

SUBSEQUENT AMENDMENTS TO THE CLAIMS:

Please amend the Claims as follows:

1. (Previously Presented) A compound of Formula I:

I

where:

R¹ is hydrogen, fluoro, or (C₁-C₃)alkyl;

R², R³, and R⁴ are each independently hydrogen, methyl, or ethyl;

R⁵ is hydrogen, fluoro, methyl, or ethyl;

R⁶ is -C≡C-R¹⁰, -O-R¹², -S-R¹⁴, or -NR²⁴R²⁵;

R⁷ is hydrogen, halo, cyano, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents,

(C₂-C₆)alkenyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl,

(C₁-C₆)alkoxy optionally substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylthio optionally substituted with 1 to 6 fluoro substituents, Ph¹-(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl-O-, or

Ph¹-(C₀-C₃)alkyl-S-;

R⁸ is hydrogen, halo, cyano, or -SCF₃;

R⁹ is hydrogen;

R¹⁰ is -CF₃, ethyl substituted with 1 to 5 fluoro substituents, (C₃-C₆) alkyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ar¹-(C₀-C₃)alkyl,

Ph¹-(C₀-C₃)alkyl, or 3-(C₁-C₄)alkyl-2-oxo-imidazolidin-1-yl-(C₁-C₃)alkyl;

R¹² is Ph²-(C₁-C₃)alkyl, Ar²-(C₁-C₃)alkyl, (C₁-C₆)alkyl-S-(C₂-C₆)alkyl, (C₃-C₇)cycloalkyl-S-

(C₂-C₆)alkyl, phenyl-S-(C₂-C₆)alkyl, Ph²-S-(C₂-C₆)alkyl, phenylcarbonyl-(C₁-C₃)alkyl,

Ph²-C(O)-(C₁-C₃)alkyl, (C₁-C₆)alkoxycarbonyl(C₃-C₆)alkyl, (C₃-C₇)cycloalkyl-OC(O)-

(C₃-C₆)alkyl, phenoxy carbonyl-(C₃-C₆)alkyl, Ph²-OC(O)-(C₃-C₆)alkyl,

Ar²-OC(O)-(C₃-C₆)alkyl, (C₃-C₇)cycloalkyl-NH-C(O)-(C₂-C₄)alkyl-, Ph¹-NH-

C(O)-(C₂-C₄)alkyl-, Ar²-NH-C(O)-(C₂-C₄)alkyl-, or R¹³-C(O)NH-(C₂-C₄)alkyl;

R¹³ is (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹, Ar², or (C₁-C₃)alkoxy optionally substituted with 1 to 6 fluoro substituents, Ph¹-NH- or N-linked Het¹;

R¹⁴ is Ar² which is not N-linked to the sulfur atom, Ph², R¹⁵-L-, tetrahydrofuranyl, tetrahydropyranyl, or phenyl-methyl substituted on the methyl moiety with a substituent selected from the group consisting of (C₁-C₃)-n-alkyl substituted with hydroxy, (C₁-C₃)alkyl-O-(C₁-C₂)-n-alkyl, (C₁-C₃)alkyl-C(O)-(C₀-C₂)-n-alkyl, and (C₁-C₃)alkyl-O-C(O)-(C₀-C₂)-n-alkyl,

wherein when R¹⁴ is Ph² or Ar², wherein Ar² is pyridyl, then R¹⁴ may also, optionally be substituted with phenyl-CH=CH- or phenyl-C≡C-,

said phenyl-CH=CH- or phenyl-C≡C- being optionally further substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O)-, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and

wherein the tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, or with one or two groups independently selected from methyl and -CF₃;

R¹⁵ is -OR¹⁶, cyano, -SCF₃, Ph², Ar², quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, phthalimido, benzothiophenyl optionally substituted at the 2-position with phenyl or benzyl, benzothiazolyl optionally substituted at the 2-position with phenyl or benzyl, benzothiadiazolyl optionally substituted with phenyl or benzyl, 2-oxo-dihydroindol-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-dihydroindol-5-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-imidazolidin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydropyrimidinyl optionally substituted at the 3 or 4 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydroquinolin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents,

2-oxo- dihydrobenzimidazol-1-yl optionally substituted at the 3 position with gem dimethyl or (C_1 - C_6)alkyl optionally further substituted with 1 to 6 fluoro substituents, -NR¹⁷R¹⁸, -C(O)R²², or a saturated heterocycle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl, tetrahydrofuranyl, and tetrahydropyranyl,

wherein Ph² and Ar² when Ar² is pyridyl, may also optionally be substituted with phenyl-CH=CH- or phenyl-C≡C-,

said phenyl-CH=CH- and phenyl-C≡C- being optionally further substituted on the phenyl moiety with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C_1 - C_6)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C_1 - C_6)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein Ar² may alternatively, optionally be substituted with a substituent selected from the group consisting of (C_3 - C_7)cycloalkyl-(C_0 - C_3)alkyl, Het¹-(C_0 - C_3)alkyl, pyridyl-(C_0 - C_3)alkyl, and phenyl-(C_0 - C_3)alkyl, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents,

said pyridyl-(C_0 - C_3)alkyl and phenyl-(C_0 - C_3)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -SCF₃, and

wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O)-, or (C_1 - C_6)alkyl-C(O)- optionally substituted with 1 to 6 fluoro substituents, and may be optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and

wherein when Ar² is thiazolyl, the thiazolyl may alternatively, optionally be substituted with (C_3 - C_7)cycloalkyl-(C_0 - C_3)alkyl-NH-, and

wherein the pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl is substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom, or is N-substituted with a substituent selected from the group consisting of

(C_1 - C_6)alkylcarbonyl, (C_1 - C_6)alkylsulfonyl, (C_3 - C_7)cycloalkyl(C_0 - C_3)alkyl-C(O)-, (C_3 - C_7)cycloalkyl(C_0 - C_3)alkyl-S(O)₂-, Ph¹-(C_0 - C_3)alkyl-C(O)-, and Ph¹-(C_0 - C_3)alkyl-S(O)₂-, and

may optionally be further substituted with 1 or 2 methyl or -CF₃ substituents, and when oxo-substituted, may optionally be further N-substituted with a substituent selected from the group consisting of

(C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents,

(C₃-C₇)cycloalkyl(C₀-C₃)alkyl, and Ph¹-(C₀-C₃)alkyl, and

wherein tetrahydrofuryl and tetrahydropyranyl may optionally be substituted with an oxo substituent, and/or with one or two groups independently selected from methyl and -CF₃;

L is branched or unbranched (C₁-C₆)alkylene, except when R¹⁵ is -NR¹⁷R¹⁸ or Ar²-N-linked to L, in which case L is branched or unbranched (C₂-C₆)alkylene, and when L is methylene or ethylene, L may optionally be substituted with gem-ethano or with 1 to 2 fluoro substituents, and when R¹⁵ is Ph², Ar², or a saturated heterocycle, L may alternatively, optionally be substituted with a substituent selected from the group consisting of hydroxy, cyano, -SCF₃, (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylcarbonyloxy optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl-(C₀-C₃)alkyl-O-, (C₃-C₇)cycloalkyl-(C₀-C₃)alkyl-O-C(O)-, and (C₃-C₇)cycloalkyl-(C₀-C₃)alkyl-C(O)-O-;

R¹⁶ is hydrogen, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₁-C₆)alkylcarbonyl, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-C(O)-, Ph¹-(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl-C(O)-, Ar²-(C₀-C₃)alkyl, or Ar²-(C₀-C₃)alkyl-C(O)-,

R¹⁷ is (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, t-butylsulfonyl, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-C(O)-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-sulfonyl, Ph¹-(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl-C(O)-, Ph¹-(C₀-C₃)alkylsulfonyl, Ar²-(C₀-C₃)alkyl, Ar²-(C₀-C₃)alkyl-C(O)-, Ar²-(C₀-C₃)alkylsulfonyl, R¹⁹OC(O)-, or R²⁰R²¹NC(O)-;

R¹⁸ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached form Het¹ where Het¹ is substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached, form an aromatic heterocycle selected from the group consisting of pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl,

said aromatic heterocycle optionally being substituted with 1 to 2 halo substituents, or substituted with 1 to 2 (C₁-C₄)alkyl substituents optionally further substituted with

1 to 3 fluoro substituents, or mono-substituted with fluoro, nitro, cyano, $-\text{SCF}_3$, or $(\text{C}_1\text{-}\text{C}_4)\text{alkoxy}$ optionally further substituted with 1 to 3 fluoro substituents, and optionally further substituted with a $(\text{C}_1\text{-}\text{C}_4)\text{alkyl}$ substituent optionally further substituted with 1 to 3 fluoro substituents;

R^{19} is $(\text{C}_1\text{-}\text{C}_6)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, or $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$,

R^{20} is $(\text{C}_1\text{-}\text{C}_6)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, or $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$,

R^{21} is hydrogen or $(\text{C}_1\text{-}\text{C}_4)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, or R^{20} and R^{21} , taken together with the nitrogen atom to which they are attached, form Het^1 ;

R^{22} is $(\text{C}_1\text{-}\text{C}_6)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, $\text{R}^{23}\text{-O-}$, $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, or $\text{R}^{32}\text{R}^{33}\text{N-}$;

R^{23} is $(\text{C}_1\text{-}\text{C}_6)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, or $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$;

R^{24} is $(\text{C}_1\text{-}\text{C}_6)\text{alkoxy}(\text{C}_2\text{-}\text{C}_5)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_1\text{-}\text{C}_6)\text{alkylthio}(\text{C}_2\text{-}\text{C}_5)\text{alkyl}$ optionally substituted with 1 to 6 fluoro substituents, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl}(\text{C}_0\text{-}\text{C}_1)\text{alkyl-O-(C}_1\text{-}\text{C}_5)\text{alkyl}$, $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl}(\text{C}_0\text{-}\text{C}_1)\text{alkyl-S-(C}_1\text{-}\text{C}_5)\text{alkyl}$, phenyl($\text{C}_1\text{-}\text{C}_3$) n -alkyl, $\text{Ph}^2\text{-}(\text{C}_1\text{-}\text{C}_3)\text{-n-alkyl}$, $\text{Ar}^2(\text{C}_0\text{-}\text{C}_3)$ n -alkyl, phenyl($\text{C}_0\text{-}\text{C}_1$)alkyl-O-($\text{C}_1\text{-}\text{C}_5$)alkyl, phenyl($\text{C}_0\text{-}\text{C}_1$)alkyl-S-($\text{C}_1\text{-}\text{C}_5$)alkyl, $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_1)\text{alkyl-NH-C(O)NH-(C}_2\text{-}\text{C}_4)\text{alkyl}$, $\text{Ph}^1\text{-}(\text{C}_0\text{-}\text{C}_1)\text{alkyl-NH-C(O)NH-(C}_2\text{-}\text{C}_4)\text{alkyl}$, pyridyl-($\text{C}_0\text{-}\text{C}_1$)alkyl-C(O)NH-($\text{C}_2\text{-}\text{C}_4$)alkyl, pyridyl-($\text{C}_0\text{-}\text{C}_1$)alkyl-NH-C(O)NH-($\text{C}_2\text{-}\text{C}_4$)alkyl, or $\text{Ar}^3(\text{C}_1\text{-}\text{C}_2)\text{alkyl}$, where Ar^3 is a bi-cyclic moiety selected from a group consisting of indanyl, indolyl, dihydrobenzofuranyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzo[1,3]dioxolyl, naphthyl, dihydrobenzopyranyl, quinolinyl, isoquinolinyl, and benzo[1,2,3]thiadiazolyl,

said Ar^3 optionally being substituted with $(\text{C}_1\text{-}\text{C}_6)\text{alkyl}$ optionally further substituted with 1 to 6 fluoro substituents, phenyl($\text{C}_0\text{-}\text{C}_1$)alkyl optionally further substituted with 1 to 6 fluoro substituents, or substituted with $(\text{C}_3\text{-}\text{C}_7)\text{cycloalkyl}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$, or substituted with 1-3 substituents independently selected from the group consisting of halo, oxo, methyl, and $-\text{CF}_3$,

said phenyl($\text{C}_1\text{-}\text{C}_3$) n -alkyl, $\text{Ph}^2\text{-}(\text{C}_1\text{-}\text{C}_3)$ n -alkyl, or $\text{Ar}^2(\text{C}_0\text{-}\text{C}_3)$ n -alkyl optionally being substituted on the n -alkyl moiety when present with ($\text{C}_1\text{-}\text{C}_3$)alkyl, dimethyl, gem-ethano, 1 to 2 fluoro substituents, or $(\text{C}_1\text{-}\text{C}_6)\text{alkyl-C(O)-}$,

said $\text{Ar}^2(\text{C}_0\text{-C}_3)$ *n*-alkyl being alternatively optionally substituted with a substituent selected from the group consisting of $(\text{C}_3\text{-C}_7)\text{cycloalkyl-(C}_0\text{-C}_3\text{)alkyl}$,

$\text{Het}^1\text{-(C}_0\text{-C}_3\text{)alkyl}$, pyridyl-($\text{C}_0\text{-C}_3$)alkyl, phenyl-($\text{C}_0\text{-C}_3$)alkyl, pyridyl-

($\text{C}_0\text{-C}_3$)alkyl-NH-, phenyl-($\text{C}_0\text{-C}_3$)alkyl-NH-, ($\text{C}_1\text{-C}_6$)alkyl-S-, and

($\text{C}_3\text{-C}_7$)cycloalkyl-($\text{C}_0\text{-C}_3$)alkyl-S-, and optionally further substituted with one

methyl, - CF_3 , cyano, or - SCF_3 substituent, or with 1 to 2 halo substituents,

said pyridyl-($\text{C}_0\text{-C}_3$)alkyl and phenyl-($\text{C}_0\text{-C}_3$)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, - CH_3 ,

- OCH_3 , - CF_3 , - OCF_3 , -CN, and - SCF_3 , and

said $\text{Ph}^2\text{-(C}_1\text{-C}_3)$ *n*-alkyl and $\text{Ar}^2(\text{C}_0\text{-C}_3)$ *n*-alkyl where Ar^2 is pyridyl, also optionally being substituted on the phenyl or Ar^2 moiety, respectively, with phenyl- CH=CH- or phenyl- $\text{C}\equiv\text{C-}$,

said phenyl- CH=CH- or phenyl- $\text{C}\equiv\text{C-}$ being optionally further substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, - SCF_3 , ($\text{C}_1\text{-C}_6$)alkyl optionally further substituted with 1 to 6 fluoro substituents, and ($\text{C}_1\text{-C}_6$)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

said $\text{Ar}^2(\text{C}_0\text{-C}_3)$ *n*-alkyl where Ar^2 is pyridyl, alternatively, optionally being substituted with ($\text{C}_1\text{-C}_6$)alkyl-C(O)- or $\text{R}^{28}\text{R}^{29}\text{N-C(O)}$ -, and optionally further substituted with one methyl, - CF_3 , cyano, or - SCF_3 substituent, or with 1 to 2 halo substituents,

said phenyl($\text{C}_0\text{-C}_1$)alkyl-O-($\text{C}_1\text{-C}_5$)alkyl, or phenyl($\text{C}_0\text{-C}_1$)alkyl-S-($\text{C}_1\text{-C}_5$)alkyl optionally being substituted on the phenyl moiety with ($\text{C}_1\text{-C}_2$)-S(O)₂-, or with 1 to 5 independently selected halo substituents, or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, - SCF_3 , ($\text{C}_1\text{-C}_6$)alkyl optionally further substituted with 1 to 6 fluoro substituents, and ($\text{C}_1\text{-C}_6$)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

said pyridyl-($\text{C}_0\text{-C}_1$)alkyl-C(O)NH-($\text{C}_2\text{-C}_4$)alkyl and

pyridyl-($\text{C}_0\text{-C}_1$)alkyl-NH-C(O)NH-($\text{C}_2\text{-C}_4$)alkyl optionally being substituted on the pyridyl moiety with methyl, - CF_3 , or 1 to 3 halo substituents;

R^{25} is hydrogen, ($\text{C}_1\text{-C}_3$)alkyl optionally substituted with 1 to 6 fluoro substituents, or allyl;

R^{26} is hydrogen, ($\text{C}_1\text{-C}_4$)alkyl optionally substituted with 1 to 6 fluoro substituents,

($\text{C}_3\text{-C}_7$)cycloalkyl($\text{C}_0\text{-C}_3$)alkyl, $\text{Ph}^1\text{-(C}_0\text{-C}_3\text{)alkyl}$, or $\text{Het}^2\text{-(C}_0\text{-C}_3\text{)alkyl}$;

R²⁷ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R²⁶ and R²⁷, taken together with the nitrogen atom to which they are attached, form Het¹;

R²⁸ is (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl-

(C₀-C₃)alkyl, tetrahydropyran-3-yl(C₀-C₃)alkyl, tetrahydropyran-4-yl(C₀-C₃)alkyl,

tetrahydrofuryl(C₀-C₃)alkyl, Ph¹-(C₀-C₂) n-alkyl, or Ar²-(C₀-C₂) n-alkyl,

said Ph¹-(C₀-C₂) n-alkyl and Ar²-(C₀-C₂) n-alkyl optionally being substituted on the alkyl moiety when present with (C₁-C₃)alkyl, dimethyl, or gem-ethano;

R²⁹ is hydrogen or (C₁-C₃)alkyl;

R³⁰ is hydrogen, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents,

(C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹-(C₀-C₃)alkyl, or Ar²(C₀-C₃)alkyl,

R³¹ is hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R³⁰ and

R³¹, taken together with the nitrogen atom to which they are attached, form Het¹,

said Het¹ also optionally being substituted with phenyl optionally further substituted with 1 to 3 halo substituents;

R³² and R³³ are each independently hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R³² and R³³, taken together with the nitrogen atom to which they are attached, form Het¹, or R³² is Ph¹(C₀-C₁)alkyl provided that R³³ is hydrogen;

Ar¹ is an aromatic heterocycle substituent selected from the group consisting of furanyl, thiophenyl, thiazolyl, oxazolyl, isoxazolyl, pyridyl, and pyridazinyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, -CF₃, -O-CF₃, nitro, cyano, and trifluoromethylthio;

Ar² is an aromatic heterocycle substituent selected from the group consisting of pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, furanyl, oxazolyl, isoxazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, thiophenyl, thiazolyl, isothiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyridazinyl, and benzimidazolyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and wherein pyridyl and pyridazinyl may also optionally be substituted with (C₁-C₆)alkylamino optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-amino;

Het¹ is a saturated, nitrogen-containing heterocycle substituent selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, and homothiomorpholinyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents;

Het² is a saturated, oxygen-containing heterocycle substituent selected from the group consisting of tetrahydrofuranyl, tetrahydropyranyl, and oxepinyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents;

Ph¹ is phenyl optionally substituted with 1 to 5 independently selected halo substituents, or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents;

Ph² is phenyl substituted with:

- a) 1 to 5 independently selected halo substituents; or
- b) 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, nitro, hydroxy, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents; or
- c) 0, 1, or 2 substituents independently selected from the group consisting of halo, cyano, -SCF₃, methyl, -CF₃, methoxy, -OCF₃, nitro, and hydroxy, together with one substituent selected from the group consisting of
 - i) (C₁-C₁₀)alkyl optionally further substituted with 1 to 6 fluoro substituents or mono-substituted with hydroxy, (C₁-C₆)alkoxy, (C₁-C₆)alkyl-C(O)-, (C₁-C₆)alkyl-S(O)-, (C₁-C₆)alkyl-S(O)₂-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyloxy, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-S(O)-, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-S(O)₂-, Het²-(C₀-C₃)alkyloxy, Het²-(C₀-C₃)alkyl-S(O), Het²-(C₀-C₃)alkyl-S(O)₂, Ph¹-(C₀-C₃)alkyloxy, Ph¹-(C₀-C₃)alkyl-S(O)-, Ph¹-(C₀-C₃)alkyl-S(O)₂-,
 - ii) C₁-C₁₀)alkoxy-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents, and optionally further substituted with hydroxy,
 - iii) (C₁-C₆)alkyl-C(O)-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
 - iv) carboxy,
 - v) (C₁-C₆)alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents,

- vi) $(C_1-C_6)alkyl-C(O)-(C_0-C_3)-O-$ optionally further substituted with 1 to 6 fluoro substituents,
- vii) $(C_1-C_6)alkylthio-(C_0-C_3)alkyl$ optionally further substituted with 1 to 6 fluoro substituents,
- viii) $(C_1-C_6)alkylsulfinyl-(C_0-C_3)alkyl$ optionally further substituted with 1 to 6 fluoro substituents,
- ix) $(C_1-C_6)alkylsulfonyl-(C_0-C_3)alkyl$ optionally further substituted with 1 to 6 fluoro substituents,
- x) $(C_1-C_6)alkylsulfonyl-(C_0-C_1)alkyl-O-$ optionally further substituted with 1 to 6 fluoro substituents,
- xi) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl$, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xii) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-O-$, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xiii) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-C(O)-$,
- xiv) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-O-C(O)-$,
- xv) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-S-(C_0-C_3)alkyl$,
- xvi) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-S(O)-(C_0-C_3)alkyl$,
- xvii) $(C_3-C_7)cycloalkyl(C_0-C_3)alkyl-S(O)_2-(C_0-C_3)alkyl$,
- xviii) $Ph^1-(C_0-C_3)alkyl$, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents,
- xix) $Ph^1-(C_0-C_3)alkyl-O-$, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents
- xx) $Ph^1-(C_0-C_3)alkyl-C(O)-$,
- xxi) $Ph^1-(C_0-C_3)alkyl-O-C(O)-$,
- xxii) $Ph^1-(C_0-C_3)alkyl-C(O)-(C_0-C_3)alkyl-O-$,
- xxiii) $Ph^1-(C_0-C_3)alkylthio$,
- xxiv) $Ph^1-(C_0-C_3)alkylsulfinyl$,
- xxv) $Ph^1-(C_0-C_3)alkylsulfonyl$,
- xxvi) $Ar^2(C_0-C_3)alkyl$,
- xxvii) $Ar^2(C_0-C_3)alkyl-O-$
- xxviii) $Ar^2-(C_0-C_3)alkyl-S-$,
- xxix) $Ar^2(C_0-C_3)alkyl-C(O)-$,

- xxx) $\text{Ar}^2(\text{C}_0\text{-}\text{C}_3)\text{alkyl-C(S)-}$,
- xxxi) $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkylsulfinyl}$,
- xxxii) $\text{Ar}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkylsulfonyl}$,
- xxxiii) $\text{Het}^1(\text{C}_0\text{-}\text{C}_3)\text{alkyl-C(O)-}$ optionally substituted on the Het^1 moiety with Ph^1 ,
- xxxiv) $\text{Het}^1(\text{C}_0\text{-}\text{C}_3)\text{alkyl-C(S)-}$ optionally substituted on the Het^1 moiety with Ph^1 ,
- xxxv) $\text{N-linked Het}^1\text{-C(O)-(C}_0\text{-}\text{C}_3)\text{alkyl-O-}$,
- xxxvi) $\text{Het}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl}$,
- xxxvii) $\text{Het}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyloxy}$,
- xxxviii) $\text{Het}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl-S-}$,
- xxxix) $\text{Het}^2\text{-}(\text{C}_0\text{-}\text{C}_3)\text{alkyl-NH-}$,
- xl) $\text{R}^{26}\text{R}^{27}\text{N-}$,
- xli) $\text{R}^{28}\text{R}^{29}\text{-N-(C}_1\text{-}\text{C}_3)\text{alkoxy}$,
- xlii) $\text{R}^{28}\text{R}^{29}\text{N-C(O)-}$,
- xliii) $\text{R}^{28}\text{R}^{29}\text{N-C(O)-(C}_1\text{-}\text{C}_3)\text{alkyl-O-}$,
- xliv) $\text{R}^{28}\text{R}^{29}\text{N-C(S)-}$,
- xlv) $\text{R}^{30}\text{R}^{31}\text{N-S(O)}_{2-}$,
- xlvi) $\text{HON=C(CH}_3\text{)-}$, and
- xlvii) $\text{HON=C(Ph}^1\text{)-}$,

or a pharmaceutically acceptable salt thereof, subject to the following provisos:

- a) no more than two of R^1 , R^2 , R^3 , R^4 , and R^5 may be other than hydrogen;
- b) when R^2 is methyl, then R^1 , R^3 , R^4 , and R^5 are each hydrogen;
- c) when R^3 is methyl, then R^2 and R^4 are each hydrogen.

2. (Original) A compound according to Claim 1 wherein R^7 is selected from halo, -CN, and CF_3 .

3. (Previously Presented) A compound according to Claim 1 wherein R^7 is chloro.

4. (Previously Presented) A compound according to Claim 1 wherein R^6 is $-\text{C}\equiv\text{C-R}^{10}$.

5. (Previously Presented) A compound according to Claim 1 wherein R^6 is $-\text{O-R}^{12}$.

6. (Previously Presented) A compound according to Claim 1 wherein R^6 is $-\text{S-R}^{14}$.

7. (Original) A compound according to Claim 6 wherein R⁶ is -S-L-R¹⁵.
8. (Original) A compound according to Claim 7 wherein R¹⁵ is Ph² or Ar².
9. (Previously Presented) A compound according to Claim 1 wherein R⁶ is -NR²⁴R²⁵.
10. (Original) A compound according to Claim 9 wherein R²⁴ is Ph²-(C₁-C₃) *n*-alkyl-.
11. (Original) A compound according to Claim 9 wherein R²⁴ is Ar²-(C₁-C₃) *n*-alkyl-.
12. (Previously Presented) A compound according to Claim 9 wherein R²⁴ is Ph²-(C₁-C₃) *n*-alkyl- or Ar²-(C₁-C₃) *n*-alkyl-, and R²⁵ is hydrogen.
13. (Cancelled)
14. (Cancelled)
15. (Previously Presented) A compound according to Claim 1 wherein R¹, R², R³, R⁴, R⁵, and R⁸, are each hydrogen.
16. (Previously Presented) A pharmaceutical composition comprising a compound according to Claim 1 as an active ingredient in association with a pharmaceutically acceptable carrier, diluent or excipient.
17. (Cancelled)
18. (Original) A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
19. (Original) The method of Claim 18, where the mammal is human.

20. (Previously Presented) A method for the treatment of obsessive compulsive disorder in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.

21. (Original) The method of Claim 20, where the mammal is human.

22. (Cancelled)

23. (Cancelled)

24. (Original) A method for the treatment of anxiety in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.

25. (Original) The method of Claim 24, where the mammal is human.

26. - 37 (Cancelled)