Выбор сложности модели через максимизацию производной суммы квадратов остатков

Борис Демешев

14 мая 2015

Минимизация суммы квадратов остатков

Простая модель линейной регрессии:

$$y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$$

МНК: подбираем β минимизируя *RSS*.

Проблема с параметром сложности модели

$$y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$$

Однако нельзя подобрать k минимизируя RSS.

Чем больше сложность модели, k, тем меньше будет RSS.

Дилемма сложность—сумма квадратов остатков универсальна

- ► LASSO
- ► Ridge-регрессия
- Классификационные деревья
- Ядерная оценка функции плотности
- Ядерная оценка в непараметрической регрессии

. . .

Кратко о LASSO

Зафиксируем к.

Минимизируем по β сумму квадратов остатков, оштрафованную на сложность модели:

$$\min RSS + \lambda \cdot (|\beta_2| + |\beta_3| + \ldots + |\beta_k|)$$

Чем больше штрафной параметр λ , тем (грубо говоря) ближе оптимальные β^* будут к нулю.

Оптимизировать по λ бессмысленно.

Известное решение — кросс-валидация

- 1. Поделим имеющуюся выборку на 10 частей.
- 2. Зафиксируем некоторое значение штрафного параметра λ .
- 3. По подвыборке состоящей из всех частей кроме первой оценим β с помощью LASSO.
- 4. Используя полученные $\hat{\beta}_{(1)}$ получим прогнозы для наблюдений из первой части.
- 5-6. Повторим шаги 3-4 для подвыборки, в который из всех наблюдений удалена вторая часть.

Известное решение — кросс-валидация

7-8. Повторим шаги 3-4 для подвыборки, в который из всех наблюдений удалена третья часть.

. . .

n. Получив прогнозы для каждого наблюдения посчитаем $RSS_{cv}(\lambda)$ для зафиксированного λ

n+1. Проделав шаги 2-n для разных λ , выберем то, которое минимизирует RSS_{cv} .

Новое решение — максимизация производной *RSS*

- 1. Зафиксируем некоторое значение штрафного параметра λ .
- 2. По всей выборке оценим β с помощью LASSO.
- 3. Проделав шаги 1-2 для разных λ , получим зависимость $RSS(\lambda)$, выберем то λ , которое максимизирует $dRSS(\lambda)/d\lambda$.

Численный пример

Искусственные данные: $x_{ik} \sim N(0,1), z_{ik} \sim N(0,1), \varepsilon_i \sim N(0,1),$ 200 наблюдений:

$$y_i = 2 + 3x_{i1} - 2x_{i2} + \varepsilon_i$$

С помощью LASSO оцениваем регрессию y_i на $x_{i1}, x_{i2}, z_{i1}, z_{i2}$ при разных лямбда

cv.fit <- cv.glmnet(X,y, lambda = lambdas)

Результаты для разных штрафных коэффициентов

```
\begin{array}{l} coefs <- \ as.matrix(coef(cv.fit,\ s=c(0,0.5,1,2,10)))\\ coefs <- \ rbind(c(0,0.5,1,2,10),coefs)\\ rownames(coefs)[1] <- \ "lambda"\\ colnames(coefs) <- \ NULL\\ pander(coefs,\ digits=3) \end{array}
```

lambda (Intercept)	0 2.08	0.5 2.06	1 2.04	2 2	10 1.97
x1	3.03	2.56	2.08	1.13	0
x2	-2.08	- 1.59	-1.1	0.118	0
z1	- 0.0111	0	0	0	0

Кросс-валидация выбирает классический МНК

cv.fit\$lambda.min

```
## [1] 0
```

```
coef(cv.fit,s="lambda.min")
```

Зависимость RSS и $dRSS/d\lambda$ от λ

Оценка лямбда максимизацией $dRSS/d\lambda$

```
lambda.mdr <- lambdas\_inc[drss==max(drss)] \\ lambda.mdr
```

```
\#\# [1] 2.1
```

```
coef(cv.fit, s=lambda.mdr)
```

Потери по сравнению с "идеальным" решением

	lambda	RSS_TSS		n_coefs
model			scorr2	
Идеальная	NA	0.08365	0.917	2
Кросс- валидация	0	0.08266	0.9173	4
Максимум производной	2.1	0.1875	0.9164	2

Свойства метода

▶ Метод зависит от выбора целевого показателя.

Например, вместо суммы квадратов остатков можно взять сумму квадратов модулей.

 \blacktriangleright У функции $dRSS/d\lambda$ может быть несколько локальных максимумов

Эти слады доступны по ссылке goo.gl/GFMeG3