Сканирование кластера с помощью инструмента kubehunter в двух режимах

--

Для начала работ вам понадобится:

```
- docker
```

-k3d

Подробная установка docker рассматривалась в методических материалах к предыдущим урокам

__

Часть 1. Внешнее сканирование кластера из контейнера

Создадим подопытный кластер k3d:

\$ k3d cluster create mycluster

```
filipp@filipp-notebook:~$ k3d cluster create mycluster
INFO[0000] Prep: Network
INFO[0000] Created network 'k3d-mycluster'
INFO[0000] Created volume 'k3d-mycluster-images'
INFO[0000] Starting new tools node...
INFO[0000] Starting Node 'k3d-mycluster-tools'
INFO[0001] Creating node 'k3d-mycluster-server-0'
INFO[0001] Creating LoadBalancer 'k3d-mycluster-serverlb'
INFO[0001] Using the k3d-tools node to gather environment information
INFO[0001] HostIP: using network gateway 172.18.0.1 address
INFO[0001] Starting cluster 'mycluster'
INFO[0001] Starting servers...
INFO[0001] Starting Node 'k3d-mycluster-server-0'
INFO[0006] All agents already running.
INFO[0006] Starting helpers...
INFO[0006] Starting Node 'k3d-mycluster-serverlb'
INFO[0012] Injecting '172.18.0.1 host.k3d.internal' into /etc/hosts of all nodes...
INFO[0012] Injecting records for host.k3d.internal and for 2 network members into CoreD
INFO[0013] Cluster 'mycluster' created successfully!
INFO[0014] You can now use it like this:
kubectl cluster-info
```

Запустим контейер сканера kube-hunter, но пока не будем вводить значения для настройки сканирования:

\$ docker run -it --rm aquasec/kube-hunter

```
filipp@filipp-notebook:~$ docker run -it --rm aquasec/kube-hunter
Choose one of the options below:

1. Remote scanning (scans one or more specific IPs or DNS names)

2. Interface scanning (scans subnets on all local network interfaces)

3. IP range scanning (scans a given IP range)
Your choice:
```

В другом окне терминала вызовем команды просмотра запущенных контейнеров и доступных сетей:

\$ docker ps

```
filipp@filipp-notebook:~$ docker ps
CONTAINER ID IMAGE
                                         COMMAND
                                                                  CREATED
              PORTS
              aguasec/kube-hunter
                                         "kube-hunter"
daca632eeff7
                                                                  About a minute ago
out a minute
                                                compassionate gauss
                                         "/bin/sh -c nginx-pr..." 3 minutes ago
829dc24621c8
              rancher/k3d-proxy:5.2.2
minutes
              80/tcp, 0.0.0.0:46463->6443/tcp k3d-mycluster-serverlb
              rancher/k3s:v1.21.7-k3s1
                                         "/bin/k3d-entrypoint..." 3 minutes ago
96a65252d3eb
                                                k3d-mycluster-server-0
minutes
```

\$ docker network ls

```
filipp@filipp-notebook:~$ docker network ls
NETWORK ID
                              DRIVER
                                        SCOPE
              NAME
              bridge
                              bridge
ccd6e5deee21
                                        local
34a7c0b58f04
                                        local
              host
                              host
                              bridge
              k3d-mycluster
1279d94bfba3
                                        local
4ed5072f636c
                              null
                                        local
              none
```

Выполним добавление контейнера kube-hunter в bridge-сеть кластера k3d (не забудьте подставить в команду ваш networkid и containerid:

\$ docker network connect k3d-mycluster daca632eeff7

filipp@filipp-notebook:~\$ docker network connect k3d-mycluster daca632eeff7

Выполним команду инспектирования сети, чтобы убедиться в наличии контейнера в ней:

\$ docker network inspect k3d-mycluster

```
"Containers": {
    "829dc24621c84200408a64ff74ab5979dfb9806067ba7780dd0632a8820ee479": {
        "Name": "k3d-mycluster-serverlb",
        "EndpointID": "470feab4dde7c59bc102ddc2fa46b736201f5dc7b73c816ed2b9f62ec95e0509",
        "MacAddress": "02:42:ac:12:00:02",
        "IPv4Address": "172.18.0.2/16",
        "IPv6Address": ""
},

"96a65252d3eb8dfee7a97df6c19662aeff389406de0435cdc4686f7135c6fec7": {
        "Name": "k3d-mycluster-server-0",
        "EndpointID": "132cdac55bc1ad7019decd25fff3edc03cacc6939296a5ba25b54f58f892ca35",
        "MacAddress": "02:42:ac:12:00:03",
        "IPv4Address": "172.18.0.3/16",
        "IPv6Address": ""
},

"daca632eeff740140efeb966426d44bb589c6299213eb93b87fa9a4424ad20b2": {
        "Name": "compassionate_gauss",
        "EndpointID": "dccf713289cf78fa346beaff4fe848e6db093c5c047ec6fc0ca70baa19abf316",
        "MacAddress": "02:42:ac:12:00:04",
        "IPv4Address": "172.18.0.4/16",
        "IPv4Address": "172.18.0.4/16",
        "IPv6Address": ""
```

Контейнер присутствует в сети кластера. В этом же выводе запомним IPv4Address контейнера с k3d (k3d-mycluster-server-0). Теперь вернемся к окну терминала с настройках сети

Выбираем опции:

- тип сканирования: 1 (Remote scanning)
- -remotes: <k3d-mycluster-server-0 IPv4Adress>

```
Choose one of the options below:
1. Remote scanning (scans one or more specific IPs or DNS names)
2. Interface scanning (scans subnets on all local network interfaces)
3. IP range scanning (scans a given IP range)
Your choice: 1
Remotes (separated by a ','): 172.18.0.3
2023-03-10 11:37:40,134 INFO kube hunter.modules.report.collector Started hunting
2023-03-10 11:37:40,136 INFO kube_hunter.modules.report.collector Discovering Ope
2023-03-10 11:37:40,199 INFO kube_hunter.modules.report.collector Found open serv
172.18.0.3:10250
2023-03-10 11:37:40,219 INFO kube hunter.modules.report.collector Found open serv
s API" at 172.18.0.3:6443
Nodes
| TYPE | LOCATION |
| Node/Master | 172.18.0.3 |
+----+
Detected Services
| SERVICE | LOCATION | DESCRIPTION
| Unrecognized K8s API | 172.18.0.3:6443 | A Kubernetes API |
 | service
| Kubelet API | 172.18.0.3:10250 | The Kubelet is the |
                                  | main component in |
| every Node, all pod |
| operations goes |
| through the kubelet |
No vulnerabilities were found
```

Сканирование завершено, уязвимостей в кластере не выявлено

__

Часть 2. Сканирование кластера из pod в развернутом кластере

Произведем сканирование из pod, развернутого в самом кластере

Для данного типа сканирования нам потребуется объект job в кластере (единоразовый запуск рабочего задания в pod). Создадим манифест такого объекта:

```
$ nano job.yaml
```

Добавим в манифест следующее содержание:

```
apiVersion: batch/v1
kind: Job
metadata:
  name: kube-hunter
spec:
  template:
    metadata:
      labels:
        app: kube-hunter
    spec:
      containers:
        - name: kube-hunter
          image: aquasec/kube-hunter:0.6.8
          command: ["kube-hunter"]
          args: ["--pod"]
      restartPolicy: Never
```

И сохраним изменения

```
GNU nano 6.2
                                                   job.yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: kube-hunter
spec:
  template:
    metadata:
      labels:
        app: kube-hunter
    spec:
      containers:
        - name: kube-hunter
          image: aquasec/kube-hunter:0.6.8
          command: ["kube-hunter"]
          args: ["--pod"]
      restartPolicy: Never
```

Применим манифест в кластере:

\$ kubectl apply -f job.yaml

```
filipp@filipp-notebook:~/Desktop$ kubectl apply -f job.yaml
job.batch/kube-hunter created
```

Выполним команды просмотра рабочих заданий (job) в кластере:

\$ kubectl get job

```
filipp@filipp-notebook:~/Desktop$ kubectl get job
NAME COMPLETIONS DURATION AGE
kube-hunter 1/1 40s 21m
```

Вызовем подробную информацию о выполненной job kube-hunter:

\$ kubectl describe job kube-hunter

```
filipp@filipp-notebook:~/Desktop$ kubectl describe job kube-hunter
Name:
               kube-hunter
Namespace:
               default
               controller-uid=5330c3d2-47cb-48a1-9cd2-785ee3c579f1
Selector:
Labels:
               app=kube-hunter
               controller-uid=5330c3d2-47cb-48a1-9cd2-785ee3c579f1
               job-name=kube-hunter
Annotations:
               <none>
Parallelism:
Completions:
Start Time:
               Fri, 10 Mar 2023 14:42:44 +0300
Completed At:
               Fri, 10 Mar 2023 14:43:24 +0300
Duration:
               40s
Pods Statuses: 0 Active / 1 Succeeded / 0 Failed
Pod Template:
  Labels: app=kube-hunter
          controller-uid=5330c3d2-47cb-48a1-9cd2-785ee3c579f1
           job-name=kube-hunter
  Containers:
   kube-hunter:
   Image: aquasec/kube-hunter:0.6.8
   Port:
               <none>
   Host Port: <none>
   Command:
     kube-hunter
   Args:
      --pod
    Environment: <none>
   Mounts:
                 <none>
 Volumes:
                 <none>
Events:
  Type
         Reason
                           Age
                                 From
                                                 Message
 Normal SuccessfulCreate 22m
                                  job-controller Created pod: kube-hunter-6wphh
  Normal Completed
                           21m
                                  job-controller Job completed
```

Видим, что по рабочей задаче был создан pod - результаты сканирования будут отображены в его логах. Ознакомимся с ними (подставьте в команду свой идентификатор pod):

\$ kubectl logs kube-hunter-6wphh

ID	LOCATION	MITRE CATEGORY	VULNERABILITY	DESCRIPTION	EVIDENCE
None	Local to Pod (kube- hunter-6wphh) 	Lateral Movement // ARP poisoning and IP spoofing 	CAP_NET_RAW Enabled	CAP_NET_RAW is enabled by default for pods. If an attacker manages to compromise a pod, they could potentially take advantage of this capability to perform network attacks on other pods running on the same node	
KHV002	10.43.0.1:443 	Initial Access // Exposed sensitive interfaces 	K8s Version Disclosure 	The kubernetes version could be obtained from the /version endpoint	v1.21.7+k3s1
KHV005	10.43.0.1:443 	Discovery // Access the K8S API Server 	Access to API using service account token 	The API Server port is accessible. Depending on your RBAC settings this could expose access to or control of your cluster.	b'{"kind":"APIVersio ns","versions":["v1"],"serverAddressByCl ientCIDRs":[{"client CIDR":"0.0.0.0/0","s
None	Local to Pod (kube- hunter-6wphh) 	Credential Access // Access container service account 	Access to pod's secrets 	Accessing the pod's secrets within a compromised pod might disclose valuable data to a potential attacker	['/var/run/secrets/k ['/var/run/secrets/k ubernetes.io/service account/ca.crt', '/v ar/run/secrets/kuber netes.io/serviceacco
KHV050	Local to Pod (kube- hunter-6wphh) 	Credential Access // Access container service account	Read access to pod's service account token 	Accessing the pod service account token gives an attacker the option to use the server API	eyJhbccioiJSUzIINiIS ImtpZCI6IkVNVGNoWGpG a3NFdkVNazFJMThuOWRO VUZseTgzSZ201TWSaVZBC M1MtakkifQ.eyJhdWQio

Как мы видим, сканирование из pod более объемный, точный и таргетированный

__