# Weather generators and phenological models to study climate change impacts on grapevines and apples

#### Arnaud GONIN

Internship tutors : David MÉTIVIER (INRAE - MISTEA) Bénédicte FONTEZ (Institut Agro - MISTEA)

Funding of the internship: CLIMAE









#### Outline

- Stochastic weather generators
  - Principle
  - Model
  - Algorithm
- Phenological models applied to recorded temperatures
  - Models used
  - Introduction
  - BRIN model for Grapevine
  - Apple Model
- 3 Apple phenological model applied to simulated temperatures
- Prospects

I. Stochastic weather generators



Recorded daily maximum temperature (TX) at Montpellier from  $1^{st}$  May 2003 to  $1^{st}$  November 2003 (source : ECA&D)

**Simulations** 



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

#### With 5000 simulations:





#### The SWG can simulate:

- Daily minimal temperature (TN) series.
- Daily average temperature (TG) series.
- Daily maximal temperature (TX) series.

But for now it can't generate two of these series at the same time because we have to consider a correlation between them.

$$T_t = M_t + S_t + X_t$$
 where

- T<sub>t</sub> is the recorded temperature
- $M_t$  is the trend
- $S_t$  is the seasonality
- $X_t$  is the stochastic part



#### Recorded temperature $T_t$



Trend  $M_t$ 



20 10 0 -10 -20 \$\vert\_{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\eta}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi{\texi{\texi}\tint{\text{\texi}\tint{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi

Stochastic part  $X_t$ 

Model with different parameters for each month:

$$X_{t} = \phi_{1,m(t)}X_{t-1} + \phi_{2,m(t)}X_{t-2} + \dots + \phi_{p,m(t)}X_{t-p} + \sigma_{m(t)}\varepsilon_{t}$$

With  $\varepsilon_t \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1)$  a noise and m(t) the month of the date t. With p=1, the model trained on the Montpellier TX series (1946-2025) gives :





- Firstly, we estimate the parameters with a maximum likelihood estimation.
- ullet To simulate a new temperature series  $(\hat{T}_t)$  :
  - 1 Initial conditions :  $\hat{X}_1 = X_1, \hat{X}_2 = X_2, \dots, \hat{X}_p = X_p$ .
  - 2 We simulate  $\varepsilon_t \sim \mathcal{N}(0,1)$  for t > p.
  - 3  $\hat{X}_t$  calculated with the previous equation, for t > p.
  - $\mathbf{0} \quad \hat{T}_t = M_t + S_t + \hat{X}_t.$

## II. Phenological models applied to recorded temperatures

- For grapevine : BRIN (García de Cortázar-Atauri et al. -2009) :
  - Chilling period onset : 1st of August
  - Chilling quantity required  $C_c$ : 119.0 (chilling units)
  - Heating quantity required G<sub>hc</sub>: 13236°C
  - $Q_{10c}: 2.17$
  - $T_{0Bc}$  : 8.19°C
- For apple (Golden Delicious): F 1 Gold 1 (Legave et al. -2013)
  - CPO: 30th of October
  - Chilling quantity required *C* : 56.0 (chilling units)
  - Heating quantity required H: 83.58 (forcing units)
  - Chilling function  $F_c$ : Triangular
  - $T_c: 1.1^{\circ}C$
  - *l<sub>c</sub>* : 20.°C
  - Forcing function  $F_h$ : Exponential
  - $T_h: 9.0^{\circ}C$



Apple phenology dates predicted for the 2023-2024 period in Bonn.





Too early budbursts make the plant vulnerable to a risk of freezing :



#### Nantes:















#### Prospects

- $\bullet$  Modelising the trend with non-constant values  $\longrightarrow$  LOESS regression intended
- Making the SWG able to generate multiple type series correlated (e.g TN and TX or TN and TG) to:
  - Apply grapevine phenology models on generated TN and TX.
  - Model the risk of frost for phenology results from generated series. We can expect results like this:



Thanks you!

### Appendix

 Seasonality: Parametric function with a periodicity of 365.25 days:

$$S_t = \mu + \sum_{k=1}^{K} \alpha_k \cos(\omega kt) + \beta_k \sin(\omega kt)$$

With  $\omega = 2\pi/365.25$ ,  $\alpha_k$  and  $\beta_k$  coefficients to estimate and K the order (K = 5 in our work).

"Monthly" AR(p) model :

$$X_{t} = \sum_{i=1}^{p} \phi_{i,m(t)} X_{t-i} + \sigma_{m(t)} \varepsilon_{t}$$

With  $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$  and m(t) the month of the date t.  $\rightarrow (p+1) \times 12$  parameters.

• Ordinary Linear Square (OLS) regression to estimate  $\mu$ ,  $\alpha_k$  and  $\beta_k$  for k = 1, ..., K:

$$T_t = \mu + \sum_{k=1}^{K} (\alpha_k \cos(\omega kt) + \beta_k \sin(\omega kt)) + X_t$$

With  $X_t$  the residuals.

**3** Maximum likelihood estimation on these residuals to estimate  $\phi_{i,j}$  and  $\sigma_j^2$ , for  $i=1,2,\ldots,p$  and  $j=1,2,\ldots,12$ :

$$X_{t} = \sum_{i=1}^{p} \phi_{i,m(t)} X_{t-i} + \sigma_{m(t)} \varepsilon_{t}$$

Endodormancy break date:

$$n_{db} = \min\{N, \sum_{n=CPO}^{N} C_U(n) > C_c\}$$

Budburst date:

$$n_{bb} = \min\{N, \sum_{n=n_{db}}^{N} A_c(n) > G_{hc}\}$$

CPO: Chilling period onset

 $C_c$ ,  $G_{hc}$ : Chilling and heating quantity required

 $C_U, A_c$ : Chilling and heating function

Chilling function:

$$C_U(n) = Q_{10c}^{-\frac{TX(n)}{10}} + Q_{10c}^{-\frac{TN(n)}{10}}$$

Heating function:

$$T^{*}(h,n) = \begin{cases} TN(n) + h\left(\frac{TX(n) - TN(n)}{12}\right) & \text{if } h \leq 12\\ TX(n) - (h - 12)\left(\frac{TX(n) - TN(n+1)}{12}\right) & \text{if } h > 12 \end{cases}$$

$$T(h,n) = \begin{cases} 0 & \text{if } T^{*}(h,n) < T_{0Bc}\\ T^{*}(h,n) - T_{0Bc} & \text{if } T_{0Bc} \leq T^{*}(h,n) \leq T_{MBc}\\ T_{MBc} - T_{0Bc} & \text{if } T_{MBc} < T^{*}(h,n) \end{cases}$$

$$A_{c}(n) = \sum_{k=0}^{24} T(h,n)$$

 $Q_{10c}$  and  $T_{0Bc}$  are parameters and  $T_{MBc}$  is fixed at 25°C.

Reminder: parameters considered for our simulation:

• CPO: 1st of August

• *C<sub>c</sub>* : 119.0 (chilling units)

• G<sub>hc</sub>: 13236°C

•  $Q_{10c}$ : 2.17

•  $T_{0Bc}$  : 8.19°C

Endodormancy break date:

$$n_{db} = \min\{N, \sum_{n=CPO}^{N} F_c(TG(n)) > C\}$$

Budburst date :

$$n_{bb} = \min\{N, \sum_{n=n_{db}}^{N} F_h(TG(n)) > H\}$$

CPO: Chilling period onset

C, H: Chilling and heating quantity required

 $F_c$ ,  $F_h$ : Chilling and heating function

Reminder: parameters considered for our simulation:

- CPO: 30<sup>th</sup> of October
- *C* : 56.0 (chilling units)
- *H* : 83.58 (forcing units)
- F<sub>c</sub> : Triangular chilling

$$F_c(T) = \begin{cases} 1 - (|T - T_c|/I_c) & \text{if } T \in (T_c - I_c, T_c + I_c) \\ 0 & \text{else} \end{cases}$$

With 
$$T_c = 1.1$$
°C and  $I_c = 20.$ °C

• F<sub>h</sub>: Exponential forcing

$$F_h(T) = \exp(T/T_h)$$

With 
$$T_h = 9.0^{\circ}$$
C