08-27-2021-shift-2(1-15)

1

(JEE M 2021)

(JEE M 2021)

EE24BTECH11055 - Sai Akhila Reddy Turpu

1) The angle between the straight lines, whose direction cosines are given by the

2) Let $A = \begin{bmatrix} [x] + 1 & [x] + 2 & [x] + 3 \\ [x] & [x] + 3 & [x] + 3 \\ [x] & [x] + 2 & [x] + 4 \end{bmatrix}$ where [t] denotes the greatest integer less than

or equal to t. If det(A) = 192, then the set of values of x in the interval:

c) $\cos^{-1}\left(\frac{4}{9}\right)$ d) $\frac{\pi}{3}$

c) [65, 66)

equations 2l + 2m - n = 0 and mn + nl + lm = 0, is :

a) $\frac{\pi}{2}$ b) $\pi - \cos^{-1}(\frac{4}{9})$

a) [68, 69)

b) [62, 63)		d) [60, 61)		
			inimum values of the fun of $tan(M - m)$ is equal to:	
a) $2 + \sqrt{3}$ b) $2 - \sqrt{3}$		c) $3 + 2\sqrt{2}$ d) $3 - 2\sqrt{2}$		
	persons A and B indep them get the same num		nree fair coins. The probabilities (JEE M 2	-
a) $\frac{1}{8}$	b) $\frac{5}{8}$	c) $\frac{5}{16}$	d) 1	
axis and wh			rabolas with axis parallel e of the point (2, -3) from (JEE M 2	n the
a) $10 \frac{d^2 y}{dx^2} = 1$ b) $11 \frac{d^2 x}{dy^2} = 1$	1 0	c) $10\frac{d^2x}{dy^2} =$ d) $11\frac{d^2y}{dx^2} =$	11 10	
_	ents drawn from a point the locus of point <i>P</i> is:	_	ola $y^2 = 16(x - 3)$ are at (JEE M 2)	_

a)
$$x + 3 = 0$$

c)
$$x + 2 = 0$$

b)
$$x + 1 = 0$$

d)
$$x + 4 = 0$$

7) The equation of the plane passing through the line of intersection of planes \mathbf{r} . $(\hat{i} + \hat{j} + \hat{k}) = 1$ and $\mathbf{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to the x-axis is:

a)
$$\mathbf{r} \cdot (\hat{j} - 3\hat{k}) + 6 = 0$$

c)
$$\mathbf{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$$

a)
$$\mathbf{r} \cdot (\hat{j} - 3\hat{k}) + 6 = 0$$

b) $\mathbf{r} \cdot (\hat{i} + 3\hat{k}) + 6 = 0$

c)
$$\mathbf{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$$

d) $\mathbf{r} \cdot (\hat{j} - 3\hat{k}) - 6 = 0$

8) If the solution curve of the differential equation $(2x - 10y^3) dy + y dx = 0$, passes through the points (0,1) and $(2,\beta)$, then β is a root of the equation:

(JEE M 2021)

a)
$$y^5 - 2y - 2 = 0$$

c)
$$2y^5 - y^2 - 2 = 0$$

b)
$$2y^5 - 2y - 1 = 0$$

c)
$$2y^5 - y^2 - 2 = 0$$

d) $y^5 - y^2 - 1 = 0$

9) Let A(a,0), B(b,2b+1) and C(0,b), $b \neq 0$, $||b|| \neq 1$, be points such that the area of the triangle ABC is 1 sq. unit, then the sum of all possible values of a is: (JEE M 2021)

a)
$$\frac{-2b}{b+1}$$

b) $\frac{2b}{b+1}$

c)
$$\frac{2b^2}{b+1}$$

d) $\frac{-2b^2}{b+1}$

d)
$$\frac{b+1}{b+1}$$

10) Let $[\lambda]$ be the greatest integer less than or equal to λ . The set of all values of λ for which the system of linear equations x + y + z = 4, 3x + 2y + 5z = 3, 9x + 4y + 4y + 5z = 3 $(28 + [\lambda])z = [\lambda]$ has a solution is:

(JEE M 2021)

- a) \mathbb{R}
- b) $(-\infty, -9) \cup (-9, \infty)$
- c) [-9, -8)
- d) $(-\infty, -9) \cup (-8, \infty)$

11) The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2$ $(k+1)(3x^2+4x+3)(3x^2+4x+2)+k(3x^2+4x+2)^2=0$ has real roots, is: (JEE M 2021)

a)
$$(\frac{5}{2}, 1)$$

b) $[2, 3)$

c)
$$(-1,1)$$

d)
$$(1,3) - \{1\}$$

12) A box open from top is made from a rectangular sheet of dimension $a \times b$ by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to:

(JEE M 2021)

a)
$$\frac{a+b-\sqrt{a^2+b^2-ab^2}}{12}$$

b)	$\frac{a+b-\sqrt{a^2+b^2+a^2}}{6}$
	,	6
c)	$\frac{a+b-\sqrt{a^2+b^2-a}}{6}$
d)	$\frac{a+b+\sqrt{a^2+b^2-a}}{6}$
u	,	6
) [Γh	ne Boolean e

expression $(p \land q) \implies ((r \land q) \land p)$ is equivalent to: (JEE M 2021) 13)

a)
$$(p \land q) \implies (r \land q)$$

c)
$$(p \land q) \implies (r \lor q)$$

b)
$$(q \wedge r) \implies (p \wedge q)$$

d)
$$(p \wedge r) \implies (p \wedge q)$$

14) Let
$$\mathbb{Z}$$
 be the set of all integers,
 $A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + y^2 \le 4\},$
 $B = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4\},$
 $C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + (y - 2)^2 \le 4\}$

 $C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + (y - 2)^2 \le 4\},$ If the total number of relations from $A \cap B$ to $A \cap C$ is 2^p , then the value of p is: (JEE M 2021)

a) 16

c) 49

b) 25

d) 9

15) The area of the region bounded by the parabola $(y-2)^2 = (x-1)$, the tangent to it at the point whose ordinate is 3 and the x-axis is: (JEE M 2021)

a) 9

- b) 10
- c) 4

d) 6