RS∧°Conference2016

San Francisco | February 29 – March 4 | Moscone Center

SESSION ID: SBX1-R12

Industrial Defence In-Depth

Andrey Nikishin

Special Projects Director Kaspersky Lab @andreynikishin

Agenda

Industrial specifics

Industrial Cyber Security in Depth

RSA Conference 2016

INDUSTRIAL SPECIFICS

Critical infrastructure sectors By State

- Energy
- Transport
- Water
- Food

- Communications
- •Emergency Services
- Financial Services
- Government
- Health

- Energy
- Chemical
- Commercial Facilities
- •Nuclear
- Transportation Systems
- Water and Wastewater
- Critical Manufacturing
- Dams
- Defense Industrial Base
- Food and Agriculture

- Emergency Services
- Communications
- Financial Services
- Government Facilities
- Healthcare and Public Health
- Information Technology

IS all INDUSTRIAL Infrastructure Critical?

Simplified IT schema

Simplified ICS (OT) network schema

ICS Network: Common devices

ICS Network: Common devices

Sensors and actuators: allow interaction with the physical world (pressure sensor, valves, motors, ...)

Local HMI: Human-Machine Interface, permits the supervision and control of a subprocess

PLC: Programmable Logic Controller: manages the sensors and actuators

Supervision screen: remote supervision of the industrial process

Data historian: Records all the data from the production and Scada networks

RTU: Remote Terminal Unit (standalone PLC)

IED: Intelligent Electronic Device (smart sensor)

Industrial Security Approach

Industrial Network

Corporate Network

- 1. Availability
 - 2. Integrity
- 3. Confidentiality

- 1. Confidentiality
 - 2. Integrity
 - 3. Availability

- Corporate IT Security is about Data protection
- Industrial Security is about Process protection
- > Process should be continuous and only then secure

WHY NOT TO USE IT SOLUTIONS? (1)

Technologies

Antivirus

Patching

Security testing and audit

IT

Typical, highly automated

Typical, highly automated

Use of modern tools, external experts

ICS

Difficult, performance, FP, legacy systems

Difficult, Require switching to service mode

Modern method and tools not applicable

WHY NOT TO USE IT SOLUTIONS? (2)

Technologies

Change management

Incident management

Equipment life cycle

IT

Typical

Event handling, recording is automated.

Post mortem and audit analysis is common

ICS

Non-standard,
Per case solutions

Difficulty replaying events

Not automated only when necessary

WHY NOT TO USE IT SOLUTIONS? (3)

Technologies

Physical security

Security development cycle

Compliance to standards

IT

Low security for offices, High for data centers

Integrated into development cycle

Limited to some areas

ICS

Highly demanded

Rare in use

Highly demanded

Industrial Security today — Low awareness

Doesn't see how
Cyber Security spending
relates to Revenues

IT Security

Is not allowed to go into Industrial sites

Engineers

Are more concerned about security measures than malware

Mutual understanding and partnership between these 3 are crucial to successful cyber security and Critical Infrastructure Protection

What makes protection difficult today

Low awareness, mix of hype and real, no 'hard data'

Typical 'office' IT security is not applicable

Most attacks target the following objects: old, unsecure and hard to update

Lack of cyber security skills, and industrial cyber security practice

Lack of OT cyber security ownership

Industrial Specifics. Summary

- Industrial Security is about Process protection
- Process should be continuous and only then secure
- IT vs OT
- The ICS network protocols do not have integrity check, user authorization and authentication
- Old or unsupported OS with no patching (Windows XP too)
- Specially designed approach, products & services

RSAConference2016

Industrial Defence In-Depth

Cyber security is a process not a project

Risk & threats awareness

Risk assessment

Support & update

Implementation

Cyber risks and threats

- Mistakes by SCADA operators or contractors (3rd parties)
- Actions of Insiders (made on purpose or not)
- Incidental infection
- Infection via contractors (removable media or network connection)
- Lack of awareness and hard data for incident forensics
- Hacktivists actions and cyber hooligans attacks
- APTs and Governmental-backed attacks
- Cyber sabotage (any sort of it)
- Compliance
- Fraud

ATTACK VECTORS

- Vulnerable software (SCADA, OS, 3rd-party)
- ERP/MES & Internet connections
- Uncontrolled software usage
- Unauthorized mobile device usage
- Uncontrolled external devices (USB, SATA, etc.)
- 3rd parties and contractors
- Supply chain
- Malware

Conceptual Topology

Risks, Malware & Internet Treats

LEVEL 3

 Manufacturing Operations management

- Malware via USB, Network, Corporate network, email, Web
- > Human actions (intention or not) (insiders, contractors)
- > Internet attacks (hackers, radicals, hacktivists, etc)

LEVEL 2, 1

- > SCADA
- > HMI
- Engineering Wks
- > PLC, TRU
- etc

- Malware via USB, Network, Contractors
- Human actions (insiders, contractors)
- Internet attacks

- Malware via Industrial network
- Human actions

LEVEL 0

> Physical

> Human

Risk assessment (Security gap assessment)

Cyber risks and threats

- Malware & Attacks
 - Incidental infection
 - Infection via contractors (removable media or network connection)
 - Hacktivists actions and cyber hooligans attacks
 - APTs & Governmental-backed attacks
 - Cyber sabotage (any sort of it)
- Human actions
 - Mistakes by SCADA operators or contractors (3^d parties)
 - Actions of Insiders (made on purpose)
- Compliance
- Lack of awareness and hard data for incident forensics

Nodes Security

Firewall/IDS

Policy

Education

Protect, Prevent,

Report & Remediate

Network Security

Policy

Education

Detect, report

Defense strategies

Seven Strategies to Defend ICSs

Node Security

Protect & Prevent & Report & Remediate

- Works on ICS/SCADA Servers, engineering workstations and supports Human Machine Interfaces
- Run in high-availability mode & without updates
- Whitelisting is main technology
- External Device Control
- Vulnerability Assessments

Network Security

Detect & Report

- Network traffic anomaly detection in a passive mode
- Detection of potentially dangerous control commands from technological process point of view
- Network integrity monitoring (Detection of new network devices and communications in ICS network)
- Collect and store events -- Forensic, monitoring and incident detector tool

Firewall/IDS/Remote access

Protect & Prevent & Detect & Report

- Support industrial protocols
- Knows specific industrial attacks

Pilot testing

- Pilot testing on test environment is an essential part
- Fine-tuning
- Customisation/for industry/ for customer / for product line
- Certification / vendors & regulators
- Approval by a client

Standards & best practices

International:

- ISA/IEC-62443 (Formerly ANSI/ISA-99): Security for Industrial Automation and Control Systems
- ISO/IEC 27009: Information technology Security techniques Sector-specific application of ISO/IEC 27001
- ISO/IEC 15408: Information technology Security techniques Evaluation criteria for IT security
- IEEE 1402 : IEEE Guide for Electric Power Substation Physical and Electronic Security

Industrial:

- NIST SP 800-53: Information Security
- NERC: Cybersecurity Risk Management Process (RMP) Guideline
- NERC CIP-002-3: Cyber Security Critical Cyber Asset Identification
- NERC CIP-005-3a: Cyber Security Electronic Security Perimeter(s)
- American Petroleum Institute : API 1164 'SCADA Security'
- American Gas Association : AGA 12-4 Protection Embedded in SCADA Components

Other:

- NERC: Cybersecurity Risk Management Process (RMP) Guideline
- NERC CIP-002-3: Cyber Security Critical Cyber Asset Identification
- NERC CIP-005-3a: Cyber Security Electronic Security Perimeter(s)
- American Petroleum Institute: API 1164 'SCADA Security'
- American Gas Association: AGA 12-4 Protection Embedded in SCADA

 Components

 RSAConference 2016

Education

- Cyber Security Awareness (should be part of induction process)
 - Employee cyber security training
 - ICS Cyber Security basics
 - Social attack in critical infrastructure environment
- Cyber Security for SOC
 - Advanced cyber security trainings (malware analysis, reverse engineering etc.) on yearly basis

Incident response & Forensic

- Common response and forensic services
 - On-demand reports
 - Customized reports on incidents/infections
 - Early warnings on threats
 - Private investigations (from malware analysis to complex service)
- Own CERT
 - Help with organizing it
 - Training for staff
 - Reports

Summary

- Industrial Cyber Security is not like Office Cyber Security
- It requires specific approach, products and services
- Employees are the weakest link so education is extremely important
- Cyber security is not a project, it is a process

RS∧°Conference2016

San Francisco | February 29 – March 4 | Moscone Center

SESSION ID: SBX1-R12

Industrial Defence In-Depth

Andrey Nikishin

Special Projects Director Kaspersky Lab @andreynikishin

