第十章 微分方与差分方程

(B) 一阶线性非齐次方程

(D) 前面三种都不是

1. 微分方程 (x+y) d $y = x \arctan\left(\frac{y}{x}\right)$ dx 是 (

(A) 可分离变量微分方程

(C) 齐次方程

2.	微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} +$	$\tan \frac{y}{x}$ 的通解是 ().	
	$(\mathbf{A})\sin\frac{y}{x} = \frac{1}{Cx}$	(B) $\sin \frac{y}{x} = x + C$	$(C) \sin \frac{x}{y} = C x$	$(D) \sin \frac{y}{x} = Cx$
3.	函数 $y = \cos x$ 是下列哪个微分方程的解 ().			
	(A) $y' + y = 0$	(B) $y' + 2y = 0$	(C) $y'' + y = 0$	$(D) y'' + y = \cos x$
4.	若函数 $y = e^{-x}$ 是方程 $y'' + ay' - 2y = 0$ 的一个解,则 a 值等于().			
	(A) 0	(B) 1	(C) −1	(D) 2
5 .	微分方程 $y'' + 4y = \cos 2x$ 的特解形式为().			
	$(A) y = A\cos 2x $			
	$\textbf{(C)} \ y = A\sin 2x + B\cos 2x$		(D) $y = x(A\sin 2x + B\cos 2x)$	
6.	若函数 $y_1=\mathrm{e}^{2x}$, $y_2=\mathrm{e}^{-x}$ 是二阶常系数齐次线性微分方程 $y''+py'+qy=0$ 的两个特解,则 p , q 的值分别等于().			
	(A) -1 , -2	(B) −1,2	(C) 1,–2	(D) 1,2
7.	微分方程 y"-2y'+	-2 <i>y</i> = 0 的通解为 ().	
	$(\mathbf{A}) \ y = \mathrm{e}^{-x} (C_1 \cos x)$	$+C_0\sin x$	(B) $y = e^x (C \cos x +$	$-\frac{1}{\pi}C\sin x$
	(C) $y = e^x(C\sin x + \cos x)$		(D) $y = e^x (C_1 \sin x - C_2 \cos x)$	
8.	微分方程 $y'' + e^x(y')$	') ² =0满足条件 y(0))=1 , y'(0)=1 的解是	:().
	(A) $y = \frac{1}{2}(e^x + 1)$	(B) $y = \frac{1}{2}(e^{-x} + 1)$	(C) $y = 2 - e^{-x}$	(D) $y = 2e^{-x} - 1$

- 9. 若函数 $y = \cos \omega x$ 是方程 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + 9y = 0$ 的解,则 ω 的值等于 ().
 - **(A)** ± 1
- **(B)** ± 2
- **(C)** ± 3
- **(D)** ± 4
- **10**. 微分方程 y'' 5y' + 6y = 0 的通解为().
 - (A) $y = C_1 e^{-2x} + C_2 e^{-3x}$
- **(B)** $y = C_1 e^{2x} C_2 e^{3x}$

(C) $y = e^{2x} - e^{3x}$

- **(D)** $y = e^{2x} + e^{3x}$
- **11.** 微分方程 $y' \sin x = y \cos x \ln y$ 且满足 $y|_{x=\frac{\pi}{2}} = e$ 的解是 _______.
- **12.** 微分方程 $y''' x^2y'' x^5 = 1$ 的通解中应含有独立常数个数为______.
- **13**. 方程 $y'' = \sin x$ 的通解为 .
- **14.** 方程 $y'' + y = x \cos 2x$ 的特解形式为 ______.
- **15.** 微分方程 *y'= x y"* 的通解为 _____.
- **16**. 方程 $y'' 2y = e^x$ 的特解形式为 .
- 17. 求微分方程 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 的通解.

参考答案: 微分方程通解为: $y = Ce^{\frac{y}{x}}$.

18. 求微分方程 $\frac{dy}{dx} - 2y = e^x + x$ 的通解.

参考答案: $y = f(x) = \sum_{n=0}^{\infty} (-1)^n (\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}})(x-1)^n$, (-1 < x < 3).

19. 求微分方程 $xy' - y = 1 + x^3$ 的通解.

参考答案: $-1 + \frac{1}{2}x^3 + Cx$.

20. 求微分方程 $(y^2 - 2x^2) dx + 2xy dy = 0$ 满足初始条件 $y|_{x=1} = 1$ 的特解.

参考答案: 所求特解为: $3xy^2-2x^3=1$.

21. 求微分方程 $y'' - 3y' + 2y = xe^{2x}$ 的通解.

参考答案: 微分方程通解为

$$Y = C_1 e^x + C_2 e^{2x} + x \left(\frac{1}{2}x - 1\right) e^{2x}$$
,

其中 C_1, C_2 为任意常数.

22. 求微分方程 $xy dx + (x^2 + 1) dy = 0$ 满足初值条件 $y \big|_{x=0} = 1$ 的特解。

参考答案: 方程的特解为
$$y(1+x^2)^{\frac{1}{2}}=1$$
, 即 $y=\frac{1}{\sqrt{1+x^2}}$.

23. 求微分方程 $(x^2 + 3y^2) dx - 2xy dy = 0$ 的通解.

参考答案:
$$x^3 = C(x^2 + y^2)$$
.

24. 求微分方程 $(y^2-6x)y'+2y=0$ 的通解.

参考答案:
$$x = \frac{1}{2}y^2 + Cy^3$$
.

25. 求微分方程 $y'' - 4y' + 4y = e^{2x}$ 的通解.

参考答案:
$$y = \left(C_1 + C_2 x + \frac{1}{2} x^2\right) e^{2x}$$
.

26. 求方程 $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{\sin x}{x}$ 的通解.

参考答案:
$$\frac{1}{x}(-\cos x + C)$$
.