Отчёт по лабораторной работе №9

Администрирование локальных сетей

Бансимба Клодели Дьегра, НПИбд-02-22

Содержание

1	Цель работы	6
2	Выполнение лабораторной работы	7
3	Выводы	21
4	Ответы на контрольные вопросы:	22

Список иллюстраций

2.1	Открытие проекта lab_PT-09.pkt	7
2.2	Формирование резервного соединения между коммутаторами msk-	
	donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-3 (замена соеди-	
	нения между коммутаторами)	7
2.3	Настройка порта на интерфейсе Gig0/2 коммутатора msk-donskaya-	
	claudely-sw-3 как транковый	8
2.4	Соединение между коммутаторами msk-donskaya-claudely-sw-1 и	
	msk-donskaya-claudely-sw-4 через интерфейсы Fa0/23	8
2.5	Активация в транковом режиме интерфейса Fa0/23 на коммутаторе	
	msk-donskaya-claudely-sw-1	9
2.6	Активация в транковом режиме интерфейса Fa0/23 на коммутаторе	
	msk-donskaya-claudely-sw-4	10
2.7	Проверка командой ping серверов mail и web с оконечного устрой-	
	ства dk-donskaya-1	11
2.8	Отслеживание пакетов ICMP в режиме симуляции (web) (движение	
	пакетов происходит через коммутатор msk-donskaya-claudely-sw-2).	11
2.9	Просмотр на коммутаторе msk-donskaya-claudely-sw-2 состояния	
	протокола STP для vlan 3 (указывается, что данное устройство явля-	
	ется корневым	12
2.10	Настройка в качестве корневого коммутатора STP коммутатора msk-	
	donskaya-claudely-sw-1	13
2.11	Путь пакетов ICMP от хоста dk-donskaya-1 до web через коммутаторы	
	msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-2	13
2.12	Настройка режима Portfast на интерфейсах коммутатора msk-	
	donskaya-claudely-sw-2	14
2.13	Изучение отказоустойчивости протокола STP и времени восстанов-	
	ления соединения при переключении на резервное соединение	15
2.14	Изучение отказоустойчивости протокола STP и времени восстанов-	
	ления соединения при переключении на резервное соединение	111 112 13 13 14 15 16
2.15	Переключение коммутаторов в режим работы по протоколу Rapid	
	PVST+ (на примере msk-donskaya-claudely-sw-1)	17
2.16	Изучение отказоустойчивости протокола Rapid PVST+ и времени	
	восстановления соединения при переключении на резервное со-	
	единение	18
2.17	Изучение отказоустойчивости протокола Rapid PVST+ и времени	
	восстановления соединения при переключении на резервное со-	
	единение	19

2.18 Формирование агрегированного соединение интерфейсов Fa0/20	
– Fa0/23 между коммутаторами msk-donskaya-claudely-sw-1 и msk-	
claudely-donskaya-sw-4	20

Список таблиц

1 Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Выполнение лабораторной работы

Откроем проект с названием lab_PT-08.pkt и сохраним под названием lab_PT-09.pkt. После чего откроем его для дальнейшего редактирования (рис. fig. 2.1).

Рис. 2.1: Открытие проекта lab_PT-09.pkt

Теперь сформируем резервное соединение между коммутаторами msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-3. Для этого заменим соединение между коммутаторами msk-donskaya-claudely-sw-1 (Gig0/2) и msk-donskaya-claudely-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-claudely-sw-1 (Gig0/2) и msk-donskaya-claudely-sw-3 (Gig0/2) (Рис. 1.2): (рис. fig. 2.2).

Рис. 2.2: Формирование резервного соединения между коммутаторами msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-3 (замена соединения между коммутаторами).

После чего сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskayaclaudely-sw-3 транковым

```
Password:

msk-donskaya-claudely-sw-3>cisco
Translating "cisco"...domain server (255.255.255.255)

% Unknown command or computer name, or unable to find computer address

msk-donskaya-claudely-sw-3>en
Password:
msk-donskaya-claudely-sw-3#
msk-donskaya-claudely-sw-3fconf t
Enter configuration commands, one per line. End with CNTL/2.
msk-donskaya-claudely-sw-3(config)#int g0/2
msk-donskaya-claudely-sw-3(config)#switchport mode trunk

msk-donskaya-claudely-sw-3(config-if)#switchport mode trunk
```

Рис. 2.3: Настройка порта на интерфейсе Gig0/2 коммутатора msk-donskaya-claudely-sw-3 как транковый.

Теперь соединение между коммутаторами msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-4 сделаем через интерфейсы Fa0/23 (Рис. 1.4), не забыв активировать их в транковом режиме

Рис. 2.4: Соединение между коммутаторами msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-4 через интерфейсы Fa0/23.

Рис. 2.5: Активация в транковом режиме интерфейса Fa0/23 на коммутаторе msk-donskaya-claudely-sw-1

Рис. 2.6: Активация в транковом режиме интерфейса Fa0/23 на коммутаторе msk-donskaya-claudely-sw-4.

оконечного устройства dk-donskaya-1 пропингуем серверы mail и web (Рис. 1.7). В режиме симуляции проследим движение пакетов ICMP и убедимся, что движение пакетов происходит через коммутатор msk-donskaya-claudely-sw-2

```
Bluetooth Connection:
   Connection-specific DNS Suffix..:
Link-local IPv6 Address....:::
    IPv6 Address....::
    IPv4 Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
   Default Gateway....:::
                                              0.0.0.0
C:\>ping www.donskava.rudn.ru
Pinging 10.128.0.2 with 32 bytes of data:
Reply from 10.128.0.2: bytes=32 time<lms TTL=127 Reply from 10.128.0.2: bytes=32 time<lms TTL=127 Reply from 10.128.0.2: bytes=32 time=16ms TTL=127
Ping statistics for 10.128.0.2:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 16ms, Average = 5ms
C:\>ping mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.4:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 10.128.0.5
Pinging 10.128.0.5 with 32 bytes of data:
Reply from 10.128.0.5: bytes=32 time<1ms TTL=127
Reply from 10.128.0.5: bytes=32 time<1ms TTL=127 Reply from 10.128.0.5: bytes=32 time=34ms TTL=127
Reply from 10.128.0.5: bytes=32 time<1ms TTL=127
```

Рис. 2.7: Проверка командой ping серверов mail и web с оконечного устройства dk-donskaya-1.

Рис. 2.8: Отслеживание пакетов ICMP в режиме симуляции (web) (движение пакетов происходит через коммутатор msk-donskaya-claudely-sw-2).

На коммутаторе msk-donskaya-claudely-sw-2 посмотрим состояние протокола

STP для vlan 3 (указывается, что данное устройство является корневым (строка This bridge is the root))

Рис. 2.9: Просмотр на коммутаторе msk-donskaya-claudely-sw-2 состояния протокола STP для vlan 3 (указывается, что данное устройство является корневым

В качестве корневого коммутатора STP настроим коммутатор msk-donskayaclaudely-sw-1

Рис. 2.10: Настройка в качестве корневого коммутатора STP коммутатора msk-donskaya-claudely-sw-1

Используя режим симуляции, убедимся, что пакеты ICMP идут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-2

Рис. 2.11: Путь пакетов ICMP от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-claudely-sw-1 и msk-donskaya-claudely-sw-2

Hacтроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены сервера

Рис. 2.12: Настройка режима Portfast на интерфейсах коммутатора msk-donskayaclaudely-sw-2

Теперь изучим отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого используем команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1, а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown

```
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=15ms TTL=127
Request timed out.
Reply from 10.128.0.4: bytes=32 time=2ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 2.13: Изучение отказоустойчивости протокола STP и времени восстановления соединения при переключении на резервное соединение.

Рис. 2.14: Изучение отказоустойчивости протокола STP и времени восстановления соединения при переключении на резервное соединение.

Далее переключим коммутаторы в режим работы по протоколу Rapid PVST+

Рис. 2.15: Переключение коммутаторов в режим работы по протоколу Rapid PVST+ (на примере msk-donskaya-claudely-sw-1)

Изучим отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение

Command	Co d Prom	npt			
na a	f w a w	10 129 0 4	huma a=22	time=2me	TTT -122
		10.128.0.4:			TTL=127
		10.128.0.4			TTL=127
		10.128.0.4		time<1ms	
		10.128.0.4			TTL=127
		10.128.0.4			TTL=127
		10.128.0.4			
		10.128.0.4	_		
		10.128.0.4	_		TTL=127
		10.128.0.4:			TTL=127
		10.128.0.4			TTL=127
		10.128.0.4			TTL=127
Reply	from	10.128.0.4	bytes=32	time=2ms	TTL=127
Reply	from	10.128.0.4:			TTL=127
Reply	from	10.128.0.4:	bytes=32	time<1ms	TTL=127
Reply	from	10.128.0.4:	bytes=32	time<1ms	TTL=127
Reply	from	10.128.0.4:	bytes=32	time<1ms	TTL=127
Reply	from	10.128.0.4	bytes=32	time<1ms	TTL=127
Reply	from	10.128.0.4	bytes=32	time<1ms	TTL=127
Reply	from	10.128.0.4		time<1ms	TTL=127
Reply	from	10.128.0.4			TTL=127
		10.128.0.4:			TTL=127
		10.128.0.4:			TTL=127
		10.128.0.4:			
		10.128.0.4:			
		10.128.0.4:			
		10.128.0.4:			
		10.128.0.4:			
		10.128.0.4:			
		10.128.0.4:			
Reply:	from	10.128.0.4:	bytes=32	time=10ms	TTL=127

Рис. 2.16: Изучение отказоустойчивости протокола Rapid PVST+ и времени восстановления соединения при переключении на резервное соединение.

Рис. 2.17: Изучение отказоустойчивости протокола Rapid PVST+ и времени восстановления соединения при переключении на резервное соединение.

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-claudely-sw-1 и msk-claudely-donskaya-sw-4

Рис. 2.18: Формирование агрегированного соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-claudely-sw-1 и msk-claudely-donskaya-sw-4.

3 Выводы

В ходе выполнения лабораторной работы мы изучили возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

4 Ответы на контрольные вопросы:

- 1. Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах VLAN... // Номер VLAN STP ... // Тип протокола Root ID/Bridge ID // Ближайший коммутатор/Текущий коммутатор Priority ... // Приоритет Address ... // MAC-адрес Cost ... // «Затраты» до этого коммутатора Port ... // Порт Hello Time ... Мах Age ... Forward Delay ... Aging Time ... // Время работы STP // Свойства портов
- 2. При помощи какой команды можно узнать, в каком режиме, STP или Rapid PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах sh ru
- 3. Для чего и в каких случаях нужно настраивать режим Portfast? Он позволяет сразу включать выделенные порты, поскольку они не подключены к коммутаторам и не участвуют во включении STP.
- 4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется? Он объединяет параллельные каналы для увеличения пропускной способности, а также не теряет соединение при обрыве одного из каналов, перенаправляя трафик.
- 5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов? LACP общий стандарт IEEE, PAgP локальный протокол Cisco. Для них обязательна настройка сторон

(активная, пассивная, авто). При статическом агрегировании коммутатор обрабатывает данные как с магистрали, даже если она не настроена на другой стороне.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel? - show etherchannel