The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Iowa State University

November 15, 2014

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Outline

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulated data

Simulate heterosis data with known heterosis genes

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

		Parent (1)			Parent (2)				Hybrid (3)				Tru	ıth	
HPH (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860	1	
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90	1	_
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	0)
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7	1	
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465	0)

Apply edgeR to real data to get simulation parameters

Normalization factors

Main effects and dispersions

Parent (1)	Parent (2)	Hybrid (3)	Dispersion
$\mu_{1,1}$	$\mu_{1,2}$	$\mu_{1,3}$	ϕ_1
$\mu_{2,1}$	$\mu_{2,2}$	$\mu_{2,3}$	ϕ_2
$\mu_{27888,1}$	$\mu_{27888,2}$	$\mu_{27888,3}$	ϕ_{27888}

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Truth: which genes have heterosis?

Feature 1	$I(\mu_{1,3} > \max(\mu_{1,1}, \mu_{1,2}) \text{ or } < \min(\mu_{1,1}, \mu_{1,2}))$
Feature 2	$I(\mu_{2,3} > \max(\mu_{2,1}, \mu_{2,2}) \text{ or } < \min(\mu_{2,1}, \mu_{2,2}))$
Feature 27888	$I(\mu_{27888,3} > \max(\mu_{27888,1}, \mu_{27888,2}) \text{ or } < \min(\mu_{2,1}, \mu_{27888,2}))$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

iid negative binomial counts (parent 1)

$NB(e^{c_1+\mu_{1,1}},\phi_1)$	$NB(e^{c_2+\mu_{1,1}},\phi_1)$	$NB(e^{c_3+\mu_{1,1}},\phi_1)$	$NB(e^{c_4+\mu_{1,1}},\phi_1)$
$NB(e^{c_1+\mu_{2,1}},\phi_2)$	$NB(e^{c_2+\mu_{2,1}},\phi_2)$	$NB(e^{c_3+\mu_{2,1}},\phi_2)$	$NB(e^{c_4+\mu_{2,1}},\phi_2)$
$\text{NB}(e^{c_1 + \mu_{27888,1}}, \phi_{27888})$	${\rm NB}(e^{c_2+\mu_{27888,1}},\phi_{27888})$	$NB(e^{c_3+\mu_{27888,1}},\phi_{27888})$	$NB(e^{c_4 + \mu_{27888,1}}, \phi_{27888})$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Remove low-count rows to get 25000 features

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes Will Landau, Eric

Mittman

		Parent (1)			Parent (2)				Hybrid (3)				Truth	
нрн (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860	1
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90	1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	0
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7	1
	•••		:											
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465	0

Simulation workflow

- Simulate 30 datasets as above:
 - 10 datasets with 4 samples (libraries, columns, etc.) per group
 - ▶ 10 with 8 per group
 - ▶ 10 with 16 per group
- For each simulated dataset, test for heterosis with
 - empirical Bayes with STAN (Eric's method)
 - ▶ edgeR
 - baySeq
 - ShrinkBayes
- Compare methods with ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

- ▶ Fit a loglinear model to estimate main effects $\mu_{f,t}$
 - ▶ Feature f = 1, ..., 25000
 - ► Treatment group 1 (parent), 2 (parent), 3 (hybrid)
- ▶ Likelihood ratio tests to get p-values $p_{f,1}$, $p_{f,2}$

$$H_{0,1}: \mu_{f,3} = \mu_{f,1}$$
 $H_{a,1}: \mu_{f,3} \neq \mu_{f,1}$
 $H_{0,2}: \mu_{f,3} = \mu_{f,2}$ $H_{a,2}: \mu_{f,3} \neq \mu_{f,2}$

Final p-value	
$p_{f,1}/2$	$\begin{split} \widehat{\mu}_{f,3} < \widehat{\mu}_{f,1} &\leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,1} \geq \widehat{\mu}_{f,2} \\ \widehat{\mu}_{f,3} < \widehat{\mu}_{f,2} &\leq \widehat{\mu}_{f,1} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,2} \geq \widehat{\mu}_{f,1} \\ \widehat{\mu}_{f,1} &\leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1} \end{split}$
$p_{f,2}/2$	$ \widehat{\mu}_{f,3} < \widehat{\mu}_{f,2} \le \widehat{\mu}_{f,1} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,2} \ge \widehat{\mu}_{f,1}$
1	$\widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1}$

- ▶ Estimate main effects $\mu_{f,t}$ using edgeR.
- Calculate the posterior probability that each feature satisfies:

Model	Constraint
M_1	All $\mu_{f,t}$'s equal
M_2	$\mu_{f,1} = \mu_{f,2}$
M_3	$\mu_{f,1} = \mu_{f,3}$
M_4	$\mu_{f,2} = \mu_{f,3}$
M_5	All $\mu_{f,t}$'s distinct

1 1	if
$\frac{1}{P(M_3 \mid data) + P(M_5 \mid data)}$	$\widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2}$ or
	$ \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1}$
$P(M_3 \mid data) + P(M_5 \mid data)$	otherwise

- Built on inla (integrated nested Laplace approximation).
- empirical Bayes with a zero-inflated NB likelihood and normal priors.
- ▶ I reparameterize

$$\begin{split} \phi_f &= \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(parental mean)} \\ \alpha_f &= \frac{\mu_{f,2} - \mu_{f,1}}{2} \qquad \text{(half parental difference)} \\ \delta_f &= \mu_{f,3} - \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(hybrid effect)} \end{split}$$

ShrinkBayes

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

