Quiz 2 Semester 1, 2020

THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

MATH2021: Vector Calculus and Differential Equations

Lecturer: Zhou Zhang

Time allowed: Take-Home Quiz

This booklet contains 6 pages.

SID:	
Total Marks	(out of 30)

- Open book.
- Material in Weeks 6-11 lectures and practice classes (Tutorial Sheets 6-11).
- Show all necessary work, which will be marked.
- There is no need to print out the question paper.
- Write by hand on paper, scan and use turnitin for submission.
- Question sheet available at 3:30PM Wednesday Week 13.
- Turnitin link available at 5PM Wednesday Week 13, 27 May.
- Due at 5PM Friday Week 13, 29 May.
- All times for Sydney, Australia.

- 1. Consider the upper half unit sphere $S_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 4, z \ge 0\}$ and the vector field F(x, y, z) = (-y, x, z).
 - (a) Show that $n(x, y, z) = \frac{1}{2}(x, y, z)$ is a unit normal vector field of S_2 .
 - (b) Calculate the flux of F through S_2 in the direction of n as in (a),

$$\iint_{S_2} F \cdot n \ dS.$$

(c) For the same n as in (a), applying Stokes' Theorem, calculate

$$\iint_{S_2} (\nabla \times F) \cdot n \ dS.$$

- 2. Find the solution for the following ODE questions:
 - (a) y' y = -1, y(0) = 0.
 - (b) y' + 2xy = -x, y'(0) = 0.
 - (c) y'' + y = 0, y(1) = y'(1) = 1.
 - (d) y'' + y' 2y = 0, y(0) = y'(0) = 1.
- **3.** (a) Use the method of *variation of parameters* to find the general solution for:

$$y'' + y = \cos x - \sin x$$

(b) Use the method involving Fourier series to find the general solution for:

$$y'' - y = |x|$$

over the x-interval [-1, 1].

(c) Use Laplace Transform to find the particular solution for:

$$y'' - y = 1$$
, $y(0) = y'(0) = 2$.

Formula Sheet

Most of the formulas and theorems provided are stated without the conditions under which they apply.

Function	Laplace Transform
f(t), g(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt, G(s)$
e^{at}	$\frac{1}{s-a}$ $(s>a)$
1	$\frac{1}{s}$ $(s>0)$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2} \qquad (s > 0)$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2} \qquad (s > 0)$
$t^n, n=0,1,2,\cdots$	$\frac{n!}{s^{n+1}} \qquad (s > 0)$
a f(t) + b g(t)	a F(s) + b G(s) (linear)
$e^{at}f(t)$	F(s-a) (s-shifting)
$(-t)^n f(t)$	$\frac{d^n}{ds^n}F(s)$ (s-derivatives)
f'(t)	s F(s) - f(0) (t-derivative)
f''(t)	$s^2 F(s) - s f(0) - f'(0) \qquad \text{(2nd } t\text{-derivative)}$

Quiz 2 Semester 1, 2020 page 4 of 6

Line Integral

$$\int_{\mathcal{C}} \phi(x, y, z) ds = \int_{a}^{b} \phi(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt.$$

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} F_{1} dx + F_{2} dy + F_{3} dz = \text{Work done by } \mathbf{F} \text{ along } \mathcal{C}.$$

Grad

grad
$$\phi = \nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}.$$

 $\nabla \phi$ is normal to the tangent plane of the level surface $\{\phi(x,y,z)=k\}$ for constant k. If $\mathbf{F}=\nabla \phi$ for smooth function ϕ , then \mathbf{F} is a conservative field, ϕ is a potential function of \mathbf{F} , and $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is path-independent.

Curl

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

If the domain of F is simply connected (no need to worry about this) and $\nabla \times F = 0$ then F is conservative.

Double Integral

Area of
$$R = \iint_R dxdy$$
.

Volume under the surface z = f(x, y) over $R = \iint_R f(x, y) dxdy$. In polar coordinates: $\iint_R f(x, y) dxdy = \iint_R f(r\cos\theta, r\sin\theta)r d\theta dr$.

Green's Formula (Theorem)

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} F_1 dx + F_2 dy = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

Using "curl = $\nabla \times$ ", $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dx dy$.

Divergence Theorem in 2D

$$\int_{S} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s = \iint_{R} \mathrm{div} \mathbf{F} \, dx dy$$

S is the graph of z = f(x, y) for (x, y) in R. Then

$$\iint_{S} \phi(x, y, z) \, dS = \iint_{R} \phi(x, y, f(x, y)) \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \, dx dy$$

Flux across $S = \iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

Triple Integral

In cylindrical coordinates:

$$\iiint f(x, y, z) \ dxdydz = \iiint f(r\cos\theta, r\sin\theta, z) r \ drd\theta dz.$$

In spherical coordinates:

$$\iiint f(x,y,z) \, dx \, dy \, dz = \iiint f(r\cos\theta\sin\varphi, r\sin\theta\sin\varphi, r\cos\varphi) \, r^2\sin\varphi \, dr \, d\theta \, d\varphi$$

Gauss' Theorem: Divergence Theorem in 3D

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{V} \nabla \cdot \mathbf{F} \, dV$$

Stokes' theorem

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$$

Fourier Series

For a 2*L*-periodic function $f : \mathbb{R} \to \mathbb{R}$, the Fourier series of f:

$$\mathcal{F}(f)(x) := b_0 + \sum_{n=1}^{\infty} \left\{ a_n \sin\left(\frac{n\pi}{L}x\right) + b_n \cos\left(\frac{n\pi}{L}x\right) \right\}$$

where the Fourier coefficients b_0 , $(b_n)_{n\geq 1}$ and $(a_n)_{n\geq 1}$ are given by

$$b_0 = \frac{1}{2L} \int_{-L}^{L} f(x)$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx \quad \text{for every } n \ge 1$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx \quad \text{for every } n \ge 1$$

Table of Standard Integrals

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$2. \int \frac{dx}{x} = \ln|x| + C$$

$$3. \int e^x dx = e^x + C$$

4.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C$$

5.
$$\int \sin x \, dx = -\cos x + C$$

$$6. \int \cos x \, dx = \sin x + C$$

12.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

13.
$$\int \frac{dx}{\sqrt{x^2+a^2}} = \sinh^{-1}\frac{x}{a} + C = \ln\left(x + \sqrt{x^2+a^2}\right) + C'$$

14.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} + C \quad (x > a)$$
$$= \ln \left| x + \sqrt{x^2 - a^2} \right| + C' \quad (x > a \text{ or } x < -a)$$

7.
$$\int \sec^2 x \, dx = \tan x + C$$

8.
$$\int \sinh x \, dx = \cosh x + C$$

9.
$$\int \cosh x \, dx = \sinh x + C$$

10.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a} + C$$

11.
$$\int x \sin x \, dx = -x \cos x + \sin x + C$$