OPEN POSSIBILITIES.

Inspur MX1 system introduction

System Overview

Inspur MX1 System

Inspur System Overview

Inspur OAI System Features

Product model: MX1	
Chassis	21" 30U Rack mount
Dimensions	537W*141H*803D (mm)
Connection with Compute node	Up to PCle Gen4 x32
ОАМ	Support Max 8pcs 48~54V OAM(up to 550W each); Support Max 8pcs 12V OAM (up to 350W each)
Power without OAM	1570W
PCIe Switch	Support PCIe Gen4 (100lanes/chip)
PCIe re-timer	Support PCle Gen4 x16
Phy re-timer	56Gbps PAM-4 or 10/28Gbps NRZ x16
Expansion slots	Up to 4 x PCle Gen4 x16 low profile standard card
ВМС	AST2520
I/O	Dongle connector for dedicate NIC and UBS, UID/PWR Button with LED , QSFDDx8 for OAM scale out, micro USBx2 for OAM debug
Ambient Working Temperature	5-35 °C

System Explode View

System Block Diagram – 1

Signal symbol
PCIe x16
Management
Serdes

System Block Diagram – 2

System Power Map

System I2C Map

For HW point of view, UBB MX1 has verified different OAM as below

- 1. INTEL NERVANA (EOL)
- 2. HABANA
- Enflame
- 4. Cambricon

System Management Map

For HW point of view, UBB MX1 has verified different OAM as below

- 1. INTEL NERVANA (EOL)
- 2. HABANA
- 3. Enflame
- 4. Cambricon

System Power Budget (700W OAM)

Component	Quantity	Power per item (W)	Design Power (W)	Utilization	Usage Power (W)
UBB					
OAM (48V input, no VR loss)	8	700	5600	100%	5600
PCIe Retimer	8	9.6	76.8	80%	61.44
PHY Retimer	4	18.7	74.8	80%	59.84
QSFP-DD	8	12.5	100	80%	80
HIB					
PCIe Switch	4	44	176	80%	140.8
BMC (AST2500)	1	1.76	1.76	80%	1.408
Infinity Band Board					
PCIe slot	4	75	300	80%	240
FAN					
9256 FAN	4	140	560	100%	560
VR loss					
Main Chip VR loss (90% efficiency)	1	22.36	22.36	100%	22.36
Total power					6765.85

System Power Budget (350W OAM)

Component	Quantity	Power per item (W)	Design Power (W)	Utilization	Usage Power (W)
UBB					
OAM (12V input, with VR loss)	8	350	2800	100%	2800
PCIe Retimer	8	9.6	76.8	80%	61.44
PHY Retimer	4	18.7	74.8	80%	59.84
QSFP-DD	8	12.5	100	80%	80
HIB					
PCIe Switch	4	44	176	80%	140.8
BMC (AST2520)	1	1.76	1.76	80%	1.408
Infinity Band Board					
PCIe slot	4	75	300	80%	240
FAN					
9256 FAN	4	140	560	100%	560
VR loss					
Main Chip VR loss (90% efficiency)	1	333.48	333.48	100%	333.48
Total power					4276.96

PCBA List

Universal Baseboard Placement

1	8* OAM Module
2	16* OAM Connector
3	8* PCIe Gen4 Retimer
4	4* PAM-4 Retimer
5	8* QSFPDD Connector
6	2* Handle

Universal Baseboard Placement

Universal Baseboard Placement

High-speed Interface Board Placement

Power Delivery Board Placement

Front IO Board Placement

Infinity Band Board Placement

Mechanical Design

System Access Solution – UBB tray

Press button to release lever handle.

Then pull out UBB tray from system.

System Access Solution – PDB

System Access Solution – PCIe cards

System Access Solution – Fan module

Press latch to remove fan module.

System Access Solution – Whisper cable

Unplug Whisper cable from switch board

Unfasten mounting screws

ICL Channel Loss Estimation and Measurement

ICL 28Gb Topology

Here is an example for a system base board loss budget:

Die to Die IL Budget from Module supplier	30dB
Total loss on Module @28Gbps	up to 8dB
Base Board IL Budget @28Gbps	30-8*2=14dB

ICL 28Gb NRZ Loss Estimation (I): OAM to OAM on UBB

- Assumptions :
- (1) All traces route on inner layer with 90ohm (4 mil-core and 5-mil pp) and the insertion loss of trace is 0.75*1.08dB/inch at 14.025GHz with ultra low loss material (IT-988G). High temperature effect with 8% is included into channel loss estimation.
- (2) Optimization for transition via is necessary. (backdrill, anti-pad control, need to check aspect ratio) Via loss (stub length < 20 mil) is 0.5dB at 14.025GHz.
- (3) OAM package loss is 8dB at 14.025GHz.
- (4) Loss budget is 30 dB for Intel ICL 28Gbs NRZ SPEC.
- Summary: When routing length with 16 inch on inner layer between OAMs, loss budget margin meets Intel CL loss criteria. Channel loss evaluation is Middle Risk.

ICL 28Gb NRZ Loss Estimation (II): QSFP DD Cable Between UBB

ICL NRZ @14.025GHz	Retimer PKG	Via (backdrill& Via Stub < 20 mil)	L1	Via (backdrill& Via Stub < 20 mil)	QSFP_DD Conn_A	QSFP_DD Cable+Paddle	QSFP_DD Conn	Via (backdrill& Via Stub < 20 mil)	L2	Via (backdrill& Via Stub < 20 mil)	Retimer PKG	Total
Ultra Low (inch)			2.0			78.74			2.0			82.74 inch
Ultra Low (dB)	3.0	0.5	1.62	0.5	1.0	16.72	1.0	0.5	1.62	0.5	3.0	29.96 dB
Channel Loss Spec.												30 dB

- Assumptions :
- (1) All traces route on inner layer with 90ohm (4 mil-core and 5-mil pp) and the insertion loss of trace is 0.75*1.08dB/inch at 14.025GHz with ultra low loss material (IT-988G). High temperature effect with 8% is included into channel loss estimation.
- (2) Optimization for transition via is necessary. (backdrill, anti-pad control, need to check aspect ratio) Via loss (Backdrill and Via stub length < 20 mil) is 0.5dB at 14.025GHz.
- (3) Credo PHY Retimer package worse case loss is about 3.0dB at 14.025GHz.
- (4) QSFP_DD cable assembly = Conn A+ Paddle Card A + 30AWG Raw Cable + Paddle Card B + Conn B;
 Conn A/B loss is 1.0dB at 14.025GHz; Paddle Card A/B loss is 0.8dB at 14.025GHz;
 30AWG raw cable loss is 7.0*1.08dB/m (0.1778*1.08dB/inch) at 14.025GHz. High temperature effect with 8% is included into channel loss estimation.
- (5) Loss budget is 30dB for Intel ICL 28Gbs NRZ SPEC.
- Summary: When routing length with 2 inch on inner layer and 2-meter cable, loss budget margin meets ICL criteria. Channel loss evaluation is Middle Risk.

ICL 28Gb NRZ Loss: Test Worse Case with 15.312"

Worse Case	J1: J11, J12 J2: C11, C12			
Net	Pin	Length (mil)		
SDS_GPU2_GPU7_S7S7_DN<6>	J16.C11:J6.J11	15312		
SDS_GPU2_GPU7_S7S7_DP<6>	J16.C12:J6.J12	15312		

ICL 28Gb NRZ Loss: Test Result

- Equipment:
 - N5247A PNA-X 微波網路分析儀, 67 GHz
- Test Setting:
 - Frequency: 10MHz 40GHz
 - Step: 10MHz (4000 points)
 - Port Direction: Odd-Even (1_3_2_4)
- Insertion Loss:
 - 12.389 dB at 14.05GHz without test fixture

PCIe 4.0 Channel Loss Estimation

PCIE 4.0 Loss Estimation (I): UBB to HIB without Retimer

- Assumptions:
- (1) All traces route on inner layer with 85ohm and the insertion loss of trace is 0.58*1.08 dB/inch at 8GHz with ultra low loss material. High temperature effect with 8% is included into channel loss estimation.
- · (2) Via/Capacitor loss are 0.5/1.0 dB per one and ExaMAX Conn loss is 1.5 dB at 8GHz.
- (3) Breakout loss 0.99*1.08 dB/inch at 8GHz for ultra low loss material.
- · (4) OAM package loss is 5.0dB and Switch package loss is 3.0dB at 8GHz.
- (5) Loss budget is 28 dB for PCIE Gen4.
- > Summary: When routing length without Retimer, loss budget margin don't meets PCle 4.0 loss criteria.
- Channel loss evaluation is High Risk

PCIE 4.0 Loss Estimation (II): UBB to HIB with Retimer

PCle 4.0 @8GHz	OAM PKG	Via	UBB L1	Via	САР	Via	UBB L2	RE PKG	Via	UBB L3	Via	ExaMAX Conn	Via	SW L4	Breakout	Via	SW PKG	Total
Ultra Low (inch)			19.0				1.0											20 inch
Ultra Low (dB)	5.0	0.5	11.90	0.5	1.0	0.5	0.63	2.0										22.03 dB
Ultra Low (inch)										4.0				8.5	0.5			13 inch
Ultra Low (dB)								2.0		2.51	0.5	1.5	0.5	5.32	0.53	0.5	3.0	16.37 dB
Channel Loss Spec.																		28 dB

- · Assumptions:
- (1) All traces route on inner layer with 85ohm and the insertion loss of trace is 0.58*1.08 dB/inch at 8GHz with ultra low loss material.
 High temperature effect with 8% is included into channel loss estimation.
- · (2) Via/Capacitor loss are 0.5/1.0 dB per one and ExaMAX Conn loss is 1.5 dB at 8GHz.
- (3) Breakout loss 0.99*1.08 dB/inch at 8GHz for ultra low loss material.
- (4) OAM package loss is 5.0dB and Switch package loss is 3.0dB at 8GHz.
- (5) Loss budget is 28 dB for PCIE Gen4.

Thermal Simulation

OAM Heatsink Design For Common Tray

- ✓ Add top cover & HS module handle for accessing
- ✓ Reduce fin numbers to meet common UBB tray specification

Power Deliver Board Placement

Thermal Design Power								
Component	<u>Unit Power</u>	<u>Q'ty</u>	Power (W)					
OAM	450	8	3600					
Re-timer	9.6	8	76.8					
Switch	44	4	176					
PHY	18.7	4	74.8					
QSFP-DD	12.5	8	100					
CX5	18.1	4	72.4					
VR	25	6	150					
9256 Fan	140	4	560					
Total P		4810						

Top view

Simulation Results (Temperature Field)

Simulation Boundary Condition Setup

- ✓ TDP at 35C ambient
- ✓ Compact model for upper stream OAM HS

✓ Fan normal

✓ Compact model HS for VR

✓ Sea-level

✓ Symmetric placement for switch HS two for detail model; two for compact model

Simulation Result						
Loc	cation	Spec (C)	Temp.			
ASIC		115.0	76.5			
OAM	НВМ	95.0	93.3			
PCle	Re-timer	85.0	79.5			
PCle	Switch	115.0	90.8			
PHY	Re-timer	125.0	78.7			
QSFP-DD		70.0	66.9			
CX5		105.0	94.1			
	VR	125.0	108.7			

Test by Nervana OAM 280W x8pcs,

Thank you!

