RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number: <u>09</u>

Source:

Date Processed by STIC:

ENTERED

IFW16

RAW SEQUENCE LISTING DATE: 09/07/2005
PATENT APPLICATION: US/09/016,159E TIME: 14:13:15

Input Set : A:\106-001US2 seq listing.txt
Output Set: N:\CRF4\09072005\I016159E.raw

```
3 <110> APPLICANT: Lee, Jong Y.
 5 <120> TITLE OF INVENTION: PURIFIED HUMAN ERYTHROPOIETIN RECEPTOR PROTEIN FRAGMENT AND
        ANTIBODIES DERIVED THEREFROM
 8 <130> FILE REFERENCE: 106.001US2
10 <140> CURRENT APPLICATION NUMBER: US 09/016,159E
11 <141> CURRENT FILING DATE: 1998-01-30
13 <150> PRIOR APPLICATION NUMBER: US 08/876,227
14 <151> PRIOR FILING DATE: 1997-06-16
16 <160> NUMBER OF SEQ ID NOS: 5
18 <170> SOFTWARE: PatentIn version 3.3
20 <210> SEO ID NO: 1
21 <211> LENGTH: 23
22 <212> TYPE: DNA
23 <213> ORGANISM: Artificial
25 <220> FEATURE:
26 <223> OTHER INFORMATION: BamH1 linker at 5' end followed by sequence for amino acids
         through 29 of full length EpoR protein. Forward primer for SEQ
         ID NO:2.
30 <400> SEQUENCE: 1
31 ttggatccgc gccccgcct aac
                                                                          23
34 <210> SEQ ID NO: 2
35 <211> LENGTH: 22
36 <212> TYPE: DNA
37 <213> ORGANISM: Artificial
39 <220> FEATURE:
40 <223> OTHER INFORMATION: EcoR1 linker followed by sequence complementary to coding
41
         sequence for amino acids 226 through 222 of full length human
         EpoR protein. Reverse primer for SEQ ID NO:1.
42
44 <400> SEQUENCE: 2
                                                                          22
45 tgaattcggg gtccaggtcg ct
48 <210> SEQ ID NO: 3
49 <211> LENGTH: 18
50 <212> TYPE: DNA
51 <213> ORGANISM: Homo sapiens
53 <300> PUBLICATION INFORMATION:
54 <301> AUTHORs: Smith, D.B. et al.
55 <302> TITLE: Single-step purification of polypeptides expressed in Escherichia
         coli as fusions with glutathione-S-transferase
57 <303> JOURNAL: Gene
58 <304> VOLUME: 67
59 <306> PAGES: 31-40
60 <307> DATE: 1998
```

62 <300> PUBLICATION INFORMATION:

25

RAW SEQUENCE LISTING DATE: 09/07/2005 PATENT APPLICATION: US/09/016,159E TIME: 14:13:15

```
63 <301> AUTHORs: Smith, D.B. et al.
64 <302> TITLE: Single-step purification of polypeptides expressed in Escherichia
         coli as fusions with glutathione-S-transferase
66 <303> JOURNAL: Genes and Development
67 <304> VOLUME: 67
68 <306> PAGES: 31-40
69 <307> DATE: 1998
71 <400> SEQUENCE: 3
72 ctggttccgc gtggatcc
                                                                          18
75 <210> SEO ID NO: 4
76 <211> LENGTH: 1527
77 <212> TYPE: DNA
78 <213> ORGANISM: Homo sapiens
80 <300> PUBLICATION INFORMATION:
81 <301> AUTHORs: Jones, S.S. et al.
82 <302> TITLE: Human Erythropoietin Receptor: Cloning, expression, and
        biological characterization
84 <303> JOURNAL: Blood
85 <304> VOLUME: 76
86 <305> ISSUE: 1
87 <306> PAGES: 31-35
88 <307> DATE: 1990-07-01
90 <400> SEQUENCE: 4
91 atggaccacc teggggegte cetetggece eaggtegget ceetttgtet cetgeteget
                                                                          60
93 gqqqccqcct qqqcqcccc qcctaacctc ccqqacccca aqttcqaqaq caaaqcqqcc
                                                                         120
95 ttgctggcgg cccgggggcc cgaagagctt ctgtgcttca ccgagcggtt ggaggacttg
                                                                         180
97 gtgtgtttet gggaggaage ggegageget ggggtgggee egggeaacta eagettetee
                                                                         240
99 taccageteg aggatgagee atggaagetg tgtegeetge accaggetee caeggetegt
                                                                         300
101 ggtgcggtgc gcttctggtg ttcgctgcct acagccgaca cgtcgagctt cgtgccccta
                                                                          360
103 gagttgegeg teacageage etceggeget eegegatate acegtgteat ecacateaat
                                                                          420
105 gaagtagtge teetagaege eeeegtgggg etggtggege ggttggetga egagagegge
                                                                          480
107 cacgtagtgt tgcgctggct cccgccgcct gagacaccca tgacgtctca catccgctac
                                                                          540
109 gaggtggacg teteggeegg caacggegea gggagegtac agagggtgga gateetggag
                                                                          600
111 ggccgcaccg agtgtgtgct gagcaacctg cggggccgga cgcgctacac cttcgccgtc
                                                                          660
113 cgcgcgcgta tggctgagcc gagcttcggc ggcttctgga gcgcctggtc ggagcctgtg
                                                                          720
115 tegetgetga egectagega eetggaeeee eteateetga egeteteeet eateetegtg
                                                                          780
117 gtcatcctgg tgctgctgac cgtgctcgcg ctgctctccc accgccgggc tctgaagcag
                                                                          840
119 aagatetgge etggeatece gageecagag agegagtttg aaggeetett caccacceae
                                                                          900
121 aagggtaact tccagetgtg getgtaceag aatgatgget geetgtggtg gageeeetge
                                                                          960
123 accecettea eggaggaece acetgettee etggaagtee teteagageg etgetggggg
                                                                         1020
125 acgatgcagg cagtggagcc ggggacagat gatgagggcc ccctgctgga gccagtgggc
                                                                         1080
127 agtgagcatg cccaggatac ctatctggtg ctggacaaat ggttgctgcc ccggaacccg
                                                                         1140
129 cccagtgagg acctcccagg gcctggtggc agtgtggaca tagtggccat ggatgaaggc
                                                                         1200
131 tcagaagcat cctcctgctc atctgctttg gcctcgaagc ccagcccaga gggagcctct
                                                                         1260
133 getgecaget ttgagtacae tateetggae eecageteee agetettgeg tecatggaca
                                                                         1320
135 ctgtgccctg agctgccccc taccccaccc cacctaaagt acctgtacct tgtggtatct
                                                                         1380
137 gactetggca teteaaetga etaeagetea ggggaeteee agggageeca agggggetta
                                                                         1440
139 tecqatqqcc cctactccaa cccttatqaq aacaqcctta tcccaqccgc tqaqcctctq
                                                                         1500
141 cccccaqct atgtggcttg ctcttag
                                                                         1527
```

RAW SEQUENCE LISTING DATE: 09/07/2005
PATENT APPLICATION: US/09/016,159E TIME: 14:13:15

```
144 <210> SEQ ID NO: 5
145 <211> LENGTH: 508
146 <212> TYPE: PRT
147 <213> ORGANISM: Homo sapiens
149 <300> PUBLICATION INFORMATION:
150 <301> AUTHORs: Jones, S.S. et al.
151 <302> TITLE: Human Erythropoietin Receptor: Cloning, expression, and
          biological characterization
153 <303> JOURNAL: Blood
154 <304> VOLUME: 76
155 <305> ISSUE: 1
156 <306> PAGES: 31-35
157 <307> DATE: 1990-07-01
159 <400> SEQUENCE: 5
161 Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys
165 Leu Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp
                                    25
169 Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu
173 Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp
177 Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser
181 Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala
                                         90
185 Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala
                                    105
                100
189 Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser
                                120
                                                    125
            115
193 Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu
                            135
        130
197 Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly
                        150
                                             155
201 His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser
                    165
205 His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser
209 Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser
            195
                                200
                                                     205
213 Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met
                            215
217 Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val
                        230
                                             235
221 Ser Leu Leu Thr Pro Ser Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser
                    245
                                        250
225 Leu Ile Leu Val Val Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu
                260
                                    265
229 Ser His Arq Arq Ala Leu Lys Gln Lys Ile Trp Pro Gly Ile Pro Ser
```

RAW SEQUENCE LISTING DATE: 09/07/2005
PATENT APPLICATION: US/09/016,159E TIME: 14:13:15

230			275					280					285			
233	Pro	Glu	Ser	Glu	Phe	Glu	Gly	Leu	Phe	Thr	Thr	His	Lys	Gly	Asn	Phe
234		290					295					300				
237	Gln	Leu	Trp	Leu	Tyr		Asn	Asp	Gly	Cys		Trp	Trp	Ser	Pro	
	305					310					315					320
	Thr	Pro	Phe	Thr		Asp	Pro	Pro	Ala		Leu	Glu	Val	Leu		Glu
242				_	325		_	_	_	330		_	_		335	
	Arg	Cys	Trp	-	Thr	Met	Gln	Ala				Gly	Thr	_	Asp	Glu
246		_	_	340		_								350		_
	Gly	Pro		Leu	Glu	Pro	Val	-			His	Ala		Asp	Thr	Tyr
250			355	_	_	_	_		_		_	.	365		a 1.	
	Leu		Leu	Asp	ьуѕ	Trp		ьeu	Pro	Arg	Asn		Pro	ser	GIU	Asp
254		370	a 1	D	a 1	a 1	375	77-7	7	T1.	77-7	380	M-L	7	~1	~1
	Leu	Pro	GIY	Pro	GIY	390		vaı	Asp	тте	395	Ala	Met	Asp	GIU	400
	385 Ser	C1	71-	Com	Com			Com	ח ד ת	T 011		Cox	T	Dro	Cor	
262	ser	GIU	ніа	261	405	Cys	Ser	Ser	міа	410	ніа	Ser	цуѕ	PIO	415	PIO
	Glu	Glv	Δla	Ser		Δla	Ser	Phe	Glu		Thr	Tle	T.e.11	Δsn		Ser
	GIU		nια	420	niu	AIG	DCI	1110	425	- y -	****	110	пси	430	110	DCI
	Ser		Leu		Ara	Pro	Trp	Thr		Cvs	Pro	Glu	Leu		Pro	Thr
270			435		5			440		-7-			445			
	Pro	Pro	His	Leu	Lys	Tyr	Leu	Tyr	Leu	Val	Val	Ser	Asp	Ser	Gly	Ile
274		450			•	•	455	-				460	-		•	
277	Ser	Thr	Asp	Tyr	Ser	Ser	Gly	Asp	Ser	Gln	Gly	Ala	Gln	Gly	Gly	Leu
	465		_	_		470		_			475			-		480
281	Ser	Asp	Gly	Pro	Tyr	Ser	Asn	Pro	Tyr	Glu	Asn	Ser	Leu	Ile	Pro	Ala
282					485					490					495	
285	Ala	Glu	Pro	Leu	Pro	Pro	Ser	Tyr	Val	Ala	Cys	Ser				
286				500					505							

RAW SEQUENCE LISTING ERROR SUMMARY DATE: 09/07/2005
PATENT APPLICATION: US/09/016,159E TIME: 14:13:16

Input Set : A:\106-001US2 seq listing.txt
Output Set: N:\CRF4\09072005\I016159E.raw

Invalid <213> Response:

Use of "Artificial" only as "<213> Organism" response is incomplete, per 1.823(b) of New Sequence Rules. Valid response is Artificial Sequence.

Seq#:1,2

VERIFICATION SUMMARY

DATE: 09/07/2005 TIME: 14:13:16

PATENT APPLICATION: US/09/016,159E