

COMM054: Data Science SURREY Principles & Practices

Introduction to Data Visualisaton

Dr. Manal Helal

24 October 2019

Outline

- Exploratory Data Analysis
- Distributions & Outliers
- Developing a Visualization Aesthetic
- Chart Types

We will be experimenting with the body measurement data set **NHANES**, available at: https://www.statcrunch.com/app/index.php?dataid=1406047

Exploratory Data Analysis

- Answer the following Questions:
 - Who constructed this data set, when, and why?
 - National Health and Nutrition Examination Survey 2009–2010
 - How big is it?
 - This data set has 4978 records (2452 men and 2526 women), each with seven data fields plus gender.
 - What do the fields mean?
 - Which fields are numerical or categorical? Gender?
 - What units were the quantities measured in? lengths and weight are metric
 - Which fields are IDs or descriptions, instead of data to compute with?

Exploratory Data Analysis - Cont'd

- Look for familiar or interpretable records
- Summary statistics
 - Tukey's five number summary for numerical values: max, min, median and quartile elements
 - Unique Labels for categorical values, and the frequencies.
- Pairwise correlations
 - Either all pairs, or at least all columns against a dependent variable of interest
 - What is the correlation between height and weight for men vs. women? Can you justify this?
- Class breakdowns
- Plots of distributions

Distributions & Outliers

- You will be given 4 datasets, with identical means, variances, and the exact same correlation between the x and y values.
- First one has a linear trends linear,
- The second looks almost parabolic.
- Two others are almost perfectly linear modulo outliers, but with wildly different slopes.
- Dot Plots makes you instantly see the outliers and the distributions.

Developing a Visualization Aesthetic

- Maximize data-ink ratio by eliminating background grids, shading, shadows, tic-marks, and use 2D when 3D is not telling more.
- Minimize the lie factor. This could happen if you:
 - Presenting means without variance
 - Presenting interpolations without the actual data
 - Distortions of scale:
 - Golden ratio: width should be 1.6 times the height.
 - 45 degree lines are the most readily interpretable
 - Eliminating tick labels from numerical axes
 - Hide the origin point from the plot

Developing a Visualization Aesthetic – Cont'd

- Minimize chartjunk created by packages
- Use proper scales and clear labeling
- Make effective use of color to highlight data properties
- Exploit the power of repetition

Chart Types

- Tables: precision, scale, multivariate, heterogenous, and compact.
 - Order rows for comparisons, order columns for relatedness
- Dot and line Charts: y = f(x)
 - Show data points, not just fits
 - Show the full variable range if possible
 - Admit uncertainty when plotting averages: standard deviation σ around y as a whisker, showing the interval $[y \sigma, y + \sigma]$.
 - Never connect points for categorical data: Bar Charts are better
 - Use color and hatching to distinguish lines/classes

Chart Types - Cont'd

- Scatter Plots: (x,y) points
 - Scatter the right-sized dots
 - Color or jiggle integer points before scatter-plotting them, or reduce opacity
 - Project multivariate data down to two dimensions, or use arrays of pair- wise plots: USE PCA or SOM, will revisit later
 - Three-dimensional-scatter plots help only when there is real structure to show
 - Bubble plots vary color and size to represent additional dimensions

Chart Types – Cont'd

- Bar Plots and Pie Charts: categorical variables
 - Directly label slices of the pie
 - Use bar charts to enable precise comparisons
 - Scale appropriately, depending upon whether you seek to highlight absolute magnitude or proportion
- Histograms: frequency distribution
 - Where is the peak of the distribution, and is the mode near the mean?
 - Is the distribution symmetric or skewed?
 - Where are the tails?
 - Might it be bimodal, suggesting that the distribution is drawn from a mix of two or more underlying populations?

Chart Types – Cont'd

- Data Maps:
 - The map has a story to tell
 - Regions are contiguous, and adjacency means something
 - The squares are big enough to see
 - It is not too faithful to reality:

Libraries Used in the lab

- Scipy stats contains a large number of probability distributions as well as a growing library of statistical functions.
- matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.
- PyLab belongs to Matplotlib that combines the numerical module numpy with the graphical plotting module pyplot.
- Pygooglechart is a complete Python wrapper for the Google Chart API
- **Xport (did not work, used pyreadstat instead)** contain utility functions for reading the whole binary XPT file and loading the rows into a Python data structure. The to_rows function will simply return a list of rows. The to_columns function will return the data as columns rather than rows.
- xlrd is a library for reading data and formatting information from Excel files, whether they are .xls or .xlsx files
- Re is a python module that provide regular expressions operations.
- There is also a class of third-party systems for building dashboards, like Tableau to build iinteractive Dashboards for the leess technical users of your project.