Rajalakshmi Engineering College

Name: Karthik Sah E

Email: 241501080@rajalakshmi.edu.in

Roll no: 241501080 Phone: 8610689556

Branch: REC

Department: I AI & ML FA

Batch: 2028

Degree: B.E - AI & ML

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are required to implement basic operations on a Binary Search Tree (BST), like insertion and searching.

Insertion: Given a list of integers, construct a Binary Search Tree by repeatedly inserting each integer into the tree according to the rules of a BST.

Searching: Given an integer, search for its presence in the constructed Binary Search Tree. Print whether the integer is found or not.

Write a program to calculate this efficiently.

Input Format

The first line of input consists of an integer n, representing the number of nodes

in the binary search tree.

The second line consists of the values of the nodes, separated by space as integers.

The third line consists of an integer representing, the value that is to be searched.

Output Format

The output prints, "Value <value> is found in the tree." if the given value is present, otherwise it prints: "Value <value> is not found in the tree."

Refer to the sample output for formatting specifications.

```
Sample Test Case
Input: 7
8 3 10 1 6 14 23
Output: Value 6 is found in the tree.
Answer
// You are using GCC
struct Node* insertNode(struct Node* root, int value) {
  //Type your code here
if (root == NULL) {
    return createNode(value);
  if (value < root->data) {
    root->left = insertNode(root->left, value);
  } else if (value > root->data) {
    root->right = insertNode(root->right, value);
  return root;
struct Node* searchNode(struct Node* root, int value) {
//Type your code here
  if (root == NULL || root->data == value) {
```

```
return root;
if (val
                                                                                    24,150,1080
                                                        241501080
       if (value < root->data) {
return searchNode()
} else (
          return searchNode(root->left, value);
       } else {
          return searchNode(root->right, value);
       }
     }
     Status: Correct
                                                                            Marks: 10/10
                                                                                    241501080
24/50/080
                            24,150,1080
                                                        24/50/080
```

241501080

241501080

24,150,1080

24,150,1080

241501080

247507080

24,150,1080

24,150,1080