IB Analysis & Topology

Ishan Nath, Michaelmas 2022

Based on Lectures by Dr. Paul Russell

October 30, 2022

Page 1 CONTENTS

Contents

Ι	Ge	eneralizing Continuity and Convergence	2
1	Three Examples of Convergence		
	1.1	Convergence in \mathbb{R}	2
	1.2	Convergence in \mathbb{R}^2	2
	1.3	Convergence of Functions	4
	1.4	Application to Power Series	8
	1.5	Uniform Continuity	11
2	Metric Spaces		
	2.1	Definitions and Examples	14
	2.2	Completeness	20
	2.3	Sequential Compactness	26
	2.4	Topology of Metric Spaces	28
Index			34

Part I

Generalizing Continuity and Convergence

1 Three Examples of Convergence

1.1 Convergence in \mathbb{R}

Let (x_n) be a sequence in \mathbb{R} and $x \in \mathbb{R}$. We say (x_n) converges to x, and write $x_n \to x$, if for all $\varepsilon > 0$, there exists N such that for all $n \geq N$, $|x_n - x| < \varepsilon$.

In \mathbb{R} , one useful fact is the **triangle inequality** $-|a+b| \leq |a| + |b|$. We also have two key theorems:

Theorem 1.1 (Bolzano-Weierstrass Theorem).

A bounded sequence in \mathbb{R} must have a convergent subsequence.

Recall that a sequence (x_n) in \mathbb{R} is **Cauchy** if for all $\varepsilon > 0$, there exists N, such that for all $m, n \geq N$, $|x_m - x_n| < \varepsilon$. It is easy to show every convergent sequence is Cauchy. We also have the following:

Theorem 1.2 (General Principle of Convergence).

Any Cauchy sequence in \mathbb{R} converges.

This can be proven by Bolzano-Weierstrass theorem.

1.2 Convergence in \mathbb{R}^2

Let (z_n) be a sequence in \mathbb{R}^2 , and $z \in \mathbb{R}^2$. We wish to define $(z_n) \to z$.

In \mathbb{R} , we used the norm |x|. In \mathbb{R}^2 , if we have z=(x,y), then we can say $||z||=\sqrt{x^2+y^2}$. This also satisfies the triangle inequality $-||a+b|| \leq ||a|| + ||b||$.

Definition 1.1. Let (z_n) be a sequence in \mathbb{R}^2 , and $z \in \mathbb{R}^2$. We say that (z_n) **converges** to z, and write $z_n \to z$, if for all $\varepsilon > 0$, there exists N such that for all $n \geq N$, $||z_n - z|| < \varepsilon$.

Equivalently, $z_n \to z$ if and only if $||z_n - z|| \to 0$.

Lemma 1.1. If (z_n) , (w_n) are sequences in \mathbb{R}^2 with $z_n \to z$, $w_n \to w$. Then $z_n + w_n \to z + w$.

Proof:

$$||(z_n + w_n) - (z + w)|| \le ||z_n - z|| + ||w_n - w|| \to 0 + 0 = 0.$$

In fact, given convergence in \mathbb{R} , convergence in \mathbb{R}^2 is easy.

Proposition 1.1. Let (z_n) be a sequence in \mathbb{R}^2 and let $z \in \mathbb{R}^2$. Write $z_n = (x_n, y_n)$ and z = (x, y). Then $z_n \to z$ if and only if $x_n \to x$ and $y_n \to y$.

Proof:

First, note $|x_n - x|, |y_n - y| \le ||z_n - z||$, so $||z_n - z|| \to 0$ implies $|x_n - x|, |y_n - y| \to 0$.

Now, if
$$|x_n - x|, |y_n - y| \to 0$$
, then $||z_n - z|| = \sqrt{|x_n - x|^2 + |y_n - y|^2} \to 0$.

Definition 1.2. A sequence (z_n) in \mathbb{R}^2 is **bounded** if there exists $M \in \mathbb{R}$ such that for all $n, ||z_n|| \leq M$.

Theorem 1.3 (Bolzano-Weierstrass in \mathbb{R}^2).

A bounded sequence in \mathbb{R}^2 must have a convergent subsequence.

Proof: Let (z_n) be a bounded subsequence in \mathbb{R}^2 . Write $z_n = (x_n, y_n)$. Now $|x_n|, |y_n| \leq ||z_n||$, so x_n, y_n are bounded in \mathbb{R} .

By Bolzano-Weierstrass, x_n has a convergent subsequence, say $x_{n_j} \to x \in \mathbb{R}$. Similarly (y_{n_j}) is bounded, so it has a convergent subsequence $y_{n_{j_k}} \to y$. Since we know $x_{n_{j_k}} \to x$, $z_{n_{j_k}} \to z = (x, y)$.

Definition 1.3. A sequence $(z_n) \in \mathbb{R}^2$ is **Cauchy** if for all $\varepsilon > 0$, there exists N such that for all $m, n \geq N$, $||z_m - z_n|| < \varepsilon$.

It is easy to show a convergent sequence in \mathbb{R}^2 is Cauchy.

Theorem 1.4 (General Principle of Convergence for \mathbb{R}^2).

Any Cauchy sequence in \mathbb{R}^2 converges.

Proof: Let (z_n) be a Cauchy sequence in \mathbb{R}^2 . Write $z_n = (x_n, y_n)$. For all $m, n, |x_m - x_n| \leq ||z_m - z_n||$, so (x_n) is a Cauchy sequence in \mathbb{R} , thus it converges in \mathbb{R} . Similarly, (y_n) converges in \mathbb{R} , so (z_n) converges.

1.3 Convergence of Functions

Let $X \subset \mathbb{R}$. Let $f_n : X \to \mathbb{R}$, and let $f : X \to \mathbb{R}$. What does it mean for (f_n) to converge to f?

Definition 1.4. Say (f_n) converges pointwise to f, and we write $f_n \to f$ pointwise, if for all $x \in X$, $f_n(x) \to f(x)$ as $n \to \infty$.

Although this is simple and easy to check, it doesn't preserve some 'nice' properties that we want.

Example 1.1. In all three examples, X = [0, 1], and $f_n \to f$ pointwise.

1. We will construct f_n continuous, but f not. Take

$$f_n(x) = \begin{cases} nx & x \le \frac{1}{n}, \\ 1 & x \ge \frac{1}{n}. \end{cases}, f = \begin{cases} 0 & x = 0, \\ 1 & x > 0. \end{cases}$$

Then $(f_n) \to f$ pointwise, but f is not continuous.

2. We will construct f_n Riemann integrable, but f not. Take the function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q}, \\ 0 & x \notin \mathbb{Q}. \end{cases}$$

Enumerate the rationals in [0,1] as q_1, q_2, \ldots For $n \geq 1$, set

$$f_n(x) = \begin{cases} 1 & x = q_1, \dots, q_n, \\ 0 & \text{otherwise.} \end{cases}$$

3. We will construct f_n Riemann integrable, f Riemann integrable, but the integrals do not converge. Take f(x) = 0 for all x. We construct f_n with integral 1, such as

$$f_n(x) = \begin{cases} n & 0 < x < \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

We consider another definition of convergence.

Definition 1.5 (Uniform Convergence). Let $X \subset \mathbb{R}$, $f_n : X \to \mathbb{R}$, $f : X \to \mathbb{R}$. We say (f_n) converges uniformly to f, and write $f_n \to f$ uniformly, if for all $\varepsilon > 0$, there exists N, such that for all $x \in X$ and all $n \ge N$, $|f_n(x) - f(x)| < \varepsilon$.

In particular, $f_n \to f$ uniformly implies $f_n \to f$ pointwise.

Equivalently, $f_n \to f$ uniformly if for sufficiently large n, $f_n - f$ is bounded, and

$$\sup_{x \in X} |f_n(x) - f(x)| \to 0.$$

Theorem 1.5. Let $X \subset \mathbb{R}$, $f_n : X \to \mathbb{R}$ be continuous, and let $f_n \to f : X \to \mathbb{R}$ uniformly. Then f is continuous.

Proof: Let $x \in X$, and pick $\varepsilon > 0$. As $f_n \to f$ uniformly, we can find N such that for all $n \geq N$ and $\in X$,

$$|f_n(y) - f(y)| < \varepsilon.$$

In particular, we may take n = N. As f_N is continuous, we can find $\delta > 0$ such that for all $y \in X$,

$$|y - x| < \delta \implies |f_N(y) - f_N(x)| < \varepsilon.$$

Now let $y \in X$ with $|y - x| < \delta$. Then

$$|f(y) - f(x)| \le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

But 3ε can be made arbitrarily small, so f is continuous.

Remark. This is often called a ' 3ε proof' (or a ' $\varepsilon/3$ proof').

Theorem 1.6. Let $f_n:[a,b]\to\mathbb{R}$ be integrable and let $f_n\to f:[a,b]\to\mathbb{R}$ uniformly. Then f is integrable and

$$\int_{a}^{b} f_{n} \to \int_{a}^{b} f$$

as $n \to \infty$.

Proof: As $f_n \to f$ uniformly, we can pick n sufficiently large such that $f_n - f$ is bounded. Also f_n is bounded, so by the triangle inequality $f = (f - f_n) + f_n$ is bounded.

Let $\varepsilon > 0$. As $f_n \to f$ uniformly, there is some N such that for all $n \geq N$ and $x \in [a, b]$, we have $|f_n(x) - f(x)| < \varepsilon$. By Riemann's criterion, there is some dissection \mathcal{D} of [a, b] for which

$$S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) < \varepsilon.$$

Let $\mathcal{D} = \{x_0, x_1, \dots, x_k\}$, where $a = x_0 < x_1 < \dots < x_k = b$. Now,

$$S(f, \mathcal{D}) = \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$$

$$\leq \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} (f_N(x) + \varepsilon)$$

$$= \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f_N(x) + \sum_{i=1}^{k} (x_i - x_{i-1}) \varepsilon$$

$$= S(f_N, \mathcal{D}) + (b - a) \varepsilon.$$

Similarly, $s(f, \mathcal{D}) \ge s(f_N, \mathcal{D} - (b - a)\varepsilon$, so

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) < S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) + 2(b-a)\varepsilon < (2(b-a)+1)\varepsilon..$$

But this can be made arbitrarily small, so by Riemann's criterion, f is integrable over [a, b].

Now for any n sufficiently large such that $f_n - f$ is bounded,

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| = \left| \int_{a}^{b} (f_{n} - f) \right|$$

$$\leq \int_{a}^{b} |f_{n} - f|$$

$$\leq (b - a) \sup_{x \in [a, b]} |f_{n}(x) - f(x)| \to 0$$

as $n \to \infty$ since $f_n \to f$ uniformly.

Unfortunately, uniform convergence cannot preserve all properties.

Example 1.2. Take $f_n: [-1,1] \to \mathbb{R}$, where each f_n is differentiable and $f_n \to f$ uniformly, but f is not differentiable. Take

$$f_n = \sqrt{\left(\frac{1}{n} + x^2\right)}.$$

Then f_n is differentiable, and also uniformly converges to f(x) = |x|. But f is not differentiable.

In fact, we need uniform convergence of the **derivatives**.

Theorem 1.7. Let $f_n:(u,v)\mapsto\mathbb{R}$ with $f_n\to f:(u,v)\to\mathbb{R}$ pointwise. Suppose further that each f_n is continuously differentiable and that $f'_n\to g:(u,v)\to\mathbb{R}$ uniformly. Then f is differentiable with f'=g.

Proof: Fix $a \in (u, v)$. Let $x \in (u, v)$. By FTC, we have each f'_n is integrable over [a, x] and

$$\int_a^x f_n' = f_n(x) - f_n(a).$$

But $f'_n \to g$ uniformly, so by theorem 5, g is integrable over [a, x] and

$$\int_{a}^{x} g = \lim_{n \to \infty} \int_{a}^{x} f'_{n}(x) = f(x) - f(a).$$

So we have shown that for all $x \in (u, v)$,

$$f(x) = f(a) + \int_{a}^{x} g.$$

By theorem 4, g is continuous so by FTC, f is differentiable with f' = g.

Remark. It would have sufficed to assume that $f_n(x) \to f(x)$ for a single value of x

Definition 1.6. Let $X \subset \mathbb{R}$ and let $f_n : X \to \mathbb{R}$ for each $n \geq 1$. We say (f_n) is **uniformly Cauchy** if for all $\varepsilon > 0$, there exists N such that for all $m, n \geq N$ and for all $x \in X$,

$$|f_m(x) - f_n(x)| < \varepsilon.$$

It is easy to show that a uniformly convergent sequence is uniformly Cauchy.

Theorem 1.8 (General Principle of Uniform Convergence). Let (f_n) be a uniformly Cauchy sequence of functions $X \to \mathbb{R}$. Then (f_n) is uniformly convergent.

Proof: Let $x \in X$, and $\varepsilon > 0$. Then there exists N, such that for all $m, n \geq N$ and for all $y \in X$, $|f_m(y) - f_n(y)| < \varepsilon$. In particular, $|f_m(x) - f_n(x)| < \varepsilon$, so $(f_n(x))$ is a Cauchy sequence in \mathbb{R} , so by GPC, it converges pointwise, say $f_n(x) \to f(x)$ as $n \to \infty$.

Let $\varepsilon > 0$. Then we can find an N such that for all $m, n \geq N$ and all $y \in X$, $|f_m(y) - f_n(y)| < \varepsilon$. Fixing y, m and letting $n \to \infty$, $|f_m(y) - f(y)| \leq \varepsilon$. But since y is arbitrary, this shows $f_n \to f$ uniformly.

We will also try to take Bolzano-Weierstrass over to the space of functions.

Definition 1.7. Let $X \subset \mathbb{R}$ and let $f_n : X \to \mathbb{R}$ for each $n \geq 1$. We say (f_n) is **pointwise bounded** if for all x, there exists M such that for all n, $|f_n(x)| \leq M$.

We say (f_n) is **uniformly bounded** if there exists M, such that for all x and n, $|f_n(x)| \leq M$.

We would like a uniform Bolzano-Weierstrass, saying if (f_n) is a uniformly bounded sequence of functions, then it has a uniformly convergent subsequence. But this is not true.

Example 1.3. Take $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 1 & x = n, \\ 0 & x \neq n \end{cases}.$$

Then (f_n) is uniformly bounded, but if $m \neq n$, then $f_m(m) = 1$ and $f_n(m) = 0$, so $|f_m(m) - f_n(m)| = 1$, hence (f_n) are not uniformly Cauchy, so cannot be uniformly convergent.

1.4 Application to Power Series

Recall that if $\sum a_n x^n$ is a real power of series with radius of convergence R > 0, then we can differentiate and integrate it term-by-term within (-R, R).

Definition 1.8. Let $f_n: X \to \mathbb{R}$ for each $n \geq 0$. We say that the series

$$\sum_{n=0}^{\infty} f_n$$

converges uniformly if the sequence of partial sums (F_n) does, where $F_n = f_0 + f_1 + \cdots + f_n$.

If we can prove that $\sum a_n x^n$ is uniformly convergent, then we can apply earlier theorems to show differentiability. However this is not quite true, for example take

$$\sum_{n=0}^{\infty} x^n.$$

However, we do have another approach. We can show that if 0 < r < R, then we do have uniform convergence on (-r, r), and then given $x \in (-R, R)$, we can choose |x| < r < R and use the above to show all the properties we want. This is known as the **local uniform convergence of power series**.

Lemma 1.2. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Let 0 < r < R. Then $\sum a_n x^n$ converges uniformly on (-r, r).

Proof: Define $f, f_m : (-r, r) \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad f_m(x) = \sum_{n=0}^{m} a_n x^n.$$

Recall that $\sum a_n x^n$ converges absolutely for all x with |x| < R. Let $x \in (-r, r)$. Then

$$|f(x) - f_m(x)| = \left| \sum_{n=m+1}^{\infty} a_n x^n \right|$$

$$\leq \sum_{n=m+1}^{\infty} |a_n| |x|^n \leq \sum_{n=m+1}^{\infty} |a_n| r^n,$$

which converges by absolute convergence at r. hence if m is sufficiently large, $f - f_m$ is bounded and

$$\sup_{x \in (-r,r)} |f(x) - f_m(x)| \le \sum_{n=m+1}^{\infty} |a_n| r^n \to 0$$

as $m \to \infty$.

Theorem 1.9. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0.

Define $f:(-R,R)\to\mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Then,

- (i) f is continuous;
- (ii) For any $x \in (-R, R)$, f is integrable over [0, x] with

$$\int_0^x = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Proof: Let $x \in (-R, R)$. Pick r such that |x| < r < R. By the above lemma, $\sum a_n y^n$ converges uniformly on (-r, r). But the partial sum functions are all continuous on (-r, r), hence $f|_{(-r,r)}$ is continuous. Thus f is a continuous function on (-R, R).

Moreover, $[0, x] \subset (-r, r)$ so we also have $\sum a_n y^n$ converges uniformly on [0, x]. Each partial sum on [0, x] is a polynomial, so can be integrated with

$$\int_0^x \sum_{n=0}^m a_n y^n \, \mathrm{d}y = \sum_{n=0}^m \int_0^x a_n y^n \, \mathrm{d}y = \sum_{n=0}^m \frac{a_n}{n+1} x^{n+1}.$$

Thus, f is integrable over [0, x] with

$$\int_0^x f = \lim_{m \to \infty} \int_0^x \sum_{n=0}^m a_n y^n \, \mathrm{d}y = \lim_{m \to \infty} \sum_{n=0}^m \frac{a_n}{n+1} x^{n+1} = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

For differentiation, we need the following lemma:

Lemma 1.3. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Then the power series $\sum na_n x^{n-1}$ has radius of convergence at least R.

Proof: Let $x \in \mathbb{R}$, 0 < |x| < R. Pick w with |x| < w < R. Then $\sum a_n w^n$ is absolutely convergent, so $a_n w^n \to 0$. Therefore, there exists M such that $|a_n w^n| \le M$ for all n. For each n,

$$|na_nx^{n-1}| = |a_nw^n| \left| \frac{x}{w} \right|^n \frac{1}{|x|} n.$$

Fix n, let $\alpha = |x/w| < 1$, and let c = M/|x|, a constant. Then $|na_nx^{n-1}| \le cn\alpha^n$. By comparison test, it suffices to show $\sum n\alpha^n$ converges. Note

$$\left| \frac{(n+1)\alpha^{n+1}}{n\alpha^n} \right| = \left(1 + \frac{1}{n} \right) \alpha \to \alpha < 1$$

as $n \to \infty$, so this converges by the ratio test.

Theorem 1.10. Let $\sum a_n x^n$ be a real power series with radius of convergence R > 0. Let $f: (-R, R) \to \mathbb{R}$ be defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Then f is differentiable and for all $x \in (-R, R)$,

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Proof: Let $x \in (-R, R)$. Pick r with |x| < r < R. Then $\sum a_n y^n$ converges uniformly on (-r, r). Moreover, the power series $\sum na_n y^{n-1}$ had radius of convergence at least R, and so also converges uniformly on (-r, r).

The partial sum functions $f_m(y)$ are polynomials, so are differentiable with

$$f'_m(y) = \sum_{n=1}^m n a_n y^{n-1}.$$

we now have f'_m converging uniformly on (-r,r) to the function

$$g(y) = \sum_{n=1}^{\infty} n a_n y^{n-1}.$$

Hence, $f|_{(-r,r)}$ is differentiable and for all $y \in (-r,r)$, f'(y) = g(y). In particular, f is differentiable at x with f'(x) = g(x). This gives f is a differentiable function on (-R,R) with derivative g as desired.

1.5 Uniform Continuity

Let $X \subset \mathbb{R}$. Let $f: X \mapsto \mathbb{R}$. Recall that f is **continuous** if for all $\varepsilon > 0$ and for all $x \in X$, there exists $\delta > 0$, such that for all $y \in X$ with $|x - y| < \delta$, we have

$$|f(x) - f(y)| < \varepsilon$$
.

Definition 1.9. We say f is **uniformly continuous** if for all $\varepsilon > 0$, there exists $\delta > 0$, such that for all $x, y \in X$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

Remark. Clearly if f is uniformly continuous, then f is continuous. The converse is not true.

Example 1.4. Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Then f is continuous as it is a polynomial. Suppose $\delta > 0$. Then,

$$f(x+\delta) - f(x) = (x+\delta)^2 - x^2 = 2\delta x + \delta^2 \to \infty$$

as $x \to \infty$. So the condition fails for $\varepsilon = 1$.

Even on the bounded interval (0,1), take f(x) = 1/x. This is clearly continuous, but cannot be uniformly continuous as it approaches infinity as x approaches 0.

Theorem 1.11. A continuous real-valued function on a closed bounded interval is uniformly continuous.

Proof: Let $f:[a,b] \to \mathbb{R}$, and suppose f is continuous but not uniformly continuous. Then we can find an $\varepsilon > 0$ such that, for all $\delta > 0$, there exist $x, y \in [a,b]$ with $|x-y| < \delta$ but $|f(x)-f(y)| \ge \varepsilon$. In particular, take $\delta = 1/n$.

Thus, we can find sequence $(x_n), (y_n)$ in [a, b] with $|x_n - y_n| < 1/n$ but $|f(x_n) - f(y_n)| \ge \varepsilon$. The sequence (x_n) is bounded, so by Bolzano-Weierstrass it has a convergent subsequence $x_{n_i} \to x$. Since [a, b] is closed, $x \in [a, b]$.

Then $x_{n_j} - y_{n_j} \to 0$, so also $y_{n_j} \to x$. But f is continuous at x, so there exists $\delta > 0$ such that for all $y \in [a,b]$, $|y-x| < \delta$ implies $|f(y)-f(x)| < \varepsilon/2$. Take such a δ . As $x_{n_j} \to x$, we can find J_1 such that $j \geq J_1$ implies $|x_{n_j} - x| < \delta$. Similarly, we can find J_2 such that for $j \geq J_2$, $|y_{n_j} - x| < \delta$. Let $j = \max\{J_1, J_2\}$. Then we have $|f(x_{n_j}) - f(x)|, |f(y_{n_j}) - f(x)| < \varepsilon/2$. But by triangle inequality,

$$|f(x_{n_j}) - f(y_{n_j})| \le |f(x_{n_j}) - f(x)| + |f(x) - f(y_{n_j})| < \varepsilon,$$

a contradiction.

Corollary 1.1. A continuous real-valued function on a closed bounded interval is bounded.

Proof: Let $f:[a,b] \mapsto \mathbb{R}$ be continuous, and so uniformly continuous. Then we can find $\delta > 0$ such that for all $x,y \in [a,b], |x-y| < \delta$ implies |f(x)-f(y)| < 1. Let $M = \lceil (b-a)/\delta \rceil$. Then for any $x \in [a,b]$, we can find $a = x_0 \le x_1 \le \ldots \le x_M = x$, with $|x_i - x_{i-1}| < \delta$. Then we have

$$|f(x)| \le |f(a)| + \sum_{i=1}^{M} |f(x_i) - f(x_{i-1})| < |f(a)| + M.$$

Corollary 1.2. A continuous real-valued function on a closed bounded interval is integrable.

Proof: Let $f:[a,b] \to \mathbb{R}$ be continuous, and so uniformly continuous. Let $\varepsilon > 0$. Then we can find $\delta > 0$ such that for all $x, y \in [a,b]$, $|x-y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$. Let $\mathcal{D} = \{x_0 < x_1 < \ldots < x_n\}$ be a dissection such that $x_i - x_{i-1} < \delta$, and $i \in \{1, \ldots, n\}$. Then for any $u, v \in [x_{i-1}, x_i]$, we have $|u-v| < \delta$, so $|f(u) - f(v)| < \varepsilon$. Hence

$$\sup_{x \in [x_{i-1}, x_i]} f(x) - \inf_{x \in [x_{i-1}, x_i]} f(x) \le \varepsilon.$$

This gives

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) \le \sum_{i=1}^{n} (x_i - x_{i-1})\varepsilon = \varepsilon(b - a).$$

But this can be made arbitrarily small, so by Riemann's criterion, f is integrable over [a, b].

2 Metric Spaces

2.1 Definitions and Examples

Our goal is to generalize the idea of convergence. This requires a notion of distance.

We have seen in \mathbb{R} , we have a norm |x-y|, in \mathbb{R}^2 we have ||x-y||, and in function space, we can take

$$\sup_{x \in X} |f(x) - g(x)|.$$

We have seen that the triangle inequality is very useful, so we wish to preserve this property.

Definition 2.1. A **metric space** is a set X endowed with a **metric** d, i.e. a function $d: X^2 \to \mathbb{R}$, satisfying:

- (i) $d(x,y) \ge 0$ for all $x,y \in X$, with equality if and only if x=y;
- (ii) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, yz \in X$.

We could define a metric space as an ordered pair (X, d), but usually it is obvious what d is, so we often refer to the metric space as the set X.

Example 2.1.

- (i) If $X = \mathbb{R}$, we have the usual metric d(x, y) = |x y|.
- (ii) If $X = \mathbb{R}^n$, we can take the Euclidean metric

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

(iii) Uniform convergence might not work. We wish to take $d(f,g) = \sup |f-g|$, but this might not exist if f-g is unbounded. However, with the appropriate subspace of functions, we can take this metric. Let $Y \subset \mathbb{R}$, and take

$$X = B(Y) = \{f : Y \to \mathbb{R} \mid f \text{ bounded}\},\$$

with the uniform metric

$$d(f,g) = \sup_{x \in Y} |f(x) - g(x)|.$$

We can check the triangle inequality: if $f,g,h\in B(Y),$ then for all $x\in Y,$

$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)| \le d(f, g) + d(g, h).$$

Taking the sup over all $x \in Y$, we get

$$d(f,h) \le d(f,g) + d(g,h).$$

Remark. Suppose (X, d) is a metric space and $Y \subset X$. Then $d|_Y$ is a metric on Y. We say Y with this metric is a **subspace** of X.

Example 2.2.

- (i) We can take $\mathbb{Q}, \mathbb{Z}, \mathbb{N}, [0, 1]$ as subspaces of \mathbb{R} .
- (ii) A continuous function on a bounded interval is bounded, so $\mathcal{C}([a,b])$ is a subspace of B([a,b]), with the uniform metric.
- (iii) We can take the empty metric space $X = \emptyset$ with the empty metric.

Moreover, we can define different metrics on the same set.

Example 2.3.

(i) We can take the l_1 metric on \mathbb{R}^n :

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

(ii) We can also take the l_{∞} metric on \mathbb{R}^n :

$$d(x,y) = \max_{i} |x_i - y_i|.$$

(iii) On C([a,b]), we can define the L_1 metric

$$d(f,g) = \int_a^b |f - g|.$$

(iv) If $X = \mathbb{C}$, we can define a metric

$$d(z, w) = \begin{cases} 0 & z = w, \\ |z| + |w| & z \neq w. \end{cases}$$

We can check that the triangle inequalitys. This is known as the British Rail metric or SNCF metric.

(v) Let X be any set. Define a metric d on X by

$$d(x,y) = \begin{cases} 0 & x = y, \\ 1 & x \neq y. \end{cases}$$

This is called the discrete metric on X.

(vi) Let $X = \mathbb{Z}$. Let p be a prime. The p-adic metric on \mathbb{Z} is the metric d defined by

$$d(x,y) = \begin{cases} 0 & x = y, \\ p^{-a} & p^{a} || x - y. \end{cases}$$

We show the triangle quality holds. If any of x, y, z are the same, this is easy, so assume all of x, y, z are distinct. Let $x - y = p^a m$, $y - z = p^b n$. Then if $a \le b$, we have

$$x - z = (x - y) + (y - z) = p^{a}(m + p^{b-a}n).$$

Hence $p^a \mid x - z$, so $d(x, z) \le p^{-a}$.

Definition 2.2. Let (X,d) be a metric space. Let (x_n) be a sequence in X and let $x \in X$. We say (x_n) converges to x, and write $x_n \to x$, if for all $\varepsilon > 0$, there exists N such that for all $n \ge N$,

$$d(x_n, x) < \varepsilon.$$

Equivalently $x_n \to x$ if and only if $d(x_n, x) \to 0$ in \mathbb{R} .

Proposition 2.1. Limits are unique. That is, if (X, d) is a metric space, (x_n) is a sequence in X, $x, y \in X$ with $x_n \to x$ and $x_n \to y$, then x = y.

Proof: For each n,

$$d(x,y) \le d(x,x_n) + d(x_n,y) \le d(x_n,x) + d(x_n,y)$$

\$\to 0 + 0 = 0.\$

So $d(x,y) \to 0$ as $n \to \infty$. But d(x,y) is constant, so d(x,y) = 0. So x = y.

Remark.

- 1. This justifies talking about the limit of a convergent sequence in a metric space, and writing $x = \lim x_n$.
- 2. Constant sequences and eventually constant sequences converge.
- 3. Suppose (X, d) is a metric space and Y is a subspace of X. Suppose (x_n) is a sequence in Y which converges in Y to x. Then (x_n) also converges in X to x.

However the converse is false: take the reals, then $1/n \to 0$. But if we consider the subspace $\mathbb{R}\setminus\{0\}$, then (1/n) is a sequence, but does not converge in $\mathbb{R}\setminus\{0\}$.

Example 2.4. Let d be the Euclidean metric on \mathbb{R}^n . Then we have $x_n \to x$ if and only if the sequence converges in each coordinate in the usual way in \mathbb{R} . Let's consider other metrics, such as the uniform metric

$$d_{\infty}(x,y) = \max_{i} |x_i - y_i|, \text{ then}$$

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \le \sqrt{\sum_{i=1}^{n} d_{\infty}(x,y)^2}.$$

So $d(x,y) \leq \sqrt{n} d_{\infty}(x,y)$. But also $d_{\infty}(x,y) \leq d(x,y)$. So for (x_n) in \mathbb{R}^n ,

$$d(x_n, x) \to 0 \iff d_{\infty}(x_n, x) \to 0.$$

So the same sequences converge in (\mathbb{R}^n, d) and $(\mathbb{R}^n, d_{\infty})$. Similarly, for

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$
, then

$$d_{\infty}(x,y) \le d_1(x,y) \le n d_{\infty}(x,y).$$

Consider $X = \mathcal{C}([0,1])$. Let d_{∞} be the uniform metric on X, so

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|, \text{ so}$$

$$f_n \to f \text{ in } (X, d_\infty) \iff d_\infty(f_n, f) \to 0$$

$$\iff \sup_{x \in [0,1]} |f_n(x) - f(x)| \to 0 \iff f_n \to f \text{ uniformly.}$$

Similarly we can take the L_1 metric

$$d_1(f,g) = \int_0^1 |f - g|$$
, then

$$d_1(f,g) = \int_0^1 |f - g| \le \int_0^1 d_{\infty}(f,g) = d_{\infty}(f,g).$$

So we can prove $f_n \to f$ in (X, d_∞) implies $f_n \to f$ in (X, d_1) . But the converse is not true, from our previous examples on uniform convergence.

We can also take (X, d) a discrete metric. Consider a convergence sequence $x_n \to x$. Then letting $\varepsilon = 1$, the definition of convergence says for all $n \ge N$, $d(x_n, x) < 1$, so $x_n = x$. Thus (x_n) is eventually constant. So in a discrete metric, (x_n) converges if and only if (x_n) is eventually constant.

Definition 2.3. Let (X,d) and (Y,e) be metric spaces, and let $f:X\to Y$.

(i) Let $a \in X$ and $b \in Y$. We say $f(x) \to b$ as $x \to a$ if for all $\varepsilon > 0$, there exists $\delta > 0$, such that for all $x \in X$,

$$0 < d(x, a) < \delta \implies e(f(x), b) < \varepsilon$$
.

- (ii) Let $a \in X$. We say f is **continuous** if $f(x) \to f(a)$ as $x \to a$.
- (iii) If for all $a \in X$, f is continuous, then we say f is a continuous function.
- (iv) We say f is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in X$,

$$d(x,y) < \delta \implies e(f(x),f(y)) < \varepsilon.$$

(v) Suppose $W \subset X$. We say f is continuous on W (resp. uniformly continuous on W) if the function $f|_W$ is continuous (resp. uniformly continuous), as a function $W \to Y$.

Remark.

1. We don't have a nice rephrasing of (i) in terms of concepts in the reals: we want something like

$$e(f(x),b) \to 0$$
 as $d(x,a) \to 0$,

but this is meaningless.V

- 2. (i) says nothing about what happens at the point a itself. For example, $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = \delta_{0x}$ tends to 0 as $x \to 0$. If we have f continuous, then d(x, a) = 0 implies e(f(x), f(a)) = 0, so we may take $0 \le d(x, a) < \delta$.
- 3. We can rewrite (v): f is continuous on W if and only if $f|_W$ is a continuous function if and only if for all $a \in W$ and $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in W$,

$$d(x, a) < \delta \implies e(f(x), f(a)) < \varepsilon$$
.

In particular, note that this only considers points in W. For example,

$$f(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & x \notin [0, 1] \end{cases}$$

is continuous on [0,1], but not continuous at 0 or 1.

Proposition 2.2. Let (X,d), (Y,e) be metric spaces. Let $f: X \to Y$ and $a \in X$. Then f is continuous at a if and only if whenever (x_n) is a sequence in X with $x_n \to a$, then $f(x_n) \to f(a)$.

Proof: Suppose f is continuous at a. Let (x_n) be a sequence in X with $x_n \to a$. Let $\varepsilon > 0$. As f is continuous at a we can find $\delta > 0$ such that for all $x \in X$, $d(x, a) < \delta$ implies $e(f(x), f(a)) < \varepsilon$.

As $x_n \to x$, we can find N such that for all $n \ge N$, $d(x_n, a) < \delta$. Hence, for $n \ge N$, $e(f(x), f(a)) < \varepsilon$. This gives $f(x_n) \to f(a)$.

Now suppose f is not continuous at a. Then there is some $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in X$ with $d(x,a) < \delta$ but $e(f(x), f(a0) \ge \varepsilon$. Take $\delta_n = 1/n$, to obtain a sequence (x_n) with $d(x_n, a) < 1/n$ but $(f(x_n), f(a)) \ge \varepsilon$. Hence $x_n \to a$ but $f(x_n) \not\to f(a)$.

Proposition 2.3. Let (W,c), (X,d), (Y,e) be metric spaces. Let $f:W\to X$, $g:X\to Y$ and let $a\in W$. Suppose f is continuous at a and g is continuous at f(a). Then $g\circ f$ is continuous at a.

Proof: Let (x_n) be a sequence in W with $x_n \to a$. Then, $f(x_n) \to f(a)$, and so also $g(f(x_n)) \to g(f(a))$. So $g \circ f$ is continuous at a.

Example 2.5.

- 1. Consider $\mathbb{R} \to \mathbb{R}$ with the usual metric. This is the same metric as defined for \mathbb{R} only. We know many continuous function on $f : \mathbb{R} \to \mathbb{R}$, such as polynomials, trigonometric functions, exponential functions, etc.
- 2. Constant functions are continuous. Also if X is any metric space and $f: X \to X$ by f(x) = x for all $x \in X$ (the identity function) is continuous.
- 3. Consider \mathbb{R}^n with the EUclidean metric and \mathbb{R} with the usual metric. The projection maps $\pi_i : \mathbb{R}^n \to \mathbb{R}$ given by $\pi_i(x) = x_i$ are continuous. Let's denote a sequence in \mathbb{R}^n by $(x^{(m)})_{m\geq 1}$. We known that $x^{(m)} \to x$ if and only if for each $i, x_i^{(m)} \to x_i$. Hence π_i is continuous.

Similarly, suppose $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$, and let $f : \mathbb{R} \to \mathbb{R}^n$ by $f(x) = (f_1(x), \ldots, f_n(x))$. Then f is continuous at a point if and only if all of f_1, \ldots, f_n are.

Using these facts, we can show that $f(x, y, z) = (e^{-x} \sin y, 2x \cos z)$ is continuous.

- 4. Recall that if we have the Euclidean metric, the l_1 metric or the l_{∞} metric on \mathbb{R}^n , then convergent sequences are the same in each case. So continuous functions $X \to \mathbb{R}^n$ or $\mathbb{R}^n \to Y$ are the same with each of these metrics.
- 5. Let (X, d) be a discrete metric space and let (Y, e) be any metric space. Then all functions $f: X \to Y$ are continuous. Suppose $a \in X$ and (x_n) is a sequence in X with $x_n \to a$. Then (x_n) is eventually constant, so $f(x_n) \to f(a)$.

2.2 Completeness

We saw a version of the general principle of convergence held in each of the three examples we considered. We try to extend this to all metric spaces:

Definition 2.4. Let (X, d) be a metric space and let (x_n) be a sequence in X. We say (x_n) is **Cauchy** if for all $\varepsilon > 0$, then there exists N such that for all $m, n \ge N$, $d(x_m, d_n) < \varepsilon$.

It is easy to show that if (x_n) is convergent, then (x_n) is Cauchy, but the converse is not true in general.

For example, let $X = \mathbb{R} \setminus \{0\}$, and let $x_n = 1/n$. Then the (x_n) do not converge, but are Cauchy as they are Cauchy in \mathbb{R} .

Similarly, we can consider \mathbb{Q} , then this does not satisfy the general principle of convergence.

Definition 2.5. Let (X, d) be a metric space. We say X is **complete** if every Cauchy sequence in X converges.

Example 2.6.

- 1. $\mathbb{R} \setminus \{0\}$ and \mathbb{Q} are not complete.
- 2. \mathbb{R} with the usual metric is complete.
- 3. The general principle of convergence for \mathbb{R}^n say \mathbb{R}^n with the Euclidean metric is complete.
- 4. If $x \subset \mathbb{R}$ and $B(X) = \{f : X \to \mathbb{R} \mid f \text{ is bounded}\}$ with the uniform norm, then B(X) is complete. Indeed, let (f_n) be a Cauchy sequence in B(X). Then (f_n) is uniformly Cauchy, so by the general principle of uniform convergence, it is uniformly convergent, so $f_n \to f$ uniformly for some $f: X \to \mathbb{R}$.

This gives $f_n - f$ is bounded for n sufficiently large. Take such an n, and then since f_n bounded, $f = f_n - (f_n - f)$ implies f is bounded, so $f \in B(X)$. Finally, $f_n \to f$ uniformly implies $d(f_n, f) \to 0$, so $f_n \to f$ in (B(X), d).

Remark. This is a typical example of a proof that a given space (X, d) is complete:

- (i) Take (x_n) Cauchy in X.
- (ii) Construct a limit object where it seems $(x_n) \to x$.
- (iii) Show $x \in X$.
- (iv) Show $x_n \to x$ in the metric space (X, d).

It is important to do things in this order, as we cannot talk about $d(x_n, x)$ until

we known $x \in X$.

5. If [a,b] is a closed interval, then $\mathcal{C}([a,b])$ with the uniform norm d is complete. Indeed, let (f_n) be Cauchy in $\mathcal{C}([a,b])$. Then since $\mathcal{C}([a,b]) \subset B([a,b])$, and B([a,b]) is complete, then $f_n \to f$ for some $f \in B([a,b])$. Each function is continuous, and $f_n \to f$ uniformly, so f is continuous, giving $f \in \mathcal{C}([a,b])$. Finally, $f_n \to f$ uniformly gives $d(f_n, f) \to 0$.

Definition 2.6. Let (X, d) be a metric space and $Y \subset X$. We say Y is **closed** if whenever (x_n) is a sequence in Y with $x_n \to x \in X$, then $x \in Y$.

Proposition 2.4. A closed subset of a complete metric space is complete.

Remark. This makes sense: if $Y \subset X$, then Y itself is a metric space as a subspace of X, so we can say Y is complete.

Proof: Let (X, d) be a metric space and $Y \subset X$ with X complete and Y closed.

- (i) Let (x_n) be a Cauchy sequence in Y.
- (ii) Now (x_n) is a Cauchy sequence in X, so by completeness, $x_n \to x$ for some $x \in X$.
- (iii) $Y \subset X$ is closed, so $x \in Y$.
- (iv) Finally, we have for each $x_n \in Y$, $x \in Y$, and $x_n \to x$ in X, so $d(x_n, x) \to 0$, giving $x_n \to x$ in Y.
 - 6. Define

$$\ell_1 = \left\{ (x_n)_{n \ge 1} \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n=1}^{\infty} |x_n| \text{ converges} \right\}.$$

We can define a metric d on ℓ_1 by

$$d((x_n), (y_n)) = \sum_{n=1}^{\infty} |x_n - y_n|.$$

Then since $\sum |x_n|$, $\sum |y_n|$ converge and $|x_n - y_n| \leq |x_n| + |y_n|$, by comparison test $\sum |x_n - y_n|$ converges, so d is well-defined. It is easy to check that d is a metric. Then (l_1, d) is complete. Indeed, let $(x^{(n)})$ be a Cauchy sequence in l_1 , so $(x_i^{(n)})$ is a sequence in \mathbb{R} .

Then for each i, $(x_i^{(n)})$ is a Cauchy sequence in \mathbb{R} , since if $y, z \in l_1$, then $|y_i - z_i| \leq d(y, z)$. But \mathbb{R} is complete, so we can find $x_i \in \mathbb{R}$ with $x_i^{(n)} \to x_i$ as $n \to \infty$. Let $x = (x_1, x_2, x_3, \ldots,) \in \mathbb{R}^{\mathbb{N}}$.

We next show that $x \in l_1$. Given $y \in l_1$, define

$$\sigma(y)\sum_{i=1}^{\infty}|y_i|,$$

i.e. $\sigma(y) = d(y, \bar{0})$, where $\bar{0}$ is the constant zero sequence. Now we have, for any m, n,

$$\sigma(x^{(m)}) = d(x^{(m)}, z) \le d(x^{(m)}, x^{(n)}) + d(x^{(n)}, \bar{0}) = d(x^{(m)}, x^{(n)}) + \sigma(x^{(n)}).$$

This gives $\sigma(x^{(m)}) - \sigma(x^{(n)}) \leq d(x^{(m)}, x^{(n)})$. Similarly, we can swap around m, n, to give $|\sigma(x^{(m)}) - \sigma(x^{(n)})| \leq d(x^{(m)}, x^{(n)})$, so $(\sigma(x^{(m)}))$ is a Cauchy sequence in \mathbb{R} , and so converges to K. Now we claim for any $I \in \mathbb{N}$,

$$\sum_{i=1}^{I} |x_i| \le K + 2.$$

Indeed, as $\sigma(x^{(n)}) \to K$ as $n \to \infty$, we can find N_1 such that for all $n \ge N_1$,

$$\sum_{i=1}^{I} |x_i^{(n)}| \le \sum_{i=1}^{\infty} |x_i^{(n)}| \le K + 1.$$

For all $i \in \{1, 2, ..., I\}$, we have $x_i^{(n)} \to x$, so we can find N_2 such that for all $n \ge N_2$ and $i \in \{1, 2, ..., I\}$ we have $|x_i^{(n)} - x_i| < 1/I$. Letting $n = \max N_1, N_2$, we have

$$\sum_{i=1}^{I} |x_i| \le \sum_{i=1}^{I} |x_i^{(n)}| + \sum_{i=1}^{I} |x_i^{(n)} - x_i| \le K + 1 + 1 = K + 2.$$

Since the partial sums $\sum |x_i|$ are increasing and bounded above, they converge.

Finally, we need to check $x^{(n)} \to x$ as $n \to \infty$ in l_1 , i.e. $d(x^{(n)}, x) \to 0$.

Note that

$$d(x^{(n)}, x) = \sum_{i=1}^{\infty} |x_i^{(n)} - x_i| \le \sum_{i=1}^{I} |x_i^{(n)} - x_i| + \sum_{i=I+1}^{\infty} |x_i^{(n)}| + \sum_{i=I+1}^{\infty} |x_i|.$$

Let $\varepsilon > 0$. We know that $\sum |x_i|$ is convergent, so we can pick I_1 such that

$$\sum_{i=I_1+1}^{\infty} |x_i| < \varepsilon.$$

As $(x^{(n)})$ is Cauchy, we can find N_1 such that for all $m, n \geq N_1$, $d(x^{(m)}, x^{(n)}) < \varepsilon$. As $\sum |x_i^{(N_1)}|$ converges, we can find I_2 such that

$$\sum_{i=I_2+1}^{\infty} |X_i^{(N_1)}| < \varepsilon.$$

Then for $n \geq N_1$, we have

$$\sum_{i=I_2+1}^{\infty} |x_i^{(n)}| \le \sum_{i=I_2+1}^{\infty} |x_i^{(N_1)}| + \sum_{i=I_2+1}^{\infty} |x_i^{(n)} - x_i^{(N_1)}| < \varepsilon + d(x^{(n)}, x^{(N_1)}) < 2\varepsilon.$$

Let $I = \max\{I_1, I_2\}$. For each i = 1, 2, ..., I, we have $|x_i^{(n)} - i| \to 0$ as $n \to \infty$, so

$$\sum_{i=1}^{I} |x_i^{(n)} - x_i| \to 0$$

as $n \to \infty$. Hence we can find N_2 such that for $n \ge N_2$,

$$\sum_{i=1}^{I} |x_i^{(n)} - x_i| < \varepsilon.$$

Let $N = \max\{N_1, N_2\}$ and let $n \ge N$. Then

$$d(x^{(n)}, x) \le \sum_{i=1}^{I} |x_i^{(n)} - x_i| + \sum_{i=I+1}^{\infty} |x_i^{(n)}| + \sum_{i=I+1}^{\infty} |x_i|$$

$$\le \sum_{i=1}^{I} |x_i^{(n)} - x_i| + \sum_{i=I_2+1}^{\infty} |x_i^{(n)}| + \sum_{i=I_1+1}^{\infty} |x_i|$$

$$< \varepsilon + 2\varepsilon + \varepsilon = 4\varepsilon.$$

Hence $d(x^{(n)}, x) \to 0$ as $n \to \infty$. Hence ℓ_1 is complete.

Definition 2.7. Let (X, d) be a metric space and $f: X \to X$. We say f is a **contraction** if there exists $\lambda \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le \lambda d(x, y)$.

Theorem 2.1 (Contraction Mapping Theorem). Let (X,d) be a complete, nonempty metric space and $f: X \to X$ a contraction. Then f has a unique fixed point.

Proof: We show the existence of a fixed point. Let $\lambda \in [0,1]$ satisfy $d(f(x), f(y)) \leq \lambda d(x, y)$. Let $x_0 \in X$, and define $x_n = f(x_{n-1})$. Let $\Delta = d(x_0, x_1)$. Then by induction, $d(x_n, x_{n+1}) \leq \lambda^n \Delta$. Suppose $N \leq m < n$. Then

$$d(x_m, x_n) \le \sum_{i=m}^{n-1} d(x_i, x_{i+1}) \le \sum_{i=1}^{n-1} \lambda^i \Delta \le \sum_{i=N}^{\infty} \lambda^i \Delta = \frac{\lambda^N \Delta}{1 - \lambda} \to 0.$$

So for all $\varepsilon > 0$, there exists N, such that for all $m, n \geq N$, $d(x_m, x_n) < \varepsilon$. Then (x_n) is Cauchy, so by completeness it converges, say $x_n \to x \in X$. But also $x_n = f(x_{n-1}) \to f(x)$ as f is continuous (as it is Lipschitz). So by uniqueness of limits, f(x) = x.

Now suppose f(y) = y for some $y \in X$. Then $d(x,y) = d(f(x), f(y)) \le \lambda d(x,y)$, with $\lambda < 1$. So d(x,y) = 0, i.e. x = y.

Remark.

- 1. f is continuous as for all $x, y \in X$, $d(f(x), f(y)) \le d(x, y)$. So for all $\varepsilon > 0$, if $d(x, y) < \varepsilon$, then $d(f(x), f(y)) < \varepsilon$. Indeed, this implies f is uniformly continuous.
- 2. We have proven more than claimed. Not only does f have a unique fixed point, but starting from any point of the space and repeatedly applying f, the resulting sequence converges to the fixed point. In fact, the speed of convergence is exponential.

Example 2.7. Consider $f(x) = \cos x$ on \mathbb{R} . Suppose we want to find a solution to f(x) = x. Any root must lie in [-1,1], so consider X = [-1,1] with the usual metric. Then X is closed and bounded, hence complete. Thinking of $f: X \to X$, then suppose $x, y \in [-1,1]$. We have

$$|\cos x - \cos y| = |x - y| |\cos' z| = |x - y| |-\sin z| \le |x - y| \sin 1.$$

But $0 \le \sin 1 < 1$, so cos is a contraction of [-1,1]. Thus by the contraction mapping theorem, cos has a unique fixed point in [-1,1]. Thus $\cos x = x$ has a unique solution. To find this solution, we can apply f repeatedly to a point, which exponentially converges to the root.

2.3 Sequential Compactness

Recall that Bolzano-Weierstrass for \mathbb{R}^n says a bounded sequence in \mathbb{R}^n has a convergent subsequence.

Definition 2.8. Let (X, d) be a metric space. We say X is bounded if there exists $M \in \mathbb{R}$, such that for all $x, y \in X$, $d(x, y) \leq M$.

Remark. It is easy to check (from the triangle inequality) that X bounded is equivalent to either $X = \emptyset$ or there existing $M \in \mathbb{R}, x \in X$ such that $d(x,y) \leq M$ for all $y \in X$.

Recall the definition of a closed set. We say $Y \subset X$ is closed in X if whenever (x_n) is a sequence in Y with $x_n \to x \in X$, then $x \in Y$.

Definition 2.9. A metric space is **sequentially compact** if every sequence has a compact subsequence.

Theorem 2.2. Let $X \subset \mathbb{R}^n$ with the Euclidean metric. Then X is sequentially compact if and only if X is closed and bounded.

Proof: Suppose X is closed and bounded. Let (x_n) be a sequence in X. Then (x_n) is a bounded sequence in \mathbb{R}^n so by Bolzano-Weierstrass, in \mathbb{R}^n , $x_{n_i} \to x$ for some $x \in \mathbb{R}^n$ and some subsequence (x_{n_i}) of (x_n) .

As X is closed, $x \in X$. Hence the subsequence (x_{n_j}) converges in X. So X is sequentially compact.

Suppose X is not closed. Then we can find a sequence (x - n) in X such that in \mathbb{R}^n , $x_n \to x \in \mathbb{R}^n$ with $x \notin X$. Now any subsequence $x_{n_j} \to x$ in \mathbb{R}^n . But $x \notin X$, so (x_{n_j}) does not converge in X. Hence X is not sequentially compact.

Suppose instead X is not bounded. Then we can find a sequence (x_n) in X with $||x_n|| \geq n$. Suppose we have a subsequence $x_{n_j} \to x \in X$. Then $||x_{n_j}|| \to ||x||$, but $||x_{n_j}|| \to \infty$. So X is not sequentially compact.

Consider the same problem in a general metric space. Then this does not work:

consider $\mathbb{R} \setminus \{0\}$, and X = (0, 1], which is closed and bounded. Then the sequence $(1/n)_{n\geq 1}$ has no convergent subsequence.

This does not work as the space is not complete, so we consider the same problem in a complete space. However, this still doesn't work. Let

$$X = \{ f \in B(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} |f(x)| \le \},$$

with the uniform metric. Then X is complete and bounded, but consider

$$f_n(x) = \begin{cases} 1 & x = n, \\ 0 & x \neq n. \end{cases}.$$

Then (f_n) is a sequence in X, but for all $m \neq n$, $d(f_m, f_n) = 1$. So (f_n) cannot have a convergent subsequence.

In this case, our space X is too big, so we can find infinitely many objects which are far apart. This calls for a stronger concept of boundedness.

Definition 2.10. Let (X, d) be a metric space. We say X is **totally bounded** if for all $\delta > 0$, we can find a finite set $A \subset X$ such that for all $x \in X$, there exists $a \in A$ such that $d(x, a) < \delta$.

This is the relevant condition needed to extend our theorem from \mathbb{R}^n to a general metric space.

Theorem 2.3. A metric space is sequentially compact if and only if it is complete and totally bounded.

Proof: Suppose (X, d) is complete and totally bounded. Let (x_n) be a sequence in X.

As X is totally bounded, we can find a finite sequence $A_1 \subset X$ such that for all $x \in X$, there exists $a \in A_1$ such that d(x, a) < 1. In particular, there is an infinite set $N_1 \subset \mathbb{N}$ and a point $a_i \in A_i$ such that for all $n \in N_1$, $d(x_n, a_1) < 1$. Hence for all $m, n \in N_1$, $d(x_m, x_n) < 2$.

Similarly, we can find finite $A_2 \subset X$ such that for all $x \in X$, there exists $a \in A_2$ with d(x, a) < 1/2. In particular, there is an infinite $N_2 \subset N_1$ such that for all $n \in N_2$, $d(x_n, a_2) < 1/2$, and then for all $m, n \in N_2$, $d(x_m, x_n) < 1$.

Continue to get a sequence $N_1 \supset N_2 \supset N_3 \supset \cdots$ of infinite subset of \mathbb{N} such that for all $m, n \in N_1$, we have $d(x_m, x_n) < 2/i$.

Pick $n_1 \in N_1$, $n_2 \in N_2$ with $n_2 > n_1$, and successively pick $n_k \in N_k$ with $n_k > n_{k-1}$. We obtain a subsequence (x_{n_j}) of (x_n) such that for all $j, x_{n_j} \in N_j$. Thus if $i \leq j$, then $x_{n_i}, x_{n_j} \in N_1$, and so $d(x_{n_i}, x_{n_j}) < 2/i$. Hence (x_{n_j}) is a Cauchy sequence, and hence by completeness converges. Thus X is sequentially compact.

Suppose now that X is not complete. Then X has a Cauchy sequence (x_n) which doesn't converge. Suppose we have a convergent subsequence, say $x_{n_j} \to x$. Then we can prove $x_n \to x$.

Suppose instead X is not totally bounded. Then there is some $\delta > 0$ such that whenever $A \subset X$ is finite, there exists $x \in X$ such that for all $a \in A$, $d(x,a) \geq \delta$.

Thus, pick $x_1 \in X$. Pick $x_2 \in X$ such that $d(x_1, x_2) \geq \delta$, pick $x_3 \in X$ such that $d(x_1, x_3), d(x_2, x_3) \geq \delta$, and continue to get a sequence (x_n) in X such that for all $i \neq j$, $d(x_i, x_j) \geq \delta$. Hence (x_n) has no convergent subsequence.

Corollary 2.1. A continuous function on a sequentially compact metric space is uniformly continuous. If the function is real-valued, the it is bounded and attains its bounds.

2.4 Topology of Metric Spaces

In \mathbb{R}^n , we have different concepts of distance given by Euclidean distance ℓ_1 and ℓ_{∞} . But these all give the same concept of convergence and continuity. We want some way to visualise why these are all the same.

Definition 2.11. Let (X, d) and (Y, e) be metric spaces. Let $f: X \to Y$. We say f is a **homeomorphism** and that X and Y are homeomorphic if f is a continuous bijection with continuous inverse.

Remark. Homeomorphism is an equivalence relation.

Example 2.8.

1. If $x, y \in \mathbb{R}^n$, then

$$d_{\infty}(x,y) \le d_1(x,y) \le nd_{\infty}(x,y).$$

So the identity map $\mathbb{R}^n \to \mathbb{R}^n$ is continuous from $(\mathbb{R}^n, d_1) \to (\mathbb{R}^n, d_{\infty})$, and inverse is simply itself. So this is a homeomorphism.

Similarly, \mathbb{R}^n with the Euclidean metric is homeomorphic to both these spaces.

- 2. If $(X,d) \to (Y,e)$ are metric spaces and $f: X \to Y$ is a bijection satisfying
 - (i) There exists A such that for all $x, y \in X$, $e(f(x), f(y)) \le d(x, y)$;
 - (ii) There exists B such that for all $x, y \in X$, $d(x, y) \leq Be(f(x), f(y))$; then f, f^{-1} are continuous, so X, Y are homeomorphic.
- 3. Define

$$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$$

by $f(x) = \tan x$. Then f is a homeomorphism, but is not of type 2.

Proposition 2.5. Let (V, b), (W, c), (X, d), (Y, e) be metric spaces and $f: X \to V$, $g: Y \to W$ be homemorphisms.

- (i) In X, $x_n \to x$ if and only if in V $f(x_n) \to f(x)$.
- (ii) A function $h: X \to Y$ is continuous at $a \in X$ if and only if $g \circ h \circ f^{-1}$ is continuous at $f(a) \in V$.

Proof:

- (i) Note $x_n \to x \implies f(x_n) \to f(x)$ as f is continuous, and $f(x_n) \to f(x) \implies x_n = f^{-1}(f(x_n)) \to f^{-1}(f(x)) = x$ as f^{-1} is continuous.
- (ii) h is continuous implies $g \circ h \circ f^{-1}$ is continuous. But $g \circ h \circ f^{-1}$ continuous implies $h = q^{-1} \circ (g \circ h \circ f^{-1}) \circ f$ is continuous.

We now have examples of metric spaces that look different but behave identically with respect to convergence and continuity. This begs the question: can we dispense with the notion of distance altogether?

We begin by looking at continuity in a different way.

Definition 2.12. Let (X, d) be a metric space. Let $a \in X$ and let $\varepsilon > 0$. The **open ball** of radius ε about a is the set

$$B_{\varepsilon}(a) = \{x \in X \mid d(x, a) < \varepsilon\}.$$

Remark. Suppose $f: X \to Y$, where d is the metric on X, e is the metric on Y. Let $a \in X$. Then f is continuous at a if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x, a) < \delta \implies d(f(x), f(y)) < \varepsilon$.

But this is equivalent to, for all $\varepsilon > 0$, there existing $\delta > 0$ such that $x \in B_{\delta}(a) \Longrightarrow f(x) \in B_{\varepsilon}(f(a))$, or $f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$, or $B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a)))$.

So we can redefine continuity in terms of open balls. But open balls still refer to distance with their radii, so we shall extend this notion further.

Definition 2.13. Let X be a metric space. A subset $G \subset X$ is **open** if for all $x \in G$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset G$.

A subset $N \subset X$ is a **neighbourhood** of a point $a \in X$ if there exists an open set $G \subset X$ such that $a \in G \subset N$.

Remark.

- 1. A set is open if for each point in the set it contains all points nearby as well. A set is a neighbourhood of a if it contains all points near a.
- 2. The open ball $B_{\varepsilon}(x)$ is open. If $x \in B_{\varepsilon(a)}$, then $d(x,a) = \delta < \varepsilon$. So by the triangle inequality, $B_{\varepsilon-\delta}(x) \subset B_{\varepsilon}(a)$.
- 3. If \mathcal{N} is an open set and $a \in \mathcal{N}$, then certainly \mathcal{N} is a neighbourhood of a, as $a \in \mathcal{N} \subset \mathcal{N}$.

However a neighbourhood of a need not be open, for example [-1,1] is a neighbourhood of 0 in \mathbb{R} , as

$$0 \in (-1,1) \subset [-1,1].$$

- 4. \mathcal{N} is a neighbourhood of a if and only if there exists $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subset \mathcal{N}$.
- 5. A set G is open if and only if it is a neighbourhood of each of its points.

Proposition 2.6. Let (X,d), (Y,e) be metric spaces and $f: X \to Y$.

(i) f is continuous at $a \in X$ if and only if whenever $\mathcal{N} \subset Y$ is a neighbourhood of f(a), we have $f^{-1}(\mathcal{N}) \subset X$ is a neighbourhood of a;

(ii) f is a continuous function if and only if whenever $G \subset Y$ is open, we have $f^{-1}(G) \subset X$ is open.

Proof:

- (i) Suppose f is continuous at $a \in X$. Let \mathcal{N} be a neighbourhood of f(x). Then there exists $\varepsilon > 0$ such that $B_{\varepsilon}(f(x)) \subset \mathcal{N}$. But f is continuous, so there exists $\delta > 0$ such that $B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a))) \subset f^{-1}(\mathcal{N})$. So $f^{-1}(\mathcal{N})$ is a neighbourhood of a.
 - Suppose $f^{-1}(\mathcal{N})$ is a neighbourhood of a for every neighbourhood \mathcal{N} of f(a). Let $\varepsilon > 0$. In particular, $B_{\varepsilon}(f(a))$ is a neighbourhood of f(a), so $f^{-1}(B_{\varepsilon}(f(a)))$ is a neighbourhood of a. Hence there exists $\delta > 0$ such that $B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a)))$, so f is continuous at a.
- (ii) Suppose f is continuous. Let $G \subset Y$ be open, and let $a \in f^{-1}(G)$. Then $f(a) \in G$, and G is open so G is a neighbourhood of f(a). Moreover, f is continuous at a, so $f^{-1}(G)$ is a neighbourhood of a. Hence there exists $\delta > 0$ such that $B_{\delta}(a) \subset f^{-1}(G)$. So $f^{-1}(G)$ is open.
 - Let $a \in X$. Let $\mathcal{N} \subset Y$ be a neighbourhood of f(a). Then there exists $G \subset Y$ open such that $f(a) \in G \subset \mathcal{N}$. By our assumption, $f^{-1}(G) \subset X$ is open. Now $a \in f^{-1}(G) \subset f^{-1}(\mathcal{N})$ with $f^{-1}(G)$ open, so $f^{-1}(\mathcal{N})$ is a neighbourhood of a. So by (i), f is continuous at a, hence is continuous everywhere.

Remark.

- 1. This says that we can define continuity entirely in terms of open sets without mentioning the metric.
- 2. We say previously that homeomorphisms preserve convergence and continuity. This proposition says homeomorphisms also preserve open sets.

Precisely, if $f: X \to Y$ is a homeomorphism, then $G \subset X$ is open is open if and only if $f(G) \subset Y$ is open. This is by using the fact that f and f^{-1} are continuous.

What else is preserved by homeomorphisms? Suppose $f: X \to Y$ is a homeomorphism and X is sequentially compact. Let (y_n) be a sequence in Y. Then $(f^{-1}(y_n))$ is a sequence in X and so has a convergent subsequence $f^{-1}(y_{n_j}) \to x \in X$. But converge of sequences is preserved by homeomorphisms, so

$$y_{n_j} = f(f^{-1})(y_{n_j}) \to f(x) \in Y.$$

So Y is sequentially compact. Thus if X, Y are homeomorphic, then X is sequentially compact if and only if Y is sequentially compact.

Thus we can say sequential compactness is a topological property. However, completeness is not the same.

Example 2.9. We say (0,1) and \mathbb{R} with the usual metric in each case are homeomorphic. But \mathbb{R} is complete and (0,1) is not. So completeness is not a topological property.

In this case, the property of being a Cauchy sequence is not preserved by homeomorphisms.

Remark. Suppose (x_n) is a sequence in a metric space X and $x \in X$. Then $x_n \to x$ if and only if, for all $\varepsilon > 0$, there exists N such that for all $n \geq N$, $d(x_n, x) < \varepsilon$. This is equivalent to, for all neighbourhood \mathcal{N} of x, there exists N such that for all $n \geq N$, $x_n \in \mathcal{N}$.

This defines convergence solely in terms of neighbourhoods. We can't do something similar for Cauchy sequences, however.

We have just seen that sequential compactness is a topological property. We can define sequential compactness just in terms of neighbourhoods and open sets, as we can express convergence of sequence in terms of neighbourhoods.

We may ask whether there is a better way to do this.

Definition 2.14. Let X be a metric space. An open cover of X is a collection \mathcal{C} of open subsets of X such that

$$X = \bigcup_{G \in \mathcal{C}} G.$$

A subcover of \mathcal{C} is an open cover \mathcal{B} of X with $\mathcal{B} \subset \mathcal{C}$. We say X is **compact** if every open cover of X has a finite subcover.

Proposition 2.7 (Heine-Borel Theorem). [0, 1] with the usual metric is compact.

Proof: Let \mathcal{C} be an open cover of [0,1]. Let

$$A = \{x \in [0,1] \mid \exists \mathcal{B} \subset \mathcal{C}, [0,x] \subset \bigcup_{G \in \mathcal{B}} G\}.$$

We know there exists $G \in \mathcal{C}$ with $0 \in G$. So $0 \in A$. Clearly A is bounded above by 1, so A has a supremum $\sigma = \sup A$.

As G is open, there exists $\varepsilon > 0$ such that $[0, \varepsilon) = B_{\varepsilon}(0) \subset G$. So $\sigma > 0$.

Suppose $\sigma < 1$. We can find $G' \in \mathcal{C}$ with $\sigma \in G'$. As $\sigma = \sup A$, we can find $x \in A$ with $x \in G'$. So we have $\mathcal{C} \subset \mathcal{C}$ finite with

$$[0,x] = \bigcup_{G' \in \mathcal{B}} G'.$$

But there exists $\varepsilon > 0$ such that $(\sigma - \varepsilon, \sigma + \varepsilon) = [B_{\varepsilon}(\sigma)]$. So

$$[0,\sigma+\frac{\varepsilon}{2}]\subset\bigcup_{G\in\mathcal{B}\cup\{G'\}}G.$$

This is a contradiction, so $\sigma=1$. Hence we can find $G''\in\mathcal{C}$ such that $1\in G''$. As G'' is open, we can find $\varepsilon>0$ such that $(1-\varepsilon,1]\subset G''$. As $1=\sup A$, we can find $x\in A\cap (1-\varepsilon,1]$. This says that we have a finite $\mathcal{B}\subset\mathcal{C}$ with

$$[0,x]\subset\bigcup_{G\in\mathcal{B}}G.$$

Then $\mathcal{B} \cup \{G''\}$ is an open cover of [0,1], and so a subcover of \mathcal{C} . So [0,1] is compact.

Index

Bolzano-Weierstrass theorem, 2 local uniform convergence of power bounded, 26 series, 9 metric, 14 Cauchy sequence, 2 metric space, 14 Cauchy sequence in general metric space, 21 neighbourhood, 30 closed, 22 compact, 32 open, 30 complete, 21 open ball, 30 continuity, 11 open cover, 32 continuity in metric spaces, 18 pointwise bounded, 8 contraction, 25 pointwise convergence, 4 contraction mapping theorem, 25 projection maps, 20 convergence in \mathbb{R} , 2 convergence in metric spaces, 16 sequentially compact, 26 subcover, 32 discrete metric, 16 subspace, 15 Euclidean metric, 14 totally bounded, 27 general principle of convergence, 2 triangle inequality, 2 general principle of uniform uniform continuity, 12 convergence, 8 uniform convergence, 5 uniform convergence of series, 9 homeomorphic, 28 uniformly bounded, 8 homeomorphism, 28 uniformly Cauchy, 7 identity function, 20 usual metric, 14