Cálculo III resumen I1

1 Si $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, entonces

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

siempre que existan los límites de las funciones componentes.

2 Teorema Si $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t) \mathbf{i} + g(t) \mathbf{j} + h(t) \mathbf{k}$, donde f, g y h son funciones derivables, entonces

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

3 Teorema Suponga que \mathbf{u} y \mathbf{v} son funciones vectoriales derivables, c es un escalar y f es una función de valores reales. Entonces,

1.
$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$2. \ \frac{d}{dt} [c \mathbf{u}(t)] = c \mathbf{u}'(t)$$

3.
$$\frac{d}{dt} [f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

4.
$$\frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

5.
$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

6.
$$\frac{d}{dt} [\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$$
 (Regla de la cadena)

$$\int_a^b \mathbf{r}(t) dt = \left(\int_a^b f(t) dt \right) \mathbf{i} + \left(\int_a^b g(t) dt \right) \mathbf{j} + \left(\int_a^b h(t) dt \right) \mathbf{k}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{si } \frac{dx}{dt} \neq 0$$

$$L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} dt$$
$$= \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

$$L = \int_a^b |\mathbf{r}'(t)| dt$$

5 Teorema Si una curva C se describe mediante las ecuaciones paramétricas $x = f(t), y = g(t), \alpha \le t \le \beta$, donde f' y g' son continuas sobre $[\alpha, \beta]$ y C es recorrida una sola vez cuando t aumenta desde α hasta β , entonces la longitud de C es

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

La longitud de una curva con ecuación polar $r = f(\theta)$, $a \le \theta \le b$, es

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta$$

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \qquad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \qquad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Donde:

- T(t) = Tangente unitario
- N(t) = Vector normal unitario principal o unitario normal
- B(t) = Vector binormal
- k = Curvatura