EJEMPLO 2.7.5 Un camino más sencillo para obtener la factorización *LU*

Encuentre la factorización LU de

$$A = \begin{pmatrix} 2 & 3 & 2 & 4 \\ 4 & 10 & -4 & 0 \\ -3 & -2 & -5 & -2 \\ -2 & 4 & 4 & -7 \end{pmatrix}$$

SOLUCIÓN \blacktriangleright El presente problema se resolvió en el ejemplo 2.7.1. Ahora se hará uso de un método más sencillo. Si A = LU, se sabe que A se puede factorizar como:

$$A = \begin{pmatrix} 2 & 3 & 2 & 4 \\ 4 & 10 & -4 & 0 \\ -3 & -2 & -5 & -2 \\ -2 & 4 & 4 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & c & 1 & 0 \\ d & e & f & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 2 & 4 \\ 0 & u & v & w \\ 0 & 0 & x & y \\ 0 & 0 & 0 & z \end{pmatrix} = LU$$

Observe que el primer renglón de U es el mismo que el primer renglón de A porque al reducir A a la forma triangular, no hace falta modificar los elementos del primer renglón.

Se pueden obtener todos los coeficientes faltantes con tan sólo multiplicar las matrices. La componente 2, 1 de A es 4. De este modo, el producto escalar del segundo renglón de L y la primera columna de U es igual a 4:

$$4 = 2a \text{ o } a = 2$$

Así,

$$\begin{pmatrix} 2 & 3 & 2 & 4 \\ 4 & 10 & -4 & 0 \\ -3 & -2 & -5 & -2 \\ -2 & 4 & 4 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 5 - \frac{3}{2} & \frac{5}{8} & 1 & 0 \\ 2 & -1 & \frac{7}{8} & \frac{7}{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 2 & 4 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 &$$

Después se tiene:

componente 2, 2:
$$10 = 6 + u \Rightarrow u = 4$$

Observación

Resulta sencillo, en una computadora, poner en práctica la técnica ilustrada en el ejemplo 2.7.5.

Advertencia

La técnica que se ilustra en el ejemplo 2.7.5 funciona únicamente si A se puede reducir a una matriz triangular sin realizar permutaciones. Si las permutaciones son necesarias, primero se debe multiplicar A por la izquierda por una matriz de permutación adecuada; después se puede aplicar este proceso para obtener la factorización PA = LU.

De aquí en adelante se pueden insertar los valores que se encuentran en L y U:

componente 2, 3:
$$-4 = 4 + v \Rightarrow v = -8$$

componente 2, 4:
$$0 = 8 + w \Rightarrow w = -8$$

componente 3, 1:
$$-3 = 2b \Rightarrow b = -\frac{3}{2}$$

componente 3, 2:
$$-2 = \frac{9}{2} + 4c \Rightarrow c = \frac{5}{8}$$

componente 3, 3:
$$-5 = -3 - 5 + x \Rightarrow x = 3$$

componente 3, 4:
$$-2 = -6 - 5 + y \Rightarrow y = 9$$

componente 4, 1:
$$-2 = 2d \Rightarrow d = -1$$

componente 4, 2:
$$4 = -3 + 4e \Rightarrow e = \frac{7}{4}$$

componente 4, 3:
$$4 = -2 - 14 + 3f \Rightarrow f = \frac{20}{3}$$

componente 4, 4:
$$-7 = -4 - 14 + 60 + z \Rightarrow z = -49$$