Module 03 - Production Modeling

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Make a table of average demand, production capacity, and costs for each quarter, are there differences between quarters?
- Since we have temporal data (i.e. year and quarter), see if you can make a yearly and/or quarterly chart showing these metrics over time.

	Capacity	Demand	Prod. Cost
2000	437.285	636.065	55.75
2001	478.25	572.7075	53.1325
2002	483.9175	585.7725	50.285
2003	457.4975	533.8	47.2925
2004	497.535	535.735	52.385
2005	501.185	655.98	51.825
2006	473.1325	578.5625	52.3825
2007	500.0875	558.0025	48.7575
2008	484.0875	563.19	51.745
2009	503.4975	693.64	51.1625
2010	493.615	550.9325	48.1275
2011	535.46	601.71	45.46
2012	540.77	599.3575	46.785
2013	558.23	612.3775	48.6625
2014	507.1775	629.21	52.0775
2015	540.1375	462.5025	47.955
2016	571.085	631.075	44.01
2017	578.705	458.8375	54.5575
2018	526.2975	582.9125	48.385
2019	560.6	548.9925	50.2125
2020	533.7875	486.115	49.095
2021	552.94	528.9025	50.1375
2022	648.425	525.1225	52.225
2023	588.2925	410.5025	53.65

Quarter	Capacity	Demand	Safety Stock Production Cos			
1	565	659	66	47.80		
2	563	485	49	52.08		
3	432	678	68	50.20		
4	532	435	44	50.93		

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints

Decision Variables (Units Produced):

P₁- 545

P₂- 563

P₃- 432

P₄- 411

Objective Function:

Minimize: $48.80P_1 + 52.08P_2 + 50.20P_3 + 50.93P_4 + 1.81B_1 + 1.81B_2 + 1.81B_3 + 1.81B_4$

Constraints:

 $P_1 \le 565$ (Production in Q1 cannot exceed 565 units)

 $P_2 \le 563$ (Production in O2 cannot exceed 563 units)

P₃ <= 432 (Production in Q3 cannot exceed 432 units)

 $P_4 \le 532$ (Production in Q4 cannot exceed 532 units)

 $B_1 \ge 66$ (Ending inventory in Q1 must be at least 66 units)

 $B_2 >= 49$ (Ending inventory in Q2 must be at least 49 units)

 $B_3 >= 68$ (Ending inventory in Q3 must be at least 68 units)

 $B_4 >= 44$ (Ending inventory in Q4 must be at least 44 units)

_

 $P_i >= 0$ (Production quantities cannot be negative)

 $B_i >= 0$ (Ending inventory quantities cannot be negative)

Model Optimized for Cost Reduction

Implement your formulation into Excel and be sure to make it neat. This section should include:

 A screenshot of your optimized final model (formatted nicely, of course)A text explanation of what your model is recommending

Α	В	C	D		E	F	G	ŀ
			1		2	3	4	
	Beginning Inventory			350	236.0004167	314	68	
	Units Produced			545	563	432	411	
	Units Demanded		6	59	485	678	435	
	Ending Inventory		2	36	314	68	44	
	Minimum Production							
	Maximum production		5	65	563	432	532	
	Minimum Inventory			66	49	68	44	
	Maximum Inventory							
	Average Inventory		293.0002	083	275.0002083	191	56	
	Unit Production Cost		48	80	52.08	50.20	50.93	
	Unit Carrying Cost		\$ 1	81	\$ 1.81	\$ 1.81	\$ 1.81	
	Quarterly Production Cost		11,516	82	16,353.12	3,413.60	2,240.92	
	Quarterly Carrying Cost		\$ 530	33	497.7503771	345.71	101.36	
	Obj Function>		34,999	61				

Explanation:

We achieved this by developing an optimization model that considers production capacity, demand, and the costs associated with each. The model's primary objective is to determine the optimal production quantities for each quarter, balancing the need to meet demand with the desire to minimize expenses.

A key insight is that producing *below* maximum capacity in certain quarters can lead to significant cost savings. While it might seem intuitive to always produce at full capacity, this can result in excess inventory, which incurs holding costs. Our model strategically reduces production in periods where demand is lower, preventing the accumulation of costly surplus. By carefully managing production levels, we minimize not only direct production costs but also the indirect costs associated with storing unsold goods. This approach allows the Candy Shop to operate more efficiently, freeing up valuable resources.

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution. If we remove the production capacity constraint from the model & we removed the carrying cost, what do you think will happen? Try it out and see if it matches your expectation. Try to explain what is happening and talk a bit about fallbacks of models.

Preliminary thoughts:

I believe that strictly because of the removed carrying cost, the objective function (sum of Quarterly Production Cost and Quarterly Carrying Cost) will decrease. However, because it is not a percentage of the quantity of inventory, but rather a small fixed rate of \$1.81/unit, it won't be a massive change. Next, the impacts of removing the production capacity constraint will be more profound in my opinion. This will change the units produced but also allow more ending inventory because there are no holding costs, so there is no penalty for holding more units. Which in turn will drop average inventory, as well as both quarterly production costs and carrying costs (carrying costs to zero).

After running the model with stipulations:

So, after removing the production capacity constraint in solver and re-running the model, we see drastic changes in our production and inventory levels. The first thing I noticed by removing production capacity constraints, we allowed the model to produce unrealistic quantities, exceeding any practical production limits. Setting carrying costs to zero created an artificial situation where holding inventory is "free," leading to potentially excessive inventory accumulation. However, this wasn't the case here where ending inventory is relatively low.

This example highlights the importance of carefully defining constraints and cost parameters to reflect real-world conditions. Oversimplifying a model by omitting essential constraints or making unrealistic assumptions can lead to flawed and impractical results. Models are simplifications of reality, and their accuracy depends on how well they represent the actual system being modeled. This demonstrates a key setback of relying solely on cost minimization without considering other critical factors.

I believe this is a worthwhile exercise, although it is a relatively simplified version as we don't have too many constraints to worry about (I'm not saying it's easy). The stipulation portion allows us to speculate how the model may change with any additions or omissions, and then examine the changes after re-running the solver.

A	В	С	D	E	F	G	Н
1							
2							
3			1	2	3	4	
4	Beginning Inventory		350	66	49	68	
5	Units Produced		375	468	697	411	
6	Units Demanded		659	485	678	435	
7	Ending Inventory		66	49	68	44	
8							
9	Minimum Production						
10	Maximum production		565	563	432	532	
11							
12	Minimum Inventory		66	49	68	44	
13	Maximum Inventory						
14							
15	Average Inventory		208	57.5	58.5	56	
16							
17	Unit Production Cost		48.80	52.08	50.20	50.93	
18	Unit Carrying Cost						
19							
20	Quarterly Production Cost		3,220.80	2,551.92	3,413.60	2,240.92	
21	Quarterly Carrying Cost		\$ -	0	0	0	
22							
23							
24	Obj Function>		11,427.24				
25							
26							