

WHAT IS CLAIMED IS:

1. A compound of formula I,

(I)

wherein,

X is Cl, Br, F, CN or NO₂;G is (a) C₁₋₇alkyl which partially unsaturated and is substituted by hydroxy, or10 (b) C₁₋₄alkyl substituted by NR¹R² or 4-tetrahydropyran;R¹ is C₂₋₇alkyl substituted by hydroxy, C₁₋₄alkoxy, aryl, or heteroaryl;R² is hydrogen or C₁₋₇alkyl;or R¹ and R² together with the nitrogen to which they are attached form morpholine which may be optionally substituted by aryl or C₁₋₇alkyl;

15

W is a heterocycle of formula W1, W3, or W4;

W1

W3

W4

20

A is CR⁴ or nitrogen;B is CR⁵ or nitrogen;C is CR⁶ or nitrogen;

25 E and F are such that

(a) one is oxygen and the other is C(=O); or

(b) E is C(=O) and F is NR⁷;

J and K are such that

(a) J is nitrogen and K is CR⁸; or(b) J is CR⁶ and K is nitrogen;

30 with the provisos that when W is of formula W3 and J is nitrogen, then at least one of A and B is nitrogen;

R⁴ is H, halogen, or C₁₋₄alkyl optionally substituted by one to three halogens;R⁵ is (a) H,

- (b) halo,
- (c) OR¹²,
- (d) SR¹²,
- (e) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,
- (f) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,
- (g) (C=O)R⁹,
- (h) S(O)_mR⁹,
- (i) (C=O)OR²,
- (j) NHSO₂R⁹,
- (k) nitro, or
- (l) cyano;

15 R⁶ is

- (a) H,
- (b) halo,
- (c) aryl,
- (d) het,
- (e) OR¹²,
- 20 (f) SR¹²,
- (g) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, aryl, halo, C₃₋₈cycloalkyl optionally substituted by OR¹², or het attached through a carbon atom,
- (h) NR¹⁰R¹¹,
- (i) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,
- (j) (C=O)R⁹,

30

- (k) S(O)_mR⁹,
- (l) (C=O)OR²,
- (m) NHSO₂R⁹,
- (n) nitro, or

(o) cyano;

R^7 is (a) H,
 (b) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR^{12} , SR^{12} , $NR^{10}R^{11}$, or halo,

5 (c) C_{3-8} cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^{12} , SR^{12} , or $NR^{10}R^{11}$,

(d) aryl, or
 (e) het;

10 R^8 is (a) H,
 (b) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR^{12} , SR^{12} , $NR^{10}R^{11}$, or halo,
 (c) OR^{12} , or
 (d) SR^{12} ;

15 R^9 is (a) C_{1-7} alkyl,
 (b) $NR^{10}R^{11}$,
 (c) aryl, or
 (d) het, wherein said het is bound through a carbon atom;

R^{10} and R^{11} are independently

20 (a) H,
 (b) aryl,
 (c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $CONR^2R^2$, CO_2R^2 , het, aryl, cyano, or halo,
 (d) C_{2-7} alkyl which may be partially unsaturated and is substituted by one or more substituents selected from NR^2R^2 , OR^2 , or SR^2 ,

25 (e) C_{3-8} cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^2 , SR^2 , or NR^2R^2 , or
 (f) R^{10} and R^{11} together with the nitrogen to which they are attached form a het;

R^{12} is (a) H,
 (b) aryl,

- (c) het
- (d) C₁₋₇alkyl optionally substituted by aryl, het, or halogen,
- (e) C₂₋₇alkyl substituted by OR², SR², or NR²R², or
- 5 (f) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR², SR², or NR²R²;

each m is independently 1 or 2;

10 aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic, and aryl maybe optionally substituted with one or more substituents selected from halo, OH, cyano, NR²R², CO₂R², CF₃, C₁₋₆alkoxy, and C₁₋₆alkyl which maybe further substituted by one to three SR², NR²R², OR², or CO₂R² groups;

15

het is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from oxygen, sulfur, or nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group, and het may be optionally substituted with one or more substituents selected

20 from halo, OH, cyano, phenyl, CO₂R², CF₃, C₁₋₆alkoxy, oxo, oxime, and C₁₋₆alkyl which may be further substituted by one to three SR², NR²R², OR², or CO₂R² groups;

halo or halogen is F, Cl, Br, I;

25 1 represents the point of attachment between W and G;

2 represents the point of attachment between W and the carbonyl group of Formula (I);

30 and a pharmaceutically acceptable salt thereof;

2. A compound of claim 1 wherein W is of the formula W1.

3. A compound of claim 2 wherein W is of the formula W1.1.
4. A compound of claim 2 wherein W is of the formula W1.2.
5. A compound of claim 2 wherein W is of the formula W1.3.
6. A compound of claim 2 wherein W is of the formula W1.4.
7. A compound of claim 2 wherein W is of the formula W1.5.
- 10 8. A compound of claim 2 wherein W is of the formula W1.6.
9. A compound of claim 2 wherein W is of the formula W1.7.
- 15 10. A compound of claim 2 wherein W is of the formula W1.8.
11. A compound of claim 2 wherein W is of the formula W1.9.
12. A compound of claim 2 wherein W is of the formula W1.10.
- 20 13. A compound of claim 2 wherein W is of the formula W1.11.
14. A compound of claim 2 wherein W is of the formula W1.12.
- 25 15. A compound of claim 2 wherein W is of the formula W1.13.
16. A compound of claim 2 wherein W is of the formula W1.14.
17. A compound of claim 2 wherein W is of the formula W1.15.
- 30 18. A compound of claim 2 wherein W is of the formula W1.16.
19. A compound of claim 2 wherein W is of the formula W1.17.

20. A compound of claim 2 wherein W is of the formula W1.18.

21. A compound of claim 2 wherein W is of the formula W1.19.

5

22. A compound of claim 2 wherein W is of the formula W1.20.

23. A compound of claim 2 wherein W is of the formula W1.21.

10 24. A compound of claim 2 wherein W is of the formula W1.22.

25. A compound of claim 2 wherein W is of the formula W1.23.

26. A compound of claim 1 wherein W is of the formula W3.

15

27. A compound of claim 26 wherein W is of the formula W3.1.

28. A compound of claim 26 wherein W is of the formula W3.2.

20 29. A compound of claim 26 wherein W is of the formula W3.3.

30. A compound of claim 26 wherein W is of the formula W3.4.

31. A compound of claim 26 wherein W is of the formula W3.5.

25

32. A compound of claim 26 wherein W is of the formula W3.6.

33. A compound of claim 26 wherein W is of the formula W3.7.

30 34. A compound of claim 26 wherein W is of the formula W3.8.

35. A compound of claim 26 wherein W is of the formula W3.9.

36. A compound of claim 26 wherein W is of the formula W3.10.
37. A compound of claim 26 wherein W is of the formula W3.11.
- 5 38. A compound of claim 26 wherein W is of the formula W3.12.
39. A compound of claim 26 wherein W is of the formula W3.13.
40. A compound of claim 26 wherein W is of the formula W3.14.
- 10 41. A compound of claim 1 wherein W is of the formula W4.
42. The compound according to claim 1, wherein X is Cl.
- 15 43. The compound according to claim 1 wherein G is 4-morpholinylmethyl.
44. The compound according to claim 1 wherein G is 3-hydroxy-1-propynyl.
45. The compound according to claim 1 wherein G is tetrahydro-2*H*-pyran-4-ylmethyl.
- 20 46. The compound according to claim 1 which is
N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-2-oxo-2*H*-pyrano[2,3-*c*]pyridine-3-carboxamide;
- 25 *N*-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)-1-oxo-1*H*-isochromene-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-1-oxo-6-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-isochromene-3-carboxamide;
- 30 *N*-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-1-oxo-1*H*-isochromene-3-carboxamide;

N-(4-chlorobenzyl)-5-hydroxy-3-(3-hydroxy-1-propynyl)-8-oxo-7,8-dihydro[1,7]-naphthyridine-6-carboxamide;

5 *N*-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)-1-oxo-1,2-dihydro-3-isoquinolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-1-oxo-1,2-dihydro-3-isoquinolinecarboxamide;

10

N-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)[1,7]naphthyridine-3-carboxamide;

15 *N*-(4-chlorobenzyl)-8-ethoxy-4-hydroxy-6-(3-hydroxy-1-propynyl)[1,7]-naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)[1,7]naphthyridine-3-carboxamide;

20 *N*-(4-chlorobenzyl)-8-ethoxy-4-hydroxy-6-(4-morpholinylmethyl)[1,7]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)[1,5]naphthyridine-3-carboxamide;

25

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)[1,5]naphthyridine-3-carboxamide;

30 *N*-(4-chlorobenzyl)-4-hydroxy-6-(tetrahydro-2*H*-pyran-4-ylmethyl)[1,5]-naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-8-hydroxy-2-(3-hydroxy-1-propynyl)pyrido[3,2-*d*]pyrimidine-7-carboxamide;

N-(4-chlorobenzyl)-8-hydroxy-2-(4-morpholinylmethyl)pyrido[3,2-*d*]pyrimidine-7-carboxamide;

5 *N*-(4-chlorobenzyl)-5-hydroxy-3-(4-morpholinylmethyl)[1,7]naphthyridine-6-carboxamide;

N-(4-chlorobenzyl)-5-hydroxy-3-(3-hydroxy-1-propynyl)[1,7]naphthyridine-6-carboxamide;

10

N-(4-chlorobenzyl)-5-hydroxy-3-(tetrahydro-2*H*-pyran-4-ylmethyl)[1,7]-naphthyridine-6-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-isoquinolinecarboxamide;

15

N-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)-3-isoquinolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(tetrahydro-2*H*-pyran-4-ylmethyl)-3-isoquinoline-carboxamide; or

20 a pharmaceutically acceptable salt thereof.

47. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

25 48. A method of treating or preventing a viral infection, comprising administering to
a mammal in need of such treatment, a compound of formula (I),

30

(I)

wherein,

X is Cl, Br, F, CN or NO₂;

G is (a) C_{3-7} alkyl which is partially unsaturated and is substituted by hydroxy,

(b) C₁₋₇alkyl which is fully saturated and is substituted by hydroxy, or
 (c) C₁₋₄alkyl substituted by NR¹R² or 4-tetrahydropyran;

R¹ is C₂₋₇alkyl substituted by hydroxy, C₁₋₄alkoxy, aryl, or heteroaryl;
 R² is hydrogen or C₁₋₇alkyl;

5 or R¹ and R² together with the nitrogen to which they are attached form morpholine which may be optionally substituted by aryl or C₁₋₇alkyl;

W is a heterocycle of formula W1, W3, or W4;

10

A is CR⁴ or nitrogen;

15 B is CR⁵ or nitrogen;

C is CR⁶ or nitrogen;

E and F are such that

20 J and K are such that

- (a) one is oxygen and the other is C(=O); or
- (b) E is C(=O) and F is NR⁷;
- (a) J is nitrogen and K is CR⁸; or
- (b) J is CR⁶ and K is nitrogen;

with the provisos that when W is of formula W3 and J is nitrogen, then at least one of A and B is nitrogen;

R⁴ is H, halogen, or C₁₋₄alkyl optionally substituted by one to three halogens;

25 R⁵ is

- (a) H,
- (b) halo,
- (c) OR¹²,
- (d) SR¹²,
- (e) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,
- (f) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,

- (g) $(C=O)R^9$,
- (h) $S(O)_mR^9$,
- (i) $(C=O)OR^2$,
- (j) $NHSO_2R^9$,

5 (k) nitro, or
 (l) cyano;

R^6 is (a) H,

- (b) halo,
- (c) aryl,

10 (d) het,
 (e) OR^{12} ,

(f) SR^{12} ,

15 (g) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR^{12} , SR^{12} , $NR^{10}R^{11}$, aryl, halo, C₃₋₈cycloalkyl optionally substituted by OR^{12} , or het attached through a carbon atom,

20 (h) $NR^{10}R^{11}$,
 (i) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^{12} , SR^{12} , or $NR^{10}R^{11}$,

(j) $(C=O)R^9$,

(k) $S(O)_mR^9$,

(l) $(C=O)OR^2$,

(m) $NHSO_2R^9$,

25 (n) nitro, or
 (o) cyano;

R^7 is (a) H,

30 (b) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR^{12} , SR^{12} , $NR^{10}R^{11}$, or halo,

(c) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^{12} , SR^{12} , or $NR^{10}R^{11}$,

(d) aryl, or

(e) het;

R^8 is (a) H,
 (b) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,

5 (c) OR¹², or
 (d) SR¹²;

R^9 is (a) C₁₋₇alkyl,
 (b) NR¹⁰R¹¹,
 (c) aryl, or
 (d) het, wherein said het is bound through a carbon atom;

R^{10} and R^{11} are independently
 (a) H,
 (b) aryl,
 (c) C₁₋₇alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from CONR²R², CO₂R², het, aryl, cyano, or halo,

15 (d) C₂₋₇alkyl which may be partially unsaturated and is substituted by one or more substituents selected from NR²R², OR², or SR²,
 (e) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR², SR², or NR²R², or
 (f) R¹⁰ and R¹¹ together with the nitrogen to which they are attached form a het;

R^{12} is (a) H,
 (b) aryl,
 (c) het
 (d) C₁₋₇alkyl optionally substituted by aryl, het, or halogen,
 (e) C₂₋₇alkyl substituted by OR², SR², or NR²R², or
 (f) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR², SR², or NR²R²;

each m is independently 1 or 2;

aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic, and aryl maybe optionally substituted with one or more substituents selected from halo, OH, cyano, NR^2R^2 , CO_2R^2 , CF_3 , $\text{C}_{1-6}\text{alkoxy}$, and C_{1-6} alkyl which maybe further substituted by one to three SR^2 , NR^2R^2 , OR^2 , or CO_2R^2 groups;

het is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from oxygen, sulfur, or nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group, and het may be optionally substituted with one or more substituents selected from halo, OH, cyano, phenyl, CO_2R^2 , CF_3 , $\text{C}_{1-6}\text{alkoxy}$, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^2 , NR^2R^2 , OR^2 , or CO_2R^2 groups;

15 halo or halogen is F, Cl, Br, I;

1 represents the point of attachment between W and G;

20 2 represents the point of attachment between W and the carbonyl group of Formula (I);

and a pharmaceutically acceptable salt thereof;

25 49. The method according to claim 48 wherein said viral infection is a herpes virus infection.

50. The method according to claim 48 wherein said mammal is a human.

30 51. The method according to claim 48 wherein said mammal is a food animal or companion animal.

52. The method according to claim 48 wherein the infection is herpes simplex virus type 1 or 2, human herpes virus type, 6, 7, or 8, varicella zoster virus, human cytomegalovirus, or Epstein-Barr virus.

5 53. The method according to claim 48 wherein the infection is herpes simplex virus type 1 or 2, human herpes virus type 8, varicella zoster virus, human cytomegalovirus, or Epstein-Barr virus.

10 54. The method according to claim 48 wherein the amount administered is from about 0.1 to about 300 mg/kg of body weight.

55. The method according to claim 48 wherein the amount administered is from about 1 to about 30 mg/kg of body weight.

15 56. The method according to claim 48 wherein the compound is administered parenterally, topically, intravaginally, orally, or rectally.

57. A method for inhibiting a viral DNA polymerase, comprising contacting the polymerase with an effective inhibitory amount of a compound of the formula (I)

20

(I)

wherein,

25 X is Cl, Br, F, CN or NO₂;

G is (a) C₃₋₇alkyl which is partially unsaturated and is substituted by hydroxy, (b) C₁₋₇alkyl which is fully saturated and is substituted by hydroxy, or (c) C₁₋₄alkyl substituted by NR¹R² or 4-tetrahydropyran;

R¹ is C₂₋₇alkyl substituted by hydroxy, C₁₋₄alkoxy, aryl, or heteroaryl;

30 R² is hydrogen or C₁₋₇alkyl;

or R¹ and R² together with the nitrogen to which they are attached form morpholine which may be optionally substituted by aryl or C₁₋₇alkyl;

W is a heterocycle of formula W1, W3, or W4;

5

A is CR⁴ or nitrogen;

B is CR⁵ or nitrogen;

C is CR⁶ or nitrogen;

10 E and F are such that
 (a) one is oxygen and the other is C(=O); or
 (b) E is C(=O) and F is NR⁷;

J and K are such that
 (a) J is nitrogen and K is CR⁸; or
 (b) J is CR⁶ and K is nitrogen;

15 with the provisos that when W is of formula W3 and J is nitrogen, then at least one of A and B is nitrogen;
 R⁴ is H, halogen, or C₁₋₄alkyl optionally substituted by one to three halogens;
 R⁵ is (a) H,
 (b) halo,
 (c) OR¹²,
 (d) SR¹²,
 (e) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,
 (f) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,
 (g) (C=O)R⁹,
 (h) S(O)_mR⁹,
 (i) (C=O)OR²,
 (j) NHSO₂R⁹,
 (k) nitro, or
 (l) cyano;

20 R⁶ is (a) H,

25

30

- (b) halo,
- (c) aryl,
- (d) het,
- (e) OR¹²,
- 5 (f) SR¹²,
- (g) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, aryl, halo, C₃₋₈cycloalkyl optionally substituted by OR¹², or het attached through a carbon atom,
- 10 (h) NR¹⁰R¹¹,
- (i) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,
- (j) (C=O)R⁹,
- 15 (k) S(O)_mR⁹,
- (l) (C=O)OR²,
- (m) NHSO₂R⁹,
- (n) nitro, or
- (o) cyano;

20 R⁷ is (a) H,

- (b) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,
- (c) C₃₋₈cycloalkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR¹², SR¹², or NR¹⁰R¹¹,
- 25 (d) aryl, or
- (e) het;

R⁸ is (a) H,

- (b) C₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from OR¹², SR¹², NR¹⁰R¹¹, or halo,
- (c) OR¹², or
- (d) SR¹²;

30 R⁹ is (a) C₁₋₇alkyl,

- (b) $\text{NR}^{10}\text{R}^{11}$,
- (c) aryl, or
- (d) het, wherein said het is bound through a carbon atom;

R^{10} and R^{11} are independently

- 5 (a) H,
- (b) aryl,
- (c) $\text{C}_{1-7}\text{alkyl}$ which may be partially unsaturated and is optionally substituted by one or more substituents selected from CONR^2R^2 , CO_2R^2 , het, aryl, cyano, or halo,
- 10 (d) $\text{C}_{2-7}\text{alkyl}$ which may be partially unsaturated and is substituted by one or more substituents selected from NR^2R^2 , OR^2 , or SR^2 ,
- (e) $\text{C}_{3-8}\text{cycloalkyl}$ which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^2 , SR^2 , or NR^2R^2 , or
- 15 (f) R^{10} and R^{11} together with the nitrogen to which they are attached form a het;

R^{12} is

- (a) H,
- (b) aryl,
- (c) het

- 20 (d) $\text{C}_{1-7}\text{alkyl}$ optionally substituted by aryl, het, or halogen,
- (e) $\text{C}_{2-7}\text{alkyl}$ substituted by OR^2 , SR^2 , or NR^2R^2 , or
- (f) $\text{C}_{3-8}\text{cycloalkyl}$ which may be partially unsaturated and is optionally substituted by one or more substituents selected from halogen, OR^2 , SR^2 , or NR^2R^2 ;

25

each m is independently 1 or 2;

aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic, and aryl maybe optionally substituted with one or more substituents selected from halo, OH, cyano, NR^2R^2 , CO_2R^2 , CF_3 , $\text{C}_{1-6}\text{alkoxy}$, and C_{1-6} alkyl which maybe further substituted by one to three SR^2 , NR^2R^2 , OR^2 , or CO_2R^2 groups;

het is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from oxygen, sulfur, or nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group, and het may be optionally substituted with one or more substituents selected
5 from halo, OH, cyano, phenyl, CO_2R^2 , CF_3 , $\text{C}_{1-6}\text{alkoxy}$, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^2 , NR^2R^2 , OR^2 , or CO_2R^2 groups;

halo or halogen is F, Cl, Br, I;

10 1 represents the point of attachment between W and G;

2 represents the point of attachment between W and the carbonyl group of Formula (I);

15 and a pharmaceutically acceptable salt thereof;

58. The method of claim 57 wherein the polymerase and the compound are contacted *in vitro*.

20 59. The method of claim 57 wherein the polymerase and the compound are contacted *in vivo*.