Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

09 de maio de 2017

Plano de Aula

- Revisão
 - Preliminares
 - Grafo
 - Outras terminologias
- Noções Básicas de Grafos
 - Outras terminologias
 - Matriz de adjacências e incidências
- Vizinhança

Pensamento

Frase

A gente não se liberta de um hábito atirando-o pela janela: é preciso fazê-lo descer a escada, degrau por degrau.

Quem?

Mark Twain (1835 - 1910) Escritor e humorista estadunidense

Sumário

- Revisão
 - Preliminares
 - Grafo
 - Outras terminologias
- Noções Básicas de Grafos
 - Outras terminologias
 - Matriz de adjacências e incidências
- Vizinhança

Preliminares

$V^{(2)}$

Para qualquer conjunto V, denotaremos por $V^{(2)}$ o conjunto de todos os pares não-ordenados de elementos distintos de V.

Corolário 1

Se V tem n elementos, então $V^{(2)}$ tem $\binom{n}{2}:=\frac{n(n-1)}{2}$ elementos.

Preliminares

Corolário 2

Os elementos de $V^{(2)}$ serão identificados com os subconjuntos de V que têm cardinalidade 2.

Corolário 3

Assim, cada elemento de $V^{(2)}$ terá a forma $\{v,w\}$, sendo v e w dois elementos distintos de V.

Grafo

Grafo

Um grafo é um par (V, A) em que V é um conjunto arbitrário e A é um subconjunto de $V^{(2)}$.

Vértices

São todos os elementos que pertencem a V.

Arestas

São todos os elementos que pertencem a A.

$\{v, w\} \equiv vw$

Uma aresta como $\{v, w\}$ será denotada simplesmente por vw ou por wv.

Incidência

Diremos que a aresta vw incide em v e em w. Também diremos que v e w são as **pontas** da aresta.

Ponta

Diremos que para uma aresta vw, v e w são as **pontas** da aresta.

Adjacência

Se vw é uma aresta, diremos que os vértices v e w são vizinhos ou adjacentes.

Observação

Nossa definição de grafo não admite que arestas tenham pontas coincidentes (i.e. laços). Existem autores que denotam este aspecto da definição dizendo que o grafo é "simples".

Sumário

- Revisão
 - Preliminares
 - Grafo
 - Outras terminologias
- Noções Básicas de Grafos
 - Outras terminologias
 - Matriz de adjacências e incidências
- Vizinhança

V(G) e A(G)

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

n(G) e m(G)

O número de vértices de G é denotado por n(G) e o número de arestas por m(G).

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$n(G) \in m(G)$

O número de vértices de G é denotado por n(G) e o número de arestas por m(G).

Corolário

$$n(G) = |V(G)| \in m(G) = |A(G)|.$$

 \overline{G}

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

\overline{G}

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

K_n

O grafo G é **completo** se $A(G) = V(G)^{(2)}$. A expressão "G é um K_n " é uma abreviatura de "G é um grafo completo com n vértices".

\overline{G}

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

K_n

O grafo G é **completo** se $A(G) = V(G)^{(2)}$. A expressão "G é um K_n " é uma abreviatura de "G é um grafo completo com n vértices".

$\overline{K_n}$

O grafo G é vazio se $A(G) = \emptyset$. A expressão "G é um $\overline{K_n}$ " é uma abreviatura de "G é um grafo vazio com n vértices".

Sumário

- Revisão
 - Preliminares
 - Grafo
 - Outras terminologias
- 2 Noções Básicas de Grafos
 - Outras terminologias
 - Matriz de adjacências e incidências
- Vizinhança

Vizinhança

Vizinhança

 A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;

Vizinhança

Vizinhança

- A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;
- Este conjunto será denotado por $N_G(v)$ (ou simplesmente N(v)).

Vizinhança

Vizinhança

- A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;
- Este conjunto será denotado por $N_G(v)$ (ou simplesmente N(v)).

Lembrando...

Seja G um grafo e $v, u \in V(G)$.

Dizemos que v é vizinho de u se existe uma aresta que os liga.

Grau

• O grau de um vértice v em um grafo G é o número de arestas que incidem em v;

Grau

- O grau de um vértice v em um grafo G é o número de arestas que incidem em v;
- Este valor será denotado por $d_G(v)$ (ou simplesmente d(v);

Grau

- O grau de um vértice v em um grafo G é o número de arestas que incidem em v;
- Este valor será denotado por $d_G(v)$ (ou simplesmente d(v);
- Um vértice v é **isolado** se d(v) = 0.

Grau

- O grau de um vértice v em um grafo G é o número de arestas que incidem em v;
- Este valor será denotado por $d_G(v)$ (ou simplesmente d(v);
- Um vértice v é **isolado** se d(v) = 0.

Corolário

 $\bullet \ d_G(v) = |N(v)|.$

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau máxi<u>mo</u>

$$\Delta(G) := \max_{v \in V(G)} d_G(v)$$

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau máximo

$$\Delta(G) := \underset{v \in V(G)}{max} d_G(v)$$

Média dos graus

$$\mu(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau máximo

$$\Delta(G) := \max_{v \in V(G)} d_G(v)$$

Média dos graus

$$\mu(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

Corolário

$$\mu(G) = \frac{2m(G)}{n(G)}$$

Grafo regular

Grafo regular

Um grafo é **regular** se todos os seus vértices têm o mesmo grau, ou seja, se $\delta = \Delta$.

Grafo regular

Grafo regular

Um grafo é **regular** se todos os seus vértices têm o mesmo grau, ou seja, se $\delta = \Delta$.

r-regular

Um grafo é r-regular se d(v) = r para todo vértice v.

Grafo regular

Grafo regular

Um grafo é **regular** se todos os seus vértices têm o mesmo grau, ou seja, se $\delta = \Delta$.

r-regular

Um grafo é r-regular se d(v) = r para todo vértice v.

Grafo cúbico

Um grafo cúbico é o mesmo que um grafo 3-regular.

Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

09 de maio de 2017

