Lenguajes y Compiladores

1er Parcial 2024 - 26 de abril de 2024

- 1. Sea \mathbb{N}_{\downarrow} el poset (\mathbb{N},\sqsubseteq) de los naturales con la relación \geqslant ; es decir $x\sqsubseteq y$ si y sólo si $x\geqslant y$. Por ejemplo $4 \sqsubseteq 2$ porque $4 \geqslant 2$.
- (a) ¿Es \mathbb{N}_{\downarrow} un predominio? (b) Considerá el mapeo $f \doteq x \mapsto x$ que lo podemos ver como una función en $\mathbb{N}_{\downarrow} \to \mathbb{N}^{\infty}$. ¿Es f una
- (c) Definí una función monótona en $\mathbb{N}_{\downarrow} \to \mathbb{N}^{\infty}$ que no sea constante.
 - (d) ¿Hay funciones monótonas en $\mathbb{N}_{\downarrow}\to\mathbb{N}^{\infty}$ que no sean continuas?
- 2. Considerá la siguiente ecuación recursiva:

$$f(x) = \begin{cases} 0 & \text{si } x < 10\\ 1 + f(x/10) & \text{si } x \geqslant 10 \end{cases}$$

Sea $F\colon (\mathbb{N}\to\mathbb{N}_\perp)\to (\mathbb{N}\to\mathbb{N}_\perp)$ el funcional asociado a esa ecuación.

- (a) ¿Cuál es el menor $i \in \mathbb{N}$ para el cual existe $x \in \mathbb{N}$ tal que $F^i \perp x = 4$? Proponé, además, un x que cumpla esa propiedad.
- (b) ¿Es $F^i \perp$ una cadena interesante?
- (c) ¿Cuál es el supremo de esa cadena?
- Considerá el lenguaje imperativo simple con IO y la siguiente ecuación recursiva:

$$\begin{split} g: \Sigma &\to \Omega \\ g\: \sigma &= \iota_{in} \left(\lambda k \in \mathbb{Z}. \begin{cases} \iota_{term}[\sigma| \mathbf{v} : 0] & \text{si } k = 0 \\ \iota_{out} \langle 1, g[\sigma| \mathbf{p} : \sigma \: \mathbf{p} + 1 | \mathbf{v} : k] \rangle & \text{si } k > 0 \\ \iota_{out} \langle -1, g[\sigma| \mathbf{n} : \sigma \: \mathbf{n} + 1 | \mathbf{v} : k] \rangle & \text{si } k < 0 \end{cases} \right) \end{split}$$

- (a) ¿Hay algún elemento mayor a la menor solución de g?

 (b) ¿Puede un programa de la forma ?w; c' tener como semántica la menor solución de g? (c) Proponé un programa cuya semántica coincida con la menor solución de g. Justificá que efectivamente sea así.
 - Probá o refutá los siguientes enunciados. Justificá tu respuesta.
 - (a) Sean x y e tales que x $\notin FV(e)$, entonces x := $e \equiv x := e$; x := e. (b) while b do $(c; fail) \equiv fail$.

 - c) while $b \operatorname{do} c \equiv (\text{while } b \operatorname{do} c)$; while $b \operatorname{do} c$.