

Markscheme

May 2018

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	ion		Answers			Notes	Total
1.	а	i		$= 4 \times 1.01 + 2 \times 14.01 + 4.01 \times 100 = 46.65 $	12.01 + 16.00 » = 60.07 « g m ✓	ol ^{−1} » √	Award [2] for correct final answer. Award [1 max] for final answer not to two decimal places.	2
1.	а	ii	nitrogen» OR	·	ner cost of transportation per	unit of	Accept other reasonable explanations. Do not accept answers referring to safety/explosions.	1
1.	b			Electron geometry	Molecular geometry		Note: Urea's structure is more complex than that predicted from VSEPR theory.	
			Nitrogen	tetrahedral √	trigonal pyramidal √		than that predicted nom vol. In theory.	3
			Carbon	trigonal planar √	trigonal planar			
1.	С			$0 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3}$ » = $0 \times 10^{-3} \text{ mol } \times 60.07 \text{ g mol}$			Award [2] for correct final answer.	2
1.	d		«K _c » decreases AN OR	D reaction is exothermic				
			«K _c » decreases AN	D ∆ <i>H</i> is negative				1
			<i>OR</i> «K _c » decreases <i>AN</i>	D reverse/endothermic rea	action is favoured √			

C	Questi	ion	Answers	Notes	Total
1.	е	i	Any one of: urea has greater molar mass ✓ urea has greater electron density/greater London/dispersion ✓ urea has more hydrogen bonding ✓ urea is more polar/has greater dipole moment ✓	Accept "urea has larger size/greater van der Waals forces". Do not accept "urea has greater intermolecular forces/IMF".	1
1.	е	ii		Award [1] for each correct interaction. If lone pairs are shown on N or O, then the lone pair on N or one of the lone pairs on O MUST be involved in the H-bond. Penalize solid line to represent H-bonding only once.	2
1.	f		$2(H_2N)_2CO(s) + 3O_2(g) \rightarrow 4H_2O(l) + 2CO_2(g) + 2N_2(g)$ correct coefficients on LHS \checkmark correct coefficients on RHS \checkmark	Accept $(H_2N)_2CO(s) + \frac{3}{2}O_2(g) \rightarrow$ $2H_2O(l) + CO_2(g) + N_2(g)$. Accept any correct ratio.	2

Q	Question		Answers	Notes	Total
1.	g		60: CON ₂ H ₄ + ✓	Accept "molecular ion".	
			44: CONH ₂ ⁺ √		2
1.	h		3450 cm ⁻¹ : N−H ✓ 1700 cm ⁻¹ : C=O ✓	Do not accept "O–H" for 3450 cm ⁻¹ .	2
1.	i		1 🗸		1

C	Questi	on	Answers	Notes	Total
2.	а		electrostatic attraction <i>AND</i> oppositely charged ions ✓		1
2.	b		1s² 2s² 2p ⁶ 3s² 3p ⁶ OR [Ar] ✓		1
2.	С		«promoted» electrons fall back to lower energy level ✓ energy difference between levels is different ✓	Accept "Na and Ca have different nuclear charge" for M2.	2
2.	d	i	Any two of: stronger metallic bonding ✓ smaller ionic/atomic radius ✓ two electrons per atom are delocalized OR greater ionic charge ✓		2
			greater atomic mass √	Do not accept just "heavier" or "more massive" without reference to atomic mass.	
2.	d	ii	delocalized/mobile electrons «free to move» ✓		1
2.	е		pH > 7 ✓	Accept any specific pH value or range of values above 7 and below 14.	1

C	uesti	on	Answers	Notes	Total
3.	а	i	nickel/Ni «catalyst» ✓ high pressure OR heat ✓	Accept these other catalysts: Pt, Pd, Ir, Rh, Co, Ti. Accept "high temperature" or a stated temperature such as "150 °C".	2
3.	а	ii	H H </td <td>Ignore square brackets and "n". Connecting line at end of carbons must be shown.</td> <td>1</td>	Ignore square brackets and "n". Connecting line at end of carbons must be shown.	1
3.	b	i	ΔH^{\ominus} = bonds broken – bonds formed \checkmark $\ll \Delta H^{\ominus}$ = 3(C \equiv C) – 6(C \equiv C) _{benzene} / 3 × 839 – 6 × 507 / 2517 – 3042 =» –525 «kJ» \checkmark	Award [2] for correct final answer. Award [1 max] for +525 «kJ» Award [1 max] for: « $\Delta H^{\Theta} = 3(C \equiv C) - 3(C - C) - 3(C = C) / 3 \times 839 - 3 \times 346 - 3 \times 614 / 2517 - 2880 = 363 $ «kJ».	2
3.	b	ii	$\Delta H^{\ominus} = \Sigma \Delta H_{\rm f}$ (products) $-\Sigma \Delta H_{\rm f}$ (reactants) \checkmark $ ^{\bullet} = 49 \text{kJ} - 3 \times 228 \text{kJ} = \text{w} -635 \text{wkJ} \text{w} \checkmark $	Award [2] for correct final answer. Award [1 max] for "+635 «kJ»".	2

(continued...)

(Question 3b continued)

C	Questi	ion	Answers	Notes	Total
3.	b	iii	ΔH_{f} values are specific to the compound OR		
			bond enthalpy values are averages «from many different compounds» 🗸		2
			condensation from gas to liquid is exothermic ✓	Accept "benzene is in two different states «one liquid the other gas»" for M2.	
3.	С		equal C–C bond «lengths/strengths» OR	Accept "all C–C–C bond angles are equal".	
			regular hexagon OR vally C. C haven hand order of 1.5		1
			«all» C–C have» bond order of 1.5OR«all» C–C intermediate between single and double bonds ✓		
3.	d		electrophilic substitution OR		1
			S _E ✓		

C	Questi	on	Answers	Notes	Total
4.	а		Any two of: loss of mass «of reaction mixture/CO₂» ✓	Do not accept "disappearance of calcium carbonate".	
			«increase in» volume of gas produced ✓ change of conductivity ✓ change of pH ✓ change in temperature ✓	Do not accept "gas bubbles". Do not accept "colour change" or "indicator".	2
4.	b	i	reaction is fast at high concentration <i>AND</i> may be difficult to measure accurately <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) <i>OR</i> insufficient change in conductivity/pH at high concentrations <i>OR</i> calcium carbonate has been used up/is limiting reagent/there is not enough calcium carbonate «to react with the high concentration of HCl» <i>OR</i> HCl is in excess <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) ✓		1
4.	b	ii	«directly» proportional ✓	Accept "first order" or "linear". Do not accept "rate increases as concentration increases" or "positive correlation".	1

– 10 –

C	Question	Answers	Notes	Total
5.	а	slower rate with ethanoic acid OR smaller temperature rise with ethanoic acid ✓ [H⁺] lower OR ethanoic acid is partially dissociated OR ethanoic acid is weak ✓	Accept experimental observations such as "slower bubbling" or "feels less warm".	2
5.	b	Any one of: corrosion of materials/metals/carbonate materials ✓ destruction of plant/aquatic life ✓ «indirect» effect on human health ✓	Accept "lowering pH of oceans/lakes/waterways".	1

Q	Question		Answers	Notes	Total
6.	а		salt bridge √		
			movement of ions OR balance charge ✓	Do not accept "to complete circuit" unless ion movement is mentioned for M2.	2
6.	b		Positive electrode (cathode): $Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \checkmark$ $Negative \ electrode \ (anode):$ $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-} \checkmark$	Award [1 max] if correct equations given at wrong electrodes.	2
6.	С		in external wire from left to right ✓		1