Prog Projetos

- A duração de uma atividade pode ser reduzida:
 - aplicação de recursos adicionais (máquinas, trabalhadores, etc)
 - aumento no custo da atividade.
 - Embora a relação entre a redução desejada e o custo adicional não necessariamente seja linear será considerada como tal para o cálculo de durações intermediárias.

	Duração	(semanas)	Custo	(\$)		
Atividade	Normal	Intensificada	Normal	Intensificado	Redução	Custo por
					máxima	semana
						intensificada
Α	2	1	180.000,00	280.000,00	1	100.000,00
В	4	2	320.000,00	420.000,00	2	50.000,00
С	10	7	620.000,00	860.000,00	3	80.000,00
D	6	4	260.000,00	340.000,00	2	40.000,00
E	4	3	410.000,00	570.000,00	1	160.000,00
F	5	3	180.000,00	260.000,00	2	40.000,00
G	7	4	900.000,00	1.020.000,00	3	40.000,00
Н	9	6	200.000,00	380.000,00	3	60.000,00
1	7	5	210.000,00	270.000,00	2	30.000,00
J	8	6	430.000,00	490.000,00	2	30.000,00
K	4	3	160.000,00	200.000,00	1	40.000,00
L	5	3	250.000,00	350.000,00	2	50.000,00
M	2	1	100.000,00	200.000,00	1	100.000,00
N	6	3	330.000,00	510.000,00	3	60.000,00

- custo total "normal" \$4.550.000,00
- custo total "intensificado" \$6.150.000,00.
- valor do contrato é de \$5.500.00,00
 - → inviável intensificarmos todas as atividades.
- A intensificação só faz sentido se pudermos reduzir a duração do projeto
 - as atividades a serem intensificadas são aquelas que estão no caminho crítico (A-B-C-E-F-J-L-N),
 - destas, começamos por aquela que tem o menor custo por semana reduzida.

Atividade	Custo	ABCDGHM	ABCEHM	ABCEFJKN	ABCEFJLN	ABCIJKN	ABCIJLN
		40	31	43	44	41	42
J	30.000,00	40	31	42	43	40	41
J	30.000,00	40	31	41	42	39	40
F	40.000,00	40	31	40	41	39	40
F	40.000,00	40	31	39	40	39	40

- •Custo da intensificação = \$140.000,00
- •Bonus = \$150.000,00
- •Vale a pena ?

- Lidando com as incertezas...
 - A duração de cada atividade pode ser diferente da duração prevista:
 - Fatores econômicos
 - Fatores climáticos

→ Metodologia PERT

 As durações são consideradas variáveis aleatórias segundo alguma distribuição de probabilidade

 A metodologia PERT mais comumente utilizada é baseada em 3 estimativas para a duração de cada atividade:

```
m = duração mais provávelo = duração otimistap = duração pessimista
```

 Assume-se que as distribuições de probabilidade para as durações são do tipo beta

• Considera-se que a distribuição está contida no intervalo μ -3 σ e μ +3 σ , então:

$$\mu = \frac{o + 4m + p}{6}$$

$$\sigma^2 = \left(\frac{p-o}{6}\right)^2$$

Atividade	0	m	р	μ	σ^2
Α	1	2	3	2	1/9
В	2	3.5	8	4	1
С	6	9	18	10	4
D	4	5.5	10	6	1
E	1	4.5	5	4	4/9
F	4	4	10	5	1
G	5	6.5	11	7	1
Н	5	8	17	9	4
I	3	7.5	9	7	1
J	3	9	9	8	1
K	4	4	4	4	0
L	1	5.5	7	5	1
M	1	2	3	2	1/9
N	5	5.5	9	6	4/9

 Com estes dados podemos verificar a duração do projeto no pior cenário, por exemplo:

Caminho	Comprimento (duração)
Inicio-A-B-C-D-G-H-M-Fim	3+8+18+10+11+17+3 = 70
Inicio-A-B-C-E-H-M-Fim	3+8+18+5+17+3 = 54
Inicio-A-B-C-E-F-J-K-N-Fim	3+8+18+5+10+9+4+9 = 66
Inicio-A-B-C-E-F-J-L-N-Fim	3+8+18+5+10+9+7+9 = 69
Inicio-A-B-C-I-J-K-N-Fim	3+8+18+9+9+4+9 = 60
Inicio-A-B-C-I-J-L-N-Fim	3+8+18+9+9+7+9 = 63

- Neste caso, a duração de 70 semanas inviabilizaria o projeto...
- Mas, qual a probabilidade de isto ocorrer?

- Para responder esta questão vamos definir:
 - Caminho Crítico Médio: caminho crítico resultante caso as durações de cada atividade sejam as durações médias, admitindo-se que as durações dessas atividades são estatisticamente independentes

 Assim, a duração média do caminho critico médio é

$$\mu_{\mathsf{p}} = \sum_{i=1}^{n} \mu_{\mathsf{i}}$$

onde μ_i é a duração média da atividade *i* sobre o caminho crítico médio

 E a variância da distribuição de probabilidade para a duração total será dada por

$$\sigma_{\rm p}^2 = \sum_{i=1}^n \sigma_{\rm i}^2$$

onde σ_i^2 é a variância da atividade *i* sobre o caminho crítico médio

• No exemplo, teremos $\mu_i = 44$ e $\sigma_p^2 = 9$

- Assumindo que a distribuição de probabilidade para a duração total seja uma distribuição normal
 - Podemos calcular a probabilidade de que a duração T
 do projeto seja menor do que d unidades de tempo:

$$k_{\alpha} = \frac{d - \mu_{p}}{\sigma_{p}}$$

Onde k_{α} fornece o nº de desvios padrão pelo qual \emph{d} excede μ_{p}

 Utilizando uma tabela de distribuição normal padrão (média = 0 e variância =1) podemos encontrar a probabilidade de terminarmos o projeto em até d unidades de tempo, pois

$$P(T \le d) = P(Z \le k_{\alpha})$$

• Exemplo 1:

Probabilidade de completarmos o projeto em até 47 semanas :

$$k_{\alpha} = \frac{d - \mu_{p}}{\sigma_{p}} = \frac{47 - 44}{3} = 1$$

Consultando a tabela, vemos que

$$P(Z \le k_{\alpha}) = 0.8413$$
, portanto $P(T \le d)$ será de 84,13%

Exemplo 2:

Probabilidade de completarmos o projeto em até 40 semanas :

$$k_{\alpha} = \frac{d - \mu_{p}}{\sigma_{p}} = \frac{40 - 44}{3} = -\frac{4}{3} = -1,3333$$

- A tabela não tem valores para k_{α} < 0

- Usando o módulo de k_{α} a tabela nos fornecerá o valor de $P(Z > k_{\alpha})$
- Assim, $P(Z \le k_{\alpha})$ será dado por 1 $P(Z > k_{\alpha})$:
 - Para k_{α} =1,33 teremos que P(Z ≤ k_{α}) =0,9082
 - Como k_{α} na verdade é -1,33, então temos que o valor fornecido é para $P(Z > k_{\alpha})$
 - Assim $P(Z \le k_{\alpha}) = 1 0.9082 = 0.0918$
- → a probabilidade de concluir o projeto em até 40 semanas é de 9,2 %