Qiulin Fan

ma412-w24

Assignment WeBWorK11-Group_Actions_and_Normal_Subgroups due 04/09/2024 at 11:59pm EDT

Problem 1. (5 points)

Consider the regular hexagon below.

Click on the

image to render the hexagon.

Let X be the set of all triangles formed from the vertices of the regular hexagon; note that there are $\binom{6}{3} = 20$ such triangles. Consider the natural action of D_6 on the set X.

Find the cardinality of each of the indicated orbits:

- a) $Orbit(\Delta FAB)$ ___
- b) $Orbit(\Delta DBF)$ ____
- c)Orbit(ΔEFB)____
- d) $Orbit(\Delta AFE)$ ___
- e)*Orbit*(Δ*CDA*)____

Answer(s) submitted:

- 6
- 2
- 12
- 6
- 12

submitted: (correct) recorded: (correct)

Problem 2. (5 points)

Let S_5 act on the set X of all subsets of $\{1,2,3,4,5\}$ in the natural way. Note that X has 32 elements, each of which is a subset of $\{1,2,3,4,5\}$, of differing cardinalities.

Find $\{n: \exists x \in \mathcal{X} \text{ such that } |O(x)| = n\}$. Enter this set as a comma separated list.

 $n = \underline{\hspace{1cm}}$

Answer(s) submitted:

• 1,5,10

submitted: (correct)

recorded: (correct) **Problem 3.** (5 points)

Let $SL_3(\mathbb{Z}_2)$ be the set of 3×3 matrices with coefficients in \mathbb{Z}_2 which have determinant equal to 1.

Let $SL_3(\mathbb{Z}_2)$ act on the set \mathbb{Z}_2^3 of all 3×1 matrices (column vectors) by left multiplication. Find the cardinality of the orbit of each column vector below.

- a. The orbit of $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ contains ____ elements.
- b. The orbit of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ contains ____ elements.
- c. The orbit of $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ contains ____ elements.
- d. The orbit of $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ contains ____ elements.
- e. The orbit of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ contains ____ elements.

Answer(s) submitted:

- •
- /
- 7
- 7

submitted: (correct) recorded: (correct)

Problem 4. (5 points)

For each of the following subgroups H of the respective groups G, determine if it is normal:

In the second row, $U(22) = \mathbb{Z}_{22}^{\times}$.

In the third and fourth rows, a is a counterclockwise rotation by $\frac{360}{7}$ degrees, and b is a flip along an axis of symmetry of a regular 7-gon.

G	Н	Answer (Y/N)
\mathbb{Z}_{22}	$\langle 13 \pmod{22} \rangle$	
U(22)	$\langle 13 \pmod{22} \rangle$	
D_7	$\langle a^4 \rangle$	
D_7	$\langle a^4b angle$	
$GL_2(\mathbb{Q})$	subgroup of upper triangular matrices	

 $Answer(s)\ submitted:$

• Y

• Y

• Y

• N

• N submitted: (correct)

recorded: (correct)

Problem 5. (5 points)

Let *G* be a finite group of order 35 acting on a finite set *S* of size 7. What are the possible values for the NUMBER of orbits of this *G*-action? Enter your answer as a comma-separated list.

Answer(s) submitted:

• 1,3,7

submitted: (correct) recorded: (correct)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America