

SSC MAINS MOCK TEST - 8 (MATHS SOLUTION)

Centires at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER ______

1.(B) Here first term; a = 4, common diffference; d = 3 & no. of terms; n = 20

So, sum up to 20 terms;

$$S_{20} = \frac{20}{2} [2 (4) + (20-1) \times 3] = 10[8 + 57] = 650$$

2.(B) Given expression,
$$10x + y = 7(x + y)$$

or, $3x - 6y = 0$

 $\therefore \Rightarrow x = 2y$

When each digit is increased by 3, then, 10(x+3) + (y+3) = 6(x+3+y+3) + 6

or,
$$3x - 5y = 9$$

$$8y - 5y = 9$$

$$y = 3 & x = 6$$
 form eq. (i)

The given number is 63.

3.(D) Given experssion =
$$3^{25}$$
 (1 + 3 + 3^2 + 3^3)
= $3^{25} \times 40$
= $(3^{24} \times 3)$ (4 × 10)
= $(3^{24} \times 4)$ (3 × 10)

Which is divisible by 30

4.(A) LCM of 6, 9 and 12 = 36

: Number is the form of 36p + 4

Since, the required number between 300 and

So, the numbers will be 328 (when p = 9) and 364 (when p = 10)

Required sum = 328 + 364 = 692

5.(C) Area of the courtyard = 3.78×5.25 sq m $= 378 \times 525 \text{ sq cm} = 198450$

 $198450 = 21 \times 21 \times 450$

450 sq marble stones shall be used of size 21 cm × 21 cm

6. (C) 1st day = 4km, 2nd day =
$$4 \times \frac{1}{2}$$
 = 2km,

3rd day =
$$2 \times \frac{1}{2}$$
 = 1km

... Total distance S = $4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} \dots$

Which is infinite GP with

$$a = 4, r = \frac{1}{2}$$

So, Sum;
$$S = \frac{a}{1-r} = \frac{4}{1-\frac{1}{2}} = \frac{4}{\frac{1}{2}} = 8km$$

7.(C)
$$\frac{a^3 + b^3 + c^3 - 3abc}{a^2 + b^2 + c^2 - ab - bc - ca} = a + b + c$$

So,
$$\frac{(1.5)^3 + (4.7)^3 + (3.8)^3 - 3 \times 1.5 \times 4.7 \times 3.8}{(1.5)^2 + (4.7)^2 + (3.8)^2 - 1.5 \times 4.7 - 4.7 \times 38 - 3.8 \times 1.5}$$
$$= 1.5 + 4.7 + 3.8 = 10$$

8.(A)
$$8 - \left[7 - \left\{x - \left(4 - \frac{7}{2}\right)\right\}\right] = 5$$

$$\Rightarrow$$
 8 - $\left[7 - \left\{x - \frac{1}{2}\right\}\right] = 5$

$$\Rightarrow 8 - \left[7 - x + \frac{1}{2}\right] = 5$$

$$\Rightarrow 8 - \left\lceil \frac{15}{2} - x \right\rceil = 5$$

$$\Rightarrow 8 - \frac{15}{2} + x = 5$$

$$\Rightarrow \frac{1}{2} + x = 5$$

9.(D)
$$2^3 + 4^3 + 6^3 + \dots + 20^3$$

= $(2 \times 1)^3 + (2 \times 2)^3 + (2 \times 3)^3 + \dots + (2 \times 10)^3$

$$= 8 \times 1^{3} + 8 \times 2^{3} + 8 \times 3^{3} + \dots + 8 \times 10^{3}$$
$$= 8 \times [1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + 10^{3}]$$

 $= 8 \times 3025 = 24200$

10.(C) Required number of arrangements $= 9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$

 $= 9 \times 9!$

11.(B) Investment and Income in 2000

= x and = 1.20x

Investment and Income in 2000

= ₹ (x-50000) and ₹ 1.20x

 \therefore Profit = 20 + 6 = 26%

Income in 2001 = \neq (x - 50000) × (1.00+0.26) Thus, 1.26 (x - 50000) = 1.20x

x = 71050000

12.(B) Total population of town

=
$$15 \times \frac{\text{Number of males}}{\text{Number of females}} = \frac{7}{8}$$

 \therefore Number of males and females = 7x and 8xNumber of male children = 25% of 7x

$$= \frac{25}{100} \times 7x = 1.75x$$

Number of female children = 20% of 8x

$$=\frac{20}{100} \times 8x = 1.6x$$

 \therefore Number of adult females = 8x - 1.6x = 6.4x

 \Rightarrow 6.4*x* = 235200

$$\Rightarrow x = \frac{235200}{6.4} = 36750$$

 \therefore Total population of town = 15 × 36750

= 551250

13.(C) Given, x = 20%, y = 30%, z = 10%, A = 100.80

Required total money

$$= \frac{A \times 100 \times 100 \times 100}{(100 - x)(100 - y)(100 - z)}$$

$$= \frac{100.80 \times 100 \times 100 \times 100}{80 \times 70 \times 90}$$

PARAMOUNT Coaching Centre Pvt. Ltd.

An ISO 9001: 2008 Certified Company

	$\frac{100800}{10000} = 200$
_	$\frac{1}{8\times7\times9}$ = ₹ 200

14. (A) Let Initial investments = 3x, 5x and 7x After one year

(3x - 45600) : 5x : (7x + 337600) = 24 : 59:167

$$\therefore \frac{3x - 45600}{5x} = \frac{24}{59} \implies x = 47200$$

- \Rightarrow initial investment of A = 47200 \times 3 = Rs. 141600
- 15.(B) Given, $\frac{a}{b} \times \frac{c}{d} = \frac{14}{15}$ and

$$\frac{a}{b} \div \frac{c}{d} = \frac{35}{24}$$
 or $\frac{a}{b} \times \frac{d}{c} = \frac{35}{24}$

(where $\frac{a}{b}$ is greater fraction)

Now multiplying both the equations

$$\frac{ac}{bd} \times \frac{ad}{bc} = \frac{14}{15} \times \frac{35}{24}$$

- $\Rightarrow \frac{a^2}{b^2} = \frac{49}{36}$
- $\Rightarrow \frac{a}{b} = \frac{7}{6}$
- \Rightarrow the greater fraction is $\frac{7}{6}$
- 16. (D) 15% of (A + B) = 25% of (A B)

$$\Rightarrow \frac{15}{100} (A+B) = \frac{25}{100} (A-B)$$

- \Rightarrow 15 (A + B) = 25 (A B)
- \Rightarrow 15 Å+ 15B = 25Å 25B
- \Rightarrow 10A = 40B
- \Rightarrow A = 4B

Now let x % of B is equal to A

$$\therefore \quad \frac{x}{100} \times B = A = 4B$$

- $\Rightarrow x = 400\%$
- 17. (C) Let the third number be x, A.T.Q.,

First number = $\frac{20}{100} \times x = \frac{x}{5}$

- & Second number = $\frac{50}{100} \times x = \frac{x}{2}$
- ⇒ Required percentage

$$= \frac{\frac{x}{5} \times 100}{\frac{x}{2}} = \frac{x}{5} \times \frac{2}{x} \times 100 = 40\%$$

- 18.(A) Let, Average age of 11 member hockey team = x years
 - ⇒ Total age of hockey team = 11x yreas. When captain aged 26 yrs and goal keeper aged 26 + 3 = 29 yrs. are excluded. Total age of remaining 9 players = 11x - (26 + 29) = (11x - 55) yrs.

Now, ATO.

$$\frac{11x - 55}{9} = x - 1$$

- or, 11x 55 = 9x 9 = 2x = 44
- $\Rightarrow x = 22 \text{ yrs}$
- 19.(B) Sum of temperature of first 3 days = 22° C × 3 = 66° C

Sum of temperature of last 3 days = $24 \, ^{\circ}\text{C} \times 3$ = $72 \, ^{\circ}\text{C}$

Sum of temperature of whole week = 23.5°C × 7 = 164.5°C

- :. The temperature of the last day = $(164.5 66-72)^{\circ}$ C = 26.5° C
- 20. (A) Let the present ages of mother and son be x years and (45 -x) years respectively.

Then, (x-5)(45-x-5)=4(x-5)

- $\Rightarrow x^2 + 41x 180 = 0$
- $\Rightarrow x = 36$
- The present ages of mother and son are 36 yrs & 9 yrs. respectively.
- 21.(A) Let x years ago the ratio of their ages was 3:5.

So, A.T.Q.,

$$\frac{40 - x}{60 - x} = \frac{3}{5}$$

- \Rightarrow 200 5x = 180 3x
- $\Rightarrow 2x = 20$
- \therefore x = 10 yrs.
- 22.(A) Let the four parts into which 3150 is divided are a, b, c and d.

$$\Rightarrow \frac{a}{2} = \frac{b}{3} = \frac{c}{4} = \frac{d}{12} = \mathbf{k}$$

Then a = 2k, b = 3k, c = 4k and d = 12kAs a + b + c + d = 3150

- \Rightarrow (2k + 3k +4k +12k) = 3150
- \Rightarrow 21k = 3150
- \Rightarrow k = 150

Hence the four parts are 300, 450, 600, 1800 So, the largest part is 1800

23.(A) Let the total monthly sales of companies A and B be Rs. 2x and Rs.3x and their total monthly expenditure be ₹ 3y & ₹ 4y.

Given that A's profit = 1/5 of sales = 2x/5

$$\therefore 2x - 3y = \frac{1}{5}(2x)$$

$$\Rightarrow \frac{4}{5}(2x) = 3y \Rightarrow y = \frac{8}{15}x$$

Profit of company

B =
$$3x - 4y = 3x - 4 \times \frac{8}{15}x = \frac{13x}{15}$$

Hence the ratio of the profits of the two companies are

$$\frac{2}{5}x: \frac{13x}{15} = 6:13$$

ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

24.(B) Milk: water in first glass = $\frac{1}{3}$: $\frac{2}{3}$ = 4:8

and Milk: Water in second glass = $\frac{1}{4}$: $\frac{3}{4}$ = 3 : 9

Milk in the vessel = 4 + 3 = 7

Water in the vessel = 8 + 9 = 17

Ratio of milk and water in the vessel = 7:17

25.(D) Total quantity of milk = $2 \times 0.9 + 5 \times 0.8 +$ $9 \times 0.7 = 12.1$ litre

Milk concentration in the resultant mixture

$$= \frac{12.1}{2+5+9} \times 100 = 75.625\%$$

Water concentration in the resultant mixture = 100- 75.625% = 24.735%

$$\Rightarrow$$
 Milk: Water = $\frac{75625}{24735}$ = 121: 39

26. (D) Let each day's salary = $\mathbf{z} x$

Given,
$$18x + 8 \times \frac{x}{2} - 60 = 1700$$

$$\Rightarrow 22x = \frac{1760}{22}$$

⇒ Monthly Salary =
$$\frac{1760}{22}$$
 × 30 = ₹ 2400

27.(B) As each works for 3 hrs.

Sangeeta's work for 3 h = $3 \times \frac{1}{6} = \frac{1}{2}$ part

So, Sangeeta gets Rs. $\left(\frac{1}{2} \times 320\right)$ = ₹ 160

Manisha's works for $3h = 3 \times \frac{1}{8} = \frac{3}{8}$ part

So, Manisha gets $\neq \left(\frac{3}{8} \times 320\right) = \neq 120$

Rekha gets =
$$320 - (160 + 120)$$

= $320 - 280 = 740$

28.(D) Let the person invest amount x and y into two different rates of interest.

$$\therefore \frac{x \times 12 \times 1}{100} + \frac{y \times 10 \times 1}{100} = 130$$

 \Rightarrow 12x + 10y = 13000

and
$$\frac{y \times 12 \times 1}{100} + \frac{x \times 10 \times 1}{100} = 134$$

 \Rightarrow 12*y* + 10*x* = 13400 On solving Eqs. (i) and (ii), we get x = 300 and y = 300

29.(B) Let sum = P,

As amount = $2P \Rightarrow SI = P$ and time = 8 yr.

$$\therefore \text{ Rate} = \frac{100 \times SI}{Sum \times Time} = \left(\frac{100 \times P}{P \times 8}\right) \% = 12\frac{1}{2}\%$$

30. (D) Cost price of article = ₹xand selling price of article = ξy

$$y \times \frac{7}{100} = x \times \frac{8}{100} \Rightarrow y = \frac{8x}{7}$$
ATQ,

$$y \times \frac{9}{100} - x \times \frac{10}{100} = 1$$

$$\Rightarrow \frac{8x}{7} \times \frac{9}{100} - \frac{x}{10} = 1$$

$$\Rightarrow \frac{18x}{175} - \frac{x}{10} = 1$$

$$\Rightarrow \frac{36x - 35x}{350} = 1$$

$$x = 350$$

31.(C) Cost price of an aticle = $\neq \frac{10}{11}$

Selling price of an article = ₹ $\frac{11}{10}$

∴ Profit =
$$\frac{11}{10} - \frac{10}{11} = \frac{121 - 100}{110} = ₹ \frac{21}{100}$$

$$\therefore \text{ Profit percent} = \frac{\frac{21}{110} \times 100}{\frac{10}{11}} = \frac{2100}{110} \times \frac{11}{10} = 21\%$$

32.(B)Let x km/h be the speed of the boat in still

speed of the boat downstream=(x+2)km/h and speed of the boat upstream= (x - 2) km/h So, A.T.Q.,

$$\frac{20}{x+2} + \frac{20}{x-2} = \frac{110}{60}$$

$$\frac{20(x-2+x+2)}{(x+2)(x-2)} = \frac{11}{6}$$

$$\Rightarrow 11x^2 - 44 = 240x$$

$$\Rightarrow (x-22)(11x+2)=0$$

or,
$$x - 22$$
 if $1x + 2$ if $x - 2$ or, $x - 22 = 0 \Rightarrow x = 22$ km/h

Sum of speed 33. (B) Distance = Difference × Difference in speed

$$= 165 \times \frac{155}{15} = 1705 \text{ km}$$

34. (C) Speed of bus =
$$\frac{20 \times 50}{60} \times \frac{18}{5} = 60 \text{km/h}$$

35. (A) Since the car runs at $\frac{7}{11}$ th of its own

speed, the time it takes will be $\frac{11}{7}$ th of its usual speed.

Let the the usual time taken by *t* h.

Then we can write, $\frac{11}{7}t = 22$

$$t = \frac{22 \times 7}{11} = 14 \text{ h}$$

Time saved = 22 - 14 = 8 h

36.(A) P = ₹ 9000, r =
$$-10\%$$

n = 3years

Centires at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

So, A = $9000 \left(1 - \frac{10}{100}\right)^3$

= 9000×
$$\frac{9}{10}$$
 × $\frac{9}{100}$ × $\frac{9}{10}$ = ₹ 6561
37.(D) Here, R_1 = 8%, R_2 = 10%, R_3 = 12%

P = ₹6000

$$T = T_1 + T_2 + T_3 = 3yr.$$

 $T_1 = T_2 = T_3 = 1 yr.$

$$\Rightarrow A = 6000 \left(1 + \frac{8}{100}\right) \left(1 + \frac{10}{100}\right) \left(1 + \frac{12}{100}\right)$$

$$= \ \ \, \left[6000 \times \left(\frac{108}{100} \right) \times \left(\frac{110}{100} \right) \times \left(\frac{112}{100} \right) \right]$$

$$= \sqrt{6000 \times \frac{27}{25} \times \frac{11}{10} \times \frac{28}{25}} = \sqrt{7983.366}$$

⇒ Compound Interest = 7983.366 – 6000 = Rs. 1983.366

38. (C) The speeds of the trains be a m/s and b

Now, when they are moving in the same direction.

 \Rightarrow Relative speed = (a - b) m/s

$$a - b = \frac{100 + 80}{18} = 10$$

Similarly
$$a + b = \frac{100 + 80}{9} = 20$$

By solving Eq. (i) and Eq. (ii), we get a = 15m/s and b = 5m/s

⇒ Speed of faster train = 15 m/sec.

39.(B) In \triangle BCD,

$$BD^2 = BC^2 + CD^2 = \chi^2 + \chi^2$$

$$\Rightarrow$$
 BD = $\sqrt{2x}$

$$\Rightarrow$$
 BD = AE = $\sqrt{2x}$

.. OE = OA + AE =
$$\sqrt{2} .x + \sqrt{2} .x = 2\sqrt{2x}$$

$$\therefore$$
 BA = DE = x

 \therefore In \triangle ODE,

$$OD^2 = OE^2 + DE^2$$

: Minimum distance

$$\therefore$$
 OD = $\sqrt{(2\sqrt{2}.x)^2 + x^2} = \sqrt{8x^2 + x^2} = 3x \text{ km}$

40. (A) \therefore Water that leaks in 5.5 min = 2.25 tones

$$\therefore \text{ Water that leaks in 60 min} = \frac{2.25}{5.5} \times 60$$

$$=\frac{1350}{55}$$
 tones

After pumping water that is left in boat in 60min.

$$= \frac{1350}{55} - 12 = \frac{690}{55}$$
tones

• 92 tones water that remains in boat in

$$\frac{55}{690} \times 92 = \frac{22}{3} \text{ hr}$$

:. Required speed =
$$\frac{77}{\frac{22}{3}}$$
 = $\frac{231}{22}$ = 10.5km/h

41.(D) Let the capacity of the tank = x litres

Quantity of water emptied by the leak in

1 hour =
$$\frac{x}{20}$$
 litres

Quantity of water filled by the tap in 1 hour = 120 litres

According to the question,

$$\frac{x}{20} - \frac{x}{30} = 120 \Rightarrow \frac{x}{10} - \frac{x}{15} = 240$$

$$\Rightarrow \frac{3x-2x}{30} = 240$$

$$\Rightarrow \frac{x}{30} = 240$$

 $\Rightarrow x = 240 \times 30 = 7200$ liters

42.(B) A's investments for 3 yrs.

$$= (250000 \times 3 + 100000 \times 2 + 100000 \times 1)$$

= ₹1005000

B's investment for 3 yrs

C's investment for 3 yrs. = 350000×1

A : B: C .: Ratio of investment of = 1005000 : 700000 : 350000

B's profit =
$$\frac{2}{3+2+1} \times 1500000$$

43.(A) Work done/hour by a female, a male and a child are x, y and z, unit respectively.

So,
$$8x = 6y = 12z$$

$$\Rightarrow x = \frac{3}{4}y \text{ and } z = \frac{Y}{2}$$

9 males can complete a work in 6 days working 6 h/ day.

PARAMOUNT Coaching Centre Pvt. Ltd.

An ISO 9001: 2008 Certified Company

∴ Work done =9 ×6 ×6y = 324y
 Work done by 12 males, 12 females and 12 children in 1 day = 8h/day

$$= (12y + 12x + 12z) \times 8$$

$$= \left[12y + 12 \times \frac{3}{4}y + 12 \times \frac{Y}{2} \right] \times 8 = 216y$$

Days required to finish work = $\frac{324y}{216y}$ = $1\frac{1}{2}$ days

44. (*) 1 man's one day's work =
$$\frac{1}{100}$$

1 man's six day's work =
$$\frac{3}{50}$$

10 men's six day's work =
$$\frac{3}{5}$$

Remaining $\frac{2}{5}$ of the work is done by 15 women in 6 days.

- ... Whole work is done by 15 women in $\frac{6 \times 5}{2}$
 - = 15 days
- .. One women alone can finish the work in 225 days
- 45.(B) In such type of question

$$CP = \frac{\text{Total cost (100 + percent profit)}}{(100 - \text{percent loss)} + (100 + \text{percent profit)}}$$

$$= \frac{720 \times 119}{85 + 119} = \frac{720 \times 119}{204} = \neq 420$$

46.(C) Cost price of each table watch =
$$250 + \frac{2500}{150}$$

$$=\frac{800}{3}$$

Profit percent =
$$\frac{304 - \left[\frac{800}{3}\right]}{\frac{800}{3}} \times 100$$

$$= \frac{112}{3} \times \frac{3}{800} \times 100 = 14\%$$

47.(C) $\left(1-\frac{5}{6}\right)$ of time taken by Sneha

- = 1 hour 15 minutes
- : Time taken by Sneha
- = 1 hours 15 minutes \times 6
- = 7 hours 30 minutes
- 48.(A) ∴ At 45g per man per day the provision is for 16 weeks for 220 men
 - \therefore 1 g per man per day provision is for 1 week = $220 \times 45 \times 16$

: 32 g per man per day the provision is for

24 weeks =
$$\frac{220 \times 45 \times 16}{33 \times 24}$$
 = 200

Number of men to go out = 220 - 200 = 20

$$=\frac{2}{5\times6}=\frac{1}{15}$$

The part of field cultivated by B in 1 day

$$B = \frac{1}{3 \times 10} = \frac{1}{30}$$

.. The part of field cultivated by A and B

together in 1 day =
$$\frac{1}{15} + \frac{1}{30} = \frac{3}{30} = \frac{1}{10}$$

 $\therefore \frac{4}{5}$ part of field is cultivated by A and B

together in 1 day =
$$\frac{4}{\frac{5}{10}}$$
 days = $\frac{4 \times 10}{5}$ = 8 days

- 50.(D) X : Y : Z = ₹ (16000 × 3 + 11000 × 9 : 12000
 - \times 3 + 17000 \times 9 : 21000 \times 6)
 - = 7:9:6
 - ∴ (Y's share Z's share)

$$= \ \ \ \, \left[\left(26400 \times \frac{9}{22} \right) - \left(26400 \times \frac{6}{22} \right) \right]$$

- = ₹ (10800- 7200) = ₹ 3600
- 51.(D) Speed of boat = x m/sec Speed of stream = Y m/sec Then,

$$\frac{\text{Distance travelled}}{x+y} = \frac{1}{3} \left(\frac{\text{Distance travelled}}{x-y} \right)$$

- $\Rightarrow x = 2y$
- $\therefore x:y=2:1$
- 52.(B) Gain = 2 min + 4 min 48s = 6min 48s = 408 seconds

Hour =
$$(7 \times 24 + 2)$$
 = 170 hrs.

$$\Rightarrow$$
 Clock gains = $\frac{408}{170}$ = 2.4 s/h

- $\therefore \text{ It will gain 2 min or 120s in } \frac{120}{24} \text{ h. = 50h}$
 - ⇒ Clock will show correct time 2pm to Tuesday
- 53. (*) α, β, γ are the roots of polynomial $3x^3 5x^2 11x 3$

$$\Rightarrow \qquad \alpha + \beta + \gamma \qquad = \frac{-(-5)}{3} = \frac{5}{3}$$

PARAMOUNT Coaching Centre Pvt. Ltd.

An ISO 9001: 2008 Certified Company

Centres at: ★ MUKHERJEE NAGAR ★ MUNIRKA ★ UTTAM NAGAR ★ DILSHAD GARDEN ★ ROHINI ★ BADARPUR BORDER

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-11}{3}$$

$$\alpha\beta\gamma = \frac{-(-3)}{3} = \frac{3}{3} = 1$$

Now,

$$\alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha\beta\gamma = (\alpha + \beta + \gamma)$$

$$[\alpha^{2} + \beta^{2} + \gamma^{2} - \alpha\beta - \beta\gamma - \alpha\beta]$$

$$\Rightarrow \alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha\beta\gamma = (\alpha + \beta + \gamma)$$

$$[(\alpha + \beta + \gamma)^{2} - 2\alpha\beta - 2\beta\gamma - 2\alpha\gamma$$

$$- \alpha\beta - \beta\gamma - \alpha\gamma]$$

$$\Rightarrow \qquad \alpha^{3} + \beta^{3} + \gamma^{3} - 3 \times 1 = \frac{5}{3} \left[\left(\frac{5}{3} \right)^{2} - 3(\alpha \beta + \gamma \beta + \alpha \gamma) \right]$$

$$= \frac{5}{3} \left[\frac{25}{9} - 3 \times \frac{-11}{3} \right]$$

$$= \frac{5}{3} \left[\frac{25}{9} + 11 \right]$$

$$= \frac{5}{3} \left[\frac{25 + 99}{9} \right]$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = \frac{5}{3} \times \frac{124}{4} + 3$$

$$= \frac{620}{27} + 3$$

$$= \frac{620 + 81}{27} = \frac{701}{27}$$

54. (C) $x = \sqrt{2}$ and $x = -\sqrt{2}$ are zeroes of the polynomial $2x^4 - 3x^3 - 3x^2 + 6x - 2$ $(x - \sqrt{2})$ and $(x + \sqrt{2})$ are factors of $2x^4 - 3x^3 - 3x^2 + 6x - 2$ $(x^2 - 2)$ is a factor of $2x^4 - 3x^3 - 3x^2 + 6x - 2$ Now,

$$x^{2} - 2\sqrt{2x^{4} - 3x^{3} - 3x^{2} + 6x - 2}$$

$$-2x^{4} - 3x^{3} - 3x^{2} + 6x - 2$$

$$-2x^{4} - 4x^{2}$$

$$-3x^{3} + x^{2} + 6x - 2$$

$$-3x^{3} + \pm 6x$$

$$x^{2} - 2$$

$$-x^{2} + 2$$

Other factor = $2x^2 - 3x + 1$ for other zeroes $2x^2 - 3x + 1 = 0$

$$\Rightarrow 2x^2 - 3x + 1 = 0$$
$$\Rightarrow 2x^2 - 2x - x + 1 = 0$$

$$\Rightarrow 2x(x-1)-1(x-1) = 0$$

$$\Rightarrow (2x-1)(x-1) = 0$$

$$\Rightarrow x = \frac{1}{2}, 1$$

55. (B) : a - b, a, a + b are zeroes of $x^3 - 3x^2 + x + 1$

$$\therefore \text{ sum of zeroes} = \frac{-(-3)}{1} = 3$$

$$\Rightarrow a - b + a + a + b = 3$$

$$3a = 3$$

$$a = 1$$

Product of zeroes = $\frac{-1}{1}$

$$(a-b) (a) (a+b) = -1$$

$$\Rightarrow (1-b) (1) (1+b) = -1$$

$$\Rightarrow 1-b^2 = -1$$

$$\Rightarrow 2 = b^2$$

$$b = \sqrt{2}$$

Hence, a = 1, $b = \sqrt{2}$

56. (B) :
$$(x-1)$$
 is a factor of $4x^3 + 3x^2 - 4x + k$
: Remainder P(1) = 0

$$\Rightarrow 4(1)^3 + 3(1)^2 - 4 \times 1 + k = 0$$

$$4 + 3 - 4 + k = 0$$

57. (C) Volume of the cuboid = $12ky^2 + 8ky - 20k$ = $4k[3y^2 + 2y - 5]$ = $4k[3y^2 + 5y - 3y - 5]$ = 4k[y(3y + 5) - 1(3y + 5)]= (4k)(y - 1)(3y + 5) 3^{rd} dimension = 3y + 5

58. (B) Let the present age of Jacob = x yrs. the present age of his son = y yrs Their age 5 years ago

Jacob =
$$x - 5$$
 yrs
his son = $y - 5$ yrs

Case I:

$$x-5 = 7(y-5)$$

 $x-7y+30 = 0$ (1)

Five years later their age

Jacob = x + 5 yrs his son = y + 5 yrs

Case II:

$$x + 5 = 3(y + 5)$$
 (2)
On solving eqⁿs. (1) & (2)

On solving eqns. (1) & (2) x = 40, y = 10

Hence their present age = 40 yrs & 10 yrs 59. (A) ∴ The given linear equations have no solution.

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\Rightarrow \frac{3}{2k-1} = \frac{1}{k-1} \neq \frac{1}{2k+1}$$

$$\Rightarrow 3k-3 = 2k-1$$

$$k = 2$$

PARAMOUNT Coaching Centre Pvt. Ltd.

An ISO 9001: 2008 Certified Company

60. (B) Let A & B are two friends.

Case I:

$$A + 100 = 2(B - 100)$$

 $A - 2B = -300$ (1)

Case II:

$$B + 10 = 6(A - 10)$$

 $6A - B = 70$ (2)

On solving eq n s. (1) & (2), we have

61. (A) Let
$$2^x = 3^y = 6^{-z} = k$$

$$\Rightarrow 2 = (k)^{1/x}, 3 = (k)^{1/y}, 6 = (k)^{-1/z}$$

Now, 2 × 3 = 6

$$\Rightarrow (k)^{1/x} . (k)^{1/y} = (k)^{-1/z}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} = -\frac{1}{z}$$

Hence
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$

62.(B)
$$4 \cot \theta = 3 \Rightarrow \cot \theta = \frac{3}{4}$$

$$\left(\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta}\right) = \left(\frac{1 - \frac{\cos\theta}{\sin\theta}}{1 + \frac{\cos\theta}{\sin\theta}}\right) = \left(\frac{1 - \cot\theta}{1 + \cot\theta}\right)$$

$$= \frac{\left(1 - \frac{3}{4}\right)}{\left(1 + \frac{3}{4}\right)} = \frac{\frac{1}{4}}{\frac{7}{4}} = \frac{1}{7}$$

63.(C) As,
$$3\sin\theta - 4\sin^3\theta = \sin^3\theta$$

So,
$$3 \sin 15^{\circ} - 4 \sin^3 15^{\circ} = \sin 3 (15^{\circ}) = \sin 45^{\circ}$$

$$=\frac{1}{\sqrt{2}}$$

64.(C) The maximum value of a $\sin \theta + b \cos \theta$ is

$$\sqrt{a^2 + b^2}$$

&, here a = 1, b = 1

So, Maximum value = $\sqrt{1+1} = \sqrt{2}$

65.(A)
$$\sin(\alpha + \beta) = \sqrt{1 - \cos^2(\alpha + \beta)} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{19}{25}} = \frac{3}{5}$$

$$\cos(\alpha - \beta) = \sqrt{1 - \sin^2(\alpha - \beta)} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$$

$$\therefore \tan (\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \left(\frac{3}{5} \times \frac{5}{4}\right) = \frac{3}{4}$$

$$\tan (\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{5}{13} \times \frac{13}{12} = \frac{5}{12}$$

 \therefore tan (2α) = tan $[(\alpha + \beta) + (\alpha - \beta)]$

$$= \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta)\tan(\alpha - \beta)} = \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \times \frac{5}{12}} = \frac{56}{33}$$

66. (A)
$$\sin 3A = \cos(A - 30)$$

$$\Rightarrow \cos(90 - 3A) = \cos(A - 30)$$

$$\Rightarrow (90 - 3A) = A - 30$$

$$\Rightarrow$$
 120 = 4A

$$\Rightarrow A = 30^{\circ}$$

Now
$$\tan 2A = \tan 2 \times 30^{\circ}$$

$$= \tan 60^{\circ} = \sqrt{3}$$

67. (C) Let the balloon subtends an angle θ at the eye of the observer at P.

In \triangle OMP,

$$\frac{MO}{PO} = \sin \frac{\theta}{2}$$

$$\frac{r}{PO} = \sin \frac{\theta}{2}$$

PO = r cosec
$$\frac{\theta}{2}$$

Now,

In ∆ONP

$$\sin \phi = \frac{ON}{PO} = \frac{ON}{r \csc \frac{\theta}{2}}$$

$$\Rightarrow$$
 ON = r cosec $\frac{\theta}{2} \sin \phi$

: The height of the ballon

$$= r \sin \phi \cos ec \frac{\theta}{2}$$

68. (C) Let 'A' the point h m above the lake where the angle of elevation of the cloud is ' θ ' and the angle of depression in the lake is ' θ '

Let MB =
$$x$$
 m
In \triangle ABM
 $\tan \theta = \frac{MB}{AB}$
 \Rightarrow AB = $\frac{MB}{\tan \theta}$
 $= \frac{x}{\tan \theta}$
 \therefore AB = $x \cot \theta$ (i)

In ΔABN

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

 $\tan \phi = \frac{BN}{AB}$ [Now BN = BC + NC]= h + x + h = (x + 2h)m

$$\tan \phi = \frac{x + 2h}{AB}$$

$$\Rightarrow$$
 AB = $(x + 2h) \cot \phi$

: In a plane mirror, image distance = object distance]

$$\Rightarrow MC = NC$$
$$x + h = NC$$

From (1) & (2), we have

$$x \cot \theta (x + 2h)\cot \phi$$

$$x(\cot \theta - \cot \phi) = 2h\cot \phi$$

$$x = \frac{2h\cot\phi}{\cot\theta - \cot\phi}$$

Height of the cloud above the lake = x + h

$$= \frac{2h\cot\varphi}{\cot\theta - \cot\varphi} + h$$

$$=\frac{2h\cot\varphi+h\cot\theta-h\cot\varphi}{\cot\theta-\cot\varphi}$$

$$= \frac{h\cot\phi + h\cot\theta}{\cot\theta - \cot\phi}$$

$$h \left[\frac{\cot \phi + \cot \theta}{\cot \theta - \cot \phi} \right] = h \left[\frac{\tan \phi + \tan \theta}{\tan \phi - \tan \theta} \right]$$

Let $T_1 & T_2$ represents the two towers. 69. (B)

$$tan30^{\circ} = \frac{T_2A}{AB}$$

$$\frac{1}{\sqrt{3}} = \frac{T_2 A}{10\sqrt{3}}$$

$$\Rightarrow$$
 T₂A = $\frac{10\sqrt{3}}{\sqrt{3}}$ = 10m

Let W₁ & W₂ are two window of a house which are at the height of 6m & 2m above the ground

Let AC = x cm \Rightarrow W₁P = W₂Q = AC = x m \Rightarrow QP = 4 m In ∆BPW₁

$$\tan 60^{\circ} = \frac{BP}{W_1P}$$

$$\sqrt{3} = \frac{BQ + 4}{W_1P}$$

 $BQ + 4 = \sqrt{3} \times W_1P = \sqrt{3} \times x m$ BQ = $\sqrt{3} x - 4 \text{ m}$

In $\triangle BQW_2$

$$\tan 30^{\circ} = \frac{BQ}{W_2Q}$$

$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}x + 4}{x}$$

$$\Rightarrow \qquad x = 3x - 4\sqrt{3}$$

$$\Rightarrow -2x = -4\sqrt{3}$$

$$\therefore \quad x = 2\sqrt{3}$$

Height of the ballon = BQ

$$= \sqrt{3}x - 4$$

$$= \sqrt{3} \times 2\sqrt{3} - 4 = 6 - 4 = 2m$$

Height of the balloon above the ground = 2 + 4 + 2 = 8 m

71.(C) Let sides of a square be a.

Then, AC = a
$$\sqrt{2}$$
 and AO = OC = $\frac{a}{\sqrt{2}}$

Here, AM =
$$\frac{a}{2}$$

$$\therefore LM = \frac{a}{\sqrt{2}} - \frac{a}{2} \text{ and } OM = \frac{a}{2}$$
In $\triangle OML$

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

$$\tan\frac{\theta}{2} = \frac{\frac{a}{\sqrt{2}} - \frac{a}{2}}{\frac{a}{2}} = \frac{\frac{\sqrt{2} - 1}{2}}{\frac{1}{2}} = \sqrt{2} - 1$$

$$\therefore \tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} = \frac{2(\sqrt{2} - 1)}{1 - (2 + 1 - 2\sqrt{2})}$$

$$=\frac{2(\sqrt{2}-1)}{1-3+2\sqrt{2}}=\frac{2(\sqrt{2}-1)}{2\sqrt{2}-2}$$

72.(B) From O draw OL \perp AB and OM \perp CD & join OA and OC

$$AL = \frac{1}{2}$$
, $AB = 5$ cm, $OA = 13$ cm

$$OL^2 = OA^2 - AL^2 = (13)^2 - (5)^2$$

= $(169 - 25) = 144$

$$\Rightarrow$$
 OL = $\sqrt{144}$ = 12 cm

Now, CM =
$$\frac{1}{2}$$
 ×CD = 12 cm and OC = 13cm

$$\therefore OM^2 = OC^2 - CM^2 = (13)^2 - (12)^2$$
$$= (169 - 144) = 25$$

$$\Rightarrow$$
 OL = $\sqrt{25}$ = 5cm

$$\Rightarrow$$
 ML = OM + OL = (5 + 12)cm = 17cm

73.(A) In **∆** ABC

$$A = \frac{1}{2} \times base \times altitude = \frac{1}{2} \times b \times AC$$

$$AC = \frac{2A}{b}$$

Using Pythagorus theorem,

$$AC^2 + AB^2 = BC^2$$

$$\Rightarrow BC = \sqrt{\frac{4A^2}{b^2} + b^2}$$

Again in
$$\triangle$$
 ABC, A = $\frac{1}{2}$ × BC × AD

$$\Rightarrow AD = \frac{2A}{\sqrt{\frac{4A^2 + b^4}{b^2}}} = \frac{2Ab}{\sqrt{4A^2 + b^4}}$$

74. (C) : XY | AC,

- ΔBXY & ΔBAC are similar (by AA similarity.)
- ∴ XY divides ∆ BAC into two parts of equal

$$\therefore$$
 ar(\triangle BXY) = ar(quad. XYCA) = $\frac{1}{2}$ ar(\triangle BAC)

$$\Rightarrow \frac{\operatorname{ar}(\Delta BXY)}{\operatorname{ar}(\Delta BAC)} = \frac{BX^2}{BA^2}$$

$$\Rightarrow \frac{\operatorname{ar}(\Delta BXY)}{2\operatorname{ar}(\Delta BXY)} = \frac{BX^2}{BA^2}$$

$$\frac{1}{2} = \frac{BX^2}{BA^2}$$

$$\frac{BX}{BA} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
 1 - $\frac{BX}{BA}$ = 1 - $\frac{1}{\sqrt{2}}$

$$\Rightarrow \frac{BA - BX}{BA} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

$$\therefore \frac{AX}{AB} = \frac{\sqrt{2}-1}{\sqrt{2}} = \frac{2-\sqrt{2}}{2}$$

$$\Rightarrow \Delta AOB \sim \Delta COD$$

(by AA Similarity)

$$\Rightarrow \quad \frac{\text{ar}(\Delta AOB)}{\text{ar}(\Delta COD)} \ = \frac{AB^2}{CD^2} = \frac{(2CD)^2}{CD^2}$$

$$[\cdot : AB = 2CD]$$

$$\therefore$$
 ar(\triangle AOB) : ar(\triangle COD) = 4 : 1

76. (D)
$$\therefore BL^{2} = BA^{2} + AL^{2}$$

$$= BA^{2} + \left\{\frac{1}{2}AC\right\}^{2}$$

$$BL^{2} = BA^{2} + \frac{1}{4}AC^{2}$$

$$C$$

$$4BL^2 = 4BA^2 + AC^2$$

Again,
$$CM^2 = CA^2 + \left(\frac{1}{2}AB\right)^2$$

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

$$= CA^{2} + \frac{1}{4}AB^{2}$$

$$4CM^{2} = 4CA^{2} + AB^{2}$$

$$Adding (1) & (2)$$

$$(4BL^{2} + CM^{2}) = 4(BA^{2} + CA^{2}) + AC^{2} + AB^{2}$$

$$4(BL^{2} + CM^{2}) = 5AB^{2} + 5AC^{2}$$

$$= 5[AB^{2} + AC^{2}]$$

$$= 5 \times BC^{2}$$

[by Pythagorus theorem]

In ΔACB & ΔDCE 77. (B)

$$\angle A = \angle CEB$$
 (given)
 $\angle ACB = \angle DCE$ (common)

 \Rightarrow By AA similarity, ΔACB ~ ΔDCE

$$\Rightarrow \frac{AB}{DE} = \frac{CB}{DC} = \frac{AC}{CE}$$

$$\Rightarrow \frac{9}{x} = \frac{8+7}{10}$$

$$\Rightarrow x = \frac{9 \times 10}{15} = 6$$

∴ QT & RT are bisectors of ∠PQR & ∠PRS respectively.

$$\angle TRS = \frac{1}{2} \angle PQR + \angle QTR$$
 (1)

(Ext. angle property)

Also,

$$\angle PRS = \angle PQR + \angle QPR$$

$$\frac{1}{2} \angle PRS = \frac{1}{2} \angle PQR + \frac{1}{2} \angle QPR$$
 (2)

$$\angle TRS = \frac{1}{2} \angle PQR + \frac{1}{2} \angle QPR$$

From (1) & (2)

$$\frac{1}{2} \angle PQR + \angle QTR = \frac{1}{2} \angle PQR + \frac{1}{2} \angle QPR$$

$$\angle QTR = \frac{1}{2} \angle QPR$$

79. (C) : (llgm ABCD) & (llgm ABMN) are on the same base & between the same parallels.

∴ ar(llgm ABCD) = ar(llgm ABMN)

∴ ar(llgm ABCD) = 80 sq. unit

Again, AAPN & llgm (ABMN) are on the same base & between the same parallels.

∴
$$ar(\triangle APN) = \frac{1}{2} ar(llgm ABMN)$$

= $\frac{1}{2} \times 80 \text{ sq. unit}$
= 40 sq unit.

80. (*)
$$\angle CMB = x = \angle DCM$$
 (alternate interior A B angles)

In ∆BME

$$\angle 1 = 180^{\circ} - x$$

 $\angle 2 = 180^{\circ} - y$

$$\therefore$$
 \angle CEB = 180° - (\angle 1 + \angle 2)

$$\angle CEB = 180^{\circ} - [180^{\circ} - x + 180 - y]$$

= $x + y - 180^{\circ}$

 $= x + y - \pi$

81. (B) Suppose (-4, 6) divides AB in the ratio

By section formula

$$-4 = \frac{K \cdot 3 + 1 \cdot -6}{K+1}$$

$$-4K - 4 = 3K - 6$$

$$-7K = -2$$

$$K = \frac{2}{7}$$

each other.

∴ Required ratio = 2:7

82. (B) ∵ diagonals of a llgm bisect

: Coordinates of mid point of AC = Coordinates of mid pp. of BD.

$$\left[\frac{1+x}{2}, \frac{2+6}{2}\right] = \left[\frac{3+4}{2}, \frac{5+y}{2}\right]$$

$$\Rightarrow \frac{1+x}{2} = \frac{7}{2} \qquad & \frac{2+6}{2} = \frac{5+y}{2}$$

&
$$\frac{2+6}{2} = \frac{5+y}{2}$$

 $y=3$

83.(B) Curved surface of tomb = $\pi rl = \frac{22}{7} \times 14 \times 50$

∴ Cost of white washing = 2200× 0.80 **=** ₹ 1760

84.(C) Let the sides of the two cubes are x and y

A.T.Q.

$$\frac{x^3}{y^3} = \frac{27}{64} = \frac{(3)^3}{(4)^3}$$

$$\therefore \frac{x}{u} = \frac{3}{4}$$

Now.

 \therefore surface area of the cube = 6× (side)2

PARAMOUNT Coaching Centre Pvt. Ltd.

An ISO 9001: 2008 Certified Company

 $\therefore \text{ Ratio of their surface areas} = \frac{6x^2}{6y^2}$

$$=\frac{6\times3^2}{6\times4^2}=\frac{9}{16}=9$$
: 16

85.(C) Let ED = x

Now, AC =
$$\sqrt{8^2 + 6^2}$$
 = 10

$$AE^2 = AD^2 - x^2 = 36 - x^2$$

And in Δ CFD,

$$CF^2 = (8)^2 - (10 - x)^2$$
 (i

From Eqs. (i) and (ii), we get $36 - x^2 = 64 - (10 - x)^2$ (: AE = FC)

$$\Rightarrow$$
 36 -x² = 64 - (100 +x² - 20x)

$$\Rightarrow 20x = 72$$

$$\Rightarrow x = \frac{18}{5}$$

.. From Eq. (i) AE² = 36 -
$$\left(\frac{18}{5}\right)^2$$

$$AE^2 = 36 - \frac{324}{25} = \frac{900 - 324}{25}$$

$$\therefore \frac{\text{Area of rectangle ABCD}}{\text{Area of recetangle AEFC}} = \frac{8 \times 6}{10 \times \frac{24}{5}} = 1$$

86.(C)

Capacity of bucket

= Volume of frustrum of cone

$$= \frac{\pi h}{3} \left[R^2 + r^2 + Rr \right]$$

$$= \frac{22}{7} \times \frac{24}{3} [(15)^2 + 5^2 + 15 \times 5] \text{cm}^3$$

=
$$\frac{22}{7}$$
 × 8 [225 + 25 + 75]cm³ = $\frac{176}{7}$ (325)cm³

 $= 8171.43 \text{cm}^3$

87. (D) Side of the square field = $\sqrt{31684}$ = 178 m

Perimeter of the square field $= 4 \times 178$ = 712 m

Length of the wire required to cover the field once = 105% of 712 m

 $= 1.05 \times 712$

$$= 747.6 \text{ m}$$

Total length of the wire = 4×747.6

= 2990.4 m

88. (B) Total surface area of the closed cylindrical petrol tank = $2 \pi r (h + r)$

$$= 2 \times \frac{22}{7} \times 2.1(4.5 + 2.1)$$

$$= 2 \times 22 \times 0.3 \times 6.6$$

 \therefore $\frac{1}{12}$ of the total steel wasted away

 $\Rightarrow \frac{11}{12}$ of the total steel was used to make the

$$\Rightarrow \frac{11}{12}$$
 of total steel = 87.12

Total steel=
$$\frac{87.12 \times 12}{11}$$
 = 95.04m²

89. (B) Speed of the flowing water = 2 km/h

$$=\frac{2\times1000}{60}$$
 m/min

Length of the water stored in 1 min in the

river =
$$\frac{200}{6}$$
 m

Volume of the water = lbh

$$=\frac{200}{6} \times 40 \times 3 = 4000 \text{ m}^3$$

90. (B) Height of the upper part of the cone $= \frac{1}{2} \times 24$

· ΔAOB ~ ΔOMN

$$\Rightarrow \frac{OA}{OM} = \frac{AB}{MN}$$

$$\Rightarrow \frac{12}{24} = \frac{AB}{7}$$

$$\therefore$$
 AB = $\frac{7}{2}$ cm

Volume of the upper part = $\frac{1}{3}\pi r^2 h$

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER ______

$=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 12 = 154 \text{ cm}^2$

91. (B) For the Frustum For the cylinder

$$r_1 = 9 \text{ cm}$$

 $r_2 = 4 \text{ cm}$

$$r = 4 cm$$

 $h = 10 cm$

 $\tilde{h} = 12 \text{ cm}$

$$l = \sqrt{h^2 + (r_1 - r_2)^2}$$

$$= \sqrt{12^2 + (9 - 4)^2}$$

$$= \sqrt{144 + 25}$$

$$= \sqrt{169} = 13 \text{ cm}$$

Area of the sheet required

= area of frustum + area of cylinder

=
$$\pi (r_1 + r_2)l + 2\pi rh$$

$$= \frac{22}{7}[(9+4)\times 13 + 2\times 4\times 10]$$

$$=\frac{22}{7}[169+80]$$

$$=\frac{22}{7}\times 249$$

$$= 782.57 \text{ cm}^2$$

92. (A) Volume of the toy

$$= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^2$$

$$= \frac{1}{3}\pi \times 2 \times 2 \times 2 + \frac{2}{3}\pi \times 2 \times 2 \times 2$$

$$=\frac{8\pi}{3}+\frac{16\pi}{3}=\frac{24\pi}{3}=8\pi \text{ cm}^3$$

Volume of the cylinder = $\pi r^2 h$

$$= \pi \times 2 \times 2 \times 4$$
$$= 16 \pi \text{ cm}^3$$

Required difference $= 16 \pi - 8 \pi$

 $= 8 \pi \text{ cm}^3$

 $= 25.12 \text{ cm}^3$

= 35% of 91.9 lakh

$$=\frac{35}{100} \times 91.9 \text{ lakh}$$

= 32.165 lakh = 32 lakh

94.(C) Difference = 21% of 25.5 lakh -10% of 29.2

$$=\frac{22}{100} \times 25.5 \text{ lakh} - \frac{10}{100} \times 29.2 \text{ lakh}$$

= 5.355 - 2.920 = 2.435 lakh

95.(A) Highest slum population is 38%. It is persent in B.

96.(A) Compostion of Bengalis is 12%. So the % of Tamilians with respect to

Bengalis will be nearly $\frac{8}{12} \times 100 = 67\%$.

97.(C) Hindi speaking population

$$=\frac{18}{100} \times 413 = 7.43 = 8$$
 million (aporox.)

98.(A) It is clear from the pie diagram that the answer is Punjabi and Hindi speaking = 17+18 = 35%

99.(B) Other 4 %

$$\Rightarrow$$
 2% of it = $\frac{2}{100} \times 4 = 0.08$

⇒ Percentage of increase in Punjabis =

$$\frac{0.08}{17} \times 100 = 0.5$$
 nearly

100.(C) Percentage of Punjabis = 0.5%

Increase in millions = $\frac{0.5}{100}$ ×413 = 0.20

PARAMOUNT Coaching Centre Pvt. Ltd. An ISO 9001: 2008 Certified Company

Centres at:

★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

SSC MAINS MOCK TEST -8 ANSWER KEY

1.	(B)
2.	(B)
3.	(D)
4.	(A)
5.	(C)
6.	(C)
7.	(C)
8.	(A)
9.	(D)
10.	(C)
11.	(B)
12.	(B)
13.	(C)
14.	(A)
15.	(B)
16.	(D)
17.	(C)
18.	(A)
19.	(B)
20.	(A)
21.	(A)
22.	(A)
23.	(A)
24.	(B)
25.	(D)

26.	(D)
27.	(B)
28.	(D)
29.	(B)
30.	(D)
31.	(C)
32.	(B)
33.	(B)
34.	(C)
35.	(A)
36.	(A)
37.	(D)
38.	(C)
39.	(B)
40.	(A)
41.	(D)
42.	(B)
43.	(A)
44.	(*)
45.	(B)
46.	(C)
47.	(C)
48.	(A)
49.	(C)
50.	(D)

	(D)
51.	(D)
52.	(B)
53.	(*)
54.	(C)
55.	(B)
56.	(B)
57.	(C)
58.	(B)
59.	(A)
60.	(B)
61.	(A)
62.	(B)
63.	(C)
64.	(C)
65.	(A)
66.	(A)
67.	(C)
68.	(C)
69.	(B)
70.	(B)
71.	(C)
72.	(B)
73.	(A)
74.	(C)
75.	(B)

76.	(D)
77.	(B)
78.	(B)
79.	(C)
80.	(*)
81.	(B)
82.	(B)
83.	(B)
84.	(C)
85.	(C)
86.	(C)
87.	(D)
88.	(B)
89.	(B)
90.	(B)
91.	(B)
92.	(A)
93.	(C)
94.	(C)
95.	(A)
96.	(A)
97.	(C)
98.	(A)
99.	(B)
100.	(C)