

Notasi Bracket

Hendrik Santoso Sugiarto

IBDA4221 – Selected Topic in Computer Technology

Quantum Computing

Capaian Pembelajaran

- Bracket
- Operator
- Bentuk Matriks
- Formalisme

Bracket

Notasi Dirac

- Notasi dirac disebut juga dengan bracket notation, karena terdiri dari 2 macem vektor kompleks yaitu:
 - $ket |\beta\rangle$ yang menghuni state space
 - bra $\langle \alpha |$ yang menghuni dual space
- Inner product dari bra dan ket adalah bra(c)ket:

$$\langle \alpha | \beta \rangle = \langle \alpha | \cdot | \beta \rangle$$

$$(\alpha_1 \alpha_2 \dots \alpha_n)$$
 $(\beta_1 \alpha_2 \dots \alpha_n)$
 $(\beta_1 \alpha_2 \dots \alpha_n)$

• Proyeksi ket $|\beta\rangle$ pada basis $|\alpha\rangle$ menghasilkan sebuah inner product $\langle\alpha|\beta\rangle$ yang merupakan sebuah yang wavefunction yang terletak pada koordinat $\alpha\to\Psi(\alpha)$

Space

Karakteristik	Dirac Space	Euclidean Space
Penghuni	Objek kuantum	Objek klasik
Dimensi	Bisa sampai ∞	3
Aljabar	Kompleks	Real
Elemen	Ket ΙΨ	Vektor
Penjumlahan	$ \psi_1\rangle + \psi_2\rangle = \psi_3\rangle \in \mathbb{C}$	$\vec{r}_1 + \vec{r}_2 = \vec{r}_3 \in \mathbb{R}^3$
Perkalian skalar	$a \psi angle\in\mathbb{C}$	$a\vec{r} \in \mathbb{R}^3$
Perkalian matriks	$A \psi angle\in\mathbb{C}$	$A\vec{r} \in \mathbb{R}^3$
Inner product	$\langle \phi \psi angle \in \mathbb{C}$	$\vec{r}_1 \cdot \vec{r}_2 = \in \mathbb{R}^3$
Outer product	$ \psi angle\langle\phi \in\mathbb{C}$	$\vec{r}_1 \otimes \vec{r}_2 = \in \mathbb{R}^3$

Ket Space

- Physical state direpresentasikan oleh sebuah complex vector yang disebut dengan ket
- State ket berisi informasi lengkap tentang seluruh physical state
- 2 ket dapat dijumlahnya dan hasilnya adalah ket yang lain

$$|\alpha\rangle + |\beta\rangle = |\gamma\rangle$$

- Sebuah ket dikalikan dengan sebuah bilangan kompleksakan menghasilkan ket lain: $|\alpha'\rangle = c|\alpha\rangle$
- Jika c = 0 maka ket ini adalah null ket

Addition

Komutatif

Asosiatif

Inverse

Null ket

$$|\alpha\rangle + |\beta\rangle = |\beta\rangle + |\alpha\rangle$$

$$(|\alpha\rangle + |\beta\rangle) + |\gamma\rangle = |\alpha\rangle + (|\beta\rangle + |\gamma\rangle)$$

$$|\alpha\rangle + (-|\alpha\rangle) = 0$$

$$0 + |\alpha\rangle = |\alpha\rangle$$

Scalar Multiplication

Asosiatif

Identitas

$$a(b|\alpha\rangle) = (ab)|\alpha\rangle$$

$$(a+b)|\alpha\rangle = a|\alpha\rangle + b|\alpha\rangle$$
$$a(|\alpha\rangle + |\beta\rangle) = a|\alpha\rangle + a|\beta\rangle$$

$$1|\alpha\rangle = |\alpha\rangle$$

• Berapakah
$$(a + b)(|0\rangle + |1\rangle)$$

Kombinasi Linear (Superposisi)

 ${f \cdot}$ Ket apapun dapat ditulis sebagai kombinasi linear N-dimensi ruang vektor ortonormal

$$|\psi\rangle = \sum_{i} c_i |u_i\rangle = c_1 |u_i\rangle + c_2 |u_2\rangle + \dots + c_n |u_n\rangle$$

$$\frac{|+i\rangle - |+i\rangle = \frac{10}{\sqrt{2}}$$

- Apakah bentuk dari $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - pada basis $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) dan |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
 - pada basis $|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ dan $|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$ $|\psi\rangle = \left(\frac{1}{2} + \frac{1}{2i}\right)|+i\rangle + \left(\frac{1}{2} \frac{1}{2i}\right)|-i\rangle$
- Apakah bentuk dari $|\psi\rangle = |0\rangle$

 - pada basis $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ dan $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$ pada basis $|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ dan $|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$

Bra Space

- Untuk setiap ket, terdapat sebuah bra yang terletak pada dual space
- Bra adalah semacam bayangan cermin dari ket
- Sehingga terdapat one-to-one dual correspondence antara bra dan ket:

$$|\alpha\rangle \leftrightarrow \langle \alpha|$$

$$|\alpha'\rangle, |\alpha''\rangle, \dots \leftrightarrow \langle \alpha'|, \langle \alpha''|, \dots$$

$$|\alpha\rangle + |\beta\rangle \leftrightarrow \langle \alpha| + \langle \beta|$$

$$c_{\alpha}|\alpha\rangle + c_{\beta}|\beta\rangle \leftrightarrow c_{\alpha}^* \langle \alpha| + c_{\beta}^* \langle \beta|$$

Inner Product

• Inner product dari bra dan ket adalah sebuah scalar kompleks:

$$\langle \alpha | \beta \rangle = \langle \alpha | \cdot | \beta \rangle$$
$$\langle \alpha | \beta + \gamma \rangle = \langle \alpha | \cdot (| \beta \rangle + | \gamma \rangle)$$

Terdapat 2 sifat dari inner product:

$$\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*$$
$$\langle \alpha | \alpha \rangle \ge 0$$

- 2 ket $|\alpha\rangle$ dan $|\beta\rangle$ disebut orthogonal jika $\langle\alpha|\beta\rangle=0$
- Pada normalized ket dimana $|\tilde{\alpha}\rangle = \frac{|\alpha\rangle}{\sqrt{\langle\alpha|\alpha\rangle}}$, maka $|\alpha\rangle = 1$

$$|\alpha\rangle = \frac{1}{12}(107+117)$$

$$\langle \alpha|\alpha\rangle = \frac{1}{12}(\langle 0|+\langle 1|) + \langle 1|) + \langle 1|\alpha\rangle +$$

- Berapakah $\langle \psi | \psi \rangle$, dimana $| \psi \rangle$ ternormalisasi
- Berapakah $\langle 0|\psi\rangle\langle\psi|0\rangle$, dimana $|\psi\rangle=\frac{1}{\sqrt{3}}\big(i|0\rangle+\sqrt{2}|1\rangle\big)$
- https://learn.qiskit.org/course/introduction/describing-quantum-computers

Outer Product

Outer product dari ket dan bra adalah sebuah matriks:

$$|\beta\rangle\langle\alpha|$$

Associative axiom:

matrix yet yet scalar
$$(|\beta\rangle\langle\alpha|)|\gamma\rangle = |\beta\rangle(\langle\alpha|\gamma\rangle)$$
 $(\langle\beta|)(X|\alpha\rangle) = (\langle\beta|X)(|\alpha\rangle)$

• Jika $X = |\beta\rangle\langle\alpha|$ maka $X^{\dagger} = |\alpha\rangle\langle\beta|$

• Operator Hadamard adalah:

$$H = \frac{1}{\sqrt{2}} |0\rangle\langle 0| + \frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |1\rangle\langle 0| - \frac{1}{\sqrt{2}} |1\rangle\langle 1|$$

- Apakah hasil operator berikut terhadap:
 - |0*>*

 - · |+>= t(10>+11>)
 - · |->= 電(10>-11)
- Manakah yang mengalami interferensi?

$$= \frac{1}{2}(10) + \frac{1}{2}(10)$$

Operator

Operator

- Setiap observables (fenomena yang diukur), seperti momentum dan spin, dapat direpresentasikan oleh sebuah operator terhadap vector space $(A|\alpha\rangle)$
- Operator selalu beroperasi pada sebuah ket dari sisi kiri, dan menghasilkan ket baru: $|\psi\rangle=X|\alpha\rangle$
- Operator selalu beroperasi pada sebuah bra dari sisi kanan, dan menghasilkan bra baru:

$$\langle \phi | = \langle \alpha | X$$

• Dimana dual correspondence antara dua operator ini adalah:

$$\langle \alpha | X \leftrightarrow X^{\dagger} | \alpha \rangle$$
$$\langle \alpha | X | \beta \rangle \leftrightarrow \langle \beta | X^{\dagger} | \alpha \rangle^{*}$$

Operator

• Sebuah operator disebut Hermitian jika:

$$X = X^{\dagger}$$

• Operators X dan Y adalah sama jika:

$$X|\alpha\rangle = Y|\alpha\rangle$$

Sebuah operator disebut null operator jika:

$$X|\alpha\rangle = 0$$

Operator pada kuantum selalu bersifat linear:

$$X(c_{\alpha}|\alpha\rangle + c_{\beta}|\beta\rangle) = c_{\alpha}X|\alpha\rangle + c_{\beta}X|\beta\rangle$$

- $\begin{array}{c}
 (\text{omflex} & \alpha + b) \\
 \uparrow \\
 \rangle = \alpha |0\rangle + \beta |1\rangle
 \end{array}$
- Apakah nilai ekspektasi dari operator $M_0 = |0\rangle\langle 0|$ pada state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$?
- Apakah nilai ekspektasi dari operator $M_1 = |1\rangle\langle 1|$ pada state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$?

$$(4|M_0|4)=(x^*\langle 0|+\beta^*\langle 1|)|(0)\times(0)(x|0)+\beta|1))$$

$$=(x^*\langle 9|0)\times(0)|+\beta^*\langle 9|0\rangle\times(0)(x|0)+\beta|1))$$

$$=(x^*\langle 9|0)\times(0)|+\beta^*\langle 9|0\rangle\times(0)|(x|0)+\beta|1))$$

$$=(x^*\langle 9|0)\times(0)|+\beta^*\langle 9|0\rangle\times(0)|(x|0)+\beta|1))$$

$$=(x^*\langle 9|0)\times(0)|+\beta^*\langle 9|0\rangle\times(0)|(x|0)+\beta|1))$$

Addition

- Beberapa operators dapat dijumlahkan
- Penjumlahan bersifat komutatif:

$$X + Y = Y + X$$

• Penjumlahan bersifat asosiatif:

$$X + (Y + Z) = (X + Y) + Z$$

Multiplication

- Beberapa operators dapat dikalikan
- Perkalian bersifat non-komutatif:

$$XY \neq YX$$

Perkalian bersifat asosiatif:

$$X(YZ) = (XY)Z = XYZ$$

• Dual correspondence pada perkalian:

$$XY|\alpha\rangle = X(Y|\alpha\rangle) \leftrightarrow (\langle \alpha | Y^{\dagger})X^{\dagger} = \langle \alpha | Y^{\dagger}X^{\dagger}$$
$$(XY)^{\dagger} = Y^{\dagger}X^{\dagger}$$

Eigen

 Terdapat bentuk ket khusus (eigenkets) dimana hasil dari sebuah operator adalah suatu nilai (eigenvalues):

 $A|\alpha'\rangle = a'|a'\rangle$, $A|\alpha''\rangle = a''|a''\rangle$, ...

• Jika A adalah Hermitian, maka:

$$\langle a^{\prime\prime}|A=a^{\prime\prime^*}\langle a^{\prime\prime}|$$

Hitung operator dari kiri dan kanan:

$$\langle a'|A|\alpha'\rangle = \underline{a}'\langle a'||a'\rangle$$

 $\langle a'|A|\alpha'\rangle = \underline{a}'^*\langle a'||a'\rangle$
 $a = a^* \rightarrow real$

or Xtig

Hitung selisih inner product antar eigen:

$$0 = \langle a'' | A | a' \rangle - \langle a'' | A | a' \rangle = (a' - a''^*) \langle \alpha'' | \alpha' \rangle$$
$$\langle \alpha'' | \alpha' \rangle = 0 \rightarrow \text{orthogonal}$$

- Berapakah eigenvalue dari operator Hadamard:
- $H = \frac{1}{\sqrt{2}} |0\rangle\langle 0| + \frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |1\rangle\langle 0| \frac{1}{\sqrt{2}} |1\rangle\langle 1|$

Closure

• Setiap ket apapun $|\alpha\rangle$ dapat juga ditulis sebagai vektor pada basis N eigenkets dari observables A:

$$|\alpha\rangle = \sum_{a'} c_{a'} |a'\rangle = \sum_{a'} |a'\rangle\langle a'|\alpha\rangle$$

- Dimana $c_{a'} = \langle a' | \alpha \rangle$
- Karena $|\alpha\rangle$ adalah ket apapun, maka kita memiliki completeness relation atau closure :

$$\sum_{a'} |a'\rangle\langle a'| = \mathbf{I}$$

$$|a'\rangle\langle a'| = \mathbf{I}$$

$$|a'\rangle\langle a'| = \mathbf{I}$$

$$|a'\rangle\langle a'| = \mathbf{I}$$

Projection

• Jika $|\alpha\rangle$ normalized, maka:

ormalized, maka:
$$\langle \alpha | \alpha \rangle = \left| \alpha \left| \left(\sum_{a'} |a'\rangle \langle a'| \right) \right| \alpha \right| = \sum_{a'} |\langle a'|\alpha\rangle|^2 = \sum_{a'} |c_{a'}|^2 = 1$$

- Dimana $|a'\rangle\langle a'|$ adalah projection operator terhadap ket $|\alpha\rangle$ menuju base ket $|a'\rangle$: $(|a'\rangle\langle a'|)|\alpha\rangle = |a'\rangle\langle a'|\alpha\rangle = c_{a'}|a'\rangle$
- Proyeksi ket $|\alpha\rangle$ terhadap basis observable a' adalah sebuah wavefunction pada koordinat $a' \to \Psi(a') = \langle a' | \alpha \rangle$

1+>

- $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ terletak pada basis $|0\rangle$ dan $|1\rangle$
- Gunakan proyeksikan $|\psi\rangle$ terhadap basis $|+\rangle$ dan $|-\rangle$

Bentuk Matriks

Bentuk Matriks

• Sebuah operator X terhadap ket $|\alpha\rangle$ dapat direpresentasikan dalam bentuk matriks:

$$\langle a'|X|\alpha\rangle = \sum_{a''} \langle a'|X|a''\rangle \langle a''|\alpha\rangle$$

$$\begin{pmatrix} \langle a^{(1)}|X|a^{(1)}\rangle & \langle a^{(1)}|X|a^{(2)}\rangle & \dots \\ \langle a^{(2)}|X|a^{(1)}\rangle & \langle a^{(2)}|X|a^{(2)}\rangle & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \langle a^{(1)}|\alpha\rangle \\ \langle a^{(2)}|\alpha\rangle & \vdots \end{pmatrix}$$

• Sebuah operator X terhadap bra $\langle \alpha |$ dapat direpresentasikan dalam bentuk matriks:

$$\langle \alpha | = (\langle \alpha | a^{(1)} \rangle \quad \langle \alpha | a^{(2)} \rangle \quad \dots) = (\langle a^{(1)} | \alpha \rangle^* \quad \langle a^{(2)} | \alpha \rangle^* \quad \dots)$$

$$\langle \alpha | X | a' \rangle = \sum_{a''} \langle \alpha | a'' \rangle \langle a'' | X | a' \rangle$$

$$(\langle a^{(1)} | \alpha \rangle^* \quad \langle a^{(2)} | \alpha \rangle^* \quad \dots) \begin{pmatrix} \langle a^{(1)} | X | a^{(1)} \rangle \quad \langle a^{(1)} | X | a^{(2)} \rangle \quad \dots \\ \langle a^{(2)} | X | a^{(1)} \rangle \quad \langle a^{(2)} | X | a^{(2)} \rangle \quad \dots \\ \vdots \qquad \vdots \qquad \vdots \qquad \ddots \end{pmatrix}$$

Perkalian Matriks

• Jika matriks *X* Hermitian, maka:

$$\langle a^{\prime\prime}|X|a^{\prime}\rangle = \langle a^{\prime\prime}|X^{\dagger}|a^{\prime}\rangle^{*} = \langle a^{\prime\prime}|X|a^{\prime}\rangle^{*}$$

• Jika matriks Z = XY, artinya:

$$\langle a^{\prime\prime}|Z|a^{\prime}\rangle = \langle a^{\prime\prime}|XY|a^{\prime}\rangle = \sum_{a^{\prime\prime\prime}}\langle a^{\prime\prime}|X|a^{\prime\prime\prime}\rangle\langle a^{\prime\prime\prime}|Y|a^{\prime}\rangle$$

Inner Product:

$$\langle \beta | \alpha \rangle = \sum_{a'} \langle \beta | a' \rangle \langle a' | \alpha \rangle = \left(\langle a^{(1)} | \beta \rangle^* \quad \langle a^{(2)} | \beta \rangle^* \quad \dots \right) \begin{pmatrix} \langle a^{(1)} | \alpha \rangle \\ \langle a^{(2)} | \alpha \rangle \\ \vdots \end{pmatrix}$$

Outer Product:

$$|\beta\rangle\langle\alpha| = \begin{pmatrix} \langle a^{(1)}|\beta\rangle\langle a^{(1)}|\alpha\rangle^* & \langle a^{(1)}|\beta\rangle\langle a^{(2)}|\alpha\rangle^* & \dots \\ \langle a^{(2)}|\beta\rangle\langle a^{(1)}|\alpha\rangle^* & \langle a^{(2)}|\beta\rangle\langle a^{(2)}|\alpha\rangle^* & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

• Apakah closure relation dari computational basis ($|0\rangle$, $|1\rangle$) dalam bentuk matriks?

$$\begin{array}{c}
|\psi\rangle = (H) \\
|\psi\rangle = (H)$$

$$(0 - \lambda I) (4) = \lambda (4)$$

- Sebuah operator berbentuk matriks 3x3: $\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
- Temukan eigenvector dan eigenvaluesnya

$$0 = \sqrt{\frac{-x^{3} + 0 + 0 - 0 - (-i) - (-i)}{-x^{3} + 2 \lambda}} = -\lambda^{3} + 2 \lambda = 0$$

$$-\lambda^{3} + 2\lambda^{2}$$

$$-\lambda^{3} + 2\lambda^{2}$$

$$-\lambda(2-\lambda^{2}) = 0$$

$$-\lambda(2-\lambda^{2}$$

Formalisme

Postulat Kuantum (Bransden & Joachain)

- 1. Seluruh informasi mengenai suatu sistem direpresentasikan oleh state vector $|\Psi\rangle$
- 2. Prinsip superposisi. $|\Psi\rangle = c_1 |\Psi_1\rangle + c_2 |\Psi_2\rangle$
- 3. Setiap dynamical variable dideskripsikan oleh linear operator.
- 4. Hasil dari pengukuran untuk variabel A adalah eigen value dari operator A
- 5. Ekspektasidari hasil pengukuran berkali-kali terhadap variabel A terhadap sistem dengan wavefunction $|\Psi\rangle$ adalah $\langle A\rangle=rac{\langle\Psi|A|\Psi\rangle}{\langle\Psi|\Psi\rangle}$
- 6. Wavefunction dapat diekspresikan secara kombinasi linear dari eigenfunction dari A
- 7. Perubahan wavefunction mengikuti persamaan schrodinger i $\hbar \frac{\partial |\Psi\rangle}{\partial t} = H |\Psi\rangle$, dimana H adalah operator energi total (Hamiltonian) dari sistem tersebut

• Wavefunction $|\Psi\rangle$ dan $c|\Psi\rangle$ merepresentasikan state yang sama, biasanya nilai c dipilih agar wavefunction ternormalisasi:

$$\int |\Psi(\mathbf{r},t)|^2 d\mathbf{r} = 1$$

• Dimana $P(\mathbf{r},t) = |\Psi(\mathbf{r},t)|^2$ dapat diinterpretasi sebagai position probability density

- Jika wavefunction $|\Psi_1\rangle$ dan $|\Psi_2\rangle$ adalah state dari sistem maka: $|\Psi\rangle=c_1|\Psi_1\rangle+c_2|\Psi_2\rangle$
- Juga merupakan state dari sistem

• Operator A adalah linear jika memiliki sifat:

$$A(c_1|\Psi_1\rangle + c_2|\Psi_2\rangle) = c_1A|\Psi_1\rangle + c_2A|\Psi_2\rangle$$

$$A|\Psi\rangle = Ac_1|\Psi\rangle + C_2|\Psi\rangle$$

$$f(x) = x^2 + \sin x + x$$

$$f(x) = \frac{1}{x^2} + \sin x + \frac{1}{x^2} = 2x + \cos x + 1$$

$$f(x) = \frac{1}{x^2} + \sin x + \frac{1}{x^2} = 2x + \cos x + 1$$

• Wavefunction $|\psi_n\rangle$ adalah eigenfunction dari operator A jika:

$$A|\psi_n\rangle = a_n|\psi_n\rangle$$

• Jika operator A adalah Hermitian maka eigenvalue a_n adalah bilangan real:

A
$$\Rightarrow$$
 A \Rightarrow A \Rightarrow

- $|A\rangle = \langle \Psi | A | \Psi \rangle$
- Jika wavefunction $|\Psi\rangle$ ternormalisasi maka $\langle\Psi|\Psi\rangle=1$ dan $\langle A\rangle=\langle\Psi|A|\Psi\rangle$
- Jika operator A adalah Hermitian maka ekspektasi $\langle A \rangle$ adalah bilangan <u>real</u>

• Untuk himpunan eigenfunctions $\{\psi_n\}$:

$$|\Psi\rangle = \sum_{n} c_{n} |\psi_{n}\rangle$$

• Hamiltonian operator dari sebuah sistem adalah:

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(r_1, ..., r_N, t)$$

• Dimana operator momentum ${m p}_i=i\hbar
abla_i$

• Apakah has<u>il pengukuran ya</u>ng mungkin dari operator pauli-z $\sigma_z = 0$

Apakah hasil pengukuran yang mungkin dari operator pauli-z
$$|\sigma_z| = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$
 da
Hadamard $H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $|\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & 0$

$$\frac{1}{\lambda_{1}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} |\Psi\rangle = \frac{1}{\lambda_{1}}\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} |\Psi\rangle \rightarrow \begin{vmatrix} 1-\lambda & 1 \\ 1 & -1-\lambda \end{vmatrix} = 0$$

$$0 = (1-\lambda_{1})(-1-\lambda_{1}) - 1 = \lambda^{2} - 1 - 1 = \lambda^{2} - 2$$

$$\lambda = 2 \sqrt{\lambda} = -2$$

Tuhan Memberkati

