Problem 0

I affirm the code of student conduct.

I, the student emobbed in this course, an taking this exam by myselt without collaborative with or using the help of other persons, external resources, or services.

Markus Tran

Problem 1 (degeneracy)

$$egin{array}{lll} s_0 &= 9 \ s_1 &= 1 \ s_{01} &= 10 \ \end{array}$$

$$egin{array}{lll} c_1 &= -s_1^2 - 2s_1s_{01} - s_{01}^2 - 4s_1 - 4s_{01} - 4 &= -169 \ c_3 &= s_0s_1 + s_1^2 - s_1s_{01} &= 0 \ d_3 &= s_0^2 + s_0s_1 - s_0s_{01} &= 0 \ c_4 &= -3s_1^2 - 6s_1s_{01} - 3s_{01}^2 - 12s_1 - 12s_{01} - 12 &= -507 \ \end{array}$$

EXAM-Dict

$$\zeta = -169x_1 + 0x_3 + 0w_3 - 507x_4 \ w_1 = 5 - 6x_1 + 2x_3 - w_3 - 3x_4 \ w_2 = 2 + 4x_1 - 6x_3 + 2w_3 - 2x_4 \ x_2 = 0 + 3x_1 - w_3 + 2x_4$$

i.

$$ext{P-Sol} = egin{pmatrix} x_1 = 0 \ x_2 = 0 \ x_3 = 0 \ x_4 = 0 \ w_1 = 5 \ w_2 = 2 \ w_3 = 0 \end{pmatrix},$$

$$egin{aligned} ext{D-Sol} &= egin{pmatrix} oldsymbol{y_1} &= -169 \ y_2 &= 0 \ oldsymbol{z_1} &= 0 \ z_2 &= 0 \ z_3 &= 0 \ oldsymbol{z_4} &= -507 \end{pmatrix}$$

- ii. Yes, EXAM-Dict is primal degenerate because in the basic solution, the coefficient of the basic variable x_2 is 0.
- iii. (iii)
- iv. Yes, EXAM-Dict is dual degenerate because in the dual basic solution, the coefficients of the basic variables y_3, z_1 are 0.
- v. (v)

Problem 2 (lexicographic simplex method)

$$egin{array}{lll} ext{maximize} & -4x_1 + x_2 + 5x_3 + 3x_4 \ ext{s.t.} & -6x_1 + x_2 - 1x_3 - 2x_4 \leq 0 \ & -rac{15}{8}x_2 - 6x_3 + rac{17}{8}x_4 \leq 1 \ & 4x_1 + 2x_2 + 2x_3 & \leq 0 \ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

add slack variables

add perturbation

$$egin{array}{lll} ext{maximize} & -4x_1 + x_2 + 5x_3 + 3x_4 \ ext{s.t.} & -6x_1 + x_2 - x_3 - 2x_4 + x_5 & = arepsilon_1 \ & -\frac{15}{8}x_2 - 6x_3 + \frac{17}{8}x_4 & + x_6 & = 1 + arepsilon_2 \ & 4x_1 + 2x_2 + 2x_3 & + x_7 = arepsilon_3 \ & x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0 \end{array}$$

Step 1

• Current objective value:

$$\overline{\zeta}(0,0,0,0,arepsilon,1+arepsilon_2,arepsilon_3)=0$$

• Dictionary:

$$egin{array}{lll} \zeta = & -4x_1 + & x_2 + 5x_3 + & 3x_4 \ x_5 = & arepsilon_1 + 6x_1 - & x_2 + & x_3 + & 2x_4 \ x_6 = (1 + arepsilon_2) & + & rac{15}{8}x_2 + 6x_3 - rac{17}{8}x_4 \ x_7 = & arepsilon_3 - 4x_1 - & 2x_2 - 2x_3 \end{array}$$

• Entering variable:

Select x_3 as the entering variable, with the following ratios:

$$egin{array}{lll} x_5 &= arepsilon_1 + \lambda & \Longrightarrow & \lambda \leq \infty \ x_6 &= (1 + arepsilon_2) + 6\lambda & \Longrightarrow & \lambda \leq \infty \ x_7 &= arepsilon_3 - 2\lambda & \Longrightarrow & \lambda \leq rac{1}{2}arepsilon_3 & \leftarrow ext{minimum ratio} \end{array}$$

• Pivot:

Pivot with x_7 as the leaving variable

$$egin{array}{lll} \zeta = & rac{5}{2}arepsilon_3 \, -14x_1 \, - \, \, 4x_2 \, - rac{5}{2}x_7 \, + \, \, 3x_4 \ x_5 = & (arepsilon_1 + rac{1}{2}arepsilon_3) \, + \, \, 4x_1 \, - \, \, 2x_2 \, - rac{1}{2}x_7 \, + \, \, 2x_4 \ x_6 = & (1 + arepsilon_2 + 3arepsilon_3) & - rac{33}{8}x_2 \, - \, 3x_7 \, - rac{17}{8}x_4 \ x_3 = & rac{1}{2}arepsilon_3 \, - \, \, 2x_1 \, - \, \, \, x_2 \, - rac{1}{2}x_7 \end{array}$$

Step 2

• Current objective value:

$$ar{\zeta}(0,0,rac{1}{2}arepsilon_3,0,arepsilon_1+rac{1}{2}arepsilon_3,1+arepsilon_2+3arepsilon_3,0)=rac{5}{2}arepsilon_3$$

• Dictionary:

$$\zeta = rac{5}{2}arepsilon_3 - 14x_1 - 4x_2 - rac{5}{2}x_7 + 3x_4 \ x_5 = (arepsilon_1 + rac{1}{2}arepsilon_3) + 4x_1 - 2x_2 - rac{1}{2}x_7 + 2x_4 \ x_6 = (1 + arepsilon_2 + 3arepsilon_3) - rac{33}{8}x_2 - 3x_7 - rac{17}{8}x_4 \ x_3 = rac{1}{2}arepsilon_3 - 2x_1 - x_2 - rac{1}{2}x_7$$

• Entering variable:

Select x_4 as the entering variable, with the following ratios:

$$egin{array}{lll} x_5 &= (arepsilon_1 + rac{1}{2}arepsilon_3) + 2\lambda & \Longrightarrow \lambda \leq \infty \ x_6 &= (1 + arepsilon_2 + 3arepsilon_3) - rac{17}{8}\lambda & \Longrightarrow \lambda \leq rac{8}{17} + rac{8}{17}arepsilon_2 + rac{24}{17}arepsilon_3 & \leftarrow ext{minim} \ x_3 &= rac{1}{2}arepsilon_3 + 0\lambda & \Longrightarrow \lambda \leq \infty \end{array}$$

• Pivot:

Pivot with x_6 as the leaving variable

Step 2

Done! Current feasible solution is optimal.

• Current objective value:

$$egin{aligned} ar{\zeta} egin{pmatrix} x_1 &= 0 \ x_2 &= 0 \ x_3 &= rac{1}{2}arepsilon_3 \ x_4 &= rac{8}{17} + rac{8}{17}arepsilon_2 + rac{24}{17}arepsilon_3 \ x_5 &= rac{16}{17} + arepsilon_1 + rac{16}{17}arepsilon_2 + rac{113}{34}arepsilon_3 \ x_6 &= 0 \ x_7 &= 0 \ \end{pmatrix} = rac{24}{27} + rac{24}{17}arepsilon_2 + rac{229}{34}arepsilon_3 \ \end{pmatrix}$$

With the perturbation removed, this becomes

$$ar{\zeta}(0,0,0,rac{8}{17},rac{16}{17},0,0)=rac{24}{27}$$