Mechanical Processing in Internally Coupled Ears

Anupam Prasad Vedurmudi

TMP Thesis Defence July 7, 2013

Auditory Systems

Introduction

Independent Ears

Eustachian tubes typically very narrow.

Effectively independent eardrum vibrations.

Coupled Ears

Eardrums connected through wide eustachian tubes and a large mouth cavity.

Eardrums vibrations influence eachother.

Advantages of Coupled Ears

► Low frequencies result in reduced degradation of hearing cues in dense environments.

 a_{tymp} fixed.

$$V_{
m cyl} = \pi a_{
m tymp}^2 L$$

$$a_{\mathrm{tymp}},\ V_{\mathrm{cyl}}$$
 fixed

$$a_{\rm cvl} = \sqrt{V_{\rm cvl}/\pi I}$$

Mouth Cavity

 a_{tymp} fixed.

$$V_{\rm cyl} = \pi a_{
m tymp}^2 L$$

$$a_{
m tymp}, \ V_{
m cyl}$$
 fixed. $a_{
m cyl} = \sqrt{V_{
m cyl}/\pi L}$

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure on eardrums, θ sound source direction.
- ▶ Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- ► Phase difference between sound at both ears $\Delta = 1.5kL \sin \theta$
- $p_0 = pe^{j\omega t .75kL\sin\theta}$ $p_L = pe^{j\omega t + .75kL\sin\theta}$

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure on
 eardrums, θ sound source
 direction.
- Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- ► Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.

$$p_0 = pe^{j\omega t - .75kL\sin\theta}$$

$$p_L = pe^{j\omega t + .75kL\sin\theta}$$

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure on
 eardrums, θ sound source
 direction.
- ► Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- ▶ Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.
- $p_0 = pe^{j\omega t .75kL\sin\theta}$ $p_L = pe^{j\omega t + .75kL\sin\theta}$

Cavity Pressure

3D Wave Equation

$$\frac{1}{c^2} \partial_t^2 p(x, r, \phi, t) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p(x, r, \phi, t)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 p(x, r, \phi, t)}{\partial \phi^2} + \frac{\partial p(x, r, \phi, t)}{\partial x^2} \tag{1}$$

To be solved using the separation ansatz

$$p(x, r, \phi, t) = f(x)g(r)h(\phi)e^{j\omega t}.$$

◆ロ > ◆個 > ◆差 > ◆差 > 差 めなべ

Separated Equations and their Solutions
$$x$$
- and ϕ - directions

The Model

0000000000

$$rac{d^2f(x)}{dx^2} + \zeta^2f(x) = 0 \longrightarrow f(x) = e^{\pm j\zeta x} \ rac{d^2h(\phi)}{d\phi^2} + q^2h(\phi) = 0 \longrightarrow h(\phi) = e^{\pm jq\phi}$$

$$\rightarrow h(\phi)$$

$$e(z) = e^{\pm j\zeta x}$$

$$)=e^{\pm j\zeta x}$$

$$=e^{\pm j\zeta x}$$

$$(x) = e^{\pm j\zeta x}$$

Evaluation

Conclusion

(2)

(3)

Introduction

Mouth Cavity

Introduction

Separated Equations and their Solutions

The Model

0000000000

$$x$$
- and ϕ - directions

$$\frac{d^2h(\phi)}{d\phi^2} + q^2h(\phi)$$

$$\frac{d^2 f(x)}{dx^2} + \zeta^2 f(x) = 0 \longrightarrow f(x) = e^{\pm j\zeta x}$$

$$\frac{d^2 h(\phi)}{d\phi^2} + q^2 h(\phi) = 0 \longrightarrow h(\phi) = e^{\pm jq\phi}$$
(3)

Evaluation

r-direction, Bessel functions

 $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \left[\nu^2 - \frac{q^2}{r^2}\right]g(r) = 0 \longrightarrow g(r) = J_q(\nu r)$ where, $\nu^2 = k^2 - \zeta^2$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

(5)

Conclusion

Evaluation

Mouth Cavity

00000000000

The Model

Boundary Conditions - ϕ

Smoothness and Continuity in
$$\phi$$
.

$$\phi \rightarrow h(0) = h(2\pi)$$
 and $h'(0) = h'(2\pi)$

$$\Rightarrow h(\phi) = \cos q\phi, \ q = 0, 1, 2, \dots$$

Introduction

Boundary Conditions - r

Impenetrable boundary at $r = a_{cyl}$, i.e. normal derivative vanishes

The Model

$$-j\rho\omega\mathbf{v} = \mathbf{n}. \left. \nabla p(x, r, \phi; t) \right|_{r=a_{\text{cyl}}} \equiv \left. \frac{\partial g}{\partial r} \right|_{r=a_{\text{cyl}}} = 0$$
 (6)

$$\Rightarrow g(r) = J_q(\nu_{qs}r/a_{cyl}) \tag{7}$$

Evaluation

Bessel Prime Zeros

- $ightharpoonup
 u_{
 m qs}$ zeros of J_q' , $s=0,1,2,\ldots$
- $u_{\rm qs}$ zeros of J_q , $s=0,1,2,\dots$ $u_{00}=0$

Evaluation

The Model

000000000000

General Solution

Introduction

Pressure Modes

$$p(x, r, \phi, t) = \sum_{q=0, s=0}^{\infty} p_{qs}(x, r, \phi) e^{j\omega t}$$

$$p_{qs}(x, r, \phi) = \left[A_{qs} e^{j\zeta_{qs}x} + B_{qs} e^{-j\zeta_{qs}x} \right] \cos q\phi J_q(\nu_{qs}r/a_{cyl})$$
(9)
where, $\zeta_{qs} = \sqrt{k^2 - \nu_{qs}^2/a_{cyl}^2}$

Plane Wave Mod

$$p_{00}(x, r, \phi; t) = \left[A_{00} e^{jkx} + B_{00} e^{-jkx} \right] e^{j\omega t}$$
 (10)

<□> ←□> ←□> ←필> ←필> ←필> ←필> ← 필> →의

Evaluation

The Model

000000000000

General Solution

Introduction

$$p(x, r, \phi, t) = \sum_{q=0, s=0}^{\infty} p_{qs}(x, r, \phi) e^{j\omega t}$$

$$p_{qs}(x, r, \phi) = \left[A_{qs} e^{j\zeta_{qs}x} + B_{qs} e^{-j\zeta_{qs}x} \right] \cos q\phi J_q(\nu_{qs}r/a_{cyl})$$
(9)
where, $\zeta_{qs} = \sqrt{k^2 - \nu_{qs}^2/a_{qyl}^2}$

$$p_{00}(x, r, \phi; t) = \left[A_{00} e^{jkx} + B_{00} e^{-jkx} \right] e^{j\omega t}$$
 (10)

Eardrum

Sketch of a Tokay eardrum as seen from the outside^a.

COL - approximate position opposite the extracolumella insertion.

The ICE eardrum.

Extracolumella (dark) - rigid, stationary.

Tympanum - assumed linear elastic.

Rigidly clamped at the boundaries ($r = a_{tymp}$ and $\phi = \beta$, $2\pi - \beta$)

^aG. A. Manley, "The middle ear of the tokay gecko," Journal of Comparative Physiology, vol. 81, no. 3, pp. 239–250, 1972

Introduction

Membrane Vibrations

Membrane EOM

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_m^2 \Delta_{(2)} u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
(11)

Membrane parameters

$$lpha$$
 - damping coefficient, $\ c_m^2$ - propagation velocity

$$\rho_m$$
 - density, d - thickness.

The Model

Free-Undamped Membrane, $\alpha \to 0$, $\Psi \to 0$

The Model

0000000000

Introduction

$$u(r,\phi;t)=f(r)g(\phi)h(t)$$

Separated Equations

$$\frac{1}{2}\frac{\partial}{\partial x}\left(y\right)$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f(r)}{\partial r}\right) + \left[\mu^2 - \frac{m^2}{r^2}\right]f(r) = 0$$

Evaluation

$$rac{d^2g(\phi)}{d\phi^2}+m^2g(\phi)=0$$

(12)

(13)

(14)

$$\frac{d^2h(t)}{dt^2} + c_M^2\mu^2h(t) = 0 {(15)}$$

Evaluation

The Model

0000000000

Introduction

Mouth Cavity

Boundary Conditions

Evaluation

∢ロト→御ト→恵ト→恵ト 恵

Conclusion

16/17

The Model

Introduction

Internally Coupled Ears

The Model

Conclusion

Evaluation

