Assignment 3:

Credit Score Prediction using Machine Learning Models

Overview

This assignment focuses on building, training, and evaluating machine learning models to predict a customer's **credit score** (Good, Poor, or Standard). Students will use **train.csv** for model training and testing, while **vald.csv** will be used solely for validation to assess model generalisation. The assignment involves tasks such as **data cleaning**, **feature engineering**, **model selection**, **hyperparameter tuning**, and **model comparison**. At the end, students will provide a comprehensive analysis and recommendations based on their findings.

Datasets Overview

1. train.csv

- Contains historical financial data of customers, including their credit scores (target variable: C_Credit_Score).
- o This dataset will be used for both **training and testing** the models.

2. vald.csv

- o Contains similar customer data but without the target variable.
- This dataset will be used for **model validation**, assessing how well the trained models generalise to new, unseen data.

Assignment Tasks and Instructions

1. Environment Setup (Google Colab)

- Ensure that all the required libraries are available in the Colab environment.
- If any libraries are missing, use !pip install commands to install them.
- Import the necessary libraries, including pandas, numpy, scikit-learn, xgboost, tensorflow, matplotlib, and seaborn.

Task:

Make sure the environment is properly set up, and all libraries are imported before proceeding with the analysis.

2. Data Loading and Overview

- Load the train.csv and vald.csv datasets.
- Perform an **initial exploration** of both datasets by:
 - Displaying the first few rows.
 - o Checking for missing values and data types.
 - o Generating **summary statistics** for numerical features.

Task:

Provide a basic overview of the datasets, identifying any inconsistencies or missing data that need to be addressed.

3. Exploratory Data Analysis (EDA)

- Use **visualisations** to explore key patterns in the data:
 - o Histograms to analyse distributions (e.g., income, credit history).
 - o Scatter plots to understand feature relationships (e.g., income vs. debt).
 - o Heatmaps to identify **correlations** between numerical features.
- Identify **outliers** and discuss any potential issues with the data.

Task:

Interpret the key insights from the visualisations. Identify which features might play an important role in predicting credit scores.

4. Data Cleaning and Feature Engineering

- Handle missing values (e.g., mean imputation or removing records if appropriate).
- Perform **feature engineering** to create new useful variables (e.g., debt-to-income ratio).
- **Encode categorical variables** such as occupation or loan type using One-Hot Encoding.
- Scale numerical features to standardise the data using techniques like StandardScaler.

Task:

Provide detailed interpretations of the steps taken to clean the data and the new features created. Explain why these changes are expected to improve model performance.

5. Model Building and Testing

- Train the following models on **train.csv**:
 - 1. Logistic Regression
 - 2. Decision Trees
 - 3. Random Forests
 - 4. XGBoost
 - 5. Artificial Neural Networks (ANN)
- Split train.csv into training (80%) and testing (20%) to evaluate model performance.
- Train each model on the training data and test it on the test set.

Task:

Document the results for each model, including key metrics such as **accuracy, precision, recall, F1-score, and AUC-ROC**. Interpret the performance of each model.

6. Hyperparameter Tuning and Cross-Validation

- Apply **hyperparameter tuning** using GridSearchCV or RandomSearchCV to optimise the models.
- Use **k-fold cross-validation** (e.g., k=5) to validate model stability and avoid overfitting.
- Apply **regularisation** where applicable (e.g., L1, L2 for logistic regression).

Task:

Interpret the improvements (if any) achieved through tuning and cross-validation. Explain which hyperparameters were most effective for each model.

7. Validation using vald.csv

- Use the trained models to predict outcomes for **vald.csv** (which does not contain the target variable).
- This step assesses how well the models generalise to unseen data.
- Record the predictions and discuss any differences between the test and validation results.

Task:

Interpret the validation results and discuss how well the models performed on unseen data. Identify any potential issues, such as overfitting or underfitting.

8. Model Comparison

- Create a **comparison table** to summarise the performance of all models.
 - Include metrics such as accuracy, precision, recall, F1-score, AUC-ROC, training time, and validation time.
- Identify the **best-performing model** and explain why it performed better than the others.

Task:

Interpret the model comparison results. Discuss the strengths and weaknesses of each model and justify the choice of the best model.

9. Conclusion and Recommendations

- Summarise the overall findings of the project.
- Highlight which features were most impactful in predicting credit scores.
- Provide **recommendations** on how the models could be improved further (e.g., additional tuning, different algorithms).
- Offer suggestions on how customers can **improve their credit scores** based on the analysis (e.g., reducing debt, paying on time).

Task:

Provide a detailed, well-organised conclusion, tying together the key insights and outcomes from the project.

Deliverables

Students must submit the following:

- 1. Print of IPython Notebook (.pdf)
- 2. IPython Notebook (.ipynb)

Data Fields and Descriptions

train.csv (Training and Testing Dataset)

This dataset contains customer financial and behavioural data along with the target variable, **C_Credit_Score**.

vald.csv (Validation Dataset)

This dataset contains the same financial and behavioural fields as **train.csv** but **does not include the target variable** (C_Credit_Score). It is used for **model validation** to assess how well the trained models generalise to new, unseen data.

No.	Field Name	Description
1	I_ID	Unique identifier for each transaction or record.
2	C_Customer_ID	Unique identifier for each customer, allowing their financial records to be grouped.
3	M_Month	Month of the transaction or record, used for time- based analysis.
4	N_Name	Full name of the customer (used for reference purposes).
5	A_Age	Age of the customer in years, impacting eligibility and financial behaviour.
6	S_SSN	Customer's Social Security Number (used for credit reporting and verification).
7	O_Occupation	Primary occupation of the customer, indicating earning potential.
8	A_Annual_Income	Total yearly income, used to assess creditworthiness and affordability.
9	M_Monthly_Inhand_Salary	Monthly take-home salary after tax and deductions.
10	N_Num_Bank_Accounts	Total number of bank accounts held by the customer across institutions.
11	N_Num_Credit_Card	Total number of credit cards owned by the customer, indicating credit usage.
12	I_Interest_Rate	Interest rate applied to loans or credit cards. Higher rates may affect repayment.
13	N_Num_of_Loan	Number of active loans (e.g., personal loans, car loans).
14	T_Type_of_Loan	Categories of loans taken (e.g., mortgage, personal loan).
15	D_Delay_from_due_date	Average delay (in days) between the due date and actual payment date.
16	N_Num_of_Delayed_Payment	Total number of instances where payments were delayed.
17	C_Changed_Credit_Limit	Adjustments (increase/decrease) made to the credit limit.
18	N_Num_Credit_Inquiries	Number of credit inquiries made about the customer, indicating financial activity.

19	C_Credit_Mix	Variety of credit types used by the customer (e.g., credit cards, personal loans).
20	O_Outstanding_Debt	Total unpaid debt across all credit facilities.
21	C_Credit_Utilization_Ratio	Percentage of used credit compared to the total available credit limit.
22	C_Credit_History_Age	Length of the customer's credit history, indicating financial experience.
23	P_Payment_of_Min_Amount	Whether the customer pays only the minimum required amount each month.
24	T_Total_EMI_per_month	Total amount of Equated Monthly Installments (EMIs) paid across loans.
25	A_Amount_invested_monthly	Monthly investment amount in financial products or savings.
26	P_Payment_Behaviour	General pattern of the customer's payment habits (e.g., consistent or irregular).
27	M_Monthly_Balance	Remaining account balance at the end of each month.
28	C_Credit_Score	Customer's credit score category (Good, Poor, Standard), serving as the target variable.