	$\overline{\text{REG}}$	REG	CFL	DEC.	REC.	P	NP	NPC
$L_1 \cup L_2$	no	✓	✓	✓	✓	√	√	no
$L_1\cap L_2$	no	✓	no	✓	✓	✓	√	no
\overline{L}	✓	√	no	✓	no	✓	?	?
$L_1 \cdot L_2$	no	✓	✓	✓	✓	✓	√	no
L^*	no	✓	✓	✓	✓	✓	√	no
$_L\mathcal{R}$	✓	✓	✓	✓	√	✓		
$L_1 \setminus L_2$	no	✓	no	✓	no	✓	?	
$L\cap R$	no	✓	✓	✓	✓	✓		

- (**DFA**) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q.$
- (NFA) $M = (Q, \Sigma, \delta, q_0, F), \delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q).$
- (GNFA) $(Q, \Sigma, \delta, q_0, q_a)$,
 - $\delta: (Q \setminus \{q_{\mathrm{a}}\}) imes (Q \setminus \{q_{\mathrm{start}}\} o \mathcal{R}$ (where
 - $\mathcal{R} = \{ \text{Regex over } \Sigma \})$
- (DFA → GNFA → Regex)

- GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \dots, q_k s.t. $q_0 = q_{ ext{start}}$, $q_k = q_{ ext{a}}$ and for each i, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.
- n-state DFA A, m-state DFA $B \implies \exists nm$ -state DFA Cs.t. $L(C) = L(A)\Delta L(B)$.
- p-state DFA C, if $L(C)
 eq \emptyset$ then $\exists \ s \in L(C)$ s.t. |s| < p.
- Every NFA has an equiv. NFA with a single accept

state

 $A = L(N_{\mathsf{NFA}}), B = (L(M_{\mathsf{DFA}}))^{\complement} \ \mathsf{then} \ A \cdot B \in \mathrm{REG}.$

(NFA → DFA)

- $N = (Q, \Sigma, \delta, q_0, F)$
- $D=(Q'=\mathcal{P}(Q),\Sigma,\delta',q_0'=E(\{q_0\}),F')$
- $F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{ \text{states reachable from } q \text{ via } \varepsilon\text{-arrows} \}$
- $orall R \subseteq Q, orall a \in \Sigma, \delta'(R,a) = E \left(igcup \int \delta(r,a)
 ight)$

Regular Expressions Examples:

 $\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$

 $\{w: \#_w(\mathtt{0}) \geq 2 \lor \#_w(\mathtt{1}) \leq 1\} \equiv$ $(\Sigma^*0\Sigma^*0\Sigma^*) \cup (0^*(\varepsilon \cup 1)0^*)$

 $\{w:|w| \bmod n=m\} \equiv (a\cup b)^m((a\cup b)^n)^*$

 $\{w: \#_b(w) \bmod n = m\} \equiv (a^*ba^*)^m \cdot ((a^*ba^*)^n)^*$

 $\{w: |w| \text{ is odd}\} \equiv (a \cup b)^*((a \cup b)(a \cup b)^*)^*$

 $\{w: \#_a(w) \text{ is odd}\} \equiv b^*a(ab^*a \cup b)^*$

 $\{w:\#_{ab}(w)=\#_{ba}(w)\}\equiv arepsilon\cup a\cup b\cup a\Sigma^*a\cup b\Sigma^*b$

$\mathsf{PL} \colon A \in \mathrm{REG} \implies \exists p : \forall s \in A, \, |s| \geq p, \, s = xyz, \, \mathsf{(i)} \, \forall i \geq 0, \, xy^iz \in A, \, \mathsf{(ii)} \, |y| > 0 \, \, \mathsf{and} \, \, \mathsf{(iii)} \, |xy| \leq p.$

- $\{w=a^{2^k}\}; \quad k=\lfloor \log_2 |w|
 floor, s=a^{2^k}=xyz.$
- $2^k = |xyz| < |xy^2z| \le |xyz| + |xy| \le 2^k + p < 2^{k+1}.$
- $\{w = w^{\mathcal{R}}\}; \quad s = 0^p 10^p = xyz. \text{ then }$ $xy^2z=0^{p+|y|}10^p\not\in L.$
- $\{a^nb^n\}; \quad s=a^pb^p=xyz, ext{ where } |y|>0 ext{ and } |xy|\leq p.$
- Then $xy^2z=a^{p+|y|}b^p\notin L$.
- $\{a^p: p \text{ is prime}\}; \quad s=a^t=xyz \text{ for prime } t \geq p.$ r := |y| > 0
- $\{www:w\in\Sigma^*\}; s=a^pba^pba^p=xyz=a^{|x|+|y|+m}ba^pba^pb$, $m\geq 0$, but $xy^2z=a^{|x|+2|y|+m}ba^pba^pb
 otin L.$
- $\{a^{2n}b^{3n}a^n\}$: $s=a^{2p}b^{3p}a^p=xyz=a^{|x|+|y|+m+p}b^{3p}a^p$. $m\geq 0$, but $xy^2z=a^{2p+|y|}b^{3p}a^p
 ot\in L.$
- $\{w:\#_a(w)>\#_b(w)\};\, s=a^pb^{p+1},\, |s|=2p+1\geq p,$ $xy^2z=a^{p+|y|}b^{p+1}
 otin L.$
- $\{w: \#_a(w) = \#_b(w)\}; s = a^p b^p = xyz$ but $xy^2z=a^{p+|y|}b^p\not\in L.$
- $\{w: \#_w(a) \neq \#_w(b)\}$; (prf via 'complement-closure', $\overline{L} = \{w : \#_w(a) = \#_w(b)\}\$

$L \in \mathbf{CFL} \Leftrightarrow \exists G_{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists M_{\mathsf{PDA}} : L = L(M)$

- A derivation of w is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced; w is derived ambiguously in G if it has at least two different l.m. derivations. G is ambiguous if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- (CFG \leadsto CNF) (1.) Add a new start variable S_0 and a rule $S_0 o S$. (2.) Remove arepsilon-rules of the form A o arepsilon(except for $S_0 \to \varepsilon$), and remove A's occurrences on the RH of a rule (e.g.: R o uAvAw becomes $R
 ightarrow uAvAw \mid uAvw \mid uvAw \mid uvw.$ where
- $u,v,w\in (V\cup\Sigma)^*$). (3.) Remove unit rules $A\to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. ($u \in (V \cup \Sigma)^*$). (4.) Replace each rule $A o u_1 u_2 \cdots u_k$ where $k \geq 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1 A_1$, $A_1 \to u_2 A_2$, ..., $A_{k-2}
 ightarrow u_{k-1} u_k$, where A_i are new variables. Replace terminals u_i with $U_i \to u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where his the height of the parse tree for w.
- $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- (**derivation**) $S\Rightarrow u_1\Rightarrow u_2\Rightarrow \cdots \Rightarrow u_n=w$, where each u_i is in $(V \cup \Sigma)^*$. (in this case, G generates w (or S derives w), $S \stackrel{*}{\Rightarrow} w$)

- (**PDA**) $M=(Q,\sum\limits_{\mathsf{input}},\prod\limits_{\mathsf{stack}},\delta,q_0\in Q,\mathop{F}\limits_{\mathsf{accepts}}\subseteq Q).$ (where Q, Σ , Γ , F finite). $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$.
- M accepts $w \in \Sigma^*$ if there is a seq. $r_0, r_1, \ldots, r_m \in Q$ and $s_0, s_1, \ldots, s_m \in \Gamma^*$ s.t.: (1.) $r_0 = q_0$ and $s_0 = \varepsilon$; (2.) For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{arepsilon}$ and $t\in\Gamma^*$; (3.) $r_m\in F$.
- (PDA transition) " $a, b \rightarrow c$ ": reads a from the input (or read nothing if $a = \varepsilon$). **pops** b from the stack (or pops nothing if $b = \varepsilon$). **pushes** c onto the stack (or pushes nothing if $c = \varepsilon$)
- $R \in \text{REG} \land C \in \text{CFL} \implies R \cap C \in \text{CFL}$. (Prf. construct PDA $P' = P_C \times D_R$.)

(CFG) $G=(V,\Sigma,R,S)$, $A\to w$, $(A\in V,w\in (V\cup\Sigma)^*)$; (CNF) $A\to BC$, $A\to a$, $S\to \varepsilon$, $(A,B,C\in V,a\in\Sigma,B,C\neq S)$. $\{x \mid x \neq ww\}; S \rightarrow A \mid B \mid AB \mid BA; A \rightarrow CAC \mid 0;$

- $\{w: w=w^{\mathcal{R}}\}; S
 ightarrow aSa \mid bSb \mid a \mid b \mid arepsilon$
- $\{w: w \neq w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid aXb \mid bXa;$
- $X
 ightarrow aX \mid bX \mid \epsilon$
- $\{ww^{\mathcal{R}}\mid w\in\{a,b\}^*\}$
- $\{w\#x: w^{\mathcal{R}}\subseteq x\}; S\rightarrow AX; A\rightarrow 0\\ A0\mid 1\\ A1\mid \#X; X\rightarrow 0\\ X\mid 1\\ X\mid \varepsilon \text{ a}S_{1}\\ \mathbf{b}\mid S_{1}\\ \mathbf{b}\mid \varepsilon; S_{2}\rightarrow \mathbf{b}S_{2}\\ \mathbf{c}\mid S_{2}\\ \mathbf{c}\mid \varepsilon; S_{2}\rightarrow \mathbf{b}S_{2}\\ \mathbf{c}\mid S_{2}\\ \mathbf{$
- $\{w:\#_w(a)>\#_w(b)\};S\to TaT;T\to TT\mid aTb\mid bTa\mid a\mid\varepsilon\quad A\to A\mathbf{a}\mid\varepsilon;C\to C\mathbf{c}\mid\varepsilon$
- $\{w: \#_w(a) \geq \#_w(b)\}; S \rightarrow SS \mid aSb \mid bSa \mid a \mid \varepsilon$
- $\{w:\#_w(a)=\#_w(b)\};\,S o SS\mid aSb\mid bSa\mid arepsilon$ $\overline{\{a^nb^n\}}$; $S \to XbXaX \mid A \mid B$; $A \to aAb \mid Ab \mid b$;
- $B
 ightarrow aBb \mid aB \mid a$; $X
 ightarrow aX \mid bX \mid \varepsilon$.
- $\{a^nb^m\mid n
 eq m\};S
 ightarrow aSb\mid A\mid B;A
 ightarrow aA\mid a;B
 ightarrow bB\mid b\quad \{a^nb^n\};S
 ightarrow aSb\mid arepsilon$
- $\{a^ib^jc^k\mid i\leq j \text{ or } j\leq k\};\,S\rightarrow S_1C\mid AS_2;$

- $B o CBC\mid exttt{1;}C o exttt{0}\mid exttt{1}$ $\{a^nb^m\mid m\leq n\leq 3m\};S
 ightarrow aSb\mid aaSb\mid aaaSb\mid arepsilon;$
- $\{a^nb^m\mid n>m\};S o aSb\mid aS\mid a$
 - $\{w: \#_w(a) \geq 3\}; S \rightarrow XaXaXaX; X \rightarrow aX \mid bX \mid arepsilon$
- $\{w: w=w^{\mathcal{R}} \wedge |w| \text{ is even}\}; S \rightarrow aSa \mid bSb \mid \varepsilon$
- $\{a^ib^jc^k\mid i+j=k\};\,S\rightarrow aSc\mid X;X\rightarrow bXc\mid \varepsilon$

$\mathsf{PL} \colon L \in \mathrm{CFL} \implies \exists p : \forall s \in L, |s| \geq p, \ s = uvxyz, \ \textbf{(i)} \ \forall i \geq 0, uv^ixy^iz \in L, \ \textbf{(ii)} \ |vxy| \leq p, \ \mathsf{and} \ \textbf{(iii)} \ |vy| > 0.$

- $\{w=a^nb^nc^n\}; s=a^pb^pb^p=uvxyz.\ vxy\ \text{can't contain all}$ of a,b,c thus uv^2xy^2z must pump one of them less than the others
- $\{ww : w \in \{a, b\}^*\};$
 - (more example of not CFL)
 - $\{a^ib^jc^k\mid 0\leq i\leq j\leq k\},\,\{a^nb^nc^n\mid n\in\mathbb{N}\},$
 - $\{ww \mid w \in \{a,b\}^*\}, \{\mathtt{a}^{n^2} \mid n \ge 0\}, \{a^p \mid p \text{ is prime}\},$
- $L = \{ww^{\mathcal{R}}w : w \in \{a, b\}^*\}$ $\{w \mid \#_w(a) = \#_w(b) = \#_w(c)\}$: (Prf. since $R \cap L \in \mathrm{CFL}$, but $R\cap L=\{a^nb^nc^n\}
 otin {
 m CFL}$

$L \in \text{DECIDABLE} \iff (L \in \text{REC. and } L \in \text{co-REC.}) \iff \exists M_{\mathsf{TM}} \text{ decides } L.$

- **(TM)** $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\prod\limits_{\mathsf{tape}},\delta,q_0,q_{�igotimes},q_{\Bbb R})$, where $\sqcup\in\Gamma,$
- $\sqcup \not \in \Sigma, \, q_{\mathbb{R}} \neq q_{\textcircled{\scriptsize o}}, \, \delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{\mathrm{L},\mathrm{R}\}$
- (recognizable) \triangle if $w \in L$, \mathbb{R} /loops if $w \notin L$; A is co**recognizable** if \overline{A} is recognizable.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\mathsf{TM}}.$
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) \triangle if $w \in L$, \mathbb{R} if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*.$

- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have
- $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.
- $\{\text{all TMs}\}\ \text{is count.};\ \Sigma^*\ \text{is count.}\ (\text{finite }\Sigma);\ \{\text{all lang.}\}\ \text{is}$ uncount.; {all infinite bin. seq.} is uncount.
- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \, \subset \, \mathsf{NPDA} \equiv \mathsf{CFG} \, \subset \, \mathsf{DTM} \equiv \mathsf{NTM}$
- $f:\Sigma^* o\Sigma^*$ is computable if $\exists M_{\mathsf{TM}}: \forall w\in\Sigma^*$, M halts on w and outputs f(w) on its tape.
- If $A \leq_m B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec.
- (transitivity) If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A)$
- If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \text{RECOGNIZABLE}$, then $A \in \text{DEC}$.

$FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

- (unrecognizable) $\overline{A_{\mathsf{TM}}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, $REG_{\mathsf{TM}} = \{ \langle M \rangle : L(M) \text{ is regular} \}, E_{\mathsf{TM}},$ $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle : L(M_1) = L(M_2) \}, \ ALL_{\mathsf{CFG}}, \ EQ_{\mathsf{CFG}}$
- (recognizable but undecidable) A_{TM} , $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M(w) \text{ halts} \}, \overline{EQ_{\mathsf{CFG}}}, \overline{E_{\mathsf{TM}}},$ $\{\langle M,k
 angle \mid \exists x \ (M(x) \ ext{halts in} \ \geq k \ ext{steps})\}$
- (decidable) A_{DFA} , A_{NFA} , A_{REX} , E_{DFA} , EQ_{DFA} , A_{CFG} , $E_{\mathsf{CFG}}, A_{\mathsf{LBA}}, ALL_{\mathsf{DFA}} = \{ \langle D \rangle \mid L(D) = \Sigma^* \},$ $A\varepsilon_{\mathsf{CFG}} = \{\langle G \rangle \mid \varepsilon \in L(G)\}$
- **Examples of Deciders:**
- $INFINITE_{DFA}$: "On n-state DFA $\langle A \rangle$: const. DFA B s.t. $L(B) = \Sigma^{\geq n}$; const. DFA C s.t. $L(C) = L(A) \cap L(B)$; if

- $L(C) \neq \emptyset$ (via E_{DFA}) **(A)**; O/W, \mathbb{R} " $\{\langle D \rangle \mid \not\exists w \in L(D) : \#_1(w) \text{ is odd}\}$: "On $\langle D \rangle$: const. DFA
- A s.t. $L(A) = \{w \mid \#_1(w) \text{ is odd}\}$; const. DFA B s.t. $L(B) = L(D) \cap L(A)$; if $L(B) = \emptyset$ (via E_{DFA}) \triangle ; O/W,
- $\{\langle R,S\rangle\mid R,S \text{ are regex}, L(R)\subseteq L(S)\}\text{: "On }\langle R,S\rangle\text{:}$ const. DFA D s.t. $L(D)=L(R)\cap \overline{L(S)};$ if $L(D)=\emptyset$ (via E_{DFA}), **(a)**; O/W, \mathbb{R} "
- $\{\langle D_{\mathsf{DFA}}, R_{\mathsf{REX}} \rangle \mid L(D) = L(R)\}$: "On $\langle D, R \rangle$: convert Rto DFA D_R ; if $L(D) = L(D_R)$ (via EQ_{DFA}), \triangle ; O/W, \mathbb{R} '
- $\{\langle D_{\mathsf{DFA}}\rangle \mid L(D) = (L(D))^{\mathcal{R}}\}$: "On $\langle D \rangle$: const. DFA $D^{\mathcal{R}}$ s.t. $L(D^{\mathcal{R}}) = (L(D))^{\mathcal{R}}$; if $L(D) = L(D^{\mathcal{R}})$ (via EQ_{DFA}), **A**; O/W, R"
- $\{\langle M, k \rangle \mid \exists x \ (M(x) \text{ runs for } \geq k \text{ steps})\}$: "On $\langle M, k \rangle$: (foreach $w \in \Sigma^{\leq k+1}$: if M(w) not halt within k steps, $oldsymbol{A}$);
- $\{\langle M, k \rangle \mid \exists x \ (M(x) \ \text{halts in} \leq k \ \text{steps})\}$: "On $\langle M, k \rangle$: (foreach $w \in \Sigma^{\leq k+1}$: run M(w) for $\leq k$ steps, if halts, **(A)**: O/W. R"
- $\{\langle M_{\mathsf{DFA}}
 angle \mid L(M) = \Sigma^*\}$: "On $\langle M
 angle$: const. DFA $M^{\complement} = (L(M))^{\complement}$; if $L(M^{\complement}) = \emptyset$ (via $E_{\mathsf{DFA}}) \Rightarrow \mathbf{A}$; O/W \mathbb{R} ." $\{\langle R_{\mathsf{REX}} \rangle \mid \exists s,t \in \Sigma^* : w = s111t \in L(R)\} : "\mathsf{On} \ \langle R \rangle :$
- const. DFA D s.t. $L(D) = \Sigma^* 111 \Sigma^*$; const. DFA C s.t. $L(C) = L(R) \cap L(D)$; if $L(C) \neq \emptyset$ (via E_{DFA}) $\Rightarrow \triangle$; O/W

Mapping Reduction: $A \leq_m B$ if $\exists f: \Sigma^* \to \Sigma^*: \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is computable.

- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle \mid L(M) = (L(M))^{\mathcal{R}} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' = "On x, if $x \notin \{01, 10\}$, \mathbb{R} ; if x = 01, return M(x); if x = 10, \triangle ;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} L = \{ \langle \underset{\mathsf{TM}}{M}, \underset{\mathsf{DCA}}{D} \rangle \mid L(M) = L(D) \};$
- $f(\langle M, w \rangle) = \langle M', D \rangle$, where M' ="On x: if x = w return M(x); O/W, \mathbb{R} ;" D is DFA s.t. $L(D)=\{w\}$.
- $A \leq_{\mathrm{m}} HALT_{\mathsf{TM}}; f(w) = \langle M, \varepsilon \rangle$, where $M = \mathsf{"On}\ x$: if $w \in A$, halt; if $w \notin A$, loop;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} CFL_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \};$ $f(\langle M, w \rangle) = \langle N \rangle$, where N ="On x: if $x = a^n b^n c^n$, \triangle ; O/W, return M(w);"
- $A \leq_{\mathrm{m}} B = \{0w : w \in A\} \cup \{1w : w \notin A\}; f(w) = 0w.$
- $E_{\mathsf{TM}} \leq_{\mathrm{m}} USELESS_{\mathsf{TM}}; \ f(\langle M \rangle) = \langle M, q_{\triangle} \rangle$

- $A_{\mathsf{TM}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}; \quad f(\langle M, w
 angle) = \langle M_1, M_2
 angle, ext{ where } M_1 =$ " $oldsymbol{A}$ all"; $M_2=$ "On x: return M(w);"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{EQ_{\mathsf{TM}}}; \quad f(\langle M, w
 angle) = \langle M_1, M_2
 angle$, where $M_1 =$ " \mathbb{R} all"; $M_2 =$ "On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; f(\langle G \rangle) = \langle G, H \rangle, \text{ s.t. } L(H) = \Sigma^*.$
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle : |L(M)| = 1\}; f(\langle M, w \rangle) = \langle M' \rangle,$ where M' = "On x: if $x = x_0$, return M(w); O/W, \mathbb{R} ;" (where $x_0 \in \Sigma^*$ is fixed).
- $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} E_{\mathsf{TM}}; \quad f(\langle M, w \rangle) = \langle M' \rangle, \text{ where } M' = \mathsf{"On } x$: if $x \neq w$, \mathbb{R} ; O/W, return M(w);"
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \leq 3 \};$
- $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: a if M(w) halts"
- $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \geq 3 \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: a if M(w) halts"

- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : M \ \mathbf{A} \ \text{all even num.} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: \mathbb{R} if M(w) halts within |x|. O/W, \triangle "
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is finite} \};$
- $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: **(a)** if M(w) halts"
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is infinite} \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: \mathbb{R} if M(w) halts
- within |x| steps. O/W, **@**" $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_1, M_2 \rangle : \varepsilon \in L(M_1) \cup L(M_2) \};$
- $f(\langle M, w \rangle) = \langle M', M' \rangle$, where M' ="On x: A if M(w)halts" $\mathit{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{E_{\mathsf{TM}}}; \quad f(\langle M, w \rangle) = \langle M'
 angle, ext{ where } M' =$
 - "On x: if $x \neq w$ \mathbb{R} ; else, \triangle if M(w) halts" $\mathit{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \, \langle M_{\mathsf{TM}}
 angle \mid \exists \, x \, : M(x) \; \mathrm{halts \; in} \, > |\langle M
 angle | \; \mathrm{steps} \}$
 - $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if M(w) halts, make $|\langle M \rangle| + 1$ steps and then halt; O/W, loop"

$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k) \subseteq \mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k) = \{L \mid L \text{ is decidable by a PT verifier}\} \supseteq \mathbf{NP\text{-complete}} = \{B \mid B \in \mathsf{NP}, \forall A \in \mathsf{NP}, A \leq_{\mathsf{P}} B\}.$

- ((Running time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM}\}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- (verifier for L) TM V s.t. $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathbf{A}\};$ (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \mathbf{A}$.
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape. If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$. \equiv_P is an equiv. relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equiv. class of \equiv_P .
- ALL_{DFA} , CONNECTED, TRIANGLE, $L(G_{CFG})$,
- RELPRIME, $PATH \in P$

- CLIQUE, SUBSET-SUM, SAT, 3SAT, COVER. HAMPATH, UHAMATH, $3COLOR \in NP$ -complete. $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NPC}$ and $C \in \text{NP}$ s.t. $B \leq_{\text{P}} C$, then $C \in \text{NPC}$.
- If P = NP, then $\forall A \in P \setminus \{\emptyset, \Sigma^*\}$, $A \in NP$ -complete.

Polytime Reduction: $A \leq_P B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is polytime computable.

- $SAT \leq_{\mathrm{P}} DOUBLE\text{-}SAT; \quad f(\phi) = \phi \wedge (x \vee \neg x)$
- $3SAT \leq_{\mathrm{P}} 4SAT$; $f(\phi) = \phi'$, where ϕ' is obtained from the CNF ϕ by adding a new var. x to each clause, and adding a new clause $(\neg x \lor \neg x \lor \neg x \lor \neg x)$.
- $SUBSET-SUM <_{P} SET-PARTITION;$
- $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{\operatorname{P}} 3COLOR; f(\langle G \rangle) = \langle G' \rangle, \ G' = G \cup K_4$
- $\stackrel{VERTEX}{COVER}_k \leq_{\mathrm{P}} WVC; f(\langle G, k \rangle) = (G, w, k), \forall v \in V(G), w(v) = 1 \\ f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| 1 \rangle$
- $HAM-PATH \leq_{P} 2HAM-PATH;$ $f(\langle G, s, t \rangle) = \langle G', s', t' \rangle$, where

- $V' = V \cup \{s', t', a, b, c, d\},$ $E' = E \cup \{(s', a), (a, b), (b, s)\} \cup \{(s', b), (b, a), (a, s)\}$ $\cup \{(t,c), (c,d), (d,t')\} \cup \{(t,d), (d,c), (c,t')\}.$ $\mathit{CLIQUE}_k \leq_{\mathrm{P}} \mathit{HALF\text{-}CLIQUE};$
- $f(\langle G=(V,E),k\rangle)=\langle G'=(V',E')\rangle$, if $k=\frac{|V|}{2}$, E=E'V' = V. if $k > \frac{|V|}{2}$, $V' = V \cup \{j = 2k - |V| \text{ new nodes}\}$.
- if $k < \frac{|V|}{2}$, $V' = V \cup \{j = |V| 2k \text{ new nodes}\}$ and $E' = E \cup \{ \text{edges for new nodes} \}$
- $UHAMPATH \leq_{P} PATH_{>k};$
- $_{COVER_{k}}^{VERTEX} \leq_{\mathbf{p}} \mathit{CLIQUE}_{k};$
- $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| k
 angle$

- $CLIQUE_k \leq_{\mathbf{P}} \{\langle G, t \rangle : G \text{ has } 2t\text{-clique}\};$ $f(\langle G, k \rangle) = \langle G', t = \lceil k/2 \rceil \rangle, G' = G \text{ if } k \text{ is even};$ $G' = G \cup \{v\}$ (v connected to all G nodes) if k is odd.
- $CLIQUE_k \leq_{\mathrm{P}} CLIQUE_k; f(\langle G, k \rangle) = \langle G', k+2 \rangle,$ where $G'=G\cup\{v_{n+1},v_{n+2}\}$ and v_{n+1},v_{n+2} are con. to all G
- $\substack{\textit{VERTEX}\\ \textit{COVER}_k \leq_{\mathbf{P}} \textit{DOMINATING-SET}_k;}$
- $f(\langle G, k \rangle) = \langle G', k \rangle$, where
- $V' = \{ ext{non-isolated node in } V \} \cup \{ v_e : e \in E \},$
- $E' = E \cup \{(v_e, u), (v_e, w) : e = (u, w) \in E\}.$
- $\textit{CLIQUE} \leq_{P} \textit{INDEP-SET}; \textit{SET-COVER} \leq_{P} \overset{\textit{VERTEX}}{\textit{COVER}};$ $3SAT \leq_{\text{P}} SET\text{-}SPLITTING; INDEP\text{-}SET \leq_{\text{P}} COVER$

Counterexamples

- $A \leq_{\mathrm{m}} B$ and $B \in \mathrm{REG}$, but, $A \notin \mathrm{REG}$: $A = \{0^n1^n \mid n \ge 0\}, B = \{1\}, f : A \to B,$ $\begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \notin A \end{cases}$
- $L \in \mathrm{CFL} \; \mathrm{but} \; \overline{L} \not \in \mathrm{CFL} \text{:} \quad L = \{x \mid \forall w \in \Sigma^*, x \neq ww\},$ $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1, L_2 \in \text{CFL} \text{ but } L_1 \cap L_2 \notin \text{CFL:} \quad L_1 = \{a^n b^n c^m\},$ $L_2 = \{a^mb^nc^n\},\, L_1\cap L_2 = \{a^nb^nc^n\}.$
- $L_1 \in \mathrm{CFL}, \, L_2$ is infinite, but $L_1 \setminus L_2
 otin \mathrm{REG}: \quad L_1 = \Sigma^*$, $L_2 = \{a^n b^n \mid n \geq 0\}, \, L_1 \setminus L_2 = \{a^m b^n \mid m \neq n\}.$
- $L_1,L_2\in \mathrm{REG},\, L_1\not\subset L_2,\, L_2\not\subset L_1$, but, $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a},\mathtt{b},\mathtt{ab}\}, \, L_2 = \{\mathtt{a},\mathtt{b},\mathtt{ba}\}$
- $L_1 \in \mathrm{REG},\, L_2
 otin \mathrm{REG},\, \mathsf{but},\, L_1 \cap L_2 \in \mathrm{REG},\, \mathsf{and}$ $L_1 \cup L_2 \in \text{REG}: \quad L_1 = L(\mathbf{a}^*\mathbf{b}^*), L_2 = \{\mathbf{a}^n\mathbf{b}^n \mid n \geq 0\}.$
- $L_1, L_2, L_3, \dots \in \mathrm{REG}$, but, $\bigcup_{i=1}^\infty L_i
 otin \mathrm{REG}:$ $L_i = \{\mathtt{a}^i\mathtt{b}^i\}, \ \bigcup_{i=1}^\infty L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1 \cdot L_2 \in \mathrm{REG}$, but $L_1 \notin \mathrm{REG}$: $L_1 = \{ \mathtt{a}^n \mathtt{b}^n \mid n \geq 0 \}$,
- $L_2\in \mathrm{CFL}$, and $L_1\subseteq L_2$, but $L_1
 ot\in \mathrm{CFL}:\quad \Sigma=\{a,b,c\},$ $L_1 = \{a^n b^n c^n \mid n \ge 0\}, L_2 = \Sigma^*.$
- $L_1, L_2 \in ext{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L \text{ is some}$ undecidable language over Σ .
- $L_1 \in \text{REG}, L_2 \notin \text{CFL}, \text{ but } L_1 \cap L_2 \in \text{CFL}: \quad L_1 = \{\varepsilon\},$ $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \text{REG}$, but $L \notin \text{REG}$: $L = \{a^p \mid p \text{ is prime}\},\$ $L^* = \Sigma^* \setminus \{a\}.$
- $A \nleq_m \overline{A}: \quad A = A_{\mathsf{TM}} \in \mathsf{RECOGNIZABLE}$, $\overline{A} = \overline{A_{\mathsf{TM}}} \notin \mathrm{RECOG}.$
- $A \notin DEC., A \leq_{\mathrm{m}} \overline{A}:$