Capacitor

$$N_1 \circ \frac{V_C}{C} \circ N_2$$

Figure 1: C — Capacitor Element.

SPICE Form:

Cname n_1 n_2 ModelName Capacitor Value [IC= V_C] [L=Length] [W=Width]

 n_1 is the positive element node n_2 is the negative element node

ModelName is the optional model name

Capacitor Value is the capacitance. (Units: Farads; Required)

L length of the integrated capacitor. (Units: m; Required; Symbol L)

W is the width of the integrated capacitor. (Units: m; Optional, with the

default width DEFW specified in the device model; Symbol L)

IC is the optional initial condition specification. Using ${\tt IC}{=}V_C$ is used with the UIC option on the .TRAN line when a transient analysis is desired with initial voltage V_C across the capacitor rather than the quiescent operating point. Specification of the transient initial condition using the

.IC is preferred and is more convenient.

Model Parameters:

Name	Description	Units	Default
C	Capacitor Value	farads	-
intg	Internal conductance value	siemens	-
timed	Flag: if true then calculate in the time domain	-	-

Example:

C 1 3 C1 5pF

Notes:

The actual element is the cap TRANSIM element. See TRANSIM element cap for full documentation.

Credits:

Name Affiliation Date Logo

Carlos E. Christofferson NC State University Sept 2000 NC STATE UNIVERSITY