Обућар Никола

Николи се на такмичењу много допао Азербејџан тако да је одлучио остати у њему после такмичења и покренути сопствени бизнис. Мало коме је познато да је Никола велики љубитељ обуће, тако да је отворио обућарску радњу у Бакуу. Пошиљка са n пари ципела је управо стигла у радњу. Сваки пар ципела се састоји од две ципеле исте величине: леве и десне. Никола је све ципеле, њих 2n, сложио у врсту која се састоји од 2n позиција нумерисаних од 0 до 2n-1

Никола жели да пресложи ципеле у валидан редослед.

Редослед је валоидан ако и само ако за свако i ($0 \le i \le n-1$) важе следећи услови:

- Ципеле на позицијама 2i и 2i+1 су исте величине.
- ullet Ципела на позицији 2i је лева ципела.
- Ципела на позицији 2i+1 је десна ципела.

У ту сврху Никола може извршити низ замена. Приликом сваке замене он одабере две ципеле које су **у том трнеутку на суседним позицијама** и замени њихове позиције. Две ципеле су суседне ако се њихове позиције разликују за један.

Одредите најмањи број замена које Никола треба да обави како би добио валидан редослед ципела.

Детаљи имплементације

Потребно је имплементирати следећу процедуру:

- ` int64 count swaps (int [] S) `
 - S: низ са 2n целих бројева. За свако i ($0 \le i \le 2n-1$), S[i] је вредност различита од 0 која описује ципелу која се првобитно налази на позицији i. Апсолутна вредност S[i] је величина ципеле. Величина неке ципеле никада не прелази n.
 - ullet Ако је S[i] < 0, ципела на положају i је лева ципела, иначе је десна ципела.
 - Ова процедура треба вратити минимални број замена (суседних ципела) које је потребно обавити како би се добио један валидан редослед.

Примери

Пример 1

Посматрајмо следећи позив:

```
count_swaps([2, 1, -1, -2])
```

Никола може добити валидан редослед након укупно 4 замене.

На пример, прво може заменити ципеле 1 и -1, затим 1 и -2, затим -1 и -2 и на крају 2 и -2.

Тако се добија следећи валидан редослед [-2,2,-1,1].

Није могуће добити неки валидан редослед користећи мање од 4 замене суседних ципела.

Пример 2

У следећем примеру све су ципеле исте величине:

```
count_swaps([-2, 2, 2, -2, -2, 2])
```

Никола може заменти ципеле на позицијама 2 и 3 како би добио валидан редослед [-2,2,-2,2,-2,2]. Према томе решење које враћа процедура је 1

Ограничења

- $1 \le n \le 100000$
- ullet За свако i ($0 \le i \le 2n-1$), $1 \le |S[i]| \le n$, где са |x| означавамо апсолутну вредност броја x.
- Валидан редослед ципела се увек може постићи обављањем одређеног низа замена.

Подзадаци

- 1. (10 поена) n=1
- 2. (20 поена) $n \leq 8$
- 3. (20 поена) Све ципеле су исте величине.
- 4. (15 поена) Све ципеле на позицијама $0, \ldots, n-1$ су леве ципеле, а све ципеле на позицијама $n, \ldots, 2n-1$ су десне ципеле. Такође, за свако i ($0 \le i \le n-1$), ципеле на позицијама i і i+n су исте величине.
- 5. (20 поена) $n \le 1000$
- 6. (15 поена) Нема додатних ограничења.

Грејдер

Грејдер учитава улазне податке у следећем формату:

- линија 1: п
- ullet линија 2: S[0] S[1] S[2] ... S[2n-1]

Грејдер исписује на излазу тачно једну линију која садржи вредност процедуре count swaps.