

CHAPITRE 2: INTERPOLATION POLYNOMIALE ET APPROXIMATION

Approximation au sens des moindres carrés

Introduction

Historique:

• 1804: Carl Friedrich Gauss

• 1805: Adrien-Marie Legendre

• 1808: Robert Adrain

Introduction

Historique:

• 1804: Carl Friedrich Gauss

• 1805: Adrien-Marie Legendre

• 1808: Robert Adrain

Problématique: L'interpolation polynomiale

- n'est pas toujours stable en dehors des points de contrôle → Phénomène de Runge.
- coûteuse en terme de temps de calcul lorsque le nombre de points de contrôle est élevé (nuage de points).

AA2: Approximation (ou régression) polynomiale

objectif: Comparer des données expérimentales à un modèle polynomial censé décrire ces données.

Le modèle polynomial est une famille de polynômes:

Variable réelle

un ou plusieurs paramètres inconnus "les coefficients du polynôme"

Approximation (ou régression) linéaire

Soient (n+1) points $(x_i, y_i), i \in \{0, 1, \dots, n\}$, d'abscisses deux à deux distinctes. On note

$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}.$$

Approximation (ou régression) linéaire

Soient (n+1) points $(x_i, y_i), i \in \{0, 1, \dots, n\}$, d'abscisses deux à deux distinctes. On note

$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}.$$

Objectif: Trouver la droite d'équation

$$y = \underbrace{\lambda_0 + \lambda_1 x}_{P(x)}, \quad \lambda_0, \ \lambda_1 \in \mathbb{R}$$

la plus proche des points (x_i, y_i) au sens des moindres carrés ? ?

Illustration de la méthode

$$(S_1) \begin{cases} e_0 = P(x_0) - y_0 = \lambda_0 + \lambda_1 x_0 - y_0 & \mathbf{y} \\ \vdots & \vdots \\ e_i = P(x_i) - y_i = \lambda_0 + \lambda_1 x_i - y_i \\ \vdots & \vdots \\ e_n = P(x_n) - y_n = \lambda_0 + \lambda_1 x_n - y_n \end{cases}$$

résidu (ou perturbation) en (x_i, y_i)

Illustration de la méthode

$$\begin{cases} e_0 &= P(x_0) - y_0 = \lambda_0 + \lambda_1 x_0 - y_0 \\ \vdots \\ e_i &= P(x_i) - y_i = \lambda_0 + \lambda_1 x_i - y_i \\ \vdots \\ e_n &= P(x_n) - y_n = \lambda_0 + \lambda_1 x_n - y_n \end{cases}$$

$$résidu$$

(ou perturbation) en (x_i, y_i)

Le problème consiste à minimiser une fonction des résidus e_i .

Quelle est l'expression de cette fonction ? Quelle est la norme à considérer?

Notons
$$\Lambda=\begin{pmatrix}\lambda_0\\\lambda_1\end{pmatrix}$$
 et $\varepsilon=\begin{pmatrix}e_0\\\vdots\\e_i\\\vdots\\e_n\end{pmatrix}$ et considérons la fonction

où $|| \cdot ||_2$ désigne la norme euclidienne.

Ajuster les points (x_i, y_i) par une droite au sens des moindres carrés revient à minimiser la fonction F.

 $F(\Lambda) = ||\varepsilon||_2^2 = e_0^2 + \dots + e_n^2$

Trouver le vecteur Λ pour que F soit minimale

Résolution: "Méthode matricielle"

Le système (S_1) peut s'écrire matriciellement comme suit:

$$\underbrace{\begin{pmatrix} e_0 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}}_{\varepsilon} = \underbrace{\begin{pmatrix} 1 & x_0 \\ \vdots & \vdots \\ 1 & x_i \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix}}_{\Lambda} - \underbrace{\begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}}_{Y}$$

Le vecteur Λ minimisant F vérifie

$$\nabla F(\Lambda) = \begin{pmatrix} \frac{\partial F}{\partial \lambda_0}(\Lambda) \\ \frac{\partial F}{\partial \lambda_1}(\Lambda) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \qquad (\lambda_0, \lambda_1) \text{ est un point critique de } F$$

En calculant ∇F , on trouvera que

$$\nabla F(\Lambda) = 2^{t} A (A \Lambda - Y)$$

$$\Rightarrow {}^{t} A (A \Lambda - Y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow {}^{t} A A \Lambda = {}^{t} A Y.$$

D'où

$$\Lambda = ({}^t A A)^{-1} {}^t A Y$$

On peut prouver aussi que

$$\Lambda = \begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix} = \begin{pmatrix} \overline{Y} - \lambda_1 \overline{X} \\ \frac{\overline{XY} - \overline{X}\overline{Y}}{\overline{X}^2 - \overline{X}^2} \end{pmatrix},$$

$$\operatorname{avec} \overline{X} = \frac{\displaystyle\sum_{i=0}^{n} x_i}{n+1}, \quad \overline{Y} = \frac{\displaystyle\sum_{i=0}^{n} y_i}{n+1}, \quad \overline{XY} = \frac{\displaystyle\sum_{i=0}^{n} x_i y_i}{n+1} \quad \text{et} \quad \overline{X^2} = \frac{\displaystyle\sum_{i=0}^{n} x_i^2}{n+1}.$$

Exercice

Considérons le tableau de l'exercice donné dans la section Interpolation polynomiale.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
y_i	$y_0 = 2$	$y_1 = 1$	$y_2 = -1$

Trouver l'équation de la droite qui ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) au sens des moindres carrés.

Solution

Soit $P \in \mathbb{R}_1[X]$ défini par $P(x) = \lambda_0 + \lambda_1 x$ dont la courbe représentative ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) au sens des moindres carrés et A la matrice donné par

$$A = \begin{pmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Solution

Soit $P \in \mathbb{R}_1[X]$ défini par $P(x) = \lambda_0 + \lambda_1 x$ dont la courbe représentative ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) au sens des moindres carrés et A la matrice donné par

$$A = \begin{pmatrix} 1 & x_0 \\ 1 & x_1 \\ 1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

On a

$${}^{t}A A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Comme
$$({}^tAA)^{-1}=\begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$
, alors

$$\Lambda = \begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix} = ({}^t A A)^{-1} {}^t A Y$$

$$= \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{3} \\ -\frac{3}{2} \end{pmatrix}.$$

Par conséquent,

$$P(x) = \frac{2}{3} - \frac{3}{2}x.$$

Retrouvons le résultat en utilisant la formule des moyennes arithmétiques.

Comme
$$\overline{X} = 0$$
, $\overline{Y} = \frac{2}{3}$, $\overline{XY} = -1$ et $\overline{X^2} = \frac{2}{3}$, alors

$$\Lambda = \begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix} = \begin{pmatrix} \overline{Y} - \lambda_1 \overline{X} \\ \frac{\overline{XY} - \overline{X}\overline{Y}}{\overline{X^2} - \overline{X}^2} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{3}{2} \end{pmatrix}.$$

D'où le résultat.

Approximation (ou régression) polynomiale

Soient (n+1) points $(x_i, y_i), i \in \{0, 1, \dots, n\}$, d'abscisses deux à deux distinctes. On note

$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}.$$

Approximation (ou régression) polynomiale

Soient (n+1) points $(x_i, y_i), i \in \{0, 1, \dots, n\}$, d'abscisses deux à deux distinctes. On note

$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}.$$

Objectif: Déterminer l'expression du polynôme $P \in \mathbb{R}_p[X]$, défini par

$$P(X) = \lambda_0 + \lambda_1 x + \dots + \lambda_p x^p,$$

dont la courbe représentative est la plus proche des points (x_i, y_i) au sens des moindres carrés ?

Equipe AN Analyse numérique ESPRIT

$$(S_p) \begin{cases} e_0 = P(x_0) - y_0 = \lambda_0 + \lambda_1 x_0 + \dots + \lambda_p x_0^p - y_0 \\ \vdots \\ e_i = P(x_i) - y_i = \lambda_0 + \lambda_1 x_i + \dots + \lambda_p x_I^p - y_i \\ \vdots \\ e_n = P(x_n) - y_n = \lambda_0 + \lambda_1 x_n + \dots + \lambda_p x_n^p - y_n \end{cases}$$

$$(S_p) \begin{cases} e_0 = P(x_0) - y_0 = \lambda_0 + \lambda_1 x_0 + \dots + \lambda_p x_0^p - y_0 \\ \vdots \\ e_i = P(x_i) - y_i = \lambda_0 + \lambda_1 x_i + \dots + \lambda_p x_I^p - y_i \\ \vdots \\ e_n = P(x_n) - y_n = \lambda_0 + \lambda_1 x_n + \dots + \lambda_p x_n^p - y_n \end{cases}$$

Le système (S_p) peut s'écrire matriciellement comme suit:

$$\underbrace{\begin{pmatrix} e_0 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}}_{\varepsilon} = \underbrace{\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^p \\ \vdots & & & \vdots \\ 1 & x_i & x_i^2 & \cdots & x_i^p \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_i \\ \vdots \\ \lambda_p \end{pmatrix}}_{\Delta} - \underbrace{\begin{pmatrix} y_0 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{pmatrix}}_{Y}$$

En appliquant le même raisonnement de l'approximation linéaire, on aura

$$\Lambda = ({}^t A A)^{-1} {}^t A Y$$

Equipe AN Analyse numérique ESPRIT

Exercice

Dans l'exercice précédent,

- ① Déterminer le polynôme $P \in \mathbb{R}_2[X]$ qui ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) .
- 2 Que peut-on constater?

Solution

① Soit $P \in \mathbb{R}_p[X]$ défini par $P(x) = \lambda_0 + \lambda_1 x + \cdots + \lambda_p x^p$ dont la courbe représentative ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) au sens des moindres carrés et A la matrice donné par

$$A = \begin{pmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Solution

① Soit $P \in \mathbb{R}_p[X]$ défini par $P(x) = \lambda_0 + \lambda_1 x + \cdots + \lambda_p x^p$ dont la courbe représentative ajuste au mieux les points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) au sens des moindres carrés et A la matrice donné par

$$A = \begin{pmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

On a

$${}^{t}AA = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

Comme
$$({}^tAA)^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{2} & 0 \\ -1 & 0 & \frac{3}{2} \end{pmatrix}$$
, alors

$$\Lambda = \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = ({}^t A A)^{-1} {}^t A Y$$

$$= \begin{pmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{2} & 0 \\ -1 & 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -\frac{3}{2} \\ -\frac{1}{2} \end{pmatrix}.$$

Par conséquent,

$$P(x) = 1 - \frac{3}{2}x - \frac{1}{2}x^2.$$

2 Le polynôme d'approximation P trouvé est le polynôme qui interpole les points $(x_0, y_0), (x_1, y_1)$ et (x_2, y_2) .