Chi-Square (X2) Test: X-text for Attribute: - A quality or characteristics Eg: - Smiling, laughing, dancing, honest etc., Working Procedure: Step 1:- Null hypothesis (40): Given Statement from problem Step 2: Alternative hypothesis (H1): Opposite of null-hypothesis Step 3:- LOS (x): Given according to problem Step 4: Test Statistic: To calculate expected frequency Ei of any cell E: = (Row total) (column total) Grand total Assuming to is two, test statistic $\chi = \frac{2}{2} \left[\frac{(0i-Ei)^{2}}{Ei} \right]$ appeax. follows x distribution with df = v = (no of rows-1) (no. of columns-1) Step 5: - Conclusion: df = (no of rows-1) (no of columns-1)

Note: First calculate expected Jequency in the following way.

Columns b c d c+d

Rows

$$E(a) = (a+b) (a+c)$$
Rowtotw columntotal
$$(a+b+c+d)$$

). On the basis of info given below about treatment of 200 patients suffering from disease. State wether new treatment is compartively superior to the conventional treatment.

	Favourable	Not Favourable	Total
New	60	30	90
Conventional	40	70	110
Total	100	100	200 (90+110/100+100)

Step 1:- Null hypothesis (Ho): New & Conventional treatments are independent.

Step 2:- Alternative hypothesis (H1): New & conventional treatments are not independent

Step 3:- LOS (x): 5%.

$$\chi^2 = \underbrace{\mathbb{E}\left[\frac{(0:-Ei)^2}{Ei}\right]}$$

$$E(60) = 90 \times 100$$

$$\frac{(60+30)}{(60+30)} \frac{(60+40)}{(60+40)} = 45$$

$$E(140) = 110 \times 100$$

$$\frac{10 \times 100}{200} = 55$$

$$E(70) = 110 \times 100$$

$$\frac{10 \times 100}{200} = 55$$

Calculation of 2

Of (Given Cell Values)	Ei (Calculated in the above way)	Oi-Ei	(Oi-Ei)2	(0;-Ei) Ei
60	45	IS	225	5
30	45	-15	225	5
40	55	15	225	4-09
70	55	15	225	4-09
				E[6:-Ei)]=18-18

Steps: - Conclusion:

The labulated value of χ^2 at 5% LOS with 1 df = χ^2 (0.05,1) = 3.841 (from given tables)

 χ^2_{cal} > $\chi^2_{(0.05,1)}$

: cal is greater than tabulated at 5% Los with 1 df we reject null-hypothesis 40.

Practice problem

From following data, find wether there is any significant
liking in the habit of taking soft drinks among
Categories of employees.

Cout district	Emp	T		
Soft dinks	clerks	Teachers	Officers	Total
Pepsi	10	25	65	100
Thumsup	15	30	65	110
Fanta	50	60	30	140
	75	115	160	350