From De Bruijn to co-De Bruijn using Category Theory Everybody's Got To Be Somewhere [codebruijn]

Marius Weidner

Chair of Programming Languages, University of Freiburg

February 1, 2024

Outline

- Getting Started: Scopes and Binders Categorically
 - The Category of Scopes
 - Intrinsically Scoped De Bruijn Syntax
- Going Further: From De Bruijn to co-De Bruijn
 - The Slice Category of Subscopes
 - A Monad Over Sets Indexed by Scopes
 - Intrinsically Scoped co-De Bruijn Syntax
- Wrapping Up: What I've (Not) Told You
 - This Is Actually an Agda Paper
 - References

The Category of Scopes: Δ_+^X

Definition

Let Δ_+^X be the category of scopes with

- ullet Objects: $ar{x},ar{y},ar{s}\in |\Delta_+^X|=X^*$ ad
- Morphisms: $f,g\in\Delta^X_+(\bar x,\bar y)$ for $\bar x,\bar y\in X^*$ are inductively defined by inference rules

$$\frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x}x \sqsubseteq \bar{y}x} \ 1 \qquad \qquad \frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x} \sqsubseteq \bar{y}y} \ 0$$

Remark

Morphisms in Δ_+^X can be represented by bit vectors $\bar{b} \in \{0,1\}^*$ with one bit per variable of the target scope telling whether it has been mapped to or skipped by the source scope.

Objects & Morphisms in Δ_+^\top

Example

Let $X = \top$, where \top is the set with exactly one element $\langle \rangle$. Then, objects in Δ_{+}^{\top} represent numbers.

Identity and Composition in Δ_+^\top

Δ_+^X is in Fact a Category

Lemma

In Δ_+^X every object $\bar{x} \in X^*$ has an identity morphism, i.e. we can construct an identity morphism for every object \bar{x} using the inference rules.

Proof.

$$\begin{array}{ll} id & : \; (\bar{x}:X^*) \to \bar{x} \sqsubseteq \bar{x} \\ id \; \varepsilon & = \; \cdot \end{array}$$

Lemma

In Δ_+^X two morphisms $f: \bar x \sqsubseteq \bar y$ and $g: \bar y \sqsubseteq \bar z$ compose to a morphism $f; g: \bar x \sqsubseteq \bar z$, i.e. we can construct a morphism f; g from f and g using the inference rules.

Proof.

$$\begin{array}{cccc} \vdots & \overline{x} \sqsubseteq \overline{y} \rightarrow \overline{y} \sqsubseteq \overline{z} \rightarrow \overline{x} \sqsubseteq \overline{z} \\ \vdots & \vdots & \vdots \\ f1 \ ; \ g1 \ = \ (f;g)1 \\ f0 \ ; \ g1 \ = \ (f;g)0 \\ f \ ; \ g0 \ = \ (f;g)0 \end{array}$$

Corollary

$$id - l$$
 : $id; f = f$
 $id - r$: $f; id = f$

 $id \bar{x}x = (id \bar{x})1$

Corollary

$$\begin{array}{ll} \textit{assoc} & : & f; (g; h) = (f; g); h \\ \textit{antisym} & : & (f: \bar{x} \sqsubseteq \bar{y}) \rightarrow (g: \bar{y} \sqsubseteq \bar{z}) \rightarrow \bar{x} = \bar{y} \land f = g = id \ \bar{x} \\ \end{array}$$

Intrinsically Scoped De Bruijn Syntax via Δ_{\perp}^{\perp}

Definition

Let $Tm: \mathbb{N} \to Set$ be the set of lambda calculus terms inductively defined by

$$\frac{1 \sqsubseteq n}{Tm \ n} \ \#$$

$$\frac{Tm\ n}{Tm\ n}\ \$$$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

$$\mathbb{K} = \lambda x. \lambda y. x \qquad \qquad = \lambda \ \lambda \ \# 1$$

$$=\lambda \lambda \# 1$$

$$\mathbb{S} = \lambda x. \lambda y. \lambda z. x \ z \ (y \ z) = \lambda \lambda \lambda \lambda \#2 \#0 \ (\#1 \ \#0)$$

The Slice Category of Subscopes: $\Delta^X_+ \setminus \bar{s}$

Definition

Let $\Delta_+^X \smallsetminus \bar{s}$ be the category of subscopes for a given $\bar{s} \in X^*$ with

- Objects: $\bar{b}, (\bar{x}, f) \in |\Delta^X_+ \setminus \bar{s}| = (\bar{x}: X^* \times \Delta^X_+(\bar{x}, \bar{s}))$ and
- \bullet Morphisms: $h \in [\Delta^X_+ \smallsetminus \bar{s}]((\bar{x},f),(\bar{y},g))$ such that f=h;g

Remark

Objects in $\Delta_+^X \setminus \bar{s}$ can be represented by *bit vectors* $\bar{b} \in \{0,1\}^*$ with one bit per variable of scope \bar{s} , telling whether it has been selected.

Objects & Morphisms in $\Delta_+^T \setminus 5$

$$3 \xrightarrow{1110} 4$$

$$2 \xrightarrow{0110} 4$$

- $(3,01110) \xrightarrow{0111} (4,11110)$
- $\bullet \quad 01110 \xrightarrow{\quad 0111 \quad } 11110$

The Curious Case of Coproducts in $\Delta^X_+ \setminus \bar{s}$

Theorem

Objects in the slice category $\bar{b}_1, \bar{b}_2 \in |\Delta_+^X \setminus \bar{s}|$ have a coproduct object $\bar{b}_1 + \bar{b}_2$, i.e. there exist morphisms $l \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_1 + \bar{b}_2)$ and $r \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_1 + \bar{b}_2)$ such that every pair $f \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_3)$ and $g \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_3)$ factor through a unquie $h \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1 + \bar{b}_2, \bar{b}_3)$ such that f = l; h and g = r; h.

Remark

The coproduct $\bar{b}_1 + \bar{b}_2$ of two subscopes \bar{b}_1, \bar{b}_2 corresponds to the minimal subscope covering both \bar{b}_1 and \bar{b}_2 . The coproduct $\bar{b}_1 + \bar{b}_2$ can be computed by pointswise disjunction of \bar{b}_1 and \bar{b}_2 .

The Category Set_{X} of Sets Indexed by Scope

Definition

Let Set_X be the category of sets indexed by scopes $\bar{x} \in X^*$ with

- \bullet Objects: $T,S \in |Set_X| = X^* \to Set = \bar{X}$ and
- $\bullet \ \ \text{Morphisms:} \ f \in Set_X(T,S) = (\bar{x} \in X^*) \to T(\bar{x}) \to S(\bar{x}) = T \overset{\cdot}{\to} S$

Definition

Let $_\uparrow = \bar{X} \to \bar{X} = (T, \bar{x}) \mapsto (T(\bar{s}) \times \bar{s} \sqsubseteq \bar{x})$. We write $t \uparrow h$ for elements of $T \uparrow \bar{x}$.

We define $Ref: Set_X \xrightarrow{\cdot} Set_X$ to be the endofunctior induced by the mapping

- $Ref(T) = (\bar{x} \mapsto T \uparrow \bar{x}) \in \bar{X}$ for objects and
- $Ref(f) = (t \uparrow h) \mapsto (f(t) \uparrow h) \in T \to S$ for morphisms

Remark

The set $T \uparrow \bar{x}$ packs an set $T \in \bar{X}$ indexed by $\bar{x} \in X^*$ applied to a subscope \bar{s} of \bar{x} , together with a selection $h \in |\Delta^X_+ \setminus \bar{x}|$ of the variables of T.

Δ^X_+ makes Ref a Monad!

Theorem

The endofunctor $Ref: Set_X \to Set_X$ gives rise to a monad with the two natural transformations

- ullet $unit:Id(T)\overset{\cdot}{
 ightarrow}Ref(T)=t\mapsto (t\uparrow id)$ and
- $\bullet \ mult: Ref(Ref(T)) \stackrel{\cdot}{\rightarrow} Ref(T) = ((t \uparrow h_1)h_2) \mapsto (t \uparrow h_1; h_2)$

$$Tm \xrightarrow{unit} \bar{x} \mapsto (Tm \ \bar{x} \uparrow \bar{x} \sqsubseteq \bar{x})$$

$$\bar{y} \mapsto ([\bar{x} \mapsto (Tm \ \bar{x} \uparrow \bar{x} \sqsubseteq \bar{x})]\bar{s} \uparrow \bar{s} \sqsubseteq \bar{y}) \xrightarrow{mult} \bar{y} \mapsto (Tm \ \bar{s} \uparrow \bar{s} \sqsubseteq \bar{y})$$

The Notion of Relevant Pairs

Definition

Let $Cov: \bar{x} \sqsubseteq \bar{s} \to \bar{y} \sqsubseteq \bar{s} \to Set$ be the set of *coverings* indexed by morphisms \bar{b}_1 and \bar{b}_2

$$\overline{Cov}$$
 · ·

$$\frac{Cov~\bar{b}_1~\bar{b}_2}{Cov~\bar{b}_11~\bar{b}_2}~L$$

$$\frac{Cov\ \bar{b}_1\ \bar{b}_2}{Cov\ \bar{b}_1\ \bar{b}_2 1}\ R$$

$$\frac{Cov\ \bar{b}_1\ \bar{b}_2}{Cov\ \bar{b}_11\ \bar{b}_21}\ B$$

Definition

Let the set of relevant pairs be defined as

- $\bullet \ _ \times_R _ : \bar{X} \to \bar{X} \to \bar{X} = (T, S, \bar{x}) \mapsto ((_ \uparrow \bar{b}_1 : T \Uparrow \bar{x}) \times (_ \uparrow \bar{b}_2 : S \Uparrow \bar{x}) \times Cov \ \bar{b}_1 \ \bar{b}_2)$
- $\bullet _,_R _: T \Uparrow \bar{x} \to S \Uparrow \bar{x} \to (T \times_R S) \Uparrow \bar{x} \\ = ((t_1 \uparrow \bar{b}_1), (t_2 \uparrow \bar{b}_2)) \mapsto ((t_1 \uparrow \bar{b}_1'), (t_2 \uparrow \bar{b}_2'), \bar{b}_1 \oplus \bar{b}_2) \uparrow \bar{b}'$

Exploring Relevant Pairs

Remark

Coverings $Cov\ \bar{b}_1\ \bar{b}_2$ hold data about the coproduct of \bar{b}_1 and \bar{b}_2 as well as information about the original appearance of \bar{b}_1 and \bar{b}_2 .

Example

Look at $\lambda x.\lambda y.\lambda z.z$ $y = \lambda \lambda \lambda (\#0 \ \#1).$

The variable terms could also be represented as

- $z': Tm \uparrow 3 = \#0 \uparrow 001$
- $y': Tm \uparrow 3 = \#1 \uparrow 011$

And the application term could be a relevant pair

•
$$z'_{R}y': (Tm \times_{R} Tm) \uparrow 3 = (\#0 \uparrow 01, \#1 \uparrow 11, BR) \uparrow 011$$

Intrinsically Scoped co-De Bruijn Syntax

Definition

Let $Tm: \mathbb{N} \to Set$ be inductively defined:

$$\overline{Tm\ 1}$$
 #

$$\frac{(Tm \times_R Tm) \ n}{Tm \ n} \ \$$$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

```
 \begin{split} \mathbb{K} &= \lambda x. \lambda y. x &= \mbox{$\rlap/$} \\ \mathbb{S} &= \lambda x. \lambda y. \lambda z. x \ z \ (y \ z) = \lambda \ \lambda \ \lambda ( \\ &\quad (((\# \uparrow 10) \$[(LR)](\# \uparrow 01)) \uparrow 101) \ \$[(LRB)] \\ &\quad (((\# \uparrow 10) \$[(LR)](\# \uparrow 01)) \uparrow 011) \\ ) \end{split}
```

This is actually an Agda Paper

- All categorical concepts formalized in Agda
- Categorical concepts applied to formally reason over programming languages using theorem provers
- Suitable representations of objects and morphisms required
- Comes with a universe of metasyntaxes with binding

C.T. McBride 61

The copU proof goes by induction on the triangles which share w' and inversion of the coproduct.

A further useful property of coproduct diagrams is that we can selectively refine them by a thinning into the covered cope. $\begin{aligned} &\text{subCop}: (\psi: & \succeq \mathbb{E}^k) \to \mathbb{C} \\ & & \le \lambda \, t : \to \bot \, \lambda \, t : \to \bot$

The implementation is a straightforward induction on the diagram.

 $\operatorname{outl}_{P}(\operatorname{pair} s \perp \uparrow \psi) = \operatorname{thin} \uparrow \psi s$

The payoff from coproducts is the type of relevant pairs — the co-de-Bruijn touchstone:

```
record \neg s_R = (ST \cdot \overline{K}) (i.e. 18 wid K): Set where constructor pair field out : S \circ \emptyset : K = K: S \circ K = K: S \circ
```

7 Monoidal Structure of Order-Preserving Embeddings

Variable bindings extend scopes. The λ construct does just one 'snoc', but binding can be simultaneous, so the monoidal structure on Δ . induced by concatenation is what we need.

Concatenation further extends to Coverings, allowing us to build them in chunks.

One way to build such a chunk is to observe that two scopes cover their concatenation.

 $\operatorname{outr}_{P}(\operatorname{pair}_{-t}_{-\uparrow}\psi) = \operatorname{thin} \psi t$

Using co-De Bruijn is not hard, category theory is!

```
data Cov : (k \mid m : \mathbb{N}) \rightarrow \mathsf{Set} where
   ·: Cov 0 0 0
   L : Cov k \mid m \rightarrow \text{Cov (suc } k) \mid \text{(suc } m)
   R : Cov k \mid m \rightarrow \text{Cov } k \text{ (suc } l) \text{ (suc } m)
   B: Cov k I m \to Cov (suc k) (suc I) (suc m)
data Term : \mathbb{N} \to \mathsf{Set} where
   # : Term 1
   \lambda : Term (suc n) \rightarrow Term n
  [] : Term k \to \text{Cov } k \mid m \to \text{Term } l \to \text{Term } m
=\lambda (\lambda (\lambda ((\# \{L(R \cdot)\} \#) \{L(R(B \cdot))\} (\# \{L(R \cdot)\} \#))))
```

References