Integrantes:

- Pedro Fernández
- Gianfranco Verrocchi

Informe

1. Análisis de desempeño

Observando la tabla 2 y 3 vemos que los procesadores Pentium D son mucho más rápidos que los procesadores Pentium 4, siendo aproximadamente 13 segundos más rápido, esto puede deberse a las características de cache y además los ciclos de reloj que posee cada uno.

2. Los últimos merge sort sobre los temporales ¿Se podrían hacer más eficientemente en el coordinador con hilos?

No, porque en primer lugar tiene que recibir las palabras y para eso hay que ejecutar con MPI, además de que podría haber problemas con regiones críticas porque pueden haber casos que 2 archivos puedan ser accesados por un hilo y ocasionaría problemas al momento de la ejecución en el proceso de merge sort.

3. ¿Tuvo trozos de código con regiones críticas?

No, porque a pesar de que los archivos están guardados en el disco, nosotros pasamos ese libro a una variable recordando que "Las **variable** son espacios reservados en la memoria que, como su nombre indica, pueden cambiar de contenido a lo largo de la ejecución de un programa. Una variable corresponde a un área reservada en la memoria principal del ordenador", al ejecutarse en MPI esas variables son de diferentes procesos, es decir, esas variables no son las mismas hablando en cuanto a la memoria, además para buscar variables en memoria no lo hace como conocemos que va directamente al espacio de memoria, esto lo hace a través de mensajes (MPI).

Fuente definición de una variable: https://www.fing.edu.uy/inco/cursos/fpr/wiki/index.php/Variables-y-Tipos .

4. ¿Es importante para este problema la sincronización de relojes?

No, porque en ningún momento se necesita que la información esté sincronizada. Si se necesitara llevar un log de cuando pasaron las cosas como por ejemplo para un histórico de cuando se ejecutó la corrida o cuando se hizo cierta parte del código, en este caso si tendría que haber un proceso de sincronización de la hora de los nodos previos a la corrida.

5. Extra

El programa además del script del proyecto se hizo uno donde calcula cual es el último nodo, esto debido a que al hacer la corrida con 11 nodos ocasiona problemas en uno de los grupos de procesadores.

Tabla

1. Tabla de corrida con 20 nodos

Primera fase (Segundos)	Segunda fase (Segundos)
10.979	10.981
11.213	11.28
11.075	11.548
11.093	11.795
10.604	12.059
10.49	12.342
10.942	12.629
10.783	12.874
10.6	13.145
10.683	13.416
10.82	13.692
10.776	13.953
4.002	14.194
4.052	14.367
3.949	14.582
4.044	14.762
3.978	14.973
3.922	15.148
3.96	15.362
7.314	15.549

2. Tabla de corrida con procesadores Pentium D

Primera fase (Segundos)	Segunda fase (Segundos)
7,371	7372
7,259	7534
7,45	7,734
7,525	7,908
7,321	8,112
7,418	8,287
7,49	8,507
7,347	8,699
7,475	8,917
14,188	14,247

3. Tabla de corrida con procesadores Pentium IV

Primera fase (Segundos)	Segunda fase (Segundos)
20,06	20,061
19,999	20,292
21,804	21,939
21,491	22,183
19,911	22,446
19,.41	22,724
21,958	23,012
21,681	23,261
21,029	23,525
33,767	33,847