	For each record in the dataset it is provided: Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration. Triaxial Apprelation from the accelerometer (total acceleration) and the estimated body acceleration.
In [8]:	 Triaxial Angular velocity from the gyroscope. A 561-feature vector with time and frequency domain variables. Its activity label. More information about the features is available on the website: above or at https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones fromfuture import print_function import os #Data Path has to be set as per the file location in your system #data_path = ['', 'data']
	Question 1 Import the data and do the following: • Examine the data typesthere are many columns, so it might be wise to use value counts • Determine if the floating point values need to be scaled • Determine the breakdown of each activity
In [9]:	<pre>import pandas as pd import numpy as np #The filepath is dependent on the data_path set in the previous cell filepath = os.sep.join(data_path + ['data.csv']) data = pd.read_csv(filepath, sep=',')</pre> The data columns are all floats except for the activity label.
<pre>In [10]: Out[10]: In [11]: Out[11]:</pre>	angle(tBodyGyroJerkMean,gravityMean) float64 angle(X,gravityMean) float64 angle(Y,gravityMean) float64
In [12]: Out[12]:	
<pre>In [13]: Out[13]: In [14]: Out[14]:</pre>	1.0 561 dtype: int64 Examine the breakdown of activitiesthey are relatively balanced.
	STANDING 1906 SITTING 1777 WALKING 1722 WALKING_UPSTAIRS 1544 WALKING_DOWNSTAIRS 1406 Name: Activity, dtype: int64 Scikit learn classifiers won't accept a sparse matrix for the prediction column. Thus, either LabelEncoder needs to be used to convert the activity labels to integers, or if DictVectorizer is used, the resulting matrix must be converted to a non-sparse array. Use LabelEncoder to fit_transform the "Activity" column, and look at 5 random values.
In [15]: Out[15]:	<pre>from sklearn.preprocessing import LabelEncoder le = LabelEncoder() data['Activity'] = le.fit_transform(data.Activity) data['Activity'].sample(5) 1996 3 5495 2 10069 4 4513 5 7172 2</pre>
	 Name: Activity, dtype: int64 Question 2 Calculate the correlations between the dependent variables. Create a histogram of the correlation values Identify those that are most correlated (either positively or negatively).
In [16]:	<pre># Calculate the correlation values feature_cols = data.columns[:-1] corr_values = data[feature_cols].corr() # Simplify by emptying all the data below the diagonal tril_index = np.tril_indices_from(corr_values) # Make the unused values NaNs for coord in zip(*tril_index): corr_values.iloc[coord[0], coord[1]] = np.NaN</pre>
In [17]:	<pre># Stack the data and convert to a data frame corr_values = (corr_values.stack().to_frame().reset_index().rename(columns={'level_0':'feature1','le vel_1':'feature2',0:'correlation'})) # Get the absolute values for sorting corr_values['abs_correlation'] = corr_values.correlation.abs() A histogram of the absolute value correlations. import matplotlib.pyplot as plt import seaborn as sns</pre>
In [18]:	<pre>sns.set_context('talk') sns.set_style('white') sns.set_palette('dark') ax = corr_values.abs_correlation.hist(bins=50) ax.set(xlabel='Absolute Correlation', ylabel='Frequency'); 10000</pre>
	8000 6000 4000
In [19]:	2000 0.0 0.2 0.4 0.6 0.8 1.0 Absolute Correlation # The most highly correlated values
Out[19]:	feature1 feature2 correlation abs_correlation 156894 fBodyBodyGyroJerkMag-mean() fBodyBodyGyroJerkMag-sma() 1.000000 1.000000 93902 tBodyAccMag-sma() tGravityAccMag-sma() 1.000000 1.000000 101139 tBodyAccJerkMag-mean() tBodyAccJerkMag-sma() 1.000000 1.000000 96706 tGravityAccMag-mean() tGravityAccMag-sma() 1.000000 1.000000 94257 tBodyAccMag-energy() tGravityAccMag-energy() 1.000000 1.000000
	22657 tGravityAcc-mean()-Y angle(Y,gravityMean) -0.993425 0.993425 39225 tGravityAcc-arCoeff()-Z,3 tGravityAcc-arCoeff()-Z,4 -0.994267 0.994267 38739 tGravityAcc-arCoeff()-Z,2 tGravityAcc-arCoeff()-Z,3 -0.994628 0.994628 23176 tGravityAcc-mean()-Z angle(Z,gravityMean) -0.994764 0.994764 38252 tGravityAcc-arCoeff()-Z,1 tGravityAcc-arCoeff()-Z,2 -0.995195 0.995195 22815 rows × 4 columns
In [20]:	 Question 3 Split the data into train and test data sets. This can be done using any method, but consider using Scikit-learn's StratifiedShuffleSplit to maintain the same ratio of predictor classes. Regardless of methods used to split the data, compare the ratio of classes in both the train and test splits. from sklearn.model_selection import StratifiedShuffleSplit # Get the split indexes
	<pre>strat_shuf_split = StratifiedShuffleSplit(n_splits=1, test_size=0.3, random_state=42) train_idx, test_idx = next(strat_shuf_split.split(data[feature_cols], data.Activity)) # Create the dataframes X_train = data.loc[train_idx, feature_cols] y_train = data.loc[train_idx, 'Activity'] X_test = data.loc[test_idx, feature_cols] y_test = data.loc[test_idx, 'Activity']</pre>
<pre>In [21]: Out[21]: In [22]:</pre>	0 0.188792 2 0.185046 1 0.172562 3 0.167152 5 0.149951 4 0.136496 Name: Activity, dtype: float64
Out[22]:	0 0.188673 2 0.185113 1 0.172492 3 0.167314 5 0.149838 4 0.136570 Name: Activity, dtype: float64
In [30]:	 Fit a logistic regression model without any regularization using all of the features. Be sure to read the documentation about fitting a multi-class model so you understand the coefficient output. Store the model. Using cross validation to determine the hyperparameters, fit models using L1, and L2 regularization. Store each of these models as well. Note the limitations on multi-class models, solvers, and regularizations. The regularized models, in particular the L1 model, will probably take a while to fit. from sklearn.linear_model import LogisticRegression # Standard logistic regression
In [25]:	<pre>lr = LogisticRegression().fit(X_train, y_train) from sklearn.linear_model import LogisticRegressionCV # L1 regularized logistic regression lr_l1 = LogisticRegressionCV(Cs=10, cv=4, penalty='l1', solver='liblinear').fit(X_train, y_train) #Try with different solvers like 'newton-cg', 'lbfgs', 'sag', 'saga' and give your observations # L2 regularized logistic regression lr_l2 = LogisticRegressionCV(Cs=10, cv=4, penalty='l2').fit(X_train, y_train)</pre>
In [32]:	Question 5 Compare the magnitudes of the coefficients for each of the models. If one-vs-rest fitting was used, each set of coefficients can be plotted separately. # Combine all the coefficients into a dataframe coefficients = list()
	<pre>coeff_labels = ['lr', 'l1', 'l2'] coeff_models = [lr, lr_l1, lr_l2] for lab, mod in zip(coeff_labels, coeff_models): coeffs = mod.coef_ coeff_label = pd.MultiIndex(levels=[[lab], [0,1,2,3,4,5]],</pre>
Out[32]:	Ir I2 I3 I4 I2 I3 I4 I4 I4 I4 I4 I4 I4
	3 -0.048233 -0.210526 -0.095260 -0.304701 0.294844 0.363876 0.000000 -1.859305 -0.238311 -1.547447 0.000000 2.572772 (30 0.018765 0.079278 -0.176941 0.112220 -0.027471 -0.005851 0.000000 0.000000 0.000000 0.000000 -0.102059 -2.677779 (307 -0.016046 0.010529 0.057410 -0.251382 0.202875 -0.003386 0.000000 0.000000 0.000000 -0.419718 0.475069 0.093637 -(553 -0.118722 0.210628 0.074582 0.200663 -0.668185 0.301035 -0.072600 0.000000 0.130844 0.000000 -0.727502 0.622267 -(82 0.010177 -0.080895 0.109458 0.101135 0.047874 -0.187749 0.000000 -1.169163 1.311573 -0.125544 0.000000 -0.077413 (77 0.034485 -0.307338 0.015340 0.148135 0.173800 -0.064421 0.074595 -0.171833 0.090358 0.000000 0.636008 -0.193809 Prepare six separate plots for each of the multi-class coefficients.
In [33]:	<pre>fig, axList = plt.subplots(nrows=3, ncols=2) axList = axList.flatten() fig.set_size_inches(10,10) for ax in enumerate(axList): loc = ax[0] ax = ax[1] data = coefficients.xs(loc, level=1, axis=1) data.plot(marker='o', ls='', ms=2.0, ax=ax, legend=False)</pre>
	<pre>if ax is axList[0]: ax.legend(loc=4) ax.set(title='Coefficient Set '+str(loc)) plt.tight_layout() Coefficient Set 0 Coefficient Set 1 10</pre>
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Coefficient Set 2 Coefficient Set 3 To a coefficient Set 3
	0 200 400 0 200 400 Coefficient Set 4 Coefficient Set 5 5 5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
In [34]:	<pre>Question 6</pre>
	<pre>coeff_labels = ['lr', 'l1', 'l2'] coeff_models = [lr, lr_l1, lr_l2] for lab,mod in zip(coeff_labels, coeff_models): y_pred.append(pd.Series(mod.predict(X_test), name=lab)) y_prob.append(pd.Series(mod.predict_proba(X_test).max(axis=1), name=lab)) y_pred = pd.concat(y_pred, axis=1) y_prob = pd.concat(y_prob, axis=1) y_pred.head()</pre>
Out[34]:	Ir 11 12
Out[35]:	Ir I1 I2 0 0.999995 0.998911 0.999997 1 0.999236 0.999631 0.999695 2 0.997411 0.995608 0.998934 3 0.988794 0.999176 0.997599 4 0.995019 0.999924 0.999342
	Question 7 For each model, calculate the following error metrics: • accuracy • precision • recall
In [37]:	 fscore confusion matrix
	• fscore
	<pre>• fscore • confusion matrix Decide how to combine the multi-class metrics into a single value for each model. from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import label_binarize metrics = list() cm = dict() for lab in coeff_labels: # Precision, recall, f-score from the multi-class support function precision, recall, fscore, _ = score(y_test, y_pred[lab], average='weighted') # The usual way to calculate accuracy accuracy = accuracy_score(y_test, y_pred[lab]) # ROC-AUC scores can be calculated by binarizing the data auc = roc_auc_score(label_binarize(y_test, classes=[0,1,2,3,4,5]),</pre>
In [38]: Out[38]:	<pre>• fscore • confusion matrix Decide how to combine the multi-class metrics into a single value for each model. from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import label_binarize metrics = list() cm = dict() for lab in coeff_labels: # Precision, recall, f-score from the multi-class support function precision, recall, fscore, _ = score(y_test, y_pred[lab], average='weighted') # The usual way to calculate accuracy accuracy = accuracy_score(y_test, y_pred[lab]) # ROC-AUC scores can be calculated by binarizing the data auc = roc_auc_score(label_binarize(y_test, classes=[0,1,2,3,4,5]),</pre>
In [38]:	• Isome • condusion matrix Decide how to combine the multi-class metrics into a single value for each model. from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import label_binarize metrics = list() cm = dict() for lab in coeff_labels: # Precision, recall, f-score from the multi-class support function precision, recall, fscore, _ = score(y_test, y_pred[lab], average='weighted') # The usual way to calculate accuracy accuracy = accuracy_score(y_test, y_pred[lab]) # ROC-AUC scores can be calculated by binarizing the data auc = roc_auc_score(label_binarize(y_rest, classes=[0,1,2,3,4,5]),
In [38]:	• fscore • confusion matrix Decide how to combine the multi-class metrics into a single value for each model. From sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.metrics import label binarize metrics = list() cm = dict() for lab in coeff labels: # Precision, recall, f-score from the multi-class support function precision, recall, fscore, _ = score(y_test, y_pred[lab], average='weighted') # The usual way to calculate accuracy accuracy = accuracy_score(y_test, y_pred[lab]) # ROC-AUC scores can be calculated by binarizing the data auc = roc_auc_score(label_binarize(y_test, classes=[0,1,2,3,4,5]),
In [38]: Out[38]:	• Score • Confusion matrix Decide how to combine the multi-class metrics into a single value for each model. From sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import proprocessing import label_binarize metrics = list() for lab in coeff labels: # Precision, recall, f-score from the multi-class support function precision, recall, f-score_ = score(y_test, y_pred[lab]), average='weighted') # The usual way to calculate accuracy accuracy = accuracy_score(y_test, y_pred[lab]) # MOC-AUC scores can be calculated by binarizing the data acc = not course score(tabel_binarize(y_test, y_pred[lab]) # Asst, the confusion matrix (y_test_y_pred[lab], classes=[0,1,2,3,4,5]), average='weighted') # Asst, the confusion matrix(y_test, y_pred[lab]) metrics append(pd.Serias((]nrecision();nrecision(, 'recall':recall, ''score':recore, 'accuracy':accuracy, 'accuracy, 'accurac
In [38]: Out[38]:	• score • confusion matrix Decide how to combine the multi-class metrics into a single value for each model. from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import confusion matrix, accuracy score, roc auc score from sklearn.metrics import confusion matrix, accuracy score, roc auc score from sklearn.metrics import confusion matrix, accuracy score, roc auc score from sklearn.metrics import confusion matrix, accuracy score, roc auc score from sklearn.metrics import confusion matrix # Precision, recall, f-score from the multi-class support function precision, recall, f-score # ROC-AMC scores can be calculated by binarizing the data auc = roc_auc, score(label_binarize(y_test, classes=[0,1,2,3,4,5]),
In [38]: Out[38]:	Name - Name - Confident matrix - Cast
In [38]: Out[38]:	### Control Process Proc
In [38]: Out[38]:	Process Proc
In [38]: Out[38]:	Processing the processing states are a degle-sale for each model. From skillerm metrics amont in processing states are a degle-sale for each model. From skillerm metrics amont in processing states are a degle-sale for each model. From skillerm reprocessing states are a degle-sale for each model. From skillerm reprocessing states are a degle-sale for each model. The skiller reprocessing states are a decorated and an experiment of the skiller reprocessing states are decorated and an experiment of the skiller reprocessing states accorated and an experiment of the skiller reprocessing states accorated and an experiment of the skiller reprocessing states accorated an experiment of the skiller reprocessing states and the skiller reprocessing
In [38]: Out[38]:	Commission
In [38]: Out[38]:	Consideration and Color merce (two allage value or call model
<pre>In [38]: In [39]: In [87]: In [88]:</pre>	Transition from the condition with the condition of the
<pre>In [38]: In [87]: In [88]: In [90]:</pre>	Transition for mark
In [38]: In [39]: In [87]: In [90]:	Process Proc
In [38]: In [39]: In [87]: In [90]:	### Complete Control C
In [38]: In [39]: In [87]: In [90]: In [90]:	Transfer to the control of the contr
In [38]: In [39]: In [87]: In [90]: In [90]:	Section Processing Proces
In [38]: In [39]: In [87]: In [90]: In [90]:	Total Continue
In [38]: In [39]: In [87]: In [90]: In [90]:	Property
In [38]: In [39]: In [87]: In [90]: In [90]:	The content of the
In [38]: In [39]: In [87]: In [90]: In [90]:	Company Comp
In [38]: In [39]: In [87]: In [90]: In [90]:	### Comment of the Co
In [38]: In [39]: In [87]: In [90]: In [92]:	Company
In [38]: In [39]: In [90]: In [92]: In [93]:	The content of the co
In [38]: In [39]: In [87]: In [90]: In [92]:	The control of the co
In [38]: In [87]: In [90]: In [92]: In [93]:	Company
In [38]: In [87]: In [90]: In [92]: In [93]:	Control of the contro
In [38]: In [87]: In [90]: In [92]: In [93]:	Compared
In [38]: In [87]: In [90]: In [92]: In [93]:	Common and the control of the contro
In [38]: In [39]: In [96]: In [93]: In [93]:	Control of the contro

axList[-1] for ax, lab sns.he	b in zip(eatmap(cm t(title=l	ff') axList[:- [lab], ax ab);	1], coef =ax, anno	f_labels ot= True ,): fmt= <mark>'d</mark>);			11		
0 583 0 2 1 2 0 0 0 0	466673400	0 0 54 0 99 0 0 494 0 7 0 20	0 0 7 391	1 0 16 24	-500 -400 -300 -200 -100	4 3 2 1	81 2 0 47 0 63 0 0	0 8 53 3 508 0 0	0 0 1 501	 0 1 1 0 0 3 13 395 20 16 43 	
0 0 583 0 0 0 0	0 480 5 61 5	2 3 2 0 0 51 0 11 0 0 497	0 1 0 7	0 1 0 13	-500 -400 -300 -200		0 1	2	3	4 5	
O O Perform a Questão 7 e Na questão 7 Podemos obs	0 1 a compar 12 7 obtivemos servar que c	valores sup os valores da	23 4 he output eriores de tras métricas	5 ts betwoodas as moda questã	étricas sol o 7 possue	o os valore	es obtidos s muito al	na quest	ão 12. próximos	a 1. Portant	o existem
possibilidade não. Multicolineari multicolineari forma a remo outras feature Como utilizar modelo explic isso aliado ao features altar valores de m	idade em reidade forte é oção de qua es altamente mos um thre caria a redu os alto valor mente correl	gressão é u é problemáti isquer featu e correlacior eshold de va ção do valor es das métr	ma condiçã ca porque p res altamen nados. riância, a m r das métric icas na que	o que ocor oode aume ate correlac aulticolinea as. Multico	re quando ntar a vari cionadas d ridade fort dinearidad demos diz	algumas ância dos o modelo e que cau e forte im er que exi	features o coeficien afetará si sou a ren plica que ste um ino	estão corr tes de reg gnificativa noção de f um model dicador de	elacionada ressão, to mente os eatures in o não con	as com outra rnando-os ir coeficientes aportantes p seguirá gena g e que após	is. A istáveis. E estimado ara o ajus eralizar be s a remoçá
Perform a Questão 8 e A matriz de o possui a maio muito alta, a proporção do	13 confusão é u oria de seus taxa de verc	ıma forma d s valores na dadeiros pos	e avaliar os diagonal pr sitivos foi m	falso posit incipal, ou uito elevad	tivos e fals seja, poud la, isso po	o negativ os falso p de ser um	os. O resu oositivos e indicador	ıltado da ı falso neç de overfi	matriz de d ativos, po tting, após	onfusão da rém essa pr a remoção	questão 8 oporção fo das featul