COMP 2711H Discrete Mathematical Tools for Computer Science Solutions to Tutorial 1

- **QB1-1.** Let p, q, and r be the following propositions "you get an A on the final exam", "you do every exercise in this book", and "you get an A in this class", respectively. Write the following propositions using p, q, and r and logical connectives.
 - (a) You get an A in this class, but you do not do every exercise in this book.
 - (b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
 - (c) To get an A in this class, it is necessary for you to get an A on the final.
 - (d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.
 - (e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
 - (f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.

Solution:

- (a) $r \wedge \neg q$
- (b) $p \wedge q \wedge r$
- (c) $r \to p$
- (d) $p \wedge \neg q \wedge r$
- (e) $(p \wedge q) \rightarrow r$
- (f) $(p \lor q) \leftrightarrow r$

QB1-2. Prove that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent. Present two different proofs of this fact, only one of which should use truth tables.

Solution: The proof using truth table,

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$p \wedge q$	$\neg p \land \neg q$	$(p \land q) \lor (\neg p \land \neg q)$
Τ	Τ	Т	Т	Т	Т	F	${ m T}$
Τ	F	F	Τ	F	F	F	${ m F}$
F	Τ	Т	F	F	F	F	F
F	F	T	Γ	Γ	F	Γ	Τ

The proof without using truth table,

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv (\neg p \wedge \neg q) \vee (q \wedge \neg q) \vee (\neg p \wedge p) \vee (p \wedge q) \\ \equiv (\neg p \wedge \neg q) \vee F \vee F \vee (p \wedge q) \\ \equiv (\neg p \wedge \neg q) \vee (p \wedge q) \end{array} \qquad \begin{array}{l} \text{(Distributive laws)} \\ \equiv (\neg p \wedge \neg q) \vee F \vee F \vee (p \wedge q) \\ \equiv ((\neg p \wedge \neg q) \vee (p \wedge q)) \\ \end{array} \qquad \begin{array}{l} \text{(Identity laws)} \end{array}$$

EP1-1. Construct a truth table for the statement $\neg((p \lor q) \land \neg p) \land \neg p$.

Solution:

p	q	$p \lor q$	$(p \lor q) \land \neg p$	$\neg((p \lor q) \land \neg p)$	$\neg((p \lor q) \land \neg p) \land \neg p$
Τ	Τ	Τ	F	${ m T}$	F
Τ	F	T	F	${ m T}$	F
F	Τ	Τ	T	${ m F}$	F
F	F	\mathbf{F}	F	${ m T}$	Т

EP1-4. Are the following statements logically equivalent:

$$(\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$$
$$(\neg p \land q) \lor (p \land \neg q)$$

Solution: They are logically equivalent,

$$\begin{array}{l} (\neg p \wedge (\neg p \wedge q)) \vee (p \wedge (p \wedge \neg q)) \\ \equiv ((\neg p \wedge \neg p) \wedge q) \vee ((p \wedge p) \wedge \neg q) & \text{(Associative laws)} \\ \equiv (\neg p \wedge q) \vee (p \wedge \neg q) & \text{(Idempotent laws)} \end{array}$$

EP1-5. Are the following statements logically equivalent:

$$(p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

r

Solution: They are logically equivalent,

$$(p \land q \land r) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r)$$

$$\equiv ((p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q) \lor (\neg p \land q)) \land r$$

$$\equiv ((p \land (q \lor \neg q)) \lor (\neg p \land (\neg q \lor q)) \land r$$

$$\equiv ((p \land T) \lor (\neg p \land T) \land r$$

$$\equiv (p \lor \neg p) \land r$$

$$\equiv T \land r$$

$$\Rightarrow T \land r$$
(Negation laws)
$$\Rightarrow T \land r$$
(Negation laws)
$$\Rightarrow T \land r$$
(Negation laws)
$$\Rightarrow T \land r$$
(Negation laws)