BAPIAHT 1

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{(-x)^k}{(2k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 2

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{(-x)^{k+1}}{(2k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 3

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{(-x)^{2k-1}}{k!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 4

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{(-x)^{2k-1}}{(2k)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 5

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{(-x)^{2k+1}}{(2k)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- г.)	

BAPIAHT 6

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2k}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 7

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 8

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k}}{2^{2k-1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,	
		l
		l

BAPIAHT 9

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{2^{k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 5				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 10

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k}}{2^{k-1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	 ,	
_		
-		

BAPIAHT 11

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2^{2k}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

ĺ				

BAPIAHT 12

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2^k}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,					
			=			
			l			
			Į.			

BAPIAHT 13

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2^{2k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 14

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2^{k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,							
			l					

BAPIAHT 15

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^k}{2^{2k-1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

ĺ				

BAPIAHT 16

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^k}{2^{2k-1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

Група К-16

BAPIAHT 17

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^k}{2^{2k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 18

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{k+1}}{2^{2k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	 ,	
_		
-		

BAPIAHT 19

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{k+1}}{2^k}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 20

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{k+1}}{2^{2k-1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 21

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{k+1}}{2^{2k}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 22

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^k}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 6				
- 1				
- 1				
L				
П				
- 1				
- 1				

BAPIAHT 23

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{k-1}}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

		1	
		1	

BAPIAHT 24

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

Група К-16

BAPIAHT 25

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k+1}}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 26

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{x^{k+1}}{k!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,			
			ı	

BAPIAHT 27

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{x^k}{(k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

		l	
		l	
		l	
		l	
		1	

BAPIAHT 28

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{x^k}{(2k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

		,	
_			

BAPIAHT 29

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{x^{k+1}}{(2k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 30

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k-1}}{k!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,	
		=

BAPIAHT 31

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,			
1				
1				
1				
1				

BAPIAHT 32

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

Група К-16

BAPIAHT 33

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

	,	
		l

BAPIAHT 34

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 35

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{(-x)^{2k+1}}{2^{2k}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- PJ							

BAPIAHT 36

Задача 1.

За виразом
$$\sum_{k=0}^{\infty} \frac{(-x)^{2k+1}}{2^{2k+1}}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 37

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{(-x)^k}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

BAPIAHT 38

Задача 1.

За виразом
$$\sum_{k=1}^{\infty} \frac{(-x)^{k-1}}{(2k-1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				
- 1				

BAPIAHT 39

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{(-x)^{k+1}}{k!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що **збіжність гарантовано**. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

Група К-16

BAPIAHT 40

Задача 1.

За виразом
$$\sum_{k=0}^{+\infty} \frac{(-x)^k}{(k+1)!}$$

написати систему рекурентних співвідношень та початкові умови, на основі яких можна обчислити значення виразу без повторних обчислень тих самих проміжних значень.

Задача 2.

Написати функцію, яка на основі рівностей із завдання 1 обчислює й повертає наближення до значення виразу. Доданки додаються до суми, поки їх модуль більше 10^{-8} . Значення x такі, що збіжність гарантовано. Має не бути повторних обчислень одних і тих самих значень. Перший параметр функції зображує дійсне значення x.

Задача 3.

- 1				

BAPIAHT 41