Predicting Olympic Medal Winners

A Data Mining Approach to Olympic Medal Winners

Project Introduction

Goal:

Predicting whether or not Olympians will win medal based on the historical dataset on the modern Olympic Games, including all the Games from Athens 1896 to Rio 2016.

Problem Statement:

Out of the various features provided in data set, project will use some or all to build a model which will predict if a Olympian will win a medal or not.

Project Workflow

Figure 1: project workflow

Data

This is a historical dataset on the modern Olympic Games, including all the Games from Athens 1896 to Rio 2016. The columns are:

- 1. ID Unique number for each athlete
- 2. Name Athlete's name
- 3. Sex M or F
- 4. Age Integer
- 5. Height In centimeters
- 6. Weight In kilograms
- 7. Team Team name
- 8. NOC National Olympic Committee 3-letter code
- 9. Games Year and season
- 10. Year Integer
- 11. Season Summer or Winter
- 12. City Host city
- 13. Sport Sport
- 14. Event Event
- 15. Medal Gold, Silver, Bronze, or NA

Data Insight -- Participation (3-1)

of athletes participated over years

Data Insight -- Participation (3-2)

of countries participated over years

Data Insight -- Participation (3-3)

Participation by gender

Data Insight -- Athletes (2-1)

Age Distribution

Data Insight -- Height and Weight (2-2)

Height and Weight Distribution

Data Insight -- Sport (2-1)

Events by gender over years

Data Insight -- Sport (2-1)

Events by sport over years

Data Insight -- Medal (2-1)

Top 30 countries with the maximum number of medals

<u>Summer</u> <u>Winter</u>

Data Insight -- Medal (2-2)

Gold received USA

Figure 1: project workflow

Missing Value:

Shape	271116	15
	Missing Data	Percentage
ID	0	0
Name	0	0
Sex	0	0
Age	9474	3.49444518
Height	60171	22.1938211
Weight	62875	23.1911802
Team	0	0
NOC	0	0
Games	0	0
Year	0	0
Season	0	0
City	0	0
Sport	0	0
Event	0	0
Medal	231333	85.3262072

Data pre-processing: Age

Data pre-processing: Height and Weight

```
#Height Update
Similar process as age:
data height = df1[['NOC', 'Height', 'Sex']].copy()
data height = data height.groupby(['NOC','Sex']).mean().reset index()
d height = defaultdict()
for index, row in data height.iterrows():
    d height[row['combined']]=row['Height']
#Weight Update:
data weight = df1[['NOC','Weight','Sex']].copy()
data weight = data weight.groupby(['NOC','Sex']).mean().reset index()
d weight = defaultdict()
for index, row in data weight.iterrows():
    d weight[row['combined']]=row['Weight']
```

Result of all Update (column and Missing Value):

Age: 13 Height 108 weight: 257

Final Preprocessing:

```
#find average of updated data and update the rest of NaN value
mean_age = df1.Age.mean()

mean_height = df1.Height.mean()

mean_weight = df1.Weight.mean()

print(mean_age,mean_height,mean_weight)
```

Loop and update (expensive process)

Result of Final Update (column and Missing Value):

Age: 0 Height 0 weight : 0

Age, Height, Weight Distribution

Feature Selection

```
df1 = df1.drop(['ID', 'Name', 'Games', 'Sport'], axis=1)
```

#removed features that were not relevant

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal
0	1	A Dijiang	М	24.0	180.000000	80.000000	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	0
1	2	A Lamusi	М	23.0	170.000000	60.000000	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's Extra- Lightweight	0
2	3	Gunnar Nielsen Aaby	М	24.0	181.527607	77.607492	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	0
3	4	Edgar Lindenau Aabye	М	34.0	181.527607	77.607492	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of- War	Tug-Of-War Men's Tug- Of-War	1
4	5	Christine Jacoba Aaftink	F	21.0	185.000000	82.000000	Netherlands	NED	1988 Winter	1988	Winter	Calgary	Speed Skating	Speed Skating Women's 500 metres	0

Encoding (for categorical Data)

```
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder

# LabelEncoder
le = LabelEncoder()
# apply "le.fit_transform"
df_encoded = df1.apply(le.fit_transform)
```

Result:

print(df endcoded.head(10))

	Sex	Age	Height	Weight	Team	NOC	Year	Season	City	Event	Medal
0	1	21	353	413	60	39	0	0	3	69	0
1	1	16	185	148	60	39	10	0	6	237	0
6	0	30	398	427	222	138	0	1	0	357	0
7	0	30	398	427	222	138	0	1	0	353	0
8	0	40	398	427	222	138	1	1	5	357	0
9	0	40	398	427	222	138	1	1	5	353	0
10	1	45	402	339	342	203	0	1	0	124	0
11	1	45	402	339	342	203	0	1	0	131	0
12	1	45	402	339	342	203	0	1	0	126	0
13	1	45	402	339	342	203	0	1	0	130	0

Correlation

TakeAway:

Medal is highly depended on :

Age

Height

Weight

Team

NOC

Year

Event

Model

1st Run:

LogisticRegression

Predicted values were only Zero

print(np.unique(Y predict)) [0]

Issue:

Imbalanced Data Set

Fix: Upsamling and Downsampling

Upscaling

LogisticRegression - Upscaling

```
105435
      16781
Name: Medal, dtype: int64
     105435
     105435
Name: Medal, dtype: int64
0.5842733166676829
             precision
                          recall f1-score
                                              support
                  0.58
                            0.58
                                       0.58
                                                31441
                  0.58
                                       0.58
                            0.59
                                                31820
avg / total
                  0.58
                             0.58
                                       0.58
                                                63261
```

[0 1]

Downscaling

LogisticRegression - Downscaling

```
105435
     16781
Name: Medal, dtype: int64
     16781
     16781
Name: Medal, dtype: int64
0.5817477546503214
             precision
                          recall f1-score
                                              support
                  0.59
                            0.59
                                      0.59
                                                 5008
                  0.59
                            0.59
                                      0.59
                                                 5061
avg / total
                  0.59
                            0.59
                                      0.59
                                                10069
[0 1]
```

RandomForestClassifier: downscaling

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
# Train model
clf 4 = RandomForestClassifier()
clf 4.fit(X train std, y train)
                                                     [0 1]
                                                     0.49597775350084417
# Predict on training set
                                                     0.816217959583181
pred y 4 = clf 4.predict(X train std)
                                                                   precision
                                                                                 recall f1-score
# Is our model still predicting just one class?
print( np.unique( pred y 4 ) )
                                                                        0.73
                                                                                   0.78
                                                                        0.77
                                                                                   0.71
# How's our accuracy?
print( accuracy score(y train, pred y 4) )
                                                                        0.75
                                                     avg / total
                                                                                   0.75
# What about AUROC?
prob y 4 = clf 4.predict proba(X train std)
prob y 4 = [p[1] \text{ for p in prob y } 4]
print( roc auc score(y train, prob y 4) )
predict random = clf 4.predict(X test std)
print(classification report(y test,predict random))
```

support

5008

5061

10069

0.75

0.74

0.74

Conclusion

Best Result with:

- StandardScaler
- Upsampling
- Random Forest Classifier

Improvements/Next Step

- Make loops efficient if possible
- Filter data to most recent events
- Categorical Target

Questions?

Logistic Regression w/ Preprocessing

Logistic Regression w/ Preprocessing (Downsample)

Logistic Regression w/ no Preprocessing

RF w/ Preprocessing

RF w/ Preprocessing (Down)

RF w/ no Preprocessing

Questions ???