Overfitting is the outcome of noise creeping into the signal difficult to avoid with noisy data

Regularization is a procedure to control overfitting

consider fitting a linear hypothesis: $\hat{y} = \mathbf{x}^T \mathbf{w}$

penalty term

$$\lambda$$
: penalty parameter

$$\lambda \rightarrow 0$$
: classical least square regression

$$\lambda \to \infty$$
: $\hat{y} \to 0$

Ridge regression (Tikonov regularization)

minimization of E requires

$$\nabla E(\mathbf{w}) = \mathbf{0} \Rightarrow (\mathbf{X}^T \mathbf{X} + n\lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

Thus regularization tends to reduce the model complexity by reducing w

is decided based on cross-validation

consider fitting the linear hypothesis:

$$\widehat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$$

$$E = \frac{1}{n} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$

$$\Rightarrow (\mathbf{X}^T \mathbf{X} + n\lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

Other forms of regularization

Lasso regression:

$$E = \frac{1}{n} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda ||\mathbf{w}||_1 \qquad ||\mathbf{w}||_1 = \sum |w|$$

Elastic net regression:
$$E = \frac{1}{n} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \left[\|\alpha \mathbf{w}\|_1 + (1 - \alpha) \mathbf{w}^T \mathbf{w} \right]$$

increasing λ reduces fluctuations

Susceptibility to Outlier

least square fit, due to squaring of residual, is heavily influenced by outliers

Least absolute deviation fit is often used to reduce the dependence on outlier $E = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_1$

Least absolute deviation has zero double derivative, precludes use of some optimization algorithms

In most cases, Least absolute deviation reduces cost function to a lower value than that of the least square regression

Outlier may also be removed based on appropriate criterion of loss function

Nonlinear regression: normal equations are nonlinear

$$\begin{aligned} &\text{Linear regression:} \quad \widehat{y} = \mathbf{x}^T \mathbf{w} & \mathbf{y}_i = \mathbf{x}_i^T \mathbf{w} & \mathbf{x}^T = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_k \end{bmatrix} \\ & & i = 1, 2, \cdots, n \\ & & \mathbf{x}_i^T = \begin{bmatrix} 1 & x_{i1} & x_{i2} & \dots & x_{ik} \end{bmatrix} \end{aligned} \\ &\text{Linear regression:} \quad \widehat{y} = \mathbf{x}^T \mathbf{w} & & \mathbf{x}_i^T = \begin{bmatrix} 1 & x_{i1} & x_{i2} & \dots & x_{ik} \end{bmatrix} \\ &\text{In general,} \quad \widehat{y} = f\left(\mathbf{x}, \mathbf{w}\right) & \widehat{y}_i = f\left(\mathbf{x}_i, \mathbf{w}\right) \\ &\text{Cost function} \quad E\left(\mathbf{w}\right) = \frac{1}{n} \sum_{i=1}^n \begin{bmatrix} f\left(\mathbf{x}_i, \mathbf{w}\right) - y_i \end{bmatrix}^2 & & \mathbf{w}^T = \begin{bmatrix} w_0 & w_1 & w_2 & \dots & w_k \end{bmatrix} \\ &\text{We wish to find} \\ &\frac{\partial E}{\partial w_j} = 0 & \Rightarrow \sum_{i=1}^n \begin{bmatrix} f\left(\mathbf{x}_i, \mathbf{w}\right) - y_i \end{bmatrix} \frac{\partial f\left(\mathbf{x}_i, \mathbf{w}\right)}{\partial w_j} = 0 & j = 0, 1, 2, \cdots, k & & \arg\min_{\mathbf{w}} E\left(\mathbf{w}\right) \\ &\Rightarrow \sum_{i=1}^n \begin{bmatrix} f\left(\mathbf{x}_i, \mathbf{w}\right) - y_i \end{bmatrix} \nabla f\left(\mathbf{x}_i, \mathbf{w}\right) = 0 & \text{Normal equations; solves } \mathbf{w} \end{aligned}$$

In nonlinear regression, normal equations are nonlinear

Example: Given a set of discrete data points $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$

We wish to fit $\hat{y} = w_0 x^{w_1}$

Cost function:
$$E(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w_0 x_i^{w_1})^2$$

$$\frac{\partial E}{\partial w_0} = 0 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_i^{w_1}) x_i^{w_1} \qquad \frac{\partial E}{\partial w_1} = 0 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w_0 x_i^{w_1}) w_0 \ln(x_i) x_i^{w_1}$$

We can calculate w_0, w_1 by solving the normal equations

$$\sum_{i=1}^{n} \left(y_i - w_0 x_i^{w_1} \right) x_i^{w_1} = 0$$

$$\sum_{i=1}^{n} \left(y_i - w_0 x_i^{w_1} \right) w_0 \ln \left(x_i \right) x_i^{w_1} = 0$$
One appropriate modify

the normal equations are nonlinear

One approach to avoid nonlinearity:

modifying
$$\widehat{y} = w_0 x^{w_1}$$

Example: linearization

Transforming

ln x	ln y
0	-0.916
0.693	0.531
1.099	1.099
1.386	1.705
1.609	2.128

 $\ln y$

A straight-line fit seems plausible

 $\ln x$

We are trying to fit $\widehat{y} = w_0 x^{w_1}$

$$\hat{y} = w_0 x^{w_1}$$

$$\Rightarrow \ln \widehat{y} = \ln (w_0) + w_1 \ln x$$

Simple linear regression seems now applicable

Limitations of linearization

Use of a hypothesis $\ \widehat{y}=f\left(x
ight)$ assumes existence of a model $\ y=g\left(x
ight)$ such that the experiments (observations) generate $\ y_i=g\left(x=x_i\right)+\epsilon_i$

use of least square regression facilitates $f\left(x\right)
ightarrow g\left(x\right)$ with more training data

Linearization tacitly assumes multiplicative noise $y_i = \epsilon_i \theta_0 x^{\theta_1}$

If the noise is additive $y_i = \theta_0 x^{\theta_1} + \epsilon_i$ linearization may not be acceptable

Linearization is not possible for all nonlinear models

For instance, a model $y \approx \theta_0 + \theta_1 x^{\theta_2} + \theta_3 x^{\theta_4}$

cannot be linearized using the procedure discussed