Лабораторная работа №1 "Параметры объёмной фигуры"

<u>Цель:</u> научиться создавать линейную программу на языке Python.

Задачи:

- 1. Научиться работать в среде IDLE, набирать код и сохранять в файле, запускать программу.
- 2. Освоить ввод и форматный вывод числовых значений.
- 3. Научиться создавать программу правильной структуры (получение исходных данных, обработка, вывод результата).
- 4. Стилистически верно оформлять исходный код программы.

<u>Задание:</u> написать программу, которая по заданным числовым параметрам объёмной фигуры определит её характеристики (по варианту).

Варианты:

- 1. Шар (дан r, найти S и V).
- 2. Куб (дана длина ребра а, найти S и V, радиусы описанной и вписанной сфер).
- 3. Тетраэдр (дана длина ребра а, найти высоту h, S и V, радиусы описанной и вписанной сфер).
- 4. Октаэдр (дана длина ребра а, найти S и V, радиусы описанной и вписанной сфер).
- 5. Додекаэдр (дана длина ребра а, найти S и V, радиусы описанной и вписанной сфер)
- 6. Икосаэдр (дана длина ребра а, найти S и V, радиусы описанной и вписанной сфер).
- 7. Конус (даны R, h, найти V, S_{полн}, S_{бок}).
- 8. Усеченный конус (даны r, R, h, найти V, $S_{\text{полн}}, S_{\text{бок}}$).
- 9. Шаровой сегмент (часть шара, отсекаемая от него плоскостью) (даны R, h, найти V, $S_{\text{полн}}$, $S_{\text{бок}}$).
- 10. Шаровой сектор (конус + шаровой сегмент) (даны R, $H_{\text{конуса}}$, найти V, $S_{\text{полн}}$, $S_{\text{конуса}}$).
- 11. Шаровой слой (даны R, h_1 , h_2 , найти V, $S_{\text{полн}}$, $S_{\text{бок}}$).
- 12. Правильная четырехугольная усеченная пирамида (даны a_1 , a_2 , h, найти V, $S_{\text{полн}}$, $S_{\text{бок}}$).
- 13. Треугольная правильная призма, вписанная в цилиндр (даны параметры цилиндра R, h, найти V, S_{полн}, S_{бок}).
- 14. Пятиугольная правильная призма, вписанная в цилиндр (даны параметры цилиндра R, h, найти V, $S_{\text{полн}}$, $S_{\text{бок}}$).
- 15. Усечённый цилиндр (даны радиус цилиндра R, высота нижнего пересечения плоскости и цилиндра h_1 и высота верхнего пересечения плоскости и цилиндра h_2 , найти V и S_{60k}).

Требования к реализации программы:

- 1. Текст программы должен начинаться с комментария, в котором содержится информация об авторе (фамилия, имя, группа) и назначении программы.
- 2. Код должен быть разделён на блоки ввода, вычислений и вывода.
- 3. Текст должен быть подробно откомментирован (в комментариях указать назначение переменных и основных вычислений).
- 4. Программа должна выдавать корректные данные для любых допустимых входных данных (при этом гарантируется, что на вход подаются только числовые значения).
- При выводе числовых значений отображать 5-7 значащих цифр числа.
 Примечание: важно понимать разницу между понятиями "значащие цифры" и "цифры после запятой".
 Для вещественных чисел лучше всего подходит тип форматирования g. Другие типы форматирования, такие как f или e, следует использовать только при
- 6. При вводе данных должно выводиться приглашение, при выводе пояснение, краткие и однозначно интерпретируемые пользователем. Приглашение и пояснения должны формулироваться с заглавной буквы и обычно заканчиваются двоеточием и пробелом.

Пример хорошего приглашения к вводу:

"Введите радиус основания и высоту конуса через пробел: " \mathbf{unu}

"Введите радиус основания конуса: "

"Введите высоту конуса: "

Пример хорошего вывода:

необходимости.

"Объем конуса: 4.1867"

"Площадь боковой поверхности: 14.051"

7. Исходный код должен быть оформлен согласно стандарту PEP 8 (https://peps.python.org/pep-0008), в особенности - имена переменных, форматирование выражений, длина строк, оформление комментариев