Set A

Problem 1 (CO1): DFA and Regular Languages (15 points)
Let $\Sigma = \{a,$	b). Consider the following languages over Σ .
)	$L_1 = \{w : \text{length of } w \text{ is three more than multiple of four}\}$
1	$L_2 = \{w : \text{every even position letter in } w \text{ is the same as the first letter of } w\}$
	$L_3 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is a, where } k \ge 0 \}$
	$L_4 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is b, where } k \geq 0 \}$
Now solve	he following problems.
/ PI	h

- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
 (c) Give the state diagram for a DFA that recognizes L₃. (3 points)

- (e) Find all four-letter strings in $L_2 \cap (L_3 \cup L_4)$. (1 point) (f) Give the state diagram for a DFA that recognizes $L_2 \cap (L_3 \cup L_4)$ using only four states. (2 points)
- (g) Find a four-letter string in \(\overline{L}_3 \circ L_4\). [Recall: \(\overline{L}\) denotes the complement of the language L.i.e., \(\overline{L} = \Sigma^* L_\)] (1 point)

g) babb

d) La states -> 3 e) aaaa, bbbb,

2k+1

3

Problem 4 (CO1): Regular Expressions (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$\begin{split} L_1 &= \{w : \text{length of } w \text{ is exactly } 4\} \\ L_2 &= \{w : \text{the third last digit of } w \text{ is } 0\} \\ L_3 &= \{w : w \text{ contains at most two } 11\} \\ L_4 &= \overline{L_1^* \cap L_2} \end{split}$$

Now solve the following problems.

- (a) Give a regular expression for the language L_1 . (1 point)
- (b) Give a regular expression for the language L_1^* . (1 point)
- (c) Give a regular expression for the language $\overline{L_1^x}$. [Recall: \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$] (2 points)
- (d) Give a regular expression for the language L_2 . (2 points)
- (e) Give a regular expression for the language $\overline{L_3}.$ (2 points)
- (f) Give a regular expression for the language L_4 . (2 points)

9 (2222)* 22121

d) Σ*0ΣΣ

e) Σ* 11 Σ* 11 Σ* 11 Σ*

Problem 5 (CO2): Subset Construction Method (5 points)

Consider the following NFA:

Now answer the following questions. [Note: You do not need to convert the given NFA into its equivalent DFA to answer the questions.]

- (a) If you convert the given NFA into an equivalent DFA using the subset construction method, what is the maximum number of states that the DFA can have? (1 point)
- (b) what is the maximum number of accepting states that the equivalent DFA can have? (1 point)
- (c) Write the ε -closure of state q_1 in the given NFA. (1 point)
- (d) Write the subset of states of the given NFA that will be the starting state in its equivalent DFA. (1 point)
- (e) What is $\delta(\{q_1,q_3\},b)$ in the given NFA? [Recall: $\delta(\{q\},a)$ is the set of states in which the NFA transition when it is in state q and receives input a.] (I point)

a)
$$2^5 = 32$$

b) reject states -> 4

: accept states \rightarrow 32-9 = 28

3nd last -1

not a mw. of 4

d) a, a,

Set B

-2

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma=\{a,b\}.$ Consider the following languages over Σ

$$\begin{split} L_1 &= \{w: \text{length of } w \text{ is two more than multiple of four}\} \\ L_2 &= \{w: \text{every even position letter in } w \text{ is different from the first letter of } w\} \\ L_3 &= \{w: \text{every } 2k+1 \text{ position in } w \text{ is b, where } k \geq 0 \} \\ L_4 &= \{w: \text{every } 2k+1 \text{ position in } w \text{ is a, where } k \geq 0 \} \end{split}$$

Now solve the following problems

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (c) Give the state diagram for a DFA that recognizes L₃. (3 points)
- (d) If you were to use the "cross product" construction to obtain a DFA for the language $L_2 \cap (L_3 \cup L_4)$, how many states would it have? (1 point)
- (e) Find all four-letter strings in $L_2 \cap (L_3 \cup L_4)$. (1 point)
- (f) Give the state diagram for a DFA that recognizes $L_2 \cap (L_3 \cup L_4)$ using only four states. (2 points)
- (g) Find a four-letter string in $\overline{L_3} \circ L_4$. [Recall: \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$] (1 point)
- (h) Is $\overline{L_3} \circ L_4 = \overline{L_3}$? Give justification for your answer. (1 point)

Problem 2 (CO2): Converting Regular Expressions to NFA (10 points

e) ~ d) ~ 2) ~ f) / g) ~ h) ~

Convert the following regular expression over $\Sigma = \{a, b, c\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$. $((ab + c)^* + bc^*)ac$

3./ 4./ 5./