

APRIL 25, 1986

PRIPYAT, NORTHEN UKRAIN

REACTOR 4 EXPLOSTION

TIMELINE

1:23 AM

SAFETY TEST

1:30 AM

POWER LEVEL DROP

1:40 AM

AZ-5

1:42 AM

EXPLOSION

What are **Ethical Codes?**

- Guidelines for responsible engineering practices
- Promote safety, integrity, and accountability

Why Are They Important?

- **⊘** Ensure public trust
- Guide decision-making
- Protect stakeholders

Chosen Code

Engineers shall hold paramount the safety, health, and welfare of the public

Why It Matters?

Builds public trust

Prevents harm and risks

Application

- Safe infrastructure
- Medical devices
- Environmental protection

Real-World **Scenarios**

- Bridge and building safety
- Clean energy projects
- Reliable medical technologies

Group - 1

Engineering

Ethics

Violation of Ethical Code

- Ignored safety protocols
- Reactor design flaws
- Poor operator training
- Lack of communication
- Neglected public safety

Ethical Dilemma

Ethics vs. Pressure

- 1.Should workers follow unsafe orders or refuse and face punishment?
- 2. Should they stop the test due to inexperience or continue under pressure?
- 3. Should they delay the test for safety or proceed to meet expectations?
- 4. Should they speak out despite threats or stay silent to protect themselves?

Ethical Dilemma...

Safety vs. Expectations

- 5. Should they reveal the flaw to save lives or hide it to protect the government's image?
- 6.Should they evacuate immediately and risk panic or delay to avoid attention?
- 7. Should they warn workers of the risks or hide the truth to ensure cleanup was done?

1. Identify the Ethical Issues

- Deadlines prioritized over safety, disabling critical systems.
- Operators lacked training to understand risks.
- Management pressured unsafe testing.
- Hidden design flaws left operators unprepared.

2. Gather the Relevant Facts

- Test conducted under unsafe conditions to improve reactor safety.
- Safety systems disabled during the test.
- Reactor's low-power instability and design flaws were known but hidden.
- Soviet bureaucracy discouraged transparency and oversight

3. Evaluate the Options

- Halt the Test
- Proceed with Caution
- Proceed as Planned

4. Make a Decision and Justify

Safety-First Culture

Comprehensive Training and Education

Decision-Making Under Uncertainty

Ethical Leadership and Accountability

International Collaboration

Conclusion

01 Preventive Actions

◆ Ensure proper training, adherence to safety protocols, and improved reactor design.

02 Role of Engineering Ethics

Emphasize accountability, safety-first principles, and ethical decision-making.

Conclusion

Conclusion

03 Relevance of Ethical Code

Highlights the need for safety, integrity, and professional responsibility.

04 Accountability

Shared responsibility among engineers, management, and regulators.

Conclusion

Any Question?

Group - 1

Engineering

Ethics