Master Theorem

The Master Theorem is a technique primarily used to analyze recurrence relations. It assumes that the relation to be analyzed has the following form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1, b > 1$ are constant. The solution to this recurrence has 3 general forms depending on f(n), a, and b.

Form 1

If $f(n) \in O(n^c)$ where $c < log_b(a)$ then $T(n) \in \Theta\left(n^{log_b(a)}\right)$

Form 2

If $\exists k \geq 0 \text{ s.t. } f(n) \in \Theta\left(n^c \log^k(n)\right) \text{ where } c = \log_b(a) \text{ then } T(n) \in \Theta\left(n^c \log^{k+1}(n)\right)$

Form 3

If $f(n) \in \Omega(n^c)$ where $c > log_b(a)$ and $af\left(\frac{n}{b}\right) \leq kf(n)$ for some constant k < 1 and $n > n_0$ then $T(n) \in \Theta(f(n))$

Examples

- $T(n) = 8T(\frac{n}{2}) + 1000n^2$
- $T(n) = 2T\left(\frac{n}{2}\right) + 10n$
- $T(n) = 2T\left(\frac{n}{2}\right) + n^2$