How to open a coffee & tea shop successfully?

Team 8: Jiawen Zhang, Kaiwen Hu, Yijun Zhou

TABLE OF CONTENTS

01

Project Summary

04

Model, Improvement, and Evaluation

02

Data Description, management

05

Project Conclusion

03

Visualization

06

Milestones

1. Project Summary - Background

1. 64% of American adults currently consume coffee every day.

(Reuters, NCA)

According to a study conducted by the NCA, this is the highest rate since 2012. In our <u>infographic about bizarre sleep habits</u>, you can see that some famous writers were also regular coffee drinkers.

1. Project Summary

This project aims to develop a system to evaluate important factors that affect the **rating(response variable)** of coffee & tea shops on popular social media review systems—Yelp and Google Map. In the end, we will examine how **potential features(price, location, open hours, photos, reviews, search/popularity trend, etc)** impact the rating of the coffee & tea shop.

2. Data Description - overview

In the data set, we have 6,243 coffee & tea shops and 220+ distinct features.

2. Data Description - features

Static features (groupby **shop**):

- Shops' basic information like: address, whether provide takeout...
- Number of shops nearby
- Yolo result from detecting review pictures
- Demographic Information in state level

4	business_id text	latitude double precision	longitude double precision	review_count double precision	price_level double precision	HasTV bigint □	less_50km bigint	class_0 bigint	class_1 bigint
1	00rY5F9ltW-IWf2Ev96kOg	39.7791327	-86.1645255	277	2	0	466	22	0
2	00sOoojttpdZljH8VgOU0A	27.9963217	-82.3726623	17	1	2	1090	0	0
3	018SgjILDCKLR7gFSEkbGQ	35.9087666	-86.8843908	9	1.39	2	460	[null]	[null]
4	02nb6Cl8w-2EoSEkQdk2Wg	39.9361704128	-75.1469422175	101	1	2	2152	4	0
5	02nUjwVmJGTgGyili-hklg	39.9525122617	-75.17 1 7417315	11	1.39	2	2184	0	0

2. Data Description - features

Dynamic features (averaged by **month**):

- Review vectors <- Word2Vec
- Review attribute like useful, funny
- Previous rating (or rating from last month)
- Searching Index of Coffee & Tea for this month
- Simple Sentiment result (positive, negative count) <- Vadar

Target variable:

_4	business_id text	year-month text	useful_review double precision	funny_review double precision	changing_rating double precision	v_0 double precision	v_1 double precision
1	-0epFLgYq2C1Jo_W4F0BKw	2012-07	1	0	5	-0.08564641478257778	0.10195921861377114
2	-0epFLgYq2C1Jo_W4F0BKw	2012-08	2	0	4.5	-0.06783923277808301	-0.4727796292889801
3	-0epFLgYq2C1Jo_W4F0BKw	2013-07	2	0	4.571428571428571	0.2837716763483032	-0.029454608160235426

2. Data Description - features

2. Data Management - collecting

Google Place API Census Bureau API

9

2. Data Management - distributing

Direct data packages:

☐ yelp_academic_dataset_review.json

116,078 KB

280.234 KB

5,216,669 KB

176,372 KB

3,284,501 KB

import

2

Google Cloud PostgreSQL Download & Execute Directly To Google Cloud

Setup files:

- > == census_Bureau_final
- > 🗎 census_bureau
- > \equiv census_bureau_clean
- google_place_distance
- > \equiv google_place_info
- > \equiv google_trend
- > \equiv state_code
- > \equiv yelp_checkin
- > \equiv yelp_coffee_info
- > \equiv yelp_coffee_info_processed

Data files:

3. Data Visualization - rating

3. Data Visualization

4. Model - Overview

- Multiple Linear Regression
- Penalized Regression
 - Lasso
 - Ridge
 - **■** Elastic Net
- Autoregressive

4. Model - Multiple Linear Regression

Multiple Linear Regression - good fit

Uses two or more independent variables to predict the outcome of a dependent variable

$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_{1,i} + \hat{b}_2 X_{2,i} + \dots + \hat{b}_p X_{p,i}$$

- Assumption check
 - Linearity: The relationship between X and the mean of Y is linear.
 - Homoscedasticity: The variance of residual is the same for any value of X.
 - Independence: Observations are independent of each other.
 - Normality: For any fixed value of X, Y is normally distributed.

4. Multiple Linear Regression Preliminary results

Sample model summary:

Model performance:

R-squared: 0.690

Adj. R-squared: 0.677

F-statistic: 52.51

Prob (F-statistic): 0.00

Log-Likelihood: -183.29

AIC: 692.6

BIC: 1718.

	coef	std err	t	P> t	[0.025	0.975]
avg_review_funny	-0.0578	0.022	-2.655	0.008	-0.101	-0.015
avg_review_cool	0.0863	0.015	5.754	0.000	0.057	0.116
avg_stars	0.1588	0.023	6.823	0.000	0.113	0.204
avg_review_count	0.0002	7.73e-05	2.522	0.012	4.34e-05	0.000
avg_useful	9.901e-05	5.73e-05	1.728	0.084	-1.33e-05	0.000
avg_funny	0.0001	3.78e-05	2.814	0.005	3.22e-05	0.000
avg_cool	-0.0002	7.16e-05	-2.363	0.018	-0.000	-2.88e-05
avg_fans	-0.0017	0.000	-3.448	0.001	-0.003	-0.001
avg_compliment_hot	-0.0005	0.000	-1.266	0.206	-0.001	0.000
avg_compliment_more	-0.0023	0.004	-0.606	0.544	-0.010	0.005
avg_compliment_profile	-0.0008	0.003	-0.248	0.804	-0.007	0.006
avg_compliment_cute	0.0003	0.004	0.075	0.941	-0.008	0.008
avg_compliment_list	0.0060	0.006	1.084	0.278	-0.005	0.017
avg_compliment_note	-0.0001	0.000	-0.505	0.614	-0.001	0.000
avg_compliment_plain	-4.009e-05	0.000	-0.172	0.863	-0.000	0.000
avg_compliment_cool	-0.0003	0.000	-1.044	0.296	-0.001	0.000
avg_compliment_funny	-0.0003	0.000	-1.044	0.296	-0.001	0.000
avg_compliment_writer	-0.0010	0.001	-1.822	0.069	-0.002	7.68e-05
avg_compliment_photos	-0.0006	0.000	-1.892	0.059	-0.001	2.03e-05
yelp_years	-0.0303	0.005	-6.608	0.000	-0.039	-0.021
avg_total_compliment	0.0003	0.000	1.462	0.144	-0.000	0.001

4. Multiple Linear Regression - Assumption Check

The points are basically symmetrically distributed around horizontal line in the plot, with a roughly constant variance. And the point does not follow a linear or quadratic shaped pattern.

Residuals are pretty much normally distributed.

Linearity / Homoscedasticity / Normality / Independence /

4. Model - Correlation plot for some variable

weighted_rating
BusinessParking
num_rating
outside
avg_stars
avg_fans
avg_compliment_list
avg_compliment_writer
Total:_Estimate_max
100, 000to149,999_Estimate_min
\$200,000 or more_Estimate_min
less_10km

The left shows the correlation heatmap of some variables.

weighted_rating
price_level
open_days
food
total
avg_stars
avg_conpliment_profile
avg_compliment_plain
avg_compliment_plain
avg_compliment_photos
Total:_Estimate_max
Total:_Estimate_min
60,0000t099,999_Estimate_min
less_100m

4. Model - Penalized Regression

Lasso Regression

 Lasso Regression shrinks the regression coefficients towards zero by penalizing the regression model with a penalty term called L1-norm, which is the sum of the absolute coefficients.

Ridge Regression

 Ridge regression shrinks the regression coefficients with minor contribution to the outcome to zero by penalizing the regression model with a penalty term called L2-norm.

Elastic Net regression

 Elastic Net produces a regression model that is penalized with both the L1-norm and L2-norm. The consequence of this is to effectively shrink coefficients (like in ridge regression) and to set some coefficients to zero (as in LASSO).

4. Model - Penalized Regression Hyperparameter Tuning

Use K-Fold to find optimized alpha:

Config: {'alpha': 0.0030150753768844224}

These two results match.

Note: This method is used for all these three penalized regressions to find the best model.

4. Model - Penalized Regression - result

LASSO Regression

Elastic Net Regression Ridge Regression

R²:0.6747

Test MAE: 0.236

R²: 0.6916

Test MAE: 0.243

R²: 0.7005

Test MAE: 0.262

4. Model - Penalized Regression - assumption

4. Model - Autoregressive - description

Autoregressive Model

 Model factors with autocorrelation (correlation between observations at adjacent time), and current Y response variable depend on previous Y variable.

$$Yt = \beta_0 + \beta_1 * Y_{t-1} + \sum_{i=1}^{n} \alpha_i * X_{t,i} + error_t$$

4. Model - Autoregressive - Result

	OLS Regression	Results	
Dep. Variable:	у	R-squared:	0.771
Model:	OLS	Adj. R-squared:	0.771
Method:	Least Squares	F-statistic:	1620.
Date:	Sun, 22 May 2022	Prob (F-statistic):	0.00
Time:	00:02:45	Log-Likelihood:	-48581.
No. Observations:	113189	AIC:	9.763e+04
Df Residuals:	112953	BIC:	9.991e+04
Df Model:	235		
Covariance Type:	nonrobust		
			20 02

4. Model - AutoRegressive - Assumption check

4. Model - Result Comparison

Getting better!

Note: All R² are adjusted R².

5. Project conclusion

Significant factors: (Factors with p value <0.05) [This table is only part of the features]

Feature	Coefficient	Feature meaning
User_avg_stars	1.2106	The average rating reviewers gave to any shop.
Pre_rating	0.2304	Rating from last month.
avg_review_cool	0.2232	The average cool of reviews for certain shop.
v_17,39	0.1576; 0.1486;	Important review vectors (hard to interpret).
class_4,8	0.1597; 0.1813;	Count of class_4(airplane), class_8(boat) in review pictures.
RestaurantsTakeOut	0.0321	Whether the shop can take out or not.
BusinessParking	0.0288	Whether the shop provide business parking lot.
BikeParking	0.0274	Whether the shop provide Bike parking lot.
Outdoorseating	0.0194	Whether the shop provide outdoor seating.

6. Milestones

Designing data schema and finish data collecting

Spring
Week 1-2

Selecting model and start constructing models

Week 5-6

Finish the final report and presentation

Week 9-10

Winter Week 8-10

Exploring the resources and start collecting data

Week 3-4

Data cleaning and data analysis

Week 7-8

Improving our model and Evaluate the model

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

