Domination on modular product graphs A

Domen Humar in Maja Komic

Noveber 2023

1 Problem

Naj bosta G in H grafa. Na različnih primerih grafov želimo preveriti spodnjo neenakost in poiskati čim več takih grafov G in H za katera velja ta neenakost

$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1$$

$$\gamma(G \diamond H) \leq \gamma(G) + \gamma(H) - 1$$
(1)

.

2 Definicije

Definicija 1 Modularni produkt grafov G in H je graf $G \diamond H$ z množico vozlišč $V(G \diamond H) = V(G) \times V(H)$, ki je unija kartezičega produkta, neposrednega produkta in neposrednega produkta komplementov G in H

$$G \diamond H = G \square H \cup G \times H \cup \overline{G} \times \overline{H}$$

- . Natančneje, točki (g,h) in (g',h') iz grafa $G \diamond H$ sta sosednji, če velja:
 - 1. če je g = g' in $hh' \in E(H)$; ali
 - 2. če je h = h' in $gg' \in E(G)$; ali
 - 3. če je $qq' \in E(G)$ in $hh' \in E(H)$; ali
 - 4. če za $g \neq g'$ in $h \neq h'$ velja $(u, u') \notin E(G)$ in $(v, v') \notin E(H)$.

Definicija 2 Množica $S \subseteq V(G)$ je dominirana množica grafa G = (V, E), če za vsak $u \in V \setminus S$ obstaja $v \in S$, da je u $v \in E(G)$.

Definicija 3 Dominirano število grafa G = (V, E) je moč najmanjše dominirane množice grafa G, označimo ga $z \gamma(G)$.

3 Načrt dela

Najprej bova implementirala sledeči funciji:

- funcijo, ki sprejme grafa G in H (podana z matriko sosednosti) in vrne podularni produkt $G \diamond H$, ter
- funcijo, ki sprejme graf $G \diamond H$ (podan z matriko sosednosti) in vrne najmanjšo dominirano množico grafa in vrne moč te množice.

Nato bova s simulacijo opazovala za katere grafe neenakost (1) velja, ko grafoma G in H postopoma dodajamo ogljišča in povezava. Začela bova s preprostima grafoma z dvema ogljiščema in eno povezavo, ter jima sistematično dodajala ogljišča.

Pri reševanju problema bova uporabljala Python.