Exponents and Logarithms

Let a and b be real numbers and m and n be integers. Then the following properties of exponents hold, provided that all of the expressions appearing in a particular equation are defined.

1.
$$a^m a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

1.
$$a^m a^n = a^{m+n}$$
 2. $(a^m)^n = a^{mn}$ 3. $(ab)^m = a^m b^m$

4.
$$\frac{a^m}{a^n} = a^{m-n}, \ a \neq 0$$
 5. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$ 6. $a^{-m} = \frac{1}{a^m}, \ a \neq 0$

$$5. \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$$

6.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

8.
$$a^0 = 1, a \neq 0$$

7.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 8. $a^0 = 1, a \neq 0$ 9. $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

1.
$$\log_a xy = \log_a x + \log_a y$$

1.
$$\log_a xy = \log_a x + \log_a y$$

2. $\log_a \frac{x}{y} = \log_a x - \log_a y$

$$3. \log_a x^y = y \cdot \log_a x$$

$$4. \log_a a^x = x$$

5.
$$a^{\log_a x} = x$$