

Projeto de circuitos fotônicos em silício

Aula 1: introdução ao conteúdo da disciplina

Prof. Adolfo Fernandes Herbster

- O que é um circuito?
 - Conjunto de componentes correlacionados de maneira à desempenhar uma funcionalidade desejada;
 - Exemplos: circuito elétrico (quais componentes?)
- O que é um circuito integrado?
 - Conjunto de componentes discretos e blocos individuais que resultam em um circuito com funcionalidade global;
 - Exemplo: circuito elétrico integrado

Fonte: https://www.raspberrypi.com/

- O que é um circuito fotônico integrado?
 - Conjunto de componentes discretos e blocos individuais que resultam em um circuito com funcionalidade global;

Fonte: https://brightphotonics.eu/

- O que é um circuito fotônico integrado?
 - Conjunto de componentes discretos e blocos individuais que resultam em um circuito com funcionalidade global;

- O que é um circuito fotônico integrado?
 - Conjunto de componentes discretos e blocos individuais que resultam em um circuito com funcionalidade global;

- O que é um circuito fotônico integrado?
 - Conjunto de componentes discretos e blocos individuais que resultam em um circuito com funcionalidade global;

Overview of building blocks available in VPItoolkit PDK GPIC

O espectro eletromagnético

$$\lambda f = c \rightarrow \lambda = {^c}/{_f}$$

- Condição básica do guiamento: reflexão interna total
- Condições:
 - guia sem perdas (ou baixa perdas);
 - Índice de refração do meio menor que o índice do guia;

- Por qual motivo utilizar Silício?
 - Compatível com a tecnologia CMOS (alta escala);
 - Transparente na região de 1.3 1.6 um;
 - Alto contraste de índice menor footprint;
 - Baixo custo;
 - Sem detecção na região 1.3 1.6 um;
 - Sem efeito eletro-óptico;
 - Alto constraste de índice acoplamento;
 - Falhas na emissão de luz (eficiência);

– Por qual motivo utilizar Silício?

Figure 4.2: Wavelength dependence of the absorption coefficient for several semiconductor materials. (After Ref. [2]; © 1979 Academic Press; reprinted with permission.)

Contraste de índice

Contraste de índice

Sílica em sílica
Contraste ~0,01 - 0,1
Diâmetro do modo ~ 8 um
Curvatura ~5 mm
Tamanho ~10 cm²

Fosfato de índio (InP)
Contraste ~0,2 - 0,5
Diâmetro do modo ~ 2 um
Curvatura ~ 0,5 mm
Tamanho ~ 10 mm²

Contraste ~1,0 - 2,5

Diâmetro do modo ~ 0,4 um

Curvatura ~ 5 um

Tamanho ~ 0,1 mm²

Adaptado de http://www.photonics.intec.ugent.be/download/pub_4128.pdf

Redução de dimensão (10000x)

Silicon photonic 2019-2025 market forecast by application

(Source: Silicon Photonics 2020 report, Yole Développement, 2020)

© 2020 | www.yole.fr – www.i-micronews.com

Readiness of silicon photonic players

(Source: Silicon Photonics 2020 report, Yole Développement, 2020)

© 2020 | www.yole.fr – www.i-micronews.com

Metodologia simples de projeto

Adaptado de http://www.photonics.intec.ugent.be/download/pub 4128.pdf

Abstração

Adaptado de http://www.photonics.intec.ugent.be/download/pub_4128.pdf

Abstração

Adaptado de http://www.photonics.intec.ugent.be/download/pub_4128.pdf

Ementa

Item	Tema
1	Revisão - eletromagnetismo
2	Problema modal
3	Guia slab simétrico
4	Guia slab assimétrico
5	Guias retangulares
6	Acopladores de guias ópticos
7	Teoria dos modos acoplados
8	Acopladores ópticos
9	Interferômetros de Mach-Zehnder
10	Ressonadores ópticos em anel
11	Grades de Bragg
12	Layout de circuitos fotônicos
13	Modelos compactos de componentes

- Atividades de laboratório
 - Lumerical MODE
 - Lumerical FDTD
 - Lumerical Interconnect
 - Klayout
 - Lumerical CML
- Outras ferramentas:
 - Python
 - Matlab/Octave

Livros

Aplicações

- Material processing;
- Displays and lighting;
- Optical communication;
- Sensing;
- High performance computing;
- LIDAR;

Optical communications

https://www.juniper.net/assets/us/en/local/pdf/nxtwork/silicon-photonics.pdf

Optical communications

https://www.juniper.net/assets/us/en/local/pdf/nxtwork/silicon-photonics.pdf

Optical communications

