

Also published as:

P3444912 (B2)

EP0554716 (A1)

EP0554716 (B1)

US5356378 (A)

HK1011296 (A1)

more >>

# METHOD AND DEVICE TO DETECT FLOW TUBE CONDITION OF FLUID FEEDER

Publication number: JP6233818 (A) Publication date: 1994-08-23

Inventor(s): DEIBITSUTO BII DOUUAN + IVAC CORP +

Applicant(s): Classification:

- international: A61M5/00: A61M5/168: A61M5/00: A61M5/168: (IPC1-7): A61M5/00; A61M5/168

- European: A61M5/168D4B

Application number: JP19930027348 19930122

Priority number(s): US19920823863 19920122

#### Abstract of JP 6233818 (A)

PURPOSE: To provide a device for detecting a state in the upper stream part of a flow-tube used for an instillator. CONSTITUTION: A flexible chamber 20 coupling a fluid supply source formed in the flowtube to a fluid receiver is made to alternately communicate the fluid with the upper stream part 16 and lower stream part 18 of the flow-tube. When the chamber 20 communicates with the upper stream side part 16, the chamber 20 receives the fluid which is stored at the upper pressure. When the chamber 20 communicates with the lower stream part 18, a pressure equilibrating pulse is generated. A pressure sensor 22 in the lower stream part 18 measures the pressure equilibrating pulse in proportion to the upper pressure.; By processing the pressure equilibrating pulse by using a fluid systemic resistance in the lower stream, a compliance of the flexible chamber and a normal pressure, the upper pressure is determined. Comparing the upper pressure with a threshold value, it can determine a closed or empty fluid supply source.



Data supplied from the espacenet database — Worldwide

# (19)日本国特計庁(JP) (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-233818 (43)公開日 平成6年(1994)8月23日

| (51)Int.Cl. <sup>8</sup> |       | 識別記号  | 庁内整理番号  | F I | 技術表示簡所 |
|--------------------------|-------|-------|---------|-----|--------|
| A 6 1 M                  | 5/168 |       |         |     |        |
|                          | 5/00  | 3 3 0 | 8825-4C |     |        |

8825-4C

405

A 6 1 M 5/14

|             |                   | 審查請求     | 未請求 請求項の数23 FD (全 10 負) |
|-------------|-------------------|----------|-------------------------|
| (21)出顧番号    | 特顯平5-27348        | (71)出願人  | 591064173               |
|             |                   |          | アイパック、コーポレーション          |
| (22)出願日     | 平成 5年(1993) 1月22日 |          | IVAC CORPORATION        |
|             |                   |          | アメリカ合衆国カリフォルニア州、サンデ     |
| (31)優先権主張番号 | 823863            |          | ィエゴ、カンパス、ポイント、ドライブ、     |
| (32)優先日     | 1992年1月22日        |          | 10300                   |
| (33)優先権主張国  | 米国 (US)           | (72)発明者  | デイビット、ビー、ドゥーアン          |
|             |                   |          | アメリカ合衆国カリフォルニア州、サンデ     |
|             |                   |          | ィエゴ、ログロノ、ドライブ、4374      |
|             |                   | (74)代理人  | 弁理士 佐藤 一雄 (外3名)         |
|             |                   | (10,102) | 71-22 1004              |
|             |                   |          |                         |
|             |                   |          |                         |
|             |                   |          |                         |
|             |                   |          |                         |

### (54) 【発明の名称 】 流体供給装置における流管状態検出方法および装置

# (57) 【要約】

【目的】 点滴装置に用いられる流管の上流側部分の状 熊を検出する装置を得ること。 【構成】 流管内に形成され流体供給源を流体受けに連

結する柔軟な室20が、流管の上流側部分16と下流側部分 18に交互に流体が通じるようにされる。室20が上流側部 分16に通じると、室20は流体を受け、その流体を上部圧 力で貯蔵する。室20が下流側部分18に通じると、圧力平 衡化パルスが発生される。下流側部分18内の圧力センサ 22が、上部圧力に比例する圧力平衡化パルスを測定す る。その圧力平衡化パルスを下流側流体系抵抗と、柔軟 な室のコンプライアンスと、平常圧力とにより処理し て、上部圧力が決定される。上部圧力をしきい値と比較 して、閉塞または空の流体供給源を決定することができ る。



# 【特許請求の範囲】

【請求項1】流体供給源に連結される上流側部分と、流体受け部に連結される下流側部分とを有する流管を含む 流体供給装置用流管状態権出装置において、

1

流管の上流側部分と下流側部分に流体が通じるように配 置される流体室と、

議管の上機制部分に対して開かれた時に液体室が上部肛 の流体を受けてその液体を貯蔵し、液管の下流側部分 に対して開かれた時に液体率は上部圧力で貯蔵されてい る液体を、下液側部分に存在している液体に通じさせる ことにより、下流側部分に圧力平衡化パルスを生じさせ るように、流管の上流側部分と流管の下流機部分に液体 が通じるように流体室を交互に関くための制御手段と、 圧力平衡化/ルスを検出し、その圧力/平衡化/ルルスを表 宇宙化/ルルスを検出し、その圧力/平衡化/ルルスを表 宇衛化/電や機能分を圧力とサ手段と、

前記平衡化信号に応答して上部圧力を決定するプロセッ サ手設とを備えたことを特徴とする流体供給装置におけ る漆管状態輸出装置。

【請求項2】請求項1記載の装置において、

圧力センサ手段は下流側部分における平衡圧力をも検出 20 力の流体を受けて、その流体を貯蔵し、流管の下流側部 して、それを表す平衡信号を供給し、 分に対して関かれた時に液体室は上部圧力で貯蔵されて

プロセッサ手段は平衡信号と平衡化信号の間の差をも取って、上部圧力の決定に察してその差を積分し、前記装 置は、

流体室の下流側における流体の流れに対する抵抗を表す 抵抗信号を供給する抵抗手段を買に備え、プロセッサ手 段は上部圧力の決定に際して、積分された差を抵抗信号 により接集することを特徴とする装置。

【請求項3】先行する請求項のいずれか1つに記載の装 層において、

プロセッサ手段は決定された上部圧力を表す上部圧力信 号をも供給し、

この装置は、上部圧力信号を受けて、受けた信号を第1 のしきい値と比較し、上部圧力信号が第1のしきい値よ り小さければ、閉塞警報信号を発生する警報器を更に有 することを特徴とする装置。

【請求項4】先行する請求項のいずれか1つに記載の装 置において、

プロセッサ手段は決定された上部圧力を表す上部圧力信号をも供給し、

この装置は、上部圧力信号を受けて、受けた信号を第2 のしきい値と比較し、上部圧力信号が第2のしきい値よ り小さければ、流体供給額が空であることを示す警報信 号を発生する警報器を更に備えていることを特徴とする 装置。

【請求項5】先行する請求項のいずれか1つに記載の装 置において、

プロセッサ手段は種々の時刻に決定された上部圧力を互いに比較して、比較された上部圧力の間の差を表す上部 圧力差信号を供給し、 この装置は、上部圧力発信号を受けて、前記差信号を第 3のしきい値と比較し、前記差信号が第3のしきい値を 超えたならば、流体供給額が空であることを示す警報信 号を発生する警報器を更に備えていることを特徴とする 米勝

【請求項6】先行する請求項のいずれか1つに記載の装 置において.

流管はたわみ可能な管で形成され、

に対して開かれた時に液体室は上商圧力で貯蔵されてい る液体を、下流側部のに存在している液体に通じさせる 10 ング部のを観吹閉塞するためにそのポンピング部分に対 ことにより、下流側部分に圧力平衡化パルスを生じさせ るように、流管の上流側部分と被管の下流側部分に液体 ンプを備えていることを特徴トナイス診匿。

> 【請求項 7】流体供給販に連絡される上流開部分と、 者の血管系統に連結される下流開部分と、上流開部分 下液側部分と連結されるたたみ可能な部分とを有する流 管を含む液体供給装置用流管が態検出装置において、 流管の上液側部分と下流側部分に流体が通じるように配 電される液体が

流管の上流側部分に対して関かれた時に流体室が上部圧 力の液体を受けて、その液体を貯蔵し、流管の下流側部 分に対して関かれた時に流体室は上部圧力で開産されて いる液体を、下流側部分に圧力平像化パルスを生じる さとにより、下液が削削分に圧力平像化パルスを生じる さとにより、下液が削削分と流学の下流側部分に流 体が通じるように流体室を交互に関き、流管内の流体の 圧力を制御するために流管のたわみ可能な部分に対 動作するための制御手段と、

圧力平衡化パルスを検出し、その圧力平衡化パルスを表 す平衡化信号を供給し、下流側部分内の平衡圧力を検出 30 して、それを表す平衡信号を供給する圧力センサ手段

と、 流体室の下流側における流体の流れに対する抵抗を表す 抵抗信号を供給する抵抗手段と.

300%につる 世代は、500%のサインに、 宇衛信号と中部化信号の間の芝を取って、上部圧力の決定に際して、 最少された変を拡大信号により執着り、決定された上部 圧力を表す上部圧力信号を供給するプロセッサ手段と、 上部圧力信号を受けて、受けた信号を第1のしまい値より 比較し、上部圧力信号が高りのといばよりからけれ

40 ば、閉塞警報信号を発生する警報とを備えていることを特徴とする減体供給装置における流管状態検出装置。 【請求項 8】請求項 7 記載の装置において、プロセッサ 手段は、上部圧力の決定に際して、複分された差を前記 平衡圧力に加えるための加策器をさらに備えていること を特徴とする装置。

【請求項9】先行する請求項のいずれか1つに配載の装置において、プロセッサ手段は、上部圧力の決定に際して、積分された差を、流体室を形成する材料のコンプライアンスを表すコンプライアンス信号により換算もする

50 ことを特徴とする装置。

【請求項10】先行する請求項のいずれか1つに記載の 装置において、プロセッサ手段は、上部圧力の決定に際 して、積分された差を平衡圧力に加えることも行うこと を特徴とする装置。

【請求項11】 先行する請求項のいずれか1つに記載の 装置において、警報器は、受けた信号を第2のしきい値 と比較し、上部圧力信号が第2のしきい値より小さけれ ば、流体供給源が空であることを示す警報信号を発生す る警報器を更に備えていることを特徴とする装置。

【請求項12】請求項1または5に記載の装置におい て、プロセッサ手段は流量を受け、流量の変化を上部圧 力の変化と比較して上部圧力差信号を決定することを特 徴とする装置。

【請求項13】先行する請求項のいずれか1つに記載の 装置において、プロセッサ手段は流管の寸法と、流体供 給源の寸法と、流体供給源の高さとを受け、 F部圧力 と、前記寸法および前記高さを基にして流体供給源に残 っている流体の量を決定することを特徴とする装置。

【請求項14】請求項1または13に記載の装置におい て、プロセッサ手段は流量を受け、受けた流量と流体供 20 給源に残っている流体の量を基にして流体供給源が空に なるまでの時間の長さを示す残時間信号を供給すること を特徴とする装置。

【請求項15】請求項7~14のいずれか1つに記載の 装置において、流体圧制御手段は、流体室を構成するた わみ可能な管のポンピング部分を順次閉塞するために、 そのポンピング部分に対して動作するための複数の輔動 手段を有する蠕動ポンプを備えていることを特徴とする 装置。

【請求項16】先行する請求項のいずれか1つに記載の 30 装置において、流体供給源が空になった時に流管の上流 側部分内にの空気の流入を阻止するためにフロート弁手 段を備えていることを特徴とする装置。

【請求項17】流体供給源に連結される上流側部分と、 流体受け部に連結される下流側部分とを有する流管を含 み、かつ、流管のたわみ可能な部分に対して動作して流 管内の流体の圧力を制御する流体圧制御手段を有する流 体供給装置の状態を検出する方法において、

流管の上流側部分と下流側部分に流体が通じてるように して配置されている流体室内部に、前記流体圧制御手段 40 の上流側の流体の圧力である上部圧力にある流体を貯蔵 するステップと、

流管の上流側部分に対して開かれた時に流体室が上部圧 力の流体を受けてその流体を貯蔵し、流管の下流側部分 に対して開かれた時に流体室は上部圧力で貯蔵されてい る流体を、下流側部分に存在している流体に通じさせる ことにより、下流側部分に圧力平衡化パルスを生じさせ るように、流管の上流側部分と流管の下流側部分に流体 が通じるように流体室を交互に開くステップと、

す平衡化信号を供給するステップと、

平衡化信号を処理して上部圧力を決定するステップとを 備えることを特徴とする流体供給装置における流管状態 検出方法.

【請求項18】請求項17記載の方法において、

検出するステップは、下流側部分における平衡圧力を検 出して、それを表す平衡信号を供給するステップをさら に備え、

処理するステップは、平衡信号と平衡化信号の間の差を 10 取って、上部圧力の決定に際してその差を積分するステ ップを更に備えていることを特徴とする方法。

【請求項19】請求項18記載の方法において、

流体室の下流側における流体の流れに対する抵抗を決定 し、その抵抗を表す抵抗信号を供給するステップを更に 備え、

処理するステップは、上部圧力の決定に際して、積分さ れた差を抵抗信号により換算するステップと、流体室を 形成する材料のコンプライアンスを決定するステップと を更に備え、

処理するステップは、上部圧力の決定に際して、積分さ れた差をコンプライアンスにより検算するステップを更 に備え、処理するステップは、上部圧力の決定に際し て、積分された差を平衡信号に加えるステップを備えて いることを特徴とする方法。

【請求項20】請求項17記載の方法において、

処理するステップは、決定された上部圧力を表す上部圧 力信号を供給するステップを更に含み、

上部圧力信号を第1のしきい値と比較し、上部圧力信号 が第1のしまい値より小さければ、閉塞警報信号を発生 するステップを更に備え、処理するステップは、決定さ れた上部圧力を表す上部圧力信号を供給するステップを

更に含み、 上部圧力信号を第2のしきい値と比較し、上部圧力信号 が第2のしきい値より小さければ、空流体供給源警報信 号を発生するステップを更に備えていることを特徴とす る方法。

【請求項21】請求項17記載の方法において、

処理するステップは、決定された上部圧力を互いに比較 し、比較された上部圧力の間の差を表す上部圧力差信号 を供給するステップを更に含み、

前記差信号を第3のしきい値と比較し、前記差信号が第 3のしきい値を超えたならば、流体供給源が空であるこ とを示す警報信号を発生するステップを更に備えている ことを特徴とする方法。

【請求項22】請求項21記載の方法において、プロセ ッサ手段は流量を受け、流量の変化を上部圧力の変化と 比較して上部圧力差信号を決定することを特徴とする方

【請求項23】請求項17記載の方法において、プロセ 圧力平衡化バルスを検出し、その圧力平衡化バルスを表 50 ッサ手段は流管の寸法と、流体供給源の寸法と、流体供 給源の高さとを受け、上部圧力と、前記寸法および前記 高さを基にして液体供給源に残っている液体の量を決定 し、プロセッサ手段は流量も受け、受けた流量と流体供 給源に残っている流体の量を基にして流体供給額が空に なるまでの時間の長さを示す残時間信号を供給し、流体 供給源が空になった時に流管の上流側部分内にの空気の 流入を阻止するステップを更に備えていることを特徴と する方法。

### 【発明の詳細な説明】

## [0001]

【産業上の利用分野】本発明は、全体として流体の流れ を監視する技術に関するものであり、更に詳しく言え ば、監視位置の上流側における流管の状態を検出する技 術に関するものである。

#### [0002]

【従来の技術】非経口的な流体を患者の体内に送り込む ための正圧ポンプを有する流体供給装置がかなり一般的 になってきている。多くの場合に、ポンプは蠕動型であ る。蠕動型ポンプというのは、複数のフィンガ、複数の ローラまたはその他の部品が、内部を非経口的な流体が 20 通流するたわみ管を順次収縮させるようなポンプであ る。そのような流体供給装置は、ポンプに加えて、ひっ くり返された瓶または袋あるいはその他の非経口的な流 体を供給する手段と、非経口的な流体の供給源に固定さ れて、たわみ管を含む静脈(IV)点滴セットと、管の 末端部に取付けられて、患者の血管内に挿入されること により非経口的な流体を注入するカニューレとを含む。

【0003】注入装置が直面する1つの共通の問題は、 ポンプの上流側の流体供給装置の状態の評価である。ポ ンプの上流側に管の閉塞部が存在する場合には、ポンプ 30 が運転を続けているとしても、ポンプは非経口的な流体 を患者に注入することに成功しない。非経口的な流体供 給源が空になると、ポンプは運転を続けることはできる が、非経口的な流体は患者に供給されない。

【0004】流体供給源が空になったこと、または上流 側が閉塞されていることを検出するための従来の方法は 視覚的な観察であった。管理される流体の速度および量 を監視するために、流体供給源から下流側の位置におい て流管に渡下室を挿入することができる。しかし、適の 存在を視覚的に確認することは付き添い人が行う必要が 40 あり、それは病院の職員に望ましくない負担を負わせる ことがある。濱下室にオプトエレクトリック濱下検出器 を組み合わせて用いることができる。それらの検出器 は、滴が存在しないことを検出することにより、上流側 の管における締め付けまたはねじれによる閉塞と、空に なったIV流体供給源容器とを自動的に輸出することが できる。上流側の閉塞は、ポンプの上流側で流管に圧力 センサを設けることにより検出することもできる。しか し、それらの装置を付加するにはかなりの出費を要する

器から余分の滴が落ちることがあり、または滴の落下を 停止させて認力ウントまたは誤警報を生じさせることが ある。周囲の光が工学的適センサの動作を妨害して、そ れの動作を不正確にすることもある。

【0005】ある場合には、供給流体の圧力すなわち 「上部」圧力に関連する情報を自動的に供給するのに有 用である。上部圧力から、空の流体供給源はもちろん、 上流側の閉塞も検出することができる。

【0006】患者との非適切な流体流通を検出するため 10 に用いられる下流側圧力センサを含むポンプ装置も提案 されている。そのような装置は、米国特許第4,743,228 号、第4,460,355 号、第4,534,756 号あるいは第4,846, 792 号の各明細書に開示されているものを含む。上部圧 力をポンプの吐出側に伝えるポンプまたはその他の流体 圧制御手段をそのような装置が用いる場合には、上流側 の圧力状態を決定するために、既存の下流側圧力センサ を利用することに価値がある。この結果として、ポンプ および投与セットの両方の出費が低減されることにな

### [0007]

【発明が解決しようとする課題】したがって、上部圧力 を測定することはもちろん、上流側の流管の閉塞を自動 的に検出することができる流管監視装置の必要性を当業 者は認識していた。また、そのような上流側流管の状態 を決定するための費用を低減する必要性も当業者は認識 している。本発明はそれらの必要性を満たそうとするも のである。

#### [0008]

【課題を解決するための手段】ここで開示するのは、流 体供給源に連結される上流側部分と、流体受け部に連結 される下流側部分とを有する流管を含む流体供給装置用 流管状態検出装置において、流管の上流側部分と下流側 部分に流体が通じるように配置される流体室と、流管の 上流側部分に対して開かれた時に流体室が上部圧力の流 体を受けてその流体を貯蔵し、流管の下流側部分に対し て開かれた時に流体室は上部圧力で貯蔵されている流体 を、下流側部分に存在している流体に通じさせることに より、下流側部分に圧力平衡化パルスを生じさせるよう に、流管の上流側部分と流管の下流側部分に流体が通じ るように流体室を交互に開くための制御手段と、圧力平 衛化パルスを輸出し、その圧力平衡化パルスを表す平衡 化信号を供給する圧力センサ手段と、平衡化信号に応答 して上部圧力を決定するプロセッサ手段とを備えたこと を特徴とする流体供給装置における流管状態検出装置で ある。

【0009】また、ここで開示するのは、流体供給源に 連結される上流側部分と、流体受け部に連結される下流 側部分とを有する流管を含み、かつ、流管のたわみ可能 な部分に対して動作して流管内の流体の圧力を制御する ことがある。また、点滴セットが激しく動くと、滴形成 50 流体圧制御手段を有する流体供給装置の状態を検出する

方法において、流管の上流側部分と下流側部分に流体が 通じてるようにして配置されている流体室内部に、流体 圧制御手段の上流側の流体の圧力である上部圧力にある 流体を貯蔵するステップと、流管の上流側部分に対して 開かれた時に流体室が上部圧力の流体を受けてその流体 を貯蔵し、流管の下流側部分に対して開かれた時に流体 室は上部圧力で貯蔵されている流体を、下流側部分に存 在している流体に通じさせることにより、下流側部分に 圧力平衡化パルスを生じさせるように、流管の上流側部 互に開くステップと、圧力平衡化パルスを検出し、その 圧力平衡化パルスを表す平衡化信号を供給するステップ と、平衡化信号を処理して上部圧力を決定するステップ とを備えることを特徴とする流体供給装置における流管 状態検出方法である。

#### [0010]

【作用】一般的な用語で簡単に言えば、蠕動ポンプのよ うな液体圧制御手段が、液体供給源を患者に連結する液 管内に柔軟な流体室を形成する。液体圧制御手段はその 柔軟な流体室を流管の上流側部分と下流側部分に交互に 20 さらす。流管の上流側部分にさらされている間にその流 体室は上部圧力の液体を受けて、その流体を貯蔵する。 流管の下流側部分にさらされた時は、柔軟な流体室に貯 蔵されている上部圧力の流体が下流側部分内の流体に通 じて、圧力平衡パルスが生ずる。

【0011】下流側部分に配置されている圧力センサが 圧力平衡パルスを表す圧力信号を発生する。その圧力平 衡パルスを処理して上流側の流体の状態を決定する。柔 軟な流体室に貯蔵されている流体は上部圧力になってい るから、圧力平衡パルスは上部圧力と下流側圧力の差に 30 比例する。圧力平衡パルスによる圧力を下流側の装置抵 抗と、柔軟な流体室のコンプライアンスと、平衡圧とと もに処理する。

【0012】上流側の閉塞の場合には、ポンプは高い色 の圧力、すなわち、大気圧より低い圧力、を迅速に発生 する。この結果として、圧力トランスデューサにより大 きい負の平衡パルスが発生される。その平衡パルスは容 易に識別することができる。空の流体供給源を検出する 場合には、上部圧力をしきい値と比較し、その上部圧力 がしきい値より小さいとすると、警報が発生される。 【0013】測定した上部圧力を順次比較することによ り空の流体供給源を検出することができ、それらの上部 圧力の間の変化があるしきい値を超えたとき、警報が発 生される。上部圧力の比較的急速な変化は、供給される 流体が滴下室の比較的狭い部分に落ちることを示す。 【0014】別の面においては、フロート弁または葉水 フィルタあるいは空気を通さない何らかの類似の機構を 滴下室またはIVの別の部分に組込んで、流体供給額が 空になった時に、流管が自動的に閉塞されるようにす

顔を示すこともできる。

#### [0015]

【実施例】図1には監視位置の上流側における流管内の 状態を検出する装置10が示されている。たわみ管で形 成された点滴セットとすることができる流管が流体供給 源12と患者14の間に位置させられる。その点滴セッ トは上流側部分16と、下流側部分18と、ポンピング 部分44 (図2A, B, Cに示されている) とを有す る。この場合には、流体供給源は逆さにされたびんで構

分と流管の下流側部分に流体が通じるように流体室を交 10 成される。ポンピング部分44は圧力制御器によって作 動させられる。この実施例においては、圧力制御器は、 後で詳しく説明するように、柔軟な室を形成する注入ポ ンプ20を有する。流管の下流側部分18内の圧力を検 出して、検出した圧力を表す信号を供給するための圧力 センサ22がその部分18に連結される。信号処理用の マイクロプロセッサ26にデジタル信号を供給するため に、A/D変換器24が圧力センサ22に結合される。 この場合にはマイクロプロセッサ26は、ポンプ組立体 装置の一部であるマルチプレクサである。

【0016】図1において、流管の上流側部分16は、

この実施例においては、点滴室28を介して流体供給源 1 2 に連結される。上流側部分16は流体をポンプ20 に供給する。図1および図2に示されている実施例で は、ポンプ20は直線蠕動ポンプである。ポンプの吸い 込み口54における流体の圧力は「上部」圧力である。 直線蠕動ポンプ20の蠕動フィンガを駆動するためにモ 一タ30と制御電子装置32が用いられる。好適な実施 例においては、ポンプ装置はマイクロプロセッサ26 と、メモリ34と、警報器36と、オペレータ制御パネ ル38と、表示装置40とを更に有する。表示装置44 はマイクロプロセッサ26により決定された上部圧力を 表示するためのモニタまたはストリップチャートで構成 することができる。下流側部分18の末端部に、下流側 部分18を患者14の血管系に連結するために用いられ るカニューラ42が取付けられる。ポンプ20は非経口 的な流体を、選択されれた流量、および上部圧力とは異 なることがある選択された圧力で患者14に供給する。 【0017】ある従来の装置においては、圧力センサ2 2からの出力信号を処理して、下流側の閉塞、浸透その 40 他の状態の存在を検出する。それらの装置のあるもの は、前記従来技術の説明の項で述べた。たとえば、圧力 信号を供給する圧力センサ22はあるポンプ装置に既に

【0018】典型的な蠕動ポンプは、たわみ管の部分を カム追従フィンガにより順次押すことにより動作する。 圧力はポンプの吸い込み口から始まって管の部分に順次 加えられる。少なくとも1つのフィンガが管を閉塞する ために十分強く常に押す。実際的な問題として、次のフ インガが管を既に閉塞するまでは、1つのフィンガが管 る。それから上流側閉塞検出機構を用いて空の流体供給 50 を閉塞することから引き込まれない。したがって、ポン

組込まれている。

プの吸い込み口から吐出口まで直接流体経路が存在する 特はない。

【0019】次に、上部圧力に柔軟な室の形成における 蝶動ポンプ20の動作能様が示されている図2A. Bを 参照する。参照番号45によりまとめて示されている機 動ポンプフィンガは、ポンピング部分44の長さ全体に わたって動く閉塞領域を形成する。図2Aにおいて、ポ ンピング部分44の最も下流側の部分すなわち吐出口5 6は蠕動フィンガ48により閉塞され、最も上流側の蠕 動フィンガ50はポンプの吸い込みロ54におけるポン 10 り検出される。そのパルスは上部圧力と下流側部分の圧 ピング部分44をまだ閉塞していない。したがって、上 部圧力の流体は上流側部分16からポンピング部分44 に流れ込むが、下流側部分18内の流体との連絡は最も 下流側の蠕動フィンガ48による閉塞によって阻止され る。したがって、ポンピング部分44は今は上部圧力に ある。

【0020】図2Bには柔軟な室すなわちポンピング部 分44の形成が示されている。前記したように、最初の フィンガが引き込められる前に第2のフィンガが閉塞す ることにより、流体供給源と患者との間の流体の直接の 20 流れを阻止する。この場合には、上流側フィンガ50 は、下流側フィンガ48が引き込まれる前は閉塞するか ら、両方のフィンガ48と50が図2に示されているよ うに閉塞している時点が存在し、それにより、上部圧力 にある流体を捕らえる柔軟な室を形成する。

【0021】図2Cにおいて、最も上流側の蠕動するフ インガ50は、最も下流側のフィンガ48が閉塞位置か ら引き込む前は、室すなわちポンピング部分44の閉塞 を続ける。柔軟な室44に捕らえられている上部圧力の 流体は、今は下流側部分18内の流体と自由に通じる。 30 したがって、柔軟な室44内の流体は流管の上流側部分\*

【数1】  $Q = \frac{1}{R} \int_{0}^{t} (P(t) - P_{eq}) dt$ 

ここに、Rは流体の流れに対する全抵抗、P(t) はダイ ナミック圧力、P。は平衡圧力、である。式(1)のP : にP<sub>tod</sub> を代入し、P<sub>1</sub> にP<sub>e</sub> を代入し、式(1) お※

 $P_{bcad} = P_{eq} + \frac{1}{RC_{nunn}} \int_{0}^{t} (P(t) - P_{eq}) dt$ 

ここに、Pww は上部圧力、Cpm は柔軟な室44の実 効コンプライアンス、である。

【0027】式(3)に示すように、上部圧力を決定す る時には平衡圧力P。と抵抗Rも考慮する。平衡圧力の 決定は、流体の流れが上部圧力にある流体の量により乱 される前の測定値に依存することがあるが、平衡圧力 を、その量に対する圧力測定値の応答の前と後において 50 きる。したがって、基線圧力すなわち平衡圧力P。は平

\* 16と下流側部分18に交互に通じる。

【0022】最も下流側のフィンガ48が引き込められ て、流体が柔軟な室44に通じることができるようにさ れると、最も上流側のフィンガ50は流管を既に閉塞し ているから、柔軟な室44に貯蔵されている量の上部圧 力の流体が下流側部分18ヘレ流れ込むことができる。 そうすると、柔軟な室44内部の圧力と下流側部分18 内部の圧力が等しくなる。測定可能な圧力平衡パルスが 発生される。その圧力平衡パルスは圧力センサ22によ 力との差に比例し、上部圧力を決定するためにその圧力 差を本発明に従って処理することができる。

10

【0023】柔軟な室44を構成するたわみ材料はある コンプライアンス (Cme ) を有する。そのコンプライ アンスは、一実施例においては、上部圧力の決定に際し て考慮する。コンプライアンスというのは、全ての実際 的な目的に対して、管材料のある特性であることが見出 されている。というのは、IV液体はほとんど圧縮でき ないからである。圧力がP、からP。ヘン変化すると、 ある量「Q」の液体が流れるが、その量Qは次式のよう に管材料のコンプライアンスに依存する。

[0024] Q=Cmm (Pz -P1) P。がP。より高いときは、流体は順方向に流れ、P。 がP。より低いときは、流体は逆方向に流れる。ここで 用いる「コンプライアンス」という用語は、柔軟な室を 構成する材料の弾性の測定値を指すものとする。それは ここでは定数で与えられる。流れる流体の量Qは流体系 の抵抗Rにより次式に従って影響も受ける。 [0025]

$$(P(t) -P_{eq}) d t$$

いくつかの圧力指示値にわたって平均することが好まし い。平衡状態が零流量状態である必要はない。平衡圧力 はむしろ動圧力であり、定期的に監視され、決定され る。上部圧力になっているある量の液体を放出する前に 流体系が平衡状態にあることが必要なだけであり、それ が再び平衡状態に戻るまで圧力応答を積分することがで 衛状態における平均圧力(流れによるものを含む)であ

【0028】流体の全流れ抵抗Rは、1989年3月1 3日に出願された米国特許出願07/322, 291号 明細書に開示されている装置、または米国特許第4,7 43、228号明細書に開示されている技術により決定 するのが好ましい。

【0029】上部圧力を決定するこの方法の確度は、装 置間のコンプライアンスの安定度と経時変化に対する安 定性に依存する。しかし、閉塞検出器として使用するた 10 ることを示すほど上部圧力が低いかどうかを判定する。 めには、高い確度は不要である。流管が閉塞されると、 ポンプは大きい負圧力、すなわち、大気圧より低い圧 カ、を急速に生ずる。この結果として圧力センサ22に より大きい負の平衡パルスが発生される。その平衡パル スは容易に識別することができる。しかし、空の流体供 給源検出器として使用するためには、もっと高い確度を 必要とする。流体の上部圧力が指定された最低圧力しき い値以下に低下するか、滴下室内部の狭い部分で、また は管自体の内部で供給流体のレベルが低下したかのよう に上部圧力が急速に変化し始めたとすると、流体供給源 20 76を、空の流体供給容器の存在の判定に使用すること は空であると仮定される。

【0030】マイクロプロセッサ26とオペレータ・コ ンソール28には警報器36が組み合わされる。この警 報器は上部圧力と、システム・メモリ34に記憶されて いる1つまたは複数の基準値すなわちしきい値との比較 に応答する。基準値はオペレータ・コンソール38のメ モリ34に入力することもでき、または予めプログラム することができる。

【0031】次に、上部圧力を決定するために本発明の 原理に従う処理装置57が示されている図3を参照す る。平衡圧力P。として、柔軟な室44による上部圧力 にある流体の貯蔵量の放出前と放出後の圧力の決定の平 均を用いるのが好ましい。これにより、患者の動きによ る圧力変化のような人工的な変化に対するかなりの耐性 が得られる。下流側圧力のサンプルを等しい時間間隔、 たとえば、0.005 秒、で得ることができるように、下流 側圧力の反復サンプリングのタイミングを定めることを 意図するものである。

【0032】平衡圧力58は次のようにして決定され カ58とP(t)ーP。として比較する。時間的な差を 計算するための積分器62が積分値を表す信号を発生す るようにされる。この種分信号は、スケーラ一部64に おいて、注入装置における流体流れ抵抗66と、柔軟な 室44を構成している材料のコンプライアンス68とに 従って換算される。注入装置における流体流れ抵抗66 は時間的に変化させて、抵抗決定を更新することができ る。コンプライアンス68は、スケーラー部64により アクセスすることができるように、メモリ34に記憶す るのが好ましい。

【0033】液体の流れ抵抗66と季畝な室44のコン プライアンス68による換算64の結果として、差圧力 (Per )と呼ぶことができる値が得られる。加算器7 0 においてその差圧力に平衡圧力が加えられて上部圧力 を決定する。上部圧力の圧力が比較器72において第1 のしきい値74と比較され、流体供給源圧力が指定され た最低値以下に低下したかどうかを判定して、空の流体 供給源を指示する。比較器72において上部圧力値は第 2のしきい値76と比較され、上流側での閉塞が存在す

【0034】比較器72は、上部圧力の測定値の間の変 化をモニタし、上部圧力が変化を迅速に開始するものと すると、その変化を用いて、供給びんの首部分、または 柔軟な室の狭い部分、あるいは流体供給源の横断面の面 積が管のそれより広い場合には管自体において流体のレ ベルが低下していることを示す。したがって、連続する Pter 圧力の間の差を第3のしきい値78と比較し、そ のような状態が存在するかどうかを判定する。上部圧力 の変化に対する流量76の影響を考えるためにその流量 ができる。たとえば、上部圧力の変化が増大しているの に流量が一定であるとすると、空の流体供給容器を指示 することができる。

【0035】別の実施例においては、下流側圧力測定値 を練82を介して比較器72に供給し、その比較器72 において第4のしきい値80と比較して所定の最小値で の大きい不一致を決定し、かつ流管の上流側での閉塞も 検出することができる。

【0036】圧力値がしきい値以下に低下し、または圧 30 力の変化があるしきい値を超えた時に、比較器72は警 報信号82を発生するようにされる。

【0037】警報信号82は、音声警報信号と、光学的 警報信号と、他の種類の警報信号との少なくとも1つを 発生するための警報器86により受けられる。比較器7 2からの種々の警報信号によって種々の警報が発生され る結果となることがある。たとえば、閉塞警報を連続ト ーンとすることができ、他方低い上部圧力警報を反復さ れるトーンにできる。表示装置40は上部圧力を表示 し、かつ希望に応じて警報を表示することができ、更に る。一連の動圧力サンプルをとり、比較器60で平衡圧 40 他の装置情報を表示することができる。更に、警報器が 警報信号を発生した時に、マイクロプロセッサ26はポ ンプの運転を自動的に停止することができる。

> 【0038】積分器の別の実現は電子的アナログ積分 と、油圧積分と、または機械的積分とを使用することを 含む。圧力波の積分を評価できる別の方法を用いてこの 技術を実現することができる。更に、ポンプが1つの圧 力における流体を貯蔵することができる室を含み、それ に続いてその室を流管の別の圧力になっている部分に連 結するものとすると、別の種類のポンプも使用すること 50 ができる。

(8)

【0039】図1を再び参照する。この図には、滴下室 内部の流体のレベルが最低レベル以下に低下した時に、 消下室を有するフロート弁88が上流側部分16を閉塞 するように、フロート弁88が含まれる実施例が示され ている。ポンプ20が連続運転すると、前記のように大 きな負圧力が柔軟な室44の内部に発生され、かつ大き い負の平衡パルスが発生される。したがって、閉塞信号 により空の流体供給源状態が指示される。親木フィルタ のような、空気を通さない別の類似の機構も用いて、流 体供給源が空になった時に強制的に閉塞状態にすること 10 処理装置の一実施例のブロック図である。 ができる。

#### [0040]

【発明の効果】以上の説明から、点滴装置における点滴 流管内の上流側部分の状態を検出する方法および装置に より、既存の蠕動ポンプ機構を改造する必要なしに、そ のような検出を行うことができる。下流側の圧力センサ が既に組み込まれている場合には、そのような上流側状 態検出を行うために、信号処理を本発明に従って変更す ることができる。点滴装置における点滴流管内の状態を 検出する方法および装置により、既存の蠕動ポンプ機構 20 を改造する必要なしに、上流側閉塞を監視する簡単で、 低コストの技術が得られる。下流側に置かれた本発明の 装置は、既存の蠕動ポンプIV注入装置における上流側 閉塞を容易に行うことができる。

【0041】また、柔軟な室の上の流体供給源の高さ9 0と、上流側管の内径90および流体供給源容器の横断 面面積90が既知である場合には、流体供給源に残って いる流体の量を上部圧力から決定することができる。管 内の流体ポンプを流れる流量79が既知である場合に は、流体供給源が空になるまでに残っている時間も決定 30 62 積分器 することができる。

#### 【図面の簡単な説明】

【図1】点薀装置に応用された本発明の原理を含む流管

の上流側部分の状態を検出する装置のブロック図であ

【図2】Aは柔軟な流体室の形成をとくに示す、柔軟な 管の部分における直線博動ポンプの動作の1つのステッ プを示し、Bは柔軟な管の部分における直線標動ポンプ の動作の別のステップを示し、柔軟な管の部分における 直線揺動ポンプの動作の更に別のステップを示す図であ

【図3】本発明に従って上部圧力を決定するための信号

#### 【符号の説明】

- 10 流管の上流側部分の状態を検出する装置
- 12 液体供給源
- 16 流管の上流側部分
- 18 流管の下流側部分
- 20 ポンプ
- 22 圧力センサ
- 24 A/D変換器
- 26 マイクロプロセッサ
- 28 適下室 30 モータ
- 32 制御電子装置
  - 34 メチリ
  - 36 警報器
  - 38 オペレータ制御パネル
    - 40 表示装置
  - 4.4 ポンピング部分
  - 46、50 蠕動ポンプフィンガ
  - 60 比較器
  - 70 加算器
  - 72 比較器
  - 86 警報器

[図1]





