Review 1. Lem 1. $g_T \sim \begin{pmatrix} A_1 & A_2 \end{pmatrix} \Leftrightarrow V = W_1 \oplus W_2$ W: are Averaged for T

Lem 2: $g_T \sim \begin{pmatrix} A_1 & N \\ A_2 \end{pmatrix} \Leftrightarrow V$ has W_1 thursant for T

Peview 2: Def: $v \in V$ v to is said to be an eigenvector for T with

tigenvelve $\lambda \in C$ if $Tv = \lambda \cdot V$ Once we have a basis $\{e_i\}$ $T(e_1 - e_4) = (e_1 - e_4) g_T$ $g_T \in C$ $g_T \in C$

unce we now a basis pei) (18, - en) = (ci-tu) JT By $\{\ell_i\}$ is basis $\} \Rightarrow \bigvee_{i=1}^{n} \left(\frac{\ell_i}{\ell_i}\right) \left(\frac{V_i}{V_i}\right)$ $V = \sum_{i=1}^{n} \left(\frac{V_i}{V_i}\right) \left(\frac{V_i}{V_i}\right)$ $TV = T(e_1 - e_n) \overrightarrow{V} = (e_1 - e_n) g_T \overrightarrow{V} = \lambda \cdot (e_1 - e_n) \overrightarrow{V}$ $9 \cdot \overrightarrow{V} = \lambda \overrightarrow{V} = \lambda \overrightarrow{I} \cdot \overrightarrow{V}$ Δ (B) $(g_T - \lambda_s^T) \vec{v} = 0$ This is a system of linear equations Corollary: λ_0 is a solution of $P_{T}(\lambda)=0$ iff there exist eigenvector V.

with eigenvalue λ_0 translation from & Property of PT(X): PT(X) is independent of Basis Pf. If we change basis How does det ($\lambda I - g_T'$) change ? Recall (e'-- en') = (e, -- en) h he Coln (C) $g_{\tau}' = h^{\tau} g_{\tau} h$ $det(NI-9_{T})^{2}$ $det(NI-9_{T}) = det(NI-9_{T}) h$ = der (h-1(xI)h - h-1grh) $(\hat{h}^{-1}, (\lambda \hat{I} - g_{\tau}) \cdot h) = \det(\hat{h}^{-1}) \det(\lambda \hat{I} - g_{\tau}) \det(h)$

 $(h' \cdot (\lambda I - g_T) \cdot h) = det(h') det(\lambda I - g_T) det(h)$ Recall: det (ABI = det (A) det (B) $\Delta \left(\left(\lambda \frac{7}{2} - \frac{9}{1} \right) \frac{3}{V} = 0$ Recall dim & Solutins VJ = N - rank(NI-9T) den ker (XI-97) = n - din Inage (XI-97) △ Lemana I before implies Lemma, That n' linear independent eigenvectors (x, -~ un) Pf: "=" ench eigenventer V: Span I dem invariant subspace CV: (Nuariant : TV; = XiV: E CV;) Lem 1 =) When $V = \bigoplus \subseteq V_i$ we have $g_i \wedge (\lambda_i - \lambda_n)$ "E" for some hasis {e,-ln} T(e,-ln)= (e,-ln) (\lambda,\lambda,\lambda) => Tei = Ni li So li is ligavecter with ligavalue li # Example: $g_{\tau} = \begin{pmatrix} 1 & \frac{-3}{3} \\ 2 & 1 \end{pmatrix} \in M_2(\mathbb{C})$ $\tau(e_1(e_2) = f_1(e_2) g_{\tau}$ Goal, find h tale (C) s.t., hi gt h is diagonal Want to find eigenvectors Chen 1 Combute P (X): $\det (XI-9_T) = |\frac{\lambda^{-1}}{2}|^3$

分区 Teaching 的第 3 页

Step 1: Compute $P_{T}(\lambda)$: det $(\lambda I - g_{T}) = \begin{vmatrix} \lambda^{-1} & 3 \\ -3 & \lambda^{-1} \end{vmatrix}$ $= (\lambda^{-1})(\lambda^{-1}) - (3)(-3) = (\lambda^{-1})^{2} + 9$ Step 2: Find eigenvalues $(\lambda - 1)^2 + 9 = 9$ $(\lambda^{-1})^2 = -9$ taking square root $\lambda - 1 = \pm 3i$ $\lambda = \{\pm 3i\}$ $\begin{cases} \lambda_{i,2} = 1 + 3i\\ \lambda_{i,3} = 1 - 3i\end{cases}$ Step 3: Find eigenvectors $(\lambda_i I - g_T) \overrightarrow{V}_i = 0$ $\left(\begin{array}{cc} (1+37) \end{array} \right) \left[\begin{array}{cc} (1-3) \\ 3 \end{array} \right] \left(\begin{array}{cc} \times_1 \\ \times_2 \end{array} \right) = 0.$ $\begin{pmatrix} 3i & 3 \\ -3 & 3i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow 9$ $V_{12} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \hat{i} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \hat{i} \ell_{1} + 1 \ell_{2}$ X1 = 1 XL = | $\begin{pmatrix}
-3i & 3 \\
-3 & -3i
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} = 0$ $\begin{cases}
y_1 = -i \\
y_2 = 1
\end{cases}$ y^{5} V1 2 () Step 4: Find M. New bases = $\{\vec{v}_1 | \vec{v}_2\} = (e_1 e_2)(1)$ old besis $e_{1}=\binom{1}{2}$ $e_{2}=\binom{0}{2}$ $h = \begin{pmatrix} \frac{1}{2} & -1 \\ \frac{1}{2} & 1 \end{pmatrix}$ Step 5: Check his diagonal matrix (1+3i)

lemme. 9 = | a b | dates 4-1

分区 Teaching 的第 4 页

Lemma:
$$3 = \lfloor \frac{a}{b} \rfloor$$
 days to $3^{-1} = \frac{1}{dets} (\frac{d}{-b})$

(article: $det(h) = i \cdot 1 - (1)(-i) = i \cdot v \cdot 2i$

Leave to you to check indeed $h^{-1}S_{1}h$ is disjoined to Lemma 2. Propties

Lemma: $\forall S \in M_{n}(C)$ is conjugate $S' = \begin{bmatrix} \lambda_{1} & \lambda_{2} \\ \lambda_{2} & \lambda_{3} \\ \lambda_{4} & \lambda_{5} \end{bmatrix}$

Park: λ_{1} are solvenes to $P_{T}(\lambda) = 0$

with metching multiplicity $P_{T}(\lambda = \lambda_{1})^{n} \cdot (\lambda - \lambda_{1})^{n} \cdot (\lambda - \lambda_{2})^{n}$

This is because $\det(\lambda I - S) = \det(\lambda I - S')$
 $= \det(\lambda^{-1} \cdot \lambda_{1})^{n} \cdot (\lambda - \lambda_{2})^{n} \cdot (\lambda - \lambda_{3})^{n}$
 $= \det(\lambda^{-1} \cdot \lambda_{1})^{n} \cdot (\lambda - \lambda_{2})^{n} \cdot (\lambda - \lambda_{3})^{n}$
 $= \det(\lambda^{-1} \cdot \lambda_{1})^{n} \cdot (\lambda - \lambda_{2})^{n} \cdot (\lambda - \lambda_{3})^{n}$

Pf of Lorma: above.

Step 1: Need to a 1-dim interial subspace

Step 1: Need to a 1-dm inversent subspace

This is easy because we just co-pute $P_{\tau}(\lambda) = 5$ By FTA find λ_1 golution to 1 $\det(\lambda_1 I - S) = 0$ \Rightarrow find honzero V_1 eigenvector

Span $\{v_1\} = Cv_1$ is 1-din invariant subspace

Span { vij = (vi is 1 din muariant subspace Lemma 2 \Rightarrow $g \sim \left(\frac{\lambda_1}{\delta} \frac{*}{g_{n-1}}\right)$ Step 2; We do step I for Sn-1 (boing some step T) Compute Pana See If λ_i is still asolution for Pana 1=0 If so we use it again as in Step 1 Step 1 => h_{n-1} g_{n-1} h_{n-1} = $\left(\frac{\lambda_1}{g_{n-2}}\right)$ $h_{n} \stackrel{\text{Step}}{\circ} h_{n} = \left(\frac{\lambda_{1} | *}{0 | g_{n-1}}\right), \left(\frac{h_{n-1}}{h_{n-1}}\right) = \left(\frac{\lambda_{1}}{0 | h_{n} | g_{n+1} | h_{n}}\right)$ (*, *) -When he computer eigenverters for i, he are looking at $(\lambda_i \overline{1} - \underline{9}) \overline{V} = 0$ 5 In very heak Jordan form

\[\lambda_{1} - \mathref{J} = \lambda_{1} - \lambda_{k} \]

\[\lambda_{1} - \lambda_{k} \] Upper left part has shape (0. *)

(upper transpolar)

froition: a matrix g, is called nilpotent if $g = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$ is $g \in M_{n \times n}(C)$ is nilpotat then $g^n = 0$

If: n=3. In general 9= (2) $g = g = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ In General (9.9 Zero line on diagonal)

informal (9.9 Zero line Shift / propagate by 1 position)

gi = (2.5 to) $\left(\lambda_{1}I-9\right)^{n_{1}}=\left(0\left(\frac{x}{2}\right)^{n_{1}}+\frac{x}{2}\right)$ D Lema Clave =) $\ker (\lambda_1 \overline{1} - 9)^{n} = \{\vec{v} \mid (\lambda_1 \overline{1} - 9)^{n} | v = 0\}$ is dim = $N - rank(\lambda_i I - g)^{n_i}$ = $N - (n - n_i) = N_i$ tosy to see solations are of shape $V = \begin{pmatrix} v_i \\ v_{n_i} \\ v_{n_i} \end{pmatrix}$ Definition: The generalized eigenspace V2, associated to eigenvalue), is $V_{\lambda} = \ker(\lambda I - T)^{\hat{i}}$ for large enough \hat{i} Ruk: Pick $\bar{z}=N_1$ $V_{\lambda_1}=\ker(\lambda_1\bar{1}-\bar{1})^{n_1}$ Implicit here is the fact $H i > N_i$, $ker(\lambda_i I - T)^2 = ker(\lambda_i I - T)^2$ $(\lambda 7 - 9)$ h, $(\lambda_{1}, \lambda_{2})^{n_{1}}$ - lay now operation

分区 Teaching 的第 7 引

Previous $(\lambda T - 3)^n = (0 \times 10^n \times 10^n)^n \times 10^n = (0 \times 10^n)^n = (0 \times 10^n)^n \times 10^n = (0 \times 10^$