

Análise e Síntese de Algoritmos Árvores abrangentes de menor custo (MSTs). Algoritmo de Prim.

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Complexidade Computacional

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Resumo

Motivação

Motivação

Definições

Algoritmo (greedy) genérico

Algoritmo de Prim

Problema

Suponha que pretende instalar uma nova rede de fornecimento para um serviço (TV por cabo, gás natural, ...) numa urbanização

Para estabelecer a rede é necessário fazer obras na via pública para instalar a infraestrutura (colocação de cabos de fibra óptica ou novas condutas de gás)

Objectivo

Fornecer o serviço a todas as casas da urbanização através de uma rede.

No entanto, cada possível ligação na urbanização tem um custo e pretende-se minimizar o custo total da instalação

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/30 P.T. Monteiro ASA @ LEIC-T 2024/2025 4

Árvores Abrangentes de Menor Custo

Solução

- Cada casa da urbanização é modelada como um vértice num grafo
- Cada possível ligação entre casas corresponde a um arco pesado cujo peso indica o custo da ligação
- A solução do problema corresponde à árvore abrangente de menor custo (*Minimum Spanning Tree (MST)*) do grafo

Árvore Abrangente

- Um grafo não dirigido G = (V, E), diz-se ligado se para qualquer par de vértices existe um caminho que liga os dois vértices
- Dado grafo não dirigido G = (V, E), ligado, uma árvore abrangente é um sub-conjunto acíclico $T \subseteq E$, que liga todos os vértices
- O tamanho da árvore é |T| = |V| 1

P.T. Monteiro

ASA @ LEIC-T 2024/202!

D.T. Montoiro

ASA @ LEIC-T 2024/202

Árvores Abrangentes de Menor Custo

Algoritmo (greedy) genérico

Árvore Abrangente de Menor Custo

Dado grafo G = (V, E), ligado, não dirigido, com uma função de pesos $w : E \to R$, identificar uma árvore abrangente T, tal que a soma dos pesos dos arcos de T é minimizada

$$\min w(T) = \sum_{(u,v)\in T} w(u,v)$$

Abordagem Greedy

- Manter conjunto A que é um sub-conjunto de uma MST T
- A cada passo do algoritmo identificar arco (u, v) que pode ser adicionado a A sem violar a invariante
- $A \cup \{(u, v)\}$ é sub-conjunto de uma MST T
 - -(u,v) é declarado um arco seguro para A

Invariante

Antes de cada iteração, A é um sub-conjunto de uma MST T

Algoritmo (greedy) genérico

Algoritmo (greedy) genérico

ST-Genérico(G,w) (para já ainda sem Minimum, apenas Spanning Tree) $A = \emptyset$ while A não forma árvore abrangente do identificar arco seguro (u,v) para A $A = A \cup \{(u,v)\}$ end while return A

Definicões

- Um corte (S, V S) de um grafo não dirigido G = (V, E) é uma partição de V
- Um arco $(u, v) \in E$ cruza o corte (S, V S) se um dos extremos está em S e o outro está em V-S
- Um corte respeita um conjunto de arcos A se nenhum arco de A cruza o corte
- Um arco diz-se um arco leve que cruza um corte se o seu peso é o menor de todos os arcos que cruzam o corte

ASA @ LEIC-T 2024/2025

Algoritmo (greedy) genérico

Algoritmo (greedy) genérico

Definições

- Seja G = (V, E) um grafo não dirigido, ligado, com função de pesos w
- Seja A um sub-conjunto de E incluído numa MST T

 $(A \subseteq T \subseteq E)$

 \Rightarrow Então (u, v) é um arco seguro para A

Prova

- MST T, com $A \subseteq T$, e arco leve $(u, v) \notin T$
- Objectivo: Construir outra MST T' que inclui $A \cup \{(u, v)\}$
- (u, v) é um arco seguro para A

Critérios de Optimalidade

- O arco (u, v) forma ciclo com arcos do caminho p, definido em T, que liga u a v
- Dado $u \in V$ estarem nos lados opostos do corte $\{S\}/\{V-S\}$, então existe pelo menos um arco (x, y) do caminho p em T que cruza o corte

Algoritmo (greedy) genérico

Algoritmo (greedy) genérico

Critérios de Optimalidade (cont.)

Arco(x, y)

P.T. Monteiro

- $(x,y) \notin A$, porque corte $\{S\}/\{V-S\}$ respeita A
- Remoção de (x, y) divide T em dois componentes
- Inclusão de (u, v) permite formar $T' = T \setminus \{(x, y)\} \cup \{(u, v)\}$
- Dado que (u, v) é um arco leve que cruza o corte $\{S\}/\{V-S\}$, e porque (x, y) também cruza o corte: $w(u, v) \le w(x, y)$

Critérios de Optimalidade (cont.)

- w(T') = w(T) w(x, y) + w(u, v)
- $w(T') \le w(T)$ porque $w(u, v) \le w(x, y)$
- Mas T é MST, pelo que $w(T) \le w(T')$, por definição de MST
- Logo, w(T') = w(T), e T' também é MST

(u, v) é seguro para A:

- Verifica-se $A \subseteq T'$, dado que por construção $A \subseteq T$, e $(x,y) \notin A$
- Assim, verifica-se também $A \cup (u, v) \subseteq T'$
- T' é MST, pelo que (u, v) é seguro para A

Monteiro ASA @ LFIC-T 2024/2025 14/30

Algoritmo (greedy) genérico

Algoritmo de Prim

Exercício: Quantas MST's existem?

Algoritmo de Prim

- Algoritmo greedy
- MST construída a partir de um vértice raíz r
- Algoritmo mantém sempre uma árvore A

 $(A \subseteq T)$

- Árvore A é extendida a partir do vértice r
- $\bullet\,$ A cada passo é escolhido um arco leve, seguro para A
- ullet Utilização de fila de prioridade Q

Notação

- key[v]: menor peso de qualquer arco que ligue v a um vértice na árvore
- $\pi[v]$: antecessor de v na árvore

P.T. Monteiro ASA @ LEIC-T 2024/2025 15/30 P.T. Monteiro ASA @ LEIC-T 2024/2025 16

Algoritmo de Prim

Algoritmo de Prim

Q: b, h, c, d, e, f, g, i

Monteiro ASA @ LEIC-T 2024/2025

key[b]=4

key[h]=8

 $\pi[h]=a$

 $\pi[b]=a$

key[i]=2

 $\pi[i]=c$

Algoritmo de Prim

Algoritmo de Prim

key[a]=0 π[a]=NIL

Q: i, f, d, h, e, g

Q: c, h, d, e, f, g, i

19/30

ASA @ LEIC-T 2024/2025

 $key[g]=\infty$

 $\pi[g]$ =NIL

key[c]=8

 $\pi[c]=b$

С

key[d]=7

key[f]=4

 $\pi[f]=c$

7

2

 $\pi[d]=c$

d

key[e]=∞

e`

π[e]=N

P.T. Monteiro ASA @ LEIC-T 2024/2025

P.T. Monteiro

Algoritmo de Prim

Algoritmo de Prim

Q: f, g, d, h, e

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Q: g, d, h, e

ASA @ LEIC-T 2024/2025

Algoritmo de Prim

21/30

Algoritmo de Prim

Q: h, d, e

P.T. Monteiro ASA @ LEIC-T 2024/2025

Q: d, e

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Algoritmo de Prim

Algoritmo de Prim

Q: e

P.T. Monteiro

ASA @ LEIC-T 2024/2025

key[b]=4key[c]=8key[d]=7 $\pi[b]=a$ $\pi[c]=b$ $\pi[d]=c$ 7 С key[a]=0 key[i]=2 9 key[e]=9 $\pi[a]=NIL$ $\pi[i]=c$ $\pi[e]=d$ 2 key[h]=1 key[g]=2key[f]=4 $\pi[h]=g$ $\pi[f]=c$ $\pi[g]=f$

Q: Ø

ASA @ LEIC-T 2024/2025

Algoritmo de Prim

Algoritmo de Prim

Complexidade

- Fila de prioridade baseada em amontoados (heap)
- Extração de vértice da fila Q, implica actualização de Q
 - Cada vértice é extraído apenas 1 vez: $\Theta(V)$
 - Actualização de Q: O(log V)
 - Logo: $O(V \log V)$
- Para cada arco (i.e. $\Theta(E)$) existe no pior-caso uma actualização de Q em $O(\log V)$
- Complexidade algoritmo Prim: $O(V \log V + E \log V)$
- Logo, é possível assegurar $O(E \log V)$ porque grafo é ligado
 - Grafo ligado: $|E| \ge |V| 1$

Exercício: Calcule a MST usando o algoritmo de Prim (nó raiz F)

Oldies but goldies: R. C. Prim, Shortest connection networks and some generalizations, 1957. A greedy algorithm to compute the minimum spanning tree of a graph.

Shortest Connection Networks And Some Generalizations

By R. C. PRIM

(Manuscript received May 8, 1957)

The basic problem considered is that of interconnecting a given set of terminals with a shortest possible network of direct links. Simple and practical procedures are given for solving this problem lock graphically and computationally. It decelops that these procedures also provide solutions for a much broader class of problems, containing other examptes of practical interest.

0:05

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Questões?

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 30/30