Linear Optimization

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Firs	st Chapter														1
2	Inte	erior-Point Methods														•
	2.1	Primal-Dual Methods														4
	2.2	Convergence Analysis														-

ii *CONTENTS*

Chapter 1

First Chapter

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. Consider the following optimization problem

(P)
$$\max c^{\top} x$$

subject to: $Ax < b$.

Let S denote the feasible region of (P). Let $a_1, ..., a_m \in \mathbb{R}^n$ denote the rows of A. For any $\bar{x} \in S$, define $J(\bar{x})$ by

$$J(\bar{x}) := \{ i \in \{1, ..., m\} : a_i^{\top} x = b_i \}.$$

THEOREM 1.1. Let $A \in \mathbb{R}^{m \times n}$. Let $b \in \mathbb{R}^m$. Define $S \subseteq \mathbb{R}^n$ by $S := \{x \in \mathbb{R}^n : Ax \leq b\}$. Let $\bar{x} \in S$. Let $A^= \in \mathbb{R}^{p \times n}$ and $b^= \in \mathbb{R}^p$ be such that $A^=x = b^=$. Then \bar{x} is an extreme point of S if and only if $\operatorname{rank}(A^=) = n$.

THEOREM 1.2. Let $\bar{x} \in S$. Then \bar{x} is optimal for (P) if and only if $c \in \text{cone}(\{a_i\}_{i \in J})$.

Proof. (\Rightarrow) Suppose that \bar{x} is an optimal solution to (P). Then by Strong Duality, the dual (D) has an optimal solution \bar{y} . Then Complementary Slackness holds. So $\forall i \in \{1, ..., m\} \setminus J$, we have $\bar{y}_i = 0$; and $\forall i \in J$, $a_i^{\top} x = b_i$. Since \bar{y} is an optimal solution to (D), we have $A^{\top} \bar{y} = \sum_{i=1}^{m} \bar{y}_i a_i = c$ and $\bar{y} \geq 0$. So

$$c = \sum_{i=1}^{m} \bar{y}_i a_i = \sum_{i \in J} \bar{y}_i a_i + \sum_{i \notin J} \underbrace{\bar{y}_i}_{=0} a_i = \sum_{i \in J} \bar{y}_i a_i.$$

So $c \in \text{cone}(\{a_i\}_{i \in J})$.

(\Leftarrow) Suppose that $c \in \text{cone}(\{a_i\}_{i \in J})$. Then $\exists \bar{y} \in \mathbb{R}_+^m$ such that $c = \sum_{i \in J} \bar{y}_i a_i$ and $\forall i \notin J$, $\bar{y}_i = 0$. So

$$c = \sum_{i \in J} \bar{y}_i a_i = \sum_{i \in J} \bar{y}_i a_i + \sum_{i \notin J} \underbrace{\bar{y}_i}_{=0} a_i = A^\top \bar{y}.$$

So \bar{y} is a feasible solution to (D). Notice that by construction of \bar{y} , Complementary Slackness holds for \bar{x} and \bar{y} . So \bar{x} is an optimal solution to (P) and \bar{y} is an optimal solution to (D). \Box

Chapter 2

Interior-Point Methods

Contents		
2.1	Primal-Dual Methods	4
2.2	Convergence Analysis	7

4

2.1 Primal-Dual Methods

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Assume that $\operatorname{rank}(A) = m$. Consider the linear optimization problem and its dual:

$$\begin{array}{lll} \text{(LP)} & \underset{x}{\min} & c^{\top}x & \text{(LD)} & \underset{\lambda,s}{\max} & b^{\top}\lambda \\ & \text{subject to:} & x \in \mathbb{R}^n, & \text{subjec to:} & \lambda \in \mathbb{R}^m, s \in \mathbb{R}^n, \\ & Ax = b, & A^{\top}\lambda + s = c, \\ & x \geq \mathbb{0}_n & s \geq \mathbb{0}_m. \end{array}$$

PROPOSITION 2.1. The solutions are characterized by the KKT system

$$\begin{cases} A^{\top} \lambda + s = c, \\ Ax = b, \\ x_i s_i = 0, \quad \forall i \in \{1, ..., n\}, \\ x \ge \mathbb{O}_n, s \ge \mathbb{O}_n. \end{cases}$$

Algorithm 1: Primal-Dual Path-Following

Input: $(x^{(0)}, \lambda^{(0)}, s^{(0)})$ with $(x^{(0)}, s^{(0)}) > \mathbb{O}_n$.

- 1 for $k \in \mathbb{Z}_+$ do
- 2 Choose $\sigma_k \in [0,1]$;
- 3 Solve the system

$$\begin{bmatrix} 0 & A^{\top} & I \\ A & \mathbb{O}_{m \times m} & \mathbb{O}_{m \times m} \\ S^{(k)} & \mathbb{O}_{m \times m} & X^{(k)} \end{bmatrix} \begin{bmatrix} \Delta x^{(k)} \\ \Delta \lambda^{(k)} \\ \Delta s^{(k)} \end{bmatrix} = \begin{bmatrix} -A^{\top} \lambda^{(k)} - s^{(k)} + c \\ -Ax^{(k)} + b \\ -X^{(k)} S^{(k)} e + \sigma_k \mu_k e \end{bmatrix}$$

where $X^{(k)} := \text{Diag}(x^{(k)}), S^{(k)} := \text{Diag}(s^{(k)}), \text{ and } \mu_k := \frac{1}{n} x^{(k)\top} s^{(k)};$

- 4 Choose α_k such that $(x^{(k+1)}, s^{(k+1)}) > \mathbb{O}_n$;
- 5 Set $(x^{(k+1)}, \lambda^{(k+1)}, s^{(k+1)}) := (x^{(k)}, \lambda^{(k)}, s^{(k)}) + \alpha_k(\Delta x^{(k)}, \Delta \lambda^{(k)}, \Delta s^{(k)});$

DEFINITION 2.2 (Primal-Dual Feasible Set/Strictly Feasible Set). We define the feasible set \mathcal{F} and strictly feasible set \mathcal{F}^o to be

$$\mathcal{F} := \{(x, \lambda, s) : Ax = b, A^{\top}\lambda + s = c, (x, s) \ge \mathbb{O}_n\},\$$

$$\mathcal{F}^o := \{ (x, \lambda, s) : Ax = b, A^{\top} \lambda + s = c, (x, s) > \mathbb{O}_n \}.$$

DEFINITION 2.3 (Central Path). We define the **central path** \mathcal{C} to be

$$\mathcal{C} := \{ (x_{\tau}, \lambda_{\tau}, s_{\tau}) : \tau > 0 \}$$

where for each $\tau > 0$, $(x_{\tau}, \lambda_{\tau}, s_{\tau})$ is a solution to the following system

$$\begin{cases} A^{\top} \lambda + s = c, \\ Ax = b, \\ x_i s_i = \tau, \quad \forall i \in \{1, ..., n\}, \\ (x, s) > \mathbb{O}_n. \end{cases}$$

PROPOSITION 2.4. The above system is also the optimality conditions for a logarithmic-barrier formulation

(P)
$$\min_{x} c^{\top}x - \tau \sum_{i=1}^{n} \ln(x_{i})$$
 subject to: $x \in \mathbb{R}^{n}$,
$$Ax = b,$$

$$x > \mathbb{O}_{n}.$$

Proof. Form the Lagrangian function $\mathcal{L}: \mathbb{R}^n \oplus \mathbb{R}^m \to \mathbb{R}$ as

$$\mathcal{L}(x,\lambda) = f(x) - \lambda^{\top} (Ax - b).$$

Then

$$\nabla_x \mathcal{L}(x, \lambda) = c - \left[\frac{\tau}{x_i}\right]_{i=1}^n - A^{\top} \lambda \text{ and}$$
$$\nabla_{\lambda} \mathcal{L}(x, \lambda) = Ax - b.$$

The KKT conditions for this problem is

$$\begin{cases} c_i - \frac{\tau}{x_i} - a_i^{\top} \lambda = 0, & \forall i \in \{1, ..., n\}, \\ Ax - b = \mathbb{O}_n, \\ \lambda^{\top} (Ax - b) = \mathbb{O}_m. \end{cases}$$

PROPOSITION 2.5. The solutions $(x_{\tau}, \lambda_{\tau}, s_{\tau})$ are unique if and only if $\mathcal{F}^{o} \neq \emptyset$.

DEFINITION 2.6 (Neighborhoods of the Central Path). We define the neighborhoods \mathcal{N}_2 and $\mathcal{N}_{-\infty}:(0,1]\to\mathcal{P}(\mathcal{F}^o)$ by

$$\mathcal{N}_2(\theta) := \{ (x, \lambda, s) \in \mathcal{F}^o : ||XSe - \mu e||_2 \le \theta \mu \},$$

$$\mathcal{N}_{-\infty}(\gamma) := \{ (x, \lambda, s) \in \mathcal{F}^o : x_i s_i \ge \gamma \mu, \quad \forall i \in \{1, ..., n\} \}$$

where $\mu := \frac{1}{n} x^{\top} s$ is the duality measure.

Algorithm 2: Long-Step Path-Following

Input: $\gamma, \sigma_{\min}, \sigma_{\max}$ with $\gamma \in (0, 1)$ and $0 < \sigma_{\min} \le \sigma_{\max} < 1$ and $(x^{(0)}, \lambda^{(0)}, s^{(0)}) \in \mathcal{N}_{-\infty}(\gamma)$

1 for $k \in \mathbb{Z}_+$ do

2 Choose $\sigma_k \in [\sigma_{\min}, \sigma_{\max}];$

3 Solve the system

$$\begin{bmatrix} 0 & A^{\top} & I \\ A & \mathbb{O}_{m \times m} & \mathbb{O}_{m \times m} \\ S^{(k)} & \mathbb{O}_{m \times m} & X^{(k)} \end{bmatrix} \begin{bmatrix} \Delta x^{(k)} \\ \Delta \lambda^{(k)} \\ \Delta s^{(k)} \end{bmatrix} = \begin{bmatrix} -A^{\top} \lambda^{(k)} - s^{(k)} + c \\ -Ax^{(k)} + b \\ -X^{(k)} S^{(k)} e + \sigma_k \mu_k e \end{bmatrix}$$

where $X^{(k)} := \text{Diag}(x^{(k)}), S^{(k)} := \text{Diag}(s^{(k)}), \text{ and } \mu_k := \frac{1}{n} x^{(k) \top} s^{(k)};$

4 Choose $\alpha_k \in [0,1]$ largest such that $(x^{(k)}(\alpha), \lambda^{(k)}(\alpha), s^{(k)}(\alpha)) \in \mathcal{N}_{-\infty}(\gamma);$

5 Set $(x^{(k+1)}, \lambda^{(k+1)}, s^{(k+1)}) := (x^{(k)}, \lambda^{(k)}, s^{(k)}) + \alpha_k(\Delta x^{(k)}, \Delta \lambda^{(k)}, \Delta s^{(k)});$

2.2 Convergence Analysis

LEMMA 2.7. Let $u, v \in \mathbb{R}^n$ with $u^{\top}v \geq 0$. Then

$$\|\operatorname{Diag}(u)\operatorname{Diag}(v)e\|_{2} \le 2^{-3/2}\|u+v\|_{2}^{2}.$$

Proof.

$$\|\operatorname{Diag}(u)\operatorname{Diag}(v)e\|_{2} = \left[\sum_{i=1}^{n}(u_{i}v_{i})^{2}\right]^{1/2} = \left[\sum_{i\in\mathcal{P}}(u_{i}v_{i})^{2} + \sum_{i\in\mathcal{M}}(u_{i}v_{i})^{2}\right]^{1/2}$$

$$\leq \left[\left(\sum_{i\in\mathcal{P}}|u_{i}v_{i}|\right)^{2} + \left(\sum_{i\in\mathcal{M}}|u_{i}v_{i}|\right)^{2}\right]^{1/2}$$

$$\leq \left[2\left(\sum_{i\in\mathcal{P}}|u_{i}v_{i}|\right)^{2}\right]^{1/2} = \sqrt{2}\sum_{i\in\mathcal{P}}|u_{i}v_{i}|$$

$$\leq \sqrt{2}\sum_{i\in\mathcal{P}}\left[\frac{1}{4}(u_{i}+v_{i})^{2}\right] = 2^{-3/2}\sum_{i\in\mathcal{P}}(u_{i}+v_{i})^{2}$$

$$\leq 2^{-3/2}\sum_{i=1}^{n}(u_{i}+v_{i})^{2} = 2^{-3/2}\|u+v\|_{2}^{2}.$$

LEMMA 2.8. If $(x, \lambda, s) \in \mathcal{N}_{-\infty}(\gamma)$, then

$$\|\Delta X \Delta Se\|_2 \le 2^{-3/2} (1 + 1/\gamma) n\mu.$$

THEOREM 2.9. Let $(\mu_k)_{k \in \mathbb{Z}_{++}}$ be the sequence of duality measures generated by Algorithm 2. Then there is some δ that depends only on $\gamma, \sigma_{\min}, \sigma_{\max}$ such that

$$\mu_{k+1} \le (1 - \frac{\delta}{n})\mu_k.$$

Proof. I first claim that

$$\forall \alpha \in \left[0, 2^{3/2} \frac{\sigma_k}{n} \gamma \frac{1-\gamma}{1+\gamma}\right], \quad (x^{(k)}, \lambda^{(k)}, s^{(k)}) + \alpha(\Delta x^{(k)}, \Delta \lambda^{(k)}, \Delta s^{(k)}) \in \mathcal{N}_{-\infty}(\gamma).$$

Let $\alpha \in \left[0, 2^{3/2} \frac{\sigma_k}{n} \gamma \frac{1-\gamma}{1+\gamma}\right]$ be arbitrary. Observe that

$$\mu_k(\alpha) = \frac{1}{n} [x^{(k)}(\alpha)]^{\top} [s^{(k)}(\alpha)]$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{(k)} s_{i}^{(k)} (1 - \alpha) + \frac{1}{n} \sum_{i=1}^{n} \alpha \sigma_{k} \mu_{k} + \frac{1}{n} \sum_{i=1}^{n} \alpha \Delta x_{i}^{(k)} \Delta s_{i}^{(k)}$$

$$= (1 - \alpha) \mu_{k} + \alpha \sigma_{k} \mu_{k} + \frac{\alpha^{2}}{n} \underbrace{\left[\Delta x^{(k)}\right]^{\top} \left[\Delta s^{(k)}\right]}_{=0}$$

$$= (1 - \alpha + \alpha \sigma_{k}) \mu_{k}.$$

Then $\forall i \in \{1, ..., n\},\$

$$\begin{split} x_i^{(k)}(\alpha)s_i^{(k)}(\alpha) &= (x_i^{(k)} + \alpha\Delta x_i^{(k)})(s_i^{(k)} + \alpha\Delta s_i^{(k)}) \\ &= x_i^{(k)}s_i^{(k)} + \alpha x_i^{(k)}\Delta s_i^{(k)} + \alpha s_i^{(k)}\Delta x_i^{(k)} + \alpha^2\Delta x_i^{(k)}\Delta s_i^{(k)} \\ &= x_i^{(k)}s_i^{(k)} + \alpha \left[-x_i^{(k)}s_i^{(k)} + \sigma_k\mu_k \right] + \alpha^2\Delta x_i^{(k)}\Delta s_i^{(k)}, \text{ since } \Delta x^{(k)} \text{ and } \Delta s^{(k)} \text{ solves the system} \\ &= x_i^{(k)}s_i^{(k)}(1-\alpha) + \alpha\sigma_k\mu_k + \alpha^2\Delta x_i^{(k)}\Delta s_i^{(k)} \\ &\geq x_i^{(k)}s_i^{(k)}(1-\alpha) + \alpha\sigma_k\mu_k - \alpha^2|\Delta x_i^{(k)}\Delta s_i^{(k)}| \\ &\geq \gamma\mu_k(1-\alpha) + \alpha\sigma_k\mu_k - \alpha^2|\Delta x_i^{(k)}\Delta s_i^{(k)}|, \text{ since } x^{(k)}s^{(k)} \in \mathcal{N}_{-\infty} \\ &\geq \gamma\mu_k(1-\alpha) + \alpha\sigma_k\mu_k - \alpha^22^{-3/2}(1+1/\gamma)n\mu_k, \text{ by Lemma} \\ &\geq \gamma(1-\alpha+\alpha\sigma_k)\mu_k, \text{ since } \alpha \leq 2^{3/2}\frac{\sigma_k}{n}\gamma\frac{1-\gamma}{1+\gamma} \\ &= \gamma\mu_k(\alpha), \text{ by above.} \end{split}$$

That is, $x_i^{(k)}(\alpha)s_i^{(k)}(\alpha) \ge \gamma \mu_k(\alpha)$. So $(x^{(k)}(\alpha), \lambda^{(k)}(\alpha), s^{(k)}(\alpha)) \in \mathcal{N}_{-\infty}(\gamma)$. By definition of the algorithm, we have

$$\alpha_k \ge 2^{3/2} \frac{\sigma_k}{n} \gamma \frac{1-\gamma}{1+\gamma}.$$

Now

$$\mu_{k+1} = (1 - \alpha_k(1 - \sigma_k))\mu_k \le (1 - 2^{3/2} \frac{\sigma_k}{n} \gamma \frac{1 - \gamma}{1 + \gamma} (1 - \sigma_k))\mu_k.$$

Define

$$\delta := 2^{3/2} \gamma \frac{1-\gamma}{1+\gamma} \min \left\{ \sigma_{\min}(1-\sigma_{\min}), \sigma_{\max}(1-\sigma_{\max}) \right\}.$$

Then we have

$$\mu_{k+1} \le (1 - \frac{\delta}{n})\mu_k.$$

COROLLARY 2.10. Let $\varepsilon \in (0,1)$ and $\gamma \in (0,1)$. Suppose that $(x^{(0)}, \lambda^{(0)}, s^{(0)}) \in \mathcal{N}_{-\infty}$. Then there is an index K with $K \in O(n \log(1/\varepsilon))$ such that

$$\mu_k \le \varepsilon \mu_0, \quad \forall k \ge K.$$