PROBLEMS

1. Find the following limits. (These limits all follow, after some algebraic manipulations, from the various parts of Theorem 2; be sure you know which ones are used in each case, but don't bother listing them.)

(i)
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1}$$
.

(ii)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
.

(iii)
$$\lim_{x \to 3} \frac{x^3 - 8}{x - 2}$$
.

(iv)
$$\lim_{x \to y} \frac{x^n - y^n}{x - y}.$$

(v)
$$\lim_{y \to x} \frac{x^n - y^n}{x - y}.$$

(vi)
$$\lim_{h\to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}.$$

2. Find the following limits.

(i)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}.$$

(ii)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x}$$
.

(iii)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$
.

3. In each of the following cases, find a δ such that $|f(x) - l| < \varepsilon$ for all x satisfying $0 < |x - a| < \delta$.

(i)
$$f(x) = x^4$$
; $l = a^4$.

(ii)
$$f(x) = \frac{1}{x}$$
; $a = 1, l = 1$.

(iii)
$$f(x) = x^4 + \frac{1}{x}$$
; $a = 1, l = 2$.

(iv)
$$f(x) = \frac{x}{1 + \sin^2 x}$$
; $a = 0, l = 0$.

(v)
$$f(x) = \sqrt{|x|}$$
; $a = 0$, $l = 0$.

(vi)
$$f(x) = \sqrt{x}$$
; $a = 1, l = 1$.

- **4.** For each of the functions in Problem 4-17, decide for which numbers a the limit $\lim_{x\to a} f(x)$ exists.
- *5. (a) Do the same for each of the functions in Problem 4-19.
 - (b) Same problem, if we use infinite decimals ending in a string of 0's instead of those ending in a string of 9's.

Suppose the functions f and g have the following property: for all $\varepsilon > 0$ and all x,

if
$$0 < |x - 2| < \sin^2\left(\frac{\varepsilon^2}{9}\right) + \varepsilon$$
, then $|f(x) - 2| < \varepsilon$,

if
$$0 < |x - 2| < \varepsilon^2$$
, then $|g(x) - 4| < \varepsilon$.

For each $\varepsilon > 0$ find a $\delta > 0$ such that, for all x,

- if $0 < |x-2| < \delta$, then $|f(x) + g(x) \delta| < \varepsilon$.
- if $0 < |x 2| < \delta$, then $|f(x)g(x) 8| < \varepsilon$.
- (iii) if $0 < |x 2| < \delta$, then $\left| \frac{1}{g(x)} \frac{1}{4} \right| < \varepsilon$.
- (iv) if $0 < |x 2| < \delta$, then $\left| \frac{f(x)}{g(x)} \frac{1}{2} \right| < \varepsilon$.
- 7. Give an example of a function f for which the following assertion is false: If $|f(x) - l| < \varepsilon$ when $0 < |x - a| < \delta$, then $|f(x) - l| < \varepsilon/2$ when $0 < |x - a| < \delta/2$.
- (a) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ do not exist, can $\lim_{x\to a} [f(x) + g(x)]$ or $\lim_{x\to a} f(x)g(x)$ exist? 8.

 - (b) If lim f(x) exists and lim [f(x) + g(x)] exists, must lim g(x) exist?
 (c) If lim f(x) exists and lim g(x) does not exist, can lim [f(x)+g(x)] exist?
 (d) If lim f(x) exists and lim f(x)g(x) exists, does it follow that lim g(x) exists?
- Prove that $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$. (This is mainly an exercise in understanding what the terms mean.)
- (a) Prove that $\lim_{x\to a} f(x) = l$ if and only if $\lim_{x\to a} [f(x) l] = 0$. (First see why the assertion is obvious; then provide a rigorous proof. In this chapter most problems which ask for proofs should be treated in the same way.)
 - (b) Prove that $\lim_{x\to 0} f(x) = \lim_{x\to a} f(x-a)$.

 - (c) Prove that $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$. (d) Give an example where $\lim_{x\to 0} f(x^2)$ exists, but $\lim_{x\to 0} f(x)$ does not.
- Suppose there is a $\delta > 0$ such that f(x) = g(x) when $0 < |x a| < \delta$. Prove 11. that $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$. In other words, $\lim_{x\to a} f(x)$ depends only on the values of f(x) for x near a—this fact is often expressed by saying that limits are a "local property." (It will clearly help to use δ' , or some other letter, instead of δ , in the definition of limits.)
- (a) Suppose that $f(x) \le g(x)$ for all x. Prove that $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$, 12. provided that these limits exist.

- (b) How can the hypotheses by weakened?
- (c) If f(x) < g(x) for all x, does it necessarily follow that $\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$?
- 13. Suppose that $f(x) \le g(x) \le h(x)$ and that $\lim_{x \to a} f(x) = \lim_{x \to a} h(x)$. Prove that $\lim_{x \to a} g(x)$ exists, and that $\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} h(x)$. (Draw a picture!)
- *14. (a) Prove that if $\lim_{x\to 0} f(x)/x = l$ and $b \neq 0$, then $\lim_{x\to 0} f(bx)/x = bl$. Hint: Write f(bx)/x = b[f(bx)/bx].
 - (b) What happens if b = 0?
 - (c) Part (a) enables us to find $\lim_{x\to 0} (\sin 2x)/x$ in terms of $\lim_{x\to 0} (\sin x)/x$. Find this limit in another way.
- 15. Evaluate the following limits in terms of the number $\alpha = \lim_{x \to 0} (\sin x)/x$.
 - (i) $\lim_{x \to 0} \frac{\sin 2x}{x}.$
 - (ii) $\lim_{x \to 0} \frac{\sin ax}{\sin bx}.$
 - (iii) $\lim_{x \to 0} \frac{\sin^2 2x}{x}.$
 - (iv) $\lim_{x \to 0} \frac{\sin^2 2x}{x^2}.$
 - $\text{(v)} \quad \lim_{x \to 0} \frac{1 \cos x}{x^2}.$
 - (vi) $\lim_{x \to 0} \frac{\tan^2 x + 2x}{x + x^2}$.
 - (vii) $\lim_{x \to 0} \frac{x \sin x}{1 \cos x}.$
 - (viii) $\lim_{h \to 0} \frac{\sin(x+h) \sin x}{h}$
 - (ix) $\lim_{x \to 1} \frac{\sin(x^2 1)}{x 1}$.
 - (x) $\lim_{x \to 0} \frac{x^2(3 + \sin x)}{(x + \sin x)^2}.$
 - (xi) $\lim_{x \to 1} (x^2 1)^3 \sin\left(\frac{1}{x 1}\right)^3$.
- **16.** (a) Prove that if $\lim_{x\to a} f(x) = l$, then $\lim_{x\to a} |f|(x) = |l|$.
 - (b) Prove that if $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$, then $\lim_{x \to a} \max(f, g)(x) = \max(l, m)$ and similarly for min.

- 17. (a) Prove that $\lim_{x\to 0} 1/x$ does not exist, i.e., show that $\lim_{x\to 0} 1/x = l$ is false for every number l.
 - (b) Prove that $\lim_{x\to 1} 1/(x-1)$ does not exist.
- 18. Prove that if $\lim_{x \to a} f(x) = l$, then there is a number $\delta > 0$ and a number M such that |f(x)| < M if $0 < |x a| < \delta$. (What does this mean pictorially?) Hint: Why does it suffice to prove that l-1 < f(x) < l+1 for $0 < |x-a| < \delta$?
- 19. Prove that if f(x) = 0 for irrational x and f(x) = 1 for rational x, then $\lim_{x \to a} f(x)$ does not exist for any a.
- *20. Prove that if f(x) = x for rational x, and f(x) = -x for irrational x, then $\lim_{x \to a} f(x)$ does not exist if $a \neq 0$.
- **21.** (a) Prove that if $\lim_{x\to 0} g(x) = 0$, then $\lim_{x\to 0} g(x) \sin 1/x = 0$.
 - (b) Generalize this fact as follows: If $\lim_{x\to 0} g(x) = 0$ and $|h(x)| \le M$ for all x, then $\lim_{x\to 0} g(x)h(x) = 0$. (Naturally it is unnecessary to do part (a) if you succeed in doing part (b); actually the statement of part (b) may make it easier than (a)—that's one of the values of generalization.)
- 22. Consider a function f with the following property: if g is any function for which $\lim_{x\to 0} g(x)$ does not exist, then $\lim_{x\to 0} [f(x) + g(x)]$ also does not exist. Prove that this happens if and only if $\lim_{x\to 0} f(x)$ does exist. Hint: This is actually very easy: the assumption that $\lim_{x\to 0} f(x)$ does not exist leads to an immediate contradiction if you consider the right g.
- **23. This problem is the analogue of Problem 22 when f + g is replaced by $f \cdot g$. In this case the situation is considerably more complex, and the analysis requires several steps (those in search of an especially challenging problem can attempt an independent solution).
 - (a) Suppose that $\lim_{x\to 0} f(x)$ exists and is $\neq 0$. Prove that if $\lim_{x\to 0} g(x)$ does not exist, then $\lim_{x\to 0} f(x)g(x)$ also does not exist.
 - (b) Prove the same result if $\lim_{x\to 0} |f(x)| = \infty$. (The precise definition of this sort of limit is given in Problem 37.)
 - (c) Prove that if neither of these two conditions holds, then there is a function g such that $\lim_{x\to 0} g(x)$ does not exist, but $\lim_{x\to 0} f(x)g(x)$ does exist. Hint: Consider separately the following two cases: (1) for some $\varepsilon > 0$ we have $|f(x)| > \varepsilon$ for all sufficiently small x. (2) For every $\varepsilon > 0$, there are arbitrarily small x with $|f(x)| < \varepsilon$. In the second case, begin by choosing points x_n with $|x_n| < 1/n$ and $|f(x_n)| < 1/n$.
- *24. Suppose that A_n is, for each natural number n, some *finite* set of numbers in [0, 1], and that A_n and A_m have no members in common if $m \neq n$. Define

f as follows:

$$f(x) = \begin{cases} 1/n, & x \text{ in } A_n \\ 0, & x \text{ not in } A_n \text{ for any } n. \end{cases}$$

Prove that $\lim_{x\to a} f(x) = 0$ for all a in [0, 1].

- Explain why the following definitions of $\lim_{x\to a} f(x) = l$ are all correct: 25. For every $\delta > 0$ there is an $\varepsilon > 0$ such that, for all x,
 - if $0 < |x a| < \varepsilon$, then $|f(x) l| < \delta$.
 - if $0 < |x a| < \varepsilon$, then $|f(x) l| \le \delta$.
 - (iii) if $0 < |x a| < \varepsilon$, then $|f(x) l| < 5\delta$.
 - if $0 < |x-a| < \varepsilon/10$, then $|f(x)-l| < \delta$.
- *26. Give examples to show that the following definitions of $\lim_{x \to a} f(x) = l$ are not correct.
 - (a) For all $\delta > 0$ there is an $\varepsilon > 0$ such that if $0 < |x a| < \delta$, then $|f(x)-l|<\varepsilon.$
 - (b) For all $\varepsilon > 0$ there is a $\delta > 0$ such that if $|f(x) l| < \varepsilon$, then $0 < \infty$ $|x-a|<\delta$.
- For each of the functions in Problem 4-17 indicate for which numbers a the 27. one-sided limits $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ exist.
- *28. (a) Do the same for each of the functions in Problem 4-19.
 - (b) Also consider what happens if decimals ending in 0's are used instead of decimals ending in 9's.
- Prove that $\lim_{x \to a} f(x)$ exists if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$. 29.
- 30. Prove that

 - $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(-x).$ $\lim_{x \to 0} f(|x|) = \lim_{x \to 0^+} f(x).$
 - $\lim_{x \to 0} f(x^2) = \lim_{x \to 0^+} f(x).$

(These equations, and others like them, are open to several interpretations. They might mean only that the two limits are equal if they both exist; or that if a certain one of the limits exists, the other also exists and is equal to it; or that if either limit exists, then the other exists and is equal to it. Decide for yourself which interpretations are suitable.)

Suppose that $\lim_{x\to a^-} f(x) < \lim_{x\to a^+} f(x)$. (Draw a picture to illustrate this as-*31. sertion.) Prove that there is some $\delta > 0$ such that f(x) < f(y) whenever x < a < y and $|x - a| < \delta$ and $|y - a| < \delta$. Is the converse true?

- Prove that $\lim_{x\to\infty} (a_n x^n + \dots + a_0)/(b_m x^m + \dots + b_0)$ exists if and only if $m \ge n$. *32. What is the limit when m = n? When m > n? Hint: the one easy limit is $\lim_{x\to\infty} 1/x^k = 0$; do some algebra so that this is the only information you need.
- 33. Find the following limits.
 - $\lim_{x \to \infty} \frac{x + \sin^3 x}{5x + 6}.$
 - $\lim_{x \to \infty} \frac{x \sin x}{x^2 + 5}.$

 - $\lim_{x \to \infty} \sqrt{x^2 + x} x.$ $\lim_{x \to \infty} \frac{x^2 (1 + \sin^2 x)}{(x + \sin x)^2}.$
- Prove that $\lim_{x \to 0^+} f(1/x) = \lim_{x \to \infty} f(x)$. 34.
- 35. Find the following limits in terms of the number $\alpha = \lim_{x \to \infty} (\sin x)/x$.
 - $\lim_{x \to \infty} \frac{\sin x}{x}.$
 - $\lim_{x \to \infty} x \sin \frac{1}{x}.$
- Define " $\lim_{x \to -\infty} f(x) = l$." 36.
 - (a) Find $\lim_{x \to -\infty} (a_n x^n + \dots + a^0)/(b_m x^m + \dots + b_0)$. (b) Prove that $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(-x)$. (c) Prove that $\lim_{x \to 0^-} f(1/x) = \lim_{x \to -\infty} f(x)$.
- We define $\lim f(x) = \infty$ to mean that for all N there is a $\delta > 0$ such that, for all x, if $0 < |x - a| < \delta$, then f(x) > N. (Draw an appropriate picture!)
 - (a) Show that $\lim_{x \to 3} 1/(x-3)^2 = \infty$.
 - (b) Prove that if $f(x) > \varepsilon > 0$ for all x, and $\lim_{x \to a} g(x) = 0$, then

$$\lim_{x \to a} f(x)/|g(x)| = \infty.$$

- (a) Define $\lim_{x \to a^+} f(x) = \infty$, $\lim_{x \to a^-} f(x) = \infty$, and $\lim_{x \to a} f(x) = \infty$. (Or at least 38. convince yourself that you could write down the definitions if you had the energy. How many other such symbols can you define?)
 - (b) Prove that $\lim_{x \to 0^+} 1/x = \infty$.
 - Prove that $\lim_{x \to 0^+} f(x) = \infty$ if and only if $\lim_{x \to \infty} f(1/x) = \infty$.
- 39. Find the following limits, when they exist.

(i)
$$\lim_{x \to \infty} \frac{x^3 + 4x - 7}{7x^2 - x + 1}$$

(ii)
$$\lim_{x \to \infty} x(1 + \sin^2 x).$$

(iii)
$$\lim_{x \to \infty} x \sin^2 x$$
.

(iv)
$$\lim_{x \to \infty} x^2 \sin \frac{1}{x}$$
.

(v)
$$\lim_{x \to \infty} \sqrt{x^2 + 2x} - x.$$

(vi)
$$\lim_{x\to\infty} x(\sqrt{x+2}-\sqrt{x})$$
.

(vii)
$$\lim_{x \to \infty} \frac{\sqrt{|x|}}{x}$$

(a) Find the perimeter of a regular n-gon inscribed in a circle of radius r; use radian measure for any trigonometric functions involved. [Answer: $2rn\sin(\pi/n)$.]

(b) What value does this perimeter approach as n becomes very large?

After sending the manuscript for the first edition of this book off to the printer, I thought of a much simpler way to prove that $\lim_{x\to a} x^2 = a^2$ and $\lim_{x\to a} x^3 = a^3$, without going through all the factoring tricks on page 95. Suppose, for example, that we want to prove that $\lim_{x\to a} x^2 = a^2$, where a > 0. Given $\varepsilon > 0$, we simply let δ be the minimum of $\sqrt{a^2 + \varepsilon} - a$ and $a - \sqrt{a^2 - \varepsilon}$ (see Figure 19); then $|x - a| < \delta$ implies that $\sqrt{a^2 - \varepsilon} < x < \sqrt{a^2 + \varepsilon}$, so $a^2 - \varepsilon < x^2 < a^2 + \varepsilon$, or $|x^2 - a^2| < \varepsilon$. It is fortunate that these pages had already been set, so that I couldn't make these changes, because this "proof" is completely fallacious. Wherein lies the fallacy?

