ANALYSIS QUALIFYING EXAMINATION August 21, 1996

DIRECTIONS: 1. Questions 1-8 are worth ten points each and question 9 is worth 20 points.

- 2. Write your solution to each problem on a separate sheet.
- 1. Let $\langle f_n \rangle$ be a sequence of continuous functions on [0,1] such that $\langle f_n(x) \rangle$ decreases to zero for each $x \in [0,1]$. Prove that $\langle f_n \rangle$ converges uniformly to zero.
- 2. In this question m denotes Lebesgue measure and m^* denotes Lebesgue outer measure on the line.
- (i) Let $A \subset \mathbb{R}$. Prove that there exists a G_{δ} set G such that $A \subset G$ and $m(G) = m^*(A)$.
- (ii) Suppose that $m^*(A) < \infty$. Prove that A is measurable if and only if $m^*(G \setminus A) = 0$.
- 3. Let (X, Σ, μ) be a measure space and let $(E_n)_{n\geq 1}$ be a sequence of distinct measurable sets such that $\Sigma \mu(E_n) < \infty$. An extended real-valued function f is defined thus:

$$f(x) = \begin{cases} k, & \text{if } x \text{ belongs to exactly } k \text{ of the } E_n\text{'s} \\ \infty, & \text{if } x \text{ belongs to infinitely many } E_n\text{'s}. \end{cases}$$

- (i) Prove that f is integrable and evaluate $\int f d\mu$.
- (ii) Now suppose, in addition, that $\mu(E_m \cap E_n) = \mu(E_m)\mu(E_n)$ for all $m \neq n$. Prove that $f \in L^2(\mu)$ and evaluate $||f||_2$.
- 4. Let $f:[0,1] \to \mathbb{R}$ be absolutely continuous and let $g:\mathbb{R} \to \mathbb{R}$ be continuously differentiable (i.e. g is differentiable everywhere and its derivative is continuous). Prove that $g \circ f$ is absolutely continuous. Deduce that

$$g(f(x)) = g(f(0)) + \int_0^x g'(f(t))f'(t) dt$$
 $(x \in [0,1]).$

5. Let $f, f_n \ (n \ge 1)$ be integrable functions that are defined on a σ -finite measure space (X, Σ, μ) . Suppose that $f_n(x) \to f(x)$ a.e. Prove that, for each $0 \le \alpha < \mu(X)$, there exists a measurable set E_{α} such that $m(E_{\alpha}) \ge \alpha$ and

$$\int_{E_{\alpha}} f \, d\mu = \lim \int_{E_{\alpha}} f_n \, d\mu.$$

Does this result hold also for $\alpha = \mu(X)$? Prove or construct a counterexample.

6 Let (X, Σ, μ) be a measure space, let $1 \leq p < \infty$, and let f, f_n $(n \geq 1)$ belong to $L^p(\mu)$. Suppose that

$$\int_X fg \, d\mu = \lim \int_X f_n g \, d\mu$$

Typeset by AMS-TEX

for every $g \in L^q(\mu)$, where 1/p + 1/q = 1. Prove that $||f||_p \le \liminf ||f_n||_p$. (HINT: Consider $g = |f|^{p-1} \operatorname{sgn} f$.)

7. Evaluate

$$\int_0^\infty \frac{x^2}{1+x^4} \, dx.$$

- 8. **EITHER:** Let f be an entire function. Prove carefully that f is a polynomial of degree n if and only if there exists a non-zero $\alpha \in \mathbb{C}$ such that $\lim_{z\to 0} z^n f(1/z) = \alpha$.
- **OR:** (i) What is meant by the "principle of isolated zeros"? (ii) Let f be holomorphic and not identically zero on the region Ω . Prove that $Z(f) = \{z \in \Omega : f(z) = 0\}$ is countable and that $Z(f) \cap K$ is finite for every compact set K wholly contained in Ω .
 - 9 True or False? Prove or construct a counterexample in each case.
- (i) If f is holomorphic in the region $\mathbb{C} \setminus \{0\}$ and γ is a simple closed path in $\mathbb{C} \setminus \{0\}$, then $\int_{\gamma} f(z) dz = 0$.
 - (ii) Every uncountable set of real numbers has a non-measurable subset.
- (iii) Suppose that $f: \mathbb{R} \to \mathbb{R}$ has the property that $f^{-1}(U)$ is a Borel set whenever U is an open set. Then $f^{-1}(B)$ is a Borel set whenever B is a Borel set.
- (iv) Let (X, Σ, μ) be a finite measure space and let f be a non-negative measurable function such that $f(x) < \infty$ a.e. Then the measure ν defined by $\nu(E) = \int_E f \, d\mu$ is σ -finite.