Chapter 1

Solution approximation

1.1 The Bisection Method

Exercise 1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution 1

f(0) = -1 and $f(1) \approx 0.459\,697\,694$ have the opposite signs, so there's a root in [0,1].

Table of iteration for $f(x) = \sqrt{(x) - \cos x}$ on [0, 1]:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.170475781
2	0.5	1	0.75	0.134336535
3	0.5	0.75	0.625	-0.020393704

So $p_3 = 0.625$.

Exercise 2

Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method to find p_3 in the following intervals:

- (a) [-2, 1.5]
- (b) [-1.5, 2.5]

2

Solution 2

(a) f(-2) = -22.5 and f(1.5) = 3.75 have the opposite signs, so there's a root in [-2, 1.5].

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	1.5	-0.25	2.109375
2	-2	-0.25	-1.125	-1.294921875
3	-1.125	-0.25	-0.6875	1.878662109

So $p_3 = -0.6875$.

(b) f(-1.25) = -2.953125 and f(2.5)) = 31.5 have the opposite signs, so there's a root in [-1.25, 2.5].

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0

The solution is found in the first iteration so p_3 doesn't exist.

Exercise 3

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 - 7x^2 + 14x - 6 = 0$ in the following intervals:

- (a) [0,1]
- (b) [1, 3.2]
- (c) [3.2, 4]

Solution 3

(a) f(0) = -6 and f(1) = 2 have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.625
2	0.5	1	0.75	0.984375
3	0.5	0.75	0.625	0.259766
4	0.5	0.625	0.5625	-0.161865
5	0.5625	0.625	0.59375	0.054047
6	0.5625	0.59375	0.578125	-0.052624
7	0.578125	0.59375	0.5859375	0.001031

So $p \approx 0.5859$.

(b) f(1) = 2 and f(3.2) = -0.112 have the opposite signs, so there's a root in [1, 3.2].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	1	3.2	2.1	1.791
2	2.1	3.2	2.65	0.552125
3	2.65	3.2	2.925	0.085828
4	2.925	3.2	3.0625	-0.054443
5	2.925	3.0625	2.99375	0.006328
6	2.99375	3.0625	3.028125	-0.026521
7	2.99375	3.02813	3.010938	-0.010697
8	2.99375	3.010938	3.002344	-0.002333

So $p \approx 3.0023$.

(c) f(3.2) = -0.112 and f(4) = 2 have the opposite signs, so there's a root in [3.2, 4].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	3.2	4	3.6	0.336
2	3.2	3.6	3.4	-0.016
3	3.4	3.6	3.5	0.125
4	3.4	3.5	3.45	0.046125
5	3.4	3.45	3.425	0.013016
6	3.4	3.425	3.4125	-0.001998
7	3.4125	3.425	3.41875	0.005382

So $p \approx 3.4188$.

Exercise 4

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4-2x^3-4x^2+4x+4=0$ for the following intervals:

- (a) [-2, -1]
- (b) [0, 2]
- (c) [2,3]
- (d) [-1,0]

Solution 4

(a) f(-2) = 12 and f(-1) = -1 have the opposite signs, so there's a root in [-2, -1].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	-1	-1.5	0.8125
2	-1.5	-1	-1.25	-0.902344
3	-1.5	-1.25	-1.375	-0.288818
4	-1.5	-1.375	-1.4375	0.195328
5	-1.4375	-1.375	-1.40625	-0.062667
6	-1.4375	-1.40625	-1.421875	0.062263
7	-1.421875	-1.40625	-1.414063	-0.001208

So $p \approx -1.4141$.

(b) f(0) = 4 and f(2) = -4 have the opposite signs, so there's a root in [0, 2]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	2	1	3
2	1	2	1.5	-0.6875
3	1	1.5	1.25	1.285156
4	1.25	1.5	1.375	0.312744
5	1.375	1.5	1.4375	-0.186508
6	1.375	1.4375	1.40625	0.063676
7	1.40625	1.4375	1.421875	-0.061318
8	1.40625	1.421875	1.414063	0.001208

So $p \approx 1.4141$.

(c) f(2) = -4 and f(3) = 7 have the opposite signs, so there's a root in [2, 3]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-3.1875
2	2.5	3	2.75	0.347656
3	2.5	2.75	2.625	-1.757568
4	2.625	2.75	2.6875	-0.795639
5	2.6875	2.75	2.71875	-0.247466
6	2.71875	2.75	2.734375	0.044125
7	2.71875	2.734375	2.726563	-0.103151

So $p \approx 2.7266$.

(d) f(-1) = -1 and f(0) = 4 have the opposite signs, so there's a root in [-1,0].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1	0	-0.5	1.3125
2	-1	-0.5	-0.75	-0.089844
3	-0.75	-0.5	-0.625	0.578369
4	-0.75	-0.625	-0.6875	0.232681
5	-0.75	-0.6875	-0.71875	0.068086
6	-0.75	-0.71875	-0.734375	-0.011768
7	-0.734375	-0.71875	-0.726563	0.027943

So $p \approx -0.7266$.

Exercise 5

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$x - 2^{-x} = 0, x \in [0, 1]$$

(b)
$$e^x - x^2 + 3x - 2 = 0, x \in [0, 1]$$

(c)
$$2x\cos 2x - (x+1)^2 = 0, x \in [-3, -2]$$

(d)
$$x \cos x - 2x^2 + 3x - 1 = 0, x \in [0.2, 0.3]$$

Solution 5

(a) f(0) = -1 and f(1) = 0.5 have the opposite signs, so there's a root in [0,1].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.207106781
2	0.5	1	0.75	0.155396442
3	0.5	0.75	0.625	-0.023419777
4	0.625	0.75	0.6875	0.066571094

0.625	0.6875	0.65625	0.021724521
0.625	0.65625	0.640625	-0.000810008
0.640625	0.65625	0.6484375	0.010466611
0.640625	0.6484375	0.64453125	0.004830646
0.640625	0.64453125	0.642578125	0.002010906
0.640625	0.642578125	0.641601562	0.000600596
0.640625	0.641601562	0.641113281	-0.000104669
0.641113281	0.641601562	0.641357422	0.000247972
0.641113281	0.641357422	0.641235352	0.000071654
0.641113281	0.641235352	0.641174316	-0.000016507
0.641174316	0.641235352	0.641204834	0.000027573
0.641174316	0.641204834	0.641189575	0.000005533
0.641174316	0.641189575	0.641181946	-0.000005487
	0.625 0.640 625 0.640 625 0.640 625 0.640 625 0.640 625 0.641 113 281 0.641 113 281 0.641 174 316 0.641 174 316	0.625 0.656 25 0.640 625 0.656 25 0.640 625 0.648 437 5 0.640 625 0.644 531 25 0.640 625 0.642 578 125 0.640 625 0.641 601 562 0.641 113 281 0.641 601 562 0.641 113 281 0.641 357 422 0.641 113 281 0.641 235 352 0.641 174 316 0.641 235 352 0.641 174 316 0.641 204 834	$\begin{array}{ccccc} 0.625 & 0.65625 & 0.640625 \\ 0.640625 & 0.65625 & 0.6484375 \\ 0.640625 & 0.6484375 & 0.64453125 \\ 0.640625 & 0.64453125 & 0.642578125 \\ 0.640625 & 0.642578125 & 0.641601562 \\ 0.640625 & 0.641601562 & 0.641113281 \\ 0.641113281 & 0.641601562 & 0.641357422 \\ 0.641113281 & 0.641357422 & 0.641235352 \\ 0.641113281 & 0.641235352 & 0.641174316 \\ 0.641174316 & 0.641235352 & 0.641204834 \\ 0.641174316 & 0.641204834 & 0.641189575 \\ \end{array}$

So $p \approx -0.641 \, 182$.

(b) f(0) = -1 and f(1) = e have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

$\underline{}$	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	0.898721271
2	0	0.5	0.25	-0.028474583
3	0.25	0.5	0.375	0.439366415
4	0.25	0.375	0.3125	0.206681691
5	0.25	0.3125	0.28125	0.089433196
6	0.25	0.28125	0.265625	0.030564234
7	0.25	0.265625	0.2578125	0.001066368
8	0.25	0.2578125	0.25390625	-0.013698684
9	0.25390625	0.2578125	0.255859375	-0.006314807
10	0.255859375	0.2578125	0.256835938	-0.002623882
11	0.256835938	0.2578125	0.257324219	-0.000778673
12	0.257324219	0.2578125	0.257568359	0.000143868
13	0.257324219	0.257568359	0.257446289	-0.000317397
14	0.257446289	0.257568359	0.257507324	-0.000086763
15	0.257507324	0.257568359	0.257537842	0.000028553
16	0.257507324	0.257537842	0.257522583	-0.000029105
17	0.257522583	0.257537842	0.257530212	-0.000000276

So $p \approx 0.25753$.

(c) $f(-3) \approx -9.761\,021\,72$ and $f(-2) = 1.614\,574\,483$ have the opposite signs, so there's a root in [-3,-2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-2	-2.5	-3.66831093
2	-2.5	-2	-2.25	-0.613918903
3	-2.25	-2	-2.125	0.630246832
4	-2.25	-2.125	-2.1875	0.038075532
5	-2.25	-2.1875	-2.21875	-0.280836176
6	-2.21875	-2.1875	-2.203125	-0.119556815
7	-2.203125	-2.1875	-2.1953125	-0.040278514
8	-2.1953125	-2.1875	-2.19140625	-0.000985195
9	-2.19140625	-2.1875	-2.18945312	0.018574337
10	-2.19140625	-2.18945312	-2.19042969	0.008801851
11	-2.19140625	-2.19042969	-2.19091797	0.003910147
12	-2.19140625	-2.19091797	-2.19116211	0.00146293
13	-2.19140625	-2.19116211	-2.19128418	0.000238981
14	-2.19140625	-2.19128418	-2.19134521	-0.000373078
15	-2.19134521	-2.19128418	-2.1913147	-0.000067041
16	-2.1913147	-2.19128418	-2.19129944	0.000085972

So $p \approx -2.191299$.

(d) $f(0.2) \approx -0.283\,986\,684$ and $f(0.3) = 0.006\,600\,946$ have the opposite signs, so there's a root in [0.2,0.3].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

n	a_n	b_n	p_n	$f(p_n)$
1	0.2	0.3	0.25	-0.132771895
2	0.25	0.3	0.275	-0.061583071
3	0.275	0.3	0.2875	-0.027112719
4	0.2875	0.3	0.29375	-0.010160959
5	0.29375	0.3	0.296875	-0.001756232

6	0.296875	0.3	0.2984375	0.002428306
7	0.296875	0.2984375	0.29765625	0.000337524
8	0.296875	0.29765625	0.297265625	-0.000708983
9	0.297265625	0.29765625	0.297460938	-0.000185637
10	0.297460938	0.29765625	0.297558594	0.000075967
11	0.297460938	0.297558594	0.297509766	-0.000054829
12	0.297509766	0.297558594	0.29753418	0.00001057
13	0.297509766	0.29753418	0.297521973	-0.000022129
14	0.297521973	0.29753418	0.297528076	-0.000005779

So $p \approx 0.297528$.

Exercise 6

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$3x - e^x = 0, x \in [1, 2]$$

(b)
$$2x + 3\cos x - e^x = 0, x \in [0, 1]$$

(c)
$$x^2 - 4x + 4 - \ln x = 0, x \in [1, 2]$$

(d)
$$x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$$

Solution 6

1. $f(1) \approx 0.281718172$ and f(2) = -1.389056099 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

n	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.01831093
2	1.5	2	1.75	-0.504602676
3	1.5	1.75	1.625	-0.203419037
4	1.5	1.625	1.5625	-0.083233182
5	1.5	1.5625	1.53125	-0.030203153
6	1.5	1.53125	1.515625	-0.005390404
7	1.5	1.515625	1.5078125	0.006598107
8	1.5078125	1.515625	1.51171875	0.000638447
9	1.51171875	1.515625	1.51367188	-0.002367313

10	1.51171875	1.51367188	1.51269531	-0.000862268
11	1.51171875	1.51269531	1.51220703	-0.00011137
12	1.51171875	1.51220703	1.51196289	0.000263674
13	1.51196289	1.51220703	1.51208496	0.000076186
14	1.51208496	1.51220703	1.512146	-0.000017584
15	1.51208496	1.512146	1.51211548	0.000029303
16	1.51211548	1.512146	1.51213074	0.00000586
17	1.51213074	1.512146	1.51213837	-0.000005861

So $p \approx 1.512138$.

- 2. f(0)=2 and $f(1)\approx 0.902\,625\,089$ have the same sign, so there's no root in [0,1].
- 3. f(1) = 1 and f(2) = -0.693147181 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	a_n	b_n	p_n	$f(p_n)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	2	1.5	-0.155465108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	1.5	1.25	0.339356449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1.25	1.5	1.375	0.072171269
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.375	1.5	1.4375	-0.046499244
7 1.406 25 1.421 875 1.414 062 5 -0.003 144 0 8 1.406 25 1.414 062 5 1.410 156 25 0.004 215 1 9 1.410 156 25 1.414 062 5 1.412 109 38 0.000 530 7	5	1.375	1.4375	1.40625	0.011612476
8 1.406 25 1.414 062 5 1.410 156 25 0.004 215 1 9 1.410 156 25 1.414 062 5 1.412 109 38 0.000 530 7	6	1.40625	1.4375	1.421875	-0.017747908
9 1.410 156 25 1.414 062 5 1.412 109 38 0.000 530 7	7	1.40625	1.421875	1.4140625	-0.003144013
	8	1.40625	1.4140625	1.41015625	0.004215136
10 1.412 109 38 1.414 062 5 1.413 085 94 -0.001 307 8	9	1.41015625	1.4140625	1.41210938	0.00053079
	0	1.41210938	1.4140625	1.41308594	-0.001307804
11 1.412 109 38 1.413 085 94 1.412 597 66 -0.000 388 8	1	1.41210938	1.41308594	1.41259766	-0.000388805
12 1.412 109 38 1.412 597 66 1.412 353 52 0.000 070 9	2	1.41210938	1.41259766	1.41235352	0.000070918
13 1.41235352 1.41259766 1.41247559 -0.0001589	3	1.41235352	1.41259766	1.41247559	-0.000158962
14 1.41235352 1.41247559 1.41241455 -0.0000440	4	1.41235352	1.41247559	1.41241455	-0.000044027
15 1.41235352 1.41241455 1.41238403 0.0000134	5	1.41235352	1.41241455	1.41238403	0.000013444
16 1.41238403 1.41241455 1.41239929 -0.0000152	6	1.41238403	1.41241455	1.41239929	-0.000015292
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1.412 384 03	1.41239929	1.41239166	-0.000000924

So $p \approx 1.412392$.

4. f(0) = 1 and f(1) = -0.5 have the opposite signs, so there's a root in

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	0.5	0.25	-0.164213562
2	0	0.25	0.125	0.359633135
3	0.125	0.25	0.1875	0.076359534
4	0.1875	0.25	0.21875	-0.050036568
5	0.1875	0.21875	0.203125	0.011726391
6	0.203125	0.21875	0.2109375	-0.019525681
7	0.203125	0.2109375	0.20703125	-0.003990833
8	0.203125	0.20703125	0.205078125	0.003845166
9	0.205078125	0.20703125	0.206054688	-0.00007851
10	0.205078125	0.206054688	0.205566406	0.001881912
11	0.205566406	0.206054688	0.205810547	0.000901347
12	0.205810547	0.206054688	0.205932617	0.00041133
13	0.205932617	0.206054688	0.205993652	0.000166388
14	0.205993652	0.206054688	0.20602417	0.000043934
15	0.20602417	0.206054688	0.206039429	-0.000017289
16	0.20602417	0.206039429	0.206031799	0.000013322

[0, 0.5].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.5 - 0}{2^n} < 10^{-5} \iff n \ge 16$$

We have the following table:

So $p \approx 0.206\,032$.

Exercise 7

- (a) Sketch the graphs of y = x and $y = 2 \sin x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x=2\sin x$.

Solution 7

(a) Graph of y = x and $y = 2 \sin x$ is as follow:

(b) According to the graph, the first positive root p of $f = x - 2\sin x$ is in $\left[\frac{\pi}{2}, \pi\right]$.

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{\pi - \frac{\pi}{2}}{2^n} < 10^{-5} \iff n \ge 18$$

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	1.57079633	3.14159265	2.35619449	0.941980928
2	1.57079633	2.35619449	1.96349541	0.115736343
3	1.57079633	1.96349541	1.76714587	-0.194424693
4	1.76714587	1.96349541	1.86532064	-0.048560033
5	1.86532064	1.96349541	1.91440802	0.031319893
6	1.86532064	1.91440802	1.88986433	-0.009192031
7	1.88986433	1.91440802	1.90213618	0.010921526
8	1.88986433	1.90213618	1.89600025	0.000829072
9	1.88986433	1.89600025	1.89293229	-0.004190408
10	1.89293229	1.89600025	1.89446627	-0.001682899
11	1.89446627	1.89600025	1.89523326	-0.000427471
12	1.89523326	1.89600025	1.89561676	0.000200661
13	1.89523326	1.89561676	1.89542501	-0.00011344
14	1.89542501	1.89561676	1.89552088	0.000043602
15	1.89542501	1.89552088	1.89547295	-0.000034921
16	1.89547295	1.89552088	1.89549692	0.00000434
17	1.89547295	1.89549692	1.89548493	-0.000015291
18	1.89548493	1.89549692	1.89549092	-0.000005476

So $p \approx 1.895491$.

Exercise 8

(a) Graph of y = x and $y = \tan x$ is as follow:

(b) According to the graph, the first positive root p of $f = x - \tan x$ is in $[\pi, \frac{3\pi}{2}]$.

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{\frac{3\pi}{2} - \pi}{2^n} < 10^{-5} \iff n \ge 18$$

$\underline{}$	a_n	b_n	p_n	$f(p_n)$
1	3.14159265	4.71238898	3.92699082	2.92699082
2	3.92699082	4.71238898	4.3196899	1.90547634
3	4.3196899	4.71238898	4.51603944	-0.511300053
4	4.3196899	4.51603944	4.41786467	1.12130646
5	4.41786467	4.51603944	4.46695205	0.474728271
6	4.46695205	4.51603944	4.49149575	0.038293523
7	4.49149575	4.51603944	4.50376759	-0.219861735
8	4.49149575	4.50376759	4.49763167	-0.086980389
9	4.49149575	4.49763167	4.49456371	-0.023432692
10	4.49149575	4.49456371	4.49302973	0.007653323
11	4.49302973	4.49456371	4.49379672	-0.007833371
12	4.49302973	4.49379672	4.49341322	-0.00007602
13	4.49302973	4.49341322	4.49322148	0.003792144
14	4.49322148	4.49341322	4.49331735	0.001858936
15	4.49331735	4.49341322	4.49336529	0.000891677
16	4.49336529	4.49341322	4.49338925	0.000407883
17	4.49338925	4.49341322	4.49340124	0.000165946
18	4.493 401 24	4.493 413 22	4.49340723	0.000 044 966

So $p \approx 4.493407$.

Exercise 9

- (a) Sketch the graphs of $y = e^x 2$ and $y = \cos e^x 2$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to a value in [0.5, 1.5] with $e^x 2 = \cos e^x 2$.

Solution 9

- (a) The graphs of the 2 functions are as follow:
- (b) Let $f = e^x 2 \cos e^x 2$. $f(0.5) \approx -1.290\,212$ and $f(1.5) \approx 3.271\,74$ have the opposite signs, so there's a root p of f in [0.5, 1.5].

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{1.5 - 0.5}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0.5	1.5	1	-0.034655726
2	1	1.5	1.25	1.40997635
3	1	1.25	1.125	0.609079747
4	1	1.125	1.0625	0.266982288
5	1	1.0625	1.03125	0.111147764
6	1	1.03125	1.015625	0.037002875
7	1	1.015625	1.0078125	0.000864425

8	1	1.0078125	1.00390625	-0.016972716
9	1.00390625	1.0078125	1.00585938	-0.00807344
10	1.00585938	1.0078125	1.00683594	-0.003609335
11	1.00683594	1.0078125	1.00732422	-0.001373662
12	1.00732422	1.0078125	1.00756836	-0.00025492
13	1.00756836	1.0078125	1.00769043	0.000304677
14	1.00756836	1.00769043	1.00762939	0.000024859
15	1.00756836	1.00762939	1.00759888	-0.000115035
16	1.00759888	1.00762939	1.00761414	-0.000045089

So $p \approx 1.007614$.

Exercise 10

Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

- (a) [-1.5, 2.5]
- (b) [-0.5, 2.4]
- (c) [-0.5, 3]
- (d) [-3, -0.5]

Solution 10

f has 5 zeros: ± 2 , ± 1 , 0.

(a) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0.52734375
2	-1.5	0.5	-0.5	-1.58203125
3	-0.5	0.5	0	0

So when applied on [-1.5, 2.5], the Bisection method gives 0.

(b) We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-0.5	2.4	0.95	0.001398666
2	-0.5	0.95	0.225	0.62070919

At n = 2, the interval shrinks to [-0.5, 0.95]. So when applied on [-0.5, 2.4],

the Bisection method gives 0.

(c) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-0.5 1.25	3	1.25	-0.241012573 15.2352825

At n=2, the interval shrinks to [1.25,3]. So when applied on [-0.5,3], the Bisection method gives 2.

(d) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-3	-0.5	-1.75	-19.1924286
2	-3	-1.75	-2.375	283.204185

At n=2, the interval shrinks to [3,-1.75]. So when applied on [-3,-0.5], the Bisection method gives -2.

Exercise 11

Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

- (a) [-3, 2.5]
- (b) [-2.5, 3]
- (c) [-1.75, 1.5]
- (d) [-1.5, -1.75]

Solution 11

f has 5 zeros: ± 2 , ± 1 , 0.

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	2.5	-0.25	-1.44195557
2	-0.25	2.5	1.125	-0.012767315
3	1.125	2.5	1.8125	-1.95457248

At n = 3, the interval shrinks to [1.125, 2.5]. So when applied on [-3, 2.5], the Bisection method gives 2.

(b) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-2.5	3	0.25	0.519104004
2	-2.5	0.25	-1.125	3.68975401
3	-2.5	-1.125	-1.8125	23.4201732

At n=3, the interval shrinks to [-2.5, -1.125]. So when applied on [-2.5, 3], the Bisection method gives -2.

(c) We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.75	1.5	-0.125	-0.620491505
2	-1.75	-0.125	-0.9375	-1.33009678

At n=2, the interval shrinks to [-1.75, -0.125]. So when applied on [-1.75, 1.5], the Bisection method gives -1.

(d) We have the following table:

•	n	a_n	b_n	p_n	$f(p_n)$
	1 2	$-1.5 \\ 0.125$	1	$0.125 \\ 0.9375$	$\begin{array}{c} 0.375359058 \\ 0.001384076 \end{array}$

At n=2, the interval shrinks to [0.125,1.75]. So when applied on [-1.5,1.75], the Bisection method gives 1.

Exercise 12

Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 12

Let $f(x) = x^2 - 3$. The positive zero of f is $\sqrt{3}$, so by approximate that positive zero, we get an approximation of $\sqrt{3}$.

The positive zero of f clearly is inside [1, 2]. Using Bisection, the number of iteration n needed to approximate $\sqrt{3}$ to within 10^{-4} in that interval is:

$$\frac{2-1}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection, we have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.75
2	1.5	2	1.75	0.0625
3	1.5	1.75	1.625	-0.359375
4	1.625	1.75	1.6875	-0.15234375
5	1.6875	1.75	1.71875	-0.045898438
6	1.71875	1.75	1.734375	0.008056641
7	1.71875	1.734375	1.7265625	-0.018981934
8	1.7265625	1.734375	1.73046875	-0.005477905
9	1.73046875	1.734375	1.73242188	0.001285553
10	1.73046875	1.73242188	1.73144531	-0.00209713
11	1.73144531	1.73242188	1.73193359	-0.000406027
12	1.73193359	1.73242188	1.73217773	0.000439703
13	1.73193359	1.73217773	1.73205566	0.000016823
14	1.73193359	1.73205566	1.73199463	-0.000194605

So $\sqrt{3} \approx 1.73199$.

Exercise 13

Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 13

Let $f(x) = x^3 - 25$. The zero of f is $\sqrt[3]{25}$, so by approximate that positive zero, we get an approximation of $\sqrt[3]{25}$.

The positive zero of f clearly is inside [2, 3]. Using Bisection, the number of iteration n needed to approximate $\sqrt[3]{25}$ to within 10^{-4} in that interval is:

$$\frac{3-2}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection, we have the following table:

_					
Ī	n	a_n	b_n	p_n	$f(p_n)$
	1	2	3	2.5	-9.375
	2	2.5	3	2.75	-4.203125
	3	2.75	3	2.875	-1.23632812
	4	2.875	3	2.9375	0.347412109
	5	2.875	2.9375	2.90625	-0.452972412

6	2.90625	2.9375	2.921875	-0.054920197
7	2.921875	2.9375	2.9296875	0.145709515
8	2.921875	2.9296875	2.92578125	0.045260727
9	2.921875	2.92578125	2.92382812	-0.004863195
10	2.92382812	2.92578125	2.92480469	0.020190398
11	2.92382812	2.92480469	2.92431641	0.00766151
12	2.92382812	2.92431641	2.92407227	0.001398635
13	2.92382812	2.92407227	2.9239502	-0.001732411
14	2.9239502	2.92407227	2.92401123	-0.000166921

So $\sqrt[3]{25} \approx 2.92401$.

Exercise 14

Use Theorem 2.1 (*Dinh lí 2.2* in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.

Solution 14

Let $f(x) = x^3 + x - 4$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 4].

The number of iteration n needed to approximate p to within 10^{-3} in that interval is:

$$|p_n - p| \le \frac{4 - 1}{2^n} < 10^{-3} \iff n \ge 12$$

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	1	4	2.5	14.125
2	1	2.5	1.75	3.109375
3	1	1.75	1.375	-0.025390625
4	1.375	1.75	1.5625	1.37719727
5	1.375	1.5625	1.46875	0.637176514
6	1.375	1.46875	1.421875	0.296520233
7	1.375	1.421875	1.3984375	0.13326025
8	1.375	1.3984375	1.38671875	0.053363502
9	1.375	1.38671875	1.38085938	0.013844214
10	1.375	1.38085938	1.37792969	-0.005808686
11	1.37792969	1.38085938	1.37939453	0.004008885
12	1.37792969	1.37939453	1.37866211	-0.000902119

So $p \approx 1.3787$.

Exercise 15

Use Theorem 2.1 (*Dinh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.

Solution 15

Let $f(x) = x^3 - x - 1$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 2].

The number of iteration n needed to approximate p to within 10^{-4} in that interval is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-4} \iff n \ge 14$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.875
2	1	1.5	1.25	-0.296875
3	1.25	1.5	1.375	0.224609375
4	1.25	1.375	1.3125	-0.051513672
5	1.3125	1.375	1.34375	0.082611084
6	1.3125	1.34375	1.328125	0.014575958
7	1.3125	1.328125	1.3203125	-0.018710613
8	1.3203125	1.328125	1.32421875	-0.002127945
9	1.32421875	1.328125	1.32617188	0.00620883
10	1.32421875	1.32617188	1.32519531	0.002036651
11	1.32421875	1.32519531	1.32470703	-0.000046595
12	1.32470703	1.32519531	1.32495117	0.000994791
13	1.32470703	1.32495117	1.3248291	0.000474039
14	1.32470703	1.3248291	1.32476807	0.000213707

So $p \approx 1.32477$.

Exercise 16

Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + \frac{1}{n}$. Show that $|f(p_n)| < 10^{-3}$ whenever n > 1 but that $|p - p_n| < 10^{-3}$ requires that n > 1000.

Solution 16

$$f(p_n) < 10^{-3}$$

$$\iff (p_n - 1)^{10} < 10^{-3}$$

$$\iff \frac{1}{n^{10}} < 10^{-3}$$

$$\iff n > 1$$

$$|p - p_n| < 10^{-3}$$

 $|p - p_n| < 10^{-3}$ $\iff \qquad \qquad \frac{1}{n} < 10^{-3}$ $\iff \qquad \qquad n > 1000$

Exercise 17

Let $\{p_n\}$ be the sequence defined by $p_n = \sum_{k=1}^n \frac{1}{k}$. Show that $\{p_n\}$ diverges even though $\lim_{n\to\infty} (p_n-p_{n-1})=0$.

Solution 17

It's clear that the difference of 2 consecutive terms goes to zero:

$$\lim_{n\to\infty}(p_n-p_{n-1})=\lim_{n\to\infty}\frac{1}{n}=0$$

However, the sequence diverges as:

$$p_n = \sum_{k=1}^n \frac{1}{k}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$> 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty$$

Exercise 18

The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to

- (a) 0 if a + b < 2
- (b) 2 if a + b > 2
- (c) 1 if a + b = 2

Solution 18

Let p be the zero converged by Bisection. With -1 < a < 0 and 2 < b < 3:

 $\sin \pi a < 0$ $\sin \pi b > 0$ 1 < a + b < 3

- (a) If a+b<2, then $0.5< p_1=\frac{a+b}{2}<1$. Then $\sin p_1>0$, and the interval shrinks to $[a,p_1]$. 0 is the only zero in that interval, so p=0.
- (b) If a+b>2, then $1< p_1=\frac{a+b}{2}<1.5$. Then $\sin p_1<0$, and the interval shrinks to $[p_1,b]$. 2 is the only zero in that interval, so p=0.
- (c) If a+b=2, then $p_1=\frac{a+b}{2}=1$. Then $\sin p_1=0$, and a zero p=1 is found.

Exercise 19

A trough of length L has a cross section in the shape of a semicircle with radius r. When filled with water to within a distance h of the top, the volume V of water is:

$$V = L[0.5\pi r^2 - r^2 \arcsin \frac{h}{r} - h\sqrt{r^2 - h^2}]$$

Suppose $L=10\,\mathrm{ft},\,r=1\,\mathrm{ft},\,\mathrm{and}\,\,V=12.4\,\mathrm{ft}^3.$ Find the depth of water in the trough to within 0.01 ft.

Solution 19

Let d be the depth of the water, so d = r - h. Let

$$f(h) = 10(0.5\pi - \arcsin(h) - h\sqrt{1 - h^2}) - 12.4$$

Instead of finding d directly, we find h, also to within 0.01 ft. The number of iteration n needed to approximate h to within 0.01 in [0, r] is:

$$|h - h_n| < \frac{1 - 0}{2^n} < 0.01 \iff n \ge 7$$

Applying Bisection, we have the following table:

\overline{n}	a_n	b_n	h_n	$f(h_n)$
1	0	1	0.5	-6.25815151
2	0	0.5	0.25	-1.63945387
3	0	0.25	0.125	0.814489029
4	0.125	0.25	0.1875	-0.419946724
5	0.125	0.1875	0.15625	0.195725903
6	0.15625	0.1875	0.171875	-0.112536394
7	0.15625	0.171875	0.1640625	0.041493241

So $h \approx 0.1641$, hence $h = r - h = \approx 0.8359$.