# Lab 2: Liquid Crystal Display (LCD) Driver in C Instructor: Prof. Yifeng Zhu Spring 2016

#### Goals

- 1. Understand alternative function of GPIO pins
- 2. Understand basic concepts of an LCD driver, particularly *Bias* and *Duty Ratio*
- 3. Understand concepts of double buffer memory to ensure the coherency of the displayed information
- 4. Understand clock configurations of GPIO pins and LCD drivers

#### **Pre-lab Assignment:**

- 1. Read Chapter 17 of Textbook. (Note: Table 17-1 and Table 17-2 are changed for STM32L4. This lab description gives the updated tables)
- 2. Complete the pin configuration tables included in this handout

#### **In-Lab Assignment:**

- 1. Complete LCD\_PIN\_Init() and LCD\_Configure().
- 2. Complete *LCD\_Display\_Name*() to display the first six letters of your last name. You cannot call *LCD\_DisplayString*() in *LCD\_Display\_Name*().
- 3. Complete *LCD\_DisplayString*() to display a short string. The string has only letters and numbers only, with a length less than 7.
- 4. Something cool. This following gives a few examples.
  - a. LCD cool animations
  - b. LCD scrolling to display a long string
  - c. Set LCD contrast min-->max-->min by pressing user button

#### Introduction

**PIN configuration**: A total of 28 GPIO pins from Port A, B, and C drive the LCD display, as shown below. The duty ratio of this LCD is 4 and therefore there are four common terminals (COM0-COM3), which are connected to four GPIO pins. The other 24 GPIO pins are mapped to pixel bits stored in the internal LCD RAM. The mapping between GPIO pins and LCD RAM are given in the textbook. Each pin should be configured as Alternative Function 11 (LCD Driver).



Figure 1. PIN connection to six 14-segment digits and 4 bars.

*Modification to the program flowchart (Figure 17-7 in Textbook)*: For the STM32L4 discovery kit, the MUS\_SEG bit in the LCD\_CR must be *cleared*. SEG[31:28] are not multiplexed with SEG[43:40].

LCD (24 segments, 4 commons, multiplexed 1/4 duty, 1/3 bias) on DIP28 connector

| VLCD = PC3                 |                             |                           |                            |
|----------------------------|-----------------------------|---------------------------|----------------------------|
| $COM0 = PA8 (LCD_COM0)$    | $COM1 = PA9 (LCD_COM1)$     | $COM2 = PA10 (LCD_COM2)$  | COM3 = PB9 (LCD_COM3)      |
| SEG0 =PA7 (LCD_SEG4)       | SEG6 = PD11 (LCD_SEG31)     | SEG12 = PB5 (CD_SEG9)     | SEG18 = PD8 (LCD_SEG28)    |
| SEG1 = PC5 (LCD_SEG23)     | SEG7 = PD13 (LCD_SEG33)     | SEG13 = PC8 (LCD_SEG26)   | SEG19 = PB14 (LCD_SEG14)   |
| SEG2 = PB1 (LCD_SEG6)      | SEG8 = PD15 (LCD_SEG35)     | $SEG14 = PC6 (LCD_SEG24)$ | SEG20 = PB12 (LCD_SEG12)   |
| SEG3 = PB13 (LCD_SEG13)    | SEG9 = PC7 (LCD_SEG25)      | SEG15 = PD14 (LCD_SEG34)  | SEG21 = PB0 (LCD_SEG5)     |
| $SEG4 = PB15 (LCD\_SEG15)$ | $SEG10 = PA15 (LCD\_SEG17)$ | SEG16 = PD12 (LCD_SEG32)  | $SEG22 = PC4 (LCD\_SEG22)$ |
| $SEG5 = PD9 (LCD_SEG29)$   | SEG11 = PB4 (LCD_SEG8)      | SEG17 = PD10 (LCD_SEG30)  | SEG23 = PA6 (LCD_SEG3)     |

|                  |         |      | LC     | D    |      |         |
|------------------|---------|------|--------|------|------|---------|
| STM32L Pin       | LCD Pin | COM3 | COM2   | COM1 | COM0 | LCD Pin |
| PA7 (LCD_SEG4)   | 1       | 1N   | 1P     | 1D   | 1E   | SEG 0   |
| PC5 (LCD_SEG23)  | 2       | 1DP  | 1COLON | 1C   | 1M   | SEG 1   |
| PB1 (LCD_SEG6)   | 3       | 2N   | 2P     | 2D   | 2E   | SEG 2   |
| PB13 (LCD_SEG13) | 4       | 2DP  | 2COLON | 2C   | 2M   | SEG 3   |
| PB15 (LCD_SEG15) | 5       | 3N   | 3P     | 3D   | 3E   | SEG 4   |
| PD9 (LCD_SEG29)  | 6       | 3DP  | 3COLON | 3C   | 3M   | SEG 5   |
| PD11 (LCD_SEG31) | 7       | 4N   | 4P     | 4D   | 4E   | SEG 6   |
| PD13 (LCD_SEG33) | 8       | 4DP  | 4COLON | 4C   | 4M   | SEG 7   |
| PD15 (LCD_SEG35) | 9       | 5N   | 5P     | 5D   | 5E   | SEG 8   |
| PC7 (LCD_SEG25)  | 10      | BAR2 | BAR3   | 5C   | 5M   | SEG 9   |
| PA15 (LCD_SEG17) | 11      | 6N   | 6P     | 6D   | 6E   | SEG 10  |
| PB4 (LCD_SEG8)   | 12      | BAR0 | BAR1   | 6C   | 6M   | SEG 11  |
| PB9 (LCD_COM3)   | 13      | COM3 |        |      |      |         |
| PA10 (LCD_COM2)  | 14      |      | COM2   |      |      |         |
| PA9 (LCD_COM1)   | 15      |      |        | COM1 |      |         |
| PA8 (LCD_COM0)   | 16      |      |        |      | COM0 |         |
| PB5 (LCD_SEG9)   | 17      | 6J   | 6K     | 6A   | 6B   | SEG 12  |
| PC8 (LCD_SEG26)  | 18      | 6H   | 6Q     | 6F   | 6G   | SEG 13  |
| PC6 (LCD_SEG24)  | 19      | 5J   | 5K     | 5A   | 5B   | SEG 14  |
| PD14 (LCD_SEG34) | 20      | 5H   | 5Q     | 5F   | 5G   | SEG 15  |
| PD12 (LCD_SEG32) | 21      | 4J   | 4K     | 4A   | 4B   | SEG 16  |
| PD10 (LCD_SEG30) | 22      | 4H   | 4Q     | 4F   | 4G   | SEG 17  |
| PD8 (LCD_SEG28)  | 23      | 3J   | 3K     | 3A   | 3B   | SEG 18  |
| PB14 (LCD_SEG14) | 24      | 3H   | 3Q     | 3F   | 3G   | SEG 19  |
| PB12 (LCD_SEG12) | 25      | 2J   | 2K     | 2A   | 2B   | SEG 20  |
| PB0 (LCD_SEG5)   | 26      | 2H   | 2Q     | 2F   | 2G   | SEG 21  |
| PC4 (LCD_SEG22)  | 27      | 1J   | 1K     | 1A   | 1B   | SEG 22  |
| PA6 (LCD_SEG3)   | 28      | 1H   | 1Q     | 1F   | 1G   | SEG 23  |

### Lab 2:Pre-Lab Assignment

| Student Name: |  |
|---------------|--|
| TA:           |  |
| Time & Date:  |  |

# 1. Configure Port A: Pin 6, 7, 8, 9, 10, 15 as Alternative Function Mode

GPIO Mode: Digital Input (00, reset), Digital Output (01), Alternative Function (10), Analog (11)

| Register | 31           | 30    | 29           | 28 | 27           | <b>2</b> 6 |              | 24  | 23           | 22 | 21           | 20 | 19          | 18 | 17          | 16 | 15            | 14          | 13          | 12 | 11          | 10 | 6           | 8 | 7           | 9       | 5           | 4 | 3            | 2   | 7           | 0 |
|----------|--------------|-------|--------------|----|--------------|------------|--------------|-----|--------------|----|--------------|----|-------------|----|-------------|----|---------------|-------------|-------------|----|-------------|----|-------------|---|-------------|---------|-------------|---|--------------|-----|-------------|---|
| MODER    | MODER15[1:0] | -1717 | MODER14[1:0] | ,  | MODER13[1:0] | -          | MODER12[1:0] | ٠ ا | MODER11[1:0] |    | MODER10[1:0] |    | MODER9[1:0] |    | MODER8[1:0] |    | [0:1]ZG_GC[V] | MODER/[1.0] | MODER6[1:0] |    | MODER5[1:0] | -  | MODER4[1:0] | - | MODED3[1:0] | _၂<br>၂ | MODER2[1:0] |   | MODER 1[1-0] | -1- | MODER0[1:0] |   |
| MASK     |              |       |              |    |              |            |              |     |              |    |              |    |             |    |             |    |               |             |             |    |             |    |             |   |             |         |             |   |              |     |             |   |
| VALUE    |              |       |              |    |              |            |              |     |              |    |              |    |             |    |             |    |               |             |             |    |             |    |             |   |             |         |             |   |              |     |             |   |

| GPIOA Mode Register MASK Value = 0x_ | (in HEX) |
|--------------------------------------|----------|
| GPIOA Mode Register Value = 0x       | (in HEX) |

# Configure Port A: Pin 6, 7, 8, 9, 10, and 15 as Alternative Function 11 (0x0B)

| Register | 31 | 30  | 29    | 28   | 27 | 26  | 25   | 24   | 23 | 22  | 21   | 20   | 19 | 18  | 17   | 16  | 15 | 14  | 13   | 12    | 11 | 10  | 6    | 8   | 7 | 9   | 2    | 4   | 3  | 2   | 1     | 0   |
|----------|----|-----|-------|------|----|-----|------|------|----|-----|------|------|----|-----|------|-----|----|-----|------|-------|----|-----|------|-----|---|-----|------|-----|----|-----|-------|-----|
| AFR[0]   | Al | FRL | .7[3: | :0]  | ΑI | FRL | 6[3: | 0]   | Α  | FRL | _5[3 | :0]  | A  | FRL | 4[3: | 0]  | Þ  | ۱FR | L3[3 | 3:0]  | Al | FRL | 2[3: | 0]  | Α | FRL | _1[3 | :0] | Α  | FRL | .0[3: | :0] |
| MASK     |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |       |    |     |      |     |   |     |      |     |    |     |       |     |
| VALUE    |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |       |    |     |      |     |   |     |      |     |    |     |       |     |
| AFR[1]   | AF | RH  | 15[3  | 3:0] | AF | RH  | 14[3 | 3:0] | AF | FRH | 113[ | 3:0] | AF | RH  | 12[3 | :0] | Α  | FRI | H11[ | [3:0] | AF | RH  | 10[3 | :0] | Α | FRF | 19[3 | :0] | AF | RH  | 18[3: | 0]  |
| MASK     |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |       |    |     |      |     |   |     |      |     |    |     |       |     |
| VALUE    |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |       |    |     |      |     |   |     |      |     |    |     |       |     |

| GPIOA Alternative Function Register [0] MASK = 0x | (in HEX) |
|---------------------------------------------------|----------|
| GPIOA Alternative Function Register [0] = 0x      | (in HEX) |
| GPIOA Alternative Function Register [1] MASK = 0x | (in HEX) |
| GPIOA Alternative Function Register [1] = 0x      | (in HEX) |

### 2. Configure Port B: Pin 0, 1, 4, 5, 9, 12, 13, 14, and 15 as Alternative Function Mode

GPIO Mode: Digital Input (00, reset), Digital Output (01), Alternative Function (10), Analog (11)

| Register | 31            | 30       | 29            | 28      | 27            | 56       | 25           | 24 | 23      | 22           | 21            | 20 | 19          | 18 | 17          | 16 | 15          | 14          | 13          | 12  | 11            | 10 | 6           | 8 | 7 | 9           | 2           | 4 | 3           | 2   | 1           | 0 |
|----------|---------------|----------|---------------|---------|---------------|----------|--------------|----|---------|--------------|---------------|----|-------------|----|-------------|----|-------------|-------------|-------------|-----|---------------|----|-------------|---|---|-------------|-------------|---|-------------|-----|-------------|---|
| MODER    | MODER 15[1:0] | -17 19[1 | MODER 14[1:0] | 11:11:1 | MODER 13[1:0] | -17 19[1 | MODER12[1:0] |    | 7 7 7 7 | MODER11[1:0] | MODER 10[1:0] |    | MODER9[1-0] |    | MODER8[1:0] |    | [U-12EB4[U] | MODER/[1.0] | MODER6[1:0] | 100 | MODE PET 1.01 | 1  | MODER4[1:0] |   |   | MODERS[1:0] | MODER2[1:0] |   | MODEP4[1-0] | -1- | MODER0[1:0] |   |
| MASK     |               |          |               |         |               |          |              |    |         |              |               |    |             |    |             |    |             |             |             |     |               |    |             |   |   |             |             |   |             |     |             |   |
| VALUE    |               |          |               |         |               |          |              |    |         |              |               |    |             |    |             |    |             |             |             |     |               |    |             |   |   |             |             |   |             |     |             |   |

GPIOB Mode Register MASK Value = 0x\_\_\_\_\_\_ (in HEX) GPIOB Mode Register Value = 0x\_\_\_\_\_\_ (in HEX)

# Configure Port B: Pin 0, 1, 4, 5, 9, 12, 13, 14, and 15 as Alternative Function 11 (0x0B)

| Register | 31 | 30  | 29    | 28   | 27 | 26  | 25   | 24   | 23 | 22  | 21   | 20   | 19 | 18  | 17   | 16  | 15 | 14  | 13   | 12   | 11 | 10  | 6    | 8   | 7 | 9   | 2    | 4   | 3  | 2   | 1     | 0  |
|----------|----|-----|-------|------|----|-----|------|------|----|-----|------|------|----|-----|------|-----|----|-----|------|------|----|-----|------|-----|---|-----|------|-----|----|-----|-------|----|
| AFR[0]   | Al | FRL | .7[3: | :0]  | ΑI | FRL | 6[3: | 0]   | Α  | FRL | _5[3 | :0]  | Al | FRL | 4[3: | 0]  | P  | ۱FR | L3[3 | :0]  | Α  | FRL | 2[3: | 0]  | Α | FRL | _1[3 | :0] | Α  | FRL | .0[3: | 0] |
| MASK     |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |     |   |     |      |     |    |     |       |    |
| VALUE    |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |     |   |     |      |     |    |     |       |    |
| AFR[1]   | AF | RH  | 15[3  | 3:0] | AF | RH  | 14[3 | 3:0] | AF | FRH | 113[ | 3:0] | AF | RH  | 12[3 | :0] | Α  | FRI | H11[ | 3:0] | AF | RH  | 10[3 | :0] | A | FRH | 19[3 | :0] | AF | FRH | 8[3:  | 0] |
| MASK     |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |     |   |     |      |     |    |     |       |    |
| VALUE    |    |     |       |      |    |     |      |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |     |   |     |      |     |    |     |       |    |

| GPIOB Alternative Function Register [0] MASK = 0x | (in HEX) |
|---------------------------------------------------|----------|
| GPIOB Alternative Function Register [0] = 0x      | (in HEX) |
| GPIOB Alternative Function Register [1] MASK = 0x | (in HEX) |
| GPIOB Alternative Function Register [1] = 0x      | (in HEX) |

# 3. Configure Port C: Pin 3, 4, 5, 6, 7, and 8 as Alternative Function Mode

GPIO Mode: Digital Input (00, reset), Digital Output (01), Alternative Function (10), Analog (11)

| Register | 31            | 30       | 29           | 28 | 27            | 26 | 25           | 24 | 23            | 22      | 21           | 20 | 19          | 18 | 17          | 16 | 15           | 14           | 13          | 12 | 11          | 10 | 6           | 8 | 7          | 9           | 5           | 4 | 3           | 2 | 7           | 0 |
|----------|---------------|----------|--------------|----|---------------|----|--------------|----|---------------|---------|--------------|----|-------------|----|-------------|----|--------------|--------------|-------------|----|-------------|----|-------------|---|------------|-------------|-------------|---|-------------|---|-------------|---|
| MODER    | MODER 15[1:0] | -17 19[1 | MODER14[1:0] |    | MODER 13[1:0] |    | MODER12[1:0] | •  | MODER 11[1:0] | -1-1-1- | MODER10[1:0] |    | MODER9[1:0] |    | MODER8[1:0] |    | MODER 2[1:0] | MODELN [1:0] | MODER6[1:0] | -  | MODER5[1-0] | 2  | MODER4[1:0] | ٠ | MODERation | MODERS[1.0] | MODER2[1:0] |   | MODER1[1:0] | ; | MODER0[1:0] |   |
| MASK     |               |          |              |    |               |    |              |    |               |         |              |    |             |    |             |    |              |              |             |    |             |    |             |   |            |             |             |   |             |   |             |   |
| VALUE    |               |          |              |    |               |    |              |    |               |         |              |    |             |    |             |    |              |              |             |    |             |    |             |   |            |             |             |   |             |   |             |   |

GPIOC Mode Register MASK Value = 0x\_\_\_\_\_\_ (in HEX) GPIOC Mode Register Value = 0x\_\_\_\_\_\_ (in HEX)

# Configure Port C: Pin 3, 4, 5, 6, 7, and 8 as Alternative Function 11 (0x0B)

| Register | 31 | 30  | 29   | 28   | 27 | 26  | 25    | 24   | 23 | 22  | 21   | 20   | 19 | 18  | 17   | 16  | 15 | 14  | 13   | 12   | 11 | 10  | 6    | 8    | 7 | 9   | 2    | 4   | 3  | 7   | _     | 0  |
|----------|----|-----|------|------|----|-----|-------|------|----|-----|------|------|----|-----|------|-----|----|-----|------|------|----|-----|------|------|---|-----|------|-----|----|-----|-------|----|
| AFR[0]   | Al | FRL | _7[3 | :0]  | Al | FRL | .6[3: | :0]  | Α  | FRI | _5[3 | :0]  | Al | FRL | 4[3: | 0]  | А  | FR  | L3[3 | :0]  | Al | FRL | 2[3: | 0]   | Α | FRI | _1[3 | :0] | Al | FRL | .0[3: | 0] |
| MASK     |    |     |      |      |    |     |       |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |      |   |     |      |     |    |     |       |    |
| VALUE    |    |     |      |      |    |     |       |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |      |   |     |      |     |    |     |       |    |
| AFR[1]   | AF | RH  | 15[3 | 3:0] | AF | RH  | 14[3  | 3:0] | Al | FRH | 113[ | 3:0] | AF | RH  | 12[3 | :0] | Al | FRH | H11[ | 3:0] | AF | RH  | 10[3 | 3:0] | Α | FRI | H9[3 | :0] | AF | RH  | 8[3:  | 0] |
| MASK     |    |     |      |      |    |     |       |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |      |   |     |      |     |    |     |       |    |
| VALUE    |    |     |      |      |    |     |       |      |    |     |      |      |    |     |      |     |    |     |      |      |    |     |      |      |   |     |      |     |    |     |       |    |

| GPIOC Alternative Function Register [0] MASK = 0x | (in HEX) |
|---------------------------------------------------|----------|
| GPIOC Alternative Function Register [0] = 0x      | (in HEX) |
| GPIOC Alternative Function Register [1] MASK = 0x | (in HEX) |
| GPIOC Alternative Function Register [1] = 0x      | (in HEX) |

### 4. Configure Port D: Pin 8, 9, 10, 11, 12, 13, 14, and 15 as Alternative Function Mode

GPIO Mode: Digital Input (00, reset), Digital Output (01), Alternative Function (10), Analog (11)

| Register | 31           | 29           | 27<br>26     | 25<br>24     | 23           | 21           | 19          | 17          | 15          | 13          | 11          | 6 8         | 9           | 5           | 3           | 1 0         |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| MODER    | MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODER8[1:0] | MODER7[1:0] | MODER6[1:0] | MODER5[1:0] | MODER4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODER0[1:0] |
| MASK     |              |              |              |              |              |              |             |             |             |             |             |             |             |             |             |             |
| VALUE    |              |              |              |              |              |              |             |             |             |             |             |             |             |             |             |             |

GPIOD Mode Register MASK Value = 0x\_\_\_\_\_\_ (in HEX) GPIOD Mode Register Value = 0x\_\_\_\_\_\_ (in HEX)

# Configure Port D: Pin 8, 9, 10, 11, 12, 13, 14, and 15 as Alternative Function 11 (0x0B)

| Register | 31 | 30  | 29    | 28   | 22 | 56  | 25    | 24   | 23 | 22  | 21   | 20   | 19 | 18  | 11   | 16   | 15 | 14          | 13   | 12  | 11 | 10              | 6     | 8   | 2 | 9   | 9    | 4   | 3  | 2   | 1     | 0   |
|----------|----|-----|-------|------|----|-----|-------|------|----|-----|------|------|----|-----|------|------|----|-------------|------|-----|----|-----------------|-------|-----|---|-----|------|-----|----|-----|-------|-----|
| AFR[0]   | Al | FRL | _7[3: | :0]  | ΑI | FRL | .6[3: | :0]  | Α  | FRL | _5[3 | :0]  | Al | FRL | 4[3: | 0]   | Α  | FRL         | _3[3 | :0] | ΑI | FRL             | 2[3:0 | 0]  | Α | FRL | _1[3 | :0] | Α  | FRL | .0[3: | :0] |
| MASK     |    |     |       |      |    |     |       |      |    |     |      |      |    |     |      |      |    |             |      |     |    |                 |       |     |   |     |      |     |    |     |       |     |
| VALUE    |    |     |       |      |    |     |       |      |    |     |      |      |    |     |      |      |    |             |      |     |    |                 |       |     |   |     |      |     |    |     |       |     |
| AFR[1]   | AF | RH  | 15[3  | 3:0] | AF | RH  | 14[3  | 3:0] | AF | FRH | 113[ | 3:0] | AF | RH  | 12[3 | 3:0] | Al | AFRH11[3:0] |      |     | AF | RH <sup>-</sup> | 10[3  | :0] | A | FRH | 19[3 | :0] | ΑF | FRH | 8[3:  | :0] |
| MASK     |    |     |       |      |    |     |       |      |    |     |      |      |    |     |      |      |    |             |      |     |    |                 |       |     |   |     |      |     |    |     |       |     |
| VALUE    |    |     |       |      |    |     |       |      |    |     |      |      |    |     |      |      |    |             |      |     |    |                 |       |     |   |     |      |     |    |     |       |     |

| GPIOD Alternative Function Register [0] MASK = 0x | (in HEX) |
|---------------------------------------------------|----------|
| GPIOD Alternative Function Register [0] = 0x      | (in HEX) |
| GPIOD Alternative Function Register [1] MASK = 0x | (in HEX) |
| GPIOD Alternative Function Register [1] = 0x      | (in HEX) |

Write down your last name, and complete the following table.

1 2 3 4 5 6

F H J K B BAR3

G M COLON BAR2

D D BAR0

Your Last Name: \_\_\_\_\_\_ (First Six Characters)

|            | 31                 | 30        | 29        | 28 | 27        | 26        | 25        | 24                       | 23                 | 22        | 21        | 20        | 19        | 18        | 17       | 16        | 15        | 14         | 13        | 12                                                                                | 11 | 10 | 9  | 8        | 7 | 6  | 5  | 4  | 3  | 2  | 1        | 0  |
|------------|--------------------|-----------|-----------|----|-----------|-----------|-----------|--------------------------|--------------------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|------------|-----------|-----------------------------------------------------------------------------------|----|----|----|----------|---|----|----|----|----|----|----------|----|
| LOD DANGE  | 4E                 | 4G        | зм        | 3В |           | 6G        | 5M        | 5B                       | 1M                 | 1B        |           |           |           |           | 6E       |           | 3E        | 3 <b>G</b> | 2M        | 2B                                                                                |    |    | 6B | 6M       |   | 2E | 2G | 1E | 1G |    |          |    |
| LCD_RAM[0] |                    |           |           |    |           |           |           |                          |                    |           |           |           |           |           |          |           |           |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |
|            | $\otimes$          | <b>X</b>  | 88        | 88 | $\otimes$ | <b>X</b>  | 88        | 888                      | $\otimes$          | 8         | 88        | 88        | $\otimes$ | X         | 88       | 88        | $\otimes$ | <b>X</b>   | 88        | $\otimes$                                                                         |    |    |    |          |   |    |    |    | 5E | 5G | 4M       | 4B |
| LCD_RAM[1] | $\boxtimes$        |           | $\otimes$ |    | $\otimes$ |           |           |                          | $\otimes$          |           |           |           | $\otimes$ |           |          |           | $\otimes$ |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |
|            | 4D                 | 4F        | 3C        | 3A |           | 6F        | 5C        | 5A                       | 1C                 | 1A        |           |           |           |           | 6D       |           | 3D        | 3F         | 2C        | 2A                                                                                |    |    | 6A | 6C       |   | 2D | 2F | 1D | 1F |    |          |    |
| LCD_RAM[2] |                    |           |           |    |           |           |           |                          |                    |           |           |           |           |           |          |           |           |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |
| LOD DAMES  | $\otimes$          | $\otimes$ | 88        | 88 | $\otimes$ | $\otimes$ | 8         | 888                      | $\otimes$          | $\otimes$ | 8         | 88        | $\otimes$ | $\otimes$ | <b>X</b> | $\otimes$ | $\otimes$ | $\otimes$  | $\otimes$ | $\otimes$                                                                         |    |    |    |          |   |    |    |    | 5D | 5F | 4C       | 4A |
| LCD_RAM[3] | $\otimes$          |           | $\otimes$ |    | $\otimes$ |           | $\otimes$ |                          | $\otimes$          |           | $\otimes$ |           |           |           |          | $\otimes$ | $\otimes$ |            |           | $\otimes$                                                                         |    |    |    |          |   |    |    |    |    |    |          |    |
| LCD_RAM[4] | 4P                 | 4Q        | 3<br>Col  | зк |           | 6Q        | 3<br>Bar  | 5K                       | 1<br>Col           | 1K        |           |           |           |           | 6P       |           | 3P        | 3Q         | 2<br>Col  | 2K                                                                                |    |    | 6K | 1<br>Bar |   | 2P | 2Q | 1P | 1Q |    |          |    |
| LCD_KAW[4] |                    |           |           |    |           |           |           |                          |                    |           |           |           |           |           |          |           |           |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |
| LOD DAMIEL | $\times\!\!\times$ | $\otimes$ | $\otimes$ | 88 | $\bowtie$ | $\times$  | $\otimes$ | $\otimes \!\!\! \otimes$ | $\times\!\!\times$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |          | $\otimes$ | $\otimes$ | $\otimes$  | $\otimes$ | $\otimes\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |    |    |    |          |   |    |    |    | 5P | 5Q | 4<br>Col | 4K |
| LCD_RAM[5] | $\otimes$          |           |           |    | $\otimes$ |           | $\otimes$ |                          | $\otimes$          |           | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |          | $\otimes$ | $\otimes$ | $\otimes$  | $\otimes$ | $\otimes$                                                                         |    |    |    |          |   |    |    |    |    |    |          |    |
| LOD DAMIGI | 4N                 | 4H        | 3<br>DP   | 3J |           | 6H        | 2<br>Bar  | 5J                       | 1<br>DP            | 1J        |           |           |           |           | 6N       |           | 3N        | 3H         | 2<br>DP   | 2J                                                                                |    |    | 6J | 0<br>Bar |   | 2N | 2H | 1N | 1H |    |          |    |
| LCD_RAM[6] |                    |           |           |    |           |           |           |                          |                    |           |           |           |           |           |          |           |           |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |
| LOD DANS   | $\otimes$          | 8         | 88        | 88 | $\otimes$ |           | 8         | 888                      | $\otimes$          | 8         | 88        |           | $\otimes$ |           | <b>X</b> |           | $\otimes$ | 8          | $\otimes$ | 88                                                                                |    |    |    |          |   |    |    |    | 5N | 5H | 4<br>DP  | 4J |
| LCD_RAM[7] |                    |           | $\otimes$ |    |           |           |           |                          |                    |           |           |           |           |           |          |           |           |            |           |                                                                                   |    |    |    |          |   |    |    |    |    |    |          |    |

LCD RAM is an array of 32-bit unsigned integers.

| DOD_INITIO AIT AIT AY OF DE DIC AITSI | gnea megers. |                                  |          |
|---------------------------------------|--------------|----------------------------------|----------|
| LCD_RAM[0] = 0x                       | (in Hex)     | $LCD_RAM[4] = 0x_{\underline{}}$ | (in Hex) |
| LCD_RAM[1] = 0x                       | (in Hex)     | $LCD_RAM[5] = 0x_{\underline{}}$ | (in Hex) |
| LCD_RAM[2] = 0x                       | (in Hex)     | $LCD_RAM[6] = 0x_{\underline{}}$ | (in Hex) |
| I.CD RAM[3] = 0x                      | (in Hey)     | LCD RAM[7] = 0x                  | (in Hex) |

### Complete the following configuration table for LCD registers.

- 1. Refer to Figure 17-7 of Textbook and STM32L4 Reference Manual to complete the following table.
- 2. For STM32L4 discovery kit, the mux segment of the LCD\_CR must be *disabled*, i.e. the MUX\_SEG bit in the LCD\_CR register must be cleared. SEG[31:28] are not multiplexed with SEG[43:40]. The flow chart (Figure 17-7 in textbook) is for STM32L1 discovery kit and it sets MUX\_sets bit in the LCD\_CR register to make output pins SEG[43:40] have function SEG[31:28].

| Offset | Register | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24   | 23   | 22   | 21   | 70   | 19   | 18   | 17          | 16   | 15          | 14   | 13   | 12    | 11        | 10        | 6      | œ         | 7         | 9      | 2          | 4      | 3     | 2    | _     | 0    |
|--------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------|------|-------------|------|------|-------|-----------|-----------|--------|-----------|-----------|--------|------------|--------|-------|------|-------|------|
| 0x00   | LCD_CR   |      |      |      |      |      |      |      |      |      |      |      |      | Res. | Res. | Res.        | Res. | Res.        | Res. | Res. | BUFEN | MUX_SEG   | BIAS[1:0] | [0::1] |           | UT<br>2:0 | Y<br>] | VSEL       | LCDEN  |       |      |       |      |
|        | value    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |             |      |             |      |      |       |           |           |        |           |           |        |            |        |       |      |       |      |
| 0x04   | LCD_FCR  | Res. | Res. | Res. | Res. | Res. | Res. | F    | PS[  | 3:0  | )]   | С    | ΟIV  | [3:0 | )]   | BI INK[1:0] |      | BLINKF[2:0] |      |      |       | CC<br>2:0 |           |        | EA<br>2:0 |           |        | POI<br>2:0 | N<br>] | UDDIE | Res. | SOFIE | 무    |
|        | value    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |             |      |             |      |      |       |           |           |        |           |           |        |            |        |       |      |       |      |
| 0x08   | LCD_SR   | Res.        | Res. | Res.        | Res. | Res. | Res.  | Res.      | Res.      | Res.   | Res.      | Res.      | Res.   | FCRSF      | RDY    | UDD   | UDR  | SOF   | ENS  |
|        | value    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |             |      |             |      |      |       |           |           |        |           |           |        |            |        |       |      |       |      |
| 0x0C   | LCD_CLR  | Res.        | Res. | Res.        | Res. | Res. | Res.  | Res.      | Res.      | Res.   | Res.      | Res.      | Res.   | Res.       | Res.   | UDDC  | Res. | SOFC  | Res. |
|        | value    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |             |      |             |      |      |       |           |           |        |           |           |        |            |        |       |      |       |      |

#### Lab 2: In-Lab Assignment

The basic requirement of this lab is to display your last name on the LCD. Refer to Textbook for the flow charts.

#### Notes:

- 1. The code uses the *stm32l4xx.h* head file provided in the STM library. It includes many useful macro definitions and data structures. Using them makes your code easier to understand and debug.
- 2. The program code to initialize the LCD clock is provided to you. The function is *LCD\_Clock\_Init(*);
  - a. The LCD clock is the same clock as the Real-time clock (RTC). RTC clock domain is protected by default. To configure the LCD clock source, the RTC domain needs to be unlocked first by writing "0xCA" and "0x53" to the RTC->WPR register.
- 3. You are required to implement four functions:
  - a. *LCD\_PIN\_Init()* that enables GPIO clocks and configures GPIO pins as the alternative function 11 (LCD)
  - b. *LCD\_Configure()* that performs the LCD configuration in the flow chart
  - c. *LCD\_Display\_Name*() that display the first six letters of your last name
  - d. *LCD\_Display\_String*() that sets up the LCD\_RAM and displays the input string on LCD.
  - e. LCD\_Clear() that clear the LCD screen.
- 4. Examples of something cool
  - a. LCD cool animations
  - b. LCD scrolling to display a long string
  - c. Set LCD contrast min  $\rightarrow$  max  $\rightarrow$  min by pressing user button
  - d. Something really cool

# **Lab Demo Questions:**

- In the LCD\_WriteChar() function, why do we use the following while statement while ((LCD->SR & LCD SR UDD) == 0);
- 2. What clock is used to drive the LCD? How can you find out? (Hint: check RCC register value in debug environment)
- 3. Explain to TA why double-buffering can ensure the coherency of the displayed information

#### Lab 2: Post-Lab Assignment

Answer the following questions in the file Readme.md and submit it with your lab code to the gitlab server.

- 1. Suppose the duty ratio of a LCD display is ¼ and it has a total of 120 display segments (pixels). How many pins are required to drive this LCD?
- 2. Can a GPIO pin perform all alternative functions simultaneously?
- 3. Is the LCD driver (programmed in this lab) built in within the processor chip? What is the function of the COM driver and SEG driver?
- 4. How many pixels can the STM32L4 processor LCD driver drive? How large is the LCD\_RAM in terms of bits? (Read STM32L4 Reference Manual)
- 5. How many pixels does the LCD installed on the STM32L4 discovery kit have? Explain why many LCD\_RAM bits are not used for this LCD?