Types of functions -

$$f(n) = 2n + 3 - O(n)$$

$$f(n) = \frac{n}{5000} + 6$$

Welghentogen

1 Klogn LTn Ln < n log n < n2 < n3 < --- L 2 < 3 --- L nh.

log n	γ	n2	<u>3</u> ~	n < 2 ⁿ .
٥	: 1	(1	n ^k <2 ⁿ .
log, 2=1	2	4	4	77 V V
2	4	16	16	
3	8	64	256	
3./	9	81	512	

Asymptotic Notations ->

O-big-oh upper bound N-big Omega Lower bound O-big theta Averege bound.

1. Big-oh Motation ->

The function f(n) = O(360) IFF I tive constant C and no such that $f(n) \leq C * 360) + n 7, n_0$

eg f(n) = 2n+3 $2n+3 \le 10n$ $an+3 \le 7n$ $an+3 \le 7n$ $an+3 \le 7n$ $an+3 \le 7n$

multiple of n Always Use the trighted Bound

make all terms es

2nt3 < 2n2+3h 2nt3 < 5 h $f(n) = O(n^2)$

2 Onega Motation ->

The function $f(n) = \mathcal{N}_{\theta}(n)$ Iff I tive constants c and n_0 such that f(n) 7, c * g(n) + n 7, n_0

f(n) = 2n+3

9n+3 7/1 *n + n7/1 f(n) 1 1 f(n) = S(n) = S(n) 3) Theta Notation ->

2 n 44n 5 2n2+n2 58

The function f(n) = O(36n) Iff I the constant c and no such that C(*3(n) < f(n) < c2 * 3, (n)

CI f(n) = 2n + 3

> C2 8(m) - F(m) = O-(m) 1xn<2n+3 < 5xn

そいっかり 1) n < c, (n+10) no71 no7 10 N7/ C2 (N410) 2 0 (ntlo)

Caamples

F(n) = 2 2+3n+4

タポー3かしょくまかとるかとしれ

 $2n^{2}+3n+4 < 9n^{2} \Rightarrow 30 f(n) = 0(n^{2})$

2m2+3n+47/1×n2 f(n)= 12(n2)

 $2n^{2}+3n+4$ $7(1*n^{2})$ $f(n) = 5(2n^{2})$ C=3 $g(n) = n^{2}$ $1n^{2} < 2n^{2}+3n+4 < 9n^{2}$ f(n) = 0 (n^{2}) $n_{0} = 4$

F(n) = n2 logn+n

1xn2logn < n2 logn tn < lon2 logn.

 \bigcirc ($n^2 \log n$) $\mathcal{I}(n^2 \log n)$

9 (nº logn)

es 2

 $f(n) = n! = n \times n - 1 \times n - 2 \times - - \times 3 \times 2 \times 1$

Mang 3

1×1×1---1

< 1×2×3---×n ≤ n xn xn x--h

1 < n1, < 3

J2(1) Lower bound

O(nn) upper bound

we can not find O for the

P.S 3.

F(m = log n 1.

log((x1x-1) ≤ log (1x2x3--n) ≤ log (nxnxn--n)

1 < log nl. < log m

 $(n \log n)$

Roberties of Asymptotic Motations.
General Reports
6 If f(n) is O (300) then 4x f(n) is O (301)
e.g p(m=2+5 150(r2) 19 15 some
7 f(m) = 14 m2+35 15 0 (m2)
@ 9f f(n) is O(8(n) then ax f(n) is O(8(n)
(3) 9f f(m) is so (3(m) then axf(m) is so (3(m)
Reflexive Beperties ->
O IF F(m) is given then f(m) & O (f(m))
1.e function is upper bound of itself
e-g f(n)=n2 O(n2)
@ f(n) = r(f(n))
f(m) = o(f(n))
Transitive Baperty:
Transitive isoperty. If f(m) is 0 (8(m)) and 8(m) is 0(h(n))
then $f(m) = O(h(m))$
es $f(n)=n 8(n)=n^2 h(n)=n^3$
n is $O(n^2)$ and n^2 is $O(n^3)$
then n is O (n3)

-H- This But ask is true for all 3 Notations

Symmetric Boperty - (True only for Theta Motorion) p(n) =0 (3(n) (p(n)) 9p f(n) is O(g(n)) then g(n) is O (p(n))
then g(n) + o(p(n)) P(n)=-2(9(n)) e:3 f(n)=n2 g(n)=n2 n2=0(n3) ヨからの(かり) Hen 8(n) + SIA(n) n3=52(n) f(n) = O(n) 1.e g(n) + df(n)) n= sc (n3) @ g(n) = 0 (n2) ic gon FRF(n) Taonspose Symmetric -> 1f f(m)=0 (g(m)) then g(m) 1s SL(f(m)) ez f(n)=n f(n)=nthen nis O(n2) and no 15 12 (m) Note 98 F(m) = 0 (8(m)) and f(n)= 1 (3(n)) g(n) < f(n) < g(n)f(n)= 0 (g(n)) If f(n)=0(g(n))and d(n)=0(e(n))then f(n)+d(n)= O(max(g(n),e(n))) $f(n)+d(n)=n+n^2=O(n^2)$

If
$$f(m) = O(g(m))$$

and $d(m) = O(e(m))$
then $f(m) \times d(m) = O(g(m) \times e(m))$

Comparision of two function ->

①
$$n \quad n^2 \times n^3$$
 ② Abbly log on both side $2 \quad 3^2 = 4 \quad 3^2 = 8 \quad n^2 \quad n^3$ 3 $3^2 = 9 \quad 3^2 = 27 \quad log \quad n^2 \quad log \quad n^3$ 4 $4^2 = 16 \quad 4^3 = 64 \quad 2 \quad log \quad n \quad 2 \quad 3 \quad log \quad n$.

log
$$a.b = log a + log b$$

 $log a/b = log a - log b$.
 $log ab = b log a$
 $a^{b}b^{c} = b^{b}b^{c}a^{q}$
 $a^{b} = n$ then $b = log a^{n}$

$$F(n) = n^{2} \log n \qquad g(n) = n (\log n)^{lo}$$

$$Apply \log 10g \qquad \log (n (\log n)^{lo})$$

$$\log (n^{2} \log n) \qquad \log (n (\log n)^{lo})$$

$$\log n^{2} + \log \log n \qquad \log n + \log (\log n)^{lo}$$

$$\log n + \log \log n \qquad \log n + \log \log n$$

2

g (n) = g The log n.

F(n) = 3 n^dn g(n)

3 n^dn 2 lest n^dn

3 n^dn (n^dn)

3 n^dn n^dn