SEQUENCE LISTING

```
<110> SMITH, JOHN C
                ASTRAZENECA AB
     5
          <120> DIAGNOSTIC METHOD
          <130> LDSG/Z70655
    10
          <140>
          <141>
         <150> GB 0002366.3
         <151> 2000-02-03
15
         <160> 22
         <170> PatentIn Ver. 2.1
    20
         <210> 1
<211> 31
         <212> DNA
         <213> Human
   25
         <400> 1
         agctggggc acagcaggaa gcaaagcaag g
                                                                          31
         <210> 2
   30
        <211> 31
         <212> DNA
         <213> Human
        <400> 2
   35
        agggaagttt gtggcggagg aggttcgtac g
                                                                          31
        <210> 3
        <211> 31
   40
       <212> DNA
        <213> Human
```

```
<400> 3
          gaaaaagaca gagttggact caaataacag a
                                                                             31
     5
          <210> 4
          <211> 31
          <212> DNA
          <213> Human
    10
          <400> 4
          cagggcaact ctggtgagta gggcagccct t
                                                                             31
         <210> 5
15
         <211> 31
          <212> DNA
         <213> Human
         <400> 5
   20
         agtgttacag ctgcaagggg aacagcaccc a
                                                                             31
         <210> 6
         <211> 31
   25
         <212> DNA
         <213> Human
         <400> 6
         aagaggctgt gcaaccgcct caatgtgcca a
                                                                            31
   30
         <210> 7
         <211> 31
         <212> DNA
   35
         <213> Human
         <400> 7
         ctgcccatct cagcctcacc atcaccctgc t
                                                                            31
   40
         <210> 8
         <211> 31
```

:	:	:	
•		÷	
		111.	3,77
:		Cont.	1
:		2	1
į		-	1
	7		
:	=	:	1
	3,6	1	dinn.
	12	:	-
	21		Berne
:	22 25	:	7
•	2		1

	- 3 -	
	<212> DNA	
	<213> Human	
	<400> 8	
5	tggctggatc cgggggaccc ctttgccctt c	21
		31
	<210> 9	
	<211> 25	
10	<212> DNA	
	<213> Human	
	<400> 9	
	tggtccagga gctgggggca cagcg	
15	-33	25
	<210> 10	
	<211> 35	
	<212> DNA	
20	<213> Human	
	<400> 10	
	gtgctgggca ctggtccagg agctgggggc actgc	35
		35
25		
	<210> 11	
	<211> 35	
	<212> DNA	
	<213> Human	
30		
	<400> 11	
	cagccggccg cgccccggga agggaagttt gctgc	35
		7,5
35	<210> 12	
	<211> 35	
	<212> DNA	
	<213> Human	
10	<400> 12	
	tggaggcaag gttaactcta gaaaaagaca gaatt	35
		_

4
1,2
į.
1,71
ij
i s
1
nj.
1000
1100

	<210> 13	
	<211> 35	
	<212> DNA	
5	<213> Human	
	<400> 13	
	aaaaaccaaa gctatatggt aagaggctgt gcagc	35
10		
	<210> 14	
	<211> 35	
	<212> DNA	
	<213> Human	
15		
	<400> 14	
	ggctgctcct cagcctggcc ctgcccatct aggcc	35
20	<210> 15	
	<211> 31	
	<212> DNA	
	<213> Human	
25	<400> 15	
	agctgggggc acagcgggaa gcaaagcaag g	31
	<210> 16	
30	<211> 31	
	<212> DNA	
	<213> Human	
	<400> 16	
35	agggaagttt gtggcagagg aggttcgtac g	31
00	agggaagttt gtggtagagg aggtttgtat g	31
	-210- 17	
	<210> 17 <211> 31	
40	<211> 31 <212> DNA	
.0	<213> Human	
	SELOS Mandell	

```
<400> 17
                                                      gaaaaagaca gagttcgact caaataacag a
                                                                                                                                                                                                                                                                                                                                                                                                                                                    31
                             5
                                                      <210> 18
                                                      <211> 31
                                                       <212> DNA
                                                        <213> Human
                      10
                                                       <400> 18
                                                       cagggcaact ctggtaagta gggcagccct t
                                                                                                                                                                                                                                                                                                                                                                                                                                                     31
                                                        <210> 19
The first was the standard for the first factor of the first facto
                       15
                                                        <211> 31
                                                        <212> DNA
                                                        <213> Human
                                                        <400> 19
                      20
                                                        agtgttacag ctgcaggggg aacagcaccc a
                                                                                                                                                                                                                                                                                                                                                                                                                                                     31
<210> 20
                                                        <211> 31
                       25
                                                       <212> DNA
                                                        <213> Human
                                                         <400> 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                     31
                                                        aagaggctgt gcaactgcct caatgtgcca a
                        30
                                                         <210> 21
                                                          <211> 31
                                                          <212> DNA
                        35
                                                         <213> Human
                                                          <400> 21
                                                          ctgcccatct cagccccacc atcaccctgc t
                                                                                                                                                                                                                                                                                                                                                                                                                                                       31
                         40
                                                          <210> 22
                                                          <211> 31
```

<212> DNA

<213> Human

<400> 22

5 tggctggatc cggggaaccc ctttgccctt c

31