A resolution from modular curve

Let $\Gamma = \Gamma_1(N)$. We have seen that any projective resolution of A as a trivial $A[\Gamma_1(N)]$ -module produces a formula for cohomology groups of $\Gamma_1(N)$.

A bar resolution is such a resolution. Is there anything else? In general, if a group G acts freely on contractible space X, then such a resolution can be obtained in terms of singular chains in X.

The group $\Gamma_1(N)$ naturally acts on \mathfrak{H} , which is contractible.

Proposition

If $N \ge 4$, the group $\Gamma_1(N)$ is torsion-free.

Proof.

Let $\gamma \in \operatorname{SL}_2(\mathbb{Z})$, and $\gamma^m = 1$ with m > 2. Then, $|\operatorname{tr}(\gamma)| < 2$. It implies that $|\operatorname{tr}(\gamma)| = 0, 1$. On the other hand, if $\gamma \in \Gamma_1(N)$, then $\operatorname{tr}(\gamma) \equiv 2$ modulo N. Both cannot hold true simultaneously if N > 4.

Proposition (1)

Suppose $N \ge 4$. The action of $\Gamma_1(N)$ on $\mathfrak H$ is free.

Proposition (2)

Any $\tau \in \mathfrak{H}$ has a finite cyclic stabilizer subgroup.

Proposition (3)

If $\tau \in \mathfrak{H}$ is fixed by a non-trivial element $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$, then $\tau^3 = 1$ or $\tau^4 = 1$.

Note that $(3) \Rightarrow (2) \Rightarrow (1)$. There is an elementary proof for (3). For example, Diamona-Shurman Lemma 2.3.2.

Proposition

If $\tau \in \mathfrak{H}$ is fixed by a non-trivial element $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$, then $\tau^3 = 1$ or $\tau^4 = 1$.

Here is a sketch another proof of the above proposition based on a moduli interpretation of $\mathrm{PSL}_2(\mathbb{Z}) \backslash \mathfrak{H}$. This interpretation will play important roles later.

Proof.

An elliptic curve is \mathbb{C}/Λ where Λ is a lattice; a discrete subgroup isomorphic to \mathbb{Z}^2 . Choosing a positively oriented bases, we get $\Lambda \xrightarrow{\sim} \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$. Positivity ensure $\tau = \omega_2/\omega_1$ has positive imaginary part. Since there is a $\mathrm{SL}_2(\mathbb{Z})$ action on the choice $\Lambda \xrightarrow{\sim} \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$, we get the action on the upper half plane parametrizing τ . The stabilizer of τ corresponds to automorphisms of \mathbb{C}/Λ .

It turns out that \mathbb{C}/Λ can have a non-trivial automorphism if $\Lambda=\mathcal{O}$, where $\mathcal{O}\subset\mathbb{C}$ is a subring. We know that $\mathcal{O}^\times/\{\pm 1\}$ can have order 2 or 3 from algebraic number theory.

Alternatively, we can prove:-

Proposition

Any $\tau \in \mathfrak{H}$ has a finite cyclic stabilizer subgroup.

Proof.

Identify $\mathfrak{H}=\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R}).$ This comes from the decomposition

$$A = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & 0 \\ 0 & y^{-1} \end{bmatrix} R_{\theta}$$

where R_{θ} is the rotation by $\theta \in \mathbb{R}$. Here $\tau = x + y\sqrt{-1}$. A stabilizer subgroup $\Gamma_{\tau} \subset \mathrm{SL}_2(\mathbb{Z})$ is isomorphic to a discrete subgroup of $\mathrm{SO}_2(\mathbb{R})$. Since $\mathrm{SO}_2(\mathbb{R})$ is a circle, its discrete subgroup is necessarily finite and cyclic.

Topology on $Y_{\Gamma} = \Gamma \backslash \mathfrak{H}$.

Proposition

Let $\gamma \in \Gamma$, $\tau \in \mathfrak{H}$, and $\tau' = \gamma \tau$. Suppose $\tau \neq \tau'$. Then, there exists neighborhoods $\tau \in U$ and $\tau' \in U'$ such that $U \cap U' = \emptyset$.

Proof.

It follows from the existence of the *j*-function.

Corollary

 Y_{Γ} is a topological surface.

Frame

Frame