

Física Nivel superior Prueba 3

Martes	10	de	noviembre	de	2015	(tarde))
--------	----	----	-----------	----	------	---------	---

Núr	nero	de c	onvo	cator	ia de	l alur	mno	

1 hora 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas de dos de las opciones.
- · Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [60 puntos].

Opción	Preguntas
Opción E — Astrofísica	1 – 3
Opción F — Comunicaciones	4 – 6
Opción G — Ondas electromagnéticas	7 – 11
Opción H — Relatividad	12 – 15
Opción I — Física médica	16 – 19
Opción J — Física de partículas	20 – 24

Opción E — Astrofísica

1. Esta pregunta trata sobre la determinación de la distancia a una estrella cercana.

Se toman dos fotografías del cielo nocturno, una seis meses después de la otra. Cuando se comparan las fotografías, una estrella parece haberse desplazado desde la posición A hasta la posición B, respecto a las restantes estrellas.

(a)	Resuma por qué la estrella parece haberse desplazado desde la posición A hasta la posición B.	[1]

(b) El desplazamiento angular observado de la estrella es θ y el diámetro de la órbita de la Tierra es d. La distancia de la Tierra a la estrella es D.

(i)	Dibuje un diagrama que muestre d , D y θ .	[1]

			pregunta [.]	

 (iii) Un conjunto consistente de unidades para D y θ es el formado por el parsec y el segundo de arco. Indique otro conjunto consistente de unidades para esta pareja de magnitudes. Discuta si la ley de Hubble puede utilizarse para determinar con fiabilidad la distancia de la Tierra a esa estrella. 		Explique la relación entre d , D y θ .
 (iii) Un conjunto consistente de unidades para D y θ es el formado por el parsec y el segundo de arco. Indique otro conjunto consistente de unidades para esta pareja de magnitudes. Discuta si la ley de Hubble puede utilizarse para determinar con fiabilidad la distancia 		
el segundo de arco. Indique otro conjunto consistente de unidades para esta pareja de magnitudes. Discuta si la ley de Hubble puede utilizarse para determinar con fiabilidad la distancia		
el segundo de arco. Indique otro conjunto consistente de unidades para esta pareja de magnitudes. Discuta si la ley de Hubble puede utilizarse para determinar con fiabilidad la distancia		
el segundo de arco. Indique otro conjunto consistente de unidades para esta pareja de magnitudes. Discuta si la ley de Hubble puede utilizarse para determinar con fiabilidad la distancia		
	(iii)	el segundo de arco. Indique otro conjunto consistente de unidades para esta

[2]

(Opción E: continuación)

2. Esta pregunta trata sobre el diagrama de Hertzsprung–Russell (HR) y sobre el Sol.

Se muestra un diagrama de Hertzsprung-Russell (HR).

(a) Explique por qué se utiliza la magnitud absoluta en vez de la magnitud aparente para el eje vertical de un diagrama HR.

	\sim	4 *			1 01
•	1 0	ntini	ISCION	Oncion L	pregunta 2)
ı	CUI		Jaciuii.	UDGIUII E.	Dieuuilla 21
•				- p,	P 3/

(b)	Resuma por qué la escala elegida para la temperatura en el diagrama HR no es lineal.	[2]
(c)	Se dan los siguientes datos para el Sol y para la estrella Vega.	
	Luminosidad del Sol = 3.85×10^{26} W	
	Luminosidad de Vega =1,54×10 ²⁸ W	
	Temperatura superficial del Sol = 5800 K	
	Temperatura superficial del Vega = 9600 K	
	Utilizando estos datos, determine el radio de Vega en términos de radios solares.	[3]
(d)	Resuma cómo observadores en la Tierra pueden determinar experimentalmente la temperatura de una estrella distante.	[3]

[4]

(Continuación: opción E, pregunta 2)

(e) El Sol permanecerá en la secuencia principal del diagrama HR durante aproximadamente otros cinco mil millones de años. Pasado este tiempo se transformará en una gigante roja, siguiendo el camino evolutivo mostrada en el diagrama.

(i) Resuma por qué el Sol abandonará la secuencia principal y describa los procesos nucleares que suceden cuando se transforma en una gigante roja.

(Continuación: opción E, pregunta 2)

(ii)	Describa dos cambios físicos que experimentará el Sol cuando entre en la etapa de gigante roja.						

(Opción E: continuación)

- 3. Esta pregunta trata sobre la radiación de fondo cósmico de microondas (CMB).
 - (a) Una de las suposiciones de Newton fue que el universo era estático. El pico de intensidad de la radiación de fondo cósmico de microondas (CMB) tiene una longitud de onda de 1,06 mm.

(1)	aproximadamente 3 K.	[2]
(ii)	Sugiera cómo el descubrimiento de la radiación CMB en la región de las microondas contradice la suposición de Newton de un universo estático.	[2]

(Continuación: opción E, pregunta 3)

(b) Una de las líneas del espectro del hidrógeno tiene una longitud de onda, medida en el laboratorio, de 656 nm. La longitud de onda medida para la misma línea de una galaxia lejana es de 730 nm. Suponiendo que la constante de Hubble H_0 es 69,3 km s⁻¹ Mpc⁻¹,

i)	calcule la distancia de esa galaxia a la Tierra.	[2]
ii)	discuta por qué no hay acuerdo entre las distintas mediciones de la constante de Hubble.	[1]

Fin de la opción E

Por favor, **no** escriba en esta página.

Las respuestas escritas en esta página no serán calificadas.

Opción F — Comunicaciones

4. Esta pregunta trata sobre modulación y sobre un satélite de comunicaciones.

(a)	Indi	que qué se entiende por modulación.	[1]
(b)		a llamada telefónica se trasmite como una señal de radiofrecuencia desde Europa ta un explorador en Sudamérica.	
	(i)	Resuma por qué para esta transmisión es preferible una modulación de amplitud (AM).	[2]

......

(Continuación: opción F, pregunta 4)

(ii) Una onda portadora de frecuencia 2,5 MHz se utiliza para transmitir una onda de señal de frecuencia 40 kHz. Esquematice el espectro de potencia de la onda portadora AM.

[2]

(iii) La señal de radio debe emitirse dentro de la banda de frecuencias comprendida entre 2,4 MHz y 2,8 MHz. La emisora trasmite una frecuencia máxima de señal de 40 kHz. Calcule el número de señales de radio que pueden trasmitirse dentro de la banda.

[1]

(Continuación: opción F, pregunta 4)

	por teléfono móvil debido a los problemas medioambientales. Discuta los problemas medioambientales due se derivan del uso de teléfonos móviles.	[2]
órbit	señales pueden trasmitirse utilizando satélites geoestacionarios o satélites de a polar. Discuta una ventaja da cada tipo de satélite.	[4]
Geo	estacionario:	
 Órbi	ta polar:	
Órbi	ta polar:	
 Órbi 	ta polar:	
 Órbi 	ta polar:	

Véase al dorso

(Opción F: continuación)

5. Esta pregunta trata sobre muestreo y sobre fibras ópticas.

La multiplexación por división de tiempo se utiliza para transmitir múltiples señales a lo largo de una fibra óptica.

na ventaja de la multiplexación por división de tiempo. Indique multiplexación por división de tiempo.	otra [1]

(Continuación: opción F, pregunta 5)

(b)	Se muestrea una señal de audio con una frecuencia de muestreo de 4,0 kHz. Cada muestra se convierte en un número binario de 8 bits. Introducir en la fibra cada bit de la muestra lleva 8,0 µs. Determine el número máximo de señales que pueden trasmitirse a lo largo de la fibra utilizando la multiplexación por división de tiempo.	[4]
(c)	Una fibra óptica tiene una longitud de 3.0×10^4 m y una atenuación por unidad de longitud de $0.080\mathrm{dBkm^{-1}}$. Calcule la potencia de entrada mínima de la señal, si la potencia de salida no debe caer por debajo de $2.0\mathrm{mW}$.	[3]

[2]

(Opción F: continuación)

6. Esta pregunta trata sobre un circuito amplificador.

El diagrama muestra un circuito amplificador que incluye un amplificador operacional (AO) ideal.

(a) (i) Calcule la ganancia del circuito.

(Continuación: opción F, pregunta 6)

(ii) Utilizando los ejes, esquematice la variación del voltaje de salida $V_{\rm salida}$ con el voltaje de entrada $V_{\rm entrada}$.

[3]

[3]

(Continuación: opción F, pregunta 6)

(b) A continuación, se reorganiza el circuito para que funcione como un disparador de Schmitt.

La salida del disparador de Schmitt es de saturación positiva $(+15\,\text{V})$ o de saturación negativa $(-15\,\text{V})$. Calcule el valor de entrada que hará que el valor de salida cambie de $-15\,\text{V}$ a $+15\,\text{V}$.

Fin de la opción F

Una turista espacial comienza su viaje desde la superficie de la Tierra. Al abandonar

Opción G — Ondas electromagnéticas

(a)

- **7.** Esta pregunta trata sobre algunas propiedades de la luz.
 - la Tierra, a las 12:00 del mediodía, el cielo se ve azul. Cuando una hora después llega al límite de la atmósfera, observa que el cielo es negro. Describa la razón del cambio de color del cielo durante el viaje. [3] (b) El dióxido de carbono es un gas que se encuentra de forma natural en la atmósfera. Una de las frecuencias naturales de vibración del dióxido de carbono tiene un periodo de 5×10^{-14} s. Frecuencia de la radiación infrarroja procedente del Sol =aproximadamente 300THz Frecuencia de la radiación infrarroja emitida desde la Tierra = aproximadamente 30 THz La energía radiada por el Sol es atrapada dentro del sistema formado por la Tierra y su atmósfera. Haciendo los cálculos oportunos, resuma los mecanismos que conducen a este proceso. [3]

(Opción G: continuación)

8. Esta pregunta trata sobre una lente convergente (convexa).

Anna es incapaz de leer la letra pequeña de un periódico. Para leer el texto más fácilmente, utiliza una lente convexa. Anna mira a través de la lente a una flecha situada sobre la página.

(a)	(i)	Sobre el diagrama, construya los rayos para localizar la imagen de la flecha.	
		Los puntos focales de la lente se han rotulado como F.	[3]

ii) Anna sitúa una pantalla en la posición de la imagen. Resuma por qué no verá ninguna imagen en la pantalla. [2]

(Continuación: opción G, pregunta 8)

(b)	una imagen clara	del objeto cuando la len	luminoso. Ella encuentra que se forma te se sitúa a una distancia de 20 cm de es de 5 cm. Determine la amplificación de	[3]

(Opción G: continuación)

9. Esta pregunta trata sobre la interferencia de la luz.

Luz monocromática y coherente incide sobre dos estrechas rendijas S_1 y S_2 separadas una distancia d. A una distancia D de las rendijas se coloca una pantalla. Sobre la pantalla aparece un patrón de interferencia con franjas brillantes y franjas oscuras. El máximo central está en Q.

(a)	Indique una manera de asegurarse de que la luz que incide sobre las rendijas sea coherente.	[1]
(b)	La luz que emerge de S_1 y S_2 llega a la pantalla. Explique por qué la pantalla aparece	
)	oscura en el punto P.	[2]

(Continuación: opción G, pregunta 9)

(c) Cuando se utiliza luz roja de longitud de onda $660\,\mathrm{nm}$, la primera franja en P subtiende un ángulo de $0,0045\,\mathrm{rad}$ desde el punto medio entre $\mathrm{S_1}$ y $\mathrm{S_2}$.

(i) Determine el cambio en el ángulo cuando se utilice luz azul de longitud de onda 440 nm.

[2]

 ٠.	• •	٠.	•	 ٠	٠.	 ٠	•	 	•	٠	٠	•	 	٠	 	٠	•	 ٠	٠	•	•		٠	•	•									
 								 					 		 						-									 				
 								 					 		 						-													
 								 					 		 						-								-	 				

(ii) Utilizando el diagrama abajo, dibuje la posición aproximada de la primera franja brillante utilizando luz azul. La posición de la primera franja brillante utilizando luz roja se ha rotulado como P.

[1]

Véase al dorso

[2]

[2]

[2]

(Opción G: continuación)

10. Esta pregunta trata sobre el espectro de rayos X.

La gráfica muestra el espectro de rayos X producido por un tubo de rayos X.

(a)	Los electrones son acelerados a través de una diferencia de potencial de 50 kV.
	Calcule la frecuencia máxima f de los rayos X emitidos

•	•	•	•	•	•	•	•	•	 •	•	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	 •	•	•	 •	 •	•	 •	•	 •	•	 •	•	•	 •	•	 •	•	•

- (b) Se aumenta la diferencia de potencial aplicada a través del tubo.
 - (i) Utilizando la gráfica, esquematice el espectro de rayos X resultante.

(ii) Explique por qué el aumento en la diferencia de potencial conduce a los cambios que ha esquematizado en (b)(i).

(Opción G: continuación)

11. Esta pregunta trata sobre interferencia en películas delgadas.

Sobre una delgada película de jabón incide, desde el aire, luz monocromática de longitud de onda 572 nm. La disolución de jabón tiene un índice de refracción de 1,3.

(a)	Calcule la longitud de onda de la luz dentro de la disolución de jabón.	[1]
(b)	Calcule el espesor mínimo de la película de jabón que dé lugar a una interferencia constructiva de la luz reflejada.	[1]
(c)	Sin hacer cálculos, explique por qué la película de jabón con espesor doble del calculado en (b) da lugar a interferencia destructiva.	[2]

Fin de la opción G

Opción H — Relatividad

12. Esta pregunta trata sobre cinemática relativista.

(a) Indique qué se entiende por sistema inercial de referencia.

[2]

(b) Una nave espacial está volando en línea recta sobre una estación base con una rapidez de 0,8c.

Suzanne está en la nave espacial y Juan está en la estación base.

(i) En la estación base, una luz parpadea con regularidad. Según Suzanne, la luz parpadea cada 3 segundos. Calcule con qué frecuencia parpadea según Juan.

[2]

(Continuación: opción H, pregunta 12)

	(ii)	Mientras Suzanne se aleja de la estación base, otra nave espacial viaja hacia Suzanne con una rapidez de 0,8c medida en el sistema de referencia de la estación base. Suzanne mide una longitud de 8,00 m para la otra nave espacial. Calcule la longitud propia de la otra nave espacial.	[3]
(c)	(i)	La nave espacial de Suzanne está viajando hacia una estrella. De acuerdo con Juan, la distancia desde la estación base hasta la estrella es de 11,4 años-luz. Demuestre que Suzanne mide aproximadamente 9 años para el tiempo que le lleva viajar desde la estación base hasta la estrella.	[2]
	(ii)	A continuación, Suzanne regresa a la estación base con la misma rapidez. El tiempo total transcurrido desde que abandonó la estación base, tal y como lo mide Suzanne, es de aproximadamente 18 años, pero el tiempo total según Juan es de aproximadamente 29 años. Explique cómo es posible que Suzanne y Juan hayan envejecido cantidades diferentes.	[2]

[2]

[2]

(Opción H: continuación)

- **13.** Esta pregunta trata sobre masa y energía.
 - (a) El kaón positivo K^+ tiene una masa en reposo de 494 MeV c⁻².
 - (i) Utilizando la cuadrícula, esquematice una gráfica que muestre cómo la energía del kaón aumenta con la rapidez.

(ii) El kaón se acelera partiendo del reposo a través de una diferencia de potencial, de modo que la energía llega a ser el triple de su energía en reposo. Calcule la diferencia de potencial a través de la cual se aceleró al kaón.

(Continuación: opción H, pregunta 13)

(b) El kaón neutro es inestable y uno de sus posibles modos de desintegración es

$$K^0 \rightarrow \pi^0 + \pi^0$$
.

El π^0 tiene una masa en reposo de 135 MeV c^{-2} . El K^0 tiene una masa en reposo de 498 MeV c^{-2} . El K^0 está en reposo antes de desintegrarse. Las dos partículas π^0 se alejan una de otra a lo largo de una línea recta y en sentidos opuestos. Determine el momento de **una** de las partículas π^0 .

[2]

[4]

(Opción H: continuación)

14. Esta pregunta trata sobre el experimento de Michelson–Morley.

El diagrama muestra las características fundamentales del experimento de Michelson–Morley.

(a) Durante el experimento, Michelson y Morley fueron rotando lentamente el aparato hasta 90°. Haciendo referencia a las transformaciones de Galileo, discuta los cambios que Michelson y Morley **esperaban** observar en el trascurso del experimento.

(Continuación: opción H, pregunta 14)

(b)	Describa cómo se diferenciaban las observaciones realizadas por Michelson y Morley de las que eran esperables.	[1]
(c)	Explique la importancia del resultado del experimento de Michelson–Morley en apoyo de la teoría especial de la relatividad.	[2]
(c)		[2]
(c)		[2]
(c)		[2]

(Opción H: continuación)

(i)

15. Esta pregunta trata sobre la relatividad general.

Una nave espacial se encuentra en reposo sobre la superficie de un planeta distante. Se dispara un rayo láser desde la base de la nave espacial hacia un sensor en la parte superior de la nave espacial.

(a) La nave espacial tiene una altura de 112 m. El rayo láser emitido desde la fuente tiene una frecuencia de 4,52×10¹⁴ Hz y el sensor detecta un desplazamiento en la frecuencia del rayo láser de 3,20 Hz.

	es de aproximadamente 5,7 N kg ⁻¹ .	[2]
ii)	Discuta el desplazamiento en la frecuencia del rayo láser.	[2]
ii)	Discuta el desplazamiento en la frecuencia del rayo láser.	[2]
ii)	Discuta el desplazamiento en la frecuencia del rayo láser.	[2]
ii)	Discuta el desplazamiento en la frecuencia del rayo láser.	[2]
ii)	Discuta el desplazamiento en la frecuencia del rayo láser.	[2]

Demuestre que la intensidad del campo gravitatorio en la superficie del planeta

(Continuación: opción H, pregunta 15)

(D)	a cabo el mismo experimento, disparando el rayo láser desde la base de la nave espacial hasta el sensor de la parte superior de la nave espacial. Compare el desplazamiento en la frecuencia del rayo láser con el detectado en (a).	[2]

Fin de la opción H

[2]

Opción I — Física médica

16. Esta pregunta trata sobre la pérdida de audición.

El diagrama muestra el audiograma de la pérdida de audición de una persona mayor. Para una persona que oiga normalmente, la pérdida auditiva es de cero decibelios a todas las frecuencias.

(a)	Describa cómo se compara la audición de la persona mayor con la de una persona
	con audición normal.

_											_	 																																	—	_		
		٠		٠		٠		٠			٠	 	٠	٠	 	٠	٠	•			 ٠	٠	٠				٠			 ٠	٠		 	٠	٠		 ٠	٠	 	٠	٠		٠	٠				
	٠.	•	٠.	•	٠.	•	٠.	•	•	٠.	•	 ٠.	•	•	 •	•	•	•	•	•	 •	•	•	•	•		•	•	•	 •	•	•	 	•	•	•	 •	•	 •	•	•	٠.	•	•	٠.	•		

(Continuación: opción I, pregunta 16)

(b)

(c)

La intensidad del umbral de audición normal I_0 se toma como 1,0×10 ⁻¹² W m ⁻² .			
(i)	Indique qué se entiende por umbral de audición normal.	[2]	
(ii)	Determine la intensidad mínima del sonido necesaria para que la persona mayor oiga un sonido de frecuencia 500 Hz.	[3]	
	jiera por qué la pérdida de audición puede considerarse que tiene implicaciones iales y económicas para una persona.	[2]	

(Opción I: continuación)

17. Esta pregunta trata sobre el uso de trazadores radiactivos en medicina.

Un núclido radiactivo se introduce como trazador en un paciente. La semivida física del núclido es 2,0 días y su semivida biológica 3,0 días.

(a)	Indique la diferencia entre semivida física y semivida biológica.	[2]
(b)	Determine qué fracción de la actividad inicial se detectará en el cuerpo 6,0 días después de que se introduzca el trazador.	[3]
(0)		
(c)	Para investigaciones médicas, resuma por qué es deseable usar un trazador con una semivida física significativamente mayor que la semivida biológica.	[2]

(Opción I: continuación)

18. Esta pregunta trata sobre el uso de ultrasonidos.

(a)	(i)	Defina impedancia acústica.	[1]
	(ii)	Indique la importancia de la impedancia acústica en el uso de técnicas de ultrasonido.	[1]
(b)	diag	practicantes médicos seleccionan la frecuencia de los ultrasonidos en función del nóstico que están abordando. Resuma la importancia de usar ultrasonidos de la uencia apropiada.	[3]

Véase al dorso

(Opción I: continuación)

19. Esta pregunta trata sobre la atenuación de la radiación.

Se utiliza cierto material para evitar que la radiación gamma emitida por una fuente alcance a los alrededores. El material tiene un espesor hemirreductor de 3,0 cm.

(a)	Indique qué se entiende por espesor hemirreductor.	[1]

(b) Esquematice una gráfica aproximada que muestre la variación de la intensidad de los rayos gamma *I* con el espesor del material *t*. Muestre los valores de la intensidad correspondientes a los valores de *t* desde 0 cm hasta 12 cm.

[3]

(Continuación: opción I, pregunta 19)

(c)

(1)	están relacionados por $\mu x_{\frac{1}{2}} = \ln 2$.	[3]
(ii)	Calcule el coeficiente de atenuación para este material, expresándolo con la unidad apropiada.	[2]

Fin de la opción l

Opción J — Física de partículas

20. Esta pregunta trata sobre interacciones y sobre quarks.

(a) Un barión lambda Λ^0 está compuesto por los tres quarks uds. Demuestre que la carga es 0 y la extrañeza es -1.

[2]

(b) Un estudiante propone para el barión lambda Λ^0 la siguiente posible desintegración.

$$\Lambda^0 \rightarrow p + K^-$$

El contenido en quarks del mesón K^- es \overline{u} s.

(i) Haciendo referencia a la extrañeza y al número bariónico, discuta por qué esta propuesta es factible.

[4]

Extrañeza: Número bariónico:			
Número bariónico:	Extrañeza:		
Número bariónico:			
Número bariónico:			
Número bariónico:			
	Número bariór	nico:	

(Continuación: opción J, pregunta 20)

(ii) Otra interacción es

$$\Lambda^0 o p + \pi^-$$
 .

En esta interacción se encuentra que la extrañeza **no** se conserva. Deduzca la naturaleza de esta interacción.

[1]

(iii) La partícula de intercambio involucrada en la interacción tiene una masa en reposo de 80,4 GeV c⁻². Calcule el rango de la interacción débil.

[2]

			٠										-							٠														 										-						
•	•	•	•	•	 	•	•	•	•	•	•	•	 -	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	 	•	•	•	•	•	 •	•	•	•	•	•	•	•	•		•
	•	•	٠			٠	٠	•	٠	٠	٠	•	 -			٠	•	٠	•	٠	•	•		 •	٠	٠	•			•	•			 	•	٠	•			 •	٠	٠	•	-			٠	•		
																																		 										-					,	

(Opción J: continuación)

21. Esta pregunta trata sobre aceleradores de partículas.

Los ciclotrones y los sincrotrones pueden utilizarse para acelerar partículas cargadas.

(a) Resuma las diferencias clave entre el funcionamiento del ciclotrón y del sincrotrón, en términos de la variación del campo eléctrico y de la variación del campo magnético.

[4]

	Campo eléctrico:	
	Campo magnético:	
(b)	Se ha propuesto que, en el futuro, el Gran Colisionador de Hadrones en el CERN sea capaz de acelerar iones plomo ²⁰⁷ ₈₂ Pb hasta energías de 575 TeV. Estime cuánta energía estará disposible cuando un ión plomo de 575 TeV choque contra etro ión	
	energía estará disponible cuando un ión plomo de 575 TeV choque contra otro ión plomo estacionario.	[3]

(Opción J: continuación)

22. Esta pregunta trata sobre interacciones entre partículas.

Un electrón y un positrón interaccionan para producir un muón y un antimuón por medio de una interacción débil. La interacción débil involucra a una de las partículas virtuales, el bosón W^- , W^+ o Z^0 .

(i)	Describa qué se entiende por partícula virtual.	
(ii)	Dibuje un diagrama de Feynman que represente esta interacción.	
(iii)	Explique si esta interacción involucra al bosón W ⁻ , al W ⁺ o al Z ⁰ .	

1	Continuación:	onción J	pregunta	221
۱	Continuacion.	opelon o,	pregunta	,

(b)	Inicialmente se pensó que la partícula involucrada en esta interacción debería tener masa nula. Sin embargo, más tarde se encontró que tenía una masa de aproximadamente 100 GeV c ⁻² . Resuma cómo el descubrimiento de la partícula (bosón) de Higgs ayuda a dar cuenta de ese hecho.	
Esta	pregunta trata sobre experimentos de dispersión inelástica profunda.	
(a)	Se aceleran electrones a través de una diferencia de potencial muy alta con el propósito de investigar la estructura interna de los nucleones. Explique por qué es necesario acelerar de esa manera a los electrones.	
(b)	Resuma cómo las colisiones de energía más alta constituyen una prueba de la libertad asintótica.	
(b)	Resuma cómo las colisiones de energía más alta constituyen una prueba de la libertad	
(b)	Resuma cómo las colisiones de energía más alta constituyen una prueba de la libertad	
(b)	Resuma cómo las colisiones de energía más alta constituyen una prueba de la libertad	

(Opción J: continuación)

24. Esta pregunta trata sobre la nucleosíntesis.

En el universo primitivo, la energía térmica media de las partículas era de aproximadamente 0,1 MeV. Esto permitió la formación del helio.

(a)	Calcule la temperatura del universo primitivo.	[2]
(b)	La temperatura media del universo actualmente es de 3K. Sugiera por qué aún es posible que ocurra la nucleosíntesis a tan baja temperatura.	[1]

Fin de la opción J

Por favor, **no** escriba en esta página.

Las respuestas escritas en esta página no serán calificadas.

Por favor, **no** escriba en esta página.

Las respuestas escritas en esta página no serán calificadas.

Por favor, **no** escriba en esta página.

Las respuestas escritas en esta página no serán calificadas.

