NUS-ISS *Vision Systems*

Module 3 - Foundations of computer vision system (2) - Local feature and representation, part 1

Dr. Tan Jen Hong
Lecturer & Consultant
Institute of System Science
National University of Singapore
issjht@nus.edu.sg

© 2020 National University of Singapore. All Rights Reserved.

Home

Executive Education ▼ Graduate Programmes ▼

Stackable Programmes ▼

Centres of Excellence ▼

Community -

About Us ▼

TAN Jen Hong

Lecturer & Consultant, **Analytics & Intelligent Systems Practice**

sg

Profile

Jen Hong develops algorithms. He specializes in deep learning, image processing and medical image diagnosis. He designs illustrations, web page and posters. He plays piano.

He invented a mathematical model to analyze dry eye. He used deep learning to correct medical images. He trained deep learning models to identify pathologies in retinal images. And he made deep learning to draw anatomical features.

He was the co-Principal Investigator of 6 research grants and 3 clinical trials. He and his team member codeveloped algorithms to diagnose breast cancer, ovarian cancer, heart attack, fatty liver, diabetic retinopathy, epilepsy and glaucoma. He has published more than 90 journal articles, 12 of which are deep learning related.

Worldwide his publications are cited more than 2000 times.

Educational Qualifications

- Ph.D. (Biomedical Engineering), Nanyang Technological University
- Bachelor of Engineering (Mechanical & Production Engineering), Minor in Chinese, Nanyang Technological University

Selected Publications

jen hong, tan 🧪

✓ FOLLOW

Lecturer & Consultant, NUS Institute of System Science Verified email at nus.edu.sg

image processing automated segmentation deep learning infrared thermography fundus image

TITLE	0	:	CITED BY	YEAR
of seizu UR Acha	ure usin	ional neural network for the automated detection and diagnosis g EEG signals Dh, Y Hagiwara, JH Tan, H Adeli ogy and medicine 100, 270-278	563	2018
UR Acha	rya, SL C	utional neural network model to classify heartbeats Oh, Y Hagiwara, JH Tan, M Adam, A Gertych, R San Tan ogy and medicine 89, 389-396	336	2017
myocar UR Acha	rdial infa irya, H Fu	deep convolutional neural network for automated detection of arction using ECG signals ujita, SL Oh, Y Hagiwara, JH Tan, M Adam ces 415, 190-198	324	2017
review O Faust,	Y Hagiw	for healthcare applications based on physiological signals: A ara, TJ Hong, OS Lih, UR Acharya is and programs in biomedicine 161, 1-13	322	2018
ECG se	egment arya, H Fu	tection of arrhythmias using different intervals of tachycardia s with convolutional neural network ujita, OS Lih, Y Hagiwara, JH Tan, M Adam ces 405, 81-90	293	2017
suppor UR Acha	t vector rya, EYK	based breast cancer detection using texture features and machine (Ng, JH Tan, SV Sree systems 36 (3), 1503-1510	266	2012
JH Tan, I	EYK Ng,	ography on ocular surface temperature: a review UR Acharya, C Chee technology 52 (4), 97-108	216	2009

	All Sir	nce 2015
O'' ''		
Citatio		5480
h-inde		38
i10-inc	lex 69	68
		1800
		1350
		900
		450
2013 2	014 2015 2016 2017 2018 2019 20	20 0
	014 2015 2016 2017 2018 2019 20 uthors	20 0 EDIT
	uthors U Rajendra (Raj) Acharya PhD, DEng	EDIT
	uthors U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University	EDIT
	uthors U Rajendra (Raj) Acharya PhD, DEng	EDIT
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen	EDIT
	uthors U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara	EDIT >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen	EDIT >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen Shu Lih Oh Department of Electronics and C	EDIT > >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen Shu Lih Oh Department of Electronics and C Kuang Chua Chua Ngee Ann Polytechnic, Singapor	EDIT > >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen Shu Lih Oh Department of Electronics and C Kuang Chua Chua Ngee Ann Polytechnic, Singapor	EDIT > >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen Shu Lih Oh Department of Electronics and C Kuang Chua Chua Ngee Ann Polytechnic, Singapor	EDIT > >
	U Rajendra (Raj) Acharya PhD, DEng Ngee Ann, Singapore University Yuki Hagiwara Hochschule Esslingen Shu Lih Oh Department of Electronics and C Kuang Chua Chua Ngee Ann Polytechnic, Singapor EYK Ng Nanyang Technological Universit	EDIT > > e >

Louis Tong

Image segmentation

Active spline model

Active spline model: A shape based model-interactive segmentation

Learning objectives

- Read, display and write image
- Convert image's colour format
- Expand image's border
- Draw objects on image

Read image

yoshida1.jpg

- In opency, use imread() to load an image
 - > import cv2
 - > imgfile = 'yoshida1.jpg'
 - > img = cv2.imread(imgfile)
- Or simply just
 - > img = cv2.imread('yoshida1.jpg')
- Supported formats: jpg, bmp, png, tif, tiff, pbm, ppm, hdr, pic
 - Check the below link for more detail: https://docs.opencv.org/3.4.2/d4/da8/ group__imgcodecs.html

Check basic info

yoshida1.jpg

- Many times it is beneficial / required to check basic information about the image loaded
- In Spyder, that can be done in Variable explorer

```
i j img | uint8 | (700, 477, 3) height width channel v x
```

To access through code, do

```
> img.shape
: (700, 477, 3)

> img.dtype
: dtype('uint8')

> print('img height: %d' % (img.shape[0]))
: img height: 700
```

Display image

Through opency

To display an image in opency for img, we do

```
> cv2.imshow('a drawing',img)
> cv2.waitKey(0)
> cv2.destroyAllWindows()
```

•On some platforms, it needs the below 4 lines to prevent freezing of the window:

```
> cv2.waitKey(1)
> cv2.waitKey(1)
> cv2.waitKey(1)
> cv2.waitKey(1)
```

Display image

Through opency

imshow() does the display of image

```
cv2.imshow('a drawing',img)

name of the window the variable
```

 imshow() should be followed by function waitKey(), which specifies how long the image should be specified in milliseconds

```
cv2.waitKey(0)

value zero stands for waiting infinitely
```

- > cv2.imshow('a drawing',img)
- > cv2.waitKey(∅)
- > cv2.destroyAllWindows()

 destroyAllWindows() shuts down all windows opened through opency

Colour format

BGR

BGR format displayed by function that expects RGB format

- This implies that we can manipulate the output variable using numpy's function/method
- For a colour image img, imread() gives a 3D numpy array, in BGR format

```
img[:,:,0] \rightarrow Blue channel

img[:,:,1] \rightarrow Green channel

img[:,:,2] \rightarrow Red channel
```

 However, many other libraries process image array only in RGB format

Colour format conversion

Use cvtColor() to convert colour format

name of the variable

> imgc = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

> colour conversion code

Other conversion codes:

cv2.COLOR_GRAY2BGR cv2.COLOR_RGB2BGR cv2.COLOR_BGR2RGB cv2.COLOR_BGR2YUV cv2.COLOR_YUV2BGR cv2.COLOR_BGR2Luv

cv2.COLOR_Luv2BGR

Check the below link for more detail

https://docs.opencv.org/3.4.2/d7/d1b/ group__imgproc__misc.html

Colour format conversion

 When we convert a colour image to gray, the output is no longer a 3D numpy array

> imgc.shape
: (700, 477)

 To get back a 3D BGR array, we can do

Or we can do

for for blue red channel channel

> imge = cv2.merge((imgc,imgc,imgc))

for green channel

A gray is simply a colour that has the same value in R,G and B

Why often do we need to convert colour image into gray scale image?

Something about colour

. . .

• Illustration of simultaneous colour contrast

The theory of colour

Display image, again

Through matplotlib

axis off

vse/m2.1/v1.2

•We can use matplotlib to display an image img, to do that, we write

- •In the above codes, we first turn off axis in the plot
- Then use plt.imshow() to display image, but that function expects image in RGB format
- Thus need to use cv2.cvtColor() to convert img into RGB format
- •Finally, use plt.show() to get the plot displayed

Display image, again

Through matplotlib

 To display a grayscale image imgc, we need extra settings on plt.imshow()

- cmap='gray': inform the function to use grayscale colour map
- •vmin=0 : map value 0 to black
- vmax=255 : map value 255 to white

- Often in image processing it is necessary to expand image border to avoid undesired effect
- •Use cv2.copyMakeBorder() to expand border

cv2.BORDER_REPLICATE

cv2.BORDER_REFLECT

cv2.BORDER_WRAP

cv2.BORDER_CONSTANT

- When we select borderType
 cv2.BORDER_CONSTANT, we need
 to input one extra parameter:
- The colour we want on the border

Draw objects

vse/m2.1/v1.2

- We can draw objects on image using API provided by opency
- Generally in computer vision we use these API to make annotations on image
- Some of the functions available:

```
cv2.line()
cv2.circle()
cv2.rectangle()
cv2.ellipse()
cv2.putText()
```

 After the drawing, we display the product either using cv2.imshow() or plt.imshow()

Draw text

vse/m2.1/v1.2

To write words on image, we use cv2.putText()

- •cv2.FONT_HERSHEY_SIMPLEX stands for normal size sans-serif font
- •cv2.LINE_AA gives anti-aliased line

Draw rectangle

•To draw rectangle on image, we use cv2.rectangle()

Saving image

- After all the hard work, it would be useless if we can't save the final output
- •To save an image, we use cv2.imwrite()

- Supported formats: jpg, png, tif, tiff, hdr, exr
 - Check the below link for more detail: https://docs.opencv.org/3.4.2/d4/da8/ group__imgcodecs.html