Bias-variance decomposition Gradient boosting

Vladislav Goncharenko

ML researcher

Outline

- 1. Intuitions
- 2. Gradient boosting theory
- 3. Examples
- 4. Libraries
- 5. Feature importances
- 6. Hyperparameter optimization

Ensembling recap

girafe

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.

Bias-variance decomposition

girafe

Bias-variance tradeoff

Bagging motivation

Bias-variance tradeoff

Bias-variance tradeoff

Randomness in error

- 1. Random sampling in training procedure
 - a. for Linear model initial weights
 - b. for Tress feature and threshold sampling
 - c. for SGD sampling of batches
- 2. Computational errors due to limited precision arithmetics
- 3. Target noise
 - a. epsilon in regression model
- 4. Objects sampling

GB derivation for MSE

\$\$


```
$$L\in R; y\in R^n; p\in R^n$$
    $$
 \textstyle{\frac{\partial}{\partial{p}}} L(y, p) = [{\frac{\partial}{\partial{p_1}}} L(y, p),
  {\frac{p_2}} L(y, p), ...
  $$
  $$
1/n \cdot \frac{p_i}{p_i} \cdot \frac{p_i}{p
 -2 (y_2 - p_2), ...
```

GB derivation for MSE

$$f_{1}(x) = f_{1}(x; \bar{y}); g_{i} = \sum_{k=1}^{i} f_{i}(x)$$

$$f_{1} = \begin{pmatrix} f_{1}(x_{i}) \\ f_{2}(x_{1}) \end{pmatrix}; g_{i} = \begin{pmatrix} g_{i}(x_{1}) \\ g_{i}(x_{2}) \end{pmatrix}$$

$$L(\bar{y}; \bar{g}_{2}) \Rightarrow \min$$

$$2L(\bar{y}; \bar{g}_{2}) = 2L(\bar{y}; \bar{g}_{1} + \bar{f}_{2}) = 2L(\bar{y}; \bar{g}_{1} + \bar{f}_{2}) = 2L(\bar{y}; \bar{g}_{1})$$

$$= 2L(\bar{y}; \bar{g}_{2}) = 2L(\bar{y}; \bar{g}_{1} + \bar{f}_{2}) = 2L(\bar{y}; \bar{g}_{1} + \bar{f}_{2}) = 2L(\bar{y}; \bar{g}_{2})$$

$$= 2L(\bar{y}; \bar{g}_{2}) = 2L(\bar{y}; \bar{g}_{2})$$

$$= 2L(\bar{y}; \bar{g}_{2}) = 2L(\bar{y}; \bar{g}_{2})$$

$$= 2L(\bar{y}; \bar{g}_{2}) = 2L(\bar{y}; \bar{g}_{2})$$

Bias-variance decomposition

$$egin{aligned} ext{MSE} &= \left(f(x) - \mathbb{E} ig[\hat{f} \left(x
ight) ig]
ight)^2 + \mathbb{E} ig[\left(\mathbb{E} ig[\hat{f} \left(x
ight) ig] - \hat{f} \left(x
ight)
ight)^2 ig] + \sigma^2 \ &= ext{Bias} \left(\hat{f} \left(x
ight)
ight)^2 + ext{Var} \left[\hat{f} \left(x
ight) ig] + \sigma^2 \end{aligned}$$

Contemporary hypothesis

For contemporary LLMs and other big models "double descent" theory is being developed, see https://www.youtube.com/watch?v=5-QjjOYfeSI

Boosting intuition

girafe ai

Boosting for _MSE_

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

^{*} in case of MSE loss

Boosting: intuition

Binary classification

Use decision stumps

Boosting: intuition

Binary classification

Use decision stumps.

Boosting: intuition

Binary classification

Use decision stumps.

$$\hat{f}_T(x) = \sum_{t=1}^T \rho_t h_t(x) =$$

girafe ai

 $\{(x_i,y_i)\}_{i=1....n}$, loss function L(y,f)Denote dataset

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg min}} L(y, f(x)) = \underset{f(x)}{\operatorname{arg min}} \mathbb{E}_{x,y}[L(y, f(x))]$$

Let it be from parametric family:

$$\hat{f}(x) = f(x, \hat{\theta}),$$

$$\hat{\theta} = \arg\min \mathbb{E}_{x,y}[L(y, f(x, \theta))]$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

What if we could use gradient descent in space of our models?

 $\theta_{t+1} = \theta_t - \text{learning rate} \cdot \frac{\partial}{\partial \theta} Loss$

What if we could use gradient descent in space of our models?

$$\hat{f}(x) = \sum_{i=1}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

GB examples

girafe ai

Tree vs GB demo

Boosting

Gradient boosting

What we need:

- Data
- Loss function and its gradient
- Family of algorithms (with constraints if necessary)
- Number of iterations M
- Initial value (GBM by Friedman): constant

Gradient boosting: example

What we need:

- Data: toy dataset $y = cos(x) + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{5}), x \in [-5, 5]$
- Loss function: MSF
- Family of algorithms: decision trees with depth 2
- Number of iterations M = 3
- Initial value: just mean valu

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions

Spam Data

California Housing Data

Boosting with linear classification methods

	Training	Inference
Bagging	parallel	parallel
Boosting	sequential	parallel

Libraries for GB

girafe ai

Main contemporary instruments

- 1. Catboost by Yandex
 - https://catboost.ai/
 - a. Explained by core developer for girafe-ai slides
- 2. LightGBM by Microsoft
 - https://lightgbm.readthedocs.io/en/latest/index.html
- 3. XGboost by community https://xgboost.readthedocs.io/en/stable/

<u>Definitely not sklearn!</u>

Boosting explained in verse!

- 1. <u>Boosting explained</u>
- 2. XGBoost expained

Gradient Boost Part 1...

Predicted Drug Effectiveness 0.5

5	-5	-5.5
10	-7	-7.5
21	7	6.5
25	8	7.5

Dosage	Drug Effectiveness	Residuals
???	-3	-3.5
???	-2	-2.5

The first **Gain** value, which we will call **Gain**_{Left}, is calculated by putting all of the **Residuals** with missing **Dosage** values into the leaf on the left.

...Regression Main Ideas!!!

Dive to Catboost

- https://www.youtube.com/watch?v=s4GWmfB9VTA
- https://github.com/girafe-ai/journal-club/blob/master/slides/08%20CatBoosting.pdf

Форма дерева – CatBoost – SymmetricTree

More on boosting

- https://habr.com/ru/companies/ods/articles/645887/
- https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgb
 m
- https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40
 662924
- https://www.springboard.com/blog/data-science/xgboost-random-forest-c atboost-lightgbm/
- https://towardsdatascience.com/performance-comparison-catboost-vs-xg
 boost-and-catboost-vs-lightgbm-886c]c96db64

Feature importances

girafe ai

Shap values

Explanation

Shap values

$$\Phi_{i} = \sum_{S \subseteq \{1,\dots,p\}\{i\}} \frac{|S|!(p-|S|-1)!}{p!} [val(S \cup \{i\}) - val(S)]$$
Weight

Marginal contribution of player i to coalition S

p! = number of ways to form a coalition of p players

|S| = number of players in coalition S

|S|! = number of ways coalition S can form

(p-|S|-1)! = number of ways players can join after player i joins

44

Shap values calculation

Coalition values

$$C_{12} = 10,000$$
 $C_{1} = 7,500$
 $C_{2} = 5,000$
 $C_{0} = 0$

$$C_{\star} = 7,500$$

$$C_0 = 5,000$$

$$C^0 = 0$$

Marginal contribution

The increase in a coalition's value due to a player joining that coalition

$$C_{12} - C_{2} = 5,000$$

 $C_{1} - C_{0} = 7,500$

$$(5,000+7,500)/2$$
 = **\$6,250**

$$C_{12} - C_{1} = 2,500$$

 $C_{2} - C_{0} = 5,000$

$$(2500+5000)/2$$
 = \$3,750

Shap values calculation

$$\mathbf{C_{0}} = 10,000$$

 $\mathbf{C_{0}} = 0$

$$\mathbf{C_{12}} = 7,500$$
 $\mathbf{C_{13}} = 7,500$
 $\mathbf{C_{23}} = 5,000$

$$\mathbf{C_1} = 5,000$$

 $\mathbf{C_2} = 5,000$
 $\mathbf{C_3} = 0$

$$\mathbf{C}_{123} - \mathbf{C}_{23} = 5,000$$
 $\mathbf{C}_{12} - \mathbf{C}_{2} = 2,500$
 $\mathbf{C}_{13} - \mathbf{C}_{3} = 7,500$
 $\mathbf{C}_{1} - \mathbf{C}_{0} = 5,000$

$$5,000*(\frac{1}{3}) + 2,500*(\frac{1}{6})$$

+ $7,500*(\frac{1}{6}) + 5,000*(\frac{1}{3})$
= \$5,000

Shap values calculation

$$\mathbf{C}_{123} - \mathbf{C}_{23} = 5,000$$

 $P(C_{123} - C_{23})$ = probability that player 1 makes a marginal contribution to a coalition of player 2 and 3

$$3! = 6$$

$$P(C_{123} - C_{23}) = 2/6 = 1/3$$

Shap values axioms

Shap values for ML

Shap values for ML

Hyperparameter optimization

girafe ai

Optimization note

In optimization theory methods are associated with the order of derivatives they use. Main ones are:

- first order optimization (gradient based optimization)
 - use gradient of optimized function
 - e.g. SGD which we discussed
- second order optimization (<u>Newton's method</u>)
 - use Hessian matrix
 - they are quite slow
- zero order (black box optimization)
 - o don't need gradient, only values of optimized function
 - o that's what we are interested in today

0-order optimization approaches

- 1. Manual trials
- 2. Grid search
- 3. Random search

Important feature

In theory

0-order optimization approaches

- Manual trials
- 2. Grid search
- 3. Random search

0-order optimization approaches

- 1. Manual trials
- 2. Grid search
- 3. Random search
- 4. Bayesian methods
- 5. Evolutionary methods

Main libraries

*

- Hyperopt
- Optuna

Revise

- 1. Intuitions
- 2. Gradient boosting theory
- 3. Examples
- 4. Libraries
- 5. Feature importances
- 6. Hyperparameter optimization

Thanks for attention!

Questions?

