AMCS 394E: Contemp. Topics in Computational Science. Computing with the finite element method

David I. Ketcheson and Manuel Quezada de Luna

Given a PDE, for example

$$-\frac{d^2u(x)}{dx^2}=f(x), \quad \forall x\in\Omega=(0,1),$$

how can we find an approximation of its solution?

From the previous lectures:

From the previous lectures:

* The solution u(x) belongs to some infinite dimensional space \tilde{V} .

From the previous lectures:

- * The solution u(x) belongs to some infinite dimensional space \tilde{V} .
- * We want to consider

$$V_h = \{ v \in C^0(\Omega) \mid v|_K \in \mathbb{P}^p(K) \}$$

From the previous lectures:

- * The solution u(x) belongs to some infinite dimensional space \tilde{V} .
- * We want to consider

$$V_h = \{ v \in C^0(\Omega) \mid v|_K \in \mathbb{P}^p(K) \}$$

* We look for a solution $u_h(x) \in V_h$; i.e., we approximate u(x) via continuous piecewise polynomials.

From the previous lectures:

- * The solution u(x) belongs to some infinite dimensional space \tilde{V} .
- * We want to consider

$$V_h = \{ v \in C^0(\Omega) \mid v|_K \in \mathbb{P}^p(K) \}$$

* We look for a solution $u_h(x) \in V_h$; i.e., we approximate u(x) via continuous piecewise polynomials.

From the previous lectures:

From the previous lectures:

* We have a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h .

From the previous lectures:

- * We have a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h .
- * We assume for now the basis is interpolatory: $\varphi_i(x_i) = \delta_{ii}$.

From the previous lectures:

- * We have a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h .
- * We assume for now the basis is interpolatory: $\varphi_i(x_j) = \delta_{ij}$.
- * We expand the solution $u_h(x)$ as follows:

$$u_h(x) = \sum_j U_j \varphi_j(x),$$

where (for this interpolatory basis) $U_j = u_h(x_j)$.

From the previous lectures:

- * We have a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h .
- * We assume for now the basis is interpolatory: $\varphi_i(x_i) = \delta_{ii}$.
- * We expand the solution $u_h(x)$ as follows:

$$u_h(x) = \sum_j U_j \varphi_j(x),$$

where (for this interpolatory basis) $U_j = u_h(x_j)$.

NOTE:

In order to represent the solution $u_h(x)$, we only need the (finitely many) coordinates U_j . These coordinates are indeed the solution of our linear algebraic systems.

The idea of a **weak formulation** is to consider a "less restrictive" version of the PDE.

The idea of a **weak formulation** is to consider a "less restrictive" version of the PDE.

Say I want to compare two functions f(x) and g(x); i.e., are they 'equal' in some domain Ω ?

The idea of a **weak formulation** is to consider a "less restrictive" version of the PDE.

Say I want to compare two functions f(x) and g(x); i.e., are they 'equal' in some domain Ω ?

If
$$f(x) = g(x), \forall x \in \Omega$$

then clearly f(x) = g(x).

The idea of a **weak formulation** is to consider a "less restrictive" version of the PDE.

Say I want to compare two functions f(x) and g(x); i.e., are they 'equal' in some domain Ω ?

If
$$f(x) = g(x), \forall x \in \Omega$$

then clearly f(x) = g(x).

Problem:

This is too restrictive.

The idea of a **weak formulation** is to consider a "less restrictive" version of the PDE.

Say I want to compare two functions f(x) and g(x); i.e., are they 'equal' in some domain Ω ?

If
$$f(x) = g(x), \forall x \in \Omega$$

then clearly f(x) = g(x).

Problem:

This is too restrictive.

Question:

How can we say f(x) = g(x) in a weaker sense?

How can we say f(x) = g(x) in a weaker sense (than pointwise)?

How can we say f(x) = g(x) in a weaker sense (than pointwise)?

We can weaken the question by asking if applying a functional to both equations yields the same number. For instance, does

$$\int_{\Omega} f(x) dx = \int_{\Omega} g(x) dx, \quad \text{hold?}$$

How can we say f(x) = g(x) in a weaker sense (than pointwise)?

We can weaken the question by asking if applying a functional to both equations yields the same number. For instance, does

$$\int_{\Omega} f(x)dx = \int_{\Omega} g(x)dx, \quad \text{hold?}$$

Problem:

This is too weak. For instance,

1,
$$2x$$
, $3x^2$, ..., $(n+1)x^n$

have the same integral over $\Omega := (0, 1)$.

How can we say f(x) = g(x) in a weaker sense (than pointwise)?

We can define that f(x) = g(x) if

$$\int_{\Omega} f(x)dx = \int_{\Omega} g(x)dx \quad \text{and} \quad \int_{\Omega} xf(x)dx = \int_{\Omega} xg(x)dx,$$

and/or consider more functionals.

How can we say f(x) = g(x) in a weaker sense (than pointwise)?

We can define that f(x) = g(x) if

$$\int_{\Omega} f(x) dx = \int_{\Omega} g(x) dx$$
 and $\int_{\Omega} x f(x) dx = \int_{\Omega} x g(x) dx$,

and/or consider more functionals.

Question:

For a given (vector) space V, what is a good set of functionals to weakly define that f(x) = g(x)?

Given a vector space V with some inner product $\langle \cdot, \cdot \rangle$, $f, g \in V$ are weakly equal if

$$\langle f - g, v \rangle = 0, \quad \forall v \in V$$

Given a vector space V with some inner product $\langle \cdot, \cdot \rangle$, $f, g \in V$ are weakly equal if

$$\langle f-g,v\rangle=0,\quad\forall v\in V$$

Example

If $V = L^2(\Omega)$, f and g are weakly equal if

$$\int_{\Omega} (f-g)v \ dx = 0, \qquad \forall v \in V$$

Given a vector space V with some inner product $\langle \cdot, \cdot \rangle$, $f, g \in V$ are weakly equal if

$$\langle f-g,v\rangle=0,\quad\forall v\in V$$

Example

If $V = L^2(\Omega)$, f and g are weakly equal if

$$\int_{\Omega} (f-g)v \ dx = 0, \qquad \forall v \in V$$

Note

If $B = \{\varphi\}_i$ is a basis for V, then f = g if

$$\int_{\Omega} (f-g)\varphi_i \ dx = 0, \qquad \forall \varphi_i \in B$$

The **strong form** of a PDE is the differential form; e.g.,

$$-\frac{d^2u(x)}{dx^2}=f(x), \quad \forall x\in\Omega=(0,1)$$

The **strong form** of a PDE is the differential form; e.g.,

$$-\frac{d^2u(x)}{dx^2}=f(x), \quad \forall x\in\Omega=(0,1)$$

The weak form of a PDE holds in a weak sense; e.g.,

$$-\int_0^1 \frac{d^2 u(x)}{dx^2} v dx = \int_0^1 f(x) v dx, \quad \forall v \in V$$

The **strong form** of a PDE is the differential form; e.g.,

$$-\frac{d^2u(x)}{dx^2}=f(x), \quad \forall x\in\Omega=(0,1)$$

The weak form of a PDE holds in a weak sense; e.g.,

$$-\int_0^1 \frac{d^2 u(x)}{dx^2} v dx = \int_0^1 f(x) v dx, \quad \forall v \in V$$

or, integrating by parts:

$$\int_0^1 \frac{du}{dx} \frac{dv}{dx} dx + BCs = \int_0^1 f(x) v dx, \quad \forall v \in V$$

Why and when should we integrate by parts?

Why and when should we integrate by parts?

* If we expect the solution to be not "sufficiently" smooth.

Why and when should we integrate by parts?

- * If we expect the solution to be not "sufficiently" smooth.
- * If we need to impose boundary conditions via a numerical flux.

Why and when should we integrate by parts?

- * If we expect the solution to be not "sufficiently" smooth.
- * If we need to impose boundary conditions via a numerical flux.
- * We need to consider the finite dimensional space we aim to use.

Examples of strong to weak forms

Finite dimensional approximation of the weak form

Strong formulation:

Consider the following PDE in strong form

$$-\frac{d^2u}{dx}=f(x), \qquad \forall x\in\Omega=(0,1),$$

with

$$du/dx|_{x=1}=g_r, \qquad \text{and} \qquad du/dx|_{x=0}=g_l,$$

as boundary conditions.

Finite dimensional approximation of the weak form

Strong formulation:

Consider the following PDE in strong form

$$-\frac{d^2u}{dx}=f(x), \qquad \forall x\in\Omega=(0,1),$$

with

$$du/dx|_{x=1}=g_r, \qquad \text{and} \qquad du/dx|_{x=0}=g_l,$$

as boundary conditions.

Weak formulation:

Finite dimensional approximation of the weak form

Strong formulation:

Consider the following PDE in strong form

$$-\frac{d^2u}{dx}=f(x), \qquad \forall x\in\Omega=(0,1),$$

with

$$du/dx|_{x=1}=g_r,$$
 and $du/dx|_{x=0}=g_l,$

as boundary conditions.

Weak formulation:

* Get the weak form of the PDE and apply the boundary conditions.

Strong formulation:

Consider the following PDE in strong form

$$-\frac{d^2u}{dx}=f(x), \qquad \forall x\in\Omega=(0,1),$$

with

$$du/dx|_{x=1} = g_r$$
, and $du/dx|_{x=0} = g_l$,

as boundary conditions.

Weak formulation:

- * Get the weak form of the PDE and apply the boundary conditions.
- * What is an appropriate space for the solution?

Weak formulation:

$$\int_0^1 \frac{du}{dx} \frac{d\varphi}{dx} dx - [g_r \varphi(1) - g_l \varphi(0)] = \int_0^1 f(x) \varphi dx, \qquad \forall \varphi \in V$$

where $V = H^1(\Omega)$.

Weak formulation:

$$\int_0^1 \frac{du}{dx} \frac{d\varphi}{dx} dx - [g_r \varphi(1) - g_l \varphi(0)] = \int_0^1 f(x) \varphi dx, \qquad \forall \varphi \in V$$

where $V = H^1(\Omega)$.

* The weak solution $u \in V$ is an infinite dimensional solution.

Weak formulation:

$$\int_0^1 \frac{du}{dx} \frac{d\varphi}{dx} dx - [g_r \varphi(1) - g_l \varphi(0)] = \int_0^1 f(x) \varphi dx, \qquad \forall \varphi \in V$$

- where $V = H^1(\Omega)$.
 - * The weak solution $u \in V$ is an infinite dimensional solution.
 - * We need to approximate *u* via a finite dimensional space.

Weak formulation:

$$\int_0^1 \frac{du}{dx} \frac{d\varphi}{dx} \ dx - [g_r \varphi(1) - g_l \varphi(0)] = \int_0^1 f(x) \varphi \ dx, \qquad \forall \varphi \in V$$
 where $V = H^1(\Omega)$.

- * The weak solution $u \in V$ is an infinite dimensional solution.
- * We need to approximate *u* via a finite dimensional space.
- * We can use the space space of continuous piecewise polynomials

$$V_h = \{ \varphi \in C^0(\Omega) \mid \varphi_K \in \mathbb{P}^p(K) \}$$

Finite dimensional weak formulation:

Find $u_h \in V_h$ such that

$$\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} \ dx - [g_r \varphi(1) - g_l \varphi(0)] = \int_0^1 f(x) \varphi \ dx, \qquad \forall \varphi \in V_h$$

Finite dimensional weak formulation:

Find $u_h \in V_h$ such that

$$\underbrace{\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} \ dx - [g_r \varphi(1) - g_l \varphi(0)]}_{=:a(u_h,\varphi)} = \underbrace{\int_0^1 f(x) \varphi \ dx}_{=:F(\varphi)}, \qquad \forall \varphi \in V_h$$

Finite dimensional weak formulation:

Find $u_h \in V_h$ such that

$$\underbrace{\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} \ dx - [g_r \varphi(1) - g_l \varphi(0)]}_{=:a(u_h,\varphi)} = \underbrace{\int_0^1 f(x) \varphi \ dx}_{=:F(\varphi)}, \qquad \forall \varphi \in V_h$$

The finite element problem is then to find $u_h \in V_h$ such that

$$a(u_h, \varphi) = F(\varphi), \quad \forall \varphi \in V_h$$

Galerkin orthogonality

Let $u \in V$ and $u_h, \varphi \in V_h$ and consider

$$a(u,\varphi)-a(u_h,\varphi)=F(\phi)-F(\phi)=0$$

Galerkin orthogonality

Let $u \in V$ and $u_h, \varphi \in V_h$ and consider

$$a(u,\varphi)-a(u_h,\varphi)=F(\phi)-F(\phi)=0$$

Then, we get

$$a(\underbrace{u-u_h},\varphi)=0, \qquad \forall \varphi \in V_h,$$

which means that the error e_h is orthogonal to V_h .

Finite element projection

Given a general function f(x). We want to represent f(x) in V_h . That is, find

$$f_h(x) \in V_h$$
 s.t. $f_h(x) = f(x)$

in a weak sense in V_h .

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Steps:

i. Consider the weak form $\forall v \in V_h$.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

- i. Consider the weak form $\forall v \in V_h$.
- ii. Consider $v = \phi_i \in B = \{\phi_j\}_{j=1}^{\dim(V_h)}$.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

- i. Consider the weak form $\forall v \in V_h$.
- ii. Consider $v = \phi_i \in B = \{\phi_j\}_{j=1}^{\dim(V_h)}$.
- iii. Plug $u_h = \sum_j U_j \phi_j$ into the finite dim. weak form.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

- i. Consider the weak form $\forall v \in V_h$.
- ii. Consider $v = \phi_i \in B = \{\phi_j\}_{j=1}^{\dim(V_h)}$.
- iii. Plug $u_h = \sum_j U_j \phi_j$ into the finite dim. weak form.
- iv. Write down the linear algebra problem.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Steps:

- i. Consider the weak form $\forall v \in V_h$.
- ii. Consider $v = \phi_i \in B = {\{\phi_j\}_{j=1}^{\dim(V_h)}}$.
- iii. Plug $u_h = \sum_i U_i \phi_i$ into the finite dim. weak form.
- iv. Write down the linear algebra problem.

Note:

Always test again ϕ_i and always expand u_h using ϕ_j , then i and j will represent rows and columns, respectively.

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Consider, for example, the finite element problem

$$\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} dx = \int_0^1 f(x)\varphi dx + [g_r\varphi(1) - g_l\varphi_l(0)] =: F(\phi)$$

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Consider, for example, the finite element problem

$$\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} dx = \int_0^1 f(x)\varphi dx + [g_r\varphi(1) - g_l\varphi_l(0)] =: F(\phi)$$

Given a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h . Choose φ to be φ_i .

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Consider, for example, the finite element problem

$$\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} dx = \int_0^1 f(x)\varphi dx + [g_r\varphi(1) - g_l\varphi_l(0)] =: F(\phi)$$

Given a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h . Choose φ to be φ_i . Since $u_h \in V_h$, we have

$$\int_0^1 \frac{d}{dx} \left(\sum_j U_j \varphi_j \right) \frac{d\varphi_i}{dx} dx = \sum_j U_j \int_0^1 \frac{d\varphi_j}{dx} \frac{d\varphi_i}{dx} dx = F(\varphi_i)$$

Given a finite dimensional weak formulation, we need to "translate" the problem to a (non)linear algebra problem.

Consider, for example, the finite element problem

$$\int_0^1 \frac{du_h}{dx} \frac{d\varphi}{dx} dx = \int_0^1 f(x)\varphi dx + [g_r\varphi(1) - g_l\varphi_l(0)] =: F(\phi)$$

Given a basis $B = \{\varphi_i\}_{i=0}^{\dim(V_h)}$ for V_h . Choose φ to be φ_i . Since $u_h \in V_h$, we have

$$\int_0^1 \frac{d}{dx} \left(\sum_j U_j \varphi_j \right) \frac{d\varphi_i}{dx} dx = \sum_j U_j \underbrace{\int_0^1 \frac{d\varphi_j}{dx} \frac{d\varphi_i}{dx} dx}_{=:S_{ij}} = \underbrace{F(\varphi_i)}_{=:F_i}$$

More examples:

Consider the following PDE in strong form:

$$u_t + \nabla \cdot (\mathbf{a}u) - \nabla \cdot \mu \nabla u = 0,$$
 $u = u_B,$ $\forall x \in \Gamma_D,$ $\partial_{\mathbf{n}} u = f(x),$ $\forall x \in \Gamma_N,$ $u(\mathbf{a} \cdot \mathbf{n}) - \mu \partial_{\mathbf{n}} u = g(x),$ $\forall x \in \Gamma_R$

Consider the following PDE in strong form:

$$u_t + \nabla \cdot (\mathbf{a}u) - \nabla \cdot \mu \nabla u = 0,$$

 $u = u_B,$ $\forall x \in \Gamma_D,$
 $\partial_{\mathbf{n}} u = f(x),$ $\forall x \in \Gamma_N,$
 $u(\mathbf{a} \cdot \mathbf{n}) - \mu \partial_{\mathbf{n}} u = g(x),$ $\forall x \in \Gamma_R$

The corresponding weak form is given by

$$\partial_t \int_{\Omega} u\varphi dx + \int_{\Omega} \nabla \cdot (\mathbf{a}u)\varphi dx - \int_{\Omega} \nabla \cdot (\mu \nabla u)\varphi dx = 0, \quad \forall \varphi \in V$$

Consider the following PDE in strong form:

$$egin{aligned} u_t +
abla \cdot (\mathbf{a}u) -
abla \cdot \mu
abla u &= 0, & & & & & & & \\ u &= u_B, & & & & & & & & \\ \partial_\mathbf{n} u &= f(x), & & & & & & & & \\ u(\mathbf{a} \cdot \mathbf{n}) - \mu \partial_\mathbf{n} u &= g(x), & & & & & & & \\ w_t &= 0, & & & & & & & \\ w_t &= 0, & & & & & & & \\ w_t &= 0, & & & & & & \\ w_t &= 0, & & & & & & \\ w_t &= 0, & & & & & & \\ w_t &= 0, & & & & & \\ w_t &= 0, & & & & & \\ w_t &= 0, & & & & \\ w_t &= 0, & & & & \\ w_t &= 0, & \\ w_t &= 0,$$

The corresponding weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx + \int_{\Omega} \nabla \cdot (\mathbf{a} u) \varphi dx - \int_{\Omega} \nabla \cdot (\mu \nabla u) \varphi dx = 0, \quad \forall \varphi \in V$$

$$\int_{\Omega} \nabla \cdot (\mathbf{a} u) \varphi dx = -\int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\partial \Omega} u(\mathbf{a} \cdot \mathbf{n}) \varphi ds$$

Consider the following PDE in strong form:

$$egin{aligned} u_t +
abla \cdot (\mathbf{a} u) -
abla \cdot \mu
abla u &= 0, & & & & & & & \\ u &= u_B, & & & & & & & & \\ \partial_\mathbf{n} u &= f(x), & & & & & & & & \\ u(\mathbf{a} \cdot \mathbf{n}) - \mu \partial_\mathbf{n} u &= g(x), & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

The corresponding weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx + \int_{\Omega} \nabla \cdot (\mathbf{a} u) \varphi dx - \int_{\Omega} \nabla \cdot (\mu \nabla u) \varphi dx = 0, \quad \forall \varphi \in V$$

$$-\int_{\Omega} \nabla \cdot (\mu \nabla u) \varphi dx = \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx - \int_{\partial \Omega} \mu (\nabla u \cdot \mathbf{n}) \varphi ds$$

The weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx - \int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx + B(u, \varphi) = 0, \quad \forall \varphi \in V$$

where $B(u,\varphi)$ is an operator that accounts for the boundary conditions.

The weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx - \int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx + B(u, \varphi) = 0, \quad \forall \varphi \in V$$

where $\mathcal{B}(u,\varphi)$ is an operator that accounts for the boundary conditions.

What is the space V?

The weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx - \int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx + B(u, \varphi) = 0, \quad \forall \varphi \in V$$

where $\mathcal{B}(u,\varphi)$ is an operator that accounts for the boundary conditions.

What is the space V?

$$V = \{ \varphi \in H^1(\Omega) \mid \varphi = 0 \text{ in } \Gamma_D \}.$$

The weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx - \int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx + B(u, \varphi) = 0, \quad \forall \varphi \in V$$

where $B(u, \varphi)$ is an operator that accounts for the boundary conditions.

The boundary conditions are imposed via

$$B(u,\varphi) = \int_{\partial\Omega} \left[u(\mathbf{a} \cdot \mathbf{n}) - \mu(\nabla u \cdot \mathbf{n}) \right] \varphi ds$$

The weak form is given by

$$\partial_t \int_{\Omega} u \varphi dx - \int_{\Omega} u(\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla u \cdot \nabla \varphi dx + B(u, \varphi) = 0, \quad \forall \varphi \in V$$

where $B(u,\varphi)$ is an operator that accounts for the boundary conditions.

The boundary conditions are imposed via

$$B(u,\varphi) = \int_{\partial\Omega} \left[u(\mathbf{a} \cdot \mathbf{n}) - \mu(\nabla u \cdot \mathbf{n}) \right] \varphi ds$$
$$= \int_{\Gamma_N} \left[u(\mathbf{a} \cdot \mathbf{n}) - \mu f \right] \varphi ds + \int_{\Gamma_R} g \varphi ds$$

Note that the integral in Γ_D vanishes since $\varphi = 0$ in Γ_D .

The discrete weak form is given by

$$\partial_t \int_{\Omega} \mathbf{u}_h \varphi dx - \int_{\Omega} \mathbf{u}_h (\mathbf{a} \cdot \nabla \varphi) dx + \int_{\Omega} \mu \nabla \mathbf{u}_h \cdot \nabla \varphi dx + B(\mathbf{u}_h, \varphi) = 0, \quad \forall \varphi \in \mathbf{V}_h$$

To get the **linear algebra** problem, choose $\phi = \phi_i \in B$. Then we get

$$\partial_t \int_{\Omega} \mathbf{u_h} \varphi_i dx - \int_{\Omega} \mathbf{u_h} (\mathbf{a} \cdot \nabla \varphi_i) dx + \int_{\Omega} \mu \nabla \mathbf{u_h} \cdot \nabla \varphi_i dx + B(\mathbf{u_h}, \varphi_i) = 0$$

To get the **linear algebra** problem, choose $\phi = \phi_i \in B$. Then we get

$$\partial_t \int_{\Omega} \mathbf{u}_h \varphi_i dx - \int_{\Omega} \mathbf{u}_h (\mathbf{a} \cdot \nabla \varphi_i) dx + \int_{\Omega} \mu \nabla \mathbf{u}_h \cdot \nabla \varphi_i dx + B(\mathbf{u}_h, \varphi_i) = 0$$

Or in matrix form

$$\sum_{j} \dot{U}_{j} M_{ij} - \sum_{j} U_{j} K_{ij} + \sum_{j} U_{j} S_{ij} + BCs = 0,$$

where M_{ij} , K_{ij} and S_{ij} are the entries of the mass, transport and stiffness matrix.

During the implementation we need to consider the time integration method.

Integration by parts (IBP) in multiple dimensions

Divergence theorem:

$$\int_{\Omega} \nabla \cdot \mathbf{a} dx = \int_{\partial \Omega} \mathbf{a} \cdot \mathbf{n} dx$$

Integration by parts (IBP) in multiple dimensions

Divergence theorem:

$$\int_{\Omega} \nabla \cdot \mathbf{a} dx = \int_{\partial \Omega} \mathbf{a} \cdot \mathbf{n} dx$$

IBP based on the divergence:

$$\int_{\Omega} (\nabla \cdot \mathbf{a}) \varphi dx = -\int_{\Omega} \mathbf{a} \cdot \nabla \varphi dx + \int_{\partial \Omega} (\mathbf{a} \cdot \mathbf{n}) \varphi dx$$