

Introduction

Objectif de base des systèmes informatiques :

- Traitement de l'information.
- Sauvegarde des informations
 - ⇒ Stockage sur des supports physiques (disques) dans des supports logiques (fichiers).

Volume important \Rightarrow accès difficile.

Stockage et Manipulation de Données

$\mathbf{Donn\acute{e}es} o \mathbf{Base} \ \mathbf{de} \ \mathbf{donn\acute{e}es}$

Une <u>Base de Données</u> (BD) est un ensemble d'informations ou données **structurées**, enregistrées avec un minimum de redondance sur des supports permanents.

Logiciel Système de Gestion de Bases de Données

Un <u>Système de gestion de Bases de Données</u> (SGBD) est un logiciel de haut niveau qui permet de manipuler les données stockées dans ces bases.

Objectifs des BD et SGBD

- Sécurité des données.
- Partageabilité des données.
- Efficacité des accès aux données.
- Non redondance des données.
- Vérification de la cohérence des données.
- Administration centralisée des données.
- Manipulation des données par des non-informaticiens (grâce à des outils ou des langages simples d'utilisation).
- Manipulation des données indépendamment de leur organisation physique.

Architecture d'un SGBD

On distingue 3 niveaux dans une BD (norme ANSI/SPARC):

• Niveau interne ou physique.

Le niveau interne permet de décrire les données telles qu'elles sont stockées dans la machine, en particulier dans les fichiers qui les contiennent (nom, localisation, taille, . . .).

• Niveau logique.

Le niveau logique permet de décrire, de manière "abstraite" et structurée, la réalité de l'"entreprise" ou de l'application.

• Niveau externe.

Au niveau externe, les <u>schémas</u> ou **vues** décrivent la partie des données présentant un intérêt pour un utilisateur ou un groupe d'utilisateurs.

Architecture d'un SGBD : Exemple de vues

Exemple 1 : Vues de la base de données d'une compagnie automobile :

- Vue (pour le directeur des ventes) de l'ensemble des ventes réalisées.
- Vue (pour le responsable des ventes de la région "Ile-de-France") de l'ensemble des ventes réalisées par les vendeurs d"'Ile-de-France".
- Vue (pour le vendeur Mr Dupont) des seules ventes qu'il a réalisées.

Architecture d'un SGBD : Exemple de vues

Exemple 2 : Vues de la base de données d'une école :

- Vue de la planification des cours (nom du cours, nom du professeur, horaires et salles, liste des étudiants).
- Vue de la paye des professeurs (nom, prénom, âge, adresse, grade, nombre d'heures, ...).
- Vue des résultats scolaires des étudiants.

Remarque: Les données utilisées par une vue peuvent être déduites de la base conceptuelle et ne pas être présentes dans la base.

Exemple : l'âge est calculé à partir de la date de naissance.

Fonctionnalités d'un SGBD : Niveau Physique

- Gestion des données sur mémoire secondaire (fichiers).
- Partage des données et gestion de la concurrence d'accès.
- Reprise sur pannes (fiabilité).
- Distribution des données et intéropérabilité.

Fonctionnalités d'un SGBD : Niveau Logique

- Définition de la structure de données : Langage de Description de Données (LDD).
- Consultation et mise à jour des données : Langages de Requêtes (LR)et langage de manipulation de Données (LMD).
- Gestion de la confidentialité (sécurité).
- Maintien de l'intégrité.

Fonctionnalités d'un SGBD: Niveau Externe

- Vues ou schémas externes décrivant la partie des données qui présentent un intérêt pour un utilisateur ou un groupe d'utilisateurs.
- Environnement de programmation (intégration avec un langage de programmation).
- Interfaces conviviales.
- Outils d'aides pour la conception de schémas.
- Outils de saisie, d'impression.
- Passerelles (réseaux, autres SGBD, etc ...).

Architecture d'un SGBD

Dans une Base de Données, il existe un seul schéma interne, un seul schéma logique et généralement plusieurs schémas externes (vues), dont certains peuvent être définis à partir d'autres.

Propriété d'un SGBD

La structuration du SGBD permet deux types d'indépendance de données :

Indépendance Physique:

L'implantation (ou le schéma) physique peut être modifié sans modification du schéma logique et des programmes d'applications.

Indépendance Logique:

Le schéma logique, les vues et les programmes d'application peuvent être modifiés sans modification du schéma physique.

Du monde Réel au SGBD

SYSTEMES D'INFORMATIONS

Modélisation Conceptuelle

Objectif essentiel de la modélisation Conceptuelle

- ⇒ Définir les informations pertinentes pour les applications envisagées en mettant l'accent sur :
- 1. La structure (l'organisation) de ces informations.
- 2. Le haut niveau d'abstraction : un schéma conceptuel doit être indépendant de tout choix d'implémentation.

En pratique, le modèle conceptuel le plus utilisé est le modèle Entité-Association, initialement proposé en 1976.

Il se construit par:

- Perception (entités ? Associations ?)
- Classification (mêmes entités? mêmes associations?)
- Description (quelles caractéristiques ? quels attributs ?)
- Abstraction (quels types? quelles classes?)

Entité : Représentation d'un objet concret et abstrait présent dans la réalité de l'entreprise et présentant un intérêt pour la compréhension de cette réalité.

Une entité existe en tant que telle, a une **identité propre**, c'est-à-dire qu'elle peut être décrite et manipulée sans qu'il soit nécessaire de connaitre les autres entités de ce réel.

Exemple: une personne, une voiture, une sallle,

Attribut : Propriété ou caractéristique d'une entité.

C'est une information élémentaire dont la décomposition ne présente aucun intérêt pour l'application.

Exemple : nom, prénom, date de naissance, ldots.

Identifiant ou Clé : Attribut (ou ensemble d'attributs) permettant d'identifier de manière unique les occurrences de l'entité.

Exemple: (nom, prénom).

Souvent, on créé un identifiant abstrait (un numéro par exemple).

Association:

Lien sémantique entre deux (ou plusieurs) entités.

Une association n'existe que par rapport aux entités qu'elles relient. Une association n'est pas autonome, contrairement à une entité.

Cardinalité d'une association :

Couple de valeurs [m,n] (avec m < n), traduisant les nombres **minimum** et **maximum** d'occurrences d'associations auxquelles peut participer une occurrence d'entité.

Une occurrence d'association est définie par une occurrence de chacune des entités participantes.

Exemple:

Cardinalité **0.n** de l'entité *Professeur* exprime : un professeur donne (1) ou plusieurs (n) cours.

Cardinalité ${\bf 0.n}$ de l'entité Cours exprime : un cours est donné par aucun $({\bf 0})$ ou plusieurs professeurs.

Exemple complet:

Modèle de Données

Définition : Un modèle de données est un ensemble de concepts et de règles de composition de ces concepts permettant de décrire les données.

Il existe 4 modèles dans les Bases de Données :

- le Modèle Hiérarchique
- le Modèle Réseau
- le Modèle Relationnel
- le Modèle Objets.

Modèles de Données

Historique:

- Avant 60 : Uniquement des systèmes de gestion de fichiers S.G.F (COBOL).
- 65-70 : Apparition des SGBD Hiérarchiques (basés sur le Modèle Hiérarchique) et Réseaux (basés sur le Modèle Réseau).
- 73-85 : Apparition des SGBD Relationnels basés sur le Modèle Relationnel.
- Fin 80 : Les SGBD relationnels dominent le marché. Début des SGBD Objets basés sur le Modèle Objets.

Modèle Relationnel

Le modèle de données proposé dans le modèle relationnel consiste à percevoir l'ensemble des données comme des tableaux (**Relations**). Exemple :

• Un <u>domaine</u> est un ensemble de valeurs.

Exemple:

L'ensemble des entiers N.

L'ensemble des booléens 0,1.

L'ensemble des couleurs jaune, vert, gris,

- Un <u>attribut</u> prend ses valeurs dans un domaine.

 Plusieurs attributs peuvent avoir le même domaine.
- Un <u>nuplet</u> (ou tuple) est une liste de n valeurs $(v_1, \ldots v_n)$ où chaque valeur v_i est la valeur d'un attribut A_i de domaine D_i $(v_i \in D_i)$.

- Le **Produit cartésien** $D_1 \times \ldots \times D_n$ entre des domaines D_1, \ldots, D_n est l'ensemble de <u>tous</u> les nuplets (v_1, \ldots, v_n) où $v_i \in D_i$
- Une <u>Relation</u> R définie sur les attributs A_1, \ldots, A_n est un sous-ensemble du produit cartésien $D_1 \times \ldots \times D_n$ où D_1, \ldots, D_n sont les domaines respectifs de A_1, \ldots, A_n .

R est un ensemble de nuplets.

- Une relation R est représentée sous forme d'une **table**.
- L'ordre des colonnes ou des lignes n'a pas d'importance.
- Les colonnes sont distinguées par les noms d'attributs et chaque ligne représente un élément de l'ensemble R (un nuplet).
- Un attribut peut apparaitre dans plusieurs relations.

• Le <u>schéma d'une relation</u> R est défini par le nom de la relation et la liste des attributs avec pour chaque attribut son domaine.

Notation:

$$R(A_1:D1,\ldots,A_n:D_n)$$

ou plus simplement:

$$R(A_1,\ldots,A_n)$$

Exemple:

COURS(Id: char(10), Nom:char(20), VolHor:num, Filiere:char(30))

ou

COURS(Id, Nom, VolHor, Filiere)

• L'<u>arité</u> d'une relation R est le nombre de ses attributs (nombre de colonnes).

Par exemple, la relation COURS est d'arité 4.

• Une <u>Base de Données Relationnelle</u> est un ensemble de relations.

• Le schéma logique d'une Base de Données Relationnelle est l'ensemble des schémas de ses relations.

Conception et Définition d'un Schéma Relationnel

La première étape de la construction d'une base de données est la définition du **schéma logique** de la base.

Pour une "bonne" définition du schéma logique, il est nécessaire de concevoir au préalable un **schéma conceptuel** décrivant de manière structurée et formalisée l'application ou l'entreprise pour laquelle on veut construire la base de données.

Des **règles** sont définies pour le passage d'un schéma conceptuel (conçu selon un **modèle conceptuel** choisit : **Entité-Association**, Merise, OMT, ...) vers un schéma logique (dans le **modèle de données** choisit : réseau, **relationnel**, objets, ...).

Règles de passage du modèle Entité-Association au modèle Relationnel

Entité:

- Chaque entité devient une relation (ou table).
- Chaque attribut de l'entité devient un attribut de la relation, y compris l'identifiant.
- Les attributs issus de l'identifiant constituent la clé de la relation. Remarque : Pour les distinguer des autres attributs, on les souligne dans le schéma de la relation.

Exemple:

PROFESSEUR(<u>nom</u>, Prenom, Adresse, Grade) COURS(<u>Id</u>, Nom, VolHor, Filiere)

Règles de passage du modèle Entité-Association au modèle Relationnel

Soit une association entre deux entités A et B.

Chacune des entités A et B devient une relation, respectivement R_A et R_B . Puis, si ...

Association x.1/x.n:

- L'identifiant de B devient attribut supplémentaire de R_A . Ce sera une clé étrangère.

Association x.n/y.n:

- On crée une relation R_{A-B} pour l'association.
- La clé de R_{A-B} est la concaténation des clés des relations R_A et R_B .
- Les attributs de l'association deviennent des attributs de R_{A-B} .

Règles de passage du modèle Entité-Association au modèle Relationnel

Exemple:

PROFESSEUR(Nom, Prenom, Adresse, Grade)
COURS(Id, Nom, VolHor, Filiere)
PROF-COURS(Nom,Id)

Modèle Relationnel: Opérations

Modifications

- Insertion : Insérer un nuplet dans une relation.
- **Destruction**: Détruire un nuplet dans une relation.
- **Modification**: Modifier une ou plusieurs valeurs d'un attribut dans une relation.

Modèle Relationnel: Opérations

Interrogations

Rq: Le résultat de l'interrogation d'une ou de plusieurs relations est une nouvelle relation.

Cinq opérations de base pour exprimer toutes les requêtes :

- Opérations unaires : sélection, projection.
- Opérations binaires : union, différence, produit cartésien.
- Autres opérations qui s'expriment en fonction des 5 autres fonctions de base : jointure, intersection, division.