On design and analysis of sample surveys:

Sampling strategies for elements with equal probability sampling designs

By: Andrés Gutiérrez

Contents

Aim:

To realize the advantages and disadvantages of the main sampling strategies where sampling frames of elements are used

Contenido:

This presentation focuses on the practical development of a survey with the LUCY population and the sampling frame MARCO:

- 1. R and TeachingSampling
- 2. Marco and Lucy
- 3. Strategies for Bernoulli sampling
- 4. Strategies for simple random sampling
- 5. Strategies for simple random sampling with replacement
- 6. Strategies for Systematic sampling

Bibliography:

- Estrategias de muestreo. Gutiérrez (2009). USTA.
- Model Assisted Survey Sampling. Sarndal (1992). Springer.

¿Why R?

If you're using softwares such as SAS, SPSS, Stata or Systat why use R?

- 1. It's free. If you are a teacher or a student, the benefits are obvious. If you work in a company, your boss will assess it more when he finds that he should not paid for any annual licence to perform their statistical analysis.
- 2. Is enforceable in a variety of platforms including Windows, Unix and MacOS.
- 3. It provides a programming platform for new statistical methods with a simple mannered.
- 4. Provides advanced statistical routines that are not yet available in other packages.
- 5. Generates powerful graphics up-to-date with the state of the art.
- 6. The routines created in R and can be loaded and executed in other important software such as SAS and SPSS.

The TeachingSampling package

TeachingSampling: Sampling designs and parameter estimation in finite population

Foundations of inference in survey sampling

Version: 1.4.9

Depends: $R (\geq 2.6.0)$ Published: 2010-03-11

Author: Hugo Andres Gutierrez Rojas

Maintainer: Hugo Andres Gutierrez Rojas

<hugogutierrez at usantotomas.edu.co>

License: $GPL (\geq 2)$

URL: http://www.predictive.wordpress.com/stats/

In R: Menu \rightarrow Packages \rightarrow Install Package \rightarrow choose your preferred server \rightarrow search and click on TeachingSampling. Load the package with the following instruction:

> library(TeachingSampling)

- Lucy refers to a population of companies in the industrial sector.
- Marco refers to the sampling frame that is required to design a survey in order to asses probabilistic inference about Lucy.

The target population comprise all companies whose main activity is linked to the industrial sector. The measurement process will be based on: revenue in the last fiscal year, tax declared in the last fiscal year and number of employees. Additionally, it is required to know if the company sends periodically some kind of advertising material via email.

To recollect the information, an interviewer will visit the facilities of the company and will take the following questions:

- 1. In the last fiscal year, how much revenue were amounted by this business?
- 2. In the last fiscal year, how much taxes were declared by this company?
- 3. Currently, how many employees are working for this company?
- 4. Does this company use to send publicity material for e-mail to its customers or potential customers?

To address the selection of a sample that allow statistical inference about the economic growth of the industrial sector, it must be provided a sampling frame with the following features for each company of the population.

- 1. ID: it is an alphanumeric string of two letters and three digits. This identification number is given to each company at the time of legal establishment to the relevant registration entity.
- 2. Location: is the address that is recorded in the statement of the taxes.
- 3. Area: the city is made up of neighborhoods or geographical areas. Depending of the address, the company belongs to one and only one geographical area of the city.
- 4. Level: according to tax records, businesses are categorized into three groups:
 - 1. Large: companies taxed \$ 49 million a year or more.
 - 2. Medium: companies are taxed more than 11 million and less than 49 million dollars a year.
 - 3. Small: companies taxed \$ 11 million a year or less

Information concerning the first 10 companies in the sampling frame is displayed with the following code in R:

```
> data(Marco)
> Marco[1:10,]
    ID Ubication Level Zone
1 AB001 clk1 Small
2 AB002 c1k2 Small A
3 AB003 c1k3 Small A
4 AB004 c1k4 Small
                    A
5 AB005 c1k5 Small
                      A
6 AB006 c1k6 Small
                    A
7 AB007 c1k7 Small
                    A
8 AB008 c1k8 Small
                    A
9 AB009 c1k9 Small
                    A
10 AB010 c1k10 Small
                      A
> names(Marco)
[1] "ID" "Ubication" "Level" "Zone"
> dim(Marco)
[1] 2396 4
```

Information for all of the characteristics of interest concerning the first 10 companies of the LUCY population is revealed by the code below:

```
> data(Lucy)
> Lucy[1:10,]
      ID Ubication Level Zone Income Employees Taxes SPAM
                                   281
   AB001
               c1k1 Small
                              A
                                               41
                                                     3.0
                                                           no
  AB002
               c1k2 Small
                              A
                                   329
                                               19
                                                     4.0
                                                          yes
  AB003
               c1k3 Small
                                   405
                                               68
                                                     7.0
                              A
                                                           no
   AB004
               c1k4 Small
                                   360
                                               89
                                                     5.0
4
                              A
                                                           no
5
  AB005
               c1k5 Small
                                   391
                                               91
                                                     7.0
                              A
                                                         yes
  AB006
               c1k6 Small
                                   296
                                               89
                                                     3.0
                              A
                                                          no
  AB007
               c1k7 Small
                              A
                                   490
                                               22
                                                   10.5
                                                         yes
  AB008
               c1k8 Small
                                   473
                                               57
                                                   10.0
                              A
                                                          yes
   AB009
               c1k9 Small
                                   350
                                               84
                                                     5.0
                              A
                                                          yes
                                   361
                                               25
                                                     5.0
10 AB010
              c1k10 Small
                              A
                                                          no
```

The statistics concerning the variables in the population are displayed easily by applying the summary function to the dataset in Lucy.

Can all of them be considered as parameters?

```
> summary(Lucy)
```

```
Ubication
     ID
                            Level
                                      Zone
                                                Income
AB001 :
             c10k1 : 1
                         Big : 83 A:307
                                             Min. : 1.0
             c10k10 :
                         Medium: 737 B:727
                                             1st Ou.: 230.0
AB002 :
         1
                     1
             c10k11 :
                          Small :1576
                                    C:974
                                             Median : 390.0
AB003 :
         1
                      1
AB004 :
            c10k12 :
                                      D:223
         1
                                             Mean : 432.1
                      1
AB005 : 1
            c10k13:
                                      E:165
                                             3rd Ou.: 576.0
                      1
AB006 : 1 c10k14 :
                                                   :2510.0
                                             Max.
(Other):2390
            (Other):2390
```

```
Employees Taxes SPAM
Min.: 1.00 Min.: 0.50 no: 937
1st Qu.: 38.00 1st Qu.: 2.00 yes:1459
Median: 63.00 Median: 7.00
Mean: 63.42 Mean: 11.96
3rd Qu.: 84.00 3rd Qu.: 15.00
Max.: 263.00 Max.: 305.00
```

An important parameter (which is complete with the objectives of the research) is the total population of continuous features:

```
> total <- function(x) {length(x) *mean(x) }</pre>
> attach(Lucy)
> total(Income); total(Employees); total(Taxes)
[1] 1035217
[1] 151950
[1] 28653.5
                                             Almost always, in most surveys, one want to
                                             obtain estimates by subgroups, in this case
> tapply(Income, Level, total)
                                             estimates of the total income per industrial
   Big Medium Small
                                             level.
103706 487351 444160
> table(SPAM, Level)
                                              In this case the number of companies that
      Level
                                              send SPAM is discriminated by industrial level.
SPAM Big Medium Small
        2.6
                2.91
                       620
  no
  ves 57 446 956
```

Industrial sector has a high income amounting to US 1,035,217 million, provides taxes by U.S. \$ 28.653 million and employs to 151,950 people.

Note that most of the industrial sector income is acquired by the small and medium companies. However, on average, big firms bend the income of the medium companies, which in turn is three times the income of small companies. In absolute terms, the advertising strategy of sending spam to customers or potential customers deploy more often in small companies.

The income of the companies that use SPAM as advertising strategy doubles the income of companies that do not use SPAM in almost all levels. That is because there exist more companies sending spam; then more companies implies more income.

> boxplot(Income ~ Level, main=c("Boxplot de Ingreso"))

Boxplot de Ingreso

Big firms have higher incomes, provide a higher tax burden and employ more people than the small and medium enterprises. It is desirable that sampling frame contains the membership of each company to the industrial level because it is a good discriminant and allows implementation of appropriate sampling strategies to guide more precise estimates.

It is also desirable to know the correlation between characteristics of interest. This can serve the time to bring the best sampling strategy.

```
> Datos <- data.frame(Income, Employees, Taxes)</pre>
> cor(Datos)
             Income Employees Taxes
        1.000000 0.645536 0.916954
Income
                                                    0 50 100
                                                          200
Employees 0.645536 1.000000 0.646855
Taxes 0.916954 0.646855 1.000000
                                            Income
> pairs(Datos)
                                                                        200
                                                     Employees
                                                                        250
                                                                 Taxes
                                          0 500
                                                                  150
```

Parameters of interest

Tabla 1.2: Parámetros de la población discriminados por nivel industrial.

			Ingreso	Impuestos	Empleados
Nivel	Grande	N total	83	83	83
		Suma	103.706	6.251	11.461
		Media	1.249	75	138
	Mediano	N total	737	737	737
		Suma	487.351	16.293	59.643
		Media	661	22	81
	Pequeño	N total	1.576	1.576	1.576
		Suma	444.160	6.110	80.846
		Media	282	4	51

Parameters of interest

Tabla 1.3: Parámetros de la población discriminados por comportamiento publicitario.

			Ingreso	Impuestos	Empleados
SPAM	no	N total	937	937	937
		Suma	397.952	10.593	59.600
		Media	425	11	64
	\sin	N total	1.459	1.459	1.459
		Suma	637.265	18.061	92.350
		Media	437	12	63

Parameters of interest

Tabla 1.4: Parámetros de la población discriminados por nivel industrial y por comportamiento publicitario.

		SPAM						
		no			si			
		N total	$_{ m Suma}$	Media	N total	Suma	Media	
Grande	Ingreso	26	31.914	1.227	57	71.792	1.260	
	Impuestos	26	1.844	71	57	4.4.07	77	
	Empleados	26	3.587	138	57	7.874	138	
Mediano	Ingreso	291	190.852	656	446	296.499	665	
	Impuestos	291	6.322	22	446	9.971	22	
	Empleados	291	23.745	82	446	35.898	80	
Pequeño	Ingreso	620	175.186	283	956	268.974	281	
_	Impuestos	620	2.427	4	956	3.683	4	
	Empleados	620	32.268	52	956	48.578	51	

Designing the survey

Bernoulli sampling design

Suppose that you must select a sample with a Bernoulli sampling design. The expected sample size is N * pi = 400 companies.

As the population size is N = 2396, then the value is set to pi is 0.1669. To select the sample uses the S. BE (N, prob) of the TeachingSampling package whose parameters are N, the size population and prob, the value of the inclusion probability for each element of the population. This function uses the sequential algorithm that examine all elements of the population.

```
> # Uses the Marco and Lucy data to draw a Bernoulli sample
> data(Marco)
> data(Lucy)
> attach(Lucy)
> N <- dim(Marco)[1]
> # The population size is 2396. If the expected sample size is 400,
> # then, the inclusion probability must be 400/2396=0.1669
> sam < - S.BE(N, 0.1669)
> # The information about the units in the sample is stored in an object
called data
> data <- Lucy[sam,]</pre>
> data
        ID Ubication Level Zone Income Employees Taxes SPAM
 AB007 c1k7 Small A 490
                                            22 10.5 yes
  AB008 c1k8 Small A 473
                                            57 10.0 yes
> dim(data)
[1] 387 8
```

Note that the effective sample size is 387 companies

Estimating the parameters

Horvitz-Thompson estimator for the total

Once the data collection stage is done, we get a Lucy data file containing the values of the characteristics of interest for the selected companies.

The estimation stage is performed by using the function E.BE (y, prob) of the TeachingSampling package whose arguments are y, a vector or array containing the values of the characteristics of interest and prob, the probability of inclusion. In this case the length of each vector is n = 387.

This function gives the estimate of the total population and using the Horvitz-Thompson estimator, the estimate of the variance and estimated coefficient of variation.

E.BE

```
> dim(data)
[1] 387 8
> sam < - S.BE(N, 0.1669)
> # The information about the units in the sample is stored in data
> data <- Lucy[sam,]</pre>
                            It is very important to use attach after the
                            selection of the sample
> attach(data)
> # The variables of interest are: Income, Employees and Taxes
> # This information is stored in a data frame called estima
> estima <- data.frame(Income, Employees, Taxes)</pre>
> E.BE(estima, 0.1669)
                  Income Employees Taxes
Estimation 1.024661e+06 1.468484e+05 2.954164e+04
Variance 3.205513e+09 6.104305e+07 6.029255e+06
           5.525459e+00 5.320456e+00 8.311841e+00
CVE
```

Alternative estimator for the total

With the help of the function E.BE it is possible to calculate the alternative estimate for the totals of interest. Just define the variable n indicating the effective sample size.

As the alternative estimator is a ratio of estimators is not possible - at this point - to obtain an estimate for its variance and therefore can not calculate a cve.

Horvitz-Thompson estimator for the mean

It is also possible to estimate the mean by using the Horvitz-Thompson estimator. Of course, we have to estimate the variance and the cve.

Alternative estimator for the mean

It is also possible to calculate the alternative estimate for the mean of the characteristics of interest.

As with the alternative estimator for the total, it is not possible - at this point - to obtain an estimate for its variance and therefore cannot be calculated a cve.

Designing the survey

Simple random sampling

Suppose that you must select a sample with a simple random design (SI).

- 1. It should be calculated the sample size of companies in the industrial sector.
- 2. It must be obtained statistical estimates of the total and average for population of the industrial sector.
- 3. Discriminated estimates should be obtained for all of the domains of interest.
- 4. Based on the results it should be proposed an economic policy for the industrial sector support.

The domains of interest are related to the advertising practices of companies. Then, there is the domain SPAM.YES for companies sending electronic publicity and SPAM.NO for companies that do not send these advertising.

Pilot sample

The sampling strategy to be used is as follows: The Horvitz-Thompson estimator applied to a simple random sampling design without replacement. You select a pilot sample of size 30 from the population. For this, once the data file LUCY is loaded, we use the sample function to extract the pilot sample. The characteristic of interest is the income of the companies, then we take the values of the variance and mean as estimates to be used for the calculation of sample size.

```
> data(Lucy)
> attach(Lucy)
> N <- dim(Lucy)[1]
> sam <- sample(N,30)
> Ingresopiloto <- Income[sam]
> var(Ingresopiloto)
[1] 66952.62
> mean(Ingresopiloto)
[1] 455
```

Sample size: absolut error

The required estimates are such that:

- Absolute error: the margin of error for this study is 25 million dollars in total business income of the population.
- Confidence level: 95 %.
- By (3.2.16), no = 411.

$$n \ge \frac{n_0}{1 + \frac{n_0}{N}} \tag{3.2.16}$$

• Then, n ≥ 351.

Sample size: relative error

The required estimates are such that:

- Relative error: the relative standard error must be less than 7% in total business income of the population
- Confidence level: 95 %.
- By (3.2.18), ko = 446.

$$n \ge \frac{k_0}{1 + \frac{k_0}{N}}$$
 (3.2.18)

• Then, $n \ge 376$.

In conclusion, we propose a sample size n = 400

Designing the survey

Simple random sampling without replacement

You must select a sample with a simple random sampling design without replacement (SI). To select the sample we use the function S.SI (N, n) of the package TeachingSampling whose parameters are N, population size and n, the sample size. This function uses the algorithm of Fan-Muller-Rezucha.

In this opportunity, it will be asked about income, taxes and number of employees in the fiscal year of interest, and also about the membership of the companies domains, i.e. if you send SPAM or not their customers or potential customers.

S.SI

```
> N <- dim(Lucy)[1]
> n < -400
> sam < -S.SI(N,n)
> # The information about the units in the sample is stored in an object
called data
> data <- Lucy[sam,]</pre>
> data
       ID Ubication Level Zone Income Employees Taxes SPAM
                                        41 3.0 no
1 AB001 c1k1 Small A 281
3 AB003 c1k3 Small A 405
                                        68 7.0 no
7 AB007 c1k7 Small A 490
                                        22 10.5 yes
> dim(data)
[1] 400 8
```

Estimating the parameters

Horvitz-Thompson estimator for the total

Once the data collection stage is done, we get a Lucy data file containing the values of the characteristics of interest for the selected companies.

The estimation stage is done by using the function E.SI(N, n, y) of the TeachingSampling package whose arguments are the same as those of the function S.SI and y, a vector or array containing the values features of interest in the sample. In this case the length of each vector is n = 400. This function gives the estimate of the total population and using the Horvitz-Thompson estimator, the estimate of the variance and estimated coefficient of variation.

Horvitz-Thompson estimator for the total

Horvitz-Thompson estimator for the mean

With the help of the function E.SI we can estimate the mean by using the Horvitz-Thompson estimator, also it is possible to estimate the variance of the estimator calculate the cve.

Domains

```
> # The variable SPAM is a domain of interest
> Doma <- Domains(SPAM)
> # This function allows to estimate the parameters of the variables
    of interest for every category in the domain SPAM
> estima <- data.frame(Income, Employees, Taxes)
> SPAM.no <- estima*Doma[,1]
> SPAM.yes <- estima*Doma[,2]</pre>
```

Suppose that the domains of interest are the subgroups that send SPAM or not. This forms a partition of the population of industrial companies and note also that it is not know which firms tend to advertise through this medium. The function <code>Domains()</code> creates indicator variables for each domain of interest. Remember that these zeros and ones are multiplied with values of the characteristics of interest.

Horvitz-Thompson estimator for the total in each domain

Note that the sum of the total estimated in the domains is equal to the HT estimate of the characteristics of interest. For example, Income must be

```
365659.5 + 641109.7 = 1006769
```

It is important to perform this check!

Horvitz-Thompson estimator for the absolute size of the domains

With the help of the object DOMA and by using the function Domains it is possible to calculate the estimated absolute size for each of the two domains and obtain a corresponding cve.

```
> E.SI(N,n,Doma[,1])

Y
Estimation 988.350000
Variance 2904.733402
CVE 5.453086

> E.SI(N,n,Doma[,2])

Y
Estimation 1407.650000
Variance 2904.733402
CVE 3.828763
```

E.SI para dominios

Horvitz-Thompson estimator for the mean of the domains

By using the above functions we can obtain an estimate for the average of each domain. As this is a ratio, we still cannot get a cve.

Are there differences in average for companies that advertise via email?

Designing the survey

Simple random sampling with replacement

Suppose that you must select a sample with a simple random design with replacement of sample size m = 400. There are several methods for the selection of a single sample with replacement, in the basic computing environment of R, the function sample allows to select such a sample when the replace option is set to TRUE.

```
sample(N,m, replace=TRUE)
```

In order to extract simple random samples with replacement, the ${\tt TeachingSampling}$ package uses a sequential algorithm based on the binomial distribution. The S.WR function has the following arguments: N, the size of the population and m, the size of the sample with replacement.

S.WR

```
> N <- dim(Marco)[1]
> m < -400
> sam < -S.WR(N,m)
> # The information about the units in the sample is stored in an object
called data
> data <- Lucy[sam,]</pre>
> data
          ID Ubication Level Zone Income Employees Taxes SPAM
       AB016
                 c1k16 Small
                                                 12
                                                      5.0
16
                                 A
                                      340
                                                            no
25
       AB025
                 c1k25 Small
                                      365
                                                 49
                                                      6.0
                                 A
                                                           yes
26
      AB026 c1k26 Small
                                      380
                                                 38
                                                      6.0
                                 A
                                                           no
40
      AB040 c1k40 Small
                                      491
                                                 86
                                                     10.5
                                 A
                                                           yes
             c1k45 Small
45
      AB045
                                      365
                                                 53
                                                      6.0
                                 A
                                                           yes
46
             c1k46 Small
                                      346
      AB046
                                                 56
                                                      5.0
                                 A
                                                            no
49
      AB050
              c1k49 Small
                                      334
                                                      5.0
                                                 16
                                                            no
49.1
       AB050
                 c1k49
                        Small
                                      334
                                                 16
                                                      5.0
                                 A
                                                            no
69 AB072
             c1k69
                   Small
                                 390
                                            95
                                                 7.0 yes
                           A
. . .
```

Note that the company that is ranked as 49 in the sampling frame was selected twice in with-replacement sample.

Estimating the parameters

Hansen-Hurwitz estimator for the total

Once the data collection stage is done, we get a Lucy data file containing the values of the characteristics of interest for the selected companies.

The estimation stage is performed by using the function E.WR(N, m, y) of the TeachingSampling package whose arguments are those of the S.WR and y, a vector or array containing the values of the characteristics of interest in the sample. This function gives the estimate of the total population and using the Hansen-Hurwitz estimator, the estimate variance and coefficient of variation estimate.

Hansen-Hurwitz estimator for the total

With the same sample size, the strategy that uses the sampling design simple random without replacement produces higher estimates for the coefficient of variation. It's the price you pay for duplicate information in the sample.

Hansen-Hurwitz estimator for the mean

With the help of the function E. WR it is possible to calculate the Hansen-Hurwitz estimation for the average features of interest, it is also possible to estimate the variance of the estimator and to calculate the cve.

Horvitz-Thompson estimator for the total

As it is well known, once you define the selection probabilities for each element in the population, the inclusion probabilities are defined immediately. Therefore it is suitable to use the Horvitz-Thompson estimator to access to an estimate for the total of the characteristics of interest.

Estimates of variance and cve are not provided since the generic variance of the Horvtiz-Thompson estimator has a complex expression.

The loss of efficiency in this strategy can be estimated with the Deff. Simply by doing the ratio of estimated variances it is possible to establish that - for this particular case - simple random sampling without replacement is better.

For simple random sampling without replacement:

```
Income Employees Taxes Variance 7.805793e+08 1.202052e+07 2.680269e+06
```

For simple random sampling with replacement:

	Income	Employees	Taxes
Variance	1.077487e+09	1.721914e+07	5.217604e+06

Estimates of the design effect:

	Income	Employees	Taxes
Deff	1.371	1.433	1.944

Designing the survey

Systematic sampling design

Note that the characteristics of interest are income, number of employees and taxes held in the last fiscal year and it can be assumed, correctly, that these features have no relation to the date of registration of the company in the sampling frame. Thus, it can happen that a young company, has a high yield, few employees and high return, but also can happen the contrary; in fact, this behavior is subject to the marketing used in each trading period and has low relation with the age of the business.

For the above reasons, it is assumed that the ordering of the sampling frame is completely random. It has been decided that the population will be partitioned into six groups, so that the effective sample size will be 399 or 400.

The sample selection is made by using the function S.SY whose arguments are N, the size of the population and a, the number of groups. This function assigns a random start and leaps, in this case, six in six elements to sweep the entire list.

```
> N <- dim(Marco)[1]
> a <- 6
> # The population is divided in 6 groups of size 399 or 400
> sam <- S.SY(N,a)
> data <- Marco[sam,]</pre>
> data
         ID Ubication Level Zone
6
     AB006 c1k6 Small
                               A
12
    AB012 c1k12 Small
                               A
18
     AB018 c1k18 Small
                               A
2385 AB912 c26k9
                        Biq
                               \mathbf{E}
2391 AB983 c26k15
                       Biq
                               \mathbf{E}
> dim(data)
[1] 399 4
```

Estimando los parámetros

Horvitz-Thompson estimator for the total

Once collected the information from the sample, we proceed to perform the estimate stage by using the function E.SY whose arguments are N, the population size and y, a dataset containing information on the characteristics of interest for each element in the sample.

```
> data <- Lucy[sam,]</pre>
                                                           This
                                                                 is
                                                                          conservative
> attach(data)
                                                           approximation to the variance
                                                           assuming
                                                                     simple
                                                                             random
> estima <- data.frame(Income, Employees, Taxes)</pre>
                                                           sampling
                                                                             without
> E.SY(N,a,estima)
                                                           replacement.
                              Employees
                   Income
                                                 Taxes
Estimation 1.032540e+06 1.552320e+05 2.775300e+04
Variance 7.744526e+08 1.294529e+07 2.392375e+06
            2.695197e+00 2.317793e+00 5.573201e+00
CVE
```

It has to be considered that the efficiency of this sampling strategy is larger than that performing simple random sampling.

Horvitz-Thompson estimator for the mean

With the help of the function E.SY it is possible to calculate the Horvitz-Thompson for the mean of the characteristics of interest, also it is possible to estimate the variance of the estimator and its corresponding cve.

Intra-class correlation

$$\rho = 1 - \frac{n}{n-1} \frac{SCD}{SCT} \tag{3.4.29}$$

This measure of correlation between pairs of elements of the groups formed takes a maximum value equal to one when SCE is null and takes a minimum value of (-1 / n-1) when SCE is maximum. In particular, it is desirable for this strategy that ρ take values close to zero.

On the other hand, it is possible to show that the design effect, the ratio of the variances, is given by the following expression:

$$Deff = \frac{Var_{SIS}\hat{t}_{\pi}}{Var_{MAS}\hat{t}_{\pi}} = \frac{N-1}{N-n}[1 + (n-1)\rho]$$
 (3.4.32)

Thus, we find that systematic sampling will be:

- 1. Just as efficiently by simple random sampling if $\rho = (1 / 1-N)$.
- 2. Less efficient than simple random sampling if $\rho > (1 / 1-N)$.
- 3. More efficient than simple random sampling it $\rho < (1 / 1-N)$.

ANOVA

With the sums of squares is shown that this strategy is more efficient than simple random sampling. This suggests that the use of the term of the variance for a simple random sampling without replacement is a good approximation for the variance of systematic sampling because it overestimates the true variance.

```
> grupo <- as.factor(array(1:a,N))</pre>
> data(Lucy)
> attach(Lucy)
> anova(lm(Income~grupo))
Response: Income
            Df
                  Sum Sq Mean Sq F value Pr(>F)
             5
                  12359 2472 0.0346 0.9994
grupo
Residuals 2390 170698187 71422
> n <- dim(data)[1]
> rho <- 1-(n/(n-1))*(170698187/(170698187+12359))
> rho
[1] -0.002439984
> rho < 1/(1-N)
[1] TRUE
```

The gain in efficiency when using this design is nearly twenty-nine times since the design effect is approximately 0.034.

```
> Deff <- (N-1) * (1+(n-1) *rho) / (N-n)
> Deff
[1] 0.03464363
> 1/Deff
[1] 28.86534
```

On the other side, the true generic variance of the HT estimator for the characteristic of interest Income is

```
> VarHT <- N*12359
> VarHT
[1] 29612164
```

It is much lesser than the estimate yielded by the expression of simple random sampling without replacement.