# Глава III. Векторная алгебра

# § 10. Линейные операции над векторами

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

#### Направленные отрезки

Материал этого параграфа в основном известен из школьного курса математики. Тем не менее, он необходим для систематического изложения нашего курса. К тому же, есть и существенные отличия от изложения этого материала в школе. Основное из них состоит в определении понятия вектора.

#### Определение

Отрезок AB называется направленным, если указано, какая из точек A или B является его началом, а какая — концом. Направленный отрезок с началом в точке A и концом в точке B обозначается через  $\overrightarrow{AB}$ . Длина направленного отрезка  $\overrightarrow{AB}$  обозначается через  $|\overrightarrow{AB}|$ . Если A=B, то отрезок называется нулевым и обозначается через  $\overrightarrow{0}$ . Направленный отрезок  $\overrightarrow{BA}$  называется противоположным к  $\overrightarrow{AB}$ .

 В школьном курсе математики именно направленные отрезки называют векторами, но мы будем различать эти понятия.
 Определение вектора будет дано чуть позднее.

# Сонаправленные, противонаправленные и коллинеарные направленные отрезки

#### Определения

Ненулевые направленные отрезки, лежащие на одной прямой или на параллельных прямых, называются коллинеарными. Коллинеарные направленные отрезки называются сонаправленными, если они направлены в одну и ту же сторону, и антинаправленными или противонаправленными в противоположном случае. Нулевой направленный отрезок по определению считается коллинеарным, сонаправленным и антинаправленным любому направленному отрезку. Коллинеарность направленных отрезков  $\overrightarrow{AB}$  и  $\overrightarrow{CD}$  обозначается через  $\overrightarrow{AB}$   $\parallel$   $\overrightarrow{CD}$ , их сонаправленность — через  $\overrightarrow{AB}$   $\uparrow \downarrow$   $\overrightarrow{CD}$ , а антинаправленность — через  $\overrightarrow{AB}$   $\uparrow \downarrow$   $\overrightarrow{CD}$ .

# Понятие вектора (1)

Введем на множестве всех направленных отрезков бинарное отношение  $\alpha$  следующим образом:  $\overrightarrow{AB} \alpha \overrightarrow{CD}$  тогда и только тогда, когда  $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$  и  $|\overrightarrow{AB}| = |\overrightarrow{CD}|$ . Очевидно, что отношение  $\alpha$  рефлексивно, симметрично и транзитивно, т. е. является отношением эквивалентности.

#### Определение

Вектором называется элемент фактор-множества множества всех направленных отрезков по только что определенному отношению эквивалентности  $\alpha$ .

 Иными словами вектор — это множество всех направленных отрезков, имеющих одинаковую длину и одинаковое направление.

#### Определение

Направленный отрезок, принадлежащий вектору, называется *изображением вектора*.

Все изображения данного вектора имеют одну и ту же длину. Это делает корректным следующее

#### Определение

Длиной (или модулем) вектора называется длина любого его изображения.

# Понятие вектора (2)

#### Определение

Два вектора *равны*, если они равны как множества, т. е. состоят из одних и тех же направленных отрезков.

Допуская вольность речи, говорят, что

 два вектора равны, если они имеют одинаковую длину и одинаковое направление.

Очевидно, что для любого вектора  $\vec{a}$  и для любой точки A пространства существует единственный направленный отрезок, принадлежащий вектору  $\vec{a}$  и имеющий начало в точке A. Построение такого направленного отрезка будем называть oткладыванием вектора  $\vec{a}$  от точки A.

#### Определение

Два вектора называются *коллинеарными* [*сонаправленными*, *антинаправленными*], если их изображения коллинеарны [сонаправленны, антинаправленны]. Антинаправленные векторы называют также *противонаправленными*.

Для обозначения понятий, сформулированных в определении, применяются те же символы, что и для обозначения соответствующих понятий в случае направленных отрезков:  $\vec{a} \parallel \vec{b}$ ,  $\vec{a} \uparrow \uparrow \vec{b}$  и  $\vec{a} \uparrow \downarrow \vec{b}$ .

### Вектор, противоположный данному. Нулевой вектор

#### Определения

Если отрезок  $\overrightarrow{AB}$  является изображением вектора  $\overrightarrow{a}$ , то вектор, изображением которого является отрезок  $\overrightarrow{BA}$ , называется противоположным вектору  $\overrightarrow{a}$  и обозначается  $-\overrightarrow{a}$ . Вектор, изображением которого является нулевой направленный отрезок, называется нулевым вектором и обозначается  $\overrightarrow{0}$ .

Из данных выше определений вытекает, что

 нулевой вектор коллинеарен, сонаправлен и антинаправлен с любым другим вектором.

# Сумма векторов (1)

#### Определение

Пусть даны векторы  $\vec{a}$  и  $\vec{b}$ . Зафиксируем точку O, отложим от нее вектор  $\vec{a}$ , обозначим конец полученного направленного отрезка через A. От точки A отложим вектор  $\vec{b}$ , обозначим конец полученного направленного отрезка через B. Тогда отрезок  $\overrightarrow{OB}$  изображает вектор, который называется суммой векторов  $\vec{a}$  и  $\vec{b}$ . Сумма векторов  $\vec{a}$  и  $\vec{b}$  обозначается через  $\vec{a} + \vec{b}$ .

#### Замечание об определении суммы векторов

Определение суммы векторов корректно, т. е. не зависит от выбора начальной точки О.

Более точно, если мы в качестве O возьмем другую точку P и проделаем то, что записано в определении суммы, то получим направленный отрезок  $\overrightarrow{PR}$ , который сонаправлен отрезку  $\overrightarrow{OB}$  и имеет с ним одинаковую длину (см. рис. 1 на следующем слайде). Следовательно,  $\overrightarrow{OB}$  и  $\overrightarrow{PR}$  — изображения одного и того же вектора.

# Сумма векторов (2)



Рис. 1. Корректность определения суммы векторов

Сумму векторов можно определить и по-другому. Отложим векторы  $\vec{a}$  и  $\vec{b}$  от одной и той же точки O. Концы полученных направленных отрезков обозначим через A и B соответственно, а четвертую вершину параллелограмма со сторонами OA и OB — через M. Тогда вектор, соответствующий направленному отрезку  $\overrightarrow{OM}$ , будет равен  $\vec{a} + \vec{b}$  (см. рис. 2, на котором слева вектор  $\vec{a} + \vec{b}$  построен по определению, а справа — описанным только что способом). Заметим, однако, что этот способ построения суммы векторов применим только к неколлинеарным векторам.



а д О а д Рис. 2. Два способа определения суммы векторов

a+b

#### Свойства суммы векторов

Следующие свойства суммы векторов известны из школьного курса и легко проверяются исходя из определения операции, поэтому мы их не доказываем.

#### Свойства суммы векторов

 $\vec{E}$ сли  $\vec{a}$ ,  $\vec{b}$  и  $\vec{c}$  — произвольные векторы, то:

- 1)  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$  (сложение векторов коммутативно);
- 2)  $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$  (сложение векторов ассоциативно);
- 3)  $\vec{a} + \vec{0} = \vec{a}$ ;
- 4)  $\vec{a} + (-\vec{a}) = \vec{0}$ .

Таким образом, множество всех векторов с операцией их сложения является абелевой группой. Нейтральным элементом этой группы является вектор  $\vec{0}$ , а вектором, обратным к  $\vec{a}$  — вектор  $-\vec{a}$ .

Как и в любой группе с аддитивной записью операции, в группе векторов по сложению можно определить разность векторов  $\vec{a}$  и  $\vec{b}$  правилом:  $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$ .

#### Произведение вектора на число

#### Определение

Произведением вектора  $\vec{a}$  на число t называется вектор  $t\vec{a}$  такой, что:

- 1)  $|t\vec{a}| = |t| \cdot |\vec{a}|$ ;
- 2) если  $t\geqslant 0$ , то  $t\vec{a}\uparrow\uparrow\vec{a}$ , а если t<0, то  $t\vec{a}\uparrow\downarrow\vec{a}$ .

Операции сложения векторов и умножения вектора на число часто объединяют термином *линейные операции над векторами*.

Из определения операции умножения вектора на число с очевидностью вытекает, что  $-\vec{a}=(-1)\cdot\vec{a}$  для любого вектора  $\vec{a}$ .

#### Свойства произведения вектора на число

Следующие свойства произведения вектора на число известны из школьного курса и легко проверяются исходя из определения операции, поэтому мы их не доказываем.

#### Свойства произведения вектора на число

Если  $\vec{a}$  и  $\vec{b}$  — произвольные векторы,  $\vec{a}$   $\vec{t}$  и  $\vec{s}$  — произвольные числа, то:

- 1)  $t(\vec{a} + \vec{b}) = t\vec{a} + t\vec{b}$  (умножение вектора на число дистрибутивно относительно сложения векторов);
- 2)  $(t+s)\vec{a} = t\vec{a} + s\vec{a}$  (умножение вектора на число дистрибутивно относительно сложения чисел);
- 3)  $t(s\vec{a}) = (ts)\vec{a}$ ;
- 4)  $1 \cdot \vec{a} = \vec{a}$ .



#### Орт вектора

#### Определение

Пусть  $\vec{a}$  — ненулевой вектор.  $\mathit{Optom}$  вектора  $\vec{a}$  называется вектор длины 1, сонаправленный с вектором  $\vec{a}$ .

При решении некоторых задач возникает необходимость найти орт данного вектора. В следующем замечании указано, как это можно сделать.

#### Замечание об орте вектора

Eсли  $ec{a}$  — ненулевой вектор, то вектор  $rac{ec{a}}{|ec{a}|}$  является ортом вектора  $ec{a}$ .

$$\left|\frac{\vec{a}}{|\vec{a}|}\right| = \left|\frac{1}{|\vec{a}|}\right| \cdot |\vec{a}| = \frac{1}{|\vec{a}|} \cdot |\vec{a}| = 1.$$

Следовательно, вектор  $\frac{\vec{a}}{|\vec{a}|}$  действительно является ортом вектора  $\vec{a}$ .

#### Определение

Переход от ненулевого вектора к его орту называется *нормированием* вектора.

## Критерий коллинеарности векторов (1)

Следующее утверждение будет часто использоваться в дальнейшем.

#### Критерий коллинеарности векторов

Если  $\vec{a}$  и  $\vec{b}$  — произвольные векторы, причем  $\vec{b} \neq \vec{0}$ , то векторы  $\vec{a}$  и  $\vec{b}$  коллинеарны тогда и только тогда, когда  $\vec{a} = t\vec{b}$  для некоторого числа t.

Доказательство. Достаточность непосредственно вытекает из определения произведения вектора на число.

*Необходимость.* По условию  $|\vec{b}| \neq 0$ . Поскольку  $\vec{a} \parallel \vec{b}$ , получаем, что либо  $\vec{a} \uparrow \uparrow \vec{b}$ , либо  $\vec{a} \uparrow \downarrow \vec{b}$ . Положим

$$t = \left\{ egin{array}{ll} rac{|ec{a}|}{|ec{b}|}, & ext{если } ec{a} & \uparrow \uparrow \ ec{b}, \ -rac{|ec{a}|}{|ec{b}|}, & ext{если } ec{a} & \uparrow \downarrow \ ec{b}. \end{array} 
ight.$$

Если  $\vec{a} \uparrow \uparrow \vec{b}$ , то t>0, и потому  $t\vec{b} \uparrow \uparrow \vec{b}$ , откуда  $t\vec{b} \uparrow \uparrow \vec{a}$ . Если же  $\vec{a} \uparrow \downarrow \vec{b}$ , то t<0, и потому  $t\vec{b} \uparrow \downarrow \vec{b}$ , откуда вновь  $t\vec{b} \uparrow \uparrow \vec{a}$ . Таким образом, в любом случае векторы  $\vec{a}$  и  $t\vec{b}$  сонаправленны. Кроме того,

$$|t\vec{b}| = |t| \cdot |\vec{b}| = \frac{|\vec{a}|}{|\vec{b}|} \cdot |\vec{b}| = |\vec{a}|.$$

Следовательно,  $\vec{a} = t\vec{b}$ .



### Критерий коллинеарности векторов (2)

Критерий коллинеарности векторов легко переформулировать так, чтобы в его посылке не было никаких ограничений на векторы  $\vec{a}$  и  $\vec{b}$ . А именно, справедливо следующее утверждение.

#### Критерий коллинеарности векторов (альтернативная формулировка)

Векторы  $\vec{a}$  и  $\vec{b}$  коллинеарны тогда и только тогда, когда существует число t такое, что либо  $\vec{a}=t\vec{b}$ , либо  $\vec{b}=t\vec{a}$ .

Доказательство. Если хотя бы один из векторов  $\vec{a}$  и  $\vec{b}$  отличен от  $\vec{0}$ , то достаточно сослаться на критерий коллинеарности векторов в его стандартной формулировке. Если же  $\vec{a}=\vec{b}=\vec{0}$ , то для любого t выполнены оба равенства  $\vec{a}=t\vec{b}$  и  $\vec{b}=t\vec{a}$ .

Альтернативная формулировка критерия коллинеарности векторов оказывается неудобной для применения. Поэтому в дальнейшем мы, не оговаривая этого в явном виде, практически всегда будем ссылаться на ту формулировку этого критерия, которая дана на предыдущем слайде.

#### Базис плоскости

#### Определение

Базисом плоскости называется произвольная упорядоченная пара неколлинеарных векторов, лежащих в этой плоскости. Базис, состоящий из векторов  $\vec{a}$  и  $\vec{b}$ , будем обозначать через ( $\vec{a}$ ,  $\vec{b}$ ).

Поскольку нулевой вектор по определению коллинеарен любому другому, получаем простое, но принципиально важное

#### Замечание о нулевом векторе и базисе плоскости

Нулевой вектор не может входить в базис плоскости.



#### Разложение вектора по базису на плоскости

Ключевым результатом, связанным с понятием базиса на плоскости, является следующая

#### Теорема о разложении вектора по базису на плоскости

Пусть  $(\vec{a}, \vec{b})$  — базис некоторой плоскости, а  $\vec{x}$  — вектор, лежащий в этой плоскости. Тогда существуют, и притом единственные, числа  $t_1$  и  $t_2$  такие, что

$$\vec{x} = t_1 \vec{a} + t_2 \vec{b}. \tag{1}$$

Доказательство этой теоремы будет приведено на следующем слайде.

#### Определение

Равенство (1) называется разложением вектора  $\vec{x}$  по базису ( $\vec{a}$ ,  $\vec{b}$ ). Коэффициенты  $t_1, t_2$  разложения (1) называются координатами вектора  $\vec{x}$  в базисе ( $\vec{a}$ ,  $\vec{b}$ ). Тот факт, что вектор  $\vec{x}$  имеет в базисе ( $\vec{a}$ ,  $\vec{b}$ ) координаты  $t_1, t_2$ , записывается в виде  $\vec{x} = (t_1, t_2)$ .

#### Доказательство теоремы о разложении вектора по базису на плоскости

Доказательство. Отложим векторы  $\vec{a}, \vec{b}$  и  $\vec{x}$  от некоторой точки O нашей плоскости и обозначим концы полученных направленных отрезков через A, B и M соответственно (см. рис. 3 на следующем слайде). Спроектируем точку M на прямую OA параллельно прямой OB и на прямую OB параллельно прямой OA. Обозначим полученные точки через A' и B' соответственно и положим  $\vec{a}' = \overrightarrow{OA'}$  и  $\vec{b}' = \overrightarrow{OB'}$ . Ясно, что  $\vec{a}' \parallel \vec{a}$  и  $\vec{b}' \parallel \vec{b}$ . Поскольку  $\vec{a}, \vec{b} \neq \vec{0}$  (см. замечание о нулевом векторе и базисе плоскости), из критерия коллинеарности векторов вытекает, что  $\vec{a}' = t_1 \vec{a}$  и  $\vec{b}' = t_2 \vec{b}$  для некоторых чисел  $t_1$  и  $t_2$ . Тогда  $\vec{x} = \vec{a}' + \vec{b}' = t_1 \vec{a} + t_2 \vec{b}$ .

Существование чисел  $t_1$  и  $t_2$  с требуемыми свойствами доказано. Осталось доказать их единственность. Предположим, что  $\vec{x}=s_1\vec{a}+s_2\vec{b}$  для некоторых чисел  $s_1$  и  $s_2$ . Вычитая это равенство из уже доказанного равенства (1), имеем  $(t_1-s_1)\vec{a}+(t_2-s_2)\vec{b}=\vec{0}$ . Если  $t_1-s_1\neq 0$ , то  $\vec{a}=-\frac{t_2-s_2}{t_1-s_1}\cdot\vec{b}$ . Но тогда векторы  $\vec{a}$  и  $\vec{b}$  коллинеарны по критерию коллинеарности векторов, что противоречит условию. Следовательно,  $t_1-s_1=0$ , т. е.  $t_1=s_1$ . Аналогично проверяется, что  $t_2=s_2$ .

Доказательство теоремы о разложении вектора по базису на плоскости (рисунок)



Рис. 3. Разложение вектора по базису на плоскости

#### Базис пространства

#### Определение

Векторы  $\vec{a}, \vec{b}, \vec{c}$  называются компланарными, если существуют изображения этих векторов, лежащие в одной плоскости.

• Отношение компланарности является тернарным отношением на множестве всех векторов. Это один из немногих примеров тернарных отношений в нашем курсе.

#### Определение

Базисом пространства называется произвольная упорядоченная тройка некомпланарных векторов. Базис, состоящий из векторов  $\vec{a}$ ,  $\vec{b}$  и  $\vec{c}$ , будем обозначать через  $(\vec{a}, \vec{b}, \vec{c})$ .

Ясно, что если один из векторов  $\vec{a}, \vec{b}$  и  $\vec{c}$  — нулевой, то эти векторы компланарны. Следовательно, справедливо следующее замечание, аналогичное замечанию о нулевом векторе и базисе плоскости.

### Замечание о нулевом векторе и базисе пространства

Нулевой вектор не может входить в базис пространства.

## Разложение вектора по базису в пространстве

Ключевым результатом, связанным с понятием базиса в пространстве, является следующая теорема, аналогичная теореме о разложении вектора по базису на плоскости.

#### Теорема о разложении вектора по базису в пространстве

Пусть  $(\vec{a}, \vec{b}, \vec{c})$  — базис пространства, а  $\vec{x}$  — произвольный вектор. Тогда существуют, и притом единственные, числа  $t_1$ ,  $t_2$  и  $t_3$  такие, что

$$\vec{x} = t_1 \vec{a} + t_2 \vec{b} + t_3 \vec{c}. \tag{2}$$

Доказательство этой теоремы будет приведено на следующих двух слайдах.

#### Определение

Равенство (2) называется разложением вектора  $\vec{x}$  по базису ( $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ). Коэффициенты  $t_1$ ,  $t_2$ ,  $t_3$  разложения (2) называются координатами вектора  $\vec{x}$  в базисе ( $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ). Тот факт, что вектор  $\vec{x}$  имеет в базисе ( $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ) координаты  $t_1$ ,  $t_2$ ,  $t_3$ , записывается в виде  $\vec{x} = (t_1, t_2, t_3)$ .



# Доказательство теоремы о разложении вектора по базису в пространстве (1)

Доказательство. Отложим векторы  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  и  $\vec{x}$  от некоторой точки O и обозначим концы полученных направленных отрезков через A, B, C и Mсоответственно (см. рис. 4 на следующем слайде). Поскольку векторы  $\vec{a}$  и  $\vec{b}$  неколлинеарны (в противном случае векторы  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  были бы компланарными и не образовывали бы базиса пространства), существует единственная плоскость  $\pi$ , проходящая через точки O, A и B. Спроектируем точку M на плоскость  $\pi$  параллельно прямой OC и на прямую OC параллельно плоскости  $\pi$ . Обозначим полученные точки через M' и C' соответственно и положим  $\vec{x}' = \overrightarrow{OM'}$  и  $\vec{c}' = \overrightarrow{OC'}$ . По теореме о разложении вектора по базису на плоскости  $\vec{x}' = t_1 \vec{a} + t_2 \vec{b}$  для некоторых чисел  $t_1$  и  $t_2$ . Далее, ясно, что  $\vec{c}' \parallel \vec{c}$ . Поскольку  $\vec{c} \neq \vec{0}$  (см. замечание о нулевом векторе и базисе пространства), из критерия коллинеарности векторов вытекает, что  $\vec{c}' = t_3 \vec{c}$  для некоторого числа  $t_3$ . Тогда  $\vec{x} = \vec{x}' + \vec{c}' = t_1 \vec{a} + t_2 \vec{b} + t_3 \vec{c}$ 

# Доказательство теоремы о разложении вектора по базису в пространстве (2)

Существование чисел  $t_1$ ,  $t_2$  и  $t_3$  с требуемыми свойствами доказано. Осталось доказать их единственность. Предположим, что

 $\vec{x}=s_1\vec{a}+s_2\vec{b}+s_3\vec{c}$  для некоторых чисел  $s_1,\ s_2$  и  $s_3$ . Вычитая это равенство из уже доказанного равенства (2), имеем

$$(t_1-s_1)\vec{a}+(t_2-s_2)\vec{b}+(t_3-s_3)\vec{c}=\vec{0}$$
. Если  $t_1-s_1\neq 0$ , то  $\vec{a}=-\frac{t_2-s_2}{t_1-s_1}\cdot\vec{b}-\frac{t_3-s_3}{t_1-s_1}\cdot\vec{c}$ . Но тогда векторы  $\vec{a},\,\vec{b}$  и  $\vec{c}$  компланарны, что противоречит условию. Следовательно,  $t_1-s_1=0$ , т. е.  $t_1=s_1$ .

Аналогично проверяется, что  $t_2 = s_2$  и  $t_3 = s_3$ .



Рис. 4. Разложение вектора по базису в пространстве

#### Замечание о координатах векторов $\vec{x} + \vec{y}$ и $t\vec{x}$

Если векторы  $\vec{x}$  и  $\vec{y}$  имеют в одном и том же базисе  $(\vec{a}, \vec{b}, \vec{c})$  координаты  $(x_1, x_2, x_3)$  и  $(y_1, y_3, y_3)$  соответственно, а t — произвольное число, то вектор  $\vec{x} + \vec{y}$  имеет в том же базисе координаты  $(x_1 + y_1, x_2 + y_2, x_3 + y_3)$ , а вектор  $t\vec{x}$  — координаты  $(tx_1, tx_2, tx_3)$ . Аналогичный факт справедлив для векторов на плоскости.

Доказательство. По определению координат вектора в пространстве имеют место равенства  $\vec{x}=x_1\vec{a}+x_2\vec{b}+x_3\vec{c}$  и  $\vec{y}=y_1\vec{a}+y_2\vec{b}+y_3\vec{c}$ . Следовательно,

$$\vec{x} + \vec{y} = (x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c}) + (y_1 \vec{a} + y_2 \vec{b} + y_3 \vec{c}) =$$

$$= (x_1 + y_1) \vec{a} + (x_2 + y_2) \vec{b} + (x_3 + y_3) \vec{c},$$

$$t\vec{x} = t(x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c}) = (tx_1) \vec{a} + (tx_2) \vec{b} + (tx_3) \vec{c}.$$

Остается сослаться на определение координат вектора в пространстве. В случае плоскости доказательство абсолютно аналогично.