```
лекции по ТПР тут -> https://github.com/ArianrOd/All/blob/4- -1-
/ / %20 %20 %20 %202%20 %20 .pdf(лекция 2), https://
github.com/ArianrOd/All/blob/4- -1- / / %20 %20 %
20 %203%20 %20 .pdf(лекция 3) и https://github.com/ArianrOd/All/
blob/4- -1- / / %20 %20 %20 %20 %20 .pdf(лекция
4).
```

33. Методы экспертных оценок. Метод нечетких множеств. Метод анализа иерархий.

Метод нечетких множеств

Метод нечётких множеств

Задача теории принятия решений может быть поставлена следующим образом. Пусть $X = \{x_1, x_2, ..., x_n\}$ — множество альтернативных решений некоторой задачи. Известны критерии выбора альтернативы и требуется найти оптимальную альтернативу.

Рассмотрим постановку задач для метода нечетких множеств. Для этого необходимо, чтобы на множестве альтернатив было задано нечеткое отношение предпочтения (н.о.п.) $\mu(x_i, x_j)$.

Здесь числа $\mu(x_i,x_j)$ выражают степень того, насколько альтернатива x_i не хуже альтернативы x_j .

Нечеткое отношение предпочтения является рефлексивным (любая альтернатива не хуже самой себя). ($\forall i \ \mu(x_i, x_i) = 1$).

Н.о.п. $\mu(x_i, x_j)$ обычно задаются таблицей или матрицей следующего вида.

R	x_1	x_2		x_n
x_1	1	$\mu(x_1,x_2)$		$\mu(x_1,x_n)$
x_2	$\mu(x_2, x_1)$	1		$\mu(x_2,x_n)$
			1	
x_n	$\mu(x_n,x_1)$	$\mu(x_n,x_2)$		1

Рисунок 1 – Метод нечетких множеств

Отметим, что в общем случае $\mu(x_i,x_j)+\mu(x_j,x_i)\neq 1$, так как опросы экспертов могут проводится нестрого.

Также используется нечеткое отношение строгого предпочтения (н.о.с.п) $\mu^s(x_i,x_j)$. Число $\mu^s(x_i,x_j)$ выражает степень того, насколько альтернатива x_i лучше альтернативы x_j . Находится оно по формуле: $\mu^s(x_i,x_j)=\mu(x_i,x_j)\setminus \mu(x_j,x_i)$.

Здесь н.о.п. $\mu(x_i, x_j)$ рассматриваются как нечеткое множество в $X \times X$. Также можно записать в виде матриц $R^s = R \setminus R^*$, где $R^* -$ транспонированная матрица к R.

Заметим, что н.о.с.п. $\mu^s(x_i,x_j)$ является антирефлексным и антисимметричным. В самом деле, если $\mu^s(x_i,x_j)>0$ то $\mu^s(x_i,x_j)=\mu(x_i,x_j)\setminus \mu(x_j,x_i)\Rightarrow \mu^s(x_j,x_i)=0$.

Важную роль в методе нечетких множеств играет степень недоминируемости альтернативности $\mu_{\text{н.д.}}(x_i)$. Число $\mu_{\text{н.д.}}(x_i)$ выражает степень того, насколько альтернатива x_i не хуже любой другой альтернативы. Множество всех степеней недоминируемости является нечетким множеством на множестве альтернатив.

Степени недоминируемости альтернатив может быть найдены по формуле : $\mu_{\text{н.п.}}(x_i) = 1 - \max(\mu^s(x_i, x_i))$

Оптимальными альтернативами в методе нечетких множеств являются те альтернативы, у которых степени недоминируемости максимальны.

Рассмотрим решение задачи с одним н.о.п. на множестве альтернатив. Алгоритм решения этой задачи следующий.

Рисунок 2 – Метод нечетких множеств

Алгоритм решения задачи теории принятия решений методом нечетких множеств в случае одного нечеткого отношения предпочтения

- 1. Находим н.о.с.п. $\mu^s(x_i, x_j)$ по формуле $\mu^s(x_i, x_j) = \mu(x_i, x_j) \setminus \mu(x_j, x_i)$.
- 2. Находим степень недоминируемости альтернатив по формуле $\mu_{\text{н.п.}}(x_i) = 1 \max(\mu^s(x_i, x_i))$.
- 3. Оптимальными альтернативами являются те, у которых степени недоминируемости максимальны.

Несколько н.о.п на множестве альтернатив

Имеется множество альтернатив $X = \{x_1, x_2, ..., x_n\}$, на котором задано m нечетких отношений предпочтения $R_1, R_2, ..., R_m$.

При этом н.о.п. имеют различную важность которая выражается весовым коэффициентом λ_i , i=1,2,...,m.

Эти коэффициенты удовлетворяют условием:

- 1) $0 < \lambda_i < 1, \forall i = 1, 2, ..., m$.
- 2) $\lambda_1 + \lambda_2 + ... + \lambda_m 1$.

Отношение $\frac{\lambda_i}{\lambda_j}$ показывает во сколько раз н.о.п. R_i важнее н.о.п. R_j . Требуется выбрать оптимальную альтернативу с учетом всех н.о.п. и их важности.

Рисунок 3 – Метод нечетких множеств

Алгоритм решения задачи теории принятия решений методом нечетких множеств в случае весовых коэффициентов

- 1) Составляем н.о.п. Q_1 по формуле $Q_1 = R_1 \cap R_2 \cap ... \cap R_n$.
- 2) Находим н.о.с.п. $Q_1^s = Q_1 \setminus Q_1^*$.
- 3) Находим степени недоминируемости по н.о.п. Q_1 $\mu_{{\tt H.H.}Q_1}(x_i)$.
- 4) Составляем н.о.п. $Q_2 = \lambda_1 R_1 + \lambda_2 R_2 + ... + \lambda_m R_m$.
- 5) Находим н.о.с.п. $Q_2^s = Q_2 \setminus Q_2^*$.
- 6) Находим степень недоминируемости по н.о.п. $Q_2 = \mu_{{\tt H.H.}Q_2}(x_i)$.
- 7) Определяем окончательные степени недоминируемости по формуле $\mu_{\text{п.д.}}(x_i) = \min(\mu_{\text{п.д.}Q_1}(x_i), \mu_{\text{п.д.}Q_2}(x_i))$. Оптимальные альтернативы те, у которых $\mu_{\text{н.д.}}(x_i)$ максимальны.

Пример

R_1	x_1	x_2	x_3	x_4	R_2	x_1	x_2	x_3	x_4	R_3	x_1	x_2	x_3	,
x_1	1	0,3	0,8	0,2	x_1	1	0,8	1	0,3	x_1	1	0	0,3	0
x_2	0,7	1	0,4	0,9	x_2	0	1	0,4	0,2	x_2	0,4	1	0,5	0
x_3	0	0,5	1	0,2	x_3	0,5	0,6	1	0,3	x_3	0,2	0,1	1	0
x_4	0,7	0,4	0,8	1	x_4	0,7	0,2	0,9	1	x_4	0,3	0,7	0,3	
R_4	x_1	x_2	x_3	x_4	R_5	x_1	x_2	x_3	x_4		$\lambda_1 =$	0,2		
x_1	1	0,7	0,2	0,8	x_1	1	0,7	0,4	0,8		$\lambda_2 =$	0,3		
x_2	0	1	0,3	1	x_2	0,6	1	0,2	0,5		λ ₃ –	(),1		
x_3	0,9	0,4	1	0,6	x_3	0,7	0,9	1	0,3		$\lambda_4 =$	0,1		
x_4	0,5	0,3	0,4	1	x_4	0,6	0,2	0,4	1		$\lambda_5 =$	0,3		

Рисунок 4 – Метод нечетких множеств

Q_1	x_1	x_2	x_3	x_4
x_1	1	0	0,2	0,2
x_2	0	1	0,2	0,2
<i>x</i> ₃	0	0,1	1	0,2
x_4	0,3	0,2	0,3	1

Q_2	x_1	x_2	x_3	x_4
x_1	1	0,58	0,63	0,52
x_2	0,36	1	0,34	0,58
x_3	0,47	0,6	1	0,36
x_4	0,61	0,3	0,62	1

Q_1^s	x_1	x_2	x_3	x_4
x_1	0	0	0,2	0
x_2	0	0	0,1	0
x_3	0	0	0	0
x_4	0,1	0	0,1	0
max	0,1	0	0,2	0
$\mu_{\text{\tiny H.J.}Q_1}(x_i)$	0,9	1	0,8	1

Q_2^s	x_1	x_2	x_3	x_4
x_1	0	0,22	0,16	0
x_2	0	0	0	0,28
x_3	0	0,26	0	0
x_4	0,09	0	0,26	0
max	0,09	0,26	0,26	0,28
$\mu_{\scriptscriptstyle \mathrm{H.JL.}\mathcal{Q}_2}(x_i)$	0,91	0,74	0,74	0,72

	x_1	x_2	<i>x</i> ₃	x_4
$\mu_{\mathtt{H.II.}Q_1}(x_i)$	0,9	1	0,8	1
$\mu_{{\scriptscriptstyle \mathbf{H}},{\scriptscriptstyle \mathbf{H}},{\scriptscriptstyle \mathbf{Q}}_2}(x_i)$	0,91	0,74	0,74	0,72
$\mu_{_{\mathrm{H}\mathrm{I}}}(x_{_{i}})$	0,9	0,74	0,74	0,72

Ответ: оптимальная альтернатива x_{1} , $\mu_{_{\mathrm{H.Z.}}}(x_{_{i}})=0.9$,

Рисунок 5 – Метод нечетких множеств

Метод анализа иерархий

Принципы метода анализа иерархий

Собственные значения и собственные векторы матриц

Число λ называется собственным значением (числом) матрицы A, если существует вектор (столбец) ν , для которого выполняется условие $A\nu=\hat{\lambda}\nu$, при этом $\nu\neq 0$,

$$V = \begin{pmatrix} V_1 \\ \dots \\ V_n \end{pmatrix}$$

то есть, $\exists \, \nu_i \neq 0 \,$. Вектор ν называется собственным вектором соответствует собственному значению λ .

Для нахождения собственного значения A можно решить уравнение $|A - \lambda E| = 0$.

В самом деле, $Av=\lambda V=\lambda Ev$, где E — единичная матрица, получаем $(A-\lambda E)v=0$.

Это матричное уравнение задает систему линейных однородных уравнений, которая имеет ненулевое решение, тогда и только тогда, когда $|A-\lambda E|=0$.

Уравнение $A-\lambda E=0$ представляет собой алгебраическое уравнение n-го порядка $P_n(\lambda)$, где $P_n(\lambda)$ — многочлен степени n. Старший коэффициент этого многочлена равен $(-1)^n$,то есть, отличен от нуля.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & \lambda \end{vmatrix} - (-1)^n \lambda^n + \dots$$

Из алгебры известно, что корни алгебраического уравнения $P_n(\lambda)=0$ могут быть найдены точно только при $n\leq 3$. При $n\geq 4$ доказано, что не существует формул выражающих корни уравнения $P_n(\lambda)=0$ через его коэффициенты в общем случае. В этих случаях для их нахождения могут использоваться приближенные методы.

Рисунок 6 – Метод анализа иерархий

По основной теории алгебры матрицы $P_n(\lambda)=0$ имеет n корней, некоторые из которых могут быть комплексными или совпадать. Если все корни $\lambda_1,...,\lambda_n$ уравнения $P_n(\lambda)=0$ найдены, то собственные векторы, которые им соответствуют, могут быть найдены из матричных уравнений

$$(A - \lambda_i E)v_i = 0, i = 1, 2, ..., n.$$

Для каждого собственного значения λ_i , найдется по крайней мере один собственный вектор $\nu_i \neq 0$.

В случае кратных корней число векторов может быть различно, что видно по жордановой нормальной форме матриц. Например, если

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix},$$

то $\lambda = 2$ — трехкратный корень. Собственный вектор будет один и кроме него будут два корневых или присоединенных вектора.

Если же

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

то $\lambda = 2$ — также трехкратный корень. Но он имеет три собственных вектора.

Заметим, что если ν – собственный вектор, то для $\forall \alpha \neq 0, \quad \alpha \nu$ – также собственный вектор для того же λ . Также, если ν_1 и ν_2 – два собственных вектора, соответствующие собственному значению λ , то и $\nu_1 + \nu_2$ – собственный вектор, соответствующий λ . Таким образом, множество собственных векторов, соответствуют собственному значению λ образует линейное пространство.

Рисунок 7 – Метод анализа иерархий

Пример 1

$$u_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \mathsf{o}\mathsf{Д}\mathsf{h}\mathsf{o}$$
 из решений. $\mathcal{L}\mathsf{J}\mathsf{n}\mathsf{g} \quad \hat{\lambda}_2 = 4$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_1^2 \\ v_2^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
$$-v_1^2 + v_2^2 = 0,$$
$$v_1^2 = 1, \quad v_2^2 = 1.$$

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 одно из решений.

Рисунок 8 – Метод анализа иерархий

Метод анализа иерархий (МАИ)

Метод анализа иерархий (МАИ) — один из методов теории принятия решений или методов экспертных оценок, разработанный американским математиком Т.Саати. В основе этого метода лежит понятие собственных значений и собственных векторов.

Пусть $X=\{x_1,x_2,...,x_n\}$ — множество альтернатив. В МАИ каждой альтернативе x_i ставится в соответствие число w_i , называемое приоритетом альтернативы x_i .

Приоритеты удовлетворяют свойствам $0 \le w_i \le 1, \forall i$ и $\sum w_i = 1$. Чем больше w_i , тем выше приоритетные альтернативы x_i . Оптимальной альтернативой является та, у которой w_i максимален.

В отличие от метода нечетных множеств МАИ ранжирует (упорядочивает) все альтернативы. Для определения альтернатив используется матрица парных (попарных) сравнений.

$$W = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ \dots & \dots & \dots & \dots \\ w_{n1} & w_{n2} & \dots & w_{nn} \end{pmatrix}$$

Число w_{ij} выражает во сколько раз альтернатива x_i лучше альтернативы x_i . Матрица W является обратносимметричной, то есть,

$$w_{ij} = \frac{1}{w_{ji}} \, \forall i, j.$$

В частности, $w_i = 1, \forall i = 1, 2, ..., n$.

Если приоритеты альтернатив w_i заданы, то элементы матрицы W определяется по формуле

$$w_{ij} = \frac{w_i}{w_s}$$

Рисунок 9 – Метод анализа иерархий

Заметим, что вектор приоритетов

$$w = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}$$

является собственным вектором матрицы парных сравнений W. В самом деле.

$$W = \begin{pmatrix} 1 & \frac{w_1}{w_2} & \dots & \frac{w_1}{w_n} \\ \dots & \dots & \dots & \dots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & 1 \end{pmatrix} \begin{pmatrix} w_1 \\ \dots \\ w_n \end{pmatrix} = \begin{pmatrix} w_1 + w_1 + \dots + w_1 \\ \dots \\ w_n + w_n + \dots + w_n \end{pmatrix} = n \begin{pmatrix} w_1 \\ \dots \\ w_n \end{pmatrix}$$

Таким образом, w — собственный вектор матрицы W, соответствующий собственному значению n.

Рисунок 10 – Метод анализа иерархий