Семинар 9.

Теория чисел и числовые алгоритмы

Составил Р. Делла Пиетра

25.4.20

1 Базовые факты

Работаем с вычетами по некоторому модулю, то есть остатками от деления \mathbb{Z} на некоторое число m, что обозначается как $\mathbb{Z}/m\mathbb{Z}$ или \mathbb{Z}_m . По сути это значит, что целые числа разбиваются на m классов эквивалентности, и к примеру $7 = 17m + 7 \mod m$, то есть эти два разных целых числа лежат в одном классе эквивалентности. Разных классов, очевидно, m: $\{0, 1, \ldots, m-1\}$.

 $(a,m)=1 \implies$ если x пробегает все возможные вычеты по модулю $m,\,ax+b$ также пробегает все вычеты. Приведённые вычеты — взаимно простые с m.

 $(a,m)=1\implies$ если x пробегает все приведённые вычеты по модулю $m,\,ax$ также пробегает все приведённые вычеты.

1.1 Функция Эйлера

Вспомним про φm — функцию Эйлера. $\varphi m =$ количество чисел, меньших m и взаимно простых с ним. Некоторые очевидные свойства: если m простое, $\varphi(m) = m - 1$.

$$(a,b) = 1, m = ab \implies \varphi(m) = \varphi(a)\varphi(b).$$

$$\varphi(p^{\alpha}) = p^{\alpha}(1 - \frac{1}{p})$$
 для простого p .

$$m = \prod_{i} p_i^{\alpha_i} \implies \varphi(m) = \prod_{i} \varphi p_i^{\alpha_i} = \prod_{i} p_i^{\alpha_i} (1 - \frac{1}{n_i}) = m \prod_{i} (1 - \frac{1}{n_i})$$

1.2 Теорема Лагранжа

 $(a, m) = 1 \implies a^{\varphi m} = 1 \mod m.$

Доказательство: возьмём приведённую систему вычетов $\{b_1,\ldots,b_{\varphi(m)}\}$ по модулю m. По одному из свойств выше $\{ab_1,\ldots,ab_{\varphi(m)}\}$ также будет приведённой системой вычетов, но, возможно, в другом порядке.

Тогда
$$\prod_{k=1}^{\varphi(m)} b_k = \prod_{k=1}^{\varphi(m)} ab_k \mod m$$
, то есть $a^{\varphi(m)} = 1 \mod m$.

Частный случай этой теоремы: m=p — простое число, тогда теорема превращается в малую теорему Ферма: $a^{p-1}=1 \mod m$.

1.3 Китайская теорема об остатках

Форма 1: пусть нам даны $\{m_1, \ldots, m_k\}$ — взаимно простые модули и $\{a_1, \ldots, a_k\}$ — некоторые остатки, каждый в соответствующем модуле. Тогда у системы $x = a_i \mod m_i \ \forall i$ есть одно решение по модулю $M = \prod m_i$, равное такой величине:

$$x = \sum a_i \frac{M}{m_i} \left(\left(\frac{M}{m_1} \right)^{-1} \mod m_i \right)$$

Форма 2:
$$M = \prod_{i=1}^{k} m_i$$
, $(m_i, m_j) = 1 \implies \mathbb{Z}/M\mathbb{Z} = \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$

Найти $119^{47^{250}} \mod 91$

Воспользуемся KTO: $91 = 13 \cdot 7$, поэтому будем искать остатки отдельно по 13 и по 7. $A=119^{47^{250}}\mod 7=0$, потому что 119 делится на 7. $B=119^{47^{250}}\mod 13$. $119=2\mod 13\implies B=2^{47^{250}}\mod 13$.

По малой теореме Ферма $2^{12}=1 \mod 13 \implies 2^{\alpha}=2^{\alpha \mod 12} \mod 13$.

 $47^250 = (-1)^250 = 1 \mod 12 \implies B = 2 \mod 13.$

Снова по КТО собираем ответ: $x=0\cdot\frac{91}{7}((\frac{91}{7})^{-1}\mod 7)+2\cdot\frac{91}{13}((\frac{91}{13})^{-1}\mod 13)=14\cdot(7^{-1}\mod 13).$ Для того, чтобы найти $a=7^{-1}$, воспользуемся алгоритмом Евклида: 7a+13b=1.

$$\begin{pmatrix} 13 & 7 \\ 6 & 7 \\ & 1 \end{pmatrix} \implies 1 = 7 - 6 = 7 - (13 - 7) = 2 \cdot 7 - 13 \implies 2 = 7^{-1} \mod 13.$$

В итоге ответ $14 \cdot 2 = 28 \mod 91$

2 Квадратичные вычеты

Кроме приведённых вычетов, можно ещё ввести понятие квадратичных вычетов: такие остатки, для которых уравнение $x^2 = a \mod m$ имеет решение.

У таких уравнений всегда 0 или 2 решения для простых модулей больше 2 (не учитывая a=0): если $x^2=a$, то $(-x)^2 = a$, и для простого p $x \neq -x \mod p$. Таким образом, все ненулевые вычеты делятся на пары с одинаковыми квадратами, то есть квадратичных вычетов в два раза меньше, чем обычных ненулевых вычетов. Таким образом, для простого p система вычетов состоит из нуля, $\frac{p-1}{2}$ квадратичных вычетов и столько же квадратичных невычетов. Далее в этом разделе слово «квадратичные» будет опускаться.

2.1Свойства

Свойство квадратичности вычета относительно произведения работает как знак + или - у чисел: произведение вычетов вычет, произведение невычетов вычет, а вычета и невычета невычет. Также если a (не)вычет, то a^{-1} тоже: $aa^{-1} = 1$, а 1 всегда вычет.

2.2Символы Лагранжа и Якоби

Введём индикатор квадратичности вычета:

$$a^{\frac{p-1}{2}} = \begin{cases} a\text{-вычет} &\Longrightarrow & a^{\frac{p-1}{2}} = (b^2)^{\frac{p-1}{2}} = b^{p-1} = 1 \\ &\text{возьмём все вычеты } \{r_i\}: \\ a\text{-невычет} &\Longrightarrow & a^{\frac{p-1}{2}} = \prod r_i \prod \frac{a}{r_i} = (p-1)! = -1 \mod p \\ &\text{слева произведение всех вычетов и невычетов, то есть все ненулевые вычеты второе — теорема Вильсона} \end{cases}$$

Таким образом, введём обозначение $\left(\frac{a}{m}\right) = a^{\frac{p-1}{2}} = 1$ если вычет, -1 иначе. Свойства:

1)
$$a = a_1 \mod p \implies \left(\frac{a}{p}\right) = \left(\frac{a_1}{p}\right)$$

$$2) \begin{pmatrix} -p \\ p \end{pmatrix} = 1$$
$$3) \begin{pmatrix} \frac{2}{p} \\ p \end{pmatrix} = (-1)^{\frac{p^2 - 1}{8}}$$

$$4)\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

$$2) \left(\frac{1}{p}\right) = 1$$

$$3) \left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$$

$$4) \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

$$5) \left(\frac{\prod a_i}{p}\right) = \prod \left(\frac{a_i}{p}\right) \implies \left(\frac{ab^2}{p}\right) = \left(\frac{a}{p}\right)$$

Также введём расширение символа Лежандра — символ Якоби: $P = \prod p_i \implies \left(\frac{1}{P}\right) = \prod \left(\frac{1}{p_i}\right)$, где p_i простые, возможно с повторами. Для символа Якоби действуют те же свойства, и ещё квадратичный закон взаимности: если P и Q взаимно простые и нечётные, $6) \left(\frac{P}{Q}\right) = (-1)^{\frac{P-1}{2}\frac{Q-1}{2}} \left(\frac{Q}{P}\right).$

Есть ли решения уравнения $x^2 = 219 \mod 383$?

Для этого надо найти $\left(\frac{219}{383}\right)$. $\left(\frac{219}{383}\right) =_{6} - \left(\frac{383}{219}\right) =_{1} - \left(\frac{164}{219}\right) =_{5} - \left(\frac{4}{219}\right) \left(\frac{41}{219}\right) =_{5,2} - \left(\frac{41}{219}\right) =_{6} - \left(\frac{219}{41}\right) =_{1} - \left(\frac{14}{41}\right) =_{5} - \left(\frac{2}{41}\right) \left(\frac{7}{41}\right) =_{3} - \left(\frac{2}{41}\right) =_{6} - \left(\frac{$ $-\left(\frac{7}{41}\right) =_6 - \left(\frac{41}{7}\right) =_1 - \left(\frac{-1}{7}\right) =_2 1.$ Получили 1, то есть 219 квадратичный вычет, поэтому решения для этого уравнения есть.

Найти остаток от деления числа Фибоначчи номер k на p

$$k = 2008^{2008^{2008 \cdot \cdots}}$$

$$n = 17$$

Для начала решим в общем случае, дальше для данных чисел. Вспомним формулу Бине:
$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$
.

Рассмотрим два случая: если 5 квадратичный вычет по модулю p, то находим $\sqrt{5}$, поставляем в уравнение и находим $F_k \mod p$ как любую другую формулу используя свойства вычетов и сравнений по модулю. Если 5 невычет по модулю p, всё усложняется. Многочлен $x^2 - 5$ неприводим в $\mathbb{Z}_p[x]$, поэтому по нему можно факторизовать, и рассматривать вычеты не просто в виде чисел от 0 до p, а вычеты — многочлены степени не более 1 и коэффициентами из \mathbb{Z}_p . Такая конструкция называется алгебраическим расширением поля, и также реализована для комплексных чисел: многочлен i^2+1 от переменной i неприводим на \mathbb{R} , поэтому рассматриваются многочлены степени не более 1, и составляют они привычное С. Операции с многочленами в таком алгебраическом расширении работают так: как только встречаем x^2 , заменяем на 5 (i^2 на -1), и снова остаёмся среди тех же остатков степени не более 1.

Таким образом, пришли к такой формуле: $F_n = \frac{x}{5} \left(\left(\frac{1+x}{2} \right)^n - \left(\frac{1-x}{2} \right)^n \right)$. Теперь считаем для наших чисел: посчитав обратные по модулю 17, получим такую формулу:

 $F_n = 7x((9+9x)^n - (9-9x)^n).$

Дальше требуется соображение такого вида: ненулевые многочлены из $\mathbb{Z}_p[x]/(x^2+5)$, которых $17^2-1=288$, образуют конечное поле. Это значит, что мультипликативная группа этого поля, то есть поле без нуля (обозначается как $(\mathbb{Z}_p[x]/(x^2+5))^{\times}$), циклична, то есть существует генератор — элемент, который в порождает все остальные своими разными степенями.

Всего элементов 288, поэтому, если генератор $g, g^{289}=g$, или $g^{288}=1$. $\forall (ax+b) \; \exists t: g^t=ax+b \implies (ax+b)^{288}=g^{288t}=1^t=1$.

Таким образом, ищем $k \mod 288$. Включая КТО, получаем, что это $k = 64 \mod 288$.

 $F_k = 7x((9+9x)^{64} + (9-9x)^{64}).$

Считаем $(9 \pm 9x)^{64}$ пошаговым возведением в квадрат, получаем $(-2 \mp 2x)$.

Подставляя, получаем $F_k = 7x(-4x) = -120 = 13 \mod 17$.

3 Простые числа лежат в \mathcal{NP}

Соберём факты, которые мы уже знаем:

- $\bullet \ p \in \mathbb{P} \implies a^{p-1} = 1 \mod p$
- $(\mathbb{Z}_p)^{\times}$ циклическая группа, у неё есть генератор
- Если x генератор, то $\forall k < p-1 \quad x^k \neq 1 \mod p$

Таким образом, можно построить алгоритм на НМТ:

Пусть $r \in (\mathbb{Z}_p)^{\times}$. Это число не генератор, если $\exists t < p-1: \ r^t = 1 \mod p$. $r = x^a \implies r^t = x^{p-1} \implies t$ делит p-1. Таким образом, для проверки того, что число — генератор, достаточно проверить $x^{\frac{p-1}{p_i}} \neq 1 \mod p$ для всех p_i -делителей p-1. Если p составное число, то группа не циклична, генератор не найдётся.

- Отгадываем генератор x
- Отгадываем разложение p-1 на простые множители $\{p_i\}$
- Проверяем, что генератор действительно генератор: $x^{p-1}=1 \mod p, \, x^{\frac{p-1}{p_i}} \neq 1 \mod p$
- \bullet Рекурсивно проверяем, что p_i действительно простые числа

На сертификатное определение \mathcal{NP} алгоритм распространяется таким образом: сертификатом будет генератор, разложение p-1 на простые множители и рекурсивно сертификаты для множителей p-1. Можно показать, что и длина сертифаката, и количество операций ограничиваются логарифмом n в некоторой константной степени.