Uczenie oparte o pamiętanie ML by ML

Mateusz Lango

Zakład Inteligentnych Systemów Wspomagania Decyzji Wydział Informatyki i Telekomunikacji Politechnika Poznańska

19 listopada 2020

Uczenie oparte o pamiętanie

- Intuicja 1: Pamiętanie to ważna część uczenia się
- Intuicja 2: Przykłady podobne w cechach powinny być podobne w zmiennej decyzyjnej
- \Rightarrow Najbliżsi sąsiedzi x (wg. jakiejś funkcji odległości) powinni być tego samego typu $y=f(x)\approx f(N(x))$
- \Rightarrow Predykcja to agregacja wartości w sąsiedztwie N(x)

Problem

Czy inne poznane techniki też podejmują decyzję zgodnie z powyższą zasadą?

Uczenie oparte o pamiętanie

- Intuicja 1: Pamiętanie to ważna część uczenia się
- Intuicja 2: Przykłady podobne w cechach powinny być podobne w zmiennej decyzyjnej
- \Rightarrow Najbliżsi sąsiedzi x (wg. jakiejś funkcji odległości) powinni być tego samego typu $y=f(x)\approx f(N(x))$
- \Rightarrow Predykcja to agregacja wartości w sąsiedztwie N(x)

Problem

Czy inne poznane techniki też podejmują decyzję zgodnie z powyższą zasadą?

Klasyfikator k najbliższych sąsiadów

- Faza uczenia
 - Nic. (zakładając że przykłady uczące są zapisane w pamięci jeśli nie to zapisz)
- Faza predykcji
 - Oblicz odległość pomiędzy przykładem testowym a wszystkimi przykładami w zbiorze uczącym
 - Zidentyfikuj k najbliższych elementów (sortowanie)
 - Użyj etykiet znalezionych przykładów do określenia etykiety przykładu testowego (głosowanie większościowe)
- Co potrzebuję ustawić?
 - Trzeba określić liczbę najbliższych sąsiadów k
 - Trzeba zdefiniować funkcję odległości pomiędzy przykładami

Klasyfikator k najbliższych sąsiadów

- Faza uczenia
 - Nic. (zakładając że przykłady uczące są zapisane w pamięci jeśli nie to zapisz)
- Faza predykcji
 - Oblicz odległość pomiędzy przykładem testowym a wszystkimi przykładami w zbiorze uczącym
 - Zidentyfikuj k najbliższych elementów (sortowanie)
 - Użyj etykiet znalezionych przykładów do określenia etykiety przykładu testowego (głosowanie większościowe)
- Co potrzebuję ustawić?
 - Trzeba określić liczbę najbliższych sąsiadów k
 - Trzeba zdefiniować funkcję odległości pomiędzy przykładami

Klasyfikator k najbliższych sąsiadów

- Faza uczenia
 - Nic. (zakładając że przykłady uczące są zapisane w pamięci jeśli nie to zapisz)
- Faza predykcji
 - Oblicz odległość pomiędzy przykładem testowym a wszystkimi przykładami w zbiorze uczącym
 - Zidentyfikuj k najbliższych elementów (sortowanie)
 - Użyj etykiet znalezionych przykładów do określenia etykiety przykładu testowego (głosowanie większościowe)
- Co potrzebuję ustawić?
 - Trzeba określić liczbę najbliższych sąsiadów k
 - Trzeba zdefiniować funkcję odległości pomiędzy przykładami

Problem

Jaka iest złożoność obliczeniowa uczenia i predykcji?

Problem

Jaka jest złożoność obliczeniowa uczenia i predykcji?

Problem

Co się dzieje jak mamy więcej niż k najbliższych sąsiadów (ta sama odległość)?

Problen

Czy relacja "najbliższego sąsiada" jest symetryczna?

Problem

Czy mogę uzyskać z kNN wyjście probabilistyczne?

Problem

$\mathsf{Problem}$

Jaka jest złożoność obliczeniowa uczenia i predykcji?

Problem

Co się dzieje jak mamy więcej niż k najbliższych sąsiadów (ta sama odległość)?

Problem

Czy relacja "najbliższego sąsiada" jest symetryczna?

Problem

Czy mogę uzyskać z kNN wyjście probabilistyczne?

Problem

Problem

Jaka jest złożoność obliczeniowa uczenia i predykcji?

Problem

Co się dzieje jak mamy więcej niż k najbliższych sąsiadów (ta sama odległość)?

Problem

Czy relacja "najbliższego sąsiada" jest symetryczna?

Problem

Czy mogę uzyskać z kNN wyjście probabilistyczne?

Problem

Problem

Jaka jest złożoność obliczeniowa uczenia i predykcji?

Problem

Problem

Co się dzieje jak mamy więcej niż k najbliższych sąsiadów (ta sama odległość)?

Czy relacja "najbliższego sąsiada" jest symetryczna?

Czv moge uzvskać z kNN wviście probabilistyczne?

Problem

Problem

Klasyfikator k najbliższych sąsiadów – wybór k

Problem

Jak wybrać k? Czy mamy jakieś intuicje? Jak działa klasyfikator kNN dla k = N?

Klasyfikator k najbliższych sąsiadów – wybór k

Problem

Jak wybrać k? Czy mamy jakieś intuicje? Jak działa klasyfikator kNN dla k=N?

Diagram pokazujący regiony, których najbliższym sąsiadem jest jeden z punktów to diagram Woronoja.

Klasyfikator k najbliższych sąsiadów – wybór miary odległości

Klasyfikator uzyskuje uogólnianie na nowe przykłady poprzez stosowanie funkcji odległości − to w niej zaszyte są umiejętności klasyfikatora! ⇒ absolutnie kluczowy parametr modelu!

- Własne funkcje odległości wykorzystujące wiedzę dziedzinową
- Kilka klasycznych:
 - Atrybuty nominalne?
 - Atrybuty ciągłe?

Klasyfikator k najbliższych sąsiadów – wybór miary odległości

Klasyfikator uzyskuje uogólnianie na nowe przykłady poprzez stosowanie funkcji odległości − to w niej zaszyte są umiejętności klasyfikatora! ⇒ absolutnie kluczowy parametr modelu!

- Własne funkcje odległości wykorzystujące wiedzę dziedzinową
- Kilka klasycznych:
 - Atrybuty nominalne?
 - Atrybuty ciągłe?

Klasyfikator k najbliższych sąsiadów – wybór miary odległości

Klasyfikator uzyskuje uogólnianie na nowe przykłady poprzez stosowanie funkcji odległości – to w niej zaszyte są umiejętności klasyfikatora! ⇒ absolutnie kluczowy parametr modelu!

- Własne funkcje odległości wykorzystujące wiedzę dziedzinową
- Kilka klasycznych:
 - Atrybuty nominalne?
 - Atrybuty ciągłe?

Value Difference Metric (VDM) – sprytna miara dla nominalnych

$$vdm_a(x,y) = \sum_{c \in C} |P(c|x_a) - P(c|y_a)|$$

Cecha 1	Cecha 2	Klasa
Р	С	+
Ν	C	+
7	C	_

Problem

Oblicz VDM pomiędzy przykładem o cechach (N,C) a przykładem (P,R)

Miary dla mieszanych danych: HVDM, Gower distance

Number of Surgeries

Number of Surgeries

Number of Surgeries

"Feature Scaling"

"Feature Scaling"

Własność uniwersalności

Dotychczas poznane klasyfikatory mają swoje ograniczenia tj. nie potrafią modelować wszystkich możliwych funkcji. Jak to wygląda z kNN?

Problem

Podaj przykłady par takich funkcji i metod.

Theorem

Jeżeli dane (X, Y) pochodzą z próby losowej prostej, a

$$Y = f(X) + losowy szum$$

gdzie f jest **dowolnie złożoną** funkcją, a parametr k jest wybrany tak aby $rac{k}{n} o 0$ i $k o \infty$ to

$$\lim_{N\to\infty} \mathbb{E}[|\hat{f}(X) - f(X)|] = 0$$

Własność uniwersalności

Dotychczas poznane klasyfikatory mają swoje ograniczenia tj. nie potrafią modelować wszystkich możliwych funkcji. Jak to wygląda z kNN?

Problem

Podaj przykłady par takich funkcji i metod.

Theorem

Jeżeli dane (X, Y) pochodzą z próby losowej prostej, a

$$Y = f(X) + losowy szum$$

gdzie f jest **dowolnie złożoną** funkcją, a parametr k jest wybrany tak aby $rac{k}{n} o 0$ i $k o \infty$ to

$$\lim_{n\to\infty} \mathbb{E}[|\hat{f}(X) - f(X)|] = 0$$

Klasyfikator kNN – wady i zalety

Zanim przejdziemy dalej:

Problem

Jakie są mocne i słabe strony klasyfikatora kNN?

Klasyfikator kNN – problem ze złożonością obliczeniową

Działanie klasyfikator kNN można przyśpieszyć przy pomocy odpowiednich struktury jak np. kd-tree. Średni czas poszukiwania: $O(\log n)$ Maksymalny czas poszukiwania: O(n) (Podejścia statystyczne, przybliżone – znacznie szybsze)

Klasyfikator kNN – problem ze złożonością pamięciową

Przy okazji: uczenie przyrostowe

Uczenie przyrostowe zajmuje się tworzeniem algorytmów, które nie mają dostępu do całego zbiory danych i mają dostępną na raz tylko jedną (losową) instancję uczącą.

Condensed nearest neighbor – dodaj etap uczenia się, który polega na wyborze podzbioru instancji potrzebnych do dalszej klasyfikacji.

Przechodzimy do analizy działania kNN...

Kończymy omawianie klasyfikatora kNN poprzez przedstawienie uproszczonej analizy teoretycznej jednego z aspektów jego działania.

Czy są do tego momentu jakieś pytania?

- Optymistycznie założyliśmy, że k najbliższych sąsiadów jest blisko klasyfikowanego przykładu
- Wynika to z intuicji "jeśli przykłady są podobne to mają podobne klasy"
- ullet Czy tak jednak jest naprawdę? Jaki jest rozmiar kuli obejmującej k najbliższych sąsiadów?

Przechodzimy do analizy działania kNN...

Kończymy omawianie klasyfikatora kNN poprzez przedstawienie uproszczonej analizy teoretycznej jednego z aspektów jego działania.

Czy są do tego momentu jakieś pytania?

- Optymistycznie założyliśmy, że k najbliższych sąsiadów jest blisko klasyfikowanego przykładu
- Wynika to z intuicji "jeśli przykłady są podobne to mają podobne klasy"
- ullet Czy tak jednak jest naprawdę? Jaki jest rozmiar kuli obejmującej k najbliższych sąsiadów?

Czy rzeczywiście NN jest blisko x?

- Załóżmy, że kula B(x) jest najmniejszą kulą zawierającą kNN przykładu x o promieniu r(x).
- Ile wynosi (zgrubnie) promień tej kuli?

$$r(x) \approx \sqrt[d]{\frac{k}{n} \cdot \frac{1}{p_X(x)}}$$

Problem

Jakie płyną wnioski z tego wzoru?

Czy rzeczywiście NN jest blisko x?

- Załóżmy, że kula B(x) jest najmniejszą kulą zawierającą kNN przykładu x o promieniu r(x).
- Ile wynosi (zgrubnie) promień tej kuli?

$$r(x) \approx \sqrt[d]{\frac{k}{n} \cdot \frac{1}{p_X(x)}}$$

Problem

Jakie płyną wnioski z tego wzoru?

Problem

Ile wynosi r dla analogicznej kuli w 3 wymiarach?

Problem

Ile wynosi r?

Problem

Ile wynosi r dla analogicznej kuli w 3 wymiarach?

- Dla d=2 promień koła w środku to $\sqrt{2}-1\approx 0.41$
- Dla d=3 promień kuli w środku to $\sqrt{3}-1\approx 0.73$
- ullet I jest to ogólna zależność tj. dla przypadku d wymiarowego promień wynosi $r=\sqrt{d}-1$
- Dla d=4 promień hiperkuli w środku to $\sqrt{4}-1=1$!!!
- Dla d=16 promień hiperkuli w środku to $\sqrt{16}-1=3$!!!

Problem

Implikacje dla ML?

Konkretne zjawiska i problemy klątwy wymiarowości ⇒ Ćwiczenia Iskierka nadziei: "prawdziwa" wymiarowość danych ⇒ Ćwiczenia

- Dla d=2 promień koła w środku to $\sqrt{2}-1\approx 0.41$
- ullet Dla d=3 promień kuli w środku to $\sqrt{3}-1pprox 0.73$
- ullet I jest to ogólna zależność tj. dla przypadku d wymiarowego promień wynosi $r=\sqrt{d}-1$
- Dla d=4 promień hiperkuli w środku to $\sqrt{4}-1=1$!!!
- Dla d=16 promień hiperkuli w środku to $\sqrt{16}-1=3$!!!

Problem

Implikacje dla ML?

Konkretne zjawiska i problemy klątwy wymiarowości ⇒ Ćwiczenia Iskierka nadziei: "prawdziwa" wymiarowość danych ⇒ Ćwiczenia

- Dla d=2 promień koła w środku to $\sqrt{2}-1\approx 0.41$
- ullet Dla d=3 promień kuli w środku to $\sqrt{3}-1pprox 0.73$
- ullet I jest to ogólna zależność tj. dla przypadku d wymiarowego promień wynosi $r=\sqrt{d}-1$
- Dla d=4 promień hiperkuli w środku to $\sqrt{4}-1=1$!!!
- ullet Dla d=16 promień hiperkuli w środku to $\sqrt{16}-1=3$!!!

Problem

Implikacje dla ML?

Konkretne zjawiska i problemy klątwy wymiarowości \Rightarrow Ćwiczenia Iskierka nadziei: "prawdziwa" wymiarowość danych \Rightarrow Ćwiczenia

Dekompozycja obciążenie-wariancja

Theorem

Jeżeli dane (X, Y) pochodzą z próby losowej prostej, a

$$Y = f(X) + losowy szum$$

(i przy dodatkowych założeniach, w szczególności zakładamy^a, że w małym otoczeniu $|f(x)-f(y)|\approx |x-y|$)

$$\mathbb{E}[(\hat{f}(X) - f(X))^2] \lessapprox \frac{\sigma_Y^2}{k} + \left(\frac{k}{n}\right)^{2/d}$$

^aNa nasze potrzeby, pełne dowody i twierdzenia znajdziecie w literaturze

Widzimy się za tydzień!