PATENT ABSTRACTS OF JAPAN

(11) Publication number :

2000-056311

(43) Date of publication of application: 25.02.2000

(51) Int. Cl.

GO2F 1/1339

(21) Application number: 10-218994

(71) Applicant : MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

03. 08. 1998

(72) Inventor: SHINSENJI SATORU

GOTO TAKASHI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To suppress gap unevenness and display unevenness generated when keeping at a high-temperature if projections are formed on a substrate in order to make the gap of a liquid crystal layer uniform.

SOLUTION: On the glass substrate 1, a color filter layer 2 and a light shield layer 3 are formed for each pixel and a top coat layer 4 and a transparent display layer 5 are entirely thereupon. Then a projection 6 is formed of resin at the formation position of the light shield layer 3. Then spherical spacers 14 which are a little larger than the projection length are arranged between projections at constant intervals. Then liquid crystal is charged and sealed with a sealing material 12 while the upper and lower substrates are applied with depression pressure. Thus, the spacers 14 are

made to elastically deform. Even when the liquid crystal display device is held in a high-temperature state, the gap between the upper and lower substrates increases, but no gap unevenness is caused.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-56311 (P2000-56311A)

(43)公開日 平成12年2月25日(2000.2.25)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G02F 1/1339

500

G 0 2 F 1/1339

500

2H089

審査請求 未請求 請求項の数5 〇L (全 6 頁)

(21)出願番号

特顏平10-218994

(71) 出願人 000005821

松下電器産業株式会社

大阪府門其市大字門真1006番地

(22)出願日

平成10年8月3日(1998.8.3)

(72) 発明者 秦泉寺 哲

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 後護 任

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100084364

弁理士 岡本 宜喜

Fターム(参考) 2H089 LA07 NA09 NA24 NA48 PA06

QA14 TA01 TA02 TA04 TA12

(54) 【発明の名称】 液晶表示装置

(57)【要約】

(課題) 液晶表示装置において、液晶層のギャップ均 一化のため基板上に突起を形成する場合に、高温放置時 に生じるギャップむらを抑止し、表示むらを低減するこ

【解決手段】 ガラス基板1に対して1画素毎にカラー フィルタ属2と遮光層3とを形成し、その上にトップコ ート暦4と透明表示電極5とを全面に形成する。次に遮 光層3の形成位置に突起6を樹脂で形成する。そして突 起呉よりやや大きな球状のスペーサ14を、一定の間隔 を設けて突起6の間に配置する。次に液晶を充填し、シ ール材12で上下の基板を押圧力を加えた状態で封止す る。こうしてスペーサ14が弾性変形する状態にする。 液晶表示装置が高温状態に保持されても、上下の基板の ギャップは増加するが、ギャップむらは生じない。

【特許請求の範囲】

(請求項1) 透明基板に対して表示電極が形成された 第1及び第2の基板の周辺をシール材で封止し、前記第 ! 及び第2の基板のギャップ間に液晶層を封入した液晶 表示装置において、

前記第1及び第2の基板のいずれか一方の基板上の複数 箇所に形成され、目標ギャップと同等の高さを有する突 윤근

前記突起よりも柔らかい材料を用いて略球状に形成さ れ、目標ギャップ精度からみてその径が前記突起の高さ 10 (0002) より大きく、前記突起間の一部に配置されたスペーサ と、を具備し、

前記スペーサが弾性変形するよう押圧力を加えて前記第 1及び第2の基板を固定したことを特徴とする液晶表示

[請求項2] 透明基板に対して表示電極が形成された - 第1及び第2の基板の周辺をシール材で封止し、前記第 1及び第2の基板のギャップ間に液晶層を封入した液晶 表示装置において、

前記第1の基板を構成する透明基板の複数箇所に画素単 20 位で形成され、各画業の境界領域を遮光する遮光層と、 前記第1の基板に形成された前記遮光層の上部に設けら れ、目標ギャップと同等の高さを有する突起と、

前記突起よりも柔らかい材料を用いて略球状に形成さ れ、目標ギャップ精度からみてその径が前記突起の高さ より大きく、前記突起間の一部に配置されたスペーサ と、を具備し、

前記スペーサが弾性変形するよう押圧力を加えて前記第 1及び第2の基板を固定したととを特徴とする液晶表示 装置。

(請求項3) 透明基板に対して表示電極が形成された 第1及び第2の基板の周辺をシール材で封止し、前記第 1及び第2の基板のギャップ間に液晶層を封入した液晶 表示装置において、

前記第1の基板を構成する透明基板の複数箇所に画素単 位で形成され、各画素の境界領域を遮光する遮光層と、 前記第1の基板に形成された前記進光層のうち、特定間 隔毎に遮光層の上部に設けられ、目標ギャップと同等の 高さを有する突起と.

前記突起よりも柔らかい材料を用いて略球状に形成さ れ、目標ギャップ精度からみてその径が前記突起の高さ より大きく、前記突起の形成されない前記遮光層の上部 に配置されたスペーサと、を具備し、

前記スペーサが弾性変形するよう押圧力を加えて前記第 1及び第2の基板を固定したことを特徴とする液晶表示 装置。

(請求項4) 前記透明基板上に、遮光層を有するカラ ーフィルタ層が表示画繁単位で形成されていることを特 酸とする請求項1~3のいずれか1項記載の液晶表示装 풉.

(請求項5) 前記スペーサは、前記突起とほぼ同じ六 きさに弾性変形した状態で保持されていることを特徴と する請求項1~4のいずれか!項記載の液晶表示装置。 (発明の詳細な説明)

(0001)

【発明の属する技術分野】本発明は、映像表示機器、バ ーソナルコンピュータやワードプロセッサなどのOA機 器、産業分野のハンディ端末機器、携帯型情報通信機器 などに用いられる液晶表示装置に関するものである。

【従来の技術】液晶表示素子はCRTに比べて、画面サ イズ、画素数において劣っている部分もあるが、重量や 体積において有利であり、携帯性を必要とする製品分野 によく利用されている。ノート型のパーソナルコンピュ ータやワードプロセッサで用いられている液晶表示装置 として、現在10~12インチサイズ程度では、640 ×480ドット、又は600×800ドットの画案数が 確保されている。これはCRTの画素数には劣るが、デ ィスプレイとして優れた表示を行うことができる。

【0003】しかし、STN(スーパーツイステッドネ マチック)に代表される単純マトリクスを用いた液晶表 示装置では、大画面や高精細化に伴ない、表示の均一化 が要求されている。この表示の均一性は、液晶分子の並 び方の指標となる配向の均一性と、液晶を挟持する基板 間のギャップの均一性とにより決定される。特に、大画 面や高精細な液晶表示装置では、表示面内で均一なギャ ップを実現するのが製造上難しい。前記したギャップ均 一性の制御法として、スペーサを用い、基板間のギャッ ブを所定値に制御する方法が現在主流となっている。し 30 かし近年、特開平9-120075号公報のように、ス ベーサを用いず基板の片面に突起を形成し、ギャップの 制御を行うという方法が提案されている。

(0004)突起を用いる従来の液晶表示装置について 図5、図6を用いて説明をする。図5は従来例の液晶表 示装置の構造を示す断面図であり、図6は従来の液晶表 示装置を高温放置したときの状態を示す断面図である。 図5において、ガラス基板lの上に赤、緑、青の3色か らなるカラーフィルタ層2を形成し、各色の間に遮光層 3を格子状に形成する。そして透明な樹脂からなるトッ プコート層4を形成し、さらに「TO膜からなる透明表 示電極5を設け、第1の基板を作成する。この透明表示 電極5の上部には、遮光層3の形成位置と同一位置に、 樹脂からなる突起6を形成する。そして突起6の間の透 明表示電極5の上面には、ポリイミドなどからなる配向 膜8を順に形成する。一方、相対向する基板9には、透 明表示電極10を形成して第2の基板を作成する。そし て配向膜! 1を損層する。次に第1及び第2の基板の周 辺をシール材12で封止し、突起6により一定のギャッ ブを確保する。そのギャップに液晶を充填し、液晶層1 50 3を形成する構造にしている。

3

(0005)

【発明が解決しようとする課題】しかしながら、ギャップ制御用として突起6を用いて液晶表示装置を作成した場合、液晶表示装置が高温下で保存又は使用されると、図6に示すように、温度上昇により液晶層13が影張する。このため、室温にくらべて基板間のギャップが大きくなる。このとき、基板上に形成されている突起6は、加熱によりほとんど変化しないので、基板間を保持する部材がない状態が生じる。この結果、基板間のギャップに部分的な差を生じてしまう。このとき液晶表示装置の10表示状態として、ギャップむらに起因する表示むらが画面内で観測される。

(0006) 市場で求められている液晶表示装置の大面 預化、高細精化、高速化を実現するために、新たにディスプレイの機能を更に向上させようとすると、従来のバネル構成では温度変化時、特に高温時に表示むらが発生 し、よい表示品位を得ることが困難になることが予想される。

(0007)本発明は、このような従来の問題点に選みてなされたものであって、大画面や高精細表示を行う液 20 晶表示装置において、使用温度が変化しても、基板間のギャップむらが生じないようにすることにより、表示品位を一定に保持できる液晶表示装置を実現することを目的とする。

[000.8]

【課題を解決するための手段】このような課題を解決するため、本願の請求項1の発明は、透明基板に対して表示電極が形成された第1及び第2の基板の周辺をシール材で封止し、前記第1及び第2の基板のギャップ間に液晶層を封入した液晶表示装置において、前記第1及び第302の基板のいずれか一方の基板上の複数箇所に形成され、目標ギャップと同等の高さを有する突起と、前記突起よりも柔らかい材料を用いて略球状に形成され、目標ギャップ精度からみてその径が前記突起の高さより大きく、前記突起間の一部に配置されたスペーサと、を具備し、前記スペーサが弾性変形するよう押圧力を加えて前記第1及び第2の基板を固定したことを特徴とするものである。

(0009) 本願の語求項2の発明は、透明基板に対して表示電極が形成された第1及び第2の基板の周辺をシール材で封止し、前記第1及び第2の基板のギャップ間に液晶層を封入した液晶表示装置において、前記第1の基板を構成する透明要板の複数箇所に回素単位で形成され、各回素の境界領域を遮光する遮光層と、前記第1の基板に形成された前記遮光層の上部に設けられ、目標ギャップと同等の高さを有する突起と、前記突起よりも柔らかい材料を用いて略球状に形成され、目標ギャップ精度からみてその径が前記突起の高さより大きく、前記突起間の一部に配置されたスペーサと、を具備し、前記スペーサが弾性変形するよう押圧力を加えて前記第1及び50

第2の基板を固定したことを特徴とするものである。

(0010)本願の請求項3の発明は、透明基板に対して表示電極が形成された第1及び第2の基板の周辺をシール材で封止し、前記第1及び第2の基板のギャップ間に液晶局を封入した液晶表示装置において、前記第1の基板を構成する透明基板の複数箇所に面素単位で形成され、各画素の境界領域を遮光する遮光層と、前記第1の基板に形成された前記遮光層のうち、特定間隔毎に遮光層の上部に設けられ、目標ギャップと同等の高さを有する突起と、前記突起よりも柔らかい材料を用いて略球状に形成され、目標ギャップ精度からみてその径が前記遮光に形成され、目標ギャップ精度からみてその径が前記遮光に形成され、前記突起よりも柔らかい材料を用いて略球状に形成され、目標ギャップ精度からみてその径が前記遮光に形成され、前記突起よりも表に変している。

【0011】本願の請求項4の発明は、請求項1~3のいずれか1項の液晶表示装置において、前記透明基板上に、遮光層を有するカラーフィルタ層が表示画業単位で形成されていることを特徴とするものである。

(0012) 本願の請求項5の発明は、請求項 $1\sim4$ のいずれか1 項の液晶表示装置において、前記スペーサは、前記突起とほぼ同じ大きさに弾性変形した状態で保持されていることを特徴とするものである。

[0013]

(発明の実施の形態) (実施の形態1) 本発明の実施の 形態1における液晶表示装置について、図1及び図2を 用いて説明する。図1は本実施の形態における液晶表示 装置の構造を示す断面図であり、従来例と同一部分は同 一の行号を付け、詳細な説明は省略する。図1に示すよ うに、透明基板であるガラス基板 1 上に赤、緑、青の3 色からなるカラーフィルタ層2を形成する。そして各色 間に遮光層3を形成する。更にその上に透明樹脂である トップコート層4を形成し、「TOからなる透明表示電・ 極5を全面に形成して第1の基板を作成する。この透明 表示電極5の上部であって、遮光層3の形成位置と同一 位置に、樹脂からなる突起6を形成する。 突起材料とし て、透明な感光性樹脂(例えばJSR製-JNPC4 3)を用い、突起の高さは例えば6μmとし、RGBの 1トリオに対し1個の突起6を形成する。そして、透明 表示電極5の上部から配向原材料を塗布し、突起6を除 く部分に配向膜8を形成する。

 $\{0014\}$ 対向する基板9にも透明表示電極10 を形成し、第2の基板を作成する。そして第2の基板に配向 膜11 を積層する。次に第1 及び第2 の基板間に球状のスペーサ14 を散而する。スペーサとして突起6 より素らかい材料を用いて球状にする。例えば日本触媒製のG S 2 を用い、その粒径は突起6 よりわずかに高く、例えば6 、1 μ m とし、散布個数は10 ~2 0 個 ℓ m ℓ で した。最後に、周辺をシール材12 で 封止し、液晶を充填して液晶層13 を形成する。この際の最終的なセルギ

ャップは6.0μmとなるように基板に押圧力を加え、 ギャップを調整した。この状態では図1に示すように、 スペーサ14の形状が球体から約0.1μ血変形し、回 転楫円体となった。こうして第1、第2の基板を保持 し、液晶表示装置を作製した。

【0015】上記のように作製された液晶表示装置を常 温で点灯して、その表示品位を確かめたところ、均一な 表示がされていることが確認された。また、作製した液 晶表示装置を40°Cの高温状態に1時間放置して表示状 態を確認したところ、従来のように基板間でのギャップ 10 た。 むらに起因する表示むらが見られず、中間調表示におい てもむらのない表示がされることが確認された。図2は この液晶表示装置を高温放置したときの状態を示す断面 図である。本図に示すように、温度上昇により液晶層1 3が膨張すると、基板9の下面、厳密には配向膜11の 下面が突起6の先端部から離れる。しかし、ガラス基板 1と基板9のギャップは、いずれの部分も球状になった スペーサ14により一定に保持されているので、表示む らが発生しない。

2における液晶表示装置について、図3及び図4を用い て説明する。図3は本実施の形態における液晶表示装置 の構造を示す断面図であり、実施の形態1と同一部分は 同一の符号を付け、詳細な説明は省略する。本図におい て、透明基板であるガラス基板1上に赤、緑、骨の3色 からなるカラーフィルタ層2を形成し、各色間に遮光層 3を形成する。遮光層3とカラーフィルタ層2の上に透 明樹脂であるトップコート層4を形成し、更にその上に ITOからなる透明表示電極5を全面に形成して第1の 基板を作成する。

【0017】次に透明表示電極5の上部であって、遮光 層3の形成位置と同一位置に、樹脂からなる突起6を形 成する。実施の形態 1 と異なり、3箇所の遮光層 3 に対 して 1 箇所の遮光層 3 の上部に突起 6 を形成する。この 際用いた突起材料は、透明な感光性樹脂(例えばJSR 製- JNPC43) である。突起6の高さは6μmと し、RGBの1トリオに対し突起6を1個とする。次に 突起6が形成された透明表示電極5の上面に、配向膜材 料を塗布し、島状の配向膜8を形成する。

(0018)対向する基板9にも表示電極10を形成 し、第2の基板を作成する。そして配向膜11を積層 し、第1及び第2の基板間にスペーサ14を散布した。 スペーサ14として突起6より柔らかい材料を用いて球 状にする。例えば日本触媒製GSZを用い、その粒径は 突起6よりわずかに高く、例えば6. 1μmとし、散布 個数は10~20個/mm゚ とした。散布場所は、図3 に示すように 突起6の形成されない遮光層3の上部と する。最後に、第1、第2の基板の周辺をシール材12 で封止し、液晶を注入して液晶層13を形成した。この 際の最終的なセルギャップは6.0μmとなるように両 50 9 基板

基板の押圧力を調整し、スペーサ14が約0.1μm変 形した状態で基板を保持するようにした。

(0019) こうして作製された液晶表示装置を常温で 点灯して、その表示品位を確かめたところ、均一な表示 がされていることが確認された。また、作製した液晶表 示装置を40℃の高温状態に1時間放置した。そして表 示状態を確認したところ、従来のように面内でのギャッ プむらに起因する表示むらが見られず、中間調表示にお いても、むらのない表示がされていることが確認でき

(0020) 図4はこの液晶表示装置を髙温放置したと きの状態を示す断面図である。本図に示すように、温度 上昇により液晶層13が膨張すると、基板9の下面、厳 密には配向膜11の下面が突起6の先端部から離れる。 しかし、ガラス基板 1 と基板 9 のギャップは、膨張又は 復元した球状のスペーサ 14 により一定に保持されてい るので、表示むらが発生しない。

(0021)

【発明の効果】以上のように本発明によれば、基板間の (0016) (実施の形態2) 次に本発明の実施の形態 20 ギャップ制御のために基板上に突起を形成した液晶表示 芸置において、 突起の高さより大きい径のスペーサを、 突起の高さとほぼ同じ大きさで狭持することにより、液 晶表示装置が比較的高温に保持されて液晶層が膨張した 場合でも、スペーサの復元力により基板間のギャップむ らの発生を抑えることができる。このため使用環境温度 が上昇しても、均一な表示が得られる。特に液晶表示装 置が大画面化、高精細化するにつれて、この効果が大き いものとなる。

(図面の簡単な説明)

- 【図1】本発明の実施の形態1における液晶表示装置の 構造を示す断面図である。
 - 【図2】 実施の形態 1 の液晶表示装置を高温放置したと きの状態を示す断面図である。
 - 【図3】本発明の実施の形態2における液晶表示装置の 構造を示す断面図である。
 - 【図4】実施の形態2の液晶表示装置を高温放置したと きの状態を示す断面図である。
 - (図5) 従来の液晶表示装置の構造を示す断面図であ
- 40 【図6】従来の液晶表示装置を高温放置したときの状態 を示す断面図である。

(符号の説明)

- 1 ガラス基板
- 2 カラーフィルタ層
- 3 遮光層
- 4 トップコート層
- 5 透明表示電極
- 8.11 配向膜

特開2000-56311 (5) 10 透明表示電極 12 シール材 (図1) 6 ------ 突起 13------ 液晶層 14-----スペーサ 【図2】 (図3] (図4)

(図5)

(図6)

