_	-		1	_
1	20	rı	ca	h
•	てし	1	Ca	J

27 de junho de 2024

Quando f é derivável em a

i) a curva definida por y = f(x) é "suave" em x = a, isto é, o ponto (a, f(a)) não é um ponto anguloso;

Ex.:
$$f(x) = |x|, x \in \mathbb{R}$$
; $a = 0$.

- ii) a reta tangente definida por y = f(a) + f'(a)(x a) "confunde-se" com a curva (que representa f), numa vizinhança de a;
- iii) o polinómio definido por f(a) + f'(a)(x a), de grau ≤ 1 , pode usar-se como aproximação para f perto de a.

O declive m da reta tangente à curva y = f(x) no ponto de coordenadas (a, f(a)) é o limite dos sucessivos declives das retas secantes definidas por A e X, à medida que X se aproxima de A,

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Nota

O ponto X pode estar à direita ou à esquerda.

İ	
—— Seja	$f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, $a, b \in D$ e $A \subset D$.
•	Diz-se que
	• f é derivável em $[a, b]$ quando f é derivável em qualquer $x \in]a, b[$ e existem as derivadas laterais $f'_+(a)$ e $f'(b)$;
	• f é derivável em A quando f é derivável em qualquer $a \in A$;
	• f é derivável quando f é derivável em todo o domínio D .
•	Se f é derivável, a função
	$f': D \longrightarrow \mathbb{R}$ $x \mapsto f'(x)$
	diz-se a função derivada de f.
Теог	rema (Continuidade de funções deriváveis)
Se f	$f:D\subset \mathbb{R}\longrightarrow \mathbb{R}$ é derivável em $a\in D\cap D',$ então f é contínua em a .
[Reg	gras básicas de derivação]
Seja a ∈	m $f,g:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ funções de domínio D , deriváveis no ponto D .
Entâ	áo:
(a)	$(f \pm g)'(a) = f'(a) \pm g'(a);$
(b)	$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a);$
(c)	$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$, desde que $g(a) \neq 0$.

- Para $x \in \mathbb{R}$ tem-se \bullet senh $'x = \cosh x$; • $\operatorname{cosech}' x = -\operatorname{cosech} x \operatorname{coth} x$; \bullet cosh' $x = \operatorname{senh} x$; • $\operatorname{sech}' x = -\operatorname{sech} x \operatorname{tgh} x$ • $tgh'x = \frac{1}{cgh^2x} = sech^2x$; • $\operatorname{cotgh}' x = \frac{1}{\operatorname{seph}^2 x} = \operatorname{cosech}^2 x$, $x \neq 0$. Teorema (Derivada da função composta) Sejam $u:D\longrightarrow \mathbb{R},\ g:B\longrightarrow \mathbb{R},\ com\ u(D)\subset B\subset \mathbb{R},\ a\in D\cap D'$ e $b = u(a) \in B$. Se u é derivável em a e g é derivável em b, então $g \circ u$ é derivável em a, tendo-se $(g \circ u)'(a) = g'(u(a)) \cdot u'(a)$ Teorema (Derivada da função inversa) Seja $f: D \longrightarrow B$, com $D, B \subset \mathbb{R}$, uma função bijectiva. Se f • é derivável no ponto $a \in D \cap D'$, • $f'(a) \neq 0$, • f^{-1} é contínua em b = f(a), então f^{-1} é derivável em b, tendo-se $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$.

• $\arcsin' x = \frac{1}{\sqrt{1-x^2}}$,	$x \in]-1,1[$;
---	------------------

•
$$\operatorname{arccosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}$$
, $x \notin [-1, 1]$;

•
$$\arccos' x = \frac{-1}{\sqrt{1-x^2}}$$
, $x \in]-1,1[$;

•
$$arcsec'x = \frac{1}{x\sqrt{x^2 - 1}}, \quad x \notin [-1, 1];$$

•
$$\arctan' x = \frac{1}{1+x^2}$$
, $x \in \mathbb{R}$;

•
$$\operatorname{arccotg} x = \frac{-1}{1+x^2}$$
, $x \in \mathbb{R}$.

Teorema (Fermat)

Seja $f: D \longrightarrow \mathbb{R}$ uma função derivável em $a \in D \cap D'$. Se a é um extremante de f,

então f'(a) = 0.

Nota

O recíproco do Teorema de Fermat é falso, isto é,

$$f'(a) = 0 \implies f(a)$$
 extremo local de f .

Exemplo?

R j'(a) = 0 l noc i

Teorema (Rolle)

Seja $f: [a, b] \longrightarrow \mathbb{R}$ uma função contínua que é derivável em]a, b[. Se f(a) = f(b), então

$$\exists c \in]a, b[: f'(c) = 0.$$

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua e derivável em]a,b[.

- 1. Entre dois zeros de f existe, pelo menos, um zero de f'.
- 2. Entre dois zeros consecutivos de f' existe, quando muito, um zero de f.
- 3. Não há mais do que um zero de f inferior ao menor zero de f', nem mais do que um zero de f superior ao maior zero de f'.

Teorema (Lagrange)

Se $f:[a,b]\longrightarrow \mathbb{R}$ é uma função contínua que é derivável em]a,b[, então

$$\exists c \in]a, b[: f'(c) = \frac{f(b) - f(a)}{b - a}$$

 ② Se $f,g:[a,b] \longrightarrow \mathbb{R}$ são contínuas e tais que $f'(x)=g'(x), \ \forall x\in]a,b[$, então
existe uma constante $C \in \mathbb{R}$ tal que $f(x) = g(x) + C$, $\forall x \in]a, b[$.
■ [Monotonia das funções reais] Seja $f: I \longrightarrow \mathbb{R}$ derivável no intervalo I . Tem-se:
• $f'(x) \ge 0$, $\forall x \in I$, se e só se f é crescente em I
se $f'(x) > 0$, $\forall x \in I$, então f é estritamente crescente em I
• se $f'(x) < 0$, $\forall x \in I$, então f é estritamente decrescente em I .