INFO0947: Projet 1 Rapport

Groupe 10: Cyril Russe, Martin Randaxhe

Table des matières

1	Défi	nition du problème	3
	1.1	Introduction	3
	1.2	Input/Output	3
		1.2.1 Input	3
		1.2.2 Output	3
	1.3	Objets utilisés	3
2	Forn	nalisation du problème	3
	2.1	Description de notation	3
	2.2	Spécifications	4
	2.3	Décomposition en sous-problèmes	4
	2.4	Spécification des sous-problèmes	4
	2.5	Invariant	5
		2.5.1 Invariant SP1	5
		2.5.2 Invariant SP2	5
	2.6	Gardiens de boucle	5
	2.7	Critères d'arrêt	5
	2.8	Fonctions de terminaison	5
3	Cod	e	6
	3.1	Schéma de la fonction "EgaliteSSTab"	6
		3.1.1 Initialisation des variables	6
		3.1.2 Sous-problème 1	6
		3.1.3 Sous-problème 2	7
4	Com	plexité	7

1 Définition du problème

1.1 Introduction

Soit T, un tableau à N valeurs entière $(N \ge 0)$. On veut construire une fonction qui permet d'obtenir, pour T, le plus grand entier $k(k \in 2[0, \ldots, N-1])$ tel que le sous-tableau $T[0 \ldots k-1]$ est à la fois préfixe et suffixe de T. Si un tel sous-tableau n'existe pas, la fonction doit renvoyer la valeur 0. Attention, on fait l'hypothèse que $k \ne N$ sinon le problème devient trivial.

1.2 Input/Output

1.2.1 Input

- T: un tableau d'entier de taille N
- N: la taille du tableau T

1.2.2 Output

— $taille_sous_tableau$: la taille du plus grand sous tableau à la fois préfixe et suffixe de T

1.3 Objets utilisés

- int T: un tableau d'entier de taille N
- unsigned int N: la taille du tableau d'entier
- int $est_pref_et_suf$: une variable booléenne permettant de savoir si le sous tableau analysé est préfixe et suffixe
- int $taille_sous_tableau$: la taille du plus grand sous tableau à la fois préfixe et suffixe de T
- int i, j: des compteurs de boucle

2 Formalisation du problème

2.1 Description de notation

- $Meme SSTableau(T, N, i) \equiv \exists j, 0 \le j \le i, T[j] \ne T[N-1-i+j] \Rightarrow 0$, sinon 1
- $PrefixeSuffixe(T, N) \equiv i + 1 \text{ si } \forall i, 0 \leq i < N 1, MemeSSTableau(T, N, i) = 1$

2.2 Spécifications

```
/**

* * EgaliteSSTab

* * Fonction qui renvoit la taille du plus grand sous tableau

* étant préfixe et suffixe

* * @param T un tableau d'entiers initialisé au préalable

9 * @param N un entier définissant la taille de T

10 *

11 * @pre : T!=NULL, N>1

12 * @post : T=T_0, N=N_0, taille_sous_tableau = PrefixeSuffixe(T, N)

13 *

14 * @return : taille_sous_tableau

15 */

16 int EgaliteSSTab(int *T, const unsigned int N);
```

Extrait de Code 1 – Spécification fonction EgaliteSSTab

2.3 Décomposition en sous-problèmes

- Sous-problème 1 : Teste les préfixes/suffixes de T en allant de 0 à N-1
- Sous-problème ${\bf 2}$: Teste si chaque élément préfixe est égal à l'élément correspondant suffixe

$$SP2 \subset SP1$$

2.4 Spécification des sous-problèmes

```
-\operatorname{SP1}: \\ -\operatorname{@pre}: \\ Tinit \wedge T \neq NULL \wedge N > 1 \wedge i = 0 \wedge taille\_sous\_tableau = 0 \wedge est\_pref\_et\_suf = 1 \\ -\operatorname{@post}: \\ T = T_0 \wedge N = N_0 \wedge taille\_sous\_tableau = PrefixeSuffixe(T, N) \\ -\operatorname{SP2}: \\ -\operatorname{@pre}: \\ T = T_0 \wedge N = N_0 \wedge j = 0 \wedge est\_pref\_et\_suf = 1 \\ -\operatorname{@post}: \\ T = T_0 \wedge N = N_0 \wedge est\_pref\_et\_suf = MemeSSTableau(T, N, i) \\
```

2.5 Invariant

2.5.1 Invariant SP1

FIGURE 1 – Invariant SP1

 $Inv: N = N_0 \land T = T_0 \land 0 \le i \le N - 1 \land taille_sous_tableau = PrefixeSuffixe(T, N)$

2.5.2 Invariant SP2

Figure 2 – Invariant SP2

$$Inv: N = N_0 \wedge T = T_0 \wedge 0 \leq j \leq i \wedge MemeSSTableau(T, N, i) = 1$$

5

2.6 Gardiens de boucle

- SP1: i < N-1 $SP2: j \le i$
- 2.7 Critères d'arrêt

- SP1 :
$$i = N - 1$$

- SP2 : $j = i + 1 \lor T[j] \ne T[N - 1 - i + j]$

2.8 Fonctions de terminaison

- SP1:
$$N-1-i$$

- SP2: $i+1-j$

3 Code

3.1 Schéma de la fonction "EgaliteSSTab"

Extrait de Code 2 – Schéma de la fonction "EgaliteSSTab"

3.1.1 Initialisation des variables

Cet extrait de code présente le début de notre fonction qui est constitué de l'initialisation de nos variables, afin d'arriver au stade où celles-ci vérifient les pré-conditions du SP 1.

```
{Pré: T_{init} \land N > 1}
assert (T!=NULL && N>1);
unsigned int i=0, j;
\{T = T_0 \land N = N_0 \land i = 0 \land j_{init}\}
int taille_sous_tableau=0, est_pref_et_suf=1;
\{T = T_0 \land N = N_0 \land i = 0 \land j_{init} \land taille\_sous\_tableau = 0 \land est\_pref\_et\_suf = 1\}
```

Extrait de Code 3 – Initialisation des variables

Les pré-conditions du SP1 correspondent bien au conditions de notre prédicat final.

3.1.2 Sous-problème 1

```
\{Inv: T = T_0 \land N = N_0 \land 0 \le i \le N-1\}
      while (i < N - 1) {
            \{Inv \wedge B : T = T_0 \wedge N = N_0 \wedge 0 \le i \le N - 2\}
 3
            j=0;
            est_pref_et_suf =1;
 5
            \{T = T_0 \land N = N_0 \land j = 0 \le i \le N - 2\}
            {Pré SP2: T = T_0 \land N = N_0 \land j = 0 \land est\_pref\_et\_suf = 1}
            //SP2
10
            {Post SP2: T = T_0 \land N = N_0 \land est\_pref\_et\_suf = MemeSSTableau(T, N, i)}
12
             if (est_pref_et_suf == 1)
13
                  taille_sous_tableau=i+1;
14
            {Post SP1 : T = T_0 \land N = N_0 \land est\_pref\_et\_suf = MemeSSTableau(T, N, i)}
16
            \{T = T_0 \land N = N_0 \land 0 \le i \le N - 1 \land est\_pref\_et\_suf = MemeSSTableau(T, N, i)\}
      }//fin while
```

Extrait de Code 4 – Sous-problème 1

3.1.3 Sous-problème 2

Extrait de Code 5 – Sous-problème 2

4 Complexité

On va découper la complexité en plusieurs segments et ensuite on va les additionner. La première partie est l'initialisation des variables et vu qu'on en déclare 4

$$T_A(N) = 4$$

Ensuite, on a la première boucle et par la règle 5, on a

$$T_B(N) = \sum_{i=0}^{N-1} (4 + T_C(i))$$

Dans ce cas-ci, le "4" représente l'initialisation des variables et le $T_C(i)$ est la deuxième boucle. Pour la deuxième boucle, on a

$$T_C(i) = \sum_{j=0}^{i} 1$$

On a donc

$$T_C(i) = i$$

On revient à la première boucle

$$T_B(N) = \sum_{i=0}^{N-1} (4+i) \Leftrightarrow T_B(N) = \frac{N^2 + 7N}{2}$$

Enfin, en additionnant le tout, on obtient

$$T(N) = \frac{N^2 + 7N + 8}{2}$$

Dans ce cas ci, notre complexité T(N) est majorée par $O(N^2)$. On peut donc en conclure que la fonction est de complexité quadratique.