RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS

Alunos: Tamiris Souza Fonseca

Charly Braga Ventura

Orientador: Pr. Dr. Sandro Carvalho Izidoro

Sumário

- 1. Problemática
- 2. Objetivos
- 3. Projeto Desenvolvido
- 4. Resultados
- 5. Conclusões

Problemática

- Qual?
 - Reconhecimento automático de placas de automóveis no padrão nacional
 - Controle de acesso
 - Radares

- Solução
 - Sistema de reconhecimento de imagens (placas de carro) utilizando PDI e RNA

Objetivos

 Implementação de um sistema de reconhecimento de imagens (placas de carro) utilizando PDI para o pré-processamento e RNA para o reconhecimento das imagens.

Projeto desenvolvido - base de dados

- Quantidade total de imagens de placas: 28
- Quantidade de imagens para treinamento: 21
 - Quantidade de números: 84
 - Quantidade de letras: 63
 - Aplicações de ruídos para aumentar conjunto de treinamento
- Quantidade de imagens de placas para generalização: 7

Projeto desenvolvido - Metodologia

Projeto Desenvolvido - PDI

Projeto Desenvolvido - RNAs

Características	RNA 1	RNA 2
Entradas (pixels)	400	400
Conexão	total	total
Valores de pesos iniciais	0	0
Valor de bias	1	1
Neurônios ocultos	2	2
Função de ativação	sigmoide-simoide-linear	sigmoide-simoide-linear
Quantidade de neurônios	8 - 4 - 4	10 - 5 - 5

Projeto Desenvolvido - RNAs

Características	RNA 1	RNA 2
Saídas	4	5
Taxa de aprendizado (η)	0.5	0.005
Constante de momento (α)	0.001	0.005
Tempo treino (hs)	13	2.3
Conjunto de Treinamento	4480	2400
Épocas	600	200
Entradas de exemplos	aleatório	aleatório

Projeto Desenvolvido - RNA 1

Projeto Desenvolvido - RNA 2

Resultados - PDI

- Porcentagem de imagens em que foram encontrados os objetos de interesse
 - 78% das imagens da base de dados para treinamento
 - 60% das imagens utilizadas para generalização

Resultados - PDI

RVASSS

Resultados - PDI

- Treino
 - Acurácia: 98,17%
 - o Erro médio quadrado: 0.0024
- Generalização
 - o 81,25% (acertou 13 de 16 caracteres)

- Treino
 - Acurácia: 92,70%
 - o Erro médio quadrado: 0.0066
- Generalização
 - 58,33% (acertou 7 de 12 caracteres)

Conclusões

- O PDI obteve bons resultados para imagens
- O sistema responde rápido
- As RNAs obtiveram bom desempenho no treinamento
- As RNAs obtiveram um desempenho menor no processo de generalização devido a limitação da base de dados.
- A RNA2 obteve menor desempenho que RNA1 devido a maior variação de caracteres para reconhecer e a base de dados com menor diversidade.
- Principais dificuldades
 - Aquisição e padronização das imagens para criação da base de dados
 - Processo de escolha do limiar
 - Escolha dos melhores parâmetros paras as RNAs