Kapitel 8.

Geodätische und die Exponentialabbildung

Heuristik: Geodätische sind Minimalstellen des Energiefunktionals $\gamma \mapsto E(\gamma) = \int ||\dot{\gamma}||^2$. Was sind kritische Punkte dieser Abbildung? Für $f \in C^{\infty}(M)$ ist p kritischer Punkt, wenn alle Richtungsableitungen verschwinden, das heist $0 = X(f) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (f(c(t)))$.

Eine "Kurve" durch γ ist eine sogenannte **glatte Variation** $h: [0,1] \times [0,1] \to M$, $h(s,t) = h_s(t)$ mit $h_0 = \gamma$ und $h_s(0) = p$, sowie $h_s(1) = q$ für alle $s \in [0,1]$. Dann ist

$$X(t) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} h_s(t)$$

ein glattes Vektorfeld entlang γ . Ferner gilt X(0) = 0 und X(1) = 0. Nun betrachte

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} E(h_s) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \left\langle \frac{\mathrm{d}}{\mathrm{d}t} h_s(t), \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= \int_0^1 2 \left\langle \nabla_s \frac{\mathrm{d}}{\mathrm{d}t} h_s(t), \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= \int_0^1 2 \left\langle \nabla_t \frac{\mathrm{d}}{\mathrm{d}s} h_s(t), \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= \int_0^1 2 \left\langle \nabla_t X, \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= 2 \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \left\langle X, \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle - \left\langle X, \nabla_t \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= 2 \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \left\langle X, \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle - 2 \int_0^1 \left\langle X, \nabla_t \frac{\mathrm{d}}{\mathrm{d}t} h_s(t) \right\rangle$$

$$= 2 \int_0^1 \left\langle X(t), \nabla_t \dot{\gamma}(t) \right\rangle dt$$

Definition 8.1 Eine glatte Kurve c in M heist **Geodätische**¹, wenn $\nabla_t \dot{c} \equiv 0$ gilt.

Ist c Geodätische, so ist c proportional zur Bogenlänge parametrisiert, das heist $\|\dot{c}\| = \text{const}$, denn $\frac{\mathrm{d}}{\mathrm{d}t}\|\dot{c}(t)\|^2 = \frac{\mathrm{d}}{\mathrm{d}t}\langle\dot{c}(t),\dot{c}(t)\rangle = 2\langle\nabla_t\dot{c}(t),\dot{c}(t)\rangle = 0$. Mit c ist auch jede affine Umparametrisierung $t\mapsto c(at+b)$ eine Geodätische.

Proposition 8.2 Für jedes $p \in M$ und $v \in T_p M$ existiert genau eine Geodätische $\gamma_{p,v} \colon [0,\varepsilon] \to M$ mit $\gamma_{p,v}(0) = p$ und $\dot{\gamma}_{p,v}(0) = v$. Zudem hängt $\gamma_{p,v}$ glatt von p und v ab.

Beweis (A) Es sei (φ, U) eine Karte um $p, \gamma^i(t) = \varphi^i(\gamma(t))$. Dann besitzt das folgende Anfangswertproblem

$$\begin{cases} 0 = \nabla_t \dot{\gamma}|_t = \sum_k \left(\ddot{\gamma}^k(t) + \sum_{ij} \Gamma^k_{ij}(\gamma(t)) \dot{\gamma}^i(t) \gamma^j(t) \right) \left. \frac{\partial}{\partial x^k} \right|_{\gamma(t)} \\ \dot{\gamma}^i(0) = \varphi^i(p) \\ \dot{\gamma}^i(0) = \xi^i_p, \quad v = \sum_k \xi^i_p \left. \frac{\partial}{\partial x^i} \right|_p \end{cases}$$

eine eindeutige Lösung (lokal), welche glatt von den Startwerten p und v abhängt.

(B) (Alternativ) Ist (φ, U) eine Karte von M um p, dann ist

$$\overline{\varphi} \colon \left\{ \begin{array}{ccc} \operatorname{T} M|_{U} & \to & \mathbb{R}^{2m} \\ X_{p} = \sum \xi_{p}^{i} \frac{\partial}{\partial x^{i}} \Big|_{p} & \mapsto & \overline{\varphi}(X_{p}) & = (\varphi^{1}(p), \dots, \varphi^{m}(p), \xi_{p}^{1}, \dots, \xi_{p}^{m}) \\ & = : (y^{1}, \dots, y^{2m}) \end{array} \right.$$

eine Karte von TM. Es sei S das durch

$$S \colon \left\{ \begin{array}{ccc} \operatorname{T} M & \to & \operatorname{T} \operatorname{T} M \\ X = \sum \xi^{i} \frac{\partial}{\partial x^{i}} & \mapsto & \sum_{i}^{m} \xi^{i} \frac{\partial}{\partial y^{i}} - \sum_{i,j,k=1}^{m} \Gamma_{ij}^{k} \xi^{i} \xi^{j} \frac{\partial}{\partial y^{m+k}} \end{array} \right.$$

definierte glatte Vektorfeld auf TM. g^t ist genau dann Integralkurve von S durch $X_p = \sum \xi_p^i \left. \frac{\partial}{\partial x^i} \right|_p$, wenn

$$\frac{\mathrm{d}}{\mathrm{d}t}g^t = \dot{g}^t = S(g^t) \text{ und } g^0 = X_p.$$

Setzt man $\overline{\varphi}(g^t) = (\gamma^1(t), \dots, \gamma^m(t), \eta^1(t), \dots, \eta^m(t))$, so ist dies genau dann der Fall, wenn gilt:

$$(\dot{\gamma}^{1}, \dots, \dot{\gamma}^{m}, \dot{\eta}^{1}, \dots, \dot{\eta}^{m}) = \left(\eta^{1}, \dots, \eta^{m}, -\sum_{i,j} \Gamma^{1}_{ij} \eta^{i} \eta^{j}, \dots, -\sum_{i,j} \Gamma^{m}_{ij} \eta^{i} \eta^{j}\right)$$

$$\rightsquigarrow \eta^{i} = \dot{\gamma}^{i} \text{ und } \ddot{\gamma} = -\sum_{i,j} \Gamma^{k}_{ij} \dot{\gamma}^{i} \dot{\gamma}^{j}$$

und

$$(\gamma^1(0),\ldots,\gamma^m(0),\eta^1(0),\ldots,\eta^m(0)=\overline{\varphi}(X_p)=(\varphi^1(p),\ldots,\varphi^m(p),\xi_p^1,\ldots,\xi_p^m)$$

also genau dann, wenn

$$\gamma(t) = \overline{\varphi}^{-1}(\gamma^1(t), \dots, \gamma^m(t))$$

eine Geodätische durch p mit $\dot{\gamma}(0) = X_p$ ist. Der maximale Fluss g^t von S heist **geodätischer Fluss**. Mit Satz 4.9 folgt die Aussage der Proposition.

¹Die Äquivalenz zur bereits bekannten Definition wird in Kürze gezeigt.

Für $v \in T_p M$ sei $\gamma_v(t) = \pi(g^t(v))$ die eindeutige Geodätische mit $\gamma_v(0) = p$ und $\dot{\gamma}_v(0) = v$. Ist $\delta \in \mathbb{R}$ und $c(t) = \gamma_v(\delta t)$, so ist c eine Geodätische durch p mit $\dot{c}(0) = \delta v$, das heist $c = \gamma_{\delta v}$, beziehungsweise $\gamma_{\delta v}(t) = \gamma_v(\delta t)$.

Der Definitionsbereich \mathcal{D}_S des geodätischen Flusses ist eine offene Menge in $\mathbb{R} \times \mathrm{T}_p M$ und somit sind sowohl $\mathcal{D} = \{v \in \mathrm{T} M \mid (1, v) \in \mathcal{D}_S\}$, als auch $\mathcal{D}_p = \mathcal{D} \cap T_p M$ offen für alle $p \in M$ (in $\mathrm{T} M$, beziehungsweise $\mathrm{T}_p M$). Weiterhin gilt $0_p \in \mathcal{D}_p$.

Definition 8.3 Die Abbildung $\exp_p: \mathcal{D}_p \to M, v \mapsto \gamma_v(1)$ heist **Exponentialabbildung**.

Es wurde bereits gezeigt, dass $\nabla_t \dot{\gamma}_v \equiv 0$ ist (Geodätische Differentialgleichung). Die Exponentialabbildung ist nach Satz 4.6 glatt. Es gilt $\exp_p(0_p) = p$. Zur Berechnung des Differentials von \exp_p in 0_p

$$\exp_{p*0_p} : \operatorname{T}_{0_p} \operatorname{T}_p M \to \operatorname{T}_p M$$

identifiziert man $T_{0_p} T_p M$ mit $T_p M$. Es gilt

$$\exp_{p*0_p}(v) = \frac{d}{dt}\Big|_{t=0} \exp_p(tv) = \frac{d}{dt}\Big|_{t=0} \gamma_{tv}(1) = \frac{d}{dt}\Big|_{t=0} \gamma_v(t) = \dot{\gamma}_v(0) = v,$$

also $\exp_{p*0_p}=\operatorname{id}_{\operatorname{T}_pM}$. Es existiert für alle $p\in M$ eine Umgebung V von $0_p\in\operatorname{T}_pM$ und U von p, so dass $\exp_p\colon V\to U$ ein Diffeomorphismus ist. Wählt man eine Orthonormalbasis e_1,\ldots,e_m von T_pM und setzt

$$\psi \colon \operatorname{T}_p M \to \mathbb{R}^m, v = \sum_i b^i e_i \mapsto (b^1, \dots, b^m),$$

so ist $(\psi \circ \exp_p|_U^{-1}, U)$ eine Karte von M um p. Im Allgemeinen ist dies keine Isometrie!

Definition 8.4 Diese Karte bezeichnet man als Riemannsche Normalkoordinaten.

Proposition 8.5 In Riemannschen Normalkoordinaten gilt für alle $i, j, k \leq m$:

(i)
$$g_{ij}(0) = \delta_{ij}$$

(ii)
$$\Gamma_{ij}^k(0) = 0$$

(iii)
$$\partial_k g_{ij}(0) = \frac{\partial g_{ij}}{\partial x^k} \Big|_{0} = 0$$

Der Beweis sei zur Übung überlassen.

1. Polarkoordinaten

Es ist $\varphi = (r, \vartheta^1, \dots, \vartheta^{m-1})$ die Hintereinanderausführung von Riemannschen Normalkoordinaten des \mathbb{R}^m .

Die Umkehrabbildung ist ein Diffeomorphismus

$$f: (0,\varepsilon) \times S^{m-1} \to U \subseteq M, \ (t,v) \mapsto \exp_p(tv) = \gamma_v(t).$$

Für jedes $v \in S^{m-1}$ ist $t \mapsto f(t,v) = \gamma_v(t)$ eine Geodätische in M. Wir bezeichnen solche Geodätischen im Folgenden als **radiale Geodätische**.

Lemma 8.6 (Gaus-Lemma) Jede radiale Geodätische γ_v ist orthogonal zu der geodätischen Sphäre

$$S_r = \{ q \in M \mid \exists v \in T_p M : ||v|| = r \text{ und } q = \exp_p(v) \}.$$

Beweis Man zeigt das Folgende: Ist X ein Vektorfeld auf S^{m-1} und bezeichnet man seine Fortsetzung auf $(0, \varepsilon) \times S^{m-1}$ " \subseteq " $\mathbb{B}_{\varepsilon}(0) \setminus \{0\}$ bzw. $\mathbb{B}_{\varepsilon}(0_p) \setminus \{0_p\} \subseteq T_p M$ mit $X_{rv} = X_v$, so ist

$$Y_q = Y_{f(r,v)} = f_{*(r,v)}(0, X_v) = \exp_{p*}(rX_v)$$

orthogonal zu

$$\left. \frac{\partial}{\partial r} \right|_{a} = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=r} \exp_{p}(tv) = \dot{\gamma}_{v}(r)$$

 $Y(t) = Y_{\gamma_v(t)}$ als Vektorfeld entlang γ_v . Dann gilt:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=r} \left\langle Y, \frac{\partial}{\partial r} \right\rangle_{\gamma_v(t)} &= \left\langle \nabla_t Y|_r, \dot{\gamma}_v(r) \right\rangle + \left\langle Y(r), \underbrace{\nabla_t \dot{\gamma}_v|_r}_{=0} \right\rangle \\ &= \left\langle \nabla_{Y(r)} \dot{\gamma}_v(r), \dot{\gamma}_v(r) \right\rangle + \left\langle \underbrace{\left[\dot{\gamma}_v(r), Y(r)\right]}_{=[f_*(\frac{\partial}{\partial r}), f_*(0, X_v)]}_{=f_*[\frac{\partial}{\partial r}, X] = 0} \right. \end{split}$$

Ferner gilt

$$\left\langle Y(r), \frac{\partial}{\partial r} \right\rangle_{\gamma_v(r)} = \left\langle \exp_{p*}(rX_v), \dot{\gamma}_v(r) \right\rangle \xrightarrow{r \to 0} \left\langle \exp_{p*}(0_p), v \right\rangle = 0,$$
 also $\left\langle Y, \frac{\partial}{\partial r} \right\rangle \equiv 0.$

Bemerkung Insbesondere gilt für alle $i \leq m-1$:

$$\left\langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \vartheta^i} \right\rangle = 0.$$

Satz 8.7 Für jedes $p \in M$ existiert ein $\varepsilon > 0$, so dass für alle $q \in \mathbb{B}_{\varepsilon}(p)$ genau eine minimierende Geodätische von p nach q existiert, das heist eine Geodätische γ im Sinne der Definition 8.1 mit $\mathcal{L}(\gamma) = d(p,q)$. Ist $q \notin \exp_p(\mathbb{B}_{\varepsilon}(0_p)) = \mathbb{B}_{\varepsilon}(p)$, so existiert ein $q' \in \partial \mathbb{B}_{\varepsilon}(p)$ mit

$$d(p,q) = \varepsilon + d(q',q).$$

Ferner, ist $\delta < \varepsilon$ und $q \notin \mathbb{B}_{\delta}(p)$, so existiert ein $q' \in \mathbb{B}_{\delta}(q)$ mit

$$d(p,q) = \delta + d(q',q)$$

Beweis Es sei $\varepsilon > 0$ so, dass auf $\mathbb{B}_{\varepsilon}(p)$ Polorkoordinaten $\varphi = (r, \vartheta^1, \dots, \vartheta^{m-1})$ existieren. Sei weiter $c : [0, 1] \to M$ eine beliebige glatte Kurve von p nach q mit φ Koordinaten $\varphi(c(t)) = (r(t), \vartheta^1(t), \dots, \vartheta^{m-1}(t))$.

Das Bild von c ist nicht notwendig in $\mathbb{B}_{\varepsilon}(0)$ enthalten

Für $t_0 = \inf\{t \in [0,1] \mid c(t) \notin \mathbb{B}_{\varepsilon}(p)\}$ ist $c|_{[0,t_0]}$ eine Kurve zu $\mathbb{B}_{\varepsilon}(p)$. Es gilt

$$\left\| \frac{\partial}{\partial r} \right\|_{t} = \|\dot{\gamma}_{w}(t)\| = \|w\| = 1.$$

Aus der Cauchy-Schwarz-Ungleichung folgt

$$\begin{aligned} \|\dot{c}(t)\| &= \|\dot{c}(t)\| \left\| \frac{\partial}{\partial r} \Big|_{c(t)} \right\| \\ &\geq \left| \left\langle \dot{c}(t), \frac{\partial}{\partial r} \Big|_{c(t)} \right\rangle \right| \\ &= \left| \left\langle \dot{r}(t) \frac{\partial}{\partial r} + \sum_{i=1}^{m-1} \dot{\vartheta}^i(t) \frac{\partial}{\partial \vartheta^i}, \frac{\partial}{\partial r} \Big|_{c(t)} \right\rangle \right| \\ &= \left| \left\langle \dot{r}(t) \frac{\partial}{\partial r} \Big|_{c(t)}, \frac{\partial}{\partial r} \Big|_{c(t)} \right\rangle \right| \\ &= |\dot{r}(t)|, \end{aligned}$$

wobei die Gleichheit genau dann gilt, wenn $\dot{c}(t)$ und $\frac{\partial}{\partial r}\Big|_{c(t)}$ linear abhängig sind.

$$\mathcal{L}(c) = \int_0^{t_0} \|\dot{c}\| + \int_{t_0}^T \|\dot{c}\| \ge \int_0^{t_0} \left| \left\langle \dot{c}, \frac{\partial}{\partial r} \right\rangle \right| = \int_0^{t_0} |\dot{r}| = r(t_0)$$

Gleichheit gilt genau dann, wenn $\vartheta^1(t), \ldots, \vartheta^{m-1}(t)$ konstant sind und $\dot{r}(t) \geq 0$ gilt, also genau dann, wenn c eine monotone Umparametrisierung von $t \mapsto \exp_p(tv)$ für $v \in S^{m-1}$ ist.

Für den zweiten Teil sei ε so, dass Polarkoordinaten $\varphi = (r, \vartheta^1, \dots, \vartheta^{m-1})$ um p existieren. Es sei $q \in \mathbb{B}_{\delta}(p)$ und c sei eine glatte Kurve von p nach q. Für $t_0 = \inf\{t \in [0,1] \mid c(t) \notin \mathbb{B}_{\delta}(p)\}$ gilt dann:

$$\mathcal{L}(c) \ge \delta + d(c(t_0), q) \ge \delta + d(\partial \mathbb{B}_{\delta}(p), q),$$

also $d(p,q) = \inf_c \mathcal{L}(c) \geq \delta + d(\partial \mathbb{B}_{\delta}(p), q)$. Da $\partial \mathbb{B}_{\delta}(p)$ kompakt ist, die Abstandsfunktion $d(\cdot, q)$ auf $\partial \mathbb{B}_{\delta}(p)$ ihr Minimum in q' an. Damit gilt

$$d(q',q) = d(\partial \mathbb{B}_{\delta}(p), q) \quad \text{und}$$

$$d(p,q) = d(p,q') + d(q',q) = \delta + d(q',q)$$

somit gilt dann die Behauptung.

Korollar 8.8 Für alle $p \in M$ existiert ein $\varrho > 0$, so dass für alle $q, q' \in \mathbb{B}_{\varrho}(p)$ genau eine minimierende Geodätische von q nach q' existiert.

Beweis Für $q \in M$ existiert ein $\varrho = \varrho(q) > 0$, so dass exp auf $\mathbb{B}_{\varrho}(q)$ ein Diffeomorphismus ist. Da exp : $\mathcal{D} \to \mathcal{D}$ glatt und \mathcal{D} offen ist, existiert eine Umgebung U_q von q, so dass $\exp_p : \mathbb{B}_{\frac{\varrho}{2}}(q_q) \to \mathbb{B}_{\frac{\varrho}{2}}(q')$ ein Diffeomorphismus ist für alle $q' \in U_q$. Für $p \in M$ existiert nach Satz 8.7 ein $\varepsilon > 0$, so dass $\overline{\mathbb{B}}_{\varepsilon}(p)$ kompakt ist. Die Überdeckung $\bigcup_{q \in \overline{\mathbb{B}}_{\varepsilon}(q)} \mathbb{B}_{\frac{\varrho(q)}{2}}(q)$ besitzt eine endliche Teilüberdeckung. Für $\varrho = \min_{i \leq k} \{\frac{\varrho(q_i)}{4}\}$ existieren auf jedem $\mathbb{B}_{2\varrho}(q)$, $q \in \mathbb{B}_{\varepsilon}(p)$, Polarkoordinaten; insbesondere existiert für $q, q' \in \mathbb{B}_{\varrho}(p)$ eine eindeutige minimierende Geodätische von q nach q'.

Bemerkung Die Geodätischen im obigen Korollar hängen stetig von ihren Endpunkten ab.

Korollar 8.9 Es seien $p, q \in M$ und $c : [0,1] \to M$ stückweise glatte Kurven von p nach q, so dass $\mathcal{L}(c) = d(p,q)$. Damit ist c eine umparametrisierte Geodätische im Sinne von Definition 8.1.

Beweis Die Kurve ist lokal längenminimierend, denn ist \overline{c} eine Kurve von c(s) nach c(t) mit $\mathcal{L}(\overline{c}) < \mathcal{L}(c|_{[s,t]})$, so wäre $c|_{[0,s]} \cup \overline{c} \cup c|_{[t,1]}$ eine Kurve kürzer als c. Da c kompaktes Bild hat, exisitert ein minimales $\varrho > 0$ für alle c(t) wie in Korollar 8.8. Dann findet man eine Partition $0 = t_0 < t_1 < \ldots < t_k = 1$ mit $d(c(t_{i-1}), c(t_i)) < \frac{\varrho}{2}$, so dass $c|_{[t_{i-1}, t_{i+1}]}$ glatt ist.

Dann stimmt $c|_{[t_{i-1},t_{i+1}]}$ für jedes i < k mit der nach Korollar 8.8 eindeutigen Geodätischen (bis auf Umparametrisierung) überein.

Definition 8.10 Eine Riemannsche Mannigfaltigkeit heist **geodätisch vollständig**, wenn jede Geodätische auf ganz \mathbb{R} fortgesetzt werden kann.

Satz 8.11 (Satz von Hopf-Rinow) Für eine Riemannsche Mannigfaltigkeit sind die folgenden Aussagen äquivalent:

- (i) M ist geodätisch vollständig, das heist jede Geodätische existiert für alle Zeiten.
- (ii) Für alle $p \in M$ gilt $\mathcal{D}_p = T_p M$, also exp ist auf ganz M definiert.
- (iii) Es existiert ein $p \in M$ mit $\mathcal{D}_p = T_p M$, also \exp_p ist auf $T_p M$ für ein $p \in M$ definiert.
- (iv) Abgeschlossene und beschränkte Teilmengen sind kompakt.
- (v) M ist vollständig (als metrischer Raum).

Jede dieser Eigenschaften impliziert, dass je zwei Punkte p,q in M durch eine minimierende Geodätische von p nach q verbunden werden können.

Beweis Man zeigt zunächst, dass es, falls (iii) für $p \in M$ gilt, zu jedem $q \in M$ eine minimierende Geodätische von p nach q gibt. Es gelte $\mathcal{D}_p = \mathrm{T}_p M$ und es sei $q \in M$.

Für $\varepsilon > 0$ wie in Satz 8.7 ist $\partial \mathbb{B}_{\frac{\varepsilon}{2}}(p)$ kompakt; es sei $\overline{q} \in \partial \mathbb{B}_{\frac{\varepsilon}{2}}(p)$ ein Punkt minimalen Abstandes zu q. Dann gilt $\overline{q} = \exp_p(\frac{\varepsilon}{2}v)$ für ein $v \in T_p M$ mit ||v|| = 1.

Behauptung: Dann ist $\gamma_v|_{[0,R]}: t \mapsto \exp_p(tv)$ minimierende Geodätische nach q für R = d(p,q).

Es sei $\mathcal{I} = \{t \in [0, R] \mid d(\gamma_v(t), q) = R - t\}$. Dann ist \mathcal{I} nichtleer und abgeschlossen, denn $t \mapsto d(\gamma_v(t), q) + t$ ist stetig.

Für $t_0 \in \mathcal{I}$ und $0 < \varrho < \varepsilon_0$ sei $q' \in \partial \mathbb{B}_{\varrho}(\gamma_v(t_0))$ wie in Satz 8.7 angewandt auf $p_0 = \gamma_v(t_0)$. Dann gilt $d(p_0, q) = \varrho + d(q', q)$ und es folgt:

$$d(p, q') \ge d(p, q) - d(q', q)$$

$$= d(p, q) - d(p_0, q) + \varrho$$

$$= R - (R - t) + \varrho = t_0 + \varrho$$

Damit ist die Verkettung von $\gamma_v|_{[0,t_v]}$ und der minimalen Geodätischen von p_0 nach q' nach Korollar 8.9 eine Geodätische. Aus der Eindeutigkeit von kurzen Geodätischen folgt, dass diese Zusamensetzung mit γ_v übereinstimmt. Es gilt also $q' = \gamma_v(t_0 + \varrho)$ und mit $d(\gamma_v(t_0 + \varrho), q) = d(p_0, q) - \varrho = R - (t_0 + \varrho)$ gilt $t_0 + \varrho \in \mathcal{I}$.

Wir können nun die einzelnen Implikationen zeigen. Dabei gelten (i) \Rightarrow (ii) \Rightarrow (iii) offensichtlich.

- (iii) \Rightarrow (iv): Es gelte $\mathcal{D}_p = \mathrm{T}_p M$ und es sei $K \subseteq M$ abgeschlossen und beschränkt. Dann existiert R mit $K \subseteq \overline{\mathbb{B}}_R(p)$. Da $\overline{\mathbb{B}}_R(0_p)$ kompakt ist, ist auch K kompakt.
- $(iv) \Rightarrow (v)$: gilt offensichtlich
- (v) \Rightarrow (i): Es sei c eine nach Bogenlänge parametrisierte Geodätische mit maximalem Definitionsintervall \mathcal{I} . \mathcal{I} ist nichtleer und offen. Ist (t_n) eine Folge in \mathcal{I} mit Grenzwert t. Dann ist $q_n = c(t_n)$ wegen

$$d(c(t_n), c(t_m)) \le |t_m - t_n|$$

eine Cauchy-Folge und konvergiert somit gegen ein $p \in M$.

Es sei $\varrho > 0$ wie in Korollar 8.8. Für hinreichend großes n gilt dann $|t_n - t| < \frac{\varrho}{2}$. Die nach Bogenlänge parametrisierte Geodätische von $q_n = c(t_n)$ mit Startvektor $\dot{c}(t_n)$ existiert auf $(-\frac{\varrho}{2}, \frac{\varrho}{2})$, setzt also c bis zum Zeitpunkt $|t_n| + \frac{\varrho}{2} > |t|$ fort.

Bemerkungen/Beispiele (1) Geodätische sind im Allgemeinen nicht eindeutig. Betrachte die Einheitssphäre mit Geodätischen vom Nord- zum Südpol:

(2) $\mathbb{R}^2 \setminus \{0\}$

(3) $\mathbb{B}_1(0) \subseteq \mathbb{R}^2$ ist geodätisch konvex aber nicht vollständig.

Korollar 8.12 Es seien M eine vollständige Riemannsche Mannigfaltigkeit und c eine Geodätische. Dann gilt:

- (i) c ist lokal längenminimierend.
- $(ii) \ \ \textit{Falls es keine k\"{u}rzere Geod\"{a}tische von } c(a) \ \ \textit{nach } c(b) \ \ \textit{gibt, so ist } c|_{[a,b]} \ \ \textit{minimal.}$
- (iii) Falls es eine weitere Geodätische \overline{c} von c(a) nach c(b) mit $\mathcal{L}(\overline{c}) = \mathcal{L}(c|_{[a,b]})$ gibt, so ist $c|_{[a,b+\varepsilon]}$ für kein ε minimierend.

Beweis (i) Siehe Korollar 8.9.

- (ii) Nach dem Satz von Hopf-Rinow existiert eine minimale Geodätische von c(a) nach c(b). Ist c also die Kürzeste von c(a) nach c(b), so ist c auch minimierend.
- (iii) Ist \bar{c} eine weitere Geodätische von c(a) nach c(b), so gilt $\dot{c}(b) \neq \dot{\bar{c}}(b)$.

Die zusammengesetzte Kurve kann keine Geodätische sein, da die Tangentialvektoren nicht übereinstimmen.

Für hinreichend kleines $\varepsilon > 0$ existiert dann nach Satz 8.7 eine minimierende Geodätische \tilde{c} von $\overline{c}(b-\varepsilon)$ nach $c(b+\varepsilon)$. Die Länge von $\overline{c}|_{[a,b+\varepsilon]} \cup \tilde{c}$ ist strikt kleiner als die Länge von $c|_{[a,b+\varepsilon]}$. Damit ist $c|_{[a,b+\varepsilon]}$ nicht minimierend.