

# Uma abordagem ILS-BanditVND para o Team Orienteering Problem

#### Jéssica Richards Nascimento

Universidade Federal do Rio de Janeiro - UFRJ Rio de Janeiro/RJ - Brasil nascj@cos.ufrj.br

#### Pedro Henrique González

Universidade Federal do Rio de Janeiro - UFRJ Rio de Janeiro/RJ - Brasil pegonzalez@cos.ufrj.br

#### **RESUMO**

Esse trabalho aborda o problema de orientação de times da classe problemas NP-difícil. Para solução do problema, foi utilizada a metaheurística *Iterated Local Search (ILS)* com *Variable Neighbourhood Descent (VND)*. No ILS-VND, a escolha da sequência de estruturas de vizinhanças a ser explorada impacta diretamente o resultado. Devido a isso, o *Random VND* e o *Multi-Armed Bandit* foram escolhidos para tomar decisões mais acertadas a respeito da ordem exploração. O objetivo do trabalho é verificar se essas variações com VND são boas alternativas. Dentre os resultados obtidos, ao escolher uma sequência inicial ruim tanto o Bandit quanto o RVND superam os resultados do VND. O Bandit em comparação ao RVND apresenta uma mediana superior em 63% dos casos testados e, em 56% dos casos, seus resultados piores foram maiores que os piores resultados obtidos com o RVND.

PALAVRAS CHAVE. Variable Neighborhood Descent, Multi-Armed Bandits, Team Orienteering Problem.

Tópicos: OC - Otimização Combinatória, IC - Inteligência Computacional

#### ABSTRACT

This work tackles the team orienteering problem, a NP-hard combinatory optimization problem. For solving the problem, we discuss a metaheuristics algorithm, the Iterated Local Search and Variable Neighbourhood Descent. In the ILS-VND the sequence order impact the final result. For that two approachs were chosen; the Random VND and the Multi-Armed Bandit for making a good choice for the sequence. We aim to verify if these VND variations are good alternatives for the problem encountered. In the results obtained, Bandit and RVND surpass a poorly chosen neighbourhood sequency. The median results obtained using Bandit are better than RVND in 63% of the cases tested, and in 56% of the cases, it's worst results have better values.

**KEYWORDS.** Variable Neighbourhood Descent, Multi-Armed Bandits, Team Orienteering Problem.

Topics: OC - Combinatorial Optimization, IC - Computational Intelligence



# 1. Introdução

O problema de orientação de times, em inglês *Team Orienteering Problem (TOP)*, formalizado no trabalho de Chao et al. [1996], dois anos após de ser introduzido inicialmente no trabalho de Butt e Cavalier [1994] com o nome de *Multiple Tour Maximum Collection Problem (MTMCP)*. é um problema derivado do problema de orientação proposto por Golden et al. [1987].

A orientação é um esporte em que o participante recebe uma búlsula e um mapa. O objetivo desse esporte é conseguir coletar o melhor conjunto de recompensas possível num período limitado de tempo. Neste esporte o indivíduo tem o ponto de largada e chegada fixos e outros pontos disponíveis que têm uma recompensa única e uma vez visitados não é mais possível coletar novamente sua recompensa. O problema de orientação é um problem NP-difícil, o que faz com que o TOP também seja NP-difícil [Butt e Cavalier [1994]].

O trabalho de Macedo e Senne [2023] explora uma nova maneira de resolver esse problema, usando o *Iterated Local Search (ILS)* [Lourenço et al. [2001]] com *Variable Neighborhood Descent(VND)*, cujo objetivo é gerar uma solução satisfatória para ser a solução inicial do algoritmo *Fix-and-Optimize (F&O)* [Gintner e Kliewer [2005]]. O ILS utilizado em Macedo e Senne [2023] só faz experimentos com o VND, o objetivo deste trabalho é analisar possíveis impactos no resultado final ao variar o VND por *Random-VND (RVND)* [Mladenović e Hansen [1997]], e utilizando o *Bandit* [Slivkins [2024]] para escolher automaticamente uma ordem de estrutura de vizinhança para o VND.

O trabalho de Lü et al. [2011] procura entender a influência de cada estrutura de vizinhança na busca local e propõe *Multiple Neighbourhood Search (U-VND)*. No U-VND uma única vizinhança é obtida como da união de múltiplas estruturas de vizinhança predefinidas. Wu et al. [2012] utiliza também essas múltiplas estruturas de vizinhança na busca TABU. Já em [Şevkli e Aydin [2006]], são analisadas variantes sequenciais de estruturas de vizinhança para resolver o problema do caixeiro viajante.

O restante deste artigo está organizado da seguinte maneira: a Seção 2 contém a formulação matemática do algoritmo, a Seção 3 apresenta a metodologia utilizada, na Seção 4 os resultados obtidos são analisados e a Seção 5 é a conclusão e trabalhos futuros.

### 2. Formulação Matemática

A modelagem escolhida segue a definição proposta em Bianchessi et al. [2018], ou seja, este trabalho modela o problema como um grafo direcionado completo G=(V,A), onde  $A=\{(i,j)|i\neq n+1; j\neq 0; i\neq j; i,j\in V\}$  é o conjunto de arcos e  $V=N\cup\{0,n+1\}$  é o conjunto de nós a serem percorridos (N) união com o nós de origem e destino  $\{0,n+1\}$ .

Os n pontos possíveis para visitação estão contidos no conjunto N, onde  $N=\{1,...,n\}$ . Cada nó  $i\in V$ , possui um respectivo prêmio  $p_i$ , com  $p_0=p_{n+1}=0$ . A cada arco  $(i,j)\in A$  um tempo não negativo  $t_{ij}$  é associado. No TOP, um time com K integrantes tem como objetivo conseguir a maior pontuação possível. Cada caminho percorrido precisa começar no nó 0 e terminar no nó n+1 respeitando um tempo pré-definido máximo,  $T_{max}$  e cada prêmio  $p_i$  só pode ser recolhido uma única vez.

Baseando-se no fluxo de entradas e saídas de dois índices, a formulção tem as variáveis binárias  $x_{ij}, (i,j) \in A$ ,  $y_i \in N$ , onde  $y_i = 1$ , se o arco (i,j) é percorrido e o nó i é visitado. As variáveis contínuas  $z_{ij} \in A \setminus \{0, n+1\}$ , representam o tempo de chegada no vértice j vindo do vértice i. Para cada  $i \in N$ , seja  $\delta^+(i) = \{(i,j) \in A | j \neq i, j \in N\}$  e  $\delta^-(i) = \{(j,i) \in A | i \neq j, j \in N\}$ , o conjunto de arcos saindo e entrando no vértice i. A modelagem:

A função objetivo (1) maximiza a soma dos prêmios coletados. As Restrições (2) e (3) garante que existam exatamente K caminhos que saem do ponto inicial e K caminhos que chegam ao ponto final. As famílias de restrições (4) e (5) forçam que exista uma única entrada e uma única saída para todos os nós visitados. A família de restrições (6) limita o fluxo originado no ponto inicial, a família de restrições (7) representa a conservação do fluxo; a família de restrições (8) limita o tempo de cada caminho; já a família de restrições (9) impõe um limite inferior para os valores das variáveis z, com o objetivo de restringir o número de valores viáveis que essas variáveis poderiam assumir. E as famílias de restrições (10) e (11) se referem ao domínio das variáveis, e a Restrição (12) define o tempo de viagem no ponto de saída e no ponto de chegada.

## 3. Metodologia

O algoritmo utilizado é baseado no trabalho de Macedo e Senne [2023], que constrói a solução em três fases; a primeira é denominada construtivo enquanto que as duas seguintes são chamadas de otimização. Na primeira fase uma solução viável para o problema é construída. Na segunda e terceira fases o resultado obtido nas respectivas etapas anteriores é utilizado como ponto inicial, a fim de melhorar a solução encontrada. O algoritmo apresentado no trabalho deles, foi reproduzido da maneira mais fiel possível a fim de se verificar como diferentes meta-heurísticas poderiam influenciar no resultado final.

O restante desta seção é dividido nas seguintes subseções: a Subseção 3.1 descreve como a solução inicial é construída; a Subseção 3.2 cita as estruturas de vizinhanças utilizadas; e, por fim, a Subseção 3.3 descreve o algoritmo ILS + VND e suas variações.

## 3.1. Construção

Apesar do artigo de Macedo e Senne [2023] citar diferentes maneiras de construir a solução inicial para o problema, nos resultados finais analisam apenas a maneira mais vantajosa. Para fins de comparação, este trabalho adota o mesmo critério.

A fase de construção da solução começa pelo pré-processamento proposto por Chao et al. [1996]. Nele, uma elipse de eixo máximo  $T_{max}$  com pontos focais sendo os pontos de partida e chegada é construída. Todos os pontos fora desta elipse são eliminados. O objetivo desta restrição é descartar automaticamente candidatos que ultrapassariam o tempo máximo permitido para o percurso.



Após esta eliminação de pontos os K caminhos são inicializados. A inicalização acontece escolhendo-se pontos de dentro da elipse. Estes pontos são organizados em uma lista, do mais distante ao menos distante do ponto inicial. Os K caminhos recebem o ponto inicial e o ponto final. Após isso os pontos de dentro da elipse são selecionados baseando-se na métrica proposta por Subramanian et al. [2013]:

$$z_1 = t_{i,\omega} + t_{\omega,j} - t_{i,j}$$

$$z_3 = z_1 - \gamma(t_{0,\omega} + t_{\omega,0}), \gamma \in [0,1]$$
(13)

A equação 13 representa a melhor economia de inserção do vértice  $\omega$  entre dois pontos ao se considerar todas as rotas. Na equação 14, ao valor encontrado em 13 é subtraído a distância de ida e volta do ponto  $\omega$  ao ponto inicial. Escolher a equação 14 permite com que pontos mais distantes do início possam ser incluídos na solução inicial, contribuindo para sua diversificação. Os pontos continuam a ser inseridos até que não se possa mais fazê-lo. O procedimento completo é descrito em pseudocódigo no Algoritmo 1.

### Algorithm 1: Construtiva Melhor Economia

```
1 Data: G(V, A), \gamma, K, n, T_{max}, t, N
  2 begin
           path \leftarrow \emptyset;
  3
           time \leftarrow \emptyset;
   4
           for i in \{1..K\} do
                path \leftarrow [V_0, V_{n+1}];
   6
                time \leftarrow t_{0,n+1};
   7
   8
           end
           for i in N do
                 z_3 \leftarrow T_{max};
  10
                best \leftarrow \emptyset;
  11
                 for j in \{1...K\} do
  12
                       for m in \{0...len(path[j])-1\} do
  13
                            p_1 \leftarrow path[j][m];
  14
                            p_2 \leftarrow path[j][m+1];
  15
  16
                            t \leftarrow t_{p_1,i} + t_{i,p_2} - t_{p_1,p_2};
                            z = t - \gamma(t_{0,i} + t_{i,0});
  17
                            if t + time[j] < T_{max} and z_3 > z then
  18
                                  z_3=z;
  19
                                  best \leftarrow [j, m+1, t];
  20
                            end
  21
  22
                      end
                 end
  23
                if best \neq \emptyset then
  24
                       j, m, t \leftarrow best;
  25
                       path[j].insert(m, i);
  26
  27
                       time[j] \leftarrow time[j] + t;
                end
  28
29
             end
             return path, time
30
       end
31
```

### 3.2. Estruturas de Vizinhança

As estruturas de vizinhança utilizadas neste trabalho foram: Inserção, Permutação, 2-OPT e Substituição. O critério de aceite para inserir e substituir é a melhora da função objetivo. Já o

critério para as funções de permutação e 2-opt [Croes [1958]] são baseados na melhora do tempo do caminho, se um tempo menor for encontrado a solução é atualizada.

As Subseções 3.2.1, 3.2.2, 3.2.3 e 3.2.3 explicam como foram feitas as estrutura de vizinhança da inserção, substituição, permutação e 20pt respectivamente.

### 3.2.1. Inserção

Na busca local de inserção verifica-se dentre todos os nós não visitados e todas as posições possíveis de inserção o valor de z3, calculado pela equação 14. O vértice escolhido é o que possui o melhor custo-benefício, ou seja, o menor valor de z3 dentre todas as opções [Macedo e Senne [2023]]. A Figura 1 mostra uma inserção do vértice com recompensa 12 no caminho original, 1b, aumentando a recompensa para 128.



Figure 1: Inserção

#### 3.2.2. Substituição

A substituição é calculada de uma maneira similar a inserção. Nela são verificadas dentre as posições ocupadas pelos vértices presentes nos caminhos, qual o par posição+vértice-não-visitado é mais vantajoso, segundo o melhor valor de z3. Em todos os casos o novo vértice só será aceito caso o tempo máximo seja respeitado. A Figura 2b mostra o vértice visitado de valor 32 em um dos caminhos sendo trocado pelo vértice não visitado de valor 52, aumentando a recompensa do time.



Figure 2: Substituição

## 3.2.3. Permutação

Na permutação o algoritmo procura trocar dois vértices de caminhos distintos. O objetivo é que ao trocar esses vértices o tempo total de cada caminho seja reduzido [Chao et al. [1996]]. Na Figura 3a, temos dois caminhos com as seguintes ordens de recompensa;  $\{0, 22, 12, 40, 0\}$ ,  $\{0, 52, 22, 0\}$ , nesta permutação os vértices de recompensa 12 e 22 são escolhidos para serem trocados, resultando na seguintes sequências:  $\{0, 22, 22, 40, 0\}$ ,  $\{0, 52, 12, 0\}$ , representados na Figura 3b.



Figure 3: Permutação

#### 3.2.4. 2opt

Para tentar uma redução de tempo dentro de cada caminho o algoritmo 2-opt [Croes [1958]] é aplicado. O objetivo é que ao diminuir o tempo do caminho, na próxima iteração será possível adicionar novos pontos. Como mostra a Figura 4a, que antes de aplicar o algoritmo possui um tempo maior que após a aplicação do 20pt resulta na solução da Figura 4b.



Figure 4: 2opt

#### 3.3. Busca Local

Nesta seção serão apresentadas algumas variações de buscas locais utilizadas no trabalho. A Seção 3.3.1 apresenta o VND, a Seção 3.3.2, explica a variação do VND com sorteio de sequência de estruturas de vizinhança aleatória e a Seção 3.3.3 explica como o algoritmo de *Multi-Armed Bandit* foi utilizado para escolher a ordem de vinhança.



## 3.3.1. Variable Neighbourhood Descent

O VND é uma heurística para resolver problemas de otimização combinatória e otimização global. Esta heurística utiliza trocas determinísticas de vizinhança na busca local para melhorar a solução [Hansen et al. [2010]].

Utilizando as estruturas de vizinhança apresentadas na Seção 3.2, uma sequência possível seria: Inserção-Permutação-Subtituição-2opt. Existe a possibilidade desta não ser a melhor ordem para uma determinada instância [Şevkli e Aydin [2006]]. Por esta razão este trabalho testa algumas variações do VND, com o objetivo de automatizar a escolha desta ordem.

A hipótese inicial do trabalho é que existem ordens de estruturas de vizinhança melhores que outras e, consequentemente, existem piores. Pode-se ter o azar de escolher uma ordem ruim para a busca local. Como o RVND sorteia aleatoriamente essas ordens, é esperado que sua performance seja melhor que as piores sequências, mas seja pior que as melhores. Para o Bandit-VND é esperado uma performance melhor que o RVND, já que parte das escolhas é feita com a melhor ação.

#### 3.3.2. Random-VND

No *Random-VND* a cada execução da busca local, a ordem das estruturas de vizinhança é embaralhada [Oliveira [2021]]. Nas estruturas de vizinhança Inserção e Substituição a busca local escolhe o primeiro aprimorante, enquanto na de Permutação e 2opt é a primeira melhora.

#### 3.3.3. Bandit-VND

O *Bandit-VND* utiliza o *Multi-Armed Bandits* para escolher a ordem de vizinhanças da busca local. O algoritmo *Multi-Armed Bandits* possui K possíveis ações, que são as armas, e T iterações. Em cada iteração o algoritmo escolhe uma ação e coleta uma recompensa. A recompensa é obtida a partir de uma distribuição Identicamente Independente, fixada, que depende somente da escolha da ação, mas é desconhecida para o algoritmo [Slivkins et al. [2019]].

Como o algoritmo só tem informação depois da escolha de cada ação, ele precisa de duas fases; uma de exploração, escolhendo ações e coletando as respectivas recompensas, e outra de extrapolação que escolhe a ação baseando-se nas informações coletadas anteriormente. Isso faz com que exista um *tradeoff* no algoritmo, o quanto de T deve-se gastar na exploração para que uma boa escolha possa ser feita na extrapolação.

Para este trabalho a recompensa escolhida é 1, caso a sequência obtenha sucesso, e 0, caso contrário. No *stochastic bandit*, utilizado no trabalho, a fase de exploração utiliza uma porcentagem de T para coletar recompensas. Na fase extrapolação a escolha da ação é baseada na ação que obteve a melhor recompensa média na fase de exploração, com desempate arbitrário.

## 3.4. Iterated Local Search - VND

A segunda fase do algoritmo proposto por Macedo e Senne [2023] é composta pelo ILS-BuscaLocal, *Algorithm* 2. Neste trabalho, a Busca Local são as variações do VND. Aqui o algoritmo começa na solução viável obtida com o construtivo. O ILS se baseia em uma melhora e em uma perturbação. Na etapa da perturbação o algoritmo sorteia aleatoriamente um vértice visitado e tenta retirá-lo. Retirar um vértice pode causar uma inviabilidade na solução, por isso uma operação de 2-opt é realizada logo em seguida para reduzir o tempo do caminho. Após essa etapa é verificado se a solução é viável e, caso não seja, um novo vértice é sorteado. Os vértices continuam a ser sorteados até que se encontre um que não cause inviabilidade na solução, ou que todos tenham sido sorteados.

### Algorithm 2: ILS-BuscaLocal

```
1 begin
        s* ← Solução Inicial
2
        while Max_Iter do
 3
             s' \leftarrow perturbação de s*
 4
             s" \leftarrow BuscaLocal(s')
 5
             if f(s'') > f(s^*) then
 6
                s^* \leftarrow s"
 7
             end
 8
        end
        return s*
10
11 end
```

### 4. Experimentos Computacionais

Esta seção apresenta os resultados experimentais obtidos. Ela está organizada em duas subseções. A Seção 4.1 apresenta detalhes dos hiper-parâmetros e as instâncias utilizadas para os experimentos, enquanto que a Seção 4.2 apresenta e analisa os resultados obtidos.

Os experimentos foram implementados na linguem de programação Python versão no Sistema Operacional Linux, usando a versão 3.8. Os experimentos foram executados dez vezes para cada instância em um Intel(R) Core(TM) i5-8265U de frequência de 1.60GHz com 4GB RAM.

## 4.1. Instâncias e Configurações dos Algoritmos

As instâncias utilizadas neste trabalho foram descritas por Dang et al. [2013] e disponibilizadas por Hammami et al. [2020]. Foram realizadas 10 repetições para cada instância. O número de iterações escolhido foi  $10^4$ . O  $\gamma$  escolhido da Equação 14, foi fixado em 0.1. O percentual para a fase de exploração do Bandit foi fixado em 70%.

A fim de comparar como seriam os resultados caso uma escolha ruim de sequência de vizinhanças fosse feita. Para cada par  $\{instância_j, permutação_i\}$  foram realizadas 5 repetições, com  $10^2$  iterações. A partir desses resultados foi obtida uma média relacionada ao par. Para cada instância os experimentos utilizaram a permutação que teve seu resultado médio pior.

### 4.2. Resultados Computacionais

Nesta seção os resultados obtidos a partir de cada algoritmo são comparados. Para fazer essa análise, foi utilizada a métrica de distância dada pela Equação (15), onde  $xvnd \in \{\text{ILS+VND}, \text{ILS+RVND}, \text{ILS+BVND}\}$  e o otimo é o melhor valor encontrado, que foi retirado da literatura. Como os dados não são normalmente distribuídos, o teste de hipótese utilizado foi o Wilcoxon Signed Rank Test.

$$m = 1 - \frac{xvnd}{otimo} \tag{15}$$

Os resultados obtidos no teste de hipóteses são apresentados na Tabela 1. A primeira coluna contém as hipóteses e a segunda coluna os seus p-valores. Na hipótese nula,  $H_0$  é assumido que não há diferença entre os valores obtidos a partir de dois algoritmos diferentes, e a hipótese alternativa,  $H_1$ , é assumido que os valores da métrica em um dos algoritmos é maior no outro. Como está a métrica usada é a distância até o melhor valor, aceitar a hipótese  $H_1$ , significa que o algoritmo é pior que o outro, já que ele está mais distante do ótimo.

A partir da Tabela 1 conclue-se que o Bandit e o RVND são preferíveis ao VND, já que no VND pode ser escolhido uma estrutura de vizinhanças ruim, o que não acontece para o Bandit ou RVND. Na Tabela 2, é possível observar que a mediana do Bandit supera em 60% a mediana do

RVND, que pode ser justificado devido a aleatoriedade do RVND, causando resultados melhores, mas também piores, como os obtidos em 56% das instâncias. Havendo um ajuste na porcentagem de iterações utilizada na fase de exploração do Bandit, os resultados podem ser melhorados.

A última tabela, a Tabela 3, apresenta as médias e desvio padrão da pontuação obtida em cada um dos algoritmos. O campo *Instância*, indica a instância utilizada no experimento. No campo *VAvg(Std)*, V é o VND com uma sequência de estrutura de vizinhança ruim, no campo *B Avg(Std)*, B é Bandit e no campo *R Avg(Std)*, R é o RVND. O *Avg(Std)*, é a respectiva média e desvio padrão da pontuação obtida e o Avg Time, o tempo médio de execução.

Table 1: Testes de Hipótese

| Hipótese                            | p-valor |  |  |
|-------------------------------------|---------|--|--|
| $H_0$ : $\mu_{-vnd} = \mu_{rvnd}$   | 0.002   |  |  |
| $H_1: \mu_{-vnd} > \mu_{rvnd}$      | 0.002   |  |  |
| $H_0$ : $\mu_{-vnd} = \mu_{bandit}$ | 0.002   |  |  |
| $H_1: \mu_{-vnd} > \mu_{bandit}$    | 0.002   |  |  |
| $H_0$ : $\mu_{-vnd} = \mu_{+vnd}$   | 0.002   |  |  |
| $H_1$ : $\mu_{-vnd} > \mu_{+vnd}$   | 0.002   |  |  |

Table 2: Resultados

| Algoritmo 1 | Algoritmo 2 | $\textbf{Best Alg1} \geq \textbf{Alg2}$ | Worst Alg1 $\geq$ Alg2 | $Median Alg1 \ge Alg2$ |
|-------------|-------------|-----------------------------------------|------------------------|------------------------|
| ILS-Bandit  | ILS-VND     | 0.86                                    | 0.98                   | 0.93                   |
| IlS-Bandit  | ILS-RVND    | 0.51                                    | 0.56                   | 0.63                   |
| ILS-RVND    | ILS-VND     | 0.84                                    | 0.97                   | 0.91                   |

#### 5. Conclusão e trabalhos futuros

Este trabalho apresentou uma análise comparativa entre os algoritmos ILS com Busca Local. As buscas locais exploradas foram o VND, RVND e Bandit VND. Foi abordado também como cada um desses algoritmos é construído, o que inclui a heurística construtiva para gerar soluções iniciais e a perturbação utilizada para gerar soluções vizinhas.

Os experimentos computacionais mostraram que é vantajoso optar pelo uso do Bandit VND ou RVND, ao VND já que não é necessário escolher uma sequência de estruturas de vizinhanças. Em particular o Bandit VND possui a mediana dos resultados melhor em 63% das instâncias, se comparado ao RVND e em 56% das instâncias o pior resultado tem valor maior comparado ao pior resultado obtido com o RVND.

Para trabalhos futuros, no Bandit seria verificado o quanto a porcentagem utilizada na fase de exploração influencia os resultados, e propor um algoritmo de aprendizado mais eficiente, como o *Q-Learning*, para aprender qual seria uma boa ordem de estruturas de vizinhança dado uma instância qualquer.

### Agradecimentos

Os autores agradecem o UFRJ (23079.227622/2023-70), CNPq (307663/2021-3), FAPERJ (307663/2021-3), e CAPES(88887.948034/2024-00) pelo financiamento parcial desta pesquisa.

| Instância                          | VND Av(Std)            | Tmp Avg VND        | RVND Avg(Std)          | Tmp Avg RVND     | B-VND Avg(Std)         | Tmp Avg B-VND    |
|------------------------------------|------------------------|--------------------|------------------------|------------------|------------------------|------------------|
| eil101b_m3                         | 770(49)                | 107.11             | 829(15)                | 33.57            | 829(10)                | 46.94            |
| cmt101c_m3                         | 1152(66)               | 159.84             | 1207(42)               | 36.27            | 1203(40)               | 55.39            |
| eil101c_m3                         | 1096(28)               | 219.12             | 1138(20)               | 38.94            | 1122(25)               | 58.18            |
| gil262a_m4                         | 2511(237)              | 232.1              | 2946(51)               | 103.09           | 2952(31)               | 148.51           |
| bier127_gen2_m4                    | 4526(296)              | 239.87             | 4799(57)               | 52.35            | 4830(62)               | 76.97            |
| pr264_gen1_m4                      | 94(6)                  | 240.56             | 102(6)                 | 78.06            | 103(1)                 | 95.54            |
| kroB200_gen3_m3                    | 2293(162)              | 412.31             | 2722(80)               | 184.53           | 2688(86)               | 159.71           |
| gil262_gen1_m4<br>bier127_gen1_m3  | 68(3)                  | 373.99<br>420.65   | 75(1)<br>97(1)         | 209.03<br>60.03  | 75(1)<br>98(1)         | 198.14<br>83.8   |
| kroA150_gen2_m2                    | 92(6)<br>3533(198)     | 508.21             | 3882(58)               | 100.1            | 3784(108)              | 95.12            |
| rat195_gen2_m2                     | 4000(309)              | 886.6              | 4375(108)              | 147.59           | 4405(94)               | 150.03           |
| eil101c_m2                         | 1165(38)               | 648.07             | 1175(26)               | 46.15            | 1184(17)               | 63.93            |
| cmt200b_m3                         | 1655(80)               | 668.04             | 1756(51)               | 125.48           | 1769(19)               | 193.09           |
| cmt151c_m3                         | 1673(59)               | 693.23             | 1712(22)               | 81.19            | 1730(23)               | 112.24           |
| kroB200_gen3_m2                    | 3362(332)              | 1005.28            | 3692(317)              | 191.58           | 3792(167)              | 169.09           |
| pr264_gen3_m3                      | 2368(103)              | 993.43             | 2370(86)               | 279.88           | 2442(113)              | 274.9            |
| pr264_gen2_m3                      | 5347(471)              | 988.93             | 5800(198)              | 349.27           | 5820(249)              | 279.73           |
| pr299_gen1_m4                      | 69(5)                  | 360.0              | 80(1)                  | 210.16           | 80(1)                  | 191.63           |
| gil262b_m3                         | 5891(289)              | 1093.9             | 6319(211)              | 202.86           | 6358(183)              | 286.76           |
| bier127_gen3_m2                    | 2316(206)              | 1080.4             | 2505(133)              | 1046.74          | 2489(136)              | 107.99           |
| cmt151b_m3                         | 1164(65)               | 310.24             | 1238(22)               | 68.9             | 1230(22)               | 98.99            |
| pr264_gen2_m4                      | 4733(262)              | 257.62             | 5223(250)              | 79.26            | 5202(253)              | 77.47            |
| gr229_gen2_m4                      | 10995(86)              | 2220.3             | 10872(160)             | 231.64           | 10922(99)              | 224.88           |
| bier127_gen3_m4                    | 1889(242)              | 209.95             | 2155(59)               | 56.21            | 2153(43)               | 77.59            |
| gil262b_m2<br>gr229_gen3_m4        | 6239(273)<br>7029(370) | 2931.38<br>2267.23 | 6600(150)<br>6980(191) | 238.52<br>229.96 | 6636(255)<br>7057(181) | 335.21<br>227.88 |
| gr229_gen3_m4<br>rat195_gen3_m3    | 7029(370)<br>2092(219) | 351.79             | 2362(52)               | 132.39           | 7057(181)<br>2361(35)  | 131.04           |
| gil262_gen2_m2                     | 5835(500)              | 2467.26            | 6052(228)              | 346.59           | 5993(112)              | 320.89           |
| pr299_gen1_m3                      | 96(3)                  | 893.63             | 103(1)                 | 337.1            | 101(2)                 | 297.45           |
| rd400_gen3_m4                      | 7758(282)              | 2018.42            | 8294(405)              | 810.09           | 8373(316)              | 814.98           |
| bier127_gen3_m3                    | 2039(129)              | 386.82             | 2330(140)              | 59.59            | 2257(114)              | 83.98            |
| gil262_gen3_m4                     | 1995(253)              | 342.63             | 2396(38)               | 258.96           | 2395(49)               | 205.06           |
| rd400_gen1_m4                      | 172(9)                 | 2206.05            | 189(6)                 | 812.95           | 188(5)                 | 865.42           |
| lin318_gen3_m2                     | 5955(453)              | 4702.23            | 6167(430)              | 552.46           | 6295(262)              | 520.82           |
| rd400_gen3_m3                      | 8909(301)              | 3889.42            | 9587(362)              | 883.58           | 9007(486)              | 860.1            |
| kroB200_gen2_m2                    | 4537(477)              | 1162.7             | 5162(304)              | 194.45           | 5235(342)              | 178.02           |
| gil262_gen1_m3                     | 82(7)                  | 608.8              | 93(2)                  | 373.14           | 92(2)                  | 242.58           |
| gil262_gen3_m2                     | 5115(370)              | 2184.13            | 5843(156)              | 312.89           | 5712(203)              | 300.5            |
| bier127_gen2_m3                    | 4750(235)              | 462.9              | 4909(60)               | 60.03            | 4904(41)               | 84.66            |
| pr299_gen3_m4                      | 1872(112)              | 350.49             | 2144(37)               | 192.74           | 2157(31)               | 196.31           |
| kroB200_gen1_m2<br>rd400_gen2_m4   | 82(8)                  | 1067.32<br>2267.95 | 98(4)<br>9683(271)     | 184.34<br>931.06 | 98(5)                  | 173.46<br>819.63 |
| kroB200_gen2_m4                    | 9354(380)<br>4066(172) | 286.46             | 4598(40)               | 150.49           | 9590(330)<br>4624(152) | 152.82           |
| cmt200c_m2                         | 2480(50)               | 4935.52            | 2516(29)               | 189.42           | 2536(26)               | 248.26           |
| bier127_gen1_m2                    | 98(3)                  | 1369.97            | 99(1)                  | 77.84            | 99(1)                  | 108.45           |
| lin318_gen2_m3                     | 5574(666)              | 1322.11            | 6990(260)              | 430.73           | 6784(198)              | 409.49           |
| pr136_gen1_m2                      | 49(5)                  | 271.22             | 60(1)                  | 77.51            | 59(1)                  | 76.81            |
| gr229_gen2_m3                      | 11109(17)              | 4707.04            | 11086(19)              | 297.4            | 11110(15)              | 290.22           |
| gr229_gen3_m3                      | 7392(180)              | 5340.69            | 7378(77)               | 302.1            | 7378(60)               | 291.58           |
| gil262_gen2_m3                     | 4451(340)              | 642.45             | 4935(114)              | 255.19           | 4961(102)              | 255.88           |
| gil262c_m3                         | 8591(405)              | 2773.26            | 9076(270)              | 250.59           | 9170(327)              | 338.24           |
| pr299_gen3_m3                      | 2971(165)              | 844.12             | 3215(63)               | 313.01           | 3189(47)               | 310.12           |
| kroA200_gen1_m4                    | 66(5)                  | 268.16             | 78(1)                  | 150.32           | 78(1)                  | 136.93           |
| rd400_gen2_m3                      | 9719(143)              | 4067.22            | 10122(205)             | 860.27           | 10332(260)             | 908.74           |
| lin318_gen1_m3<br>pr299_gen3_m2    | 111(11)<br>3999(481)   | 1331.09            | 136(7)<br>4816(256)    | 419.87<br>378.36 | 133(8)<br>4721(283)    | 413.82<br>369.41 |
| cmt200c_m3                         | 2370(73)               | 2313.44<br>1658.06 | 2462(62)               | 149.53           | 2484(36)               | 203.71           |
| gil262a_m2                         | 3122(137)              | 590.76             | 3542(200)              | 124.99           | 3473(146)              | 177.06           |
| pr299_gen1_m2                      | 100(18)                | 2216.88            | 125(4)                 | 478.89           | 122(6)                 | 392.86           |
| pr299_gen2_m4                      | 3659(284)              | 391.77             | 4165(76)               | 241.81           | 4157(74)               | 195.08           |
| cmt200b_m2                         | 1740(60)               | 1886.17            | 1824(26)               | 145.29           | 1840(51)               | 200.26           |
| gr229_gen1_m4                      | 215(5)                 | 2458.01            | 214(2)                 | 230.07           | 214(1)                 | 225.0            |
| pr136_gen2_m2                      | 2681(397)              | 277.36             | 3190(128)              | 76.21            | 3244(68)               | 77.02            |
| cmt151c_m4                         | 1591(53)               | 334.21             | 1696(30)               | 73.46            | 1693(28)               | 101.91           |
| rd400_gen2_m2                      | 9896(307)              | 7707.93            | 10245(190)             | 968.1            | 10230(199)             | 1019.66          |
| gil262c_m4                         | 8162(333)              | 1216.53            | 8772(139)              | 224.25           | 8854(295)              | 300.06           |
| cmt200c_m4                         | 2357(52)               | 787.63             | 2417(48)               | 131.19           | 2467(40)               | 178.29           |
| ts225_gen2_m2                      | 4483(552)              | 1196.99            | 5137(182)              | 197.72           | 5012(165)              | 186.86           |
| kroA150_gen3_m3<br>bier127_gen2_m2 | 2077(198)<br>4907(192) | 200.09             | 2506(61)<br>5074(92)   | 85.08<br>374.09  | 2527(58)<br>5016(51)   | 84.08<br>109.28  |
| pr299_gen2_m3                      | 4907(192)              | 1268.95<br>901.05  | 5258(87)               | 336.3            | 5320(79)               | 302.45           |
| cmt200b_m4                         | 1576(105)              | 394.26             | 1723(40)               | 116.61           | 1711(40)               | 164.69           |
| rd400_gen1_m3                      | 175(8)                 | 3136.84            | 194(6)                 | 886.98           | 197(4)                 | 863.15           |
| lin318_gen3_m4                     | 2935(229)              | 768.91             | 3351(229)              | 371.6            | 3342(230)              | 357.53           |
| gil262b_m4                         | 5406(288)              | 627.79             | 5760(202)              | 181.32           | 5970(97)               | 249.45           |
| pr264_gen2_m2                      | 6308(305)              | 2114.66            | 6430(16)               | 434.7            | 6416(42)               | 360.19           |
| lin318_gen1_m2                     | 141(10)                | 3699.29            | 153(6)                 | 526.44           | 154(7)                 | 504.39           |
| cmt151c_m2                         | 1701(51)               | 1370.26            | 1768(41)               | 100.69           | 1735(24)               | 135.81           |
| gil262c_m2                         | 9014(270)              | 4450.37            | 9408(171)              | 322.49           | 9539(171)              | 447.43           |
| lin318_gen2_m2                     | 7079(470)              | 2608.0             | 7874(368)              | 630.36           | 7923(233)              | 527.98           |
| rd400_gen3_m2                      | 9436(572)              | 5667.35            | 9868(402)              | 952.44           | 9780(274)              | 989.63           |
| rd400_gen1_m2                      | 183(3)                 | 5569.09            | 199(2)                 | 970.97           | 200(2)                 | 954.75           |
|                                    |                        |                    |                        |                  |                        |                  |



#### References

- Bianchessi, N., Mansini, R., e Speranza, M. (2018). A branch-and-cut algorithm for the team orienteering problem. *International Transactions in Operational Research*, 25:627–.
- Butt, S. E. e Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem. *Computers Operations Research*, 21(1):101–111. ISSN 0305-0548. URL https://www.sciencedirect.com/science/article/pii/0305054894900655.
- Chao, I.-M., Golden, B. L., e Wasil, E. A. (1996). The team orienteering problem. *European Journal of Operational Research*, 88(3):464–474. URL https://EconPapers.repec.org/RePEc:eee:ejores:v:88:y:1996:i:3:p:464-474.
- Croes, G. A. (1958). A method for solving traveling-salesman problems. *Operations Research*, 6(6): 791–812. ISSN 0030364X, 15265463. URL http://www.jstor.org/stable/167074.
- Dang, D.-C., Guibadj, R., e Moukrim, A. (2013). An effective pso-inspired algorithm for the team orienteering problem. *European Journal of Operational Research*, 229:332–344.
- Gintner, V. e Kliewer, N. (2005). Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice. *Operations Research-Spektrum*, 27:507–523.
- Golden, B., Levy, L., e Vohra, R. (1987). The orienteering problem. Nav Res Logist, 34:307–318.
- Hammami, F., Rekik, M., e Coelho, L. C. (2020). A hybrid adaptive large neighborhood search heuristic for the team orienteering problem. *Computers Operations Research*, 123:105034. ISSN 0305-0548. URL https://www.sciencedirect.com/science/article/pii/S0305054820301519.
- Hansen, P., Mladenovic, N., e Moreno-Pérez, J. (2010). Variable neighbourhood search: Methods and applications. *4OR*, 175:367–407.
- Lourenço, H., Martin, O., e Stützle, T. (2001). A beginner's introduction to iterated local search. p. 1–11.
- Lü, Z., Hao, J.-K., e Glover, F. (2011). Neighborhood analysis: A case study on curriculum-based course timetabling. *J. Heuristics*, 17:97–118.
- Macedo, E. A. A. G. e Senne, E. L. F. (2023). Hybrid approach to solve the team orienteering problem. In *Anais do Simpósio Brasileiro de Pesquisa Operacional.*, Campinas. Galoá.
- Mladenović, N. e Hansen, P. (1997). Variable neighborhood search. *Computers Operations Research*, 24(11):1097-1100. ISSN 0305-0548. URL https://www.sciencedirect.com/science/article/pii/S0305054897000312.
- Oliveira, J. P. F. (2021). Iterated local search aplicado ao problema de roteamento de velculos com coleta e entrega simultÂnea, janela de tempo e frota heterogÊnea. Master's thesis, Universidade Federal de Ouro Preto UFOP.
- Slivkins, A. (2024). Introduction to multi-armed bandits.
- Slivkins, A. et al. (2019). Introduction to multi-armed bandits. *Foundations and Trends® in Machine Learning*, 12(1-2):1–286.



- Subramanian, A., Penna, P., Ochi, L., e Souza, M. (2013). *Um Algoritmo Heurístico Baseado em Iterated Local Search para Problemas de Roteamento de Veículos*, p. 165–180. ISBN 9788564619104.
- Wu, Q., Hao, J.-K., e Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight clique problem. *Annals of Operations Research*, 196.
- Şevkli, M. e Aydin, M. (2006). Variable neighbourhood search for job shop scheduling problems. *JSW*, 1:34–39.