We acknowledge and celebrate the First Australians on whose traditional lands we meet, and pay our respect to the elders past and present.

DEMO2002

POPULATION ANALYSIS

Vladimir Canudas-Romo

School of Demography
Research School of Social Sciences

Me...& you?

Phd
Univ. Groningen, NLD
Max-Planck Institute, DEU

Researcher
Penn State, USA
UC, Berkeley, USA

Faculty
Johns Hopkins University, USA
MaxO, DNK
ANU, AUS

Me...& you?

Course style

- 3 hours per week
 - A demographic question?
 - Learn methods
 - computer lab R

Course style

Facilitation of YOUR LEARNING

ACTIVE participation is highly recommended

Preparatory readings and R-activities will increase learning

Course outcomes

- 1. Demographic change
- 2. Demographic measures: Fertility, mortality& migration
- 3. Analyse demographic data: R & databases

Biological Sciences

Demography

Social Sciences

Mathematics
Statistics

course materials

Course outline

Week/	Date	Topic	Readin	g material	Assessment
Session			(Presto	on et al. book, P)	
			(Popula	ation Analysis www, PA)	
1	20/Feb	Introduction	P chapt	er 1; PA section 1,2	
2		Fertility I	P 2,5;	PA 4,5	
3		Fertility II	P 5;	PA 4,5	
4		Mortality I	P 3;	PA 6-8	
5		Mortality II	P 3;	PA 6-8	
6	27/Mar	Migration		PA 9	
	ANU break				
7	17/Apr	MID-TERM EXAM			
8		Population Growth	P 2;	PA 3	
9		Forecasting	PA 10		
10		Forecasting			
11	15/May	Population Health Family Formation	P3 wa	attle material	
12	22/May	FINAL EXAM			

Main Texts (...)

 Preston SH, Heuveline P and Guillot M (2001) Demography: Measuring and Modeling Population Processes. Oxford: Blackwell.

IUSSP: Population Analysis for Policies
 & Programmes

(http://papp.iussp.org/index.html)

Free software

https://www.r-project.org/

https://www.rstudio.com/

You can learn more about R at

https://www.youtube.com/c/rprogramming101

Assessment

Assessment

Assessment Task	Value	Due Date	Date for Return of Assessment
1. midterm exam	(33%)	17/April	2 weeks after
2. Final exam	(33%)	22/May	
3. participation	(34%)		

Midterm exam Demo2002 "Population Analysis"

- i. On Wattle, students have access to the exam and data used at 9am.
- ii. Each question (1.a, 1.b, etc) is equivalent to 10% of the exam.
- iii. Calculations will be needed to solve the exam and students can use any software for that (R, excel, any...). Please do NOT include excel files or R code in your answers, just the final output that you are requested, either a Table or Figure.
- iv. Students should submit a PDF of their exam answers in turnitin before noon (12pm). Late submission (5% rate).

Name:	
ANU u-ID:	
1) Fertility: In Wattle you can find the age-specific fertility rates by birth order for the USA (from the file "USA.txt").	
1.a) Present one plot including the USA age-specific fertility rates and describe	
1.d) Present <u>a Table</u> including TFR, and the Mean Age at Childbearing (MAC), and describe	

Assessment

Weekly assessment:

Details of task: ONE page including a plot from an assigned topic and a brief description.

Assessment Rubrics

Presentation requirements: One page including a plot similar to the exercise made in class in R, but with a different country and a short description of the result.

Individual Assessment.

Assessment

Turnitin

Extensions and late submission (5% rate)
 of assessment pieces are covered by the
 Student Assessment (Coursework) Policy
 and Procedure.

Feedback

Feedback

Students will be given feedback in the following forms:

- Written comments on assignments
- Class and individual feedback during all computer-based learning activities in class
- Class feedback via verbal comments

Feedback

 Student Experience of Learning Support (SELS) surveys.

Anonymous feedback at end of course

http://unistats.anu.edu.au/surveys/selt/students/

- Early and ongoing opportunities for anonymous feedback through online forum.
- PLEASE PROVIDE FEEDBACK

Class representatives...?

Receiving times: Consultation by appointment

vladimir.canudas-romo@anu.edu.au

DEMO2002

POPULATION CHANGE

School of Demography
Research School of Social Sciences

	Pt2	Pt1	Bt1_t2	Dt1_t2	Mt1_t2
Country1	?	22,930,591	303,266	148,222	216,874
Country2	?	125,897,863	1,030,251	1,269,404	26,050
Country3	?	143,346,675	1,895,822	1,871,809	301,724

Population at time 2? Which country?

	Pt2	Pt1	Bt1 t2	Dt1 t2	Mt1_t2
					_
Country1	23,302,509	22,930,591	303,266	148,222	216,874
Country2	125 684 760	125,897,863	1,030,251	1,269,404	26,050
Courtify2	123,004,700	123,037,003	1,000,201	1,203,404	20,000
Country3	143,672,412	143,346,675	1,895,822	1,871,809	301,724

Balance Equation

$$P_{t2} = P_{t1} + B - D + M$$

Population at a later time

= Initial population + entries - exits

	Pt2	Pt1	Bt1 t2	Dt1 t2	Mt1 t2
	1 (2	1 (1	Dt1_t2	D(1_(2	1011 1_12
Australia	23,302,509	22,930,591	303,266	148,222	216,874
Japan	125.684.760	125,897,863	1,030,251	1,269,404	26,050
	0,00 .,1 00	0,00 . ,000	.,000,201	.,200, 101	20,000
Russia	143,672,412	143,346,675	1,895,822	1,871,809	301,724

Source: HMD. t1=2013, t2=2014

Balance Equation

	Pt2	Pt1	Bt1_t2	Dt1_t2	Mt1_t2
	00 000 700	00 000 504	000 000	4.40.000	040.074
Australia	23,302,509	22,930,591	303,266	148,222	216,874
	40-004-00	40-00-00			
Japan	125,684,760	125,897,863	1,030,251	1,269,404	26,050
Russia	143,672,412	143,346,675	1,895,822	1,871,809	301,724

Balance Equation

$$P_{t2} = P_{t1} + B - D + M$$

Population at a later time

= Initial population + entries - exits

Population Change

$$P_{t2} - P_{t1}$$
 = Population Change

Population Change

$$P_{t2} - P_{t1} =$$
 Population Change

$$\frac{P_{t2} + P_{t1}}{2} = PY$$
Mid-year population

Balance Equation

$$P_{t2} = P_{t1} + B - D + M$$

Population at a later time

= Initial population + entries - exits

Population Change

$$\frac{P_{t2} - P_{t1}}{PY} = \frac{B}{PY} - \frac{D}{PY} + \frac{M}{PY}$$

Population Change

$$r = b - d + m$$

Population growth =

Crude birth rate

- Crude death rate
- Net migration rate

	Pt2	Pt1	Bt1_t2	Dt1_t2	Mt1_t2
	00 000 700	00 000 504	000 000	4.40.000	040.074
Australia	23,302,509	22,930,591	303,266	148,222	216,874
	40-004-00	40-00-00			
Japan	125,684,760	125,897,863	1,030,251	1,269,404	26,050
Russia	143,672,412	143,346,675	1,895,822	1,871,809	301,724

	PY	r	b	d	m
Australia	23116550	1.61	1.31	0.64	0.94
Japan	125791311.5	-0.17	0.82	1.01	0.02
Russia	143509543.5	0.23	1.32	1.30	0.21

Preston et al. book, Chapter 1

Population Analysis www, Section 1,2

Joel Cohen
Why should you study demography?

https://www.youtube.com/watch?v=2 vr44C G0-o&feature=emb logo