Music Recommendation using Graph Convolutional Networks

Final Postgraduate Project on IA and Deep Learning

<u>Artificial Intelligence with Deep Learning Postgraduate (UPC)</u>

Authors: Miguel Ibero, Rafael Pérez, Abel Martinez

Advisor: Paula Gómez

code repository https://github.com/miguelibero/aidl-nnrecomend

Structure Of The Presentation

- 1. What have we done?
- 2. Structure of datasets & evaluation metrics
- 3. Implemented Models
- 4. Reproducing "Deep Collaborative Filtering..." paper results
- 5. Incorporating Graph Convolutional Networks
- 6. Experiments with novel data
- 7. Addressing the cold start problem
- 8. Conclusions

1. What Have We Done?

test & improve our models compare with published results

Spotify Skip Challenge dataset

analyze and extract second dataset train & obtain new results

2. Structure of Datasets & Evaluation Metrics

Interaction Dataset Format

User	Item	Context 1	Context 2	Rating
0	450	800	1201	5
0	720	851	1201	4
0	640	1121	1206	3
1	402	800	1204	0
1	788	803	1202	1
2	590	800	1201	2

	•••	•••		•••	•••
min value	0	400	800	1201	0
max value	399	799	1200	1206	5
range	399	399	400	5	

Generating The Testset

Context 2 User Item Context 1 Rating

trainset

User	Item	Context 1	Context 2	Rating
0	450	800	1201	5
0	720	851	1201	4
1	402	800	1204	0
2	590	800	1201	2

testset

User	Item	Context 1	Context 2	Rating
0	640	851	1206	3
1	788	803	1202	1

Trainset Negative Sampling

		User	ltem	Context 1	Context 2	Rating
		0	450	800	1201	1
negative samples		0	580	800	1201	0
	\prec	0	721	800	1201	0
		0	590	800	1201	0
		0	720	591	1201	1
negative samples		0	560	591	1201	0
	\prec	0	421	591	1201	0
		0	537	591	1201	0

Evaluation Metrics

Hit Ratio (HR)

Measures whether the real test item is in the top positions of the recommendation list

Normalized Discounted Cumulative Gain (NDCG)

Measures the ranking quality which gives information about where in the raking is our real test item.

Coverage	(COV)
----------	-------

Measures the amount of total items in the topk positions.

User	Item	Context 1	Context 2	Predicted
0	640	851	1206	3,2
0	580	800	1201	1,1
0	721	800	1201	2,1
0	590	800	1201	0,7
0	580	800	1201	0,2
0	721	800	1201	1,5
0	590	800	1201	2,7

when testing, the batch contains 1 real user item and the rest is negative samples of the same user

3. Implemented Models

Baseline

simple algorithm that recommends the most popular items to everyone

K Nearest neighbors

look for the most similar users based on their recommendations

$$\hat{r}_{ui} = rac{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v) \cdot r_{vi}}{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v)}$$

see this paper

Matrix Factorization

Factorization Machine

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

reformulation of the second part

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_i \right)^2 - \sum_{i=1}^{n} v_{i,f}^2 x_i^2 \right)$$

Factorization Machine Implementation

Graph Convolutional Networks

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

presented in this paper

4. Reproducing "Deep Collaborative Filtering" paper results

Approach for reproducing the paper

We found this 2019 paper that evaluates multiple recommender systems using the Movielens 100k dataset:

- 100,000 interactions (ratings 1-5)
- 943 users and 1682 movies
- each user has rated at least 20 movies

to compare the paper results with our models we maintain the same parameters

- 64 hidden dimensions
- 10 trainset negative samples
- 99 testset negative samples
- 10 topk

dataset can be found here

Bayesian Personalized Ranking Loss (BPR)

instead of comparing each rating prediction to the expected one, we create positive-negative pairs and try to separate the predictions

```
pred_pos = model(pos_interactions)
pred_neg = model(neg_interactions)
loss = -(pos-neg).sigmoid().log().mean()
```

positive interaction (repeated)

negative interactions

User	Item	Context 1	Context 2	User	Item	Context 1	Context 2
0	450	800	1201	0	580	800	1201
0	450	800	1201	0	721	800	1201
0	450	800	1201	0	590	800	1201

presented in this 2009 paper

Paper Results Comparison

	ItemPop	baseline	ItemKNN	knn	FMG	FM	NeuACF	NeuACF++
type	paper	ours	paper	ours	paper	ours	paper	paper
HR@10	0,3998	0,4051	0,5891	0,5716	0,6373	0,6458	0,6846	0,6915
NDCG@10	0,2264	0,2191	0,3283	0,3422	0,3588	0,3658	0,4068	0,4092

we reproduce very similar results to the paper

5. Incorporating Graph Convolutional Networks

Factorization Machine + Graph Convolutional Network

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i \, x_j$$

$$v_i = GCN_i(matrix, x_i)$$

we implemented it using two types:

torch_geometric.nn.GCNConv
torch geometric.nn.GATConv

	User_0 User_N _u	Item_0 Item_N _i	Context_0 Context_Nc
User_0 User_N _u	0	Interactions user-item	Interactions user-context
Item_0 Item_N _i	Interactions user-item	0	Interactions item-context
Context_0 Context_N _C	Interactions user-context	Interactions item-context	0

Adding Previous Item As Context

Previous Item	Item	User
-1	450	0
450	720	0
720	640	0
640		
	400	0
	799	399

n	
-1	
50	
20	
40	

	Previous Item			
	-1+1+800			
	450-400+1+800			
	720-400+1+800			

Previous Item		
	800	
	851	
	1121	

min value	0	400
max value	399	799
range	399	399

800
1200
400

Evaluation Graphs

- movielens-fm-gcn-att-none
- movielens-fm-gcn-none
- movielens-fm-linear-none

without context

with previous item context

Final Results Comparison

adding GCN and GCN+attention we improve

	FMG	FM	FM-GCN	FM-GCN-ATT	NeuACF	NeuACF++
type	paper	ours	ours	ours	paper	paper
HR@10	0,6373	0,6458	0,6543	0,6596	0,6846	0,6915
NDCG@10	0,3588	0,3658	0,3792	0,3883	0,4068	0,4092
COV@10		0,5458	0,5856	0,6225		

adding previous item as context we get even better results

	FM	FM-GCN	FM-GCN-ATT
type	ours	ours	ours
HR@10	0,7264	0,7370	0,7349
NDCG@10	0,4453	0,4611	0,4581
COV@10	0,6046	0,6165	0,7206

6. Experiments with novel data

Choosing a dataset

- Complete Training Set (56 Gb.)
- Minimally sized version of training set (17.2 Mb)

Spotify DataSet Extraction

Will spotify mini dataset have a similar distribution?

Lets check it.

Mini Data Set Construction

Mini Dataset Compare

Spotify Results

- Results are very good, we are using all negatives available for test (2232 negatives average)
- Using previous item is significantly better than no context
- Using GCN is better than Linear
- GCN requires more computation than linear

Searching context for Spotify sessions

Skip information Repeated songs Hour of day

These context will improve user-item results? We think it won't improve results...

Using Skip as context...

So, as we predict, skip or repeated songs not improves the results

Conclusions working with Spotify Mini Dataset

Mini artificial data set Very good results (Most probably better than full)

Skip or repeat is not good as context

GCN is the best configuration

GCN requires a lot of compute requirements

GCN + Attention requires much more

7. Addressing the cold start problem

Cold Start Problem

Generating New Item Recommender Dataset

New User Recommender

```
[mibero@snowden aidl-nnrecommend]$ nnrecommend recommend models/movielens_recommend.pth
                                                                                        --label "star wars"
 2021-07-11 22:28:30 reading model file...
 2021-07-11 22:28:34 loaded idrange [1682 3364]
 2021-07-11 22:28:34 loaded model of type <class 'nnrecommend.model.FactorizationMachine'>
2021-07-11 22:28:34 loaded 1682 items
2021-07-11 22:28:35 found item 49:
title
                                                         Star Wars (1977)
release date
                                                              01-Jan-1977
link
                    http://us.imdb.com/M/title-exact?Star%20Wars%20(1977)
original item id
2021-07-11 22:28:35 looking for recommendations...
                                                                  TOP 3 RECOMMENDATIONS
title
                                                       Fargo (1996)
release date
                                                        14-Feb-1997
link
                    http://us.imdb.com/M/title-exact?Fargo%20(1996)
original_item_id
                                                                100
title
                                                             Return of the Jedi (1983)
release date
                                                                           14-Mar-1997
link
                    http://us.imdb.com/M/title-exact?Return%20of%20the%20Jedi%20(1983)
original item id
                                                                                   181
title
                                                         Godfather, The (1972)
release_date
                                                                   01-Jan-1972
link
                    http://us.imdb.com/M/title-exact?Godfather,%20The%20(1972)
original_item_id
                                                                           127
```

Conclusions

- we implemented the different recommender system models
- we reproduced paper model metrics for the movilens dataset
- we implemented BPRLoss, GCN and previous item context
- we applied the same models to the spotify dataset
- we showed that GCN embeddings improve the evaluation metrics
- we proposed solution to cold start problem
 - It took much more time to tune than to implement
 - We could not find a good additional context in the spotify dataset
 - it would be interesting to implement Neural FM

Thanks! Questions?