Statistics

Collection of Formulas

Contents

1	Des	kriptive Statistics	2		3.5 Confidence Intervals	11
_	1.1	Summary Statistics: Sample	2		5.5 Communication value :	11
	1.1	1.1.1 Location	2	4	Statistical Hypothesis Testing	11
		1.1.2 Dispersion	2		4.1 Significance, Relevance, p-Value	11
		1.1.3 Concentration	2		4.2 Tests for One Sample	11
		1.1.4 Shape	3		4.3 Tests for Two Samples	12
		1.1.5 Dependence	3		4.4 Tests for Goodness of Fit	12
	1.2	Tables	4		4.5 Multiple Tests	12
	1.3	Diagrams	4		io maiopio roma i i i i i i i i i i i i i i i i i i i	
	1.0	1.3.1 Histogram	4	5	Regression	12
		1.3.2 QQ-Plot	4		5.1 Assumptions	12
		1.3.3 Scatterplot	4		5.2 Procedure	12
		1.0.0 Schworphot			5.2.1 Ordinary Least Squares (OLS)	12
2	\mathbf{Pro}	bability	4		5.3 Model	12
	2.1				5.3.1 Simple Linear Regression	12
	2.2				5.3.2 Multivariate Linear Regression	12
	2.3	Random Variables/Vectors	5		5.4 Analysis of Variances (ANOVA)	13
	2.4	Probability Distributions	6		5.5 Goodness of Fit	13
		2.4.1 Discrete Distributions	6		5.5.1 Bestimmtheitsmaß	13
		2.4.2 Continuous Distributions	6			10
		2.4.3 Exponential Family	7	6	Classification	13
	2.5	Limit Theorems	7		6.1 Diskriminant Analysis (Bayes)	13
3	Infe	erence	8	7	Cluster Analysis	13
	3.1	Method of Moments	8			
	3.2	Loss Functions	8	8	Bayesian Statistics	13
	3.3	$\label{eq:maximum Likelihood (ML)} Maximum Likelihood (ML)$	9		8.1 Basics	13
	3.4	Sufficiency und Consistency	10		8.2 Markov Chain / Monte Carlo	13

1 Deskriptive Statistics

1.1 Summary Statistics: Sample

1.1.1 Location

Mode Most frequent value of x_i . Two or more modes are possible (bimodal).

Median

$$\tilde{x}_{0.5} = \begin{cases} x_{((n+1)/2)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(n/2)} + x_{(n/2+1)} & \text{falls } n \text{ gerade} \end{cases}$$

Quantile

$$\tilde{x}_{\alpha} = \begin{cases} x_{(k)} & \text{falls } n\alpha \notin \mathbb{N} \\ \frac{1}{2}(x_{(n\alpha)} + x_{(n\alpha+1)}) & \text{falls } n\alpha \text{ ganzzahlig} \end{cases}$$

with

$$k = \min x \in \mathbb{N}, \quad x > n\alpha$$

Minimum/Maximum

$$x_{\min} = \min_{i \in \{1,\dots,N\}}(x_i) \hspace{1cm} x_{\max} = \max_{i \in \{1,\dots,N\}}(x_i)$$

1.1.2 Dispersion

Range

$$R = x_{(n)} - x_{(1)}$$

Interquartile Range

$$d_Q = \tilde{x}_{0.75} - \tilde{x}_{0.25}$$

(Empirical) Variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$$

Estimates the second centralized moment.

 $Calculation \ Rules:$

$$\star Var(aX + b) = a^2 \cdot Var(X)$$

1.1.3 Concentration

Gini Coefficient

$$G = \frac{2\sum_{i=1}^{n} ix_{(i)} - (n+1)\sum_{i=1}^{n} x_{(i)}}{n\sum_{i=1}^{n} x_{(i)}} = 1 - \frac{1}{n}\sum_{i=1}^{n} (v_{i-1} + v_i)$$

with

$$u_i = \frac{i}{n}, \quad v_i = \frac{\sum\limits_{j=1}^{i} x_{(j)}}{\sum\limits_{j=1}^{i} x_{(j)}} \qquad (u_0 = 0, \ v_0 = 0)$$

Arithmetic Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Estimates the expectation $\mu = E[X]$ (first moment). Calculation Rules:

- $\star E(a+b\cdot X) = a+b\cdot E(X)$
- $\star E(X \pm Y) = E(X) \pm E(Y)$

Geometric Mean

$$\bar{x}_G = \sqrt[n]{\sum_{i=1}^n x_i}$$

For growth factors: $\bar{x}_G = \sqrt[n]{\frac{B_n}{B_0}}$

Harmonic Mean

$$\bar{x}_H = \frac{\sum\limits_{i=1}^n w_i}{\sum\limits_{i=1}^n \frac{w_i}{x_i}}$$

(Empirical) Standard Deviation

 $\star \ Var(X \pm Y) = Var(X) + Var(Y) + 2Cov(X,Y)$

Coefficient of Variation

$$\nu = \frac{s}{\bar{r}}$$

Average Absolute Deviation

$$e = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Estimates the first absolute centralized moment.

These are also the values for the Lorenz curve.

Range: $0 \le G \le \frac{n-1}{n}$

Lorenz-Münzner Coefficient (normed G)

$$G^+ = \frac{n}{n-1}G$$

Range: $0 \le G^+ \le 1$

1.1.4 Shape

(Empirical) Skewness

$$\nu = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s} \right)^3$$

Estimates the third centralized moment, scaled with $(\sigma^2)^{\frac{2}{3}}$

(Empirical) Kurtosis

$$k = \left[n(n+1) \cdot \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s} \right)^4 - 3(n-1) \right] \cdot \frac{n-1}{(n-2)(n-3)} + 3$$

Estimates the fourth centralized moment, scaled with $(\sigma^2)^2$

Excess

$$\gamma = k - 3$$

1.1.5 Dependence

for two nominal variables

 χ^2 -Statistic

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - \frac{n_{i+}n_{+j}}{n})^2}{\frac{n_{i+}n_{+j}}{n}} = n \left(\sum_{i=1}^k \sum_{j=1}^l \frac{n_{ij}^2}{n_{i+}n_{+j}} - 1\right)$$

Range: $0 \le \chi^2 \le n(\min(k, l) - 1)$

Phi-Coefficient

$$\Phi = \sqrt{\frac{\chi^2}{n}}$$

Range: $0 \le \Phi \le \sqrt{\min(k, l) - 1}$

Cramér's V

$$V = \sqrt{\frac{\chi^2}{\min(k, l) - 1}}$$

Range: $0 \le V \le 1$

Contingency Coefficient C

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Range: $0 \le C \le \sqrt{\frac{\min(k,l)-1}{\min(k,l)}}$

Corrected Contingency Coefficient C_{corr}

$$C_{corr} = \sqrt{\frac{\min(k, l)}{\min(k, l) - 1}} \cdot \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Range $0 \le C_{corr} \le 1$

Odds-Ratio

$$OR = \frac{ad}{bc} = \frac{n_{ii}n_{jj}}{n_{ij}n_{ji}}$$

Range: $0 \le OR < \infty$

for two ordinal variables

Gamma (Goodman and Kruskal)

$$\gamma = \frac{K - D}{K + D}$$

$$\begin{split} K &= \sum_{i < m} \sum_{j < n} n_{ij} n_{mn} & \text{Number of concordant pairs} \\ D &= \sum_{i < m} \sum_{j > n} n_{ij} n_{mn} & \text{Number of reversed pairs} \end{split}$$

Range: $-1 \le \gamma \le 1$

Kendall's τ_b

$$\tau_b = \frac{K - D}{\sqrt{(K + D + T_X)(K + D + T_Y)}}$$

with

$$T_X = \sum_{i=m} \sum_{j < n} n_{ij} n_{mn}$$
 Number of ties w.r.t. X
 $T_Y = \sum_{i < m} \sum_{j=n} n_{ij} n_{mn}$ Number of ties w.r.t. Y

Range: $-1 \le \tau_b \le 1$

Kendall's/Stuart's τ_c

$$\tau_c = \frac{2\min(k, l)(K - D)}{n^2(\min(k, l) - 1)}$$

Range: $-1 \le \tau_c \le 1$

Spearman's Rank Correlation Coefficient

$$\rho = \frac{n(n^2 - 1) - \frac{1}{2} \sum\limits_{j=1}^{J} b_j(b_j^2 - 1) - \frac{1}{2} \sum\limits_{k=1}^{K} c_k(c_k^2 - 1) - 6 \sum\limits_{i=1}^{n} d_i^2}{\sqrt{n(n^2 - 1) - \sum\limits_{j=1}^{J} b_j(b_j^2 - 1)} \sqrt{n(n^2 - 1) - \sum\limits_{k=1}^{K} c_k(c_k^2 - 1)}}$$

or

$$\rho = \frac{s_{rg_x rg_y}}{\sqrt{s_{rg_x rg_x} s_{rg_y rg_y}}}$$

Without ties:

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

with

$$d_i = R(x_i) - R(y_i)$$
 rank difference

Range: $-1 \le \rho \le 1$

for two metric variables

Correlation Coefficient (Bravais-Pearson)

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$

with

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2 \quad \text{or } s_{xy} = \frac{S_{xy}}{n}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad \text{or } s_{xx} = \frac{S_{xx}}{n}$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{or } s_{yy} = \frac{S_{yy}}{n}$$

Range: $-1 \le r \le 1$

1.2 Tables

1.3 Diagrams

1.3.1 Histogram

$$\begin{split} & \text{sample: } X = \{x_1, x_2, ...; x_n\} \\ & k\text{-th bin: } B_k = [t_k, t_{k+1}) \,, k = \{0, 1, ..., m-1\} \\ & \text{Number of observations in the k-th bin: } v_k \\ & \text{bin width: } h = t_{k+1} - t_k, \forall k \end{split}$$

Scott's Rule

$$h^* \approx 3.5 \sigma n^{-\frac{1}{3}}$$

For approximately normal distributed data (min. MSE)

1.3.2 QQ-Plot

1.3.3 Scatterplot

2 Probability

2.1 Combinatorics

		without replacement	with replacement	with:
Permutations		n!	$\frac{n!}{n_1!\cdots n_s!}$	$n! = n \cdot (n-1) \cdot \dots \cdot 1$
Combinations:	without order	$\binom{n}{m}$	$\binom{n+m-1}{m}$	$\binom{n}{m} = \frac{n!}{m!(n-m)!}$
	with order	$\binom{n}{m}m!$	n^m	

2.2 Probability Theory

Laplace

$$P(A) = \frac{|A|}{|\Omega|}$$

Kolmogorov Axioms mathematical definition of probability

- $(1) \quad 0 \le P(A) \le 1 \quad \forall A \in \mathcal{A}$
- (2) $P(\Omega) = 1$
- (3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ $\forall A_i \in \mathcal{A}, i = 1, ..., \infty \text{ with } A_i \cap A_j = \emptyset \text{ for } i \neq j$

Implications:

- $P(\bar{A}) = 1 P(A)$
- $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $A \subseteq B \Rightarrow P(A) \le P(B)$

• $P(B) = \sum_{i=1}^{n} P(B \cap A_i)$, f'ur $A_i, ..., A_n$ complete decomposition of Ω into pairwise disjoint events

Probability (Mises) frequentist definition of probability

$$P(A) = \lim_{n \to \infty} \frac{n_A(n)}{n}$$

with n repetitions of a random experiment and $n_A(n)$ events A

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{für } P(B) > 0$$

$$\Rightarrow P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

Law of Total Probability

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \text{for } P(A), P(B) > 0$$

Stochastic Independence

A, B independent $\Leftrightarrow P(A \cap B) = P(A) + P(B)$ X, Y independent $\Leftrightarrow f_{XY}(x, y) = f_X(x) \cdot f_Y(y) \quad \forall x, y$

2.3 Random Variables/Vectors

$Random\ Variables \in \mathbb{R}$

Definition

$$Y:\Omega\to\mathbb{R}$$

The Subset of possible values for $\mathbb R$ is called support. Notation: Realisations of Y are depicted with lower case letters. Y=y means, that y is the realisation of Y.

Discrete and Continuous Random Variables

If the support is uncountably infinite, the random variable is called *continuous*, otherwise it is called *discrete*.

• Density $f(\cdot)$:

For continuous variables: $P(Y \in [a, b]) = \int_a^b f_Y(y) dy$

For discrete variables the density (and other functions) can be depicted like the corresponding function for continuous variables, if the notation is extended as follows:

$$\int_{-\infty}^{y} f_Y(\tilde{y}) d\tilde{y} := \sum_{k:k \leq y} P(Y=k)$$
. This notation is used.

\bullet Cumulative Distribution Function $F(\cdot) \colon$

$$F_Y(y) = P(Y \le y)$$

Relationship:

$$F_Y(y) = \int_{-\infty}^y f_Y(\tilde{y}) d\tilde{y}$$

Moments

- Expectation (1. Moment): $\mu = E(Y) = \int y f_Y(y) dy$
- Variance (2. centralized Moment):

$$\sigma^2 = Var(Y) = E(\{Y-E(Y)\}^2) = \int (y-E(Y))^2 f(y) dy$$
 Note: $E(\{Y-\mu\}^2) = E(Y^2) - \mu^2$

Proof:
$$E(\{Y-\mu\}^2) = E(Y^2 - 2Y\mu + \mu^2) = E(Y^2) - 2\mu^2 + \mu^2 = E(Y^2) - \mu^2$$

• kth Moment: $E(Y^k) = \int y^k f_Y(y) dy$, k. centralized Moment: $E(\{Y - E(Y)\}^k)$

Moment Generating Function

$$M_Y(t) = \mathrm{E}(e^{tY})$$

with
$$\frac{\partial^k M_Y(t)}{\partial t^k}\Big|_{t=0} = \mathrm{E}(Y^k)$$

Cumulant Generating Function $K_Y(t) = \log M_Y(t)$

A random variable is uniquely defined by its moment generating function and vice versa (as long as moments and cumulants are finite).

$oldsymbol{Random\ Vectors} \in \mathbb{R}^q$

Density and Cumulative Distribution Function

$$F(y_1, ..., y_q) = P(Y_1 \le y_1, ..., Y_q \le y_q)$$

$$P(a_1 \le Y_1 \le b_1, ..., a_q \le Y_q \le b_q)$$

= $\int_{a_1}^{b_1} ... \int_{a_q}^{b_q} f(y_1, ..., y_q) dy_1 ... dy_q$

Marginal Density

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(y_1, ..., y_k) dy_2 ... dy_k$$

Conditional Density

$$f_{Y_1|Y_2}(y_1|y_2) = \frac{f(y_1, ..., y_2)}{f(y_2)}$$
 for $f(y_2) > 0$

Iterated Expectation

$$E(Y) = E_X(E(Y|X))$$

Proof:

$$\mathbf{E}(Y) = \int y f(y) dy = \int \int y f(y|x) dy f_X(x) dx = \mathbf{E}_X(\mathbf{E}(Y|X))$$

$$Var(Y) = E_X(Var(Y|X)) + Var_X(E(Y|X))$$

Proof:

$$\begin{split} \operatorname{Var}(Y) &= \int (y - \mu_Y)^2 f(y) dy \\ &= \int (y - \mu_Y)^2 f(y|x) f(x) dy dx \\ &= \int (y - \mu_{Y|x} + \mu_{Y|x} - \mu_Y)^2 f(y|x) f(x) dy dx \\ &= \int (y - \mu_{Y|x})^2 f(y|x) f(x) dy dx + \\ &\int (\mu_{Y|x} - \mu_Y)^2 f(y|x) f(x) dy dx + \\ &2 \int (y - \mu_{Y|x}) (\mu_{Y|x} - \mu_Y) f(y|x) f(x) dy dx \\ &= \int \operatorname{Var}(Y|x) f(x) dx + \int (\mu_{Y|x} - \mu_Y)^2 f(x) dx \\ &= \operatorname{E}_X(\operatorname{Var}(Y|X)) + \operatorname{Var}_X(\operatorname{E}(Y|X)) \end{split}$$

2.4 Probability Distributions

2.4.1 Discrete Distributions

Discrete Uniform

$$\begin{split} &Y\sim \mathrm{U}(\{y_1,...,y_k\}),\; y\in \{y_1,...,y_k\}\\ &P(Y=y_i)=\frac{1}{k},\; i=1,...,k\\ &\mathrm{E}(Y)=\frac{k+1}{2},\; \mathrm{Var}(Y)=\frac{k^2-1}{12} \end{split}$$

Binomial Successes in independent trials

$$\begin{split} Y &\sim \mathrm{Bin}(n,\pi) \text{ with } n \in \mathbb{N}, \pi \in [0,1] \,, \ y \in \{0,...,n\} \\ P(Y = y | \lambda) &= \binom{n}{y} \pi^k (1-\pi)^{n-y} \\ \mathrm{E}(Y | \pi, n) &= n\pi, \ \mathrm{Var}(Y | \pi, n) = n\pi (1-\pi) \end{split}$$

Poisson Counting model for rare events

only one event at a time, no autocorrelation, mean number of events over time is constant and proportional to length of the considered time interval

2.4.2 Continuous Distributions

Continuous Uniform

$$Y \sim \mathrm{U}(a,b) \text{ with } \alpha, \beta \in \mathbb{R}, a \le b, \ y \in [a,b]$$

$$p(y|a,b) = \frac{1}{b-a}$$

$$\mathrm{E}(Y|a,b) = \frac{a+b}{2}, \ \mathrm{Var}(Y|a,b) = \frac{(b-a)^2}{12}$$

Univariate Normal symmetric with μ and σ^2

$$\begin{split} Y &\sim \mathrm{N}(\mu, \sigma^2) \text{ with } \mu \in \mathbb{R}, \sigma^2 > 0, \ y \in \mathbb{R} \\ p(y|\mu, \sigma^2) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) \\ \mathrm{E}(Y|\mu, \sigma^2) &= \mu, \ \mathrm{Var}(Y|\mu, \sigma^2) = \sigma^2 \end{split}$$

Multivariate Normal symmetric mit μ_i and Σ

$$\begin{split} Y &\sim \mathcal{N}(\mu, \Sigma) \text{ with } \mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d} s.p.d., \ y \in \mathbb{R}^d \\ p(y|\mu, \Sigma) &= (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (y-\mu)^T \Sigma^{-1} (y-\mu)\right) \\ \mathcal{E}(Y|\mu, \Sigma) &= \mu, \ \mathrm{Var}(Y|\mu, \Sigma) = \Sigma \end{split}$$

$$\begin{split} Y &\sim \operatorname{Po}(\lambda) \text{ with } \lambda \in [0,+\infty] \,, \; y \in \mathbb{N}_0 \\ P(Y = y | \lambda) &= \frac{\lambda^y exp^{-\lambda}}{y!} \\ \mathrm{E}(Y | p) &= \lambda, \, \operatorname{Var}(Y | p) = \lambda \end{split}$$

The model tends to overestimate the variance (Overdispersion). Approximation of the Binomial for small p

Geometric

$$Y \sim \text{Geom}(\pi) \text{ with } \pi \in [0, 1], \ y \in \mathbb{N}_0$$
$$P(Y = y | \pi) = \pi (1 - \pi)^{y - 1}$$
$$E(Y | \pi) = \frac{1}{\pi}, \text{ Var}(Y | \pi) = \frac{1 - \pi}{\pi^2}$$

Negative Binomial

$$\begin{split} Y &\sim \mathrm{NegBin}(\alpha,\beta) \text{ with } \alpha,\beta \geq 0, \ y \in \mathbb{N}_0 \\ P(Y = y | \alpha,\beta) &= \binom{\alpha+y-1}{\alpha-1} \left(\frac{\beta}{\beta-1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{y} \\ \mathrm{E}(Y | \alpha,\beta) &= \frac{\alpha}{\beta}, \ \mathrm{Var}(Y | \alpha,\beta) = \frac{\alpha}{\beta^2}(\beta+1) \end{split}$$

Log-Normal

$$\begin{split} &Y\sim \mathrm{LogN}(\mu,\sigma^2) \text{ eith } \mu\in\mathbb{R},\sigma^2>0, \ y>0\\ &p(y|\mu,\sigma^2)=\frac{1}{\sqrt{2\pi\sigma^2y}}\exp\left(-\frac{(\log y-\mu)^2}{2\sigma^2}\right)\\ &\mathrm{E}(Y|\mu,\sigma^2)=\exp(\mu+\frac{\sigma^2}{2}),\\ &\mathrm{Var}(Y|\mu,\sigma^2)=\exp(2\mu+\sigma^2)(\exp(\sigma^2)-1) \end{split}$$

Relationship: $\log(Y) \sim \mathrm{N}(\mu, \sigma^2) \Rightarrow Y \sim \mathrm{LogN}(\mu, \sigma^2)$

non-standardized Student's t $\,$ statistical Tests for μ with unknown (estimated) variance and ν degrees of freedom

$$\begin{split} &Y\sim \mathbf{t}_{\nu}(\mu,\sigma^2) \text{ with } \mu\in\mathbb{R},\sigma^2,\nu>0,\ y\in\mathbb{R}\\ &p(y|\mu,\sigma^2,\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\frac{\nu}{2})\Gamma(\sqrt{\nu\pi}\sigma)} \left(1+\frac{(y-\mu)^2}{\nu\sigma^2}\right)^{-\frac{\nu+1}{2}}\\ &\mathbf{E}(Y|\mu,\sigma^2,\nu) = \mu \text{ for } \nu>1,\\ &\mathbf{Var}(Y|\mu,\sigma^2,\nu) = \sigma^2\frac{\nu}{\nu-2} \text{ for } \nu>2 \end{split}$$

Relationship: $Y | \theta \sim N(\mu, \frac{\sigma^2}{\theta}), \ \theta \sim Ga(\frac{\nu}{2}, \frac{\nu}{2}) \Rightarrow Y \sim t_{\nu}(\mu, \sigma)$ $t_{\nu}(\mu, \sigma^2)$ has heavier tails then the normal distribution. $t_{\infty}(\mu, \sigma^2)$ approaches $N(\mu, \sigma^2)$. Beta

$$\begin{split} Y &\sim \text{Be}(a,b) \text{ with } a,b > 0, \ y \in [0,1] \\ p(y|a,b) &= \frac{\Gamma\left(a+b\right)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1} \\ \text{E}(Y|a,b) &= \frac{a}{a+b}, \\ \text{Var}(Y|a,b) &= \frac{ab}{\left(a+b\right)^2 \left(a+b+1\right)}, \\ \text{mod}(Y|a,b) &= \frac{a-1}{a+b-2} \text{ f'ur } a,b > 1 \end{split}$$

Gamma

$$\begin{split} &Y\sim\operatorname{Ga}(a,b)\text{ with }a,b>0,\;y>0\\ &p(y|a,b)=\frac{b^a}{\Gamma(a)}y^{a-1}\exp(-by)\\ &\mathrm{E}(Y|a,b)=\frac{a}{b},\\ &\mathrm{Var}(Y|a,b)=\frac{a}{b^a},\\ &\mathrm{mod}(Y|a,b)=\frac{a-1}{b}\text{ f'ur }a\geq1 \end{split}$$

2.4.3 Exponential Family

Definition

The exponential family comprises all distributions, whose density can be written as follows:

$$f_Y(y,\theta) = \exp^{t^T(y)\theta - \kappa(\theta)} h(y)$$

with $h(y) \ge 0$, t(y) vector of the canonical statistic, θ as parameter and $\kappa(\theta)$ the normalising constant.

Normalising Constant

$$1 = \int \exp^{t^T(y)\theta} h(y) dy \exp^{-\kappa(\theta)}$$

$$\Leftrightarrow \kappa(\theta) = \log \int \exp^{t^T(y)\theta} h(y) dy$$

 $\kappa(\theta)$ is the cumulant generating function, therefore $\frac{\partial \kappa(\theta)}{\partial \theta} = \mathrm{E}(t(Y))$ and $\frac{\partial^2 \kappa(\theta)}{\partial \theta^2} = \mathrm{Var}(t(Y))$

2.5 Limit Theorems

Law of Large Numbers

Central Limit Theorem

$$Z_n \stackrel{d}{\longrightarrow} N(0, \sigma^2)$$

with $Z_n = \sum_{i=1}^n \frac{Y_i}{\sqrt{n}}$ and Y_i i.i.d. with expectation 0 and variance σ^2

Inverse-Gamma

$$\begin{split} &Y \sim \text{IG}(a,b) \text{ with } a,b > 0, \ y > 0 \\ &p(y|a,b) = \frac{b^a}{\Gamma(a)} y^{-a-1} \exp(-\frac{b}{y}) \\ &\text{E}(Y|a,b) = \frac{b}{a-1} \text{ f'ur } a > 1, \\ &\text{Var}(Y|a,b) = \frac{b^2}{(a-1)^2(a-2)} \text{ f'ur } a \geq 2, \\ &\text{mod}(Y|a,b) = \frac{b}{a+1} \end{split}$$

Relationship: $Y^{-1} \sim \text{Ga}(a, b) \Leftrightarrow Y \sim \text{IG}(a, b)$

Exponential Time between Poisson events

$$\begin{split} Y &\sim \operatorname{Exp}(\lambda) \text{ with } \lambda > 0, \ y \geq 0 \\ p(y|\lambda) &= \lambda \operatorname{exp}(-\lambda y) \\ \operatorname{E}(Y|\lambda) &= \frac{1}{\lambda}, \ \operatorname{Var}(Y|\lambda) = \frac{1}{\lambda^2} \end{split}$$

Chi-Squared $\,$ squared standard normal random variables with ν degrees of freedom

$$\begin{split} Y &\sim \chi^2(\nu) \text{ with } \nu > 0,, \ y \in \mathbb{R} \\ p(y|\nu) &= \frac{y^{\frac{\nu}{2}-1}e^{-\frac{y}{2}}}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)} \\ \mathrm{E}(Y|\nu) &= \nu, \ \mathrm{Var}(Y|\nu) = 2\nu \end{split}$$

Members

- Poisson
- Geometric
- Exponential
- $\bullet \ \, \mathbf{Normal} \ \, t(y) = \left(-\frac{y^2}{2},y\right)^T, \, \theta = \left(\frac{1}{\sigma^2},\frac{\mu}{\sigma^2}\right)^T, \, h(y) = \frac{1}{\sqrt{2\pi}}, \\ \kappa(\theta) = \frac{1}{2} \left(-\log\frac{1}{\sigma^2} + \frac{\mu^2}{\sigma^2}\right)$
- Gamma
- Chi-Squared
- Beta

Proof:

For normal random variables $Z \sim N(\mu, \sigma^2)$: $K_Z(t) = \mu t + \frac{1}{2}\sigma^2 t^2$. The first two derivatives $\frac{\partial^k K_Z(t)}{\partial t^k}\Big|_{t=0}$ are μ and σ . All other moments are zero.

For
$$Z_n = (Y_1 + Y_2 + ... + Y_n)/\sqrt{n}$$
:

$$\begin{split} M_{Z_n}(t) &= \mathbf{E} \left(e^{t(Y_1 + Y_2 + \ldots + Y_n)/\sqrt{n}} \right) \\ &= \mathbf{E} \left(e^{tY_1/\sqrt{n}} \cdot e^{tY_2/\sqrt{n}} \cdot \ldots \cdot e^{tY_n/\sqrt{n}} \right) \\ &= \mathbf{E} \left(e^{tY_1/\sqrt{n}} \right) \mathbf{E} \left(e^{tY_2/\sqrt{n}} \right) \ldots \mathbf{E} \left(e^{tY_n/\sqrt{n}} \right) \\ &= M_Y^n(t/\sqrt{n}) \end{split}$$

Analoguously: $K_{Z_n}(t) = nK_Y(t/\sqrt{n})$.

$$\begin{split} \frac{\partial K_{Z_n}(t)}{\partial t}\bigg|_{t=0} &= \frac{n}{\sqrt{n}} \frac{\partial K_Y(t)}{\partial t}\bigg|_{t=0} = \sqrt{n} \mu \\ \frac{\partial^2 K_{Z_n}(t)}{\partial t^2}\bigg|_{t=0} &= \frac{n}{n} \frac{\partial^2 K_Y(t)}{\partial t^2}\bigg|_{t=0} = \sigma^2 \end{split}$$

Using the Taylor Expansion, we can write $K_{Z_n}(t)=0+\sqrt{n}\mu t+\frac{1}{2}\sigma^2 t^2+\ldots$, where the terms in ... are tending towards 0 as $n\to\infty$.

Therefore: $K_{Z_n}(t) \stackrel{n \to \infty}{\longrightarrow} K_Z(t)$ with $Z \sim \mathcal{N}(\sqrt{n}\mu, \sigma^2)$.

3 Inference

3.1 Method of Moments

Die theoretischen Momente werden durch die empirischen geschätzt:

$$\mathcal{E}_{\hat{\theta}_{MM}}(Y^k) = m_k(y_1, ..., y_n)$$

Für die Exponentialfamilie gilt: $\hat{\theta}_{MM} = \hat{\theta}_{ML}$

3.2 Loss Functions

Verlust

$$\mathcal{L}:\mathcal{T}\times\Theta\rightarrow\mathbb{R}^{+}$$

mit Parameterraum $\Theta \subset \mathbb{R}, t \in \mathcal{T}$ mit $t : \mathbb{R}^n \to \mathbb{R}$ eine Statistik, die den Parameter θ schätzt. Es gilt: $\mathcal{L}(\theta, \theta) = 0$

- absoluter Verlust (L1): $\mathcal{L}(t,\theta) = |t \theta|$
- quadratischer Verlust (L2): $\mathcal{L}(t,\theta) = (t-\theta)^2$

Da θ unbekannt ist, ist der Verlust eine theoretische Größe. Zudem ist er die Realisation einer Zufallsvariable, da er von einer konkreten Stichprobe abhängt.

Risiko

$$R(t(.), \theta) = \mathcal{E}_{\theta} \left(\mathcal{L}(t(Y_1, ..., Y_n), \theta) \right)$$
$$= \int_{-\infty}^{\infty} \mathcal{L}(t(Y_1, ..., Y_n), \theta) \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

Minimax-Regel

Das Risiko beruht immer noch auf dem wahren Parameter θ . Vorsichtige Schätzung: Wähle θ so, dass das Risiko maximal wird, und danach t(.) so, dass das Risiko minimiert wird:

$$\hat{\theta}_{minimax} = \underset{t(.)}{\arg \min} \ \left(\underset{\theta \in \Theta}{\max} \ R(t(.); \theta) \right)$$

Es wird der Worst Case minimiert.

Mean Squared Error (MSE)

$$MSE(t(.), \theta) = \mathcal{E}_{\theta} \left(\{ t(Y) - \theta \}^2 \right)$$
$$= \operatorname{Var}_{\theta} \left(t(Y_1, ..., Y_n) \right) + Bias^2(t(.); \theta)$$

$$mit \ Bias(t(.); \theta) = \mathbb{E}_{\theta} \left(t(Y_1, ..., Y_n) \right) - \theta$$

Proof:
Sei
$$\mathcal{L}(t,\theta) = (t-\theta)^2$$

 $R(t(.),\theta) = \mathcal{E}_{\theta}(\{t(Y) - \theta\}^2)$
 $= \mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y)) + \mathcal{E}_{\theta}(t(Y)) - \theta\}^2)$
 $= \mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y))\}^2) + \mathcal{E}_{\theta}(\{\mathcal{E}_{\theta}(t(Y)) - \theta\}^2)$
 $+ 2\mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y))\}\{\mathcal{E}_{\theta}(t(Y)) - \theta\})$
 $= \mathcal{V}_{\theta}(t(Y_1, ..., Y_n)) + Bias^2((t(.); \theta) + 0)$

Cramér-Rao-Ungleichung

$$MSE(\hat{\theta}, \theta) \geq Bias^{2}(\hat{\theta}, \theta) + \frac{\left(1 + \frac{\partial Bias(\hat{\theta}, \theta)}{partial\theta}\right)^{2}}{I(\theta)}$$

Proof:

Für ungebiaste Schätzer: $\theta = E_{\theta}(\hat{\theta}) = \int t(y) f(y;\theta) dy$

$$\begin{split} 1 &= \int t(y) \frac{\partial f(y;\theta)}{\partial \theta} dy \\ &= \int t(y) \frac{\partial \log f(y;\theta)}{\partial \theta} f(y;\theta) dy \\ &= \int t(y) s(y;\theta) f(y;\theta) dy \\ &= \int (t(y) - \theta) \left(s(\theta;y) - 0 \right) f(y;\theta) dy \end{split} \quad \begin{array}{l} \text{1. Bartlett-Gleichung} \\ \text{E}_{\theta} \left(s(\theta;y) \right) = 0 \\ &= \text{Cov}_{\theta} \left(t(Y); s(\theta;Y) \right) \\ &\geq \sqrt{\text{Var}_{\theta}(t(Y))} \sqrt{\text{Var}_{\theta}(s(\theta;Y))} \\ &= \sqrt{MSE(t(Y);\theta)} \sqrt{I(\theta)} \end{split} \quad \text{Cauchy-Schwarz} \end{split}$$

Kullback-Leibler-Divergenz Vergleich von Verteilungen

$$KL(t,\theta) = \int_{-\infty}^{\infty} \log \frac{f(\tilde{y};\theta)}{f(\tilde{y};t)} f(\tilde{y};\theta) d\tilde{y}$$

Die KL-Divergenz ist keine Distanz, da sie nicht symmetrisch ist. Sie ist 0 für $t=\theta$ und größer/gleich 0 sonst.

Proof

Folgt aus $\log(x) \le x - 1 \forall x \ge 0$, mit Gleichheit für x = 1.

 $R_{KL}(t(.), \theta)$ wird durch den MSE approximiert.

Proof:

$$\begin{split} R_{KL}(t(.),\theta) &= \\ &= \int_{-\infty}^{\infty} \mathcal{L}_{KL}(t(Y_1,...,Y_n),\theta) \prod_{i=1}^n f(y_i;\theta) dy_i \\ &= \int \int \log \frac{f(\tilde{y};\theta)}{f(\tilde{y};t)} f(\tilde{y};\theta) d\tilde{y} \prod_{i=1}^n f(y_i;\theta) dy_i \\ &= \int \int \left(\log f(\tilde{y};\theta) - \log f(\tilde{y};t)\right) f(\tilde{y};\theta) d\tilde{y} - \prod_{i=1}^n f(y_i;\theta) dy_i \\ &\approx -\int \underbrace{\left(\int \frac{\partial \log f(\tilde{y};\theta)}{\partial \theta} f(\tilde{y};\theta) d\tilde{y}\right)}_{0} (t-\theta) \prod_{i=1}^n f(y_i;\theta) dy_i \\ &+ \frac{1}{2} \int \underbrace{\left(-\int \frac{\partial^2 \log f(\tilde{y};\theta)}{\partial \theta^2} f(\tilde{y};\theta) d\tilde{y}\right)}_{I(\theta)} (t-\theta)^2 \prod_{i=1}^n f(y_i;\theta) dy_i \end{split}$$

Wobei der letzte Schritt durch die Taylorreihe approximiert wurde: $\log f(\tilde{y},t) \approx \log f(\tilde{y},\theta) + \frac{\partial \log f(\tilde{y},\theta)}{\partial \theta}(t-\theta) + \frac{1}{2} \frac{\partial^2 \log f(\tilde{y},\theta)}{\partial \theta^2}(t-\theta)^2$

3.3 Maximum Likelihood (ML)

Voraussetzungen

- $Y_i \sim f(y; \theta)$ i.i.d.
- $\theta \in \mathbb{R}^p$
- $f(.;\theta)$ Fisher-regulär:
 - $-\{y:f(y;\theta>0)\}$ unabhängig von θ
 - Möglicher Parameterraum Θ ist offen
 - $-f(y;\theta)$ zweimal differenzierbar
 - $-\int \frac{\partial}{\partial \theta} f(y;\theta) dy = \frac{\partial}{\partial \theta} \int f(y;\theta) dy$

Zentrale Funktionen

- Likelihood $L(\theta; y_1, ..., y_n)$: $\prod_{i=1}^n f(y_i; \theta)$
- log-Likelihood $l(\theta; y_1, ...y_n)$: $\log L(\theta; y_1, ..., y_n) = \sum_{i=1}^n \log f(y_i; \theta)$
- Score $s(\theta; y_1, ..., y_n)$: $\frac{\partial l(\theta; y_1, ..., y_n)}{\partial \theta}$
- Fisher-Information $I(\theta)$: $-E_{\theta} \left(\frac{\partial s(\theta; Y)}{\partial \theta} \right)$
- beobachtete Fisher-Information $I_{obs}(\theta)$: $-\mathbb{E}_{\theta}\left(\frac{\partial s(\theta;y)}{\partial \theta}\right)$

Eigenschaften der Score-Funktion

erste Bartlett-Gleichung:

$$E\left(s(\theta;Y)\right) = 0$$

Proof:

$$\begin{split} 1 &= \int f(y;\theta) dy \\ 0 &= \frac{\partial 1}{\partial \theta} = \int \frac{\partial f(y;\theta)}{\partial \theta} dy = \int \frac{\partial f(y;\theta)/\partial \theta}{f(y;\theta)} f(y;\theta) dy \\ &= \int \frac{\partial}{\partial \theta} \log f(y;\theta) f(y;\theta) dy = \int s(\theta;y) f(y;\theta) dy \end{split}$$

zweite Bartlett-Gleichung:

$$\operatorname{Var}_{\theta}\left(s(Y;\theta)\right) = \operatorname{E}_{\theta}\left(-\frac{\partial^{2}logf(Y;\theta)}{\partial\theta^{2}}\right) = I(\theta)$$

Proof:

$$0 = \frac{\partial 0}{\partial \theta} = \frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta} \log f(y; \theta) f(y; \theta) dy \qquad \text{siehe of}$$

$$= \int \left(\frac{\partial^2}{\partial \theta^2} \log f(y; \theta) \right) f(y; \theta) dy$$

$$+ \int \frac{\partial \log f(y; \theta)}{\partial \theta} \frac{\partial f(y; \theta)}{\partial \theta} dy$$

$$= \mathcal{E}_{\theta} \left(\frac{\partial^2}{\partial \theta^2} \log f(Y; \theta) \right)$$

$$+ \int \frac{\partial \log f(y; \theta)}{\partial \theta} \frac{\partial \log f(y; \theta)}{\partial \theta} f(y; \theta) dy$$

$$\Leftrightarrow \mathcal{E}_{\theta}\left(s(\theta; Y)s(\theta; Y)\right) = \mathcal{E}_{\theta}\left(-\frac{\partial^{2}}{\partial \theta^{2}}\log f(Y; \theta)\right)$$

Bartletts zweite Gleichung gilt dann, weil $E(s(\theta; Y)) = 0$

ML-Schätzer

$$\hat{\theta}_{ML} = \arg\max l(\theta; y_1, ... y_n)$$

für Fisher-reguläre Verteilungen: $\hat{\theta}_{ML}$ hat asymptotisch die kleinstmögliche Varianz, gegeben durch die

Cramér-Rao-Ungleichung, $s\left(\hat{\theta}_{ML}; y_1, ..., y_n\right) = 0$

$$\hat{\theta} \stackrel{a}{\sim} N(\theta, I^{-1}(\theta))$$

Der ML-Schätzer ist invariant: $\hat{\gamma} = g(\hat{\theta})$ wenn $\gamma = g(\theta)$.

Proof:

$$\gamma = g(\theta) \Leftrightarrow \theta = g^{-1}(\gamma)$$

Für die Loglikelihood von γ an der Stelle $\hat{\theta}$ gilt:

$$\frac{\partial l(g^{-1}(\hat{\gamma}))}{\partial \gamma} = \frac{\partial g^{-1}(\gamma)}{\partial \gamma} \underbrace{\frac{\partial l(\hat{\theta})}{\partial \theta}}_{=0} = 0$$

Die Fisher-Information ist dann $\frac{\partial \theta}{\partial \gamma} I(\theta) \frac{\partial \theta}{\partial \gamma}$

Proof:

$$\begin{split} I_{\gamma}(\gamma) &= -\mathrm{E}\left(\frac{\partial^{2}l(g^{-1}(\hat{\gamma}))}{\partial\gamma^{2}}\right) = -\mathrm{E}\left(\frac{\partial}{\partial\gamma}\left(\frac{\partial g^{-1}(\gamma)}{\partial\gamma}\frac{\partial l(\theta)}{\partial\theta}\right)\right) \\ &= -\mathrm{E}\left(\underbrace{\frac{\partial^{2}g^{-1}(\gamma)}{\partial\gamma}\frac{\partial l(\theta)}{\partial\theta}}_{\text{Erwartungswert 0}} + \frac{\partial g^{-1}(\gamma)}{\partial\gamma}\frac{\partial^{2}l(\theta)}{\partial\theta^{2}}\frac{\partial g^{-1}(\gamma)}{\partial\gamma}\right) \\ &= \frac{\partial g^{-1}(\gamma)}{\partial\gamma}I(\theta)\frac{\partial g^{-1}(\gamma)}{\partial\gamma} = \frac{\partial\theta}{\partial\gamma}I(\theta)\frac{\partial\theta}{\partial\gamma} \end{split}$$

Delta-Regel: $\gamma \stackrel{a}{\sim} \text{N}(\hat{\gamma}, \frac{\partial \theta}{\partial \gamma} I^{-1}(\theta) \frac{\partial \theta}{\partial \gamma}$

Numerical computation of the ML estimate Fisher-Scoring as statistical version of the Newton-Raphson procedure

1. Initialize $\theta_{(0)}$

2. Repeat: $\theta_{(t+1)} := \theta_{(t)} + I^{-1}(\theta_{(t)})s(\theta_{(t)};y)$

3. Stop if
$$\|\theta_{(t+1)} - \theta_{(t)}\| < \tau$$
; return $\hat{\theta}_{ML} = \theta_{(t+1)}$

Proof:

$$0 = s(\hat{\theta}_{ML}; y) \mathop{\approx}\limits_{Series}^{Taylor} s(\theta; y) + \frac{\partial s(\theta; y)}{\partial \theta} (\hat{\theta}_{ML} - \theta) \Leftrightarrow$$
$$\hat{\theta}_{ML} \approx \theta - \left(\frac{\partial s(\theta; y)}{\partial \theta}\right)^{-1} s(\theta; y) \approx \theta - I^{-1}(\theta) s(\theta; y)$$

As $\frac{\partial s(\theta;y)}{\partial \theta}$ is often complicated, its expectation $I(\theta)$ is used.

The second part in 2 can be weighted with a step size δ or $\delta(t)$ \in (0,1), e. g. to ensure convergence.

If $I(\theta)$ can't be analytically derived, simulation from $f(y;\theta_{(t)})$ can be used. For the exponential family, step 2 then changes to $\theta_{(t+1)} := \theta_{(t)} + \hat{\mathrm{Var}}_{\theta_{(t)}}(t(Y))^{-1} \mathrm{E}_{\theta_{(t)}}(t(Y))$ as the ML estimate is the expectation.

Log Likelihood Ratio

$$lr(\theta, \hat{\theta}) := l(\hat{\theta}) - l(\theta) = \log \frac{L(\hat{\theta})}{L(\theta)}$$

with $2 \cdot lr(\theta, \hat{\theta}) \stackrel{a}{\sim} \chi_1^2$

Proof:

$$\begin{split} l(\theta) & \underset{Series}{\overset{Taylor}{\approx}} l(\hat{\theta}) + \underbrace{\frac{\partial l(\hat{\theta})}{\partial \theta}}_{=0} (\theta - \hat{\theta}) + \frac{1}{2} \underbrace{\frac{\partial^2 l(\hat{\theta})}{\partial \theta^2}}_{\approx I^{-1}(\theta)s(\theta;Y)} (\underbrace{\frac{\theta - \hat{\theta}}{\partial \theta}})^2 \\ & \approx l(\hat{\theta}) - \frac{1}{2} \frac{s^2(\theta,Y)}{I(\theta)} \end{split}$$

 $s(\theta, Y)$ is asymptotically normal.

If $\theta \in \mathbb{R}^p$ the corresponding distribution is χ_p^2 .

3.4 Sufficiency und Consistency

Suffizienz

Eine Statistik $t(y_1,...,y_n)$ ist suffizient für θ , wenn die bedingte Verteilung $f(y_1,...,y_n|t_0=t(y_1,...,y_n);\theta)$ unabhängig von θ ist.

Proof: "⇒":

$$f(y;\theta) = \underbrace{f(y|t=t(y);\theta)}_{h(y)} \underbrace{f_t(t|y;\theta)}_{g(t(y);\theta)}$$

"⇐":

$$f_t(t;\theta) = \int_{t=t(y)} f(y;\theta) dy = \int_{t=t(y)} h(y)g(t;\theta) dy$$

Damit:

$$f\left(y|t=t(y);\theta\right) = \frac{f(y,t=t(y);\theta)}{f_t(t,\theta)} = \begin{cases} \frac{h(y)g(t;\theta)}{g(t;\theta)} & t=t(y)\\ 0 & \text{sonst} \end{cases}$$

Minimalsuffizienz:

$$t(.)$$
 ist suffizient und $\forall \tilde{t}(.) \exists h(.)$ s.t. $t(y) = h(\tilde{t}(y))$

(schwache) Konsistenz

$$MSE(\hat{\theta}, \theta) \stackrel{n \to \infty}{\longrightarrow} 0 \Rightarrow \hat{\theta} \text{ konsistent}$$

Neyman-Kriterium:

 $t(Y_1,...,Y_n)$ suffizient $\Leftrightarrow f(y;\theta) = h(y)g(t(y);\theta)$

3.5 Confidence Intervals

Definition

 $[t_l(Y), t_r(Y)]$ Konfidenzintervall

<

$$P_{\theta}\left(\left(t_{l}(Y) \leq \theta \leq t_{r}(Y)\right) \geq 1 - \alpha\right)$$

mit $1-\alpha$ Konfidenzlevel und α Signifikanzlevel

Pivotale Statistik

 $g(Y;\theta)$ pivotal

 \Leftrightarrow

Verteilung von $g(Y;\theta)$ unabhängig von θ

Approximativ pivotale Statistik

$$g(\hat{\theta}; \theta) = \frac{\hat{\theta} - \theta}{\sqrt{\operatorname{Var}(\hat{\theta})}} \stackrel{\alpha}{\sim} \operatorname{N}(0, 1)$$

mit $\hat{\theta} = t(Y) \stackrel{\alpha}{\sim} N(\theta, Var(\hat{\theta}))$

$$KI = \left[\hat{\theta} - z_{1-\frac{\alpha}{2}}\sqrt{\mathrm{Var}(\hat{\theta})}, \hat{\theta} + z_{1-\frac{\alpha}{2}}\sqrt{\mathrm{Var}(\hat{\theta})}\right]$$

Proof

1 root.

$$1 - \alpha \approx P\left(z_{\frac{\alpha}{2}} \le \frac{\hat{\theta} - \theta}{\sqrt{\operatorname{Var}(\hat{\theta})}} \le z_{1 - \frac{\alpha}{2}}\right)$$

4 Statistical Hypothesis Testing

4.1 Significance, Relevance, p-Value

Significance Test

Assuming two states H_0 and H_1 and two corresponding decisions " H_0 " and " H_1 ", a decision rule (a threshold $c \in \mathbb{R}$ for the test statistic T(X)) is constructed s.t.:

$$P("H_1"|H_0) = 1 - \alpha$$

$$\begin{array}{c|cccc} & "H_0" & "H_1" \\ \hline H_0 & 1-\alpha \text{ (correct)} & \alpha \text{ (type I error)} \\ H_1 & \beta \text{ (type II error)} & 1-\beta \text{ (correct)} \\ \end{array}$$

The power of a test is $P("H_1"|H_1) = 1 - \beta$

4.2 Tests for One Sample

Normal Distribution $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Test for μ , known σ^2 (Simple Gauss-Test)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$

$$T(X) = \frac{\bar{X} - \mu_0}{\sigma} \overset{H_0}{\sim} \text{N}(0, 1)$$

Test for μ , unknown σ^2 (Simple t-Test)

 $H_0: \mu = \mu_0 \quad vs. \quad H_1: \mu \neq \mu_0$

$$T(X) = \frac{\bar{X} - \mu_0}{\hat{\sigma}/\sqrt{n}} \stackrel{H_0}{\sim} t_{n-1}$$

with
$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

ML Estimate $\hat{\theta} \stackrel{a}{\sim} N(\theta, I^{-1}(\theta))$

Wald Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = |\hat{\theta} - \theta_0| \stackrel{H_0}{\sim} \mathrm{N}(0, I^{-1}(\theta_0))$$

As $\hat{\theta}$ converges to θ_0 under H_0 , it can also be used to calculate the variance: $I^{-1}(\hat{\theta}.$

Score Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = |s(\theta_0; y)| \overset{H_0}{\sim} \text{N}(0, I(\theta_0))$$

Advantage compared to the Wald Test: $\hat{\theta}$ does not have to be calculated.

Likelihood Ratio Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = 2(l(\hat{\theta}) - l(\theta)) \stackrel{H_0}{\sim} \chi_1^2$$

Neyman-Pearson Test

 H_0 : $\theta = \theta_0$ vs. H_1 : $\theta = \theta_1$

$$T(X) = l(\theta_0) - l(\theta_1)$$

For a given significance level α , the Neyman Pearson Test is the most powerful test for comparing two estimates for θ .

Proof:

Decision rule of the NP-Test: $\varphi^* = \begin{cases} 1 & if \frac{f(y;\theta_0)}{f(y;\theta_1)} \leq e^c \\ 0 & \text{otherwise} \end{cases}$

Need to show: $P(\varphi(Y)=1|\theta_1) \leq P(\varphi^*(Y)=1|\theta_1) \ \forall \varphi$

$$P(\varphi^*=1|\theta_1) - P(\varphi=1|\theta_1) =$$

$$\begin{split} &= \int \{\varphi^*(y) - \varphi(y)\} f(y;\theta_1) dy \\ &\geq \frac{1}{\mathrm{e}^c} \int_{\varphi^* = 1} \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy \quad f(y;\theta_1) \geq \frac{f(y;\theta_0)}{\mathrm{e}^c} \\ &+ \frac{1}{\mathrm{e}^c} \int_{\varphi^* = 0} \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy \quad f(y;\theta_1) \leq \frac{f(y;\theta_0)}{\mathrm{e}^c} \\ &= \frac{1}{\mathrm{e}^c} \int \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy = 0 \end{split}$$

As
$$\alpha = \int \varphi^*(y) f(y; \theta_0) dy = \int \varphi(y) f(y; \theta_0) dy$$

- 4.3 Tests for Two Samples
- 4.4 Tests for Goodness of Fit
- 4.5 Multiple Tests
- 5 Regression
- 5.1 Assumptions
- 5.2 Procedure
- 5.2.1 Ordinary Least Squares (OLS)

KQ-Schätzer (Einfachregression)

$$\hat{\beta}_1 = \frac{Cov(x,y)}{Var(x)} = \frac{S_{xy}}{S_{xx}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \cdot \sqrt{\frac{S_{yy}}{S_{xx}}} = r\sqrt{\frac{S_{yy}}{S_{xx}}}$$

Proof:

$$Cov(x,y) = Cov(x, \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}) = \hat{\beta}_1 Var(x)$$

$$\iff \hat{\beta}_1 = \frac{Cov(x,y)}{Var(x)}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Proof.

$$E[y] = E\left[\hat{\beta}_0 + \hat{\beta}_1 x + \hat{e}\right] \iff \hat{\beta}_0 = E[y] - \hat{\beta}_1 E[x]$$

5.3 Model

5.3.1 Simple Linear Regression

Theoretisches Modell

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

Empirisches Modell

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

5.3.2 Multivariate Linear Regression

Eigenschaften der Regressionsgeraden

$$\begin{split} \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_i = \bar{y} + \hat{\beta}_1 (x_i - \bar{x}) \\ \hat{e}_i &= y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \\ &= y_i - (\bar{y} + \hat{\beta}_1 (x_i - \bar{x})) \\ \sum_{i=1}^n \hat{e}_i &= \sum_{i=1}^n y_i - \sum_{i=1}^n \bar{y} - \hat{\beta}_1 \sum_{i=1}^n (x_i - \bar{x}) \\ &= n\bar{y} - n\bar{y} - \hat{\beta}_1 (n\bar{x} - n\bar{x}) = 0 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n \hat{y}_i = \frac{1}{n} (n\bar{y} + \hat{\beta}_1 (n\bar{x} - n\bar{x})) = \bar{y} \end{split}$$

5.4 Analysis of Variances (ANOVA)

$$SS_{Total} = SS_{Explained} + SS_{Residual}$$

mit

$$SS_{Total} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SS_{Explained} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$SS_{Residual} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = S_{yy} - \hat{\beta}^2 S_{xx}$$

5.5 Goodness of Fit

5.5.1 Bestimmtheitsmaß

$$R^2 = \frac{SS_{Explained}}{SS_{Total}} = 1 - \frac{SS_{Residual}}{SS_{Total}} = r^2$$

Range: $0 \le R^2 \le 1$

6 Classification

6.1 Diskriminant Analysis (Bayes)

7 Cluster Analysis

8 Bayesian Statistics

8.1 Basics

Bayes-Formel

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \qquad \text{für } P(A), P(B) > 0$$

oder allgemeiner:

$$\begin{split} f(\theta|X) &= \frac{f(X|\theta) \cdot f(\theta)}{\int f(X|\tilde{\theta}) f(\tilde{\theta}) d\tilde{\theta}} \\ &= C \cdot f(X|\theta) \cdot f(\theta) \quad \text{wähle C so, dass } \int f(\theta|X) = 1 \\ &\propto f(X|\theta) \cdot f(\theta) \end{split}$$

Punktschätzer

Kredibilitätsintervall

 ${\bf Sensitivit \"{a}ts analyse}$

Prädiktive Posteriori

$$f(x_Z|\mathbf{x}) = \int f(x_Z, \lambda|\mathbf{x}) d\lambda = \int f(x_Z|\lambda) p(\lambda|\mathbf{x})$$

Uninformative Priori

$$f(\theta)=const. \text{ für } \theta>0 \text{ , damit: } f(\theta|X)=C\cdot f(X|\theta)$$
 (Da $\int f(\theta)=1$ so nicht möglich, ist das eigentlich keine Dichte)

Konjugierte Priori

Wenn die Priori- und die Posteriori-Verteilung denselben Typ hat für eine gegebene Likelihoodfunktion, so nennt man sie konjugiert.

Binomial-Beta-Modell:

- Priori $\sim Be(\alpha, \beta)$
- $X \sim Binom(n, p, k)$
- Posteriori $\sim Be(\alpha + k, \beta + n k)$

8.2 Markov Chain / Monte Carlo