Vous pouvez rendre les exercices suivants : 2b, 4a, 5a, 8b.

1. Soient E et F deux ensembles et A(x,y) des assertions indexées par $(x,y) \in E \times F$. Il est clair (pensez-y un instant) que

$$[\forall x \in E, \forall y \in F, A(x,y)] \Leftrightarrow [\forall y \in F, \forall x \in E, A(x,y)],$$
$$[\exists x \in E, \exists y \in F, A(x,y)] \Leftrightarrow [\exists y \in F, \exists x \in E, A(x,y)].$$

Le but de cet exercice est de vérifier qu'il n'est cependant pas toujours possible d'interchanger des quantificateurs.

a) Montrer que $[\exists x \in E, \forall y \in F, A(x,y)] \Rightarrow [\forall y \in F, \exists x \in E, A(x,y)].$

Solution: La première assertion affirme l'existence d'un élément $x^* \in E$ tel que $A(x^*,y)$ soit vraie pour tout $y \in F$. Par conséquent, si on se donne $y \in F$ arbitraire, alors on sait que $A(x^*,y)$ est vraie. En particulier, l'assertion $\exists x \in E, A(x,y)$ est vraie. Cela établit la seconde assertion.

b) Montrer par un exemple que la réciproque de l'implication précédente est fausse en général.

Solution: Étant donné deux entiers naturels x et y, notons A(x,y) l'assertion « x>y ». Alors, quel que soit $y \in \mathbb{N}$, il existe $x \in \mathbb{N}$ tel que A(x,y) soit vraie (on peut prendre, par exemple, x = y + 1). L'assertion $\forall y \in F, \exists x \in E, A(x,y)$ est donc vraie.

Par contre, il n'existe aucun $x \in \mathbb{N}$ tel que $\forall y \in \mathbb{N}, A(x,y)$ soit vraie. En effet, A(x,x) est toujours fausse. L'assertion $\exists x \in E, \forall y \in F, A(x,y)$ est donc fausse, ce qui montre que l'implication n'est pas valide en général.

2. Soit E un ensemble. L'opération différence symétrique associe à chaque paire de sous-ensembles $A, B \subset E$ l'ensemble $A \triangle B := (A \cap B^c) \cup (B \cap A^c)$. Démontrer les affirmations suivantes :

a)
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$
 b) $A \triangle B = \emptyset \Leftrightarrow A = B$

b)
$$A \triangle B = \emptyset \Leftrightarrow A = B$$

Solution:

a) Par définition,

$$x \in A \triangle B \iff [(x \in A) \land (x \notin B)] \lor [(x \notin A) \land (x \in B)].$$

On rappelle les deux propriétés suivantes : quelles que soient les assertions A', B', C',

$$(A' \wedge B') \vee C' = (A' \vee C') \wedge (B' \vee C') \quad \text{ et } \quad (A' \wedge B') \wedge C' = A' \wedge (B' \wedge C') = A' \wedge B' \wedge C'.$$

On en déduit que $x \in A \triangle B$ est équivalent à

$$\left[(x \in A) \lor (x \notin A)\right] \land \left[(x \in A) \lor (x \in B)\right] \land \left[(x \notin B) \lor (x \notin A)\right] \land \left[(x \notin B) \lor (x \in B)\right].$$

À présent, on a d'une part que les assertions $(x \in A) \lor (x \notin A)$ et $(x \notin B) \lor (x \in B)$ sont toujours vraies. D'autre part, $[(x \in A) \lor (x \in B)] \Leftrightarrow x \in A \cup B$ et

On conclut finalement que

$$x \in A \triangle B \quad \Leftrightarrow \quad (x \in A \cup B) \land (x \notin A \cap B) \quad \Leftrightarrow \quad x \in (A \cup B) \setminus (A \cap B).$$

b) On procède par double implication.

3. Trouver une collection infinie A_1, A_2, \ldots de sous-ensembles de \mathbb{N} telle que (i) chaque A_i contienne une infinité d'éléments et (ii) chaque entier appartienne à exactement un des ensembles A_i .

Solution: Une solution possible est de partir de $\mathbb N$ et de mettre 1 élément sur 2 (disons, les nombres pairs) dans A_1 . On part alors de ce qui reste (les nombres impairs) et on place 1 élément sur 2 dans A_2 ; ensuite, on place 1 élément sur 2 de ce qui reste dans A_3 , etc. Ci-dessous, nous décrivons cette construction de manière plus précise.

À tout sous-ensemble $B \coloneqq \{b_0, b_1, b_2, \dots\} \subset \mathbb{N}$ contenant une infinité d'éléments et tel que $b_0 < b_1 < b_2 < \dots$, on associe les sous-ensembles $B' \coloneqq \{b_{2k} \mid k \in \mathbb{N}\} = \{b_0, b_2, b_4, b_6, \dots\}$ et $B'' \coloneqq \{b_{2k+1} \mid k \in \mathbb{N}\} = \{b_1, b_3, b_5, b_7, \dots\}$.

On peut alors poser $A_1 := \mathbb{N}'$ et $R_1 := \mathbb{N}''$ et, pour tout $k \geqslant 1$, $A_{k+1} := R'_k$ et $R_{k+1} := R''_k$.

- 4. Soient $f: E \to F$ et $g: F \to G$. Démontrer les affirmations suivantes :
 - a) Si f et g sont injectives, alors $g \circ f$ est injective.
 - b) Si f et g sont surjectives, alors $g \circ f$ est surjective.
 - c) Si f et g sont bijectives, alors $g \circ f$ est bijective.

Solution:

- a) Soit $x, x' \in E$ tels que $x \neq x'$ et soit $y \coloneqq f(x), y' \coloneqq f(x'), z \coloneqq g(y)$ et $z' \coloneqq g(y')$. f étant injective, $y \neq y'$. Par conséquent, g étant également injective, $z \neq z'$, c'est-à-dire $g \circ f(x) \neq g \circ f(x')$.
- b) Soit $z \in G$. g étant surjective, il existe $y \in F$ tel que z = g(y). f étant également surjective, il existe $x \in E$ tel que y = f(x). On a donc $z = g \circ f(x)$.
- c) Suit immédiatement de a et b.
- 5. Soient $f: E \to F$ et $g: F \to G$.
 - a) Supposons $g \circ f$ injective. f est-elle injective? g est-elle injective?

Solution: Montrons tout d'abord que f est injective. On procède par contraposition. Supposons f non injective. Dans ce cas, il existe $x, x' \in E$ tels que $x \neq x'$ et f(x) = f(x'). On a donc $g \circ f(x) = g(f(x)) = g(f(x')) = g \circ f(x')$, ce qui montre que $g \circ f$ n'est pas injective. Par contre, le contre-exemple suivant montre que $g \circ f$ peut être injective sans que g le soit :

b) Supposons $g \circ f$ surjective. f est-elle surjective? g est-elle surjective?

Solution: Montrons tout d'abord que g est surjective. Soit $z \in G$. $g \circ f$ étant surjective, il existe $x \in E$ tel que $g \circ f(x) = z$. Soit $y \coloneqq f(x)$. Alors, $y \in F$ et g(y) = z.

Par contre, le même contre-exemple qu'au point a montre que $g\circ f$ peut être surjective sans que f le soit.

c) Supposons $g \circ f$ bijective. f et g sont-elle bijectives?

Solution: Dans le contre-exemple du point a, $g \circ f$ est bijective, mais ni f, ni g ne sont bijectives (f n'est pas surjective et g n'est pas injective).

À chaque fois, prouver le résultat si la réponse est affirmative, sinon donner un contre-exemple.

- 6. Les fonctions suivantes sont-elles bien définies? Lorsque c'est le cas, dire si la fonction est injective, surjective, bijective.

- a) $f_1 \colon \mathbb{N} \to \mathbb{N}$ b) $f_2 \colon \mathbb{R} \to \mathbb{R}$ c) $f_3 \colon \mathbb{N} \to \{-1, 1\}$ d) $f_4 \colon [-1, 0] \to [-1, 0]$ $n \mapsto n + 1$ $x \mapsto 2x$ $n \mapsto (-1)^n$ $x \mapsto x^2$
- e) $f_5 \colon \mathbb{R}^* \to \mathbb{R}^*$ f) $f_6 \colon \mathbb{N} \setminus \{0, 1\} \to \mathbb{N}$ $x\mapsto \frac{1}{-}$

 $n \mapsto$ le plus petit nombre premier divisant n

g) $f_7 \colon \mathscr{P}(E) \to \{0,1\}^E$, où E est un ensemble et χ_A est la fonction caractéristique de A $A \mapsto \chi_A$

Solution:

- a) f_1 est bien définie, injective $(f_1(x) = f_1(y) \Leftrightarrow x+1 = y+1 \Leftrightarrow x = y)$, mais pas surjective $(\forall x \in \mathbb{N}, f(x) = x + 1 \neq 0)$.
- b) f_2 est bien définie, injective $(f_2(x) = f_2(y) \Leftrightarrow 2x = 2y \Leftrightarrow x = y)$, surjective $(\forall y \in x)$ \mathbb{R} , $f_2(y/2) = y$) et donc bijective.
- c) f_3 est bien définie, surjective $(f_3(0) = 1, f_3(1) = -1)$, mais pas injective $(f_3(0) = f_3(2))$.
- d) f_4 n'est pas bien définie (par exemple, $f_4(-1) \notin [-1, 0]$).
- e) f_5 est bien définie, injective $(f_5(x) = f_5(y) \Leftrightarrow 1/x = 1/y \Leftrightarrow x = y)$, surjective $(\forall y \in \mathbb{R}^*, f_5(1/y) = y)$ et donc bijective.
- f) f_6 est bien définie, mais n'est ni injective $(f_6(2) = f_6(4))$, ni surjective $(\forall x \in \mathbb{N} \setminus \{0, 1\},$ $f_6(x) \neq 4$).
- g) f_7 est bien définie. Elle est injective, car

$$f_7(A) = f_7(B) \Leftrightarrow \chi_A = \chi_B \Leftrightarrow [\forall x \in E, (x \in A \Leftrightarrow x \in B)] \Leftrightarrow A = B.$$

Elle est aussi surjective : soit $\chi \in \{0,1\}^E$ et posons $A := \{x \in E \mid \chi(x) = 1\}$. Alors,

$$\chi_A(x) = 1 \iff x \in A \iff \chi(x) = 1,$$

ce qui montre que $f_7(A) = \chi$. f_7 est donc également bijective.

- 7. Soit $f: E \to F$ une fonction bijective et f^{-1} sa réciproque. Démontrer les affirmations suivantes :
 - a) $f^{-1} \circ f = \mathbb{I}_E$ et $f \circ f^{-1} = \mathbb{I}_E$.

Solution: Soit $x \in E$. Alors, $f^{-1} \circ f(x) = f^{-1}(f(x)) = x$, puisque x est la préimage de f(x). Ceci montre la première affirmation.

Pour la seconde, soit $y \in F$ et $x := f^{-1}(y)$. Alors, $f \circ f^{-1}(y) = f(f^{-1}(y)) = f(x) = y$, puisque y est l'image de x.

b) Si $q: F \to E$ est telle que $q \circ f = \mathbb{I}_E$ ou $f \circ q = \mathbb{I}_F$, alors $q = f^{-1}$.

Solution: Soit $y \in F$ et $x := f^{-1}(y)$.

Supposons tout d'abord que $g \circ f = \mathbb{I}_E$. Dans ce cas, $g(y) = g(f(x)) = g \circ f(x) = x = g(x)$ $f^{-1}(y)$.

Supposons à présent que $f \circ g = \mathbb{I}_F$. Dans ce cas, $f^{-1}(y) = f^{-1}(f \circ g(y)) = f^{-1} \circ f \circ g(y) = f^{-1}(f \circ g(y)) =$ $f^{-1} \circ f(q(y)) = q(y).$

c) f^{-1} est bijective et $(f^{-1})^{-1} = f$.

Solution: Montrons tous d'abord que f^{-1} est bijective :

Injectivité: Soit $y, y' \in F$. Alors, $f^{-1}(y) = f^{-1}(y') \Rightarrow f(f^{-1}(y)) = f(f^{-1}(y')) \Rightarrow y = y'$, puisque $f \circ f^{-1} = \mathbb{I}_F$ par le point a.

Surjectivité : Soit $x \in E$ et y := f(x). Alors, $f^{-1}(y) = f^{-1}(f(x)) = x$, puisque $f^{-1} \circ f = \mathbb{I}_E$ par le point a.

Finalement, puisque $f: E \to F$ satisfait $f \circ f^{-1} = \mathbb{I}_F$, il suit du point b que $f = (f^{-1})^{-1}$.

d) Si $g: F \to G$ est bijective, alors $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Solution: Comme $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ f = \mathbb{I}_E$, la conclusion suit de b.

- 8. Soit $f: E \to F$ une fonction.
 - a) Soit $B \subset F$. Dans le cas où f est bijective, montrer que l'image réciproque $f^{-1}(B)$ de B est égale à l'image directe de B par la fonction inverse f^{-1} .

Solution: On doit montrer que $\{x \in E \mid f(x) \in B\} = \{f^{-1}(y) \mid y \in B\}$. Or,

$$x_* \in \{x \in E \mid f(x) \in B\} \iff f(x_*) \in B$$

$$\Leftrightarrow \exists y \in B, f(x_*) = y$$

$$\Leftrightarrow \exists y \in B, x_* = f^{-1}(y) \qquad \text{(puisque f est bijective)}$$

$$\Leftrightarrow x_* \in \{f^{-1}(y) \mid y \in B\}.$$

b) Montrer que, pour tout $A, B \subset F$,

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \quad \text{ et } \quad f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Solution: Soit $x \in E$. Alors,

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B \iff \left(f(x) \in A\right) \lor \left(f(x) \in B\right)$$
$$\iff \left(x \in f^{-1}(A)\right) \lor \left(x \in f^{-1}(B)\right) \iff x \in f^{-1}(A) \cup f^{-1}(B).$$

De façon similaire,

$$x \in f^{-1}(A \cap B) \Leftrightarrow f(x) \in A \cap B \Leftrightarrow (f(x) \in A) \land (f(x) \in B)$$
$$\Leftrightarrow (x \in f^{-1}(A)) \land (x \in f^{-1}(B)) \Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B).$$

c) Montrer que, pour tout $A, B \subset E$,

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

Solution: Soit $y \in F$. Alors,

$$y \in f(A \cup B) \iff \exists x \in A \cup B, y = f(x) \iff (\exists x \in A, y = f(x)) \lor (\exists x \in B, y = f(x))$$
$$\iff (y \in f(A)) \lor (y \in f(B)) \iff y \in f(A) \cup f(B).$$

Pour la seconde affirmation,

$$y \in f(A \cap B) \Leftrightarrow \exists x \in A \cap B, y = f(x) \Rightarrow (\exists x \in A, y = f(x)) \land (\exists x \in B, y = f(x))$$

 $\Leftrightarrow (y \in f(A)) \land (y \in f(B)) \Leftrightarrow y \in f(A) \cap f(B).$

(Observez que l'implication ne peut pas être remplacée par une équivalence en général!)

d) Montrer qu'en général l'assertion $f(A \cap B) = f(A) \cap f(B)$ est fausse, mais qu'elle est toujours vraie lorsque f est injective.

Solution: Contre-exemple:

Supposons à présent f injective. Soit $y \in f(A) \cap f(B)$. Il existe donc $x \in A$ et $x' \in B$ tel que f(x) = f(x') = y. f étant injective, on a nécessairement x = x'. Donc $x \in A \cap B$, ce qui montre que $y \in f(A \cap B)$. On a donc $f(A) \cap f(B) \subset f(A \cap B)$. La conclusion suit puisque $f(A) \cap f(B) \supset f(A \cap B)$ par le point précédent.

9. Soit $f: E \to F$. Montrer que $E = \bigcup_{y \in F} f^{-1}(\{y\})$.

Solution: On procède par double inclusion.

D'une part, pour tout $y \in F$, $f^{-1}(\{y\}) \subset E$. Par conséquent, $\bigcup_{y \in F} f^{-1}(\{y\}) \subset E$.

D'autre part, pour tout $x \in E$, il existe $z \in F$ tel que $x \in f^{-1}(\{z\})$: il suffit de prendre z = f(x). Par conséquent, $x \in \bigcup_{y \in F} f^{-1}(\{y\})$ et donc $E \subset \bigcup_{y \in F} f^{-1}(\{y\})$.