A Survey on Overlapping Community Detection

Algorithms and Evaluation Metrics

Presenter: Yulin Che

Supervisor: Qiong Luo

Content

- 1. Background
- 2. Algorithms
- 3. Evaluations Metrics
- 4. Summary & Discussion

Community

• Community: densely connected vertices

Community Definitions

• Community: No rigorous definition, mainly two alternative ways to define a community

• Way1: Measure Maximization

- Local fitness function(measure the local structure density)
- Global fitness function(global modularity to measure the community structure)

Way2: Heuristics

- Grow from a small group of densely connected vertices
- Propagate community labels

Overlapping versus Disjoint Communities

- **Disjoint Communities:** a single vertex belongs to at most one community
- Overlapping Communities: a single vertex belongs to possibly multiple communities
- Why Overlapping: Sharing many things in common, e.g., regions, topics, hobbies

Community Detection

- **Input:** graph
- Output: a list of communities
- Post-Processing: get community labels, evaluate the quality

Input Graphs

- Real-world graphs
 - snap datasets: http://snap.stanford.edu/data/index.html
 - uci datasets: https://networkdata.ics.uci.edu/about.php
- Synthetic graphs
 - **GN benchmark:** generate the graph from communities by linking intra-community vertices with a higher probability than inter-community vertices.
 - **LFR benchmark:** generate the graph with social network features
 - small world, 6-hop theory
 - scale free, vertex degree follows power-law distribution.

Application Domains

Social Network

Content Sharing

• Blogs

Wiki/Forum

Example: Karate Club Friendship

- **Vertex**: Karate club member
- **Edge**: member friendship

Applications:

- Understand the interactions among members
- Help the network visualization

Example: Karate Club Friendship

• Applications:

- Understand the interactions among members
 - grey edges: weak inter-community interactions
 - other color edges: strong intra-community interactions
- Help the network visualization

Example: Karate Club Friendship

• Applications:

- Understand the interactions among members
- Help the network visualization
 - clustering vertices in the same community
 - grey edges(inter-community): sparse
 - other color edges(intra-community): dense

Content

- 1. Background
- 2, Algorithms
- 3. Evaluations Metrics
- 4. Summary & Discussion

Algorithm Category

- Categorization: based on algorithm design ideas.
 - Clique Percolation
 - Link Partition
 - Local Expansion
 - Dynamics
 - Statistical Inference(mainly by researchers in statistics, not included in this survey)

- **k-Clique**: a complete graph of k vertices
- **Percolation**: two k-cliques sharing enough common vertices will influence each other
- Step1: Clique Percolation
 - construct vertices of the k-clique graph
 - construct edges of the k-clique graph(percolate if two vertices in k-clique graph have strong connections)
- Step2: Community Extraction
 - find connected components
 - Set-union vertices within each connected component to get a new community

• **k-Clique**: a complete graph of k vertices

input graph

input graph

• **k-Clique**: a complete graph of k vertices

• **k-Clique**: a complete graph of k vertices

- Clique Percolation : construct the 3-clique graph
 - construct vertices
 - construct edges (percolation)

input graph

3-clique graph

- Clique Percolation : construct the 3-clique graph
 - construct vertices
 - construct edges(percolation)

[1, 2, 3]

[8, 6, 7]

3-clique graph

- Clique Percolation : construct the 3-clique graph
 - construct vertices
 - construct edges(percolation)

- Clique Percolation : construct the 3-clique graph
 - construct vertices
 - construct edges(percolation)

• Step2: Community Extraction

• Community Extraction

Community Extraction

• Community Detection Result

- Link: edge in the original graph
- Link Partition: partition the links in the original graph into several communities
- Step1: Two Approaches for Link Partition
 - extract the link graph and apply graph partition algorithms on that, or
 - directly cluster the links via some link community similarity function
- Step2: Community Extraction: assign the link community label to the source and destination vertices of the link

- Approach1: Link Graph Extraction
 - construct link graph vertices
 - construct link graph edges

- Approach1: Link Graph Extraction
 - construct link graph vertices

- Approach1: Link Graph Extraction
 - construct link graph vertices

Approach1: Link Graph Extraction

• after all edges get properties, apply graph partition algorithms or disjoint community detection algorithms

- Approach2: Cluster the links with similarity function
 - clusters are a list of edges
 - similarity function measures the correlations between two

- Step2: Community Extraction
 - set union on link partitions

• Community Detection Result

Category3: Local Expansion

- Step1: Select Seeds
 - each seed: a list of influential vertices
- Step2: Expand Seed
 - compute local fitness values of expansion alternatives
 - apply some heuristics, to explore the topology of the graph
- Step3: Merge Intermediate Communities
 - merge intermediate communities into global communities

Category3: Local Expansion

- Step1: Select Seeds
 - for example, select {1}, {5}, {8} as a list of seeds for local expansions

Category3: Local Expansion

- Step2: Expand Seed(Seed:{5})
 - expand it through maximizing a local fitness function $w_{in}/(w_{in} + w_{out})$, via adding or removing members

members:

- vertices selected to be members of a community
- at the beginning, members are vertices in the seed

- Expand Seed(Seed:{5})
 - expand it through maximizing a local fitness function $w_{in}/(w_{in} + w_{out})$, via adding or removing members

neighbors:

- adjacent vertices of members
- at the beginning, neighbors are the adjacent vertices of the vertices in the seed

- Expand Seed(Seed:{5})
 - expand it through maximizing a local fitness function $w_{in}/(w_{in} + w_{out})$, via adding or removing members

local fitness function :

- evaluate the local structure, whether possible to add or remove members to explore a better community
- w_{in}: edges among members
- w_{in +} w_{out}: edges among the union of members and neighbors

- Expand Seed(Seed:{5})
 - at the beginning, no edges among the members, $w_{in} = 0$
 - black edges contribute to w_{out} , $w_{out} = 5$

- members: {5}
- neighbors: {3,4,6}
- \mathbf{w}_{in} : 0
- w_{out}: 5
- $W_{in} + W_{out}$: 5
- fitness: 0/5

- Expand Seed (Seed:{5})
 - add the member {4}

- members: {4,5}
- neighbors: {3, 6}
- w_{in}: 1
- w_{out} : 4
- $W_{in} + W_{out}$: 5
- fitness: 1/5

- Expand Seed (Seed:{5})
 - add the member {3}

- members: {3,4,5}
- neighbors: {1,2,6}
- w_{in}: 3
- w_{out}: 5
- $W_{in} + W_{out} : 8$
- fitness: 3/8

- Expand Seed (Seed:{5})
 - add the member {6}

- members: {3,4,5,6}
- neighbors: {1,2,7,8}
- W_{in}: 5
- w_{out}: 6
- $W_{in} + W_{out}$: 11
- fitness: 5/11

- Expand Seed (Seed:{5})
 - add the member {1}

- members: {1,3,4,5,6}
- neighbors: {7,8}
- W_{in}: 6
- w_{out}: 5
- $W_{in} + W_{out}$: 11
- fitness: 6/11

- Expand Seed
 - add the member {2}

- members: {1,2,3,4,5,6}
- neighbors: {7,8}
- W_{in}: 8
- w_{out}: 3
- $W_{in} + W_{out}$: 11
- fitness: 8/11

- Expand Seed(Seed:{5})
 - remove the member {6}

- members: $\{1,2,3,4,5\}$
- neighbors: {6}
- w_{in}: 6
- w_{out}: 2
- $W_{in} + W_{out}$: 8
- fitness: 6/8

- Seed Expansion Result(Seed:{5})
 - when the local fitness is not improved any more
 - reach the end of the seed expansion for the seed {5}

- members: {1,2,3,4,5}
- neighbors: {6}
- w_{in}: 6
- w_{out}: 2
- $W_{in} + W_{out}$: 8
- fitness: 6/8

Seed Expansion Result(Seed:{1})

- members: {1,2,3}
- neighbors: {4,5}
- W_{in}: 3
- w_{out}: 3
- $W_{in} + W_{out}$: 6
- fitness: 3/6

Seed Expansion Result(Seed:{8})

- members: {4,5,6,7,8,9}
- neighbors: {3}
- W_{in}: 7
- w_{out}: 2
- $W_{in} + W_{out}$: 9
- fitness: 7/9

Step3: Merge Intermediate Communities

Label Propagation Algorithm

- One Round Computation
 - outer iterations over vertices
 - inner iterations over neighbors' labels
- Label Update Strategy
 - vote and choose the majority, randomly break tie
- Label Update Mode
 - asynchronous: update after finishing inner iterations
 - synchronous: update after finishing outer iterations

Extensions

- Apply on a subgraph
- Allow a vertex to have multiple labels with belonging factors(belonging factor: correlation between a vertex and a list of communities)

- Step1: Assign Labels
 - assign each vertex a unique label(color)

- Step2: Asynchronous Mode
 - status after initializing labels

- vertex 1 is receiving labels from neighbors
- labels from vertices 2 and 3 are a tie
- randomly break tie

- Asynchronous Mode
 - status after first inner iteration

- vertex 2 is receiving labels from neighbors
- vertices 1 and 3 are in the same color
- only choice is blue

- Asynchronous Mode
 - status after second inner iteration

- vertex 3 is receiving labels from neighbors
- neighbors are in three colors
- majority is blue

- Asynchronous Mode
 - status after third inner iteration

- vertex 4 is receiving labels from neighbors
- neighbors are in three colors and in tie
- randomly break tie

- Asynchronous Mode
 - status after fourth inner iteration

- vertex 5 is receiving labels from neighbors
- two colors of neighbors
- majority is purple

- Asynchronous Mode
 - status after fifth inner iteration

- vertex 6 is receiving labels from neighbors
- three colors of neighbors
- majority is purple

- Asynchronous Mode
 - status after sixth inner iteration

- vertex 7 is receiving labels from neighbors
- three colors of neighbors and in tie
- randomly break tie

- Asynchronous Mode
 - status after seventh inner iteration

- vertex 8 is receiving labels from neighbors
- both neighbors in the same color
- only choice is purple

- Asynchronous Mode
 - status after eighth inner iteration

- vertex 9 is receiving labels from neighbors
- only one neighbor
- only choice is purple

- Asynchronous Mode
 - status after ninth inner iteration

- reach the end of first outer iteration
- we can further do more outer iterations in the same manner

- Step2: Synchronous Mode
 - intermediate labels during the inner iterations are stored
 - labels get updated after one outer iteration

- Step2: Synchronous Mode
 - intermediate labels during the inner iterations are stored
 - labels get updated after one outer iteration
 - changes are more stable than those in asynchronous mode

Synchronous Mode

- intermediate labels during the inner iterations are stored
- labels get updated after one outer iteration
- changes are more stable than those in asynchronous mode

Synchronous Mode

- intermediate labels during the inner iterations are stored
- labels get updated after one outer iteration
- changes are more stable than those in asynchronous mode

Synchronous Mode

- intermediate labels during the inner iterations are stored
- labels get updated after one outer iteration
- changes are more stable than those in asynchronous mode

Algorithm Summary – Pros & Cons

Algorithms Pros

have many alternatives to replace the structure of clique, e.g., k-cores, k-truss

Cons

- look like pattern matching methods
- high complexity

Link **Partition**

Clique

Percolation

- make it possible to use previous available disjoint community detection algorithms to detect overlapping communities
- weak interpretations of the realistic meanings behind it

- Local **Expansion**
- various expansion strategies, e.g., personalized page-rank, different fitness improvement with local-search strategy
- each implementation differs a lot

Algorithm Summary – Pros & Cons

Algorithms Pros

Cons

Label Propagation

• quite fast, linear complexity in each outer iteration

- not stable, with randomness in the algorithm
- hard to tell the best number of iterations

Statistical Inference

 have a model to illustrate the relationship between the community and graph topology require expert knowledge of the graph topology and statistical analysis

Content

- 1. Background
- 2, Algorithms
- 3. Evaluations Metrics
- 4. Summary & Discussion

Evaluation Metrics Overview

With Ground Truth

, ,		
	Precision	Information Gain(X Y, Y X)
Disjoint	rand index(1973)adjusted rand index(1985)	 normalized mutual information (2002)
Overlapping	• omega index(1990)	• overlap normalized mutual information (2009)

Without Ground Truth

Modular Structure Disjoint • modularity(2004) Overlapping • link-belonging modularity(2009)

Evaluation Metrics Overview

With Ground Truth

Disjoint

Overlapping

Precision

- rand index(1973)
- adjusted rand index(1985)
- omega index(1990)

Information Gain(X|Y, Y|X)

- normalized mutual information (2002)
- overlap normalized mutual information (2009)

Without Ground Truth

Modular Structure

- **Disjoint**
- **Overlapping**

- modularity(2004)
- link-belonging modularity(2009)

With Ground Truth: Rand Index

Two Partitions

- two lists of disjoint communities for {1,2,3,4,5,6}
 - ground truth: {1,2,3}, {4,5},{6}
 - result: {1,2,5}, {3,4,6}

Pairs

• select 2 elements from 6 elements: 15 possible combinations

Matched Pairs

- type1: {element0, element1} is a subset of a community in parition1 and a subset of a community in parition2
- type2: {element0, element1} is not a subset of any community in partition1, and not a subset of any community in parition2

Rand Index Example

Two Partitions

- two lists of disjoint communities for {1,2,3,4,5,6}
 - ground truth, parition1: {1,2,3}, {4,5}, {6}
 - result, partition2: {1,2,5}, {3,4,6}

Matched Pairs

- type1 examples: {1,2}, since a subset of {1,2,3} in parition1, {1,2,5} in parition2
- type2 examples: {3,5}, since no community in parition1 or parition2 containing it
- mismatch examples: {3,6} not a subset of any community in partition1, but a subset of {3,4,6} in partition 2

Rand Index

• matched number / total combination number

Rand Index Example

type 1 match number

p2\p1	{1,2,3}	{4,5}	{6}
{1,2,5}	1	0	0
{3,4,6}	0	0	0

in p1 not in p2 pair number

p2\p1	{1,2,3}	{4,5}	{6 }
{1,2,5},	3-1-0=2	1-0-0=1	0-0-0=0
{3,4,6}			

in p2 not in p1 pair number

p2\p1	{1,2,3}, {4,5}, {6}
{1,2,5}	3-1-0-0=2
{3,4,6}	3-0-0-0=3

Rand Index

- matched number / total combination number
- matched number = 15 (2+1+0) (2+3) = 7
- total combination number = 15
- value of rand index = 7/15

Adjusted Rand Index

Two Partitions

- two lists of disjoint communities for {1,2,3,4,5,6}
 - ground truth, partition1: {1,2,3}, {4,5}, {6}
 - result, partition2: {1,2,5}, {3,4,6}

Why adjusted this value?

• elements in two partitions randomly permuted also yield a positive value, while keeping the size of each community stable

Adjusted Rand Index

- difference : rand index expected rand index
- max difference : max index expected rand index
- adjusted rand index : difference / (max difference)

Extension to Omega Index

Extended From Adjusted Rand Index

- Two Overlapping Community Lists
 - two lists of overlapping communities for {1,2,3,4,5,6}
 - ground truth: {1,2,3}, {2,3,4,5}, {6}
 - result: {1,2,3,4,5}, {2,3,4,6}

Matched Pairs Notation Change

- previous type1: {element0, element1} is a subset of a community in ground truth and a community in result
- overlapping version type1:
 - {element0, element1} is a subset of k communities in ground truth
 - {element0, element1} is a subset of k communities in result

Omega Index Example

- Two Overlapping Community Lists
 - two lists of overlapping communities for {1,2,3,4,5,6}
 - ground truth: {1,2,3}, {2,3,4,5}, {6}
 - result: {1,2,3,4,5}, {2,3,4,6}
- Matched Pairs
 - overlapping version type1:
 - {element0, element1} is a subset of k communities in ground truth
 - {element0, element1} is a subset of k communities in result
- Examples
 - **counted pair** {2,3}: appears twice both in ground truth and result
 - **not counted pair** {3,4}: appears once in ground truth but twice in result

Evaluation Metrics Overview

With Ground Truth

D	•	•	
Prec	716		m
		711	,,,

Disjoint

- rand index(1973)
- adjusted rand index(1985)

Overlapping

• omega index(1990)

Information Gain(X|Y, Y|X)

- normalized mutual information (2002)
- overlap normalized mutual information (2009)

Without Ground Truth

Disjoint

Overlapping

Modular Structure

- modularity(2004)
- link-belonging modularity(2009)

Without Ground Truth: Modularity

Random Graph(Null Model)

- fixed degrees, given a list of vertex degrees
- no prior knowledge about how vertices linked
- probability to link vertex i and vertex j, where k_i represent the degree of vertex i

 $P_{ij} = \frac{k_i k_j}{4m^2}, \qquad \forall i, j$

Sub Graphs

- type1 sub graph: extracted from a community of vertices in the original graph
- type 2 sub graph: extracted from a community of vertices in the random graph

Assumption

• type 1 sub graphs are supposed to be denser than type 2

Modularity

Sub Graphs

- type1 sub graph: extracted from a community of vertices in the original graph
- type 2 sub graph: extracted from a community of vertices in the random graph

Assumption

• type 1 sub graphs are supposed to be denser than type 2

Local Modular Score

- observed number of edges expected number of edges
- with normalization

$$Q_S = \sum_{i,j \in V'} \left[\frac{A_{ij}}{2m} - P_{ij} \right] \quad A_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise.} \end{cases}$$

Modularity

Sub Graphs

- type1 sub graph: extracted from a community of vertices in the original graph
- type 2 sub graph: extracted from a community of vertices in the random graph

Assumption

• type 1 sub graphs are supposed to be denser than type 2

Global Modular Score

- sum of all local modular scores
- with normalization

$$Q = \frac{1}{2m} \sum_{i,j \in V} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

$$\delta(c_i, c_j) = \begin{cases} 1 & \text{if } i \text{ and } j \text{ belong to the same community} \\ 0 & \text{otherwise.} \end{cases}$$

Extension to Link Belonging Modularity

- Designed for directed graph with overlapping communities
- Change: Random Graph Parameter

- Addition: Vertex Belonging Factors
 - vertex i belongs to multiple communities

$$0 \le \alpha_{i,c} \le 1$$
 $\forall i \in V, \quad \forall c \in C$ $\sum_{c=1}^{|C|} \alpha_{i,c} = 1$

- Addition: Belonging Coefficient
 - relationship between (vertex I, vertex j) and community c

$$\beta_{l(i,j),c} = \beta_{l,c} = \mathcal{F}(\alpha_{i,c}, \alpha_{j,c}), \quad l = (i,j)$$

Extension to Link Belonging Modularity

- Addition: probability an edge relates to a community
 - probability (vertex i, vertex j), destination vertex j in community c $\beta_{l(i,j),c}^{\text{out}} = \frac{\sum_{j \in V} \mathcal{F}(\alpha_{i,c},\alpha_{j,c})}{|V|}$
 - probability (vertex i, vertex j), source vertex i in community c $\beta_{l(i,j),c}^{\text{in}} = \frac{\sum_{i \in V} \mathcal{F}(\alpha_{i,c},\alpha_{j,c})}{|V|}$
- Change: Global Modular Score Function

$$Q = \frac{1}{2m} \sum_{i,j \in V} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

Content

- 1. Background
- 2, Algorithms
- 3. Evaluations Metrics
- 4. Summary & Discussion

Algorithm Application Issues

Too Many Algorithms

- different implementations, languages, platforms
- complexity, efficiency differs a lot

Non-Determinism

- randomness in some algorithms, e.g, randomly break tie, randomly select seeds
- different ways of iterations change the result a lot

Evaluation Standard

- in most cases, ground truth is not available for a large scale graph
- few empirical study on large datasets to interpret the quality of overlapping community detection results

Algorithm Efficiency Issues

Memory Cost

- In some papers, **100MB for a 1 million edges** sparse graph
- (number of bytes for each edge) * 1MB is required for basic graph storage
- build hash tables for expected constant time checking the adjacency
- not scale to billions of edges, which at least requires
 100GB

Time Cost

• In some sequential local expansion algorithms I have implemented and optimized, it takes **up to an hour** to do the computation on a **one-million-edge** graph

Future Work Directions

Toolkit

- integrate evaluation metrics, datasets and representative algorithms
- efficiency statistics, summarize some optimization rules
- visualize some representative algorithms, illustrating internal states and efficiency bottleneck

Algorithm

possible improvement, new design and parallelization

End

For Detailed Information(Codes/Figures):

https://github.com/GraphProcessor/CommunityDetectionCodes

This PPT:

https://www.dropbox.com/s/on3id2rg6lc691b/yche-20292673-pqe-ppt-complete.ppt?dl=0

With Ground Truth: NMI

- Mutual Information Basics
 - H(X|Y): given Y, information required to infer X, a conditional entropy
 - X, Y are discrete random variables here
- Derivations

$$I(X;Y) = H(X) - H(X|Y)$$

= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$
= $H(X,Y) - H(X|Y) - H(Y|X)$

With Ground Truth: NMI

• I(X;Y) = H(Y) - H(Y|X) Derivation

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Cover T M, Thomas J A. Elements of information theory[M]. John Wiley & Sons, 2012.

$$=\sum_{x,y}p(x,y)\lograc{p(x,y)}{p(x)}-\sum_{x,y}p(x,y)\log p(y)$$

$$=\sum_{x,y}^{x,y}p(x)p(y|x)\log p(y|x)-\sum_{x,y}p(x,y)\log p(y)$$

$$=\sum_x p(x) \left(\sum_y p(y|x) \log p(y|x)
ight)$$

$$-\sum_y \log p(y) \left(\sum_x p(x,y)
ight)$$

$$=-\sum_x p(x)H(Y|X=x)-\sum_y \log p(y)p(y)$$

$$=-H(Y|X)+H(Y)$$

$$= H(Y) - H(Y|X).$$

With Ground Truth: NMI

LFR NMI

- V(X, Y) = H(X|Y) + H(Y|X), variation of information
- Normalized Version: $V'_{norm}(X,Y) = \frac{1}{2} \left(\frac{H(X|Y)}{H(X)} + \frac{H(Y|X)}{H(Y)} \right)$
- Random Variables(use community size):

$$P(X_k = 1) = n_k/N$$
 $P(X_k = 0) = 1 - n_k/N$

• Joint Distribution:

$$P(X_k = 1, Y_l = 1) = \frac{|C'_k \cap C''_l|}{N},$$

$$P(X_k = 1, Y_l = 0) = \frac{|C'_k| - |C'_k \cap C''_l|}{N},$$

$$P(X_k = 0, Y_l = 1) = \frac{|C''_l| - |C'_k \cap C''_l|}{N},$$

$$P(X_k = 0, Y_l = 0) = \frac{|C''_l| - |C'_k \cap C''_l|}{N}.$$

Overlap Normalized Mutual Information

LFR NMI

• Use Derivation H(X|Y) = H(X,Y) - H(Y)

$$H(X_k|Y_l) = H(X_k, Y_l) - H(Y_l)$$

for overlapping NMI

$$H(X_k|\mathbf{Y}) = \mathbf{1}$$

overlapping NMI normalization
$$H(X_k|\mathbf{Y}) = \min_{l \in \{1,2...|\mathcal{C}''|\}} H(X_k|Y_l) \qquad H(X_k|\mathbf{Y})_{norm} = \frac{H(X_k|\mathbf{Y})}{H(X_k)}$$

aggregation

$$H(\mathbf{X}|\mathbf{Y})_{norm} = \frac{1}{|\mathcal{C}'|} \sum_{k} \frac{H(X_k|\mathbf{Y})}{H(X_k)}$$

final average

$$N(\mathbf{X}|\mathbf{Y}) = 1 - \frac{1}{2}[H(\mathbf{X}|\mathbf{Y})_{norm} + H(\mathbf{Y}|\mathbf{X})_{norm}].$$

My Survey Github Repository:

https://github.com/GraphProcessor/CommunityDetectionCodes

CheYulin add graph layout figures		Latest commit 5582e8c 2 hours ago
■ Algorithms	refactor some, remains a lot to do	16 days ago
Benchmark/2009-LFR-Benchmark	update Ifr benchmark refactored codes description	a month ago
■ Datasets	update some readmes	19 days ago
■ Metrics	update some readmes	19 days ago
■ NonOverlappingCodes	update some readmes	19 days ago
Prensentation	add graph layout figures	2 hours ago
□ Scripts	aggregation dataset info	3 months ago
■ SubModules	add submodules	18 days ago
Survey	update readme	17 days ago
gitignore	add oslom readme pdf file	a month ago
gitmodules	add submodules	18 days ago
License.md	Create License.md	3 months ago
README.md	update readme	5 days ago

™ Graph Benchmarks

Synthetic Tool

Content	Detail	Status
2009-LFR-Benchr	ark LFR Benchmark to generate f	ive types of graphs build success, some files unused

Real-World DataSets(Edge List)

Detailed information is in Datasets.

Quality-Evaluation Metrics

Without-Ground-Truth

Evaluation Metric Name	Implementation	Heuristic
Link-Belonging-Based Modularity	link_belong_modularity.py	compare to random graph

With-Ground-Truth

Evaluation Met	ric Name	Implementation	Heuristic
Overlap-NMI		overlap_nmi.py	info-theory entropy-measure
Omega-Idx		omega_idx.py	unadjusted compared to expected

Algorithms

In each algorithm, there is a ReadMe.md, which gives brief introduction of corresponding information of the algorithm and current refactoring status. Category information are extracted, based on Xie's 2013 Survey paper Overlapping Community Detection in Networks: The State-of-the-Art and Comparative Study.

All c++ projects are built with cmake, java projects are built with maven, python projects are not specified how to build.

Algorithm	Category	Language	Dependency	Status
2008-CPM	clique percolation	c++, python	Icelib	build success
2009-CIS	seed expansion	C++		build success
2009-EAGLE	seed expansion	C++	igraph, boost	build success
2010-LinkComm	link partition	python	optparse	python okay
2010-iLCD	seed expansion	java	args4j, trove4j	build success
2010-CONGA	dynamics	java		build success
2010-TopGC	statistical inference	java		build success
2011-GCE	seed expansion	C++	boost	build success
2011-OSLOM	seed expansion	C++		

2011-MOSES	fuzzy detection	C++	boost	build success
2011-SLPA	dynamics	c++, java, python	networkx, numpy	build success for java
2012-FastCPM	clique percolation	python, c++	networkx	build success
2012-ParCPM	clique percolation	С	igraph	build success
2012-DEMON	seed expansion	python	networkx	python okay
2013-SVINET	statistical inference	C++	gsl, pthread	build success
2013-SeedExpansion	page-rank	c++, matlab	graclus, matlab-bgl	
2014-HRGrow	matrix-exponential	c++, matlab, python	pylibbvg	python okay
2015-LEMON	seed expansion	python	pulp	python okay

Submodules(Dependencies)

Detailed information is in SubModules.

Submodule	Implementation Language	Detail
igraph	С	also provide python wrapper, graph utilities
matlab-bgl	c++, matlab	matlab implementation with bgl dependency
graclus	C++	graph partition algorithm
Icelib	C++	graph utilities by CxAalto