EIGEN VALUES AND EIGEN VECTORS

Your input: find the eigenvalues and eigenvectors of
$$A = egin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

Start from forming a new matrix by subtracting λ from the diagonal entries of the given matrix:

$$\begin{bmatrix} 1-\lambda & 2 \\ 0 & 3-\lambda \end{bmatrix}$$

Find the determinant of the obtained matrix:

$$egin{array}{|c|c|c|c|c|} 1-\lambda & 2 & & & \\ & & & & \\ 0 & 3-\lambda & & & \end{array} = \lambda^2-4\lambda+3$$
 (for steps, see `determinant calculator`)

This is a characteristic polynomial.

Solve the equation $\lambda^2-4\lambda+3=0$.

The roots are:

$$\lambda_1 = 1$$

$$\lambda_2=3$$

These are the eigenvalues.

Next, find the eigenvectors.

a.
$$\lambda = 1$$

$$\begin{bmatrix} 1-\lambda & 2 \\ 0 & 3-\lambda \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$$

Perform row operations to obtain the rref of the matrix:

$$\begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 (for steps, see rref calculator)

Now, solve the matrix equation $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

If we take $v_1=t$, then $v_1=t$, $v_2=0$.

Therefore,
$$\mathbf{v} = \begin{bmatrix} t \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} t$$

b.
$$\lambda=3$$

$$\begin{bmatrix} 1-\lambda & 2 \\ 0 & 3-\lambda \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix}$$

Perform row operations to obtain the rref of the matrix:

$$egin{bmatrix} -2 & 2 \ 0 & 0 \end{bmatrix} \sim egin{bmatrix} 1 & -1 \ 0 & 0 \end{bmatrix}$$
 (for steps, see rref calculator)

Now, solve the matrix equation
$$egin{bmatrix} 1 & -1 \ 0 & 0 \end{bmatrix} egin{bmatrix} v_1 \ v_2 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

If we take $v_2=t$, then $v_1=t$, $v_2=t$.

Therefore,
$$\mathbf{v} = egin{bmatrix} t \\ t \end{bmatrix} = egin{bmatrix} 1 \\ 1 \end{bmatrix} t$$

ANSWER

Eigenvalue: 1, eigenvector:
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Eigenvalue: 3, eigenvector:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

FROM NITK SURATHKAL – FDP

Dimensionality Reduction

 Significant improvements can be achieved by first mapping the data into a lower-dimensional space.

$$x = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_N \end{bmatrix} - - > reduce \ dimensionality - - > y = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix} \ (K << N)$$

- Dimensionality can be reduced by:
 - Combining features using a linear or non-linear transformations.
 - Selecting a subset of features (i.e., feature selection).

Data Dimensionality

- From a theoretical point of view, increasing the number of features should lead to better performance.
- In practice, the inclusion of more features leads to worse performance (i.e., curse of dimensionality).
- The number of training examples required increases exponentially with dimensionality.

Application of Dimensionality Reduction

- Customer relationship management
- Text mining
- Image retrieval
- Microarray data analysis
- Protein classification
- Face recognition
- Handwritten digit recognition
- Intrusion detection

Feature Selection

- Definition
 - A process that chooses an optimal subset of features according to a objective function
- Objectives
 - To reduce dimensionality and remove noise
 - To improve mining performance
 - Speed of learning
 - · Predictive accuracy
 - Simplicity and comprehensibility of mined results

Feature Extraction

- Feature reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space
- Given a set of data points of p variables {x₁, x₂,...,x_n}
 Compute their low-dimensional representation
- Criterion for feature reduction can be different based on different problem settings.
 - Unsupervised setting: minimize the information loss
 - Supervised setting: maximize the class discrimination

Feature Reduction vs. Feature Selection

- Feature reduction
 - All original features are used
 - The transformed features are linear combinations of the original features
- Feature selection
 - Only a subset of the original features are selected

Basics

- Definitions of subset optimality
- Perspectives of feature selection
 - Subset search and feature ranking
 - Feature/subset evaluation measures
 - Models: filter vs. wrapper
 - Results validation and evaluation

A Subset Search Problem

An example of search space (Kohavi & John 1997)

Feature Ranking

- Weighting and ranking individual features
- · Selecting top-ranked ones for feature selection
- Advantages
 - Efficient: O(N) in terms of dimensionality N
 - Easy to implement
- Disadvantages
 - Hard to determine the threshold
 - Unable to consider correlation between features

Evaluation Measures for Ranking and Selecting Features

- The goodness of a feature/feature subset is dependent on measures
- Various measures
 - Information measures (Yu & Liu 2004, Jebara & Jaakkola 2000)
 - · (Entropy, Information gain)
 - Distance measures (Robnik & Kononenko 03, Pudil & Novovicov 98)
 - Dependence measures (Hall 2000, Modrzejewski 1993)
 - Consistency measures (Almuallim & Dietterich 94, Dash & Liu 03)
 - Accuracy measures (Dash & Liu 2000, Kohavi&John 1997)

Consistency Measures

- Consistency measures
 - Trying to find a minimum number of features that separate classes as consistently as the full set can
 - An inconsistency is defined as two instances having the same feature values but different classes
 - E.g., one inconsistency is found between instances i4 and i8 if we just look at the first two columns of the data table

Illustrative Data Set

	Hair	Height	Weight	Lotion	Result
i_1	1	2	1	0	1
i ₂	1	3	2	1	0
fa.	2	1	2	1	0
14	- 1	1	2	0	1
is .	3	2	3	0	1
ie	2	3	3	0	0
i-	2	2	3	0	0
í _s	1	1	1	1	.0

	Result (Sunburn)	
	No	Yes
P(Result)	5/8	3/8
P(Hair=I Result)	2/5	2/3
P(Hair=2 Result)	3/5	0
P(Hair=3 Result)	0	1/3
P(Height=1 Result)	2/5	1/3
P(Height=2 Result)	1/5	2/3
P(Height=3 Result)	2/5	0
P(Weight=1 Result)	1/5	1/3
P(Weight=2 Result)	2/5	1/3
P(Weight=3 Result)	2/5	1/3
P(Lotion=0 Result)	2/5	3/3
P(Lotion=1 Result)	3/5	0

Sunburn data

Priors and class conditional probabilities

Accuracy Measures

- Using classification accuracy of a classifier as an evaluation measure
- Factors constraining the choice of measures
 - Classifier being used
 - The speed of building the classifier
- Compared with previous measures
 - Directly aimed to improve accuracy
 - Biased toward the classifier being used
 - More time consuming

Models of Feature Selection

- Filter model
 - Separating feature selection from classifier learning
 - Relying on general characteristics of data (information, distance, dependence, consistency)
 - No bias toward any learning algorithm, fast
- Wrapper model
 - Relying on a predetermined classification algorithm
 - Using predictive accuracy as goodness measure
 - High accuracy, computationally expensive

Weka – Iris flower dataset

- · 3 types (classes)
- 4 features /variables
- 150 instances/cases

Iris dataset - features

- Sepal length
- Sepal width
- Petal length
- Petal width

