

人工智能原理与技术 5.马尔科夫决策MDP

王翔

中国科学技术大学 数据科学实验室LDS

2025/3/28 人工智能原理与技术

Question 问题

How would you get groceries on a Saturday afternoon in the least amount of time?

order grocery delivery
bike to the store
drive to the store
Uber/Lyft to the store
fly to the store

Course Plan 课程安排

So far: search problems 搜索问题回顾

确定性的 **deterministic**

state s, action a

state Succ(s, a)

Uncertainty in the real world 现实世界中的不确定性

155

History 历史

- MDPs: Mathematical Model for decision making under uncertainty.
 不确定性下决策的数学模型
- MDPs were first introduces in 1950s-60s.
- Ronald Howard's book on Dynamic Programming and Markov Processes
- The term 'Markov' refers to Andrey Makov as MDPs are extensions of Markov Chains, and they allow making decisions (taking actions or having choice).

mdp是马尔可夫链的延伸,它们允许做出决定(采取行动或有选择余地)

Applications **应用**

Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.

机器人:决定移动到哪里,但执行器可能会失败,碰到看不见的障碍等。

Resource allocation: decide what to produce, don't know the customer demand for various products

资源配置:决定生产什么,不知道客户对各种产品的需求

Agriculture: decide what to plant, but don't know weather and thus crop yield 农业: 决定种植什么, 但不知道天气和作物产量

Volcano crossing 穿越火山

// Model

moveReward = 0 // For every action you take passReward = 20 // If get to far green volcanoReward = -50 // If fall into volcano slipProb = 0.3 // If slip, go in random direction discount = 1 // How much to value the future

// CHANGE THIS to 10 numIters = 10 // # iterations of value iteration

1.4	- 2.9	-50	20
1.9	1.1	-50	13.8
2	6.5	7.5	13.2

Value: 1.86

- ➤ 向东(E)/ 西(W)/ 南(S)/ 北(N) 移动一格
- ▶ 移动到红色或绿色游戏结束
- ▶ -50: 火山 2: 安全区 20: 美丽海岛
- ▶ 怎么移动使收益最大?

(or press ctrl-enter)

Roadmap _路线图

Modeling

Modeling MDP Problems

Algorithms

Policy Evaluation

Value Iteration

Learning

Intro to Reinforcement Learning

Model-Based Monte Carlo

Model-Free Monte Carlo

SARSA

Q-learning

Epsilon Greedy

Function Approximation

MDPs: modeling 马尔可夫决策过程: 建模

Modeling

Modeling MDP Problems

Algorithms

Policy Evaluation

Value Iteration

Learning

Intro to Reinforcement Learning

Model-Based Monte Carlo

Model-Free Monte Carlo

SARSA

Q-learning

Epsilon Greedy

Function Approximation

Dice game 骰子游戏

Example: dice game

在每一轮 r = 1,2,…

- 你选择留下或退出。
- 如果你退出,你会得到10美元,我们结束游戏。
- 如果留下, 你得到4美元然后我掷一个六面骰子。
 - ▶ 如果骰子的结果是1或2, 我们就结束游戏。
 - ▶ 否则,继续进行下一轮。

Start

Stay

Quit

Dice:

Rewards:

Rewards 奖励

If follow policy "stay":

Expected utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

Rewards 奖励

If follow policy "quit":

Expected utility:

$$1(10) = 10$$

MDP for dice game 骰子游戏中的MDP

Example: dice game

在每一轮 r = 1,2,…

- 你选择留下或退出。
- 如果你退出, 你会得到10美元, 我们结束游戏。
- 如果留下, 你得到4美元然后我掷一个六面骰子。
 - ▶ 如果骰子的结果是1或2, 我们就结束游戏。
 - ▶ 否则,继续进行下一轮。

Markov decision process 马尔可夫决策过程

Definition: Markov decision process

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

 $\mathsf{IsEnd}(s)$: whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Search problems 对比: 搜索问题

Definition: search problem

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

 ${\sf Succ}(s,a)$: where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s

 $\mathsf{IsEnd}(s)$: whether at end

• Succ $(s, a) \Rightarrow T(s, a, s')$ T(s, a, s'): probability of s' if take action a in state s

• $Cost(s, a) \Rightarrow Reward(s, a, s')$

Reward(s, a, s'): reward for the transition (s, a, s')

Transitions 转移概率

Definition: transition probabilities

The **transition probabilities** T(s,a,s') specify the probability of ending up in state s' if taken action a in state s. 从状态s采取行动a最终到s'的概率

Probabilities sum to one 转移概率之和为1

Example: transition probabilities ¬

For each state s and action a:

$$\sum_{s' \in \mathsf{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

Transportation example 运输的例子

Example: transportation

街块编号1到n。 从s走到s+1需要1分钟。 从s到2s乘一辆神奇的电车需要2分钟。 如何在最短的时间内从1到n? 电车故障概率为0.5。

What is a solution? 解决方法是什么?

Search problem: path (sequence of actions)

MDP:

Definition: policy

从状态s到行动a的映射

A **policy** π is a mapping from each state $s \in \mathsf{States}$ to an action $a \in \mathsf{Actions}(s)$.

MDPs: policy evaluation 马尔可夫决策过程: 策略评估

Modeling

Learning

Modeling MDP Problems

Intro to Reinforcement Learning

Algorithms

Model-Based Monte Carlo

Policy Evaluation

Model-Free Monte Carlo

Value Iteration

SARSA

Q-learning

Epsilon Greedy

Function Approximation

Evaluating a policy 评估一项政策

Definition: utility -

Following a policy yields a random path.

The utility of a policy is the (discounted) sum of the rewards on the path (this is a random variable). 针对一条path而言,是随机变量

```
Path Utility
[in; stay, 4, end] 4
[in; stay, 4, in; stay, 4, in; stay, 4, end] 12
[in; stay, 4, in; stay, 4, end] 8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 16
...
```


Definition: value (expected utility)

The value of a policy at a state is the expected utility.

Evaluating a policy: volcano crossing

策略评估: 穿越火山

// Model
moveReward = -0.1 // For every action you take
passReward = 40 // If get to far green
volcanoReward = -50 // If fall into volcano
slipProb = 0.3 // If slip, go in random direction
discount = 0.9 // How much to value the future

// Run algorithms on model
numIters = 10 // # iterations of value iteration
numEpisodes = 1 // # simulations

2.4	-0.5	-50	40	a r s (2,1) E -0.1 (2,2) S -0.1 (2,1) E -0.1 (2,2)
3.7-	5	-50	31	S -0.1 (3,2) E -0.1 (3,3) E -0.1 (3,4) N -0.1 (3,4)
2	12.6	16.3	26.2	N -0.1 (3,3) E -0.1 (3,4) N -0.1 (2,4) N 39.9 (1,4)

(or press ctrl-enter)

Value: 3.73

Utility: 13.26

➤ 通过程序模拟, 随机生成路径, 得到收敛后的value/utility

100

Discounting "折扣"

Definition: utility

Path: $s_0, a_1 r_1 s_1, a_2 r_2 s_2, \ldots$ (action, reward, new state).

The **utility** with discount γ is

$$u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

Discount $\gamma = 1$ (save for the future):

[stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount $\gamma = 0$ (live in the moment):

[stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay]: $4+\frac{1}{2}\cdot 4+\frac{1}{4}\cdot 4+\frac{1}{8}\cdot 4=7.5$

Policy evaluation 策略评估

Definition: value of a policy

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Definition: Q-value of a policy

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .

Policy evaluation 策略评估

Plan: define recurrences relating value and Q-value

$$V_{\pi}(s) = egin{cases} 0 & \text{if IsEnd}(s) \ Q_{\pi}(s,\pi(s)) & \text{otherwise.} \end{cases}$$

$$Q_{\pi}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\pi}(s')]$$
 递归

Dice game 骰子游戏

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}(\mathsf{end}) = 0$$

$$V_{\pi}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}(\mathsf{in}))$$

In this case, can solve in closed form: 闭式解

$$V_{\pi}(\mathsf{in}) = 12$$

Policy evaluation 策略评估

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values. 无闭式解时,通过迭代至收敛

Algorithm: policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \ldots, t_{PE}$:

For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s, \pi(s))}$$

Policy evaluation implementation 策略评估的实现

How many iterations (t_{PE})? Repeat until values don't change much:

$$\max_{s \in \mathsf{States}} |V_\pi^{(t)}(s) - V_\pi^{(t-1)}(s)| \le \underline{\epsilon}$$

Don't store $V_{\pi}^{(t)}$ for each iteration t, need only last two:

$$V_{\pi}^{(t)}$$
 and $V_{\pi}^{(t-1)}$

Complexity 复杂度分析

Algorithm: policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{s'}$$

$$Q^{(t-1)}(s,\pi(s))$$

⊢MDP complexity

S states

 ${\cal A}$ actions per state

 S^\prime successors (number of s^\prime with $T(s,a,s^\prime)>0)$

Time: $O(t_{PE}SS')$

Policy evaluation on dice game 骰子游戏的策略评估

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}^{(t)}(\mathsf{end}) = 0$$

$$V_{\pi}^{(t)}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{in}))$$

$$s$$
 end in $V_{\pi}^{(t)}$ 0.00 12.00 $(t=100 \ {
m iterations})$

Converges to $V_{\pi}(\text{in}) = 12$. \rightarrow Try to implement it in Python.

Summary so far 总结

- MDP: graph with states, chance nodes, transition probabilities, rewards 具有状态、机会节点、转移概率、奖励的图
- Policy: mapping from state to action (solution to MDP) 从状态到动作的映射(MDP的解)
- Value of policy: expected utility over random paths 随机路径上的期望效用
- Policy evaluation: iterative algorithm to compute value of policy 计算策略价值的迭代算法

MDPs: value iteration 马尔可夫决策过程: 价值迭代

Modeling

Modeling MDP Problems Ir

Algorithms

Policy Evaluation

Value Iteration

Learning

Intro to Reinforcement Learning

Model-Based Monte Carlo

Model-Free Monte Carlo

SARSA

Q-learning

Epsilon Greedy

Function Approximation

Optimal value and policy 最优价值与策略

Goal: try to get directly at maximum expected utility

Definition: optimal value

The **optimal value** $V_{\mathrm{opt}}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values 最优值和Q-value

Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\mathsf{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{lsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies 最优策略

Given Q_{opt} , read off the optimal policy:

$$\pi_{\mathsf{opt}}(s) = \arg\max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

Value iteration 价值迭代

Algorithm: value iteration [Bellman, 1957] —

Initialize $V_{\text{opt}}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{VI}$:

For each state s:

$$V_{\mathrm{opt}}^{(t)}(s) \leftarrow \max_{a \in \mathsf{Actions}(s)} \underbrace{\sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathrm{opt}}^{(t-1)}(s')]}_{Q_{\mathrm{opt}}^{(t-1)}(s, a)}$$

Time: $O(t_{VI}SAS')$

[semi-live solution]

Value iteration: dice game 价值迭代: 骰子游戏

```
end
                   in
          0.00 12.00 (t = 100 iterations)
\pi_{\sf opt}(s)
                  stay
```


Value iteration: volcano crossing 价值迭代: 穿越火山

// Model
moveReward = 0 // For every action you take
passReward = 20 // If get to far green
volcanoReward = -50 // If fall into volcano
slipProb = 0.1 // If slip, go in random direction
discount = 1 // How much to value the future

// CHANGE THIS to 0, 1, 2, 3, ...
numlters = 10 // # iterations of value iteration

13.4	12.3	-50	20
13.7	14.1	-50	18.2
2	15.9	16.3	18.1

Value: 13.68

Convergence 收敛性

Theorem: convergence

Suppose either

- ullet discount $\gamma < 1$, or
- MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount $\gamma = 1$, zero rewards

Summary of algorithms 算法概述

• Policy evaluation: (MDP, π) $\to V_{\pi}$

• Value iteration: MDP $\rightarrow (Q_{\sf opt}, \pi_{\sf opt})$

Unifying idea 观点的统一

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- ullet Value iteration computes optimal value $V_{\mathsf{opt}}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = \cdots V_{\pi}(s') \cdots$)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)