Modélisation Transactionnelle des Systèmes sur Puces en SystemC Ensimag 3A — filière SLE Grenoble-INP

TLM Avancé & Conclusion

Matthieu Moy (transparents originaux de Jérôme Cornet)

Matthieu.Moy@imag.fr

2015-2016

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 1 / 19 >

Sommaire

- Quelques mots sur l'examen
- Récapitulatif sur les TPs
- Écosystème TLM

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016

Sujet d'examen

- Questions de cours C++, SystemC/TLM, intervenant extérieur
- 1 exercice sur le temps simulé/wall-clock (cf. années précédentes)
- 1 problème : extension de la plateforme « TP3 ». Cette année (2016-2017): composant matériel pour optimiser memset.

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 6 / 19 >

Ce qui énerve le correcteur ...

- Confusion entre hardware et software (e.g. écrire du SystemC dans le soft embarqué, ou utiliser hal. h dans le modèle de matériel)
- « Justifiez brièvement » mal lu
- Les erreurs sur les points répétés N fois en TP/cours.

Planning approximatif des séances

- Introduction : les systèmes sur puce
- Introduction: modélisation au niveau transactionnel (TLM)
- Introduction au C++
- Présentation de SystemC, éléments de base
- Communications haut-niveau en SystemC
- Modélisation TLM en SystemC
- TP1: Première plateforme SystemC/TLM
- Utilisations des plateformes TLM
- TP2 (1/2): Utilisation de modules existants (affichage)
- TP2 (2/2): Utilisation de modules existants (affichage)
- Notions Avancé en SystemC/TLM
- Programme TP3 (1/3): Intégration du logiciel embarqué
- TP3 (2/3): Intégration du logiciel embarqué
 TP3 (3/3): Intégration du logiciel embarqué
- 05/01: Intervenant extérieur : Jérôme Cornet (STMicroelectronics)
- Perspectives et conclusion

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 2 / 19 >

Préparer l'examen

- Annales disponibles (répertoire exam/)
- Documents interdits
- Une feuille A4 recto-verso manuscrite autorisée

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016

À savoir impérativement

- Bases de SystemC : sc_module, sc_thread, sc_method, wait, notify, ...
- Les principes de TLM 2.0
- L'API EnsitIm : read, write, map, bind
- L'API hal: read_mem, write_mem, cpu_relax, wait_for_irq.

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 7 / 19 >

TP nº1

- Prise en main de SystemC/GCC
- Écriture d'un générateur de transactions
 - ► Outil de test de plateforme
 - ► Représente les accès que ferait un processeur (par ex)
- Écriture d'une mémoire
 - ► Mécanisme d'adresse locale (offset)
 - ► Implémentation du comportement (tableau dynamique C++)
- Comportement global

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2015-2016 Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2015-2016 < 10 / 19 >

TP n°2

- Récupération des modules précédent
- Lecture de documentation technique : contrat d'utilisation du **LCDC**
- Modélisation de registres
 - Utilisation des événements SystemC
 - Correspondance avec la documentation
- Gestion des interruptions
- Fabrication d'images en mémoire...

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 11 / 19 >

TP nº3

- Intégration du logiciel embarqué.
 - Avec ISS
 - ► En simulation native
- Correspondance entre plateforme physique (FPGA) et TLM
 - ▶ Même registres, même addressmap, même comportement
 - ► RAM programme gérée différemment
 - ▶ Protocole de bus non modélisé en TLM
- Logiciel portable via hal.h:
 - Une implémentation en simulation native
 - ► Une implémentation pour MicroBlaze (ISS ou FPGA)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2015-2016 < 13 / 19 N

TP n°3 : ce à quoi vous avez échappé...

- Fait pour vous:
 - Écriture des composants TLM (Giovanni Funchal)
 - ► ISS MicroBlaze, boot.s, it.s (SocLib)
- Non géré:
 - ▶ gdb-server: pour déboguer le logiciel avec gdb comme s'il tournait sur une machine physique distante.
 - Temps précis
 - ► Transaction bloc (entre RAM et VGA en particulier)
 - Conflits sur le bus entre RAM \leftrightarrow VGA et fetch.
 - Contrôleur d'interruption évolué (le notre est essentiellement une porte « ou »)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 15 / 19 >

Documentation

- Besoin d'informations organisées sur chaque composant
 - Banques de registresNombre de ports

 - Technologies de gravure supportées
 - Consommation électrique
 - ► Surface...
- Création d'un consortium d'industriels pour standardiser les informations associées à un composant

Consortium SPIRIT: Structure for Packaging,

- ▶ Integrating and Re-using IP within Tool-flows
- Exemple de document : fichier XML conforme à un schéma
- Création d'outils exploitant ces informations

TP nº2 - Figure Generator 1 Memory Bus LCDC Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2015-2016 < 12 / 19 >

TP n°3: Chaînes de compilation

- Native:
 - g++/gcc, comme d'habitude.
 - ▶ extern "C" pour faire communiquer le C et le C++ (problème de mangling et d'ABI)
- Édition de liens entre plateforme et logiciel.
- Croisée:
 - microblaze-uclinux-{gcc,ld,objdump}:tourne sur x86_64, génère du code pour MicroBlaze.
 - ▶ Logiciel embarqué compilé en un fichier ELF ..
 - ... chargé dynamiquement en RAM par la plateforme.
 - ▶ boot.s: adresse de boot, vecteur d'interruption,
 - ▶ it.s:routine d'interruption (sauvegarde/restauration de registres avant d'appeler une fonction C)
 - Idscript: utilisé par microblaze-uclinux-ld pour décider des adresses des symboles.
 - printf: marche sur FPGA via une UART, trivial en simu native, composant UART en simu ISS.

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 14 / 19 >

Réutilisation de composants

- Point de vue d'un industriel:
 - ► Écriture de modèles TLM réutilisables de composants maisons
 - Modèles TLM de composants d'entreprises tierces?
- Idée : chaque fabricant de composant fournit plusieurs modèles
 - ► RTL ou netlist
 - ▶ Modèle TLM, etc.
- Problème : mettre tout le monde d'accord sur l'écriture de modèles TLM

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 17 / 19 >

Conclusion

- SystemC
 - « Langage » de modélisation niveau système
 - Utilisation par les industrielsNombre conséquent d'outils
 - - Dédiés (CAD Vendors)
 - Provenant de C++ (GCC, gdb, gprof, valgrind, etc.)
- TLM
 - Niveau émergent de modélisation de composants électroniques
 - ► Utilisation de SystemC
 - ► Existence d'outils spécifiques TLM (Cadence, Coware, Synopsys,

< 18 / 19 > Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2015-2016 < 19 / 19 >