

Week 02- Session 01 - Supervised Learning

Kelvin C. - PassDowns/Walkthroughs II

Table Of Content

Supervised Learning

Classification

Performance Evaluation

LP

DP

What is Supervised Learning?

Figure: Illustration of Supervised Learning. (Sourced from web).

- ► A core type of machine learning where a model learns from labeled data.
- ► Goal: Learn a function that maps inputs (features) to outputs (labels).
- ► Examples:
 - ▶ Spam detection: Emails → spam/not spam
 - ► Image classification: Images → cat/dog/etc.

Core Concepts

Figure: Illustration of Variables in Stats. Sourced from Google.

- ▶ Instance Space (\mathcal{X}): Set of all possible input examples (e.g., feature vectors).
- ▶ Label Space (\mathcal{Y}) : Set of all possible outputs (e.g., classes or real values).
- ▶ **Hypothesis Space** (\mathcal{H}): Set of all models/functions we consider: $h: \mathcal{X} \to \mathcal{Y}$.

Hypothesis Space (\mathcal{H}) : Set of all models/functions we consider: $h: \mathcal{X} \to \mathcal{Y}$.

Figure: Illustration of Hypothesis Space. Sourced from Google.

Classified Variables in Stats

Figure: Illustration of Variables in Stats. Sourced from Google.

Types of Variables (Features) in Supervised Learning

Numerical Variables

- Represent quantities or measurements.
- Take continuous or discrete numeric values.
- Examples:
 - ► Age: 25, 30, 45 years
 - ► Height: 172.5 cm
 - ► Temperature: 36.6°C

Categorical Variables

- Represent categories or labels.(Nominal or Ordinal)
- ► Take values from a limited set of discrete categories.
- Examples:
 - ► Color: Red, Blue, Green
 - ► Type of animal: Cat, Dog, Bird
 - Education Level: High School, Bachelor's Degree, Master's Degree, PhD.

Why it matters? Some algorithms handle numerical and categorical data differently, so understanding variable types helps in data preprocessing and model choice.

Supervised Learning Setup

Figure: Process/flow of Supervised Learning. (Sourced from web).

Parametric vs Non-Parametric Models in ML Algorithms

How does a model learn? One key distinction:

Parametric Models

- Assume a fixed form (e.g., linear) for the function h(x).
- ► Learning = estimating a finite set of parameters.
- Pros: Simple, fast to train, less prone to overfitting.
- ► Cons: Limited flexibility.
- Examples: Linear Regression, Logistic Regression, Naive Bayes

Non-Parametric Models

- ▶ Do not assume a fixed form. Complexity can grow with data.
- Learning = memorizing and generalizing from data directly.
- ▶ **Pros:** Flexible, can capture complex patterns.
- Cons: More data needed, slower, risk of overfitting.
- Examples: k-Nearest Neighbors (k-NN), Decision Trees, Random Forests

Parametric vs Non-Parametric Models

Two broad categories of supervised learning models:

Aspect	Parametric Models	Non-Parametric Models
Model Struc- ture	Assumes a fixed form or structure (e.g., linear)	No fixed form; adapts to the data
Number of Pa- rameters	Fixed and finite	Grows with data size
Training Data Needs	Works well with less data	Typically needs more data
Computation Time	Fast training and inference	Slower, especially with large data
Flexibility	Less flexible, risk of underfitting	More flexible, risk of overfitting

Table: Comparison of Parametric and Non-Parametric Models

Supervised Learning—Classification

Figure: Types of classification. Image sourced from Web.

Common Classification Algorithms

Here are some widely used machine learning algorithms for classification tasks:

Decision Tree

- Splits data based on feature values to form a tree-like model.
- ► Easy to interpret, can overfit on small data.

Random Forest

- ► An ensemble of decision trees.
- Reduces overfitting and improves accuracy.

Support Vector Machine (SVM)

- ► Finds the optimal hyperplane that separates classes.
- Effective in high-dimensional spaces, works well with clear margins.

Logistic Regression

- Models the probability of a class using a logistic function.
- Good baseline model for binary classification.

Linear Discriminant Analysis (LDA)

- ► Projects data to maximize class separability.
- ► Assumes normal distribution and equal class covariances.

Naive Bayes

- Probabilistic classifier based on Bayes' theorem.
- Assumes feature independence (naive assumption).
- Fast and works well for text classification.

Dataset-Splitting

Ratio of Training x Testing + Val in splitting Dataset. Image sourced from web.

Evaluation Metric in Classification

How do we measure the performance of a classification model?

Accuracy

Accuracy

The proportion of correctly predicted instances among all instances:

$$\mathsf{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Confusion Matrix

Confusion Matrix

A table that summarizes prediction results:

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Precision and Recall

Precision

Out of all the positive predicted, what percentage is truly positive.:

$$Precision = \frac{TP}{TP + FP}$$

Recall (Sensitivity)

Out of the total positive, what percentage are predicted positive.:

$$\mathsf{Recall} = \frac{TP}{TP + FN}$$

F1 Score

F1 Score

Harmonic mean of precision and recall, used to balance the trade-off between them:

$$F1 = 2 \times \frac{\mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

F1 Score is especially useful when dealing with imbalanced classes.

Model Evaluation

Model Evaluation. Image sourced from web.

Useful Videos on YouTube

Check out these interesting YouTube video on Supervised Learning & EDA:

- ► Machine Learning YT Playlist-UOFU
- ► EDA Intro

The End

Week 02- Session 02 -Linear Programming x Dynamic Programming

Kelvin C. - PassDowns/Walkthroughs II

Linear Programming (LP):

- ► Mathematical technique to optimize a linear objective function
- Subject to linear equality and inequality constraints
- Commonly used in resource allocation, scheduling, and operations research

Dynamic Programming (DP):

- Algorithmic technique for solving complex problems by breaking them into simpler subproblems
- Uses recursion and memoization or tabulation
- Widely used in optimization problems, decision making, and combinatorics

Intro to Dynamic Programming

Check out these interesting YouTube video on DP:

► DP in Knapsack Problem

Differences

Feature	Linear Program- ming	Dynamic Programming
Nature	Mathematical op- timization model	Algorithmic paradigm
Problem Type	Linear objective and constraints	Problems with overlapping sub-problems
Approach	Solves using sim- plex or interior point methods	Breaks problem into subproblems recursively
Typical Appli- cations	Resource allocation, production planning	Sequence align- ment, shortest paths, knapsack

Table: Comparison between Linear Programming and Dynamic Programming

Whats Next? - Lets get your hands dirty with it =D

Meme Sourced from web.