

Ayudantía 6 - Filtros Pasivos

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

edicson.solar@mail.udp.cl

© +56 9 92763279

Shi Hao Zhang shi.zhang@mail.udp.cl

© +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Reactancias e Impedancia
- Circuito divisor de voltaje
- Filtros
 - ► Tipos
 - Gráficos
 - Cálculos

Recuerdo

Resistencia (R)

$$Z_R=R$$
 (no depende de ω)

Inductor (L)

$$Z_L = j\omega L$$
$$X_L = \omega L$$

Impedancia total:

$$Z = R + jX = R + j(X_L - X_C)$$

Condensador (C)

$$Z_C = \frac{1}{j\omega C}$$
$$X_C = \frac{1}{\omega C}$$

Recuerdo

 $\omega = 2\pi f$

Resistencia (R)

$$Z_R=R$$
 (no depende de $2\pi f$)

Inductor (L)

$$Z_L = j2\pi fL$$
$$X_L = 2\pi fL$$

Impedancia total:

$$Z = R + jX = R + j(X_L - X_C)$$

Condensador (C)

$$Z_C = \frac{1}{j2\pi fC}$$
$$X_C = \frac{1}{2\pi fC}$$

Divisor de Voltaje Resistivo

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2}$$

Filtro RC Pasa Baja

- Baja frecuencia: el condensador actúa como abierto $o V_{out} pprox V_{in}$
- Alta frecuencia: el condensador actúa como corto $\rightarrow V_{out} \approx 0$
- Frecuencia de corte:

$$f_c = \frac{1}{2\pi RC}$$

Filtro RC Pasa Baja

Comparación Pasa Baja RC vs RLC

$$f_c = \frac{1}{2\pi RC}$$

$$f_c = \frac{1}{2\pi\sqrt{LC}}$$

Filtro RC Pasa Alta

- Baja frecuencia: el condensador bloquea $o V_{out} \approx 0$
- Alta frecuencia: el condensador conduce $ightarrow V_{out} pprox V_{in}$
- Frecuencia de corte:

$$f_c = rac{1}{2\pi RC}$$

Filtro RC Pasa Alta

Comparación Pasa Alta RC vs RLC

$$f_c = \frac{1}{2\pi RC}$$

$$f_c = \frac{1}{2\pi\sqrt{LC}}$$

Filtro Pasa Banda

- Pasa Alta (R₁-C₁) atenúa frecuencias bajas.
- Pasa Baja (R₂ C₂) atenúa frecuencias altas.
- El sistema deja pasar solo las frecuencias intermedias.
- Frecuencias de corte:

$$\textit{f}_{1} = \frac{1}{2\pi \textit{R}_{1}\textit{C}_{1}}, \quad \textit{f}_{2} = \frac{1}{2\pi \textit{R}_{2}\textit{C}_{2}}$$

Frecuencia central:

$$f_0 = \sqrt{f_1 \cdot f_2}$$

Filtro Pasa Banda

Filtro Elimina Banda (Notch, RLC)

- Rechaza una banda.
- En f_0 : $V_{out} \approx 0$
- Útil para cancelar señales específicas.

Filtro Elimina Banda (Notch, RLC)

Filtros RL: Pasa Alta y Pasa Baja

Filtros Pasa Banda RCL

Pasa Banda (Serie)

Pasa Banda (Paralelo)

Filtros Rechaza Banda RCL

Rechaza Banda (Serie)

Rechaza Banda (Paralelo)

¿DUDAS?

CHAO GENTE

