

MySQL数据库开发技术 —— 高级查询

本章内容

节	知识点	掌握程度	难易程度
	为什么使用分组函数	了解	
/ \	什么是分组函数	理解	
分组函数概述	组函数的类别	了解	
	使用组函数	掌握	
	MIN函数和MAX函数	掌握	
	SUM函数和AVG函数	掌握	
人 4口 丞 米丘	COUNT 函数	掌握	
分组函数	组函数中DISTINCT	掌握	
	组函数中空值处理	掌握	
	在组函数中使用NVL函数	掌握	
	创建数据组	掌握	难
	用GROUP BY子句创建数据组	掌握	难
CDOUD DVZ5	使用GROUP BY 子句	掌握	难
GROUP BY 子句	按多个列分组	掌握	难
	按多列分组的GROUP BY子句	掌握	难
	使用组函数的非法查询	掌握	难
IIAVINC Z	排除组结果	掌握	难
HAVING子句	用HAVING子句排除组结果	掌握	难

本章内容

节	知识点	掌握程度	难易程度
SELECT语句执行过程	SELECT语句执行过程	掌握	难
	为什么要是使用子查询	理解	
	子查询的基本语法	掌握	
 子查询概述	子查询使用场合	理解	
丁重调炼处	使用子查询	理解	
	子查询使用指导	理解	
	子查询的类型	理解	
	单行子查询	理解	
	执行单行子查询	掌握	
单行子查询	子查询中使用组函数	掌握	难
	HAVING子句中的子查询	掌握	难
	单行子查询错误案例	掌握	难
多行子查询	多行子查询	理解	
夕11丁旦问	IN、ANY、ALL 的使用	掌握	
子查询中空值问题	子查询中空值问题	掌握	难
在FROM子句中使用子查询	在FROM子句中使用子查询	掌握	难

为什么使用分组函数

- 请思考如下问题?
 - 查询所有员工的每个月工资总和,平均工资?
 - 查询工资最高和最低的工资是多少?
 - 查询公司的总人数?
 - 查询有奖金的总人数?

为什么使用分组函数

• 分组函数是对数据行的集合进行操作并按组给出一个结果,这个结果可直接输出,或者用来做判断条件。

DEPTNO	SAL
10	2450
10	5000
10	1300
20	800
20	1100
20	3000
20	3000
20	2975
30	1600
30	2850
30	1250
30	950
30	1500
30	1250

"EMP表中的 最高工资"

为什么使用分组函数

• 单行函数和分组函数区别

分组函数概述

- 分组函数
 - 分组函数是对表中一组记录进行操作,每组只返回一个结果, 即首先要对表记录进行分组,然后再进行操作汇总,每组返 回一个结果,分组时可能是整个表分为一组,也可能根据条件分成多组。
 - 分组函数常用到以下五个函数:
 - MIN
 - MAX
 - SUM
 - AVG
 - COUNT

分组函数概述

• 使用分组函数

```
SELECT [column,] group_function(column)

FROM table

[WHERE condition]

[GROUP BY column]

[HAVING group_function(column)expression

[ORDER BY column| group_function(column)expression];
```

- MIN函数和MAX函数
 - MIN和MAX函数主要是返回每组的最小值和最大值。
 - MIN([DISTINCT | ALL] column | expression)
 - MAX([DISTINCT | ALL] column | expression)
 - MIN和MAX可以用于任何数据类型
 - 查询入职日期最早和最晚的日期

```
SQL> SELECT MIN(hiredate), MAX(hiredate)
2 FROM emp;
```

- SUM函数和AVG函数
 - SUM和AVG函数分别返回每组的总和及平均值。
 - SUM([DISTINCT|ALL] column|expression)
 - AVG([DISTINCT | ALL] column | expression)
 - SUM和AVG函数都是只能够对数值类型的列或表达式操作。
 - 查询职位以SALES开头的所有员工平均工资、最低工资、最高工资、 工资和。

```
SQL> SELECT AVG(sal), MAX(sal),
2 MIN(sal), SUM(sal)
3 FROM emp
4 WHERE job LIKE 'SALES%';
```

```
AVG(SAL) MAX(SAL) MIN(SAL) SUM(SAL)

1400 1600 1250 5600
```


- COUNT函数
 - COUNT函数的主要功能是返回满足条件的每组记录条数。
 - COUNT(* | { [DISTINCT | ALL] column | expression})
 - COUNT(*): 返回表中满足条件的行记录数
 - 查询部门30有多少个员工

```
SQL> SELECT COUNT(*)

2 FROM emp

3 WHERE deptno = 30;
```

```
COUNT (*)
-----6
```


- COUNT函数
 - COUNT([DISTINCT|ALL] column|expression): 返回 满足条件的非空(NULL)行的数量
 - 查询部门30有多少个员工领取奖金。

```
SQL> SELECT COUNT(comm)

2 FROM emp

3 WHERE deptno = 30;
```

```
COUNT (COMM)
-----
4
```


- 组函数中DISTINCT
 - DISTINCT会消除重复记录后再使用组函数
 - 查询有员工的部门数量。

```
SQL> SELECT COUNT(DISTINCT deptno)
2 FROM emp;
```

- 分组函数中空值处理
 - 除了COUNT(*)之外,其它所有分组函数都会忽略列中的空值,然后再进行计算。

```
SQL> SELECT AVG(comm)
2 FROM emp;
```

```
AVG (COMM)
-----
550
```

- · 在分组函数中使用IFNULL函数
 - IFNULL 函数可以使分组函数强制包含含有空值的记录

```
SQL> SELECT AVG(IFNULL(comm, 0))
2 FROM emp;
```

```
AVG(IFNULL(COMM,0))
-----
157.14286
```

练习1

- 1. 查询部门20的员工,每个月的工资总和及平均工资。
- 2. 查询工作在CHICAGO的员工人数,最高工资及最低工资。
- 3. 查询员工表中一共有几种岗位类型。

创建数据组

• 求各部门平均工资,按照部门进行分组

DEPTNO	SAL
10	2450
10	5000
10	1300
20	800
20	1100
20	3000
20	3000
20	2975
30	1600
30	2850
30	1250
30	950
30	1500
30	1250

2916.6667

"按部门 分组求出 各部门的 平均工资"

DEPTNO	AVG (SAL)
10	2916.6667
20	2175
30	1566 6667

1566.6667

用GROUP BY子句创建数据组

SELECT column, group function(column)

FROM table

[WHERE condition]

[GROUP BY group by expression]

[ORDER BY column];

- 通过 GROUP BY 子句可将表中满足WHERE条件的记录按照 指定的列划分成若干个小组
 - 其中GROUP BY子句指定要分组的列

使用 GROUP BY 子句

• 查询每个部门的编号,平均工资

```
SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno;
```

```
DEPTNO AVG(SAL)
-----
10 2916.6667
20 2175
30 1566.6667
```


使用 GROUP BY 子句

• 在SELECT列表中除了分组函数那些项,所有列都必须包含 在GROUP BY 子句中。

```
SQL> SELECT deptno, AVG(sal)
2 FROM emp
3 GROUP BY deptno;
```


使用 GROUP BY 子句

• GROUP BY 所指定的列并不是必须出现在SELECT 列表中。

```
SQL> SELECT AVG(sal)
2 FROM emp
3 GROUP BY deptno;
```

```
AVG(SAL)
-----
2916.6667
2175
1566.6667
```


按多个列分组

• 查询每个部门每个岗位的工资总和。

DEPTNO	JOB	SAL
10	MANAGER	2450
10	PRESIDENT	5000
10	CLERK	1300
20	CLERK	800
20	CLERK	1100
20	ANALYST	3000
20	ANALYST	3000
20	MANAGER	2975
30	SALESMAN	1600
30	MANAGER	2850
30	SALESMAN	1250
30	CLERK	950
30	SALESMAN	1500
30	SALESMAN	1250

"求出每个部门 内的每个工种 的薪水合计"

DEPTNO	JOB	SUM (SAL)
10	CLERK	1300
10	MANAGER	2450
10	PRESIDENT	5000
20	ANALYST	6000
20	CLERK	1900
20	MANAGER	2975
30	CLERK	950
30	MANAGER	2850
30	SALESMAN	5600

按多列分组的GROUP BY子句

• 查询每个部门每个岗位的工资总和。

```
SQL> SELECT deptno, job, sum(sal)
2 FROM emp
3 GROUP BY deptno, job;
```

DEP'	TNO	JOB	SUM (SAL)
	10	CLERK	1300
	10	MANAGER	2450
	10	PRESIDENT	5000
	20	ANALYST	6000
	20	CLERK	1900
9 rows	sel	Lected.	

练习2

- 1. 查询每个部门的部门编号,部门名称,部门人数,最高工资,最低工资,工资总和,平均工资。
- 2. 查询每个部门,每个岗位的部门编号,部门名称,岗位名称,部门人数,最高工资,最低工资,工资总和,平均工资。
- 3. 查询每个经理所管理的人数, 经理编号, 经理姓名, 要求包括没有经理的人员信息。

排除组结果

DEPTNO	SAL
10	2450
10	5000
10	1300
20	800
20	1100
20	3000
20	3000
20	2975
30	1600
30	2850
30	1250
30	950
30	1500
30	1250

5000

3000

2850

问题:每个组内 最高薪水大于 \$2900"才输出

DEPTNO	MAX (SAL)
10	5000
20	3000

使用组函数的非法的查询

- 不能在 WHERE子句中限制组
- 可以通过 HAVING 子句限制组

```
THERE FAITHREADING.
             deptno, max(sal)
SQL> SELECT
    FROM
             emp
 3 WHERE
             max(sal) > 2900
    GROUP BY deptno;
```

Error Code: 1111

Invalid use of group function

用 HAVING 子句排除组结果

- 使用 HAVING 子句限制组
 - 记录已经分组.
 - 使用过组函数.
 - 与 HAVING 子句匹配的结果才输出

```
SELECT column, group_function

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];
```


使用 HAVING 子句

• 查询每个部门最高工资大于2900的部门编号,最高工资

```
SQL> SELECT deptno, max(sal)
2 FROM emp
3 GROUP BY deptno
4 HAVING max(sal)>2900;
```

DEPTNO	MAX (SAL)
10	5000
20	3000

使用 HAVING 子句

```
SQL> SELECT job, SUM(sal) PAYROLL

2 FROM emp

3 WHERE job NOT LIKE 'SALES%'

4 GROUP BY job

5 HAVING SUM(sal)>5000

6 ORDER BY SUM(sal);
```


SELECT语句执行过程

通过案例解释SELECT语句的执行过程。

```
SQL> SELECT deptno,job,avg(sal)

2 FROM emp

3 WHERE job in ('SALESMAN','MANAGER','CLERK')

4 GROUP BY deptno,job

5 HAVING avg(sal)>1000

6 ORDER BY 3 DESC;
```

DEPTNO	JOB A	VG (SAL)
20	MANAGER	2975
30	MANAGER	2850
10	MANAGER	2450
30	SALESMAN	1400
10	CLERK	1300

SELECT语句执行过程

BASE TABLE

DEPTNO	JOB	SAL
20	CLERK	800
30	SALESMAN	1600
30	SALESMAN	1250
20	MANAGER	2975
30	SALESMAN	1250
30	MANAGER	2850
10	MANAGER	2450
20	ANALYST	3000
10	PRESIDENT	5000
30	SALESMAN	1500
20	CLERK	1100
30	CLERK	950
20	ANALYST	3000
10	CLERK	1300

WHERE

DEPTNO	JOB	SAL
20	CLERK	800
30	SALESMAN	1600
30	SALESMAN	1250
20	MANAGER	2975
30	SALESMAN	1250
30	MANAGER	2850
10	MANAGER	2450
30	SALESMAN	1500
20	CLERK	1100
30	CLERK	950
10	CLERK	1300

GROUP BY

DEPTNO	JOB	SAL
20	CLERK	800
20	CLERK	1100
20	MANAGER	2975
30	SALESMAN	1600
30	SALESMAN	1250
30	SALESMAN	1250
30	SALESMAN	1500
30	MANAGER	2850
30	CLERK	950
10	MANAGER	2450
10	CLERK	1300

SELECT语句执行过程

TT TT T TT T T T T T T T T T T T T T	מהו העתי	זת מתחתה
HAVIN(÷		1161186 60
MANTINI.	3P.L.P.U. I	ים איוואון

11117 1140		
JOB	SAL	
MANAGER	2975	
SALESMAN	1600	
SALESMAN	1250	
SALESMAN	1250	
SALESMAN	1500	
MANAGER	2850	
MANAGER	2450	
CLERK	1300	
	JOB MANAGER SALESMAN SALESMAN SALESMAN MANAGER MANAGER	

DEPTNO	.TOB	AVG(SAL)
20	MANAGER	2975
30	SALESMAN	1400
30	MANAGER	2850
10	MANAGER	2450
10	CLERK	1300

UNDER DI		
DEPTNO	JOB	AVG(SAL)
20	MANAGER	2975
30	MANAGER	2850
10	MANAGER	2450
30	SALESMAN	1400
10	CLERK	1300
		<u> </u>

SELECT语句执行过程

- SELECT语句执行过程:
 - 1. 通过FROM子句中找到需要查询的表;
 - 2. 通过WHERE子句进行非分组函数筛选判断;
 - 3. 通过GROUP BY子句完成分组操作;
 - 4. 通过HAVING子句完成组函数筛选判断;
 - 5. 通过SELECT子句选择显示的列或表达式及组函数;
 - 6. 通过ORDER BY子句进行排序操作。

练习3

- 1. 查询部门人数大于2的部门编号,部门名称,部门人数。
- 2. 查询部门平均工资大于2000,且人数大于2的部门编号,部门 名称,部门人数,部门平均工资,并按照部门人数升序排序。

子查询概述

- 为什么使用子查询
 - 思考如下问题?
 - 查询工资比Jones工资高的员工信息?
 - 查询工资最低的员工姓名?

子查询概述

"谁的薪水比 Jones还高呢?"

SELECT select list

FROM table

WHERE expr operator

(SELECT select list

FROM table);

括号内的查询叫做子查询,也叫内部查询,先于主查询执行。

- 子查询的结果被主查询(外部查询)使用
- expr operator包括比较运算符。
 - 单行运算符: >、=、>=、<、<>、<=
 - 多行运算符: IN、ANY、ALL

- · 子查询可以嵌于以下SQL子句中:
 - WHERE子句
 - HAVING子句
 - FROM子句

- 使用子查询
 - 查询出比JONES为雇员工资高的其他雇员

```
SQL> SELECT ename

2 FROM emp
2975

3 WHERE sal >

(SELECT sal
5 FROM emp
6 WHERE ename='JONES');
```

```
ENAME
-----
KING
FORD
SCOTT
```


- 子查询使用指导
 - 子查询要用括号括起来
 - 将子查询放在比较运算符的右边
 - 对于单行子查询要使用单行运算符
 - 对于多行子查询要使用多行运算符

- 子查询类型
 - 根据子查询返回的行和列数量,分为:

- 子查询只返回一行一列
- 使用单行运算符

运算符	含义		
=	等于		
>	大于		
>=	大于等于		
<	小于		
<=	小于等于		
<>	不等于		

显示和雇员7369从事相同工作并且工资大于雇员7876的雇员的姓名和工作。

```
SQL> SELECT
               ename, job
     FROM
               emp
    WHERE
               job =
                                           CLERK
  4
                        (SELECT
                                      job
  5
                       FROM
                                      emp
  6
                                      empno = 7369)
                       WHERE
  7
               sal >
     AND
                                            1100
  8
                        (SELECT
                                      sal
  9
                       FROM
                                      emp
  10
                                      empno = 7876);
                       WHERE
```

ENAME	JOB
MILLER	CLERK

- 子查询中使用组函数
 - 查询工资最低的员工姓名, 岗位及工资

```
SQL> SELECT ename, job, sal
2 FROM emp
3 WHERE sal =
(SELECT MIN(sal)
5 FROM emp);
```

```
ENAME JOB SAL
-----SMITH CLERK 800
```


- HAVING子句中使用子查询
 - 查询部门最低工资比20部门最低工资高的部门编号及最低工资

```
SQL> SELECT
                   deptno, MIN(sal)
     FROM
                   emp
     GROUP BY
                   deptno
                                         800
                   MIN(sal)
     HAVING
  5
                             (SELECT
                                        MIN(sal)
  6
                             FROM
                                        emp
                                        deptno = 20);
                             WHERE
```


• 这个语句错在哪?

```
SQL> SELECT empno, ename

2 FROM emp

3 WHERE sal =

(SELECT MIN(sal))

5 FROM emp

GROUP Red deptno);
```

```
(SELECT MIN(sal)

*
ERROR 位于第 4 行:
ORA-01427: 单行子》询返回多于一个行
```

练习4

- 1. 查询入职日期最早的员工姓名,入职日期
- 2. 查询工资比SMITH工资高并且工作地点在 CHICAGO的员工姓名,工资,部门名称
- 3. 查询入职日期比20部门入职日期最早的员工还要早的员工姓名,入职日期
- 4. 查询部门人数大于所有部门平均人数的的部门编号,部门名称,部门人数

- 多行子查询
 - 子查询返回记录的条数 可以是一条或多条。
 - 和多行子查询进行比较时,需要使用多行操作符,多 行操作符包括:
 - IN
 - ANY
 - ALL
 - IN操作符和以前介绍的功能一致, 判断是否与子查询 的任意一个返回值相同。

• IN使用

- 返回结果

ERROR at line 4: ORA-01427: single-row subquery returns more than one row

- IN使用
 - 查询是经理的员工姓名,工资

```
SELECT ename, sal
FROM emp
WHERE empno IN (SELECT mgr
FROM emp);
```

- ANY的使用
 - ANY: 表示和子查询的任意一行结果进行比较, 有一个满足条件即可。
 - < ANY: 表示小于子查询结果集中的任意一个, 即小于最大值就可以。
 - > ANY:表示大于子查询结果集中的任意一个,即大于最小值就可以。
 - = ANY: 表示等于子查询结果中的任意一个, 即等于谁都可以, 相当于IN。

- ANY的使用
 - 查询是经理的员工姓名,工资。

• ANY的使用

- 查询部门编号不为10,且工资比10部门任意一名员工工资 高的员工编号,姓名,职位,工资。

```
SELECT empno, ename, job, sal

FROM emp

WHERE sal > ANY (SELECT sal

FROM emp

WHERE deptno = 10)

AND deptno <> 10;
```


• ANY的使用

- 查询部门编号不为10,且工资比10部门任意一名工资低的 员工编号,姓名,职位,工资。

```
SELECT empno, ename, job, sal

FROM emp

WHERE sal < ANY (SELECT sal

FROM emp

WHERE deptno = 10)

AND deptno <> 10;
```

- ALL的使用
 - ALL:表示和子查询的所有行结果进行比较,每一行必须都 满足条件。
 - < ALL: 表示小于子查询结果集中的所有行,即小于最小值。
 - > ALL: 表示大于子查询结果集中的所有行,即大于最大 值。
 - = ALL:表示等于子查询结果集中的所有行,即等于所有值,通常无意义。

- ALL的使用
 - 查询部门编号不为20,且工资比20部门所有员工工资高的 员工编号,姓名,职位,工资。

```
SELECT empno, ename, job, sal

FROM emp

WHERE sal > ALL (SELECT sal

FROM emp

WHERE deptno= 20)

AND deptno <> 20;
```


- ALL的使用
 - 查询部门编号不为10,且工资比10部门所有员工工资低的 员工编号,姓名,职位,工资。

```
SELECT empno, ename, job, sal

FROM emp

WHERE sal < ALL (SELECT sal

FROM emp

WHERE deptno= 10)

AND deptno <> 10;
```


- ALL的使用
 - 查询部门编号不为10,且工资和10部门所有员工工资相等的员工编号,姓名,职位,工资。

```
SELECT empno, ename, job, sal

FROM emp

WHERE sal = ALL (SELECT sal

FROM emp

WHERE deptno= 10)

AND deptno <> 10;
```

练习5

- 1. 查询入职日期比10部门任意一个员工晚的员工姓名、入职日期,不包括10部门员工
- 2. 查询入职日期比10部门所有员工晚的员工姓名、入职日期, 不包括10部门员工
- 3. 查询职位和10部门任意一个员工职位相同的员工姓名,职位 ,不包括10部门员工

子查询中的空值

查询不是经理的员工姓名。

```
SQL> SELECT ename

2 FROM emp

3 WHERE empno NOT IN

4 (SELECT mgr

5 FROM emp);

no rows selected.
```

子查询返回的结果中含有空值

上面的SQL语句试图查找出没有下属的雇员,逻辑上,这个SQL语句应该会返回8条记录,但是却一条也没返回,why?

因为子查询的结果中有一条空值,这条空值导致主查询没有记录返回。 这是因为所有的条件和空值比较结果都是空值。因此无论什么时候只要 空值有可能成为子查询结果集合中的一部分,就不能使用NOT IN 运算符。

在 FROM 子句中使用子查询

查询比自己部门平均工资高的员工姓名,工资,部门编号,部门平均工资

```
SQL> SELECT a.ename, a.sal, a.deptno, b.salavg

2 FROM emp a, (SELECT deptno, avg(sal) salavg

FROM emp

GROUP BY deptno) b

5 WHERE a.deptno = b.deptno

6 AND a.sal > b.salavg;
```

ENAME	SAL	DEPTNO	SALAVG		
KING	5000	10	2600		
JONES	2975	20	2335		
SCOTT	3000	20	2335		
• • •					
6 rows selected.					

小结

- MIN函数和MAX函数
- SUM函数和AVG函数
- COUNT函数
- 组函数中空值处理
- 通过GROUP BY子句进行分组汇总
- HAVING子句的使用
- 单行子查询
- 多行子查询
- 子查询中空值问题

课后作业

- 1. 查询部门平均工资在2500元以上的部门名称及平均工资。
- 2. 查询员工岗位中不是以"SA"开头并且平均工资在2500 元以上的岗位及平均工资,并按平均工资降序排序。
- 3. 查询部门人数在2人以上的部门名称、最低工资、最高工资,并对求得的工资进行四舍五入到整数位。
- 4. 查询岗位不为SALESMAN, 工资和大于等于2500的岗位及 每种岗位的工资和。
- 5. 显示经理号码和经理姓名,这个经理所管理员工的最低工资,没有经理的KING也要显示,不包括最低工资小于3000的,按最低工资由高到低排序。

课后作业

- 6. 查询工资高于编号为7782的员工工资,并且和7369号员工从事相同工作的员工的编号、姓名及工资。
- 7. 查询工资最高的员工姓名和工资。
- 8. 查询部门最低工资高于10号部门最低工资的部门的编号、名称及部门最低工资。
- 9. 查询员工工资为其部门最低工资的员工的编号和姓名及工资。
- 10. 显示经理是KING的员工姓名,工资。
- 11. 显示比员工SMITH参加工作时间晚的员工姓名,工资,参加工作时间。

课后作业

- 12. 使用子查询的方式查询哪些职员在NEW YORK工作。
- 13. 写一个查询显示和员工SMITH工作在同一个部门的员工姓
- 名,雇用日期,查询结果中排除SMITH。
- 14. 写一个查询显示其工资比全体职员平均工资高的员工编号、姓名。
- 15. 显示部门名称和人数
- 16. 显示每个部门的最高工资的员工
- 17. 显示出和员工号7369部门相同的员工姓名,工资
- 18. 显示出和姓名中包含 "W"的员工相同部门的员工姓名

Neuedu