Regression	Stochastic Gradient Descent (SGD)	Kernel engineering	- For each unit <i>i</i> on layer <i>L</i> : $\frac{\partial}{\partial w_{i,i}} = \delta_j v_i$
Linear Regression	1. Start at an arbitrary $w_0 \in \mathbb{R}^d$	$k_1(x,y)+k_2(x,y); k_1(x,y)\cdot k_2(x,y); c\cdot k_1(x,y),c>0;$	For each unit j on hidden layer $l = \{L-1,,1\}$:
Error: $\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = Xw - y _2^2$	2. For $t = 1, 2,$ do: Pick data point $(x', y') \in_{u.a.r.} D$	$f(k_1(x,y))$, where f is a polynomial with positive coefficients or the exponential function	- Error signal: $\delta_j = \varphi'(z_j) \sum_{i \in Layer_{l+1}} w_{i,j} \delta_i$
$w^* = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - w^T x_i)^2$	$w_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$	Perceptron and SVM	- For each unit <i>i</i> on layer $l-1$: $\frac{\partial}{\partial w_{i,i}} = \delta_j v_i$
Closed form: $w^* = (X^T X)^{-1} X^T y$	Perceptron Algorithm: SGD with Perceptron	Perceptron: $\min \sum_{i=1}^{n} \max\{0, -y_i \alpha^T k_i\}$	Learning with momentum
$\nabla_{w} \hat{R}(w) = -2 \sum_{i=1}^{n} (y_{i} - w^{T} x_{i}) \cdot x_{i} = 2X^{T} (Xw - y)$	loss Support Vector Machine	SVM: $k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)]$:	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$
Convex / Jensen's inequality	Hinge loss: $l_H(w; x, y) = max\{0, 1 - yw^T x\}$	$\min \sum_{i=1}^{n} \max\{0, 1 - y_i \alpha^T k_i\} + \lambda \alpha^T D_y K D_y \alpha$	Clustering
$g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1] : g''(x) > 0$	Goal: Max. a "band" around the separator.	Prediction: $y = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$	k-mean $\hat{P}(y) = \hat{P}(y, y, y, y) = \sum_{n=1}^{n} \min_{n \in \mathbb{N}} y_n - y_n ^2$
$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	$w^* = \operatorname{argmin} \sum_{i=1}^{n} \max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	Kernelized linear regression	$\hat{R}(\mu) = \hat{R}(\mu_1,, \mu_k) = \sum_{i=1}^n \min_{j \in \{1,, k\}} x_i - \mu_j _2^2$
Gradient Descent 1. Start arbitrary $w_o \in \mathbb{R}$	$g_i(w) = \max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	Ansatz: $w^* = \sum_i \alpha_i x$	$\hat{\mu} = arg\min_{\mu} \hat{R}(\mu)$
2. For i do $w_{t+1} = w_t - \eta_t \nabla \hat{R}(w_t)$		Parametric: $w^* = \operatorname{argmin} \sum_i (w^T x_i - y_i)^2 + \lambda w _2^2$	Algorithm (Lloyd's heuristic):
Expected Error (True Risk)	$\nabla_w g_i(w) = \begin{cases} -y_i x_i + 2\lambda w & \text{, if } y_i w^T x_i < 1\\ 2\lambda w & \text{, if } y_i w^T x_i \ge 1 \end{cases}$	$= \operatorname{argmin} \ \alpha^T K - y\ _2^w + \lambda \alpha^T K \alpha$	Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$
Assumption: data set generated iid: $R(w) =$	L1-SVM	α	While not converged
$\int P(x,y)(y-w^Tx)^2 \partial x \partial y = \mathbb{E}_{x,y}[(y-w^Tx)^2]$	$\min_{w} \lambda w _{1} + \sum_{i=1}^{n} \max(0, 1 - y_{i} w^{T} x_{i})$	Closed form: $\alpha^* = (K + \lambda I)^{-1} y$	$z_i \leftarrow arg \min_{i \in \{1, \dots, k\}} x_i - \mu_j^{(t-1)} _2^2; \mu_j^{(t)} \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$
$\hat{R}_D(w) = \frac{1}{ D } \sum_{(x,y) \in D(y-w^Tx)^2}$ (estimating error)	Kernels	Prediction: $y = w^{*T}x = \sum_{i=1}^{n} \alpha_{i}^{*}k(x_{i}, x)$	<i>y</i> = (= <i>yyy</i>
Gaussian/Normal Distribution	Reformulating the perceptron	i=1 Imbalance	k-mean++ - Start with random data point as center
. 1 1 1	Ansatz: $w = \sum_{j=1}^{n} \alpha_j y_j x_j$	Cost Sensitive Classification	- Add centers 2 to k randomly, proportionally
$f(x) = \frac{1}{-1} e^{x} n(-\frac{(x-\mu)^2}{2})$	$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \max[0, -y_i w^T x_i]$	Replace loss by: $l_{CS}(w; x, y) = c_v l(w; x, y)$	to squared distance to closest selected center
$\int (x) = \sqrt{2\pi\sigma^2} \exp(-2\sigma^2)$	$= \min_{\alpha_{1:n}} \sum_{i=1}^{n} \max[0, -\sum_{j=1}^{n} \alpha_j y_i y_j x_i^T x_j]$	Metrics	for $j = 2$ to k : i_j sampled with prob.
Multivariate Gaussian $\sigma = \text{covariance matrix}, \mu = \text{mean}$	$\alpha_{1:n}$ — $\beta_{1:n}$ — $\beta_{1:n}$ Kernelized Perceptron	Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$, Precision: $\frac{TP}{TP+FP}$	$P(i_j = i) = \frac{1}{2} \min_{1 \le l < j} x_i - \mu_l _2^2; \mu_j \leftarrow x_{i_j}$
$f(x) = 1$ $e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	1. Initialize $\alpha_1 = = \alpha_n = 0$	Recall: $\frac{TP}{TP+FN}$, F1 score: $\frac{2TP}{2TP+FP+FN}$	Dimension Reduction
$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }}e^{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)}$	2. For $t = 1, 2,$ do	Multi-class Hinge Loss	Principal component analysis (PCA)
Ridge regression	Pick data $(x_i, y_i) \in_{u.a.r} D$ Predict $\hat{y} = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x_i))$	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) =$	Given: $D = x_1,, x_n \subset \mathbb{R}^d, 1 \le k \le d$
Regularization: $\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	If $\hat{y} \neq y_i$ set $\alpha_i = \alpha_i + \eta_t$	$\max_{j \in \{1, \dots, y-1, y+1, \dots, c\}} (0, 1 + \max w^{(j)T} x - w^{(y)T} x)$	$\sum_{d \times d} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T, \ \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = 0$
Closed form solution: $w^* = (X^T X + \lambda I)^{-1} X^T y$	Predict new point x: $\hat{y} = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$	Neural Networks	Sol.: $(W, z_1,, z_n) = argmin \sum_{i=1}^{n} Wz_i - x_i _2^2$,
Closed form solution: $w = (X^TX + \lambda I)^TX^Ty$ ($X^TX + \lambda I$) always invertible.	Properties of kernel	Learning features	where $W \in \mathbb{R}^{d \times k}$ is orthogonal, $z_1,, z_n \in \mathbb{R}^k$ is given by $W = (v_1 v_k)$ and $z_i = W^T x_i$ where
11	k must be symmetric: $k(x,y) = k(y,x)$	Parameterize the feature maps and optimize	$\Sigma = \sum_{i=1}^{d} \lambda_i v_i v_i^T, \lambda_1 \ge \dots \ge \lambda_d \ge 0$
Gradient: $\nabla_w \hat{R}(w) = -2 \sum_{i=1}^n (y_i - w^T x_i) \cdot x_i + 2\lambda w$	Kernel matrix must be positive semi-definite.	over the parameters: $w^* = \operatorname{argmin} \sum_{i=1}^{n} l(y_i; \sum_{j=1}^{m} w_j \phi(x_i, \theta_j))$	$\mathbf{Kernel\ PCA}$
Standardization	Kernel matrix The kernel matrix K is positive semi-definite.	w, heta	For general $k \ge 1$, the Kernel PC are given by
Goal: each feature: $\mu = 0$, unit σ^2 : $\tilde{x}_{i,j} = \frac{(x_{i,j} - \hat{\mu}_j)}{\hat{\sigma}_i}$	$[k(x_1,x_1) \dots k(x_1,x_n)]$	One possibility: $\phi(x,\theta) = \varphi(\theta^T x) = \varphi(z)$	$\alpha^{(1)},,\alpha^{(k)} \in \mathbb{R}^n$, where $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$ is obtained
	$K = \begin{bmatrix} & 1 & 1 & 1 \\ & \vdots & & \ddots & & \vdots \end{bmatrix}$	Activation functions Sigmoid: $o(z) = \frac{1}{1 + o'(z) + o'(z)} = (1 + o(z)) \cdot o(z)$	from: $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\lambda_1 \ge \ge \lambda_d \ge 0$
$\hat{\mu}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{i,j}, \ \hat{\sigma}_{j}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i,j} - \hat{\mu}_{j})^{2}$	$\begin{bmatrix} k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$	Sigmoid: $\varphi(z) = \frac{1}{1 + exp(-z)}$; $\varphi'(z) = (1 - \varphi(z)) \cdot \varphi(z)$	Given this, a new point x is projected as $z \in \mathbb{R}^k$:
Classification 0/1 loss	Semi-definite matrices ⇔ kernels	Tanh: $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$	$z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$
0/1 loss is not convex and not differentiable.	positive semi-definite matrices $M \in \mathbb{R}^{n \times n}$ is psd \Leftrightarrow	ReLu: $\varphi(z) = max(z, 0)$	Autoencoders
$l_{0/1}(w; y_i, x_i) = \begin{cases} 1 \text{ , if } y_i \neq sign(w^T x_i) \\ 0 \text{ , otherwise} \end{cases}$	$\forall x \in \mathbb{R}^n : x^T M x \ge 0 \Leftrightarrow$	Forward propagation For each unit j on input layer, set value $v_j = x_j$	Try to learn identity function: $x \approx f(x; \theta)$
$(0/1)(w,y_i,x_i) = 0$, otherwise	all eigenvalues of M are positive: $\lambda_i \geq 0$	For each layer $l = 1 : L - 1$: For each unit j	$f(x;\theta) = f_2(f_1(x;\theta_1);\theta_2); f_1 : \text{en-, } f_2 : \text{decoder}$
Perceptron loss	Nearest Neighbor k-NN	on layer l set its value $v_j = \varphi(\sum_{i \in Layer_{l-1}} w_{j,i} v_i)$	Training: $\min_{w} \sum_{i=1}^{n} x_i - f(x_i; W) _2^2$
Perceptron loss is convex and not differentiable, but gradient is informative.	$y = sign(\sum_{i=1}^{n} y_i[x_i \text{ among k nn of } x])$	For each unit j on output layer, set its value	Probability Modeling
$l_P(w; y_i, x_i) = max\{0, -y_i w^T x_i\}$	Examples of kernels on \mathbb{R}^d	$f_j = \sum_{i \in Layer_{L-1}} w_{j,i} v_i$	Assumption: Data set is generated iid Find $h: X \to Y$ that minimizes pred. error
$\begin{bmatrix} 0 & \text{if } v_i w^T x_i > 0 \end{bmatrix}$	Linear kernel: $k(x,y) = x^T y$	Predict $y_j = f_j$ for reg. / $y_j = sign(f_j)$ for class.	$R(h) = \int P(x,y)l(y;h(x))\partial x\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$
$V_w l_p(w; y_i, x_i) = \begin{cases} y_i x_i & \text{if } y_i w^T x_i < 0 \end{cases}$	Polynomial kernel: $k(x,y) = (x^Ty + 1)^d$	Backpropagation	$h^*(x) = \mathbb{E}[Y X=x] \text{ for } R(h) = \mathbb{E}_{x,y}[(y-h(x))^2]$
$\nabla_{w} l_{p}(w; y_{i}, x_{i}) = \begin{cases} 0 & \text{, if } y_{i} w^{T} x_{i} \geq 0 \\ -y_{i} x_{i} & \text{, if } y_{i} w^{T} x_{i} < 0 \end{cases}$ $w^{*} = \operatorname{argmin} \sum_{i=1}^{n} l_{p}(w; y_{i}, x_{i})$	Gaussian kernel: $k(x, y) = exp(- x - y _2^2/h^2)$ Laplacian kernel: $k(x, y) = exp(- x - y _1/h)$	For each unit j on the output layer: - Compute error signal: $\delta_j = \ell'_i(f_j)$	Prediction: $\hat{y} = \hat{\mathbb{E}}[Y X = x]$ for $K(n) = \mathbb{E}_{x,y}[(y - h(x))]$
\overline{w}	Eupincian Kerner. $\kappa(x,y) = \exp(- x-y _1/n)$	Compute circle signal. $v_j - v_j(j_j)$	1 rediction: $y = \mathbb{E}[1 A - \lambda] = \int 1 (y A - \lambda)y dy$

Maximum Likelihood Estimation (MLE)	SGD for logistic regression	Example MLE for P(y)	Latent: Missing Data
Choose a particular parametric form $\hat{P}(Y X,\theta)$,	1. Initialize w 2. For t=1,2,	Want: $P(Y = 1) = p$, $P(y = -1) = 1 - p$ Given: $D = \{(x_1, y_1),, (x_n, y_n)\}$	Mixture modeling Model each cluster as probability distr. $P(x \theta_i)$
then optimize the parameters using MLE.	Pick data $(x, y) \in_{u,a,r} D$	$P(D p) = \prod_{i=1}^{n} p^{1[y_i=+1]} (1-p)^{1[y_i=-1]}$	data iid, likelih.: $P(D \theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i \theta_j)$
$\theta^* = \underset{\theta}{\operatorname{argmax}} \hat{P}(y_1,, y_n x_1,, x_n, \theta)$	Compute probability of misclassification $\hat{p}(Y = p x_1, x_2) = \frac{1}{2}$	$= p^{n_+} (1-p)^{n}$, where $n_+ = \#$ of $y = +1$	$argminL(D;\theta) = argmin - \sum_{i} log \sum_{j} w_{j} P(x_{i} \theta_{j})$
$= \underset{i=1}{\operatorname{argmax}} \prod_{i=1}^{n} \hat{P}(y_i x_i, \theta) \text{(iid)}$	$\hat{P}(Y = -y w, x) = \frac{1}{1 + exp(yw^T x)}$	$\frac{\partial}{\partial p} log P(D p) = n_{+} \frac{1}{p} - n_{-} \frac{1}{1-p} \stackrel{!}{=} 0 \Rightarrow p = \frac{n_{+}}{n_{+} + n_{-}}$	min min Gaussian-Mixture Bayes classifiers
$= \underset{i=1}{\operatorname{argmin}} - \sum_{i=1}^{n} \log \hat{P}(y_i x_i, \theta)$	Update $w \leftarrow w + \eta_t y x \hat{P}(Y = -y w,x)$ Logistic regression and regularization	Example MLE for P=(x y)	Estimate class prior $P(y)$; Est. cond. distr. for
θ $\sum_{i=1}^{n} \log^{n}(y_{i} w_{i}) = 0$	$s = w _2^2 \text{ L2 (Gaussian prior)}/ w _1 \text{ L1 (Laplace)}$	Assume: $P(X = x_i y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2)$	each class: $P(x y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$
Example: MLE for linear Gaussian	$\min_{\alpha \in \mathbb{R}} \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i)) + \lambda s$	Given: $D, D_{x_i y} = \{x, \text{ s.t. } x_{j,i} = x, y_j = y\}$	$P(y x) = \frac{1}{P(x)}p(y)\sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$
$y_i \sim \mathcal{N}(w^T x_i, \sigma^2)$:	SGD for L2-regularized logistic regression	Thus MLE yields: $\hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i y}} x$;	$P(y x) = \frac{1}{P(x)}P(y)\sum_{j=1}^{n}w_{j}$ $N(x, \mu_{j}, \lambda_{j})$ Hard-EM algorithm
$y_i = w^T x_i + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma^2)$	Update $w \leftarrow w(1 - 2\lambda \eta_t) + \eta_t y x \hat{P}(Y = -y w,x)$	$\hat{\sigma}_{i,y}^2 = \frac{1}{n_v} \sum_{x \in D_{x_i y}} (x - \hat{\mu}_{i,y})^2$	Initialize parameters $\theta^{(0)}$
Maximizing the log likelihood: $\underset{w}{\operatorname{argmax}} P(y_1,,y_n x_1,,x_n,w)$	Bayesian decision theory	Deriving decision rule	For $t = 1, 2,$: Predict most likely class for each
u u	Given:	$P(y x) = \frac{1}{Z}P(y)P(x y)$, $Z = \sum_{y} P(y)P(x y)$	data p.: $z_i^{(t)} = \operatorname{argmax} P(z x_i, \theta^{(t-1)})$
$= \underset{w}{\operatorname{argmax}} \prod_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2} \frac{(y_{i} - w^{T} x_{i})^{2}}{\sigma^{2}}}$	- Conditional distribution over labels $P(y x)$ - Set of actions A	$y = \operatorname{argmax} P(y' x) = \operatorname{argmax} P(y') \prod_{i=1}^{d} P(x_i y')$	$= \operatorname{argmax} P(z \theta^{(t-1)}) P(x_i z, \theta^{(t-1)});$
$= \underset{i}{\operatorname{argmin}} \sum_{i}^{n} (y_i - w^T x_i)^2$	- Cost function $C: Y \times A \to \mathbb{R}$ Pick action that minimizes the expected cost:	$= \operatorname{argmax} log P(y') + \sum_{i=1}^{d} log P(x_i y')$	Compute the MLE as for the Gaussian B. class.:
Bias/Variance/Noise	$a^* = \operatorname{argmin}\mathbb{E}_y[C(y, a) x] = \sum_y P(y x) \cdot C(y, a)$	y'	$\theta^{(t)} = \operatorname{argmax} P(D^{(t)} \theta)$
Prediction error = $Bias^2 + Variance + Noise$	$a \in A$ Optimal decision for logistic regression	Gaussian Naive Bayes classifier	Soft-EM algorithm: While not converged
Maximum a posteriori estimate (MAP)	$a^* = argmax \hat{P}(y x) = sign(w^T x)$	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y = y)}{n}$	E-step: For each i and j calculate $\gamma_i^{(t)}(x_i)$
Introduce bias by expressing assumption	u = u i g m u x i (y x) = s i g n (w - x)	MLE for feature distr.: $\hat{P}(x_i y) = \mathcal{N}(x_i; \hat{\mu}_{y,i}, \sigma_{y,i}^2)$	M-step: Fit clusters to weighted data points:
through a Bayesian prior $w_i \in \mathcal{N}(0, \beta^2)$	Doubtful logistic regression	$\hat{\mu}_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} x_{j,i}$	of the step. The clusters to weighted data points.
Bayes rule: $P(w x,y) = \frac{P(w x)P(y x,w)}{P(y x)}$	Est. cond. distr.: $\hat{P}(y x) = Ber(y; \sigma(\hat{w}^T x))$	$\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} (x_{j,i} - \hat{\mu}_{y,i})^2$	$w_j^{(t)} \leftarrow \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \mu_j^{(t)} \leftarrow \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$
$=\frac{P(w)P(y x,w)}{P(y x)}$, we assume w is indep. of x.	Action set: $A = \{+1, -1, D\}$; Cost function:	Prediction given new point x:	
P(y x) argmax $P(w x,y)$	$C(y,a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1,-1\} \\ c & \text{if } a = D \end{cases}$	$y = \underset{y'}{\operatorname{argmax}} \hat{P}(y' x) = \underset{y'}{\operatorname{argmax}} \hat{P}(y') \prod_{i=1}^{d} \hat{P}(x_i y')$	$\Sigma_j^{(t)} \leftarrow \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i - \mu_j^{(t)})(x_i - \mu_j^{(t)})^T}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$
$= \underset{\text{argmin}}{\operatorname{argmin}} - log P(w) - log P(y x, w) + const.$	The action that minimizes the expected cost	Gaussian Bayes Classifier	$\sum_{i=1}^{L} \gamma_{j}(x_{i})$ EM for semi-supervised learning with GMMs:
w	$a^* = y$ if $\hat{P}(y x) \ge 1 - c$, D otherwise	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y = y)}{n}$	unl. p.: $\gamma_i^{(t)}(x_i) = P(Z = j x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$
$= \underset{w}{\operatorname{argmin}} \frac{1}{2\beta^2} w _2^2 + \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - w^T x_i)^2$	Linear regression	MLE for feature distr.: $\hat{P}(x y) = \mathcal{N}(x; \hat{\mu}_y, \hat{\Sigma}_y)$	(1)
= $\operatorname{argmin} \lambda w _2^2 + \sum_{i=1}^n (y_i - w^T x_i)^2$, $\lambda = \frac{\sigma^2}{\beta^2}$	Est. cond. distr.: $\hat{P}(y x, w) = \mathcal{N}(y; w^T x, \sigma^2)$ $\mathcal{A} = \mathbb{R}; C(y, a) = (y - a)^2$	$\hat{\mu}_y = \frac{1}{\text{Count}(Y=y)} \sum_{i: y_i = y} x_i \in \mathbb{R}^d$	labeled points with label y_i : $\gamma_j^{(t)}(x_i) = [j = y_i]$ Important
$(= \underset{i}{\operatorname{argmax}} P(w) \prod_{i} P(y_{i} x_{i}, w), \text{ assuming noise}$	The action that minimizes the expected cost	$\hat{\Sigma}_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{i: y_i = y} (x_i - \hat{\mu}_{y}) (x_i - \hat{\mu}_{y})^T \in \mathbb{R}^{d \times d}$	$ln(x) \le x - 1, x > 0; x _2 = \sqrt{x^T x}; \nabla_x x _2^2 = 2x$
P(y x,w) iid Gaussian, prior $P(w)$ Gaussian)	$a^* = \mathbb{E}_y[y x] = \int \hat{P}(y x)\partial y = \hat{w}^T x$	Fisher's linear discriminant analysis (LDA; c=2)	$f(x) = x^{T} A x; \nabla_{x} f(x) = (A + A^{T}) x$
Logistic regression	Asymmetric cost for regression	Assume: $p = 0.5$; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$	$D_{KL} = \mathbb{E}_p[log(\frac{p(x)}{q(x)})]; D_{KL}(P Q) = \sum_{x \in X} P(x)$
	Est. cond. distr.: $\hat{P}(y x) = \mathcal{N}(\hat{y}; \hat{w}^T x, \sigma^2)$	discriminant f.: $f(x) = log \frac{p}{1-p} + \frac{1}{2} [log \frac{ \hat{\Sigma} }{ \hat{\Sigma}_+ }]$	$\log \frac{P(x)}{O(x)} = \int_{-\infty}^{+\infty} p(x) \log \frac{p(x)}{a(x)} dx \text{ always nonneg}$
Link function: $\sigma(w^T x) = \frac{1}{1 + exp(-w^T x)}$ (Sigmoid) Logistic regression replaces the assumption of	$A = \mathbb{R}$; $C(y, a) = c_1 \max(y - a, 0) + c_2 \max(a - y, 0)$ Action that minimizes the expected cost:	+ $((x - \hat{\mu}_{-})^{T} \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-})) - ((x - \hat{\mu}_{+})^{T} \hat{\Sigma}_{+}^{-1} (x - \hat{\mu}_{+}))]$	Standard Gaussian: CDF: $\Phi(x) = \int_{-\infty}^{x} \phi(t) \partial t$;
Gaussian noise by iid Bernoulli noise.	$a^* = \hat{w}^T x + \sigma \Phi^{-1}(\frac{c_1}{c_1 + c_2}), \Phi$: Gaussian CDF	Predict: $y = sign(f(x)) = sign(w^T x + w_0)$	
$P(y x, w) = Ber(y; \sigma(w^T x)) = \frac{1}{1 + exp(-vw^T x)}$	1 2	$w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}); w_0 = \frac{1}{2}(\hat{\mu}^T \hat{\Sigma}^{-1} \hat{\mu} \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$	PDF: $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-(1/2)x^2}$; $\int \phi(x) \partial x = \Phi(x) + c$;
Example: MLE for logistic regression	Discriminative vs. Generative Modeling Discriminative models: aim to estimate $P(y x)$	Outlier Detection $P(x) = \sum_{y=1}^{c} P(y)P(x y) = \sum_{y} \hat{p}_{y} \mathcal{N}(x \hat{\mu}_{y}, \hat{\Sigma}_{y}) \leq \tau$	$\int x\phi(x) = -\phi(x) + c; \int x^2\phi(x)\partial x = \Phi(x) - x\phi(x) + c$
argmax $P(y_{1:n} w,x_{1:n})$	G. m.: aim to estimate $P(y,x)$	Categorical Naive Bayes Classifier	Probabilities $ ([x \cdot p(x) \partial x] \mid \mathbb{F} [f(x)] =$
w	Typical approach to generative modeling:	MLE class prior: $\hat{P}(Y = y) = \frac{Count(Y = y)}{n}$	$\mathbb{E}_{x}[X] = \begin{cases} \int x \cdot p(x) \partial x & \mathbb{E}_{x}[f(x)] = \\ \sum_{x} x \cdot p(x) & \int f(x) \cdot p(x) \partial x \end{cases}$
$= \underset{w}{\operatorname{argmin}} - \sum_{i=1}^{n} log P(y_i w, x_i)$	- Estimate prior on labels $P(y)$	**	$Var[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
$= \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i))$	- Estimate cond. distr. $P(x y)$ for each class y - Obtain predictive distr. using Bayes' rule:	MLE for feature distr.: $\hat{P}(X_i = c Y = y) = \theta_{c y}^{(i)}$	$P(A B) = \frac{P(B A) \cdot P(A)}{P(B)}; p(Z X, \theta) = \frac{P(X, Z \theta)}{p(X \theta)}$
$\hat{R}(w) = \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i))$ (neg log l. f.)	$P(y x) = \frac{P(y)P(x y)}{P(x)} = \frac{P(x,y)}{P(x)}, P(x) = \sum_{y} P(x,y)$	$\theta_{c y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$, Pred.: $y = \underset{y'}{argmax} \hat{P}(y' x)$	$P(x,y) = P(x \cap y) = P(y x) \cdot P(x) = P(x y) \cdot P(y)$