Visualizing data Experimental Research

Last class

- Described several data summaries
 - Mean, median, mode
 - Variance, standard deviation
 - Correlation, covariance

Anscombe's Quartet

Property	<u>Value</u>
Mean of X (average)	9 in all 4 XY plots
Sample variance of X	11 in all four XY plots
Mean of Y	7.50 in all 4 XY plots
Sample variance of Y	4.122 or 4.127 in all 4 XY plots
Correlation (r)	0.816 in all 4 XY plots
Linear regression	y = 3.00 + (0.500 x) in all 4 XY plots

Data sets for the 4 XY plots

I		II		III		IV	
x	у	x	у	x	у	\mathbf{x}	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	5.76
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	8.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	7.26	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Last class

- Described several data summaries
- Discussed the Tufte philosophy
 - Maximize the data-ink/total-ink ratio
 - Minimize "chart junk"
- Introduce ggplot2
 - One of the most versatile data visualization libraries

ggplot2

- Successor to ggplot
- A data visualization package in R
- Powerful library that allows you to create customizable figures

Power comes at a cost

- Involves learning a new grammar
- "The grammar of graphics"
 - Framework which follows a layered approach to describe and construct visualizations
- Some unintuitive aspects of ggplot2, but once you get the hang of it, virtually every aspect of a data visualization is within your control

Customizability


```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()
```

```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()

ggplot function
```

```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()

data parameter
```

```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()
mapping parameter
```

```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()
layers
```

```
ggplot(data = ---, mapping = aes(x = ---, y = ---)) + geom_----()
layers
```

Your first plot

```
ggplot(data = anes, mapping = aes(x = affective_polarization)) + geom_histogram()
```

Your first plot

Your first modification

```
ggplot(data = anes, mapping = aes(x = affective_polarization)) +
geom_histogram(fill = "blue")
```

Your first modification

Your first scatterplot

```
ggplot(data = anes, mapping = aes(x = age, y = affective_polarization)) +
geom_point()
```

Your first scatterplot

Aesthetics

```
fill
color
size
linetype
opacity (alpha)
shape
```

These can be set to fixed values (e.g., fill = "blue") or they can represent values of variables

Your first data mapping

```
ggplot(data = anes, mapping = aes(x = age, y = affective_polarization, color = cohort)) + geom_point()
```


Your turn

Experiment

Add color, size, alpha, and shape arguments to your aes() function Map different aesthetics to different variables How do continuous and discrete variables affect the aesthetic mappings?

Your turn

Experiment

Add color, size, alpha, and shape arguments to your aes() function Map different aesthetics to different variables How do continuous and discrete variables affect the aesthetic mappings?

```
ggplot(data = anes, mapping = aes(x = age, y = affective_polarization, color = ...,
shape = ..., alpha = ..., size = ...) + geom_point()
```

Your turn

Discrete v Continuous

Aesthetics arguments (color, size, shape, etc.) are affected by mode and type of data

For example, shape argument will not work with continuous data.

Mapping vs. Setting

```
mpg %>%
  ggplot(aes(displ, hwy)) +
geom_point(aes(color = class))
```

```
mpg %>%
  ggplot(aes(displ, hwy)) +
  geom_point(color = "blue")
```


Geoms

• "Geometric patterns" that can be used to represent the data

Type	Geom
Bar graph	<pre>geom_bar() geom_col()</pre>
Histogram	geom_hist
Scatter plot	<pre>geom_point()</pre>
Line graph	<pre>geom_line()</pre>
Box plot	<pre>geom_boxplot()</pre>
Density	<pre>geom_density() geom_violin()</pre>
Heat map	<pre>geom_heatmap()</pre>
Mapping	<pre>geom_sf()</pre>
Regression line	geom_smooth()

Facet wraps

- Suppose you'd like to create subplots, with each plot determined by the value of a variable
- Example: relationship between age and affective polarization across levels of partisanship

```
ggplot(data = anes, mapping = aes(x = age, y = affective_polarization)) +
geom_point() + facet_wrap()
```

Facet wraps

- Suppose you'd like to create subplots, with each plot determined by the value of a variable
- Example: relationship between age and affective polarization across levels of partisanship

Labels

- Most times you'll want to customize the labels
- Add a layer!

```
ggplot(data = anes, mapping = aes(x = age, y = affective_polarization)) +
geom_point() + facet_wrap() + labs(x = "Age", y = "Affective Polarization", title
= "Scatterplot of Age and Affective Polarization")
```