## G51FAI Fundamentals of AI

Instructor: Siang Yew Chong

#### Introduction to Machine Learning



### **Outlines**

- Overview
- Machine Learning Framework
  - steps & processes
  - training vs. test set
- Learning Tasks
  - Supervised & unsupervised
- Training Issues
  - generalisation
  - measuring model quality
  - cross-validation
- Datasets & Software

## What is Machine Learning?

"Machine learning refers to a system capable of the autonomous acquisition and integration of knowledge"

What is Learning?

"Learning denotes changes in a system that ... enable a system to do the same task ... more efficiently the next time"

-- Herbert Simon

"Learning is constructing or modifying representations of what is being experienced"

-- Ryszard Michalski

"A computer program is said to *learn* from *experience E* with respect to some class of *tasks T* and *performance measure P* if its performance at tasks in T, as measured by P, improves with experience E"

-- Tom Mitchell

## Machine Learning

- The world is driven by data
  - Google processes 24 petabytes per day
  - data in 2013 > all data in history
  - Powerful, cheaper computers, cloud storage
- Many applications are hard to program directly but most are "pattern recognition" tasks (e.g. targeted advertising, reading handwriting)
- Machine learning
  - collect lots of "training" data (examples) that specify the correct output for a given set of inputs
  - a machine learning algorithm then takes these examples and produces a program that does the job (<u>learning from examples</u>)

# Machine Learning vs. Traditional Programming

Traditional Programming



Machine Learning



Tom Mitchell

## Machine Learning Problems

- Amount of knowledge might be too large for explicit encoding by humans
- Human expertise may be scarce or very costly
  - navigating on Mars, drug design, astronomic discovery
- Black box human expertise that cannot be explained, and functional relationships cannot be expressed mathematically
  - speech/face recognition, driving a car, flying a plane
  - else we would just code the algorithm
- Rapidly changing phenomena
  - credit scoring, financial modeling, fraud detection
- Need for customisation/personalisation
  - biometrics, movie/book recommendation
- Often only data from measurements are available

# How Machine Learning Works



## Machine Learning Process



## Machine Learning Tasks

- Supervised: given input samples (x) and labeled outputs (y) of a function y = f(x), "learn" f, and evaluate it on new data
  - Classification: y is discrete (class labels). Learn a decision boundary that separates one class from another
  - Regression: y is continuous, e.g. linear regression.
     Learn a continuous input-output mapping, also known as "curve fitting" and "function approximation"

#### Examples:

- is this image a cat, dog, car, house?
- how would this user score that restaurant?
- what will be the sales, stock price next year?

## Machine Learning Tasks

- Unsupervised: given only samples x of the data, infers a function f such that y = f(x) describes the hidden structure of the unlabeled data - more of an exploratory/descriptive data analysis
  - *Clustering*: y is discrete. Learn any intrinsic structure that is present in the data
  - Dimensional Reduction: y is continuous. Discover a lower-dimensional surface on which the data lives

#### Examples:

- cluster some hand-written digit data into 10 classes
- what are the top 20 topics in Twitter right now?
- discover interesting relations between variables in large databases

# Supervised vs. Unsupervised Learning

| Supervised                                                        | Un-supervised         |
|-------------------------------------------------------------------|-----------------------|
| y = F(x): function                                                | y = ?: no function    |
| D: labeled training set                                           | D: unlabeled data set |
| <b>Learn</b> : G(x): model trained to predict labels of new cases | Learn: ?              |
| Goal: $E[(F(x)-G(x))^2] \approx 0$                                | Goal: ?               |





### Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances



#### Many approaches:

Nearest Neighbour, Regression, Decision Trees, Bayesian, Neural Networks,

Given a set of points from classes • •

what is the class of new point ○?

## Classifiers: Nearest Neighbour



- The test example x will be classified as belonging to the same class as f(x<sub>1</sub>), i.e. label of the training example nearest to x
  - all we need is a distance function for the inputs
  - no training required!
  - also known as instance-based learning

# k-Nearest Neighbour (kNN)

 $X_2$ 

1-nearest neighbour3-nearest neighbour5-nearest neighbor



 $X_1$ 

Binary-class (o-x) Query or new test point (+)

#### k-NN Issues

- The Data is the Model
  - no training needed
  - accuracy generally improves with more data
  - matching is simple and fast (and single pass)
  - usually need data in memory, but can be run off disk
- Minimal configuration, only parameter is k (number of neighbours)
- Two other choices are important:
  - weighting of neighbours (e.g. inverse distance)
  - similarity metric

## Regression

- To find the best line (linear function y=f(x)) to explain the data
  - assuming a linear or nonlinear model of dependency
- predict sales of new products based on advertising expenditure
- time series prediction of stock market indices
- estimate weight based on BMI

-20

-10



## Regression



• Linear Regression

$$- w_0 + w_1 x + w_2 y >= 0$$

- Regression computes w<sub>i</sub> from data to minimise squared error to 'fit' the data
- Not flexible enough

## Classification: Decision Trees



if X > 5 then blue else if Y > 3 then blue else if X > 2 then green else blue

### Classification: Decision Trees

- Internal node: decision rule on one or more attributes
- Leaf node: a predicted class label



## Classification: Decision Trees

| Pros                                  | Cons                                           |
|---------------------------------------|------------------------------------------------|
| Reasonable training time              | Simple decision boundaries                     |
| Can handle large number of attributes | Problems with lots of missing data             |
| Easy to implement                     | Cannot handle complicated relationship between |
| Easy to interpret                     |                                                |

## Classification: Neural Networks



### Classification: Neural Networks

 Useful for learning complex data like speech, image and handwriting recognition

#### **Decision boundaries:**



- \* Regression: use of linear or any other polynomial
- Decision Trees: divide decision space into piecewise regions
- Neural Networks: partition by nonlinear boundaries

## Classification: Neural Networks

| Pros                                        | Cons                                                                             |
|---------------------------------------------|----------------------------------------------------------------------------------|
| Can learn more complicated class boundaries | Hard to implement: trial and error for choosing parameters and network structure |
| Can be more accurate                        | Slow training time                                                               |
| Can handle large number of features         | Can over-fit the data: find patterns in random noise                             |
|                                             | Hard to interpret                                                                |

## Classification: Applications

- Banking: loan/credit card approval
  - predict good customers based on old customers
- Fraud detection: financial transactions
  - use historical data to build models of fraudulent behavior and use data mining to help identify similar instances
- Customer relationship management (CRM)
  - Which of my customers are likely the most loyal
  - Which are most likely to leave for a competitor?
  - Identify likely responders to sales promotions







# Clustering

- What we have
  - a set of un-labeled data points, each with a set of attributes
  - a similarity measure
- What we need
  - find "natural" partitioning of data, or groups of similar/close items



- Key: measure of similarity between instances
  - Euclidean or Manhattan distance
  - Hamming distance
  - other problem specific measures

## Clustering Applications

- Market Segmentation
  - Goal: divide a market into distinct subsets of customers, any subset may be a target market
  - Approach:
    - collect different attributes of customers, based on their related information (lifestyle etc.)
    - find clusters of similar customers
    - evaluate buying patterns in the same cluster vs. those from other clusters
- Supermarket Shelf Management
  - Goal: identify items bought together by customers
  - Approach:
    - process data collected with barcode scanners
    - find dependencies among items
  - A classic rule:
    - if a customer buys diaper & milk, then he is very likely to buy beer
    - friday afternoon, men between 25 and 35 years-old use to buy both products ...
    - don't be surprised if six-packs next to diapers!

### Generalisation

- How well does a learned model generalise from the data it was trained on to a new test set?
- Components of generalisation error
  - inherent: unavoidable
  - bias: how much the average model over all training sets differ from the true model?
    - error due to inaccurate assumptions/simplifications made by the model
  - variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
  - high bias and low variance
  - high training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
  - low bias and high variance
  - low training error and high test error

## Bias-Variance Trade-off





- Models with too few parameters are inaccurate because of a large bias (not enough flexibility)
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample)

# Overfitting & Underfitting



# Overfitting & Underfitting



## How Overfitting Affects Prediction



#### The Holdout Method

- Randomly split examples into training set U and test set V
- Use training set to learn a hypothesis H
- Measure % of V correctly classified by H
- The hold-out method splits the data into training data and test data (e.g 90/10 split)
- Repeated holdout method repeats the process with different subsamples
  - in each iteration, a certain proportion is randomly selected for training
  - the error rates on the different iterations are averaged to yield an overall error rate

# The v-fold Cross-Validation Method

- v-fold Cross-Validation (e.g., v=10)
  - randomly partition our full data set into v disjoint subsets
  - simplest approach is each subset is roughly of size n/v, n = total number of data points
  - subsets are labelled i = 1,2,3,...,v
  - standard approach
    - ❖ for i = 1:v
      - $\checkmark$  train on the other of (v-1) subsets
      - ✓ Acc(i) = accuracy on held-out subset i
    - end
    - Cross-Validation-Accuracy =  $1/v \Sigma_i$  Acc(i)
  - choose the method with the highest cross-validation accuracy
  - can also do "leave-one-out" where v = n

#### **Datasets and Software**

- UCI Machine Learning Repository
- KDnugget
- <u>Datasets for DM</u> at University of Edinburgh
- Training



## Summary

- Overview
- Machine Learning Framework
  - steps & processes
  - training vs. test set
- Learning Tasks
  - Supervised & unsupervised
- Training Issues
  - generalisation
  - measuring model quality
  - cross-validation
- Datasets & Software

## Acknowledgements

Most of the lecture slides are adapted from the same module taught in Nottingham UK by Dr. Rong Qu and other slides which are credited individually