Exploratory Data Analysis (EDA)

Understanding Customer Behaviour and Churn **Mina Michel**

What is EDA?

- EDA helps uncover patterns, relationships, and trends in the data.
- Critical for understanding which **features** influence customer churn.
- Sets the **foundation** for building predictive models.

We begin by loading the dataset to get an initial understanding of its structure and the nature of the data.

- Inspect the data to understand its structure, types, and completeness.
- Summarize key statistics of the dataset (mean, median, missing values).

```
# Load the dataset
import pandas as pd
data = pd.read_csv('Customer Churn.csv')
data.head()
```

	Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group	Tariff Plan	Status	Age	Customer Value	Churn
0	8	0	38	0	4370	71	5	17	3	1	1	30	197.640	0
1	0	0	39	0	318	5	7	4	2	1	2	25	46.035	0
2	10	0	37	0	2453	60	359	24	3	1	1	30	1536.520	0
3	10	0	38	0	4198	66	1	35	1	1	1	15	240.020	0
4	3	0	38	0	2393	58	2	33	1	1	1	15	145.805	0

- The dataset contains
 3150 rows and 14 columns.
- No missing values.
- Most columns are
 integers except for
 Customer Value, is a float.
- The Churn column is the target variable for prediction.

```
data.info() # Check for data types and missing values
data.describe() # Summary statistics
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 344.7 KB

```
RangeIndex: 3150 entries, 0 to 3149
Data columns (total 14 columns):
    Column
                             Non-Null Count
                                             Dtype
    Call Failure
                             3150 non-null
                                             int64
    Complains
                             3150 non-null
                                             int64
    Subscription Length
                                             int64
                             3150 non-null
    Charge Amount
                             3150 non-null
                                             int64
    Seconds of Use
                                             int64
                             3150 non-null
5 Frequency of use
                             3150 non-null
                                             int64
    Frequency of SMS
                                             int64
                             3150 non-null
    Distinct Called Numbers 3150 non-null
                                             int64
    Age Group
                             3150 non-null
                                             int64
    Tariff Plan
                             3150 non-null
                                             int64
                                             int64
    Status
                             3150 non-null
                                             int64
    Age
                             3150 non-null
    Customer Value
                                             float64
                             3150 non-null
    Churn
                             3150 non-null
                                             int64
dtypes: float64(1), int64(13)
```

	Call Failure	Complains	Subscription Length	Charge Amount	Seconds of Use	Frequency of use	Frequency of SMS	Distinct Called Numbers	Age Group
count	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000	3150.000000
mean	7.627937	0.076508	32.541905	0.942857	4472.459683	69.460635	73.174921	23.509841	2.826032
std	7.263886	0.265851	8.573482	1.521072	4197.908687	57.413308	112.237560	17.217337	0.892555
min	0.000000	0.000000	3.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
25%	1.000000	0.000000	30.000000	0.000000	1391.250000	27.000000	6.000000	10.000000	2.000000
50%	6.000000	0.000000	35.000000	0.000000	2990.000000	54.000000	21.000000	21.000000	3.000000
75%	12.000000	0.000000	38.000000	1.000000	6478.250000	95.000000	87.000000	34.000000	3.000000
max	36.000000	1.000000	47.000000	10.000000	17090.000000	255.000000	522.000000	97.000000	5.000000

2. Data Cleaning and Preparation

```
# Check for missing values
 print("Missing values in each column:\n", data.isnull().sum())
 # Check for duplicate rows
 duplicate_rows = data.duplicated().sum()
 print(f"\nNumber of duplicate rows: {duplicate rows}")
Missing values in each column:
Call Failure
Complains
Subscription Length
Charge Amount
Seconds of Use
Frequency of use
Frequency of SMS
Distinct Called Numbers
Age Group
Tariff Plan
Status
Age
Customer Value
Churn
dtype: int64
```

Number of duplicate rows: 300

The data has no missing values but has 300 duplicate rows.

2. Data Cleaning and Preparation

Remove duplicate rows

```
data_cleaned = data.drop_duplicates()
  # Verify that duplicates are removed
  print(f'Number of rows after removing duplicates: {data_cleaned.shape[0]}')
Number of rows after removing duplicates: 2850
 # Clean column names (remove extra spaces and strip them)
 data_cleaned.columns = data_cleaned.columns.str.replace(' ', ' ').str.strip()
 # Confirm cleaned column names
 print("Cleaned column names:", data_cleaned.columns)
Cleaned column names: Index(['Call Failure', 'Complains', 'Subscription Length', 'Charge Amount',
      'Seconds of Use', 'Frequency of use', 'Frequency of SMS',
      'Distinct Called Numbers', 'Age Group', 'Tariff Plan', 'Status', 'Age',
      'Customer Value', 'Churn'],
     dtype='object')
```

Churn Rate Distribution:

Class **imbalance** observed, which could affect model performance.

Histograms for Distributions

Histograms for Distributions

Histograms for Distributions

Call Failure Distribution by Churn Status

A higher number of call failures correlates with increased churn rates.

Frequency of Use by Churn Status

Customers with fewer service interactions are more likely to churn. Higher frequency users are generally retained.

Seconds of Use by Churn Status

Churners generally spend less time on the service. Longer engagement correlates with retention.

Frequency of SMS Distribution by Churn Status

Customers with fewer service interactions are more likely to churn. Higher frequency users are generally retained.

Complains Distribution by Churn Status

Customers who register more complaints are more likely to churn.

Complains Distribution by Churn Status

Customers who register more complaints are more likely to churn.

Subscription Length Distribution by Churn Status

Longer subscription lengths are associated with lower churn rates.

Customer Value Distribution by Churn Status

Non-churned customers have a higher overall customer value distribution compared to churned customers.

Distinct Called Numbers Distribution by Churn Status

Customers who engage with a broader range of contacts are less likely to churn.

Interactive Dashboard Using Plotly

This Dashboard visually highlights key metrics differentiating churned (in yellow) and non-churned (in blue) customers.

Summary of Findings

- Strong correlation between usage frequency and churn likelihood. Low engagement (frequency/seconds of use) strongly correlates with churn.
- EDA provided actionable insights for the predictive model.
- Insights were used to guide key recommendations.