ENSAE 2A

Séries temporelles linéaires

Corrigé TD n°6

Pour toute remarque, contacter jerome.trinh@ensae.fr

Exercice 1 (Optionnel):

On considère la série du taux des bons du Trésor à 3 mois (en lissage) aux Etats-Unis pour la période 1960m1-1995m4 (Graphique 1). Les graphiques 2 et 3 représentent la fonction d'autocorrélation totale et partielle de cette variable et sa différence première.

GRAPHIQUE 1 - Taux des bons du Trésor à 3 mois

Q1. Commenter ces graphiques.

D'après le graphique 1, il ne semble pas que la série varie autour d'une tendance linéaire déterministe. Elle a donc peu de chance d'être stationnaire. Au mieux, il semble qu'il y ait une tendance croissante jusqu'en 1982 puis une tendance décroissante, ce qui nous laisse penser à modéliser la série selon un modèle non linéaire. Le graphique 2 montre une autocorrélation au premier ordre très élevé et proche de un (égale à 0.980) et donc une autocorrélation totale qui décroit très lentement. Un test de type Dickey-Fuller ou Phillips-Perron permettra de tester s'il est égal à un ou non. Cela est cohérent avec le commentaire du graphique précédent sur le risque de non stationnarité de la série. Il est cependant possible que l'autocorrélation soit très forte sans pour autant que la série soit non stationnaire, on utilisera donc un test de seconde génération (KPSS par exemple) pour tester cela.

Partie 1 : Un test de Dicket-Fuller augmenté est considéré dans un premier temps

Q2. Quelle(s) spécification(s) vous semblent-elles le mieux adaptées?

On ne dégage pas une tendance strictement croissante ou décroissante sur l'ensemble de la période observée, on se placera donc dans le cas avec constante non nulle et sans tendance du test de Dickey-Fuller augmenté (ADF).

Q3. Les résultats suivants sont obtenus lorsque le nombre maximal de retard est 14 (et en utilisant le critère de Schwarz). Déterminer la statistique de test et commenter ces résultats.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.980	0.980	410.16	0.000
1	1	2	0.949	-0.284	795.88	0.000
1		3	0.923	0.182	1161.3	0.000
1	1 1	4		-0.001	1509.9	0.000
1	1.11	5	0.879	0.020	1843.3	0.00
1 8	Q 1	6		-0.087	2159.9	0.00
1	1	7	0.839	0.246	2465.1	0.00
1	1 11	8	0.830	0.035	2764.4	0.00
1	■ 1	9	0.817	-0.153	3055.0	0.00
1	■ 1	10	0.796	-0.110	3331.3	0.00
1	1 11	11	0.772	0.038	3591.9	0.00
	(Q)	12		-0.085	3837.3	0.00
4	(<u>I</u> II	13	0.728	0.104	4070.4	0.00
1	10 1	14	0.707	-0.073	4290.9	0.00
1	<u> </u>	15		-0.159	4494.9	0.00
1	1	16	0.656	0.119	4685.4	0.00
4	III 1	17		-0.174	4862.5	0.00
1	III 1	18		-0.068	5024.7	0.00
1	1[[1	19		-0.045	5170.6	0.00
1	1 1	20	0.541	0.119	5301.5	0.00
1	1 🗓	21	0.519	0.059	5422.4	0.00
1	1 🗓	22	0.504	0.058	5536.5	0.00
1	1 11	23	0.489	0.027	5644.1	0.00
1	1)1	24	0.474	0.019	5745.5	0.00
31	1 1	25	0.461	0.007	5841.8	0.00
	1 11	26	0.449	0.038	5933.1	0.00
1	1[1	27	0.434	-0.045	6018.8	0.00
	1[1	28	0.414	-0.002	6096.8	0.00
4	1[1	29	0.392	-0.027	6167.0	0.00
1.	I	30		-0.070	6230.6	0.00
1	1]1	31	0.355	0.039	6288.5	0.00
1	1 11	32	0.340	0.022	6341.6	0.00
1	1 1 1	33	0.325	0.009	6390.4	0.00
	1 1	34	0.313	0.005	6435.9	0.00
1	111	35		-0.015	6478.7	0.00
	1 1	36	0.295	0.071	6519.2	0.00

GRAPHIQUE 2 - Fonction d'autocorrélation (partielle) de la variable en niveau

Paramètre	Estimation	Err. Std	t-stat.	p-valeur
$\overline{\phi}$	-0.0161	0.0090	-1.7902	0.0741
c	0.1022	0.0605	1.6896	0.0919
α_1	0.3508	0.0472	7.4312	0.000
$lpha_2$	-0.2155	0.0497	-4.3291	0.0000
α_3	0.0255	0.0506	0.5057	0.6134
α_4	-0.1033	0.0504	-2.0469	0.0413
α_5	0.1537	0.0494	3.1055	0.0020
α_6	-0.2555	0.0472	-5.4038	0.0000

Les valeurs critiques sont données par -3.445 (1%), -2.868 (5%), et -2.570(10%).

Ces résultats proviennent de l'estimation du modèle ADF suivant pour la série $\left(X_{t}\right)$:

$$\Delta X_t = c + \phi X_t + \sum_{k=1}^{6} \alpha_k \Delta X_{t-k} + u_t$$

La statistique de test est donc la t-stat associée à l'estimateur du coefficient ϕ , soit -1.7902. Elle est supérieure aux valeurs critiques associées au test à 1%, 5% ou 10%, on ne peut donc pas rejeter l'hypothèse nulle de racine unitaire, donc de non stationnarité de la série à 1%, 5% ou 10%. Le test ADF conclut donc à la non stationnarité de la série en niveau.

Partie 2 : Dans un deuxième temps, on conduit les tests de Phillips-Perron.

Q4. Rappeler le principe du test de Phillips-Perron.

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- 🗀		1 0.2	73 0.273	31.714	0.000
<u> </u>	<u> </u>	2 -0.1	17 -0.206	37.526	0.000
	10	3 -0.1	03 -0.009	42.059	0.000
i d i	101	4 -0.0	42 -0.033	42.822	0.000
i þ i	i þi	5 0.0	55 0.064	44.129	0.000
	I I	6 -0.1	81 -0.260	58.211	0.000
i i	i ()	7 -0.1	92 -0.048	74.148	0.000
1	1	8 0.1	03 0.148	78.766	0.000
i i	i 🗈	9 0.2	08 0.093	97.602	0.000
1 🗓	i(i	10 0.0	68 -0.045	99.597	0.000
1 1	10	11 -0.0	06 0.070	99.614	0.00
iii i	<u> </u>	12 -0.1	06 -0.122	104.55	0.00
i ju	i b	13 0.0	34 0.065	105.05	0.00
	1 🗎	14 0.1	71 0.151	117.97	0.00
	□ 1	15 -0.1	02 -0.140	122.55	0.00
111	ı 🔳	16 0.0	09 0.171	122.59	0.00
1 🗖	101	17 0.0	98 0.045	126.84	0.00
1 🔳	i li	18 0.0	98 0.023	131.11	0.000
i l i	<u>■</u> 1	19 -0.0	21 -0.133	131.30	0.000
i i	(d)	20 -0.2	40 -0.079	156.96	0.00
	(d)	21 -0.1	61 -0.071	168.64	0.00
1 1	101	22 -0.0	03 -0.044	168.65	0.00
rπ	1(1	23 -0.0	07 -0.024	168.67	0.00
101	101	24 -0.0	48 -0.026	169.73	0.00
ifi	l di	25 -0.0	15 -0.052	169.83	0.00
i b i	i ji	26 0.0	66 0.033	171.81	0.00
1	1(1	27 0.1	33 -0.013	179.85	0.00
i D i	i li	28 0.0	48 0.015	180.89	0.00
10	1 0	29 -0.0		182.69	0.00
	10		51 -0.058	183.87	0.00
101	101		54 -0.033	185.23	0.000
illi	l ili	32 -0.0	28 -0.021	185.58	0.000
ill i	10		62 -0.020	187.33	0.000
idi	I th	A CONTRACTOR OF THE PARTY OF TH	49 0.012	188.44	0.00
101			38 -0.090	189.12	0.000
ill i	ili ili	36 -0.0	30 -0.021	189.53	0.00

GRAPHIQUE 3 - Fonction d'autocorrélation (partielle) de la variable en première différence

C'est un test semi-paramétrique qui suppose le modèle suivant (dans notre cas avec constante et sans tendance) :

$$X_t = c + \rho X_t + u_t$$

où u_t est un terme d'erreur très général dont on note :

- la variance marginale $\sigma_u^2 = \lim_{n \to \infty} n^{-1} \sum_{t=1}^n u_t^2 \mathrm{p.s.}$
- la variance de long terme $\vartheta_u^2 = \lim_{n \to \infty} \mathsf{V}\{n^{-1/2} \sum_{t=1}^n u_t\}$

Une statistique de test de l'hypothèse nulle de racine unitaire pour $\left(X_{t}\right)$ est

$$Z_t = \frac{\hat{\sigma}_u}{\hat{\vartheta}_u} \frac{\hat{\rho}_n - 1}{\hat{\sigma}_{\hat{\rho}_n}} - \frac{n\hat{\sigma}_{\hat{\rho}_n}}{2\hat{\sigma}_u\hat{\vartheta}_u} (\hat{\vartheta}_u^2 - \hat{\sigma}_u^2)$$

qui suit sous H_0 la seconde loi asymptotique de Dickey-Fuller (celle de la statistique DF construite sur la t-stat).

Q5. Commenter les résultats

Paramètre	Estimation	Err. Std	t-stat.	p-valeur
$\overline{\phi}$	-01.0197	0.0095	-2.0712	0.0389
c	0.1242	0.0645	1.9248	0.0549
$\sigma_u^2 \\ \vartheta_u^2 - \hat{\sigma}_u^2)$	0.3024			
$\vartheta_u^2 - \hat{\sigma}_u^2$	0.3869			
Z_t	-2.3302			

Les valeurs critiques sont données par -3.445 (1%), -2.868 (5%), et -2.570(10%).

La statistique de test Z_t est supérieure aux valeurs critiques associées au test à 1%, 5% ou 10%, on ne peut donc pas rejeter l'hypothèse nulle de racine unitaire, donc de non stationnarité de la série à 1%, 5% ou 10%. Le test PP conclut donc aussi à la non stationnarité de la série en niveau.

Partie 3 : Dans un troisième temps, on utiliser un test KPSS. On obtient les résultats suivants.

Paramètre	Estimation	Err. Std	t-stat.	p-valeur
\overline{c}	6.1516	0.1362	45.1540	0.0000
LM_c	0.7167			

Les valeurs critiques sont données par 0.739 (1%), 0.463 (5%), et 0.347 (10%).

Q6. Commenter les résultats.

Pour ce test, l'hypothèse nulle est la stationnarité de la série et la statistique de test LM_c une statististique du multiplicateur de Lagrange. Cette dernière est supérieure aux valeurs critiques associées au test à 5%, on peut donc rejeter l'hypothèse nulle de stationnarité à 5%. Le test KPSS conclut donc aussi à la non stationnarité de la série en niveau.

Q7. Que peut-on en conclure en comparant ces résultats avec ceux des deux parties précédentes?

Les trois tests, ADF et PP pour ceux de première génération et KPSS pour celui de seconde génération, concluent tous à la non stationnarité de la série en niveau pour la période observée.

Exercice 2:

L'objectif de cet exercice est d'étudier les propriétés statistiques du modèle de dividendes escomptés (Divident Discount Model). Soit r_{t+1} :

$$r_{t+1} = \frac{P_{t+1} + D_{t+1} - P_t}{P_t}$$

où P_t est le prix d'un actif à la date t et D_t est le montant des dividendes payés à la date t.

Ce modèle suppose que :

$$\mathsf{E}[r_{t+1}] = r, \ \forall t$$

La valeur fondamentale de l'actif est alors donnée par :

$$P_t = \frac{1}{1+r} \mathsf{E}_t [P_{t+1} + D_{t+1}]$$

Partie I : Détermination de la relation de long terme.

Q1. Ecrire le prix P_t en fonction de tous les dividentes futures (lorsque $T \to \infty$).

On peut écrire :

$$P_{t} = \frac{1}{1+r} \mathsf{E}_{t}[P_{t+1} + D_{t+1}]$$

$$= \frac{1}{(1+r)} \mathsf{E}_{t}[\frac{1}{(1+r)} \mathsf{E}_{t+1} [P_{t+2} + D_{t+2}] + D_{t+1}]$$

$$= \dots$$

$$= \sum_{i=1}^{T-1} \frac{\mathsf{E}_{t}[D_{t+i}]}{(1+r)^{i}} + \frac{1}{(1+r)^{T}} \mathsf{E}_{t}[P_{t+T} + D_{t+T}]$$

Lorsque $T \to \infty$,

$$P_{t} = \sum_{i=1}^{\infty} \frac{\mathsf{E}_{t}[D_{t+i}]}{(1+r)^{i}} + \lim_{T \to \infty} \frac{1}{(1+r)^{T}} \mathsf{E}_{t}[P_{t+T} + D_{t+T}]$$

Q2. Montrer que la valeur fondamentale s'écrit

$$P_t = \sum_{i=1}^{\infty} \frac{\mathsf{E}_t[D_{t+i}]}{(1+r)^i}$$

en imposant une condition de transversalité (à déterminer). Interpréter cette condition.

Lorsque $T\to\infty$, on a $1/(1+r)^i\to 0$, De plus, on suppose que le prix de l'actif et les dividendes ont des valeurs finies, ce que l'on peut interpréter par une condition de valeurs non-explosives (par exemple une absence d'un schéma de Ponzi). On a donc la condition de transversalité suivante :

$$\lim_{T \to \infty} \frac{1}{(1+r)^T} \mathsf{E}_t [P_{t+T} + D_{t+T}] = 0$$

On a finalement l'expression de la valeur fondamentale :

$$P_t = \sum_{i=1}^{\infty} \frac{\mathsf{E}_t[D_{t+i}]}{(1+r)^i}$$

Q3. On suppose que le processus des dividendes est défini par un processus AR(1) :

$$D_{t+1} = (1+\mu)D_t + \epsilon_{t+1}$$

où μ est le taux de croissance constant et ϵ_t est un bruit blanc (faible) satisfaisant $\mathsf{E}_t[\epsilon_{t+1+i}] = 0 \ \forall i > 0.$

— Montrer que la valeur fondamentale de l'actif à la date t, P_t , s'écrit comme une fonction des dividendes payés à la date t et des paramètres du modèle r et μ . Sous quelle(s) conditions(s)?

Comme $\mathsf{E}_t[\epsilon_{t+1+i}] = 0 \ \forall i > 0$, le processus des dividendes donne :

$$\mathsf{E}_t[D_{t+i}] = (1+\mu)^i D_t \ \forall i > 0$$

Donc la valeur fondamentale de P_t devient :

$$P_{t} = D_{t} \sum_{i=1}^{\infty} \left(\frac{1+\mu}{1+r} \right)^{i} = D_{t} \left(\frac{1+\mu}{1+r} \right) \frac{1 - \left(\frac{1+\mu}{1+r} \right)^{\infty}}{1 - \frac{1+\mu}{1+r}} = D_{t} \left(\frac{1+\mu}{r-\mu} \right) \left[1 - \left(\frac{1+\mu}{1+r} \right)^{\infty} \right]$$

Si $r>\mu$ on a $\left(\frac{1+\mu}{1+r}\right)^\infty \to 0$ et donc :

$$P_t = D_t \left(\frac{1+\mu}{r-\mu} \right)$$

Après une transformation logarithmique, interpréter la relation précédente comme une relation de cointégration.
 Expliquer.

En notant $p_t = \log P_t$ et $d_t = \log D_t$, la relation précédente s'écrit :

$$p_t = a + bd_t$$

où $a=\frac{1+\mu}{r-\mu}$ et b=1. En d'autres termes, le ratio entre la variation du prix et celle des dividendes est constante à long terme – cette relation pouvant s'interpréter comme :

$$p_t = a + bd_t + u_t$$

avec $u_t = 0 \ \forall t$.

Partie II : Test et estimation de la relation de long terme.

La relation (théorique) de long terme est donnée par :

$$p_t = \gamma + d_t + u_t \tag{1}$$

où p_t (respectivement, d_t) est le logarithme du prix de l'actif (respectivement, des dividendes) et γ est la constante déterminée dans la partie l.

On s'intéresse à l'estimation de cette relation (de long terme) à partir données mensuelles pour les Etats-Unis et le Royaume-Uni (la période est 1971m1-2009m12) – voir Graphique 6. Les tests de racine unitaire montrent que l'on ne peut pas rejeter l'hypothèse nulle de non stationnarité du logarithme des variables étudiées pour les Etats-Unis et le Royaume-Uni. En d'autres termes, p_t et d_t sont I(1).

Q4. Un économètre souhaite tester la présence d'une relation de cointégration. Pourquoi? Expliquer.

Si les deux variables sont I(1), on veut savoir s'il existe une combinaison linéaire de ces deux variables qui est stationnaire. Les variables seraient alors cointégrées. A contrario, s'il n'existe pas une telle relation, on se confronte au problème de régression fictive ("spurious regression") : si les résidus de la régression d'une variable sur l'autre ne sont pas stationnaires, les statistiques de tests usuels telle que les tests de significativité suivent des lois non standards sous l'hypothèse nulle associée, ce qui peut conduire au rejet de cette dernière alors qu'elle ne devraient pas l'être.

Graphique 4 – Produit intérieur brut

Valeurs observées (échelle 1e.-10)

Fonction d'autocorrélation (partielle)

GRAPHIQUE 5 - Produit intérieur brut (en première différence)

Valeurs observées

Fonction d'autocorrélation (partielle)

GRAPHIQUE 6 – Relation entre prix et dividendes

Marché américain

Marché anglais

Graphique 7 – Ajustement de la relation de long terme Marché américain Marché anglais

- Q5. Dans cette perspective, il suggère de procéder de deux manières :
 - Méthode 1 : Estimer la relation (1) par la méthode des moindres carrés ordinaires et tester si les résidus estimés sont I(1) ou I(0).
 - Méthode 2 : Estimer la relation suivante

$$p_t = \gamma + \beta d_t + u_t \tag{2}$$

et tester si les résidus estimés sont I(1) ou I(0). La méthode 1 est donc un cas particulier où l'on impose une restriction théorique ($\beta = 1$).

À partir des résidus estimés, cet économètre conduit des tests augmentés de Dickey-Fuller en utilisant la spécification suivante :

$$\Delta \hat{u}_t = \psi \hat{u}_{t-1} + \sum_{i=1}^{p-1} \alpha_i \Delta \hat{u}_{t-i} + \epsilon_t$$

Les résultats suivants sont obtenus.

Résultats pour les Etats-Unis

	<u>*</u>				
Méthodes	Estimation de ψ	Err. Std.	t-stat.	p-value	
1	-0.0045	0.0045	-1.0025	0.3166	
2	-0.0186	0.0070	-2.6534	0.0083	
Résultats pour le Royaume-Uni					
Méthodes	Estimation de ψ	Err. Std.	t-stat.	p-value	
1	-0.0287	0.0109	-2.6255	0.0090	
2	-0.0690	0.0158	-4.3575	0.0000	

— Ecrire le test d'hypothèses et préciser l'interprétation de l'hypothèse nulle (respectivement, alternative).

On teste l'hypothèse nulle $\psi=0$: c'est un test ADF pour \hat{u}_t dont la statistique de l'hypothèse est la t-stat associée à $\hat{\psi}$, donc de l'hypothèse nulle de non-stationnarité des résidus des méthodes (1) et (2) contre l'hypothèse alternative de stationnarité. Cela revient ici à tester l'hypothèse nulle de non-cointégration contre l'hypothèse alternative d'une relation de cointégration.

— Sachant que les valeurs critiques sont -2.5702 (1%), -1.9415 (5%) et -1.616 (10%), interpréter les résultats précédents.

La t-stat associée à $\hat{\psi}$ est inférieure aux valeurs critiques à 1%, 5% et 10% pour tous les modèles sauf pour la méthode (1) (avec pré-spécification du vecteur de cointégration) pour les Etats-Unis, où la t-stat est supérieure aux trois valeurs critiques. Pour la méthode (1) des Etats-Unis, on conclut donc à l'absence d'une relation de cointégration, tandis que pour la méthode (2) des Etats-Unis et pour les deux modèles du Royaume-Uni, on conclut à la présence d'une relation de cointégration.

Partie III: Modèles à correction d'erreurs

L'existence d'une relation de cointégration suggère d'adopter une modélisation à correction d'erreur pour les liens entre le prix d'un actif et les dividendes :

$$\Delta p_t = c_1 + \lambda_1 (p_{t-1} - \alpha - \beta d_{t-1}) + \sum_{j=1}^{J} \psi_{1,j} \Delta p_{t-j} + \sum_{k=0}^{K} \psi_{2,k} \Delta d_{t-k} + \epsilon_{1,t}$$

ou (en imposant la contrainte $\beta = 1$)

$$\Delta p_t = c_2 + \lambda_2 (p_{t-1} - c - d_{t-1}) + \sum_{j=1}^{J} \psi_{11,j} \Delta p_{t-j} + \sum_{k=0}^{K} \psi_{22,k} \Delta d_{t-k} + \epsilon_{2,t}$$

Q6. Interpréter ces deux équations.

- La combinaison linéaire de $\{p_{t-1},1,d_{t-1}\}$ associée aux λ_i représentent les résidus de la relation de long terme liant p_t et d_t . Pour le premier modèle, il n'y a pas de contrainte sur les coefficients tandis que pour la seconde on impose un effet de d_t sur p_t égale à 1, ce sont donc les cas analogues aux méthodes (2) et (1) détaillées à la partie précédente. λ_i représente donc **la dynamique de long terme** dans la variation de p_t à travers l'effet de l'écart de p_{t-1} à sa relation de long terme avec d_{t-1} . S'il est positif, cet écart a un effet du même signe sur Δp_t qui fait donc augmenter p_t : l'effet est donc permanent. S'il est négatif, cet écart a un effet opposé sur Δp_t qui fait retourner p_t vers sa relation de long terme : l'effet est donc transitoire, et la valeur de λ_i en contrôle la vitesse d'ajustement.
- Les coefficients ψ sont les effets des variations passées de p_t et de d_t sur la variation comtemporaine de p_t . Ils représentent donc la **dynamique de court terme** dans la variation de p_t .

Q7. Comment peut-on estimer ce modèle?

Plusieurs méthodes sont possibles :

- On peut estimer jointement la dynamique de long-terme et de court-terme grâce à un Maximum de vraisemblance non-linéaire (Johansen)
- On peut estimer en deux étapes (Engle-Granger) :
 - premièrement la relation de long terme et déterminer les résidus estimés \hat{u}_t
 - deuxièmement le modèle à correction d'erreur sous la forme, par exemple pour le premier modèle :

$$\Delta p_t = c_1 + \lambda_1 \hat{u}_{t-1} + \sum_j \psi_{1,j} \Delta p_{t-j} + \sum_k \psi_{2,k} \Delta d_{t-k} + \epsilon_{1,t}$$

Le modèle est alors linéaire.

Q8. L'estimation de ces modèles conduit aux résultats suivants :

Résultats pour les Etats-Unis

	ivesuitats po						
Paramètre	Estimation	Err. Std	t-stat.	p-valeur			
c_1	0.0046	0.0024	1.8444	0.0658			
λ_1	-0.0162	0.0067	-2.4315	0.0154			
$\psi_{2,0}$	0.5354	0.2073	2.5834	0.0101			
$\psi_{2,1}$	-0.3722	0.2071	-1.7976	0.0729			
c_2	0.0049	0.0024	1.9468	0.0500			
λ_2	-0.0058	0.0044	-1.2914	0.1972			
$\psi_{22,0}$	0.4908	0.2084	2.3547	0.0190			
$\psi_{22,1}$	-0.3871	0.2089	-1.8530	0.0645			
F	Résultats pour le Royaume-Uni						
c_1	0.0053	0.0027	1.9573	0.0509			
λ_1	-0.0549	0.0139	-3.9503	0.0001			
$\psi_{1,1}$	0.1557	0.0473	3.2928	0.0011			
$\psi_{1,2}$	-0.1018	0.0473	-2.1520	0.0319			
$\psi_{1,3}$	-0.1145	0.0470	2.4334	0.0154			
c_2	0.076	0.0029	2.5632	0.0107			
λ_2	-0.0322	0.0099	-2.2486	0.0012			
$\psi_{11,1}$	0.1472	0.0474	3.1064	0.0020			
$\psi_{11,2}$	-0.1132	0.474	-2.3872	0.0174			
$\psi_{11,3}$	0.1140	0.0473	2.4061	0.0165			
$\psi_{22,0}$	-0.2657	0.1384	-1.9191	0.0556			

Interpréter ces résultats.

Aucune information n'est donnée sur la méthode de sélection des variables. Supposons par exemple qu'un critère d'information a été utilisé.

- Pour les Etats-Unis, on voit pour le premier modèle que λ_1 est négatif et significatif. Il y a donc une dynamique de long terme où les écarts à la relation de long terme sont transitoires. Concernant la dynamique de court terme, seuls les retards de Δd_t sont sélectionnés, et seul le retard d'ordre 0 est significatif. On a donc Δd_t la variation contemporaine des dividendes seulement qui a un effet direct positif sur Δp_t . Pour le second modèle, λ_2 n'est pas significatif. Il n'y a donc pas de dynamique de long terme, ce qui semble cohérent avec la partie précédente où il y avait absence d'une relation de cointégration pour ce cas. La dynamique de court terme est similaire à celle du premier modèle.
- Pour le Royaume-Uni, les deux modèles estiment un λ_i négatif et significatif. Cela semble cohérent avec la présence d'une relation de cointégration évoquée dans la partie précédente, et l'écart à la relation de long terme a comme pour les Etats-Unis un effet transitoire. Par contre, seuls Δp_t et ses retards ont été selectionnés et sont siginificatifs jusqu'à l'ordre 2. Le second modèle séléctionne un Δd_t mais l'effet n'est pas significatif. La dynamique de court terme ne vient donc que du Δp_t contemporain et de ses retards.

Exercice 3:

Le graphique 8 représente une série bivariée (Y_t, X_t) pour $t = 1, \dots, 200$. Le graphique 9 représente le nuage des points (Y_t, X_t) , et la droite de régression de Y_t sur X_t .

Graphique 8 – Série bivariée (X_t, Y_t)

Graphique 9 – Nuage des points (X_t, Y_t) et droite de régression $Y_t = 56 + 1.8X_t$

Q1. Commenter les graphiques 8 et 9.

Sur le graphique 8 on remarque que les 2 séries X_t et Y_t ne semblent pas stationnaires (absence d'une tendance linéaire déterministe), mais paraissent varier simultanément. Le graphique 9 confirme une forte corrélation positive entre X_t et Y_t . Il apparaît que Y_t est proche $1.8X_t + 56$. On peut soupçonner une relation de cointégration entre ces 2 variables. Cela ne prouve cependant rien, à cause du risque de régression fictive dans le cas où les résidus de la droite de régression ne seraient pas stationnaires.

Q2. Quels sont les test réalisés dans les tableaux 1, 2, 3, 4 et 5? Quels sont les modèles estimés?

Les tests réalisés dans les tableaux 1, 2, 3 et 4 sont des tests ADF de racine unitaire sur respectivement les séries X, ΔX , Y, ΔY . c'est-à-dire des tests de l'hypothèse H_0 : $\pi=0$ dans un modèle ECM, pour $x\in\{X,\Delta X,Y,\Delta Y\}$ de la forme :

$$\Delta x_t = \pi x_{t-1} + \sum_{i=1}^{4} \pi_i \Delta x_{t-i} + \nu_0 + \nu_1 t + \epsilon_t$$

Le tableau 5 reste le rang de cointégration du processus (X_t, Y_t) , soit le rang de la matrice $\lambda \Pi$ dans la régression du modèle VECM de la forme :

$$\begin{pmatrix} \Delta X_t \\ \Delta Y_t \end{pmatrix} = \lambda \Pi \begin{pmatrix} X_{t-1} \\ Y_{t-1} \\ 1 \end{pmatrix} + \Psi \begin{pmatrix} \Delta X_{t-1} \\ \Delta Y_{t-1} \end{pmatrix} + U_t$$

L'hypothèse de rang nul de cointégration est rejetée à 5% (la p-value est proche de 0), mais celle de rang égal à 1 ne l'est pas. (X_t) et (Y_t) sont donc cointégrées de rang 1.

Q3. Le modèle bivarié estimé est

$$\begin{pmatrix} \Delta X_t \\ \Delta Y_t \end{pmatrix} = \begin{pmatrix} 0.1 \\ 3.1 \end{pmatrix} \begin{pmatrix} 1 & -0.5 & -0.07 \end{pmatrix} \begin{pmatrix} X_{t-1} \\ Y_{t-1} \\ 1 \end{pmatrix} + \begin{pmatrix} 0.01 & 0.01 \\ 0.99 & 0.1 \end{pmatrix} \begin{pmatrix} \Delta X_{t-1} \\ \Delta Y_{t-1} \end{pmatrix}$$

Comment s'appelle ce modèle? Quelle est la relation de long terme entre X_t et Y_t ?

C'est un modèle vectoriel à correction d'erreur (VECM) qui fait apparaître un rang 1 de cointégration (le nombre de lignes de la matrice Π – ici le vecteur– de cointégration, conclu par le test de Johansen au tableau 5). La relation de long terme est $X_t=0.5Y_t+0.07$, ou encore $Y_t=2X_t-0.14$, ce qui est assez proche (pour la pente) de la droite de régression de Y_t sur X_t .

ADF Test for series: X

sample range: [6, 400], T = 395

lagged differences: 4

intercept, time trend

asymptotic critical values

reference: Davidson, R. and MacKinnon, J. (1993),

"Estimation and Inference in Econometrics" p 708, table 20.1,

Oxford University Press, London

1% 5% 10% -3.96 -3.41 -3.13

value of test statistic: -2.0726

regression results:

RSS

variable	coefficient	t-statistic
x(-1)	-0.0913	-2.0726
dx(-1)	-1.1006	-17.9772
dx(-2)	-0.7332	-9.5113
dx(-3)	-0.4955	-6.6643
dx(-4)	-0.2462	-4.9696
constant	3.8988	2.5586
trend	0.0200	2.2296

11368.2410

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION CRITERIA

sample range: [12, 400], T = 389

optimal number of lags (searched up to 10 lags of 1. differences):

Akaike Info Criterion: 6
Final Prediction Error: 6
Hannan-Quinn Criterion: 6
Schwarz Criterion: 4

PORTMANTEAU TEST with 12 lags

Portmanteau: 10.9837 p-Value (Chi^2): 0.5303 Ljung & Box: 11.2199 p-Value (Chi^2): 0.5102 ADF Test for series: X_d1

sample range: [7, 400], T = 394

lagged differences: 4

intercept, time trend
asymptotic critical values

reference: Davidson, R. and MacKinnon, J. (1993),

"Estimation and Inference in Econometrics" p 708, table 20.1,

Oxford University Press, London

1% 5% 10% -3.96 -3.41 -3.13

value of test statistic: -14.7210

regression results:

variable coefficient t-statistic

variable	coefficient	t-statistic
x(-1)	-4.0899	-14.7210
dx(-1)	1.8865	7.6711
dx(-2)	1.0472	5.5587
dx(-3)	0.4475	3.7095
dx(-4)	0.0865	1.7036
constant	0.8442	3.0266
trend	0.0025	1.0447
RSS	11356.7836	

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION CRITERIA

sample range: [13, 400], T = 388

optimal number of lags (searched up to 10 lags of 1. differences):

Akaike Info Criterion: 5
Final Prediction Error: 5
Hannan-Quinn Criterion: 5
Schwarz Criterion: 3

PORTMANTEAU TEST with 12 lags

Portmanteau: 10.5931 p-Value (Chi^2): 0.5641 Ljung & Box: 10.8265 p-Value (Chi^2): 0.5438

TABLE 2 – X₋d1 désigne la série (ΔX_t)

ADF Test for series: Y

sample range: [7, 400], T = 394

lagged differences: 4

intercept, time trend

asymptotic critical values

reference: Davidson, R. and MacKinnon, J. (1993),

"Estimation and Inference in Econometrics" p 708, table 20.1,

Oxford University Press, London

1% 5% 10% -3.96 -3.41 -3.13

value of test statistic: -2.6141

regression results:

R.SS

variable	coefficient	t-statistic
x(-1)	-0.1248	-2.6141
dx(-1)	-1.0911	-17.4095
dx(-2)	-0.7458	-9.5791
dx(-3)	-0.5071	-6.7819
dx(-4)	-0.2500	-5.0506
constant	16.2314	2.8546
trend	0.0539	2.7207

54136.8843

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION CRITERIA

sample range: [13, 400], T = 388

optimal number of lags (searched up to 10 lags of 1. differences):

Akaike Info Criterion: 6
Final Prediction Error: 6
Hannan-Quinn Criterion: 6
Schwarz Criterion: 4

PORTMANTEAU TEST with 12 lags

Portmanteau: 11.9734 p-Value (Chi^2): 0.4478 Ljung & Box: 12.2212 p-Value (Chi^2): 0.4281

TABLE 3 – Y désigne la série (Y_t)

ADF Test for series: Y_d1

sample range: [7, 400], T = 394

lagged differences: 4

intercept, time trend

asymptotic critical values

reference: Davidson, R. and MacKinnon, J. (1993),

"Estimation and Inference in Econometrics" p 708, table 20.1,

Oxford University Press, London

1% 5% 10% -3.96 -3.41 -3.13

value of test statistic: -14.9267

regression results:

RSS

variable	coefficient	t-statistic
x(-1)	-4.2163	-14.9267
dx(-1)	1.9951	7.9795
dx(-2)	1.1200	5.8616
dx(-3)	0.4851	3.9847
dx(-4)	0.0983	1.9308
constant	1.6007	2.6314
trend	0.0044	0.8364

54567.2105

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION CRITERIA

sample range: [13, 400], T = 388

optimal number of lags (searched up to 10 lags of 1. differences):

Akaike Info Criterion: 5
Final Prediction Error: 5
Hannan-Quinn Criterion: 5
Schwarz Criterion: 3

PORTMANTEAU TEST with 12 lags

Portmanteau: 11.6900 p-Value (Chi^2): 0.4709 Ljung & Box: 11.9352 p-Value (Chi^2): 0.4509

TABLE 4 – Y_d1 désigne la série (ΔY_t)

Johansen Trace Test for: X Y

sample range: [2, 400], T = 399

included lags (levels): 1 dimension of the process: 2 trend and intercept included response surface computed:

r0	LR	pval	90%	95%	99%
0	7967.03	0.0000	23.32	25.73	30.67
1	3.38	0.8215	10.68	12.45	16.22

OPTIMAL ENDOGENOUS LAGS FROM INFORMATION CRITERIA

sample range: [11, 400], T = 390

optimal number of lags (searched up to 10 lags of levels):

Akaike Info Criterion: 1
Final Prediction Error: 1
Hannan-Quinn Criterion: 1
Schwarz Criterion: 1

Table 5 -