ECE1008 (SENSORS & CONTROL SYSTEMS) EXPERIMENT – 8

KHAN MOHD. OWAIS RAZA 20BCD7138

AIM -

Evaluation of time-domain performance indices of given rotational mechanical system

Derivation of mathematical model (transfer function) of the given rotational mechanical system considering the given specifications:—

using D'Alembert's principle for Ji-

$$T(t) = TJ_1(t) + TB_1(t) + TK_1(t)$$
 $T(t) = \int \frac{\partial^2 \theta(t)}{\partial t} + B_1 \left[\frac{\partial \theta(t)}{\partial t} - \frac{\partial \theta_1(t)}{\partial t} \right] + K_1 \left[\frac{\partial \theta(t)}{\partial t} \right]$
 $T(t) = \int \frac{\partial^2 \theta(t)}{\partial t} + B_1 \left[\frac{\partial \theta(t)}{\partial t} - \frac{\partial \theta_2(t)}{\partial t} \right] + K_1 \left[\frac{\partial \theta(t)}{\partial t} - \frac{\partial \theta_2(t)}{\partial t} \right]$

We have,

 $B_1 = 1 \text{ Nms/rad}$.

 $J = 1 \text{ Kgm}^2$, $K_1 = 1 \text{ Nm/rad}$.

 $T(t) = \frac{\partial^2 \theta(t)}{\partial t} + \left[\frac{\partial \theta(t)}{\partial t} - \frac{\partial \theta_2(t)}{\partial t} \right] + \theta_1(t) - \theta_2(t)$

Using Laplace Transformation:

 $T(s) = s^2 \theta(s) + s\theta(s) - s\theta_2(s) + \theta_1(s) - \theta_2(s)$
 $T(s) = (s^2 + s + 1)\theta(s) - (s + 1)\theta_2(s)$
 $= K_1 \left[\theta_2(t) - \theta(t) \right] + B_1 \left[\frac{\partial \theta_2(t)}{\partial t} - \frac{\partial \theta(t)}{\partial t} \right] + B_2 \frac{\partial \theta_2(t)}{\partial t} + K_2 \theta_2(t)$
 $= \theta_2(s) - \theta(s) + s\theta_2(s) - s\theta(s) + \theta_2(s)$
 $+ s\theta_2(s)$
 $= 2(s + 1)\theta_2(s) - (s + 1)\theta(s)$

Calculation of time domain specifications (delay time, rise time, peak time, peak overshoot, settling time, steady state error) –

Compare the TF
$$\frac{0.5}{s^2 + 0.5s + 0.5}$$
 with standard 2nd order system
$$TF = \frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 Therefore, Standard form of transfer function $\omega_n = \sqrt{0.5} = 0.7071$ and $2\zeta\omega_n = 0.5 \Rightarrow \zeta = \frac{0.5}{2\sqrt{0.5}} = 0.3535$ Delay Time (t_d): $t_d = \frac{1 + 0.7\zeta}{\omega_n} = \frac{1 + (0.7 \times 0.3535)}{0.7071} = 1.7641 \text{sec}$ Rise Time (t_r): $t_r = \frac{\pi - \theta}{\omega_d} = \frac{\pi - \cos^{-1}(\zeta)}{\omega_n \sqrt{1 - \zeta^2}}$
$$= \frac{3.14 - 1.2094}{0.7071\sqrt{1 - 0.12496225}} = \frac{1.9306}{0.6614} = 2.918 \text{ sec}$$

BLOCK DIAGRAM USING SIMULINK -

OBSERVATION TABLE -

Parameter	Theoretical Value	Practical Value
Delay Time	1.8342 secs	2.7
Rise Time	3.138 secs	3.8
Peak Time	4.903 secs	6.0
Peak Overshoot	22.9%	4.13%
Setting Time	At 5% = 10	15.9
	At 2% = 13.33	22
Steady State Error	0	0