Mathematics for Economists Kapitel 9 – Kontrolteori: Grundlæggende metoder

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 9

- Introduktion (9.1, 9.2)
- Regularitetsbetingelser (9.3)
- Standardproblemet (9.4)
- Skyggepriser og den adjungerede funktion (9.6)
- Tilstrækkelige betingelser (9.7)
- Problemer udtrykt i nutidsværdi (9.9)
- Ubegrænset periode (9.11)

Dette afsnit betragter "standardproblemet med slutbetingelser"

$$\max \int_{t_0}^{t_1} f(t, x(t), u(t)) dt, \quad u \in U \subseteq \mathbb{R}$$
 (1)

$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0$$
 (2)

hvor én af de følgende slutbetingelser skal opfyldes

(a)
$$x(t_1) = x_1$$
, (b) $x(t_1) \ge x_1$, eller (c) $x(t_1)$ fri. (3)

Tal t_0 , t_1 , x_0 , og x_1 er fikseret, og U er den fikserede kontrolregion.

Et par (x(t), u(t)) der opfylder (2) og (3) med $u(t) \in U$ kaldes for et **tilladt par**. Blandt alle tilladte par leder vi efter det **optimale par**, dvs. et par af funktioner der maksimerer integralet i (1).

Teorem (9.4.1, Maksimumsprincippet: Standard slutbetingelser)

Antag at $(x^*(t), u^*(t))$ er et optimalt par for standardproblemet (1)–(3). Så findes en kontinuert funktion p(t), således at for hvert t i $[t_0, t_1]$ gælder (nødvendige betingelser):

(A) Kontrolfunktionen $u^*(t)$ maksimerer $H(t, x^*(t), u, p(t))$ ift. $u \in U$, dvs.

$$H(t, x^*(t), u, p(t)) \le H(t, x^*(t), u^*(t), p(t))$$
 for hver $u \in U$, (4)

(B)
$$\dot{p}(t) = -H_X'(t, x^*(t), u^*(t), p(t)).$$
 (5)

(C) Tilknyttet til hver slutbetingelse i (3) findes en **transversalitetsbetingelse** på $p(t_1)$:

(a')
$$p(t_1)$$
 fri,

(b')
$$p(t_1) \ge 0$$
, med $p(t_1) = 0$ hvis $x^*(t_1) > x_1$, (6)

(c')
$$p(t_1) = 0$$
.

Bemærkning

Hvis fortegnet i (3)(b) er omvendt, så er uligheden i (6)(b') også omvendt.

Bemærkning

Afledede $\dot{p}(t)$ i (5) findes ikke nødvendigvis i diskontinuerte punkter for $u^*(t)$, og (5) gælder kun i punkter hvor $u^*(t)$ er kontinuert. Hvis U er en konveks mængde og Hamilton-funktionen H er streng konkav i u, så kan man vise at en optimal kontrolfunktion $u^*(t)$ må være kontinuert.

Teorem (9.4.2, Mangasarian, tilstrækkelige betingelser)

Antag at $(x^*(t), u^*(t))$ er et tilladt par med tilhørende adjungerede funktion p(t), således at betingelserne (A)–(C) i Teorem 9.4.1 er opfyldte. Antag derudover, at kontrolregionen U er konveks og at H(t, x, u, p(t)) er konkav i (x, u) for hvert t i $[t_0, t_1]$. Så er $(x^*(t), u^*(t))$ et optimalt par.

Vi anvender Teoremerne 9.4.1 og 9.4.2 på følgende måde:

- (a) For hvert tre-tupel (t, x, p), maksimér H(t, x, u, p) ift. $u \in U$. I mange tilfælde giver det et unikt maksimumspunkt $u = \hat{u}(t, x, p)$.
- (b) Indsæt funktionen \hat{u} i differentialligningerne (2) og (5) for at få

$$\dot{x}(t) = g(t, x(t), \hat{u}(t, x(t), p(t))) \text{ og } \dot{p}(t) = -H'_X(t, x(t), \hat{u}(t, x(t), p(t)), p(t))$$

Det resulterer i et system af to differentialligninger der bestemmer x(t) og p(t).

- (c) De to konstante i den fuldstændige løsning (x(t),p(t)) af disse DL'er bliver bestemt ved at betragte både, begyndelsesbetingelserne $x(t_0)=x_0$, slutbetingelserne, og transversalitetsbetingelserne (6). Lad den resulterende tilstandsvariabel være $x^*(t)$ og den tilhørende kontrolvariabel $u^*(t)=\hat{u}(t,x^*(t),p(t))$. Parret $(x^*(t),u^*(t))$ er derved en kandidat for et optimumspunkt.
- (d) Hvis H(t, x, u, p(t)) er konkav i (x, u) for hvert t i $[t_0, t_1]$ er parret optimalt.