

Explorer et visualiser des données spatiales avec kepler.gl et DECK.GL

Explorer et visualiser des données urbaines

Open Data Action publique Cartographie Analyse spatiale Aménagement Urbanisme Big Data Représentations Territoires

Un écosystème opensource...

Vis.gl is a suite of composable, interoperable open source geospatial visualization frameworks centered around deck.gl.

...porté par de grandes entreprises

Contribution

Lead Contributors

Created By

Uber

Open Governance

vis.gl is under open governance, and anyone can join the open planning meetings. Contributor status is available and technical steering committee membership is available to major contributors.

Une genèse en plusieurs phases

- 2015 Développements au sein de Uber Engineering
- 2017 Lancement de vis.gl (passage à l'open source)
- 2019 Création de l'entreprise Unfolded par trois anciens salariés
- 2021 Rachat de Unfolded par Foursquare

Engineering November 10, 2016 / Global

Visualize Data Sets on the Web with Uber Engineering's deck.gl Framework

In this article, we discuss deck.gl, an open sourced, WebGLpowered framework specifically designed for exploring and...

Un ensemble d'outils libres complémentaires

kepler.gl

The kepler.gl demo application is a widely used geospatial tool for visualization and exploration of geospatial data using deck.gl. It demonstrates the power of the kepler.gl application framework, designed to let users build advanced custom geospatial applications.

deck.gl

Providing high-performance, GPU powered visualization layers for large scale geospatial data. deck.gl is the corner stone of the vis.gl framework suite. A selection of submodules provide layers for various geospatial and 3D use cases.

pydeck

Python bindings for deck.gl that enable powerful custom geospatial visualizations to be programmed directly in Jupyter Notebooks.

Un ensemble d'outils libres complémentaires

hubble.gl

A powerful animation and video capture solution for deck.gl and kepler.gl visualizations.

react-map-gl

A React wrapper for Mapbox GL JS that integrates with deck.gl.

FlowmapBlue

FlowmapBlue is a tool for visualizing aggregated numbers of movements between geographic locations as flow maps. It is used for representing data on urban mobility, travel, transportation, human and animal migration, material flows, supply chains, waste management and many other topics.

Dépôts de codes open source

Une offre commerciale en complément

En quelques mots

- Une approche exploration de données et pas analyse de données
 - Des outils de (géo)datascientist et pas vraiment de géomaticiens/cartographes
- Exploration et visualisation de données spatiales complexes
 - Volumineuses / Spatio-temporelles / 3D / raster et vecteur
- Combinaison tuiles vectorielles + WebGL
 - Travail de rendu côté client (accélération matérielle)
 - Permet la manipulation de jeux de données volumineux
 - Rendus en 3D au sein des navigateurs Web
- De multiples modes de représentation
 - Dotmap, grid, hexbin, extrusion 3D, arcs, lines, cluster, heatmap, H3...
- De nombreuses fonctionnalités d'interaction avec les données
 - Filtres, graphiques, timeslider, brushing, popup...

Qui utilise deck.gl?

- Pas une grosse communauté directe d'utilisateurs
 - Développeurs, quelques datajournalistes, datascientists et chercheurs
- Une intégration de l'outil dans la plupart des solutions de Webmapping commerciales (Google Maps, CARTO, ESRI, Mapbox...)

Quelques exemples pour illustrer l'outil

- https://stevekirks.github.io/deckgl-trips/?dataIdx=0
- https://dbabbs.github.io/mobility-map/
- https://greatescape.co/
- https://minitokyo3d.com/
- https://dxlab.sl.nsw.gov.au/subplot/
- https://nahelou.github.io/pages/deck_mobiliPro/index.html

Exemples des développeurs

Exemples personnels

https://bmericskay.github.io/portfolio/WebGL.html

Exemples personnels

Exploration des données du RPC

Préparation de données


```
timestamp, lato, longo, latb, longo, dep., epci, distance, duree
2022-09-01700:00:00+02:00, "47.481", "-0.567", "47.473", "-0.542", "49", CU Angers Loire Métropole, "2525", "10"
2022-09-01700:00:00+02:00, "48.339", "-0.286", "48.304", "-0.617", "53", CC du Mont des Avaloirs, "27582", "32"
2022-09-01700:20:00+02:00, "48.645", "-2.007", "48.679", "-1.98", "35", CA du Pays de Saint Malo Agglomération, "5215", "13"
2022-09-01700:20:00+02:00, "47.157", "48.679", "-1.48", "-0.417", "49", CU Angers Loire Métropole, "13175", "23"
2022-09-01701:50:00+02:00, "47.157", "-1.6", "47.476", "-0.537", "44", Nantes Métropole, "102055", "95"
2022-09-01701:50:00+02:00, "47.132", "-1.667", "47.273", "-1.797", "44", Nantes Métropole, "102055", "95"
2022-09-01702:20:00+02:00, "47.132", "-1.667", "47.273", "-1.797", "44", Nantes Métropole, "102240", "40"
2022-09-01702:20:00+02:00, "47.132", "-1.667", "47.245", "-1.728", "44", Nantes Métropole, "23240", "40"
2022-09-01703:30:00+02:00, "47.934", "-1.225", "47.971", "-1.258", "85", CC du Pays de Pouzauges, "101349", "106"
2022-09-01704:10:00+02:00, "47.493", "-1.225", "47.971", "-1.225", "35", CC du Pays de Poutauges, "101349", "106"
2022-09-01704:10:00+02:00, "47.414", "-2.137", "47.971", "-1.225", "34", CA Vitré Communauté, "6041", "11"
2022-09-01704:10:00+02:00, "47.414", "-2.137", "47.30", "44", CA De Pays de Poutauges, "1014s-des-Bois, "17951", "20"
2022-09-01704:10:00+02:00, "47.438", "-2.233", "47.302", "-2.176", "44", CA de la Région Nazairienne et de l'Estuaire (CARENE), "20436", "25"
2022-09-01704:10:00+02:00, "47.355", "-2.368", "47.316", "-2.169", "44", CA de la Région Nazairienne et de l'Estuaire (CARENE), "20436", "27"
2022-09-01704:10:00+02:00, "47.315", "-1.591", "41.315", "-2.169", "44", CA de la Région Nazairienne et de l'Estuaire (CARENE), "20436", "27"
2022-09-01704:10:00+02:00, "47.315", "-1.591", "41.315", "-2.169", "44", CA de la Région Nazairienne et de l'Estuaire (CARENE), "20436", "27"
2022-09-01704:10:00+02:00, "47.314", "-1.951", "41.315", "-2.169", "44", CA
```

Conversion en .json (jsonlite)

```
"field 1": 85,
"timestamp": "2022/09/01 03:20:00",
"lato": 45.461,
"longO": 4.762,
"latD": 45.286,
"longD": 4.824,
"dep": 69,
"epci": "CA Vienne Condrieu",
"distance": 23146,
"duree": 38
"field 1": 88,
"timestamp": "2022/09/01 03:30:00",
"lato": 45.771,
"longO": 5.077,
"latD": 45.816,
"longD": 5.185,
"dep": 38,
"epci": "CC Lyon Saint Exupéry en Dauphiné",
"distance": 21127,
"duree": 31
```


- 3 mois de covoiturage pendulaire dans 7 départements
 - Septembre, Octobre et Novembre 2022 > 202 000 trajets

	timestamp	latO	longO	latD	longD	dep	epci	distance	duree
1	01/09/2022 00:00:00 (47.481	-0.567	47.473	-0.542	49	CU Angers Loir	2525	10
2	01/09/2022 00:00:00 (48.339	-0.286	48.304	-0.617	53	CC du Mont de	27582	32
,	01/09/2022 00:20:00 (48.645	-2.007	48.679	-1.98	35	CA du Pays de	5215	13
	01/09/2022 00:20:00 (47.472	-0.545	47.443	-0.417	49	CU Angers Loir	13179	23
	01/09/2022 01:00:00 (47.157	-1.6	47.476	-0.537	44	Nantes Métrop	102095	95
	01/09/2022 01:50:00 (48.102	-1.457	48.042	-1.154	35	CC Pays de Châ	27343	32
	01/09/2022 02:20:00 (47.132	-1.667	47.273	-1.797	44	Nantes Métrop	32240	40
	01/09/2022 02:20:00 (47.132	-1.666	47.245	-1.728	44	Nantes Métrop	23541	33
	01/09/2022 03:30:00 (46.776	-0.828	47.16	-1.593	85	CC du Pays de	101349	106
0	01/09/2022 04:10:00 (47.934	-1.225	47.971	-1.225	35	CA Vitré Comm	6041	11
1	01/09/2022 04:10:00 (47.414	-2.173	47.317	-2.163	44	CC du Pays de	17951	20
2	01/09/2022 04:10:00 (47.443	-2.233	47.302	-2.176	44	CA de la Régio	20436	25

Exploration de données

mapbox DECK.GL

Géovisualisation de données

Modes de représentation

- Carte en points (graduées / catégorisées)
- Aplat de couleur (graduées / catégorisées)
- Carroyage (carreaux ou hexagones) + 3D
- Cluster et Heatmap
- Lignes et arcs 3D
- H3, trips...

Modes d'interaction

- Filtres (graphes et modalités)
- Time Slider
- Brushing
- Popup
- Gestion des couches
- Gestion des fonds de carte
- Géocodeurs
- Cartes multiples
- •

Démonstration

DECK.GL

Aller plus loin avec deck.gl

https://bmericskay.github.io/portfolio/DeckGL RPC.html

Et après?

- Préparer les données pour d'autres modes de représentation
 - Agrégation à diverses échelles (EPCI, départements...)
 - Enrichissement des données avec d'autres variables
- Augmenter l'interactivité avec les données
 - Proposer plus de fonctionnalité comme des boutons/listes pour filtrer
 - Proposer des sliders pour filtrer les distances/durée/dates
 - Animer les cartes (animation temporelle ou flyto)
- Reproductibilité assez simple
 - Préparation des données standardisée
 - Personnalisation de l'application en ligne assez simple (quelques lignes à modifier)

Bilan

Avantages

Inconvénients

Open source et gratuit et évolutif

Multi-profils

Interopérable avec plusieurs frameworks carto

Orienté exploration & géovisualisation

Rapide et performant

Modes de représentation uniques (trips, arcs)

Effet « waouh » garanti

Hébergement données et applications

Bien préparer les données

Très exigeant dans la structuration des données (json)

Prise en main complexe pour deck.gl

Peu de personnalisation dans les styles cartographiques

Une communauté de développeurs très liée à de grandes entreprises

Une communauté d'utilisateurs peu développée

En conclusion

- Des outils peu connus et encore sous utilisés
 - Kepler.gl super pour des non spécialistes des SIG
 - Deck.gl super pour des développeurs SIG
- Très orienté Design/dataviz
- De nombreux développement autour du raster (visualisation et 3D)

DECK.GL DECK.GL

