Machine Learning Statistical Learning Theory I

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 27, 06.02.2013

Program of today

A brief overview of results from statistical learning theory

- stochastic convergence,
- different notions of consistency,
- consistency for finite function classes,
- consistency for infinite function classes and the VC dimension,
- universal Bayes consistency conditions ?
- negative results: no free lunch theorem.

Stochastic Convergence

Motivation

Can we upper bound the deviation of $R(f_n)$ from

- the Bayes risk $R^* = \inf_{f \text{ measurable }} R(f)$
- the best risk $R_{\mathcal{F}} = \inf_{f \in \mathcal{F}} R(f)$ in the class \mathcal{F} .

where f_n is the function chosen by the learning algorithm.

Here: Binary classification, canonical zero-one loss.

Concentration

A random variable X is **concentrated** if its distribution is very peaked around the expectation $\mathbb{E}X$ of X.

empirical mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, with the $\{X_i\}_{i=1}^{n}$ i.i.d. sample. Intuition: the distribution of \overline{X} will be concentrated around the true mean $\mathbb{E} \overline{X} = \mathbb{E} X$.

Stochastic Convergence II

Three different notions of convergence of random variables

Definition

Let $\{X_n\}$, $n=1,2,\ldots$, be a sequence of random variables. We say that X_n converges in probability, $\lim_{n\to\infty}X_n=X$ in probability, if for each $\varepsilon>0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0.$$

We say that X_n converges almost surely (with probability 1), $\lim_{n\to\infty} X_n = X$ almost surely (a.s.), if

$$P(\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)) = 1.$$

For a fixed $p \ge 1$ we say that X_n converges in L_p or the p-th mean, $\lim_{n\to\infty} X_n = X$ in L_p , if

$$\lim_{n\to\infty}\mathbb{E}(|X_n-X|^p)=0.$$

Stochastic Convergence III

Proposition

The following implications hold,

•
$$\lim_{n\to\infty} \mathbb{E}(|X_n-X|^p) = 0$$
 \Longrightarrow $P(|X_n-X| \ge \varepsilon) = 0$,

$$\bullet \ \ \text{lim}_{n \to \infty} \, X_n = X \quad \ \ \text{almost surely} \qquad \Longrightarrow \qquad \mathrm{P} \big(|X_n - X| \ge \varepsilon \big) = 0,$$

• If for each $\varepsilon > 0$,

$$\sum_{n=0}^{\infty} P(|X_n - X| \ge \varepsilon) < \infty,$$

then $\lim_{n\to\infty} X_n = X$ almost surely.

Relevance for machine learning?

 $R(f_n)$ is a random variable since it depends on the training sample.

- how far is $R(f_n)$ away from the Bayes risk R^* ?
- In which sense $\lim_{n\to\infty} R(f_n) = R^*$?

Consistency (Classification)

Consistency for binary classification:

- Loss function, is 0-1-loss,
- $R(f) = \mathbb{E} \mathbb{1}_{f(X) \neq Y} = P(f(X) \neq Y),$
- Bayes risk $R^* = \inf_{f \text{ measurable }} R(f)$.
- best risk in function class $R_{\mathcal{F}} = \inf_{f \in \mathcal{F}} R(f)$ in the class \mathcal{F} .

Definition (Consistency)

A classification rule is

- consistent for a distribution of (X, Y) if $\lim_{n\to\infty} R(f_n) = R_{\mathcal{F}}$,
- Bayes consistent for a distribution of (X, Y) if $\lim_{n\to\infty} R(f_n) = R^*$.

We have **weak** (convergence in probability) and **strong** (almost sure convergence) consistency.

The probability $P(R(f_n) - R^* > \varepsilon)$ is with respect to all possible training samples of size n.

Consistency (Classification) II

What does consistency mean?

- The true error of f_n converges to the best possible error,
- asymptotic property no finite sample statements,
- distribution dependent, for example hard margin SVM's are Bayes consistent for distributions where the support of P(X|Y=1) and P(X|Y=-1) is linearly separable, but clearly for no problem which is non-separable.

A priori we should make no/too many assumptions about the true nature of the problem !

Universal Consistency

Definition (Universal consistency)

A classification rule/learning algorithm is **universally (weakly/strongly) consistent** if it is (weakly/strongy) consistent for any distribution on $\mathcal{X} \times \mathcal{Y}$.

- strong requirement, since the distribution might be arbitrarily strange.
- nevertheless there exist several universally consistent learning algorithms.

Our main interest: universal consistency

Consistency

Find the best possible function in a class of functions

Every learning algorithm selects either implicitly or explicitly the classifier f_n from some function class \mathcal{F} ,

Natural decomposition (bias-variance decomposition),

$$R(f_n) - R^* = \underbrace{R(f_n) - \inf_{f \in \mathcal{F}} R(f)}_{\text{Estimation error}} + \underbrace{\inf_{f \in \mathcal{F}} R(f) - R^*}_{\text{Approximation error}}.$$

- The **estimation error** is random since it depends on f_n and thus on the training data measures the deviation from the best possible risk in the hypothesis class \mathcal{F} .
- The approximation error is deterministic and measures the deviation of $R_{\mathcal{F}}$ from the Bayes risk R^* . It depends on the hypothesis class \mathcal{F} and the data-generating measure can only be bounded by making assumptions on the distribution of the data.

Learning with restricted function classes

Downside of simple function classes

In the worst case we have $R^* = 0$ but $\inf_{f \in \mathcal{F}} R(f) \gg 0$.

Figure : XOR-problem in \mathbb{R}^2 . Linear classifiers $\mathcal{F}=\{f(x)=\langle w,x\rangle+b\,|\,w\in\mathbb{R}^2,b\in\mathbb{R}\}$ are very bad but $R^*=0$.

The basic principle

Proposition

Let f_n be chosen by empirical risk minimization, that is $f_n = \underset{f \in \mathcal{F}}{\arg \min} R_n(f)$

where
$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{f(X_i) \neq Y_i}$$
. Then

$$R(f_n) - \inf_{f \in F} R(f) \le 2 \sup_{f \in F} |R(f) - R_n(f)|.$$

Proof: We have with $f_{\mathcal{F}}^* = \arg\min_{f \in \mathcal{F}} R(f)$,

$$R(f_n) - \inf_{f \in \mathcal{F}} R(f) = R(f_n) - R_n(f_n) + R_n(f_n) - R(f_{\mathcal{F}}^*)$$

$$\leq R(f_n) - R_n(f_n) + R_n(f_{\mathcal{F}}^*) - R(f_{\mathcal{F}}^*)$$

$$\leq 2 \sup_{f \in \mathcal{F}} |R_n(f) - R(f)|,$$

where the second inequality follows from the fact that f_n minimizes the empirical risk.

Empirical Processes

Definition of empirical processes

Definition

A **stochastic process** is a collection of random variables $\{Z_n, n \in T\}$ on the same probability space, indexed by an arbitrary index set T. An **empirical process** is a stochastic process based on a random sample.

In statistical learning theory we are studying the empirical process,

$$\sup_{f\in\mathcal{F}}|R_n(f)-R(f)|,$$

since uniform control of the deviation $R_n(f) - R(f)$ yields consistency!

$$R(f_n) - \inf_{f \in F} R(f) \le 2 \sup_{f \in F} |R(f) - R_n(f)|.$$

Hoeffding's inequality

Theorem

Let X_1, \ldots, X_n be independent, bounded and identically distributed random variables such that X_i falls in the interval $[a_i, b_i]$ with probability one. Then for any $\varepsilon > 0$ we have

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}X_{i}\right|\geq\varepsilon\right)\leq2\exp\left(-\frac{2n\varepsilon^{2}}{\frac{1}{n}\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right).$$

Control of the deviation for a **fixed** function with $R(f) = \mathbb{E}[\mathbb{1}_{f(X) \neq Y}]$,

$$P(\left|R_n(f) - R(f)\right| \ge \varepsilon) \le 2 \exp\left(-2n\varepsilon^2\right).$$

Important: This cannot be simply applied to f_n - the function found by empirical risk minimization - since f_n depends on the training data.

A finite set of functions

Bounds for the case of a finite set of functions ${\cal F}$

Proposition

Let \mathcal{F} be a finite set of functions, then

$$P\Big(\sup_{f\in\mathcal{F}}\Big|R_n(f)-R(f)\Big|\geq arepsilon\Big)\leq 2|\mathcal{F}|\,\exp\Big(-2narepsilon^2\Big),$$

where $|\mathcal{F}|$ is the cardinality of \mathcal{F} . And thus with probability $1-\delta$,

$$R(f_n) \leq R(f_{\mathcal{F}}^*) + \sqrt{\frac{\log |\mathcal{F}| + \log \frac{2}{\delta}}{n}}.$$

Proof: Noting that $0 \leq \mathbbm{1}_{f(X) \neq Y} \leq 1$ we get the result using Hoeffding's inequality. Then with $\delta = 2|\mathcal{F}|e^{-2n\varepsilon^2}$ one gets $\varepsilon = \sqrt{\frac{1}{n}\Big(\log|\mathcal{F}| + \log\frac{2}{\delta}\Big)}$.

The **convergence rate** is of order $\frac{1}{\sqrt{n}} \Longrightarrow$ typical in SLT.

Infinite number of functions

Major contribution of Vapnik and Chervonenkis: uniform deviation bounds over general infinite classes.

Given points x_1,\dots,x_n and a class ${\mathcal F}$ of binary-valued functions denote by

$$\mathcal{F}_{x_1,\ldots,x_n} = \Big\{ \{f(x_1),\ldots,f(x_n)\} \,|\, f \in \mathcal{F} \Big\},\,$$

the set of all possible classification of the set of points via functions in $\mathcal{F}.$

Definition

The **growth function** $S_{\mathcal{F}}(n)$ is the maximum number of ways into which n points can be classified by the function class \mathcal{F} ,

$$S_{\mathcal{F}}(n) = \sup_{(x_1,\ldots,x_n)} |\mathcal{F}_{x_1,\ldots,x_n}|.$$

If $S_{\mathcal{F}}(n) = 2^n$ we say that \mathcal{F} shatters n points.

Why is this growth function interesting?

Symmetrization lemma

- **ghost sample:** a second i.i.d. sample of size *n* (independent of the training data).
- $R'_n(f)$ denotes the empirical risk associated with the ghost sample.

Lemma

Let $n \varepsilon^2 \ge 2$, we have

$$\mathrm{P}\Big(\sup_{f\in\mathcal{F}}|R_n(f)-R(f)|>\varepsilon\Big)\leq 2\,\mathrm{P}\Big(\sup_{f\in\mathcal{F}}|R_n(f)-R_n'(f)|>\frac{\varepsilon}{2}\Big),$$

- Important: $|R_n(f) R'_n(f)|$ depends only on the values of the function takes on the 2n samples these are maximum 2^{2n} different values \implies independent of how many functions are contained in \mathcal{F} .
- a simple union bound will now yield the V(apnik)C(hervonenkis)-bound.

VC Bound for general ${\cal F}$

The growth function is a measure of the "size" of \mathcal{F} ,

Theorem (Vapnik-Chervonenkis)

For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall f \in \mathcal{F}, \qquad R(f_n) \leq R(f_{\mathcal{F}}^*) + 8\sqrt{\frac{\log S_{\mathcal{F}}(2n) + \log \frac{8}{\delta}}{2n}}.$$

Proof:

$$P(R(f_n) - \inf_{f \in \mathcal{F}} R(f) > \varepsilon) \le P\left(\sup_{f \in \mathcal{F}} |R(f) - R_n(f)| > \frac{\varepsilon}{2}\right)$$

$$\le 2P\left(\sup_{f \in \mathcal{F}} |R_n(f) - R'_n(f)| > \frac{\varepsilon}{4}\right)$$

$$\le 2S_{\mathcal{F}}(2n)P\left(|R_n(f) - R'_n(f)| > \frac{\varepsilon}{4}\right)$$

$$\le 4S_{\mathcal{F}}(2n)P\left(|R_n(f) - R(f)| > \frac{\varepsilon}{8}\right) \le 8S_{\mathcal{F}}(2n)e^{-\frac{n\varepsilon^2}{32}}$$

Discussion of VC-Bound

For a finite class $\log S_{\mathcal{F}}(n) \leq |\mathcal{F}| \Rightarrow$ up to constants at least as good as the previous bound for finite \mathcal{F} .

Definition

The **VC** dimension $VC(\mathcal{F})$ of a class \mathcal{F} is the largest n such that $S_{\mathcal{F}}(n) = 2^n$.

What happens if \mathcal{F} can always realize all 2^n possibilities ?

$$R(f_n) \leq R(f_{\mathcal{F}}^*) + 8\sqrt{rac{\log S_{\mathcal{F}}(2n) + \log rac{8}{\delta}}{2n}}$$
 $\leq R(f_{\mathcal{F}}^*) + 8\sqrt{rac{n \log 2 + \log rac{8}{\delta}}{2n}}$

The second term does not converge to zero as $n \to \infty$! \Longrightarrow bound suggests that restricted \mathcal{F} is required for generalization.

VC dimension

What happens with $S_{\mathcal{F}}(n)$ for $n > VC(\mathcal{F})$?

We know: $n \leq VC(\mathcal{F}) \implies S_{\mathcal{F}}(n) = 2^n$ but what if $n > VC(\mathcal{F})$?

Lemma (Vapnik-Chervonenkis, Sauer, Shelah)

Let \mathcal{F} be a class of functions with finite VC-dimension $\mathrm{VC}(\mathcal{F})$. Then for all $n \in \mathbb{N}$,

$$S_{\mathcal{F}}(n) \leq \sum_{i=0}^{\mathrm{VC}(\mathcal{F})} \binom{n}{i},$$

and for all $n > VC(\mathcal{F})$,

$$S_{\mathcal{F}}(n) \leq \left(\frac{e \, n}{\operatorname{VC}(\mathcal{F})}\right)^{\operatorname{VC}(\mathcal{F})}.$$

Phase transition from exponential to polynomial growth of $S_{\mathcal{F}}(n)$

VC bound II

Plugging the bounds on the growth function into the VC bounds

Corollary

Let $\mathcal F$ be a function class with VC-dimension $\mathrm{VC}(\mathcal F)$, then for $2n>\mathrm{VC}(\mathcal F)$ one has for any $\delta>0$, with probability at least $1-\delta$,

$$\forall f \in \mathcal{F}, \qquad R(f_n) \leq R(f_{\mathcal{F}}^*) + 8\sqrt{\frac{\operatorname{VC}(\mathcal{F})\log\frac{2en}{\operatorname{VC}(\mathcal{F})} + \log\frac{8}{\delta}}{2n}}.$$

Deviation of
$$R(f_n)$$
 from $R(f_{\mathcal{F}}^*) = \inf_{f \in \mathcal{F}} R(f)$ decays as $\sqrt{\operatorname{VC}(\mathcal{F}) \frac{\log n}{n}}$.

- VC dimension is not just counting the number of functions but the variability of the functions in the class on the sample.
- finite VC dimension ensures universal consistency,
- other techniques for bounds exist: covering numbers, Rademacher averages.

VC bound III

Necessary and sufficient conditions for consistency

The following theorem is one of the key-theorems for statistical learning.

Theorem (Vapnik-Chervonenkis (1971))

A **necessary** and **sufficient** condition for the universal consistency of empirical risk minimization using a function class \mathcal{F} is,

$$\lim_{n\to\infty}\frac{\log S_{\mathcal{F}}(n)}{n}=0.$$

We have proven that $\lim_{n\to\infty}\frac{\log S_{\mathcal{F}}(n)}{n}=0$ is sufficient for consistency. The proof, that this condition is also necessary requires a bit more effort.

Is the restriction necessary?

Empirical risk minimization can be inconsistent

Input space: $\mathcal{X} = [0,1]$. The labels are deterministic

$$Y = \begin{cases} -1, & \text{if } X \le 0.5, \\ 1, & \text{if } X > 0.5. \end{cases}$$

We consider the following classifier,

$$f_n(X) = \begin{cases} Y_i & \text{if } X = X_i \text{ for some } i = 1, \dots, n \\ 1 & \text{otherwise.} \end{cases}$$

We have $R_n(f_n) = 0$ but $R(f_n) = \frac{1}{2}$. The classifier f_n is **not Bayes consistent**. We have,

$$\lim_{n\to\infty} R(f_n) = \frac{1}{2} \neq 0 = R^*.$$

⇒ just memorizing - no learning, no generalization.

VC Dimension

VC dimensions of selected function classes:

- The set of linear halfspaces in \mathbb{R}^d has VC dimension d+1.
- The set of linear halfspaces of margin ρ and where the smallest sphere enclosing the data has radius R has VC dimension,

$$VC(\mathcal{F}) \le \min\left\{d, \frac{4R^2}{\rho^2}\right\} + 1.$$

- The function $\operatorname{sign}(\sin(tx))$ on $\mathbb R$ has infinite VC dimension.
- \Rightarrow VC dimension has nothing to do with the number of free parameters !

VC Bounds and SVM

Justification for Support Vector machines

The set of linear halfspaces of margin ρ and where the smallest sphere enclosing the data has radius R has VC dimension,

$$\operatorname{VC}(\mathcal{F}) \leq \min\left\{d, \frac{4R^2}{\rho^2}\right\} + 1.$$

The vector w of the optimal maximal-margin hyperplane satisfies,

$$||w||^2 = \frac{1}{\rho^2},$$

Thus, the Support-Vector Machine (SVM)

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - Y_i(\langle w, X_i \rangle + b)\} + \lambda \|w\|^2.$$

penalizes large margins $||w|| \Longrightarrow$ limits capacity of function class

VC Bounds

Remarks on VC bounds (applies also to other existing bounds)

- No a-posteriori justification: bounds cannot be used for a posteriori justification. In particular, the bound holds not for the margin obtained by the SVM, but the bound holds for a function class with pre-defined margin (before seeing the data)!
- Bounds are often loose: the bounds are worst-case bounds which apply to any possible probability measure on $\mathcal{X} \times \mathcal{Y} \Longrightarrow$ for practical sample sizes bounds are often larger than 1! But: bounds capture certain characteristics of the learning algorithm.

Universal Bayes consistency

Decomposition into estimation and approximation error),

$$R(f_n) - R^* = \underbrace{R(f_n) - \inf_{f \in \mathcal{F}} R(f)}_{\text{Estimation error}} + \underbrace{\inf_{f \in \mathcal{F}} R(f) - R^*}_{\text{Approximation error}}.$$

 \implies up to now fixed function class \implies fixed approximation error.

Structural risk minimization:

- Let the function class \mathcal{F} be a function of the sample size n: \mathcal{F}_n .
- as $n \to \infty$ let \mathcal{F}_n grow so that in the limit it can model any function but estimation error is still bounded:

$$\forall f \in \mathcal{F}_n, \qquad R(f_n) \leq R(f_{\mathcal{F}}^*) + 8\sqrt{\frac{\operatorname{VC}(\mathcal{F}_n)\log\frac{2e\,n}{\operatorname{VC}(\mathcal{F}_n)} + \log\frac{8}{\delta}}{2n}}.$$

⇒ Universal Bayes consistency

Questions

Naturally arising questions

- Can we quantify the convergence to the Bayes risk ? Can we obtain rates of convergence ?
- What does universal consistency mean for the finite sample case ?
- Is there a universally best learning algorithm?

No free lunch I

First negative result

Intuition: For every fixed n there exists a distribution where the classifier is arbitrarily bad!

Theorem

For any $\varepsilon > 0$ and any integer n and classification rule f_n , there exists a distribution of (X,Y) with Bayes risk $R^* = 0$ such that

$$\mathbb{E}R(f_n)\geq \frac{1}{2}-\varepsilon.$$

- construct a distribution on the set $\mathcal{X} = \{1, \dots, K\}$,
- noise-free but no structure,
- for fixed n choose K sufficiently large such that the rule f_n will fail completely on the rest of \mathcal{X} .

No free lunch II

First negative result

There exists no universally consistent learning algorithm such that $R(f_n)$ converges uniformly over all distributions to R^* .

No free lunch III

Second negative result

Theorem

Let $\{a_n\}$ be a sequence of positive numbers converging to zero with $\frac{1}{16} \geq a_1 \geq a_2 \geq \dots$ For every sequence of classification rules, there exists a distribution of (X,Y) with $R^*=0$, such that for all n,

$$\mathbb{E}R(f_n) \geq a_n$$
.

This result states that universally good learning algorithms do not exist ⇒ convergence to the Bayes risk can be **arbitrarily slow**!

There exist no universal rates to the Bayes risk. If one wants to have rates of convergence to the Bayes risk one has to restrict the class of distributions on $\mathcal{X} \times \mathcal{Y}$.

No free lunch IV

Third negative result

Theorem

For every sequence of classification rules f_n , there is a universally consistent sequence of classification rules g_n such that for some distribution on $\mathcal{X} \times \mathcal{Y}$

$$P(f_n(X) \neq Y) > P(g_n(X) \neq Y), \quad \forall n \geq 0.$$

Thus for every universally consistent learning rule there exists a distribution on $\mathcal{X} \times \mathcal{Y}$ such that another universally consistent learning rule is strictly better.

There exists no universally superior learning algorithm.

No free lunch V

Summary

- Restriction of the class of distributions on $\mathcal{X} \times \mathcal{Y} \implies$ convergence rates to Bayes for universally consistent learning algorithms.
 - **Problem:** Assumptions cannot be tested. Performance guarantees are only valid under the made assumptions.
- Restriction of the function class
 ⇒ no universal consistency possible.
 - Comparison to the best possible function in the class is possible uniformly over all distributions.
 - But no performance guarantees with respect to the Bayes risk.

Convergence rates to Bayes

Convergence rates to Bayes only possible under assumptions on the distribution of (X, Y)

Reasonable assumptions fulfill two requirements:

- The assumptions should be as natural as possible, meaning that one expects that most the data generating distributions one encounters in nature fulfill these assumptions.
- The assumptions should be narrow enough, so that one can still prove convergence rates.

Convergence rates to Bayes II

Assumptions

In terms of the regression function: $\eta(x) = \mathbb{E}[Y|X=x]$.

- $\eta(x)$ lies in some Sobolev space (has certain smoothness properties),
- Margin/low noise conditions introduced by Massart and Tsybakov,

Definition

A distribution P on $\mathcal{X} \times \{-1,1\}$ fulfills the low noise condition if there exist constants C>0 and $\alpha>0$ such that

$$P(|\eta(X)| \le t) \le Ct^{\alpha}, \quad \forall t \ge 0.$$

The coefficient α is called the **noise coefficient** of P.

- \bullet $\alpha = 0$ is trival and implies no restrictions on the distribution,
- 2 $\alpha = \infty$, $\eta(x)$ strictly bounded away from zero.

Universal Consistency II

Universal consistency for soft-margin SVM's

Definition

A continuous kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **universal** if the associated RKHS \mathcal{H}_k is dense in the set of continuous functions C(X) with the $\|\cdot\|_{\infty}$ -norm, that is for all $f \in C(X)$ and $\varepsilon > 0$ there exists a $g \in \mathcal{H}_k$ such that

$$\|f - g\|_{\infty} \le \varepsilon$$
.

⇒ Measurable functions can be approximated by continuous functions.

A soft-margin SVM in \mathbb{R}^d with a **universal kernel** is universally consistent.

Theorem

Let $\mathcal{X} \subset \mathbb{R}^d$ be compact, then the soft-margin SVM with error parameter $C_n = n^{1-\beta}$ for some $0 < \beta < \frac{1}{d}$ and a Gaussian kernel is universally

Large scale empirical risk minimization

Integrate accuracy of optimization (Bottou and Bousquet(2011))

ullet instead of empirical risk minimizer f_n compute approximation $ilde{f}_n$

$$R_n(\tilde{f}_n) \leq R_n(f_n) + \rho,$$

where ρ is the tolerance/accuracy with which we do the optmization New decomposition of the excess risk:

$$R(\tilde{f}_n) - R^* = \underbrace{\inf_{f \in \mathcal{F}} R(f) - R^*}_{\text{Approximation error}} + \underbrace{R(f_n) - \inf_{f \in \mathcal{F}} R(f)}_{\text{Estimation error}} + \underbrace{R(\tilde{f}_n) - R(f_n)}_{\text{Optimization error}}.$$

Learning under fixed budget ($n < n_{\text{max}}$, time $T < T_{\text{max}}$)

- Small-scale Learning (restricted by n_{max}): as n_{max} is small the computing time $T(\mathcal{F}, n, \rho)$ is small and thus one can afford ρ to be small (standard setting)
- Large-scale Learning (restricted by T_{max}): $T(\mathcal{F}, n, \rho) < T_{max}$ can be achieved either for ρ small only if $n \ll n_{max}$ is small (high estimation error). Instead use larger ρ (higher optimization error) and inspect more data points n (lower estimation error)

Gradient descent versus stochastic gradient descent

Goal: minimize empirical loss: $\frac{1}{n} \sum_{i=1}^{n} L(f_w(x_i), y_i)$

• **Gradient Descent:** At each iteration update w as

$$w_{t+1} = w_t - \frac{\eta}{n} \sum_{i=1}^n \nabla_w L(f_w(x_i), y_i).$$

• Stochastic Gradient Descent: At each iteration t pick a random training example (x_t, y_t) and update w as

$$w_{t+1} = w_t - \frac{\eta}{t} \nabla_w L(f_w(x_t), y_t).$$

Alg.	Cost per	Iterations	Time to reach	Time to reach
	Iteration	to reach $ ho$	ρ	excess risk of $arepsilon$
GD	O(nd)	$O\left(\kappa\log\left(\frac{1}{ ho}\right)\right)$	$O\left(\operatorname{\sf nd}\kappa\log\left(\frac{1}{ ho} ight) ight)$	$O\left(\frac{d^2\kappa}{\varepsilon^{\frac{1}{\alpha}}}\log\left(\frac{1}{\rho}\right)\right)$
SGD	O(d)	$\frac{ u\kappa^2}{ ho} + o\Big(\log\Big(\frac{1}{ ho}\Big)\Big)$	$O(\frac{d u\kappa}{ ho^2})$	$O\left(\frac{d\kappa^2\nu}{\varepsilon}\right)$

 κ : condition number of Hessian, ν : related complexity parameter, α : decay rate of estimation err $(\frac{1}{2} < \alpha < 1)$

Experiment

Bachelor/Master/PhD topics in machine learning!

Thanks for your attention!