Report for the Markov model (cohort state-transition model)

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2 strategy3	$691 \\ 654$	$\frac{233}{105}$	194 1108

Table 2: Prevent CVD events est LBUB298155 441 strategy1 strategy2374181 567 strategy3 346 154 538

Part I. General population (without CVD)

Markov model

% latex table generated in R 3.6.3 by x table 1.8-4 package % Sat Jan 02 12:06:33 2021

Table 3: Data from Global Health Data Exchange

	Index	sex	$rate_incidence_CVD$	$rate_death_CVD$	$rate_death_nonCVD$
1	40	male	0.003888	0.000819	0.002494
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399
3	50	$_{\mathrm{male}}$	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	male	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
_14	70	female	0.033907	0.013398	0.014907

```
## General setup
source("./function/transform_func.R")
rate_data <- rate_data[1:7,]</pre>
n_t <- 10 # time horizon, number of cycles
# S1: live; S2: cvd; S3: cvdth; S4: oth death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names
            <- length(v_names_str)
                                        # number of strategies
n_str
# Health utilities
out_cvd_free <- 1  # utility when being S1</pre>
out_cvd <- 0.9 # utility when being S2</pre>
out dth <- 0 # utility when being S3 and S4 together
out_trans_to_cvd <- -0.038
                             # TODO
uti_values <- c(out_cvd_free, out_cvd, out_dth, out_dth)
HR_cvdhistory_cvd <-</pre>
                       1.37
HR cvdhistory cvdth <- 3.12
HR_high_live_cvdth <- 1.17</pre>
```

```
p_live_oth_death <- rate_to_prob(r=rate_data$rate_death_nonCVD,t = 1)
p_live_cvd <- rate_to_prob(r=rate_data$rate_incidence_CVD, t=1)
p_live_cvdth <- rate_to_prob(r=rate_data$rate_death_CVD, t=1)
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$rate_incidence_CVD*HR_cvdhistory_cvd, t=1)
p_ccvd_cvdth <- rate_to_prob(rate_data$rate_death_CVD*HR_cvdhistory_cvdth,t=1)
set.seed(100)
p_acvd_cvdth <- rep(runif(1,min=0.02,max=0.1),length=length(p_live_cvd))</pre>
```

Component 1: A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$


```
Thus, P4 = 1 - P1 - P2 - P3 P1 = p\_live\_cvd * (1 - p\_acvd\_cvdth) P2 = p\_live\_cvdth + p\_live\_cvd * p\_acvd\_cvdth P3 = p\_live\_oth\_death P6 = 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth) - p\_live\_oth\_death P5 = p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth
```

In what follows, an example for the groups of male patients, aging from 40 to 45 is illustrated.

```
#### Create transition arrays ####
a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
## From S1
a P["S1", "S1", 1:5] <- 1-(p live cvd[1]*(1-p acvd cvdth[1]) +
                             p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1] +
                             p live oth death[1])
a_P["S1", "S2", 1:5] <- p_live_cvd[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5] <- p_live_oth_death[1]</pre>
## From S2
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-
 (p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+
 p_ccvd_acvd[1]*p_acvd_cvdth[1]
a P["S2", "S4", 1:5] <- p live oth death[1]
## From S3
a_P["S3", "S3", 1:5] <- 1
## From S4
a_P["S4", "S4", 1:5] <- 1
# From S1
a P["S1", "S1", 6:10] <- 1-(p live cvd[1+1]*(1-p acvd cvdth[1+1])+
                             p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1] +
                             p_live_oth_death[1+1])
a_P["S1", "S2", 6:10] <- p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]
## From S2
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-
  (p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1])
a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1]
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]
## From S3
a_P["S3", "S3", 6:10] <- 1
## From S4
a_P["S4", "S4", 6:10] <- 1
# the a P is the transition for 10 cycles
аP
```

```
## , , 1
##
##
                         S2
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 2
##
             S1
                         S2
                                      S3
                                                   S4
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 3
##
##
             S1
                         S2
                                      S3
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 4
##
##
                                      S3
                                                   S4
             S1
                         S2
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 5
##
             S1
                         S2
## S1 0.9938017 0.003707301 1.417524e-07 0.002490893
## S2 0.0000000 0.994720043 2.789064e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
  , , 6
##
             S1
                         S2
                                      S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 7
##
##
                         S2
                                      S3
                                                  S4
             S1
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
```

```
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 8
##
##
             S1
                         S2
                                      S3
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 9
##
##
             S1
                         S2
                                      S3
                                                 S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
##
## , , 10
##
##
             S1
                         S2
                                      S3
                                                 S4
## S1 0.9901992 0.006407162 4.007247e-07 0.00339323
## S2 0.0000000 0.992025236 4.581534e-03 0.00339323
## S3 0.0000000 0.000000000 1.000000e+00 0.00000000
## S4 0.0000000 0.000000000 0.000000e+00 1.00000000
```

Component 2: A cohort trace matrix M

```
#### Run Markov model ####
## Initial state vector
# All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for cSTM
m_M \leftarrow matrix(0, nrow = (n_t + 1), ncol = n_states,
             dimnames = list(0:n_t, v_names_states))
m_M[1, ] <- v_s_init</pre>
## Iterative solution of cSTM
for(t in 1:5){
  ## Fill in cohort trace
 m_M[t + 1,] <- m_M[t,]
                               %*% a_P[, , t]
}
rowSums(m M)
## 0 1 2 3 4 5 6 7 8 9 10
## 1 1 1 1 1 1 0 0 0 0 0
for(t in 6:10){
 ## Fill in cohort trace
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
```

plot_trace(m_M)

```
rowSums(m_M)
                      6
                            8
                               9 10
          2
             3
                   5
m_M
##
             S1
                         S2
                                      S3
                                                  S4
     1.0000000 0.000000000 0.000000e+00 0.000000000
     0.9938017 0.003707301 1.417524e-07 0.002490893
     0.9876417 0.007372048 1.062253e-05 0.004975580
## 3 0.9815200 0.010994609 3.132364e-05 0.007454053
     0.9754362 0.014575348 6.212744e-05 0.009926300
     0.9693901 0.018114626 1.029173e-04 0.012392312
     0.9598894 0.024181206 1.862985e-04 0.015743143
## 7 0.9504817 0.030138534 2.974702e-04 0.019082321
## 8 0.9411662 0.035988076 4.359318e-04 0.022409791
     0.9319420 0.041731284 6.011895e-04 0.025725500
## 10 0.9228083 0.047369591 7.927563e-04 0.029029397
```


Figure 1: For the group male aging from 40-45

	Tab	le 4: Incidence rate	
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)
	Low risk	0.63	1
Strategy 1	Medium risk	1.56	1
	High risk	1.6	1.7
	Low risk	0.43	1
Strategy 2	Medium risk	0.97	1
	High risk	2.06	1.7
	Low risk	0.63	1
Strategy 3	Medium risk	1.09	1
	High risk	2.11	1.7
	Weight control	0.93	0.93
Intervention	Smoke cession	0.85	0.72
	Salt reduction	0.81	0.66
Medication	Statin and antihypertensive	0.7	0.82

```
HR_l_stg1 <- 0.63
HR_m_stg1 <- 1.56
HR_h_stg1 <- 1.6
HR_1_stg2 <- 0.43
          <- 0.97
HR_m_stg2
HR_h_stg2
          <- 2.06
HR_1_stg3 <- 0.45
          <- 1.09
HR_m_stg3
HR_h_stg3 <- 2.11
# lifestyle intervention for medium risk and above
HR_smk_cvd <- 0.85
HR_smk_cvdth <- 0.72
HR_salt_cvd <- 0.81
HR_salt_cvdth <- 0.66
HR wtc cvd <- 0.93
HR_wtc_dth <- 0.93
# treatment intervention for high risk (additional)
HR_hpt_lip_cvd <- 0.7</pre>
HR_hpt_lip_cvdth <- 0.82</pre>
```

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

Thus, we take the example of individuals in the low level

We say that the screening strategy will have an influence on the first line of the transition matrix.

```
# calculation of the QALY
mat <- matrix(NA, nrow=nrow(m_M),ncol = 4)
mat[1:nrow(m_M),] <- uti_values
print(m_M*mat)</pre>
```

sum(m_M*mat)

[1] 5.713731