

Métodos Numéricos (2001852)

I Semestre 2016

Laboratorio # 7	Profesor: Camilo Cubides
Nombre:	DNI:
Nombre:	DNI:
Calificación: —	

Nota: Para las siguientes funciones que deben ser programas en SciLab, debe suponerse que previamente existe cargada una función f (miembro derecho de la ecuación diferencial) en el sistema SciLab definida así:

sobre ésta es sobre la cual se harán los cálculos para aproximar la ecuación diferencial.

1. Implementar en SciLab una función que permita obtener una aproximación a la solución y de la ecuación diferencial y' = f(t, y) en el intervalo $[t_0, t_n]$ con condición inicial $y(t_0) = y_0$, utilizando el método de Euler. El encabezado de la función debe ser el siguiente:

donde to es t_0 , yo es y_0 , tM es t_M el punto donde se desea calcular la aproximación de y y M es el número de particiones que definen h (el tamaño del paso).

2. Implementar en SciLab una función que permita obtener una aproximación a la solución y de la ecuación diferencial y' = f(t, y) en el intervalo $[t_0, t_n]$ con condición inicial $y(t_0) = y_0$, utilizando el método de Runge-Kutta de orden 4. El encabezado de la función debe ser el siguiente:

donde t0 es t_0 , y0 es y_0 , tM es t_M el punto donde se desea calcular la aproximación de y y M es el número de particiones que definen h (el tamaño del paso).