

| Student's Name:         | Class: <b>Grade 12 LS</b>     |
|-------------------------|-------------------------------|
| Subject: Math Worksheet | Teacher's Name: Jana Choufani |

## **Exponential Functions**

### I - Part A

Let f be the function defined over R by  $f(x) = a + (b - x)e^x$  and let (C) be its representative curve in an orthonormal system  $(0; \vec{i}; \vec{j})$ 

Determine a and b if the curve (C) passes through the point A (0;3) and admits on this point a tangent parallel to the line (D) of equation y = x.

### Part B

Suppose that  $f(x) = 1 + (2 - x)e^x$ 

- 1) Calculate  $\lim_{x \to +\infty} f(x)$  and get the value of f(2.5) in the decimal form.
- 2) Calculate  $\lim_{x \to -\infty} f(x)$ . Deduce an asymptote (d) to (C). Study the relative position of (C) and (d).
- 3) Calculate f'(x) and set up the table of variations of f.
- 4) Prove that the curve (C) admits an inflection point.
- 5) Prove that the equation f(x) = 0 admits a unique solution  $\propto$ . Verify that  $2.1 < \propto < 2.2$
- 6) Trace (d) and (C).
- 7) Determine according to the values of m, the number of solutions of the equation
- $(2-x)e^x=m-1.$

# ADVENTIST SCHOOL MOUSEITBEH

### II- Part A

Let g be the function defined over R by  $g(x) = e^x - x - 1$ 

- 1) Calculate  $\lim_{x \to -\infty} g(x)$  and  $\lim_{x \to +\infty} g(x)$ .
- 2) Calculate g'(x) and set up the table of variations of g.
- 3) Deduce the sign of g(x) over R.

### Part B

Let f be the function defined over R by  $f(x) = x + \frac{x+2}{e^x}$  and let (C) be the representative curve in the orthonormal system  $(0; \vec{\imath}; \vec{\jmath})$ .

- 1) Calculate  $\lim_{x \to -\infty} f(x)$ .
- 2) Calculate  $\lim_{x \to +\infty} f(x)$ . Prove that the line (D) of equation y = x is an asymptote to (C) and study the relative position of (C) and (D).
- 3) Verify that  $f'(x) = \frac{g(x)}{e^x}$ . Set up the table of variations of f.
- 4) Calculate the coordinates of point A on (C) where the tangent (T) is parallel to (D).
- 5) Prove that the equation f(x) = 0 admits a unique solution  $\propto$ . Prove that  $-1.69 < \propto < -1.68$
- 6) Trace (C), (D) and (T).
- III- Let f be the function defined over R by  $f(x) = x + \frac{2e^x}{1+e^x}$ . Let (C) be the representative curve in the orthonormal system  $(0; \vec{\imath}; \vec{\jmath})$ .
- 1) Calculate  $\lim_{x \to -\infty} f(x)$  and  $\lim_{x \to +\infty} f(x)$ .
- 2) Prove that the line  $(D_1)$  of equation y = x is an asymptote to (C) at  $-\infty$  and the line  $(D_2)$  of equation y = x+2 is an asymptote to (C) at  $+\infty$
- 3) Study the relative position of (C) with  $(D_1)$  and then with  $(D_2)$ .
- 4) Study the variations of f over R and set up the table of variations.
- 5) Write the equation of the tangent (T) to (C) at the point of abscissa 0.
- 6) Prove that the point I (0,1) is the center of symmetry of (C) of f.
- 7) Trace (C),  $(D_1)$ , and  $(D_2)$ .



