Wahrscheinlichkeitsrechnung Und Mathematische Statistik WS 1718

Max Springenberg, 177792

1 Merkmale und Datentypen

Datentypen	
Skalentyp	Aussagen
Nominal	Gleich/Verschieden
Ordinal	Groesser/Kleiner
Interval	Differenz
Verhaeltnis	Verhaeltnis

Diskrete Datentypen sind endlich oder abzaehlbar unendlich Stetige Datentypen sind ueberabzaehlbar viele

Generell koennen Datentypen unter Informationsverlust in Datentypen niederer Ordnung ueberfuehrt werden,

2 Tabellerische und grafische Darstellung von univarianten Daten

2.1 Quantitativ diskrete Daten

$M_N = \{e_1,, e_N\}$	Population bestehend aus Objekten e_i
X	Quantitatives Merkmal
$x, x \in W_x$	Merkmalsauspraegung von X
$W_x = \{x(1),, x(J)\}$	Wertebereich von X mit Merkmalsauspraegung
$D_N = \{x_1,, x_N\}$	Urliste aus der Messung von X in der Population M_N

2.1.1 Formeln

Absolute Haeufigkeit

 N_j von x(j):

$$N_j = N[x(j)] = \sum_{i=1}^{J} d_i(j), I_{x(e_i) = x(j)}$$

 $\Rightarrow N = \sum_{j=1}^{J} N_j$

 $N_j = N[x(j)] = \sum_{i=1}^J d_i(j), I_{x(e_i)=x(j)}$ $\Rightarrow N = \sum_{j=1}^J N_j$ Hierbei is d_i die i-te Spalte und x(j) das j-te Object, dem Werte zugeordnet werden.

$$\begin{array}{l} \textbf{Relative Haeufigkeit} \\ f_j \text{ von } x(j) = \frac{N_j}{N} \\ \Rightarrow \sum_{j=1} J f_j = 1 \end{array}$$

$Empirische\ Verteilungsfunktion$

$$F_N(x) = \begin{cases} 0 & , x < x(1) \\ s_j = \sum_{k=1}^j f_k & , x(1) \geq x \end{cases}$$
 Diese Funktion steigt wie eine Treppe und nimmt den Wert bis zum naechst kleineren x.

2.2 Quantitativ stetige Daten

 $M_N = \{e_1, ..., e_N\}$ XPopulation bestehend aus Objekten e_i Quantitatives Merkmal $x, x \in W_x$ Merkmalsauspraegung von X Klassierter (vorallem kategorisierter) Wertebereich von X

 $W_X = (-\inf, \inf) = \bigcup_{j=1}^{J} K_j$ $K_j = (v_{j-1}, V_j), K_J = (v_{J-1}, v_J)$ $D_N = \{x_1, ..., x_N\}$ Merkmalsklassen mit Klassengrenzen

Urliste aus der Messung von X in der Population M_N