學號:B03705013 系級: 資管三 姓名:徐逸然

1. 請說明你實作的 CNN model,其模型架構、訓練過程和準確率為何?

Output Shape Param # ropout_1 (Dropout) (None, 32, 48, 48) (None, 64, 48, 48) onv2d_2 (Conv2D) ropout_2 (Dropout) (None, 64, 48, 48) x_pooling2d_1 (MaxPooling2 (None, 64, 24, 24) nv2d_3 (Conv2D) (None, 64, 24, 24) ropout_3 (Dropout) (None, 64, 24, 24) nv2d_4 (Conv2D) (None, 128, 24, 24) opout_4 (Dropout) (None, 128, 24, 24) x_pooling2d_2 (MaxPooling2 (None, 128, 12, 12) (None, 128, 12, 12) nv2d_5 (Conv2D) opout_5 (Dropout) (None, 128, 12, 12) (None, 256, 12, 12) ropout_6 (Dropout) (None, 256, 12, 12) Ω ax_pooling2d_3 (MaxPooling2 (None, 256, 6, 6) latten_1 (Flatten) ropout_7 (Dropout) (None, 9216) ense_1 (Dense) ropout_8 (Dropout)

架構為以下 →

訓練過程 →

2. 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

业的心力的压心未上的	」	
Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 1024)	2360320
dropout_1 (Dropout)	(None, 1024)	0
dense_2 (Dense)	(None, 1024)	1049600
dropout_2 (Dropout)	(None, 1024)	0
dense_3 (Dense)	(None, 1024)	1049600
dropout_3 (Dropout)	(None, 1024)	0
dense_4 (Dense)	(None, 1024)	1049600
dropout_4 (Dropout)	(None, 1024)	0
dense_5 (Dense)	(None, 1024)	1049600
dropout_5 (Dropout)	(None, 1024)	0
dense_6 (Dense)	(None, 1024)	1049600
dropout_6 (Dropout)	(None, 1024)	0
dense_7 (Dense)	(None, 7)	7175
Total params: 7,615,495 Trainable params: 7,615,495 Non-trainable params: 0		

架構為以下 →

DNN model 有 700 多萬個參數,然而 test error 大約 40% 上下就很難再提升,即使已經頻繁使用 Dropout 也一樣。CNN 由於能夠偵測重點 feature 如眼睛、嘴巴等,故能達到更高的準確率。

3. 觀察答錯的圖片中,哪些 class 彼此間容易用混?

				Prediction					Total
		245	1	32	9	50	11	52	400
		11	20	0	2	6	3	2	44
Confusion Matrix →		44	1	203	16	63	46	37	410
	Actual	12	0	3	656	9	12	30	722
		50	0	34	14	281	4	100	483
		12	0	20	19	6	252	9	318
		18	0	17	36	76	5	345	497

由 2000 多個 validation data 做出來的結果可以得出:

Class 0 最容易被分類錯至 Class 6

Class 1 最容易被分類錯至 Class 0

Class 2 最容易被分類錯至 Class 4

Class 3 最容易被分類錯至 Class 6

Class 4 最容易被分類錯至 Class 6

Class 5 最容易被分類錯至 Class 2

Class 6 最容易被分類錯至 Class 4

→ Class 6(中立) 與 Class 4(難過) 最容易被搞混

4. 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

使用內建 visualize_saliency 時大部分的圖會出現詭異了藍色 bug,因此我只挑出幾張正常的來做分析。從下面五張人臉能發現我的 model 會針對雙眼、嘴、額頭以及臉頰做辨識。是一個直觀且合理的結果,畢竟大部分的表情都能藉由這些器官觀察出來。

5. 利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate:

我繪出第四層 Convolution 2D 的結果,從 128 個 filter 裡取 64 個 filter 出來觀察,顯然機器眼中的世界跟我們不太一樣。我推測由於表情屬於較細緻的判斷,因此此層的每個 filter 看不太出甚麼大方向,反而比較類似各種紋理。

