MATH2621 — Higher Complex Analysis. XVII Cauchy's integral formula

This lecture?

In this lecture, we

- sketch a proof of the Cauchy–Goursat Theorem,
- state and prove Cauchy's integral formula, and
- see some applications.

Theorem

Suppose that Ω is a bounded domain whose boundary $\partial\Omega$ consists of finitely many contours $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$. Suppose also that $f \in H(\Upsilon)$, where $\overline{\Omega} \subset \Upsilon$. Then

$$\sum_{j}\int_{\Gamma_{j}}f(z)\,dz=0.$$

Proof.

Theorem

Suppose that Ω is a bounded domain whose boundary $\partial\Omega$ consists of finitely many contours $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$. Suppose also that $f \in H(\Upsilon)$, where $\overline{\Omega} \subset \Upsilon$. Then

closure
$$\sum_{j} \int_{\Gamma_{j}} f(z) dz = 0.$$

Proof. The proof of the theorem involves three steps. First, we prove it in the case where Ω is a triangle. Second, we consider the case where Ω is a domain whose boundary is made up of finitely many closed polygonal contours. Third, we treat the general case.

Step one Suppose that Ω is a triangle in the complex plane. We write T_0 for Ω and ∂T_0 for its boundary. Suppose that $f \in H(\Upsilon)$, where $\overline{T}_0 \subset \Upsilon$, and let

$$\int_{\partial \mathsf{T}_0} f(z) \, dz = I.$$

We have to show that I = 0, and we suppose towards a contradiction that $I \neq 0$.

Step one Suppose that Ω is a triangle in the complex plane. We write T_0 for Ω and ∂T_0 for its boundary. Suppose that $f \in H(\Upsilon)$, where $\overline{T}_0 \subset \Upsilon$, and let

$$\int_{\partial \mathsf{T}_0} f(z) \, dz = I.$$

We have to show that I = 0, and we suppose towards a contradiction that $I \neq 0$.

We may subdivide T_0 into four congruent sub-triangles, T', T'', T''' and T'''' say, by taking the midpoint of each side, and joining these midpoints.

Step one Suppose that Ω is a triangle in the complex plane. We write T_0 for Ω and ∂T_0 for its boundary. Suppose that $f \in H(\Upsilon)$, where $\overline{T}_0 \subset \Upsilon$, and let

$$\int_{\partial \mathsf{T}_0} f(z) \, dz = I.$$

We have to show that I = 0, and we suppose towards a contradiction that $I \neq 0$.

We may subdivide T_0 into four congruent sub-triangles, T', T'', T''' and T'''' say, by taking the midpoint of each side, and joining these midpoints.

Now

$$I = \int_{\partial \mathsf{T}_0} f(z) \, dz$$
$$= \int_{\partial \mathsf{T}'} f(z) \, dz + \int_{\partial \mathsf{T}'''} f(z) \, dz + \int_{\partial \mathsf{T}''''} f(z) \, dz + \int_{\partial \mathsf{T}''''} f(z) \, dz.$$

At least one of the triangles T', T", T"' and T"'', which we call T_1 , must satisfy

$$\left| \int_{\partial T_1} f(z) dz \right| \ge \frac{1}{4} \left| \int_{\partial T_0} f(z) dz \right| = \frac{|I|}{4}.$$

We now subdivide T_1 into 4 congruent triangles, and argue in the same way that there must be one of these, T_2 say, with the property that

$$\left|\int_{\partial \mathsf{T}_2} f(z) \, dz\right| \geq \frac{1}{4} \left|\int_{\partial \mathsf{T}_1} f(z) \, dz\right| \geq \frac{|I|}{16}.$$

Continuing inductively in this way, we find a sequence $(T_n)_{n\in\mathbb{N}}$ of nested triangles, such that

$$\left| \int_{\partial \mathsf{T}_n} f(z) \, dz \right| \ge \frac{|I|}{4^n} \,. \tag{1}$$

Write Length(∂T_n) for the perimeter of T_n . Then

 $\mathsf{Length}(\partial \mathsf{T}_n) = 2^{-n} \, \mathsf{Length}(\partial \mathsf{T}_0).$

By compactness, there is a point z_0 that lies in each of the closed triangles \overline{T}_n , and by hypothesis, f is differentiable at z_0 . If $z \in \partial T_n$, then $|z-z_0|$ is less than half the perimeter of T_n , that is,

$$|z-z_0| \leq \frac{1}{2} \operatorname{Length}(\partial \mathsf{T}_n) = 2^{-n-1} \operatorname{Length}(\partial \mathsf{T}_0),$$

and this tends to 0 as $n \to \infty$.

maximise at the side but triangular inequality $12-201 \leq \frac{1}{2} \times position.$

Since f is differentiable at z_0 , we may write

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + E(z)$$
, from try low appropriate to

where the error term E(z) satisfies

$$\frac{|E(z)|}{|z-z_0|} \to 0 \quad \text{as } z \to z_0.$$

In particular, we can ensure that

$$\frac{|E(z)|}{|z-z_0|} \le \frac{|I|}{\mathsf{Length}(\partial \mathsf{T}_0)^2} \qquad \forall z \in \partial \mathsf{T}_n \tag{2}$$

by taking n large enough. In what follows, we take such an n.

Recall that

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + E(z).$$

This means that

$$\int_{\partial T_n} f(z) dz = \int_{\partial T_n} f(z_0) dz + \int_{\partial T_n} f'(z_0)(z-z_0) dz + \int_{\partial T_n} E(z) dz.$$

The first two integrals on the right hand side are 0, by calculation, and hence

$$\int_{\partial T_n} f(z) dz = \int_{\partial T_n} E(z) dz.$$

$$f(z_0) \left[\int_{z_1 + z_1} + \int_{z_1 + z_1} + \int_{z_1 + z_1} \right] = 0$$

Recall that

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + E(z).$$

This means that

$$\int_{\partial \mathsf{T}_n} f(z) \, dz = \int_{\partial \mathsf{T}_n} f(z_0) \, dz + \int_{\partial \mathsf{T}_n} f'(z_0) (z - z_0) \, dz + \int_{\partial \mathsf{T}_n} E(z) \, dz.$$

The first two integrals on the right hand side are 0, by calculation, and hence

$$\int_{\partial \mathsf{T}_n} f(z) \, dz = \int_{\partial \mathsf{T}_n} E(z) \, dz.$$

Thus...

by (1), the ML Lemma, properties of maxima, and (2),

|I|

$$|I| \leq 4^n \Big| \int_{\partial \mathsf{T}_n} f(z) \, dz \Big|$$

$$|I| \le 4^n \Big| \int_{\partial T_n} f(z) dz \Big| = 4^n \Big| \int_{\partial T_n} E(z) dz \Big|$$

$$|I| \le 4^n \Big| \int_{\partial \mathsf{T}_n} f(z) \, dz \Big| = 4^n \Big| \int_{\partial \mathsf{T}_n} E(z) \, dz \Big|$$

$$\le 4^n \max\{|E(z)| : z \in \partial \mathsf{T}_n\} \, \mathsf{Length}(\partial \mathsf{T}_n)$$

$$|I| \le 4^n \Big| \int_{\partial T_n} f(z) \, dz \Big| = 4^n \Big| \int_{\partial T_n} E(z) \, dz \Big|$$

$$\le 4^n \max\{ |E(z)| : z \in \partial T_n \} \operatorname{Length}(\partial T_n)$$

$$= 4^n \max\{ \frac{|E(z)|}{|z - z_0|} \, |z - z_0| : z \in \partial T_n \} \operatorname{Length}(\partial T_n)$$

$$\begin{split} |I| &\leq 4^{n} \left| \int_{\partial \mathsf{T}_{n}} f(z) \, dz \right| = 4^{n} \left| \int_{\partial \mathsf{T}_{n}} E(z) \, dz \right| \\ &\leq 4^{n} \max \{ |E(z)| : z \in \partial \mathsf{T}_{n} \} \, \mathsf{Length}(\partial \mathsf{T}_{n}) \\ &= 4^{n} \max \left\{ \frac{|E(z)|}{|z - z_{0}|} |z - z_{0}| : z \in \partial \mathsf{T}_{n} \right\} \, \mathsf{Length}(\partial \mathsf{T}_{n}) \\ &\leq 4^{n} \max \left\{ \frac{|E(z)|}{|z - z_{0}|} : z \in \partial \mathsf{T}_{n} \right\} \max \{ |z - z_{0}| : z \in \partial \mathsf{T}_{n} \} \\ &\times \mathsf{Length}(\partial \mathsf{T}_{n}) \end{split}$$

$$|I| \leq 4^{n} \left| \int_{\partial T_{n}} f(z) dz \right| = 4^{n} \left| \int_{\partial T_{n}} E(z) dz \right| \leq \frac{1}{2^{n+1}}$$

$$\leq 4^{n} \max\{|E(z)| : z \in \partial T_{n}\} \operatorname{Length}(\partial T_{n})$$

$$= 4^{n} \max\left\{\frac{|E(z)|}{|z - z_{0}|} |z - z_{0}| : z \in \partial T_{n}\right\} \operatorname{Length}(\partial T_{n})$$

$$\leq 4^{n} \max\left\{\frac{|E(z)|}{|z - z_{0}|} : z \in \partial T_{n}\right\} \max\{|z - z_{0}| : z \in \partial T_{n}\}$$

$$\times \operatorname{Length}(\partial T_{n})$$

$$\leq 4^{n} \frac{|I|}{\operatorname{Length}(\partial T_{0})^{2}} \frac{\operatorname{Length}(\partial T_{n})^{2}}{2} \leq \frac{|I|}{\operatorname{Length}(\partial T_{0})^{2}}$$

$$\begin{split} |I| &\leq 4^n \left| \int_{\partial \mathsf{T}_n} f(z) \, dz \right| = 4^n \left| \int_{\partial \mathsf{T}_n} E(z) \, dz \right| \\ &\leq 4^n \max \{ |E(z)| : z \in \partial \mathsf{T}_n \} \, \mathsf{Length}(\partial \mathsf{T}_n) \\ &= 4^n \max \left\{ \frac{|E(z)|}{|z - z_0|} \, |z - z_0| : z \in \partial \mathsf{T}_n \right\} \, \mathsf{Length}(\partial \mathsf{T}_n) \\ &\leq 4^n \max \left\{ \frac{|E(z)|}{|z - z_0|} : z \in \partial \mathsf{T}_n \right\} \max \{ |z - z_0| : z \in \partial \mathsf{T}_n \} \\ &\times \mathsf{Length}(\partial \mathsf{T}_n) \\ &\leq 4^n \frac{|I|}{\mathsf{Length}(\partial \mathsf{T}_0)^2} \frac{\mathsf{Length}(\partial \mathsf{T}_n)^2}{2} \\ &= \frac{|I|}{2} \,, \end{split}$$

by (1), the ML Lemma, properties of maxima, and (2),

$$\begin{split} |I| &\leq 4^n \left| \int_{\partial \mathsf{T}_n} f(z) \, dz \right| = 4^n \left| \int_{\partial \mathsf{T}_n} E(z) \, dz \right| \\ &\leq 4^n \max \{ |E(z)| : z \in \partial \mathsf{T}_n \} \, \mathsf{Length}(\partial \mathsf{T}_n) \\ &= 4^n \max \left\{ \frac{|E(z)|}{|z - z_0|} \, |z - z_0| : z \in \partial \mathsf{T}_n \right\} \, \mathsf{Length}(\partial \mathsf{T}_n) \\ &\leq 4^n \max \left\{ \frac{|E(z)|}{|z - z_0|} : z \in \partial \mathsf{T}_n \right\} \max \{ |z - z_0| : z \in \partial \mathsf{T}_n \} \\ &\quad \times \mathsf{Length}(\partial \mathsf{T}_n) \\ &\leq 4^n \frac{|I|}{\mathsf{Length}(\partial \mathsf{T}_0)^2} \frac{\mathsf{Length}(\partial \mathsf{T}_n)^2}{2} \\ &= \frac{|I|}{2} \,, \end{split}$$

which is absurd. Hence I = 0.

Step 2 The next step is to deal with a domain Ω with a polygonal boundary. Any such domain may be subdivided into triangles T_n , in such a way that

$$\int_{\partial\Omega} f(z) dz = \sum_{n} \int_{\partial T_{n}} f(z) dz;$$

by the result of the previous step,

$$\int_{\partial\Omega}f(z)\,dz=0.$$

Step 3 Finally, we have to deal with a domain whose boundary is the union of finitely many disjoint closed contours. This can be done by approximating unions of general contours by unions of polygonal contours; the integral is 0 for all the unions of approximating polygonal contours, and so the integral around the union of general contours that we want is also 0.

Cauchy's integral formula

Theorem

Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, that Γ is a simple closed contour in Ω and that $w \in Int(\Gamma)$. Then

$$f(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w} dz.$$
 (3)

Cauchy's integral formula

t is on the contour ranks to be inside t

Theorem

Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, that Γ is a simple closed contour in Ω and that $w \in Int(\Gamma)$. Then

$$f(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w} dz. \tag{3}$$

Proof. Let Γ_{ε} be the circle with centre w and radius ε , traversed clockwise, and take ε small enough that $\Gamma_{\varepsilon} \subset \operatorname{Int}(\Gamma)$. We consider the domain Υ consisting of $\operatorname{Int}(\Gamma) \cap \operatorname{Ext}(\Gamma_{\varepsilon})$, the domain between Γ and Γ_{ε} , whose boundary consists of Γ , traversed anti-clockwise, and Γ_{ε} , traversed clockwise. The quotient function $z \mapsto f(z)/(z-w)$ is holomorphic in $\Omega \setminus \{w\}$, a domain that contains $\Upsilon \cup \partial \Upsilon$.

By the Cauchy–Goursat theorem,

$$\int_{\partial \Upsilon} \frac{f(z)}{z - w} dz = \int_{\Gamma} \frac{f(z)}{z - w} dz + \int_{\Gamma_{\varepsilon}} \frac{f(z)}{z - w} dz = 0;$$

that is,

$$\int_{\Gamma} \frac{f(z)}{z-w} dz = \int_{\Gamma_{\varepsilon}^*} \frac{f(z)}{z-w} dz.$$

By the Cauchy–Goursat theorem,

$$\int_{\partial \Upsilon} \frac{f(z)}{z - w} dz = \int_{\Gamma} \frac{f(z)}{z - w} dz + \int_{\Gamma_{\varepsilon}} \frac{f(z)}{z - w} dz = 0;$$

that is,

$$\int_{\Gamma} \frac{f(z)}{z-w} dz = \int_{\Gamma_{\varepsilon}^*} \frac{f(z)}{z-w} dz.$$

The left hand side of this equality does not depend on ε , so the limit as ε tends to 0 of the right hand side exists.

We can chose any & st.
$$u \in int(T_{\Sigma})$$

$$\int_{\Gamma_{\varepsilon}^*} \frac{f(z)}{z - w} \, dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^*} \frac{f(z)}{z - w} \, dz$$

$$\int_{\Gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz$$
$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta$$

$$\int_{\Gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} f(w + \varepsilon e^{i\theta}) i d\theta$$

$$\int_{\Gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} f(w + \varepsilon e^{i\theta}) i d\theta$$

$$= i \int_{0}^{2\pi} \lim_{\varepsilon \to 0} f(w + \varepsilon e^{i\theta}) d\theta$$

$$\int_{\Gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} f(w + \varepsilon e^{i\theta}) i d\theta$$

$$= i \int_{0}^{2\pi} \lim_{\varepsilon \to 0} f(w + \varepsilon e^{i\theta}) d\theta$$

$$= i \int_{0}^{2\pi} f(w) d\theta$$

$$\int_{\Gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz = \lim_{\varepsilon \to 0} \int_{\gamma_{\varepsilon}^{*}} \frac{f(z)}{z - w} dz$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{2\pi} f(w + \varepsilon e^{i\theta}) i d\theta$$

$$= i \int_{0}^{2\pi} \lim_{\varepsilon \to 0} f(w + \varepsilon e^{i\theta}) d\theta$$

$$= i \int_{0}^{2\pi} f(w) d\theta$$

$$= 2\pi i f(w).$$

We can move the limit inside the integral because

$$\lim_{\varepsilon\to 0} f(w + \varepsilon e^{i\theta}) = f(w)$$

uniformly in θ , since $\lim_{z\to w} f(z) = f(w)$. Formula (3) follows.

Independence of contour

Corollary

Suppose that w lies in a simply connected domain Ω , and that $f \in H(\Omega)$. If Γ and Δ are simple closed contours such that $w \in Int(\Gamma)$ and $w \in Int(\Delta)$, then

$$\int_{\Gamma} \frac{f(z)}{z - w} dz = \int_{\Delta} \frac{f(z)}{z - w} dz.$$

Proof. This follows from Cauchy's integral formula; both are equal to $2\pi i f(w)$.

Independence of contour

Corollary

Suppose that w lies in a simply connected domain Ω , and that $f \in H(\Omega)$. If Γ and Δ are simple closed contours such that $w \in Int(\Gamma)$ and $w \in Int(\Delta)$, then

$$\int_{\Gamma} \frac{f(z)}{z-w} dz = \int_{\Delta} \frac{f(z)}{z-w} dz.$$

Proof. This follows from Cauchy's integral formula; both are equal to $2\pi i f(w)$.

This means that if we need to compute the integral $\int_{\Gamma} \frac{f(z)}{z-w} dz$, we may change the contour to make the calculation easier.

Mean Value Formula

Corollary

Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, and that $w \in \Omega$. If $\overline{B}(w,r) \subset \Omega$, then

$$f(w) = \frac{1}{2\pi} \int_0^{2\pi} f(w + re^{i\theta}) d\theta. \tag{4}$$

Proof of the Mean Value Formula

Proof.

This formula is virtually proved in the course of the proof of the Cauchy integral formula; let $\gamma(\theta)=w+re^{i\theta}$, where $0\leq\theta\leq 2\pi$. Then

$$f(w) = rac{1}{2\pi i} \int_{\gamma} rac{f(z)}{z - w} dz$$

$$= rac{1}{2\pi i} \int_{0}^{2\pi} rac{f(w + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$

$$= rac{1}{2\pi} \int_{0}^{2\pi} f(w + re^{i\theta}) d\theta,$$

as required.

Proof of the Mean Value Formula

Proof.

This formula is virtually proved in the course of the proof of the Cauchy integral formula; let $\gamma(\theta) = w + re^{i\theta}$, where $0 \le \theta \le 2\pi$. Then

$$f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - w} dz$$

$$= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(w + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(w + re^{i\theta}) d\theta,$$

as required.

The Cauchy integral formula expresses f(w) as a weighted average of the values of f(z) around any contour surrounding w.

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

Answer.

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

Answer. Take $f(z) = \sin z$ and w = 0, and apply Cauchy's integral formula:

$$\int_{\Gamma} \frac{\sin z}{z} dz$$

 \triangle

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

$$\int_{\Gamma} \frac{\sin z}{z} \, dz = \int_{\Gamma} \frac{f(z)}{z - w} \, dz$$

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

$$\int_{\Gamma} \frac{\sin z}{z} \, dz = \int_{\Gamma} \frac{f(z)}{z - w} \, dz = 2\pi i f(w)$$

Compute $\int_{\Gamma} \frac{\sin z}{z} dz$, where Γ is the circle with centre 0 and radius R.

$$\int_{\Gamma} \frac{\sin z}{z} dz = \int_{\Gamma} \frac{f(z)}{z - w} dz = 2\pi i f(w) = 0.$$
Singularity at $z = 0$ which is included

contour. Hence landry - goursat does

not apply

End notes

Precise statements of the Cauchy–Goursat theorem and of Cauchy's integral formula may be examined.

End notes

Precise statements of the Cauchy–Goursat theorem and of Cauchy's integral formula may be examined.

The proofs of the results might be examined.