Nivel de Red

Protocolos de comunicación IP

Sumario

- □ Generalidades
- El Datagrama IP. Estructura de la cabecera
- Direcciones de red. Enrutamiento básico
- Subredes y máscaras. CIDR
- Protocolos de control y resolución de direcciones
- 1 Fragmentación
- Protocolos de routing
- Protocolo IPv6

Nivel de red en Internet

- El Nivel de Red en Internet está formado por el protocolo IP y por una serie de protocolos auxiliares:
- Protocolos de control, envían mensajes cuando se producen situaciones inusuales: ICMP e IGMP
- Protocolos de resolución de direcciones, traducen direcciones de red en direcciones de enlace: ARP, RARP, BOOTP y DHCP
- Protocolos de routing, intercambian la información necesaria para calcualr las rutas óptimas: RIP, OSPF, IS-IS, IGRP/EIGRP, BGP, etc.
- Todos los protocolos auxiliares, excepto ARP y RARP, nacen uso de datagramas IP para transmitir la nformación.

Internet es un conjunto de redes interconectadas

- •A nivel físico y de enlace son redes muy diversas
- •La organización administrativa también cambia mucho de unas a otras
- •Pero el protocolo IP, común a todas ellas, es el 'pegamento' que las mantiene unidas

Principios de diseño de Internet (según Tanenbaum)

- 1. Asegúrate de que <u>funciona</u>.
- Manténlo tan simple como sea posible.
- Cuando tomes decisiones haz elecciones claras.
- 4. Aprovecha la modularidad.
- Fen en cuenta la heterogeneidad.
- Evita opciones y parámetros <u>estáticos</u>.
- Busca un <u>buen diseño</u> (no necesita ser perfecto).
- . Piensa en la escalabilidad.
- Sé <u>estricto al enviar y tolerante al</u>

Sumario

- Generalidades
- El Datagrama IP. Estructura de la cabecera
- Direcciones de red. Enrutamiento básico
- Subredes y máscaras. CIDR
- Protocolos de control y resolución de direcciones
- Fragmentación
- Protocolos de routing
- Protocolo IPv6

Versiones de IP

- utiliza la versión 4 del protocolo IP (IPv4) □ Actualmente el 99,9% de la Internet
- 🗖 El 0,1% restante utiliza la versión 6 (IPv6)
- No se está utilizando ninguna otra versión del protocolo IP
- Algún día toda la Internet utilizará IPv6.

Cabecera de un datagrama IPv4

↑ S	Longitud Total	Res. DF MF Desplazam. de Fragmento	Checksum	e origen	: destino	a 40 octetos)
32 bits	Versión Lon. Cab. DS (DiffServ)	Identificación	Tiempo de vida (TTL) Protocolo	Dirección de origen	Dirección de destino	Opciones (de 0 a 40 octetos)

Versión: siempre vale 4

Longitud Cabecera: en palabras de 32 bits (rango 5-15)

DS (Differentiated Services): Para Calidad de Servicio

Longitud total: expresada en octetos, incluye la cabecera (rango 20-65535)

Campos de Fragmentación: Identificación, DF, MF, Desplaz. Fragmento

Tiempo de vida (TTL): cuenta saltos hacia atrás, se descarta cuando es cero (rango 0-255)

Protocolo: indica a que protocolo pertenecen los datos (el contenido del paquete)

Checksum: sirve para comprobar la integridad de la cabecera (pero no de los datos)

Direcciones de origen y destino: De 32 bits, se mantienen inalteradas durante la vida del paquete

Opciones: si las hay su longitud debe ser múltiplo de 4 octetos

Algunos valores del campo Protocolo

Valor	Protocolo	Descripción
1	ICMP	Internet Control Message Protocol
2	IGMP	Internet Group Management Protocol
3	GGP	Gateway-to-Gateway Protocol
4	dl	IP en IP (encapsulado)
2	ST	Stream
9	тсР	Transmission Control Protocol
8	EGP	Exterior Gateway Protocol
17	ADN	User Datagram Protocol
29	ISO-TP4	ISO Transport Protocol Clase 4
08	CLNP	Connectionless Network Protocol
88	IGRP/EIGRP	Interior Gateway Routing Protocol
89	OSPF	Open Shortest Path First

Opciones de la cabecera IP

Opción	Función	Máx.	Ej. Windows	Ej. Linux
Record route	Va anotando en la cabecera IP las direcciones IP de los routers por donde pasa el datagrama	6	Ping –r	Ping -R
Timestamp	Va anotando la ruta y además pone una marca de tiempo en cada router	4	Ping –s	
Strict source routing	La cabecera contiene las direcciones IP de los routers por los que debe pasar el datagrama. Ha de pasar por esos y solo esos	6	Ping –k	
Loose source routing	La cabecera lleva una lista de routers por los que debe pasar el datagrama, pero puede pasar además por otros	6	Ping -j	

opción Timestamp este valor se reduce a 4 porque cada salto anotado ocupa 8 El límite de 9 direcciones lo fija el tamaño máximo del campo opciones. En la octetos (4 de la dirección y 4 del timestamp)

Sumario

- Generalidades
- El Datagrama IP. Estructura de la cabecera
- Direcciones de red. Enrutamiento básico
- Subredes y máscaras. CIDR
- Protocolos de control y resolución de direcciones
- Fragmentación
- □ Protocolos de routing
- Protocolo IPv6

Formato y uso de las direcciones IPv4

bytes, que se representan por cuatro números Las direcciones IPv4 están formadan por 4 decimales. Ej.: 147.156.135.22

Rango	Uso
0.0.0.0 - 223.255.255.255	Drecciones Unicast
224.0.0.0 - 239.255.255.255	Direcciones multicast (clase D)
240.0.0.0 - 255.255.255.254	Reservado, no se usa (clase E)
255.255.255	Dirección broadcast

Estructura de las direcciones IPv4

 Las direcciones IP tienen dos partes, la parte red (a la izquierda) y la parte host (a la derecha):

Red (n bits) Host (32-n bits)

- La longitud de cada parte se indica mediante un parámetro denominado máscara.
- La máscara tiene también una longitud de 32 bits y está conjunto de ceros. Los unos indican la parte red. formada por un conjunto de unos seguido de un
- Como la dirección IP, la máscara también se representa por cuatro números decimales
- La máscara no aparece en los paquetes IP, solo se especifica en las interfaces y las rutas

Direccción IP y máscara

de red le tenemos que indicar la máscara que Cuando asignamos dirección IP a una tarjeta estamos utilizando. Ejemplo:

Parte red: **147.156.135** Parte host: **22**

Parte host a unos Red con 256 direcciones, desde 147.156.1350 hasta 147.156.135255 Parte host a ceros

Enrutamiento en un host

- Por configuración inicial el host sabe:
- Su dirección IP (ej.: 147.156.135.22). Obligatoria
- Su máscara (ej.: 255.255.255.0). Obligatoria
- Su router por defecto (ej.: 147.156.135.1) Puede no
- Cuando el host tiene que enviar un paquete:
- 1. Extrae del paquete la dirección de destino
- Extrae de la dirección de destino la parte red (aplicándole la máscara)
- Compara la parte red de la dirección de destino con la suya propia (la de su interfaz).
- a) Si ambas coinciden entonces el destino está en su misma red (normalmente una LAN) y le envía el paquete directamente
- b) Si no coinciden entonces envía el paquete al router por defecto (**puerta de enlace** en windows, **default** gateway en Linux). El router por defecto se encarga de enviar el paquete a su destino 4.
- El router por defecto siempre debe estar en la misma LAN que

Configuración de red de un ordenador en Windows

La LAN y el resto de la Internet

grupos: las que están en su misma red (sus vecinos) y el resto del mundo. Con sulos de su red habla directamente, con los demás lo hace a través de su Desde el punto de vista de un host las direcciones IP se dividen en dos router ('puerta de enlace' en windows)

Direcciones IPv4: Clases A, B y C

 Una clasificación, hoy en día obsoleta pero aún utilizada, divide las direcciones unicast en tres clases, A, B y C. La clase establece donde se sitúa la separación red/host.

Clase	Máscara	Formato	Rango r₁
∢	255.0.0.0 (8 bits)	r ₁ .h.h.h	0 - 127
М	255.255.0.0 (16 bits)	r ₁ .r.h.h	128 – 191
O	255.255.255.0 (24 bits)	r ₁ .r.r.h	192 – 223

Clases de direcciones IPv4

Jn router conectando tres LANs

Configuración en comandos de IOS (de Cisco) del router W de la red anterior

```
30.0.0.1 255.255.255.0
                                                                                                                                                                                                                                                               Router(config-if)#ip address 20.0.0.1 255.255.0.0
                                                                                                                                           Router(config-if)#ip address 10.0.0.1 255.0.0.0
                                                                                                                                                                                                                                                                                                Router(config-if) #interface ethernet 2
                                                                                                                                                                                    Router (config-if) #interface ethernet
                                                                    Router (config) #interface ethernet
                                                                                                             Router (config-if) #no shutdown
                                                                                                                                                                                                                          Router(config-if) #no shutdown
                                                                                                                                                                                                                                                                                                                                       Router(config-if) #no shutdown
                                                                                                                                                                                                                                                                                                                                                                               Router(config-if)#ip address
                                  Router#configure terminal
                                                                                                                                                                                                                                                                                                                                                                                                                Router(config-if)#CTRL/Z
Router>enable
                                                                                                                                                                                                                                                                                                                                                                                                                                                           Router#
```

IOS: Internetwork Operating System

Jos routers conectando tres LANs

Configuración IOS del router X de la red anterior

```
Router(config-if) # ip route 13.0.0.0 255.0.0.0 12.0.0.2
                                                                                                                                                    Router(config-if) #ip address 11.0.0.1 255.0.0.0
                                                                                                                                                                                                                                                                             Router(config-if) #ip address 12.0.0.1 255.0.0.0
                                                                                                                                                                                                 Router (config-if) #interface ethernet 1
                                                                         Router (config) #interface ethernet 0
                                                                                                                                                                                                                                         Router (config-if) #no shutdown
                                                                                                                    Router (config-if) #no shutdown
                                    Router#configure terminal
                                                                                                                                                                                                                                                                                                                                                               Router(config-if)#CTRL/Z
Router>enable
                                                                                                                                                                                                                                                                                                                                                                                                        Router#
```

Definición de rutas en hosts

H1 (ruta por defecto):

windows: route add 0.0.0.0 mask 0.0.0.0 11.0.0.1

route add -net 0.0.0.0 netmask 0.0.0.0 default gw 11.0.0.1

H3 (rutas explícitas):

windows: route add 11.0.0.0 mask 255.0.0.0 12.0.0.1 route add 13.0.0.0 mask 255.0.0.0 12.0.0.2

route add -net 13.0.0.0 netmask 255.0.0.0 gw 12.0.0.2

route add -net 11.0.0.0 netmask 255.0.0.0 gw 12.0.0.1

Ver las rutas existentes:

windows: route print

route

Borrar una ruta:

windows: route delete 11.0.0.0

route del -net 11.0.0.0 gw 12.0.0.1 netmask 255.0.0.0

Resultado del comando route en H1 y H2

Rutas en H1 (11.0.0.2):

	Interfaz Ioopback		Interfaz Ethernet							
Interface		le0	/		Interface	100	le0	le 0	le 0	
Use	34928	2319834	Esta ruta se pone automáticamente al dar la dir.	ando ifconfig)	Use	27394	1945827	2837192	1392847	ción)
Refcnt	4 7 6	45	ne automáticam	IP de la interfaz Ethernet (comando ifconfig)	Refont		27	43	37	una dirección)
Flags	HO	þ	a ruta se por	de la interfaz	Flags	HO	Þ	Þ	D	Ŋ
Gateway	127.0.0.1	11.0.0.2		<u> </u>	Gatewav	127.0.0.1	12.0.0.1	12.0.0.3	12.0.0.2	operativa (Up) gateway (router) host (solo lleva
> route -n Routing tables Destination	127.0.0.1 Default	11.0.0.0	Rutas en H3 (12.0.0.3):	> route -n	Routing tables Destination	127.0.0.1	11.0.0.0	12.0.0.0	13.0.0.0	Flags: U: ruta G: Ruta H: Ruta

Host 'multihomed'

Comando 'ipconfig' en un ordenador mutlihomed

Adaptador Ethernet Conexiones de red inalámbricas Adaptador Ethernet Conexión de área local 3 Configuración IP de windows C: \>ipconfig Interfaz Ethernet Interfaz WiFi (ADSL) (ADSL)

Red mallada (con caminos alternativos)

Enlace WAN: conexión mediante una línea serie o punto a punto

Direcciones IP especiales

	Dirección	Significado	Aparece como dirección de	Ejemplo
<u> </u>	255.255.255.255	Broadcast en la LAN (la propia red)	Destino	
l	0.0.0.0	Identifica al host que envía el datagrama	Origen	Usado en BOOTP
<u></u>	Parte Host a ceros	Identifica una red	No aparece	147.156.0.0
l	Parte Host a unos	Broadcast en una red	Destino	147.156.255.255
<u></u>	Parte Red a ceros	Identifica un host en la red en que estamos (la que sea)	Origen o destino	0.0.1.25
	127.0.0.1	Dirección Loopback (para pruebas)	Origen o destino	

La primera y la última direcciones de una red están siempre reservadas y no deben asignarse nunca a un host

Uso reservado de la primera y la última direcciones de cada red

- Cuando tenemos una red, por ejemplo la 40.40.0.0 con máscara 255.255.0.0:
- La primera dirección posible (40.40.0.0) identifica la red
- La última dirección posible (40.40.255.255) es la de broadcast en esa red.
- El rango asignable en este caso sería desde 40.40.0.1 hasta 40.40.255.254
- No se puede asignar a ninguna interfaz ni la primera ni la última direcciones de cada red. Así pues siempre disponemos de dos direcciones menos (en este caso 65534 en vez de 65536).
- pero no puede aparecer como orígen o destino en la cabecera de los paquetes IP La dirección de la red (40.40.0.0) puede aparece en rutas,
 - La dirección broadcast (40.40.255.255) puede aparecer como destino pero nunca como origen en la cabecera de los paquetes IP

Direcciones IP reservadas y privadas (RFC 1918)

Red o rango	Uso
127.0.0.0 - 127.255.255.255	Reservado (fin clase A)
128.0.0.0 - 128.0.255.255	Reservado (ppio. Clase B)
191.255.0.0 -191.255.255.255	Reservado (fin clase B)
192.0.0.0 – 192.0.0.255	Reservado (ppio. Clase C)
224.0.0.0	Reservado (ppio. Clase D)
240.0.0.0 - 255.255.255.254	Reservado (clase E)
10.0.0.0 - 10.255.255.255	Privado
172.16.0.0 – 172.31.255.255	Privado
192.168.0.0 - 192.168.255.255	Privado

Utilidad de las direcciones privadas

Sumario

- Generalidades
- El Datagrama IP. Estructura de la cabecera
- Direcciones de red. Enrutamiento básico
- Subredes y máscaras. CIDR
- Protocolos de control y resolución de direcciones
- Fragmentación
- □ Protocolos de routing
- Protocolo IPv6

Subredes

- por varias redes. En estos casos suele ser conveniente partir de una red grande que dividimos en trozos más pequeños A menudo la red de una organización está a su vez formada lamados subredes.
- Ejemplo: la empresa X utiliza la red 40.40.0.0 255.255.0.0 (es decir desde 40.40.0.0 hasta 40.40.255.255) en una LAN enorme. Para reducir el tráfico broadcast decide dividirla formando VLANs, ninguna de las cuales tendrá más de 256 ordenadores. Las subredes podrían ser:

VLAN	Subred	Máscara	Rango
~	40.40.0.0	255.255.255.0	40.40.0.0 - 40.40.0.255
2	40.40.1.0	255.255.255.0	40.40.1.0 – 40.40.1.255
3	40.40.2.0	255.255.255.0	40.40.2.0 - 40.40.2.255
256	40.40.255.0	255.255.255.0	40.40.255.0 - 40.40.255.255

Ejemplo de uso de subredes

Máscaras que no son múltiplo de 8

estos casos la separación de la parte red y la parte host no es tan evidente, aunque el mecanismo es el mismo: Las máscaras no siempre son de 8, 16 o 24 bits. En

Parte red: 22 bits Parte host: 10 bits

Esta red tiene 1024 direcciones. Rango: 147.156.248.0 – 147.156.251.255 La primera y la última no son utilizables

Posibles valores de las máscaras

- En las máscaras los bits a 1 siempre han de estar contiguos empezando por la izquierda. No está permitida por ejemplo la máscara 255.255.0.255.
- Por tanto los únicos valores que pueden aparecer en cualquier máscara son:

Bits de máscara (n)	Binario	Decimal
0	00000000	0
_	10000000	0 + 128 = 128
2	11000000	128 + 64 = 192
3	11100000	192 + 32 = 224
4	11110000	224 + 16 = 240
5	11111000	240 + 8 = 248
9	11111100	248 + 4 = 252
7	11111110	252 + 2 = 254
8	1111111	254 + 1 = 255

Máscara (n) = máscara (n-1) + 128/2ⁿ⁻¹

Máscaras. Notación concisa

Puesto que la máscara siempre ha de ser contigua en vez de longitud en bits (entre 0 y 32). Esto permite una notación mucho más concisa al indicar direcciones de interfaces y expresarla con números decimales se puede indicar su rutas. Así:

La interfaz "40.40.0.1 255.255.255.0" se convierte en "40.40.0.1/24"

La ruta "A 20.0.0.0 255.0.0.0 por 90.0.0.2" se convierte en "A 20.0.0.0/8 por 90.0.0.2"

Máscara	Bits	Máscara	Bits	Máscara	Bits	Máscara	Bits
0.0.0.0	0						
128.0.0.0	_	255.128.0.0	6	255.255.128.0	17	255.255.258	25
192.0.0.0	2	255.192.0.0	10	255.255.192.0	18	255.255.255.192	26
224.0.0.0	3	255.224.0.0	11	255.255.224.0	19	255.255.254	27
240.0.0.0	4	255.240.0.0	12	255.255.240.0	20	255.255.255.240	28
248.0.0.0	2	255.248.0.0	13	255.255.248.0	21	255.255.258	29
252.0.0.0	9	255.252.0.0	14	255.255.252.0	22	255.255.255	30
254.0.0.0	2	255.254.0.0	15	255.255.254.0	23	255.255.254	31
255.0.0.0	8	255.255.0.0	16	255.255.255.0	24	255.255.255	32

'Mini-redes'

La red más pequeña que podemos hacer es la de máscara de 30 bits:

Estas redes se suelen utilizar en enlaces punto a punto ya que en este caso solo se En este caso obtenemos cuatro direcciones, de las cuales solo podemos usar dos. necesitan dos direcciones. Ejemplos:

Red	Rango	Broadcast	Direcciones utilizables
90.0.0.0.06	90.0.0.0 a 90.0.0.3	90.0.03	90.0.0.1 y 90.0.0.2
90.0.0.4/30	90.0.0.4 a 90.0.0.7	2.0.0.06	90.0.0.5 y 90.0.0.6
90.0.0.0.0	90.0.0.8 a 90.0.0.11	90.0.011	90.0.0.9 y 90.0.010

Ruta por defecto

- muchas que son accesibles por la misma dirección, y no En muchos casos al indicar las rutas en un router hay es cómodo especificarlas una a una.
- Para esto se puede utilizar la llamada `ruta por defecto' que se le aplica al paquete cuando no se le aplica ninguna de las otras rutas definidas
- Un caso típico es cuando un router conecta una o varias redes entre sí y hay una única salida a Internet
- La ruta por defecto tiene la sintaxis:

A 0.0.0.0 0.0.0.0 por <dirección del router por defecto>

Por ejemplo si el router por defecto es 20.0.0.1: A 0.0.0.0 0.0.0.0 por 20.0.0.1

O en notación concisa:

A 0.0.0.0/0 por 20.0.0.1

Ejemplo de uso de la ruta por defecto

Posible problema de la ruta por defecto

Especificación de la máscara

- Se especifica la máscara:
- equipo tiene varias interfaces cada una debé tener En las direcciones de interfaz (host o router). Si el una dirección diferente, la máscara pues ser la misma o no
- Al configurar una ruta, para indicar a que ámbito o rango de direcciones se aplica
- No se especifica máscara:
- Cuando se indica el router por defecto en un equipo (host o router)
- Cuando se indica la dirección de destino en una ruta
- máscara, solo llevan las direcciones de origen y destino Los paquetes IP nunca llevan escrita en la cabecera la
- El enrutamiento de los paquetes se hace según la dirección de destino exclusivamente

Enlace punto a punto usando subredes

En las rutas la parte host de la dirección siempre debe ser cero

Máscaras de tamaño variable

- A menudo interesa dividir una red en subredes de diferentes tamaños.
- Para esto se utilizan máscaras de tamaño variable, es decir la división red/host no es iqual en todas las subredes
- Aunque las subredes pueden tener diferente tamaño no pueden solaparse (habría direcciones duplicadas)
- ejemplo lo que en un sitio de la red se ve como una subred /22 (1024 direcciones) puede dividirse en varias /24 (256 La visión que tenemos de las subredes puede variar. Por direcciones) cuando nos acercamos

Configuración de subredes con máscara de long. variable y estructura jerárquica

Rutas host

- último recurso, cuando la dirección de destino no encaja en ninguna de las rutas definidas La ruta por defecto ("A 0.0.0.0/0 por dir-IP") es la ruta más general posible, pues la máscara de 0 bits abarca todas las direcciones. Esta ruta solo se aplica como
 - El extremo opuesto son las rutas con máscara de 32 bits. Estas solo sirven para una dirección de destino concreta, por eso se les llama **rutas host**.
- Se suelen utilizar para marcar 'excepciones', por ejemplo cuando un host esta temporalmente fuera de su LAN habitual

Ejemplo de ruta host

Orden de enrutamiento

- Cuando un router tiene que enviar un paquete consulta su tabla de rutas
- paquete. Por ejemplo la ruta por defecto en principio es aplicable en principio a cualquier paquete Es posible que haya varias rutas válidas para un mismo
- según la longitud de su máscara, poniendo primero las rutas de máscara más larga. El orden como se hayan Al construir la tabla de rutas los routers las ordenan introducido las rutas en la configuración no tiene ninguna importancia
- Este criterio garantiza que se aplicarán primero las rutas más específicas y luego las más generales. Así por ejemplo las rutas host (/32) van siempre en primer lugar y la ruta por defecto (/0) va la última

Asignación de direcciones IP

Inicialmente la aisgnación de direcciones IP la realizaba el DDN NIC (Department of Defense Network Network Information Center) de forma centralizada

- A principios de los 90 se decidió descentralizar esta función creando los llamados RIR (Regional Internet Registry). El prim<u>e</u>ro se constituyó en Europa y se llamó RIPE. Actualmente hay 5 en todo el múndo
 - Los RIR dependen del IANA (Internet Assignment Number Authority)
- Los RIR dan direcciones a los proveedores grandes (los de primer nivel, llamados 'tier-1')
 - Los proveedores pequeños (tier-2 a tier-n) obtienen sus direcciones e los proveedores tier-1
- Las organizaciones obtienen direcciones del proveedor que les da conectividad
- Cada RIR dispone de una base de datos (whois) para búsqueda de direcciones IP

Organización de los Registros Regionales

Registro Regional	Área geográfica
ARIN (American Registry for Internet Numbers) <u>www.arin.net</u>	ΕΕυυ y CanadáΔáfrica SubsaharianaResto del mundo
APNIC (Asia Pacific Network Information Centre) www.apnic.net	□Asia oriental □Pacífico
RIPE (Réseaux IP Européenes) <u>www.ripe.net</u>	□Europa □Medio Oriente □Asia Central □África Sahariana
LACNIC (Latin American and Caribbean Network Information Center) <u>www.lacnic.net</u>	□América y el Caribe (excepto EEUU y Canadá)
AFRINIC (African Network Information Center) <u>www.afrinic.net</u> (en proceso de creación)	□África

IP sin clases o 'classless'

Hasta 1993 la asignación de direcciones se hacía en bloques de tamaño fijo de acuerdo con las clases A, B y C (redes /8, /16 y /24 respectivamente). Pero:

- De la clase A solo hay 127 redes, hace mucho tiempo que no se asigna
- La clase B es demasiado grande para la mayoría de organizaciones (65000
- La clase C es demasiado pequeña para la mayoría (256 hosts)
- Casi todas las organizaciones optaban por pedir redes clase B, aunque es sobraba mucho espacio.
- Consecuencia: rápido agotamiento del espacio de direcciones.
- Solución: ofrecer tallas intermedias asignando grupos de redes clase
- Problema 2: las tablas de rutas crecían mucho más deprisa que antes había que enrutar por separado cada red asignada)
- Solución 2: asignar los grupos de forma que sean agregables, es decir que puedan referenciarse por una máscara común, así solo se necesita declarar una ruta
- El tamaño de las redes puede ser ahora cualquier potencia entera de 2 (256, 512, 1024, etc.)
- Este mecanismo se aplica no solo al rango de clase C sino también al rango libre de clase A y B. En la práctica significa **abolir el sistema de clases (IP classless, sin clases)**

IP sin clases o 'classless' (II)

- El sistema 'classless' no afecta a las clases D y E, que mantienen el mismo significado
- Se definió en el RFC 1466 (1993)
- entonces se aplicaba un criterio puramente cronológico) El RFC 1466 establecía además un sistema de asignación de direcciones con criterio geográfico (hasta
- entre los ISPs que lo solicitan. A su vez los ISPs dan direcciones a sus clientes siguiendo también criterios Cada RIR tiene un rango de direcciones que reparte geográficos, etc.
- De esta forma se reduce el tamaño de las tablas de rutas. Este problema era al menos tan importante como el del agotamiento de direcciones
- El RFC 1466 se denomina CIDR (Classless InterDomain Routing)

CIDR (RFC 1466)

La asignación incial de direcciones a los RIR según CIDR era la siguiente:

```
192.0.0.0/7 (192.x.x.x -
Multi regional:
193.x.x.x)
```

La agrupación geográfica de direcciones reduce el número de entradas en las tablas de rutas (esto es lo mismo que desde hace mucho tiempo se viene haciendo en la red telefónica`

Asignación de direcciones y tarifas de APNIC

Membership is open to all organisations and individuals. Members are classified by size, with each member's minimum tier determined by their total address holdings. Membership fees for APNIC members are as follows:

Tier*	IPv4 addresses	IPv6 addresses	Annual Fee (US\$)
Associate	none	none	625
Very Small	up to /22 (incl)	up to /35 (incl)	1,250
Small	>/22 up to /19	>/35 up to /32	2,500
Medium	>/19 up to /16	>/32 up to /29	5,000
Large	>/16 up to /13	>/29 up to /26	10,000
Very Large	>/13 up to /10	>/26 up to /23	20,000
Extra Large	>/10	>/23	40,000

An IP Resource Application Fee of US\$2,500 applies to members making their first request for IP address resources. This fee does not apply to AS numbers or subsequent IP requests.

En RIPE lo mínimo que se asigna son redes /20 (4096 direcciones)

Evolución de la tabla de rutas de Internet marcha de CIDR Puesta en Date BGP Table Size

Actual reparto de direcciones IPv4 (primer octeto)

0-2	Reservado IANA	21	DDN-RVN	43	Japan Inet	80-81	RIPE NCC
3	General Electric	22	Def. Inf. Syst. Agen.	44	Am.Radio Dig.Com.	82-127	IANA Reservado
4	BBN	23	IANA Reservado	45	Interop Show Net.	128-192	Varios Registros
2	IANA Reservado	24	ARIN	46	BBN	193-195	RIPE NCC
9	Army Info.Sys.Ctr.	25	Royal Sign.&Radar	47	Bell-Northern Res.	196	Varios Registros
7	IANA Reservado	26	Def. Inf. Syst. Agen.	48	Prudential Sec. Inc.	197	IANA Reservado
8	BBN	27	IANA Reservado	49-50	IANA	198	Varios Registros
6	IBM	28	DSI-North	51	Dept. Soc. Sec. UK	199-200	ARIN
10	IANA Privado	29-30	Def. Inf. Syst. Agen.	52	DuPont de Nemours	201	Res. Cent-Sud Amer.
11	DoD Intel Inf. Syst.	31	IANA Reservado	53	Cap Debis CCS	202-203	APNIC
12	AT&T	32	Norsk Informasjons.	54	Merck & Co.	204-209	ARIN
13	Xerox	33	DLA Syst. Aut. Ctr	55	Boeing Comp. Serv.	210-211	APNIC
14	IANA Publico	34	Halliburton Comp.	26	US Postal Serv.	212-213	RIPE NCC
15	НР	35	MERIT Comp. Net.	57	SITA	214-215	US DOD
16	DEC	36-37	IANA Reservado	28-60	IANA Reservado	216	ARIN
17	Apple	38	Perf. Syst. Int.	61	APNIC	217	RIPE NCC
18	MIT	39	IANA Reservado	62	RIPE NCC	218-221	APNIC
19	Ford	40	Eli Lili & Company	63-69	ARIN	222-223	IANA Reservado
20	Comp. Sci. Corp.	41-42	IANA Reservado	62-02	IANA Reservado	224-239	IANA Multicast

240-255 | IANA Reservado

Evolución de direcciones en IP

