МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ национальный исследовательский университет

Задачи по курсу

квантовая оптика

Выполнил студент 855 группы ФФКЭ МФТИ Атепалихин Артемий Алексеевич

Найти длины волн (мкм), частоты (Гц) и энергии(эВ) для 7 цветов диапазона, видимого глазом человека излучения.

1) Красный

длина волны λ : 690 нм частота ν : 4, 35 · 10¹⁴ Γ ц энергия $\hbar\omega$: 1,8 эВ

2) Оранжевый

длина волны λ : 610 нм частота ν : 5,00 · 10¹⁴ Γ ц энергия $\hbar\omega$: 2,0 эВ

3) Жёлтый

длина волны λ : 580 нм частота ν : 5,02 · 10 14 Гц энергия $\hbar\omega$: 2,1 эВ

4) Зелёный

длина волны λ : 530 нм частота ν : 5, $70 \cdot 10^{14}$ Гц энергия $\hbar\omega$: 2,3 эВ

5) Голубой

длина волны λ : 490 нм частота ν : 6, 12 · 10¹⁴ Γ ц энергия $\hbar\omega$: 2,5 эВ

6) Синий

длина волны λ : 460 нм частота ν : 6, 52 · 10¹⁴ Γ ц энергия $\hbar\omega$: 2,7 эВ

7) Фиолетовый

длина волны λ : 420 нм частота ν : 7, $10 \cdot 10^{14}$ Гц энергия $\hbar\omega$: 3,0 эВ

Задача 2

Найти λ_m для АЧТ при $\mathbf{t}=40^\circ$ С и $t=6000^\circ$ С.

Почему основной цвет растительности на Земле зеленый?

из закона Вина:
$$\lambda_m = \frac{2900}{T}$$

$$T_1 = 313 \text{ K}, T_2 = 6273 \text{ K} \longmapsto \lambda_{m_1} = 927 \text{ нм}, \lambda_{m_2} = 460 \text{ нм}$$

растениям более эернетически выгодно отражать именно зелёный и сине-зелёный свет,

посколько пик излучения Солнца как раз приблизительно 460-490 нм.

Оценить суммарную мощность излучения (Bt), испускаемую Вами при нормальной температуре (t = $36,6^{\circ}$ C) и в состоянии болезни (t = 42° C).

Задача 4

При классическом представлении Э-М поля, при какой его плоской поляризации

(в плоскости падения или перпендикулярно ей) выход фотоэлектронов будет больше при всех равных других параметров излучения и фотокатода.

Задача 5

Определите красную длину волны фотоэффекта на алюминиевом фотокатоде, найдя его работу выхода. Найдите E_{MAX} фотоэлектрона, выбитого из алюминиевого фотокатода 4-ой гармоникой лазера на неодиме.

Задача 6

Постройте линейную функцию запирающего потенциала от частоты $\text{падающего на фотокатод излучения } U_{\mathsf{3ап}} = kV + b.$ Выразите k и b через константы и параметры фотокатода и покажите их на графике.

Задача 7

Покажите, что поглощение / излучение свободного фотона свободным электроном - процесс, запрещенный законами сохранения.

Задача 8

Определите изменение длины волны излучения при рассеянии его на пучке встречных релятивистских электронов, считая, что в результате неупругого столкновения с фотоном электрон часть своей кинетической энергии передал фотону, который отразился назад от релятивистского зеркала налетающих электронов.

Такой эффект получил название обратного комптон-эффекта. Именно обратным комптон-эффектом удается, в частности, объяснить рентгеновское излучение космических объектов, и так на заре лазерной физики хотели получить рентгеновское лазерное излучение.

Найдите и запишите выражения для вариационного принципа Ферма для оптики и вариационного принципа Мопертюи-Лагранжа для механики массовой частицы. Сравните их и попробуйте найти аналогии.

Задача 10

Выпишите выражение для физической величины ДЕЙСТВИЕ (S).

Найдите ее размерность и сравните с размерностью постоянной Планка h.

Запишите фазу плоской волны и фазу волновой функции через S/ h и сравните их временные и пространственные части.

Задача 11

Как по картинке миража понять на юге или на севере это происходит?

Задача 12

Оцените период кристаллической решетки никеля, если дифракционная картина типа Лауэ или Брега происходит с электронами, разогнанными разностью потенциалов в 150 эВ.

Задача 13

Вычислить спектральное фурье - преобразование от функция временной когерентности

Задача 14

Найти выражение для аксиальных мод пустого резонатора и константу из предыдущего равенства для пустого резонатора длины L.

Задача 15

Оценить длину продольной когерентности излучения АЧТ в длинах волн для комнатной температуры и для температуры короны Солнца.

Задача 16

Оценить плотность мощности излучения, создаваемую лазером на AVIF + Nd, имеющего диаметр выходной диафрагмы 2 мм и мощность импульса 100мДж на мишени на расстоянии 5 км.

Найти температуру АЧТ, при которой параметр вырождения его излучения равен единице в видимом диапазоне.