

Nanotechnology

Detection of Antibiotic-Resistant Bacteria (P2, Topic 1)

Duarte Miguel de Aguiar Pinto e Morais Marques | 96523 Gonçalo Gonçalves de Morais | 87004 José Miguel Quitério Nunes Coelho | 93110

Master's Degree in Electrical and Computer Engineering (MEEC)

Professor João Pedro Conde

Lisbon, Portugal November 10th 2022

General state-of-the-art (classical approaches)

Sample preparation is time-consuming, cost of analysis is high

1. Phenotypic methods

- a) Broth dilution;
- b) Disc diffusion;

2. Biochemical methods

- a) pH indicators;
- b) Metabolic test;

3. Molecular diagnostic methods

- a) PCR;
- b) DNA microarrays;
- c) Whole Genome Sequencing (WGS).

Nanotechnology approaches for AMR diagnostics

Rapid detection, high sensitivity, more affordable, semi-skilled user, portable

1. Nanomaterial-based nanosensors

- a) Metallic nanoparticles;
- b) Quantum dots and fluorescent nanoparticles;
- c) Magnetic nanoparticles;
- d) Upconversion nanoparticles;
- e) Carbon-based nanomaterials;
- f) Nanoparticle-based POC rapid diagnostics;

2. Nanoparticle-based biosensors

- a) Optical biosensors;
- b) Mechanical biosensors;
- c) Electrochemical biosensors;
- d) Microfluidic-integrated biosensors;
- e) Other nanoscale biosensing techniques.

Proposed solution (1)

Rapid and Ultrasensitive Detection of Mutations and Genes Relevant to Antimicrobial Resistance in Bacteria

François Huber,* Hans Peter Lang, Daniela Lang, Daniel Wüthrich, Vladimira Hinić, Christoph Gerber, Adrian Egli, and Ernst Meyer

- → Each array with 8 identical silicon cantilevers;
- → diluted RNA injected sequentially (syringe pump and multiway valve);
- → measurements at 28 °C in temperature controlled box;
- → PSD for beam deflection readout of each cantilever (accuracy 0.1nm).

- Each nanosensor coated with probes for molecular recognition;
- binding of bacterial RNA sequence mechanically transduced (bending of the cantilever);
- external factors such as nonspecific interactions and thermal drift eliminated by calculating differential responses of probe and reference sensors.

Different SNPs highlighted by capitalized letters

Designation	Sequence	Position range	Position	$T_m^{a)}$
ampR ^{135wt}	gcggcgatgTcgacgcggt	394-413	404	27.3 °C
ampR ^{D135G}	gcggcgatg C cgacgcggt	44	**	28.0 °C
ampR ^{135ref}	gcggcgatgAcgacgcggt	"	"	27.1 °C
ampR ^{154wt}	cctcggtgc C gtgccaggc	452-470	460	28.1 °C
ampR ^{G154R}	cctcggtgc G gtgccaggc	44	**	27.9 °C
ampR ^{154ref}	cctcggtgcAgtgccaggc	u	"	27.1 °C

 $^{^{\}rm a)}T_{\rm m}$ stands for melting temperature.

Differential responses to injection of RNA

- (a) mutation and reference cantilever responses;
- **(b) limit of detection (LOD)**, sensitivity of detection of merely 10 bacterial cells.

Proposed solution (2)

→ To analyse the genes that may code for antibiotic resistance, two possible methods:

Direct bacterial mRNA analysis

- doesn't require any preprocessing;
- RNA already represents individual genes;
- genes of interest may not be active at time of analysis, thus no RNA available to be analysed;
- more fragile than DNA.

Quality control:

- → benchtop fluorometer
- → spectrophotometer

RNeasy Mini Kit (Qiagen)

Shotgun analysis of DNA

- randomly chops up bacterial DNA;
- guarantees that whole genome is available for analysis;
- may cleave relevant genes, thus lowering efficiency.

Proposed solution (3)

- Thinner and longer cantilevers → higher sensitivity;
- upper sides of cantilevers coated with 3nm layer of Ti, followed by 20nm thick Au layer;
- nanosensor arrays functionalized using modified ink-jet spotting;
- data acquisition hardware, temperature regulation and syringe pump controlled by LabView software.
 - → Antibiotic resistance mechanisms commonly in clinics;
 - → SNPs detected using probes that cover location of mutation;
 - → very high sensitivity and specificity;
 - → rapid response time in the order of 5 min;
 - → low detection limit → potential to **diagnose directly** from patient;
 - → feasibility of bacterial RNA isolated from complex samples, such as blood.

Potential cost: ≤10€

- → Bending of cantilevers detected by reflection of external laser beam focused at cantilever apex;
- → monitoring deflection of 8 sensors in parallel in time-multiplexed manner.

<u>Alternative</u> → capacitive sensing

Piezoresistive	Capacitive	Electromagnetic	
Simple fabrication	Simple mechanical structure	Structural complexity varies	
Low cost	Low cost	Complex packaging	
Voltage or current drive	Voltage drive	Current drive	
No need for circuits	Requires electronic circuits	Simple control circuits	
Low output impedance	Susceptible to EMI	Susceptible to EMI	
High temperature dependence	Low temperature dependence	Low temperature dependence	
Small sensitivity	Large dynamic range	Sensitivity \propto magnetic field	
Insensitive to parasitic resistance	Sensitive to parasitic capacitance	Insensitive to parasitic inductance	
Open loop	Open or closed loop	Open or closed loop	
Medium power consumption	Low power consumption	Medium power consumption	

