

GAN Cocktail: mixing GANs without dataset access

Omri Avrahami

Dani Lischinski Ohad Fried

Problem Formulation:

- Given N GANs: $\{GAN_i = (G_i, D_i)\}_{i=1}^N$ where GAN_i was trained on $data_i$
- We aim to find UnionGAN = (G_u, D_u) s.t. $\forall_{c \in [N]} P_{G_u}(z, c) = P_{data_c}(x)$

Motivation:

- Generative adversarial networks (GANs) achieve impressive results but typically specialize on a specific image domain.
- This is in contrary to traditional computer graphics, where a general purpose representation and renderer can produce diverse object types and scenes.
- We explore model merging the process in which two or more generative models are combined into a single conditional model. Thus creating a general purpose representation from specialized sub-models.

Advantages:

- Well suited for decentralized workflows.
- Reduce memory and computation requirements.
- Merged models enable semantic editing across domains.

Stage 1 - Model Rooting:

In order to use the weights of two pretrained models we need:

- The models to have the same architecture.
- The weights to have the same "semantic space".

Inspiration:

- Exponential Weights Average (EWA) is a technique for averaging the model weights during the training process in order to merge several versions of the same model.
 Can be seen as an ensemble.
- EWA works because of a **shared common ancestor model**.

Stage 1 - Model Rooting (Cont.):

- 1. We choose one of the models to be the root model.
- 2. We train the rest of the models from the root model using the outputs of the source models.

Stage 2 - Model Merging:

1. Create an average model:

$$GAN_a = (G_a, D_a) \text{ s.t. } \theta_a = \frac{1}{N} (\theta_r + \sum_{i \in [N] \setminus r} \theta_{r \to i})$$

2. We train the rest of the models from the root model using the outputs of the source models.

Evaluation:

Datasets	FFHQ cat	cat dog	cat	FFHQ cat dog	FFHQ cat dog car
From scratch	19.61	27.58	20.52	23.22	24.88
TransferGAN [38]	18.63	22.17	17.77	20.64	19.34
EWC [15]	19.45	22.17	17.65	19.47	19.14
Freeze-D [24]	18.17	21.92	17.52	19.71	19.41
Our	16.44	20.77	16.85	18.98	18.44

	LSUN cat+dog		LSUN cat+car		LSUN cat+FFHQ	
Dataset	cat	dog	cat	car	FFHQ	cat
Scratch	30.37	33.21	32.21	14.43	13.35	31.64
TransferGAN [38]	23.32	28.84	30.06	11.49	11.16	32.08
EWC [15]	23.04	30.11	30.65	10.54	9.85	35.36
Freeze-D [24]	23.36	28.40	29.78	11.44	10.64	31.57
Our	22.08	26.52	27.78	11.59	10.6	27.82

Semantic Editing:

Calculate the pose semantic direction using a pre-trained human classifier

The same calculated direction corresponds to the pose direction in the class of the cats

Calculate the glasses semantic direction using a pre-trained human classifier

The same calculated direction corresponds to the size of the eyes direction in the class of the cats

Project Page:

https://omriavrahami.com/GAN-cocktail-page/