Review of Functional Partial Least Squares Application to Spectral Misalignment

Slides by Rory Samuels

Multiple Linear Regression Model

Suppose we have a sample of n scalar valued response variables $y_i \in \mathbb{R}$ and p corresponding predictor variables $\mathbf{x}_i \in \mathbb{R}^p$. The multiple linear regression model is given by

$$y_i = \beta_0 + \boldsymbol{\beta}' \mathbf{x}_i + \epsilon_i,$$

where β_0 is the intercept, $\boldsymbol{\beta}$ is a a vector of coefficients corresponding to the variables in \mathbf{x} , and $\epsilon_i \sim N(0, \sigma_\epsilon^2)$.

Note: for simplicity we assume $\beta_0 = 0$.

Clasical Partial Least Squares (PLS)

Let $\mathbf y$ be the $n \times 1$ vector of responses and $\mathbf X$ be the $n \times p$ matrix of measured predictor variables. Given weight vectors $\mathbf r_1,...,\mathbf r_{k-1}$, the kth PLS weight vector is obtained via

$$rg \max_{\mathbf{r}} \mathsf{Cov}^2\left(\mathbf{y}, \mathbf{Xr}\right), \quad \mathsf{subject to:}$$
 $\mathsf{Cov}\left(\mathbf{Xr}_m, \mathbf{Xr}\right) = 0 \quad \mathsf{for} \quad m = 1, ..., k-1, \quad \mathsf{and} \quad ||\mathbf{r}|||_2^2 = 1.$

Many algorithms for solving efficiently (e.g. SIMPLS/NIPALS)

PLS Coefficients

Let ${\bf R}$ be the $p \times K$ matrix whose columns are the first K PLS empirical weight vectors $\hat{{\bf r}}_1,...\hat{{\bf r}}_K$.

- ightharpoonup X scores: T = XR
- ightharpoonup Y loadings: $lpha=(\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$

$$\hat{\mathbf{y}} = \mathbf{T}\boldsymbol{\alpha} = \mathbf{X}(\mathbf{R}\boldsymbol{\alpha})$$

lacktriangle Coefficient: $\hat{oldsymbol{eta}}_{PLS} = \mathbf{R}oldsymbol{lpha}$

Functional Linear Regression Model

For functional valued predictors $x_i(w) \in L^2([a,b])$, the functional linear regression model (FLM) is given by

$$y_i = \beta_0 + \int_a^b x_i(w)\beta(w)dw + \epsilon_i,$$

where $\beta(w)$ is a functional valued coefficient.

- For now, we assume $x_i(w)$ are known functions
- ightharpoonup Again assuming $eta_0=0$ for notational simplicity

Functional Partial Least Squares (FPLS)

Given weight functions $r_1(w),...,r_{k-1}(w)$, the $k{\rm th}$ FPLS weight function is given by

$$\arg\max_{w(w)} \operatorname{Cov}^2\left(y, \int_a^b x(w) r(w) dw\right), \quad \text{subject to:}$$

$$\operatorname{Cov}\left(\int_a^b x(w)r_m(w)dt, \int_a^b x(w)r(w)dt\right) = 0 \quad \text{for} \quad m=1,...,k-1, \quad \text{ and } \quad m=1,..$$

$$||r(w)||_2^2 = 1.$$

Basis Expansion for Weight Functions

Let $\mathbf{B}(w)=(B_1(w),...,B_{M+d}(w))'$ be a vector of M+d B-spline basis functions of degree d defined over M-1 equally spaced knots on [a,b].

We can approximate the $m{\rm th}$ weight function by

$$r_m(w) \approx \mathbf{b}_m' \mathbf{B}(w),$$

where \mathbf{b}_m is a vector of M+d basis coefficients.

Defining the U Matrix

Define $u_{ij} = \int_a^b x_i(w) B_j(w) dw$ and $\mathbf{u}_i = (u_{i1}, ..., u_{i(M+d)})'$. We can approximate the needed inner-products with:

$$\int_{a}^{b} x_{i}(w)r(w)dw \approx \mathbf{b}'\mathbf{u}_{i}.$$

For all n observations, we can define an $n \times (M+d)$ matrix \mathbf{U} with elements $\mathbf{U}_{(ij)} = u_{ij}$.

Empirical FPLS Task

Given weight vectors $\mathbf{b}_1,...,\mathbf{b}_{k-1}$, the kth FPLS weight vector is obtained via

$$\arg\max_{\mathbf{b}}\mathsf{Cov}^{2}\left(\mathbf{y},\mathbf{Ub}\right),\quad\mathsf{subject\ to}:$$

$$\mathsf{Cov}\left(\mathbf{Ub}_{m},\mathbf{Ub}\right)=0\quad\mathsf{for}\quad m=1,...,k-1,\quad\mathsf{and}$$

$$||\mathbf{b'Vb}||_2^2 = 1.^1$$

lacktriangle Equivalent to classical PLS with response vector ${f y}$ and data-matrix ${f U}$

 $^{{}^1\}mathrm{V}$ is the pos. def. matrix of inner products between all pairs of basis functions.

FPLS Coefficient

Let ${\bf R}$ be the $p \times K$ matrix whose columns are the first K PLS empirical weight vectors $\hat{{\bf b}}_1,...\hat{{\bf b}}_K$.

- ightharpoonup U scores: T = UR
- ightharpoonup Y loadings: $lpha=(\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$

The estimated functional coefficient is then

$$\hat{\beta}_{FPLS}(w) = (\mathbf{R}\boldsymbol{\alpha})'\mathbf{B}(w)$$

Starting from Discrete Observations

The key to functional partial least squares is obtaining

$$\mathbf{U}_{(ij)} = \int_{a}^{b} x_i(w)B_j(w)dt, \quad i = 1, ..., n, \quad j = 1, ..., M + d.$$

- In practice, we observe p discrete points along each $x_i(w)$
- $lackbox{f W}$ We have options for how we approximate ${f U}_{(ij)}$

Numerical Approximation

lackbox Simple option: we can approximate $\mathbf{U}_{(ij)}$ by

$$\mathbf{U}_{(ij)} \approx \frac{b-a}{p} \sum_{k=1}^{p} x_i(w_k) B_j(w_k).$$

- Assumes noise-free observations
- Good if we have a dense observation grid

Basis Expansion for Data

Alternatively, we can expand each observation onto a set of suitable basis functions:

$$x_i(w) \approx \mathbf{c}_i' \mathbf{B}^x(w),$$

where $\mathbf{B}^x(w)$ is a vector of M_x+d B-spline basis functions and \mathbf{c}_i is a vector of M_x+d basis coefficients. If we define

$$\mathbf{\Theta}_{(ij)} = \int_{a}^{b} B_{i}^{x}(w) B_{j}(w) dt,$$

then we can express ${f U}$ as

$$\mathbf{U} \approx \mathbf{C}\mathbf{\Theta}$$
,

where C is an $n \times (M_x + d)$ matrix of basis coefficients.

Example I: Generated Responses

We generated n=500 scalar responses from

$$y_i = \int_0^1 x_i(w)\beta(w)dt + \epsilon_i$$

- $\triangleright x_i(w)$: random linear combinations of cubic B-spline basis functions²
- $\beta(w) = 10(w-1)^2 + 30\cos(4\pi t^3)$
- $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)^3$

 $^{^2}$ The basis functions were defined over 50 knots and all coefficients were generated from a standard normal distribution.

³The error variance σ_{ϵ}^2 was chosen such that the signal-to-noise ratio was 5.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(w)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : t = 0,.0024,.0048,...,1
- $ightharpoonup G_B$: t = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(w)$ on both G_A and G_B , for i=1,...,500.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(w)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : t = 0,.0024,.0048,...,1
- $ightharpoonup G_B$: t = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(w)$ on both G_A and G_B , for i=1,...,500.

- ▶ Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ▶ 80/20 train/test split.

Example I: Two Approaches

- Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ▶ 80/20 train/test split.

Classical PLS Approach:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- lacksquare Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- lacksquare Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{oldsymbol{eta}}_B$

Example I: Two Approaches

- ▶ Goal: predict y from x(w) observed on G_B , using a model trained with x(w) observed on G_A .
 - ightharpoonup 80/20 train/test split.

Classical PLS Approach:

- lacktriangle Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(w)$ on G_A
- lacktriangle Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{\pmb{\beta}}_B$

Functional PLS approach:

- ▶ Obtain $\hat{\beta}_{FPLS}(w)$ using observations of $x^{train}(w)$ on G_A
- Predict y^{test} using observations of $x^{test}(w)$ on G_B and $\hat{\beta}(w)$.

Example I: Functional PLS

Example I: Functional PLS

y_{test}

Example I: Functional PLS

Example II: AOP Crown Data

We applied the same method to the AOP Crown data to predict d15N from spectra. After joining the site trait data and spectra by SampleSiteID, and removing both "bad bands" and NA observations we had:

- ightharpoonup n = 2515 observations
- $ho p_A = 350$ spectral points per spectra.

To simulate spectral misalignment, we expanded the spectra onto a set of 52 cubic B-splines and sampled along an observation grid of $p_B=200$ points.

Classical PLS Approach

Functional PLS Approach

Appendix I: Intuition Behind FPLS Coefficient

Recall that the (0-intercept) FLM:

$$y_i = \int_a^b x_i(w)\beta(w)dw + \epsilon_i. \tag{1}$$

When we approximate r(w) as $r(w) \approx \mathbf{b}' \mathbf{B}(w)$, we implicitly assume

$$\beta(w) \approx \gamma' \mathbf{B}(w),$$
 (2)

allowing us to re-write (1) as

$$y_i = \mathbf{U}\boldsymbol{\gamma} + \epsilon_i.$$

Performing PLS of \mathbf{U} on \mathbf{y} yields $\hat{\gamma} = \mathbf{R}\alpha$. Hence, from (2),

$$\hat{\beta}(w) = (\mathbf{R}\boldsymbol{\alpha})'\mathbf{B}(w).$$