

Learning (Training)

Features: 1. Color: Radish/Red 2. Type: Fruit 3. Shape

etc...

Apple

Features: 1. Sky Blue 2. **Logo** 3. Shape etc...

Features: 1. Yellow 2. Fruit 3. Shape etc...

Feature Extraction

N – dimensional Feature Space

Curse of Dimensionality

Common Strategies

- 1. Dimensionality reduction methods
- 2. Feature Selection methods

Common Strategies

- 1. Dimensionality reduction methods
 - a. Princpal Component Analysis (PCA)
 - b. Linear Discriominant Analysis (LDA)
- 2. Feature Selection methods

Principal Component Analysis (PCA)

Linear Dimensionality Reduction Methods

Linear Dimensionality Reduction Methods

What about non-linear cases?

Manifolds

Natural data forms lower-dimensional manifolds in its embedding space

Manifolds

Combination of distance heuristics and multidimensional scaling

Manifolds

Methods

- 1. ISOMAPS
- 2. Local Linear Embedding
- 3. Kernel PCA
- 4. Spectral Embedding
- 5. t-SNE
- 6. Non Linear PCA / Autoencoders

Common Strategies

- 1. Dimensionality reduction methods a. PCA

 Unsupervised

 - b. LDA

2. Feature Selection methods } Supervised