Universidade Federal do Ceará - Campus Quixadá

QXD0152 – Teoria dos Grafos

Cursos de Ciência da Computação e Engenharia de Computação

Prof. Atílio Luiz

Coloração de Grafos

- 1. Determine o número cromático de cada um desses grafos:
 - (a) Grafo de Petersen
 - (b) n-cubo Q_n
 - (c) roda $W_n = C_n + K_1$
- 2. Determine $\omega(G)$, $\alpha(G)$ e $\chi(G)$ para os seguintes grafos:

3. Determine $\omega(G)$, $\alpha(G)$ e $\chi(G)$ para os seguintes grafos:

- 4. Qual o número cromático de uma árvore?
- 5. Prove ou disprove:
 - (a) Se um grafo planar G contém um triângulo, então o seu número cromático é 3.
 - (b) Se existe uma 4-coloração de um grafo G, então $\chi(G)=4$.
 - (c) Se G é um grafo com $\chi(G) \leq 4$, então G é planar.
- 6. Prove que todo grafo de ordem 6 com número cromático 3 tem no máximo 12 arestas.
- 7. Prove ou disprove:
 - (a) Se um grafo G contém um subgrafo isomorfo a um grafo completo K_r , então $\chi(G) \geq r$.
 - (b) Se G é um grafo com $\chi(G) \geq r$, então G contém um subgrafo isomorfo ao grafo completo K_r .

- 8. Mostre que não existe nenhum grafo G com $\chi(G)=6$ cujos vértices possuem graus 3,3,3,3,4,4,5,5,5,5.
- 9. Dê um exemplo ou explique por quê tal exemplo não existe:
 - (a) um grafo planar com número cromático 5
 - (b) um grafo não planar com número cromático 3
 - (c) um grafo G com $\Delta(G) = 2\chi(G)$
 - (d) um grafo G com $\chi(G) = 2\Delta(G)$
 - (e) um grafo não-completo de ordem n com número cromático n.
- 10. Prove ou disprove:
 - (a) Existe um grafo não-planar G tal que G-v é planar e $\chi(G)=\chi(G-v)+1$ para todo vértice v de G.
 - (b) Existe um grfo não planar G tal que G v é planar e $\chi(G) = \chi(G v)$ para todo vértice v de G.
- 11. Um grafo G de ordem n tem $\chi(G) = \alpha(G) = k$, onde $\alpha(G)$ é o tamanho de um conjunto independente máximo de G. Além disso, para toda k-coloração de G, existe uma única partição de V(G) em classes de cores tais que quaisquer duas classes de cores distintas possuem cardinalidades diferentes. Prove que $\Delta(G) = n 1$.
- 12. Caracterize todos os grafos com $\chi(G) = n 1$.
- 13. Caracterize todos os grafos com $\chi(G) = n 2$.
- 14. A Conjetura de Reed afirma que $\chi(G) \leq \left\lceil \frac{\omega(G)+1+\Delta(G)}{2} \right\rceil$. Encontre uma família infinita de grafos, além dos grafos completos e ciclos ímapres, para os quais a igualdade na fórmula acima vale.
- 15. Seja G um grafo no qual quaisquer dois ciclos ímpares compartilham um vértice. Mostre que $\chi(G) \leq 5$.
- 16. Um grafo é k-degenerado se e somente se todo subgrafo de G tem um vértice de grau no máximo k.
 - (a) Caracterize os grafos 1-degenerados
 - (b) Prove que todo grafo k-degenerado é (k+1)-colorível.
- 17. Escreva um algoritmo de tempo polinomial que recebe um grafo planar como entrada e produz uma 5-coloração própria do grafo.
- 18. Mostre que se G é um grafo de intervalo, então \overline{G} é um grafo de comparabilidade.
- 19. Um caterpillar T é uma árvore que possui a seguinte propriedade: se você remover todas as folhas de T, você obtém um caminho P_n com $n \ge 1$. Prove que uma árvore é um grafo de intervalo se e somente se ela é um caterpillar. (*Dica:* use um subgrafo proibido.)
- 20. Mostre que, para qualquer grafo, existe uma ordem dos vértices para a qual a coloração gulosa produz uma coloração mínima.