

Contrôle de cinématique

Exercice 1

Dans le système bielle-manivelle, l'extrémité d'une tige (1)(OA) de longueur (R) a un mouvement circulaire uniforme avec la vitesse angulaire (ω) constante.

Elle entraîne une autre tige (2)(AB) de longueur L > R

A l'extrémité B il y a une roue (3) de rayon (r) en liaison pivot d'axe (B, \vec{z}) qui roule suivant l'axe Ox; à t = 0, Θ = 0.

I est un point de la circonférence de la roue et à t = 0 I et H sont confondus

- l'ensemble fixe est lié au repère $R(0, \vec{x}, \vec{y}, \vec{z})$
- la manivelle (1) est liée au repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_1}$) translate et tourne autour de l'axe $O \vec{z}$ par rapport l'ensemble fixe avec : $\Theta = (\vec{x_0}, \vec{x_1})$ et $\overrightarrow{OA} = R \vec{x_1}$
- la bielle (2) est liée au repère R_2 (A, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) tourne autour de l'axe A $\overrightarrow{z_1}$ par rapport à (1) avec : $\theta = (\vec{x}, \overrightarrow{x_2})$ et $\overrightarrow{AB} = L$. $\overrightarrow{x_2}$
- lla roue (3) est liée au repère R_3 (B, $\overrightarrow{x_3}$, $\overrightarrow{y_3}$, $\overrightarrow{z_3}$) tourne autour de l'axe B $\overrightarrow{x_2}$ par rapport à l'ensemble (2) avec : $\alpha = (\vec{x}, \vec{x_3})$ et $\overrightarrow{BI} = r. \vec{x_3}$ (le point l est à la périphérie de (3))
- 1) Quelle est l'équation horaire angulaire ($\Theta = f(t)$)?
- 2) Représenter les figures des rotations planes (changements de repères) faisant apparaître les angles α , β et Θ
- 3) Exprimez $\; \overrightarrow{\Omega}_{\,R_1/R} \; ; \overrightarrow{\Omega}_{\,R_2/R} \;$ et $\; \overrightarrow{\Omega}_{\,R_3/R} \;$
- 4) Exprimez $\vec{V}_{A\ 1/0}$ par dérivation . Vous l'exprimerez dans la base ($\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$)
- 5) Exprimez $\vec{V}_{B\,2/0}$ par dérivation. . Vous l'exprimerez dans la base (\vec{x} , \vec{y} , \vec{z})
- 6) Exprimez $\vec{V}_{B\,2/0}$ par changement de point . Vous l'exprimerez dans la base $(\,\vec{x},\,\vec{y},\,\vec{z}\,\,)$
- 7) Exprimez $\vec{V}_{B\,3/0}$ par changement de point sachant que le non glissement en H impose : $\vec{V}_{H\,3/0}=\vec{0}$.

Vous l'exprimerez dans la base $(\vec{x}, \vec{y}, \vec{z})$

- 8) Que peut-on dire de $\vec{V}_{B~2/0}~$ et de $\vec{V}_{B~3/0}~$? Justifiez
- 9) Demontrez que la fréquence de rotation de la bielle (2) est $\dot{\beta} = \frac{-R.\omega.\cos(\theta)}{L.\sqrt{1-\left(\frac{r-R\sin(\theta)}{L}\right)^2}}$

Exercice 2

Une voiture initialement à l'arrêt, se déplace en ligne droite. Un accéléromètre embarqué sur le véhicule a enregistré le graphe cicontre indiquant l'évolution de l'accélération tangentielle Y (t) (en module en fonction du temps)

- 1) A l'aide de sa représentation graphique déterminez les équations de l'accélération Y (t) pour chacune des 3 phases du mouvement.
- 2) Calculer les vitesses du véhicule au cours des trois phases du mouvement.

Déterminez les équations de la vitesse v (t)

Déterminez l'espace total parcouru par le mobile au cours du mouvement sachant qu'à t = 0, x₀ = 0. Tracer la représentation graphique x (t) de l'espace en fonction du temps, avec t ε [0; 5] en secondes.

