Donnerstag, 31. Oktober 2024

14:59

Exercise 2.1.2 Let (V, ω) be a symplectic vector space and $\Psi : V \to V$ be a linear map. Prove that Ψ is a linear symplectomorphism if and only if its graph

$$\Gamma_{\Psi} = \{ (v, \Psi v) \mid v \in V \}$$

is a Lagrangian subspace of $V \times V$ with symplectic form

$$(-\omega) \oplus \omega := \operatorname{pr}_2^* \omega - \operatorname{pr}_1^* \omega.$$

Let Ψ be a symplectomorphism. Then $\omega(\Psi, \Psi u) = \omega(\nu, u) + \nu, u \in V$. $(-\omega \oplus \omega)((\nu, \Psi v), (w, \Psi u)) = \omega(\Psi v, \Psi u) - \omega(\nu, w) = 0$ $+ \nu, u => (-\omega \oplus \omega)_{T_{\psi}} = 0$. Since T_{ψ} has half the dimension of $(V_{x}V, (-\omega) \oplus \omega)$ and the symplectic form V_{x} vanishes on V_{x} is Lagrangian $(\mathcal{L}_{x})_{x}$

Assume Γ_{ψ} Lagrangian. Then from above we see $\omega(\Psi_{v}, \Psi_{w}) = \omega(v, w) \neq v, w \in V$. It remains to show Ψ is an isomorphism.

Assume $\Psi(v) = 0$ for some $v \neq 0$.

Then $\exists w \neq 0 = s \neq 0$.

But $0 = \omega(0, \Psi_{w}) = \omega(\Psi_{v}, \Psi_{w}) = \omega(\Psi_{v}, w) \neq 0$.

D