

- O algoritmo PSO é um algoritmo de optimização estocástico e baseado em populações
- É uma espécie de inteligência colectiva de um enxame baseada em princípios psicos sociológicos
- Pode ser usado para demonstrar comportamentos sociais ou aplicações de engenharia
- Foi inicialmente descrito em 1995 por James Kennedy e Russell C. Eberhart mas evoluiu muito desde então

A influência e aprendizagem social permitem ao indivíduo ter consistência cognitiva

Resolvemos problemas discutindo-os

À medida que interagimos, as nossas crenças, atitudes e comportamentos mudam

Podemos encarar estas mudanças como movimentações num espaço sócio-cognitivo

O PSO simula este tipo de optimização social

Para um determinado problema TSP temos de determinar o custo de várias soluções ou caminhos

É definida ainda uma estrutura de comunicação

A população é definida como soluções aleatórias para o problema em que todos os indivíduos são candidatos à solução óptima

São conhecidos como partículas, daí o nome Particle Swarm

É então iniciado o processo que melhora as soluções candidatas

As partículas avaliam o custo da solução candidata e lembram-se qual a melhor solução onde estiveram

Esta solução é conhecida como o mínimo da partícula ou mínimo local

Esta informação também é dada aos seus vizinhos, sabendo estes onde se obtiveram os melhores sucessos

- O mínimo global é também conhecido de todas as partículas
- Os movimentos através do espaço de pesquisa são guiados por estas informações
- A população geralmente converge numa solução melhor do que se usássemos os mesmo métodos mas sem a comunicação

O enxame de partículas é geralmente modelizado como partículas num espaço multidimensional que têm uma posição e velocidade

Estas partículas deslocam-se neste espaço (que é o espaço das soluções) tendo uma posição e velocidade

Têm ainda duas capacidades decisórias: a memória da sua melhor posição e o conhecimento do mínimo global ou do mínimo local das partículas vizinhas

Os membros do enxame comunicam boas posições entre si e ajustam a sua posição e velocidade

O sistema é baseado numa equação que determina as alterações que as partículas fazem mediante as informações que obtêm

$$\begin{aligned} v_{i,j} &= c_1 v_1 + c_2 (\textit{m\'inimo particula}_j - x_{i,j}) + c_3 (\textit{m\'inimo global}_j - x_{i,j}) \\ x_{i,j} &= x_{i,j} + v_{i,j} \end{aligned}$$

cada constante c1,c2,c3 representa a inércia de cada parâmetro

depois da velocidade calculada muda-se a variável para uma nova posição

À medida que o enxame faz iterações o custo global desce

As partículas podem ser influenciadas por este resultado e aproximarem-se dele nunca melhorando depois de lá chegarem independentemente do número de iterações

Caso as partículas se movam próximo do mínimo global sem pesquisarem o resto do espaço estamos perante o fenómeno da convergência

Se o coeficiente for baixo as partículas param no mínimo global

Sendo assim os coeficientes afectam a convergência e a capacidade do enxame encontrar o óptimo

Podemos sair desta situação reinicializando as partículas com ou sem a sua memória da melhor posição

Este algoritmo foi usado em milhares de aplicações de engenharia, é ainda usado para compor musica, modelizar mercados e organizações

### Exemplo

Uma forma mais simples de explicação pode ser um bando de gaivotas telepáticas à procura da melhor fonte de comida

Todas começam num mapa distribuídas aleatoriamente

No inicio antes de se moverem têm velocidade zero mas sabem qual a gaivota mais próximo da solução óptima

### Exemplo

Alteram então a sua velocidade e direcção para irem nesse sentido

À medida que vão andando vão-se lembrando da sua melhor posição

Usam a sua velocidade actual, a sua melhor posição e a melhor posição global para alterarem a sua velocidade e logo a sua posição para se dirigirem para a posição óptima

### Exemplo

Como iniciaram em posições aleatórias no mapa ao dirigirem-se todas para o mesmo ponto inevitavelmente vão passar pelo ponto óptimo, alterando ao melhor global e fazendo com que todas consigam convergir nesse ponto



A implementação começa por ser um pouco complicada, pois estamos perante um problema discreto e a equação lidaria melhor com variáveis contínuas

Encontramos problemas como subtrair uma posição a outra

Com a solução destes problemas criam-se os blocos constituintes básicos do algoritmo

A parte inicial do algoritmo tem de ser inevitavelmente a geração de partículas, para tal usa-se um vector bidimensional sendo cada linha uma partícula diferente e tendo tantas colunas como nós do problema

Este vector contém as posições das partículas

Inicialmente são gerados todos os caminhos por ordem e depois são trocados aleatoriamente para garantir que sejam diferentes

De seguida temos de calcular o custo de todos os caminhos para ver qual o que tem o menor custo e actualizar o melhor caminho global, são também actualizados os melhores caminhos de sempre de cada partícula, usando-se para isso um vector bidimensional com a mesma dimensão do vector das posições

Calcular as velocidades das partículas é a parte mais complexa e na qual se pode usar a maior criatividade para transformar algo que é contínuo em algo discreto

As velocidades são guardadas num vector tridimensional que na verdade é equivalente a dois vectores com as mesmas linhas do vector das posições, mas optei por usar um tridimensional em vez de dois separados, um guarda a posição inicial de um nó e o outro a posição final do nó

Sendo assim a velocidade é expressa pelo número de trocas que são feitas num caminho fazendo com que a partícula se desloque no espaço das soluções

Se uma partícula tiver a velocidade 0 ► 1, vamos trocar os nós que estão na posição 0 com a 1, esta é a velocidade mais baixa que pode ter

Se a velocidade fosse 0 ▶ 1, 4 ▶ 2, 1 ▶ 7, 2 ▶ 3 já seria uma velocidade superior

O uso de trocas permite usar um código simples e rápido

Quando temos uma troca do género 0 ▶ 0 não há movimentação

As constantes são usadas para determinar quanto da velocidade inicial vamos manter

Se c1 fosse 2 e se a velocidade da partícula fosse: 0 ▶ 1, 4 ▶ 2, 1 ▶ 7, 2 ▶ 3

Iria-se escolher aleatoriamente duas trocas para serem guardadas que depois se iriam acrescentar às outras velocidades de c2 e c3

$$\begin{aligned} v_{i,j} &= c_1 v_1 + c_2 (\textit{m\'inimo particula}_j - x_{i,j}) + c_3 (\textit{m\'inimo global}_j - x_{i,j}) \\ x_{i,j} &= x_{i,j} + v_{i,j} \end{aligned}$$

Para calcular a subtracção de duas posições (em c2 e c3) basta escolher aleatoriamente uma posição no caminho mínimo da partícula (ex 5), de seguida pesquisamos a posição actual e determinamos onde se encontra o nó que está na posição 5 do mínimo da partícula, (ex 7)

Guardamos assim a velocidade 5 ▶ 7, repetimos tantas vezes como c2

Para c3 será idêntico

c2(Melhor Posição – Posição actual)

[ 3 6 8 2 5 1 0 9 4 7] Melhor posição

[ 9 5 7 4 2 3 6 1 0 8] Posição actual

5▶7 Resultado

Repetir tantas vezes quanto c2

O problema com este código até agora é que ele vai convergir relativamente rápido mesmo para valores baixos de c1,c2 e c3

Experimentei várias maneiras de reiniciar os nós:

Reiniciar a partícula se a sua posição for igual à melhor global

Reiniciar a partícula se a sua melhor posição for igual à melhor global

Nos dois casos testei reiniciar a partícula só na posição ou na posição e na sua memória

Finalmente optei por reiniciar só a posição da partícula quando esta é igual à melhor global evitando assim a convergência das posições das partículas e das suas memórias que também convergiam

Reiniciar a memória levava muito tempo e não trazia ganhos significativos

Resta agora determinar quais os melhores valores para c1,c2 e c3

A maioria da literatura recomenda que estes sejam dois

Realizei várias iterações tentando todas as combinações entre 1 e 3

Combinei também o nº de iterações e nº de partículas para tentar determinar a melhor configuração

#### Resultados

| TSP 53 Nós (OPT 426) |    |     |        |       |      |         |       |     |            |       |     |
|----------------------|----|-----|--------|-------|------|---------|-------|-----|------------|-------|-----|
| Iterações            |    |     | 100    |       |      | 1000    |       |     | 10000      |       |     |
| Partículas           |    | 100 | 1000   | 10000 | 100  | 1000    | 10000 | 100 | 1000       | 10000 |     |
| C1                   | C2 | C3  |        |       |      |         |       |     |            |       |     |
| 1                    | 1  | 1   | 1241   | 1106  | 1120 | 689     | 635   | 504 | 541        | 548   | 513 |
| 1                    | 1  | 2   | 1160   | 1041  | 887  | 659     | 583   | 555 | 547        | 547   | 511 |
| 1                    | 1  | 3   | 1016   | 880   | 717  | 687     | 553   | 515 | 610        | 535   | 548 |
| 1                    | 2  | 1   | 1125   | 1150  | 1121 | 636     | 557   | 519 | 483        | 515   | 463 |
| 1                    | 2  | 2   | 1108   | 999   | 969  | 679     | 579   | 526 | 505        | 558   | 484 |
| 1                    | 2  | 3   | 1078   | 871   | 826  | 683     | 537   | 491 | 592        | 520   | 501 |
| 1                    | 3  | 1   | 1219   | 1109  | 1084 | 635     | 568   | 534 | 577        | 518   | 502 |
| 1                    | 3  | 2   | 1150   | 990   | 943  | 659     | 535   | 499 | 617        | 570   | 490 |
| 1                    | 3  | 3   | 1135   | 911   | 795  | 597     | 601   | 513 | 521        | 505   | 549 |
| 2                    | 1  | 1   | 1265   | 1204  | 1158 | 711     | 617   | 581 | 573        | 516   | 513 |
| 2                    | 1  | 2   | 1167   | 952   | 897  | 630     | 606   | 507 | 521        | 510   | 492 |
| 2                    | 1  | 3   | 939    | 919   | 809  | 610     | 592   | 518 | 565        | 504   | 546 |
| 2                    | 2  | 1   | 1207   | 1147  | 1080 | 719     | 607   | 555 | 589        | 535   | 479 |
| 2                    | 2  | 2   | 1151   | 1048  | 923  | 662     | 601   | 529 | 533        | 509   | 520 |
| 2                    | 2  | 3   | 1017   | 972   | 800  | 662     | 547   | 568 | 532        | 550   | 521 |
| 2                    | 3  | 1   | 1214   | 1118  | 1123 | 706     | 566   | 511 | 555        | 553   | 536 |
| 2                    | 3  | 2   | 1203   | 1030  | 948  | 598     | 557   | 495 | 527        | 495   | 518 |
| 2                    | 3  | 3   | 991    | 829   | 830  | 546     | 588   | 537 | 556        | 520   | 491 |
| 3                    | 1  | 1   | 1260   | 1211  | 1084 | 739     | 604   | 544 | 498        | 513   | 517 |
| 3                    | 1  | 2   | 1089   | 1018  | 872  | 702     | 542   | 558 | 521        | 525   | 504 |
| 3                    | 1  | 3   | 996    | 884   | 805  | 614     | 583   | 503 | 574        | 571   | 515 |
| 3                    | 2  | 1   | 1241   | 1137  | 1106 | 746     | 595   | 539 | 560        | 509   | 500 |
| 3                    | 2  | 2   | 1098   | 999   | 962  | 674     | 527   | 589 | 555        | 553   | 487 |
| 3                    | 2  | 3   | 944    | 901   | 815  | 684     | 588   | 559 | 578        | 558   | 523 |
| 3                    | 3  | 1   | 1241   | 1104  | 1065 | 688     | 548   | 488 | 579        | 513   | 497 |
| 3                    | 3  | 2   | 1140   | 1091  | 935  | 632     | 509   | 534 | 595        | 590   | 551 |
| 3                    | 3  | 3   | 1060   | 975   | 763  | 553     | 598   | 515 | 539        | 513   | 505 |
| Mínimo               |    |     | 939    | 829   | 717  | 546     | 509   | 488 | 483        | 495   | 463 |
| Mínimo Iter.         |    |     | 717    |       |      | 488     |       |     | 463        |       |     |
| Tempo                |    |     | 4m 26s |       |      | 42m 51s |       |     | 7h 14m 51s |       |     |

Res.

| TSP 1002 Nós (OPT 259045) |         |         |         |         |         |          |         |              |             |         |              |
|---------------------------|---------|---------|---------|---------|---------|----------|---------|--------------|-------------|---------|--------------|
| Iterações                 |         |         | 100     |         |         | 1000     |         |              | 10000       |         |              |
| Pa                        | ırtícul | as      | 100     | 1000    | 10000   | 100      | 1000    | 10000        | 100         | 1000    | 10000        |
| C1 C2 C3                  |         |         |         |         |         |          |         |              |             |         |              |
| 1                         | 1       | 1       | 6175899 | 6123253 |         | 6128209  | 6017094 | Erro Memória | 5629764     | 5363907 | Erro Memória |
| 1                         | 1       | 2       | 6154663 | 6085222 |         | 6066798  | 5972258 |              | 4965325     | 4799287 |              |
| 1                         | 1       | 3       | 6089166 | 6135797 |         | 5929106  | 5913730 |              | 4803782     | 4511442 |              |
| 1                         | 2       | 1       | 6245114 | 6142751 |         | 6075874  | 5981821 |              | 5525547     | 5481598 |              |
| 1                         | 2       | 2       | 6163874 | 6107420 |         | 6043868  | 5932757 |              | 5030558     | 4713859 |              |
| 1                         | 2       | 3       | 6165218 | 6118187 |         | 6008205  | 5842482 |              | 4923936     | 4329753 |              |
| 1                         | 3       | 1       | 6227502 | 6090446 |         | 6072899  | 5982083 |              | 5426596     | 5419755 |              |
| 1                         | 3       | 2       | 6171850 | 6127526 | Memória | 5990620  | 5966639 |              | 4853841     | 4605911 |              |
| 1                         | 3       | 3       | 6155283 | 6121910 |         | 5972186  | 5862587 |              | 4868095     | 4346273 |              |
| 2                         | 1       | 1       | 6198186 | 6150074 |         | 6128924  | 6037798 |              | 5608551     | 5506772 |              |
| 2                         | 1       | 2       | 6166439 | 6121297 |         | 6048891  | 6029267 |              | 5007478     | 4744613 |              |
| 2                         | 1       | 3       | 6139590 | 6060715 |         | 5996560  | 5932662 |              | 4920405     | 4471671 |              |
| 2                         | 2       | 1       | 6212508 | 6120812 |         | 6131141  | 6065865 |              | 5591086     | 5463500 |              |
| 2                         | 2       | 2       | 6191177 | 6139550 |         | 6035546  | 5979508 |              | 4977937     | 4722023 |              |
| 2                         | 2       | 3       | 6172703 | 6097076 | Ž       | 5984093  | 5971803 |              | 4839815     | 4349140 |              |
| 2                         | 3       | 1       | 6191182 | 6092355 |         | 6040482  | 6022789 |              | 5451156     | 5503787 |              |
| 2                         | 3       | 2       | 6172376 | 6133253 | Erro    | 6040294  | 5927738 |              | 4733748     | 4876062 |              |
| 2                         | 3       | 3       | 6161126 | 6096366 |         | 5976086  | 5866005 |              | 4669472     | 4414657 |              |
| 3                         | 1       | 1       | 6244312 | 6096390 |         | 6135172  | 6039698 |              | 5657212     | 5345150 |              |
| 3                         | 1       | 2       | 6178486 | 6125104 |         | 6045450  | 5985800 |              | 5272960     | 4903241 |              |
| 3                         | 1       | 3       | 6182656 | 6120583 |         | 6024293  | 5929878 |              | 4935007     | 4475509 |              |
| 3                         | 2       | 1       | 6267255 | 6136333 |         | 6096571  | 6031307 |              | 5578759     | 5526622 |              |
| 3                         | 2       | 2       | 6111278 | 6123180 |         | 6011227  | 5955976 |              | 5027061     | 4984349 |              |
| 3                         | 2       | 3       | 6211329 | 6063933 |         | 5999563  | 5927333 |              | 4700147     | 4365646 |              |
| 3                         | 3       | 1       | 6193280 | 6118864 |         | 6038512  | 6011490 |              | 5556012     | 5566436 |              |
| 3                         | 3       | 2       | 6181652 | 6112991 |         | 6047337  | 5944500 |              | 4921160     | 4981338 |              |
| 3                         | 3       | 3       | 6201284 | 6100010 |         | 5953123  | 5918473 |              | 4721977     | 4571706 |              |
| Mínimo                    |         | 6089166 | 6060715 |         | 5929106 | 5842482  |         | 4669472      | 4329753     |         |              |
| Mínimo Iter.              |         |         | 6060715 |         |         | 5842482  |         |              | 4329753     |         |              |
| Tempo                     |         |         | 46m 18s |         |         | 2h 2m 5s |         |              | 18h 16m 12s |         |              |
|                           | No.     | -       |         |         |         |          |         |              |             |         |              |

#### Conclusão

Tendo em conta que o PSO não é de todo o ideal para problemas do género TSP este comportou-se bastante bem, conseguindo resultados algo próximos do óptimo, para 53 nós em muito menos tempo que o VNS

O facto de o PSO não ser ideal para TSP provase no caso dos 1002 nós pois necessitaríamos de muito mais partículas do que a memória permite e de muitas iterações, visto que o resultado foi aproximadamente 6M, muito longe do resultado de qualquer heurística simples

#### Conclusão

- Sendo assim o grande problema do PSO é o número de partículas/iterações necessárias para se conseguir uma boa solução
- Como temos de chegar a uma boa solução aleatória para as partículas tentarem melhorar, se não chegarmos a uma solução aceitável logo no início as partículas dificilmente a encontrarão
- Como se nota variar c1,c2 e c3 não tem grandes efeitos na solução, pode-se usar todas as constantes com o valor 2 como recomendado

#### Conclusão

Já o número de iterações melhora as soluções obtidas muito mais do que o número de partículas, o que se explica com o facto de reiniciarmos as partículas muito mais vezes com muitas iterações do que tendo muitas partículas e poucas iterações, como elas são reiniciadas tendo uma memória que tem mais tempo para evoluir consegue-se melhores resultados

Verifiquei ainda uma das vantagens do PSO: a versatilidade, visto que não necessitei de afinar parâmetros

## Bibliografia

```
Xiaohui Hu, "Particle Swarm Optimization", 
http://www.swarmintelligence.org/index.php, 2006 
(Visitada em 03/02/2008)
```

http://en.wikipedia.org/wiki/Particle\_Swarm\_Optimization (Visitada em 03/02/2008)

Maurice Clerc, "Discrete Particle Swarm Optimization Illustrated by the Traveling Salesman Problem", http://clerc.maurice.free.fr/pso/pso\_tsp/Discrete\_PSO\_TSP., 2000 (Visitada em 03/02/2008)

Maurice Clerc, "Discrete Particle Swarm Optimization: A Fuzzy Combinatorial Black Box", http://clerc.maurice.free.fr/pso/Fuzzy\_Discrete\_PSO/Fuzzy\_, 2000 (Visitada em 03/02/2008)