$$E = -\frac{dV}{dL} = -grad V$$

Expresión cartesiana del gradiente:

$$grad V = -\frac{dv}{dx}i - \frac{dv}{dy}j$$

Componentes ortogonales del vector campo:

$$Ex i + Ey j = -\frac{dV}{dx}i - \frac{dV}{dy}j$$

$$Ex = -\frac{dV}{dx} \quad Ey = -\frac{dV}{dy}$$

Módulo de E: Determino el módulo del vector campo.

$$E = \sqrt{Ex^2 + Ey^2}$$

Ángulo
$$θ = arctg \frac{Ey}{Ex}$$

Con la punta de prueba nos paramos en 6v Punto "p", anotamos las coordenadas en x e y, desplazamos la punta 1cm tanto en x como en y respecto del punto p, para obtener p', y p" anotando sus respectivos voltajes Vp', y Vp".

Los datos que obtuvimos son potenciales y distancia, es por eso que procedimos a trabajar con incrementos.

$$Ex = -\frac{\Delta Vx}{\Delta x}$$
$$Ey = -\frac{\Delta Vy}{\Delta y}$$

	volt	X (cm)	Y (cm)
V_P	6 V	15,9	12
V_P ,	6,97 V	16,9	12
V_P ,,	6,37 V	15,9	13