

Fundamentos de Cálculo

Segunda Práctica Calificada - Parte II Semestre Académico 2020 - 1

Horario: Todos.

Elaborada por todos los profesores.

Parte II: Entrega de Soluciones Desarrolladas

- 1. Halle la regla de correspondencia y esboce la gráfica de la función f que cumple las condiciones siguientes: (2 puntos).
 - f es par.
 - $Dom(f) = [-4, -2] \cup [-1, 1] \cup [2, 4], \quad Ran(f) = [0, e].$
 - Para $x \in [-4, -2]$: $f(x) = b \log_2(-x)$ donde b es una constante real.
 - Para $x \in [0,1]$: $f(x) = e^x$.
- 2. Sea la función f cuya regla de correspondencia está dada por

$$f(x) = \begin{cases} |\log_{1/2}(-2x+8)| - 3 & ; \quad -2 \le x \le a \\ x^2 - 6x + 10 & ; \quad x > a \end{cases}$$

- a) Para a = 15/4, grafique f y determine los intervalos donde la función f es creciente y los intervalos donde es decreciente. (1.5 puntos).
- b) Para a = 3, halle la función inversa de f y esboce la gráfica de f^{-1} . (1.5 puntos).
- c) Determine todos los valores de a tales que la función f sea inyectiva. (1 punto).
- 3. Justifique la veracidad o falsedad de las siguientes proposiciones:
 - a) La función $f(x) = 2e^{-x} 3e^{2x+1}$ es inyectiva. (1 punto).
 - b) Si $f : \mathbb{R} \to \mathbb{R}$ es una función decreciente tal que f(a) = b, entonces el conjunto solución de $f(x) \ge b$ es $[a, +\infty[$. (1 punto).

San Miguel, 25 de junio de 2020.

-	I	F	200	_	da	10):		_						T													T		_			/	_		2			
	_	F	+						4)		_ u	()	ζ.	0	-				-					-	1			-	-				-	+	1				
1	_		+	L	e.	+	+		-	C	5	X	5	7			- i-	3	a_	q. ex	ler	la	fu	nc	16	7	2	pa	1	h	2110	ilei	no	s					
1		_	+	F	6	-	10	9.	2)	-	-4	6 x	ζ-'	2					PC	110		cal	C	110	15	01		010			1	1						
+	1	_		1	0		10	9	()			2	< x	16	4			i	+	a P	10	117	OL	en	10.	5 6	1	0	29	0	Po	2	0,		-	-	1		
1	1	_		+	e ·	X	1	_		-		-1	٤	× 4	0					4			-							-	1				1	1			
	1	-	R	ai	19	0.5	5	:				P	ra	e	×	;		1	٤	Pix	1) <	e					1			+				1	1	1			
	+						1				-	Pa	ra	е 6	1	i	(-)	1	< :	P (X) -2	5 5	٤ و	(x)	4	6	- 1		1				+	1				1	
	-	-	5	1				_		0			ar				-												-			-	1				+	1	
_	_	1	20	, b	-	_	+		_	-					1			1	9	Ce			. 0	1-6	7											1	1	1	
_		+			1	00	+	-	Ь		<u></u> :	0	-		>	Ь	: 7	-				+							1			1			+	+	+		
R	60	10	2	d	6	C	10	re	Sı	00	n c	60	CI	a :				-													-				1				1
-			٦	2	. 1	0		(-×)	1		-4	53	x s	,	2						0	10	-1	lac	Q (x	,									•			4
	PC	1	H	6	r	,	1)	_			1	-1	٢	X S	. (·	-			-1	00	(x)				+	-			-			-	+	1
+	_	[<u> </u>	e ²	1	00	1	x)		+	,		< X			4								2-	10	9;	×)	1	l er	13								1	
			1	_											-		,	4	_		+	_		-	_					1			-	-	-		_	+	
	_		+					-		 	-			A y	+								-			/	1	_	-	1	1	\	-	-					,
			1															-						-		1	1		-	-			+		_	-	+		_
	-		+			_	_	-	_	-	1	<u></u>		· 6	+		1		-		-			+			+	_	+	1									
			+									1				1																		-	-	+	_		
			L					,					/	1	+			+	_	-	+	_		-	_	+	-	_	+			+			-	-			
	+		-			-	/	1		-	-	-		-	+	-		+	_	-			 	1	_										1				+
	4	_						- 2			-						١			2			-			4			-		X	+	_	_	-			-	+
						1								-			-	-		+	-	_	-	-	_	-	_		-			1			+				+
	+			+	_	+		+		-						_		+				_	1						-			+		-	-		_	+	

Intervalos de crecimi	ento: [3,5; 3,15] U]3		
Intervalos de decreci	miento [-2, 2 5]	75,100[
	2 C C1 2121	7	
b) Para a=3			
- Primer tramo:		analizamos el V.A.:	
- rimer tramo:	110g (-2x18)1-3 = y	-26863	
	1100 (-2x+8)1	-64-5764	
	1109 (15x +8) 1 : 4+3	2 68-2×612	
	-log (-2×18): 413	-1 6 100 (-5x+8) 6 -3,58	
	190 (-5x + 8) : -4-3		-
	193 (-5×18) : -7-3		1
	+5x = 8-0,5,2	3)	
	x:8-0,5(-y-?	$0) \longrightarrow (-1; 8-0.5(-x-3) = 8$	- 2 (x+3)
	2	2	2
- Segundo tramo:	x -6x+10 · y		
	(x-3)-+1:4		
	$(x-3)^2 : y-1$	→ (-) 3+√x-1 x>	
	x = 3 + 1 y - 1	$\rightarrow 1$ 3+ $\sqrt{x-1}$, $x>$	1
1 P ,			
- la función inves			
[8-2(×+3)) , -2 & x & - log 12	- 3	
2	1 2 109 112		
?-\(\chi\)			
13+ Jx-1	, x > 1		
		1	
	6 40 40 10 10	versa debemos analizar su r	ango
0,0: para hallar 1	os dominios de la il	30, 31, 30, 103	3
(de la función no	rmall	х>3	
		X-3 > 0	
-6 5-2x 44		(x-3)2>0	
24-2×+8 € 1		$(x-3)^2+1>1$	
log 12 < log!	(-2x+8) & -10g 12		
-2 4 110g	-2x48) -3 6 - log 12 -3		
5112			

Acosta Muñoz, Andrea Celeste (20202085)
7 27.63 10 (2000 00 83)
· Para que la función cuadrática sea injectiva, notamos que x<3
· Para que la función logaritmo sea injectiva, notamos que el x no puede exceder a 3,5.
En un principio, tendremos que: 3 & a & 3,5
Ja que hemas demas de la
Ja que hemos demostrado la injectividad local, l'altaría demostrar la injectividad global; para ello, es necesario corroboror que los rangos no se interceptor
13th chango, segun las condiciones que deba comatra (pallada)
notamos que los rangos nunca se van a interceptar.
Por lo tanto, los valores que a debe asumir son de 3 a 3,5
Rpta: a e [3;3,5]
11/10/10/10/10/10/10/10/10/10/10/10/10/1
3) a) la función: f(x) = 2ex - 3e2x+1 es inyectiva
rention rex) = de - se res ingectiva
- Sabemos que la función lex es creciente; por lotanto, al transformaria,
2e-x será decreciente
- Jahemos que 3ezx+1 es creciente; por lotanto -3ezx+1 será decreciente
co decreciente + decreciente : decreciente
esta debe ser injectiva
esta debe ser injectiva
Reta: Verdadero
(b)
fus comple las candiciones dadas:
sin embargo para fix) > b,
tenemos que x E]-oo, a]
Par Reta: Falso
a