Time Series Analysis and Forecasting

Fernando Oliveira

Oliveira@essec.edu

Workshop 4: Stationarity and ARIMA

This workshop consists of two main sections:

- (a) Dickey-Fuller Tests
- (b) Arima Modelling

(a) Dickey-Fuller Tests

In this section, we shall test for stationarity in a time series copper prices from 1960-Jan to 2018-Dec. The series for this first part in stored stored in the EViews file **session 4 workshop.wfl** and we want to analyse the series of **copper** prices.

(i) First plot the series by selecting from the main menu

Quick

Graph

Plot the correlogram by selecting

Ouick

Series Statistics

Correlogram

Specify copper, then click OK

Does the series look stationary?

(ii) Carry out a basic Dickey-Fuller test with no constant or trend term:

From the main EViews menu bar select

Quick Series Statistics Unit Root Test

Specify **copper** then click **OK**In the ensuing dialog box, specify

Test Type: Augmented Dickey-Fuller

Test for unit root in: Level Include in test equation: None

This basic Dickey-Fuller test involves estimation of the regression

$$\Delta Y_t = \gamma Y_{t-1} + \varepsilon_t$$

The results window shows the regression output at the bottom. The t-statistic for γ is also shown at the top left of the window and the corresponding critical values are shown in the top right.

What is the test's null hypothesis? Can it be rejected for the exchange rate series? Is the series stationary?

(iii) Include a constant and a trend in the basic Dickey-Fuller test:

From the menu bar of the Dickey-Fuller results window, select

View Unit Root Test

The Unit Root Test specification dialog box should reappear. Specify

Include in test equation: Trend and intercept

Does the test indicate stationarity?

(iv) Carry out Augmented Dickey-Fuller tests, including lagged values of the dependent variable.

$$\Delta Y_t = a_0 + a_2 t + \gamma Y_{t-1} + \sum_{i=1}^m \beta_i \Delta Y_{t-i} + \varepsilon_t$$

If the extra terms are not significant, throw them out of the regression.

As in regression analysis, when you have reasonable *t*-values you are not finished; you must also check for autocorrelation in the residuals.

You can do this by selecting from the main menu bar:

Quick Series Statistics Correlogram

Then specify **resid**

Do the Augmented Dickey-Fuller tests indicate that the series is stationary?

(v) If the series is non-stationary, examine whether the first differences are stationary. Graph the differenced series, plot its correlogram and then perform unit root tests. (The difference operator is D(copper) in EViews.)

(b) Arima Modelling

In the file *session 4 workshop.wf1*, which you can download from the intranet, you have the data on the *Gold* prices from 1960 to 2018 (Dec).

The Box-Jenkins methodology first requires that we establish stationarity, before embarking on the three main steps: Identification, Estimation and Testing.

(i) Establishing Stationarity

Graph the Gold time series by selecting Quick and then Graph. Plot the autocorrelation function for the Gold time series. The persistence of autocorrelations at long lags is typical of a non-stationary series. Another name for the autocorrelation function is the correlogram.

From the main EViews menu, select

Quick Series Statistics Correlogram

Specify the series as Gold and click OK.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	ı	1	0.995	0.995	704.08	0.000
	q ·	2		-0.052	1401.6	0.000
	1	3	0.985	0.023	2092.8	0.000
	1 1	4	0.980	0.008	2778.1	0.000
	Ψ [5		-0.010	3457.1	0.000
	ا با	6		-0.071	4129.2	0.000
	·[[1	7		-0.042	4793.6	0.000
	·[l]	8		-0.028	5450.1	0.000
	10	9		-0.012	6098.5	0.000
	1	10	0.943	0.008	6739.2	0.000
	1 1	11		-0.005	7372.1	0.000
	·[l·	12		-0.043	7996.5	0.000
	1	13	0.923	0.022	8612.9	0.000
	Ψ [14		-0.013	9221.0	0.000
	1 1	15	0.909	-0.005	9820.9	0.000
	ı(lı	16	0.902	-0.043	10412.	0.000
	ψ [17		-0.009	10995.	0.000
	1)1	18	0.888	0.017	11569.	0.000
	10	19		-0.023	12134.	0.000
	10	20	0.873	0.018	12692.	0.000
	ı(lı	21	0.866	-0.028	13240.	0.000
	ן יווָי	22	0.859	0.027	13780.	0.000
	10	23	0.851	-0.010	14312.	0.000
	1	24	0.844	0.015	14836.	0.000
	1 1	25	0.837	0.006	15353.	0.000
	ı(lı	26	0.830	-0.040	15860.	0.000
ı	ılı l	27	0.823	-0.003	16360.	0.000
	qi	28	0.815	-0.064	16851.	0.000
	1 1	29	0.807	0.005	17333.	0.000
	ı l ı	30	0.800	0.010	17807.	0.000

Graph the log returns of the series, DLOG(gold). The series looks stationary. Plot the autocorrelation function of DLOG(gold). The autocorrelations are not very persistent which suggests stationarity so let's build a model for DLOG(gold). (If Dickey-Fuller tests were performed, they would support stationarity in the mean.)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.262	0.262	48.914	0.000
ι(I	['	2 -	0.039	-0.116	49.995	0.000
ı j ı	'D	3	0.016	0.063	50.175	0.000
ıþ	l iĝi	4	0.062	0.039	52.931	0.000
1 1	I¶I	5		-0.025	52.932	0.000
ı(lı	I¶I	6 -	-0.047	-0.035	54.539	0.000
' P	' 	7	0.099	0.129	61.525	0.000
' 	' b	8	0.141	0.073	75.682	0.000
' P	ן ווי	9	0.101	0.067	82.974	0.000
ıþ	i ji	10	0.065	0.042	85.993	0.000
' 	' 	11	0.150	0.133	102.16	0.000
' P	i ji	12	0.119	0.041	112.35	0.000
ıψı	l (li	13 -	0.041	-0.065	113.56	0.000
q٠	l di	14 -	0.096	-0.068	120.22	0.000
ı j ı	l iþi	15	0.019	0.032	120.48	0.000
ıþ	l ili	16	0.067	0.016	123.78	0.000
1 1	III	17 -	0.003	-0.028	123.79	0.000
q ı	l di	18 -	-0.052	-0.071	125.79	0.000
ψ.	(-	19 -	-0.021	-0.054	126.11	0.000
ıþ	· i	20	0.066	0.043	129.29	0.000
ıψı	l di	21 -	-0.037	-0.073	130.28	0.000
ı j ı	· i	22	0.012	0.061	130.38	0.000
ı j ı		23	0.038	-0.006	131.41	0.000
1 1		24 -	800.0	-0.018	131.46	0.000

You may want to remove the initial data, as it is not representative.

From the Workfile Window menu, select **Proc Structure/Resize Current Page**

Set the new workfile structure type to start from 1985M01

(ii) Identification

Plot the autocorrelation function (ACF) and partial autocorrelation function (PACF) for the series DLOG(gold).

Both of these can be found by selecting from the main EViews menu

Quick Series Statistics Correlogram

Sample: 1985M01 2018M12 Included observations: 407

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.136	0.136	7.6014	0.006
d i	 	2	-0.085	-0.106	10.580	0.005
1 1		3	-0.000	0.028	10.580	0.014
ı þ i		4	0.047	0.035	11.506	0.021
1)1	1 1	5	0.018	0.009	11.647	0.040
1 1	1 1	6	0.005	0.009	11.657	0.070
ı þi	יום י	7	0.072	0.074	13.829	0.054
1)1		8	0.024	0.001	14.060	0.080
1 1	1 1	9	-0.013	-0.004	14.130	0.118
i di	1 1	10	0.009	0.013	14.163	0.166
' 	' 	11	0.154	0.148	24.152	0.012
1 11	1 1	12	0.030	-0.017	24.534	0.017
1 1	יוןי	13	-0.001	0.027	24.534	0.027
1 j i	'	14	0.035	0.027	25.056	0.034
ı þ i	יולוי	15	0.045	0.027	25.923	0.039
ı þ i	יוןי	16	0.042	0.034	26.664	0.045
1)1	1 11	17	0.019	0.015	26.820	0.061
וון	' '	18	0.057	0.038	28.209	0.059
1)1	' '	19	0.021	0.002	28.390	0.076
' Pi	יוןי ו	20	0.081	0.089	31.181	0.053
1 j i	' '	21	0.027	-0.002	31.496	0.066
1 j i	1 11	22	0.036	0.020	32.060	0.076
1 j i	' '	23	0.037	0.025	32.656	0.087
۱ ل ا ۱	' '	24	0.047	0.037	33.608	0.092
1)11	1 1	25		-0.016	33.647	0.116
יון	יון י	26	0.062	0.064	35.321	0.105
1 1	'[['	27	-0.010		35.367	0.130
1 1	1 11	28	0.001	0.013	35.368	0.159
1 1	'[['	29	-0.001		35.368	0.193
1 1	'[['	30	-0.024		35.615	0.221
۱ ۵ ۱	יוןי	31	0.052	0.025	36.817	0.218
1 1	'['	32	-0.005		36.829	0.255
1 [] 1	'[]'	33	-0.043		37.634	0.265
1 [] 1	'[]'	ı	-0.047		38.641	0.268
۱ þ ۱	וון ו	35	0.051	0.038	39.790	0.265
111	'Q'	36	-0.032	-0.073	40.258	0.287

The PACF and ACF function have two significant spikes and then cut-off (even though the ACF seems to fading away). However, we still have some spikes appearing later on, and also at lags 7, 11 and 20.

A number of ARMA processes could result in this pattern. Verify that reasonable candidate models are: ARMA(2,0), ARMA(0,2), ARMA(1,0), ARMA(0,1), and ARMA(1,1).

(iii) Estimation

Models can be estimated by selecting from the main EViews menu

Quick Estimate Equation

and in the Equation Specification dialog box, we might choose to fit an ARMA(0,1)

DLOG(gold) c MA(1)

(iv) Testing

Both of the coefficients are significant, so the model looks quite reasonable. However, as in regression analysis, we must consider the residuals.

The quickest way to graph the residuals is to select from the menu bar of the equation window

View Actual, Fitted, Residual Actual, Fitted, Residual Graph

Do the **residuals** look random?

We should check for **autocorrelation in the residuals**. From the menu bar of the equation window, select

View Residual Diagnostics Correlogram

Does the correlogram suggest random residuals?

The **Box-Pierce Q-statistic** is shown to the right of the ACF and PACF plots. This statistic considers autocorrelation in several lags together. The p-value of the Q-statistic is given for convenience. When testing at 5% significance, a p-value less than 5% indicates significance. Are any of the Q-statistics significant?

Sample: 1985M01 2018M12 Included observations: 407

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1(1	1 1	1	-0.014	-0.014	0.0774	
d i	l d'	2	-0.083	-0.084	2.9417	0.086
1 1	1 1	3	0.006	0.004	2.9572	0.228
ı þ i		4	0.044	0.037	3.7588	0.289
1)1		5	0.012	0.015	3.8229	0.431
П		6	-0.009	-0.002	3.8558	0.570
1 j iji	' bi	7	0.071	0.073	5.9516	0.429
1)1		8	0.014	0.013	6.0305	0.536
Щ		9	-0.013	-0.002	6.0984	0.636
П	111	10		-0.013	6.1854	0.721
' P	' 	11	0.155	0.150	16.262	0.092
1 1		12	0.006	0.005	16.277	0.131
1 1	' '	13	-0.007	0.020	16.296	0.178
١ 🏿 ١	ווןי	14	0.030	0.028	16.689	0.214
י ווי	יווי	15	0.034	0.025	17.181	0.247
١ 🏿 ١	יוןי	16	0.035	0.037	17.715	0.278
1[1	'['	17	0.004	0.014	17.723	0.340
יון	יוווי	18	0.056	0.042	19.070	0.325
'['	' <u> </u> '	19	-0.001	-0.006	19.071	0.387
<u> </u>	'P	20	0.079	0.087	21.741	0.297
' <u>[</u> '	'['	21	0.009	0.011	21.778	0.353
<u> </u>		22	0.030	0.016	22.175	0.389
] 	'['	23	0.025	0.021	22.446	0.434
<u> </u>	<u> </u>	24	0.044	0.045	23.295	0.444
<u>'</u> L'	'\'.	25	-0.009	-0.021	23.332	0.500
: <u>P</u> :	: <u> </u> P:	26	0.067	0.069	25.267	0.447
11.	'¶'	27			25.478	0.492
: :	'. .'	28	0.003	0.007	25.483	0.547
ili	' '	29		-0.022	25.491	0.601
1 1 1 11	'\'.	30		-0.040	25.989 27.526	0.626
111	1 37	31	0.059	0.024	27.565	0.596
ili.		33				0.668
.u.	'#'		-0.052		28.030 29.253	0.654
.u.,	1 %;	35	0.065	0.038	31.144	0.608
. p.	'd'	36	-0.033		31.638	0.631
'4'	ı '4'	30	-0.033	-0.054	31.036	0.031

Take note of the **RSS**, **SBC**, **AIC**, and **HQ**; these indicate the quality of the fit of the model: the lower the better. SBC, AIC and HQ can be negative.

Try to find an alternative model which has better or comparable fit, and which also has no residual autocorrelation. The quickest way to estimate another model is to select **Estimate** from the menu bar of the equation window; the Equation Specification dialog box should reappear.

ARMA(1, 0): **DLOG(gold)** c **AR(1)**

ARMA(1, 1): **DLOG(gold)** c AR(1) MA(1)

(v) Forecasting

Estimate an ARMA(0,1) model for the DLOG(gold) series using all the data **except the last** 12 observations. You can specify the shortened sample at the bottom of the equation specification dialog box.

Click OK. Check that the model has reasonable diagnostics.

Click the **Forecast** button which can be found in the menu at the top of the current equation window.

In the top right of the dialog box, change the forecasting **Method** to **Static** and click OK.

Now try a **Dynamic** forecast for gold.

Both Dynamic and Static forecasting produce 12 forecasts but they are not the same. Dynamic produces a 1-step-ahead forecast, a 2-step-ahead forecast, a 3-step-ahead forecast,, and a 12-step-ahead forecast. By contrast, Static forecasting produces twelve 1-step-ahead forecasts.

Produce Static forecasts for Gold and then plot these forecasts, goldF, and gold on the same graph by selecting **Quick Graph**. How good is the fit?

Produce Static forecasts for DLOG(gold) by specifying this at the top left of the forecast dialog box. Plot the forecasts and DLOG(gold) on the same graph. How good is the fit?

Do you expect gold prices to go up or down in the next 12 months? How about risk? What is the prediction interval?

Click: workfile window ... Procs ... Structure/Resize Current Page Date Specification. End Date: 2019:M12

Once again, estimate an ARMA(0,1) model for the DLOG(gold) series, but now using all the data (2018M12).

Click the **Forecast** button which can be found in the menu at the top of the current equation window. [FORECAST observations **2019m01 to 2019m12**]. In the top right of the dialog box, try a **Dynamic** forecasting **Method** and click OK.

Why can't you use the **Static** Forecasting method?