

Dual high slew rate operational amplifier

BA4560 / BA4560F / BA4560N

The BA4560, BA4560F, and BA4560N are dual operational amplifiers which achieve approximately twice the high output current of the BA4558, as well as featuring a higher slew rate of 4V / μ s, a gain band width of 10MHz, and an improved frequency characteristic. The following packages are available: 8-pin DIP (BA4560), 8-pin SOP (BA4560F), and 8-pin SIP (BA4560N).

● Applications

Active filters
Audio amplifiers
VCOs
Other electronic circuits

● Features

- 1) Built-in output short-circuit protection circuit.
- 2) Internal phase correction.
- 3) No latch-up.
- 4) Wide range of common-mode modes and differential voltage.
- 5) High gain and low noise.

● Block diagram

● Internal circuit configuration

● Absolute maximum ratings ($T_a = 25^\circ\text{C}$)

Parameter	Symbol	Limits			Unit
		BA4560	BA4560F	BA4560N	
Power supply voltage	V_{CC}	± 18	± 18	± 18	V
Power dissipation	P_d	800*	550*	900*	mW
Differential input voltage	V_{ID}	$\pm V_{CC}$			V
Common-mode input voltage	V_I	$-V_{CC} \sim V_{CC}$			V
Operating temperature	T_{OPR}	$-40 \sim +85$			$^\circ\text{C}$
Storage temperature	T_{STG}	$-55 \sim +125$			$^\circ\text{C}$

* Refer to the P_d characteristics diagram. The values for the BA4560F are those when it is mounted on a glass epoxy PCB (50mm × 50mm × 1.6mm).

● Electrical characteristics (unless otherwise noted, $T_a = 25^\circ\text{C}$, $V_{CC} = +15\text{ V}$, $V_{EE} = -15\text{ V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Input offset voltage	V_{IO}	—	0.5	6.0	mV	$R_S \leq 10\text{k}\Omega$
Input offset current	I_{IO}	—	5	200	nA	
Input bias current	I_B	—	50	500	nA	
High-amplitude voltage gain	A_V	86	100	—	dB	$R_L \geq 2\text{k}\Omega$, $V_o = \pm 10\text{V}$
Common-mode input voltage	V_{ICM}	± 12	± 14	—	V	
Maximum output voltage 1	V_{OM1}	± 12	± 14	—	V	$R_L \geq 10\text{k}\Omega$
Maximum output voltage 2	V_{OM2}	± 10	± 13	—	V	$R_L \geq 2\text{k}\Omega$
Common-mode rejection ratio	CMRR	70	90	—	dB	$R_S \leq 10\text{k}\Omega$
Power supply voltage rejection ratio	PSRR	—	30	150	$\mu\text{V/V}$	$R_S \leq 10\text{k}\Omega$
Slew rate	S. R.	—	4.0	—	$\text{V}/\mu\text{s}$	$A_V = 1$, $R_L = 2\text{k}\Omega$
Input conversion noise voltage	V_n	—	—	2.2	μV	
Gain band width product	GBW	—	10	—	MHz	$f = 10\text{kHz}$

● Electrical characteristic curves

Fig.1 Power dissipation vs.
ambient temperature

Fig.2 Quiescent current vs.
power supply voltage

Fig.3 Open loop voltage gain vs.
frequency

Fig.4 Maximum output voltage vs.
frequency

Fig.5 Input bias current vs.
ambient temperature

Fig.6 Input bias current vs. power
supply voltage

Fig.7 Output response characteristics

Fig.8 Common mode input voltage vs.
power supply voltage

● Operation notes

(1) Handling unused circuits

If there are any circuits which are not being used, we recommend making connections as shown in Figure 9, with the non-inverted input pin connected to the potential within the in-phase input voltage range (V_{ICM}).

Fig.9 Unused circuit connections

● External dimensions (Units: mm)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ROHM Semiconductor:](#)

[BA4560](#)