Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data

Michael A. Hedderich and Dietrich Klakow

Workshop on Deep Learning Approaches for Low-Resource NLP

19.07.2018

Expensive, clean labels

Expensive, clean labels

Expensive, clean labels

Raw, unlabeled data + cheap, noisy labels

Expensive, clean labels

Raw, unlabeled data + cheap, noisy labels

Leveraging additional, cheap, noisy data.

Overview

- Label Noise Model
- Training Procedure
- Automatic Annotation of Named Entities
- Evaluation & Analysis

Setting

- Small, clean dataset $(x, y) \in C$
- Multi-class classification: p(y = i | x; w)

Setting

- Small, clean dataset $(x, y) \in C$
- Multi-class classification: p(y = i | x; w)

• Large, noisy dataset $(x, z) \in N$

Noise Channel

Noise Channel

Noise Channel

- Models trained alternatingly, each for one epoch
- Shared weights

- Controlling amount of noisy data compared to clean
- \tilde{N} new random subset of N in each epoch

Initialization of θ

- Produce noisy labels z for $(x, y) \in C$
- Initialize θ : $b_{ij} = \log(\frac{\sum_{t=1}^{|C|} 1_{\{y_t=i\}} 1_{\{z_t=j\}}}{\sum_{t=1}^{|C|} 1_{\{y_t=i\}}})$

Experiments

- Named Entity Recognition task
- Small subset of English CoNLL03 NER dataset as C
- All CoNLL03 data as raw data

Tjong Kim Sang and De Meulder: Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. Conference on Natural Language Learning (2003).

Experiments

- Named Entity Recognition task
- Small subset of English CoNLL03 NER dataset as C
- All CoNLL03 data as raw data
- Many synthetic noise models have strong assumptions (e.g. uniform or permutation)
- Automatic labeling as source of noisy data N

Tjong Kim Sang and De Meulder: Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. Conference on Natural Language Learning (2003).

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria ...

ORG

United Nations ACL WHO

E.g. from gazetteers, Wikipedia, census data

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria

ORG

United Nations ACL WHO

Melbourne, state capital of Victoria

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria

ORG

United Nations ACL WHO

Melbourne, state capital of Victoria

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria

ORG

United Nations ACL WHO

Melbourne, state capital of Victoria

LOC

0

0

 \mathbb{C}

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria

ORG

United Nations ACL WHO

Melbourne, state capital of Victoria

LOC

0

U

PΕ

LOC

Washington Melbourne Saarbrücken

PER

Henry Elisabeth Victoria

ORG

United Nations ACL WHO

- Precision: 53% | Recall: 27% | F1: 36%
- Quickly annotate large corpora

(as percentage of full corpus and as absolute size).

Effect of Noisy Data

 $|\tilde{N}|$ (subsampled noisy data) as factor of |C| (clean data) and as absolute number of instances

Learned Weights

Class	Recall
PER	26%
ORG	10%
LOC	65%
MISC	0%

Automatic annotation of training data

Learned noise transition weights θ

Summary

- Noise channel and layer
- Model architecture for clean and noisy data
- Automatic annotation of named entities
- Evaluation: Performance, effect of noisy data, learned weights
- Future work
 - Improve automatic annotation
 - More robustness against noise
 - Other tasks & noisy data

Summary

- Noise channel and layer
- Model architecture for clean and noisy data
- Automatic annotation of named entities
- Evaluation: Performance, effect of noisy data, learned weights
- Future work
 - Improve automatic annotation
 - More robustness against noise
 - Other tasks & noisy data

