

Environments of Deposition

- Terrestrial (non-marine)
 - Alluvial fans
 - River floodplains
 - Lakes
 - Glaciers
 - Eolian (windswept)
- Transitional
 - Delta
 - Beach
 - Lagoon

- Marine
 - Shallow marine
 - Deep marine

Alluvial Fans

 Clastic sediment deposited onto plains from mountains

River Floodplains

- Lowlands composed of river deposits.
- Overflows during flood stages.

Glaciers

- Volumes of rock debris including boulders
- Poorly sorted

Lacustrine (Lake)

- Includes playa lakes (pictures)
 - Created from runoff from heavy storms.
- Results in mudcracks:
 - Evaporation causes change from wet to dry conditions in mud
- Mudcracks are created from periods of wetting and drying

Deep Marine

- Sediment becomes carried down continental slope.
 - Submarine fans are <u>similar to</u> alluvial fans

Graded Bedding

- Coarser sediment at the bottom
- Finer sediment towards the top
- Usually a product of **turbidity currents**

Plane Bedding

- Can be formed in any sedimentary environment
- Laterally extensive
- Usually thinly laminated
- Disrupted by bioturbation
 - Burrowing organisms
- To be preserved,
 - No burrowing organisms (no bioturbation)
 - Anoxic environment
 - glacier-associated lakes which tend to deposit sediment quickly and lack organic sediment

Cross Bedding

- Indicate sediment deposited in current
- Truncated beds = original side up
- Cross beds slope in direction of flow!

Ripple Marks

Can be symmetric or asymmetric

Ripple marks

 Symmetric ripples indicate bi-modal current

Flow direction

•Concave = up

 Asymmetric ripples indicate unidirectional current

Tool Marks

- Marks created by grains dragging along a surface
- Useful for interpreting paleocurrent

