UCSC Silicon Valley Extension Advanced C Programming

Analysis and Design of Algorithms

Instructor: Radhika Grover

Overview

- Algorithm design techniques
- Empirical measurement of running time
- Asymptotic notation
- Common functions
- Determining recurrence relations for algorithms
- Methods to solve recurrences

Algorithm design techniques

- Exhaustive search algorithm
- Backtracking algorithm
- Branch and bound algorithm
- Divide and conquer algorithm
- Transform and conquer algorithm

Algorithm design techniques

- Greedy algorithm
- Dynamic programming algorithm
- Parallel programming algorithm
- Approximation algorithm
- Genetic algorithm

Exhaustive search

- Try all possible solutions till a solution is found.
- Simple to implement.
- Cost is proportional to number of solutions.

Exhaustive search example

Magic square puzzle

Fill the 4x4 table with 16 distinct integers from 1 to 16 so the sum of numbers in each row and column and diagonal is the same.

5x5 square: $(5^2)! = 10^{25}$ combinations possible, computation time on processor?

15	10	3	6
4	5	16	9
14	11	2	7
1	8	13	12

Backtracking

- Develop partial solutions further without violating constraints.
- If partial solution is incorrect, don't consider remaining alternatives.
- Replace the partial solution with the next option. (backtrack).

Backtracking example

Sudoku

5	3			7				
6			7	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Divide and conquer

- Partition a problem to divide a problem into similar subproblems.
- Solve the subproblem to find the solution.

Divide and conquer example

Given a balance scale with no weights and *n* items where *n* is greater than 1, design an algorithm to find the lightest and heaviest items with the smallest number of weighings.

Image Source: Balanced scale,[1]

Branch and bound

- Uses a heuristic to bound the search space.
- Constructs a tree.
- Leaf nodes have complete solution.

State space tree

Dynamic programming

- Technique to solve a problem with overlapping subproblems.
- Record result of subproblems and use these results instead of solving subproblems repeatedly.
- Used in algorithms such as shortest paths.

Dynamic programming example

Some numbers are arranged in a triangle. Design an algorithm to find largest sum of these numbers on descent from top to bottom while selecting the right or left number at each level.

Transform and conquer

Transforms the problem into another problem:

- that may be easier to solve
- whose data structure may be more efficient
- with a known algorithm

Example: 2-SAT using SCC

Greedy algorithm

- Uses a heuristic to find locally optimal choice
- May not find a globally optimal solution
- Example: Knapsack problem

Maximize Value

\$15

Store in bag with a capacity of 10 lbs

10 lbs 2 lbs 3 lbs

\$6

\$20

Greedy algorithm example

There are 6 identical pots of which #1 is filled with water and the others are empty. Take two vessels and split the total water in them equally between them.

How to minimize the water in pot #1 with a sequence of such operations?

Parallel algorithm

- Algorithm is divided into subproblem that can be executed concurrently on multiple processor to find solution
- Example Forward Backward algorithm

Approximation algorithm

- Give solutions that are within a factor of optimal solution.
 - α -approximation means the solution for every instance is within factor α of optimum.
- Heuristics don't provide any guarantees.

Genetic algorithm

- Solve optimization problems
- Based on Darwin's theory of evolution.
 - Selection, recombination, mutation, acceptance or rejection
- Introduce randomness into the selection
- Inherently parallel

Analysis

Empirical

- Measures execution time for specific (typical) sample of expected inputs
- Machine dependent

Theoretic

- Machine independent
- Determines the number of operations as a function of input size

Measure execution time of program

1. Find the total time to execute program for some input size N

```
startTime = getCurrentTime();
programUnderEvaluation();
endTime = getCurrentTime();
time to execute = end Time - startTime
```

21

2. Repeat step 1 for a different input size

CPU time vs wall time

CPU time

- Time to execute program on processor
- Does not include time waiting for I/O and running other program

Wall - clock time

- Total time to complete task
- Includes disk access and memory access times
- Includes time waiting for cpu

Difficulties in measuring execution times

- Caches
- Compilers
- Pipelining
- I/O

- Interrupts
- OS scheduling
- Concurrency
- Bus contention

Measuring CPU time

- The clock() function returns cpu time.
- Find the average time by running program many times.

```
#include <time.h>
  clock_t startTime, endTime;
startTime = clock();
for(int i = 0; i < NUM_ITERS; i++)
     programUnderTest();
endTime = clock();
double totalTimeUsed = ((double)(endTime - startTime))/
(CLOCKS_PER_SEC);
double cpuTime = totalTimeUsed/NUM_ITERS;</pre>
```

Example: Kosaraju-Sharir CPU time

Input Size (V)	CPU time	
10	95.634/200	
15	104.414/200	
20	150.823/200	
30	199.511/200	
40	280.144/200	
60	404.336/200	

Adjacency list

Input Size (V)	CPU time	
10	118.218/200	
15	146.964/200	
20	217.674/200	
30	415.984/200	
40	537.106/200	
60	895.68/200	

Adjacency matrix

Kosaraju-Sharir CPU time plot

Input size: number of vertices
Time: total CPU time for 200 cases

Data analysis

- 1. Plot program execution time as a function of input
- 2. Use curve fitting to find the equation that fits the curve
- 3. Tools:
 - NUMPY (Python)
 - MATLAB
 - Excel

Asymptotic analysis

28

- Evaluate performance time/space in terms of input size
- Does not measure actual running time
- Drawbacks -
 - May give better/worse estimate of performance than observed in practice
 - No information on actual running time

Paul Bachmann

Edmund Landau

Image Source: Paul Bachmann,[1] Edmund Landau,[2]

Machine independence

- Time complexity: how many basic operations are performed by algorithm.
 - expressed as a function of input size.
- Space complexity: how much memory is needed by the algorithm

Graphs of functions

Commonly used notations

Notation	Description	Example	
O (Big - oh)	Upper bound	O(g(n))	$0 \le f(n) \le c_1 g(n)$
o (Little - oh)	Weaker upper bound	o(g(n))	$0 \le f(n) < c_1 g(n)$
Ω (Big - omega)	Lower bound	Ω(g(n))	$0 \le c_1 g(n) \le f(n)$
ω (Little - omega)	Weaker lower bound	ω(g(n))	$0 \le c_1 g(n) < f(n)$
Θ (Theta)	Tight upper and lower bound	Θ(g(n))	$0 \le c_1 g(n) \le f(n) \le c_2$ $g(n)$

O: "at most" Ω : "at least" Θ : "equal" Note: n_0 , c_1 , c_2 , are positive and $n \ge n_0$

Time complexity classes

Class	Example	
Constant	1	
Iterated log	log*n	
Log logarithmic	log log n	
Logarithmic	log n	
Poly logarithmic	(log n) ^c	
Linear	n	
Linearithmic	n log n	
Quadratic	n ²	
Cubic	n ³	
Polynomial	nc c>=1	
Sub exponential	$2^{n^{\varepsilon}} 0 < \varepsilon < 1$	
Exponential	c ⁿ c>1	
Factorial	n!	
n to the n	n ⁿ	

Growth of functions

Power law

 A straight line in a log-log plot suggests that the data fits the equation:

$$T(n) = a n^b$$

Best case, worst case, average case

- Best case: inputs are such that algorithm completes in the fastest time.
- Worst case: inputs are such that algorithm takes longest time to complete.
- Average case: uses typical set of inputs for average performance.

Example 1

Show that
$$\frac{n^2}{5} - 2n = \Theta(n^2) \quad \text{where} \quad n_0, c_1, c_2 > 0$$

Solution:

To prove
$$c_1 n^2 \le \left(\frac{n^2}{5} - 2n\right) \le c_2 n^2 \quad n \ge n_0$$

Lower Bound:
$$c_1 n^2 \leq \left(\frac{n^2}{5} - 2n\right)$$
 $c_1 \leq \left(\frac{1}{5} - \frac{2}{n}\right)$ (1)

Choose
$$n_0 = 12 => c_1 \le \left(\frac{1}{5} - \frac{1}{6}\right) \le \frac{1}{30}$$

Select $c_1 = 1/100$. Now (1) is always true for all $n >= n_0$.

Therefore,
$$\frac{n^2}{5} - 2n = \Omega(n^2)$$
(2)

Upper Bound:
$$\left(\frac{n^2}{5} - 2n\right) \le c_2 n^2$$

$$= > \left(\frac{1}{5} - \frac{2}{n}\right) \le c_2 \dots (3)$$

Use the same value of n_0 ($n_0 = 12$) to compute c_2

$$=> \left(\frac{1}{5} - \frac{1}{6}\right) \le c_2 \quad => \frac{1}{30} \le c_2.$$
 Choose c_2 = 1, (3) is always true for $n \ge n_0 => \left(\frac{n^2}{5} - 2n\right) = O(n^2)$ (4)
$$=> \left(\frac{n^2}{5} - 2n\right) = \Theta(n^2) \quad \text{(from (2) and (4))}$$

Determine if
$$\frac{n^2}{5} - 2n = \Theta(n)$$
 where $n_0, c_1, c_2 > 0$

Solution:

To prove
$$c_1 n \leq \left(\frac{n^2}{5} - 2n\right) \leq c_2 n$$
 $n \geq n_0$

Lower Bound :
$$c_1 n \leq \left(\frac{n^2}{5} - 2n\right)$$

$$c_1 \le \left(\frac{n}{5} - 2\right)$$

Choose
$$n_0 = 15 => c_1 \le 1$$
, set $c_1 = 1$

Now as n is increased $n \ge n_0$ this condition is still true $1 \le \frac{n}{5} - 2$

$$=>\frac{n^2}{5}-2n=\Omega(n)$$

Upper Bound:
$$\left(\frac{n^2}{5} - 2n\right) \le c_2 n$$

$$\left(\frac{n}{5} - 2\right) \le c_2$$

Set
$$n_0$$
 (n_0 = 15) to compute c_2 => $\left(\frac{15}{5} - 2\right) \le c_2 => 1 \le c_2$

Choose $c_2 = 1$

Increase n say n=20 $n \ge n_0$, Is condition always true? No $\frac{20}{5}-2 \le 1$ is false

We cannot find the constant c_2 for which the condition will be true for all $n \ge n_0$

Exercise

Determine if:

1.
$$10n + 15 is O(n)$$

2.
$$10n + 15 is o(n)$$

3.
$$10n + 15 is o(n^2)$$

2.
$$10n + 15 is o(n)$$

3. $10n + 15 is o(n^2)$
4. $3n^2 + \sqrt{n} = O(n^2)$

Using limits to compare functions

Ratio $\frac{f(n)}{g(n)}$ approaches ∞

when n becomes larger

=> f(n) grows faster than g(n)

Using limits to compare functions

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty => f(n) = \omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Longrightarrow f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ where } 0 < c < \infty \implies f(n) = \Theta(g(n))$$

Example with limits

Determine if
$$2^n = O(n^2)$$

Evaluate
$$\lim_{n \to \infty} \frac{2^n}{n^2}$$

$$= \lim_{n \to \infty} \frac{2^n \ln 2}{2n} \text{ (L'Hospital's Rule)}$$

$$= \lim_{n \to \infty} \frac{\ln 2 (2^n \ln 2)}{2} \text{ (L'Hospital's Rule)}$$

$$= \infty$$

$$2^n = \omega(n^2)$$

Theorems

For two functions f(n) and g(n),

we have
$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

- K is O(1), where K is an arbitrary constant
- A polynomial is O(term with the highest power of n)

$$f(n) = 5n^3 + 2n + 10$$
 Is $O(n^3)$

• $k f(n) \operatorname{Is} O(f(n))$ $f(n) = 10n^3 \operatorname{Is} O(n^3)$

$$2n^{3} + n^{2} + 3n = \Theta(n^{3})$$

$$2n^{3} + n^{2} + 3n = O(n^{3}) = \Omega(n^{3})$$

$$2n^{3} + n^{2} + 3n \neq o(n^{2})$$

$$2n^{3} + n^{2} + 3n = o(n^{4})$$

$$2n^{3} + n^{2} = \omega(n)$$

Exercise

Is A O, o, Ω , ω or Θ of B?

Assume that $k \ge 1$, $\epsilon > 0$, c > 1 are constants.

Α	В	0	Ω	ω	Θ	0
n ^k	Cn					
2 ⁿ	$2^{\frac{n}{2}}$					
lg(n!)	lg(n ⁿ)					

Properties: transitivity

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$
=> $f(n) = \Theta(h(n))$

$$f(n) = O(g(n)) \text{ and } g(n) = O(h(n))$$
$$=> f(n) = O(h(n))$$

$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$
=> $f(n) = \Omega(h(n))$

Similarly, o and ω exhibit transitivity

Properties: reflexivity and symmetry

```
f(n) = \Theta(f(n))

f(n) = O(f(n))

f(n) = \Omega(f(n))

Symmetry:

f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n))
```

Reflexivity:

Properties: transpose symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$

$$f(n) = o(g(n))$$
 if and only if $g(n) = \omega(f(n))$

Mathematical expressions

- Can be used to analyze running time
 - Logarithms
 - Exponentials
 - Polynomials
 - Factorials
 - Fibonacci

Iterated logarithm

Grows very slowly

$$lg^*n = \begin{cases} 0 & if \ n \le 1\\ 1 + lg^*(lg\ n) & if \ n > 1 \end{cases}$$

$$lg^*(4) = 1 + lg^*(lg 2^2) = 1 + lg^*(2) = 2$$

Source X	lg* x
(-∞, 1]	0
(1, 2 ¹]	1
$(2, 2^2]$	2
(4, 24]	3
(16, 65536]	4
(65536, 2 ⁶⁵⁵³⁶]	5

265536 is greater than number of atoms in universe

Logarithms

$$e^{y} = x$$
:
 $ln(x) = log_{e}x = y$, where $e = 2.718$

Base -10 log :
$$log(x) = log_{10}(x) = \frac{ln \ x}{ln \ 10}$$

Base -2 log:

$$lg(x) = \frac{\ln x}{\ln 2}$$

54

Logarithms properties

$$log_c(ab) = log_c(a) + log_c(b)$$

$$log_b(a) = \frac{log_c(a)}{log_c(b)}$$

$$log_b(a^n) = n \ log_b(a)$$

$$log_c\left(\frac{a}{b}\right) = log_c(a) - log_c(b)$$

$$log_c\left(\frac{1}{b}\right) = -log_c(b)$$

 $(logarithm\ base\ \neq 1,\ in\ these\ equations)$

Harmonic numbers

 $H_n: n^{th} \ harmonic \ number$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{1}{n!} \begin{bmatrix} n+1\\2 \end{bmatrix}$$

$$H_1 = 1$$

$$H_1 = 1$$
 $H_2 = 1 + \frac{1}{2}$

$$H_3 = 1 + \frac{1}{2} + \frac{1}{3} = 1.8333...$$

$$H_n = ln(n) + \gamma + \frac{1}{2n} \quad (for \ large \ n)$$

Functional iteration

$$f^{(i)}(n) = \begin{cases} n & i = 0\\ f(f^{(i-1)}(n)) & i > 0 \end{cases}$$

Example:

$$if f(n) = 5n then f^{(i)}n = 5^{i}n$$

Fibonacci numbers

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

 $sequence\ 0, 1, 1, 2, 3, 5, 8, 13...$

For large
$$n => F_n \sim = \frac{\Phi^n}{\sqrt{5}}$$

$$\Phi = \frac{1+\sqrt{5}}{2} \approx 1.61803.. \quad (\Phi = golden\ ratio)$$

$$F_{i+2} \geq \Phi^i \quad for \ i \geq 0$$

Factorials

$$0! = 1$$

$$n! = n(n-1)! \text{ for } n > 0$$

$$for \ large \ n, \ n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$n! = o(n^n)$$

$$n! = \omega(2^n)$$

$$lg(n!) = \Theta(n \ lg(n))$$

Series sums

$$1 + 2 + 3 + \dots + (n - 1) + n = \frac{n(n + 1)}{2}$$

$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} \text{ for } |x| < 1$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} = \ln(n) + O(1)$$

$$\sum_{k=1}^{n} a_k - a_{k-1} = \ddot{(}a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_1 - a_0) = a_n - a_0$$

Recurrence

Define a sequence such that next term is a function of previous terms

Algorithm	Running Time
Binary Search (Worst case)	$T(n) = T\left(\frac{n}{2}\right) + 1$
Quick Sort (Worst case)	$T(n) = T(n-1) + \Theta(n)$
Quick Sort (Best case)	$T(n) = T\left(\frac{n}{2}\right) + \Theta(n)$
Merge Sort (All cases)	$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

Fibonacci recurrence

$$f(0) = 1$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$ for $n > 1$

Example: Recurrence relation of a simple loop

```
int n;
for(i=0; i<n; i++){
   do_something;
}

The statement "do_something" is executed c<sub>n</sub> =n times, where c<sub>n</sub>

If we change n to n+1 the statement is executed one more time :T<sub>n+1</sub> = T<sub>n</sub>+1

need initial conditions
```

Example: Recurrence relation of a simple loop

- Need n-1 initial condition with n unknowns
- Find the running time for initial values:

```
Set n = 1 in loop:
    for(i=0; i<1; i++){
        do_something;
    }
    T<sub>1</sub> = 1 (do_something is executed once)

Recurrence relation: T<sub>1</sub> = 1 and T<sub>n+1</sub> = T<sub>n</sub>+1
```

Example: Binary search

Search by repeatedly dividing array in half

Find 10 in sorted array

Binary search pseudocode

```
binary search(array, item, size){
  top = 0;
  bottom = size-1;
  while(top <= bottom){</pre>
     mid = (top + bottom)/2;
     if(array[mid]==item) // check if item is at index mid
       return mid;
     if(item < array[mid]) // check top half next</pre>
       bottom = mid -1;
     else
       top = mid+1;  // check bottom half next
```

Binary search: Recurrence relation

T(n) = computation time to search n elements

- = computation time to search $\left(\frac{n}{2}\right)$ elements + constant
- $= T\left(\frac{n}{2}\right) + constant$

Find initial condition:

• Two unknown variance T(n) , $T\left(\frac{n}{2}\right)$ and so there is one initial condition

$$T(1) = constant$$

Binary search: Recurrence relation

of comparisons to merge (worst case) : k

merge(best case) : $\frac{k}{2}$ where $k \le n$

Merge sort algorithm

```
mergeSort(array, p, r){
  if(p<r){
   q = (p+r)/2;

  mergeSort(array, p, q);
  mergeSort(array, q+1, r);

  merge(array, p, q, r);
  }
}</pre>
```

Merge sort algorithm

```
merge(array, p, q, r){
   n1 = q-p+1; n2 = r-q;
   create temporary arrays L and R with sizes n1 and n2; copy data to L and R
   for(i=0 to n1-1)
      L[i] = array[i+p];
   for(j=0 to n2-1)
      R[j] = array[q+j+1];
   // merge L and R back to array
   i=0; j = 0;
   for(k = p \text{ to } r){
     if(L[i]<= R[j]) {
       array[k] = L[i];
       i++;
     else{
       array[k] = R[j];
       j++;
```

Merge sort : Recurrence relation

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Two unknowns => one initial condition

Set
$$n = 1$$

$$T(1) = 1$$

$$T(n) = \begin{cases} \Theta(1) \\ 2T\left(\frac{n}{2}\right) + \Theta(n) \end{cases}$$

Solving Recurrences

- Back-substitution method
- Induction method
- Master's Theorem
- Recurrence tree method

Back-substitution

Example:
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$T(1) = 1$$

Solution: Expand T(n) in terms of smaller n (can draw a tree)

$$T\left(\frac{n}{2}\right) = 4T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)^2$$

Substitute : $T\left(\frac{n}{2}\right)$ in T(n)

$$T\left(\frac{n}{4}\right) = 4\left[4T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)^2\right] + n^2 = 16T\left(\frac{n}{4}\right) + 2n^2$$

Back-substitution

$$T\left(\frac{n}{4}\right) = 4T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)^2$$

Substitute $T\left(\frac{n}{4}\right)$ in T(n)

$$T(n) = 16 \left[4T \left(\frac{n}{8} \right) + \left(\frac{n}{4} \right)^2 \right] + 2n^2$$
$$= 64T \left(\frac{n}{8} \right) + 3n^2$$

Substitute
$$T\left(\frac{n}{8}\right) = 4T\left(\frac{n}{16}\right) + \left(\frac{n}{8}\right)$$
 in $T(n)$

$$T(n) = 64 \left[4T \left(\frac{n}{16} \right) + \left(\frac{n}{8} \right)^2 \right] + 3n^2 = 256T \left(\frac{n}{16} \right) + 4n^2 = k^2 T (n/k) + n^2 \lg k$$

When
$$k = n$$
, $T(n) = n^2T(1) + n^2 \lg n = \theta(n^2 \lg n)$

Induction to prove recurrence method - example

Given that
$$T(n)=4T\left(\frac{n}{2}\right)+n^2$$
 , T(1) = 1

Prove that $T(n) = \Omega(n^2 \lg n)$

Proof:

To Prove
$$T(n) \ge cn^2 \lg n$$

Base case :
$$T(1) = 1^2 \ge c1^2 \lg 1 \ge 0$$
 true

Hypothesis : Assume that
$$T(m) \ge cm^2 lg m$$
 $\forall m < n$

Then
$$T\left(\frac{n}{2}\right) \ge c\left(\frac{n}{2}\right)^2 lg\left(\frac{n}{2}\right)$$

Induction to prove recurrence method - example

Induction:

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$\geq 4c\left(\frac{n}{2}\right)^2 \lg\left(\frac{n}{2}\right) + n^2 from (2)$$

$$\geq cn^2 \lg(n) - cn^2 \lg 2 + n^2$$

$$\geq cn^2 \lg(n) + n^2 (1 - c)$$

$$\geq cn^2 \lg(n) for c < 1$$

Exercise

Prove that
$$T(n) = O(n^2 \lg n)$$

Master - theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Where a ≥ 1 and b > 1 are constants f(n) is a function

then

1.
$$T(n) = \Theta\left(n^{\log_b a}\right) \ if \ f(n) = O\left(n^{\log_b a - \varepsilon}\right) \ for \ \varepsilon > 0$$

2.
$$T(n) = \Theta\left(n^{\log_b a} \lg n\right) \text{ if } f(n) = \Theta\left(n^{\log_b a}\right)$$

3.
$$T(n) = \Theta\left(f(n)\right) \ if \ f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right) \ for \ \varepsilon > 0 \ and \ af\left(\frac{n}{b}\right) \le cf(n) \ for \ c < 1$$

Example - master theorem to solve recurrence

Solve
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$
, $T(1) = 1$

Solution:

$$f(n) = n^2 = \Theta(n^2)$$

use (2) of master theorem

$$f(n) = \Theta\left(n^{log_24}\right) = \Theta(n^2)$$

$$T(n) = \Theta\left(n^{log_24} lg n\right)$$

$$= \Theta\left(n^2 lg n\right)$$

Recursion tree

$$T(n) = 2T\left(\frac{n}{2}\right) + n^2, \ T(1) = 1$$
$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)^2$$

Recursion tree - total cost

$$Total\ cost = \sum_{i=0}^{\lg n} \frac{n^2}{2^i} < n^2 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i$$
$$< n^2 \left[\frac{1}{1-\frac{1}{2}}\right]$$
$$< 2n^2$$
$$= O(n^2)$$

Merge sort - worst case

No comparisons are skipped in merge step => n -1 comparison

$$T(n) = 2T\left(\frac{n}{2}\right) + n - 1$$

$$T(n) = 8T\left(\frac{n}{8}\right) + 3n - 7$$

$$= 2^k T\left(\frac{n}{2^k}\right) + kn - (2^k - 1)$$

$$2^k = n = > k = lg \ n$$

$$T(n) = nT(1) + n \lg \ n - n + 1$$

$$T(n) = O(n \lg n)$$

Merge sort - best case

Largest element of one list is smaller than first element of other list => $\frac{n}{2}$ comparison

$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{2}$$

$$T(n) = 8T\left(\frac{n}{8}\right) + \frac{3n}{2}$$

$$= 2^k T\left(\frac{n}{2^k}\right) + \frac{kn}{2}$$

$$2^k = n \implies k = lg \ n$$

$$T(n) = nT(1) + \frac{n lg \ n}{2} \implies T(n) = O(n lg \ n)$$

Merge sort - average case

- Calculate the expected number of comparisons for a list of size n.
- Substitute in the recurrence relation and solve.
- See next lecture for detailed analysis.

Methods to bound summations

- Mathematical induction
- Bounding the terms
- Splitting summations
- Approximation by integrals

Mathematical induction

Prove that the n^{th} Fibonacci number f_n is $O\left(\left(\frac{7}{4}\right)^n\right)$

Proof:

base:
$$n=0,\ f_0=1\le \left(\frac{7}{4}\right)^0$$
 which is true $n=1,\ f_0=1\le \left(\frac{7}{4}\right)^1$ which is true hypothesis: assume that $f_i\le \left(\frac{7}{4}\right)^i$ i = 1, 2, 3, ... k

Mathematical induction

Induction : To prove
$$f_{i+1} \leq \left(\frac{7}{4}\right)^{i+1}$$

$$f_{i+1} = f_i + f_{i-1}$$

$$\leq \left(\frac{7}{4}\right)^i + \left(\frac{7}{4}\right)^{i-1} - \text{hypothesis}$$

$$\leq \left(\frac{7}{4}\right)^{i-1} \left(1 + \frac{7}{4}\right)$$

$$\leq \left(\frac{7}{4}\right)^{i-1} \left(\frac{7}{4}\right)^2 \left[1 + \frac{7}{4} < \left(\frac{7}{4}\right)^2\right]$$

$$\leq \left(\frac{7}{4}\right)^{i+1}$$

Bounding the terms

Bounding by largest term in series

$$(a) \sum_{k=1}^{n} a_k \le n \ a_{max}$$

where
$$a_{max} = \max_{1 \le k \le n} a_k$$

Bounding the terms

Bounding by a geometric series

$$(b)\sum_{k=0}^{n}a_k \le \frac{a_0}{1-r}$$

when
$$\frac{a_{k+1}}{a_k} \le r$$
 for all $k \ge 0$ and $0 < r < 1$ and r is constant

Note:

- Geometric series has a constant ratio between successive terms
- Geometric series are infinite series but have finite sums when ratio r is between -1 and 1

Splitting summations

Split the summation and ignore a constant number of initial terms

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{k-1} a_k + \sum_{k=k_0}^{n} a_k$$
$$= \Theta(n) + \sum_{k=k_0}^{n} a_k$$

Splitting summations - example

Find an asymptotic upper bound on $\sum_{k=0}^{\infty} \frac{k^2}{2^k}$

find the ratio of consecutive terms

Ratio
$$= \frac{(k+1)^2/2^{k+1}}{k^2/2^k} = \frac{(k+1)^2}{2k^2}$$
$$= \frac{(k^2+2k+1)}{2k^2} = \left(\frac{1}{2} + \frac{1}{k} + \frac{1}{2k^2}\right) \le \frac{8}{9}$$
$$k = 3 = > \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{18}\right) = \frac{8}{9}$$
$$k = 4 = > \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32}\right) = \frac{25}{32}$$

Splitting summations - example

$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} = \sum_{k=0}^{2} \frac{k^2}{2^k} + \sum_{k=3}^{\infty} \frac{k^2}{2^k}$$

$$= \left[0 + \frac{1}{2} + \frac{4}{2^2} \right] + \left[\frac{3^2}{2^3} + \frac{4^2}{2^4} + \frac{5^2}{2^5} + \dots \right]$$

$$<= \left[0 + \frac{1}{2} + \frac{4}{2^2} \right] + \frac{9}{8} \left[1 + \frac{8}{9} + \left(\frac{8}{9} \right)^2 + \dots \right]$$

$$= O(1)$$

Calculus

$$f(x) = a^{x} \qquad f'(x) = a^{x} \ln a$$

$$f(x) = \ln x \qquad f'(x) = \frac{1}{x}$$

$$f(x) = \log_{a} x \qquad f'(x) = \frac{1}{x \ln a}$$

$$f(x) = x^{n} \qquad f'(x) = nx^{n-1}$$

$$f(x) = e^{x} \qquad f'(x) = e^{x}$$

Test for monotonic function

102

$$f'(x) > 0 \ \forall \ x \ in (b, c)$$

=>f(x) is monotonically increasing in (b, c)

$$f'(x) < 0 \ \forall \ x \ in (a, b)$$

=> f(x) is monotonically decreasing in (a, b)

Test for monotonic function : example

Given
$$f(x) = x^2 - 8$$
 $f'(x) = 2x$

f'(x) < 0, when x is negative

f'(x) > 0, when x is positive

Approximation by integrals: monotonic function

- Function is monotonic on an interval
- If it is either increasing or decreasing in that interval
- Monotonic functions are integrable

Approximation by integrals: monotonic function

- Monotonically increasing : $x \le y => f(x) \le f(y)$
- Monotonically decreasing : $x \ge y => f(x) \ge f(y)$

Approximation by integrals

$$\int_0^n f(x) \, dx \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \, dx$$

$$\int_0^n x^2 \, dx \le \sum_{i=1}^n i^2 \le \int_1^{n+1} x^2 \, dx = \frac{x^3}{3} \begin{vmatrix} n+1 \\ x=1 \end{vmatrix} = \frac{(n+1)^3}{3} - \frac{1}{3}$$

Approximation by integrals - example

$$\int_0^5 x^2 \ dx \le \sum_{r=1}^5 x^2$$

$$\sum_{x=1}^{5} x^2 \le \int_{1}^{6} x^2 \, dx$$

References

- Cormen, Thomas H., et al. *Introduction to Algorithms*. The MIT Press, 2014.
- Sedgewick, Robert, and Kevin Wayne. *Algorithms*. Addison-Wesley, 2016.
- https://en.wikipedia.org/wiki/Genetic_algorithm
- http://www.gnu.org/software/libc/manual/html_node/CPU-Time.html
- https://www.newscientist.com/article/mg21328473-800-exhaustive-search-solves-fiendishsudoku-mystery/
- https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
- https://en.wikipedia.org/wiki/Missionaries and cannibals problem
- Any text on calculus