T3 TRIG IDENTITY MARKING SCHEME

1	(i	′	relevant use of formula for $\sin 2\theta$ or $\cos 2\theta$	M [*]		
			relevant use of formula for $\cos 4\theta$	M ⁻ A1		2
	2 (i)	ete proof of the given result	A	I	3
•	•		Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$ Use double angle formulae to express LHS in terms of $\cos \theta$ (and maybe $\sin \theta$) Obtain any correct expression in terms of $\cos \theta$ alone Reduce correctly to the given form	B1 M1 A1 A1		
	(OR:	Use double angle formula to express RHS in terms of $\cos 2\theta$ Express $\cos^2 2\theta$ in terms of $\cos 4\theta$. Obtain any correct expression in terms of $\cos 4\theta$ and $\cos 2\theta$ Reduce correctly to the given form	M1 B1 A1 A1	4	
	((ii)	Using the identity, carry out method for calculating one root Obtain answer 27.2° (or 0.475 radians) or 27.3° (or 0.476 radians) Obtain a second answer, e.g. 332.8° (or 5.81 radians) Obtain remaining answers, e.g. 152.8° and 207.2° (or 2.67 and 3.62 radians) and no others in range	M1 A1 A1√	4	
3		Use a co Obtain g Solve co Obtain a	$A = 1/\tan A$ or $\cos A/\sin A$ and/or $\csc A = 1/\sin A$ on at least two terms brrect double angle formula or the $\sin(A - B)$ formula at least once given result by $\theta = 2$ for θ and obtain answer 26.6° answer 206.6° and no others in the given range answers outside the given range. Treat answers given in radians as a misre	M1 M1 A1 B1 B1 √	,	3
4		Subs	e correct expansion of $\cos(3x - x)$ or $\cos(3x + x)$ stitute expansions in $\frac{1}{2}(\cos 2x - \cos 4x)$, or equivalent plify and obtain the given identity correctly	B1 M1 A1	[3]

5 (i) Express $\cos 4\theta$ as $2 \cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2 \sin^2 2\theta$ Express $\cos 4\theta$ in terms of $\cos \theta$ Obtain $8 \cos^4 \theta - 8 \cos^2 \theta + 1$	B1 M1 A1
Use $\cos 2\theta = 2\cos^2\theta - 1$ to obtain given answer $8\cos^4\theta - 3$ AG	A1 [4]
(ii) (a) State or imply $\cos^4 \theta = \frac{1}{2}$ Obtain 0.572 Obtain -0.572	B1 B1 B1 [3]
6(i) Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ Obtain a correct expression in terms of $\sin \theta$ in any form Obtain the given identity [SR: Give M1 for using correct formulae to express RHS in terms of $\sin \theta$ and $\cos 2\theta$, then M1A1 for expressing in terms of $\sin \theta$ and $\sin 3\theta$ only, or in terms of $\cos \theta$, $\sin \theta$, $\cos 2\theta$ and $\sin 2\theta$, then A1 for obtaining the given identity.]	M1 M1 A1 A1 [4]
(ii) Substitute for x and obtain the given answer	B1 [1]
(iii) Carry out a correct method to find a value of x Obtain answers 0.322, 0.799, -1.12 A1 [Solutions with more than 3 answers can only earn a maximum of A1 + A1.]	M1 + A1 + A1 [4]
7 (i) EITHER: Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$ Use correct double angle formulae to express LHS in terms of $\sin \theta$ and/or $\cos \theta$ Obtain a correct expression in terms of $\sin \theta$ alone Reduce correctly to the given form	B1 M1 A1 A1
OR : Use correct double angle formula to express RHS in terms of $\cos 2\theta$ Express $\cos^2 2\theta$ in terms of $\cos 4\theta$ Obtain a correct expression in terms of $\cos 4\theta$ and $\cos 2\theta$ Reduce correctly to the given form	M1 B1 A1 A1 [4]
(ii) Use the identity and carry out a method for finding a root Obtain answer 68.5° Obtain a second answer, e.g. 291.5° Obtain the remaining answers, e.g. 111.5° and 248.5°, and no others in the given	M1 A1 A1√
interval [Ignore answers outside the given interval. Treat answers in radians as a misread.]	A1 √ [4]

8	(i)	EITHER:	Use $\tan 2A$ formula to express LHS in terms of $\tan \theta$ Express as a single fraction in any correct form Use Pythagoras or $\cos 2A$ formula Obtain the given result correctly	M1 A1 M1 A1	
		OR:	Express LHS in terms of $\sin 2\theta$, $\cos 2\theta$, $\sin \theta$ and $\cos \theta$ Express as a single fraction in any correct form Use Pythagoras or $\cos 2A$ formula or $\sin(A - B)$ formula Obtain the given result correctly	M1 A1 M1 A1	[4]

9	EITHER: Multiply numerator and denominator of LHS by $1 + \sin \theta$	(M1
	Use Pythagoras and express LHS in terms of sec θ and $\tan \theta$	M1
	Complete the proof	A1)
	OR1: Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of $\sin \theta$	M1
	Complete the proof	A1)
	OR2: Express LHS in terms of $\sec \theta$ and $\tan \theta$	(M1
	Multiply numerator and denominator by $\sec\theta + \tan\theta$ and use Pythagoras	M1
	Complete the proof	A1)
	Total:	3

10	Express the LHS in terms of either cos x and sin x or in terms of tan x	B1
	Use Pythagoras	M1
	Obtain the given answer	A1
	Total:	3

11	Use correct $tan(A \pm B)$ formula and express the LHS in terms of $tan x$	M1
	Using tan 45° = 1 express LHS as a single fraction	A1
	Use Pythagoras or correct double angle formula	M1
	Obtain given answer	A1
		4

12	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	M1	$\frac{2\sin x - 2\sin x \cos x}{1 - \left(2\cos^2 x - 1\right)}$
	Obtain a correct expression	A1	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1 - \cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	A1	
	$\frac{\sin x}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x} = \frac{\sin x - \sin x \cos x}{1 - \cos^2 x}$ $= \frac{2\sin x - 2\sin x \cos x}{2 - 2\cos^2 x}$ M1A1		Given answer so check working carefully
	$=\frac{2\sin x - \sin 2x}{1 - \cos 2x}$ M1A1		
		4	

13(i)	Attempt cubic expansion and equate to 1	M1
	Obtain a correct equation	A1
	Use Pythagoras and double angle formula in the expansion	M1
	Obtain the given result correctly	A1
	Total:	4
13(ii)	Use the identity and carry out a method for finding a root	M1
	Obtain answer 20.9°	A1
	Obtain a second answer, e.g. 69.1°	A1FT
	Obtain the remaining answers, e.g. 110.9° and 159.1°, and no others in the given interval	A1FT
	Total:	4

14 (i)	State correct expansion of $\sin(2x+x)$	B1	
	Use trig formulae and Pythagoras to express $\sin 3x$ in terms of $\sin x$	M1	
	Obtain a correct expression in any form	A1	e.g. $2\sin x (1 - \sin^2 x) + \sin x (1 - 2\sin^2 x)$
	Obtain $\sin 3x = 3\sin x - 4\sin^3 x$ correctly AG	A1	Accept = for =
		4	

15	Use double angle formulae and express entire fraction in terms of $\sin\theta$ and $\cos\theta$	M1	
	Obtain a correct expression	A1	
	Obtain the given answer	A1	
		3	

16	Use $cos(A + B)$ formula to express $cos3x$ in terms of trig functions of $2x$ and x	M1	
	Use double angle formulae and Pythagoras to obtain an expression in terms of cos <i>x</i> only	M1	
	Obtain a correct expression in terms of $\cos x$ in any form	A1	
	Obtain $\cos 3x = 4\cos^3 x - 3\cos x$	A1	AG
		4	