Théorie des bases de données et de connaissances (HAI933I)

Examen

Exercise 4 (First Order Queries) - 2 pts

Consider the following database:

Films		
Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
Internet's Own Boy	Knappenberger	Swartz
Internet's Own Boy	Knappenberger	Lessig
Internet's Own Boy	Knappenberger	Berners-Lee
Dogma	Smith	Damon
Dogma	Smith	Affleck

Venues		
Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185

Program		
Cinema	Title	Time
Schauburg	The Imitation Game	19:30
Schauburg	Dogma	20:45
UFA	The Imitation Game	22:45

Write the following queries as first order queries (half a point each):

1. Who are the directors that have worked with the actor "Cumberbatch"?

$$\exists y_T.Films(y_T, x_D, Cumberbatch)$$

2. List the directors that have directed a film shown at "UFA".

$$\exists y_T, y_A, z_T. Films(y_T, x_D, y_A) \land Program(UFA, y_T, z_T)$$

3. Find out all the actors that do not have "Tyldum" as one of their directors.

$$\exists y_T, y_D. \mathit{Films}(y_T, y_D, x_A) \land \forall z_T, z_D. (\mathit{Films}(z_T, z_D, x_A) \rightarrow z_D \not\approx \mathit{Tyldum})$$

4. Write a Boolean query to determine if two different directors have directed the same movie.

$$\exists y_T, y_D, z_D, y_A, z_A. Films(y_T, y_D, y_A) \land Films(y_T, z_D, z_A) \land y_D \not\approx z_D$$

Exercise 5 (Join Trees) - 2 pts

Consider the following queries:

1.
$$\exists x, y, z, w. P(x, y, z) \land Q(x, z, w) \land R(x, x, y, w) \land P(y, w, z)$$

2.
$$\exists z_1, \ldots, z_6. V(z_1, z_2, z_6) \land O(z_1, z_2, z_3) \land M(z_2, z_4, z_3) \land L(z_1, z_3, z_5)$$

If possible, define a join tree for each of these queries. If it is not possible to do so, explain why.

To determine if we can define a join tree for a query, we can apply the following algorithm:

GYO-reduction algorithm to check acyclicity:

(after Graham [1979] and Yu & Özsoyoğlu [1979])

Input: hypergraph $H = \langle V, E \rangle$ (we don't need relation labels here) Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

- (1) Delete all vertices that occur in at most one hyperedge
- (2) Delete all hyperedges that are empty or that are contained in other hyperedges

Definition

A hypergraph is acyclic if its GYO-reduct is $\langle \emptyset, \emptyset \rangle$. A CQ is acyclic if its associated hypergraph is.

Applying the algorithm, we can check that:

- Query (1) is not acyclic.
- Query (2) is acyclic. Furthermore, here's a join tree for this query: $\{O(z_1, z_2, z_3) \rightarrow V(z_1, z_2, z_6), O(z_1, z_2, z_3) \rightarrow L(z_1, z_3, z_5), O(z_1, z_2, z_3) \rightarrow M(z_2, z_4, z_3)\}$