

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 391 516 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 25.02.2004 Bulletin 2004/09

(21) Application number: 02722783.4

(22) Date of filing: 25.04.2002

(51) Int Cl.7: C12N 15/57

(86) International application number: PCT/JP2002/004141

(87) International publication number: WO 2002/088366 (07.11.2002 Gazette 2002/45)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 25.04.2001 JP 2001128342 27.07.2001 JP 2001227510 28.09.2001 JP 2001302977

25.01.2002 JP 2002017596

(71) Applicant: Juridical Foundation,
The Chemo-Sero-Therapeutic Research Institute
Kumamoto-shi, Kumamoto 860-8568 (JP)

(72) Inventors:

 SOEJIMA, Kenji, c/o Kikuchi Research Center Kumamoto 869-1298 (JP) MIMURA, Noriko, c/o Kikuchi Research Center Kumamoto 869-1298 (JP)

 MAEDA, Hiroaki, c/o Kikuchi Research Center Kumamoto 869-1298 (JP)

 NOZAKI, Chikateru, c/o Kikuchi Research Center Kumamoto 869-1298 (JP)

 HAMAMOTO, Takayoshi Kumamoto-shi, Kumamoto 860-8568 (JP)

 NAKAGAKI, Tomohiro Kumamoto-shi, Kumamoto 860-8568 (JP)

(74) Representative: HOFFMANN - EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

(54) VON WILLEBRAND FACTOR (VWF)-CLEAVING ENZYME

(57) This invention is intended to isolate and identify a vWF-specific cleaving protease.

The vWF-specific cleaving protease cleaves a bond between residues Tyr 842 and Met 843 of vWF and comprises a polypeptide chain having Leu-Leu-Val-Ala-Val as a partial sequence, and more preferably comprises a polypeptide chain having the partial N-terminal amino acid sequence of a mature protein, Ala-Ala-Gly-Gly-Ile-

Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val, and having a molecular weight of 105 to 160 kDa in SDS-PAGE under reducing or non-reducing conditions. Isolation and identification of this vWF-specific cleaving protease have led to the possibility of replacement therapy for patients having diseases resulting from a deficiency of the protease, such as thrombotic thrombocytopenic purpura.

Description

5

10

15

25

35

40

45

50

55

Technical Field

[0001] The present invention relates to a plasma protein related to the field of medical drugs. More particularly, the present invention relates to a protease that specifically cleaves von Willebrand factor (it may be hereafter referred to as "vWF"), which is associated with blood coagulation. The vWF-cleaving protease of the present invention enables replacement therapy for patients with diseases resulting from defects or decreases in this protease, such as thrombotic thrombocytopenic purpura (it may be hereafter referred to as "TTP"). In addition, the use thereof as a novel antiplatelet thrombotic agent is expected.

Background Art

[0002] vWF is produced in vascular endothelial cells or megakaryocytes, and is a blood coagulation factor in which a single subunit comprising 2,050 amino acid residues (monomers of about 250 kDa) are bound by an S-S bond to form a multimer structure (with a molecular weight of 500 to 20,000 kDa). The level thereof in the blood is about 10 µg/ml, and a high-molecular-weight factor generally has higher specific activity.

[0003] vWF has two major functions as a hemostatic factor. One of the functions is as a carrier protein wherein vWF binds to the blood coagulation factor VIII to stabilize it. Another function is to form platelet plug by adhering and agglomerating platelets on the vascular endothelial subcellular tissue of a damaged vascular wall.

[0004] Thrombotic thrombocytopenic purpura is a disease that causes platelet plug formation in somatic arterioles and blood capillaries throughout the whole body. In spite of recent advances in medical technology, the morbidity associated with this disease approximately tripled from 1971 to 1991. Pathologically, TTP is considered to result from vascular endothelial cytotoxicity or vascular platelet aggregation. Immunohistologically, a large amount of vWFs are recognized in the resulting platelet plugs, and vWF is considered to play a major role in causing them. A normal or high-molecular-weight vWF multimer structure is dominant in a TTP patient, and an unusually large vWF multimer (ULvWFM) or large vWF multimer (LvWFM) is deduced to play a major role in accelerating platelet aggregation or microthrombus formation under high shearing stress. In contrast, vWF was known to degrade at a position between residues Tyr 842 and Met 843 by the action of vWF-cleaving protease in the circulating blood of a healthy person under high shearing stress. Accordingly, TTP is considered to occur in the following manner. The protease activity in the plasma is lowered for some reason, and ULvWFM to LvWFM are increased to accelerate platelet aggregation. This forms platelet plugs in blood vessels.

[0005] Recently, Furlan et al. (Blood, vol. 87, 4223-4234: 1996, JP Patent Publication (Kohyo) No. 2000-508918) and Tsai et al. (Blood, vol. 87, 4235-4244: 1996) developed a method for assaying vWF-specific cleaving protease. In their report, this protease activity was actually lowered in TTP. The aforementioned authors reported that this enzyme was metalloprotease in the plasma and partially purified. However, they have not yet succeeded in the amino acid sequencing which would specify the protease. There have been no further developments since then.

Disclosure of the Invention

[0006] Up to the present, plasmapheresis therapy has been performed for treating patients who congenitally lack vWF-specific cleaving protease and patients who had acquired positive antibodies against this protease. Establishment of replacement therapy using purified products or a pure substance such as a recombinant gene product of the aforementioned protease is desired. Familial TTP patients congenitally lack vWF-specific cleaving protease, and non-familial TTP is caused by posteriori production of autoantibodies against the aforementioned protease. Accordingly, replacement therapy for this protease is preferable for familial TTP patients (plasma administration is actually performed), and removal of autoantibodies by plasmapheresis and substitution of this protease are necessary for non-familial TTP. Further, the use of this protease as a novel antiplatelet thrombotic agent can also be expected.

[0007] As mentioned above, however, Furlan et al. (Blood, vol. 87, 4223-4234: 1996, JP Patent Publication (Kohyo) No. 2000-508918) and Tsai et al. (Blood, vol. 87, 4235-4244: 1996) have suggested that the vWF-cleaving protease was metalloprotease in the plasma. It was reported to be partially purified, and concentrated 1,000- to 10,000-fold from the plasma in terms of its specific activity. Even under these conditions, there has been no advancement in the analysis of the properties of this protease, such as the amino acid sequence of its protein, over the period of roughly 5 years that has passed since then. No specific biological information has yet been obtained regarding this protease. As reported by Furlan et al., the protein of interest is supposed to be gigantic, and there may be various problems associated therewith. For example, diversified forms of this protease, such as various interacting molecules or cofactors, are expected. Based on the complexity of purification processes, deteriorated capacity of separation by nonspecific interaction during the purification step, and other factors, it is deduced to be very difficult to isolate and identify the protease

from a plasma faction by the purification process according to Furlan et al.

[0008] Under the above circumstances, the present inventors have conducted concentrated studies in order to isolate and identify the vWF-cleaving protease. As a result, they have succeeded in isolating and purifying the vWF-cleaving protease of interest, which had not yet been reported. Thus, they have succeeded in identifying an amino acid sequence of the mature protein and a gene encoding this amino acid sequence.

[0009] The vWF-cleaving protease of the present invention can cleave a bond between residues Tyr 842 and Met 843 of vWF. According to one embodiment, this protease has a molecular weight of 105 to 160 kDa or 160 to 250 kDa in SDS-PAGE under reducing or non-reducing conditions. It is comprised of a polypeptide chain having Leu-Leu-Val-Ala-Val as a partial sequence. More preferably, it is comprised of a polypeptide chain having the partial N-terminal amino acid sequence of a mature protein, i.e., Ala-Ala-Gly-Gly-De-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val. It is a novel substance characterized by the following properties.

- 1) vWF-cleaving activity
- [0010] According to the N-terminal sequence analysis of the cleavage fragment, the protease of the present invention cleaves a peptide bond between residues Tyr 842 and Met 843.
 - 2) Fractionation by gel filtration
- [0011] When fractionation is performed by gel filtration chromatography using FI paste as a starting material, most activities are collected in a fraction with a molecular weight of 150 to 300 kDa. According to one embodiment of the present invention, an actually obtained active substance is found to have a molecular weight of about 105 to 160 kDa in electrophoresis. Accordingly, the protease of the present invention is a substance that is likely to form a dimer or the like or to bind to another molecule or a substance that can be easily degraded or can have a heterogeneous sugar chain added.
 - 3) Ammonium sulfate precipitation
 - [0012] For example, when FI paste is used as a starting material, a large portion of this protease is recovered as a precipitation fraction from a roughly purified fraction with the use of 33% saturated ammonium sulfate.
 - 4) SDS-PAGE

30

35

40

45

50

- [0013] For example, the protease of the present invention derived from FI paste prepared from pooled human plasma or cryoprecipitate mainly has a molecular size of about 105 to 160 kDa determined by a molecular weight marker in SDS-PAGE. Based on the nucleic acid sequence as shown in SEQ ID NO: 15, when an amino acid sequence represented by a frame between an atg initiation codon at position 445 and a tga termination codon at position 4726 is expressed by gene recombination, there are some variations in molecular sizes depending on a host. However, a molecular size of about 160 to 250 kDa determined by a molecular weight marker is exhibited. This size is observed in the plasma of healthy humans and in that of some TTP patients. Several molecular species of this protease are present in human plasma, caused by the presence of alternative splicing products (SEQ ID NOs: 16 to 21) recognized at the time of gene cloning, differences in post-translational modification such as sugar chain addition, or degradation during purification. Further, this protease could be partially recovered in an active state after SDS-PAGE under non-reducing conditions.
- 5) Analysis of amino acid sequence
- [0014] The amino acid sequence of the isolated polypeptide fragment was analyzed. This presented an example of a polypeptide chain having a sequence Leu-Leu-Val-Ala-Val as a partial amino acid sequence and a sequence Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val as a N-terminal amino acid sequence of a mature protein. Further, with current bioinformatics (BIOINFORMATICS: A Practical Guide to the Analysis of Genes and Proteins, edited by Andreas D. Baxevanis and B. F. Francis Ouellette), a nucleic acid sequence encoding the amino acid sequence was highly accurately identified by searching a database based on the aforementioned partial sequence. More specifically, the genome database was searched by the tblastn program. This identified a chromosome clone (AL158826) that is deduced to encode the protease of the present invention. Further, clones (Al346761 and AJ011374) that are deduced to be a part of the protease of interest and a part of the polypeptide to be encoded by the aforementioned genome were identified through collation with the Expressed Sequence Tag (EST) database. Based thereon, the amino acid sequence as shown in SEQ ID NO: 3 or 7 was identified as an active vWF-cleaving protease site.

[0015] GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG GTG GCC GTG, a sequence deduced from the genome, and more preferably CTG CTG GTG GCC GTG, a portion thereof, the transcriptome of which was confirmed by EST, was obtained. The obtained nucleotide sequence was analyzed, and motif analysis was carried out based on the deduced sequence. As a result, it was found to have a metalloprotease domain as a candidate for the protease of the present invention. Based on the above findings, it became possible to disclose a sequence of a polypeptide chain as a more specific example of the protease. Also, activities of proteases are generally known to vary depending on, for example, substitution, deletion, insertion, or introduction of point mutation into a portion of the amino acid sequence (Blood coagulation factor VII mutants, Soejima et al., JP Patent Publication (Kokai) No. 2001-61479 A). Similarly, the protease of the present invention, can be modified by, for example, deletion, substitution, or addition of one or several amino acids, to prepare optimized proteases.

[0016] The protease proteins were further mass-produced, and 29 amino acid sequences from the N-terminus were determined. These amino acid sequences are shown in SEQ ID NO: 8. This result is substantially the same as the sequence as shown in SEQ ID NO: 3 or 7 deduced by bioinformatics. Only one difference is that the amino acid 27th in SEQ ID NO: 3 or 7 was Glu while it was Arg according to the present analysis of the N-terminal sequence. This was considered to be a gene polymorphism. Thus, this protease was confirmed to be comprised of a polypeptide chain having the amino acid sequence as shown in SEQ ID NO: 3 or 7 at its N-terminus as a mature unit. A gene fragment encoding this protease was then cloned in the following manner.

[0017] Based on the nucleic acid sequence as shown in SEQ ID NO: 7, a sense primer (SEQ ID NO: 9) and an antisense primer (SEQ ID NO: 10) were prepared based on the nucleic acid sequence underlined in Fig. 9, and a gene sandwiched between these primers was amplified. This fragment was cloned, and the nucleotide sequence was then confirmed. This fragment was used as a probe for Northern blotting to analyze the site at which the protease gene was expressed. As a result, this protease gene was found to be expressed mainly in the liver. Accordingly, the human liver cDNA library was purchased, and a gene encoding this protease was identified using a rapid amplification of cDNA ends (RACE) technique. Based on these results, in the case of the largest sequence of approximately 5 kb of mRNA (cDNA) reaching the poly(A) addition site as shown in SEQ ID NO: 15 was identified.

[0018] Based on the amino acid sequence deduced from this gene sequence, this protease was deduced to have a preprosequence, and to belong to the disintegrin and metalloprotease (ADAM) family having a disintegrin-like domain, a metalloprotease domain, and the like, and particularly to the ADAM-TS family having a thrombospondin Type-1 (TSP-1) domain. Finally, including those having insertion or deletion in a part of the nucleic acid sequence, isoforms as shown in SEQ ID NOs: 16 to 21 having sequences as shown in SEQ ID NOs: 3 and 7 at the N-terminuses after the mature preprosequence has been cleaved were identified. Thus, the protease of the present invention should cleave vWF between residues Tyr 842 and Met 843 and should have the Leu-Leu-Val-Ala-Val sequence as a partial amino acid sequence.

[0019] The vWF-cleaving protease of the present invention can be generally prepared by the following process.

[0020] According to the present invention, a process for assaying the protease activity is characterized by the possibility of evaluating activity within a short period of time. According to the report by Furlan et al. (Blood, vol. 87, 4223-4234: 1996, JP Patent Publication (Kohyo) No. 2000-508918 A), activity is assayed by analyzing vWF-cleaving patterns by Western blotting using the anti-vWF antibody, and thus, it takes time to transfer the protease to a filter. More specifically, this process requires approximately at least 45 hours in total, i.e., 24 hours for the enzymatic reaction with a substrate vWF, 17 hours for electrophoresis, and 3 hours to transfer the protease to a filter, followed by detection using the anti-vWF antibody. In contrast, the present inventors completed activity assay in 18 hours in total, i.e., 16 hours for the enzymatic reaction with a substrate vWF, and 2 hours for electrophoresis and detection. This indicates that the time required for the assay can be reduced to one third or less of that required for the conventional assay. This can also shorten the time required for the purification process, and in turn can lower the degree of the protease to be inactivated. Accordingly, purification efficiency is improved compared with that attained by the method of Furlan et al., and as a result, the degree of purification is also enhanced.

[0021] Further, the starting material was examined using the aforementioned assay system. As a result, it was found that the protease activity was more concentrated in FI paste than in the cryoprecipitate that had been reported by Furlan et al. in the past. FI paste was used as a starting material, and the aforementioned rapid activity assay systems were combined. This enabled isolation and identification of the protease of interest. In a specific embodiment, a purification process combining gel filtration chromatography with ion exchange chromatography is employed, and the aforementioned activity assay system is also combined.

[0022] More specifically, FI paste is solubilized with a buffer, and the resultant is fractionated by gel filtration chromatography. The protease activity is fractionated at the elution region with a molecular weight of 150 to 300 kDa deduced from the size marker of gel filtration. Thereafter, the resultant is precipitated and concentrated using 33% saturated ammonium sulfate. This procedure is repeated three times in total. The active fraction obtained in the third gel filtration is pooled, and the resultant is subjected to dialysis at 4°C overnight with a buffer comprising 50 mM NaCl added to 50 mM Tris-HCI (pH 7.1). Thereafter, the dialysis product is subjected to anion exchange chromatography

10

15

20

25

30

35

40

45

50

(DEAE) and eluted stepwise with 0.25 M NaCl. The present inventors have conducted concentrated studies in order to find a process for isolating and identifying the protease of the present invention. As a result, they found that, surprisingly, the protease was recoverable as an active band after non-reducing SDS-PAGE. In order to achieve further mass production, the purified and concentrated fraction was applied to the Biophoresis utilizing the principle of SDS-PAGE. Thus, a fraction having vWF-cleaving activity was isolated from the electrophoresed fraction. According to the approximate calculation of the specific activity up to this phase, purification of about 30,000- to 100,000-fold was achieved. This procedure was efficiently and rapidly repeated several times, and thus, about 0.5 pmole of sample that is the current limit of the analysis of amino acid sequence was obtained. Thus, analysis of amino acid sequence became feasible. More specifically, a final step of separation and purification (Biophoresis) based on the principle of SDS-PAGE is important, and it is based on the findings as a result of concentrated studies, which had led to the completion of the present invention.

[0023] According to the report by Furlan et al., specific activity was improved by as much as about 10,000 times, although the protease was not substantially isolated or identified. This could be because of deactivation during purification or the difficulty of isolating and identifying molecules, which were gigantic proteins capable of interacting with various other proteins such as the protease of the present invention by a separation method utilizing various types of liquid chromatography. Further, the protease content in the plasma was deduced to be very small, and thus, it was necessary to await the establishment of the process according to the present invention. Furthermore, the use of this process enables the purification of recombinant genes.

[0024] Based on the findings of the present invention, peptides or proteins prepared from the obtained sequences are determined to be antigens. With the use thereof, a monoclonal antibody, a polyclonal antibody, or a humanized antibody thereof can be prepared by general immunization techniques (Current Protocols in Molecular Biology, Antibody Engineering: A PRACTICAL APPROACH, edited by J. McCAFFERTY et al. or ANTIBODY ENGINEERING second edition, edited by Carl A. K. BORREBAECK). Alternatively, an antibody that binds to the aforementioned protein can be prepared by antibody-producing techniques utilizing phage display (Phage Display of Peptides and Proteins: A Laboratory Manual, edited by Brian K. Kay et al., Antibody Engineering: A PRACTICAL APPROACH, edited by J. McCAFFERTY et al. or ANTIBODY ENGINEERING second edition, edited by Carl A. K. BORREBAECK). Alternatively, based on these techniques, a neutralizing antibody acting against the protease activity or a simple binding antibody can be isolated from a specimen from a TTP patient who has an autoantibody positive against this protease. These antibodies can be applied to diagnosis and therapy of diseases such as TTP.

[0025] Based on the obtained genome or EST sequence, cDNA or a genomic gene encoding the protease of the present invention can be cloned by a common technique (Molecular Cloning, 2nd edition). Further, bioinformatics techniques (BIOINFORMATICS: A Practical Guide to the Analysis of Genes and Proteins, edited by Andreas D. Baxevanis and B. F. Francis Ouellette) enable cloning of the proteins of other animal species that are homologous thereto, and the resultant gene is fractured by a common technique (for example, Gene Targeting: A Practical Approach, First Edition, edited by A. L. Joyner, Teratocarcinomas and embryonic stem cell a practical approach) to produce TTP-like animal models. In particular, the identification of the gene sequence encoding the protein derived from a mouse enables the production of a knockout mouse having this gene. Thus, a disease mouse model of congenital TTP or the like can be prepared.

[0026] In accordance with a common technique (for example, J. Sambrook et al., Molecular Cloning, 2nd edition, or CURRENT PROTOCOLS IN MOLECULAR BIOLOGY), these genes are incorporated into a suitable expression vector, the resultant is transformed into a suitable host cell, and the gene recombinant product of the protease can be thus prepared. In this case, the gene to be incorporated is not necessarily the one that encoded the entire region of the protein. It also includes a partial expression of the protein as defined by a domain depending on its usage.

[0027] For example, the polynucleotide according to the present invention is introduced into a host cell using a conventional technique such as transduction, transfection, or transformation. The polynucleotide is introduced solely or together with another polynucleotide. Another polynucleotide is introduced independently, simultaneously, or in combination with the polynucleotide of the present invention.

[0028] For example, the polynucleotide of the present invention is transfected in a host cell, such as a mammalian animal cell, by a standard technique for simultaneous transfection and selection using another polynucleotide encoding a selection marker. In this case, the polynucleotide would be generally stably incorporated in the genome of the host cell. [0029] Alternatively, the polynucleotide may be bound to a vector comprising a selection marker for multiplication in a host. A vector construct is introduced to a host cell by the aforementioned technique. In general, a plasmid vector is introduced as DNA of a precipitate, such as a calcium phosphate precipitate, or a complex with a charged lipid. Electroporation is also employed for introducing the polynucleotide into a host. When the vector is a virus, this virus is packaged *in vitro* or introduced into a packaging cell, thereby introducing the packaged virus into a cell.

[0030] Extensive techniques that are suitable for producing a polynucleotide and introducing the resulting polynucleotide to a cell in accordance with this embodiment of the present invention are known and common in the art. Such techniques are described in Sambrook et al. (aforementioned), and this document explains a variety of standard 'ex-

5

10

15

20

25

30

35

40

45

50

perimental manuals describing the aforementioned techniques in detail. In respect of this embodiment of the present invention, the vector is, for example, a plasmid vector, a single- or double-stranded phage vector, or a single- or double-stranded RNA or DNA viral vector. Such a vector is introduced into a cell as a polynucleotide, and preferably as DNA by a common technique for the introduction of DNA or RNA into a cell. When the vector is a phage or virus, the vector is preferably introduced to the cell as a packaged or sealed virus by a known technique for infection and transduction. A viral vector may be of a replication-competent or defective type.

[0031] A preferable vector is a vector which expresses the polynucleotide or polypeptide of the present invention in points. In general, such a vector comprises a cis-action control region that is effective for the expression in a host operably bound to the polynucleotide to be expressed. When a suitable trans-action factor (for example, a group of proteases involved with the post-translational processing such as signal peptidase or Furin) is introduced in a host cell, it is supplied by a host, a complementary vector, or the vector itself.

[0032] In a preferable embodiment, a vector provides specific expression. Such specific expression is an inducible one or realized only in a certain type of cell. Alternatively, it is an inducible and cell-specific expression. A particularly preferable inducible vector can induce expression by an easily operable environmental factor such as temperature or a nutritional additive. Various vectors suitable for this embodiment including a construction for the use in prokaryotic and eukaryotic cell hosts and an inducible expression vector are known, and persons skilled in the art can commonly use them.

[0033] A genetically engineered host cell can be cultured in general nutrient medium, and it is modified to be particularly suitable for activation of promoter, selection of transformant, or amplification of a gene. In general, it would be obvious to persons skilled in the art that conventional culture conditions such as temperature or pH level for host cells selected for the expression are suitable for the expression of the polypeptide of the invention.

[0034] A wide variety of expression vectors can be used for expressing the polypeptide of the present invention. Examples of these vectors include chromosome, episome, and virus-derived vectors. These vectors are derived from bacterial plasmid, bacteriophage, yeast episome, yeast chromosome element, or viruses such as baculovirus, papovavirus such as simian virus 40 (SV40), vaccinia virus, adenovirus, fowlpox virus, pseudorabies virus, or retrovirus. A vector derived from a combination of the aforementioned, for example, a vector derived from plasmid and bacteriophage gene element, more specifically, a cosmid or phagemid, may also be used. They are used for the expression in accordance with this embodiment of the present invention. In general, since polypeptides were expressed in hosts, any vector that is suitable for maintaining, multiplying, or expressing a polynucleotide can be used for the expression according to the aforementioned embodiment. A suitable DNA sequence is inserted into a vector by various conventional techniques. In general, a DNA sequence for expression is bound to an expression vector by cleavage of a DNA sequence and an expression vector having 1 or more restriction endonucleases, and a restriction fragment is then bound together using T4 DNA ligase. Restriction and ligation techniques that can be used for the above purpose are known and common to persons skilled in the art. With regard thereto, Sambrook et al. (aforementioned) very precisely describe another suitable method for constructing an expression vector utilizing another technique known and common to persons skilled in the art.

[0035] A DNA sequence in the expression vector is operably bound to, for example, a suitable expression-regulating sequence including a promoter to orient the mRNA transcription. A few examples of known representative promoters are the phage lambda PL promoter, *E. coli* lac, trp, trc, and tac promoters, SV40 early and late promoters, and the retrovirus LTR promoter. Many promoters that are not described are suitable for the use according to the embodiment of the present invention, known, and more easily used as described in the examples of the present invention. In general, an expression construct comprises a ribosome binding site for translation in a transcription initiation or termination site or a transcribed domain. The coding region of the mature transcript that was expressed by the construct comprises the initiation AUG at the initiation and termination codons located substantially at the terminus of polypeptide to be translated. In addition, the construct comprises a regulator region that regulates and induces the expression. In general, such a region is activated through the regulation of the repressor binding site, transcription of an enhancer, or the like in accordance with various conventional methods.

[0036] Vectors for multiplication and expression include selection markers. Such markers are suitable for multiplication, or they comprise additional markers for the above-stated purpose. The expression vector preferably comprises one or more selection marker genes to provide phenotypic traits for the purpose of selecting the transformed host cell. A preferable marker includes dihydrofolate reductase- or neomycin-resistance with regard to eukaryotic cell culture. It has tetracycline- or ampicillin-resistance with regard to *E. coli* and other bacterial cultures. A suitable vector comprising a DNA sequence and a suitable promoter or regulatory sequence as described herein are introduced to a suitable host by various suitable known techniques for the expression of the polypeptide of interest.

[0037] Representative examples of suitable hosts include: bacterial cells such as *E. coli, Streptomyces*, and *Salmonella typhimurium*; fungal cells such as a yeast cell; insect cells such as drosophila S2 and Spodoptera Sf9 cells; and adhesive or floating animal or plant cells such as CHO, COS, Bowes melanoma cells, and SP2/0. Various hosts for expression constructs are known, and persons skilled in the art can easily select a host for expressing polypeptides

15

20

25

30

35

40

50

in accordance with this embodiment based on the disclosure of the present invention.

[0038] More specifically, the present invention includes a recombinant construct, such as an expression construct comprising one or more sequences as mentioned above. The construct is a vector, such as a plasmid or viral vector comprising the sequence of the present invention inserted therein. The sequence is inserted in a positive or negative direction. In a preferable specific example thereof, the construct further has a regulatory sequence comprising a promoter or the like that is operably bound to the sequence. Various suitable vectors and promoters are known to persons skilled in the art, and there are many commercially available vectors that are suitably used in the present invention.

[0039] Commercially available vectors are exemplified below. Vectors that are preferably used for bacteria are pQE70, pQE60, and pQE-9 (Qiagen); pBS vector, PhageScript vector, Bluescript vector, pNH8A, pNH16a, pNH18A, and pNH46A (Stratagene); and ptrc99a, pKK223-3, pKK233-3, pDR540, and pRIT5 (Pharmacia). Examples of preferable eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1, and pSG (Stratagene) and pSVK3, pBPV, pMSG, and pSVL (Pharmacia). These vectors are commercially available for persons skilled in the art to be used in accordance with the embodiment of the present invention, and they are merely a list of known vectors. For example, other plasmids or vectors suitable for introducing, maintaining, multiplying, or expressing the polynucleotide or polypeptide of the

present invention can also be used in hosts in accordance with this embodiment of the present invention.

[0040] A promoter region can be selected from a gene of interest using a vector comprising, for example, a candidate promoter fragment, i.e., a reporter transcription unit lacking a promoter region such as a chloramphenicol acetyl transferase (CAT) transcription unit located downstream of restriction sites for introducing promoter-containing fragments. As known to the public, the introduction of the promoter-containing fragment into the vector at the restriction site located upstream of the cat gene generates CAT activity that can be detected by standard CAT assay. A vector that is suitable for this purpose is known and readily available. Examples of such vectors are pKK232-8 and pCM7. Accordingly, the promoter for expressing the polynucleotide of the present invention includes not only a readily available known promoter but also a promoter that can be readily obtained using a reporter gene in accordance with the aforementioned technique. [0041] Among them, according to the present invention, examples of known bacterial promoters that are suitably used to express polynucleotides and polypeptides are *E. coli* lacl and lacZ promoters, T3 and T7 promoters, gpt promoter, lambda PR and PL promoters, and trp and trc promoters. Examples of suitable known eukaryotic promoters include the Cytomegalovirus (CMV) immediate promoter, the HSV thymidine kinase promoter, early and late SV40 promoters, a retrovirus LTR promoter such as the Rous sarcoma virus (RoSV) promoter, and a metallothionein promoter such as the metallothionein-l promoter.

[0042] Selection of a vector and a promoter suitable for expression in a host cell is a known technique. Techniques necessary for the construction of expression vectors, introduction of a vector in a host cell, and expression in a host are common in the art. The present invention also relates to a host cell having the aforementioned construct. A host cell can be a higher eukaryotic cell such as a mammalian animal cell, a lower eukaryotic cell such as a yeast cell, or a prokaryotic cell such as a bacterial cell.

[0043] The construct can be introduced in a host cell by calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. These methods are described in a variety of standard laboratory manuals, such as a book by Sambrook et al.

[0044] The construct in a host cell can be used by a conventional method, and it produces a gene product encoded by a recombinant sequence. Alternatively, a partial polypeptide of the present invention can be synthesized using a general peptide synthesizer. Amature protein can be expressed under the control of a suitable promoter in a mammalian animal, yeast, bacterial, or other cell. Also, such a protein can be produced in a cell-free translation system with the use of RNA derived from the DNA construct of the present invention. Suitable cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al (aforementioned).

[0045] In general, a recombinant expression vector comprises: a replication origin; a promoter derived from a highly expressed gene to orient the transcription of a downstream structural sequence; and a selection marker for bringing the cell into contact with a vector and isolating the vector-containing cell. A suitable promoter can be induced from a gene encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, and heat shock protein. A selection marker includes *E. coli* ampicillin-resistant gene and *S. cerevisiae* trp1 gene.

[0046] Transcription of DNA encoding the polypeptide of the present invention using a higher eukaryotic cell may be enhanced by inserting an enhancer sequence in a vector. The enhancer is generally a cis-acting element for DNA for enhancing the promoter transcription activity in the predetermined host cell. Examples of an enhancer include the SV40 enhancer, the Cytomegalovirus early promoter/enhancer, the polyoma enhancer behind the replication origin, the β -actin enhancer, and the adenovirus enhancer.

[0047] The polynucleotide of the present invention encoding a heterologous structural sequence of the polypeptide of the present invention is generally inserted in a vector by standard techniques in such a manner that it is operably bound to the expression promoter. The transcription initiation site of the polypeptide is suitably located at the 5' site of the ribosome binding site. The ribosome binding site is 5' relative to AUG that initiates the translation of a polypeptide to be expressed. In general, an initiation codon starts from AUG and another open reading frame located between the

5

15

20

30

35

40

50

ribosome binding site and initiation AUG is not present. The termination codon is generally present at the terminus of the polypeptide, and the adenylation signal and the terminator are suitably located at the 3' end of the transcription region.

[0048] Regarding the secretion of the translated protein in the ER lumen, in the cytoplasm, or to the extracellular environment, a suitable secretion signal is incorporated in the expressed polypeptide. The signal may be endogenous or heterologous to the polypeptide.

[0049] Further, a prosequence subsequent to the signal sequence may be endogenous or heterologous (e.g., a preprosequence of another metalloprotease).

[0050] The polypeptide is expressed in a modified form such as a fusion protein, and it includes not only a secretion signal but also an additional heterologous functional region. Accordingly, an additional amino acid, especially a charged amino acid region, or the like, is added to the polypeptide to improve stability and storage stability in the host cell during purification or subsequent operation and storage. Alternatively, a given region may be added to the polypeptide to accelerate the purification. This type of region may be removed before the final preparation of polypeptides. Induction of secretion or excretion, stability improvement, or facilitation of purification with the addition of a peptide portion to the polypeptide is a technique common and known in the art.

[0051] Examples of prokaryotic hosts that are suitable for multiplying, maintaining, or expressing the polynucleotide or polypeptide of the present invention include *E. coli, Bacillus subtilis*, and *Salmonella typhimurium*. Various types of *Pseudomonas, Streptomyces*, and *Staphylococcus* are suitable hosts in this respect. Furthermore, various other types of hosts known to persons skilled in the art can be also used. Representative examples of expression vectors that are useful for bacterial applications include, but are not limited to, the replication origin of bacteria derived from commercially available plasmid including a selectable marker and a gene element of a known cloning vector pBR322 (ATCC 37017). Examples of such commercially available vectors include pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wisconsin, USA). These pBR322 (main chain) sections are combined with a suitable promoter and structural sequences to be expressed.

[0052] Host cells are suitably transformed and multiplied to the optimal cell concentration. Thereafter, the selected promoter is induced by a suitable means (e.g., temperature shifting or chemical inducer), and cells are further cultured. Typically, cells are collected by centrifugation and fractured by a physical or chemical means. The resulting crude extract is further purified. Microbial cells used for the protein expression can be fractured by any convenient means selected from a freezing-thawing cycle, ultrasonication, mechanical fracture, and the use of a cytolytic agent. These methods are known to persons skilled in the art.

[0053] Various cell lines for mammalian animal cell culture can be also used for the expression. An example of a cell line for mammalian animal expression includes a monkey kidney fibroblast COS-6 cell described in Gluzman et al., Cell 23: 175 (1981). Examples of other cells that are capable of expressing compatible vectors include C127, 3T3, CHO, HeLa, human kidney 293, and BHK cells. Further, a floating myeloma cell line such as SP2/0 can be also used. [0054] A mammalian animal expression vector comprises a replication origin, a suitable promoter and enhancer, a necessary ribosome binding site, a polyadenylation site, splice donor and acceptor sites, a transcription termination

sequence, and a 5' franking untranscribed sequence necessary for expression. DNA sequences derived from the SV40 splice site and the SV40 polyadenylation site are used for the non-transformed or transcribed gene element of interest. An example thereof is a CAG expression vector (H. Niwa et al., Gene, 108, 193-199 (1991)).

[0055] Based on the gene sequence of the above protease, a probe, primer, or antisense is designed by a common technique. The antisense technique can be used for controlling gene expression by the use of antisense DNA or RNA or the formation of a triple helix. This technique is described in, for example, Okano, J., Neurochem., 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988). The triple helix formation is examined in, for example, Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). The method is based on the polynucleotide bond with complementary DNA or RNA. This enables the gene diagnosis or gene therapy.

[0056] For example, cells obtained from a patient are subjected to *ex vivo* genetic engineering using a polynucleotide such as polypeptide-encoding DNA or RNA. The resulting cells are then supplied to patients who should be treated with polypeptides. For example, cells can be subjected to *ex vivo* genetic engineering using a retrovirus plasmid vector comprising RNA encoding the polypeptide of the present invention. Such a technique is known in the art, and the use thereof in the present invention is obvious according to the description given herein. Similarly, cells are subjected to *in vitro* genetic engineering in accordance with a conventional process in respect of *in vivo* polypeptide expression. For example, the polynucleotide of the present invention is genetically engineered for expression in the replication-deficient retrovirus vector as mentioned above. Subsequently, the retrovirus expression construct is isolated, introduced to a packaging cell, and transduced using a retrovirus plasmid vector comprising RNA encoding the polypeptide of the present invention. Thus, the packaging cell produces infectious viral particles having a control gene. These producer cells are subjected to *in vitro* genetic engineering and then administered to patients to allow polypeptides to be expressed *in vivo*. This administration method and other methods for administering polypeptides according to the present

5

10

15

20

30

35

40

45

50

invention would be clearly understood by persons skilled in the art based on the teaching of the present invention.

[0057] Examples of the aforementioned retrovirus, from which the retrovirus plasmid vector is derived, include, but are not limited to, Moloney murine leukemia virus, spleen necrosis virus, Rous sarcoma virus, Harvey sarcoma virus, avian leukosis virus gibbon leukemia virus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus. This type of vector comprises one or more promoters to express polypeptides. Examples of suitable promoters that can be used include, but are not limited to, retrovirus LTR, SV40 promoter, CMV promoter described in Miller et al., Biotechniques 7: 980-990 (1989), and other promoters (e.g., cell promoters such as a eukaryotic cell promoter including, but not limited to, histone, RNA polymerase III, and β-actin promoter). Examples of other viral promoters that can be used include, but are not limited to, adenovirus promoter, thymidine kinase (TK) promoter, and B19 Parvovirus promoter. Persons skilled in the art can readily select a suitable promoter based on the teaching of the present invention.

[0058] A nucleic acid sequence that encodes the polypeptide of the present invention is under the control of a suitable promoter. Examples of suitable promoters that can be used include, but are not limited to, adenovirus promoter such as adenovirus major late promoter, heterologous promoter such as CMV promoter, respiratory syncytial virus (RSV) promoter, inducible promoter such as MMT promoter or metallothionein promoter, heat shock promoter, albumin promoter, ApoAl promoter, human globin promoter, viral thymidine kinase promoter such as herpes simplex thymidine kinase promoter, retrovirus LTR including the aforementioned modified retrovirus LTR, β-actin promoter, and human growth hormone promoter. A promoter may be of a native type that controls the gene encoding polypeptides. A retrovirus plasmid vector is used to transduce the packaging cell line to form a producer cell line.

[0059] Examples of packaging cells to be transfected include, but are not limited to, PE501, PA317, Y-2, Y-AM, PA12, T19-14X, VT-19-17-H2, YCRE, YCRIP, GP+E-86, GP+envAm12, and the DAN cell line described in Miller, Human Gene Therapy 1: pp. 5-14 (1990).

[0060] A vector is transduced in a packaging cell by a means known in the art. Examples of such means include, but are not limited to, electroporation, the use of a liposome, and CaPO₄ precipitation. Alternatively, a retrovirus plasmid vector is sealed in a liposome or bound to a lipid to be administered to a host. A producer cell line produces infectious retrovirus vector particles comprising nucleic acid sequences encoding polypeptides. Such retrovirus vector particles are used to transduce eukaryotic cells in vitro or in vivo.

[0061] The transduced eukaryotic cells express nucleic acid sequences encoding polypeptides. Examples of eukaryotic cells that may be transduced include, but are not limited to, germinal stem cells, embryonal carcinoma cells, hematopoietic stem cells, hepatic cells, fibroblasts, sarcoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.

The protease of the present invention, an antibody against this protease, an antagonist of this protease, an sinhibitor, an agonist, an activity modifier, or the like can be diluted with physiological saline, buffer, or the like to prepare a formulation. Thus, a pharmaceutical composition can be obtained. The pH value of the formulation is preferably between acidulous and neutral: close to the pH level of body fluid. The lower limit thereof is preferably between 5.0 and 6.4, and the upper limit is preferably between 6.4 and 7.4. Alternatively, the formulation can be provided in a state that allows storage for a long period of time, e.g., in a lyophilized state. In such a case, the formulation can be used by being dissolved in water, physiological saline, buffer, or the like at a desired concentration level at the time of use. [0063] The formulation of the present invention may comprise a pharmacologically acceptable additive, such as a carrier, excipient, or diluent that is commonly used for pharmaceuticals, a stabilizer, or pharmaceutically necessary ingredients. Examples of a stabilizer include monosaccharides such as glucose, disaccharides such as saccharose and maltose, sugar alcohols such as mannitol and sorbitol, neutral salts such as sodium chloride, amino acids such as glycine, nonionic surfactants such as polyethylene glycol, polyoxyethylene and polyoxypropylene copolymers (Pluronic), polyoxyethylene sorbitan fatty acid ester (Tween), and human albumin. Addition thereof in amounts of about 1 to 10 w/v% is preferable.

[0064] An effective amount of the pharmaceutical composition of the present invention can be administered by, for example, intravenous injection, intramascular injection, or hypodermic injection in one or several separate dosages. The dosage varies depending on symptom, age, body weight, or other factors, and it is preferably 0.001 mg to 100 mg per dose.

[0065] Also, sense or antisense DNA encoding the protease of the present invention can be similarly prepared in a formulation to obtain a pharmaceutical composition.

[0066] Further, the present invention includes methods for inhibiting platelet plug formation involved with heart infarction or brain infarction, methods for inhibiting arteriosclerosis, methods for preventing restenosis, reembolization, or infarction involved with PTCA, methods for preventing reembolization involved with PTCA, and methods for preventing platelet plug formation caused by HUS or O-157 through the administration of the peptide, protein, and DNA of the present invention. Furthermore, the present invention includes the use of the peptide, protein, and DNA of the present invention in the production of pharmaceuticals for inhibiting platelet plug formation involved with heart infarction or brain infarction, pharmaceuticals for inhibiting arteriosclerosis, pharmaceuticals for preventing restenosis, reembol-

10

15

25

30

45

50

ization, or infarction involved with PTCA, pharmaceuticals for preventing reembolization involved with PTCR, and pharmaceuticals for preventing platelet plug formation caused by HUS or O-157.

[0067] The peptide or protein of the present invention is used as a leading substance for amino acid modification. This enables the preparation of a molecule having activity that is different from that of the protease of the present invention. An example thereof is a variant molecule that can be obtained by preparing an antagonist, which is obtained by preparing a variant deactivated through amino acid substitution between an amino acid residue located around the active center in the metalloprotease domain and another amino acid, separating a molecule recognition site from a catalytic site, or varying one or both of these sites.

[0068] The use of an evaluation system for the vWF-cleaving activity described herein enables the production of an antagonist/agonist. For example, an effective antagonist can be a small organic molecule, a peptide, or a polypeptide. An example thereof is an antibody that is bound to the polypeptide of the present invention, thereby inhibiting or eliminating its activity.

[0069] Similarly, the use of the aforementioned evaluation system for vWF-cleaving activity enables the screening for a compound that is capable of cleaving vWF. In such a case, the cleaving activity of the test compound may be evaluated using the aforementioned evaluation system.

Brief Description of the Drawings

[0070]

5

10

20

25

30

35

40

45

50

55

Fig. 1 is a diagram showing the vWF multimer structure and the point cleaved by the vWF-cleaving protease.

Fig. 2 is a photograph showing the result of vWF multimer analysis (agarose electrophoresis).

Fig. 3 is a photograph showing the result of SDS-PAGE (5% gel) for analyzing the vWF-cleaving activity of each plasma fraction under reducing conditions.

Fig. 4 is a photograph showing the result of SDS-PAGE (5% gel) for analyzing the solubilized sample of fraction 1 (F1) paste under non-reducing conditions.

Fig. 5 is a photograph showing the result of analyzing vWF-cleaving protease fractions after being subjected to gel filtration chromatography three times using the solubilized sample of F1 paste as a starting material. Fig. 5A is a chart showing gel filtration chromatography, Fig. 5B shows the result of SDS-PAGE on fractions under non-reducing conditions, and Fig. 5C shows the results of SDS-PAGE on vWF-cleaving activity under reducing conditions.

Fig. 6 is a photograph showing the results of analyzing vWF-cleaving protease fractions in which the fraction collected by gel filtration chromatography is purified by DEAE anion exchange chromatography. Fig. 6A is a chart showing gel filtration chromatography, Fig. 6B shows the result of SDS-PAGE (8% gel) on elution fractions under non-reducing conditions, and Fig. 6C shows the results of SDS-PAGE on vWF-cleaving activity under reducing conditions. In Fig. 6C, three bands indicate an intact vWF molecule (remaining uncleaved), a vWF cleavage fragment, and a vWF cleavage fragment, respectively, as in Fig. 5C.

Fig. 7 is a photograph showing an electrophoresed fragment obtained when the vWF-cleaving protease fraction purified and concentrated by DEAE anion exchange chromatography is further purified by Biophoresis-based SDS-PAGE (non-reducing conditions).

Fig. 8 is a photograph showing the result of electrophoresis on a fraction obtained by further purifying a vWF-cleaving protease fraction by Biophoresis-based SDS-PAGE for analyzing vWF-cleaving protease activity and SDS-PAGE on active fractions under reducing conditions. Fig. 8A shows the results of SDS-PAGE for analyzing vWF-cleaving protease activity under non-reducing conditions, and Fig. 8B shows the results of SDS-PAGE for analyzing active fractions under reducing conditions.

Fig. 9 relates to the identification of the vWF-cleaving protease gene, which is a diagram showing primers used for amplifying the gene fragment for a Northern blot probe.

Fig. 10 relates to the identification of the vWF-cleaving protease gene, which is a photograph showing Northern blot autoradiography. Fig. 10A shows the results obtained when the protease-encoding gene is used as a probe, and Fig. 10B shows the results obtained when a β -actin probe (RNA control) is used.

Fig. 11 relates to the identification of the vWF-cleaving protease gene, and is a diagram showing the locations and the sequences of the primers used in the RACE experiments.

Fig. 12 is a diagram showing the locations of primers designed for cloning full-length cDNA.

Fig. 13 is a diagram showing a process for constructing a vector containing full-length cDNA.

Fig. 14 is a photograph showing the expression in various cell lines (Western blotting under reducing conditions using anti-FLAG antibody, where the mock is prepared by inversely inserting a gene in an expression vector). In Fig. 14, each lane shows the results using the indicated sample.

Lane 1: Mock (host: 293 cell)

Lane 2: vWF-cleaving protease, cDNA+FLAG (host: 293 cell)

Lane 3: Mock (host: HepG2 cell)

Lane 4: vWF-cleaving protease, cDNA+FLAG (host: HepG2 cell)

Lane 5: Mock (host: Hela cell)

Lane 6: vWF-cleaving protease, cDNA+FLAG (host: Hela cell)

Fig. 15 is a photograph showing the activity assay of recombinant expression protease (analysis of vWF-cleavage by SDS-PAGE under non-reducing conditions, where the mock is prepared by inversely inserting a gene in an expression vector). In Fig. 15, each lane shows the results using the indicated sample.

Lane 1: Mock (host: Hela cell)

5

10

15

20

30

35

40

45

50

55

Lane 2: Supernatant in which vWF-cleaving protease was expressed (host: Hela cell)

Lane 3: Mock (host: HepG2 cell)

Lane 4: Supernatant in which vWF-cleaving protease was expressed (host: HepG2 cell)

Lane 5: Mock (host: 293 cell)

Lane 6: Supernatant in which vWF-cleaving protease was expressed (host: 293 cell)

Lane 7: Mock (host: BHK cell)

Lane 8: Supernatant in which vWF-cleaving protease was expressed (host: BHK cell)

Lane 9: Mock (host: COS cell)

Lane 10: Supernatant in which vWF-cleaving protease was expressed (host: COS cell)

Lane 11: Mock (host: CHO cell)

Lane 12: Supernatant in which vWF-cleaving protease was expressed (host: CHO cell)

Fig. 16 is a photograph showing the result of Western blotting using an antibody established against the protease of the present invention, wherein Western blotting is carried out for various antiserums using the 293 cell as a host and a recombinant vWF-cleaving protease. In Fig. 16, each lane shows the results obtained with the use of the indicated sample.

Lane 1: Mouse antiserum (prepared by administering purified protein)

Lane 2: Rabbit antiserum (prepared by hypodermically administering an expression vector to a rabbit)

Lane 3: Untreated rabbit antiserum

Lane 4: Rabbit antiserum (prepared by administering KLH-conjugated partial synthetic peptide)

Fig. 17 is a photograph showing the result of Western blotting using an antibody established against the protease of the present invention, wherein various samples derived from human plasma and recombinant expression units are detected using rabbit antiserum obtained by administering full-length cDNA, of vWF-cleaving protease. In Fig. 17, each lane shows the results obtained with the use of the indicated sample.

Lane 1: Partially purified sample derived from human plasma cryoprecipitate

Lane 2: Purified vWF-cleaving protease derived from human plasma

Lane 3: Gel-filtrated FI paste sample obtained from pooled human plasma

Lane 4: Recombinant vWF-cleaving protease (host: 293 cell)

Lane 5: Recombinant vWF-cleaving protease (host: Hela cell)

Fig. 18 is a photograph showing the result of Western blotting using an antibody established against the protease of the present invention, wherein rabbit antiserum obtained by immunizing a rabbit with a partially synthesized peptide of the vWF-cleaving protease is used to confirm the vWF-cleaving protease in healthy human-plasma and that in the plasma and gene recombinant vWF-cleaving protease of a TTP patient. In Fig. 18, each lane shows the results obtained with the use of the indicated sample.

Lane 1: Gel-filtrated FI paste sample obtained from pooled human plasma

Lane 2: Normal human plasma 1

Lane 3: Normal human plasma 2

Lane 4: Normal human plasma 3

Lane 5: TTP patient's plasma 1

Lane 6: TTP patient's plasma 2

Lane 7: Recombinant vWF-cleaving protease (host: 293 cell)

Lane 8: Recombinant vWF-cleaving protease (host: Hela cell)

Fig. 19 is a diagram showing the result of ELISA using an antibody prepared against the vWF-cleaving protease. Fig. 20 is a photograph showing the result of SDS-PAGE (silver staining) analyzing each fraction of affinity purified vWF-cleaving protease using an antibody under reducing conditions. In Fig. 20, each lane shows the results obtained with the use of the indicated sample.

```
Lane 1: Applied culture supernatant (diluted 10-fold)
```

Lane 2: Passed-through fraction

Lane 3: Washed fraction

Lane 4: Elution fraction

Fig. 21 is a photograph showing the results of evaluating neutralizing activity using an antibody (SDS-PAGE for analyzing vWF-cleaving activity under non-reducing conditions). In Fig. 21, each lane shows the results obtained with the use of the indicated sample.

```
Lane 1: vWF-cleaving protease solution: normal rabbit serum = 1:1

Lane 2: vWF-cleaving protease solution: normal rabbit serum (diluted 5-fold) = 1:1

Lane 3: vWF-cleaving protease solution: peptide-immunized rabbit serum = 1:1

Lane 4: vWF-cleaving protease solution: peptide-immunized rabbit serum (diluted 5-fold) = 1:1

Lane 5: vWF-cleaving protease solution: recombinant protein-immunized rabbit serum = 1:1

Lane 6: vWF-cleaving protease solution: recombinant protein-immunized rabbit serum (diluted 5-fold) = 1:1

Lane 7: vWF-cleaving protease solution: 10mM EDTA = 1:1

Lane 9: buffer (without vWF-cleaving protease): buffer = 1:1
```

Fig. 22 is a diagram showing the construction of an expression vector for a molecular species lacking a C-terminal domain.

30 Best Modes for Carrying out the Invention

[0071] The present invention is hereafter described in detail with reference to the following examples, although it is not limited to these examples.

35 Example 1

5

10

15

20

25

45

50

(Preparation of vWF)

[0072] A plasma cryoprecipitation (2 g) was dissolved in 20 ml of buffer (0.01 % Tween-80/50 mM Tris-HCl/100 mM NaCl, pH 7.4), and the resultant was subjected to gel filtration using a Sephacryl S-500 HR Column (2.6 x 90 cm, Amersham Pharmacia) to prepare vWF. Fractions were recovered at a flow rate of 2 ml/min in amounts of 6 ml each. vWF was analyzed by Western blotting using a peroxidase-labeled rabbit anti-human vWF antibody (DAKO), and high-molecular-weight vWF fractions were pooled. The pooled fractions were subjected to multimer analysis using agarose electrophoresis as described below.

[0073] As shown in Fig. 1, vWF originally has a multimer structure in which vWF monomer molecules are polymerized with each other at their N-terminuses or at their C-terminuses, and vWF is subjected to partial hydrolysis by the vWF-specific cleaving protease. As a result of the analysis, as shown in Fig. 2, the purified vWF exhibited a multimer pattern based on agarose electrophoresis approximately equivalent to that in the plasma of a healthy person (the ladder in the drawing shows the electrophoresis pattern of vWF having a multimer structure, and the upper portion indicates vWF with advanced polymerization). This can prepare vWF comprising substantially no impurities that degrade it, and this fraction was used as a substrate when assaying the vWF-cleaving activity as described below.

Example 2

55 (vWF-cleaving reaction)

[0074] vWF-cleaving activity was assayed as follows. A sample comprising 10 mM barium chloride (final concentration) was pre-incubated at 37°C for 5 minutes to activate protease. A buffer (15 to 20 ml, 1.5 M urea/5 mM Tris-HCl,

pH 8.0) was placed in a 50 ml Falcon Tube. Subsequently, a membrane filter (0.025 μ m, Millipore) was floated therein, and 100 μ l of activated sample prepared by mixing with 50 μ l of vWF substrate solution was added. The resultant was allowed to stand in an incubator (37°C) overnight and recovered from the filter on the next day. The recovered sample was evaluated based on the vWF cleavage pattern as described below in the "SDS-PAGE" section.

SDS-PAGE

5

10

15

20

30

35

40

45

50

55

[0075] SDS-5% polyacrylamide gel was autologously prepared and used. An SDS electrophoresis buffer (2 μ l, in the presence or absence of a reducing agent, i.e., 2-mercaptoethanol) was added to 10 μ l of the sample described in the "vWF-cleaving activity assay" section, and the resultant was boiled for 3 minutes to prepare an electrophoresis sample. The gel was subjected to electrophoresis at 30 mA for 1 hour and then stained with the Gel Code Blue Stain Reagent (PIERCE) utilizing CBB staining. As shown in Fig. 1, activity is evaluated based on the development of a cleavage fragment and the presence or absence of fragments remaining uncleaved under reducing or non-reducing conditions. This is more specifically described in Example 3 and Fig. 3 below.

Multimer analysis utilizing agarose electrophoresis

Preparation of gel, electrophoresis

[0076] Low gelling temperature agarose (Type VII, Sigma) was added to 375 mM Tris-HCI (pH 6.8) until a concentration of 1.4% was reached, followed by heating in a microwave oven to completely dissolve the gel. Thereafter, 0.1% SDS was added, and the resultant was maintained at 56°C. The resultant was made to flow into a gel mold and solidified by cooling at 4°C overnight (running gel). The next day, high gelling temperate agarose (SeaKem) was mixed with 375 mM Tris-HCI (pH 6.8) until a concentration of 0.8% was reached, and dissolved by boiling in a microwave oven. Thereafter, the resultant was maintained at 56°C (stacking gel). The gel prepared on the previous day was cleaved, leaving a 10-cm fraction from the end uncleaved. The aforementioned gel was made to flow into the cleaved portion, and the gel was made to keep flowing at 4°C for at least 3 hours, followed by solidification. Pyronin Y was added to the sample described in the "vWF cleaving activity assay" section above, and the gel was prepared under non-reducing conditions without boiling. The gel was subjected to electrophoresis at 10 mA for at least 24 hours using an SDS-PAGE buffer.

Western blotting

[0077] After the electrophoresis, the gel was immersed in a transcription buffer (0.005% SDS, 50 mM phosphate buffer, pH 7.4) for 10 minutes, and the resultant was transferred to a nitrocellulose membrane using a transcription apparatus at 4°C at 0.5 A overnight. Blocking was performed using a blotting solution (5% skim milk, PBS) for 30 minutes, and the gel was then allowed to react for at least 6 hours with the peroxidase-labeled rabbit anti-human vWF antibody (DAKO), which was diluted 1,000-fold with the blotting solution. Thereafter, the gel was washed three times with the blotting solution and once with PBS, and color was developed using Konica Immunostain HRP-1000 (Konica), which was a substrate reaction solution for peroxidase. The purified vWF analyzed in this assay was found to have been undegraded, but was sufficiently usable as a substrate in the present invention (Fig. 2).

Example 3

(Preparation of vWF-cleaving protease)

[0078] Plasma was subjected to ethanol fractionation developed by Cohn. A protease having high vWF-cleaving activity (one with high specific activity) when protein levels in four fractions (i.e., starting plasma, cryoprecipitate, fraction I (FI) supernatant, and a paste) are made equivalent to each other was selected. As shown in Fig. 3, the protease activity was highest in the FI paste. The N-terminal sequence of this cleavage fragment was analyzed, and as a result, activity derived from the cryoprecipitate and the FI paste were found to cleave the peptide bond between residues Tyr 842 and Met 843. Thus, the FI paste was determined to be a main starting material for purification thereafter.

Solubilization of FI paste

[0079] The FI paste was fractionated in fractions of 12 g each and then cryopreserved. The paste was allowed to melt at 4°C the day before its use. The next day, 120 ml of solubilizing buffer (0.05% azide, 50 mM Tris-HCl (pH 7.4), 100 mM NaCl) was added at 10 mg/ml, and the mixture was stirred at 37°C for 2 hours. The product was centrifuged at 10,000 rpm for 10 minutes, and the supernatant was then recovered, followed by filtration with a prefilter, a 5.0 µm

filter, and a 0.8 μ m filter in that order. The resultant was determined to be a solubilized sample. Fig. 4 shows the result of SDS-PAGE of the solubilized sample.

Gel filtration chromatography of vWF-cleaving protease

5

10

15

20

25

30

35

40

45

50

55

[0080] The solubilized F1 paste was applied to a Sephacryl S-300 HR Column (5 x 90 cm, Amersham Pharmacia) to conduct the first gel filtration. A buffer comprising 0.05 % azide, 50 mM Tris-HCl (pH 7.4), and 100 mM NaCl (hereinafter referred to as an "elution buffer"), which was the same as the solubilizing buffer, was used. The flow rate was 5 ml/min, fractionation was initiated at 600 ml after the sample application, and fractions were recovered in amounts of 10 ml each. Fractions were subjected to the vWF-cleaving reaction, and their activities were then analyzed by SDS-PAGE. Fractions that exhibited protease activity were pooled, and a small amount of saturated ammonium sulfate was gradually added dropwide thereto until a final concentration of 33% saturation was reached. The mixture was further allowed to stand at 4°C overnight. The next day, the product was centrifuged at 10,000 rpm for 10 minutes, and an active fraction of interest was recovered as a precipitate. The procedures comprising solubilization, gel filtration, and ammonium sulfate precipitation were performed for 5 batches and the resultant was cryopreserved at -20°C.

[0081] The ammonium sulfate precipitates (2 to 3 batches) obtained by the first gel filtration were dissolved in 50 ml of elution buffer, and passed through the Sephacryl S-300 HR Column (5 x 90 cm) in the same manner as in the first gel filtration to perform the second gel filtration. The elution buffer, conditions, operations, and the like were the same as those in the first gel filtration. Fractions were subjected to the vWF-cleaving reaction, and their activities were then analyzed by SDS-PAGE. Fractions with activity were pooled, and ammonium sulfate precipitation was similarly performed. These procedures were repeated two times.

[0082] The ammonium sulfate precipitates (2 batches) obtained by the second gel filtration were dissolved in 50 ml of elution buffer, and applied to the Sephacryl S-300 HR Column (5 x 90 cm) in the same manner as in the first and the second gel filtration to perform the third gel filtration. The elution buffer, conditions, operations, and the like were the same as those in the first and the second gel filtration. Fractions were subjected to the vWF-cleaving reaction, and their activities were then analyzed by SDS-PAGE, followed by pooling. Fig. 5 shows SDS-PAGE for analyzing these fractions and that for analyzing vWF-cleaving activity. Based on the patterns of gel filtration and the data showing activity, the protease of the present invention was found to be eluted in the region between fraction 37 and fraction 47. Based on a separately conducted elution experiment for high-molecular-weight gel filtration marker (Amersham Pharmacia), this site of elution was deduced to have a molecular weight equivalent to 150 to 300 kDa. In this phase, considerable amounts of impurities were still present.

DEAE anion exchange chromatography

[0083] The pooled fraction obtained by three gel filtration operations was subjected to dialysis overnight with a buffer comprising 50 mM Tris-HCl and 50 mM NaCl (pH 7.1). After the dialysis, anion exchange chromatography was performed using a 5 ml HiTrap DEAE-Sepharose Fast Flow Column (Pharmacia) to conduct further purification and concentration. Equilibrating and washing were performed using a buffer comprising 50 mM Tris-HCl (pH 7.1), and elution was performed using 0.25 M NaCl. The flow rate was 5 ml/min, and 5 fractions of 5 ml each were recovered and pooled. Fig. 6 shows the results of SDS-PAGE for analyzing elution fractions and those for analyzing vWF-cleaving activity. Based on SDS-PAGE for activity assay, the protease of the present invention having vWF-cleaving activity was considerably effectively concentrated in the elution fraction.

Fractionation utilizing SDS-PAGE

[0084] The sample (5 ml) purified and concentrated by DEAE anion exchange chromatography was further concentrated to 0.5 ml using Centricon (molecular weight cut off: 10,000 Da, Amicon). The protease of the present invention was isolated by Biophoresis III (Atto Corporation) utilizing SDS-PAGE. In accordance with the Laemmli method (Nature, vol. 227, 680-685, 1970), a buffer for electrophoresis tanks was prepared, and developed with 8% polyacrylamide gel to recover the electrophoresis fraction. Fig. 7 shows the result of SDS-PAGE for analyzing the recovered fractions. The buffer used for recovery was comprised of 50 mM Tris-HCl and 10% glycerol (pH 8.8). As is apparent from Fig. 7, this process according to the present invention has a high ability to produce separation. Fig. 8 shows the results of analyzing activity of a fraction further purified by electrophoresis and the results of SDS-PAGE for analyzing active fractions. The protease of the present invention can be recovered as an active molecule even after SDS-PAGE. When the activity of this protease in the plasma is determined to be 1 in terms of specific activity, a degree of purification of 30,000- to 100,000-fold was deduced to be achieved based on the average protein content in the plasma (60 mg/ml).

Example 4

(Partial amino acid sequencing)

5 [0085] The partial amino acid sequence of the isolated protease was determined. This protease, which was isolated using Biophoresis, was transferred to a PVDF membrane after SDS-PAGE by a conventional technique, air-dried, and then subjected to analysis using the automated protein sequencer (model 492; PE Applied Biosystems). As a result, the vWF-cleaving protease of the present invention isolated under the above conditions was found to comprise a polypeptide chain having a molecular weight of 105 to 160 kDa in SDS-PAGE under reducing conditions. This protease was also found to have, as a partial sequence, Leu-Leu-Val-Ala-Val, and preferably Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Val-Ala-Val.

Deduction of isolated protease utilizing bioinformatics

15 [0086] At present, bioinformatics enables the deduction of full nucleotide sequences encoding a polypeptide without substantial gene cloning through collation with information in the database accumulated in the past (BIOINFORMATICS: A Practical Guide to the Analysis of Genes and Proteins, edited by Andreas D. Baxevanis and B. F. Francis Ouellette). Based on the partial amino acid sequencing by the aforementioned process (Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val), the database was searched by the tblastn program. As a result, a chromosome clone (AL158826) that was deduced to encode the protease of the present invention was identified by genomic database search. Further, a part of the protease of interest as the expressed sequence tag (EST) and a clone that was deduced to be a part of the polypeptide encoded by the aforementioned genome (Al346761 and AJ011374) were identified. The amino acid sequence as shown in SEQ ID NO: 3 or 7 was deduced based thereon to be an active vWF-cleaving protease site.

Example 5

25

35

40

45

50

(Gene identification)

30 [0087] Synthesis of all the following synthetic primers was performed by Greiner Japan Co.Ltd. by request. Further, reagents used for gene recombination were those manufactured by TAKARA, TOYOBO, and New England Biolabs unless otherwise specified.

Preparation of a gene fragment as a Northern blotting probe

[0088] A sense primer (SEQ ID NO: 9) and an antisense primer (SEQ ID NO: 10) were prepared. PCR was carried out using Universal QUICK-Clone™ cDNA (Clontech), which was a mixture of cDNA derived from normal human tissue, as a template and TaKaRa LA Taq with GC rich buffer. A gene sandwiched between these primers was amplified, and the amplified fragment was cloned using a TOPO TA cloning™ kit (Invitrogen). DNAs having the nucleotide sequence as shown in SEQ ID NO: 6 were isolated from several clones.

[0089] A vector portion was removed from this cloned DNA by EcoRI digestion, separated and purified by agarose electrophoresis, and the resultant was determined to be a template for preparing probes for Northern blotting.

Northern blotting

[0090] The gene fragment prepared above was employed as a template to prepare a radioactive probe using [α-³²P] dCTP (Amersham Pharmacia) and a BcaBESTTM labeling kit (TAKARA). Hybridization was carried out using the Human 12-lane Multiple Tissue Northern BlotsTM (Clontech) filter in accordance with the method described in Molecular Cloning 2nd Edition, pp. 9.52-9.55. Detection was carried out by autoradiography. As shown in Fig. 10, mRNA encoding the protease was expressed mainly in the liver. The size of this mRNA was found to be more than 4.4 kb.

Isolation and identification of gene encoding the protease

[0091] As a result of Northern blotting, mRNA was found to be expressed mainly in the liver. Thus, the protease gene of the present invention was isolated and identified in accordance with the RACE technique using normal human liver-derived poly A+ RNA and Marathon-ReadyTM cDNA (Clontech).

[0092] More specifically, the first PCR was carried out as 5' RACE using normal human liver-derived Marathon-Ready™ cDNA in accordance with the product's manual and using the AP-1 primer attached to the kit and antisense

primers (SEQ ID NOs: 11 to 13) arbitrarily selected from the group of Gene Specific Primers (GSP) excluding the primer 1 located in the uppermost stream as shown in Fig. 11. Nested PCR (the second PCR) was then carried out using the AP-2 primer located in the inside thereof and the antisense primer located in the inside of the primer used for the first PCR as shown in Fig. 11. Thereafter, TA cloning was earned out. Genes were prepared from the developed colonies in accordance with a conventional technique (Molecular Cloning 2nd Edition, pp. 1.25-1.28), and nucleic acid sequences were decoded using an automatic DNA sequencer. The primer used for sequencing was the primer used for PCR or a primer located in the inside thereof. Further, the primer was designed based on the sequence determined after serial decoding.

[0093] 3' RACE was started from normal human liver-derived poly A+ RNA using the 3'-Full RACE Core Set (TAKA-RA), and reverse transcription was carried out in accordance with the attached manual using the attached oligo dT primer. The band amplified by PCR using the sense primer (SEQ ID NO:14) located at "primer 2" in Fig. 11 and the attached oligo dT primer was separated by agarose electrophoresis and extracted, followed by TA cloning. Genes were prepared from the developed colonies, and nucleic acid sequences were decoded using an automatic DNA sequencer. A primer used for sequencing was designed based on the sequence determined after serial decoding.

Example 6

10

15

(Preparation of a vector comprising full-length cDNA 1)

20 [0094] cDNA encoding the protein was subjected to one-stage PCR by, for example, using a sense primer 1 (SEQ ID NO: 22) comprising an XhoI restriction site and an initiation codon and an antisense primer 2 (SEQ ID NO: 23) comprising an Sall restriction site and a termination codon (see Fig. 12), using the aforementioned normal human liver-derived Marathon-Ready™ cDNA as a template and the TaKaRa LA Taq with GC rich buffer, followed by the aforementioned TA cloning. Thereafter, the full length of the product was confirmed using an automatic DNA sequencer.

Example 7

(Preparation of a vector comprising full-length cDNA 2)

[0095] Restriction sites Accl and AvrII that cleaved cDNA only at one point on the inner sequence of the cDNA (SEQ ID NO: 15) encoding the protein were found. With the use thereof, full-length cDNA was divided into three fragments as shown in Fig. 12. A fragment 1 sandwiched between the sense primer 1 (SEQ ID NO: 22) and the antisense primer 3 (SEQ ID NO: 24), a fragment 2 sandwiched between the sense primer 4 (SEQ ID NO: 25) and the antisense primer 5 (SEQ ID NO: 26), and a fragment 3 sandwiched between the sense primer 6 (SEQ ID NO: 27) and the antisense primer 2 (SEQ ID NO: 23) were provided, respectively, in each of the above three fragments. Each fragment was subjected to PCR using the aforementioned normal human liver-derived Marathon-Ready™ cDNA as a template and TaKaRa LA Taq with GC rich buffer, followed by the aforementioned TA cloning. The full length of the product was confirmed using an automatic DNA sequencer. Further, the pCR 2.1 vector included in the aforementioned TA cloning kit was subjected to self ligation, the ligation product was cleaved with Xhol/HindIII, ligated to a linker comprising Xhol/Accl/AvrII/HindIII (prepared by annealing the synthetic DNA as shown in SEQ ID NO: 28 or 29), and the three aforementioned fragments were sequentially ligated in a conventional manner to bind them. Thus, cDNA comprising the entire region was prepared (see Fig. 13).

Example 8

45

50

55

(Preparation of an expression vector comprising full-length cDNA: an animal cell host)

[0096] DNA obtained in Example 6 or 7 was digested with restriction enzymes Xhol/Sall, ligated to, for example the Sall site in the pCAG vector (Niwa, H. et al., Gene, vol. 108, 193-199), and the direction of the insertion and the full-length sequence were confirmed using an automatic DNA sequencer.

Example 9

(Transfection of an expression vector comprising full-length cDNA into an animal cell)

[0097] The animal cell expression vector prepared in Example 8 was transfected in the following manner using the 293 cell (human embryonic kidney cell line), the Hela cell, and the HepG2 cell. At the outset, cells were disseminated at 1 to 3 x 10^5 cells per 35 mm dish 24 hours before the transfection. The next day, 2 μ l of polyamine transfection

reagent, TransIT (TAKARA), per µg of the expression vector, were added to 100 µl of a serum-free medium such as Opti-MEM to prepare a complex with DNA in accordance with the instructions included with the reagent. Thereafter, the complex was added dropwise to the various types of previously prepared cells, and the resultants were incubated for 2 to 8 hours, followed by medium exchange. The medium was further exchanged three days later with the selective medium to which G418 had been added. Thereafter, medium was exchanged every three days to produce a stably expressed strain. An example thereof is shown in Fig. 14 as a temporarily expressed strain comprising an FLAG epitope tag at its C-terminus. Detection was carried out by Western blotting using the anti-FLAG-M2 antibody (Kodack) and staining with anti-mouse Ig-alkaline phosphatase-labeled antibody system. The recombinant strain expressed using cDNA as shown in this example exhibited a molecular size of about 250 kDa under reducing conditions. This molecular size was also found in the plasma of a healthy human (Fig. 18, Example 14 below). Several different molecular species of this protease are found to be present in the human plasma, which could be caused by the presence of the alternative splicing products (SEQ ID NOs: 6 to 21) observed at the time of gene cloning, difference in post-translational modification such as sugar chain addition, or degradation during purification (described in Example 14 and in Fig. 17 of the present invention and Gerritsen et al., Blood, vol. 98, 1654-1661 (2001)).

[0098] Subsequently, the vWF-cleaving activity of the recombinant strain was confirmed by the method described in Example 2 (Fig. 15). As a result, the human plasma-derived protease and the gene recombinant product of the present invention were found to exhibit the same vWF-cleaving activities.

Example 10

5

-10

20

25

30

35

40

45

50

55

(Preparation of an expression vector comprising partial cDNA: an E. coli host)

[0099] Partial cDNA encoding the metalloprotease domain of the protein was subjected to PCR using a sense primer comprising an Ncol restriction site and an initiation codon (SEQ ID NO: 30). and an antisense primer comprising an HindIII restriction site and a termination codon (SEQ ID NO: 31), the aforementioned normal human liver-derived Marathon-Readay™ cDNA or the cDNA obtained in Example 6 or 7 as a template, and the TaKaRa LA Taq with GC rich buffer. The PCR product was then digested with Ncol/HindIII, ligated to the Ncol/HindIII digest of an *E. coli* expression vector such as pUT1 (Soejima et al., J. Biochem. Tokyo, vol. 130, 269-277 (2001)), and transformed to the *E. coli* competent cell JM 109 by a conventional technique. Several clones were collected from the formed colony group, and genes were prepared therefrom. Thereafter, the resulting genes were confirmed to be the genes encoding the polypeptide, wherein the nucleic acid sequence of the insertion site of the plasmid vector was equivalent to SEQ ID NO: 32 or substantially represented by SEQ ID NO: 33, using an automatic DNA sequencer.

Example 11

(Expression of partial cDNA-containing expression vector in E. coli)

[0100] An $E.\ coli$ host with the expression vector constructed in Example 10 introduced therein was precultured in 200 ml of LB medium comprising 50 μ g/ml ampicillin at 30°C overnight. The resultant was sowed in a fermenter comprising 8 liters of LB medium, and culture was conducted at 30°C until the turbidity at 600 nm became 0.2 to 0.5. Thereafter, isopropyl-1-thio- β -D-galactopyranoside was added to a final concentration of 1 mM, and the mixture was further cultured overnight to induce the metalloprotease domain of the protein to be expressed. The cultured $E.\ coli$ were collected using a centrifuge (4°C for 30 minutes).

[0101] Subsequently, the collected *E. coli* pellet was resuspended in distilled water, and lysozyme (final concentration: 0.6 mg/ml) was added thereto. The mixture was stirred at room temperature for 30 minutes, allowed to stand at 4°C overnight, and cells were then destroyed. After the ultrasonication, centrifugation was carried out using a centrifuge (4°C for 20 minutes), and the pellet was recovered. The recovered pellet was resuspended in a buffer comprising 50 mM Tris, 10 mM EDTA, and 1% Triton X-100 (pH 8.0). These procedures of centrifugation, ultrasonication, and resuspension were repeated several times, and the pellet was then resuspended in distilled water. Similarly, procedures of centrifugation, ultrasonication, and resuspension were repeated several times to recover an inclusion body. This inclusion body was used as an antigen when producing an antibody.

Example 12

(Isolation of homologous gene of other animal species)

[0102] The nucleic acid sequence as shown in SEQ ID NO: 15 was used as a probe, and a homology search was conducted using the BLASTN program at the GenomeNet WWW server (http://www.genome.ad.jp/). As a result, chro-

mosome clones AC091762 and AC090008 that were mapped at mouse chromosome 10 were obtained. Based on these sequences, a mouse homolog of the protease of the present invention as shown in SEQ ID NO: 34 was deduced. A new primer was designed from this sequence, and Northern blot analysis was conducted by the technique used in isolating and identifying the gene encoding the human vWF-cleaving protease. Thus, the occurrence of the specific expression in the liver was observed as with the case of humans. Further, normal mouse liver-derived poly A+ RNA and Marathon-ReadyTM cDNA (Clontech) were used to isolate and identify the protease gene of the present invention by the RACE technique as in the case of humans. As a result, the mouse homologous gene sequences of the protease as shown in SEQ ID NOs: 35 and 36 were determined.

[0103] Based on the thus determined mouse homologous partial sequence, the Exon/Intron structure on the 5' side of the aforementioned mouse chromosome 10 was determined. In accordance with a conventional technique (e.g., Gene Targeting: A Practial Approach First Edition, edited by A. L. Joyner, Teratocarcinomas and embryonic stem cell a practical approach), a targeting vector for knock-out (knock-in) mice can be prepared based thereon. This enabled the production of mutated mice. Further, this protein can be subjected to recombinant expression by a conventional technique.

Example 13

5

15

20

30

40

45

50

55

(Production of an antibody and construction of a detection system for the present protease using the antibody)

[0104] In accordance with a conventional technique (e.g., Current Protocols in Molecular Biology: Chapter 11 immunology, Antibody Engineering: A PRACTICAL APPROACH, edited by J. McCAFFERTY et al. or ANTIBODY ENGINEERING second edition, edited by Carl A. K. BORREBAECK), an expression vector was administered to a mouse or rat. This expression vector comprises a substance prepared by optionally binding an antigen protein partially purified from human plasma or a synthetic peptide having a partial amino acid sequence thereof (e.g., a C-terminal peptide sequence (SEQ ID NO: 37) Phe-Ser-Pro-Ala-Pro-Gln-Pro-Arg-Arg-Leu-Leu-Pro-Gly-Pro-Gln-Glu-Asn-Ser-Val-Gln-Ser-Ser, which was one isoform of the protease of the present invention) to an optimal carrier substance such as KLH (Cys was added to, for example, the N- or C-terminus to facilitate KLH addition), the aforementioned gene recombinant protein, or a gene encoding this protein. Thus, a monoclonal antibody-expressing hybridoma was established, and a polyclonal antibody (antiserum) was produced.

[0105] Subsequently; the antibodies prepared by the various aforementioned techniques were used to detect the protease of the present invention by Western blotting in accordance with a conventional technique (e.g., Current Protocols in Molecular Biology: Chapter 10 analysis of proteins, Chapter 11 immunology). More specifically, the culture supernatant of the recombinant unit-expressing 293 cell obtained in the procedure as described in Example 9 was subjected to SDS-PAGE under non-reducing conditions, transferred to a PVDF membrane, and confirmed using mouse or rabbit antiserum to confirm the expression of the genetically recombinant unit (Fig. 16). As a result, a band that was deduced to be derived from the protease of the present invention was found in a molecular size range of 160 to 250 kDa. Subsequently, the protease of the present invention was detected using starting plasma or the like and a recombinant unit under non-reducing conditions. As a result, a band was found in 105 to 160 kDa or 160 to 250 kDa (Fig. 17). Also, a band derived from a similar recombinant unit was detected in a monoclonal antibody established by immunizing a recombinant protein (clone No. CPHSWH-10).

[0106] Further, the C-terminal peptide sequence Phe-Ser-Pro-Ala-Pro-Gin-Pro-Arg-Arg-Leu-Leu-Pro-Giy-Pro-Gin-Glu-Asn-Ser-Val-Gin-Ser-Ser (SEQ ID NO: 37), which was one isoform of the protease of the present invention, was bound to KLH. The resultant was used as an immunogen to obtain a peptide antibody. With the use thereof, the protease of the present invention was detected from the plasma of healthy persons, plasma of TTP patients, or a culture supernatant of the recombinant unit under reducing conditions. As a result, a band of approximately 250 kDa that was deduced to be a signal derived from the protease of the present invention was found, although it was not clear based on plasma derived from some TTP patients (Fig. 18).

[0107] Furthermore, enzyme immunoassay (ELISA) constructed by combining the obtained antibodies enabled the preparation of a calibration curve that is concentration-dependent at the culture supernatant level of the recombinant protein (Fig. 19). An example of ELISA is as follows. The obtained mouse anti-vWF-cleaving protease antibody was immobilized on the Maxisorp plate (Nunc), and 1/1, 1/2, and 1/4 diluents of the culture supernatant of the vWF-cleaving protease-temporarily expressing 293 cells were allowed to react in amounts of 100 µl/well (Mock supernatant as "0"). The plate was subjected to reaction, for example, at 37°C for 1 hour, and then washed with 0.05% Tween 20/TBS. Thereafter, the 100-fold diluted rabbit anti-vWF-cleaving protease antibody was allowed to react in amounts of 100 µl/well, for example, at 37°C for 1 hour, and the plate was washed with 0.05% Tween 20/TBS. The 1,000-fold diluted peroxidase-labeled anti-rabbit Ig antibody (BioRad) was then allowed to react in amounts of 100 µl/well, for example, at 37°C for 1 hour, and the plate was washed with 0.05% Tween 20/TBS. Thereafter, color was developed for a given period of time using a coloring substrate TMBZ, the reaction was terminated using 1M sulfuric acid as a termination

liquid, and the absorbance at 450 nm was assayed. The application thereof enabled the quantification of the protease of the present invention in a variety of specimens.

Example 14

5

10

15

20

25

35

40

45

50

55

(Purification of the protease using an antibody)

[0108] The obtained antibody was bound to a suitable immobilization carrier to prepare an affinity column, and the resulting column was used to purify. the protease of the present invention. The affinity column was prepared by immobilizing an antibody using Cellulofine for NHS activation (Chisso Corporation) in accordance with the included instructions. The thus prepared swollen carrier (about 1 ml) was used to apply the culture supernatant in which the recombinant gene had been expressed in the 293 cell of the protease as described in Example 9. Thereafter, the column was washed with 50 mM Tris-HCl and 0.1M NaCl (pH 7.5, hereafter referred to as "TBS"), and elution was carried out using a urea-containing 0.1M glycine buffer (pH 3). The eluted fraction was neutralized with 1M Tris-HCl (pH 8.5) and then dialyzed against TBS. Fig. 20 shows the results of SDS-PAGE analysis of the resulting purified protease. Also, the resulting purified fraction was found to have vWF-cleaving activity. The cleavage point of the vWF fragmented by this recombinant protease was found to be the position between residues Tyr 842 and Met 843 based on the analysis of the N-terminal amino acid sequence of the fragment. Also established were clones (e.g., Clone Nos. CPHSWH-7.2 and 10) that could be similarly subjected to purification with the use of the monoclonal antibody prepared by the method as described in Example 13.

[0109] Subsequently, the partial amino acid sequence of the purified protease was determined. In accordance with a conventional technique, the protease was subjected to SDS-PAGE, transferred to a PVDF membrane, air-dried, and then subjected to analysis using an automated protein sequencer (model 492; PE Applied Biosystems). As a result, the protease was found to comprise Ala-Ala-Gly-Gly-IIe- as a partial N-terminal sequence. This sequence was congruous with the N-terminal sequence of the mature unit of the protease of the present invention, that was deduced from the genetic construction.

Example 15

30 (Neutralization of the protease activity using an antibody)

[0110] Activity of the aforementioned rabbit polyclonal antibody to neutralize the vWF-cleaving protease was evaluated. Normal rabbit serum, rabbit antiserum comprising the C-terminal peptide sequence (SEQ ID NO: 37), Phe-Ser-Pro-Ala-Pro-Gln-Pro-Arg-Leu-Leu-Pro-Gly-Pro-Gln-Glu-Asn-Ser-Val-Gln-Ser-Ser bound to KLH as an immunogen, and antiserum, the immunity of which had been induced by the protein expressed by the expression vector as shown in Example 7 or 8, were respectively allowed to pre-react at 37°C for 1 hour with 1 to 10 µg/ml of gene recombinant vWF-cleaving protease (approximated by the Bradford technique) at a volume ratio of 1:1. Alternatively, a 5-fold diluted antiserum was allowed to pre-react under the above conditions with the protease at a volume ratio of 1:1. Thereafter, vWF-cleaving activity was evaluated by the method described above. As a result, it was found that antiserum, which had activity of inhibiting the protease of the present invention, were prepared by immunizing the protein (Fig.21). (antagonist activity) (a metalloprotease inhibitor, i.e., EDTA, was determined to be a control). This indicates the possibility of constructing an acquired TTP patient-like model having a positive autoantibody against vWF-cleaving protease as well as the simple possibility of producing a neutralizing antibody.

Example 16

(Construction of C-terminus deleted modification unit)

[0111] Based on the strategy shown in Fig. 22, the full-length vWF-cleaving protease gene cloning vector (pCR 2.1 vWFCP) obtained in Example 6 or 7 was used to add a variant lacking domains located in a position following the C-terminus (T1135stop, W1016stop, W897stop, T581stop, and Q449stop: each numerical value indicates the number of amino acid residues between Met encoded by the initiation codon AGT and the termination codon, and indicates a site comprising the FLAG epitope (DNA sequence: gactacaaggacgatgacgataagtga (SEQ ID NO: 47) and amino acid sequence: Asp Tyr Lys Asp Asp Asp Asp Lys (SEQ ID NO: 48)). Primers used herein are as follows. "S" indicates a sense primer, and "AS" indicates an antisense primer. Genes Stu I-S (SEQ ID NO: 38), Acc I-S (SEQ ID NO: 39), Avr II-S (SEQ ID NO: 40), Q449stop-AS (SEQ ID NO: 41), T581stop-AS (SEQ ID NO: 42). W897stop-AS (SEQ ID NO: 43), W1016stop-AS (SEQ ID NO: 44), T1135stop-AS (SEQ ID NO: 45), and full-length-AS (SEQ ID NO: 46) were prepared and incorporated in the pCAG expression vector in accordance with the method as used in Examples 8 and

9. This expression vector was introduced in the Hela cell. The primer pair shown at the bottom of the restriction map in the upper portion of Fig. 22 was used to obtain PCR fragments (A) to (F). Each PCR fragment was ligated to pCR 2.1 vWFCP. Further, the resultant was digested with Stul/Sall, and fragments (A) and (B) were digested with Stul/Sall and then ligated. These fragments were further digested with Accl, and fragment (C) was also digested with Accl, followed by ligation. The ligation product was digested with AvrII/Sall, and fragments (D), (E), and (F) were also digested with AvrII/Sall, followed by ligation. As a result, a variant lacking a region between the C-terminus and the position W897 was found to have activity, although it was the result of qualitative analysis. Such a way of approach enables the identification of various functional domains. The design of molecules comprising these domains and having no protease activity is considered to realize the design of antagonists or agonists.

Industrial Applicability

[0112] The findings of the present invention have led to the possibility of replacement therapy for patients having diseases resulting from deficiency of a protease, such as thrombotic thrombocytopenic purpura. This also realizes the establishment of methods for gene cloning and efficient purification from serum or plasma. In particular, the information provided by the present invention enables gene recombination based on the obtained nucleotide sequence and stable production and provision of the protease according to the present invention, which have been heretofore difficult to achieve. Also, these can be applied to replacement therapy for TTP patients, inhibition of platelet plug formation involved with heart infarction or brain infarction, inhibition of arteriosclerosis, prevention of restenosis, reembolization, or infarction involved with PTCA, prevention of reembolization involved with PTCR, and prevention of platelet plug formation caused by HUS or O-157. Diagnosis and therapy utilizing the gene encoding the protease of the present invention or an antibody thereagainst can be realized.

[0113] All publications cited herein are incorporated herein in their entirety. A person skilled in the art would easily understand that various modifications and changes of the present invention are feasible within the technical idea and the scope of the invention as disclosed in the attached claims. The present invention is intended to include such modifications and changes.

SEQUENCE LISTING

<110>JURIDICAL FOUNDATION THE CHEMO-SERO-THERAPEUTIC RESEARCH INSTITUTE 5 <120>vWF-cleaving protease <130> PH1553-PCT 10 <160>48 15 <210>1 <211>5 20 <212>PRT <213> Homo sapiens <400>1 25 Leu Leu Val Ala Val 1 30 <210>2 <211>14 35 <212>PRT <213> Homo sapiens <400>2 40 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val 1 5 10 45 <210>3 <211>161 50 <212>PRT <213 > Homo sapiens <400>3

	Ala	Ala	Gly	Gly	lle	Leu	His	Leu	Glu	Leu	Leu	Val	Ala	Val	Gly
5	1				5					10					15
	Pro	Asp	Val	Phe	Gln	Ala	His	Gln	Lys	As _P	Thr	Glu	Arg	Туг	Val
10					20					25					30
70	Leu	Thr	Asn	Leu	Asn	He	Gly	Ala	Glu	Leu	Leu	Arg	Asp	Pro	Ser
					35			•	•	40					45
15	Leu	Gly	Ala	Gln	Phe	Arg	Val	His	Leu	Val	Lys	Me t	Val	lle	Leu
					50					55					60
20	Thr	Glu	Pro	Glu		Ala	Pro	Asn	Ile	Thr	Ala	Asn	Leu	Thr	Ser
		_	_	_	65					70					75
	Ser	Leu	Leu	Ser		Cys	Gly	Trp	Ser		Thr	Ile	Asn	Pro	Glu
25	Acn	4.0-	ጥ ኤ _	.	80 D	61 .	** •	4.	÷	85	•••	_	_		90
	АЗР	Asp	107	ASP	95	GIY	HIS	Ala	Asp		Val	Leu	Tyr	He	
30	Arg	Phe	Asn	l en	•	Lau	Dro	Acn	Glad	100	A = ~	Cla	Wal		105
			шър	LCu	110	Leu	110	no.p	GIY	115	ni g	GIII	Val.	Arg	120
35	Val	Thr	Gln	Leu		Gly	Ala	Cys	Ser		Th <i>r</i>	Trp	Ser	Cvs	
					125					130				0,0	135
	Ile	Thr	Glu	Asp	Thr	Gly	Phe	, Asp	Leu	Gly	Val	Thr	Ile	Ala	
40			-		140					145					150
	Glu	Ile	Gly	His	Ser	Phe	Gly	Leu	Glu	His	Asp				
45					155					160					
50	<210)>4													
		>15												•	
		2>DNA				•									
55	<213	Ho	mo s	apie	ns										

	<400>4	•					
5 .	ctgctggtgg	ccgtg					15
	<210>5						
10	<211>42						
	<212>DNA						
15	<213> Homo	sapiens .					
	<400>5						
20	gctgcaggcg	gcatcctaca	cctggagctg	ctggtggccg	tg		42
25	<210>6						
	<211>483						
	<212>DNA						
30	<213> Homo	sapiens.					
	<400>6						
35	gctgcaggcg	gcatcctaca	cctggagctg	ctggtggccg	tgggccccga	tgtcttccag	60
	gctcaccaga	aggacacaga	gcgctatgtg	ctcaccaacc	tcaacatcgg	ggcagaactg	120
	cttcgggacc	cgtccctggg	ggctcagttt	cgggtgcacc	tggtgaagat	ggtcattctg	180
40	acagagcctg	agggtgctcc	aaatatcaca	gcaaacctca	cctcgtccct	gctgagcgtc	240
	tgtgggtgga	gccagaccat	caacctgag	gacgacacgg	atcctggcca	tgctgacctg	300
45	gtcctctata	tcactaggtt	tgacctggag	ttgcctgatg	gtaaccggca	ggtgcggggc	360
45	gtcacccagc	tgggcggtgc	ctgctcccca	acctggagct	gcctcattac	cgaggacact	420
	ggcttcgacc	tgggagtcac	cattgcccat	gagat tgggc	acagcttcgg	cctggagcac	480
50	gac						483
	<210>7						
55	C2115161						

	<2	12>PI	RT													
5	<2	13> 1	Homo	sapi	ens											
	<40	00>7														
	gct	gca	a ggo	ggo	ato	cta	a cad	cte	gag	cte	g cte	ggtg	g gc	c gt	g ggc	45
10	Ala	Ala	a Gly	Gly	, lle	Lei	His	s Leu	Glu	Lei	Let	ı Val	Ala	a Va	l Gly	
	1				5			•		10					15	
15	ccc	gat	gtc	tto	cag	gct	cac	cag	aag	gac	aca	gag	cgo	c ta	t gtg	90
	Pro	Asp	Val	Phe	Gln	Ala	His	Gln	Lys	Asp	Thr	Glu	Are	з Ту	r Val	
					20					25					30	
20	ctc	acc	aac	ctc	aac	ato	ggg	gca	gaa	ctg	ctt	cgg	gac	cci	tcc	135
•	Leu	Thr	Asn	Leu	Asn	Ile	Gly	Ala	Glu	Leu	Leu	Arg	Asp	Pro	Ser	•
25			•		35					40					45	
	ctg	ggg	gct	cag	ttt	cgg	gtg	cac	ctg	gtg	aag	atg	gto	ati	ctg	180
	Leu	Gly	Ala	Gln	Phe	Arg	Val	His	Leu	Val	Lys	Met	Val	Ιlε	Leu	
30					50		•			55	•				60	
															tcg	225
35	Thr	Glu	Pro	Glu		Ala	Pro	Asn	He	Thr	Ala	Asn	Leu	Thr	Ser	
					65					70					75	
			ctg.													270
40	Ser	Leu	Leu	Ser		Cys	Gly	Trp	Ser		Thr	He	Asn	Pro	Glu	
					80					85					90	
45			acg													315
	ASP	ASP	Thr	ASP		Gly	HIS	Ala	Asp		Val	Leu	Tyr	Ile		
	255				95					100					105	
50			gac													360
	AIg	rne	Asp	Leu		Leu	Pro	Asp			Arg	Gln	Val	Arg	Gly	
55	٠.				110					115					120	
<i>-</i>	gtc	acc	cag	ctg	ggc	gg t	gcc	tgc	tcc	cca	acc	tgg	agc	tgc	ctc	405

	Val Thr Gln Le	u Gly Gly Ala C	ys Ser Pro Thr	Trp Ser Cys Leu	
5		125	130	135	
	att acc gag gad	c act ggc ttc g	ac ctg gga gtc	acc att gcc cat	450
	Ile Thr Glu Asp	Thr Gly Phe A	sp Leu Gly Val	Thr Ile Ala His	
10		140	145	150	
	gag att ggg cad	age tte gge e	tg gag cac gac		483
15	Glu Ile Gly His	Ser Phe Gly L	eu Glu His Asp		
		155	160		
20	(0.0)	•		•	
	<210>8				•
	<211>29		•		
25	<212>PRT				
	<213> Homo sapi	ens	•		
	<400>8				
30				Val Ala Val Gly	
	1	5	10	15	
35	Pro Asp Val Phe			Arg Arg Tyr	
		20	25		
40	<210>9			•	
	<211>30			•	•
	<212>DNA				
45	<213> Homo sapi	ens			
	<400>9				
50	gctgcaggcg gcat	cctaca cctggagc	tg		30
	<210>10				
55	<211 \21				

	<212>DNA		•	
5	<213> Homo sapiens			
	<400>10			
	cccaatctca tgggcaatgg t			21
10				5.
	<210>11			
15	<211>21		•	
	<212>DNA			
	<213> Homo sapiens		·	
20	<400>11			
	cccaatctca tgggcaatgg t			21
25				
	<210>12			
	<211>30	÷		
30	<212>DNA	·		
	<213> Homo sapiens			
35	<400>12			
	ccgatgttga ggttggtgag cacatagcgc			30
40	<210>13			
	<211>20			
45	<212>DNA			
43	<213> Homo sapiens			
	<400>13			
50	gtgtcgtcct cagggttgat		·	20
	<210>14			
55	<210>14 <211>21			
	\411241			

	<212>DNA						
5	<213> Homo	sapiens					
	<400>14						
	accattgccc	atgagattgg	g				21
10	•						
	<210>15						
15	<211>4950						
	<212>DNA						
	<213> Homo	sapiens					
20	<400>15						
	aaccacgatg	tctttggcac	agcctctcat	ctgtcagatg	ggagcgggga	ccccggagag	60
25	ggagtcagcc	gaggtcctgg	cattccttgt	gaacccccgt	ctgtgggttt	ctggtccagt	120
23	gtcccttctc	cagattagat	ggct taggcc	tcctctaagg	gggtgggcgt	gcacatccgg	180
	agagctgtct	ggtgtgcagg	actgggctgc	aggitaccct	gaactgcaac	catcttagag	240
30	caaggcccag	cttgcagcag	gaggagctgc	aggccgccca	ccctagccac	ggcccctgcc	300
	ctggcaggaa	gcttccaaga	gtaaacactg	cctaatcgtc	ccgcccagta	gtgagcaggc	360
	ctgtcccatt	ccatactgac	cagattccca	gtcaccaagg	cccctctca	ctccgctcca	420
35	ctcctcgggc	tggctctcct	gaggatgcac	cagcgtcacc	cccgggcaag	atgccctccc	480
	ctctgtgtgg	ccggaatcct	tgcctgtggc	tttctcctgg	gctgctgggg	acceteceat	540
40	ttccagcaga	gttgtcttca	ggctttggag	ccacaggccg	tgtcttctta	cttgagccct	600
	ggtgctccct	taaaaggccg	ccctccttcc	cctggcttcc	agaggcagag	gcagaggcag	660
	aggcgggctg	caggcggcat	cctacacctg	gagctgctgg	tggccgtggg	cccgatgtc	720
45	ttccaggctc	accaggagga	cacagagcgc	tatgtgctca	ccaacctcaa	catcggggca	780
	gaactgcttc	gggacccgtc	cctgggggct	cagtttcggg	tgcacctggt	gaagatggtc	840
50	attctgacag	agcctgaggg	tgctccaaat	atcacagcca	acctcacctc	gtccctgctg	900
	agcgtctgtg	ggtggagcca	gaccatcaac	cctgaggacg	acacggatcc	tggccatgct	960
	gacctggtcc	tctatatcac	taggtttgac	ctggagttgc	ctgatggtaa	ccggcaggtg	1020
55	cggggcgtca	cccagctggg	cggtgcctgc	tccccaacct	ggagctgcct	cattaccgag	1080

	gacactggct tcgacctggg agtcaccatt gcccatgaga ttgggcacag cttcggcctg	1140
5	gagcacgacg gcgcgcccgg cagcggctgc ggccccagcg gacacgtgat ggcttcggac	1200
	ggcgccgcgc cccgcgccgg cctcgcctgg tccccctgca gccgccggca gctgctgagc	1260
	ctgctcagcg caggacgggc gcgctgcgtg tgggacccgc cgcggcctca acccgggtcc	1320
10	gcggggcacc cgccggatgc gcagcctggc ctctactaca gcgccaacga gcagtgccgc	1380
	gtggccttcg gccccaaggc tgtcgcctgc accttcgcca gggagcacct ggatatgtgc	1440
15	caggeeetet eetgeeacae agaceegetg gaceaaagea getgeageeg eeteetegtt	1500
	cctctcctgg atgggacaga atgtggcgtg gagaagtggt gctccaaggg tcgctgccgc	1560
	tccctggtgg agctgaccc catagcagca gtgcatgggc gctggtctag ctggggtccc	1620
20	cgaagtcctt gctcccgctc ctgcggagga ggtgtggtca ccaggaggcg gcagtgcaac	1680
	aaccccagac ctgcctttgg ggggcgtgca tgtgttggtg ctgacctcca ggccgagatg	1740
25	tgcaacactc aggcctgcga gaagacccag ctggagttca tgtcgcaaca gtgcgccagg	1800
	accgaeggee ageegetgeg etecteecet ggeggegeet cettetacea etggggtget	1860
		1920
30		1980 .
	· -	2040
35		2100
		2160
		2220
40		2280
		2340
,		2400
45		2460
		2520
50		2580
		2640
		2700
55	ccatgcagcg cctcctgtgg gggcggcctg cgggagcggc cagtgcgctg cgtggaggcc 2	760

	cagggcagcc	tcctgaagac	attgccccca	gcccggtgca	gagcaggggc	ccagcagcca	2820
5	gctgtggcgc	tggaaacctg	caacccccag	ccctgccctg	ccaggtggga	ggtgtcagag	2880
	cccagctcat	gcacatcagc	tggtggagca	ggcctggcct	tggagaacga	gacctgtgtg	2940
	ccaggggcag	atggcctgga	ggctccagtg	actgaggggc	ctggctccgt	agatgagaag	3000
10	ctgcctgccc	ctgagccctg	tgtcgggatg	tcatgtcctc	caggctgggg	ccatctggat	3060
	gccacctctg	caggggagaa	ggctccctcc	ccatggggca	gcatcaggac	gggggctcaa	3120
15	gctgcacacg	tgtggacccc	tgcggcaggg	tcgtgctccg	tctcctgcgg	gcgaggtctg	3180
	atggagctgc	gtttcctgtg	catggactct	gccctcaggg	tgcctgtcca	ggaagagctg	3240
	tgtggcctgg	caagcaagcc	tgggagccgg	cgggaggtct	gccaggctgt	cccgtgccct	3300
20	gctcggtggc	agtacaagct	ggcggcctgc	agcgtgagct	gtgggagagg	ggtcgtgcgg	3360
	aggatcctgt	attgtgcccg	ggcccatggg	gaggacgatg	gtgaggagat	cctgttggac	3420
25	acccagtgcc	aggggctgcc	tcgcccggaa	ccccaggagg	cctgcagcct	ggagccctgc	3480
	ccacctaggt	ggaaagtcat	gtcccttggc	ccatgitcgg	ccagctgtgg	ccttggcact	3540
	gctagacgct	cggtggcctg	tgtgcagctc	gaccaaggcc	aggacgtgga	ggtggacgag	3600
30	gcggcctgtg	cggcgctggt	gcggcccgag	gccagtgtcc	cctgtctcat	tgccgactgc	3660
	acctaccgct	ggcatgttgg	cacctggatg	gagtgctctg	tttcctgtgg	ggatggcatc	3720
35	cagcgccggc	gtgacacctg	cctcggaccc	caggcccagg	cgcctgtgcc	agctgatttc	3780
				cgtggctgct			3840
				gaagccgctg			3900
40				caggcccggg			3960
				caggaaaact			4020
45				attgacatgc			4080
43		•		gaggtggtga			4140
				ctgctttggg			4200
50				agctccaaga	•		4260
				ctgctgcggt			4320
	gaaaccttct	acagagaatg	tgacatgcag	ctctttgggc	cctggggtga	aatcgtgagc	4380
55	ccctcgctga	gtccagccac	gagtaatgca	gggggct gcc	ggctcttcat	taatgtggct	4440

	ccgcacgcac ggattgccat ccatgccctg gccaccaaca tgggcgctgg gaccgaggga	4500
5	GCC22tgcc2 gct2c2tctt g2tc2gg20 2222224 A-	4560
	gagragragg tactctacta gangtongog ogogonom at	4620
	gactteetaa agacteagae engotgaga gaccataat aa	4680
10	CCGGGGGATGC AGGCCCCCC Gtootggagg ggaggaggagg	4740
	attatteea tatetaanna annatanna attannant anti-	4800
15	cgaacttitt ccaatctiag gtatctactt tagagtette tecaatgtee aaaaggetag	4860
	ggggttggag gtggggactc tggaaaagca gcccccattt cctcgggtac caataaataa	4920
	aacatgcagg ccaaaaaaaaa aaaaaaaaaa	4950
20		
	<210>16	
25	<211>1353	
	<212>PRT	
	<213> Homo sapiens	
30	<400>16	
	gct gca ggc ggc atc cta cac ctg gag ctg ctg gtg gcc gtg ggc	45
<i>35</i>	Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly	
	1 5 10 15	
	ccc gat gtc ttc cag gct cac cag gag gac aca gag cgc tat gtg	90
40	Pro Asp Val Phe Gin Ala His Gin Glu Asp Thr Glu Arg Tyr Val	
	20 25 30	
45		135
,5	Leu Thr Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser	
	35 40 45	
50		80
	Leu Gly Ala Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu	
	50 55 60	
55	aca gag cct gag ggt gct cca aat atc aca gcc aac ctc acc tcg 2	25

	Thr	Glu	Pro	Glu	Gly	Ala	Pro	Asn	He	Thr	Ala	Asn	Leu	Thr	Ser			
5					65					70					75			
	tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag		27	0
10	Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	lle	Asn	Pro	Glu			
					80					85					90			
	gac	gac	acg	gat	cct	ggc	cat	gc t	gac	ctg	gtc	ctc	tat	atc	act		315	5
15	Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	Val	Leu	Tyr	Ile	Thr			
		•			95					100					105			
20	agg	ttt	gac	ctg	gag	ttg	cct	gat	ggt	aac	cgg	cag	gtg	cgg	ggc		360	0
	Arg	Phe	Asp	Leu	Glu	Leu	Pro	Asp	Gly	Asn	Arg	Gln	Val	Arg	Gly			
					110					115					120			
25	gtc	acc	cag	ctg	ggc	ggt	gcc	tgc	tcc	cca	acc	tgg	agc	t gc	ctc		405	5
-	Val	Thr	Gln	Leu	Gly	Gly	Ala	Cys	Ser	Pro	Thr	Trp	Ser	Cys	Leu			
30			•	•	125					130	•				135	•		
			gag														450)
	He	Thr	Glu	Asp		Gly	Phe	Asp	Leu		Val	Thr	Ile	Ala	His			
35					140					145					150			
			ggg				•										495)
	GIU	116	Gly	HIS		Phe	Gly	Leu	Glu		Asp	Gly	Ala	Pro				
40	200	a aa	t a a	~~~	155		~~~		-4-	160					165			
			tgc														540)
<i>45</i>	261	иту	Cys	Gly	170	261	Gly	nıs	vai		Ala	ser	ASP	61 A				
	00 G	000	000	~~~		a t a	~~~		• • •	175	4				180		505	
			cgc												_		585	1
50	MIG	rio	Arg	Ala		Leu	Ala	111	261		LYS	261	Arg	Arg				
	- 4 -				185					190					195		e - ·	
5			agc														630	
	Leu	Leu	Ser	Leu	Leu	Ser	Ala	Gly	Arg	Ala	Arg	Cvs	Val	Trn	ASD			

					200					205	•		٠		210	
5	ccg	ccg	cgg	cct	caa	ссс	ggg	tcc	gcg	ggg	cac	cce	cce	gat	gcg	675
	Pro	Pro	Arg	Pro	Gln	Pro	Gly	Ser	Ala	Gly	His	Pro	Pro	Asp	Ala	
					215					220	I				225	
10	cag	cct	ggc	ctc	tac	tac	agc	gcc	aac	gag	cag	tgc	cgc	gtg	gcc	720
	Gln	Pro	Gly	Leu	Tyr	Tyr	Ser	Ala	Asn	Glu	Gln	Cys	Arg	Val	Ala	
15					230					235					240	
	ttc	ggc	ccc	aag	gct	gtc	gcc	t gc	acc	ttc	gcc	agg	gag	cac	ctg	765
	Phe	Gly	Pro	Lys	Ala	Val	Ala	Cys	Thr	Phe	Ala	Arg	Glu	His	Leu	·
20					245					250					255	•
	gat	atg	tgc	cag	gcc	ctc	tcc	tgc	cac	aca	gac	ccg	ctg	gac	caa	810
25	Asp	Me t	Cys	Gln	Ala	Leu	Ser	Cys	His	Thr	Asp	Pro	Leu	Asp	Gln	
					260					265					270	
			tgc													855
30	Ser	Ser	Cys	Ser		Leu	Leu	Val	Pro		Leu	Asp	Gly	Thr	Glu	
	4-4		- 4 -		275					280					285	
35			gtg													900
	Cys	GIY	Val	GIU	290	111	Cys ;	Ser	Lys		Arg.	Cys	Arg	Ser		
	ata	മാന	cta	200		212	700	700	~ + ~	295					300	
40			ctg Leu													945
	,		LCu	1111	305	110	Ala	ліа	741	310	GIY	MIR	пр	ser	•	
45	tgg	ggt	ссс	cga		cc t	tec	tee	CEC		tør	<i>0</i> 02	002	aat	315	000
			Pro													990
		•			320					325	0,0	01,	01,	01)	330	
50	gtc	acc	agg	agg		cag	tgc	aac	aac		aga	cct	gcc	t t t		1035
			Arg													1033
55					335		-			340	•	-			345	·
					000					340					345	

	ggg	cgt	gca	tgt	gtt	ggt	gct	gac	ctc	cag	gcc	gag	atg	tgc	aac	1080
5	Gly	Arg	Ala	Cys	Val	Gly	Ala	Asp	Leu	Gln	Ala	Glu	Me t	Cys	Asn	
-					350					355					360	
	ac t	cag	gcc	t gc	gag	aag	acc	cag	ctg	gag	ttc	atg	tcg	caa	cag	1125
10	Thr	Gln	Ala	Cys	Glu	Lys	Thr	Gln	Leu	Glu	Phe	Me t	Ser	Gln	Gln	
					365					370					375 [.]	
15	tgc	gcc	agg	acc	gac	ggc	cag	ccg	ctg	cgc	tcc	tcc	cct	ggc	ggc	1170
	Cys	Ala	Arg	Thr	Asp	Gly	Gln	Pro	Leu	Arg	Ser	Ser	Pro	Gly	Gly	
					380					385					390	
20	gcc	tcc	ttc	tac	cac	tgg	ggt	gct	gct	gta	cca	cac	agc	caa	ggg .	1215
	Ala	Ser	Phe	Туг	His	Trp	Gly	Ala	Ala	Val	Pro	His	Ser	Gln	Gly	
					395					400					405	
25	gat	gct	ctg	tgc	aga	cac	atg	tgc	cgg	gcc	a t t	ggc	gag	agc	ttc	1260
	Asp	Ala	Leu	Cys	. Ąrg	His	Met	Cys	Arg	Ala	lle	Gly	Glu	Ser	Phe .	
30		•			410			•		415	•				420	
	atc	atg	aag	cgt	gga	gac	agc	ttc	ctc	gat	ggg	acc	cgg	tgt	atg	1305
	lle	Met	Lys	Arg	Gly	Asp	Ser	Phe	Leu	Asp	Gly	Thr	Arg	Cys	Met	
35					425					430					435	
	cca	agt	ggc	ccc	cgg	gag	gac	ggg	acc	ctg	agc	ctg	tgt	gtg	tcg ·	1350
40	Pro	Ser	Gly	Pro	Arg	Glu	Asp	Gly	Thr	Leu	Ser	Leu	Cys	Val	Ser	
					440					445					450	•
	ggc	agc	tgc	agg	aca	ttt	ggc	tgt	gat	ggt	agg	atg	gac	tcc	cag	1395
45	Gly	Ser	Cys	Arg	Thr	Phe	Gly	Cys	Asp	Gly	Arg	Met	Asp	Ser	Gln	
					455					460					465	
50	cag	gta	tgg	gac	agg	tgc	cag	gtg	tgt	ggt	ggg	gac	aac	agc	acg	1440
	Gln	Val	Trp	Asp	Arg	Cys	Gln	Val	Cys	Gly	Gly	Asp	Asn	Ser	Thr	
					470					475					480	
55	tgc	agc	cca	cgg	aag	ggc	tct	ttc	aca	gct	ggc	aga	gcg	aga	gaa	1485

		Cys	Ser	Pro	Arg	Lys	Gly	Ser	Phe	Thr	Ala	Gly	Arg	Ala	Arg	Glu	
	5					485					490					495	
		tat	gtc	acg	ttt	ctg	aca	gtt	acc	ccc	aac	ctg	acc	agt	gtc	tac	1530
		Tyr	Val	Thr	Phe	Leu	Thr	Val	Thr	Pro	Asn	Leu	Thr	Ser	Val	Tyr	
	10					500					505					510	
		att	gcc	aac	cac	agg	cct	ctc	t t c	aca	cac	ttg	gcg	gtg	agg	atc	1575·
	15	Ile	Ala	Asn	His	Arg	Pro	Leu	Phe	Thr	His	Leu	Ala	Val	Arg	Ile	
						515					520					525	
		gga	ggg	cgc	tat	gtc	gtg	gct	ggg	aag	atg	agc	atc	tcc	cct	aac	1620
	20	Gly	Gly	Arg	Tyr	Val	Val	Ala	Gly	Lys	Met	Ser	Ile	Ser	Pro	Asn .	
						530		٠			535					540 .	
	25	acc	acc	tac	ccc	tcc	ctc	ctg	gag	gat	ggt	cgt	gtc	gag	tac	aga	1665
		Thr	Thr	Tyr	Pro	Ser	Leu	Leu	Glu	Asp	Gly	Arg	Val	Glu	Tyr	Arg	
						545					550				· .	555	
	30	gtg	gcc	.ctc	acc	gag	gac	cgg	ctg	ccc	cgc	ctg	gag	gag	atc	cgc ·	1710
		Val	Ala	Leu	Thr	Glu	Asp	Arg	Leu	Pro	•	Leu	Glu	Glu	Ile		
	35					560					565					570	
				_		ctc		:									1755
	•	116	Trp	Gly	Pro	Leu	GIn	Glu	Asp	Ala	•	He	Gln	Val	Tyr	_	•
	40		.			575	44			_4_	580					585	1000
	•					gag											1800
	45	AIR	Iyr	GIA	GIU	Glu	IÄL	GIY	ASI	ren		Arg	PIQ	ASP	116		
		* * * *	200	t 0.0	* * * *	590	001				595	700	+		•	600	1045
						cag											1845
	50	THE	1111	1 9 1	THE	G1n 605	110	L'A2	rio	AIR		NIA	пр	Val	119		
		ac t	at a	001	000		t a a	t a a	a t a	0.50	610		~~~	~~~		615	1000
	e e					CCC											1890
	55	WIG	184	MIR	OIA	Pro	LYS	261	val	ser	ιys	υIY	AIA	υly	ren	AIg	

		620	625 630	
5	tgg gta aac tac	c agc tgc ctg gac cag	g gcc agg aag gag tig gtg	935
	Trp Val Asm Tyr	Ser Cys Leu Asp Gln	n Ala Arg Lys Glu Leu Val	
		635	640 645	
10	gag act gtc cag	g tgc caa ggg agc cag	g cag cca cca gcg tgg cca 1	980
	Glu Thr Val Gln	Cys Gln Gly Ser Gln	n Gln Pro Pro Ala Trp Pro	
15		650	655 660	
	gag gcc tgc gtg	ctc gaa ccc tgc cct	t ccc tac tgg gcg gtg gga 2	025
	Glu Ala Cys Val	Leu Glu Pro Cys Pro	Pro Tyr Trp Ala Val Gly	
20		665	670 675	
	gac ttc ggc cca	tgc agc gcc tcc tgt	ggg ggc ggc ctg cgg gag 20	070
25	Asp Phe Gly Pro	Cys Ser Ala Ser Cys	Gly Gly Gly Leu Arg Glu	
		680	685 690	
				115
30	Arg Pro Val Arg		Gly Ser Leu Leu Lys Thr	
•	*** 	695	700 705	
35				60
	red Flo Flo Ala	710	Ala Gln Gln Pro Ala Val	
	aca cta ass see		715 720	
40			tgc cct gcc agg tgg gag 22 Cys Pro Ala Arg Trp Glu	05
	ma bod old im	725	700	
45	gig ica gag ccc			- 0
			Ala Gly Gly Ala Gly Leu	อบ
			745 750	
50	gcc ttg gag aac			0.5
			Gly Ala Asp Gly Leu Glu	30
55			760 765	

	gct	cca	gtg	act	gag	gg g	cct	ggc	tcc	gta	gat	gag	aag	ctg	cct	2340
5	Ala	Pro	Val	Thr	Glu	Gly	Pro	Gly	Ser	Val	Asp	Glu	Lys	Leu	Pro	
					770					775					780	
	gcc	cct	gag	ссс	tgt	gtc	ggg	atg	tca	tgt	cct	cca	ggc	tgg	ggc	2385
10	Ala	Pro	Glu	Pro	Cys	Val	Gly	Met	Ser	Cys	Pro	Pro	Gly	Trp	Gly	•
	•				785					790					795	
15	cat	ctg	gat	gcc	acc	tct	gca	ggg	gag	aag	gct	ccc	tcc	cca	tgg	2430
	His	Leu	Asp	Ala	Thr	Ser	Ala	Gly	Glu	Lys	Ala	Pro	Ser	Pro	Trp	
					800					805					810	
20	ggc	agc	atc	agg	acg	ggg.	gct	caa	gc t	gca	cac	gtg	tgg	ácc	cct ·	2475
	Gly	Ser	Ile	Arg	Thr	Gly	Ala	Gln	Ala	Ala	His	Val	Trp	Thr	Pro	
25				:	815					820					825	
	gcg	gca	ggg	tcg	tgc	tcc	gtc	tcc	tgc	ggg	cga	ggt	ctg	atg	gag	2520
	Ala	Ala	Gly	Ser	Cys	Ser	Val	Ser	Cys	Gly	Arg	Gly	Leu	Me t	Glu	
30					830	٠				835					840	
	ctg	cgt	ttc	ctg	t gc	atg	gac	tct	gcc	ctc	agg	gtg	cct	gtc	cag	2565
35		cgt Arg														2565
<i>35</i>																2565
<i>35</i>	Leu		Phe	Leu	Cys 845	Met	Asp	Ser	Ala	Leu 850	Arg	Val	Pro	Val	Gln 855	2565 2610
35 . 40	Leu gaa	Arg	Phe ctg	Leu tgt	Cys 845 ggc Gly	Met ctg	Asp gca	Ser agc	Ala aag	Leu 850 cct Pro	Arg ggg	Val agc	Pro cgg	Val cgg	Gln 855 gag	
·	Leu gaa Glu	Arg gag Glu	Phe ctg Leu	Leu tgt Cys	Cys 845 ggc Gly 860	Met ctg Leu	Asp gca Ala	Ser agc Ser	Ala aag Lys	Leu 850 cct Pro 865	Arg ggg Gly	Val agc Ser	Pro cgg Arg	Val cgg Arg	Gln 855 gag Glu 870	
40	Leu gaa Glu	Arg	Phe ctg Leu	Leu tgt Cys	Cys 845 ggc Gly 860	Met ctg Leu	Asp gca Ala	Ser agc Ser	Ala aag Lys	Leu 850 cct Pro 865	Arg ggg Gly	Val agc Ser	Pro cgg Arg	Val cgg Arg	Gln 855 gag Glu 870	
·	Leu gaa Glu gtc	Arg gag Glu	Phe ctg Leu cag	Leu tgt Cys	Cys 845 ggc Gly 860 gtc Val	Met ctg Leu ccg	gca Ala tgc	Ser agc Ser cct	Ala aag Lys gct	Leu 850 cct Pro 865 cgg	Arg ggg Gly tgg	Val agc Ser cag	Pro cgg Arg	Val cgg Arg	Gln 855 gag Glu 870 ctg	2610
40	Leu gaa Glu gtc	Arg gag Glu tgc	Phe ctg Leu cag	Leu tgt Cys	Cys 845 ggc Gly 860 gtc	Met ctg Leu ccg	gca Ala tgc	Ser agc Ser cct	Ala aag Lys gct	Leu 850 cct Pro 865 cgg	Arg ggg Gly tgg	Val agc Ser cag	Pro cgg Arg	Val cgg Arg aag Lys	Gln 855 gag Glu 870 ctg	2610
40	gaa Glu gtc Val	Arg gag Glu tgc	Phe ctg Leu cag Gln	tgt Cys gct Ala	Cys 845 ggc Gly 860 gtc Val 875	Met ctg Leu ccg Pro	gca Ala tgc Cys	Ser agc Ser cct Pro	Ala aag Lys gct Ala	Leu 850 cct Pro 865 cgg Arg 880	ggg Gly tgg Trp	Val agc Ser cag Gln	Pro cgg Arg tac Tyr	Val cgg Arg aag Lys	Gln 855 gag Glu 870 ctg Leu 885	2610
40 45	gaa Glu gtc Val	gag Glu tgc Cys	Phe ctg Leu cag Gln	tgt Cys gct Ala	Cys 845 ggc Gly 860 gtc Val 875	Met ctg Leu ccg Pro	gca Ala tgc Cys	Ser agc Ser cct Pro	Ala aag Lys gct Ala	Leu 850 cct Pro 865 cgg Arg 880 ggg	ggg Gly tgg Trp	Val agc Ser cag Gln	Pro cgg Arg tac Tyr	Val cgg Arg aag Lys	Gln 855 gag Glu 870 ctg Leu 885	2610 2655
40 45	gaa Glu gtc Val	gag Glu tgc Cys	Phe ctg Leu cag Gln	tgt Cys gct Ala	Cys 845 ggc Gly 860 gtc Val 875	Met ctg Leu ccg Pro	gca Ala tgc Cys	Ser agc Ser cct Pro	Ala aag Lys gct Ala	Leu 850 cct Pro 865 cgg Arg 880 ggg	ggg Gly tgg Trp	Val agc Ser cag Gln	Pro cgg Arg tac Tyr	Val cgg Arg aag Lys agg Arg	Gln 855 gag Glu 870 ctg Leu 885	2610 2655

	Leu Tyr Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile	
5	905 910 915	
	ctg ttg gac acc cag tgc cag ggg ctg cct cgc ccg gaa ccc cag	2790
•	Leu Leu Asp Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln	
10	920 925 930	
	gag gcc tgc agc ctg gag ccc tgc cca cct agg tgg aaa gtc atg	2835
15	Glu Ala Cys Ser Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met	
	935 940 945	
	tcc ctt ggc cca tgt tcg gcc agc tgt ggc ctt ggc act gct aga	2880
20	Ser Leu Gly Pro Cys Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg	
	950 955 960	
25	cgc tcg gtg gcc tgt gtg cag ctc gac caa ggc cag gac gtg gag	2925
	Arg Ser Val Ala Cys Val Gln Leu Asp Gln Gly Gln Asp Val Glu	
	965 970 975	•
30	gtg gac gag gcg gcc tgt gcg gcg ctg gtg cgg ccc gag gcc agt	2970
	Val Asp Glu Ala Ala Cys Ala Ala Leu Val Arg Pro Glu Ala Ser 980 985 990	
35	550	00.45
	gtc ccc tgt ctc att gcc gac tgc acc tac cgc tgg cat gtt ggc Val Pro Cys Leu Ile Ala Asp Cys Thr Tyr Arg Trp His Val Gly	3015
	995 1000 1005	
40	acc tgg atg gag tgc tct gtt tcc tgt ggg gat ggc atc cag cgc	3060
	Thr Trp Met Glu Cys Ser Val Ser Cys Gly Asp Gly Ile Gln Arg	3000
45	1010 1015 1020	
	cgg cgt gac acc tgc ctc gga ccc cag gcc cag gcg cct gtg cca	3105
	Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala Gln Ala Pro Val Pro	0100
50	1025 1030 1035	
	gct gat ttc tgc cag cac ttg ccc aag ccg gtg act gtg cgt ggc	3150
55	Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val Thr Val Arg Gly	
•		

•					104	0				104	5				1050	
5	t gc	t gg	gct	ggg	ccc	tgt	gtg	gga	cag	ggt	ace	ccc	ago	cta	ggtg	3195
	Cys	Trp	Ala	Gly	Pro	Cys	Val	Gly	GÌn	Gly	Thr	Pro	Sei	Lei	ı Val	
					105	5				106	0				1065	
10	ccc	cac	gaa	gaa	gcc	gct	gct	cca	gga	cgg	acc	aca	gco	: acc	cct	3240
	Pro	His	Glu	Glu	Ala	Ala	Ala	Pro	Gly	Arg	Thr	Thr	Ala	Thi	Pro	
15					1070					107					1080	
,•	gct	ggt	gcc	tcc	ctg	gag	t gg	tcc	cag	gcc	cgg	ggc	ctg	cto	ttc	3285
															Phe	0200
20					108					109					1095	
	tcc	ccg	gc t	ссс	cag	cct	cgg	cgg	ctc	ctg	ccc	ggg	ccc	cag	gaa	3330
05															Glu	
25					1100					1108					1110	
	aac	tca	gtg.	cag	tcc	agt	gcc	tgt	ggc	agg	cag	cac	ctt	gag	cca-	3375
30	Asn	Ser	Val	Gln	Ser	Ser	Ala	Cys	Gly	Arg	Gln	His	Leu	Glu	Pro	•
					1115	j				1120)				1125	
	aca	gga	acc	att	gac	atg	cga	ggc	cca	ggg	cag	gca	gac	tgt	gca	3420
35	Thr	Gly	Thr	Ιĺε	Asp	Me t	Arg	Gly	Pro	Gly	Gln	Ala	Asp	Cys	Ala	
					1130)	,			1135	;				1140	
40	gtg	gcc	att	ggg	cgg	ccc	ctc	ggg	gag	gtg	gtg	acc	ctc	cgc	gtc	3465
	Val	Ala	He	Gly	Arg	Pro	Leu	Gly	Glu	Val	Val	Thr	Leu	Arg	Val	
					1145	•				1150	1				1155	
45	ctt	gag	agt	tct	ctc	aac	tgc	agt	gcg	ggg	gac	atg	ttg	ctg	ctt	3510
	Leu	Glu	Ser	Ser	Leu	Asn	Cys	Ser	Ala	Gly	Asp	Met	Leu	Leu	Leu	
50					1160					1165					1170	
	t gg	ggc	cgg	ctc	acc	tgg	agg	aag	atg	t gc	agg	aag	ctg	ttg	gac	3555
	Trp	Gly	Arg	Leu	Thr	Тгр	Arg	Lys	Met	Cys .	Arg	Lys	Leu	Leu	Asp	
5 5					1175	,				1180					1185	

		3600
5	Met Thr Phe Ser Ser Lys Thr Asn Thr Leu Val Val Arg Gln Arg	
	1190 1195 1200	
10	tgc ggg cgg cca gga ggt ggg gtg ctg ctg cgg tat ggg agc cag	3645
10	Cys Gly Arg Pro Gly Gly Gly Val Leu Leu Arg Tyr Gly Ser Gln	
	1205 1210 1215	
15	ctt gct cct gaa acc ttc tac aga gaa tgt gac atg cag ctc ttt	3690
	Leu Ala Pro Glu Thr Phe Tyr Arg Glu Cys Asp Met Gln Leu Phe	
	1220 1225 1230	
20	ggg ccc tgg ggt gaa atc gtg agc ccc tcg ctg agt cca gcc acg	3735
	Gly Pro Trp Gly Glu Ile Val Ser Pro Ser Leu Ser Pro Ala Thr	•
25	1235 1240 1245	
	agt aat gca ggg ggc tgc cgg ctc ttc att aat gtg gct ccg cac 3	3780
	Ser Asn Ala Gly Cly Cys Arg Leu Phe Ile Asn Val Ala Pro His	
30	1250 1255 1260	
	gca cgg att gcc atc cat gcc ctg gcc acc aac atg ggc gct ggg 3	825
35	Ala Arg Ile Ala Ile His Ala Leu Ala Thr Asn Met Gly Ala Gly	
	1265 1270 1275	
		870
40	Thr Glu Gly Ala Asm Ala Ser Tyr Ile Leu Ile Arg Asp Thr His	
•	1280 1285 1290	
		915
45	Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val Leu Tyr Trp	
	1295 1300 1305	
50	gag tea gag age age eag get gag atg gag tte age gag gge tte 39	060
	Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu Gly Phe	
	1310 1315 1320	
55 ·	ctg aag gct cag gcc agc ctg cgg ggc cag tac tgg acc ctc caa 40	05

	Leu Lys Ala Glm	Ala Ser Leu Arg Gl	y Gln Tyr Trp Thr Leu	Gln
5		1325	1330	1335
-	tca tgg gta ccg	gag alg cag gac co	ct cag tcc tgg aag gga	aag 4050
	Ser Trp Val Pro	Glu Met Gln Asp Pr	ro Gln Ser Trp Lys Gly	Lys
10		1340	1345	1350
	gaa gga acc			4059
	Glu Gly Thr		•	
15				
	<210>17			
20	<211>1297		•	
	<212>PRT .			
	<213> Homo sapie	ens		
25	<400>17			·
_	gct gca ggc ggc	atc cta cac ctg gas	g ctg ctg gtg gcc gtg	ggc. 45.
30	Ala Ala Gly Gly	Ile Leu His Leu Glu	u Leu Leu Val Ala Val	Gly
	1	.5	10	15
	ccc gat gtc ttc	cag gct cac cag gag	g gac aca gag cgc tat	gtg 90
35	Pro Asp Val Phe	Gln Ala His Gln Glu	u Asp Thr Glu Arg Tyr	Val
		20	25	30
40	ctc acc aac ctc	aac atc ggg gca gaa	a ctg ctt cgg gac ccg	tcc 135
	Leu Thr Asn Leu	Asn Ile Gly Ala Glu	u Leu Leu Arg Asp Pro	Ser
		35	40	45
45	ctg ggg gct cag	ttt cgg gtg cac ctg	g gtg aag atg gtc att	ctg 180
	Leu Gly Ala Gln	Phe Arg Val His Lev	u Val Lys Met Val Ile 1	Leu
50	•	50	55	60
50	aca gag cct gag	ggt gct cca aat ato	c aca gcc aac ctc acc	tcg 225
	Thr Glu Pro Glu	Gly Ala Pro Asn Ile	e Thr Ala Asn Leu Thr	Ser ·
55		65	70	75

	tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag	270
5	Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	Ile	Asn	Pro	Glu ·	
					80					85					90	
	gac	gac	acg	gat	cct	ggc	cat	gct	gac	ctg	gtc	ctc	tat	atc	act	315
10	Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	Val	Leu	Tyr	Ile	Thr	
					95					100					105	
15	agg	ttt	gac	ctg	gag	ttg	cct	gat	ggt	aac	cgg	cag	gtg	cgg	ggc	360
	Arg	Phe	Asp	Leu	Glu	Leu	Pro	Asp	Gly	Asn	Arg	Gln	Val	Arg	Gly	
					110					115					120	
20	gtc	acc	cag	ctg	ggc	ggt	gcc	tgc	tcc	cca	acc	tgg	agc	tgc	ctc	405
	Val	Thr	Gln	Leu	Gly	Gly	Ala	Cys	Ser	Pro	Thr	Trp	Ser	Cys	Leu	
25					125					130					135	
	att	acc	gag	gac	act	ggc	ttc	gac	ctg	gga	gtc	acc	att	gcc	cat	450
	Ile	Thr	Glu	Asp	Thr	Gly	Phe	Asp	Leu	Gly	Val	Thr	Ile	Ala	His .	
30					140					145					150	
	gag	att	ggg	cac	agc	ttc	ggc	ctg	gag	cac	gac	ggc	gcg	ccc	ggc	495
35	Glu	lle	Gly	His	Ser	Phe	Gly	Leu	Glu		Asp	Gly	Ala	Pro		
					155			1		160					165	
				ggc												540
40	Ser	Gly	Cys	Gly		Ser	Gly	His	Val		Ala	Ser	Asp	Gly		
					170					175					180	
			•	gcc												585
45	Ala	Pro	Arg	Ala			Ala	Trp	Ser		Cys	Ser	Arg	Arg		
					185					190					195	
50				ctg												630
	Leu	Leu	Ser	Leu			Ala	Gly	Arg		Arg	Cys	Val	Trp		•
					200					205					210	
55	CCE	CCE	Cgg	cct	caa	CCC	ggg	tcc	gcg	ggg	cac	CCg	ccg	gat	gcg	675

	Pro	Рго	Arg	Pro	Gln	Pro	Gly	Ser	Ala	Gly	His	Pro	Pro	Asp	Ala		
5					215					220					225	, .	
	cag	cct	ggc	ctc	tac	tac	agc	gcc	aac	gag	cag	tgo	cgc	gtg	gcc		720
	Gln	Pro	Gly	Leu	Tyr	Tyr	Ser	Ala	Asn	Glu	Gln	Cys	Arg	Val	Ala		
10	•				230					235					240		
	ttc	ggc	ccc	aag	gct	gtc	gcc	tgc	acc	ttc	gcc	agg	gag	cac	ctg		765
15	Phe	Gly	Pro	Lys	Ala	Val	Ala	Cys	Thr	Phe	Ala	Arg	Glu	His	Leu		
					245					250					255		
	gat	atg	tgc	cag	gcc	ctc	tcc	tgc	cac	aca	gac	ccg	ctg	gac	caa		810
20	Asp	Met	Cys	Gln	Ala	Leu	Ser	Cys	His	Thr	Asp	Pro	Leu	Asp	Gln		
					260					265					270		
25	agc	agc	tgc	agc	cgc	ctc	ctc	gt t	cct	ctc	ctg	gat	ggg	aca	gaa		855
	Ser	Ser	Cys	Ser	Arg	Leu	Leu	Val	Pro	Leu	Leu	Asp	Gly	Thr	Glu		
	•			•	275		-			280					285		
30		ggc															900
	Cys	Gly	Val	Glu		Trp	Cys	Ser	Lys		Arg	Cys	Arg	Ser	Leu		
35					290			•		295					300		
		gag						•									945
	vai	Glu	reu	ınr		116	Ala	Ala	vai		Gly	Arg	Trp	Ser			
40	taa	aat	000	0.00	305		•	•		310					315		
		ggt															990
45	115	Gly	110	WIR	320	110	Cys	261	WIR	325	Cys	GIY	GIÀ	GIY			
	øtc	200	200	200		C24	t ac	226	220		200	oot	500		330		1005
		acc														•	1035
50	741	Thr	n15	ліБ	335	9111	C y S	NOII	UOII	340	VI R	FIU	WIG	rne			
	aga	cat	gr 2	tat		aa t	ac t	T20	cto		acc	ac a	a + ~	t a =	345		1000-
55		cgt															1080
	GIY	Arg	піа	CA2	7 d l	оту	WIG	vah	ren	OIII	MIG	olu	me t	ιys	ASN		

					350					355					360	
5	act	cag	gcc	tgc	gag	aag	acc	cag	ctg	gag	ttc	atg	tcg	caa	cag	1125
	Thr	Gln	Ala	Cys	Glu	Lys	Thr	Gln	Leu	Glu	Phe	Met	Ser	Gln	Gln	
•					365					370					375	
10	tgc	gcc	agg	acċ	gac	ggc	cag	ccg	ctg	cgc	tcc	tcc	cct	ggc	ggc	1170
	Cys	Ala	Arg	Thr	Asp	Gly	Gln	Pro	Leu	Arg	Ser	Ser	Pro	Gly	Gly	
15					380					385					390	
	gcc	tcc	ttc	tac	cac	t gg	ggt	gct	gct	gta	cca	cac	agc	caa	ggg	1215
	Ala	Ser	Phe	Tyr	His	Trp	Gly	Ala	Ala	Val	Pro	His	Ser	Gln	Gly	
20					395					400					405	
	gat	gct	ctg	tgc	aga '	cac	atg	tgc	cgg	gcc	att	ggc	gag	agc	ttc	1260
25	Asp	Ala	Leu	Cys	Arg	His	Met	Cys	Arg	Ala	Ile	Gly	Glu	Ser	Phe	
					410					415					420	
	atc	atg	aag	cgt _.	gga	gac	agc	ttc	ctc	gat	ggg	acc	cgg	tgt	atg	1305
30	Ile	Met	Lys	Arg		Asp	Ser	Phe	Leu		Gly	Thr	Arg	Cys	Me t	
					425					430		٠			435	
<i>35</i>			ggc													1350
	Pro	Ser	Gly	PIO		Glu	ASP	Gly	inr		Ser	Leu	Cys	vai		
					440		~~~			445				• • •	450	1205
40			tgc													1395
	GIY	261	Cys	HIE	455	rne	GIA	Cys	W2h	460	MIR	Mel	W2 h	261	465	
45	റമര	σia	tgg	gar		tac	cag	o to	tøt		aaa	gar.	220	200		1440
			Тгр													1440
	OIII	741	пр	МЭР	470	0,3	0111	101	0,3	475	Uly	АЗР	ASH	501	480	
50	tøc	200	cca	roo		ggr	tet	ttc	202		gge	202	ara	202		1485
			Pro													1400
55		061	110	nig	485	Oly	501	1 116	1111	490	GIY	AI 5	A1 a	мв	495	
					400					430					430	

	tat ·	gtc	acg	ttt	ctg	aca	gtt	acc	ccċ	aac	ctg	acc	agt	gtc	tac	1530
5	Tyr	Val	Thr	Phe	Leu	Thr	Vał	Thr	Pro	Asn	Leu	Thr	Ser	Val	Tyr	
					500					505					510	
	att	gcc	aac	cac	agg	cct	ctc	t t c	aca	cac	ttg	gcg	gtg	agg	atc	1575
10	Ile	Ala	Asn	His	Arg	Pro	Leu	Phe	Thr	His	Leu	Ala	Val	Arg	lle	
					515					520					525	
15	gga	ggg	cgc	tat	gtc	gtg	gct	ggg	aag	atg	agc	atc	tcc	cct	aac	1620
	Gly	Gly	Arg	Tyr	Val	Val	Ala	Gly	Lys	Met	Ser	He	Ser	Рго	Asn	
					530		•			535					540	
20	acc	acc	tac	ссс	tcc	ctc	ctg	gag	gat	ggt	cgt	gtc	gag	t ac	aga .	1665
	Thr	Thr	Tyr	Pro	Ser	Leu	Leu	Glu	Asp.	Gly	Arg	Val	Glu	Tyr	Arg	
25					545					550					555	
	gtg	gcc	ctc	acc	gag	gac	cgg	ctg	ccc	cgc	ctg	gag	gag	atc	cgc	1710
	Val	Ala	Leu	Thr	Glu	Asp	Arg	Leu	Pro	Arg	Leu	Glu	Glu	Ile	Arg	•
30					560			•		565					570	
	atc	tgg	gga	ccc	ctc	cag	gaa	gat	gct	gac	atc	cag	gtt	tac	agg	1755
35	Ile	Trp	Gly	Pio		Gln	Glu	Asp	Ala		Ile	Gln	Val	Tyr		
33					575			•		580					585	
		tat -														1800
40	Arg	Туг	Gly	Glu		Туг	Gly	Asn	Leu		Arg	Pro	Asp	ile		
			.		590					595		4	-4-	.	600	1045
		acc														1845
45	rne	Thr	IYT	rne		Pro	Lys	PTO	Arg		Ala	TLD	vai	rrp		
	4				605	.		-4-		610					615	1000
50		gtg													•	1890
	АІа	Val	Arg	GIY		LYS	261	vai	26 L		ыу	AIA	GIY	ren		
					620					625					630	100-
55	tgg	gta	aac	tac	agc	tgc	ctg	gac	cag	gcc	agg	aag	gag	ttg	gtg	1935

	Trp	Val	Asn	Tyr	Ser	Cys	Leu	Asp	Gln	Ala	Are	Ly:	s Gl	u Le	u Val	
5		,			635					640)				645	
	gag	act	gtc	cag	tgc	caa	ggg	agc	cag	cag	cca	cca	a gc	g tg	g cca	1980
	Glu	Thr	Val	Gln	Cys	Gln	Gly	Ser	Gln	Gln	Pro	Pro	Ala	a Tr	Pro	
10					650					655	•				660	
	gag	gcc	t gc	gtg	ctc	gaa	ccc	t gc	cct	ccc	tac	tge	g gc	ggt	g gga	2025
15 .	Glu	Ala	Cys	Val	Leu	Glu	Pro	Cys	Pro	Pro	Tyr	Tr	Ala	a Val	Gly	
					665					670	ł				675	
	gac	ttc	ggc	cca	tgc	agc	gcc	tcc	t gt	ggg	ggc	ggo	cte	g cgg	gag	2070
20	Asp	Phe	Gly	Pro	Cys	Ser	Ala	Ser	Cys	Gly	Gly	Gly	Lei	ı Arg	Glu	
					680					685					690	
25															aca	2115
	Arg	Pro	Val	Arg		Val	Glu	Ala	Gln	Gly	Ser	Leu	Leu	Lys	Thr	
					695		-			700	•				705	
30															gtg	2160
	Leu	Pro	Pro	Ala		Cys	Arg	Ala	Gly		Gln	Gln	Pro	Ala		
35	~~~				710					715					720	
			gaa													2205
	ліа	ren	Glu	1111	725	ASII	PTO	GIB	Pro		Pro	AIa	Arg	Trp		
40	ot o	tra	o a o	ccc		tea	tac	202	t a a	730	aat	~~~			735	0050
			gag Glu						•							2250
45			0.0		740	001	0,5	1111	SCI	745	Uly	GIY	nia	Uly	750	
	gCC	ttg	gag	aac		acc	tgt	gtg	cca		gca	gat	ggc	ctø		2295
			Glu													2293
50					755		-•-			760			0.,	Dog	765	
	gc t	cca	gtg			ggg	cct	ggc	tcc		gat	gag	ลลช	cte		2340
55			Val													404U
•						•	•	,		1	,	J. u	<i></i> 10 0	DCu	0	

					770)				778	5				780		
5	gco	cc	t gag	g cco	tgt:	gto	·gge	ati	t ca	a tgi	cc	t cc	a gg	c tg	g ggc		2385
	Ala	Pro	Glu	Pro	Cys	Val	Gly	Me	Sei	c Cys	Pro	Pr	o Gl	y Tr	p Gly		
					785	ı				790)				795		
10	cat	cta	g gai	gco	acc	tct	gca	ggs	gag	g aag	gc	cc	c to	c cc	a tgg		2430
	His	Let	ı Asr	Ala	Thr	Ser	Ala	Gly	Glu	Lys	Ala	Pro	Se	r Pro	Trp		
15					800					805	;				810		
	ggc	ago	ato	age	acg	ggg	gc t	caa	gct	gca	cac	gtg	tg:	aco	cct		2475
	Gly	Ser	lle	Arg	Thr	Gly	Ala	Gln	Ala	Ala	His	Va!	Tr	Thi	Pro		
20					815					820)				825		
															gag		2520
25	Ala	Ala	Gly	Ser	Суs	Ser	Val	Ser	Суѕ	Gly	Arg	Gly	Leu	Met	Glu		
					830					835					840		
									•						cag		2565
<i>30</i> .	Leu	Arg	Phe	Leu	Cys	Me t	Asp	Ser	Ala		Arg	Val	Pro	Val	Gln		
	7 00		- 4	1 - 1	845					850					855		
35					ggc												2610
	Olu	GIU	ren	CAS	Gly 860	ren	Ala	Ser	Lys		Gly	Ser	Arg	Arg			
	et c	ter	Сав	ac t		005	tao		+	865					870		
40					gtc Val												2655
		0,0	011 1	*****	875	110	C)S	110	піа	880	IID	GIN	ıyr	Lys			
45	gcg	gcc	tgc	agc	gtg	agc	tgt	ggg	202		ort c	ata	caa	200	885		0700
					Val											•	2700
50			•		890		,,,	0.,		895	7 4 1	101	иге	ni g	900		
50	ctg	tat	tgt		cgg	gcc	cat	ggg			gat	gøt	gag	חפס		•	745
	Leu															4	2745
55	•	-	-		905			~.,		910	irob	OIY	410				
-										210					915		

		ctg	ttg	gac	acc	cag	t gc	cag	ggg	ctg	cct	cgc	ccg	gaa	ссс	cag	2790
	5	Leu	Leu	Asp	Thr	Gln	Cys	Gln	Gly	Leu	Pro	Arg	Pro	Glu	Pro	Gln	
						920					925					930	
		gag	gcc	tgc	agc	ctg	gag	ccc	tgc	cca	cct	agg	t gg	aaa	gtc	atg	2835
	10	Glu	Ala	Cys	Ser	Leu	Glu	Pro	Cys	Pro	Pro	Arg	Trp	Lys	Val	Met	
						935					940					945	
	15	tcc	ctt	ggc	cca	tgt	tcg	gcc	agc	tgt	ggc	ctt	ggc	act	gct	aga	2880
		Ser	Leu	Gly	Pro	Cys	Ser	Ala	Ser	Cys	Gly	Leu	Gly	Thr	Ala	Arg	
						950					955	•				960	
	20	cgc	tcg	gtg	gcc	tgt	gtg	cag	ctc	gac	caa	ggc	cag	gac	gtg	gag .	2925
		Arg	Ser	Val	Ala	Cys	Val	Gln	Leu	Asp	Gln	Gly	Gln	Asp	Val	Glu	
	25					965					970					975	
		gtg	gac	gag	gcg	gcc	tgt	gcg	gcg	ctg	gtg	cgg	ccc	gag	gcc	agt	2970
	•	Val	Asp	Glu	Ala	Ala	Cys	Ala	Ala	Leu	Va l	Arg	Pro	Glu	Ala	Ser .	
•	30					980					985	•				990	
					ctc							•					3015
	35	. Val	Рго	Cys	Leu		Ala	Asp	Cys	Thr	Tyr	Arg	Trp	His	Val	Gly	
						995	•				1000)				1005	
					gag											_	3060
	40	Thr	Trp	Me t	Glu			Val	Ser	Cys			Gly	lle	Gln		
						1010					1015					1020	•
	4 5	•			acc									•	_		3105
•	•5	Arg	Arg	Asp	Thr			Gly	Рго	Gin			Ala	Pro	Val		
						102					1030					1035	
£	50				t gc												3150
		Ala	Asp	Phe	Cys			Leu	Pro	Lys			Thr	Val	Arg	-	
			_			1040					1045					1050	
5	55	t gc	tgg	gc t	ggg	ссс	tgt	gtg	gga	cag	ggt	gcc	tgt	ggc	agg	cag	3195

	Cys	Trp	Ala	Gly	Pro	Cys	Vai	GIY	Gin	Gly	Ala	Cys	Gly	Arg	Gln	
5					105	5				106	0				1065	
	cac	ctt	gag	cca	aca	gga	acc	att	gac	atg	cga	ggc	сса	ggg	cag	3240
	His	Leu	Glu	Pro	Thr	Gly	Thr	Ile	Asp	Met	Arg	Gly	Pro	Gly	Gln	
10					1070	0				107	5				1080	
	gca	gac	tgt	gca	gtg	gcc	att	ggg	cgg	ccc	ctc	ggg	gag	gtg	gtg	3285
15	Ala	Asp	Cys	Ala	Val	Ala	He	Gly	Arg	Pro	Leu	Gly	Glu	Val	Val	
					108	5				109	0				1095	
	acc	ctc	cgc	gtc	ctt	gag	agt	tct	ctc	aac	tgc	agt	gcg	ggg	gac	3330
20	Thr	Leu	Arg	Val	Leu	Glu	Ser	Ser	Leu	Asn	Cys	Ser	Ala	Gly	Asp	
			•		1100)				110	5	-			1110	
25 ·	atg	ttg	ctg	ctt	tgg	ggc	cgg	ctc	acc	t gg	agg	aag	atg	tgc	agg	3375
	Met	Leu	Leu	Leu	Trp	Gly	Arg	Leu	Thr	Trp	Arg	Lys	Met	Cys	Arg	
					111	5		•	-	. 1120	0			•	1125	
30	aag	ctg	ttg	gac	atg	act	ttc	agc	tcc	aag	acc	aac	acg	ctg	gtg	3420
	Lys	Leu	Leu	Asp	Me t	Thr	Phe	Ser	Ser	Lys	Thr	Asn	Thr	Leu	Val	
35					1130) .				1139	5				1140	
	gtg	agg	cag	cgc	tgc	ggg	cgg	cca	gga	ggt	ggg	gtg	ctg	ctg	cgg	3465
	Val	Arg	Gln	Arg	Cys	Gly	Arg	Pro	Gly	Gly	Gly	Val	Leu	Leu	Arg	
40 ·					1149	5				1150)				1155	
			agc													3510
	Tyr	Gly	Ser	Gln	Leu	Ala	Pro	Glu	Thr	Phe	Tyr	Arg	Glu	Cys	Asp	
45					1160					1165					1170	
			ctc													3555
50	Met	Gln	Leu	Phe	Gly	Pro	Trp	Gly	Glu	He	Val	Ser	Pro	Ser	Leu	·
					1175	5				1180)				1 185	
	agt	cca	gcc	acg	agt	aat	gca	ggg	ggc	tgc	cgg	ctc	ttc	att	aat	3600
i 5	Ser	Pro	Ala	Thr	Ser	Asn	Ala	Gly	Gly	Cys	Arg	Leu	Phe	He	Asn	

	•	1190	. 1195	1200
5	gtg gct ccg cad	gca cgg att gcc	atc cat gcc ctg gcc acc	aac 3645
	Val Ala Pro His	Ala Arg Ile Ala	lle His Ala Leu Ala Thr	Asn
		1205	1210	1215
10	atg ggc gct ggg	g acc gag gga gcc	aat gcc agc tac atc ttg	atc 3690
	Met Gly Ala Gly	Thr Glu Gly Ala A	Asn Ala Ser Tyr Ile Leu	Ile
15		1220	1225	1230
	cgg gac acc cad	c agc ttg agg acc a	aca gcg ttc cat ggg cag	cag 3735
	Arg Asp Thr His	Ser Leu Arg Thr 1	Thr Ala Phe His Gly Gln	Gln
20		1235	1240	1245
•	gtg ctc tac tgg	gag toa gag ago a	age cag get gag atg gag	ttc 3780
25	Val Leu Tyr Tr	Glu Ser Glu Ser S	Ser Glm Ala Glu Met Glu	Phe
		1250	1255	1260
	•		gcc agc ctg cgg ggc cag	
30	Ser Glu Gly Phe		Ala Ser Leu Arg Gly Gln	Tyr
,		1265	1270	1275
35			gag atg cag gac cct cag	
	Trp Thr Leu Gin	•	Glu Met Gln Asp Pro Gln	
	taa oo aa aa	1280	1285	1290
40	tgg aag gga aag			3891
	Trp Lys Gly Lys	1295		
45		1293		
	<210>18			
	<211>1378			
50	<212>PRT			
	<213> Homo sapi	Ans		
<i>55</i>	<400>18	C113		
	/400/10			

	gc	gca	a ggo	ggc	ato	c cta	cac	cti	g ga	gct	g ct	g gt	g gc	c gt	g. ggc	45
5	Ala	a Ala	a Gly	/ Gly	ı Ile	e Leu	His	s Lei	u Gl	u Le	u Le	u Va	l Al	a Va	l Gly	,
	ì				5					10					15	
	ccc	gat	t gtc	ttc	cag	gct	cac	cag	g ga	g ga	c ac	a ga	g cg	c ta	t gtg	90
10	Pro	Asp	Val	Phe	Gln	Ala	His	Glr	ı Glı	ı Ası	p Th	r Gli	u Arg	з Ту	r Val	
					20					25					30	
15	cto	aco	aac	ctc	aac	atc	ggg	gca	a gaa	cts	g ct	t cgs	g gad	c cc	g tcc	135
	Leu	Thir	Asn	Leu	Asn	Ile	Gly	Ala	Glu	Lei	ı Lei	ı Arg	g Asp	Pr	o Ser	
					35					40					45	,
20	ctg	ggg	gct	cag	ttt	cgg	gtg	cac	cte	gte	aa a	a a t g	gto	at	t ctg	180
	Leu	Gly	Ala	Gln	Phe	Arg	Val	His	Leu	Val	Lys	Met	Val	H	e Leu	
25					50					55					60	
	aca	gag	cct	gag	ggt	gct	cca	aat	atc	aca	gco	aac	ctc	aco	tcg	225
	Thr	Glu	Pro	Glu	Gly	Ala	Pro	.Asn	Ile	Thr	Ala	a Asn	Leu	Th	Ser	
30			•		65					70			•		75	·
	tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag	270
35	Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	lle	Asn	Pro	Glu	
					80					85					90	
						ggc										315
40	Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	Val	Leu	Tyr	He	Thr	
					95					100					105	
46						ttg										360
45	Arg	Phe	Asp	Leu	Glu	Leu	Pro	Asp	Gly	Asn	Arg	Gln	Val	Arg	Gly	
					110					115					120	
50	gtc	acc	cag	ctg	ggc	ggt	gcc	tgc	tcc	cca	acc	tgg	agc	t gc	ctc	405
	Val	Thr	Gln	Leu	Gly	Gly	Ala	Cys	Ser	Pro	Thr	Trp	Ser	Cys	Leu	
				•	125					130					135	
55	att	acc	gag	gac	ac t	ggc	ttc	gac	ctg	gga	gtc	acc	att:	gcc	cat	450

	He	Thr	Glu	Asp	Thr	Gly	Phe	Asp	Leu	Gly	val	inr	116	Ala	HIS	
5					140					145					150	
	gag	att	ggg	cac	agc	ttc	ggc	ctg	gag	cac	gac	ggc	gcg	ccc	ggc	495
	Glu	Ile	Gly	His	Ser	Phe	Gly	Leu	Glu	His	Asp	Gly	Ala	Pro	Gly ·	•
10					155					160					165	
	agc	ggc	tgc	ggc	ссс	agc	gga	cac	gtg	atg	gc t	tcg	gac	ggc	gcc	540
15	Ser	Gly	Cys	Gly	Pro	Ser	Gly	His	Val	Met	Ala	Ser	Asp	Gly	Ala	
					170					175					180	
	gcg	ссс	cgc	gcc	ggc	ctc	gcc	tgg	tcc	ссс	tgc	agc	cgc	cgg	cag	585
20	Ala	Pro	Arg	Ala	Gly	Leu	Ala	Trp	Ser	Pro	Cys	Ser	Arg	Arg	Gln .	
					185					190					195	
25	ctg	ctg	agc	ctg	ctc	agg	acg	ggc	gcg	ctg	cgt	gtg	gga	ссс	gcc	630
25	Leu	Leu	Ser	Leu	Leu	Arg	Thr	Gly	Ala	Leu	Arg	Val	Gly	Pro	Ala	
					200					205					210	
30	gcg	gcc	tca	acc	cgg	gtc	cgc	ggg	gca	ccc	gcc	gga	t gc	gca	gcc	675
	Ala	Ala	Ser	Thr	Arg	Val	Arg	Gly	Ala	Pro	Ala	Gly	Cys	Ala	Ala	
					215	=				220					225	
35	tgg	cct	cta	cta	cag	cgc	caa	cga	gca	gtg	ccg	cgt	ggc	ctt	cgg	720
	Trp	Pro	Leu	Leu	Gln	Arg	Gln	Arg	Ala	Val	Pro	Arg	Gly	Leu	Arg	
40					230					235					240	
		caa														765
	Pro	Gln	Gly	Cys	Arg	Leu	His	Leu	Arg	Gln	Gly	Ala	Pro	Gly	Glu	
45					245					250					255	
	tct	gcc	ggc	ggt	ggc	ctg	gga	ttg	gc t	gtg	agg	tcc	ctc	cgc.	atc	810
50	Ser	Ala	Gly	Gly	Gly	Leu	Gly	Leu	Ala	Val	Arg	Ser	Leu	Arg	Ile	
					260					265					270	
	acc	cag	ctc	acg	tcc	ccc	caa	acg	tgc	atg	gat	atg	t gc	cag	gcc	855
55	Thr	Gln	Leu	Thr	Ser	Pro	Gln	Thr	Cys	Met	Asp	Met	Cys	Gln	Ala	

					275					280					285		
5	ctc t	СС	t gc	cac	aca	gac	ccg	ctg	gac	caa	agc	agc	t gc	agc	cgc		900
	Leu S	er	Cys :	His	Thr	Asp	Pro	Leu	Asp	Gln	Ser	Ser	Cys	Ser	Arg		
					290					295					300		
10	ctc c	tc	gtt	cct	ctc	ctg	gat	ggg	aca	gaa	tgt	ggc	gtg	gag	aag .		945
	Leu L	.eu	Val	Pro	Leu	Leu	Asp	Gly	Thr	Glu	Cys	Gly	Val	Glu	Lys		
15					305					310					315		
15	tgg t	gc	tcc	aag	ggt	cgc	t gc	cgc	tcc	ctg	gtg	gag	ctg	acc	ссс		990
	Trp C	Cys	Ser	Lys	Gly	Arg	Cys	Arg	Ser	Leu	Val	Glu	Leu	Thr	Pro		
20					320					325					330		
	ata g	gca	gca	gtg	cat	ggg	cgc	tgg	tct	agc	tgg	ggt	·ccc	cga	agt		1035
	Ile A	Ma	Ala	Val	His	Gly	Arg	Trp	Ser	Ser	Trp	Gly	Pro	Arg	Ser		
25					335					340					345		
	cct i	tgc	tcc	cgc	tcc	t gc	gga	gga	ggt	gtg	gtc	acc	agg	agg	cgg	•	1080
30	Pro (Cys	Ser	Arg	Ser	Cys	Gly	Gly	Gly	Val	Val	Thr	Arg	Arg	Arg		
	•			•	350					355					360		
	cag	tgc	aac	aac	ccc	aga	cct	gcc	ttt	ggg	ggg	cgt	gca	tgt	gtt		1125
35	Gln (Cys	Asn	Asn	Pro	Arg	Pro	Ala	Phe	Gly	Gly	Arg	Ala	Cys	Val		
					365					370					375		
40	ggt i																1170
	Gly	Ala	Asp	Leu	Gln	Ala	Glu	Met	Cys	Asn	Thr	Gln	Ala	Cys	Glu		
					380					385		•			390		
45	aag																1215
	Lys	Thr	Gln	Leu	Glu	Phe	Met	Ser	Gln	Gln	Cys	Ala	Arg	Thr	Asp		
50					395					400					405		
	ggc	cag	ccg	ctg	cgc	tcc	tcc	cct	ggc	ggc	gcc	tcc	ttc	tac	cac		1260
	Gly	Gln	Pro	Leu	Arg	Ser	Ser	Pro	Gly	Gly	Ala	Ser	Phe	Tyr	His		
55	•				410					415					420		

	tgg	ggt	gc t	gct	gta	cca	cac	agc	caa	ggg	gat	gc t	ctg	tgc	aga	1305
5	Trp	Gly	Ala	Ala	Val	Pro	His	Ser	Gln	Gly	Asp	Ala	Leu	Cys	Arg	
					425					430					435	
	cac	atg	lgc	cgg	gcc	att	ggc	gag	agc	ttc	atc	atg	aag	cgt	gga	1350
10 .						Ile										
					440					445					450	
15	gac	agc	llc	ctc	gat	ggg	acc	cgg	tgt	atg	cca	agt	ggc	ccc	cgg	1395
	Asp	Ser	Phe	Leu	Asp	Gly	Thr	Arg	Cys	Met	Pro	Ser	Gly	Pro	Arg	
					455					460					465	
20	gag	gac	ggg	acc	ctg	agc	ctg	tgt	gtg	tcg	ggc	agc	tgc	agg	aca	1440
	Glu	Asp	Gly	Thr	Leu	Ser	Leu	Cys	Val	Ser	Gly	Ser	Cys	Arg	Thr	
0.5					470					475					480	
25	ttt	ggc	tgt	gat	ggt	agg	atg	gac	tcc	cag	cag	gta	tgg	gac	agg	1485
	Phe	Gly	Cyş	Asp	Gļy	Arg	Me t	. Asp	Ser	Gln	Gln	Val	Trp	Asp	Arg	
30					485	•				490					495	
	tgc	cag	gtg	tgt	ggt	ggg	gac	aac	agc	acg	tgc	agc	cca	cgg	aag	1530
	Cys	Gln	Val	Cys	Gly	Gly	Asp	Asn	Ser	Thr	Cys	Ser	Pro	Arg	Lys	
35					500			,		505					510 -	
	ggc	tct	ttc	aca	gct	ggc	aga	gcg	aga	gaa	tat	gtc	acg	ttt	ctg	1575
40	Gly	Ser	Phe	Thr	Ala	Gly	Arg	Ala	Arg	Glu	Tyr	Val	Thr	Phe	Leu	
					515					520					525	
	aca	gtt	acc	ccc	aac	ctg	acc	agt	gtc	tac	att	gco	aac	cac	agg	1620
45	Thr	Val	Thr	Pro	Asn	Leu	Thr	Ser	Val	Tyr	Ile	Ala	Asn	His	Arg	
					530)				535					540	
50	cct	cto	tto	aca	cac	ttg	gce	gte	agg	atc	gga	gge	cgc	tat	gtc	1665
	Pro	Lei	ı Phe	Thi	His	Leu	Ala	Val	Arg	Ile	Gly	Gly	/ Arg	Tyr	Val	
					548	;				550	ł				555	
55	gtg	gci	ggg	g aag	g atg	ago	ato	tco	cct	aac	acc	aco	tac	ccc	tcc	1710

	٧a	I Al	a Gl	y Ly	s Me	t Sei	r H	e Se	r Pr	o Asi	n Th	r Th	r Ty	r Pr	o Ser		
5					560)				56	5				570		
	ct	c ct	g ga	g ga	t gg	t cgt	gto	c ga	g ta	c aga	a gt	g gc	c cte	c ac	c gag		1755
	Le	u Le	u Gl	ı Ası	o Gly	/ Arg	Va!	l Glu	J Ty	r Ār	g Va	l Ala	a Lei	ı Th	r Glu		
10	•				575	5				580)				585		
	ga	cg	g ct	cco	cgc	ctg	gag	g gag	ato	cgo	ato	c tgg	g gga	сс	c ctc		1800.
15	Asj	Arı	g Lei	Pro	Arg	Leu	Glu	Gli	ı Ile	e Arg	He	e Trr	Gly	Pr	o Leu		•
					590)				595	;				600		
	cas	g gaa	a gat	gct	gac	atc	cag	gtt	tac	agg	cgg	g tat	ggc	ga	g gag		1845
20	Gli	ı Glu	J Asp	Ala	Asp	Ile	Gln	Val	Tyr	Arg	Are	g Tyr	Gly	Glı	J Glu		
					605					610					615		
25															cag		1890
	Туз	Gly	/ Asn	Leu			Pro	Asp	Ile	Thr	Phe	Thr	Tyr	Phe	Gln		
					.620					625					630		
30	_														ccc		1935
	PIO	LYS	Pro	Arg		Ala	Trp	Val	Trp		Ala	Val	Arg	Gly	Pro		
35	tar	tra	ata	3.00	635	aaa	~~~			640	4.				645		
															agc	•	1980
	0,0	501	741		650	GIÀ	піа	GIY	Leu	655	111	Val	ASN	lyr			
40	tgc	ctg	gac	cag		agg	ลลฮ	gag	tta		a a a	act	at o	22.5	660		0005
												Thr					2025
45			_		665		-,,	0.0	20u	670	010	1111	101	GIII	675		
	caa	ggg	agc	cag		cca	сса	gcg	tgg		gag	gcc	tac	at a			2020
												Ala					2070
50					680		•		,	685	0.0		0,3	141	690		
	gaa	ccc	tgc	cct		tac	tgg	gcg	gtg		gac	ttc	gge	സമ			9115
55												Phe					2115

					695	,				700)				705		
5	ago	gcc	tcc	tgt	ggg	ggc	ggc	cte	cgg	g gag	cge	s cca	gte	cgo	tgc		2160
	Ser	Ala	Ser	Cys	Gly	Gly	Gly	leu	Are	g Glu	Are	Pro	Val	Are	g Cys		
					710	İ				715	;				720		
10	gtg	gag	gcc	cag	ggc	agc	ctc	ctg	aag	aca	tte	ccc	cca	gcc	cgg		2205
	Val	Glu	Ala	Gln	Gly	Ser	Leu	Leu	Lys	Thr	Leu	Pro	Pro	Ala	Arg	٠	
15					725					730					735		
	t gc	aga	gca	ggg	gcc	cag	cag	cca	gct	gtg	gcg	ctg	gaa	acc	tgc		2250
	Cys	Arg	Ala	Gly	Ala	Gln	Gln	Pro	Ala	Val	Ala	Leu	Glu	Thr	Cys		
20					740					745					750		
	aac	ccc	cag	ccc	t gc	cct	gcc	agg	t gg	gag	gtg	tca	gag	ссс	agc		2295
25	Asn	Pro	Gln	Pro	Cys	Pro	Ala	Arg	Trp	Glu	Val	Ser	Glu	Pro	Ser		
					755					760					765		
			• •		•										gag		2340
30	Ser	Cys	Thr	Ser		Gly	Gly	Ala	Gly		Ala	Leu	Glu	Asn	Glu		
		4 4	_ •		770					775					780		
35										gag							2385
	IRF	Cys	vaı	PIO		Ala	Asp	Gly	Leu	Glu	Ala	Pro	Val	Thr	-		
		cot	970	taa	785	~~·			- 4	790					795		
40										cct							2430
	diy	110	GIY	361	800	w2h	Giu	LYS	reu	Pro 805	Ala	Pro	GIU	Pro			
45	gtc	ggg	atσ	tca		cct	cca	aac	t aa		201				810		
										ggc Gly							2475
		0.,	1.30 E		815	110	110	UI y	IIP	820	1115	Leu	voh	•			
50	tet	gra	ggg	gag		øct	ccc	tee	cca	tgg	aa0	0.00	0 + 0		825		0505
										Trp							2520
55		11 I U	313	210	830	AIG	110	261			GIY	SEL	116				
					000					835					840		

•																
	ggg	gct	caa	gci	t gca	cac	gtg	tgg	a ace	c cc	t gc	g gc	a gg	g tc	g tgc	2565
5	Gly	Ala	Gln	Ala	a Ala	His	Val	Trp	Th	Pro	o Ala	a Al	a Gl	y Se	r Cys	•
					845	;				850)				855	
	tcc	gtc	tcc	t go	ggg	cga	ggt	ctg	ate	g gag	cte	g cg	t tte	cti	g tgc	2610
10	Ser	Val	Ser	Суз	Gly	/ Arg	Gly	Leu	Met	Gli	ı Lei	Ar	g Phe	e Lei	ı Cys	
	٠				860)				865	5				870	
15	atg	gac	tct	gcc	cto	agg	gtg	cct	gto	cag	gaa	gag	cte	g tgt	ggc	2655
															Gly	
					875					880					885	
20	ctg	gca	agc	aag	cct	ggg	agc	cgg	cgg	gag	gtc	tgo	cag	gct	gtc	2700
	Leu															2100
25					890					895					900	
25	ccg	tgc	cct	gct	cgg	t gg	cag	tac	aag	ctg	gcg	gcc	tgc	agc	gtg	2745
	Pro															- 10
30		•		•	905					910		-			915	-
	agc	tgt	ggg	aga	ggg	gtc	gtg	cgg	agg	atc	ctg	tat	tgt	gcc	cgg	2790
	Ser															
35					920					925					930	
	gcc	cat	ggg	gag	gac	gat	ggt	gag	gag	atc	ctg	ttg	gac	acc	cag	2835
40	Ala	His	Gly	Glu	Asp	Asp	Gly	Glu	Glu	Ile	Leu	Leu	Asp	Thr	Gln	
					935		•			940					945	
	tgc (cag	ggg	ctg	cct	cgc	ccg	gaa	ccc	cag	gag	gcc	tgc	agc	ctg	2880
45	Cys	Gln	Gly	Leu	Pro	Arg	Pro	Glu	Pro	Gln	Glu	Ala	Cys	Ser	Leu	
					950					955			*	,	960	
50	gag (ccc	tgc	cca	cc t	agg	t gg	aaa	gtc	atg	tcc	ctt	ggc	cca	tgt	2925
	Glu I	Pro	Cys	Pro	Pro	Arg	Trp	Lys	Val	Met	Ser	Leu	Gly	Pro	Cys	
					965					970					975	
55	tcg g	cc :	agc	tgt	ggc	ctt	ggc	act	gc t	aga	cgc	tcg	gtg	gcc	tgt	2970

	Ser	Ala	Ser	Cys	Gly	Leu	Gly	Thr	Ala	Arg	Are	g Sei	r Val	Ala	a Cys	
5					980					985					990	
	gtg	cag	ctc	gac	caa	ggc	cag	gac	gtg	gag	gte	g gao	gag	gce	gcc	3015
	Val	Gln	Leu	Asp	Gln	Gly	Gln	Asp	Val	Glu	Va l	Ası	Glu	Ala	Ala	
10	•				995					100	0			•	1005	•
	tgt	gcg	gcg	ctg	gtg	cgg	ccc	gag	gcc	agt	gto	ccc	tgt	ctc	att	3060
15	Cys	Ala	Ala	Leu	Val	Arg	Pro	Glu	Ala	Ser	Val	Pro	Cys	Leu	lle	
		•			101	0				101	5				1020	
	gcc	gac	tgc	acc	tac	cgc	t gg	cat	gtt	ggc	acc	t gg	atg	gag	tgc	3105
20	Ala	Asp	Cys	Thr	Tyr	Arg	Trp	His	Val	Gly	Thr	Trp	Met	Glu	Cys	
					102	5				103	0				1035	
25	tct	gtt	tcc	tgt	ggg	gat	ggc	atc	cag	cgc	cgg	cgt	gac	acc	tgc	3150
	Ser	Val	Ser	Cys	Gly	Asp	Gly	Ile	Gln	Arg	Arg	Arg	Asp	Thr	Cys	
		:			1040) .				104	5				1050	
30	ctc															3195
	Leu	Gly	Pro	Gln			Ala	Pro	Val	Pro	Ala	Asp	Phe	Cys	Gln	
35					1055					106					1065	
	cac							,								3240
	His 1	Leu	Pro	Lys			Thr	Val	Arg			Trp	Ala	Gly		
40	tat .	t			1070					107					1080	
	tgt															3285
45	Cys V	vai	ĠΙΆ	GIII			PTO	26 L	reu			HIS	Glu	Glu		
	act o	ro t	000	a ao	1085					1090				_	1095	
	gct g															3330
50	Ala A	114	rio	GIY			1111	Ala	ınr			Gly	Ala	Ser		
	go # 4		+		1100					1105		•			1110	
55	gag t															3375
55	Glú 1	rp :	ser .	GIn	Ala	Arg	Gly	Leu	Leu	Phe	Ser	Pro	Ala	Pro	Gln	•

					111	5				112	0				1125	
5	cct	cgg	cgg	cto	ctg	ccc	ggg	ссс	cag	gaa	aac	: tca	gt	g ca	g tcc	3420
	Pro	Arg	Arg	Leu	Leu	Pro	Gly	Pro	Gln	Glu	Asn	Ser	Va:	l Gla	n Ser	
					113	0				113	5				1140	
10	agt	gcc	tgt	ggc	agg	cag	cac	ctt	gag	cca	aca	gga	aco	ati	t gac	3465
	Ser	Ala	Cys	Gly	Arg	Gln	His	Leu	Glu	Pro	Thr	Gly	Thi	. Ile	e Asp	·
15					114	5				115	0				1155	
	atg	cga	ggc	cca	ggg	cag	gca	gac	tgt	gca	gtg	gcc	att	ggg	g cgg	3510
	Met	Arg	Gly	Pro	Gly	Gln	Ala	Asp	Cys	Ala	Va l	Ala	Ile	Gly	Arg	•
20	•				116	0				116	5				1170	·
	ссс	ctc	ggg	gag	gtg	gtg	acc	ctc	cgc	gtc	ctt	gag	agt	tct	ctc	3555
25	Pro	Leu	Gly	Glu	Val	Val	Thr	Leu	Arg	Val	Leu	Glu	Ser	Ser	Leu	
					117	5				1180	0				1185	
	aac	tgc	agt	gcg	ggg	gac	atg	ttg	ctg	ctt	tgg	ggc.	cgg	ctc	acc .	3600
30	Asn	Cys	Ser	Ala	Gly	Asp	Met	Leu	Leu	Leu.	Trp	Gly	Arg	Leu	Thr	
		•		•	119	0				1195	5				1200	
<i>35</i>							aag									3645
	Trp	Arg	Lys	Met			Lys	Leu	Leu	Asp	Met	Thr	Phe	Ser	Ser	
					120					1210					1215	
40							gtg		•							3690
	LÀS	inr	ASN	lhr			Val	Arg	Gln			Gly	Arg	Pro		
45	aa t	~~~			1220					1225					1230	
							tat									3735
	Gly	GIA	Vai	Leu			Туг	Gly	Ser			Ala	Pro	Glu	Thr	
50		.			1235					1240					1245	
							atg									3780
e e	rne	IYI	Arg	GIU			Met	Gln	Leu		Gly	Pro	Trp	Gly	Glu	
5 5					1250	•				1255					1260	

	atc	gtg	agc	ccc	tcg	ctg	agt	cca	gcc	acg	agt	aat	gca	ggg	ggc		3825
5	Ile	Val	Ser	Pro	Ser	Leu	Ser	Pro	Ala	Thr	Ser	Asn	Ala	Gly	Gly		
					126	5	-			127	0				1275		
	tgc	cgg	ctc	ttc	att	aat	gtg	gct	ccg	cac	gca	cgg	att	gcc	atc		3870
10	Cys	Arg	Leu	Phe	Ile	Asn	Val	Ala	Pro	His	Ala	Arg	Ile	Ala	lle		
					1280)				128	5				1290		
15	cat	gcc	ctg	gcc	acc	aac	atg	ggc	gct	ggg	acc	gag	gga	gcc	aat		3915
		Ala															
					1298	5				1300	0				1305		
20	gcc	agc	tac	atc	ttg	atc	cgg	gac	acc	cac	agc	ttg	agg	acc	aca		3960
	Ala	Ser	Туг	Ile	Leu	Ile	Arg	Asp	Thr	His	Ser	Leu	Arg	Thr	Thr		
25					1316	}				1315	5				1320		
	gcg	ttc	cat	ggg	cag	cag	gtg	ctc	t ac	tgg	gag	tca	gag	agc	agc		4005
	Ala	Phe	His	Gļy	Gln	Gln	Vaj	Leu	Tyr	Trp	Gļų	Ser	Glu	Ser	Ser .		
30			-		1325	5			•	1330)				1335	•	
	cag	gct	gag	atg	gag	ttc	agc	gag	ggc	ttc	ctg	aag	gct	cag	gcc		4050
35	Gln	Ala	Glu	Me t	Glu	Phe	Ser	Glu	Gly	Phe	Leu	Lys	Ala	Gln	Ala		
					1340					1345					1350		
		ctg															4095
40	Ser	Leu	Arg	Gly			Trp	Thr	Leu	Gln	Ser	Trp	Val	Pro	Glu		
					1355					1360					1365		
45		cag													•		4134
	Met	Gln	Asp	Pro			Trp	Lys	Gly			Gly	Thr				
					1370)				1375	i						
50	/0·0	.															
		>19															
		>132															
55	<212	>PRT															

<213> Homo sapiens

5	<400>19	
	gct gca ggc ggc atc cta cac ctg gag ctg ctg gtg gcc gtg ggc	45
	Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly	
10	1 5 10 15	
	ccc gat gtc ttc cag gct cac cag gag gac aca gag cgc tat gtg	90
15	Pro Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val	
	20 25 30	
	ctc acc aac ctc aac atc ggg gca gaa ctg ctt cgg gac ccg tcc	35
20	Leu Thr Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser	
	35 40 45	
25	ctg ggg gct cag ttt cgg gtg cac ctg gtg aag atg gtc att ctg	3·0
	Leu Gly Ala Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu	
	50 55 60	
30	aca gag cct gag ggt gct cca aat atc aca gcc aac ctc acc tcg 22	5
	Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr Ser	
<i>35</i>	65 70 75	
	tcc ctg ctg agc gtc tgt ggg tgg agc cag acc atc aac cct gag 27	0
	Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr Ile Asn Pro Glu	
40	80 85 90	
	gac gac acg gat cct ggc cat gct gac ctg gtc ctc tat atc act 315	5
45	Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu Tyr Ile Thr	
-	95 100 105	
	agg ttt gac ctg gag ttg cct gat ggt aac cgg cag gtg cgg ggc 360)
50	Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val Arg Gly	
	110 115 120	
	gtc acc cag ctg ggc ggt gcc tgc tcc cca acc tgg agc tgc ctc 405	
55 .	Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys Leu	

		125	130	135
5	att acc gag ga	c act ggc ttc gac	ctg gga gtc acc att gcc	cat 450
	Ile Thr Glu Asi	p Thr Gly Phe Asp	Leu Gly Val Thr Ile Ala	His
		140	145	150
10	gag att ggg cad	c ago tto ggo ctg	gag cac gac ggc gcg ccc	ggc 495
			Glu His Asp Gly Ala Pro	
15		155	160	165
73	agc ggc tgc ggc	c ccc agc gga cac	gtg atg gct tcg gac ggc	
			Val Met Ala Ser Asp Gly	
20		170	175	180
	gcg ccc cgc gcc	ggc ctc gcc tgg	tcc ccc tgc agc cgc cgg	
			Ser Pro Cys Ser Arg Arg	
25		185	190	195
	ctg ctg agc ctg	g ctc agg acg ggc	gcg ctg cgt gtg gga ccc	
30	•	•	Ala Leu Arg Val Gly Pro	
	•	200	205	210
	gcg gcc tça acc	cgg gtc cgc ggg	gca ccc gcc gga tgc gca	gcc 675
35	Ala Ala Ser Thr	Arg Val Arg Gly	Ala Pro Ala Gly Cys Ala	Ala
		215	220	225
40	tgg cct cta cta	cag cgc caa cga	gca gtg ccg cgt ggc ctt	cgg 720
	Trp Pro Leu Leu	Gln Arg Gln Arg	Ala Val Pro Arg Gly Leu	Arg
		230	235	240
45	ccc caa ggc tgt	cgc ctg cac ctt	cgc cag gga gca cct ggt	gag 765
	Pro Gln Gly Cys	Arg Leu His Leu	Arg Glm Gly Ala Pro Gly	Glu
50		245	250	255
	tet gee gge ggt	ggc ctg gga ttg	gct gtg agg tcc ctc cgc	atc 810
	Ser Ala Gly Gly	Gly Leu Gly Leu	Ala Val Arg Ser Leu Arg	Ile
55		260	265	270

	acc	cag	ctc	acg	tcc	ccc	caa	acg	tgc	atg	gat	ate	tgo	cag	g gcc	855
5	Thr	Gln	Leu	Thr	Ser	Pro	Gln	Thr	Cys	Me t	Asp	Met	Cys	Glr	Ala	
					275					280					285	
	ctc	tcc	tgc	cac	aca	gac	ccg	ctg	gac	caa	agc	ago	tgo	ago	cgc	900
10	Leu	Ser	Cys	His	Thr	Asp	Pro	Leu	Asp	Gln	Ser	Ser	Cys	Ser	Arg	
					290					295					300	
15	ctc	ctc	gtt	cct	ctc	ctg	gat	ggg	aca	gaa	tgt	ggc	gtg	gag	aag	945
	Leu	Leu	Val	Pro	Leu	Leu	Asp	Gly	Thr	Glu	Cys	Gly	Val	Glu	Lys	
					305					310					315	
20	tgg	tgc	tcc	aag	ggt	cgc	t gc	cgc	tcc	ctg	gtg	gag	ctg	acc	ccc	990
	Trp	Cys	Ser	Lys	Gly	Arg	Cys	Arg	Ser	Leu	Val	Glu	Leu	Thr	Pro	
25					320					325					330	
	ata	gca	gca	gtg	cat	ggg	cgc	tgg	t ct	agc	tgg	ggt	ccc	cga	agt	1035
	Ile	Ala	Ala	Val.	His	Gly	Arg	Trp	Ser	Ser	Tro	Gly	Pro	Arg	Ser.	
30			•		335			•		340					345	
	cct															1080
35	Pro	Cys	Ser	Arg	Ser	Cys	Gly	Gly	Gly		Val	Thr	Arg	Arg	Arg	
				,	350			ı		3.55					360	
					ccc											1125
40	GIN	Cys	Asn	Asn	Pro	Arg	Pro	Ala	Phe		Gly	Arg	Ala	Cys		
	~~ t		~~~		365					370					375	
45					cag											1170
	GIY	АТА	ASP	Leu	Gln	АТа	GIU	met	Cys		Ihr	Gin	Ala	Cys		
				- 4 -	380					385					390	
50					gag											1215
	LYS	ınr	GIN	ren	Glu	rne	met	261	GIn	•	Uys	Ala	Arg			
	·			_ 4	395	•				400					405	
55	ggc	cag	ccg	ctg	cgc	tcc	tcc	cct	ggc	ggc	gcc	tcc	ttc	tac	cac	1260

	Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly Ala Ser Phe Tyr His	
5	410 415 420	
	tgg ggt gct gct gta cca cac agc caa ggg gat gct ctg tgc aga	1305
10	Trp Gly Ala Ala Val Pro His Ser Glm Gly Asp Ala Leu Cys Arg	
	425 430 435	
	cac aig igc cgg gcc att ggc gag agc itc aic aig aag cgi gga	1350
15	His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met Lys Arg Gly	
	440 445 450	
20	gac age tie etc gat ggg acc egg tgt atg eca agt gge ecc egg	1395
	Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly Pro Arg	
	455 460 465	
25	gag gac ggg acc ctg agc ctg tgt gtg tcg ggc agc tgc agg aca	1440
	Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg Thr	
30	470 475 480	
30		1485
	Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg	
35	485 490 495	
		1530
10	Cys Gln Val Cys Gly Gly Asp Asn Ser Thr Cys Ser Pro Arg Lys	
40	500 505 510	
		1575
45	Gly Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr Val Thr Phe Leu	
	515 520 525	
		620
50	Thr Val Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala Asn His Arg	
	530 535 540	
55		665
•	Pro Leu Phe Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val	

					549	5				550	0				555		
5	gtg	gc	ggg	aag	atg	gago	ato	: tcc	cc	t aad	c ac	c ac	c ta	с сс	c tcc		1710
	Va 1	Ala	ı Gly	Lys	Met	Sei	Tle	Sei	Pro	Ası	n Th	r Th	r Ty	r Pr	o Ser		
					560)				565	5				570		
10	ctc	cte	gag	gat	ggt	cgt	gto	gag	tac	aga	a gt	g gc	cte	c ac	c gag		1755
	Leu	Let	Glu	Asp	Gly	Are	, Val	Glu	Туг	Are	y Val	l Ala	a Lei	J Th	r Glu		
15					575	;				580)				585		
	gac	cgg	ctg	ccc	cgc	ctg	gag	gag	ato	c gc	ato	tg	g gga	ı ccı	ctc		1800
	Asp	Arg	Leu	Pro	Arg	Leu	Glu	Glu	Ile	Arg	: Ile	Tr	Gly	Pro	Leu		
20					590	l				595	;				600	•	
	cag	gaa	gat	gct	gac	atc	cag	gtt	tac	agg	cgg	tat	ggc	gag	gag	•	1845
25	Gln	Glu	Asp	Ala	Asp	Ile	Gln	Val	Tyr	Arg	Arg	Туг	Gly	Glı	Glu		
					605					610					615		
									· ·					•	cag		.1890
30	lyr	Gly	Asn	Leu		Arg	Pro	Asp	He		Phe	Thr	Tyr	Phe	Gln		
	201				620					625					630		
35															ccc		1935
	110	L)2	FIO	AIg	635	Ala	1 rp	vai	Trp		Ala	Val	Arg	Gly	Pro		
	tør	trø	øtø	200		aaa	aca	aaa	o t a	640					645		
40								ggg Gly									1980
	-,-	201		001	650	01,	Ala	Uly	Leu	655	111	Val	YZII	lyr			
45	tgc	ctg	gac	cag		agg	aag	gag	ttg		gag	act	atc	car	660	•	3 0 05
								Glu								•	2025
			•		665		-,,		200	670	014	1111	141	OIL	675		
50	caa	ggg	agc			cca	cca	gcg	tgg		gag	gcc	tec	ete		q	2070
	Gln															2	.010
55					680					685	-		-,0		690		

	gaa	ccc	tgc	cct	ccc	tac	tgg	gcg	gtg	gga	gac	ttc	ggc	cca	tgc		2115
5	Glu	Pro	Cys	Pro	Pro	Tyr	Trp	Ala	Val	Gly	Asp	Phe	Gly	Pro	Cys		
					695					700					705		
	agc	gcc	tcc	tgt	ggg	ggc	ggc	ctg	cgg	gag	cgg	cca	gtg	cgc	t gc		2160
10	Ser	Ala	Ser	Cys	Gly	Gly	Gly	Leu	Arg	Glu	Arg	Pro	Val	Arg	Cys		•
					710					715					720		
15	gtg	gag	gcc	cag	ggc	agc	ctc	ctg	aag	aca	ttg	ccc	cca	gcc	cgg		2205
	Val	Glu	Ala	Gln	Gly	Ser	Leu	Leu	Lys	Thr	Leu	Pro	Pro	Ala	Arg		
					725					730					735		
20	tgc	aga	gca	ggg	gcc	cag	cag	cca	gct	gtg	gcg	ctg	gaa	acc	t gc		2250
	Cys	Arg	Ala	Gly	Ala	Gln	Gln	Pro	Ala	Val	Ala	Leu	Glu	Thr	Cys		
25					740					745					750		
		ccc															2295
	ĀSŅ	Pro	Gln	Pro		Pro	Ala	Arg	Trp		.Val	Ser	Glu	Pro	•	•	
30		.			755					760					765		
		tgc									•						2340
35	261	Cys	1111	261	770	GIA	GIY	AIA	GIY	775	Ala	Leu	GIU	ASI	780		
-	acc	tgt	gtg	cca		gca	gat	Bec	cto		gr t	cca	oto	act			2385
		Cys															2000
40					785			,		790			,		795		
	ggg	cct	ggc	tcc		gat	gag	aag	ctg		gcc	cct	gag	ссс			2430
45		Pro													_		
					800					805					810		
	gtc	ggg	atg	tca	tgt	cct	cca	ggc	t gg	ggc	cat	ctg	gat	gcc	acc		2475
50	Val	Gly	Met	Ser	Cýs	Pro	Pro	Gly	Trp	Gly	His	Leu	Asp	Ala	Thr	•	
					815					820					825		
55	tct	gca	ggg	gag	aag	gct	ссс	tcc	cca	t gg	ggc	agc	atc	agg	acg		2520

	Ser	Ala	Gly	Glu	Lys	Ala	Pro	Ser	Pro	Trp	Gly	Ser	Ile	Are	Thr	
5					830					835					840	
	ggg	gct	caa	gct	gca	cac	gtg	tgg	acc	cct	gcg	gca	ggg	tce	tgc	2565
	Gly	Ala	Gln	Ala	Ala	His	Val	Trp	Thr	Рго	Ala	Ala	Gly	Ser	Cys	
10					845					850					855	
	tcc	gtc	tcc	t gc	ggg	cga	ggt	ctg	atg	gag	ctg	cgt	ttc	ctg	tgc	2610
15	Ser	Val	Ser	Cys	Gly	Arg	Gly	Leu	Met	Glu	Leu	Arg	Phe	Leu	Cys	,
					860					865					870	
	atg	gac	tct	gcc	ctc	agg	gtg	cct	gtc	cag	gaa	gag	ctg	tgt	ggc	2655
20	Met	Asp	Ser	Ala	Leu	Arg	Val	Pro	Val	Gln	Glu	Glu	Leu	Cys	Gly	
					875					880					885	
25								cgg								2700
	Leu	Ala	Ser			Gly	Ser	Arg	Arg		Val	Cys	Gln	Ala	Val	
					.890				• .	895	:				900	
30								tac								2745
	Pro	Cys	Pro	Ala		111	GIN	Tyr	Lys		Ala	Ala	Cys	Ser		
35	. 200	tot	ggg	202	905	ort c	ata	caa	200	910 at c	a t a		+ ~ +	70 7	915	0700
	agc							Arg								2790
	501	0,5	GI,	,,,,	920	, 41	, 41	VI 9	W1 P	925	LCu	1 9 1	Cys	ліа	930	
40	gcc	cat	ggg	gag		gat	ggt	gag	gag		ctg	ttø	gac	acc		2835
								Glu	•							2000
45			•		935	_				940					945	
	tgc	cag	ggg	ctg	cct	cgc	ccg	gaa	ССС	cag	gag	gcc	tgc	agc		2880
								Glu							_	
50					950					955					960	
	gag	ССС	tgc	cca	cct	agg	t gg	aaa	gtc	atg	tcc	ctt	ggc	cca		2925
<i>55</i>	Glui	Pro	Cys	Pro	Pro	Arg	Trp	Lys	Val	Met	Ser	Leu	Gly	Pro	Cys	-

		•	•		965					970					975	
5	tcg	gcc	agc	tgt	ggc	ctt	ggc	act	gct	aga	cgc	tcg	gtg	gcc	tgt ·	2970
	Ser	Ala	Ser	Cys	Gly	Leu	Gly	Thr	Ala	Arg	Arg	Ser	Val	Ala	Cys	
					980					985					990	
10	gtg	cag	ctc	gac	caa	ggc	cag	gac	gtg	gag	gtg	gac	gag	gcg	gcc	3015
	Val	Gln	Leu	Asp	Gln	Gly	Gln	Asp	Val	Glu	Val	Asp	Glu	Ala	Ala	
15					995					1000)				1005	
	tgt	gcg	gcg	ctg	gtg	cgg	ссс	gag	gcc	agt	gtc	ccc	tgt	ctc	att	3060
	Cys	Ala	Ala	Leu	Val	Arg	Pro	Glu	Ala	Ser	Val	Pro	Cys	Leu	Ile	
20					1010)				1015	5				1020	
	gcc	gac	tgc	acc	tac	cgc	tgg	cat	gtt	ggc	acc	tgg	atg	gag	tgc	3105
25	Ala	Asp	Cys	Thr	Tyr	Arg	Trp	His	Val	Gly	Thr	Тгр	Met	Glu	Cys	
					1029	5				1030)				1035	
	tct	gtt	tcc	tgt	ggg	gat	ggc	atc	cag	cgc	cgg	cgt	gac	acc	tgc	3150
30	Ser	Val	Ser	Cys	Gly	Asp	Gly	Ile	Gln	Arg	Arg	Arg	Asp	Thr	Cys	
		•			1040)				1045	5				1050	
35	ctc	gga	ccc	cag	gcc	cag	gcg	cct	gtg	cca	gct	gat	ttc	tgc	cag	3195
33	Leu	Gly	Pro	Gln	Ala	Gln	Ala	Pro	Val	Pro	Ala	Asp	Phe	Cys	Gln	
		•			105	5				1060)				1065	
40	cac	ttg	ccc	aag	ccg	gtg	act	gtg	cgt	ggc	tgc	tgg	gct	ggg	ccc	3240
	His	Leu	Pro	Lys	Pro	Val	Thr	Val	Arg	Gly	Cys	Trp	Ala	Gly	Pro	
					1070)				1075	5				1080	
45	tgt	gtg	gga	cag	ggt	gcc	tgt	ggc	agg	cag	cac	ctt	gag	cca	aca	3285
	Cys	Val	Gly	Gln	Gly	Ala	Cys	Gly	Arg	Gln	His	Leu	Glu	Pro	Thr	
50					108	5				1090)				1095	
	gga	acc	att	gac	atg	cga	ggc	cca	ggg	cag	gca	gac	tgt	gca	gtg	3330
	Gly	Thr	Ile	Asp	Met	Arg	Gly	Pro	Gly	Gln	Ala	Asp	Cys	Ala	Val	
55		•			1100					1105					1110	

	gcc	att	ggg	cgg	ccc	ctc	ggg	gag	gtg	gtg	acc	ctc	cgc	gtc	ctt	3375
5	Ala	Ile	Gly	Arg	Pro	Leu	Gly	Glu	Val	Val	Thr	Leu	Arg	Val	Leu	
					1118	5				1120	0				1125	
	gag	agt	tct	ctc	aac	t gc	agt	gcg	ggg	gac	atg	ttg	ctg	ctt	t gg	3420
10	Glu	Ser	Ser	Leu	Asn	Cys	Ser	Ala	Gly	Asp	Met	Leu	Leu	Leu	Trp	
					1130)				1139	5				1140	
15	ggc	cgg	ctc	acc	tgg	agg	aag	atg	t gc	agg	aag	ctg	ttg	gac	atg	3465
	Gly	Arg	Leu	Thr	Trp	Arg	Lys	Met	Cys	Arg	Lys	Leu	Leu	Asp	Met	
					114	5				1150)				1155	
20	act	ttc	agc	tcc	aag	acc	aac	acg	ctg	gtg	gtg	agg	cag	cgc	tgc	3510
	Thr	Phe	Ser	Ser	Lys	Thr	Asn	Thr	Leu	Val	Val	Arg	Gln	Arg	Cys	
25					1160)				1165	5				1170	
25	ggg	cgg	cca	gga	ggt	ggg	gtg	ctg	ctg	cgg	tat	ggg	agc	cag	ctt	3555
	Gly	Arg	Pro	Gly	Gly	Gly	Val	Leu	Leu	Arg	Ţyr	Gly	Ser	.Gln	Le.u	
						_										_
30		·			1175	5	*			1180)				1185	
30				acc			aga	gaa	tgt			cag	ctc	ttt		3600
	gct	cct	gaa		ttc	tac				gac	atg				ggg	3600
35	gct	cct	gaa	acc	ttc	tac Tyr				gac	atg Met				ggg	3600
	gct Ala	cct Pro	gaa Glu	acc	ttc Phe 1190	tac Tyr)	Arg	Glu	Cys	gac Asp 1195	atg Met	Gln	Leu	Phe	ggg Gly 1200	3600 3645
	gct Ala	cct Pro	gaa Glu ggt	acc Thr	ttc Phe 1190 atc	tac Tyr) gtg	Arg agc	Glu ; ccc	Cys tcg	gac Asp 1195 ctg	atg Met agt	Gln	Leu gcc	Phe	ggg Gly 1200 agt	
35	gct Ala	cct Pro	gaa Glu ggt	acc Thr	ttc Phe 1190 atc	tac Tyr) gtg Val	Arg agc	Glu ; ccc	Cys tcg	gac Asp 1195 ctg	atg Met agt Ser	Gln	Leu gcc	Phe	ggg Gly 1200 agt	
35	gct Ala ccc Pro	cct Pro tgg Trp	gaa Glu ggt Gly	acc Thr	ttc Phe 1190 atc Ile 1208	tac Tyr) gtg Val	Arg agc Ser	Glu , ccc Pro	Cys tcg Ser	gac Asp 1195 ctg Leu 1210	atg Met agt Ser	Gln cca Pro	Leu gcc Ala	Phe acg Thr	ggg Gly 1200 agt Ser 1215	
35	gct Ala ccc Pro	cct Pro tgg Trp	gaa Glu ggt Gly	acc Thr gaa Glu	ttc Phe 1190 atc Ile 1208 tgc	tac Tyr) gtg Val cgg	Arg agc Ser	Glu , ccc Pro	Cys tcg Ser att	gac Asp 1195 ctg Leu 1210	atg Met agt Ser gtg	Gln cca Pro	Leu gcc Ala	Phe acg Thr	ggg Gly 1200 agt Ser 1215 gca	3645
<i>35</i>	gct Ala ccc Pro	cct Pro tgg Trp	gaa Glu ggt Gly	acc Thr gaa Glu	ttc Phe 1190 atc Ile 1208 tgc	tac Tyr) gtg Val cgg Arg	Arg agc Ser	Glu , ccc Pro	Cys tcg Ser att	gac Asp 1195 ctg Leu 1210	atg Met agt Ser) gtg Val	Gln cca Pro	Leu gcc Ala	Phe acg Thr	ggg Gly 1200 agt Ser 1215 gca	3645
<i>35</i>	gct Ala ccc Pro aat Asn	cct Pro tgg Trp gca Ala	gaa Glu ggt Gly ggg Gly	acc Thr gaa Glu	ttc Phe 1190 atc Ile 1205 tgc Cys	tac Tyr) gtg Val cgg Arg	agc Ser ctc Leu	Glu ccc Pro ttc Phe	tcg Ser att	gac Asp 1195 ctg Leu 1210 aat Asn 1225	atg Met agt Ser gtg Val	Gln cca Pro gct Ala	gcc Ala ccg Pro	Phe acg Thr cac	ggg Gly 1200 agt Ser 1215 gca Ala 1230	3645
35 40 45	gct Ala ccc Pro aat Asn	cct Pro tgg Trp gca Ala	gaa Glu ggt Gly ggg Gly	acc Thr gaa Glu ggc Gly	Phe 1190 atc Ile 1205 tgc Cys 1220 cat	tac Tyr) gtg Val cgg Arg)	agc Ser ctc Leu	Glu ccc Pro ttc Phe	tcg Ser att Ile	gac Asp 1195 ctg Leu 1210 aat Asn 1225 aac	atg Met agt Ser yal atg	Gln cca Pro gct Ala	gcc Ala ccg Pro	Phe acg Thr cac His	ggg Gly 1200 agt Ser 1215 gca Ala 1230 acc	3645 3690
35 40 45	gct Ala ccc Pro aat Asn	cct Pro tgg Trp gca Ala	gaa Glu ggt Gly ggg Gly	acc Thr gaa Glu ggc Gly	Phe 1190 atc Ile 1205 tgc Cys 1220 cat	tac Tyr) gtg Val cgg Arg) gcc Ala	agc Ser ctc Leu	Glu ccc Pro ttc Phe	tcg Ser att Ile	gac Asp 1195 ctg Leu 1210 aat Asn 1225 aac	atg Met agt Ser gtg Val atg Met	Gln cca Pro gct Ala	gcc Ala ccg Pro	Phe acg Thr cac His	ggg Gly 1200 agt Ser 1215 gca Ala 1230 acc	3645 3690

	Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile Arg Asp Thr His Ser	
5	1250 1255 1260	
	ttg agg acc aca gcg ttc cat ggg cag cag gtg ctc tac tgg gag	3825
10	Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val Leu Tyr Trp Glu	
10	1265 1270 1275	
	tca gag agc agc cag gct gag atg gag ttc agc gag ggc ttc ctg	3870
15	Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu Gly Phe Leu	
	1280 1285 1290	
20	aag get cag gee age etg egg gge eag tae tgg ace ete caa tea	3915
20	Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu Gln Ser	
	1295 1300 1305	•
25	tgg gta ccg gag atg cag gac cct cag tcc tgg aag gga aag gaa	3960
	Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys Glu	
20	1310 1315 1320	
30	gga acc Gly Thr	3966
	diy ini	
35	<210>20	
	<211>312	
40	<212>PRT	
	<213> Homo sapiens	
	<400>20	
45	gct gca ggc ggc atc cta cac ctg gag ctg ctg gtg gcc gtg ggc	45
	Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly	
50	1 5 10 15	
	ccc gat gtc ttc cag gct cac cag gag gac aca gag cgc tat gtg	90
	Pro Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val	
55	20 25 30	
	•	

	ctc	acc	aac	ctc	aac	atc	ggg	gca	gaa	ctg	ctt	cgg	gac	ccg	tcc	135
5	Leu	Thr	Asn	Leu	Asn	Ile	Gly	Ala	Glu	Leu	Leu	Arg	Asp	Pro	Ser	
					35					40					45	
	ctg	ggg	gc t	cag	ttt	cgg	gtg	cac	ctg	gtg	aag	atg	gtc	att	ctg	180
10	Leu	Gly	Ala	Gln	Phe	Arg	Val	His	Leu	Val	Lys	Me t	Val	Ile	Leu .	
					50					5 5					60	
15	aca	gag	cct	gag	ggt	gc t	cca	aat	atc	aca	gcc	aac	ctc	acc	tcg	225
	Thr	Glu	Pro	Glu	Gly	Ala	Pro	Asn	Ile	Thr	Ala	Asn	Leu	Thr	Ser	
					65					70					75	
20	tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag .	270
	Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	Ile	Asn	Pro	Glu	
25					80					85					90	
-	gac	gac	acg	gat	cc t	ggc	cat	gct	gac	ctg	gtc	ctc	tat	atc	act	315
	Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	.Val	Leu	Tyr	Ile	Thr	
30					95					100					105	
	agg	ttt	gac	ctg	gag	ttg	cct	gat	ggt	aac	cgg	cag	gtg	cgg	ggc	360
35	Arg	Phe	Asp	Leu	Glu	Leu	Pro	Asp	Gly	Asn	Arg	Gln	Val	Arg	Gly	
				٠	110					115					120	
			•	ctg												405
40	Val	Thr	Gln	Leu		Gly	Ala	Cys	Ser		Thr	Trp	Ser	Cys		
					125					130					135	
				gac												450
45	He	Thr	Glu	Asp		Gly	Phe	Asp	Leu		Val	Thr	Ile	Ala		
					140					145					150	
50	-		-	cac					-							495
	Glu	Ile	Gly	His	Ser	Phe	Gly	Leu	Glu		Asp	Gly	Ala	Pro	Gly	
					155					160					165 ·	
5 <i>5</i>	agc	ggc	tgc	ggc	ccc	agc	gga	cac	gtg	atg	gct	tcg	gac	ggc	gcc	540

	Ser	Gly	Cys	Gly	Pro	Ser	Gly	His	Val	Met	Ala	a Ser	Asp	Gly	/ Ala		
5					170					175	j				180		
	gcg	ccc	cgc	gcc	ggc	ctc	gcc	tgg	tcc	ccc	tgo	ago	cgc	cgg	cag		585
	Ala	Pro	Arg	Ala	Gly	Leu	Ala	Trp	Ser	Pro	Cys	s Ser	Arg	Are	Gln		
10					185					190	ļ				195		
	ctg	ctg	agc	ctg	ctc	agg	acg	ggc	gcg	cţg	cgt	gtg	gga	ccc	gcc		630
15	Leu	Leu	Ser	Leu	Leu	Arg	Thr	Gly	Ala	Leu	Arg	y Val	Gly	Pro	Ala		
					200					205					210		
	gcg	gcc	tca	acc	cgg	gtc	cgc	ggg	gca	ccc	gco	gga	tgc	gca	gcc		675
20	Ala	Ala	Ser	Thr	Arg	Val	Arg	Gly	Ala	Pro	Ala	Gly	Cys	Ala	Ala	-	
					215					220					225		
25	tgg	cct	cta	cta	cag	cgc	caa	cga	gca	gtg	cce	cgt	ggc	ctt	cgg		720
	Trp	Pro	Leu	Leu	Gln	Arg	Gln	Arg	Ala	Val	Pro	Arg	Gly	Leu	Arg		
					230	•				235	· '.		-		. 240		
30	ccc	caa	ggc	ťgt	cgc	ctg	cac	ct.t.	cgc	cag	gga	gca	cct	gga	tat		765
	Рго	Gln	Gly	Cys	Arg	Leu	His	Leu	Arg	Gln	Gly	Ala	Pro	Gly	Tyr		
25					245					250					255		
35	gtg	cca	ggc	cct	ctc	ctg	cca	cac	aga	ссс	gct	gga	cca	aag	cag		810
	Val	Pro	Gly	Рго	Leu	Leu	Pro	His	Arg	Pro	Ala	Gly	Pro	Lys	Gln		
10					260					265					270		
	ctg	cag	ccg	cct	cct	cgt	tcc	tct	cct	gga	tgg	gac	aga	atg	t gg		855
	Leu	Gln	Pro	Pro	Pro	Arg	Ser	Ser	Pro	Gly	Trp	Asp	Arg	Met	Trp		
15					275					280					285	•	
	cgt	gga	gaa	gtg	gtg	ctc	caa	ggg	tcg	ctg	ccg	ctc	cct	ggt	gga		900
so	Arg	Gly	Glu	Val	Val	Leu	Gln	Gly	Ser	Leu	Pro	Leu	Pro	Gly	Gly		
					290					295					300		
	gc t	gac	ссс	cat	agc	agc	agt	gca	t gg	gcg	ctg	gtc					936
5	Alà	Asp	Pro	His	Ser	Ser	Ser	Ala	Trp	Ala	Leu	Va l					

305 310

	<210	0>21															
	<21	1>27	0														
10	<21	2>PR	ľ														•
	<213	3> H	omo :	sapi	ens												
15	<40	0>21															
	gc t	gca	ggc	ggc	atc	cta	cac	ctg	gag	ctg	ctg	gtg	gcc	gtg	ggc		45
	Ala	Ala	Gly	Gly	He	Leu	His	Leu	Glu	Leu	Leu	Val	Ala	Val	Gly		
20	1				5					10					15		
	ccc	gat	gtc	ttc	cag	gct	cac	cag	gag	gac	aca	gag	cgc	tat	gtg		90
25	Pro	Asp	Val	Phe	Gln	Ala	His	Gln	Glu	Asp	Thr	Glu	Arg	Tyr	Val		
25					20					25					30		
	ctc	acc	aac	ctc	aạc	atc.	ggg	gca	gaa	ctg	ctt	cgg	gac	ccg	tcc		135
30	Leu	Thr	Asn	Leu	Asn	He	Gly	Ala	Glu	Leu	Leu	Arg	Asp	Pro	Ser		
					35					40					45 ·		
	ctg	ggg	gc t	cag	ttt	cgg	gtg	cac	ctg	gtg	aag	atg	gtc	at t	ctg		180
35	Leu	Gly	Ala	Gln	Phe	Arg	Val	His	Leu	Val	Lys	Met	Val	Ile	Leu		
					50					55					60	•	
10	aca	gag	cct	gag	ggt	gct	cca	aat	atc	aca	gcc	aac	ctc	acc	tcg		225
	Thr	Glu	Pro	Glu	Gly	Ala	Pro	Asn	Ile	Thr	Ala	Asn	Leu	Thr	Ser		
					65					70					75		
15	tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag		270
	Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	He	Asn	Pro	Glu		
50					80					85					90		
	gac	gac	acg	gat	cct	ggc	cat	gc t	gac	ctg	gtc	ctc	tat	atc	act		315
	Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	Val	Leu	Tyr	Ile	Thr		
5	•				95					100				•	105		

	agg	ttt	gac	ctg	gag	tlg	cct	gat	ggt	aac	cgg	cag	gtg	cgg	ggc	36	60
	Arg	Phe	Asp	Leu	Glu	Leu	Pro	Asp	Gly	Asn	Arg	Gln	Val	Arg	Gly		
5			•		110					115					120		
	gtc	acc	cag	ctg		ggt	gcc	tgc	tcc	cca	acc	tgg	agc	t gc	ctc	4()5
10				Leu												•	
			• • • • • • • • • • • • • • • • • • • •		125					130		•		- • -	135		
	att	acc	gag	gac		ggc	ttc	gac	ctg		gtc	acc	att	gcc		45	50
15				Asp			•										
	1.0		0.0	,,,,,	140	0.,			200	145	,				150		
20	gag	att	ggg	cac		ttc	ggc	ctg	gag		gac	ggc	gcg	ccc		49	95
				His													
					155				•	160					165		
25	agc	ggc	tgc	ggc	ссс	agc	gga	cac	gtg	atg	gct	tcg	gac	ggc	gcc	54	10
	Ser	Gly	Cys	Gly	Pro	Ser	Gly	His	Val	Met	Ala	Ser	Asp	Gly	Ala		
30					170					175					180		
	gcg	ccc	cgc	gcc	ggc	ctc	gcc	tgg	tcc	ссс	tgc	agc	cgc	cgg	cag	58	35
	Ala	Pro	Arg	Ala	Gly	Leu	Ala	Trp	Ser	Pro	Cys	Ser	Arg	Arg	Gln		
<i>35</i>					185					190					195		
-	ctg	ctg	agc	ctg	ctc	aga	ccc	gtc	cct	ccg	tcg	ccg	ctc	cct	ctg	63	30
40	Leu	Leu	Ser	Leu	Leu	Arg	Pro	Val	Pro	Pro	Ser	Pro	Leu	Pro	Leu		
					200					205					210		
	ctg	gcc	acc	cac	ctc	t gc	gcc	ggc	agg	agc	ctt	agt	ctt	ggt	ccc	67	75
45	Leu	Ala	Thr	His	Leu	Cys	Ala	Gly	Arg	Ser	Leu	Ser	Leu	Gly	Pro		
					215					220					225		
50	agc	caa	gag	ccg	gct	cct	ggt	ggg	ggg	cgc	ggg	ccg	aga	act	cct	72	0.5
	Ser	Gln	Glu	Pro	Ala	Pro	Gly	Gly	Gly	Arg	Gly	Pro	Arg	Thr	Pro		
					230					235					240		
55	gt t	ccc	ac t	cac	aaa	agg	cca	cgc	ttc	caa	acg	ctt	cca	tcc	tcg	76	5

	Val Pro Thr His Lys Arg Pro Arg Phe Gln Thr Leu Pro Ser Ser	
5	245 250 255	
	tgc cca ctc ctc cgt ccc gcc tcc tcc cgg tgt aca ccc cgg gac	810
	Cys Pro Leu Leu Arg Pro Ala Ser Ser Arg Cys Thr Pro Arg Asp	
10	260 265 270	
	<210>22	
15	<211>43	
	<212>DNA	
	<213> Homo sapiens	
20	<400>22	
	ggactcgagc caccaatgca ccagcgtcac ccccgggcaa gat	43
25		
	<210>23	
	<211>45	
30	<212>DNA	
	<213> Homo sapiens	
35	<400>23	
	tccgtcgact cattatcagg ttccttcctt tcccttccag gactg	45
	<210>24	
40	<211>30	
	<212>DNA	
45	<213> Homo sapiens	
	<400>24	
	ggttggcaat gtagacactg gtcaggttgg	30
50	= -	
	<210>25 .	
55	<211>30	

	<212>DNA				
5	<213> Homo sapiens				
	<400>25				
	ccaacctgac cagtgtctac attgccaacc			·	30
10					
	<210>26				
15	<211>30				
,,	<212>DNA				
	<213> Homo sapiens				
20	<400>26			,	
	ctttccacct aggtgggcag ggctccaggc				30
25					
25	<210>27		•		
	<211>30				
30	<2 12>DNA		•	• ,	
	<213> Homo sapiens				
	<400>27				
35	gcctggagcc ctgcccacct aggtggaaag				30
			·		
40	<210>28				
	<211>33				
	<212>DNA				
45	<213> Homo sapiens				
	<400>28				
50	tcgagaaaaa gtctacgggg gcctaggttt tta				33
	<210>29	٠			
55	<211>33				

	<212>DNA	
5	<213> Homo sapiens	
	<400>29	
	agcttaaaaa cctaggcccc cgtagacttt ttc	33
10		
	<210>30	
15	<211>30	
	<212>DNA	
	<213> Homo sapiens	
20	<400>30	
	tcggccatgg ccgcaggcgg catcctacac	30
25		
	<210>31	
	<211>28	
30	<212>DNA	•
	<213> Homo sapiens	
25	<400>31	
35	ggcaagctta tcagcggggc gcggcgcc	28
	•	
40	<210>32	
	<211>564	
	<212>DNA	
45	<213 Homo sapiens	
	<400>32	
50	ccatggccgc aggcggcatc ctacacctgg agctgctggt ggccgtgggc cccgatgtct	60
	tccaggctca ccaggaggac acagagcgct atgtgctcac caacctcaac atcggggcag	120
	aactgetteg ggaccegtee etgggggete agtttegggt geacetggtg aagatggtea	180
<i>55</i>	ttctgacaga gcctgagggt gctccaaata tcacagccaa cctcacctcg tccctgctga	240

	gcgtctgtgg giggagccag accatcaacc ctgaggacga cacggatcct ggccatgctg	300
5	acctggtcct ctatatcact aggtttgacc tggagttgcc tgatggtaac cggcaggtgc	360
	ggggcgtcac ccagctgggc ggtgcctgct ccccaacctg gagctgcctc attaccgagg	420
	acactggctt cgacctggga gtcaccattg cccatgagat tgggcacagc ttcggcctgg	480
10	agcacgacgg cgcgcccggc agcggctgcg gccccagcgg acacgtgatg gcttcggacg	540
	gcgccgcgcc ccgctgataa gctt	564
15		
	<210>33	
	<211>184	
20	<212>PRT	
	<213> Homo sapiens	
25	<400>33	
	Met Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val	
	1 5 10 15	:
30	Gly Pro Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr	
	20 25 30	
35	Val Leu Thr Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro	
	35 40 45	
	Ser Leu Gly Ala Gln Phe Arg Val His Leu Val Lys Met Val Ile	
40	50 55 60	
	Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr	
45	65 70 75	
	Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr Ile Asn Pro 80 85 90	
50	Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu Tyr lle 95 100 105	
55	Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val Arg	
	110 115 120	

	Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys	
5	125 130 135	
	Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala	
40	140 145 150	
10	His Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro	
	155 160 165	
15	Gly Ser Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly	
	170 175 180	
	Ala Ala Pro Arg	
. 20	185	
25	<210>34	
	<211>2529	
	<212>DNA	
30	<213> Mus musculus	
	<400>34	
35	atgagecage titgecigig gitgaegige cagectigit atgetgicag	50
	tgtcagagga atcctcactg gtgccatctt cattctgggc tgctgggggc	1.00
	tctctgactt ccagaagagt cttcttcaag atctggagcc caaggatgtg	150
40	tettettact ttggccacca tgctgctcca ttcacaggcc atcetecete	200
	tcacctccag agactgagac ggagaaggac tttggaggac attctgcacc	250
45	tggaactcct ggtagctgtg ggccccgatg tttcccgggc tcatcaggag	300
	gacacagaac gctacgtgct cactaatctc aatatcgggt cagaactgtt	350
	gagaaaccca tccctgggag tccagttcca ggtgcacctg gtgaagctaa	400
50	tcaccetete tgactcagag agtacteega atateaegge caacateaee	450
	tcatccttga tgagcgtctg cgagtggagc cagacgatca accccacga	500
55	tgacagggat ccaagtcacg ctgacctgat tctctatatc accagcaacg	550
•	tggctggtgc cactgtcctt gtgattcatt ttctcttatc aaggtttgac	600

	Ciggagiigo	cigaiggcaa	ccagcaggt	cggggtgtca	cccagctggg	65
5	aggtgcctgc	tccctttcct	ggagttgcci	tatcactgag	gatactggct	. 70
	ttgacctggg	ggtcaccatc	gcccatgaga	ttgggcacag	cttcgggctg	75
	gaccatgatg	gtgctccagg	tagtggcago	acctgcaagg	ccagtggcca	80
10	cgtgatggcg	gctgatggcg	caacacctac	tggagggacc	ctggagtggt	850
	ctgcctgcag	ccaaaggcag	ttgcagcaco	tactcagcac	agggcaaatg	900
15	cactgcttcc	aggacccacc	tgggctgcag	tcaggactta	cacggcacca	95(
	gctgatggca	cagcctggcc	tctactacag	tgcagatgat	cagtgccgtg	1000
	tggctttcgg	ttctggggct	gtcgcctgca	ccttctccag	ggagggtctg	1050
20	aacacagcac	tcagtggtcc	ttccaccttg	atcctgtccg	cagacccctg	1100
	ccagaagtcc	tggatggctc	ctgaagctct	caaattctcc	ttctccacca	1150
25	aatccgacat	ctggtctctg	ggctgcatca	ttctagacat	ggccactigc	1200
	tccttcctga	acgacacaga	agccatgcaa	ctgcggaagg	ccatccgcca	1250
	tcatccaggc	agcctgaagc	ccatcctgaa	aaccatggag	gagaagcaaa	1300
30	tccctggtac	agatgictac	tatttgcttc	tgcccttcat	gttgcatatc	1350
	aacccctccg	atcgactggc	aatcaaggat	gtgatgcaag	tcaccttcat	1400
35	gagcaactcc	ttcaaaagct	cctctgttgc	gctgaatatg	cagcggcaga	1450
	aggtccccat	cttcatcact	gacgtgctgc	ttgaaggcaa	catggccaac	1500
	atcttaggtg	atggcagctg	gctgtgtgct	tcctttgtga	acgacagcag	1550
10	gcactgtgac	tcagggattg	gctcgcagag	acttgggttt	gattttcagt	1600
	cagtctcttg	gacagagcac	cctctgaaag	atgtcatgca	gaatttctcc	1650
15	agtcgaccag	aggiccagci	cagagccatt	aacaagttgt	tgacaatgcc	1700
	agaggaccag	ctagcactgg	caaaggaccc	agaagctgag	atcccaagga	1750
	gcagtttgat	catctccttc	ctgatggata	ccttgcggag	ccatcctaac	1800
io	tctgaaaggc	ttgttaatgt	ggtctacaac	gtgcttgcca	ttatttccag	1850
	ccaaggacag a	atctcagaag	agctggaaga	ggaggggttg	tttcagcttg	1900
_	cccaagagaa (cctggagcac	ttccaagagg	acagggacat	ctgcctctct	1950
5	atcctgagcc (tgctctggtc	cctcctggta	gatgttgtca	ctgtggacaa	2000

	agagecettg gageagetet etggeatggt cacetgggtg etggetacte	2050
5	atccggagga cgtggaaata gcagaggctg gctgtgcggt gctctggctg	2100
	ctgtccttgt tgggctgcat aaaggagagt cagtttgagc aggtggtagt	2150
.a	gctgctcctg agaagcatcc agctgtgccc tggcagagta ctgctggtga	2200
10	acaatgcatt ccgtggcttg gccagcctcg caaaggtgtc cggcccaccc	2250
	tcacagitag agccaaaiga cigggiaicc agccccagcc cccititgig	2300
15	gaatcagaga cttcactatg tgaacaagca aaagctgttc atgcctctgt	2350
	gggtgctgag gcaagagcac cctcattact gctgtgctaa tgaccctaca	2400
	tcagagcaca tccaggcagt actaagtgga ctaaatgggt ttgaaaagaa	2450
20	gcacagitgi giggaalcii gigiggaalg iggcigcagg cagcaggaga	2500
	agaatagagg aggagcccca gggatttga	2529
25	•	
	<210>35	
	<211>2514	
30	<212>DNA	·
	<213> Mus musculus	
35	<400>35	
	aggaagetee caagagtaaa cactgeetga tgteeegeee agceageaag	50
	tgaacattgc acactaacca gaatcccagt cactagggct cctgtccggc	100.
40	catcaactgc cttttctaaa gatgagccag ctttgcctgt ggttgacgtg	150
	ccagcctigt tatgctgtca gtgtcagagg aatcctcact ggtgccatct	200
45	tcattctggg ctgctggggg ctctctgact tccagaagag tcttcttcaa	250
	gatctggagc ccaaggatgt gtcttcttac tttggccacc atgctgctcc	300
	attcacagge catectecet etcaceteca gagaetgaga eggagaagga	350
50	ctttggagga cattctgcac ctggaactcc tggtagctgt gggccccgat	400
	gittcccggg cicatcagga ggacacagaa cgctacgigc tcactaatci	450
E E	caatateggg teagaactgt tgagaaacce atecetggga gtecagttee	500
55	aggigcacci ggigaagcia atcacccici cigacicaga gagiaciccg	550

		adiaicacgg	Cladialia	Cicalcult	aigagegiei	gcgagiggag	600
5		ccagacgatc	aacccccacg	atgacaggga	tccaagtcac	gctgacctga	650
		ttctctatat	caccaggttt	gacctggagt	tgcctgatgg	caaccagcag	700
		gttcggggtg	tcacccagct	gggaggtgcc	tgctcccttt	cctggagttg	750
10	,:	ccttatcact	gaggatactg	gctttgacct	gggggtcacc	atcgcccatg	800
		agattgggca	cagcttcggg	ctggaccatg	atggtgctcc	aggtagtggc	850
15		agcacctgca	aggccagtgg	ccacgtgatg	gcggctgatg	gcgcaacacc	900
		tactggaggg	accclggagt	ggtctgcctg	cagccaaagg	cagttgcagc	950
		acctactcag	cacagggcag	atgcactgct	tccaggaccc	acctgggctg	1000
20		cagtcaggac	t tacacggca	ccagctgatg	gcacagcctg	gcctctacta	1050
		cagtgcagat	gatcagtgcc	gtgtggcttt	cggttctggg	gctgtcgcct	1100
25		gcaccttctc	cagggagggt	ctggatgtat	gccaggccct	gtcctgccac	1150
		acagaccccc	tggaccaaag	cagctgcagc	cgcctccttg	ttcctctcct	1200
		ggatgggaca	ggatgtggtg	tggagaagtg	gtgctccaag	gctcgctgtc	1250
30		gctccctagc	tgagctggct	cctgtggctg	cagtacatgg	acactggtct	1300
		agctggggcc	cccatagtcc	ctgctcccga	tcctgtggag	gaggtgtgat	1350
25		taccaggagg	cggtggtgca	acaaccccag	gcctgcattt	gggggacgtg	1400
35		catgtgtggg	tgaagacctc	caggctaaga	tgtgcaacac	gcaggcttgt	1450
		gagaagactc	agctggagtt	catgtccgag	cagtgtgccc	agacagacag	1500
40		acaaccactg	caactttccc	aaggcactgc	ctccttctac	cactgggatg	1550
		ctgctgtgca	gtatagtcaa	ggagataccc	tgtgcagaca	catgtgctgg	1600
		gctgttggag	aaagcttcat	tgtcagccgt	ggggacaggt	tcctagatgg	1650
45		gacccgttgt	gtgccaagtg	gtccccagga	tgatgggacc	ctaagcctct	1700
		gtttgttggg	cagctgcagg	acctttggct	gtgatggcag	gatggactcc	1750
50		cagaaggttt	gggatgcgtg	ccaggtgtgt	ggaggagaca	acagcacctg	1800
		cagctcacgg	aatggttctt	tcacagctgg	gagagccaga	gaatatgtca	1850
		cgttcctgat	tgttactccc	aacatgacca	acgcacacat	tgtcaaccgc	1900
55		aggcctctct	tcacacactt	ggcggtgagg	atccagggcc	actacattgt	1950

	ggcagggaag	actagcatct	cacccaacac	cacctaccct	tcccttctgg	2000
5	aggactaccg	tgtggaatac	agagtgactc	tcactgagga	ccagctgccc	2050
	cacttagagg	agattcacat	ccggggaccc	gtccgggatg	acattgagat	2100
	tcaggtgtac	agacgatatg	gaggagaata	tggggatctt	acacacccag	2150
10	acatcacctt	ttcctacttt	caactgaagc	agcaggcagc	ctgggtatgg	2200
	accgctaagc	gtggaccctg	ctcagtgagc	tgtggggcag	ggctgcgctg	2250
15	ggtgacctac	agctgccagg	atcaagctca	agacaagtgg	gtaaagaacg	2300
	cccagtgcca	agggagccca	cagccacctg	catggcaaga	gccttgtgtc	2350
	tetgeceect	gctcccata	ttgggtagct	ggggacttca	gcccatgtag	2400
20	cgtgtcttgt	ggcgggggcc	ttcgggagcg	gtcactgcgc	tgtgtagaga	2450
	cccaagatgg	cttcttaaag	acactgccac	ctgcccggtg	cagagcagta	2500
25	gcccagcagc	cagc				2514
				,		
				•		
	40.00.00	•		•	•	•
30	<210>36					•
30	<211>3512					
30	<211>3512 <212>DNA					•
	<211>3512 <212>DNA <213> Mus musc	culus	÷			
	<211>3512 <212>DNA <213> Mus mus c <400>36		;	• • • • • • • • • • • • • • • • • • • •		
	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee	caagagtaaa				50
35	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge	caagagtaaa acactaacca	gaatcccagt	cactagggct	cctgtccggc	100
35	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge	caagagtaaa acactaacca ctttlctaaa	gaatcccagt gatgagccag	cactagggct ctttgcctgt	cctgtccggc	100 150
35 40	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge ccageettgt	caagagtaaa acactaacca cttttctaaa tatgctgtca	gaatcccagt gatgagccag gtgtcagagg	cactagggct ctttgcctgt aatcctcact	cctgtccggc ggttgacgtg ggtgccatct	100 150 200
35 40	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge ccageettgt tcattetggg	caagagtaaa acactaacca cttttctaaa tatgctgtca ctgctggggg	gaatcccagt gatgagccag gtgtcagagg ctctctgact	cactagggct ctttgcctgt aatcctcact tccagaagag	cctgtccggc ggttgacgtg ggtgccatct tcttcttcaa	100 150 200 250
35 40	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge catcaactge cageettgt tcattetggg gatetggage	caagagtaaa acactaacca ctttlctaaa tatgctgtca ctgctgggg ccaaggatgt	gaatcccagt gatgagccag gtgtcagagg ctctctgact gtcttcttac	cactagggct ctttgcctgt aatcctcact tccagaagag tttggccacc	cctgtccggc ggttgacgtg ggtgccatct tcttcttcaa atgctgctcc	100 150 200 250 300
35 40 45	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge catcaactge catcattettettettettettettettettettettettette	caagagtaaa acactaacca cttttctaaa tatgctgtca ctgctggggg ccaaggatgt catcctccct	gaatcccagt gatgagccag gtgtcagagg ctctctgact gtcttcttac ctcacctcca	cactagggct ctttgcctgt aatcctcact tccagaagag tttggccacc gagactgaga	cctgtccggc ggttgacgtg ggtgccatct tcttcttcaa atgctgctcc cggagaagga	100 150 200 250 300 350
35 40 45	<211>3512 <212>DNA <213> Mus musc <400>36 aggaagetee tgaacattge catcaactge catcaactge catcattettettettettettettettettettettettette	caagagtaaa acactaacca cttttctaaa tatgctgtca ctgctggggg ccaaggatgt catcctccct cattctgcac	gaatcccagt gatgagccag gtgtcagagg ctctctgact gtcttcttac ctcacctcca ctggaactcc	cactagggct ctttgcctgt aatcctcact tccagaagag tttggccacc gagactgaga tggtagctgt	cctgtccggc ggttgacgtg ggtgccatct tcttcttcaa atgctgctcc cggagaagga gggccccgat	100 150 200 250 300

	caatatcggg	tcagaactgt	tgagaaaccc	atccctggga	gtccagttcc	500
5	aggtgcacct	ggtgaagcta	atcaccctct	ctgactcaga	gagtactccg	550
	aatatcacgg	ccaacatcac	ctcatccttg	atgagcgtct	gcgagtggag	600
	ccagacgatc	aacccccacg	atgacaggga	tccaagtcac	gctgacctga	650
0	ttctctatat	caccaggttt	gacctggagt	tgcctgatgg	caaccagcag	700
	gttcggggtg	tcacccagct	gggaggtgcc	tgctcccttt	cctggagttg	750
15	ccttatcact	gaggatactg	gctttgacct	gggggtcacc	atcgcccatg	800
	agattgggca	cagcttcggg	ctggaccatg	atggtgctcc	aggtagtggc	850
	agcacctgca	aggccagtgg	ccacgtgatg	gcggctgacg	gcgcaacacc	900
20	cactggaggg	accctggagt	ggtctgcctg	cagccaaagg	cagttgcagc	950
	acctactcag	cacagggcaa	atgcactgct	tccaggaccc	acctgggctg	1000
25	cagtcaggac	ttacacggca	ccagctgatg	gcacagcctg	gcctctacta	1050
	cagtgcagat	gatcagtgcc	gtgtggcttt	cggttctggg	gctgtcgcct	1100
	gcaccttctc	cagggagggt	ctggatgtat	gccaggccct	gtcctgccac	1150
30	acagacccct	tggaccaaag	cagctgcagc	cgcctccttg	ttcctctcct	1200
	ggatgggaca	gaatgiggig	tggagaagtg	gtgctccaag	gctcgctgtc	1250
35	gctccctagc	tgagctggct	cctgtggctg	cagtacatgg	acactggtct	1300
33	agctggggcc	cccatagtcc	ctgctcccga	tcctgtggag	gaggtgtgat	1350
		cggtggtgca				1400
40		tgaagacctc				1450
		agctggagtt				1500
		caactttccc				1550
45		gtatagtcaa				1600
	gctgttggag	aaagcttcat	tgtcagccgt	ggggacaggt	tcctagatgg	1650
50	_	gtgccaagtg				1700
	_	cagctgcagg				1750
	cagaaggttt	gggatgcgtg	ccaggtgtgt	ggaggagaca	acagcacctg	1800
55	cagctcacgg	aatggttctt	tcacagctgg	gagagccaga	gaatatgtca	1850

	•	
	cgttcctgat tgttactccc aacatgacca acgcacacat tgtcaaccgc	1900
5	aggeotetet teacacactt ggeggtgagg atceagggee actacattgt	1950
	ggcagggaag actagcatet cacceaacae cacctaccet tecettetgg	2000
	aggactaccg tgtggaatac agagtgactc tcactgagga ccagctgccc	2050
10	cacttagagg agattcacat ccggggaccc gtccgggatg acattgagat	2100
	tcaggtgtac agacgatatg gaggagaata tggggatctt acacacccag	2150
15	acatcacctt ticctactit caactgaagc agcaggcagc cigggtaigg	2200
	accectaage giggacecte cicagigage igiggggeag geoigegeig	2250
	ggtgacctac agctgccagg atcaagctca agacaagtgg gtaaagaacg	2300
20	cccagigcca agggagccca cagccaccig caiggcaaga gcciigigtc	2350
	tctgccccct gctccccata ttgggtagct ggggacttca gcccatgtag	2400
25	cgtgtcttgt ggcgggggcc ttcgggagcg gtcactgcgc tgtgtagaga	2450
	cccaagatgg cttcttaaag acactgccac ctgcccggtg cagagcagta	2500
	gcccagcagc cagcagcaga agtggaaaac tgcaactccc agccctgtcc	2550
30	caccaggtgg gaggtgtcag accetggece ttgcatgcca tetgcetgtg	2600
	aggcaggict ggacicaagg aatgigacat gigigiccag ggcgggtgac	2650
35	ccggagaagc cagaaactgc aggcccctgc cgcaccgacg agatgtcagc	2700
55	tatgctggag ccctgctcca ggagcctgtg ttctccaggc ttgggtcagg	2750
	tggacaacac catgicicig ggcgaggagg ciccaiccc ggigggcagi	2800
40	gacaagccag gggctcaggc tgagcatgtg tggacccctc tggtggggct	2850
	gtgctccatc tcttgtggga gaggtctgaa ggaactgtat ttcctgtgca	2900
	tggattctgt cctcaaaatg cctgtccagg aagagctatg cggcttggct	2950
45	agtaagcccc caagccggtg ggaggtctgc agggctcgcc cctgtcctgc	3000
	teggtgggag acteaagtet tggcacegtg eeeggtgace tgtggtgggg	3050
50	ggcgagtgcc actgtctgtt cgttgtgtgc agctagaccg tggccacccg	3100
	atatetgtae etcactecaa gtgetegeea gtgeetaage caggeteett	3150
	cgaggacigc agccctgagc citgiccigc tagggcacta gigigggaag	3200
5 5	ccgccccac attcgccgtc acaagatggc gctgacatcc tgtgttctaa	3250

	gttggtaaac aaataatctg cgcatgagcc aagggtattt acgactactt	3300						
5	gtactctgtt tttcccgtga acgtcagctc ggccatgggc tgcagccaat	- 3350						
	cagggagtga tgcgtcctag gcaattgitg ttctctttta aatagaaggg	3400						
	gittcgttit tctcttttc ttgcttctta cacictggcc ccaaaaagat	3450						
10	gtaagcaata aagctttgcc gtaggaaaaa aaaaaaaaaa	3500						
	cctctagatc ag	3512						
15								
	\cdot .							
	<210>37							
20	<211>22							
	<212>PRT							
25	<213> Homo sapiens							
	<400>37							
	Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln							
30	1 5 10 15							
	Glu Asn Ser Val Gln Ser Ser							
35	20							
	,							
	Z010\00							
40	<210>38							
	<211>30							
45	<212>DNA							
	<213> Homo sapiens							
	<400>38							
50	atgtgcaaca ctcaggcctg cgagaagacc	30						
55	40.40.00							
	<210>39							

	<211>30	
5	<212>DNA	
	<213> Homo sapiens	
	<400>39	
10	ccaacctgac cagtgtctac attgccaacc	30
		٠
15	<210>40	
	<211>21	
20	<212>DNA	
	<213> Homo sapiens	
	<400>40	
25	ctggagccct gcccacctag g	21
30		
	<210>41	
35	<211>62	
35	<212>DNA	
	<213> Homo sapiens	
40	<400>41	
	gccgtcgact cttatcactt atcgtcatcg tccttgtagt cttgcgacat gaactccagc	60
	tg	62
45		
	<210>42	-
50	<211>62	
	<212>DNA	
55	<213> Homo sapiens	

	<400>42	
5	gccgtcgact cttatcactt atcgtcatcg tccttgtagt ccaggitggg ggtaactgtc	60
	ag	62
10		
70		
	<210>43	
15	<211>62	
	<212>DNA	
	<213> Homo sapiens	
20	<400>43	
	gccgtcgact cttatcactt atcgtcatcg tccttgtagt ccacgtgtgc agcttgagcc	60
25	cc	62
30	Z010\ 44	
50	<210>44	
	<211>62	
35	<212>DNA <213> Homo sapiens	
	<400>44	
40	·	
40	gccgtcgact citatcacti atcgtcatcg tccttgtagt ccctaggtgg gcagggctcc	60
	ug	62
45		
	<210>45	
50	<211>62	
	<212>DNA	
	<213> Homo sapiens	
55	<400>45	

	geogregaci citateacti ategicateg teetigtagt caccetgice cacacaggge	60
5	cc	62
10	Z210N46	
	<210>46 <211>60	
15	<212>DNA	
,,,	<213> Homo sapiens	
	<400>46	
20	tecaagettg tegactetta teacttateg teategiect igtagieggt teciteetti	60
25		
	<210>47	
30	<211>27	
	<212>DNA	•
	<213> Artificial Sequence	
35	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
40	Sequence: Synthetic DNA	
	<400>47	
45	gactacaagg acgatgacga taagtga	27
	<210>48	
50	<211>8	
	<212>RPT	
55	<213> Artificial Sequence	

<220>

<223 Description of Artificial Sequence: Synthetic

<400>47

1

Asp Tyr Lys Asp Asp Asp Lys

5

Claims

5

10

15

40

45

50

- 1. A protease that is capable of cleaving a bond between residues Tyr-842 and Met-843 of von Willebrand factor (hereinafter referred to as "vWF") and comprises a polypeptide chain having the amino acid sequence Leu-Leu-Val-Ala-Val as a partial sequence or an amino acid sequence with deletion, substitution, or addition of one or several amino acids in said amino acid sequence.
- 2. The protease according to claim 1, which comprises a polypeptide chain having the amino acid sequence Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Val-Ala-Val as the N-terminal partial sequence of a mature protein or an amino acid sequence with deletion, substitution, or addition of one or several amino acids in said amino acid sequence.
- 3. The protease according to claim 1 or 2, which comprises a polypeptide chain having an amino acid sequence with deletion, substitution, or addition of one or several amino acids in the amino acid sequence as shown in SEQ ID NO: 3 or 7 or a partial sequence of any of the aforementioned amino acid sequences as the N-terminal partial sequence of a mature protein or the aforementioned amino acid sequence.
- 4. The protease according to any one of claims 1 to 3, which comprises a polypeptide chain having an amino acid sequence with deletion, substitution, or addition of one or several amino acids in the amino acid sequence as shown in any of SEQ ID NOs: 16 to 21.
 - 5. The protease according to any one of claims 1 to 4, which has molecular weight of 105 to 160 kDa or 160 to 250 kDa in SDS-PAGE under reducing or non-reducing conditions.
 - 6. A gene fragment encoding a protease that is capable of cleaving a bond between residues Tyr-842 and Met-843 of vWF and comprises a polypeptide chain having the amino acid sequence Leu-Leu-Val-Ala-Val as a partial sequence or an amino acid sequence with deletion, substitution, or addition of one or several amino acids in said amino acid sequence.
 - 7. A gene fragment encoding the protease according to any one of claims 2 to 5.
 - 8. DNA encoding the protease according to any one of claims 1 to 5, which comprises a nucleotide sequence encoding a polypeptide capable of cleaving a bond between residues Tyr 842 and Met 843 of vWF comprising CTG CTG GTG GCC GTG or with deletion, substitution, or addition of one or several nucleotides therein.
 - 9. The DNA encoding a protease according to claim 8, which comprises a nucleotide sequence comprising GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG GTG GCC GTG or with deletion, substitution, or addition of one or several nucleotides therein.
 - 10. The DNA encoding a protease according to claim 8 or 9, which comprises a nucleotide sequence with deletion, substitution or addition of one or several nucleotides in the nucleotide sequence as shown in SEQ ID NO: 6 or a partial sequence of any of the nucleotide sequences, or the nucleotide sequence.

- 11. The DNA encoding a protease according to any one of claims 8 to 10, which comprises a nucleotide sequence with deletion, substitution or addition of one or several nucleotides in the nucleotide sequence as shown in SEQ ID NO: 15 or a partial sequence of any of the nucleotide sequences, or the nucleotide sequence.
- 12. A vector comprising the DNA encoding a protease according to claim 8 or 9, which comprises a nucleotide sequence with deletion, substitution or addition of one or several nucleotides in the nucleotide sequence as shown in SEQ ID NO: 6 or 15 or a partial sequence of any of the nucleotide sequences, or the nucleotide sequence.
- 13. The vector according to claim 12 comprising a polypeptide encoding domain and specialized in the expression of said polypeptide.
 - 14. A cell transformed or transfected with the vector according to claim 12.
 - 15. A host cell transformed or transfected with the expression vector according to claim 13.
 - 16. A pharmaceutical composition comprising the protease according to any one of claims 1 to 5.
- 17. The pharmaceutical composition according to claim 16, which is applied to treating diseases caused by deterioration in activity of the protease according to any one of claims 1 to 5, which is involved with gene defects or liver diseases.
 - 18. The pharmaceutical composition according to claim 16 or 17, which is applied to the inhibition of platelet aggregation caused by the formation of excess vWF high-molecular-weight multimers.
- 19. The pharmaceutical composition according to claim 18, wherein the disease is thrombotic thrombocytopenic purpura.
 - 20. An antibody against the protease according to any one of claims 1 to 5.
- 21. The antibody according to claim 20 against the protease according to any one of claims 1 to 5, which is capable of inhibiting or neutralizing the protease activity.
 - 22. The antibody according to claim 20 against the protease according to any one of claims 1 to 5, which can be used for affinity purification of the protease.
 - 23. A process for purifying the protease according to any one of claims 1 to 5, which utilizes the antibody according to claim 22.
- 24. A pharmaceutical composition or diagnostic agent comprising an antibody against the protease according to any one of claims 1 to 5.
 - 25. An antagonist, inhibitor, agonist, or activity regulator against the protease according to any one of claims 1 to 5.
- 26. A pharmaceutical composition or diagnostic agent comprising an antagonist, inhibitor, agonist, or activity regulator against the protease according to any one of claims 1 to 5.
 - 27. A pharmaceutical composition or diagnostic agent comprising the DNA according to any one of claims 8 to 11 or antisense DNA thereof.
- 28. The pharmaceutical composition according to claim 27, which is used for gene therapy intended to cure diseases caused by deterioration in activity of the protease according to any one of claims 1 to 5, which is involved with gene defects or liver diseases.
- 29. A process for assaying vWF-cleaving activity, wherein a protease-substrate reaction is carried out using vWF and vWF-cleaving protease on a membrane filter, and a substrate sample is then recovered from the filter, followed by SDS-PAGE analysis without Western blotting.
 - 30. A process for screening for a compound capable of cleaving vWF, wherein the vWF-cleaving activity of a test

15

compound is assayed by the process according to claim 29.

- 31. A process for preparing the protease according to any one of claims 1 to 5, wherein human plasma fraction I paste is used as a starting material.
- **32.** A homologue of the protease according to any one of claims 1 to 5 derived from a different animal species or a homologous protein thereof.
- 33. A gene encoding the homologue of the protein according to claim 32 derived from a different animal species or a homologous protein thereof.
 - 34. An animal having a modified gene encoding the homologue of the protein according to claim 32 derived from a different animal species or a homologous protein thereof.

15

15

20

25

30

35

40

45

50

FIG 1

Normal human plasma

Purified vWF

FIG 5A

FIG 5B

FIG 5C

Pool Fraction No. 31 32 33 34 3536 373839 404142 43 44 454647 4849

FIG 6A

FIG 6B

FIG 6C

Applied sed through Washed fraction

kDa

250 —

150 —

100 — 🛅

75 —

FIG 7

Fraction No.

FIG 8A

Fraction No.

70 7172 73 7475 76 7778 79 80 81 8283 84 85 86 87 88 89 90 91 92 93 94

Intact vWF molecule (remaining uncleaved)

WF-cleavage fragment

WF-cleavage fragment

WF-cleavage fragment

FIG 8B

gct	gca	ggc	ggc	atc	cta	cac	ctg	gag	ctg	ctg	gtg	gcc	gtg	ggc
Ala	Ala	Gly	Gly	Ile	Leu	His	Leu	Glu	Leu	Leu	Val	Ala	Val	Gly
1				5					10		~-~		+ 2 +	15
CCC	gat	gtc	ttc	cag	gct	cac	cag	aag	gac	aca mb=	Clu	λ×~	Tar	gcg
Pro	Asp	Val	Phe		Ala	HIS	GIN	Lys	25	1111	GIU	Arg	TAT	30
				20		~~~	~~3	~ a a		ctt	caa	gac	CCG	tcc
ctc	acc Thr	aac	CCC	aac	atc	999	yca Mla	Glu	Len	Leu	Ara	Asp	Pro	
Leu	Thr	ASI	Leu	35	116	GIY	AIG	GIU	40	200	9			45
	ggg				caa	ata	cac	cta		aaα	atσ	atc	att	cta
ctg	ggg	gct	cag	77 -	cgg	ycy	ui.	tou	Wal	Lve	Mot	Val	Tla	T.eu
Leu	Gly	Ala	Gin		Arg	vai	HIS	nea		пуз	Mec	Vai	110	60
				50					55					
aca	gag	cct	gag	ggt	gct	cca	aat	atc	aca	gca	aac	CTC	acc	tcg
Thr	Glu	Pro	Glu	Gly	Ala	Pro	Asn	Ile	Thr	Ala.	Asn	Leu	Thr	Ser
				65					70					75
tcc	ctg	ctg	agc	gtc	tgt	ggg	tgg	agc	cag	acc	atc	aac	cct	gag
Ser	Leu	Leu	Ser	Val	Cys	Gly	Trp	Ser	Gln	Thr	Ile	Asn	Prō	Glu
				80					85					90
gac	gac	acg	gat	cct	ggc	cat	gct	gac	ctg	gtc	ctc	tat	atc	act
Asp	Asp	Thr	Asp	Pro	Gly	His	Ala	Asp	Leu	Val	Leu	Tyr	Ile	Thr
_	_			95					100					105
agg	ttt	gac	ctg	gag	ttg	cct	gat	ggt	aac	cgg	cag	gtg	cgg	ggc
	Phe													
				110			-		115					120
atc	acc	cad	cta	aac	aat	acc	tac	tcc	cca	acc	tgg	agc	tgc	ctc
	Thr													
vaı	THE	GIII	rea	125	Gry		CyD		130					135
							~~~	a t ==		ara	200	att	acc	
	acc													
Ile	Thr	Glu	Asp		GIÀ	Pne	Asp	Leu		vaı	THE	116	Ald	
				140					145					150
gag	att	ggg	cac	agc	ttc	ggc	ctg	gag	cac	gac				
Glu	Ile	Gly	His		Phe	Gly	Leu	Glu		Asp				
				155					160					



brain
heart
skeletal muscle
colon (no mucosa)
thymus
spleen

kidney
liver
small intestine
placenta
lung
peripheral blood leukocyte

gctgcaggcg gcatcctaca cctggagctg ctggtggccg tgggccccga tgtcttccag gctcaccaga aggacacaga gcgctatgtg ctcaccaacc tcaacatcgg ggcagaactg Primer 3 cttcgggacc cgtccctggg ggctcagttt cgggtgcacc tggtgaagat ggtcattctg acagageetg agggtgetee aaatateaca geaaacetea eetegteet getgagegte tgtgggtgga gccagaccat caaccctgag gacgacacgg atcctggcca tgctgacctg Primer 4 stoctotata toactagett isacotegas tiscoteats staacogsca getgoggggo stcacccase tegecestee etectocca acctegaget secteattae egaggacaet ggcttcgacc tgggagtcac cattgcccat gagattgggc acagcttcgg cctggagcac Primer 2 gac

Primer 1

Sense: gctgcaggcg gcatcctaca cctggagctg

Antisense : cagctccagg tgtaggatgc cgcctgcagc

Primer 2

Sense: accattgccc atgagattgg g

Antisense : cccaatctca tgggcaatgg t

Primer 3

Sense: gcgctatgtg ctcaccaacc tcaacatcgg

Antisense : ccgatgttga ggttggtgag cacatagcgc

Primer 4

Sense: atcaaccetg aggacgacac

Antisense : gtgtcgtcct cagggttgat

FIG 12



**FIG 13** 





FIG 14

Cleaved vWF fragment

kDa

250

IG 15





FIG 17





FIG 19







**FIG 22** 



### INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/04141

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ Cl2N15/57, Cl2N9/50, Cl2P21/00, A01K67/027, Cl2N1/15, Cl2N1/19, Cl2N1/21, Cl2N15/00, A61K38/46, A61P7/02, A61P43/00, A61K45/00, A61K48/00, A61K31/711, G01N33/573.A, G01N33/573.Z,									
According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED	ved by classification symbols)								
Int.Cl ⁷ Cl2N15/00-15/57, Cl2N9/5	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2N15/00-15/57, Cl2N9/50, A61K38/46								
Documentation searched other than minimum documentation to	the extent that such documents are included in the fields searched								
	<i>;</i>								
Electronic data base consulted during the international search ( SwissProt/PIR/GeneSeq, GenBank/E	name of data base and, where practicable, search terms used) MBL/DDBJ/GeneSeq, BIOSIS (DIALOG)								
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category* Citation of document, with indication, when									
X/Y/A JP 2000-508918 A (Immuno A 18 July, 2000 (18.07.00), & WO 97/41206 A3	29-32/ 16-19/6-15, 28,33,34								
Miha FURLAN et al., Acquire Willebrand Factor-Cleaving With Thrombotic Thtombocyto 15 April, 1998 (15.04.98), 2839 to 2846	Protease in a Patient 1-15,20-34 ppenic Purpura., Blood,								
Further documents are listed in the continuation of Box	C. See patent family annex.								
* Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" adier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but late than the priority date claimed  Date of the actual completion of the international search  14 June, 2002 (14.06.02)	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family  Date of mailing of the international search report  O2 July, 2002 (02.07.02)								
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer								
Facsimile No.	Telephone No.								

Form PCT/ISA/210 (second sheet) (July 1998)

### INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/04141

Continuati	on of A. CLAS	SIFICATION O	F SUBJE	ECT MATTER				
(Interna	tional Patent	Classificat	ion (IF	PC))				
Int.Cl7	G01N33/15.Z,	G01N33/50.Z						
	(According to national class:	International ification and	Patent IPC)	Classification	(IPC)	or	to	both
		•						-
<b>\</b>								
							•	
			٠.					
ĺ								

Form PCT/ISA/210 (extra sheet) (July 1998)