

The National Higher School of Artificial Intelligence

DATABASES

Chapter 3 - Entity Relationship Modeling

Pr. Kamel BOUKHALFA

16/10/2022

Slides From the Textbook: Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management Tenth Edition

Objectives

- · In this chapter, students will learn:
 - The main characteristics of entity relationship components
 - How relationships between entities are defined, refined,
 and incorporated into the database design process
 - How ERD components affect database design and implementation
 - That real-world database design often requires the reconciliation of conflicting goals

Database Systems, 10th Edition

The Entity Relationship Model (ERM)

- · ER model forms the basis of an ER diagram
- · ERD represents conceptual database as viewed by end user
- ERDs depict database's main components:
 - Entities
 - Attributes
 - Relationships

Database Systems, 10th Edition

3

Entities

- · Refers to entity set and not to single entity occurrence
- Corresponds to table and not to row in relational environment
- In Chen and Crow's Foot models, entity is represented by rectangle with entity's name
- The entity name, a noun, is written in capital letters

Database Systems, 10th Edition

Attributes

- · Characteristics of entities
- Chen notation: attributes represented by ovals connected to entity rectangle with a line
 - Each oval contains the name of attribute it represents
- Crow's Foot notation: attributes written in attribute box below entity rectangle

Database Systems, 10th Edition

Attributes (cont'd.)

- · Required attribute: must have a value
- · Optional attribute: may be left empty
- · Domain: set of possible values for an attribute
 - Attributes may share a domain
- Identifiers: one or more attributes that uniquely identify each entity instance
- Composite identifier: primary key composed of more than one attribute

Database Systems, 10th Edition

Attributes (cont'd.)

- · Composite attribute can be subdivided
- · Simple attribute cannot be subdivided
- Single-value attribute can have only a single value
- Multivalued attributes can have many values

Database Systems, 10th Edition

Attributes (cont'd.)

- M:N relationships and multivalued attributes should not be implemented
 - Create several new attributes for each of the original multivalued attributes' components
 - Create new entity composed of original multivalued attributes' components
- Derived attribute: value may be calculated from other attributes
 - Need not be physically stored within database

Database Systems, 10th Edition

Relationships

- Association between entities
- Participants are entities that participate in a relationship
- Relationships between entities always operate in both directions
- Relationship can be classified as 1:M
- Relationship classification is difficult to establish if only one side of the relationship is known

Database Systems, 10th Edition

13

Connectivity and Cardinality

- Connectivity
 - Describes the relationship classification
- Cardinality
 - Expresses minimum and maximum number of entity occurrences associated with one occurrence of related entity
- Established by very concise statements known as business rules

Database Systems, 10th Edition

Existence Dependence

- Existence dependence
 - Entity exists in database only when it is associated with another related entity occurrence
- Existence independence
 - Entity can exist apart from one or more related entities
 - Sometimes such an entity is referred to as a strong or regular entity

Database Systems, 10th Edition

Relationship Strength

- · Weak (non-identifying) relationships
 - Exists if PK of related entity does not contain PK component of parent entity
- Strong (identifying) relationships
 - Exists when PK of related entity contains PK component of parent entity

Database Systems, 10th Edition

Weak Entities

- · Weak entity meets two conditions
 - Existence-dependent
 - Primary key partially or totally derived from parent entity in relationship
- Database designer determines whether an entity is weak based on business rules

Database Systems, 10th Edition

Relationship Participation

- · Optional participation
 - One entity occurrence does not require corresponding entity occurrence in particular relationship
- Mandatory participation
 - One entity occurrence requires corresponding entity occurrence in particular relationship

Database Systems, 10th Edition

Relationship Degree

- Indicates number of entities or participants associated with a relationship
- Unary relationship
 - Association is maintained within single entity
- Binary relationship
 - Two entities are associated
- Ternary relationship
 - Three entities are associated

Database Systems, 10th Edition

Associative (Composite) Entities

- · Also known as bridge entities
- Used to implement M:N relationships
- Composed of primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in connective process

Database Systems, 10th Edition

Developing an ER Diagram

- Database design is an iterative process
 - Create detailed narrative of organization's description of operations
 - Identify business rules based on description of operations
 - Identify main entities and relationships from business rules
 - Develop initial ERD
 - Identify attributes and primary keys that adequately describe entities
 - Revise and review ERD

Database Systems, 10th Edition

Database Design Challenges: Conflicting Goals

- Database designers must make design compromises
 - Conflicting goals: design standards, processing speed, information requirements
- Important to meet logical requirements and design conventions
- · Design is of little value unless it delivers all specified query and reporting requirements
- Some design and implementation problems do not yield "clean" solutions

 Database Systems, 10th Edition

16/10/2022

Summary

- Entity relationship (ER) model
 - Uses ERD to represent conceptual database as viewed by end user
 - ERM's main components:
 - Entities
 - Relationships
 - Attributes
 - Includes connectivity and cardinality notations

Database Systems, 10th Edition

49

Summary (cont'd.)

- Connectivities and cardinalities are based on business rules
- M:N relationship is valid at conceptual level
 - Must be mapped to a set of 1:M relationships
- ERDs may be based on many different ERMs
- UML class diagrams are used to represent the static data structures in a data model
- Database designers are often forced to make design compromises

Database Systems, 10th Edition