Background

What is a Database?

- A database is a collection of data.
 - Typically describes the activities of one or more related organizations over time.
- Databases are extremely important.
 - Essential to every business organization.
 - Enterprises
 - Employee data, sales transactions.
 - Web data
 - Amazon, Twitter, Facebook, IMDB, Google, snapchat...

amazon.com

What is a Database?

- A database is a collection of data.
 - Typically describes the activities of one or more related organizations over time.
- Databases are extremely in six ant.
 - Essential to every busing sanization.
 - Enterprises
 - Employee data, sz sactions, bank accounts.
 - Web data
 - Amazon, Tacebook, IMDB, Google, snapchat....

amazon.com

What is a Database Management System?

• A database management system (DBMS) is a software designed to assist in creating, storing, accessing, and updating a database.

Why can't we use a file system to manage our data?

- Suppose a company has a large database.
 - Data needs to be accessed frequently and concurrently.
 - Different queries need to posed easily be answered quickly.
 - Updates to data by different users need to be managed and applied consistently.
 - Access to certain parts of the data by certain users need to be restricted.

Simplified version of MyUCSC Campus Portal on a file system Did "Ann" get an A for CMPS180 in Fall 2013? students.txt Change Bob's grade to B. Did "Bob" enroll in courses.txt a class taught by Prof. Tan? Change Bob's grade to A+. enrolls.txt Which courses are offered by the CS profs.txt department in **Spring 2013?**

Why can't we use a file system to manage our data? (cont'd)

- Special routines will be needed to support the above functionalities over a file system.
 - Data needs to be accessed frequently and concurrently.
 - Add routines to support efficient and concurrent access.
 - Queries need to be *posed easily* be answered *quickly*.
 - Custom routines are needed for different types of queries.
 - Updates to data by different users need to be managed and applied consistently.
 - Add routines to support concurrent access and crash recovery.
 - Access to certain parts of the data by certain users need to be restricted.
 - Add routines to enforce access policies.

Key characteristics of a DBMS Did "Ann" get an A for CMPS277 in Fall 2012? Students Change Bob's grade to B. Did "Bob" enroll in Courses a class taught by Prof. Tan? Change Bob's Enrollments grade to A+. Which courses are offered by the CS Professors department in Spring 2012?

Key characteristics of a DBMS

- Data Model
 - Provides an abstraction of the underlying data.
- High-level language for manipulating data
 - For defining, updating, and processing data.
- Transaction Processing
 - Concurrent access and updates, crash recovery.
- Access control
 - Limit access of certain data to certain users.

Advantages of a DBMS

- Users only need to understand the data model and high-level language for manipulating data.
 - Users focuses on what data is to be accessed and not how data is accessed.
 - Users are not aware of how data is actually stored or laid out on disks.
- Illusion that they are the only users of the DBMS.
- Data integrity is not compromised by system failures.
 - Deposit: Balance = balance + 500;
 - In parallel, a withdrawal for your monthly car payment: Balance = balance - 300;
 - system crashes... What is the balance?

Advantages of a DBMS (cont'd)

- Queries are automatically optimized for efficiency.
- Integrity of data is automatically enforced.
 - E.g., Employee id is unique, age < 200.
- Ease of data administration.
 - Well-developed user interfaces.
- Fast application development.
 - Available APIs and libraries.
- Data is managed centrally.
 - Costs are shared across applications.

Transactions have the ACID properties

- A(tomicity)
 - All-or-nothing execution of transactions.
 - Transactions, once started, will either be completed or rolled back.
- C(onsistency)
 - Transactions preserve the consistency of constraints of data in the database.
 - E.g., credit limit cannot be negative after a transaction.
- I(solation)
 - Each transaction executes as if no other transactions are executing simultaneously.
- D(urability)
 - The effect of a transaction on the database must never be lost, once the transaction completes.

What is a *Relational* Database Management System (RDBMS)?

A bit of history

- First general purpose DBMS was built.
- Integrated data store (IDS)
 - by Charles Bachman of General Electric.
- Network data model
 - The computer navigates through a space of data records connected by pointers. A graph-based data structure.
 - A user needs to formulate the process of navigating through records and pointers to compute an answer for a query.
- 1973 Turing award lecture.
 - "The Programmer as Navigator"

- Hierarchical Data Model proposed by IBM.
- A tree-based data structure.

A bit of history (cont'd)

- 1970s
 - The beginning of *relational* database management systems.
 - Edgar (Ted) F. Codd at the IBM San Jose Research Laboratory (now called IBM Almaden Research Center) published a seminal paper:
 - "A relational model for data for large shared data banks" Communications of the ACM, 1970.

In piazza

- Advocates a radically different data model, called the *relational* data model.
 - All data must be stored in flat, table-like relations.
 - No pointers, no hierarchy!
 - Two database query languages:
 - Relational algebra and relational Calculus.

EmpNo	First Name	Last Name	Dept. Num	Serial Num	Type	User EmpNo
100	Sally	Baker	10-L	3009734-4	Computer	100
101	Jack	Douglas	10-L	3-23-283742	Monitor	100
102	Sarah	Schultz	20-B	2-22-723423	Monitor	100
103	David	Drachmeier	20-B	232342	Printer	100

- System R project started at IBM San Jose Labs in 1974.
- System R eventually became today's DB2.
- 1981 Turing Award Lecture:
 - "Relational Database: A Practical Foundation for Productivity".
- Michael Stonebraker and Eugene Wong at UC Berkeley started the INGRES project based on Codd's papers.
 - Evolved into Postgres (Post Ingres).
 - Evolved into today's open-source PostgreSQL.
- Larry Ellison founded what is today's Oracle Corporation. First Oracle RDBMS was released in 1979.

- played a major role in System R
- created a unified approach to the interrelated problems of concurrency control and crash recovery.
- developed techniques that allowed concurrent execution of many transactions, as well as restart after crashes, while maintaining the consistency of the database.
- proved the correctness of the approach.
- this work led to his Turing Award in 1998.

- · Michael Stonebraker (Turing award: 2014)
 - the inventor of many concepts that were crucial to making databases a reality and that are used in almost all modern database systems.
 - Introduced the notion of query modification, used for integrity constraints and views.
 - introduced the object-relational model, effectively merging databases with abstract data types while keeping the database separate from the programming language.
 - he released these systems as open software, which allowed their widespread adoption and their code bases have been incorporated into many modern database systems.
 - other influential ideas: implementation techniques for column stores and scientific databases and for supporting on-line transaction processing and stream processing.

RDBMS Today

- Lots of relational database management systems.
- http://en.wikipedia.org/wiki/List of relational database management systems
- Examples of open-source relational database management system:
 - MySQL, PostgreSQL

Today data also reside outside enterprises

- Before the Web (and times of Google)
 - Data typically reside in enterprises.
- Today
 - Data resides in enterprises in on the Web
 - Enterprise data
 - Typically sensitive information.
 - Bank accounts, employee data, sale transactions
 - Data on the Web
 - Amazon, Twitter, Facebook, IMDB, Google.

Today's Data Deluge

- "... mankind created 150 exabytes (billion gigabytes) of data in 2005. "
 - The Data Deluge. The Economist. Feb 2010.

"In 2011 alone, 1.8 zettabytes (or 1.8 trillion gigabytes) of data will be created, the equivalent to every U.S. citizen writing 3 tweets per minute for 26,976 years. And over the next decade, the number of servers managing the world's data stores will grow by ten times."

- IDC study, 2011.

From bytes to yottabytes

Multiples of bytes V • T • E						
SI decimal pre	fixes	Binary	IEC binary pre	fixes		
Name (Symbol)	Value	usage	Name (Symbol)	Value		
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰		
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰		
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰		
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰		
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰		
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2^{60}		
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰		
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰		
See also: Multiples of bits · Orders of magnitude of data						

NoSQL databases

- Next generation database systems
 - Handle massive amounts of (non-)relational and schemafree data.
 - Loose model of consistency "eventual consistency" (not ACID).
 - Distributed, horizontally scalable.
 - NoSQL "Not Only SQL"
- Popular NoSQL databases
 - Hadoop / Hbase
 - MongoDB
 - Dynamo DB
 - Neo4J

Supplementary reading material

- Database management systems
 http://en.wikipedia.org/wiki/Database management system
- Fifty years of databases http://wp.sigmod.org/?p=688
- NoSQL systems http://nosql-database.org/
- The Data Deluge. The Economist. http://www.economist.com/node/15579717
- Data, data everywhere. The Economist. http://www.economist.com/node/15557443

Research in data management

- Major conferences in data management
 - SIGMOD/PODS, VLDB, ICDE, EDBT/ICDT, ...
 - PODS and ICDT are the "theory" conferences
- · Major journals in data management
 - ACM TODS, VLDB J, IEEE TKDE, ...
- Top data management research groups in industrial labs:
 - IBM Research Almaden (and several other locations)
 - Microsoft Research Redmond, Silicon Valley
 - AT&T Research Labs
 - HP Labs
 - Yahoo! Research

END