Table 5.2: Dipole moment and polarizability of Sulfur compounds responsible for off-flavor and cork-taint in wine. Gaussian results are presented with $B_3LYP/Aug-cc-PVTZ$ level of theory.

Molecule name	Molecular	CAS	Dipole	Polarizability
	mass	Number	Moment	
(Formula)	(a.m.u.)		$\mu_{\rm D}$ (Debye)	$\alpha (\dot{A}^3)$
Hydrogen Sulfide (H ₂ S)	34.08	7783-06-4	0.99 ¹⁰	3.71
Methanethiol (CH ₄ S)	48.11	74-93-1	1.56 ¹¹	5.55 ¹²
Ethanethiol (C ₂ H ₆ S)	62.14	75-08-1	1.68 ¹³¹⁴	7.43
Dimethyl Sulfide (C ₂ H ₆ S)	62.14	75-18-3	1.60 ¹⁵¹⁶	7.46
Diethyl Sulfide (C ₄ H ₁₀ S)	90.19	352-93-2	1.64 ¹⁷	11.34
Dimethyl Disulfide (C ₂ H ₆ S ₂)	94.2	624-92-0	2.03 ¹⁸	10.79 ¹⁹
Diethyl Disulfide (C ₄ H ₁₀ S ₂)	122.3	110-81-6	2.15	14.67
Methyl Thioacetate (C ₃ H ₆ OS)	90.15	1534-08-3	1.36	9.64
3-Mercaptohexan-1-ol (C ₆ H ₁₄ OS)	134.24	51755-83-0	1.68	15.43

¹⁰0.97: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹¹1.52: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹²5.55: NIST data base.

¹³1.68: NIST data base.

¹⁴1.58: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹⁵1.60: NIST data base.

¹⁶1.50: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹⁷1.54: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹⁸1.99: Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

¹⁹10.79: NIST data base.

Table 5.2: continued

Molecule name	Molecular	CAS	Dipole	Polarizability
	mass	Number	Moment	
(Formula)	(a.m.u.)		μ_{D} (Debye)	$\alpha (\dot{A}^3)$
4-Mercapto-4-	132.23	19872-72-7	2.27	14.86
methylpentan-2-one				
$(C_6H_{12}OS)$				
4-Mercapto-4-	134.24	255391-65-2	2.53	15.34
methylpentan-2-ol				
$(C_6H_{14}OS)$				
Benzothiazole	135.19	95-16-9	1.34	15.91
(C_7H_5NS)				
2-Furanmethanethiol	114.17	98-02-2	1.94	12.81
(C_5H_6OS)				
2-Mercaptoethanol	78.14	60-24-2	2.50	8.14
(C_2H_6OS)				
Benzenemethanethiol	124.21	100-53-8	1.48 ²⁰	15.74
(C ₇ H ₈ S)	124.21	100 33 0	1.40	13.74
	120.17	5862-40-8	1.83	11.91
2-Mercaptoethyl acetate (C ₄ H ₈ O ₂ S)	120.17	3802-40-8	1.83	11.91
3-mercaptopropyl acetate	134.2	26473-61-0	1.61	13.97
$(C_5H_{10}O_2S)$				
Cis-3,6-dimethyl-	184.4	75100-46-8	0	19.83
1,2,4,5-tetrathiane				
$(C_4H_8S_4)$				
Prenyl-mercaptan	102.2	5287-45-6	1.78	13.35
$(C_5H_{10}S)$				
Trans-3,6-dimethyl-	184.8	75100-47-9	0	19.11
1,2,4,5-tetrathiane				
$(C_4H_8S_4)$				

²⁰1.44 (in benzene): Carl L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons.

Table 5.2: continued

Molecule name	Molecular	CAS	Dipole	Polarizability
	mass	Number	Moment	
(Formula)	(a.m.u.)		$\mu_{\rm D}$ (Debye)	$\alpha (\dot{A}^3)$
2-Methyl-3-furanthiol (C ₅ H ₆ OS)	114.17	28588-74-1	0.90	12.47
2-Methylthiolane-3-ol (C ₅ H ₁₀ OS)	118.2	149834-43-5	2.12	12.71
3-Mercapto-3- methylbutan-1-ol $(C_5H_{12}OS)$	120.22	34300-94-2	1.84	13.52
Ethyl-3- mercaptopropionate $(C_5H_{10}O_2S)$	134.2	5466-06-08	2.76	13.91
5-2-hydroxyethyl- 4-methylthiazole (C ₆ H ₉ NOS)	143.21	137-00-8	2.79	15.29
2-Methyltetrahydro thiophen-3-one (C ₅ H ₈ OS)	116.18	13679-85-1	1.72	12.14
3-Methylsulfanyl propan-1-ol (C ₄ H ₁₀ OS)	106.19	0505-10-02	3.06	12.03
3-Mercaptohexylacatate (C ₈ H ₁₆ O ₂ S)	176.28	136954-20-6	1.47	19.32
Ethylthioacetate (C ₄ H ₈ OS)	104.17	625-60-5	1.41	11.57

Table 5.3: Computed values of proton affinity and ionization energy of the targeted compounds using Gaussian $B_3LYP/6-31+G(d,p)$ level of theory.

Molecule name	Proton Affinity	Ionization Energy
(Formula)	(Kcal/mol)	(eV)
2,4,6-Trichloroanisole	183.51	8.28
(C ₇ H ₅ Cl ₃ O)		
2,4,6-Tribromoanisole	186.17	8.19
$(C_7H_5Br_3O)$		
Pentachlorophenol (C ₆ Cl ₅ OH)	167.15	8.56
Pentabromophenol (C ₆ Br ₅ OH)	174.17	8.60
2,4,6-Trichlorophenol	174.35	8.79
$(C_6H_2Cl_3OH)$		
2,4,6-Tribromophenol	178.56	8.62
$(C_6H_2Br_3OH)$		
2,3,4-Trichloroanisole	181.32	8.15
(C ₇ H ₅ Cl ₃ O)		
2,3,6-Trichloroanisole	183.87	8.37
(C ₇ H ₅ Cl ₃ O)		
2,3,4,5-Tetrachloroanisole	178.40	8.23
(C ₇ H ₄ Cl ₄ O)		
2,3,4,6-Tetrachloroanisole	181.96	8.35
(C ₇ H ₄ Cl ₄ O)		
2,3,5,6-Tetrachloroanisole	181.49	8.67
(C ₇ H ₄ Cl ₄ O)		
2,4-Dichloroanisole	182.77	8.04
(C ₇ H ₆ Cl ₂ O)		
2,6-Dichloroanisole	186.69	8.30
$(C_7H_6Cl_2O)$		
Cis-1,5-octadien-3-one	211.13	8.39
(C ₈ H ₁₂ O)		
Cis-1,5-octadien-3-ol	200.87	8.28
(C ₈ H ₁₄ O)		

Table 5.3: continued

Molecule name	Proton Affinity	Ionization Energy
(Formula)	(Kcal/mol)	(eV)
1-Octene-3-ol	197.68	8.92
$(C_8H_{16}O)$		
1-Octene-3-one	203.94	9.01
$(C_8H_{14}O)$		
Octanal (C ₈ H ₁₆ O)	192.82	9.18
2-Sec-butyl-3-methoxypyrazine	215.84	8.30
$(C_9H_{14}N_2O)$		
3-Iso-butyl-2-methoxypyrazine	215.77	8.28
$(C_9H_{14}N_2O)$		
2-Iso-propyl-3-methoxypyrazine	215.39	8.33
$(C_8H_{12}N_2O)$		
2-Methoxy-3,5-dimethylpyrazine	217.16	8.11
$(C_7H_{10}N_2O)$	217.70	0.20
2-Methylisoborneol (C ₁₁ H ₂₀ O)	217.79	8.28
Geosmin (C ₁₂ H ₂₂ O)	205.05	8.35
Guaiacol (C ₇ H ₈ O ₂)	191.50	7.66
4-Ethylguaiacol (C ₉ H ₁₂ O ₂)	198.28	7.29
4-Ethylphenol (C ₈ H ₁₀ O)	182.32	7.86
Eucalyptol (C ₈ H ₁₀ O)	213.24	8.28
4-Ethylcatechol (C ₈ H ₁₀ O ₂)	198.28	7.61
4-Methylguaiacol (C ₈ H ₁₀ O ₂)	195.18	7.32
Rotundone (C ₁₅ H ₂₂ O)	219.70	8.18
Geraniol (C ₁₀ H ₁₈ O)	212.37	7.77
Hotrienol (C ₁₀ H ₁₆ O)	208.05	7.73
Linalool (C ₁₀ H ₁₈ O)	214.27	8.03
Nerol (C ₁₀ H ₁₈ O)	209.87	7.91

Table 5.3: continued

Molecule name (Formula)	Proton Affinity (Kcal/mol)	Ionization Energy (eV)
α -Terpineol ($C_{10}H_{18}O$)	200.56	7.95
Indole (C ₈ H ₇ N)	199.49	7.51
1-Methylindole (C ₉ H ₉ N)	203.64	7.30
2-Aminoacetophenone (C ₈ H ₉ NO)	214.57	7.61
2-Chloro-6-methylphenol (C ₇ H ₇ ClO)	177.47	8.20
2-Octanone (C ₈ H ₁₆ O)	203.37	8.92
Fenchone (C ₁₀ H ₁₆ O)	207.11	8.33
Fenchol (C ₁₀ H ₁₈ O)	198.48	8.31
Trans-2-octen-1-ol (C ₈ H ₁₆ O)	203.08	8.53
Pentachloroanisole (C ₇ H ₃ Cl ₅ O)	180.35	8.44

Table 5.4: Computed values of proton affinity and ionization energy of the VOCs related to sulfur using Gaussian $B_3LYP/Aug-cc-PVTZ$ level of theory.

Molecule name	Proton Affinity	Ionization Energy
(Formula)	(Kcal/mol)	(eV)
Hydrogen Sulfide (H ₂ S)	169.14	10.43
Methanethiol (CH ₄ S)	186.08	9.37
Ethanethiol (C ₂ H ₆ S)	190.61	9.16
Dimethyl Sulfide (C ₂ H ₆ S)	199.30	8.59
Diethyl Sulfide (C ₄ H ₁₀ S)	206.31	8.28
Dimethyl Disulfide $(C_2H_6S_2)$	193.66	8.09
Diethyl Disulfide (C ₄ H ₁₀ S ₂)	197.75	7.89
Methyl Thioacetate (C ₃ H ₆ OS)	198.47	9.09
3-Mercaptohexan-1-ol (C ₆ H ₁₄ OS)	196.58	8.62
4-Mercapto-4- methylpentan-2-one $(C_6H_{12}OS)$	198.23	8.50
4-Mercapto-4- methylpentan-2-ol $(C_6H_{14}OS)$	204.77	8.47
Benzothiazole (C ₇ H ₅ NS)	220.73	8.55
2-Furanmethanethiol (C ₅ H ₆ OS)	199.10	8.05

Table 5.4: continued

Molecule name	Proton Affinity	Ionization Energy
(Formula)	(Kcal/mol)	(eV)
2-Mercaptoethanol (C ₂ H ₆ OS)	193.42	8.98
Benzenemethanethiol (C ₇ H ₈ S)	195.26	8.26
2-Mercaptoethyl acetate (C ₄ H ₈ O ₂ S)	199.18	9.10
3-mercaptopropyl acetate $(C_5H_{10}O_2S)$	199.60	8.96
Cis-3,6-dimethyl- 1,2,4,5-tetrathiane $(C_4H_8S_4)$	196.08	8.03
Prenyl-mercaptan (C ₅ H ₁₀ S)	198.21	8.06
Trans-3,6-dimethyl- 1,2,4,5-tetrathiane $(C_4H_8S_4)$	195.31	8.25
2-Methyl-3-furanthiol (C ₅ H ₆ OS)	190.29	7.71
2-Methylthiolane-3-ol (C ₅ H ₁₀ OS)	207.51	8.16
3-Mercapto-3- methylbutan-1-ol (C ₅ H ₁₂ OS)	197.74	8.59
Ethyl-3- mercaptopropionate $(C_5H_{10}O_2S)$	196.71	8.90
5-(2-hydroxyethyl)- 4-methylthiazole (C_6H_9NOS)	229.67	8.12

Table 5.4: continued

Molecule name (Formula)	Proton Affinity (Kcal/mol)	Ionization Energy (eV)
2-Methyltetrahydro thiophen-3-one (C ₅ H ₈ OS)	196.14	8.57
3-Methylsulfanyl propan-1-ol (C ₄ H ₁₀ OS)	203.12	8.38
3-Mercaptohexylacatate $(C_8H_{16}O_2S)$	194.86	8.78
Ethylthioacetate (C ₄ H ₈ OS)	201.19	8.96