Discrete Mathematics: Lecture 25

Part IV. Graph Theory

Graph Coloring

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2025

Dual Graph

Properties of dual graph

- If G is a planar connected graph, then $v^* = f$, $e^* = e$, and $f^* = v$
- If G is a planar connected graph then $G^{**} = G$ (not true if the graph is disconnected!)

Definition

A planar graph is said **self-dual** if it is isomorphic to its dual.

Example: The wheels W_n are self-dual graphs.

Proposition

A self-dual graph with v vertices has 2v - 2 edges.

Proof: We have $v^* = v = f^* = f$ because the graph is self-dual. By Euler's formula

$$f = e - v + 2 \Rightarrow v = e - v + 2 \Rightarrow 2v - 2 = e$$

Coloring a Map

Coloring regions of the map \Leftrightarrow Coloring vertices of the dual graph

Graph Coloring

DEFINITION: Let G = (V, E) be a simple graph. A k-coloring $_{k-\#}$ of G is a map $f: V \to [k]$ such that $f(u) \neq f(v)$ whenever $\{u, v\} \in E$.

• chromatic number $(\chi(G))_{\text{ex}}$: the least k s.t. G has a k-coloring.

$$\chi(G) = 3$$

The chromatic number is at least 3 because a; b; c is a circuit of length 3

Graph Coloring

DEFINITION: Let G = (V, E) be a simple graph. A k-coloring $_{k-\#}$ of G is a map $f: V \to [k]$ such that $f(u) \neq f(v)$ whenever $\{u, v\} \in E$.

• chromatic number $(\chi(G))_{\text{ex}}$: the least k s.t. G has a k-coloring.

$$\chi(G) = 4$$

Graph Coloring

THEOREM: Let G = (V, E) be a simple graph.

- $1 \le \chi(G) \le |V|$
- $\chi(G) = 1$ iff $E = \emptyset$
- $\chi(G) = 2$ iff G is bipartite and $|E| \ge 1$.
- $\chi(K_n) = n$ for every integer $n \ge 1$.
 - $\chi(G) \ge n$ if G has a subgraph isomorphic to K_n
- $\chi(C_n) = 2 \text{ if } 2|n; \chi(C_n) = 3 \text{ if } 2|(n-1); (n \ge 3)$
- $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G) = \max\{\deg(v) : v \in V\}$.

Application

PROBLEM: How can the final exams at a university be scheduled so that no student has two exams at the same time?

- There are 7 different courses, they are vertices of a graph.
- Two courses are adjacent if there is a student registered both courses.
- Choose time slots for the courses such that no two adjacent courses take place at the same time. $1 \le \chi(G) \le 7$
 - $\chi(G)$ time slots is needed. $1 \le \chi(G) \le \Delta(G) + 1 = 6$ $\chi(G) \ge 4$: G has a subgraph isomorphic to K_4

4-coloring Theorem

Theorem (Four coloring Theorem)

The chromatic number of a simple planar graph is no greater than 4.

Remarks: The proof of the 4-coloring Theorem depends on a computer. The two previous theorems are true for planar graphs only. A non planar graph can have an arbitrarily large chromatic number.

5-coloring Theorem*

Theorem (5-coloring Theorem)

The chromatic number of a planar simple graph is no greater than 5.

Proof: Induction on the number of vertices of the graph

- If $v \le 5$ the theorem is true.
- Assume that all planar simple graph with k vertices can be 5-colored. Consider a simple planar graph with k+1 vertices. G has a vertex u of degree at most 5 (by Corollary 2 of Euler's formula).
- Let G' be the subgraph of G obtained by removing u (and the edges incident to it).
- G' is a planar simple graph with k vertices \Rightarrow it can be 5-colored by induction hypothesis.
- **Case 1:** if the neighbours of u in G do not use all the 5 colors, we use one remaining color for u and the theorem is true.
- **Case 2:** *u* has exactly 5 neighbors using the 5 colors we have.

5-coloring Theorem*

Denote b, r, g, y, p the neighbors of u in clockwise order. Assume that b is colored in blue and g is colored in green.

Take the subgraph of G formed by vertices in blue and green (and edges between them).

if the vertices b and g are not in the same connected component: in the component containing b, interchange the colors blue and green on the vertices. The graph G' is still 5-colored, and the color blue is now available for u.

5-coloring Theorem*

Denote b, r, g, y, p the neighbors of u in clockwise order. Assume that b is colored in blue and g is colored in green.

Take the subgraph of G formed by vertices in blue and green (and edges between them).

2 if the vertices b and g are in the same connected component: consider a path from b to g in the "blue-green subgraph". This path with edges (g, u) and (u, b) forms a circuit in G. This circuit divides the plane into two regions. The vertex y (colored in yellow) is in one of them, r (colored in red) in the other. In the region containing r, exchange the colors yellow and red. Now red is available for u.

Tree

Definition

- A **tree** is a connected undirected graph with no simple circuits.
- A **forest** is an graph such that each of its connected components is a tree.

G, H, I are trees, but K is not a tree.

Applications

Trees are widely used in AI & other CS sub-areas

AlphaGo

Monte Carlo Tree Search

Point Cloud/3D Shape

KD Tree

Characterization of Tree

Theorem

An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Proof: (\Rightarrow) Assume T is a tree and let u and v be two vertices. T is connected so there is a *simple path* P_1 from u to v. Assume there is a second simple path P_2 from u to v.

Claim: There is a simple circuit in T.

Let $u = x_0, x_1, \dots, x_n = v$ denote the vertices of P_1 and $u = y_0, y_1, \dots, y_m = v$ the vertices of P_2 .

 P_1 and P_2 start at u but are not equal so must diverge at some point.

• If they diverge after one of them has ended, then the remaining part of the other path is a circuit from v to v.

Characterization of Tree

• Otherwise, we can assume

$$x_0 = y_0, x_1 = y_1, \dots, x_i = y_i$$

and $x_{i+1} \neq y_{i+1}$.

We follow then y_{i+1}, y_{i+2}, \ldots until we reach a vertex of P_1 .

Then go back to x_i following P_1 forwards or backwards.

This gives a circuit which is simple because P_1 and P_2 are, and we stop using edges of P_2 as soon as we hit P_1 .

- (\Leftarrow) Assume there is a unique simple path between any two vertices of the graph T. Then:
 - *T* is connected (by definition)
- if T has a simple circuit containing the vertices x and $y \rightsquigarrow$ two simple paths between x and y.

Theorem

A tree with n vertices has n-1 edges.

Theorem

A tree with n vertices has n-1 edges.

Proof: By induction on the number of vertices.

- n = 1: A tree with one vertex has no edge.
- $k \rightsquigarrow k+1$: Assume every tree with k vertices has k-1 edges. Let T be a tree with k+1 vertices, and v a leaf (which exists because the tree has a finite number of vertices).

Let T' be the tree obtained from T by removing v (and the edge incident to it). T' is a connected tree with k vertices \Rightarrow it has k-1 edges by induction hypothesis.

 \Rightarrow T has k+1 vertices and k edges.

Tree = connected with no simple circuit (definition)

- (1) connected
- (2) no simple circuit
- (3) (n-1) edges (n=nb of vertices)

Previous theorem: $(1) + (2) \Rightarrow (3)$

We also have: $(1) + (3) \Rightarrow (2)$ $(2) + (3) \Rightarrow (1)$

Example: For what value of m, n the complete bipartite graph $K_{m,n}$ is a tree?

 $K_{m,n}$ is connected, has m+n vertices and $m \times n$ edges. It is a tree if:

$$m \times n = m + n - 1 \Longleftrightarrow (n - 1)m = n - 1$$

If $n \neq 1$: m = 1

If n = 1: $m \in \mathbb{N}^*$

Rooted Tree

Definition

A **rooted tree** is a tree in which one vertex has been designated as the root and every edge is directed away from the root.

Remarks: • A rooted tree is a directed graph.

- We usually draw a rooted tree with its root at the top of the graph.
- We usually omit the arrows on the edges to indicate the direction because it is uniquely determined by the choice of the root.
- Any non rooted tree can be changed to a rooted tree by choosing a vertex for the root.

Rooted Tree

Definition

Let T be a rooted tree and v a vertex which is not the root. We call

- parent of v the unique vertex u such that there is an edge from u to v,
- **child** of v a vertex w such that there is an edge from v to w,
- **siblings** vertices with the same parent,
- ancestors of v all vertices in the path from the root to v,
- descendants of v all vertices that have v as an ancestor,
- leaf a vertex which has no children,
- internal vertex a vertex that has children,
- **subtree with** *v* **at its root** the subgraph of *T* consisting of *v* and its descendants and the edges incident to them.

- *r* is the root
- v is child of uand parent of w
- *v* and *x* are siblings

Rooted Tree

Definition

- A rooted tree is called an m-ary tree if every internal vertex has no more than m children.
- A rooted tree is called a **full m-ary tree** if every internal vertex has exactly *m* children.
- An m-ary tree with m=2 is called a **binary tree**. In this case if an internal vertex has two children, they are called **left child** and **right child**. The subtree rooted at the left (resp. right) child of a vertex is called the **left (resp. right) subtree** of this vertex.

 T_1 is a 4-ary tree, T_2 a full 3-ary tree, T_3 a full binary tree.

Theorem

A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Proof: Each vertex (except the root) is the child of an internal vertex.

There are *i* internal vertices, each with *m* children

 \Rightarrow mi vertices + root = mi + 1 vertices

A full m-ary tree with

- 1 n vertices has i = (n-1)/m internal vertices and $\ell = ((m-1)n+1)/m$ leaves,
- 2 *i internal vertices has* n = mi + 1 *vertices and* $\ell = (m 1)i + 1$ *leaves,*
- 3 ℓ leaves has $n=(m\ell-1)/(m-1)$ vertices and $i=(\ell-1)/(m-1)$ internal vertices.