CSE – 4020 – Machine Learning

Name: Priyank Kumar

Reg. No: 16BCE2031

Slot: L59 + L60

Lab Assignment - 4

Dataset 1: Diamonds

Splitting the Dataset:

```
> library(ggplot2)
> data<-diamonds
> smp_size = floor(0.999*nrow(data))
> t_ind = sample(seq_len(nrow(data)), size = smp_size)
> train = data[t_ind,]
> test = data[-t_ind,]
```

LINE GRAPH:

```
ggplot(test, aes(test$price, size="1"))+
  geom_line(aes(y=test$depth, colour="DEPTH"))+
  geom_line(aes(y=test$table, colour="TABLE"))+
  ylab("VALUE")+
  xlab("PRICE")
```


BAR GRAPH:

```
ggplot(test, aes(test$cut,fill=test$color))+
  geom_bar()+
  ylab("VALUE")+
  xlab("Cut")
```


HISTOGRAM

```
ggplot(test, aes(test$carat,fill=test$color))+
  geom_histogram()+
  ylab("VALUE")+
  xlab("Carat")
```


PIE CHART

pie(test\$price,col=rainbow(length(test\$price)))

DOT CHART

dotchart(t(test\$carat),col=c("red","blue","darkgreen"))

DOTPLOT

```
ggplot(test, aes(x=test$cut,y=test$carat,fill=test$color))+
  geom_dotplot()+
  ylab("Carat")+
  xlab("Cut")
```


STRIP CHART

stripchart(test\$price,method = "stack",main="Strip Chart for Price")

Strip Chart for Price

BOX PLOT

```
boxplot(test$price)
ggplot(test, aes(x=test$carat,y=test$price,fill=test$color))+
  geom_boxplot()+
  ylab("Carat")+
  xlab("Cut")
```


POINTS PLOT

```
ggplot(test, aes(x=test$carat,y=test$price,colour=test$cut))+
  geom_point(size=2.0)+
  ylab("Price")+
  xlab("Carat")
```


NORMAL QQ PLOT

qqnorm(test\$price)

Normal Q-Q Plot

DATASET 2: IRIS

CODE:

```
head(iris)

plot(iris$Sepal.Width,type="o",col="yellow")

title(main="Iris Sepal length")

lines(iris$Sepal.Length,type="o",col="red")

a<-c(1,2,3,4,9)

b<-c(2,7,8,10)

plot(a,type="o",col="blue",ylim=c(0,12))
```

```
lines(b,type="o",pch=22,lty=2,col="red")
g_range<-range(0,iris$Sepal.Length,iris$Sepal.Width)
plot(iris$Sepal.Length,type="o",col="red",ylim=g_range,axes=FALSE,ann=FALSE)
axis(1,at=1:50)
axis(2,las=1,at=4*0:g_range[2])
box()</pre>
```

barplot(iris\$Sepal.Length,main="Iris")
counts <- table(iris\$Sepal.Length,iris\$Sepal.Width)
barplot(counts, main="Iris Distribution by length and width",xlab="length",
col=c("darkblue","red"),legend = rownames(counts))</pre>

#histogram

hist(iris\$Sepal.Length, col = "blue", xlab = "Sepal Length", main =
"Histogram of Sepal Lenght of Iris Data")

Histogram of Sepal Lenght of Iris Data

#pie
table(iris\$Species)
pie(table(iris\$Species), main = "Pie Chart of the Iris data set Species",
 col = c("orange", "cyan", "coral"), radius = 1)

Pie Chart of the Iris data set Species

#dotchart

dotchart(iris\$Sepal.Length,labels=row.names(iris\$Sepal.Length),cex=.7,main="Iris-sepallength",)

Iris-sepallength

#MISC

plot(1,1,xlim=c(1.5,0.5),ylim=c(0,7),type="n",ann="false")

text(1:5,rep(6,5),labels=c(0:4),cex=1:15,col=1:5)

points(1:5,rep(5,5),cex=1:5,col=1:5,pch=0:4)

text((1:5)+0.4,rep(5,5),cex=0.6,(0:4))

points((1:6)*0.8+0.2,rep(1,6),cex=2,pch=(20:25))

text((1:6)*0.8+0.5,rep(1,6),cex=0.6,(20:25))

#stripchart

stripchart(iris\$Sepal.Length,xlab="index",ylab="Sepal Length")
title("iris")

IRIS Data

#SCATTEPLOT

attach(iris)

plot(Sepal.Length, Sepal.Width, main="IRIS",

xlab="SEPAL LENGTH", ylab="SEPAL WIDTH ", pch=19)

IRIS

#QQPLOT

qqnorm(iris\$Sepal.Length)

qqline(iris\$Sepal.Width)

Normal Q-Q Plot

Dataset 3 - MTCARS

LINECHART

> plot(mtcars\$mpg,type="o",col="red")

> head(mtcars)

```
mpg cyl disp hp drat wt qsec vs am gear carb 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 Mazda RX4
# 108 93 3.85 2.320 18.61

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02

Valiant 18.1 6 225 105 2.76 3.460 20.22

> plot(mtcars$mpg,type="o",col="red")

> title(main="MT cars")
 Mazda RX4 Wag
Datsun 710
                                                                                                                                                                                        4
3
3
3
                                                                                                                                                                         0
                                                                                                                                                                1
                                                                                                                                                                                                       1
2
1
                                                                                                                                                                0
                                                                                                                                                                         0
```

MT cars

- > plot(a,type="o",col="blue",ylim=c(0,12))
 > lines(b,type="o",pch=22,lty=2,col="red")


```
> g_range<-range(0,mtcars$mpg,mtcars$cyl)
> plot(mtcars$mpg,type="o",col="red",ylim=g_range,axes=FALSE,ann=FALSE)
> axis(1,at=1:50)
> axis(2,las=1,at=4*0:g_range[2])
> box()
> title(main="MTCARS",xlab="index",ylab="mpg-cyl")
```

MTCARS

> lines(mtcars\$cyl,type="o",col="blue")

MTCARS 32 28 24 20 16 12 8 4 0 3 5 7 9 11 23 29 14 17 index

```
> plot(mtcars$mpg,type="o",col="red",ylim=g_range,axes=FALSE,ann=FALSE)
> axis(1,at=1:50)
> axis(2,las=1,at=4*0:g_range[2])
> box()
> title(main="MTCARS",xlab="index",ylab="")
> lines(mtcars$cyl,type="o",col="blue")
> lines(mtcars$disp,type="o",col="green")
> legend(1,33,legend=c("mpg","cyl"),col=c("red","blue"),lty=1:2,cex=0.8)
```

MTCARS

Barplot

> barplot(mtcars\$cyl,main="cyl")


```
> counts <- table(mtcars$vs, mtcars$gear)
> barplot(counts, main="Car Distribution by Gears and VS",xlab="Number of Gears", col=c("darkblue","red"),legend = rownames(counts))
```

Car Distribution by Gears and VS


```
> counts <- table(mtcars$vs, mtcars$gear)
> barplot(counts, main="Car Distribution by Gears and VS",xlab="Number of Gears", col=c("darkblue","red"),legend = rownames(counts), beside=TRUE)
```

Car Distribution by Gears and VS

realized of ocure

Histogram

```
x <- mtcars$mpg
> h<-hist(x, breaks=10, col="red", xlab="Miles Per Gallon",
main="Histogram with Normal Curve")
> xfit<-seq(min(x),max(x),length=40)
> yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
> yfit <- yfit*diff(h$mids[1:2])*length(x)
> lines(xfit, yfit, col="blue", lwd=2)
```

Histogram with Normal Curve

- > d <- density(mtcars\$mpg)
 > plot(d, main="Kernel Density of Miles Per Gallon")
 > polygon(d, col="red", border="blue")

Kernel Density of Miles Per Gallon

Pie Chart pie(table(mtcars\$mpg))

> pie(cars,main="cars",col=rainbow(length(cars)))

cars

Dot Chart

>

Gas Milage for Car Models

Miles Per Gallon

>

Gas Milage for Car Models grouped by cylinder

Miles Per Gallon

```
plot(1,1,xlim=c(1.5,0.5),ylim=c(0,7),ty
pe="n",ann="false")
>
text(1:5,rep(6,5),labels=c(0:4),cex=1:1
5,col=1:5)
>
points(1:5,rep(5,5),cex=1:5,col=1:5,pch
=0:4)
> text((1:5)+0.4,rep(5,5),cex=0.6,
(0:4))
>
points((1:6)*0.8+0.2,rep(1,6),cex=2,pch
=(20:25))
> text((1:6)*0.8+0.5,rep(1,6),cex=0.6,
(20:25)
+ text((1:6)*0.8+0.5,rep(1,6),cex=0.6,
(20:25)
Error: unexpected symbol in:
"text((1:6)*0.8+0.5,rep(1,6),cex=0.6,
(20:25)
text"
> )
Error: unexpected ')' in ")"
> text((1:6)*0.8+0.5,rep(1,6),cex=0.6,
(20:25))
```


STRIPCHARTS

```
stripchart(mtcars$mpg,xlab="index",ylab=
"mpg")
> title("mtcars")
```

mtcars

hist(mtcars\$mpg,xlab="index",ylab
="mpg")

Histogram of mtcars\$mpg

BOXPLOT

>

Car Milage Data

SCATTERPLOT

```
> plot(wt, mpg, main="Scatterplot Example",
+ xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)
```

Scatterplot Example

Qqnorm

> qqnorm(mtcars\$cy1)

Normal Q-Q Plot

Theoretical Quantiles

> qqline(mtcars\$mpg)

Normal Q-Q Plot

Theoretical Quantiles