1. а) Двойственная задача:

$$\begin{cases} 24y_1 + 20y_2 - 4y_3 \to \min \\ 3y_1 + y_2 + 2y_3 \ge 4 \\ y_1 - 3y_3 \ge -1 \\ -2y_1 + y_2 - y_3 = 4 \\ y_1 + 2y_2 - y_3 \ge 7 \\ y_1 \ge 0, y_2 \in \mathbb{R}, y_3 \ge 0 \end{cases}$$

б) У нас $y_2 \in \mathbb{R}$, поэтому мы заменяем его на разницу двух неотрицательных переменных, $y_2 = p_2 - n_2$. Двойственная задача в каноническом виде:

$$\begin{cases} 24y_1 + 20(p_2 - n_2) - 4y_3 \to \min \\ 3y_1 + (p_2 - n_2) + 2y_3 - y_4 = 4 \\ y_1 - 3y_3 - y_5 = -1 \\ -2y_1 + (p_2 - n_2) - y_3 = 4 \\ y_1 + 2(p_2 - n_2) - y_3 - y_6 = 7 \\ y_1 \ge 0, p_2 \ge 0, n_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0, y_6 \ge 0 \end{cases}$$

в) Специальные ограничения можно записать в виде Av = b, где

$$A = \begin{pmatrix} 3 & 1 & -1 & 2 & -1 & 0 & 0 \\ 1 & 0 & 0 & -3 & 0 & -1 & 0 \\ -2 & 1 & -1 & -1 & 0 & 0 & 0 \\ 1 & 2 & -2 & -1 & 0 & 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ -1 \\ 4 \\ 7 \end{pmatrix}, \quad v = \begin{pmatrix} y_1 \\ p_2 \\ n_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix}.$$

- г) В двойственной задаче в каноническом виде 7 переменных и 4 специальных ограничения.
- д) Допустимым базисным решением задачи в каноническом виде называется любой вектор v, у которого все $v_i \geq 0$, и столбцы матрицы специальных ограничений $\mathrm{col}(A,i)$ при $v_i \neq 0$ линейно независимы.
- е) Например, вектор $v=(y_1=0,p_2=13/3,n_2=0,y_3=1/3,y_4=1,y_5=0,y_6=4/3)$ является базисным допустимым решением, соответствующие ненулевым числам столбцы матрицы A линейно-независимы:

$$\operatorname{col}(A, \langle p_2 \rangle) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \operatorname{col}(A, \langle y_3 \rangle) = \begin{pmatrix} 2 \\ -3 \\ -1 \\ -1 \end{pmatrix}, \operatorname{col}(A, \langle y_4 \rangle) = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \operatorname{col}(A, \langle y_6 \rangle) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Например, вектор $v=(y_1=-1,p_2=-2,n_2=-3,y_3=-4,y_4=-5,y_5=-6,y_6=-7)$ не является базисным допустимым решением.

2. а) Двойственная задача:

$$\begin{cases} w = 9y_1 + 6y_2 \to \min \\ y_1 + y_2 \ge 4 \\ 5y_1 + y_2 \ge 12 \\ y_1 + 8y_2 \ge 18 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

Прямые ℓ_1, ℓ_2 и ℓ_3 пересекаются в одной точке.

Решение двойственной задачи: $y_1 = 2$, $y_2 = 2$, минимум равен 30.

б) В двойственной задаче $y_1>0$, поэтому $x_1+5x_2+x_3=9$. В двойственной задаче $y_2>0$, поэтому $x_1+x_2+8x_3=6$.

Решение исходной задачи: $x_3 \in [0;21/39], x_2 = (3+7x_3)/4, x_1 = (21-39x_3)/4$, максимум равен 30.

Решение исходной задачи можно также записать в виде Convex(A,B), где A=(21/4,3/4,0), B=(0,22/13,21/39).

- в) Сравниваем два варианта:
 - і. Решение двойственной задачи сохраняется. Изменение прибыли равно $\Delta\pi = -\Delta b_1 \cdot p + \Delta b_1 \cdot y_1 = 2 \cdot 2 2 \cdot 2 = 0.$
 - іі. Решение двойственной задачи сохраня
ется. Изменение прибыли равно $\Delta\pi = -\Delta b_2 \cdot p + \Delta b_2 \cdot y_2 = -3 \cdot 1 + 3 \cdot 2 = 3$. Данный вариант выгоднее.
- 3. а) Стартовое решение методом северо-западного угла:

	$b_1 =$	= 9	$b_2 = 11$		$b_3 = 12$	
		2		2		1
$a_1 = 5$	5					
		2		5		2
$a_2 = 10$	4		6			
		9		6		7
$a_3 = 4$			4			
		3		9		6
$a_4 = 13$			1		12	

Возможный первый шаг:

	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$	
	2	2	1	
$a_1 = 5$		5		
	2	5	2	
$a_2 = 10$	9	1		
	9	6	7	
$a_3 = 4$		4		
	3	9	6	
$a_4 = 13$		1	12	

Возможный второй шаг:

	$b_1 =$	9	$b_2 = 11$		$b_3 = 12$	
		2		2		1
$a_1 = 5$			5			
		2		5		2
$a_2 = 10$	8		2			
		9		6		7
$a_3 = 4$			4			
		3		9		6
$a_4 = 13$	1				12	

Все оптимальные решения: $\operatorname{Convex}(A,B)$.

A	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$	
	2	2	1	
$a_1 = 5$		5		
	2	5	2	
$a_2 = 10$		2	8	
	9	6	7	
$a_3 = 4$		4		
	3	9	6	
$a_4 = 13$	9		4	
B	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$	
	2	2	1	
$a_1 = 5$		5		
	2	5	2	
$a_2 = 10$			10	
$a_2 - 10$			10	
$\frac{a_2 - 10}{}$	9	6	7	
$a_3 = 4$	9	4		
	3			

Оптимальная стоимость равна 10 + 20 + 24 + 27 + 18 + 12 = 111.

б) Исходные ограничения можно записать системой

$$\begin{cases} x_{11} + x_{12} + x_{13} = 5 \\ x_{21} + x_{22} + x_{23} = 10 \\ x_{31} + x_{32} + x_{33} = 4 \\ x_{41} + x_{42} + x_{43} = 13 \\ x_{11} + x_{21} + x_{31} + x_{41} = 9 \\ x_{12} + x_{22} + x_{32} + x_{42} = 11 \\ x_{13} + x_{23} + x_{33} + x_{43} = 12 \end{cases}$$

Систему можно записать в матричном виде Ax = b, где

Матрица A называется матрицей специальных ограничений. Любую строку матрицы A можно вычеркнуть, так как строки матрицы зависимы,

$$row_1 A + row_2 A + row_3 A + row_4 A = row_5 A + row_6 A + row_7 A.$$

в) Старое решение A остаётся оптимальным:

A	$b_1 = 9$	b ₂ =	$b_2 = 11$		12
	2		2		1
$a_1 = 5$		5			
	2		5		2
$a_2 = 10$		2		8	
	6		6		7
$a_3 = 4$		4			
	3		∞		6
$a_4 = 13$	9			4	

Старое решение B перестаёт быть оптимальным.

г) Старые решения A и B остаются оптимальными для новой таблицы:

A	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$
	2	2	1
$a_1 = 5$		5	
	2	5	2
$a_2 = 10$		2	8
	6	6	7
$a_3 = 4$		4	
	3	9	6
$a_4 = 13$	9		4
В	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$
В	$b_1 = 9$	$b_2 = 11$	$b_3 = 12$
B $a_1 = 5$			
		2	
	2	5	1
$a_1 = 5$	2	5	2
$a_1 = 5$	2	5 5	1 2 10
$a_1 = 5$ $a_2 = 10$	2	5 5	1 2 10

Оптимальная стоимость, по-прежнему, равна 111.

17	
4. A, B 0 0 0 4 4 4 8 9/8 9/8 9/12 13/12 13/16 17/16 18/16 18/6 A, B, C 0 0 0 4 4 4 8 9 10/9 10/12 10/13 14/13 14/16 14/17 18/18 19/6	20 20 20 /20 21/20 22/20 /20 20/21 22/22 /20 20/21 21/22

- а) Максимальная прибыль равна $\phi_{ABC}(17)=22$. Оптимальная загрузка: C+3A или 2B+A.
- б) Максимальная прибыль равна $\phi_{AB}(17)=22.$ Оптимальная загрузка: 2B+A.

в)

$$\begin{cases} 4x_a + 9x_b + 10x_c \to \max \\ 3x_a + 7x_b + 8x_c \le 17 \\ x_a, x_b, x_c \in \{0, 1, 2, 3, \ldots\} \end{cases}$$

г) Максимальная прибыль равна $\phi_{ABCD}(17)=22$. Оптимальная загрузка: C+3A или 2B+A.

	вершина									
	A_1	0	0*							
	A_2	∞	6	3	3	3*				
	A_3	∞	2	2	2*					
5.	A_4	∞	1	1*						
	A_5	∞	∞	∞	7	6	6*			
	A_6	∞	∞	8	8	8	7	7*		
	A_7	∞	∞	9	9	9	9	8	8*	
	A_8	∞	∞	∞	∞	∞	11	9	9	9*

а) Оптимальные маршруты:

$$A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{2} A_8, \quad A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{1} A_7 \xrightarrow{1} A_8,$$

стоимость равна 9.

б) $A_2 \stackrel{3}{\rightarrow} A_5 \stackrel{1}{\rightarrow} A_6 \stackrel{1}{\rightarrow} A_7$, стоимость равна 5.