An introduction to TimeFlow: Time Series Continuous Modeling for Imputation and Forecasting with Implicit **Neural Representations**

July 2024

Motivations

Most measured phenomena in time series are continuous phenomena

But in real life, we observe partially these phenomena

Motivations INR's? TimeFlow architecture TimeFlow tasks Conclusion Reference

OO●O OOOOOO OOOOOO OOO

In a tabular way

Tabular representation is convenient in machine learning but is limited for real-life problems

INRs treat structured data as a continuous function partially observed

Let's drop the tabular representation for a continuous functional representation

How to train f_{θ} ?

We solve the following optimization problem:

$$heta^* = rg\min_{ heta} \sum_{t \in \mathcal{T}^{obs}} \mathcal{L}(\mathit{f}_{ heta}(t), \mathit{s}(t))$$

- \mathcal{T}^{obs} stands for the observed temporal support $(\mathcal{T}^{obs} \subset \mathcal{T})$
- \mathcal{L} stands for a differentiable loss (e.g. $\mathcal{L}(x, \tilde{x}) = ||x \tilde{x}||^2$)

How f_{θ} looks like

NeRF encoding [Mildenhall et al., 2021]

- **1** NeRF encoding : $t \rightarrow \gamma(t)$, $\gamma(t) := (\sin(\pi t), \cos(\pi t), \cdots, \sin(2^N \pi t), \cos(2^N \pi t))$
 - N is the number of frequency bands
- 2 Then $\gamma(t) \to \mathsf{MLP}(\gamma(t); \theta)$ Activation functions are ReLU (i.e. ReLU(x) = max(0, x))

SIREN approach [Sitzmann et al., 2020]

• $t \to \mathsf{MLP}(t; \theta)$, where layer I is:

$$A^{(I)} = sin(\omega_0 A^{(I-1)} W^{(I)} + b^{(I)})$$

NeRF encoding illustration (1/2)

NeRF encoding illustration (2/2)

Nice to fit a sample, but how to deal with a dataset?

 Solution → Hypernetwork that modulate the INR [Dupont et al., 2022, Klocek et al., 2019, Sitzmann et al., 2020]

Hypernetwork and auto-decoding [Dupont et al., 2022, Yin et al., 2022]

Insight on θ , w and the $z^{(j)}$

New optimization problem

We want to retrieve θ^* , w^* , $\begin{pmatrix} z^{(1)*} \\ \vdots \\ z^{(n)*} \end{pmatrix}$ that minimize:

$$\sum_{j \in \{1, \dots, n\}} \sum_{t \in \mathcal{T}^{(j) \text{obs}}} \mathcal{L}(f_{\theta, w, z^{(j)}}(t), x^{(j)}(t))$$

- \bullet θ and w are shared across all samples
- $z^{(j)}$ is only in relation to sample j.

Key Concept

For each sample j, the parameter space is conditioned by $z^{(j)}$. Therefore. while θ and w hold the shared information across all samples, the individual information is stored in $z^{(j)}$

Training and meta-learning [Zintgraf et al., 2019]

Algorithm 1: Training

```
while no convergence do
```

```
Sample batch \mathcal{B} of data (x^{(j)})_{i \in \mathcal{B}};
Set codes to zero z^{(j)} \leftarrow 0, \forall i \in \mathcal{B}:
// inner loop for encoding:
for j \in \mathcal{B} and step \in \{1, ..., K\} do
       z^{(j)} \leftarrow z^{(j)} - \alpha \nabla_{z^{(j)}} \mathcal{L}_{\mathcal{T}}(f_{\theta,h_{\mathsf{out}}(z^{(j)})}, x^{(j)});
// outer loop step:
[\theta, w] \leftarrow [\theta, w] - \eta \nabla_{[\theta, w]} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathcal{L}_{\mathcal{T}}(f_{\theta.h_{\omega}(z^{(j)})}, x^{(j)});
```

At inference

Algorithm 2: Inference with trained θ , w

For the *j*-th series $(x^{(j)})$, set code to zero $z^{*(j)} \leftarrow 0$; for $step \in \{1, ..., K\}$ do $| z^{*(j)} \leftarrow z^{*(j)} - \alpha \nabla_{z^{*(j)}} \mathcal{L}_{\mathcal{T}}(f_{\theta, h_w(z^{*(j)})}, x_t)$ Query $f_{\theta, h_w(z^{*(j)})}(t)$ for any $t \in \mathcal{T}^{*(j)}$

Experiments

Imputation

We compare to a wide range of baselines on three datasets

Table: Mean MAE imputation results on the missing grid only. τ stands for the subsampling rate. Bold results are best, underlined results are second best.

			Continuous	methods		Discrete methods				
	τ	TimeFlow	DeepTime	mTAN	Neural Process	CSDI	SAITS	BRITS	TIDER	
	0.05	0.324 ± 0.013	0.379 ± 0.037	0.575 ± 0.039	0.357 ± 0.015	0.462 ± 0.021	0.384 ± 0.019		0.427 ± 0.010	
	0.10	0.250 ± 0.010	0.333 ± 0.034	0.412 ± 0.047	0.417 ± 0.057	0.398 ± 0.072	0.308 ± 0.011	0.287 ± 0.015	0.399 ± 0.009	
Electricity	0.20	$\textbf{0.225}\pm\textbf{0.008}$	0.244 ± 0.013	0.342 ± 0.014	0.320 ± 0.017	0.341 ± 0.068	0.261 ± 0.008	0.245 ± 0.011	0.391 ± 0.010	
	0.30	$\textbf{0.212}\pm\textbf{0.007}$	0.240 ± 0.014	0.335 ± 0.015	0.300 ± 0.022	0.277 ± 0.059	0.236 ± 0.008	0.221 ± 0.008	0.384 ± 0.009	
	0.50	0.194 ± 0.007	0.227 ± 0.012	0.340 ± 0.022	0.297 ± 0.016	$\textbf{0.168}\pm\textbf{0.003}$	0.209 ± 0.008	$\underline{0.193\pm0.008}$	0.386 ± 0.009	
Solar	0.05	0.095 ± 0.015	0.190 ± 0.020	0.241 ± 0.102	0.115 ± 0.015	0.374 ± 0.033	0.142 ± 0.016	0.165 ± 0.014	0.291 ± 0.009	
	0.10	$\textbf{0.083}\pm\textbf{0.015}$	0.159 ± 0.013	0.251 ± 0.081	0.114 ± 0.014	0.375 ± 0.038	0.124 ± 0.018	0.132 ± 0.015	0.276 ± 0.010	
	0.20	0.072 ± 0.015	0.149 ± 0.020	0.314 ± 0.035	0.109 ± 0.016	0.217 ± 0.023	0.108 ± 0.014	0.109 ± 0.012	0.270 ± 0.010	
	0.30	0.061 ± 0.012	0.135 ± 0.014	0.338 ± 0.05	0.108 ± 0.016	0.156 ± 0.002	0.100 ± 0.015	0.098 ± 0.012	0.266 ± 0.010	
	0.50	0.054 ± 0.013	0.098 ± 0.013	0.315 ± 0.080	0.107 ± 0.015	$\underline{0.079\pm0.011}$	0.094 ± 0.013	0.088 ± 0.013	0.262 ± 0.009	
Traffic	0.05	0.283 ± 0.016	0.246 ± 0.010	0.406 ± 0.074	0.318 ± 0.014	0.337 ± 0.045	0.293 ± 0.007	0.261 ± 0.010	0.363 ± 0.007	
	0.10	$\textbf{0.211}\pm\textbf{0.012}$	0.214 ± 0.007	0.319 ± 0.025	0.288 ± 0.018	0.288 ± 0.017	0.237 ± 0.006	0.245 ± 0.009	0.362 ± 0.006	
	0.20	$\textbf{0.168}\pm\textbf{0.006}$	0.216 ± 0.006	0.270 ± 0.012	0.271 ± 0.011	0.269 ± 0.017	0.197 ± 0.005	0.224 ± 0.008	0.361 ± 0.006	
	0.30	0.151 ± 0.007	0.172 ± 0.008	0.251 ± 0.006	0.259 ± 0.012	0.240 ± 0.037	0.180 ± 0.006	0.197 ± 0.007	0.355 ± 0.006	
	0.50	$\textbf{0.139}\pm\textbf{0.007}$	0.171 ± 0.005	0.278 ± 0.040	0.240 ± 0.021	$\underline{0.144\pm0.022}$	0.160 ± 0.008	0.161 ± 0.060	0.354 ± 0.007	
TimeFlow improvement		/	24.14 %	50.53 %	31.61 %	36.12 %	20.33 %	18.90 %	53.40 %	

Qualitative comparison with BRITS

Figure: Electricity dataset. TimeFlow imputation (blue line) and BRITS imputation (gray line) with 10% of known point (red points) on the eight first days of samples 35 (top) and 25 (bottom).

Forecasting

We compare to a wide range of baselines on three datasets

Table: Mean MAE forecast results for adjacent time windows. H stands for the horizon. Bold results are best, underline results are second best.

		Co	ontinuous method	ls	Discrete methods				
	Н	TimeFlow	DeepTime	Neural Process	Patch-TST	DLinear	AutoFormer	Informer	
Electricity	96	0.218 ± 0.017	0.240 ± 0.027	0.392 ± 0.045	0.214 ± 0.020	0.236 ± 0.035	0.310 ± 0.031	0.293 ± 0.018	
	192	0.238 ± 0.012	0.251 ± 0.023	0.401 ± 0.046	$\textbf{0.225}\pm\textbf{0.017}$	0.248 ± 0.032	0.322 ± 0.046	0.336 ± 0.032	
	336	0.265 ± 0.036	0.290 ± 0.034	0.434 ± 0.075	0.242 ± 0.024	0.284 ± 0.043	0.330 ± 0.019	0.405 ± 0.044	
	720	$\underline{0.318\pm0.073}$	0.356 ± 0.060	0.605 ± 0.149	0.291 ± 0.040	0.370 ± 0.086	0.456 ± 0.052	0.489 ± 0.072	
SolarH	96	0.172 ± 0.017	0.197 ± 0.002	0.221 ± 0.048	0.232 ± 0.008	0.204 ± 0.002	0.261 ± 0.053	0.273 ± 0.02	
	192	0.198 ± 0.010	0.202 ± 0.014	0.244 ± 0.048	0.231 ± 0.027	0.211 ± 0.012	0.312 ± 0.085	0.256 ± 0.026	
	336	0.207 ± 0.019	0.200 ± 0.012	0.241 ± 0.005	0.254 ± 0.048	0.212 ± 0.019	0.341 ± 0.107	0.287 ± 0.006	
	720	$\bf 0.215\pm0.016$	$\underline{0.240\pm0.011}$	0.403 ± 0.147	0.271 ± 0.036	0.246 ± 0.015	0.368 ± 0.006	0.341 ± 0.049	
Traffic	96	0.216 ± 0.033	0.229 ± 0.032	0.283 ± 0.028	0.201 ± 0.031	0.225 ± 0.034	0.299 ± 0.080	0.324 ± 0.11	
	192	0.208 ± 0.021	0.220 ± 0.020	0.292 ± 0.023	0.195 ± 0.024	0.215 ± 0.022	0.320 ± 0.036	0.321 ± 0.05	
	336	0.237 ± 0.040	0.247 ± 0.033	0.305 ± 0.039	$\textbf{0.220}\pm\textbf{0.036}$	0.244 ± 0.035	0.450 ± 0.127	0.394 ± 0.06	
	720	$\textbf{0.266}\pm\textbf{0.048}$	0.290 ± 0.045	0.339 ± 0.037	$\underline{0.268\pm0.050}$	0.290 ± 0.047	0.630 ± 0.043	0.441 ± 0.05	
TimeFlow improvement		/	6.56 %	30.79 %	2.64 %	7.30 %	35.43 %	33.07 %	

TimeFlow can even forecast on sparsely observed look-back window $\left(1/2\right)$

Table: MAE results for forecasting with missing values in the look-back window. τ stands for the percentage of observed values in the look-back window. Best results are in bold.

			TimeFlow		Deep	Гime	Neural Process	
	Н	τ	Imputation error	Forecast error	Imputation error	Forecast error	Imputation error	Forecast error
Electricity	96	0.5 0.2 0.1	$\begin{array}{c} 0.151 \pm 0.003 \\ 0.208 \pm 0.006 \\ 0.272 \pm 0.006 \end{array}$	$\begin{array}{c} 0.239 \pm 0.013 \\ 0.260 \pm 0.015 \\ 0.295 \pm 0.016 \end{array}$	$\begin{array}{c} 0.209 \pm 0.004 \\ 0.249 \pm 0.006 \\ 0.284 \pm 0.007 \end{array}$	$\begin{array}{c} 0.270 \pm 0.019 \\ 0.296 \pm 0.023 \\ 0.324 \pm 0.026 \end{array}$	$\begin{array}{c} 0.460 \pm 0.048 \\ 0.644 \pm 0.079 \\ 0.740 \pm 0.083 \end{array}$	$\begin{array}{c} 0.486 \pm 0.078 \\ 0.650 \pm 0.095 \\ 0.737 \pm 0.106 \end{array}$
	192	0.5 0.2 0.1	$\begin{array}{c} 0.149\pm0.004 \\ 0.209\pm0.006 \\ 0.274\pm0.010 \end{array}$	$\begin{array}{c} 0.235 \pm 0.011 \\ 0.257 \pm 0.013 \\ 0.289 \pm 0.016 \end{array}$	$\begin{array}{c} 0.204 \pm 0.004 \\ 0.244 \pm 0.007 \\ 0.282 \pm 0.007 \end{array}$	$\begin{array}{c} 0.265 \pm 0.018 \\ 0.290 \pm 0.023 \\ 0.315 \pm 0.025 \end{array}$	$\begin{array}{c} 0.461 \pm 0.045 \\ 0.601 \pm 0.075 \\ 0.461 \pm 0.045 \end{array}$	$\begin{array}{c} 0.498 \pm 0.070 \\ 0.626 \pm 0.101 \\ 0.724 \pm 0.090 \end{array}$
Traffic	96	0.5 0.2 0.1	$\begin{array}{c} 0.180\pm0.016 \\ 0.239\pm0.019 \\ 0.312\pm0.020 \end{array}$	$\begin{array}{c} 0.219 \pm 0.026 \\ 0.243 \pm 0.027 \\ 0.290 \pm 0.027 \end{array}$	$\begin{array}{c} 0.272 \pm 0.028 \\ 0.335 \pm 0.026 \\ 0.385 \pm 0.025 \end{array}$	$\begin{array}{c} 0.243 \pm 0.030 \\ 0.293 \pm 0.027 \\ 0.344 \pm 0.027 \end{array}$	$\begin{array}{c} 0.436 \pm 0.025 \\ 0.596 \pm 0.049 \\ 0.734 \pm 0.102 \end{array}$	$\begin{array}{c} 0.444 \pm 0.047 \\ 0.597 \pm 0.075 \\ 0.731 \pm 0.132 \end{array}$
Halle	192	0.5 0.2 0.1	$\begin{array}{c} 0.176 \pm 0.014 \\ 0.233 \pm 0.017 \\ 0.304 \pm 0.019 \end{array}$	$\begin{array}{c} 0.217\pm0.017 \\ 0.236\pm0.021 \\ 0.277\pm0.021 \end{array}$	$\begin{array}{c} 0.241 \pm 0.027 \\ 0.286 \pm 0.027 \\ 0.331 \pm 0.025 \end{array}$	$\begin{array}{c} 0.234 \pm 0.021 \\ 0.276 \pm 0.020 \\ 0.324 \pm 0.021 \end{array}$	$\begin{array}{c} 0.477 \pm 0.042 \\ 0.685 \pm 0.109 \\ 0.888 \pm 0.178 \end{array}$	$\begin{array}{c} 0.476 \pm 0.043 \\ 0.678 \pm 0.108 \\ 0.877 \pm 0.174 \end{array}$
TimeFlow improvement			/	/	18.97 %	11.87 %	61.88 %	58.41 %

TimeFlow can even forecast on sparsely observed look-back window (2/2)

Figure: *Traffic dataset, sample 95.* In this figure, TimeFlow simultaneously imputes and forecasts at horizon 96 with a 10% partially observed look-back window of length 512.

 Motivations
 INR's ?
 TimeFlow architecture
 TimeFlow tasks
 Conclusion
 References

 000
 000000
 000
 000
 000

Quantify uncertainty with TimeFlow (\mathcal{L} is the pinball loss)

Figure: Quantifying uncertainty in block imputation of two missing days in the *Electricity* dataset.

Conclusion

Key takeaways

TimeFlow offers:

- A unified and continuous approach for time series imputation and forecasting.
- Adaptability to new contexts through meta-learning optimization.
- Extraction of semantically rich and practically useful representations for downstream tasks.

A team work

Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations

```
Etienne Le Naour* 1,2, Louis Serrano* 1, Léon Migus* 1,3, Yuan Yin¹, Ghislain Agoua²
Nicolas Baskiotis¹, Patrick Gallinari¹,4, Vincent Guigue⁵

¹ Sorbonne Université, CNRS, ISIR, 75005 Paris, France

² EDF R&D, Palaiseau, France

³ Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France

⁴ Criteo AI Lab, Paris, France

⁵ AgroParis Tech, Palaiseau, France

{louis.serrano, leon.migus, yuan.yin, nicolas.baskiotis, vincent.guigue} @ sorbonne-universite.fr

{etienne.le-naour, ghislain.agoua} @ edf.fr
```

Click on this link

References I

- E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum. From data to functa: Your data point is a function and you can treat it like one. In *International Conference on Machine Learning*, pages 5694–5725. PMLR, 2022.
- S. Klocek, Ł. Maziarka, M. Wołczyk, J. Tabor, J. Nowak, and M. Smieja. Hypernetwork functional image representation. In Artificial Neural Networks and Machine Learning—ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pages 496–510. Springer, 2019.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.

References II

- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with periodic activation functions. *Advances in Neural Information Processing Systems*, 33:7462–7473, 2020.
- Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, and P. Gallinari. Continuous pde dynamics forecasting with implicit neural representations. *arXiv preprint arXiv:2209.14855*, 2022.
- L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-learning. In *International Conference on Machine Learning*, pages 7693–7702. PMLR, 2019.