МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Качество и метрология программного обеспечения» Тема: Измерение характеристик динамической сложности программ с помощью профилировщика SAMPLER

Студент гр. 7304	Шарапенков И.И.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучение возможности измерения динамических характеристик программ с помощью профилировщиков на примере профилировщика SAMPLER.

Постановка задачи.

- 1. Ознакомиться с документацией на монитор SAMPLER и выполнить под его управлением тестовые программы test_cyc.c и test_sub.c с анализом параметров повторения циклов, структуры описания циклов, способов профилирования процедур и проверкой их влияния на точность и чувствительность профилирования.
- 2. Скомпилировать и выполнить под управлением SAMPLER'а программу на C, разработанную в 1-ой лабораторной работе.

Выполнить разбиение программы на функциональные участки и снять профили для двух режимов:

- а. измерение только полного времени выполнения программы;
- b. измерение времен выполнения функциональных участков (ФУ);
- 3. Выявить "узкие места", связанные с ухудшением производительности программы, ввести в программу усовершенствования и получить новые профили. Объяснить смысл введенных модификаций программ.

Ход выполнения.

1. Была изучена документация монитора SAMPLER, после чего под его управлением были запущены тестовые программы test_cyc.c и test_sub.c. Для проведения измерений использовалась старая версия профилировщика SAMPLER, запуск которого осуществлялся через DOSBox. Результаты работы монитора программ test_cyc.c и test_sub.c продемонстрированы в Таблицах 1 и 2 соответственно:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
ИСХОД. 1103.	Поз.	(мкс)	проходов	время (мкс)
1:9	1:11	4335.47	1	4335.47
1:11	1:13	8668.43	1	8668.43
1:13	1:15	21678.20	1	21678.20
1:15	1:17	43348.87	1	43348.87
1:17	1:20	4335.47	1	4335.47
1:20	1:23	8670.11	1	8670.11
1:23	1:26	21672.34	1	21672.34
1:26	1:29	43348.03	1	43348.03
1:29	1:35	4334.64	1	4334.64
1:35	1:41	8670.11	1	8670.11
1:41	1:47	21676.53	1	21676.53
1:47	1:51	43348.87	1	43348.87

Таблица 1: Результаты профилирования тестовой программы test_cyc.c

Исход. Поз. Прием. Поз.	Общее время	Кол-во	Среднее	
	Поз.	(мкс)	проходов	время (мкс)
1:24	1:26	433697.35	1	433697.35
1:26	1:28	867391.34	1	867391.34
1:28	1:30	2168480.87	1	2168480.87
1:30	1:32	4336936.59	1	4336936.59

Таблица 2: Результаты профилирования тестовой программы test_sub.c

2. При помощи Borland C++ была скомпилирована программа, написанная на Си, из первой лабораторной работы (program.cpp) после чего была запущена под управлением SAMPLER'а в режиме измерения полного времени выполнения программы. Результаты измерения приведены на Таблице 3:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
Поз.	Поз.	(мкс)	проходов	время (мкс)
1:45	1:61	2060.04	1	2060.04

Таблица 3: Результаты профилирования программы из первой лабораторной работы (полное время работы программы)

- 3. Программ из первой лабораторной работы была разбита на функциональные участки следующим образом:
 - а. Функция main:
 - i. строка 52 строка 66: проверка значения x, вызов соответствующих функций
 - b. Функция erf:
 - і. строка 9 строка 19: инициализация переменных
 - іі. строка 19 строка 26: основной цикл
 - с. Функция erf:
 - і. строка 31 строка 40: инициализация переменных
 - іі. строка 40 строка 45: основной цикл
- 4. Разбитая на функциональные участки программа была скомпилирована и запущена под управлением SAMPLER'a. Результаты профилирования показаны на Таблице 4:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:8	1:19	207.85	1	207.85
1:19	1:26	464.31	1	464.31
1:26	1:66	284.95	1	284.95
1:31	1:40	294.17	1	294.17
1:40	1:45	238.86	1	238.86

1:45	1:66	253.94	1	253.94
1:52	1:8	247.24	1	247.24
1:52	1:31	64.53	1	64.53
1:66	1:52	1.68	1	1.68

Таблица 4: Результаты профилирования программы из первой лабораторной работы (разбиение на функциональные участки)

Суммарное время работы T = 2057,53 мкс.

результатам профилирования видно, ЧТО наибольшее время выполнения у функционального участка с циклом в функции erf. Однако в целом большинство участков имеют примерно одинаковое время выполнения. С помощью избавления от ненужных промежуточных переменных, констант, избавления от ненужных условий цикла, удалось сократить время выполнения участков. Измененная программа была записана файл многих program update.cpp.

5. Изменённая программа была скомпилирована и запущена под управлением SAMPLER'a. Результаты профилирования показаны на Таблице 5:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:8	1:15	87.16	1	87.16
1:15	1:21	421.56	1	421.56
1:21	1:52	302.55	1	302.55
1:26	1:32	207.85	1	207.85
1:32	1:36	190.25	1	190.25
1:36	1:52	270.71	1	270.71
1:43	1:8	160.08	1	160.08
1:43	1:26	61.18	1	61.18

1:52	1:43	1.68	1	1.68

Таблица 5: Результаты профилирования измененной программы из первой лабораторной работы

Суммарное время работы T = 1703,02 мкс, уменьшение времени работы составило 354,51 мкс (~ 17%).

Выводы.

В ходе выполнения лабораторной работы была изучена возможность измерения динамических характеристик программ с помощью профилировщиков и было измерено с помощью профилировщика SAMPLER время выполнения всего кода и время выполнения функциональных участков тестовых программ test_cyc.c и test_sub.c, а также программы из первой лабораторной работы.

В ходе профилирования было выяснено, что на цикл в функции erf приходится наибольшее время выполнения среди всех функциональных участков, после чего была проведена оптимизация программы за счёт удаления ненужных переменных и вследствие этого сокращения ненужных вычислений, что привело к уменьшению времени работы на 354,51 мкс, то есть на 17% от времени работы неоптимизированной программы.