Lower-Level Controller (Motor DC)

Husnul Amri

Workshop SIK 2021
Kelompok Keahlian Instrumentasi dan Kontrol
Fakultas Teknologi Industri
Institut Teknologi Bandung

Overview

Golf Cart:

Yamaha Drive² Concierge 4

Golf Cart DC Motor

MOTOR / DRIVE TRAIN / POWER SUPPLY (Electric)

MOTOR	Hitachi 48-volt high-efficiency, shunt wound motor with internal solid state tachometer	
OUTPUT RATING	3.5 hp (2.6 kW) for 30 minutes	
MOTOR CONTROL UNIT	Yamaha-built solid state microprocessor with high-efficiency MOSFET switching. 270 amp armature output, 20 amp field output	
TRANSAXLE	EnduraDrive™ direct coupled transaxle equipped with high-precision helical gears, 12.49:1 drive axle ratio	
BATTERIES	STANDARD: Six 8-volt Trojan T875 Batteries OPTIONAL: Eight 6-volt Trojan T105 Batteries	
CHARGER	Yamaha-built automatic microprocessor-based high frequency switching-regulated charger with I.E.I. type charging profile, an industry first. 17 amp DC max output at 48 volts, 9.5 amp 120 volt AC. Underwriters Laboratories (U.L.) Listed. C.S.A. Certified	

Sumber: https://www.thegolfcartstore.com/images/stories/documents/Concierge%20Brochure.pdf

DC Motor Specification

Description: Motor

OEM(s): Hitachi, Yamaha

Voltage: 48

Power: 2.6kW / 3.48HP

RPM: 2900

Number of Fields: 4

Field Type: Series

Condition: New

Rotation: Reversible

Shaft: 19 Internal Splines

Current Type: DC

Notes: 3.5HP

Application: Yamaha G29 Applications

Weight: 22.95 kg

Sumber: https://www.blowermotorsplus.com/Hitachi_DM430_06A_Motor_48V_Reversible_2_6kW_p/dm430-06a.htm

Sumber: Yamaha YDRE 2012 User Manual

Open Loop Control

Control Loop

Open Loop Control

Closed Loop Control

DC Motor

DC Motor Equation

Mengacu pada gambar diatas, pada rangkaian rotor dapat diperoleh Hukum Kirchoff untuk tegangan sebagai berikut:

$$V - iR - L \frac{di}{dt} - V_{\text{emf}} = 0 \dots \dots \dots \dots (3)$$

Serta, berdasarkan Hukum Kedua Newton dapat diperoleh :

$$\tau_m = J\ddot{\theta} + k_f \dot{\theta} \dots \dots \dots \dots (4)$$

Atau:
$$k_{\tau}i = J\ddot{\theta} + k_f\dot{\theta} \dots \dots \dots \dots (5)$$

Interaksi arus rotor i_a dan medan magnet *stator* menghasilkan gaya torka induksi τ_m sebesar:

$$\tau_m = k_\tau i \dots (1)$$

 k_{τ} merupakan konstanta torka yang menyebabkan motor berputar. Pergerakan konduktor juga akan menyebabkan terjadinya V_{emf} atau tegangan electromotive-force (emf) sebesar:

$$V_{emf} = k_{emf}\dot{\theta} \dots (2)$$

Interaksi arus rotor i_a dan medan magnet *stator* menghasilkan gaya torka induksi τ_m sebesar:

Dengan k_f merupakan konstanta gesekan dan J adalah inersia rotor atau beban mekanik yang ekivalen. Kemudian, apabila persamaan (2) disubstitusi ke (3) dan disusun ulang, dapat diperoleh :

$$\frac{di}{dt} = \frac{R}{L}i - \frac{k_{emf}}{L}\dot{\theta} + \frac{1}{L}V \dots \dots \dots \dots (6)$$

Serta, dari persamaan (5) yang disusun ulang dapat diperoleh:

$$\frac{d\dot{\theta}}{dt} = \frac{k_{\tau}}{I}i - \frac{k_{f}}{I}\dot{\theta} \dots \dots \dots \dots (7)$$

DC Motor

Dikarenakan perubahan arus terhadap waktu sangat kecil dibandingkan dengan perubahan kecepatan sudut, maka komponen arus pada persamaan (6) akan berpengaruh langsung terhadap tegangan armature dan kecepatan sudut dalam bentuk :

$$i = -\frac{k_{emf}}{L}\dot{\theta} + \frac{1}{L}V \dots \dots \dots (8)$$

Sehingga, apabila persamaan (8) disubstitusikan ke persamaan (7) dapat diperoleh:

$$\frac{d\dot{\theta}}{dt} = \frac{k_{\tau}}{I} \left(-\frac{k_{emf}}{L} \dot{\theta} + \frac{1}{L} V \right) - \frac{k_f}{I} \dot{\theta} \dots \dots \dots \dots (9)$$

Apabila (9) disusun ulang, diperoleh:

$$\frac{d\dot{\theta}}{dt} + \left(\frac{k_{\tau}k_{emf}}{IL} + \frac{k_f}{I}\right)\frac{d\theta}{dt} = \frac{k_{\tau}}{IL}V \dots \dots \dots \dots (10)$$

Kemudian, persamaan (10) ditulis dalam bentuk dinamika kecepatan (ω):

$$\frac{d\omega}{dt} + \left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_f}{J}\right)\omega = \frac{k_{\tau}}{JL}V \dots \dots \dots \dots (11)$$

Dengan $\dot{\theta} = \frac{d\theta}{dt} = \omega$. Keluaran dari persamaan (11) merupakan kecepatan sudut (ω) dengan masukan kontrolnya adalah tegangan (V). Keluaran berupa kecepatan sudut kemudian akan di-feedback oleh sensor Tachometer yang terpasang di motor.

PID Control

Berdasarkan diagram blok *closed loop* yang telah dibuat, diketahui bahwa nilai galat dari kecepatan yang terbaca oleh Tachometer dengan kecepatan masukan dari pengguna adalah:

Pengontrolan PID dengan masukan kontrol berupa tegangan DC V dapat dinyatakan dalam bentuk berikut:

$$V = k_{p,\omega} \left[e_{\omega} + \frac{1}{T_{I,\omega}} \int e_{\omega} dt + T_{D,\omega} \frac{de_{\omega}}{dt} \right] \dots \dots \dots \dots (13)$$

Dengan $k_{p,\omega}$, $T_{I,\omega}$ dan $T_{D,\omega}$ merupakan parameter kontrol yang bernilai positif dan secara berturut-turut disebut sebagai konstanta proporsional, konstanta integral-waktu dan konstanta derivative-waktu untuk pengontrol kecepatan. Kemudian, persamaan (13) disubstitusi ke persamaan (11) yang menghasilkan :

$$\frac{d\omega}{dt} + \left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_f}{J}\right)\omega = \frac{k_{\tau}}{JL}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{de_{\omega}}{dt}\right]\dots\dots\dots(14)$$

Nilai ω kemudian disubstitusikan ke persamaan (14) berdasarkan susunan ulang dari persamaan (12), sehingga diperoleh :

$$\left(\frac{d\omega_{ref}}{dt} - \frac{de_{\omega}}{dt}\right) + \left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_{f}}{J}\right)(\omega_{ref} - e_{\omega}) = \frac{k_{\tau}}{JL}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{de_{\omega}}{dt}\right]\dots\dots\dots\dots(15)$$

Nilai dari kecepatan sudut yang diberikan (ω_{ref}) bernilai konstan, sehingga $\frac{d\omega_{ref}}{dt}$ akan bernilai 0.

PID Control

Apabila nilai dari $\frac{d\omega_{ref}}{dt}$ pada persamaan (15) dibuat 0, dan persamaan tersebut disusun untuk mendapatkan nilai dari ω_{ref} , maka diperoleh :

Kedua ruas pada persamaan (16) kemudian diturunkan terhadap waktu, sehingga diperoleh:

Apabila parameter $k_{p,\omega}$, $T_{I,\omega}$ dan $T_{D,\omega}$ diatur sedemikian rupa, maka persamaan (17) dapat menjadi Hurwitz (seluruh akar riil bernilai negatif), dan berarti bahwa sistem pada persamaan (17) bersifat stabil (e_{ω} tidak bervariasi seiring waktu dan $\frac{d^2e_{\omega}}{dt^2}$ serta $\frac{de_{\omega}}{dt}$ akan bernilai 0), dan galat kecepatan sudut e_{ω} juga akan menuju nol. Dengan demikian, pada akhirnya nilai dari ω_{ref} akan sama dengan ω .

Simulasi mengacu pada persamaan dinamis kecepatan sudut motor DC (persamaan (11)) yang diberi masukan dari pengontrol PID (13), yaitu:

$$\frac{d\omega}{dt} + \left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_f}{J}\right)\omega = \frac{k_{\tau}}{JL}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{de_{\omega}}{dt}\right]$$

Persamaan tersebut kemudian disederhanakan dengan bagian derivatif dari persamaan diekspansi dengan metode penyelesaian persamaan differensial orde 1 dengan metode Euler berbasis deret Taylor dari y(t+h) sebagai berikut:

$$\omega(k+1) - \omega(k) = \left(-\left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_f}{J}\right)\omega(k) + \frac{k_{\tau}}{JL}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{e(k+1) - e(k)}{\Delta t}\right]\right)dt \dots \dots \dots \dots (18)$$

Apabila persamaan 18 disusun ulang untuk mendapatkan nilai kecepatan sudut terbaru $\omega(k+1)$, diperoleh:

$$\omega(k+1) = \left(1 - \left(\frac{k_{\tau}k_{emf}}{JL} + \frac{k_f}{J}\right)dt\right)\omega(k) + \left(\frac{k_{\tau}}{JL}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{e(k+1) - e(k)}{\Delta t}\right]\right)dt \dots \dots \dots \dots (19)$$

Persamaan (19) kemudian akan digunakan untuk melakukan simulasi pengontrol PID pada motor DC dengan motor DC bergerak bebas (tidak disambungkan dengan *shaft* roda).

Nilai parameter konstan seharusnya didasari oleh data motor DC yang digunakan, namun karena sulitnya mencari data produk yang lengkap, akan ditinjau berdasarkan merk lain (fungsi sama, untuk golf cart), yaitu jenis PMAC-G4845 Golf Car 36-48V 20 Hp(pk) Gen4 Transaxle-Mount Electric Motor Drive System, dengan data parameter konstan sebagai berikut:

Parameter	Nilai
Momen Inersia Rotor (J)	0.45 kgm ²
Motor torque constant (k_{τ})	0.12 Nm/A
Electric Inductance (L)	0.05 H
Electromotive force constant (k_{emf})	0.12 Nm/A

Sumber: https://www.electricmotorsport.com/pmac-g4845-48v-450a-atv-golf-car-nev-motor-drive-system.html

Nilai parameter k_{emf} diperoleh dengan menggunakan asumsi bahwa motor DC yang digunakan bersifat ideal, sehingga konstanta torka dan konstanta emf akan bernilai sama (Wolm, P et al. 2008). Kemudian, untuk menentukan nilai konstanta hambatan karena adanya gaya viskositas (*viscous friction constant* atau k_f) digunakan pendekatan perhitungan dari Wolm,P. et al., berdasarkan dari data grafik performansi motor yang diberikan oleh vendor. Perhitungan nilai k_f diperoleh dengan menggunakan persamaan berikut:

^{*}Wolm P et al., Analysis of a PM DC motor model for application in feedback design for electric powered mobility vehicles. In: Int conference on mechatronics and machine vision in practice, Auckland; 2008.

Ditinjau nilai arus dan kecepatan sudut pada nilai torsi 20 in-lb, sehingga diperoleh nilai arus $i\sim 25\,A$, kemudian $\omega\sim 4200\,RPM$ atau apabila dikonversi, $\omega\sim 440\,rad/s$. Sehingga, apabila dimasukkan ke persamaan 20, diperoleh :

$$k_f = \frac{0.12 \times 25}{440} Nms = 0.0068 Nms \dots (21)$$

Nilai parameter tersebut kemudian akan digunakan untuk proses simulasi

Kemudian, akan diberikan pembebanan pada motor yang kemudian akan dikonversi menjadi inersia beban yang akan dibebankan ke motor melalui shaft. Untuk menghitung pembebanan tersebut, dirujuk sistem motor DC sebagai berikut:

Sumber: https://www2.ece.ohio-state.edu/~passino/lab2_rotary_dynamics.pdf

Berdasarkan rujukan tersebut, diketahui nilai dari beban total pada motor dalam bentuk persamaan sebagai berikut:

Dimana:

Keterangan:

 au_{shaft} : Torsi oleh *shaft* motor DC

 au_{gm} : Torsi yang diberikan ke beban melalui gearbox

 J_m : Inersia pada *shaft* motor DC

 J_1 : Inersia beban

K_a: Faktor konversi gearbox

 $\dot{\omega}_m$: Percepatan sudut

Apabila persamaan 22 dimasukkan ke persamaan (4) dimana J_{total} menggantikan J, maka apabila diturunkan hingga ke persamaan kontrol dengan input PID, persamaan (19) akan menjadi :

$$\omega(k+1) = \left(1 - \left(\frac{k_{\tau}k_{emf}}{J_{total}L} + \frac{k_{f}}{J}\right)dt\right)\omega(k) + \left(\frac{k_{\tau}}{J_{total}L}k_{p,\omega}\left[e_{\omega} + \frac{1}{T_{I,\omega}}\int e_{\omega} dt + T_{D,\omega}\frac{e(k+1) - e(k)}{\Delta t}\right]\right)dt \dots \dots (24)$$

Persamaan tersebut kemudian akan digunakan untuk membuat simulasi motor DC dengan adanya pembebanan.

Dalam perhitungan simulasi motor DC dengan pembebanan, diberikan asumsi-asumsi sebagai berikut :

- 1. Ban yang digunakan bulat sempurna
- 2. Beban terdistribusi merata pada ban mobil
- 3. Tiap shatft ban mobil menerima nilai pembebanan yang merata
- 4. Konversi *gearbox* dianggap efisien dan ideal

Kemudian, ditinjau bobot dari komponen penyusun mobil dengan parameter sebagai berikut:

- 1. Massa mobil golf elektrik (m_{golf}) = 320 kg
- 2. Massa motor DC $(m_{DCmotor}) = 16,4 \text{ kg}$
- 3. Massa ban $(m_{tire}) = 23 \text{ kg}$
- 4. Jari-jari dalam ban $(r_{tire}) = 0.2032 \text{ m}$

Apabila dihitung beban di tiap shaft, diperoleh:

$$m_{total} = \frac{m_{golf}}{4} + \frac{m_{DCmotor}}{4} + m_{tire} + m_{passenger} = 107.1 kg + m_{passenger} \dots \dots (25)$$

Sumber parameter beban:

- 1. Brosur Concierge 4
- 2. https://www.electricmotorsport.com/pmac-g4845-48v-450a-atv-golf-car-nev-motor-drive-system.html
- 3 dan 4. https://carpenter.com/docs/tire-fill/tirefill weight chart.pdf (18x8.5 -8)

Kemudian, dibuat skenario percobaan sebagai berikut:

- 1. Inersia beban tanpa penumpang
- 2. Inersia beban dengan 2 penumpang (asumsi tiap penumpang 80 kg dan 20 kg tambahan beban tiap shaft)
- 3. Inersia beban dengan 4 penumpang (asumsi tiap penumpang 80 kg dan 80 kg tambahan beban tiap *shaft*)

Apabila dihitung nilai inersianya $(J = m_{total}. r_{tire}^2)$ untuk setiap skenario diperoleh :

- 1. $J_1 = 4.422 \, kgm^2$
- 2. $J_2 = 6.073 \, kgm^2$
- 3. $J_3 = 7.725 \, kgm^2$

Dalam proses simulasi, digunakan nilai konversi gearbox 5:1 atau nilai $K_g = 5$. Nilai-nilai tersebut kemudian akan dimasukkan dalam simulasi, dengan referensi RPM 4200, dan parameter PID yang sama dengan simulasi tanpa pembebanan, yaitu :

$$k_p = 0.01$$

$$T_{I} = 0.2$$

$$T_D = 0$$

TERIMA KASIH