1. 求 U 和 12V 电压源发出的功率。

2. 求 5Ω 电阻吸收的功率。

3. 电路如图所示,已知非线性电阻的伏安关系为 $i=u^2(u>0)$,直流电压源 $U_S=6V$, $R=1\Omega$,信号源 $i_S(t)=0.1\sin \omega t$ A。试求全响应 u(t)和 i(t)。

4. 图示电路中,已知对称三相电源的相电压为 220V,线路阻抗 $Z_1 = (1+j\mathbf{l})\Omega$,角接负载 $Z_2 = (24-j30)\Omega$,星接负载 $Z_3 = (12+j5)\Omega$,求(1)线电流 \dot{I}_A 的有效值;(2)每组负载的相

电流的有效值;

5. 电路如图所示,已知 $U_{S1}=10$ V, $u_{S2}(t)=20\sqrt{2}\sin\omega t$ V V, $i_{S}(t)=[2+2\sqrt{2}\sin\omega t]$ A, $\omega=10$ rad/s 。试求: (1)电流源的端电压 u(t)及其有效值; (2)电流源发出的平均功率。

6. 在图示电路中,已知 $u_{\rm S}(t)=100\sqrt{2}\sin\omega t{\rm V}$, $\omega=100{\rm rad/s}$, $R=260\Omega$, $C=50\mu{\rm F}$,求电

流 i(t)。

7. 电路如图所示,t<0 时电路已经处于稳定状态,t=0 时打开开关 K,求 $t\geq0$ 时的电容电压 $u_C(t)$ 和 $i_L(t)$ 。

8. 电路如图所示,N 为由电阻组成的线性网络, R_L 为可变负载电阻。当 R_L =1KΩ,开关 K 断开时,测得 I_1 =3mA, U_2 =6V;当开关 K 闭合时,测得 I_1 =4mA, U_2 =2V。试求:(1) 双口网络 N 的 Z 参数;(2)当 R_L 为何值时,它可获得最大功率?并求此最大功率;

9. 如图所示电路中,换路前电路已处于稳定状态,开关 S1 和 S2 打开。t=0 时闭合 S1, t=1S 时闭合 S2,求 u_C 和 i_C ,并定性画出其变化曲线。

10. 图示电路中,已知 $I_R=3$ A, $U_S=9$ V, \dot{U}_S 超前 \dot{I}_C 的相位角 $\varphi=-36.9^\circ$,且 \dot{U}_S 与 \dot{U}_L 相位 差 90°。试确定元件参数 R、 X_L 、和 X_C 的值。

