Homework Assignment 1

Matthew Tiger

September 4, 2016

Problem 1.1.2. Use Example 1.1.3 for affine maps to find the solutions to the difference equations:

i.
$$x_{n+1} - \frac{x_n}{3} = 2$$
, $x_0 = 2$.

ii.
$$x_{n+1} + 3x_n = 4$$
, $x_0 = -1$.

Solution. Consider the affine map $f: \mathbb{R} \to \mathbb{R}$ with f(x) = ax + b. Define the sequence $x_{n+1} = f(x_n) = ax_n + b$ where $x_0 \in \mathbb{R}$ is given. As was shown in the reading, the closed form solution to the above recurrence relation is given by

$$x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}.\tag{1}$$

Thus, the solutions to the provided difference equations can be solved by rewriting the equation in the form of an affine map, identifying a, b, and x_0 , and using the closed solution (1).

i. For the difference equation $x_{n+1} - \frac{x_n}{3} = 2$, $x_0 = 2$, we readily see by rewriting the equation that a = 1/3 and b = 2 with $x_0 = 2$ given. Therefore, using (1), the solution to the difference equation is

$$x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$
$$= \left(2 - \frac{2}{1-1/3}\right)\left(\frac{1}{3}\right)^n + \frac{2}{1-1/3}$$
$$= 3 - 3^{-n}$$

ii. For the difference equation $x_{n+1} + 3x_n = 4$, $x_0 = -1$, we readily see by rewriting the equation that a = -3 and b = 4 with $x_0 = -1$ given. Therefore, using (1), the solution to the difference equation is

$$x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$
$$= \left(-1 - \frac{4}{1-(-3)}\right)(-3)^n + \frac{4}{1-(-3)}$$
$$= 1 - 2(-3)^n.$$

Problem 1.1.3. A logistic difference equation is one of the form $x_{n+1} = \mu x_n (1 - x_n)$ for some fixed $\mu \in \mathbb{R}$. Find exact (closed form) solutions to the following logistic difference equations:

- i. $x_{n+1} = 2x_n(1-x_n)$. Hint: Use the substitution $x_n = (1-y_n)/2$ to transform the equation into a simpler equation that is easily solved.
- ii. $x_{n+1} = 4x_n(1-x_n)$. Hint: Set $x_n = \sin^2(\theta_n)$ and simplify to get an equation that is easily solved.

Solution. i. Let $x_n = (1 - y_n)/2$ for $n \in \mathbb{N}$ with x_0 given. Substituting this expression into the original difference equation yields the new difference equation

$$\frac{1 - y_{n+1}}{2} = 2\left(\frac{1 - y_n}{2}\right) \left[1 - \left(\frac{1 - y_n}{2}\right)\right]$$
$$= (1 - y_n)\left(\frac{1 + y_n}{2}\right)$$
$$= \frac{1 - y_n^2}{2}.$$

This new difference equation reduces to $y_{n+1} = y_n^2$ for $n \in \mathbb{N}$, the solution of which is readily seen to be $y_{n+1} = y_0^{2^{n+1}}$. Making the substitution $y_n = 1 - 2x_n$ shows that, for $n \in \mathbb{N}$, the solution to the original difference equation is given by

$$x_{n+1} = \frac{1 - (1 - 2x_0)^{2^{n+1}}}{2}.$$

ii. Let $x_n = \sin^2(\theta_n)$ for $n \in \mathbb{N}$ with x_0 given. We may assume without loss of generality that $\theta_n \in [0, \pi)$ for if the angle θ_n isn't in the stated range, we can find an integer k such that $\theta_n + k\pi \in [0, \pi)$ and $\sin^2(\theta_n) = \sin^2(\theta_n + k\pi)$. We then declare the sum $\theta_n + k\pi$ to be the new angle θ_n . Substituting the above expression for x_n into the original difference equation yields the new difference equation

$$\sin^{2}(\theta_{n+1}) = 4\sin^{2}(\theta_{n}) \left(1 - \sin^{2}(\theta_{n})\right)$$
$$= \left(2\sin(\theta_{n})\cos(\theta_{n})\right)^{2}$$
$$= \sin^{2}(2\theta_{n}).$$

Knowing that for $x, y \in [0, \pi)$ we have that $\sin^2(x) = \sin^2(y)$ if and only if x = y, the new difference equation reduces to $\theta_{n+1} = 2\theta_n$ for $n \in \mathbb{N}$ where it is implicitly understood that θ_{n+1} will be mapped to the corresponding angle between 0 and π if $2\theta_n \geq \pi$. Using the closed form solution for difference equations in the form of linear maps, the solution to the reduced difference equation is given by $\theta_{n+1} = 2^{n+1}\theta_0$ for $n \in \mathbb{N}$. Making the substitution $\theta_n = \sin^{-1}(\sqrt{x_n})$ shows that, for $n \in \mathbb{N}$, the solution to the original difference equation is given by

$$x_{n+1} = \sin^2(2^{n+1}\sin^{-1}(\sqrt{x_0}))$$

Problem 1.1.4. You borrow P at r% per annum and pay off M at the end of each subsequent month. Write down a difference equation for the amount owing A(n) at the end of each month (so A(0) = P). Solve the equation to find a closed form for A(n). If P = 100,000, M = 1,000, and r = 4, after how long will the loan be paid off?

Solution. \Box

Problem 1.1.7. Let $f(x) = x^2 + bx + c$. Give conditions on b and c for $f: [0,1] \to [0,1]$ to be a dynamical system. Hint: Recall that the maximum and minimum values of a continuous function defined on a closed interval [a,b] occur either at the end points or at the critical points of the function.

Solution. \Box

Problem 1.2.1. Give conditions on b and c for the map $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + bx + c$ to have a fixed point. Use these conditions to show that $f_c(x) = x^2 + c$ has a fixed point provided $c \le 1/4$.

Solution. \Box

Problem 1.2.6. Consider the eventual fixed points of the logistic map $L_{\mu}:[0,1]\to[0,1],$ $L_{\mu}(x)=\mu x(1-x)$ for $0<\mu<4$.

- i. Show that there are no eventual fixed points associated with the fixed point x=0, other than x=1.
- ii. Show that for $1 < \mu \le 2$, the only eventual fixed point associated with the fixed point $x = 1 1/\mu$ is $x = 1/\mu$.
- iii. Show that there are additional eventual fixed points associated with $x=1-1/\mu$ when $2<\mu<3$.
- iv. Investigate the eventual fixed points of the logistic map when $\mu = 5/2$.

 \square