²¹²₈₂ Pb ₁₃₀

1 Decay Scheme

Pb-212 disintegrates by beta minus emission to excited and fundamental levels of Bi-212. Le plomb 212 se désintègre par émission bêta moins vers des niveaux excités et fondamental du bismuth 212.

2 Nuclear Data

2.1 β^- Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\begin{array}{c} \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,0}^{-} \end{array}$	159 (2)	5,1 (2)	1st Forbidden	5,38
	335 (2)	84,0 (14)	1st Forbidden	5,19
	574 (2)	10,9 (14)	1st Forbidden	6,84

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \rm P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	α_M+	$lpha_T$
$\begin{array}{c} \gamma_{1,0}(\text{Bi}) \\ \gamma_{2,1}(\text{Bi}) \\ \gamma_{3,2}(\text{Bi}) \\ \gamma_{3,2}(\text{Bi}) \\ \gamma_{2,0}(\text{Bi}) \\ \gamma_{3,1}(\text{Bi}) \\ \gamma_{3,0}(\text{Bi}) \end{array}$	115,183 (5) 123,45 (1) 176,64 (1) 238,632 (2) 300,09 (1) 415,27 (1)	5,12 (21) 0,37 (1) 0,16 (2) 83,8 (11) 4,74 (20) 0,17 (3)	[M1] [E2] [M1] [M1] [M1]	5,87 (18) 0,418 (8) 1,742 (50) 0,753 (23) 0,401 (12) 0,167 (5)	1,027 (30) 1,802 (36) 0,303 (10) 0,130 (4) 0,069 (2) 0,028 (1)	0,323 (10) 0,630 (13) 0,095 (3) 0,040 (1) 0,0210 (6) 0,0090 (3)	7,22 (22) 2,85 (6) 2,14 (6) 0,923 (30) 0,491 (15) 0,204 (6)

3 Atomic Data

3.1 Bi

 $\omega_K : 0,964 (4)$ $\bar{\omega}_L : 0,391 (16)$ $n_{KL} : 0,809 (5)$

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probabilit
X_{K}				
	$K\alpha_2$	74,8157		59,8
	$K\alpha_1$	77,1088		100
	$K\beta_3$	86,835	}	
	$K\beta_1$	87,344	} } }	
	$\mathrm{K}eta_5''$	87,862	}	34,2
	$K\beta_2$	89,91	}	
	$K\beta_4$	90,074	} } }	10,4
	$KO_{2,3}$	90,421	}	
X_{L}				
	$\mathrm{L}\ell$	$9,\!42$		
	$L\alpha$	10,731 - 10,839		
	$\mathrm{L}\eta$	11,712		
	$L\beta$	$12,\!48-13,\!393$		
	${ m L}\gamma$	15,248 - 15,709		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX	57,49 - 63,42 $70,03 - 77,11$	100 57
KLX KXY Auger L	82,53 - 90,52 $5,35 - 10,66$	7,8 3040

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5,35 - 10,66	25,2 (5)
${ m e}_{ m AK}$	(Bi) KLL KLX KXY	57,49 - 63,42 70,03 - 77,11 82,53 - 90,52	1,37 (16) } } }
$\begin{array}{c} {\rm ec_{1,0}\ K} \\ {\rm ec_{1,0}\ L} \\ {\rm ec_{1,0}\ M} \\ {\rm ec_{2,0}\ K} \\ {\rm ec_{3,1}\ K} \\ {\rm ec_{2,0}\ L} \\ {\rm ec_{2,0}\ M} \\ {\rm ec_{3,1}\ L} \\ {\rm ec_{3,1}\ M} \end{array}$	(Bi) (Bi) (Bi) (Bi) (Bi) (Bi) (Bi) (Bi)	24,657 (5) 98,80 - 101,76 111,18 - 115,03 148,106 (2) 209,56 (2) 222,24 - 225,21 234,63 - 238,47 283,70 - 286,67 296,09 - 299,93	3,66 (13) 0,64 (2) 0,20 (1) 33 (1) 1,27 (4) 5,7 (2) 1,7 (1) 0,22 (1) 0,07
$\beta_{0,3}^{-}$ $\beta_{0,3}^{-}$ $\beta_{0,2}^{-}$ $\beta_{0,2}^{-}$ $\beta_{0,0}^{-}$ $\beta_{0,0}^{-}$	max: avg: max: avg: max: avg:	159 (2) 42,3 (6) 335 (2) 94,8 (7) 574 (2) 173,1 (7)	5,1 (2) 84,0 (14) 10,9 (14)

5 Photon Emissions

5.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Photons per 100 disint.	
XL $XK\alpha_2$ $XK\alpha_1$	(Bi) (Bi) (Bi)	9,42 - 15,709 $74,8157$ $77,1088$		14,5 (4) 10,7 (3) 17,9 (5)	} Κα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \end{array}$	(Bi) (Bi) (Bi)	86,835 87,344 87,862	} } }	6,12 (20)	$K'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89,91 90,074 90,421	<pre>} } </pre>	1,87 (7)	$K'\beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{1,0}(\text{Bi}) \\ \gamma_{2,1}(\text{Bi}) \\ \gamma_{3,2}(\text{Bi}) \\ \gamma_{2,0}(\text{Bi}) \\ \gamma_{3,1}(\text{Bi}) \\ \gamma_{3,0}(\text{Bi}) \end{array}$	115,183 (5) 123,45 (1) 176,64 (1) 238,632 (2) 300,09 (1) 415,27 (1)	0,623 (22) 0,096 (4) 0,052 (4) 43,6 (3) 3,18 (13) 0,144 (22)

6 Main Production Modes

 $\begin{aligned} &Po-210(t,p)Pb-212\\ &Po-216~\alpha~decay \end{aligned}$

7 References

- D.G.E. MARTIN, H.O.W. RICHARDSON. Proc. Phys. Soc. 195A (1948) 287 (Beta-ray emission probabilities)
- H.VON BUTTLAR. Naturwissenschaften 39 (1952) 575 (Half-life)
- P. MARIN, G.R. BISHOP, H. HALBAN. Proc. Phys. Soc. (London) 66A (1953) 608 (Half-life)
- J. TOBAILEM, J. ROBERT. J. Phys. Radium 16 (1955) 115 (Half-life)
- E.M. KRISYOUK, A.G. SERVEYEV, G.D. LATYSHEV, V.D. VOROBYOV. Nucl. Phys. 4 (1957) 579 (Conversion-electron emission probabilities, multipolarity)
- K.O. NIELSEN, O.B. NIELSEN, M.A. WAGGONER. Nucl. Phys. 2 (1957) 476 (Conversion-electron emission probabilities, multipolarity)
- A.G. SERGEYEV, V.D. VOROLYEV, A.S. REMENNYI, T.J. KOLCHENSKAYA, G.D. LATYSHEV, Y.S. YEGOROV. Nucl. Phys. 9 (1959) 498 (Mixing Ratio)
- P.G. ROETLING, W.P. GANLEY, G.S. KLAIBER. Nucl. Phys. 20 (1960) 347 (Gamma-ray emission probabilities, multipolarity)
- M. GIANNINI, D. PROSPERI, S. SCIUTI. Nuovo Cim. 21 (1961) 430 (Gamma-ray emission probabilities)
- H. DANIEL, G. LÜHRS. Z. Phys. 176 (1963) 30 (Conversion-electron emission probabilities, multipolarity)
- D. KRPIC, R. STEPIC, M. BOGDANOVIC, M. MLADENOVIC. Fizika 1 (1969) 171 (Mixing Ratio)
- J. DALMASSO. Report FRNC-TH-441 (1972) (Gamma-ray emission probabilities)
- J. DALMASSO, H. MARIA, C. YTHIER. Comp. Rend. Acad. Sci. (Paris) 277B (1973) 467 (Gamma-ray emission probabilities)
- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data. Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- F.T. AVIGNONE, A.G. SCHMIDT. Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities)
- S. SADASIVAN, V.M. RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)

- R. VANINBROUKX, H.H. HANSEN. Int. J. Appl. Radiat. Isot. 34 (1983) 1395 (Gamma-ray emission probabilities)
- U. SCHÖTZIG, K. DEBERTIN. Int. J. Appl. Radiat. Isot. 34 (1983) 533 (Gamma-ray emission probabilities)
- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isot. 35 (1984) 581 (Gamma-ray emission probabilities)
- A. ARTNA-COHEN. Nucl. Data Sheets 66 (1992) 171 (Nuclear structure, energies)
- W-J. LIN, G. HARBOTTLE. J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q value)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-1999-1 (1999) (K-x ray)

 γ Emission probabilities per 100 disintegrations

