MFE230Q: Final Exam, May 21, 2012

ankaj_kumar@berkeley.edu - way 21 2 2, 2022, 1:27:49 AM PDT 2rs.

Please motivate your answers. Please underline your final answers.

	Question	Score	
abe!	(Kei 1		
· Mulake	2		
pankaj_kumar@be	3		1.49 AN
	4		date market, with three assets, B ,
	Total:		2.2022
			May
			sdu
		wing three-	date market, with three assets, B ,

1. Discrete model (25 points): Consider the following three-date market, with three assets, B, S, P, which can be interpreted as a risk-free bond, a stock, and a put option on the stock, respectively. The assets are traded at t = 0, 1, 2. There are five states, $\omega_1, \ldots, \omega_5$. At time t=1 (at which point the assets are traded), it is determined whether the economy is in a boom (u) or in a recession (d). Given that the economy is in a boom, the stock price can move up (in state ω_1) or down (in state ω_2). In either case the option expires out of the money. If the economy is in a recession, on the other hand, there are three possible outcomes for the 7:49 AMF stock. It can go up, moderately down, or significantly down to the point that the underlying firm defaults and becomes worthless. These are states ω_3 , ω_4 , and ω_5 , respectively. In states ω_4 and ω_5 , the option expires in the money. The probabilities for the different states are $\mathbb{P}(\omega_1) = 0.1$, $\mathbb{P}(\omega_2) = 0.2$, $\mathbb{P}(\omega_3) = 0.5$, $\mathbb{P}(\omega_4) = 0.1$, and $\mathbb{P}(\omega_5) = 0.1$. The prices of the three assets in different states and times are summarized below.

	B(0)	S(0)	P(0)		B(1)	S(1)	P(1)	191,	B(2)	S(2)	P(2)	State
·						. \	ni.	7	144	240	0	ω_1
				u	120	150	0					
				7	JUK	0.7		7	144	120	0	ω_2
	100	100	20	0	O.							
				1				>	120	200	0	ω_3
		-		d	120	100	40	\rightarrow	120	100	20	ω_4
	10) /						1	120	0	120	ω_5
1 2	VL.											
10 21	4.					1						
1:27:49 AN						•						
4.71.												
02.												
-016												

alou edu - Ma

7.27:49 AM PDT

- ankaj kumar@berkeley.eau way 41 4 PDT AN PDT (c) An insurance company is considering introducing a credit default swap on the firm's default risk. Specifically, they would sell an insurance contract that pays a hundred dollars at t=2 in the case that the (stock-S) firm defaults (in state ω_5), and makes no payment otherwise. What is the t = 0 market price of such a credit default swap?
 - (d) Assume that the insurance company wishes to hedge the risk of the credit default swap in the market. How could it do this with a dynamic portfolio trading strategy?
 - 2. Black-Scholes (20 points): Consider the standard Black-Scholes economy with a risky and a 2,2022,1:21:A9 AN risk-free asset,

$$\frac{dB_t}{B_t} = rdt,$$

$$\frac{dS_t}{S_t} = \hat{\mu}dt + dW.$$

All the standard assumptions (no transaction costs, no arbitrage, etc.) are satisfied. Assume that an investor wishes to create a simple contingent claim with payoff $\Phi(S_T)$ at time T, by rad: using dynamic portfolio trading.

- (a) Formulate a dynamic, self-financing, trading strategy, $\mathbf{h}_t = (h_t^B, h_t^S)', 0 \le t \le T$, that allows the investor to replicate the payoff of the contingent claim, by trading in the bond
- (b) Prove that the trading strategy in (a) does indeed replicate the payoff of the contingent claim.
- What is the time-0 price in this market of a so-called "power" contingent claim, that makes the terminal payoff $\Phi(S_T)=S_T^2$? T:49 AM PD

alou edu - Ma

Viceley.edu. May 41 **
Viceley.edu. 3. Dividends (20 points): Consider the "Black Scholes" economy where the stock pays a constant ankaj_kum dividend yield δ .

$$\frac{dB}{B} = r dt, \qquad r>0,$$

$$\frac{dS+\delta S dt}{S} = \hat{\mu} dt + \sigma dW.$$
 onstant. Now, consider a call option that has no maturity date,

where $\hat{\mu}$, σ , and r are all constant. Now, consider a call option that has no maturity date, but has strike K and will be exercised the first time the stock price reaches S^* . Hence, the cash flow when this first hitting time occurs is $(S^* - K)$ Here, S^* has been chosen such that it is greater than K.

- (a) Determine the differential equation that the value of this call, C(S), satisfies.
- (b) Solve for the call price.
- 2022, 1.21.49 AN (c) Now assume that the buyer of the option is allowed to choose for herself the S^* at which she will elect to exercise it. Determine this optimal S^* .
- 4. Term structure (20 points): Assume that the short rate follows the asset pricing dynamics $dr_t = a(b-r)dt + \sigma\sqrt{r}dW^Q.$ specified by the CIR model:

$$dr_t = a(b-r)dt + \sigma\sqrt{r}dW^Q.$$

This model belongs to the class of affine term structure models, implying that the price of a e form $p(t,T|r_t) = e^{A(T-t)-B(T-t)r_t}.$ T-bond is on the form

$$p(t,T|r_t) = e^{A(T-t)-B(T-t)r_t}.$$

- (a) State the ODEs that determine the functions $B(\cdot)$ and $A(\cdot)$, respectively.
- T:49 AM PD (b) Verify that the functions

7.27:49 AM PDT

tions
$$B(x) = \frac{2(e^{qx} - 1)}{(q+a)(e^{qx} - 1) + 2q},$$

$$A(x) = \frac{2ab}{\sigma^2} \ln \left(\frac{2qe^{(q+a)x/2}}{(q+a)(e^{qx} - 1) + 2q} \right),$$

$$\overline{F^2}, \text{ solve the ODEs stated in (a)}.$$

where $q = \sqrt{a^2 + 2\sigma^2}$, solve the ODEs stated in (a).

alou edu - Ma