GRAPHY: EXPLORING THE POTENTIALS OF THE CONTACTS APPLICATION

A Thesis Submitted to the
College of Graduate Studies and Research
in Partial Fulfillment of the Requirements
for the degree of Master of Science
in the Department of Computer Science
University of Saskatchewan
Saskatoon

Ву

Nam Hoang

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to:

Head of the Department of Computer Science 176 Thorvaldson Building 110 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5C9

ABSTRACT

The number of mobile devices is growing very fast. Smart phones and tablets are step by step, replacing desktops and laptops as the primary method of computing in daily life. According to the 2014 annual report from Cisco [2], there were 406 million new smart phones and 92 million new tablets activated in 2013. Not only are smart devices increasing in popularity but they are becoming more and more powerful. The latest A8X chip which Apple uses for the iPad Air 2 contains 3 billion transistors and has 40% more CPU performance and 2.5 times the graphics performance of its predecessor - the Apple A7 which had been released just a year before. Along with the rapid evolution of mobile devices, the applications on them are undergoing fast transformation. We can see many improvements in traditional applications (messaging, calling...) like multimedia text messages, video calls, voice over IP and so forth. However, the Contacts application has not change much while it has many potentials. In this thesis, we explore the potentials of providing custom information in the Contacts application and connecting the contacts together based on their relationships. We implemented a prototype of the new Contacts application which utilizes these two aspects then tested it among a group of users. Our results indicate that custom information and contact relationships are two important parts which should be included in today's Contacts applications.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Ralph Deters, for his guidance, support and advice during the study.

Furthermore, I am thankful to my committee members, Dr. Julita Vassileva, and ... for their encouragement , valuable comments and suggestions.

My thanks also go to my friends for their support and encouragement.

Finally, I wish to express my love and gratitude to my beloved family for their profound understanding and boundless love throughout the duration of my study.

CONTENTS

Pe	ermission to Use	j
A	bstract	ii
A	cknowledgements	iii
\mathbf{C}	ontents	iv
Li	ist of Tables	v
Li	ist of Figures	vi
1	Introduction 1.1 Background	1 1 2 3
2	Litterature Review and Analysis 2.1 Contact Information and The Need of Tagging 2.1.1 Tagging 2.1.2 Historical Contexts Awareness 2.2 Contact Relationships 2.2.1 Social Network Sites: Definition and History 2.2.2 Graphy vs. Social Network Sites 2.3 Cloud-based Contacts Application 2.3.1 Overview of Cloud Computing 2.3.2 Utilizing Cloud Computing in Contacts Applications	66 9 16 24 25 27 29 29 31
3	Design and Implementation3.1System Architecture3.2Mobile Client3.3Backend Server3.4Database3.4.1Database Schema Design to Support Tagging 3.4.2Synchronization Technique	32 32 33 34 34 43
4	Experiment and Evaluation 4.1 Tags and Relationships	48 48 49
5	Summary and Future Work	5 0
R	eferences	51

LIST OF TABLES

2.1	Commonly Used Physical Sensor Types [26]	19
3.1	RESTful API	36
3.2	MySQLicious Schema	36
3.3	MySQL Configuration	41
3.4	System Configuration	41

LIST OF FIGURES

Text Messaging Application Evolution	2
Contacts Applications in iOS 6 and iOS 7	3
Contacts Applications in Android 4.4, and Windows Phone 8.0	5
ZoneTag users' tagging frequency across their entire Flickr collections (including untagged	
	10
	15
Nguyen et. al.'s "Contact Info" UI on A Paper Prototype[49]	16
Layered Conceptual Framework for Context-aware Systems [26]	18
Using A Prosthetic Episodic Memory Device [44]	21
Forget-me-not Implemented on The ParcTab Hardware [44]	22
Intimate Computing Simple Model [44]	23
Timeline of the launch dates of various major social network sites and dates when community	
sites re-launched with social network features [29]	26
System Architecture	33
	34
	35
	38
Toxi Schema	
TOXI Generila	39
	$\frac{39}{42}$
Intersection Queries with 250 Tag Set [16]	
Intersection Queries with 250 Tag Set [16]	42 43
Intersection Queries with 250 Tag Set [16]	42
Intersection Queries with 250 Tag Set [16]	42 43 44
	Contacts Applications in iOS 6 and iOS 7

CHAPTER 1

Introduction

1.1 Background

As mobile devices continues its rapid run toward global adoption, mobile applications are extensively used in almost every aspect of our daily life. According to new data from Gartner [37], by 2017, mobile applications will be downloaded more than 268 billion times, generating revenue of more than \$77 billion and making applications one of the most popular computing tools for users across the globe. Together with the emergence of new applications, the rapid growth of mobile devices in both computing power and popularity leads to valuable renovations in many traditional mobile applications as well. For example, taking a quick look at the messaging application we can see a number of improvements (Figure 1.1). Messaging application today is capable of sending not only plain text messages but also images, videos, and other types of files. Furthermore, we can send messages to any place in the world via the Internet instead of relying on the local telephone companies. Regarding the user interface, in the past we could only read one message at a time but nowadays we can see the whole conversation conveniently thanks to the large and stunning display of smart phones. Not only is the messaging application improved, looking at the calling or note taking features of phones, we can see many enhancements as well.

However, there is one application that has not received much attention in the evolution of mobile phones: the Contacts application. People seem to ignore it although it has many potentials. In the past, the Contacts application was the site of initiating a few types of communications namely voice calls, text messages, and emails. Nowadays, with the emergence of new communication channels such as instant messaging [13, 20], Voice over IP [12, 19], and social networks [4, 8] the Contacts application can play an important role in creating a unified communication management interface. For example, instant messaging applications like Whatsapp [20] and Snapchat [13] have been using the contacts of the devices as the identities for their users in order to eliminate the friends discovering and adding phases of normal chat applications. Some Voice over IP application such as Fring [6] and Viber [19] use this approach as well. Furthermore, in some modern mobile operating systems like Android [1], when users select a contact on their devices they can choose to make a traditional voice call/text message or to use Voice over IP/instant messaging applications. Regarding social networks, we can link multiple social network profiles from Facebook [4], LinkedIn [8] to a phone contact via the similarities in email address and phone number. Beside all the new communication channels, voice

Figure 1.1: Text Messaging Application Evolution

calls and emails still act as the dominant communications in the business world since they are more formal. Therefore, the Contacts application is the central place for managing and widening people's connections.

1.2 Problem Definition

Regardless of playing a key role in users' connections, Contacts applications today have not changed much from their original form. All popular Contacts applications nowadays are merely ordered collections of contacts. As we can see from Figure 1.2 and Figure 1.3, the contact profiles are a little more informative with the additions of profile pictures and some pre-defined fields, and yet, these additions are still limited. There are some big issues users still have to deal with their contacts which has not been solved:

- 1. Finding the right contact with some particular pieces of information: T. Nguyen et. al [49] through their study show that the majority of participants sometimes do not know who to call with a piece of information. The problem becomes more severe when it comes to looking up business or service contact information. They are the kind of long-term interaction which are infrequent but long-lasting contacts. The survey reveals that many people do not remember the name they use when creating the contact, hence they often have to browse the entire contacts list to find the number.
- 2. Recalling and retaining miscellaneous information of a contact: When we have hundreds of contacts, remembering who they are and how we met them becomes an extremely difficult task especially for the contacts who we met quickly for business purposes. Whittaker et. al. [56] emphasis

that maintaining knowledge of the contacts is a critical problem. People are being exposed to an unmanageable number of contacts. Consequently, according to the researchers, users must decide: which of these contacts are valuable enough to maintain information about and what kinds of information to retain about the chosen contacts. Furthermore, recording the information is usually laborious and boring.

3. No support for establishing relationships between contacts: If we connect the contacts inside one's Contacts application with each other, they will form a network. This network is remarkably similar to a social network like LinkedIn or Facebook. For instance, the profiles in both networks consist of basic information about real people and these profiles can be connected based on their real world relationships. Actually, according to Boyd and Ellison's definition [29], the contact network satisfies all the criteria for a social network. However, this aspect has not been explored yet in modern Contacts applications. Since social networks have been developing incredibly and providing many benefits to its users, we believe not having the capability to establish relationships between the contacts in a Contacts application is a big omission. With the contact relationships, a Contacts application can answer a whole new class of user queries such as "Find all colleagues of contact A", "Find the daughter of contact B". This type of queries is currently impossible to accomplish in today Contacts application.

Figure 1.2: Contacts Applications in iOS 6 and iOS 7

1.3 Research Goals

In addressing the above mentioned issues, this research looks into developing a foundation model for contacts management applications which allows users to:

- (a) find contacts by their miscellaneous information.
- (b) efficiently retain knowledge of contacts.
- (c) establish relationships between contacts then traverse and explore the relationships with ease.

In this regard, our research looks into creating Graphy - a prototype based on modern Contacts applications with improvements. Graphy fulfill the goal (a) by enabling users to create customized information for their contacts through a tags system. With the tags system, Graphy can act as a contacts "search engine" from which users can search for contacts with any particular characteristic. At the same time, the customized information tags also help users retaining various knowledge of their contacts (goal (b)). Besides customized information tags, Graphy automatically adds useful information like the location, the date, the event which the users are attending while they create a new contact to that contact's profile. These additional pieces of information create a context around the contact which assists users in recalling knowledge about it. Regarding goal (c), Graphy allows users to connect their contacts with each other to form an internal network which we call "reversed social network". We will explain details of this network and why we call it like that in Chapter 2. Furthermore, the emergence of Cloud Computing provides modern Contacts applications with the elegant capability of backup and sync data between multiple devices. Therefore, we want to ensure that our prototype is capable of exchanging data with the cloud using state-of-the-art technologies. Since all popular modern Contacts applications are closed source with proprietary software, we decide to develop our own communication and synchronization solution utilizing the trending RESTful communication technology. Our solution aim to make it easy for users to work offline through a local database while maintaining a central cloud database to backup and synchronize data to other devices when needed.

In short, the objectives of our prototype are as follows:

- Operate like a modern Contacts application as well as provide additional improved features.
- Allow users to create customized information tags.
- Automatically add contextual information like the creation date and the creation location of a contact.
 - \star The customized information tags and the contextual information should be searchable with rapid responses.
- Allow users to establish relationships between contacts in a bi-directional manner.
 - \star The relationships should be easy to traverse and explore.
- Capable of backing up and synchronizing data to a server using RESTful communication.

Figure 1.3: Contacts Applications in Android 4.4, and Windows Phone 8.0

CHAPTER 2

LITTERATURE REVIEW AND ANALYSIS

2.1 Contact Information and The Need of Tagging

Most of our daily communication activities involve managing contacts information. Through a field study from Whittaker et al. [56] the value of contact information is strongly affirmed. Mary, a participant in the field study stated that her personal contacts list was a resource which pervaded all of her work:

"I cannot work today unless I have some source of contact information, some organized source so I can actually actively search for people. I use this list all the time just to browse it to find people when I need somebody to do a particular task." [56]

Understanding the importance of the contacts list, Jung and other researchers at Nokia [43] introduce eight design drivers a Contacts application should follow:

- Efficiency of accessing contacts: Apparently, speed and ease of accessing and creating new contact
 information are key factors of the Contacts application. They should be the first priority in the design
 process.
- 2. Differentiating important contacts: Interviewed participants in Jung et. al. study expressed their demands in differentiating special contacts from others for both emotional and practical goals. As the size of mobile contacts list grows, many participants manually changed the order of appearance of some contacts in the list (for example, by adding a number "1" in the name field) or attaching a visual mark to make the contacts stand out of the list (for example, adding symbols like "*" or a heart "<3" to indicate his/her significant other). However, the nature of relationship often changes over time so manually altering contacts as shown above is obviously tedious and not ideal. Therefore, on a practical level, the researchers recommend using a dynamic list which can be automatically generated based on some conditions like frequency and recency of communication to differentiate important contacts.
- 3. Customization and personalization: Jung et. al. claim that the Contacts application is a highly personal application which accommodates different user preferences and lifestyles. Hence, it is essential to have a model to understand the range and patterns of user preferences which can be interpreted into user preference settings. The researchers then propose the feature that allows personalization of content on various levels such as adding a picture, an icon, a note to a contact profile.

- 4. Contact as repository of personal information: Nokia researchers show that contacts list is not only about other people. Their interview revealed that users store personal information which is unrelated to communication management in their Contacts application. This information could be passwords or account numbers or other data that may potentially be retrieved more than once. Some advanced users developed some special ways to "encrypt" their private data to make it secure (for example, naming the credit card PIN number as "Jonny" in the contacts list). In addition to users' own personal information, through their study, the researchers found it is necessary to promote users storing others' digital identities in the Contacts application.
- 5. Contact as social piggy bank: People often consider adding other information which is related to the social relationship to the contact profile if the application has that functionality. Active users in Jung's study wished to have the ability to add further information about the person such as birthday, social network, communication history to provide or strengthen the context of the relationship, especially when the user has a strong social connection with the person. Therefore, it is essential to design a contact profile that can accommodate both the people-centric and the information-centric types.
- 6. Assistance to social management: The study revealed different areas where people will benefit from making use of past communication patterns (for example, storing the date of when the contact profile was created, which may mark the moment when the user first met that person). In contrast with the "Contact as social piggy bank", this design driver helps users who do not proactively add extra information since most data of this kind could be accumulated and stored automatically.
- 7. **Flexibility in organization**: Jung et. al. stated that their research revealed various potential reasons why people may use hierarchical or grouping organization in the contact profile. One of the reasons was to assign common settings like special ringing tone to a group of contacts. Another reason was to assist faster access and reduce the visual clutter when there were many contacts with the same names.
- 8. Accessing external contact information: With the powerful mobility of mobile phones, sometimes accessing the basic information of a foreign area is necessary in an unexpected circumstance (for example, taxi, hospital, directory service). Therefore, it is desirable to have access to the locally related data. The researches suggested that instant access to external contact information database has a big potential in improving the Contacts application.

The design drivers listed above were published in 2008, one year after the first iPhone flipped the world upside down by introducing a whole new concept of touch-screen smart devices. Over the years, these drivers have been proven to be applicable and implemented completely or partially by manufacturers. Taking a look back into the past, the first Contacts application on a mobile phone was simply a dictionary of names and numbers. A contact profile used to consist of only the person's name and his/her phone number. Nowadays, a contact profile in major platforms (iOS, Android, Windows Phone) is not only the person's name and

phone number but also their social profile. This social profile is made up of the person's picture, name, phone numbers, and a group of miscellaneous fields such as company, job title, address, birthday, emails, notes, and so on. Furthermore, the Contacts application provides users with many extra functionalities such as logging communication history, marking favorite contacts, grouping contacts. We can see that almost all the design drivers are implemented in modern Contacts application except for design drivers number 4, 8, 3 and 6. As a side note, we do not sort the design drivers by numerical order here but we sort it by its content explained below:

- Design driver number 4 Contact as repository of personal information: At the time Jung et. al. proposed the design drivers, smart phones were not yet powerful. Therefore, it is understandable that some people utilized the Contacts application to store their personal information like account number, usernames, passwords. However, with the capabilities of modern mobile phones, users have many choices to accomplish that task. For example, it is much better to save private information using a password manager application since it is more convenient and the data is safely protected using modern encryption algorithms. For other kind of information, users can choose to store it in a note taking application or a task manager which are available on all mobile platforms. In summary, this design driver has become inappropriate in today technologies.
- Design driver number 8 Accessing external contact information: Having the ability to retrieve external and location-related information directly from the Contacts application is desirable. However, the enormous power of today search engines together with the rising of mobile intelligent personal assistant like Siri (iOS), Google Now (Android), Cortana (Windows Phone) has made accessing external information incredibly easy. Users can just verbally command the intelligent personal assistant or type a few keywords in an on-screen widgets then the relevant information will be retrieved instantly from a search engine. Therefore, the majority of users has developed a habit of looking up for external information via search engine, hence using the Contacts application for this task becomes redundant and sometimes slow. To conclude, accessing external contact information from the Contacts application has turned out to be just a "nice to have" feature without much potential thus not being implemented in most modern Contacts applications.
- Design driver number 3 Customization and personalization: Unlike the two obsolete design drivers we have just analyzed, design drivers number 3 and 6 are actually implemented in almost all Contacts applications today. Design driver number 3 is about customizing and personalizing the contacts. In modern Contacts applications, this driver exists in the form of the picture in the contact profile and a group of extra fields like websites, phonetic name, notes. However, all those fields are pre-defined by the application. To the best of our knowledge, all Contacts applications lack the ability for adding customizable fields. In other words, we consider the pre-defined fields only fulfill the "Personalization" half of design driver number 3 while missing the first half "Customization". In 2010, Trung V. Nguyen

et. al. [49] conducted a survey with the participation of 87 people in Korea which revealed that Contacts application users need various extra customizable information related to a contact. They then pointed out that memos or notes are not sufficient for this purpose, and proposed the use of tags. We are totally in unison with this idea of using tags for customization and we will discuss more in details of this topic in section 2.1.1.

• Design driver number 6 - Assistance to social management: Assistance to social management is another limitedly implemented design driver. From our analysis, all major Contacts applications today only record the calls and text messages log of a contact while there are many more potential past communication patterns. For example, the date and the location a contact was created may tell a lot about how the user meets that person. The survey from Trung V. Nguyen et. al. [49] shows that many people struggle with remembering who the contacts are and who they should call for a piece of information. In these situations the past communication patterns can be very helpful. We will analyse this problem more in section 2.1.2

2.1.1 Tagging

Tagging is using keywords to add metadata to content [38]. It has become very popular in applications and services nowadays [31, 38, 46]. Many types of data are currently annotated by tags which includes bookmarks, images, videos, articles, blogs and so on. There are different services providing tagging functions to data such as Pocket, Pinboard, Delicious, Flickr, Youtube. Tagging is effectively enhancing users experience in organizing and sharing large amounts of information in those services.

In order to understand tagging, Ames and other researchers at Yahoo and Stanford University conducted a large study on more than 500 people [25]. The study focused on an images tagging system combined of Flickr and ZoneTag. Flickr is an image hosting web services. It is a popular website having one of the largest online communities. Flickr provides annotation of images in the form of tags. A tag in Flickr is an unstructured textual label and mainly assigned by the user who owns that image. Zone Tag is a mobile application developed by the researchers. It helps users upload a newly captured photo from their mobile phones directly to Flickr in just a few clicks. More importantly, the users can type in or select tags for that photo. This feature pre-fetches a number of tags from the ZoneTag server based on the context then suggests them to users for easy selection. Zone Tag was deployed as a public prototype for around a year with more than 500 users and 45,000 uploaded photos. Ames et. al. then carried out a study on 172 users. During the deployment process, Ames collected their data about the usage of the system. The data was used to analyze tagging patterns and activity. Figure 2.1 demonstrates the percentage of users regarding their average number of tags per photo. For instance, the first bar on the left indicates that 25% of the ZoneTag users have less than 0.5 tag per photo. Notably, this number does not count the automatically added tags. As we can see from the chart, around 61% of the users added at least one tag for each photo on average. Surprisingly, over one fifth of the users had more than 3 tags per photo which reveals a great potential of tags. All the tags of the system come from ZoneTag mobile application as well as Flickr's official website. However, the majority of tags were from ZoneTag with over two thirds of the tagged photos were added by users with their mobile devices.

Figure 2.1: ZoneTag users' tagging frequency across their entire Flickr collections (including untagged photos)

In addition to analyzing collected data from users, Ames et. al. conducted an in-depth, semi-structured interview with 13 participants including some users who had taken the most photos. Their ages ranged from 25 to 45 with four of them being female. The tagging frequency of each participant covered from zero to more than five tags per image. The interview revealed many type of motivations and uses of tags. Almost all the participants had more than one motivations for tagging. For example, an interviewee tagged her photos in order to retrieve them later as well as to provide contextual information of the images for herself and her friends. The researchers established a taxonomy for the motivations which included 2 categories and 4 groups:

• Self/Organization: Search and Retrieval

This is the traditional motivation of tagging. Users who have this motivation occasionally make comments like "I am an organized person" or "I like order". However, these comments are often followed by admission for not being consistent in the tags. Two of the participants say that they tag especially to later retrieve their photos and two others say they tag for personal organization purpose. Below is the quote from one of these participants:

"Mostly I use tags if I go back on Flickr if I want to find all the pictures of one thing. If I tagged ahead of time I can go back and get all my pictures of my children. . . . I've made separated tags of my child's preschool or playgroup so that if I want to share pictures with more than just family I can go back and

find everything from that one tag. ... Mostly it's for my own organization at this point."

Analysis: This traditional motivation is totally appropriate with a Contacts application. In order to improve users' consistency we should provide a good tag suggestion/recommendation mechanism.

• Self/Communication: Memory and Context

Users sometimes add tags to give context to a photo like the names of the people in it or the location that photo was taken. This behavior improves future recall of the situation the photo illustrates. However, it is surprising that not many users were motivated in this way when they tagged their photos. The quote below demonstrates a user's perspective:

"If I have the time, the neighborhood, or the event, I have enough information to look at my own collection and know where this came from. I don't have the bandwidth to tag for the benefit of the Flickr system:.. I want at least one hook of association in there that can help me reconstruct what I was thinking. I don't have time to put all the hooks in but I can put one in."

Analysis: According to the study, there are only a few people having this motivation. From our point of view, there are two problems here. First, context information is ambient data so having it together with the primary data (photos, contacts) is always good so long as it does not distract the viewing process. However, adding ambient data is time consuming and often not appealing, hence not many people spend time doing it. Therefore, this kind of data should be added automatically by the application itself and provide them when needed. Second, a photo provides a lot of ambient information like the people in it, where it was taken. Just by looking at a photo, viewers can understand much about the situation surround that photo. On the other hand, a contact in the Contacts application does not tell a lot about itself. Thus, having ambient information in a contact can help user to recall things about that contact like where and how they met. It is really useful in case there are more than two contacts having the same name. In conclusion, we think this motivation is appropriate with a Contacts application and needs to be implemented properly. Another thing we wish to emphasize is sometimes it is not clear to differentiate a tag is the first type (Search and Retrieval) or the second one (Memory and Context). Therefore, to be consistent, we consider the second type (Memory and Context) always ambient data which is automatically added by the application.

• Social/Organization: Public Search and Photo Pools

This group represents the users' motivation for making their photographs searchable by other people. The researchers point out that pictures are often taken to enhance and document mutual experience or to share it with friends, family, and even the public. The tags can make the photos be easily found by people the users want to share with or anybody who is interested in them. While some users tag for their friends and family, other users tag for the general public. Below is the quote about this aspect: "Most friends view my photos, but as I grow my collection, I am getting more public views. I've noticed

that if I take and tag pictures of cute female friends, views go up. ... There's a satisfaction that 50

people have viewed my photos. I know that tagging can connect my photos to activities, and get more interest. ... I got more liberal about using suggested tags lately, so I will add multiple tags to make it easier for people to find my photos."

As more users tag their images, appealing behaviors arise between groups of friends. Two of the participants said that they coordinated tags with others to assist later retrieval. This is a form of an ad-hoc, distributed photo "pool". One participant did this with his friends in many situations like company meetings, parties, classrooms or hikes with friends. Another participant attended a race in San Francisco then he utilized the tags that others were using to tag his own pictures as well as finding other photos of the event. The quotes reflecting these behaviors are listed as follows:

"I'm at an event and there's a convergence on a specific tag, then I'll tag because it's for the good of the group. ... It's a nice way to build live streams and collections of photos. ... A classmate suggested we tagged everything specifically so we can find it, which is actually really useful."

"If I'm out with friends they might suggest tags. ..."

Analysis: This motivation is not exactly relevant to a Contacts application since the contact information is generally private and often not shared with the general public. However, ad-hoc sharing is an interesting aspect our Contacts application can learn from Flickr and ZoneTag. Sharing a contact with its tags and additional contextual information might be helpful to the receiver since he/she will probably have sufficient contextual knowledge to understand the tags. Nevertheless, this feature should be designed with care because tags often contain a great amount of personal information which the author may wants to keep for only himself. That is why, the ability to select which tags to be shared is essential in this feature.

• Social/Communication: Context and Signaling

The last group is tagging to communicate contextual data to other users. In almost all cases, users added these contextual tags for friends and family. Contextual tags for known people often have little meaning for the public. Actually, in order to improve privacy, some users confuse their tags on purpose to make it impossible for the general public to understand the tags. Additionally, two participants described tagging as "a chain reaction", when somebody took a photo and tag, others also took out their phone. One participant describe this perspective as follows:

"I tag and I don't have to explain myself - my friends don't have to ask me a billion questions such as 'where did you take this photo, why are you showing me this photo, who is this person in this photo'... I can give them the basic story."

Analysis: This is another motivation with little relevance to our Contacts application. Since the contact data is not exposed to the public, we do not have to worry much about privacy issues. However, the "chain reaction" is a good sign from which we can believe that tagging in a Contacts application can be widespread.

From the interview, Ames et. al. also analyzed the best way to design the tags suggestion feature. First of all, the researchers decided to make interactions between users and the main activity as burden-free as possible. Particularly, ZoneTag was designed to do its main job in only 2 clicks and it did not require users to add or select tags right away. The reason behind not making adding tags mandatory is that many users from the interview found it difficult to add or even select tags on the phone in some situations like driving or socializing, furthermore, even participants who added many tags still did not want to be interrupted all the time. Secondly, many participants liked having previously-used tags showed up and they also used the auto-completion feature widely. However, the researchers also found out that tags sometimes confuse the users when they share them with each other. One participant complaint about an unfamiliar tag on her photo after using the tags sharing feature in a conference. Nevertheless, from our point of view, sharing photos and sharing contacts are very different since we often share a much smaller set of contacts with just one or two people so the confusion should not be a problematic issue. Lastly, Ames et. al. discovered that tags suggestions served a larger purpose than just assisting in tag entry. Some users had developed the habit of browsing the suggested tags list to add all the tags which were relevant even if they did not try to add them in the first place. One participant commented that he often scrolls down the list and picks available tags because they are displayed. Moreover, even when not being selected, the suggested tags still encourage some participants to add their own new tags and give them direction to the types of tags they may use (for example, a suggested tag about a neighborhood may inspire the users to add tags about other neighborhoods as well). In summary, tags suggestions have a significant impact on users' tagging activity, however the option to bypass adding tags in some circumstances is important for the usability of the whole system.

In the end of the study, after carefully analyzing users' data as well as the interview, Ames et. al. summarized their findings into a list of implications for the design of tagging systems in general [25]:

- Make the annotation ubiquitous and multi-functional.
- Make it as easy as possible when the data (photos, contacts...) is captured.
- Do not force annotation at the point of information capture.
- For systems that have both mobile and desktop or web-based components, annotation should be enabled
 in both settings.
- Relevant suggested tags can inspire tagging and direct users to possible tags.

We have just examined principles of a general tagging system, we will now investigate how tags should be applied on the mobile phone's Contacts application. In 2010, Nguyen et. al. conducted a user study [49] to discover users' dissatisfactions with contacts management. The study consisted of a large survey which incorporated multiple choice and open-ended questions so participants could point out changes they wanted to be made in their current Contacts application. The survey focused on finding the issues with storing, searching and managing the contacts. It was conducted through an online form over the course of one week with the participation of 87 people. There were 42 male and 45 female participants and their ages ranged from 15 to 50. First, the survey asked participants on the way they organize their contacts. 46 participants said that they use groups for organization while 42 participants did not. However, almost everyone thought that classify the contacts using groups was inconvenient. 55 participants did not know which group they should put a contact into, 12 had difficulty finding appropriate names for their groups, and 11 people claimed that they could not search for contacts using group names. The issues were revealed more clearly through the open-ended questions from which 5 people wanted to put a contact into various different groups while 4 other participants wanted to have hierarchical groups. From these answers, Nguyen et. al. concluded that people use groups as a way to label multiple pieces of information of a contact which may help them recall and fetch the contact when needed. Furthermore, the researchers also addressed the problem when people forget about contacts they have created earlier. 45 out of 87 users said that they did not know who they should call for a piece of information. The problem became more serious when it passed on to business service contact information. Business service such as restaurants, childcare, repair and maintenance, transportation are actually really important. They are the kind of long-term interaction which are infrequent but long-lasting contacts. The survey revealed that 47.5 percent of the participants call this kind of service contacts at least once a month and more than three quarters of all participants call more than once every three months. Despite the importance of these contacts, participants often struggled to look for service numbers in their mobile Contacts application. Among 87 people, 61 did not remember whether they had stored the demanding contact or not, 40 did not recall the name they used when created the contact, and 21 had to look through the entire contacts list to find the number. This fact undoubtedly indicated the need of a system which can assist users in finding the right contact when they have some particular pieces of information about the person/service.

The study also disclosed several solutions which users created manually by themselves in an attempt to tackle those problems. 7 users used memos or notes to store extra information about their contacts while some others put the information into the name entry of contacts just like the way participants in Whittaker's study did which we have examined in the beginning of section 2.1. From this revelation, Nguyen et. al. concluded that users need an efficient mechanism for storing and retrieving extra information of a contact. Therefore, the researchers proposed the use of tags which were convenient for adding and searching resources. Resources could be classified by numerous tags rather than using a directory or a single branch of hierarchy [48]. As a result, users could "tag" a contact into multiple groups or even made the tags hierarchical based on their needs. Regarding retrieval, multiple tags could be used simultaneously in a query for a specific contact so the users did not have to remember the person/service name.

After conducting the survey, Nguyen et. al. created a paper prototype of a mobile phone Contacts application to verify their findings. The paper prototype was used in various user study scenarios. At the start of each scenario, the researchers explained to the users new features in the Contacts application. After that participants were requested to perform tasks by interacting with the paper prototype. A researcher acted

Figure 2.2: Nguyen et. al.'s "Add Tags" UI on A Paper Prototype [49]

as the application by responding to users' interactions with other user interfaces also on papers. Figures 2.2 and 2.3 are two example user interfaces of the paper prototype. After finishing a task, the participant filled in the task assessment form and answered some questions from the researchers. All participants thought the tasks were realistic and they had come across many times in real lives. They also commented that the tasks covered all the information they needed when using the Contacts application. In general, the participants had positive feedbacks about the prototype. For instance, a user liked the tagging feature and actively used it a lot through out the scenarios. Furthermore, most of the users only used the name of the service as search keyword once every 20 scenarios, instead they often looked up the contact by using information from the scenarios which were remarkable, relevant, and personal. This was a definitely good sign which indicated the capabilities of tags in directing users to the right contacts from miscellaneous information. On the other hand, some participants admitted that they are sometimes too lazy to enter text on their mobile phones even though they knew that some information about a contact was absolutely necessary. This issue again pointed out the importance of tags suggestion which we have already covered in previous sections.

Summary: To sum up, we have comprehensively investigated a study about tagging in general and another study about tagging in a mobile Contacts application. Both studies suggest that tagging is an essential aspect which could help users organize their data. From Flickr/ZoneTag, we understand the motivations behind tagging, and the recommendations from the researchers will direct us when we build our own system.

Figure 2.3: Nguyen et. al.'s "Contact Info" UI on A Paper Prototype[49]

From the study in Korea, tagging in a Contacts application is once more affirmed to be necessary, and the paper prototype is really helpful for us in designing our application's user interfaces.

2.1.2 Historical Contexts Awareness

As we have discussed at the beginning of this chapter, the design driver number 6 - Assistance to social management is not fully implemented in Contacts applications nowadays. In order to utilize this design driver, we propose the use of past activities in the form of historical contexts. The contexts here can be many aspects around a contact which happened in the past (this is the reason why we use the term "historical contexts" to distinguish them from the "current context" which is often used to determine the status of the users). For example, the location and the date/time when a contact is created are useful historical contexts which can tell a lot about the situation when the user met that contact, and the events, meetings happened around that time, other contacts added just before and after that contact are meaningful pieces of information as well. Furthermore, the communication history between the user and a contact via emails, call log, and social network interactions can also be considered valuable historical contexts. With the assistance of historical contexts, users can use their Contacts application to recall memory about a contact when needed.

Looking back at our analysis of Ames' tagging motivations in section 2.1.1, memory and context is the second motivation of tags. Therefore, we decide to make historical contexts a kind of tag in our system. This kind of tag will be automatically included into a contact profile of the Contacts application along with users-created tags. To understand more about historical context, in this section we will first investigate the definition of context, design principles for context-aware systems, then we will examine "Forget-me-not" an intimate computing system which use context to support human memory.

According to the survey from Baldauf [26], the term "context-aware" first appeared in Schilit and Theimer's work in 1994 [52] in which the authors defined context as locations and identities of nearby people and objects. In 1998, Ryan [51] referred to context as the user's identity, surrounding environment, location, and time. From another angle, Dev [33] not only described context as location, time, and user's environment but also as user's emotional state, focus of attention. However, in the opinion of Baldauf, the most accurate definition of context was given by Dey and Abowd [23] as "any information that can be used to characterize the situation of entities (i.e., whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves." Regarding context classification, a common way to organize context is based on its dimensions. Prekop et. al. [50] and Gustavsen [40] classified the dimensions into external and internal. The external dimension is the physical context which can be calculated by hardware like location, time, and movement. The internal dimension is the logical context which can be measured only by the users themselves or captured by monitoring users' interactions. Some examples of internal context are the users' tasks, work context, or the users' emotional states. All most all context-aware systems utilize external context since they give valuable information while being easy to measure using modern hardware sensors. There are also some systems making use of logical context like Watson [30] and IntelliZap [36] that assist users by presenting relevant information based on information extracted from users' opened web pages, and documents.

When designing a context-aware system, the method to capture context information is crucial since it greatly influences the architecture of the system. Chen et. al. [32] demonstrated three different ways to capture context information.

- Direct sensor access: This method is widely implemented in hardware devices with built-in sensors. The software collects the needed contextual data directly from the sensors, hence, no extra layer for gaining and processing sensor data is required. However, drivers for those sensors are attached to the application layer forming a tightly coupled system which is not flexible. As a result, this approach is not suitable for distributed systems because of its direct access nature.
- Middleware infrastructure: This method divides context-aware systems into layers. The main purpose
 of this approach is to hide low level sensing details. In comparison with the first method, this layered
 architecture approach is more flexible and extensible. The application layer is separated from the
 sensors so it is easy to reuse hardware dependent sensing code. However, the architecture is more
 complicated compared with direct sensor access.

• Context server: This method expands the middleware approach by introducing a remote server. This server aggregates sensor data then provides access to authorized clients. The first advantage of this technique is reusing sensor and introduce an administration layer for the contextual data. The second advantage is saving the clients from resource intensive operations since almost all client devices in a context-aware systems are mobile devices with limited computing power, memory, and energy. On the other hand, this approach requires a complex communication protocol between clients and the server, and the network performance can sometimes become the bottleneck of the system.

Regardless of what method a system chooses to capture contextual data, logically separating context detection and context consumption is essential in enhancing extensibility and reusability of the system. Figure 2.4 illustrates the layered logical architecture which was described by Ailisto et. al. in 2002 [24].

Figure 2.4: Layered Conceptual Framework for Context-aware Systems [26]

The first layer is called the "Sensors" layer. The term sensors here not only means physical hardware sensors but also means any kind of data source that supplies valuable contextual information. In accordance with Indulska and Sutton [42], sensors can be categorized into three different groups based on the way they capture data.

- *Physical Sensors*: This is the most common type of sensors. They are the actual hardware sensors that can capture many kinds of physical information like longitude, lattitude, temperature.... Physical sensors are very popular today and can be found in almost all smart devices or mobile phones. Table 2.1 lists some common physical sensors.
- Virtual Sensors: This type of sensors get contextual information from software or services. For instance,

Type of Context	Sensors
Light	Photodiodes, color sensors, IR and UV sen-
	sors, etc.
Visual	Cameras
Audio	Microphones
Motion, acceleration	Mercury switches, angular sensors, accelerom-
	eters, motion detectors, magnetic fields
Location	Outdoor: Global Positioning System (GPS),
	Global System for Mobile Communications
	(GSM); Indoor: Active Badge system, etc.
Touch	Touch sensors in mobile devices
Temperature	Thermometers
Physical attributes	Biosensors for measuring skin resistance,
	blood pressure, etc.

Table 2.1: Commonly Used Physical Sensor Types [26]

an application can track users' location not only by using GPS data but also by reading their electronic calendar, emails.

Logical Sensors: Logical sensors take advantage of multiple data sources by incorporating physical
and virtual sensors with supplementary information from databases or other sources to deduce more
complex information. For instance, logical sensors can be used to track employees' current location by
examining user logins on company's machines and combine those pieces of information with a database
storing machines' locations.

The second layer, Raw data retrieval, is for retrieving raw contextual data. It utilizes drivers on physical sensors or APIs on virtual and logical sensors. This layer provides abstract functions for the upper layer in order to make it easy for accessing the low-level hardware layer. Furthermore, by abstracting the access interfaces, it is possible to replace the hardware sensors module with another one without changing the upper layer's program. For example, replacing a RFID sensor with a GPS one can be done seamlessly.

The third layer is not commonly implemented in context-aware systems. It is used for interpreting context information which is sometimes important when the raw data is too harsh. In some systems, the technical data from the sensors is not directly useful for the high-level software application. This is when the preprocessing layer is brought into play, it transforms the data into higher abstraction information by using extraction and quantization operations. Moreover, in systems which have more than one context information source, the data of all sources can be aggregated in this layer before delivering to the next layer. The aggregation process is often important since in many scenarios the data from a single sensor does not make sense or is inaccurate

while the combined data from multiple sources is valuable and much more precise.

The forth layer is called *Storage and management*. It organizes and store the collected data then provides them through interfaces. The applications/clients can receive the data synchronously or asynchronously.

They highest layer in the stack is the *Application* layer. All the business logic that makes use of the stored contextual information is carried out here.

The next important thing we need to know when designing a context-aware system is the context models. The context models represents the machine readable form of the contextual data. It is challenging to develop a scalable, adaptable, and usable model which can cover a broad range of potential contexts. In their work "A Context Modeling Survey" [53], Strang and Linnhoff-Popien listed the most common context modeling methods. These methods were categorized based on the data structure representing context data.

- Key-value model: This is the most simple data structure which can be used for modeling contextual information. Although this model is simple, it is very effective and is used in many systems. According to Strang and Linnhoff-Popien, it is especially used a lot in service frameworks in which the key-value pairs represent the capabilities of a service. As a result, service discovery can be applied by running matching algorithms on the key-value pairs.
- Markup scheme model: This kind of model makes use of markup tags with attributes and content to construct a hierarchical data structure.
- Graphical model: Graphical model mostly utilizes the Unified Modeling Language (UML) which can be used to model context data. Some graphical model also extends the Object-Role Modeling (ORM) to represent context.
- Object oriented model: This approach can leverage the power of object oriented techniques like inheritance, encapsulation, etc. Various context types can be represented by different objects.
- Logic based model: This model has a high degree of formality. Context models are defined by facts, expressions, and rules. After that, a logic system will manage those facts, expressions, and rules as well as allowing addition, update or removal of each element. Reasoning processes are used to develop new facts based on existing rules in the system.
- Ontology based model: Ontologies are considered a potential way to model context data since they have a high level of expressiveness while maintaining the possibilities to apply ontology reasoning methods.

After investigating architecture and design principles of context-aware systems, we will now thoroughly examine Forget-me-not, a context-aware program used for Intimate Computing. Forget-me-not [44] is a project attempting to find a method to assist human memory using mobile and ubiquitous computing. It aims to solve the problem of growing information load in daily life.

In order to develop Forget-me-not, the researchers introduced a new computing model called "Intimate Computing". It was based on the definition of Ubiquitous Computing by Weiser [55], it consisted of tiny

Figure 2.5: Using A Prosthetic Episodic Memory Device [44]

Personal Digital Assistants (PDAs) with wireless communication capability such as cell phones, laptops, wearable devices. Those devices always escorted the users so they can be tailored to their own preferences. Moreover, since they were involved in many of users' daily activities, the devices became intimate with them. The more intimacy the devices had, the more valuable they were. Furthermore, it is notable that Intimate Computing provided the computing devices with the users' real world contexts.

Utilizing Intimate Computing, the researchers attempted to solve the problem of forgetting one's own information. Since the PDAs had access to users' contexts, they could use the context as a useful key to index information automatically. According to the authors, a detail of a past event like the name of a document was probably hard for a user to remember. However, the context of that event could be easier to recall such as the person who gave the document to the user, the place when it happened, the task the user was doing. Psychology researchers also developed theories about this kind of physical contexts. They called it episodic or autobiographical memory. The psychologists discovered that people instinctively arrange memories of past events into episodes, and then the location of the episode, the people around, the activities that had happened before, during, and after the episode were solid clues for recall. Furthermore, a study by Eldridge et. al. [34] even led us to believe that we could make a prosthetic episodic memory device. The device was called a memory prosthesis which followed users and captured critical information and context from their lives, then it could organize this information into a structure which mimicked the

episodic memories of human beings. As a result, people could retrieve details of their fading memories by looking up the episodes which were accumulated in the storage of their prosthetic memory devices (Figure 2.5). In other words, users could use small, easy to remember things about a context to bring back the details that they had forgotten.

Forget-me-not was Lamming et. al.'s first attempt [44] in creating a functioning prototype of a prosthetic episodic memory device. The first aspect of the device which the researchers tackled was user interfaces. They tried to design the interfaces to be as easy to use and intuitive as possible since it should be easier to remember how to operate Forget-me-not than to remember past events. Figure 2.6 shows the Forget-me-not device developed in 1994. The software was implemented on a ParcTab - a portable device built in the Computer Science Laboratory at Xerox PARC.

Figure 2.6: Forget-me-not Implemented on The ParcTab Hardware [44]

By accompanying users, the ParcTab accumulated data about different users' activities then it arranged these data into a personal biography. In the simplest prototype, Forget-me-not required users to provide a list of devices where data could be gathered. When a user interacted with a device on the list, ParcTab automatically collected the device's name and location. The operations carried out by the user on that device were also collected together with a timestamp. When two people both wearing ParcTabs met each other, their devices would start exchanging information in regard to their preset privacy settings. Figure 2.7 illustrates this model. According to the authors, the Forget-me-not prototype was deployed for a few months and to some extent confirmed the applicability of the Intimate Computing model.

Summary: To sum up, in this section we have decided to include historical contexts as tags associated with the contacts because they are highly valuable information and according to Whittaker et. al: whether a contact is important to a user or not largely depends on the history of their prior interactions [56]. After

Figure 2.7: Intimate Computing Simple Model [44]

investigating the design principles of context-aware systems and Forget-me-not, it is our conclusion that some important aspects should be apply to our context-aware Contact application as follows:

- Internal vs. External Context: External contexts being easier to capture, our plan is to focus on external contexts like date/time and location first. After that, we will try to extract internal context by accessing users' call logs, instant messages, emails and so on.
- Data Capturing Methods: The core of our system lays on the mobile phones with many available sensors like GPS, accelerometer, gyroscope. The operating systems of modern mobile phones allow applications to access the data gathered by those sensors directly so the capturing method we will mainly use is Direct sensor access.
- Logical Architecture: Following the architecture described by Ailisto et. al., our system will use four layers: Sensors, Raw data retrieval, Storage/management, and Application. The Preprocessing layer is omitted like the majority of context-aware systems. Regarding the Sensors layer, we will take a

step-by-step approach by utilizing the physical sensors at the beginning then moving on to explore applicable virtual sensors later. Notably, many elements of these layers have already been implemented by the mobile phone's operating system. We can take advantage of that and focus on building the application.

- Context Model: We choose the key-value model because of its simplicity and high efficiency. The contexts we capture will be stored as numerous tags. The tags should be small and easy to search, retrieve, create, etc. Therefore, the key-value model is definitely one of the best choices for us.
- Lessons from Forget-me-not Project: What we are trying to do can be considered a small version of Intimate Computing. Our novel Contacts application will be a memory aid device which can help users find the name of a forgotten contact through the events having happened around him/her in the past or through the interaction history between the users and him/her. In the first phase, we will try to make our application collect some easy clues, activities which can help recall a contact like the date/time when the contact is created, the location when it happens. In future expansion, we will include more sophisticated clues like the event happening during the creation date, or the interactions between the users and the contacts.

2.2 Contact Relationships

There are various studies of the Contacts application from different aspects like improving the contact information, demoting unused/unimportant contacts. However, the relationships between contacts seem to have been forgotten by researchers. In our opinion, contact relationship is an important characteristic which need to be investigated. In this thesis, we introduce a novel internal network of contacts where each relationship between two contacts is an edge of the network graph. All contacts in a mobile Contacts application and the relationships between them form a big network which we call a "Reversed Social Network". There are two reasons why we call it a reversed social network. First, it shares the same features with a normal social network. Second, the content in it comes from a reversed point of view. In other words, while in a normal social network like Facebook the social profiles are created by the actual attendees, in a reversed social network the profiles are created by the network owner - the user of the Contacts/Phonebook application. In this section, we will investigate the definition of a social network site then compare the similarities/differences between a reversed social network and a normal one.

2.2.1 Social Network Sites: Definition and History

Social network sites have been growing enormously, attracting hundreds of millions of users all over the world. In their work "Social Network Sites: Definition, History, and Scholarship" [29] Boyd and Ellison defined social network sites as web-based services which allow people to:

- 1. Build a public or semi-public profile in their bounded system.
- 2. Establish a list of other users who they have a connection with.
- 3. Explore and traverse their connection list and other users' list within the system.

Social network sites are unique not because they help people to meet new friends, but rather that they allow users to establish their own existing social networks online. Sometimes new connections between strangers are created but that is normally not the main goal. Connections in a social network site are often formed between participants who share some offline connections.

Although different social network sites have different features, the majority of them possesses a backbone of user profiles which illustrates a collected list of friends who are also users of that network. A profiles is a special page for an individual to "type oneself into being" [54]. Usually after joining a social network, a user is requested to fill out a form of questions. Then the answers in the form will be used to generate that person's profile page. Some typical questions ask about name, age, location, interests and a short description of the participant. People also have the option to upload a profile picture, and enhance their profiles by adding multimedia content. Profile visibility differs from site to site and according to user settings. By default, Facebook users can view other's profiles if they are directly connected, unless a user chooses to restrict his/her profile accessibility permission. On the contrary, LinkedIn decides what a user can access based on whether or not he/she has a paid account.

Many social network sites support a method for participants to leave messages on their friend's profile pages. This function often leads to another feature called leaving comments on these messages. Additionally, social networks usually have a private messaging system similar to email.

Besides user profiles, connections, comments, and private messages, social network sites differ vastly in functionalities and participants. Some sites have photos and videos sharing features while other ones have built-in blogging capability. A few social network sites are specified for mobile phones such as Dodgeball [41]. However, most web-based social networks also support mobile devices with some limitation like Facebook, LinkedIn, MySpace. Several social network sites are designed for users in particular geographic regions and languages. There are also some social networks which target particular religious, ethnic, political, or other personality-driven groups. Furthermore, social networks for dogs and cats even exist and their owners will be the one who manage their pet's profile.

2.2.2 Graphy vs. Social Network Sites

Similarities

According to the definition from Boyd and Ellision above, Graphy can be considered a special type of social network:

Figure 2.8: Timeline of the launch dates of various major social network sites and dates when community sites re-launched with social network features [29]

- 1. Building a public or semi-public profile in their bounded system: Every record in a Contacts application is a profile of an individual. A contact profile and a social network profile are strikingly similar. They both consists of basic information about the person and a profile picture. The difference here is that the contact profiles are mostly private and only visible to the owner of the application.
- 2. Establishing a list of other users who they have a connection with: In Graphy, we connect the contacts with each other based on their real life relationship.
- 3. Exploring and traversing their connection list and other users' list within the system: The owner/user of Graphy can view and traverse the entire network of connections.

From this comparison, we strongly believe that Graphy can stand out as another type of social network which may even evolve further like some other specialized services such as QQ, Cyworld, etc. QQ began as a Chinese instant messaging service which then developed into a major social network in China. Cyworld started as a Korean discussion forum, LunarStorm as a community website, Skyrock as a French blogging tool before including social network functionalities. Classmate.com was a school directory and started supporting friend list after social networks became widespread. All these services were founded and were based on functionalities not directly related to social network just like Graphy (based on Phonebook/Contacts application), then adapted to turn into full-feature social network sites.

Differences

Reversed Social Network The biggest difference between Graphy and a normal social network site like Facebook is the nature of the nodes and their connections in the networks. In a normal social network, a node is typically an user profile page which contains the information provided by that user. The connections between the nodes are established based on real life relationships which are also specified by the users. Therefore, the content of normal social networks comes from the "first-person perspective" or the owner of the nodes. On the contrary, in our Graphy system, the nodes are the contacts of the phone book/Contacts application. The information of the contacts as well as the relationships between them are determined by the owner of the phone book. In other words, the content of Graphy comes from the "third-person perspective" or the owner of the whole network.

Information Accuracy In online systems which allow people to freely assemble an online portrayal of self, there are several processes of impression management and self-presentation. Although most systems promote their users to create authentic representations of themselves, they usually do this to different degrees. In Friendster, an extremely popular social network site during the period between 2002 and 2007, many participants put incorrect information about themselves into their profiles. There were even profiles called "Fakester" which Boyd asserted that they never were real in her study [29]. Friendster was designed to only allow participants to view profiles of other users who were less than five degrees away. As a result,

to extend their scope, people started adding acquaintances and strangers as friends so they can view more profiles. Some participants even tremendously collected friends. Not only serving the purpose of profiles viewing, the friends list was also an identity indicator of the profile owner. Consequently, people on social network sites had a high tendency to add interesting strangers into their circle of friends. Exploiting this trend, MySpace spammers created attractive fake profiles to collect targets for spamming. The problem of inaccurate friendships were emphasized even more in another study by Boyd [27] in which she pointed out that friends on social network sites are not the same as friends in real life and online social network friends present to offer people imaginary audiences to guide behavioral norms. To sum up, in a normal social network, user profiles and the relationships between them do not have a high accuracy.

In Graphy, the contact profiles and their relationships are established by the information given by Graphy's users. Therefore, the data is much more reliable than the ones in normal social network. The only one case where Graphy's data is not accurate is when the users enter wrong information which is less likely to happen. Comparing with normal social network sites, Graphy content is not abundant, however, it is much more accurate, useful to the users, and more compact with less irrelevant data.

Relationship After joining a social network, people are regularly asked to find other users who they have a relationship with. However, these relationships often do not provide much information about the real-life relationship between them. The labels for these relationships vary from site to site, the common terms are "Friends", "Contacts", and "Followers". Almost all social network sites use bi-directional relationships. There are a few sites allowing one-directional connections which are often labeled as "Followers" or "Fans", but some of them just use the term "Friends" like the majority. Notably, the term "Friends" is sometimes misleading since the relationships do not necessarily imply normal real-life friendship and there are many reasons behind people's social network connections. For example, LinkedIn only uses plain connections, Facebook uses mostly "Friends" connections and a few special connections such as "Father", "Mother", "Brother", etc. Even though Facebook users can categorize their friends in different groups, it is still nearly impossible to describe a relationship like "A is a student of B", "B is the professor of A", etc. In a public environment like a social network, revealing these kinds of relationships may not be ideal since people more or less want to protect their privacy. In comparison, these types of relationships could be used frequently in a reversed social network where people can freely create these relationships between their contacts without any concerns of privacy.

Privacy The arrival of social network sites have caused an increasing concern for internet privacy. Since social network sites promote information sharing and collaboration many people are giving their personal information out on the internet. These social network sites usually keep track of all user interactions. This behavior leads to a number of issues such as "cyberstaking", social profiling, and government surveillance. In one of the first scholarly research of privacy and social network [39], the researchers studied 4000 Carnegie Mellon University Facebook profiles. They revealed potential privacy threats contained in the personal information published by the students on Facebook, for example attackers could build up users' social security

numbers from public information on their profile page. On the contrary, there is no privacy concerns in a reversed social network. In contrast with the public nature of a social network, the nature of a reversed social network is private. The reversed social network is made to provide information to the network's owner so there is little sharing in it. In the future version of Graphy, we plan to implement a contact sharing feature which allow a Graphy user to share his/her own contacts with another user. This type of sharing is controlled and limited hence we believe no privacy threat will be exposed.

Bridging Online and Offline Social Networks An important aspect of social networks is that they support pre-existing social relations. Ellison et. al. [35] argue that Facebook helps its users maintain current offline relationships rather than meeting new friends. This is one of the main features which make social network sites stand out from earlier forms of public online community like forums and newsgroups. Many academic studies have been conducted on how online relations interact with offline ones. For example, Lampe et. al. [45] discovered that Facebook users spend much more time searching for someone they have an offline connection with than browsing for total strangers. Similarly, Boyd [28] suggested that MySpace and Facebook allowed U.S. youngsters to socialize with their friends even when they are unable to meet each other.

Being a reversed social network, Graphy also assists pre-existing offline connections. A relationship between two of Graphy's contacts represent their real-life connection. Moreover, a contact in Graphy should be someone the Graphy user needs to communicate with. Looking at this angle, Graphy connects the online and offline worlds even stronger than a normal social network does. The relationships in a normal social network are often weak ties [29] since a user's friend list often consists of many friends of friends, and people with some weak offline connections like being in the same organization. On the other hand, Graphy users generally just add a contact if they want to keep in touch with that person, this behavior indicates a stronger relationship.

2.3 Cloud-based Contacts Application

2.3.1 Overview of Cloud Computing

Cloud computing has been an evolving trend in the computing world recently. According to the U.S. National Institute of Standards and Technology [47], cloud computing is a model which facilitates convenient, ubiquitous, and on-demand network access to computing resources. The model consists of five fundamental characteristics, three service models, and four deployment models.

Fundamental Characteristics

• On-demand self-service: Users can independently control computing power as they need without directly contacting the service providers.

- Broad network access: The services are accessible over the network through miscellaneous platforms like personal computers, laptops, phones, and tablets.
- Resource pooling: The service providers' resources are pooled. According to user usage, physical and virtual resources are dynamically allocated.
- Rapid elasticity: The service providers can plan and supply computing capabilities in an elastic way to scale back and forth regarding consumer demands. From the user point of view, the capabilities seem to be unlimited and are ready at any time.
- Measured service: The resources can be controlled, monitored, and optimized automatically by the cloud system.

Service Models

- Software as a Service (SaaS): The users consume the service by using the providers' applications. The applications can be provided through different interfaces like personal computer programs, mobile apps, or web browsers. All the underlying infrastructures like hardware, network, operating system and configuration are totally hidden from the end users.
- Platform as a Service (PaaS): The users consume the service by implementing applications onto the cloud infrastructure using libraries and tools supplied by the service providers. Underlying infrastructures like hardware, network, and operating system are hidden from the users but they can control the configuration settings of the application environment.
- Infrastructure as a Service (IaaS): The users consume the service by using the fundamental computing resource like processing power, storage to deploy and run any software. Underlying infrastructures like hardware and network are hidden from the users but they can manage processing power, storage, operating systems and applications.

Deployment Models

- *Private Cloud*: The cloud infrastructure is provided to be used by a single organization. It could be owned and operated by that organization or a third party.
- Community Cloud: The cloud infrastructure is provided to be used by a specific community which have some common interests. It could be owned and operated by the community or a third party.
- Public Cloud: The cloud infrastructure is provided to be used by the public. It could be owned and operated by a company or an organization.
- Hybrid Cloud: The cloud infrastructure is a combination of two or more of the above cloud models.

2.3.2 Utilizing Cloud Computing in Contacts Applications

Traditionally, database of a Contacts application lies in separated phones. It makes the process of transferring contacts from phones to phones really difficult and prone to inconsistent data. Nowadays, with the support of cloud computing, there are many cloud-based database services for contacts like Outlook Contacts, Gmail Contacts. These services give users a lot of benefits as below:

- The ease to access contacts from anywhere
- Automatic synchronization contacts from phones to phones
- Backing up contacts
- Integrating phone book contacts with other services

Learning from that, we want our Graphy system to provide the same features. Unfortunately, all of the above services are closed source. Therefore, we have to develop our own communication and synchronization solution which will be discussed carefully in the Implementation section 3. Using cloud computing models and the trending RESTful communication technology, our solution makes it easy for users to work offline through a local database while maintaining a central cloud database to backup and synchronize data to other devices when needed. Our cloud service model and deployment model will be software-as-a-service and community cloud. At the experiment stage, our application is used only by some targeted users but in the future, it is our hope that we can expand it into a public cloud service.

CHAPTER 3

DESIGN AND IMPLEMENTATION

Our proposed solution of Graphy was implemented into a working prototype running on iOS 8 devices (iPhone 4S, iPhone 5S, iPod Touch...) which are backed up by a Linux server. Some of the features had to be left out due to the time constraint in the project schedule. In this section, some important features of Graphy as well as the implementation details of those features are described.

3.1 System Architecture

As shown in Figure 3.1, the system contains 2 components: the mobile client and the backend server. The mobile client is an application which interacts directly with a user to capture his/her information. The backend server provides synchronization between multiple clients as well as interacts with other cloud services like Gmail, Facebook, LinkedIn...

3.2 Mobile Client

The mobile client has all normal features from a modern Contact application such as adding/removing contacts, searching for contacts, marking contacts as favorite. Additionally, users can search for contacts based on the tags on the contacts.

The feature that distinguishes Graphy from other Contacts applications lies on the contact profiles. As we can see from Figure 3.3, a Graphy's contact profile consists of usual information plus the tags and the relationships. In this example, "Chairman of Microsoft" is a custom tag added by the user. The custom tags are implemented by 255-character text fields that cover most common use cases, and users can create as many tags as they want. In Graphy's contact profile, a relationship is demonstrated by 3 fields: the name of the relationship, the related person, and an optional detail about the relationship. In Figure 3.3, Bill Henry Gates is the advisor of Satya Nandela. This relationship is shown by the "=>" symbol. Conversely, Jennifer Gates is the daughter of Bill Henry Gates so the symbol is reversed to "<="." These symbols are not the most attractive way to represent the relationships and we will design a better user interface in later prototypes. It is worth mentioning that the relationships are bi-directional. When the users tap on the relationships field, Graphy will bring them to the other contact. For example, tapping on Satya Nandela will display the full

Figure 3.1: System Architecture

contact profile of Satya in which there is a relationship "Advisor" from Bill Henry Gates. Besides, all fields of a relationship are customizable.

A mobile client is fully functional in the offline mode thanks to the implementation of a local database which will be discussed later. When the client connects to the backend server it can synchronize its local database with the server's one. This design provides users with the ability to use multiple devices concurrently.

3.3 Backend Server

The backend server is built using Python and Django framework. It synchronizes the mobile clients via exposing a RESTful API. The mobile clients use appropriate HTTP requests to communicate with the server as the example in Table 3.1.

In addition to providing an API, the backend server can also interact with other services like Gmail, LinkedIn, Facebook... Therefore, Graphy can import and export its contacts to third party services as well as captures social information from social networks.

Figure 3.2: Main Screen

3.4 Database

The databases play an important role in the system of Graphy. Since Graphy operates in both online and offline modes, the local database in a mobile client must contain all user's data. Furthermore, Graphy supports multiple devices concurrently so the databases on clients should synchronize flawlessly and efficiently.

3.4.1 Database Schema Design to Support Tagging

The problem of tagging items has been around in industrial products for a while. It was popularized by websites associated with Web 2.0 and is an important feature of many Web 2.0 services. In 2003, Delicious - a social bookmarking website provided a service for its users to add tags to their bookmarks as a way to help find them later [3]. Flickr [5] also let users tag their photos with custom information, thus constructing flexible and easy metadata that enriched photos' information and made them highly searchable at the same time. Influenced by the success of Flickr and Delicious' popularized concept, many websites like Youtube [22], Gmail [7], StackOverFlow [14] also implemented tagging. Furthermore, the widespread microblogging service Twitter [18] introduced the hashtags which let its users tag their own "tweet" easily by prefixing the

Figure 3.3: Contact Profile

tagged words with a hash symbol. The idea became widely popular and as a result Twitter became a powerful search engine for searching trends or news all over the world. Not only online web services used tags, the operating system OS X version 10.9 also provided colorful tagging labels [10] that helps users to tag their own files.

In order to provide a powerful tagging system, we need an appropriate database schema. From the database point of view, the tagging problem can be defined as follow: we want to have a database schema where we can tag an item with as many tags as we want. Later on, we want to run queries to constrain the items to a union or intersection of tags. We also want to exclude/minus some tags from the search result [15]. There are three popular different solutions with which we will examine as follows:

MySQLicious Solution

MySQLicious is a library which provides automated mirroring/backups of Delicious bookmarks into a MySQL database [9]. The schema of MySQLicious has only one table as shown in Table 3.2

In this schema, the table is denormalized. The retrieving queries that can be apply on this schema are as follows:

Table 3.1: RESTful API

Verb	Request	Description
GET	/contacts/	Retrieve all contacts
POST	/contacts/	Create a new contact
GET	/contacts/{id}	Retrieve a contact with
		a specific Id
PUT	/contacts/{id}	Update a contact
DELETE	/contacts/{id}	Delete a contact

Table 3.2: MySQLicious Schema

id	url	tags
1	http://www.ics.uci.edu/	api
	~fielding/pubs	rest
		research
2	http://stackoverflow.com/	coding
	questions/983030	.net
3	http://www.ford.com/cars/	cars
	mustang/	wishlist

Intersection

 $Query\ for\ ``webservices+rest+coding":$

SELECT *

FROM 'MyTable'

WHERE tags LIKE "%webservice%"

AND tags LIKE "%rest%"

AND tags LIKE "%coding%"

Union

 $Query\ for\ ``webservices/rest/coding":$

SELECT *

FROM 'MyTable'

WHERE tags LIKE "%webservice%"

OR tags LIKE "%rest%"

OR tags LIKE "%coding%"

Minus

 $Query\ for\ "webservices+rest-coding":$

SELECT *

FROM 'MyTable'

WHERE tags LIKE "%webservice%"

AND tags LIKE "%rest%"

AND tags NOT LIKE "%coding%"

The advantages of this solution are:

- Just one table.
- The retrieving queries are very straight forward.
- Can achieve results via full-text search which can be a little faster.

The disadvantages are:

- We have a limit on the number of tags per item according to the size of the tags field. Normally we use a 256-byte field in our database (VARCHAR). Otherwise, if we use a text field or the like, the queries will become slow.
- Doing processing on tags is hard and expensive. For example, it is difficult to provide suggestions on a new tag. Therefore, synonymous tag names like "coding" and "programing" have a high chance of happening.

Scuttle Solution

Similar to Delicious, Scuttle [11] is a web-based social bookmarking system. It allows multiple users to store, share and tag their favorite links online. Scuttle organizes its data in two tables as shown in Figure 3.4. The table scCategories is the tag-table and has got a foreign key to the bookmark-table.

The retrieving queries we can apply on this schema are as follows:

Intersection

```
Query\ for\ "webservices+rest+coding":
```

SELECT b.*

FROM 'scBookmark' b, 'scCategories' c

WHERE b.bId = c.bId

AND (c.category IN ('webservices', 'rest', 'coding'))

GROUP BY b.bId

HAVING COUNT(b.bId)=3

Figure 3.4: Scuttle Schema

Firstly, all combinations of bookmarks and tags are searched, where the tag is "webservices", "rest" or "coding" (c.category IN ('webservices', 'rest', 'coding')), then just the bookmarks that have all three tags are selected (HAVING COUNT(b.bId)=3).

Union

```
Query for "webservices/rest/coding":
```

SELECT b.*

FROM 'scBookmark' b, 'scCategories' c

WHERE b.bId = c.bId

AND (c.category IN ('webservices', 'rest', 'coding'))

GROUP BY b.bId

Minus

 $Query\ for\ "webservices+rest-coding":$

SELECT b.*

FROM 'scBookmark' b, 'scCategories' c

WHERE b.bId = c.bId

AND (c.category IN ('webservices', 'rest'))

AND b.bId NOT

IN (SELECT b.bId FROM scBookmarks b, scCategories c WHERE b.bId = c.bId AND c.category = 'coding')

GROUP BY b.bId

HAVING COUNT(b.bId) = 2

The advantages of this solution are:

- The schema is more normalized than the MySQLicious solution.
- Listing and doing processing on all tags in the system is rather easy.

The disadvantages are:

- The retrieving queries have JOIN queries which might be more expensive.
- There are many duplicated tags in the system since one tag record in the tag-table only associates with one item in the bookmark-table.

Toxi Solution

Toxi [17] an open-source software contributor came up with a three-table schema as shown in Figure 3.5. The bookmarks and the tags are n-to-m related by making use of a tagmap table. As a result, we can use one tag for many bookmarks and vice versa. This structure is also used by the popular blogging platform WordPress [21].

Figure 3.5: Toxi Schema

The retrieving queries we can apply on this schema are as follows:

Intersection

```
Query\ for\ "webservices+rest+coding":
```

```
SELECT b.*
```

FROM tagmap bt, bookmark b, tag t

WHERE bt.tag id = t.id

AND (t.name IN ('webservices', 'rest', 'coding'))

AND b.id = bt.bookmark id

GROUP BY b.id HAVING COUNT(b.id)=3 Union Query for "webservices/rest/coding": SELECT b.* FROM tagmap bt, bookmark b, tag t WHERE bt.tag id = t.idAND (t.name IN ('webservices', 'rest', 'coding')) AND b.id = bt.bookmark idGROUP BY b.id Minus $Query\ for\ "webservices+rest-coding":$ SELECT b.* FROM bookmark b, tagmap bt, tag t $WHERE \; b.id = bt.bookmark \; \; id \;$ AND (t.name IN ('webservices', 'rest')) AND b.id NOT IN (SELECT b.id FROM bookmark b, tagmap bt, tag t WHERE b.id = bt.bookmark id AND bt.tag id = t.id AND t.name = 'coding' GROUP BY b.id HAVING COUNT(b.id) = 2

The advantages of this solution are:

- The schema is in the Third Normal Form. It is the most normalized solution of all three.
- We can add extra information to each tag such as description, tag hierarchy.
- Doing processing on tags is easy.
- Flexible, scaling well.

The disadvantages are:

- The retrieving queries are quite expensive and can become very complicated. However, we can break down a complicated query and utilize the cache.
- Altering or deleting bookmarks can lead to orphan tag unless we use cascading.

Schema Performance Analysis

Test Setups Eachhome [16] did performance tests on all the solutions mentioned above: MySQLicious, MySQLicious with full-text search, Scuttle and Toxi. The test setups are as follows:

For each schema, there are 4 databases of 1000, 10000, 100000 and 1 million bookmarks. The tags associated with the bookmarks were random English words. Each bookmark got 1 to 10 tags attached to it. Every schema had exactly the same data. Then each schema was queried with an alternately 1-3 tag query. For example, the first query was "webservice", the second was "webservice+rest", the third was "webservice+rest+coding", the fourth again was just one tag like the first one and so forth. Each query was done with LIMIT 50. All the queries worked and the outcomes were the same on all schemas.

The databased was MySQL 4.0.21 with the configuration described in Table 3.3.

Table 3.3: MySQL Configuration

$key_buffer = 300M$		
$query_cache_size = 30M$		
$query_cache_limit = 30M$		
$table_cache = 64$		
$ft_{min}_{vord}len = 2$		
ft_stopword_file = ''		

Detail of the computation system is described in Table 3.4.

Table 3.4: System Configuration

CPU	3GHz Dual Xeon	
Cache	1MB	
Harddisk	SCSI Ultra 320 Atlas 10K, no RAID	
RAM	3GB	

Test Results The first test was done with a tag set of 250 tags. As we can see from Figure 3.6, when the tag number of items was smaller than 10 thousands, all schemas performed very well. The differences in performance only appeared when the dataset was 1 million or more. When the number of bookmarks was 1 million, MySQLicious was very slow because of the filter instruction WHERE tag LIKE "%tagname%". That was, MySQLicious had to go through the whole dataset to test each item against the queries. Moreover, applying full-text search did not make this solution any faster. On the contrary, Toxi solution was really fast. It was about twice as fast as the Scuttle solution and four times faster than MySQLicious.

The second test was done with a 999 tag set. Looking at what happened in Figure 3.7, MySQLicious with full-text search was the performance leader. It indicated that if we have a system with diverse tag

Figure 3.6: Intersection Queries with 250 Tag Set [16]

distribution, MySQLicious with full-text search will be the best solution. According to Eachhome research [16], if a system has an average tag distribution of 1% (a tag shows up in 1/100 of all items on an average), Toxi is the best solution. On the other hand, if the system is more uniformly ditributed, MySQLicious performs better.

Regarding Union queries, MySQLicious was the fastest as we can see in Figure 3.8. Taking advantage of the *LIKE* queries, MySQLicious sought through all the items then harvested the items with one of the given tags. The magic here lay in the *LIMIT* instruction. MySQLicious traversed the items, checked the constraints then stopped after finding enough items as specified in the *LIMIT* instruction. Whereas in other solutions, the database had to join the tags with the items first then searched through the join result, thus increasing a significant amount of time.

Compared with intersection and union queries, insertion queries are remarkably faster. In Figure 3.9, the scale of the vertical-axis changed to 0 - 2 millisecond. MySQLicious handled insertion queries very well, its variation of full-text had to create the full-text index and therefore was a little slower. The Scuttle and Toxi solutions are slower because of the creation of the second and the third tables in their schema. However, insertion queries in all schemas were still about 100 times faster than intersection and union ones. Therefore, we should base our schema decisions on intersection and union queries.

Improving Performance There are four popular ways to improve the performance. First, we can use *Caching*, we can cache the results of the recent queries for some hours or cache the items per tag. Second, we

Figure 3.7: Intersection Queries with 999 Tag Set [16]

can use both MySQLicious full-text and Toxi solutions at the same time then use the appropriate schema based on the characteristic of the queries. For example, simple union queries will be performed on MySQLicious while intersection queries with common tags on Toxi. Third, we can slice the data to user/tag/item and prebuild some results. Forth, we can use a NoSQL database. However, using a NoSQL database will lead to other requirements which need to be taken care of.

Conclusion

The nature of a Contact application requires consistency on a small dataset (less than 1 million records). Therefore, we choose the Toxi [17] solution which has been discussed above. The local database on a mobile client uses SQLite. It processes all user's queries locally then automatically synchronizes with server database when there is an Internet connection. The server uses a MySQL database with a slight change in the schema to store data from all users. Parts of the database schema are shown in Figure 3.10 and Figure 3.11.

3.4.2 Synchronization Technique

In order to provide an efficient synchronization solution, each Graphy's mobile client maintains a Sync Queue in its local database. When the user creates, updates or deletes a record, the operation will be applied immediately to the local database and that operation will be appended to the Sync Queue. When the mobile client connects to the Internet, Graphy will periodically communicate with the backend server to synchronize

Figure 3.8: Union Queries with 250 Tag Set [16]

its local database. The synchronization process is designed to work as follows:

- 1. Client sends a GET request to retrieve server's current time.
- 2. Client consecutively performs all operations in its Sync Queue:
 - (a) If the operation is a creation:
 - i. Client sends a POST request to server with detail of the new *local record* in the request's body.
 - ii. Server creates a new *server record* according to the request's body plus a valid id and a date created field equal to current time at server.
 - iii. Server sends back to client an HTTP 201 CREATED response which contains the *server* record.
 - iv. Client updates the *local record's* id and date_created according to the *server record's* id and date_created.
 - (b) If the operation is an update:
 - i. Client sends a PUT request to server with details of the updated *local record* in the request's body.
 - ii. Server changes the *server record* according to the request's body then updates the date_updated field with the current time at server.

Figure 3.9: Insertion Queries with 250 Tag Set [16]

- iii. Server sends back to client an HTTP 200 OK response which contains the server record.
- iv. Client updates the *local record's* date_updated according to the *server record's* date_updated field.
- (c) If the operation is a deletion:
 - i. Client sends a DELETE request to server with *local record's* date_updated field in the request's argument.
 - ii. If the *local record's* date_updated field equals the *server record's* one then server sets the lazy delete flag is_deleted on the *server record* to TRUE. If the date_updated fields are not equal then the server does nothing.
 - iii. Server sends back to client an HTTP 202 ACCEPTED response.
- 3. Client sends GET requests to all endpoints of the API. The GET requests contain a IF-MODIFIED-SINCE header and a IF-UNMODIFIED-SINCE header. The IF-MODIFIED-SINCE header is set equal to the previous sync time of the client, the IF-UNMODIFIED-SINCE header is set equal to the current sync time which we receive in step 1. After that, client updates its database based on the responses received from all requests.
- 4. Client sets its last sync time to the current sync time received in step 1.

Figure 3.10: Tag Schema

It is worth mentioning that Graphy's synchronization technique also contains a method to resolve conflicts when users use multiple devices simultaneously.

Figure 3.11: Relationship Schema

CHAPTER 4

EXPERIMENT AND EVALUATION

4.1 Tags and Relationships

To evaluate the effectiveness of Graphy's tags and relationships system, we plan to provide the system prototype to a controlled group of people to use. During the period, we want to measure Graphy based on these core metrics:

- Auto-generated Tags Effectiveness $ATE = \frac{ATL}{TV}$ where ATL = the number of times a user looks for an auto-generated tag in a contact, TV = total visits of that contact.
- TT: The total number of custom tags created by each person in the group.
- Custom Tags Weight $CTW = \frac{CTF}{TF}$ where CTF = the number of custom tag fields in a contact profile, TF = the total number of fields in that contact profile.
- Custom Tags Effectiveness $CTE = \frac{CTL}{TV}$ where CTL = the number of times a user looks for a custom tag in a contact, TV = total visits of that contact.
- TR: The total number of relationships between contacts created by each person in the group.
- Relationships Weight $RW = \frac{RF}{TF}$ where RF = the number of relationship fields in a contact profile, TF = the total number of fields in that contact profile.
- Contact Relationship Effectiveness $CRE = \frac{CRL}{TV}$ where CRE = the number of times a user looks for a relationship of a contact, TV = total visits of that contact.

4.2 Database Synchronization Performance

To evaluate the performance of our synchronization technique, we plan to use Apache Bench and Xamarin to do several load tests on the server such as excuting 1000 requests, processing up to 10 requests concurrently. The results will be measured in milliseconds and compared with other services like Gmail Contacts.

We will also benchmark the speed and capacity of the mobile SQLite database. In our Graphy system, the SQLite database runs on the mobile devices and communicates with Xamarin - a cross-platforms development environment. Therefore, the performance of the database can be lower than using a native development environment.

CHAPTER 5

SUMMARY AND FUTURE WORK

This study proposes a new approach to the Contacts application. By introducing new types of information in combination with capturing social data, the new Contacts application provides users a better way of managing their contacts. Furthermore, the study presents a novel internal network of relationships among contacts which helps users explore the contacts space as a whole - a task which is still impossible for the Contacts application nowadays.

REFERENCES

- [1] Android, http://www.android.com/.
- [2] Cisco 2014 annual report.
- [3] Delicious, http://delicious.com/.
- [4] Facebook, http://www.facebook.com/.
- [5] Flickr, http://www.flickr.com/.
- [6] Fring, http://www.fring.com/.
- [7] Gmail, http://gmail.com/.
- [8] Linkedin, http://www.linkedin.com/.
- [9] Mysqlicious, https://code.google.com/p/mysqlicious/.
- [10] Os x 10.9 tags, http://support.apple.com/kb/ht5839.
- [11] Scuttle, http://sourceforge.net/projects/scuttle/.
- [12] Skype, http://www.skype.com/.
- [13] Snapchat, http://www.snapchat.com/.
- [14] Stackoverflow, http://stackoverflow.com/.
- [15] Tags: Database schemas, http://tagging.pui.ch/post/37027745720/tags-database-schemas.
- [16] Tagsystems: Performance tests, http://tagging.pui.ch/post/37027746608/tagsystems-performance-testsg/.
- [17] Toxi, http://toxi.co.uk/.
- [18] Twitter, http://twitter.com/.
- [19] Viber, http://www.viber.com/.
- [20] Whatsapp, http://www.whatsapp.com/.
- [21] Wordpress, http://wordpress.org/.
- [22] Youtube, http://www.youtube.com/.
- [23] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and Pete Steggles. Towards a better understanding of context and context-awareness. In *Handheld and ubiquitous computing*, pages 304–307. Springer, 1999.
- [24] Heikki Ailisto, Petteri Alahuhta, Ville Haataja, Vesa Kyllönen, and Mikko Lindholm. Structuring context aware applications: Five-layer model and example case. In *Proceedings of the Workshop on Concepts and Models for Ubiquitous Computing*, pages 1–5, 2002.

- [25] Morgan Ames and Mor Naaman. Why we tag: motivations for annotation in mobile and online media. In *Proceedings of the SIGCHI conference on Human factors in computing systems*, pages 971–980. ACM, 2007.
- [26] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware systems. *International Journal of Ad Hoc and Ubiquitous Computing*, 2(4):263–277, 2007.
- [27] Danah Boyd. Friends, friendsters, and myspace top 8: Writing community into being on social network sites. 2006.
- [28] Danah Boyd. Why youth (heart) social network sites: The role of networked publics in teenage social life. *MacArthur foundation series on digital learning-Youth, identity, and digital media volume*, pages 119–142, 2007.
- [29] Danah M Boyd and Nicole B Ellison. Social network sites: Definition, history, and scholarship. *Engineering Management Review*, *IEEE*, 38(3):16–31, 2010.
- [30] Jay Budzik and Kristian J Hammond. User interactions with everyday applications as context for just-intime information access. In *Proceedings of the 5th international conference on intelligent user interfaces*, pages 44–51. ACM, 2000.
- [31] Ciro Cattuto, Vittorio Loreto, and Luciano Pietronero. Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences, 104(5):1461–1464, 2007.
- [32] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware pervasive computing environments. The Knowledge Engineering Review, 18(03):197–207, 2003.
- [33] Anind K Dey. Context-aware computing: The cyberdesk project. In *Proceedings of the AAAI 1998 Spring Symposium on Intelligent Environments*, pages 51–54, 1998.
- [34] Margery A Eldridge, Philip J Barnard, and Debra A Bekerian. Autobiographical memory and daily schemas at work. *Memory*, 2(1):51–74, 1994.
- [35] Nicole B Ellison, Charles Steinfield, and Cliff Lampe. The benefits of facebook åÄIJfriends:åÄİ social capital and college studentsåÄŹ use of online social network sites. *Journal of Computer-Mediated Communication*, 12(4):1143–1168, 2007.
- [36] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. In *Proceedings of the 10th international conference on World Wide Web*, pages 406–414. ACM, 2001.
- [37] Gartner. Predicts 2014: Apps, personal cloud and data analytics will drive new consumer interactions. Technical report, Gartner, 2014.
- [38] Scott A Golder and Bernardo A Huberman. Usage patterns of collaborative tagging systems. *Journal of information science*, 32(2):198–208, 2006.
- [39] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online social networks. In *Proceedings of the 2005 ACM workshop on Privacy in the electronic society*, pages 71–80. ACM, 2005.
- [40] Richard Moe Gustavsen. Condor–an application framework for mobility-based context-aware applications. In *Proceedings of the workshop on concepts and models for ubiquitous computing*, volume 39, 2002.
- [41] Lee Humphreys. Mobile social networks and social practice: A case study of dodgeball. *Journal of Computer-Mediated Communication*, 13(1):341–360, 2007.
- [42] Jadwiga Indulska and Peter Sutton. Location management in pervasive systems. In *Proceedings of the Australasian information security workshop conference on ACSW frontiers 2003-Volume 21*, pages 143–151. Australian Computer Society, Inc., 2003.

- [43] Younghee Jung, Akseli Anttila, and Jan Blom. Designing for the evolution of mobile contacts application. Proceedings of the 10th international conference on Human computer interaction with mobile devices and services - MobileHCI '08, page 449, 2008.
- [44] Mik Lamming and Mike Flynn. Forget-me-not: Intimate computing in support of human memory. In *Proc. FRIEND21*, 1994 Int. Symp. on Next Generation Human Interface, page 4. Citeseer, 1994.
- [45] Cliff Lampe, Nicole Ellison, and Charles Steinfield. A face (book) in the crowd: Social searching vs. social browsing. In *Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work*, pages 167–170. ACM, 2006.
- [46] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. Ht06, tagging paper, taxonomy, flickr, academic article, to read. In *Proceedings of the seventeenth conference on Hypertext and hypermedia*, pages 31–40. ACM, 2006.
- [47] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.
- [48] David Millen, Jonathan Feinberg, and Bernard Kerr. Social bookmarking in the enterprise. *Queue*, 3(9):28–35, 2005.
- [49] Trung Van Nguyen and Alice Hae Yun Oh. Users' needs for social tagging and sharing on mobile contacts. In *Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services*, MobileHCI '10, pages 387–388, New York, NY, USA, 2010. ACM.
- [50] Paul Prekop and Mark Burnett. Activities, context and ubiquitous computing. Computer Communications, 26(11):1168–1176, 2003.
- [51] Nick S Ryan, Jason Pascoe, and David R Morse. Enhanced reality fieldwork: the context-aware archaeological assistant. In *Computer applications in archaeology*. Tempus Reparatum, 1998.
- [52] Bill N Schilit and Marvin M Theimer. Disseminating active map information to mobile hosts. *Network*, *IEEE*, 8(5):22–32, 1994.
- [53] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey. In Workshop Proceedings, 2004.
- [54] Jenny Sundén. Material virtualities: Approaching online textual embodiment. 2003.
- [55] Mark Weiser. The computer for the 21st century. Scientific american, 265(3):94–104, 1991.
- [56] Steve Whittaker, Quentin Jones, and Loren Terveen. Contact management: identifying contacts to support long-term communication. In *Proceedings of the 2002 ACM conference on Computer supported cooperative work*, pages 216–225. ACM, 2002.