CLAIM AMENDMENTS:

Claims 1-30. (Canceled)

- 31. (Presented previously) A process for the stereospecific polymerization of an alpha-olefin, comprising polymerizing at least one alpha-olefin in the presence of a catalyst composition, optionally in the presence of one or more activators, under polymerization conditions, wherein the catalyst composition is formed from a mixture which comprises:
 - (1) a ligand characterized by the following general formula:

wherein R¹ is characterized by the general formula:

wherein E is either carbon or nitrogen,

Q¹ and Q⁵ are substituents on the R¹ ring at a position ortho to E, with Q¹ and Q⁵ are independently selected from the group consisting of alkyl, substituted alkyl, cycloalkyl,

Applicants: Thomas R. BOUSSIE et al.

substituted cycloalkyl, aryl, substituted aryl and silyl, but provided that Q¹ and Q⁵ are not both methyl;

Q"_q represents additional possible substituents on the ring, with q being 1, 2, 3, 4 or 5 and O" being selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof;

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³- with R² selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; R³ selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted heteroaryl; and provided that R² is different from R³;

J" is selected from the group consisting of heteroaryl and substituted heteroaryl;

a metal precursor compound characterized by the general formula M(L)_n wherein **(2)** M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates,

Application. No. 10/720,280

Applicants: Thomas R. BOUSSIE et al.

sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 32. (Original) The process of claim 31, wherein said alpha olefin is propylene.
- 33. (Previously presented) The process of claim 31, further comprising providing a reactor with at least one polymerizable monomer and providing the catalyst composition or-mixture to said reactor.
- 34. (Original) Isotactic polypropylene produced by polymerization of propylene with the aid of a catalyst that comprises Hf or Zr in a solution polymerization process, wherein the tacticity index value of the polypropylene does not vary by more than 0.1 when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C.
- 35. (Previously presented) Isotactic polypropylene produced by polymerization of propylene with the aid of a catalyst that comprises Hf or Zr in a solution polymerization process, wherein the melting point of the polypropylene does not vary by more than 10°C when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C.

-4-

- 36. (Previously presented) Isotactic polypropylene produced by polymerization of propylene with the aid of a catalyst that comprises Hf or Zr in a solution polymerization process, wherein the temperature of the solution process is at least 110°C and the polypropylene has a weight average molecular weight of at least 100,000.
- 37. (Original) The isotactic polypropylene of either of claims 34 or 35, wherein said solution process is operated at a temperature at or above 110°C.
- 38. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a ligand characterized by the following general formula:

wherein R¹ is characterized by the general formula:

wherein E is either carbon or nitrogen,

Q¹ and Q⁵ are substituents on the R¹ ring at a position ortho to E, with Q¹ and Q⁵ are independently selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl and silyl, but provided that Q¹ and Q⁵ are not both methyl;

Q" being selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof;

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³- with R² selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; R³ selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted heteroaryl; and provided that R² is different from R³;

J" is selected from the group consisting of heteroaryl and substituted heteroaryl;

(2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl,

substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 39. (Previously Presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a ligand characterized by the formula:

$$R^4$$
 R^5
 R^6
 R^7

wherein each of R⁴, R⁵, R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heterocycloalkyl, substituted heteroayl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; and optionally, any combination of R¹, R², R³, R⁴, R⁵, R⁶ or R⁷ may be joined together in a ring structure;

(2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting

of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 40. (Previously Presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition of comprising:
 - (1) a ligand characterized by the general formula:

$$Q^3$$
 Q^4
 Q^5
 R^4
 R^5
 R^5
 R^6
 R^7

such that E is carbon and wherein Q², Q³ and Q⁴ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, substituted heteroalkyl, substituted heteroalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino,

Application. No. 10/720,280

Applicants: Thomas R. BOUSSIE et al.

amino, thio, seleno, nitro, and combinations thereof, optionally two or more of Q^2 , Q^3 and Q^4 are joined together in a ring structure;

- (2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and
 - (3) optionally, at least one activator.
- 41. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a ligand characterized by the general formula:

such that T is -CR²R³- and wherein R¹⁰, R¹¹, R¹² and R¹³ are each independently selected from the group consisting of hydrogen, halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; optionally, two or more R¹⁰, R¹¹, R¹² and R¹³ groups may be joined to form a fused ring system having from 3-50 non-hydrogen atoms; and R¹⁴ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof;

(2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl,

substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 42. (Previously Presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a ligand of the formula

such that E is carbon and wherein Q², Q³ and Q⁴ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno,

Application. No. 10/720,280

Applicants: Thomas R. BOUSSIE et al.

nitro, and combinations thereof; optionally two or more of Q^2 , Q^3 and Q^4 are joined together in a ring structure;

- (2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and
 - (3) optionally, at least one activator.
- 43. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst comprises hafnium.
- 44. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal-ligand complex characterized by the following formula:

wherein R¹ is characterized by the general formula:

wherein E is either carbon or nitrogen;

 Q^1 and Q^5 are substituents on the R^1 ring at a position ortho to E, with Q^1 and Q^5 being independently selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl and silyl, but provided that Q^1 and Q^5 are not both methyl;

Q" peing selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof;

Applicants: Thomas R. BOUSSIE et al.

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³- with R² selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; R³ selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted heteroaryl; and provided that R² is different from R³;

J" is selected from the group consisting of heteroaryl and substituted heteroaryl;

each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and x is 1;

a metal precursor compound characterized by the general formula M(L)_n wherein (2) M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 45. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex having the formula:

$$\begin{bmatrix} R^1 \\ N \\ N \\ K^5 \end{bmatrix}$$

$$R^5$$

$$R^7$$

wherein each of R⁴, R⁵, R⁶ and R⁷ is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof, and optionally, any combination of R¹, R², R³, R⁴, R⁵, R⁶ or R⁷ may be joined together in a ring structure;

(2) a metal precursor compound characterized by the general formula $M(L)_n$ wherein M is either hafnium or zirconium and each L is independently selected from the group consisting

of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 46. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex having the formula:

$$Q^{2}$$
 Q^{3}
 Q^{4}
 Q^{5}
 Q^{5}
 Q^{5}
 Q^{6}
 Q^{7}
 Q^{7}
 Q^{7}
 Q^{7}
 Q^{7}

such that E is carbon and wherein Q², Q³ and Q⁴ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl,

Applicants: Thomas R. BOUSSIE et al.

heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; optionally two or more of Q^2 , Q^3 and Q^4 are joined together in a ring structure;

- a metal precursor compound characterized by the general formula M(L)_n wherein (2) M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and
 - (3) optionally, at least one activator.
- 47. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex, wherein said complex is characterized by the formula:

such that T is -CR²R³- and wherein R¹⁰, R¹¹, R¹² and R¹³ are each independently selected from the group consisting of hydrogen, halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; optionally, two or more R¹⁰, R¹¹, R¹² and R¹³ groups may be joined to form a fused ring system having from 3-50 non-hydrogen atoms; and

R¹⁴ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof;

(2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted

heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 48. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex, wherein said complex is characterized by the general formula:

such that E is carbon and wherein Q², Q³ and Q⁴ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl,

Application. No. 10/720,280

Applicants: Thomas R. BOUSSIE et al.

heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; optionally two or more of Q^2 , Q^3 and Q^4 are

joined together in a ring structure;

a metal precursor compound characterized by the general formula M(L)_n wherein (2)

M is either hafnium or zirconium and each L is independently selected from the group consisting

of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted

heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl,

substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene,

seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates,

sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are

joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

(3) optionally, at least one activator.

49. (Previously Presented) The isotactic polypropylene of either of claims 34, 35 or 36,

wherein said catalyst is formed from a composition comprising:

(1) a metal complex characterized by the formula:

-20-

$$R^1$$
 N
 L^1
 L^2

where M is zirconium or hafnium;

wherein R¹ is characterized by the general formula:

wherein E is either carbon or nitrogen,

Q¹ and Q⁵ are substituents on the R¹ ring at a position ortho to E, with Q¹ and Q⁵ are independently selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl and silyl, but provided that Q¹ and Q⁵ are not both methyl;

Q" being selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof,

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³- with R² selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; R³ selected from the group consisting of aryl, substituted aryl, heteroaryl, and substituted heteroaryl; and provided that R² is different from R³;

J" being selected from the group of substituted heteroaryls with 2 atoms bonded to the metal M, at least one of those 2 atoms being a heteroatom, and with one atom of J" is bonded to M via a dative bond, the other through a covalent bond; and

L¹ and L² are independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally the two L groups are joined into a ring structure;

a metal precursor compound characterized by the general formula M(L)_n wherein (2) M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 50. (Previously Presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex characterized by the formula:

$$R^4$$
 R^5
 R^6
 E''

wherein each of R⁴, R⁵ and R⁶ is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayl, substituted heteroayl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, halide, nitro, and combinations thereof; and optionally, any combination of R¹, R², R³, R⁴, R⁵, or R⁶ may be joined together in a ring structure; and

E" is either carbon or nitrogen and is part of a cyclic aryl, substituted aryl, heteroaryl, or substituted heteroaryl group;

- (2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and
 - (3) optionally, at least one activator.
- 51. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - (1) a metal complex, wherein said complex is characterized by the formula:

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{10}$$

$$R^{13}$$

$$R^{12}$$

Applicants: Thomas R. BOUSSIE et al.

wherein R¹⁰, R¹¹, R¹² and R¹³ are each independently selected from the group consisting of hydrogen, halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted hetercycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; optionally, two or more R¹⁰, R¹¹, R¹² and R¹³ groups may be joined to form a fused ring system having from 3-50 non-hydrogen atoms;

- a metal precursor compound characterized by the general formula M(L)_n wherein (2) M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and
 - (3) optionally, at least one activator.
- 52. (Previously presented) The isotactic polypropylene of either of claims 34, 35 or 36, wherein said catalyst is formed from a composition comprising:
 - **(1)** a metal complex, wherein said complex is characterized by the formula:

$$Q^2$$
 Q^3
 Q^4
 Q^5
 R^3
 Q^5
 R^4
 R^5
 R^6
 R^{10}
 R^{11}

wherein Q^2 , Q^3 and Q^4 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, thio, seleno, nitro, and combinations thereof; or optionally, two of Q^2 , Q^3 and Q^4 are joined together in a ring structure;

(2) a metal precursor compound characterized by the general formula M(L)_n wherein M is either hafnium or zirconium and each L is independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure; n is 1, 2, 3, 4, 5, or 6; and

- (3) optionally, at least one activator.
- 53. (Original) A process for polymerizing propylene to crystalline polypropylene in a solution process, comprising contacting propylene monomer with a catalyst comprising a metalligand complex combined with an activator, combination of activators or activating technique, wherein at least one of said activators is a group 13 reagent and said metal-ligand complex is characterized by the formula:

$$\begin{array}{c|c}
R^{1} \\
\vdots \\
N \\
R^{4}
\end{array}$$

$$\begin{array}{c|c}
R^{1} \\
L^{1} \\
L^{2} \\
R^{13} \\
R^{12}
\end{array}$$

where M is zirconium or hafnium;

L¹, L², and L³ are independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heterocycloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally two or more L groups are joined into a ring structure;

 R^1 is selected from the group consisting of 2,6-(Pr^i)₂- C_6H_3 -; 2- Pr^i -6-Me- C_6H_3 -; 2,6-Et₂- C_6H_3 -; or 2-sec-butyl-6-Et- C_6H_3 -;

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³-

R³ is selected from the group consisting of aryl and substituted aryl;

 R^2 , R^4 , R^5 and R^6 are hydrogen;

either R^{10} , R^{11} , R^{12} , R^{13} , are each hydrogen; or one or more of R^{10} , R^{11} , R^{12} , R^{13} are methyl, fluoro, trifluoromethyl, methoxy, or dimethylamino; or R^{10} and R^{11} are joined to form a benzene ring and R^{12} and R^{13} are each hydrogen; and

R₁₄ is either hydrogen or methyl.

54. (Original) A process for polymerizing propylene to crystalline polypropylene in a solution process, comprising contacting propylene monomer with a catalyst comprising a metalligand complex combined with an activator, combination of activators or activating technique, wherein at least one of said activators is a group 13 reagent and said metal-ligand complex is characterized by the formula:

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{10}$$

$$R^{13}$$

$$R^{12}$$

where M is zirconium or hafnium;

L¹ and L² are independently selected from the group consisting of halide, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroayloalkyl, substituted heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroayl, alkoxy, aryloxy, hydroxy, boryl, silyl, amino, amine, hydrido, allyl, diene, seleno, phosphino, phosphine, carboxylates, thio, 1,3-dionates, oxalates, carbonates, nitrates, sulphates, ethers, thioethers and combinations thereof or optionally the two L groups are joined into a ring structure;

 R^1 is selected from the group consisting of 2,6(Pr^i)₂- C_6H_3 -; 2- Pr^i -6-Me- C_6H_3 -; 2,6-Et₂- C_6H_3 -; or 2-sec-butyl-6-Et- C_6H_3 -;

T is a bridging group selected group consisting of -CR²R³- and -SiR²R³-;

R³ is selected from the group consisting of aryl and substituted aryl;

R², R⁴, R⁵ and R⁶ are hydrogen; and

either R^{10} , R^{11} , R^{12} , R^{13} , are each hydrogen; or one or more of R^{10} , R^{11} , R^{12} , R^{13} are methyl, fluoro, trifluoromethyl, methoxy, or dimethylamino; or R^{10} and R^{11} are joined to form a benzene ring and R^{12} and R^{13} are each hydrogen.

- 55. (Previously presented) The process of claim 31, wherein R² is hydrogen.
- 56. (Previously presented) The process of claim 31, wherein each of R⁴, R⁵ and R⁶ is hydrogen.
- 57. (Previously presented) The process of claim 56, wherein R³ is selected from the group consisting of benzyl, phenyl, naphthyl, 2-biphenyl, 2-dimethylaminophenyl, 2-methoxyphenyl, anthracenyl, mesityl, 2-pyridyl, 3,5-dimethylphenyl, o-tolyl, and phenanthrenyl.
- 58. (Previously presented) The process of claim 57, wherein Q^1 and Q^5 are both isopropyl; or both ethyl; or both sec-butyl; or Q^1 is methyl and Q^5 is isopropyl; or Q^1 is ethyl and Q^5 is sec-butyl.
- 59. (Previously presented) The process of claim 58, wherein R^{10} , R^{11} , R^{12} , R^{13} , are each hydrogen; or one or more of R^{10} , R^{11} , R^{12} , R^{13} are methyl, fluoro, trifluoromethyl, methoxy, or dimethylamino; or R^{10} and R^{11} are joined to form a benzene ring and R^{12} and R^{13} are each hydrogen.

(Previously presented) The process of claim 31, wherein each of R⁴ and R⁵ is 60.

hydrogen and R⁶ is either hydrogen or is joined to R⁷ to form a fused ring system.

(Previously presented) The process of claim 31, wherein R³ is selected from the 61.

group consisting of benzyl, phenyl, naphthyl, 2-biphenyl, 2-dimethylaminophenyl, 2-

methoxyphenyl, anthracenyl, mesityl, 2-pyridyl, 3,5-dimethylphenyl, o-tolyl, and phenanthrenyl.

(Previously presented) The process of claim 31, wherein Q1 and Q5 are, 62.

independently, selected from the group consisting of -CH₂R¹⁵, -CHR¹⁶R¹⁷ and methyl, provided

that not both Q¹ and Q⁵ are methyl, wherein R¹⁵ is selected from the group consisting of alkyl,

substituted alkyl, aryl and substituted aryl; R¹⁶ and R¹⁷ are independently selected from the group

consisting of alkyl, substituted alkyl, aryl and substituted aryl; and optionally R¹⁶ and R¹⁷ are

joined together in a ring structure having from 3-50 non-hydrogen atoms.

(Previously presented) The process of claim 62, wherein Q², Q³, and Q⁴ are each 63.

hydrogen and Q¹ and Q⁵ are both isopropyl; or both ethyl; or both sec-butyl; or Q¹ is methyl and

 Q^5 is isopropyl; or Q^1 is ethyl and Q^5 is sec-butyl.

-31-

- 64. (Previously presented) The process of claim 31, wherein R^1 or the variables Q^1 , Q^2 , Q^3 , Q^4 and Q^5 are chosen so that the R^1 moiety is selected from the group consisting of 2,6- $(Pr^i)_2$ - C_6H_3 -; 2- Pr^i -6-Me- C_6H_3 -; 2,6-Et₂- C_6H_3 -; and 2-sec-butyl-6-Et- C_6H_3 -.
- 65. (Previously presented) The process of claim 65, wherein R⁷ is aryl, substituted aryl, heteroaryl or substituted heteroaryl.
- 66. (Currently amended) The process of claim 65, wherein R⁷ is selected from the group consisting of phenyl, [napthyl] <u>naphthyl</u>, mesityl, anthracenyl and phenanthrenyl.
- 67. (Currently amended) The [proess] process of claim 34, wherein R^{10} , R^{11} , R^{12} , R^{13} , are each hydrogen; or one or more of R^{10} , R^{11} , R^{12} , R^{13} are methyl, fluoro, trifluoromethyl, methoxy, or dimethylamino; or R^{10} and R^{11} are joined to form a benzene ring and R^{12} and R^{13} are each hydrogen.
- 68. (Previously presented) The process of claim 32, wherein two or more of R⁴, R⁵, R⁶ and R⁷ are joined to form a fused ring system having from 3-50 non-hydrogen atoms in addition to the pyridine ring and/or R⁴, R⁵ and R⁶ are each independently selected from the group consisting of alkyl, aryl, halide, alkoxy, aryloxy, amino, and thio.

- 69. (Previously presented) The process of claim 34, wherein R⁶ and R¹⁰ are joined to form a ring system having from 5-50 non-hydrogen atoms.
- 70. (Currently amended) The process of Claim 54 which further comprises polymerizing propylene in the presence of a catalyst that comprises Hf or Zr in a solution polymerization process, and recovering isotactic polypropylene, wherein the process which is characterized by in that when the temperature of the process is varied from a temperature below 90°C to a temperature above 100°C, a tacticity index value of the recovered isotactic polypropylene which does not vary by more than 0.1 when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C, and which is characterized by a melting point which of the recovered isotactic polypropylene does not vary by more than 10°C when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C.
- 71. (Currently amended) The process of Claim 54 which further comprises polymerizing propylene in the presence of a catalyst that comprises Hf or Zr in a solution polymerization process, and recovering isotactic polypropylene having a weight average molecular weight of at least 100,000, wherein the process which is characterized by Isotactic polypropylene produced by polymerization of propylene with the with the aid of a catalyst that comprises Hf or Zr in a solution polymerization process, wherein in that the melting point of the polypropylene does not vary by more than 10°C when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C and the polypropylene has a weight average molecular weight of at least 100,000.
- 72. (Currently amended) A process for producing isotactic polypropylene comprising polymerizing propylene, in the presence of a polymerization catalyst that comprises Hf or Zr,

under solution polymerization process conditions including a temperature of the solution process, which is varied from a temperature below 90°C to a temperature above 100°C, and producing a polypropylene which is characterized by a tacticity index value which does not vary by more than 0.1 when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C.

6 6 L 6

- 73. (Currently amended) A polymerization process for producing isotactic polypropylene, comprising polymerizing propylene, in the presence of a catalyst that comprises Hf or Zr, under solution polymerization process conditions including a temperature below 90°C to a temperature above 100°C the solution process, and producing polypropylene which is characterized by a melting point which does not vary by more than 10°C when the temperature of the solution process is varied from a temperature below 90°C to a temperature above 100°C.
- 74. (Previously presented) A process for producing isotactic polypropylene comprising polymerizing propylene, in the presence of a catalyst that comprises Hf or Zr, under solution polymerization process conditions including a temperature of at least 110°C and producing polypropylene which has a weight average molecular weight of at least 100,000.
- 75. (Previously presented) A process for producing isotactic polypropylene of either of claims 34 or 35, wherein said solution process is operated at a temperature at or above 110°C.