Applied Deep Learning

Training Neural Networks

Gradient Descent

Review: Chain Rule in One Dimension

- Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$
- Define

$$h(x) = f(g(x))$$

• Then what is h'(x) = dh/dx?

$$h'(x) = f'(g(x))g'(x)$$

Chain Rule in Multiple Dimensions

- Suppose $f: \mathbb{R}^m \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$, and $\mathbf{x} \in \mathbb{R}^n$
- Define

$$h(\mathbf{x}) = f(g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))$$

• Then we can define partial derivatives using the multidimensional chain rule:

$$\frac{\partial f}{\partial x_i} = \sum_{l=1}^{m} \frac{\partial f}{\partial g_j} \frac{\partial g_j}{\partial x_i}$$

Automatic Differentiation (Differentiable Programming)

- Write an arbitrary program as consisting of basic operations f_1 , ..., f_n (e.g. +, -, *, cos, sin, ...) that we know how to differentiate.
- Label the inputs of the program as $x_1, ..., x_n$, the intermediate results and parameters as $x_{n+1}, x_{n+2} ...$, and the final output x_N .
- Forward mode computation:

For
$$i = n + 1, ..., N$$

$$x_i = f_i(\mathbf{x}_{\pi(i)}) \qquad \pi(i)$$
: Sequence of "parent" values
$$(e.g. \text{ if } \pi(3) = (1,2), \text{ and } f_3 = +, \text{ then } \mathbf{x}_3 = \mathbf{x}_1 + \mathbf{x}_2)$$

• Backward mode automatic differentiation: apply the chain rule from the end of the program x_N back towards the beginning.

Simple Chain of Dependencies

$$\pi(i)$$
: Sequence of "parent" values (e.g. if $\pi(3) = (1,2)$, and $f_3 = +$, then $x_3 = x_1 + x_2$)

• Suppose $\pi(i) = i - 1$

For example:

• The (forward) computation: Input Output For i = n + 1, ..., N $x_i = f_i(\mathbf{x}_{i-1})$ $x_1 = f_2(\mathbf{x}_1)$ $x_2 = f_2(\mathbf{x}_1)$ $x_3 = f_3(\mathbf{x}_2)$

Simple Chain of Dependencies 2

- Suppose $\pi(i) = i 1$
- The (forward) computation:

For
$$i = n + 1, ..., N$$

 $x_i = f_i(x_{i-1})$

For example:

• What is $\frac{dx_N}{dx_i}$ in terms of $\frac{dx_N}{dx_{i+1}}$?

$$\frac{dx_N}{dx_i} = \frac{dx_N}{dx_{i+1}} \left(\frac{dx_{i+1}}{dx_i}\right)$$

Simple Chain of Dependencies 3

- Suppose $\pi(i) = i 1$
- The computation: For i = n + 1, ..., N $x_i = f_i(x_{i-1})$
- What is $\frac{dx_N}{dx_i}$ in terms of $\frac{dx_N}{dx_{i+1}}$?

For example:

$$\frac{dx_N}{dx_i} = \frac{dx_N}{dx_{i+1}} \left(\frac{dx_{i+1}}{dx_i}\right)$$

• Conclusion: run the computation forwards. Then initialize $\frac{dx_N}{dx_N} = 1$ and work **backwards** through the computation to find $\frac{dx_N}{dx_i}$ for each i from $\frac{dx_N}{dx_{i+1}}$. This gives us the gradient of the output (x_N) with respect to every expression in our compute graph!

What if the Dependency Graph is More Complex?

• The computation:

For
$$i = n + 1, ..., N$$
 $\pi(i)$: Sequence of "parent" values $x_i = f_i(\mathbf{x}_{\pi(i)})$ (e.g. if $\pi(5) = (3,4)$, and $f_5 = +$, then $\mathbf{x}_5 = \mathbf{x}_3 + \mathbf{x}_4$)

• Solution: apply multi-dimensional chain rule.

Automatic Differentiation

• Computation:

$$x_i = f_i(\mathbf{x}_{\pi(i)})$$

• Multidimensional chain rule:

$$\frac{\partial f}{\partial x_i} = \sum_{j=1}^m \frac{\partial f}{\partial g_j} \frac{\partial g_j}{\partial x_i} \qquad f(g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))$$

• Result:

$$\frac{\partial x_N}{\partial x_i} = \sum_{j:i \in \pi(j)} \frac{\partial x_N}{\partial x_j} \frac{\partial x_j}{\partial x_i}$$

Automatic Differentiation 2

• Algorithm: initialize:

$$\frac{dx_N}{dx_N} = 1$$

• For i = N - 1, N - 2, ..., 1, compute:

$$\frac{\partial x_N}{\partial x_i} = \sum_{j:i \in \pi(j)} \frac{\partial x_N}{\partial x_j} \frac{\partial x_j}{\partial x_i}$$

• Now we have differentiated the output of the program x_N with respect to the inputs $x_1, ..., x_n$, as well as the intermediate results and parameters.

- Apply **backward process of automatic differentiation** to a neural network's loss function.
- If we have one output neuron, squared error is:

$$E = \frac{1}{2}(t-y)^2$$

t is the target output for a training sample, and y is the actual output of the output neuron.

For each neuron j, its output o_j is defined as

$$o_j = arphi(\mathrm{net}_j) = arphi\left(\sum_{k=1}^n w_{kj}o_k
ight).$$

The input net_j to a neuron is the weighted sum of outputs o_k of previous neurons. If The variable w_{ij} denotes the weight between neurons i and j.

Apply the chain rule twice:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial \mathrm{net_j}} rac{\partial \mathrm{net_j}}{\partial w_{ij}}$$

• Last term :

ast term:
$$o_j = arphi(\mathrm{net}_j) = arphi\left(\sum_{k=1}^n w_{kj}o_k
ight).$$
 $rac{\partial \mathrm{net}_\mathrm{j}}{\partial w_{ij}} = rac{\partial}{\partial w_{ij}}\left(\sum_{k=1}^n w_{kj}o_k
ight) = o_i$

• Apply the chain rule twice:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial ext{net}_{ ext{j}}} rac{\partial ext{net}_{ ext{j}}}{\partial w_{ij}}$$

• Second term:

$$o_j = \varphi(\operatorname{net}_j)$$
 $rac{\partial o_j}{\partial net_j} = \varphi'(\operatorname{net}_j)$

Apply the chain rule twice:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial ext{net}_{ ext{j}}} rac{\partial ext{net}_{ ext{j}}}{\partial w_{ij}}$$

$$E=rac{1}{2}(t-y)^2$$

• If the neuron is in output layer, first term is easy:

$$rac{\partial E}{\partial o_j} = egin{array}{c} ext{y-}t \end{array}$$

Apply the chain rule twice:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial ext{net}_{ ext{j}}} rac{\partial ext{net}_{ ext{j}}}{\partial w_{ij}}$$

- If the neuron is interior neuron, we use the chain rule from automatic differentiation.
- We need to know what expressions depend on the current neuron's output o_j ? (the children of o_j in the computation graph)
- Answer: other neurons whose input sums, i.e. net_l for all neurons l, receiving inputs from the current neuron o_i .

Apply the chain rule twice:

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial \mathrm{net_j}} rac{\partial \mathrm{net_j}}{\partial w_{ij}}$$

• If the neuron is an interior neuron, chain rule:

$$rac{\partial E}{\partial o_j} = \sum_{l \in L} \left(rac{\partial E}{\partial \mathrm{net}_l} rac{\partial \mathrm{net}_l}{\partial o_j}
ight) \ = \sum_{l \in L} \left(rac{\partial E}{\partial o_l} rac{\partial o_l}{\partial \mathrm{net}_l} w_{jl}
ight)$$

All neurons receiving input from the current neuron j.

• Partial derivative of error E with respect to weight w_{ij} :

$$\frac{\partial E}{\partial w_{ij}} = \delta_j o_i$$

$$\delta_j = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} = \varphi'(net_j) \times \begin{cases} (o_j - t_j) & \text{if } j \text{ is an output neuron} \\ \sum_{l \in L} \delta_l w_{jl} & \text{if } j \text{ is an interior neuron} \end{cases}$$
All neurons receiving input from the current neuron j .

Forward direction

• Calculate network and error.

Backpropagation Algorithm (1960s-1980s)

• Backpropagate: from output to input, recursively compute

Backpropagation (auto differentiation)

- Differentiation on 100s million or more parameters. (Cannot be done manually. Mathematically simple but labor-wise challenging.)
- Numerical differentiation (not symbolic, i.e. analytical solution)
 - allows for functions such as relu, max, min, abs ...
 - what about greater_than?

"Deep Learning est mort. Vive Differentiable Programming!"

"The important point is that people are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization....It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable." (Jan 5th, 2018)

-- Yann LeCun, Director of Facebook AI Research and the inventor of convolutional neural networks

Write Your Own PyTorch Operator

```
class Log1pExp(Function):
    @staticmethod
    def forward(ctx, x):
        # The forward pass can use ctx.
        e = my exp(x)
        ctx.save for backward(e)
        output = my log(1 + e)
        return output
    @staticmethod
    def backward(ctx, dy):
        e = ctx.saved tensors
        if ctx.needs input grad[0]:
            dx = dy*(1 - 1 / (1 + e))
        else:
            dx = None
       return dx
```

```
To compute: log(1 + exp(x)) and derivative:

x = torch.tensor(4.5)

y = Log1pExp.apply(x)

dydx = torch.autograd.grad(y, x)
```