Restaurant Rating Adjustment on Yelp from User Review

Kenny Sung
Yin Lin
Chih-Ang Wang

ECE 18-799: Evolutionary Algorithms in Engineering Optimization Fall 2014 Course Project

Project Description

Project Description

UNDERSTANDING ONLINE STAR RATINGS:

```
本本本本 [HAS ONLY ONE REVIEW]
本本本本立 EXCELLENT
本本本立立 OK
本本本立立
本本本立立
本本立立立
本本立立立
本本立立立
本本立立立
本本立立立
本本立立立
```


Project Goals

 Adjust restaurants' star ratings by using restaurants' attributes and users' review

Background

- Related Work
 - User review visualization
 - Restaurant improvement from user reviews
- Related Techniques
 - Natural Language Processing
 - Feature Selection
 - Evolutionary Algorithm
 - Linear Regression

Application

A star rating model based on Yelp dataset, which provides a more accurate star rating to reflect the true quality of a restaurant

Application

[restaurant vector]

[review_polarity_mean,	[0.32202,
review_polarity_std,	0.22073,
review_subjectivity_mean,	0.58396,
review_subjectivity_std,	0.12571,
vote_cnt_mean,	2.96313,
vote_cnt_std,	5.78322,
likes_mean,	0.0,
likes_std,	0.0,
tips_polarity_mean,	0.29853,
tips_polarity_std, TextBlob	0.40612,
tips_subjectivity_mean,	0.39373,
tips_subjectivity_std]	0.36093]

Fitness Function

$$f(\mathbf{w}) = Error(\mathbf{w}) = \sum_{\mathbf{x} \in X} \|\mathbf{y} - \mathbf{w}^T \mathbf{x}\|^2$$

$$\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$$
Estimated Ratings

w: model (regression coefficient); individual in ES

x: training example, i.e. feature vector of a restaurant

y: ground truth rating for a restaurant

Genetic Algorithm

Representation	Real-valued vectors
Mutation	Uniform mutation
Recombination	Single arithmetic recombination
Parent Selection	Stochastic universal sampling (SUS)
Survivor Selection	Elitism
Termination condition	300 generations
Cross validation	3-folds

Experimental Setup

[Representation] (40 individuals)

$$\langle x_1, x_2, x_3, ..., x_{12} \rangle$$

 \triangleleft object variable init(-1 \sim +1)

[Mutation]
$$(p_m = 1/12)$$

 $x_i' = x_i + N(0, 5)$

[Crossover]
$$(p_c = 0.7)$$

 $< x1, ..., x_{k-1}, \alpha y_k + (1-\alpha) x_k, x_{k+1}, ..., x_n >$
 $< y1, ..., y_{k-1}, \alpha x_k + (1-\alpha) y_k, y_{k+1}, ..., y_n >$
 $\alpha = 0.5$

[Survivor Selection] 50% with elitism

Electrical & Computer ENGINEERING

[Cross Validation] (3-folds)

Results for GA

Evolutionary Programming

Representation	Real-valued vectors
Mutation	Gaussian Perturbation with self-adaption
Recombination	None
Parent Selection	Everyone breeds!
Survivor Selection	$(\mu + \mu) = (40 + 40, 40)$ by tournament
Termination condition	300 generations
Cross validation	3-folds

Experimental Setup

[Representation] (40 individuals)

[Mutation] (
$$\alpha$$
=0.2, ε =0.1)
 $\sigma_i' = \sigma_i (1 + \alpha *N(0, 1))$
 $\sigma < \varepsilon => \sigma = \varepsilon$
 $x_i' = x_i + \sigma_i' N_i(0, 1)$

[Survivor Selection] (q=10) 50% with tournament selection

[Cross Validation] (3-folds)

Results for EP

Evolutionary Strategies

Representation	Real-valued vectors
Mutation	Gaussian Perturbation with self-adaption
Recombination	Object variables: Global Discrete Mutation parameters: Global Intermediate
Parent Selection	Uniform Random
Survivor Selection	$(\mu + \lambda, \mu) = (40+300, 40)$
Termination condition	300 generations
Cross validation	3-folds

Experimental Setup

[Representation] (40 individuals)

[Mutation] (
$$\tau = 0.02$$
, $\tau' = 0.038$)
 $\sigma_i' = \sigma_i \exp(\tau N(0, 1) + \tau' N_i(0, 1))$
 $x_i' = x_i + \sigma_i' N_i(0, 1)$

[Survivor Selection]

$$(\mu + \lambda, \mu) = (40+300, 40)$$

[Cross Validation] (3-folds)

Results for ES

Overall Results

Overall Results

Rating Re-Adjustment

Conclusion and Future Work

- Conclusion
 - Converge Speed: ES > GA > EP
 - AVG(Square Error): ES < GA < EP</p>
 - 70% restaurants on Yelp need to be adjusted!
- Future Work
 - Neural network, non-linear model may provide better performance!

