Universidad Nacional de Colombia

FACULTAD DE INGENIERÍA

Matemáticas Discretas II

Taller 5

Autor: Juan Carlos Garavito Higuera

Profesor: Francisco Albeiro Gomez Jaramillo

Prueba que Kernel(θ) y Img(θ) son subgrupos

Para demostrar que $Ker(\theta)$ y $Img(\theta)$ son subgrupos, es necesario verificar que satisfacen las tres condiciones para ser subgrupos:

Cerradura: Si a, b son elementos en el subconjunto, entonces a * b también es un elemento del subconjunto.

Identidad: El subconjunto contiene al elemento identidad, e.

Inverso: Todo elemento del subconjunto tiene un inverso en el subconjunto.

Empecemos demostrando que el Kernel de θ es un subgrupo:

Sea G un grupo y $\theta: G \to H$ un homomorfismo de grupos, y sea $K = Ker(\theta)$ el kernel de θ .

Cerradura: Sean a, b elementos de K. Esto significa que $\theta(a) = \theta(b) = e_H$ (el elemento identidad de H). Entonces $\theta(ab) = \theta(a)\theta(b) = e_H e_H = e_H$, lo cual implica que ab está en K. Por lo tanto, K es cerrado bajo la operación de grupo.

Identidad: La identidad del grupo G está en K ya que $\theta(e_G) = e_H$, donde e_G es la identidad del grupo G.

Inverso: Sea a un elemento de K. Entonces $\theta(a) = e_H$. Dado que θ es homomorfismo, $\theta(a^{-1}) = \theta(a)^{-1} = e_H^{-1} = e_H$. Por lo tanto, a^{-1} está en K. Por lo tanto, K es cerrado bajo inversos.

En conclusión K es un subgrupo de G.

Ahora demostramos que la imagen de θ es un subgrupo de H:

Cerradura: Sean a, b elementos de la imagen de θ . Esto significa que existen elementos x, y de G tales que $\theta(x) = a$ y $\theta(y) = b$.

Entonces $\theta(xy) = \theta(x)\theta(y) = ab$, lo cual implica que ab está en la imagen de θ . Por lo tanto, la imagen de θ es cerrada bajo la operación de grupo.

Identidad: La identidad de H está en la imagen de θ ya que $\theta(e_G) = e_H$, donde e_G es la identidad del grupo G.

Inverso: Sea a un elemento de la imagen de θ . Entonces existe un elemento x de G tal que $\theta(x) = a$. Dado que θ es homomorfismo, $\theta(x^{-1}) = \theta(x)^{-1} = a^{-1}$. Por lo tanto, a^{-1} está en la imagen de θ . Por lo tanto, la imagen de θ es cerrada bajo inversos.

En conclusión la imagen de θ es un subgrupo de H.

Demostrar el teorema de que si T es cualquier otro subgrupo que contiene x, entonces $s \subseteq T$.

Sea s un subconjunto de un grupo G, y sea x un elemento de G. Supongamos que T es otro subgrupo de G que contiene a x, es decir, $x \in T$.

Queremos demostrar que $s \subseteq T$, es decir, todo elemento en s también está en T. Sea y un elemento arbitrario en s. Entonces y está en G.

Dado que s es un subconjunto de G, y también está en G, por lo que podemos aplicar la propiedad de que T es un subgrupo de G que contiene a x.

Por lo tanto, x y y están en T, y dado que T es cerrado bajo la operación de grupo, xy también está en T.

Como y fue elegido arbitrariamente de s, y se demostró que xy está en T, podemos concluir que todos los elementos de s también están en T.

En conclusión si T es cualquier otro subgrupo que contiene x, entonces $s \subseteq T$.