Feuille d'exercice n° 17 : Analyse asymptotique - correction

Exercice 14

1. 0

2. $\frac{1}{6}$

3. $e^{e^{-1}}$

4. e^{-1}

5. $\frac{2}{3}$

6. $\frac{\sqrt{2}}{8x^3}$

7. $\frac{a^3}{b^3}$

8. -1

9. $-\frac{1}{2\sqrt{2}}$

10. $\frac{x^2}{2}$

11. $-\frac{3}{2}(x-\frac{\pi}{4})$

12. \sqrt{e}

13. $\frac{1}{\pi}$

14. 1

15. -x

Exercise 15
$$\lim_{x \to 1} \frac{x^x - 1}{\ln x} = 1$$

$$\lim_{x \to 0} \left(\frac{x^2}{\ln(\cos x)} + \frac{2}{x^2} \sin^2 x \right) = 0$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2} = -\frac{16 \ln 2}{\pi^2}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2} = -1$$

$$\lim_{x \to +\infty} \frac{\ln(\sin^2 x)}{(\frac{\pi}{2} - x)^2} = -1$$

$$\lim_{x \to +\infty} \sin \frac{1}{x} \tan \left(\frac{2\pi x}{4x + 3} \right) = \frac{8}{3\pi}$$

$$\lim_{x \to 0^+} \ln x \tan(\ln(1 + x)) = 0$$

$$\lim_{x \to e} (\ln x)^{\tan \frac{\pi x}{2e}} = e^{-\frac{2}{\pi}}$$

Exercice 17

1.
$$\ln(\cos x) = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 + o(x^6)$$

2.
$$\tan(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$

3.
$$\sin(\tan(x)) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 + o(x^5)$$

4.
$$(\ln(1+x))^2 = x^2 - x^3 + \frac{11}{12}x^4 + o(x^4)$$

5.
$$\exp(\sin(x)) = 1 + x + \frac{1}{2}x^2 + o(x^3)$$

6.
$$\sin^6(x) = x^6 - x^8 + o(x^9)$$

Exercice 18

1.
$$\sqrt{x+1} = \sqrt{x} + \frac{1}{2\sqrt{x}} - \frac{1}{8x^{3/2}} + o\left(\frac{1}{x^{3/2}}\right)$$
;

2.
$$x \ln(x+1) - (x+1) \ln x = 1 - \ln(x) - \frac{1}{2x} + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right)$$
;

3.
$$\left(\frac{x+1}{x}\right)^x = e^{-\frac{1}{2}} \frac{e^1}{x} + \frac{11}{24} \frac{e}{x^2} + o\left(\frac{1}{x^2}\right)$$
;

4. Arctan
$$x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} + o\left(\frac{1}{x^4}\right)$$
.

Exercice 19
1.
$$\frac{\arctan x - x}{\sin x - x} = 2 - \frac{11}{10}x^2 + o(x^2)$$
;

2.
$$\ln \sin x = \ln(\sqrt{2}/2) + (x - \pi/4) - (x - \pi/4)^2 + \frac{2}{3}(x - \pi/4)^3 + o((x - \pi/4)^3)$$
;

3.
$$(1+x)^{\frac{1}{x}} = e\left(1 - \frac{1}{2}x + \frac{11}{24}x^2 - \frac{7}{16}x^3\right) + o(x^3)$$
;

4.
$$x(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2}) = \frac{\sqrt{2}}{8x^2} + o\left(\frac{1}{x^2}\right)$$
.

Exercice 22

1.
$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2} = x\left(\sqrt{1 + \frac{1}{x}} - \sqrt{1 - \frac{1}{x}}\right) = 1 + \frac{1}{8x^3} + o(1/x^3).$$

2.
$$\ln\left(\sqrt{1+x}\right) = \frac{1}{2}\ln x + \frac{1}{2x} + o(1/x)$$
.

Exercice 23

1. (a)
$$\frac{\cos x}{\sqrt{1+x}} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} + \frac{49x^4}{384} + o(x^4)$$

(b)
$$\frac{\sqrt{1+x}}{\cos x} = 1 + \frac{x}{2} + \frac{3x^2}{8} + \frac{5x^3}{16} + \frac{41x^4}{384} + o(x^4)$$

(c)
$$\frac{\ln(1+x)}{\cos x} = x - \frac{x^2}{2} + \frac{5x^3}{6} - \frac{x^4}{2} + o(x^4)$$

(d)
$$\frac{1+\cos x}{2+\sin x} = 1 - \frac{x}{2} + \frac{x^3}{12} - \frac{x^4}{16} + o(x^4)$$

(e)
$$\frac{\sin(x/2)}{e^{2x}} = \frac{x}{2} - x^2 + \frac{47x^3}{48} - \frac{5x^4}{8} + o(x^4)$$

(f)
$$\frac{\ln(1+x)}{2-\cos x} = x - \frac{x^2}{2} - \frac{x^3}{6} + o(x^4)$$

2. (a)
$$\frac{\sin(2x - \pi/4)}{\cos x} = 1 + 3(x - \frac{\pi}{4}) + \frac{3}{2}(x - \frac{\pi}{4})^2 + \frac{3}{2}(x - \frac{\pi}{4})^3 + \frac{19}{8}(x - \frac{\pi}{4})^4 + o((x - \frac{\pi}{4})^4)$$

(b)
$$\frac{\cos(x-1)}{\ln(1+x)} = \frac{1}{\ln 2} - \frac{1}{2(\ln 2)^2}(x-1) + \frac{1}{\ln 2} \left(-\frac{1}{2} + \frac{1}{8\ln 2} + \frac{1}{4(\ln 2)^2} \right) (x-1)^2 + o((x-1)^2)$$

(c)
$$\frac{e^{x-1}}{\ln x} = \frac{1}{x-1} + \frac{3}{2} + \frac{11}{12}(x-1) + \frac{3}{8}(x-1)^2 + \frac{71}{720}(x-1)^3 + \frac{41}{1440}(x-1)^4 + o((x-1)^4)$$

Exercice 24

- 1. e 1

- 2. $-\frac{1}{2}$ 3. $-\frac{e}{2}$ 4. $\frac{1}{12}$
- 5. $-\frac{1}{6}$
- 6. $-\frac{1}{2}$