sequenza possible SNP-array usage example

Francesco Favero,* Tejal Joshi, Andrea M. Marquard, Aron C. Eklund October 6, 2014

Contents

1	Wo	rking with SNP array data	
	1.1	Preparing the data	
		1.1.1 Correcting logR with a normal sample, or with the mean logR value	
		1.1.2 Retrieve the homozygous position	
	1.2	Windowing logR values	
	1.3	Windowing B-allele frequencies values	
	1.4	Chromosome view without mutation	
	1.5	Segmenting with the <i>copynumber</i> package	
	1.6	Using the Bayesian inference on segmented SNP arrays	
	1.7	Cellularity and ploidy plot for SNP array	
	1.8	Call for copy number variation using inferred parameters	
	1.9	Graphical representation of copy number with SNP arrays	

1 Working with SNP array data

> library(sequenza)

1.1 Preparing the data

1.1.1 Correcting logR with a normal sample, or with the mean logR value

Without a reference sample (normal germline sample) we can try to divide for the mean value. It would be correct to use the germline logR.

```
> sample.i$adjusted.ratio <- 2^(sample.i$adjusted.ratio/0.55)
>
```

^{*}favero@cbs.dtu.dk

1.1.2 Retrieve the homozygous position

It should be available a germline sample to get the heterozygours SNP, doing in the same sample it's a risk if the sample is pure. A threshold around 0.25 or 0.35 can be picked to subset the heterozygous position on the germline. In the example we are lowering the threshold while taking the SNP from the same aberrant sample.

```
> het.lim <- 0.2
> is.het <- sample.i$Bf >= het.lim & sample.i$Bf <= 1 - het.lim
> sample.i$zygosity.normal[is.het] <- 'het'
> sample.i$Bf[sample.i$Bf >= 0.5] <- 1 - sample.i$Bf[sample.i$Bf >= 0.5]
> sample.het.i <- sample.i[is.het, ]</pre>
```

1.2 Windowing logR values.

1.3 Windowing B-allele frequencies values.

```
> snp.b.win <- windowValues(x = sample.het.i$Bf,
+ positions = sample.het.i$position,
+ chromosomes = sample.het.i$chromosome,
+ window = 1e6, overlap = 1)</pre>
```

1.4 Chromosome view without mutation

```
> chromosome.view(baf.windows = snp.b.win[[1]],
+ ratio.windows = snp.r.win[[1]],
+ min.N.ratio = 1)
```


Figure 1: Plots B-allele frequencies (top) and un-logged-logR (bottom) with SNP array data.

1.5 Segmenting with the *copynumber* package

```
> breaks <- find.breaks(sample.het.i, gamma = 20, kmin = 15, baf.thres = c(0, 0.5))
> seg.i <- segment.breaks(sample.i, breaks = breaks)</pre>
```

1.6 Using the Bayesian inference on segmented SNP arrays

```
> weights.snp <- (seg.i$end.pos - seg.i$start.pos)/1e6
> filter.size <- (seg.i$end.pos - seg.i$start.pos) >= 10e6
> avg.unlogR <- mean(sample.i$adjusted.ratio, na.rm = TRUE)
> avg.sd.ratio <- sum(seg.i$sd.ratio * seg.i$N.ratio)/sum(seg.i$N.ratio)
> avg.sd.Bf <- sum(seg.i$sd.BAF * seg.i$N.BAF)/sum(seg.i$N.BAF)</pre>
```

1.7 Cellularity and ploidy plot for SNP array

```
> cp.plot(CPsnp.example)
> cp.plot.contours(CPsnp.example, add = TRUE)
```


Figure 2: Result from the Bayesian inference over the defined range of cellularity and ploidy from artificial SNP array data. The color indicate the log-posterior probability of the corresponding cellularity/ploidy combinations.

1.8 Call for copy number variation using inferred parameters.

```
> snp.seg.cn <- baf.bayes(Bf = seg.i$Bf,
+ depth.ratio = seg.i$depth.ratio,
+ avg.depth.ratio = avg.unlogR,
+ cellularity = cellularity,
+ sd.ratio = seg.i$sd.ratio,
+ sd.Bf = seg.i$sd.BAF,
+ weight.ratio = weights.snp,
+ weight.Bf = 1,
+ ratio.priority = FALSE,</pre>
```

```
ploidy = ploidy, CNt.max = 10)
> segmented.snp <- cbind(seg.i, snp.seg.cn)</pre>
> head(segmented.snp[segmented.snp$chromosome == 1, ])
  chromosome start.pos end.pos
                                         Bf N.BAF
                                                         sd.BAF depth.ratio N.ratio
     1 2189662 30490508 0.3080575 87 0.03180289 0.7538262 134
          1 31697751 39213527 0.2817625 16 0.02623946
                                                                  1.6662164
2
                                                                                  32
           1 40285096 46296225 0.3786333 21 0.03201986 1.2857143
                                                                                   32
3

    1
    46437972
    55282671
    0.4791852
    27
    0.01555609
    1.0502976

    1
    55913726
    61908401
    0.4126143
    14
    0.08074848
    0.9321436

                                                                                   37
4
5
                                                                                   20
6
           1 62012795 100351185 0.4781943 70 0.01626872 1.1108629
                                                                                  121
    sd.ratio CNt A B LPP
2 0.20886011 4 3 1 -6.910815
3 0.23778363 3 2 1 -5.949889
4 0.12846056 2 1 1 -6.143060
5 0.22274982 2 1 1 -7.144834
6 0.13106480 2 1 1 -6.317081
```

1.9 Graphical representation of copy number with SNP arrays

1

Figure 3: Plots B-allele frequencies (top) and un-logged-logR (bottom) with SNP array data. Chromosome 16. Horizontal dotted line indicate different copy number/ allele state.

Figure 4: Plots B-allele frequencies (top) and un-logged-logR (bottom) with SNP array data. Chromosome 16. Horizontal dotted line indicate different copy number/ allele state.

```
> genome.view(seg.cn = segmented.snp, info.type = "CNt")
> legend("bottomright", bty="n", c("Tumor copy number"),col = c("red"),
+ inset = c(0, -0.4), pch=15, xpd = TRUE)
```


Figure 5: Genome whide copy number profile obtained from one SNP array.

```
> genome.view(seg.cn = segmented.snp, info.type = "AB")
> legend("bottomright", bty = "n", c("A-allele", "B-allele"), col= c("red", "blue"),
+ inset = c(0, -0.45), pch = 15, xpd = TRUE)
```


Figure 6: Genome whide A anf B alleles profile, obtained from one SNP array.