Prediction Modeling for Mortality in ICU Patients with Heart Failure

Mehran Khodadadzadeh May 2024

Introduction

Predicting mortality in ICU patients with heart failure helps doctors provide better care, make informed decisions, and efficiently use hospital resources to save lives.

> Goal

- Develop a model to predict in-hospital mortality for ICU patients with heart failure.
- o Identify the most significant features impacting mortality.
- Analyze the effectiveness of various machine learning models.

Data Source and Features

Data Source: MIMIC-III database.

Features:

- Demographics
 - Age, Gender, Ethnicity, etc.
- Vital Signs:
 - Heart rate, Blood pressure, Respiratory rate, etc.
- o Comorbidities:
 - Diabetes, Hypertension, Ischaemic heart disease, etc.
- Laboratory Results:
 - Blood glucose levels, Creatinine levels, etc.

Data Preprocessing

Final Dataset:Shape: 7280 rows × 37

columns

Steps:

- Remove Unnecessary Columns:
- Remove Duplicates
- Extract and Add Units to Feature Names:
 - Incorporated units into feature column names for clarity.
- Handle Missing Values:
 - Removed null entries, keeping the first non-null value.
 - Filtered out rows where missing values exceeded 25%.

Outlier Detection and Removal:

 Calculated the interquartile range (IQR) and removed outliers beyond 1.5 times the IQR.

Feature Reduction:

 Dropped features with more than 20% missing values to preserve data quality.

Data Imputation:

 Replaced missing values with the median of respective columns.

Data Analysis and Visualization

Correlation Matrix, bar plot, box plot

Central Tendency Measures:

 Calculated mean, median, and mode to understand the typical values in the data distribution.

Label Distribution Analysis:

- Analyzed the distribution of labels.
- Noted that labels are not highly imbalanced but considered methods to enhance the training set.

Descriptive Statistics and Visualization:

- Visualized age, ethnicity, and gender distributions.
- Found that the dataset consists mostly of white people.
- Mortality rates are nearly the same between men and women.
- Mortality rates are similar across different ethnicities.

1.00 - 0.75 - 0.50 0.25 - 0.00 - -0.25 -0.50 -0.75

Feature Selection

Methods Used:

- Random Forest Importance:
 - Identified top features like AGE, RDW, creatinine, etc.
- XGBoost Importance:
 - Similar features identified with slight variations.

- Combined Feature Importance:
 - Averaged rankings from both methods.

Modeling Techniques

1. Data Preparation:

Loading and Cleaning: removing unnecessary columns ('SUBJECT_ID', 'HADM_ID'). Separated features (X) and target variable ('EXPIRE_FLAG'). training (80%) and testing (20%) sets.

- 2. Logistic Regression: A linear model used for binary classification. It predicts the probability of the target variable. Implementation: Used a pipeline with `StandardScaler` and `LogisticRegression` to standardize data and train the model.
- 3. Random Forest: An ensemble method that uses multiple decision trees to improve classification accuracy. Implementation: Trained a `RandomForestClassifier` on the training data with default hyperparameters and evaluated its performance.
- 4. **Gradient Boosting**: An ensemble technique that builds models sequentially to correct errors of previous models. Implementation: Applied `GradientBoostingClassifier` with tuned parameters (`n_estimators=220, learning_rate=0.09`) for training and evaluation..

Results

Compared all models using ROC curves to assess their true positive and

false positive rates

• Logistic Regression:

Accuracy: 71.29%

• Random Forest:

Accuracy: 77.88%

• Gradient Boosting:

Accuracy: 73.01%

THANK YOU!