DISTRIBUTED COMPUTING ARCHITECTURE FOR ROBOT CONTROL

DISTRIBUTED COMPUTING ARCHITECTURE

PROPRIETARY AND CONFIDENTIAL

NaviFloor Robotics, Inc.

Last Updated: January 11, 2024

Document Reference: IP-ARCH-2024-001

1. OVERVIEW AND SCOPE

1. This document describes the proprietary distributed computing arch

2. The Architecture encompasses the complete technical framework,
2. ARCHITECTURAL COMPONENTS
1. **Core Processing Units**
-
Central Fleet Controller (CFC-2000)
- Edge Processing Nodes (EPN-Series)
-
Individual Robot Control Units (RCU-X)
- Distributed Sangar Natwork (DSN)
Distributed Sensor Network (DSN)
2. **Communication Infrastructure**

2-
Proprietary low-latency mesh network protocol (NaviMesh(TM))
-
Redundant wireless communication channels
-
Secure data transmission architecture
-
Real-time synchronization mechanisms
3. TECHNICAL SPECIFICATIONS
1. **Processing Architecture**
-
Distributed microservices architecture
-

Load-balanced computation across edge nodes
-
Real-time task allocation and scheduling
-
Fault-tolerant operation with N+1 redundancy
2. **Data Management**
Distributed ledger for operational data
-
Real-time terrain mapping database
- Dunamia nath planning algorithms
Dynamic path planning algorithms
- Multi robot goordination protocolo
Multi-robot coordination protocols

4. PROPRIETARY ELEMENTS

1. The following elements are deemed proprietary and confidential:
a) TerrainSync(TM) Algorithm Suite
-
Surface classification methods
-
Dynamic friction coefficient calculation
-
Real-time surface adaptation protocols
-
Multi-surface transition handling
b) NaviCore(TM) Control System

5 -
Distributed decision-making framework
-
Fleet optimization algorithms
-
Collision avoidance systems

5. IMPLEMENTATION SPECIFICATIONS

1. **Hardware Requirements**

Emergency response protocols

Minimum processing capacity: 4.5 TFLOPS per node

_

Network latency threshold: <5ms

Storage capacity: 2TB per edge node

Redundant power systems

2. **Software Architecture**

Containerized microservices

Real-time operating system (RTOS)

Custom middleware layer

Proprietary API framework

6. SECURITY MEASURES

1. **Access Control**		
-		
Multi-factor authentication		
-		
Role-based access control		
-		
Encrypted communication channels		
-		
Secure boot mechanisms		
2. **Data Protection**		
-		
End-to-end encryption		

- 8-

Secure key management

_

Regular security audits

_

Intrusion detection systems

7. INTELLECTUAL PROPERTY PROTECTION

1. This Architecture and all its components are protected by:

_

U.S. Patent No. 11,234,567 (Filed: 2019)

-

U.S. Patent No. 11,345,678 (Filed: 2020)

-

Multiplegending patent applications
Registered trade secrets
2. All rights reserved. Unauthorized use, reproduction, or distribution
8. COMPLIANCE AND CERTIFICATION
1. The Architecture complies with:
- ISO/IEC 25010:2011
- IEC 61508 (SIL 3)
- ISO/TS 15066:2016

- 10 -

ANSI/RIA R15.06-2012

9. CONFIDENTIALITY

- 1. This document contains confidential and proprietary information of
- a) Maintain strict confidentiality
- b) Not disclose to third parties
- c) Not reverse engineer any components
- d) Return or destroy upon request

10. DOCUMENT CONTROL

Version: 3.2.1

Status: APPROVED

Classification: CONFIDENTIAL

Document Owner: Marcus Depth, CTO

Review Date: January 11, 2024

Next Review: July 11, 2024

AUTHORIZATION

APPROVED BY:

_

Dr. Sarah Chen

CEO, NaviFloor Robotics, Inc.

Date: January 11, 2024

_ - 12 -

Marcus Depth

CTO, NaviFloor Robotics, Inc.

Date: January 11, 2024