Competitive Programming

19, 20 Dynamic Programming 1. Write a recursive program to print Fibonacci numbers.

Time complexity?

```
RECFIBO(n):

if n = 0

return 0

else if n = 1

return 1

else

return RECFIBO(n - 1) + RECFIBO(n - 2)
```



```
\frac{\text{MEMFIBO}(n):}{\text{if } n = 0}
\text{return 0}
\text{else if } n = 1
\text{return 1}
\text{else}
\text{if } F[n] \text{ is undefined}
F[n] \leftarrow \text{MEMFIBO}(n-1) + \text{MEMFIBO}(n-2)
\text{return } F[n]
```



```
ITERFIBO(n):

F[0] \leftarrow 0

F[1] \leftarrow 1

for i \leftarrow 2 to n

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

How to Approach DP problems ?

- Identify subproblems
- Identify Base cases (states)
- 3. Try writing Recursive solution first
- 4. A. Write memoization of recursive function OR
 - B. Convert Recursive solution

1-dimensional DP Example

Problem:

given n, find the number of different ways to write n as the sum of 1, 3, 4

Example:

```
for n = 5, the answer is 6
5 = 1 + 1 + 1 + 1 + 1
= 1 + 1 + 3
= 1 + 3 + 1
= 3 + 1 + 1
= 1 + 4
= 4 + 1
```

Draw tree of all possible choices.

1-dimensional DP Example

Recurrence is then

$$D_{n} = D_{n-1} + D_{n-3} + D_{n-4}$$

Solve the base cases

- $-D_{\alpha} = 1$
- $D_n = 0$ for all negative n
- Alternatively, can set: $D_0 = D_1 = D_2 = 1$, and $D_3 = 2$

Code:

```
dp[0] = dp[1] = dp[2] = 1; dp[3] = 2;
for(i = 4; i <= n; i++)
   dp[i] = dp[i-1] + dp[i-3] + dp[i-4];</pre>
```

<u>Stairs</u>

You are climbing a stair case and it takes A steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

```
A = 2
Output 1:
2
Explanation 1:
[1, 1], [2]
Input 2:
A = 3
Output 2:
3
Explanation 2:
[1 1 1], [1 2], [2 1]
```

<u>Solution</u>

LCS

Problem:

given two strings x and y, find the longest common

subsequence (LCS) and print its length

Example:

- x: ABCBDAB

- y: BDCABC

- "BCAB" is the longest subsequence found in both sequences, so the answer is 4

Try drawing Tree

LCS

- Define subproblems
 - Let D_{ij} be the length of the LCS of $x_{1...i}$ and $y_{1...j}$
- Find the recurrence
 - If $x_i = y_j$, they both contribute to the LCS
 - $D_{ij} = D_{i-1,j-1} + 1$
 - Otherwise, either x_i or y_j does not contribute to the LCS, so one can be dropped
 - $D_{ij} = \max\{D_{i-1,j}, D_{i,j-1}\}$
 - Find and solve the base cases: $D_{i0} = D_{0j} = 0$

LCS

```
for(i = 0; i \le n; i++) dp[i][0] = 0;
for(j = 0; j \le m; j++) dp[0][j] = 0;
for(i = 1; i <= n; i++) {
   for(j = 1; j \le m; j++) {
      if(x[i] == y[j])
         dp[i][j] = dp[i-1][j-1] + 1;
      else
         dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
```

Unique Paths in a Grid

Given a grid of size m * n, lets assume you are starting at (1,1) and your goal is to reach (m,n). At any instance, if you are on (x,y), you can either go to (x,y+1) or (x+1,y).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Example :

There is one obstacle in the middle of a 3x3 grid as illustrated below.

```
[
    [0,0,0],
    [0,1,0],
    [0,0,0]
]
The total number of unique paths is 2.
Solution
```

Min Sum Path in Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

Solution

Homework

Jump Game Array	Easy
Longest Increasing Subsequence	Easy
Maximum path sum I	Easy
Edit Distance	Medium, Classical Problem