

Sciences

Norwegian University of Science and Technology Department of Mathematical TMA4145 Linear Methods Fall 2018

Exercise set 5

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

- 1 Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence in a metric space (X,d).
 - a) Show that $(x_n)_{n\in\mathbb{N}}$ is a bounded subset of X.
 - **b)** Show that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence.
- 2 Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space, and suppose that (x_n) and (y_n) are convergent sequences with $\lim_n x_n = x$ and $\lim_n y_n = y$. Show that

$$\lim_{n \to \infty} \langle x_n, y_n \rangle = \langle x, y \rangle.$$

(This was exam problem 5b in Spring 2015.)

3 We denote by c_f the vector space of all sequences with only finitely many non-zero terms. Show that c_f is not a Banach space with the norm $\|\cdot\|_{\infty}$. As usual, $\|\cdot\|_{\infty}$ is defined by

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$$

for a sequence $x = (x_n)_{n \in \mathbb{N}} \in c_f$.

 $\boxed{\mathbf{4}}$ For each $n \in \mathbb{N}$, let

$$x^{(n)} := (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots),$$

which we regard as an element of the space $\ell^p(\mathbb{R})$ (for any given $p \in [1, \infty]$).

- a) Find the limit of the sequence $(x^{(n)})_{n\geq 1}$ in $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$. Prove your claim.
- **b)** Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^1(\mathbb{R}), \|\cdot\|_1)$? If the limit exists, find it and prove that it is the limit.

- c) Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^2(\mathbb{R}), \|\cdot\|_2)$? If the limit exists, find it and prove that it is the limit.
- 5 Let C[a,b] be the vector space of all continuous functions $f:[a,b]\to\mathbb{R}$. We will consider two norms on this space, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$.
 - a) Prove that for all $f \in C[a, b]$ we have

$$||f||_1 \leq (b-a) ||f||_{\infty}$$
.

- **b)** Let (f_n) be a sequence in C[a, b]. Prove that if $f_n \to f$ with respect to $\|\cdot\|_{\infty}$ then $f_n \to f$ with respect to $\|\cdot\|_1$.
- c) Show that the reverse of the statement in b) is not always true.