Package 'CoDaSeq'

August 19, 2016

Type Package

Title Compositional Data Analysis of High Throughput Sequencing
Version 0.99.1
Date 2016-05-21
Author Greg Gloor, Wallace Chan
Maintainer Greg Gloor <ggloor@uwo.ca></ggloor@uwo.ca>
Depends ALDEx2
Description A set of common functions for the analysis of high throughput sequencing count data.
License file LICENSE
NeedsCompilation no
CodaSeq.clr 1 codaSeq.filter 2 codaSeq.outlier 3 codaSeq.propr.aldex.phi 4 codaSeq.rarefy 5 Index
codaSeq.clr Center Log-Ratio Function.
Description Returns a matrix of center log-ratio transformed data with samples by row. Equivalent to $\log(x/gx)$ for every value where gx is the geometric mean of the vector X.
Usage

codaSeq.clr <- function(x, samples.by.row=TRUE)</pre>

2 codaSeq.filter

Arguments

```
x A matrix or dataframe with samples by rows or columns.samples.by.row TRUE if samples are by row, FALSE if samples are by column.
```

Details

Natural log is used for biplots and other exploratory analyses.

Value

returns a matrix of clr tranformed values with samples in the rows and variables in columns

Author(s)

Greg Gloor, Jean Macklaim, Wallace Chan

References

Please use the citation given by citation(package="CoDaSeq")

See Also

```
codaSeq.filter, codaSeq.outlier, codaSeq.rarefy, codaSeq.propr.aldex.phi
```

codaSeq.filter	Filter compositional dataset for 0 values and abundance.

Description

Returns a reduced able of counts where the samples must contain a minimum number of reads, and OTUs must be found with a minimum abundance in all remaining samples.

Usage

```
codaSeq.filter <- function(x, y=tax.vector, min.reads=5000, min.prop=0.001, max.prop=0.025,
    min.occurrence=0, samples.by.row=TRUE)</pre>
```

Arguments

X	A matrix or dataframe containing a count table.
min.reads	The minimum reads per sample. Default=5000.
min.prop	The minimum proportional abundance of a read in any sample. Default=0.001.
max.prop	The maximum proportional abundance of a read in any sample. Default=0.025.
min.fraction	The minimum sample proportion of non-0 reads for each variable.
sample.by.row	True if rows contain samples, false if rows contain variables.

Details

Filters min/max.prop first, min.fraction second, min/max.prop third. Requires numeric data only.

codaSeq.outlier 3

Value

Returns a dataframe with the following information:

data.0

data.1

data.2 Returns a reduced vector with filtered samples by rows.

Author(s)

Greg Gloor, Jean Macklai, Wallace Chan

References

Please use the citation given by citation(package="CoDaSeq")

See Also

codaSeq.clr, codaSeq.outlier, codaSeq.rarefy, codaSeq.propr.aldex.phi

codaSeq.outlier

Identifying sample Outliers.

Description

Returns a list of proportional contribution to group variance, sample names that are outliers, and sample names that are not outliers.

Usage

```
codaSeq.outlier \leftarrow function(x, plot.me=TRUE, col=rgb(1,0,0,0.3))
```

Arguments

x A matrix or data frame with clr transformed values, with samples by row.

plot.me A logical value determining if a histogram should be plotted of the variance

contribution per sample.

col RGB values for your selection of colour.

Details

Samples must be grouped. This approach makes no sense across groups. If you do not know if you have natural groups, ignore this step and exam your data by PCA. Outliers are defined as those contributing greater than the median plus twice the interquartile range of the sample variance to the total.

Value

Returns list

sample.var Proportional variance contributions for each sample.

bad Rownames of outlier samples.
good Rownames of non-outlier samples.

Author(s)

Greg Gloor, Jean Macklai, Wallace Chan

References

Please use the citation given by citation(package=CoDaSeq)

See Also

```
codaSeq.clr, codaSeq.filter, codaSeq.rarefy, codaSeq.propr.aldex.phi
```

```
codaSeq.propr.aldex.phi
```

Expected Value of Phi From Dirichlet Log-Ratio Distribution

Description

Returns data frame of the lower-triangle of symmetrical phi metric, where the value of phi is the expected value of a number of Dirichlet Monte-Carlo replicates of the data. This reduces the problem of 0-count and low-count features being highly variable because their values range wildly and so the expected value is always large.

Usage

```
codaSeq.propr.aldex.phi <- function(aldex.clr)</pre>
```

Details

Requires aldex.clr function from ALDEx2 Package. Param aldex.clr is an S3 object from the aldex.clr function. We ignore all the other measures that are used for trouble-shooting phi. The sma.df function in particular is very time and memory intensive

Value

sym.phi Calculated sum of phi values through all DIR MC instances.

It Indice of correct size.It.int Indice of correct size.sma.df Dataframe to hold info.

sma.df\$phi Dataframe to hold the lower triangle because the matrix is symmetrical

Author(s)

Greg Gloor, Jean Macklaim, Wallace Chan

References

Please use the citation given by citation(package="CoDaSeq")

See Also

```
codaSeq.clr, codaSeq.filter, codaSeq.rarefy, codaSeq.outlier,
```

codaSeq.rarefy 5

codaSeq.rarefy	Subsample dataset without replacement.	

Description

Returns a table of counts where samples have been sampled without replacement. This is included for compatibility, but in general is a bad idea, since it results in a loss of information, and distorts the underlying data somewhat.

Usage

```
codaSeq.rarefy <- function(x, n=1000, samples.by.row=TRUE)</pre>
```

Arguments

x A matrix or dataframe containing a count table.

n The desired target number of reads per sample. Default=1000.

sample.by.row True if rows contain samples, false if rows contain OTUs.

Value

Returns a matrix in the same orientation as the original with counts per OTU reduced to the common sampling depth. This is a constant sum operation.

Author(s)

Greg Gloor, Jean Macklaim, Wallace Chan

References

Please use the citation given by citation(package="CoDaSeq")

See Also

codaSeq.clr, codaSeq.outlier, codaSeq.rarefy, codaSeq.propr.aldex.phi

Index

```
codaSeq.clr, 1, 3-5
codaSeq.filter, 2, 2, 4
codaSeq.outlier, 2, 3, 3, 4, 5
codaSeq.propr.aldex.phi, 2-4, 4, 5
codaSeq.rarefy, 2-5, 5
```