

Cryptocurrency High-Frequency Liquidity Strategy based on Orderbook Behavior

Lynn, 朱致伶

Outline

- 1. Motivation
- 2. Design of Analysis
- 3. Data
 - Pre-processing
 - Feature engineering
 - Exploratory data analysis
- 4. Method
- 5. Experiment and Result
- 6. Conclusion

Motivation

- Cryptocurrency market is renowned for its high volatility and fragmented liquidity across different exchanges.
- Liquidity plays a crucial role in determining the efficiency and stability of the market.
- Liquidity is not only a trading consideration but also a crucial element of risk management.
- Orderbook Behavior which reflects real-time market, also liquidity conditions.

Motivation

- Goal: Develop a predictive model for cryptocurrency liquidity using orderbook data.
- Why the project is important:
- Improving Market Efficiency
- Risk Management through Liquidity
- Reducing Trading Costs

Design of Analysis

Data

- Binance Order Book API : BTCUSDT
- Response example

```
// transaction time
"T": 1589436922972,
"u": 37461
                     // update id
"bids": [
                     // Buy order
                     // Price
    "1000",
    "0.9"
                    // Quantity
"asks": [
                     // Sell order
    "1100",
                    // Price
                    // Quantity
    "0.1"
```

Order book data schematic diagram

		0.1 ▼
== == == 價格(USDT)		合计(BTC)
97882.6	0.002	7.932
97882.1	0.002	7.732
97881.8	0.005	7.738
97881.5	0.087	7.923
97881.4	0.002	7.836
97880.2	0.024	7.834
97880.1	7.810	7.810
07000		
97880.0	↓ 97878.3	
97880.0	9.540	9.540
97879.9	0.025	9.565
97879.7	0.004	9.569
97879.3	0.002	9.571
97879.2	0.043	9.614
97878.6	0.195	9.809
97878.4	0.009	9.818
最新成交		
價格(USDT)	數量(BTC)	時間
97,880.0	0.096	02:54:37
97,880.1	0.177	02:54:36
97,880.1	0.432	02:54:35
97,880.0	1.359	02:54:35
97,880.0	2.004	02:54:33

Data and Pre-processing

- Bitcoin (BTC) paired with Tether (USDT)
 - ▶ Market Dominance
 - Liquidity
 - Price Stability
 - Data Quality
- Implement rolling window approach

Feature Engineering

- Extract several features from the raw order book dataset for better model learning performance.

 - \triangleright Spread = $P_{ask} P_{bid}$
 - $Volume\ Imbalance = \frac{\sum Vol_{ask} \sum Vol_{bid}}{\sum Vol_{bid} + \sum Vol_{ask}}$
 - $Price\ Impact = \frac{\sum (V_i \times |P_i P_{mid}|)}{\sum V_i}$
 - Weighted Price = $\frac{P_i \times V_i}{\sum V_i}$

Exploratory Data Analysis

- Data distribution
- Correlation heatmap

Method

- Train and optimize the below machine learning model
 - ► Linear regression
 - Super-vector regression
 - ► XGBoost
 - ► Long-short term machine

Section Title

Slide Title

- Use
- - ► w2
 - **►** w3

Logo and Links to Quantinar Courselets

Use Quantinar icon and name as source

Logo and Links to Quantlet/GitHub

- Use Quantlet icon and name as source
- Hyperlink both to GitHub repository Styleguide
- Change the presentation logo in the master slide (see View/Edit Master Slide, shortcut: Shift-Command-E)

- Use the formula creator within keynote 'Insert/Equation'
- All operators are to be defined by \operatorname{}
 - \blacktriangleright without operatorname: $\underline{argmax_if(x_i)}$
 - \triangleright with operatorname: $\operatorname{argmax}_i f(x_i)$
- Equations covering multiple lines may be written aligned
- Conventional bracket rules represent and exemption of the rule above. For example: Y ∼ $\mathcal{N}(\mu(X), \sigma(X))$

- Use ^{\top} to write the transpose symbol: $x^Tx = \|x\|$
- Use \widehat{} and \widetilde{} rather than \hat{}, \tilde{}: Y, Y
- Write norms via \|: || x ||

- The for convergence may be written with \mathcal{O}:
 O
- The operator for exponential terms with Euler's number as the base is defined by \exp: exp(1) ≈ 2.718
- Use \overset{\mathcal{L}}{\rightarrow} to write the symbol for convergence in distribution and denote the normal distribution by \mathcal{N}, this produces X → N(0, σ²)
- Use \overset{\operatorname{as.}}{\sim} to write the symbol for asymptotic distribution $X \stackrel{\text{as.}}{\sim} \chi^2$
- To define a function, variable etc. use def overset{\operatorname{def}}{=} f(x) = ax + b

- □ Use $\log for the natural logarithm: log{exp(1)} = 1$
- \odot Use \mathsf{E} for expectation: $\mathbf{E}[X] = \mu$
- Use \operatorname{P} to write the symbol for probability: P
- \Box Use \varepsilon instead of epsilon: $\varepsilon \to \varepsilon$

Tables

- Follow the Cambridge University Press Style
- Round appropriately (as much information as necessary, as little as possible)
- Align decimal points

\overline{d}	10	11	12
10%	2.2886	2.4966	2.6862
5%	2.5268	2.7444	2.9490
1%	3.0339	3.2680	3.4911

Figures

- Give informative axis labels
- □ If x- and y-axis are on the same domain, the plot should be square
- Use same color scheme for multiple plots if they show the same content.

Reference

- Binance Order Book API: https://developers.binance.com/docs/derivatives/option/market-data/Order-Book
- The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective

TEN Template

Your Name

Repeat on last slide the lead picture

Your affiliation
Your Webpage