```
A = \{x \mid x \text{ är en färg i den svenska flaggan}\}

B = \{x \mid x \in A \text{ eller så kan } x \text{ framställas genom att blanda färger i } A\}
```

1.

a)

 $A = \{blå, gul\}$

b)

B = {blå, gul, grön}

c)

 $A \cup B = \{blå, gul, grön\}$

d)

 $A \cap B = \{blå, gul\}$

e)

 $(A \setminus B) = \emptyset$

 $(B \setminus A) = \{gr\"{o}n\}$

 $(A \setminus B) \cup (B \setminus A) = \{gr\"{o}n\}$

2.

a)

 $B\subseteq A$ är falskt. B innehåller "grön", vilket inte finns med i A. |B| är också större än |A|, så därav kan B inte vara delmängd till A.

b) |B| = 3 är sant. B har 3 element.

c)

 $(A \cap B) \subseteq B$ är sant. $A \cap B$ blir då alltså {"blå", "gul", "grön"}, vilket är en delmängd till B.

Detta skulle inte fungera om $A \cap B$ skulle vara en äkta delmängd.

3.

A är en mängd så att |A| = n.

B är en mängd så att B⊆A.

P(A) är alla delmängder för A.

Varje element $x \in A$ kan antingen finnas eller inte finnas med i B, och x är oberoende av de andra elementen om det är med eller inte. Därför har man då $2_1 * 2_2 * ... * 2_n$ (2^n) olika delmängder till A, vilket betyder att P(A) innehåller 2^n mängder.

5.

X är en mängd så att |X| = 2015 rätt Y är en mängd så att |Y| = 1977 rätt

 $|X \cup Y| = 3667$ rätt (totalt antal unika rätt)

 $X \cap Y \{x \mid x \text{ är "lätt"}\}$

$$|X \cap Y| = (|X| + |Y|) - |X \cup Y| =$$

= $(2015 + 1977) - 3667 =$
= $3992 - 3667 =$
= 325