Zack Garza

(a) If $m_*(E)$, take $B = \mathbb{R}^n$, otherwise suppose $m_*(E) < \infty$ and let E > 0. Choose $\{Q_i\} \Rightarrow E$ then choose open $\{L_i\}$ s.t. $Q_i \in L_i$ and $|L_i| < (m_*(E) + E)/2'$.

Then define $L(\varepsilon) = \bigcup_{i=1}^{\infty} L_i$; thun $L(\varepsilon)$ is open (and thus Borel) and

$$m(L(\varepsilon)) = m_*(L(\varepsilon)) \leq \sum_{i=1}^{\infty} |L_i| < m_*(E) + \varepsilon$$
.

So take a sequence $\mathcal{E}_{k}=V_{k}\to 0$; then let $L^{n}=\bigcap_{k=1}^{n}L_{v_{k}}$. We have $L^{k+1}\subseteq L^{k}$ $\forall k$, and $m(L') \leq m_*(E) + 1 < \infty$, so $L' \supset E$ and by upper continuity of measure, $M(\bigcap_{n=1}^{\infty} L^n) = M(\bigcap_{k=1}^{\infty} L_{/k}) = \lim_{k\to\infty} M(L_{/k}) = \lim_{k\to\infty} m_*(E) + /k = m_*(E),$

so take B= nL .

(B) Let $\varepsilon>0$; since $E\in\mathcal{L}(\mathbb{R}^n)$, there exists a closed set K_{ε} s.t. $m(E\setminus K_{\varepsilon})<\varepsilon$. If $m(E)<\infty$, then $m(K_{\epsilon})=m(E)-\epsilon$, so take the sequence $\epsilon_n=1/n$ and let $K^{-1} = \bigcup_{i=1}^{n} K_{i}$, then $K^{-1} \in K^{-1}$ \(\text{ and } K^{-1} \) \(E_i \), so by continuity of measure from below,

$$m(\bigcup_{n=1}^{\infty}K^{n})=\lim_{n\to\infty}m(K^{n})=\lim_{n\to\infty}m(E)-\frac{1}{n}=m(E),$$

So take $B = \bigcup_{n=1}^{\infty} K^n$, which is a countable union of closed sets and thus Borel.

If $m(F)=\infty$, let $E_n=E \cap \overline{B(n,0)}$. Then $\exists B_n$ (by the bounded case) such that $B_n \subseteq E_n$ is closed and $m(B_n) = m(E_n)$. But $E_n \nearrow E$, so

$$m(E)=m(\bigcup_{n=1}^{\infty}E_n)=\lim_{n\to\infty}m(E_n)=\lim_{n\to\infty}m(B_n)=m(\bigcup_{n=1}^{\infty}B_n),$$

So take B= UBn, which is borel since each Bn is.

(Ic) Since $m(E)=m_*(E)$, choose $\{Q_j\} \rightrightarrows E$ closed cubes such that $\sum_{j=1}^{\infty} |Q_j| < m(E) + \frac{\varepsilon}{2}$. Since $\sum_{i=1}^{\infty} |Q_i|$ converges, choose N such that $\sum_{i=N}^{\infty} |Q_i| < \varepsilon/2$, and let $A = \bigcup_{i=1}^{N-1} Q_i$. Then,

$$E_{\Delta}A = \left(E \setminus \bigcup_{i=1}^{N-1} Q_i\right) \sqcup \left(\bigcup_{i=1}^{N-1} Q_i \setminus E\right)$$

 \Rightarrow m(EdA) \leq m($\overset{\circ}{\underset{\models}{\mathbb{N}}}$ Q_i) + (m($\overset{\circ}{\underset{\models}{\mathbb{N}}}$ Q_i) - m(E)) \leq ε /2 + ((m(E)+ ε /2) - m(E)) = ε .

(2a) Choose an open set $0 \Rightarrow E$ s.t. $m_*(0) < (Y-\varepsilon) m_*(E)$, so that $(I-\varepsilon) m_*(0) < m_*(E)$. Then write $0 = \bigsqcup_{i=1}^{\infty} Q_i$ with each Q_i a closed cube, then towards a contradiction suppose that $m(E \cap Q_i) < (I-\varepsilon) m(Q_i) \ \forall i$. Thun, writing $E = \bigsqcup_{i=1}^{\infty} (E \cap Q_i)$, we have $m(E) = \sum_{i=1}^{\infty} m(E \cap Q_i) > \sum_{i=1}^{\infty} (I-\varepsilon) m(Q_i) = (I-\varepsilon) m(\bigcup_{i=1}^{\infty} Q_i) = (I-\varepsilon) m(0)$

so we must have $m(E \cap Q_j) \ge (1-\epsilon)m(Q_j)$ for some j.

2b) Let $\varepsilon > 0$ be arbitrary, and by (a) choose Q such that $m(\varepsilon \cap 0) \ge (1-\varepsilon)m(Q)$. Thun let $\varepsilon = \varepsilon \cap Q \subseteq \varepsilon$, so $\varepsilon = \varepsilon - \varepsilon$, and supposing towards a contradiction that $\varepsilon = \varepsilon - \varepsilon$ contains no ball around 0, choose d < 1 such that $d \in \varepsilon - \varepsilon$, and thus $\varepsilon = \varepsilon - \varepsilon$. Also choose $d \le m$ all enough that $m(Q \cup Q + d) < m(Q) + \varepsilon$. Then $\varepsilon = \varepsilon - \varepsilon = \varepsilon$ ince $\varepsilon = \varepsilon - \varepsilon = \varepsilon$, we also have $m(\varepsilon - \varepsilon) \ge 2(1-\varepsilon)m(Q)$. Since $\varepsilon = \varepsilon - \varepsilon = \varepsilon$ we also have $m(\varepsilon - \varepsilon) \le 2(1-\varepsilon)m(Q) + \varepsilon$. But then

 $2(1-\epsilon)m(Q) \leq m(E_0 \cup E_0 + d) \leq m(Q) + \epsilon$ and taking $\epsilon \to 0$ yields $2m(Q) \leq m(Q)$. \times So $E_0 - E_0$ must contain an open ball.

③ Fix x and let L= limsup $f(y) = \lim_{S \to 0} \sup_{y \in B_S(x)} f(y)$. Then consider $S_\alpha = \{x \in \mathbb{R}^n | f(x) \le \alpha \}$, we will show every $x \in S_\alpha$ has a ball $B_S(x) \subseteq S_\alpha$, making S_α open, and since α is arbitrary, this will show f is Borel measurable. Let $x \in S_\alpha$, so $f(x) < \alpha$. Then since f is uppersemicts, pick S s.t., $y \in B_S(x) \Rightarrow f(y) \le f(x)$. But then $y \in B_S(x) \Rightarrow f(y) \le f(x) < \alpha \Rightarrow y \in S_\alpha$, so $B_S(x) \subseteq S_\alpha$ as desired. ▮

 $\begin{array}{ll} \text{ } & S = \{x \in \mathbb{R}^n | \lim f_n(x) \text{ exists} \} \in \mathbb{M} \text{ , which is what we'll show. Noting that } \\ & \text{ if we let } F(x) = \lim \sup_{n \to \infty} f_n(x) \text{ , } G(x) = \lim \inf_{n \to \infty} f_n(x) \text{ , then } \\ & S^c = \{x \mid F(x) > G(x) \} \\ & = \bigcup_{q \in \mathbb{Q}} \{x \mid F(x) > q \} \cap \{x \mid G(x) < q \} \\ & = \bigcup_{q \in \mathbb{Q}} \{x \mid F(x) > q \} \cap \{x \mid G(x) < q \} \end{aligned}$

= $\bigcup_{q \in Q} (M_q \cap N_q)$ where each M_q, N_q is measurable, thus making S^c a countable union of measurable sets \$ thus measurable. (E.g., M_q is measurable exactly because if $\{f_n\}$ are measurable, thun $\limsup_{n \to \infty} f_n := F$ is measurable, as shown in class.)

- (5a) f is well-defined because each $X \in C$ has a <u>unique</u> ternary expansion which contains no 1^s , and f is cts as we can write $g_n(x) = {a \choose 2} \cdot (\frac{1}{2})^n$, so $f = \sum_{n=1}^{\infty} g_n$, where we have $|g_n(x)| \leq |2^{n+1}|$ which is summable, so f is uniformly cts by the M-test. Moreover, $(O)_{10} = (O)_3 = (O.000 \cdots)_3 \xrightarrow{f} (O.000 \cdots)_2 = (O)_{10}$, so f(0) = O, and $(1)_{10} = (O.222 \cdots)_3 \xrightarrow{f} (O.111 \cdots)_2 = (1)_{10}$, so f(1) = 1.
- (5b) $f \rightarrow [0,1]$, so consider $f'([0,1] \cap \mathcal{N})$ for \mathcal{N} the non-measurable set. Since this is a subset of a measure zero set, it is measurable, and so $f'([0,1] \cap \mathcal{N}) \xrightarrow{f} [0,1] \cap \mathcal{N}$.

 We a surable cts not measurable
- Ga) Since f is cts, constant fins are cts, and f is a piecewise combination of cts fins that agree on intersections, F is cts. Constant fins are non-decreasing, so it only remains to show f is non-decreasing on G. Let $X=\sum a_n \vec{3}$, $y=\sum b_n \vec{3}$, and X>y. Then there is some minimal N such that $a_k=b_k$ \forall K<N and $a_N>b_N$. Then $\pm a_N>\frac{1}{2}b_N$, and $\pm a_k=\frac{1}{2}b_k$ \forall K<N, which means that f(x)>f(y) since

 $f(x) - f(y) = \sum_{n=1}^{\infty} (\frac{1}{2}a_n - \frac{1}{2}b_n) 2^{-n} = \frac{1}{2} (a_N - b_N)^{-N} + \frac{1}{2} \sum_{n=N+1}^{\infty} (a_n - b_n) 2^{-n} \ge \frac{1}{2} (a_N - b_N) 2^{-N} > 0.$

- Since F(x) and $x \mapsto x$ are continuous and nondecreasing, and in fact $x \mapsto x$ is <u>strictly</u> increasing, G is continuous and strictly increasing & thus injective. To see that G is surjective, we just note that G(0)=0 and G(1)=2, so this follows from the IVT.
- (6c) Let I be one of the intervals in C^c , then $x,y \in I \Rightarrow F(x) = F(y)$ and so G(b) G(a) = b a = m(I). Then m(I) = m(G(I)) since G is cts, and so $m(G(C^c)) = m(G(\bigsqcup_{n=1}^{\infty} I_n)) = m(\bigsqcup_{n=1}^{\infty} I_n) = 1$, so $m(G(C)) = m([0,2]) \cdot G(C^c) = 2 - 1 = 1$.
- (6c2) We have $\mathbb{R} = \bigcup_{q \in Q} (\mathcal{N} + q)$, so $G(C) = \bigcup_{q \in Q} (G(C) \cap \mathcal{N} + q)$, so $m(G(C)) \leq \sum_{i=1}^{\infty} (G(C) \cap \mathcal{N} + q_i)$.

$$0 < 1 = m(G(C)) \leq \sum_{i=1}^{\infty} m_* (G(C) \cap N + Q_i).$$

Note that no term can be measurable, since if we let $E_i = G(C) \cap \mathcal{N} + Q_i$, then $x,y \in E_i \Rightarrow x-y \in \mathbb{R}^n Q_i$ so $E_i - E_i$ can't contain any ball around zero and thus can't be Lebesgue measurable by (2b). But by the inequality, not every term can have $m_*(E_i) = 0$, so some $E_i \subseteq G(C)$ is not measurable.

- (63) Let $\mathcal{N}'=E_i$, then $\mathcal{N}'=G(C)\cap\mathcal{N}+q_i$ for some i, so $G'(\mathcal{N}')\subseteq C$ and m(C)=0 implies $G'(\mathcal{N}')$ is measurable and $m(G'(\mathcal{N}'))=0$. But every cts function is Borel measurable, and since $G(G'(\mathcal{N}'))=\mathcal{N}'$ is not Borel, it can not pull back to a Borel set.
- As shown above, E_i is not measurable and $G'(E_i)$ is null, so take $u = X_{G'(E_i)}$. Then $S_u = \{x \in [0,1] \mid u(x) > u\} = \{G'(E_i), 0 \le u < 1 \} \text{ both of which are measurable, so } u \in M.$ $\{[0,1], u = 0\}, \text{ else}$

But for $\alpha = \frac{1}{2}$, $S_{\frac{1}{2}} = \{ x \in [0,2] \mid (\omega \circ G^{\frac{1}{2}})(x) > \frac{1}{2} \} = \{ x \in [0,2] \mid G^{\frac{1}{2}}(x) \in G^{\frac{1$