Topology of algebraic varieties - 1st lecture Outline:

- Cohomology of algebraic varieties
 - Hodge theory
 - Lefschetz theorems
 - Cornespondences
- Algebraic cycles
 - algebraic correspondences
 - Conjectures

Cohomology of algebraic varieties

X smooth proj voniety
$$\longrightarrow$$
 $H^{\kappa}(X,\mathbb{Q})$ singular cohometer of dimension κ \longrightarrow $H^{\kappa}(X,\mathbb{Q}) = \bigoplus_{\kappa=0}^{2n} H^{\kappa}(X,\mathbb{Q})$

HK(X,C)=HK(X,Q)&C singular coh. w/ complex coeff

$$\Omega^{p,q}(X) = (p,q) - differential forms $\tilde{J}_{p,q} \Omega^{p,q} \to \Omega^{p,q+1}$
 $H^{p,q}(X) := \ker(\tilde{Z}_{p,q})/\operatorname{inn}(\tilde{Z}_{p,q+1})$ (Delbeaut who mology)$$

Thm (Hodge)

$$H^{\kappa}(X,C) \cong \mathcal{B}_{P+q=\kappa} H^{p,q}(X)$$
 $H^{p,q}(X) \simeq H^{q,p}(X)$ (Hodge duelity)

symmetry wrt redaxis (Serve duality)

symmetry wrt blue axis (Hodge duelity)

$$H^{0,0}(X) \cong H^{0}(X,\mathbb{C})$$

$$H^{1,0}(X) \oplus H^{0,1}(X) \qquad \cong H^{1}(X,\mathbb{C})$$

$$H^{2,1,0} \oplus H^{1,1}(X) \oplus H^{0,1}(X) \qquad \cong H^{2}(X,\mathbb{C})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$H^{0,0}(X) \oplus H^{0,1}(X) \longrightarrow H^{1,n-1}(X) \oplus H^{0,n}(X) \longrightarrow H^{1}(X,\mathbb{C})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$H^{0,n}(X) \qquad \cong H^{2,n}(X,\mathbb{C})$$

Lefschetz theorem

X sur proj ver => L -> X very ample him bell

L E H'''(X,C) n H2(X,Q) hyperplane

section

(1) L V C DN

Via the cup product we can define:

L: H"(X) -> H"+2(X)

(if X) P=PHO(X,L)

then L=HAX

where H is a (suitable)
hyperplane in IDN)

Thun (Lefschetz)
$$(K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to \infty} (K \le n = chin \times)$$

$$\lim_{x \to$$

Hodge index thru

X smooth, hence $H^{*}(X)$ ul cup product is a ming We can define:

We can use (1) to define a hermitian form:

H(-1-1: HK(X,C)&HK(X,C) -> C X&B -> iK/QULn-4 = ik/Q,B/2

Thun (Hodge inder thun)

H(.), restricted to $H^{P,q}(X) \cap H^{k}(X)_{prime}$ is definite of sign (-1)P

Correspondences

Thu (Kinnth)

1

Q: how does this is works concretely?

$$\cong \bigoplus_{P \nmid q = k} H_{0} m \left(H_{(X)}^{2n-P}, H^{2}(y) \right)$$

Poincre/Serve duelity

Consider SE HP(X)&H9(Y) ⊆ HK(X×Y). Can define:

This induces $H^{p}(X) \otimes H^{q}(Y) \cong H_{sm}(H^{2m-p}(X), H^{q}(Y))$ Moreover $H^{p}(X) \otimes H^{q}(Y) \cong H^{p}(X) \otimes H^{2m-q}(Y)^{p}$ $\cong H_{sm}(H^{2m-q}(Y), H^{p}(X))$

This iso is induced by 3* (B) = pr, (Bupr=3)

Civen $S \in H^{k}(X \times Y)$, the induced morphism S_{*} is the induced correspondence (also S^{*} is a correspondence, because $S^{*} = (L^{*}S)_{*}$, where $L: Y \times X \longrightarrow X \times Y$) $(Y \cdot X) \longmapsto (X, Y)$

By Kinneth than, every $\varphi: H^{p}(X) \to H^{q}(Y)$ is actually induced by $S \in H^{2n-p+q}(X \times Y)$, ie $\varphi = S_{*}$

g. $\Delta \in H_n(X \times X) \cong H^n(X \times X)$ $\Delta \subseteq X \times X \text{ diagonal } \Rightarrow \Delta_X = \text{rid} : H^n(X) \longrightarrow H^n(X)$ J:X >Y, Tg = Xxy graph m=divily)

2nd part: algebraic cycles and conjectures

(your way to become rich and famous)

Algebraic cycles

X smooth proj variety

ZEX subvariety my you can think of 2
also as a cohomology
days

of ohimension n-K [Z] E H_{24-2K}(X) mi [Z] E H^{2K}(X)

Poincak

duchy We are defining: Z_{0}, Z_{0}, Z_{0 Timage of cl one the alyelovaic coh classes abolian generaled by ZEX
gip generaled by ZEX

Given $3 \in H^{2R}(X,\mathbb{Q})$, can we say if 3 is algebra;
i.e. $3 \in \operatorname{im}(L: 2^{R}(X) \rightarrow H^{2R}(X))$ i.e. $3 \in H^{2R}(X,\mathbb{Q})$ aly

A newssary conclition

3 c H2k(X,Q) => 3 e H2k(X,Q) n Hk,k(X,C)
1s this condition also sufficient?

if Z < H'(X × X) is algebraic thun [2] x sends (P19) - forms to (P+K,9+K)-forms Hodge conj for cornspondency: does the viceversa hold?

(Some) standard conjectures

Kinnuth: $(\Delta)_{*} = id \quad (\Delta \in X \times X \text{ chayonel})$ conjecture: $(\Delta)_{*} = id \quad (\Delta \in X \times X \text{ chayonel})$ $id = \sum S_{K} \text{ where } S_{K} = \begin{cases} id \text{ on } H^{K}(X) \\ 0 \text{ otherwise} \end{cases}$

Therefore:
$$S_{K} = [D_{K}]_{*}$$
, $D_{K} \in H^{2n}(X \times X)$
 $\Rightarrow \Delta = \sum D_{K} \text{ in } H^{2n}(X \times X)$

Conj: D_{K} one algebraic

Conj: 1 n-4 on algebraic.

Reull that we have a paining Hom = Num compecture H"(X) & H(X) -> Q X&B -> SXUB We can say that $\alpha \in H^{k}(X)$ is $\equiv 0$ iff $(\alpha, -) = 0$

If $d \equiv 0$ then d is also homologically equivalent to $0 (d \equiv 0)$ in $H^{K}(X, \mathbb{Q})$.

Conj: if & is algebraic, then

numerically equivalent