Discrete Mathematics (2009 Spring) Midterm II

- 1. **(30 points)** For each of the following statements, **determine** and **explain** whether it is correct or not.
 - (1). The string 00010 is in the language $\{00\}\{0\}^*\{10\}$ also in $\{000\}^*\{1\}^*\{0\}$.
 - (2). Let (A, \mathbf{R}) be a poset. If (A, \mathbf{R}) is a lattice, then it is a total order.
 - (3). If $A=\{1, 2, 3, 4\}$ and there are 1680 injective functions $f: A \rightarrow B$, then |B|=8.
 - (4). The maximal number of rolling a single die to get the same score at least 4 times is 25.
 - (5). Function f denotes a closed binary operations on $\mathbf{P}(\mathbf{Z}^+)$. For A, B $\subseteq \mathbf{Z}^+$, $f(A, B)=A\cap B$ then f is one-to-one.
 - (6). Two states are not 2-equivalent if and only if they are not 3-equivalent.
- 2. (20 points, 5+5+5+5) Let A={a, b, c, d}. Determine the following values (a) the number of functions $f: A \times A \rightarrow A$, (b) the number of closed binary operations f on A satisfy f(a, b)=b and have an identity, (c) the number of closed binary operations in (b) are commutative, (d) the number of relations on A that are reflexive and symmetric but not transitive.
- 3. (10 points) Suppose R is an equivalence class relation on $\{1, 2, 3, 4, 5, 6\}$ and the equivalence class induced by R are $\{1, 5, 6\}$, $\{2, 4\}$, $\{3\}$. What is the value of |R|?
- 4. **(15 points)** Let $\mathbf{I} = \mathbf{O} = \{0, 1\}$. Construct a state diagram for a finite state machine that reverses (from 0 to 1 or from 1 to 0) the symbols appearing in the *4kth* and (4k+1)th positions of an input string $\mathbf{x} \in \mathbf{I}^+$, where $\mathbf{k} \ge 1$. For example, if s_0 is the starting state, then $w(s_0, 00010111) = 00001110$.
- 5. (15 points, 5+10) Let p, q, r be three distinct primes. We denote relation $x\mathbf{R}y$ if x divides y. Under this relation \mathbf{R} , (1) please draw the Hasse diagram of all positive divisors of p^3q^2 ; (2) and answer how many edges are there in the Hasse diagram of all positive divisors of $p^mq^nr^k$, m, n, $k \in \mathbb{Z}+$.
- 6. (5 points) Considering the Stirling number of the second kind S(m, n), we have S(7, 4)=350, S(6, 4)=65, S(6,5)=15. What is S(8, 5)?
- 7. (15 points, 10+5) (1) Apply the minimization process to the finite state machine in the following state table. (2) What is the minimal distinguishing string for s_1 and s_5 ?

	υ		ω	
	0	1	0	1
s_1	<i>s</i> ₆	<i>s</i> ₃	0	0
s_2	S3	s_1	0	0
S3	<i>s</i> ₂	S4	0	0
<i>S</i> ₄	S7	S4	0	0
S5	<i>S</i> ₆	57	0	0
<i>S</i> ₆	S5	s_2	1	0
S7	<i>S</i> ₄	s_1	0	0