Колебания круглой мембраны

Исследуем свободные колебания круглой мембраны радиуса R с жестко закрепленными краями. Тогда удобно использовать цилиндрические координаты.

Волновое уравнение для отклонений точек мембраны $u=u(\rho,\varphi,t) = u = u(\rho,\varphi,t)$ $\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u = a^2 \left(\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2} \right),$

запишется как:

запишется как:
$$u|_{t=0}=f(\rho,\varphi);\quad \frac{\partial u}{\partial t}\Big|_{t=0}=F(\rho,\varphi).$$

Применяя метод разделения переменных, положим
$$u(\rho, \varphi, t) = v(\rho, \varphi) T(t)$$

Ищем частные нетривиальные решения удовлетворяющие нулевому граничному (краевому) условию $u(R_0, \varphi, t) = R(R_0) = 0.$

Разделяя переменные
$$\frac{T''(t)}{a^2 T(t)} = \frac{\Delta v(\rho, \varphi)}{v(\rho, \varphi)} = -\lambda^2 = \mathrm{const}$$
 .

Получаем характерное для колебательных процессов уравнение

$$T''(t) + \lambda^2 a^2 T(t) = 0 \Rightarrow T(t) = C_1 \cos \lambda at + C_2 \sin \lambda at$$

а для координатной части мы получим задачу Штурма-Лиувилля.

Задача Штурма-Лиувилля в круге

$$\begin{cases} \Delta u + \lambda u = 0; \\ u|_{\rho=R} = 0. \end{cases}$$

Так как задача обладает круговой симметрией, то удобно перейти к цилиндрическим координатам.

$$\begin{cases} \frac{1}{\rho} \left[\frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi^2} \right] + \lambda u = 0; \\ u|_{\rho=R} = 0. \end{cases}$$

Найдем нетривиальные решения уравнения, $u(\rho,\varphi) = R(\rho)\Phi(\varphi) \neq 0$. удовлетворяющие нашим однородным граничным условиям.

$$\begin{cases} \Phi(\varphi) \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial R(\rho)}{\partial \rho} \right) + \left(R(\rho) \frac{1}{\rho^2} \frac{\partial^2 \Phi(\varphi)}{\partial \varphi^2} \right) + \lambda R(\rho) \Phi(\varphi) = 0; \\ u|_{\rho=R} = 0, \end{cases}$$

или
$$\left[\frac{\rho\frac{d}{d\rho}\left(\rho\frac{dR(\rho)}{d\rho}\right)}{R(\rho)} + \lambda\rho^2\right] + \frac{\Phi''(\varphi)}{\Phi(\varphi)} = 0,$$

Решение задачи Штурма-Лиувилля с.з $\gamma_n = n^2$ и с.ф. $\Phi_n = C_1 \sin(n\varphi) + C_2 \cos(n\varphi)$.

выполняются условия периодичности $\Phi(\varphi + 2\pi) = \Phi(\varphi); \quad \Phi'(\varphi + 2\pi) = \Phi'(\varphi)$

Для координатной части получаем:
$$\rho \frac{d}{d\rho} \left(\rho \frac{dR}{d\rho} \right) + (\lambda \rho^2 - n^2) R = 0.$$

Сделав замену переменных $x = \rho \sqrt{\lambda} \ (y = R)$

получим **уравнение Бесселя**
$$y'' + \frac{y'}{x} + \left(1 - \frac{\nu^2}{x^2}\right)y = 0$$
 или
$$y'' + \frac{y'}{x} + \left(1 - \frac{\nu^2}{x^2}\right)y = 0$$

Для угловой части $\Phi''(\varphi) + \gamma \Phi(\varphi) = 0$

 $y + \frac{1}{x} + \left(1 - \frac{1}{x^2}\right)y = 0$ Рассмотрим обыкновенное $d\left(\frac{1}{x}\right)dy$

Рассмотрим обыкновенное дифференциальное уравнение $\frac{d}{dx}\left(k(x)\frac{dy}{dx}\right)-q(x)y=0, \quad x\in(a,b)$. Предположим, что функция k(x) обладает следующими свойствами:

1) положительна (k(x) > 0) в области $a \le x \le b$; 2) равна $k(x) = (x - a)\varphi(x)$ (где $\varphi(x) \ne 0$) и непрерывна на [a, b], т. е. k(x) имеет нуль первого порядка при x = a (особая точка уравнения). **Лемма**. Пусть y_1 и $y_2 - \partial ва$ линейно независимых решения уравнения (\bullet). Если $y_1(x)$ — ограниченная функция (имеет конечный предел) в точке x = a, то второе решение y_2 при $x \to a$ — неограниченное (если $|y_1(a)| < M$, то $\lim_{x \to a} y_2(x) = \infty$). Причем если $y_1(a) \neq 0$, то $y_2(x)$ имеет в точке x = a логарифмическую особенность, a если $y_1(a)$ имеет нуль ν -го порядка, то $y_2(x)$ имеет полюс ν -го порядка.

Уравнение Бесселя

$$y'' + \frac{y'}{x} + \left(1 - \frac{\nu^2}{x^2}\right)y = 0$$
 или $x^2y'' + xy' + (x^2 - \nu^2)y = 0$,

где ν – действительное число.

Так как уравнение имеет особую точку при x = 0, то будем искать решение в виде обобщенного степенного ряда (метод Фробениуса):

$$y(x) = x^{\rho}(a_0 + a_1x + \ldots + a_nx^n + \ldots) = x^{\rho} \sum_{k=0}^{\infty} a_kx^k = \sum_{k=0}^{\infty} a_kx^{k+\rho},$$

где ρ — постоянная и где $a_0 \neq 0$.

Продифференцируем

 $y'(x) = a_0 \rho x^{\rho-1} + a_1(\rho+1) x^{\rho} + \sum a_k(\rho+k) x^{\rho+k-1};$

 $a_k((\rho+k)^2-\nu^2)+a_{k-2}=0.$

$$y''(x) = a_0 \rho(\rho - 1)x^{\rho - 2} + a_1 (\rho + 1) \rho x^{\rho - 1} + \sum_{k=2}^{\infty} (\rho + k) a_k (\rho + k - 1) x^{\rho + k - 2}$$

Подставим в уравнение и получим

$$(\rho^{2} - \nu^{2}) a_{0}x^{\rho} + ((\rho + 1)^{2} - \nu^{2}) a_{1}x^{\rho+1} +$$

$$+ \sum_{k=2}^{\infty} \left[((\rho + k)^{2} - \nu^{2}) a_{k} + a_{k-2} \right] x^{\rho+k} = 0.$$

Приравнивая нулю коэффициенты при различных степенях х,

и учитывая
$$x^2 \sum_{k=0}^{\infty} a_k \, x^{\rho+k} = \sum_{k=2}^{\infty} a_{k-2} \, x^{\rho+k}.$$

$$a_1((\rho+1)^2 - \nu^2) = 0 \ \Rightarrow (\rho_1 = \nu; \quad \rho_2 = -\nu);$$

$$a_1((\rho+1)^2 - \nu^2) = 0;$$

Возьмем первый корень:

возьмем первыи коре
$$o_1 = \nu$$

 $a_1 = 0$ $a_k = -\frac{a_{k-2}}{k(2\nu + k)}$ $(k = 2, 3, 4, \ldots).$ тогда $\nu \neq \pm (n + 1/2)$.

а все нечетные коэффициенты равны нулю $(a_{2k+1}=0 \text{ при } k=0,1,2,\ldots).$

Имеется произвол относительно выбора коэффициента a_0 .

 $\begin{cases} a_2 = -\frac{a_0}{2^2(\nu+1)1!}; \\ a_4 = \frac{a_0}{2^4(\nu+1)(\nu+2)2!}; \\ \dots \\ a_{2k} = (-1)^k \frac{a_0}{2^{2k}(\nu+1)(\nu+2)\cdots(\nu+k)\cdot k!} \end{cases}$ Выберем его из условия нормировки $a_0 = \frac{1}{2^{\nu}\Gamma(\nu+1)}$.

Для четных коэффициентов получаем

Тогда подставив коэффициенты

$$a_{2k} = (-1)^k \frac{1}{2^{2k+\nu}k!(\nu+1)(\nu+2)\cdots(\nu+k)\Gamma(\nu+1)} = \frac{(-1)^k}{2^{2k+\nu}\Gamma(k+1)\Gamma(k+\nu+1)}$$

В ряд $y(x) = \sum_{k=0}^{\infty} a_k x^{\rho+k}$, получим частное решение уравнения

которое носит название
$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{2k+\nu}}{\Gamma(k+1) \, \Gamma(\nu+k+1)}$$
 функции Бесселя 1-го рода ν -го порядка

Ряд сходится для любого х.

В этом легко убедиться, применяя признак Д'Аламбера

ЛИКБЕЗ

Гамма-функция Эйлера

Гамма-функцией называется интеграл

$$\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt,$$

где z — комплексный аргумент, действительная часть которого $\operatorname{Re} z > 0$. Свойства гамма-функции:

1)
$$\Gamma(1) = 1$$
; $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$;

2) $\Gamma(z+1)=z\dot{\Gamma}(z)$. В частности, если z=n — натуральное число,

$$\Gamma(n+1) = n!$$
 $\Gamma\left(n+\frac{1}{2}\right) = \sqrt{\pi} \frac{(2n)!}{2^{2n}n!} = \frac{\sqrt{\pi}}{2^n} (2n-1)!! = \frac{\sqrt{\pi}}{2^n} \cdot 1 \cdot 3 \cdot 5 \cdots (2n-1);$

3) $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin(\pi z)}$ (теорема умножения);

Ассимптотика при
$$x \to \infty$$
:
$$\Gamma(x+1) = \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left[1 + \frac{1}{12x} + O\left(\frac{1}{x^2}\right)\right], \quad x > 0.$$

Из нее следует Формула Стирлинга. $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \quad (n\gg 1).$

решение так как основное уравнение не зависит от знака ν

простой заменой ν на $-\nu$,

Используя второй корень $ho_2 = u$,

 $J_{-\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{-\nu + 2k}}{k! \Gamma(-\nu + k + 1)}.$ При нецелом ν частные решения $J_{\nu}(x)$ и $J_{-\nu}(x)$ уравнения Бесселя

легко получить другое частное

будут линейно независимы. Они по разному себя ведут в нуле (начинаются с разных степеней x). Если $J_{\nu}(x)$ имеет в нуле ноль ν -го порядка, то $J_{-\nu}(x)$ — полюс ν -го порядка. Они образуют фундаментальную систему

решений уравнения Бесселя порядка ν .

При целых значениях ν ($\nu = n$) определение $J_{-\nu}(x)$ лишено смысла: гамма-функция в знаменателе при отрицательных целочисленных значениях обращается в бесконечность ($\Gamma(-n+k+1)$ при $k\leqslant n-1$) и сум-

мирование начинается с k = n:

$$J_{-n}(x) = \lim_{\nu \to n} J_{-n}(x)$$

При k = n + lвидно, что они линейно зависимы

$$(1 (-n+k+1)) при R \leq n$$

$$(-1)^k \qquad (x)^{-n+k}$$

 $J_{-n}(x) = \lim_{\nu \to n} J_{-\nu}(x) = \sum_{k=n}^{\infty} \frac{(-1)^k}{\Gamma(k-n+1)\Gamma(k+1)} \left(\frac{x}{2}\right)^{-n+2k}.$ $J_{-n}(x) = (-1)^n \sum_{l=0}^{\infty} \frac{(-1)^l \left(\frac{x}{2}\right)^{n+2l}}{\Gamma(l+1)\Gamma(n+l+1)} = (-1)^n J_n(x).$ Введем функцию

 $N_{\nu}(x) = \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}$ Она является решением, так как линейная комбинация решений $J_
u$ и J_{u} .

При $\nu = n$ возникает неопределенность 0/0. По правилу Лопиталя

$$N_n(x) = \frac{2}{\pi} J_n(x) \ln\left(\frac{x}{2}\right) - \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} \left(\frac{x}{2}\right)^{-n+2k} - \frac{1}{\pi} (-1)^n \sum_{l=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{n+2k}}{k!(k+n)!} \left[\frac{\Gamma'(k+1)}{\Gamma(k+1)} + \frac{\Gamma'(n+k+1)}{\Gamma(n+k+1)}\right]$$

$$n\sum_{l=1}^{\infty}$$

И в частном случае при
$$n=0$$

$$N_0(x) = \frac{2}{\pi}J_0(x)\ln\left(\frac{x}{2}\right) - \frac{2}{\pi}\sum_{k=0}^{\infty}\frac{(-1)^k\left(\frac{x}{2}\right)^{2k}}{(k!)^2}\left[\frac{\Gamma'(k+1)}{\Gamma(k+1)}\right]$$

 $N_{
u}(x)$ называется функцией Бесселя второго рода u-го порядка:

Функции J_{ν} и $N_{\nu}(x)$ линейно независимы и для любого ν (дробного и целого) образуют фундаментальную систему решений уравнения (•) $y(x) = C_1 J_{\nu} + C_2 N_{\nu}(x)$; где C_1 и C_2 — произвольные постоянные.

Рекурентные формулы

В их справедливости легко убедиться путем прямой проверки (непосредственным дифференцированием рядов для бесселевых функций).

1.
$$\frac{d}{dx}\left(\frac{J_{\nu}(x)}{x^{\nu}}\right) = -\frac{J_{\nu+1}(x)}{x^{\nu}}$$
, или $\frac{\nu}{x}J_{\nu}(x) - J'_{\nu}(x) = J_{\nu+1}(x)$.

2.
$$\frac{d}{dx}(x^{\nu}J_{\nu}(x)) = x^{\nu}J_{\nu-1}(x)$$
, или $\frac{\nu}{x}J_{\nu}(x) + J'_{\nu}(x) = J_{\nu-1}(x)$.

Складывая первую и вторую формулы получим

$$J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x) - J_{\nu-1}(x), \quad J'_{\nu}(x) = \frac{1}{2} (J_{\nu-1}(x) - J_{\nu+1}(x))$$

Для функций Бесселя второго рода

$$N_{\nu-1}(x) + N_{\nu+1}(x) = \frac{2\nu}{x} N_{\nu}(x), \quad N_{\nu-1}(x) - N_{\nu+1}(x) = 2N_{\nu}'(x).$$

Асимптотическое поведение функций Бесселя при $x \to \infty \ (x > 0)$

$$J_{\nu}(x) = \sqrt{\frac{2}{\pi x}} \left(\cos \left(x - \frac{\pi \nu}{2} - \frac{\pi}{4} \right) + O(x^{-1}) \right),$$

$$N_{\nu}(x) = \sqrt{\frac{2}{\pi x}} \left(\sin \left(x - \frac{\pi \nu}{2} - \frac{\pi}{4} \right) + O(x^{-1}) \right).$$

Докажем в качестве примера первое соотношение:

$$x^{\nu} \frac{d}{dx} \left(\frac{J_{\nu}(x)}{x^{\nu}} \right) = x^{\nu} \frac{d}{dx} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(k+1) \Gamma(k+\nu+1)} \frac{x^{2k}}{2^{2k+\nu}} =$$

$$= \left(\frac{x}{2} \right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2k x^{2k-1}}{k! \Gamma(k+\nu+1) 2^{2k}} = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(k) \Gamma(k+\nu+1)} \left(\frac{x}{2} \right)^{2k+(\nu-1)} =$$

$$= -\sum_{l=k-1=0}^{\infty} \frac{(-1)^{l}}{\Gamma(l+1) \Gamma(l+(\nu+1)+1)} \left(\frac{x}{2} \right)^{2l+(\nu+1)} = \frac{x^{2k}}{2^{2k+\nu}} = -J_{\nu+1}(x).$$

Аналогично, учитывая, что $(\nu + k)\Gamma(\nu + k) = \Gamma(\nu + k + 1)$, получим

$$\frac{d}{dx}\left(x^{\nu}J_{\nu}(x)\right) = \sum_{k=0}^{\infty} \frac{(-1)^{k} 2\left(\nu + k\right) x^{2\nu + 2k - 1}}{2^{\nu + 2k} k! \Gamma(\nu + k + 1)} =$$

$$= x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{\nu-1+2k}}{k! \, \Gamma(\nu-1+k+1)} = x^{\nu} J_{\nu-1}(x).$$

Частный случай: $J_0'(x) = -J_1(x)$.

Из формул видно, что

 $J_0(x)$ имеет экстремумы в тех точках, где $J_1(x)$ обращается в ноль.

Графики функций $N_0(x)$, $N_1(x)$ и $N_2(x)$

Свойства функций Бесселя

Часто встречается уравнение в виде

сделаем замену
$$t=kx$$
 получим $t^2\ddot{y}+t\dot{y}+(t^2-\nu^2)y=0, \quad k={\rm const}\neq 0.$ и решение $y(x)=J_{\nu}(kx)$

Положительность и вещественность корней функции Бесселя.

Возьмем два разные k (k_1 и k_2) и запишем уравнения

умножив первое на
$$J_{\nu}(k_{2}x)$$
 , а второе на $J_{\nu}(k_{1}x)$,и вычитая одно из другого получим
$$\begin{cases} \frac{d}{dx} \left(x \frac{dJ_{\nu}(k_{1}x)}{dx} \right) + \left(k_{1}^{2}x - \frac{\nu^{2}}{x} \right) J_{\nu}(k_{1}x) = 0, \\ \frac{d}{dx} \left(x \frac{dJ_{\nu}(k_{2}x)}{dx} \right) + \left(k_{2}^{2}x - \frac{\nu^{2}}{x} \right) J_{\nu}(k_{2}x) = 0. \end{cases}$$

$$(k_2^2 - k_1^2) x J_{\nu}(k_1 x) J_{\nu}(k_2 x) = \frac{d}{dx} \left(x J_{\nu}(k_2 x) \frac{dJ_{\nu}(k_1 x)}{dx} - x J_{\nu}(k_1 x) \frac{dJ_{\nu}(k_2 x)}{dx} \right)$$

Выражение в скобках можно разложить в ряд по степеням х

Наинизшая степень будет $x^{2(\nu+1)}$ и если $\nu > -1$ выражение равно 0 при x=0

Проинтегрировав выражение от 0 до ℓ , получим

$$(k_2^2 - k_1^2) \int_0^t x J_{\nu}(k_1 x) J_{\nu}(k_2 x) dx = l \left[k_1 J_{\nu}'(k_1 l) J_{\nu}(k_2 l) - k_2 J_{\nu}'(k_2 l) J_{\nu}(k_1 l) \right] \star$$

При
$$l=1$$

$$(k_2^2-k_1^2)\int\limits_0^1xJ_{\nu}(k_1x)J_{\nu}(k_2x)\,dx=k_1J_{\nu}'(k_1)J_{\nu}(k_2)-k_2J_{\nu}'(k_2)J_{\nu}(k_1)$$
**
Покажем, что функция Бесселя не может иметь комплексных корней при $\nu>-1$

1. Предположим, что есть корень
$$a+ib$$
, причем $a\neq 0$. Ho в разложении $J_{\nu}(x)=\sum_{k=0}^{(-1)^k}\frac{\left(\frac{x}{2}\right)^{2k+\nu}}{\Gamma(k+1)\,\Gamma(\nu+k+1)}$ все корни вещественны, а следовательно

должен быть комплексно сопряженный корень a-ib . Предположим, что $k_1=a+ib$ и $k_2=a-ib$, при этом ($k_1^2
eq k_2^2$)

Тогда из (**) следует, что
$$\int\limits_0^1 x J_{\nu}(k_1 x) J_{\nu}(k_2 x) \ dx = 0.$$

2. Покажем, что функция Бесселя $J_{
u}(x)$ не может иметь и чисто мнимых корней

Подставим $\pm ib$ в разложение и получим

только положительные члены:

так как гамма-функция $\Gamma(x)$ принимает положительные значения при x>0 $J_{\nu}(ib)=(ib)^{\nu}\sum_{k=0}^{\infty}\frac{1}{k!\,\Gamma(\nu+k+1)}\,\frac{b^{2k}}{2^{\nu+2k}},$

3. Легко показать, что функция $J_{\nu}(x)$ имеет вещественные корни, если обратиться к асимптотическому разложению этой функции

$$J_{
u} = \sqrt{rac{2}{\pi x}} \left[\cos \left(x - rac{
u \pi}{2} - rac{\pi}{4}
ight) + O(x^{-1})
ight]$$
 при $x > 0$.

При
$$x \to \infty$$
 второе слагаемое в скобках стремится к нулю $(O(x^{-1}) \to 0)$ а первое меняется от -1 до 1, следовательно, $J_{
u}(x)$

имеет бесконечное множество вещественных корней.

Таким образом, мы показали, что если $\nu > -1$, то у функции Бесселя $J_{
u}(x)$ все корни вещественные.

Ортогональность функций Бесселя

Пусть $k_1 = \mu_i/l$ и $k_2 = \mu_j/l$, где μ_i и μ_j — два различных положительных корня тогда из (*) следует свойство ортогональности

$$\int_{0}^{l} x J_{\nu}(\mu_{i}x/l) J_{\nu}(\mu_{j}x/l) dx = 0 \quad (i \neq j).$$

Теперь пусть $k=\mu/l$, где μ — положительный корень. Возьмем $k_1=k$, а k_2 будем считать переменным и стремящимся к k ($k_2 \to k$), тогда получим

$$\int_{0}^{l} x J_{\nu}(kx/l) J_{\nu}(k_{2}x/l) dx = \frac{lk J_{\nu}'(kl) J_{\nu}(k_{2}l)}{k_{2}^{2} - k^{2}}.$$

При устремлении $k_2 \to k$ получается неопределенность типа (0/0), которую легко разрешить по правилу Лопиталя:

$$\int_{0}^{l} x J_{\nu}^{2}(\mu_{i}x/l) dx = \frac{l^{2}}{2} J_{\nu}^{2}(\mu) = \frac{l^{2}}{2} J_{\nu+1}^{2}(\mu).$$

Таким образом

$$\int\limits_0^t x J_\nu(\mu_i x/l) J_\nu(\mu_j x/l) \, dx = = \begin{cases} 0, & i \neq j, \\ \frac{l^2}{2} J_\nu'^2(\mu_i) = \frac{l^2}{2} J_{\nu+1}^2(\mu_j), & j = i, \end{cases}$$
 где $\nu > -1$ и μ_i и μ_j — два различных положительных корня $J_\nu(x) = 0$

Рассмотрим более общее уравнение $\alpha J_{\nu}(x)+\beta J_{\nu}'(x)=0, \quad \nu>-1,$ где α и β — заданные вещественные числа.

Пусть $k_1 = \mu_i/l$ и $k_2 = \mu_i/l$, где μ_i и μ_j — два различных положительных корня этого уравнения. Аналогично проделанному ранее можно доказать, что при $\nu > -1$ и $\alpha/\beta + \nu \geqslant 0$ все корни уравнения вещественны, а для j=i имеем $\int_{-\infty}^{\infty} x J^2(\mu x/l) \, dx = \frac{l^2}{l} \left[J'^2(\mu) + \left(1 - \frac{\nu^2}{l} \right) J^2(\mu) \right] \, dx$

при $\nu>-1$ и $\alpha/\beta+\nu\geqslant 0$ все корни уравнения вещественны, а для j=i имеем $\int\limits_0^t x J_\nu^2(\mu x/l)\,dx=\frac{l^2}{2}\left[J_\nu'^2(\mu)+\left(1-\frac{\nu^2}{\mu^2}\right)J_\nu^2(\mu)\right]$

или учитывая
$$J_{\nu}'(\mu) = -rac{lpha}{eta \mu} J_{
u}(\mu)$$

$$\int\limits_{0}^{l} x J_{
u}^{2}(\mu x/l) \, dx = rac{l^{2}}{2} \left(1 + rac{lpha^{2} - eta^{2}
u^{2}}{eta^{2} \mu^{2}}\right) J_{
u}^{2}(\mu)$$

Разложение произвольной функции в ряд по функциям Бесселя

где $\mu_1,\,\mu_2,\,\mu_3,\dots$ — различные положительные корни уравнения $J_{
u}(x)=0$

Всякая дважды дифференцируемая произвольная функция f(x) может быть разложена в абсолютно и равномерно сходящийся ряд

ряд Фурье-Бесселя
$$f(x) = \sum_{i=1}^{\infty} A_i J_{\nu} \left(\mu_i \frac{x}{l} \right), \quad \nu > -1,$$

расположенные в порядке возрастания. Где коэффициенты разложения легко получить используя свойство

ортогональности
$$A_i = \frac{2}{l^2 J_{\nu+1}^2(\mu_i)} \int\limits_0^l x f(x) J_{\nu}\left(\mu_i \frac{x}{l}\right) dx.$$

Разложение

$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n!} \left(u, \frac{x}{n!} \right)$$
 где $\mu_1, \mu_2, \mu_3, \dots$ — различны

 $f(x) = \sum_{i=1}^{\infty} B_i J_{\nu} \left(\mu_i \frac{x}{l} \right), \quad \nu > -1,$ где $\mu_1, \; \mu_2, \; \mu_3, \; \dots$ — различные положительные корни уравнен тельные корни уравнения $\alpha J_{\nu}(x) + \beta x J_{\nu}'(x) = 0,$

$$B_{i} = \frac{2}{l^{2} \left(1 + \frac{\alpha^{2} - \beta^{2} \nu^{2}}{\beta^{2} \mu_{i}^{2}}\right) J_{\nu}^{2}(\mu)} \int_{0}^{l} x f(x) J_{\nu} \left(\mu_{i} \frac{x}{l}\right) dx.$$

, причем $\alpha/\beta+\nu>0$.

ряд Дини–Бесселя

Колебания круглой мембраны (продолжение)

Итак мы получили .

$$\begin{cases} \Phi'' + \nu^2 \Phi = 0; \\ \Phi(\varphi) = \Phi(\varphi + 2\pi); \\ \Phi'(\varphi) = \Phi'(\varphi + 2\pi) \end{cases}$$
 и
$$\begin{cases} \frac{1}{\rho} \frac{(\rho R')'}{R} + \left(\lambda^2 - \frac{\nu^2}{\rho^2}\right) = 0; \\ R(R_0) = 0; \\ |R(0)| < \infty. \end{cases}$$
 Нетривиальные периодические решения для угловой части существуют лишь при

 $u^2=m^2 \ (m-$ целое число) и имеют вид: $\Phi_m(\varphi)=D_{1m}\cos m\varphi+D_{2m}\sin m\varphi$.

$$u = m^2 \quad (m - \text{целое число})$$
и имеют вид. $\Psi_m(\varphi) = D_{1m} \cos m\varphi + D_{2m} \sin m\varphi$

Для радиальной части имеем
$$R'' + \frac{1}{\rho}R' + \left(\lambda^2 - \frac{\nu^2}{\rho^2}\right)R = 0$$

С граничными условиями
$$R(R_0) = 0$$
 ρ ρ^2

и доп. условием ограниченности при
$$ho=0$$
 (нет бесконечного прогиба $|R(0)|<\infty$) Введем новую переменную

$$x=\lambda
ho$$
 — масштабирование $R'=rac{dR}{d
ho}=rac{dy}{d
ho}=rac{dy}{dx}rac{dx}{d
ho}=\lambdarac{dy}{dx},$ и обозначая

$$R(\rho)=R(x/\lambda)=y(x)$$

$$R''=\frac{dR'}{d\rho}=\lambda \frac{d}{d\rho}\left(\frac{dy}{d\rho}\right)=\lambda \frac{d^2y}{dx^2}\frac{dx}{d\rho}=\lambda^2\frac{d^2y}{dx^2},$$

Получим уравнение цилиндрических функций т-го порядка (уравнение Бесселя)

Решение имеет вид

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{m^2}{x^2}\right)y = 0,$$

$$y(x_0) = 0 \quad (x_0 = \lambda R_0), \quad |y(0)| < \infty.$$

$$R(\rho) = R(x/\lambda) = y(x) =$$

$$= d_1 J_m(x) + d_2 N_m(x) = d_1 J_m(\lambda \rho) + d_2 N_m(\lambda \rho),$$

где $J_m(x)$ и $N_m(x)$ – функции Бесселя первого и второго рода m – zo порядка

Так как $\lim_{
ho \to 0} |N_m(\lambda
ho)| = \infty$, то из условия ограниченности решения d_2 равна 0.

Граничное условие дает: $J_m(\lambda R_0) = 0$, или

$$R_{mn} = y(\lambda \rho) = J_m \left(\frac{\mu_n^{(m)}}{R_0} \rho \right), \quad \lambda_{mn} = \left(\frac{\mu_n^{(m)}}{R_0} \right),$$

где $\mu_n^{(m)} - n$ -й корень уравнения $J_m(\mu) = 0$.

$$||R_{mn}||^2 = \left| \left| J_m \left(\frac{\mu_n^{(m)}}{R_0} \rho \right) \right| \right|^2 = \int_0^{R_0} J_m^2 \left(\frac{\mu_n^{(m)}}{R_0} \rho \right) \rho \, d\rho = \frac{R_0^2}{2} \left[J_m' \left(\mu_n^{(m)} \right) \right]^2$$

Задача о собственных значениях круглой мембраны решена. Для каждого λ_{mn} существуют две собственные функции

$$v_{mn}^c(\rho,\varphi) = J_m\left(\frac{\mu_n^{(m)}}{R_0}\rho\right)\cos(m\varphi)$$
 и $v_{mn}^s(\rho,\varphi) = J_m\left(\frac{\mu_n^{(m)}}{R_0}\rho\right)\sin(m\varphi).$

$$v_{mn}(\rho,\varphi) = J_m\left(\frac{\mu_n^{(m)}}{R_0}\rho\right) \left[A_{mn}\cos(m\varphi) + B_{mn}\sin(m\varphi)\right].$$

Соответствующие им колебания — стоячие волны.

• •

$$u(\rho, \varphi, t) = \sum_{m, n=0}^{\infty} u_{mn}(\rho, \varphi, t) =$$

$$= \sum_{m, n=0}^{\infty} J_m \left(\frac{\mu_n^{(m)}}{R_0} \rho \right) \left[A_{mn} \cos(m\varphi) + B_{mn} \sin(m\varphi) \right] \times$$

$$\times \left[C_1 \cos \lambda_{mn} at + C_2 \sin \lambda_{mn} at \right],$$

Формы некоторых мод колебаний круговой мембраны

 $D_{1m}\cos m\varphi + D_{2m}\sin m\varphi = 0$

n-1 окружностей

 $(J_m\left(\mu_n^{(m)}\rho/R_0\right)=0)$

$$u(\rho,\varphi,t) = \sum_{m,n=0}^{\infty} v_{mn}^{c}(\rho,\varphi) \left[A_{mn} \cos\left(\frac{a\mu_{n}^{(m)}}{R_{0}}t\right) + B_{mn} \sin\left(\frac{a\mu_{n}^{(m)}}{R_{0}}t\right) \right] + v_{mn}^{s}(\rho,\varphi) \left[C_{mn} \cos\left(\frac{a\mu_{n}^{(m)}}{R_{0}}t\right) + D_{mn} \sin\left(\frac{a\mu_{n}^{(m)}}{R_{0}}t\right) \right].$$

Коэффициенты $A_{mn},\ B_{mn},\ C_{mn}$ и D_{mn} определяются из начальных условий

$$u(\rho,\varphi,0) = \sum_{m,n=0} \left[A_{mn} v_{mn}^c(\rho,\varphi) + C_{mn} v_{mn}^s(\rho,\varphi) \right] = f(\rho,\varphi);$$

$$u_t(\rho,\varphi,0) = \sum_{m}^{\infty} \left[B_{mn} v_{mn}^c(\rho,\varphi) + D_{mn} v_{mn}^s(\rho,\varphi) \right] \frac{a\mu_n^{(m)}}{R_0} = F(\rho,\varphi).$$