Question-9-9.2-23

EE24BTECH11035 - KOTHAPALLI AKHIL

Question:

Find the area of the region enclosed by the parabola $y^2 = 4x$ and the line x = 3. **Solution**:

The general conic form for a parabola $ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$ can be represented by matrices:

$$V = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \quad u = \begin{pmatrix} d \\ e \end{pmatrix}, \quad f \tag{1}$$

For the parabola $y^2 = 4x$, the matrix representation becomes:

$$V_{\text{parabola}} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad u_{\text{parabola}} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}, \quad f_{\text{parabola}} = 0$$
 (2)

The line equation x = 3 can also be expressed in matrix form as:

$$h^T x + m = 0 (3)$$

Where h is the vector of coefficients and m is the constant.

For x = 3, we have:

$$h_{\text{line}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad m_{\text{line}} = -3 \tag{4}$$

Next, we find the points of intersection between the parabola and the line. Substituting x = 3 into the parabola equation $y^2 = 4x$:

$$y^2 = 4(3) = 12 (5)$$

$$y = \pm 2\sqrt{3} \tag{6}$$

So, the points of intersection are $\begin{pmatrix} 3 \\ 2\sqrt{3} \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2\sqrt{3} \end{pmatrix}$.

The area between the parabola and the line is given by the integral of the difference between the two curves. The general form for calculating the area between two curves y_1 and y_2 from $y = -2\sqrt{3}$ to $y = 2\sqrt{3}$ is:

Area =
$$2\int_0^{2\sqrt{3}} \left(3 - \frac{y^2}{4}\right) dy$$
 (7)

Now, compute the integral:

$$\int \left(3 - \frac{y^2}{4}\right) dy = 3y - \frac{y^3}{12} \tag{8}$$

Substitute the limits:

$$\left[3y - \frac{y^3}{12}\right]_0^{2\sqrt{3}} = 3(2\sqrt{3}) - \frac{(2\sqrt{3})^3}{12}$$
 (9)

1

$$= 6\sqrt{3} - \frac{8(3\sqrt{3})}{12} = 6\sqrt{3} - 2\sqrt{3} = 4\sqrt{3}$$
 (10)

Thus, the area of the region enclosed by the parabola and the line is:

Area =
$$2 \times 4\sqrt{3} = 8\sqrt{3}$$
 square units. (11)

Fig. 0: Area enclosed between parabola and Line