La³⁺을 첨가한 나노TiO_{2-x} 빚촉매의 보임빚응답특성

김명학, 김경일

빛촉매에 희토류금속이온을 첨가하면 촉매의 금지띠너비를 감소시켜 보임빛촉매활성을 높일수 있다.[1]

우리는 La^{3+} 을 첨가한 TiO_2 나노립자를 처리하여 보임빛촉매활성을 가진 La^{3+} 첨가형나노 TiO_{2-x} 빛촉매를 제조하고 그것의 보임빛촉매특성을 검토하였다.

실 험 방 법

기구로는 항온자력교반기(《R-90-2》), 원심분리기(《LD4-2A》), 초음파분산기(《KQ-5200B》), 항온건조로(《LP-306》), 진공소결로(《ZDF-5227》), 빛촉매실험장치(자체제작, 40W 광원을 리용), 분말X선회절분석기(《Rigaku Miniflex》), 주사전자현미경(《JSM-6610A/EDX》), 자외가시선분광광도계(《UV-2201》)를, 시약으로는 티탄산테트라부틸에스테르(Ti(OC₄H₉)₄, 순), 질산란탄(La(NO₃)₃·6H₂O, 분석순), 무수에라놀(C₂H₅OH, 순), 붕수소화나트리움(NaBH₄, 순), 메틸렌청(MB)을 리용하였다.

 La^{3+} 를 첨가한 TiO_2 나노립자($La^{3+}-TiO_2$)의 제조방법은 다음과 같다.

La³⁺-TiO₂나노립자는 졸-겔법[2]으로 합성하였다. La³⁺을 첨가한 TiO_{2-x}(La³⁺-TiO_{2-x})나노빛촉매의 제조방법은 다음과 같다.

알루미나도가니에서 $La^{3+}-TiO_2$ 4g과 1.5g의 $NaBH_4$ 을 30min간 충분히 혼합한 다음 진공소결로에 넣는다. 진공소결로를 질소기체로 충분히 치환하고 5° C/min의 속도로 600° C 까지 승온시키고 1h동안 유지하였다. 다음 방온도까지 자연랭각시키고 생성물을 100mL의 증류수에 풀어 20min동안 초음파분산시키고 24h동안 숙성시켰다. 얻어진 분말을 원심분리하고 에타놀과 증류수로 여러번 세척한 다음 60° C의 항온건조로에서 건조시켰다. 분 말X선회절분석, 주사전자현미경분석을 진행하여 얻어진 생성물에 대한 구조와 조성을 확인하였다. 빛흡수방정식[3] $\alpha hv = C(hv - E_o)^n$ 을 리용하여 금지띠너비를 결정하였다.

$$F(R) = \frac{(1-R)^2}{2R}$$
, $(F(R)hv)^{1/2} = k(hv - E_g)$

웃식을 리용하여 hv에 따르는 $(F(R)hv)^{1/2}$ 그라프의 선형부분의 연장선이 가로축과 사귀는 점으로부터 금지띠너비 E_g 를 계산하였다.

보임빛조건에서의 빛촉매활성을 평가하기 위하여 선행연구[4]의 방법대로 MB에 대한 빛촉매분해실험을 진행하였다.

실험결과 및 고찰

빛촉매시료의 특성고찰 얻어진 빛촉매시료들의 X선회절분석(XRD)결과는 그림 1과 같다. 그림 1로부터 $La^{3+}-TiO_2$ 과 $La^{3+}-TiO_{2-x}$ 가 모두 예추석형 TiO_2 의 결정구조를 가진다는 것을 알수 있다.

쉐리공식[$d=0.89\lambda(B\cdot\cos\theta)$]에 의하여 계산한 미세결정립자직경(1차립자직경)은 표 1파 같다. 표 1에서 보는바와 같이 La³⁺-TiO_{2-r}의 미세결 정립자직경은 La³⁺-TiO₂에서와 차이가 없는데 이로 부터 600℃에서의 처리과정에 결정립자의 성장이 일

생성물 La^{3+} - TiO_2 12 어나지 않았다는것을 알수 있다. La^{3+} - TiO_{2-x} 12

미세결정립자직경/nm 생성물의 주사전자현미경(SEM)분석 생성물의 주사 전자현미경(SEM)분석결과는 그림 2와 같다.

표 1. 빛촉매시료들의 미세결정립자직경

L) 그림 2. 생성물의 SEM분석결과 \neg) La³⁺−TiO₂, \vdash) La³⁺−TiO_{2-x}

그림 2로부터 시료들의 립자크기는 50~70nm에 있으며 구모양이라는것을 알수 있다. 나노빛촉매의 원소조성분석 생성물의 에네르기분산스펙트르X선(EDX)분석결과 원소조 성은 표 2와 같다.

표 2. 빛촉매시료들의 원소조성(질량%)

시료		원소	
	Ti	О	La
La^{3+} $ TiO_2$	57.61	41.93	0.46
La^{3+} $ TiO_{2-x}$	57.71	41.85	0.44

표 2에서 보는바와 같이 나노La³⁺-TiO_{2-x}속에 혼입된 란탄의 량은 0.44질량%이라는 것을 알수 있다.

그림 3. 나노La³⁺-TiO₂(1)과 나노 La³⁺-TiO_{2-x}(2)의 금지띠너비결정

금지[[[]남비결정 빛흡수방정식으로 결정한 나노 La³⁺-TiO₂과 나노La³⁺-TiO_{2-r}의 금지띠너비는 각각 3.0, 2.8eV이다.(그림 3)

이와 같이 나노La³⁺-TiO_{2-x}은 나노La³⁺-TiO₂보 다 금지띠너비가 좁은것으로 하여 좋은 보임빛응답 특성을 나타낸다.

나노빛촉매시료들의 메틸렌청분해특성고찰 빛촉매 들의 메틸렌청분해결과는 표 3과 같다.

표 3에서 보는바와 같이 메틸렌청에 대한 보임 빚촉매분해효과는 La³+−TiO₂-x빚촉매가 제일 좋으 며 15h동안에 메틸렌청의 분해률은 95%정도이다.

시료 -	시간/h						
	0	5	10	15	20		
TiO ₂	100	85	70	65	64		
$La^{3+}-TiO_2$	100	77	57	40	39		
La^{3+} $ TiO_{2-x}$	100	35	20	5	5		

표 3. 빛촉매들이 메틸렌청부해륰(질량%)

맺 는 말

졸-겔법으로 나노La³+−TiO₂을 합성하고 NaBH₄으로 환원시키는 방법으로 나노La³+− ${
m TiO}_{2-x}$ 빛촉매를 제조하였을 때 그것의 금지띠너비는 $2.8{
m eV}$ 였으며 보임빛조건에서 $15{
m hF}$ 안에 메틸렌청의 분해률은 95%정도이다.

참 고 문 헌

- [1] W. Choi et al.; J. Phys. Chem., C 98, 13669, 1994.
- [2] Xi Lan et al.; Catalysis Today, 224, 163, 2014.
- [3] M. S. Azami et al.; Sains Malaysiana, 46, 8, 1310, 2017.
- [4] 刘增超 等; 工业用水, 45, 1, 56, 2014.

주체109(2020)년 1월 5일 원고접수

Visible Light Response Characteristics of La³⁺ Doped Nano TiO_{2-x} Photocatalyst

Kim Myong Hak, Kim Kyong Il

We prepared La³⁺-TiO₂ nano particles by doping lanthanum ion into TiO₂ with sol-gel method. Nano La³⁺-TiO_{2-x} photocatalyst were prepared by reducing nano La³⁺-TiO₂ using NaBH₄.

Keywords: La^{3+} , TiO_{2-x} , visible light, nano, photocatalyst