國立清華大學

碩士論文

單光子展頻

Spread Single Photon Spectrum

系 所:物理研究所

學 號:105022555

研究生:陳奕丞 (Chen, Yi-Cheng)

指導教授:褚志崧 博士 (Prof. Chuu, Chih-Sung)

中華民國一〇八年七月

國立清華大學

碩士論文

單光子展頻

Spread Single Photon Spectrum

系 所:物理研究所

學 號:105022555

研究生:陳奕丞 (Chen, Yi-Cheng)

指導教授:褚志崧 博士 (Prof. Chuu, Chih-Sung)

中華民國一〇八年七月

Todo list

"Todo List" will hide when set $\operatorname{setboolean}\{\operatorname{publish}\}\{\operatorname{true}\}\ $ in con-		
fig.tex	ii	
"Todo List" will hide when set $\operatorname{setboolean}\{\operatorname{publish}\}\{\operatorname{true}\}\ $ in config.tex.		

單光子展頻

摘要

在此寫上你的中文摘要。

關鍵字:關鍵字,論文,樣板,讓我畢業

Spread Single Photon Spectrum

Abstract

Write your English abstract here.

Keywords: Keyword, Thesis, Template, Graduate me

誌謝

感謝中央大學、中央研究院提供的資源。Donald Ervin Knuth 的 T_{EX} ,Linus 與眾多自由軟體好手提供的 GNU/Linux。

另外特別感謝功德大師 sppmg 提供的論文樣板與教學 [1],讓我將學習 \LaTeX 的時間拿來充實論文內容。(以上為 sppmg 自肥 \TeX)

目錄

	頁:	次
摘要		iii
Abstr	act	iv
誌謝		\mathbf{v}
目錄		vi
使用符	號與定義	xi
<u> </u>	實驗背景與動機	1
1.1	古典通訊展頻	1
1.2	量子通訊展頻	1
二、	基本原理介紹	2
2.1	展頻技術	2
2.2	相位調製	2
	2.2.1 數學形式	2
	2.2.2 單頻波	3
三、	理論模擬	4
3.1	展頻及壓縮	4
3.2	銣原子氣體吸收	5

四	`	實驗力	方法與架設	6
	4.1	儀器介	內紹	6
		4.1.1	隨機訊號產生器	6
		4.1.2	電光調製器	6
		4.1.3	Fabry-Perot Interferometor	6
	4.2	光源製	 提備	6
	4.3	光路架	只設	6
		4.3.1	古典光量測	6
		4.3.2	量子光量測	6
五	`	實驗絲	吉果與討論	7
	5.1	隨機部	八號	7
	5.2	古典光	台量測	7
		5.2.1	展頻與壓縮後	7
		5.2.2	銣原子吸收譜	7
	5.3	量子光	台量測	7
		5.3.1	G2	7
六	`	總結		8
七	`	章名((章節示例)	9
	7.1	節名.		9
		7.1.1	小節名	9
八	`	文字		10
九	`	圖片		11
	9.1	插入單	且一圖片	11
	9.2	插入多	5 張圖片	11

十	`	表格	13
	10.1	一般表格	13
	10.2	自動折行表格	13
參	考文鬳	犬	14
附領	錄 A	裝置列表	15
附領	錄 B	Solutions	16
	B.1	The solution	16
附領	錄 C	程式碼	17
	C.1	C	17
	C.2	Matlab	17
	C.3	IDL	17

圖目錄

		頁次
9.1	short caption	11
9.2	caption, 使用 (b) 取得子圖 (Debian) 編號	12

表目錄

		頁次
10.1	Solution	13
A.1	裝置列表	15
B.1	The solution	16

使用符號與定義

這裡示範用表格做符號與定義列表。你也可以利用套件 "nomencl"(簡易) 或 "glossaries"(強大) 完成,詳細説明見教學 (v1.8+)。

符號與定義

VIM :用 vim 的是神

Emacs : 神在用的編輯器

CTAN : Comprehensive TeX Archive Network, ctan.org

一、 實驗背景與動機

1.1 古典通訊展頻

1.2 量子通訊展頻

(可以複製 chapter_template.tex 新增子檔或是 chapter_template_demo.tex 複製表格及插圖 LATEX code 喔!)

既然你誠心誠意的發問了,我們就大發慈悲的告訴你。

二、 基本原理介紹

2.1 展頻技術

展頻技術 (spread spectrum technology) 是一種可將原訊號的頻譜打 散分佈到比原始頻寬更寬的技術。在我們的實驗上,是將一窄頻雷射 (narrow-band laser) 的頻寬從約 10 MHz 展至 10 GHz, 其作法為,以 PRBS 產生的高頻隨機訊號,使用光電調製器對入射光進行相位調製,此在時域上的操作,經傅立葉轉換後等效於增加其他不同頻率成分,以達到展寬頻率的效果。

2.2 相位調製

2.2.1 數學形式

此小節介紹相位調製的數學形式。設入射光電調製器的雷射波函數為 $E_0(t)$,調製函數 (modulation function) 為 M(t),經調製後的波函數 $E_m(t)$ 可表示成:

$$E_m(t) = E_0(t)e^{iM(t)}$$
 (2.1)

若對此式做傅立葉轉換,根據 convolution theorem,可得:

$$\mathscr{F}\{E_0(t)e^{iM(t)}\} = \tilde{E}_0(\omega) * \mathscr{F}\{e^{iM(t)}\}$$
(2.2)

 $\tilde{E}_0(\omega)$ 為入射光之頻譜,所以在數學分析上,我們可以把入射光頻譜與相位調製的部分分開處理,都計算好後再做摺積即可得到調製後的頻譜。

2.2.2 單頻波

若入射光的頻譜為中心頻率在 ν_0 的勞倫茲分佈 (lorenz distribution),調製函數為頻率 ν_m 的單頻波,意即輸入的電訊號強度隨時間的函數可表示為 $\phi_0 sin(2\pi\nu_m\omega t)$,則可將 (2.2) 改寫為:

$$\mathscr{F}\{E_0(t)e^{i\phi_0\sin(2\pi\nu_m\omega t)}\} = \tilde{E}_0(\omega) * \mathscr{F}\{e^{i\phi_0\sin(2\pi\nu_m\omega t)}\}$$
 (2.3)

其中 $\tilde{E}_0(\omega)$ 為勞倫茲分佈,另一項傅立葉轉換的結果為第一類貝索函數 (Bessel function of the first kind):

$$\mathscr{F}\left\{e^{i\phi_0 \sin(2\pi\nu_m \omega t)}\right\} = J_n(\phi_0) \tag{2.4}$$

或在時域上看,將調製項做傅立葉級數展開:

$$e^{i\phi_0 \sin(2\pi\nu_m \omega t)} = \sum_{n=-\infty}^{\infty} J_n(\phi_0) e^{i2\pi n\nu_m t}$$
(2.5)

可從上式看出,調製項的頻譜是由頻率為 $n\nu_m$ 的狄拉克函數 (Dirac function) 組成, $n=0,\pm1,\pm2,...$,強度分佈為 $J_n(\phi_0)$ 。

以 $\phi_0 = \pi$ 為例,從 (2.3) 可知,將入射光與調製項的頻譜做摺積可得調製後的結果,如下圖:

(單頻波調製圖)

三、 理論模擬

3.1 展頻及壓縮

從上一章單頻波的例子可看出,相位調製可將原先頻率集中於 ν_0 的 光,分散至 $\nu_0 \pm \nu_m, \nu_0 \pm 2\nu_m, \dots$ 。若調製函數改為時間寬度為 ΔT 的隨機方波 PRBS(t) (如圖),則可將將 (2.2) 的右式寫成:

$$\tilde{E}_0(\omega) * \mathscr{F} \{ e^{iPRBS(t)} \}$$
 (3.1)

經計算,展寬後的頻譜如下:

(展頻圖)

其包絡線接近 sinc 的平方,展開的寬度為 $\pm \frac{1}{\Delta T}$,在我們實驗中使用的 隨機訊號的產生率為 $10~{\rm Gb/s}$,單一比特的時間寬度為 $100~{\rm ps}$,相當於 能將頻譜從數 ${\rm MHz}$ 展至 $10~{\rm GHz}$ 寬。

經展頻後的訊號,可以降低環境的影響,避免光子被特定原子團吸收,但若想還原光子初始相位的資訊,則需要一個反向的操作,讓光子再經過第二台相位調製器,輸入的電訊號為與 PRBS(t) 互補的訊號 $\overline{PRBS}(t)$,這兩個訊號要滿足以下關係:

$$PRBS(t) \times \overline{PRBS}(t) = 1$$
 (3.2)

若光子在兩台相位調製器行經的時間間距為 Δt_p ,兩個電訊號抵達的時間差為 Δt_{RF} ,當 $\Delta t_p = \Delta t_{RF}$ 時,理論上可將展頻後的訊號壓縮回原本

的樣子,但若 $\Delta t_p > \Delta t_{RF}$,則無法完全還原頻譜,如下圖:

3.2 鉫原子氣體吸收

吸收譜都卜勒吸收區部分吸收還原變小

四、實驗方法與架設

- 4.1 儀器介紹
- 4.1.1 隨機訊號產生器
- 4.1.2 電光調製器
- 4.1.3 Fabry-Perot Interferometor
- 4.2 光源製備
- 4.3 光路架設
- 4.3.1 古典光量測
- 4.3.2 量子光量測

為了防止世界被破壞 ~ 為了守護世界的和平 ~

五、 實驗結果與討論

- 5.1 隨機訊號
- 5.2 古典光量測
- 5.2.1 展頻與壓縮後
- 5.2.2 鉫原子吸收譜
- 5.3 量子光量測
- 5.3.1 G2

可愛又迷人的反派角色

武藏!

小次郎!

我們是穿梭在銀河中的火箭隊 白洞、白色的明天正等著我們

六、 總結

就是這樣,喵!

七、 章名(章節示例)

章內容內容內容內容內容內容內容內容內容內容內容內容內容

7.1 節名

節內容內容內容內容內容內容內容內容內容內容內容內容

7.1.1 小節名

内容内容内容 内容内容内容

7.1.1.1 小小節

内容内容内容 内容内容内容

7.1.1.1.1 **段** 內容內容內容 內容內容內容

小段 内容内容内容 内容内容内容

八、 文字

第一行。仍是第一行。 第二行。

九、 圖片

9.1 插入單一圖片

圖 9.1: caption

9.2 插入多張圖片

圖 9.2: caption, 使用 (b)取得子圖 (Debian) 編號

十、 表格

10.1 一般表格

表 10.1: Solution

Component	Concentration(mM)
NaCl	118.0

10.2 自動折行表格

short	short short
long	long long long long long long long long

參考文獻

[1] (). Sppmg/TW_thesis_template, GitHub, [Online]. Available: https://github.com/sppmg/TW_Thesis_Template (visited on 10/23/2016).

附錄 A 裝置列表

表 A.1: 裝置列表

裝置	型號	説明
Linux	Debian 9	世界好用的作業系統
Windows	10	防止人腦老化的工具

附錄 B Solutions

B.1 The solution

表 B.1: The solution

Component	Concentration(mM)
NaCl	1.0
$CaCl_2$	2.0
NaCl	1.0
$CaCl_2$	2.0

附錄 C 程式碼

C.1 C

2 main()

3 {

4 5 }

Code C.1: ./codes/hello_world_c.c 1 #include <stdio.h> printf("hello, world\n");

C.2 Matlab

```
Code C.2: ./codes/hello_world_matlab.m
fprintf('hello, world\n');
```

C.3 IDL

```
Code C.3: ./codes/hello_world_idl.pro
1 print, "hello, world"
2
3 end
```