LSTM in Pytorch with Temporal Data - Lab -

Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Emanuele Frascaroli, Aniello Panariello

Agenda

- Jena Weather Dataset
- RNNs & LSTMs
- Build your LSTM-based model
- Train your LSTM-based model

Notebook link: https://shorturl.at/xAl37

Jena Weather

Dataset

For today's lab session, we will use an openly available weather data: the <u>Jena Weather Analysis dataset</u>.

It includes 10-minute recordings of multiple weather parameters for the German city of Jena, including:

- Temperature
- Dew Point
- Relative Humidity
- Vapor Pressure
- Atmospheric Pressure
- Wind Speed
- •

Jena Weather

Dataset

We will design a model that

Receives a 12 hourly recordings of 19 weather variables

· Forecasts the temperature two hours into the future

Recurrent Neural Networks

- Handle sequential data in an optimized manner
- Operation is similar to a state-machine
- Information on previous timesteps is encapsulated in the hidden state

Modes of operation

As we deal with sequential data, there are many ways we can use RNNs

What is our configuration for today's task?

Backpropagation Through Time

- When applying backpropagation, we must unroll the computational graph
- Long-term dependencies are problematic (vanishing gradients)!

•
$$\frac{\partial L}{\partial \mathbf{V}} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{V}}$$

•
$$\frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{h}^{(3)}} \sum_{k=0}^{3} \left(\frac{\partial \mathbf{h}^{(3)}}{\partial \mathbf{h}^{(k)}} \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{W}} \right)$$

•
$$\frac{\partial L}{\partial \mathbf{U}} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{h}^{(3)}} \sum_{k=0}^{3} \left(\frac{\partial \mathbf{h}^{(3)}}{\partial \mathbf{h}^{(k)}} \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{U}} \right)$$

Long-Short Term Memory

Networks

To compensate for this issue, we introduce LSTMs:

- They facilitate the flow of gradients through their hidden states
- Dual-track cell structure: cell state (gradient superhighway) + hidden state (output)
- Forget, input & output gates regulate the information flow from/to cell state
- Sigmoids vs tanhs!

Defining our model

To build our model, we will need to combine the following classes today:

- torch.nn.Linear
- torch.nn.LSTM
- torch.nn.ReLU

Each implements a piece of the network; how can they be combined?

Follow the shapes!

Training our model

To train our model, we:

- Feed it randomly shuffled sequences of data
- Ask it to guess the corresponding target temperature
- Compute the error (loss)
- Back-propagate the loss through the network
- Adjust parameters accordingly
- goto 1!

When do we stop?

Error Measures

The way we compute errors is a crucial part of the training procedure:

- Cross-Entropy Loss $\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_{y_n}\log rac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}$
- Mean Square Error $\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = (x_n-y_n)^2$
- Mean Absolute Error (L1loss) $\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = |x_n-y_n|$

What can we use for the task at hand? Why?

Tweaking Hyperparameters

Our model seems to be working, but can we do better?

- Trying out different optimizers
- Testing out different hidden sizes
- Changing the learning rate
- Learning rate scheduling