第二十七章 一阶谓词演算

第6节 $K_{\mathfrak{L}}$ 的解释与赋值(I)

王 捍 贫 北京大学信息科学技术学院 软件研究所理论实验室

内容提要

- 解释和指派
- 项和公式的值
- 公式值与约束变元的无关性
- 替换定理
- 公式在给定解释下成真
- 永真式

解释和赋值

- 赋值是对一阶公式赋真假值;
- 为此, 先要给出公式中每个符号的含义;
- 下列符号具有固定的含义:
 - 一联结词:
 - 一量词。
- 下列符号需要指定含义:
 - 一个体变元; ——指派
 - 一个体常元、谓词符号、函数符号。 ——解释

解释(I)

设非逻辑符号集 $\mathfrak{L} = \{F_i\}_{i \in I} \cup \{f_j\}_{j \in J} \cup \{c_k\}_{k \in K}$, \mathfrak{L} 的解释 \mathcal{I} 是如下的四元组:

$$\langle D, \{\overline{F_i}\}_{i \in I}, \{\overline{f_j}\}_{j \in J}, \{\overline{c_k}\}_{k \in K} \rangle$$

- D是一个非空集合, 称为I的论域或个体域.
- 对 Ω 中每个谓词符号 F_i , 设其为n元的($i \in I$), $\overline{F_i}$ 是D上的一个n元关系,即

$$\overline{F_i} \subseteq D^n$$
,

称 $\overline{F_i}$ 为 F_i 在 \mathcal{I} 中的解释;

解释(II)

• 对 Ω 中的每个函数符号 f_j , 设其为m元的($j \in J$), $\overline{f_j}$ 是D上的一个m元函数, 即

$$\overline{f_j}: D^m \longrightarrow D$$

是一个映射, 称 $\overline{f_j}$ 为 f_j 在 \mathcal{I} 中的解释;

• 对 Ω 中的每个个体常元符号 C_k $(k \in K)$, $\overline{c_k}$ 是D中一个元素,即

$$\overline{c_k} \in D$$
,

称 $\overline{c_k}$ 为 c_k 在 \mathcal{I} 中的解释.

指派

设T是 Ω 的一个解释, D为T的论域.

· C在I中的一个指派是指如下的函数

$$\sigma: \{x_0, x_1, x_2, \cdots\} \to D$$

• 此时, $\sigma(x_i) \in D$ 称为 x_i 在指派 σ 下的值 $(i \in \mathbb{N})$.

指派 $\sigma(x_i/a)$

• 设 σ 是 Ω 在解释T中的一个指派, x_i 是一个体变元, $\alpha \in D$, 定义 Ω 在解释T中的一个新指派 τ 如下:

$$\tau(x_j) = \begin{cases} a & j = i \\ \sigma(x_j) & j \neq i \end{cases}$$

- τ 只是将 σ 对 x_i 指派的值改为a (无论 x_i 在 σ 下原来是何值),对其余 x_j ($j \neq i, j \in \mathbb{N}$)的值未作改变.
- τ 称为 σ 的一个 x_i -指派, 记为 $\sigma(x_i/a)$.

解释的例(例27.20)(I)

设
$$\mathfrak{L} = \{F^2, f_1^1, f_2^2, f_3^2, c\}.$$
 \mathfrak{L} 可以有如下解释:
$$I_1 = \langle \mathbb{N}, \{\overline{F^2}\}, \{\overline{f_1^1}, \overline{f_2^2}, \overline{f_3^2}\}, \{\overline{c}\} \rangle,$$

其中:

- N为自然数集;
- $\overline{F^2}$ 为 \mathbb{N} 上的相等关系, 即:

$$\overline{F^2} = \{ \langle n, n \rangle \mid n \in \mathbb{N} \}$$

•
$$\overline{f_1^1}$$
为 \mathbb{N} 上的后继函数,即: $\overline{f_1^1}$: $\mathbb{N} \to \mathbb{N}$
$$\overline{f_1^1}(n) = n+1 \quad (任 n \in \mathbb{N})$$

解释的例(例27.20)(II)

• $\overline{f_2^2}$ 为 \mathbb{N} 上的加法函数,即: $\overline{f_2^2}$: $\mathbb{N}^2 \to \mathbb{N}$, $\overline{f_2^2}(\langle m, n \rangle) = m + n \quad (\text{任}m, n \in \mathbb{N})$

• $\overline{f_3^2}$ 为 \mathbb{N} 上的乘法函数,即: $\overline{f_3^2}$: $\mathbb{N}^2 \to \mathbb{N}$, $\overline{f_3^2}(\langle m, n \rangle) = m \cdot n \quad (\text{任}m, n \in \mathbb{N})$

• \overline{c} 为 \mathbb{N} 中的元素0.

解释的例(III)

$$\mathfrak{L} = \{F^2, f_1^1, f_2^2, f_3^2, c\}$$
 还可以有如下解释:

$$I_2 = \langle \mathbb{Q}, \{\overline{F^2}\}, \{\overline{f_1^1}, \overline{f_2^2}, \overline{f_3^2}\}, \{\overline{c}\} \rangle,$$

其中:

- Q为有理数集;
- $\overline{F^2}$ 为Q上的相等关系;
- $\overline{f_1^1}$ 为Q上的后继函数; 即: $\overline{f_1^1}$: Q \rightarrow Q $\overline{f_1^1}(n) = n+1$ (任 $n \in \mathbb{Q}$)
- f3与f3分别为Q上的加法与乘法函数;
- \overline{c} 仍为Q中的元素O.

项的值

设 σ 是 Ω 在I中的一个指派. 如下归纳定义 Ω 的项t在I中 σ 下的值t^{σ}(简记为t^{σ}):

- 当t为个体变元符号 x_i ($i \in \mathbb{N}$)时, $(x_i)_I^{\sigma} = \sigma(x_i)$.
- 当t为个体常元符号 c_k 时, $(c_k)_1^{\sigma} = \overline{c}$.
- 当t为 $f^m(t_1, t_2, \cdots, t_m)$ 时,

$$t_I^{\sigma} = \overline{f^m}((t_1)_I^{\sigma}, (t_2)_I^{\sigma}, ..., (t_m)_I^{\sigma}).$$

求项的值的例子

$$\sigma$$
是 \mathfrak{L} 在 I_1 中的如下指派: $\sigma(x_i) = i$ (任 $i \in \mathbb{N}$), 则: $x_i^{\sigma} = \sigma(x_i) = i(i \in \mathbb{N})$ $c^{\sigma} = \overline{c} = 0$ $(f_1^1(x_1))^{\sigma} = \overline{f_1^1}(x_1^{\sigma}) = \overline{f_1^1}(1) = 1 + 1 = 2 \in \mathbb{N}$ $(f_2^2(x_1, x_2))^{\sigma} = \overline{f_2^2}(x_1^{\sigma}, x_1^{\sigma}) = x_1^{\sigma} + x_2^{\sigma} = 3$ $(f_3^2(x_1, x_2))^{\sigma} = \overline{f_2^3}(x_1^{\sigma}, x_1^{\sigma}) = x_1^{\sigma} \cdot x_2^{\sigma} = 2$ $(f_1^1(f_2^2(x_1, x_4)))^{\sigma} = \overline{f_1^1}(f_2^2(x_1, x_4))^{\sigma})$ $= \overline{f_1^1}(\overline{f_2^2}(x_1^{\sigma}, x_4^{\sigma})) = (x_1^{\sigma} + x_4^{\sigma}) + 1$ $= 1 + 4 + 1 = 6$

项的值的一个简单性质

设 σ 是 Ω 在I中的一个指派,则对任意项t, $t^{\sigma} \in D$ (其中D是I的论域).

证明:对t归纳证明.

公式的值(I)

设 σ 是 $N_{\mathcal{L}}$ 在解释I中的一个指派,如下归纳定义" Ω 的公式 α 在I中被 σ 满足":

- 当 α 是原子公式 $F^n(t_1, t_2, \cdots, t_n)$ 时, α 在 \mathcal{I} 中被 σ 满足当且仅当 $\overline{F^n}(t_1^\sigma, t_2^\sigma, \cdots, t_n^\sigma)$ 成立,即当且仅当 $< t_1^\sigma, t_2^\sigma, \cdots, t_n^\sigma > \in \overline{F^n}$.
- 当 α 为($\neg \beta$)时, α 在 \mathcal{I} 中被 σ 满足当且仅当 β 在 \mathcal{I} 中不被 σ 满足.
- 当 α 为 $(\alpha_1 \to \alpha_2)$ 时, α 在I中被 σ 满足当且仅当 α_1 在I中不被 σ 满足或者 α_2 在I中 被 σ 满足.

公式的值(II)

• • • •

- 当 α 为($\exists x_i$) β 时, α 在 \mathcal{I} 中被 σ 满足当且仅当 存在 $a \in D_{\mathcal{I}}$, β 在 \mathcal{I} 中都能被 $\sigma(x_i/a)$ 满足.
- 当 α 为($\forall x_i$) β 时, α 在 \mathcal{I} 中被 σ 满足当且仅当 对每个 $a \in D_{\mathcal{I}}$, β 在 \mathcal{I} 中都能被 $\sigma(x_i/a)$ 满足.

$I \mid_{\overline{\sigma}} \alpha$

将 α 在I中被 σ 满足记为 $I \mid_{\overline{\sigma}} \alpha$, 否则记为 $I \mid_{\overline{\sigma}} \alpha$. 则

(1)
$$I \mid_{\overline{\sigma}} F^n(t_1,...,t_n) \iff \langle t_1^{\sigma},...,t_n^{\sigma} \rangle \in \overline{F^n};$$

(2)
$$I \models \neg \beta \iff I \not\models \beta$$
;

(4)
$$I \mid_{\overline{\sigma}} (\forall x_i) \beta \iff$$
对任意 $a \in D$, $I \mid_{\overline{\sigma(x_i/a)}} \beta$;

(5)
$$I \mid_{\overline{\sigma}} \alpha \vee \beta \iff I \mid_{\overline{\sigma}} \alpha \not \leq I \mid_{\overline{\sigma}} \beta$$
;

(6)
$$I \models \alpha \lor \beta \iff I \models \alpha$$
 新且 $I \models \beta$;

(7)
$$I \mid_{\overline{\sigma}} \alpha \leftrightarrow \beta \iff I \mid_{\overline{\sigma}} \alpha$$
的充要条件为 $I \mid_{\overline{\sigma}} \beta$;

(8)
$$I \mid_{\overline{\sigma}} (\exists x_i) \beta \iff$$
 存在 $a \in D$, 使得 $I \mid_{\overline{\sigma(x_i/a)}} \beta$.

满足的例子(I)

设 $\mathcal{L} = \{F^2\}.$ $I = \langle \mathbb{N}, \{R\}, \emptyset, \emptyset \rangle$ 是 \mathcal{L} 的一个解释,其中 $R = \{\langle a, a \rangle | a \in \mathbb{N}\}.$ $a_1, a_2, \cdots, a_n, \cdots$ 为D中元素的序列,满 $\mathcal{L}: a_0 = a_1 = a_2 \neq a_3.$ σ 是 \mathcal{L} 在I中的如下指派: $\sigma(x_i) = a_i$ (任 $i \in \mathbb{N}$). 当 α 为 \mathcal{L} 中下列公式时, $I \mid_{\overline{\sigma}} \alpha$ 成立与否?

- (1) $F^2(x_1, x_2)$;
- (2) $F^2(x_2, x_3)$;
- (3) $F^2(x_1, x_2) \rightarrow F^2(x_2, x_3);$
- (4) $\forall x_1 F^2(x_1, x_2);$
- (5) $\forall x_1 \exists x_2 F(x_1, x_2)$.

满足的例子(II)

答:

(1)

$$I \mid_{\overline{\sigma}} F^2(x_1, x_2)$$

当且仅当
$$< x_1^{\sigma}, x_2^{\sigma} > \in \overline{F^2}$$

当且仅当
$$< a_1, a_2 > \in R$$
.

由于
$$a_1 = a_2$$
, 故 $< a_1, a_2 > \in R$,

从而
$$I \models F^2(x_1, x_2).$$

(2)

$$I \models_{\overline{\sigma}} F^2(x_2, x_3)$$

当且仅当
$$< x_2^{\sigma}, x_3^{\sigma} > \in \overline{F^2}$$
,

当且仅当 $< a_2, a_3 > \in R$.

由于
$$a_2 \neq a_3$$
, 故 $< a_2$, $a_3 > \notin R$,

从而 $I \not\models F^2(x_2, x_3)$.

(3)

$$I \models_{\overline{\sigma}} F^2(x_1, x_2) \rightarrow F^2(x_2, x_3)$$

当且仅当 $I \not\models F^2(x_1, x_2)$ 或 $I \not\models F^2(x_2, x_3)$.

由(1)(2)知:
$$I \not\models F^2(x_1, x_2) \rightarrow F^2(x_2, x_3)$$
.

(4)

 $I \mid_{\overline{\sigma}} \forall x_1 F^2(x_1, x_2)$

当且仅当对任意 $a \in D$, $I \mid \overline{\sigma(x_1/a)} F^2(x_1, x_2)$.

当且仅当对任意 $a \in D$, $\langle x_1^{\sigma(x_1/a)}, x_2^{\sigma(x_1/a)} \rangle \in \overline{F^2}$.

当且仅当对任意 $a \in D$, $\langle a, a_2 \rangle \in R$.

但 $a_3 \in D$, $\langle a_3, a_2 \rangle \notin R$.

从而 $I \not\models \forall x_1 F^2(x_1, x_2).$

(5)

 $I \models_{\overline{\sigma}} \forall x_1 \exists x_2 F^2(x_1, x_2).$

当且仅当对任意 $a \in D$, $I \mid \overline{\sigma(x_1/a)} \exists x_2 F^2(x_1, x_2)$

当且仅当对任意 $a \in D$,存在 $b \in D$,使得

$$I \mid \overline{\sigma(x_1/a)(x_2/b)} F^2(x_1, x_2).$$

当且仅当对任意 $a \in D$,存在 $b \in D$,使得 $< a,b > \in R$.

最后一个条件是成立的,因为只要取b=a即可.

故 $I \models \forall x_1 \exists x_2 F^2(x_1, x_2).$

例27.22

设 \mathcal{L} 与 I_1 如例27.20, σ 为 \mathcal{L} 在 I_1 中的任一个指派. 问 σ 在 I_1 中是否满足下面的公式 β ?

$$\forall x_1 \forall x_2 \Big((\exists x_3 F^2(f_3^2(x_1, x_3), x_2) \land \\ \exists x_4 F^2(f_3^2(x_2, x_4), x_1) \Big) \\ \rightarrow F^2(x_1, x_2) \Big)$$

答:

$$I_1 \mid \overline{\sigma(x_1/m_1)} \quad \forall x_2 \Big((\exists x_3 F^2(f_3^2(x_1, x_3), x_2) \land \exists x_4 F^2(f_3^2(x_2, x_4), x_1) \Big)$$
 $\rightarrow F^2(x_1, x_2) \Big)$ \Leftrightarrow 对任意的 $m_1 \in \mathbb{N}, m_2 \in \mathbb{N},$ $I_1 \mid \overline{\sigma(x_1/m_1)(x_2/m_2)} \ \Big((\exists x_3 F^2(f_3^2(x_1, x_3), x_2) \land \exists x_4 F^2(f_3^2(x_2, x_4), x_1) \Big)$ $\rightarrow F^2(x_1, x_2) \Big)$

$$\Leftrightarrow$$
 对任意 $m_1, m_2 \in \mathbb{N}$,

$$\Leftrightarrow$$
 对任意 $m_1, m_2 \in \mathbb{N}$, 若 $I_1 \mid \overline{\sigma(x_1/m_1)(x_2/m_2)} \exists x_3 F^2(f_3^2(x_1, x_3), x_2)$,

$$\mathbb{E}I_1 \mid_{\overline{\sigma(x_1/m_1)(x_2/m_2)}} \exists x_4 F^2(f_3^2(x_2, x_4), x_1),$$

$$\mathbb{N}I_1 \mid \overline{\sigma(x_1/m_1)(x_2/m_2)} F^2(x_1, x_2).$$

 \Leftrightarrow 对任意 $m_1, m_2 \in \mathbb{N}$,

若存在 $m_3 \in \mathbb{N}$ 使得

$$I_1 \mid \overline{\sigma(x_1/m_1)(x_2/m_2)(x_3/m_3)} F^2(f_3^2(x_1,x_3), x_2),$$

且存在 $m_4 \in \mathbb{N}$ 使得

$$I_1 \mid_{\overline{\sigma(x_1/m_1)(x_2/m_2)(x_4/m_4)}} F^2(f_3^2(x_2, x_4), x_1),$$

$$\mathbb{N}_1 \mid_{\overline{\sigma(x_1/m_1)(x_2/m_2)}} F^2(x_1, x_2).$$

 \Leftrightarrow 对任意 $m_1, m_2 \in \mathbb{N}$, 若存在 $m_3 \in \mathbb{N}$ 使得 $m_1 \cdot m_3 = m_2$, 且存在 $m_4 \in \mathbb{N}$ 使得 $m_2 \cdot m_4 = m_1$, 则 $m_1 = m_2$.

 \Leftrightarrow 对任意 $m_1, m_2 \in \mathbb{N}$, 若 $m_1 | m_2$, 且 $m_2 | m_1$, 则 $m_1 = m_2$.

从而 $I_1 \mid_{\overline{\sigma}} \beta$.

类似地,对 \mathcal{L} 在 I_2 中的任一个指派 σ , $I_2 \mid_{\overline{\sigma}} \beta \Leftrightarrow$ 对任意 $m_1, m_2 \in \mathbb{Q}$, 若存在 $m_3 \in \mathbb{Q}$ 使得 $m_1 \cdot m_3 = m_2$,且存在 $m_4 \in \mathbb{Q}$ 使得 $m_2 \cdot m_4 = m_1$,则 $m_1 = m_2$.

从而 $I_2 \not\models \beta$

项的哑元无关性(定理27.13)

设 σ_1, σ_2 是 \mathfrak{L} 在其某个解释I中的两个指派, $t(v_1, ..., v_n)$ 是 \mathfrak{L} 的一个项, 其中: v_1, v_2, \cdots, v_n 是 \mathfrak{L} 的个体变元符号, $t(v_1, v_2, \cdots, v_n)$ 中出现的个体变元符号都在 v_1, v_2, \cdots, v_n 中. 若对任意 $i: 1 \leq i \leq n$, $\sigma_1(v_i) = \sigma_2(v_i)$, 则 $t^{\sigma_1} = t^{\sigma_2}$.

证:对t的复杂性归纳证明,即对t中所含的函数变元符号的个数d进行归纳证明.

- (1) 当d = O时, t为个体变元符号或个体常元符号.
- (1.1) 若t为个体变元符号,则t必为 v_1,v_2,\cdots,v_n 中的某一个,不妨设 $t=v_i$ (某 $i:1\leq i\leq n$),则:

$$t^{\sigma_1} = v_i^{\sigma_1} = \sigma_1(v_i) = \sigma_2(v_i) = v_i^{\sigma_2} = t^{\sigma_2}$$
(1.2) 若t为个体变元符号c时,则:

$$t^{\sigma_1} = c^{\sigma_1} = \overline{c} = c^{\sigma_2} = t^{\sigma_2}.$$

(2) 假设d < l时命题成立,考察d = l时情形(l > 0).

设t中含有l个函数变元符号, $t = f^m(t_1, t_2, \dots, t_m)$, 其中: f^m 是 \mathfrak{L} 中的一个m元函数变元符号, t_1, \dots, t_m 是 \mathfrak{L} 的项. 由归纳假设得:

$$t_1^{\sigma_1} = t_1^{\sigma_2}, \ t_2^{\sigma_1} = t_2^{\sigma_2}, \ \cdots, \ t_m^{\sigma_1} = t_m^{\sigma_2},$$
从而 $t^{\sigma_1} = \overline{f^m}(t_1^{\sigma_1}, \ t_2^{\sigma_1}, \ \cdots, \ t_m^{\sigma_1})$
 $= \overline{f^m}(t_1^{\sigma_2}, \ t_2^{\sigma_2}, \ \cdots, \ t_m^{\sigma_2})$
 $= t^{\sigma_2}.$

归纳证完, 命题成立.

公式与约束变元的无关性(定理27.14)

设 σ_1 , σ_2 是 \mathcal{L} 在其某个解释I中的两个指派, v_1 , ..., v_n 是 \mathcal{L} 的个体变元符号, $\alpha(v_1, v_2, \cdots, v_n)$ 是 \mathcal{L} 的一个公式, 其自由变元符号都在 v_1 , v_2 , ..., v_n 中, 若对任意 $i: 1 \leq i \leq n$, $\sigma_1(v_i) = \sigma_2(v_i)$, 则 $I \mid_{\overline{\sigma_1}} \alpha$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha$

证:对 α 的构造复杂性进行归纳证明,即对公式 α 中所含的联结词与量词的个数d进行归纳证明.

(1) 当d = 0时, α 为原子公式, 设 α 为 $F^n(t_1,...,t_n)$, 由于 α 中没有量词,则在 t_i 中出现的每个个体变元符号都是 α 的自由变元($1 \le i \le n$),从而在 t_i 中出现的每个个体变元符号在 σ_1 与 σ_2 下的指派的值相等,由

项的哑元无关性知:

对任意
$$i:1 \leq i \leq n$$
, $t_i^{\sigma_1} = t_i^{\sigma_2}$.

从而

$$I \mid_{\overline{\sigma_1}} \alpha$$
 当且仅当 $I \mid_{\overline{\sigma_1}} F^n(t_1, t_2, \dots, t_n)$, 当且仅当 $< t_1^{\sigma_1}, t_2^{\sigma_1}, \dots, t_n^{\sigma_1} > \in \overline{F^n}$, 当且仅当 $< t_1^{\sigma_2}, t_2^{\sigma_2}, \dots, t_n^{\sigma_2} > \in \overline{F^n}$, 当且仅当 $I \mid_{\overline{\sigma_2}} F^n(t_1, t_2, \dots, t_n)$, 当且仅当 $I \mid_{\overline{\sigma_1}} \alpha$.

- (2) 假设d < l时命题成立,考察d = l时情形 $(l \ge 1)$.
- (2.1) 当 α 为 $(\neg \beta)$ 时, 由归纳假设知:

$$I \mid_{\overline{\sigma_1}} \beta$$
当且仅当 $I \mid_{\overline{\sigma_2}} \beta$.

从而

$$I \mid_{\overline{\sigma_1}} \alpha$$
 当且仅当 $I \mid_{\overline{\sigma_1}} \neg \beta$ 当且仅当 $I \mid_{\overline{\sigma_2}} \beta$ 当且仅当 $I \mid_{\overline{\sigma_2}} \neg \beta$ 当且仅当 $I \mid_{\overline{\sigma_2}} \neg \beta$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha$.

(2.2) 当 α 为 $(\alpha_1 \rightarrow \alpha_2)$ 时,由归纳假设知: $I \mid_{\overline{\sigma_1}} \alpha_i$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha_i$,i=1,2 从而

 $I \mid_{\overline{\sigma_1}} \alpha$ 当且仅当 $I \mid_{\overline{\sigma_1}} \alpha_1 \rightarrow \alpha_2$ 当且仅当 $I \mid_{\overline{\sigma_1}} \alpha_1$ 或 $I \mid_{\overline{\sigma_1}} \alpha_2$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha_1$ 或 $I \mid_{\overline{\sigma_2}} \alpha_2$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha_1 \rightarrow \alpha_2$ 当且仅当 $I \mid_{\overline{\sigma_2}} \alpha_1$.

(2.3) 当 α 为($\forall v_0$) β 时,其中 v_0 为 \mathcal{L} 的一个个体变元符号.由于 α 的自由变元符号都在 v_1, v_2, \cdots, v_n 中,故 β 的自由变元符号都在 $v_0, v_1, v_2, \cdots, v_n$ 中.因为对任意的 $i(0 \le i \le n)$, $\sigma_1(v_0/a)(v_i) = \sigma_2(v_0/a)(v_i)$.由归纳假设得:

 $I \mid \overline{\sigma_1(v_0/a)} \beta$ 当且仅当 $I \mid \overline{\sigma_2(v_0/a)} \beta$, 从而 $I \mid \overline{\sigma_1} \alpha$ 当且仅当 $I \mid \overline{\sigma_1} \forall v_0 \beta$, 当且仅当对任意 $a \in D$, $I \mid \overline{\sigma_1(v_0/a)} \beta$, 当且仅当对任意 $a \in D$, $I \mid \overline{\sigma_2(v_0/a)} \beta$, 当且仅当 $I \mid \overline{\sigma_2} \forall v_0 \beta$, 即 $I \mid \overline{\sigma_2} \alpha$. 归纳证完,命题成立,

定理27.14的直观含义

定理27.14是说: 对公式 $\alpha(v_1, v_2, \dots, v_n)$ 来说, $I \mid_{\overline{\sigma}} \alpha$ 成立与否只与 σ 对 α 的自由变元 v_1, \dots, v_n 指派的值有关,与 σ 对其它个体变元指派的值无关,即与 σ 对其自由变元指派的值无关,故称公式与约束变元的无关性.

项的替换定理

设s, x_i 和t分别是 Ω 中的项、个体变元符号和项. s'是将s中所有 x_i 换为t所得的项. σ 为 Ω 在其某个解释I中的一个指派, $\sigma' = \sigma(x_i/t^{\sigma})$. 则 $s^{\sigma'} = (s')^{\sigma}$.

$$s^{\sigma'}$$
: $\cdots \sigma'(x_i) \cdots \sigma'(x_i) \cdots$
 \downarrow
 s : $(\cdots x_i \cdots x_i \cdots x_i \cdots)$
 s' : $(\cdots t \cdots t \cdots t \cdots)$
 \uparrow
 $(s')^{\sigma}$: $\cdots t^{\sigma} \cdots t^{\sigma} \cdots$

证:对s的复杂性归纳证明.

- (1) 当s为个体变元符号时.
- (1.1) 若s为 x_i , 则s'为t, 从而 $s^{\sigma'} = \sigma'(x_i) = t^{\sigma} = (s')^{\sigma}.$
- (1.2) 若s为个体变元符号 x_j ($j \neq i$), 则s'也为 x_j , 从而 $s^{\sigma'} = \sigma'(x_j) = \sigma(x_j) = (s')^{\sigma}$.
- (1.3) 若s为个体变常元符号c,则s'也为c,从而

(2) 若s是形如 $f^m(s_1, s_2, \dots, s_m)$ 的项,以 s'_j 记 将 s_j 中所有 x_i 换为t得到的项(任 $j: 1 \leq j \leq m$). 则: $s' = f^m(s'_1, s'_2, \dots, s'_m)$. 由归纳假设知: $s''_j = (s'_j)^\sigma \ (1 \leq j \leq m).$

从而:

$$s^{\sigma'} = \overline{f^m}(s_1^{\sigma'}, s_2^{\sigma'}, \dots, s_m^{\sigma'})$$

$$= \overline{f^m}((s_1')^{\sigma}, (s_2')^{\sigma}, \dots, (s_m')^{\sigma})$$

$$= (s_1')^{\sigma}.$$

归纳证毕, (*)成立.

公式的替换定理

设 α , x_i 和t分别是 \mathcal{L} 中的公式、个体变元符号和项,t对 x_i 在 α 中自由. σ 为 \mathcal{L} 在其某个解释I中 的一个指派, $\sigma' = \sigma(x_i/t^{\sigma})$, $\alpha' = \alpha(x_i/t)$. 则 $I \mid_{\overline{\sigma}} \alpha'$ 当且仅当 $I \mid_{\overline{\sigma'}} \alpha$.

证:下对 α 归纳证明:对 \mathcal{L} 在I中的任意指派 σ ,

$$I \mid_{\overline{\sigma}} \alpha'$$
当且仅当 $I \mid_{\overline{\sigma'}} \alpha$. (*)

(1) 当 α 是原子公式 $F^n(s_1, s_2, \dots, s_n)$ 时,以 s'_j 记将 s_j 中所有 x_i 换为t得到的项(任 $j:1 \leq j \leq n$).则 $\alpha(x_i/t) = F^n(s'_1, s'_2, \dots, s'_n)$. 由项的哑元无关性知:

$$s_j^{\sigma'} = (s_j')^{\sigma} \ (\text{if } j : 1 \le j \le n).$$

从而

$$I \models_{\overline{\sigma'}} \alpha \Leftrightarrow \langle s_1^{\sigma'}, s_2^{\sigma'}, \cdots, s_n^{\sigma'} \rangle \in \overline{F^n}$$

$$\Leftrightarrow \langle (s_1')^{\sigma}, (s_2')^{\sigma}, \cdots, (s_n')^{\sigma} \rangle \in \overline{F^n}$$

$$\Leftrightarrow I \models_{\overline{\sigma}} F^n(s_1', s_2', \cdots, s_n')$$

$$\Leftrightarrow I \models_{\overline{\sigma}} \alpha(x_i/t).$$

(2) 当 α 为 $\neg \beta$ 时, $\alpha(x_i/t)$ 为($\neg \beta$)(x_i/t), 即 $\neg(\beta(x_i/t))$. 由归纳假设知: $I \mid_{\overline{\sigma'}} \beta$ 当且仅当 $I \mid_{\overline{\sigma}} \beta(x_i/t)$.

故 $I \mid_{\overline{\sigma'}} \neg \beta$ 当且仅当 $I \mid_{\overline{\sigma}} \neg \beta(x_i/t)$,

即 $I \mid_{\overline{\sigma}} \alpha$ 当且仅当 $I \mid_{\overline{\sigma}} \alpha(x_i/t)$.

- (3) 当 α 为 $\alpha_1 \rightarrow \alpha_2$ 时, $\alpha(x_i/t)$ 为 $\alpha_1(x_i/t) \rightarrow \alpha_2(x_i/t)$. 对 α_1 和 α_2 使用归纳假设易证(*)成立.
- (4) 当 α 为($\forall x_j$) β 时.
- (4.1) 若i=j,则 α 中所有 x_i 都是约束出现,故 $\alpha'=\alpha$. 由于 σ 与 σ' 对不是 x_i 的个体变元指派的值相同,由公式的约束变元无关性知:

 $I \mid_{\overline{\sigma}} \alpha(x_i/t) \Leftrightarrow I \mid_{\overline{\sigma}} \alpha \Leftrightarrow I \mid_{\overline{\sigma'}} \alpha.$

- (4.2) 若 $i \neq j$, 则: $\alpha(x_i/t)$ 为 $(\forall x_j)$ β (x_i/t) . 由于t对 x_i 在 α 中自由,故 x_i 不在 α 中自由出现或者 x_j 不在 t中出现.

从而

$$I \mid_{\overline{\sigma}} \alpha(x_i/t) \Leftrightarrow I \mid_{\overline{\sigma}} (\forall x_j) \beta(x_i/t),$$

$$\Leftrightarrow$$
对任意 $a \in D$, $I \mid \overline{\sigma(x_i/a)} \beta(x_i/t)$.

$$\Leftrightarrow$$
对任意 $a \in D$, $I \mid_{\overline{\sigma''}} \beta(x_i/t)$, $\sigma'' = \sigma(x_j/a)$,

会对任意
$$a \in D$$
, $I \mid \overline{\sigma''(x_i/t^{\sigma''})} \beta$, (归纳假设)
会对任意 $a \in D$, $I \mid \overline{\sigma''(x_i/t^{\sigma})} \beta$,
会对任意 $a \in D$, $I \mid \overline{\sigma(x_j/a)(x_i/t^{\sigma})} \beta$.
会: 对任意 $a \in D$, $I \mid \overline{\sigma(x_i/t^{\sigma})(x_j/a)} \beta$,
($\sigma(x_j/a)(x_i/t^{\sigma}) = \sigma(x_i/t^{\sigma})(x_j/a)$)
会 $I \mid \overline{\sigma(x_i/t^{\sigma})} (\forall x_j)\beta$,
会 $I \mid \overline{\sigma(x_i/t^{\sigma})} \alpha$.

归纳证完, (*)成立.

相对模型的真假

- $I \mid_{\overline{\sigma}} \alpha$ 定义了 α 相对I和 σ 的真假;
- $I \mid_{\overline{\sigma}} \alpha$ 只表示 α 在某种程度上为真.
- 怎么定义永真式?
- 先定义 α 相对I为真(假)

公式在解释中为真(I)

设 α 为 Ω 的一个公式, I为 Ω 的一个解释,

• 若对 \mathfrak{L} 在I中的每个指派 σ 都有 $I \mid_{\overline{\sigma}} \alpha$,则称 α 在I中真,记为 $I \models \alpha$,此时也称I为 α 的一个模型.

• 若对 \mathfrak{L} 在I中的每个指派 σ 都有 $I \mid \neq \alpha$, 则称 α 在I中 假.

公式在解释中为真(II)

- "α在I中假"并无记号
- $I \not\models \alpha$ 表示 " α 在I中真" 不成立,此时称 α 在I中不真.

- 注意 $I \not\models \alpha$ 与 α 在I中假的区别. (不满足al的指派 个数不同)
- \mathfrak{L} 中可能有公式 α 的某个解释中既不真也不假.

简单性质(I)

设 α, β 是 Ω 的公式, I是 Ω 的一个解释, 则

- (1) $\alpha \alpha I$ 中真⇔ $\neg \alpha \alpha I$ 中假 ⇔ $\neg \neg \alpha \alpha I$ 中真.
- (2) $\alpha \alpha I$ 中假 $\Rightarrow \neg \alpha \alpha I$ 中俱 $\Rightarrow \neg \neg \alpha \alpha I$ 中假.
- (3) $\alpha \rightarrow \beta \alpha I$ 中假 $\Leftrightarrow \alpha \alpha I$ 中真且 $\beta \alpha I$ 中假.

思考题:

" $\alpha \rightarrow \beta \alpha I$ 中真 $\Rightarrow \alpha \alpha \alpha I$ 中假或 $\beta \alpha \alpha \alpha I$ 中真"是否成立?

简单性质(II)

- (1) 若 $I \models \alpha$, 且 $I \models \alpha \rightarrow \beta$, 则 $I \models \beta$.
- (2) $I \models \alpha$ 当且仅当 $I \models (\forall x)\alpha$.
- 证: (1) 易证, 略.
- $(2)(\Rightarrow)$ 设 $I \models \alpha$. 要证 $I \models (\forall x)\alpha$, 只要证:

对 Ω 在I中的任一个指派 σ , $I \models (\forall x)\alpha$. 只要证:

对 Ω 在I中的任一个指派 σ , 任意 $a \in D$, $I \mid \overline{\sigma(x/a)} \alpha$. 注意 $I \models \alpha$ 即可.

 $(2)(\Leftarrow)$ 设 $I \models \forall x\alpha$, 下证 $I \models \alpha$. 对 \mathfrak{L} 在I中的

任一个指派 σ , 因 $I \mid_{\overline{\sigma}} (\forall x) \alpha$, 故对任意 $a \in D$,

 $I \mid \overline{\sigma(x/a)} \alpha$. 特别地, 取 $a_0 = \sigma(x) \in D$, 则

 $I \mid \overline{\sigma(x/a_0)} \ \alpha$. 而 $\sigma(x/a_0) = \sigma$, 故 $I \mid \overline{\sigma} \ \alpha$.

永真(假)式

设 α 为 Ω 的一个公式.

(1) 称 α 是永真式, 若 α 在 Ω 的任一个解释中都为真, 记为 $\models \alpha$;

(2) 称 α 为矛盾式或永假式, 若 α 在 Ω 的任一解释中都为假.

注: 永假式仍然没有记号。

简单性质(I)

- (1) $\models \alpha$ 当且仅当: 对任一解释I及任一 指派 σ , $I \models \alpha$.
- (2) α 是永假式 当且仅当: 对任一解释I中及任一指派 σ , $I \neq \alpha$.

简单性质(II)

(1) α 永真 $\iff \neg \alpha$ 永假;

(1') α 永假 $\iff \neg \alpha$ 永真);

(2) $\alpha \rightarrow \beta$ 永假 $\iff \alpha$ 永真且 β 永假;

(3) 若 $\models \alpha$ 且 $\models \alpha \rightarrow \beta$, 则 $\models \beta$;

 $(4) \models \alpha \iff \models (\forall x_i)\alpha.$

简单性质(III)

• 设 α 为 \mathbf{N} 中公式,将在 α 中出现的所有命题变元 p_0 , p_1 ,…, p_n 同时分别换为 \mathfrak{L} 的公式 α_0 , α_1 ,…, α_n ,得到的 \mathfrak{L} 中公式 β 称为 α 在 \mathfrak{L} 中的一个代入实例.

• $\dot{\pi}$ 者 α' 是**P**中的一个重言式,则 α' 在 $N_{\mathcal{L}}$ 中的 任一个 代入实例 α 是永真式.

简单性质(III)的证明

证:设 α' 中出现的命题变元都在 p_0 , p_1 , p_2 , ··· , p_k 中, α 是将 α' 中所有 p_i 都替换为 $N_{\mathcal{L}}$ 中公式 α_i 得到的公式 $(0 \le i \le k)$. 要证 α 是永真式, 只要证: 对 \mathcal{L} 的任一个解释I及 \mathcal{L} 在I中的任一个指派 σ , $I \mid_{\overline{\sigma}} \alpha$. 对于任给定的I和 σ ,构造 \mathbf{P} 的一个指派 v如下:

$$v: \{p_0, p_1, \cdots, p_n, \cdots\} \longrightarrow \{0, 1\}$$

$$v(p_i) = \begin{cases} 1 & \text{若0} \leq i \leq k \perp I \mid_{\overline{\sigma}} \alpha_i \\ 0 & \text{若0} \leq i \leq k \perp I \mid_{\overline{\sigma}} \alpha_i \\ 0 & i > k \end{cases}$$

以下对 α' 的复杂性归纳证明:

$$I \models \alpha$$
 当且仅当 $v(\alpha') = 1$ (*)

(1) 当 α' 为命题变元符号 p_i (某 $i: 0 \leq i \leq k$)时,则 α 为 α_i ,从而

$$v(\alpha') = 1 \Leftrightarrow v(p_i) = 1 \Leftrightarrow I \mid_{\overline{\sigma}} \alpha_i \Leftrightarrow I \mid_{\overline{\sigma}} \alpha.$$

(2) 当 α' 是 $\neg \beta'$ 时,设 β 为将 β' 中 $p_0, p_1, p_2, \cdots, p_k$ 分别替换为 α_0 , α_1 , α_2 , \cdots , α_k 得到的 $\mathbf{N}_{\mathcal{L}}$ 中的公式,则 α 为 $\neg \beta$. 由归纳假设知:

$$I \mid_{\overline{\sigma}} \beta$$
当且仅当 $v(\beta') = 1$.

从而

$$I \models_{\overline{\sigma}} \alpha \iff I \models_{\overline{\sigma}} \neg \beta \iff I \nmid_{\overline{\sigma}} \beta \iff v(\beta') = 0$$
$$\iff v(\neg \beta') = 1 \iff v(\alpha') = 1.$$

(3) 当 α' 为 $\alpha'_1 \rightarrow \alpha'_2$ 时, 仿(2)可证.

归纳证完, (*)成立.

从而,由于 α' 为**P**的重言式,故 $v(\alpha')=1$,所以, $I \mid_{\overline{\alpha}} \alpha$.

由I和 σ 的任意性知: $\models \alpha$.

闭公式的真假值

设 α 是闭公式. 若 α 不是永真式,则 α 定为永假式;反之亦然.

证明: 利用公式与自由变元的无关性可证.

谢谢