Design and Analysis of Algorithms 2020 Problem Set 2

CHENNAI MATHEMATICAL INSTITUTE

September 27, 2020

((An algorithm must be seen to be believed.

Donald Knuth, Computer Scientist and Mathematician

Problem 1. A binary tree is *full* if all of its vertices have either zero or two children. Let B_n denote the number of full binary trees with n vertices.

- a. For general n, derive a recurrence relation for B_n .
- b. Show by induction that B_n is $2^{\Omega(n)}$.

Problem 2. Given a sorted array A of \mathfrak{n} distinct integers, give a divide-and-conquer algorithm that runs in time $\mathcal{O}(\log \mathfrak{n})$, and finds out whether there is an index \mathfrak{i} for which $A[\mathfrak{i}] = \mathfrak{i}$.

Problem 3. We find the *greatest common divisor (gcd)* of two positive integers, using divide-and-conquer.

a. Show that the following rule is true

$$\gcd(\alpha,b) = \begin{cases} 2 g c d(\alpha/2,b/2) & \text{if } \alpha,b \text{ are even} \\ g c d(\alpha,b/2) & \text{if } \alpha \text{ is odd, and } b \text{ is even} \\ g c d((\alpha-b)/2,b) & \text{if } \alpha,b \text{ are odd} \end{cases}$$

b. Using part α , or otherwise, give an efficient divide-and-conquer algorithm for greatest common divisor.

c. Compare the efficiency of your algorithm to Euclid's algorithm if $\mathfrak a$ and $\mathfrak b$ are $\mathfrak n$ -bit integers.

Problem 4. Given an array A of length n, where each element is at most k positions away from its position in the sorted list, give an algorithm that sorts the array in time $\mathcal{O}(n \log k)$.

Problem 5. Given an array A of length n, give an algorithm to find the largest k elements, that runs in time O(nk), using heaps.

*Problem 6. A positive sequence is a finite sequence of positive integers. Sum of a sequence is the sum of all the elements in the sequence. We say that a sequence A can be embedded into another sequence B, if there exists a strictly increasing function $\phi:\{1,2,\ldots,|A|\}\to\{1,2,\ldots,|B|\}$, such that $\forall i\in\{1,2,\ldots,|A|\},A[i]\leqslant B[\phi(i)]$, where |S| denotes the length of the sequence S.

Given a positive integer n, construct a positive sequence U with sum $O(n \log n)$, such that all the positive sequences with sum n, can be embedded into U.

Robert "Rob" Pike, Programmer and author