# Deep Learning Using TensorFlow



### Dr. Ash Pahwa

Lesson 3: Neural Networks + TensorFlow

Lesson 3.2: Neural Networks Math

## **Outline**

- Neuron Functions
- Activation Functions
  - Unit Step Function
  - Sigmoid Function
  - Rectified Linear Unit Function (ReLU)
- Feed Forward Fully Connected Neural Network
- Computing the Layer Output Using TensorFlow
- Solution of XOR Problem
  - Logical XOR Gate
  - Hidden Layer Solution to XOR Problem

# Neuron Function



# Single Neuron

- Inputs:  $x_1, x_2, \dots x_m$
- $Weights: w_1, w_2, ... w_m$
- $\blacksquare$  Bias = b
- Activation Function = f(x)
- Output = y



Activation Function  

$$y = f(x_1w_1 + x_2w_2 + x_3w_3 + \dots + x_mw_m + b)$$

# Example of a Single Neuron

|   | Variables | Laptop Death                            | Weight |
|---|-----------|-----------------------------------------|--------|
| 1 | Age       | Age on years                            | 1      |
| 2 | Drops     | # of times laptop has been dropped      | 4      |
| 3 | Repairs   | # of times laptop has been repaired     | -1     |
| 4 | Spills    | # of times liquid was spilled on laptop | 3      |



# Example of a Single Neuron

|    | Α                | В   | С     | D       | Е      | F                     |
|----|------------------|-----|-------|---------|--------|-----------------------|
| 1  | Training Data    |     |       |         |        |                       |
| 2  |                  | Age | Drops | Repairs | Spills | <b>Output Functio</b> |
| 3  | 1                | 3   | 0     | 1       | 0      | 2                     |
| 4  | 2                | 1   | 0     | 0       | 0      | 1                     |
| 5  | 3                | 2   | 1     | 2       | 1      | 7                     |
| 6  | 4                | 4   | 0     | 3       | 0      | 1                     |
| 7  |                  |     |       |         |        |                       |
| 8  | Weight - Age     | 1   |       |         |        |                       |
| 9  | Weight - Drops   | 4   |       |         |        |                       |
| 10 | Weight - Repairs | -1  |       |         |        |                       |
| 11 | Weight - Spills  | 3   |       |         |        |                       |
| 12 |                  |     |       |         |        |                       |



# Example of a Single Neuron





# Activation Functions



## **Linear Function**

$$y = f(x) = x$$



# **Unit Step Function**

$$y = f(x) = 0 \text{ when } x < 0$$

• 
$$y = f(x) = 1 \text{ when } x > 0$$



### Neuron + Unit Step Activation Function



# Sigmoid Function

$$f(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$



### Neuron + Sigmoid Activation Function



# Rectified Linear Unit (ReLU) Function

- ReLU(x) = 0 when x < 0
- $ReLU(x) = x \text{ when } x \ge 0$
- \_\_\_\_\_
- $ReLU(a) = \max(0, a)$



### Neuron + ReLU Activation Function





- Activation function should have the following properties
  - It should be differential. It should not cause gradient to vanish
  - It should be simple and efficient



- Computations are time consuming and complex
- It is slow in convergence



# Most popular Activation Function

- ReLU Rectified Linear Unit
- It is simple and efficient



- Neural Network
  - with a single neuron and
  - with 'sigmoid' activation function
  - is same as
    - Linear Regression + Sigmoid Function

# Feed Forward Fully Connected Neural Network

### Feed Forward - Fully Connected Neural Network











- Any Mathematical Function can be computed using this set-up
  - Feed Forward Fully Connected Neural Network
- Deep Learning
  - A Neural Network with more than one hidden layer



- Assign random values to all the weights
- Compute the output
- Compare the output with the observed output and compute the error
- Adjust the weights using back propagation algorithm till the error is minimized

# Computing the Layer Output Using TensorFlow: Matrix Multiplication

### Feed Forward - Fully Connected Neural Network



| Layer 1      | Value |
|--------------|-------|
| $w_{11}^{1}$ | 1     |
| $w_{12}^{1}$ | 2     |
| $w_{13}^{1}$ | 3     |
| $w_{21}^{1}$ | 4     |
| $w_{22}^{1}$ | 5     |
| $w_{23}^{1}$ | 6     |
| $b_1^1$      | 7     |
| $b_2^1$      | 8     |
| $b_3^1$      | 9     |

| Layer 2      | Value |
|--------------|-------|
| $w_{11}^{2}$ | 10    |
| $w_{21}^{2}$ | 11    |
| $w_{31}^{2}$ | 12    |
| $b_{1}^{2}$  | 13    |
| 1            |       |

### Feed Forward - Fully Connected Neural Network: Layer 1



| Layer 1      | Value | Layer        |
|--------------|-------|--------------|
| $w_{11}^{1}$ | 1     | $w_{11}^2$   |
| $w_{12}^{1}$ | 2     | $w_{21}^2$   |
| $w_{13}^{1}$ | 3     | $w_{31}^{2}$ |
| $w_{21}^{1}$ | 4     | $b_1^2$      |
| $w_{22}^{1}$ | 5     |              |
| $w_{23}^{1}$ | 6     |              |
| $b_1^1$      | 7     |              |
| $b_2^1$      | 8     |              |
| $b_3^1$      | 9     |              |
|              |       |              |

| $h1 = (x1 * w_{11}^1 + x2 * w_{21}^1) + b_1^1$ |
|------------------------------------------------|
| h1 = (10 * 1 + 20 * 4) + 7 = 97                |
| outH1 = sigmoid(h1) = 1                        |

$$h2 = (x1 * w_{12}^1 + x2 * w_{22}^1) + b_2^1$$
  
 $h2 = (10 * 2 + 20 * 5) + 8 = 128$   
 $outH2 = sigmoid(h2) = 1$ 

$$h3 = (x1 * w_{13}^{1} + x2 * w_{23}^{1}) + b_{3}^{1}$$
  

$$h3 = (10 * 3 + 20 * 6) + 9 = 159$$
  

$$outH3 = sigmoid(h3) = 1$$

**Value** 

10

11

12

13

| Layer 1      | Value |
|--------------|-------|
| $w_{11}^{1}$ | 1     |
| $w_{12}^{1}$ | 2     |
| $w_{13}^{1}$ | 3     |
| $w_{21}^{1}$ | 4     |
| $w_{22}^{1}$ | 5     |
| $w_{23}^{1}$ | 6     |
| $b_1^1$      | 7     |
| $b_2^1$      | 8     |
| $b_3^1$      | 9     |
|              | 10    |
|              |       |

20

Input

Input1

Input2

| Layer 2      | Value |
|--------------|-------|
| $w_{11}^{2}$ | 10    |
| $w_{21}^{2}$ | 11    |
| $w_{31}^{2}$ | 12    |
| $b_1^2$      | 13    |
|              |       |

## Layer 1

$$h1 = (x1 * w_{11}^{1} + x2 * w_{21}^{1}) + b_{1}^{1}$$

$$h1 = (10 * 1 + 20 * 4) + 7 = 97$$

$$outH1 = sigmoid(h1) = 1$$

$$h2 = (x1 * w_{12}^{1} + x2 * w_{22}^{1}) + b_{2}^{1}$$

$$h2 = (10 * 2 + 20 * 5) + 8 = 128$$

$$outH2 = sigmoid(h2) = 1$$



 $h3 = (x1 * w_{13}^1 + x2 * w_{23}^1) + b_3^1$ h3 = (10 \* 3 + 20 \* 6) + 9 = 159outH3 = sigmoid(h3) = 1

h = X \* W + b

outH = sigmoid(h)

 $sigmoid \begin{bmatrix} 97\\128\\159 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ 

Copyright 2019 - Dr. Ash Pahwa

### TensorFlow Code: Matrix Form: Layer 1

```
inputData = tf.constant([[10, 20]])
print(inputData.shape)
(1, 2)
print(sess.run(inputData))
[[10 20]]
# Layer 1
W1 = tf.constant([[1, 2, 3], [4, 5, 6]])
print(W1.shape)
(2, 3)
print(sess.run(W1))
                                                                 h = X * W + h
[[1 2 3]
                                                               outH = sigmoid(h)
 [4 5 6]]
b1 = tf.constant([[7,8,9]])
                                                               sigmoid \begin{bmatrix} 97\\128 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}
print(b1.shape)
(1, 3)
print(sess.run(b1))
[[7 8 9]]
outputH1 = tf.matmul(inputData, W1) + b1
print(outputH1.shape)
(1, 3)
print(sess.run(outputH1))
[[ 97 128 159]]
outputH1 Activation = tf.sigmoid(tf.cast(outputH1, tf.float32))
print(outputH1 Activation.shape)
(1, 3)
print(sess.run(outputH1 Activation))
[[ 1. 1. 1.]]
```

### Feed Forward - Fully Connected Neural Network: Layer 2



| Layer 1      | Value |
|--------------|-------|
| $w_{11}^{1}$ | 1     |
| $w_{12}^{1}$ | 2     |
| $w_{13}^{1}$ | 3     |
| $w_{21}^{1}$ | 4     |
| $W_{22}^{1}$ | 5     |
| $w_{23}^{1}$ | 6     |
| $b_1^1$      | 7     |
| $b_2^1$      | 8     |
|              |       |

 $b_3^1$ 

| Layer 2      | Value |
|--------------|-------|
| $w_{11}^2$   | 10    |
| $w_{21}^{2}$ | 11    |
| $w_{31}^{2}$ | 12    |
| $b_{1}^{2}$  | 13    |
|              |       |

 $y = (outH1 * w_{11}^2 + outH2 * w_{21}^2 + outH3 * w_{31}^2) + b_1^2$ y = (1 \* 10 + 1 \* 11 + 1 \* 12) + 13 = 46outY = sigmoid(y) = 1

| Layer 1      | Value |   |
|--------------|-------|---|
| $w_{11}^{1}$ | 1     |   |
| $w_{12}^{1}$ | 2     |   |
| $w_{13}^{1}$ | 3     |   |
| $w_{21}^{1}$ | 4     |   |
| $w_{22}^{1}$ | 5     |   |
| $w_{23}^{1}$ | 6     |   |
| $b_1^1$      | 7     |   |
| $b_2^1$      | 8     |   |
| $b_3^1$      | 9     |   |
|              | 10    | \ |

Input

Input1

Input2

| Layer 2      | Value |
|--------------|-------|
| $w_{11}^{2}$ | 10    |
| $w_{21}^{2}$ | 11    |
| $w_{31}^{2}$ | 12    |
| $b_{1}^{2}$  | 13    |
|              |       |

| $y = (outH1 * w_{11}^2 + outH2 * w_{21}^2 + outH3 * w_{31}^2) + b_1^2$ |
|------------------------------------------------------------------------|
| y = (1 * 10 + 1 * 11 + 1 * 12) + 13 = 46                               |
| outY = sigmoid(y) = 1                                                  |
| 0ut1 - signou(y) - 1                                                   |

### Layer 2



### TensorFlow Code: Matrix Form: Layer 2

```
# Layer 2
W2 = tf.cast(tf.constant([[10], [11], [12]]), tf.float32)
print(W2.shape)
(3, 1)
print(sess.run(W2))
[[ 10.]
 [ 11.]
 [ 12.11
h = X * W + h
b2 = tf.cast(tf.constant([[13]]), tf.float32)
print(b2.shape)
                                                          outH = sigmoid(h)
(1, 1)
                                                        [1 \ 1 \ 1] |11| + [13] = [46]
print(sess.run(b2))
[[ 13.]]
                                                           sigmoid[46] = [1]
outputH2 = tf.matmul(outputH1 Activation, W2) + b2
print(outputH2.shape)
(1, 1)
print(sess.run(outputH2))
[[ 46.]]
outputH2 Activation = tf.sigmoid(tf.cast(outputH2, tf.float32))
print(outputH2 Activation.shape)
(1, 1)
print(sess.run(outputH2 Activation))
[[ 1.]]
```

# Solution to XOR Problem



# Logical AND Gate

| X1 | X2 | X1 AND X2<br>Gate |
|----|----|-------------------|
| 0  | 0  | 0                 |
| 1  | 0  | 0                 |
| 0  | 1  | 0                 |
| 1  | 1  | 1                 |

Linearly Separable Data





# Logical OR Gate

| X1 | X2 | X1 OR X2<br>Gate |
|----|----|------------------|
| 0  | 0  | 0                |
| 1  | 0  | 1                |
| 0  | 1  | 1                |
| 1  | 1  | 1                |

Linearly Separable Data





# Logical XOR Gate

| X1 | X2 | X1 XOR X2<br>Gate |
|----|----|-------------------|
| 0  | 0  | 0                 |
| 1  | 0  | 1                 |
| 0  | 1  | 1                 |
| 1  | 1  | 0                 |

**NOT Linearly Separable Data** 





- Neural Network concept was criticized by Marvin Minsky (1969)
  - MIT
- Publicly challenged Rosenblatt that Perceptron can learn anything
- XOR pattern cannot be learned by Perceptron
  - However it can be learned by multi-layer neural network
  - At that time technology was not advanced enough to build a multi layer neural network

## Limitations of Neural Networks Marvin Minsky (1969)

- Marvin Minsky and Seymour Papert publish their book Perceptrons, describing some of the limitations of perceptrons and neural networks.
- The interpretation the book shows that neural networks are fundamentally limited is seen as a hindrance for research into neural networks.



### Neural Network to Solve XOR Problem



| X1 | X2 | X1 XOR X2<br>Gate |  |
|----|----|-------------------|--|
| 0  | 0  | 0                 |  |
| 1  | 0  | 1                 |  |
| 0  | 1  | 1                 |  |
| 1  | 1  | 0                 |  |

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

| <b>x1</b> | <b>x2</b> | $h1: \sigma(20 * x1 + 20 * x2 - 10)$            | $h2: \sigma(-20 * x1 - 20 * x2 + 30)$         | $y: \sigma(20*h1+20*h2-30)$                           |
|-----------|-----------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| 0         | 0         | $\sigma(20*0+20*0-10) = \sigma(-10) = 0$        | $\sigma(-20*0 - 20*0 + 30) = \sigma(30) = 1$  | $\sigma(20 * 0 + 20 * 1 - 30)$<br>= $\sigma(-10) = 0$ |
| 1         | 0         | $\sigma(20 * 1 + 20 * 0 - 10) = \sigma(10) = 1$ | $\sigma(-20*1 - 20*0 + 30) = \sigma(10) = 1$  | $\sigma(20 * 1 + 20 * 1 - 30)$<br>= $\sigma(10) = 1$  |
| 0         | 1         | $\sigma(20*0+20*1-10)=\sigma(10)=1$             | $\sigma(-20*0 - 20*1 + 30) = \sigma(10) = 1$  | $\sigma(20 * 1 + 20 * 1 - 30)$<br>= $\sigma(10) = 1$  |
| 1         | 1         | $\sigma(20 * 1 + 20 * 1 - 10) = \sigma(30) = 1$ | $\sigma(-20*1 - 20*1 + 30) = \sigma(-10) = 0$ | $\sigma(20 * 1 + 20 * 0 - 30)$<br>= $\sigma(-10) = 0$ |

# Summary

- Neuron Functions
- Activation Functions
  - Unit Step Function
  - Sigmoid Function
  - Rectified Linear Unit Function (ReLU)
- Feed Forward Fully Connected Neural Network
- Computing the Layer Output Using TensorFlow
- Solution of XOR Problem
  - Logical XOR Gate
  - Hidden Layer Solution to XOR Problem