Thesis outline

Sam Rogerson

Introduction

- · Standard LHC schpiel, prospects for BSM
- · Brief: importance of SUSY, currently mostly unconstrained
- Need both experimental probing and interpretation

Theory

- SM: Brief intro, predictive power (EWPOs), problems (H: w-scattering), hierarchy problem
- BSM: Motivate via problems with SM i.e. what BSM needs to provide
- SUSY: Basic introduction to construction
- SUSY:
 - motivate R parity via proton
 - RP implies stable neutralino
 - Stable neutralino is CDM candidate
 - Motivate low mass neutralino
 - low mass neutralino implies MET
- Minimal SUSY:
 - MSSM introduction: how to we minimally get what we want from SUSY framework
- Models of SUSY: each gets rough theory treatment, and pheno: what differentiates it, why look for it, what is the "dead end" if any
 - Universal and 2 scale models: cMSSM, vcMSSM, mSUGRA
 - Non-universal models: NUHM{1,2}
 - pMSSM
 - OSET -> SMS

Exploring SUSY models

- Making use of MET signatures: alphaT
 - description
 - QCD backgroud parameterization
 - Signal model examples
 - Likelihood model (b-jet multiplicities)
 - ... (this seciton needs some discussion/input on areas to be covered)
- Results: presented in cMSSM and SMS with scaling (i.e. each of the three results so far)

Constraining models of SUSY

- Standard constraints
 - Omega h^2

def test()
myObj.method(globals(),True,None,literal, f)

(1)

$$x_{lol}^2 = \frac{\partial x}{\partial y}$$

(2)

$$x_{lol}^2 = \frac{\partial x}{\partial y}$$

Im going to reference 1

Future prospects for SUSY / BSM

Conclusion