Lagrangian density $\frac{2}{2} + \frac{1}{2} + \frac{1}{$
$\frac{1}{3}$ $\iota_2 \omega_1 \qquad \omega_{\kappa\lambda} + \frac{1}{3}$ $\iota_2 \omega_{\kappa\lambda} \qquad \iota + 2 \ell_1 \sigma_1 \omega_{\kappa} \iota \sigma_{\lambda} \sigma^-$
$rac{2}{3}r_1\partial^{eta}\omega^{etalpha}_{}^{}\partial^{eta}\omega^{}_{}^{} + rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{}^{}\partial^{eta}\omega^{}_{}^{} - rac{2}{3}r_1\partial_{eta}\omega^{}_{}^{}\partial_{\kappa}\omega^{\alphaetaeta}_{}^{} - rac{2}{3}r_1\partial_{eta}\omega^{}_{}^{} + rac{2}{3}r_1\partial_{eta}\omega^{}_{}^{} - rac{2}{3}r_1\partial_{eta}\omega^{} + rac{2}{3}r_1\partial_{eta}\omega^{} - rac{2}{3}r_1\partial_{eta}\omega^{} + rac{2}{3}r_1\partial_{eta}\omega^{\beta$
$rac{1}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\alpha\beta\theta} + rac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} - rac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} -$
$2r_1\partial_{\alpha}\omega_{\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - 4 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + 2 r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$
$4 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{6} t_2 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} +$
$rac{1}{6}t_2\partial^{lpha}\!f^{\lambda}_{\kappa}\partial^{\kappa}\!f_{\lambda} + rac{1}{3}t_2\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
$rac{1}{3}t_2\;\omega_{ heta_{lk}}\partial^k f^{l heta} + rac{2}{3}t_2\;\omega_{ heta_{kl}}\;\partial^k f^{l heta} - rac{1}{6}t_2\partial^lpha f^\lambda_{\;\;k}\partial^k f_{\lambdalpha} -$
$\frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{1}{6}t_2\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} + \frac{2}{3}r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$
$\frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}$ - $\frac{2}{3}r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}$ + $\frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}$ +
$rac{2}{3}r_1\partial^{eta}\omega_{_{l}}^{lpha\lambda}\partial_{\lambda}\omega_{_{lphaeta}}^{\prime}-rac{2}{3}r_2\partial^{eta}\omega_{_{l}}^{lpha\lambda}\partial_{\lambda}\omega_{_{lphaeta}}^{\prime}+rac{4}{3}r_1\partial^{eta}\omega_{_{l}}^{\lambdalpha}\partial_{\lambda}\omega_{_{lphaeta}}^{\prime}+$
$rac{2}{3} r_2 \partial^{eta} \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$4 r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} - 2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + 4 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}$
Added solute term: $\int \epsilon^{\alpha\beta} r + \frac{1}{2} \epsilon^{\alpha\beta} \chi$

$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
'	$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} \dag^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

$t_{1}^{\#2}$	0	0	0	0	0	0	0
$t_{1}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{lpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
$\mathfrak{r}_{1}^{\#1}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + ^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	თ
$\sigma_1^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	თ
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3
$\tau_{2+}^{\#1\alpha\beta} == 0$	5
$\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	27

$\sigma_{0^{+}}^{\#1} \qquad \tau_{0^{+}}^{\#1} \tau_{0^{+}}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1} \dagger \frac{1}{6 k^{2} (-r_{1} + r_{3})} = 0 = 0$	0
$\tau_{0^{+}}^{\#1} + 0 \qquad 0 \qquad 0$	0
$\tau_{0^{+}}^{\#2} + 0 0 0$	0
$\sigma_{0}^{\#1} \dagger 0 0 0$	$\frac{1}{k^2 r_2 + t_2}$

0

0

 $f_{0}^{#1}$

 $f_{0+}^{#2}$

 $k^2 r_2 + t_2$

0

0

0

 $\tau_{2}^{\#1}{}_{\alpha\beta}$

 $\sigma_{2}^{\#1}$ $\alpha \beta$

0

0

0

 $\omega_2^{\#1} + \alpha^{\beta}$

 $f_{2}^{\#1} + \alpha^{\beta}$ $\omega_{2}^{\#1} + \alpha^{\beta\chi}$

0

0

? $J^{P} = 0^{-}$? ?	Massive particle		
	Pole residue:	$-\frac{1}{r_2}$ >	
	Polarisations:	1	
	Square mass:	$-\frac{t_2}{r_2}$ >	
	Spin:	0	
	Parity:	Odd	

le	
$-\frac{1}{r_2} > 0$	
1	
$-\frac{t_2}{r_2} > 0$	
0	
Odd	
	$-\frac{1}{r_2} > 0$ $\frac{1}{-\frac{t_2}{r_2}} > 0$ 0