ER e EER -> modello relazionale

Lucia Ferrari

lucia02.ferrari@edu.unife.it

Modello relazionale a partire dal

modello ER

Figure 1: modello ER

Modello relazionale

Modello relazionale corrispondente:

Figure 2: Risultato della trasformazione da modello ER a modello relazionale

1) Trasformazione delle entità forti

Per ogni entità forte E presente nel modello ER si crea una relazione R che:

- include tutti gli attributi semplici di E
- include gli attributi semplici che formano quelli composti
- Sceglie una delle chiave primarie di E come chiave primaria di R
- Se la chiave primaria di E è composta allora l'insieme dei suo attributi semplici forma la chiave primaria per $\mathbb R$

Figure 3: Risultato della trasformazione delle entità forti

2) Trasformazione delle entità deboli

Per ogni entità debole W del modello ER con entità forte E si crea una relazione R che:

- include tutti gli attributi semplici (o quelli semplici degli attributi composti) di W come attributi di R
- include come foreign key di R la chiave primaria della RELAZIONE creata con ${\bf E}$
- include come chiave primaria di R l'insieme dato da: chiave primaria di E e chiave parziale di W

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship

Figure 4: Risultato della trasformazione delle entità deboli (Essn è anche FK, collegata ad Employee)

3) Trasformazione delle associazioni 1:1

Per ogni associazione binaria 1:1 R nel modello ER, si identificano le relazioni S e T che partecipano in R. Poi esistono diversi approcci:

- 1. Scelgo una delle due relazioni, ad esempio S e includo come foreign key in S la chiave primaria di T. Tutti gli attributi semplici/composti di R vengono inseriti come attributi semplici di S. Come relazione 'S' è meglio scegliere quella che ha una partecipazione totale in R.
- 2. Creazione di un'unica relazione data unendo S e T in una unica. Può essere fatto solo quando entrambe le entità hanno una partecipazione totale alla relazione.
- Creazione di una terza relazione R che include come foreing keys le chiavi primarie di S e T. Gli attributi semplici sono quelli dell'associazione di partenza R.

4) Trasformazione delle associazioni 1:N e N:1

- Per ogni associazione 1: N di R, si identifica la relazione S che rappresenta l'entità al lato N di R e includi come foreign key di S la chiave primaria di T (che rappresenta l'entità che partecipa al lato 1). Gli attributi semplici di R vengono inclusi nella relazione S.
- 2. Creazione di una terza relazione R che include come foreign keys le chiavi primarie di S e T. Gli attributi semplici sono quelli dell'associazione di partenza R.

Figure 5: modello ER

5) Trasformazione di associazioni M:N

Ogni relazione M:N R, crea una nuova relazione S per rappresentare R. Include come foreign key di S le chiavi primarie delle relazioni create a partire dalle entità partecipanti in R che diventano anche primary key di S. Tutti gli attributi semplici/composti di R vengono aggiunti a S

Figure 6: Risultato

6) Trasformazione attributi multivalore

Per ogni attributo multivalore A si crea una nuova relazione R che include un attributo corrispondente ad A e la chiave primaria K (dell'entità a cui è collegato A) come foreign key.

La chiave primaria è data dalla combinazione di A e K.

Se l'attributo è multivalore vengono incluse le sue componenti semplici.

DEPT_LOCATIONS

Figure 7: Risultato

7) Trasformazione di associazioni N-arie

Per ogni associazione n-aria di tipo R, con n > 2 si crea una nuova relazione S per rappresentare R. Si include come foreign key di S le chiavi primarie delle relazioni che rappresentano le entità partecipanti.

Sono anche inclusi gli attributi semplici/composti dell'associazione.

La chiave primaria di S è data dall'unione delle chiavi delle entità coinvolte

Figure 8: Risultato

Corrispondenza tra modello ER e relazionale

ER MODEL

Entity type

1:1 or 1:N relationship type

M:N relationship type

n-ary relationship type

Simple attribute

Composite attribute

Multivalued attribute

Value set

Key attribute

RELATIONAL MODEL

Entity relation

Foreign key (or relationship relation)

Relationship relation and two foreign keys

Relationship relation and n foreign keys

Attribute

Set of simple component attributes

Relation and foreign key

Domain

Primary (or secondary) key

Mappatura del modello EER

8) Mappatura di specializzazione/generalizzazione

Esistono diversi modi in cui mappare una specializzazione/generalizzazione.

Ogni specializzazione con m sottoclassi $\{S_1, S_2, \ldots, S_m\}$ e superclasse C, dove gli attributi di C sono $\{k, a_1, \ldots, a_n\}$ e k è la chiave primaria può essere convertita tramite le seguenti opzioni:

Opzione: multiple relazioni

Multiple relazioni Crea una relazione L per C (la superclasse) con attributi Attrs(L) = {k, a₁,..., a_n} e PK(L) = k. Crea una relazione L_i per ogni sottoclasse S_i, 1 ≤ i ≤ m, con attributi: Attrs(L_i) = {k} ∪ {attributi di S_i} e PK(L_i) = k. La chiave primaria di ogni sottoclasse è anche foreign key verso la superclasse. Questo metodo funzione con ogni tipo di specializzazione (totale/parziale, disgiunta/sovrapposta).

Opzione: multiple relazioni II

2. Multiple relazioni - solo sottoclassi: crea una relazione per ognuna delle sottoclassi, con gli attributi:

 $Attrs(L_i) = \{k, a_1, \dots, a_n\} \cup \{\text{attributi di } S_i\} \text{ e } PK(L_i) = k.$ Questa opzione funziona solo con le specializzazione che sono TOTALI e DISGIUNTE.

STUDENT (<u>PID</u> , GPA , NAME , AGE)
EMPLOYEE (<u>PID</u> , SALARY , NAME , AGE)

Opzione: singole relazioni

 Single relazioni con attributo tipo: crea una SINGOLA relazione L con attributi

 $Attrs(L) = \{k, a_1, \ldots, a_n\} \cup \{\text{attributi delle sottoclassi}\} \cup \{t\}$ e PK(L) = k. L'attributo t è chiamato TIPO ed è un attributo che indica a quale sottoclasse appartiene ogni tupla, se vi appartiene. Questa opzione funziona solo per le sottoclassi che sono DISGIUNTE. Potenzialmente vengono creati molti attributi nulli.

PERSON (PID , NAME , AGE , SALARY , GPA , PERSONTYPE)

Figure 9: In questo caso PERSONTYPE può avere valore 'student' oppure 'employee' o NULL

Opzione: singole relazioni II

1. Singole relazioni: crea una SINGOLA relazione L con attributi:

$$Attrs(L) = \{k, a_1, \ldots, a_n\} \cup \{\text{attributi delle sottoclassi}\} \cup \{t_1, \ldots, t_m\}$$
 e $PK(L) = k$. Ogni t_i , $1 \leq i \leq m$, è un attributo booleano che indica se la tupla appartiene a S_i . Questo funziona anche per le specializzazioni le cui sottoclassi si sovrappongono.

PERSON (<u>PID</u> , NAME , AGE , SALARY , GPA , STUDENT , EMPLOYEE)

Figure 10: STUDENT e EMPLOYEE possono avere valore true o false. Es: student=true indica che la tupla appartiene alla sottoclasse student

Una sottoclasse condivisa da multiple superclassi indica più eridarietà. Può essere utilizzato uno qualunque dei metodi precedenti per rappresentarla.

9) Trasformazione dei tipi unione

Un tipo unione è una SOTTOCLASSE dell'unione di due o più superclassi che possono avere chiavi diverse.

Per mappare un tipo unioni con superclassi con chiavi di tipo differente è necessario creare un nuovo attributo chiave (chiamato chiave surrogata) nel creare la relazione corrispondente al tipo unione, la chiave surrogata diventa una foreign key nelle superclassi (collegamento DA superclasse A sottoclasse).

Se la superclassi NON hanno chiavi differenti non è necessaria la chiave surrogata.

Esempio mappatura tipi unione

Esercizi

Convertire in un modello relazionale i seguenti esercizi già svolti:

- Esercizio sui veicoli (slide Lezione 1 esercizio 1)
- Esercizio ecommerce (slide Lezione 1 esercizio 2)
- Esercizio biblioteca (slide Lezione 2)
- Esercizio aste (slide Lezione 3)
- Esercizio medici e pazienti (slide Lezione 4)
- Esercizio Social Network (slide Lezione 4)