

Date Planned ://	Daily Tutorial Sheet - 5	Expected Duration : 90 Min
Actual Date of Attempt ://	Level - 1	Exact Duration :

A body of mass x kg is moving with a velocity of $100\,\mathrm{ms}^{-1}$. Its de-Broglie wavelength is $6.62\times10^{-35}\mathrm{m}$. Hence, x is: (h = 6.62×10^{-34} Js)

(A) 0.1 kg **(B)** 0.25 kg **(C)** 0.15 kg **(D)** 0.2 kg

62. The values of four quantum number of valence electron of an element are n = 4, l = 0, m = 0 and $s = +\frac{1}{2}$. The element is:

(A) K (B) Ti (C) Na (D) Sc

63. The orbital angular momentum of an electron in a d-orbital is:

(A) $\sqrt{6} \frac{h}{2\pi}$ (B) $\sqrt{2} \frac{h}{2\pi}$ (C) $\frac{h}{2\pi}$ (D) $\frac{2h}{2\pi}$

64. de-Broglie wavelength of electron in 2^{nd} excited state of hydrogen atom is: [where r_0 is the radius of 1^{st} orbit in H-atom]

(A) r_0 (B) πr_0 (C) $3\pi r_0$ (D) $6\pi r_0$

65. The H-spectrum show:

(A) Heisenberg's uncertainty principle (B) Diffraction

(C) Polarisation (D) Presence of quantized energy level

66. Electrons will first enter into which set of quantum numbers-n = 5, l = 0 or n = 3, l = 2

(A) n = 5, l = 0 (B) both possible (C) n = 3, l = 2 (D) data insufficient

67. Which of the following configurations is incorrect?

(A) $1s^2 2s^2 2p_x^2 2p_y^2 2p_z^0$ (B) $1s^2 2s^2 2p_x^1 2p_y^1$

(C) $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

68. Which of the following set of quantum numbers is an impossible arrangement?

(A) n = 3, m = -2, s = +1/2 (B) n = 4, m = 3, s = +1/2

(C) n = 5, m = 2, s = -1/2 (D) n = 3, m = -3, s = -1/2

69. Which of the following sets of quantum numbers is not possible?

(A) n = 4, l = 1, m = 0, s = +1/2 (B) n = 4, l = 3, m = -3, s = -1/2

(C) n = 4, l = -1, m = +2, s = -1/2 (D) n = 4, l = 1, m = 0, s = -1/2

70. A cricket ball of 0.5 kg is moving with a velocity of 100 ms⁻¹. The wavelength associated with its motion is:

(A) 1/100 cm (B) $66 \times 10^{-34} \text{ m}$

(C) $1.32 \times 10^{-35} \,\mathrm{m}$ (D) $6.6 \times 10^{-28} \,\mathrm{m}$

71. The set of quantum numbers not applicable to an electron: (n, l, m, s)

(A) 1, 1, 1, +1/2 (B) 1, 0, 0, +1/2 (C) 1, 0, 0, -1/2 (D) 2, 0, 0, +1/2

Paragraph for Question No. 72 - 75

A neutral atom of an element has 2K, 8L, 9M and 2N electrons.

72. The atomic number of element is:

(A) 20 (B) 21 (C) 22 (D) 23

73. The total number of s electrons are: **(A)** 8 **(B)** 6 **(C)** 4 **(D)** 10

74. The total number of p-electrons are:

(A) 6 **(B)** 12 **(C)** 18 **(D)** 24

75. The total number of d-electrons are: **(A)** 1 **(B)** 2 **(C)** 3 **(D)** 4