SCC-275 - Ciência de Dados

Exploração de dados PARTE II

Profa. Roseli Ap. Francelin Romero – SCC

Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco ICMC-USP

Tópicos

- Dados
- Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
- Exploração de dados
 - Dados univariados
 - Dados multivariados
 - Visualização

 Gráfico que resume informações dos quartis

Intervalo entre quartis

Boxplot modificado

- Identifica outliers e reduz seu efeito no formato do boxplot
 - Tolerância = 1,5 x intervalo entre quartis
 - Verificar se máximo Q₃ (Q₁ mínimo) > tolerância
 - Valor fora do intervalo é considerado outlier
 - Define novo mínimo e/ou máximo

Medidas de espalhamento

- Medem variabilidade, dispersão ou espalhamento de um conjunto de valores
- Indicam se os dados estão:
 - Amplamente espalhados ou
 - Relativamente concentrados em torno de um ponto (ex. média)
- Medidas comuns
 - Intervalo ou amplitude
 - Variância
 - Desvio padrão

Intervalo

- Medida mais simples
 - Mostra espalhamento máximo
 - Usada em controle de qualidade
- Sejam $\{x_1, ..., x_n\}$ *n* valores para um atributo x

- Pode não ser uma boa medida
 - Maioria dos valores próximos de um ponto e poucos valores próximos aos extremos

 Medida mais utilizada para analisar espalhamento de valores

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Denominador n-1: correção de Bessel, usada para uma melhor estimativa da variância verdadeira
 - Amostra (estimada) e população (verdadeira)
- Desvio padrão: raiz quadrada da variância
- Um dos momentos de uma distribuição de probabilidade

- "o quão longe" em geral os seus valores se encontram do <u>valor esperado</u> (média) da variável aleatória *X*.
- Desvio Padrão indica qual é o "erro" se quiséssemos substituir um dos valores coletados pelo valor da média.

Funcionários	Quantidade de peças produzidas por dia					
	Segunda	Terça	Quarta	Quinta	Sexta	
Α	10	9	11	12	8	
В	15	12	16	10	11	
С	11	10	8	11	12	
D	8	12	15	9	11	

Funcionários	Média Aritmética (x)		
Α	$\overline{X}_A = \underline{10 + 9 + 11 + 12 + 8} = \underline{50}$	X _A = 10,0	
В	$\overline{X}_B = \underline{15 + 12 + 16 + 10 + 11} = \underline{64}$	X _B = 12,8	
С	$\overline{X}_c = \underline{11 + 10 + 8 + 11 + 12} = \underline{52}$	X _c = 10,4	
D	$X_D = 8 + 12 + 15 + 9 + 11 = 55$	X _D = 11,0	

Variância → Funcionário A:

var (A) =
$$(10 - 10)^2 + (9 - 10)^2 + (11 - 10)^2 + (12 - 10)^2 + (8 - 10)^2 + (10 -$$

$$Var(B) = 5,36$$

 $Var(C) = 1,84$
 $Var(D) = 6,0$

Variância e Desvio Padrão

- $dp(A) \approx 1.41$
- $dp(B) \approx 2.32$
- $dp(C) \approx 1.36$
- $dp(D) \approx 2,45$
- Funcionário A: 10,0 ± 1,41 peças por dia
 - Funcionário B: 12,8 \pm 2,32 peças por dia
 - Funcionário C: $10,4 \pm 1,36$ peças por dia
 - Funcionário D: 11,0 \pm 2,45 peças por dia

Medidas de distribuição

- Definem como os valores de uma variável (atributo) estão distribuídos
- Calculada por meio de momentos
 - Medida quantitativa usada na estatística e na mecânica
 - Captura o formato da distribuição de um conjunto de valores

Momentos

- Usados para caracterizar a distribuição de valores de variáveis aleatórias
 - Estimam medidas de uma população de valores usando uma amostra dela
- Vários cálculos de momento
 - Cálculo de momento original
 - Cálculo de momento central
 - Cálculo de momento padronizado

_ ...

Momento original

Momento em torno da origem

$$\mu_k = E(x^k) = \sum_{i=1}^n x_i^k p(x_i) = \sum_{i=1}^n x_i^k f(x_i)$$

- Valor de k define qual é a medida de momento estimada
 - Em geral, apenas primeiro momento (k = 1) é usado: média

Momento central

- Centralizado ou centrado
 - K=1: média = 0 (primeiro momento em torno da média = primeiro momento central)
 - K=2: variância (segundo momento central)
 - K=3: obliquidade (terceiro momento central)
 - K=4: curtose (quarto momento central)

$$\mu_k = E[x - E(x)]^k = \sum_{i=1}^n (x_i - \overline{x})^k p(x_i) = \sum_{i=1}^n (x_i - \overline{x})^k f(x_i)$$

$$\mu_k = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^k}{(n-1)}$$
 Assumindo cada x_i aparece com a mesma frequência

Momento padronizado

- Fornece informações mais claras sobre a distribuição dos dados
 - Utiliza distribuição normal padrão
 - Normaliza o k-ésimo momento pelo desvio padrão elevado a k
 - Torna a medida independente de escala

$$\mu_k = \frac{\mu_k}{\sigma^k}$$
 Em torno da média

Momento padronizado

- Primeiro momento (K=1):
 - Média = 0
- Segundo momento (K=2):
 - Variância = 1

$$\mu_2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^k}{(n-1)\sigma^2}$$

Obliquidade

- Terceiro momento (Skewness)
 - Mede a simetria da distribuição dos dados em torno da média
 - Distribuição simétrica tem a mesma aparência à direita e à esquerda do ponto central

$$Obl = \mu_3 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{(n-1)\sigma^3}$$

$$\mu_3 = \frac{1}{\sigma_3} \sum_{i=1}^n (x_i - \overline{x})^3 p(x_i) = \frac{1}{\sigma_3} \sum_{i=1}^n (x_i - \overline{x})^3 f(x_i)$$

Distribuição normal

Curtose

- Quarto momento (Kurtosis)
 - Medida de dispersão que captura o achatamento da função de distribuição
 - Verifica se os dados apresentam um pico elevado ou são achatados em relação a uma distribuição normal

$$Curt = \mu_4 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{(n-1)\sigma^4}$$

Curtose

- Para uma distribuição normal padrão (média = 0 e desv. pad. = 1), Curt = 3
- Para que a distribuição normal padrão tenha curtose = 0, usa-se a correção:

$$Curt = \mu_4 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{(n-1)\sigma^4} - 3$$

Histograma

Melhor forma para verificar graficamente curtose e obliquidade

Curtose faz a diferença

Todas tem media zero e variância 1 São diferentes!!!

Exercício

 Obter o valor dos 4 primeiros momentos padronizados para os valores:

1, 3, 5, 6, 8, 10, 15

Boxplot e Estatística Descritiva

Centralidade

Espalhamento

Boxplot e Estatística Descritiva

Obliquidade (simetria)

Curtose (achatamento)

Boxplot e Estatística Descritiva

 Análise da distribuição de dados para 4 atributos preditivos:

- Possuem mais de um atributo
 - Cada atributo é uma variável
- Medidas de localização (tendência central)
 - Podem ser obtidas calculando medida de localização de cada atributo separadamente
 - Ex.: média, mediana, ...
 - Média dos objetos de um conjunto de dados com m atributos é dada por: $\bar{x} = (\bar{x}_1, ..., \bar{x}_m)$

- Medidas de espalhamento (dispersão)
 - Podem ser calculadas para cada atributo independentemente dos demais
 - Usando qualquer medida de espalhamento
 - Intervalo, variância, desvio padrão
 - Para dados multivariados numéricos é melhor usar uma matriz de covariância
 - Cada elemento da matriz é a covariância entre dois atributos

• Cálculo de cada elemento s_{ij} de uma matriz de covariância S para um conjunto de n objetos

$$s_{ij} = \text{covariância}(x_i, x_j) = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

Onde:

 $\overline{x_i}$: Valor médio do i-ésimo atributo

 x_{ki} : Valor do i-ésimo atributo para o k-ésimo objeto

- Obs: covariância (x_i, x_i) = variância (x_i)
 - Matriz de covariância tem em sua diagonal as variâncias dos atributos

Calcular a matriz de covariância para o conjunto de dados:

Altura	Temperatura
170	37
165	38
190	34
152	31
	170 165 190

- Covariância de dois atributos
 - Mede o grau com que os atributos variam juntos (linearmente)
 - Valor próximo de 0:
 - Atributos não têm um relacionamento linear
 - Valor positivo:
 - Atributos diretamente relacionados
 - Quando o valor de um atributo aumenta, o do outro também aumenta
 - Valor negativo:
 - Atributos inversamente relacionados
 - Valor depende da magnitude dos atributos

Peso	Altura
60	170
70	180
80	190

Peso	Altura
60	190
70	180
80	170

Peso	Altura
60	170
70	190
80	180

- Covariância de dois atributos
 - É difícil avaliar o relacionamento entre dois atributos olhando apenas a covariância
 - Sofre influência da faixa de valores dos atributos
 - Correlação linear entre dois atributos ilustra mais claramente a força da relação linear entre eles
 - Mais popular que covariância
 - Elimina influência da faixa de valores

