第一部分 单项选择题

1. 设随机事件 A, B 满足 $P(AB) = 0$,则下列各选项中正确的是							
(A) A,B 互不相容	(B) A, B 独立						
(C) $P(A) = 0 \implies P(B) = 0$	(D) $P(A-B) = P(A)$						
2. 已知 $P(A) = 0.6$, $P(B) = 0.8$, $P(\overline{B} \mid A) = 0.2$,则下列各选项中正确的是							
(A) A,B 互不相容	(B) <i>A</i> , <i>B</i> 互为对立事件						
(C) A,B 相互独立	(D) $A \subset B$						
3. 设甲、乙两人独立地向同一目标进行	厅射击,每人射击 1 次,命中率分别为 0.6 和 0.5,则						
在目标被击中的条件下,甲击中目标的	概率为 C						
(A) $\frac{3}{5}$ (B) $\frac{5}{11}$	(C) $\frac{3}{4}$ (D) $\frac{6}{11}$						
4. 某厂产品的次品率为 0.0055, 在它生产的 999 件产品中, 出现件次品的概率							
最大. B							
(A) 4 (B) 5	(C) 6 (D) 7						
5. 10 只球中只有 1 只红球,有放回地	抽取,每次取一只球,设 $1 \le k \le n$,则随机事件"直						
到第 n 次抽取,红球才第 k 次出现"的概率为 C							
$(A) \left(\frac{1}{10}\right)^k \left(\frac{9}{10}\right)^{n-k}$	(B) $C_n^k \left(\frac{1}{10}\right)^k \left(\frac{9}{10}\right)^{n-k}$						
(C) $C_{n-1}^{k-1} \left(\frac{1}{10}\right)^k \left(\frac{9}{10}\right)^{n-k}$	(D) $C_{n-1}^{k-1} \left(\frac{1}{10}\right)^{k-1} \left(\frac{9}{10}\right)^{n-k}$						
6. 设连续型随机变量 ξ 的密度函数和分布函数分别为 $f(x)$ 、 $F(x)$,则下列各选项中正确							
的是 A							
$(A) 0 \le F(x) \le 1$	(B) $f(x)$ 在 $(-\infty, +\infty)$ 内连续						
(C) $P(\xi = x) = f(x)$	(D) $P(\xi = x) = F(x)$						
7. 设 $F(x)$ 和 $f(x)$ 分别为某随机变量的分布函数和概率密度函数,则必有							
(A) $f(x)$ 单调不减	(B) $\int_{-\infty}^{+\infty} F(x) dx = 1$						

(C)	$F(-\infty) = 0$				(D) $F(x) = \int_{-\infty}^{+\infty}$	f(x)dx	
8. i	段 X 在 (−1,1) 上服	从均	匀分布,则方程 y²	-3λ	Xy+1=0有实根的	勺概率为	_ A
(A)	$\frac{1}{3}$	(B)	$\frac{1}{4}$	(C)	$\frac{2}{3}$	(D) $\frac{1}{2}$	
9. i	设 ξ 服从正态分布	,其	密度函数 $f(x) = -$	$\frac{1}{\sqrt{\pi}}e^{-\frac{1}{2}}$	$-x^2 + 2x - 1 \left(-\infty < x < 1\right)$	+∞),则下列各选	项中
正确	的是	A					
(A)	$E\xi=1, \ D\xi=\frac{1}{2}$			(B)	$E\xi=1, D\xi=\frac{1}{4}$.	
(C)	$E\xi=2, \ D\xi=\frac{1}{2}$	-		(D)	$E\xi=2, D\xi=\frac{1}{2}$	<u>1</u> 4	
10.	设随机变量 X	和 <i>Y</i>	独立同分布且取	Z −1	, 1的概率分别	为 $\frac{1}{3}$, $\frac{2}{3}$; 则	
P(X + Y = 0) =		B				
(A)	0	(B)	$\frac{4}{9}$	(C)	1	(D) $\frac{2}{3}$	
11.	有一大批已知次品	率为	0.2 的产品,用 X	表示	随机抽查的 100 件	井产品中次品的件数	女,根
据中	中心极限定理可知 <i>】</i>	Y 的i	近似分布为		В		
(A)	N(0,1)	(B)	N(20,16)	(C)	N(20,0.16) (D)) N(0.2, 0.16)	
12.	设随机变量 X 的	期望」	EX 和方差 DX 都	存在,	则 $E(EX)+D(I$	DX)=	D
(A)	$(EX)^2$	(B)	$(DX)^2$	(C)	DX	(D) <i>EX</i>	
13.	设随机变量 X~	B(1	$0, 0.5, Y \sim N(2)$,10)	$\perp E(XY) = 14 ,$	则 X 与 Y 的相关	系数
$r_{_{XY}}$	= D						

第二部分 填空题

1. 设随机事件 A,B 互不相容且 P(A)=a , P(B)=b ,则 $P(\bar{A}\cap \bar{B})=$ ______

(A) -0.8 (B) -0.16 (C) 0.16 (D) 0.8

1-a-b

2. 若随机事件 A, B 相互独立且 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$, 则 $P(A \cup B) = _______ \frac{5}{8}$

3. 设随机变量 X 的分布函数为 F(x),则随机变量 Y = 2X + 1 的分布函数为

$$F\left(\frac{y-1}{2}\right)$$

4. 设离散型随机变量 ξ 的概率分布为 $P(\xi = k) = \lambda p^k$ $(k = 1, 2, \cdots)$, 其中 $\lambda > 0$ 是已知常

- 9. 设二维离散型随机变量 (ξ,η) 的联合分布律为

			-
ξη	1	2	3
1	$\frac{1}{6}$	$\frac{1}{9}$	1/18
2	$\frac{1}{3}$	S	t

10. 设随机变量 X 和 Y 相互独立且 $X \sim B(16,0.5)$, $Y \sim P(9)$,则 $D(X - Y) = ___ 40$

第三部分 综合题

- 1. B公司在 B_1 厂和 B_2 厂生产电视显像管,每周产量共 3000 个,其中 B_1 厂生产 1800 个有 1%为次品, B_2 厂生产 1200 个有 2%为次品. 现从每周的产品中任选一个,试利用全概率公式和贝叶斯公式计算下列事件的概率:
- (1) 选出的产品是次品; 0.014
- (2) 已知选出的产品是次品,它是由 B_1 厂生产的. 0.4286

- 2. 设股票购买者可分为主力,大户和散户三类,他们所占的份额分别为 0.5, 0.3 和 0.2,且造成股票上涨的概率分别为 0.65, 0.25, 0.1,试求:
- (1) 股票上涨的概率是多少? 0.42
- (2) 若股票已上涨,则它是由主力造成的概率是多少? $\frac{65}{84} \approx 0.774$
- 3. 某型号电子元件的寿命 X (以小时计) 具有概率密度 $f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000 \\ 0, & 其他 \end{cases}$. 现有
- 一大批这种元件,设各元件损坏与否相互独立. 从中任取 5 个元件,设Y 表示其中寿命大于 1500 小时的元件的个数,问:
- (1) Y 服从何种概率分布,并写出其分布列;

$$Y \sim B\left(5, \frac{2}{3}\right), \quad P(Y = k) = C_5^k \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{5-k}, k = 0, 1, 2, \dots, 5$$

- (2) Y取什么值时概率达到最大值.
- 4.某厂产品的寿命T(单位:年)服从指数分布,其概率密度函数为 $f(t) = \begin{cases} \frac{1}{5}e^{-\frac{1}{5}t}, & t>0 \\ 0, & t\leq 0 \end{cases}$.工

厂规定,售出的产品若在1年内损坏可以调换.工厂若售出1件产品可获利100元,若调换1件产品则不仅不获利还要损失300元,试求:

- (1) 该厂售出 1 件产品所获利润的概率分布; $\eta \sim \begin{pmatrix} -300 & 100 \\ \frac{1}{1-e^{-\frac{1}{5}}} & \frac{1}{e^{-\frac{1}{5}}} \end{pmatrix}$
- (2) 该厂售出 1 件产品所获利润的数学期望. $400e^{-\frac{1}{5}} 300 \approx 27.49$
- 5. 设二维随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} 8xy, & x \le y \le 1, 0 \le x \le 1 \\ 0, &$ 其它

Y的边缘密度函数 $f_X(x)$ 、 $f_Y(y)$, 判断 X 和 Y 是否独立并说明理由.

$$f_X(x) = \begin{cases} 4x - 4x^3, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$$
, $f_Y(y) = \begin{cases} 4y^3, & 0 \le y \le 1 \\ 0, & 其它 \end{cases}$, 不独立

6. 设某仪器由两个部件构成, ξ 和 η 分别表示这两个部件的寿命(千小时),已知 (ξ,η) 的

联合分布函数
$$F(x,y) = \begin{cases} (1-e^{-0.5x})(1-e^{-0.5y}), & x > 0, y > 0 \\ 0, & 其它 \end{cases}$$
, 试求:

(1) 边缘分布函数 $F_{\varepsilon}(x)$ 及边缘密度函数 $f_{\varepsilon}(x)$;

$$F_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-0.5x}, & x > 0 \end{cases}, \quad f_{\xi}(x) = \frac{d}{dx} F_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ 0.5e^{-0.5x}, & x > 0 \end{cases}$$

- (2) $P(2 < \xi \le 10, 2 < \eta \le 10)$. $P(2 < \xi \le 10, 2 < \eta \le 10) = (e^{-1} e^{-5})^2$
- 7. 设随机变量 X 与 Y 相互独立,已知 X 服从标准正态分布 N(0,1) , Y 服从 $(-\pi,\pi)$ 上的均匀分布,试求 Z=X+Y 的概率密度函数 f(z) . $\frac{1}{2\pi} \big[\Phi(z+\pi)-\Phi(z-\pi)\big]$
- 8. 设随机变量 X_1, X_2, \cdots, X_n 相互独立, 且都服从参数为 1 的指数分布, 即

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \; \Leftrightarrow Z = \min(X_1, X_2, \dots, X_n), \; \; ;$$

- (1) Z 的概率密度函数 $f_Z(z)$; $f_Z(z) = \begin{cases} ne^{-nz}, & z > 0, \\ 0, & z \le 0. \end{cases}$
- (2) Z 的数学期望及方差. $E(Z) = \frac{1}{n}, D(Z) = \frac{1}{n^2}$
- 9. 有一批建筑房屋用的木柱,其中 80%的长度不小于 3 米. 现从这批木柱中随机地取出 100根,问其中至少有 30根长度小于 3 米的概率是多少? 0.0062

附表:
$$\frac{x}{\Phi(x)}$$
 | 1.0 | 1.5 | 2.0 | 2.5 | $\Phi(x)$ | 0.8413 | 0.9332 | 0.9772 | 0.9938

- 10. 设二维随机变量 (ξ,η) 的联合密度函数 $f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1 \\ 0, & 其它 \end{cases}$,证明:
- (1) $\xi \eta \Lambda$ 不独立; 提示: 因为 $f(x,y) \neq f_{\varepsilon}(x) f_{\eta}(y)$, 所以 $\xi \eta \Lambda$ 不独立.
- (2) $\xi \pi \eta$ 不相关. 提示: 因为 $E(\xi \eta) = E \xi \cdot E \eta$, 所以 $\xi \pi \eta$ 不相关.