

Model Optimization and Tuning Phase Template

Date	July 2024
Team ID	738691
Project Title	Frappe Activity: mobile Phone Activity classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters						
Bagging	The (params) define a grid for hyperparameter tuning of the Bagging Classifier (BClassifier), including min_child_weight, gamma, colsample_bytree, and max_depth. The Bagging Classifier is configured with a learning rate of 0.5, 100 estimators, using a binary logistic regression objective, and utilizing 3 threads for processing. GridSearchCV (xg_cv) is used with 5-fold cross-validation (cv=5), refitting the best model (refit=True), evaluating based on accuracy (scoring="accuracy") # Define the hyperparameters and their possible values for tuning param_grid = { 'n_estimators': [10, 50, 100], 'max_samples': [0.5, 0.7, 1.0], 'max_features': [0.5, 0.7, 1.0], 'bootstrap': [True, False], 'bootstrap_features': [True, False] }						
Classifier	<pre>random_search = RandomizedSearchCV(estimator=bagging_classifier, param_distributions=param_grid,</pre>						
	random_search.fit(X_train,y_train)						
	<pre>print("Best Parameters:",random_search.best_params_) print("Best Score:",random_search.best_score_) [66]</pre>						
	Best Parameters: {'n_estimators': 100, 'max_samples': 0.7, 'max_features': 1.0, 'bootstrap_features': True, 'bootstrap': False} Best Score: 0.6545086119554204						
	<pre>print("Best Score:",random_search.score(X_test,y_test)) [47]</pre>						
	Best Score: 0.6861702127659575						

The parameters (params) define a grid for hyperparameter tuning of the Decision Tree Classifier (DecisionTreeClassifier), including max_depth, min_samples_leaf, and criterion ('gini' or 'entropy'). GridSearchCV (dec_cv) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy") # Define the hyperparameters and their possible values for tuning param grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 2, 4, 6, 8,10], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'max_features': [None, 'sqrt', 'log2'], 'min_impurity_decrease': [0.0, 0.1, 0.2], 'ccp_alpha': [0.0, 0.1 ,0.2] # Initialize RandomizedSearchCV with DecisionTreeClassifier **Decision Tree** random search = RandomizedSearchCV(estimator=dt classifier, param distributions=param grid, scoring='accuracy', cv=3, n iter=100, random state=42) random_search.fit(X_train, y_train) RandomizedSearchCV(cv=3,estimator=DecisionTreeClassifier(),n_iter=100, 'max_features':[None, 'sqrt', 'log2'], 'min_impurity_decrease':[0.0, 0.1, 0.2], 'min_samples_leaf':[1, 2, 4], 'min samples_split':[2, 5, 10], 'splitter': ['best', 'random']}, random_state=42, scoring='accuracy') print("Best Parameters:", random_search.best_params_) print("Best Score:", random search.best score)

Final Model Selection Justification (2 Marks):

Final Model	Reasoning							
	Bagging Classifier model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy. print(classification_report(y_test,y_pred,digits=4))							
		orecision	recall	f1-score	support			
	0	0.5500	0.6396	0.5914	60466			
	0 1	0.6052			60427			
	2	0.6683	0.7010	0.6843				
	accuracy			0.6060	181608			
	macro avg	0.6078	0.6058	0.6030	181608			
Bagging Classifier	weighted avg	0.6079	0.6060	0.6031	181608			
	Above all the models Bagging classifier have the highest accuracy among all the models.							