Вращательная спектроскопия. Домашнее задание.

Финенко Артем

Задача 7.1.

$$E_r^{(1)} = B J(J+1) \Big|_{J=1} = 2B$$

$$E_r^{(2)} = B J(J+1) \Big|_{J=0} = 0$$

$$\Delta E_r = 2B \implies B = \frac{\Delta E_r}{2} = 1.497 \text{ cm}^{-1}$$

$$l = \sqrt{\frac{h}{8\pi^2 c\mu B}} = 1.57\text{Å}$$

Задача 7.2.

Предполагаем, что длины связи в $^6\mathrm{LiF}$ и $^7\mathrm{LiF}$ совпадают.

$$B_1 = \frac{h}{8\pi^2 c\mu_1 l^2} \implies B_2 = \frac{h}{8\pi^2 c\mu_2 l^2} = B_1 \frac{\mu_1}{\mu_2}$$

$$B_1 = 89740.46 \ MHz \implies B_2 = 79997.21 \ MHz$$

Задача 7.5.

Изначально поместим начало отсчета в атом Н молекулы цианоацетилена и определим положение центра масс.

$$x_{COM} = \frac{\sum_i m_i x_i}{\sum_i m_i} = 3.00 \text{Å}$$

В системе отсчета, связанной с центром масс, найдем главные компоненты тензора инерции.

$$I_{aa} = \sum_{i} m_i (y_i^2 + z_i^2) = 0$$

$$I_{bb} = \sum_{i} m_i (x_i^2 + z_i^2) = 1.8597 \cdot 10^{-45} \ kg \cdot m^2$$

$$I_{cc} = \sum_{i} m_i (x_i^2 + y_i^2) = I_{bb}$$

$$I_{bb} = I_{cc} > I_{aa} = 0$$

Найдем вращательную постоянную B.

$$B = \frac{h}{8pi^2cI} = 0.1505cm^{-1} = 4.513 \ GHz$$

Задача 7.6.

	$I_{aa}, kg \cdot m^2$	$I_{bb}, kg \cdot m^2$	$I_{cc}, kg \cdot m^2$	B,GHz
CO_2	0	$7.65 \cdot 10^{-46}$	$7.65 \cdot 10^{-46}$	10.967
OCS	0	$1.459 \cdot 10^{-45}$	$1.459 \cdot 10^{-45}$	5.749
${ m O^{13}CS}$	0	$1.464 \cdot 10^{-45}$	$1.464 \cdot 10^{-45}$	5.731
CS_2	0	$2.71 \cdot 10^{-46}$	$2.71 \cdot 10^{-46}$	3.085

Замена $^{12}{\rm C}$ на $^{13}{\rm C}$ приводит к изменению вращательной постоянной только в случае OCS.

Задача 7.8.

$$\begin{array}{c} ^{14}\,\mathrm{N}\,^{16}\,\mathrm{O}_{2}\,^{35}\,\mathrm{Cl} \\ \\ \mathrm{Cl} \\ \\ \mathrm{N} \end{array}$$

Определяем положение центра масс и относительно него вычисляем координаты атомов. Затем определяем главные компоненты тензора инерции и вращательные постоянные.

	$I_{aa}, kg \cdot m^2$	$I_{bb}, kg \cdot m^2$	$I_{cc}, kg \cdot m^2$	A, GHz	B, GHz	C, GHz
NO_2Cl	$1.614 \cdot 10^{-45}$	$6.336426 \cdot 10^{-46}$	$2.248106 \cdot 10^{-45}$	5.198	13.244	3.733