LISTING OF THE CLAIMS

Following is a listing of the claims currently pending in the application:

1. **(Previously Presented)** An arrayed waveguide grating type optical multiplexer/demultiplexer circuit, comprising on a flat substrate a plurality of first optical waveguides, a first slab waveguide which is connected to the first optical waveguides, an arrayed waveguide, connected to the first slab waveguide, consisting of a plurality of optical waveguides which sequentially become longer with a prescribed waveguide length difference, a second slab waveguide which is connected to the arrayed waveguides, and a plurality of second optical waveguides which are connected to the second slab waveguide; further comprising:

a parabola waveguide in which a width W of the first optical waveguide contacting with the first slab waveguide is defined by the following equation with respect to a propagation axis Z of optical wave,

$$Z = A (W^2 - W_0^2) - Z_0$$

where, A: a coefficient, and A > 0, W_0 : a width of the first optical waveguide, and Z_0 : a length from the first slab waveguide;

and a taper waveguide in which a width W' of the second optical waveguide contacting with the second slab waveguide is defined by the following equation with respect to a propagation axis Z of optical wave,

$$Z = A' (W' - W_0') - Z_0'$$

where,

A': a coefficient, W_0 ': a width of the second optical waveguide, and Z_0 ': a length from the second slab waveguide;

wherein the length Z_0 is set within a range defined by the following condition,

$$Z_{a,0}\!\leq\!Z_0\!\leq\!Z_{p,0}$$

where $Z_{a,0}$: a parabola waveguide length for which a ratio of the amplitude absolute value between a main peak and first side peaks in the field distribution of the parabola waveguide far-field has an upper limit of 0.217, and $Z_{p,0}$: a parabola waveguide length for which a relative phase between the main peak and the first side peaks in the field distribution of far-field has a lower limit of 3.14 radians

2. **(Original)** An arrayed waveguide grating type optical multiplexer/demultiplexer circuit according to claim 1, wherein each waveguide is a silica glass optical waveguide on a flat silicon substrate.