Tratamiento Digital de Señales

Práctica 6

La DFT y Análisis Espectral de Sinusoides

Actividades Preliminares

Las actividades preliminares se deberán entregar en un folio manuscrito al comienzo de la práctica de laboratorio.

Actividad 1. Resuelva el problema

Considere la secuencia $x[n] = 4\delta[n] + 3\delta[n-1] + 2\delta[n-2] + \delta[n-3]$, donde $X[k] = DFT^{(6)}\{x[n]\}$.

(a) Dibuje la secuencia $x_{(a)}[n]$ que cumple que:

$$X_{(a)}[k] = W_6^{2k} X[k]$$
 $0 \le k \le 5$

(b) Dibuje la secuencia $x_{(b)}[n]$ que cumple que:

$$X_{(b)}[k] = \Re\{X[k]\}$$
 $0 \le k \le 5$

(c) Si $h[n] = \delta[n] - \delta[n-1]$, dibuje:

La convolución lineal: $y_1[n] = x[n] * h[n]$.

La convolución circular de orden 4: $y_2[n] = x[n] \circledast_4 h[n]$.

La convolución circular de orden 6: $y_3[n] = x[n] \circledast_6 h[n]$.

Introducción a la práctica

En esta práctica se ilustran conceptos básicos de la DFT y del análisis espectral de sinusoides. Se van a resaltar:

- Interpretación de la DFT como un muestreo de la transformada de Fourier de una secuencia (DTFT)
- Análisis espectral de sinusoides a partir de un registro de datos

Com	anda	c M	atl	ah
v.oiii	411CIC	15 IVI		411

fft

fftshift

hamming

Ejercicios de la práctica

1. Muestreo de la transformada de Fourier

Considere el pulso rectangular discreto definido de la siguiente forma:

$$x[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & resto \end{cases}$$

Su transformada de Fourier viene dada por la fórmula:

$$X(e^{j\omega}) = e^{-j\omega\frac{N-1}{2}} \frac{sen(\omega\frac{N}{2})}{sen(\frac{\omega}{2})}; X(e^{j0}) = N$$

1.1 $X(e^{j\omega})$ es una función continua de ω , de periodo 2π . Si queremos trabajar con $X(e^{j\omega})$ de forma práctica tendremos que muestrearla. Según se ha visto en las clases teóricas, tenemos que tomar, al menos, tantas muestras de $X(e^{j\omega})$ como muestras tiene x[n]. Por tanto, muestrearemos $X(e^{j\omega})$ en el conjunto de frecuencias

$$\omega_k = \frac{2\pi k}{N}, \ k = 0, 1, 2, ..., N - 1$$

Calcule y dibuje el módulo y fase de las muestras de $X(e^{j\omega})$ en el periodo $\begin{bmatrix} 0 & 2\pi \end{bmatrix}$, para N=49..

1.2 Aunque el muestreo del apartado anterior es suficiente para la representación de $X(e^{j\omega})$, un sobremuestreo permite ver y calcular con mayor detalle las características de $X(e^{j\omega})$. Repita el apartado anterior pero tomando N=300 muestras, en el conjunto de frecuencias $\omega_k = \frac{2\pi}{300}k$, k = 0, 1, ..., 299.

2. Cálculo de las muestras de una transformada de Fourier con la DFT

En este apartado se va a comprobar la relación entre la DFT y la DTFT, que recordemos que era de la forma:

$$X[k] = X(e^{j\omega})|_{\omega=2\pi k/L} k = 0,1,...,L-1$$

Recordemos también la ecuación de análisis de la DFT:

$$DFT^{(N)}\{x[n]\} = X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi k}{N}n} \qquad k = 0, 1, ..., N-1$$

las muestras de la DFT corresponden la conjunto de las frecuencias $\omega_k = \frac{2\pi k}{N}$, k = 0, 1, 2, ..., N - 1.

En el entorno MATLAB la DFT se calcula con el comando **fft(...)**, que implementa uno de los algoritmos rápidos de cálculo de la DFT.

- **2.1** Repita los cálculos del apartado 1.1 utilizando el comando **fft(...)**.
- **2.2** El sobremuestreo en frecuencia se calcula especificando una longitud para la DFT mayor que la duración de la señal, mediante el comando $\mathbf{fft}(\mathbf{x},\mathbf{M})$. El rellenado con ceros ("zero padding") lo realiza automáticamente el comando $\mathbf{fft}(\mathbf{x},\mathbf{M})$. Repita el apartado 1.2 usando el comando $\mathbf{fft}(\mathbf{x},\mathbf{M})$.

3. El comando MATLAB fftshift(...)

En los apartados anteriores hemos calculado las muestras de la transformada de Fourier en el periodo $\begin{bmatrix} 0 & 2\pi \end{bmatrix}$. A menudo es más conveniente trabajar con el periodo $\begin{bmatrix} -\pi & \pi \end{bmatrix}$. Dado que la DFT trabaja en el periodo $\begin{bmatrix} 0 & 2\pi \end{bmatrix}$, es necesario efectuar una traslación de las muestras del semiperiodo $\begin{bmatrix} \pi & 2\pi \end{bmatrix}$ al semiperiodo $\begin{bmatrix} -\pi & 0 \end{bmatrix}$. Esta traslación "especial" se realiza mediante el comando **fftshift(...)**, aplicado a la DFT devuelta por el comando fft(...). Para dibujarlo, también sería necesario un desplazamiento del eje de frecuencias dado por la fórmula $\omega_k - \pi$.

2.3.1 Repita los cálculos del apartado 2.2, pero trabajando en el intervalo de frecuencias $\begin{bmatrix} -\pi & \pi \end{bmatrix}$.

Nota: El eje de frecuencias entre $\begin{bmatrix} -\pi & \pi \end{bmatrix}$ se calcula con:

$$wk=2*pi*(0:M-1)/M - pi;$$

4 Análisis espectral (caso determinista) con la DFT.

Considere que

$$x_c(t) = \sum_{i=1}^{P} A_i \cos(2\pi F_i t)$$

es la salida de un sensor que mide la emisión de fuentes de señales de tipo cosenoidal con amplitudes A_i y frecuencias F_i Hz. Se sabe que las frecuencias F_i son inferiores a 10 KHz, por lo que la señal $x_c(t)$ se ha muestreado con una frecuencia de muestreo $F_s = 20$ KHz, obteniéndose una señal x(n) de duración L = 100. La señal x(n) se encuentra en el fichero x1.mat, almacenado en el servidor del laboratorio.

El objetivo de este ejercicio es determinar P, el número de componentes sinusoidales de $x_c(t)$, y los pares $(A_i - F_i)$. Para ello deberá calcular el espectro de x(n) con diferentes ventanas y medir los máximos que puedan corresponder con componentes sinusoidales.

4.1 Ventana Rectangular

Aplique una ventana rectangular a los datos x(n). Calcule y dibuje el módulo de una DFT de orden M=10000 de los datos enventanados. Dado que la señal es real, descarte las muestras de la DFT correspondientes al semiperiodo $\begin{bmatrix} \pi & 2\pi \end{bmatrix}$ y trabaje en el semieje de frecuencias $\begin{bmatrix} 0 & \pi \end{bmatrix}$. Además, emplee

un eje de frecuencias en Hz para facilitar la medida de las frecuencias. Para ello considere la correspondencia entre frecuencias discretas – frecuencias analógicas a través del muestreo:

$$\Omega_k T_s = \omega_k$$

$$2\pi F_k T_s = \frac{2\pi}{M} k$$

$$F_k = \frac{F_s}{M} k$$

Por tanto, debe trabajar con los valores de la DFT correspondientes a los índices $0, 1, \dots, \frac{M}{2}$ y con el eje de frecuencias (analógicas) $F_k = \frac{F_s}{M} k$, $k = 0, 1, \dots, \frac{M}{2}$.

Con el comando [. . .]=ginput puede calcular fácilmente los pares $(A_i extit{F}_i)$ de las componentes cosenoidales que usted crea que contiene $x_c(t)$. Considere que para que dos máximos consecutivos se correspondan con dos componentes cosenoidales debe existir un valle entre ellos de al menos 2 dB de profundidad.

4.2 Ventana de Hamming

Aplique una ventana de Hamming a los datos x(n) y repita los cálculos del apartado anterior.

$$xw = x.*hamming(L);$$

4.3 Componentes espectrales

Combine los resultados de los apartados 1.1 y 1.2 y decida cuál es el conjunto de componentes de la señal $x_c(t)$.

Comentario. Es conveniente representar los espectros (con ventana rectangular y con ventana de Hamming) en la misma ventana gráfica y con subplot(211x). Así dispondrá de una visión de conjunto de las posibles componentes de la señal.

5. Otro ejemplo de Análisis espectral con la DFT.

En el fichero x2.mat, que encontrará en el servidor del laboratorio, se encuentran muestras de una señal

$$x_{c}(t) = \sum_{i=1}^{P} A_{ic} \cos(2\pi F_{ic}t) + \sum_{i=1}^{Q} A_{ie} e^{j2\pi F_{ie}t}$$

con ancho de banda inferior a 500 Hz; la frecuencia de muestreo es $F_s = 1000\,\mathrm{Hz}$. Se pide que calcule $P,\,A_{ic}\,,\,F_{ic}\,,\,Q,\,A_{ie}\,,\,\,F_{ie}\,.$

Teniendo en cuenta que la señal es compleja los espectros se tienen que representar en el intervalo de frecuencias $\begin{bmatrix} -\frac{F_s}{2} & \frac{F_s}{2} \end{bmatrix}$. En MATLAB

ejeF=Fs/M*(0:M-1)-Fs/2;