Machine Learning Foundations

(機器學習基石)

Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 1: The Learning Problem

 \mathcal{A} takes \mathcal{D} and \mathcal{H} to get g

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
- Perceptron Learning Algorithm (PLA)
- Guarantee of PLA
- Non-Separable Data
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Credit Approval Problem Revisited

what hypothesis set can we use?

A Simple Hypothesis Set: the 'Perceptron'

age	23 years
<u>`</u> .	NITE L'ASSAGE
annual salary	NTD 1,000,000
year in ich	O.E. voor
year in job	0.5 year
current debt	200,000
current debt	200,000

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and

approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$

$$\frac{\text{deny credit if}}{\sum_{i=1}^{d} w_i x_i} < \text{threshold}$$

• \mathcal{Y} : $\{+1(\mathbf{good}), -1(\mathbf{bad})\}$, 0 ignored—linear formula $h \in \mathcal{H}$ are $i = 1 \sim d$ $\downarrow h(\mathbf{x}) = \text{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \text{threshold}\right)$ Each (w_i, threshold) forms a "h".

called 'perceptron' hypothesis historically

Vector Form of Perceptron Hypothesis

h is the model:

 $x \rightarrow h \rightarrow prediction of y$

$$h(\mathbf{x}) = \text{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \text{threshold}\right)$$

$$= \text{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) + \underbrace{\left(-\text{threshold}\right) \cdot \left(+1\right)}_{w_0}\right)$$

$$= \text{sign}\left(\sum_{i=0}^{d} w_i x_i\right)$$

$$= \text{sign}\left(\mathbf{w}^T \mathbf{x}\right) \text{ inner product of two column vectors}$$

 each 'tall' w represents a hypothesis h & is multiplied with 'tall' x —will use tall versions to simplify notation

what do perceptrons h 'look like'?

$$h(\mathbf{x}) = \text{sign}(w_0 + w_1x_1 + w_2x_2)$$

boundary (line)

- points on the plane (or points in \mathbb{R}^d) customer features x:
- labels *y*: \circ (+1), \times (-1)
- <u>lines</u> (or hyperplanes in \mathbb{R}^d) hypothesis h: —positive on one side of a line, negative on the other side
- different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a good perceptron for the task?

- offee, tea, hamburger, steak
- free, drug, fantastic, deal

- Which one contains a lot of spams?
- machine, learning, statistics, textbook
- national, Taiwan, university, coursera

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?

- 1 coffee, tea, hamburger, steak
- free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Reference Answer: (2)

The occurrence of keywords with positive weights increase the 'spam score', and hence those keywords should often appear in spams.

Select g from \mathcal{H}

 $\mathcal{H} = \text{all possible perceptrons, } g = ?$

- want: $q \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$ "D" is from "f".
- difficult: H is of infinite size
- idea: start from some g_0 , and 'correct' its mistakes on \mathcal{D}

Initialization

will represent g_0 by its weight vector \mathbf{w}_0

Use wo to represent go

Perceptron Learning Algorithm PLA

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

1) find a mistake of \mathbf{w}_{t} called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

2 (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until no more mistakes

return last **w** (called \mathbf{w}_{PLA}) as g

Sometimes we won't be able to successfully correct $x_{n(t)}$. (We couldn't guarantee that $sign(w_{t+1}^T X_{n(t)}) = y_{n(t)}$)

That's it!

—A fault confessed is half redressed. :-)

Practical Implementation of PLA

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

Cyclic PLA

For t = 0, 1, ...

1 find the next mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

2 correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until a full cycle of not encountering mistakes

Just remember to check all training examples.

next can follow naïve cycle $(1, \dots, N)$ or precomputed random cycle

Seeing is Believing Initially, we don't have any line. (Machine thinks that every point is incorret.)

 $t = 9 \Rightarrow Incorrect.$

For coding: So the offset of this line does not seem to have any change.

worked like a charm with < 20 lines!! (note: made $x_i \gg x_0 = 1$ for visual purpose)

Some Remaining Issues of PLA

'correct' mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?

- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?

- on \mathcal{D} , if halt, yes (no mistake) Training set
- outside D: ?? Testing set
- if not halting: ??

[to be shown] if (...), after 'enough' corrections, any PLA variant halts if linear seperable

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$\begin{array}{l} \text{If} & \text{then} \\ \text{sign}\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n}\right) \neq y_{n}, & \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n} \end{array}$$

- 2 sign($\mathbf{w}_{t+1}^T \mathbf{x}_n$) = y_n

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

$$\downarrow \quad \text{Multiply } \mathbf{y}_{n}\mathbf{x}_{n} \text{ on both sides}$$

- 2 $\operatorname{sign}(\mathbf{w}_{t+1}^T\mathbf{x}_n) = y_n$

 $y_n w_{t+1}^T x_n = y_n w_t^T x_n + (y_n x_n)^2$ Must be positive.

The updated w_{t+1} makes the prediction of x_n more close to the ground truth.

Reference Answer: 3

Simply multiply the second part of the rule by $y_n \mathbf{x}_n$. The result shows that **the rule** somewhat 'tries to correct the mistake.'

Linear Separability

- if PLA halts (i.e. no more mistakes),
 (necessary condition) D allows some w to make no mistake
- call such \mathcal{D} linear separable

assume linear separable \mathcal{D} , does PLA always halt? Yes

PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \Leftrightarrow \text{exists perfect } \mathbf{w}_f \text{ such that } y_n = \text{sign}(\mathbf{w}_f^T \mathbf{x}_n)$

• \mathbf{w}_f perfect hence every \mathbf{x}_n correctly away from line:

$$y_{n(t)} \mathbf{w}_{f}^{T} \mathbf{x}_{n(t)} \ge \min_{n} y_{n} \mathbf{w}_{f}^{T} \mathbf{x}_{n} > 0$$
The wrong point at iteration t

• $\mathbf{w}_{t}^{\mathsf{T}}\mathbf{w}_{t} \uparrow$ by updating with any $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$\mathbf{w}_f^T \mathbf{w}_{t+1} = \mathbf{w}_f^T \left(\mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)} \right)$$
We use inner product to evaluate the similarity between two vectors. (The bigger the more similar)
$$\mathbf{w}_f^T \mathbf{w}_t + \min_n y_n \mathbf{w}_f^T \mathbf{x}_n$$

$$\mathbf{w}_f^T \mathbf{w}_t + 0.$$

 \mathbf{w}_t appears more aligned with \mathbf{w}_t after update (really?) We need to fix the length.

Our target function

PLA Fact: w_t Does Not Grow Too Fast

• mistake 'limits' $\|\mathbf{w}_t\|^2$ growth, even when updating with 'longest' \mathbf{x}_n

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$= \|\mathbf{w}_{t}\|^{2} + 2y_{n(t)}\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)} + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + 0 + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + \max_{n} \|y_{n}\mathbf{x}_{n}\|^{2}$$

$$\vdots y_{n} = +1 \text{ or } -1$$

start from $\mathbf{w}_0 = \mathbf{0}$, after T mistake corrections,

$$\frac{\mathbf{w}_{\mathit{f}}^{\mathit{T}}}{\|\mathbf{w}_{\mathit{f}}\|}\frac{\mathbf{w}_{\mathit{T}}}{\|\mathbf{w}_{\mathit{T}}\|} \geq \sqrt{\mathit{T}} \cdot \mathsf{constant}$$

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above.

- $\mathbf{0} R/\rho$
- **2** R^2/ρ^2
- 3 R/ρ^2 4 ρ^2/R^2

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above. 1): $w_f^T w_T \geq w_f^T w_{T-1} + \min y_n w_f^T x_n$

- $\mathbf{0} R/\rho$
- 2 R^2/ρ^2
- $3 R/\rho^2$
- 4 ρ^2/R^2

- $\geq \cdots$ $\geq w_f^T w_0 + T \cdot \min y_n w_f^T x_n = T \cdot \min y_n w_f^T x_n$ $||w_T||^2 \leq ||w_{T-1}||^2 + \max ||x_n||^2$ $\leq \cdots$
 - $\leq \dots$ $\leq ||w_0||^2 + T \cdot max ||x_n||^2 = T \cdot max ||x_n||^2$

$$\Rightarrow \quad \frac{w_f^T w_T}{||w_f||||w_T||} \geq \frac{T \cdot \min y_n w_f^T x_n}{||w_f||||w_T||} \geq \frac{T \cdot \min y_n w_f^T x_n}{||w_f|| \cdot \sqrt{T} \cdot \max ||x_n||^2} = \frac{\sqrt{T} \rho}{\underline{R}}$$

Use ☐ to represent

Reference Answer: (2)

The maximum value of $\frac{\mathbf{w}_t^T}{\|\mathbf{w}_t\|} \frac{\mathbf{w}_t}{\|\mathbf{w}_t\|}$ is 1. Since T mistake corrections increase the inner product by \sqrt{T} constant, the maximum number of corrected mistakes is $1/\text{constant}^2$.

$$\begin{cases} \Box \leq 1 \\ \Box \geq \frac{|T|^{\rho}}{R} \end{cases}$$

$$\Rightarrow \underline{1} \geq \Box \geq \frac{|T|^{\rho}}{R}$$

$$\Rightarrow T \leq \frac{R^{2}}{0^{3}}$$

More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of \mathbf{w}_t and \mathbf{w}_t grows fast; length of \mathbf{w}_t grows slowly
- PLA 'lines' are more and more aligned with w_f ⇒ halts

Pros

simple to implement, fast, works in any dimension d

Cons

- 'assumes' linear separable ${\mathcal D}$ to halt
 - —property unknown in advance (no need for PLA if we know \mathbf{w}_{f})
- not fully sure how long halting takes (ρ depends on \mathbf{w}_{f})
 - —though practically fast

[△] Unknown

what if \mathcal{D} not linear separable?

Learning with **Noisy Data**

how to at least get $g \approx f$ on noisy \mathcal{D} ?

Tolerance

Line with Noise Tolerance

- assume '<u>little</u>' noise: $y_n = f(\mathbf{x}_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \Leftrightarrow y_n = g(\mathbf{x}_n)$ usually
 - how about Make the least mistakes $\mathbf{w}_g \leftarrow \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^N \left[y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n) \right]$

—<u>NP-hard</u> to solve, unfortunately

can we modify PLA to get an 'approximately good' *q*?

Yes (greedy algorithm)

Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights ŵ

For $t = 0, 1, \cdots$

- 1 find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- 2 (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3 if \mathbf{w}_{t+1} makes fewer mistakes than $\hat{\mathbf{w}}$, replace $\hat{\mathbf{w}}$ by \mathbf{w}_{t+1}

...until enough iterations return $\hat{\mathbf{w}}$ (called \mathbf{w}_{POCKET}) as g

a simple modification of PLA to find (somewhat) 'best' weights

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- $oldsymbol{0}$ pocket on $\mathcal D$ is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- 3 pocket on \mathcal{D} returns a better g in approximating f than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- $oldsymbol{0}$ pocket on \mathcal{D} is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: 1

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D} , \mathbf{w}_{POCKET} is the same as \mathbf{w}_{PLA} , both making no mistakes.

For each iteration, pocket algorithm needs to check all data to determine whether new w is better than the old one.

Summary

When Can Machines Learn?

Lecture 1: The Learning Problem

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set hyperplanes/linear classifiers in R^d
- Perceptron Learning Algorithm (PLA)
 correct mistakes and improve iteratively
- Guarantee of PLA
 no mistake eventually if linear separable
- Non-Separable Data
 hold somewhat 'best' weights in pocket
- next: the zoo of learning problems
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?