15 poäng ger garanterat betyg E. Motivera alla lösningar noggrant. Obevisade deluppgifter kan användas.

Påminnelse. Kom ihåg att om \mathbb{F} är en kropp så skriver vi

- $P_n(\mathbb{F})$ för \mathbb{F} -vektorrummet av polynom av grad högst n med koefficienter i \mathbb{F} och
- $\mathbf{M}_{m \times n}(\mathbb{F})$ för \mathbb{F} -vektorrummet av $m \times n$ -matriser med element i \mathbb{F} .

Uppgifter.

- 1. (a) (1 poäng) Låt $T: V \to W$ vara en avbildning mellan vektorrum. Ange definitionen av att T är linjär.
 - (b) (4 poäng) Låt $T: \mathbb{R}^3 \to \mathbb{R}$ ges av

$$T(x, y, z) = 2x + y - z.$$

Visa att T är linjär, samt bestäm baser för nollrummet N(T) och bildrummet R(T). Beräkna även dimensionerna av N(T) och R(T).

Lösning

- (a) Antag att V och W är vektorrum över en kropp F. Avbildningen $T:V\to W$ är linjär om
 - $T(v_1 + v_2) = T(v_1) + T(v_2)$ för all $v_1, v_2 \in V$ och
 - T(cv) = cT(v) för alla $c \in F$ och $v \in V$.
- (b) För att visa att T är linjär behöver vi verifiera de två kriterierna från (a). Låt $v_1 = (x_1, y_1, z_1)$ och $v_2 = (x_2, y_2, z_2)$ vara vektorer i \mathbb{R}^3 . Då är

$$T(v_1 + v_2) = T(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= 2(x_1 + x_2) + y_1 + y_2 - (z_1 + z_2)$$

$$= 2x_1 + y_1 - z_1 + 2x_2 + y_2 - z_2$$

$$= T(x_1, y_1, z_1) + T(x_2, y_2, z_2)$$

$$= T(v_1) + T(v_2).$$

Alltså är det första kriteriet uppfyllt. För att verifiera det andra, låt $c \in \mathbb{R}$ och $v = (x, y, z) \in \mathbb{R}^3$. Då är

$$T(cv) = T(cx, cy, cz)$$

$$= 2(cx) + cy - cz$$

$$= c(2x + y - z)$$

$$= cT(x, y, z)$$

$$= cT(v),$$

så även det andra kriteriet är uppfyllt och alltså är T linjär.

För att beräkna nollrummet av T vill vi hitta alla $(x, y, z) \in \mathbb{R}^3$ sådana att

$$T(x, y, z) = 2x + y - z = 0.$$

Detta är en linjär ekvation, som vi kan skriva om till x = (z - y)/2. Varje lösning har alltså formen

$$(x, y, z) = \left(\frac{z - y}{2}, y, z\right) = \left(-\frac{1}{2}, 1, 0\right) y + \left(\frac{1}{2}, 0, 1\right) z.$$
 (1)

Genom att multiplicera med skalären 2 ser vi att N(T) alltså genereras av av vektorerna (-1,2,0) och (1,0,2). Dessa är linjärt oberoende, då vi i (1) ser att en linjärkombination av vektorerna är noll endast om båda koefficienter är noll. Alltså är en bas för nollrummet

$$\{(-1,2,0),(1,0,2)\},\$$

från vilket vi också kan dra slutsatsen att dim N(T)=2. Från dimensionssatsen kan vi direkt dra slutsatsen att

$$\dim R(T) = \dim \mathbb{R}^3 - \dim N(T) = 3 - 2 = 1,$$

så eftersom $R(T) \subset \mathbb{R}$ så är därmed $R(T) = \mathbb{R}$. En bas för bildrummet är alltså exempelvis $\{1\}$.

- 2. (a) (1 poäng) Låt $T: V \to V$ vara en linjär operator. Ange definitionen av ett egenvärde av T.
 - (b) (4 poäng) Betrakta operatorn $T: P_1(\mathbb{C}) \to P_1(\mathbb{C})$ som ges av

$$p(x) \mapsto p(-1) + p(1)x$$
.

Beräkna alla egenvärden för T och deras tillhörande egenvektorer.

Lösning

- (a) Antag att V är ett F-vektorrum, där F är en kropp. Då är en skalär $\lambda \in F$ ett egenvärde av T om det existerar en nollskild vektor $v \in V$ sådan att $T(v) = \lambda v$.
- (b) Vi börjar med att beräkna matrisrepresentationen av T i förhållande till den ordnade standardbasen B = (1, x) av $P_1(\mathbb{C})$. Vi har

$$T(1) = 1 + 1 \cdot x = 1 + x,$$

 $T(x) = -1 + 1 \cdot x = -1 + x.$

Vi har alltså $[T(1)]_B = (1,1)^T$ och $[T(x)]_B = (-1,1)^T$, så matrisen blir

$$[T]_B = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right).$$

För att beräkna T's egenvärden bestämmer vi nu dess karaktäristiska polynom, med hjälp av matrisen. Om vi sätter $A = [T]_B$ har vi

$$\det(A - \lambda I_2) = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1.$$

Vi får alltså ekvationen $(1 - \lambda)^2 = -1$, dvs

$$1 - \lambda = \pm i$$
,

vilket alltså har lösningarna $\lambda = 1 \pm i$, som därmed är T's egenvärden. För att beräkna egenvektorerna löser vi ekvationerna $(A - \lambda I_2)z = 0$, för de respektive egenvärdena.

För egenvärdet 1+i Gausseliminerar vi matrisen

$$A-(1+i)I_2=\left(\begin{array}{cc}-i&-1\\1&-i\end{array}\right)\sim\left(\begin{array}{cc}1&-i\\1&-i\end{array}\right)\sim\left(\begin{array}{cc}1&-i\\0&0\end{array}\right).$$

Vi har alltså att $z=(z_1,z_2)\in\mathbb{C}^2$ löser ekvationen om $z_1=iz_2$. Alla lösningar har alltså formen

$$z = (iz_2, z_2) = (i, 1)z_2.$$

Genom att översätta tillbaka från koordinater ser vi därmed att egenvektorerna för T tillhörande egenvärdet 1+i är de nollskilda skalärmultiplarna av vektorn

$$i + x$$
.

För egenvärdet 1-i Gausseliminerar vi matrisen

$$A - (1-i)I_2 = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \sim \begin{pmatrix} -1 & -i \\ 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & i \\ 0 & 0 \end{pmatrix}.$$

Alltså löser $z=(z_1,z_2)\in\mathbb{C}^2$ ekvationen om $z_1=-iz_2$, dvs om $z=(-i,1)z_2$. Genom att översätta tillbaka från koordinater ser vi därmed att egenvektorerna för T tillhörande egenvärdet 1-i är de nollskilda skalärmultiplarna av vektorn

$$-i + x$$

- 3. (a) (1 poäng) Låt $T: V \to V$ vara en linjär operator på ett inre produktrum. Ange definitionen av att T är en normal operator.
 - (b) (1 poäng) Låt $T: V \to V$ vara en linjär operator på ett ändligtdimensionellt inre produktrum och låt β vara en ON-bas för V. Ange en sats som beskriver huruvida T är normal med hjälp av basen β .
 - (c) (3 poäng) Betrakta $M_{2\times 2}(\mathbb{C})$ med den inre produkten $\langle A, B \rangle = \operatorname{tr}(B^*A)$. Låt T vara den operator på $M_{2\times 2}(\mathbb{C})$ som ges av

$$T\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}b+c+d&c+d\\d&0\end{array}\right).$$

Avgör om T är diagonaliserbar relativt en ON-bas för $M_{2\times 2}(\mathbb{C})$.

Ledning: Det är tillåtet att utan bevis använda att

$$\beta = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right)$$

är en ON-bas för $M_{2\times 2}(\mathbb{C})$ i förhållande till denna inre produkt.

Lösning

- (a) Operatorn T är normal om $T^* \circ T = T \circ T^*$, där T^* är T's adjungerade operator och \circ betecknar sammansättning av operatorer.
- (b) Operatorn T är normal om och endast om matrisen $A := [T]_{\beta}$ är en normal matris, dvs. en matris som uppfyller $A^*A = AA^*$, där A^* är matrisen som fås genom att transponera A och komplexkonjugera alla dess element.

Obs! Satsen gäller *inte* om β inte är en ON-bas.

(c) Vi minns att en linjär operator på ett inre produktrum över $\mathbb C$ är diagonaliserbar relativt en ON-bas om och endast om den är normal. Från uppgift 3(b) har vi ett sätt att verifiera om T är normal och beräknar därför matrisrepresentationen $[T]_{\beta}$, där β är ON-basen given i uppgiften. VI har

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Alltså är

$$[T]_{\beta} = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Om vi låter $A:=[T]_{\beta}$ så har vi nu

$$A^*A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

och

$$AA^* = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right) = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \end{array}\right).$$

Vi ser alltså att $A^*A \neq AA^*$, så A är inte en normal matris och alltså är T inte en normal operator och därmed inte heller diagonaliserbar relativt en ON-bas.

- 4. (a) (1 poäng) Låt $A \in M_{n \times n}(\mathbb{R})$. Ange definitionen av att A är en ortogonal matris.
 - (b) (4 poäng) Finn en singulärvärdesuppdelning av matrisen

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix} \in \mathcal{M}_{2 \times 4}(\mathbb{R}).$$

Lösning

- (a) Matrisen A är ortogonal om $A^T A = AA^T = I_n$, dvs om A är inverterbar med sitt transponat som invers.
- (b) Vi minns att de positiva singulärvärdena till A är kvadratrötterna till de positiva egenvärdena av A^*A , så vi beräknar

$$A^*A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 2 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 4 & 4 \end{pmatrix}.$$

Vi beräknar det karaktäristiska polynomet, genom kofaktorutveckling längs den första kolonnen:

$$\det(A^*A - \lambda I_4) = \begin{vmatrix} 1 - \lambda & 1 & 0 & 0 \\ 1 & 1 - \lambda & 0 & 0 \\ 0 & 0 & 4 - \lambda & 4 \\ 0 & 0 & 4 & 4 - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 4 \\ 0 & 4 & 4 - \lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 4 - \lambda & 4 \\ 0 & 4 & 4 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)^2 \begin{vmatrix} 4 - \lambda & 4 \\ 4 & 4 - \lambda \end{vmatrix} - \begin{vmatrix} 4 - \lambda & 4 \\ 4 & 4 - \lambda \end{vmatrix}$$

$$= ((1 - \lambda)^2 - 1) \begin{vmatrix} 4 - \lambda & 4 \\ 4 & 4 - \lambda \end{vmatrix}$$

$$= (1 - 2\lambda + \lambda^2 - 1)((4 - \lambda)^2 - 16)$$

$$= \lambda(\lambda - 2)(16 - 8\lambda + \lambda^2 - 16)$$

$$= \lambda^2(\lambda - 2)(\lambda - 8).$$

De nollskilda egenvärdena är alltså 2 och 8, så singulärvärdena är $\sqrt{8} \ge \sqrt{2}$. Vi sätter alltså

$$\Sigma = \left(\begin{array}{ccc} \sqrt{8} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{array} \right).$$

Nästa steg i singulärvärdesuppdelningen är att beräkna egenvektorerna för A^*A . Vi gör detta ett egenvärde i taget.

För egenvärdet 8 Gausseliminerar vi

$$A^*A - 8I_4 = \begin{pmatrix} -7 & 1 & 0 & 0 \\ 1 & -7 & 0 & 0 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 4 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Det gäller alltså att $x=(x_1,x_2,x_3,x_3)\in\mathbb{R}^4$ är en lösning om och endast om $x_1=0,\,x_2=0$ och $x_3=x_4,\,\mathrm{dvs}\;x=(0,0,1,1)x_4.$ En normerad egenvektor är därmed

$$v_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\0\\1\\1 \end{array} \right).$$

För egenvärdet 2 Gausseliminerar vi

$$A^*A - 2I_4 = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Det gäller alltså att $x=(x_1,x_2,x_3,x_3)\in\mathbb{R}^4$ är en lösning om och endast om $x_1=x_2,\,x_3=0$ och $x_4=0,\,\mathrm{dvs}\,\,x=(1,1,1,1)x_2.$ En normerad egenvektor är därmed

$$v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}.$$

För egenvärdet 0 Gausseliminerar vi

$$A^*A - 0I_4 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 4 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Det gäller alltså att $x=(x_1,x_2,x_3,x_3)\in\mathbb{R}^4$ är en lösning om och endast om $x_1=-x_2,\,x_3=-x_4,$ dvs $x=(x_2,-1x_2,x_4,-x_4)=(1,-1,0,0)x_2+(0,0,1,-1)x_4.$ Vektorerna

$$v_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1\\ 0\\ 0 \end{pmatrix}, \quad v_4 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 0\\ 1\\ -1 \end{pmatrix}$$

bildar alltså en ON-bas för egenrummet. Vi sätter därmed

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

Slutligen kan vi direkt beräkna

$$u_1 = \frac{1}{\sqrt{8}} A v_1 = \frac{1}{\sqrt{16}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

och

$$u_2 = \frac{1}{\sqrt{2}} A v_2 = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Vi sätter därmed

$$U = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Vi har då att

$$A = U\Sigma V^*$$

är en singulärvärdesuppdelning av A, med de U, Σ och V som anges ovan.

Obs! En alternativ lösning erhålls genom att komma ihåg att A^* har samma nollskilda singulärvärden som A. Detta ger en lite enklare räkning, då AA^* endast är en 2×2 -matris.

- 5. (a) (1 poäng) Låt \mathbb{F} vara en kropp. Ange definitionen av en kvadratisk form på ett \mathbb{F} -vektorrum V.
 - (b) (4 poäng) Diagonalisera den kvadratiska formen $K:\mathbb{R}^3 \to \mathbb{R}$ som ges av

$$K(x_1, x_2, x_3) = 3x_1^2 - 4x_1x_2 + 6x_3^2$$

dvs finn en ordnad bas β för \mathbb{R}^3 sådan att den associerade matrisrepresentationen av K är diagonal. Ange även uttrycket för den kvadratiska formen i β -koordinater.

Lösning

(a) En kvadratisk form på V är en funktion $K:V\to\mathbb{F}$ sådan att det existerar en symmetrisk bilinjär form $H:V\times V\to\mathbb{F}$ sådan att

$$K(v) = H(v, v)$$

för alla $v \in V$.

(b) Vi börjar med att finna matrisen för K i förhållande till standardbasen. Detta är en symmetrisk matris $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ som uppfyller $x^TAx = K(x)$, för alla $x \in \mathbb{R}^3$. Alltså har vi

$$3x_1^2 - 4x_1x_2 + 6x_3^2 = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2 + 2a_{23}x_2x_3.$$

Genom att jämföra koefficienter kan vi se att $a_{11} = 3$, $a_{12} = -2$, $a_{33} = 6$ och $a_{22} = a_{13} = a_{23} = 0$. Vi får alltså matrisen

$$A = \left(\begin{array}{rrr} 3 & -2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 6 \end{array} \right).$$

Då A är symmetrisk är den diagonaliserbar relativt en ON-bas för \mathbb{R}^3 , så vi bestämmer en sådan bas. Först beräknar vi egenvärdena med det karaktäristiska polynomet. Genom kofaktorutveckling längs sista kolonnen får vi:

$$\det(A - \lambda I_3) = \begin{vmatrix} 3 - \lambda & -2 & 0 \\ -2 & -\lambda & 0 \\ 0 & 0 & 6 - \lambda \end{vmatrix}$$
$$= (6 - \lambda) \begin{vmatrix} 3 - \lambda & -2 \\ -2 & -\lambda \end{vmatrix}$$
$$= (6 - \lambda)((3 - \lambda)(-\lambda) - 4)$$
$$= (6 - \lambda)(\lambda^2 - 3\lambda - 4).$$

Vi ser att ett egenvärde är 6 och beräknar de andra med hjälp av pq-formeln. Vi får

$$\lambda = \frac{3}{2} \pm \sqrt{\frac{9}{4} + 4} = \frac{3}{2} \pm \sqrt{\frac{25}{4}} = \frac{3 \pm 5}{2}.$$

De övriga egenvärdena är alltså -1 och 4.

Nästa steg är att beräkna egenvektorerna. För egenvärdet -1 Gausseliminerar vi matrisen

$$\left(\begin{array}{ccc} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 7 \end{array}\right) \sim \left(\begin{array}{ccc} 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Vi ser att $x = (x_1, x_2, x_3)$ är en egenvektor med egenvärde -1 om och endast om $2x_1 = x_2$ och $x_3 = 0$. En normerad egenvektor är därmed

$$u_1 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 1\\2\\0 \end{array} \right).$$

För egenvärdet 4 Gausseliminerar vi matrisen

$$\left(\begin{array}{ccc} -1 & -2 & 0 \\ -2 & -4 & 0 \\ 0 & 0 & 2 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Vi ser att $x = (x_1, x_2, x_3)$ är en egenvektor med egenvärde 4 om och endast om $x_1 = -2x_2$ och $x_3 = 0$. En normerad egenvektor är därmed

$$u_3 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 2\\ -1\\ 0 \end{array} \right).$$

För egenvärdet 6 Gausseliminerar vi matrisen

$$\left(\begin{array}{ccc} -3 & -2 & 0 \\ -2 & -6 & 0 \\ 0 & 0 & 0 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Vi ser att $x = (x_1, x_2, x_3)$ är en egenvektor med egenvärde 4 om och endast om $x_1 = -2x_2$ och $x_3 = 0$. En normerad egenvektor är därmed

$$u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Vår ON-bas blir därmed

$$\beta = \left\{ u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2\\0 \end{pmatrix}, u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\-1\\0 \end{pmatrix}, u_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}.$$

Notera att vi automatiskt vet att detta är en ON-bas, då egenrummen är parvis ortogonala då matrisen är symmetrisk.

Om vi nu låter Q vara basbytesmatrisen från β till standardbasen så är

$$Q = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} & 0\\ 2/\sqrt{5} & -1/\sqrt{5} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

och vi har att

$$D = Q^T A Q = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{array}\right)$$

är matrisen för K i basen β . Om $[v]_{\beta} = (y_1, y_2, y_3)$ för en vektor $v \in \mathbb{R}^3$ är alltså

$$K(v) = [v]_{\beta}^{T} D[v]_{\beta} = -y_1^2 + 4y_2^2 + 6y_3^2.$$

- 6. (a) (2 poäng) Låt \mathbb{F} vara en kropp, $A \in \mathrm{M}_{n \times n}(\mathbb{F})$ en matris och λ ett egenvärde av A. Ange definitionerna av den algebraiska respektive geometriska multipliciteten av λ .
 - (b) (3 poäng) Visa att egenvärdena till A är precis lika med rötterna av dess karaktäristiska polynom.

Lösning

(a) Låt $p_A(t) = \det(A - tI_n)$ beteckna det karaktäristiska polynomet av A. Den algebraiska multipliciteten av λ är λ 's multiplicitet som rot till $p_A(t)$, dvs. det största heltal $k \geq 0$ sådant att $(t - \lambda)$ delar $p_A(t)$.

Den geometriska multipliciteten av λ är lika med dimensionen av egenrummet för λ , dvs.

$$\dim\{v \in \mathbb{F}^n \mid Av = \lambda v\}.$$

(b) Vi minns att en skalär λ är ett egenvärde till A om och endast om det existerar en nollskild vektor $v \in \mathbb{F}^n$ sådan att $Av = \lambda v$, dvs $(A - \lambda I_n)v = 0$. Med andra ord är λ ett egenvärde om och endast om det existerar en nollskild lösning till matrisekvationen $(A - \lambda I_n)x = 0$. Vi minns att en sådan existerar om och endast om matrisen $A - \lambda I_n$ inte är inverterbar, vilket är sant om och endast om dess determinant är noll. Alltså är λ ett egenvärde om och endast om

$$\det(A - \lambda I_n) = 0.$$

Vi har dock att $p_A(t) := \det(A - tI_n)$ per definition är det karaktäristiska polynomet av A, så för att sammanfatta ekvivalenserna vi visat är alltså λ ett egenvärde om och endast om $p_A(\lambda) = 0$, vilket är vad vi ville visa.

Rättningen av tentan kommer att vara färdig ungefär 2 veckor efter tentamensskrivning. Därefter kan en elektronisk kopia av tentan beställas från studentexpeditionen genom länken https://survey.su.se/Survey/44514/sv.