Noncooperative Game Theory

J. Leite (adapted from Kevin Leyton-Brown)

Cortes and The Burning of the Boats

Section 1

Perfect-Information Extensive-Form Games

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- ► The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N,A,H,Z,\chi,\rho,\sigma,u)$, where:

▶ Players: *N* is a set of *n* players

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

► Players: *N*

Actions: A is a (single) set of actions

- ► Players: N
- ► Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes

- ► Players: *N*
- ► Actions: *A*
- Choice nodes and labels for these nodes:
 - ► Choice nodes: H
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions

- ► Players: N
- ► Actions: A
- Choice nodes and labels for these nodes:
 - ► Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h

- ► Players: *N*
- ► Actions: *A*
- Choice nodes and labels for these nodes:
 - ► Choice nodes: H
 - ▶ Action function: $\chi: H \to 2^A$
 - ▶ Player function: $\rho: H \to N$
- ► Terminal nodes: Z is a set of terminal nodes, disjoint from H

- ▶ Players: N
- ► Actions: A
- Choice nodes and labels for these nodes:
 - ► Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - ▶ Player function: $\rho: H \to N$
- ► Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - The choice nodes form a tree, so we can identify a node with its history.

- ► Players: *N*
- ► Actions: A
- Choice nodes and labels for these nodes:
 - ► Choice nodes: H
 - ▶ Action function: $\chi: H \to 2^A$
 - ▶ Player function: $\rho: H \to N$
- ► Terminal nodes: Z
- ▶ Successor function: $\sigma: H \times A \rightarrow H \cup Z$
- ▶ Utility function: $u = (u_1, ..., u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

 Play as a fun game, dividing 100 euros in coins. (Play each partner only once.)

► In the sharing game (splitting 2 coins) how many pure strategies does each player have?

- ► In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - ▶ player 1: 3

- ► In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - ▶ player 1: 3
 - ▶ player 2: 8

Pure Strategies

Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition (pure strategies)

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$\sum_{h \in H, \rho(h) = i} \chi(h)$$

What are the pure strategies for player 2?

What are the pure strategies for player 2?

$$ightharpoonup S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

$$S_1 = \{(B, G); (B, H), (A, G), (A, H)\}$$

► This is true even though, conditional on taking *A*, the choice between *G* and *H* will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
G	3,8	3,8	8,3	8,3
Н	3,8	3,8	8,3	8,3
G	5,5	2, 10	5,5	2, 10
Ή	5,5	1,0	5,5	1,0

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

CF	DE	DF
3,8	8,3	8,3
3,8	8,3	8,3
2, 10	5,5	2, 10
1,0	5,5	1,0
	3,8 3,8 2,10	3,8 8,3 3,8 8,3 2,10 5,5

- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here, we write down 16 payoff pairs instead of 5
 - exponential growth

- ▶ In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
4H	3,8	3,8	8,3	8,3
BG	5,5	2, 10	5,5	2, 10
BH	5,5	1,0	5,5	1,0

- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5,5	2, 10	5,5	2, 10
BH	5,5	1,0	5,5	1,0

Theorem

Every perfect information game in extensive form has a PSNE

► This is easy to see, since the players move sequentially.

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
4G	3,8	3,8	8,3	8,3
H	3,8	3,8	8,3	8,3
gG	5,5	2, 10	5,5	2, 10
3H	5,5	1,0	5,5	1,0

What are the (three) pure-strategy equilibria?

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CE	DE	DE
	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5,5	2, 10	5,5	2, 10
BH	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
 - (A,G),(C,F)
 - (A, H), (C, F)
 - \triangleright (B,H),(C,E)

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
4G	3,8	3,8	8,3	8,3
^{A}H	3,8	3,8	8,3	8,3
BG	5,5	2, 10	5,5	2, 10
BH	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
 - (A, G), (C, F)
 - (A, H), (C, F)
 - \triangleright (B,H),(C,E)
- One of these equilibria is preferable—which one?

Section 2

Subgame Perfection

- Consider the equilibrium (B, H), (C, E)
- ► There seems to be something intuitively wrong with it...

- ▶ Consider the equilibrium (B, H), (C, E)
- There seems to be something intuitively wrong with it...
 - Why would player 1 ever choose to play H if he got to the second choice node?

- ▶ Consider the equilibrium (B, H), (C, E)
- There seems to be something intuitively wrong with it...
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - ▶ After all, G dominates H for him

- ▶ Consider the equilibrium (B, H), (C, E)
- There seems to be something intuitively wrong with it...
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - ▶ After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing F, and so gets 5

- ► Consider the equilibrium (*B*, *H*), (*C*, *E*)
- There seems to be something intuitively wrong with it...
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - ▶ After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing F, and so gets 5
 - However, this seems like a non-credible threat

- ► Consider the equilibrium (*B*, *H*), (*C*, *E*)
- There seems to be something intuitively wrong with it...
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing F, and so gets 5
 - However, this seems like a non-credible threat
 - If player 1 reached his second decision node, would he really follow through and play H?

Formal Definition

Definition (subgame of *G* rooted at *h*)

The subgame of G rooted at h is the restriction of G to the descendents of H.

Definition (subgames of *G*)

The set of subgames of G is defined by the subgames of G rooted at each of the nodes in G.

Formal Definition

Definition (subgame of *G* rooted at *h*)

The subgame of G rooted at h is the restriction of G to the descendents of H.

Definition (subgames of *G*)

The set of subgames of *G* is defined by the subgames of *G* rooted at each of the nodes in *G*.

Definition (Subgame perfect equilibrium)

s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'

- Notes:
 - since G is its own subgame, every SPE is a NE.
 - this definition rules out "non-credible threats"

- Which equilibria from the example are subgame perfect?
 - ► (*A*, *G*), (*C*, *F*):
 - ▶ (*B*, *H*), (*C*, *E*):
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - ► (*A*, *G*), (*C*, *F*):
 - ▶ (*B*, *H*), (*C*, *E*):
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - ► (A, G), (C, F): is subgame perfect
 - ▶ (*B*, *H*), (*C*, *E*):
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F): is subgame perfect
 - ► (*B*, *H*), (*C*, *E*):
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F): is subgame perfect
 - (B,H),(C,E): (B,H) is an non-credible threat; not subgame perfect
 - ► (*A*, *H*), (*C*, *F*):

- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F): is subgame perfect
 - (B,H),(C,E): (B,H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F): (A, H) is also non-credible, even though H is "off-path"

Section 3

Backward Induction

▶ Play this as a fun game...

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

- util_at_child is a vector denoting the utility for each player
- the procedure doesn't return an equilibrium strategy, but rather labels each node with a vector of real numbers.
 - This labeling can be seen as an extension of the game's utility function to the non-terminal nodes
 - The equilibrium strategies: take the best action at each node.

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

- For zero-sum games, BackwardInduction has another name: the minimax algorithm.
 - Here it's enough to store one number per node.
 - It's possible to speed things up by pruning nodes that will never be reached in play: "alpha-beta pruning".

Backward Induction

What happens when we use this procedure on Centipede?

Backward Induction

- What happens when we use this procedure on Centipede?
 - ▶ In the only equilibrium, player 1 goes down in the first move.
 - However, this outcome is Pareto-dominated by all but one other outcome.

Backward Induction

- What happens when we use this procedure on Centipede?
 - In the only equilibrium, player 1 goes down in the first move.
 - However, this outcome is Pareto-dominated by all but one other outcome.
- Two considerations:
 - practical: human subjects don't go down right away
 - theoretical: what should you do as player 2 if player 1 doesn't go down?
 - SPE analysis says to go down. However, that same analysis says that P1 would already have gone down. How do you update your beliefs upon observation of a measure zero event?
 - but if player 1 knows that you'll do something else, it is rational for him not to go down anymore... a paradox
 - there's a whole literature on this question

- Some Experimental Results (with 6 nodes):
 - ▶ 1% stop at 1st node;
 - 6% stop at 2nd node;
 - 21% stop at 3rd node;
 - 53% stop at 4th node;
 - 73% stop at 5th node;
 - 85% stop at 6th node;

- Some Experimental Results (with 6 nodes):
 - 1% stop at 1st node;
 - 6% stop at 2nd node;
 - 21% stop at 3rd node;
 - 53% stop at 4th node;
 - 73% stop at 5th node;
 - 85% stop at 6th node;
- How to explain?
 - Bounded ability to reason
 - Player's own limitations
 - Or unsure of other player's reasoning
 - Altruism
 - Player's own altruism
 - Or belief that other player is altruistic

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - 69% end at first node

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players

•

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players
 - 100% end at first node

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players
 - ▶ 100% end at first node
 - Students vs. Students

,

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players
 - ▶ 100% end at first node
 - Students vs. Students
 - 3% end at first node

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players
 - ▶ 100% end at first node
 - Students vs. Students
 - 3% end at first node
 - Students vs. Chess players

٠

- Are Chess players playing centipede more rational?
 - Chess players vs. Chess players
 - ▶ 69% end at first node
 - Grandmasters (player 1) vs. Chess players
 - ▶ 100% end at first node
 - Students vs. Students
 - 3% end at first node
 - Students vs. Chess players
 - 30% end at first node

- ▶ Player 1 makes an offer $x \in \{0, 1, ..., 10\}$ to player 2
- Player 2 can accept or reject
- ▶ 1 gets 10 x and 2 gets x if accepted
- Both get 0 if rejected

- ▶ Player 1 makes an offer $x \in \{0, 1, ..., 10\}$ to player 2
- Player 2 can accept or reject
- ▶ 1 gets 10 x and 2 gets x if accepted
- Both get 0 if rejected

- ▶ Player 1 makes an offer $x \in \{0, 1, ..., 10\}$ to player 2
- Player 2 can accept or reject
- ▶ 1 gets 10 x and 2 gets x if accepted
- Both get 0 if rejected

- Subgame Perfect Equlibria
 - Player 2 accepts every positive x.
 - ▶ If offered 0, Player 2 is indifferent could accept or reject (or even mix).
 - ▶ Player 1 offers either 0 or 1 depending on 2's decision at 0.

Offers

Min Accept

- Subgame perfection doesn't always match data.
- Rejections violate "rationality"?
- ... or do we have the payoffs incorrect: people value equity, or feel emotions: Behavioural Game Theory.