### Seminar aus Maschinellem Lernen



Seminar im Wintersemester 2011/2012 Frederik Janssen, Heiko Paulheim Fachgebiet Knowledge Engineering



### **Organisatorisches**



- Zeitslot:
  - Dienstag, 16:15 17:55
- Infos zur Veranstaltung:
  - http://www.ke.tu-darmstadt.de/lehre/ws-11-12/seminar-ausmaschinellem-lernen
- Wichtig: bitte in TUCaN anmelden!



### **Anforderungen**



- Thema aussuchen und erarbeiten
- 1-2 Papers werden vorgegeben
  - zusätzliche eigene Recherchen wünschenswert
- Vortrag im Seminar halten
  - ca. 30 Minuten plus Fragen und Diskussion
  - Vorträge und Themen können gern vorab besprochen werden
    - Sprechstunde Frederik Janssen: Do 11-12, Heiko Paulheim Di 15-16
    - oder Termin vereinbaren
- Regelmäßige aktive Teilnahme (max. 3 mal fehlen)
  - aktiv: Fragen stellen, mitdiskutieren
  - merke: geht in die Bewertung mit ein, dafür aber keine Ausarbeitung nötig



#### **Themenauswahl**



- Themen werden gleich (grob) vorgestellt
- Papers sind alle auf der Webseite verlinkt; diese Folien werden ebenfalls online gestellt
- Bis Donnerstag abend eine Mail schicken
  - Themenwünsche (drei mit Prioritäten)
  - Datumswunsch:
    - eher früh (November)
    - eher mittelfrüh (Dezember bis Anfang Januar)
    - eher spät (Mitte Januar bis Semesterende)
- Zeitplan wird voraussichtlich am Freitag veröffentlicht



### Inhalte/Ziele



- Schwerpunkte dieses Semester:
  - Regellernen
  - Maschinelles Lernen im Semantic Web
- Ziele:
  - Überblick in die Gebiete geben
  - Einblicke in aktuelle Forschung geben
  - Synergie zwischen Regellernen und Semantic Web herstellen



### Regellernen



- eine der ältesten Disziplinen im Bereich des Maschinellen Lernens (in etwa in den 1960er Jahren erfunden)
- daher:
  - sehr gut untersucht
  - eine Vielzahl von starken Algorithmen
  - extensiv genutzt
- aber:
  - noch immer sind gewisse Komponenten des Regellernens nicht gut verstanden, u.a. Heuristiken oder Suchalgorithmen
- es gibt verschiedene Teilbereiche des Regellernens, die 2 wichtigsten sind Propositional Rule Learning (Aussagenlogisch) und Relational Rule Learning (Inductive Logic Programmming)
  - in diesem Seminar beschäftigen wir uns mit beiden Themenbereichen



### Propositionales und relationales Regellernen



- Propositional Rule Learning
- gegeben:
  - eine Menge von Trainingsbeispielen
- gesucht:
  - eine Regelmenge, wobei die Regeln direkt auf der Trainingsmenge arbeiten
- Relational Rule Learning
- gegeben:
  - eine Menge von Trainingsbeispielen und eine Menge von Hintergrundwissen
- gesucht:
  - eine Regelmenge, wobei die Regeln aus dem Hintergrundwissen gebildet werden



## Regellern-Algorithmen auszugsweise



- Propositional Rule Learning
  - AQ (Michalski, 1969)
  - CN2 (Clark and Niblett, 1989)
  - RIPPER (Cohen, 1995)
  - PART (Frank and Witten, 1998)
- Relational Rule Learning
  - FOIL (Quinlan, 1990)
  - Progol (Muggleton, 1995)



# Separate-and-conquer Regellernen



- auch als Covering-Strategie bezeichnet
- meist genutzte Strategie im propositionalen Regellernen
- guter Überblicksartikel:
  - Separate-and-conquer Rule Learning (Fürnkranz, 1999)
- Ablauf:
  - lerne eine Regel, die einen Teil der Daten beschreibt
  - füge diese Regel der Regelmenge hinzu
  - entferne alle Beispiele, die von der Regel abgedeckt sind
  - lerne die nächste Regel (solange bis alle positiven Beispiele abgedeckt sind)



## Regellernen: Themen General Topic



- paper: Fast Counting with AV-Space for Efficient Rule Induction
  - AV-spaces werden eingeführt
  - um Kandidatenregeln zu bewerten muss die Abdeckung dieser gezählt werden, was einem Durchlauf durch alle Beispiele entspricht
  - AV-spaces sind eine Datenstruktur, die diesen Durchlauf unnötig macht und damit das Lernen von Regeln effizienter macht
  - die Struktur ist für Separate-and-conquer Algorithmen geeignet



## Regellernen: Themen Probabilistic Rule Learning & Ranking



- paper: Probabilistic Rule Learning
  - der Lerner FOIL wird um probabilistische Methoden erweitert
- paper: Learning to rank cases with classification rules
  - üblicherweise werden Entscheidungsbäume genutzt um zu ranken (Beispiele werden nach der Sicherheit der Vorhersage gerankt)
  - im paper wird das Ranken mit Regeln beschrieben (3 verschiedene Ansätze werden disktuiert)
  - abschließend: empirische Studie



## Regellernen: Themen Features and Rule Learning Algorithms



- paper: Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms
  - eine Methode zur Generierung von Features wird eingeführt
  - theoretische Fundierung, dass Feature-Generierung und Regelkonstruktion getrennt betrachtet werden sollten
  - Betrachtungen zu fehlenden Werten und ungenauen Attributwerten (bei numerischen Features)



### Regellernen: Themen User-based Evaluation of Rules



- papers: Gray Box Robustness Testing of Rule Systems & Declarative Specification and Interpretation of Rule-Based Systems
  - Erweiterung von DATALOG
  - neue Evaluaierungsstrategien
  - Betrachtungen zu fehlerhaften Benutzereingaben
  - Fallstudie



## Regellernen: Themen Search algorithms for Rule Learners



- paper: Finding a short and accurate decision rule in disjunctive normal form by exhaustive search
  - Einführung des Algorithmus EXPLORE (Regellerner, der eine vollständige Suche benutzt)
  - Pruning-Strategie ähnlich wie in RIPPER (durch Validationsdatenset)
  - Vergleich zu 8 anderen Regellernern
  - interessante Aussage:
    - je besser/tiefer die Suche desto besser die Genauigkeit der gefundenen Regelmengen
    - kontrovers zu vorher entdecktem Problem des "Oversearching"
    - Literatur:
      - Oversearching and layered search in empirical learning (Quinlan and Cameron-Jones, 1995)
      - A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning (Janssen and Fürnkranz, 2009)



## Regellernen: Themen Statistics



- paper: A Statistical Approach to Rule Learning
  - 2 Hauptprobleme beim Regellernen:
    - Berechnungsaufwand
    - Überanpassung
  - statistischer Ansatz mit gewichteten Regeln; formuliert als konvexes Optimierungsproblem
    - finde Regeln mit großem Abstand und kleiner Varianz
  - Überanpassung wird durch Selektion von Regelmengen verhindert
- paper: Efficient Rule Ensemble Learning using Hierarchical Kernels
  - Regularisierung hierarchischer Kernels kann als Bias zu kleinen Regeln interpretiert werden
  - Reformulierung der Untermengenselektion, um Optimierungsproblem konvex zu machen



## **Regellernen: Themen Verification/Anomalies of ontologies with rules**



- papers: Verification and Refactoring of Ontologies With Rules & Towards the Verification of Ontologies with Rules & Anomalies in ontologies with rules
  - papers überlappen stark
  - Ontologien mit Regeln
    - Probleme:
      - Evaluierung muss angepasst werden
      - Anomalien treten auf (z.B. Zyklen oder Redundanz)
    - erste Lösungsansätze werden gegeben





#### Das "klassische" Web





Dr. Mark Smith
Physician
Main St. 14
Smalltown
Mon-Fri 9-11 am
Wed 3-6 pm

Print in bold: "hmf298hmmhudsa"
Print in italics: "mj2i9ji0"
Print normal: "fdsah
02hfadsh0um2m0adsmf0ihm
asdfjköfdsa298ndsfmij32mio
lk2mjpoimjiofdpmsajiomjm"





- Problem: Suche ist sehr schlecht
- Information von verschiedenen Seiten muss manuell kombiniert werden
- Lösungsansatz Web Mining:
  - Der Maschine beibringen, im klassischen Web zu lesen
- Lösungsansatz Semantic Web:
  - Information für Maschinen aufbereiten







```
ms:person a dbpedia:Physician.
ms:person address ms:addr.
ms:person name "Mark Smith"
ms:addr street "Main St. 14"
ms:addr city "Smalltown"
...
```





Ontologien: formalisiertes Wissen über eine Domäne







 Aus Instanzdaten (A-box) und Ontologie (T-box) kann jetzt komplexe Information abgeleitet werden

?bl a BrokenLeg

```
ms:person a dbpedia:Physician.
ms:person address ms:addr.
ms:person name "Mark Smith"
ms:addr street "Main St. 14"
ms:addr city "Smalltown"
...
```









Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/







Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/



### Werbung



- Vorlesung Semantic Web (3+1)
  - dieses Semester neu!
  - Dienstag 9:50 11:30
  - Donnerstag 8:55 10:35
  - in S202/C110





- Data Mining on Linked Open Data
  - Wie kann man Linked Open Data für "klassische" Data-Mining-Probleme nutzen?
- Drei Themen:
  - Statistical SPARQL
  - ProLOD und LiDDM
  - Automated Feature Generation from Linked Open Data





- Ontology Learning
  - Aus Instanzdaten (A-box) automatisch auf die zugrunde liegende Ontologie (T-box) schließen
- Vier Themen:
  - Statistische Ansätze
  - ILP-basierte Ansätze (z.B. DL-Learner)
  - Regellern-basierte Ansätze (z.B. DL FOIL)
  - Information Extraction: Lernen von Ontologien aus Text





- Learning Queries
  - SPARQL-Abfragen sind für den Nutzer nicht leicht zu erstellen
  - Query by example: Nutzer gibt Beispiel-Ergebnisse, daraus wird die Abfrage gelernt
    - AutoSPARQL
  - Lernen von Zusammenhängen (Pathfinding)
    - Nutzer gibt Beispiele für einen Zusammenhang vor
    - die Abfrage, die den Zusammenhang erklärt, wird daraus gelernt





- Ontology Matching
  - Verschiedene Ontologien werden im Semantic Web genutzt
  - Ontology Matching findet "Übersetzungen" zwischen Ontologien
  - Es gibt viele unterschiedliche Matching-Tools
    - Machine Learning: Trainieren eines Ensembles
    - Optimale Kombination von Ergebnissen



#### Literatur



- R. S. Michalski. On the Quasi-Minimal Solution of the Covering Problem. In (FCIP-69), pages 125–128, 1969.
- P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learning, 3(4):261–283, 1989.
- W. W. Cohen. Fast Effective Rule Induction. In (ICML-95), pages 115–123, 1995.
- E. Frank and I. H. Witten. Generating Accurate Rule Sets Without Global Optimization. In (ICML-98), pages 144–151, 1998.
- J. R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, 5:239–266, 1990.
- S. H. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13(3,4):245–286, 1995.
- J. Fürnkranz. Separate-and-Conquer Rule Learning. Artificial Intelligence Review, 13(1):3–54, 1999.
- J. R. Quinlan and R. M. Cameron-Jones. Oversearching and Layered Search in Empirical Learning. In (IJCAI-95), pages 1019–1024, 1995.
- F. Janssen and J. Fürnkranz. A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. In (SDM-09), pages 329–340, 2009.

