SELECTION GAMES AND ARHANGELSKII'S CONVERGENCE PRINCIPLES

STEVEN CLONTZ

ABSTRACT. We prove the things.

2

3

1. Clontz results **Definition 1.** Say a collection \mathcal{A} is sequence-like if it satisfies the following for each $A \in \mathcal{A}$. • $|A| \geq \aleph_0$. • If $A' \subseteq A$ and $|A'| \ge \aleph_0$, then $A' \in \mathcal{A}$. **Definition 2.** Let Γ_X be the collection of open γ -covers \mathcal{U} of X, that is, infinite open covers of X such that for each $x \in X$, $\{U \in \mathcal{U} : x \in U\}$ is cofinite in \mathcal{U} . **Definition 3.** Let $\Gamma_{X,x}$ be the collection of non-trivial sequences $S \subseteq X$ converging 11 to x, that is, infinite subsets of X such that for each neighborhood U of $x, S \cap U$ is cofinite in S. 13 It follows that $\Gamma_X, \Gamma_{X,x}$ are both sequence-like. We also require the following. **Definition 4.** Say a collection \mathcal{A} is almost-sequence-like if for each $A \in \mathcal{A}$, there is $A' \subseteq A$ such that: $\bullet |A'| = \aleph_0.$ 17 • If A'' is a cofinite subset of A', then $A'' \in \mathcal{A}$. 18 So all sequence-like sets are almost-sequence-like. **Theorem 5.** Let \mathcal{B} be sequence-like. Then $\alpha_1(\mathcal{A},\mathcal{B})$ holds if and only if I \checkmark $G_{cf}(\mathcal{A},\mathcal{B}).$ *Proof.* We first assume $\alpha_1(\mathcal{A}, \mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for I. By $\alpha_1(\mathcal{A}, \mathcal{B})$, we immediately obtain $B \in \mathcal{B}$ such that $|A_n \setminus B| < \aleph_0$. Thus $B_n = A_n \cap B$ is a cofinite choice from A_n , and $B' = \bigcup \{B_n : n < \omega\}$ is an infinite subset of B, so $B' \in \mathcal{B}$. Thus II may defeat I by choosing $B_n \subseteq A_n$ each round, witnessing I $\uparrow \atop \text{pre} G_{cf}(\mathcal{A}, \mathcal{B})$. 26 On the other hand, let I $\uparrow G_{cf}(\mathcal{A}, \mathcal{B})$. Given $A_n \in \mathcal{A}$ for $n < \omega$, we note that 27

Key words and phrases. Selection principle, selection game, α_i property, convergence.

B witnesses $\alpha_1(\mathcal{A}, \mathcal{B})$ since $|A_n \setminus B| \leq |A_n \setminus B_n| \leq \aleph_0$.

holds if and only if I γ $G_1(\mathcal{A}, \mathcal{B})$.

II may choose a cofinite subset $B_n \subseteq A_n$ such that $B = \bigcup \{B_n : n < \omega\} \in \mathcal{B}$. Then

Theorem 6. Let \mathcal{A} be almost-sequence-like and \mathcal{B} be sequence-like. Then $\alpha_2(\mathcal{A}, \mathcal{B})$

59

Proof. We first assume $\alpha_2(\mathcal{A}, \mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined strategy for \mathscr{I} . We may apply $\alpha_2(\mathcal{A}, \mathcal{B})$ to choose $B \in \mathcal{B}$ such that $|A_n \cap B| \geq \aleph_0$. We may then choose $a_n \in (A_n \cap B) \setminus \{a_i : i < n\}$ for each $n < \omega$. It follows that $B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ is an infinite subset of } B \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B} \text{ since } B' \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ does } B' = \{a_n : n < \omega\} \in \mathcal{B}; \text{ therefore } A_n \text{ doe$ not define a winning predetermined strategy for I. 37 that $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n, j < k \text{ implies } a_{n,j} \neq a_{n,k}, \text{ and } A_{n,m} = \{a_{n,j} : m \leq a_{n,j} \neq a_{n,k}, a_{n,m} = a_{n,j} = a_{n,j$ 38 $j < \omega \} \in \mathcal{A}$. Finally choose some $\theta : \omega \to \omega$ such that $|\theta^{\leftarrow}(n)| = \aleph_0$ for each $n < \omega$. Since playing $A_{\theta(m),m}$ during round m does not define a winning strategy for I in $G_1(\mathcal{A},\mathcal{B})$, II may choose $x_m \in A_{\theta(m),m}$ such that $B = \{x_m : m < \omega\} \in \mathcal{B}$. Choose 41 $i_m < \omega$ for each $m < \omega$ such that $x_m = a_{\theta(m),i_m}$, noting $i_m \ge m$. It follows that $A_n \cap B \supseteq \{a_{\theta(m),i_m} : m \in \theta^{\leftarrow}(n)\}$. Since for each $m \in \theta^{\leftarrow}(n)$ there exists $M \in A_n \cap B$ $\theta^{\leftarrow}(n)$ such that $m \leq i_m < M \leq i_M$, and therefore $a_{\theta(m),i_m} \neq a_{\theta(m),i_M} = a_{\theta(M),i_M}$, we have shown that $A_n \cap B$ is infinite. Thus B witnesses $\alpha_2(\mathcal{A}, \mathcal{B})$.

Theorem 7. Let \mathcal{A} be almost-sequence-like and \mathcal{B} be sequence-like. Then $\alpha_4(\mathcal{A},\mathcal{B})$ holds if and only if I $\gamma \atop pre$ $G_{<2}(\mathcal{A},\mathcal{B})$ if and only if I $\gamma \atop pre$ $G_{fin}(\mathcal{A},\mathcal{B})$.

48 Proof. We first assume $\alpha_4(\mathcal{A},\mathcal{B})$ and let $A_n \in \mathcal{A}$ for $n < \omega$ define a predetermined 49 strategy for I in $G_{<2}(\mathcal{A},\mathcal{B})$. We then may choose $A'_n \in \mathcal{A}$ where $A'_n = \{a_{n,j} : j < \omega\} \subseteq A_n, j < k$ implies $a_{n,j} \neq a_{n,k}$, and $A''_n = A'_n \setminus \{a_{i,j} : i,j < n\} \in \mathcal{A}$.

By applying $\alpha_4(\mathcal{A},\mathcal{B})$ to A_n'' , we obtain $B \in \mathcal{B}$ such that $A_n'' \cap B \neq \emptyset$ for infintelymany $n < \omega$. We then let $F_n = \emptyset$ when $A_n'' \cap B = \emptyset$, and $F_n = \{x_n\}$ for some $x_n \in A_n'' \cap B$ otherwise. Then we will have that $B' = \bigcup \{F_n : n < \omega\} \subseteq B$ belongs to \mathcal{B} once we show that B' is infinite. To see this, for $m \leq n < \omega$ note that either F_m is empty (and we let $j_m = 0$) or $F_m = \{a_{m,j_m}\}$ for some $j_m \geq m$; choose $N < \omega$ such that $j_m < N$ for all $m \leq n$ and $j_m = \{a_{m,j_m}\}$. Thus $j_m \neq j_m = \{a_{m,j_m}\}$ for all $j_m \leq n$ since $j_m \neq j_m = \{a_{m,j_m}\}$. Thus $j_m \neq j_m = \{a_{m,j_m}\}$ for all $j_m \leq n$ since $j_m \neq j_m = \{a_{m,j_m}\}$. Thus II may defeat the predetermined strategy $j_m = \{a_{m,j_m}\}$ by playing $j_m = \{a_{m,j_m}\}$ for some $j_m \geq m$; choose $j_m \geq m$ since $j_m \neq j_m = \{a_{m,j_m}\}$. Thus II may defeat the predetermined strategy $j_m = \{a_{m,j_m}\}$ for some $j_m \geq m$; choose $j_m \geq m$ since $j_m \neq j_m = \{a_{m,j_m}\}$. Thus II may defeat the predetermined strategy $j_m = \{a_{m,j_m}\}$ for some $j_m \geq m$; choose $j_m \geq m$

Since I $\uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ immediately implies I $\uparrow G_{fin}(\mathcal{A}, \mathcal{B})$, we assume the latter.

Given $A_n \in \mathcal{A}$ for $n < \omega$, we note this defines a (non-winning) predetermined strategy for I, so II may choose $F_n \in [A_n]^{<\aleph_0}$ such that $B = \bigcup \{F_n : n < \omega\} \in \mathcal{B}$. Since B is infinite, we note $F_n \neq \emptyset$ for infinitely-many $n < \omega$. Thus B witnesses $\alpha_4(\mathcal{A},\mathcal{B})$ since $A_n \cap B \supseteq F_n \neq \emptyset$ for infinitely-many $n < \omega$.

Theorem 8. Let \mathcal{B} be sequence-like. Then $I \uparrow_{pre} G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow_{pre} G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof. Assume $\bigcup \mathcal{A}$ is well-ordered. Given a winning predetermined strategy A_n for I in $G_{<2}(\mathcal{A},\mathcal{B})$, consider $F_n \in [A_n]^{<\aleph_0}$. We set

$$F_n^* = \begin{cases} \emptyset & \text{if } F_n \setminus \bigcup \{F_m : m < n\} = \emptyset \\ \{\min(F_n \setminus \bigcup \{F_m : m < n\})\} & \text{otherwise} \end{cases}$$

Since $|F_n| < 2$, we have that $\bigcup \{F_n^* : n < \omega\} \notin \mathcal{B}$. In the case that $\bigcup \{F_n^* : n < \omega\}$ is finite, we immediately see that $\bigcup \{F_n : n < \omega\}$ is also finite and therefore not in \mathcal{B} . Otherwise $\bigcup \{F_n^* : n < \omega\} \notin \mathcal{B}$ is an infinite subset of $\bigcup \{F_n : n < \omega\}$, and thus $\bigcup \{F_n : n < \omega\} \notin \mathcal{B}$ too. Therefore A_n is a winning predetermined strategy for I in $G_{fin}(\mathcal{A}, \mathcal{B})$ as well.

Theorem 9. Let \mathcal{B} be sequence-like. Then $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$.

Proof. Assume $\bigcup \mathcal{A}$ is well-ordered. Suppose $I \uparrow G_{<2}(\mathcal{A}, \mathcal{B})$ is witnessed by the strategy σ . Let $\langle \rangle^* = \langle \rangle$, and for $s \cap \langle F \rangle \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{<\omega} \setminus \{\langle \rangle\}$ let

$$(s^{\frown} \langle F \rangle)^{\star} = \begin{cases} s^{\star \frown} \langle \emptyset \rangle & \text{if } F \setminus \bigcup \text{range}(s) = \emptyset \\ s^{\star \frown} \langle \{\min(F \setminus \bigcup \text{range}(s))\} \rangle & \text{otherwise} \end{cases}$$

We then define the strategy τ for I in $G_{fin}(\mathcal{A}, \mathcal{B})$ by $\tau(s) = \sigma(s^*)$. Then given any counterattack $\alpha \in ([\bigcup \mathcal{A}]^{<\aleph_0})^{\omega}$ by II played against τ , we note that $\alpha^* = \bigcup \{(\alpha \upharpoonright n)^* : n < \omega\}$ is a counterattack to σ , and thus loses. This means $B = \bigcup \operatorname{range}(\alpha^*) \notin \mathcal{B}$.

We consider two cases. The first is the case that $\bigcup \operatorname{range}(\alpha^*)$ is finite. Noting that $\alpha^*(m) \cap \alpha^*(n) = \emptyset$ whenever $m \neq n$, there exists $N < \omega$ such that $\alpha^*(n) = \emptyset$ for all n > N. As a result, $\bigcup \operatorname{range}(\alpha) = \bigcup \operatorname{range}(\alpha \upharpoonright n)$, and thus $\bigcup \operatorname{range}(\alpha)$ is finite, and therefore not in \mathcal{B} .

In the other case, $\bigcup \operatorname{range}(\alpha^*) \notin \mathcal{B}$ is an infinite subset of $\bigcup \operatorname{range}(\alpha)$, and therefore $\bigcup \operatorname{range}(\alpha) \notin \mathcal{B}$ as well. Thus we have shown that τ is a winning strategy for I in $G_{fin}(\mathcal{A}, \mathcal{B})$.

Theorem 10. Let $\mathcal B$ be sequence-like. Then II $\uparrow G_{<2}(\mathcal A,\mathcal B)$ if and only if II \uparrow $G_{fin}(\mathcal A,\mathcal B)$.

Theorem 11. Let $\mathcal B$ be sequence-like. Then II $\uparrow_{mark} G_{<2}(\mathcal A,\mathcal B)$ if and only if II $\uparrow_{mark} G_{fin}(\mathcal A,\mathcal B)$.

Theorem 12. Let \mathcal{A} be almost-sequence-like and \mathcal{B} be sequence-like. Then I \uparrow $G_{fin}(\mathcal{A},\mathcal{B})$ if and only if I \uparrow $G_{fin}(\mathcal{A},\mathcal{B})$.

Proof. We assume $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$. As \mathcal{A} is almost-sequence-like, there is a strategy σ witnessing $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ where $|\sigma(s)| = \aleph_0$ and $\sigma(s) \cap \bigcup \operatorname{range}(s) = \emptyset$ (that is, σ never replays the choices of II) for all partial plays s by II.

For each $s \in \omega^{<\omega}$, suppose $F_{s \upharpoonright m} \in [\bigcup A]^{<\aleph_0}$ is defined for each $0 < m \le |s|$.

Then let $s^* : |s| \to [\bigcup A]^{<\aleph_0}$ be defined by $s^*(m) = F_{s \upharpoonright m+1}$, and define $\tau' : \omega^{<\omega} \to A$ by $\tau'(s) = \sigma(s^*)$. Finally, set $[\sigma(s^*)]^{<\aleph_0} = \{F_{s \smallfrown \langle n \rangle} : n < \omega\}$, and for some bijection $b : \omega^{<\omega} \to \omega$ let $\tau(n) = \tau'(b(n))$ be a predetermined strategy for I in $G_{fin}(A, \mathcal{B})$.

Suppose α is a counterattack by II against τ , so

$$\alpha(n) \in [\tau(n)]^{<\aleph_0} = [\tau'(b(n))]^{<\aleph_0} = [\sigma(b(n)^\star)]^{<\aleph_0}$$

It follows that $\alpha(n) = F_{b(n) \cap \langle m \rangle}$ for some $m < \omega$. In particular, there is some infinite subset $W \subseteq \omega$ and $f \in \omega^{\omega}$ such that $\{\alpha(n) : n \in W\} = \{F_{f \mid n+1} : n < \omega\}$. Note here that $(f \mid n+1)^* = (f \mid n)^* \cap \langle F_{f \mid n+1} \rangle$. This shows that $F_{f \mid n+1} \in [\sigma((f \mid n)^*)]^{<\aleph_0}$ is an attempt by II to defeat σ , which fails. Thus $\bigcup \{F_{f \mid n+1} : n < \omega\} = \bigcup \{\alpha(n) : n \in W\} \notin \mathcal{B}$, and since this set is infinite (as σ prevents II from repeating choices) we have $\bigcup \{\alpha(n) : n < \omega\} \notin \mathcal{B}$ too. Therefore τ is winning.

Proposition 13. Let \mathcal{B} be sequence-like, $\mathcal{A} \subseteq \mathcal{B}$, and I $\underset{pre}{\not}$ $G_{fin}(\mathcal{A}, \mathcal{B})$. Then \mathcal{A} is

11 almost-sequence-like.

Theorem 12.

120

- 112 Proof. Let $A \in \mathcal{A}$, and for all $n < \omega$ let $A_n = A$. Then A_n is not a winning predetermined strategy for I, so II may choose finite subsets $B_n \subseteq A_n$ such that 114 $A'_n \bigcup \{B_n : n < \omega\} \in \mathcal{B} \subseteq \mathcal{A}$.
 115 It follows that $|A'_n| = \aleph_0$, and for any infinite subset $A''_n \subseteq A'_n$ (in particular, 116 any cofinite subset), $A''_n \in \mathcal{B} \subseteq \mathcal{A}$. Thus \mathcal{A} is almost-sequence-like.
- any cofinite subset), $A''_n \in \mathcal{B} \subseteq \mathcal{A}$. Thus \mathcal{A} is almost-sequence-like. \square Corollary 14. Let \mathcal{B} be sequence-like and $\mathcal{A} \subseteq \mathcal{B}$. Then $I \uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ if and only if $I \uparrow_{pre} G_{fin}(\mathcal{A}, \mathcal{B})$.
- 119 *Proof.* Assuming I $\uparrow G_{fin}(\mathcal{A}, \mathcal{B})$, we have I $\uparrow G_{fin}(\mathcal{A}, \mathcal{B})$ by Proposition 13 and

- 121 Department of Mathematics and Statistics, The University of South Alabama, Mo- 122 $^{\,}$ Bile, AL 36688
- 123 Email address: sclontz@southalabama.edu