MEMORIA DE CÁLCULO

Tamsformador y boblinas Tamsformador y boblinas Calculada para N 104 espiras y $A_L = 5.08 \cdot 10^{-8} \text{H/csp}^2$, 17.5 ml N2 = 5 espiras, para obtener 5V con 3A. N2 = 5 espiras, para obtener 5V con 3A. N3 = 5 espiras, para obtener 5V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, para obtener 6V con 3A. N4 = 5 espiras, par	Ref	Tipo	Valor	Justificación	
1.2		-	Tra	nsformador y bobinas	
1.2	L1	Bobina (primario trafo)	45.9mH	Calculada para N1 = 104 espiras v $A_L = 5.08 \cdot 10^{-6}$ H/esp ² .	
1.2m					
Let Inductancia de dispersión 0.615mH Medida experimentalmente. Úsada en cálculo del subber.	L3				
Ri	$_{ m Ld}$		0.615mH		
RS					
RS	R1	Rsn	$32k\Omega$	Disipa energía de Ld. Compuesta por 22k + 10k.	
Diodo rápido PR107 Recuperación rápido PR107 Recuperación rápido PR107 Recuperación rápido PR107 PWM Controller UC3526AN Modulación de ancho de pulso. fose − 70kHz, duty máx. 50 %.	R3	Rs	268Ω		
Controlar FWM (Cots26AN)	C1	Capacitor snubber	10nF 2kV	Cerámico clase X2. Calculado para dV/dt permitido.	
U1 PWM Controller R71 Resistencia timing 2kΩ -10kΩ	D3	Diodo rápido		Recuperación rápida. Deriva energía de Ld hacia Csn.	
Resistencia timing 21cl − 104cl 21c − 20c − 20	Controlador PWM (UC3526AN)				
C11 Capacitor timing RD1 2nF Valor sugerido por datasheet $γ$ ajustado para frecuencia deseada. RD1 Dead-time resistor G Minima dead-time. Capacitor specifical properties of the properties o	U1	PWM Controller	UC3526AN	Modulación de ancho de pulso. fosc = 70kHz, duty máx. 50 %.	
RDI Dead-time resistor OR Minima dead-time. Usadoe modo sincrónico libro. Compensación y feedback RS Resistencia divisor E- 130kΩ Con R10 forman divisor que lleva 16V → 2.5V al pin Error RV1 Preset (referencia) E+ 20kΩ Ajusta la referencia en terminal Error+. Con Verf de 5V. RV1 Preset (referencia) E+ 10kΩ Con RV1 forman divisor que lleva 16V → 2.5V al pin Error RV2 Resistencia divisor E+ 10kΩ Con RV1 forman divisor que lleva 16V → 2.5V al pin Error+. RV2 Resistencia compensación 4.7kΩ Parte del lazo PI para control de tensión. RV3 Preset test 100kΩ En serie con jumper, permite testear sin feedback. RV3 Preset test 100kΩ En serie con jumper, permite testear sin feedback. V Valva S 400V, Vgs=±20V, commutado direct desde UC3526. R4 Gate resistor 82Ω Limita corrient de commutación del gate: $I_0 < = 16V/82Ω ≈ 195mA$. D5 Diodo salida 5V MUR460 Alx, rápida recuperación. Corriente máxima del canal 5V. C9+C10 Capacitores salida 16V MUR460	RT1	Resistencia timing		Ajustada para obtener fosc = 70kHz. En combinación con CT (C11).	
R8 Resistencia divisor E 130kΩ Con R10 forma divisor que lleva $16V \rightarrow 2.5V$ al pin Error R10 Resistencia divisor E 130kΩ Con R10 forma divisor que lleva $16V \rightarrow 2.5V$ al pin Error RV1 Preset (referencia) E + 20kΩ Ajusta la referencia en terminal Error+. Con Vref de 5V R9 Resistencia divisor E + 10kΩ Con R8 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error RV2 Preset (referencia) E + 20kΩ Ajusta la referencia en terminal Error+. Con Vref de 5V R12 Resistencia compensación 4.7kΩ Parte del lazo P1 ret del lazo P1 ret del 20kΩ Con RV1 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error R12 Resistencia compensación 4.7kΩ Parte del lazo P1 ret del lazo P1 ret del 20kΩ Preset del	C11	Capacitor timing	2nF	Valor sugerido por datasheet y ajustado para frecuencia deseada.	
Resistencia divisor E- 130kΩ Con R10 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error R10 Resistencia divisor E- 10kΩ Con R8 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error RV1 Preset (referencia) E+ 20kΩ Ajusta la referencia en terminal Error+. Con Vref de 5V. R9 Resistencia divisor E+ 10kΩ Con RV1 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error R12 Resistencia compensación 4.7kΩ Parte del lazo P1 para control de tensión. Capacitor compensación 100nF Define la constante de let entegración del P1. R12 Resistencia compensación 100nF Define la constante de let entegración del P1. R14 Gate resistor 82Ω Limita corriente de commutación del pt. R25 Diodo salida 5V MUR460 MUR160 Afrapida recuperación. Corriente máxima del canal 5V. Parte del lazo P1 para control de tensión.	RD1	Dead-time resistor	Ω 0	Mínima dead-time. Usado en modo sincrónico libre.	
Resistencia divisor E 10kΩ Con R8 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error-, R9 Resistencia divisor E + 20kΩ Ajusta la referencia en terminal Error+, Con Vref de $5V$. R9 Resistencia divisor E + 10kΩ Con RV forman divisor que lleva $Vref = 5V \rightarrow 2.5V$ al pin Error+, Con Vref de $5V$. R9 Resistencia compensación 4.7kΩ Parte del lazo $Parte del lazo Parte de lazo Parte parte lazo Parte parte parte de lazo Parte pa$	Compensación y feedback				
RV1 Preset (referencia Ξ) Ξ -Preset (referencia Ξ) Ξ -Preset (referencia Ξ) Ξ -Preset	R8	Resistencia divisor E-	130kΩ	Con R10 forman divisor que lleva $16\mathrm{V} \to 2.5\mathrm{V}$ al pin Error	
R9 Resistencia divisor E+ 10kΩ Con RV1 forman divisor que lleva Vref = 5V → 2.5V al pin Error+. R12 Resistencia compensación 4.7kΩ Parte del lazo Pl para control de tensión. RV2 Peset test 100kΩ Beria constante de integración del Pl. RV2 Preset test 100kΩ Beria constante de integración del Pl. RV2 BUSS0 NOSPET y drivers RV3 Al Gate resistor 82Ω Limita corriente de comuntación del gate: $I_G <= 16V/82Ω \approx 195 m.A$ P5 Diodo salida 5V MUR460 4A, rápida recuperación. Corriente máxima del canal 5V. D6 Diodo salida 5V MUR160 1A, stificiente para salida auxiliar. C3+C5 Capacitores salida 5V 1µF+10µF Reduce ripple bajo carga de 3A. Multicapa + electrolítico. C9+C10 Capacitores salida 16V 1µF+10µF Pesacopite C2+C3 Capacitores de alimentación del IC U1 10µF+1µF 450V+650V Reduce ripple bajo carga de 3A. Multicapa + electrolítico. C6+C7 Capacitores de alimentación del IC U1 10µF+1µF 450V+650V Reduce ripple de la salida del puente rectificador de 220Vac. Electrolítico + multicapa. D6	R10	Resistencia divisor E-	$10 \mathrm{k}\Omega$	Con R8 forman divisor que lleva $16V \rightarrow 2.5V$ al pin Error	
R12 Resistencia compensación 100 μ Define la control de tensión. C13 Capacitor compensación 100 μ Define la contante de integración del Pl. En serie con jumper, permite testear sin feedback. NOSFET BUZ80 V48 > 400 V, Vgs=±20 V, connutado directo desde UC3526. R4 Gate resistor S2Ω Umita corriente de commutación del gate: $I_G < = 16V/82Ω ≈ 195 mA$. Filtros de salida S4 S40 V, Vgs=±20 V, connutado directo desde UC3526. C3	RV1	Preset (referencia) E+	$20 \mathrm{k}\Omega$	Ajusta la referencia en terminal Error+. Con Vref de 5V.	
G13 Capacitor compensación 100n Ω Define la constante de integración del PI. RV2 Preset test 100kΩ Den serie con jumper, permite testear sin feedback. MOSFET y drivers Q1 MOSFET Gate resistor 82Ω Vds > 400V. Vgs = ±20V. conmutación del gate: $I_G < = 16V/82Ω ≈ 195m$ A. Filtros de salida D5 Diodo salida 5V MUR460 4A, rápida recuperación. Corriente máxima del cana 5V. C9+01 Capacitores salida 16V MUR460 1A, suficiente para salida auxiliar. Reduce ripple abja carga da 3A. Multicapa + electrolítico. C9+01 Capacitores salida 16V 1pF+10µF Reduce ripple en salida auxiliar. C9+02 Capacitores filtrado de 220Vac 10µF+1µF 450V+450V Reduce ripple de la salida del puente rectificador de 220Vac. Describe de la describe	R9	Resistencia divisor E+	$10 \mathrm{k}\Omega$	Con RV1 forman divisor que lleva Vref = $5V \rightarrow 2.5V$ al pin Error+.	
Ry 2 Preset test 100kΩ Ensere on jumper, permite testear sin feedback. MOSFET (Privers) Q1 MOSFET (Sate resistor) BUZ80 Vds > 400V, Vgs=±20V, conmutado directo desde UC3526. R4 Gate resistor S2Ω Vds > 400V, Vgs=±20V, conmutado directo desde UC3526. D5 Diodo salida 5V MUR460 4A, rápida recuperación. Corriente máxima del canal 5V. D6 Diodo salida 16V MUR160 1A, suficiente para salida auxiliar. C3+C5 Capacitores salida 16V IµF+10µF Reduce ripple bajo carga de 3A. Multicapa + electrolítico. C9+C10 Capacitores filtrado de 220Vac 100µF+1µF 450V+650V Reduce ripple en salida auxiliar. Reduce ripple en salida del puente rectifivador de 220Vac. Descrofito + poliester. C6+C2 Capacitores filtrado de 220Vac. 10µF+1µF 450V+650V Reduce ripple en salida del puente rectifivador de 220Vac. Descrofitico + poliester. Encentidado de presentifica de 10 de 10 marça de 10 de 10 marça de 10 de 10 marça de 10 mar	R12	Resistencia compensación	$4.7 \mathrm{k}\Omega$	Parte del lazo PI para control de tensión.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C13	Capacitor compensación	100nF	Define la constante de integración del PI.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RV2	Preset test	100kΩ	En serie con jumper, permite testear sin feedback.	
R4 Gate resistor 82Ω Limita corriente de conmutación del gate: $I_G <= 16V/82Ω ≈ 195mA$. D5 Diodo salida 5V MUR460 4A, rápida recuperación. Corriente máxima del canal 5V. D6 Diodo salida 16V MUR160 1A, suficiente para salida auxiliar. C4+C5 Capacitores salida 16V 1µF+10µF Reduce ripple en para salida auxiliar. C9+C10 Capacitores salida 16V 1µF+10µF Reduce ripple en salida auxiliar (0.5A). Multicapa + electrolítico. C2+C3 Capacitores filtrado de 220Vac 10µF+1µF 450V+650V Reduce ripple da salida del puente rectifivador de 220Vac. Electrolítico + poliester. C6+C7 Capacitores de alimentación del IC U1 10µF+1µF 450V+650V Permite alimentación del 220Vac. 1000V-1.5A. D6 Full bridge rectifier W10M Puente rectificador de 220Vac. 1000V-1.5A. B6 Resistencia 470kΩ Permite alimentación inicial del integrado U1 a través de la tensión de línea. Permite alimentación inicial del integrado U1, sin que se vea afectada por la tensión del secundario. Permite alimentación inicial del integrado U1, sin que se vea afectada por la tensión del secundario. B1 LED rojo 311V - Indicador de presencia de 311V.					
$ \begin{array}{ c c c c } \hline D5 & Diodo salida 5V & MUR460 & 4A, rápída recuperación. Corriente máxima del canal 5V. \\ D6 & Diodo salida 16V & MUR160 & 1A, suficiente para salida auxiliar. \\ C4+C5 & Capacitores salida 5V & 1µF+10µF & Reduce ripple bajo carga de 3A. Multicapa + electrolítico. \\ C9+C10 & Capacitores salida 16V & 1µF+10µF & Reduce ripple as salida auxiliar (0.5A). Multicapa + electrolítico. \\ \hline \hline C2+C3 & Capacitores filtrado de 220Vac & Desacople \\ \hline C6+C7 & Capacitores de alimentación del IC U1 & 10µF+1µF 450V+650V & Reduce ripple de la salida del puente rectifivador de 220Vac. Electrolítico + poliester. \\ \hline \hline C6+C7 & Vapacitores de alimentación del IC U1 & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C8 & Valodo & Valodo & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C9 & Valodo & Valodo & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C9 & Valodo & Valodo & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C9 & Valodo & Valodo & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C9 & Valodo & Valodo & Valodo & Valodo & Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. \\ \hline \hline C9+C9 & Valodo & Valod$	Q1	MOSFET	BUZ80	Vds > 400V, Vgs=±20V, conmutado directo desde UC3526.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R4	Gate resistor	82Ω		
D6 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C5+C10 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C5 C4+C6 C4+C5 C4+C6 	Filtros de salida				
C4+C5 C9+C10Capacitores salida 5V Capacitores salida 16V 1μ F+10 μ F 1 μ F+10 μ FReduce ripple bajo carga de 3A. Multicapa + electrolítico.C9+C3 C4+C3 C6+C7Capacitores de alimentación del IC U1 10μ F+1 μ F 450V+650V 10 μ F+1 μ F 450V+650V Capacitores de alimentación del IC U1Reduce ripple de la salida del puente rectifivador de 220Vac. Electrolítico + poliester.D2Full bridge rectifierW10MPuente rectificaciónB6Resistencia D8470kΩ 10400Permite alimentación inicial del integrado U1 a través de la tensión de línea.D8Diodo1N4007 20500Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensión de secundario.D1LED rojo 311V R2 30500-Indicadore de presencia de 31IV.R2 40500Resistencia D1 3050068k Ω - 2W 30500Limita corriente para D1 a 5mA. Indicador de presencia de 5V.R5 40500Resistencia D4 40500330 Ω - 1/4W 40500Limita corriente para D4 a 10mA.B7 40500Resistencia D1 405001.5k Ω - 1/4WLimita corriente para D7 a 10mA.B7 40500Resistencia D11.5k Ω - 1/4WLimita corriente para D7 a 10mA.B7 40500Resistencia D11.5k Ω - 1/4WLimita corriente para D7 a 10mA.B7 40500Bornera entrada AC 405002P 40500Entrada 220V AC. Conexión a puente de diodos.J1 J3 J4 40500Bornera salida 5V 405002P 20500Salida de potencia (hasta 3A).J4 J5 J6 Bornera entrada DC2P 	D5	Diodo salida 5V	MUR460	4A, rápida recuperación. Corriente máxima del canal 5V.	
C9+C10 Capacitores salida 16V $1 μF+10 μF$ Reduce ripple en salida auxiliar (0.5A). Multicapa + electrolítico. C2+C3 Capacitores filtrado de 220Vac (Capacitores de alimentación del IC U1 $10 μF+1 μF$ 450V+650V (Reduce ripple de la salida del puente rectifivador de 220Vac. Electrolítico + poliester. Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa. Rectificación D2 Full bridge rectifier W10M Puente rectificador de 220Vac. 1000V-1.5A. Encendido auxiliar R6 Resistencia 470kΩ Permite alimentación inicial del integrado U1 a través de la tensión de línea. D8 Diodo 1N4007 Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensión de secundario. Indicadores (LEDs) D1 LED rojo 311V - Indicador de presencia de 311V. R2 Resistencia D1 68kΩ - 2W Limita corriente para D4 a 5MA. R5 Resistencia D4 330Ω - 1/4W Limita corriente para D4 a 10mA. D7 LED rojo 16V - Indicador de presencia de 16V. R7 Resistencia D1 1.5kΩ - 1/4W Limita corriente para D4 a 10mA.	D6	Diodo salida 16V	MUR160	1A, suficiente para salida auxiliar.	
DesacopleC2+C3 C6+C7Capacitores filtrado de 220Vac C6+C7 $100\mu F + 1\mu F$ Capacitores de alimentación del IC U1 $100\mu F + 1\mu F$ 100 $\mu F + 1\mu F$ Reduce ripple de la salida del puente rectifivador de 220Vac. Electrolítico + poliester.Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa.RectificaciónD2Full bridge rectifierW10MPuente rectificador de 220Vac. 1000V-1.5A.Encendido auxiliarR6Resistencia Diodo470kΩ 1N4007Permite alimentación inicial del integrado U1 a través de la tensión de línea.Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensión el secundario.D1LED rojo 311V R2-Indicadores (LEDs)R6Resistencia D1 $68k\Omega - 2W$ -Indicador de presencia de 311V.D4LED rojo 5V R5-Indicador de presencia de 5V.R5Resistencia D4 A ELED rojo 16V R7330Ω - 1/4W -Limita corriente para D1 a 10mA.D7LED rojo 16V R7-Indicador de presencia de 16V.R7Resistencia D1 $1.5k\Omega - 1/4W$ Limita corriente para D7 a 10mA.Conectores y bornerasJ1Bornera entrada AC Bornera salida 5V Bornera salida 5V Bornera entrada DC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera entrada DC2PSalida para alimentación de control y realimentación.J3Bornera entrada DC2PEntrada auxiliar de alim	C4+C5	Capacitores salida 5V	$1\mu F + 100\mu F$	Reduce ripple bajo carga de 3A. Multicapa + electrolítico.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C9+C10	Capacitores salida 16V	$1\mu F + 10\mu F$	Reduce ripple en salida auxiliar $(0.5A)$. Multicapa $+$ electrolítico.	
C6+C7Capacitores de alimentación del IC U1 $10\mu F + 1\mu F$ Permite alimentar el IC U1 de manera establa para los disparos del MOS. Electrolítico + multicapa.RectificaciónD2Full bridge rectifierW10MPuente rectificador de 220Vac. $1000V-1.5A$.Encendido auxiliarR6Resistencia $470k\Omega$ DiodoPermite alimentación inicial del integrado U1 a través de la tensión de línea.D8Diodo $1N4007$ Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensiónd el secundario.Indicadores (LEDs)D1LED rojo 311V R2-Indicador de presencia de 311V.R2Resistencia D1 B768kΩ - 2W LED rojo 55V LED rojo 16V R7Indicador de presencia de 5V. Limita corriente para D4 a 10mA. Indicador de presencia de 16V. Limita corriente para D7 a 10mA.D7LED rojo 16V R7-Limita corriente para D7 a 10mA.D8Bornera entrada AC J42P Salida de potencia (hasta 3A).J3Bornera salida 5V Bornera entrada DC2PEntrada 220V AC. Conexión a puente de diodos. Salida para alimentación del IC.J3Bornera entrada DC2PSalida para alimentación del IC.	*				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C2+C3	Capacitores filtrado de 220Vac	100μF+1μF 450V+650V	Reduce ripple de la salida del puente rectifivador de 220Vac. Electrolítico + poliester.	
D2Full bridge rectifierW10MPuente rectificador de 220Vac. 1000V-1.5A.R6Resistencia $470kΩ$ Permite alimentación inicial del integrado U1 a través de la tensión de línea.D8Diodo $1N4007$ Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensiónd el secundario.Indicadores (LEDs)D1LED rojo 311V-Indicador de presencia de 311V.R2Resistencia D1 $68kΩ - 2W$ Limita corriente para D1 a 5mA.D4LED rojo 5V-Indicador de presencia de 5V.R5Resistencia D4 $330Ω - 1/4W$ Limita corriente para D4 a $10mA$.D7LED rojo $16V$ -Indicador de presencia de $16V$.R7Resistencia D1 $1.5kΩ - 1/4W$ Limita corriente para D7 a $10mA$.Conectores y bornerasJ1Bornera entrada AC $2P$ Entrada $220V$ AC. Conexión a puente de diodos.J4Bornera salida $16V$ $2P$ Salida de potencia (hasta $3A$).J5Bornera salida $16V$ $2P$ Salida para alimentación de control y realimentación.J6Bornera entrada DC $2P$ Entrada auxiliar de alimentación del IC.	C6+C7	Capacitores de alimentación del IC U1	10μF+1μF		
R6 Resistencia 470kΩ Permite alimentación inicial del integrado U1 a través de la tensión de línea. D8 Diodo 1N4007 Permite alimentación inicial del integrado U1, sin que se vea afectada por la tensión del secundario. Indicadores (LEDs) D1 LED rojo 311V - Indicador de presencia de 311V. R2 Resistencia D1 68kΩ - 2W Limita corriente para D1 a 5mA. D4 LED rojo 5V - Indicador de presencia de 5V. R5 Resistencia D4 330Ω - 1/4W Limita corriente para D4 a 10mA. D7 LED rojo 16V - Indicador de presencia de 16V. R7 Resistencia D1 1.5kΩ - 1/4W Limita corriente para D7 a 10mA. Conectores y borneras J1 Bornera entrada AC 2P Entrada 220V AC. Conexión a puente de diodos. J4 Bornera salida 5V 2P Salida de potencia (hasta 3A). J5 Bornera salida 16V 2P Salida para alimentación del IC. J6 Bornera entrada DC 2P Entrada auxiliar de alimentación del IC.					
R6 D8Resistencia Diodo470kΩ 1N4007Permite alimentación inicial del integrado U1 a través de la tensión de línea. Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensión el secundario.Indicadores (LEDs)D1 R2 R2 R4 R5 R5 R6 R6 R6 R7 R6 R6 R6 R7Indicador de presencia de 311V. LED rojo 5V LED rojo 16V R7 R6 R6 R7 R6 R6 R6 R7 R6 R6 R6 R7 R6 R6 R7 R6 R6 R7 R6 R6 R7 R6 R6 R7 R6 R6 R7 R6 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R6 R7 R6 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R7 R6 R6 R7 R6 R6 R6 R7 R6 R7 R6 R6 R6 R6 R7 R7 R6 R6 R6 R6 R7 R7 R7 R6 R6 R6 R6 R7 R6 R6 R6 R6 R7 R7 R7 R6 R6 R6 R7 R7 R7 R6 R6 R6 R6 R7	D2	Full bridge rectifier			
D8Diodo $1N4007$ Permite utilizar tensión auxiliar externa para el integrado U1, sin que se vea afectada por la tensión el secundario.Indicadores (LEDs)D1LED rojo 311V-Indicador de presencia de 311V.R2Resistencia D1 $68k\Omega - 2W$ Limita corriente para D1 a 5mA.D4LED rojo 5V-Indicador de presencia de 5V.R5Resistencia D4 $330\Omega - 1/4W$ Limita corriente para D4 a 10mA.D7LED rojo 16V-Indicador de presencia de 16V.R7Resistencia D1 $1.5k\Omega - 1/4W$ Limita corriente para D7 a 10mA.Conectores y bornerasJ1Bornera entrada AC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera entrada DC2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	Permite alimentación inicial del integrado U1 a través de la tensión de línea.	
Indicadores (LEDs)D1LED rojo 311V-Indicador de presencia de 311V.R2Resistencia D1 $68k\Omega$ - 2WLimita corriente para D1 a 5mA.D4LED rojo 5V-Indicador de presencia de 5V.R5Resistencia D4 330Ω - 1/4WLimita corriente para D4 a 10mA.D7LED rojo 16V-Indicador de presencia de 16V.R7Resistencia D1 $1.5k\Omega$ - 1/4WLimita corriente para D7 a 10mA.Conectores y bornerasJ1Bornera entrada AC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera salida 16V2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.	D8	Diodo	1N4007		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
R2Resistencia D1 $68k\Omega - 2W$ Limita corriente para D1 a 5mA.D4LED rojo 5V-Indicador de presencia de 5V.R5Resistencia D4 $330\Omega - 1/4W$ Limita corriente para D4 a 10mA.D7LED rojo 16V-Indicador de presencia de 16V.R7Resistencia D1 $1.5k\Omega - 1/4W$ Limita corriente para D7 a 10mA.Conectores y bornerasJ1Bornera entrada AC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera entrada DC2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		
R5Resistencia D4 D7 $330\Omega - 1/4W$ LED rojo 16V R7Limita corriente para D4 a 10mA. Indicador de presencia de 16V. Limita corriente para D7 a 10mA.Conectores y bornerasJ1Bornera entrada AC Bornera salida 5V J52P Salida de potencia (hasta 3A). Salida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.			68kΩ - 2W		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
R7 Resistencia D1 $1.5 \text{k}\Omega$ - $1/4 \text{W}$ Limita corriente para D7 a 10mA . Conectores y borneras J1 Bornera entrada AC 2P Entrada 220V AC. Conexión a puente de diodos. J4 Bornera salida 5V 2P Salida de potencia (hasta 3A). J5 Bornera salida 16V 2P Salida para alimentación de control y realimentación. J6 Bornera entrada DC 2P Entrada auxiliar de alimentación del IC.			$330\Omega - 1/4W$		
Conectores y bornerasJ1Bornera entrada AC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera salida 16V2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.			-		
J1Bornera entrada AC2PEntrada 220V AC. Conexión a puente de diodos.J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera salida 16V2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.	R7	Resistencia D1			
J4Bornera salida 5V2PSalida de potencia (hasta 3A).J5Bornera salida 16V2PSalida para alimentación de control y realimentación.J6Bornera entrada DC2PEntrada auxiliar de alimentación del IC.					
J5 Bornera salida 16V 2P Salida para alimentación de control y realimentación. J6 Bornera entrada DC 2P Entrada auxiliar de alimentación del IC.					
J6 Bornera entrada DC 2P Entrada auxiliar de alimentación del IC.					
	J6	Bornera entrada DC	2P		

Tabla III

MEMORIA DE CÁLCULO DE COMPONENTES.

Figura 19. Esquemático completo en KiCad.

Figura 20. Lazos de corriente sobre el layout del PCB. En rojo, el lazo de drain-source del MOS; en naranja, el lazo de gate del MOS a través del integrado; en verde, los lazos de ambos secundarios, 5V arriba, 16V abajo.