

Dual, Precision JFET High Speed Operational Amplifier

OP249

FEATURES

Fast Slew Rate: 22 V/μs typ Settling Time (0.01%): 1.2 μs max Offset Voltage: 300 μV max High Open-Loop Gain: 1000 V/mV min

Low Total Harmonic Distortion: 0.002% typ Improved Replacement for AD712, LT1057, OP215,

TL072 and MC34082 Available in Die Form

APPLICATIONS

Output Amplifier for Fast D/As Signal Processing Instrumentation Amplifiers Fast Sample/Holds Active Filters Low Distortion Audio Amplifiers Input Buffer for A/D Converters Servo Controllers

GENERAL DESCRIPTION

The OP249 is a high speed, precision dual JFET op amp, similar to the popular single op amp, the OP42. The OP249 outperforms available dual amplifiers by providing superior speed with excellent dc performance. Ultrahigh open-loop gain (1 kV/mV minimum), low offset voltage and superb gain linearity, makes the OP249 the industry's first true precision, dual high speed amplifier.

With a slew rate of 22 V/ μ s typical, and a fast settling time of less than 1.2 μ s maximum to 0.01%, the OP249 is an ideal

PIN CONNECTIONS

8-Lead Cerdip (Z Suffix), 8-Lead Plastic Mini-DIP (P Suffix)

20-Terminal LCC (RC Suffix)

(S Suffix)

choice for high speed bipolar D/A and A/D converter applications. The excellent dc performance of the OP249 allows the full accuracy of high resolution CMOS D/As to be realized.

Symmetrical slew rate, even when driving large load, such as 600 Ω or 200 pF of capacitance, and ultralow distortion, make the OP249 ideal for professional audio applications, active filters, high speed integrators, servo systems and buffer amplifiers.

The OP249 provides significant performance upgrades to the TL072, AD712, OP215, MC34082 and the LT1057.

Figure 1. Fast Settling (0.01%)

Figure 2. Low Distortion $A_V = +1$, $R_L = 10 \text{ k}\Omega$

Figure 3. Excellent Output Drive, $R_1 = 600 \Omega$

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

OP249—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15$ V, $T_A = +25$ °C, unless otherwise noted)

				OP249A		OP249E		3	OP249F			
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Units
Offset Voltage	Vos			0.2	0.5		0.1	0.3		0.2	0.7	mV
Long Term Offset Voltage	Vos	(Note 1)			0.8			0.6			1.0	mV
Offset Stability				1.5			1.5			1.5		μV/Month
Input Bias Current	$I_{\rm B}$	$V_{CM} = 0 \text{ V}, T_{I} = +25^{\circ}\text{C}$		30	75		20	50		30	75	pA
Input Offset Current	Ios	$V_{CM} = 0 \text{ V}, T_{I} = +25^{\circ}\text{C}$		6	25		4	15		6	25	pA
Input Voltage Range	IVR	(Note 2)		+12.5			+12.5			+12.5		V
			±11			±11			±11			V
				-12.5			-12.5			-12.5		V
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$	80	90		86	95		80	90		dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$		12	31.6		9	31.6		12	50	$\mu V/V$
Large-Signal Voltage Gain	A _{VO}	$V_{\rm O} = \pm 10 \text{ V}, R_{\rm L} = 2 \text{ k}\Omega$	1000	1400		1000	1400		500	1200		V/mV
Output Voltage Swing	Vo	$R_L = 2 k\Omega$		+12.5			+12.5			+12.5		V
			±12.0			±12.0			±12.0			V
				-12.5			-12.5			-12.5		V
Short-Circuit Current Limit	I_{SC}	Output Shorted to		+36			+36			+36		mA
		Ground	±20		±50	±20		±50	±20		±50	mA
	_			-33			-33			-33		mA
Supply Current	I_{SY}	No Load, $V_0 = 0 \text{ V}$		5.6	7.0		5.6	7.0		5.6	7.0	mA
Slew Rate	SR	$R_L = 2 \text{ k}\Omega, C_L = 50 \text{ pF}$	18	22		18	22		18	22		V/µs
Gain-Bandwidth Product	GBW	(Note 4)	3.5	4.7		3.5	4.7		3.5	4.7		MHz
Settling Time	t _S	10 V Step 0.01% ³		0.9	1.2		0.9	1.2		0.9	1.2	μs
Phase Margin	θ_0	0 dB Gain		55			55			55		Degrees
Differential Input Impedance	$Z_{\rm IN}$			$10^{12} \ 6$			$10^{12} \ 6$			$10^{12} \ 6$		$\Omega \parallel pF$
Open-Loop Output Resistance	R _O	0.1.11		35			35			35		Ω
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		2			2			2		μV p-p
Voltage Noise Density	e _n	$f_0 = 10 \text{ Hz}$		75			75 26			75		nV/\sqrt{Hz}
		$f_O = 100 \text{ Hz}$		26			26			26		nV/\sqrt{Hz}
		$f_O = 1 \text{ kHz}$		17			17 16			17 16		nV/√ Hz nV/√ Hz
Comment Mains Density		$f_O = 10 \text{ kHz}$		16						0.003		nv/\Hz pA/√Hz
Current Noise Density	i _n	$f_O = 1 \text{ kHz}$		0.003	110		0.003	1.10	1.45		. 10	pA/\Hz V
Voltage Supply Range	V_{S}		±4.5	±15	±18	±4.5	±15	±18	±4.5	±15	±18	V

NOTES

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted)

				OP249G				
Parameter	Symbol	Conditions	Min	Typ	Max	Units		
Offset Voltage	Vos			0.4	0.2	mV		
Input Bias Current	I_{B}	$V_{CM} = 0 \text{ V}, T_{I} = +25^{\circ}\text{C}$		40	75	pА		
Input Offset Current	I _{OS}	$V_{CM} = 0 \text{ V}, T_{I} = +25^{\circ}\text{C}$		10	25	pA		
Input Voltage Range	IVR	(Note 1)		+12.5		V		
			±11			V		
				-12.0		V		
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$	76	90		dB		
Power Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$		12	50	μV/V		
Large Signal Voltage Gain	A_{VO}	$V_{\rm O} = \pm 10 \text{ V}; R_{\rm L} = 2 \text{ k}\Omega$	500	1100		V/mV		
Output Voltage Swing	V_{O}	$R_L = 2 k\Omega$		+12.5		V		
			±12.0			V		
				-12.5		V		
Short-Circuit Current Limit	I_{SC}	Output Shorted to Ground		+36		mA		
			±20		±50	mA		
				-33		mA		
Supply Current	I_{SY}	No Load; $V_O = 0 V$		5.6	7.0	mA		
Slew Rate	SR	$R_L = 2 \text{ k}\Omega$, $C_L = 50 \text{ pF}$	18	22		V/µs		
Gain Bandwidth Product	GBW	(Note 2)		4.7		MHz		
Settling Time	t_S	10 V Step 0.01%		0.9	1.2	μs		
Phase Margin	θ_0	0 dB Gain		55		Degree		
Differential Input Impedance	$Z_{\rm IN}$			$10^{12} \ 6$		$\Omega \ pF$		

-2-

REV. C

¹Long-term offset voltage is guaranteed by a 1000 HR life test performed on three independent wafer lots at +125 °C with LTPD of three.

²Guaranteed by CMR test.

³Settling time is sample tested.

⁴Guaranteed by design.

				OP249G		
Parameter	Symbol	Conditions	Min	Typ	Max	Units
Open Loop Output Resistance	R _O			35		Ω
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		2		μV p-p
Voltage Noise Density	e _n	$f_O = 10 \text{ Hz}$		75		nV/\sqrt{Hz}
		$f_0 = 100 \text{ Hz}$		26		nV/\sqrt{Hz}
		$f_O = 1 \text{ kHz}$		17		nV/\sqrt{Hz}
		$f_O = 10 \text{ kHz}$		16		nV/\sqrt{Hz}
Current Noise Density	i _n	$f_O = 1 \text{ kHz}$		0.003		pA/√ Hz
Voltage Supply Range	V _S		±4.5	±15	±18	V

NOTES

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \text{ V}, -40^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ for E/F grades, and $-55^{\circ}\text{C} \leq T$

			OP249A		OP249E			OP249F				
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Units
Offset Voltage	Vos			0.12	1.0		0.1	0.5		0.5	1.1	mV
Offset Voltage Temperature												
Coefficient	TCV_{OS}			1	5		1	3		2.2	6	μV/°C
Input Bias Current	I_{B}	(Note 1)		4	20		0.25	3.0		0.3	4.0	nA
Input Offset Current	I_{OS}	(Note 1)		0.04	4		0.01	0.7		0.02	1.2	nA
Input Voltage Range	IVR	(Note 2)		+12.5			+12.5			+12.5		V
			±11			± 11			± 11			V
				-12.5			-12.5			-12.5		V
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$	76	110		86	100		80	90		dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$		5	50		5	50		7	100	$\mu V/V$
Large-Signal Voltage Gain	A_{VO}	$R_{L} = 2 \text{ k}\Omega; V_{O} = \pm 10 \text{ V}$	500	1400		750	1400		250	1200		V/mV
Output Voltage Swing	V_{O}	$R_L = 2 k\Omega$		+12.5			+12.5			+12.5		V
			±12.0)		± 12.0)		± 12.0			V
				-12.5			-12.5			-12.5		V
Short-Circuit Current Limit	I_{SC}	Output Shorted to										
		Ground	±10		±60	± 18		±60	± 18		±60	mA
Supply Current	I_{SY}	No Load, $V_0 = 0 \text{ V}$		5.6	7.0		5.6	7.0		5.6	7.0	mA

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \ V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for unless otherwise noted)

				OP249G		
Parameter	Symbol	Conditions	Min	Typ	Max	Units
Offset Voltage	V _{OS}			1.0	3.6	mV
Offset Voltage Temperature						
Coefficient	TCVos			6	25	μV/°C
Input Bias Current	$I_{\rm B}$	(Note 1)		0.5	4.5	nA
Input Offset Current	I _{OS}	(Note 1)		0.04	1.5	nA
Input Voltage Range	IVR	(Note 2)		+12.5		V
			±11			V
				-12.5		V
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$	76	95		dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$		10	100	μV/V
Large-Signal Voltage Gain	A _{VO}	$R_{L} = 2 \text{ k}\Omega; V_{O} = \pm 10 \text{ V}$	250	1200		V/mV
Output Voltage Swing	V _o	$R_L = 2 k\Omega$		+12.5		V
			±12.0			V
				-12.5		V
Short-Circuit Current Limit	I _{SC}	Output Shorted to				
		Ground	±18		±60	mA
Supply Current	I _{SY}	No Load, $V_0 = 0 \text{ V}$		5.6	7.0	mA

Specifications subject to change without notice.

REV. C -3-

¹Guaranteed by CMR test.

 $^{^2}$ Guaranteed by design.

NOTES $^{1}T_{J}$ = +85°C for E/F Grades; T_{J} = +125°C for A Grade. $^{2}Guaranteed$ by CMR test.

NOTES $^{1}T_{J}$ = +85°C . $^{2}Guaranteed$ by CMR test.

ABSOLUTE MAXIMUM RATINGS¹

ADSOLUTE MERANICHI KITINGS
Supply Voltage
Input Voltage ² ±18 V
Differential Input Voltage ²
Output Short-Circuit Duration Indefinite
Storage Temperature Range65°C to +175°C
Operating Temperature Range
OP249A (J, Z, RC)55°C to +125°C
OP249E, F (J, Z)40°C to +85°C
OP249G (P, S)40°C to +85°C
Junction Temperature
OP249 (J, Z, RC)65°C to +175°C
OP249 (P, S)65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) +300°C

Package Type	$\theta_{\mathrm{JA}}{}^{\mathrm{3}}$	$\theta_{ m JC}$	Units
TO-99 (J)	145	16	°C/W
8-Lead Hermetic DIP (Z)	134	12	°C/W
8-Lead Plastic DIP (P)	96	37	°C/W
20-Terminal LCC (RC)	88	33	°C/W
8-Lead SO (S)	150	41	°C/W

NOTES

ORDERING GUIDE¹

Model	Temperature Range	Package Descriptions ²	Package Options
OP249AZ ²	−55°C to +125°C	8-Lead Cerdip	Q-8
OP249ARC/883	−55°C to +125°C	20-Terminal LCC	E-20A
OP249EJ	−40°C to +85°C	TO-99 H-08A	H-08A
OP249FZ	−40°C to +85°C	8-Lead Cerdip	Q-8
OP249GP	−40°C to +85°C	8-Lead Plastic DIP	N-8
$OP249GS^3$	−40°C to +85°C	8-Lead SO	SO-8
OP249GS-REEL	−40°C to +85°C	8-Lead SO	SO-8
OP249GS-REEL7	−40°C to +85°C	8-Lead SO	SO-8

NOTES

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP249 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-4- REV. C

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^2} For$ supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.

 $^{^3\}theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for TO, cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

¹Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP, and TO-can packages.

²For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.

³For availability and burn-in information on SO and PLCC packages, contact your local sales office.

DICE CHARACTERISTICS

DIE SIZE 0.072×0.112 inch, 8,064 sq. mils (1.83 \times 2.84 mm, 5.2 sq. mm)

WAFER TEST LIMITS (@ $V_S = \pm 15$ V, $T_J = +25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Conditions	OP249GBC Limits	Units
Offset Voltage	V _{OS}		0.5	mV max
Offset Voltage Temperature Coefficient	TCVos	$-40^{\circ}\text{C} \le \text{T}_{\text{I}} \le 85^{\circ}\text{C}$	6.0	μV/°C max
Input Bias Current	I _B	$V_{CM} = 0 V$	225	pA max
Input Offset Current	I _{OS}	$V_{CM} = 0 V$	75	pA max
Input Voltage Range	IVR	(Note 1)	±11	V min
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 \text{ V}$	76	dB min
Power Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$	100	μV/V max
Large-Signal Voltage Gain	A _{VO}	$R_L = 2 k\Omega$	250	V/mV min
Output Voltage Swing	V_{o}	$R_L = 2 k\Omega$	±12.0	V min
Short-Circuit Current Limit	I_{SC}	Output Shorted to Ground	$\pm 20/\pm 60$	mA min/max
Supply Current	I_{SY}	No Load; $V_0 = 0 \text{ V}$	7.0	mA max
Slew Rate	SR	$R_L = 2 \text{ k}\Omega, C_L = 50 \text{ pF}$	16.5	V/µs min

NOTES

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

REV. C –5–

¹Guaranteed by CMR test.

OP249-Typical Performance Characteristics

Figure 4. Open-Loop Gain, Phase vs. Frequency

Figure 5. Gain Bandwidth Product, Phase Margin vs. Temperature

Figure 6. Common-Mode Rejection vs. Frequency

Figure 7. Power Supply Rejection vs. Frequency

Figure 8. Slew Rate vs. Temperature

Figure 9. Slew Rate vs. Differential Input Voltage

Figure 10. Slew Rate vs. Capacitive Load

Figure 11. Settling Time vs. Step Size

Figure 12. Voltage Noise Density vs. Frequency

-6- REV. C

Figure 13. Distortion vs. Frequency

Figure 14. Distortion vs. Frequency

Figure 15. Distortion vs. Frequency

Figure 16. Distortion vs. Frequency

Figure 17. Distortion vs. Frequency

Figure 18. Distortion vs. Frequency

Figure 19. Low Frequency Noise

Figure 20. Closed-Loop Gain vs. Frequency

Figure 21. Closed-Loop Output Impedance vs. Frequency

REV. C -7-

Figure 22. Maximum Output Swing vs. Frequency

Figure 23. Small Overshoot vs. Load Capacitance

Figure 24. Maximum Output Voltage vs. Load Resistance

Figure 25. Output Voltage Swing vs. Supply Voltage

Figure 26. Supply Current vs. Temperature

Figure 27. Supply Current vs. Supply Voltage

Figure 28. V_{OS} Distribution (J Package)

Figure 29. V_{OS} Distribution (P Package)

Figure 30. TCV_{OS} Distribution (J Package)

-8- REV. C

Figure 31. TCV_{OS} Distribution (P Package)

Figure 32. Offset Voltage Warm-Up Drift

Figure 33. Input Bias Current vs. Temperature

Figure 34. Bias Current vs. Common-Mode Voltage

Figure 36. Bias Current Warm-Up Drift

Figure 36. Input Offset Current vs. Temperature

Figure 37. Open-Loop Gain vs. Temperature

Figure 38. Short-Circuit Output Current vs. Junction Temperature

REV. C –9–

Figure 39. Simplified Schematic (1/2 OP249)

Figure 40. Burn-In Circuit

APPLICATIONS INFORMATION

The OP249 represents a reliable JFET amplifier design, featuring an excellent combination of dc precision and high speed. A rugged output stage provides the ability to drive a 600 Ω load and still maintain a clean ac response. The OP249 features a large signal response that is more linear and symmetric than previously available JFET input amplifiers—compare the OP249's large-signal response, as illustrated in Figure 41, to other industry standard dual JFET amplifiers.

Typically, JFET amplifier's stewing performance is simply specified as just a number of volts/µs. There is no discussion on the quality, i e., linearity, symmetry, etc., of the stewing response.

Figure 41. Large-Signal Transient Response, $A_V=+1$, $V_{IN}=20~V$ p-p, $Z_L=2~k\Omega/\!/200$ pF, $V_S=\pm15~V$

-10- REV. C

The OP249 was carefully designed to provide symmetrically matched slew characteristics in both the negative and positive directions, even when driving a large output load.

An amplifier's slewing limitation determines the maximum frequency at which a sinusoidal output can be obtained without significant distortion. It is, however, important to note that the nonsymmetric stewing typical of previously available JFET amplifiers adds a higher series of harmonic energy content to the resulting response—and an additional dc output component. Examples of potential problems of nonsymmetric slewing behavior could be in audio amplifier applications, where a natural low distortion sound quality is desired, and in servo or signal processing systems where a net dc offset cannot be tolerated. The linear and symmetric stewing feature of the OP249 makes it an ideal choice for applications that will exceed the full-power bandwidth range of the amplifier.

Figure 42. Small-Signal Transient Response, $A_V = +1$, $Z_L = 2 k\Omega \parallel 100$ pF, No Compensation, $V_S = \pm 15$ V

As with most JFET-input amplifiers, the output of the OP249 may undergo phase inversion if either input exceeds the specified input voltage range. Phase inversion will not damage the amplifier, nor will it cause an internal latch-up condition.

Supply decoupling should be used to overcome inductance and resistance associated with supply lines to the amplifier. A 0.1 μF and a 10 μF capacitor should be placed between each supply pin and ground.

OPEN-LOOP GAIN LINEARITY

The OP249 has both an extremely high open-loop gain of 1 kV/mV minimum and constant gain linearity. This feature of the OP249 enhances its dc precision, and provides superb accuracy in high closed-loop gain applications. Figure 43 illustrates the typical open-loop gain linearity—high gain accuracy is assured, even when driving a 600 Ω load.

OFFSET VOLTAGE ADJUSTMENT

The inherent low offset voltage of the OP249 will make offset adjustments unnecessary in most applications. However, where a lower offset error is required, balancing can be performed with simple external circuitry, as illustrated in Figures 44 and 45.

HORIZONTAL 5V/DIV OUTPUT CHARGE

Figure 43. Open-Loop Gain Linearity. Variation in Open-Loop Gain Results in Errors in High Closed-Loop Gain Circuits. $R_L = 600 \, \Omega$, $V_S = \pm 15 \, V$

Figure 44. Offset Adjust for Inverting Amplifier Configuration

Figure 45. Offset Adjust for Noninverting Amplifier Configuration

In Figure 44, the offset adjustment is made by supplying a small voltage at the noninverting input of the amplifier. Resistors R1 and R2 attenuates the pot voltage, providing a ± 2.5 mV (with $V_S=\pm 15$ V) adjustment range, referred to the input. Figure 45 illustrates offset adjust for the noninverting amplifier configuration, also providing a ± 2.5 mV adjustment range. As indicated in the equations in Figure 45, if R4 is not much greater than R2, there will be a resulting closed-loop gain error that must be accounted for.

REV. C –11–

SETTLING TIME

Settling time is the time between when the input signal begins to change and when the output permanently enters a prescribed error band. The error bands on the output are 5 mV and 0.5 mV, respectively, for 0.1% and 0.01% accuracy.

Figure 46 illustrates the OP249's typical settling time of 870 ns. Moreover, problems in settling response, such as thermal tails and long-term ringing are nonexistent.

Figure 46. Settling Characteristics of the OP249 to 0.01%

DAC OUTPUT AMPLIFIER

Unity-gain stability, a low offset voltage of $300\,\mu\text{V}$ typical, and a fast settling time of 870 ns to 0.01%, makes the OP249 an ideal amplifier for fast digital-to-analog converters.

For CMOS DAC applications, the low offset voltage of the OP249 results in excellent linearity performance. CMOS DACs, such as the PM-7545, will typically have a code-dependent output resistance variation between 11 k Ω and 33 k Ω . The change in output resistance, in conjunction with the 11 k Ω feedback resistor, will result in a noise gain change. This causes variations in the offset error, increasing linearity errors. The OP249 features low offset voltage error, minimizing this effect and maintaining 12-bit linearity performance over the full-scale range of the converter.

Since the DAC's output capacitance appears at the operational amplifiers inputs, it is essential that the amplifier is adequately compensated. Compensation will increase the phase margin, and ensure an optimal overall settling response. The required lead compensation is achieved with Capacitor C in Figure 47.

Figure 47. Fast Settling and Low Offset Error of the OP249 Enhances CMOS DAC Performance

–12– REV. C

C = 15pF
FAST RISE TIME CHARACTERISTICS, BUT AT EXPENSE
OF SI IGHT PFAKING IN RESPONSE

Figure 48. Effect of Altering Compensation from Circuit in Figure 47a—PM7545 CMOS DAC with 1/2 OP249, Unipolar Operation. Critically Damped Response Will Be Obtained with $C \approx 33 \text{ pF}$

Figure 48 illustrates the effect of altering the compensation on the output response of the circuit in Figure 48a. Compensation is required to address the combined effect of the DAC's output capacitance, the op amp's input capacitance and any stray capacitance. Slight adjustments to the compensation capacitor may be required to optimize settling response for any given application .

The settling time of the combination of the current output DAC and the op amp can be approximated by:

$$t_S TOTAL = \sqrt{(t_S DAC)^2 + (t_S AMP)^2}$$

The actual overall settling time is affected by the noise gain of the amplifier, the applied compensation, and the equivalent input capacitance at the amplifier's input.

DISCUSSION ON DRIVING A/D CONVERTERS

Settling characteristics of operational amplifiers also include an amplifier's ability to recover, i.e., settle, from a transient current output load condition. An example of this includes an op amp driving the input from a SAR type A/D converter. Although the comparison point of the converter is usually diode clamped, the input swing of plus-and-minus a diode drop still gives rise to a significant modulation of input current. If the closed-loop output impedance is low enough and bandwidth of the amplifier is sufficiently large, the output will settle before the converter makes a comparison decision which will prevent linearity errors or missing codes.

Figure 49 shows a settling measurement circuit for evaluating recovery from an output current transient. An output disturbing current generator provides the transient change in output load current of 1 mA. As seen in Figure 50, the OP249 has extremely fast recovery of 274 ns (to 0.01%), for a 1 mA load transient. The performance makes it an ideal amplifier for data acquisition systems.

Figure 49. Transient Output Impedance Test Fixture

The combination of high speed and excellent dc performance of the OP249 makes it an ideal amplifier for 12-bit data acquisition systems. Examining the circuit in Figure 51, one amplifier in the OP249 provides a stable –5 V reference voltage for the V_{REF} input of the ADC912. The other amplifier in the OP249 performs high speed buffering of the A/D's input.

Examining the worst case transient voltage error (Figure 52) at the Analog In node of the A/D converter: the OP249 recovers in less than 100 ns. The fast recovery is due to both the OP249's wide bandwidth and low dc output impedance.

REV. C –13–

Figure 50. OP249's Transient Recovery Time from a 1 mA Load Transient to 0.01%

Figure 52. Worst Case Transient Voltage, at Analog In, Occurs at the Half-Scale Point of the A/D. OP249 Buffers the A/D Input from Figure 51, and Recovers in Less than 100 ns.

Figure 51. OP249 Dual Amplifiers Provide Both Stable –5 V Reference Input, and Buffers Input to ADC912

-14- REV. C

OP249 SPICE MACRO-MODEL

Figures 53 and Table I show the node and net list for a SPICE macromodel of the OP249 The model is a simplified version of the actual device and simulates important dc parameters such as $V_{\rm OS}$, $I_{\rm OS}$, $I_{\rm B}$, $A_{\rm VO}$, CMR, $V_{\rm O}$ and $I_{\rm SY}$. AC parameters such as slew rate, gain and phase response and CMR change with frequency are also simulated by the model.

The model uses typical parameters for the OP249. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP249. In this way the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C.

Figure 53. OP249 Macro-Model

Table I. SPICE Net List

```
OP249 MACRO-MODEL
                                                                  * POLE AT 50MHz
• subckt OP249 1 2 30 99 50
INPUT STAGE & POLE AT 100MHz
                                                                                       1E6
                                                                 r19
                                                                       19
                                                                             99
                                                                                       1E6
                                                                 r20
                                                                       19
                                                                             50
r1
                     5E11
                                                                 c13
                                                                       19
                                                                                       3.18E-15
            3
                                                                             99
r2
      1
            3
                     5E11
                                                                  c14
                                                                       19
                                                                             50
                                                                                       3.18E-15
                     652.3
r3
      5
            50
                                                                 q11
                                                                       99
                                                                             19
                                                                                       18 24 1E-6
            50
                     652.3
                                                                                       24 18 1E-6
r4
      6
                                                                 g12
                                                                       19
                                                                             50
cin
      1
            2
                     5E-12
                     1.22E-12
                                                                  * COMMON-MODE GAIN NETWORK WITH ZERO AT 60kHZ
c2
      5
            6
i1
      99
                     1E-3
ios
      1
            2
                     3.1E-12
                                                                 r21
                                                                       20
                                                                             21
                                                                                       1E6
                     poly(1) 20 24 150E-6 1
eos
      7
            1
                                                                 r22
                                                                       20
                                                                             22
                                                                                       1E6
                                                                                       2.65
j1
                     jх
                                                                 13
                                                                       21
                                                                             99
j2
      6
                 4
                     jх
                                                                 14
                                                                       22
                                                                             50
                                                                                       2.65
                                                                       99
                                                                             20
                                                                                       3 24 1.78E-11
                                                                  g13
* SECOND STAGE & POLE AT 12.2Hz
                                                                                       24 3 1.78E-11
                                                                 g14
                                                                       20
                                                                             50
                                                                  * POLE AT 50MHZ
r5
      9
            99
                     326.1E6
            50
                     326.1E6
r6
      9
            99
                     40E-12
                                                                 r23
                                                                                       1E6
c3
      9
            50
                     40E-12
c4
                                                                 r24
                                                                       23
                                                                             50
                                                                                       1E6
g1
      99
            9
                     poly(1) 5 6 4.25E-3 1.533E-3
                                                                  c15
                                                                       23
                                                                             99
                                                                                       3.18E-15
                     poly(1) 6 5 4.25E-3 1.533E-3
g2
            50
                                                                 c16
                                                                       23
                                                                             50
                                                                                       3.18E-15
      99
            R
                                                                                       19 24 1E-6
v2
                     2.9
                                                                  g15
                                                                       99
                                                                             23
v3
      10
            50
                     2.9
                                                                       23
                                                                             50
                                                                                       24 19 1E-6
                                                                 g16
d1
      9
            8
                     dx
d2
      10
            9
                     dx
                                                                  * OUTPUT STAGE
* POLE-ZERO PAIR AT 2MHz/4.0MHz
                                                                                       135E3
                                                                 r25
                                                                       24
                                                                             99
                                                                 r26
                                                                       24
                                                                             50
                                                                                       135E3
r7
            99
                     1E6
                                                                 r27
                                                                       29
                                                                             99
                                                                                       70
      11
r8
      11
            50
                     1E6
                                                                 r28
                                                                       29
                                                                             50
                                                                                       70
           12
                     1E6
                                                                                       4E-7
r9
      11
                                                                 Т5
                                                                       29
                                                                             30
r10
      11
            13
                     1E6
                                                                 g17
                                                                       27
                                                                             50
                                                                                       23 29 14.3E-3
            99
                     37.79E-15
                                                                             50
                                                                                       29 23 14.3E-3
с5
      12
                                                                 g18
                                                                       28
                     37.79E-15
с6
      13
            50
                                                                 g19
                                                                       29
                                                                             99
                                                                                       99 23 14.3E-3
      99
            11
                     9 24 1E-6
                                                                 g20
                                                                             29
                                                                                       23 50 14.3E-3
g3
      11
            50
                     24 9 1E-6
                                                                       25
                                                                             29
g4
                                                                 \nabla 4
                                                                                       . 4
                                                                 v5
                                                                       29
                                                                             26
                                                                                       . 4
* ZERO-POLE PAIR AT 4MHz/8MHz
                                                                 d3
                                                                       23
                                                                             25
                                                                                       dx
                                                                 d4
                                                                       26
                                                                             2.3
                                                                                       dх
r11
      99
            15
                     IE6
                                                                  đ5
                                                                       99
                                                                             27
                                                                                       dx
r12
           15
                     1E6
      14
                                                                       99
                                                                 d6
                                                                             28
                                                                                       ďх
r13
      14
            16
                     1E6
                                                                  d7
                                                                       50
                                                                             27
                                                                                       dу
r14
      50
            16
                     1E6
                                                                 đ8
                                                                       50
                                                                             28
                                                                                       dv
                     19.89E-3
11
      99
           15
12
      50
           16
                     19.89E-3
                                                                 MODELS USED
                     11 24 1E-6
      99
g5
            14
g6
      14
            50
                     24 11 1E-6
                                                                 • model jx PJF(BETA=1.175E-3 VTO=-2.000 IS=21E-12)
                                                                  • model dx D(IS=1E-15)
* POLE AT 20MHz
                                                                  • model dy
                                                                               D(IS=1E-15 BV=50)
                                                                  • ends OP249
r15
            99
                     1E6
     17
r16
      17
            50
                     1E6
c9
      17
            99
                     7.96E-15
c10
      17
            50
                     7.96E-15
                                                                  *PSpice is a registered trademark of MicroSim Corporation.
                     14 24 1E-6
g7
      99
            17
                                                                  ** HSPICE is a tradename of Meta-Software, Inc.
                     24 14 1E-6
g8
      17
            50
* POLE AT 50MHz
                     1E6
r17
     18
            99
            50
                     1E6
r18
      18
c11
            99
                     3.18E-15
                     3.18E-15
c12
      18
            50
g9
      99
            18
                     17 24 1E-6
                     24 17 1E-6
g10
     18
            50
```

-16- REV. C

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Terminal Leadless Chip Carrier (E-20A)

8-Lead Metal Can (TO-99) (H-08A)

8-Lead Plastic DIP (N-8)

8-Lead Narrow Body (SOIC) (SO-8)

8-Lead Cerdip (Q-8)

REV. C –17–