Contrats d'assurance et rente sur deux têtes Évaluation des contrats

Hiver 2023

Objectifs d'apprentissage

Objectifs généraux

- Comprendre l'évaluation des coûts pour des contrats d'assurance ou de rente émis à plusieurs assurés.
- Se familiariser avec le calcul des primes pour des contrats d'assurance et de rentes sur deux têtes.

Objectifs d'apprentissage

Objectifs généraux

- Comprendre l'évaluation des coûts pour des contrats d'assurance ou de rente émis à plusieurs assurés.
- Se familiariser avec le calcul des primes pour des contrats d'assurance et de rentes sur deux têtes.

Vous serez en mesure de

- Calculer la valeur du coût d'assurance d'un contrat sur deux têtes avec des durées de vie indépendantes.
- Utiliser les relations importantes entre les valeur des contrat vie conjointe et dernier survivants.
- Formuler l'équation d'une prime d'un contrat sur deux têtes.

Objectifs d'apprentissage

Objectifs généraux

- Comprendre l'évaluation des coûts pour des contrats d'assurance ou de rente émis à plusieurs assurés.
- Se familiariser avec le calcul des primes pour des contrats d'assurance et de rentes sur deux têtes.

Vous serez en mesure de

- Calculer la valeur du coût d'assurance d'un contrat sur deux têtes avec des durées de vie indépendantes.
- Utiliser les relations importantes entre les valeur des contrat vie conjointe et dernier survivants.
- Formuler l'équation d'une prime d'un contrat sur deux têtes.

Ressources

Ressources officielles

AMLCR: Chapitre 8 (8.3, 8.4, 8.5)

Ressources

Ressources officielles

AMLCR: Chapitre 8 (8.3, 8.4, 8.5)

Ressources additionnelles

Probabilité conjointes https://youtu.be/CQS4xxz-2s4

■ Évaluation de produits d'assurance sur une tête https://www.youtube.com/watch?v=v_dZTPcbNDO

Produits communs - Assurance vie

Produits communs - Assurance vie

- $A_{xy} = E[v^{T_{xy}}]$ $A_{\overline{xy}} = E[v^{T_{\overline{xy}}}]$

Produits communs - Assurance vie

- $A_{xy} = E[v^{T_{xy}}]$
- $A_{\overline{xy}} = E[v^{T_{\overline{xy}}}]$

Produits communs - Assurance vie

- $A_{xy} = E[v^{T_{xy}}]$
- $A_{xy}^1 = E[v^{T_x} * I(T_x < T_y)]$

Produits communs - Rente

Produits communs - Assurance vie

- $A_{xy} = E[v^{T_{xy}}]$
- $A_{\overline{xy}} = E[v^{T_{\overline{xy}}}]$
- $A_{xy}^1 = E[v^{T_x} * I(T_x < T_y)]$

Produits communs - Rente

- $\quad \blacksquare \ \bar{a}_{xy} = E[\bar{a}_{\overline{T_{xy}}}]$
- $\bar{a}_{\overline{xy}} = E[\bar{a}_{\overline{T_{xy}}}]$

Produits communs - Assurance vie

- $A_{xy} = E[v^{T_{xy}}]$
- $A_{\overline{xy}} = E[v^{T_{\overline{xy}}}]$

Produits communs - Rente

- $\quad \blacksquare \ \bar{a}_{xy} = E[\bar{a}_{\overline{T_{xy}}}]$
- $\bar{a}_{\overline{xy}} = E[\bar{a}_{\overline{T_{xy}}}]$

Relations importantes

$$T_{\overline{xy}} = T_x + T_y - T_{xy}$$

Relations importantes

- $T_{\overline{xy}} = T_x + T_y T_{xy}$
- $v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} v^{T_{xy}}$

Relations importantes

- $T_{\overline{xy}} = T_x + T_y T_{xy}$
- $v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} v^{T_{xy}}$

Relations importantes

- $T_{\overline{xy}} = T_x + T_y T_{xy}$
- $v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} v^{T_{xy}}$
- $A_{\overline{xy}} = A_y + A_y A_{xy}$
- $\bar{a}_{\overline{T_{xy}}} = \bar{a}_{\overline{T_x}} + \bar{a}_{\overline{T_y}} \bar{a}_{\overline{T_{xy}}}$

Relations importantes

- $T_{\overline{xy}} = T_x + T_y T_{xy}$
- $v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} v^{T_{xy}}$
- $A_{\overline{xy}} = A_y + A_y A_{xy}$
- $\bar{a}_{\overline{T_{\overline{xy}}}} = \bar{a}_{\overline{T_x}} + \bar{a}_{\overline{T_y}} \bar{a}_{\overline{T_{xy}}}$
- $\bar{a}_{T_{\overline{xy}}} = \bar{a}_x + \bar{a}_y \bar{a}_{xy}$

Relations importantes

$$T_{\overline{xy}} = T_x + T_y - T_{xy}$$

$$v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} - v^{T_{xy}}$$

$$A_{\overline{xy}} = A_y + A_y - A_{xy}$$

$$\bar{a}_{T_{\overline{xy}}} = \bar{a}_x + \bar{a}_y - \bar{a}_{xy}$$

Relations importantes

$$T_{\overline{xy}} = T_x + T_y - T_{xy}$$

$$v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} - v^{T_{xy}}$$

$$A_{\overline{xy}} = A_y + A_y - A_{xy}$$

$$\bar{a}_{T_{\overline{xy}}} = \bar{a}_x + \bar{a}_y - \bar{a}_{xy}$$

$$\bar{a}_{x|y} = \bar{a}_y - \bar{a}_{xy}$$

Relations importantes

$$T_{\overline{xy}} = T_x + T_y - T_{xy}$$

$$v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y} - v^{T_{xy}}$$

$$A_{\overline{xy}} = A_y + A_y - A_{xy}$$

$$\bar{a}_{T_{\overline{xy}}} = \bar{a}_x + \bar{a}_y - \bar{a}_{xy}$$

$$\bar{a}_{x|y} = \bar{a}_y - \bar{a}_{xy}$$

$$\bar{a}_{xy} = \frac{1 - A_{xy}}{\delta}$$

$$\bar{a}_{\overline{xy}} = \frac{1 - A_{\overline{xy}}}{\delta}$$

Hypothèse d'indépendance 1

 \blacksquare T_x et T_y sont indépendants

Hypothèse d'indépendance 1

- \blacksquare T_x et T_y sont indépendants
- On connait $_tp_x$, $_tp_y$, $_t\mu_x$ et $_t\mu_y$

Hypothèse d'indépendance 1

- \blacksquare T_x et T_y sont indépendants
- On connait $_tp_x$, $_tp_y$, $_t\mu_x$ et $_t\mu_y$
- $\ \ \, \mathbf{=}\,\, tp_{xy} = \Pr[(x) \,\,\mathbf{et}\,\,(y) \,\,\mathrm{soient}\,\,\mathrm{vivants}\,\,\mathrm{au}\,\,\mathrm{temps}\,\,t] = {}_tp_{x\,t}p_y$

Hypothèse d'indépendance 1

- \blacksquare T_x et T_y sont indépendants
- lacksquare On connait ${}_tp_x$, ${}_tp_y$, ${}_t\mu_x$ et ${}_t\mu_y$
- $\ \ \, \mathbf{=}\,\, tp_{xy} = \Pr[(x) \,\,\mathbf{et}\,\,(y) \,\,\mathrm{soient}\,\,\mathrm{vivants}\,\,\mathrm{au}\,\,\mathrm{temps}\,\,t] = {}_tp_x\,{}_tp_y$
- $\ \ \, {}_tp_{\overline{xy}} = \Pr[(x) \; \mathbf{ou} \; (y) \; \text{soient vivants au temps} \; t] = 1 {}_tq_x \, {}_tq_y$

Hypothèse d'indépendance 1

- \blacksquare T_x et T_y sont indépendants
- lacksquare On connait ${}_tp_x$, ${}_tp_y$, ${}_t\mu_x$ et ${}_t\mu_y$
- $lacksquare tp_{xy} = \Pr[(x) \ \mathbf{et} \ (y) \ \mathrm{soient} \ \mathrm{vivants} \ \mathrm{au} \ \mathrm{temps} \ t] = {}_tp_x \, {}_tp_y$
- $lacksquare tp_{\overline{xy}} = \Pr[(x) \ \mathbf{ou} \ (y) \ \mathrm{soient} \ \mathrm{vivants} \ \mathrm{au} \ \mathrm{temps} \ t] = 1 {}_t q_x \, {}_t q_y$

Exemple 1

Exemple de calcul de la valeur d'une rente sur deux têtes

Voir Exemple 10.1 sur Jupyter notebook

Calcul de la prime d'un produit d'assurance sur deux têtes

Technique analogue aux produits sur une tête

- Décomposer le produits en produits simple à évaluer
- Voir la prime comme un produit d'assurance sur deux têtes (payable à l'assureur)
- Formulation habituelle : $P E[Produit_1] = E[Produit_{2,3,...}]$
- $P = \frac{E[\text{Produit}_{2,3,\dots}]}{E[\text{Produit}_1]}$
- \blacksquare ${\bf Produit}_1$ sera potentiellement $a^{(12)}_{\overline{\min{(T_{xy},n)}}}$
- Paiement mensuels / Prestations mensuelles (DUD)

Exemple 2

Exemple de calcul de la valeur d'une prime d'un produits sur deux têtes

Voir Exemple 10.2 sur Jupyter notebook