平成29年度日本留学試験(第2回)

試験問題

The Examination

平成29年度(2017年度)日本留学試験

数 学 (80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced)】

※ どちらかのコースを<u>一つだけ</u>選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

Ⅲ 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C, …には、それぞれー(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合、2度目以降 は、 **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}} x$ に-x と答える場合は、 $\boxed{\textbf{De}}$ -、 $\boxed{\textbf{Ee}}$ 1 とし、下のようにマークしてください。

【解答用紙】

Α	•	0	0	2	3	4	(5)	6	0	8	9	
В	Θ	0	1	0		4	6	6	0	8	9	
С	Θ	0	1	0	3	•	6	6	0	8	9	
D	•	0	0	0	3	4	9	6	0	8	9	
E	Θ	0		0	3	4	6	6	0	8	9	

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	:	*		
名 前			-		

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ 選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

	< 解答用紙記入例 >									
	解答コース Course コース 1 Course 1									
	0	•								

選択したコースを正しくマークしないと、採点されません。

T

問 1 x の 2 次関数 $f(x) = 2x^2 + ax - 1$ は

$$f(-1) \ge -3$$
, $f(2) \ge 3$

を満たしている。このとき、f(x) の最小値 m を考える。

(1) m は a を用いて

$$m = -\frac{\mathbf{A}}{\mathbf{B}} a^2 - \mathbf{C}$$

と表される。

f(x) が条件 ① を満たすような a の値の範囲は

$$\boxed{ \textbf{DE} } \leqq a \leqq \boxed{ \textbf{F} }$$

である。

- (3) m の値が最も大きくなるのは、y = f(x) のグラフの軸が直線 x = G のときである。また、そのときの m の値は H である。
- (4) m の値が最も小さくなるのは、y = f(x) のグラフの軸が直線 x = **JK** のときである。また、そのときの m の値は **LM** である。

- 問 2 平面上に三角形 ABC があって、1 個の球が頂点 A に置かれている。いま、1 個のサイコロを投げ、次の規則にしたがって球を動かす。
 - (i) 球が A にあるとき、出た目が 1 であれば B に動かし、その他の場合は A から動かさない。
 - (ii) 球が B にあるとき、出た目が 4 以下であれば C に動かし、その他の場合は B から動かさない。

ただし、球が C に到達すれば試行を止める。

このとき、サイコロを投げて、4回以内に球が C に到達する確率を求めよう。

- (1) サイコロを投げて 2 回目に球が C に到達する確率は $\frac{1}{N}$ である。
- (2) サイコロを投げて 3 回目に球が C に到達する確率は **PQ** である。
- (3) サイコロを投げて 4 回目に球が C に到達する確率は **RS** である。 **TUV**

以上から、4 回以内に球が C に到達する確率は **WX** である。 **YZ**

注) サイコロ: dice, 試行: trial

I の問題はこれで終わりです。

問1 漸化式

$$a_1 = 18$$
, $a_{n+1} - 12a_n + 3^{n+2} = 0$ $(n = 1, 2, 3, \dots)$

で定まる数列 $\{a_n\}$ の一般項を求めよう。

数列 {b_n} を

$$b_n = \frac{a_n}{ \boxed{ A}^n} \quad (n = 1, 2, 3, \cdots)$$

と定めると、 $\{b_n\}$ は

$$b_1 = egin{bmatrix} {\bf B} \\ {} \end{array}, \quad b_{n+1} - egin{bmatrix} {\bf C} \\ {} \end{bmatrix} b_n + egin{bmatrix} {\bf D} \\ {} \end{bmatrix} = 0 \quad (n=1,\,2,\,3,\cdots)$$

を満たす。この漸化式は

$$b_{n+1} - \boxed{\mathsf{E}} = \boxed{\mathsf{F}} \left(b_n - \boxed{\mathsf{E}}\right)$$

と変形できる。ここで、数列 $\{c_n\}$ を

$$c_n = b_n - \boxed{\mathsf{E}} \qquad (n = 1, 2, 3, \cdots)$$

と定めると、 $\{c_n\}$ は初項 $oldsymbol{G}$, 公比 $oldsymbol{H}$ の等比数列である。

したがって

$$a_n = \boxed{\mathbf{I}}^n \left(\boxed{\mathbf{J}} \cdot \boxed{\mathbf{K}}^{n-1} + \boxed{\mathbf{L}} \right) \quad (n = 1, 2, 3, \cdots)$$

である。

注) 漸化式: recurrence formula, 公比: common ratio, 等比数列: geometric progression

数学-22

問 2 右図のような、原点を O とする xy 平面上で、AB = AC の二等辺三角形 ABC を考える。ただし、U AB は点 P(-1,5) を通り、U AC は点 Q(3,3) を通るものとする。

このとき、三角形 ABC の内接円の半径について 考えよう。

2 点 A, B を通る直線を ℓ_1 とし,2 点 A, C を通る直線を ℓ_2 とする。 ℓ_1 の傾きを a とすると, ℓ_1 ℓ_2 の方程式は

である。

また,内接円の中心を I とおき,半径を r とおくと,I の座標は $\left(\begin{array}{c} \mathbf{P} \end{array}\right)$ である。

したがって、r は a を用いて

$$r = \frac{\mathbf{R} a + \mathbf{S}}{\mathbf{T} + \sqrt{a^2 + \mathbf{U}}}$$

と表される。

特に,
$$r = \frac{5}{2}$$
 のとき,頂点 A の座標は $\left(\begin{array}{c|c} \mathbf{V} \\ \hline \mathbf{W} \end{array}\right)$ である。

注)内接円: inscribed circle

II の問題はこれで終わりです。

すべての正の実数 x に対して、不等式

$$\frac{\log 3x}{4x+1} \le \log \left(\frac{2kx}{4x+1}\right) \qquad \dots \dots \qquad \textcircled{1}$$

が成り立つような正の実数 k の値の範囲を求めよう。ただし、log は自然対数とする。

(1) 次の文中の **A** , **B** には、下の選択肢 ① ~ ® の中から適するものを選びなさい。

不等式 ① を変形して

$$\log k \ge$$
 A ②

を得る。

ここで、② の右辺を g(x) とおき、g(x) を x で微分すると

$$g'(x) = \boxed{\mathbf{B}}$$

である。

$$\int \frac{\log 3x}{4x+1} - \log(4x+1) + \log 2x$$

$$4 \log 3x \over (4x+1)^2$$

(III)は次ページに続く)

(2)	次の文	て中の [Ε], [F], [G] には,	下の選択肢	0 ~ 3	の中から近	質するもの
	を選び,	他の[] に	は適	する	数をえ	入れなさ	い。			

したがって、すべての正の実数 x に対して不等式 ① が成り立つような k の値の範囲は

$$k \ge \frac{\mathbf{H}}{\mathbf{I}}$$

である。

① 增加 ① 減少 ② 最大 ③ 最小

[III] の問題はこれで終わりです。 [III] の解答欄 [J] ~ [III] はマークしないでください。

次の2つの曲線を考える。

$$x^2 + y^2 = 1$$

$$4xy = 1$$
 ②

ただし、x>0、y>0 とする。このとき、曲線 ① と曲線 ② で囲まれる部分の面積 S を求めよう。

(1) まず、曲線 ① と曲線 ② の交点を P, Q, それらの x 座標をそれぞれ p, q (p < q) と する。

曲線 ① と曲線 ② の交点の座標 (x,y) は,① より, $x=\cos\theta$, $y=\sin\theta\left(0<\theta<\frac{\pi}{2}\right)$ とおける。このとき,② より

$$\sin \begin{bmatrix} \mathbf{A} \end{bmatrix} \theta = \begin{bmatrix} \mathbf{B} \end{bmatrix}$$

となる。これより

$$\theta = \frac{\boxed{D}}{\boxed{EF}} \pi, \quad \frac{\boxed{G}}{\boxed{HI}} \pi$$

よって

$$p = \cos \frac{\boxed{\mathbf{J}}}{\boxed{\mathbf{KL}}} \pi$$
, $q = \cos \frac{\boxed{\mathbf{M}}}{\boxed{\mathbf{NO}}} \pi$

を得る。

(IV は次ページに続く)

(2) Sの値を求めよう。

$$S = \int_{p}^{q} \left(\sqrt{1 - x^2} - \frac{1}{4x} \right) dx$$

であるから

$$I = \int_{p}^{q} \sqrt{1 - x^2} \, dx, \quad J = \int_{p}^{q} \frac{1}{x} \, dx$$

の値を求めればよい。

I については、 $x = \cos \theta$ とおいて置換積分の計算をすると

$$I = \frac{\boxed{P}}{\boxed{Q}} \pi$$

となる。また

$$J = \log\left(\boxed{\mathbf{R}} + \sqrt{\boxed{\mathbf{S}}}\right)$$

である。ただし、log は自然対数である。

以上より

$$S = \frac{\boxed{\mathsf{P}}}{\boxed{\mathsf{Q}}} \pi - \frac{\boxed{\mathsf{T}}}{\boxed{\mathsf{U}}} \log \left(\boxed{\mathsf{R}} + \sqrt{\boxed{\mathsf{S}}} \right)$$

となる。

注) 置換積分: integration by substitution, 自然対数: natural logarithm

 $egin{align*} egin{align*} egin{align*$

この問題冊子を持ち帰ることはできません。