathbb{E}[\|X_n X\|^p] = 0$
- $[L^{\infty} \text{ Norm}]$ Let (X, μ) be a measure space and f be a measurable function on X. The L^{∞} norm of f is $||f||_{\infty} = \min\{M \in [0, \infty]: \mu(\{x: |f(x)| > M\}) = 0\}$
- $[L^{\infty} \text{ Function}] f \in L^{\infty} \text{ if } ||f||_{\infty} < \infty$
- [Convergence in L^{∞}] Let (X, μ) be a measure space and $(f_n)_n$ be a sequence of measurable functions on X. Then $(f_n)_n \to f$ in L^{∞} if $\lim_{n \to \infty} ||f_n f||_{\infty} = 0$
 - Equivalent to uniform convergence i.e. $(f_n)_n \to f$ in L^∞ if and only if $(f_n)_n \to f$ uniformly except on a measure 0 set i.e. $\lim_{n \to \infty} \sup_{x \in X} \{f_n(x) f(x)\} = 0$

Proposition

- Let (X, μ) be a measure space and $1 \le p < q < \infty$. If $\mu(X) \in (0, \infty)$, then $\|f\|_p \le \left(\mu(X)\right)^r \|f\|_q \ \forall$ measurable f where $r = \frac{1}{p} \frac{1}{q}$
 - $\circ \quad \text{If } \mu(X) = 1 \text{, then } \|f\|_p \leq \|f\|_q \,\, \forall \,\, \text{measurable } f$
 - $\circ \quad f \in L^q \Rightarrow f \in L^p$
- Let $1 \le p < q < \infty$, then every L^p sequence is also L^q
- $[L^p]$ Maximal Inequality 4.4.4] Let $(X_n)_n$ be a submartingale and let $1 . Then <math>\mathbb{E}\left[\left(\max_{1 \le i \le n} X_i^+\right)^p\right] = \mathbb{E}\left[\max_{1 \le i \le n} (X_i^+)^p\right] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[(X_n^+)^p].$
 - \circ Let $(X_n)_n$ be a martingale, then $\mathbb{E}\left[\max_{1\leq i\leq n}|X_i|^p\right]\leq \left(\frac{p}{p-1}\right)^p\mathbb{E}[|X_n|^p]$

Theorem

- Let (X, μ) be a measure space and $(f_n)_n$ be a sequence of measurable functions on X with bounded L^p variation. Then $(f_n)_n$ converges pointwise almost everywhere to a measurable function f and $(f_n)_n \to f$ in L^p
- Let (X, μ) be a measure space and let $(f_n)_n$ be a L^p Cauchy sequence on X. Then $(f_n)_n$ converges in L^p to some measurable function f on X.
- Let $(f_n)_n$ be an L^{∞} Cauchy sequence of measurable functions. Then $(f_n)_n$ converges in L^{∞} to some measurable function f

• [Parimal 2.6] Let $(X_n)_n$ be a sequence of random variables with $X_n \in L^p$ for $p \ge 1$. Then the following are equivalent:

$$(X_n)_n \xrightarrow{L^p} X \text{ i.e. } \lim_{n \to \infty} (\mathbb{E}[|X_n - X|^p])^{\frac{1}{p}} = 0$$

o
$$(X_n)_n$$
 Cauchy in L^p i.e. $\lim_{m,n\to\infty}(\mathbb{E}[|X_m-X_n|^p])^{\frac{1}{p}}=0$

 $\circ (X_n)_n \xrightarrow{\mathbb{P}} X$ and $(|X_n|^p)_n$ uniformly integrable

Tools

- [Minkowski] Given $f, g \in L^p$, $||f||_p + ||g||_p \ge ||f + g||_p$
 - \circ Essentially the triangle inequality in L^p
 - $0 \|f\|_{\infty} + \|g\|_{\infty} \ge \|f + g\|_{\infty}$
- [Hölder] Let $(a_n)_n$, $(b_n)_n$ be sequences and $p,q\in[1,\infty)$ so that $\frac{1}{p}+\frac{1}{q}=1$. If $\sum_{i=1}^{\infty}|a_i|^p$ and $\sum_{i=1}^{\infty}|b_i|^p$ both converge, then $\sum_{i=1}^{\infty}a_ib_i$ converges absolutely with $|\sum_{i=1}^{\infty}a_ib_i|\leq (\sum_{i=1}^{\infty}|a_i|^p)^{\frac{1}{p}}(\sum_{i=1}^{\infty}|b_i|^q)^{\frac{1}{q}}$

 $|\langle f, g \rangle| \leq ||f||_1 ||g||_{\infty}$

Remarks

- Convergence in L^p does not imply convergence a.e. (typewriter sequence)
- Convergence a.e. does not imply convergence in L^p
- Convergence in probability does not imply convergence in L^p
- Convergence in L^p implies convergence in probability

Brownian Motion

Definitions

- [Brownian Motion] Let $B: [0, \infty) \to \mathbb{R}$ be a standard Brownian motion
 - $\circ B(0) = 0$
 - o Let $0 = t_0 \le t_1 \le \dots \le t_n$, then $\{B(t_{i+1}) B(t_i): 0 \le i \le n-1\} \sim N(0, t_{i+1} t_i)$ are independent
 - The mapping $t \mapsto B(t)$ is almost surely continuous
- [Continuous Time Martingale] Let $\{\mathcal{F}_t: t \in [0, \infty)\}$ be a filtration s.t. $\mathcal{F}_s \subset \mathcal{F}_t$ for $s \leq t$ and \mathcal{F}_t is a σ -field $\forall t \in [0, \infty)$. Then, a process $(M_t)_t$ is a <u>continuous time martingale</u> if:
 - \circ $\mathbb{E}[|M_t|] < \infty \ \forall t \geq 0$
 - o $(M_t)_t$ is adapted to $(\mathcal{F}_t)_t$ i.e. $\sigma(M_t) \subset \mathcal{F}_t \ \forall t$
 - o $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$ a.s. for $0 \le s \le t < \infty$
- [Stopping Time] Let $T: \Omega \to [0, \infty)$. T is a stopping time if $\{T \le t\} \in \mathcal{F}_t \ \forall t \in [0, \infty)$

Propositions

- [27.2] The following are continuous time martingales:

 - \circ $B_t^2 t$
 - $\circ \quad e^{\theta B_t \frac{\theta^2 t}{2}} \text{ for } \theta \in \mathbb{R}$

 - $\begin{array}{ll} \circ & B_t^3 3tB_t \\ \circ & B_t^4 6tB_t^2 + 3t^2 \end{array}$
- [27.4] Let c > 0, $d \in \mathbb{R}$ and $T = \inf\{t: B_t = c + dt\} \le \infty$. Then, for $\lambda \in [0, \infty)$, the Laplace transform of T is $\mathbb{E}[e^{-\lambda t}] = e^{-c(d+\sqrt{d^2+2\lambda})}$

Theorems

- [27.1 Optional Stopping Theorem] Let $(M_t)_t$ be a bounded martingale and T be a bounded stopping time. Then $\mathbb{E}[M_T] = \mathbb{E}[M_0]$
- [27.1* Optional Stopping Theorem] Let $(M_t)_t$ be a bounded martingale and T be a stopping time that is a.s. finite i.e. $\mathbb{P}[T=\infty]=0$ and $\lim \mathbb{E}[|M_t|\mathbb{1}_{T>t}]=0$. Then $\mathbb{E}[M_T]=0$
- [28.1 Reflection Principle] Let a, b > 0, t > 0. Then $\mathbb{P}[T_a \le t, B_t \ge a + b] =$ $\mathbb{P}[T_a \leq t, B_t \leq a - b].$

Variant Processes

- [Brownian Bridge] The process $(B_t^0)_{t \in [0,1]}$ where $B_t^0 \sim (B_t|B_1=0)$
 - o [Maximum] Let $M^0 = \sup_{t \to 0} B_t^0$. Then $\mathbb{P}[M^0 \ge a] = e^{-2a^2}$
- [Brownian Meander] The process $(B_t^M)_{t \in [0,1]}$ where $B_t^M \sim (B_t | B_{t'} \ge 0 \ \forall t' \in [0,1])$