TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR S, 28 jun 2024 Prof. Nelson Luís Dias

0

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL. VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [20] As variáveis envolvidas na operação de uma bomba centrífuga operando no regime turbulento são a vazão volumétrica Q (L³ T⁻¹), a diferença de pressão Δp produzida pela bomba, a potência da bomba P, o diâmetro do rotor D, a velocidade angular de rotação ω , e a massa específica do fluido ρ . Utilizando **obrigatoriamente** como variáveis comuns (no máximo) ω , D e ρ , obtenha os grupos adimensionais deste problema. Dica: dimensionalmente, pressão é força sobre área e potência é trabalho por unidade de tempo.

SOLUÇÃO DA QUESTÃO:

As dimensões fundamentais envolvidas são M, L e T. Eis a matriz dimensional:

Há 6 variáveis e 3 dimensões fundamentais. *Esperamos* que o número de grupos adimensionais seja 6-3=3 (neste caso, isso está certo porque o posto da matriz dimensional é 3; no entanto, é mais fácil *supor* que o posto é 3 e prosseguir). As variáveis em comum são D, ω e ρ (note que elas contêm, entre si, todas as 3 dimensões fundamentais). Então,

$$\begin{split} \Pi_1 &= Q D^a \omega^b \rho^c, \\ & [\![\Pi_1]\!] = \left[\mathsf{L}^3 \, \mathsf{T}^{-1} \right] [L]^a \left[\mathsf{T}^{-1} \right]^b \left[\mathsf{M} \, \mathsf{L}^{-3} \right]^c \\ & 1 = \mathsf{M}^c \mathsf{L}^{3+a-3c} \mathsf{T}^{-1-b}, \\ & c = 0, \\ 3+a-3c = 0, \\ & -1-b = 0, \Rightarrow \\ & a = -3, \\ & b = -1, \\ & \Pi_1 = \frac{Q}{D^3 \omega}. \end{split}$$

$$\begin{split} \Pi_2 &= \Delta p D^a \omega^b \rho^c, \\ & [\![\Pi_2]\!] = [\mathsf{M} \, \mathsf{L}^{-1} \, \mathsf{T}^{-2}] \, [L]^a \, [\![\mathsf{T}^{-1}]\!]^b \, [\![\mathsf{M} \, \mathsf{L}^{-3}]\!]^c \\ & 1 = \mathsf{M}^{1+c} \mathsf{L}^{-1+a-3c} \mathsf{T}^{-2-b}, \\ & 1+c=0, \\ & 1+c=0, \\ & -1+a-3c=0, \\ & -2-b=0, \Rightarrow \\ & a=-2, \\ & b=-2, \\ & c=-1, \\ & \Pi_2 = \frac{\Delta p}{D^2 \omega^2 \rho}. \end{split}$$

$$\Pi_{3} = PD^{a}\omega^{b}\rho^{c},$$

$$\llbracket \Pi_{3} \rrbracket = \left[\mathsf{M} \, \mathsf{L}^{2} \, \mathsf{T}^{-3} \right] \left[L \right]^{a} \left[\mathsf{T}^{-1} \right]^{b} \left[\mathsf{M} \, \mathsf{L}^{-3} \right]^{c}$$

$$1 = \mathsf{M}^{1+c} \mathsf{L}^{2+a-3c} \mathsf{T}^{-3-b},$$

$$1 + c = 0,$$

$$2 + a - 3c = 0,$$

$$-3 - b = 0, \Rightarrow$$

$$a = -2,$$

$$b = -2,$$

$$c = -1,$$

$$\Pi_{3} = \frac{P}{D^{5}\omega^{3}\rho} \blacksquare$$

$$F(x) \equiv \int_0^x e^{-u^3} du, \qquad x \ge 0.$$

Expanda o integrando em série de Taylor em torno de x = 0, integre termo a termo, e obtenha a série de Taylor de F(x) em torno de x = 0.

SOLUÇÃO DA QUESTÃO:

A série de Taylor de e^x em torno de zero é bem conhecida:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

logo,

$$e^{-x^3} = 1 - x^3 + \frac{x^6}{2!} - \frac{x^9}{3!} + \dots + \frac{(-1)^n x^{3n}}{n!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{n!}.$$

Agora,

$$F(x) = \int_0^x e^{-u^3} du$$

$$= \int_0^x \left[\sum_{n=0}^\infty \frac{(-1)^n u^{3n}}{n!} \right] du$$

$$= \sum_{n=0}^\infty \int_0^x \frac{(-1)^n u^{3n}}{n!} du$$

$$= \sum_{n=0}^\infty \frac{(-1)^n x^{3n+1}}{(3n+1)n!} \blacksquare$$

$$x^2y'' + 2xy' + \frac{5}{2}y = 0.$$

SOLUÇÃO DA QUESTÃO:

Esta é uma equação de Euler.

$$y = x^{r},$$

$$y' = rx^{r-1},$$

$$y'' = (r-1)rx^{r-2}.$$

Levando na EDO,

$$(r-1)r + 2r + \frac{5}{2} = 0,$$

$$r^2 - r + 2r + \frac{5}{2} = 0,$$

$$r^2 + r + \frac{5}{2} = 0,$$

$$r = \frac{-1 \pm \sqrt{1 - 4 \times 5/2}}{2}$$

$$= \frac{-1 \pm \sqrt{1 - 10}}{2}$$

$$= \frac{-1 \pm \sqrt{-9}}{2}$$

$$= -\frac{1}{2} \pm \frac{3i}{2}.$$

A solução portanto é da forma

$$y = c_1 x^{-\frac{1}{2} + \frac{3i}{2}} + c_2 x^{-\frac{1}{2} - \frac{3i}{2}}$$
$$= x^{-\frac{1}{2}} \left[c_1 x^{\frac{3i}{2}} + c_2 x^{-\frac{3i}{2}} \right].$$

Mas

$$x^{\frac{3i}{2}} = \exp\left(\ln\left(x^{\frac{3i}{2}}\right)\right) = \exp\left(\frac{3i}{2}\ln\left(x\right)\right)$$
$$= \cos\left(\frac{3}{2}\ln(x)\right) + i \sec\left(\frac{3}{2}\ln(x)\right).$$

Portanto,

$$y = x^{-\frac{1}{2}} [c_1(C + iS) + c_2(C - iS)].$$

Faça

$$c_1 = \frac{(A - iB)}{2},$$

$$c_2 = \frac{(A + iB)}{2};$$

então,

$$y = \frac{x^{-\frac{1}{2}}}{2} \left[(A - iB)(C + iS) + (A + iB)(C - iS) \right]$$

$$= \frac{x^{-\frac{1}{2}}}{2} \left[(AC + BS) + i(AS - BC) + (AC + BS) + i(BC - AS) \right]$$

$$= x^{-\frac{1}{2}} \left[(AC + BS) \right]$$

$$= x^{-\frac{1}{2}} \left[A\cos\left(\frac{3}{2}\ln(x)\right) + B\sin\left(\frac{3}{2}\ln(x)\right) \right] \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + x^2 y = x^2, \qquad y(0) = y_0.$$

SOLUÇÃO DA QUESTÃO:

Faça y = uv;

$$\frac{d(uv)}{dx} + x^{2}uv = x^{2},$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + x^{2}uv = x^{2},$$

$$u\left[\frac{dv}{dx} + v^{2}v\right] + v\frac{du}{dx} = x^{2},$$

$$\frac{dv}{dx} + x^{2}v = 0;$$

$$\frac{dv}{v} = -x^{2}dx,$$

$$\int_{v_{0}}^{v(x)} \frac{dv}{v} = -\int_{\xi=0}^{x} \xi^{2}d\xi = -\frac{x^{3}}{3},$$

$$\ln\left(\frac{v(x)}{v_{0}}\right) = -\frac{x^{3}}{3},$$

$$v(x) = v_{0}\exp\left(-\frac{x^{3}}{3}\right)\frac{du}{dx} = x^{2},$$

$$\frac{du}{dx} = \frac{1}{v_{0}}x^{2}\exp\left(\frac{x^{3}}{3}\right),$$

$$\int_{u_{0}}^{u(x)} du = \frac{1}{v_{0}}\int_{\xi=0}^{x} \xi^{2}\exp\left(\frac{\xi^{3}}{3}\right)d\xi,$$

$$u(x) - u_{0} = \frac{1}{v_{0}}\left[\exp\left(\frac{x^{3}}{3}\right) - 1\right],$$

$$u(x) = u_{0} + \frac{1}{v_{0}}\left[\exp\left(\frac{x^{3}}{3}\right) - 1\right];$$

$$y(x) = u(x)v(x) = \left\{u_{0} + \frac{1}{v_{0}}\left[\exp\left(\frac{x^{3}}{3}\right) - 1\right]\right\}v_{0}\exp\left(-\frac{x^{3}}{3}\right)$$

$$= u_{0}v_{0}\exp\left(-\frac{x^{3}}{3}\right) + \left[1 - \exp\left(-\frac{x^{3}}{3}\right)\right]$$

$$= y_{0}\exp\left(-\frac{x^{3}}{3}\right) + \left[1 - \exp\left(-\frac{x^{3}}{3}\right)\right]$$

5 [20] Lembrando que

$$\frac{C}{(z-a)(z-b)} = \frac{A}{z-a} + \frac{B}{z-b},$$

onde A e B precisam ser determinados, calcule a série de Laurent de

$$f(z) = \frac{2}{(z+1)(z-1)}$$

em torno de z = 0 na região |z| > 1.

SOLUÇÃO DA QUESTÃO:

Note que

$$|z| > 1,$$

$$\frac{1}{|z|} = \left| \frac{1}{z} \right| < 1.$$

Então,

$$\frac{2}{(z+1)(z-1)} = \left[\frac{1}{z-1} - \frac{1}{z+1}\right]$$

$$= \left[\frac{1}{z\left(1 - \frac{1}{z}\right)} - \frac{1}{z\left(1 + \frac{1}{z}\right)}\right]$$

$$= \frac{1}{z} \left[\frac{1}{\left(1 - \frac{1}{z}\right)} - \frac{1}{\left(1 + \frac{1}{z}\right)}\right]$$

$$= \frac{1}{z} \left[\left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots\right)$$

$$-\left(1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \frac{1}{z^4} - \dots\right)\right]$$

$$= \frac{1}{z} \left[\frac{2}{z} + \frac{2}{z^3} + \frac{2}{z^5} + \dots\right]$$

$$= \frac{2}{z^2} + \frac{2}{z^4} + \frac{2}{z^6} + \dots \blacksquare$$