差分方程

差分方程是在离散点(通常是时间)上描述现实世界中变化过程的模型,它在各种实际问题中有着广泛的应用。在人口、经济和生产中,很多数据都是按天、周、月和年等进行汇总和统计的,利用差分方程来刻画这些问题是一个很自然的选择。比如,还银行贷款通常按月进行的,人口总数是按年进行统计的。即使是连续问题,在实际计算中也经常需要离散化,最终还是需要求解一个差分方程。利用差分方程解决实际问题大致需要3个步骤:

第1步:设定好实际问题中的未知变量,建立相邻自变量之间的递推关系, 从而得到差分方程。

第2步:对上述差分方程,若能求解的则求出其解,若不能求解的或求解比较困难的,则用定性的方法讨论其解的变化趋势及性质。

第3步:将第2步所得的结果反馈到实际问题中去。

第一节 还银行贷款问题

目前,我国银行主要有两种还款方式:等额本息和等额本金。下面,我们分别建立这两种还款方式的数学模型。

(i) 等额本息

等额本息每月还款金额保持不变。银行从每月还款中,先收取剩余本金利息,再收本金。本金的利息占月供款中的比例随剩余本金的减少而降低,本金在月供款中的比例因而升高,直到还清全部本金。以贷款 55 万元,还款年限为 17 年,银行还款利率为 4.5% 为例,表 1 给出了等额本息前 6 个月的还款情况。

表 1. 等额本息前 6 个月的还款情况

	还款月份	偿还本金	偿还利息	偿还本息合计
--	------	------	------	--------

1	1799.86	2062.50	3862.36
2	1806.61	2055.75	3862.36
3	1813.38	2048.98	3862.36
4	1820.18	2042.18	3862.36
5	1827.01	2035.35	3862.36
6	1833.86	2028.50	3862.36

设贷款总额为A,银行贷款的年利率为B,还款总时间为n个月,每月还款额为x,设第k个月所欠银行的贷款为 x_k ,则有:

$$x_{k+1} = (1+\beta)x_k - x \tag{1}$$

其中 $x_0 = A$, $\beta = \frac{B}{12}$ 为月利率。使用数学归纳法,可以证明,当 $k \ge 1$ 时有:

$$x_{k} = A(1+\beta)^{k} - x[1+(1+\beta)+...+(1+\beta)^{k-1}]$$

$$= A(1+\beta)^{k} - x\frac{1-(1+\beta)^{k}}{1-(1+\beta)}$$

$$= A(1+\beta)^{k} - x\frac{(1+\beta)^{k}-1}{\beta}$$
(2)

由于 $x_n = 0$, 在公式(2)中, 令k = n, 可计算出每月还款额

$$x = \frac{A\beta(1+\beta)^n}{(1+\beta)^n - 1} \tag{3}$$

将(3)代入(2)中, 可得各月所欠银行的贷款为

$$x_k = A \frac{(1+\beta)^n - (1+\beta)^k}{(1+\beta)^n - 1}$$

记第k个月所还银行的本金和利息分别为 y_k 和 z_k ,则有:

$$y_{k} = x_{k-1} - x_{k}$$

$$= \frac{A\beta(1+\beta)^{k-1}}{(1+\beta)^{n} - 1}$$
(4)

$$z_k = x - y_k$$

$$= \frac{A\beta \left[(1+\beta)^n - (1+\beta)^{k-1} \right]}{(1+\beta)^n - 1}$$

还款总额为

$$nx = \frac{nA\beta(1+\beta)^n}{(1+\beta)^n - 1}$$

通过(4)式可以看出,等额本息在前期还款时,每月所还的本金较少,利息较多。因此,这种还款方式不适合提前还贷。事实上,表 1 也验证了这个情况。

图 1. 不同贷款利率每月还款金额随还款年限的变化图(等额本息)

图 1 给出了等额本息不同贷款利率每月还款金额随还款年限的变化,从图中可以看出,还款年限越长,每月还款金额越少。图 2 给出了不同贷款利率还款总金额随还款年限的变化图,从图中可以看出,还款年限越长,还款总金额越多。若还款年限较短,则还款总金额受利率影响不明显(以上两图均以贷款 100 万元为例)。

图 2. 不同贷款利率还款总金额随还款年限的变化图(等额本息)

(ii) 等额本金

等额本金每月归还的本金始终保持不变,利息随剩余本金的减少而减少,直到还清全部本金。

仍以贷款 55 万元,还款年限为 17 年,银行还款利率为 4.5% 为例,表 2 给出了等额本金前 6 个月的还款情况。

还款月份	偿还本金	偿还利息	偿还本息合计
1	2696.08	2052.39	4758.58
2	2696.08	2042.28	4748.47
3	2696.08	2032.17	4738.36
4	2696.08	2022.06	4728.25
5	2696.08	2011.95	4718.14
6	2696.08	2001.84	4708.03

表 2. 等额本金前 6 个月的还款情况

设贷款总额为A,银行贷款的年利率为B,还款总时间为n个月,则第k个月还款额 c_k 为

$$c_k = \frac{A}{n} + \left[A - (k-1)\frac{A}{n} \right] \beta$$
$$= A\beta + \frac{A}{n} \left[1 - (k-1)\beta \right]$$

还款总额为

$$\sum_{k=1}^{n} c_{k} = \sum_{k=1}^{n} \left\{ A\beta + \frac{A}{n} [1 - (k-1)\beta)] \right\}$$
$$= A + \frac{(n+1)A\beta}{2}$$

图 3. 等额本息和等额本金还款总金额随还款年限的变化图

图 3 给出了等额本息和等额本金还款总金额随还款年限的变化图(以贷款 100 万元为例),从该图中可以看出,等额本金的还款总金额少于等额本息的还款总金额。若贷款利率较高,还款年限较长,则差距比较明显。通常情况下,等额本金的还款总金额少于等额本息的还款总金额。

图 4 给出了等额本息和等额本金每月的还款金额(以贷款 100 万元,还款 20 年为例),从该图中可以看出,等额本息每月还款金额恒定,等额本金每月还款金额随时间增加而减少。在还款前期,等额本金每月还款金额高于等额本息每月还款金额。

图 4. 等额本息和等额本金每月的还款金额

第二节 生态学中的虫口模型

在种群生态中考虑像蚕这种类型昆虫数目(即"虫口")的变化。这种昆虫只在一定季节中生存,一代和一代之间没有交叠。成虫产卵后,当年全部死亡。到第二年的合适季节,每个虫卵孵化成一个幼虫。

设第k年的虫口为 p_k ,每年每个成虫平均产卵c个,则有

 $p_{k+1} = cp_k$

若考虑周围环境所能提供的空间与食物是有限的,虫口受传染病以及虫子天 敌等因素的影响,以上差分方程将被修改成为如下的虫口方程

$$p_{k+1} = cp_k - bp_k^2 \tag{1}$$

其中b>0称为阻滞系数,c>0。差分方程(1)是描述阻滞增长的常用模型,也成

为 Logistic 差分模型。将等式(1)两端同时乘以 $\frac{b}{c}$, 我们有:

$$\frac{b}{c} p_{k+1} = b p_k - \frac{b^2}{c} p_k^2 = c \left[\frac{b}{c} p_k - \left(\frac{b}{c} p_k \right)^2 \right]$$

$$\Leftrightarrow x_k = \frac{b}{c} p_k, \quad \text{則有:}$$

$$x_{k+1} = c x_k (1 - x_k) \tag{2}$$

下面讨论由(2)式所描述的生物种群的演化过程。先研究 x_k 的取值范围,显然: $x_k = \frac{b}{c} p_k > 0$ 。若 $x_k > 1$,由于 $x_k < 0$,则有 $x_{k+1} < 0$,这与 $x_{k+1} > 0$ 矛盾。所以 $x_k \in [0,1], k = 0,1,2,\ldots$

当 $0 < c \le 1$ 时,则无论初值 $x_0 \in [0,1]$ 如何选取,有: $x_k \to 0$,这意味着种族灭绝。

当 $1 < c \le 3$ 时, $x^* = 0$ 和 $x^* = 1 - \frac{1}{c}$ 是差分方程(2)的两个不动点。不动点的定义如下:

定义1 若有 x^* ,使得 $x^* = f(x^*)$,则称 x^* 为差分方程 $x_{k+1} = f(x_k)$ 的不动点 (平衡解、平衡点、平衡态)。记 $x_k(x_0)$ 为差分方程 $x_{k+1} = f(x_k)$ 从初始值 x_0 开始迭代的解,若对 $\forall \varepsilon > 0$,都有 $\delta > 0$,使得当 $\left|x_0 - x^*\right| < \delta$ 时,对任意的 $k \ge 1$,均有 $\left|x_k(x_0) - x^*\right| < \varepsilon$ 成立,则称不动点 x^* 是稳定的,否则称为不稳定的。

可以证明: 当 $|f'(x^*)|$ <1时,不动点 x^* 是稳定的; 当 $|f'(x^*)|$ >1时,不动点 x^* 是不稳定的。当 $|f'(x^*)|$ =1时,不动点 x^* 是稳定性的判别相对复杂,需要用到高阶导数的信息,可参看文献[1]。此外,还可以证明:对于不稳定的不动点,只要初值不精确的落在该点上,则无论初始偏差多么小,迭代值将越来越远离该点。

当 $1 < c \le 3$ 时, $x^* = 1 - \frac{1}{c}$ 是稳定的平衡态, $x^* = 0$ 是不稳定的平衡态。此时差分方程(2)有一个稳定的平衡态。

现考虑 $3 < c \le 1 + \sqrt{6}$,此时,容易判别: $x^* = 0$ 和 $x^* = 1 - \frac{1}{c}$ 都是不稳定的平衡态。然而,此时有新的现象发生。取任意的初值 $x_0 \in (0,1)$ 进行迭代,当 $k \to \infty$

时,由差分方程(2)给出的点列在如下两个点之间振荡:

$$x_1^* = \frac{1+c+\sqrt{(c+1)(c-3)}}{2c}, \ x_2^* = \frac{1+c-\sqrt{(c+1)(c-3)}}{2c}$$

这两个点满足:

$$\xi = f(f(\xi)), \ \xi \neq f(\xi)$$

定义 2 记 $f^{[n]}(x) = \underbrace{f(f...(f(x)))}_{n \wedge f}$, 若存在正整数 k > 1 和 z_0 , 使得

 $z_0 = f^{[k]}(z_0)$,但 $z_0 \neq f^{[j]}(z_0)$,($0 \leq j \leq k-1$),则称 z_0 为f(x)的一个k周期点。 点列{ $z_0, z_1 = f(z_0), ..., z_{k-1} = f^{[k-1]}(z_0)$ }称为f(x)的一个k周期轨。

可以证明: x_1^* 和 x_2^* 都是f(x) = cx(1-x)的2周期点。若把 $1 < c \le 3$ 时,唯一的稳定平衡态看作是周期为1的解。那么当 $3 < c \le 1 + \sqrt{6}$ 时,差分方程(2)的稳定平衡态由周期1变为周期2,这是一个一分为二的过程。因此,c = 3是一个分支点,跨越这一数值,系统的性质发生突变。类似的,当 $1 + \sqrt{6} < c \le 3.544090 \cdots$ 时,发生了二分为四的现象。进而,当c继续变大时,将依次发生四分为八、八分为十六……的一系列分支(分岔)现象,相应的周期分别为 $2^3, 2^4$,……。表 3 给出了前八次分支的情况。

表 3. 前八次的分支情况

n	分支情况	分支点 c_n	$(c_n - c_{n-1})/(c_{n+1} - c_n)$
1	1 分为 2	3.000000	/
2	2 分为 4	3.449489	4.7514
3	4 分为 8	3.544090	4.6562
4	8 分为 16	3.564407	4.6682
5	16 分为 32	3.568759	4.6687
6	32 分为 64	3.569691	4.6691
7	64 分为 128	3.569891	4.6692
8	128 分为 256	3.569934	4.6692

从表 3 可以看出,这一系列的分岔点 c_n 有极限存在,事实上,这一极限 $c_\infty=3.569945672\cdots$ 。当参数c达到这一极限时,系统有周期为 2^∞ 的稳定"周期点"。实际上,无穷多个"周期点"不是周期点。通常的说法是,当参数c连续变化达到 c_∞ 时,差分方程(2)经由倍分岔途径进入"混沌"状态。混沌态既不是一个不动点,也不是一个周期点,它是一个奇怪的"吸引子"。

此外,从表3还可以看出:

$$\lim_{n \to \infty} \frac{c_n - c_{n-1}}{c_{n+1} - c_n} = \delta \tag{3}$$

其中 δ = 4.669201609 ···,这个数值称为 Feigenbaum 常数,它对于由单峰映射确定的动力系统是"普适"的,也就是说,当这些系统经由倍分岔途径进入混沌时,按(3)式得到的极限值都是 δ ,它是和 π , e 一样具有特殊意义的常数。

表 4 给出了只有一个稳定不动点的情况,通过该表可以看出,对于(0,1)中的四个不同初值,它们最终的平衡态都是相同的。表 5 和表 6 分别给出了有两个稳定不动点和四个稳定不动点的情况。表 7 给出了混沌的情况。

c=2.9	x(1)=0.2	x(1)=0.4	x(1)=0.6	x(1)=0.8
x(193)	0.655172	0.655172	0.655172	0.655172
x(194)	0.655172	0.655172	0.655172	0.655172
x(195)	0.655172	0.655172	0.655172	0.655172
x(196)	0.655172	0.655172	0.655172	0.655172

表 4. 一个稳定不动点的情况

x(197)	0.655172	0.655172	0.655172	0.655172
x(198)	0.655172	0.655172	0.655172	0.655172
x(199)	0.655172	0.655172	0.655172	0.655172
x(200)	0.655172	0.655172	0.655172	0.655172
	表	5. 周期为 2 的情		
c=3.4	x(1)=0.2	x(1)=0.4	x(1)=0.6	x(1)=0.8
x(193)	0.842154	0.451963	0.451963	0.842154
x(194)	0.451963	0.842154	0.842154	0.451963
x(195)	0.842154	0.451963	0.451963	0.842154
x(196)	0.451963	0.842154	0.842154	0.451963
x(197)	0.842154	0.451963	0.451963	0.842154
x(198)	0.451963	0.842154	0.842154	0.451963
x(199)	0.842154	0.451963	0.451963	0.842154
x(200)	0.451963	0.842154	0.842154	0.451963
	表	6. 周期为 4 的情		
c=3.5	x(1)=0.2	x(1)=0.4	x(1)=0.6	x(1)=0.8
x(193)	0.826941	0.382820	0.382820	0.826941
x(194)	0.500884	0.826941	0.826941	0.500884
x(195)	0.874997	0.500884	0.500884	0.874997
x(196)	0.382820	0.874997	0.874997	0.382820
x(197)	0.826941	0.382820	0.382820	0.826941
x(198)	0.500884	0.826941	0.826941	0.500884
x(199)	0.874997	0.500884	0.500884	0.874997
x(200)	0.382820	0.874997	0.874997	0.382820

表 7. 混沌的情况

c=4	x(1) = 0.3	$x(1) = 0.3 + 10^{-10}$	x(1) = 0.7	$x(1) = 0.7 + 10^{-10}$
x(193)	0.417498	0.920020	0.020353	0.761886
x(194)	0.972773	0.294332	0.079754	0.725663
x(195)	0.105941	0.830803	0.293574	0.796306
x(196)	0.378871	0.562278	0.829553	0.648812
x(197)	0.941311	0.984486	0.565579	0.911420
x(198)	0.220980	0.061094	0.982798	0.322934
x(199)	0.688590	0.229446	0.067626	0.874591
x(200)	0.857735	0.707203	0.252210	0.438728

通过表 7 可以看出,小的初始差异将导致完全不同的最终结果。事实上,任何初值点只能在一定精度下给定,因此,我们无法预知迭代映射的长期行为。发生混沌现象时,会存在这样的初始点,它的历次迭代值均在有界范围内,但从没有周期现象发生。尽管这一过程由确定性映射决定,然而在结果上与随机运动无法区分。这一现象说明:"可计算"的事物并不一定是"可预知"的,长时间的确定性动力行为与随机运动无法区分。

事实上,"混沌"的概念是由华裔数学家李天岩与其导师约克在数学上首次引入的,于 1975 年发表在他们著名的文章 Period 3 implies chaos 中。在该文章中,他们多次运用连续函数的介值定理证明了如下结果:

定理 若实数轴一区间到其自身的连续函数 f 有一个周期为三的点,即存在三个互不相等的数 a、b、c,使得函数 f 在 a 的值为 b,在 b 的值为 c,在 c 的值为 a,则对任意正整数 n,函数 f 有一周期为 n 的点,即从该点起函数 f 迭代 n 次后又第一次返回到该点。更进一步,对于区间内几乎所有的点,函数从这些点出发的"迭代点数列"之最终走向将是杂乱无章的,无规律可循。

$$f(x) = \begin{cases} 2x, & 0 \le x \le 0.5 \\ -2x + 2, & 0.5 < x \le 1 \end{cases}$$

f(x) 的图像如图 5 所示。可以看出,f(x) 是区间[0,1]到其自身的连续函数。且

 $f(\frac{2}{7}) = \frac{4}{7}$, $f(\frac{4}{7}) = \frac{6}{7}$, $f(\frac{6}{7}) = \frac{2}{7}$, 因此 $\left\{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right\}$ 是 f(x) 的 3 周期点。

图 5. 函数 f(x) 的 3 周期轨

第三节 Beverton-Holt 模型

Beverton-Holt 模型是 Beverton 和 Holt 在 1957 年提出的描述鱼的种群数量变化的模型。设 x_k 表示第k年种群的数量,R表示每年种群的增长率,C表示环境的容纳量,则 Beverton-Holt 模型为

$$x_{k+1} = \frac{CRx_k}{C + (R-1)x_k}$$

将上式做一个恒等变形,有:

$$x_{k+1} = \frac{Rx_k}{1 + \frac{R - 1}{C}x_k} = \frac{ax_k}{1 + bx_k} \tag{1}$$

其中a = R > 0, $b = \frac{R-1}{C}$, 我们先求解这个差分方程。(1)式等价于

$$x_{k+1} + bx_k x_{k+1} = ax_k (2)$$

将(2)式两端同时除以 $x_k x_{k+1}$,有:

$$\frac{1}{x_k} + b = \frac{a}{x_{k+1}}$$

$$\Leftrightarrow y_k = \frac{1}{x_k}, \quad 则有:$$

$$y_k + b = ay_{k+1}$$

因此,我们有:

$$y_{k+1} + \frac{b}{1-a} = \frac{1}{a} \left(y_k + \frac{b}{1-a} \right)$$

$$\therefore y_k + \frac{b}{1-a} = \left(y_1 + \frac{b}{1-a}\right) \left(\frac{1}{a}\right)^{k-1}$$

$$\therefore y_k = \left(y_1 + \frac{b}{1-a}\right) \left(\frac{1}{a}\right)^{k-1} - \frac{b}{1-a}$$

方程(1)的解为:

$$x_{k} = \frac{1}{y_{k}} = \frac{1}{\left(y_{1} + \frac{b}{1-a}\right)\left(\frac{1}{a}\right)^{k-1} - \frac{b}{1-a}} = \frac{1}{\left(\frac{1}{x_{1}} + \frac{b}{1-a}\right)\left(\frac{1}{a}\right)^{k-1} - \frac{b}{1-a}}$$

现讨论方程(1)不动点的稳定性。设其不动点为 x^* ,则有:

$$x_1^* = 0, \ x_2^* = \frac{a-1}{b} = C$$

$$f(x) = \frac{ax}{1+bx}$$
 则有:

$$f'(x) = \frac{a}{(1+bx)^2}$$

在 $x_1^*=0$ 处,有: $f'(x_1^*)=a$,所以,当 0<a<1 时, $x_1^*=0$ 是稳定的不动点;

当a > 1时, $x_1^* = 0$ 是不稳定的。

在 $x_2^* = \frac{a-1}{b}$ 处,有: $f'(x_2^*) = \frac{1}{a}$,所以,当 a > 1 时, $x_2^* = \frac{a-1}{b}$ 是稳定的不动点; 当 0 < a < 1 时, $x_2^* = \frac{a-1}{b}$ 是不稳定的。

图 6 给出了两组不同a和b, x_k 的数值变化,初值 x_1 均取为1。在图 6 中可以看出, x_k 关于不同a,b的变化趋势与以上关于稳定不动点的讨论结果是一致的。

图 6. 不同a和b, x_k 的数值变化

第四节 基因变化模型

动物的某种形态一般是由一个基因对决定的,比如皮毛的颜色。设 A 为显性基因,a 为隐性基因,每个个体的基因对必为 AA, Aa 和 aa 之一。子代从父亲和母亲各得到一个基因而形成自己的基因对。假设使用控制结合的方法培育后代,在繁殖过程中结合的双亲至少有一个亲本的基因对为 Aa 型。记第k 代动物的 基 因 为 AA, Aa 和 aa 的 比 例 分 别 是 $x_1(k), x_2(k)$ 和 $x_3(k)$,则

 $x_1(k)+x_2(k)+x_3(k)=1$ 。子代从一个基因对为 AA,Aa 和 aa 获得一个 A 基因的概率分别为1,1/2和0。记 a_{11} 为一个亲本的基因为 AA,另一个亲本的基因为 AA, 所生育的后代基因为 AA 的概率,则 $a_{11}=1/2$;记 a_{12} 为一个亲本的基因为 Aa,而生育的后代基因为 AA 的概率,则 $a_{12}=1/4$;记 a_{13} 为一个亲本的基因为 aa,另一个亲本的基因为 AA 的概率,则 $a_{12}=1/4$;记 a_{13} 为一个亲本的基因为 aa,另一个亲本的基因为 AA 的概率,则 $a_{13}=0$;则有:

$$x_1(k+1) = \frac{1}{2}x_1(k) + \frac{1}{4}x_2(k)$$

同理有:

$$x_2(k+1) = \frac{1}{2}x_1(k) + \frac{1}{2}x_2(k) + \frac{1}{2}x_3(k)$$
$$x_3(k+1) = \frac{1}{4}x_2(k) + \frac{1}{2}x_3(k)$$

记
$$\mathbf{x}(k) = [x_1(k), x_2(k), x_3(k)]^T$$

则有: $\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k)$

其中:
$$\mathbf{A} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\\ 0 & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

因此, 此模型的解为

$$\mathbf{x}(k) = \mathbf{A}^k \mathbf{x}(0)$$

现考虑 $\mathbf{x}(k)$ 的极限状态, 即计算 $\lim_{k \to \infty} \mathbf{x}(k) = \lim_{k \to \infty} \mathbf{A}^k \mathbf{x}(0)$

经计算,矩阵 $\mathbf A$ 的全部特征值为 $\lambda_1=1,\lambda_2=1/2,\lambda_3=0$,相应的特征向量分别为

$$\mathbf{y}_1 = [1, 2, 1]^T, \mathbf{y}_2 = [1, 0, -1]^T, \mathbf{y}_3 = [1, -2, 1]^T$$

记**P** = [
$$\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$$
] = $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}$, 则有:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{P}^{-1}$$

$$\lim_{k \to \infty} \mathbf{A}^{k} = \lim_{k \to \infty} \mathbf{P} \begin{bmatrix} 1^{k} & 0 & 0 \\ 0 & 0.5^{k} & 0 \\ 0 & 0 & 0^{k} \end{bmatrix} \mathbf{P}^{-1}$$

$$= \mathbf{P} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{P}^{-1}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.25 & 0.25 & 0.25 \\ 0.5 & 0 & -0.5 \\ 0.25 & -0.25 & 0.25 \end{bmatrix}$$

$$= \begin{bmatrix} 0.25 & 0.25 & 0.25 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}$$

注意到:
$$x_1(0) + x_2(0) + x_3(0) = 1$$

0.25 0.25 0.25

$$\lim_{k \to \infty} \mathbf{x}(k) = \lim_{k \to \infty} \mathbf{A}^k \mathbf{x}(0)$$

$$= \begin{bmatrix} 0.25 & 0.25 & 0.25 \\ 0.5 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0.25 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1(0) \\ \mathbf{x}_2(0) \\ \mathbf{x}_3(0) \end{bmatrix}$$

$$= \begin{bmatrix} 0.25 \\ 0.5 \\ 0.25 \end{bmatrix}$$

即无论初始状态 $\mathbf{x}(0)$ 如何选取,最终的极限状态均为 $[0.25, 0.5, 0.25]^T$ 。

注:以上的繁殖过程是一个 Markov 过程。所谓的 Markov 过程指是系统的 第k+1次状态仅与第k次状态有关,而与以前的状态无关,即:下一次的状态仅 与当前状态有关。

第五节 按年龄分组的种群数量变化模型

同一种动物不同年龄段的繁殖率和死亡率有着明显的差异,这一节我们将考虑这些因素,来建立种群数量的模型。这个向量形式的差分方程是 Leslie 在二十世纪四十年代用来描述女性人口的变化规律的。

种群的数量是通过雌性个体的繁殖而增长的,所以用雌性个体数量的变化比较合适。当雌雄数量之比已知时,就可以得到种群全体数量的变化。下面提到的种群均指其中的雌性。将种群按年龄大小等距的分成n个年龄组,研究对象的最大年龄为m岁,则这n个年龄组的年龄区间是 $[(i-1)\frac{m}{n},i\frac{m}{n}),i=1,2,...,n$ 。与年龄的离散化对应,时间也离散化为时段 t_k ,k=0,1,2,...,并且时段的间隔与年龄区间的长度相等,即 $t_k-t_{k-1}=\frac{m}{n}$ 。譬如若以每 3 岁为一个年龄组,那么就以每 3 年为一个时段。

记时段 t_k 第i年龄组的种群雌性数量为 $x_i(k)$,第i年龄组的繁殖率为 b_i ,死亡率为 d_i ,则其存活率 $s_i=1-d_i$ 。其中 b_i 和 d_i 均可由统计资料获得。记:

$$\mathbf{x}(k) = \left[x_1(k), x_2(k), \dots, x_n(k)\right]^{\mathrm{T}}$$

则 $\mathbf{x}(k)$ 的变化规律如下:

$$x_1(k+1) = \sum_{i=1}^{n} b_i x_i(k)$$
 (1)

$$x_{i+1}(k+1) = s_i x_i(k), i = 1, 2, ..., n-1$$
 (2)

将等式(1)和(2)写成矩阵向量形式为:

$$\mathbf{x}(k+1) = \mathbf{L}\mathbf{x}(k)$$

其中:

$$\mathbf{L} = \begin{bmatrix} b_1 & b_2 & \cdots & b_{n-1} & b_n \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \cdots & 0 & 0 \\ \cdots & \cdots & & & \\ 0 & 0 & \cdots & s_{n-1} & 0 \end{bmatrix}$$
 (3)

当矩阵 \mathbf{L} 和按年龄组的初始分布向量 $\mathbf{x}(0)$ 已知时,可以预测任意时段 t_k 种群按年龄组的分布向量为:

$$\mathbf{x}(k) = \mathbf{L}^k \mathbf{x}(0), k = 1, 2, \dots \tag{4}$$

因此, t_k 时段种群的雌性数量 c_k 为

$$c_k = \sum_{i=1}^n x_i(k) \tag{5}$$

种群数量状态分析 下面研究时间充分长之后种群的年龄结构和数量变化。根据 b_i 和 s_i 的定义,矩阵 \mathbf{L} 中的元素满足:

$$0 < s_i \le 1, \ i = 1, 2, \dots, n - 1 \tag{6}$$

$$b_i \ge 0, i = 1, 2, ..., n$$
,且至少有一个 $b_i > 0$ (7)

满足条件(3),(6)和(7)的矩阵 \mathbf{L} 称为 \mathbf{L} 医阵,简称 \mathbf{L} 矩阵。由(4)可以看出, $\mathbf{x}(k)$ 的性态与矩阵 \mathbf{L} 密切相关。可以验证: \mathbf{L} 矩阵的特征多项式为

$$\lambda^{n} - b_{1}\lambda^{n-1} - b_{2}s_{1}\lambda^{n-2} - \dots - b_{n-1}s_{1}s_{2}\dots s_{n-2}\lambda - b_{n}s_{1}s_{2}\dots s_{n-1} = 0$$
(8)

定理 1. L 矩阵有唯一的正特征值 λ_1 ,且它是单重的, λ_1 对应的特征向量为

$$\mathbf{x}^* = \left[1, \frac{s_1}{\lambda_1}, \frac{s_1 s_2}{\lambda_1^2}, \dots, \frac{s_1 s_2 \dots s_{n-1}}{\lambda_1^{n-1}}\right]^{\mathrm{T}}$$
(9)

L矩阵的其它n-1个特征值 λ_i (i=2,3,...,n)都满足:

$$\left|\lambda_{i}\right| \leq \lambda_{1}, \ i = 2, 3, \dots, n \tag{10}$$

定理 2. 若 L 矩阵第一行有两个相邻的元素 b_i , b_{i+1} 都大于零,则(10)式中的不等号严格成立,即

$$\left|\lambda_{i}\right| < \lambda_{1}, \ i = 2, 3, \dots, n \tag{11}$$

且由(4)式计算出的 $\mathbf{x}(k)$ 满足:

$$\lim_{k \to \infty} \frac{\mathbf{x}(k)}{\lambda_1^k} = c\mathbf{x}^* \tag{12}$$

其中c是由 b_i 、 s_i 和 $\mathbf{x}(0)$ 决定的常数。

需要说明的是,对于种群增长来说,定理 2 的条件通常是满足的。使用该定理,我们有:

$$\mathbf{x}(k) \approx c\lambda_1^k \mathbf{x}^*$$

这表明时间充分长之后,种群按年龄组的分布 $\mathbf{x}(k)$ 趋于稳定,其各年龄组的数量 所占总量的比例,与特征向量 \mathbf{x}^* 中对应分量所占总量的比例是一样的。因此, \mathbf{x}^* 就表示了种群按年龄组的分布状况,它称为稳定分布,与初始分布 $\mathbf{x}(0)$ 无关。

由(12)式,有:

$$\mathbf{x}(k+1) \approx \lambda_1 \mathbf{x}(k)$$

再由(5)式知,种群的雌性数量 c_{ι} 满足:

$$c_{k+1} \approx \lambda_1 c_k$$

因此,当 λ_1 >1时,种群的数量增加,当 λ_1 <1时,种群的数量减少,当 λ_1 =1时,种群的数量保持不变。因此,种群的增长完全由 L 矩阵的唯一的正特征值 λ_1 决定,它称为固有增长率。图 7 给出了种群的数量变化与 L 矩阵最大特征值的关系。

当 λ = 1 时,根据(8)式,有:

$$b_1 + b_2 s_1 + \dots + b_{n-1} s_1 s_2 \dots s_{n-2} + b_n s_1 s_2 \dots s_{n-1} = 1$$
(13)

将(13)式的左端记为:

$$R = b_1 + b_2 s_1 + \dots + b_{n-1} s_1 s_2 \dots s_{n-2} + b_n s_1 s_2 \dots s_{n-1}$$
(14)

由(14)式可以看出: R表示一个雌性个体在整个存活期内繁殖的平均数量,称为总和繁殖率。R=1时,种群雌性的数量保持不变。由(9)式知,此时的稳定分布为

$$\mathbf{x}^* = [1, s_1, s_1, s_2, \dots, s_1, s_2, \dots, s_{n-1}]^T$$

图 7. 种群的数量变化与 L 矩阵最大特征值的关系

第六节 差分方程的基本知识

定义 1. 设 f 是一个函数,称

$$x_{k+1} = f(x_k, x_{k-1}, ..., x_{k-l+1}, k)$$

为l阶差分方程。当 $f(x_k, x_{k-1}, ..., x_{k-l+1}, k)$ 关于 $x_k, x_{k-1}, ..., x_{k-l+1}$ 是线性函数时,称为线性差分方程。否则,称为非线性差分方程。

要求解一个l阶的差分方程,需要有l个初值 $x_1, x_2, ..., x_l$ 。常用的差分方程是一阶差分方程,即l=1的情况。线性差分方程的求解和解的性态分析比非线性差分方程容易得多,大部分非线性差分方程是无法求解的,其解的性态分析也比较困难。下面给出线性常系数差分方程的解法。l阶线性常系数差分方程可写为

$$x_{k+1} = a_k x_k + \ldots + a_{k-l+1} x_{k-l+1} + b(k)$$
 (1)

的形式,其中 $a_k,...,a_{k-l+1}$ 是与k无关的常数,其对应的齐次方程为

$$X_{k+1} = a_k X_k + \ldots + a_{k-l+1} X_{k-l+1} \tag{2}$$

类似于线性常系数常微分方程的解法, 先计算其所对应的特征方程

$$\lambda^{l} - a_{\nu} \lambda^{l-1} - \dots - a_{\nu-l+1} = 0 \tag{3}$$

的根,根据其特征根的各种情况,计算齐次方程的通解。

情况 1 若特征方程(3)有 s 个互不相同的实根 $\lambda_1, \lambda_2, ..., \lambda_s$,则齐次方程的通解中对应它们的项为

$$C_1\lambda_1^k + C_2\lambda_2^k + \ldots + C_s\lambda_s^k$$

情况 3 若特征方程(3)有单重复根 $\lambda = \alpha \pm \beta i$,则齐次方程的通解中对应它们的项为

$$C_1 \rho^k \cos(k\varphi) + C_2 \rho^k \sin(k\varphi)$$

其中
$$\rho = \sqrt{\alpha^2 + \beta^2}$$
 为 λ 的模, $\varphi = \arctan\left(\frac{\beta}{\alpha}\right)$ 为 λ 的幅角。

情况 4 若特征方程(3)有 p 重复根 $\lambda = \alpha \pm \beta i$,则齐次方程的通解中对应它们的 项为

$$(C_1 + ... + C_p k^{p-1}) \rho^k \cos(k\varphi) + (C_{p+1} + ... + C_{2p} k^{p-1}) \rho^k \sin(k\varphi)$$

非齐次方程(1)的特解的计算通常要使用常数变易法,一般比较复杂。对于一些特殊的右端,有一些简单的方法。例如,当右端b(k)与k无关时,设b(k)=C,

此时
$$x_k = \frac{C}{1 - a_k - \ldots - a_{k-l+1}}$$
 为其一个特解; 当右端 $b(k) = b^k p_s(k)$ 时, 其中 $p_s(k)$ 为

k的 s次多项式,可以证明: 若b不是特征根,则非齐次方程(1)有形如 $x_k = b^k q_s(k)$ 的特解,其中 $q_s(k)$ 也为 k 的 s 次多项式;若b 是 r 重特征根,则非齐次方程(1)有形如 $x_k = b^k k^r q_s(k)$ 的特解,可用待定系数法来计算 $q_s(k)$ 。

关于差分方程的不动点、稳定不动点、周期点的定义以及不动点稳定性的判

别,可参看第二节中的相关内容。关于线性差分方程组,其不动点稳定性的判别有如下结果:

定理 1. 设差分方程组 $\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{b}$,其中 $\mathbf{x}(0)$, $\mathbf{b} \in R^n$, $\mathbf{A} \in R^{n \times n}$,若 \mathbf{A} 的全部特征值 λ_i 满足:

$$\left|\lambda_{i}\right| < 1, \ i = 1, 2, \dots, n$$

则其不动点稳定, 其唯一稳定的不动点为 $\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$ 。

例题 1 求方程 $y_{k+2} - 3y_{k+1} + 2y_k = 3^k$ 满足初始条件 $y_0 = 3$, $y_1 = 1$ 的解.

解: 非齐次方程的特解具有形式 a3k, 代入方程得:

$$a3^{k+2} - 3a3^{k+1} + 2a3^k = 3^k$$
 \Rightarrow $a = \frac{1}{2}$

:: 非齐次方程的一个特解为 $\frac{1}{2}3^k$

齐次方程的特征方程为 $\lambda^2 - 3\lambda + 2 = 0$, 其根为

$$\lambda_1 = 1$$
, $\lambda_2 = 2$

:: 非齐次方程的通解为 $y_k = C_1 1^k + C_2 2^k + \frac{1}{2} 3^k$

:: 方程的解为
$$y_k = \frac{11}{2} - 3 \times 2^k + \frac{1}{2} 3^k$$

例题 2 求解方程 $y_{k+2} + y_k = k$.

解: 非齐次方程的特解具有形式 ak + b, 代入方程得:

$$a(k+2) + b + ak + b = k$$
 $\Rightarrow a = \frac{1}{2}, b = -\frac{1}{2}$

齐次方程的特征方程为 $\lambda^2 + 1 = 0$, 其根为

$$\lambda_1 = i, \ \lambda_2 = -i$$

$$\therefore \lambda_1$$
 的模 $\rho = 1$,辐角 $\varphi = \frac{\pi}{2}$

∴ 方程的通解为
$$y_k = C_1 \cos(\frac{\pi}{2}k) + C_2 \sin(\frac{\pi}{2}k) + \frac{1}{2}k - \frac{1}{2}$$
.

例题 3 $T_0(x) = 1$, $T_1(x) = x$. $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$, $k = 1, 2, \cdots$, 计算 $T_k(x)$.

解: (法一) 由已知: $T_{k+1}(x) - 2xT_k(x) + T_{k-1}(x) = 0$, 它可以看作是关于 $T_k(x)$ 的二阶线性差分方程, 其特征方程为

$$\lambda^2 - 2x\lambda + 1 = 0$$

当|x|>1时:特征方程有2个不相等实根

$$\lambda_1 = x + \sqrt{x^2 - 1}$$
, $\lambda_2 = x - \sqrt{x^2 - 1}$

此时
$$T_k(x) = C_1(x + \sqrt{x^2 - 1})^k + C_2(x - \sqrt{x^2 - 1})^k$$

当|x|=1时:特征方程有2个相等实根

$$\lambda_{1,2} = x$$

此时 $T_k(x) = (C_1 + C_2 k)x^k$

$$\exists t \ T_0(x) = C_1 = 1, \ T_1(x) = (C_1 + C_2)x = x \implies C_1 = 1, \ C_2 = 0$$

$$\therefore T_k(x) = x^k = \frac{1}{2} (x + \sqrt{x^2 - 1})^k + \frac{1}{2} (x - \sqrt{x^2 - 1})^k$$

综上: 当
$$|x| \ge 1$$
时: $T_k(x) = \frac{1}{2}(x + \sqrt{x^2 - 1})^k + \frac{1}{2}(x - \sqrt{x^2 - 1})^k$
= $\frac{1}{2}(x + \sqrt{x^2 - 1})^k + \frac{1}{2}(x + \sqrt{x^2 - 1})^{-k}$

当|x|<1时:特征方程有2个不相等复根

$$\lambda_1 = x + i\sqrt{1 - x^2}$$
, $\lambda_2 = x - i\sqrt{1 - x^2}$

$$λ_1$$
 的模 $ρ = 1$, 辐角 $φ = \arctan \frac{\sqrt{1 - x^2}}{x} = \arccos x$

此时
$$T_k(x) = C_1 \rho^k \cos(k \arccos x) + C_2 \rho^k \sin(k \arccos x)$$

= $C_1 \cos(k \arccos x) + C_2 \sin(k \arccos x)$

(法二) 当
$$|x| \le 1$$
时,令 $x = \cos \theta$,则 $\theta = \arccos x$,由
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

可得: $\cos(k+1)\theta + \cos(k-1)\theta = 2\cos(k\theta)\cos\theta$

$$\therefore \cos(k+1)\theta = 2\cos\theta\cos(k\theta) - \cos(k-1)\theta$$

$$\therefore \cos[(k+1)\arccos x] = 2x\cos(k\arccos x) - \cos[(k-1)\arccos x]$$
$$\therefore T_k(x) = \cos(k\arccos x)$$

当|x|>1时,用双曲余弦函数模仿以上过程可得:

$$T_k(x) = \cosh(k \arccos hx)$$

其中
$$\cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2}$$

事实上,以上问题的解 $T_k(x)$ 为k次 Chebyshev (切比雪夫)多项式,Chebyshev 多项式在逼近论和数值代数等领域有着广泛的应用。它是俄国数学家Chebyshev 在 19 世纪 50 年代设计连杆装置时提出的。

Chebyshev (切比雪夫)多项式: $T_0(x)=1$, $T_1(x)=x$, $T_2(x)=2x^2-1$, $T_3(x)=4x^3-3x$, $T_4(x)=8x^4-8x^2+1$, $T_5(x)=16x^5-20x^3+5x$, 图 8 给出了几个低次 Chebyshev 多项式在区间[-1,1]中的图像

图 8. 几个低次 Chebyshev 多项式的图像

切比雪夫连杆装置示意图 装置中的三个杆 L_2 , L_3 , L_4 以及固定两点 B 和 C 之间的距离 L_1 满足 L_1 : L_2 : L_3 =2:2.5:1=4:5:2 和 L_4 = L_3 + $\sqrt{L_2^2-L_1^2}$ 。点 P 是 L_3 杆的中点。可以得出 L_4 = L_2 。这一点对点 P 成为近似直线运动起了重要作用。点 A 和 D 做的是周期运动。它们的坐标分别满足 x_A = L_2 cos φ_1 , y_A = L_2 sin φ_1 , x_D = L_1 - L_2 cos φ_2 , y_D = L_4 sin φ_2 。点 P 的坐标就是 x_P = $(x_A+x_B)/2$, y_P = $(y_A+y_B)/2$ 。这似乎意味着,连杆装置对切比雪夫多项式的发现具有启发意义。

习题

- 1. 地高辛是医治心脏病的药物,医生要求病人每天服用 0.1 毫克,经过一天的时间,病人体内的药物残存量为服入量的一半。
- (1) 计算病人体内每天的药物量。
- (2) 病人体内地高辛总量的发展趋势如何?
- 2. 温带节足动物的生长过程描述是一个不连续的模型,考虑有密度制约的情形, 其对应的方程为

$$x_{k+1} = x_k \exp\left[r\left(1 - \frac{x_k}{C}\right)\right]$$

计算以上差分方程的平衡点,并讨论其稳定性。

- 3. 求解差分方程 $u_{k+1} = 21u_k + 44(1+u_1+u_2+...+u_{k-1}), k \ge 1$
- 4. 某投资者拟在甲、乙两城市间开设一家汽车租赁公司,租赁者可在两城中任意租借或归还汽车。在运营中发现,在甲城中租车的顾客约有 60%在本城归还,而有 40%在乙城归还;在乙城中租车的顾客约有 70%在本城归还,而有 30%在甲城归还。请预测该公司的汽车流向。
- 5. 某养殖场一种动物的基因分别为 AA, Aa 和 aa, 在动物繁殖过程中, 该养殖场总是将动物与 aa 型动物进行交配, 分析该养殖场此种动物的变化趋势。
- 6. 建立鲨鱼和小杂鱼两个种群数量的模型。已知鲨鱼和小杂鱼的繁殖率分别为 d_1 和 d_2 ,小杂鱼数量的增加会引起鲨鱼数量的增加,该因子为b。反之,鲨鱼数量的增加会引起小杂鱼数量的减少,该因子为-c。并讨论该模型解的变化趋势。

参考文献

- [1] 周义仓 曹慧 肖燕妮 差分方程及其应用,北京:科学出版社,2014.
- [2] 雷功炎 数学模型讲义,北京:北京大学出版社,2009.
- [3] 阮炯 差分方程和常微分方程,上海:复旦大学出版社,2002.

- [4] 杨启帆 谈之奕 何勇 数学建模, 杭州: 浙江大学出版社, 2010.
- [5] 姜启源 数学模型,第二版,北京:高等教育出版社,2002.
- [6] 张景中 李浩 实迭代,武汉: 湖北科学技术出版社,2016.
- [7] Li TY, Yorke JA. Period 3 implies chaos. American Mathematical Monthly, 82: 985-992, 1975.
- [8] May RM, Simple mathematical-model with very complicated dynamics, Nature, 261: 459-467, 1976.
- [9] 丁玖 https://www.cnblogs.com/Eufisky/p/11112977.html
- [10] 蒋迅 王淑红 切比雪夫和切比雪夫多项式的故事,科学,68(4):54-58, 2016.