PROBABILITY

T SIVA PARVATHI - FWC22089

- 13.4.5 ¹ Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
 - (a) number greater than 4
 - (b) six appears on at least one die

Solution: Given that a die tossed two times,

Consider each trial results in success or failure. Let X_i where i = 1, 2 be the random variables representing the outcome for each die toss.

Variable	Values	Description
n	2	Number of tosses of a die
p_1	$\frac{1}{3}$	Probability of getting number >4
q_1	$1 - p_1$	Probability of not getting number >4
p_2	$\frac{1}{6}$	probability of getting six on a die
q_2	$1 - p_2$	probability of not getting six on a die
X_1	{1,2,3,4,5,6}	possible outcomes of 1st toss of a die
X_2	{1,2,3,4,5,6}	possible outcomes of 2nd toss of a die

Table 2: Variable Description

p and q are the probability of success and failure respectively.

$$p_1 = \frac{1}{3} \tag{13.4.2.1}$$

$$q_1 = 1 - p_1 = \frac{2}{3} \tag{13.4.2.2}$$

Similarly,

$$p_2 = \frac{1}{6} \tag{13.4.2.3}$$

$$q_2 = 1 - p_2 = \frac{5}{6} \tag{13.4.2.4}$$

(a) number greater than 4

In n Bernoulli trials with k success and (n-k) failures, the probability of k success in n- Bernoulli trials can be given as

$$\Pr(X_i = k) = \begin{cases} {}^{n}C_k p^k q^{n-k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
 (13.4.1.5)

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)

where, n=2

$$X = X_1 + X_2 \tag{13.4.1.6}$$

$$p_X(k) = {}^{n}C_k p_1 {}^{k} q_1 {}^{n-k}, 0 \le k \le 2, n = 2$$
(13.4.1.7)

Probability distribution of getting number greater than 4 is,

$$p_X(k) = \begin{cases} \frac{4}{9}, & k = 0\\ \frac{4}{9}, & k = 1\\ \frac{1}{9}, & k = 2 \end{cases}$$
 (13.4.1.8)

(b) six appears on at least one die

In n Bernoulli trials with k success and (n-k) failures, the probability of k success in n- Bernoulli trials can be given as

$$\Pr(X_i = k) = \begin{cases} {}^{n}C_k p^k q^{n-k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
 (13.4.2.9)

where, n=2

$$X = X_1 + X_2 \tag{13.4.2.10}$$

$$p_X(k) = {}^{n}C_k p_2 {}^{k} q_2 {}^{n-k}, 0 \le k \le 2, n = 2$$
(13.4.2.11)

Probability distribution of getting six on atleast one die is,

$$p_X(k) = \begin{cases} \frac{25}{36}, & k = 0\\ \frac{10}{36}, & k = 1\\ \frac{1}{36}, & k = 2 \end{cases}$$
 (13.4.2.12)