### I concetti del Modello Relazionale - Parte 4

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei, Ostiglia

5 dicembre 2024

### Relazioni di riferimento

### Tabella Dipendenti

| ID_Dipendente | Nome  | Cognome |
|---------------|-------|---------|
| 1             | Marco | Rossi   |
| 2             | Laura | Bianchi |
| 3             | Sara  | Verdi   |
| 4             | Luca  | Neri    |

## Tabella Progetti

| ID_Progetto   Nome_Progetto |               | ID_Dipendente |
|-----------------------------|---------------|---------------|
| 101                         | ProgettoAlpha | 1             |
| 102                         | ProgettoBeta  | 2             |
| 103                         | ProgettoGamma | 3             |
| 104                         | ProgettoDelta | NULL          |

### Esercizio 1: Selezione

**Testo:** Trova tutti i dipendenti con ID maggiore di 2.

Operazione:

 $\sigma_{\mathsf{ID\_Dipendente}} > 2 \big( \mathsf{Dipendenti} \big)$ 

| ID_Dipendente | Nome | Cognome |
|---------------|------|---------|
| 3             | Sara | Verdi   |
| 4             | Luca | Neri    |

### Esercizio 2: Selezione

**Testo:** Trova tutti i progetti che non hanno un dipendente assegnato.

**Operazione:** 

 $\sigma_{\mathsf{ID\_Dipendente}} \mathrel{\mathsf{IS}} \mathsf{NULL} \big( \mathsf{Progetti} \big)$ 

| ID_Progetto | Nome_Progetto | ID_Dipendente |
|-------------|---------------|---------------|
| 104         | ProgettoDelta | NULL          |

### Esercizio 3: Selezione

**Testo:** Trova tutti i progetti con ID maggiore di 102.

Operazione:

 $\sigma_{\mathsf{ID\_Progetto}} > 102 (\mathsf{Progetti})$ 

| ID_Progetto | Nome_Progetto | ID_Dipendente |
|-------------|---------------|---------------|
| 103         | ProgettoGamma | 3             |
| 104         | ProgettoDelta | NULL          |

### Esercizio 1: Proiezione

**Testo:** Visualizza solo i nomi e i cognomi dei dipendenti.

**Operazione:** 

 $\pi_{\mathsf{Nome, Cognome}}(\mathsf{Dipendenti})$ 

| Nome  | Cognome |
|-------|---------|
| Marco | Rossi   |
| Laura | Bianchi |
| Sara  | Verdi   |
| Luca  | Neri    |

### Esercizio 2: Proiezione

**Testo:** Visualizza solo i nomi dei progetti.

**Operazione:** 

 $\pi_{\mathsf{Nome\_Progetto}}(\mathsf{Progetti})$ 

Risultato:

# $\overline{N}$ ome\_Progetto

ProgettoAlpha ProgettoBeta ProgettoGamma ProgettoDelta

### Esercizio 3: Proiezione

**Testo:** Visualizza solo gli ID dei dipendenti e dei relativi cognomi.

**Operazione:** 

 $\pi_{\mathsf{ID\_Dipendente}}$ ,  $\mathsf{Cognome}(\mathsf{Dipendenti})$ 

| ID_Dipendente | Cognome |
|---------------|---------|
| 1             | Rossi   |
| 2             | Bianchi |
| 3             | Verdi   |
| 4             | Neri    |

# Esercizio 1: Equi Join con Proiezione

**Testo:** Trova il nome del progetto e il nome del dipendente per tutti i progetti con un dipendente assegnato.

Operazione:

 $\pi$ Nome\_Progetto, Nome

 $\Big(\mathsf{Progetti} \bowtie_{\mathsf{Progetti.ID\_Dipendente}} = \mathsf{Dipendenti.ID\_Dipendente} \Big)$ 

#### Risultato:

| Nome_Progetto | Nome  |
|---------------|-------|
| ProgettoAlpha | Marco |
| ProgettoBeta  | Laura |
| ProgettoGamma | Sara  |

**Nota:** Gli attributi usati nella condizione (ad esempio, ID\_Dipendente) sono mantenuti nella relazione intermedia, ma non compaiono nel risultato dopo la proiezione.

# Esercizio 2: Equi Join con Selezione

**Testo:** Trova i progetti con dipendenti assegnati, ma solo quelli in cui l'ID del dipendente è maggiore di 2.

### Operazione:

$$\sigma_{\mathsf{ID\_Dipendente}} > 2$$

 $\left( \mathsf{Progetti} \bowtie_{\mathsf{Progetti.ID\_Dipendente}} = \mathsf{Dipendenti.ID\_Dipendente} \ \mathsf{Dipendenti} \right)$ 

| ID_Progetto | Nome_Progetto | ID_Dipendente | Nome | Cognome |
|-------------|---------------|---------------|------|---------|
| 103         | ProgettoGamma | 3             | Sara | Verdi   |

# Esercizio 3: Equi Join con Selezione e Proiezione

**Testo:** Trova i nomi dei progetti e i nomi dei dipendenti assegnati, ma solo per i progetti il cui ID è maggiore di 102.

Operazione:

$$\pi_{\mathsf{Nome\_Progetto}}$$
,  $\mathsf{Nome} \Big( \sigma_{\mathsf{ID\_Progetto}} > 102$ 

$$\left(\mathsf{Progetti} \bowtie_{\mathsf{Progetti.ID\_Dipendente}} = \mathsf{Dipendenti.ID\_Dipendente} \ \mathsf{Dipendenti} \right) \right)$$

Risultato:

| Nome_Progetto | Nome |  |
|---------------|------|--|
| ProgettoGamma | Sara |  |

**Nota:** L'Equi Join conserva attributi duplicati nella relazione intermedia, ma la proiezione li elimina nel risultato finale.

### Esercizio 1: Join Naturale con Proiezione

**Testo:** Trova il nome del progetto e il nome del dipendente per tutti i progetti con un dipendente assegnato.

Operazione:

$$\pi_{\mathsf{Nome\_Progetto,\ Nome}}\Big(\mathsf{Progetti}\bowtie\mathsf{Dipendenti}\Big)$$

#### Risultato:

| Nome_Progetto | Nome  |
|---------------|-------|
| ProgettoAlpha | Marco |
| ProgettoBeta  | Laura |
| ProgettoGamma | Sara  |

**Nota:** Gli attributi duplicati vengono automaticamente eliminati nel risultato del join naturale.

### Esercizio 2: Join Naturale con Selezione

**Testo:** Trova i progetti con dipendenti assegnati, ma solo quelli in cui l'ID del dipendente è maggiore di 2.

### Operazione:

$$\sigma_{\mathsf{ID\_Dipendente}} > 2 \Big( \mathsf{Progetti} \bowtie \mathsf{Dipendenti} \Big)$$

#### Risultato:

| Nome_Progetto | ID_Dipendente | Nome |
|---------------|---------------|------|
| ProgettoGamma | 3             | Sara |

**Nota:** Anche con il Join Naturale, la selezione può essere applicata ai dati risultanti in modo analogo.

### Esercizio 3: Join Naturale con Selezione e Proiezione

**Testo:** Trova i nomi dei progetti e i nomi dei dipendenti assegnati, ma solo per i progetti il cui ID è maggiore di 102.

### Operazione:

$$\pi_{\mathsf{Nome\_Progetto,\ Nome}}\Big(\sigma_{\mathsf{ID\_Progetto}} > {}_{\mathsf{102}}\Big(\mathsf{Progetti}\bowtie\mathsf{Dipendenti}\Big)\Big)$$

#### Risultato:

| Nome_Progetto | Nome |
|---------------|------|
| ProgettoGamma | Sara |

**Nota:** Il Join Naturale elimina automaticamente gli attributi comuni duplicati, riducendo il grado della relazione risultante.

### Nuove tabelle di riferimento

#### Tabella Clienti

| ID_Cliente | Nome  | Città  |
|------------|-------|--------|
| 1          | Anna  | Roma   |
| 2          | Luca  | Milano |
| 3          | Maria | Torino |
| 4          | Marco | Napoli |

### Tabella Ordini

| ID_Ordine | Prodotto   | ID_Cliente |
|-----------|------------|------------|
| 101       | Laptop     | 1          |
| 102       | Smartphone | 2          |
| 103       | Tablet     | 3          |
| 104       | Monitor    | NULL       |

# Esercizio 1: Equi Join con Selezione e Proiezione

**Testo:** Trova i nomi dei clienti e i prodotti acquistati da chi vive a "Roma".

### Operazione:

$$\pi_{\mathsf{Nome, Prodotto}}\Big(\sigma_{\mathsf{Citt}\grave{\mathsf{a}}} = \mathsf{'Roma'}\Big)$$
 
$$\Big(\mathsf{Clienti} \bowtie_{\mathsf{Clienti.ID\_Cliente}} = \mathsf{Ordini.ID\_Cliente} \; \mathsf{Ordini}\Big)\Big)$$

#### Risultato:

| Nome | Prodotto |
|------|----------|
| Anna | Laptop   |

**Nota:** L'operazione di selezione filtra i clienti con 'Città = 'Roma'' prima di eseguire il join.

# Esercizio 2: Equi Join con Selezione e Proiezione

**Testo:** Trova i nomi dei clienti e i prodotti acquistati, ma solo per gli ordini con ID maggiore di 102.

### Operazione:

$$\pi_{\mathsf{Nome, Prodotto}}\Big(\sigma_{\mathsf{ID\_Ordine}} > 102$$
 
$$\Big(\mathsf{Clienti} \bowtie_{\mathsf{Clienti.ID\_Cliente}} = \mathsf{Ordini.ID\_Cliente} \ \mathsf{Ordini}\Big)\Big)$$

#### Risultato:

| Nome  | Prodotto |
|-------|----------|
| Maria | Tablet   |

**Nota:** L'operazione di selezione filtra gli ordini con 'ID\_Ordine > 102' prima di eseguire il join.

# Esercizio 3: Equi Join con Selezione e Proiezione

**Testo:** Trova i nomi dei clienti e i prodotti acquistati, ma solo per i clienti con ID maggiore di 2.

### Operazione:

$$\pi_{\mathsf{Nome, Prodotto}}\Big(\sigma_{\mathsf{ID\_Cliente}} > 2$$
 
$$\Big(\mathsf{Clienti} \bowtie_{\mathsf{Clienti.ID\_Cliente}} = \mathsf{Ordini.ID\_Cliente} \ \mathsf{Ordini}\Big)\Big)$$

#### Risultato:

| Nome  | Prodotto |
|-------|----------|
| Maria | Tablet   |
| Marco | Monitor  |

**Nota:** La selezione filtra i clienti con 'ID\_Cliente > 2' prima di eseguire il join.

### Nuove tabelle di riferimento

#### Tabella Studenti

| ID_Studente | Nome  | Classe     |
|-------------|-------|------------|
| 1           | Marco | 5 <i>A</i> |
| 2           | Anna  | 5 <i>B</i> |
| 3           | Luca  | 4 <i>A</i> |
| 4           | Sara  | 5 <i>A</i> |
| 5           | Maria | 4 <i>B</i> |

#### Tabella Esami

| ID_Esame | Materia    | ID_Studente |
|----------|------------|-------------|
| 101      | Matematica | 1           |
| 102      | Inglese    | 2           |
| 103      | Fisica     | 1           |
| 104      | Chimica    | 4           |
| 105      | Storia     | 5           |

# Esercizio 1: Equi Join con Selezione e Proiezione

**Testo:** Trova i nomi degli studenti e le materie d'esame per gli studenti della classe "5A".

### Operazione:

$$\pi_{\mathsf{Nome, Materia}}\Big(\sigma_{\mathsf{Classe}} = \text{'5A'}\Big)$$

$$\Big(\mathsf{Studenti} \bowtie_{\mathsf{Studenti.ID\_Studente}} = \mathsf{Esami.ID\_Studente} \; \mathsf{Esami}\Big)\Big)$$

#### Risultato:

| Nome  | Materia    |  |
|-------|------------|--|
| Marco | Matematica |  |
| Marco | Fisica     |  |
| Sara  | Chimica    |  |

- ► La condizione Classe = '5A' seleziona solo gli studenti della classe 5A.
- ► L'Equi Join associa ogni studente con i propri esami utilizzando ID\_Studente = ID\_Studente.

# Esercizio 2: Equi Join con Selezione complessa e Proiezione

**Testo:** Trova i nomi degli studenti, le materie d'esame e le classi, ma solo per gli esami il cui ID è maggiore di 102 e appartengono a studenti in classi di quarta.

### **Operazione:**

$$\pi$$
Nome, Materia, Classe  $\left(\sigma_{\text{ID\_Esame}} > 102 \text{ AND Classe LIKE '4%'}\right)$   $\left(\text{Studenti.}_{\text{Studente.}} = \text{Esami.}_{\text{ID\_Studente}} \text{ Esami}\right)$ 

#### Risultato:

| Nome  | Materia | Classe     |
|-------|---------|------------|
| Maria | Storia  | 4 <i>B</i> |

- ► ID\_Esame > 102: Filtra solo gli esami con ID maggiore di 102.
- Classe LIKE '4%': Seleziona solo gli studenti di classi di quarta.
- L'AND va a collegare le due condizioni per la selezione.
- ► Il join collega ogni studente con i propri esami tramite ID Studente.

# Esercizio 3: Equi Join con Selezione e Proiezione multipla

**Testo:** Trova i nomi degli studenti e le materie d'esame, ma solo per studenti che hanno sostenuto esami di "Matematica" o "Fisica".

### **Operazione:**

$$\pi_{\mathsf{Nome, Materia}} \Big( \sigma_{\mathsf{Materia}} = \mathsf{'Matematica' OR Materia} = \mathsf{'Fisica'} \\ \Big( \mathsf{Studenti} \bowtie_{\mathsf{Studenti.ID\_Studente}} \mathsf{Esami} \Big) \Big)$$

#### Risultato:

| Nome  | Materia    |
|-------|------------|
| Marco | Matematica |
| Marco | Fisica     |

- ► Materia = 'Matematica' OR Materia = 'Fisica'.
- ► L'OR va a selezionare le tuple in cui almeno una delle due condizioni, connesse dall'OR appunto, solo vere.
- ► Il join associa ogni studente con i propri esami tramite ID\_Studente.

# Esercizio 4: Equi Join con Selezione complessa e Proiezione

**Testo:** Trova i nomi degli studenti, le materie d'esame e le classi, ma solo per gli esami di "Matematica" o "Fisica" sostenuti dagli studenti della classe "5A" o "4B", il cui ID esame è pari.

### Operazione:

$$\pi$$
Nome, Materia, Classe  $\left(\sigma_{\text{(Materia = 'Matematica' OR Materia = 'Fisica') AND}}\right)$  (Classe = '5A' OR Classe = '4B') AND ID\_Esame % 2 = 0  $\left(\text{Studenti} \bowtie_{\text{Studenti.ID\_Studente}}\right)$ 

#### Risultato:

| Nome  | Materia | Classe     |
|-------|---------|------------|
| Marco | Fisica  | 5 <i>A</i> |

- ► Materia = 'Matematica' OR Materia = 'Fisica': Filtra gli esami per le materie specifiche.
- Classe = '5A' OR Classe = '4B'.
- ightharpoonup ID\_Esame % 2 = 0.



# Tabelle di riferimento (modello logico)

Tabella Docenti (Docenti)

Docenti(<u>ID\_Docente</u>, Nome, Dipartimento)

Tabella Corsi (Corsi)

Corsi(<u>ID\_Corso</u>, Nome\_Corso, <u>ID\_Docente</u>)

Tabella Studenti (Studenti)

Studenti(<u>ID\_Studente</u>, Nome, Classe, <u>ID\_Corso</u>)

#### Note:

- <u>Attributi chiave</u>: Indicano gli identificatori univoci di ogni tabella.
- Attributi chiave esterna: Collegano una tabella con un'altra tramite riferimenti alle chiavi primarie.

### Esercizio 1: Join e Proiezione

**Testo:** Trova i nomi dei docenti e i nomi dei corsi che insegnano. **Operazione:** 

$$\pi_{\mathsf{Nome, Nome\_Corso}}\Big(\mathsf{Docenti} \bowtie_{\mathsf{Docenti.ID\_Docente}} = \mathsf{Corsi.ID\_Docente} \ \mathsf{Corsi}\Big)$$

#### Risultato:

| Nome          | Nome_Corso  |
|---------------|-------------|
| Prof .Bianchi | Analisi1    |
| Prof .Rossi   | Fisica1     |
| Prof . Verdi  | Informatica |

- L'Equi Join associa i docenti ai corsi che insegnano utilizzando ID\_Docente.
- La proiezione restituisce solo i campi richiesti: 'Nome' (docente) e 'Nome\_Corso'.

# Esercizio 2: Join, Selezione e Proiezione

**Testo:** Trova i nomi degli studenti che frequentano corsi insegnati nel dipartimento di "Fisica".

### **Operazione:**

$$\pi_{\mathsf{Studenti}.\mathsf{Nome}}\Big(\sigma_{\mathsf{Dipartimento}} = \mathsf{'Fisica'}$$
 
$$\Big(\mathsf{Studenti} \bowtie_{\mathsf{Studenti}.\mathsf{ID\_Corso}} = \mathsf{Corsi.\mathsf{ID\_Corso}}$$
 
$$\Big(\mathsf{Corsi} \bowtie_{\mathsf{Corsi}.\mathsf{ID\_Docente}} = \mathsf{Docenti.\mathsf{ID\_Docente}} \ \mathsf{Docenti}\Big)\Big)\Big)$$

#### Risultato:



- ► La selezione Dipartimento = 'Fisica' filtra i docenti del dipartimento di Fisica.
- Due join concatenati collegano 'Studenti', 'Corsi' e 'Docenti' tramite le chiavi esterne.

# Esercizio 3: Join complesso, Selezione e Proiezione

**Testo:** Trova i nomi degli studenti e i nomi dei corsi frequentati, ma solo per studenti in classi di quinta che frequentano corsi insegnati dal dipartimento di "Informatica".

### Operazione:

$$\pi {\sf Studenti.Nome, Corsi.Nome\_Corso} \bigg( \sigma {\sf Classe \ LIKE '5\%' \ AND \ Dipartimento} = {\sf 'Informatica'} \\ \bigg( {\sf Studenti \ \bowtie_{\sf Studenti.ID\_Corso} = Corsi.ID\_Corso} \\ \bigg( {\sf Corsi \ \bowtie_{\sf Corsi.ID\_Docente} = Docenti.ID\_Docente} \bigg) \bigg) \bigg) \bigg)$$

| Nome  | Nome_Corso     |
|-------|----------------|
| Elisa | Programmazione |
| Marco | BasidiDati     |

# Esercizio 3: Join complesso, Selezione e Proiezione

- ► Classe LIKE '5%': Filtra solo gli studenti delle classi di quinta.
- Dipartimento = 'Informatica': Seleziona i corsi insegnati dal dipartimento di Informatica.
- ▶ I join concatenano 'Studenti', 'Corsi' e 'Docenti' tramite le chiavi esterne.
- ► La proiezione restituisce solo i campi richiesti: 'Nome' dello studente e 'Nome\_Corso'.