Distance focale de la lentille

On cherche à évaluer la valeur de la distance focale f' de la lentille d'un smartphone qu'on assimile à une lentille mince convergente (L) de centre optique O. Une figurine servant d'objet \overline{AB} est placée à 30,0 cm devant la lentille. L'image $\overline{A'B'}$ est recueillie sur un capteur derrière la lentille. Par la suite cette image $\overline{A'B'}$ est agrandie afin d'obtenir une autre image $\overline{A''B''}$ visible sur l'écran du smartphone.

1. Sans souci d'échelle compléter le schéma suivant, en plaçant les rayons lumineux issus de B et permettant de positionner précisément le point B' (image de B à travers la lentille), le foyer image F' ainsi que la distance focale $f' = \overline{OF'}$.

sens de propagation de la lumière

2. Résultats expérimentaux

Le smartphone utilisé possède un capteur de format « 1/2.5" ».

L'écran du smartphone a une longueur de 10,5 cm. La figurine, photographiée dans le sens de la longueur du smartphone, a une taille de 2,0 cm sur cet écran.

Lors de l'agrandissement capteur-écran les proportions sont conservées.

Les capteurs

	Dimensions en min	
Format	Longueur	Largeur
1/2.5"	5,76	4,29
1/2.3"	6,16	4,62
1/2"	6,40	4,80

Dimensions en mm

2.1. À l'aide des résultats expérimentaux ci-dessus, de la conservation des proportions capteur-écran et des données sur les capteurs, vérifier par calcul que la taille de l'image est $\overline{A'B'} = -0,11$ cm sur le capteur.

Comme il y a proportionnalité entre l'image sur l'écran et l'image sur le capteur, on peut réaliser un produit en croix :

$$\frac{2.0 \text{ cm}}{10.5 \text{ cm}} = \frac{A'B'}{5.76 \text{ mm}} \text{ D'où } A'B' = 5.76 \text{ mm} \times \frac{2.0 \text{ cm}}{10.5 \text{ cm}} = 1.1 \text{ mm} = 0.11 \text{ cm}.$$

Et comme l'image réelle obtenue par une lentille convergente est toujours inversée, $\overline{A'B'}=-0.11$ cm.

2.2. En utilisant les données ci-dessous, les réponses aux questions précédentes, et sachant que la taille réelle de la figurine est de 7,5 cm déterminer à l'aide de calculs la valeur de la distance focale f'.

L'élève est invité à prendre des initiatives et à présenter la démarche suivie, même si elle n'a pas abouti. La démarche est évaluée et nécessite d'être correctement présentée.

Données:

- Relation de conjugaison pour une lentille mince : $\frac{1}{\overline{OA'}} \frac{1}{\overline{OA}} = \frac{1}{f'}$
- Formule du grandissement γ pour une lentille mince : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$

Avec f' la distance focale de la lentille, O le centre optique de la lentille, AB la taille de l'objet et A'B' la taille de l'image de AB à travers la lentille mince.

On peut déterminer la valeur du grandissement $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{-0.11 \text{ cm}}{7.5 \text{ cm}}$ et on connaît la distance $\overline{OA} = -30.0$ cm entre la lentille

et l'objet \Rightarrow on peut en déduire $\overline{\text{OA}}$ grâce à la formule du grandissement donnée :

$$\gamma = \frac{\overline{OA'}}{\overline{OA}} \Rightarrow \overline{OA'} = \gamma \times \overline{OA} = \frac{-0.11 \text{ cm}}{7.5 \text{ cm}} \times (-30.0 \text{ cm}) = 0.44 \text{ cm} = 4.4 \text{ mm}$$

On connaît maintenant \overline{OA}' et \overline{OA} , donc on peut utiliser la relation de conjugaison pour déterminer f':

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

$$\Rightarrow f' = \frac{\overline{OA} \times \overline{OA'}}{\overline{OA} - \overline{OA'}}$$

$$= \frac{(-30,0 \text{ cm}) \times (0,44 \text{ cm})}{(-30,0 \text{ cm}) - 0,44 \text{ cm}}$$

$$= \frac{-13 \text{ cm}^2}{-30,4 \text{ cm}}$$

$$= 0,43 \text{ cm}$$

$$= 4,3 \text{ mm}$$

Transformer son smartphone en « microscope »

En déposant une goutte d'eau sur l'objectif photographique de son smartphone on peut le transformer en « superloupe ». L'image est alors agrandie comme avec un petit microscope.

Le rayon de la goutte déposée est $R_c=$ 1,0 mm. La goutte est assimilable à une lentille de distance focale f'_{eau} dont la valeur peut se calculer à l'aide des informations de la figure 1 (n=1,33 est l'indice de l'eau).

fig. 1 : schéma et relation

fig. 2 : image de la goutte d'eau sur l'objectif

La distance focale équivalente f' équivalente, correspondant à l'association de la goutte d'eau et de la lentille, se calcule à l'aide de la relation suivante :

$$\frac{1}{f'_{\text{\'equivalente}}} = \frac{1}{f'_{\text{smartphone}}} + \frac{1}{f'_{\text{eau}}}$$

Le facteur d'agrandissement entre la taille de l'objet réel et la taille sur l'écran du smartphone en fonction de la distance focale équivalente est donné sur le tableau ci-contre.

$f_{ m \'equivalente}^{\prime}$ (en mm)	grossissement
1,77	× 15
2,53	× 10

3. Montrer par des calculs, en utilisant les informations ci-dessus, que le facteur de grossissement d'une image prise avec la goutte sur le smartphone est de l'ordre de ×15 si on considère que la valeur de la distance focale de la lentille du smartphone est $f'_{\text{smartphone}} = 4.2 \text{ mm}$.

L'élève est invité à prendre des initiatives et à présenter la démarche suivie, même si elle n'a pas abouti. La démarche est évaluée et nécessite d'être correctement présentée.

Cherchons d'abord $f'_{\mbox{eau}}$:

D'après la figure I, on a
$$f'_{eau} = \frac{R_c}{n-1} = \frac{1.0 \text{ mm}}{1.33-1} = 3.0 \text{ mm}$$

Déterminons maintenant
$$f'_{\text{équivalente}}$$
:
$$f'_{\text{équivalente}} = \frac{f'_{\text{eau}} \times f'_{\text{smartphone}}}{f'_{\text{eau}} + f'_{\text{smartphone}}} = \frac{(3,0 \text{ mm}) \times (4,2 \text{ mm})}{3,0 \text{ mm} + 4,2 \text{ mm}} = 1,8 \text{ mm}$$

1.8 mm correspond à la valeur de 1.77 mm fournie dans le tableau pour $f'_{\text{équivalente}}$ et on voit que cela correspond lors à un grossissement de ×15.