Übungsblatt 4 zur Linearen Algebra I

Aufgabe 9. Die Dieder-Gruppe D_4

Man stelle sich im \mathbb{R}^2 das Quadrat mit den Eckpunkten (-1,-1),(1,-1),(1,1),(-1,1) und dem Mittelpunkt M(0,0) sowie die Abbildungen $R_0,R_1,R_2,R_3,S_1,S_2,S_3,S_4$ von \mathbb{R}^2 nach \mathbb{R}^2 vor.

 R_i , i = 0, 1, 2, 3, seien die Drehungen um M um den Winkel $i \cdot 90^\circ$.

 S_1 sei die Spiegelung an der Geraden durch M und (0,-1).

 S_2 sei die Spiegelung an der Geraden durch M und (1,-1).

 S_3 sei die Spiegelung an der Geraden durch M und (1,0).

 S_4 sei die Spiegelung an der Geraden durch M und (1,1).

Bei allen acht Abbildungen wird das oben beschriebene Quadrat auf sich selbst abgebildet.

Die Menge $D_4 = \{R_0, R_1, R_2, R_3, S_1, S_2, S_3, S_4\}$ ist mit der Hintereinanderausführung o von Abbildungen als Verknüpfung eine Gruppe, bezeichnet als **Diedergruppe** D_4 (bzw. Symmetriegruppe) des Quadrats.

- a) Man erstelle die Verknüpfungstafel der D_4 und verifiziere die Gruppenaxiome.
- b) Man finde möglichst viele Untergruppen von D_4 .

Aufgabe 10. Jede Untergruppe U einer Gruppe G führt zu einer Äquivalenzrelation

Es sei G eine Gruppe mit der Verknüpfung \circ , $U \subset G$ sei eine Untergruppe von G. Auf Gwerde die Relation $y \sim x$ wie folgt definiert: $y \sim x : \Leftrightarrow y \circ x^{-1} \in U$.

- a) Man zeige, dass \sim eine Äquivalenzrelation ist.
- b) Es sei $x \in G$. Man zeige, dass für die Äquivalenzklasse [x] gilt: $[x] = \{ y \in G \mid y = u \circ x \text{ für ein } u \in U \}$
- c) Wir führen für die Menge $\{y \in G \mid y = u \circ x \text{ für ein } u \in U\}$ aus b) die plausible Kurzschreibweise $U \circ x$ ein (Nach b) gilt dann $[x] = U \circ x$). Man zeige, dass die Abbildung $f: U \to U \circ x, u \mapsto u \circ x$ bijektiv ist.

Hinweis: Zur Injektivität von f zeige man für $u_1, u_2 \in U$: $f(u_1) = f(u_2) \Rightarrow u_1 = u_2$

Ergänzende Bemerkung:

Ist U eine endliche Untergruppe von G, so haben wegen b) und c) alle Äquivalenzklassen die gleiche Anzahl n von verschiedenen Elementen; n ist nämlich die Anzahl |U| der verschiedenen Elemente von U. Nach der ergänzenden Bemerkung zur **Aufgabe 7** ist G die disjunkte Vereinigung aller existierenden verschiedenen Aquivalenzklassen; ist G endlich - sagen wir |G|=m - ist also auch die Anzahl der existierenden verschiedenen Äguivalenzklassen endlich - sagen wir diese Anzahl ist k - und folglich ist $m = k \cdot n$. |U| teile also |G| (sogenannter "Satz von LAGRANGE")!

Aufgabe 11. Die Äquivalenzrelation von Aufgabe 10 im Falle $G = (\mathbb{Z}, +)$

Sei $G=\mathbb{Z}$ mit der Verknüpfung + und für $i\in\{2,3,4,5,6,\ldots\}$ sei $U_i:=\{i\cdot z|z\in\mathbb{Z}\}.$ U_i heißt "die von i erzeugte Untergruppe von \mathbb{Z} ", denn jedes Element von U_i ist 0 oder von der Form $i+\ldots+i$ oder von der Form $(-i)+\ldots+(-i).$

- a) Bestätige zunächst kurz, dass U_i wirklich eine Untergruppe von $(\mathbb{Z},+)$ ist.
- b) Gemäß **Aufgabe 10** ist $x \sim y :\Leftrightarrow x + (-y) \in U_i$ Äquivalenzrelation auf $G = \mathbb{Z}$. Wie sehen die Äquivalenzklassen in diesem Fall explizit aus und wieviele verschiedene Äquivalenzklassen gibt es?

Hinweis: Man kann x-y := x + (-y) definieren und dann auch sagen, dass "y von x subtrahiert wird".

Aufgabe 12. Die Gruppen der Ordnung 4

Durch Erstellen der Verknüpfungstafel bestimme man alle Gruppen mit 4 Elementen. Hilfe: Man denke an die "von einem Gruppenelement a erzeugte Untergruppe $\{a^z|z\in\mathbb{Z}\}$ "(vgl. **Aufgabe 11** und den **Satz von Lagrange** (siehe **Aufgabe 10**).