Υπολογιστική Πολυπλοκότητα

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστική Πολυπλοκότητα

- Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο να λυθούν από υπολογιστικές μηχανές.
 - Ποια επιλύσιμα προβλήματα είναι εύκολα και ποια δύσκολα;
- Αντικείμενο: ελάχιστοι υπολογιστικοί πόροι για επιλύσιμα προβλήματα.
 - Εύλογοι υπολογιστικοί πόροι: ευεπίλυτα προβλήματα.
 - Fractional knapsack, minimum spanning tree, shortest paths, max-flow, min-cut, linear programming, ...
 - Διαφορετικά, δισεπίλυτα προβλήματα.
 - TSP, discrete knapsack, vertex cover, independent set, set cover, scheduling, ...
 - Επίδραση υπολογιστικού μοντέλου.

Προσέγγιση

- Κλάσεις προβλημάτων (complexity classes) με παρόμοια υπολογιστική «δυσκολία» (computational complexity).
- Με (κατάλληλη) αναγωγή ορίζουμε «διάταξη» προβλημάτων σε κάθε κλάση (με βάση δυσκολία).
 - Δυσκολότερα προβλήματα: πλήρη για την κλάση, συνοψίζουν δυσκολία κλάσης.
 - Πλήρες πρόβλημα «εὐκολο»: όλη η κλάση «εὐκολη».
 - Αρνητικό αποτέλεσμα: όλα τα πλήρη προβλήματα «δύσκολα».
 - Έτσι (προσπαθούμε να) καθορίσουμε επαρκείς υπολογιστικούς πόρους για επίλυση δύσκολων προβλημάτων.
- Διαλεκτική σχέση αλγόριθμων και πολυπλοκότητας.

Χρονική Πολυπλοκότητα

- Χρονική πολυπλοκότητα DTM M:
 - Αύξουσα συνάρτηση $t: \mathbb{N} \to \mathbb{N}$ ώστε για κάθε x, |x| = n, M(x) τερματίζει σε $\leq t(n)$ βήματα.
- Χρονική πολυπλοκότητα προβλήματος Π:
 - Χρονική πολυπλοκότητα «ταχύτερης» DTM που λύνει Π.
- Κλάση $\mathbf{DTIME}[t(n)] \equiv \{\Pi : \Pi \lambda$ ύνεται σε χρόνο $O(t(n))\}$
- Ιεραρχία κλάσεων χρονικής πολυπλοκότητας:

```
\mathbf{DTIME}[t(n)] \subset \mathbf{DTIME}[\omega(t(n)\log t(n))]
\mathbf{DTIME}[n] \subset \mathbf{DTIME}[n^2] \subset \mathbf{DTIME}[n^3] \subset \cdots
```

- Πολυωνυμικός χρόνος: $\mathbf{P} \equiv \bigcup_{k \geq 0} \mathbf{DTIME}[n^k]$ Εκθετικός χρόνος: $\mathbf{EXP} \equiv \bigcup_{k > 0} \mathbf{DTIME}[2^{n^k}]$

Ευεπίλυτα Προβλήματα

- Κλάση P : προβλήματα απόφασης που λύνονται σε πολυωνυμικό χρόνο.
- Θέση Cook Karp : κλάση ευεπίλυτων προβλημάτων ταυτίζεται με κλάση P.

Υπέρ θέσης Cook – Karp:

- Συνήθως πολυώνυμα μικρού βαθμού (π.χ. n, n², n³).
- Κλειστότητα κλάσης.
- Διπλασιασμός υπολογιστικής ισχύος: σημαντική αύξηση στο μέγεθος στιγμιότυπων που λύνουμε.

Evavtiov θέσης Cook – Karp:

- Ακραίες περιπτώσεις: πρακτικό το *n*¹⁰⁰ αλλά όχι το (1.001)ⁿ!
- Γραμμικός Προγραμματισμός:
 Simplex εκθετικού χρόνου αλλά πολύ γρήγορος στην πράξη.
 Ελλειψοειδές πολυωνυμικού χρόνου αλλά καθόλου πρακτικός!

(Πολυωνυμική) Αναγωγή

- \square Π_1 ανάγεται πολυωνυμικά σε Π_2 ($\Pi_1 \leq_P \Pi_2$):
 - Υπάρχει πολυωνυμικά υπολογίσιμη συνάρτηση $R: \Sigma^* \to \Sigma^*$ ώστε $\forall x \in \Sigma^*, x \in \Pi_1 \Leftrightarrow R(x) \in \Pi_2$.
 - R καλείται πολυωνυμική αναγωγή.
 - $\Pi_1 \leq_P \Pi_2$: Π_2 είναι τουλ. τόσο δύσκολο όσο το Π_1 (για τον υπολογισμό σε πολυωνυμικό χρόνο).
 - Aν $\Pi_2 \in \mathbf{P}$, τότε και $\Pi_1 \in \mathbf{P}$.
 - Av $\Pi_1 \notin \mathbf{P}$, τότε και $\Pi_2 \notin \mathbf{P}$.

Πληρότητα

- Έστω **C** μια κλάση προβλημάτων.
 - Π είναι **C**-δύσκολο (**C**-hard) ως προς $\forall \Pi' \in \mathbf{C}, \Pi' \leq_R \Pi$ αναγωγή R αν κάθε πρόβλημα Π' στην **C** ανάγεται κατά R στο Π.
 - Αν Π ∈ C και Π είναι C-δύσκολο
 ως προς αναγωγή R, τότε Π είναι
 C-πλήρες (C-complete) ως προς R.

$$\forall \Pi' \in \mathbf{C}, \Pi' \leq_R \Pi$$

και $\Pi \in \mathbf{C}$

- Πλήρη προβλήματα (ως προς κατάλληλη αναγωγή)
 συνοψίζουν υπολογιστική δυσκολία κλάσης C.
 - Αναγωγή πρέπει να είναι «λίγο ευκολότερη» από «δυσκολότερα» προβλήματα στην κλάση C.
- Κλάση C κλειστή ως προς αναγωγή R αν

$$\forall \Pi_1, \Pi_2, \Pi_1 \leq_R \Pi_2 \text{ nai } \Pi_2 \in \mathbf{C} \Rightarrow \Pi_1 \in \mathbf{C}$$

Ιδιότητες Αναγωγής

- Κλάση P είναι κλειστή ως προς πολυωνυμική αναγωγή.
 - Av $\Pi_2 \in \mathbf{P}$, τότε και $\Pi_1 \in \mathbf{P}$.
- Πολυωνυμική αναγωγή είναι μεταβατική.
 - Σύνθεση πολυωνυμικών αναγωγών αποτελεί πολυωνυμική αναγωγή.
- \square Αν $\Pi_1 \leq_P \Pi_2$ και $\Pi_2 \leq_P \Pi_1$, τότε Π_1 και Π_2 πολυωνυμικά ισοδύναμα, $\Pi_1 \equiv_P \Pi_2$.
- Κλάσεις κλειστές ως προς αναγωγή R με κοινό πλήρες πρόβλημα ως προς αναγωγή R ταυτίζονται.
 - Έστω κλάσεις \mathbf{C}_1 , \mathbf{C}_2 κλειστές ως προς αναγωγή \mathbf{R} .
 - Aν \mathbf{C}_1 , \mathbf{C}_2 έχουν κοινό πλήρες πρόβλημα Π ως προς αναγωγή R, τότε $\mathbf{C}_1 = \mathbf{C}_2$.

(Απλά) Παραδείγματα Αναγωγών

- □ Κὑκλος Hamilton \leq_P TSP με αποστάσεις 1 και 2 TSP(1, 2).
 - Δίνεται γράφημα G(V, E). Έχει G κύκλο Hamilton;
 - Anό G, κατασκευάζουμε στιγμιότυπο I_G του TSP(1, 2):
 - \square Mia «πόλη» u για κάθε κορυφή $u \in V$.
 - \square Συμμετρικές αποστάσεις: $d(u,v)=egin{cases} 1 & \operatorname{av}\ \{u,v\}\in E \ 2 & \operatorname{av}\ \{u,v\}
 ot\in E \end{cases}$
 - \blacksquare G έχει κύκλο Hamilton ανν I_G έχει περιοδεία μήκους \leq |V|.
- □ TSP(1, 2) \leq_P Metric TSP.
 - 1° ειδική περίπτωση 2° : αποστάσεις 1 και 2 ικανοποιούν τριγωνική ανισότητα.

(Απλά) Παραδείγματα Αναγωγών

- \square Min Vertex Cover \equiv_P Max Independent Set \equiv_P Max Clique.
 - Vertex cover C σε γράφημα G(V, E) ανν independent set V \ C σε γράφημα G ανν clique V \ C σε συμπληρωματικό γράφημα Ḡ.
- □ Έστω μη κατευθυνόμενο γράφημα G(V, E), |V| = n.
 Τα παρακάτω είναι ισοδύναμα:
 - To G έχει vertex cover $\leq k$.
 - To G έχει independent set $\geq n k$.
 - Το συμπληρωματικό G έχει clique $\geq n k$.

k-Ικανοποιησιμότητα

□ Λογική πρόταση φ σε *k*-Συζευκτική Κανονική Μορφή, *k*-CNF:

$$\varphi \equiv c_1 \land \ldots \land c_m$$
, ópou $c_i = \ell_{i_1} \lor \ldots \lor \ell_{i_k}$, $\mu \epsilon \ell_{i_j} \in \{x_1, \neg x_1, \ldots, x_n, \neg x_n\}$

- c_j : όροι. ℓ_{i_j} : literals. #literals σε κάθε όρο $\leq k$. Π.χ. για k=2: $(x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_2 \lor x_3)$
- □ k-Ικανοποιησιμότητα:
 - Δίνεται φ σε k-CNF. Είναι φ ικανοποιήσιμη;

2-Ικανοποιησιμότητα

- \square 2-Ικανοποιησιμότητα \in **P**.
 - Παρατηρούμε ότι $\ell_i \lor \ell_j \equiv (\lnot \ell_i \to \ell_j) \land (\lnot \ell_j \to \ell_i)$
 - Κατασκευάζουμε κατευθυν. γράφημα G_{φ} με «συνεπαγωγές» φ . G_{φ} έχει κορυφές $\{x_1,\ldots,x_n\}\cup\{\neg x_1,\ldots,\neg x_n\}$
 - lacksquare Για κάθε όρο $\ell_i \lor \ell_j$, αχμές G_{arphi} $(\lnot \ell_i, \ell_j)$ και $(\lnot \ell_j, \ell_i)$
 - Ακμές και μονοπάτια G_{φ} εμφανίζουν συμμετρία: αχμή $(\ell_i, \ell_j) \Leftrightarrow \alpha$ χμή $(\neg \ell_j, \neg \ell_i)$ $\ell_i \ell_j$ μονοπάτι $\Leftrightarrow \neg \ell_i \neg \ell_i$ μονοπάτι
 - lacksquare Όμως $\ell_i o \ell_j$ ψευδής $\Leftrightarrow \ell_i = 1$ και $\ell_j = 0$
 - ϕ μη ικανοποιήσιμη ανν υπάρχουν $x_i \neg x_i$ και $\neg x_i x_i$ μονοπάτια.
 - **Ι** Λόγω αυτών, καμία αποτίμηση x_i και $\neg x_i$ σε συμπληρωματικές τιμές δεν ικανοποιεί φ .

«Δύσκολα» Προβλήματα

- Τι κάνουμε όταν ένα πρόβλημα φαίνεται «δύσκολο»;
 - «Δύσκολο»: μετά από μεγάλη προσπάθεια, δεν βρίσκουμε αποδοτικό αλγόριθμο (πολυωνυμικού χρόνου).
- Πάμε στο αφεντικό και λέμε:
 - Δεν μπορώ να βρω αποδοτικό αλγόριθμο. Απόλυση!
 - Δεν υπάρχει αποδοτικός αλγόριθμος. Too good to be true!
 - Κανένας δεν μπορεί να βρει αποδοτικό αλγόριθμο:
 - Ανάγουμε πολυωνυμικά κάποιο γνωστό ΝΡ-πλήρες πρόβλημα στο «δικό μας».
- Θεωρία NP-πληρότητας.
 - NP-πλήρη: κλάση εξαιρετικά σημαντικών προβλημάτων που ανάγονται πολυωνυμικά το ένα στο άλλο.
 - Είτε όλα λύνονται σε πολυωνυμικό χρόνο είτε κανένα.
 - Έχουν μελετηθεί τόσο πολύ, ώστε όλοι πιστεύουν ότι κανένα!