Uni- and Bipolar Hall IC Switches for Magnetic Field Applications

TLE 4905 G; TLE 4935 G TLE 4935-2 G; TLE 4945-2 G

Bipolar IC

Features

- Temperature compensated magnetic performance
- Digital output signal
- · For unipolar and alternating magnetic fields
- Large temperature range
- Protection against reversed polarity
- · Output protection against electrical disturbances

	Туре	Ordering Code	Package		
\blacksquare	TLE 4905 G	Q62705-K402	SOT-89		
lacktriangle	TLE 4935 G	Q62705-K404	SOT-89		
lacktriangle	TLE 4935-2 G	Q62705-K405	SOT-89		
lacktriangle	TLE 4945-2 G	Q62705-K403	SOT-89		

▼ New type

TLE 4905/35/35-2/45-2 (Unipolar/Bipolar Magnetic Field Switches) have been designed specifically for automotive and industrial applications. Reverse polarity protection is included on-chip as is output protection against negative voltage transients.

Typical applications are position/proximity indicators, brushless DC motor commutation, rotational indexing etc.

Pin Configuration

(top view)

Figure 1

Pin Definitions and Funtions

Pin No.	Symbol	Function
1	V_{S}	Supply voltage
2	GND	Ground
3	Q	Output

Circuit Description

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the hall probe. This voltage is amplified and switches a Schmitt-trigger with open-collector output. A protection diode against reverse power supply is integrated.

The output is protected against electrical disturbances.

Figure 2 Block Diagram

Functional Description Unipolar Type TLE 4905 (figure 3 and 4)

When a positive magnetic field is applied in the indicated direction (**figure 3**) and the turn-on magnetic induction $B_{\rm OP}$ is exceeded, the output of the Hall-effect IC will conduct (Operate Point). When the magnetic field is reduced to a value smaller than the release point, the output of the IC turns off (Release Point; **figure 4**).

Figure 3 Sensor/Magnetic-Field Configuration

Figure 4 Switching Characteristics Unipolar Type

Functional Description Bipolar Type TLE 4935/35-2/45-2 (figure 5 and 6)

When a positive magnetic field is applied in the indicated direction (**figure 5**) and the turn-on magnetic induction $B_{\rm OP}$ is exceeded, the output of the Hall-effect IC will conduct (Operate Point). The output state does not change unless a reverse magnetic field exceeding the turn-off magnetic induction $|B_{\rm RP}|$ is exceeded. In this case the output will turn off (Release Point; **figure 6**).

Figure 5 Sensor/Magnetic-Field Configuration

Figure 6 Switching Characteristics Bipolar Type

Absolute Maximum Ratings

 $T_{\rm i}$ = -40 to 125 °C

Parameter	Symbol	Limit	Values	Unit	Remarks		
		min.	max.				
Supply voltage	$V_{\mathtt{S}}$	- 40	32	V	_		
Supply voltage	$V_{\mathtt{S}}$	_	40	V	t < 400 ms; v = 0.1		
Output voltage	V_{Q}	_	32	V	_		
Output current	I_{Q}	_	100	mA	_		
Output reverse current	$-I_{Q}$	_	100	mA	_		
Junction temperature	T_{j}	- 40	125	°C	_		
Storage temperature	$T_{ m stg}$	- 50	150	°C	_		
Thermal resistance	R_{thJA}		100	K/W	_		

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks	
		min.	max.			
Supply voltage	$V_{\mathtt{S}}$	4.0	18	V	_	
Junction temperature	$T_{\rm j}$	- 40	125	°C	_	

Note: In the operating range the functions given in the circuit description are fulfilled.

AC/DC Characteristics

 $4.0 \text{ V} \le V_{\text{S}} \le 18 \text{ V}; -40 \text{ °C} \le T_{\text{i}} \le 125 \text{ °C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test	
		min.	typ.	max.			Circuit	
Supply current	I_{SHigh}	_	2.5	7	mA	$B < B_{RP}$	1	
	I_{SLow}	_	3.5	8	mΑ	$B > B_{\rm OP}$ $I_{\rm O} = 40 \text{ mA}$	1	
						$I_{\rm Q} = 40 \; {\rm mA}$		
Output saturation voltage	V_{QSat}	_	0.25	0.5	V	$I_{\rm Q}$ = 40 mA	1	
Output leakage current	I_{QL}	_	_	10	μΑ	V _Q = 18 V	1	
Rise/fall time	t _r / t _f	_	_	1	μs	$R_{\rm L}$ = 1.2 k Ω $C_{\rm L}$ \leq 33 pF	1	

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_j = 25^{\circ}$ C and the given supply voltage.

Note: Moderate changes may occur during the development process or customer discussion.

TLE 4905 G; TLE 4935 G TLE 4935-2 G; TLE 4945-2 G

Magnetic Characteristics

 $4.0 \text{ V} \le V_{\text{S}} \le 18 \text{ V}$

Parameter	Symbol	Limit Values								Unit
		TLE 4905 unipolar		TLE 4935 bipolar latch		TLE 4935-2 bipolar latch		TLE 4945-2 bipolar switch		
		min.	max.	min.	max.	min.	max.	min.	max.	
Junction Tem	perature $T_i = -$	- 40 °C								
Turn-ON induction Turn-OFF	B_{OP}	7.5	19	10	20	15	27	- 3	6	mT
induction Hysteresis	B_{RP}	5.5	17	- 20	- 10	- 27	– 15	-6	3	mT
$(B_{OP}\text{-}B_{RP})$	ΔB_{HY}	2	6.5	20	40	30	54	1	5	mT
Junction Tem	perature $T_i = 2$	25 °C								
Turn-ON induction Turn-OFF	B_{OP}	7	18	10	20	14	26	-3	6	mT
induction Hysteresis	B_{RP}	5	16	- 20	- 10	- 26	- 14	- 6	3	mT
$(B_{OP}\text{-}B_{RP})$	ΔB_{HY}	2	6	20	40	28	52	1	5	mT
Junction Tem	perature $T_{\rm j}$ = 8	85 °C								
Turn-ON induction Turn-OFF	B_{OP}	6.5	17.5	10	20	13	26	- 3	6	mT
induction Hysteresis	B_{RP}	4.5	15	- 20	- 10	- 26	- 13	-6	3	mT
$(B_{OP} - B_{RP})$	ΔB_{HY}	2	5.5	20	40	26	52	1	5	mT
Junction Tem	perature $T_{\rm j}$ = 1	25 °C								
Turn-ON induction Turn-OFF	B_{OP}	6	17	10	20	12	25	- 3	6	mT
induction Hysteresis	B_{RP}	4	14	- 20	- 10	- 25	- 12	- 6	3	mT
$(B_{OP} - B_{RP})$	ΔB_{HY}	2	5	20	40	24	50	1	5	mT

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_i = 25$ °C and the given supply voltage.

Figure 7 Test Circuit 1

Figure 8 Application Circuit

If not otherwise specified, all curves reflect typical values at $T_{\rm j}$ = 25 °C and $V_{\rm S}$ = 12 V.

Quiescent Current Difference versus Temperature

Saturation Voltage versus Output Current

Quiescent Current versus Junction Temperature

TLE 4905 Operate-and Release-Point versus Junction Temperature

TLE 4935 Operate-and Release-Point versus Junction Temperature

TLE 4905 Hysteresis versus Junction Temperature

TLE 4935-2 Operate-and Release-Point versus Junction Temperature

TLE 4945-2 Operate-and Release-Point versus Junction Temperature

Package Outline

Package Information

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm