```
[1] Demostremos primero que \mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3}):
            Observeuros que \{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\} es una Q-base de Q(\sqrt{2}, \sqrt{3}).
         Q(\sqrt{z}+\sqrt{3})\subseteq Q(\sqrt{z},\sqrt{3}) trivialmente ya que
                      Q(\(\overline{12},\overline{13}\)) := \(\alpha + b\overline{12} + c\overline{13} + d\overline{16} \|a_i b_i c_i d \in \alpha \\ \right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\rig
                    por lo que \sqrt{z}+\sqrt{3} \in \mathbb{Q}(\sqrt{z},\sqrt{3}) tomando a=0,b=1,c=1,d=0
    Ahora veamos que Q(\sqrt{2}, \sqrt{3}) \subseteq Q(\sqrt{2} + \sqrt{3}): para ello probamos
     que \sqrt{2}, \sqrt{3}, \sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3}).
   Supongamos Q-base de Q(\sqrt{2}+\sqrt{3}) = \{1, \sqrt{2}+\sqrt{3}, (\sqrt{2}+\sqrt{3})^2, (\sqrt{2}+\sqrt{3})^3\}
  (a priori, antes de terminar la demostración, podría ser mayor,
    pero con estos elementos nos llegarán para generar \sqrt{2}, \sqrt{3}, \sqrt{6})
  \sqrt{2} = a + b(\sqrt{2} + \sqrt{3}) + c(\sqrt{2} + \sqrt{3})^2 + d(\sqrt{2} + \sqrt{3})^3 =
          = (a+5c).1 + (b+41d)\sqrt{2} + (b+9c)\sqrt{3} + 2c\sqrt{6} \Rightarrow
     \Rightarrow \begin{cases} a+5c=0 \\ b+11 d=1 \\ b+9c=0 \end{cases} \Rightarrow \begin{cases} c=0 \\ b=0 \\ d=\frac{1}{11} \\ a=0 \end{cases} \Rightarrow \sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})
(a=0) \text{ Analogo para } \sqrt{3}, \sqrt{6}.
   Otra forma más corta: sabemos ya que Q(VZ+V3) = Q(VZ,V3):
         \mathbb{Q} \xrightarrow{264\%} \mathbb{Q}(\sqrt{2}+\sqrt{3}) \longrightarrow \mathbb{Q}(\sqrt{2},\sqrt{3})
* Supongamos 2: gr(Irr(Q, \sqrt{z}+\sqrt{3})) = 2
Sea \frac{x^2+bx+c}{\sqrt{x}}=0 pol. genérico de Q y p(\sqrt{z}+\sqrt{3}) = 0
```

 $\frac{x + bx + c}{p(x)} = 0$ $\Rightarrow (\sqrt{2} + \sqrt{3})^2 + b(\sqrt{2} + \sqrt{3}) + c = 0 \quad \text{con} \quad b, c \in \mathbb{Q} \Rightarrow 0$ $\Rightarrow \text{Tuposible} \Rightarrow \text{gr}(\text{Irr}(\mathbb{Q}, \sqrt{2} + \sqrt{3})) = 4 \Rightarrow 0$

Ahora, i como calculamos Irr
$$(Q, \sqrt{z}+\sqrt{3})$$
?

Buscamos $p(x) = x^4 + ax^3 + bx^2 + cx + d$, $a_1b_1c_1d \in Q$

tal que $p(\alpha) = Q$:

operaciones

 $x^4 + ax^3 + bx^2 + cx + d = Q$
 $\Rightarrow (49 + 5b + d) \cdot 1 + (Ma + c)\sqrt{z} + (9a + c)\sqrt{3} + (20 + 2b)\sqrt{6} = Q$

Iqualamos coef. a cero $\Rightarrow \begin{cases} a = Q \\ b = -1Q \\ d = 1 \end{cases}$

2. No es dificil ver que
$$\alpha = \sqrt[3]{9} + \sqrt[3]{3} - 1 \in \mathbb{C}(\sqrt[3]{3})$$

ya que \mathbb{Q} -base de $\mathbb{Q}(\sqrt[3]{3}) = \sqrt[4]{1}, \sqrt[3]{3}, \sqrt[3]{3^2} = \sqrt[3]{9}$

ya que $\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q} = 3$ ($x^3 - 3$ irred. en $\mathbb{Q}(\sqrt[3]{3}) = 3$ raiz $\Rightarrow \operatorname{Irr}(\mathbb{Q}, \sqrt[3]{3})$).

Sea ahora $p(x) = x^3 + ax^2 + bx + 1$, $a_ib_ic \in \mathbb{Q}(\sqrt[9]{3}) = 3$

Buscamos $p(\alpha) = 0$ y $p(x)$ irred. en $\mathbb{Q}(x) = 3$
 $x^3 + ax^2 + bx + c = 0 \Rightarrow 0$ operations y despejamos a_ib_ic

Habria también que ver que el pol. obtenido es irreducible.

3.
$$Q(i, \sqrt{z}) = \{a + bi + c\sqrt{z} + d\sqrt{z}i , a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}i) = \{a + b(\sqrt{z}+i) + c(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}+i) = \{a + b(\sqrt{z}+i) + c(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}, \sqrt{z}+i) = Q(\sqrt{z}+i) + c(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}, \sqrt{z}+i) = Q(\sqrt{z}+i) + c(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}, \sqrt{z}+i) = Q(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}+i) = Q(\sqrt{z}+i)^2 + d(\sqrt{z}+i)^3, a_ib_ic_id \in Q\}$$

$$Q(\sqrt{z}+i) = Q(\sqrt{z}+i)^3, a_ib_ic_id \in Q$$

$$Q(\sqrt{z}+i) = Q(\sqrt{z}+i)^3, a_ib_id$$

$$Q \stackrel{\sim}{\sim} 2$$

$$4 \longrightarrow Q(\sqrt{2}, i)$$

1)
$$Q(\sqrt[6]{3})/Q$$

6/3 es raít de χ^6 -3=0, que es un pol irred.

en Q por el criterio de Einsesfein con $p=3$.

 $\Rightarrow Irr(Q, \sqrt[6]{3}) = \chi^6$ -3 $\Rightarrow |Q(\sqrt[6]{3}):Q| = 6$
 Q -base de $Q(\sqrt[6]{3}): \langle 1, \sqrt[6]{3}, \sqrt[6]{9}, \sqrt[6]{27}, \sqrt[6]{81}, \sqrt[6]{243} \rangle$

ii) $Q(\sqrt{2},\sqrt{3})/Q$ Q(12,13): Q = $\mathbb{Q}(\sqrt{2},\sqrt{3}) = L(\sqrt{3})$ = |Q(\(\siz\),\(\siz\)):Q(\(\siz\)). |Q(\(\siz\)):Q) +Q(12)=L Sabemos que $p(x) = x^2 - 2$ es irred. en Q y que \sqrt{z} es raiz => $Irr(Q,\sqrt{z})=x^2-z$ $\Rightarrow |Q(\sqrt{2}):Q|=2$ Q-base de $Q(\sqrt{2}):$ Ahora bien, x²-3 es irreducible en L: (y en Q): R.A. $\sqrt{3} = a + b\sqrt{2}$ (tratamos de escribir $\sqrt{3}$ en términos de la Q-base de Q(√2)): Entonces: $Q(\sqrt{2}, \sqrt{3})$ > 2 $\geq (\text{Einsestein})$ $Q(\sqrt{2})$ > 2 $\geq (\text{Einsestein})$ $\geq (\text{Einsestein})$ © También como $|Q(\sqrt{2}):Q|=2$ y $|Q(\sqrt{3}):Q|=2$ ⇒ $|Q(\sqrt{2},\sqrt{3}):Q| \le 4$ y al mismo fiempo $|Q(\sqrt{2},\sqrt{3}):Q|>2$ ⇒ $|Q(\sqrt{2},\sqrt{3}):Q| \le 4$ y al mismo fiempo $|Q(\sqrt{2},\sqrt{3}):Q|>2$ \Rightarrow $Q(\sqrt{2},\sqrt{3}):Q=4$ Q-base de Q(12,13) = 11,12, 13, 16}

iii) Q(\(\siz\), \(\siz\), i)/Q $Q(\sqrt{2},\sqrt{3},i)$ Sea $p(x) = x^2 + 1$, pol. que $\begin{array}{c|c} \hline 2 \\ 4 \\ 4 \\ 1 \end{array}$ tiene como rouz i. Veamos que p(x) es irreducible en Q(VZ, V3): reamos que no tiene raices en Q(VZ, V3): Elemento genérico de a (VZ, V3): apartado ii) $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ $(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6})^2+1=0 \iff \cdots \iff$ Elegaremos a una contradicción => x²+1 irreducible en $Q(\sqrt{2},\sqrt{3}) \Rightarrow Irr(Q(\sqrt{2},\sqrt{3}), i) = x^2 + 1 \Rightarrow$ $|Q(\sqrt{12},\sqrt{3},i):Q(\sqrt{2},\sqrt{3})|=gr(x^2+1)=2$ $\Rightarrow |Q(\sqrt{2}, \sqrt{3}, i): Q| = 4.2 = 8$ Q-base de Q(\(\ini_1,\ini_3,i):\(\frac{1}{1},\ini_2,\ini_3,\inf_6,\ini_i,\inf\) $p(x) = x^2 + 2$ es un pol que $\sqrt{2}i$ es raiz Por Einsestein con p = 2 vemos que es irreducible en \mathbb{Q} iv) Q(VZi)/Q \Rightarrow Irr(Q, $\sqrt{2}i$) = $x^2+2 \Rightarrow |Q(\sqrt{2}i): Q|=2$ Q-base de Q(VZi): {1, VZi}

v) Q(5/2, 5/7)/Q(2/2) $Q \xrightarrow{5.(*)} Q(\sqrt[5]{2}) = \underbrace{3(***)}_{2}$ $Q(\sqrt[5]{2}) \xrightarrow{2} Q(\sqrt[5]{2}, \sqrt[3]{7})$ $3(**) \Rightarrow Q(\sqrt[3]{7}) = \underbrace{3(***)}_{25}$ (*) $|Q(\sqrt[5]{z}):Q|=5$ ya que x^5-2 es irred. en Q por Einsestein con $p=2 \implies Irr(Q, \sqrt{2}) = x^5 - 2$ (44) |Q(37):Q|=3 ya que x^3-7 es irred. en Qpor Einsestein cou $p=7 \implies Irr(Q, \sqrt[3]{7}) = x^3 - 7$ For lo tanto, $a \ge 3.5 = 15$ por el teorema de transitividad de grados. Por otro lado, si al (377) extiende Q con grado 3, $Q(\sqrt[3]{7})$ extiende a $Q(\sqrt[5]{2})$ con grado ≤ 3 (**xx). Finalmente, si $Q(\sqrt[7]{2})$ extiende Q con grado 5, $Q(\sqrt[3]{7},\sqrt[5]{2})$ extiende a $Q(\sqrt[3]{7})$ con grado ≤ 5 (****). $\Rightarrow |Q(\sqrt[5]{2},\sqrt[3]{7}):Q|=3.5=45$ La A-base de Q(\$12, \$17) es: 11, \alpha, \alpha^2, \alpha^3, \alpha^4, \beta, \beta^2, \alpha^3, \alpha^3 $con \quad \alpha = \sqrt[5]{2} \quad y \quad \beta = \sqrt[5]{7}.$ Por el Tue transitividad de grados: \Q(\sqrt{1\forall}\frac{7}{7},\sqrt{2}): \Q(\sqrt{12}) = 3 $Q(\sqrt[5]{2})$ -base de $Q(\sqrt[3]{7},\sqrt[5]{2})$: 11, 13, 13^2)
Habria que ver que 13, 13 14, 1

vi) Q(√z)/Q(√z) (*) Como hemos visto, |Q(vz): Q = = $Q(\sqrt[4]{z})$ usando x^2-2 y viendo por Einsestein que es irred. en $\mathbb Q}$ $4 \begin{cases} 1 \\ (***) \end{cases} \begin{pmatrix} (****) \\ 1 \\ 2 \\ (*) \end{cases}$ (xx) Por lo mismo, $Q(\sqrt[4]{2}):Q=4$ usando que VZ es raíz de x4-2 (irred. pour Einsestein en 6 (***) Usando el teorema de transitividad de grados: |Q(VZ):Q(VZ) = |Q(VZ):Q| / |Q(VZ):Q| = = 4/2 = 2 $Q(\sqrt{2})$ -base de $Q(\sqrt[4]2)$: $\{1,\sqrt[4]2\}$ Vamos a ver que $\sqrt[4]{2} \notin \mathbb{Q}(\sqrt{2}): \sqrt[4]{2} = a + b\sqrt{2}$ para algún $a,b \in \mathbb{Q}$. Llegaremos a contradicción #. $Q(\sqrt{1+\sqrt{3}}) \qquad (*) \text{ Como levamos visto} \qquad p(x)$ $(**) \sqrt{1+\sqrt{3}} \text{ es raiz de } x^2 - \sqrt{3} - 1,$ $Q(\sqrt{3}) \qquad \text{que es un polinomio mónico en}$ $Q(\sqrt{3}) \cdot \text{Nos prequentamos si es irred:}$ $Q(\sqrt{3}) = \sqrt{a+b\sqrt{3}} : a,b \in Q$ $Q(\sqrt{3}) = \sqrt{a+b\sqrt{3}} : a,b \in Q$ $Q(\sqrt{3}) = \sqrt{a+b\sqrt{3}} : a,b \in Q$ $Q(\sqrt{3}) = \sqrt{a+b\sqrt{3}} : a,b \in Q$ ci ∃a,b∈Q: (a+b√3)²-√3-1=0? Q(√3) base 1 $a^2 + 2ab\sqrt{3} + 3b^2 - \sqrt{3} - 1 \implies (2ab - 1)\sqrt{3} + (a^2 + 3b^2 - 1).1 = 0$

(W-base de W(V1+13): 77, B, B, B, B, B, B, B, Cou 13 = V1+V3 viii) $Q(e^{\frac{2\pi i}{5}})/Q$ visto en clase Sea $p(x) = \frac{x^5 - 1}{x - 1}$ pol. ciclotómico => irred. en Q todo pol. ciclotómico es irred. en Q (teorema) $\Rightarrow |Q(e^{\frac{2\pi i}{5}}):Q| = gr\left(\frac{x^{5}-1}{x-1}\right) = gr\left(Irr(Q;e^{\frac{2\pi i}{5}})\right) = m$ Q-base de $Q(e^{\frac{2\pi i}{5}})$: $\{1, \beta, \dots, \beta^{m-4}\}$ cou $\beta = e^{\frac{2\pi i}{5}}$ \times) $R(\sqrt[4]{-3})/R$ Como $\sqrt[4]{-3} \notin \mathbb{R}$ (de hecho $\sqrt[4]{-3} \in \mathbb{C}$) => se genera \mathbb{C} \Rightarrow $|R(\sqrt[q]{-3}):R|=2=|C:R|$ => \mathbb{R} -base de $\mathbb{C}=\{1,i\}=\mathbb{R}$ -base de $\mathbb{R}(\sqrt[q]{-3})$

$$F_{7}(t) \qquad x^{2} - t^{2} \in F_{7}(t^{2}) [x]$$

$$t \text{ es } raiz \text{ de } x^{2} - t^{2} \text{ y ademas } t + t \text{ f.}(t^{2}) :$$

$$R.A. \text{ si } t \in F_{7}(t^{2}) \implies t = \frac{f(t^{2})}{g(t^{2})} \implies$$

$$\implies t g(t^{2}) = f(t^{2}) \quad g \neq 0$$

$$\text{contradicción viendo que } t g(t^{2}) \text{ hiene grado}$$

$$\text{impar } y \quad f(t^{2}) \text{ grado par.}$$

$$\implies |F_{7}(t)| : |F_{7}(t^{2})| = 2 \implies |F_{7}(t^{2})| - \text{base } de \quad |F_{7}(t^{2})| : |f_{1}, t|$$

$$Ahora \quad \text{vamas } a \quad \text{calcular } t^{-1} \quad y \quad (1+t)^{-1} \text{ en } \text{ funcion } de$$

$$11.t$$

$$t = f(t) \implies f(x) = x \quad |F_{7}(t^{2})| \quad f(x)|$$

$$x^{2} - t^{2} = 0, \quad xx = t^{2} \implies x \cdot \frac{1}{t^{2}} x = 1$$

$$\text{Evaluando en } t : t \cdot \frac{1}{t^{2}} \cdot t = 1$$

$$F(x) = 1 + x \quad \text{med } (f(x), x^{2} - t^{2}) = 1$$

$$Aplicamas \quad \text{Berout } + \text{ algoritmo } de \quad \text{ la } \text{ division}$$

$$x^{2} - t^{2} \quad |x+1| \quad f(x)|$$

$$-x - t^{2} \quad |x+1|$$

[6.] Apuntes
$[7]$ $K \subseteq K(a_0) \subseteq K(a_0, a_1,, a_n) \subseteq K(a_0, a_1,, a_n) [u]$
u alg sobre K(ao,,an)
porque es rait para alquiu polinomio
Usamos el teorema de extensiones finitas y esta
demostrado. Les con elem. algebraicas
[8.] Se dice que es la facil.
[] Supongamos que K[x] es un cuerpo
R.A.: supongamos que para llegar a una contradicción
=> K[x] => K[x] no es un cuerpo => contradicai
=> & alq. sobre K. Resulta que solo le hemos demostrado para x, no
\forall elemento. \Rightarrow grado = $gr(Irr(k, x)) < \infty$
$K \subset \mathcal{F} K [\alpha] \Rightarrow la extensión es$
finita de grado n =>
lin. dep. sobre K.
Lan. acp. source 12.

[9.] a) facil usando que
$$a_i \in K$$
 (werpo) => $\exists a_i^{-1}$
b) $/A \rightarrow \text{algebraicos}$ de los C/Q

$$Q \subseteq Q[VZ] \subseteq Q[VZ, \sqrt[3]{Z}] \subseteq Q[VZ, \sqrt[3]{Z}, \sqrt[4]{Z}] \subseteq \cdots \subseteq A$$

$$x^2 - 2 \qquad \text{extension}$$

$$x^3 - 3 \qquad \text{infinito}$$

$$x^4 - 4$$

[40.] Probar que
$$\operatorname{Irr}(L,\alpha) | \operatorname{Irr}(R,\alpha)$$
 $q(x)$
 $p(x)$

En particular: $|L(\alpha):L| \leq |K(\alpha):K|$
 $p(x) \in K[x] \subseteq L[x]$

Gomo $p(\alpha)=0$, por el T^{ue} del elemento algebraico, $q(x)|p(x) \Longrightarrow |L[\alpha]:L| = gr(q(x)) \leq gr(p(x)) = |K(\alpha):R|$

$$\begin{array}{c|c}
\hline
12. \\
a) \\
\hline
R
\end{array}$$

$$\begin{array}{c}
a \\
P
\end{array}$$

$$\begin{array}{c}
b \\
E
\end{array}$$

$$\begin{array}{c}
p \\
A
\end{array}$$

$$\begin{array}{c}
b \\
E
\end{array}$$

$$\begin{array}{c}
p \\
A
\end{array}$$

$$\begin{array}{c}
b \\
E
\end{array}$$

$$\begin{array}{c}
p \\
A
\end{array}$$

$$\begin{array}{c}
a \\
E
\end{array}$$

$$\begin{array}{c}
p \\
A
\end{array}$$

$$\begin{array}{c}
a \\
E
\end{array}$$

$$\begin{array}{c}
p \\
A
\end{array}$$

$$\begin{array}{c}
a \\
E
\end{array}$$

$$\begin{array}{c}
a \\
E
\end{array}$$

$$\begin{array}{c}
a \\
E
\end{array}$$

c)
$$p(x) = x^3 + x - 1$$
, $p(\alpha) = 0$, $\alpha \in E/K$

$$K \longrightarrow K(\alpha^2) \longrightarrow K(\alpha)$$

$$3$$

$$K(\alpha^2) = K(\alpha) \quad \text{porque} \quad K(\alpha^2) \neq K \quad \text{ya que}$$

$$\overline{K}(\alpha^2) = K(\alpha)$$
 porque $K(\alpha^2) \neq K$ ya que $\alpha^2 \notin K$
Base: $\{1, \alpha, \alpha^2\}$

$$\Rightarrow |\operatorname{Irr}(\mathbb{K}, \alpha^2)| = 3$$

$$q(x) = x^3 + ax^2 + bx + c$$
 (pol. genérico)

$$q(x^2) = x^6 + ax^4 + bx^2 + c = 0$$

Sabemos que
$$p(\alpha) = 0 \Rightarrow \alpha^3 + \alpha - 1 = 0 \Rightarrow$$

$$\Rightarrow \boxed{\alpha^3 = 1 - \alpha} \Rightarrow \boxed{\alpha^6 = \alpha^2 - 2\alpha + 1}$$

$$\Rightarrow \boxed{\alpha^4 = -\alpha^2 + \alpha}$$

$$\Rightarrow$$
 Sustituimos en $q(\alpha^2)$:

$$q(x^2) = (1-a+b)x^2 + (-2+a)x + (1+c). 1 = 0$$

 $(1-a+b) = 0$ $(1-a+b) = 1$

$$\Rightarrow \begin{cases} 1-a+b=0 \\ -2+a=0 \\ 1+c=0 \end{cases} \Rightarrow \begin{cases} b=1 \\ a=2 \\ c=-1 \end{cases}$$

$$9(x) = x^3 + 2x^2 + x - 1$$

d)
$$K \longrightarrow K(\alpha^2) \subset \subseteq \mathbb{Z}^{(\kappa)} \times K(\alpha)$$

grado impar

Como
$$|K(\alpha):K| = \text{grado impar} \implies |K(\alpha):K(\alpha^2)| = 1 \implies |K(\alpha)=K(\alpha^2)| = 1 \implies |K(\alpha)=K(\alpha)=K(\alpha^2)| = 1 \implies |K(\alpha)=K(\alpha^2)| = 1 \implies |K(\alpha)=K(\alpha^2)| = 1 \implies |K(\alpha)=K(\alpha)=K(\alpha^2)| = 1 \implies |$$

$$\Re Es \le 2$$
 porque $x^2 - x^2$ es un pol. en $E(x^2)$ tal que $x \in \mathbb{R}$

Como p y q son primos entre sí $|L_1:L_1\cap L_2|=p$ y $|L_2:L_1\cap L_2|=q$ porque p y q no tienen primos comunes en su descomp. factorial $\Rightarrow |L_1\cap L_2:K|=1$.

