Segundo parcial de HPC

Sebastian López Martínez 1088299807

Universidad tecnológica de Pereira 30 de octubre de 2015

Introducción

El siguiente documento se compone del análisis del operador de sobel para procesamiento de imágenes, en la detección de bordes. Dicho algoritmo se ha ejecutado en un total de 6 imágenes de diferente tamaño, y de 3 formas de manejo de memoria en GPU de igual manera hay resultados en CPU.

A continuación se mostrará los resultados promedios de las diferentes formas de ejecución para las 6 imágenes mencionadas previamente

El primer grafo muestra los resultados promedio de cada imagen, ejecutando el algoritmo en la CPU. También se muestra el promedio de aceleración que resulta de la comparación de los tiempos entre CPU y GPU

Tamaño de la	Tiempo en CPU	Tiempo en GPU	Aceleración
imagen			
580*580	0,0116462	0,00033565	34,6974527
638*640	0,01402465	0,00038825	36,1227302
1366*768	0,03357095	0,0009311	36,0551498
2560*1600	0,12425716	0,00315535	39,3798343
4928*3264	0,49057445	0,0121377	40,4174143
5226*4222	0,67120183	0,01660975	40,4101103

A medida que el tamaño de las imágenes va aumentando se va viendo un coste de tiempo de ejecución en la gráfica por parte de la CPU, mientras que el aumento de tiempo en la ejecución de la GPU es menor, de igual manera se ve en los resultados en la aceleración que se presenta los porcentajes de aceleración que se tiene en la GPU demuestran mayor velocidad de ejecución.

Siguiente veremos los resultados de la ejecución en GPU de memoria global en comparación de la ejecución en GPU pero en memoria constante, al igual que en la tabla anterior se muestran los resultados promedio de la ejecución de ambos algoritmos para las mismas 6 imágenes.

Tamaño de la	Tiempo en GPU	Tiempo en GPU	Aceleración
imagen	memoria global	memoria constante	
580*580	0,00033565	0,0002565	1,308577
638*640	0,00038825	0,0002931	1,32463323
1366*768	0,0009311	0,00068145	1,36635116
2560*1600	0,00315535	0,0020683	1,52557656
4928*3264	0,0121377	0,00784535	1,54712027
5226*4222	0,01660975	0,01066435	1,55750233

Al tener los datos en una memoria constante se puede ver una reducción de tiempo de ejecución en los resultados de la tabla, ya que dichos datos al ser almacenados en esta memoria se pueden acceder de manera mas rápida al momento de procesar la información y realizar las operaciones, Al usar esta memoria se logra una aceleración un poco mayor a la de memoria global y de mayor consideración con los tiempos de CPU.

Los siguientes datos realizan la comparación de la ejecución de GPU pero en memoria constante con memoria compartida, al igual que en las anteriores comparaciones los resultados fueron promediados.

Tamaño de la	Tiempo en GPU	Tiempo en GPU	Aceleración
imagen	memoria	memoria	
	constante	compartida	
580*580	0,0002565	0,0002394	1,07142857
638*640	0,0002931	0,00028665	1,02250131
1366*768	0,00068145	0,0006791	1,00346046
2560*1600	0,0020683	0,0020209	1,0234549
4928*3264	0,00784535	0,00790755	0,9921341
5226*4222	0,01066435	0,0107478	0,99223562

La aceleración presentada en memoria compartida aparenta ser similar al de memoria constante, sin embargo muestra una aceleración pequeña con respecto a la memoria constante, estos se debe a que la memoria constante se le da un tratamiento similar al de memoria compartida y permite un rápido acceso a los datos.

Por último se muestra una comparativa de las aceleraciones que se obtuvieron con los distintos métodos con respecto a la CPU, diferenciando la efectividad que se obtiene con los distintos métodos de ejecución.

Tamaño de la		Aceleración	Aceleración
imagen	Aceleración	CPU/GPU	CPU/GPUT
	CPU /GPU	memoria	memoria
	memoria global	constante	compartida
580*580	34,6974527	45,4042885	48,647452
638*640	36,1227302	47,8493688	48,9260422
1366*768	36,0551498	49,2639959	49,4344721
2560*1600	39,3798343	60,0769521	61,4860508
4928*3264	40,4174143	62,5306009	62,0387415
5226*4222	40,4101103	62,9388411	62,45016

