

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 11. Dezember 2023

Graphentheorie — Kreis

Auf Kreise prüfen

Jeder zusammenhängenden Graph mit n > 2 Knoten und n oder mehr Kanten besitzt einen Kreis.

Graphentheorie — Hamiltonkreis

In einem Hamiltonkreis wird jeder Knoten genau einmal besucht.

– Jeder Knoten in einem einfacher Graph G=(V,E), der mindestens Knotengrad |V|/2 hat, besitzt ein Hamiltonkreis.

Graphentheorie — Hamiltonkreis

Auf Hamiltonkreis prüfen

- 1. Es gibt einen Knoten mit Grad 1: Der Graph hat KEINEN Hamiltonkreis. Es gibt einen Knoten u vom Grad 1. Der einzige Nachbar von u muss somit zweimal besucht werden. Ein Kreis besucht aber einen Knoten höchsten einmal.
- 2. $\forall v \in V. \deg(v) \ge |V|/2$: WENN der Graph ZUSAMMENHÄNGEND ist, dann hat der Graph einen Hamiltonkreis.

Sonst könnte man keine Aussage ziehen. Man müsste ein Beispiel geben (Bsp. $K_{m,n}$).

Aufgabe

VL-Skript Abschnitt 127

Aufgabe 8.1

In der Vorlesung haben Sie einen ersten Induktionsbeweis für die Behauptung gesehen, dass der perfekte Binärbaum B_h der Höhe h genau 2^h viele Blätter hat.

Der perfekte Ternärbaum der Höhe h ist durch $T_h := ([3]^{\leq h}, \{\{u, ux\} \mid u \in [3]^{< h}, x \in [3]\})$ definiert, wobei $[3]^{\leq h} = \{w \in \{1, 2, 3\}^* : |w| \leq h\}$ die Menge aller Wörter über dem Alphabet $[3] = \{1, 2, 3\}$ ist, welche maximal Länge h haben.

Passen Sie den Induktionsbeweis entsprechend an, um zu zeigen, dass der T_h genau 3^h viele Blätter hat.

Basis: Für
$$h=1$$
 gilt $\Lambda \rightarrow 3=3^{\circ}$ Blätter

Beweis: Tax hat 3 Blätter für jedes Blatt von Ta

Damit wird die Anzahl der Blätter von Tat von Ta verdreifacht

Dadurch hat
$$T_{k+1} \quad 3^k \cdot 3 = 3^{k+1} \quad \text{Blätter}. \quad \Box$$

Formaler Beweis

mit Sprachentheorie

Siehe Musterlösung

(Idee: V = U a)

I dee: V = U a)

Aufgabe 8.2

Sei G = (V, E) ein einfacher zusammenhängender Graph, in dem es zwei nicht benachbarte Knoten u, w mit $deg(u) + deg(w) \ge |V|$ gibt.

Zeigen Sie: Hat $G' = (V, E \cup \{\{u, w\}\})$ einen Hamiltonkreis, dann auch G.

Hinweis: Passen Sie den Beweis für das hinreichende Kriterium für die Existenz eines Hamiltonkreises aus der Vorlesung geeignet an.

Fall 1 (u, w) nicht in Hamiltonkreis von G'enthalten

→ Der Hamiltonkreis befindet sich auch in G, da (u,w) & Eg

Fall 2 $\{U, W\}$ in Hamiltonkreis von G'enthalten $\Rightarrow \forall v \in V. \deg(v) \geqslant \frac{|v|}{2}$

→ Ziel: (u, w) durch einen Pfad zu ersetzen

Es gibt mindestens $\min(\deg(u) + \deg(v)) - (|V| - 2) = |V| - |V| + 2 = 2$ Knoten,

Min. Anzahl von ausgehenden 1 (u *)Kanten von u und v + 1 (v *)

damit es zwischen u und v keinen Pfad gibt.

Der Hamiltonkreis befindet sich auch in G,

da [u,w] durch einen Pfad ersetzt wird.

verbunden werden

Aufgabe 8.3

Definition: Sei G = (V, E) ein Graph, und sei $ab \in E$ eine Kante. Dann heißt ab eine **Brücke** von G, falls der Knoten b im Teilgraphen $G' = (V, E \setminus \{ab\})$ nicht vom Knoten a aus erreichbar ist.

Frage: Haben Kreise Brücken?

Т

Aufgabe 8.3

Definition: Sei G = (V, E) ein Graph, und sei $ab \in E$ eine Kante. Dann heißt ab eine **Brücke** von G, falls der Knoten b im Teilgraphen $G' = (V, E \setminus \{ab\})$ nicht vom Knoten a aus erreichbar ist.

(a) Zeigen Sie: Hat jeder Knoten von G einen geraden Grad, so kann G keine Brücke besitzen.

Eulertour (auf den Teilgraphen)

⇒ Einfacher Kreis, wo jeder Knoten darauf ist

⇒ A Brücke

ТИП

Aufgabe 8.3

Definition: Sei G = (V, E) ein Graph, und sei $ab \in E$ eine Kante. Dann heißt ab eine **Brücke** von G, falls der Knoten b im Teilgraphen $G' = (V, E \setminus \{ab\})$ nicht vom Knoten a aus erreichbar ist.

- (b) Zeigen Sie: Jeder einfache, zusammenhängende Graph G, in dem jede Kante eine Brücke ist, ist ein Baum.
 - ↓ |E|>|V|-1

Zu zeigen: |E|=|V|-1

VL-Skript Abschnitt 131 |E| > | V| > 3 ⇒ Kreis vorhanden

Jay Zhou (TUM) | Diskrete Strukturen

Fall 1 $|V| \ge 3$ Falls $|E| \ge |V|$ $\Rightarrow Kreis$ $\Rightarrow Keine Brücke 2$ $\Rightarrow |E| \le |V|$ Da $|E| \ge |V| - 1$ (Zusammenhang) $\Rightarrow |E| = |V| - 1$

Fall 2
$$|V| < 3$$

$$|V| = 2 \qquad \checkmark$$

$$|V| = 1 \qquad \checkmark$$

$$|V| = 0 \qquad \checkmark$$

Fragen?