# Level-1

### Task 1:

# **Data Exploration and Preprocessing**

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
    import warnings
    warnings.filterwarnings('ignore')
```

In [2]: file\_path="C:\\Users\\prade\\Downloads\\Dataset .csv"
 df=pd.read\_csv(file\_path)
 df

# Out[2]:

|              | Locality                                             | Address                                                    | City                | Country<br>Code | Restaurant<br>Name             | Restaurant<br>ID |      |
|--------------|------------------------------------------------------|------------------------------------------------------------|---------------------|-----------------|--------------------------------|------------------|------|
| Ma           | Century City<br>Mall, Poblacion,<br>Makati City      | Third Floor,<br>Century City<br>Mall, Kalayaan<br>Avenu    | Makati City         | 162             | Le Petit<br>Souffle            | 6317637          | 0    |
| Leç<br>Maka  | Little Tokyo,<br>Legaspi Village,<br>Makati City     | Little Tokyo, 2277<br>Chino Roces<br>Avenue,<br>Legaspi    | Makati City         | 162             | Izakaya<br>Kikufuji            | 6304287          | 1    |
| Edsa<br>N    | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City | Edsa Shangri-La,<br>1 Garden Way,<br>Ortigas,<br>Mandal    | Mandaluyong<br>City | 162             | Heat -<br>Edsa<br>Shangri-La   | 6300002          | 2    |
| SI<br>N<br>C | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | Third Floor, Mega<br>Fashion Hall, SM<br>Megamall, O       | Mandaluyong<br>City | 162             | Ooma                           | 6318506          | 3    |
| SI<br>N<br>C | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | Third Floor, Mega<br>Atrium, SM<br>Megamall,<br>Ortigas    | Mandaluyong<br>City | 162             | Sambo<br>Kojin                 | 6314302          | 4    |
|              |                                                      |                                                            |                     |                 |                                |                  |      |
|              | Karak <b>∳</b> _y                                    | Kemanke��<br>Karamustaf<br>Pa��a<br>Mahallesi,<br>R\ht\m   | <b>♦</b> ♦stanbul   | 208             | Naml <sup>)</sup><br>Gurme     | 5915730          | 9546 |
| ŀ            | Ko <b>��</b> uyolu                                   | Ko��uyolu<br>Mahallesi,<br>Muhittin<br>��st�_nda��<br>Cadd | ��stanbul           | 208             | Ceviz<br>A��ac¹                | 5908749          | 9547 |
| Kuru         | Kuru <b>∳</b> _e <b>��</b> me                        | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | <b>♦</b> ♦stanbul   | 208             | Huqqa                          | 5915807          | 9548 |
| Kuru         | Kuru <b>∳</b> _e <b>��</b> me                        | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | ��stanbul           | 208             | A���k<br>Kahve                 | 5916112          | 9549 |
|              | Moda                                                 | Cafea��a<br>Mahallesi,<br>Bademalt¹<br>Sokak, No 21/B,<br> | <b>♦</b> ♦stanbul   | 208             | Walter's<br>Coffee<br>Roastery | 5927402          | 9550 |
|              |                                                      |                                                            |                     |                 | olumns                         | rows × 21 co     | 9551 |
| •            |                                                      |                                                            |                     |                 |                                |                  | 4    |
| ,            |                                                      |                                                            |                     |                 |                                |                  | , i  |

In [3]: df.head()

Out[3]:

|     | Restaurant<br>ID | Restaurant<br>Name           | Country<br>Code | City                | Address                                                           | Locality                                               | Locality<br>Verbose                                           | Loı  |
|-----|------------------|------------------------------|-----------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|------|
| 0   | 6317637          | Le Petit<br>Souffle          | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City     | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak    | 121. |
| 1   | 6304287          | Izakaya<br>Kikufuji          | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City    | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma    | 121. |
| 2   | 6300002          | Heat -<br>Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma    | 121. |
| 3   | 6318506          | Ooma                         | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Fashion<br>Hall, SM<br>Megamall,<br>O  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121. |
| 4   | 6314302          | Sambo<br>Kojin               | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Atrium,<br>SM<br>Megamall,<br>Ortigas  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City     | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121. |
| 5 r | ows × 21 col     | umns                         |                 |                     |                                                                   |                                                        |                                                               |      |

```
In [4]: df.tail()
```

# Out[4]:

|      | Restaurant<br>ID | Restaurant<br>Name             | Country<br>Code | City              | Address                                                                   | Locality                      |                 |
|------|------------------|--------------------------------|-----------------|-------------------|---------------------------------------------------------------------------|-------------------------------|-----------------|
| 9546 | 5915730          | Naml <sup>)</sup><br>Gurme     | 208             | <b>♦</b> ♦stanbul | Kemanke��<br>Karamustafa<br>Pa��a<br>Mahallesi,<br>R\ht\m                 | Karak <b>∳</b> _y             | ł<br>€          |
| 9547 | 5908749          | Ceviz<br>A��ac¹                | 208             | <b>♦</b> ♦stanbul | Ko��uyolu<br>Mahallesi,<br>Muhittin<br>��st�_nda��<br>Cadd                | Ko <b>��</b> uyolu            | Ko∙<br><b>€</b> |
| 9548 | 5915807          | Huqqa                          | 208             | <b>♦</b> ♦stanbul | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N                   | Kuru <b>�</b> _e <b>��</b> me | Kuru <b>∳</b> _ |
| 9549 | 5916112          | A���k<br>Kahve                 | 208             | <b>♦</b> ♦stanbul | Kuru <b>♦</b> _e <b>♦♦</b> me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N | Kuru <b>∳</b> _e <b>��</b> me | Kuru <b>∳</b> _ |
| 9550 | 5927402          | Walter's<br>Coffee<br>Roastery | 208             | <b>♦♦</b> stanbul | Cafea��a<br>Mahallesi,<br>Bademalt¹<br>Sokak, No 21/B,<br>                | Moda                          | €               |

# 5 rows × 21 columns

```
In [6]: df.shape
```

Out[6]: (9551, 21)

In [7]: df.size

Out[7]: 200571

In [8]: print("Number of rows are: ",df.shape[0])
print("Number of columns are: ",df.shape[1])

Number of rows are: 9551 Number of columns are: 21

In [9]: Duplicate=df.duplicated().sum()
Duplicate

Out[9]: 0

In [10]: df.isnull()

#### Out[10]:

|      | Restaurant<br>ID | Restaurant<br>Name | Country<br>Code | City  | Address | Locality | Locality<br>Verbose | Longitude | Latitu |
|------|------------------|--------------------|-----------------|-------|---------|----------|---------------------|-----------|--------|
| 0    | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 1    | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 2    | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 3    | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 4    | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
|      |                  |                    |                 |       |         |          |                     |           |        |
| 9546 | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 9547 | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 9548 | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 9549 | False            | False              | False           | False | False   | False    | False               | False     | Fal    |
| 9550 | False            | False              | False           | False | False   | False    | False               | False     | Fal    |

9551 rows × 21 columns

In [11]: df.isnull().sum()

Out[11]: Restaurant ID 0 Restaurant Name 0 Country Code 0 0 City Address 0 Locality 0 Locality Verbose 0 Longitude 0 Latitude 0 Cuisines 9 0 Average Cost for two Currency 0 0 Has Table booking 0 Has Online delivery Is delivering now 0 0 Switch to order menu Price range 0 0 Aggregate rating Rating color 0 0 Rating text Votes dtype: int64

```
In [12]: # Visualizing the missing values
# Checking Null Value by Plotting Heatmap

plt.figure(figsize = (9,5))

sns.heatmap(df.isnull().corr(), vmin=-1, annot= True)

plt.xlabel('Name of columns', fontsize=11)
plt.ylabel('Name of columns', fontsize=10)
plt.title('Places of missing values in Dataset', fontsize=12)

plt.show()
```



#### **Handling Missing Values**

```
In [13]: dp=df.dropna(subset=['Cuisines'])
```

```
In [14]: print("Missing values/null values count after handling:")
    df.isna().sum()
```

Missing values/null values count after handling:

| Out[14]: | Restaurant ID        | 0 |
|----------|----------------------|---|
|          | Restaurant Name      | 0 |
|          | Country Code         | 0 |
|          | City                 | 0 |
|          | Address              | 0 |
|          | Locality             | 0 |
|          | Locality Verbose     | 0 |
|          | Longitude            | 0 |
|          | Latitude             | 0 |
|          | Cuisines             | 9 |
|          | Average Cost for two | 0 |
|          | Currency             | 0 |
|          | Has Table booking    | 0 |
|          | Has Online delivery  | 0 |
|          | Is delivering now    | 0 |
|          | Switch to order menu | 0 |
|          | Price range          | 0 |
|          | Aggregate rating     | 0 |
|          | Rating color         | 0 |
|          | Rating text          | 0 |
|          | Votes                | 0 |
|          | dtype: int64         |   |
|          |                      |   |

# **Data Type Conversion**

```
In [15]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):
```

| #     | Column                 | Non-Null Count | Dtype   |
|-------|------------------------|----------------|---------|
|       |                        |                |         |
| 0     | Restaurant ID          | 9551 non-null  | int64   |
| 1     | Restaurant Name        | 9551 non-null  | object  |
| 2     | Country Code           | 9551 non-null  | int64   |
| 3     | City                   | 9551 non-null  | object  |
| 4     | Address                | 9551 non-null  | object  |
| 5     | Locality               | 9551 non-null  | object  |
| 6     | Locality Verbose       | 9551 non-null  | object  |
| 7     | Longitude              | 9551 non-null  | float64 |
| 8     | Latitude               | 9551 non-null  | float64 |
| 9     | Cuisines               | 9542 non-null  | object  |
| 10    | Average Cost for two   | 9551 non-null  | int64   |
| 11    | Currency               | 9551 non-null  | object  |
| 12    | Has Table booking      | 9551 non-null  | object  |
| 13    | Has Online delivery    | 9551 non-null  | object  |
| 14    | Is delivering now      | 9551 non-null  | object  |
| 15    | Switch to order menu   | 9551 non-null  | object  |
| 16    | Price range            | 9551 non-null  | int64   |
| 17    | Aggregate rating       | 9551 non-null  | float64 |
| 18    | Rating color           | 9551 non-null  | object  |
| 19    | Rating text            | 9551 non-null  | object  |
| 20    | Votes                  | 9551 non-null  | int64   |
| dtype | es: float64(3), int64( | 5), object(13) |         |
| memoi | ry usage: 1.5+ MB      |                |         |

**Distribution of The Target Variable** 

```
In [16]: target_counts = df['Aggregate rating'].value_counts()
    print("Distribution of target variable:")
    print(target_counts)
```

```
Distribution of target variable:
Aggregate rating
0.0
       2148
3.2
        522
3.1
        519
3.4
        498
3.3
        483
3.5
        480
3.0
        468
3.6
        458
3.7
        427
3.8
        400
2.9
        381
3.9
        335
2.8
        315
4.1
        274
4.0
        266
2.7
        250
4.2
        221
2.6
        191
4.3
        174
4.4
        144
2.5
        110
4.5
         95
2.4
         87
4.6
         78
4.9
         61
2.3
         47
4.7
         42
2.2
         27
         25
4.8
         15
2.1
          7
2.0
          2
1.9
1.8
          1
Name: count, dtype: int64
```

Task-2:Descriptive Analysis

```
numeric_columns = df.select_dtypes(include=['int', 'float'])
In [17]:
         # Calculate basic statistical measures using .describe()
         summary_stats = numeric_columns.describe()
         print(summary stats)
                Restaurant ID Country Code
                                                Longitude
                                                              Latitude
         count
                 9.551000e+03
                               9551.000000 9551.000000 9551.000000
                 9.051128e+06
         mean
                                  18.365616
                                                64.126574
                                                             25.854381
         std
                 8.791521e+06
                                   56.750546
                                                41.467058
                                                             11.007935
         min
                 5.300000e+01
                                   1.000000 -157.948486
                                                            -41.330428
         25%
                 3.019625e+05
                                   1.000000
                                                77.081343
                                                             28.478713
         50%
                 6.004089e+06
                                   1.000000
                                                77.191964
                                                             28.570469
         75%
                 1.835229e+07
                                   1.000000
                                                77.282006
                                                             28.642758
                 1.850065e+07
                                 216.000000
                                               174.832089
                                                             55.976980
         max
                                                                             Votes
                Average Cost for two
                                      Price range Aggregate rating
                         9551.000000
                                      9551.000000
                                                         9551.000000
                                                                       9551.000000
         count
         mean
                         1199.210763
                                          1.804837
                                                            2.666370
                                                                        156.909748
         std
                        16121.183073
                                          0.905609
                                                                        430.169145
                                                            1.516378
         min
                            0.000000
                                          1.000000
                                                            0.000000
                                                                          0.000000
         25%
                          250.000000
                                          1.000000
                                                            2.500000
                                                                          5.000000
         50%
                          400.000000
                                          2.000000
                                                            3.200000
                                                                         31.000000
         75%
                          700.000000
                                          2.000000
                                                                        131.000000
                                                            3.700000
         max
                       800000.000000
                                          4.000000
                                                            4.900000
                                                                      10934.000000
         median = numeric_columns.median()
In [20]:
         print(f"\nMedian for numerical columns:\n{median}")
         Median for numerical columns:
         Restaurant ID
                                 6.004089e+06
         Country Code
                                 1.000000e+00
         Longitude
                                 7.719196e+01
         Latitude
                                 2.857047e+01
         Average Cost for two
                                 4.000000e+02
         Price range
                                 2.000000e+00
                                 3.200000e+00
         Aggregate rating
         Votes
                                 3.100000e+01
         dtype: float64
In [21]: # Calculate standard deviation for numerical columns
         std dev = numeric columns.std()
         print(f"\nStandard deviation for numerical columns:\n{std dev}")
         Standard deviation for numerical columns:
         Restaurant ID
                                 8.791521e+06
         Country Code
                                 5.675055e+01
         Longitude
                                 4.146706e+01
         Latitude
                                 1.100794e+01
         Average Cost for two
                                 1.612118e+04
         Price range
                                 9.056088e-01
         Aggregate rating
                                 1.516378e+00
         Votes
                                 4.301691e+02
```

dtype: float64

# **Distribution of Categorical Variables**

```
In [22]: plt.figure(figsize=(9, 6))

sns.countplot(x = df['Country Code'])

plt.xlabel('Country Codes')
 plt.ylabel('Number of Restaurants')
 plt.title('Distribution of Restaurants by Country Codes')

plt.show()
```



```
In [23]: plt.figure(figsize=(8, 5))

sns.countplot(y = df['City'], order=df.City.value_counts().iloc[:10].index)

plt.xlabel('Number of Restaurants')
plt.ylabel('Name of Cities')
plt.title('Top 10 Cities with Highest Number of Restaurants')

plt.show()
```



```
In [24]: plt.figure(figsize=(8, 5))

# Create the figure object
# There are many cuisine names present in the data, so i select only the to
sns.countplot(y = df['Cuisines'], order=df.Cuisines.value_counts().iloc[:10]

# Set Labels
plt.xlabel('Number of Restaurants')
plt.ylabel('Name of Cuisines')
plt.title('Top 10 Cuisines with Highest Number of Restaurants')

plt.show()
```



#### **Top Cuisines and Cities**

```
In [25]: # Identify the top 10 cuisines
top_cuisines = df['Cuisines'].value_counts().head(10)

# Display the results
print("Top 10 Cuisines with Highest Number of Restaurants:")
print(top_cuisines)
```

```
Top 10 Cuisines with Highest Number of Restaurants:
Cuisines
                                   936
North Indian
North Indian, Chinese
                                   511
Chinese
                                   354
Fast Food
                                   354
North Indian, Mughlai
                                   334
Cafe
                                   299
Bakery
                                   218
North Indian, Mughlai, Chinese
                                   197
Bakery, Desserts
                                   170
Street Food
                                   149
Name: count, dtype: int64
```

```
# Identify the top 10 cities
In [26]:
         top_cities = df['City'].value_counts().head(10)
         # Display the results
         print("Top 10 Cities with Highest Number of Restaurants:")
         print(top_cities)
         Top 10 Cities with Highest Number of Restaurants:
```

```
City
New Delhi
                5473
Gurgaon
                1118
Noida
                1080
Faridabad
                 251
Ghaziabad
                  25
Bhubaneshwar
                  21
Amritsar
                  21
Ahmedabad
                  21
Lucknow
                  21
Guwahati
                  21
Name: count, dtype: int64
```

Task-3: Geospatial Analysis

#### **Visualize Locations of Restaurants**

```
In [28]: pip install shapely
```

Collecting shapelyNote: you may need to restart the kernel to use updated packages.

Obtaining dependency information for shapely from https://files.pythonh osted.org/packages/29/cd/763817c27e6cb6d04ffd477a5dcdfdd71bc3fb640f5748c9 f2c1cd08ba52/shapely-2.0.3-cp311-cp311-win\_amd64.whl.metadata (https://fi les.pythonhosted.org/packages/29/cd/763817c27e6cb6d04ffd477a5dcdfdd71bc3f b640f5748c9f2c1cd08ba52/shapely-2.0.3-cp311-cp311-win amd64.whl.metadata)

Downloading shapely-2.0.3-cp311-cp311-win amd64.whl.metadata (7.2 kB) Requirement already satisfied: numpy<2,>=1.14 in c:\users\prade\anaconda3

```
\lib\site-packages (from shapely) (1.24.3)
Downloading shapely-2.0.3-cp311-cp311-win_amd64.whl (1.4 MB)
  ----- 0.0/1.4 MB ? eta -:--:--
  ----- 0.5/1.4 MB 10.5 MB/s eta 0:0
0:01
    ----- 0.8/1.4 MB 8.9 MB/s eta 0:00:
91
     ----- 1.2/1.4 MB 8.5 MB/s eta 0:00:
01
     ----- 1.4/1.4 MB 8.3 MB/s eta 0:00:
01
                  ----- 1.4/1.4 MB 7.0 MB/s eta 0:00:
99
```

Installing collected packages: shapely Successfully installed shapely-2.0.3

## In [30]: pip install geopandas

e\anaconda3\lib\site-packages (from pandas>=1.4.0->geopandas) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\prade\anaconda 3\lib\site-packages (from pandas>=1.4.0-yeopandas) (2023.3.post1) Requirement already satisfied: tzdata>=2022.1 in c:\users\prade\anacon da3\lib\site-packages (from pandas>=1.4.0->geopandas) (2023.3) Requirement already satisfied: numpy>=1.21.0 in c:\users\prade\anacond a3\lib\site-packages (from pandas>=1.4.0->geopandas) (1.24.3) Requirement already satisfied: colorama in c:\users\prade\anaconda3\li b\site-packages (from click~=8.0->fiona>=1.8.21->geopandas) (0.4.6) Downloading geopandas-0.14.3-py3-none-any.whl (1.1 MB) ----- 0.0/1.1 MB ? eta -:--:------- 0.4/1.1 MB 8.7 MB/s eta 0: 00:01 ---- 0.7/1.1 MB 9.5 MB/s eta 0: 00:01 ----- 1.1/1.1 MB 7.8 MB/s eta 0: 00:01 ----- 1.1/1.1 MB 7.0 MB/s eta 0: 00:00 Downloading fiona-1.9.5-cp311-cp311-win\_amd64.whl (22.9 MB)

```
In [31]: from shapely.geometry import Point
import geopandas as gpd
from geopandas import GeoDataFrame

# Create Point geometry from Latitude and Longitude using Shapely
gdf = gpd.GeoDataFrame(
    df,
        geometry=gpd.points_from_xy(df.Longitude, df.Latitude)
)

# Create a base map of the world using Geopandas
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))

# Create a map that fits the screen and plots the restaurant Locations
# The "continent" column is used for coloring and a Legend is displayed
gdf.plot(ax=world.plot("continent", legend = True, figsize=(14, 12)), market

# Show the map
plt.show()
```



#### Correlation Between the Restaurant's Location and its Rating



```
In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:
```