Math 31AH: Spring 2021 Homework 2 Due 5:00pm on Friday 10/8/2021

Problem 1: A vector space? Let $\{a, b\}$ be a two-element set and let $V = \{a, b\} \times \mathbb{R}$. Define addition on V by

(a,x)+(a,y) := (a,x+y) (a,x)+(b,y) := (a,x+y) (b,x)+(b,y) := (b,x+y)

(so that a 'takes precedence over' b). Define scalar multiplication by

$$\lambda \cdot (a, x) := (a, \lambda x) \quad d\lambda \cdot (b, x) := (b, \lambda x)$$

for $\lambda \in \mathbb{R}$. Do these operations turn V into a real vector space? Prove your claim.

Problem 2: Working with vector space axioms. Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Suppose $a \in \mathbb{F}$ and $\mathbf{v} \in V$. If $a\mathbf{v} = \mathbf{0}$, prove that a = 0 or $\mathbf{v} = \mathbf{0}$.

Problem 3: Differentiable functions. Let V be the \mathbb{R} -vector space of all differentiable functions $f: \mathbb{R} \to \mathbb{R}$. Define two subsets $U, W \subseteq V$ as follows:

$$U:=\{f\in V\,:\, f(3)=0\}\qquad W:=\{f\in V\,:\, f(3)=7\}$$

Which (if either) of U or W are subspaces of V? Prove your claim.

Problem 4: Lines in the complex plane. For any real number c, define a subset $W_c \subseteq \mathbb{C}$ by

$$W_c := \{ x + ic : x \in \mathbb{R} \}$$

That is, W_c is the set of complex numbers with imaginary part equal to c. For which values of $c \in \mathbb{R}$ is W_c a **real** vector space (under multiplication by real scalars and ordinary addition)? Prove your claim.

Problem 6: Eventually zero sequences. An infinite sequence $(a_1, a_2, ...)$ of real numbers is *eventually zero* if there exists $N \in \mathbb{Z}_{\geq 0}$ such that $a_n = 0$ for all n > N.

It can be shown (and you do not have to prove) that the set V of all real sequences $(a_1, a_2, ...)$ is an \mathbb{R} -vector space with addition

$$(a_1, a_2, \dots) + (b_1, b_2, \dots) := (a_1 + b_1, a_2 + b_2, \dots)$$

and scalar multiplication

$$\lambda \cdot (a_1, a_2, \dots) := (\lambda a_1, \lambda a_2, \dots)$$

If $W \subseteq V$ is the subset of eventually zero sequences, is W a subspace of V? Prove your claim.

Problem 6: A linear system over \mathbb{R} **.** Solve the following system of linear equations over the real numbers.

$$\begin{cases} 1 \cdot x + 2 \cdot y + 3 \cdot z &= 1 \\ 4 \cdot x + 5 \cdot y + 6 \cdot z &= 1 \\ 7 \cdot x + 8 \cdot y + 9 \cdot z &= 1 \end{cases}$$

Problem 7: A linear system over \mathbb{C}. Solve the following system of linear equations over the complex numbers.

$$\begin{cases} x + iy &= 1 \\ x &+ z &= 1 \\ y - iz &= 2 \end{cases}$$

Problem 8: A linear system over \mathbb{F}_2 **.** Solve the following system of linear equations over the field \mathbb{F}_2 with two elements.

$$\begin{cases} x+y &= 1\\ x &+ z &= 1\\ y+z &= 1 \end{cases}$$

(Here the 1's on the right-hand sides are regarded as $1 \in \mathbb{F}_2 = \{0, 1\}$.)

Problem 9: (Optional; not to be handed in.) Prove that the number of solutions to any finite system of linear equations over \mathbb{F}_2 is either zero, or else a power 2^a of 2.