MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 16th January 2018 D1 - Lecture 6

Random Attendance

1	170050029	Devansh Garg
2	170050040	Parikshit Bansal
3	170050041	Kushagra Juneja
4	170050056	Ritik Roongta
5	170050062	Amish Jain
6	170050072	Irin Ghosh
7	170050104	Aashish Waikar
8	170070022	Pranay Reddy Samala
9	170070047	Seeram Ram Prakash Sri Sai
10	170070049	Modhugu Rineeth Absent
1	170070056	Srisht Fateh Singh
12	170070057	Vaibhav Malviya
13	17D070053	Aryan Lall

Recall: LU Decomposition

If A is an $n \times n$ matrix, with no row interchanges needed in the Gaussian elimination of A, then A = LU, where

- *U* is an upper triangular matrix, which is obtained by forward elimination, with non-zero diagonal entries as pivots.
- *L* is a lower triangular with diagonal entries 1 and with the multipliers needed in the elimination algorithm below the diagonals.

Q: What happens if row exchanges are required?

• If A is an $n \times n$ matrix, then there is a permutation matrix P such that PA = LU, where L and U are as above.

Q: What happens when *A* is an $m \times n$ matrix?

Echelon Form

Q: What happens when *A* is not a square matrix?

Example: Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. By elimination, we see:

$$A \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & -2 \end{pmatrix} \xrightarrow{R_3 - (-1)R_2} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U.$$

Thus
$$A = LU$$
, where $L = E_{21}(2)E_{31}(3)E_{32}(-1) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix}$.

Q: What are the pivots of A?

Echelon Form

If *A* is $m \times n$, we can find *P*, *L* and *U* as before. In this case, *L* and *P* will be $m \times m$ and *U* will be $m \times n$.

U has the following properties:

- 1. Pivots are the 1st nonzero entries in their rows.
- 2. Entries below pivots are zero, by elimination.
- 3. Each pivot lies to the right of the pivot in the row above.
- 4. Zero rows are at the bottom of the matrix.

U is called an echelon form of A.

Possible 2×2 echelon forms: Let \bullet = pivot entry.

$$\begin{pmatrix} \bullet & * \\ 0 & \bullet \end{pmatrix}$$
, $\begin{pmatrix} \bullet & * \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & \bullet \\ 0 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Row Reduced Form

To obtain the row reduced form *R* of a matrix *A*:

- 1) Get the echelon form *U*. 2) Make the pivots 1.
- 3) Make the entries above the pivots 0.

Ex: Find all possible 2×2 row reduced forms.

Example. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Then $U = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Divide by pivots: $R_2/2$ gives $\begin{pmatrix} \mathbf{1} & 2 & 3 & 5 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

By
$$R_1 = R_1 - 3R_2$$
,

Row reduced form of A:
$$R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

U and *R* are used to solve Ax = 0 and Ax = b.

Null Space: Solution of Ax = 0

Let *A* be $m \times n$. The Null Space of *A*, denoted N(A), is the set of all vectors x in \mathbb{R}^n such that Ax = 0.

Example 1:
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Are the following in $N(A)$?

$$x = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
? $y = \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$? $z = \begin{pmatrix} -5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$?

Check that the following vectors are in N(A):

$$x + y = \begin{pmatrix} -4 & 1 & -1 & 1 \end{pmatrix}^T$$
, $-3 \cdot x = \begin{pmatrix} 6 & -3 & 0 & 0 \end{pmatrix}^T$.

Linear Combinations in N(A)

Remark: Let *A* be an $m \times n$ matrix, u, v be real numbers.

- The null space of A, N(A) contains vectors from \mathbb{R}^n ,
- If x, y are in N(A), i.e., Ax = 0 and Ay = 0, then

$$A(ux + vy) = u(Ax) + v(Ay) = 0$$
, i.e., $ux + vy$ is in $N(A)$.

i.e., a linear combination of vectors in N(A) is also in N(A).

Thus N(A) is *closed under* linear combinations.

8 / 13

Finding N(A)

Key Point: Ax = 0 has the same solutions as Ux = 0, which has the same solutions as Rx = 0, i.e.,

$$N(A) = N(U) = N(R)$$
.

Reason: If *A* is $m \times n$, and *Q* is an invertible $m \times m$ matrix, then N(A) = N(QA). (Verify this)!

Example 2:

For
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
, we have $Rx = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix}$.

Rx = 0 gives t + 2u + 2w = 0 and v + w = 0. i.e., t = -2u - 2w and v = -w.

Null Space: Solution of Ax = 0

Rx = 0 gives t = -2u - 2w and v = -w,

t and v are dependent on the values of u and w.

u and *w* are *free* and *independent*, i.e., we can choose any value for these two variables.

Special solutions:

$$u = 1$$
 and $w = 0$, gives $x = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T$.
 $u = 0$ and $w = 1$, gives $x = \begin{pmatrix} -2 & 0 & -1 & 1 \end{pmatrix}^T$.

The null space contains:

$$x = \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} -2u - 2w \\ u \\ -w \\ w \end{pmatrix} = u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix},$$

i.e., all possible linear combinations of the special solutions.

10 / 13

Rank of A

Ax = 0 always has a solution: the trivial one, i.e., x = 0.

Main Q1: When does Ax = 0 have a non-zero solution?

A: When there is at least one free variable, i.e., not every column of *R* contains a pivot.

To keep track of this, we define:

rank(A) = number of columns containing pivots in R.

If A is $m \times n$ and rank(A) = r, then

- $\operatorname{rank}(A) \leq \min\{m, n\}$.
- no. of dependent variables = r.
- no. of free variables = n r.
- Ax = 0 has only the 0 solution $\Leftrightarrow r = n$.
- $m < n \Rightarrow Ax = 0$ has non-zero solutions.

True/False: If $m \ge n$, then Ax = 0 has only the 0 solution.

Rank of A

rank(A) = number of columns containing pivots in R.

= number of dependent variables in the system Ax = 0.

Example:
$$R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 when $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$.

The number of columns containing pivots in R is 2. So, rank(A) = 2. R contains a 2 × 2 identity matrix, namely the rows and columns corresponding to the pivots.

This is the row reduced form of the corresponding submatrix $\begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix}$ of A, which is invertible, since it has 2 pivots.

Thus, $rank(A) = r \Rightarrow A$ has an $r \times r$ invertible submatrix.

Is the converse is true?

Reading Slide - Finding N(A) = N(U) = N(R)

Let *A* be $m \times n$. To solve Ax = 0, find *R* and solve Rx = 0.

- 1. Find free (independent) and pivot (dependent) variables: pivot variables: columns in R with pivots ($\leftrightarrow t$ and v). free variables: columns in R without pivots ($\leftrightarrow u$ and w).
- 2. No free variables, i.e., $rank(A) = n \Rightarrow N(A) = 0$.
- 3a. If rank(A) < n, obtain a special solution:

Set one free variable = 1, the other free variables = 0.

- Solve Rx = 0 to obtain values of pivot variables.
- 3b. Find special solutions for each free variable.
- N(A) = space of linear combinations of special solutions.
- This information is stored in a compact form in:

Null Space Matrix: Special solutions as columns.