9 класс, вариант 37091, задача 1

В теории чисел натуральное число называется В-гладким, если все его простые делители не превосходят В. Разработайте алгоритм проверки чисел в диапазоне от Р до Q на В-гладкость.

Решение (схема). Строится массив простых чисел. Далее для каждого числа n из диапазона от P до Q проверяем, являются ли простые числа, большие B, делителями числа n. Если это так, то число не является B-гладким. B противном случае число является B-гладким.

9 класс, вариант 37091, задача 2

Число n представляется в виде произведение двух простых чисел $n=p\cdot q$. Составьте алгоритм для нахождения этих чисел, если известно, что n=40003200063, а |p-q|=2.

Решение (схема, один из способов).

1 способ.

Из условия следует, что $(q+2)\cdot q=n$ или $(q-2)\cdot q=n$. Имеем 2 квадратных уравнения $q^2+2q-n=0$ и $q^2-2q-n=0$. Вычисляем решения этих уравнений $x_1=-1+\sqrt{n+1}$, $x_2=1+\sqrt{n+1}$, $x_3=-1-\sqrt{n+1}$, $x_4=1-\sqrt{n+1}$. Если $n\geq 0$ и x_1 и x_2- целые числа, то $q=x_1$ и $p=x_2$ (или наоборот). Проверим найденные числа на простоту.

9 класс, вариант 37091, задача 3

В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. То есть, если дано число k, какие существуют множества целых чисел $\{n_1, ..., n_k\}$ таких, что для любого i число n_i делит, но не равно

$$\left(\prod_{j \neq i}^k n_j + 1\right)$$
. Разработайте алгоритм нахождения числа решений задачи Знама для k в

диапазоне от P до Q. Принять верхнюю границу $n_i = 1000000$.

Решение (схема). Задача решается перебором всех вариантов.

9 класс, вариант 37091, задача 4

В теории чисел уникальное простое число – это определённый вид простых чисел. Простое число $p \neq \{2,5\}$ называется уникальным, если не существует другого простого q, такого что длина периода разложения в десятичную дробь обратной величины, 1/p, равна длине периода 1/q. Разработайте алгоритм, определяющий для простых чисел в диапазоне от U до W, являются ли они уникальными простыми. Ограничить сверху $q = 10^9$.

Решение (схема). Определим период дроби 1/p (если он есть). Если дробь не является периодической, процесс деления будем останавливать, когда количество делений станет в 100 раз больше, чем количество цифр в числе p, т.к. период дроби не должен принципиально отличаться от количества цифр в знаменатели дроби.

строим массив простых чисел от 1 до 10^9 (или до W, если W > 10^9). Затем для чисел p в диапазоне от U до W ищем число q, период дроби которого равен периоду дроби 1/p. Если такого числа нет, то число p является уникальным простым числом.

9 класс, вариант 37091, задача 5

Широко известна древнегреческая задача об Ахилле и черепахе.

Предположим, что Ахилл бежит вдесятеро быстрее, чем ползёт черепаха, и в начале состязания черепаха имеет 100 м форы. К тому времени, когда Ахиллес пробежит 100 м, черепаха успеет проползти 10 м. Когда же Ахилл пробежит и эти 10 м, черепаха уползёт вперёд на 1 м, и так далее. Таким образом, черепаха всегда будет впереди Ахилла и он её никогда не догонит.

Вы делаете расчёт данной задачи на ЭВМ. Какой будет получен результат в ответе?

Ответ. Результат расчета на ЭВМ: Ахилл догонит черепаху.