Sujet de révision 7

EXERCICE 1:

On a représenté ci-dessous dans un repère orthonormé (O, \vec{l}, \vec{j}) la courbe (C) d'une fonction f solution de l'équation $(E): y' + y = e^{-x}$ et sa tangente au point d'abscisse (-1).

- * (C) admet au $V(-\infty)$ une branche parabolique de direction celle de (O, \vec{j}) .
- * L'axe des abscisses est une asymptote à la courbe (C) au $V(+\infty)$.

On note F la primitive de f sur IR telle que F(0)=0

- 1) a) Montrer que f(-1)=e et que F(-1)=3-2e.
 - b) Dresser le tableau de variation de la fonction F.
 - c) Montrer que la courbe (Γ) de la fonction F admet un point d'inflexion dont on précisera les coordonnées.

- 2) a) Déterminer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$
 - b) Ecrire une équation de la tangente T à (C) au point d'abscisse 0.
 - c) Calculer en (u.a) l'aire \mathcal{A} de la partie du plan limitée par la courbe (C) l'axe des abscisses et les droites d'équations x=-1 et x=0.
- 3) a) Montrer que la fonction $u: x \mapsto xe^{-x}$ est une solution de (E).
 - b) Résoudre l'équation différentielle (E_0): y' + y = 0
 - c) Montrer qu'une fonction g est solution de (E) si et seulement si la fonction (g-u) est solution de (E_0) .
 - d) En déduire que pour tout réel x, on a : $f(x) = (x + 2)e^{-x}$
- 4) a) Montrer que la fonction f réalise une bijection de $[-1,+\infty[$ sur un intervalle J qu'on précisera. (On note f^{-1} sa fonction réciproque)
 - b) Montrer que pour tout entier $n \ge 1$, l'équation $f(x) = \frac{1}{n}$ admet une unique solution α_n dans l'intervalle $[-1, +\infty[$.
 - c) Montrer que la suite (α_n) est croissante sur IN^* et que $\lim_{n \to +\infty} \alpha_n = +\infty$

EXERCICE 2:

On considère la suite (Un) définie sur IN* par :

$$U_n = \sum_{k=1}^n (-1)^k \frac{k}{e^k} = -\frac{1}{e} + \frac{2}{e^2} - \frac{3}{e^3} + \dots + (-1)^n \frac{n}{e^n}$$

- 1) a) Montrer que pour tout entier naturel n on a , (2n+2) (2n+1)e < 0.
 - b) Montrer que pour tout entier naturel non nul n on a :

$$U_{2n+2} - U_{2n} = \frac{1}{e^{2n+2}} [(2n+2) - (2n+1)e]$$

en déduire que la suite $(U_{2n})_{n\geq 1}$ est décroissante.

- Montrer que la suite (U_{2n+1})_{n≥1} est croissante.
- 3) a) Montrer que pour tout entier naturel non nul n, $U_{2n} > U_{2n+1}$
 - b) Calculer $\lim_{n\to+\infty} (U_{2n} U_{2n+1})$
- 4) Montrer que la suite (u_n) converge vers un réel α et que U₃ < α < U₂

EXERCICE 3 :

On pose $u_n = \int_0^1 (1-x)^n e^x dx$ pour tout $n \in IN^*$.

- 1) Donner la valeur du terme u_1 .
- 2) a) Montrer que la suite (u_n) est décroissante et que $u_n \ge 0 \ \forall \ n \in IN^*$.
 - b) En déduire que la suite (u_n) est convergente.
- 3) Montrer à l'aide d'une intégration par parties, que :

$$u_{n+1} = -1 + (n+1)u_n \ \forall \ n \in IN^*.$$

4) Montrer que pour tout $n \in IN^*$ on a : $\frac{1}{n+1} \le u_n \le \frac{1}{n}$. Déterminer alors $\lim_{n \to +\infty} u_n$

EXERCICE 4:

Soit la fonction f définie sur $[0, +\infty[$ par $: f(x) = \begin{cases} \frac{2x - lnx}{2\sqrt{x}} & si \ x > 0 \\ 0 & si \ x = 0 \end{cases}$

- 1) a) Etablir le tableau de variation de la fonction g définie sur $]0,+\infty[$ par : $g(x)=x-1+\frac{lnx}{2}$
 - b) Calculer g(1). En déduire le signe de g(x) pour tout x > 0.
- 2) a) Montrer que pour tout x > 0, $f'(x) = \frac{g(x)}{2x\sqrt{x}}$
 - b) Dresser alors le tableau de variation de f.
- 3) A l'aide d'une intégration par partie, calculer l'intégrale $J = \int_1^2 f(x) dx$
- 4) Soit (u_n) la suite définie sur IN^* par : $u_n = \frac{1}{n} \sum_{k=0}^n f(1 + \frac{k}{n})$.
 - a) Montrer que pour tout entier k tel que $0 \le k \le n-1$, on a :

$$\frac{1}{n}f(1+\frac{k}{n}) \le \int_{1+\frac{k}{n}}^{1+\frac{k+1}{n}}f(x)dx \le \frac{1}{n}f(1+\frac{k+1}{n})$$

- b) Montrer que $J + \frac{f(1)}{n} \le u_n \le J + \frac{f(2)}{n}$
- c) En déduire $\lim_{n\to+\infty}u_n$

EXERCICE 5 : Bac 2018

- 1) Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=1-x+x\ln x$.
 - a) Etudier les variations de g.
 - b) En déduire que pour tout $x \in]0,+\infty[$, $1+x \ln x \ge x$.
- 2) Soit f la fonction définie sur $\left[0,+\infty\right[$ par $\left\{\begin{array}{ll} f(x)=\frac{1}{1+x\ln x} & \text{si } x>0,\\ f(0)=1. \end{array}\right.$

On note (C_f) sa courbe représentative dans un repère orthonormé (O, i, j).

- a) Montrer que f est continue à droite en 0.
- b) Montrer que $\lim_{x\to 0^+} \frac{f(x)-1}{x} = +\infty$. Interpréter graphiquement.
- c) Calculer $\lim_{x \to \infty} f(x)$. Interpréter graphiquement.
- 3) a) Montrer pour tout $x \in \left]0,+\infty\right[$, $f'(x) = -\frac{1+\ln x}{\left(1+x\ln x\right)^2}$.
 - b) Dresser le tableau de variation de f.
- 4) Dans la figure 2 de l'annexe jointe, on a tracé dans un repère orthonormé (O, i, j), les courbes
 - $(C_1) \text{ et } (C_2) \text{ des fonctions définies sur }]0, +\infty \big[\text{ respectivement par } x \mapsto \ln x \text{ et } x \mapsto \frac{1}{x}.$
 - a) Construire le point A de (C_1) d'abscisse $\frac{1}{e}$ et le point B de (C_2) d'abscisse $1 \frac{1}{e}$.

En déduire une construction du point C de (C_f) d'abscisse $\frac{1}{e}$.

b) Déduire de la question 1) b) que pour tout $x \in \left] \ 0, +\infty \right[, \quad f(x) \leq \frac{1}{x}$

Déterminer alors la position relative de (C_f) et (C_2) .

- c) Tracer la courbe (Cf).
- 5) On considère la fonction F définie sur $[1, +\infty[$ par $F(x) = \int_1^x f(t) dt$.
 - a) Montrer que pour tout $t \in [1, +\infty[, \frac{1}{t + t ln(t)} \le f(t).$
 - b) Montrer alors que pour tout $x \in [1, +\infty[$, $\ln(1+\ln x) \le F(x) \le \ln x$.
 - c) Déterminer $\lim_{x \to +\infty} F(x)$ et $\lim_{x \to +\infty} \frac{F(x)}{x}$.
- 6) Soit n un entier naturel non nul.
 - a) Montrer que la fonction $h: x \mapsto x F(x)$ est une bijection de $[1, +\infty[$ sur $[1, +\infty[$.
 - b) En déduire que l'équation h(x) = n admet dans $[1, +\infty[$ une seule solution α_n .
 - c) Montrer que $\lim_{n\to\infty} \alpha_n = +\infty$.
 - d) Vérifier que $\frac{\alpha_n}{n} = \frac{1}{1 \frac{F(\alpha_n)}{\alpha_n}}$. Déterminer alors $\lim_{n \to +\infty} \frac{\alpha_n}{n}$.

