

deeplearning.ai

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

Sigmoid activation function
$$g(z) = 0$$

A deg(z) = slope of g(x) of z

$$= \frac{1}{1+e^{-z}} \left(1 - \frac{1}{1+e^{-z}} \right)$$

A T Z
$$a = g(x) = \frac{1}{(te^{-\lambda})}$$

 $= s(ope \ of \ g(x) \ od \ z$ $z = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{2} = 10. \ g(z) | x|$
 $\frac{1}{1+e^{-\lambda}} \left(1 - \frac{1}{1+e^{-\lambda}}\right)$ $\frac{1}{1+$

Tanh activation function

Andrew Ng

ReLU and Leaky ReLU

Leaky ReLU

$$g(z) = Mox(001z) = 0.01$$
 $g(z) = Mox(001z) = 0.01$
 $g(z) = Mox(001z) = 0.01$

Andrew Ng