Memo: Eigenschaften symmetrischer Funktionen

Simon Kapfer

4. März 2014

Zusammenfassung

Was im Stanley [Sta99] dazu steht.

1 Definitionen

Wir arbeiten über $\mathbb{Q}[x_1, x_2, ..., x_n]$. Dabei ist n beliebig, aber groß. Es sollen λ, ν, μ Partitionen oder auch Multi-Indizes sein. Die Darstellungen werden munter gemixt. Permutationen werden mit $\sigma, \tau \in \mathfrak{S}_n$ bezeichnet.

1.1. Sonstige Bezeichnungen.

$$\delta := (n-1, n-2, ..., 0)$$

$$z_{\lambda} := \prod_i i^{\lambda_i} \lambda_i!$$

$$K_{\lambda\mu} \quad \text{Kostka-Zahlen}$$

- **1.2.** *Monomial symmetrische Funktionen.* Werden als einzige über $\mathbf{m}_{\lambda} = (x^{\lambda})^{\text{Sym}}$ definiert. Die anderen alle über Produkte.
- 1.3. Schur-Funktionen und Determinanten.

$$a_{\lambda} := \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\sigma} \sigma(x^{\lambda}) = \det \left(x_i^{\lambda_j} \right) \quad \text{(antisymmetrisch)}$$
$$\mathbf{s}_{\lambda} := \frac{a_{\lambda + \delta}}{a_{\delta}} \quad \text{(symmetrisch)}$$

Insbesondere ist a_δ die Vandermonde-Determinante.

1.4. Erzeugende Funktionen.

$$\sum_{k} \mathbf{e}_{k} t^{k} = \prod_{i} (1 + x_{i} t)$$
$$\sum_{k} \mathbf{h}_{k} t^{k} = \prod_{i} \frac{1}{1 - x_{i} t} = \exp\left(\sum_{k} \frac{1}{k} \mathbf{p}_{k} t^{k}\right)$$

2 Skalarprodukt und Involution

2.1. *Skalarprodukt.* Das Skalarprodukt wird so definiert, daß gilt:

$$\langle \mathbf{m}_{\lambda}, \mathbf{h}_{\mu} \rangle = \delta_{\lambda\mu} = \langle \mathbf{s}_{\lambda}, \mathbf{s}_{\mu} \rangle$$
$$\langle \mathbf{p}_{\lambda}, \mathbf{p}_{\mu} \rangle = \delta_{\lambda\mu} z_{\lambda}$$

2.2. Adjungierte Multiplikationsperatoren. (7.15.2, und [Mac79], S. 44.)

$$\langle \mathbf{s}_{\nu} f, \mathbf{s}_{\lambda} \rangle = \langle f, \mathbf{s}_{\lambda/\nu} \rangle$$

Bezeichne mit $D(\underline{\ })$ den adjungierten Operator zur Multiplikation. Dann:

$$D(\mathbf{p}_n) = \sum_{r \ge 0} \mathbf{h}_r \frac{\partial}{\partial \mathbf{h}_{n+r}} = (-1)^{n-1} \sum_{r \ge 0} \mathbf{e}_r \frac{\partial}{\partial \mathbf{e}_{n+r}} = n \frac{\partial}{\partial \mathbf{p}_n}$$

2.3. *Involution.* Definiere eine Involution ω durch

$$\omega \mathbf{e}_{\lambda} = \mathbf{h}_{\lambda}$$
.

Dann hat ω folgende Eigenschaften:

$$\omega^{2} = id$$

$$\langle \omega f, \omega g \rangle = \langle f, g \rangle$$

$$\omega \mathbf{p}_{\lambda} = \deg(\lambda) \mathbf{p}_{\lambda}$$

$$\omega \mathbf{s}_{\lambda/y} = \mathbf{s}_{\lambda'/y'}$$
(7.7.5)
$$(7.7.5)$$

2.4. *Duale Basen.* $\{\mathbf{u}_{\lambda}\}$, $\{\mathbf{v}_{\lambda}\}$ seien zwei duale Basen für symmetrische Funktionen, d. h. $\langle \mathbf{u}_{\lambda}, \mathbf{v}_{\nu} \rangle = \delta_{\lambda \nu}$. Dann gilt:

$$\sum_{\lambda} \mathbf{u}_{\lambda}(x) \mathbf{v}_{\lambda}(y) = \prod_{i,j} \frac{1}{1 - x_i y_j}$$
$$\sum_{\lambda} \mathbf{u}_{\lambda}(x) \omega_y \mathbf{v}_{\lambda}(y) = \prod_{i,j} 1 + x_i y_j$$

3 Beziehungen zwischen den Basen

- **3.1.** *Darstellung durch* \mathbf{m}_{λ} . Siehe 7.4.1, 7.5.1., 7.7.1.
- 3.2. Durch Potenzsummen. Siehe 7.7.6.
- **3.3.** *Durch Schur.* (7.12.4, 7.15.3, 7.17.3)

$$\mathbf{s}_{\nu}\mathbf{h}_{\mu} = \sum_{\lambda} K_{\lambda/\nu\mu} \,\mathbf{s}_{\lambda}$$
$$\mathbf{s}_{\nu}\mathbf{e}_{\mu} = \sum_{\lambda} K_{\lambda'/\nu'\mu} \,\mathbf{s}_{\lambda}$$
$$\mathbf{s}_{\nu}\mathbf{p}_{\mu} = \sum_{\lambda} \chi^{\lambda/\nu}(\mu) \,\mathbf{s}_{\lambda}$$

Die letzte Gleichung heißt Murnagham-Nakayama Regel. χ wird in 7.17.3 definiert. Dort auch Border-Strip-Tableaus.

- 3.4. Durch Matrizen. Siehe [Mac79] S. 56.
- **3.5.** *Jacobi-Trudy.* (Stanley 7.16.1)

$$\mathbf{s}_{\lambda/\mu} = \det\left(\mathbf{h}_{\lambda_i - \mu_j + i - j}\right)$$

Literatur

- [Mac79] Ian G. Macdonald. *Symmetric functions and Hall polynomials*. Clarendon Press, Oxford, 1979.
- [Sta99] Richard P. Stanley. *Enumerative combinatorics. Volume 2.* Cambridge studies in advanced mathematics. Cambridge university press, Cambridge, New York, 1999. Errata et addenda: p. 583-585.