CS & IT ENGINEERING

Operating System

Virtual Memory

Lecture No. 01

Recap of Previous Lecture

TLB Mapping Topic

Topic

Segmentation

Topics to be Covered

opic Virtual Memory

Demand Paging

Page Fault

Topic: Virtual Memory

- Feature of OS
- Enables to run larger process with smaller available memory

Page 5

Page 6

Page 7

Topic: Virtual Memory

101

110

111

			puntf("%	/" z) ;
Page 0	000			
Page 1	001	00		
Page 2	010	01		
Page 3	011	10		
Page 4	100	11		
-				

int x;

Topic: Virtual Memory

- co cos-	Pri	Q	3
-----------	-----	----------	---

Page 0	000	11
Page 1	001	10
Page 2	010	-
Page 3	011	01
Page 4	100	24
Page 5	101	-
Page 6	110	00
Page 7	111	_

example 1:cru generales (ogical address (virtual add.) Page hit \Rightarrow search in $\Rightarrow f = 2$ p.T. for p=1goto of d

physical add.

CPU generales L.A. After service, the instruction which raised page fault will restert. P=3 d Logolo P.T. A } => Page fault → OS does page fault service Search for P=3 }=> Page fault → OS Brings faulted page from secondary memory to main memory. (A page is replaced if needed) and update page table

Topic: Demand Paging

Demand Paging:

Bring pages in memory when CPU demands

Page Fault:

When the demanded page is not available in physical memory

· Page fault service time:

Time needed to service a page fault, after page fault is raised.

· Page fault rate:

traction of time Page fault occurs.

Pure demand paging:when a process arrives, none of it's pages are brought into
main memory- and pages are brought into m.m. on demand.

Demand Paging:when a process arrives, a few initial pages are brought to main memory and rest are brought on demand.

Topic: How to Check Page Hit/Fault

using v	L al	id/ir
V	江	t
000	1	- 1
100	1	10
010	0	
011	O	01
100	NO	0
101	0	
110	1	00
	0	

invalid rvalid bit -Valid CPU generates L.A. goto P.T. at P=3 & check V/I bit 1/I bit = 0 Page fault =) after service of page fault V/I bit of page 3 changed to 1 Mede 0.

E.M.A.T. =
$$(1-p) * 2tmm + p * (tmm + p.f. service time)$$

one for P.T.
one for content
= $tmm + (1-p) tmm + p * 12.f. service time$

page hit time = 50000 hs

page fault time = 15000 hs

ex:

$$t_{mm} = 200 \, ns$$
 $p = 1 \%$

$$E.M.A.T. = 0.99 * (2 * 200) + 0.01 (200 + 100000) ns$$

$$= 1398 ns$$

TLB with virtual memory CPU generates L.A. TLB miss TLB hit search P. T. fault access content from mm Page fault service = t TZB + tmm + P.f. service time access content trom = tTLB+tmm mm = t+LB + 2tmm

$$+(1-H)$$
 $(1-P)$ $(t_{TLB}+2t_m)$ $+$ $) * $(t_{TLB}+t_{mm}+P.f.$ service time$

Topic: Effective Memory Access Time with TLB

TLB & Virtual memory:

EMAT =
$$H(t_{TLB} + t_{mm}) + (1 - H) [(1-p) * (t_{TLB} + t_{mm} + t_{mm})$$

+ $p * (t_{TLB} + t_{mm} + p. f. Service time)$

$$= t_{TLB} + t_{mm} + (1 - H) [(1 - p) * t_{mm} + p * p. f. Service Time]$$

Topic: Question

TLB hit = 90%

TLB access time = 10 nSeC

mm access time = 200 n sec

Page fault rate = 1 %

p.f. service time = 100 m sec

E. M. A. T. = _______ Y sec.

E.M.A.T.

$$+0.1*[0.99*(10+2*200)]$$
 + $0.01*(10+200+100*16)$

2 mins Summary

Topic

Virtual Memory

Topic

Demand Paging

Topic

Page Fault

Happy Learning

THANK - YOU