02393 Programming in C++

Before we start:

If you feel ill, go home
Keep your distance to others
Wash or sanitize your hands
Disinfect table and chair
Respect guidelines and restrictions

02393 Programming in C++ Module 1: C++ Language Features Lecturer: Alceste Scalas

(Slides based on previous versions by Andrea Vandin, Alberto Lluch Lafuente, Sebastian Mödersheim)

8 September 2020

Lecture Plan

#	Date	Topic	Book chapter *
1	01.09	Introduction	
2	08.09	Basic C++	1
3	15.09	Data Types	2
4	22.09	Data Types	2
		Libraries and Interfaces	3
5	29.09		
6	06.10	Classes and Objects	4.1, 4.2 and 9.1, 9.2
Autumn break			
7	20.10	Templates	4.1, 11.1
8	27.10	LAB DAY	Old exams
9	03.11	Inheritance	14.3, 14.4, 14.5
10	10.11	Recursive Programming	5
11	17.11	Linked Lists	10.5
12	24.11	Trees	13
13	01.12	Exercises & Summary	
	07.12	Exam	

^{*} Recall that the book uses sometimes ad-hoc libraries that are slightly different with respect to the standard libraries (e.g., strings and vectors).

Disclaimer

Remarks on live programming:

These lecture slides do not spell out all points covered and discussed during the live programming sessions!

- The slides summarise keywords and concepts
- The final lived-coded program will be on DTU Inside
- We refer to the book chapters as study materials

If you miss a live programming session, please make sure that you understand the material in detail, and ask questions to the TAs or in the next lecture!

Outline

- Functions
- **2** Live Programming
- 3 Exercises and CodeJudge

Functions

Live programming session today will cover some of:

- Basic data types and conversions;
- Local variables, parameters;
- Several functions;
- Function prototypes;
- Namespaces.

Book chapter 1, especially section 1.6.

Functions

An Abstract View

- A function is a sequence of statements (instructions) that have been collected together and given a name
- A bit like in mathematics, a C++ function:
 - ★ takes some arguments (zero or more)
 - ★ returns a result
- **Unlike in mathematics**, a C++ function is a *procedure*:
 - ★ can have side effects, e.g.: print on screen, set global variables
 - two calls with same arguments may return different results!
 - ★ may not return a result at all
 - if return type is void
 - ★ can modify its arguments ("call by reference," later in the course)
- Scope: function arguments and local variables are only accessible within the body of the function

Bottom line: a tool to break down a big problem into smaller ones

Functions A Technical View

Running programs have a call stack (a.k.a. execution stack):

- Keeps track of arbitrarily nested function calls
- Function arguments and results are copied* across calls
 - ★ the local variables of the calling function are not affected
- The call stack has a maximum size, and it can overflow
 - ★ when performing too many nested function calls
 - ★ when using big data structures as parameters or local variables

^{*}When using "call by value" (we'll get back to it later in the course)

Outline

- 1 Functions
- **2** Live Programming
- **3** Exercises and CodeJudge

Live Programming

We will see several examples (see FileSharing file live02) like ...

- $\binom{n}{k}$: number of combinations to choose k out of n values.
 - ★ Example: lottery with 36 balls and we pick 7
- How to compute it?
- For which values of *n* and *k* is this actually defined?
- What sub-problem do we need to solve?

Formula:
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$
 Example: $\binom{5}{3} = \frac{5 \cdot 4 \cdot 3 \cdot 2}{(3 \cdot 2) \cdot (2)}$

Can we find a more efficient method?

Other examples: are these equations true in C++?

$$x-y+z=x+z-y$$

•
$$(x + y)/2 = x/2 + y/2$$

It depends on the data types we use! Be aware of their limits!

Outline

- 1 Functions
- **2** Live Programming
- 3 Exercises and CodeJudge

Exercises and CodeJudge

- There is an exercise sheet on Inside File Sharing
- Hand-in via CodeJudge before the next lecture.

02393 Programming in C++

Before we leave:

Disinfect table and chair Maintain your distance to others Wash or sanitize your hands Respect guidelines and restrictions outside