Assignment 1

Vishal Vijay Devadiga (CS21BTECH11061)

Question:

A(-1, 3), B(4,2) and C(3,-2) are the vertices of a triangle.

- (a) Find the coordinates of the centroid G of the triangle
- (b) Find the equation of the line through G and parallel to AC.

Solution:

1. Let $\vec{A}, \vec{B}, \vec{C}$ be the points vectors OA,OB,OC respectively, where O is the origin. Thus,

$$\vec{A} = \begin{pmatrix} -1\\3 \end{pmatrix}, \vec{B} = \begin{pmatrix} 4\\2 \end{pmatrix}, \vec{C} = \begin{pmatrix} 3\\-2 \end{pmatrix}$$

Using centroid formula, the desired point vector \vec{G} is given by:

$$\begin{split} \vec{G} &= \frac{1}{3}(\vec{A} + \vec{B} + \vec{C}) \\ &= \frac{1}{3}(\binom{-1}{3} + \binom{4}{2} + \binom{3}{-2}) \\ &= \frac{1}{3}\binom{6}{3} \\ &= \binom{2}{1} \end{split}$$

 \vec{G} is the point vector $\begin{pmatrix} 2\\1 \end{pmatrix}$

2. Let L be the line that passes through G such that L \parallel AC Then, L can be expressed as $\vec{G} + k\hat{AC}$

$$\hat{AC} = \frac{\vec{C} - \vec{A}}{|\vec{C} - \vec{A}|}$$

$$= \frac{\binom{3}{-2} - \binom{-1}{3}}{|\binom{3}{-2} - \binom{-1}{3}|}$$

$$= \frac{\binom{4}{-5}}{|\binom{4}{-5}|}$$

$$= \frac{\binom{4}{-5}}{\sqrt{41}}$$

$$L = \binom{2}{1} + \frac{k}{\sqrt{41}} \binom{4}{-5}$$

Thus, Line L is $\binom{2}{1} + m \binom{4}{-5}$