Statistical Computation

Derek Li

Contents

1	Basics		
	1.1	Floati	ng Point Representation
		1.1.1	Round-Off Error
		1.1.2	Machine Epsilon and Other Constants
		1.1.3	Overflow and Underflow Error
		1.1.4	Catastrophic Cancellation

1 Basics

1.1 Floating Point Representation

Definition 1.1. A *floating point number* is represented by three components: (S, F, E) where S is the sign of the number (± 1) , F is a fraction (lying between 0 and 1), E is an exponent. S, F, E are all represented as binary digits (bits). The *floating point representation* of x, fl(x) is

$$fl(x) = S \times F \times 2^E$$

Note. x and f(x) need not be the same, since f(x) is a binary approximation to x, and there are only a finite number of floating point numbers.

1.1.1 Round-Off Error

Mathematical operations introduce further approximation errors

$$f(f(x)) = f(x + \varepsilon) \approx f(x) + \varepsilon f'(x)$$

and the goal is to make the round-off error |f(x) - f(f(f(x)))| as small as possible.

1.1.2 Machine Epsilon and Other Constants

For a given real number x, we have

$$|f(x) - x| \le U|x| \text{ or } f(x) = x(1+u), |u| \le U$$

where U is **machine epsilon** or **machine unit**. U is machine dependent but very small. In R, $U = 2^{-52} = 2.220 \times 10^{-16}$.

Other machine dependent constants include:

- 1. The minimum and maximum positive floating point numbers: $x_{\min} = 2^{-1022} = 2.225 \times 10^{-308}$ and $x_{\max} = 2^{1024} 1 = 1.798 \times 10^{308}$.
 - 2. The maximum integer: $2147383647 = 2^{31} 1$.

1.1.3 Overflow and Underflow Error

Definition 1.2. If the result of a floating point operation exceeds x_{max} , then the value returned is Inf.

Note. Inf indicates an overflow error.

Definition 1.3. If the result of a floating point operation is undefined then NaN is returned.

Definition 1.4. An *underflow error* occurs when the result of a floating point calculation is smaller (in absolute value) than x_{\min} .

Note. There are two possible outcomes (for underflow error): an error is reported or an exact 0 is returned. The latter outcome may cause problems in subsequent computations (e.g., division by 0).

Note. There are some ways to avoid overflow and underflow errors:

- 1. Use logarithmic scale: Changes multiplication/division into addition/subtraction, e.g., lgamma, lfactorial, lchoose.
 - 2. Use series expansions (e.g., Taylor series).

Example 1.1. For x close to 0, $\frac{\exp(x)-1}{x} \approx 1$. Naive computation of $\frac{\exp(x)-1}{x}$ is problematic for x close to 0 due to possible round-off and underflow errors:

$$\frac{\mathrm{fl}(\exp(x) - 1)}{\mathrm{fl}(x)} \neq \frac{\exp(x) - 1}{x}$$

We solve the problem by using a series approximation, for $|x| \leq \varepsilon$,

$$\frac{\exp(x) - 1}{x} = \frac{x + x^2/2 + x^3/6 + \dots}{x} = 1 + \frac{x}{2} + \frac{x^2}{6} + \dots$$

1.1.4 Catastrophic Cancellation

Suppose $z_1 = g_1(x_1, \dots, x_n)$ and $z_2 = g_2(x_1, \dots, x_n)$. We want to compute $y = z_1 - z_2$. What we actually compute is

$$y^* = \mathrm{fl}(\mathrm{fl}(z_1) - \mathrm{fl}(z_2))$$

where $f(z_1) = z_1(1 + u_1)$ and $f(z_2) = z_2(1 + u_2)$. We have

$$f(z_1) - f(z_2) = \underbrace{z_1 - z_2}_{y} + \underbrace{z_1 u_1 - z_2 u_2}_{error}$$

If z_1 and z_2 are large but $y = z_1 - z_2$ is small then the magnitude of the error may be larger than the magnitude of y - *catastrophic cancellation*.