MAT 3007 Tutorial 6: Duality Theory

Kangran ZHAO

The Chinese University of Hong Kong, Shenzhen

June 24, 2025

Duality Theory

Primal			Dual		
minimize	$\mathbf{c}^T \mathbf{x}$		maximize	$\mathbf{b}^T \mathbf{y}$	
subject to	$\mathbf{a}_i^T\mathbf{x} \geq b_i$,	$i \in M_1$,		$y_i \geq 0$,	$i \in M_1$
	$\mathbf{a}_i^T\mathbf{x} \leq b_i$,	$i \in M_2$,		$y_i \leq 0$,	$i \in M_2$
	$\mathbf{a}_i^T\mathbf{x}=b_i$,	$i \in M_3$,		y_i free,	$i \in M_3$
	$x_j \geq 0$,	$j \in N_1$,		$A_i^T \mathbf{y} \leq c_j$,	$j \in N_1$
	$x_j \leq 0$,	$j \in N_2$,		$A_i^T \mathbf{y} \geq c_j$,	$j \in N_2$
	x_j free,	$j \in N_3$,		$A_j^T \mathbf{y} = c_j$	$j \in N_3$

Primal	minimize	maximize	Dual	
	$\geq b_i$	≥ 0		
Constraints	$\leq b_i$	≤ 0	Variables	
	$= b_i$	free		
	≥ 0	$\leq c_j$ $\geq c_i$		
Variables	/ariables ≤ 0		Constraints	
	free	$= c_j$		

Duality Theory

Weak Duality Theorem:

If x is feasible to the primal minimization and y is feasible to the dual maximization, then $b^T y \leq c^T x$.

Strong Duality Theorem:

If a linear program has a finite optimal solution, so does its dual, and the optimal values of the primal and dual are equal.

Optimal Conditions:

- (1) x is primal feasible,
- (2) y is dual feasible,
- (3) $b^T y = c^T x$.

Exercise 1: Solving primal LP by the dual

Use the **dual problem** to completely solve the linear optimization problem:

min
$$4x_1 + x_2 + x_3$$

s.t. $2x_1 + x_2 + 2x_3 = 4$
 $3x_1 + 3x_2 + x_3 = 3$
 $x \ge 0$

Primal	minimize	maximize	Dual	
	$\geq b_i$	≥ 0		
Constraints			Variables	
	$= b_i$	free		
	≥ 0	$\leq c_j$ $\geq c_i$		
Variables			Constraints	
	free	$= c_j$		

Make sure c is nonnegative (We are happily already in this situation), The corresponding dual problem is:

$$\max_{y} \quad 4y_1 + 3y_2$$

$$s.t. \quad \begin{bmatrix} 2 & 3 \\ 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$$

Transform to standard LP:

$$\begin{aligned} & \underset{y^{+}, y^{-}, s}{\min} & -4y_{1}^{+} - 3y_{2}^{+} + 4y_{1}^{-} + 3y_{2}^{-} \\ & s.t. & \begin{bmatrix} 2 & 3 \\ 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y_{1}^{+} - y_{1}^{-} \\ y_{2}^{+} - y_{2}^{-} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} \\ & \mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{s} \ge 0 \end{aligned}$$

Construct the initial tableau for the standard dual problem with basis $B=\{5,6,7\}$, $c_B=\{0,0,0\}$, x=(0,0,0,0,1,1,1) and A_B is identity matrix.

Table: Iteration 1

В	-4	-3	4	3	0	0	0	0
5	2	3	-2	-3	1	0	0	4
6	1	3	-1	-3	0	1	0	1
7	2 1 2	1	-2	-1	0	0	1	1

Actually this is nicely a canonical form, since we add slack variables for initialization.

For convenience, we use x_i to represent index i in the following iteration.

We bring x_1 into the basis and have x_7 exit the basis, the new tableau is:

Table: Iteration 2

В	0	-1	0	1	0	0	2	2
5	0	2	0	-2	1	0	-1	3
6	0	<u>5</u>	0	$-\frac{5}{2}$	0	1	$-\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	-1	$-\frac{1}{2}$	0	0	$\frac{1}{2}^{2}$	$\frac{1}{2}$

We bring x_2 into the basis and have x_6 exit the basis, the new tableau is:

Table: Iteration 3

В	0	0	0	0	0	<u>2</u> 5	<u>9</u> 5	$\frac{11}{5}$
5	0	0	0	0	1	$-\frac{4}{5}$	$-\frac{3}{5}$	1 <u>3</u> 5
2	0	1	0	1	0	$\frac{2}{5}$	$-\frac{1}{5}$	$\left \begin{array}{c} \frac{1}{5} \end{array}\right $
1	1	0	-1	0	0	$-\frac{1}{5}$	<u>3</u> 5	<u>2</u> 5

Now we reach the optimality. Let's find what we want.

Optimal Value: By tableau, optimal value for the standard min problem is $-\frac{11}{5}$, then optimal value of the original dual problem is $\frac{11}{5}$. By strong duality of LP, optimal value of the primal problem is $\frac{11}{5}$.

i.e. The number in the top right corner of dual tableau is just the primal optimal value.

Optimal Solution: Since we use tableau in canonical form at first. (if the primal is in standard form and $c \ge 0$, we will always do that!) The primal optimal solution is the final reduced costs corresponding to the original identity matrix part in tableau, i.e..

$$x^* = \left(0, \frac{2}{5}, \frac{9}{5}\right)$$

P.S.: The precondition $c \ge 0$ is necessary for such nice property of Optimal solution.

Exercise 2: Deriving the dual form

Consider the problem

$$\begin{array}{ll}
\text{min} & c^T x \\
s.t. & Ax \ge b
\end{array}$$

- 1. Derive the dual problem of
 - the original problem.
 - the original problem with slack variable s
 - the original problem with x replaced by x^+ and x^- .
- 2. Show that these three dual problems are equal.

(P1) min
$$c^Tx$$

 $s.t.$ $Ax \ge b$ (D1) max b^Ty
 $s.t.$ $A^Ty = c$
 $y \ge 0$
(P2) min $c^Tx + 0^Ts$
 $s.t.$ $Ax - s = b$
 $s \ge 0$ (D2) max b^Ty
 $s \ge 0$
 $s.t.$ $A^Ty = c$
 $-I^Ty < 0$

(P3) min
$$c^{T}x^{+} - c^{T}x^{-}$$

s.t. $Ax^{+} - Ax^{-} \ge b$
 $x^{+}, x^{-} \ge 0$ (D3)

Exercise 3 - Strong Duality and Optimality Conditions

Let A be a symmetric square matrix. Consider the linear programming problem:

min
$$\mathbf{c}^T \mathbf{x}$$

 $s.t.$ $A\mathbf{x} \ge \mathbf{c}$
 $\mathbf{x} \ge \mathbf{0}$ (1)

Prove that if x^* satisfies $Ax^* = c$ and $x^* \ge 0$, then x^* is an optimal solution.

x > 0

Primal:

$$\begin{array}{ll}
\min & \mathbf{c}^T \mathbf{x} \\
s.t. & A\mathbf{x} \ge \mathbf{c}
\end{array} \tag{2}$$

Dual:

$$\begin{array}{ll}
\text{max} & \mathbf{c}^{\mathsf{T}} \mathbf{y} \\
s.t. & A^{\mathsf{T}} \mathbf{y} \leq \mathbf{c} \\
& \mathbf{y} \geq \mathbf{0}
\end{array} \tag{3}$$

For x^* s.t. $Ax^* = c$ and $x^* \ge 0$, x^* is both primal and dual feasible, and both have the same objective value.

Therefore, x^* is optimal solution to both. Q.E.D.

Simple Review for Mid-term Exam

What we have learned

- Modeling
- Linear Programming (LP)
 - Definition of Standard form, Basic solution, Feasible solution, Basic feasible solution
 - Techniques for transformation to a standard LP
 - Solve LP graphically
 - Solve LP algorithmically: Simplex method
 - Duality Theorem and its application