MRI WWADNI Copenhagen 2014

Bret Borowski - Mayo

Matt Bernstein - Mayo

Jeff Gunter – Mayo

Clifford Jack - Mayo

David Jones - Mayo

Kejal Kantarci - Mayo

Denise Reyes – Mayo

Matt Senjem – Mayo

Prashanthi Vemuri - Mayo

Chad Ward – Mayo

Charlie DeCarli – UCD

Nick Fox – UCL

Norbert Schuff/Alix

Simonson – UCSF/VA

Paul Thompson – USC

Danielle Harvey - biostats

MR measures performed

- Structural MRI measures
 - BSI UCL
 - Freesurfer UCSF/SFVA
 - TBM USC
 - TBM-Syn Mayo
- Cerebrovascuar disease UC Davis
- AIRA H (CMB) Mayo
- ASL UCSF/SFVA
- Hipp subfields UCSF/SFVA
- DTI USC
- TF-fMRI Mayo

sMRI - summary

- no consistent diff between accel vs unaccel (USC and Mayo)
- Change from unacccel to accel image pairs no effect Siemens or Philips, but effect for GE (UCL)
- Overall recommendation use accel, consistently
- Sample size est. 12 months
 - CN & EMCI: n ~ 200s per arm
 - LMCI: n ~ 100s per arm
 - AD: n ~ 50-100 per arm

CVD - Conclusions

- Normals have less WMH than other groups
- No WMH group differences amongst cognitively impaired groups
- WMH increase in volume with time
- Greater WHM volumes at baseline, greater cognitive decline over time

Kejal Kantarci^a,*, Jeffrey L. Gunter^b, Nirubol Tosakulwong^c, Stephen D. Weigand^c, Matthew S. Senjem^b, Ronald C. Petersen^d, Paul S. Aisen^e, William J. Jagust^f, Michael W. Weiner^g, Clifford R. Jack, Jr.^a; and the Alzheimer's Disease Neuroimaging Initiative[†]

- Prevalence of superficial siderosis was 1%
- prevalence of microhemorrhages was 25%
- increasing with age and b-amyloid load
- Topographic densities of microhemorrhages were highest in the occipital lobes and lowest in the deep/infratentorial regions
- Greater number of microhemorrhages at baseline was associated with a greater annualized rate of additional microhemorrhages

ASL Numeric values

Precuneus	CN	EMCI	LMCI	AD	
Baseline (x 10 ⁴)	40 32.3 (11.6)	47 31.8 (10.1)	35 31.9 (9.7)	29 27.8 (9.5)	
0-3mo change (x 10 ⁴)	33 -1.60 (13.72)	35 -1.90 (8.27)	29 -2.17 (11.21)	14 -1.24 (9.46)	
0-6mo change (x 10 ⁴)	27 -2.62 (10.5)	32 -1.05 (8.38)	26 -2.88 (7.47)	-	
0-12 mo change (x 10 ⁴)	12 -4.29 (9.26)	14 -6.37 (6.77)	-	-)	
Posterior Cing.					
Baseline (x 10 ⁴)	40 32.6 (13.0)	47 31.0 (12.2)	35 28.6 (9.9)	29 27.2 (11.4)	
0-3mo change (x 10 ⁴)	33 -3.72 (12.17)	35 -1.58 (11.94)	29 -0.95 (10.33)	14 -2.83 (12.12)	
0-6mo change (x 10 ⁴)	27 -2.90 (10.95)	32 -1.89 (7.51)	26 -2.44 (8.36)	-	
0-12mo change (x 10 ⁴)	12 -2.68 (10.52)	14 -6.60 (7.12)	<u>-</u>	<u>-</u>	

Baseline – decreasing perfusion with greater impairmentRates – greater declines with greater impairment

Hipp subfield: group discrimination

Power to detect significant effect at alpha= 0.05

Comparison		CIND 'Manual'	UPenn 'ASHS'	MGH 'Bayes'	NW 'Shape'	FS 'Subfield'	FS 'SubCort'
	Image	HighRes	HighRes	HighRes	T1	T1	T1
Controls vs MCI	Region	CA1-2 trans	CA1	Mol Layer	Subiculum	Fimbria	Hippocampus
				Hippo			
	Power	0.46	0.38	0.73	0.46	0.46	0.08
MCI vs AD	Region	Subiculum	CA1	CA1	CA1	Presubiculum	Hippocampus
	Power	0.63	0.64	0.93	0.67	0.87	0.66
Controls vs AD	Region	Subiculum	CA1	Gran/Mol	Subiculum	Presubiculum	Hippocampus
				Layer			
				Dentate			
	Power	0.79	0.96	0.99	0.96	0.96	0.99
Amyloid Effect in	Region	CA1-2	Dentate	Subiculum	CA1	Tail	Hippocampus
Controls		transition					
	Power	0.70	0.39	0.88	0.56	0.54	0.50

41 cases

Some ROIs have large group discrimination in each category Not clear any advantage over standard hipp vol at this point

DTI ROI Summary Measures

- DTI summary measures include the 4 standard DTI measures:
 - fractional anisotropy (FA)
 - mean diffusivity (MD)
 - radial diffusivity (RD)
 - axial diffusivity (AxD)
- We compute these in 16 bilateral white matter (WM) regions of interest (ROIs) and 1 "total WM" ROI
 - JHU "Eve" atlas standard

DTI n80s Similar to HV n80s

$$n = \frac{2S^{2}(z_{1-a2} + z_{power})^{2}}{(0.25b)^{2}}$$

 α =0.05 σ =mean of WM integrity changes β =standard deviation of WM integrity changes Desired power=80%

AD vs NC		AD		NC		
FA of WM ROI	n80	FA of WM ROI	n80	FA of WM ROI	n80	
IFO	322	IFO	191	IFO	5096	
TOTAL_WM	626	TOTAL_WM	231	TOTAL_WM	734	
AD vs NC		AD		NC		
Structural ROI	n80	Structural ROI	n80	Structural ROI r	180	
TOTAL_hippo	280	TOTAL_hippo	148	TOTAL_hippo 1	279	
AD vs NC		Α	D	NC		
cognitive score	∍ n80	cognitive score	∍ n80	cognitive score	n80	
MMSE change	968	MMSE change	854	MMSE change	35898	

	SNAP-MCI	SMC-	CN-	CN+	SMC+	AD-MCI	AD-D	р
N	36	8	28	15	6	51	27	NA
Male (%)	17 (47)	5 (63)	9 (32)	9 (60)	1 (17)	27 (53)	13 (48)	0.38
Age (q1, q3)	70.5 (62, 75)	68 (67, 72)	73 (69, 77.5)	73 (70, 79)	69.5 (66, 73)	72 (68, 75.5)	74 (72.5, 76.5)	0.08
Educ (q1, q3)	16 (15, 18)	18 (17.5, 18)	16 (16, 16)	16 (16,17)	18.5 (16, 20)	16 (14, 18)	16 (14, 16)	0.17
ADASCOG13 (q1, q3)	12 (9.5, 15)	8.5 (5.5, 11)	8 (6, 10)	10 (9, 11)	10 (10, 10)	16 (10, 20)	32 (29, 38)	2.60E-16
AV-45 (q1, q3)	1.01 (0.98, 1.04)	0.99 (0.97 1.03)	1.00 (0.97, 1.02)	1.33 (1.22, 1.45)	1.37 (1.23, 1.44)	1.33 (1.23, 1.46)	1.46 (1.34, 1.58)	4.78E-25

Amyloid Negative Control Subject

Alzheimer's Dementia Subject

ADNI 3 Considerations for MRI protocol

- Unlike ADNI 2, in ADNI 3 will perform all sequence types on all scanners/subjects to the extent possible
- Favor fragmented vs standardized experimental sequences
 - Standardized → low end, least common denominator
 - Fragmented → use performance capability of high end systems
 - TF-fMRI multi band Siemens
 - DTI more diffusion encoding or 2 b-shell or comp SENSE DSI
- Rationale
 - 2016 state of art is 2021 routine
 - should test what advanced MR can add

ADNI 3

- Core sequences
 - 3D T1 volume (2X accel) morphometrics
 - FLAIR CVD, pathology detection
 - T2* GRE MCH
 - T2 FSE with fat sat TIV, distortion correction
- Experimental sequences
 - ASL perfusion; pCASL, 3D, background suppression
 - TF-fMRI connectivity; low end 3sec TR; high end MB
 - DTI diffusion; low end simple FA/MD; high end DKI, HARDI
 - Coronal high res T2 hippocampal subfields?

ADNI GO/2 MRI 3T Protocol

CORE SEQEUNCES

- 3D T1 unaccelerated & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) morphometry
- FLAIR –cerebro vascular disease grading
- long TE 2D gradient echo ARIA-H (CMB) grading

EXPERIMENTAL SEQUUNCES

- Siemens (30 sites) ASL perfusion (20), and high res T2 hipp subfield
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI