MAINTITLE

Nikolaj Roager Christensen

Student Colloquium in Physics and Astronomy, Aarhus University

March 2021

TITLEIMAGE

MAINTITLE

Introduction [3 MIN]

Theory and physical background [10 MIN] Solved systems

Eulers Method and the 4th order Runge-Kutta Method [10 MIN] Euler's Method 4th order Runge Kutta

Testing the methods [5 MIN]

Introducing Adaptive step size [5 MIN] When adaptive step-size fails

Non-analytical systems: Toroidal coils and dipoles [10 MIN]

Conclusion and question

Introduction, what and why

Introduction, what and why

Introduction, what and why

▶ When analytical solutions are not practical.

- ▶ When analytical solutions are not practical.
- ► Testing experimental setups.

- ▶ When analytical solutions are not practical.
- ► Testing experimental setups.

- ▶ When analytical solutions are not practical.
- ► Testing experimental setups.

- ▶ When analytical solutions are not practical.
- ► Testing experimental setups.
- ► Simulations are not experiments!

► Some repetition from Electrodynamics

- ► Some repetition from Electrodynamics
- ► The Lorentz force (SI units):

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E}).$$

- ► Some repetition from Electrodynamics
- ► The Lorentz force (SI units):

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E}).$$

▶ Only 1 particle! so pre-programmed depending on the setup.

- ► Some repetition from Electrodynamics
- ► The Lorentz force (SI units):

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E}).$$

- ▶ Only 1 particle! so pre-programmed depending on the setup.
- ► Could use potentials $\phi(\vec{r}, t) \vec{A}(\vec{r}, t)$ and Hamiltonian.

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

ightharpoonup $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

ightharpoonup $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

► Same as Centripetal force: Cyclotron motion

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

$$ightharpoonup$$
 $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

- ► Same as Centripetal force: Cyclotron motion
- Cyclotron radius and frequency:

$$R = \frac{v_{\perp}m}{|a|B}$$
 $\omega_c = \frac{|q|B}{m}$.

Solenoid with N=1000 turns per m, I=5 A, r=1 m, $|\vec{B}|\approx 6$ mT. Proton with $E_{kin}=1$ MeV/c² ($|v|\approx 3.195\times 10^5$ m/s)

$$Rpprox 0.5\,\mathrm{m\,sin}(heta)$$
 $T=rac{2\pi}{\omega_c}pprox 10\,\mathrm{\mu s}$

Analytical: proton in a solenoid, side/front-view

$$R pprox 0.5 \, \mathrm{m} \, \mathrm{sin}(heta) \quad T = rac{2\pi}{\omega_c} pprox 10 \, \mathrm{\mu s}$$

Analytical: proton in a solenoid

$$R pprox 0.5 \, \mathrm{m} \, \mathrm{sin}(\theta)$$
 $T = \frac{2\pi}{\omega_c} pprox 10 \, \mathrm{\mu s}$

Analytical: proton in a solenoid, speed

$$R pprox 0.5\,\mathrm{m\,sin}(heta)$$
 $T = rac{2\pi}{\omega_c} pprox 10\,\mathrm{\mu s}$

► Electric forces do work.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric forces do work.
- Practical example, the Cyclotron.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric forces do work.
- Practical example, the Cyclotron.
- ► Single gab, oscillating field.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric forces do work.
- Practical example, the Cyclotron.
- ► Single gab, oscillating field.
- ► Final speed:

$$\frac{R|q|B}{m} = v_{\perp}$$

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

Ordinary differential equation*s.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3
- ► Algorithms exists for ODEs:

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

Ordinary differential equation*s.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3
- ► Algorithms exists for ODEs:

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

► We have a:

$$\ddot{\vec{r}} = \frac{q}{m}(\dot{\vec{r}} \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)).$$

Ordinary differential equation*s.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3
- ► Algorithms exists for ODEs:

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

► We have a:

$$\ddot{\vec{r}} = \frac{q}{m}(\dot{\vec{r}} \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)).$$

► Here:

$$\mathbf{X} = \begin{pmatrix} \vec{r} \\ \dot{\vec{r}} \end{pmatrix} \quad f_{ode}(\vec{r},t) = \begin{pmatrix} \dot{\vec{r}} \\ \frac{q}{m} (\dot{\vec{r}} \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)) \end{pmatrix}.$$

The ODE to solve

```
auto ODE = [...](const state_type Data, state_type &
   dDatadt, const double t){
    //Extract position and velocity from data
    vec pos = vec(Data[0],Data[1],Data[2]);
    vec velocity = vec(Data[3],Data[4],Data[5]);
    //Lorentz+Newtons 2nd law
    vec F = Charge*(Fields.get_Efield(pos,t)+
        cross(velocity,Fields.get Bfield(pos,t)));
    vec dVdt = F*Inv mass;
    //Save derivative of data
    dDatadt[0]=velocity.x;
```

Let $h = t_{i+1} - t_i > 0$ be constant.

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

► How would you find $X(t_{i+1})$:

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

► How would you find $\mathbf{X}(t_{i+1})$:

The Forward Euler's Method

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

- ► How would you find $X(t_{i+1})$:
- ► (Explicit) Forward Euler's Method:

$$\mathbf{X}(t_{i+1}) = \mathbf{X}(t_i) + hf_{ode}(\mathbf{X}(t_i), t_i).$$

► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3

The Forward Euler's Method

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

- ► How would you find $X(t_{i+1})$:
- ► (Implicit) Backward Euler's Method:

$$X(t_{i+1}) = X(t_i) + hf_{ode}(X(t_{i+1}), t_i).$$

► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3

The Forward Euler's Method

- Let $h = t_{i+1} t_i > 0$ be constant.
- ► h, $\mathbf{X}(t)$, t_i and f_{ode} are known.

$$\dot{\mathbf{X}} = f_{ode}(\mathbf{X}(t), t).$$

- ► How would you find $X(t_{i+1})$:
- ► (Explicit) Forward Euler's Method:

$$\mathbf{X}(t_{i+1}) = \mathbf{X}(t_i) + hf_{ode}(\mathbf{X}(t_i), t_i).$$

► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3

► Multiple justifications for why.

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_{i+1}) = \mathbf{X}(t_i) + hf_{ode}(\mathbf{X}(t_i), t_i) + h^2 \ldots + \ldots$$

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_{i+1}) = \mathbf{X}(t_i) + hf_{ode}(\mathbf{X}(t_i), t_i) + h^2 \ldots + \ldots$$

- ▶ "Local truncation error" $h^2 = h^{p+1}$.
- ▶ Global error $h = h^p$.

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_{i+1}) = \mathbf{X}(t_i) + hf_{ode}(\mathbf{X}(t_i), t_i) + h^2 \ldots + \ldots$$

- ▶ "Local truncation error" $h^2 = h^{p+1}$.
- ▶ Global error $h = h^p$.
- Convergence, but not uniform.

► In general.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dth f_{ode}(\mathbf{X}(au), au)$$

► In general.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt = h f_{ode}(\mathbf{X}(au), au)$$

▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.

► In general.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt = h f_{ode}(\mathbf{X}(au), au)$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- Guess $\tau = t_i$.

► In general.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt = h f_{ode}(\mathbf{X}(au), au)$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- Guess $\tau = t_i$.
- ► More generally, (*Explicit* and *single step*), Runge-Kutta family:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t'} f_{ode}(\mathbf{X}(t_i), t_i) dt + \ldots \int_{t^{(m)}}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt$$

▶ In general.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt = h f_{ode}(\mathbf{X}(au), au)$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- Guess $\tau = t_i$.
- ▶ More generally, (*Explicit* and *single step*), Runge-Kutta family:

$$\begin{aligned} \mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) &= \int_{t_i}^{t'} f_{ode}(\mathbf{X}(t_i), t_i) dt + \ldots \int_{t^{(m)}}^{t_{i+1}} f_{ode}(\mathbf{X}(t_i), t_i) dt \\ &= h \sum_{j=1}^{m} c_j f_{ode}(\mathbf{X}(\tau_j), \tau_j) \end{aligned}$$

- ▶ Use $f_{ode}(\mathbf{X}(t_i), t_i)$ to approximate $\mathbf{X}(\tau_1)$ etc.
- ► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

Explicit Runge Kutta methods

► We want:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{i=1}^m b_i \mathbf{K}_i$$

▶ With: $\mathbf{K}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$, $\mathbf{K}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{K}_1, t_i + c_2h)$ etc.

► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016:

Explicit Runge Kutta methods

► We want:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{i=1}^m b_j \mathbf{K}_j$$

- ▶ With: $\mathbf{K}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$, $\mathbf{K}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{K}_1, t_i + c_2h)$ etc.
- ▶ Want exact to p'th order. Can be found with taylor expansion of $\mathbf{X}(t_i)$.

► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016:

Explicit Runge Kutta methods

► We want:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{i=1}^m b_i \mathbf{K}_i$$

- ▶ With: $\mathbf{K}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$, $\mathbf{K}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{K}_1, t_i + c_2h)$ etc.
- ▶ Want exact to p'th order. Can be found with taylor expansion of $\mathbf{X}(t_i)$.
- ▶ 2nd order (Heun's method):

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \frac{h}{2}(\mathbf{k}_1 + \mathbf{k}_2)$$

$$\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + h\mathbf{k}_1, t_i + h)$$

► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016:

The 4th order Runge Kutta method

RK4, often simply called the Runge Kutta method:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \frac{h}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

$$\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + \frac{h}{2}\mathbf{k}_1, t_i + \frac{h}{2})$$

$$\mathbf{k}_3 = f_{ode}(\mathbf{X}(t_i) + \frac{h}{2}\mathbf{k}_2, t_i + \frac{h}{2})$$

$$\mathbf{k}_4 = f_{ode}(\mathbf{X}(t_i) + h\mathbf{k}_3, t_i + h)$$

Wikipedia-user HilberTraum, published under creative commins: CC BY-SA 4.0

The 4th order Runge Kutta method

RK4, often simply called the Runge Kutta method:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$
 $\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$
 $\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + \frac{h}{2}\mathbf{k}_1, t_i + \frac{h}{2})$
 $\mathbf{k}_3 = f_{ode}(\mathbf{X}(t_i) + \frac{h}{2}\mathbf{k}_2, t_i + \frac{h}{2})$
 $\mathbf{k}_4 = f_{ode}(\mathbf{X}(t_i) + h\mathbf{k}_3, t_i + h)$

Almost default in scipy. integrate.solve_ivp and matlab ode45.

Wikipedia-user HilberTraum, published under creative commins: CC BY-SA 4.0

The General explicit Runge Kutta method

General explicit, single step, fixed size, Runge Kutta method

$$\begin{split} \mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) &= h \sum_{j=1}^m b_j \mathbf{K}_j \\ \mathbf{k}_1 &= f_{ode}(\mathbf{X}(t_i), t_i) \\ \mathbf{k}_2 &= f_{ode}(\mathbf{X}(t_i) + h a_{21} \mathbf{k}_1, t_i + c_2 h) \\ \mathbf{k}_3 &= f_{ode}(\mathbf{X}(t_i) + h a_{31} \mathbf{k}_1 + h a_{32} \mathbf{k}_2, t_i + c_3 h) \end{split} \ \vdots$$

The General explicit Runge Kutta method

General explicit, single step, fixed size, Runge Kutta method

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{j=1}^{m} b_j \mathbf{K}_j$$

$$\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{k}_1, t_i + c_2h)$$

$$\mathbf{k}_3 = f_{ode}(\mathbf{X}(t_i) + ha_{31}\mathbf{k}_1 + ha_{32}\mathbf{k}_2, t_i + c_3h) \quad \vdots$$

Expressed in Butcher tableu:

$$\begin{array}{c|ccccc}
c_1 &= 0 & & & & & & \\
c_2 & & a_{21} & & & & & \\
c_3 & & a_{31} & a_{32} & & & & \\
c_n & & a_{n1} & a_{n2} & \dots & & \\
\hline
& b_1 & b_2 & \dots & & \\
\end{array}$$

Euler Implementations

```
state_type Data = Data0;
state_type dDatadt;
size_t time_res = T/timestep;
for (size t i = 1; i < time res; ++i)</pre>
{
    double t=i*dt:
    ODE(Data,dDatadt,t);
    //Euler time evolution
    //Data +=timestep*dDatadt; 1 variable
    for (uint i = 0; i < Data.size(); ++i)</pre>
        Data[i] += timestep * dDatadt[i];
    save_step( Data , i*timestep );
};
```

RK4 Implementations (1/2)

```
state_type Data = Data0;
state_type temp=Data0;
state_type K1,K2,K3,K4;
size_t time_res = T/timestep;
for (size_t i = 1; i < time_res; ++i)</pre>
{
    double t=i*timestep;
    //substep 1
    ODE(Data, K1,t);
    for (uint i = 0; i<Data.size(); ++i)</pre>
        temp[i]=Data[i]+timestep*K1[i]/2;
    //substep 2
    ODE(Data, K2, t+timestep/2);
    for (uint i = 0; i < Data.size(); ++i)</pre>
        temp[i]=Data[i]+timestep*K2[i]/2;
```

RK4 Implementations (2/2)

```
//substep 3
    ODE(Data,K3,t+timestep/2);
    for (uint i = 0; i<Data.size(); ++i)</pre>
        temp[i]=Data[i]+timestep*K3[i];
    //substep 4
    ODE(temp, K4, t+timestep);
    //Read data
    for (uint i = 0; i < Data.size(); ++i)</pre>
        Data[i]+=timestep*(K1[i]+2.0*K2[i]+2.0*K3[i]+
   K4[i])/6.0;
    save_step( Data , i*timestep );
}
```

"Correct" way

```
#include <boost/array.hpp>
#include <boost/numeric/odeint.hpp>
using namespace boost::numeric::odeint;
typedef boost::array< double, 6 > state_type;
size_t steps = integrate_const(
   runge kutta4< state type >(),
   ODE. //Lorentz-force
   Data0 ,//{pos0,v0}
   0.0 . //t0=0
   T , //max time
   timestep ,//length of each step
    save_step //User defined save data function
);
```

▶ Test, same proton in a solenoid use $\theta = 60^{\circ}$ reference, had:

$$R pprox 0.5 \, \mathrm{m} \, \mathrm{sin}(heta) pprox 0.45 \, \mathrm{m}$$
 $T = rac{2\pi}{\omega_c} pprox 10 \, \mathrm{\mu s}$

▶ Test, same proton in a solenoid use $\theta = 60^{\circ}$ reference, had:

$$R pprox 0.5 \,\mathrm{m} \,\mathrm{sin}(heta) pprox 0.45 \,\mathrm{m}$$
 $T = \frac{2\pi}{\omega_c} pprox 10 \,\mathrm{\mu s}$

► Compare Analytic, Euler, Runge-Kutta 4.

▶ Test, same proton in a solenoid use $\theta = 60^{\circ}$ reference, had:

$$R \approx 0.5 \,\mathrm{m} \,\mathrm{sin}(\theta) \approx 0.45 \,\mathrm{m}$$
 $T = \frac{2\pi}{\omega_c} \approx 10 \,\mathrm{\mu s}$

- ► Compare Analytic, Euler, Runge-Kutta 4.
- ightharpoonup Consider $\theta=60^{\circ}$, $h=0.01\,\mu s$, $h=0.1\,\mu s$ and $h=0.1\,\mu s$.

▶ Test, same proton in a solenoid use $\theta = 60^{\circ}$ reference, had:

$$R pprox 0.5 \,\mathrm{m} \,\mathrm{sin}(heta) pprox 0.45 \,\mathrm{m}$$
 $T = rac{2\pi}{\omega_c} pprox 10 \,\mathrm{\mu s}$

- ► Compare Analytic, Euler, Runge-Kutta 4.
- lacktriangle Consider $heta=60^\circ$, $h=0.01\,\mu s$, $h=0.1\,\mu s$ and $h=0.1\,\mu s$.
- Check error on $|\vec{v}|$, $R = \sqrt{y^2 + z^2}$ and x(t).

At a glance, 3D view

$$h = t_{i+1} - t_i = 0.01 \, \mu s$$

At a glance, 3D view

$$h = t_{i+1} - t_i = 0.1 \,\mu s$$

At a glance, 3D view

$$h = t_{i+1} - t_i = 1.0 \,\mu s$$

At a glance, front view, no border

At a glance, front view, no border

Constant radius?

Constant radius?

Constant speed?

Constant speed?

Error as function of h

► *h* must be small "enough"

- ► h must be small "enough"
- ► Hard to pick, and may change:

- ► h must be small "enough"
- ► Hard to pick, and may change:
- ► Inhomogeneous fields (here dibole)

- ► h must be small "enough"
- ► Hard to pick, and may change:
- ► Inhomogeneous fields (here dibole)
- ► time dependent fields (here the cyclotron)

- ► h must be small "enough"
- ► Hard to pick, and may change:
- ► Inhomogeneous fields (here dibole)
- time dependent fields (here the cyclotron)
- ► Let the computer pick *h*.

► Reduce *h* until the "error" is small enough

- ▶ Reduce *h* until the "error" is small enough
- ▶ Use 2 different methods, $\mathbf{x}(t_{i+1})$, $\mathbf{x}'(t_{i+1})$.

- ▶ Reduce *h* until the "error" is small enough
- ▶ Use 2 different methods, $\mathbf{x}(t_{i+1})$, $\mathbf{x}'(t_{i+1})$.
- ▶ Approximate "Error" as $|\mathbf{x}(t_{i+1}) \mathbf{x}'(t_{i+1})|$.

- ▶ Reduce *h* until the "error" is small enough
- ▶ Use 2 different methods, $\mathbf{x}(t_{i+1})$, $\mathbf{x}'(t_{i+1})$.
- ▶ Approximate "Error" as $|\mathbf{x}(t_{i+1}) \mathbf{x}'(t_{i+1})|$.
- ▶ Most often order 4 and 5 with same k_i.

Runge-Kutta Dormund Prince 4-5,

▶ ode45 in Matlab , RungeKutta_dopri5 in boost::odeint.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{j=1}^m b_j \mathbf{K}_j$$
 $\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{i=1}^m b_j' \mathbf{K}_j$

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{j=1}^{m} b_j \mathbf{K}_j$$

$$\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{k}_1, t_i + c_2h)$$

$$\mathbf{k}_3 = f_{ode}(\mathbf{X}(t_i) + ha_{31}\mathbf{k}_1 + ha_{32}\mathbf{k}_2, t_i + c_3h) \quad \vdots$$

Runge-Kutta Dormund Prince 4-5,

▶ ode45 in Matlab , RungeKutta_dopri5 in boost::odeint.

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{j=1}^m b_j \mathbf{K}_j$$
 $\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{i=1}^m b_j' \mathbf{K}_j$

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = h \sum_{j=1}^{m} b_j \mathbf{K}_j$$

$$\mathbf{k}_1 = f_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{k}_2 = f_{ode}(\mathbf{X}(t_i) + ha_{21}\mathbf{k}_1, t_i + c_2h)$$

$$\mathbf{k}_3 = f_{ode}(\mathbf{X}(t_i) + ha_{31}\mathbf{k}_1 + ha_{32}\mathbf{k}_2, t_i + c_3h) \quad \vdots$$

► 4th and 5th order, hence ode 45. Keeps 5th order term if error less than threshold

Butcher Tableu of Dormund Prince 4/5

c _i	a_{ij}							
0 153 10 45889 1	$\begin{array}{c} \frac{1}{5} \\ \frac{3}{40} \\ \frac{40}{40} \\ \frac{45}{19372} \\ \hline 6561 \\ 9017 \\ \hline 3168 \\ \hline 38 \\ \hline 384 \\ \end{array}$	$\begin{array}{c} \frac{9}{40} \\ -\frac{56}{15} \\ 25360 \\ \hline 2187 \\ -\frac{355}{33} \\ 0 \end{array}$	$\begin{array}{r} -\frac{32}{9} \\ \underline{64448} \\ \underline{6561} \\ \underline{46732} \\ \underline{5247} \\ \underline{500} \\ \underline{1113} \end{array}$	212 729 49 176 125 192	$- \frac{5103}{18656} \\ - \frac{2187}{6784}$	<u>11</u> 84		
/b /b'	$\begin{array}{r} 35\\ \overline{384}\\ \underline{5179}\\ \overline{57600} \end{array}$	0 0	$\begin{array}{r} 500 \\ \hline 1113 \\ 7571 \\ \hline 16695 \end{array}$	125 192	$-\frac{2187}{6784}\\\frac{393}{640}$	$-\frac{\frac{11}{84}}{\frac{92097}{339200}}$	$\frac{0}{187}$	$\frac{1}{40}$

Non-analytic systems

Questions