- CC2-S1 -

- 2018-2019 -

- Correction - Algèbre -

Exercice 1

Soit α un réel. On considère la matrice A à coefficients réels définie par

$$A = \begin{pmatrix} 2 + \alpha & 2 & 2 \\ 2 & 5 & 0 \\ 2 & 0 & 4 + \alpha \end{pmatrix}$$

1. Montrer qu'il existe une unique valeur de α telle que 5 soit une valeur propre de A.

5 est valeur propre de A si et seulement si $A - 5I_3$ est non inversible, ce qui équivaut à $det(A - 5I_3) = 0$.

Or
$$\det(A - 5I_3) = \begin{vmatrix} \alpha - 3 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & \alpha - 1 \end{vmatrix} = -2 \begin{vmatrix} 2 & 0 \\ 2 & \alpha - 1 \end{vmatrix} = 4(1 - \alpha)$$
 donc 5 est valeur propre de A si et seulement si $\alpha = 1$.

On suppose que α prend désormais la valeur déterminée à la question précédente.

2. Déterminer le spectre de A.

Avec $\alpha=1,\,A=\begin{pmatrix}3&2&2\\2&5&0\\2&0&5\end{pmatrix}$ et le polynôme caractéristique de A est :

$$\chi_{A} = \det(XI_{3} - A) = \begin{vmatrix} X - 3 & -2 & -2 \\ -2 & X - 5 & 0 \\ -2 & 0 & X - 5 \end{vmatrix} = \begin{vmatrix} X - 7 & -2 & -2 \\ X - 7 & X - 5 & 0 \\ X - 7 & 0 & X - 5 \end{vmatrix} = (X - 7) \begin{vmatrix} 1 & -2 & -2 \\ 1 & X - 5 & 0 \\ 1 & 0 & X - 5 \end{vmatrix} = (X - 7) \begin{vmatrix} 1 & -2 & -2 \\ 1 & X - 5 & 0 \\ 1 & 0 & X - 5 \end{vmatrix} = (X - 7) \begin{vmatrix} 1 & -2 & -2 \\ 0 & X - 3 & 2 \\ 0 & 2 & X - 3 \end{vmatrix} = (X - 7) \begin{vmatrix} X - 3 & 2 \\ 2 & X - 3 \end{vmatrix} = (X - 7)((X - 3)^{2} - 4) = (X - 7)(X - 1)(X - 5).$$

Le spectre de A dans \mathbb{R} est l'ensemble des racines de χ_A dans \mathbb{R} , c'est à dire $\operatorname{Sp}(A) = \{1, 5, 7\}$.

3. Vérifier le résultat de la question précédente en considérant Tr(A) et det(A).

 χ_A est scindé dans $\mathbb R$ donc la somme des valeurs propres (comptées avec multiplicité) de A vaut la trace de A et le produit des valeurs propres (comptées avec multiplicité) de A vaut le déterminant de A. Ce qui est vérifié puisque :

D'une part $1+5+7=13 \text{ et } \operatorname{Tr}(A)=3+5+5=13.$

D'autre part
$$1 \times 5 \times 7 = 35 \text{ et } \det(A) = \begin{vmatrix} 3 & 2 & 2 \\ 2 & 5 & 0 \\ 2 & 0 & 5 \end{vmatrix} = 2 \begin{vmatrix} 2 & 2 \\ 5 & 0 \end{vmatrix} + 5 \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} = 2 \times (-10) + 5 \times 11 = 35.$$

4. La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

 χ_A est scindé et à racines simples dans \mathbb{R} donc A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 2

Exercice 2

Soit a, c deux réels tels que $c \neq 0$. On considère la matrice B à coefficients réels définie par

$$B = \begin{pmatrix} a+c & 0 & c \\ 0 & a+2c & 0 \\ c & 0 & a+c \end{pmatrix}$$

1. Déterminer le spectre de B.

Le polynôme caractéristique de B

Le polynome caracteristique de
$$B$$
 est :
$$\chi_B = \det(XI_3 - B) = \begin{vmatrix} X - a - c & 0 & -c \\ 0 & X - a - 2c & 0 \\ -c & 0 & X - a - c \end{vmatrix} = (X - a - 2c) \begin{vmatrix} X - a - c & -c \\ -c & X - a - c \end{vmatrix}$$
$$= (X - a - 2c) \left((X - a - c)^2 - c^2 \right) = (X - a - 2c)(X - a - 2c)(X - a) = (X - a - 2c)^2(X - a).$$
Le spectre de B dans $\mathbb R$ est l'ensemble des racines de χ_B dans $\mathbb R$, et puisque $c \neq 0$ implique $a + 2c \neq a$, on obtient $\operatorname{Sp}(B) = \{a, a + 2c\}$ (a est simple alors que $a + 2c$ est double).

2. Vérifier le résultat de la question précédente en considérant Tr(B).

 χ_B est scindé dans \mathbb{R} donc la somme des valeurs propres (comptées avec multiplicité) de B vaut la trace de B. Ce qui est vérifié puisque a + (a + 2c) + (a + 2c) = 3a + 4c et Tr(B) = (a + c) + (a + 2c) + (a + c) = 3a + 4c.

3. Montrer que B est diagonalisable.

B possède deux sous-espaces propres distincts: $E_a(B) = \text{Ker}(B - aI_3)$ et $E_{a+2c}(B) = \text{Ker}(B - (a+2c)I_3)$. a est valeur propre simple donc $\dim(E_a(B) = 1$. a + 2c est valeur propre double et $\dim(E_a(B)) = \dim(\operatorname{Ker}(B - (a + 2c)I_3)) = 3 - \operatorname{rg}(B - (a + 2c)I_3)$.

$$B - (a + 2c)I_3 = \begin{pmatrix} -c & 0 & c \\ 0 & 0 & 0 \\ c & 0 & -c \end{pmatrix}$$
donc, puisque $c \neq 0$, rg $(B - (a + 2c)I_3) = 1$ puis dim $(E_{a+2c}(B)) = 2$.

On peut conclure que B est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

4. Déterminer une matrice D diagonale, de la forme $D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix}$, où $\lambda, \mu \in \mathbb{R}$, et une matrice inversible Pde $\mathcal{M}_3(\mathbb{R})$ telles que $P^{-1}BP = D$.

B est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$, et semblable à $D = \begin{pmatrix} a & 0 & 0 \\ 0 & a+2c & 0 \\ 0 & 0 & 2c \end{pmatrix}$, d'après ce qui précède. Il existe donc

une matrice P inversible de $\mathcal{M}_3(\mathbb{R})$ telle que $P^{-1}BP = D$, et P est la matrice de passage de la base canonique à une base $\mathscr{B} = (u, v, w)$ où u est un vecteur propre associé à la valeur propre a, et v, w sont des vecteurs propres associés à la valeur propre a + 2c. Reste à déterminer les sous-espaces propres.

$$B - (a + 2c)I_{3} = \begin{pmatrix} -c & 0 & c \\ 0 & 0 & 0 \\ c & 0 & -c \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et donc } E_{a+2c}(B) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

$$B - aI_{3} = \begin{pmatrix} c & 0 & c \\ 0 & 2c & 0 \\ c & 0 & c \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et donc } E_{a}(B) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}. \text{ Finalement } P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

5. Calculer alors B^n , $n \in \mathbb{N}$.

Puisque $P^{-1}BP=D$, on tire $B=PDP^{-1}$, puis $\forall n\in\mathbb{N},\ B^n=PD^nP^{-1}$. Le calcul de $P^{-1}=\frac{1}{2}\begin{pmatrix}1&0&-1\\1&0&1\\0&2&0\end{pmatrix}$ se fait par l'algorithme de Gauss.

Enfin par produit matriciel, on conclut que
$$B^n = \frac{1}{2} \begin{pmatrix} (a+2c)^n + a^n & 0 & (a+2c)^n - a^n \\ 0 & 2(a+2c)^n & 0 \\ (a+2c)^n - a^n & 0 & (a+2c)^n + a^n \end{pmatrix}$$

Spé PT Page 2 sur 2