Chapter 4

Processor Organization

Thoai Nam

Faculty of Computer Science and Engineering
HCMC University of Technology

- □ Criteria:
 - Diameter, bisection width, etc.
- □ Processor Organizations:
 - Mesh, binary tree, hypertree, pyramid, butterfly, hypercube, shuffle-exchange

- Diameter
 - The largest distance between two nodes
 - Lower diameter is better
- Bisection width

The minimum number of edges that must be removed in order to divide the network into two halves (within one)

- Number of edges per node
- Maximum edge length

- Q-dimensional lattice
- Communication is allowed only between neighboring nodes. Interior nodes communicate with 2q other nodes.

- □ Q-dimensional mesh with kq nodes
 - Diameter: q(k-1)
 - Bisection width: k^{q-1}
 - The maximum number of edges per node: 2q
 - The maximum edge length is a constant

- □ Depth k-1: 2^k-1 nodes
- □ Diameter: 2(k-1)
- □ Bisection width: 1
- □ Length of the longest edge: increasing

□ Bandwidth problem on binary tree

Hypertree (1)

Hypertree of degree k and depth d: a complete k-ary tree of height d.

Hypertree (2)

- □ A 4-ary hypertree with depth d has 4^d leaves and 2^d(2^{d+1}-1) nodes in all
 - Diameter: 2d
 - Bisection width: 2^{d+1}
 - The number of edges per node ≤ 6
 - Length of the longest edge: increasing

□ Size k²: base a 2D mesh network containing k² processors, the

total number of processors= $(4/3)k^2 - 1/3$

 \Box A pyramid of size k^2 :

Diameter: 2logk

Bisection width: 2k

- Maximum of links per node: 9

Length of the longest edge: increasing

- □ (k+1)2^k nodes divided into k+1 rows (rank), each contains n=2^k nodes.
- □ Ranks are labeled 0 through k
- □ Node(i,j): j-th node on the i-th rank
- □ Node(i,j) is connected to two nodes on rank i-1: node(i-1,j) and node (i-1,m), where m is the integer found by inverting the i-th most significant bit in the binary representation of j
- □ If node(i,j) is connected to node(i-1,m), then node(i,m) is connected to node(i-1,j)
- □ Diameter=2k
- □ Bisection width=2^k
- □ Length of the longest edge: increasing

Butterfly (2)

Rank 0

Rank 1

Rank 2

Rank 3

Node(1,5): i=1, j=5

$$j = 5 = 101 (binary)$$
 $i=1$

001 = 1

Node(1,5) is connected to node(0,1)

Hypercube (1)

- □ 2^k nodes form a k-dimensional hypercube
- Nodes are labeled 0, 1, 2,..., 2^k-1
- Two nodes are adjacent if their labels differ in exactly one bit position
- □ Diameter=k
- Bisection width= 2^{k-1}
- Number of edges per node is k
- Length of the longest edge: increasing

Hypercube (2)

Hypercube (3)

- \Box 5 = **0101**
- \Box 1 = **0001**
- \Box 4 = **0100**
- □ 13 = **1101**

- □ Torus
 - http://clusterdesign.org/torus/
 - http://www.fujitsu.com/global/about/tech/k/whatis/network/
- □ Cube-Connected cycles
- □ Shuffle-Exchange
- □ De Bruijn