CONFRONTO SERIE-INTEGRALI] Gli cutegnali aiutaus le serie

Setting: sia M 20 un intero e sia f:[M,+00) -> R una furzione deboluente decrescente con lin f(x) = 0.

La decresceuta è esseusiale uella figura

 $\sum_{m=m+1}^{\infty} p(m) \leq \int_{M} p(x) dx \leq \sum_{m=m}^{+\infty} p(m)$

sourus aree rettaugoli softo il grafico

source aree retaingali s ara'il grapio

Sotto queste ipotesi

 $\int_{M}^{+\infty} f(x) dx$ couverge se e solo se $\int_{M=M}^{\infty} f(m)$ couverge

Dimi Se l'integrale diverge, allora diverge la serie per Da disuguaplianta di destra Se l'integrale couverge, allors idem la serie per la disug di sx.

Le due serie a dx e sx différiscous sols di un termine quiudi hauno lo sterro comportamento

Applications class	ica		
$f(x) = \frac{1}{x^a}$ Q	uesta è decresceute	. iu [1,+∞) se	a >0. Quiudi
$\sum_{m=1}^{\infty} \frac{1}{m^{\alpha}} \cos \omega$	berge \iff $\frac{1}{x}$	à d× couverge	(=) a>1
Idem per		34	e price rive
m=2 m (logm	owerge (=)	$\int_{2}^{+\infty} \frac{1}{\times (\log \times)^{\alpha}} dx$	× couverge
	si fo	a>1 con huitiva	
	damentale che f	zia decuscente	
Esercizio 1 \(\sigma_{m=1}^{\infty} \)	20		
5 _n = 2	temble a	+00	
Ma come templous			
Brutal wook: Ex	$\frac{1}{\sqrt{K}} \sim \int_{\frac{1}{2}}^{\frac{1}{2}} \sqrt{X} dx$	$4 \times = \left(2\sqrt{\times}\right)_1^{\infty} =$	2 m - 2 ~ 2 m
Questo ci fa 5059	pettone che live n-> +00	$\frac{1}{\sqrt{m}}$ $S_m = 2$	
Coure Do dimostra	s? Guardo la fig	gura!	
Quindi	m-1	1	2 3 4 5
$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx \leq$	K=1 VK		

Brutal mode:
$$\sum_{k=1}^{\infty} \frac{1}{k} \sim \int_{-1}^{\infty} \frac{1}{k} dx = [\log x]_m$$

$$= \log_2(2m) - \log_2 m = \log_2 2$$
Per fore il rigoroso ottengo le disugnapliante guardando il disegno.

Generosso trovore in modo approssimato il valore?

Sommo un po'di termini da $m=2$ fino ad un certo $m=N$.

Se uni termo ad un certo N , l'errore commerso è manti tronurati

e voglio stimorlo dalli alto. Se la funtione è decrescente, posso provare con l'integrale

Guardando i rettangali sotto

$$\sum_{m=N+1}^{\infty} \frac{1}{m} (m) \leq \int_{N}^{\infty} f(x) dx$$

Oviamente re $f(x)$ è decrescente pur $x \geq N$

Nel mostro caso
$$\sum_{m=N+1}^{\infty} \frac{m+a}{m^4+2} \leq \int_{N}^{\infty} \frac{x+a}{x^4+2} dx$$

Nel mostro caso
$$\sum_{m=N+1}^{\infty} \frac{m+a}{m^4+2} \leq \int_{N}^{\infty} \frac{x+a}{x^4+2} dx$$

