1 이산규득분포

2. 이항분포

3. 기計是至

나. 음이항분포

5. 平叶文学玉

6 圣川孙毕至

7 다 핫 분 포

■ 음이항 분포

Definition

성공할 확률이 p인 베르누이 시행을 독립적으로 계속 반 복하는 확률실험에서 확률변수 *X*를

X='r번째 성공이 일어날 때까지의 시행 횟수' 로 정의하면, X의 치역공간은 $R_x = \{r, r+1, \dots\}$ 이고 X의 확률질량함수는

$$f_X(x)\!=\!\!\left\{\begin{array}{l} \binom{x-1}{r-1}p^rq^{n-r}\;, & x\!=\!r,r\!+\!1,\cdots\\ 0 & , & \text{otherwise} \end{array}\right.$$

이다.

이와 같은 확률질량함수를 갖는 확률변수 X의 확률분포를 모수가 r, p인 음이항분포(negative binomial distribution) 라 하고, 기호로 $X \sim NB(r,p)$ 로 나타낸다. 만약 r=1이면, NB(1,p)=G(p)이다.

참고 x-1번 중에 r-1번 성공 x번째성공 확률

$$\binom{x-1}{r-1}q^{x-r}p^r$$

참고 이항급수(binomial series)

모든 실수
$$r \in \mathbb{R}$$
 에 대하여, $|x| < 1$ 일 때 $(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n$ 이다.

①
$$(1+x)^{-r} = 1 + (-r)x + \frac{(-r)(-r-1)}{2!}x^2 + \frac{(-r)(-r-1)(-r-2)}{3!}x^3 + \cdots$$

$$= 1 - rx + \frac{r(r+1)}{2!}x^2 + \frac{r(r+1)(r+2)}{3!}x^3 + \cdots$$

$$= m_{X_1}(t) \cdot m_{X_r}(t) \cdots m_{X_r}(t) = \left(\frac{pe^t}{|-qe^t|}\right)^r$$

$$X_{\bar{\iota}} : (x_1)$$

주사위를 던지는 게임에서 1 또는 2의 눈이 나오면 성공이라 한다. 세 번째 성공이 있기까지 주사위를 반복하여던진 횟수를 확률변수 X라 할 때, 다음을 구하여라.

(2) X의 <u>평</u>균과 분산,

(sol) (1) 주사위를 던져서 1 또는 2의 눈이 나올 확률은 (1/3)이므로,

$$f_X(x) = \begin{cases} x - 1 \\ 2 \end{cases} (\frac{1}{3})^3 (\frac{2}{3})^{(\frac{2}{3})}, \quad x = 3, 4, 5, \cdots$$

$$0 \quad \text{otherwise}$$

이다.

$$(2) p = \frac{1}{3}, q = 1 - p = \frac{2}{3}, r = 3$$

$$\mu_{X} = \frac{r}{p} = 9, \sigma_{X}^{2} = \frac{rq}{p^{2}} = 18$$

$$(3) P(X = 5) = f_{X}(5) = \frac{5}{2}(1)(\frac{1}{3})^{3}(\frac{2}{3})^{5-3} = \frac{8}{81}$$

$$\binom{4}{\nu} = \frac{\psi \cdot 3}{\nu \cdot 1} = 6$$

Rx= 43.4.5.6.3

- 이산균등분포
- 2. 이항분포
- 기하분포
- 음이항분포 4.
- 푸아송분포
- **圣**川 孙 부 포
- 다항분포 7.

ななながずーの §4.5 [바위시간이나 한정된 F간에서 발생하는 사건의 수에 관견 된 확률모형

<u>Definition</u> TOBEL .

대하여 확률변수 X의

양수
$$m$$
에 대하여 확률변수 x 의 확률질량함수가 $f_X(x) = \begin{cases} \frac{m^x}{x!}e^{-m}, & x = 0, 1, 2, \cdots \\ 0, & \text{otherwise} \end{cases}$

이면, X는 모수가 m인 푸아송분포(Poisson distribution) 라 하고, 기호로 $X \sim Poisson(m)$ 으로 나타낸다.

참고(1) 이항분포에서 p가 매우 작고 n이 크면 $(p \rightarrow 0, n \rightarrow \infty)$, 푸아송분포에 근사시켜 계산한다. 실제 많은 문제에서 $np \le 5$, $n \ge 20$ 인 경우에 적용된다.

$$f_X(x)\!=\!\!\left\{\begin{array}{l} \frac{m^x}{x!}\,e^{-m}\,,\;\;x\!=\!0\,,\!1\,,\!2\,,\!\cdots\\ 0 \qquad ,\;\;\text{otherwise} \end{array}\right.$$

[참고](1) 이항분포에서 p가 매우 작고 n이 크면 $(p \rightarrow 0, n \rightarrow \infty)$, 푸아송분포에 근사시켜 계산한다.

부어용군모에 근자시켜 계산한다.
실제 많은 문제에서
$$np \le 5$$
, $n \ge 20$ 인 경우에 적용된다.

$$(:: (X) B(n,p)$$
일 때, $m = np$ 라하자.

$$(\cdot \cdot \cdot (\times) B(n,p) 일 때, m = np 라 하자.$$
 $(\cdot \cdot (\times) B(n,p) 일 때, m = np 라 하자.$ $(\cdot \cdot (\times) B(n,p)) = (n) p (1-p) n-x$

$$\frac{1}{\sqrt{n-x}!x!} \left(\frac{m}{\sqrt{n-x}} \right)^{x} \left(1 - \frac{m}{\sqrt{n}} \right)^{n-(x)}$$

$$= \frac{n(n-1)\cdots(n-x+1)}{\sqrt{n-x}} \left(1 - \frac{m}{\sqrt{n}} \right)^{n-(x)}$$

$$= \frac{n(n-1)\cdots(n-x+1)}{\sqrt{n-x}} \left(1 - \frac{m}{\sqrt{n}} \right)^{n-(x)}$$

(2)
$$\sum_{x \in R_X} f_X(x) = \sum_{x=0}^{\infty} \frac{m^x}{x!} e^{-m} = e^{-m} \sum_{x=0}^{\infty} \frac{m^x}{x!} = e^{-m} e^m = 1$$

<u>Theorem</u>

 $X \sim Poisson(m)$ 이면, 다음이 성립한다.

- (1) E[X] = m
- (2) Var[X] = m

(3)
$$m_X(t) = e^{-m(1-e^t)}$$

(proof)

$$(1) E[X] = \sum_{x \in R_X} x f_X(x) = \sum_{x=0}^{\infty} x \frac{m^x}{x!} e^{-m} = \sum_{x=1}^{\infty} x \frac{m^x}{x!} e^{-m}$$

$$\sum_{x=1}^{\infty} \frac{m^{x-1}}{(x-1)!} = m e^{-m} \sum_{x=0}^{\infty} \frac{m^{x-1}}{x!} = m e^{-m} \sum_{x=0}^{\infty} \frac{m^{x}}{x!} = m e^{-m} e^{m} = m$$

<u>Theorem</u>

X Poisson(m)이면, 다음이 성립한다.

(1)
$$E[X] = m$$

$$(2) Var[X] = m$$

(3)
$$m_X(t) = e^{-m(1-e^t)}$$

$$(v) \underbrace{E[X^{2}]}_{x} = \sum_{x \in \mathbb{Z}_{3}} x^{2} f_{X}(x) = \sum_{x \in \mathbb{Q}} x^{2} \frac{m^{x}}{x!} e^{-m} = \sum_{x \in \mathbb{Q}} x^{2} \frac{m^{x}}{x!} e^{-m}$$

$$= \sum_{x \in \mathbb{Q}} x \frac{m^{2}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}} x^{2} \frac{m^{x}}{x!} e^{-m} = \sum_{x \in \mathbb{Q}} (x+1) \frac{m^{x}}{x!} e^{-m}$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

$$= m \left(\sum_{x \in \mathbb{Q}_{3}} x \frac{m^{x}}{x!} e^{-m} + \sum_{x \in \mathbb{Q}_{3}} \frac{m^{x}}{x!} e^{-m} \right) = m^{2} + m$$

평균 $m \neq 1.5$ 인 푸아송 확률변수 X에 대하여 다음을 구하여라.

- (1) P(X=1)
- (2) $P(X \le 2)$
- (3) $P(X \ge 3)$ (sol)

 $X \sim Poisson$ (1.5)이므로, (X)의 확률질량할수는

$$f_X(\underline{x}) = \underbrace{\frac{1.5^x}{x!}}_{x!} e^{-\frac{1.5}{x}}, \underline{x} = 0, 1, 2, \cdots$$

 $f_{X}(\underline{x}) = \frac{1.5^{x}}{x!} e^{-1.5}, \ \underline{x} = 0.1.2, \cdots$ orth. $p(x \le 1) - p(x \le 0) = 0.558 - 0.22 = 0.335$ (1) $P(X = 1) = f_{X}(\underline{1}) = \frac{1.5^{1}}{1!} e^{-1.5} = 0.3347$

- (2) $P(X \le 2) = f_X(0) + f_X(1) + f_X(2)$

(3)
$$P(X \ge 3) = 1 + P(X < 3) = |-P(X \le 2) = |-0.869 = 0.99$$

 $= 1 - \{f_X(0) + f_X(1) + f_X(2)\}$
 $= 1 - \{f_X(0) + f_X(1) + f_X(2)\}$

세 쌍둥이가 탄생할 확률일 0.0001이라 할 때, 10000명 의 산모 중에서 적어도 4명 이상이 세 쌍둥이를 낳았을 m = np = (0000 - 0.000) = 1 확률을 구하여라.

$$W = Vb = |a_{a_0} \cdot a_{a_0}| = 1$$

(sol)

H @. Poisson (1)

세까당을 쌓는 산모의 수를 X라 하면, (X)는 $B(1\underline{0000}, 0.0001)$ 이므로,

$$P(X \ge 4) = \sum_{x=4}^{\infty} (10000) (0.0001)^x (0.9999)^{10000-x}$$

이다.

> Allo (other (n > 0)

0.368

0.736

0.920

0.996

0.999

1.000

1.000

1.50

0.223

0.5580.809

0.934

0.981

0.996

0.999

1.000

n=10000, p=0.0001이므로, m=np=1이고

$$X \approx Poisson(1)$$

이다.

$$(:.) P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.981 = 0.019$$

时对答言 死亡

Example 2

어떤 공정라인에서 생산된 제품의 불량률은 0.05이다. 이 공정라인에서 생산된 제품 20개를 임의로 선정했을 때, 다음을 구하여라.

- (1) 불량품이 하나일 확률
- (2) 푸아송분포에 의한 (1)의 근사확률 (sol)
- (1) 불량품의 수를 X라 하면, $X \sim B(20,0.05)$ 이다. $P(X=1)=P(X \le 1)-P(X < 1)$ =0.7358-0.3585=0.3773
- (2) n=20, p=0.05이므로, m=np=1이고 $X \approx Poisson(1)$

이다.

$$n=20,\ p=0.05$$
이므로, $m=np=1$ 이고
$$X\approx Poisson(1)$$

$$(:.) $P(X=1)\approx P(X\leq 1)-P(X=0)=0.736-0.368=0.368$$$

 μ

1.500.223

0.558

0.809

0.934

0.981

0.996

0.999

1.000

1.00

0.368

0.736

0.920

PG. (PG)

Remark

어떤 단위 시간이나 길이나 또는 공간을 나타내는 단위 구간 안에서 특정한 사건이 일어나는 비율이 λ 라면, 길이가 t인 구간 동안에 그 사건이 일어나는 평균적인 횟 수는 $m=\lambda t$ 라고 할 수 있다.

길이가 t인 구간 동안 일어나는 특정한 사건의 횟수 X(t) (또는 $X_{(a,a+t)}$)는 모수 $m=\lambda t$ 인 푸아송분포에 따른다.

$$\underbrace{P(X(t)=x)} = \underbrace{\left(\frac{(\lambda t)^x}{x!}e^{-\lambda t}\right)} x = 0, 1, 2, \dots$$

참고 예 푸아송가정

- ① 비집락성 : $P(X_{(t,t+\Delta t)} \ge 2) = 0$ 충분히 작은 시간 Δt 에서 사건은 최대 1건만 발생한다.
- ② 비례성 : $P(X_{(a,a+\Delta t)}=1)=\lambda \Delta t$ 충분히 작은 시간에서 한 사건이 발생할 가능성은 존재하고, 그 크기는 시간 Δt 에 비례한다.
- ③ 독립성 : $a \le b \le c \le d$ 일 때, $P(X_{(a,b)} = k \mid X_{(c,d)} = h) = P(X_{(a,b)} = k)$ 중복되지 않는 시간에서 일어나는 사건은 서로 독립이다 동일한 크기의 시간에서 관찰된 횟수는 동일한 분포를 따른다.

Remark 일정한 단위시간이나 한정된 공간에서 발생하는 사건의 수에 관련된 확률모형

어떤 단위 시간이나 길이나 또는 공간을 나타내는 단위 구간 안에서 특정한 사건이 일어나는 비율이 λ 라면, 길이가 t인 구간 동안에 그 사건이 일어나는 평균적인 횟 수는 $m=\lambda t$ 라고 할 수 있다.

$$P(X(t)=x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}, x=0,1,2,\dots$$

(proof)

 $\Rightarrow p_x(t) = e^{-\lambda t} \left(\int e^{\lambda t} \lambda p_{x-1}(t) dt + c_x \right)$

$$\begin{split} P(X(t) = x) &= P(X_{(a,a+t)} = x) = p_x(t) \text{ 한 하자}. \\ P(X_{(0,t+\Delta t)} = x) &= P(\text{시간}(0,t) \text{ 에서 } x \text{ 번, } \text{시간}(t,t+\Delta t) \text{ 에서 } 0 \text{ 번}) \\ &\quad + P(\text{시간}(0,t) \text{ 에서 } x - 1 \text{ 번, } \text{시간}(t,t+\Delta t) \text{ 에서 } 1 \text{ ป}) \\ &\quad + P(\text{시간}(0,t) \text{ 에서 } x - 2 \text{ U, } \text{ 시간}(t,t+\Delta t) \text{ 에서 } 2 \text{ U}) \\ &\quad + \cdots \\ &\quad + P(\text{N간}(0,t) \text{ 에서 } 0 \text{ U, } \text{ N간}(t,t+\Delta t) \text{ 에서 } x \text{ U}) \\ X_{(0,t)} \text{ 와 } X_{(t,t+\Delta t)} \text{ 은 독립이고, } i \geq 2 \text{ 에 대하여 } p_i(\Delta t) = 0 \text{ 이므로,} \\ p_x(t+\Delta t) = p_x(t) p_0(\Delta t) + p_{x-1}(t) p_1(\Delta t) + p_{x-2}(t) p_2(\Delta t) + \cdots + p_0(t) p_x(\Delta t) \\ &= p_x(t) \{1 - p_1(\Delta t)\} + p_{x-1}(t) p_1(\Delta t) \\ &= p_x(t) \{1 - \lambda \Delta t\} + p_{x-1}(t) \lambda \Delta t \end{split}$$

$$\Rightarrow \frac{p_x(t+\Delta t) - p_x(t)}{\Delta t} = -\lambda p_x(t) + \lambda p_{x-1}(t) \\ \Rightarrow \lim_{\Delta t \to 0} \frac{p_x(t+\Delta t) - p_x(t)}{\Delta t} = \lim_{\Delta t \to 0} \left(-\lambda p_x(t) + \lambda p_{x-1}(t)\right) \\ \Rightarrow p_x'(t) = -\lambda p_x(t) + \lambda p_{x-1}(t) \\ \Rightarrow p_x'(t) + \lambda p_x(t) + \lambda p_{x-1}(t) \end{aligned}$$

$$\Rightarrow p_x(t) = e^{-\lambda t} \left(\int e^{\lambda t} \lambda p_{x-1}(t) dt + c_x \right)$$

x=0인 경우,

$$p_0(t) = e^{-\lambda t} \left(\int e^{\lambda t} \lambda p_{-1}(t) dt + c_0 \right) = c_0 e^{-\lambda t}$$

 $p_0(0)=1=c_0e^{-\lambda\cdot 0}$ 이므로 $c_0=1$ 이다. 따라서 $p_0(t)=e^{-\lambda t}$ 이다.

x=1인 경우,

$$p_1(t) = e^{-\lambda t} \left(\int e^{\lambda t} \lambda p_0(t) dt + c_1 \right) = e^{-\lambda t} (\lambda t + c_1)$$

 $p_1(0) = 0 = c_1 e^{-\lambda \cdot 0}$ 이므로 $c_1 = 0$ 이다. 따라서 $p_1(t) = \lambda t e^{-\lambda t}$ 이다.

x=2인 경우,

$$p_{2}(t) = e^{-\lambda t} \left(\int e^{\lambda t} \lambda p_{1}(t) dt + c_{2} \right) = e^{-\lambda t} \left(\frac{\lambda^{2}}{2} t^{2} + c_{2} \right)$$

 $p_2(0)=0=c_2e^{-\lambda\cdot 0}$ 이므로 $c_2=1$ 이다. 따라서 $p_2(t)=rac{\lambda^2}{2}t^2e^{-\lambda t}$ 이다.

위 결과를 일반화하면, $x=0,1,2,\cdots$ 에 대하여 $p_x(t)=\frac{(\lambda t)^x}{x!}e^{-\lambda t}$ 이다.

오전 10시부터 11시까지 평균 3명의 손님이 찾아오는 상점에서 오늘 오전 10시부터 10시30분 사이에 적어도 2명의 손님이 찾아올 확률을 구하여라.

(sol)

1시간 동안 평균 $\lambda = 3$ 명씩 방문하므로,

$$t=\frac{1}{2}$$
시간(30분) 동안 평균 $m=\lambda t=1.5$ 명씩 방문한다.

따라서 $X(\frac{1}{2}) \sim Poisson(1.5)$ 이고,

$$P(X(\frac{1}{2})=x) = \frac{1.5^x}{x!}e^{-1.5}, x=0,1,2,\dots$$

이다.

$$P(X(\frac{1}{2}) \ge 2) = 1 - P(X(\frac{1}{2}) < 2)$$

$$= 1 - \left(P(X(\frac{1}{2}) = 0) + P(X(\frac{1}{2}) = 1)\right)$$

$$= 1 - \left(\frac{1.5^{0}}{0!} + \frac{1.5^{1}}{1!}\right)e^{-1.5}$$

$$= 1 - 0.5578 = 0.4422$$

	μ	
x	1.00	1.50
0	0.368	0.223
1	0.736	0.558
2	0.920	0.809
3	0.981	0.934
4	0.996	0.981
5	0.999	0.996
6	1.000	0.999
7	1.000	1.000

실험실에서 0.001초 동안 카운터를 통과하는 방사능 입자의 평균수는 2이다.

0.002초 동안 6개의 입자가 카운터를 통과할 확률은?

(sol)

단위 시간 0.001(초)동안 평균 $\lambda=2$ 개씩 통과하므로, 시간 $0.001\times t(초)$ 동안 평균 $m=\lambda t=2t$ 개씩 통과한다. 따라서 $X(2)\sim Poisson(4)$ 이고,

$$P(X(2)=x)=\frac{4^x}{x!}e^{-4}, x=0,1,2,\cdots$$

$$P(X(2)=6) = \frac{4^6}{6!}e^{-4} = 0.10419$$
$$= P(X(2) \le 6) - P(X(2) \le 5) = 0.889 - 0.785 = 0.104$$

	μ	
\boldsymbol{x}	4.00	
0	0.018	
1	0.092	
2	0.238	
3	0.433	
4	0.629	
5	0.785	
6	0.889	
7	0.949	
8	0.992	
9	0.997	
10	0.999	
11	1.000	

시간에 따라 컴퓨터 시스템에 수신되는 어떤 신호의 관찰 횟수 X(t)가 $\lambda=8$ 인 푸아송과정을 이룬다고 할 때, 다음 확률을 구하여라.

$$P(X(2.5)=17, X(3.7)=22, X(4.3)=36)$$

(sol)

1시간 동안 평균 $\lambda = 8$ 개씩 신호를 받으므로,

 $1 \times t$ 시간동안 평균 $m = \lambda t = 8t$ 개씩 신호를 받게 된다.

따라서 $X(t) \sim Poisson(8t)$ 이고,

$$P(X(t)=x) = \frac{(8t)^x}{x!}e^{-8t}, x=0,1,2,...$$

$$P(X(2.5)=17, X(3.7)=22, X(4.3)=36)$$

=
$$P(X_{(0,2.5)}=17, X_{(2.5,3.7)}=5, X_{(3.7,4.3)}=14)$$

=
$$P(X_{(0,2.5)}=17) P(X_{(2.5,3.7)}=5) P(X_{(3.7,4.3)}=14)$$

$$= P(X(2.5)=17) P(X(1.2)=5) P(X(0.6)=14)$$

$$= \left(\frac{20^{17}}{17!}e^{-20}\right) \left(\frac{9.6^{5}}{5!}e^{-9.6}\right) \left(\frac{4.8^{14}}{14!}e^{-4.8}\right) = 1.13725 \times 10^{-6}$$