Measures of Central Tendency and Dispersion

Simon J. Kiss

17/03/2020

Learning Outcomes

- I. students should be able to demonstrate an understanding of:
 - mean
 - median
 - mode
 - variance
 - standard deviation
 - Normal distribution

Goals of the presentation

- 2. Demonstrate concepts using the Labour Force Survey
- 3. R code provided is meant to:
 - reinforce previous familiarity with R
 - demonstrate concepts

Central Tendency

- One of the goals is to describe the world with numbers.
- describing where the centre of a set of data is is pretty useful

most common measure of central tendency

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Example

Load data from the Labour Force Survey

- These data are stored in a file-format called sav which is really common in the social sciences
- loading the haven library provides the read_sav()
 command to read it in
- loading the labelled library lets us search through variables quickly

```
library(labelled)
look_for(lfs, "wages")
```

```
## variable label
## 36 HRLYEARN Usual hourly wages, employees only
```

```
look_for(lfs, "education")
```

```
## variable label
## 11 EDUC Highest educational attainment
```

```
look_for(lfs, "sex")
```

```
## variable label
## 9 SEX Sex of respondent
```

```
library(tidyverse)
lfs %>%
   ggplot(., aes(x=HRLYEARN))+geom_histogram()
```


Calculate mean

mean(lfs\$HRLYEARN, na.rm=T)

[1] 27.88198

Means by group

```
lfs %>%
ggplot(., aes(x=HRLYEARN))+geom_histogram()+facet_wrap(~as_factor(SEX))
```


Means by group

```
lfs %>%
group_by(SEX) %>%
summarize(avg=mean(HRLYEARN, na.rm=T))
```

```
## # A tibble: 2 x 2

## SEX avg

## <dbl+lbl> <dbl>

## 1 1 [Male] 29.8

## 2 2 [Female] 26.0
```

Median

means are vulnerable to outliers

```
vector1<-c(1,2,3,4,5,6,7,8,9,10)
mean(vector1)</pre>
```

```
## [1] 5.5
```

```
vector2<-c(1,2,3,4,5,6,7,8,9,10, 1000000)
mean(vector2)</pre>
```

```
## [1] 90914.09
```

Median

- Median is a different measure of central tendency
- The value at which half of a variable is above, half is below.

```
lfs %>%
group_by(SEX) %>%
summarize(median=median(HRLYEARN, na.rm=T))
```

```
## # A tibble: 2 x 2
## SEX median
## <dbl+1bl> <dbl>
## 1 1 [Male] 26.4
## 2 2 [Female] 22.3
```

Median

median is immune to outliers

Mode

- Mode is the most frequently occurring variable in the data
- useful for categorical data

Varl	Freq
0 to 8 years	4841
Some high school	11951
High school graduate	20006
Some postsecondary	6207
Postsecondary certificate or diploma	33779
Bachelor's degree	15166
Above bachelor's degree	7225

Mode

Not usually measured for numeric data

Variance

 Often not just interested in the center of the data, but the distribution

```
#make one class of fake data, average =75, standard deviation =1
class1<-rnorm(100, mean=75, sd=1)
#make a second class of fake data, average=75, standard deviation = 10
class2<-rnorm(100, mean=75, sd=10)
#combine into a dataframe
df<-data.frame(class1, class2)</pre>
```

```
df %>%
  #gather into Class and Grade
gather(Class, Grade) %>%
  #Graph and facet
ggplot(., aes(x=Grade))+geom_histogram()+facet_wrap(~Class)
```


different spreads have very different real-life consequences

- 1. Subtract the average from each value
- 2. Square it to get rid of the negatives
- 3. Sum everything up
- 4. divide by the sample size.

$$s^2$$
 = sample variance

$$\sum = \text{sum everything from the bottom to the top}$$

$$\bar{x} = \text{sample average}$$

$$N = \text{sample size}$$

$$s^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}{N - 1}$$

```
#Step 1 is to subtract hte average from each value
step1<-lfs$HRLYEARN-mean(lfs$HRLYEARN, na.rm=T)
#step 2 is to square to get rid of the means
step2<-step1^2
#step 3 is to sum all of the variances, na.rm=T to remove missing values
step3<-sum(step2, na.rm=T)
#step 4 is to divide by the sample size (excluding missing values)
variance<-step3/(length(na.omit(lfs$HRLYEARN))-1)
#compare with the base
print(variance)</pre>
```

```
## [1] 194.1875
```

```
var(lfs$HRLYEARN, na.rm=T)
```

```
## [1] 194.1875
```

Standard Deviation

- variance is expressed in units squared
- unsquare it gives us a standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$

- Commonly we talk about something being I standard deviation away, or two standard deviations away.
- Standard deviation is a number that describes the average distance from the average in the units that variable is taken.

- Data come in different types (categorical, numeric)
- there are different processes in the universe that generate data
- data follow different distributions
 - Recall from ** The Joy of Stats** the importance of a distribution

- I. Normal distribution
 - mean = median = mode
 - contstantly reoccurring pattern in nature

I. Normal distribution

```
#use rnorm to generate 10000 random numbers according to the normal distribution
#mean of 1000 and standard deviation of 500
var1<-rnorm(10000, mean=1000, sd=500)
#make into a data frame
df<-data.frame(var1)
#graph a histogram
ggplot(df, aes(x=var1))+geom_histogram()+theme_bw()+labs(title="Randomly Generated Normal Distribution")</pre>
```

Randomly Generated Normal Distribution

Go back upand play with the mean and sd.

- 2. Uniform Distribution
 - numbers on a die

2. Uniform Distribution

```
#Sample a number from 1 to 6 (like on a die roll), 10000 times
var1<-sample(1:6, 10000, replace=T)
#turn into a dataframe (die)
die<-data.frame(var1)
#Graph as a
ggplot(die, aes(x=var1))+
    #as a barplot, counting the numbr of times each number occurs
geom_bar(stat="count")+
    #turn it black and white
theme_bw()+
    #give some labels
labs(title="Distribution of numbers on a fair die", x="Number")</pre>
```

Distribution of numbers on a fair die

Normal Distribution

```
mean(df$var1, na.rm=T)

## [1] 1001.175

median(df$var1, na.rm=T)

## [1] 997.6412
```

Normal Distribution

- an absolute key feature of the normal distribution is that approximately:
 - 68% of all cases lie within one standard deviation of the mean;
 - 95% of cases lie within two standard deviations of the mean and
 - 99% of cases lie within three standard deviations from the mean.

Normal Distribution

