5/14/25, 9:19 PM hw3

Arian mohammad khani- 810603136

homework 3

The goal of this exercise is to evaluate the performance of binary and multiclass classification methods. To achieve this, the case of health monitoring and fault detection of a milling machine tool has been considered. The dataset in question (machine_milling.csv file) contains 1000 records, where each record indicates the condition of the milling tool (sixth column) based on five features: "ambient temperature," "process temperature," "rotational speed of the tool," "torque applied to the tool axis," and "duration of tool exposure to wear" (first to fifth columns).

```
In [1]: from pandas import *
        from numpy import *
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.svm import SVC
        from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
        from imblearn.over_sampling import SMOTE
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
```

a

```
In [2]: data_frame = read_csv('milling_machine.csv')
       data_frame.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 10000 entries, 0 to 9999
      Data columns (total 6 columns):
       # Column
                                Non-Null Count Dtype
                                 -----
       0 Air Temp (°C)
                                9965 non-null float64
                            9990 non-null float64
       1 Process Temp (°C)
       2 Rotational Speed (RPM) 10000 non-null float64
                                10000 non-null float64
       3 Torque (Nm)
       4 Tool Wear (Seconds)
                                9993 non-null float64
       5 Failure Types
                                9991 non-null
                                               object
      dtypes: float64(5), object(1)
      memory usage: 468.9+ KB
In [3]: data_frame.head()
```

Out[3]:		Air Temp (°C)	Process Temp (°C)	Rotational Speed (RPM)	Torque (Nm)	Tool Wear (Seconds)	Failure Types
	0	29.021640	71.620737	1515.840689	50.223021	664.638000	No Failure
	1	21.886075	69.896471	2083.417786	52.221351	6628.080758	No Failure
	2	29.020744	74.731134	2455.801496	57.822145	3295.576818	No Failure
	3	25.793868	70.715109	2112.654324	69.910072	7116.479752	No Failure
	4	21.056760	71.025092	1642.485295	68.411333	1191.996403	No Failure

In [4]: data_frame.describe()

	Air Temp (°C)	Process Temp (°C)	Rotational Speed (RPM)	Torque (Nm)	Tool Wear (Seconds)
count	9965.000000	9990.000000	10000.000000	10000.000000	9993.000000
mean	28.516926	80.812186	1401.909988	46.998845	11393.143344
std	7.719340	15.548350	968.446183	26.747646	9023.336380
min	20.001366	60.001876	0.047731	0.015920	3.469877
25%	23.176455	68.090324	423.672240	18.091381	5023.027818
50%	26.212082	76.553203	1377.047835	54.983239	8995.172952
75%	29.377536	92.825894	2307.969925	67.258375	15024.825673
max	49.998008	119.971025	2999.953724	89.993221	35999.566519

5/14/25, 9:19 PM

```
In [5]: missing_v = data_frame.isnull().sum()
    missing_v_ratio = data_frame.isnull().mean()

missing_data = DataFrame({
        'Missing value Count': missing_v,
        'Missing value Ratio': missing_v_ratio
})
    missing_data
```

hw3

Out[5]:

Air Temp (°C) 35 0.0035 Process Temp (°C) 10 0.0010 Rotational Speed (RPM) 0 0.0000 Torque (Nm) 0 0.0000 Tool Wear (Seconds) 7 0.0007

9

0.0009

Failure Types 1.000000
Tool Wear (Seconds) 0.656459
Process Temp (°C) -0.257862
Rotational Speed (RPM) -0.582298
Torque (Nm) -0.626631
Air Temp (°C) -0.636946
Name: Failure Types, dtype: float64

Failure Types

5/14/25, 9:19 PM

```
In [7]: top_features = sorted_corr.drop('Failure Types').abs().nlargest(3).index

for feature in top_features:
    plt.figure(figsize=(8, 4))
    sns.histplot(data=new_data, x=feature, bins=10, kde=False)
    plt.title(f'Distribution of {feature} (Binned)')
    plt.xlabel(feature)
    plt.ylabel('Count')
    plt.tight_layout()
    plt.show()
```


In [8]: data_frame.info()

5/14/25, 9:19 PM hw3

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 6 columns):
   Column
                         Non-Null Count Dtype
                         -----
                        9965 non-null float64
0 Air Temp (°C)
   Process Temp (°C)
                        9990 non-null float64
1
   Rotational Speed (RPM) 10000 non-null float64
 2
   Torque (Nm)
                         10000 non-null float64
 3
4 Tool Wear (Seconds)
                          9993 non-null float64
                          9991 non-null object
5 Failure Types
dtypes: float64(5), object(1)
memory usage: 468.9+ KB
```

```
b
In [9]: for column in data_frame.columns:
             missing_value = data_frame[column].isnull().sum()
             if missing_value > 0:
                 if data_frame[column].dtype == 'float64' :
                     if column != 'Failure Types':
                         data_frame[column] = data_frame.groupby('Failure Types')[column].transform(lambda x: x.fillna(x.mean()))
                 elif data_frame[column].dtype == 'object' :
                     data_frame.dropna(subset=[column], inplace=True)
In [10]: label_encoder = LabelEncoder()
         for column in data_frame.select_dtypes(include='object').columns:
             data_frame[column] = label_encoder.fit_transform(data_frame[column])
In [11]: data_frame.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 9991 entries, 0 to 9999
       Data columns (total 6 columns):
           Column
                                   Non-Null Count Dtype
                                    9991 non-null float64
        0 Air Temp (°C)
        1 Process Temp (°C)
                                   9991 non-null float64
        2 Rotational Speed (RPM) 9991 non-null float64
                                    9991 non-null float64
        3
            Torque (Nm)
        4
            Tool Wear (Seconds)
                                    9991 non-null
                                                   float64
            Failure Types
                                    9991 non-null
                                                   int32
       dtypes: float64(5), int32(1)
       memory usage: 507.4 KB
In [12]: numeric_cols = ['Air Temp (°C)', 'Process Temp (°C)', 'Rotational Speed (RPM)', 'Torque (Nm)', 'Tool Wear (Seconds)']
         scaler = StandardScaler()
         data_frame[numeric_cols] = scaler.fit_transform(data_frame[numeric_cols])
         C
```

5/14/25, 9:19 PM

Tool Condition

```
In [15]: X = data_frame.drop(columns=['Failure Types', 'Failure_Binary'])
         y = data_frame['Failure_Binary']
         label_encoder = LabelEncoder()
         y_encoded = label_encoder.fit_transform(y)
         smote = SMOTE(random_state=42)
         X_resampled, y_resampled = smote.fit_resample(X, y_encoded)
         print("After SMOTE:")
         uniques, counts = unique(y_resampled, return_counts=True)
         print(dict(zip(label_encoder.inverse_transform(uniques), counts)))
         X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
       After SMOTE:
       {'Failure': 7993, 'No Failure': 7993}
In [16]: models = {
             "Logistic Regression": LogisticRegression(max_iter=1000),
             "KNN": KNeighborsClassifier(n_neighbors=5),
             "SVM Linear": SVC(kernel='linear'),
             "SVM RBF": SVC(kernel='rbf')
         results = []
         for name, model in models.items():
             model.fit(X_train, y_train)
             y_pred = model.predict(X_test)
             acc = accuracy_score(y_test, y_pred)
             report = classification_report(y_test, y_pred, output_dict=True)
             conf_matrix = confusion_matrix(y_test, y_pred)
             print(f"\n{name}:\n")
             print("Confusion Matrix:\n", conf_matrix)
             print("Accuracy:", acc)
             print("Classification Report:\n", classification_report(y_test, y_pred))
             results.append({
                 "Model": name,
                 "Accuracy": acc,
                 "Precision (Failure)": report['1']['precision'],
                 "Recall (Failure)": report['1']['recall'],
                 "F1-Score (Failure)": report['1']['f1-score']
             })
```

hw3

```
Logistic Regression:
       Confusion Matrix:
        [[1572 0]
        [ 0 1626]]
       Accuracy: 1.0
       Classification Report:
                      precision
                                   recall f1-score
                                                      support
                                              1.00
                  0
                          1.00
                                    1.00
                                                        1572
                  1
                          1.00
                                    1.00
                                              1.00
                                                        1626
                                              1.00
                                                        3198
           accuracy
                                              1.00
                                                        3198
          macro avg
                          1.00
                                    1.00
       weighted avg
                          1.00
                                    1.00
                                              1.00
                                                        3198
       KNN:
       Confusion Matrix:
        [[1572
                  0]
        [ 0 1626]]
       Accuracy: 1.0
       Classification Report:
                      precision
                                   recall f1-score
                                                      support
                  0
                          1.00
                                    1.00
                                              1.00
                                                        1572
                  1
                          1.00
                                    1.00
                                              1.00
                                                        1626
                                              1.00
                                                        3198
           accuracy
                          1.00
                                              1.00
                                                        3198
           macro avg
                                    1.00
       weighted avg
                          1.00
                                    1.00
                                              1.00
                                                        3198
       SVM Linear:
       Confusion Matrix:
        [[1572
                  0]
        [ 0 1626]]
       Accuracy: 1.0
       Classification Report:
                      precision
                                   recall f1-score
                                                      support
                  0
                          1.00
                                    1.00
                                              1.00
                                                        1572
                  1
                          1.00
                                    1.00
                                              1.00
                                                        1626
           accuracy
                                              1.00
                                                        3198
           macro avg
                          1.00
                                    1.00
                                              1.00
                                                        3198
       weighted avg
                          1.00
                                    1.00
                                              1.00
                                                        3198
       SVM RBF:
       Confusion Matrix:
        [[1572
        [ 0 1626]]
       Accuracy: 1.0
       Classification Report:
                                   recall f1-score
                      precision
                                                      support
                  0
                          1.00
                                    1.00
                                              1.00
                                                        1572
                  1
                          1.00
                                    1.00
                                              1.00
                                                        1626
                                              1.00
                                                        3198
           accuracy
                          1.00
                                    1.00
                                              1.00
                                                        3198
          macro avg
                          1.00
                                    1.00
                                                        3198
       weighted avg
                                              1.00
In [17]: # Logistic
         param_grid_lr = {
             'C': [0.01, 0.1, 1, 10],
             'penalty': ['12'],
         }
         grid_lr = GridSearchCV(LogisticRegression(max_iter=1000), param_grid_lr, cv=5, scoring='accuracy')
         grid_lr.fit(X_train, y_train)
         print("Best Params (LR):", grid_lr.best_params_)
       Best Params (LR): {'C': 0.01, 'penalty': '12'}
In [18]: #KNN
         param_grid_knn = {'n_neighbors': range(1, 21)}
         grid_knn = GridSearchCV(KNeighborsClassifier(), param_grid_knn, cv=5)
         grid_knn.fit(X_train, y_train)
         print("Best K for KNN:", grid_knn.best_params_)
       Best K for KNN: {'n_neighbors': 1}
```

5/14/25, 9:19 PM hw3

```
In [19]: #SVM
         param_grid_svm_linear = {
             'C': [0.01, 0.1, 1, 10, 100],
             'kernel': ['linear']
         grid_svm_linear = GridSearchCV(SVC(), param_grid_svm_linear, cv=5, scoring='accuracy')
         grid_svm_linear.fit(X_train, y_train)
         print("Best parameters for SVM (Linear):", grid_svm_linear.best_params_)
       Best parameters for SVM (Linear): {'C': 0.01, 'kernel': 'linear'}
In [20]: #SVM RBF
         param_grid_svm = {
             'C': [0.1, 1, 10],
             'gamma': [1, 0.1, 0.01],
             'kernel': ['rbf']
         grid_svm = GridSearchCV(SVC(), param_grid_svm, cv=5)
         grid_svm.fit(X_train, y_train)
         print("Best parameters for SVM (RBF):", grid_svm.best_params_)
       Best parameters for SVM (RBF): {'C': 0.1, 'gamma': 1, 'kernel': 'rbf'}
In [21]: comparison_table = DataFrame(results)
         print(comparison_table.sort_values(by="Accuracy", ascending=False))
                         Model Accuracy Precision (Failure) Recall (Failure)
       0 Logistic Regression
                                    1.0
                                                         1.0
                                                                            1.0
       1
                          KNN
                                    1.0
                                                         1.0
                                                                            1.0
       2
                   SVM Linear
                                    1.0
                                                         1.0
                                                                            1.0
                      SVM RBF
                                    1.0
                                                         1.0
                                                                            1.0
           F1-Score (Failure)
       0
       1
                         1.0
       2
                         1.0
       3
                         1.0
```

d

```
In [22]: X_multi = data_frame.drop(columns=['Failure Types', 'Failure_Binary'])
         y_multi = data_frame['Failure Types']
         smote_multi = SMOTE(random_state=42)
         X_res_multi, y_res_multi = smote_multi.fit_resample(X_multi, y_multi)
         X_train_m, X_test_m, y_train_m, y_test_m = train_test_split(X_res_multi, y_res_multi, test_size=0.2, random_state=42)
         models_multiclass = {
             "KNN": KNeighborsClassifier(n_neighbors=5),
             "Decision Tree": DecisionTreeClassifier(random_state=42),
             "Random Forest": RandomForestClassifier(random_state=42),
             "SVM (One-vs-Rest)": OneVsRestClassifier(SVC(kernel='rbf')),
             "SVM (One-vs-one)":OneVsOneClassifier(SVC(kernel='linear', C=1))
         results_multiclass = []
         for name, model in models_multiclass.items():
             model.fit(X_train_m, y_train_m)
             y_pred_m = model.predict(X_test_m)
             acc = accuracy_score(y_test_m, y_pred_m)
             conf_matrix = confusion_matrix(y_test_m, y_pred_m)
             report = classification_report(y_test_m, y_pred_m, output_dict=True)
             print(f"\n{name}:\n")
             print("Confusion Matrix:\n", conf_matrix)
             print("Accuracy:", acc)
             print("Classification Report:\n", classification_report(y_test_m, y_pred_m))
             results_multiclass.append({
                 "Model": name,
                 "Accuracy": acc,
                 "Macro Precision": report['macro avg']['precision'],
                 "Macro Recall": report['macro avg']['recall'],
                 "Macro F1": report['macro avg']['f1-score']
             })
```

KNN:

```
Confusion Matrix:
 [[418 0
           0
                    0]
 [ 0 410
          2
               0
                   0]
   0 0 392
               0
                   0]
   0 0
          0 387
 [ 0 0 0 0 390]]
Accuracy: 0.9989994997498749
Classification Report:
              precision
                           recall f1-score
                                             support
          0
                  1.00
                           1.00
                                     1.00
                                                418
          1
                                     1.00
                  1.00
                           1.00
                                                412
          2
                  0.99
                           1.00
                                     1.00
                                                392
          3
                  1.00
                           1.00
                                     1.00
                                                387
          4
                  1.00
                                     1.00
                                                390
                           1.00
                                     1.00
                                               1999
   accuracy
   macro avg
                  1.00
                           1.00
                                     1.00
                                               1999
                  1.00
                                     1.00
                                               1999
weighted avg
                           1.00
Decision Tree:
Confusion Matrix:
 [[418 0
 [ 0 412
               0
                   0]
   0
       0 392
               0
                   0]
           0 387
                   0]
   0
       0
               0 390]]
   0 0 0
Accuracy: 1.0
Classification Report:
              precision
                           recall f1-score
                                             support
          0
                  1.00
                           1.00
                                     1.00
                                                418
          1
                  1.00
                           1.00
                                     1.00
                                                412
          2
                  1.00
                                     1.00
                                                392
                           1.00
          3
                  1.00
                           1.00
                                     1.00
                                                387
          4
                  1.00
                            1.00
                                     1.00
                                                390
   accuracy
                                     1.00
                                               1999
                  1.00
                           1.00
                                               1999
   macro avg
                                     1.00
weighted avg
                  1.00
                           1.00
                                     1.00
                                               1999
Random Forest:
Confusion Matrix:
 [[418 0
                    0]
                0
 [ 0 412
                   0]
 [
   0
      0 392
               0
                   0]
 [
   0 0
          0 387
                   0]
 [ 0 0 0
               0 390]]
Accuracy: 1.0
Classification Report:
              precision
                           recall f1-score
                                             support
          0
                  1.00
                           1.00
                                     1.00
                                                418
          1
                  1.00
                           1.00
                                     1.00
                                                412
          2
                  1.00
                           1.00
                                     1.00
                                                392
          3
                  1.00
                           1.00
                                     1.00
                                                387
          4
                  1.00
                            1.00
                                     1.00
                                                390
                                     1.00
                                               1999
   accuracy
                  1.00
                           1.00
                                     1.00
                                               1999
   macro avg
weighted avg
                  1.00
                           1.00
                                     1.00
                                               1999
SVM (One-vs-Rest):
Confusion Matrix:
 [[418 0 0
               0
                    0]
 [ 0 412 0
               0
      0 392
               0
                   0]
          0 387
   0
       0
                   0]
 [
   0 0 0
               0 390]]
Accuracy: 1.0
Classification Report:
              precision
                          recall f1-score
                                             support
          0
                  1.00
                           1.00
                                     1.00
                                                418
          1
                  1.00
                           1.00
                                     1.00
                                                412
          2
                  1.00
                                     1.00
                           1.00
                                                392
          3
                  1.00
                           1.00
                                     1.00
                                                387
          4
                  1.00
                                                390
                           1.00
                                     1.00
```

5/14/25, 9:19 PM hw3

```
1.00
                                                       1999
           accuracy
                          1.00
                                   1.00
                                              1.00
                                                       1999
          macro avg
                                                       1999
       weighted avg
                          1.00
                                   1.00
                                              1.00
       SVM (One-vs-one):
       Confusion Matrix:
        [[418 0 0 0 0]
           0 412 0 0 0]
           0 0 392 0 0]
              0 0 387 0]
           0 0 0
                     0 390]]
       Accuracy: 1.0
       Classification Report:
                                   recall f1-score
                      precision
                                                     support
                                              1.00
                  0
                          1.00
                                    1.00
                                                         418
                  1
                          1.00
                                    1.00
                                              1.00
                                                         412
                          1.00
                                    1.00
                                              1.00
                                                         392
                          1.00
                                              1.00
                                                        387
                  3
                                    1.00
                          1.00
                                              1.00
                                                        390
                                    1.00
                                              1.00
                                                       1999
           accuracy
                          1.00
                                    1.00
                                              1.00
                                                       1999
          macro avg
                                                       1999
                          1.00
                                    1.00
                                              1.00
       weighted avg
In [23]: #KNN
         param_grid_knn = {'n_neighbors': range(1, 21)}
         grid_knn_multi = GridSearchCV(KNeighborsClassifier(), param_grid_knn, cv=5)
         grid_knn_multi.fit(X_train_m, y_train_m)
         print("Best K for KNN (Multiclass):", grid_knn_multi.best_params_)
       Best K for KNN (Multiclass): {'n_neighbors': 4}
In [24]: # Decision Tree
         param_grid_dt = {'max_depth': [3, 5, 10, None], 'min_samples_split': [2, 5, 10]}
         grid_dt = GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid_dt, cv=5)
         grid_dt.fit(X_train_m, y_train_m)
         print("Best params for Decision Tree:", grid_dt.best_params_)
       Best params for Decision Tree: {'max_depth': 5, 'min_samples_split': 2}
In [25]: # Random Forest
         param_grid_rf = {'n_estimators': [50, 100, 150], 'max_depth': [None, 10, 20]}
         grid_rf = GridSearchCV(RandomForestClassifier(random_state=42), param_grid_rf, cv=5)
         grid_rf.fit(X_train_m, y_train_m)
         print("Best params for Random Forest:", grid_rf.best_params_)
       Best params for Random Forest: {'max_depth': None, 'n_estimators': 50}
In [26]: # SVM One-vs-Rest
         param_grid_svm_multi = {
             'estimator__C': [0.1, 1, 10],
             'estimator__gamma': [1, 0.1, 0.01]
         grid_svm_multi = GridSearchCV(OneVsRestClassifier(SVC(kernel='rbf')), param_grid_svm_multi, cv=5)
         grid_svm_multi.fit(X_train_m, y_train_m)
         print("Best params for SVM (One-vs-Rest):", grid_svm_multi.best_params_)
       Best params for SVM (One-vs-Rest): {'estimator__C': 10, 'estimator__gamma': 0.1}
In [27]: # One-vs-One SVM
         param_grid_svm_ovo = {
             'estimator__C': [0.1, 1, 10],
             'estimator__gamma': [1, 0.1, 0.01]
         grid_svm_ovo = GridSearchCV(OneVsOneClassifier(SVC(kernel='rbf')),param_grid_svm_ovo,cv=5,scoring='accuracy')
         grid_svm_ovo.fit(X_train_m, y_train_m)
         print("Best params for SVM (One-vs-One):", grid_svm_ovo.best_params_)
       Best params for SVM (One-vs-One): {'estimator__C': 0.1, 'estimator__gamma': 1}
In [29]: comparison_multiclass = DataFrame(results_multiclass)
         print(comparison_multiclass.sort_values(by="Accuracy", ascending=False))
                      Model Accuracy Macro Precision Macro Recall Macro F1
       1
              Decision Tree 1.000000
                                             1.000000
                                                           1.000000 1.000000
              Random Forest 1.000000
       2
                                             1.000000
                                                           1.000000 1.000000
       3 SVM (One-vs-Rest) 1.000000
                                             1.000000
                                                           1.000000 1.000000
          SVM (One-vs-one) 1.000000
       4
                                             1.000000
                                                           1.000000 1.000000
                        KNN 0.998999
                                              0.998985
                                                           0.999029 0.999004
```