Задача №3

Расчет винтовой пружины с малым шагом

G=8*10⁴ MIIa; F=1,3kH; n_1 =20; n_2 =30; n_3 =50; D_6 =170mm; d_6 =18mm; D_m =100mm; d_m =12mm.

Разрежем пружины сечениями А-А и Б-Б и приложим неизвестные продольные силы S₁, S₂, S₃. Составим уравнение равновесия. Для нижней опоры: 1). $\Sigma Y_i = 0$, $-S_2 + S_3 = 0$, или $S_2 = S_3$. Для блока из пружин 1 и 2: 2). $-F+S_1+S_2=0$. Так как два уравнения содержат 3 неизвестных, то система 1 раз статически неопределима. Составим дополнительно уравнение совместности деформаций. Из схемы видно, что после деформации должно выполняться $l_3 + \lambda_3 = l_1 + \lambda_1 + (l_2 - \lambda_2)$, где l – длина недеформированной пружины, а λ – деформация пружины (пружина 2 сжата). Так как $l_3 = l_1 + l_2$, то получим 3). $\lambda_3 = \lambda_1 - \lambda_2$. Выразим перемещения λ через неизвестные силы S по формуле $\lambda = \frac{8SD^3n}{Gd^4}$, где D — средний диаметр

пружины; d – диаметр проволоки; n – число витков.

$$3"). \quad \frac{8S_3D_6^3n_3}{Gd_6^4} = \frac{8S_1D_{_{M}}^3n_1}{Gd_{_{M}}^4} - \frac{8S_2D_{_{M}}^3n_2}{Gd_{_{M}}^4} \ , \quad \frac{S_3*170^3*50}{18^4} = \frac{S_1*100^3*20}{12^4} - \frac{S_2*100^3*30}{12^4} \ , \quad 2,43S_3 = S_1-1,5S_2 \ .$$

Из уравнений 2) и 1): S_2 =F- S_1 , S_3 =F- S_1 . (2') Подставим в уравнение 3'): $2,43(F-S_1)=S_1-1,5(F-S_1)$, $S_1=\frac{3,93F}{4.93}=\frac{3,93*1300}{4.93}=1036\,\mathrm{H}.$ Тогда $S_2=S_3=1300-1036=264\mathrm{H}.$

Максимальные касательные напряжения в пружинах вычисляем по формуле: $au_{MAX} = \frac{8kSD}{\pi d^3}$, где коэффициент

$$k = \frac{D/d + 0,25}{D/d - 1}$$
 для пружин 1, 2 и 3 равен: $k_1 = k_2 = \frac{100/12 + 0,25}{100/12 - 1} = 1,17$, $k_3 = \frac{170/18 + 0,25}{170/18 - 1} = 1,15$. Тогда:

$$\tau_{1MAX} = \frac{8*1,17*1036*100}{\pi*12^3} = 179M\Pi a, \quad \tau_{2MAX} = \frac{8*1,17*264*100}{\pi*12^3} = 46M\Pi a,$$

$$au_{3M\!A\!X} = rac{8*1,\!15*264*170}{\pi*18^3} = 23M\!\Pi a$$
 . Сильнее всех нагружена пружина 1.

Вычисляем перемещение точки К:
$$\delta_K = \lambda_3 = \frac{8S_3D_6^3n_3}{Gd_6^4} = \frac{8*264*170^3*50}{8*10^4*18^4} = 62$$
мм.

					КР_ММиК_2022_06			
Изм	Лист	№ докум	Подпись	Дата				
Разр	аб	Бадретдинов А.Э.				Литера	Лист	Листов
Пров	Пров	Кирилюк С.И.			Da ayam ayyma a ağ	У	24	
Н. Ко Утв	онтр.				Расчет винтовой пружины с малым шагом	ГГТУ им.П.О.Сухого, гр.К-21		