	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Herbst 2006 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Variante 1)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1	10	Aufgabe 6	15
Aufgabe 2	7	Aufgabe 7	15
Aufgabe 3	13	Aufgabe 8	10
Aufgabe 4	14	Aufgabe 9	10
Aufgabe 5	6		
Total OC I	50	Total OC II	50
Note OC I	6	Note OC II	6
Note OC			6

1. Aufgabe (10 Pkt)

Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von:

2. Aufgabe (7 Pkt)

3. Aufgabe (13 Pkt)

a) 2 1/2 Pkt Liggt hai dan	folgondon Strukturon Isomorio	or 2	
	folgenden Strukturen Isomerie von Isomerie handelt es sich?	OI :	
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
0		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
÷ S	S ⊕	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch Übertrag Aufgabe 3	
		Obelitay Aulyabe 0	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?	
Welches ist die Beziehung zwischen a und c?	
l a b c d	
chiral	
achiral 🖂 🖂	
Enantiomere Moleküle a und c sind Diastereoisomere identisch	
c) 5 1/2 Pkt. Die Fischerprojektion einer Galactonsäure ist unten angegeben.	
COOH HOH HOH HOH HOH HOH HOH HOH	
Galactonsäure Perspektivformel Enantiomeres	
c1) 1/2 Pkt. Handelt es sich um die D- oder L-Galactonsäure?	
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).	
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Galactonsäure enantiomeren Moleküls (Projektion ergänzen).	
c4) 1 Pkt. Geben Sie den systematischen IUPAC Namen der oben abgebildeten Galactonsäure inkl. stereochemischer Deskriptoren nach CIP)	
(2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexansäure	
c5) 2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 2 ⁴ = 16	
Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

4. Aufgabe (14 Pkt)

Aufgabe 4 (Fortsetzung).

b) 2 1/2 Pkt. Welche der beid	den Säuren ist stärker,	a oder b?	? (ankreuzen)	
NC CN	H	a	b	
O_2N —COOH	b NO ₂ —COOH b	a I 🔀	b	
⊕ NH ₃	⊕NH ₃ NH ₃	a	Ь	
a N————OH a	b N———OH b	a X	b	
SH	О S O O O	а	b <u></u>	
а	b			
		Ü	bertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle protoniert? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

$$\begin{array}{c|c} & & & \\ &$$

Begründung

Amide werden am O protoniert. Hier entsteht zusätzlich ein aromatisches System, wenn am O links protoniert wird.

Begründung

Es entsteht ein Cyclopropenylkation, ein aromatisches System

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Der Methoxy-Substituent wirkt in ortho als π -Donor und erniedrigt die Azidität der benachbarten Carboxylgruppe. In meta-Stellung ist dieser Effekt abwesend, deshalb wird diese Carboxylgruppe zuerst deprotoniert.

$$\begin{array}{c|c}
\circ & & \\
& & \\
& \\
\bullet & \\
\end{array}$$

$$\begin{array}{c|c}
-H^{+} & \\
& \\
\bullet & \\
\end{array}$$

Begründung:

Es entsteht ein konjugiertes Sulfoniumylid

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante K₃?

1)
$$K_1$$
 $COOH$

 $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$

 $K_2 = 3.3$

Wie gross ist K_3 ? Antwort: $K_3 = ca. 1$

b) 2 Pkt. Zeichnen Sie die Konformere von meso-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(Θ)] der Rotation um die C(2)-C(3) Bindung (Θ= Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ=0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen).

b) 2 Pkt. Die freie Aktivierungsenthalpie ∆G[≠] für den Übergang von einem gestaffelten Konformeren ins andere (über den verdeckten Übergangszustand) beträgt bei Ethan 12.6 kJ/mol. Dies bedeutet, dass das dieser Prozess im Ethanmolekül bei 298 K mit einer Geschwindigkeit von ca. 10¹¹ s⁻¹ stattfindet.

Die Inversion des pyramidalen Stickstoffs in Ammoniak (NH₃; über den trigonal planaren Übergangszustand) hat eine freie Aktivierungsenthalpie von 24 kJ/mol. Wie schnell ist der Umklapp-Prozess des Ammoniaks bei 298 K?

Antwort: $\Delta G^{\neq}(NH_3) - \Delta G^{\neq}(Ethan) = 11.4 \text{ kJ/mol} = 2.5.7 \text{ kJ/mol}.$ Die Geschwindigkeit ist also um 10^2 mal langsamer: 10^9 s⁻¹.

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Punkte Aufgabe 8

8. Aufgabe (*a=8 Pkt, b=2 Pkt; total 10 Pkt*)

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus: (Säurekatalysierte Veresterung)

alle Schritte sind reversibel

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Saytzew-Regel: bei einer E1-Eliminierung (z.B. säurakat. Eliminierung) entsteht bevorzugt das thermodynamisch stabilere, höher substituierte Olefin.