$$\pi^\pm$$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** 1 (1988).

π^{\pm} MASS

The most accurate charged pion mass measurements are based upon x-ray wavelength measurements for transitions in π^- -mesonic atoms. The observed line is the blend of three components, corresponding to different K-shell occupancies. JECKELMANN 94 revisits the occupancy question, with the conclusion that two sets of occupancy ratios, resulting in two different pion masses (Solutions A and B), are equally probable. We choose the higher Solution B since only this solution is consistent with a positive mass-squared for the muon neutrino, given the precise muon momentum measurements now available (DAUM 91, ASSAMAGAN 94, and ASSAMAGAN 96) for the decay of pions at rest. Earlier mass determinations with pi-mesonic atoms may have used incorrect K-shell screening corrections.

Measurements with an error of > 0.005 MeV have been omitted from this Listing.

```
VALUE (MeV)
                             DOCUMENT ID
                                                   TECN CHG COMMENT
139.57061\pm0.00024 OUR FIT Error includes scale factor of 1.6.
139.57061 ± 0.00023 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram
below.
                           <sup>1</sup> TRASSINELLI 16
139.57077 \pm 0.00018
                                                   CNTR
                                                                  X-ray transitions in pionic
                           <sup>2</sup> LENZ
139.57071 \pm 0.00053
                                             98
                                                   CNTR -
                                                                   pionic N2-atoms gas target
                           <sup>3</sup> JECKELMANN 94
139.56995 \pm 0.00035
                                                   CNTR -
                                                                   \pi^- atom, Soln. B
• • • We do not use the following data for averages, fits, limits, etc. • • •
                           <sup>4</sup> ASSAMAGAN 96
                                                   SPEC
                                                                   \pi^+ \rightarrow \mu^+ \nu_{\mu}
139.57022 \pm 0.00014
                           <sup>5</sup> JECKELMANN 94
                                                                   \pi^- atom, Soln. A
139.56782 \pm 0.00037
                                                   CNTR -
                           <sup>6</sup> DAUM
                                                                   \pi^+ \rightarrow \mu^+ \nu
139.56996 \pm 0.00067
                                                   SPEC
                           <sup>7</sup> JECKELMANN 86B
139.56752 \pm 0.00037
                                                   CNTR -
                                                                  Mesonic atoms
                           <sup>6</sup> ABELA
139.5704 \pm 0.0011
                                                   SPEC
                                                                   See DAUM 91
                           8 LU
139.5664 \pm 0.0009
                                             80
                                                   CNTR
                                                                   Mesonic atoms
139.5686 \pm 0.0020
                             CARTER
                                             76
                                                   CNTR
                                                                   Mesonic atoms
                         8,9 MARUSHEN... 76
139.5660 \pm 0.0024
                                                   CNTR -
                                                                   Mesonic atoms
```

¹ TRASSINELLI 16 use the muonic oxygen line for online energy calibration of the pionic line.

²LENZ 98 result does not suffer K-electron configuration uncertainties as does JECKEL-MANN 94.

³ JECKELMANN 94 Solution B (dominant 2-electron K-shell occupancy), chosen for consistency with positive $m_{\nu_{\mu}}^2$.

⁴ ASSAMAGAN 96 measures the μ^+ momentum p_μ in $\pi^+ \to \mu^+ \nu_\mu$ decay at rest to be 29.79200 \pm 0.00011 MeV/c. Combined with the μ^+ mass and the assumption $m_{\nu_\mu} =$ 0, this gives the π^+ mass above; if $m_{\nu_\mu} >$ 0, m_{π^+} given above is a lower limit.

Combined instead with m_{μ} and (assuming *CPT*) the π^- mass of JECKELMANN 94, p_{μ} gives an upper limit on $m_{\nu_{\mu}}$ (see the ν_{μ}).

- ⁵ JECKELMANN 94 Solution A (small 2-electron K-shell occupancy) in combination with either the DAUM 91 or ASSAMAGAN 94 pion decay muon momentum measurement yields a significantly negative $m_{\nu_{IL}}^2$. It is accordingly not used in our fits.
- 6 The DAUM 91 value includes the ABELA 84 result. The value is based on a measurement of the μ^+ momentum for π^+ decay at rest, $p_\mu=29.79179\pm0.00053$ MeV, uses $m_\mu=105.658389\pm0.000034$ MeV, and assumes that $m_{\nu_\mu}=0$. The last assumption means _that in fact the value is a lower limit.
- ⁷ JECKELMANN 86B gives $m_\pi/m_e=273.12677(71)$. We use $m_e=0.51099906(15)$ MeV from COHEN 87. The authors note that two solutions for the probability distribution of K-shell occupancy fit equally well, and use other data to choose the lower of the two possible π^\pm masses.
- ⁸ These values are scaled with a new wavelength-energy conversion factor $V\lambda=1.23984244(37)\times 10^{-6}$ eV m from COHEN 87. The LU 80 screening correction relies upon a theoretical calculation of inner-shell refilling rates.
- 9 This MARUSHENKO 76 value used at the authors' request to use the accepted set of calibration γ energies. Error increased from 0.0017 MeV to include QED calculation error of 0.0017 MeV (12 ppm).

$$m_{\pi^+}-m_{\mu^+}$$

Measurements with an error > 0.05 MeV have been omitted from this Listing.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT			
• • • We do not use th	ne following	g data for average	es, fits	, limits, etc. •	• •			
33.91157 ± 0.00067		$^{ m 1}$ DAUM	91	SPEC +	$\pi^+ ightarrow \mu^+ \nu$			
33.9111 ± 0.0011		ABELA	84	SPEC	See DAUM 91			
33.925 ± 0.025		BOOTH	70	CNTR +	Magnetic spect.			
33.881 ± 0.035	145	HYMAN	67	HEBC +	K^- He			
1 The DAUM 91 value assumes that $m_{ u_\mu}=$ 0 and uses our $m_\mu=$ 105.658389 \pm 0.000034								
MeV.		μ		·				

$$(m_{\pi^+} - m_{\pi^-}) / m_{ ext{average}}$$

A test of CPT invariance.

VALUE (units 10^{-4})	DOCUMENT	DOCUMENT ID			
2±5	AYRES	71	CNTR		

π^{\pm} MEAN LIFE

Measurements with an error $> 0.02 \times 10^{-8}$ s have been omitted.

$VALUE (10^{-8} s)$	DOCUMENT ID	TECN	CHG	COMMENT
2.6033 ±0.0005 OUR AVERAGE	Error includes so	cale factor of	1.2.	
2.60361 ± 0.00052	¹ KOPTEV			
$2.60231 \pm 0.00050 \pm 0.00084$	NUMAO	95 SPEC	+	Surface μ^+ 's
2.609 ± 0.008	DUNAITSEV	73 CNTR	+	
2.602 ± 0.004	AYRES	71 CNTR	\pm	
2.604 ± 0.005	NORDBERG	67 CNTR	+	
2.602 ± 0.004	ECKHAUSE	65 CNTR	+	
• • • We do not use the following of	data for averages,	fits, limits,	etc. ●	• •
2.640 ± 0.008	² KINSEY	66 CNTR	+	

 $^{^{1}\,\}mathrm{KOPTEV}$ 95 combines the statistical and systematic errors; the statistical error dominates.

$$(au_{\pi^+} - au_{\pi^-}) \, / \, au_{ ext{average}}$$

A test of CPT invariance.

VALUE (units 10 ⁻⁴)	DOCUMENT ID		<u>TECN</u>
5.5± 7.1	AYRES	71	CNTR
\bullet \bullet We do not use the following	data for averages	s, fits,	limits, etc. • • •
-14 ± 29	PETRUKHIN	68	CNTR
40 ± 70	BARDON	66	CNTR
23 ± 40	¹ LOBKOWICZ	66	CNTR
HTTP://PDG.LBL.GOV	Page 3		Created: 5/30/2017 17:22

nates. 2 Systematic errors in the calibration of this experiment are discussed by NORDBERG 67.

π ELECTRIC POLARIZABILITY $lpha_\pi$

See HOLSTEIN 14 for a general review on hadron polarizability.

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

	Mode	Fraction (Γ_i/Γ)			Confidence	e level
$\overline{\Gamma_1}$	$\mu^+ u_{\mu}$	[a]	(99.9877	0±0.0000)4) %	
Γ_2	$\mu^{\dot{+}} u_{\mu}\gamma$	[<i>b</i>]	(2.00	±0.25	$) \times 10^{-4}$	
Γ ₃	$e^+ \nu_e$				$) \times 10^{-4}$	
Γ_4	$e^+ u_e\gamma$	[<i>b</i>]	(7.39	±0.05	$) \times 10^{-7}$	
Γ_5	$e^+ u_e \pi^0$		(1.036	±0.006	$) \times 10^{-8}$	
Γ_6	$e^+ u_e e^+ e^-$		(3.2	±0.5	$) \times 10^{-9}$	
Γ_7	$e^+ \nu_e \nu \overline{\nu}$		< 5		\times 10 ⁻⁶	90%

Lepton Family number (LF) or Lepton number (L) violating modes

- [a] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [b] See the Particle Listings below for the energy limits used in this measurement; low-energy γ 's are not included.
- [c] Derived from an analysis of neutrino-oscillation experiments.

¹This is the most conservative value given by LOBKOWICZ 66.

value is derived assuming $\alpha_{\pi} = \beta_{\pi}$.

π^+ BRANCHING RATIOS

 $\Gamma(e^+\nu_e)/\Gamma_{\text{total}}$ Γ_3/Γ

See note [a] in the list of π^+ decay modes just above, and see also the next block of data. See also the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

VALUE (units 10^{-4})

1.230±0.004 OUR EVALUATION

$\left[\Gamma(e^+\nu_e) + \Gamma(e^+\nu_e\gamma)\right] / \left[\Gamma(\mu^+\nu_\mu) + \Gamma(\mu^+\nu_\mu\gamma)\right] \qquad (\Gamma_3 + \Gamma_4) / (\Gamma_1 + \Gamma_2)$

See note [a] in the list of π^+ decay modes above. See NUMAO 92 for a discussion of e- μ universality. See also the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1.2327±0.0023 OUR AV	ERAGE				
$1.2344 \pm 0.0023 \pm 0.0019$	400k	AGUILAR-AR.	15	CNTR +	Stopping π^+
$1.2346 \pm 0.0035 \pm 0.0036$	120k	CZAPEK	93	CALO	Stopping π^+
$1.2265 \pm 0.0034 \pm 0.0044$	190k	BRITTON	92	CNTR	Stopping π^+
1.218 ± 0.014	32k	BRYMAN	86	CNTR	Stopping π^+
● ● We do not use the	following d	ata for averages,	fits,	limits, etc. ● ●	•
$\begin{array}{ccc} 1.273 & \pm 0.028 \\ 1.21 & \pm 0.07 \end{array}$	11k	¹ DICAPUA ANDERSON	64 60	CNTR SPEC	

¹ DICAPUA 64 has been updated using the current mean life.

 $\Gamma(\mu^+
u_\mu\gamma)/\Gamma_{ ext{total}}$ Γ_2/Γ

Note that measurements here do not cover the full kinematic range.

<i>VALUE</i> (units 10^{-4})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$2.0 \pm 0.24 \pm 0.08$	1	BRESSI	98	CALO	+	Stopping π^+
ullet $ullet$ $ullet$ We do not use	the followin	g data for avera	ges, fi	ts, limits	s, etc.	• • •
1.24 ± 0.25	26	CASTAGNOLI	58	EMUL		${\sf KE}_{\mu}$ $<$ 3.38 MeV

 $^{^1}$ BRESSI 98 result is given for $E_{\gamma} > 1$ MeV only. Result agrees with QED expectation, 2.283×10^{-4} and does not confirm discrepancy of earlier experiment CASTAGNOLI 58.

 $\Gamma(e^+\nu_e\gamma)/\Gamma_{ ext{total}}$ The very different values reflect the very different kinematic ranges covered (bigger

The very different values reflect the very different kinematic ranges covered (bigger range, bigger value). And none of them covers the whole kinematic range.

VALUE (units 10 ^{-o})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
73.86 ± 0.54	65k	$^{ m 1}$ BYCHKOV	09	PIBE	$e^+ u\gamma$ at rest
\bullet \bullet We do not use the	e following	g data for averages	s, fits,	limits, e	etc. • • •
16.1 ± 2.3		² BOLOTOV	90 B	SPEC	17 GeV $\pi^- \rightarrow e^- \overline{\nu}_e \gamma$
5.6 ± 0.7	226	³ STETZ			$P_e > 56 \text{ MeV}/c$
3.0	143	DEPOMMIER	63 B	CNTR	$(KE)_{e^+\gamma} > 48 \text{ MeV}$

 $^{^{1}\,\}mathrm{This}$ BYCHKOV 09 value is for $E_{\gamma}>$ 10 MeV and $\Theta_{e^{+}\,\gamma}>$ 40°.

 $^{^2}$ BOLOTOV 90B is for $E_{\gamma} > 21$ MeV, $E_e > 70 - 0.8 E_{\gamma}$.

 $^{^3}$ STETZ 78 is for an $e^-\gamma$ opening angle $> 132^\circ$. Obtains 3.7 when using same cutoffs as DEPOMMIER 63B.

Г	(e ⁺	ν_{-}	π^0) / [- total
- 1		- e		,,-	totai

 Γ_5/Γ

VALUE (units 10^{-8})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.036 ± 0.006 OUR	AVERA	GE				
1.036 ± 0.006	64k			PIBE	+	π decay at rest
1.026 ± 0.039	1224	³ MCFARLANE 8	35 (CNTR	+	Decay in flight
$1.00 \begin{array}{c} +0.08 \\ -0.10 \end{array}$	332	DEPOMMIER 6	8 (CNTR	+	
1.07 ± 0.21	38	⁴ BACASTOW 6	55 (OSPK	+	
1.10 ± 0.26		⁴ BERTRAM 6	55 (OSPK	+	
1.1 ± 0.2	43	⁴ DUNAITSEV 6	5 (CNTR	+	
0.97 ± 0.20	36	⁴ BARTLETT 6	64 (OSPK	+	

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1.15 ± 0.22

⁴ DEPOMMIER 63 CNTR + See DEPOMMIER 68

 $\Gamma(e^+\nu_e\,e^+e^-)/\Gamma(\mu^+\nu_\mu)$

 Γ_6/Γ_1

$VALUE$ (units 10^{-9})	CL% EVTS	DOCUMENT ID	TECN	COMMENT
3.2 ±0.5 ±0.2	98	EGLI 8	SPEC	Uses R _{PCAC} = 0.068 ± 0.004

• We do not use the following data for averages, fits, limits, etc. •

0.46 ± 0.16	± 0.07	7	¹ BARANOV	92	SPEC	Stopped π^+
< 4.8	90		KORENCHE	76 B	SPEC	
<34	90		KORENCHE	71	OSPK	

¹This measurement by BARANOV 92 is of the structure-dependent part of the decay. The value depends on values assumed for ratios of form factors.

$\Gamma(e^+\nu_e\nu\overline{\nu})/\Gamma_{\rm total}$

 Γ_7/Γ

 $\Gamma(\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$

 Γ_8/Γ

Created: 5/30/2017 17:22

Forbidden by total lepton number conservation. See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

 $^{^1}$ POCANIC 04 normalizes to $e^+\,\nu_e$ decays, using the PDG 2004 value B($\pi^+\to~e^+\,\nu_e$) = (1.230 \pm 0.004) \times 10 $^{-4}$. We add their statistical (0.004 \times 10 $^{-8}$), systematic (0.004 \times 10 $^{-8}$) and systematic error due to the uncertainty of B($\pi^+\to~e^+\nu_e$) (0.003 \times 10 $^{-8}$)

²This result can be used to calculate V_{ud} from pion beta decay: $V_{ud}^{PIBETA} =$ 0.9728 \pm

 $^{^3}$ MCFARLANE 85 combines a measured rate (0.394 \pm 0.015)/s with 1982 PDG mean

⁴ DEPOMMIER 68 says the result of DEPOMMIER 63 is at least 10% too large because of a systematic error in the π^0 detection efficiency, and that this may be true of all the previous measurements (also V. Soergel, private communication, 1972).

 $^{^1}$ COOPER 82 limit on $\overline{
u}_e$ observation is here interpreted as a limit on lepton number violation.

 $\Gamma(\mu^+\nu_e)/\Gamma_{
m total}$ Forbidden by lepton family number conservation. Γ_9/Γ

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<8.0	90	¹ COOPER	82	HLBC	Wideband $ u$ beam

 $^{^{1}}$ COOPER 82 limit on u_{e} observation is here interpreted as a limit on lepton family number violation.

 $\Gamma(\mu^-e^+e^+\nu)/\Gamma_{\text{total}}$ Forbidden by lepton family number conservation. Γ_{10}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	CHG	
<1.6	90	BARANOV	91 B	SPEC	+	
• • • We do not use the	following o	lata for averages	, fits,	limits, e	etc. • •	• •
<7.7	90	KORENCHE	87	SPEC	+	

π^+ — POLARIZATION OF EMITTED μ^+

$\pi^+ \rightarrow \mu^+ \nu$

Tests the Lorentz structure of leptonic charged weak interactions.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. •	• •
<(-0.9959)	90	¹ FETSCHER	84	RVUE	+	
-0.99 ± 0.16		² ABELA	83	SPEC	_	μ X-rays
1				20		

¹ FETSCHER 84 uses only the measurement of CARR 83.

A REVIEW GOES HERE - Check our WWW List of Reviews

π^{\pm} FORM FACTORS

F_V , VECTOR FORM FACTOR

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.0254±0.0017 OUR	AVERAGE				
$0.0258 \!\pm\! 0.0017$	65k	$^{ m 1}$ BYCHKOV	09	PIBE	$e^+ u\gamma$ at rest
$0.014\ \pm0.009$		² BOLOTOV	90 B	SPEC	17 GeV $\pi^- \rightarrow e^- \overline{\nu}_e \gamma$
$0.023 \begin{array}{l} +0.015 \\ -0.013 \end{array}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$

 $^{^1}$ The BYCHKOV 09 F_A and F_V results are highly (anti-)correlated: $F_A+1.0286$ $F_V=0.03853\pm0.00014.$ 2 BOLOTOV 90B only determines the absolute value.

F_A , AXIAL-VECTOR FORM FACTOR

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.0119 ± 0.0001	65k	^{1,2} BYCHKOV	09	PIBE	$e^+ u\gamma$ at rest
• • • We do not use t	ne follow	ing data for averages	s, fits,	limits,	etc. • • •
0.0115 ± 0.0004	41k	^{1,3} FRLEZ	04	PIBE	$\pi^+ ightarrow \ e^+ u \gamma$ at rest
0.0106 ± 0.0060		^{1,4} BOLOTOV	90 B	SPEC	17 GeV $\pi^- \rightarrow e^- \overline{\nu}_e \gamma$
$0.021 \begin{array}{l} +0.011 \\ -0.013 \end{array}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$
$0.0135\!\pm\!0.0016$		^{1,4} BAY			$\pi^+ \rightarrow e^+ \nu \gamma$
0.006 ± 0.003		^{1,4} PIILONEN			$\pi^+ \rightarrow e^+ \nu \gamma$
0.011 ± 0.003		^{1,4,5} STETZ	78	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$

HTTP://PDG.LBL.GOV

Page 7

²Sign of measurement reversed in ABELA 83 to compare with μ^+ measurements.

VECTOR FORM FACTOR SLOPE PARAMETER a

This is a in $F_V(q^2) = F_V(0) (1 + a q^2)$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.10 ± 0.06	65k	BYCHKOV	09	PIBE	$e^+ u\gamma$ at rest

R. SECOND AXIAL-VECTOR FORM FACTOR

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.059 ^{f +0.009}_{-0.008}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$

π^{\pm} CHARGE RADIUS

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.672±0.008 OUR AVERAGE	Error includes scale	factor	of 1.7.	See the ideogram below.
$0.65 \pm 0.05 \pm 0.06$	ESCHRICH	01	CNTR	$\pi e ightarrow \pi e$
0.740 ± 0.031	LIESENFELD	99	CNTR	$ep \rightarrow e\pi^+ n$
0.663 ± 0.006	AMENDOLIA	86	CNTR	$\pi e ightarrow \pi e$
0.663 ± 0.023	DALLY	82	CNTR	$\pi e ightarrow \pi e$
$0.711 \pm 0.009 \pm 0.016$	BEBEK	78		$eN \rightarrow e\pi N$
$0.678 \pm 0.004 \pm 0.008$	QUENZER	78	CNTR	$e^+e^- ightarrow \pi^+\pi^-$
ullet $ullet$ We do not use the follow	ing data for averages	, fits,	limits, e	etc. • • •
0.661 ± 0.012	¹ BIJNENS	98	CNTR	χ PT extraction
0.660 ± 0.024	AMENDOLIA	84	CNTR	$\pie ightarrow\pie$
$0.78 \begin{array}{l} +0.09 \\ -0.10 \end{array}$	ADYLOV	77	CNTR	$\pie o \pie$
$0.74 \begin{array}{c} +0.11 \\ -0.13 \end{array}$	BARDIN	77	CNTR	$ep ightarrow e\pi^+ n$
0.56 ± 0.04	DALLY	77	CNTR	$\pi e ightarrow \pi e$

¹ BIJNENS 98 fits existing data.

 $^{^{1}}$ These values come from fixing the vector form factor at the CVC prediction, $F_{V}=$

^{0.0259} \pm 0.0005. ² When F_V is released, the BYCHKOV 09 F_A is 0.0117 \pm 0.0017, and F_A and F_V results are highly (anti-)correlated: F_A + 1.0286 F_V = 0.03853 \pm 0.00014.

 $^{^3}$ The sign of $\gamma = F_A \ / F_V$ is determined to be positive. 4 Only the absolute value of F_A is determined.

⁵ The result of STETZ 78 has a two-fold ambiguity. We take the solution compatible with later determinations.

π^{\pm} REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters ${\bf B204}$ 1 (1988).

TRASSINELLI	16	PL B759 583	M. Trassinelli <i>et al</i> .	
ADOLPH	15A	PRL 114 062002	C. Adolph <i>et al.</i>	(COMPASS Collab.)
AGUILAR-AR	15	PRL 115 071801	A.A. Aguilar-Arevalo <i>et al.</i>	` (PiENu Collab.)
HOLSTEIN	14	ARNPS 64 51	B. Holstein, S. Scherer	(MASA, MANZ)
BYCHKOV	09	PRL 103 051802	M. Bychkov et al.	(PSI PIBETA Collab.)
FRLEZ	04	PRL 93 181804	E. Frlez <i>et al.</i>	(PSI PIBETA Collab.)
POCANIC	04	PRL 93 181803	D. Pocanic et al.	(PSI PIBETA Collab.)
ESCHRICH	01	PL B522 233	I. Eschrich et al.	(FNAL SELEX Collab.)
LIESENFELD	99	PL B468 20	A. Liesenfeld et al.	,
BIJNENS	98	JHEP 9805 014	J. Bijnens <i>et al.</i>	
BRESSI	98	NP B513 555	G. Bressi et al.	
LENZ	98	PL B416 50	S. Lenz <i>et al.</i>	
ASSAMAGAN	96	PR D53 6065	K.A. Assamagan et al.	(PSI, ZURI, VILL+)
KOPTEV	95	JETPL 61 877	V.P. Koptev <i>et al.</i>	(PNPI)
		Translated from ZETFP 63		
NUMAO	95	PR D52 4855	T. Numao <i>et al.</i>	(TRIU, BRCO)
ASSAMAGAN	94	PL B335 231	K.A. Assamagan et al.	(PSI, ZURI, VILL+)
JECKELMANN	94	PL B335 326	B. Jeckelmann, P.F.A. Goudsmit,	H.J. Leisi (WABRN+)
CZAPEK	93	PRL 70 17	G. Czapek <i>et al.</i>	(BERN, VILL)
BARANOV	92	SJNP 55 1644	V.A. Baranov et al.	(JINR)
		Translated from YAF 55 29	940.	` ,
BRITTON	92	PRL 68 3000	D.I. Britton et al.	(TRIU, CARL)
Also		PR D49 28	D.I. Britton et al.	(TRIU, CARL)
NUMAO	92	MPL A7 3357	T. Numao	(TRIU)
BARANOV	91B	SJNP 54 790	V.A. Baranov et al.	(JINR)
		Translated from YAF 54 13	298.	` ,

DAUM BOLOTOV EGLI Also PDG PICCIOTTO COHEN KORENCHE	91 90B 89 88 88 87 87	PL B265 425 PL B243 308 PL B222 533 PL B175 97 PL B204 1 PR D37 1131 RMP 59 1121 SJNP 46 192 Translated from YAF 46 3	M. Daum et al. V.N. Bolotov et al. S. Egli et al. S. Egli et al. G.P. Yost et al. C.E. Picciotto et al. E.R. Cohen, B.N. Taylor S.M. Korenchenko et al.	(VILL) (INRM) (SINDRUM Collab.) (AACH3, ETH, SIN, ZURI) (LBL+) (TRIU, CNRC) (RISC, NBS) (JINR)
AMENDOLIA BAY BRYMAN Also JECKELMANN Also PIILONEN MCFARLANE ABELA	86 86 86 86B 86 85 84	NP B277 168 PL B174 445 PR D33 1211 PRL 50 7 NP A457 709 PRL 56 1444 PRL 57 1402 PR D32 547 PL 146B 431	S.R. Amendolia et al. A. Bay et al. D.A. Bryman et al. D.A. Bryman et al. B. Jeckelmann et al. B. Jeckelmann et al. L.E. Piilonen et al. W.K. McFarlane et al. R. Abela et al.	(CERN NA7 Collab.) (LAUS, ZURI) (TRIU, CNRC) (TRIU, CNRC) (ETH, FRIB) (ETH, FRIB) (LANL, TEMP, CHIC) (SIN)
Also Also AMENDOLIA FETSCHER ABELA CARR COOPER DALLY LU	84 84 83 83 82 82 82	PL 74B 126 PR D20 2692 PL 146B 116 PL 140B 117 NP A395 413 PRL 51 627 PL 112B 97 PRL 48 375 PRL 48 1066	M. Daum et al. M. Daum et al. S.R. Amendolia et al. W. Fetscher R. Abela et al. J. Carr et al. A.M. Cooper et al. E.B. Dally et al. D.C. Lu et al.	(SIN) (SIN) (SIN) (CERN NA7 Collab.) (ETH) (BASL, KARLK, KARLE) (LBL, NWES, TRIU) (RL) (YALE, COLU, JHU)
BEBEK QUENZER STETZ ADYLOV BARDIN DALLY CARTER KORENCHE	78 78 78 77 77 77 77 76 76B	PR D17 1693 PL 76B 512 NP B138 285 NP B128 461 NP B120 45 PRL 39 1176 PRL 37 1380 JETP 44 35	C.J. Bebek et al. A. Quenzer et al. A.W. Stetz et al. G.T. Adylov et al. G. Bardin et al. E.B. Dally et al. A.L. Carter et al. S.M. Korenchenko et al.	(LALO) (LBL, UCLA) (CARL, CNRC, CHIC+) (JINR)
MARUSHEN Also Also DUNAITSEV	76 73	Translated from ZETF 71 JETPL 23 72 Translated from ZETFP 2: Private Comm. Private Comm. SJNP 16 292	V.I. Marushenko <i>et al.</i> 3 80. R.E. Shafer A. Smirnov A.F. Dunaitsev <i>et al.</i>	(PNPI) (FNAL) (PNPI) (SERP)
AYRES Also Also Also Also KORENCHE	71 71	Translated from YAF 16 5: PR D3 1051 PR 157 1288 PRL 21 261 Thesis UCRL 18369 PRL 23 1267 SJNP 13 189	D.S. Ayres et al. D.S. Ayres et al. D.S. Ayres et al. D.S. Ayres et al. D.S. Ayres A.J. Greenberg et al. S.M. Korenchenko et al.	(LRL, UCSB) (LRL) (LRL, UCSB) (LRL) (LRL, UCSB) (JINR)
BOOTH DEPOMMIER PETRUKHIN HYMAN NORDBERG BARDON KINSEY LOBKOWICZ BACASTOW BERTRAM DUNAITSEV	70 68 68 67 67 66 66 66 65 65	Translated from YAF 13 3: PL 32B 723 NP B4 189 JINR P1 3862 PL 25B 376 PL 24B 594 PRL 16 775 PR 144 1132 PRL 17 548 PR 139 B407 PR 139 B617 JETP 20 58	39. P.S.L. Booth et al. P. Depommier et al. V.I. Petrukhin et al. L.G. Hyman et al. M.E. Nordberg, F. Lobkowicz, M. Bardon et al. K.F. Kinsey, F. Lobkowicz, M.E F. Lobkowicz et al. R.B. Bacastow et al. W.K. Bertram et al. A.F. Dunaitsev et al.	(LIVP) (CERN) (JINR) (JINR) (ANL, CMU, NWES) R.L. Burman (ROCH) (COLU)
ECKHAUSE BARTLETT DICAPUA Also DEPOMMIER DEPOMMIER ANDERSON CASTAGNOLI	65 64 64 63 63B 60 58	Translated from ZETF 47 PL 19 348 PR 136 B1452 PR 133 B1333 Private Comm. PL 5 61 PL 7 285 PR 119 2050 PR 112 1779	84. M. Eckhause et al. D. Bartlett et al. M. di Capua et al. L. Pondrom P. Depommier et al. P. Depommier et al. H.L. Anderson et al. C. Castagnoli, M. Muchnik	(WILL) (COLU) (COLU) (WISC) (CERN) (CERN) (EFI) (ROMA)