F.
$$X - 2miemma losoma typu ciagrogo$$

$$E(ax+b) = \int (ax+b) f(x) dx =$$

$$= \int ax f(x) + b f(x) dx =$$

$$= \int ax f(x) dx + \int b f(x) dx =$$

$$= \int ax f(x) dx + \int b f(x) dx =$$

$$= a \int x f(x) dx + b \int f(x) dx =$$

$$= a \int x f(x) dx + b \int f(x) dx =$$

= a E(x)

Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. Tydzień rozpoczynający się 9. marca

Zadania

- Niech Σ będzie σ-ciałem zbiorów.
 - (a) Sprawdzić, że $\emptyset \in \Sigma$.
 - (b) Zalóźmy, że $A_k \in \Sigma$, dla $k=1,2,3,\ldots$ Wykazać, że $\bigcap A_k \in \Sigma$.
- 2. Niech $\Omega = \{a, b, c\}$.
 - (a) Opisać $\sigma\text{-ciała}$ zbiorów tej przestrzeni zdarzeń.
- (b) Podać przykład funkcji X,Y takich, że X jest zmienną losową, a Y nie jest zmienną losową.
- \checkmark 3. Niech $\Omega=\{1,2,3,4,5\}$ oraz $S=\{1,4\}.$ Wyznaczyć najmniejsze $\sigma\text{-ciało}$ zbiorów zawierające S.
- 4. Wyznaczyć dystrybuantę i obliczyć wartość oczekiwaną zmiennej X o rozkładzie

$$x_i$$
 2 3 4 5 p_i 0.2 0.4 0.1 0.3

5. Dystrybuanta F zmiennej losowej X określona jest następująco:

$$x \quad (-\infty; -2] \quad (-2; 3] \quad (3; 5] \quad (5; \infty)$$

 $F(x) \quad 0 \quad 0.2 \quad 0.7 \quad 1$

Podać postać funkcji gęstości f(x).

- \checkmark 6. Niech Xbędzie zmienną losową typu dyskretnego. Udowodnić, że $\mathrm{E}(aX+b)=a\,\mathrm{E}(X)+b$
- 7. Niech X będzie zmienną losową typu ciągłego. Udowodnić, że E(aX + b) = a E(X) + b.
- ✓8. 2p. Sprawdzić, że

$$\checkmark$$
 (a) $B(p, q + 1) = B(p, q) \frac{q}{p + q}$,

$$\checkmark$$
(b) $B(p,q) = B(p,q+1) + B(p+1,q)$.

9. 2p. Udowodnić, że $\Gamma(p)$ $\Gamma(q)=\Gamma(p+q)$ B(p,q), gdzie $p,q\in\mathbb{R}^+$ (czyli wszystkie potrzebne calki istnieją).

DEF. Funkcją beta nazywamy wartość calki

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \ p > 0, \ q > 0.$$

Witold Karczewski

