

# Cálculo Numérico GRUPO 2 Lista 2

| Professor               | Data       |
|-------------------------|------------|
| André Pierro de Camargo | 12/08/2021 |

| Grupo                        |             |       |  |
|------------------------------|-------------|-------|--|
| Nome                         | RA          | Turma |  |
| Débora Vilela Bueno          | 11201812044 | A2    |  |
| Gabriela Rocha               | 11201812290 | B2    |  |
| George Harrison Rocha        | 11201810309 | A2    |  |
| Larissa Rodrigues de Almeida | 11201812076 | A2    |  |

# **Exercício 1**

# Tarefa 1

### 1

- 1.00000000000000000
- 0.7688000000000000
- 0.3865801600000001
- -0.0171952883199999
- -0.3130696609057276
- -0.4194820888917828
- -0.3303546374685648
- -0.1121148364807320
- 0.1274467709980197
- 0.2847330011201696

# Tarefa 2

# 1

- 3.68238772807672e-16
- -9.42477765070660e+00
- 1.50000004934803e+01
- 1.14313901976492e+01
- -5.74851558112778e+00
- -2.16429994342159e+00
- 6.52532906614688e-01
- 1.64254141130614e-01
- -3.54941476485151e-02

### 2

# Calculando Fj:

$$\begin{split} & \text{F }_{j}\text{"}(x) = \text{f }_{j}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \left(\frac{x-1}{2}\right)^{i} \\ & \text{F }_{j}\text{"}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \int \left(\frac{x-1}{2}\right)^{i} \\ & \text{F }_{j}\text{"}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \frac{1}{2^{i}} \int (x-1)^{i} \\ & \text{F }_{j}\text{"}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \frac{(x-1)^{i+1}}{(i+1)2^{i}} \\ & \text{F }_{j}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \int \frac{(x-1)^{i+1}}{(i+1)2^{i}} \\ & \text{F }_{j}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \frac{1}{(i+1)2^{i}} \int (x-1)^{i+1} \\ & \text{F }_{j}(x) = \int \text{F}_{j}\text{"}(x) = \sum_{i=0}^{j} {j \choose i} {j+i \choose i} \frac{(x-1)^{i+2}}{(i+1)(i+2)2^{i}} \end{split}$$

- -1.000000000000000
- -1.39723253269819
- 0.99985871629146
- 1.39623936211975
- -1.0000000000000000

| 3                                                    |                                                      |
|------------------------------------------------------|------------------------------------------------------|
| $k = E_{m,k}$                                        | 16: 8.54097117475305e-08                             |
| 2: 2.11503493182779e+00                              | 17: 9.16407574269584e-08                             |
| 3: 4.65926518784316e-01                              | 18: 1.16811843975384e-07                             |
| 4: 1.29124376281809e-01<br>5: 2.69084772919949e-02   | 19: 1.49951993488884e-07 20: 4.27778902079012e-07    |
| 6: 5.33968432466758e-03                              | 21: 3.45682398533720e-06                             |
| 7: 9.09028062504869e-04                              | 22: 8.87621154244123e-06                             |
| 8: 1.43031107841418e-04                              | 23: 1.13171540656598e-03                             |
| 9: 2.02639258984338e-05                              | 24: 9.82341935441555e-03                             |
| 10: 2.65731734505614e-06                             | 25: 1.61649104520109e+01                             |
| 11: 3.53055053414764e-07                             | 26: 8.06008356702353e+02                             |
| 12: 6.40173075661110e-08 13: 8.18064185281742e-08    | 27: 2.75318390686568e+04 28: 6.31996211648756e+05    |
| 14: 8.17986203216492e-08                             | 29: 2.83238351837420e+07                             |
| 15: 8.54131190219931e-08                             | 30: 5.53545981854637e+08                             |
| Tarefa 3                                             |                                                      |
| 1                                                    |                                                      |
| $k = E_{m,k}$                                        | 16: 9.26677068413539e-10                             |
| 2: 2.11503492469818e+00                              | 17: 1.90554283463484e-09                             |
| 3: 4.65926464544369e-01                              | 18: 5.54045820333471e-09                             |
| 4: 1.29124439127210e-01                              | 19: 3.52349232013438e-08                             |
| 5: 2.69084511087114e-02<br>6: 5.33968375352623e-03   | 20: 1.51336258191748e-07<br>21: 5.19428687839607e-07 |
| 7: 9.08993954670978e-04                              | 22: 4.91237719886239e-05                             |
| 8: 1.43100759776971e-04                              | 23: 3.11854119275257e-04                             |
| 9: 2.02307850438732e-05                              | 24: 3.13908388204767e-02                             |
| 10: 2.64888284640108e-06                             | 25: 1.46038575116924e+01                             |
| 11: 3.18983395197758e-07                             | 26: 7.92886577361134e+02                             |
| 12: 3.49643232144814e-08<br>13: 4.11725054050294e-09 | 27: 2.79339942297951e+04 28: 7.36587510863195e+05    |
| 14: 1.17126508492049e-09                             | 29: 2.70155667257183e+07                             |
| 15: 9.29157750739762e-10                             | 30: 5.04067924555524e+08                             |
| 2                                                    |                                                      |
| k E <sub>m,k</sub>                                   | 16: 6.76469991134354e-11                             |
| 2: 2.11503492462615e+00                              | 17: 2.57319254792776e-09                             |
| 3: 4.65926463996488e-01                              | 18: 4.27741986275265e-09                             |
| 4: 1.29124439761996e-01                              | 19: 4.35734730519499e-08                             |
| 5: 2.69084508442367e-02                              | 20: 1.46938716083511e-07                             |
| 6: 5.33968374774285e-03<br>7: 9.08993610154563e-04   | 21: 5.04027302783427e-07 22: 4.44097319431958e-05    |
| 8: 1.43101463317530e-04                              | 23: 2.83294860920602e-04                             |
| 9: 2.02304504324236e-05                              | 24: 2.61204323414179e-02                             |
| 10: 2.64879763656189e-06                             | 25: 1.48496450634439e+01                             |
| 11: 3.18669965637675e-07                             | 26: 7.87244507788824e+02                             |
| 12: 3.57451284127563e-08                             | 27: 2.79479769930506e+04                             |
| 13: 3.73634190253824e-09<br>14: 3.71193520365409e-10 | 28: 7.48088065720730e+05<br>29: 2.68074731799837e+07 |
| 15: 7.75705055744424e-11                             | 30: 4.99992309400118e+08                             |
|                                                      |                                                      |

3



A regra de integração mais eficiente é a regra de simpsons, pois atinge os menores valores de erros.

Quando k > 20 temos uma instabilidade que faz o erro calculado crescer, isso acontece devido a limitação da máquina, quando atinge valores extremamente pequenos.

# Tarefa 4

1

# Matriz:

[15, 135, 1495] [135, 1495, 18495] [1495, 18495, 243847]

Vetor de termos independentes:

[-170.33636413008873 -2054.4245235020608 -26431.99577106991]

**2** [4.345932955328876, -1.5567567737710966, -0.016965347157808588]

3

Gráfico com os dados amostrais e a função de mínimos quadrados obtida



# **Exercício 2**

1

| t_j  | x_j                | y_j                | z_j                |
|------|--------------------|--------------------|--------------------|
| 0.00 | 0.7416000000000000 |                    | -0.483200000000000 |
| 0.02 | 0.731170970533011  | 0.745950320550440  | -0.477121291083451 |
| 0.04 | 0.658402867431580  | 0.799590053264362  | -0.457992920695942 |
| 0.06 | 0.557003355652040  | 0.869250617463324  | -0.426253973115364 |
| 0.08 | 0.451011369794600  | 0.931476398956622  | -0.382487768751223 |
| 0.10 | 0.356477564467200  | 0.970952668723200  | -0.327430233190400 |
| 0.12 | 0.282974254183295  | 0.978997057978758  | -0.261971312162053 |
| 0.14 | 0.234942884003160  | 0.952207445980743  | -0.187150329983903 |
| 0.16 | 0.212887051254730  | 0.891259096050379  | -0.104146147305108 |
| 0.18 | 0.214419077796467  | 0.799843854417347  | -0.014262932213814 |
| 0.20 | 0.235168111411200  | 0.683744205619200  | 0.081087682969600  |
| 0.22 | 0.269557714046352  | 0.550034957314017  | 0.180407328639631  |
| 0.24 | 0.311460873742406  | 0.406405306491320  | 0.282133819766274  |
| 0.26 | 0.354740356217940  | 0.260594018192671  | 0.384665625589388  |
| 0.28 | 0.393682291206025  | 0.119930426979885  | 0.486387281814090  |
| 0.30 | 0.423330867763200  | -0.009026049484800 | 0.585695181721600  |
| 0.32 | 0.439731991898758  | -0.120755216255752 | 0.681023224356994  |
| 0.34 | 0.440093738998478  | -0.210961578700892 | 0.770867839702414  |
| 0.36 | 0.422871412643429  | -0.276683365134823 | 0.853811952491394  |
| 0.38 | 0.387785000550931  | -0.316332488617931 | 0.928547488067000  |
| 0.40 | 0.335776797491200  | -0.329672862924800 | 0.993896065433600  |
| 0.42 | 0.268916944159673  | -0.317744508558813 | 1.048827564399140  |
| 0.44 | 0.190264610111475  | -0.282740905563377 | 1.092476295451903  |

```
0.50 -0.07490000000000 -0.074900000000000
                                                   1.1498000000000000
      0.52 -0.157045857866726
                                0.013682565415508
                                                   1.143363292451219
      0.54 -0.227847070753713
                                0.103692527990931
                                                   1.124154542762782
      0.56 -0.282740905563377
                                0.190264610111475
                                                   1.092476295451903
      0.58 -0.317744508558813
                                0.268916944159673
                                                   1.048827564399140
      0.60 -0.329672862924800
                                0.335776797491200
                                                   0.993896065433600
      0.62 -0.316332488617931
                                0.387785000550931
                                                   0.928547488067001
      0.64 - 0.276683365134823
                                0.422871412643430
                                                   0.853811952491393
      0.66 -0.210961578700890
                                0.440093738998478
                                                   0.770867839702414
      0.68 -0.120755216255751
                                0.439731991898757
                                                   0.681023224356994
      0.70 -0.009026049484800
                                0.423330867763200
                                                   0.585695181721600
      0.72
            0.119930426979885
                                0.393682291206027
                                                   0.486387281814089
      0.74
            0.260594018192671
                                0.354740356217941
                                                   0.384665625589388
      0.76
            0.406405306491319
                                0.311460873742402
                                                   0.282133819766274
      0.78
            0.550034957314018
                                0.269557714046355
                                                   0.180407328639630
      0.80
            0.683744205619202
                                0.235168111411202
                                                   0.081087682969599
      0.82
                                0.214419077796466
                                                 -0.014262932213815
            0.799843854417350
      0.84
            0.891259096050379
                                0.212887051254730 -0.104146147305109
                                0.234942884003161 -0.187150329983902
      0.86
            0.952207445980745
      0.88
            0.978997057978760
                                0.282974254183292 -0.261971312162053
      0.90
            0.970952668723199
                                0.356477564467198 -0.327430233190403
      0.92
                                0.451011369794601 -0.382487768751223
            0.931476398956624
      0.94
            0.869250617463319
                                0.557003355652036 -0.426253973115366
      0.96
            0.799590053264361
                                0.658402867431575 -0.457992920695944
      0.98
            0.745950320550441
                                0.731170970533021 -0.477121291083450
      1.00
            0.7416000000000009
                                0.741600000000002 -0.483200000000000
2
    t_i^*
         px(t_i^*)+py(t_i^*)+pz(t_i^*)
 j
                                         22 0.44
                                                  1.00000000000000007
                                         23 0.46
 0 0.00
         1.00000000000000000
                                                  0.99999999999998
                                         24 0.48
 1
   0.02
         1.0000000000000000
                                                  0.99999999999996
 2
                                         25 0.50
  0.04
          1.00000000000000000
                                                  1.000000000000000000
                                         26 0.52
 3 0.06
         1.00000000000000000
                                                  1.00000000000000000
 4 0.08
                                         27 0.54
          1.00000000000000000
                                                  1.00000000000000000
 5
                                         28 0.56
  0.10
          1.00000000000000000
                                                  1.00000000000000000
 6 0.12
                                         29 0.58
                                                  0.99999999999999
         1.00000000000000000
 7 0.14
         0.999999999999999
                                         30 0.60
                                                  1.00000000000000000
  0.16
 8
          1.00000000000000000
                                         31 0.62
                                                   1.00000000000000000
 9 0.18
                                         32 0.64
          1.000000000000000002
                                                  0.99999999999998
10 0.20
                                         33 0.66
          1.00000000000000000
                                                  1.00000000000000007
11 0.22
                                         34 0.68
                                                  0.99999999999998
          1.00000000000000000
12 0.24
         0.999999999999999
                                         35 0.70
                                                  0.999999999999989
13 0.26
                                         36 0.72
          1.00000000000000000
                                                  1.00000000000000007
14 0.28
          0.99999999999998
                                         37 0.74
                                                  0.99999999999996
15 0.30
                                         38 0.76
          0.99999999999998
                                                  0.99999999999957
16 0.32
                                         39 0.78
          1.00000000000000004
                                                  1.00000000000000022
17 0.34
                                         40 0.80
          1.000000000000000000
                                                  1.000000000000000027
18 0.36
                                         41 0.82
          0.99999999999998
                                                  1.00000000000000011
19 0.38
                                         42 0.84
          1.000000000000000002
                                                  1.00000000000000000
20 0.40
                                         43 0.86
          1.00000000000000000
                                                  1.00000000000000047
                                         44 0.88
21 0.42
         1.00000000000000000
                                                  0.999999999999989
```

0.103692527990930 -0.227847070753713

0.013682565415507 -0.157045857866726

1.124154542762782

1.143363292451219

0.46

0.48

| 45 0.90 | 0.99999999999947   | 48 0.96 | 0.99999999999916   |
|---------|--------------------|---------|--------------------|
| 46 0.92 | 1.0000000000000016 | 49 0.98 | 1.0000000000000111 |
| 47 0.94 | 0.99999999999895   | 50 1.00 | 1.0000000000000107 |

Gráfico no pontos  $(p_x(t_j^*), p_y(t_j^*), p_z(t_j^*)), t_j^* = j/50, j = 0, 1, \dots, 50$ 

