

CM4: Biomécanique Cinématique (2D)

Dorian Verdel, Bastien Berret

Année universitaire 2020-2021

Contact:

Université Paris-Saclay, CIAMS, 91405 Orsay, France. dorian.verdel@universite-paris-saclay.fr

I. Mouvement uniformément accéléré

Définition

- Mouvement uniformément accéléré
 - \circ Mouvement **à accélération constante** : $\vec{a}_g = \overrightarrow{cste}$
 - Somme des forces extérieures s'exerçant sur le corps est un vecteur constant

Calcul des équations horaires sur UN axe

Equation de l'accélération:

 $\circ a_g = a_0$, où a_0 est une constante

Equation de la vitesse

Obtenue par intégration

$$\circ v(t) = v_0 + a_0 \Delta t, avec \Delta t = t - t_0$$

Fonction affine

Equation de la position

Obtenue par intégration de la vitesse

$$0 x(t) = \frac{1}{2}a_0(\Delta t)^2 + v_0\Delta t + x_0 \Rightarrow \text{forme parabolique}$$

Représentation horaire

Représentations à connaître par cœur !!!

Etude de cas

Supposons les mesures suivantes pour un marcheur:

Temps	Position	Distance
(s)	(m)	parcourue
		chaque
		seconde (m)
0	0	
1	1	
2	4	
3	9	
4	16	

Etude de cas

Temps (s)	Position (m)	Distance parcourue chaque seconde (m)
0	0	
1	1	1
2	4	3
3	9	5
4	16	7

Chaque seconde, la vitesse moyenne augmente de 2m/s.

II. Cinématique (2D)

Application corrigée

- Un cycliste veut aller du point A(0,0) au point B(10,10)
- Le cycliste se déplace à vitesse constante : $\vec{v} = \vec{v}_0$
- Le vent fourni une accélération constante : $\vec{a}_v = a_{0v} \vec{y}$

Questions:

- 1. Pour $\alpha = 15^{\circ}$, déterminer v_0 tel que le cycliste passe par B en expression littérale.
- 2. Pour v_0 connu, déterminer α tel que le cycliste passe par B en expression littérale.

Méthode de résolution

1. Reconnaître les types de mouvements

- Rectiligne uniforme
- Uniformément accéléré
- Sur chaque axe séparément

2. Décomposer les vecteurs

- Ici, uniquement \vec{v}_0
- Décomposer sur \vec{x} et \vec{y}

3. Calculer les trajectoires

4. Résoudre

Correction

1. Reconnaître les types de mouvements

- Mouvement sur \vec{x} : MRU
- Mouvement sur \vec{y} : MRUA

2. Décomposer les vecteurs

• $\vec{v}_0 = (v_0 \cos \alpha, v_0 \sin \alpha)$

3. Calculer les trajectoires

$$\begin{cases} x(t) = v_0 \cos(\alpha) t \\ y(t) = \frac{1}{2} a_{0v} t^2 + v_0 \sin(\alpha) t \end{cases}$$

Correction

- 1. Reconnaître les types de mouvements
- 2. Décomposer les vecteurs
- 3. Calculer les trajectoires
- 4. Résoudre

$$\begin{cases} x(t) = v_0 \cos(\alpha) t \\ y(t) = \frac{1}{2} a_{0v} t^2 + v_0 \sin(\alpha) t \end{cases}$$

$$\Leftrightarrow \begin{cases} t = \frac{x(t)}{v_0 \cos(\alpha)} \\ v_0 = \sqrt{\frac{1}{2y(t)\cos(\alpha)^2} a_{0v} + x(t) \tan \alpha} \end{cases}$$

$$pour t \neq 0$$

III. Cas de la rotation d'axe fixe

Définition

- L'axe de rotation est **fixe** : $\vec{v}_a = \vec{0}$
- La vitesse de rotation est notée ω en rad/s
- Le rayon de la rotation est noté r en m
- La vitesse du déplacement est proportionnelle au rayon et à la vitesse de rotation
- Formule:

$$\|\vec{v}\| = r\omega$$

Questions?

