1 Probability and statistics

1.1 Working with probability distributions

- Given probability distribution \mathbb{P} , sample space Ω , and event $A \subseteq \Omega$:
 - $-\mathbb{P} \geq 0 \quad \forall A \text{ (probabilities are nonzero)}$
 - $-\mathbb{P}[\Omega] = 1$ (probabilities sum to 1)
 - $-\mathbb{P}[\varnothing] = 0$ (probability of empty set is 0)
 - $\mathbb{P}\left[\bigsqcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right] = 1$
- Probabilities are independent when the joint probability is equal to the product of the marginal probabilities.

$$A \perp \!\!\!\perp B \iff \mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right]\mathbb{P}\left[B\right]$$

• The conditional probability of A given B is the joint probability of A and B divided by the probability of just B.

$$\mathbb{P}\left[A \mid B\right] = \frac{\mathbb{P}\left[A \cap B\right]}{\mathbb{P}\left[B\right]}$$

• The Probability Mass Function (PMF) is used to describe the behavior of discrete probability distributions.

$$f_X(x) = \mathbb{P}\left[X = x\right]$$

• The Probability Density Function (PDF) is the equivalent for *continuous* distributions. We use the PDF to determine the probability that random variable X is between A and B.

$$\mathbb{P}\left[a \le X \le b\right] = \int_{a}^{b} f(x) \, dx$$

• The Cumulative Distribution Function (CDF) is the integral of the PDF and we use it to determine the probability that random variable X is less than or equal to x. It maps $\mathbb{R} \to [0,1]$ and is monotonically non-decreasing. The left and right limits are 0 and 1 ($\lim_{x\to-\infty} = 0$ and $\lim_{x\to\infty} = 1$).

$$F_X(x) = \mathbb{P}\left[X \le x\right]$$

1.1.1 Notes on the normal distribution

- The normal distribution is a function of mean μ and variance σ^2
- The simplest case is the standard normal distribution, $Z \sim \mathcal{N}(0,1)$, which reduces to:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

– Interestingly, others have defined even simpler standard normals. Gauss proposed $\sigma^2 = \frac{1}{2}$, which reduces to:

$$\phi(x) = \frac{e^{-x^2}}{\sqrt{pi}}$$

- Stigler proposed a formulation with $\sigma^2 = \frac{1}{2\pi}$, leading to:

$$\phi(x) = e^{-\pi x^2}$$

• We can convert any normally distributed variable X to a standard normal by subtracting the mean and dividing by the standard deviation.

$$Z = \frac{X - \mu}{\sigma}$$

- 68-95-99.7 rule: the percentage of values that lie within 1, 2, and 3 standard deviations of the mean of a normal distribution are 68.27%, 95.45%, and 99.73% respectively. A $\mu \pm 3\sigma$ deviation should occur at a frequency of about 1 in 370.
- The Gauss Error Function gives the probability of a RV $Z \sim \mathcal{N}(0, 1/2)$ falling in the range [-x, x]:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}$$

1.1.2 Notes on the uniform distribution

- The continuous uniform distribution is a function of the minimum and maximum values a and b with mean and median equal to $\frac{a+b}{2}$
- The standard uniform is a random variable $\sim \mathcal{U}(0,1)$
- ullet The PDF of a uniform distribution is a horizontal line from a to b

1.1.3 Notes on binomial distribution

1

• Discrete distribution $\mathcal{B}(n,p)$ for the number of successes in a sequence of n Bernoulli trials with probability of success p.

1.2 Common distributions

	Type	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	Discrete	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$	$\frac{I(a \le x \le b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{as} - e^{-(b+1)s}}{s(b-a)}$
Bernoulli	Discrete	$(1-p)^{1-x}$	$p^x \left(1 - p\right)^{1 - x}$	p	p(1-p)	$1 - p + pe^s$
Binomial	Discrete	$I_{1-p}(n-x,x+1)$	$\binom{n}{x}p^x (1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^s)^n$
Multinomial	Discrete		$\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} \sum_{i=1}^k x_i = n$	$\left(\begin{array}{c} np_1 \\ \vdots \\ np_k \end{array}\right)$	$\begin{pmatrix} np_1(1-p_1) & -np_1p_2 \\ -np_2p_1 & \ddots \end{pmatrix}$	$\left(\sum_{i=0}^k p_i e^{s_i}\right)^n$
Poisson	Discrete	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^{i}}{i!}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^s-1)}$
Uniform	Continuous	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
Normal	Continuous	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$
Log-Normal	Continuous	$\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$	
Multivariate Normal	Continuous		$(2\pi)^{-k/2} \Sigma ^{-1/2}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp\left\{\mu^T s + \frac{1}{2} s^T \Sigma s\right\}$
Student's t	Continuous	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	$0 \nu > 1$	$\begin{cases} \frac{\nu}{\nu - 2} & \nu > 2\\ \infty & 1 < \nu \le 2 \end{cases}$	
Chi-square	Continuous	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$	k	2k	$(1-2s)^{-k/2} \ s < 1/2$
Exponential	Continuous	$1 - e^{-x/\beta}$	$\frac{1}{eta}e^{-x/eta}$	β	eta^2	$\frac{1}{1 - \frac{s}{\beta}} \left(s < \beta \right)$

1.3 Hypothesis testing

• Framework for filtering implausible scientific claims

• Basic steps:

1. State relevant null hypothesis (H_0) and alternative hypothesis (H_1)

- Two-sided: $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$

- One-sided: $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0$

2. Determine relevant test statistic (T) distribution, typically Student's t or normal distribution

3. Select significance level (α , often 5% or 1%)

4. Calculate rejection region (critical region), which contains all values of x for which T(x) is greater than the critical value c: $R = \{x : T(x) > c\}$

5. Determine whether to accept or reject H_0

• Alternatively, just calculate the p-value (probability given H_0 of getting a result at least as extreme as that which was observed). Reject the null hypothesis if $p \leq \alpha$.

• Common ranges for *p*-values are:

- < 0.01: very strong evidence against H_0

- [0.01, 0.05]: strong evidence against H_0

- [0.05, 0.10]: weak evidence against H_0

 $-\,>0.1$: yikes man

• Type I errors (false positives) occur when we incorrectly **reject** the null hypothesis. This is equivalent to α .

• Type II errors (false negatives) occur when we incorrectly **fail to reject** the null hypothesis.

	Retain H_0	Reject H_0
H_0 true		Type I Error (α)
H_1 true	Type II Error (β)	$\sqrt{\text{(power)}}$

1.4 Bayesian inference

2 Linear algebra

2.1 Objects and notation

• Let scalar $s \in \mathbb{R}$

• Let vector $x \in \mathbb{R}^n$. We should assume that all vectors are 'column vectors' (ie a matrix in $\mathbb{R}^{n \times 1}$)

• Let 2-d matrix $A \in \mathbb{R}^{m \times n}$. We'll identify specific elements like this:

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

- We'll denote a whole column i of a matrix as $A_{:i}$ and a row j as $A_{j:}$

• Tensors extend beyond 2d, eg: $\mathbf{A}_{i,j,k}$

2.2 Basic matrix operations review

• The **transpose** operation mirrors the matrix across the diagonal and is denoted A^{T} .

$$m{A} = egin{bmatrix} A_{1,1} & A_{1,2} \ A_{2,1} & A_{2,2} \ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow m{A}^{ ext{T}} = egin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \ A_{1,2} & A_{2,2}, & A_{3,2} \end{bmatrix}$$

• Addition of matrices is element-wise, and therefore requires them to be the same shape.

$$C_{i,j} = A_{i,j} + B_{i,j} \qquad \{A, B, C\} \in \mathbb{R}^{m \times n}$$

• The matrix product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is $C \in \mathbb{R}^{m \times p}$. Note that the number of columns in the first matrix must be equal to the number of rows in the second matrix (m). Each element in $C_{i,j}$ can be thought of as the dot product between row i of A and column j of B.

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

• Some matrix operation properties:

- Distributive: A(B+C) = AB + AC

- Associative: A(BC) = (AB)C

- **NOT** commutative: $AB \neq BA$

- Transpose product: $(AB)^{T} = B^{T}A^{T}$

2.2.1 The identity matrix

3

• We'll define the **identity matrix** I_n as the matrix that does not change a vector x of dimension n when they are multiplied together so that $\forall x \in \mathbb{R}^n$, $I_n x = x$. The identity matrix is just a square matrix with 1 on the diagonal and 0 elsewhere, so for $x \in \mathbb{R}^3$:

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.2.2 Matrix inversion

• The matrix inverse of A is denoted A^{-1} and we define it such that:

$$\boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{I}_n$$

- **A** is **invertible** if it is square $(\in \mathbb{R}^{n \times n})$ and non-singular.
 - A square matrix is **singular** \iff it has a determinant of 0
 - Singular matrices have linearly dependent columns
 - * The **determinant** of a matrix (usually denoted det(A) or |A|) is a scalar factor that can be computed from the elements of a square matrix. For a 2×2 matrix:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow |\mathbf{A}| = ad - bc$$

• For other important properties of invertible matrices see Wikipedia: Invertible matrix theorem

2.3 Systems of linear equations

- We can define a system of linear equations, Ax = b. A is a known matrix of coefficients, b is a known vector, and we're trying to solve for vector x. The matrix $A \in \mathbb{R}^{m \times n}$ describes a system of m equations with n unknowns.
- This is really the same as writing:

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$

3 Differential equations

3.1 Calculus refresher

- Some useful properties with differentiable functions f(x) and g(x):
 - -(cf)' = c(f') for any constant c
 - -c'=0 for any constant c
 - -(f+g)' = f' + g'
- Important rules for derivatives
 - Power rule: $(x^n)' = nx^{n-1}$

- Product rule: (fg)' = f'g + g'f
- Quotient rule: $(\frac{f}{g})' = \frac{f'g g'f}{g^2}$
- Chain rule: f(g(x))' = f'(g)g'
- Common derivatives:

$$-\frac{d}{dx} x = 1$$
$$-\frac{d}{dx} cx = c$$

$$-\frac{1}{dx}cx=c$$

$$-\frac{d}{dx}e^x = e^x$$

$$- \frac{d}{dx} \ln x = \frac{1}{x}, \quad x > 0$$

$$- \frac{d}{dx} \ln|x| = \frac{1}{x}, \quad x \neq 0$$

$$-\frac{d}{dx}c^x = c^x \ln c$$

$$-\frac{d}{dx}\sin x = \cos x$$

$$-\frac{d}{dx}\cos x = -\sin x$$

$$-\frac{d}{dx} \tan x = \sec^2 x$$

$$-\frac{d}{dx}\log_c x = \frac{1}{x\ln c}, \quad x > 0$$

• Common antiderivatives:

$$-\int 0\ dx = C$$

4

$$-\int 1 dx = x + C$$

$$-\int n\ dx = nx + C$$

$$-\int e^x dx = e^x + C$$

$$-\int \frac{1}{x} dx = \ln x + C$$

$$-\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$-\int \sin x \, dx = -\cos x + C$$

$$-\int \cos x \, dx = \sin x + C$$

• Fundamental theorem of calculus:

$$\int_{a}^{b} \frac{dy}{dx} dx = y(b) - y(a) \quad \iff \quad \frac{d}{dx} \int_{a}^{x} f(s) ds = f(x)$$

- Three ways to use the fact that $\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x}$
 - a. knowing Δx and dy/dx, we know $\Delta y \approx \Delta x \frac{dy}{dx}$ (linear approximation)
 - b. knowing Δy and dy/dx, we know $\Delta x \approx \frac{\Delta y}{dy/dx}$ (Newton's method)
 - c. approximate the derivative if we know Δy and Δx because $dy/dx \approx \frac{\Delta y}{\Delta x}$

$$\frac{dy}{dx} \approx \frac{y(x + \frac{1}{2}\Delta x) - y(x - \frac{1}{2}\Delta x)}{\Delta x}$$

• Taylor series: allows us to predict y(x) from derivatives at $x = x_0$

$$y(x_0 + \Delta x) = y_0 + (\Delta x)y_0' + \dots + \frac{1}{n!}(\Delta x)^n y_0^{(n)}$$

$$=\sum_{n=0}^{\infty} \frac{(\Delta x)^n}{n!} y^{(n)}(x_0)$$

• e^t follows the addition rule for exponents (ie: $(e^t)(e^T) = e^{t+T}$)

3.2 1st order differential equations

A first order ordinary differential equation connects a function y(t) with its derivative dy/dt. We can additionally classify first order ODEs as linear or nonlinear based on their linearity with respect to y. For example:

- linear examples: $\frac{dy}{dt} = y$, $\frac{dy}{dt} = -y$, $\frac{dy}{dt} = 2ty$
- nonlinear example: $\frac{dy}{dt} = y^2$

3.2.1 Solutions to dy/dt = ay

• since $\frac{d}{dt}e^t = e^t$, solutions to differential equations of the form $\frac{dy}{dt} = ay$ take the form:

$$y(t) = Ce^{at}$$

• the free constant C is the starting value, y(0), so:

$$y(t) = y(0)e^{at}$$

• this solution grows exponentially when a > 0 and decays when a < 0

3.2.2 1st order DEs with source term where dy/dt = ay + q(t)

- This form allows a source/sink term q(t). The separation of ay and q(t) is critical for linear equations
- The homogeneous (null) solution when is $y_n(t) = Ce^{at}$ when q = 0
- The particular solution is $y_n(t)$ when $q \neq 0$

3.3 Separable DEs

- We can solve some differential equations of two variables by separating the variables on either side of the equation using algebra and then integrating each side. Here's a full example with $\frac{dy}{dt}=ay$ (where a is some constant) showing how we arrive at Ce^{at}
 - 1. Rearrange terms, leaving y and dy on the left side with dt on the right side

$$\frac{dy}{dt} = ay \quad \to \quad \frac{1}{y} \, dy = a \, dt$$

2. Integrate both sides of the equation to remove dy and dt terms.

$$\int \frac{1}{y} \, dy = \int a \, dt \quad \to \quad \ln|y| + C_1 = at + C_2$$

3. Solve for y. Combining the C_1 and C_2 terms just gives us another constant. Since e^C is also still just some constant, we can rename this term C to arrive at our solution.

$$|y| = e^{at+C} = e^{at}e^C = Ce^{at}$$

3.4 2nd order differential equations

4 Day 1: 07 August

4.1 Statistical inference

• binomial coefficients: $(\frac{n}{k})\frac{n!}{k!(n-k)!}$