

Finding the Zestimate

What is Data Science Department working on?

Overview:

- △ What is the Zestimate and why do we need it?
- △ How did we come up with the Zestimate?
- △ How can we implement it?

What is the Zestimate and why do we need it?

- △ Important resource for customers
- △ More listings, more revenue
- △ More listings, more data

How did we come up with the Zestimate?

△ Linear regression algorithm that can predict the prices of houses using historical data

△ Ames Housing Data:

- Residential properties sold in Ames, IA from 2006 to 2010
- 2980 rows (houses)
- 82 columns (features)

How did we come up with the Zestimate?

△ Data Cleaning:

- 26 feature columns with Null Values!!!
- Dropped outliers

- Log Transformation of sale price
- 40 feature columns transformed to dummies or ordinal data
- Build new features out of correlated features

Metrics

- △ R²: Percentage of variability in the data explained by Model
- △ Cross-Val-R²: R² for 5 fold cross validation within the train data
- △ Mean Squared Error: Mean of the squared residuals

First Models: Linear Regression, no Regularization

△ Feature Selection:

Feature with a correlation coefficient with sale price

Total Living Sqft: corr 0.8

Year Remodeled: corr 0.55

First Models: Linear Regression, no Regularization

	Train R2 score	Cross val R2 score	Test R2 score	Mean Squared Error
OLS: corr >0.5	0.879156	0.870369	0.894068	0.017317
OLS: all numeric	0.922814	0.888454	0.907216	0.015168
OLS: corr >0.4	0.881082	0.871384	0.893702	0.017377

OLS corr > 0.5: 20 features

OLS corr > 0.4: 24 features

OLS all numeric: 106 features

→ Overfit!

Improved Models: Linear Regression with Regularization

	Train D2 coore	Cross val B2 seers	Toot D2 seers	Moon Squared Erre
1				

Train	R2 score C	ross val R2 score	Test R2 score	Mean Squared Error

0.901032

0.901632

Ridge > Elastic Net > Lasso

ElasticNet 0.917990 0.901172 0.914818

0.917852

0.918336

LASSO

Ridge

0.914756

0.913093

0.013935

0.014207

0.013925

Next steps in the implement of the Zestimate

- △ Right now: only applicable for Ames, IA
- Future: Build similar model with the data from zillow.com
 - Predictions for the whole US
 - Include only features that are readily available

Steps to further improve the Zestimate in the future:

- Incorporate Location Data more strongly
- Start a Data Science Competition on kaggle.com

Questions?

