UC/Curso: Cibersegurança / Mestrado em Engenharia de Telecomunicações e Informática Group 4:

- Fernando João Santos Mendes PG55807
- Bruno Miguel Fernandes Araújo PG55806

# Trabalho Prático 4;

## 1. Home net = 10.10.100.0/24; TrafegoExamplo2a.pcapng

No tráfego capturado temos presentes várias interfaces que se encontram nesta rede local, para obtenção desta informação vimos os endpoints e analisamos os ips que se encontram nesta rede. Temos então as interfaces com ip, 10.10.100.1 , 10.10.100.117, 10.10.100.119, 10.10.100.120 e 10.10.100.121 (O ip brodcast (10.10.100.255) foi usado algumas vezes mas obviamente não pode estar associado a uma interface)

### 2. Estratégia de análise

Para que fosse possível analisar e identificar tráfego na rede não desejável ou suspeito definimos uma estratégia que se caracteriza da seguinte forma:

- Num momento inicial procurou-se identificar quais as características do tráfego da rede em questão, de forma a entender quais os parâmetros e os indicadores de funcionamento inerentes ao mesmo;
- Numa fase posterior procurou-se responder a algumas questões orientativas para se retirar o
  contexto do tráfego e visar um melhor entendimento do mesmo (Quais os endpoints? Que
  protocolos?);
- Por último e após a síntese de informação útil e necessária para a procura e análise na comunicação suspeitas, analisamos na íntegra tráfego através de filtros

### 3. Análise

## a. Indicadores de funcionamento de tráfego:

| Statistics             |          |                  |        |
|------------------------|----------|------------------|--------|
| Measurement            | Captured | Displayed        | Marked |
| Packets                | 9064     | 9064 (100.0%)    | _      |
| Time span, s           | 2598.247 | 2598.247         | _      |
| Average pps            | 3.5      | 3.5              | _      |
| Average packet size, B | 1064     | 1064             | _      |
| Bytes                  | 9639607  | 9639607 (100.0%) | 0      |
| Average bytes/s        | 3710     | 3710             | _      |
| Average bits/s         | 29 k     | 29 k             | _      |

Figura 1- Estatísticas de tráfego

Segundo a figura 1 foi possível concluir que:

- A captura de rede registrou um total de 9064 pacotes, com uma captura a 100% o que indica que não houve perda de dados durante a análise e que todos os pacotes capturados foram processados corretamente.
- A taxa média de pacotes por segundo (3,5 pps) revela uma rede com atividade muito baixa, característica de ambientes como redes domésticas em momentos de inatividade ou dispositivos que realizam comunicações esporádicas. O tamanho médio dos pacotes é de 1064 bytes.
- A taxa média de transmissão foi de 3710 bytes por segundo (aproximadamente 3,7 kB/s), enquanto a velocidade em bits por segundo ficou em 29 kbps, indicando uma utilização mínima da largura de banda. Esses podem refletir um período de baixa atividade na rede como referido acima.

Caso existisse um histórico sobre os indicadores referidos em cima, da rede em questão, seria possível retirar conclusões imediatas sobre o ficheiro estudado.

As estatísticas acima descrevem uma rede com tráfego reduzido. O padrão observado é poderá corresponder a um ambiente onde a rede não está sob carga pesada, como em redes domésticas com poucos dispositivos ativos ou sistemas que operam em segundo plano sem necessidade de uma grande largura de banda.

### b. Quais os endpoints?

Para a identificação dos endpoints recorre-se às "Estatísticas" e escolhemos a opção Endpoints (
Statistics —> Endpoints ) ,desta forma foi possível analisar quais os endpoints mais relevantes desta captura. Nesta podemos analisar a informação por protocolos, e foi optado pelo TCP por ser o mais relevante e sistemático.

| Ethernet · 9     | IPv4 · 35 | IPv6 · 2  | TCP · 87 | UDP · 85   |          |            |          |
|------------------|-----------|-----------|----------|------------|----------|------------|----------|
| Address          | Port      | Packets * | Bytes    | Tx Packets | Tx Bytes | Rx Packets | Rx Byte: |
| 10.10.100.121    | 36830     | 1757      | 3 MB     | 678        | 98 kB    | 1079       | 3 ME     |
| 142.250.200.101  | 443       | 1757      | 3 MB     | 1079       | 3 MB     | 678        | 98 kE    |
| 10.10.100.121    | 55110     | 1669      | 2 MB     | 595        | 122 kB   | 1074       | 2 ME     |
| 216.58.209.78    | 443       | 1669      | 2 MB     | 1074       | 2 MB     | 595        | 122 kE   |
| 142.250.200.99   | 443       | 1596      | 2 MB     | 951        | 1 MB     | 645        | 89 kE    |
| 10.10.100.121    | 47114     | 1551      | 2 MB     | 618        | 85 kB    | 933        | 1 ME     |
| 216.58.209.68    | 443       | 793       | 750 kB   | 489        | 706 kB   | 304        | 44 kE    |
| 10.10.100.121    | 47492     | 751       | 745 kB   | 290        | 42 kB    | 461        | 702 kE   |
| 216.58.215.174   | 443       | 638       | 695 kB   | 473        | 57 kB    | 165        | 638 kF   |
| 10.10.100.121    | 38452     | 587       | 681 kB   | 139        | 635 kB   | 448        | 47 kE    |
| 10.10.100.121    | 38478     | 356       | 236 kB   | 123        | 27 kB    | 233        | 210 kE   |
| 142.250.110.84   | 443       | 356       | 236 kB   | 233        | 210 kB   | 123        | 27 kE    |
| 10.10.100.121    | 52742     | 304       | 263 kB   | 147        | 15 kB    | 157        | 248 kE   |
| 142.250.200.142  | 443       | 304       | 263 kB   | 157        | 248 kB   | 147        | 15 kE    |
| 140.98.193.101   | 443       | 291       | 330 kB   | 145        | 303 kB   | 146        | 27 kE    |
| 216.58.215.131   | 443       | 277       | 223 kB   | 145        | 211 kB   | 132        | 12 kE    |
| 10.10.100.121    | 58030     | 254       | 216 kB   | 118        | 10 kB    | 136        | 206 kE   |
| 142.250.184.163  | 80        | 140       | 24 kB    | 67         | 14 kB    | 73         | 10 kE    |
| 142.250.200.78   | 443       | 140       | 92 kB    | 74         | 82 kB    | 66         | 10 kE    |
| 10.10.100.121    | 51294     | 118       | 83 kB    | 52         | 9 kB     | 66         | 74 kE    |
| 10.10.100.121    | 40012     | 111       | 150 kB   | 56         | 11 kB    |            | 138 kE   |
| 142.250.201.74   | 443       | 90        | 53 kB    | 46         | 46 kB    | 44         | 7 k      |
| 10.10.100.119    | 56078     | 87        | 13 kB    |            | 7 kB     | 34         | 6 kE     |
| 10.10.100.120    | 445       | 87        | 13 kB    | 34         | 6 kB     |            | 7 kE     |
| 10.10.100.121    | 40018     | 77        | 110 kB   | 38         | 6 kB     | 39         | 104 k    |
| 142.250.184.10   | 443       | 71        | 31 kB    | 34         | 25 kB    |            | 6 kE     |
| 10.10.100.121    | 34796     | 57        | 20 kB    | 29         | 4 kB     | 28         | 16 kE    |
| 142.250.200.65   | 443       | 57        | 20 kB    | 28         | 16 kB    | 29         | 4 kE     |
| 10.10.100.121    | 58678     | 56        | 38 kB    | 26         | 4 kB     | 30         | 34 kE    |
| 10.10.100.117    | 21        | 55        | 4 kB     |            | 2 kB     | 28         | 2 kE     |
| 10.10.100.119    | 42388     |           | 4 kB     | 28         | 2 kB     |            | 2 kE     |
| 10.10.100.121    | 38454     |           | 13 kB    | 26         | 3 kB     | 25         | 10 kE    |
| 10.10.100.121    | 47524     | 47        | 13 kB    | 24         | 5 kB     |            | 8 kE     |
| 10.10.100.121    | 40020     | 42        | 40 kB    | 20         | 4 kB     | 22         | 36 kE    |
| 10.10.100.121    | 47484     | 42        | 5 kB     | 14         | 1 kB     | 28         | 4 k      |
| 10.10.100.121    | 51818     | 38        | 10 kB    | 19         | 3 kB     | 19         | 8 kE     |
| 10.10.100.121    | 51852     | 38        | 17 kB    | 19         | 4 kB     | 19         | 13 kE    |
| 142.250.200.74   | 443       | 38        | 10 kB    | 19         | 8 kB     | 19         | 3 kE     |
| 10.10.100.121    | 58680     | 34        | 14 kB    | 18         | 2 kB     | 16         | 12 kE    |
| 10.10.100.121    | 48294     | 33        | 8 kB     | 18         | 3 kB     | 15         | 6 kE     |
| 10.10.100.121    | 51854     |           | 14 kB    |            | 2 kB     |            | 12 kE    |
| 34.120.208.123   | 443       |           | 8 kB     |            | 6 kB     | 18         | 3 kE     |
| 10.10.100.121    | 47102     | 30        | 15 kB    |            | 3 kB     |            | 12 kE    |
| 1/12 250 200 110 | 440       | 20        | 15 LD    |            | 12 10    |            | 2 h      |

| Ethernet · 9    | IPv4 · 35 | IPv6 ⋅ 2  | TCP · 87  | UDP · 85   |           |            |           |
|-----------------|-----------|-----------|-----------|------------|-----------|------------|-----------|
| Address         | Port      | Packets ▼ | Bytes     | Tx Packets | Tx Bytes  | Rx Packets | Rx Bytes  |
| 142.250.200.110 | 443       | 30        | 15 kB     |            | 12 kB     |            | 3 kB      |
| 161.58.148.77   | 587       | 30        | 6 kB      | 14         | 1 kB      |            | 5 kB      |
| 192.168.0.113   | 1182      | 30        | 6 kB      | 16         | 5 kB      | 14         | 1 kE      |
| 10.10.100.121   | 38466     | 29        | 12 kB     |            | 3 kB      | 14         | 9 kE      |
| 10.10.100.121   | 40016     | 29        | 19 kB     | 14         | 3 kB      | 15         | 16 kE     |
| 173.194.76.94   | 443       | 29        | 12 kB     | 14         | 9 kB      |            | 3 kE      |
| 10.10.100.121   | 47532     |           | 5 kB      | 14         | 2 kB      |            | 3 kE      |
| 10.10.100.121   | 47112     |           | 7 kB      | 14         | 2 kB      |            | 6 kE      |
| 10.10.100.121   | 58028     |           | 7 kB      | 14         | 2 kB      |            | 6 k       |
| 142.250.201.69  | 80        |           | 2 kB      | 10         | 1 kB      |            | 1 k       |
| 10.10.100.119   | 49717     |           | 1 kB      | 14         | 788 bytes |            | 480 bytes |
| 10.10.100.121   | 47152     |           | 7 kB      |            | 2 kB      |            | 6 k       |
| 10.10.100.121   | 51336     |           | 10 kB     | 14         | 2 kB      |            | 8 kE      |
| 34.107.221.82   | 80        |           | 2 kB      |            | 1 kB      |            | 1 k       |
| 10.10.100.121   | 37152     | 17        | 2 kB      |            | 922 bytes |            | 1 kl      |
| 10.10.100.121   | 40024     | 17        | 6 kB      |            | 1 kB      |            | 5 kl      |
| 10.10.100.121   | 40022     |           | 6 kB      |            | 1 kB      |            | 5 kl      |
| 10.10.100.121   | 51802     |           | 3 kB      |            | 921 bytes |            | 2 kl      |
| 104.18.20.226   | 80        |           | 3 kB      |            | 2 kB      |            | 921 byte  |
| 10.10.100.121   | 47516     | 14        | 924 bytes |            | 462 bytes |            | 462 byte  |
| 10.10.100.121   | 47518     | 14        | 924 bytes |            | 462 bytes |            | 462 byte  |
| 10.10.100.121   | 47520     | 14        | 924 bytes |            | 462 bytes |            | 462 byte  |
| 10.10.100.121   | 51822     |           | 1 kB      |            | 684 bytes |            | 546 byte  |
| 10.10.100.121   | 51826     |           | 1 kB      |            | 689 bytes |            | 546 byte  |
| 10.10.100.121   | 47584     |           | 2 kB      |            | 712 bytes | 4          | 974 byte  |
| 10.10.100.121   | 47594     |           | 2 kB      |            | 712 bytes |            | 974 byte  |
| 10.10.100.117   | 29522     |           | 1 kB      |            | 1 kB      | 4          | 236 byte  |
| 10.10.100.117   | 35884     |           | 741 bytes |            | 505 bytes |            | 236 byte  |
| 10.10.100.117   | 56996     | 8         | 513 bytes |            | 186 bytes |            | 327 byte  |
| 10.10.100.119   | 38470     |           | 741 bytes |            | 236 bytes |            | 505 byte  |
| 10.10.100.119   | 53910     |           | 513 bytes |            | 327 bytes |            | 186 byte  |
| 10.10.100.119   | 54606     |           | 1 kB      |            | 236 bytes |            | 1 kl      |
| 10.10.100.121   | 37154     |           | 412 bytes | 4          | 272 bytes |            | 140 byte  |
| 10.10.100.121   | 47586     |           | 412 bytes |            | 272 bytes |            | 140 byte  |
| 10.10.100.121   | 59488     | 4         | 342 bytes |            | 171 bytes |            | 171 byte  |
| 34.107.243.93   | 443       |           | 342 bytes |            | 171 bytes |            | 171 byte  |
| 10.10.100.117   | 22        |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.117   | 80        |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.117   | 139       |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.120   |           |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.120   | 80        |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.120   | 139       |           | 172 bytes |            | 60 bytes  |            | 112 byte  |
| 10.10.100.117   | 25        |           | 118 bytes |            | 60 bytes  |            | 58 byte   |
| 10 10 100 120   | 25        |           | 110 hutor |            | 60 butos  |            | 50 huto   |

Figura 2 : Endpoints da Captura (Parte 1)

Figura 3 : Endpoints da Captura (Parte 2)

Através das figuras 2 e 3, observa-se que temos endpoints na rede local, assim como alguns populares que encontram-se associados a serviços como os do google, entre outros.

## c. GeoLocalização dos IP's

Na Figura 4, podemos ver o mapa mundial com a identificação da localização dos IP 's envolvidos neste tráfego. Esta visualização foi possível graças à integração dos dados GeoIP da MaxMind no Wireshark, onde após o processo de instalação desta, passamos a ter disponível a opção de visualizar os endereços IP dos endpoints diretamente no mapa.



Figura 4 : Localização dos IP's no mapa do mundo.

### d. Gráfico I/O

A funcionalidade Gráfico I/O do Wireshark (disponível no menu Estatísticas) permite visualizar padrões ao longo do tempo no tráfego de rede. Este encontra-se ilustrado na a Figura X, onde podemos ,por exemplo , concluir que o burst inicial de pacotes poderá estar relacionado com o estabelecimento de uma conexão entre cliente e servidor.



Figura 5 : Gráfico I/O da captura.

## e. Quais os protocolos?

| Protocol                                        | Percent Packets | Packets | Percent Bytes | Bytes   | Bits/s | End Packets | End Bytes | End Bits/s | PDUs |
|-------------------------------------------------|-----------------|---------|---------------|---------|--------|-------------|-----------|------------|------|
| ▼ Frame                                         | 100.0           | 9064    | 100.0         | 9639607 | 29 k   |             |           |            | 9064 |
| ▼ Ethernet                                      | 100.0           | 9064    | 1.3           | 129498  | 398    |             |           |            | 9064 |
| ▼ Internet Protocol Version 6                   | 0.0             |         | 0.0           | 40      |        |             |           |            |      |
| Internet Control Message Protocol v6            | 0.0             |         | 0.0           |         |        |             |           |            |      |
| ▼ Internet Protocol Version 4                   | 98.3            | 8907    | 1.8           | 178140  | 548    |             |           |            | 8907 |
| ▼ User Datagram Protocol                        | 3.5             | 316     | 0.0           | 2528    |        |             |           |            | 316  |
| Network Time Protocol                           | 0.3             | 24      | 0.0           |         |        | 24          | 1152      |            | 24   |
| NetBIOS Name Service                            | 0.0             |         | 0.0           |         |        |             | 112       |            |      |
| Domain Name System                              | 3.2             | 290     | 0.2           | 15546   |        | 290         | 15546     |            | 290  |
| ▼ Transmission Control Protocol                 | 94.8            | 8591    | 96.6          | 9308207 | 28 k   | 4035        | 1024154   | 3153       | 8591 |
| Transport Layer Security                        | 48.3            | 4374    | 92.8          | 8943779 | 27 k   | 4374        | 8246711   | 25 k       | 4645 |
| ▼ Simple Mail Transfer Protocol                 | 0.2             |         | 0.0           | 3908    |        | 20          | 3326      |            |      |
| Internet Message Format                         | 0.0             |         | 0.0           | 3499    |        |             | 3499      |            |      |
| ▼ NetBIOS Session Service                       | 0.7             |         | 0.1           | 7399    |        |             |           |            |      |
| SMB2 (Server Message Block Protocol version 2)  | 0.7             |         | 0.1           | 6988    |        | 60          | 6889      |            |      |
| SMB (Server Message Block Protocol)             | 0.0             |         | 0.0           | 163     |        |             | 163       |            |      |
| <ul> <li>Hypertext Transfer Protocol</li> </ul> | 0.4             | 36      | 0.2           | 19282   | 59     |             | 901       |            | 36   |
| Online Certificate Status Protocol              | 0.3             | 30      | 0.1           | 9281    | 28     | 30          | 9281      | 28         | 30   |
| Line-based text data                            | 0.0             |         | 0.0           | 246     |        |             | 246       |            |      |
| ▼ FTP Data                                      | 0.0             |         | 0.0           | 1134    |        |             |           |            |      |
| Line-based text data                            | 0.0             |         | 0.0           | 1134    |        |             | 1134      |            |      |
| File Transfer Protocol (FTP)                    | 0.4             |         | 0.0           | 768     |        |             | 768       |            |      |
| Data                                            | 0.3             | 24      | 0.6           | 57359   | 176    | 24          | 57359     | 176        | 24   |
| Address Resolution Protocol                     | 1.7             | 156     | 0.1           | 6834    |        | 156         | 6834      |            | 156  |

Figura 6 : Protocolos presentes nesta captura de tráfego (Protocol Hierarchy)

Esta captura de rede apresenta uma diversidade significativa de protocolos, indicando um ambiente com múltiplos serviços e tipos de comunicação. Através da figura 6 conseguimos identificar os seguintes protocolos:

### 1. Protocolos de Camada de Rede e Transporte

O tráfego mostra uso simultâneo de **IPv4 e IPv6**, com predominância do IPv4. O IPv6 aparece apenas com tráfego ICMPv6, que normalmente é usado para descoberta de vizinhos e testes de conectividade em redes IPv6. A coexistência destes protocolos é comum em redes modernas durante períodos de transição.

O **TCP e UDP** são ambos utilizados, com o UDP sendo empregado para serviços como DNS (Domain Name System), NTP (Network Time Protocol) e NetBIOS Name Service. O TCP é usado para comunicações mais robustas como SMTP, HTTP, SMB e TLS. Esta distribuição é esperada em uma rede como aquela que serviu de estudo.

## 2. Protocolos Críticos e Seu Significado

### **DNS** (Domain Name System):

Presente em praticamente todas as redes e é responsável pela resolução de nomes.

#### SMB/SMB2 (Server Message Block):

Protocolo de compartilhamento de arquivos. A presença deste é normal em redes Windows, mas merece atenção devido a vulnerabilidades como ataques de ransomware que exploram SMB.

**HTTP e TLS** (Hyper Text Transfer Protocol Secure e Transport Layer Security): Indicam tráfego web, tanto não criptografado (HTTP) quanto seguro (TLS). É esperada a presença de Online Certificate Status Protocol (OCSP) em ligações TLS para verificação de certificados.

### 3. Possíveis Anomalias e Casos Suspeitos

#### **SMTP** (Simple Mail Transfer Protocol):

Encontra-se relacionado com o envio de correio electrónico, funciona como o protocolo padrão para a transferência de mensagens entre servidores. No entanto, a sua implementação básica não utiliza encriptação, expondo credenciais de autenticação e conteúdo das mensagens, assim como é possível verificar na figura 7.

```
8666 239.956650
                                                                                 87 S: 220 mmp1102.verio-web.com ESMTP
8667 239.957025
                     192.168.0.113
                                            161.58.148.77
                                                                    SMTP
                                                                                 66 C: EHLO vid01
8668 240.052320
                     161.58.148.77
                                            192.168.0.113
                                                                    SMTP
SMTP
                                                                                145 S: 250-mmp1102.verio-web.com | PIPELINING | 8BITMIME | SIZE 0 | AUTH LOGIN PLAIN 66 C: AUTH LOGIN
8669 240.052654
                     192.168.0.113
                                            161.58.148.77
8670 240 146314
                     161.58.148.77
                                            192.168.0.113
                                                                    SMTP
                                                                                 72 S: 334 VXN1cm5hbWU6
                                                                                 72 C: User: bGF1cmEuY2hhcHA0
                                                                                 72 S: 334 UGFzc3dvcm06
8672 240.256937
                     161.58.148.77
                                            192,168,0,113
                                                                    SMTP
8673 240.257224
                     192.168.0.113
                                            161.58.148.77
                                                                    SMTP
SMTP
                                                                                 81 S: 235 ok, go ahead (#2.0.0)
88 C: MAIL FROM: <laura@chappellu.com>
8674 240.358853
                     161.58.148.77
                                            192.168.0.113
                                            161.58.148.77
8675 240.359256
8676 240.453086
                     192.168.0.113
                                                                    SMTP
                                                                    SMTP
                                                                                 64 S: 250 ok
                     161.58.148.77
                                            192.168.0.113
                                                                                 87 C: RCPT TO: <bre>com><br/>64 S: 250 ok
8677 240.453583
                     192.168.0.113
                                            161.58.148.77
                                                                    SMTP
8678 240.546767
                     161.58.148.77
                                            192.168.0.113
                                                                    SMTP
8679 240.547217
                     192,168,0,113
                                            161.58.148.77
                                                                    SMTP
                                                                                 60 C: DATA
8680 240.640708
                                                                                 68 S: 354 go ahead
8681 240.649612
                     192.168.0.113
                                            161.58.148.77
                                                                    SMTP
                                                                               1514 C: DATA fragment, 1460 bytes
                                                                               1514 C: DATA fragment, 1460 bytes
636 from: "Laura Chappell" <laura@chappellu.com>, subject: Test, (text/plain) (text/html) | .
8682 240.649623
                     192.168.0.113
                                            161.58.148.77
                                                                    SMTP
                                                                    SMTP/I...
8684 240.744909
                                            161.58.148.77
                     192.168.0.113
8685 240.844942
                     161 58 148 77
                                            192,168,0,113
                                                                   SMTP
                                                                                 81 S: 250 ok 1256145014 qp 3531
8687 243.351611
                                                                                 81 S: 221 mmp1102.verio-web.com
8690 243.506787
                    161.58.148.77
                                            192.168.0.113
```

Figura 7: Tráfego SMTP na captura.

### **NetBIOS** (Name Service e NetBIOS Session Service):

Embora legítimos em redes Windows antigas, hoje são considerados protocolos inseguros. Sua presença pode indicar sistemas desatualizados ou configurações inadequadas, potencialmente exploráveis.

## **FTP** (Data e File Transfer Protocol):

O FTP é conhecido por transmitir credenciais em claro. Sua presença, especialmente sem FTPS e SFTP, representa um risco de segurança significativo.

| 8697 550.882769479 10.10.100.117 | 10.10.100.119 | FTP | 74 Response: 220 (vsFTPd 2.3.4)                                                       |
|----------------------------------|---------------|-----|---------------------------------------------------------------------------------------|
| 8707 557.005958208 10.10.100.119 | 10.10.100.117 | FTP | 68 Request: USER georgia                                                              |
| 8709 557.010315546 10.10.100.117 | 10.10.100.119 | FTP | 88 Response: 331 Please specify the password.                                         |
| 8718 560.484375607 10.10.100.119 | 10.10.100.117 | FTP | 69 Request: PASS password                                                             |
| 8719 560.492732710 10.10.100.117 | 10.10.100.119 | FTP | 77 Response: 230 Login successful.                                                    |
| 8721 560.493275609 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: SYST                                                                      |
| 8722 560.494233415 10.10.100.117 | 10.10.100.119 | FTP | 73 Response: 215 UNIX Type: L8                                                        |
| 8723 560.494472362 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: FEAT                                                                      |
| 8724 560.495504926 10.10.100.117 | 10.10.100.119 | FTP | 69 Response: 211-Features:                                                            |
| 8725 560.495505296 10.10.100.117 | 10.10.100.119 | FTP | 61 Response: EPRT                                                                     |
| 8726 560.495505463 10.10.100.117 | 10.10.100.119 | FTP | 61 Response: EPSV                                                                     |
| 8727 560.495505627 10.10.100.117 | 10.10.100.119 | FTP | 61 Response: MDTM                                                                     |
| 8728 560.495505795 10.10.100.117 | 10.10.100.119 | FTP | 61 Response: PASV                                                                     |
| 8730 560.496783413 10.10.100.117 | 10.10.100.119 | FTP | 98 Response: REST STREAM                                                              |
| 8735 564.531544037 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: EPSV                                                                      |
| 8736 564.532881081 10.10.100.117 | 10.10.100.119 | FTP | 103 Response: 229 Entering Extended Passive Mode (   29522 ).                         |
| 8741 564.534520949 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: LIST                                                                      |
| 8742 564.535664640 10.10.100.117 | 10.10.100.119 | FTP | 93 Response: 150 Here comes the directory listing.                                    |
| 8744 564.536406974 10.10.100.117 | 10.10.100.119 | FTP | 78 Response: 226 Directory send OK.                                                   |
| 8782 573.515609472 10.10.100.119 | 10.10.100.117 | FTP | 62 Request: TYPE I                                                                    |
| 8783 573.516831184 10.10.100.117 | 10.10.100.119 | FTP | 85 Response: 200 Switching to Binary mode.                                            |
| 8784 573.517130913 10.10.100.119 | 10.10.100.117 | FTP | 75 Request: SIZE overflowtest.c                                                       |
| 8785 573.518253348 10.10.100.117 | 10.10.100.119 | FTP | 63 Response: 213 265                                                                  |
| 8786 573.518512130 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: EPSV                                                                      |
| 8787 573.519564769 10.10.100.117 | 10.10.100.119 | FTP | 103 Response: 229 Entering Extended Passive Mode (   35884 ).                         |
| 8791 573.521030857 10.10.100.119 | 10.10.100.117 | FTP | 75 Request: RETR overflowtest.c                                                       |
| 8792 573.522027480 10.10.100.117 | 10.10.100.119 | FTP | 127 Response: 150 Opening BINARY mode data connection for overflowtest.c (265 bytes). |
| 8795 573.522423562 10.10.100.117 | 10.10.100.119 | FTP | 78 Response: 226 Transfer complete.                                                   |
| 8799 573.523818711 10.10.100.119 | 10.10.100.117 | FTP | 75 Request: MDTM overflowtest.c                                                       |
| 8801 573.524610725 10.10.100.117 | 10.10.100.119 | FTP | 74 Response: 213 20121102131847                                                       |
| 8825 594.604092033 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: EPSV                                                                      |
| 8826 594.605395772 10.10.100.117 | 10.10.100.119 | FTP | 103 Response: 229 Entering Extended Passive Mode (   56996 ).                         |
| 8831 594.607667945 10.10.100.119 | 10.10.100.117 | FTP | 70 Request: STOR teste.txt                                                            |
| 8832 594.609741094 10.10.100.117 | 10.10.100.119 | FTP | 76 Response: 150 Ok to send data.                                                     |
| 8838 594.612792284 10.10.100.117 | 10.10.100.119 | FTP | 78 Response: 226 Transfer complete.                                                   |
| 8858 599.731818371 10.10.100.119 | 10.10.100.117 | FTP | 60 Request: QUIT                                                                      |
| 8859 599.733274659 10.10.100.117 | 10.10.100.119 | FTP | 68 Response: 221 Goodbye.                                                             |

Figura 8 : Tráfego FTP na captura.

Assim como no SMTP, verifica-se que a falta de encriptação nos protocolos expõe as comunicações, conforme a figura 8 é possível analisar que alguém que esteja em posição de escuta pode facilmente capturar credenciais de login (Trama 8707 – username; Trama 8718 – password), bem como fazer download dos ficheiros transferidos.

## f. Análise às Streams do tráfego TCP

Analisaremos o conteúdo das comunicações (streams) através da funcionalidade **Follow TCP Stream** do Wireshark, que permite reconstruir e inspecionar fluxos de comunicação.

| N° Orden s ou stream s | Tempo(s)              | Src/Dst                                                          | Comentário                                                                                                                                                              |
|------------------------|-----------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                      | 3.020<br>-<br>15.2177 | 10.10.100.121<br>(porta 47524)-<br>142.250.184.163<br>(porta 80) | Cliente (10.10.100.121) a obter conexão ao servidor da google (142.250.184.163) onde também obtém acesso a uma pki, para este efeito deu uso dos protocolos TCP e OSPF. |

| 2     | 3.5937                    | 10.10.100.121                                                               | Cliente estabelece uma ligação segura com o website                                                                                                                                                                                                                                                 |
|-------|---------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | -<br>62.5827              | (porta 48294)<br>-                                                          | relacionado ao domínio de telemetria do mozilla.<br>Além disto, é feita uma troca de dados relativos ao                                                                                                                                                                                             |
|       |                           | 34.120.208.123<br>(porta 443)                                               | certificado do servidor (onde a pki previamente acedida irá se envolver) e as chaves do cliente.                                                                                                                                                                                                    |
| 3-4   | 4,086<br>-<br>62.805      | 10.10.100.121<br>(porta)<br>-<br>142.250.200.99<br>(porta 443)              | Cliente acede a páginas estáticas do google onde obtém os recursos necessários através do domínio www.gstatic.com.  A stream 4 comparando com a stream 3 tem pacotes ACK duplicados ("TCP Dup ACK") e pacotes onde após a falha de um ack ("TCP ACKed unseen segment") foi feita uma retransmissão. |
| 5     | 4.185<br>-<br>65.85       | 10.10.100.121<br>(porta 47532)<br>-<br>142.250.184.163<br>(porta 80)        | O comportamento desta stream é similar ao da<br>stream 1, isto acontece pois a pki demora a<br>responder, logo existem situações como esta onde é<br>necessário pedir novamente o acesso.                                                                                                           |
| 6     | 4.9357<br>-<br>61.4738    | 10.10.100.121<br>(porta 52742)<br>-<br>142.250.200.163<br>(porta 443)       | Comportamento semelhante ao da stream 3-4 com a diferença que nesta stream se acede para a apis.google.com                                                                                                                                                                                          |
| 7-8-9 | 5.2297<br>-<br>65.481     | 10.10.100.121 (porta<br>)<br>-<br>142.250.184.163<br>(porta 80)             | É possível verificar que a estas streams contém<br>apenas sequência repetitivas de TCP Dup ACK.<br>Devida a um comportamento atípico é necessário ter<br>atenção a uma possível anomalia.                                                                                                           |
| 10    | 14.0938<br>-<br>14.9012   | 10.10.100.121 (porta<br>47484)<br>-<br>216.58.209.68 (porta<br>443 -google) | O ip destino dos pacotes enviados pelo cliente, encontra-se associado ao google, mais concretamente a serviços de email.                                                                                                                                                                            |
| 11-12 | 16.5984<br>- 66.8196      | 10.10.100.121<br>(porta)<br>-<br>142.250.201.69<br>(porta 80)               | Este tráfego mostra uma conexão HTTP padrão,<br>entre o cliente e o website<br>https://mail.google.com/mail, relativo ao domain da<br>stream anterior, seguida por pacotes TCP<br>Keep-Alive para manter a conexão ativa                                                                            |
| 13    | 16.89699<br>-<br>63.2270  | 10.10.100.121 (porta<br>36830)<br>-<br>142.250.200.163<br>(porta 443)       | Comportamento semelhante ao da stream 3-4 com a diferença que nesta stream se acede e troca-se dados com mail.google.com (é a conclusão do processo iniciado na stream 10)                                                                                                                          |
| 14    | 18.54918<br>-<br>58.73114 | 10.10.100.121 (porta<br>38478)-<br>142.250.110.84(port<br>a 443)            | Comportamento semelhante à stream 3-4 com a diferença que está a aceder a accounts.google.com, um serviço de autenticação ou acesso a serviços Google.                                                                                                                                              |

| 15-16                  | 19.40494              | 10.10.100.121(porta                                                          | Após um handshake TLS 1.3 normal para                                                                                                                                                    |
|------------------------|-----------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 59.89                 | )<br>-<br>216.58.215.131<br>(porta 443                                       | fonts.gstatic.com, (website similar o da stream 1) o tráfego torna-se suspeito a partir de 53.24896s com retransmissões e ACKs duplicados, similar a anomalias anteriores.               |
| 17                     | 20.17                 | 10.10.100.121 (porta<br>51294)<br>-<br>142.250.200.78(port<br>a 443)         | Acesso normal ao youtube com diversos pedidos e respostas.                                                                                                                               |
| 18-19                  | 30.010<br>-<br>62.64  | 10.10.100.121(porta<br>)<br>-<br>216.58.215.174(port<br>a 443)               | Acesso normal ao google com diversos pedidos e respostas.                                                                                                                                |
| 20                     | 30.25<br>-<br>67.76   | 10.10.100.121 (porta<br>400012)<br>-<br>140.98.193.101<br>(porta 443)        | Acesso ao eservices 10. ieee.org um subdominio de IEEE (Institute of Electrical and Electronics Engineers) que poderia ser "por exemplo, o cliente a consultar um paper de investigação. |
| 21                     | 30.87<br>-<br>61.01   | 10.10.100.121 (porta<br>51802)<br>-<br>104.18.20.226 porta<br>80)            | Cloudflare ( gestor de tráfego web comum). com o acesso de acordo com o esperado.                                                                                                        |
| 22-23-<br>24-25-<br>26 | 31.225<br>-<br>38.190 | 10.10.100.121 (porta<br>)<br>-<br>140.98.193.101 porta<br>80)                | Acesso ao eservices10.ieee.org igual à stream 20.                                                                                                                                        |
| 27                     | 48.291<br>-<br>48.435 | 10.10.100.121 (porta<br>47152 )<br>-<br>140.250.200.99<br>(porta 80)         | Acesso ao gstatic.com como na stream 3                                                                                                                                                   |
| 28                     | 50.0031               | 10.10.100.121 (porta<br>38466)<br>-<br>173.194.76.94(porta<br>443)           | Esta stream inicia com um handshake TLS 1.3 para o domínio accounts.google.pt, similar à stream 14.                                                                                      |
| 29                     | 51.3288               | 10.10.100.121 (porta<br>55110)<br>-<br>216.58.209.78 (porta<br>443 - Google) | Assim como já aconteceu em streams previas esta tem presente uma conexão TLS 1.3 mas para o serviço chat.google.com, um serviço da Google de troca de mensagens entre indivíduos.        |

| 30    | 53.8269<br>-<br>54.016    | 10.10.100.121 (porta<br>47102)<br>-<br>142.250.200.163<br>(porta 443 - Google) | Esta stream inicia com um handshake TLS 1.3 para o domínio lh3.google.com ,serviço da Google que armazena imagens relativas a icons de serviços etc.                                                                                   |
|-------|---------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31    | 54.44731<br>-<br>55.07    | 10.10.100.121 (porta<br>51852)<br>-<br>142.250.184.10<br>(porta 443 - Google)  | Novamente uma conexão TLS 1.3 mas para o subdomínio ogads-pa.clients6.google.com do google, um serviço legítimo da Google relacionado a anúncios.                                                                                      |
| 32    | 54.44737<br>-<br>54.7677  | 10.10.100.121 (porta<br>51854)<br>-<br>142.250.184.10<br>(porta 443 - Google)  | Stream com conteúdo similar à stream anterior, mas contém um pacote com erro ack seguido de uma retransmissão.                                                                                                                         |
| 33-34 | 54.54594<br>-<br>55.02489 | 10.10.100.121(porta<br>)<br>-<br>142.250.201.74(port<br>a 443)                 | Handshake TLS normal para waa-pa.clients6.google.com ,serviço legítimo do Google relacionado novamente com os anúncios mas com um papel diferente de análise de dados e sincronização dos serviços.                                    |
| 35    | 54.64133<br>-<br>64.81724 | 10.10.100.121 (porta<br>47584)<br>-<br>142.250.184.163(por<br>ta 80)           | Stream similar com a stream 1 e 5( um acesso à pki )                                                                                                                                                                                   |
| 36    | 54.661<br>-<br>59.915     | 10.10.100.121(porta<br>47586)<br>-<br>142.250.184.163(por<br>ta 80)            | Apenas 6 pacotes TCP que poderão indicar uma continuação da stream 35                                                                                                                                                                  |
| 37    | 55.59628<br>-<br>60.60733 | 10.10.100.121(porta<br>34796)<br>-<br>142.250.200.65(port<br>a 443)            | Iniciado com handshake TCP/TLS 1.3 normal, para "lh3.googleusercontent.com", outro serviço de armazenamento (como na stream 30) mas que distribui conteúdos armazenados publicamente, por exemplo imagens guardadas no google Imagens. |
| 38    | 56.55952<br>-<br>56.69921 | 10.10.100.121(porta<br>51336)<br>-<br>142.250.200.78<br>(porta 443)            | Comunicação com o domínio ogs.google.com, serviço associado a logins e autenticações em outras aplicações ou afins, por exemplo escolher a opção de login pelo Google noutros websites.                                                |
| 39    | 57.352<br>-<br>58.628     | 10.10.100.121(porta<br>51818)<br>-<br>42.250.200.74(porta<br>443)              | Comunicação com safeBrowsing.googleapis.com (serviço legítimo de segurança do Google) com tráfego normal e esperado para um dispositivo verificando atualizações de segurança ou validando URLs.                                       |

| 40           | 57.438<br>-<br>67.635     | 10.10.100.121(porta<br>47594)<br>-<br>142.250.184.160<br>(porta 80)                  | O conteúdo encontra-se novamente relacionado á troca de dados com a pki, mas esta stream tem apenas um pouco numero de pacotes OSPF e TCP, em que alguns destes têm objetivo de manter viva a conexão.                                                                                                                                                                                                                                |
|--------------|---------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41           | 239.7665<br>-<br>243.5669 | 192.168.0.113(porta<br>1182)<br>-<br>161.58.148.77(porta<br>587)<br>(verio-web.com). | Esta stream revela uma vulnerabilidade crítica na transmissão de e-mails na rede, com exposição de credenciais e conteúdo sensível. Apesar de ser um tráfego legítimo de SMTP, a falta de encriptação representa um risco significativo à segurança da informação. É possível consultar os dados de autenticação do cliente, assim como todas as informações relacionadas com e-mail enviado (Remetente, destinatário, conteúdo etc.) |
| 42           | 550.87<br>-<br>599.7346   | 10.10.100.119 (porta<br>42388)<br>-<br>10.10.100.117 (porta<br>21)                   | Esta stream mostra a conexão FTP insegura . Como já mencionado no ponto e.3, este protocolo não tem encriptação como SMTP o que expõe dados de autenticação e até ficheiros transferidos pelo cliente. O cliente fez vários pedidos mas 3 se destacam pediu a lista da diretoria , o ficheiro overflowtest.c e o ficheiro teste.txt                                                                                                   |
| 43           | 557.11<br>-<br>597.061    | 10.10.100.121 (porta<br>51822)<br>-<br>34.107.221.82 (porta<br>80)                   | Esta stream mostra uma comunicação. A conexão inicia com um handshake TCP, seguido por uma requisição HTTP GET, após a transferência do ficheiro requerido, são observados múltiplos pacotes TCP Keep-Alive, indicando que a conexão foi mantida aberta para reutilização.                                                                                                                                                            |
| 44           | 557.19<br>-<br>597.1039   | 10.10.100.121 (porta<br>51826)<br>-<br>34.107.221.82<br>(porta 80)                   | Mesma situação que a stream 43                                                                                                                                                                                                                                                                                                                                                                                                        |
| 45-47-<br>48 | 564.53<br>-<br>564.5386   | 10.10.100.119<br>(porta) - 10.10.100.117<br>(porta) (servidor FTP)                   | Comunicação FTP legítima, mas insegura devido à falta de encriptação. Nestas temos presente o FTP-DATA, onde se encontram os dados pedidos na stream 42.  A stream 45 tem a lista de diretorias. A stream 47 o ficheiro overflowtest.c. E por fim a stream 48 com o ficheiro teste.txt.                                                                                                                                               |
| 46           | 565.735<br>-<br>565.765   | 10.10.100.121<br>(porta 59448)<br>-<br>34.107.243.93<br>(porta 443)                  | Continuação da comunicação e troca de dados entre o cliente e o servidor da google, onde foram capturados poucos pacotes, exatamente 4 TCP, provavelmente relacionados com as streams previamente discutidas.                                                                                                                                                                                                                         |

| 49-50-<br>51-52-<br>53-54-<br>55-56 | 2592.467<br>-<br>2593.681 | 10.10.100.119<br>-<br>10.10.100.117<br>-<br>10.10.100.120           | Comunicação TCP feita entre os dispositivos da rede local 10.10.100.0/24 (excluindo o cliente .121), estas "streams" foram mal definidas pelo wireshark, nem ocorre troca de dados entre estes, logo não deveriam ser consideradas como streams.                                |
|-------------------------------------|---------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57                                  | 1583.254<br>-<br>1636.994 | 10.10.100.119 (porta<br>56078)<br>-<br>10.10.100.120 (porta<br>445) | A sessão começa com uma autenticação via<br>NTLM, um método considerado vulnerável,<br>seguida por operações normais de acesso a<br>arquivos compartilhados, incluindo listagem e<br>manipulação de arquivos. Trata-se de uma<br>operação legítima, porém com vulnerabilidades. |

## Análise de atividades possivelmente suspeitas do tráfego filtrado.

Em prol da procura por atividade suspeita e após a análise das streams TCP referidas acima, foi decidido filtrar o tráfego usando o seguinte filtro"!tcp.stream && udp.stream >= 58" e analisar o resultado. Desta forma removemos todo o tráfego envolvido nas tcp streams e apenas foram deixados pacotes que se encontram nas udp streams numeradas 58 para cima.

| ).   | Time      | Source        | Destination   | Protoc | Lengt Info                                                                                          |
|------|-----------|---------------|---------------|--------|-----------------------------------------------------------------------------------------------------|
| 7929 | 62.556472 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xd727 A play.google.com                                                          |
| 7930 | 62.556472 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xe88c AAAA play.google.com                                                       |
| 7931 | 62.556719 | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0xd727 A play.google.com A 216.58.215.174                                |
|      |           | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0xe88c AAAA play.google.com AAAA 2a00:1450:4003:806::200e               |
| 7933 | 62.557827 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x7a54 A play.google.com                                                          |
|      |           | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xb918 AAAA play.google.com                                                       |
|      |           | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0x7a54 A play.google.com A 216.58.215.174                                |
| 7936 | 62.558093 | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0xb918 AAAA play.google.com AAAA 2a00:1450:4003:806::200e               |
| 8251 | 62.911967 | 10.10.100.121 | 194.117.47.44 | NTP    | 90 NTP Version 4, client                                                                            |
| 8252 | 62.936589 | 194.117.47.44 | 10.10.100.121 | NTP    | 90 NTP Version 4, server                                                                            |
| 8258 | 63.150865 | 10.10.100.121 | 10.10.100.1   | DNS    | 94 Standard query 0x0d48 A peoplestack-pa.clients6.google.com                                       |
| 8259 | 63.150865 | 10.10.100.121 | 10.10.100.1   | DNS    | 94 Standard query 0xec67 AAAA peoplestack-pa.clients6.google.com                                    |
| 8326 | 63.200150 | 10.10.100.1   | 10.10.100.121 | DNS    | 110 Standard query response 0x0d48 A peoplestack-pa.clients6.google.com A 142.250.200.138           |
| 8334 | 63.217955 | 10.10.100.1   | 10.10.100.121 | DNS    | 122 Standard query response 0xec67 AAAA peoplestack-pa.clients6.google.com AAAA 2a00:1450:4003:80f: |
| 8337 | 63.295880 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x6350 A chat.google.com                                                          |
| 8338 | 63.295880 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x8022 AAAA chat.google.com                                                       |
| 8339 | 63.296192 | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0x6350 A chat.google.com A 216.58.209.78                                 |
| 8340 | 63.296192 | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0x8022 AAAA chat.google.com AAAA 2a00:1450:4003:801::200e               |
| 8345 | 63.673522 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xd870 A chat.google.com                                                          |
| 8346 | 63.673522 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x59d7 AAAA chat.google.com                                                       |
| 8347 | 63.673683 | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0xd870 A chat.google.com A 216.58.209.78                                 |
| 8348 | 63.673683 | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0x59d7 AAAA chat.google.com AAAA 2a00:1450:4003:801::200e               |
| 8419 | 63.727839 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x53a1 A chat.google.com                                                          |
| 8420 | 63.727839 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xcae7 AAAA chat.google.com                                                       |
| 8421 | 63.728061 | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0x53a1 A chat.google.com A 216.58.209.78                                 |
| 8422 | 63.728061 | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0xcae7 AAAA chat.google.com AAAA 2a00:1450:4003:801::200e               |
| 8430 | 63.743459 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0x3917 A play.google.com                                                          |
| 8431 | 63.743460 | 10.10.100.121 | 10.10.100.1   | DNS    | 75 Standard query 0xa219 AAAA play.google.com                                                       |
| 8437 | 63.743727 | 10.10.100.1   | 10.10.100.121 | DNS    | 91 Standard query response 0x3917 A play.google.com A 216.58.215.174                                |
| 8438 | 63.743727 | 10.10.100.1   | 10.10.100.121 | DNS    | 103 Standard query response 0xa219 AAAA play google.com AAAA 2a00:1450:4003:806::200e               |

Figura 9 : Pacotes capturados após o filtro "!tcp.stream && udp.stream >= 58" (Parte 1).



Figura 10 : Pacotes capturados após o filtro "!tcp.stream && udp.stream >= 58" (Parte 2).

- 1. Através dos pacotes 7929,7935, 8430, 8490 com Origem: 10.10.100.121 e Destino: 10.10.100.1 averiguamos várias consultas DNS idênticas para os mesmos domínios (play.google.com e chat.google.com) em curtos intervalos de tempo. Isso pode indicar tentativas de resolver os mesmos endereços repetidamente, possivelmente devido a falhas na cache DNS ou comportamento anômalo de um aplicativo.
- 2. Através dos pacotes 8840, 8844 com Origem: 10.10.100.121 e Destino: 10.10.100.1 averiguamos que existem consultas para domínios como "vpad.localdomain" e "weather.noaa.gov.localdomain" resultam em respostas "No such name". Isso pode indicar erros de configuração em aplicações ou tentativas de explorar resoluções internas mal configuradas.
- 3. Através dos pacotes 8652, 8813, 8820,8928 com Origem: 10.10.100.121 e Destino: 88.157.128.22, 194.117.47.44, 185.125.190.58 averiguamos que várias solicitações NTP (Network Time Protocol) para servidores externos. Embora o NTP seja legítimo, a frequência e a variedade de servidores podem sugerir sincronização excessiva ou tentativas de explorar vulnerabilidades em serviços NTP.

- 4. Através dos pacotes exemplo 8879, 8882 com Origem: 10.10.100.121 e Destino: 10.10.100.119 averiguamos que consultas NetBIOS (MONKGROUP) e PTR para endereços IP internos (117.100.10.10.in-addr.arpa) com respostas "No such name". Isso pode indicar tentativas de descoberta de hosts na rede interna ou configurações incorretas de DNS reverso.
- 5. Através dos pacotes exemplo 8842, 9038 com Origem: 10.10.100.121 e Destino: 10.10.100.121 e 10.10.100.117 averiguamos que existem respostas do DNS com referências a servidores raiz (a.root-servers.net) para domínios locais (ubuntu.localdomain). Isso sugere que a rede não está resolvendo corretamente nomes internos, possivelmente devido a falhas na configuração do DNS local.

As anomalias identificadas incluem desde comportamentos repetitivos (consultas DNS excessivas) até atividades potencialmente maliciosas (consultas NetBIOS e NTP incomuns). A maioria dos casos aponta para configurações inadequadas ou falhas na rede interna. Para uma análise mais rigorosa deveria todos os endereços deveriam ser averiguados para enquadrar melhor o comportamento da rede.

Por fim, falta então analisar o tráfego para além destas streams top e udp, para isso usamos o filtro "!tcp.stream && !udp.stream". Analisando o tráfego resultante, vemos que excluindo um pacote ICMPv6 solicitado por um router, temos só pedidos arps feitos para identificar os endereços mac dos dispositivos cuja interface se encontra da rede local, não conseguimos identificar qualquer anomalia, sem ser o facto de existirem alguns pedidos arps repetidos, o que significa que foi necessária mais do que uma tentativa para o dispositivo source obter a resposta que pretende.

Na figura 11 podemos então analisar uma parte deste tráfego, onde se verifica estes pedidos arps repetidos.

| 1996 29.513994006  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
|--------------------|-------------------------------|-----|--------------------------------------------|
| 2086 30.515311511  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2345 33.521425868  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2348 34.520927350  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2355 35.521523494  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2356 36.522798472  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2378 42.526456714  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2382 43.531409065  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2385 44.528509278  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2392 45.526582303  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2393 46.529276438  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2704 49.525900176  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 2763 50.533635693  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 3699 51.531789242  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 3799 52.529412538  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 4263 53.530247247  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 4415 54.530585936  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 4841 55.526322823  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 5217 56.535067572  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 5890 57.540141162  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 6191 58.538349281  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 8637 64.350080315  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.50? Tell 10.10.100.1  |
| 8642 65.346539858  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.50? Tell 10.10.100.1  |
| 8649 65.554889771  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 8654 66.552101957  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 8657 67.548469766  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.50? Tell 10.10.100.1  |
| 8658 67.549062423  | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
|                    | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
|                    | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
|                    | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |
| 8701 554.107054310 | PCSSystemtec_78:c6: Broadcast | ARP | 60 Who has 10.10.100.107? Tell 10.10.100.1 |

Figura 11 : Parte da captura do trafego após o filtro "!tcp.stream && !udp.stream".

### Identificação das sessões

Para a identificação das sessões presentes neste tráfego tivemos em consideração os saltos no tempo entre as os pacotes iniciais das TCP streams e o contexto destas , nomeadamente o que estava a ser efetuado , protocolos envolvidos, etc.

Sendo assim conseguimos encontrar 7 sessões diferentes:

**Primeira sessão:** Ocorre nas streams de **1 a 9** (aproximadamente entre 3 e 5 segs), nesta sessão ocorre o acesso ao servidor da google, com acessos a pki , seguido de uma navegação em páginas estáticas do google.

**Segunda sessão:** Ocorre nas streams de **10 a 17** (aproximadamente entre 14 e 20 segs), esta sessão poderia ser até a mesma que a sessão anterior, sendo que acaba por ser uma retoma da anterior e trata-se também da navegação no google, concretamente serviços como gmail entre outros, mas optamos por separá-las para seguirmos o raciocínio dos saltos temporais como nas outras sessões.

**Terceira sessão:** Ocorre nas streams de **18 a 26** (aproximadamente entre 30 e 32 segs), nesta sessão temos a continuação de acessos a domínios do google, nomeadamente o "play.google.com", mas já contém acessos a domínios e subdomínios associados ao IEEE, onde o cliente pode ter feito consultas de papers de investigação entre outros.

**Quarta sessão:** Ocorre nas streams de **27 a 40** (aproximadamente entre 48 e 57 segs), nesta sessão temos novamente acessos a domínios do google, serviços relacionados com publicidades, com partilha de documentos e imagens ( possivelmente ferramentas como Google Docs), entre outros.

**Quinta sessão:** Ocorre na stream **41** (aproximadamente entre 239 e 243 segs), esta sessão é apenas esta trama pois foi nesta que houve todo o processo relativamente ao envio de um e-mail através do protocolo inseguro SMTP.

**Sexta sessão:** Ocorre nas streams de **42 a 48** (aproximadamente entre 550 e 594 segs), esta sessão está relacionada com todo o processo de pedido e obtenção de ficheiros/informações com protocolo inseguro FTP, assim como já mencionado com mais detalhe na tabela de análise das TCP streams, três pedidos de informações se destacam, nomeadamente o pedido das diretorias , o do ficheiro overflowtest.c e o do ficheiro teste.txt onde o requerente obteve-as nas streams 45,47 e 48, respetivamente.

**Sétima sessão:** Ocorre na stream **57** (aproximadamente entre 1583 e 1636 segs), esta última sessão está associada ao pedido de consulta do ficheiro teste.txt com o protocolo SMB2, este processo envolve vários passos iniciais desde a necessidade de um setup inicial, como a de saber a localização do ficheiro, após estes o requerente consegue consultar o seu ficheiro objetivo.

As streams **49 a 56** não foram atribuídas a uma sessão, sendo que como já previamente dito na tabela de análise das streams TCP, estas não são relevantes pois nem sequer ocorrem trocas de dados nelas.

#### Conclusão

Neste trabalho prático, seguimos uma metodologia estruturada para análise de tráfego da rede fornecida pelo educando. Recorrendo às ferramentas estatísticas do Wireshark, caracterizamos a rede local (10.10.100.0/24), identificamos os principais endpoints ilustrando-os num mapa e analisamos os protocolos envolvidos neste tráfego, aproveitando para indicar possíveis anomalias.

Fizemos uma análise geral do tráfego da rede, começando por analisar as streams TCP's, agrupando-as em sessões e identificando vulnerabilidades significativas, seguido da análise de algumas streams UDP's onde também detectamos possíveis atividades suspeitas. Concluímos com uma análise do tráfego resultante após a filtração das streams TCP e UDP.

Concluímos que os objetivos foram plenamente alcançados, os resultados revelaram a necessidade de implementar medidas de segurança adicionais, principalmente a adoção de protocolos com mecanismos de encriptação. Este trabalho expandiu o nosso conhecimento, sendo que foi necessária alguma procura de novos conceitos assim como ajudou na consolidação daqueles que já foram mencionados nas aulas.

### Distribuição de Tarefas

Ambos os membros do grupo contribuíram de forma equitativa para este projeto, investindo aproximadamente 10 horas cada, ligeiramente menor que o anterior. Grande parte desse tempo foi dedicado à análise das streams TCP's e à identificação das sessões,

#### Referências

- 1. **MaxMind**. (n.d.). *GitHub MaxMind*. GitHub. https://github.com/maxmind
- 2. **Wireshark**. (n.d.). *Wireshark User's Guide*. https://www.wireshark.org/docs/wsug\_html\_chunked/
- 3. Slides fornecidos pelo educando.