COMP2610 / 6261 — Information Theory Assignment of the Profession State of the Compression Help

Robert C. Williamson

https://powcoder.com

The Australian National University

17 September, 2018

Last time

Assignment Project Exam Help

- Foundational theorem, but impractical
- Requires potentially very large block sizes nttps://powcoder.com

The theorem also only considers uniform coding schemes

- Could variable length coding help?
 Does entory turn to or such today as a length coder

This time

Variable-length codes

Arstinghest Project Exam Help Kraft's inequality

https://powcoder.com

Assignment Project Exam Help Prefix Codes

- The khattps://powcoder.com
- summadd WeChat powcoder

Assignment Project Exam Help Prefix Codes

- https://powcoder.com
- SummAdd WeChat powcoder

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- Assignment Project Exam Help
 - $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
 - {0, 1}+ Tps://powcoder.com

Notation:

• If A is a finite set then A^N is the set of all *strings of length N*.

SSignment Project Exam Help

- $\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- {0, 1}+ {0,1,00,01,10,11,000,001,010,...} https://powcoder.com

Binary Symbol Code

Let *X* be an ensemble with $A_X = \{a_1, \dots, a_l\}$.

A function $A: C_X \to \{0,1\}$ bit a doda for $X \to X$.

• The binary string C(X) is the codeword for $X \in A_X$.

Notation:

• If A is a finite set then A^N is the set of all *strings of length N*.

Assignment Project Exam Help

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- {0, 1}+ {0, 1, 00, 01, 10, 11, 000, 001, 010, ...} https://powcoder.com

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \ldots, a_l\}$.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for $i = 1 \dots, I$.

Notation:

• If A is a finite set then A^N is the set of all *strings of length N*.

Assignment Project Exam Help

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- {0, 1}+ {0, 1, 00, 01, 10, 11, 000, 001, 010, ...} https://powcoder.com

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \dots, a_l\}$.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for $i = 1 \dots, I$.
- The **extension** of c assigns codewords to any sequence $x_1x_2...x_N$ from \mathcal{A}^+ by $c(x_1...x_N) = c(x_1)...c(x_N)$

Codes: A Review Examples

https://powcoder.com

Examples

• Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000https://powcoder.com

Examples

- ullet Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- · Shoithand for Monday of the recom

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: C_{2} = 0001, 0010, 0100, 0100 = 000 . Combined the All codewords have largth 4. That is, $\ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 4$

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: C_{2} = 0001, 010, 010, 010 100 100 . Combined the All codewords have *langth* 4. That is, $\ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 4$
- The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: C_{2} = 0001, 0010, 0100, 0100 = 000 . Combined the All codewords have largth 4. That is, $\ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 4$
- The *extension* of c maps $aba \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 Validle-Length Code nat powcoder

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: C_{2} = 0001, 010, 010, 010 100 100 . Compared to All codewords have *langth* 4. That is, $\ell_{1} = \ell_{2} = \ell_{3} = \ell_{4} = 4$
- The extension of c maps $aba \in A_x^3 \subset A_x^+$ to 000100100001

Example 2 Validle-Length Code nat powcoder

• Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- All codewords have langth 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 Validle-Weight Code) at powcoder

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$

Examples

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand Cs /0001 0010 0100 1902 r.com
- All codewords have langth 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 Valide We Chat powcoder

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1, \, \ell_2 = 2, \, \ell_3 = \ell_4 = 3$

Examples

$\underbrace{ \underset{\text{Example}}{Assignment}}^{X \text{ is an ensemble with } \mathcal{A}_{X} = \{ a,b,c,d \} \\ \text{Project } Exam \ Help$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shoithand Cs /0001 0010 0100 1902 r.com
- All codewords have langth 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 did le Length Code) at powcoder

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1, \, \ell_2 = 2, \, \ell_3 = \ell_4 = 3$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to $\mathtt{0100}$

Unique Decodeability

Recall that a code is lossless if for all $x, y \in A_X$

Assignment Project Exam Helpdecode the outcome

When wo nite war abin war abin

Unique Decodeability

Recall that a code is lossless if for all $x, y \in A_X$

Assignment $\Pr_{\text{with a single outcome, we can uniquely}}^{x \neq y} \stackrel{c(x) \neq c(y)}{=} c(y)$ decode the outcome

When wo nite war abin war abin

Uniquely Decodable

A code c on an entire process of the code of the co

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

This ensures that if we work with a sequence of outcomes, we can still uniquely decode the individual elements

Examples:

Assignmento Projecto Exam Help

https://powcoder.com

https://powcoder.com

Examples:

Assignmento Projectly Exam Help

Iniform + Lossless

Uniquely decodable

• $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

https://powcader.com110

Examples:

Assignmento Projectly Exam Help Finiform + Lossless Uniquely decodable

- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because https://powcader.com110
 - The code is of course lossless

 Add WeChat powcoder

Examples:

Assignmento Projectly Exam Help Iniform + Lossless Uniquely decodable

- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because https://powcader.com110

 - The code is of course lossless

 Series of viving lecondar powcoder

Examples:

SSI-gramen to Projectly Exam Help Iniform + Lossless Uniquely decodable

- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because https://powcader.com110
 - The code is of course lossless
- C₃ = $\{0, 10, 110, 111\}$ is uniquely decodable

Examples:

SSI-gramento Projectly Exam Help oniform + Lossless Uniquely decodable

- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because https://powcader.com110
 - The code is of course lossless
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable
- - We can easily segment a given code string scanning left to right

Examples:

SSI-gramento Projectly Exam Help oniform + Lossless Uniquely decodable

- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because https://powcader.com110
 - The code is of course lossless
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable
- - We can easily segment a given code string scanning left to right
 - e.g. $0110010 \rightarrow 0, 110, 0, 10$

"Self-punctuating" property

```
The code \textit{C}_3 = \{0, 10, 110, 111\} has a "self-punctuating" property  \begin{array}{c} \textbf{Assignment Project Exam Help} \end{array}
```

https://powcoder.com

"Self-punctuating" property

The code $C_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

Assignment Project Exams Help

- Keep scanning until we match a codeword
- Once matched, add new segment boundary, and proceed to rest of strin nttps://powcoder.com

"Self-punctuating" property

The code $\textit{C}_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

Assignment Project Exams Help

- Keep scanning until we match a codeword
- Once matched, add new segment boundary, and proceed to rest of strin nttps://powcoder.com

Once our current segment matches a codeword, no ambiguity to resolve

· Why Ardrew Wse Cell hat y powcoder

Not true for every uniquely decodable code, e.g. $C_4 = \{0, 01, 011\}$

ullet First bit $0 \rightarrow$ no certainty what the symbol is

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes guarantees unique decodeability
Fredix property Help

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{c}\mathbf{t}$.

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes guarantees unique decodeability
Fredix property Help

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{c}\mathbf{t}$. Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• **Example**: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes guarantees unique decodeability Fredix property Help

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{c}\mathbf{t}$. Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• **Example**: 01101 has prefixes 0, 01, 011, 0110.

Prefix Croadd WeChat powcoder

A code $C = \{\mathbf{c}_1, \dots, \mathbf{c}_l\}$ is a **prefix code** if for every codeword $\mathbf{c}_i \in C$ there is no prefix of \mathbf{c}_i in C.

In a stream, no confusing one codeword with another

Prefix Codes: Examples

Assignment Project reExam Help

- c. https://powcoder.com
- $C_2' = \{1, 10, 110 \text{ Hold}\}$ is postprefix free since $c_3 = 110 \text{ powcoder}$
- $C_2'' = \{1, 01, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_110$

Prefix Codes as Trees

 $C_1 = \{0001, 0010, 0100, 1000\}$

Prefix Codes as Trees

$$C_2 = \{0, 10, 110, 111\}$$

Prefix Codes as Trees

$$C_2' = \{1, 10, 110, 111\}$$

Prefix Codes are Uniquely Decodeable

Uniquely Decodeable Codes are Not Always Prefix Codes

A uniquely decodeable code is not necessarily a prefix code $\underbrace{Assignment}_{\text{Example}} \underbrace{Project\ Exam\ Help}_{}$

- 00 . . . → first codeword
- 010 http://second.codeword.com

Example: $C_2 = \{0, 01, 011, 111\}$ • This extremely the prefix the C_2

Relating various types of codes

Note that Add WeChat powcoder

Prefix ⇒ Uniquely Decodable

but

Why prefix codes?

Assignment Project Exam Help While prefix codes do not represent all uniquely decodable codes, they are convenient to work with

It will be hast to be particular be to the particular between the pa

Further, we can quickly establish if a given code is **not** prefix

Testing for un quite col (bill his anti-piyin in we could be recorded)

Assignment Project Exam Help

- The khattps://powcoder.com
- SummAdd WeChat powcoder

- $L_1 = \{4, 4, 4, 4\}$
- ssignment Project Exam Help
 - $L_4 = \{1, 3, 3, 3, 3, 4\}$

Suppose someone said "I want prefix codes with codewords lengths":

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help
 - https://powcoder.com • wcoder Add WeC

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help $A_{L_4}^{L_2} = \{1, 2, 3, 3\} C_1 \text{ Project Exam Help}$

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help
 - $L_4 = \{1, 3, 3, 3, 3, 4\}$

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help
 - $L_4 = \{1, 3, 3, 3, 3, 4\}$

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- Assignment Project Exam Help
 - $L_4 = \{1, 3, 3, 3, 3, 4\}$ Impossible!

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

Assignmente Propocted Example to p

https://powcoder.com (1)

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code

C with those codeword lengths.

Add WeChat powcoder

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

Assignment Project dixamilatelp

https://powcoder.com (1)

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples Add We Chat powcoder

① $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

Assignment Projectionxampstelp

https://powcoder.com (1)

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples Add We Chat powcoder

- ① $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

Assignment Projectionxamilatelp

https://powcoder.com (1)

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples: Add WeChat powcoder

- **1** $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$
- **1** Lengths $\{1,2,2,3\}$ give $\sum_{i=1}^{4} 2^{-\ell_i} = \frac{1}{2} + \frac{2}{4} + \frac{1}{8} > 1$ so no prefix code

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 - e.g., c(a) = 0 - excludes:

Assignment Project Exam Help • 2 x 2-bit codewords: {00,01} ://powcoder.com 11

110

11

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 - e.g., c(a) = 0 - excludes:

Assignment Project Exam Help • 2 x 2-bit codewords: {00,01} 001 • 4 x 3-bit codewords: {000,001,010,011} powcoder.com

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

$$\sum_{i=1}^{I} 2^{\ell^* - \ell}$$

excluded ℓ^* -bit codewords.

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

For lengths $L = \{\ell_1, \dots, \ell_l\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_l\}$, there will be

$$\sum_{i=1}^{l} 2^{\ell^* - \ell_i} \leq 2^{\ell^*}$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

$$\frac{1}{2^{\ell^*}} \sum_{i=1}^{l} 2^{\ell^* - \ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

Kraft inequality: other direction

Suppose we are given lengths satisfying

Assignment Project Exam Help

Then, we can construct a,code by:

- Pick no the first codeword
- Removing all descendants of the node (to ensure the prefix condition)
- Picking the next (remaining) node at depth \(\ell_2 \), and using it as the second codeword
- Removing all descendants of the node (to ensure the prefix condition)
- •

Kraft inequality: comments

Kraft's inequality actually holds more generally for uniquely decodable possible standards to prove

Harder to prove

Note that in this scool is the control of the contr

Add WeChat powcoder

it does not mean the **given** code necessarily is prefix

Just that we can construct a prefix code with these lengths

Summary

Key ideas from this lecture:

Assignment Project Exam Help

- Every Prefix code is Uniquely Decodeable but not vice versa
- The hattpesiality powcoder.com
 - ▶ Code lengths satisfying $\sum_i 2^{-\ell_i} \le 1$ implies Prefix/U.D. code exists
 - Add We Chat powcoder

Relevant Reading Material:

- MacKay: §5.1 and §5.2
- Cover & Thomas: §5.1, §5.2, and §5.5

Next time

Bound on expected length for a prefix code

Assignment Project Exam Help Huffman coding

https://powcoder.com