

This week's agenda

PART 10

- Concept of Robustness
- Concept of Optimality
- Concept of Adaptive Systems
- Concept of Intelligence in Control

P-10 Concept of Robustness

If a controller C(s) meets the design specifications for every α in a known range $\alpha_{min} \le \alpha \le \alpha_{max}$ then the controller is a robust controller, and the control system is robust against variations in α .

Concept of Robustness

If this robot grasps a load, some parameters seen in its dynamical representation change. If a position control application is being executed, the controller must take this change into account to maintain precision.

Prof. Dr. Mehmet Önder Efe, BBM410 Dynamical Systems, 2018

P-10 Concept of Optimality

Define a cost function letting you balance the importance of these issues, and find a way to minimize it

Concept of Optimality

Design C(s) such that
$$J = \frac{1}{2} \int_{0}^{\infty} \{e^2 + \gamma u^2 + \lambda\} dt$$
 is minimized

Large γ increases the relative importance of fuel consumption

Large λ increases the relative importance of time

Prof. Dr. Mehmet Önder Efe, BBM410 Dynamical Systems, 2018

If α is unknown, we can devise an estimation scheme; and based on the estimated value $\hat{\alpha}$, we can perform the design, and operate the controller in the loop.

Concept of Intelligence in Control

Concept of Intelligence in Control

