RényiCL: Contrastive Representation Learning with Skew Rényi Divergence

-Summary-

- Two key components of contrastive learning:
- 1. Data augmentation [starting from SimCLR, 2020]
 - : Generate different views for positive pairs where the views share relevant information

- 2. Contrastive objective
 - : Enforces the representation to capture the shared information between two positive pairs and pushing the negative pairs
 - 1) Donsker-Varadhan (DV) objective [Belghazi et al., 2018] :

$$D_{KL}(P \parallel Q) = \sup_{f \in \mathcal{F}} I_{DV}(f), \quad where \ I_{DV} \coloneqq \mathbb{E}_P[f] - \log \mathbb{E}_Q[e^f]$$

Hence,
$$I(X;Y) = D_{KL}(P_{XY} \parallel P_X P_Y) = \sup_{f \in \mathcal{F}} \mathbb{E}_{P_{XY}}[f(x,y)] - \log \mathbb{E}_{P_X P_Y}[e^{f(x,y)}]$$

 $: I_{DV}$ for mutual information

Problem:

- a. DV objective may have large variance unless one uses large number of samples
- b. Empirically, Contrastive learning with DV objective suffers from training instability

2) Contrastive predictive coding (CPC) objective [Oord et al., 2018]:

$$I_{CPC}(f) := \mathbb{E}\left[\frac{1}{B} \sum_{i=1}^{B} \log \frac{(K+1) \cdot e^{f(x_i, y_i^+)}}{e^{f(x_i, y_i^+)} + \sum_{j=1}^{K} e^{f(x_i, y_{ij}^-)}}\right]$$

: Address issues from DV-objective => Popular choice for contrastive objective

B: batch size of samples

Problem:

a. It is well known $I_{CPC}(f) \le \min\{I(X;Y), \log(K+1)\}\$ (When $I(X;Y) \gg \log(K+1)$, it suffers high bias problem)

3) α -CPC objective [Poole et al., 2019] :

$$I_{CPC}^{(\alpha)}(f) \coloneqq \mathbb{E}\left[\frac{1}{B}\sum_{i=1}^{B}\log\frac{e^{f(x_i,y_i^+)}}{\alpha \cdot e^{f(x_i,y_i^+)} + \frac{1-\alpha}{K} \cdot \sum_{j=1}^{K}e^{f(x_i,y_{ij}^-)}}\right]$$

: Can achieves smaller bias (: $I_{CPC}^{(\alpha)}(f) \leq \log\left(\frac{K+1}{\alpha}\right)$) using trade-off between bias & variance

B: batch size of samples

K : size of negative samples

Problem:

a. It is not guaranteed that $I_{CPC}^{(\alpha)}(f) \leq I(X;Y)$ (exists counter-example) : Smaller α can reduce the bias, but also induce higher estimate above I(X;Y)

4) α -MLCPC objective [Song et al., 2020] :

$$I_{MLCPC}^{(\alpha)}(f) \coloneqq \mathbb{E}\left[\frac{1}{B} \sum_{i=1}^{B} \log \frac{e^{f(x_{i}, y_{i}^{+})}}{\frac{\alpha}{B} \sum_{i=1}^{B} e^{f(x_{i}, y_{i}^{+})} + \frac{1 - \alpha}{BK} \cdot \sum_{i=1}^{B} \sum_{j=1}^{K} e^{f(x_{i}, y_{ij}^{-})}}\right]$$

: Can achieves smaller bias (: $I_{MLCPC}^{(\alpha)}(f) \leq \log\left(\frac{K+1}{\alpha}\right)$) using trade-off between bias & variance. Also, It is guaranteed that $I_{MLCPC}^{(\alpha)}(f) \leq I(X;Y)$.

B: batch size of samples

K: size of negative samples

What makes for good views for Contrastive Learning? [Tian et al., 2020]

- One problem on data augmentation
 - 1. Augmented views can share insufficient information.
 - => The representation of them is hard to be learned with sufficient features.

- 2. Augmented views can share too much information.
 - => the views may share nuisance features that degrade the generalization.

Introduction (Rényi divergence)

How about adopting Rényi divergence instead of KL-divergence for MI estimation?

• Rényi divergence of order $\gamma \in (0,1) \cup (1,\infty)$: (when $P \ll Q$)

$$R_r(P \parallel Q) \coloneqq \frac{1}{\gamma(\gamma - 1)} \log \mathbb{E}_P \left[\left(\frac{dP}{dQ} \right)^{\gamma - 1} \right]$$

- [Background] Rényi entropy and Rényi divergence (continuous ver) [from Erven, 2007] :
 - Rényi entropy: most general way to quantify information while preserving some axioms to satisfy:

$$H_{\gamma}(X) = \frac{1}{1-\gamma} \log \mathbb{E}_{P}[(dP)^{\gamma-1}] = \frac{1}{1-\gamma} \log \int P^{\gamma} d\mu$$

Introduction (Rényi divergence)

- [Background] Rényi entropy and Rényi divergence :
 - 2. Rényi divergence :

$$R_r(P \parallel Q) \coloneqq \frac{1}{\gamma(\gamma - 1)} \log \mathbb{E}_P \left[\left(\frac{dP}{dQ} \right)^{\gamma - 1} \right]$$

Property:

- ① [Positivity] : For any $\gamma \in (0,1) \cup (1,\infty)$: $R_{\gamma}(P \parallel Q) \geq 0 \ \ \text{ and equality holds iff } P = Q$
- ② [Extended orders]:

$$\lim_{\gamma \to 1} R_r(P \parallel Q) = D_{KL}(P \parallel Q)$$

$$R_2(P \parallel Q) = \frac{1}{2}\log(1+\mathcal{X}^2(P,Q))$$
, where $\mathcal{X}^2(P,Q) := \int \left(\frac{dP}{dQ}-1\right)^2 dQ$

Rényi divergence

- Using similar DV objective approach to Rényi divergence :
- [Lem] Rényi divergence of order γ admits following variational form [Birrell et al., 2021]:

$$R_r(P \parallel Q) = \sup_{f \in \mathcal{F}} I_{Renyi}^{(\gamma)}(f) \quad \text{for} \quad I_{Renyi}^{(\gamma)}(f) \coloneqq \frac{1}{\gamma - 1} \log \mathbb{E}_P \left[e^{(\gamma - 1)f} \right] - \frac{1}{\gamma} \log \mathbb{E}_Q \left[e^{\gamma f} \right]$$

where optimal $f^* = \log(\frac{dP}{dQ})$

- Using this lemma, $R_r(P_{XY} \parallel P_X P_Y) = \sup_{f \in \mathcal{F}} I_{Renyi}^{(\gamma)}(f)$ where $I_{Renyi}^{(\gamma)}(f) \coloneqq \frac{1}{\gamma - 1} \log \mathbb{E}_{P_{XY}} \left[e^{(\gamma - 1)f} \right] - \frac{1}{\gamma} \log \mathbb{E}_{P_X P_Y} \left[e^{\gamma f} \right]$
 - => Can we estimate MI by maximizing $I_{Renvi}^{(\gamma)}(f)$? [No, it suffer from high variance]

Rényi divergence

• Theoretically, We can show as below:

• [Thm] Let P_m and Q_n be the empirical distributions of m i.i.d samples from P and Q_n then

$$\lim_{n\to\infty} n \cdot Var_{P,Q}[\hat{I}_{Renyi}^{(\gamma)}(f^*)] \ge \frac{e^{\gamma^2 D_{KL}(P\parallel Q)} - \gamma^2}{e^{\gamma(\gamma-1)R_{\gamma}(P\parallel Q)}}$$

where
$$\hat{I}_{Renyi}^{(\gamma)}(f) \coloneqq \frac{1}{\gamma - 1} \log \mathbb{E}_{P_m} \left[e^{(\gamma - 1)f} \right] - \frac{1}{\gamma} \log \mathbb{E}_{Q_n} \left[e^{\gamma f} \right]$$

• Interpretation :

Even if we achieve optimal f^* , the variance of $\hat{I}_{Renyi}^{(\gamma)}(f)$ can explodes as we suggested previous slide.

Interpretation of CPC and MLCPC

- Recall that generalized form of α -CPC and α -MLCPC:
 - 1. α -CPC:

$$I_{CPC}^{(\alpha)}(f) = \mathbb{E}_{P_{XY}}[f(x,y)] - \mathbb{E}_{P_X}\left[\log\left(\alpha\mathbb{E}_{P_{Y|X}}[e^{f(x,y)}] + (1-\alpha)\mathbb{E}_{P_Y}[e^{f(x,y)}]\right)\right]$$

2. α -MLCPC:

$$I_{MLCPC}^{(\alpha)}(f) = \mathbb{E}_{P_{XY}}[f(x,y)] - \log(\alpha \mathbb{E}_{P_{XY}}[e^{f(x,y)}] + (1-\alpha)\mathbb{E}_{P_{X}P_{Y}}[e^{f(x,y)}])$$

• If we define α -skew KL divergence, then we can connect above things : ($\alpha \in [0,1]$)

$$D_{KL}^{(\alpha)}(P \parallel Q) \coloneqq D_{KL}(P \parallel \alpha P + (1 - \alpha)Q)$$

Interpretation of CPC and MLCPC

• First observe that we can write DV objective of α -skew KL divergence as follows :

$$D_{KL}^{(\alpha)}(P \parallel Q) = \sup_{f \in \mathcal{F}} \mathbb{E}_{P}[f] - \log(\alpha \mathbb{E}_{P}[e^{f}] + (1 - \alpha) \mathbb{E}_{Q}[e^{f}])$$

• Sketch : (Put $T^*(X) = \log \frac{P(X)}{Q(x)}$ and replace $Q(x) \Rightarrow \alpha P(x) + (1 - \alpha)Q(x)$)

$$\mathbb{E}_{P}[T^{*}(X)] - \log(\mathbb{E}_{Q}[e^{T^{*}(X)}]) \stackrel{(a)}{=} \mathbb{E}_{P}\left[\log\frac{P(X)}{Q(X)}\right] - \log\left(\mathbb{E}_{Q}\left[e^{\log\frac{P(X)}{Q(X)}}\right]\right) \quad \text{Optimal } f^{*} = \log\left(\frac{P(X)}{\alpha P + (1-\alpha)Q}\right)$$

$$\stackrel{(b)}{=} D_{KL}(P||Q) - \log\left(\mathbb{E}_{Q}\left[\frac{P(X)}{Q(X)}\right]\right)$$

$$\stackrel{(c)}{=} D_{KL}(P||Q) - \log(\int_{\mathcal{X}} Q(x)\frac{P(x)}{Q(x)}dx)$$

$$= D_{KL}(P||Q) - \log(\int_{\mathcal{X}} P(x)dx)$$

$$\stackrel{(d)}{=} D_{KL}(P||Q) - \log(1)$$

$$= D_{KL}(P||Q).$$

Interpretation of CPC and MLCPC

• Then, we can figure out the followings:

1.
$$\sup_{f \in \mathcal{F}} I_{CPC}^{(\alpha)}(f) = \mathbb{E}_{P_X} \left[D_{KL}^{(\alpha)} \left(P_{Y|X} \parallel P_Y \right) \right] \text{ where } f^* = \log \left(\frac{P_{Y|X}}{\alpha P_{Y|X} + (1-\alpha)P_Y} \right)$$

2.
$$\sup_{f \in \mathcal{F}} I_{MLCPC}^{(\alpha)}(f) = D_{KL}^{(\alpha)}(P_{XY} \parallel P_X P_Y) \text{ where } f^* = \log\left(\frac{P_{XY}}{\alpha P_{XY} + (1-\alpha)P_X P_Y}\right)$$

(By comparing above formula to DV objective of α -skew KL divergence)

Bounded variance property for α -skew KL divergence

• Using α -skew KL divergence concept, we can show that the variance of CPC and MLCPC become low-variance estimator (having bounded variance) of the MI: (Similarly, we can show bounded variance property for $R_2^{(\alpha)}$)

• **[Thm]** Let P_m and Q_n be the empirical distributions of m i.i.d samples from P and Q_n and assume there is $\hat{f} \in \mathcal{F}$ such that $\left|I_{KL}^{(\alpha)}(\hat{f}) - D_{KL}^{(\alpha)}(P_m \parallel Q_n)\right| < \epsilon_f$ for some $\epsilon_f > 0$. Then, for any $\alpha < \frac{1}{8}$, the variance of estimator satisfies :

$$Var_{P,Q}\left[\hat{I}_{KL}^{(\alpha)}(\hat{f})\right] \le c_1 \epsilon_f + \frac{c_2(\alpha)}{\min\{n,m\}} + \frac{c_3 \log^2(\alpha m)}{m} + \frac{c_4 \log^2(c_5 n)}{\alpha^2 n}$$

where
$$c_2(\alpha) = \min\left\{\frac{1}{\alpha}, \frac{\chi^2(P\|Q)}{1-\alpha}\right\}$$

Small α can leads to loose upper bound

Variational estimation of skew Rényi divergence

• Again, similarly define α -skew Rényi divergence of order γ :

$$R_{\gamma}^{(\alpha)}(P \parallel Q) \coloneqq R_{\gamma}(P \parallel \alpha P + (1 - \alpha)Q)$$

• Also, define (α, γ) - Rényi MLCPC (RMLCPC) objective using DV-objective :

$$I_{RMLCPC}^{(\alpha,\gamma)}(f) \coloneqq \frac{1}{\gamma - 1} \log \mathbb{E}_{P_{XY}} \left[e^{(\gamma - 1)f(x,y)} \right] - \frac{1}{\gamma} \log \left(\alpha \mathbb{E}_{P_{XY}} \left[e^{\gamma f(x,y)} \right] + (1 - \alpha) \mathbb{E}_{P_{X}P_{Y}} \left[e^{\gamma f(x,y)} \right] \right)$$

such that
$$\sup_{f \in \mathcal{F}} I_{RMLCPC}^{(\alpha,\gamma)}(f) = R_{\gamma}^{(\alpha)}(P_{XY} \parallel P_X P_Y)$$

• Now, we can use $I_{RMLCPC}^{(\alpha,\gamma)}(f)$ to estimate $R_{\gamma}^{(\alpha)}(P_{XY} \parallel P_X P_Y)$ by maximizing it. [InfoMax principle]

Rényi Contrastive Representation Learning

• Inspired by the fact that "Rényi divergence penalizes more when two distributions differ", We can expect RényiCL can learn more discriminative representation.

(:Harder data augmentation in CL results in more dissimilar augmented positive pairs)

Adopting InfoMax principle :

Our goal: find g which discriminates positive / negative pairs as much as possible

$$\sup_{g:\mathcal{X}\to\mathbb{R}^d} D_{KL}\left(P_{g(V)g(V')}\parallel P_{g(V)}P_{g(V')}\right) = \sup_{g:\mathcal{X}\to\mathbb{R}^d} I\left(g(V);g(V')\right) \leq I(V;V')$$

Rényi Contrastive Representation Learning

• If we adopt α -MLCPC or (α, γ) -RMLCPC objective, our goal becomes as follows :

1. α -MLCPC objective :

$$\sup_{g:\mathcal{X}\to\mathbb{R}^d,f\in\mathcal{F}} I_{MLCPC}^{(\alpha)}(f,g) = \sup_{g:\mathcal{X}\to\mathbb{R}^d} D_{KL}^{(\alpha)}\left(P_{g(V)g(V')} \parallel P_{g(V)}P_{g(V')}\right)$$

2. (α, γ) -RMLCPC objective :

$$\sup_{g:\mathcal{X}\to\mathbb{R}^d,f\in\mathcal{F}}I_{RMLCPC}^{(\alpha,\gamma)}(f,g) = \sup_{g:\mathcal{X}\to\mathbb{R}^d}R_{\gamma}^{(\alpha)}\left(P_{g(V)g(V')}\parallel P_{g(V)}P_{g(V')}\right)$$

• We claimed that "Rényi divergence penalizes more when two distributions differ", then How does $I_{RMLCPC}^{(\alpha,\gamma)}(f)$ induces different updating rule during GD update?

$$\mathsf{Recall:} \boxed{ \mathcal{I}^{(\alpha)}_{\mathtt{MLCPC}}(f_{\theta}) = \mathbb{E}_{v,v^+}[f_{\theta}(v,v^+)] - \log\left(\alpha \mathbb{E}_{v,v^+}[e^{f_{\theta}(v,v^+)}] + (1-\alpha)\mathbb{E}_{v,v^-}[e^{f_{\theta}(v,v^-)}]\right)}$$

• For the baseline case $(I_{MLCPC}^{(\alpha)})$:

$$\begin{split} &\nabla_{\theta} \mathcal{I}_{\texttt{MLCPC}}^{(\alpha)}(f_{\theta}) \\ &= \mathbb{E}_{v,v^{+}} [\nabla_{\theta} f_{\theta}(v,v^{+})] - \frac{\alpha \mathbb{E}_{v,v^{+}} [e^{f_{\theta}(v,v^{+})} \nabla_{\theta} f_{\theta}(v,v^{+})] + (1-\alpha) \mathbb{E}_{v,v^{-}} [e^{f_{\theta}(v,v^{-})} \nabla_{\theta} f_{\theta}(v,v^{-})]}{\alpha \mathbb{E}_{v,v^{+}} [e^{f_{\theta}(v,v^{+})}] + (1-\alpha) \mathbb{E}_{v,v^{-}} [e^{f_{\theta}(v,v^{-})}]} \\ &= \mathbb{E}_{v,v^{+}} [\nabla_{\theta} f_{\theta}(v,v^{+})] - \left(\mathbb{E}_{\mathsf{sg}(q_{\theta}(v,v^{+}))} [\nabla_{\theta} f_{\theta}(v,v^{+})] + \mathbb{E}_{\mathsf{sg}(q_{\theta}(v,v^{-}))} [\nabla_{\theta} f_{\theta}(v,v^{-})] \right), \end{split}$$
 where

$$q_{\theta}(v, v^{+}) \propto \frac{\alpha p(v, v^{+}) e^{f_{\theta}(v, v^{+})}}{\alpha \mathbb{E}_{v, v^{+}} [e^{f_{\theta}(v, v^{+})}] + (1 - \alpha) \mathbb{E}_{v, v^{-}} [e^{f_{\theta}(v, v^{-})}]}$$
$$q_{\theta}(v, v^{-}) \propto \frac{(1 - \alpha) p(v) p(v^{-}) e^{f_{\theta}(v, v^{-})}}{\alpha \mathbb{E}_{v, v^{+}} [e^{f_{\theta}(v, v^{+})}] + (1 - \alpha) \mathbb{E}_{v, v^{-}} [e^{f_{\theta}(v, v^{-})}]},$$

$$\bullet \ \ \mathsf{Recall:} \ \ \overline{\mathcal{I}^{(\alpha,\gamma)}_{\mathtt{RMLCPC}}(f_{\theta})} = \frac{1}{\gamma-1} \log \mathbb{E}_{v,v^+}[e^{(\gamma-1)f_{\theta}(v,v^+)}] - \frac{1}{\gamma} \log \left(\alpha \mathbb{E}_{v,v^+}[e^{\gamma f_{\theta}(v,v^+)}] + (1-\alpha)\mathbb{E}_{v,v^-}[e^{\gamma f_{\theta}(v,v^-)}]\right)$$

• For the RMLCPC case $(I_{RMLCPC}^{(\alpha,\gamma)})$:

$$\begin{split} &\nabla_{\theta} \mathcal{I}_{\text{RMLCPC}}^{(\alpha,\gamma)}(f_{\theta}) \\ &= \mathbb{E}_{q_{\theta}^{(1)}(v,v^{+})}[\nabla_{\theta} f_{\theta}(v,v^{+})] - \frac{\alpha \mathbb{E}_{v,v^{+}}[e^{\gamma f_{\theta}(v,v^{+})}\nabla_{\theta} f_{\theta}(v,v^{+})] + (1-\alpha)\mathbb{E}_{v,v^{-}}[e^{\gamma f_{\theta}(v,v^{-})}\nabla_{\theta} f_{\theta}(v,v^{-})]}{\alpha \mathbb{E}_{v,v^{+}}[e^{\gamma f_{\theta}(v,v^{+})}] + (1-\alpha)\mathbb{E}_{v,v^{-}}[e^{\gamma f_{\theta}(v,v^{-})}]} \\ &= \mathbb{E}_{\text{sg}(q_{\theta}^{(1)}(v,v^{+}))}[\nabla_{\theta} f_{\theta}(v,v^{+})] - \left(\mathbb{E}_{\text{sg}(q_{\theta}^{(2)}(v,v^{+}))}[\nabla_{\theta} f_{\theta}(v,v^{+})] + \mathbb{E}_{\text{sg}(q_{\theta}^{(2)}(v,v^{-}))}[\nabla_{\theta} f_{\theta}(v,v^{-})]\right), \end{split}$$

where

$$\begin{split} q_{\theta}^{(1)}(v,v^+) &\propto p(v,v^+) e^{(\gamma-1)f_{\theta}(v,v^+)} & \text{Higher $\nabla_{\!\theta} f_{\theta}$ -> larger importance weight q_{θ}} \\ q_{\theta}^{(2)}(v,v^+) &\propto \frac{\alpha p(v,v^+) e^{\gamma f_{\theta}(v,v^+)}}{\alpha \mathbb{E}_{v,v^+}[e^{\gamma f_{\theta}(v,v^+)}] + (1-\alpha)\mathbb{E}_{v,v^-}[e^{\gamma f_{\theta}(v,v^-)}]} \\ q_{\theta}^{(2)}(v,v^-) &\propto \frac{(1-\alpha)p(v)p(v^-) e^{\gamma f_{\theta}(v,v^-)}}{\alpha \mathbb{E}_{v,v^+}[e^{\gamma f_{\theta}(v,v^+)}] + (1-\alpha)\mathbb{E}_{v,v^-}[e^{\gamma f_{\theta}(v,v^-)}]}, \end{split}$$

• In conclusion , RMLCPC has following properties :

1. Hard negative sampling:

the gradient weights more on harder negatives (v, v^-) with high values of $f_{\theta}(v, v^-)$ as γ increases.

2. Easy positive sampling:

the gradient weights more on easier positives (v, v^+) with high value of $f_{\theta}(v, v^+)$ as $\gamma \in (1, \infty)$ increases.

- Effect of α in RényiCL: Using small α (practical case to reduce bias) leads to the training largely affected by easy positive and hard negative (small effect on 2^{nd} term)
 - => helps to learn discriminative representation

• In conclusion, RMLCPC has following properties:

• Effect of α in RényiCL: Using small α (practical case to reduce bias) leads to the training largely affected by easy positive and hard negative (small effect on 2^{nd} term) => helps to learn discriminative representation

α^{-1}	1024	4096	16384	65536
Base Aug. Hard Aug.	79.0 81.1	79.3 81.3	78.6 81.6	78.4 81.1
Gap	+2.1	+2.0	+3.0	+2.7

Experiments (Linear evaluation / Semi-supervised learning)

Method	Epochs	Top-1
SimCLR [3]	800	70.4
Barlow Twins [24]	800	73.2
BYOL [44]	800	74.3
MoCo v3 [6]	800	74.6
SwAV [41]	800	75.3
DINO [41]	800	75.3
NNCLR [19]	1000	75.6
C-BYOL [45]	1000	75.6
RényiCL	200	75.3
RényiCL	300	76.2

	1% ImageNet		10% ImageNet	
Method	Top-1	Top-5	Top-1	Top-5
Supervised [3]	25.4	48.4	56.4	80.4
SimCLR [3]	48.3	75.5	65.6	87.8
BYOL [44]	53.2	78.4	68.8	89.0
SwAV [41]	53.9	78.5	70.2	89.9
Barlow Twins [24]	55.0	79.2	69.7	89.3
NNCLR [19]	56.4	80.7	69.8	89.3
C-BYOL [45]	60.6	83.4	70.5	90.0
RényiCL	56.4	80.6	71.2	90.3

Linear evaluation (Top-1 acc) on the ImageNet validation set [different methods for CL] (left)

Semi-supervised top-1 / top-5 acc by fine-tuning a pre-trained ResNet-50 [different methods for CL] (right)

• Linear evaluation protocol :

self-supervised learning (Pre-training) \rightarrow feature extractor (freeze) + Linear classifier training \rightarrow linear evaluation using validation set.

Experiments (Linear evaluation with different objectives)

	ImageNet-100	CIFAR-100	CIFAR-10	CovType	Higgs-100K
Method	Base Hard	Base Hard	Base Hard	Base Hard	Base Hard
CPC MLCPC RMLCPC			91.9 92.1(+0.2)	` '	64.7 71.3(+6.6) 64.9 71.5(+6.6) 64.5 72.4(+7.9)

Top-1 linear evaluation acc of unsupervised representation learning on image dataset [Contrastive objective]

• Recall the convexity of KL divergence :

$$D_{KL}(\lambda P_1 + (1 - \lambda)P_2 \parallel \lambda Q_1 + (1 - \lambda)Q_2] \le \lambda D_{KL}(P_1 \parallel Q_1) + (1 - \lambda)D_{KL}(P_2 \parallel Q_2)$$

• By plugging $P_1=P_2=Q_1=P,\ Q_2=Q,$ We get following inequality : $(\alpha\in(0,1))$ $D_{KL}^{(\alpha)}(P\parallel Q)\leq (1-\alpha)D_{KL}(P\parallel Q)< D_{KL}(P\parallel Q)$

• Similarly, the convexity of Rényi divergence is proved : $(\gamma \in [0, \infty])$

$$R_{\gamma}(\lambda P_1 + (1 - \lambda)P_2 \parallel \lambda Q_1 + (1 - \lambda)Q_2) \le \lambda R_{\gamma}(P_1 \parallel Q_1) + (1 - \lambda)R_{\gamma}(P_2 \parallel Q_2)$$

• Hence, We get similar inequality : $(\alpha \in (0,1))$

$$R_{\gamma}^{(\alpha)}(P \parallel Q) \le (1 - \alpha)R_{\gamma}(P \parallel Q) < R_{\gamma}(P \parallel Q)$$

• And recall the **optimal critic** f^* for α -CPC / α -MLCPC / (α, γ) -RMLCPC :

$$f^* = \log\left(\frac{Z \cdot P_{XY}(x, y)}{\alpha P_{XY}(x, y) + (1 - \alpha)P_X(x)P_Y(y)}\right) = \log\left(\frac{Z \cdot r(x, y)}{\alpha r(x, y) + 1 - \alpha}\right)$$

where $r(x,y) = \frac{P_{XY}}{P_X P_Y}$ (true density ration), Z = log-normalization constant

• By modifying above equation we get following:

$$\int_{\mathcal{X}} \int_{\mathcal{Y}} e^{f^*(x,y)} \left(\alpha P_{XY}(x,y) + (1-\alpha) P_X(x) P_Y(y) \right) dx dy = Z$$

• Here, we can estimate Z using MC approximation on batch environment of size B:

$$\hat{Z} = \frac{\alpha}{B} \sum_{i=1}^{B} e^{f^*(x_i, y_i)} + \frac{1 - \alpha}{B(B-1)} \sum_{i=1}^{B} \sum_{j \neq i} e^{f^*(x_i, y_j)}$$

• Then, we can approximate **true density ratio** \hat{r} as follows :

$$\hat{r}(x,y) = \frac{(1-\alpha)e^{f^*(x,y)}}{\hat{Z} - \alpha e^{f^*(x,y)}}$$

• Finally, using estimated \hat{r} , and formula that $I(X;Y) = \mathbb{E}_{P_{XY}} \left| \log \frac{P_{XY}}{P_X P_Y} \right| = \mathbb{E}_{P_{XY}} \left[\log r \right]$:

$$\hat{I}(X;Y) = \frac{1}{B} \sum_{i=1}^{B} \log \hat{r}(x_i, y_i)$$

• Obviously, larger batch size results in much more accurate estimate for I(X;Y)

• Under standard correlated gaussian experiments using joint critic, we get following results

Top : (α, γ) -RMLCPC objective \ bottom : MI estimation from (α, γ) -RMLCPC