1

Discrete

EE1205 : Signals and Systems Indian Institute of Technology Hyderabad

Chirag Garg (EE23BTECH11206)

I. Question 11.9.5 (18)

If a and b are the roots of $x^2 - 3x + p = 0$ and c, d are roots of $x^2 - 12x + q = 0$ where a, b, c, d form a G.P. Prove that (q + p) : (q - p) = 17:15.

II. SOLUTION

Parameter	Value	Description
$x_1(n)$	-	G.P. Sequence
$x_1(0)$	а	First term of G.P.
$x_1(1)$	b	Second term of G.P.
$x_1(2)$	С	Third term of G.P.
$x_1(3)$	d	Fourth term of G.P.
r	$\frac{b}{a}$	Common ratio
TABLE 1		

GIVEN PARAMETERS

Given $x_1(0)$ and $x_1(1)$ are the roots of $x^2-3x+p=0$ So, we have :

$$x_1(0) + x_1(1) = 3$$
 (1)

$$x_1(0).x_1(1) = p (2)$$

Also, $x_1(2)$ and $x_1(3)$ are the roots of $x^2-12x+q=0$, so,

$$x_1(2) + x_1(3) = 12$$
 (3)

$$x_1(2).x_1(3) = q \tag{4}$$

From (1) and (3), we get,

$$x_1(0)(1+r) = 3 (5)$$

And,

$$x_1(0)r^2(1+r) = 12$$
 (6)

On dividing eq. (5) and eq. (6), we get

$$\frac{x_1(0)r^2(1+r)}{x_1(0)(1+r)} = \frac{12}{3} \tag{7}$$

$$r^2 = 4 \tag{8}$$

$$r = \pm 2 \tag{9}$$

When r = 2, $x_1(0) = 1$

When r = -2, $x_1(0) = -3$

Case 1 : When r = 2 and $x_1(0) = 1$

$$p = x_1(0).x_1(1) \tag{10}$$

$$p = 2 \tag{11}$$

$$q = x_1(2).x_1(3) (12)$$

$$q = 32 \tag{13}$$

$$\frac{q+p}{q-p} = \frac{32+2}{32-2} \tag{14}$$

$$=\frac{17}{15}$$
 (15)

Case 2: When r = -2 and $x_1(0) = -3$

Hence, case 1 satisfies the condition.

$$p = x_1(0).x_1(1) (16)$$

$$p = -18 \tag{17}$$

$$q = x_1(2).x_1(3) (18)$$

$$q = 288 \tag{19}$$

$$\frac{q+p}{q-p} = \frac{288-18}{288+18} \tag{20}$$

$$=\frac{135}{153}$$
 (21)