MA2102: LINEAR ALGEBRA

Lecture 2: Vector Space

19th August 2020

We will study sets V (think of \mathbb{R}^3 or \mathbb{R}^n) with a binary operation called *addition*, defined over a set F (think of \mathbb{R}), having *addition* and *multiplication*, such that the eight axioms are satisfied.

Expected properties of F The set of scalars is called a field.

- addition in *F* is commutative and associative;
- multiplication in *F* is commutative and associative;
- there is an additive identity, i.e., $0 + \lambda = \lambda$;
- additive inverses exist;
- there is a multiplicative identity, i.e., $1 \cdot \lambda = \lambda$;
- multiplicative inverses exist for non-zero elements;
- distributive law holds.

Remark We usually assume that $1 \neq 0$ in the definition. Thus, a field always has at least two elements.

Examples \mathbb{R} real numbers, \mathbb{Q} rational numbers, \mathbb{C} complex numbers.

Question What about the set $\{0,1\}$?

Definition [Vector Space] A vector space V, over a field F, is a set with a binary operation

$$+: V \times V \to V$$
 (addition)

and an operation

$$:: F \times V \to V$$
 (scaling)

satisfying the following axioms:

Axiom I v + w = w + v for any $v, w \in V$ (commutative)

Axiom II u+(v+w)=(u+v)+w for any $u,v,w\in V$ (associative)

Axiom III there exists $0 \in V$ such that 0 + v = v for any $v \in V$ (identity)

Axiom IV given $u \in V$, there exists $v \in V$ such that u + v = 0 (inverse)

Axiom V there exists $1 \in F$ such that $1 \cdot v = v$ for any $v \in V$ **Axiom VI** $(ab) \cdot v = a \cdot (b \cdot v)$ for any $v \in V$ and $a, b \in F$ **Axiom VII** $a \cdot (v + w) = a \cdot v + a \cdot w$ for $v, w \in V$ and $a \in F$ **Axiom VIII** $(a + b) \cdot v = a \cdot v + b \cdot v$ for $v \in V$ and $a, b \in F$

Examples (1) The set $V = \{\theta\}$ is a vector space over \mathbb{R} (in fact, over any field F). It is called the zero vector space.

(2) The sets $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ and, more generally, \mathbb{R}^n are vector spaces over \mathbb{R} .

Definition [Field] A field *F* is a set with two binary operations

$$+: F \times F \rightarrow F, :: F \times F \rightarrow F$$

such that

Axiom I + and \cdot are commutative and associative

Axiom II + has (additive) identity and inverses

 $\mathbf{Axiom}\ \mathbf{III}\ \cdot$ has (multiplicative) identity and inverses for non-zero elements

Axiom IV · should distribute over +.

Examples (1) \mathbb{R} , \mathbb{C} and \mathbb{Q} .

- (2) The set $\{0,1\}$ is a field.
- (3) Show that any field $F \subset \mathbb{R}$ must contain \mathbb{Q} .
- (4) Consider the set

$$\mathbb{Q}[\sqrt{2}] := \{p + q\sqrt{2} \mid p, q \in \mathbb{Q}\}.$$

Axioms I, II and IV are easily verified. If $p + q\sqrt{2}$ is non-zero, then at least p or q is non-zero.

Consider the number

$$\alpha := \frac{p}{p^2 - 2q^2} - \frac{q}{p^2 - 2q^2} \sqrt{2}.$$

Show that $\alpha \neq 0$ and it is the multiplicative inverse of $p + q\sqrt{2}$. Note that $p^2 - 2q^2$ can never be zero unless p, q are both zero.

Properties of a field:

• (cancellation law) If a + b = a + c, then b = c.

Let a' be an additive inverse of a, i.e., a + a' = 0. By commutativity, a' + a = 0. Add a' to both sides to obtain

$$a' + (a + b) = a' + (a + c).$$

By associativity and a' + a = 0, this means 0 + b = 0 + c, whence b = c.

• The additive identity is unique.

Let 0 and 0' be two additive identity. Then 0 = 0 + 0' = 0'.

Additive inverses are unique.

Consequence of cancellaton law.

Multiplicative identity is unique.

Similar proof as uniqueness of 0.

• (cancellation law II) If $a \cdot b = a \cdot c$ and $a \neq 0$, then b = c. Let a' be a multiplicative inverse of a, i.e., $a \cdot a' = 1$. By commutativity,

 $a' \cdot a = 1$. Multiply a' to both sides to obtain

$$a' \cdot (a \cdot b) = a' \cdot (a \cdot c).$$

By associativity and $a' \cdot a = 1$, this means $1 \cdot b = 1 \cdot c$, whence b = c.

• Multiplicative inverses are unique.

Consequence of cancellation law II.

Verify all the properties listed above.

Properties of a vector space:

 \circ (cancellation law) If u + v = u + w, then v = w.

Same proof as in the case of a field.

Additive identity is unique.

Same proof as in the case of a field.

- Given $v \in V$, there exists a unique $w \in V$ such that v + w = 0. Consequence of cancellation law.
 - $\circ \circ v = \circ$ for any $v \in V$.

Since $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$, use cancellation law.

Matrices as vectors: Consider the set $M_{m \times n}(\mathbb{R})$ of $m \times n$ matrices with real entries.

- Addition of matrices is defined via entrywise addition.
- The zero matrix $0_{m \times n}$ is the additive identity.
- $(cA)_{ij} := cA_{ij}$ defines scaling for matrices.

Show that $M_{m \times n}(\mathbb{R})$ is a vector space over \mathbb{R} . Note that $M_{n \times 1}(\mathbb{R})$ looks like \mathbb{R}^n , while $M_{3 \times 2}(\mathbb{R})$ looks like \mathbb{R}^6 . For $M_{m \times n}(\mathbb{R})$ to be closed under matrix multiplication, we need m = n.

Question *Is* $M_{n \times n}(\mathbb{R})$ *a field?*

Answer Apart from the case n = 1, it is not. Justify this by looking at non-zero matrices which are not invertible.

Remark The matrices $M_{m \times n}(\mathbb{Q})$ and $M_{m \times n}(\mathbb{C})$ are vector spaces over \mathbb{Q} and \mathbb{C} respectively.