Esercizi di Informatica Teorica Concetti di Base

a cura di Luca Cabibbo e Walter Didimo

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

Sommario

- principio di induzione finita (o matematica)
- cardinalità di insiemi
- pigeonhole principle
- espressioni regolari

notazioni sul livello degli esercizi: (*) facile, (**) non difficile (***) media complessità, (****) difficile, (****) quasi impossibile

Principio di induzione finita

<u>P.I.F.</u> Sia P(n) una proposizione definita sui naturali; se esiste un naturale n_0 tale che:

- $P(n_0)$ è vera (passo base)
- P(n) vera implica P(n + 1) vera $\forall n \ge n_0$ (passo induttivo)

<u>allora</u> P è vera $\forall n \geq n_0$.

Esercizio 1(*) riformulare il principio nel caso particolare di $n_0 = 0$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

3

Principio di induzione finita

Esercizio 2(**): dimostrare che per ogni insieme finito A risulta $|P(A)| = 2^{|A|}$ (dove P(A) è l'insieme delle parti di A).

Soluzione

procediamo per induzione sulla cardinalità di A:

- se A è l'insieme vuoto allora $|P(A)| = 1 = 2^0$ (ok)
- supponiamo vera la proposizione per $n \ge 0$, e sia |A| = n + 1; sia a un qualunque elemento di A e sia $B = A \{a\}$; per B vale la proposizione ed inoltre $\underline{P(A)}$ è formato da tutti gli insiemi in $\underline{P(B)}$ più gli stessi insiemi a ciascuno dei quali viene aggiunto l'elemento \underline{a} (dimostrare formalmente); allora: $|P(A)| = 2|P(B)| = 22^{|A|-1} = 2^{|A|}$ (ok)

Principio di induzione finita

<u>Esempio</u>: sia $A = \{a, b, c\}$; allora $|P(A)| = 2^3 = 8$.

$$B = \{b, c\}$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

5

Principio di induzione finita

Esercizio 3(****): dimostrare che n^4 - 4 n^2 è divisibile per 3, per ogni naturale n (*suggerimento*: sfruttare la relazione di equivalenza modulo 3 ed applicare l'induzione due volte)

Soluzione

procediamo per induzione su n:

- se n = 0 è ovvio, perché zero è divisibile per 3 (ok)
- supponiamo vera la proposizione per $n \ge 0$; per n + 1 risulta: $(n+1)^4 4(n+1)^2 = (n^4 + 4n^3 + 6n^2 + 4n + 1) 4(n^2 + 2n + 1) = (n^4 4n^2) + 6n^2 3 + 4n^3 4n = 4n^3 4$

dimostriamo quindi che n^3 - n è divisibile per 3;

Principio di induzione finita

procediamo ancora per induzione su n

- per n = 0 è ovvio, perché 0 è divisibile per 3 (ok)
- supponiamo vera la proposizione per $n \ge 0$; risulta $(n + 1)^3 (n + 1) = n^3 + 3 n^2 + 3 n + 1 n 1 = (n^3 n) + 3 (n^2 + n)$ che è divisibile per 3 (ok)

quindi anche $(n+1)^4$ - $4(n+1)^2$ è divisibile per 3 (ok)

Esercizio 4(*) dimostrare che la somma dei naturali da 1 ad n è pari ad (n+1)n/2

Esercizio 5(***) dimostrare che dati due insiemi finiti e non vuoti A e B esistono esattamente $|B|^{|A|}$ funzioni da A a B (*suggerimento*: procedere per induzione su |A|)

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

7

Principio di induzione finita

<u>Esercizio 6</u> (**) trovare l'errore nella dimostrazione della seguente proposizione:

proposizione: in un branco di cavalli tutti i cavalli hanno lo stesso colore

dimostrazione induttiva:

- per un branco con 1 solo cavallo la proposizione è ovvia (ok)
- supponiamo vero l'enunciato per un qualunque branco con n ≥ 1 cavalli e sia dato un branco di n+1 cavalli; se togliamo un cavallo dal branco, per l'ipotesi induttiva, rimangono n cavalli con lo stesso colore, diciamo col1; se togliamo un secondo cavallo dal branco e rimettiamo quello di prima, abbiamo ancora n cavalli dello stesso colore, diciamo col2. Poiché infine nel branco sono sempre rimasti fissi n - 1 cavalli allora deve essere col1 = col2, e quindi gli n+1 cavalli hanno tutti lo stesso colore.

Cardinalità di insiemi

Richiami:

- due insiemi sono <u>equinumerosi</u> (o <u>equipotenti</u>) se esiste una biiezione tra loro
- un insieme <u>finito</u> con *n* elementi è equinumeroso a {0, ..., *n*-1}
- un insieme è <u>numerabile</u> se è equinumeroso ad N (cardinalità \aleph_0)
- un insieme è contabile se è finito oppure numerabile
- un insieme è continuo se è equinumeroso ad **R** (cardinalità 2^{*0})

Esercizio 7(*) mostrare un esempio per ciascuna delle classi sopra elencate

<u>Esercizio 8(**)</u> dimostrare che l'insieme *S* di tutte le possibili sequenze infinite di naturali da 0 a 9 è non numerabile

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

9

Cardinalità di insiemi

Soluzione applichiamo il ragionamento diagonale di Cantor: supponiamo per assurdo che *S* sia numerabile; allora possiamo contare tutte le sequenze di *S*:

$$egin{array}{llll} & a_{00} & a_{01} & ... & a_{0i} & ... \\ & a_{10} & a_{11} & ... & a_{1i} & ... \\ & ... & & & & & & & & \\ & s_{j} & a_{j0} & a_{j1} & ... & a_{ji} & ... \end{array}$$

consideriamo la seguente sequenza: s $(a_{00} + 1)$ $(a_{11} + 1)$... $(a_{ii} + 1)$..., dove + è inteso modulo 10; s è diversa da ciascuna s_k , che è assurdo

Pigeonhole Principle (PHP)

<u>PHP</u> Dati due insiemi finiti e non vuoti A e B, con |A| > |B|, non esistono funzioni totali iniettive da A a B

Esercizio 9 (**) sia *G* un grafo con *n* vertici; dimostrare che ogni cammino di *G* di lunghezza maggiore di *n* contiene almeno un ciclo.

Soluzione

sia $(v_1, v_2, ..., v_m)$ un cammino di G tale che m > n; sia f la funzione totale che associa ad ogni vertice del cammino un vertice di G; per il PHP f non può essere iniettiva; sia dunque k il minimo numero per cui $f(v_i) = f(v_{i+k})$ $(1 \le i < i+k \le m)$; allora $(v_i, v_{i+1}, ..., v_{i+k})$ e' un ciclo di G

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

11

Pigeonhole Principle (PHP)

Esercizio 10 (****) dimostrare che, in un qualunque gruppo di persone, esistono almeno due persone che hanno lo stesso numero di amici nel gruppo

<u>note</u>:

- 1. un gruppo è composto da <u>almeno due persone</u>
- 2. la relazione di amicizia è riflessiva e simmetrica

(suggerimento: dimostrare per assurdo che la funzione "numero di amici" non può essere iniettiva)

Pigeonhole Principle (PHP)

Soluzione sia A un gruppo di persone e sia |A| = n > 1; consideriamo la funzione f che associa <u>ad ogni elemento</u> (totalità) di A il suo numero di amici in A; per la riflessione ogni persona è amica almeno di se stessa e quindi: $f: A \rightarrow \{1, ..., n\}$; supponiamo per assurdo che f sia iniettiva;

- caso 1: se non $\exists x \in A : f(x) = 1 \implies f: A \rightarrow \{2, ..., n\}$, che è assurdo per il PHP;
- caso 2: se $\exists x \in A : f(x) = 1 \implies \forall y \in A \setminus \{x\}$ risulta
 - $f(y) \ge 2$ per l'ipotesi (assurda) di iniettività di f
- $f(y) \le n-1$ per la simmetria (nessuno è amico di x) quindi f ristretta ad $A \setminus \{x\}$ dovrebbe essere totale ed iniettiva sul codominio $\{2, ..., n-1\}$, che e' assurdo per il PHP

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

13

Espressioni regolari

Definizioni di espressioni regolari e linguaggi associati su un alfabeto Σ

$$-\varnothing \qquad \qquad L(\varnothing) = \varnothing = \Lambda$$

$$-a, \text{ se } a \in \Sigma \qquad \qquad L(a) = \{a\}$$

$$-(s+t), \text{ se } s, t \in L \qquad \qquad L(s+t) = L(s) \cup L(t)$$

$$-(s \cdot t), \text{ se } s, t \in L \qquad \qquad L(s \cdot t) = L(s) \cdot L(t)$$

$$-s^*, \text{ se } s \in L \qquad \qquad L(s^*) = L(s)^*$$

tutti gli operatori sono associativi relazioni di precedenza: * > • > + nota: il • viene spesso omesso, cioè (a • b) si scrive anche (ab)

Espressioni regolari

Esercizio 11 (**) dire se le seguenti affermazioni sono vere o false:

- Ø* = Ø
- baa $\in L(a*b*a*b*)$
- abcd \in L((a (cd)* b)*)
- $a*b* \cap b*a* = a* + b*$
- (ab)* \cap (cd)* = \emptyset
- (abb + a)*a = a(bba + a)*
- (a+b)* = (a*b*)*

Esercizio 12 (*) dire quali sono i linguaggi descritti dalle seguenti espressioni regolari su $\Sigma = \{0, 1\}$

- 1(0+1)*
- (0+1)* 1 (0+1)*

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

15

Espressioni regolari

Esercizio 13 (***) scrivere le espressioni regolari corrispondenti ai seguenti linguaggi su $\Sigma = \{0, 1\}$

- tutte le sequenze alternate di 0 e 1 che iniziano e finiscono per 1 o che iniziano e finiscono per 0
- tutte le sequenze con un numero pari di 0

Soluzione

- \bullet (10)*1 + (01)*0
- ((01*01*) + (1*01*0))* + 1*

Espressioni regolari

Esercizio 14 (**) scrivere l'espressione regolare che descrive il complemento dei seguenti linguaggi su $\Sigma = \{0, 1\}$

- 1 **(**0+1**)***
- 0* + 1*

Soluzione

- (0 (0+1)*)*
- ((1+0)*0 (1+0)* 1 (1+0)*) + ((1+0)*1 (1+0)* 0 (1+0)*)

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

17

Espressioni regolari

Esercizio 15 (**) semplificare le seguenti espressioni regolari

- (a*b + b*cb)*
- ((a*b*)* (b*a*)*)*

Esercizio 16 (***) determinare le espressioni regolari per i seguenti linguaggi

- i numeri naturali in notazione binaria
- i numeri binari su 4 bit
- i numeri naturali in base 10
- i numeri naturali pari
- i numeri pari in base 3

Espressioni regolari

Soluzione

- i numeri naturali in base 2 (notazione binaria) 0 + 1(0 + 1)*
- i numeri binari su 4 bit (0+1) (0+1) (0+1) (0+1)
- i numeri naturali in base 10 0 + (1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*
- i numeri naturali pari (0+2+4+6+8) + (1+2+..+9)(0+1+..+9)*(0+2+4+6+8)
- i numeri naturali pari in base 3 su qualsiasi numero di cifre

$$(0+2+1(0+2)*1)*$$

in una qualunque sequenza di cifre deve esserci un numero pari di 1

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo