STAT40800 Data Programming with Python (online)

Final project

[K.Saketh Sai Nigam(22201204)]

LOADING THE PAKAGES REQUIRED FOR THE PROJECT

```
In [236]: # Load in necessary packages
    import numpy as np
    import pandas as pd
    from pandas import DataFrame, Series
    import matplotlib.pyplot as plt
    import seaborn as sns
    from scipy import stats
    from sklearn import datasets
    from sklearn.metrics import mean_squared_error
    from sklearn.linear_model import LinearRegression
    import statsmodels.api as sm
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.cluster import KMeans
```

QUESTION-1

import statistics

from sklearn.cluster import DBSCAN

(a) Load the neurons group 1.csv dataset into Python as a pandas DataFrame.

from sklearn.model selection import train test split

```
In [2]: #Loading the DataSet 'neurons_group_1.csv'
GroupData1 = pd.read_csv("/Users/saketh/Desktop/neurons_group_1.csv")
```

b) Inspect the data. How many neurons are included in this dataset? How many different measurements are included? Does this dataset contain any missing values?

Inspection of the Data

Out[3]:

	id	average_diameter	overall_depth	overall_height	overall_width	soma_surface	total_length	total_surface	total_volume
0	484775243	0.195628	90.3529	548.798070	257.109717	128.269219	3658.629571	2252.681880	115.626135
1	485996843	0.457635	87.0383	717.408343	199.214267	430.635072	4158.819949	5944.196007	730.014704
2	486041253	0.295455	75.3286	584.083922	386.076695	502.033948	2667.618389	2472.795020	197.063796
3	491119181	0.414033	89.0718	284.641670	239.492610	383.828302	1543.941010	2008.838025	237.466517
4	491119245	0.201323	44.5237	302.038542	323.493562	120.229052	1621.871325	1027.220686	54.521240

The above data has few set of measurements of neuron which are

id,average_diameter,overall_depth,overall_height,overall_width,soma_surface total_length,total_surface,total_volume in the 'neurons_group_1.csv' file

No:of Neurons in the Dataset

```
In [4]: #Printing the no:of neurons in the data
print('The Total No:of Neurons in the Dataset: ', len(GroupData1))
```

The Total No:of Neurons in the Dataset: 311

(There are total 311 neurons data in the loaded DataSet 'neurons group 1.csv')

Measurements Included in Dataset

```
In [5]: #printing the measurements of neuron in the given dataset with their count
index = 0
for columnname in GroupData1.columns:
    index = index+1
    print(index,columnname)
```

- 1 id
- 2 average diameter
- 3 overall_depth
- 4 overall_height
- 5 overall_width
- 6 soma_surface
- 7 total_length
- 8 total_surface
- 9 total_volume

(The above are the 9 measurements of neurons in the dataset)

Missing values in Dataset

In [6]:

```
#Missing values in the data
print(GroupData1.isna())
print()
print(GroupData1.isna().sum())
```

	id	averag	e_diameter	overall depth	overall_heig	nht overa	ll_width	\
0	False	G. 1 G. 1 G. 9	False	False			False	`
1	False		False	False	Fal	Lse	False	
2	False		False	False	Fal	lse	False	
3	False		False	False		Lse	False	
4	False		False	False	Fal	Lse	False	
206	- · · ·		 5-1	 5-1			 5-1	
306	False		False	False	Fa]		False	
307	False		False	False			False	
308 309	False False		False False	False False			False False	
310	False		False	False			False	
210	Tatse		ratse	Tatse	la	136	Tatse	
	soma_s	urface	total_lengi	th total_surf	ace total_vol	Lume		
0	_	False	Fals	se Fa	lse Fa	alse		
1		False	Fals	se Fa	lse Fa	alse		
2		False	Fals	se Fa	lse Fa	alse		
		False	Fals	se Fa	lse Fa	alse		
4		False	Fals	se Fa	lse Fa	alse		
• •		_ : • •	_ •					
306		False	Fals			alse		
307		False	Fals			alse		
308		False	Fals			alse		
309		False	Fals			alse		
310		False	Fals	se Fa	lse Fa	alse		
[311	rows x	9 colu	mns]					
id			0					
average_diameter		0						

overall_depth	0
overall_height	0
overall_width	0
soma_surface	0
total_length	0
total_surface	0
total_volume	0
dtype: int64	

(As the sum of all the missing values are 0, this means there are no missing values in the dataset)

(c) Perform an exploratory data analysis, creating both numerical and graphical sum- maries of the data. Discuss and interpret your results.

NUMERICAL SUMMARY:

In [7]: #Numerical Summary
GroupData1.describe()

Out[7]:

	id	average_diameter	overall_depth	overall_height	overall_width	soma_surface	total_length	total_surface	total_volume
count	3.110000e+02	311.000000	311.000000	311.000000	311.000000	311.000000	311.000000	311.000000	311.000000
mean	5.885866e+08	0.421175	91.967024	523.516774	320.548089	361.849689	3792.940198	5492.737135	808.488483
std	8.490396e+07	0.159435	35.658760	299.256684	124.039953	253.912293	2775.993259	5719.713426	1190.466808
min	4.847752e+08	0.053899	22.680000	82.836871	49.173247	2.895610	251.987893	402.242787	4.309842
25%	4.961239e+08	0.322128	64.574450	328.964661	233.480547	176.194233	2237.031837	2253.626506	197.071679
50%	5.912744e+08	0.415613	86.212200	469.151885	291.532148	311.568275	2946.858866	3636.755377	407.180171
75%	6.568502e+08	0.527572	115.566350	651.885452	392.534334	478.796933	4085.692910	5895.663836	833.681728
max	8.460831e+08	1.156730	183.960000	1928.118350	827.752239	1283.720986	15697.415190	37182.284100	8482.061401

Interpreting the Numerical Summary of Neuron measurements:-

AVERAGE DIAMETER:

There are 311 values in AVERAGE DIAMETER. The AVERAGE DIAMETER's mean is roughly 0.421175 and the standard deviation is 0.159435. The range of the highest value is 1.156730 since the minimum and maximum values are 0.053899 and 1.156730 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. AVERAGE DIAMETER's 25%, 50%, and 75% values are 0.322128, 0.415613,0.527572.

OVERALL DEPTH:

There are 311 values in OVERALL DEPTH. The OVERALL DEPTH's mean is roughly 91.967024 and the standard deviation is 35.658760. The range of the highest value is 183.960000 since the minimum and maximum values are 22.680000 and 183.960000 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. OVERALL DEPTH's 25%, 50%, and 75% values are 64.574450, 86.212200,115.566350.

OVERALL HEIGHT:

There are 311 values in OVERALL HEIGHT. The OVERALL HEIGHT's mean is roughly 523.516774 and the standard deviation is 299.256684. The range of the highest value is 1928.118350 since the minimum and maximum values are 82.836871 and 1928.118350 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. OVERALL HEIGHT's 25%, 50%, and 75% values are 328.964661, 469.151885,651.885452.

OVERALL WIDTH:

There are 311 values in OVERALL WIDTH. The OVERALL WIDTH's mean is roughly 320.548089 and the standard deviation is 124.039953. The range of the highest value is 827.752239 since the minimum and maximum values are 49.173247 and 827.752239 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. OVERALL WIDTH's 25%, 50%, and 75% values are 49.173247, 233.480547,392.534334.

SOMA SURFACE:

There are 311 values in SOMA SURFACE. The SOMA SURFACE's mean is roughly 361.849689 and the standard deviation is 253.912293. The range of the highest value is 1283.720986 since the minimum and maximum values are 2.895610 and 1283.720986 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. SOMA SURFACE's 25%, 50%, and 75% values are 176.194233, 311.568275,478.796933.

TOTAL LENGTH:

There are 311 values in TOTAL LENGTH. The TOTAL LENGTH's mean is roughly 3792.940198 and the standard deviation is 2775.993259. The range of the highest value is 15697.415190 since the minimum and maximum values are 251.987893 and 15697.415190 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. TOTAL LENGTH's 25%, 50%, and 75% values are 2237.031837, 2946.858866,4085.692910.

TOTAL SURFACE:

There are 311 values in TOTAL SURFACE. The TOTAL SURFACE's mean is roughly 5492.737135 and the standard deviation is 5719.713426. The range of the highest value is 37182.284100 since the minimum and maximum values are 402.242787 and 37182.284100 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. TOTAL SURFACE's 25%, 50%, and 75% values are 2253.626506, 3636.755377,5895.663836.

TOTAL VOLUME:

There are 311 values in TOTAL VOLUME. The TOTAL VOLUME's mean is roughly 808.488483 and the standard deviation is 1190.466808. The range of the highest value is 8482.061401 since the minimum and maximum values are 4.309842 and 8482.061401 respectively. Additionally, the summary gives the percentiles (25%, 50%, and 75%). Lower quartile refers to the 25% of the dataset that is comprised of the first 25%. The higher quartiles, which make up 75% of the data, are referred to as the upper quartiles, while the median, which is the center number, is referred to as 50%. TOTAL VOLUME's 25%, 50%, and 75% values are 197.071679, 407.180171,833.681728.

GRAPHICAL SUMMARY:

Out[8]: <seaborn.axisgrid.PairGrid at 0x7f99655f9eb0>

Interpreting the Graphical Summary of the Neuron Measurements:-

In a dataset, pairwise relationships are plotted using a pairplot. Each variable in the data will be shared in a single row and column on the y-axis and a single column on the x-axis thanks to the pairplot function's creation of a grid of axes. Thus, plots are produced, as above. It makes use of a set of Neurons data. Nine meteorological measurements are included in the data set: id, average_diameter, overall_depth, overall_height, overall_width, soma_surface, total_length, total_surface and total_volume. The grid above displays a map of the data. There are 9 measurements, hence a 9x9 plot is produced. We may use pairplot to examine the non-diagonal linear relationship and diagonal distribution of these measurements. We receive the results as a 9X9 shape based on the various values of each measurement. We get different shapes of Barplots in the diagonal area of the 9X9 matrix.

QUESTION-2

(a) Load the neurons group 2.csv dataset into Python as a pandas DataFrame.

```
In [9]: ##Loading the DataSet 'neurons_group_2.csv'
GroupData2 = pd.read_csv("/Users/saketh/Desktop/neurons_group_2.csv")
```

(b) Inspect the data. How many neurons are included in this dataset? Are the measurements the same as those in neurons group 1.csv?

Inspection the data

In [10]: #Printing the top 5 rows in the DataSet 'neurons_group_2.csv'
GroupData2.head()

Out[10]:

	id	average_diameter	overall_depth	overall_height	overall_width	soma_surface	total_length	total_surface	total_volume
0	397905347	0.316091	117.5429	585.602322	287.122628	268.777679	3498.090031	3523.606841	306.290931
1	491119234	0.331268	81.9012	461.280515	275.146120	551.788645	2008.302439	2097.688550	188.431435
2	491119269	0.139015	57.5697	324.422347	280.851229	50.092109	1774.258366	776.076427	25.733000
3	491119394	0.230412	76.0357	368.298267	251.377567	244.457685	1650.188964	1198.531518	75.823080
4	491119419	0.321163	98.8344	417.890620	193.590563	252.423672	2066.369729	2085.789861	180.446414

The above data has few set of measurements of neuron which are

id,average_diameter,overall_depth,overall_height,overall_width,soma_surface total_length,total_surface,total_volume in the 'neurons group 2.csv' file

Are the measurements the same as those in neurons group 1.csv?

```
In [11]: #Printing the Shapes of the Datasets 'neurons_group_1.csv' and 'neurons_group_2.csv'
print('The Dimensions of the GroupData1(neurons_group_1.csv) dataset is: ',GroupData1.shape)
print('The Dimensions of the GroupData1(neurons_group_2.csv) dataset is: ',GroupData2.shape)

The Dimensions of the GroupData1(neurons_group_1.csv) dataset is: (311, 9)
```

The Dimensions of the GroupData1(neurons group 2.csv) dataset is: (390, 9)

So, from above it is clear that 'neurons_group_1.csv' has 311 set of Neurons list with 9 measurements of neurons and 'neurons_group_2.csv' has 390 set of Neurons list with 9 measurements of neurons. We can conclude that, 'neurons_group_1.csv' and 'neurons_group_2.csv' has SAME measurements of neurons

(c) Perform a t-test, for each of the measurements, to test whether any of the neuron properties differ between the group 1 and group 2. Use a significance level of $\alpha = 0.01$. Display the t-score and p-value for each measurement. Clearly state the conclusion of your tests and explain your reasoning.

```
#Calling the above function for each variable of the Dataset
TscoresnPvalues(GroupData1.iloc[:.1:2].GroupData2.iloc[:.1:2].alpha.'AVERAGE DIAMETER: ')
TscoresnPvalues(GroupData1.iloc[:,2:3],GroupData2.iloc[:,2:3],alpha,'OVERALL DEPTH: ')
TscoresnPvalues(GroupData1.iloc[:,3:4],GroupData2.iloc[:,3:4],alpha,'OVERALL HEIGHT: ')
TscoresnPvalues(GroupData1.iloc[:,4:5],GroupData2.iloc[:,4:5],alpha,'OVERALL WIDTH: ')
TscoresnPvalues(GroupData1.iloc[:,5:6],GroupData2.iloc[:,5:6],alpha,'SOMA SURFACE: ')
TscoresnPvalues(GroupData1.iloc[:,6:7],GroupData2.iloc[:,6:7],alpha,'TOTAL LENGTH: ')
TscoresnPvalues(GroupData1.iloc[:,7:8],GroupData2.iloc[:,7:8],alpha,'TOTAL SURFACE: ')
TscoresnPvalues(GroupData1.iloc[:,8:9],GroupData2.iloc[:,8:9],alpha,'TOTAL VOLUME: ')
AVERAGE DIAMETER:
                  the T-SCORE and P-VALUE are
T-Statistics: [-1.19700758] P-value: [0.2317094] alpha: 0.01
As [0.2317094] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO!
**********************
               the T-SCORE and P-VALUE are
OVERALL DEPTH:
T-Statistics: [-1.18572309] P-value: [0.23613458] alpha: 0.01
As [0.23613458] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO!
**********************
OVERALL HEIGHT:
                the T-SCORE and P-VALUE are
```

T-Statistics: [0.58603484] P-value: [0.55804127] alpha: 0.01

the T-SCORE and P-VALUE are

As [0.55804127] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO!

OVERALL WIDTH:

T-Statistics: [-0.92319204] P-value: [0.35622569] alpha: 0.01 As [0.35622569] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO! *********************** SOMA SURFACE: the T-SCORE and P-VALUE are T-Statistics: [-0.54779764] P-value: [0.58400573] alpha: 0.01 As [0.58400573] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO! ********************** TOTAL LENGTH: the T-SCORE and P-VALUE are T-Statistics: [-0.33259965] P-value: [0.73953623] alpha: 0.01 As [0.73953623] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO! ********************** TOTAL SURFACE: the T-SCORE and P-VALUE are T-Statistics: [-0.81523978] P-value: [0.41521275] alpha: 0.01 As [0.41521275] (P-Value) is higher than 0.01 (Alpha), we Fail to Reject HO! *********************** TOTAL VOLUME: the T-SCORE and P-VALUE are T-Statistics: [-0.93137355] P-value: [0.35198193] alpha: 0.01 As [0.35198193] (P-Value) is higher than 0.01 (Alpha), we fail to Reject HO! ************************

The values of the T-Score and P-values of different measurements are compared with the Alpha value given in the question. So, on comparing the P-value with Alpha we will come to a decision of Rejection of H0! or Fail to Rejection of H0!

QUESTION-3

(a) Load the neurons additional measurements.csv into Python and combine all three datasets into a single DataFrame.

Load the neurons additional measurements.csv into Python

```
In [13]: #Loading the 'neurons_additional_measurements.csv' Dataset
GroupData3 = pd.read_csv("/Users/saketh/Desktop/neurons_additional_measurements.csv")
```

combine all three datasets into a single DataFrame.

(b) Comment on the dimensions of the combined dataset. Are all of the neurons from group 1 and 2 included in the dataset neurons additional measurements.csv?

Dimensions of the combined dataset

In [53]: #Printing the Shapes of the Combined Dataset print('The Dimensions of the combined dataset: GroupData(neurons_group_1.csv,neurons_group_2.csv,neurons #Removing all null values in Combined Dataset modifiedGroupData = GroupData.dropna() print() #Printing the Shapes of the Combined Dataset with removing NULL Values print('The Dimensions of the Modified combined dataset is: ',modifiedGroupData.shape)

The Dimensions of the combined dataset: GroupData(neurons_group_1.csv,neurons_group_2.csv,neurons_addit ional_measurements.csv) dataset is: (701, 21)

The Dimensions of the Modified combined dataset is: (694, 21)

We know that that **Combined Dataset** has **701** set of Neurons list with **21** measurements of neurons and after removing the null values we get, the **Combined Dataset** has **694** set of Neurons list with **21** measurements of neurons.

Are all of the neurons from group 1 and 2 included in the dataset neurons additional measurements.csv?

The Dimensions of the GroupData3(neurons additional measurements.csv) dataset is: (694, 13)

We know that that 'neurons_group_1.csv' has 311 set of Neurons list with 9 measurements of neurons and 'neurons_group_2.csv' has 390 set of Neurons list with 9 measurements of neurons. From above it is clear that 'neurons_additional_measurements.csv' has 694 set of Neurons list with 13 measurements of neurons. So, we can conclude that, all of the neurons from 'neurons_group_1.csv' and 'neurons_group_2.csv' are NOT INCLUDED in 'neurons_additional_measurements.csv'

(c) Compute the Pearson correlation coefficient between each of the measurements and identify which morphological features are strongly correlated. List the four most strongly correlated pairs.

Pearson correlation coefficient between each of the measurements

```
In [55]: #Correlation of the Combined Dataset
    corr = GroupData.corr()
    corr.style.background_gradient(cmap='coolwarm')
```

Out [55]:

	id	average_diameter	overall_depth	overall_height	overall_width	soma_surface	total_length	total_sur
id	1.000000	0.382881	0.036943	0.113432	0.269908	0.171704	0.266190	0.337
average_diameter	0.382881		0.226309	0.327755	0.365719	0.587623	0.351791	0.619
overall_depth		0.226309		0.525192	0.514837	0.237080	0.566102	0.48
overall_height	0.113432	0.327755	0.525192		0.468184	0.307018	0.658824	0.617
overall_width	0.269908	0.365719	0.514837	0.468184		0.399426	0.679377	0.659
soma_surface	0.171704	0.587623	0.237080	0.307018	0.399426		0.427937	0.547
total_length	0.266190	0.351791	0.566102	0.658824	0.679377	0.427937		
total_surface	0.337750	0.619034	0.481476	0.617678	0.659352	0.547585		
total_volume	0.305325	0.658617	0.404207	0.540614	0.578612	0.534997		
average_bifurcation_angle_local	0.205912	0.039447						
average_contraction								
average_fragmentation	0.223902	0.353716	0.420348	0.546112	0.655019	0.330257	0.456874	0.474
average_parent_daughter_ratio	0.436048	0.274922						0.183
max_branch_order		0.172831	0.496938	0.614627	0.269896		0.599113	0.49

max_euclidean_distance		0.300276	0.542190		0.482814	0.263454	0.641754	0.597
max_path_distance		0.313598	0.581248		0.502016	0.265640	0.654762	0.608
number_bifurcations	0.136982	0.164862	0.434871	0.432410	0.370920	0.266762		0.684
number_branches	0.120884	0.151537	0.434845	0.425560	0.365143	0.263538		0.674
number_nodes	0.261863	0.345626	0.552837	0.655673	0.673310	0.428377		
number_stems			0.166980				0.234539	
number_tips	0.105446	0.138467	0.433055	0.417486	0.358484	0.259445		0.66

Above is the Pearson correlation values of each paarameters with each other of the measurements

Identify which morphological features are strongly correlated. List the four most strongly correlated pairs.

```
In [18]: #Assigning the correlation values to a variable 'GD'
GD = GroupData.corr().abs()
```

```
In [59]: #Function for getting the strong pairs
        def get redundant pairs(GD):
            '''Get diagonal and lower triangular pairs of correlation matrix'''
            pairs to drop = set()
            cols = GD.columns
            for i in range(0, GD.shape[1]):
                for j in range(0, i+1):
                    pairs to drop.add((cols[i], cols[j]))
            return pairs to drop
        #Function for getting the Correlation values between the strong pairs
        def get top abs correlations(GD, n):
            au corr = GD.corr().abs().unstack()
            labels to drop = get redundant pairs(GD)
            au corr = au corr.drop(labels=labels to drop).sort values(ascending=False)
            return au corr[0:n]
        #Printing the four most strongly correlated pairs.
        print("Top Four most Absolute Strongly Correlated Correlations: ")
        print("-----")
        print(get_top_abs_correlations(GD, 4))
```

Top Four most Absolute Strongly Correlated Correlations:

```
total_length number_nodes 0.999910 number_branches number_tips 0.999062 number_bifurcations number_branches 0.998988 max_euclidean_distance max_path_distance 0.998220 dtype: float64
```

The above Four Pairs are strongly correlated pairs of morphological features of the neurons dataset. The value of the correlation between the pairs are also mentioned above.

(d) Create scatter plots for the each of the strongly correlated pairs identified in (c). Are the relationships as expected from	the
correlation coefficients?	

In [69]:	
111 [05]1	

```
#Plotting scatter plots of all four strongly correlated pairs identified in (c) in 2x2 form
plt.rcParams["figure.figsize"] = (15,15)
plt.subplot(2.2.1)
plt.scatter(GroupData['number branches'], GroupData['number tips'],color='orange')
plt.title("Scatter plot for Strongly Correlated Pair 1")
plt.xlabel('number branches')
plt.vlabel('number tips')
plt.grid()
plt.subplot(2,2,2)
plt.scatter(GroupData['number bifurcations'], GroupData['number branches'],color='darkblue')
plt.title("Scatter plot for Strongly Correlated Pair 2")
plt.xlabel('number bifurcations')
plt.ylabel('number branches')
plt.grid()
plt.subplot(2.2.3)
plt.scatter(GroupData['max_euclidean_distance'], GroupData['max_path_distance'],color='green')
plt.title("Scatter plot for Strongly Correlated Pair 3")
plt.xlabel('max euclidean distance')
plt.ylabel('max path distance')
plt.grid()
plt.subplot(2,2,4)
plt.scatter(GroupData['number_bifurcations'], GroupData['number_tips'],color='yellow')
plt.title("Scatter plot for Strongly Correlated Pair 4")
plt.xlabel('number bifurcations')
plt.ylabel('number tips')
plt.grid()
```


Above plots represents the scatter plots between the strongly correlated pairs as we got in above question

QUESTION-4

Linear regression to predict the total surface area of a neuron (total surface). (Remaining morphological measurements to be used as predictor variables.)

(a) Separate the data into response and predictor variables and standardise the predictor variables.

```
In [21]: #We will need to convert the Predicted variable and Response Variable into a DataFrame and Series respect
X = modifiedGroupData.drop(['total_surface','id'],axis=1)
y = modifiedGroupData['total_surface']
```

```
In [22]: #Standardise our Predicted Variable
X_std = (X - X.mean())/X.std()
```

(b) Fit a linear regression model and interpret the fitted model.

```
In [23]: #Inserting 'intercept' column at the front of the Standardised form of dataset
         X std.insert(0,'intercept',1)
In [24]: #Fitting the Ordinary least squares(OLS) regression model
         r = sm.0LS(y,X std)
         req = r.fit()
         print(reg.summarv())
                                      OLS Regression Results
         Dep. Variable:
                                  total surface
                                                   R-squared:
                                                                                     0.992
         Model:
                                                  Adi. R-squared:
                                                                                     0.991
                                             0LS
         Method:
                                  Least Squares
                                                  F-statistic:
                                                                                     4465.
                               Sun. 11 Dec 2022
                                                  Prob (F-statistic):
                                                                                      0.00
         Date:
                                       11:05:39
                                                  Loa-Likelihood:
         Time:
                                                                                   -5362.3
         No. Observations:
                                             694
                                                  AIC:
                                                                                 1.076e+04
         Df Residuals:
                                            675
                                                  BIC:
                                                                                 1.085e+04
         Df Model:
                                             18
         Covariance Type:
                                      nonrobust
                                                 coef
                                                         std err
                                                                          t
                                                                                  P>|t|
                                                                                              [0.025]
                                                                                                          0.9751
                                                                    270.127
                                                                                           5664.319
         intercept
                                           5705.7931
                                                          21.123
                                                                                  0.000
                                                                                                        5747,267
         average diameter
                                            693.1540
                                                          36.058
                                                                     19.223
                                                                                  0.000
                                                                                            622.354
                                                                                                        763.953
                                                                                           -191.730
         overall depth
                                           -130.8024
                                                          31.030
                                                                                  0.000
                                                                                                        -69.875
                                                                     -4.215
         overall_height
                                                          90.839
                                                                     -3.268
                                                                                  0.001
                                                                                           -475.235
                                                                                                       -118.514
                                           -296.8748
         overall width
                                             25.8528
                                                          38.994
                                                                      0.663
                                                                                  0.508
                                                                                            -50.712
                                                                                                        102.418
         soma surface
                                                          28.512
                                                                      1.999
                                                                                              1.004
                                                                                                        112,968
                                             56.9857
                                                                                  0.046
         total length
                                           3956,4533
                                                         411.041
                                                                      9.625
                                                                                           3149.380
                                                                                                       4763.526
                                                                                  0.000
                                                                                                       3088.792
         total volume
                                           2994.2462
                                                          48.152
                                                                     62.183
                                                                                  0.000
                                                                                           2899.701
                                                          22.755
                                                                     -0.250
                                                                                            -50.365
                                                                                                         38.994
         average_bifurcation_angle_local
                                             -5.6851
                                                                                  0.803
                                             32.2640
                                                                      1.209
                                                                                  0.227
                                                                                                         84.669
         average contraction
                                                          26.690
                                                                                            -20.141
```

-95.7414	49.252	-1.944	0.052	-192.446	0.963
54.8073	24.030	2.281	0.023	7.624	101.990
-26.1737	42.612	-0.614	0.539	-109.841	57.494
636.0267	188.029	3.383	0.001	266.835	1005.218
-346.6786	181.393	-1.911	0.056	-702.841	9.484
-3895.7825	6022.607	-0.647	0.518	-1.57e+04	7929.514
1985.8946	3204.822	0.620	0.536	-4306.724	8278.513
-813.9945	408.079	-1 . 995	0.046	-1615.251	-12.738
-458.2155	620.789	-0.738	0.461	-1677.125	760.694
1897.7216	3070.338	0.618	0.537	-4130.840	7926.283
611.210 Dur	bin-Watson:		 1 . 91	== 13	
0.000 Jar	que-Bera (JB):	32896.24	1 1	
-3.626 Pro	b(JB):		0.0	00	
35.940 Cor	ıd. No.		1.11e+1	L6 	
-	54.8073 -26.1737 636.0267 -346.6786 -3895.7825 1985.8946 -813.9945 -458.2155 1897.7216 	54.8073 24.030 -26.1737 42.612 636.0267 188.029 -346.6786 181.393 -3895.7825 6022.607 1985.8946 3204.822 -813.9945 408.079 -458.2155 620.789 1897.7216 3070.338 	54.8073 24.030 2.281 -26.1737 42.612 -0.614 636.0267 188.029 3.383 -346.6786 181.393 -1.911 -3895.7825 6022.607 -0.647 1985.8946 3204.822 0.620 -813.9945 408.079 -1.995 -458.2155 620.789 -0.738 1897.7216 3070.338 0.618 	54.8073 24.030 2.281 0.023 -26.1737 42.612 -0.614 0.539 636.0267 188.029 3.383 0.001 -346.6786 181.393 -1.911 0.056 -3895.7825 6022.607 -0.647 0.518 1985.8946 3204.822 0.620 0.536 -813.9945 408.079 -1.995 0.046 -458.2155 620.789 -0.738 0.461 1897.7216 3070.338 0.618 0.537 	54.8073 24.030 2.281 0.023 7.624 -26.1737 42.612 -0.614 0.539 -109.841 636.0267 188.029 3.383 0.001 266.835 -346.6786 181.393 -1.911 0.056 -702.841 -3895.7825 6022.607 -0.647 0.518 -1.57e+04 1985.8946 3204.822 0.620 0.536 -4306.724 -813.9945 408.079 -1.995 0.046 -1615.251 -458.2155 620.789 -0.738 0.461 -1677.125 1897.7216 3070.338 0.618 0.537 -4130.840

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.77e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The above is the summary of the fitted Ordinary least squares(OLS) regression model of the total combined Dataset of the neurons. It has R-Squared, AIC,BIC,Standard Error, t-score, p-value,F-Statistics and so on parameters for each measurements of neurons in the dataset

(c) Perform a forward selection Akaike Information Criterion (AIC) regression. Exam- ine the selected model and discuss your findings in relation to the model fitted in part (b).

T	1071	
ın	ı / u ı	
- 11	L / J]	

```
#Function for calculating Forward Section AIC Regression
ModelToBeSelected = []
Values = []
CurrentAICValue = 99999999
def ForwardAICRegressionSelectedModels(columns):
   MinimumAICValue = 99999999
   VariableToBeSelected = ''
   for column in columns:
       AValue = sm.OLS(y, X std.loc[:, X std.columns.isin(ModelToBeSelected + [column])]).fit().aic
        if AValue < MinimumAICValue:</pre>
            VariableToBeSelected = column
            MinimumAICValue = AValue
    return VariableToBeSelected, MinimumAICValue
#Calling the function and appending the values to the array taken
cols = list(X std.columns)
while len(cols) > 0:
   Variable, AICValue = ForwardAICRegressionSelectedModels(cols)
    if (AICValue >= CurrentAICValue):
        break
   CurrentAICValue = AICValue
   ModelToBeSelected.append(Variable)
   Values append(AICValue)
    cols.remove(Variable)
#Printing the models that are appended in a array
for i in range (0,len(ModelToBeSelected)):
    print('The Selected Model',(i+1), ModelToBeSelected[i], 'has AIC Value: ', Values[i])
The Selected Model 1 total volume has AIC Value: 14036.328888500182
The Selected Model 2 intercept has AIC Value: 12306.223379559455
The Selected Model 3 total length has AIC Value: 11194.664393695171
The Selected Model 4 average_diameter has AIC Value: 10824.72282714015
The Selected Model 5 overall_depth has AIC Value: 10795.120165893013
The Selected Model 6 number stems has AIC Value: 10787.733152021312
```

The Selected Model 7 number nodes has ATC Value: 10782.40374765715

The Selected Model 8 soma_surface has AIC Value: 10780.25721929229

The Selected Model 9 average_parent_daughter_ratio has AIC Value: 10778.714186352769

The Selected Model 10 average_contraction has AIC Value: 10777.410904675626
The Selected Model 11 number_bifurcations has AIC Value: 10776.348885866755
The Selected Model 12 average_fragmentation has AIC Value: 10769.885551082605

The Selected Model 13 overall width has AIC Value: 10768.464584578278

By using forward selection Akaike Information Criterion (AIC) regression, we are selecting 13 models based on the OLS regression fitted and those selected models are printed with AIC values.

(d) Perform a forward selection Bayes Information Criterion (BIC) regression. Examine the selected model and discuss your findings in relation to the models fitted in part (b) and (c).


```
#Function for calculating Forward Section BIC Regression
ModelToBeSelected = []
Values = []
CurrentBICValue = 99999999
def ForwardBICRegressionSelectedModels(columns):
   MinimumBICValue = 99999999
   VariableToBeSelected = ''
   for column in columns:
       AValue = sm.OLS(y, X std.loc[:, X std.columns.isin(ModelToBeSelected + [column])]).fit().bic
        if AValue < MinimumBICValue:</pre>
            VariableToBeSelected = column
            MinimumBICValue = AValue
    return VariableToBeSelected, MinimumBICValue
#Calling the function and appending the values to the array taken
cols = list(X std.columns)
while len(cols) > 0:
   Variable, BICValue = ForwardBICRegressionSelectedModels(cols)
    if (BICValue >= CurrentBICValue):
        break
   CurrentBICValue = BICValue
   ModelToBeSelected.append(Variable)
   Values.append(BICValue)
    cols.remove(Variable)
#Printing the models that are appended in a array
for i in range (0,len(ModelToBeSelected)):
    print('The Selected Model',(i+1), ModelToBeSelected[i], 'has BIC Value: ', Values[i])
The Selected Model 1 total volume has BIC Value: 14040.87136046069
The Selected Model 2 intercept has BIC Value: 12315.308323480469
The Selected Model 3 total length has BIC Value: 11208.291809576693
The Selected Model 4 average_diameter has BIC Value: 10842.892714982176
The Selected Model 5 overall_depth has BIC Value: 10817.832525695547
The Selected Model 6 number stems has BIC Value: 10814.987983784353
```

The Selected Model 7 number nodes has BTC Value: 10814.201051380698

By using forward selection Bayes Information Criterion (BIC) regression, we are selecting 7 models based on the OLS regression fitted and those selected models are printed with BIC values.

(e) Explain how using BIC for model selection differs from using AIC.

Akaike's Information Criteria, AIC:-

Akaike's Information Criteria were introduced in 1973. When employing Akaike's Information Criteria, which frequently seeks out unidentified models with high dimensional realities, the penalty for additional parameters is reduced. Because it lacks consistency, Akaike's Information Criteria cannot be used to make cross-validation asymptotically identical. At higher levels, AIC shows less tolerance and does not punish free parameters hard.

Bayesian's Information Criteria, BIC:-

The Bayesian Information Criteria were developed in 1978. The penalty for additional parameters is larger in Bayesian Information Criteria. Only True models are discovered when using the Bayesian Information Criteria. Bayesian information criteria are consistently applied. Although BIC is more forgiving than AIC, the Bayesian Information Criteria are helpful for trustworthy estimates. The BIC more harshly penalizes free parameters.

QUESTION-5

Random forest regression to predict the total surface area of a neuron (total surface). (Remaining morphological measurements to be used as predictor variables.)

(a) Split the data into appropriate training and test sets.

```
In [41]: #We will need to convert the Predicted variable and Response Variable into a DataFrame and Series respect
X = modifiedGroupData.drop(['total_surface','id'],axis=1)
y = modifiedGroupData['total_surface']
```

```
In [42]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
```

(b) Fit a random forest regression model with 10 trees using the training data. Include the argument random state=101 in the random forest regression function to ensure reproducible results. Determine which variables are most important in predicting the total surface area of a neuron. Discuss your findings in relation to the linear models fit in question 4.

```
In [45]: #Fitting the RandomForestRegressor with 10 trees and Random_state as 101 to the model
RFR = RandomForestRegressor(n_estimators=10, random_state = 101)
RFR.fit(X_train, y_train)
```

Out[45]: RandomForestRegressor(n_estimators=10, random_state=101)

Determine which variables are most important in predicting the total surface area of a neuron

```
In [88]: #Finding the how much importance a variable depends on predicting Total surface area of a neuron
#in the dataset
ColumnNames = list(X.columns.values)
List = list(zip(ColumnNames,RFR.feature_importances_))
List.sort(key = lambda x:x[1])
f = plt.figure(figsize = (10,10))
plt.barh([i[0] for i in List],[i[1] for i in List],color = 'Green')
plt.title("Importance of Each Measurements to Predection of total surface area of a neuron")
plt.grid()
plt.show()
```

Importance of Each Measurements to Predection of total surface area of a neuron

The Top Measurements of neurons with most important in predicting the total surface area of a neuron is Total_Neurons, Total_Length, Number nodes. Number Bifurcations

(c) Use the random forest regression model to predict the total surface area of a neuron for the test set. Create a scatter plot of the true surface area of a neuron versus the predicted surface area. Interpret your plot.

```
In [90]: #Predicting the test variable which has been splited using RandomForestRegression
Pred_y = RFR.predict(X_test)

#Printing the scatter plot of the true surface area of a neuron versus the predicted surface area.
plt.scatter(y_test,Pred_y,color="pink")
plt.title("Scatter plot of the true surface area of a neuron versus the predicted surface area")
plt.xlabel("True set of data of surface area of neuron")
plt.ylabel("Predicted set of data of surface area of neuron")
```

Out[90]: Text(0, 0.5, 'Predicted set of data of surface area of neuron')

The above is the scatter plot of the true surface area of a neuron versus the predicted surface area.

(d) Assess the performance of a random forest regression model with 5, 10, 20, 50, 100, 200, 500 and 1000 trees in predicting the total surface area of a neuron. You should repeat the model fit and prediction 30 times for each number of trees, using a different random state for each repeat. Create a plot of the model performance as a function of the number of trees (use a log axis for the number of trees). The plot should show the mean and standard error of the performance metric for each number of trees. Discuss your findings.

```
In [145]: #Set of Trees of Random Forest Regression given in the question
          Trees = [5,10,20,50,100,200,500,1000]
          #Function to fit the Random Forest Regression with different values of
          #trees and random state by running 30 times and storing the score of model Function
          def tree p(Trees):
              [] = q
              for i in range(1,30):
                  RFR 1 = RandomForestRegressor(n_estimators=Trees)
                  RFR_1.fit(X_train,y_train)
                  PreditedValues = RFR 1.predict(X test)
                  p.append(mean squared error(v test,PreditedValues))
              return p
          #Storing the value of the score in res
          res = []
          for u in Trees:
              res.append(tree p(u))
```

```
In [150]:
```

```
#The plot should show the mean and standard error of the performance metric for each number of trees.
lbs = ['Tree1 = 5','Tree2 = 10','Tree3 = 20','Tree4 = 50','Tree5 = 100','Tree6 = 200','Tree7 = 500','Tree
x = np.arange(len(lbs))
a = []
w = []
for l in res:
   q.append(np.mean(l))
   w.append(np.std(l))
fig.a = plt.subplots()
a.errorbar(x,q,yerr=w,color='blue',marker='o')
a.set ylabel('The models coefficient for various values of treesize')
a.set xticks(x)
a.set xticklabels(lbs)
a.set title('Efficiency of the model with diverse tree sizes')
a.yaxis.grid(True)
plt.show()
```


The figure showed how the model's demonstrated significant with the number of trees. The productivity metric's mean and standard error for each number of trees were used in the plot's design. Since the prediction accuracy has barely changed, it is nearly 99%. It begins to rise from 97.777% and rises to a steady value and get constant of 98.667% between 500 and 1000 trees. As we increase the size of tree the model function performance will be constant

(e) Explain the rationale for fitting the model multiple time with different random states.

From the above, we can see that the performance of the chosen model improves as the value of the tree's size is increased using various random states over several runs. From the foregoing, when we run the score of the fitted model, we obtain a new set of performance accuracy. If you run it more than once, there may be a very slight variation of 0.001%. However, the percentage numbers continue to rise and reach a steady level of about 99%.

QUESTION-6

(a) Perform a k-means cluster analysis, using the morphological measurements as the features. Run the clustering algorithm for different numbers of clusters (integers from 1 to 10). Plot the model performance as a function of the number of clusters and identify the optimal number of clusters for this data.

In [238]:

```
#Calculate the Optimal Number of cluster K
number = []
clusters = [1,2,3,4,5,6,7,8,9,10]
for i in clusters:
    model = KMeans(n_clusters=i)
    model.fit(X)
    number.append(model.inertia_)

plt.plot(clusters, number,color='#bcbd22',marker='*')
plt.ylabel('How successfully K-Means grouped a dataset')
plt.xlabel('Cluster values of K')
plt.title('Graph to tell Optimal K')
```

Out[238]: Text(0.5, 1.0, 'Graph to tell Optimal K')

It is evident from the diagram that the slope at K = 2 changed. It implies that the inclination before and after k=2 are not identical. It serves as a trigger. Consequently, it is the data's optimal cluster (k=2)

(b) Perform a k-means cluster analysis, using the optimal number of clusters (identified in part (a)), and identify the most discriminatory variables. (Hint: Create histograms for each variable, with the data separated by cluster.)

```
In [156]: #Performing K-Cluster Analysis
    model = KMeans(n_clusters=2)
    model.fit(X_train)
    pred = model.predict(X_train)
In [206]:
```

```
Fqr,q = plt.subplots(5,4)
ftr = list(X train.columns)
m = 0
for b in range(0,5):
    for n in range(0,4):
        if(m>=19):
            break
        tit = ('Discriminatory variable:',ftr[n])
        Comparision(b,n,m,tit)
        m += 1
#Function to identify the most discriminatory variables
def Comparision(u,i,feind,tit):
    inds = []
   Clusters = []
   plt.subplot(5,4,1)
   for l in range(len(pred)):
        if pred[l] == 0:
            inds.append(l)
        else:
            Clusters.append(l)
   g[u,i].title.set text(tit)
   g[u,i].hist(X_train.iloc[inds,feind],alpha=0.5,color='#00FF00')
    g[u,i].hist(X_train.iloc[Clusters,feind],alpha=0.5,color='#d62728')
Fgr.set figheight(30)
Fgr.set figwidth(30)
plt.show()
```


We can find the parameters of the neuron that are taken in dataset which are most discerning from plots. They are:

- A. **"Overall height"**
- B. **"Total length"**
- C. **"Total volume"**
- D. **"Number of nodes"**

(c) Create a series of scatter plots for the most discriminatory variables, colouring the points by cluster number. Discuss your findings. Do your findings support the claim that multiple categories of neurons, with distinctly different morphological properties, are included in this dataset?

```
In [232]: Plotting scatter plots of all most discriminatory variables
lt.rcParams["figure.figsize"] = (20,15)

lt.subplot(2,3,1)
lt.scatter(X_train.loc[:,'overall_height'], X_train.loc[:,'total_length'], c = pred,alpha = 0.5,cmap='Sp
lt.title("Scatter plot for most discriminatory variables Pair 1")
lt.xlabel('overall_height')
lt.ylabel('total_length')
lt.grid()

lt.subplot(2,3,2)
```

```
lt.scatter(X train.loc[:,'overall height'], X train.loc[:,'total volume'], c = pred,alpha = 0.5,cmap='Rd
lt.title("Scatter plot for most discriminatory variables Pair 2")
lt.xlabel('overall height')
lt.vlabel('total volume')
lt.arid()
lt.subplot(2.3.3)
lt.scatter(X train.loc[:,'overall height'], X train.loc[:,'number nodes'], c = pred,alpha = 0.5)
lt.title("Scatter plot for most discriminatory variables Pair 3")
lt.xlabel('overall height')
lt.ylabel('number nodes')
lt.arid()
lt.subplot(2.3.4)
lt.scatter(X train.loc[:,'total length'], X train.loc[:,'total volume'], c = pred,alpha = 0.5,cmap='Wist
lt.title("Scatter plot for most discriminatory variables Pair 4")
lt.xlabel('total length')
lt.vlabel('total volume')
lt.grid()
lt.subplot(2.3.5)
lt.scatter(X train.loc[:,'total length'], X train.loc[:,'number nodes'], c = pred,alpha = 0.5,cmap='cool
lt.title("Scatter plot for most discriminatory variables Pair 5")
lt.xlabel('total length')
lt.ylabel('number nodes')
lt.grid()
lt.subplot(2,3,6)
lt.scatter(X train.loc[:,'total volume'], X train.loc[:,'number nodes'], c = pred,alpha = 0.5,cmap='cool
lt.title("Scatter plot for most discriminatory variables Pair 6")
lt.xlabel('total volume')
lt.ylabel('number nodes')
lt.grid()
```

Scatter plot for most discriminatory variables Pair 2

Scatter plot for most discriminatory variables Pair 1

Scatter plot for most discriminatory variables Pair 3

20000 -

The Above is the series of scatter plots for the most discriminatory variables, colouring the points by cluster number. Here generated the 6 set of series of scatter plots of the training dataset.

(d) Identify another clustering algorithm that may be suitable for this data. Give an overview of your chosen algorithm and discuss the type of problems it works best for. Repeat part (a)–(c) using your chosen algorithm. Discuss your results in relation to those from the k-means cluster analysis.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) Algorithm:

Clusters are seen by the DBSCAN algorithm as regions of high density surrounded by regions of low density. Due to this more open-ended perspective, DBSCAN clusters can be of any shape, unlike k-means, which requires that clusters are convex in shape. Core samples, or samples found in densely populated locations, are the fundamental idea behind the DBSCAN. Consequently, a cluster is made up of a collection of core samples that are close to one another (as determined by some distance metric) and a collection of non-core samples that are close to a core sample (but are not themselves core samples).

```
In [233]: #Performing K-Cluster Analysis
model = KMeans(n_clusters=2)
model.fit(X_train)
pred = model.predict(X_train)
```

In [234]:

```
Fqr,q = plt.subplots(5,4)
ftr = list(X train.columns)
m = 0
for b in range(0,5):
    for n in range(0,4):
        if(m>=19):
            break
        tit = ('Discriminatory variable:',ftr[n])
        Comparision(b,n,m,tit)
        m += 1
#Function to identify the most discriminatory variables
def Comparision(u,i,feind,tit):
    inds = []
   Clusters = []
   plt.subplot(5,4,1)
   for l in range(len(pred)):
        if pred[l] == 0:
            inds.append(l)
        else:
            Clusters.append(l)
   g[u,i].title.set text(tit)
   g[u,i].hist(X_train.iloc[inds,feind],alpha=0.5,color='#00FF00')
    g[u,i].hist(X_train.iloc[Clusters,feind],alpha=0.5,color='#d62728')
Fgr.set figheight(30)
Fgr.set figwidth(30)
plt.show()
```


We can find the parameters of the neuron that are taken in dataset which are most discerning from plots. They are:

- A. "Overall height"
- B. "Total length"
- C. "Total volume"
- D. "Number of nodes"

```
In [235]: #Plotting scatter plots of all most discriminatory variables
          plt.rcParams["figure.figsize"] = (20,15)
          plt.subplot(2.3.1)
          plt.scatter(X_train.loc[:,'overall_height'], X_train.loc[:,'total_length'], c = pred,alpha = 0.5,cmap='S
          plt.title("Scatter plot for most discriminatory variables Pair 1")
          plt.xlabel('overall_height')
          plt.vlabel('total length')
          plt.grid()
          plt.subplot(2,3,2)
          plt.scatter(X_train.loc[:,'overall_height'], X_train.loc[:,'total_volume'], c = pred,alpha = 0.5,cmap='R
          plt.title("Scatter plot for most discriminatory variables Pair 2")
          plt.xlabel('overall height')
          plt.ylabel('total_volume')
          plt.grid()
          plt.subplot(2,3,3)
                 a + + ar(V + rain | ar(i | averall | beight!) | V + rain | ar(i | average | archaell | c - archaeln - 0.5)
```

```
pic.scartel/A claffi.tocf., overact herdir 1, A claffi.tocf., humbel houes 1, c - bien'arbia - A·3/
plt.title("Scatter plot for most discriminatory variables Pair 3")
plt.xlabel('overall height')
plt.vlabel('number nodes')
plt.grid()
plt.subplot(2,3,4)
plt.scatter(X train.loc[:,'total length'], X train.loc[:,'total volume'], c = pred,alpha = 0.5,cmap='Wis
plt.title("Scatter plot for most discriminatory variables Pair 4")
plt.xlabel('total length')
plt.vlabel('total volume')
plt.grid()
plt.subplot(2,3,5)
plt.scatter(X train.loc[:,'total length'], X train.loc[:,'number nodes'], c = pred,alpha = 0.5,cmap='cod
plt.title("Scatter plot for most discriminatory variables Pair 5")
plt.xlabel('total length')
plt.vlabel('number nodes')
plt.grid()
plt.subplot(2,3,6)
plt.scatter(X train.loc[:,'total volume'], X train.loc[:,'number nodes'], c = pred,alpha = 0.5,cmap='cod
plt.title("Scatter plot for most discriminatory variables Pair 6")
plt.xlabel('total volume')
plt.vlabel('number nodes')
plt.grid()
```


On applying DBSCAN algorithm, we got the same result

In []: