

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Visualizing Regressions

Seaborn

https://stanford.edu/~mwaskom/software/seaborn/

Recap: Pandas DataFrames

- Labelled tabular data structure
- Labels on rows: index
- Labels on columns: columns
- Columns are Pandas Series

Recap: Pandas DataFrames

	total_bill	tip	sex	smoker	day	time	size
O	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
•••	•••	•••	•••	•••	•••	•••	•••

Linear regression plots

Using Implot()

```
In [1]: import pandas as pd
In [2]: import matplotlib.pyplot as plt
In [3]: import seaborn as sns
In [4]: tips =sns.load_dataset('tips')
In [5]: sns.lmplot(x= 'total_bill', y='tip', data=tips)
In [6]: plt.show()
```


Factors

	total_bil	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
•••	•••	•••	•••	•••	•••	•••	•••

Grouping factors (same plot)

Using hue=...

Grouping factors (subplots)

Using col=...

```
In [9]: sns.lmplot(x='total_bill', y='tip', data=tips, col='sex')
In [10]: plt.show()
```


Residual plots

Using residplot()

```
In [11]: sns.residplot(x='age',y='fare',data=tips,color='indianred')
In [12]: plt.show()
```

- Similar arguments as Implot() but more flexible
 - x, y can be arrays or strings
 - data is DataFrame (optional)
- Optional arguments (e.g., color) as in Matplotlib

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Visualizing univariate distributions

Visualizing data

- Univariate → "one variable"
- Visualization techniques for sampled univariate data
 - Strip plots
 - Swarm plots
 - Violin plots

Strip plot

Using stripplot()

```
In [1]: sns.stripplot(y= 'tip', data=tips)
In [2]: plt.ylabel('tip ($)')
In [3]: plt.show()
```


Grouping with stripplot()

```
In [4]: sns.stripplot(x='day', y='tip', data=tip)
In [5]: plt.ylabel('tip ($)')
In [6]: plt.show()
```


Grouped strip plot

Spreading out strip plots

Spreading out strip plots

Swarm plot

Using swarmplot()

```
In [10]: sns.swarmplot(x='day', y='tip', data=tips)
In [11]: plt.ylabel('tip ($)')
In [12]: plt.show()
```


More grouping

More grouping with swarmplot()

```
In [13]: sns.swarmplot(x='day', y='tip', data=tips, hue='sex')
In [14]: plt.ylabel('tip ($)')
In [15]: plt.show()
```


Changing orientation

Changing orientation

Violin plot

Using violinplot()

```
In [19]: plt.subplot(1,2,1)
In [20]: sns.boxplot(x='day', y='tip', data=tips)
In [21]: plt.ylabel('tip ($)')
In [22]: plt.subplot(1,2,2)
In [23]: sns.violinplot(x='day', y='tip', data=tips)
In [24]: plt.ylabel('tip ($)')
In [25]: plt.tight_layout()
In [26]: plt.show()
```


Combining plots

Combining plots

DataCamp

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Visualizing Multivariate Distributions

Visualizing data

- Bivariate → "two variables"
- Multivariate → "multiple variables"
- Visualizing relationships in multivariate data
 - Joint plots
 - Pair plots
 - Heat maps

Joint plot

Using jointplot()

```
In [1]: sns.jointplot(x= 'total_bill', y= 'tip', data=tips)
In [2]: plt.show()
```


Joint plot using KDE

Using kde=True

Pair plot

Using pairplot()

```
In [5]: sns.pairplot(tips)
```

In [6]: plt.show()

Using pairplot() with hue

```
In [7]: sns.pairplot(tips, hue='sex')
In [8]: plt.show()
```


Using pairplot() with hue

Covariance heat map of tips data

Using heatmap()

INTRODUCTION TO DATA VISUALIZATION WITH PYTHON

Let's practice!