AdhereR: Estimate Adherence from Electronic Healthcare Data

Samuel S. Allemann, Alexandra L. Dima 21 November 2019

Why EHD?

- · data available from routine care for large samples with minimal extra costs
 - Estimate prevalence of (non-)adherence
 - Identify predictors of (non-)adherence
 - Model impact of adherence on clinical outcomes
 - Identify individuals with suboptimal adherence for targeted interventions
- limitations:
 - low granularity
 - variable data entry quality & standards
 - limited info recorded

Typically available information

- Patient identifier
- · Date of event
- Type of medication
- Quantity prescribed/dispensed/billed

Methodology matters

- · Different adherence estimates from the same data
- Insufficiently reported algorithms
- Lack of standardization and transparency
- · Misinformed clinical decisions

Example: Method-related variation in adherence to sibutramine

Measure	Formula	Value	Result (Standard Deviation)
CMA ¹⁷	cumulative days' supply of medication obtained/total days to next fill or to end of observation period	adherence value for cumulative time period	0.635 (0.29)
CMG ¹⁷	total days of treatment gaps/total days to next fill or end of observation period	nonadherence value for cumulative period, winsorized at zero	0.370 (0.28)
CMOS ¹³	total days of treatment gaps (+) or surplus ^a (–)/total days in observation period	nonadherence value for cumulative period, allowing for surplus	0.365 (0.29)
CR ²⁴	(total days supplied – last days' supply)/(last claim date – first claim date) \times 100	adherence value for period between fills	84.4% (0.22) ^b
CSA ¹⁷	days' supply obtained at beginning of interval/days in interval	adherence value for interval of study participation	1.097 (1.73)
DBR ²²	1 – {[(last claim date – first claim date) – total days' supply]/ (last claim date – first claim date)} \times 100	overall adherence percentage	104.8% (38.6)
MPR ¹⁶	days' supply: days in period	ratio of medication available	0.635:1 (0.29)
MPRm ²⁶	[total days supplied/(last claim date – first claim date + last days' supply)] \times 100	adherence percentage, adjusted to include final refill period	86.6% (16.6)
MRA ²³	(total days' supply/total number of days evaluated) × 100	overall adherence percentage	63.5% (29.1)
PDC ²⁷	(total days supply/total number of days evaluated) $\times100\%,$ capped at 1.0^a	percentage of days with medication available	63.0% (28.3)
RCR ²⁵	[(sum of quantity dispensed over interval/quantity to be taken per day) \times 100]/number of days in interval between first and last refill	overall adherence percentage	104.8% (38.6)

LM Hess - 2006. https://doi.org/10.1345/aph.1H018 (https://doi.org/10.1345/aph.1H018).

AdhereR

- Open-source package for the statistical software R
- Computation of adherence from EHD
- · (Interactive) visualization
- Transparent and reproducible reporting
- · Under active development

Assumptions

- The regimen requires the use of a fixed daily dosage of medication
- · All medication supplied for that patient in that period of time is recorded
- The patient does not use medication from other sources
- · The medication is used by the patient it has been supplied for
- Medication is supposed to be supplied at least two times during the observed period
- · Several other assumptions apply to individual algorithms

Definitions: Data source

- Medication event = prescribing or dispensing event of a given medication for a given patient
- Duration = number of days the quantity of supplied medication would last if used as recommended
- *Quantity* = number of doses supplied at a medication event
- Daily dosage = number of doses recommended to be taken daily
- Medication type = classification performed by the researcher depending on study aims

Definitions: Adherence taxonomy

- Adherence
 - continuous multiple-interval measures of medication availability (CMA)
- Initiation
 - the length of time between the first prescribing event and the first dispensing event
- Persistence
 - the length of time with repeated medication events, before discontinuing for a time period longer than a pre-specified permissible gap
- Implementation
 - CMA during treatment episodes or observation windows with no treatment gaps longer than a pre-specified period

ABC Taxonomy for EHD

Definitions: Time frames

- Follow-up window (FUW)
- Observation window (OW)
- Treatment episode (TE)

Working with AdhereR

- 1. Data preparation
- 2. Data exploration / Visualization
- 3. Adherence calculation
- 4. Reporting

Prerequisites

- The raw data (A),
- · A tidy data set (B),
- · A code book with all variables and values in the tidy data set,
- · A reproducible recipe how to go from A to B.

Why reproducibility is important

Herndon, T., Ash, M., & Pollin, R. (2014). Cambridge journal of economics, 38(2), 257-279.

1. Data preparation

- selecting medication events applicable to the research question
- coding medication type depending on clinical considerations
- calculate medication event durations (if necessary)
- check plausible values and correcting any deviations
- handle missing data
- see Huang, Yunyu, Jaco Voorham, und Flora M Haaijer-Ruskamp. Journal of Comparative Effectiveness Research 5, Nr. 4 (27. Juni 2016): 345-54. https://doi.org/10.2217/cer-2015-0022 (https://doi.org/10.2217/cer-2015-0022).

2. Data exploration/Visualization

- Exploration during preparation stage
- · Illustration for scientific communication
- Guidance in clinical practice

Event patterns (all patients aligned)

Interactive Plotting

3. Adherence calculations

- AdhereR estimates adherence as Continuous Medication Availability (CMA)
- simple CMA measures: CMA1 CMA9
 - Delimitation of OW,
 - Capping of CMA values,
 - Carry-over of medication oversupply within the OW, and
 - Carry-over of medication supply into OW.
- iterated CMA measures: CMA_per_episode and CMA_sliding_window

Overall adherence - implementation & persistence

- · CMA itself makes no difference between persistence/non-persistence
- CMA = implementation only if sample/individual is on treatment
 - *simple* CMA for sample that initiated and did not discontinue OR
 - per episode CMA first identifies treatment episodes then computes CMA for each

Overall adherence with CMA7

Initiation

- Requires prescription and dispensing data for the same follow-up period
- yes/no availability of a dispensing date (within a period of time after prescription)
- time to dispensing time to initiation() function

Time to initiation

```
time_to_initiation(disp.data, presc.data, ...)
## Warning in time_to_initiation(presc.data = prescription_episodes[grepl("^R03AC", : Dis
```

Persistence

· differentiate between persistence with treatment and quality of implementation

Persistence

compute.treatment.episodes(data, ...)

Event patterns (all patients aligned)

Persistence output

ID	episode.ID	episode.start	end.episode.gap.days	episode.duration	episode.end
7	1	2056-07-07	169	30	2056-08-06
7	2	2057-01-22	145	93	2057-04-25
7	3	2057-09-17	118	30	2057-10-17
7	4	2058-02-12	405	105	2058-05-28
16	1	2056-07-04	0	517	2057-12-03
16	2	2057-12-03	158	420	2059-01-27

Implementation

- · CMA per episode
- CMA_per_episode(CMA, data, ...)

Error: undefined columns selected

Longitudinal analysis

- for time-series, (e.g., GEE), or group-based trajectory models
- CMA_sliding_window(CMA.to.apply="CMA9", data, ...)

Error: arguments imply differing number of rows: 1, 8

Dealing with Polypharmacy

- calculation of one single adherence value: Continuous Aggregated Polypharmacy Score (CAPS)
- Process with 4 components:
 - Grouping of related medication classes into treatment groups
 - Prepare data (adjust observation window, apply carryover, cover special periods, etc.)
 - Aggregate across treatment groups
 - Summarize over time

Treatment groups

- treatment-switches vs. two-drug regimens
- decide which medications can be used interchangeably
- e.g. based on ATC codes

((example visualization))

Aggregation methods

- Periods with ANY treatment available
- Periods with ALL treatments available
- Average of CMAs for individual treatments
- Average of all treatments available per intervall
- Dichotomized: CMA for individual treatments larger than cutoff

((Examples))

Function CMA_polypharmacy

((show function & example))

4. Reporting

- · describe data preparation choices
- justify choice of functions
- report any sensitivity analyses
- share the analysis code (and anonymized dataset, if possible)
- · use RMarkdown to embed code and R plots in your reports

Take home messages

- Data Preparation & Exploration are essential for meaningful estimation of adherence
- Meaningful Adherence estimation requires clear operationalization of the reported measure
- AdhereR provides functions to prepare, analyze, and visualize EHD
- · AdhereR functions are flexible, transparent, and ensure reproducibility

Practical session(s)

- interactive online-tutorial with example data (for beginners)
- commented R script to use within R Studio (for advanced R users)
- · R-Markdown document with explanations and code examples for reference