Логика и алгоритмы -2012.

Задание 1

1. Докажите следующие равенства:

$$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C) = A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$$

- **2.** Упорядоченную пару множеств (x,y) определим как $\{\{x\},\{x,y\}\}$.
 - а) Докажите, что $(x_1,y_1)=(x_2,y_2) \iff (x_1=x_2 \land y_1=y_2)$.
- б) Определите упорядоченную тройку множеств и проверьте для неё аналогичное свойство.
- 3. Докажите следующие равенства:
 - a) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$,
 - δ) $(A \ B) \times C = (A \times C) \setminus (B \times C)$.
- 4. Верны ли следующие утверждения для любых множеств X,Y?
 - a) $\mathcal{P}(X) \subset \mathcal{P}(Y) \Longrightarrow X \subset Y$.
 - (5) ∪X=∪Y \Rightarrow X=Y.
- **5.** Подмножество $A \subset \mathbf{R}$ называется *открытым*, если вместе с каждой точкой $x \in A$ оно содержит интервал $]x-\varepsilon,x+\varepsilon[$, для некоторого $\varepsilon>0$. Множество $A \subset \mathbf{R}$ замкнуто, если $\mathbf{R} \setminus A$ открыто. Докажите, что
 - а) Пересечение конечного семейства открытых множеств открыто.
 - б) Объединение конечного семейства замкнутых множеств замкнуто.
 - в) Объединение любого семейства открытых множеств открыто.
 - г) Пересечение любого семейства замкнутых множеств замкнуто.
 - д) Пересечение бесконечного семейства открытых множеств не всегда открыто.
- 6. Проверьте, что канторовское множество С обладает следующими свойствами:
 - а) С замкнуто;
 - б) $\forall x \in C \ \forall \varepsilon > 0 \] x-\varepsilon, x+\varepsilon [\cap C \neq \{x\} \ (\text{т.е. } C \ \text{не содержит изолированных точек});$
- в) для любого интервала I⊂[0,1] найдётся подинтервал J⊂I такой, что J∩C= \varnothing (т.е. С нигде не плотно).
- **7.** Даны конечные множества A и B из n и m элементов, соответственно. Найдите количество
 - а) всех подмножеств А;
 - б) всех к-элементных подмножеств А;
 - в) бинарных отношений между А и В;
 - г) функций из А в В;
 - д) инъективных функций из А в В.
- **8.** Докажите, что всякое отображение множеств $f: A \rightarrow B$ можно представить в виде композиции $g \cdot h$, где g инъекция, h сюръекция.
- **9.** Пусть $f: A \rightarrow B$ и $g: B \rightarrow A$ отображения, такие что $g \cdot f = 1_A$ (тождественное отображение). Докажите, что f инъекция, а g сюръекция.
- **10.** а) Постройте отношение A на 3-элементном множестве $\{x,y,z\}$, такое что A рефлексивно и транзитивно, но не симметрично.
- б) Постройте нетранзитивное отношение на 2-элементном множестве {x,y}.
- в) Постройте отношение C на 3-элементном множестве $\{x,y,z\}$, такое что C рефлексивно и симметрично, но не транзитивно.

- Γ) Постройте отношение D на 2-элементном множестве $\{x,y\}$, такое что D транзитивно и симметрично, но не рефлексивно.
- 11. Постройте биекции:
 - а) между прямой ${\bf R}$ и открытым интервалом]0,1[;
 - б) между (сплошным) замкнутым квадратом и замкнутым кругом;
 - в) между открытым кругом и плоскостью;
 - г) между открытым интервалом [0,1] и замкнутым интервалом [0,1].
- **12.** Пусть X множество всех ненулевых векторов плоскости, $\uparrow \uparrow$ отношение сонаправленности. Установите биекцию между $X/\uparrow \uparrow$ и окружностью радиуса 1.
- **13.** Постройте биекцию между множеством $N \times N$ и множеством всех натуральных чисел, которые делятся на 2 и 3 и не делятся на другие простые числа.
- **14.** Постройте биекцию между множеством решений двойного неравенства $1 \le x^2 + y^2 \le 4$ и произведением двух отрезков $[0,1] \times [0,1]$.