230306_Reporte1Exploracion

Camila Silva

2023-03-09

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"
fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/metadata.csv",header = fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment','Samples')
samples_to_remove <- c("MP2079","MP2080","MP2088","MP2109","MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)
percentages_fil <- transform_sample_counts(fresa_kraken_fil, function(x) x*100 / sum(x) )
percentages_df <- psmelt(percentages_fil)</pre>
```

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

Crea los subconjuntos de datos input phy phyliseq total tax rango al que queremos recortar output

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias stackbar

input entra el percentages_df

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.2, "cm"),
          legend.key.width = unit(0.25, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=8, face = "bold"),
          legend.text=element_text(size=6),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
  percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "abundance_percentage"
  percentages_df$tax <- as.factor(percentages_df$tax)</pre>
  plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax', col
    scale_colour_manual(values=c('white', 'black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.3, "cm"),
          legend.key.width = unit(0.5, "cm"),
          legend.position = "bottom",
```

```
legend.direction = "horizontal",
    legend.title=element_text(size=10, face = "bold"),
    legend.text=element_text(size=8),
    text = element_text(size=12),
    axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
return(list(plot_barras,plot_percentages))
}
```

Graficar betadiversity

```
Beta_diversity <- function(phy,tax,attribute,distance){

Data <- glomToGraph(phy,tax)
glom <- Data[[1]]
#CREAR UN GLOM AL 10%
percentages <- Data[[2]]
percentages_df <- Data[[3]]
## Beta diversidad
meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
    geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
    return(plot_beta)
}</pre>
```

Graficar alphadiversity

```
Alpha_diversity <- function(phy,tax,attribute){
    ## llamamos la funcion que crea los dataset
    Data <- glomToGraph(phy,tax)
    glom <- Data[[1]]

percentages <- Data[[2]]
    percentages_df <- Data[[3]]
    ## Alfa diversidad
    plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = a return(plot_alpha)
}

## Eukarya by Phylum

Barras_Phylum <- Abundance_barras(merge_Eukaryota, 'Phylum' , 'Treatment', 10.0)

## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.

## i Please use tidy evaluation ideoms with 'aes()'

Barras_Phylum[1] # normal

## [[1]]
```


Barras_Phylum[2]

Beta_diversity(merge_Eukaryota , 'Phylum' , 'Treatment', 'bray')

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01148681
## Run 1 stress 8.721705e-05
## ... New best solution
## ... Procrustes: rmse 0.03464635 max resid 0.0908184
## Run 2 stress 9.364796e-05
## ... Procrustes: rmse 6.118169e-05 max resid 0.0001669419
## ... Similar to previous best
## Run 3 stress 9.977146e-05
## ... Procrustes: rmse 9.808252e-05 max resid 0.0002475334
## ... Similar to previous best
## Run 4 stress 9.958837e-05
## ... Procrustes: rmse 6.144003e-05 max resid 0.0001913055
## ... Similar to previous best
## Run 5 stress 0.403632
## Run 6 stress 9.955129e-05
## ... Procrustes: rmse 0.0001058779 max resid 0.000248018
## ... Similar to previous best
## Run 7 stress 6.7419e-05
## ... New best solution
## ... Procrustes: rmse 4.841319e-05 max resid 0.0001301041
## ... Similar to previous best
```

```
## Run 8 stress 9.778231e-05
## ... Procrustes: rmse 0.0001011437 max resid 0.0002781668
## ... Similar to previous best
## Run 9 stress 9.847208e-05
## ... Procrustes: rmse 0.0002221607 max resid 0.00058567
## ... Similar to previous best
## Run 10 stress 7.057993e-05
## ... Procrustes: rmse 3.085713e-05 max resid 7.412321e-05
## ... Similar to previous best
## Run 11 stress 9.780103e-05
## ... Procrustes: rmse 0.0001009935 max resid 0.000264652
## ... Similar to previous best
## Run 12 stress 9.652241e-05
## ... Procrustes: rmse 8.824749e-05 max resid 0.0002392269
## ... Similar to previous best
## Run 13 stress 9.144417e-05
## ... Procrustes: rmse 8.458957e-05 max resid 0.000219765
## ... Similar to previous best
## Run 14 stress 9.942206e-05
## ... Procrustes: rmse 0.0001201951 max resid 0.000315776
## ... Similar to previous best
## Run 15 stress 9.427342e-05
## ... Procrustes: rmse 0.0001235418 max resid 0.0003150042
## ... Similar to previous best
## Run 16 stress 8.957695e-05
## ... Procrustes: rmse 0.0001086359 max resid 0.0002820845
## ... Similar to previous best
## Run 17 stress 6.748827e-05
## ... Procrustes: rmse 3.206075e-05 max resid 8.430626e-05
## ... Similar to previous best
## Run 18 stress 9.406671e-05
## ... Procrustes: rmse 8.437226e-05 max resid 0.0002109811
## ... Similar to previous best
## Run 19 stress 0.000103892
## ... Procrustes: rmse 0.000297204 max resid 0.0007786037
## ... Similar to previous best
## Run 20 stress 0.0008337584
## *** Best solution repeated 13 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly) zero:
## you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1089081
## Run 1 stress 0.1089294
## ... Procrustes: rmse 0.00810509 max resid 0.05434305
## Run 2 stress 0.1089295
  ... Procrustes: rmse 0.008105083 max resid 0.05434649
## Run 3 stress 0.1089482
  ... Procrustes: rmse 0.008219776 max resid 0.05365826
## Run 4 stress 0.1089494
  ... Procrustes: rmse 0.008111652 max resid 0.05390688
## Run 5 stress 0.1089295
## ... Procrustes: rmse 0.008103132 max resid 0.0543525
## Run 6 stress 0.108929
## ... Procrustes: rmse 0.00815064 max resid 0.05419082
## Run 7 stress 0.1352083
## Run 8 stress 0.1088969
## ... New best solution
## ... Procrustes: rmse 0.002387824 max resid 0.009372516
## ... Similar to previous best
## Run 9 stress 0.1089084
## ... Procrustes: rmse 0.002391502 max resid 0.009369591
## ... Similar to previous best
## Run 10 stress 0.1298007
```

```
## Run 11 stress 0.1088879
## ... New best solution
## ... Procrustes: rmse 0.002004416 max resid 0.008998996
## ... Similar to previous best
## Run 12 stress 0.1088883
## ... Procrustes: rmse 0.001234226 max resid 0.006984763
## ... Similar to previous best
## Run 13 stress 0.1088966
## ... Procrustes: rmse 0.001743849 max resid 0.00903887
## ... Similar to previous best
## Run 14 stress 0.1089086
## ... Procrustes: rmse 0.002115096 max resid 0.009168435
## ... Similar to previous best
## Run 15 stress 0.1089098
## ... Procrustes: rmse 0.002113553 max resid 0.009206383
## ... Similar to previous best
## Run 16 stress 0.1089299
## ... Procrustes: rmse 0.008420913 max resid 0.05468767
## Run 17 stress 0.1091144
## ... Procrustes: rmse 0.008506053 max resid 0.04445378
## Run 18 stress 0.1088886
## ... Procrustes: rmse 0.001316898 max resid 0.007476201
## ... Similar to previous best
## Run 19 stress 0.108929
## ... Procrustes: rmse 0.008383055 max resid 0.05448714
## Run 20 stress 0.1088877
## ... New best solution
## ... Procrustes: rmse 0.000297331 max resid 0.001736161
```

... Similar to previous best
*** Best solution repeated 1 times

Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')
```

```
## Wisconsin double standardization
## Run 0 stress 0.110709
## Run 1 stress 0.1107088
## ... New best solution
## ... Procrustes: rmse 0.0001430709 max resid 0.0008227195
## ... Similar to previous best
## Run 2 stress 0.1333688
## Run 3 stress 0.111982
## Run 4 stress 0.1108248
## ... Procrustes: rmse 0.006755681 max resid 0.03975663
## Run 5 stress 0.1107109
## ... Procrustes: rmse 0.001092784 max resid 0.006223585
## ... Similar to previous best
## Run 6 stress 0.1107098
## ... Procrustes: rmse 0.0003686945 max resid 0.002086262
## ... Similar to previous best
## Run 7 stress 0.1107323
## ... Procrustes: rmse 0.003431404 max resid 0.01929974
## Run 8 stress 0.1107095
## ... Procrustes: rmse 0.001012076 max resid 0.005794729
## ... Similar to previous best
## Run 9 stress 0.1128396
## Run 10 stress 0.1428407
```

```
## Run 11 stress 0.122383
## Run 12 stress 0.1117245
## Run 13 stress 0.1107095
## ... Procrustes: rmse 0.0002930055 max resid 0.001665347
## ... Similar to previous best
## Run 14 stress 0.110709
## ... Procrustes: rmse 0.0001317955 max resid 0.0007428215
## ... Similar to previous best
## Run 15 stress 0.1107092
## ... Procrustes: rmse 0.0008859866 max resid 0.005068244
## ... Similar to previous best
## Run 16 stress 0.1107093
## ... Procrustes: rmse 0.0009158685 max resid 0.005241076
## ... Similar to previous best
## Run 17 stress 0.1578415
## Run 18 stress 0.1107098
## ... Procrustes: rmse 0.001096519 max resid 0.006267109
## ... Similar to previous best
## Run 19 stress 0.1107098
## ... Procrustes: rmse 0.001074805 max resid 0.006153875
## ... Similar to previous best
## Run 20 stress 0.1305045
## *** Best solution repeated 10 times
```



```
Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1226512
## Run 1 stress 0.1272835
## Run 2 stress 0.1233307
## Run 3 stress 0.1272841
## Run 4 stress 0.1218542
## ... New best solution
## ... Procrustes: rmse 0.02022867 max resid 0.1286786
## Run 5 stress 0.1218541
## ... New best solution
## ... Procrustes: rmse 0.0004017162 max resid 0.002133187
## ... Similar to previous best
## Run 6 stress 0.1272837
## Run 7 stress 0.121854
## ... New best solution
## ... Procrustes: rmse 0.0003378467 max resid 0.002079134
## ... Similar to previous best
## Run 8 stress 0.1218544
## ... Procrustes: rmse 0.0002293358 max resid 0.001146213
## ... Similar to previous best
## Run 9 stress 0.1218547
## ... Procrustes: rmse 0.0006440675 max resid 0.003152215
## ... Similar to previous best
```

```
## Run 10 stress 0.1218542
## ... Procrustes: rmse 0.0001618773 max resid 0.000829501
## ... Similar to previous best
## Run 11 stress 0.1218542
## ... Procrustes: rmse 0.0001241795 max resid 0.0006225348
## ... Similar to previous best
## Run 12 stress 0.1272838
## Run 13 stress 0.1272837
## Run 14 stress 0.1218549
## ... Procrustes: rmse 0.0006863257 max resid 0.003361811
## ... Similar to previous best
## Run 15 stress 0.121855
## ... Procrustes: rmse 0.0007034878 max resid 0.003448169
## ... Similar to previous best
## Run 16 stress 0.1226506
## Run 17 stress 0.1218543
## ... Procrustes: rmse 0.00050226 max resid 0.002454841
## ... Similar to previous best
## Run 18 stress 0.1272833
## Run 19 stress 0.127829
## Run 20 stress 0.1522631
## *** Best solution repeated 8 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

#——Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
Beta_diversity(merge_Bacteria , 'Phylum' , 'Treatment', 'bray')
```

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1520004
## Run 1 stress 0.16819
## Run 2 stress 0.1623133
## Run 3 stress 0.1541161
## Run 4 stress 0.1691792
## Run 5 stress 0.1709726
## Run 6 stress 0.1602944
## Run 7 stress 0.178741
## Run 8 stress 0.158135
## Run 9 stress 0.1552653
## Run 10 stress 0.1667695
## Run 11 stress 0.1520014
## ... Procrustes: rmse 0.001914816 max resid 0.01092158
## Run 12 stress 0.1736601
## Run 13 stress 0.1623133
## Run 14 stress 0.167969
## Run 15 stress 0.1619354
## Run 16 stress 0.1613696
## Run 17 stress 0.1601869
## Run 18 stress 0.1703255
## Run 19 stress 0.1520007
```

```
## ... Procrustes: rmse 0.0001885214 max resid 0.001050437
## ... Similar to previous best
## Run 20 stress 0.1616636
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')
```

```
## Wisconsin double standardization
## Run 0 stress 0.1412073
## Run 1 stress 0.1370739
## ... New best solution
## ... Procrustes: rmse 0.06910163 max resid 0.3765617
## Run 2 stress 0.140102
## Run 3 stress 0.1519217
## Run 4 stress 0.1390461
## Run 5 stress 0.1546341
## Run 6 stress 0.1657309
## Run 7 stress 0.1559361
## Run 8 stress 0.1371727
## ... Procrustes: rmse 0.00977985 max resid 0.055084
## Run 9 stress 0.1369864
## ... New best solution
## ... Procrustes: rmse 0.004817045 max resid 0.03094354
## Run 10 stress 0.15754
## Run 11 stress 0.1396581
## Run 12 stress 0.1405619
## Run 13 stress 0.1400274
## Run 14 stress 0.140563
## Run 15 stress 0.140516
## Run 16 stress 0.1474197
```

```
## Run 17 stress 0.1441745
## Run 18 stress 0.1412071
## Run 19 stress 0.1369869
## ... Procrustes: rmse 0.000200629 max resid 0.0006816655
## ... Similar to previous best
## Run 20 stress 0.1396639
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

#——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

			_		
lex flavores	Desulfatibasillum	Labrenzia		Parenicipacier	Subtercola
flexum	Desulfatibacillum	Labrys		Paroceanicella	Succinivibrio
habitans	Desulfitobacterium	Laceyella		Parolsenella	Suicoccus
luna	Desulfobacca	Lachnoanaerobaculum		Parvibaculum	Sulfidibacter
marina	Desulfobacter	Lachnoclostridium		Parvimonas	Sulfitobacter
ncola	Desulfobacula	Lachnospira		Parvularcula	Sulfuricaulis
rhabdus	Desulfobulbus	Lacibacter		Pasteurella	Sulfuricella
rufa	Desulfocapsa	Lacimicrobium		Paucibacter	Sulfuricurvum
salimonas	Desulfococcus	Lacinutrix		Paucilactobacillus	Sulfuriferula
salinus	Desulfocurvibacter	Lacipirellula		Pauljensenia	Sulfuriflexus
sediminimonas	Desulfofarcimen	Lacrimispora		Pectinatus	Sulfurifustis
sphaera	Desulfoglaeba	Lacticaseibacillus		Pectobacterium	Sulfurihydrogenibium
talea	Desulfohalobium	Lactiplantibacillus		Pediococcus	Sulfurimicrobium
iibacter	Desulfoluna	Lactobacillus		Pedobacter	Sulfurimonas
hidicoccus	Desulfolutivibrio	Lactococcus		Pedococcus	Sulfuriroseicoccus
hnia	Desulfomarina	Lacunisphaera		Pelagerythrobacter	Sulfuritalea
nobacterium	Desulfomicrobium	Lancefieldella	_	Pelagibacterium	Sulfuritortus
angium	Desulfomonile	Lapidilactobacillus	_	Pelagovum	Sulfurivermis
bacter	Desulfonema	Laribacter		Pelistega	Sulfurospirillum
cibacterium	Desulforamulus	Larkinella		Pelobacter	Sulfurovum
ibacter	Desulforapulum	Latilactobacillus		Pelodictyon	Sutcliffiella
imonas	Desulfosarcina	Lautropia		Pelolinea	Sutterella
natoleum	Desulfoscipio	Lawsonella		Pelosinus	Suttonella
nicicoccus	Desulfosediminicola	Lawsonia		Pengzhenrongella	Swingsia
nophonus	Desulfosporosinus	Leadbetterella		Peptacetobacter	Symbiobacterium
obacter	Desulfosudis	Leclercia		Peptoclostridium	Sýmmachiella
a	Desulfotalea	Lederbergia		Peptoniphilus	Synechococcus
cacaulis	Desulfotomaculum	Leeuwenhoekiella		Peribacillus	Synechocystis
lassotoga	Desulfovibrio	Legionella		Periweissella	Syntrophobacter
ntibacter	Desulfurispirillum	Leifsonia		Permianibacter	Syntrophobotulus
obium	Desulfurivibrio	Leisingera		Persephonella	Syntrophomonas
acter	Desulfurobacterium	Lelliottia		Persicimonas	Syntrophotalea
ntiacibacter	Desulfuromonas	Leminorella		Peteryoungia	Syntrophothermus
	Devosia	Lentibacillus		Petrimonas	
ntimicrobium					Syntrophus
ntimonas	Devriesea	Lentilactobacillus		Petrocella	Tabrizicola
ticoccus	Dialister	Lentilitoribacter		Petrotoga	Tamlana Tamlana
imonas	Diaminobutyricimonas	Lentzea		Phaeobacter	<u>Tannerella</u>
liella	Diaphorobacter	Leptodesmis		Phascolarctobacterium	Tardibacter
idibacter	Dichelobacter	Leptolyngbya		Phenylobacterium	Tardiphaga
wickia	Dickeya	Leptospira		Phnomibacter	Tateyamaria
acterium	Dictyóglomus	Leptospirillum		Phocaeicola	Tatlóckia
ircus	■ Dietzia	 Leptothermofonsia 		Phoenicibacter	Tatumella
hizobium	Dinoroseobacter	Leptothrix		Photobacterium	Tautonia
pira	Dissulfurimicrobium	Leptotrichia		Photorhabdus	Taylorella
pirillum	Dissulfurispira	Leucobacter		Phototrophicus	Teĺmatocola
obacter	■ Dokdonella	Leuconostoc		Phreatobacter	Tenacibaculum
llus	Dokdonia	Levilactobacillus		Phycicoccus	Tenuifilum
erioplanes	Dolichospermum	Liberibacter		Phycisphaera	Tepidanaerobacter
eriovorax	Dolosigranulum	Lichenicola		Phyllobacterium	Tepidibacter
eroides	Dongshaea	Lichenihabitans		Phytobacter	Tepidibacter
duia	Dorea	Ligilactobacillus		Phytohabitans	Tepidimonas
esiella	Draconibacterium	Lignipirellula		Pigmentiphaga	Tepiditoga
onella	Duganella	Limihaloglobus		Pikeienuella	Terasakiella
ia	Duncaniella	Limnobacter		Pimelobacter	Teredinibacter
lea	Dyadobacter	Limnobaculum		Pirellula	Terribacillus
lovibrio	Dyella	Limnochorda		Pirellulimonas	<u>Terricaulis</u>
jiatoa	Dysgonomonas	Limnoglobus		Piscirickettsia	Terriglobus Terribabitans
írinckia	- Divenemohacter	 I imnohahitane 		Dietricoccue	- Iarrihahitane

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1467945
## Run 1 stress 0.1467191
## ... New best solution
## ... Procrustes: rmse 0.006994208 max resid 0.0318946
## Run 2 stress 0.1519322
## Run 3 stress 0.1438318
## ... New best solution
## ... Procrustes: rmse 0.06799394 max resid 0.2978133
## Run 4 stress 0.153021
## Run 5 stress 0.1509042
## Run 6 stress 0.1493099
## Run 7 stress 0.1496769
## Run 8 stress 0.1511171
## Run 9 stress 0.1439572
## ... Procrustes: rmse 0.05561392 max resid 0.3037726
## Run 10 stress 0.1490814
## Run 11 stress 0.1432832
## ... New best solution
## ... Procrustes: rmse 0.04881375 max resid 0.2908548
## Run 12 stress 0.151198
## Run 13 stress 0.1432835
## ... Procrustes: rmse 0.0002963102 max resid 0.00120805
```

```
## ... Similar to previous best
## Run 14 stress 0.1505586
## Run 15 stress 0.1441257
## Run 16 stress 0.1452
## Run 17 stress 0.1556212
## Run 18 stress 0.1458782
## Run 19 stress 0.1432847
## ... Procrustes: rmse 0.0006905785 max resid 0.002935408
## ... Similar to previous best
## Run 20 stress 0.1433194
## ... Procrustes: rmse 0.002855445 max resid 0.01756279
## *** Best solution repeated 2 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

#——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment',10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1597841
## Run 1 stress 0.1576521
## ... New best solution
## ... Procrustes: rmse 0.04834007 max resid 0.2875313
## Run 2 stress 0.183516
## Run 3 stress 0.164273
## Run 4 stress 0.1706613
## Run 5 stress 0.1577447
## ... Procrustes: rmse 0.03589464 max resid 0.1614319
## Run 6 stress 0.1766066
## Run 7 stress 0.1571296
## ... New best solution
## ... Procrustes: rmse 0.02695248 max resid 0.1420126
## Run 8 stress 0.171069
## Run 9 stress 0.1590799
## Run 10 stress 0.1745134
## Run 11 stress 0.1809985
## Run 12 stress 0.161869
## Run 13 stress 0.16364
## Run 14 stress 0.1602454
## Run 15 stress 0.1670562
## Run 16 stress 0.160579
```

```
## Run 17 stress 0.1590695
## Run 18 stress 0.1582786
## Run 19 stress 0.1705433
## Run 20 stress 0.1780395
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 2: no. of iterations >= maxit
## 18: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

