PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-315371

(43) Date of publication of application: 06.11.1992

(51)IntCI.

HO4N 1/41 GO6F 15/66 7/133

(21)Application number: 03-082404

(71)Applicant: CANON INC

(22)Date of filing:

15.04.1991

(72)Inventor: MITA YOSHINOBU

(54) PICTURE PROCESSING METHOD AND DEVICE

(57) Abstract:

PURPOSE: To attain adjustment of picture quality in an excellent way with simple constitution by decoding a picture at the expansion of the picture after inverse quantization with a 2nd quantization coefficient whose part differs from that of a 1st quantization coefficient having a prescribed value for each spatial frequency

component.

CONSTITUTION: Three primary color data inputted to a picture compression section are converted at a color conversion section 1 and the sampled data is subject to discrete cosine transformation (DCT) for each picture element block by DCT sections 3-5. A DCT coefficient is stored in line memories 6-8, quantized by quantization sections 9-11 and its output is subject to Huffman coding at Huffman coding sections 12-14. Then a quantization coefficient matrix is prepared for guantization tables 16-18, the DCT coefficient is divided by a relevant quantization coefficient at compression and the DCT coefficient is multiplied with a relevant

quantization coefficient at expansion. When a quantization coefficient is set to the quantization sections 9-11 by the quantization tables 16-18, the coefficient is revised at coding from at decoding.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COPY

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開發母

特開平4-315371

(43)公開日 平成4年(1992)11月6日

(51) Int.Cl. ⁶		觀別配	}	介内整理番号	FI	技術表示斷所
H04N	1/41		В	8839-5C		
G06F	15/66	330	H	8420-5L		
M E O H	7/40	•		8836-5 J		
H04N	7/133		Z	8838-5C		

審査請求 米請求 請求項の数7(全 6 頁)

(21)出頭番号	冷慰平 3−82404	(71)出願人 000001007	
		キヤノン株式会	ὲ 社
(22)出顧日	平成3年(1991)4月15日	東京都大田区	丸子3丁目30番2号
		(72)発明者 三田 良信	
		東京都大田区	「丸子3丁目30番2号キヤノ
		ン株式会社内	
		(74)代理人 弁理士 丸島	做一
		·	
		1	

(54) 【発明の名称】 画像処理方法及び装置

(57)【契約】

【目的】 簡単な構成で画質の調整を良好に行うことを 目的とする。

【構成】 量子化テーブル16、17、18により量子 化部9.10、11に量子化係数をセットする際に、符 号化時と復号化時で係数の値を変更する。

(2)

特開平4-315371

【特許請求の範囲】

【請求項1】 プロック毎に画像データを空間周被数成 分に変換し、各周波数成分毎に所定の値を持つ第1の量 子化保養により量子化した結果をハフマン符号化し、固 像の伸長時において、第1の量子化係数の少なくとも一 部と依が異なる第2の量子化係数により逆量子化した後 に画像を復号化する事を特徴とする画像処理方法。

【請求項2】 前配空間周波数成分の直流成分に対応す る量子化保教の値を前記第1、第2の量子化保敷で異な ったものとすることを特徴とする競求項1記載の国保処 10 理方法。

【簡求項3】 前配空間周波数成分の交流成分に対応す る量子化係数の値を前記第1、第2の量子化係数で異な ったものとすることを特徴とする請求項1記載の画像処 理方法。

【請求項4】 画像の符号化例と復号化側は別々の整備 であって、画像圧縮データ、第1又は第2の量子化係数 は符号化側から復号化傾へ伝送される事を特徴とする請 求項1配載の画像処理方法。

被数成分の直旋成分をdとした時にα・d+βなる量子 化係数を直旋成分に、かけて逆量子化する事を特徴とす る請求項1配載の画像処理方法。

【請求項6】 施記逆量子化の際に量子化された空筒周 波数成分の交流成分を d とした時に α · d + β なる量子 化保費を交流成分に、かけて逆費子化する事を特徴とす る請求項1配載の回像処理方法。

【酵求項7】 ブロック毎に画像データを空間周波数成 分に変換し、各周波数成分毎に所定の値を持つ第1の量 号化手段と、画像の伸長時において、第1の量子化係数 の少なくとも一部と値が異なる第2の量子化係数により 逆盤子化した後に画像を復号化、復号化手段を有する事 を特徴とする画像処理方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像の圧縮・伸長及び画 質調整に関するものである。

[0002]

両像をターゲットとしていわゆるADCT(適応型能散 コサイン変換)圧縮伸長方式が提案されようとしてい る。その圧縮方式は3原色色信号をY、Cr、Cbの3 成分に変換し、色度成分のCT、CD信号を場合によっ てはサブサンプリングにより解像度を落とし、輝度成分 であるY信号はそのままの解像度で圧縮する。

【0003】圧縮の第1段階ではまずDCT変換が行わ れる。8×8回案のプロック成分はDCT変換により8 ×8の周波数成分に変換される。次に第2段階として8 ×8のサイズを有する量子化テーブルにより各DCT演 50 る事を可能としたものである。

算の結果が量子化される (除算される)。 この結果DC T輪果は、直流成分、低周波成分を除きゼロとなるもの が多くでる。第3段階として高周波成分で"ゼロ"の続 く数を利用してハフマンコード化を行う、従って第2段 階で"ゼロ"が連続するほど圧縮効率が上昇する。実際 にDCT成分を1次元に並び換える場合には、図2に示 すような順に、スキャンして1次元のデータ列にする。 これをジグザグスキャンと呼んでいる。

2

【0004】ところで画像の圧縮側(伝送側や仲長側 (受信側) において画像のコントラストの操作やエッジ の強調処理や、画像の平滑化処理を行う場合に、従来で は圧縮、伸長処理とは全く独立にコントラスト調整のた めの回路や、エッジ強調、平滑化のためのフィルタリン グ回路を殴けていた。

[0005]

【発明が解決しようとしている課題】しかしながら、上 記従来例では、圧縮、伸長の中のDCT変換が8×8画 素のプロック単位で行われ、その処理のためにラインバ ッファを必要としていた。ところが圧縮、伸長の前処理 【節求項5】 前記逆量子化の際に量子化された空間周 20 や後処理においてフィルタリングを行ってエッジ強調 や、平滑化処理を行う場合は、別に複数ライン分のパッ ファを持たねばならず、またラインパッファ以外の処理 **凹路の負担も大きかった。**

> [0006] 本発明は、かかる従来技術に鑑みてなされ たものであり、簡単な構成で、画質の胸盤を行うことが できる画像処理方法及び装置を提供することを目的とす ٥.

[0007]

【課題を解決するための手段及び作用】上記課題を解決 子化係数により量子化した結果をハフマン符号化する符 30 するため、本発明の函像処理方法は、ブロック毎に画像 データを空間周波数成分に変換し、各周波数成分毎に所 定の値を持つ第1の量子化係数により量子化した結果を ハフマン符号化し、画像の伸長時において、第1の量子 化係数の少なくとも一部と値が異なる第2の量子化係数 により逆量子化した後に画像を復号化する事を特徴とす ъ.

【0008】また、本発明の面像処理装置はプロック毎 に画像データを空間周波数成分に変換し、各周波数成分 毎に所定の値を持つ第1の量子化係数により量子化した 【従来の技術】多値関像の圧縮伸長技術として写真等の 40 結果をハフマン符号化する符号化手段と、関像の伸長時 において、第1の量子化係数の少なくとも一部と値が異 なる第2の量子化係数により逆量子化した後に函像を復 号化復号化手段を有する事を特徴とする。

[0009]

【突施例】本発明の実施例によればADCT画像圧縮、 伸長手段のDCT変換又はDCT逆変換時のDCT係数 の量子化又は逆量子化時に、量子化係数を細工する事に より、周波数空間上で、画像処理を施す事が可能とな り、ラインパッファを重複して持たないで処理を済ませ (3)

特別平4-315371

【0010】さらに、量子化テーブルを変える事により 周波数成分により、別々の処理を施す事が可能で固像処 理を施す周波数成分を制御する事が可能である。

【0011】図1は本発明を実現する具体的な実施例で ある。まず画像圧縮部に入力されたR、G、Bの3原色 データは色変換部】によりYUVに変換される。R、 G、BからYUVへの変換は以下のような1次変換マト リクスにて行われる

[0012]

[外1]

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 6 & 1 & 6 & 12 & 8 & 13 \\ 2 & 2 & 2 & 22 & 22 \\ 6 & 3 & 1 & 2 & 22 & 22 \\ 8 & 3 & 2 & 2 & 22 \\ 8 & 3 & 2 & 2 & 22 \\ 8 & 3 & 2 & 2 & 22 \\ 8 & 3 & 2 & 2 & 22 \\ 8 & 3 & 2 & 2 & 22 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 3 & 2 & 2 & 2 \\ 8 & 2 & 2 & 2 \\ 8 & 2 & 2 \\ 8 & 2 & 2 & 2 \\ 8 & 2 & 2 & 2 \\ 8 & 2 & 2 \\ 8 & 2 & 2 & 2 \\ 8 & 2 &$$

Y、U、Vは輝度成分、色度成分に相当するもので、 U、V成分は色度成分であるために、目の冗長度を考え ると解像度を落としても差し除えない、従ってサブサン プリング部2において、サブサンプリングされ、解像度 を落とされる場合もある。その場合の解像度の比はY: U:V=4:2:2の場合やY;U;V=4:1:1の されたデータ、又はサブサンプリングを行わない時のデ ータは、それぞれDCT部3、4、5により8×8の画 素ブロック毎にDCT変換される。従ってDCT部3、 4、5の内部には、ラスター順次に入る画像分パッファ リングするようメモリが内積されている。又、DCT変 換後の値を示すDCT係数を記憶する8×8サイズのパ ッファがラインメモリ6、7、8である。

【0013】図2はDCT保数の配億メモリからDCT 係数を読み出す順番を示すジグザグスキャンであって、 このジグザグスキャン順にラインメモリ6、7、8に配 憶され再びラインメモリ6、7、8から書き込まれた時 と同じ順番で融み出され量子化部9、10、11に供給 されて量子化される。量子化の段階では、8×8のDC T係数に対応して図3に示すような8×8の量子化係数 マトリクスが用意されている。圧縮動作時にはDCT係 数は対応する量子化係数により除算されるが、伸長動作 時には、対応する量子化係数により乗算される。これを 逆景子化という。実際の量子化係数マトリクスは、各色 成分毎に量子化テーブル16、17、18に用意されて いて、ラインメモリ6、7、8と同じタイミングで8× 8の同じ位置のデータが読み出される。

【0014】量子化部9、10、11の出力はハフマン 符号部12、13、14でハフマン符号化される。ここ では量子化部の出力に"ゼロ"(0)が続く場合は、ゼ ロのランレングスとその次に出現する値のコンピネーシ ョンを符号化する。又ジグザグスキャンの第1番目の項 はDCT変換における直流成分といわれ、8×8単位の 前プロックの直流成分の量子化値と注目プロックの直流 成分の量子化値との差分値がハフマン符号化される。ハ

部各プロックの各色成分毎のデータに並べられて圧縮デ ータとして送出される。

【0015】以上の動作が主に圧縮データが生成される 謀程であるが、伸長の場合は全く逆にデータが流れるだ けである。出力がパラ/シリ変換部15では各色成分解 にデータを分離してハフマン符号部12、13、14に データを減すと、ここで復号されたデータは量子化部 9、10、11で量子化テーブルの値に応じて逆量子化 される(乗算が行われる)。逆量子化された値はDCT 10 保数となりラインメモリ6、7、8にジグザグスキャン 順にセットされた後にDCT変換部3、4、5に送られ る。DCT変換部には逆変換のための係数がセットされ る事により全く同じ回路構成で逆変換が行える。 又、サ プサンプリング部2ではサブサンプリングが行われたデ 一夕に対し、データの繰り返し等による拡大処理(解像 皮変換処理)が行われる。そして最後に色変換部1によ りR、G、Bの色成分にもどされる。

【0016】本発明の本質に関する部分について、さら に詳細に説明する。図3、図4に示す8×8の係数は量 場合がある。サブサンプリング部2でサブサンプリング 20 子化テーブル16、17、18における量子化係数の例 を示している。図3 (A) は標準的な量子化係数とする と、(B) は各係数を1/2にしたもので、 [C] は (A) を2倍にしたものである。図3 (A) の量子化係 数により圧縮した場合には、圧縮データと共に〔A〕で 示す量子化係数マトリクスを画像の送信相手に送出(伝 送) する。 圧縮データの受信例では、その (A) で示す テーブルを使って画像の伸長を行えば、量子化を除き、 元の画像が再生できる。しかしながら、本発明では、伝 送倒において何えば図3〔A〕で量子化し図3〔C〕の 30 量子化係数を送信すると、受信側では〔C〕に基づき逆 ·量子化が行われるので、DCT保数の直流分、交流分は 共に2倍となり、伸長された画像はコントラストが2倍 となり、しかも各エッジが強調された関係となる。逆 に、送信側で関〔A〕の量子化係数を用い、〔B〕の畳 子化係数で伸長すれば画像の平均輝度は半分となってコ ントラストは1/2となり、各エッジも弱いものとな る。さらに受債例では量子化係数〔A〕で伸長し巡信側 で量子化係数(B)で圧縮すればコントラスト、エッジ は強調され、受信側で量子化係数〔A〕で伸長し、送信 40 倒で量子化係数 [C] で圧縮すれば、コントラスト、エ ッジは弱くなる。一般に直流成分(ジグザグスキャンの 第1番目の成分) を圧縮時の量子化係数に対し、伸長時 に大きな量子化係数を用いればコントラストは向上し、 小さい量子化係数を用いればコントラストは弱くなる。 又、その他の交流成分に関しても、圧縮時の量子化係数 に対し、伸長時に大きな量子化係数を用いればエッジは 強調され、小さい量子化係数を用いればエッジは弱くな る。交流成分は、直流成分を除く63個の要素があり、 それぞれに対して別々にエッジの強調度合を変えても構 フマン符号部12、13、14の出力がパラ/シリ変換 50 わない。又、以上に説明したように、送信側(圧縮側)

(4)

特別平4-315371

で勝手に量子化係数を操作して送るのではなく、受信側 で伸長時に受けとった量子化保数を操作(変更) する事 により、受信側の出力特性事情に合せたコントラスト間 整やエッジの強弱を制御しても構わない。

【0017】図4(D)はコントラストのみ叙御する時 の量子化係数を示すもので、直流成分に対する量子化保 数 a を操作すればコントラスト調整が行える。又図 4 (E)は、8×8の量子化係数Tij(0≤1、)≤ ?) の交流成分の内、一部の高周波成分のみを操作する で異なるように操作すれば、該当する周波数成分でのエ ッジの強弱が調整できる。

【0018】本実施例において圧縮例又は仲長側におけ る量子化テーブル16、17、18にセットする量子化 係数はCPU20によって設定される。CPUが制御す るアドレス盤、データ線は量子化テーブル16、17、 18に接続されていて、画像の圧縮時や伸長時におい て、図示しない操作パネルより指示がある等に応じて、 量子化テーブルを適当な値に設定するのである。

【0019】(他の実施例)本実施例の中で直流成分に 20 で良好な両質の調整を行うことができる。 関してコントラストの調整は図5 (F) に示すような原 面と伸長面像の関係がある。図5 (G) のような明るさ (プライトネス) 調整について以下に簡単に説明する。

【0020】圧縮時における直流成分に対する量子化デ ータをdとした時に、伸長時における逆量子化では、量 子化データをdとするとd・α+βとなるように逆量子 化を行う。この場合は逆量子化は単なる乗算ではなく、 加減算の要素が加わる。ここでαが1を越えると、コン トラストは強くなり、1より小となるとコントラストは 弱くなる。又、βが0より大きくなると明るさ(プライ 30 トネス)が向上し、0より小さくなると暗くなる。この プライトネス関盤は図5 (G) に示すように、αが一定 ならば、コントラストを保ちつつ明るさ方向へのシフト が行われる。以上のように、αとβの値を変える事によ り図5(G)に示すような機々のコントラスト、プライ トネスを持った耐像に頻整して伸長する事が可能であ

[0021] \bigcirc id $\alpha=1$, $\beta=0$ \bigcirc id $\alpha<1$, $\beta=0$

 $\Im i \alpha > 1$, $\beta = 0$ $\Im i \alpha = 1$, $\beta < 0$ $\Im i \alpha =$ 1, $\beta > 0$ $\emptyset d\alpha < 1$, $\beta < 0$ $\emptyset d\alpha > 1$, $\beta < 0$ $\otimes t \alpha < 1$, $\beta > 0$ $\otimes t \alpha > 1$, $\beta > 0$ $\forall \delta > 0$.

【0022】αは1より大小でコントラストの強弱が決 まり、βは0より大小でプライトネスでの明るさ、暗さ が決定される。又、このようなαd+βのような操作を 交流成分に加えても構わないという事は容易に軽推でき る。又、色変換部でY、U、Vに変換せずにR、G、B の成分のまま行えば、色成分毎に処理が行える。以上の 場合の例で太枠で示した中の量子化係数を圧縮、伸長時 10 様に本発明の上記実施例によれば、画像圧縮、伸長部の 量子化テーブルを操作する事によりフィルタリング処理 のためのラインパッファを重複して設ける事なく函像の エッジの強調や平滑化が可能であり、コントラストの調 整や明るさ調整も可能となる。さらにエッジの周波数に 応じて、任意の周波数成分のみ処理する事が可能で、文 字画像や中間関画像等に対して別々の処理を施す事も可 能になる。

[0023]

【発明の効果】以上の様に本発明によれば、簡単な構成

【図面の簡単な説明】

【図1】本発明の実施例を示す図。

【図2】ジグザグスキャンを説明する図。

【図3】量子化係数を示す図。

【図4】量子化係数を示す図。

【図5】コントラスト調整、ブライトネス調整を示す

【符号の説明】

- 1 色変換部
- 2 サブサンプリング部
 - 3、4、5 DCT交換部
 - 6、7、8 ラインメモリ
 - 9、10、11 量子化部
 - 12、18、14 ハフマン符号部
 - 15 パラ/シリ変換部
 - 16、17、18 量子化テーブル
 - 20 CPU

(5)

特開平4-315371

[図3]

【図4】

•	20	8	•	3,000	100)/00	100
*	8	8	100	100	180	300	100
80	60	80	100	100	~		,
80	100	8	100	-	Ξ	Н	F
100	100	130	-	-	H	I	١,
色	100	1	_			L	
18	~	į	-		ì	Ŀ	l .
100	-	_	H			Н	F

10	20	20	80	100	100	T₩	78
20	80	B	w),CDD	YOO	Σæ),D20
86	8	80	100	100	Ä	T3a	
80	(OO	8	1000	100	Ħ	Į,	
100	100	100	100	74	T.S	П	F
190	ιœ	78	Tes	The	15	П	F
χigg	ŽΦ.	Ž.	700	-	П	П	-
Tw	-				П	П	F

90 40 60 UE SEE EE EE EE 40 80 120 200 200 200 200 200 60 120 120 200 200 120 200 200 220 200 200 200 200 200 -

(6)

特関平4-315371

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

.