Lista de exercícios - aula 7.

Vetores

OBS.: Para cálculos matemáticos utilize a biblioteca *math.h* que possui diversas funções, que retornam um valor do tipo *double*.

Segue alguns exemplos:

Funções trigonométricas		
double sin	(double);	
double cos	(double);	
double tan	(double);	
Exponenciais e logaritmos		
double exp	(double);	Devolve e ^x , ou seja, o número e elevado à
		potência x. Uso típico: y = exp (x);
double log	(double);	Devolve o logaritmo de x na base e. Não use com
		x negativo (ou nulo). Uso típico: y = log (x);
		Devolve o logaritmo de x na base 10. Não use
double log10	(double);	com x negativo (ou nulo). Uso típico: y = log10
		(x);

Raiz e potência		
	Devolve a raiz quadrada de x. Não use com x <	
double sqrt (double);	0. Uso típico: y = sqrt (x);	
	Devolve x^y, ou seja, x elevado à potência y.	
double pow (double, double);	Não use com $x = 0.0$ e y < 0.0. Não use com $x <$	
, , , , , , , , , , , , , , , , , , , ,	0.0 e y não inteiro. Caso especial: pow (0.0,	
	0.0) == 1.0. Uso típico: p = pow (x, y);	
Arredondamentos		
	A função devolve o maior inteiro que é menor	
	que ou igual a x, isto é, o único inteiro i que	
double floor (double);	satisfaz i <= x < i+1. Uso típico: i = floor	
	(x);	
	A função devolve o menor inteiro que é maior	
double ceil (double);	que ou igual a x, isto é, o único inteiro j que	
(333337)	satisfaz j-1 < x <= j. Uso típico: j = ceil	
	(x);	

- 1) Crie um programa que leia do teclado seis valores inteiros e em seguida apresente na tela o quadrado de cada valor lido.
- 2) Crie um programa que leia do teclado dez valores inteiros e em seguida mostre na tela os valores lidos na ordem inversa.
- 3) Faça um programa que leia cinco valores e os armazene em um vetor. Em seguida, apresente todos os valores lidos juntamente com a média de todos os valores.
- 4) Faça um programa que possua um vetor de nome A que armazene seis números inteiros. O programa deve executar os seguintes passos:
 - a) Atribua os seguintes valores a esse vetor: 1, 0, 5, -2, -5, 7.
 - b) Armazene em uma variável a soma dos valores das posições A[0], A[1] e A[5] do vetor e mostre na tela essa soma.
 - c) Modifique o vetor na posição 4, atribuindo a essa posição o valor 100.
 - d) Mostre na tela cada valor do vetor A, um em cada linha.
- 5) Faça um programa que leia um vetor de oito posições. Em seguida, leia também dois valores X e Y quaisquer correspondentes aos índices do vetor. Seu programa deverá exibir a soma dos valores encontrados nos índices X e Y.
- 6) Escreva um programa que leia do teclado um vetor de 10 posições. Escreva na tela quantos valores pares foram armazenados nesse vetor.
- 7) Faça um programa que receba do usuário um vetor N com 10 posições. Em seguida deverão ser impressos o maior e o menor elemento desse vetor.
- 8) Faça um programa que preencha um vetor com 10 números reais. Em seguida, calcule e mostre na tela a quantidade de números negativos e a soma dos números positivos desse vetor.

- 9) Faça um programa que receba do usuário dois vetores, A e B, com 10 números inteiros cada. Crie um novo vetor C calculando C = A B. Mostre na tela os dados do vetor C.
- 10) Faça um programa que preencha um vetor de tamanho 20 com os 20 primeiros números naturais que são múltiplos de 7. Ao final, imprima esse vetor na tela.
- 11) Leia um conjunto de números reais, armazenando-o em um vetor. Em seguida, calcule o quadrado de cada elemento desse vetor armazenando esse resultado em outro vetor. Os conjuntos têm, no máximo, 20 elementos. Imprima os dois conjuntos de números.
- 12) Faça um programa que leia um vetor de 10 posições. Não é permitido valores iguais. Imprima o vetor na tela.
- 13) Faça um programa que calcule o desvio-padrão \boldsymbol{d} de um vetor \boldsymbol{V} contendo \boldsymbol{n} números,

$$d = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (V[i] - m)}$$

onde m é a média desse vetor. Considere n = 10. O vetor ${\bf V}$ deve ser lido do teclado.

14) Leia um vetor com 10 números de ponto flutuante. Em seguida, ordene os elementos desse vetor e imprima o vetor na tela.