

HT73XX Low Power Consumption LDO

Features

- Ultra low quiescent current: 4μA (typ.)
- High input voltage (up to 12V)
- Output voltage: 1.8V, 2.5V, 2.7V, 3.0V, 3.3V, 3.5V, 5.0V
- Output voltage accuracy: tolerance ±3%
- Maximum output current: 250mA
- · Low dropout voltage
- · Low temperature coefficient
- TO-92, SOT-89 package

Applications

- · Battery-powered equipment
- · Voltage regulator for microprocessor
- · Voltage regulator for LAN cards

- · Wireless Communication equipment
- · Audio/Video equipment

General Description

The HT73XX series is a set of three-terminal, low power, high voltage regulators implemented in CMOS technology. The series features extremely low quiescent current which is typically $4\mu A.$ They allow input voltages as high as 12V. The device provides large current with a significantly small dropout voltage.

The HT73XX consists of a high-precision voltage reference, an error correction circuit, and a current limited output driver. They are available with several fixed output voltages ranging from 1.8V to 5.0V. CMOS technology ensures low dropout voltage and low current consumption. Although designed primarily as fixed voltage regulators, these devices can be used with external components to generate variable voltages and currents.

Selection Table

Part No.	Output Voltage	Package	Marking
HT7318	1.8V		
HT7325	2.5V		
HT7327	2.7V		
HT7330	3.0V	TO-92 SOT-89	73XX-A (for TO-92) 73XX-A (for SOT-89)
HT7333	3.3V		
HT7335	3.5V		
HT7350	5.0V		

Note: "XX" stands for output voltages.

For lead free devices, TO-92 package will add a "#" mark at the end of the date code, whereas SOT-89 package will add a "#" mark at the end of the marking.

Block Diagram

Pin Assignment

Absolute Maximum Ratings

Supply Voltage	V_{SS} -0.3V to V_{SS} +14V	Storage Temperature	50°C to 125°C
Power Consumption (*1)	500mW	Operating Temperature	40°C to 85°C
Power Consumption (*2)	500mW		

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

*1: applied to TO-92

*2: applied to SOT-89

Electrical Characteristics

HT7318, +1.8V Output Type

Ta=25°C

Symbol	Parameter		Test Conditions	Min.	Turn	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Offic
V _{OUT}	Output Voltage	2.8V	I _{OUT} =40mA	1.746	1.8	1.854	V
I _{OUT(MAX)}	Maximum Output Current	2.8V	V _{OUT} ≥1.62V	150	_	_	mA
ΔV _{OUT} *	Load Regulation	2.8V	1mA≤I _{OUT} ≤60mA	_	45	90	mV
V _{DROP**}	Dropout Voltage	_	I _{OUT} =40mA	_	170	_	mV
I _{SS}	Quiescent Current	2.8V	No load	_	4	8	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	I _{OUT} =40mA 2.8V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	2.8V	I _{OUT} =40mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

HT7325, +2.5V Output Type

Ta=25°C

Symbol	Parameter		Test Conditions		Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	Min.	Тур.	IVIAX.	Unit
V _{OUT}	Output Voltage	3.5V	I _{OUT} =40mA	2.425	2.5	2.575	V
I _{OUT(MAX)}	Maximum Output Current	3.5V	V _{OUT} ≥2.25V	180	_	_	mA
ΔV _{OUT} *	Load Regulation	3.5V	1mA≤I _{OUT} ≤60mA	_	45	90	mV
V _{DROP**}	Dropout Voltage	_	I _{OUT} =40mA	_	110	_	mV
I _{SS}	Quiescent Current	3.5V	No load	_	4	8	μА
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	_	I _{OUT} =40mA 3.5V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
<u>Δ</u> V _{OUT} ΔT _a	Temperature Coefficient	3.5V	I _{OUT} =40mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

HT7327, +2.7V Output Type

Ta=25°C

Comple ed	Dovernotor		Test Conditions		T	Max	11
Symbol	Parameter	V _{IN}	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	3.7V	I _{OUT} =40mA	2.619	2.7	2.781	V
I _{OUT(MAX)}	Maximum Output Current	3.7V	V _{OUT} ≥2.43V	200	_	_	mA
ΔV _{OUT} *	Load Regulation	3.7V	1mA≤I _{OUT} ≤80mA	_	45	90	mV
V _{DROP**}	Dropout Voltage	_	I _{OUT} =40mA	_	100	_	mV
I _{SS}	Quiescent Current	3.7V	No load	_	4	8	μА
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	Line Regulation	_	I _{OUT} =40mA 3.7V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	3.7V	I _{OUT} =40mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

Rev. 1.30 3 January 26, 2005

HT7330, +3.0V Output Type

Ta=25°C

Cumbal	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
V _{OUT}	Output Voltage	4V	I _{OUT} =40mA	2.91	3	3.09	V
I _{OUT(MAX)}	Maximum Output Current	4V	V _{OUT} ≥2.7V	250	_	_	mA
ΔV _{OUT} *	Load Regulation	4V	1mA≤I _{OUT} ≤80mA	_	45	90	mV
V _{DROP} **	Dropout Voltage	_	I _{OUT} =40mA	_	95	_	mV
I _{SS}	Quiescent Current	4V	No load	_	4	8	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation		I _{OUT} =40mA 4V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
<u>Δ</u> V _{OUT} <u>Δ</u> T _a	Temperature Coefficient	4V	I _{OUT} =40mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

HT7333, +3.3V Output Type

Ta=25°C

Symbol	Parameter		Test Conditions	Min.	Tres	Max	Unit
Symbol	Parameter	V _{IN}	Conditions	WIII.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	4.3V	I _{OUT} =40mA	3.201	3.3	3.399	V
I _{OUT(MAX)}	Maximum Output Current	4.3V	V _{OUT} ≥2.97V	250	_	_	mA
ΔV _{OUT} *	Load Regulation	4.3V	1mA≤I _{OUT} ≤80mA	_	45	90	mV
V _{DROP} **	Dropout Voltage	_	I _{OUT} =40mA	_	90	_	mV
I _{SS}	Quiescent Current	4.3V	No load	_	4	8	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	I _{OUT} =40mA 4.3V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
<u>Δ</u> Vουτ <u>Δ</u> Ta	Temperature Coefficient	4.3V	I _{OUT} =40mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

HT7335, +3.5V Output Type

Ta=25°C

Symbol	Parameter	Test Condition		Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Oiiit
V _{OUT}	Output Voltage	4.5V	I _{OUT} =40mA	3.395	3.5	3.605	V
I _{OUT(MAX)}	Maximum Output Current	4.5V	V _{OUT} ≥3.15V	250	_	_	mA
ΔV _{OUT} *	Load Regulation	4.5V	1mA≤l _{OUT} ≤80mA	_	45	90	mV
V _{DROP} **	Dropout Voltage	_	I _{OUT} =40mA	_	80	_	mV
I _{SS}	Quiescent Current	4.5V	No load	_	4	8	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	_	I _{OUT} =40mA 4.5V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
ΔV OUT ΔT a	Temperature Coefficient	4.5V	I _{OUT} =80mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

HT7350, +5.0V Output Type

Ta=25°C

Cumbal	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Oille
V _{OUT}	Output Voltage	6V	I _{OUT} =40mA	4.85	5	5.15	V
I _{OUT(MAX)}	Maximum Output Current	6V	V _{OUT} ≥4.5V	250	_	_	mA
ΔV _{OUT} *	Load Regulation	6V	1mA≤l _{OUT} ≤100mA	_	45	90	mV
V _{DROP**}	Dropout Voltage	_	I _{OUT} =40mA	_	60	_	mV
I _{SS}	Quiescent Current	6V	No load	_	4	8	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	I _{OUT} =40mA 6V≤V _{IN} ≤12V	_	0.2	0.3	%/V
V _{IN}	Input Voltage	_	_	_	_	12	V
$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{a}}}$	Temperature Coefficient	6V	I _{OUT} =80mA -40°C <ta<85°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<85°c<>	_	±0.7	_	mV/°C

Note:

Application Circuits

[&]quot;*" Regulation is measured at constant junction temperature, using pulsed ON time.

[&]quot;**" Dropout is measured at constant junction temperature, using pulsed ON time, and the criterion is V_{OUT} inside target value $\pm 2\%$.

Package Information

TO-92 Outline Dimensions

Symbol		Dimensions in mil				
Symbol	Min.	Nom.	Max.			
Α	170	_	200			
В	170	_	200			
С	500	_	_			
D	11	_	20			
E	90	_	110			
F	45	_	55			
G	45	_	65			
Н	130	_	160			
I	8	_	18			
α	4°	_	6°			

SOT-89 Outline Dimensions

Symbol		Dimensions in mil	
Symbol	Min.	Nom.	Max.
Α	173	_	181
В	64	_	72
С	90	_	102
D	35	_	47
Е	155	_	167
F	14	_	19
G	17	_	22
Н	_	59	_
I	55	_	63
J	14	_	17

Product Tape and Reel Specifications

TO-92 Reel Dimensions (Unit: mm)

Package Up, Flat Side Up

Package Up, Flat Side Down

SOT-89 Reel Dimensions

SOT-89

Symbol	Description	Dimensions in mm
A	Reel Outer Diameter	180±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	12.75+0.15
D	Key Slit Width	1.9±0.15
T1	Space Between Flange	12.4+0.2
T2	Reel Thickness	17–0.4

TO-92 Carrier Tape Dimensions

TO-92

Symbol	Description	Dimensions in mm
I1	Taped Lead Length	(2.5)
Р	Component Pitch	12.7±1.0
P ₀	Perforation Pitch	12.7±0.3
P ₂	Component to Perforation (Length Direction)	6.35±0.4
F ₁	Lead Spread	2.5+0.4 -0.1
F ₂	Lead Spread	2.5+0.4 -0.1
Δh	Component Alignment	0±0.1
W	Carrier Tape Width	18.0+1.0 -0.5
W ₀	Hold-down Tape Width	6.0±0.5
W ₁	Perforation Position	9.0±0.5
W ₂	Hold-down Tape Position	(0.5)
H ₀	Lead Clinch Height	16.0±0.5
H ₁	Component Height	Less than 24.7
D ₀	Perforation Diameter	4.0±0.2
t	Taped Lead Thickness	0.7±0.2
Н	Component Base Height	19.0±0.5

Note: Thickness less than 0.38±0.05mm~0.5mm

P0 Accumulated pitch tolerance: ± 1 mm/20pitches.

() Bracketed figures are for consultation only

SOT-89 Carrier Tape Dimensions

SOT-89

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0+0.3
		-0.1
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	5.5±0.05
D	Perforation Diameter	1.5+0.1
D1	Cavity Hole Diameter	1.5+0.1
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.10
A0	Cavity Length	4.8±0.1
В0	Cavity Width	4.5±0.1
K0	Cavity Depth	1.8±0.1
t	Carrier Tape Thickness	0.30±0.013
С	Cover Tape Width	9.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999

Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233

Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031 Tel:0755-83465589

Fax:0755-83465590 ISDN: 0755-8346559

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel:010-66410030, 66417751, 66417752

Fax:010-66410125

Holmate Semiconductor, Inc. (USA Sales Office)

46712 Fremont Blvd., Fremont, CA 94538

Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2005 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.30 12 January 26, 2005