Index

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

Α	Beta [distribution] sampling consensus (BetaSAC),
Abstract pattern matching. See Pattern matching	787–788
Accuracy, defined, 447	Between-class variance method (BCVM),
Active contour models, 342-344, 345f. See also	112–113, 114 <i>f</i> Pinery images besis exerctions on 20, 33, 30 <i>f</i>
Segmentation	Binary images, basic operations on, 29–33, 30 <i>f</i> Binary images and shape analysis, 203
practical results obtained using, 344-346	
Active shape model (ASM) approach, 351–352,	boundary tracking procedures, 230–231
360-361	circularity, 203 compactness, 227
Active vision, 1	complexity, 227
AdaBoost algorithm, 425-426, 427f, 429-430,	concavity trees, 228–230
431 <i>t</i> , 437–438, 440–441	connectedness in, 204–205
Advanced driver assistance system (ADAS).	
See In-vehicle vision systems	convex deficiency, 228–230 convex hull, 228–230
Affine invariant detectors, 169-171	
Agglomerative algorithms, 379-380	distance functions, 214–217
Agriculture example, egomotion and,	image processing operations on, 231–232
739-742	measures for shape recognition, 227
AlexNet architecture, 468-474	metric properties, 212
connections and trainable parameters, 470t	modified crossing number $\chi_{\rm skel}$, 226
schematic of, 469f	moment approximations, 228
Algorithm design criteria, 86	object labeling and counting, 205–211
accuracy, 252-253	size filtering, 212–213
tradeoffs, 327	skeletons and thinning, 218–227
"Aliasing" errors, 789	Binocular images, 502–503
Animal tracking, 713-716	Blob size filtering, 745
Articulated objects, 748	Boosting, 449
Artificial neural networks (ANNs), 383-387, 453	approach, 425–428
self-organizing map (SOM), 756	effectiveness of, 438
spatiotemporal attention (STA), 750-751	loss functions for, 431–434
Association graph, 315	with multiple classes, 438–443
Automated visual inspection, 10-12	Boundary pattern analysis, 239
applications, 10-11	accuracy of length measures, 252–253
Autonomous mobile robots. See Robots,	centroidal profiles, 242–247
autonomous mobile	chain code, 254
	Fourier descriptor method, 249
_	occlusion problems, 239
В	(r, θ) plot, 245 f , 247
Back-propagation algorithm, 387-391. See also	(s, κ) plot, 245 f
Artificial neural networks (ANNs)	(s, ψ) plot, 247–249
Backpropagation through time (BPTT) algorithm,	Boundary tracking procedures, 230–231, 242
489	Box-Muller method, 799–800
Badrinarayanan et al.'s SegNet architecture,	Breadth–first search, 327, 332
484-487	Brightness normalization, 472
Bagging, 449	Bubble sort, 46, 90
Bayes' classifier, 423	
Naïve Bayes' classifier, 371-372	C
Bayes' decision theory, 369-372	C++ notation, 25, 26t
Bayes theorem, 404	Canny edge detector, application of, 140f, 141f

Canny operator, 136–139	Computational load, calculating, 306-307
pixel interpolation in, 138f	generalized Hough transform, 300–301, 301f
use of hysteresis thresholding, 137–139	Computer vision, 13
Centroidal profile. <i>See</i> Boundary pattern analysis	Conditional risk, 376
Chord—tangent method. See Ellipse detection	Connectedness, in binary images, 204–205
Circle detection, 279–281	Consensus point, 784
applications, 260–261	Contrast stretching, 27, 28f
Hough transform and, 273–278	Convolutional neural networks (CNNs), 453,
speed problem, overcoming, 279–283	456–459
unknown radius problem, 278–279	parameters for defining, 459–462
Circles, egomotion and centers of, 568–569	visualizing depth in, 462f
Circular operators, 126–127	Zeiler and Fergus work on, 474–477
detailed implementation of, 127–130	Convolutions, 33–34
Classification concepts, 365	Co-occurrence matrices, 190–191, 190f
artificial neural networks (ANN), 383-387	Corner detection, 147. See also Feature, invariant
back-propagation algorithm, 388-391	Beaudet operators, 149–150
Bayes' decision theory, 369–372	DET operator, 150
Naïve Bayes' classifier, 371–372	determining orientation, 164–165
bibliographical and historical notes, 396-398	Dreschler-Nagel (DN) operator, 151
recent developments, 398	Harris operator, 156–164
classification errors, reducing, 371f	Hough transform approach to, 329f
cluster analysis, 379-381	Kitchen-Rosenfeld (KR) operator, 150-151
cost functions, 376–377	median-based operator, 151-156
error-reject tradeoff, 376-377	Plessey operator, 163
multilayer perceptron (MLP) architectures,	second-order derivative schemes, 149-151
391-392	SUSAN operator, 180
nearest neighbor (NN) algorithm, 367-369	template matching, 148
optimum number of features, 375-376	Zuniga-Haralick (ZH) operator, 151
overfitting to the training data, 392–395	Corner properties, 148
relation of the NN and Bayes' approaches,	bluntness, 148–149
372-375	contrast, 152
importance of NN algorithm, 374–375	location, 164
mathematical statement of the problem,	orientation, 164–165
372–374	pointedness, 148–149
supervised and unsupervised learning,	sharpness, 148–149
377–378	Counting, object, 205–211
support vector machine (SVM), 381–383	Credit assignment problem, 388–389
Cluster analysis, 379–381. See also Statistical	Cross ratio, 551–555
pattern recognition (SPR)	Chasles' theorem, 560–561
Forgy's algorithm for, 380–381, 380t	cross ratio functions, symmetric, 564–565
Color, 21, 793	cross ratio spectra, 582
channel, 23–24, 54 <i>f</i> , 68, 674	5-point configuration, 558–559
gray-tone (gray-scale) images <i>versus</i> ,, 21–24	ratio of ratios, 551–555
HSI (hue, saturation, intensity) color representation, 794–796	Crossing number χ , 219–221
subtle shades of, 24f	
typical example of the use of color, 796	D
Color filtering, 54 <i>f</i> , 55 <i>f</i> , 68, 88	DeconvNet architecture, 481–484
Color processing, 39	Deconvolution network, 482f
color bleeding, 54f, 69	Deep learning, 13–14
distance-weighted median filter, 88	Deep learning explosion, 768–769
image filtering, 68–69	DeepID face representation system, 649–653, 652f
value of, 21–23, 22 <i>f</i> , 23 <i>f</i>	Deep-learning networks, 453
vector median filter, 69, 89	AlexNet architecture, 468–474
· · · · · · · · · · · · · · · · · · ·	

connections and trainable parameters, 470t	edge shift, 88
schematic of, 469f	foreshortening, 576
classification system, 454f	optical, 761
convolutional neural networks (CNNs), 453,	pincushion, 595
456-459	radial, 595–597
parameters for defining, 459-462	Distributions, sampling from, 797
visualizing depth in, 462f	Box-Muller and related methods, 799-800
Zeiler and Fergus' work on, 474–477	Divisive algorithms, 379–380
DeconvNet architecture, 481–484	Driver assistance system. See In-vehicle vision
LeNet architecture, 463-468	systems
recurrent neural networks, 487-490	Dropout, 472
SegNet architecture, 484-487	1
VGGNet architecture, 479–481	
parameters, 481t	E
visualization experiments, 477–478	Edge, 119
Deformable contours. See Active contour models	planar, 120, 121 <i>f</i>
Deformable parts models (DPM), 654	roof, 121 <i>f</i>
Depth—first search, 327, 332	step, 120, 121 <i>f</i>
Detection, 17. See also Circle detection; Corner	Edge detection, 119
Detection; Edge detection; Ellipse	advantages of, 120
detection; Eye detection; Facial feature	alternative schemes, 130–134
detection; In-vehicle vision systems; Iris	basic theory of, 120–122
detection; Line detection; Surveillance	Canny operator, 136–143, 140 <i>f</i> , 141 <i>f</i>
crack, 99–100	difference of Gaussians (DoG), 171–172
defect, 76, 117	differential gradient (DG), 125–126
interest point, 147	integrated directional derivative (IDD), 132–133
laparoscopic tool, 272–273	Kirsch operator, 119
line segment, 292	Laplacian of Gaussian (LoG), 169–170
optimal, 328	Laplacian operator, 139–143
· ·	Marr—Hildreth operator, 133, 144
parabola, 294, 725—726	non-maximum suppression, 151, 155 <i>f</i> , 156
people, 750–751	orientation, 119, 121
polygon, 302	Prewitt operator, 125–126, 131
vanishing point, 565–567	Reeves moment-based operator, 131
Diameter bisection method. See Ellipse detection Difference of Government (DoG) 130, 171, 172	
Difference of Gaussians (DoG), 139, 171–172	Roberts operator, 125 Robinson five-level operator, 123
Differential edge operators, systematic design of, 130	Robinson three-level operator, 123
	Sobel operator, 125–128, 136–137, 142 <i>f</i>
Differential gradient (DG), 125–126	template matching (TM), 123–124
Differential invariants, 561–564 Dilation, 69	Yuille—Poggio operator, 144
	Egomotion, 739–742. See also In-vehicle vision
cancellation effects, 69–70	systems; Robots, autonomous mobile
duality between erosion and, 72–73	
operator, 70	Eigenface approach to face recognition, 640–643
properties of operators, 73–76	Eigenfaces, 641 "Figure Filters" mosks, 105, 106
Discrete model	"Eigenfilters" masks, 195–196
of median shifts, 60–61	Ellipse detection, 259, 284–289
of rank order filters, 53	chord—tangent method, 286—287
Discriminability, defined, 446–447	comparison of methods, 312–314
Distance functions, 214–217	determining parameters, 287–289
local maxima of, 216–217	diameter bisection method, 284–286
Distinct class-based splitting measure (DCSM),	generalized Hough transform method, 308–312
449–450	reducing computational load for, 312–313,
Distortion	323–326
barrel, 595	superellipse, 285–286, 293–294

Ellipses, perspective and centers of, 568–569	geometric transformations and feature
Embedding function, 346–347	normalization, 167–168
Energy minimization process, 341–342, 344 Entropy-based thresholding, 103–105	gradient location and orientation histogram (GLOH), 175
Epipolar lines, 504–505	Harris-based, 169–171
generalized epipolar geometry, 598	Hessian scale and affine invariant detectors and
Erosion, 69	descriptors, 171
cancellation effects, 69–70	Hessian-based, 169–171
duality between dilation and, 72-73	histograms of oriented gradients (HOG)
operator, 70	approach, 177–179
properties of operators, 73–76	intensity extrema-based region detector (IBR),
Error rates, performance measures relating to,	175
446-447	maximally stable extremal region (MSER),
Error-reject tradeoff, 376-377	174-175
Essential matrix, 599-601	scale invariant, 176
Euclidean metric, 218	scale invariant feature transform (SIFT),
Expectation maximization (EM) algorithm,	171-172, 178, 182
400-402, 404-410, 407t, 408f, 413f, 414f	scale-invariant feature operator (SFOP), 175,
Extrinsic camera parameters, 592-595	177
Eye detection, 582, 635 <i>f</i> , 636 <i>f</i>	speeded-up robust features (SURF), 172-174
_	use for wide baseline matching, 625-626
F	Feature detection
Face detection, 631	corner, 147
DeepID face representation system, 649-653	edge, 120-122
difficulties of, 643-645	interest point, 147
eigenface approach to, 640-643	Feature location. See Feature detection
eye region, 635f, 636f	Filters, 39
facial feature detection, 634-635	applications, 66-67
fast face detection, 654-657	color, 68-69
powerful object detection schemes, 656-657	color bleeding and, 68-69
frontalization, 645-649	distance-weighted median, 88
occlusion problem, 647f	Gaussian, 42
simple approach, 632–634	Kalman, 623–625
simple sampling approach, 633f	limit, 44
3-D analysis of, 658f	low-pass, 40-42, 40f, 44
3-D object, face as part of, 657–659	matched, 302-303
Viola–Jones approach, 636–639, 639f	maximum, 53
"Face frontalization for Alignment and	median, 44-46
Recognition" (FAR) technique, 646–648	corner detector, based on, 91
Face recognition, 582	minimum, 53
Faceness-Net detector, 655f, 656	mode, 46–52
Facial feature detection, 289–290, 634–635,	noise suppression by Gaussian smoothing,
728-731	42-44
False alarm rate, defined, 447	particle. See Tracking moving objects
False negative error, 443–446	rank order, 53
	sharp—unsharp masking, 54–55, 56f
False positive error, 443–446, 450	
Fast face detection, 654-657	shifts introduced by
Fast face detection, 654–657 powerful object detection schemes,	shifts introduced by median filters, 56–61
Fast face detection, 654–657 powerful object detection schemes, 656–657	shifts introduced by median filters, 56–61 discrete model of, 60–61
Fast face detection, 654–657 powerful object detection schemes, 656–657 Fast Fourier transform (FFT), 40	shifts introduced by median filters, 56–61 discrete model of, 60–61 rank order filters, 61–65
Fast face detection, 654–657 powerful object detection schemes, 656–657 Fast Fourier transform (FFT), 40 "Fast-marching" method, 347	shifts introduced by median filters, 56–61 discrete model of, 60–61 rank order filters, 61–65 spatial, 302–303
Fast face detection, 654–657 powerful object detection schemes, 656–657 Fast Fourier transform (FFT), 40	shifts introduced by median filters, 56–61 discrete model of, 60–61 rank order filters, 61–65

truncated median, 48–50, 50 <i>f</i> , 52 <i>f</i> vector median, 54 <i>f</i> , 69	Graph matching, 299–300, 326, 328–329, 331–333
Fixed increment rule, 383–385, 385 <i>t</i>	"Graph transformation matching" algorithm,
F-measure, defined, 447	333–334
Focus of contraction, 615	Gray-level appearance model, 355
Focus of expansion (FoE), 615, 616 <i>f</i> , 617–618,	Grayscale images
627	basic operations on, 25–29
Foot-of-normal method, 265–267	morphology in, 84–86
Forgy's algorithm for cluster analysis, 380–381, 380 <i>t</i>	Gray-tone (gray-scale) images, 20–21 <i>versus</i> color, 21–24
Fourier methods, 348	discrete model of median shifts, 60-61
Frame store, 25, 36	generalized morphology, 58-60
Frontalization, 645-649	image processing operations on, 24-33
occlusion problem, 647f	Group sampling consensus (GroupSAC), 787–788
Full perspective projection, 526, 538, 544–545, 544 <i>f</i> , 569	Н
Fully convolutional network (FCN), 484	Haar filters, 637f
Fundamental matrix, 601-602	Hamming distance, 7
	Hardware, 11
•	Harris interest point detector, 156–164, 165 <i>f</i>
G Gaussian distribution, 49 <i>f</i> , 105, 271–272, 400–404,	corner signals and shifts for various geometric configurations, 159–160
434, 771–772, 776, 797, 799–800	•
Gaussian filters. See Filters	different forms of Harris operator, 163–164 performance with crossing points and T-
Gaussian mixture distributions, 412f	junctions, 160–163
Gaussian noise, 774, 778-779	"HeadHunter" detector, 654
Gaussian noise contribution, 779	Histogram concavity analysis, 113–114
Gaussian smoothing, 42–44	Histograms of oriented gradients (HOG) approach,
Gaussian sphere, vanishing point detection and, 566–567	177–179
Gaussians, mixtures of, 402-408	Homogeneous coordinates, 585, 587–588
expectation maximization algorithm,	Homography, 572–573, 582, 602, 694, 697,
405-408	701–702
Generalization to grayscale images, 58-60	Hough transform (HT), 259. See also Generalized Hough transform (GHT)
Generalized Hough transform (GHT), 299-302	agriculture application, 744
basic, 300-302	nature of, 299–308
for ellipse detection, 308–312	uses, 260–261
for feature collation, 323–326	circle detection, 273–278, 291
gradient <i>versus</i> uniform weighting, 304–308	corner detection, 164-165
line detection and, 261–265	ellipse detection, 284-286, 291
perimeter template, 303f, 306, 306f	line detection, 261–265
polygon detection and, 302 search, 327	superellipse detection, 293-294
•	vanishing point detection, 565-567
sensitivity and computational load, calculating, 306–307	xy-grouping, 264–265
spatial matched filtering, 302–303	HSI (hue, saturation, intensity) color
Genetic algorithms (GAs), 117	representation, 794–796
Global valley algorithm, 112t	Hughes effect, 438
Global valley method (GVM), 106–108	Human gait analysis, 711–713
practical results obtained using, 108–113	Hysteresis thresholding, 134–136
Gradient location and orientation histogram (GLOH), 175	ı
Gradient weighting <i>versus</i> uniform weighting,	Image acquisition
304–308	sampling theorem, 789–792

Image differencing, 612, 627	omnidirectional cameras, 755
Image filters (filtering). See Filters	pedestrian location, 734-739
Image "preprocessing" task, 6	chamfer matching, 735f
Image processing, 6, 14, 17	skin color, 736
applying convolutions, 33-34	road lane marking location, 725-726
applying logical operations, 263	RANSAC, 725-726
on binary images, 40	road sign, location, 726-728
brightening, 19	chamfer matching, 729f
clearing, 25	matched filter, 727-728
displaying, 25	roadway location, 723-725
expanding, 31	use of vanishing points (VPs), 568-569
on gray-scale images, 40	vehicle location, 728-731
inverting, 27, 29	under-vehicle shadow, 728-729
sequential versus parallel operations, 35-36	Inverse graphics, 9–10
shifting, 19	Iris detection, 199, 289-290, 295, 729-731
shrinking, 29–30	use to estimate eye Gaze direction, 289
size filtering, 212–213	ISODATA algorithm, 380-381
suppressing noise, 40	Iterative algorithms, 381
Image segmentation. See Segmentation	
ImageNet Challenge, 468	J
ImageNet Large-Scale Visual Recognition Object	Jensen's inequality, 400
Challenge (ILSVRC), 468	Junction orientation technique, 519–523
Image-Restricted, Label-Free Outside Data	vancuon orientation teeninque, 515 525
(IRLFOD) protocol, 649	
Imaging modalities	K
infra-red (NIR), 719–720, 752	Kalman filter. See Tracking moving objects
thermal, 719–720, 752, 754	K-means algorithm, 381t, 397-400, 410,
visible, 505	413–415, 416 <i>f</i> , 417 <i>f</i>
Industrial parts, location of, 523–525	"k-NN" method, 374–375
Inspection. See Automated visual inspection	Krizhevsky et al.'s AlexNet architecture, 468-474
Intensity extrema-based region detector (IBR), 175	connections and trainable parameters, 470t
Intrinsic camera parameters, 592–595	schematic of, 469f
Invariant feature. See Feature, invariant	Kullback-Leibler (KL) divergence function, 400,
Invariants, 549. See also Feature, invariant	409-410
cross ratio, 551–555	
5-point configuration, 740 <i>t</i>	I
functions, symmetric, 564–565	
spectra, 582	"Labeled faces in the wild" (LFW) datasets,
defined, 550–551	632–634
differential and semidifferential, 561–564	Labeling, 205–211
for noncollinear points, 555–559	object, 205–211
for points on conics, 558–559	Lambertian surfaces, reflectance maps for, 509f
reasons for using, 549	Landmark points, 348–350, 353–355
In-vehicle vision systems, 721. See also Robots,	Laparoscopic tools, 272–273
autonomous mobile; Surveillance; Tracking	location of tips, 273f
moving objects	location using RANSAC, 272
advanced driver assistance system (ADAS),	orientation parameters for, 274 <i>f</i>
749–750	Laplacian operator, 139–143
all hours—all weathers, 752	Laws' texture energy approach, 193–195
catadioptric cameras, 755	Learning. See Artificial neural networks (ANNs)
convoy, 723	Statistical pattern recognition (SPR)
global positioning system (GPS), 723, 756	Least median of squares, 780–782
ground plane, location and use of, 739	Least squares analysis, 771–773
licence plate location, 731–734	LeCun et al.'s LeNet architecture, 463–468

LeNet architecture, 463-468	Matrix (matrices), 602
Level-set approach to object segmentation,	essential, 599-602
346-347	fundamental, 601-602
LFPW (labeled face parts in the wild), 651	gray-level co-occurrence, 190-193
Light striping, 504	Maximal clique, 315–318, 321 <i>t</i> , 323–326, 330
Line detection, 259	Maximally stable extremal region (MSER),
foot-of-normal method, 265-267	174-175
generalized Hough transform and, 261-265	Maximum likelihood thresholding, 105-106
Hough transform and, 261-265	Max-pooling indices, 484–485
longitudinal localization, 264-265	Mean filters. See Filters
RANSAC, 267–272	Median filters, 44–46. See also Filters
slope—intercept equation, 262	edge smoothing property of, 62f
Local maximum operation, 268	shifts introduced by, 56-61
Local-feature-focus (LFF) method, 322, 331	continuum model of median shifts, 57–58
Logistic sigmoid function, 434, 435f	discrete model of median shifts, 60-61
Logit function, 434	generalization to grayscale images, 58-60
LogitBoost algorithm, 433, 435–438, 436t,	Metric properties, in digital images, 500
440-442	Mobile robots. See Robots, autonomous mobile
"Log-loss" function, 431	Mode filters, 46–52, 51f. See also Filters
Longitudinal line localization, 264–265	Model constraints, 342
Loss functions for boosting, 431–434	Modeling AdaBoost, 428–431
Lowe's scale invariant feature transform,	real AdaBoost, 430-431
171-172	Moment approximations, 228
	Moore's law, 764–765
N.4	Morphological grouping, 79–84
M	Morphology. See Mathematical morphology
Machine learning, 13–14, 365	Motion, 610. See also Surveillance; Tracking
Machine vision, 12. See also Automated visual	moving objects
inspection	aperture problem, 612
applications, 764	focus of expansion (FOE), 617–618
defined, 760–762	human gait analysis, 711-713
future for, 760–762	Kalman filters, 623–625
importance of, 760–762	optical flow, 611–615
tradeoffs, 762–764	snakes, 718
MacQueen's K-means algorithm, 381t	stereo from, 621-623
Mahalanobis distance, 355–357, 356 <i>f</i> , 796	time-to-adjacency analysis, 618-619
Marr-Hildreth operator, 133	traffic flow monitoring, 698-702
Match graph, 315	Multilayer perceptron (MLP) architectures, 387,
Mathematical morphology, 41, 70–79	388f, 391-392, 449-450
closing, 76–78	cross-validation, 394-395, 394f
connectivity-based analysis, 78-79	learning curve for, 392f
dilation	overfitting of data, 392-395, 393f
generalized, 70–72	training, 392–395
duality between dilation and erosion, 72–73	Multiple classes, boosting with, 438–443
erosion	Multiple classifiers, 422–425
generalized, 72	Multiple-view vision, 597–598
grayscale imaging, 56–61	
morphological analysis, 674–676, 674f,	M
703–704, 749, 755–756, 767–768	N
opening, 76–78	Naïve Bayes' classifier, 371–372
residue function, 76	"Narrow band" method, 347
top hat operator, 76	Nasty realities, 760–761
black, 76	clutter, 760
white, 76	glint, 761

Nasty realities (Continued)	similarity measures
noise, 760	Bhattacharyya coefficient, 688-689
Gaussian, 761	Pattern recognition (PR), 365. See also Statistical
impulse, 761	pattern recognition (SPR)
white, 302	People tracking, 664
occlusion, 707	applications, 664
Navigation, robots. See Robots, autonomous	basic techniques, 705
mobile	from vehicles, 706–707
Nearest neighbor (NN) algorithm, 367–369	Perceptron, 383, 384 <i>f</i>
importance of, 374–375	fixed increment algorithm, 385t
training patterns, 367	Performance measures, 176, 177t, 182
Newton's method of approximation, 400	receiver operating characteristic (ROC),
Noh et al.'s DeconvNet architecture, 481-484	144-145, 752-753
Noise, 40-41	Performance measures relating to error rates,
spike, 44	446-447
white, 302	Perspective, 572
Noise removal operations, 32f	in art, 572-578
Noise suppression, 35f, 36-37, 40-41	vanishing point, 565-567
Gaussian smoothing, 42-44	Perspective inversion, 534–535, 534f, 535f
median filters, 44-46	Perspective <i>n</i> -point (PnP) problem, 545–546
mode filters, $46-52$, $51f$	Perspective projection, 500
rank order filters, 53	full, 538, 540-541
Noncollinear points invariants for, 555-559	symmetric trapezia problem, 543
Non-Lambertian surface, reflectance map for, 511f	3-point problem, 542–543
Nyquist sampling theorem, 789	weak, 534–538, 540 <i>f</i>
	Phong model, 510–511
0	Photometric stereo, 499, 511–514
	Pixel-pixel operations, 37
Object labeling and counting, 205–211	Pixels, 20–21
Object location. <i>See</i> Detection Object recognition schemes	Plan view of ground plane, 740t
3-D, 518–519	constructing, 741
Object segmentation, level-set approach to,	Point pattern matching. See Graph matchingPattern
346–347	matching
	Point spread function (PSF), 33-34, 308
Objects location using shape models, 353–358	to detect elliptical objects, 312f
Occlusion, 687–688	to detect tilted circles, 311f
apparent, 705	typical PSF shapes for detection of ellipses with
dynamic, 705	various eccentricities, 311f
problems, 249–252, 647 <i>f</i> , 700	Point-line duality, 261
reasoning, 699–700	Pooling and unpooling operation, 456-458
scene, 705	Positive predictive value, defined, 447
"One-versus-the-rest" (OVR) classifier, 438–439	Precision, defined, 446-447
Optical character recognition (OCR), 95–96,	Prewitt operator, 125-126, 131
365–366 Optical flow, 611–615	Principal components analysis (PCA), 347-348,
	353-354, 357 <i>f</i> , 419-422, 420 <i>f</i> , 448-449,
interpretation of, 615–617	640-641
problems with, 620–621 Overlapping pooling, 471, 472 <i>f</i>	fitting hand picture to, 355f
Overlapping pooling, 471, 472j	intensity profile approach, 358f
_	producing boundary features for, 349f
P	using improved intensity profiles, 357f
Parallel image processing operations, 35–36	Principal point, 592–593
Parallel thinning, 223	Priori probability, 373
Particle filter. See Tracking moving objects	Probabilistic methods, machine learning, 399
Pattern matching	boosting approach, 425-428

boosting with multiple classes, 438–443 effectiveness of boosting, 438 expectation maximization (EM) algorithm, general view of, 408–410 Gaussians, mixtures of, 402–408 expectation maximization algorithm, 405–408 LogitBoost algorithm, 435–438 loss functions for boosting, 431–434 modeling AdaBoost, 428–431 real AdaBoost, 430–431 multiple classifiers, 422–425 practical examples, 411–419 principal components analysis, 419–422	Residue operator, 89–90 Road, 723–725, 754–755 lane markings, 723–725, 726f, 727f location, 725–726 signs, 726–728 Roberts operator, 125 Robots, autonomous mobile, 739 active vision, 1 agriculture application example, 742 centers of circles and ellipses, 568–569 cross ratios, 581 navigation for, 585–586 plan view of ground plane, constructing, 741 safety issues, 664
receiver operating characteristic (ROC), 443–447	vanishing point detection, 581–582 vehicle guidance, 742–747
performance measures relating to error rates, 446–447 Probabilistic optimization, 399–400, 413–415 Progressive sample consensus (PROSAC), 787–788	Robust estimator. See Robust statistics Robust statistics, 771 beta [distribution] sampling consensus (BetaSAC), 787–788 breakdown point, 773–776, 774t
Projection schemes	features from accelerated segment test (FAST),
3-D, 500–505 Propagation, 205–206	175 group sampling consensus (GroupSAC), 787–788
R (r, θ) plot. See Boundary pattern analysis Radial distortions, 585–586, 601 correcting, 595–597 Rank order filters, 53 shifts introduced by, 61–65 rectangular neighborhoods, shifts in, 62–65 RANSAC (random sample consensus) approach, 261 t , 267–272, 271 t , 294–295, 725–726, 754, 784–785 Raw pixel measurements, 601 Rayleigh noise, 400–402 Real AdaBoost, 430–431 Real-time operation, 686–687, 756	Hough transform and, 771 importance sampling consensus (IMPSAC), 787 influence function, 775–780 inlier, 775, 784 least median of squares (LMedS), 780–782 least squares regression, 775, 780, 783 L-estimator, 775, 782 M-estimator, 775, 777–778, 782 N adjacent points sample consensus (NAPSAC), 787 outlier, 775–776, 777f, 778, 785–787 progressive sample consensus (PROSAC), 787–788 random sample consensus (RANSAC), 784–785
Recall, defined, 446–447 Receiver operating characteristic (ROC), 443–447 performance measures relating to error rates, 446–447 Recognition. See Statistical pattern recognition	relative efficiency, 774 R-estimator, 775, 782 Robustness, 176–177, 783 R-table, 301
(SPR) Recurrent neural networks, 487–490, 488f Region of interest (RoI), 289 Region-growing methods, 94–95. See also Segmentation "Regions with CNN features" (R-CNN) method, 656–657 Relative efficiency, 774 Reproducible kernel Hilbert space (RKHS), 333	S (s, κ) plot. <i>See</i> Boundary pattern analysis (s, ψ) plot. <i>See</i> Boundary pattern analysis "Salt and pepper" noise, 32, 32 f Sampling theorem, 789–792 Sampling theorem, Nyquist, 789 Scale invariant feature transform (SIFT), 171–172, 178, 182

Scaled orthographic projection, 534–536, 544–545	Speeded-up robust features (SURF), 172–174 Statistical pattern recognition (SPR). <i>See also</i>
Scale-invariant feature operator (SFOP), 175, 177	Artificial neural networks (ANNs);
Scene analysis, 9	Performance measures
Schmitt trigger, 134	bag-of-words, 626
Search space, 242, 279	Statistical PR (SPR), 365–366, 381–383, 396
Segmentation, 93. See also Thresholding	Stereo from motion, 621–623
(threshold)	Stitching photographs, 549, 551, 576–578, 582
graph cuts, 529	Straight edge detection, 264–265
region-growing, 94–95	Stretching image contrast, 121–122, 154–155
snake, 698	Stride and zero padding, 461f
SegNet architecture, 484–487	Structured lighting, 516–518
Self-similarity analysis, 255	Student's <i>t</i> -distribution, 400–402
Semantic segmentation network, 481–483,	Subgraph—subgraph isomorphism, 314–315, 331
491–492	Sudden step-edge response, 120, 121f
Semidifferential invariants, 561–564	Supervised learning, 377–378
Sensitivity, defined, 446–447	Support vector machine (SVM), 381–383
Sequential image processing operations, 35–36	principle of, 382f
Sequential labeling, 209	Surveillance, 10–12, 663. See also In-vehicle
Sequential thinning, 222t	vision systems; Tracking moving objects
Shading, shape from, 506–511	articulated bodies, analyzing motions of, 719
Shadows, 581	iterative parsing, 719
Shape models, 348–358	background modeling, 669–675
locating objects using, 353-358	expectation maximization (EM) algorithm,
Shape recognition. See also Binary images and	670-671
shape analysis	fluttering vegetation, 670, 671f, 673f
from angle, 519	Gaussian mixture model (GMM), 671–674
moment approximations, 228	non-parametric model, 678
from shading, 506-511	parametric model, 675-677
simple measures for, 203	field of view (FoV), 667-668, 691
skeletons and, 227	foreground detection, 669-678
from texture, 515–516	ghost, 671f, 675, 717
Sharp—unsharp masking, 54–55, 56f	ground plane, location and use of, 694, 694f
Signal-detection theory, 446	in-plane rotation, 684–685
Simonyan and Zisserman's VGGNet architecture,	licence plate location, 702-704
479-481	monitoring traffic flow, 698-702
parameters, 481t	motion distillation, 708
Simplex algorithm, 714–715	rigidity parameter, 708-709
Single-layer perceptron, 386–387, 387f	multiple cameras, 693-698
Singular value decomposition (SVD), 603	non-overlapping fields of view, 697-698
Skeletons and thinning, 218–227	overlapping fields of view, 697-698
defined, 218	transition probability, 679
guided, 224	occlusion reasoning, 691–693, 705–707
modified crossing number $\chi_{\rm skel}$, 226	out-of-plane rotation, 685
nature of skeleton, 224-225	pedestrian location, 734–739, 748
node analysis, 225–226	chamfer matching, 691–693
shape analysis using, 226	histogram of orientated gradients (HOG), 753
thinning implementations, 221–224	human gait analysis, 711–713
Snake energy, 341–343	minimum description length (MDL) approach,
Snakes. See Active contour models	691
Sobel operator, 125–128	people location, 697
Sorting optimization curve (SOC), 450	shadow suppression, 674
Spatial matched filtering, 302–303	stationary background problem, 675
Specificity, defined, 446–447	traffic flow monitoring, 698

P. J. J. 1600 700	500 (01
Bascle method, 698–700	essential matrix, 599–601
Koller method, 700–702	fundamental matrix, 601–602
transient background problem, 675	generalized epipolar geometry, 598
use of color, 684	homogeneous coordinates, 587–589
chromaticity coordinates, 677	homography, 695
chrominance parameters, 686	Horaud's junction orientation technique,
color histograms, 684–688	519–523
color indexing, 684	image reconstruction, 605–608
vehicle location, 728–731	image rectification, 604–605
Symmetric cross-ratio functions, 564–565	image transformations, 585–586
Symmetric trapezia problem, 543	industrial parts, location of, 523–525 intrinsic and extrinsic camera parameters,
full perspective projection, 544 <i>f</i> Symmetry, 123, 286–287	592–595
mirror symmetry, 331	multiple-view vision, 597–598
reflection symmetry, 729–731	object recognition schemes, 518–519
symmetry detection, 729–731	perspective <i>n</i> -point (PnP) problem, 294–295,
System design, 560, 723	545–546
System design, 500, 725	photometric stereo, 511–514
	pose estimation, 546, 786
T	use of coplanarity, 599
Template matching (TM), 7–8, 7 <i>f</i> , 120, 123	projection schemes, 500–505
boundary pattern analysis and, 242	radial distortions, correcting, 595–597
coarse–fine, 246–247	shape from angle, 519
corner detection and, 148-149	shape from shading, 499, 506–511
edge detection and, 123-124	bidirectional reflectance distribution function
multistage, 767	(BRDF), 528-529
2-stage, 763-764, 767	smoothness, surface, 514–515
tradeoffs, 762–764	shape from texture, 515–516
Texture, 185, 187f	Silberberg method, 527–528
defined, 185-186	structure from motion, 619, 627
descriptors, 188	structured lighting, 516-518
fractal-based measures of, 198	surface smoothness, 514-515
Markov random field models of, 198	transformation parameters, 590
segmentation, 188-189, 199	triangulation, 605-606
shape from, 199	Three-dimensional (3-D) objects
texel, 186–188	inspection of, 518-519
Texture analysis, 79	Thresholding (threshold), 28, 93, 95-97. See also
Ade's eigenfilter approach, 195–197	Segmentation
autocorrelation approach, 189, 189f	adaptive, 97–101
gray-level co-occurrence matrices, 190-193	between-class variance method (BCVM), 103,
Laws' texture energy approach, 193–195	112–113
spatial gray-level dependence matrix (SGLDM)	bias when selecting, 97
approach, 190	entropy-based, 103–105
structural approaches to, 197–198	finding a suitable, 95–97
Thinning, 218–227	global valley method (GVM), 106–108
guided, 224	hysteresis, 101, 134–136
implementations, 221–224	images, 93–94
modified crossing number χ_{skel} , 226	local, 98–101
3×3 template operators, theory of, $123-124$	maximum likelihood, 105–106
Three-dimensional (3-D) analysis, 497	in unimodal distributions
ambiguity, 498 Ballard—Sabbah method, 527—528	concavity analysis, 113–114 variance-based, 101–103
camera calibration, 526, 590–592	
eight-point algorithm, 603–604	Time-to-adjacency analysis, 618–619 Top-hat operator, 76
eight-point aigorithm, 003-004	1 op-nat operator, 70

"Top-hat" selection transformation, 89-90	detection, 565-567
Tracking moving objects, 623. See also	use to find circle and ellipse centers,
Surveillance	568-569
animal tracking, 713-716	Variance-based thresholding, 101-103
Kalman filter, 623–625	Vector median filter (VMF), 69
mean shift algorithm, 683	Vehicle guidance. See In-vehicle vision
monitoring traffic flow, 663	systemsRobots, autonomous mobile
particle filter, 678–684	VGGNet architecture, 479–481
auxiliary particle filter (APF), 683	parameters, 481t
Condensation, 682	Video analytics. See Surveillance
cumulative distribution function (CDF), 680f	Viola—Jones approach, for face recognition,
iCondensation, 682–683	636–639, 639 <i>f</i>
iterated likelihood weighting (ILW), 683	Vision, 1. See also Automated visual inspection;
kernel particle filter, 683	Machine vision
Epanechnikov kernel, 683	active, 2
sample impoverishment, 682	human, 1–2, 749
sampling importance resampling (SIR), 682	multiple-view, 597–598
sequential importance sampling (SIS), 682	Vision, nature of, 2–10
679–680	inverse graphics, 9–10
	* ·
people tracking, 664	object location, 6–8
Leeds people tracker, 664	recognition, 2–6
Siebel–Maybank tracker, 718	scene analysis, 9
from vehicles, 664–665	Visualization experiments, 477–478
Traffic flow monitoring. See Surveillance	
Transform (Transformation). See also Hough	W
transform (HT)	
affine, 603–604	Weak classifiers, 426–428, 427 <i>f</i> , 437 <i>f</i> , 449
degrees of freedom (DoF), 499-500, 518-519	Weak perspective projection, 535–538
Euclidean, 561–562	White noise, 302
Fourier, 40	Wide baseline, 625
Radon, 292	matching, 625
similarity, 167–168	use of invariant feature detector, 627
trace, 330	views, 625
Fourier, 790–791, 791 <i>f</i>	Widrow-Hoff delta rule, 385
Truncated median filter (TMF), 48-50, 50f, 52f	Window operation, 27, 36, 39, 80 <i>f</i> , 145
U	Υ
Unit step edge function (USEF) concept, 180–181	
Unpooling layer, 477–478	YOLO approach, 656–657
Unsupervised learning, 377–378	
Choupervised rearning, 377–376	7
W	Z
V	Zeiler and Fergus's visualization experiments,
Validation set, 393–395	477-478
Vanishing point, 568–569. <i>See also</i> In-vehicle vision systems	Zeiler and Fergus's work on CNN architectures, 474–477