I | Circuit en RSF

Un générateur idéal de tension de f.e.m. sinusoïdale $u(t) = U\sqrt{2}\cos\left(\omega t + \frac{\pi}{4}\right)$ alimente le circuit suivant.

On cherche à exprimer les intensités instantanées i(t) et i'(t) sous la forme :

$$i(t) = I\sqrt{2}\cos(\omega t + \phi)$$
 $i'(t) = I'\sqrt{2}\cos(\omega t + \phi')$

- 1. Les grandeurs U, I et I' correspondent-elles aux amplitudes ou aux grandeurs efficaces ?
- 2. Définir les complexes $\underline{u}(t)$, $\underline{i}(t)$ et $\underline{i'}(t)$ associés aux grandeurs u(t), i(t) et i'(t). On notera \underline{U} , \underline{I} et $\underline{I'}$ les amplitudes complexes.
- 3. Exprimer l'amplitude complexe \underline{I} en fonction de \underline{U} , L, R, C et ω . En déduire les expressions de I et ϕ . Préciser le domaine d'appartenance de la phase ϕ .
- 4. Exprimer l'amplitude complexe $\underline{I'}$ en fonction de \underline{U} , L, R et ω . En déduire les expressions de I' et ϕ' . Préciser le domaine d'appartenance de la phase ϕ' .
- 5. A quelle condition doivent satisfaire L, C et ω pour que les déphasages respectifs ψ et ψ' des courants i et i' avec la tension u soient opposés ?
- 6. A quelle condition doivent satisfaire R, L, C et ω pour que le déphasage entre i et i' soit de $\pi/2$?
- 7. Les deux conditions précédentes étant satisfaites simultanément, quelles sont les intensités efficaces I et I' et les phases à l'origine ϕ et ϕ' des intensités i(t) et i'(t). On exprimera I et I' en fonction uniquement de U et R.

Rappel:

$$\arctan(1/x) + \arctan(x) = \operatorname{signe}(x)\pi/2$$

I | Oscillateur à quartz

Un quartz piézo-électrique se modélise par un condensateur (de capacité C_0) placé en parallèle avec un condensateur (de capacité C) en série avec une inductance L. On se place en régime sinusoïdal forcé de pulsation ω .

- 1. Donner l'impédance équivalente \underline{Z} de l'oscillateur.
- 2. Trouver la pulsation pour laquelle l'impédance de l'ensemble est nulle, puis celle pour laquelle elle est infinie.
- 3. Tracer l'allure de $|\underline{Z}(\omega)|$.
- 4. Comment la courbe précédente serait-elle modifiée si on prenant en compte les résistances de chacun des composants ?

I Détermination d'une inductance $(\star \star \star)$

On réalise le montage représenté ci-contre, et on constate sur l'oscilloscope que pour une fréquence $f_0=180\,\mathrm{Hz}$, les signaux recueillis sur les voies X et Y sont en phase.

 $Donn\acute{e}s: R = 100\,\Omega$ et $C = 10\,\mu F$.

1. En déduire l'expression puis la valeur de l'inductance L de la bobine.

I | Circuits équivalents $(\star \star \star)$

Deux dipôles sont équivalents s'ils ont la même impédance quelle que soit la fréquence de la source d'alimentation.

1. Montrez que l'on peut choisir L et C en fonction de L_0 et C_0 pour que les deux dipôles ci-contre soient équivalents.

Attention, les calculs peuvent être assez long pour cet exercice.

I | Impédance

On considère le circuit suivant :

1. Déterminer les expressions des résistances R et R' de la portion de circuit représentée ci-dessous pour que la tension u(t) et l'intensité i(t) soient en phase quel que soit la valeur de la pulsation ω de la tension d'alimentation.

Mesure d'impédance (*)

On considère le circuit représenté ci-dessous où le tronçon AB est constitué d'une bobine idéale d'inductance L montée en dérivation avec une résistance R et où le tronçon BD est constitué d'un condensateur de capacité C. On applique entre les bornes A et D du circuit une tension sinusoïdale u(t) de pulsation ω .

- 1. Calculer l'impédance complexe $\underline{Z_{AB}}$ de la portion de circuit AB.
- 2. Calculer l'impédance complexe totale $\underline{Z_{AD}}$ du circuit et l'écrire sous la forme $\underline{Z_{AD}}=a+jb$.
- 3. En déduire l'expression, pour ce circuit, du déphasage $\phi_u \phi_i$ entre la tension u(t) et l'intensité i(t).
- 4. Pour quelle valeur ω_r de la pulsation ω le circuit est-il équivalent à une résistance pure ?