

- DataFrames and Series objects in Pandas
- Functions on DataFrames and Series to index and select data
- Functions on DataFrames and Series to sub-set data (slicing)

	department	age	height	food	color
Jane	biology	32	160.0	steak	blue
Sara	chemistry	40	158.0	lamb	red
Nicole	NaN	35	170.0	apple	orange
Kaden	computer	50	NaN	NaN	yellow
Jeff	statistics	35	175.0	steak	blue
Reza	NaN	45	165.0	lamb	red
John	statistics	45	NaN	NaN	orange
Ramon	computer	40	175.0	cheese	yellow
Bryce	engineering	28	180.0	steak	blue

What do you need to know about your data, before starting the analysis?

Discussion

What do you need to know about your data, before starting the analysis?

8) what are your features 1) Value types, ranges, errors -s negative age (a) some basic statistics about data missing values => { Columns or rows have missing values have missing values apercentage of hull value comes

(3) why then one there

(4) Can we replace the m 5) edge cones
6 how data is collected

Reviewing your data source, content, and identifying key quality assessments (e.g. outliers, null values)

1- Read your data

```
pd.read_csv() #Use header=None to include first
row in the data
pd.read_sql()
pd.read excel()
```


2- Take a look

```
df.head(integer)
Optional number, indicating how many rows
df.tail(integer)
```

	department	age	height	food	color	sport
Jane	biology	32	160.0	steak	blue	NaN
Sara	chemistry	40	158.0	lamb	red	NaN

	department	age	height	food	color	sport
Ramon	computer	40	175.0	cheese	yellow	NaN
Bryce	engineering	28	180.0	steak	blue	NaN

3- Gain some information about values

Null values

Data types

Number of entries

df.info()

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 9 entries, Jane to Bryce
Data columns (total 6 columns):
department 7 non-null object
              9 non-null int64
age
height
              7 non-null float64
food
              7 non-null object
color
              9 non-null object
              0 non-null float64
sport
dtypes: float64(2), int64(1), object(3)
memory usage: 504.0+ bytes
```


4- Explore your data using functions

Explore each column

```
df.age.sum() #count(), add(), agg
df.department.size()
```

Or explore the dataset

```
df.sample()
```

df.count()	
department	7
age	9
height	7
food	7
color	9
sport	0
dtype: int64	

Each of the functions can be applied on a column or the dataset

5- Examine statistics of your data

df.describe()

	age	height	sport
count	9.000000	7.000000	0.0
mean	38.888889	169.000000	NaN
std	7.043516	8.286535	NaN
min	28.000000	158.000000	NaN
25%	35.000000	162.500000	NaN
50%	40.000000	170.000000	NaN
75%	45.000000	175.000000	NaN
max	50.000000	180.000000	NaN

df.describe()

6- Run some query

```
df.query()
```

```
df.query('age > 35 and height <160')

department age height food color sport

Sara chemistry 40 158.0 lamb red NaN</pre>
```

Note: df.query('age < 40') is equivalent to df[df.age < 40]

Import the sample-data for lecture 3 and assess the data and column values

Discussion

- 1) Discuss some reasons for having null values in the data.
- 2) Why should we care about the null values, at all?!

- 1) Discuss some reasons for having null values in the data.
- 2) Why should we care about the null values, at all?!

```
Real null ; False null; Reasons of not having a value for a record, feature

- Survey data; people refuse to answer

- Type of data & how the data is collected

- Type of data & how the data

- storage or corrupt; on of data

- collection errors / computation (technicallissues; e.g. sensor not warking)

- collection errors / computation (technicallissues; e.g. server is down

- mis-information / ambiguity / joining data from various sources
```

Data Profiling cont.

7- Examine null values

```
df.isnull()
```

df.notnull()

df.column_name.isnull()

df.notnull()

department	age	height	food	color	sport
True	True	True	True	True	False
True	True	True	True	True	False
False	True	True	True	True	False
True	True	False	False	True	False
True	True	True	True	True	False
False	True	True	True	True	False
True	True	False	False	True	False
True	True	True	True	True	False
True	True	True	True	True	False
	True True False True True False True False True True	True True True False True True True True True True True True	True True True True True True True False True True True True False True True True False True	True False False True	True True True True True False True True True True True False False True False True

Data Profiling cont.


```
7- Examine null values
```

```
df.isnull()
     df.notnull()
     df.column name.isnull()
impact statistics (e.g. min or count)

emission or mistake (e.g. rantomly?)

- how to boundle them?

- effect on predictive impalels | performance

- reliability of analysis
```

df.notnull()

		department	age	height	food	color	sport
	Jane	True	True	True	True	True	False
	Sara	True	True	True	True	True	False
	Nicole	False	True	True	True	True	False
	Kaden	True	True	False	False	True	False
ر	Jeff	True	True	True	True	True	False
	Reza	False	True	True	True	True	False
	John	True	True	False	False	True	False
	Ramon	True	True	True	True	True	False
	Bryce	True	True	True	True	True	False

Data can be missed because of:

- No existing value for an observation
 - Child name for families with no children
- Errors
- Manual mistakes
- Etc.

Missing Completely At Random (MCAR)

- No systematic way that makes some data missing
 - Example: In a survey, some data are lost or ignored to be filled

Missing At Random (MAR)

- There is a relationship between the observed data and the missing values
 - Example: men are more likely to reveal their weight, in a survey, specific professions are not willing to reveal their income

Missing Not At Random (MNAR)

- There is a systematic mechanism of missing data
- "propensity of a value to be missing and its values" or missing reason depends on the missing value itself
 - Example: In a survey, people with less than \$500/month do not reveal their income, education filed is missing with the lowest educated ..

MNAR is Non-Ignorable

chi-square test, classification

https://www.theanalysisfactor.com/missing-data-mechanism/

NAN(Not A Number) or Null

Exploring the missing value patterns with visualizations

- Visualization helps have an understanding of most missing values
- Heatmaps help in understanding the correlation between variables (columns)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 886930 entries, 0 to 886929 Data columns (total 70 columns): Country Name 886930 non-null object Country Code 886930 non-null object Indicator Name 886930 non-null object Indicator Code 886930 non-null object 1970 72288 non-null float64 1971 35537 non-null float64 1972 35619 non-null float64 1973 35545 non-null float64 1974 35730 non-null float64 1975 87306 non-null float64 1976 37483 non-null float64 1977 37574 non-null float64 1978 37576 non-null float64 1979 36809 non-null float64 1980 89122 non-null float64 1981 38777 non-null float64 1982 37511 non-null float64 1983 38460 non-null float64 1984 38606 non-null float64 1985 90296 non-null float64 1986 39372 non-null float64 1987 38641 non-null float64 1988 38552 non-null float64 1989 37540 non-null float64 1990 124405 non-null float64

Check sparsity of data in matrix

msno.matrix(df)

"The missingno correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another"

https://github.com/Posidont

https://github.com/Resident Mario/missingno

msno.heatmap(df)

Talk to the data collection source

- 1- Drop the missing value
 - Drop the whole variable (column)
 - Drop the data entry (suitable for less observations)
- 2- Replace missing values
 - Average value of the entire variable
 - Average value of the same group of data
 - Most frequency in categorical data (e.g. color)
 - Replace with the mode of the column in categorical data
 - Use expert domain knowledge
- 3- Predict missing values with machine learning algorithms
- 4- Leave it as it is

Handling missing values in Pandas

```
isnull() # A boolean mask indicating missing
values
notnull() # Opposite of isnull()
dropna() # Return a filtered version of the
data
fillna() # Return a copy of the data with
missing values filled or imputed
```


1- Drop missing values

Drop the values using dropna() to drop a row or a column containing NAN

```
data.dropna(column_list, axis, inplace)
data.dropna(axis = 0) #Drop entire row
data.dropna(axis = 1) #Drop entire column
```


Replace the missing values using

fillna(new value)

Fills the NAN with the new_value

fillna(method, axis)

Fills the NAN with a forward_filling or backward_filling, along the specified axis

fillna() returns a copy of the array with the null values replaced.

Use isnull() as a mask to work with the array inplace.

2- Replace missing values using fillna() cont.

Fill_forward, carries the previous value forward to fill the NAN

Fill backward, carries the next value backward to fill the NAN

Fill Forward

Fill Backward


```
Replace the missing values using
```

```
replace(missing_value, new_value)
mean = data.height.mean()
#alternation: data['height'].mean()
data['height'].replace(np.nan, mean)
```

Remember: The actual DataFrame does not change, until you assign the new column to it

```
Jane
         160.0
         158.0
Sara
Nicole
         170.0
Kaden
         169.0
Jeff
         175.0
Reza
         165.0
John
         169.0
Ramon
         175.0
         180.0
Bryce
Name: height, dtype: float64
```


2- Replace missing values cont.

Replace with Mean, Median, or Mode

More accurate values for replacement:

Average of the group (e.g. Male and Female, ethnicity, department, etc.)

Disadvantages:

Imputation with Mean reduces the variance in the data

3- Predict missing values with machine learning algorithms

Estimate missing values with:

- Regression
- ANOVA
- Logistic regression

Rewrite SQL queries in Pandas

https://medium.com/jbennetcodes/how-to-rewrite-your-sql-queries-in-pandas-and-more-149d341fc53e

Try it

Download the dataset

https://www.kaggle.com/dansbecker/handling-missing-values

Explore the dataset (data profiling)

Explore the missing values

Visualize missing values

Use heatmaps and interpret the results, whether there is a correlation between various missing data features

Try working with the experience from Kaggle:

https://www.kaggle.com/dansbecker/handling-missing-values/notebook

	department	age	height	food	color
Jane	biology	32	160.0	steak	blue
Sara	chemistry	40	158.0	lamb	red
Nicole	NaN	35	170.0	apple	orange
Kaden	computer	50	NaN	NaN	yellow
Jeff	statistics	35	175.0	steak	blue
Reza	NaN	45	165.0	lamb	red
John	statistics	45	NaN	NaN	orange
Ramon	computer	40	175.0	cheese	yellow
Bryce	engineering	28	180.0	steak	blue

Reviewing your data source, content, and identifying key quality assessments (e.g. outliers, null values)

1- Read your data

```
pd.read_csv() #Use header=None to include first
row in the data
pd.read_sql()
pd.read excel()
```


2- Take a look

	department	age	height	food	color	sport	_
Jane	biology	32	160.0	steak	blue	NaN	
Sara	chemistry	40	158.0	lamb	red	NaN	

	department	age	height	food	color	sport
Ramon	computer	40	175.0	cheese	yellow	NaN
Bryce	engineering	28	180.0	steak	blue	NaN

3- Gain some information about values

df.info()

Null values

Data types

Number of entries

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 9 entries, Jane to Bryce
Data columns (total 6 columns):
department 7 non-null object
              9 non-null int64
age
height
              7 non-null float64
food
              7 non-null object
color
              9 non-null object
              0 non-null float64
sport
dtypes: float64(2), int64(1), object(3)
memory usage: 504.0+ bytes
```


df.sample()

df.count()

sport

dtype: int64

4- Explore your data using functions

```
Explore each column
df.age.sum() #count(), add(), agg
                                            department
                                            age
df.department.size()
                                            height
                                            food
Or explore the dataset
                                            color
```

Each of the functions can be applied on a column or the dataset

5- Examine statistics of your data df.describe()

df.describe()

count 9.000000 7.000000 0.0 mean 38.888889 169.000000 NaN std 7.043516 8.286535 NaN min 28.000000 158.000000 NaN 25% 35.000000 162.500000 NaN 50% 40.000000 170.000000 NaN 75% 45.000000 175.000000 NaN		age	height	sport
std 7.043516 8.286535 NaN min 28.000000 158.000000 NaN 25% 35.000000 162.500000 NaN 50% 40.000000 170.000000 NaN	count	9.000000	7.000000	0.0
min 28.000000 158.000000 NaN 25% 35.000000 162.500000 NaN 50% 40.000000 170.000000 NaN	mean	38.888889	169.000000	NaN
25 % 35.000000 162.500000 NaN 50 % 40.000000 170.000000 NaN	std	7.043516	8.286535	NaN
50% 40.000000 170.000000 NaN	min	28.000000	158.000000	NaN
	25%	35.000000	162.500000	NaN
75 % 45.000000 175.000000 NaN	50%	40.000000	170.000000	NaN
	75%	45.000000	175.000000	NaN
max 50.000000 180.000000 NaN	max	50.000000	180.000000	NaN

6- Run some query

```
df.query()
```

```
df.query('age > 35 and height <160')

department age height food color sport

Sara chemistry 40 158.0 lamb red NaN</pre>
```

Note: df.query('age < 40') is equivalent to df[df.age < 40]

Data Profiling cont.


```
7- Examine null values
```

```
df.isnull()
```

df.notnull()

df.column_name.isnull()

df.notnull()

	department	age	height	food	color	sport
Jane	True	True	True	True	True	False
Sara	True	True	True	True	True	False
Nicole	False	True	True	True	True	False
Kaden	True	True	False	False	True	False
Jeff	True	True	True	True	True	False
Reza	False	True	True	True	True	False
John	True	True	False	False	True	False
Ramon	True	True	True	True	True	False
Bryce	True	True	True	True	True	False

Data can be missed because of:

- No existing value for an observation
 - Child name for families with no children
- Errors
- Manual mistakes
- Etc.

Missing Completely At Random (MCAR)

- No systematic way that makes some data missing
 - Example: In a survey, some data are lost or ignored to be filled

Missing At Random (MAR)

- There is a relationship between the observed data and the missing values
 - Example: men are more likely to reveal their weight, in a survey, specific professions are not willing to reveal their income

Missing Not At Random (MNAR)

- There is a systematic mechanism of missing data
- "propensity of a value to be missing and its values" or missing reason depends on the missing value itself
 - Example: In a survey, people with less than \$500/month do not reveal their income, education filed is missing with the lowest educated ..

MNAR is Non-Ignorable

chi-square test, classification

https://www.theanalysisfactor.com/missing-data-mechanism/

NAN(Not A Number) or Null

	а	b	С
0	1.0	2	NaN
1	NaN	3	4.0

Exploring the missing value patterns with visualizations

Visualization helps have an understanding of most missing values

Heatmaps help in understanding the correlation between variables (columns)


```
seaborn
pip install seaborn
missingno
pip install missingno
```

https://seaborn.pydata.org

https://github.com/ResidentMario/missingno

import missingno as msno

<class 'pandas.core.frame.DataFrame'> RangeIndex: 886930 entries, 0 to 886929 Data columns (total 70 columns): Country Name 886930 non-null object Country Code 886930 non-null object Indicator Name 886930 non-null object Indicator Code 886930 non-null object 1970 72288 non-null float64 1971 35537 non-null float64 1972 35619 non-null float64 1973 35545 non-null float64 1974 35730 non-null float64 1975 87306 non-null float64 1976 37483 non-null float64 1977 37574 non-null float64 1978 37576 non-null float64 1979 36809 non-null float64 1980 89122 non-null float64 1981 38777 non-null float64 1982 37511 non-null float64 1983 38460 non-null float64 1984 38606 non-null float64 1985 90296 non-null float64 1986 39372 non-null float64 1987 38641 non-null float64 1988 38552 non-null float64 1989 37540 non-null float64 1990 124405 non-null float64

Check sparsity of data in matrix

msno.matrix(df)

"The missingno correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another"

https://github.com/Posidont

https://github.com/Resident Mario/missingno

msno.heatmap(df)

Barcharts

Dendrogram

Geoplots

Usage of visualization functions in Python

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
msno.matrix(df)
msno.heatmap(df)
msno.bar(df)
sns.heatmap(df.isnull(), cbar=False)
```


Talk to the data collection source

- 1- Drop the missing value
 - Drop the whole variable (column)
 - Drop the data entry (suitable for less observations)
- 2- Replace missing values
 - Average value of the entire variable
 - Average value of the same group of data
 - Most frequency in categorical data (e.g. color)
 - Replace with the mode of the column in categorical data
 - Use expert domain knowledge
- 3- Predict missing values with machine learning algorithms
- 4- Leave it as it is

Handling missing values in Pandas

```
isnull() # A boolean mask indicating missing
values
notnull() # Opposite of isnull()
dropna() # Return a filtered version of the
data
fillna() # Return a copy of the data with
missing values filled or imputed
```


1- Drop missing values

Drop the values using dropna() to drop a row or a column containing NAN

```
data.dropna(column_list, axis, inplace)
data.dropna(axis = 0) #Drop entire row
data.dropna(axis = 1) #Drop entire column
```

1- Drop missing values with dropna


```
data.dropna (axis = 0) Drops all rows that have a missing value
```

```
data.dropna(axis = 'columns') Drops all columns that have a missing value
```

```
data.dropna(subset=['height'], axis = 0)
```


1- Drop missing values with dropna cont.

data.dropna(axis = 0)

	department	age	height	food	color
Jane	biology	32	160.0	steak	blue
Sara	chemistry	40	158.0	lamb	red
Jeff	statistics	35	175.0	steak	blue
Ramon	computer	40	175.0	cheese	yellow
Bryce	engineering	28	180.0	steak	blue

data.dropna(subset=['height'],
axis = 0)

	department	age	height	food	color
Jane	biology	32	160.0	steak	blue
Sara	chemistry	40	158.0	lamb	red
Nicole	NaN	35	170.0	apple	orange
Jeff	statistics	35	175.0	steak	blue
Reza	NaN	45	165.0	lamb	red
Ramon	computer	40	175.0	cheese	yellow
Bryce	engineering	28	180.0	steak	blue

1- Drop missing values with dropna cont.

data.dropna(axis = columns')

	Unnamed: 0	age	color
0	Jane	32	blue
1	Sara	40	red
2	Nicole	35	orange
3	Kaden	50	yellow
4	Jeff	35	blue
5	Reza	45	red
6	John	45	orange
7	Ramon	40	yellow
8	Bryce	28	blue

1- Drop missing values with dropna

Control the amount of drops by thresh and how

Default is: how = 'any'

Drops specified axis containing a null value

Alternate: how = 'all'

Drops specified axis that are ALL null values

Discuss the results

data.dropna(axis=1
, how = 'all')

	Unnamed: 0	department	age	height	food	color	sport
0	Jane	biology	32	160.0	steak	blue	NaN
1	Sara	chemistry	40	158.0	lamb	red	NaN
2	Nicole	NaN	35	170.0	apple	orange	NaN
3	Kaden	computer	50	NaN	NaN	yellow	NaN
4	Jeff	statistics	35	175.0	steak	blue	NaN
5	Reza	NaN	45	165.0	lamb	red	NaN
6	John	statistics	45	NaN	NaN	orange	NaN
7	Ramon	computer	40	175.0	cheese	yellow	NaN
8	Bryce	engineering	28	180.0	steak	blue	NaN

1- Drop missing values with dropna

Control the amount of drops by thresh and how

thresh = integer

Requires that many non-NAN values

Discuss other alternations

	Unnamed: 0	department	age	height	food	color	sport
0	Jane	biology	32	160.0	steak	blue	NaN
1	Sara	chemistry	40	158.0	lamb	red	NaN
2	Nicole	NaN	35	170.0	apple	orange	NaN
3	Kaden	computer	50	NaN	NaN	yellow	NaN
4	Jeff	statistics	35	175.0	steak	blue	NaN
5	Reza	NaN	45	165.0	lamb	red	NaN
6	John	statistics	45	NaN	NaN	orange	NaN
7	Ramon	computer	40	175.0	cheese	yellow	NaN
8	Bryce	engineering	28	180.0	steak	blue	NaN

Important note


```
data.dropna(axis = 0)
data.dropna(subset=['height'], axis = 0)
```

None of the above modifies the actual DataFrame.

```
data.dropna(subset=['height'], axis = 0,
inplace = True)
Or
data = data.dropna(subset=['height'], axis = 0)
```


Replace the missing values using

```
fillna(new value)
```

Fills the NAN with the new_value

```
fillna(method, axis)
```

Fills the NAN with a forward_filling or backward_filling, along the specified axis

fillna() returns a copy of the array with the null values replaced.

Use isnull() as a mask to work with the array inplace.

2- Replace missing values using fillna() cont.

Fill_forward, carries the previous value forward to fill the NAN

Fill_backward, carries the next value backward to fill the NAN

Fill Forward

Fill Backward

	department	age	height	food	color	sport
Jane	biology	32	160.0	steak	blue	NaN
Sara	chemistry	40	158.0	lamb	red	NaN
Nicole	NaN	35	170.0	apple	orange	NaN
Kaden	computer	50	NaN	NaN	yellow	NaN
Jeff	statistics	35	175.0	steak	blue	NaN
Reza	NaN	45	165.0	lamb	red	NaN
John	statistics	45	NaN	NaN	orange	NaN
Ramon	computer	40	175.0	cheese	yellow	NaN
Bryce	engineering	28	180.0	steak	blue	NaN

2- Replace missing values using fillna() cont.

Fill_forward, carries the previous value forward to fill the NAN Fill_backward, carries the next value backward to fill the NAN

<pre>df.fillna(method='ffill', axis =0)</pre>										
	department	age	height	food	color	sŗ				
Jane	biology	32	160.0	steak	blue	1				
Sara	chemistry	40	158.0	lamb	red	1				
Nicole	chemistry	35	170.0	apple	orange	1				
Kaden	computer	50	170.0	apple	yellow	1				
Jeff	statistics	35	175.0	steak	blue	1				

<pre>df.fillna(method='bfill', axis=0)</pre>									
	department	age	height	food	color				
Jane	biology	32	160.0	steak	blue				
Sara	chemistry	40	158.0	lamb	red				
Nicole	computer	35	170.0	apple	orange				
Kaden	computer	50	175.0	steak	yellow				
Jeff	statistics	35	175.0	steak	blue				


```
Replace the missing values using
```

```
replace(missing_value, new_value)
mean = data.height.mean()
#alternation: data['height'].mean()
data['height'].replace(np.nan, mean)
```

Remember: The actual DataFrame does not change, until you assign the new column to it

```
Jane
         160.0
         158.0
Sara
Nicole
         170.0
Kaden
         169.0
Jeff
         175.0
Reza
         165.0
John
         169.0
Ramon
         175.0
         180.0
Bryce
Name: height, dtype: float64
```

Question

D) None

Question 1: Which of the following applies the modifications to the **DataFrame** data

```
mean = data.height.mean()
A) data['height'] =
data['height'].replace(np.nan, mean)
B) data.height = data.height.replace(np.nan, mean)
C) A and B
```

71

2- Replace missing values cont.

Replace with Mean, Median, or Mode

More accurate values for replacement:

Average of the group (e.g. Male and Female, ethnicity, department, etc.)

Discuss other alternations

Disadvantages:

Imputation with Mean reduces the variance in the data

apple

NaN

steak

lamb

NaN

NaN

NaN

computer

statistics

statistics

Nicole

Kaden

Jeff

Reza

John

Ramon

170.0

172.5

175.0

165.0

170.0

2- Replace missing values cont.

Interpolate the numerical values with Pandas Interpolate

Install SciPy

data.interpolate()

Arguments:

method: polynomial, cubic, etc.

limit: will determine how many values after a non-NaN value will be filled out

limit direction: fill forward or backward. Default is forward

More information at: https://pandas-docs.github.io/pandas-docs-travis/missing data.html

2- Replace missing values cont.

Imputation package from Scikit Learn

```
from sklearn.preprocessing import Imputer
values = mydata.values
imputer = Imputer(missing values='NaN',
strateqy='mean')
transformed values =
imputer.fit transform(values)
# strategy can be changed to "median" and
"most frequent"
```


2- Replace missing values cont.

Imputation package from Scikit Learn

```
from sklearn.impute import SimpleImputer
my_imputer = SimpleImputer()
data_with_imputed_values =
my_imputer.fit_transform(original_data)
```

Default value is Mean

3- Predict missing values with machine learning algorithms

Estimate missing values with:

- Regression
- ANOVA
- Logistic regression

Rewrite SQL queries in Pandas

https://medium.com/jbennetcodes/how-to-rewrite-your-sql-queries-in-pandas-and-more-149d341fc53e

Try it

Download the flight_dalay_2017 dataset

https://www.kaggle.com/dansbecker/handling-missing-values

Explore the dataset (data profiling)

Explore the missing values

Visualize missing values

Use heatmaps and interpret the results, whether there is a correlation between various missing data features

Try working with the experience from Kaggle:

https://www.kaggle.com/dansbecker/handling-missing-values/notebook

