

(ERCISE - 01

CHECK YOUR GRASP

THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

$$\textbf{1.} \qquad \text{The expression } \frac{\tan\left(x-\frac{\pi}{2}\right).\cos\left(\frac{3\pi}{2}+x\right)-\sin^3\left(\frac{7\pi}{2}-x\right)}{\cos\left(x-\frac{\pi}{2}\right).\tan\left(\frac{3\pi}{2}+x\right)} \quad \text{simplifies to -}$$

- (A) $(1 + \cos^2 x)$
- (B) sin^2x
- (C) $-(1 + \cos^2 x)$
- (D) $\cos^2 x$
- Exact value of $\cos^2 73 + \cos^2 47 \sin^2 43 + \sin^2 107$ is equal to -2.

(B) 3/4

- (D) none
- $\frac{\sin 22^{\circ}\cos 8^{\circ}+\cos 158^{\circ}\cos 98^{\circ}}{\sin 23^{\circ}\cos 7^{\circ}+\cos 157^{\circ}\cos 97^{\circ}} \ \ \text{when simplified reduces to -}$ 3. The expression

- (D) none
- The two legs of right triangle are $\sin\theta + \sin\left(\frac{3\pi}{2} \theta\right)$ and $\cos\theta \cos\left(\frac{3\pi}{2} \theta\right)$. The length of its hypotenuse is 4.
 - (A) 1

(C) 2

- (D) some function of θ
- If $\tan \theta = \sqrt{\frac{a}{h}}$ where a, b are positive reals then the value of $\sin \theta \sec^7 \theta + \cos \theta \csc^7 \theta$ is -

- (A) $\frac{(a+b)^3(a^4+b^4)}{(ab)^{7/2}}$ (B) $\frac{(a+b)^3(a^4-b^4)}{(ab)^{7/2}}$ (C) $\frac{(a+b)^3(b^4-a^4)}{(ab)^{7/2}}$ (D) $-\frac{(a+b)^3(a^4+b^4)}{(ab)^{7/2}}$
- The expression $\frac{\sin(\alpha + \theta) \sin(\alpha \theta)}{\cos(\beta \theta) \cos(\beta + \theta)}$ is -6.
 - (A) independent of α
- (B) independent of β
- (C) independent of θ
- (D) independent of α and β
- 7. The tangents of two acute angles are 3 and 2. The sine of twice their difference is -
- (B) 7/48
- (C) 7/50
- (D) 7/25
- If $\frac{\sin 2\alpha \sin 3\alpha + \sin 4\alpha}{\cos 2\alpha \cos 3\alpha + \cos 4\alpha} = \tan k\alpha \text{ is an identity then the value of } k \text{ is equal to -}$ 8.

(D) 6

- Exact value of cos 20 + 2 $\sin^2 55$ $\sqrt{2}$ $\sin 65$ is -

(D) zero

- (C) $\left(\frac{1-m}{1-m}\right) \cot \phi$ (D) $\left(\frac{1+m}{1-m}\right) \cot \phi$
- If $\sin \theta + \csc \theta = 2$, then the value of $\sin^8 \theta + \csc^8 \theta$ is equal to -

(C) 2^4

- (D) none of these
- If the expression 4 sin 5α cos 3α cos 2α is expressed as the sum of three sines then two of them are $\sin 4\alpha$ and
- (C) $\sin 5\alpha$
- (D) $\sin 12\alpha$
- (A) 2 (B) 3

 9. Exact value of $\cos 20 + 2 \sin^2 55 \sqrt{2} \sin 65$ is

 (A) 1 (B) $\frac{1}{\sqrt{2}}$ 10. If $\cos (\theta + \phi) = \text{mcos}(\theta \phi)$, then $\tan \theta$ is equal to
 (A) $\left(\frac{1+m}{1-m}\right) \tan \phi$ (B) $\left(\frac{1-m}{1+m}\right) \tan \phi$ 11. If $\sin \theta + \csc \theta = 2$, then the value of $\sin^8 \theta + \csc \theta$ (A) 2 (B) 2^8 12. If the expression $4 \sin 5\alpha \cos 3\alpha \cos 2\alpha$ is expressed $\sin 10\alpha$. The third one is
 (A) $\sin 8\alpha$ (B) $\sin 6\alpha$ 13. The expression, $3\left[\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi+\alpha)\right]-2$ (A) 0 (B) 1

 (A) 0 (B) 1

 (A) $\frac{1}{4} \left(a^3+\frac{1}{a^3}\right)$ (B) $4\left(a^3+\frac{1}{a^3}\right)$ $\textbf{13.} \quad \text{The expression, } 3 \left\lceil \sin^4 \left(\frac{3\pi}{2} - \alpha \right) + \sin^4 (3\pi + \alpha) \right\rceil - 2 \left\lceil \sin^6 \left(\frac{\pi}{2} + \alpha \right) + \sin^6 (5\pi - \alpha) \right\rceil \quad \text{when simplified is equal to -}$

(D) $\sin 4\alpha + \cos 6\alpha$

- - (A) $\frac{1}{4} \left(a^3 + \frac{1}{a^3} \right)$ (B) $4 \left(a^3 + \frac{1}{a^3} \right)$ (C) $\frac{1}{2} \left(a^3 + \frac{1}{a^3} \right)$
- (D) none

15.
$$\frac{1}{\cos 290^{\circ}} + \frac{1}{\sqrt{3}\sin 250^{\circ}} =$$

(A)
$$\frac{2\sqrt{3}}{3}$$

(B)
$$\frac{4\sqrt{3}}{3}$$

(C)
$$\sqrt{3}$$

16. The product cot 123. cot 133. cot 137. cot 147, when simplified is equal to-

$$(A) - 1$$

17. Given $\sin B = \frac{1}{5} \sin (2A + B)$ then, $\tan (A + B) = k \tan A$, where k has the value equal to -

(C)
$$2/3$$

18. If A + B + C =
$$\pi$$
 & $\sin \left(A + \frac{C}{2}\right) = k \sin \frac{C}{2}$, then $\tan \frac{A}{2} \tan \frac{B}{2} =$

(A)
$$\frac{k-1}{k+1}$$

(B)
$$\frac{k+1}{k-1}$$

(C)
$$\frac{k}{k+1}$$

(D)
$$\frac{k+1}{k}$$

The value of the expression $\frac{1-4\sin 10^{\circ}\sin 70^{\circ}}{2\sin 10^{\circ}}$ is -

20. Which of the following number (s) is / are rational?

If α and β are two positive acute angles satisfying $\alpha - \beta = 15$ and $\sin \alpha = \cos 2\beta$ then the value of α + β is equal to-

22. If $\alpha + \beta + \gamma = 2\pi$, then -

(A)
$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$$

(B)
$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$$

(C)
$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$$
 (D) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 0$

(D)
$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 0$$

The value of $\sin 10 + \sin 20 + \sin 30 + \dots + \sin 360$ is 23.

$$(C) -1$$

If A and C are two angles such that $A + C = \frac{3\pi}{4}$, then $(1+\cot A)(1+\cot C)$ equals -

 $\log_{t_1}(4\sin 9^{\circ}\cos 9^{\circ})$; where t_1 = 4sin63 cos63, equals -

(A)
$$\frac{\sqrt{5}+1}{4}$$

(B)
$$\frac{\sqrt{5}-1}{4}$$

- **26.** $l = \left(\frac{\cot^2 x \cdot \cos^2 x}{\cot^2 y \cdot \cos^2 y}\right)^2$ and $m = a^{\log_{\sqrt{a}}} \left[\frac{2\cos\frac{y}{2}}{2}\right]$, at $y = 4\pi$, then $l^2 + m^2$ is equal to -
 - (A) 4

- (D) none of these
- **27.** If $(a + b) \tan(\theta \phi) = (a b) \tan(\theta + \phi)$, then $\frac{\sin(2\theta)}{\sin(2\phi)}$ is equal to -
 - (A) ab

(D) a^2b^2

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- **28.** If θ is internal angle of n sided regular polygon, then $\sin\theta$ is equal to
 - (A) $\sin \frac{\pi}{n}$
- (B) $\sin \frac{2\pi}{n}$
- (C) $\sin \frac{\pi}{2n}$
- (D) $\sin \frac{n}{\pi}$

- **29.** If $\sin \theta + \sqrt{\sin \theta + \sqrt{\sin \theta + \sqrt{\sin \theta + \dots + \infty}}} = \sec^4 \alpha$, then $\sin \theta$ is equal to -
 - (A) $\sec^2 \alpha \tan^2 \alpha$
- (B) $2\frac{(1-\cos 2\alpha)}{(1+\cos 2\alpha)^2}$ (C) $2\frac{(1+\cos 2\alpha)}{(1-\cos 2\alpha)^2}$
- (D) $\cot^2 \alpha \csc^2 \alpha$

- **30.** If $\tan \frac{\theta}{2} = \csc \theta \sin \theta$, then -
 - (A) $\sin^2 \frac{\theta}{2} = 2 \sin^2 18^\circ$

(B) $\cos 2\theta + 2\cos \theta + 1 = 0$

(C) $\sin^2 \frac{\theta}{2} = 4 \sin^2 18^\circ$

- (D) $\cos 2\theta + 2\cos\theta 1 = 0$
- **31.** If $cos(A B) = \frac{3}{5}$ & tanAtanB = 2, then -
 - (A) $\cos A \cos B = \frac{1}{5}$ (B) $\sin A \sin B = -\frac{2}{5}$ (C) $\cos(A + B) = -\frac{1}{5}$ (D) $\sin A \sin B = \frac{2}{5}$

- **32.** Factors of $\cos 4\theta \cos 4\phi$ are -
 - (A) $(\cos\theta + \cos\phi)$
- (B) $(\cos\theta \cos\phi)$
- (C) $(\cos\theta + \sin\phi)$
- (D) $(\cos\theta \sin\phi)$

- **33.** For the equation $\sin 3\theta + \cos 3\theta = 1 \sin 2\theta$
 - (A) $tan \theta = 1$ is possible
- (B) $\cos \theta = 0$ is possible (C) $\tan \frac{\theta}{2} = -1$ is possible (D) $\cos \frac{\theta}{2} = 0$ is possible
- **34.** If $2\tan 10 + \tan 50 = 2x$, $\tan 20 + \tan 50 = 2y$, $2\tan 10 + \tan 70 = 2w$ and $\tan 20 + \tan 70 = 2z$, then which of the following is/are true -
 - (A) z > w > y > x
- (B) w = x + y
- (C) 2y = z
- (D) z + x = w + y
- **35.** If $(3 4\sin^2 1)(3 4\sin^2 3)(3 4\sin^2 3^2)$ $(3 4\sin^2 (3^{n-1})) = \frac{\sin^2 (3^{n-1})}{\sin^2 (3^{n-1})} = \frac{\sin^2 (3^{n-1})}{\sin^2 (3^{n$ radian, then the digit at the unit place of (a + b) may be-
 - (A) 4

(B) 0

(C) 8

(D) 2

vanced\S	СНЕСК	YOUR	GRAS	P			ANSWER KEY				EXERCISE-1					
JEE-Ad	Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\Kota\	Ans.	В	С	Α	В	Α	С	D	В	Α	С	Α	В	В	С	В
\2014	Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
)\Dato	Ans.	D	D	Α	В	С	С	Α	В	В	D	С	В	В	A,B	A,D
DE6 (E)	Que.	31	32	33	34	35										
E_NODE6	Ans.	A,C,D	A,B,C,D	A,B,C	A,B,C,D	A,B,C,D										

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- Let m = tan 3 and n = sec 6, then which of the following statement(s) does/do not hold good? 1.
 - (A) m & n both are positive(B) m & n both are negative
 - (C) m is positive and n is negative

- (D) m is negative and n is positive
- If $\sqrt{\frac{1-\sin A}{1+\sin A}} + \frac{\sin A}{\cos A} = \frac{1}{\cos A}$, for all permissible values of A, then A belongs to -
 - (A) first quadrant
- (B) second quadrant
- (C) third quadrant
- (D) fourth quadrant

- If $\pi < 2\theta < \frac{3\pi}{2}$, then $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ equals -
 - (A) $-2\cos\theta$
- (B) $2 \sin \theta$
- (C) $2 \cos \theta$
- (D) $2 \sin \theta$

- $\frac{\sin^3 \theta \cos^3 \theta}{\sin \theta \cos \theta} \frac{\cos \theta}{\sqrt{1 + \cot^2 \theta}} 2 \tan \theta \cot \theta = -1 \text{ if } -\frac{1}{2} \cos \theta$

- (A) $\theta \in \left(0, \frac{\pi}{2}\right)$ (B) $\theta \in \left(\frac{\pi}{2}, \pi\right)$ (C) $\theta \in \left(\pi, \frac{3\pi}{2}\right)$ (D) $\theta \in \left(\frac{3\pi}{2}, 2\pi\right)$
- 5. If $\sec A = \frac{17}{8}$ and $\csc B = \frac{5}{4}$ then $\sec (A + B)$ can have the value equal to -
 - (A) $\frac{85}{36}$

- (B) $-\frac{85}{36}$
- (C) $-\frac{85}{84}$
- (D) $\frac{85}{84}$

- Which of the following when simplified reduces to unity?
 - (A) $\frac{1 2\sin^2 \alpha}{2\cot\left(\frac{\pi}{4} + \alpha\right)\cos^2\left(\frac{\pi}{4} \alpha\right)}$

(B) $\frac{\sin(\pi - \alpha)}{\sin \alpha - \cos \alpha \tan \frac{\alpha}{\alpha}} + \cos(\pi - \alpha)$

- (C) $\frac{1}{4 \sin^2 \alpha \cos^2 \alpha} + \frac{(1 \tan^2 \alpha)^2}{4 \tan^2 \alpha}$
- (D) $\frac{1 + \sin 2\alpha}{(\sin \alpha + \cos \alpha)^2}$
- $\sqrt{3}\sin(\alpha+\beta) \frac{2}{\cos\frac{\pi}{6}}\cos(\alpha+\beta)$ It is known that $\sin\beta = \frac{4}{5} \& 0 < \beta < \pi$ then the value of $\frac{\sin\alpha}{\sin\alpha}$ is -
 - (A) independent of α for all β in $(0, \pi)$
- (B) $\frac{5}{\sqrt{3}}$ for tan $\beta < 0$

(C) $\frac{\sqrt{3}(7+24\cot\alpha)}{15} \text{ for tan } \beta > 0$

- (D) none
- 8. In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the equation 2 tanx - k (1 + tan²x) = 0, where $k \in (0, 1)$, then the measure of the angle C is -
 - (A) $\frac{\pi}{\epsilon}$

(D) $\frac{5\pi}{12}$

(D) $\frac{\pi}{2}$

- 9. If $\frac{\sin 3\theta}{\sin \theta} = \frac{11}{25}$ then $\tan \frac{\theta}{2}$ can have the value equal to -
 - (A) 2

(B) 1/2

(C) - 2

(D) -1/2

- The expression $\left(\frac{\cos A + \cos B}{\sin A \sin B}\right)^m + \left(\frac{\sin A + \sin B}{\cos A \cos B}\right)^m$ where $m \in N$, has the value -
 - (A) 2 $\cot^{m} \left(\frac{A-B}{2} \right)$, if m is odd

(B) 0, if m is odd

(C) $2 \cot^m \left(\frac{A-B}{2}\right)$, if m is even

- (D) 0, if m is even
- 11. If cos(A B) = 3/5, and tanA tanB = 2, then -

 - (A) $\cos A \cos B = \frac{1}{5}$ (B) $\sin A \sin B = \frac{-2}{5}$ (C) $\cos(A + B) = \frac{-1}{5}$
- (D) none of these

- 12. If $A + B = \frac{\pi}{3}$ and $\cos A + \cos B = 1$, then -
 - (A) $\cos(A B) = 1/3$

(B) $|\cos A - \cos B| = \sqrt{\frac{2}{3}}$

(C) $\cos(A - B) = -\frac{1}{2}$

- (D) $|\cos A \cos B| = \frac{1}{2\sqrt{3}}$
- 13. If A and B are acute positive angles satisfying the equations $3\sin^2 A + 2\sin^2 B = 1$ and $3\sin 2A - 2\sin 2B = 0$ then A + 2B is-

- (C) $\frac{2\pi}{3}$
- (D) none

- 14. If A + B C = 3π , then $\sin A + \sin B \sin C$ is equal to -
 - (A) $4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}$ (B) $-4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}$ (C) $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (D) $-4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$

- 15. 2 sin11 15' is equal to -

- (A) $\sqrt{2-\sqrt{2+\sqrt{2}}}$ (B) $\sqrt{2-\sqrt{2-\sqrt{2}}}$ (C) $\sqrt{\frac{2+\sqrt{2-\sqrt{2}}}{2}}$
- **16.** If $\tan^3 \theta + \cot^3 \theta = 52$, then the value of $\tan^2 \theta + \cot^2 \theta$ is equal to -

(D) 17

- 17. If $60 + \alpha \& 60 \alpha$ are the roots of $\sin^2 x + b \sin x + c = 0$, then
 - (A) $4b^2 + 3 = 12c$
- (B) 4b + 3 = 12 c
- (C) $4b^2 3 = -12c$
- (D) $4b^2 3 = 12c$
- **18.** If $\angle B_1OA_1 = 60$ & radius of biggest circle is r. According to figure trapezium $A_1B_1D_1C_1$, $C_1D_1D_2C_2$, $\mathrm{C_2D_2D_3C_3......}$ and so on are obtained. Sum of areas of all the trapezium is -
 - (A) $\frac{r^2}{2\sqrt{3}}$

(B) $\frac{9r^2}{2\sqrt{3}}$

(C) $\frac{9r^2}{\sqrt{3}}$

(D) $\frac{r^2}{Q_2/2}$

- If θ & ϕ are acute angles & $\sin \theta = \frac{1}{2}$, $\cos \phi = \frac{1}{3}$, then the value of $\theta + \phi$ belongs to the interval -
 - (A) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
- (B) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ (C) $\left(\frac{2\pi}{3}, \frac{5\pi}{6}\right)$ (D) $\left(\frac{5\pi}{6}, \pi\right)$

- The maximum value of $log_{20}(3sinx 4cosx + 15)$ -

- If $x^2 + y^2 = 9 & 4a^2 + 9b^2 = 16$, then maximum value of $4a^2x^2 + 9b^2y^2 12abxy$ is -

- (B) 100

- Let A,B,C are 3 angles such that $\cos A + \cos B + \cos C = 0$ and if $\cos A \cos B \cos C = \lambda(\cos 3A + \cos 3B + \cos 3C)$, 22. then λ is equal to -
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{c}$

- (D) $\frac{1}{12}$
- 23. $f(x) = \frac{\sin x}{\sqrt{1 + \tan^2 x}} + \frac{\cos x}{\sqrt{1 + \cot^2 x}}$ is constant in which of following interval -

- (A) $\left(0, \frac{\pi}{2}\right)$ (B) $\left(\frac{\pi}{2}, \pi\right)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(\frac{3\pi}{2}, 2\pi\right)$
- **24.** Let n be an odd integer. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$, for every value of θ , then -
 - (A) $b_0 = 1, b_1 = 3$

(B) $b_0 = 0, b_1 = n$

(C) $b_0 = -1$, $b_1 = n$

- (D) $b_0 = 0$, $b_1 = n^2 3n + 3$
- $\textbf{25.} \quad \text{For a positive integer n, let } f_n\left(\theta\right) = \left(\tan\frac{\theta}{2}\right)(1+\sec\theta)(1+\sec2\theta)(1+\sec4\theta)....(1+\sec2^n\theta) \; . \text{ Then } \quad \textbf{[JEE 99, 3M]}$

- (A) $f_2\left(\frac{\pi}{16}\right) = 1$ (B) $f_3\left(\frac{\pi}{32}\right) = 1$ (C) $f_4\left(\frac{\pi}{64}\right) = 1$ (D) $f_5\left(\frac{\pi}{128}\right) = 1$

BRAIN	TEASERS			A	ANSWER KEY EXE					RCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B,C	A,D	D	В	A,B,C,D	A,B,D	D	D	A,B,C,D	B,C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A,C	B,C	В	D	Α	Α	D	С	В	Α
Que.	21	22	23	24	25					
Ans.	D	D	B,D	В	A,B,C,D	·				

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. If A + B + C = π , then cos2A + cos2B + cos2C + 4cosA cosB cosC is positive.
- 2. $(\tan 20 \tan 40 \tan 80)^2$ is a prime number.
- 3. $....\sin^8\theta < \sin^6\theta < \sin^4\theta < \sin^2\theta < 1$ also $.....\cos^8\theta < \cos^6\theta < \cos^4\theta < \cos^2\theta < 1$.

FILL IN THE BLANKS

- 1. If $\tan \alpha = 2$ and $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ then the value of the expression $\frac{\cos \alpha}{\sin^3 \alpha + \cos^3 \alpha}$ is equal to
- 2. The expression $\frac{\sin^4 t + \cos^4 t 1}{\sin^6 t + \cos^6 t 1}$ when simplified reduces to
- **3.** Exact value of tan 200 (cot 10 tan 10) is
- **4.** $96\sqrt{3} \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6}$ has the value =
- 6. The least value of the expression $\frac{\cot 2x \tan 2x}{1 + \sin \left(\frac{5\pi}{2} 8x\right)}$ for $0 < x < \frac{\pi}{8}$ is.....

MATCH THE COLUMN

Following question contains statements given in two columns, which have to be matched. The statements in **Column-II** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-II** can have correct matching with **ONE** statement in **Column-II**.

1.		Column-I	Column-II				
	(A)	$cosec 10 - \sqrt{3} sec 10 =$	(p)	$-\frac{1}{2}$			
3	(B)	$4 \cos 20 - \sqrt{3} \cot 20 =$	(q)	-1			
	(C)	$\frac{2\cos 40^{\circ} - \cos 20^{\circ}}{\sin 20^{\circ}} =$	(r)	$\sqrt{3}$			
	(D)	$2\sqrt{2} \sin 10^{\circ} \left[\frac{\sec 5^{\circ}}{2} + \frac{\cos 40^{\circ}}{\sin 5^{\circ}} - 2\sin 35^{\circ} \right] =$	(s)	4			

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r, s and t. Any given statement in **Column-I** can have correct matching with **ONE OR MORE** statement(s) in **Column-II**.

2. If maximum and minimum values of expression are λ and μ respectively then match the columns :

	Column-I	Column-II			
(A)	$\sin^6 \theta + \cos^6 \theta$ for all θ	(p)	λ + μ = 2		
(B)	$\log_{\sqrt{5}} \left[\sqrt{2} (\sin \theta - \cos \theta) + 3 \right]$ for all θ	(q)	$\lambda + \mu = 2$ $\lambda + \mu = 6$		
(C)	$\frac{7+6\tan\theta-\tan^2\theta}{(1+\tan^2\theta)} \text{ for all real values of } \theta \sim \frac{\pi}{2}$	(r)	λ - μ = 10		
(D)	$5\cos\theta + 3\cos(\theta + \frac{\pi}{3}) + 3$ for all real	(s)	λ – μ = 14		
	values of θ	(t)	$\lambda + \mu = \frac{5}{4}$		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. **Statement-I**: $tan5\theta - tan3\theta - tan2\theta = tan5\theta tan3\theta tan2\theta$

Statement-II: $x = y + z \Rightarrow tanx - tany - tanz = tanx tany tanz.$

(A) A

(D) D

Statement-I: If $sin\theta + cosec\theta = 2$, then $sin^n\theta + cosec^n\theta = 2^n$. 2.

Because

Statement-II: If a + b = 2, ab = 1, then a = b = 1

(D) D

Statement-I: $\sec^2\theta = \frac{4xy}{(x+y)^2}$ is positive for all real values of x and y only when x = y 3.

Because

Statement-II: $t^2 \ge 0 \ \forall \ t \in R$

(B) B

(C) C

(D) D

4. **Statement-I**: If A is obtuse angle in $\triangle ABC$, then tan B tan C < 1

Statement-II : In $\triangle ABC$, $tanA = \frac{tanB + tanC}{tanB tanC - 1}$

(A) A

 $\textbf{Statement-I} \,:\, \cos^3\!\alpha \,+\, \cos^3\!\left(\alpha + \frac{2\pi}{3}\right) \,+\, \cos^3\!\left(\alpha + \frac{4\pi}{3}\right) \,=\, 3\cos\alpha\cos\left(\alpha + \frac{2\pi}{3}\right)\cos\left(\alpha + \frac{4\pi}{3}\right)$ 5.

Because

Statement-II: If $a + b + c = 0 \Leftrightarrow a^3 + b^3 + c^3 = 3abc$

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Continued product $cos\alpha cos2\alpha cos2^2\alpha$ $cos2^{n-1}\alpha$

$$= \begin{cases} \frac{\sin 2^n \alpha}{2^n \sin \alpha}, & \text{if } \alpha \neq n\pi \\ \frac{1}{2^n}, & \text{if } \alpha = \frac{\pi}{2^n + 1} & \text{i.e. } 2^n \alpha = \pi - \alpha \\ -\frac{1}{2^n}, & \text{if } \alpha = \frac{\pi}{2^n - 1} & \text{i.e. } 2^n \alpha = \pi + \alpha \end{cases}$$

Where, $n \in I$ (Integer)

On the basis of above information, answer the following questions :

The value of $\cos \frac{2\pi}{7} \cos \frac{4\pi}{7} \cos \frac{6\pi}{7}$ is -1.

(A) -1/2

(C) 1/4

(D) 1/8

2. If $\alpha = \frac{\pi}{15}$, then the value of $\prod' \cos r\alpha$ is -

(A) $\frac{1}{128}$

(B) $-\frac{1}{128}$

(C) $\frac{1}{64}$

- The value of $\sin\left(\frac{\pi}{14}\right)\sin\left(\frac{3\pi}{14}\right)\sin\left(\frac{5\pi}{14}\right)\sin\left(\frac{7\pi}{14}\right)\sin\left(\frac{9\pi}{14}\right)\sin\left(\frac{11\pi}{14}\right)\sin\left(\frac{13\pi}{14}\right)$ is -3.
 - (A) 1

- (B) $\frac{1}{8}$
- (C) $\frac{1}{32}$
- (D) $\frac{1}{64}$

Comprehension # 2

The measure of an angle in degrees, grades and radians be D, G and C respectively, then the relation between them

$$\frac{D}{90} = \frac{G}{100} = \frac{2C}{\pi} \text{ but } 1^{c} = \left(\frac{180}{\pi}\right)^{\circ}$$

$$\simeq$$
 57°,17', 44.8"

and sum of interior angles of a n-sided regular polygon is $(2n - 4)\pi/2$

On the basis of above information, answer the following questions :

- 1. Which of the following are correct -
 - (A) $\sin 1^{\circ} < \sin 1$
- (B) $\cos 1^{\circ} > \cos 1$
- (C) $\cos 1^{\circ} < \cos 1$
- (D) $\sin 1^{\circ} < \frac{\pi}{180} \sin 1$
- 2. The angles between the hour hand and minute hand of a clock at half past three is -
 - (A) $\frac{\pi}{3}$

(B) $\frac{\pi}{4}$

- (C) $\frac{5\pi}{12}$
- The number of sides of two regular polygon are as 5:4 and the difference between their angles is $\frac{\pi}{20}$, 3. then the number of sides in the polygons respectively are-
 - (A) 25, 20
- (B) 20, 16
- (C) 15, 12
- (D) 10.8
- One angle of a triangle is $\frac{4x}{3}$ grades and another is 3x degrees, while the third is $\frac{2\pi x}{75}$ radians. Then 4. the angles in degrees are-
 - (A) 20, 60, 100
- (B) 24, 60, 96
- (C) 36, 60, 84 (D) 20, 40, 120

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE -3

- True / False
- **2**. T
- Fill in the Blanks
- **3**. 2

- Match the Column
 - 1. (A) \rightarrow (s), (B) \rightarrow (q), (C) \rightarrow (r), (D) \rightarrow (s)
- **2.** (A) \rightarrow (t), (B) \rightarrow (p), (C) \rightarrow (q,r), (D) \rightarrow (q,s)

- Assertion & Reason
- 2. D **3**. B
- **5**. C
- Comprehension Based Questions
 - Comprehension # 1 : 1. D
- 2. A
- **3**. D
- Comprehension # 2 : 1. A,B
- **2**. C
- **3**. D
- **4**. B

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- 1. If $\cos (y z) + \cos (z x) + \cos (x y) = -\frac{3}{2}$, prove that $\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$.
- **2.** Prove that, $\cos 2\alpha = 2 \sin \beta + 4\cos (\alpha + \beta) \sin \alpha \sin \beta + \cos 2(\alpha + \beta)$
- 3. For all values of α , β , γ prove that :

$$\cos\,\alpha\,+\,\cos\,\beta\,+\,\cos\,\gamma\,+\,\cos\,\left(\alpha\,+\,\beta\,+\,\gamma\right)\,=\,4\,\cos\,\frac{\alpha\,+\,\beta}{2}\,.\,\,\cos\,\frac{\beta\,+\,\gamma}{2}\,.\,\,\cos\,\frac{\gamma\,+\,\alpha}{2}\,.$$

- **4.** If $\cos{(\alpha+\beta)}=\frac{4}{5}$; $\sin{(\alpha-\beta)}=\frac{5}{13}$ & α , β lie between 0 & $\frac{\pi}{4}$, then find the value of $\tan{2\alpha}$
- **5.** Prove that :

(a)
$$\sin^4 \frac{\pi}{16} + \sin^4 \frac{3\pi}{16} + \sin^4 \frac{5\pi}{16} + \sin^4 \frac{7\pi}{16} = \frac{3\pi}{2}$$

- (b) $\sin 6 \cdot \sin 42 \cdot \sin 66 \cdot \sin 78 = \cos 6 \cdot \cos 42 \cdot \cos 66 \cdot \cos 78 = \frac{1}{16}$
- **6.** If $\cos \theta = \frac{\cos \alpha e}{1 e \cos \alpha}$, prove that $\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 + e}{1 e}} \tan \frac{\alpha}{2}$.
- 7. Prove that, cot $7\frac{1^{\circ}}{2}$ or $\tan 82\frac{1^{\circ}}{2} = (\sqrt{3} + \sqrt{2})(\sqrt{2} + 1)$ or $\sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$
- **8.** Prove that : $\csc \theta + \csc 2\theta + \csc 2^{\theta} + \ldots + \csc 2^{n-1}\theta = \cot (\theta/2) \cot 2^{n-1}\theta$
- 9. If $\alpha+\beta=c$ where $\alpha,\ \beta>0$ each lying between 0 and $\pi/2$ and c is a constant, find the maximum or minimum value of -
 - (a) $\sin\alpha + \sin\beta$
- (b) $\sin\alpha \sin\beta$
- (c) $tan\alpha + tan\beta$
- 10. (a) Find the maximum & minimum values of $27^{\cos 2x}.81^{\sin 2x}$
 - (b) Find the smallest positive values of x & y satisfying, $x y = \frac{\pi}{4}$, $\cot x + \cot y = 2$

CONCEPTUAL SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE-4(A)

- 4. $\frac{56}{33}$
- **9.** (a) $\max = 2\sin c/2$
- (b) $\max = \sin^2 c/2$
- (c) min.= 2 tan c/2
- **10.** (a) Minimum Value = 3^{-5} ; Maximum Value = 3^{5} (b) $x = \frac{5\pi}{12}$, $y = \frac{\pi}{6}$

EXERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- 1. Prove that :
 - (a) In an acute angled triangle ABC, the least values of $\Sigma sec A$ and $\Sigma tan^2 A$ are 6 and 9 respectively.
 - (b) In triangle ABC, the least values of $\Sigma cosec \left(\frac{A}{2}\right)$ and $\Sigma sec^2 \left(\frac{A}{2}\right)$ are 6 and 4 respectively.
- **2.** Prove that; $\csc x \cdot \csc 2x \cdot \sin 4x \cdot \cos 6x \cdot \csc 10x$

$$=\frac{\cos 3x}{\sin 2x \sin 4x}+\frac{\cos 5x}{\sin 4x \sin 6x}+\frac{\cos 7x}{\sin 6x \sin 8x}+\frac{\cos 9x}{\sin 8x \sin 10x}$$

3. If $\tan \alpha = p/q$ where $\alpha = 6\beta$, α being an acute angle, prove that ;

$$\frac{1}{2}(p \csc 2\beta - q \sec 2\beta) = \sqrt{p^2 + q^2}$$

- 4. If $\tan\left(\frac{\pi}{4} + \frac{y}{2}\right) = \tan^3\left(\frac{\pi}{4} + \frac{x}{2}\right)$ prove that $\sin y = \sin x \left[\frac{3 + \sin^2 x}{1 + 3\sin^2 x}\right]$
- 5. Prove that from the equality $\frac{\sin^4 \alpha}{a} + \frac{\cos^4 \alpha}{b} = \frac{1}{a+b}$ follows the relation;

$$\frac{\sin^8 \alpha}{a^3} + \frac{\cos^8 \alpha}{b^3} = \frac{1}{(a+b)^3}$$

6. If $P = \cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \cos \frac{5\pi}{19} + \dots + \cos \frac{17\pi}{19}$ and

$$Q = \cos \frac{2\pi}{21} + \cos \frac{4\pi}{21} + \cos \frac{6\pi}{21} + \dots + \cos \frac{20\pi}{21}$$
, then find P - Q

- 7. Prove that: $4 \sin 27 = \left(5 + \sqrt{5}\right)^{1/2} \left(3 \sqrt{5}\right)^{1/2}$.
- $\textbf{8.} \qquad \text{If} \quad A+B+C = \pi \quad ; \quad \text{prove that} \quad \tan \ \frac{A}{2} \ + \ \tan \ \frac{B}{2} \ + \ \tan \ \frac{C}{2} \quad \geq \ 1.$
- **9.** If $\alpha + \beta = \gamma$, prove that $\cos \alpha + \cos \beta + \cos \gamma = 1 + 2 \cos \alpha \cos \beta \cos \gamma$.
- 10. Prove that the triangle ABC is equilateral iff, $\cot A + \cot B + \cot C = \sqrt{3}$.

EXERCISE - 05 [A]

JEE-[MAIN]: PREVIOUS YEAR QUEST

Period of $f(x) = \sin^4 x + \cos^4 x$ is -1.

[AIEEE-2002]

(3) 2π

(4) None of these

2. Period of $\sin^2 \theta$ is[AIEEE-2002]

(1) π^2

(2) π

(3) 2π

(4) $\frac{\pi}{2}$

If $y = sec^2 \theta + cos^2 \theta$, $\theta \neq 0$, then-

[AIEEE-2002]

(3) $y \ge -2$

(4) y > 2.

The value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$ =

[AIEEE-2002]

(1) 1

(2) $\sqrt{3}$

(3) $\frac{\sqrt{3}}{2}$

(4) 2

If α is a root of 25 $\cos^2\theta$ + 5 $\cos\theta$ - 12 = 0, $\frac{\pi}{2} < \alpha < \pi$, then $\sin 2\alpha$ =

[AIEEE-2002]

(1) $\frac{24}{25}$

(2) $-\frac{24}{25}$

(3) $\frac{13}{18}$

 $(4) - \frac{13}{18}$

If $\sin (\alpha + \beta) = 1$, $\sin (\alpha - \beta) = \frac{1}{2}$, then $\tan (\alpha + 2\beta)\tan (2\alpha + \beta) =$

[AIEEE-2002]

(4) None of these

If $\tan \theta = -\frac{4}{3}$, then $\sin \theta$ is-

[AIEEE-2002]

(1) $-\frac{4}{5}$ but not $\frac{4}{5}$ (2) $-\frac{4}{5}$ or $\frac{4}{5}$

(3) $\frac{4}{5}$ but not $-\frac{4}{5}$

(4) None of these

8. $\sec^2 \theta = \frac{4xy}{(x+y)^2}$ is true if and only if -

[AIEEE-2003]

(1) $x + v \neq 0$

(2) $x = y, x \neq 0$

(3) x = y

(4) $x \neq 0, y \neq 0$

If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$ then the difference between the maximum and minimum values of u^2 is given by-

(1) $2(a^2 + b^2)$

 $(3) (a + b)^2$

 $(4) (a - b)^2$

10. Let α,β be such that $\pi < \alpha - \beta < 3\pi$.

If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the value of $\cos \frac{\alpha - \beta}{2}$ is-

[AIEEE-2004]

 $(1) - \frac{3}{\sqrt{130}}$

(2) $\frac{3}{\sqrt{130}}$

(3) $\frac{6}{65}$ 0

11. If $0 \le x \le \pi$, and $\cos x + \sin x = \frac{1}{2}$, then $\tan x$ is-

[AIEEE-2006]

(2) $-(4+\sqrt{7})/3$

(3) $(1+\sqrt{7})/4$

(4) $(1-\sqrt{7})/4$

12. Let $\cos(\alpha + \beta) = \frac{4}{5}$ and let $\sin(\alpha - \beta) = \frac{5}{13}$, where $0 \le \alpha$, $\beta \le \frac{\pi}{4}$. Then $\tan 2\alpha = 1$

(1) $\frac{25}{16}$

(3) $\frac{19}{12}$

If $A = \sin^2 x + \cos^4 x$, then for all real x :-

[AIEEE-2011]

- (1) $1 \le A \le 2$
- (2) $\frac{3}{4} \le A \le \frac{13}{16}$ (3) $\frac{3}{4} \le A \le 1$
- (4) $\frac{13}{16} \le A \le 1$
- 14. In a $\triangle PQR$, if $3 \sin P + 4 \cos Q = 6$ and $4 \sin Q + 3 \cos P = 1$, then the angle R is equal to :

[AIEEE-2012]

(3) $\frac{\pi}{6}$

E-Advan											
Yord VE	PREVIO	US YEARS	QUESTIO	NS	Α	NSWER	KEY			EXERC	ISE-5 [A]
12014	Que.	1	2	3	4	5	6	7	8	9	10
-	Ans.	2	2	4	3	2	1	2	2	4	1
) CC	Que.	11	12	13	14						
اً ا	Ans.	2	2	3	3						

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR

If $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$ then $\tan \alpha$ equals -

[JEE 2001 Screening, 1M out of 35M]

- (A) $2(\tan \beta + \tan \gamma)$
- (B) $\tan \beta + \tan \gamma$
- (C) $\tan \beta + 2 \tan \gamma$
- (D) $2 \tan \beta + \tan \gamma$
- If θ and ϕ are acute angles satisfying $\sin \theta = \frac{1}{2}$, $\cos \phi = \frac{1}{3}$, then $\theta + \phi \in$

[JEE 2004 Screening]

- (A) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
- (B) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ (C) $\left(\frac{2\pi}{3}, \frac{5\pi}{6}\right)$ (D) $\left(\frac{5\pi}{6}, \pi\right)$
- 3. In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. Area of the triangle is -

- (A) $4 + 2\sqrt{3}$
- (B) $6 + 4\sqrt{3}$

[JEE 2005 Screening]

- (C) $12 + \frac{7\sqrt{3}}{4}$
- (D) $3 + \frac{7\sqrt{3}}{4}$
- **4.** Let $\theta \in \left(0, \frac{\pi}{4}\right)$ and $t_1 = (\tan \theta)^{\tan \theta}$, $t_2 = (\tan \theta)^{\cot \theta}$, $t_3 = (\cot \theta)^{\tan \theta}$, $t_4 = (\cot \theta)^{\cot \theta}$, then

[JEE 06.3M.-1M]

- (A) $t_1 > t_2 > t_3 > t_4$ (B) $t_4 > t_3 > t_1 > t_2$ (C) $t_3 > t_1 > t_2 > t_4$ (D) $t_2 > t_3 > t_1 > t_4$

One or more than one is/are correct: [Q.5(a) & (b)]

5.(a) If $\frac{\sin^4 x}{2} + \frac{\cos^4 x}{2} = \frac{1}{5}$, then

[JEE 2009, 4 + 4]

(A) $\tan^2 x = \frac{2}{3}$

(B) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$

(C) $\tan^2 x = \frac{1}{2}$

- (D) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{2}{125}$
- **(b)** For $0 < \theta < \frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^{6} \csc\left(\theta + \frac{(m-1)\pi}{4}\right) \csc\left(\theta + \frac{m\pi}{4}\right) = 4\sqrt{2}$ is (are) -
 - (A) $\frac{\pi}{4}$
- (B) $\frac{\pi}{\epsilon}$

(C) $\frac{\pi}{12}$

- **6.(a)** The maximum value of the expression $\frac{1}{\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta}$ is
 - (b) Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the center, angles of $\frac{\pi}{k}$ and $\frac{2\pi}{k}$ where k > 0, then the value of [k] is -[Note: [k] denotes the largest integer less than or equal to k] [JEE 2010,3+3]
- Let $P = \left\{\theta : \sin \theta \cos \theta = \sqrt{2} \cos \theta\right\}$ and $Q = \left\{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta\right\}$ be two sets. Then
 - (A) $P \subset Q$ and $Q P \neq \emptyset$

(B) Q ⊄ P

(C) P ⊄ Q

(D) P = O

[JEE 2011,3]

96