Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>М3202</u>	_К работе допущен
Студент Фадеев А. В.	_Работа выполнена
Преподаватель Тимофеева Э. О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

ИЗУЧЕНИЕ СВОБОДНЫХ ЗАТУХАЮЩИХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

- 1. Цель работы.
 - Изучение основных характеристик свободных затухающих электромагнитных колебаний.
- 2. Задачи, решаемые при выполнении работы.
 - Вычисление значения логарифмического декремента λ
 - Вычисление значения полного сопротивления R и индуктивности L
 - Вычисление добротности контура Q
 - Построение графиков зависимостей
- 3. Объект исследования.
 - Свободные затухающие электромагнитные колебания
- 4. Метод экспериментального исследования.
 - Многократные измерения различных величин
- 5. Рабочие формулы и исходные данные.
 - $C_1 = 0.022 \, uF$
 - $C_2 = 0.033 \, uF$
 - $C_3 = 0.047 \, uF$
 - $C_4 = 0.47 \, uF$
 - $L = 10 \, mH$

•
$$\lambda = \frac{1}{n} \cdot \ln \ln \frac{U_i}{U_{i+n}}$$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

$$R = R_m + R_0$$

$$\bullet \quad R = R_m + R_0$$

$$\bullet \quad R_0 = - \left. R_m \right|_{\lambda = 0}$$

•
$$\lambda \approx \pi R \cdot \sqrt{\frac{C}{L}}$$

•
$$R_{cr} = 2 \cdot \sqrt{\frac{L}{c}}$$

$$\bullet \quad T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

$$\bullet \quad Q = \frac{1}{R} \bullet \sqrt{\frac{L}{C}}$$

$$\bullet \quad \delta T = \frac{T_{exp} - T_{th}}{T_{th}}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1.	Осциллограф			

7. Схема установки

8. Результаты измерений и их обработки (таблицы, примеры расчетов)

R_m , Ohm	T, del	T, ms	$2U_i$, del	$2U_{i+n}$, del	n	λ	Q	R, Ohm	L, mH
0	27,6	0,092	37	5	6	0,334	12,906	67	8,759
10	27,6	0,092	37	4	6	0,371	11,999	77	9,365
20	27,6	0,092	36,3	3	6	0,416	11,132	87	9,518
30	23	0,092	35,9	3,5	5	0,466	10,370	97	9,424
40	23	0,092	35,8	2,8	5	0,510	9,830	107	9,570
50	18,4	0,092	35,3	4	4	0,544	9,472	117	10,029
60	18,4	0,092	35	3	4	0,614	8,884	127	9,284
70	13,8	0,092	34,8	4,7	3	0,667	8,528	137	9,151
80	13,8	0,092	34,2	4	3	0,715	8,258	147	9,170
90	9,2	0,092	33,9	7,4	2	0,761	8,038	157	9,243
100	9,2	0,092	33,5	6,7	2	0,805	7,854	167	9,351
200	4,6	0,092	30,8	8,6	1	1,276	6,814	267	9,511
300	4,6	0,092	28,4	4,8	1	1,778	6,468	367	9,253
400	4,6	0,092	26,2	2,4	1	2,390	6,336	467	8,288

- Конвертация T, del в T, ms: $T_{ms} = \frac{T_d}{s_1 \cdot n} \cdot s_2 \cdot 10^3$
 - $-s_1$: число маленьких делений в одном большом, $s_1 = 5$
 - n: номер измеряемого периода
 - $-s_2$: число cекунд в одном большом делении, $s_2 = 100 \cdot 10^{-6} \, s$

- 10³: для приведения к *ms*

С	Texp, del	Texp, ms	Tth, ms	бТ, %	Thompson, ms	omega0, hz	bett a
C 1	4,8	0,096	0,090	6,52 3	0,0901	67419,9 86	
C 2	5,8	0,116	0,110	5,09 6	0,1104	55048,1 88	335
C 3	6,8	0,136	0,132	3,24 6	0,1317	46126,5 60	0
C 4	22	0,44	0,417	5,63 0	0,4165	14586,4 99	

• Результаты различных величин, полученных в результате обработки данных:

$\lambda(Rm)$				
R0, Om	67			

Calculations				
Lavg, mH	9,351			
Rcr, Ohm graph	1267			
Rcr, Ohm	1348,400			
T ms, R = R0 + Rm(0 Om)	0,093			
T ms, $R = R0 + Rm(200 \text{ Om})$	0,093			
T ms, $R = R0 + Rm(400 Om)$	0,093			
Q, R = R0 + Rm(0 Om)	9,418			
Q, R = R0 + Rm(10 Om)	8,473			

9. Расчет погрешностей

Среднее квадратичное отклонение $\sigma = \operatorname{sqrt}((\Sigma(L-L))) = 0.391$ Коэффициент Стьюдента $t_{\alpha} = \Delta L * \operatorname{sqrt}(N) / \sigma$,

где ΔL – средняя разность значений L и равна 0,2586.

Откуда t_{α} = 0,2586 * 3.60 / 0.391 = 2,47, α = 0.99

1)
$$T_{exp} = 0.096$$
, $T_{th} = 0.090$, $\delta T = 6.53\%$

2)
$$T_{exp} = 0.116$$
, $T_{th} = 0.110$, $\delta T = 5,096\%$

3)
$$T_{exp} = 0.136$$
, $T_{th} = 0.132$, $\delta T = 3,246\%$

4)
$$T_{\text{exp}} = 0.44$$
, $T_{\text{th}} = 0.417$, $\delta T = 5.63\%$

Зависимость логарифмического декремента от сопротивления

Зависимость добротности от сопротивления

Зависимости теоретического и экспериментального периодов от ёмкости конденсатора

11. Выводы и анализ результатов работы.

Мы изучили основные характеристики свободных затухающих электромагнитных колебаний, такие как логарифмический декремент λ , добротность контура Q, критическое сопротивление контура $R_{\kappa p}$, коэффициент затухания β , а также характер протекания колебаний в контуре. Построили и проанализировали графики их взаимных зависимостей, а также удостоверились в корректности формулы Томпсона. Ввиду двукратных измерений получили более точные значения, максимально приближенные к теоретическим.