Algoritmi e Strutture di Dati

Complessità dei problemi

m.patrignani

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

170-complessita-problemi-08

Contenuto

- Definizioni
 - complessità O(f(n)), $\Omega(f(n))$ e $\Theta(f(n))$ di un problema
- Problemi e complessità
 - esempi di problemi di complessità ignota
 - lower bound per gli algoritmi di ricerca basati su confronti
 - lower bound per gli algoritmi di ordinamento per confronto

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Problemi e complessità

- · Sappiamo che
 - un algoritmo corretto per un problema computazionale è una "ricetta" per la sua soluzione
 - · termina sempre
 - produce un output che, nella definizione del problema, corrisponde all'istanza in input
- Un problema ammette infiniti algoritmi corretti
 - di ogni algoritmo possiamo calcolare la complessità asintotica
- Alcuni problemi ammettono algoritmi più efficienti di altri problemi
 - i problemi hanno una complessità asintotica intrinseca?

170-complessita-problemi-08

Analisi della complessità dei problemi

Obiettivo

- classificare i problemi in base alla loro difficoltà di soluzione intrinseca
 - determinare la quantità di risorse che comunque è necessario spendere per risolverli

Strumento

 associare al problema la complessità dell'algoritmo più efficiente che lo risolve

Inconveniente

- dato un problema non è possibile considerare tutti gli infiniti algoritmi che lo risolvono
 - non possiamo determinare direttamente la complessità dell'algoritmo più efficiente

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Complessità O(f(n)) di un problema

- Un problema ha *complessità temporale O(f(n))* se **esiste** un algoritmo che lo risolve che ha complessità temporale O(f(n))
- In forma stenografica:

$$P \in O(f(n)) \Leftrightarrow \exists A \in O(f(n))$$

• O(*f*(*n*)) sono le risorse *sufficienti* a risolvere il problema

170-complessita-problemi-08

Complessità O(f(n)) di un problema

- Se un problema ha complessità temporale O(f(n))
 - è garantito che il problema possa essere risolto spendendo O(f(n)) risorse
 - è possibile che il problema possa essere risolto spendendo meno di O(f(n)) risorse
 - potrebbe esistere un algoritmo più efficiente che non conosciamo
 - f(n) è un *limite superiore* (upper bound) alle risorse sufficienti a risolvere il problema
- Per dimostrare che un problema ha complessità O(f(n))
 - occorre produrre un algoritmo che lo risolva e che abbia complessità O(f(n))

170-complessita-problemi-08

copyright @2018 maurizio.patrignani@uniroma3.it

Esempio: problema O(f(n))

```
SOMMA(A) ▷ restituisce la somma degli elementi dell'array A

1. somma = A[0]

2. for i = 1 to A.length-1

3. somma = somma + A[i]

4. return somma
```

- La complessità temporale dell'algoritmo SOMMA è O(n), dove n è il numero degli elementi dell'array A
- Il problema della somma di n interi
 - ha complessità temporale O(n)
 - è limitato superiormente da f(n) = n
 - "è O(n)"

170-complessita-problemi-08

Complessità $\Omega(f(n))$ di un problema

- Un problema ha *complessità temporale* $\Omega(f(n))$ se **ogni** algoritmo che lo risolve ha complessità temporale $\Omega(f(n))$
- In forma stenografica:

$$P \in \Omega(f(n)) \Leftrightarrow \forall A \in \Omega(f(n))$$

• $\Omega(f(n))$ sono le risorse *necessarie* a risolvere il problema

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Complessità $\Omega(f(n))$ di un problema

- Se un problema ha complessità temporale $\Omega(f(n))$
 - non è possibile che il problema possa essere risolto spendendo meno di $\Omega(f(n))$
 - non è detto che il problema sia risolvibile spendendo O(f(n))
 - f(n) è un *limite inferiore* (lower bound) alle risorse necessarie per risolvere il problema
- Per dimostrare che un problema ha complessità $\Omega(f(n))$
 - non possiamo considerare tutti gli algoritmi che lo risolvono
 - non esiste un metodo preciso per determinare $\Omega(f(n))$
 - generalmente si ragiona sulla natura delle istanze e delle relative soluzioni

170-complessita-problemi-08

Esempio: problema $\Omega(f(n))$

- Consideriamo il problema del calcolo della somma di n interi
- Tutti gli algoritmi che risolvono il problema devono necessariamente prendere in considerazione gli *n* interi in input
 - altrimenti cambiando un valore di input l'algoritmo darebbe lo stesso output, e questo è assurdo
- Il problema della somma di *n* interi
 - ha complessità temporale $\Omega(n)$
 - è limitato inferiormente da f(n) = n
 - "è $\Omega(n)$ "

170-complessita-problemi-08 copyright ©2018 maurizio.patrignani@uniroma3.it

Complessità $\Theta(f(n))$ di un problema

- Un problema ha *complessità temporale* $\Theta(f(n))$ se se ha contemporaneamente complessità temporale O(f(n)) e $\Omega(f(n))$
 - non è possibile che il problema possa essere risolto spendendo meno di O(f(n))
 - esiste almeno un algoritmo che risolve il problema in $\Theta(f(n))$
- Limite inferiore e limite superiore coincidono
 - -f(n) è la complessità intrinseca del problema
- Non sempre è possibile determinare $\Theta(f(n))$
 - di molti problemi la complessità intrinseca è ignota

Esempio: problema $\Theta(f(n))$

- Per quanto detto sopra il problema della somma di n interi ha complessità $\Theta(n)$
 - l'algoritmo proposto per dimostrare che il problema è O(n) è un algoritmo asintoticamente ottimo
 - possiamo desistere dalla ricerca di algoritmi più efficienti
 - è anche vero che questo algoritmo ha complessità temporale Θ(n)

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Problemi dalla complessità ignota

- Problema del commesso viaggiatore
 - trovare il circuito più breve che tocca n città
- Upper-bound
 - esiste un algoritmo che ha complessità $O(n^22^n)$
- · Lower-bound
 - siccome occorre leggere l'input, il problema è $\Omega(n)$
 - non è mai stato dimostrato che il problema non possa essere risolto in tempo polinomiale
 - in realtà non è mai stato dimostrato che il problema non possa essere risolto in tempo lineare!

170-complessita-problemi-08

Problemi NP-completi

- Il problema del commesso viaggiatore appartiene ad una classe di problemi noti come problemi NP-completi
- I problemi NP-completi sono tutti equivalenti
 - se si trovasse un algoritmo polinomiale in grado di risolvere un qualunque problema NP-completo si potrebbero risolvere in tempo polinomiale tutti i problemi NP-completi
- Si ritiene (ma non è stato mai dimostrato) che un algoritmo polinomiale per un problema NPcompleto non possa esistere

170-complessita-problemi-08

copyright @2018 maurizio.patrignani@uniroma3.it

Lower bound di problemi comuni

- E' molto difficile dimostrare un lower bound per un problema
- Nel seguito dimostreremo dei lower bound limitati al caso in cui gli algoritmi utilizzati siano basati su confronti
- In particolare dimostreremo
 - lower bound $\Omega(\log n)$ per algoritmi di ricerca basati su confronti
 - lower bound $\Omega(n \log n)$ per algoritmi di ordinamento basati su confronti

170-complessita-problemi-08

Il problema della ricerca

- Il problema della ricerca può essere descritto come segue
 - è nota una collezione di coppie <chiave, valore>
 - un'istanza del problema è il valore di una chiave
 - la soluzione del problema è il relativo valore
 - oppure l'informazione che una coppia con tale chiave è assente nella collezione

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Cosa sappiamo del problema della ricerca

 Dipendentemente dal tipo di struttura dati che adottiamo per la collezione di coppie
 chiave,valore> il problema della ricerca ha diverse complessità nel caso peggiore

Liste	O(n)
Array non ordinati	O(n)
Array ordinati	O(log n)
Alberi rosso-neri	O(log n)

• Esiste un algoritmo più veloce di O(log n)?

170-complessita-problemi-08

Algoritmi basati su confronti

- Un algoritmo di ricerca è detto "algoritmo di ricerca basato su confronti" se il flusso delle operazioni dipende esclusivamente dal confronto tra la chiave cercata ed una chiave della collezione
- Esempio
 - nella ricerca binaria si accede all'elemento intermedio dell'intervallo di ricerca e si ricorre su uno dei due sottointervalli generati in base al confronto della chiave cercata con il valore della chiave dell'elemento intermedio

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di una ricerca per confronto

- Immaginiamo di lanciare un algoritmo di ricerca basato su confronti
- L'algoritmo eseguirà un certo numero di confronti per poi produrre un output
 - l'output è un'opportuna cella di memoria
- Uno qualsiasi dei valori della collezione potrebbe essere l'output giusto

170-complessita-problemi-08

Albero di decisione

- Possiamo definire un albero i cui nodi interni sono i vari confronti eseguiti dall'algoritmo e le cui foglie sono le possibili risposte
- Questo albero è un albero binario con n foglie
 - l'altezza dell'albero è $\Omega(\log n)$
 - il numero dei confronti necessari per individuare una foglia è $\Omega(\log n)$
- Ne consegue che nel caso peggiore una ricerca implica Ω(log n) confronti

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Algoritmi di ordinamento

- Con considerazioni analoghe dimostreremo un lower bound sugli algoritmi di ordinamento per confronto
- Gli algoritmi più veloci che conosciamo, come il MERGE_SORT, hanno una complessità temporale Θ(n log n)
- Dimostreremo che tutti gli algoritmi di ordinamento per confronto hanno una complessità nel caso peggiore $\Omega(n \log n)$

170-complessita-problemi-08

Algoritmi di ordinamento per confronto

- Un algoritmo di ordinamento è detto "algoritmo di ordinamento per confronto" se il flusso delle operazioni dipende dal confronto tra due elementi della sequenza
- Esempio
 - nel MERGE SORT l'operazione MERGE confronta i valori delle due sotto-sequenze ordinate per ottenere un'unica sequenza ordinata

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di un algoritmo per confronto

- Immaginiamo di lanciare un algoritmo di ordinamento per confronto con una generica sequenza di input (a,b,c)
- L'algoritmo (a ≤ b) eseguirà un certo numero di confronti per poi produrre un output
 - l'output è un'opportuna permutazione dei valori di input
- Se lo lanciamo con una sequenza con valori diversi alcuni confronti avranno esito diverso
 - l'output prodotto è una diversa permutazione dei valori di input

170-complessita-problemi-08

Numero di confronti necessari

- Tutte le permutazioni degli elementi da ordinare devono essere foglie dell'albero di decisione
 - ogni possibile permutazione dei valori di input deve essere raggiungibile
 - se *n* sono gli elementi da ordinare le possibili permutazioni sono *n*!
- Il numero di confronti eseguiti nel caso peggiore equivale al cammino più lungo tra la radice ed una foglia
 - l'altezza di un albero binario con n! foglie è almeno $\log_2 n!$
 - il problema dell'ordinamento per confronto è $\Omega(\log_2 n!)$

Approssimazione di Stirling

- Consideriamo la funzione ln *n*!
 - nel calcolo asintotico la base del logaritmo è indifferente

$$\ln n! = \ln 1 + \ln 2 + \dots + \ln n = \sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x dx$$

$$\sum_{k=1}^{n} \ln k$$

$$\sum_{k=1}^{n} \ln k$$

Calcolo di $\int_{1}^{n} \ln x dx$

- Integrazione per parti: $\int u \frac{dv}{dx} dx = uv \int v \frac{du}{dx} dx$
- Nel nostro caso

$$u=\ln x$$
 $v=x$

•
$$dv/dx = 1$$
; $du/dx = 1/x$

$$\int \ln x \cdot 1 dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - x$$

$$\sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x dx = (x \ln x - x) \Big|_{1}^{n} = n \ln n - n + 1$$

Ordinamento per confronto: lower bound

- L'esecuzione di un algoritmo di ordinamento per confronto corrisponde alla discesa in un albero di decisione con *n*! foglie
 - -n è il numero di elementi da ordinare
- Nel caso peggiore il numero di confronti (nodi interni nel cammino radice-foglia) è $\Omega(n \ln n)$
 - MERGE_SORT è un algoritmo di ordinamento per confronto asintoticamente ottimo

170-complessita-problemi-08

copyright ©2018 maurizio.patrignani@uniroma3.it

Domande sulla complessità dei problemi

- 1. Supponiamo che il problema P abbia complessità O(n). E' possibile che esista un algoritmo A che risolve P che abbia una complessità $O(n^2)$?
- 2. Supponiamo che un problema P abbia complessità $\Theta(n^2)$. Può esistere un algoritmo A che risolve P e ha compessità $\Omega(n)$?
- 3. Supponiamo che un problema P abbia complessità $\Theta(n)$. Può esistere un algoritmo A che risolve P e ha complessità $\Theta(n^2)$?

170-complessita-problemi-08

Soluzioni

- 1. $P \in O(n)$. Può esistere $A \in \Omega(n^2)$?
 - Sì, se P ∈O(n) vuol dire che esiste un (opportuno) algoritmo A'∈O(n). Gli altri algoritmi, tra cui A, che risolvono P possono avere complessità arbitrariamente elevata
- 2. $P \in \Theta(n^2)$. Può esistere $A \in \Omega(n)$?
 - Sì. Non solo, tutti gli algoritmi che risolvono P hanno complessità $\Omega(n^2)$ e dunque anche $\Omega(n)$
- 3. $P \in \Theta(n)$. Può esistere $A \in \Theta(n^2)$?
 - Sì, ciò non contraddice $P \in O(n)$ né $P \in \Omega(n)$.