Characterization of the stochastic signal originating from compact binary populations as measured by LISA

Nikolaos Karnesis et al

Table of Contents

- Introduction
 - Gravitational waves
 - Ground-based observatories
 - LISA
- 2 Methodology
- Gravitational wave's detector
 - LIGO
 - Interferometer
 - Gravitational waves' detection
- Strain Sensitivity

Gravitational waves

Ripples in space-time caused by accelerated masses.

Einstein field equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u} \qquad |h|<<1$$
 $ar{h}_{\mu
u}=h_{\mu
u}-rac{1}{2}\eta_{\mu
u}h$

Credit: R. Hurt (Caltech-IPAC)

Gravitational waves

Lorenz gauge: $\partial_{\mu} \bar{h}^{
u\mu} = 0$

Wave equation

$$\Box \bar{h}_{\mu\nu} = 0$$

$$ar{h}_{\mu
u} = A_{\mu
u} \exp{(ik_{lpha}x^{lpha})}$$

Transverse traceless gauge: $\bar{h}_{\mu\nu}U^{\mu}=0$ and $\bar{h}_{\mu}{}^{\mu}=0$

$$16 \xrightarrow{symetry} 10 \xrightarrow{Lorenz} 6 \xrightarrow{TT} 2$$

$$h_{\mu
u} = egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & h_+ & h_ imes & 0 \ 0 & h_ imes & -h_+ & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

LIGO Structure

Giant Michelson interferometer

Credit: Caltech/MIT/LIGO Lab

Credit: D. V. Martynov et all, 2018

$$S(t) = h(t) + n(t)$$

LIGO Noise budget

Hanford detector

Credit: Craig Cahillane et all, 2022

Dominant noise:

- Quantum shot in high frequency
- seismic noise in low frequency

First detection

GW150914

Credit: B. P. Abbott et al., 2016

Laiser Interferometer Space Antenna

Credit: Karsten Danzmann et al., 2017

Credit: Jean-Baptiste Bayle et al., 2021

LISA Band

Credit: Karsten Danzmann et al., 2017

GW sources in LISA band

- Supermassive black hole binaries (SMBHBs)
- Stellar-mass black hole binaries (SBBHs)
- □ Ultracompact galactic binaries (CGBs)
- extreme mass ratio inspiral (EMRIs)
- □ stochastic GW background

LISA Isuues

- □ LISA data are expeted to be signal dominated
- □ LISA sources are expected to be long-lived
- □ GW signals will be overlapping in time(frequency)

LISA Isuues

- □ LISA data are expeted to be signal dominated
- □ LISA sources are expected to be long-lived
- GW signals will be overlapping in time(frequency)
- Some signals can be resolvable due to high signal to noise ratio

LISA Isuues

- □ LISA data are expeted to be signal dominated
- □ LISA sources are expected to be long-lived
- GW signals will be overlapping in time(frequency)
- Some signals can be resolvable due to high signal to noise ratio
- remaining signals will affect the sensitivity as extra noise (confusion noise)

Overview

- Simulating around 30 milion CGBs from Radler LISA data challenge dataset
- Simulating the instumental noise using the LISA code simulatior
- \square For each T_{obs} gererate the idealized dataset in the frequency domain
- □ Apply the method to find the final sensitivity
- ☐ Fit the data with theoretical curve

Methode

 Assumpion: Bright sources with a signal-to-noise ratio larger than a given threshold are detected and charachterized without systematic bias or source cofusion.

SNR

$$\begin{split} \rho_{tot}^2 &= \sum_k (h_k | h_k), \quad \text{k:noise-orthogonal TDI variables} \\ h_k | h_k &= 4 \int_0^\infty df \frac{|\tilde{h}_k(f)|^2}{\tilde{S}_n(f)}, \quad \tilde{S}_n(f) : \text{one-sided PSD} \\ \tilde{S}_n(f) &= \tilde{S}_{instr}(f) + \tilde{S}_{conf}(f) \end{split}$$

Methode

- Simulating 30 milions CGBs
- Calculating the PSD of the signal and the instrumental noise
- Calculating the SNR of each source with respect to the instrumental noise (ρ_i^{iso})
- 4 Stimating the SNR of each source using either a running mean or median on the power spectrum of the data (ρ_i)
- **5** If $\rho_i > \rho_0$ the source will be subtracted from the data
- 6 iterate the process

А

А

А

GW151226

Α

Our Group

Α

Reference

Α

Thank you!