## Universität Hamburg Physikalisches Praktikum für Fortgeschrittene Sommer-Semester 2014

# Versuch: SALOME (Simple Accelerator for Learning Optics and Manipulation of Electrons)

Praktikanten: Alexander Okupnik

Vincent Koppen

Betreuer: Dr. Velizar Miltchev

#### Inhaltsverzeichnis

| 1 | Einleitung 1.1 Aufbau | 1<br>1   |
|---|-----------------------|----------|
| 2 | Energiemessung        | 3        |
| 3 | 3.1                   | <b>6</b> |
| 4 | 4.1                   | <b>7</b> |
| 5 | 5.1                   | 8        |
| 6 | 6.1                   | 9        |
| 7 | Literaturverzeichnis  | 10       |

#### 1 Einleitung

Ziel eines Teilchenbeschleuniger ist es einen Teilchenstrahl oder -bunch zu beschleunigen und möglichst fokussiert auf einer Sollbahn zu halten. Einerseits um keine Teilchen zu verilieren, andersetits um z.B. bei einem Collider die Teilchendichte hoch zu halten. In unserem Versuch werden wir mit einem einfachen Linearbeschleuniger arbeiten und die Energie sowie die Emittanz, eine die Qualität des Strahls charakterisierende Größe die wir im Theorieteil erklären werden, zu messen.

#### 1.1 Aufbau



Abbildung 1.1:

Der Teilchenbeschleuniger vesteht aus einem Kathodenstrahler zur Erzeugung des Strahls, einer Spule (Solenoidmagnet) dessen äußere Streufelder fokussierend wirken, einigen Dipol- und Quadromagneten.



Abbildung 1.2: Di-und Quadropolschemata

#### 2 Energiemessung

Zuerst führen wir eine Energiemessung des Elektronenstrahls mithilfe eines Dipolmagneten durch. Die Elektronen, aus dem der Strahl besteht, werden am Anfang des Beschleunigers thermisch durch die Kathode erzeugt und erhalten so ihre kinetische Energie und ihren Impulsbetrag, die sie von da an behalten, da sie im Beschleuniger nur mit den Feldern der Dipol- und Quadrupolmagnete über die Lorentzkraft wechselwirken.

Die Energiemessung geschieht, indem der Zusammenhang zwischen Ablenkung durch einen der Dipole und Stärke des Dipols gemessen wird, da erstere theoretisch linear von der letzteren abhängt. Genauer gilt:

Sei  $L_{eff}$  die Länge des Einflussbereichs des Dipols, sei dahinter eine Driftstrecke mit Länge  $L_{drift}$  und am Ende ein Schirm. Sei x der Versatz des Strahls auf dem Schirm in die Richtung, in die er vom Dipol abgelenkt wird. Es gilt dann  $x=x_0+\frac{dx}{dI}I$ , wobei  $x_0$  der Versatz auf dem Schirm ohne Wirkung des Dipols ist. (Man bedenke, dass  $\frac{dx}{dI}$  negativ sein kann, falls  $x_0$  so ist, dass die Ablenkung durch den Dipol den Strahl näher in die Mitte des Strahlrohrs versetzt.) I ist der Strom des Dipols und dieser ist proportional zur Dipolfeldstärke B. Es gibt also ein  $\kappa$  so, dass  $\kappa I = BL_{eff}$ . Sei v die Geschwindigkeit der auf den Schirm treffenden Elektronen,  $\beta := \frac{v}{c}$ , c die Lichtgeschwindigkeit,  $\gamma := \frac{1}{\sqrt{1-\beta^2}}$ ,  $m_e$  die Elektronenmasse und e die Elementarladung. Dann gilt:

$$\beta \gamma = \frac{eL_{eff}L_{drift}}{\kappa m_e c \left| \frac{dx}{dI} \right|} \tag{2.1}$$

Wir messen eine Reihe von Wertepaaren für I und x, indem wir zuerst mit Blick auf das Kamerabild des Schirms 3 ein Intervall für den Dipolstrom I aussuchen, bei dem der Strahl ganz auf dem Schirm zu sehen ist. Dann messen wir für  $(0,05~\mathrm{A})$ -Schritte innerhalb dieses Intervalls Werte für x mit den Messergebnissen, die in Tabelle 2.1 dargestellt sind. Die Messung wird dabei so durchgeführt, dass zuerst der Strahl ganz vom Schirm abgelenkt wird, indem der Strom des horizontalen Dipols V14NJ um 1 A verstellt wird. Dann wird von der Kamera ein Bild aufgenommen (durch Mittelung über 50 frames), welches im Folgenden als Hintergrund von den Bildern mit Strahl abgezogen wird. Das Bildanalyse-Programm ermittelt dann jeweils nach Mittelung über 20 frames die x-Position des Intensitätsmaximums, welches der Strahlmitte entspricht, nachdem mit der Maus ein enger Bereich um den Strahlfleck im Kamerabild abgegrenzt wird.

Aus den Messwerten in Tabelle 2.1 ermitteln wir mithilfe linearer Regression einen Wert für  $\frac{dx}{dI}$ , woraus wir mit (2.1) einen Wert für  $\beta\gamma$  erhalten. Wir finden  $\frac{dx}{dI}=-0,0147\pm$ 

| I[A]   | x  [mm] |
|--------|---------|
| -3,50  | 4,07    |
| -3,45  | 3,41    |
| -3,40  | 2,71    |
| -3,35  | 2,05    |
| -3,30  | 1,23    |
| -3,25  | 0,37    |
| -3,20  | -0, 10  |
| -3, 15 | -0,58   |
| -3, 10 | -1,44   |
| -3,05  | -2, 19  |
| -3,00  | -2,85   |
| -2,95  | -3,55   |
| -2,90  | -4, 16  |
| -2,85  | -5,05   |
| -2,80  | -6, 21  |
| -2,75  | -6,82   |
| -2,70  | -7,85   |
| -2,65  | -8,56   |
| -2,60  | -9,21   |
| -2,55  | -9,78   |
| -2,50  | -10, 17 |

Tabelle 2.1: Messung des horizontalen Versatzes x auf Schirm 3 bei Ablenkung durch den Dipol H15Match betrieben mit Strom I.

 $0,0002\frac{\text{m}}{\text{A}}$  (siehe hierzu auch Abbildung 2.1) und daraus mit Fehlerfortpflanzung  $\beta\gamma=0,168\pm0,002$ . Wegen  $\gamma=\sqrt{1+\beta^2\gamma^2}$  erhalten wir damit  $\gamma=1,0139\pm0,0004$ .

Da  $\gamma=\frac{E}{m_ec^2}=1+\frac{E_{\rm kin}}{m_ec^2}$  gilt, wenn E die Gesamtenergie des einzelnen Elektrons ist, erhalten wir schliesslich für seine kinetische Energie  $E_{\rm kin}=7,1\pm0,2$  keV, wobei wir den Literaturwert  $m_ec^2=511$  keV verwenden. Wir erhalten dann für den Impuls  $p=m_ec^2\gamma\beta\frac{1}{c}=85,6\pm1,2\frac{1}{c}{\rm keV}.$ 



Abbildung 2.1: Messwerte aus Tabelle 2.1 mit Regressionsgerade gegeben durch  $x=-0,0147\cdot I-0,0472.$ 

### 7 Literaturverzeichnis