Introduction to Natural Language Processing

Naeemullah Khan

naeemullah.khan@kaust.edu.sa

July 2, 2025

Natural Language Processing

Table of Contents

- 1. Motivation
- 2. Learning Outcomes
- 3. Introduction
- 4. N-grams
- 5. Sequence Notation
- 6. Probabilistic Notation
- 7. Count and Probability Matrices
- 8. Probability of a Sequence
- 9. Start and End Tokens
- 10. Out of vocabulary words
- 11. Limitations
- 12. Summary
- 13. References

Motivation

- ► Language helps us talk to each other—and now, to computers too!
- ▶ NLP (Natural Language Processing) teaches machines to understand, interpret, and generate human language.
- ► Why is NLP important?
 - Makes chatbots like ChatGPT and Siri possible
 - Powers search engines like Google
 - Helps translate languages (Google Translate)
 - Finds out what people feel in reviews (sentiment analysis)
- ▶ NLP is foundational to advanced AI systems.

Learning Outcomes

- ▶ **Define** Natural Language Processing (NLP)
- Explain and construct N-grams (unigram, bigram, trigram)
- ▶ Understand sequence notation and tokenization
- ► Compute N-gram probabilities and count matrices
- ► **Apply** start/end tokens and handle unknown words (OOV, UNK)
- ▶ **Recognize** the limitations of N-gram models and future directions

Natural Language Processing: Introduction

NLP - Introduction

What is NLP?

- Study of computational approaches to processing natural languages.
- Processing includes:
 - Acquiring language data
 - Representing information
 - Storing text and speech
 - Understanding meaning
 - Characterizing language patterns
 - Generating new language
- ► Natural languages refer to human languages.

What is Natural Language Processing?

NLP - Introduction (cont.)

NLP = Computer Science + Linguistics + AI

► Deals with:

- Language understanding (input)
- Language generation (output)
- Language translation
- Information extraction

▶ Subfields:

- Syntax
- Semantics
- Pragmatics
- Discourse

Goal: Deep Understanding Requires context, linguistic structure, meanings...

To Avoid: Shallow Matching Could be useful also though depending on use case

Goal (cont.)

Goal of NLP:

- ► Enable machines to understand and generate human language.
- ► Facilitate human-computer interaction through natural language.
- Develop systems that can process and analyze large amounts of text data.

NLP Pipeline

- Text Preprocessing
 - Cleaning and preparing raw text for analysis.
- **▶** Tokenization
 - Splitting text into words, sentences, or other meaningful units.
- POS Tagging
 - Assigning parts of speech (noun, verb, etc.) to each token.
- Parsing
 - Analyzing grammatical structure of sentences.
- ► Named Entity Recognition (NER)
 - Identifying entities such as people, organizations, locations.
- ► Sentiment Analysis / Classification
 - Determining sentiment or categorizing text.
- Language Modeling
 - Predicting the next word or sequence in text.

Text Data is Superficial

➤ An iceberg is a large piece of freshwater ice that has broken off from a snow-formed glacier or ice shelf and is floating in open water.

Text Data is Superficial

An iceberg is a large piece of freshwater ice that has broken off from a snow-formed glacier or ice shelf and is floating in open water.

NLP Basics - What It's All About

Teaching machines to understand and generate human language

- ► Text preprocessing:
 - Cleaning and preparing raw text data (removing noise, tokenization, normalization).
- **▶** Understanding meaning:

Extracting meaning from text using techniques like part-of-speech tagging, named entity recognition, and sentiment analysis.

- ► Language modeling:
 - Building models that can predict or generate text, such as autocomplete or next-word prediction.
- ► Translation, summarization, etc.:

Enabling applications like machine translation, text summarization, question answering, and more.

Text data is everywhere: tweets, reviews, articles, chats! NLP helps us make sense of this vast information.

Core NLP Tasks

Task	What It Does	Example
Tokenization	Split text into words	"I love NLP" $ ightarrow$ ["I", "love", "NLP"]
POS Tagging	Label grammar tags	"Dogs bark" $ o$ [Noun, Verb]
Named Entity Recognition	Find names, places, etc.	"Christopher Nolan lives in Los Angeles"
Sentiment Analysis	Detect mood	"This movie was amazing!" \rightarrow Positive
Machine Translation	Language to language	$English \to French$

Text Preprocessing

► Lowercase everything:

Example: "NLP" \rightarrow "nlp"

► Removing stop words:

Eliminate common words that carry little meaning (e.g., "is", "the", "and") to focus on important content.

Stemming/Lemmatization:

Reduce words to their root or base form.

Example: "running" \rightarrow "run"

Vectorization:

Transform words or documents into numerical representations for machine learning models:

- Bag of Words: Counts word occurrences in a document.
- TF-IDF (Term Frequency-Inverse Document Frequency): Weighs words by importance across documents.
- Word2Vec: Learns dense vector representations capturing word meaning and

What is a corpus?

- A corpus is a collection of text.
- Often annotated in some way.
- Sometimes just lots of text.
- ► **Balanced corpora:** Usually not possible in practice.
- Examples:
 - Newswire collections: 500M+ words
 - Brown corpus: 1M words of tagged "balanced" text
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French/English sentences
 - The Web: billions of words of who knows what

What is Vocabulary in NLP?

- ► Vocabulary = All unique words in your dataset
- ▶ Example: "I love NLP and NLP loves me" \rightarrow Vocabulary = {"I", "love", "NLP", "and", "loves", "me"}
- ► More data = Bigger vocabulary = Harder to process!

Tip: Rare words may not help; common words may not mean much.

The Problem with Sparse Representations

Traditional approach: One-hot encoding

► Example: "NLP" \rightarrow [0, 0, 1, 0, 0, 0, 0...]

Problem:

- ► High-dimensional (thousands of words!)
- Sparse (mostly 0s)
- ▶ No meaning in structure (no relation between "king" and "queen")
- Not efficient for learning

Word Frequencies & Feature Extraction

Feature extraction = Turning text into numbers

► Count how often each word appears (**Term Frequency**)

Example:

Text	"great product"	"bad product"
Word: "great"	1	0
Word: "bad"	0	1

Use this to find patterns in sentiment, spam, etc.

Positive & Negative Frequencies

Suppose you're classifying reviews:

```
Positive Reviews: ["amazing", "good", "great"]
Negative Reviews: ["bad", "awful", "terrible"]
```

Count how often each word appears in each class.

Example table:

Word	Positive Count	Negative Count
good	20	1
bad	1	30

Helps models detect the "tone" (sentiment clues) of new text.

Feature Extraction Techniques

- ▶ Bag of Words (BoW): Just counts word frequencies in each document.
- TF-IDF (Term Frequency-Inverse Document Frequency): Adjusts for how "unique" or important a word is in a document compared to all documents.
 - Words like "the", "is" are less important.
- ▶ Word Embeddings (later): Add meaning and capture relationships between words (e.g., similarity, analogy).

Natural Language Processing: **N-grams**

What are N-grams?

An N-gram is a sequence of N words

Corpus: I am happy because I am learning

Unigrams: { I, am, happy, because, learning }

Bigrams: $\{I \text{ am } | \text{am happy }, \text{happy because } ... \}$

X I happy

Trigrams: { I am happy , am happy because, ... }

ltems are typically words or characters.

Tokenization

- ► Tokenization is the process of breaking text into smaller units called **tokens**.
- ► Tokens can be words, characters, or subwords.
- Example: "I love NLP" can be tokenized into:
 - Words: ["I", "love", "NLP"]
 - Characters: ["I", " ", "I", "o", "v", "e", " ", "N", "L", "P"]
 - Subwords: ["I", " ", "lov", "e", " ", "N", "L", "P"]
- ▶ Tokenization is crucial for preparing text data for NLP tasks.

Examples of N-grams

Sentence: "I love NLP"

► Unigrams: I, love, NLP

► Bigrams: I love, love NLP

► Trigrams: I love NLP

Why Use N-grams?

- ► Capture local word co-occurrence
- Build simple language models
- Easy to compute and analyze
- ► Trade-off between simplicity (unigram) and contextual richness (trigram)

Sequence Notation

Sequence Notation Basics

Sentence: w_1, w_2, \ldots, w_n

For example: $w_1 = I$, $w_2 = love$, $w_3 = NLP$

General representation:

▶ Unigram: $P(w_i)$

▶ Bigram: $P(w_i \mid w_{i-1})$

ightharpoonup Trigram: $P(w_i \mid w_{i-2}, w_{i-1})$

Sequence Notation (cont.)

m = 500

Sequence Notation Example:

Corpus: This is great
$$w_1 \ w_2 \ w_3$$
 ... teacher drinks tea. $w_{498} \ w_{499} \ w_{500}$ $w_1^m = w_1 \ w_2 \ ... \ w_m$ $w_1^3 = w_1 \ w_2 \ w_3$ $w_{m-2}^m = w_{m-2} \ w_{m-1} \ w_m$

Probabilistic Notation

Sequence Notation Basics

Sentence: w_1, w_2, \ldots, w_n

For example: $w_1 = I$, $w_2 = love$, $w_3 = NLP$

General representation:

▶ Unigram: $P(w_i)$

▶ Bigram: $P(w_i \mid w_{i-1})$

► Trigram: $P(w_i \mid w_{i-2}, w_{i-1})$

Unigram probability

Corpus: I am happy because I am learning

Size of corpus m = 7

$$P(I) = \frac{2}{7}$$

$$P(happy) = \frac{1}{7}$$

Probability of unigram:

$$P(w) = \frac{C(w)}{m}$$

Bigram probability

Corpus: I am happy becaus
$$e$$
 am learning
$$P(am|I) = \frac{C(I \ am)}{C(I)} = \frac{2}{2} = 1$$

$$P(happy|I) = \frac{C(I \ happy)}{C(I)} = \frac{0}{2} = 0$$
 I happy
$$P(learning|am) = \frac{C(am \ learning)}{C(am)} = \frac{1}{2}$$

Probability of a bigram:
$$P(y|x) = \frac{C(x \ y)}{\sum_{w} C(x \ w)} = \frac{C(x \ y)}{C(x)}$$

Trigram probability

Corpus: I am happy because I am learning

$$P(happy|I\ am) = \frac{C(I\ am\ happy)}{C(I\ am)} = \frac{1}{2}$$

Probability of a trigram: $P(w_3|w_1^2) = \frac{C(w_1^2 w_3)}{C(w_1^2)}$

$$C(w_1^2 w_3) = C(w_1 w_2 w_3) = C(w_1^3)$$

N-gram probability

Probability of N-gram: $P(w_N|w_1^{N-1}) = \frac{\left|C(w_1^{N-1} \ w_N)\right|}{C(w_1^{N-1})}$

$$C(w_1^{N-1} w_N) = C(w_1^N)$$

N-gram Language Modeling

Objective: Compute the probability of a sentence

N-gram Assumption: The probability of a word depends only on the previous (n-1) words.

Formula:

$$P(w_1^n) \approx \prod_{i=1}^n P(w_i \mid w_{i-n+1}^{i-1})$$

where w_1^n denotes the sequence w_1, w_2, \ldots, w_n and w_{i-n+1}^{i-1} is the context of the previous (n-1) words.

Bigram MLE:

$$P(w_i \mid w_{i-1}) = \frac{\mathsf{Count}(w_{i-1}, w_i)}{\mathsf{Count}(w_{i-1})}$$

- ► Count (w_{i-1}, w_i) : Number of times the bigram (w_{i-1}, w_i) appears in the corpus.
- ▶ Count (w_{i-1}) : Number of times the word w_{i-1} appears as a context.

Example: Bigram Probabilities

Text: "I love NLP. I love AI."

Bigrams and Counts:

- ► (I, love): 2
- ▶ (love, NLP): 1
- ► (love, AI): 1

Probability Calculations:

- ► $P(\text{love} \mid I) = \frac{2}{2} = 1.0$
- ► $P(NLP \mid love) = \frac{1}{2} = 0.5$
- ► $P(AI \mid love) = \frac{1}{2} = 0.5$

Count and Probability Matrices

Count Matrix: A matrix that counts occurrences of word pairs in a corpus.

Probability Matrix: A matrix that calculates probabilities of word pairs based on counts.

Example: For the sentence "I love NLP. I love AI."

- Count Matrix: Counts how many times each word appears with every other word.
- ► Probability Matrix: Calculates the probability of each word appearing given the previous word.

$$P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}, w_n)}{C(w_{n-N+1}^{n-1})}$$

- Rows: unique corpus (N-1)-grams
- Columns: unique corpus words

"study I" bigram

Corpus: <s>I study I learn</s>

		<s></s>		I	study	learn
ı	<s></s>	0	0	1	0	0
	<s> </s>	0	0	0	0	0
	I	0	0	0	1	1
•	study	0	0	1	0	0
	learn	0	1	0	0	0

Count Matrix Example

Text: "I love NLP. I love AI."

Bigrams:

- ► (I, love): 2
- ▶ (love, NLP): 1
- ► (love, AI): 1

Count Matrix:

- ► Rows: Words in the corpus
- ► Columns: Words in the corpus
- ► Cells: Count of occurrences of each word pair

Probability Matrix

$$P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}, w_n)}{C(w_{n-N+1}^{n-1})}$$

Divide each cell by its row sum

Corpus: <s>I study I learn</s>

Count matrix (bigram)

	<s></s>		I	study	learn	sum
<s></s>	0	0	1	0	0	1
<s> </s>	0	0	0	0	0	0
I	0	0	0	1	1	2
study	0	0	1	0	0	1
learn	0	1	0	0	0	1

$sum(row) = \sum_{w \in V} C(w^{n-1}_{n-N+1}, w) = C(w^{n-1}_{n-N+1})$

Probability matrix

l			<s></s>		Ι	study	learn
1		<s></s>	0	0	1	0	0
	_	<s> </s>	0	0	0	0	0
		I	0	0	0	0.5	0.5
I	,	study	0	0	1	0	0
J		learn	0	1	0	0	0

Probability Matrix Example

Probability Calculation:

Bigram Probability:

$$P(\mathsf{love} \mid \mathsf{I}) = \frac{\mathsf{Count}(\mathsf{I}, \mathsf{love})}{\mathsf{Count}(\mathsf{I})} = \frac{2}{2} = 1$$

Probability Matrix:

- ► Rows: Words in the corpus
- Columns: Words in the corpus
- ► Cells: Probability of each word given the previous word

Probability of a sequence

- Given a sentence, what is its probability? $P(the\ teacher\ drinks\ tea) = ?$
- Conditional probability and chain rule reminder

$$P(B|A) = \frac{P(A,B)}{P(A)} \implies P(A,B) = P(A)P(B|A)$$

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

Probability of a sequence

 $P(the\ teacher\ drinks\ tea) =$

 $P(the)P(teacher|the)P(drinks|the\ teacher)$ $P(tea|the\ teacher\ drinks)$

Sentence not in corpus

Problem: Corpus almost never contains the exact sentence we're interested in or even its longer subsequences!

 $P(the\ teacher\ drinks\ tea) =$

 $P(the)P(teacher|the)P(drinks|the\ teacher)$ $P(tea|the\ teacher\ drinks)$

Approximation of sequence probability

the teacher drinks tea

 $P(tea|the\ teacher\ drinks) \approx P(tea|drinks)$

P(teacher|the) P(drinks|teacher)P(tea|drinks)

 $P(the\ teacher\ drinks\ tea) =$

 $P(the)P(teacher|the)P(drinks|the\ teacher)P(tea|the\ teacher\ drinks)$

Approximation of sequence probability

- Markov assumption: only last N words matter
- Bigram $P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$
- $\bullet \quad \text{N-gram} \qquad P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$
- Entire sentence modeled with bigram $P(w_1^n) \approx \prod_{i=1} P(w_i|w_{i-1})$ $P(w_1^n) \approx P(w_1) P(w_2|w_1) ... P(w_n|w_{n-1})$

Objective: Apply sequence probability approximation with bigrams.

Ouestion:

Given these conditional probabilities

P(Mary)=0.1; P(likes)=0.2;

P(cats)=0.3P(Mary|likes) = 0.2; P(likes|Mary) = 0.3:P(cats|likes)=0.1;

Approximate the probability of the following sentence with bigrams: "Mary likes cats"

Type: Multiple Choice, single answer

Options and solution:

1. P(Marv likes cats) = 0 P(Marv likes cats) = 1

P(likes|cats)=0.4

3. P(Marv likes cats) = 0.003

P(Marv likes cats) = 0.0084.

N-gram Models: Start and End Tokens

Why Use Special Tokens?

- ► Start: <s> or <start>
- ► End: </s> or <end>

Benefits:

- ► Helps model sentence boundaries
- ► Enables generation and evaluation

Start of sentence token <s>

the teacher drinks tea

 $P(the\ teacher\ drinks\ tea) \approx \boxed{P(the)} P(teacher|the) P(drinks|teacher) P(tea|drinks)}$

<s> the teacher drinks tea

 $P(<\!\!s\!\!> the\ teacher\ drinks\ tea) \approx P(the|<\!\!s\!\!>) P(teacher|the) P(drinks|teacher) P(tea|drinks)$

Start of sentence token <s> for N-grams

Trigram:

$$P(the\ teacher\ drinks\ tea) pprox P(the)P(teacher|the)P(drinks|the\ teacher)P(tea|teacher\ drinks)$$

the teacher drinks tea => <s> <s> the teacher drinks tea

$$P(w_1^n) \approx P(w_1|< s > < s >) P(w_2|< s > w_1) ... P(w_n|w_{n-2}|w_{n-1})$$

N-gram model: add N-1 start tokens <s>

End of sentence token <s> - motivation

$$P(y|x) = \frac{C(x \ y)}{\sum_{w} C(x \ w)} = \frac{C(x \ y)}{C(x)}$$

Corpus:

<s> Lyn drinks chocolate

<s> John drinks

$$\sum_{w} C(drinks\ w) = 1$$

$$C(drinks) = 2$$

End of sentence token <s> - motivation (cont.)

Corpus

Sentences of length 2:

$$P(\langle s \rangle \text{ yes yes}) =$$

<s> yes no

<s> yes yes <s> yes no

 $P(\text{yes} \mid \langle s \rangle) \times P(\text{yes} \mid \text{yes}) =$

<s> ves ves <s> no no

$$\frac{C(\langle s \rangle \text{ yes})}{\sum_{w} C(\langle s \rangle w)} \times \frac{C(\text{yes yes})}{\sum_{w} C(\text{yes } w)} =$$

$$\frac{2}{3}$$
 \times $\frac{1}{2}$ $=$ $\frac{1}{3}$

End of sentence token <s> - motivation (cont.) Lady Margaret Hall

Corpus

Sentences of length 2:

<s> ves no <s> ves ves <s> yes yes <s> yes no <s> no no

<s> no no

<s> no yes

$$P(\langle s \rangle \text{ yes yes}) = \frac{1}{3}$$

$$P(\langle s \rangle \text{ yes no}) = \frac{1}{3}$$

$$P(\langle s \rangle \text{ no no}) = \frac{1}{3}$$

$$P(\langle s \rangle \text{ no yes}) = 0$$

$$\sum_{\text{2 word}} P(\cdots) = 1$$

End of sentence token <s> - motivation (cont.) KNUST ACROBENT AND THE LADY MARGARET I

Corpus

- <s> yes no
- <s> yes yes
- <s> no no

$$\sum_{\text{2 word}} P(\cdots) + \sum_{\text{3 word}} P(\cdots) + \dots = 1$$

End of sentence token <s> - solution

Bigram

$$P(the|<\!\!s>)P(teacher|the)P(drinks|teacher)P(tea|drinks)P(<\!/s>|teacher|the)P(drinks|teacher)P(tea|drinks)P(drinks|teacher|the)P(drinks|the)P(drin$$

Corpus:

$$\sum_{w} C(drinks \ w) = 2$$
$$C(drinks) = 2$$

End of sentence token <s> for N-grams

• N-gram => just one </s>

E.g. Trigram:

the teacher drinks tea => <s> the teacher drinks tea </s>

Example - bigram

Corpus

<s Lyn drinks chocolate </s>

<s> Lyn eats chocolate </s>

$$P(John|< s>) = \frac{1}{3}$$

$$P(chocolate|eats) = \frac{1}{2}$$

$$P(sentence) = \boxed{\frac{2}{3}} * \boxed{\frac{1}{2}} * \boxed{\frac{1}{2}} * \boxed{\frac{2}{2}} = \frac{1}{6}$$

$$P(|tea) = \frac{1}{1}$$

$$P(Lyn|\langle s\rangle) = ? = \frac{2}{3}$$

Objective: Apply sequence probability approximation with bigrams after adding start and end word.

Question:

Given these conditional probabilities

P(Mary)=0.1; P(likes)=0.2; P(cats)=0.3

P(Mary|<s>)=0.2; P(</s>|cats)=0.6 P(likes|Mary) =0.3; P(cats|likes)=0.1

Approximate the probability of the following sentence with bigrams: "<s> Mary likes cats </s>" $^{\prime\prime}$

Type: Multiple Choice, single answer

Options and solution:

1.
$$P(\langle s \rangle Mary likes cats \langle s \rangle) = 0$$

3.
$$P(~~Mary likes cats~~) = 0.003$$

$$P(~~Mary likes cats~~) = 1$$

4

N-gram Models: Out of vocabulary words

Problem: Many words in a language are not present in the training corpus, leading to OOV issues.

Problem: Many words in a language are not present in the training corpus,

leading to OOV issues.

Example: The word "quokka" might not be in the training data.

Problem: Many words in a language are not present in the training corpus, leading to OOV issues.

Example: The word "quokka" might not be in the training data.

Impact: OOV words can lead to poor model performance and inaccurate predictions.

Problem: Many words in a language are not present in the training corpus, leading to OOV issues.

Example: The word "quokka" might not be in the training data.

Impact: OOV words can lead to poor model performance and inaccurate predictions.

Closed vs. Open Vocabularies:

- ► Closed vocabulary: Only words seen during training are recognized.
- ▶ Open vocabulary: Model can handle unseen words.

Problem: Many words in a language are not present in the training corpus, leading to OOV issues.

Example: The word "quokka" might not be in the training data.

Impact: OOV words can lead to poor model performance and inaccurate predictions.

Closed vs. Open Vocabularies:

- ► Closed vocabulary: Only words seen during training are recognized.
- ▶ Open vocabulary: Model can handle unseen words.

Solution: Use a special tag <UNK> in the corpus and input to represent unknown words.

Using <UNK> Tokens

Using <UNK>: Replace rare or unseen words with the special token <UNK>.

Using <UNK> Tokens

Using <UNK>: Replace rare or unseen words with the special token <UNK>.

Why? Helps the model generalize to words it has not seen during training.

Using <UNK> Tokens

Using <UNK>: Replace rare or unseen words with the special token <UNK>.

Why? Helps the model generalize to words it has not seen during training.

Example:

- ► Original: I love ChatGPT
- ► With OOV handling: I love <UNK>

How to Use <UNK> in the Corpus

- 1. **Create vocabulary** *V*: Build a list of all words to be recognized (e.g., most frequent words).
- Replace OOV words: For any word in the corpus not in V, replace it with <UNK>.
- Estimate probabilities: Treat <UNK> as a regular word when computing word probabilities.

This approach allows the model to handle unseen words gracefully during inference.

Corpus

- <s> Lyn drinks chocolate </s>
- <s> John drinks tea </s>
- <s> Lyn eats chocolate </s>

Corpus

- <s> Lyn drinks chocolate </s>
- <s> <UNK> drinks <UNK> </s>
- <s> Lyn <UNK> chocolate </s>

Min frequency f=2

Vocabulary

Lyn, drinks, chocolate

Input query

<s>Adam drinks chocolate</s>

<s><UNK> drinks chocolate</s>

How to Create Vocabulary V

Criteria for Vocabulary Selection:

- ▶ **Minimum word frequency** *f*: Only include words that appear at least *f* times in the corpus.
- ▶ Maximum vocabulary size |V|: Limit V to the top |V| most frequent words.

Use \leq UNK> **Sparingly:** Choose f and |V| to minimize the number of words replaced by \leq UNK>, while keeping the vocabulary manageable. **Perplexity:** Only

compare language models that use the same vocabulary \boldsymbol{V} to ensure fair evaluation

N-gram Models: Limitations

N-gram Model Limitations

Data Sparsity

Limited Context (only N-1 words)

Explodes with Vocabulary Size

Doesn't Capture Semantics/Syntax

N-gram Models: Summary

Beyond N-grams

- ► Neural Language Models (e.g., Word2Vec, LSTMs)
- ► Transformer-based Models (BERT, GPT)
- Subword Tokenization (Byte-Pair Encoding)
- Pretrained Language Models
- Contextual Representations

Summary

- ▶ NLP enables machines to understand human language
- ▶ N-grams model word sequences simply and effectively
- Sequence notation and probability estimation are essential
- ► Start/end/UNK tokens improve modeling and robustness
- ightharpoonup N-gram models are limited ightharpoonup neural models offer solutions

NLP: References

References

- ► Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing (3rd Ed Draft) https://web.stanford.edu/~jurafsky/slp3/
- ► CMU NLP Course Slides https://www.cs.cmu.edu/~tom/mlbook/NLP.html
- ► Stanford CS224N (2023) https://web.stanford.edu/class/cs224n/
- ▶ Manning, C. D., et al. (2008). Introduction to Information Retrieval
- ▶ Bengio et al. (2003) A Neural Probabilistic Language Model, JMLR
- ► Mikolov et al. (2013) Efficient Estimation of Word Representations in Vector Space
- ► Vaswani et al. (2017) Attention is All You Need
- ➤ Younes Mourri & Lukasz Kaiser, Natural Language Processing

 Specialization, DeepLearning.Al https://www.deeplearning.ai/
 courses/natural-language-processing-specialization/

Credits

Dr. Prashant Aparajeya

Computer Vision Scientist — Director(AlSimply Ltd)

p.aparajeya@aisimply.uk

This project benefited from external collaboration, and we acknowledge their contribution with gratitude.