

Slides adapted from Emily Fox

Classification: Logistic Regression from Data

Machine Learning: Jordan Boyd-Graber University of Colorado Boulder

Administrivia Questions

Administrivia Questions

Administrivia Questions

Reminder: Logistic Regression

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]} \tag{1}$$

$$P(Y=1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(2)

- Discriminative prediction: p(y|x)
- Classification uses: ad placement, spam detection
- What we didn't talk about is how to learn β from data

Logistic Regression: Objective Function

$$\mathcal{L} \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(4)

Algorithm

- Initialize a vector B to be all zeros
- **2** For t = 1, ..., T
 - For each example $\vec{x_i}$, y_i and feature j:
 - Compute $p \equiv \Pr(y = 1 | \vec{x_i})$
 - Set $\beta[j] = \beta[j] + \lambda(y-p)x_i$
- 3 Output the parameters $\beta_1, ..., \beta_d$.

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

BCCCDDDD

y=1

AAAABBBC

y=0

(Assume step size $\lambda = 1.0$.)

You first see the positive example. What's the update for β_0 ?

$$\beta[j] = \beta[j] + \lambda(y - p)x_i \tag{5}$$

y=1

y=0

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

You first see the positive example. What's the update for β_0 ? $\beta_0 = 0 + 1.0 * (1.0 - .5)1.0 = 0.5$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_A ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_A ?

$$\beta_A = 0 + 1.0 * (1.0 - .5) 4.0 = 2.0$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_B ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

v=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_B ?

$$\beta_B = 0 + 1.0 * (1.0 - .5)3.0 = 1.5$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_C ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

v=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_C ?

$$\beta_C = 0 + 1.0 * (1.0 - .5)1.0 = 0.5$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_D ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

v=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_D ?

$$\beta_D = 0 + 1.0 * (1.0 - .5)0.0 = 0.0$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

y=0

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

Now you see the negative example. What's the update for β_0 ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

y=0AAAABBBC

(Assume step size $\lambda = 1.0$.)

BCCCDDDD

Now you see the negative example. What's the update for β_0 ? What's the activation?

$$\beta[j] = \beta[j] + \lambda(y - p)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

Now you see the negative example. What's the update for β_0 ? $\sigma.5 + 1.5 + 1.5 + 0 = 0.97$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

y=0

A A A A B B B C (Assume step size $\lambda = 1.0$.)

BCCCDDDD

Now you see the negative example. What's the update for β_0 ?

$$\beta_0 = 0.5 + 1.0 * (0.0 - 0.97) = -0.47$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_A ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_A ?

$$\beta_A = 2.0 + 1.0 * (0.0 - 0.97)0.0 = 2.0$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_B ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_B ?

$$\beta_B = 1.5 + 1.0 * (0.0 - 0.97) 1.0 = 0.53$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_C ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

y=0

AAAABBBC

BCCCDDDD

(Assume step size $\lambda = 1.0$.)

What's the update for β_C ?

$$\beta_C = 0.5 + 1.0 * (0.0 - 0.97)3.0 = -2.41$$

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_D ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

y=0

BCCCDDDD

What's the update for β_D ?

$$\beta[j] = \beta[j] + \lambda(y - \rho)x_i \tag{5}$$

y=1

AAAABBBC

(Assume step size $\lambda = 1.0$.)

BCCCDDDD

$$\beta_D = 0.0 + 1.0 * (0.0 - 0.97) 4.0 = -3.88$$

You can do your normal update

- You can do your normal update
- Then

$$\beta_j = \beta_j - \lambda 2\mu \beta_j = \beta_j \cdot (1 - 2\lambda\mu) \tag{6}$$

- You can do your normal update
- Then

$$\beta_j = \beta_j - \lambda 2\mu \beta_j = \beta_j \cdot (1 - 2\lambda\mu) \tag{6}$$

Doesn't depend on X or Y. Just makes all your weights smaller

- You can do your normal update
- Then

$$\beta_j = \beta_j - \lambda 2\mu \beta_j = \beta_j \cdot (1 - 2\lambda\mu) \tag{6}$$

- Doesn't depend on X or Y. Just makes all your weights smaller
- But difficult to update every feature every time

- You can do your normal update
- Then

$$\beta_j = \beta_j - \lambda 2\mu \beta_j = \beta_j \cdot (1 - 2\lambda\mu) \tag{6}$$

- Doesn't depend on X or Y. Just makes all your weights smaller
- But difficult to update every feature every time
- Following this up, we note that we can perform m successive "regularization" updates by letting $B_j = B_j \cdot (1 2\lambda\mu)^m$. The basic idea of the new algorithm is to not perform regularization updates for zero-valued x_j 's, but instead to simply keep track of how many such updates would need to be performed to update β_i