	PANEL BRIGHTINESS cd/m²	515	OTO	512	516		213	526	000	070	520	i i	535	540	200	530	520	030	475	
	THE NUMBER OF PANELSCAUSING IN WITH STAND VOLTAGE FAILURE IN 20 PANELS AFTER AGING ON IN 20 PANELS AFTER AGING ON	∌ ∣	0	0			0			0			-	-	T	-		0	10	
	THICKNESS OF GLASS		13 µm	14 // m	1	13 µ m	13 µ m	1	III π C	8 mm		10 µ m	0 // m	2	0 μm	0 // m		12μ m	20 // m	20 02
TABLE 1.A	BLECTRIC		10	=	1.1	20	13	1	13	13	2	13	1		1	1		13	5	CI
TAE		20	0	-	5	10	r.c	1	2	ĸ	,	വ	(5	0	<		2	+	C.
	BY WEIGHT)	B2O3 SiO2 Al2O3 TiO2		-	5	2	2	:	10	0	21	10	(>	0	9		10	Į.	2
	1000 1000 1000 1000 1000 1000 1000 100	102 A	10	1	71	5	ır	,	2	1	0	2	T	의	10	19	2	5	_	2
		<u>8</u>	=	-	13	10	10	3	10		3	10	T	0	0	1	0	2		10
	OMPOSITION OF LASS LAYER (%)	PbOB2	78	-	65	73	1	#	74	1	14	74	T	0	0	-	0	7.4		74
	KETALLIC GL	ECTRODE	CVD METHOD 7		ZrOz(0.1 µm)	CVD METHOD	1		CVD METHOD	- 1	AlzO3(1.5 µm)	CVD METHOD	CECS(1.0 pt iii)	CVU METHO SiO2(5:0 # m)	CVD METHOD	AlzU3(3.0 /L III)	CVD ME1TOD 7n0(6,4m)	CVD NETHOD	SiO ₂ (0.3 µm)	NO METALLIC OXIDE
	RCTRODE	TTERIAL E	T	200	Ag	1		Ag	γ	1	Ag	Δα	-	Cr-Cu-Cr	0.00		Cr-Cu-Cr	1	Ag	Ag
	PI BI	HE MA	+		~	1	+	4	L L	,	9			6	5	21	11	T	7.	13

TARIF 1 B

_	S			_	Т	Т		-	Т		-	Т		_	T			1	
	PANEL BRIGHTNESS	cd/m²	510	512		513	515	515		514	514	170	520	519		520	780	PGF F	
CATICING	THE NUMBER OF PANELSCAUSIN WITH STAND VOLTA GE FAILURE IN 20 PANELS AFTER ACING ON 150V AND 30 KHZ		0		0	0	0	0		0			1	6	7	0		0	
	THICKINESS	OF GLASS	14 μ m	5	13 ft m	13 µ m	12μm	11 2	11 10 111	12 μ m		12 μ m	0		5	10 μ m		15 μ m	
ADLE 1.D	DIELECTRIC	S S S S S S S S S S S S S S S S S S S	12	1	18	24	50	=		"		"				20		70	
			0	1	2	10	7	T:	"	"		"	0	Ŀ	0	7	1	7	l
7.	WEIGHT)	102	20	1	5	10	60	:	"	"		"	0		0	က		က	ľ
	BYW	IZOSI	15	1	5	3	2		"	"		"	0		0	2		7	l
	ESS (25)	3iO2	22	:	20	10	23	3	"	"		"	0		0	23		23	١
	COMPOSITION OF DIE GLASS LAYER (% BY	B2O3 SiO2 Al2O3 TiO2	23	3	20	37	25	3	=	"		=	C		0	25		25	١
	ŠŠ	PB	45	3	45	2	40	?	=	"		=	c	- 1.	0	45	-+	40	١
	METALLIC OXIDE ON ELECTRODE 1		ZnO(0.1 µ m)	CVD METHOU ZrOz(0.3 µm)	CVD METHOD	MgO(U.5 JL III)	1102(1.0 µ m)	SiOr(I.0 Irm)	CVD METHOD	AlzU3(U.5 # m)	CVD METHOD	CVD METHOD	ZUO(6 pt m)	CAD METHOD	CAPACITION	TiOz(0.2 mm)	NO METALLIC		
	adoanoa	TERIAL		20,47	Ag		T	S L	Ag		947	Ag	ا د	50 00 10	Cr-Cu-Cr		200	Ag)
	D. 10		-	4	5	2	1 10	=	18	0	1.5	20	12	17	22	5	3	24*	

* EXAMPLE NUMBER 13 AND 24 FOR COMPARISON

HICKNESS SUBSTRATE SUBSTRATE 1.5 .5 2.7 1.5 0.1 2.7 1.0 5. 1.0 0 0.5 0.7 (ALKALINE EARTH) (ALKALI) 13.5 14 14 6.5 6.5 0 0 33 0 0 0 0 COMPOSITION OF CLASS (% BY WEIGHT) *ROIMEO CaO, SPO BaO) * * R2O(Na2O, K2O) 12 21 12 7.5 7.5 25 25 27 27 21 27 27 B203 0 15 0 0 0 ~ 15 \sim N 6 თ \sim A1203 15 15 Ξ 2 2 7 -15 15 Ξ 'n S 28 28 SiO2 26 26 22 49 49 72 72. 99 99 72 TASS SUBSTRAT CX10-1/C) TABLE 2 85 85 84 84 33 46 46 33 47 47 51 51 SERCE SERVING 2.77 2.49 2.77 2.78 2.78 2.50 2.50 2.73 2.36 2.36 2.73 570 570 511 610 650 650 610 650 535 535 650 NEASS EGETRIC NEASY ELECTRIC NEASY EGETRIC MANUFACTURER NITACK ELECTRIC NHATS CONO NH TECHNO NY TECHNO ASASS co. ASASS co. NI TECHNO ASANI CO. ASASI co. SCRASIANE SCPASIANE PD-200 PD-200 NA-35 ROBUCT NA-35 NA45 NA45 0A-2 0A-2 BLC BLC 34* 35* 36* 33* 83 3 31 33 25 56 8 27

* EXAMPLE NUMBER 9-12 FOR COMPARISON

TABLE 3

										_	_	_	_	_	-	_	_	_	
	CHANGING RATE OF	AFTER OPERATION ON 200V FOR 5000H(%)	-2.9	2.0	C.7-	-2.8	-2.7	-2.7	-2.6		-2.9	-3.0		PANEL		CRACK IN			
		DURING OPERATION	NG CRACK IN.	NO CRACK IN	DIELECTRICCLASS	DIELECTRIC GLASS	NO CRACK IN DIELECTRIC GLASS	NO CRACK IN DIELECTRIC GLASS	NO CRACK IN A CC	MOCERO INC. OFFICE	DIELECTRICCLASS	NO CRACK IN A CC	CELECTATE BETRIE	SOBSTANCE	CRACK IN PANEL	CRACK IN DIELECTRIC	SUBSTANCE	CRACK IN PANEL	
	PANEL		3.0kg		2.1kg	3.9kg	2.6kg	3.1kg	1.54kg		4.1kg	0.28kg		7.4kg	4.1kg	8 3kg	4	5.0kg	
		FORMING METHOD AND MATERIAL)	THERMAL SPRAYING	METHOD AI2O3(ALUMINA)	METHOD AI2O3(ALUMINA)	THERMAL SPRAYING METHOD MULLITE(3A12O3 · 2SiO2)	THERMAL SPRAYING METHOD		THERMAL SPRAYING METHOD		THERMAL SPRAYING METHOU MITLITE(3AI2O3 · 2SiO2)		MULITE(3AI2O3 · 2SiO2)		THERMAL SPRAYING METHOD	THERMAL SPRAYING METHOD	MULTE(3AlzOs · 2SiOz)	HERMAL SPRATING METHOD WULLITE (3A12O3 + 2SiO2)	
IADLES	PROTTECTING LAYER	PORMING METHOD AND PAGE ORIENT ATTON	THERMAL CVD METHOD MGO	WITH (100) FACE ORIENTATION	WITH (100) FACE ORIENTATION	PLASMA CVD METHOD MGO WITH LION-FACE OR FINI ATION	PLASMA CVD METHOD MGO	PLASMA CVD METHOD MGO	PI ASMA CVD METHOD MGO	WITH (100) FACE ORIENTATION	PLASMA CVD METHOD MGO	PI ASMA CVD METHOD MGO	WITH (100) FACE ORIENTATION	PLASMA CVD METHOD MGO WITH (100)-FACE ORIENTATION	PLASMA CVD METHOD MGO	DI ASMA CVI METHOD MGO	WITH (100)-FACE ORIENTATION	PLASMA CVD METHOD MCU WITH (100)-FACE ORIENTATION	NON THE POST OF TH
			(5/, nix	45	70	25	6	1		25	99		30	45	02	1	20	30	ט משכ
	JELECTRIC LAYER	COMPOSITION OF E	A D1 magn11)	SiOz(45), Alz03(5)	Alz03	P2O5(45), ZnO(34)	3419/03.151/03	PbO(30),B2O3(20)	SiO2(45),AI2O3(5)	A1203(18),CaO(3)	SiO2		SiO2	PbO(30), B203(20)	AlpOn	(10) O-C (20) O-O	Alz03(18),CaO(3)	SiO ₂	TA TATA TATA
	D	CORMING CORMIN		SPRAINC IS	THERMAL CVD	HENNY.	$\overline{}$					MELHOU		SHEWA	PLASMA CVD	METHOD		PLASWA CVD	A VAC
		WARE E	\neg	52	36	77			63	8	2	5	32	*8	*1/2	5	32*	36*	

EXAMPLE NUMBER 9-12 FOR COMPARISON

United States Patent & Trademark Office

Office of Initial Patent Examination

Application papers not suitable for publication

SN	09944837	Mail Date 09	126/01
\Box /	Non-English Specification		
Ø	Specification contains drawing(s) on pa	ige(s)	or table(s) <u>Pages</u> 16 30 58
	Landscape orientation of text	ification 🛘 Cla	ims
	Handwritten ☐ Specification ☐	Claims Abstr	ract
	More than one column Specificat	ion 🗆 Claims	☐ Abstract
	Improper line spacing	on 🗆 Claims	☐ Abstract
	Claims not on separate page(s)		
	Abstract not on separate page(s)		
	Improper paper size Must be either A	4 (21 cm x 29.7 cm	n) or 8-1/2"x 11"
	☐ Specification page(s)		☐ Abstract
	☐ Drawing page(s)		☐ Claim(s)
	Improper margins		
	☐ Specification page(s)		☐ Abstract
	☐ Drawing page(s)		☐ Claim(s)
	Not reproducible	Section	
	Reason	☐ Specification p	page(s)
	☐ Paper too thin	☐ Drawing page((s)
	☐ Glossy pages	☐ Abstract	
	☐ Non-white background	☐ Claim(s)	
	Drawing objection(s)		
	☐ Missing lead lines, drawing(s)		
	☐ Line quality is too light, drawing(s)		
	☐ More than 1 drawing and not number	ered correctly	
	☐ Non-English text, drawing(s)		
	☐ Excessive text, drawing(s)		
	☐ Photographs capable of illustration,	drawing(s)	