

GSCI1801A

Information Science

Lecture 2: Flowcharts, Data, and Algorithms (Part 1)

Asst. Prof. Chawanat Nakasan | 2021-10-12

Agenda

- Flowcharts & Flow Control
 - Branching (Decision; if/if-else)
 - Loops (Iteration; while/do-while/for)
- 2. Data & Data Types
 - Primitive Data Types
 - Data Encoding
 - Composite Data Types
- 3. Algorithms
 - Time Complexity of Algorithms
 - (Next Class) Types of Algorithms
- (Next Class) Problem Solving

Where are we in the CS curriculum?

Year 1 Year 2 Year 3 Year 4 Operating Programming Architecture Security System Data **GS** classes Algorithms **Ethics** Communication Advanced General Data Data Types Networks Science Lectures Networks

2.1.Flowcharts &Flow Control

Flowcharts?

- Show how something is done.
- A rounded rectangle ("capsule") represents the beginning and the end of the process.
- A (right-angle) rectangle represents individual steps of the process.

Full standard for flowcharts is written in ISO 5807:1985. (ISO papers are expensive, so we usually don't buy them.)

How to draw flowcharts?

(This might be useful for your homework!)

- Paper: you can use rulers and plastic templates to help!
- General-purpose vector graphics software (InkScape, etc.)
- Dedicated diagramming software (draw.io, MS Visio, etc.)
- You can also draw using general-purpose office applications like MS Word and PowerPoint.

MS PowerPoint:

Use these symbols

Branching (or Decisions)

- Where should I eat today?
- Use the rhombus (diamond) shape to indicate decisions.
- Decisions should only be YES or NO. Use more diamonds to create complex decision trees.
- Note 1: Vocabulary:
 - 表 = (omote) Obverse Side
 - 裏 = (ura) Reverse Side
- Note 2: A coin may also land on the edge, but it is usually ignored in probability discussions.

Coin image: Ministry of Finance

Loops (Iterations)

Repeating the same action many times.

- I need to grade papers, each labeled i, and record them as pass/fail.
 - In programming and maths, variable "i" is usually used to indicate index of things.
 - If you need more indices (indexes), use "j" and "k".

Participation Point
I'm missing something
in this flowchart.

Use this symbol for input/output.

8

Flowcharts in daily life!

- I hate tartar sauce.
- I read the menu until I find one that does not include tartar sauce.
- What's your process for choosing what to eat?
- Is this accurate? What am I missing? (Hint: No, and it's not in the flowchart. It's a "business logic" problem.)

Loops within Loops

- Sometimes you have many levels of operations, such as iterating through a table.
- This flowchart shows how to copy and multiply values from Table A to Table B.

	1	2	•••	n		1	2	
1	5	3	•••	2	1	50	30	
2	7	5	•••	2	2	70	50	•••
	÷	į	٠.	÷		÷	÷	٠.
n	1	7		5	3	10	70	

Table A

Table B

n

Essence of Loops

- A loop consists of four elements:
 - Initialization
 - Condition
 - Action
 - Modification
 - Repetition
- (Only Repetition is necessary to make a loop.)
- In programming, there are many ways to apply these elements.
- But, if you understand what loops are, you can write them in any language! ☺

Summary of Flow Control

- Branching splits your procedure into two paths.
- Loops create repetition allowing you to do the same (or similar) thing many times.
- These two concepts are extremely important for algorithm studies, coming *right ahead!*

2. Data Types

Data Types

Primitive Data Type

Usually just one thing, like a single number.

Composite Data Type

Consists of many primitive data elements together.

Data Types

Primitive Data Type

Usually just one thing, like a single number.

True False

-200

'a'

3.141592

2021/10/02 13:15:00

Primitive Data Types

- Boolean Values
 - True or False
- Characters
- Numeric Data Types
 - Integers: already discussed
 - Real Numbers

Encoding gives meaning to data

- Computers understand only zeroes and ones.
- So, it is up to us to give data meaning.

Using more bits, we can have a range of values.

We can also assign them specific meaning.

0	1 0	0 0	0 0	1		65
---	-----	-----	-----	---	--	----

Binary	Octal	Decimal	Hexadecimal	Character
100 0001 ₂	101 ₈	65	41 ₁₆	<u>A</u>
100 00102	102 ₈	66	42 ₁₆	<u>B</u>
100 00112	103 ₈	67	43 ₁₆	<u>C</u>
100 01002	104 ₈	68	44 ₁₆	<u>D</u>
100 0101 ₂	105 ₈	69	45 ₁₆	<u>E</u>
100 01102	106 ₈	70	46 ₁₆	<u>E</u>

Real numbers are also made from bits and integers.

Composite Data Types

Array:

many of the same primitives, each of them are individual

Record:

 many of potentially different primitives, collectively forming a larger thing

 There are many other terms like lists, but today we'll discuss the most key terms.

Arrays: many of the same primitives

65, 90, 65, 77, 73

'A', 'Z', 'A', 'M', 'I'

This is called an "array".

An array of characters is usually called a "string".

Dec	Char	Dec	Char
65	<u>A</u>	78	N
66	<u>B</u>	79	<u>O</u>
67	<u>C</u>	80	<u>P</u>
68	<u>D</u>	81	Q
69	<u>E</u>	82	<u>R</u>
70	<u>F</u>	83	<u>S</u>
71	<u>G</u>	84	I
72	<u>H</u>	85	<u>U</u>
73	1	86	<u>V</u>
74	<u>J</u>	87	W
75	<u>K</u>	88	X
76	<u>L</u>	89	<u>Y</u>
77	<u>M</u>	90	<u>Y</u> <u>Z</u>

Lots of things in life can be translated to a set of values.

36.5495581,136.7096057

Coordinates can be represented using two real numbers.

Different types of data can be recorded together.

 Suppose we want to describe a food item at the cafeteria. This might be how it works:

3. Algorithms

And analysis of time complexity

What is Algorithm?

"a set of <u>mathematical</u> <u>instructions</u> or <u>rules</u> that, <u>especially</u> if **given to a <u>computer</u>**, will <u>help</u> to <u>calculate</u> an <u>answer</u> to a <u>problem</u>"

Cambridge Dictionary

"a **procedure** for solving a mathematical problem (as of finding the greatest <u>common divisor</u>) in a **finite number of steps** that frequently involves repetition of an operation"

Merriam-Webster

Muhammad ibn Musa al-Khwarizmi, the mathematician namesake of "Algorithm".

Depicted on a Soviet stamp in 1983.

"a **list of rules** to follow in order to solve a problem"

- BBC

What is Algorithm?

procedures, instructions, or rules

finite number of steps

"given to a computer"

Important points:

- If you can draw it in a flowchart, it's already probably an algorithm.
- Algorithms can be expressed in many different ways.
- Time complexity analysis presented here will be very simple, intended for quick glimpses.

Suppose that we want to copy a string:

The textbook (Weng, 2021) example:

The very same algorithm written as Python code:

```
n = int(input().strip())
s = 0
i = 1
while i <= n:
    s = s + i
    i = i + 1
print(s)</pre>
```

Flowcharts and program codes have different purposes. These two represent the same algorithm.

This loop here can run many times.

We run the instructions (reach each box) **3n** + **4** times in total.

This algorithm takes linearly increasing time to run compared to the size of n.

Describing Time Complexity

 Time complexity is popularly described using the "Big O Notation".

• This is **basically** just the largest part of the time expression, without the multiplier in front.

• In our case, the previous algorithm is **O(n)**, because our time expression is **3n+4**.

O(n²) example

• Instructions are run $n^2 + n + 1$ times.

Start i=1NO $i \leq n$ YES j=1NO $j \leq n$ YES, B[i, j] = A[i, j] * 10j = j + 1i = i + 1

Finish

Table A

Table B