2021年上海市虹口区中考化学二模试卷

一、选择题(共20分) 1. (2分) 空气中含量最多的气体是() A. 氮气 B. 氧气 C. 水蒸气 D. 氩气 2. (2分) 盐汽水中含有氯化钠、二氧化碳、白砂糖、柠檬酸等物质, 盐汽水属于() A. 纯净物 B. 混合物 C. 单质 D. 化合物 3. (2分)实验测得一些液体室温时的 pH, 其中碱性最强的是 () A. 雪碧: 5 B. 牛奶: 6 C. 某洗衣液: 8 D. 84 消毒液: 10 4. (2分) 在水中能形成溶液的是(A. 木炭粉 B. 泥土 C. 酒精 D. 橄榄油 **5.** (2 分) 某反应的化学方程式是 2X+3O₂——2CO₂+4H₂O, 其中 X 是 () B. C₂H₄O A. CH₄ C. CH₄O D. CH₄O₂ 6. (2分)以下含氮元素的物质中,氮元素化合价最低的是(A. NH₃ $B. N_2$ C. NO D. NO₂ 7. (2 分) 化学反应: 3NaOH+FeCl3—Fe (OH) 3 ↓ +3NaCl,属于 () A. 化合反应 B. 分解反应 C. 置换反应 D. 复分解反应 8. (2分)属于钾肥的是() A. K₂CO₃ B. NH₄HCO₃ C. CO (NH₂) ₂ D. P₂O₅ 9. (2分)对硫酸钠进行焰色反应,火焰呈() A. 紫色 B. 黄色 C. 绿色 D. 红色 10. (2分)以下物质中金属活动性最强的是() B. Al C. Fe A. Ag D. Mg 11. (2分)属于化学变化的是() A. 电灯发光 B. 热水袋散热 C. 燃料燃烧 D. 冰块融化

12. (2分) 具有启普发生器功能的简易装置是()

13. (2分) 水通电分解一段时间后如图所示,相关分析正确的是()

- A. 体积较大的气体是氧气
- B. a 中的电极与电源正极相连
- C. 该实验证明水是一种化合物
- D. 该实验证明水由氢分子和氧分子构成
- 14. (2分) 实验方案正确的是()

	实验目的	实验方案
A	测定空气中氧气的体积分数	密闭容器中,点燃铁丝,记录容器内气压变化
В	去除铁钉表面的铁锈	放入稍过量的稀硫酸中,铁锈全部除去后立即取
		出
С	检验固体中是否含有碳酸盐	将待测样品放入稀盐酸中,观察是否有气泡产生
D	分离碳粉和氧化铜	加热至固体质量不再变化

A. A

B. B

C. C

D. D

15~17 题每题均有 1~2 个正确选项

15. (2分)关于构成物质的微粒,叙述正确的是()

- A. 分子和原子都是构成物质的微粒
- B. 分子的质量大于原子的质量
- C. 由同种原子构成的物质是纯净物
- D. 化学变化中分子、原子的种类都改变
- 16. (2分)向盛有一定量大理石粉末的烧杯中滴加稀盐酸,生成二氧化碳的物质的量与加入稀盐酸体积的变化关系如图所示。(假设二氧化碳全部逸出,杂质不溶于水也不参加反应)相关分析正确的是()

- A. 稀盐酸的体积为 V₁ 时,烧杯中溶液的溶质为 amol
- B. 实验过程中, 烧杯内物质的质量, 先变小再变大
- C. 稀盐酸的体积为 V3 时, 烧杯中的溶液只含有一种溶质
- D. 大理石中碳酸钙为 bmol
- 17. (2分) 甲、乙两种固体(不含结晶水)的溶解度曲线如图所示。相关分析正确的是

- A. t_1 °C,配制等质量的甲、乙饱和溶液,甲需要的水较少
- B. t2℃,等质量的甲、乙分别放入等质量水中,所得溶液质量相等
- C. t3℃,等质量的甲、乙可以配制溶质质量分数相等的溶液
- D. 等质量、等溶质质量分数的甲、乙溶液,由 t_3 C 降温至 t_2 C, 析出晶体的质量: 甲>

 \mathbb{Z}

二、简答题(共30分)

氯化钠。

18. 碳元素是组成物质的重要元素。

1	1)石墨、	和碳 60 都是由碳元素组成的同素异形体	
(、エノ乍座、	似恢 0U 郁定田恢儿系组成的内系开形体	۰

- ②天然气(主要成分: CH₄)是清洁的气态矿物燃料。CH₄属于_____(选填"有机物"或"无机物"),由______种元素组成,lmol CH₄中约含有______个碳原子。
- ③固态二氧化碳称为干冰,可用于。
- ④一氧化碳可冶炼金属,其还原氧化铜的实验装置如图所示(夹持仪器省略)。A处玻璃管中反应的化学方程式是_____,B处观察到的现象是_____;C处尾气处理的

⑤盐碱湖地区有"冬天捞碱、夏天晒盐"的生产经验,其中"碱"指碳酸钠,"盐"指

I.碳酸钠的物质类别是 (选填"酸"、"碱"或"盐")。

Ⅱ.碳酸钠、氯化钠的部分溶解度数据见下表。

温度(℃)		0	10	20	30	40
溶解度	碳酸钠	7.0	12.5	21.5	39.7	49.0
(g/100g 水)	氯化钠	35.7	35.8	35.9	36.1	36.4

由上表可知,溶解度受温度影响较大的物质是______;"冬天捞碱"是获取湖水中析出的碳酸钠晶体,碳酸钠晶体的形成过程是______(选填"降温结晶"或"蒸发结晶")。

19. 用稀硫酸与锌粒反应制取氢气,并进行氢气还原氧化铜的实验。(夹持仪器省略)

①A 中反应的化学方程式是	0
②B 装置中生石灰作	
③D 处可观察到的现象是	•
④实验结束后,取少量锥形瓶	中的溶液,滴加氯化钡溶液,可观察到的现象
是	, 该现象是否能说明溶液中含有硫酸, 理由

- 20. 某氢氧化钠样品中可能含有少量碳酸钠、氯化钠。为测定该氢氧化钠样品的纯度,进行如下实验。
 - (1)检验样品成分

实验步骤	实验现象	结论
取样,溶于水中,滴加2滴酚酞	溶液变为色	氢氧化钠样品中含有氯化
试剂;		钠,不含碳酸钠。
向上述溶液中滴加过量稀硝酸,		
再滴加溶液。		

②测定样品纯度。

取 1g 样品配制成溶液后,滴加稀盐酸,测定相关数据,如图所示。

I.发生反应的化学方程式是。

II.实验开始前应获知的数据是稀盐酸的密度和_____;实验后应选用的数据是_____(选填"a""b"或"c")。

III.经计算,最终参加反应的盐酸中溶质为 0.02 mol,则 1g 样品中氢氧化钠的质量是 g_\circ

21. 某小组称取 4.90g 氯酸钾和 1.50g 二氧化锰混合后进行制取氧气、验证氧气性质的实验, 并在实验结束后回收得到纯净的二氧化锰。

【氧气的制取及性质实验】

①生成氧气的化学方程式是_	;	采用图1	中的收集方法,	是因为氧

②将红热的木炭放入集满氧气的集气瓶中,观察到的现象是____。

【回收二氧化锰】

收集一定量氧气后结束实验,为回收剩余固体中的二氧化锰,进行如图2实验。

③20℃时氯酸钾、氯化钾的溶解度数据见下表(假设溶液中两种物质的溶解度相互无影响)。

	20℃的溶解度
氯酸钾	7g/100g 水
氯化钾	34g/100g 水

请分析 5.44g 剩余固体的成分,并说明步骤Ⅲ中水量约为 40mL 而不是 30mL 的原因。

2021 年上海市虹口区中考化学二模试卷

参考答案与试题解析

一、	选择题	(共 20	分)

1. (2分) 空气中含量最多的气体是()

	A. 氮气	B. 氧气	С.	水蒸气	D. 🔅	
	【分析】空气是一种	混合物。主要	由氮气、氧气	(、二氧化碳、	水蒸气等	多种气体混合而
	成。按体积计算,干燥	燥的空气中氮化	气约占 78%,	氧气约占 21%	6, 其他气体	本包括稀有气体、
	二氧化碳、水蒸气等	约占1%。				
	【解答】解:根据对	空气成分的认	识,空气中含	量最多的气体	本是氮气,	约占空气体积的
	78%.					
	故选: A。					
	【点评】识记空气成	分的组成及占	比,是解答本	题的关键。		
2.	(2分) 盐汽水中含有	育氯化钠、 二氧	(化碳、白砂料	唐、柠檬酸等	物质,盐汽	(水属于()
	A. 纯净物	B. 混合物	С.	单质	D. 4	化合物
	【分析】纯净物与混	合物的区别:	是否由一种物	质组成。		
	【解答】解: 盐汽水	中含有氯化钠	、二氧化碳、	白砂糖、柠檬	蒙酸等物质	,属于混合物。
	故选: B。					
	【点评】在熟悉概念	的基础上能从	宏观和微观两	百个方面来判斷	断纯净物和	混合物,还要从
	社会实践中了解生活	中常见物质的	组成。			
3.	(2分) 实验测得一些	上液体室温时的	J pH,其中碱	性最强的是	()	
	A. 雪碧: 5		В.	牛奶: 6		
	C. 某洗衣液: 8		D.	84 消毒液:	10	
	【分析】根据当溶液	的 pH 小于 7 时	寸,呈酸性;	pH=7 显中性	:; 当溶液的	的pH大于7时,
	呈碱性,且 pH 越大,	,碱性越强; 拮	居此进行分析	判断.		
	【解答】解: A、雪碧	碧的 pH 为 5,	小于 7,显酸	性。		
	B、牛奶的 pH 为 6,	小于7,显酸	生。			
	C、洗衣液的 pH 为 8	8, 大于7,显得	减性。			

D、84 消毒液的 pH 为 10, 大于 7, 显碱性。

84 消毒液的 pH 最大,碱性最强。 故选: D。 【点评】本题难度不大,掌握溶液的

【点评】本题难度不大,掌握溶液的酸碱性和溶液 pH 大小之间的关系是顺利解题的关键。

- 4. (2分) 在水中能形成溶液的是()
 - A. 木炭粉
- B. 泥土
- C. 酒精
- D. 橄榄油

【分析】本题考查溶液的概念,在一定条件下溶质分散到溶剂中形成的是均一稳定的混合物。

【解答】解: A、木炭粉放入水中形成悬浊液,不均、不稳定,故 A 错;

- B、泥土不溶于水,与水混合形成悬浊液,故B错;
- C、酒精易溶于水,形成均一、稳定的混合物,属于溶液,故 C 正确;
- D、橄榄油放入水中形成乳浊液,不均、不稳定,故 D 错。

故选: C。

【点评】应熟悉溶液是一种均一稳定的混合物,在不改变条件时,溶液的组成和浓度都不会发生变化,要与悬浊液和乳浊液区分。

- 5. (2 分) 某反应的化学方程式是 2X+3O2——2CO2+4H2O, 其中 X 是 ()
 - A. CH₄
- B. C₂H₄O
- C. CH₄O
- D. CH₄O₂

【分析】由质量守恒定律:反应前后,原子种类、数目均不变,据此由反应的化学方程式推断反应物 X 的化学式.

【解答】解:根据反应的化学方程式可知,反应物中氧原子个数为6,反应后的生成物中碳、氧、氢原子个数分别为2、8、8,根据反应前后原子种类、数目不变,则2X中含有2个碳原子、2个氧原子、8个氢原子,则每个X分子由1个碳原子、1个氧原子、4个氢原子构成构成,则物质X的化学式为CH4O;

故选: C。

【点评】本题难度不大,利用化学反应前后元素守恒、原子守恒来确定物质的化学式是 正确解题的关键.

6. (2分)以下含氮元素的物质中,氮元素化合价最低的是()

A. NH₃

 $B. N_2$

C. NO

D. NO₂

【分析】根据单质中元素的化合价为 0、在化合物中正负化合价代数和为零,结合各选项中的化学式进行解答本题。

【解答】解: A、氢元素显+1 价,设氮元素的化合价是 x,根据在化合物中正负化合价 代数和为零,可得: $x+(+1) \times 3=0$,则 x=-3 价。

- B、根据单质中元素的化合价为0, N_2 属于单质,氮元素的化合价为0。
- C、氧元素显 2 价,设氮元素的化合价是 v,根据在化合物中正负化合价代数和为零, 可得: y+(-2)=0, 则 y=+2 价。
- D、氧元素显-2价,设氮元素的化合价是z,根据在化合物中正负化合价代数和为零, 可得: $z+(-2)\times 2=0$, 则 z=+4 价。

故氮元素化合价最低的是 A。

故选: A。

【点评】本题难度不大,掌握利用化合价的原则(化合物中正负化合价代数和为零)计 算指定元素的化合价的方法即可正确解答此类题。

- 7. (2 分) 化学反应: 3NaOH+FeCl3—Fe (OH) 3 ↓ +3NaCl,属于 ()

- A. 化合反应 B. 分解反应 C. 置换反应 D. 复分解反应

【分析】化学反应的类型有四个: 化合反应、分解反应、置换反应和复分解反应. 化合 反应是有两种或两种以上的物质生成一种物质的化学反应,特征是: 多变一. 分解反应 是由一种物质生成两种或两种以上的物质的反应,特征是:一变多:置换反应是一种单 质和一种化合物反应生成另一种单质和另一种化合物的化学反应. 复分解反应是两种化 合物互相交换成分生成另外两种化合物的反应。

【解答】解: 3NaOH+FeCl₃=Fe (OH)₃↓+3NaCl 属于两种化合物互相交换成分生成另 外两种化合物的反应,属于复分解反应。

故选: D。

【点评】本考点考查了基本反应类型的判断,要牢记四个基本反应类型的概念,并会理 解应用. 本考点基础性比较强, 主要出现在选择题和填空题中.

- 8. (2分)属于钾肥的是()
- A. K₂CO₃ B. NH₄HCO₃ C. CO (NH₂) ₂ D. P₂O₅

【分析】含有氮元素的肥料称为氮肥,含有磷元素的肥料称为磷肥,含有钾元素的肥料 称为钾肥,同时含有氮、磷、钾三种元素中的两种或两种以上的肥料称为复合肥.

【解答】解: A、K₂CO₃中含有钾元素,属于钾肥。

- B、NH4HCO3中含有氮元素,属于氮肥。
- C、CO(NH₂)₂中含有氮元素,属于氮肥。

第9页(共22页)

D、P2O5中不含有钾元素,不能作为钾肥。

故选: A。

【点评】本题主要考查化肥的分类方面的知识,确定化肥中营养元素的种类、化肥的分 类方法是正确解答此类题的关键.

9. (2分)对硫酸钠进行焰色反应,火焰呈()

A. 紫色

- B. 黄色
- C. 绿色
- D. 红色

【分析】多种金属或它们的化合物在灼烧时,会使火焰呈现特殊的颜色,化学上叫焰色 反应: 下表为部分金属元素的焰色:

金属元素	钾	钠	钙	钡	铜
焰色	紫色	黄色	砖红色	黄绿色	绿色

【解答】解: 硫酸钠中含有钠元素, 灼烧时火焰的颜色呈黄色。

故选: B。

【点评】本题难度不大,考查了焰色反应的应用,熟知焰色反应的现象及其应用是正确 解答本题的关键。

10. (2分)以下物质中金属活动性最强的是()

A. Ag

- B. Al
- C. Fe
- D. Mg

【分析】根据金属活动性顺序的内容,在金属活动性顺序中金属的位置越靠前,金属的 活动性就越强, 进行分析判断。

【解答】解: 常见金属活动性顺序为 K、Ca、Na、Mg、Al、Zn、Fe、Sn、Pb、(H)、Cu、 Hg、Ag、Pt、Au; 在金属活动性顺序中,金属的位置越靠前,金属的活动性就越强,镁、 铝、铁、银四种金属中镁的位置最靠前,故四种金属中金属活动性最强的是镁。 故选: D。

【点评】本题难度不大,考查金属活动性强弱,熟记金属活动性顺序并能灵活运用即可 正确解答本题。

11. (2 分) 属于化学变化的是()

- A. 电灯发光 B. 热水袋散热 C. 燃料燃烧 D. 冰块融化

【分析】化学变化是指有新物质生成的变化,物理变化是指没有新物质生成的变化,化 学变化和物理变化的本质区别是否有新物质生成; 据此分析判断。

【解答】解: A、电灯发光是由电能转化为光能和热能,没有新物质生成,属于物理变化,

故 A 错;

- B、热水袋散热是利用热传递,没有新物质生成,属于物理变化,故B错;
- C、燃料燃烧,一般是指燃料与氧气发生的剧烈的氧化反应,属于化学变化,故 C 正确;
- D、冰块融化,是由固态变为液态,只是状态的改变,没有新物质生成,属于物理变化,故 D 错。

故选: C。

【点评】本题难度不大,解答时要分析变化过程中是否有新物质生成,若没有新物质生成属于物理变化,若有新物质生成属于化学变化。

12. (2分) 具有启普发生器功能的简易装置是()

【分析】根据发生装置要求选择仪器。

【解答】解:用启普发生器的原理制取气体,它的使用范围是:块状固体与液体反应,不需要加热,生成的气体不与反应物发生化学反应,启普发生器需要反应容器,并且能够放置多孔隔板和橡胶塞,启普发生器的特点是随时控制反应的发生与停止,符合要求的是装置 B。

故选: B。

【点评】在解此类题时,首先要将题中的知识认知透,然后结合学过的知识进行解答。

13. (2分) 水通电分解一段时间后如图所示,相关分析正确的是()

- A. 体积较大的气体是氧气
- B. a 中的电极与电源正极相连
- C. 该实验证明水是一种化合物
- D. 该实验证明水由氢分子和氧分子构成

【分析】根据电解水的实验现象、结论和生成气体的性质分析判断,电解水时"正氧负氢、氢二氧一",即电解水时,与电源正极相连的试管内产生的气体体积少,与电源负极相连的试管内的气体体积多,且两者的体积之比大约是 1: 2,据此结合题意进行分析判断。

【解答】解: A、在水通直流电后,与正极相连的试管生成的气体是氧气,体积较小。与 负极相连的试管生成的是氢气,体积较大,故选项分析错误;

B、电解水时"正氧负氢、氢二氧一", a 中气体较多, 为氢气, 与负极相连的试管生成的是氢气, 故选项分析错误;

C、水通电能生成氢气和氧气,实验证明了水是由氧元素和氢元素组成的,水是由氢元素和氧元素组成的化合物,故选项分析正确;

D、该实验中水通电分解生成了氢气和氧气,并不是水由氢分子和氧分子构成,故选项分析错误:

故选: C。

【点评】本题难度不大,掌握电解水的实验现象、结论(正氧负氢、氢二氧一)等是正确解答本题的关键。

14. (2分)实验方案正确的是()

	实验目的	实验方案
A	测定空气中氧气的体积分数	密闭容器中,点燃铁丝,记录容器内气压变化

В	去除铁钉表面的铁锈	放入稍过量的稀硫酸中,铁锈全部除去后立即取
		出
С	检验固体中是否含有碳酸盐	将待测样品放入稀盐酸中,观察是否有气泡产生
D	分离碳粉和氧化铜	加热至固体质量不再变化

A. A

B. B

C. C

D. D

【分析】A、铁在空气中不能燃烧;

- B、稀硫酸和氧化铁反应生成硫酸铁和水;
- C、比较活泼的金属也能和稀盐酸反应生成气体;
- D、加热时,氧化铜和碳反应生成铜和二氧化碳。

【解答】解: A、铁在空气中不能燃烧,不能测定氧气含量,该选项方法不正确;

- B、放入稍过量的稀硫酸中,稀硫酸和氧化铁反应生成硫酸铁和水,铁锈全部除去后立即取出,该选项方法正确;
- C、比较活泼的金属也能和稀盐酸反应生成气体,该选项方法不正确;
- D、加热时,氧化铜和碳反应生成铜和二氧化碳,该选项方法不正确。

故选: B。

【点评】本题主要考查物质的性质,解答时要根据各种物质的性质,结合各方面条件进行分析、判断,从而得出正确的结论。

15~17 题每题均有 1~2 个正确选项

- 15. (2分) 关于构成物质的微粒, 叙述正确的是()
 - A. 分子和原子都是构成物质的微粒
 - B. 分子的质量大于原子的质量
 - C. 由同种原子构成的物质是纯净物
 - D. 化学变化中分子、原子的种类都改变

【分析】A、根据构成物质的微粒考虑;

- B、根据分子和原子不能笼统的比较大小考虑;
- C、根据纯净物的特点考虑;
- D、根据分子和原子的区别考虑。

【解答】解: A、构成物质的微粒: 分子、原子和离子, 故 A 正确;

B、分子和原子不能笼统的比较大小,有的分子的质量大于原子的质量,有的分子的质量

小于原子的质量, 故 B 错;

- C、由同种原子构成的物质不一定是纯净物,例如金刚石和石墨组成混合物,故 C 错;
- D、化学变化中分子的种类发生改变,原子的种类不变,故 D 错。

故选: A。

【点评】解答本题关键是熟悉分子和原子的区别和联系。

16. (2分)向盛有一定量大理石粉末的烧杯中滴加稀盐酸,生成二氧化碳的物质的量与加入稀盐酸体积的变化关系如图所示。(假设二氧化碳全部逸出,杂质不溶于水也不参加反应)相关分析正确的是()

- A. 稀盐酸的体积为 V_1 时,烧杯中溶液的溶质为 amol
- B. 实验过程中, 烧杯内物质的质量, 先变小再变大
- C. 稀盐酸的体积为 V3 时, 烧杯中的溶液只含有一种溶质
- D. 大理石中碳酸钙为 bmol

【分析】向盛有一定量大理石粉末的烧杯中滴加稀盐酸,大理石的主要成分碳酸钙与稀盐酸反应生成氯化钙、水和二氧化碳,由图示可知,至稀盐酸的体积为 V_2 时,恰好完全反应,进行分析判断。

【解答】解: A、由图示可知,稀盐酸的体积为 V_1 时,生成的二氧化碳的物质的量为 amol,由反应的化学方程式 $CaCO_3+2HCl=CaCl_2+H_2O+CO_2$ \uparrow ,烧杯中的溶质是氯化钙,则烧杯中溶液的溶质为 amol,故选项说法正确。

- B、由反应的化学方程式 CaCO₃+2HCl=CaCl₂+H₂O+CO₂↑,每73 份质量的氯化氢可生成出44 份质量的二氧化碳,实验过程中,烧杯内物质的质量始终在变大,故选项说法错误。
- C、稀盐酸的体积为 V₃ 时,是恰好完全反应后继续滴加稀盐酸,稀盐酸过量,烧杯中的 溶液含有氯化钙、氯化氢两种溶质,故选项说法错误。
- D、稀盐酸的体积为 V_2 时,恰好完全反应,生成的二氧化碳的物质的量为 bmol,由反应 第 **14**页(共 **22**页)

的化学方程式 CaCO₃+2HCl=CaCl₂+H₂O+CO₂↑,则大理石中碳酸钙为 bmol,故选项说法正确。

故选: AD。

【点评】本题难度不大,掌握盐的化学性质、明确至稀盐酸的体积为 V_2 时恰好完全反应是正确解答本题的关键。

17. (2分)甲、乙两种固体(不含结晶水)的溶解度曲线如图所示。相关分析正确的是

- A. t_1 °C, 配制等质量的甲、乙饱和溶液, 甲需要的水较少
- B. t₂℃,等质量的甲、乙分别放入等质量水中,所得溶液质量相等
- C. t3[℃],等质量的甲、乙可以配制溶质质量分数相等的溶液
- D. 等质量、等溶质质量分数的甲、乙溶液,由 t_3 C 降温至 t_2 C ,析出晶体的质量:甲>乙

【分析】根据物质的溶解度曲线可以判断某一温度时物质的溶解度大小比较;

根据物质的溶解度曲线可以判断随着温度的变化,物质的溶解度变化情况;

根据物质的溶解度曲线、溶质质量、溶剂质量可以判断配制的溶液质量;

根据物质的溶解度曲线、溶液质量可以判断温度变化时析出固体质量的大小。

【解答】解: A、t₁℃时乙的溶解度大于甲, 配制等质量的甲、乙饱和溶液, 甲需要的水较多, 该选项说法不正确;

- B、t2℃甲、乙溶解度相等,等质量的甲、乙分别放入等质量水中,所得溶液质量相等, 该选项说法正确;
- C、t₃℃,等质量的甲、乙可以配制溶质质量分数相等的溶液,例如等质量的甲、乙完全溶解在等质量的水中,该选项说法正确;
- D、等质量、等溶质质量分数的甲、乙溶液,由 t_3 \mathbb{C} 降温至 t_2 \mathbb{C} ,不一定析出晶体,该选项说法不正确。

故选: BC。

【点评】溶解度曲线能定量地表示出溶解度变化的规律,从溶解度曲线可以看出:同一溶质在不同温度下的溶解度不同;同一温度下,不同溶质的溶解度可能相同,也可能不同;温度对不同物质的溶解度影响不同.

二、简答题(共30分)

- 18. 碳元素是组成物质的重要元素。
 - (1)石墨、 金刚石 和碳 60 都是由碳元素组成的同素异形体。
 - ②天然气(主要成分: CH₄)是清洁的气态矿物燃料。CH₄属于<u>有机物</u>(选填"有机物"或"无机物"),由<u>2</u>种元素组成,1mol CH₄中约含有<u>6.02×10²³</u>个碳原子。
 - ③固态二氧化碳称为干冰,可用于 人工降雨等。
 - ④一氧化碳可冶炼金属,其还原氧化铜的实验装置如图所示(夹持仪器省略)。A 处玻璃管中反应的化学方程式是 <u>CuO+CO</u> <u>△</u> <u>Cu+CO</u> <u>, B 处观察到的现象是 <u>澄清</u> <u>石灰水变浑浊</u>; C 处尾气处理的目的是 <u>防止 CO 排放到空气中污染环境</u>。</u>

- ⑤盐碱湖地区有"冬天捞碱、夏天晒盐"的生产经验,其中"碱"指碳酸钠,"盐"指氯化钠。
- I.碳酸钠的物质类别是_盐_(选填"酸"、"碱"或"盐")。
- II.碳酸钠、氯化钠的部分溶解度数据见下表。

温度(\mathbb{C})	0	10	20	30	40
溶解度	碳酸钠	7.0	12.5	21.5	39.7	49.0
(g/100g 水)	氯化钠	35.7	35.8	35.9	36.1	36.4

由上表可知,溶解度受温度影响较大的物质是<u>碳酸钠</u>; "冬天捞碱"是获取湖水中析出的碳酸钠晶体,碳酸钠晶体的形成过程是<u>降温结晶</u>(选填"降温结晶"或"蒸发结晶")。

【分析】①根据碳元素的单质分析;

- ②根据物质的组成和阿伏加德罗常数分析回答;
- ③根据二氧化碳的用途分析;
- ④氧化铜和一氧化碳反应能生成铜和二氧化碳;二氧化碳能使澄清的石灰水变浑浊;一氧化碳有毒,扩散到空气中能够污染环境;
- (5) I.根据物质的构成分析;

II.根据碳酸钠、氯化钠的溶解度受温度的影响分析。

【解答】解: ①同素异形体是由相同的元素组成的不同单质,由碳元素组成的同素异形体有石墨、金刚石和碳 60:

- ②CH₄ 是含碳的化合物,属于有机物,由碳、氢 2 种元素组成,1 个 CH₄ 分子中含有 1 个碳原子,1molCH₄ 中约含有 6.02×10^{23} 个碳原子;
- ③ 干冰升华会吸收大量的热,可用于人工降雨等;
- ④A 处一氧化碳能和黑色的氧化铜反应生成红色的铜和二氧化碳,化学方程式为: CuO+CO———Cu+CO₂,二氧化碳能使澄清的石灰水变浑浊,在 B 处观察到的现象是澄清的石灰水变浑浊;点燃尾气的目的是一氧化碳有毒,防止一氧化碳污染大气。
- (5) I.碳酸钠由钠离子和碳酸根离子构成,属于盐;

II.由表中数据分析,碳酸钠溶解度受温度影响较大;"冬天捞碱"的原因是由于 Na₂CO₃的溶解度随温度降低而减小,达到饱和进而析出。

故答案为: ①金刚石;

- ②有机物; 2; 6.02×10^{23} ;
- (3)人工降雨等;
- ④CuO+CO———Cu+CO₂, 澄清石灰水变浑浊, 防止 CO 排放到空气中污染环境;
- (5) I.盐;

Ⅱ.碳酸钠; 降温结晶。

【点评】本题主要考查了常见物质的组成、性质、应用和化学方程式的书写,难度不大,根据已有的知识分析解答即可。

19. 用稀硫酸与锌粒反应制取氢气,并进行氢气还原氧化铜的实验。(夹持仪器省略)

- ①A 中反应的化学方程式是 Zn+H₂SO₄—ZnSO₄+H₂↑。
- ②B 装置中生石灰作__干燥__剂。
- (3)D 处可观察到的现象是<u>无水硫酸铜粉末变蓝</u>。
- ④实验结束后,取少量锥形瓶中的溶液,滴加氯化钡溶液,可观察到的现象是<u>有白色</u><u>沉淀生成</u>,该现象是否能说明溶液中含有硫酸,理由是<u>否,锌粒与稀硫酸反应产生的 ZnSO4 也能与 BaCl₂ 反应生成 BaSO4 沉淀</u>。

【分析】①根据化学反应的原理来分析;

- ②根据生石灰的性质来分析;
- ③根据无水硫酸铜的性质来分析;
- 4 根据盐之间的反应原理来分析。
- 【解答】解: ① 锌和稀硫酸反应生成硫酸锌和氢气,化学方程式为: Zn+H₂SO₄—ZnSO₄+H₂↑; 故填: Zn+H₂SO₄—ZnSO₄+H₂↑;
- ②生石灰易与水反应, 所以 B 装置中生石灰可以除去氢气中的水蒸气, 起到干燥的作用; 故填: 干燥:
- ③在加热的条件下,氢气与氧化铜反应生成铜和水,水蒸气进入装置 D,与白色无水硫酸铜反应生成蓝色的硫酸铜晶体,所以观察到无水硫酸铜粉末变蓝;故填:无水硫酸铜粉末变蓝;
- ④反应后的溶液中一定存在硫酸根离子,硫酸根离子与氯化钡溶液中的钡离子能结合成硫酸钡白色沉淀;因为硫酸锌、硫酸均能与氯化钡反应生成白色沉淀,所以该现象不能说明溶液中含有硫酸;故填:有白色沉淀生成;否,锌粒与稀硫酸反应产生的 ZnSO4 也能与 BaCl₂ 反应生成 BaSO4 沉淀。

【点评】解答这类题目时,要熟记实验室制取氢气的反应原理、实验步骤、装置示意图以及氢气的性质、物质的检验方法等。

20. 某氢氧化钠样品中可能含有少量碳酸钠、氯化钠。为测定该氢氧化钠样品的纯度,进行

如下实验。

(1)检验样品成分

实验步骤	实验现象	结论
取样,溶于水中,滴加2滴酚酞	溶液变为_红_色	氢氧化钠样品中含有氯化
试剂;		钠,不含碳酸钠。
向上述溶液中滴加过量稀硝酸,	不产生气泡,产生白色沉	
再滴加 <u>硝酸银</u> 溶液。	淀	

②测定样品纯度。

取 1g 样品配制成溶液后,滴加稀盐酸,测定相关数据,如图所示。

I.发生反应的化学方程式是 NaOH+HCl—NaCl+H2O 。

II.实验开始前应获知的数据是稀盐酸的密度和<u>溶质质量分数</u>;实验后应选用的数据是____(选填"a""b"或"c")。

III.经计算,最终参加反应的盐酸中溶质为 0.02mol,则 1g 样品中氢氧化钠的质量是 0.8 g。

【分析】氢氧化钠溶液显碱性,能使酚酞试液变红色,和盐酸反应生成氯化钠和水。 稀硝酸和氢氧化钠反应生成硝酸钠和水,和碳酸钠反应生成硝酸钠、水和二氧化碳。 根据反应的化学方程式及其提供数据可以进行相关方面的计算。

【解答】解: ①实验过程如下所示:

实验步骤	实验现象	结论	
取样,溶于水中,滴加2滴酚酞	溶液变为红色	氢氧化钠样品中含有氯化	
试剂;		钠,不含碳酸钠。	
向上述溶液中滴加过量稀硝酸,	不产生气泡(溶液中不含有		

再滴加硝酸银溶液。	碳酸钠),产生白色沉淀(硝	
	酸银和氯化钠反应生成了	
	氯化银沉淀)	

故填:红;硝酸银;不产生气泡,产生白色沉淀。

② I.氢氧化钠和盐酸反应生成氯化钠和水,发生反应的化学方程式: NaOH+HCl—NaCl+H₂O。

故填: NaOH+HCl—NaCl+H2O。

Ⅱ.实验开始前应获知的数据是稀盐酸的密度和溶质质量分数;

实验后应选用的数据是 b, 是因为此时恰好完全反应。

故填:溶质质量分数; b。

III.设 1g 样品中氢氧化钠的物质的量为 x,

NaOH+HCl=NaCl+H₂O,

1 1 x = 0.02 mol $\frac{1}{x} = \frac{1}{0.02 \text{mol}}$

x=0.02mol,

则 1g 样品中氢氧化钠的质量是: 0.02mol×40g/mol=0.8g。

故填: 0.8.

【点评】本题主要考查物质的性质,解答时要根据各种物质的性质,结合各方面条件进行分析、判断,从而得出正确的结论。

21. 某小组称取 4.90g 氯酸钾和 1.50g 二氧化锰混合后进行制取氧气、验证氧气性质的实验, 并在实验结束后回收得到纯净的二氧化锰。

【氧气的制取及性质实验】

第 20页(共 22页)

①生成氧气的化学方程式是 $2KClO_3$ Δ $2KCl+3O_2$; 采用图 1 中的收集方法,

是因为氧气 氧气不溶于水,也不与水发生反应。

②将红热的木炭放入集满氧气的集气瓶中,观察到的现象是<u>剧烈燃烧、发出白光,放</u>热_。

【回收二氧化锰】

收集一定量氧气后结束实验,为回收剩余固体中的二氧化锰,进行如图 2 实验。

③20℃时氯酸钾、氯化钾的溶解度数据见下表(假设溶液中两种物质的溶解度相互无影响)。

	20℃的溶解度
氯酸钾	7g/100g 水
氯化钾	34g/100g 水

请分析 5.44g 剩余固体的成分,并说明步骤III中水量约为 40mL 而不是 30mL 的原因<u>通</u>过实验数据,有 2.45gKClO₃ 发生反应,因此 5.44g 剩余固体中含有 2.45gKClO₃、1.49gKCl 和 1.50gMnO₂; 20°C时,氯酸钾的溶解度为 7g/100g 水,40mL 水和 30mL 水中最多能溶解 KClO₃的质量分别为 2.8g 和 2.1g,而 5.44g 剩余固体中含有 2.45gKClO₃,为使其全部溶解水量应选择 40mL 而不是 30mL 。

【分析】①根据化学反应的原理以及氧气的性质来分析;

- ②根据木炭在氧气中燃烧的现象来分析;
- ③根据物质的溶解度来分析。

【解答】解: ①在二氧化锰的催化作用下,加热氯酸钾分解为氯化钾和氧气,化学方程式为 $2KClO_3$ —— $2KCl+3O_2$ \uparrow ; 因为氧气不溶于水,也不与水发生反应,所以可用图 1

应;

- ②将红热的木炭放入集满氧气的集气瓶中,观察到的现象是剧烈燃烧、发出白光,放热;故答案为:剧烈燃烧、发出白光,放热;
- ③由质量守恒定律可知,生成氧气的质量为 4.90g+1.50g-5.44g=0.96g; 设生成 0.96g 氧气需要氯酸钾的质量为 x,生成氯化钾的质量为 y,则:

$$2KClO_{3} = \frac{MnO_{2}}{\Delta} 2KCl+3O_{2} \uparrow$$

$$245 \qquad 149 \qquad 96$$

$$x \qquad y \qquad 0.96g$$

$$\frac{245}{x} = \frac{149}{y} = \frac{96}{0.96g}$$

$$x = 2.45g$$

$$y = 1.49g$$

则未反应的氯酸钾的质量为: 4.90g - 2.45g=2.45g。

通过实验数据,有 2.45gKClO₃ 发生反应,因此 5.44g 剩余固体中含有 2.45gKClO₃、 1.49gKCl 和 1.50gMnO₂; 20°C时,氯酸钾的溶解度为 7g/100g 水,40mL 水和 30mL 水中最多能溶解 KClO₃的质量分别为 2.8g 和 2.1g,而 5.44g 剩余固体中含有 2.45gKClO₃,为使其全部溶解水量应选择 40mL 而不是 30mL;

故答案为:通过实验数据,有 $2.45gKClO_3$ 发生反应,因此 5.44g 剩余固体中含有 $2.45gKClO_3$ 、1.49gKCl 和 $1.50gMnO_2$; 20°C时,氯酸钾的溶解度为 7g/100g 水, 40mL 水和 30mL 水中最多能溶解 $KClO_3$ 的质量分别为 2.8g 和 2.1g,而 5.44g 剩余固体中含有 $2.45gKClO_3$,为使其全部溶解水量应选择 40mL 而不是 30mL。

【点评】本题考查了制取氧气的原理、发生装置、收集装置的选择及性质的探究,关键 是明确发生装置、收集方法选择的依据及溶解度的信息。