MAE0217 - Estatística Descritiva - Lista 5

Natalia Hitomi Koza¹
Rafael Gonçalves Pereira da Silva²
Ricardo Geraldes Tolesano³
Rubens Kushimizo Rodrigues Xavier⁴
Rubens Gomes Neto⁵
Rubens Santos Andrade Filho⁶
Thamires dos Santos Matos⁷

Julho de 2021

Sumário

pítulo 6	
Exercício 5	
Exercício 8	
Exercício 18	
Exercício 19	
Exercício 21	
pítulo 7	
Exercício 1	
Exercício 2	
Evaraíaia 6	•

 $^{^1\}mathrm{N\'umero}$ USP: 10698432

 $^{^2\}mathrm{N\'umero}$ USP: 9009600

 $^{^3\}mathrm{N\'umero}$ USP: 10734557

 $^{^4\}mathrm{Número~USP}\colon 8626718$

 $^{^5}$ Número USP: 9318484

⁶Número USP: 10370336

⁷Número USP: 9402940

Capítulo 6

Exercício 5

Exercício 8

Exercício 18

Exercício 19

Partindo da função (6.29), e dado que $P(Y_i=0|X=x)=1-P(Y_i=1|X=x)$, podemos demonstrar que:

$$\log \frac{P(Y_{i} = 1 | X = x)}{P(Y_{i} = 0 | X = x)} = \alpha + \beta x_{i}$$

$$\exp \left(\log \frac{P(Y_{i} = 1 | X = x)}{P(Y_{i} = 0 | X = x)}\right) = \exp(\alpha + \beta x_{i})$$

$$\frac{P(Y_{i} = 1 | X = x)}{P(Y_{i} = 0 | X = x)} = \exp(\alpha + \beta x_{i})$$

$$\frac{P(Y_{i} = 1 | X = x)}{1 - P(Y_{i} = 1 | X = x)} = \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) = \exp(\alpha + \beta x_{i})(1 - P(Y_{i} = 1 | X = x))$$

$$P(Y_{i} = 1 | X = x) = \exp(\alpha + \beta x_{i}) - P(Y_{i} = 1 | X = x) \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) \exp(\alpha + \beta x_{i}) = \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) \exp(\alpha + \beta x_{i}) = \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) = \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) = \exp(\alpha + \beta x_{i})$$

$$P(Y_{i} = 1 | X = x) = \exp(\alpha + \beta x_{i})$$

Assim podemos ver que de fato (6.29) é equivalente a (6.30). Para além disso podemos demonstrar que $0 \le P(Y_i = 1 | X = x) \le 1$, uma vez que:

$$P(Y_i = 1 | X = x) = \frac{\exp(\alpha + \beta x_i)}{1 + \exp(\alpha + \beta x_i)} \le 1$$
$$\exp(\alpha + \beta x_i) \le 1 + \exp(\alpha + \beta x_i)$$
$$\exp(\alpha + \beta x_i) - \exp(\alpha + \beta x_i) \le 1$$
$$0 \le 1 \quad \Box$$

$$P(Y_i = 1 | X = x) = \frac{\exp(\alpha + \beta x_i)}{1 + \exp(\alpha + \beta x_i)} \ge 0$$

$$\exp(\alpha + \beta x_i) \ge 0$$

$$1 \ge \frac{0}{\exp(\alpha + \beta x_i)}$$

$$1 > 0 \quad \Box$$

Exercício 21

Capítulo 7

Exercício 1

Exercício 2

Exercício 6