DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2015

EEE PART I: MEng, BEng and ACGI

before exam started. (orrection 416).

MATHEMATICS 1A (E-STREAM AND I-STREAM)

Corrected Copy

Thursday, 28 May 10:00 am

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Answer ALL questions. Question 1 is worth 40%. Questions 2-4 are each worth 20%.

NO CALCULATORS ALLOWED

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

Second Marker(s):

EE1-10A MATHEMATICS I

Information for Candidates:

Calculators are not permitted in this exam.

1. a) Express the following complex numbers in the form
$$x + iy$$
: [4]

(i)
$$(1-i)^3$$
, (ii) $\frac{1-i}{1+i}$, (iii) $\left(\frac{1+\sqrt{3}i}{2}\right)^{10}$

b) Find all values of
$$(2+2i)^{1/3}$$
. [4]

$$\lim_{x\to\pi/6} \frac{\cos(3x)}{\tan(2x) - \sqrt{3}}.$$

$$\lim_{x\to 0} x^{x}.$$

e) Differentiate:
$$y = x^{\ln x}$$
. [4]

f) Integrate:
$$\int_0^1 \frac{2x}{(1-3x^2)^{1/3}} dx$$
. [4]

g) Use a trigonometric substitution to integrate
$$\int_0^1 \sqrt{1-x^2} dx$$
. [4]

h) The convolution of two sets of complex Fourier coefficients, X_n and Y_n , is defined as $X_n * Y_n = \sum_{m=-\infty}^{\infty} X_{n-m} Y_m$.

Prove that
$$X_n * Y_n = Y_n * X_n$$
. [4]

i) The waveform
$$x(t)$$
 is defined as $x(t) = \begin{cases} e^{-2t} & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$.

Calculate
$$y(t) = x(t) \otimes x(t) = \int_{-\infty}^{\infty} x^{*}(s-t)x(s)ds$$
. [4]

j) Suppose that the Fourier transform of a waveform x(t) is given by

$$X(f) = 2i\left(\delta(f+20) - \delta(f-20)\right)$$

where $\delta()$ is the Dirac delta function.

Determine an expression for
$$x(t)$$
. [4]

2. Given the function

$$f(x) = \frac{x}{1+x^4} - \frac{x^3}{1+x^4}$$

Show that the area under the graph of the function f(x), for $0 \le x \le b$ is given by

$$A(b) = \frac{1}{2}\arctan(b^2) - \frac{1}{4}\log(1+b^4)$$
.

[6]

- b) Find the stationary points of A(b) with b > 0 and determine whether they are maxima or minima. [6]
- c) Assume that b is a function of time given by

$$b(t) = e^{-t}.$$

- i) Use the chain rule to determine $\frac{dA}{dt}$ as a function of t. [4]
- ii) Find the limit of A(b(t)) as t tends to $+\infty$. [4]

3. a) i) Show that
$$sinh(x+iy) = sinh x cos y + i cosh x sin y$$
. [4]

$$|\sinh(x+iy)|^2 = \frac{1}{2}(\cosh 2x - \cos 2y).$$

b) Obtain the limit:

$$\lim_{x\to -3}\frac{3-\sqrt{-3x}}{x+3}.$$

c) Show that
$$\int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C$$
. [4]

d) Integrate
$$\int \frac{1}{1-\sin x - \cos x} dx$$
. [4]

4. a) The real-valued waveform x(t) is periodic with period $T = \frac{1}{F}$ and its complex Fourier series coefficients are denoted X_n .

Prove that
$$\frac{1}{T} \int_0^T |x(t)|^2 = \sum_{n=-\infty}^{\infty} |X_n|^2$$
. [5]

b) The waveform x(t) has period T = 2 and is defined by

$$x(t) = \begin{cases} t & \text{for } 0 \le t < 1 \\ 2 - t & \text{for } 1 \le t < 2 \end{cases}.$$

By evaluating the formula $X_n = \langle x(t)e^{-i2\pi nFt}\rangle$, show that $\int \sigma \sigma \cap \neq 0$ [6]

$$X_n = \frac{(-1)^n - 1}{\pi^2 n^2}.$$

- Determine the value of X_n in simplified form for each of the coefficient indices $n = -4, -3, \dots, 3, 4$.
- d) For each of the following properties that are satisfied by x(t), state the corresponding properties of X_n that can be deduced:

i)
$$x(t) = x(-t),$$
 [2]

ii)
$$x(t) + x(t+1) = 1.$$
 [3]

