#### Lecture 9b: Bayesian Networks

CSCI 360 Introduction to Artificial Intelligence USC

## Here is where we are...



|    | 3/1  |      | Project 2 Out                      |                         |
|----|------|------|------------------------------------|-------------------------|
| 9  | 3/4  | 3/5  | Quantifying Uncertainty            | [Ch 13.1-13.6]          |
|    | 3/6  | 3/7  | Bayesian Networks                  | [Ch 14.1-14.2]          |
| 10 | 3/11 | 3/12 | (spring break, no class)           |                         |
|    | 3/13 | 3/14 | (spring break, no class)           |                         |
| 11 | 3/18 | 3/19 | Inference in Bayesian Networks     | [Ch 14.3-14.4]          |
|    | 3/20 | 3/21 | Decision Theory                    | [Ch 16.1-16.3 and 16.5] |
|    | 3/23 |      | Project 2 Due                      |                         |
| 12 | 3/25 | 3/26 | Advanced topics (Chao traveling to | NSF)                    |
|    | 3/27 | 3/28 | Advanced topics (Chao traveling to |                         |
|    | 3/29 |      | Homework 2 Out                     |                         |
| 13 | 4/1  | 4/2  | Markov Decision Processes          | [Ch 17.1-17.2]          |
|    | 4/3  | 4/4  | Decision Tree Learning             | [Ch 18.1-18.3]          |
|    | 4/5  |      | Homework 2 Due                     |                         |
|    | 4/5  |      | Project 3 Out                      |                         |
| 14 | 4/8  | 4/9  | Perceptron Learning                | [Ch 18.7.1-18.7.2]      |
|    | 4/10 | 4/11 | Neural Network Learning            | [Ch 18.7.3-18.7.4]      |
| 15 | 4/15 | 4/16 | Statistical Learning               | [Ch 20.2.1-20.2.2]      |
|    | 4/17 | 4/18 | Reinforcement Learning             | [Ch 21.1-21.2]          |
| 16 | 4/22 | 4/23 | Artificial Intelligence Ethics     |                         |
|    | 4/24 | 4/25 | Wrap-Up and Final Review           |                         |
|    | 4/26 |      | Project 3 Due                      |                         |
|    | 5/3  | 5/2  | Final Exam (2pm-4pm)               |                         |

#### **Outline**

- What is Al?
- Problem-solving agent (search)
- Knowledge-based agent (logical reasoning)
- Probabilistic reasoning
  - Quantifying Uncertainty
  - Bayesian Networks
  - Inference in Bayesian Networks
  - Decision Theory
  - Markov Decision Processes
- Machine learning

#### What we have learned so far...

- Early AI researchers largely rejected using probability in their systems
  - "People don't think that way…"
- However, neither problem-solving nor logical reasoning agents tolerate approximation well...
  - Need probabilistic modeling/reasoning
    - Represent KB as relationships among random variables
    - KB can be learned from data
    - Given the KB, make inference about variables of interest
  - Example applications
    - Medical diagnosis: symptoms and diseases as random variables
    - Business decision making, e.g., predicting customer's behavior
    - Bio-informatics, e.g., gene expression levels as random variables
    - Computer science: vision, speech recognition, spam filtering, ...

### Recap: Making decision

#### Rational decision depends on

- (1) The relative importance of various goals and
- (2) likelihood that (and degree to which) they will be reached

**Decision theory** = Utility theory + Probability theory

Choose the action that yields the <u>highest expected utility</u>, averaged over all the possible outcomes of the action

#### Recap: Probability axioms

• A numerical probability  $P(\omega)$  for each possible world

$$0 \le P(\omega) \le 1$$
 for every  $\omega$ 

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

$$P(\neg a) = 1 - P(a)$$



$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$



### Recap: Conditional (or posterior) probability

For any propositions a and b, we have

$$P(a \mid b) = \frac{P(a \land b)}{P(b)} \quad \text{whenever } P(b) > 0.$$





### Recap: Probability distribution

Probabilities of all possible values of a random variable

$$P(Weather = sunny) = 0.6$$
  
 $P(Weather = rain) = 0.1$   
 $P(Weather = cloudy) = 0.29$   
 $P(Weather = snow) = 0.01$ ,

In a vector format

$$P(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$$

Other examples







https://brohrer.github.io

## Recap: Joint probability distribution

Probabilities of all possible values of multiple variables



## Recap: Marginal probability

 Extracting the distribution over a subset of variables from the full joint distribution

|               | toot  | hache        | $\neg toothache$ |              |  |
|---------------|-------|--------------|------------------|--------------|--|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |  |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |  |

Example

$$P(cavity) =$$

### Recap: Marginal probability

 Extracting the distribution over a subset of variables from the full joint distribution

|               | toot  | hache        | $\neg toothache$ |              |  |
|---------------|-------|--------------|------------------|--------------|--|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |  |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |  |

#### Example

$$P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

## Recap: Normalization

The probability of cavity, or no cavity, given toothache

|               | toot  | hache        | $\neg toothache$ |              |  |  |
|---------------|-------|--------------|------------------|--------------|--|--|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |  |  |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |  |  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |  |  |

#### Example

$$P(cavity \mid toothache) =$$

$$P(\neg cavity \mid toothache) =$$

Sum of the two is always 1.0

#### Recap: Normalization

The probability of cavity, or no cavity, given toothache

|               | toot  | hache        | $\neg toothache$ |              |  |
|---------------|-------|--------------|------------------|--------------|--|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |  |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |  |

No need to compute

P (toothache)

#### Example

 $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$   $= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$ 

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

#### Recap: Normalization

#### The probability of cavity, or no cavity, given toothache

|               | toot  | hache        | $\neg toothache$ |              |  |
|---------------|-------|--------------|------------------|--------------|--|
|               | catch | $\neg catch$ | catch            | $\neg catch$ |  |
| cavity        | 0.108 | 0.012        | 0.072            | 0.008        |  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144            | 0.576        |  |

#### Example

$$\mathbf{P}(Cavity \mid toothache) = \alpha \mathbf{P}(Cavity, toothache)$$

$$=\alpha \langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle \ .$$
 Assume that 
$$\alpha = 1/(0.12 + 0.08)$$
 
$$= 1/0.2$$
 
$$= 5$$

## Recap: Independence to reduce table size

Consider P(Toothache, Catch, Cavity, Weather), which has
 32 entries in the full joint distribution table

|               | tool  | thache       | ¬toot | hache  | toot  | toothache |       | ¬toothache |       | toothache    |       | hache        | toothache |              | ¬toothache |        |
|---------------|-------|--------------|-------|--------|-------|-----------|-------|------------|-------|--------------|-------|--------------|-----------|--------------|------------|--------|
|               | catch | $\neg catch$ | catch | ¬catch | catch | ¬catch    | catch | ¬catch     | catch | $\neg catch$ | catch | $\neg catch$ | catch     | $\neg catch$ | catch      | ¬catch |
| cavity        | 0.108 | 0.012        | 0.072 | 0.008  | 0.108 | 0.012     | 0.072 | 0.008      | 0.108 | 0.012        | 0.072 | 0.008        | 0.108     | 0.012        | 0.072      | 0.008  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144 | 0.576  | 0.016 | 0.064     | 0.144 | 0.576      | 0.016 | 0.064        | 0.144 | 0.576        | 0.016     | 0.064        | 0.144      | 0.576  |

Applying the product rule

P(toothache, catch, cavity, cloudy)

- = P(cloudy | toothache, catch, cavity)P(toothache, catch, cavity)
- But weather is not influenced by dentistry!

$$P(cloudy | toothache, catch, cavity) = P(cloudy)$$

 $P(toothache, catch, cavity, \frac{cloudy}{cloudy}) = P(\frac{cloudy}{cloudy})P(toothache, catch, cavity)$ 

## Recap: Independence to reduce table size

Consider P(Toothache, Catch, Cavity, Weather), which has
 32 entries in the full joint distribution table

|               | tooi  | thache       | ¬toot | hache        | toot  | toothache    |       | ¬toothache   |       | toothache    |       | hache  | toothache |              | ¬toothache |        |
|---------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------|-----------|--------------|------------|--------|
|               | catch | $\neg catch$ | catch | ¬catch | catch     | $\neg catch$ | catch      | ¬catch |
| cavity        | 0.108 | 0.012        | 0.072 | 0.008        | 0.108 | 0.012        | 0.072 | 0.008        | 0.108 | 0.012        | 0.072 | 0.008  | 0.108     | 0.012        | 0.072      | 0.008  |
| $\neg cavity$ | 0.016 | 0.064        | 0.144 | 0.576        | 0.016 | 0.064        | 0.144 | 0.576        | 0.016 | 0.064        | 0.144 | 0.576  | 0.016     | 0.064        | 0.144      | 0.576  |

 The 32-element table can be reduced to a 8-element table and a 4-element table

|         | toot  | hache        | $\neg toothache$ |              |  |
|---------|-------|--------------|------------------|--------------|--|
|         | catch | $\neg catch$ | catch            | $\neg catch$ |  |
| cavity  | 0.108 | 0.012        | 0.072            | 0.008        |  |
| ¬cavity | 0.016 | 0.064        | 0.144            | 0.576        |  |

#### Recap: Independence to reduce table size

#### Leveraging the (absolute) independence



Weather and dentistry are independent



Coin flips are independent

### Recap: Conditional independence

 Variables X and Y are conditional independent, given a third variable Z

$$\mathbf{P}(X,Y \mid Z) = \mathbf{P}(X \mid Z)\mathbf{P}(Y \mid Z)$$

Alternatively, we have

$$\mathbf{P}(X \mid Y, Z) = \mathbf{P}(X \mid Z)$$

$$\mathbf{P}(Y \mid X, Z) = \mathbf{P}(Y \mid Z)$$

For X, variable Y doesn't provide any additional information, given Z

For Y, variable X doesn't provide any additional information, given Z

#### Recap: Conditional independence to reduce table size

• For n effects that are conditionally independent given the cause, the **full joint distribution** table size grows as O(n) instead of  $O(2^n)$ 

$$\mathbf{P}(Cause, \mathit{Effect}_1, \dots, \mathit{Effect}_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(\mathit{Effect}_i \mid Cause)$$

## Recap: Bayes' rule

Derive Bayes' rule from the product rule of conditional probability

$$P(a \wedge b) =$$

$$P(a \wedge b) =$$

• Equating the right-hand sides and dividing by P(a)

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$

## Recap: Bayes' rule

Derive Bayes' rule from the product rule of conditional probability

$$P(a \wedge b) = P(b \mid a)P(a)$$
$$P(a \wedge b) = P(a \mid b)P(b)$$

• Equating the right-hand sides and dividing by P(a)

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$

This equation underlies most modern AI systems for probabilistic inference...



## Recap: Quiz 4 solution

- Assume that the doctor knows some unconditional facts:
  - Prior probability that a patient has a disease P(d) = 0.01
  - Probability of test positive given no diseasé
  - Probability of test positive given disease

- $P(tp / \neg d) = 0.096$
- Now, a patient has test positive; what is the probability that this particular patient has the disease?

```
P(d|tp) = P(tp/d) P(d) / P(tp)
= P(tp/d) P(d) / (P(tp/d) P(d) + P(tp/\neg d) P(\neg d))
= 0.8*0.01 / (0.8*0.01 + 0.096*0.99)
= 0.008 / (0.008+0.09504)
= 0.0776
```

#### **Outline**

- Representing knowledge in Bayesian networks
- Semantics of Bayesian networks
- Efficient representation of conditional distributions
- Exact inference in Bayesian networks

# Why Bayesian networks?

- Full joint distribution can be used to answer any query about the world
  - But table size is exponential in the number of variables
- Independence and conditional independence relations are important in simplifying the table
  - But they are unnatural and tedious to specify
- Bayesian networks is a data structure to represent both joint distributions and the dependencies among variables

## Example

#### Medical diagnosis

- S1, S2, ...: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
- D1, D2, ...: diseases (e.g. flu, kidney stone, ...)

| S1    | <b>S2</b> | <b>S3</b> | ••• | <b>D1</b> | <b>D2</b> | D3    | ••• | P(S1, S2, S3,, D1, D2, D3,) |
|-------|-----------|-----------|-----|-----------|-----------|-------|-----|-----------------------------|
| true  | true      | true      |     | true      | true      | true  |     | 0.0000001                   |
|       |           |           |     |           |           |       |     |                             |
| false | false     | false     |     | false     | false     | false |     | 0.0000002                   |

# Example (cont'd)

- Medical diagnosis
  - S1, S2, ...: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
  - D1, D2, ...: diseases (e.g. flu, kidney stone, ...)

| <b>S1</b> | <b>S2</b> | <b>S3</b> | <br>D1    | <b>D2</b> | <b>D3</b> | <br>P(S1, S2, S3,, D1, D2, D3,) |
|-----------|-----------|-----------|-----------|-----------|-----------|---------------------------------|
| true      | true      | true      | <br>true  | true      | true      | <br>0.0000001                   |
|           |           |           | <br>      |           |           |                                 |
| false     | false     | false     | <br>false | false     | false     | <br>0.0000002                   |

- When the doctor observes presence of S1 and absence of S3, calculate
  - $P(D1 \mid S1, \neg S3) = P(D1, S1, \neg S3) / P(S1, \neg S3) = ...$
  - $P(D2 | S1, \neg S3) = ...$
  - $P(D3 | S1, \neg S3) = ...$
  - **–** ...

# Example (cont'd)

- Medical diagnosis
  - S1, S2, ...: symptoms (e.g. high temperature) or causes of diseases (e.g. age)
  - D1, D2, ...: diseases (e.g. flu, kidney stone, ...)

| S1    | <b>S2</b> | <b>S3</b> | ••• | D1    | <b>D2</b> | D3    | ••• | P(S1, S2, S3,, D1, D2, D3,) |
|-------|-----------|-----------|-----|-------|-----------|-------|-----|-----------------------------|
| true  | true      | true      |     | true  | true      | true  |     | 0.0000001                   |
|       |           |           |     |       |           |       |     |                             |
| false | false     | false     |     | false | false     | false |     | 0.0000002                   |

- We need to acquire too many probabilities from the expert.
- Many of the probabilities are very close to zero and thus hard to specify by experts.

# Bayesian network

- A directed acyclic graph (DAG) where
  - Each node corresponds to a random variable,
  - Each edge from node X to node Y represents a direct influence of X on Y,
  - Each node  $X_i$  has a conditional probability distribution  $P(X_i | Parents(X_i))$  that quantifies the effect of the parents on the node.



## Bayesian network (another example)

Both the topology and the conditional probability tables (CPTs)



## Bayesian network (another example)

Both the topology and the conditional probability tables (CPTs)



## Bayesian network (another example)

Both the topology and the conditional probability tables (CPTs)



## Bayesian networks for Boolean functions

Can Bayesian networks represent all Boolean functions? – Yes.
 f(Feature\_1, ..., Feature\_n) = some propositional sentence





# Compactness and node ordering

 There are multiple, equivalent, Bayesian networks, some of which are more compact than the others



Compactness depend on the node ordering

# Compactness and node ordering

 There are multiple, equivalent, Bayesian networks, some of which are more compact than the others



Compactness depend on the node ordering

# Compactness and node ordering

- Distinction between causal model and diagnostic model
  - If we try to build a diagnostic model, with links from symptoms to causes, we have to specify additional dependencies between otherwise independent causes
  - Example: from MaryCalls to Alarm, or from Alarm to Burglary



#### Solution: stick to a causal model

- (1) Fewer dependences
- (2) Easier to come up with probability

# Let's go through an example

- Note: each way of factoring joint distribution corresponds to a different Bayesian network
- Example: 6 ways of factoring P(A, B, C), including
  - $P(A, B, C) = P(C \mid B, A) P(B, A) = P(C \mid B, A) P(B \mid A) P(A)$



(First picking A, then picking B, and finally picking C, each time conditioning the picked random variable on all random variables picked earlier)



 $- P(A, B, C) = P(A \mid B, C) P(B, C) = P(A \mid B, C) P(C \mid B) P(B)$ 

(First picking B, then picking C and finally picking A, each time conditioning the picked random variable on all random variables picked earlier)

## Bayesian network is not unique

- The network topology determines how many probabilities need to be specified for the conditional probability tables.
  - Let's choose  $P(A, B, C) = P(C \mid B, A) P(B \mid A) P(A)$ .

| A     | В     | C     | <b>P</b> ( <b>A</b> , <b>B</b> , <b>C</b> ) |
|-------|-------|-------|---------------------------------------------|
| true  | true  | true  | 0.054                                       |
| true  | true  | false | 0.126                                       |
| true  | false | true  | 0.002                                       |
| true  | false | false | 0.018                                       |
| false | true  | true  | 0.432                                       |
| false | true  | false | 0.288                                       |
| false | false | true  | 0.032                                       |
| false | false | false | 0.048                                       |



## Independence detected

- Here:  $P(B | A) = P(B | \neg A)$ .
- Thus, A and B are independent
- Detailed explanation

```
- P(B) = P(B \land A) + P(B \land \neg A)
= P(B \mid A) P(A) + P(B \mid \neg A) P(\neg A)
= P(B \mid A) P(A) + P(B \mid A) P(\neg A)
= P(B \mid A) (P(A) + P(\neg A))
= P(B \mid A)
```

# Simplifying Bayesian network

Independence allows us to simplify Bayesian network



Need to specify 7 probabilities for all conditional probability tables



Need to specify only 6 probabilities for all conditional probability tables

- Two different, but equivalent views
  - Representation of the joint probability distribution
  - Encoding of a collection of conditional independence statements

- How to construct networks
- How to design inference procedures

• Each entry  $P(x_1,...,x_n)$  in the full joint distribution, which is the abbreviation of  $P(X_1=x_1 \land ... \land X_n=x_n)$ , is the product of the elements of the CPTs defined as follows:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$



• Each entry  $P(x_1,...,x_n)$  in the full joint distribution, which is the abbreviation of  $P(X_1=x_1 \land ... \land X_n=x_n)$ , is the product of the elements of the CPTs defined as follows:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



• Each entry  $P(x_1,...,x_n)$  in the full joint distribution, which is the abbreviation of  $P(X_1=x_1 \land ... \land X_n=x_n)$ , is the product of the elements of the CPTs defined as follows:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$



• Each entry  $P(x_1,...,x_n)$  in the full joint distribution, which is the abbreviation of  $P(X_1=x_1 \land ... \land X_n=x_n)$  is the product of the elements of the CPTs defined as follows:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$



# How to construct Bayesian networks

 Starting from the full joint distribution, first, we rewrite the entries in terms of conditional probability

$$P(x_1,\ldots,x_n) = P(x_n | x_{n-1},\ldots,x_1)P(x_{n-1},\ldots,x_1)$$

Then, we repeat the process

$$P(x_1, \dots, x_n) = P(x_n \mid x_{n-1}, \dots, x_1) P(x_{n-1} \mid x_{n-2}, \dots, x_1) \cdots P(x_2 \mid x_1) P(x_1)$$
$$= \prod_{i=1}^n P(x_i \mid x_{i-1}, \dots, x_1) .$$

Now, compare to Bayesian network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$

Each node must be **conditionally independent** of its other predecessors in the node ordering, given its parents

## How to construct Bayesian networks (cont'd)

 Starting from the full joint distribution, first, we rewrite the entries in terms of conditional probability

$$P(x_1, \dots, x_n) = P(x_n \mid x_{n-1}, \dots, x_1) P(x_{n-1} \mid x_{n-2}, \dots, x_1) \cdots P(x_2 \mid x_1) P(x_1)$$
$$= \prod_{i=1}^n P(x_i \mid x_{i-1}, \dots, x_1) .$$

Now, compare to Bayesian network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Each node must be conditionally independent of its other predecessors in the node ordering, given its parents

$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$

- For i = 1 to n do:
  - Choose, from  $X_1, ..., X_{i-1}$ , a minimum set of parents for  $X_i$ , to satisfy the equation
  - Insert edges from the parents to  $X_i$
  - CTPs: write down the conditional probability table,  $P(X_i \mid Parents(X_i))$

## How to construct Bayesian networks (cont'd)



$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$

- For i = 1 to n do:
  - Choose, from  $X_1, ..., X_{i-1}$ , a minimum set of parents for  $X_i$ , to satisfy the equation
  - Insert edges from the parents to  $X_i$
  - CTPs: write down the conditional probability table,  $P(X_i \mid Parents(X_i))$

- Two different, but equivalent views
  - Representation of the joint probability distribution
  - Encoding of a collection of conditional independence statements

- How to construct Bayesian networks
  - a node is conditionally independent of its other predecessors, given its parents
- X is conditionally independent of its non-descendants, given its parents



- Two different, but equivalent views
  - Representation of the joint probability distribution
  - Encoding of a collection of conditional independence statements

- How to construct Bayesian networks
  - a node is conditionally independent of its other predecessors, given its parents
- X is conditionally independent of its non-descendants, given its parents



X may even be conditionally independent of some of these descendants

- Two different, but equivalent views
  - Representation of the joint probability distribution
  - Encoding of a collection of conditional independence statements

- How to construct Bayesian networks
  - a node is conditionally independent of its other predeces

Markov blanket of X includes

- (1) its parents
- (2) its children,
- (3) its children's parents

X is conditionally independent of all other nodes, given Markov blanket





# **Summary**

- Bayesian network is a well-developed representation for uncertain knowledge
  - It is often exponentially smaller than full joint distribution
  - It plays similar role as propositional logic for definite knowledge
- Bayesian network is a DAG where
  - a node denotes a random variable, together with local conditional distribution of that variable, given its parents
  - It's a concise representation of conditional independence
  - It represents full joint distribution, as product of corresponding entries in the local conditional distributions