

FIG. 1

FIG. 2

	$P_{0,0}^{kxk}$ $P_{1,0}^{kxk}$	$oldsymbol{P_{0,1}^{kxk}} \ oldsymbol{P_{1,1}^{kxk}}$	•		•	•	$egin{aligned} P_{0,N-1}^{kxk} \ P_{1,N-1}^{kxk} \end{aligned}$
	•	•	•	•		•	•
$P^{kxk} =$	•	•	•	$P_{i,j}^{kxk}$	•		
1	•	•	•	•	•	•	
		•	•		•		
	$P_{M-1,0}^{kxk}$	$P_{M-1,1}^{kxk}$		• • •	•	•	$P_{M-1,N-1}^{kxk}$

Forest Colored

	_						_ 7
	S _{0,0}	$\boldsymbol{s}_{0,1}$	•	•••	•	•	S _{0,N-1}
	S _{1,0}	•	•••	•	•	•	$s_{1,N-1}$
	•	•	$s_{i-1,j-1}$	$s_{i-1,j}$	$\boldsymbol{s}_{i-1,j+1}$		
S =		•	$s_{i,j-1}$	$s_{i,j}$	$s_{i,j+1}$	•	
	•	•	$S_{i+1,j-1}$	$s_{i+1,j}$	$s_{i+1,j+1}$	•	
	•	•	•	•	. •	•	•
	$s_{M-1,0}$	$S_{M-1,1}$	• .	•••		•	$S_{M-1,N-1}$

DOCUTOR OFFICE

$$F_{kxk} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ \frac{k-1}{2} \\ \vdots \\ 3 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & \cdots & \frac{k-1}{2} & 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & \cdots & \frac{k-1}{2} & \cdots & 3 & 2 & 1 \\ 2 & 4 & 6 & \cdots & \frac{2(k-1)}{2} & \cdots & 6 & 4 & 2 \\ 3 & 6 & 9 & \cdots & \frac{3(k-1)}{2} & \cdots & 9 & 6 & 3 \\ \vdots & \vdots \\ \frac{k-1}{2} & \frac{2(k-1)}{2} & \frac{3(k-1)}{2} & \cdots & \frac{(k-1)^*(k-1)}{4} & \cdots & \frac{3(k-1)}{2} & \frac{2(k-1)}{2} & \frac{k-1}{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 3 & 6 & 9 & \cdots & \frac{3(k-1)}{2} & \cdots & 9 & 6 & 3 \\ 2 & 4 & 6 & \cdots & \frac{2(k-1)}{2} & \cdots & 6 & 4 & 2 \\ 1 & 2 & 3 & \cdots & \frac{k-1}{2} & \cdots & 3 & 2 & 1 \end{bmatrix}$$

FIG. 6

$$F_{9x9} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1 \\ 2 & 4 & 6 & 8 & 10 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 12 & 15 & 12 & 9 & 6 & 3 \\ 4 & 8 & 12 & 16 & 20 & 16 & 12 & 8 & 4 \\ 5 & 10 & 15 & 20 & 25 & 20 & 15 & 10 & 5 \\ 4 & 8 & 12 & 16 & 20 & 16 & 12 & 8 & 4 \\ 3 & 6 & 9 & 12 & 15 & 12 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 10 & 8 & 6 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

FIG. 7

FIG. 8

$$P^{kx1} = \begin{bmatrix} P_{0,0}^{kx1} & P_{0,1}^{kx1} & \cdots & P_{0,N-1}^{kx1} \\ P_{1,0}^{kx1} & P_{1,1}^{kx1} & \cdots & P_{1,N-1}^{kx1} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & P_{i,j}^{kx1} & \cdots & \vdots \\ P_{M-1,0}^{kx1} & P_{M-1,1}^{kx1} & \cdots & \cdots & P_{M-1,N-1}^{kx1} \end{bmatrix}$$

FIG. 9