Lecture 4, 5, 6, & 7: Simplex Method and Sensitivity Analysis

1. LP Model in Equation Form

- LP Model in Equation Form
 - Two requirements
 - 1. All the constraints (with the exception of the nonnegativity of the variables) are equations with nonnegative right-hand side.
 - 2. All the variables are nonnegative.
- Converting Inequalities into Equations with **Nonnegative RHS**
 - Slack Variable

$$6x_1 + 4x_2 \le 24$$
 $6x_1 + 4x_2 + s_1 = 24, s_1 \ge 0$

• Surplus Variable
$$x_1 + x_2 \ge 800$$
 $x_1 + x_2 - S_1 = 800, S_1 \ge 0$

• Nonnegative RHS
$$-x_1 + x_2 \le -3$$
 $-x_1 + x_2 + s_1 = -3, s_1 \ge 0$ $x_1 - x_2 - s_1 = 3$

LP Model in Equation Form

Unrestricted Variable

$$y_{i+1} = y_{i+1}^- - y_{i+1}^+$$
, where $y_{i+1}^- \ge 0$ and $y_{i+1}^+ \ge 0$

Example

$$Maximize z = 2x_1 + 3x_2$$

$$2x_1 + x_2 \le 4$$

$$x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + 2x_2 + s_2 = 5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

- m = 2 equations and n = 4 variables
- Corner points can be found by putting n-m = 2 variables zero.

2. Transition from Graphical to Algebraic Solution

- Put $x_1 = 0$, $x_2 = 0$, and s1=4, s2 = 5 Point A
- Put s1=0, s2=0, and $x_1 = 1$, $x_2 = 2$ Point C
- Basic variables = m,
- Nonbasic variables = n-m

$$2x_1 + x_2 + s_1 = 4$$
$$x_1 + 2x_2 + s_2 = 5$$

Maximum number of corner points

$$C_m^n = \frac{n!}{m!(n-m)!}$$

If m = 10, n = 20, then 184,756 corner points

Simplex Method

- Selectively investigate few corner points and locate the optimum solution
- Reddy Mikks Model

Maximize
$$z = 5x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

• Rewrite objective function $z - 5x_1 - 4x_2 = 0$

Maximize
$$z = 5x_1 + 4x_2$$

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$6x_1 + 4x_2 + s_1 = 24 \quad (Raw material M1)$$

$$x_1 + 2x_2 + s_2 = 6 \quad (Raw material M2)$$

$$-x_1 + x_2 + s_3 = 1 \quad (Market limit)$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Transition from Graphical to Algebraic Solution

Basic	Z	x1	x2	s1	s2	s3	s4	Solution	Ratio
z	1	-5	-4	0	0	0	0	0	
s1	0	6	4	1	0	0	0	24	
s2	0	1	2	0	1	0	0	6	
s3	0	-1	1	0	0	1	0	1	
s4	0	0	1	0	0	0	1	2	

Maximize
$$z - 5x_1 - 4x_2 = 0$$
 Nonbasic (zero) variables: (x_1, x_2) $z = 0$

$$6x_1 + 4x_2 + s_1 = 24 \text{ (Raw material } M1)}$$

$$x_1 + 2x_2 + s_2 = 6 \text{ (Raw material } M2)$$

$$-x_1 + x_2 + s_3 = 1 \text{ (Market limit)}$$

$$x_2 + s_4 = 2 \text{ (Demand limit)}$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$
Nonbasic (zero) variables: (x_1, x_2) $z = 0$

Basic variables: (s_1, s_2, s_3, s_4) $s_1 = 24$

nonbasic variables $(x_1, x_2) = (0, 0)$ $s_3 = 1$

$$s_4 = 2$$

3. Simplex Tableau

- Entering nonbasic variable
 - Which nonbasic variable (x₁ or x₂) should enter such that the objective function should improve maximally?
 - Most negative coefficient of the maximization objective function
 - · Optimality condition

Entering variable x₁

Simplex Tableau

- Leaving basic variable
 - Minimum nonnegative ratio of RHS of the equation to the corresponding constraint coefficient under the entering variable
 - · Feasible condition

Basic	Z	x1	x2	s1	s2	s3	s4	Solution	Ratio
Z	1	-5	-4	0	0	0	0	0	
s1	0	6	4	1	0	0	0	24	24/6=4
s2	0	1	2	0	1	0	0	6	6/1=6
s3	0	-1	1	0	0	1	0	1	1/-1=-1
s4	0	0	1	0	0	0	1	2	2/0

Nonbasic (zero) variables at $B: (s_1, x_2)$

Leaving Variable s₁

Basic variables at $B: (x_1, s_2, s_3, s_4)$

Gauss-Jordon Row Operation

- 1. Pivot row
 - a. Replace the leaving variable in the Basic column with the entering variable.
 - **b.** New pivot row = Current pivot row ÷ Pivot element

Basic	Z	x1	x2	s1	s2	s3	s4	Solution	Ratio	
Z	1	-5	-4	0	0	0	0	0		
x1	0	1	2/3	1/6	0	0	0	4		Pivot
s2	0	1	2	0	1	0	0	6		row
s3	0	-1	1	0	0	1	0	1		
s4	0	0	1	0	0	0	1	2		

• Pivot element = 6

Gauss-Jordon Row Operation

2. All other rows, including z

New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)

• For row z: current row coefficient (1, -5, -4, 0, 0, 0, 0, 0); pivot column coefficient = -5; new pivot row coefficient (0, 1, 2/3, 1/6, 0, 0, 0, 4)

	Basic	z	x1	x2	s1	s2	s3	s4	Solution	Ratio
>	Z	1	(-5)	-4	0	0	0	0	0	
	x1	0	1	2/3	1/6	0	0	0	4	
	s2	0	1	2	0	1	0	0	6	
	s3	0	-1	1	0	0	1	0	1	
	s4	0	0	1	0	0	0	1	2	

• New z-row is (1, 0, -2/3, 5/6, 0, 0, 0, 20)

Gauss-Jordon Row Operation

2. All other rows, including z

New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)

• For row s2: current row coefficient (0, 1, 2, 0, 1, 0, 0, 6); pivot column coefficient = 1; new pivot row coefficient (0, 1, 2/3, 1/6, 0, 0, 0, 4)

Basic	Z	x1	x2	s1	s2	s3	s4	Solution	Ratio
Z	1	0	-2/3	5/6	0	0	0	20	
x1	0	1	2/3	1/6	0	0	0	4	
s2	0		2	0	1	0	0	6	
s3	0	-1	1	0	0	1	0	1	
s4	0	0	1	0	0	0	1	2	

• For row s2: new row (0, 0, 4/3, -1/6, 1, 0, 0, 2)

Gauss-Jordon Row Operation

2. All other rows, including z

New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)

• For row s3: current row coefficient (0, -1, 1, 0, 0, 1, 0, 1); pivot column coefficient = -1; ______ new pivot row coefficient (0, 0, 1, 2/3, 1/6, 0, 0, 0, 4)

Basic	z	x1	x2	s1	s2	s3	s4	Solution	Ratio
Z	1	0	-2/3	5/6	0	0	0	20	
x1	0	1	2/3	1/6	0	0	0	4	
s2	0	0	4/3	-1/6	1	0	0	2	
s3	0	-1	1	0	0	1	0	1	
s4	0	0	1	0	0	0	1	2	

• For row s3: new row (0, 0, 5/3, 1/6, 0, 1, 0, 5)

Gauss-Jordon Row Operation

2. All other rows, including z

New Row = (Current row) - (Its pivot column coefficient) × (New pivot row)

• For row s4: current row coefficient (0, 0, 1, 0, 0, 0, 1, 2); pivot column coefficient = 0; makes pivot row coefficient (0, 0, 1, 2/3, 1/6, 0, 0, 0, 4)

Basic	Z	x1	x2	s1	s2	s3	s4	Solution	Ratio
Z	1	0	-2/3	5/6	0	0	0	20	
x1	0	1	2/3	1/6	0	0	О	4	
s2	0	0	4/3	-1/6	1	0	0	2	
s3	0	0	5/3	1/6	0	1	0	5	
s4	0		1	0	0	0	1	2	

• For row s3: new row (0, 0, 1, 0, 0, 0, 1, 2)

Simplex Tableau

• 1st iteration is over

Entering variable: Most negative coefficient in z-row for maximization problem

Leaving variable: minimum nonnegative ratio

Basic	z	x1	x2	s1	s2	s3	s4	Solution	Ratio
Z	1	0	(-2/3)	5/6	0	0	0	20	
x1	0	1	2/3	1/6	0	0	0	4	6
s2	0	0	4/3	-1/6	1	0	0	2	3/2
s3	0	0	5/3	1/6	0	1	0	5	3
s4	0	0	1	0	0	0	1	2	2

Pivot Row and Column

- Gauss-Jordon Row operations
 - 1. New pivot x_2 -row = Current s_2 -row $\div \frac{4}{3}$
 - 2. New z-row = Current z-row $\left(-\frac{2}{3}\right)$ × New x_2 -row
 - 3. New x_1 -row = Current x_1 -row $-\left(\frac{2}{3}\right) \times \text{New } x_2$ -row
 - 4. New s_3 -row = Current s_3 -row $-\binom{5}{3}$ × New x_2 -row
 - 5. New s_4 -row = Current s_4 -row (1) \times New x_2 -row

Simplex Tableau

Basic	z	x_1	<i>x</i> ₂	s_1	s_2	<i>s</i> ₃	<i>S</i> ₄	Solution
z	1	0	0	3 4	1/2	0	0	21
x_1	0	1	0	1/4	-1/2	0	0	3
x_2	0	0	1	-18	3 4	0	0	3 2
s_3	0	0	0	3 8	<u>5</u>	1	0	5 2
<i>s</i> ₄	0	0	0	18	$-\frac{3}{4}$	0	1	$\frac{1}{2}$

Any entering Variable?

Decision variable	Optimum value	Recommendation
x ₁ x ₂	3 3 2 2 2 1	Produce 3 tons of exterior paint daily Produce 1.5 tons of interior paint daily Daily profit is \$21,000

Constraints

Resource	Slack value	Status
Raw material, M1	$s_1 = 0$	Scarce
Raw material, M2	$s_2 = 0$	Scarce
Market limit	$s_3 = \frac{5}{2}$	Abundant
Demand limit	$s_4=\tfrac{1}{2}$	Abundant

Steps of Simplex Method

Optimality condition						
Maximization problem Minimization problem						
Most negative coefficient of nonbasic variable	Most positive coefficient of nonbasic variable					
Feasibility condition						
Smallest nonnegative ratio	Smallest nonnegative ratio					

Gauss-Jordan row operations.

- 1. Pivot row
 - a. Replace the leaving variable in the Basic column with the entering variable.
 - **b.** New pivot row = Current pivot row ÷ Pivot element
- All other rows, including z
 New row = (Current row) (pivot column coefficient) × (New pivot row)

Steps of Simplex Method

- Step 1. Determine a starting basic feasible solution.
- **Step 2.** Select an *entering variable* using the optimality condition. Stop if there is no entering variable; the last solution is optimal. Else, go to step 3.
- Step 3. Select a leaving variable using the feasibility condition.
- **Step 4.** Determine the new basic solution by using the appropriate Gauss-Jordan computations. Go to step 2.