Análisis Matemático II

Tema 5: Funciones medibles

Propiedades

2 Aproximación

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Funciones medibles

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

 $Y\,,\,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y \to Z \quad \text{continua}.$

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega\to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de $\,\Omega\,$ en $\,Y\,$ es medible

Composición de funciones

 $Y\,,\,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y\to Z \quad \text{continua}.$

Entonces $g \circ f : \Omega \to Z$ es medible

Funciones medibles

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega \to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

 $Y\,,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y \to Z \quad \text{continua}.$

Entonces $g \circ f : \Omega \to Z$ es medible

Funciones medibles con valores en \mathbb{R}^2

Funciones medible

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega \to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

 $Y\,,\,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y \to Z \quad \text{continua}.$

Entonces $g \circ f : \Omega \to Z$ es medible

Funciones medibles con valores en \mathbb{R}^2

Dadas dos funciones $f,g:\Omega \to \mathbb{R}$, sea $\Phi:\Omega \to \mathbb{R}^2$ dada por

$$\Phi(x) = (f(x), g(x)) \quad \forall x \in \Omega$$

Funciones medibles

En todo lo que sigue, fijamos un conjunto medible $\ \Omega \subset \mathbb{R}^N$

Si Y es un espacio topológico,

 $f:\Omega \to Y$ es una función medible cuando:

$$G = G^{\circ} \subset Y \implies f^{-1}(G) \in \mathcal{M}$$

Ejemplo: toda función continua de Ω en Y es medible

Composición de funciones

 $Y\,,\,Z \quad \text{espacios topológicos,} \quad f:\Omega \to Y \quad \text{medible,} \quad g:Y \to Z \quad \text{continua}.$

Entonces $g \circ f : \Omega \to Z$ es medible

Funciones medibles con valores en \mathbb{R}^2

Dadas dos funciones $f,g:\Omega \to \mathbb{R}$, sea $\Phi:\Omega \to \mathbb{R}^2$ dada por

$$\Phi(x) = (f(x), g(x)) \quad \forall x \in \Omega$$

Entonces Φ es medible si, y sólo si, lo son f y g.

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$ es un anillo conmutativo y un espacio vectorial sobre $\mathbb R$ con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb R$ como sigue.

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$ es un anillo conmutativo y un espacio vectorial sobre $\mathbb R$ con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb R$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en \mathbb{R} es un anillo conmutativo y un espacio vectorial sobre \mathbb{R} con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto:
$$(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$$

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en \mathbb{R} es un anillo conmutativo y un espacio vectorial sobre \mathbb{R} con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto:
$$(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$$

Producto por escalares:
$$(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$$

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre $\,\mathbb{R}\,$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto:
$$(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medibles

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre ${\mathbb R}$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto:
$$(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medibles

 $\mathcal{L}(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $\mathbb R$

Operaciones algebraicas con funciones

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre ${\mathbb R}$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto: $(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medible

 $\mathcal{L}(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $\mathbb R$ a las que llamamos funciones reales medibles

Operaciones algebraicas con funciones

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre ${\mathbb R}$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto: $(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medibles

 $\mathcal{L}(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $\mathbb R$ a las que llamamos funciones reales medibles

Estabilidad por operaciones algebraicas

Operaciones algebraicas con funciones

El conjunto $\mathcal{F}(\Omega)$ de todas las funciones de Ω en $\mathbb R$

es un anillo conmutativo y un espacio vectorial sobre $\mathbb R$

con las operaciones definidas, para $f,g\in\mathcal{F}(\Omega)$ y $\alpha\in\mathbb{R}$ como sigue.

Suma:
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in \Omega$$

Producto: $(fg)(x) = f(x)g(x) \quad \forall x \in \Omega$

Producto por escalares: $(\alpha f)(x) = \alpha f(x) \quad \forall x \in \Omega$

Funciones reales medibles

 $\mathcal{L}(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $\mathbb R$ a las que llamamos funciones reales medibles

Estabilidad por operaciones algebraicas

La suma y el producto de funciones reales medibles son medibles

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f\leqslant g\quad\Longleftrightarrow\quad f(x)\leqslant g(x)\ \, \forall\,x\in\Omega$$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

A cada $f \in \mathcal{F}(\Omega)$ se asocian tres funciones:

Valor absoluto de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

- Valor absoluto de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- $\qquad \text{Parte positiva de } f\colon \quad f^+(x) = \max\{f(x),0\} \ \, \forall x\in\Omega$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

- Valor absolute de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- Parte positiva de f: $f^+(x) = \max\{f(x), 0\} \ \forall x \in \Omega$
- Parte negativa de f: $f^-(x) = \max\{-f(x), 0\} \ \forall x \in \Omega$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

- Valor absoluto de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- Parte positiva de f: $f^+(x) = \max\{f(x), 0\} \ \forall x \in \Omega$
- Parte negativa de f: $f^-(x) = \max\{-f(x), 0\} \ \forall x \in \Omega$

Es claro que:
$$f=f^+-f^-$$
 y $|f|=f^++f^-$

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \iff f(x) \leqslant g(x) \ \forall x \in \Omega$$

A cada $f \in \mathcal{F}(\Omega)$ se asocian tres funciones:

- Valor absoluto de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- Parte positiva de f: $f^+(x) = \max\{f(x), 0\} \ \forall x \in \Omega$
- Parte negativa de f: $f^-(x) = \max\{-f(x), 0\} \ \forall x \in \Omega$

Es claro que:
$$f = f^+ - f^-$$
 y $|f| = f^+ + f^-$

Estabilidad de las funciones medibles

Funciones reales medibles: cuestiones relacionadas con el orden

Orden, valor absoluto, parte positiva y parte negativa

Relación de orden entre funciones: para $f,g\in\mathcal{F}(\Omega)$ se define

$$f \leqslant g \quad \Longleftrightarrow \quad f(x) \leqslant g(x) \ \, \forall \, x \in \Omega$$

A cada $f \in \mathcal{F}(\Omega)$ se asocian tres funciones:

- Valor absolute de f: $|f|(x) = |f(x)| \quad \forall x \in \Omega$
- Parte positiva de f: $f^+(x) = \max\{f(x), 0\} \ \forall x \in \Omega$
- Parte negativa de f: $f^-(x) = \max\{-f(x), 0\} \ \forall x \in \Omega$

Es claro que:
$$f = f^{+} - f^{-}$$
 y $|f| = f^{+} + f^{-}$

Estabilidad de las funciones medibles

El valor absoluto, la parte positiva y la parte negativa,

de una función real medible, son medibles

Funciones medibles positivas

Funciones medibles positiva

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$

Funciones medibles positiva

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Funciones medibles positivas

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

Funciones medibles positivas

 $\mathcal{L}^+(\Omega) \text{ será el conjunto de todas las funciones medibles de } \Omega \text{ en } [0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

Funciones medibles positivas

 $\mathcal{L}^+(\Omega) \text{ ser\'a el conjunto de todas las funciones medibles de } \Omega \text{ en } [0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

Para una función $f:\Omega \to [\,0\,,\infty\,]$, las siguientes afirmaciones son equivalentes:

(1) f es medible

Funciones medibles positivas

 $\mathcal{L}^+(\Omega) \text{ será el conjunto de todas las funciones medibles de } \Omega \text{ en } [0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

- (1) f es medible
- (2) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible

Funciones medibles positivas

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

- (1) f es medible
- (2) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible
- (3) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \geqslant \alpha\}$ es medible

Funciones medibles positiva

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

- (1) f es medible
- (2) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible
- (3) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \geqslant \alpha\}$ es medible
- (4) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega: f(x) > \alpha\}$ es medible

Funciones medibles positivas

 $\mathcal{L}^+(\Omega)$ será el conjunto de todas las funciones medibles de Ω en $[0,\infty]$ a las que llamaremos funciones medibles positivas

Caracterización de las funciones medibles positivas

- (1) f es medible
- (2) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible
- (3) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \geqslant \alpha\}$ es medible
- (4) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) > \alpha\}$ es medible
- (5) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \leq \alpha\}$ es medible

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

Supremo, ínfimo, límites superior e inferior y límite puntual $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1$

Si $\{f_n\}$ es una sucesión de funciones medibles positivas, también son medibles las cuatro funciones definidas como sigue:

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas, también son medibles las cuatro funciones definidas como sigue:

• $g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

- $g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \ \forall x \in \Omega$
- $h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$h = \inf \{ f_n : n \in \mathbb{N} \}, \qquad h(x) = \inf \{ f_n(x) : n \in \mathbb{N} \} \quad \forall x \in \Omega$$

•
$$\varphi = \limsup_{n \to \infty} f_n$$
, $\varphi(x) = \limsup_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

$$\begin{array}{ll} \bullet & \varphi = \limsup_{n \to \infty} f_n \,, & \varphi(x) = \limsup_{n \to \infty} f_n(x) & \forall x \in \Omega \\ \\ \bullet & \psi = \liminf_{n \to \infty} f_n \,, & \psi(x) = \liminf_{n \to \infty} f_n(x) & \forall x \in \Omega \end{array}$$

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$\begin{array}{ll} \bullet & \varphi = \limsup_{n \to \infty} f_n \,, & \varphi(x) = \limsup_{n \to \infty} f_n(x) & \forall x \in \Omega \\ \\ \bullet & \psi = \liminf_{n \to \infty} f_n \,, & \psi(x) = \liminf_{n \to \infty} f_n(x) & \forall x \in \Omega \end{array}$$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$\begin{array}{ll} \bullet & \varphi = \limsup_{n \to \infty} f_n \,, & \varphi(x) = \limsup_{n \to \infty} f_n(x) & \forall x \in \Omega \\ \\ \bullet & \psi = \liminf_{n \to \infty} f_n \,, & \psi(x) = \liminf_{n \to \infty} f_n(x) & \forall x \in \Omega \end{array}$$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f:\Omega\to[0,\infty]$ es una función medible positiva

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$\begin{array}{ll} \bullet & \varphi = \limsup_{n \to \infty} f_n \,, & \varphi(x) = \limsup_{n \to \infty} f_n(x) & \forall x \in \Omega \\ \\ \bullet & \psi = \liminf_{n \to \infty} f_n \,, & \psi(x) = \liminf_{n \to \infty} f_n(x) & \forall x \in \Omega \end{array}$$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f:\Omega\to[0,\infty]$ es una función medible positiva

Consecuencia importante para funciones reales medibles

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \ \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$\begin{array}{ll} \bullet & \varphi = \limsup_{n \to \infty} f_n \,, & \varphi(x) = \limsup_{n \to \infty} f_n(x) & \forall x \in \Omega \\ \\ \bullet & \psi = \liminf_{n \to \infty} f_n \,, & \psi(x) = \liminf_{n \to \infty} f_n(x) & \forall x \in \Omega \end{array}$$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f:\Omega\to[0,\infty]$ es una función medible positiva

Consecuencia importante para funciones reales medibles

Si $\{f_n\}$ es una sucesión de funciones reales medibles,

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

$$n = \min\{f_n : n \in \mathbb{N}\}, \qquad n(x) = \min\{f_n(x) : n \in \mathbb{N}\} \vee \varphi = \limsup_{n \to \infty} f_n, \qquad \varphi(x) = \limsup_{n \to \infty} f_n(x) \quad \forall x \in \Omega$$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f:\Omega\to[0,\infty]$ es una función medible positiva

Consecuencia importante para funciones reales medibles

Si $\{f_n\}$ es una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$,

Supremo, ínfimo, límites superior e inferior y límite puntual

Si $\{f_n\}$ es una sucesión de funciones medibles positivas,

también son medibles las cuatro funciones definidas como sigue:

•
$$g = \sup\{f_n : n \in \mathbb{N}\}, \quad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$h = \inf\{f_n : n \in \mathbb{N}\}, \quad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \quad \forall x \in \Omega$$

•
$$\varphi = \limsup_{n \to \infty} f_n$$
, $\varphi(x) = \limsup_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

•
$$\psi = \liminf_{n \to \infty} f_n$$
, $\psi(x) = \liminf_{n \to \infty} f_n(x) \quad \forall x \in \Omega$

En particular, si $\{f_n(x)\} \to f(x) \in [0,\infty]$ para todo $x \in \Omega$ entonces $f: \Omega \to [0,\infty]$ es una función medible positiva

Consecuencia importante para funciones reales medibles

Si $\{f_n\}$ es una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$, entonces f es medible

 Propiedades
 Aproximación

 ○○○○
 ●○○○

Funciones características

Función característica de un conjunto

Función característica de un conjunto

La función característica de un conjunto $B\subset \mathbb{R}^N$ viene dada por:

Función característica de un conjunto

La función característica de un conjunto $B\subset \mathbb{R}^N$ viene dada por:

$$\chi_B: \mathbb{R}^N \to \{0,1\}\,, \quad \chi_B(x) = 1 \quad \forall x \in B\,, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Función característica de un conjunto

La función característica de un conjunto $B\subset\mathbb{R}^N$ viene dada por:

$$\chi_B:\mathbb{R}^N \to \{0,1\}\,, \quad \chi_B(x) = 1 \quad \forall x \in B\,, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Función característica de un conjunto

La función característica de un conjunto $B \subset \mathbb{R}^N$ viene dada por:

$$\chi_{\scriptscriptstyle B}: \mathbb{R}^N \to \{0,1\}\,, \quad \chi_{\scriptscriptstyle B}(x) = 1 \quad \forall x \in B\,, \quad \chi_{\scriptscriptstyle B}(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Función característica de un conjunto

La función característica de un conjunto $B\subset\mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B\subset\mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

Función característica de un conjunto

La función característica de un conjunto $B \subset \mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

• Si $W \in \mathcal{P}(R^N) \setminus \mathcal{M}$ y $f(x) = 2\chi_W(x) - 1 \ \forall x \in \mathbb{R}^N$, entonces

Función característica de un conjunto

La función característica de un conjunto $B\subset \mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

 $\bullet \quad \text{Si } W \in \mathcal{P}(R^N) \setminus \mathcal{M} \ \, \text{y} \ \, f(x) = 2\chi_W(x) - 1 \ \, \forall x \in \mathbb{R}^N \text{, entonces} \\ f: \mathbb{R}^N \to \mathbb{R} \ \, \text{no es medible pero} \, \, |f| \, \, \text{sí lo es}$

Funcion caracteristica de un conjunto

La función característica de un conjunto $B\subset\mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

- Si $W \in \mathcal{P}(R^N) \setminus \mathcal{M}$ y $f(x) = 2\chi_W(x) 1 \ \forall x \in \mathbb{R}^N$, entonces $f: \mathbb{R}^N \to \mathbb{R}$ no es medible pero |f| sí lo es
- ullet Tomando $B=\mathbb{Q}^N$, la función χ_B es medible,

Funciones características

Funcion caracteristica de un conjunto

La función característica de un conjunto $B\subset\mathbb{R}^N$ viene dada por:

$$\chi_B : \mathbb{R}^N \to \{0,1\}, \quad \chi_B(x) = 1 \quad \forall x \in B, \quad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

Medibilidad

Para $B \subset \mathbb{R}^N$, la función χ_B es medible si, y sólo si, B es un conjunto medible

Ejemplos

- Si $W \in \mathcal{P}(R^N) \setminus \mathcal{M}$ y $f(x) = 2\chi_W(x) 1 \ \forall x \in \mathbb{R}^N$, entonces $f: \mathbb{R}^N \to \mathbb{R}$ no es medible pero |f| sí lo es
- Tomando $B=\mathbb{Q}^N$, la función χ_B es medible, pero no es continua en ningún punto de \mathbb{R}^N

Propiedades 00000 Aproximación O•OO

Funciones simples positivas

Funciones simples positiva

Llamaremos función simple positiva a toda función de la forma

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=0}^{m} \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Funciones simples positiva

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N) \subset \mathbb{R}^+_0$

Si $s: \mathbb{R}^N \to \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \; \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s:\mathbb{R}^N \to \mathbb{R}^+_0$ es una función medible positiva con imagen finita, escribimos

$$s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \quad \text{con} \quad p \in \mathbb{N} \quad \text{y} \quad \alpha_1 < \alpha_2 < \dots \alpha_p$$

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N}, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s:\mathbb{R}^N o \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos $s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \quad \text{con} \quad p \in \mathbb{N} \quad \text{y} \quad \alpha_1 < \alpha_2 < \dots \alpha_p$ y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\} \quad \text{para todo } k \in \Delta_p$.

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N} \,, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s:\mathbb{R}^N \to \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos $s(\mathbb{R}^N) = \{\alpha_1,\alpha_2,\dots,\alpha_p\} \quad \text{con} \quad p \in \mathbb{N} \quad \text{y} \quad \alpha_1 < \alpha_2 < \dots \alpha_p$ y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\} \quad \text{para todo} \ k \in \Delta_p$. Entonces $A_k \in \mathcal{M} \quad \text{para todo} \ k \in \Delta_p$ y se tiene:

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N} \,, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s:\mathbb{R}^N o \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos $s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \ldots, \alpha_p\}$ con $p \in \mathbb{N}$ y $\alpha_1 < \alpha_2 < \ldots \alpha_p$ y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\}$ para todo $k \in \Delta_p$. Entonces $A_k \in \mathcal{M}$ para todo $k \in \Delta_p$ y se tiene:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \qquad (*)$$

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N} \,, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s:\mathbb{R}^N o \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos $s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \quad \text{con} \quad p \in \mathbb{N} \quad \text{y} \quad \alpha_1 < \alpha_2 < \dots \alpha_p$ y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\} \quad \text{para todo} \ k \in \Delta_p$.

Entonces $A_k \in \mathcal{M}$ para todo $k \in \Delta_p$ y se tiene:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \qquad (*)$$

Por tanto s es una función simple positiva

Funciones simples positivas

Llamaremos función simple positiva a toda función de la forma

$$s = \sum_{i=1}^m \rho_i \ \chi_{C_i} \quad \text{donde} \quad m \in \mathbb{N} \,, \quad \rho_1, \dots, \rho_m \in \mathbb{R}_0^+ \quad \text{y} \quad C_1, \dots, C_m \in \mathcal{M}$$

Entonces s es una función medible positiva, con imagen finita $s(\mathbb{R}^N)\subset\mathbb{R}_0^+$

Descomposición canónica

Si $s: \mathbb{R}^N \to \mathbb{R}_0^+$ es una función medible positiva con imagen finita, escribimos

$$s(\mathbb{R}^N) = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \text{ con } p \in \mathbb{N} \text{ y } \alpha_1 < \alpha_2 < \dots \alpha_p$$

y definimos $A_k = \{x \in \mathbb{R}^N : s(x) = \alpha_k\}$ para todo $k \in \Delta_p$.

Entonces $A_k \in \mathcal{M}$ para todo $k \in \Delta_p$ y se tiene:

$$s = \sum_{k=1}^{p} \alpha_k \chi_{A_k} \qquad (*)$$

Por tanto $\,s\,$ es una función simple positiva

y diremos que (*) es la descomposición canónica de s

Sucesiones monótonas funcione

Si $f_n:\Omega \to [0,\infty]$ para todo $n\in \mathbb{N}$, la sucesión $\{f_n\}$ es:

Sucesiones monótonas funciones

Si $f_n:\Omega \to [0,\infty]$ para todo $n\in \mathbb{N}$, la sucesión $\{f_n\}$ es:

• creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$

Sucesiones monotonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$

Sucesiones monótonas funciones

Si $f_n:\Omega \to [0,\infty]$ para todo $n\in \mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Sucesiones monótonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Si
$$\{f_n\}$$
 es monótona, tiene un límite puntual: $f(x)=\lim_{n \to \infty} f_n(x) \ \ \forall x \in \Omega$

Sucesiones monótonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Si
$$\{f_n\}$$
 es monótona, tiene un límite puntual: $f(x) = \lim_{n \to \infty} f_n(x) \ \, \forall x \in \Omega$

Escribimos $\{f_n\}\nearrow f$ si $\{f_n\}$ es creciente, y $\{f_n\}\searrow f$ si es decreciente

Sucesiones monótonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Si
$$\{f_n\}$$
 es monótona, tiene un límite puntual: $f(x) = \lim_{n \to \infty} f_n(x) \ \, \forall x \in \Omega$

Escribimos $\{f_n\} \nearrow f$ si $\{f_n\}$ es creciente, y $\{f_n\} \searrow f$ si es decreciente

Teorema de aproximación de Lebesgue

Sucesiones monótonas funciones

Si $f_n:\Omega\to[0,\infty]$ para todo $n\in\mathbb{N}$, la sucesión $\{f_n\}$ es:

- creciente cuando $f_n(x) \leqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- decreciente cuando $f_n(x) \geqslant f_{n+1}(x) \ \forall x \in \Omega, \ \forall n \in \mathbb{N}$
- monótona cuando es creciente o decreciente

Si
$$\{f_n\}$$
 es monótona, tiene un límite puntual: $f(x)=\lim_{n\to\infty}f_n(x) \ \ \forall x\in\Omega$

Escribimos $\{f_n\} \nearrow f$ si $\{f_n\}$ es creciente, y $\{f_n\} \searrow f$ si es decreciente

Teorema de aproximación de Lebesgue

Toda función medible positiva es el límite puntual de una sucesión creciente de funciones simples positivas

Teorema de aproximación uniforme

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\ \sup f(\Omega) < \infty$,

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Visión constructiva de las funciones medibles positivas

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Visión constructiva de las funciones medibles positivas

Una función de Ω en $[0,\infty]$ es medible si, y sólo si, es el límite puntual de una sucesión creciente de funciones simples positivas

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Visión constructiva de las funciones medibles positivas

Una función de Ω en $[0,\infty]$ es medible si, y sólo si, es el límite puntual de una sucesión creciente de funciones simples positivas

Operaciones algebraicas con funciones medibles positivas

Teorema de aproximación uniforme

Si f es una función medible positiva, tal que $\sup f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Visión constructiva de las funciones medibles positivas

Una función de Ω en $[0,\infty]$ es medible si, y sólo si, es el límite puntual de una sucesión creciente de funciones simples positivas

Operaciones algebraicas con funciones medibles positivas

Si f y g son funciones medibles positivas, entonces f+g y f g también lo son