MCNP Basics

Basic Geometry
Cell Cards
Surface Cards
Data Cards

MCNP Basic Input

(MCNP5 manual, Volume II, Chapter 3)

Input File

Title line
Cell Cards
Surface Cards
Data Cards

Execution Line

MCNP INP File

```
TITLE line ...
                            (required!)
Cell Cards
blank line separator
Surface Cards
blank line separator
Data Cards
blank line separator (optional)
         (these lines would be ignored - useful for notes or saving options)
```

Input Characteristics

- Mnemonics (card names) <u>begin within first 5 columns</u>
- Input lines 80 columns
- Free field format
- Alphabetic characters are not case sensitive: UC, Ic, MIXeD
- Continuation: 5 blanks or &
- Comment CARDS begin with "c "
- In-line comments begin with \$
- Use spaces don't use tabs (tabs are OK with MCNP5-1.51)
- For most numbers, these are the same:
 - 1 1. 1.0 1e0 1e+00 1.0e+0
- To read a section of input from another file (for MCNPX) :

```
READ FILE=filename
```

Units

```
cm, g, MeV, atoms/barn-cm, shakes (1 \text{ sh} = 10^{-8} \text{ sec})
```

Simple Input Example

CELL CARDS

MCNP Cells

- Cells are the basic geometry unit
 - volume of space bounded by surfaces
 - Cartesian coordinate system
 - Volumes calculated for many simple cells, not for complicated ones
- Cells are used for:
 - constructing the model
 - specifying the materials
 - variance reduction methods
 - performing tallies

- All of space must be defined
 - Every xyz point will lie either on a surface or within a uniquely defined cell.
 - At least one cell will describe the problem exterior (outside world)

- Repeated structure and lattice ability
 - Cells may contain embedded geometry - lattice or repeated structure

Cell Card Format Examples

```
Cell # Mat #
                               Surfaces
                                                        Cell Data
               Den
   10
         300
               9.65e-2
                               1 -2 3 -4 5 -6
                Positive Density ⇒ atoms/barn-cm
                               Surfaces
                                                        Cell Data
Cell #
       Mat #
               Den
   10
         300
               -1.0
                               1 -2 3 -4 5 -6
                                                        imp:n=1.0
                Negative Density \Rightarrow g/cm<sup>3</sup>
                               Surfaces
                                                        Cell Data
Cell #
       Mat #
               Den
  20
                                 -7:8: -9
         0
                Voids \Rightarrow Material # = 0, omit Density
```

SURFACE CARDS

MCNP Surfaces

- Surfaces are used to define space
 - sign defines surface "sense" (+ or -)
 - combined with Boolean operators
 - intersection space
 - union
 - complement #
- First, second, fourth order equations (26):
 - plane
 - sphere
 - cylinder
 - cone
 - ellipsoid, hyperboloid, paraboloid
 - torus (elliptical or circular)

- Macrobodies
 - Primitive bodies box, finite cylinder, sphere, ...
 - MCNP internally translates to collections of surfaces
- Can also specify surface by giving a few points (see manual)
- Special boundary types
 - reflecting (mirror)
 - white (isotropic)
 - Periodic
- Most surface areas calculated

Surface Card Format

```
Surface #
               Name
                              Data
   10
                              5.0
               рх
               plane normal to x-axis
                      equation: x - D = 0 data = D
                              11.1
  50
               SO
               sphere at origin
                      equation: x^2 + y^2 + z^2 - R^2 = 0 data = R
                        -6.0 0.0 0.0 12.0 0.0 0.0
  30
                                                           4.0
               rcc
               right circular cylinder
                      12.0—cm high can about x-axis,
                      center of base at x = -6.0,
                      radius 4.0
```

MCNP Surface Cards

Table 3.1: MCNP Surface Cards

Mnemonic	Type	Description	Equation	Card Entries
P	Plane	General	Ax + By + Cz - D = 0	ABCD
PX		Normal to X-axis	x-D=0	D
PY		Normal to Y-axis	y-D=0	D
PZ		Normal to Z-axis	z-D=0	D
SO	Sphere	Centered at Origin	$x^2 + y^2 + z^2 - R^2 = 0$	R
S		General	$(x-\bar{x})^2 + (y-\bar{y})^2 + (z-\bar{z})^2 - R^2 = 0$	$\bar{x} \; \bar{y} \; \bar{z} \; R$
SX		Centered on X-axis	$(x-\bar{x})^2 + y^2 + z^2 - R^2 = 0$	$\bar{x} R$
SY		Centered on Y-axis	$x^2 + (y - \bar{y})^2 + z^2 - R^2 = 0$	$\bar{y} R$
SZ		Centered on Z-axis	$y^2 + y^2 + (z - \bar{z})^2 - R^2 = 0$	₹ R
C/X	Cylinder	Parallel to X-axis	$(y-\bar{y})^2 + (z-\bar{z})^2 - R^2 = 0$	$\bar{y} \; \bar{z} \; R$
C/Y		Parallel to Y-axis	$(x-\bar{x})^2 + (z-\bar{z})^2 - R^2 = 0$	$\bar{x} \bar{z} R$
C/Z		Parallel to Z-axis	$(x-\bar{x})^2 + (y-\bar{y})^2 - R^2 = 0$	$\bar{x} \; \bar{y} \; R$
CX		On X-axis	$y^2 + z^2 - R^2 = 0$	R
CY		On Y-axis	$x^2 + z^2 - R^2 = 0$	R
CZ		On Z-axis	$x^2 + y^2 - R^2 = 0$	R

MCNP Surface Cards

K/X	Cone	Parallel to X-axis	$\sqrt{(y-\bar{y})^2 + (z-\bar{z})^2} - t(x-\bar{x}) = 0$	$\bar{x}\ \bar{y}\ \bar{z}\ t^2 \pm 1$
K/Y		Parallel to Y-axis	$\sqrt{(x-\bar{x})^2 + (z-\bar{z})^2} - t(y-\bar{y}) = 0$	$\bar{x} \ \bar{y} \ \bar{z} \ t^2 \pm 1$
K/Z		Parallel to Z-axis	$\sqrt{(x-\bar{x})^2 + (y-\bar{y})^2} - t(z-\bar{z}) = 0$	$\bar{x} \ \bar{y} \ \bar{z} \ t^2 \pm 1$
KX		On X-axis	$\sqrt{y^2+z^2}-t(x-\bar{x})=0$	$\bar{x} t^2 \pm 1$
KY		On Y-axis	$\sqrt{x^2+z^2}-t(y-\bar{y})=0$	$\bar{y} t^2 \pm 1$
KZ		On Z-axis	$\sqrt{x^2+y^2}-t(z-\bar{z})=0$	$\bar{z} t^2 \pm 1$ ± 1 used only for 1 sheet cone
SQ	Ellipsoid Hyperboloid Paraboloid	Axis parallel to X-, Y-, or Z-axis	$A(x-\bar{x})^{2} + B(y-\bar{y})^{2} + C(z-\bar{z})^{2} + 2D(x-\bar{x}) + 2E(y-\bar{y}) + 2F(z-\bar{z}) + G = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GQ	Cylinder Cone Ellipsoid Hyperboloid Paraboloid	Axes not parallel to X-, Y-, or Z-axis	$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz$ $+Fzx + Gx + Hy + Jz + K = 0$	A B C D E F G H J K
TX	Elliptical or circular torus.	$(x-\bar{x})^2/B^2+(\sqrt{(}$	$(y-\bar{y})^2 + (z-\bar{z})^2 - A)^2/C^2 - 1 = 0$	$\bar{x} \; \bar{y} \; \bar{z} \; A \; B \; C$
TY	Axis is parallel to X -, Y -, or Z -axis	$(y-\bar{y})^2/B^2+(\sqrt{(}$	$(z-\bar{x})^2+(z-\bar{z})^2-A)^2/C^2-1=0$	$\bar{x} \bar{y} \bar{z} A B C$
TZ		$(z-\bar{z})^2/B^2 + (\sqrt{(x-\bar{x})^2 + (y-\bar{y})^2} - A)^2/C^2 - 1 = 0 \qquad \qquad \bar{x} \bar{y} \bar{z} A B C$		
XYZP		Surfaces defin	ed by points See page	s 3–15 and 3–17

MCNP Macrobodies

Rectangular Parallelepiped xmin xmax ymin ymax zmin zmax RPP **Right Circular Cylinder** RCC Vx Vy Vz Hx Hy Hz R Vx Vy Vz = center of base Hx Hy Hz = axis of cylinder, magnitude = height R = radius **Sphere** Vx Vy Vz SPH

Others

ARB, BOX, ELL, HEX, REC, RHP, TRC, WED

Surface Sense

$$F(X,Y,Z) = S$$

where

F = 0 is a surface equation

X,Y,Z arbitrary 3-D coordinate

s result of xyz point in equation

S > 0 positive sense, "outside"

S = 0 zero, point "on" surface

S < 0 negative sense, "inside"

For macrobodies,

- inside the body is defined to have negative sense,
- outside the body to have positive sense

Example

SO Surface Equation - sphere at origin

$$x^2 + y^2 + z^2 - R^2 = S$$
 $R = 3.0$

- Substitute (0,0,0), find S

$$0^2 + 0^2 + 0^2 - 3^2 = \text{neg}$$

Point (0,0,0) gives negative S.

Inside of sphere has negative sense

Substitute (4,0,0), find S

$$4^2 + 0^2 + 0^2 - 3^2 = pos$$

Point (4,0,0) gives positive S.

Outside of sphere has positive sense

Surface Sense

Planes

Note: The sense depends on the normalization of the surface equation. Multiplying both sides of the equation by -1 changes the sense. By convention, surface equations are defined & normalized so that the leading coefficient is positive.

Cylinders

Inside of cylinder has negative sense

Outside of cylinder has positive sense

DATA CARDS

Material Importance Sources Physics

Data Cards

<u>card type</u> <u>example</u>

Source sdef

Materials m

Tallies 1

Problem Cutoffs nps

Variance Reduction imp:n

Energy and Thermal Treatment mode

Peripheral Cards

ANY card other than cells and surfaces

Material Cards (Mn)

```
ZAID1 fraction1
Mn
                               ZAID2 fraction2
               = material number
       n
               = element or nuclide identifier:
       ZAID
                                                       777ΔΔΔ
                       ZZZ = atomic number
                       AAA = atomic mass
               Examples:
                       ^{235}U \Rightarrow 92235 \quad ^{16}O \Rightarrow 8016
                                                       Cu \Rightarrow 29000
       fraction:
                       positive = atom fraction of ZAID
                       negative = mass fraction of ZAID
```

- MCNP normalizes the fractions for a material to sum up to 1.0
- Density (g/cc or atoms/barn-cm) comes from the cell cards

Cell & Material Cards

Cell & material cards should be consistent

- The overall material density (g/cc or atoms/barn-cm) comes from the cell card where a material is used
- Fractions or number densities on a material card are normalized to sum up to 1.0

Examples

10 100 -1.0	1 -2	\$ cell: mat 100, 1 g/cc
m100 1001 2	8016 1	\$ mat: H2O, using atom fractions
10 100 0.100	1 -2	<pre>\$ cell: mat 100, .1 at/barn-cm</pre>
m100 1001 2	8016 1	\$ mat: H2O
10 100 0.100	1 -2	<pre>\$ cell: mat 100, .1 at/barn-cm</pre>
m100 1001 .06667	8016 .03333	\$ mat card: H2O

IMP:N Card

- Each cell must have an "importance"
 - Used for variance reduction
- Importance of "0" terminates particle
 - Outside world cell usually 0
- Can be in data card block

imp:n 1 2 4 0

or after surfaces on cell cards

20 0 -7:8:-9 imp:n=1 30 100 -1.0 1 2 3 imp:n=2

Source Cards

 For criticality calculations, can use KSRC card to define initial neutron starting points

- Can define any number of points, reused as needed
- Points are used ONLY for initial source guess, ignored on subsequent cycles
- For fixed-source or criticality calculations, can use SDEF card to define starting parameters for histories
 - Very general sources can be described
 - For criticality calculations, only used for initial source guess, ignored on subsequent cycles
- Cannot use both SDEF and KSRC in same calculation

Problem Cutoffs

Number of histories to be run (for fixed-source problems):

NPS N

- Terminate the Monte Carlo calculation after N histories have been run
- In a continue-run, NPS is the total number of particles including runs before the continue run (cumulative)
- Negative entry will print output file at time of last history run
- Number of cycles for KCODE (criticality problems):

KCODE npc kguess ndiscard ncycles

- Run ncycles (total), throw away first ndiscard cycles, npc neutrons/cycle
- In continue run, ncycle is total including from previous runs
- Computer time

CTME X

- X = Maximum amount of computer time (minutes) for MC calculation
- In a continue-run, CTME is the time relative to start of continue-run calculation; (i.e. not cumulative)

Energy and Thermal Treatment

Problem type:

MODE
$$< pl_1 > < pl_2 > ... < pl_n >$$

- List of all particles to be transported in space-delimited format
- If a particle is designated, the anti-particle will also be transported

Particle physics options:

PHYS:<pi>(list of input parameters)

- Controls physics options; format varies based on particle type
- Includes control of charged-particle straggling, upper energy limit, light ion recoil, implicit vs analog capture, bremsstrahlung production, secondary particle production, delayed gamma production, photonuclear particle production, fission multiplicity, etc.

Physics models (MCNPX):

LCA, LCB, LCC, LEA, LEB

- Use to set physics parameters for the Bertini, ISABEL, CEM03, INCL4 and FLUKA options
- All of the input values on the five cards have defaults that will be taken in the absence of the cards

MCNP Execution

MCNP Execution

(MCNP manual, Chapter 1)

mcnp5 i=inp01 o=outp01 ... [options]

Default <u>File Name</u>	<u>Description</u>	Options •	<u>Opera</u> Process i	
inp outp runtpe mctal meshtal	Input file ascii output file binary restart file ascii tally results mesh tallies (mcnp5)	p x r z	Plot geom Process x Particle tr Plot tally	netry sec's ansport
			default:	ixr

Examples:

mcnpo	ı=gav			
mcnp5	inp=test1	outp=test1o	run=test1r	ip
mcnp5	name=test	1		
mcnp5	i=test1 i	ΧZ		

Running MCNP

Geometry plotting:

mcnp5 i=inp ip <-- process input & plot geometry

Run a problem: mcnp5 i=inp

Creates files:

outp output file

runtpe restart file

mctal tally file

srctp source (for restart)

comout (if plotting)

last letter changed, if file already exists

Run a problem: mcnp5 n=inp

Creates files:

inpo output file

inpr restart file

inps source

inpc (if plotting)

aborts if any of these already exist

Example Problem - g1

Problem g1

Godiva critical -- using KSRC & surfaces

- Bare, high-enriched uranium sphere
- Sphere radius = 8.741 cm
- Material density = 18.74 g/cm3
- Nuclide Weight-fraction
 U235 94.73 92235
 U238 5.27 92238

- (1) Create & edit file "g1"
- (2) Add title, cell cards, surface cards, data cards

surface card (sphere at origin): surfnum so radius

also use these data cards:

kcode 1000 1.0 10 50 ksrc 0.0 0.0 0.0

(3) Plot the geometry: mcnp5 i=g1 ip

(4) Run the problem: mcnp5 i=g1

(5) Rerun the problem: mcnp5 i=g1

Comments - g1

KSRC 0.0 0.0 0.0

- isotropic point source at (0.0, 0.0, 0.0)
- used only for the source guess for initial cycle, ignored after that

KCODE 1000 1.0 10 50

- start 1000 particles
- initial guess for Keff = 1.0
- run 50 cycles, throw out the first 10

• imp:n 1 0

- First cell (10) has importance 1, second cell (20) has importance 0
- Could put this information on cell cards instead:

cleanup:

```
Cygwin: rm out* src* run* com*

DOS: del out* src* run* com*
```

Geometry Plotting

- Interactive 2-dimensional slices
- Errors displayed as dashed (red) lines
- Many problem variables can be shown:
 - cell & surface numbers
 - macrobody facets
 - importancesimp:n
 - lattice variables
 u, lat, fill, level
 - material properties rho, den,
 - variance reduction parameters
 - weight windows mesh

Geometry Plot Commands

(MCNP manual, Appendix B)

	X Y Z 5.0 0.0 5.0	Position the center of the plot window at (X,Y,Z).
EXTENT ex 25	EH 5.0	Scale the plot with extent EH Smaller EH, closer view
PX VX PY VY PZ VZ	px 3.0 py 5.0 pz 0.01	Set the view plane to x=VX y=VY z=VZ
	C DES	surface labels of size S cell labels of size C
la 0	1	
la 0	1 mat	DES is variable to display
la 0	2 den	(CEL, MAT, IMP:n, RHO,)

SDEF Source Examples

[Note: slides 34-37 give examples/recipes, see manual or "Sources" lecture for details]

Point source, isotropic in direction

SDEF x=1.0 y=3.2 z=0.0

Line source, isotropic in direction

SDEF x=d1 y=3.2 z=0.0 \$ sample x from distribution 1
SI1 -10.0 10.0 \$ source info, distrib 1
SP1 0.0 1.0 \$ source probabilities, distr 1

Volume source in a box, isotropic in direction

SDEF x=d1 y=d2z=d3\$ x,y,z from distributions -1.0 SI1 1.0 \$ extent for x \$ uniform **probabilities** for x SP1 0.0 1.0 \$ extent for y SI2 -0.0 3.2 SP2 0.0 1.0 \$ uniform **probabilities** for y \$ extent for z SI3 21.0 27.0 \$ uniform **probabilities** for z SP3 0.0 1.0

SDEF Examples

Volume source in a box, isotropic in direction, specified CELL

```
SDEF x=d1 y=d2 z=d3 cel=13
SI1 -1.0 1.0

⇒ Sample x from distribution 1,
then y from distribution 2,
then z from distribution 3,

⇒ then: accept x,y,z if that point is inside cell 13,
otherwise reject the point & try again
```

- Could use this approach for arbitrary shapes:
 - Sample in a box containing a spherical cell, then accept only if inside the cell
 - Efficiency of source sampling = (volume of cell) / (volume of box)

SDEF - Uniform Source in Sphere & Cylinder

Uniform source throughout volume of a sphere

SDEF pos= 1.0 2.0 3.0 rad=d1 si1 0.0 3.5 \$ inner & outer radii sp1 -21 2 \$ sample density $\sim R^2$

Why sample point density $\sim R^2$?

$$dV/dr = d(4/3 π R^3)/dr = 4πR^2$$

probability of point
in dV at radius R ~ R²

Uniform source throughout volume of a cylinder

 SDEF pos= 1. 2. 3. axs=0. 0. 1. rad=d1 ext=d2

 si1 0.0 3.5 \$ inner & outer radii

 sp1 -21 1 \$ sample density ~ R

 si2 -5.0 5.0 \$ axial, along axs vector

 sp2 0 1 \$ uniform axial

Why sample point density ~ R?

$$dV/dr = d(π R^2 h)/dr = 2πRh$$

probability of point
in dV at radius R ~ R

SDEF Examples

Two point isotropic 1-MeV photon sources on x-axis

```
SDEF ERG=1.00 PAR=2 POS=d5 $ E, particle type, location SI5 L -10 0 0 10 0 0 $ (x,y,z) for the 2 pt sources $ PS .75 .25 $ relative strength of each source
```


Point isotropic source with 4 discrete energy photons

```
SDEF POS 0 0 0 ERG=d1 PAR=2
SI1 L .3 .5 1. 2.5 $ the 4 discrete energies (MeV)
SP1 .2 .1 .3 .4 $ frequency of each energy
```


Point isotropic source with 4 histogram energy bins

```
SDEF POS 0 0 0 PAR=2 ERG=d1 $ position, particle type, E SI1 H .1 .3 .5 1. 2.5 $ histogram boundaries
SP1 D 0 .2 .4 .3 .2 $ probabilities for each bin
```

Point isotropic source with Maxwellian energy spectrum

```
SDEF POS 0 0 0 PAR=2 ERG=d1 $ position, particle type, E
SP1 -2 0.5 $ Maxwellian with temp a=0.5 MeV
```


Example Problem - g2

Problem g2

Godiva critical -- using SDEF

Same as Problem g1, but use SDEF to sample the starting source guess uniformly in the volume of the sphere

- (1) Copy file "g1" to "g2": cp g1 g2
- (2) Edit file "g2"

 Delete KSRC card

Add SDEF + SIn + SPn cards for uniform volume source in sphere

- (3) Plot the geometry: mcnp5 i=g2 ip
- (4) Run the problem: mcnp5 i=g2
- (5) Compare the initial & final Keff to Problem g1
- (6) Examine files created: Is
- (5) Cleanup: rm out* com* run* src* g2?

Comments - g2

Keff - initial & final

g1 - point source - K starts high, decreases to converged K

g2 - volume source - K starts low, increases to converged K

<u>Initial K</u> depends on your guess for the source

<u>Converged K</u> should be the same, regardless of initial guess (within statistics)

Files created

initial run, mcnp5 i=g2: outp, runtpe, srctp

Cleanup:

Cygwin: rm -f out* runtp* srct* comou*

DOS: del out* runtp* srct* comou*

MORE GEOMETRY

Boolean Intersection

surface 4

surface 2

INTERSECTION operator - blank between surfaces

-4 -2 means

negative sense wrt 4 AND negative sense wrt 2

Only space where BOTH criteria are true Only the space colored BOTH red AND blue

Intersection

Intersection

Intersection

All sense criteria must be true for points in Cell 10

```
":" between surfaces

+2:+4 means

positive sense wrt 2

OR positive sense wrt 4
```

OR BOTH

UNION operator

ONE sense criteria must be met for a point to be above 4 OR right of 2 OR BOTH

Surfaces:

1 px -5.0 2 px 5.0

3 py -5.0

4 py 5.0

Union logic for <u>Cell 20</u> definition:

-1:2:-3:4

Only one (or more) sense criteria need be true for points in Cell 20

Complement Operator

COMPLEMENT operator "#" before cell number

Cell 20

Cell 20 is the *opposite* (complement) of Cell 10

Cell 20 definition using complement operator:

20 0 #10

Note:

The MCNP manual discourages the use of the complement operator, claiming it can lead to very inefficient tracking. That is nonsense -- use it whenever it is convenient for setting up input.

Order of Operations

Intersections are done before unions

- **Example**

-1: -3 -2 is <u>not</u> the same as (-1:-3) -2

Example Problem

Plutonium Nitrate Solution In a Cylindrical tank

See Case Study #1
Sample input file: puc1

Plutonium Nitrate Solution in a Tank

Cell 10:

Radius = 12.49 cm

Height = 39.24 cm

Density = 9.9270e-2 atoms/b-cm

Cell 30:

Tank thickness = 0.3 cm

Bottom thickness = 1.0 cm

Top thickness = 1.0 cm

Inside height = 101.7 cm

Density = 8.6360e-2 atoms/b-cm

Composition of Materials 100 & 200

Material 100

Material 200

To save typing, just use these:

1001 6.0070e-2

8016 3.6540e-2 26056 1.0

7014 2.3611e-3

94239 2.7682e-4

Use this card: mt100 lwtr to activate $S(\alpha, \beta)$ scattering law

Problem puc1

Construct a single tank

- Cell 10 material 100
- Cell 20 void
- Cell 30 material 200
- Cell 40 void
- Use ksrc, center of cell 10
- Use 1000 neutrons/cycle
- Discard 25 cycles, run 100 total
- Don't forget imp:n
- Edit file "puc1"
- Plot
- Compute keff

Possible geometry setups

