Глава 2. Теория устойчивостию

Теория устойчивости занимается исследованием достоверности измерений, то есть исследует идеальную систему на реалистичность.

§1. Устойчивость по Ляпунову. Асимптотическая устойчивость.

Исследуемые системы можно описать нормальной системой обыкновенных дифференциальных уравнений:

$$(1) egin{cases} \dot{y_1} = f_1(t,y_1,\ldots,y_n) \ \ldots \ \dot{y_n} = f_n(t,y_1,\ldots,y_n), \end{cases}$$

где
$$f_i \in C(G)$$
, $G = [t_0; +\infty) imes D$, $D \in \mathbb{E}^n$

В векторной форме (можно и столбцами):

$$egin{aligned} ec{y} &= (y_1, \dots, y_n \ ec{f} &= (f_1(t, ec{y}), \dots, f_n(t, ec{y})) \ (1) &\sim \dot{ec{y}} &= ec{f}(t, ec{y}) \end{aligned}$$

Пусть при $t=t_0$:

$$egin{pmatrix} y_1 = y_1^\circ \ \dots \ y_n = y_n^\circ \end{pmatrix} \iff (ec{y} = ec{y}^\circ)$$

Рассмотрим задачу Коши:

$$egin{cases} \dot{ec{y}} = ec{f}(t,ec{y}) (1) \ ec{y}(t_0) = ilde{ec{y}}^\circ(3) \end{cases}$$

Считаем, что выполнены условия $\underline{\mathsf{T}}$ о существовании и единственности и выполнены условия задачи Коши (1), (2), причем решение $\exists !$ при $t=t_0$.

Изменим начальные условия (НУ):

$$egin{cases} \dot{ec{y}} = ec{f}(t,ec{y}) (1) \ ec{ec{y}}(t_0) = ec{ ilde{y}}^{\circ}(3) \end{cases}$$

Решения ЗК $(1),\,(2)$ будем далее обозначать: $ec{y} = ec{y}(t,ec{y}^\circ)$

Тогда решение ЗК $(1),\,(3)$ это: $ec{y}=ec{y}(t, ilde{ec{y}}^{\circ})$

<u>Опр.1</u> Решение $\vec{y}(t, \vec{y}^{\circ})$ называется устойчивым по Ляпунову, если:

1.
$$\exists \delta_0 > 0$$
: $\forall \tilde{\vec{y}}^\circ \in U_{\delta_0}(\vec{y}^\circ)$: решение ЗК $(1), (3)$ $\exists !$ при всех $t \geq t_0$ $(\tilde{\vec{y}}^\circ \in U_{\delta_0}(\vec{y}^\circ) \iff \tilde{\vec{y}}^\circ : ||\tilde{\vec{y}}^\circ - \vec{y}^\circ|| < \delta_0)$ 2. $\forall \epsilon > 0 \exists \delta \in (0; \delta_0)$: $\forall \tilde{\vec{y}}^\circ : ||\tilde{\vec{y}}^\circ - \vec{y}^\circ|| < \delta \implies ||\vec{y}(t, \tilde{\vec{y}}^\circ) - \vec{y}(t, \vec{y}^\circ)|| < \epsilon$ (при всех $t \geq t_0$)

Замечание: Устойчивость может быть и у одного дифференциального уравнения (система необязательна)

(1. из <u>Опр.1</u> выполнено, при этом:

$$\exists \epsilon_0>0 orall \delta>0 \exists ilde{y}^\circ, \exists t*>t_0: || ilde{y}^\circ-ec{y}^\circ||<\delta \wedge ||ec{y}(t*, ilde{y})-ec{y}(t*,ec{y}^\circ)||\geq \epsilon_0) \implies ext{(}$$
 решение - неустойчивое)

(1. из Onp.1 не выполнено) \implies (вообще ничего не можем сказать об устойчивости)

<u>Опр.2</u> Если $\vec{y}(t, \vec{y}^{\circ})$:

1. устойчиво по Ляпунову;

2.
$$\exists \delta_1 > 0: \forall \tilde{\vec{y}}^\circ: ||\tilde{\vec{y}}^\circ - \vec{y}^\circ|| < \delta_1 \implies \lim_{t \to +\infty} ||\vec{y}(t, \tilde{\vec{y}}^\circ - \vec{y}(t, \vec{y}^\circ)|| = 0$$
, тогда $\vec{y}(t, \tilde{\vec{y}}^\circ)$ называется асимптотически устойчивым.

<u>Замечание:</u> Далее будем считать, что $t_0=0$ (достигается сдвигом по t, т.к. устойчивость системы не зависит от t).

Исследование устойчивости ненулевого (нетривиального) решения 3K(1), (2), можно свести к исследованию устойчивости тривиального решения другой систему ОДУ (нормальной).

В самом деле: пусть $\vec{\phi}(t)=\vec{y}(t,\vec{y}^\circ)$ - решение ЗК $(1),\,(2).$

Рассмотрим $ec{x}(t) = ec{y}(t) - ec{\phi}(t).$ Тогда:

$$egin{aligned} & \dot{ec{x}} = \dot{ec{y}} - \dot{ec{\phi}}(t) = ec{f}(t,ec{y}) - \dot{ec{\phi}}(t) = ec{f}(t,ec{x}) + ec{\phi}(t) - \dot{ec{\phi}}(t) = ec{g}(t,ec{x}) \ & ec{x}(0) = \dot{ec{y}}(0) - ec{\phi}(0) = ec{y}^\circ - ec{y}^\circ = ec{0} \ & ec{g}(t,ec{0}) = ec{f}(t,ec{\phi}(t)) - \dot{ec{\phi}} = ec{0} \end{aligned}$$

$$egin{cases} \dot{ec{x}} = g(t,ec{x})(4) \ ec{x}(0) = ec{0}(5) \end{cases}$$

То есть при замене $\vec{x}(t) = \vec{y}(t) + \vec{\phi}(t)$ ЗК (1), (2) переходит в ЗК (4), (5), имеющую тривиальное решение.

<u>Опр.3</u> тривиальное решение системы (4) называется устойчивым по Ляпунову, если:

1.
$$\exists \delta_0 : orall ec{x}^\circ : ||ec{x}^\circ|| < \delta_0 \implies$$
 решение ЗК

$$egin{cases} \dot{ec{x}} = g(t,ec{x}) \ ec{x}(0) = ec{x}^{\circ}, \end{cases}$$

(которое обозначается $ec{x}(t,ec{x}^\circ)$) $\exists !$ при всех $t\geq 0$

2.
$$orall \epsilon > 0 \exists \delta \in (0;\delta_0): orall ec{x}^\circ: ||ec{x}^\circ|| < \delta \implies ||ec{x}(t,ec{x}^\circ)|| < \epsilon$$
 при всех $t \geq 0$

<u>Опр.4</u> Тривиальное решение системы называется асимптотически устойчивым, если оно удовлетворяет:

1. Устойчиво по Ляпунову

2.
$$\exists \delta_1 > 0: \forall ec{x}^\circ: ||ec{x}^\circ|| < \delta_1 \implies \lim_{t \to +\infty} ||ec{x}(t, ec{x}^\circ)|| = 0$$

3. (пункт 1. из $\underline{\mathsf{Onp.3}}$) $\exists \delta_0: \forall \vec{x}^\circ: ||\vec{x}^\circ|| < \delta_0 \implies$ решение ЗК

$$egin{cases} \dot{ec{x}} = g(t,ec{x}) \ ec{x}(0) = ec{x}^{\circ}, \end{cases}$$

(которое обозначается $ec{x}(t,ec{x}^\circ)$) $\exists !$ при всех $t\geq 0$

Далее будем исследовать тривиальные решения на устойчивость, потому что любое решение можно свести к тривильному.

§2. Устойчивость и асимптотическая устойчивость линейной системы ОДУ с постоянными коэффициентами

Рассмотрим систему, обладающую тривиальным решением:

$$(1) egin{cases} \dot{y_1} = a_1 1 y_1 + \ldots + a_1 n y_n \ \ldots \ \dot{y_n} = a_n 1 y_1 + \ldots + a_n n y_n \end{cases}$$

Ее мы и будем исследовать на устойчивость в векторной форме: $\dot{\vec{y}} = A\vec{y} \; (1)$

<u>T1</u>

Пусть мы имеем (1), тогда:

- 1. (Тривиальное решение СЛОДУ асимптотически устойчиво) \iff $(\forall \lambda \implies Re\lambda < 0)$
- 2. $(\exists \lambda : Re\lambda > 0) \implies$ (тривиальное решение СЛОДУ неустойчиво)
- 3. ($\forall \lambda Re\lambda \leq 0 \land \forall \lambda Re\lambda = 0 \implies AK(\lambda) = \Gamma K(\lambda)$) => (тривиальное решение СЛОДУ устойчиво по Ляпунову, но не асимптотически)

Замечание:

 $AK(\lambda)$ - алгебраическая кратность λ ;

 $\Gamma K(\lambda)$ - геометрическая кратность λ .

 $(AK(\lambda) > \Gamma K(\lambda)) \implies$ (тривиальное решение СЛОДУ неустойчиво)