CH 107 End-Semester Examination

November 13, 2018 Time: 2.5 hours Full Marks: 24

Answer all the parts of the same question **together**. Answer should be to the point, however, arguments have to be provided for full credit. Use **only Pen** to write your answers (**including sketches**).

An equation sheet is provided along with the question paper

	An equation sheet is provided along with the question paper	
	Question 1	
(a)	Write the complete Hamiltonian for an <i>anti</i> -He atom, with a negatively charged nucleus ($Z=-2$) and two positrons (electron with a positive charge) around it. <i>The mass of anti-particles to be same as that of the particles</i> .	1 mark
(b)	What are all the possible spinorbitals for H-atom in the ground (lowest energy) state?	1 mark
(c)	For what values of $[\theta,\!\phi]$ are there angular nodes for the $3d_z{}^2$ orbital of H-atom? Show your work.	1 mark
(d)	What is the value of θ for which the probability of finding an electron is greatest for the $3d_z^2$ orbital? Evaluate.	2 marks
(e)	Qualitatively sketch, <u>in the same plot</u> , the radial distribution functions of $3d_{x^{2}-y^{2}}$ orbital for H and He ⁺ atoms. Label each curve appropriately.	1 mark
Question 2		
(a)	Consider the <i>triangular</i> H_3^+ with equal H-H bond-lengths. The <i>spatial part</i> of the ground state (lowest energy) 1-electron MO is σ_b . (No marks for considering a linear H_3^+ molecule)	
	 (i) Write the expression of σ_b in terms of 1s Atomic Orbitals (AOs). No need for normalization constant. (ii) Sketch the contour plot of σ_b. Show at least three contour lines, signs, nuclei and nodes if any. (iii) Write the expression for the spin wavefunction of this molecule in the ground state. (iv) Express the ground state wavefunction of this molecule as a <u>single</u> Slater determinant. 	1 mark 1 mark 1 mark 1 mark
(b)	Find the normalization constant N in terms of the 1-electron overlap integral (S_{AB}) for the following 2-electron molecular wavefunction: $\psi(1,2) = N[\psi_A(1)\psi_B(2) + \psi_A(2)\psi_B(1)]$, where ψ_A and ψ_B are normalized and are real 1-electron wavefunctions.	2 marks
	Question 3	
(a)	Qualitatively sketch, <u>in the same plot</u> , the potential energy curves for H_2 , H_2^- and H_2^{2-} as a function of internuclear distance, R_{ab} . Label curves/axes appropriately. <i>No reasoning is necessary</i> .	2 marks
(b)	The ground state MO of H_2^+ is $\psi=0.6(1s_A+1s_B)$. Evaluate the probability of finding the electron in a sphere of radius $0.1a_0$ around <u>one of the nuclei</u> when the internuclear separation, R_{ab} , is $2a_0$. Assume that the value of $1s_A$ and $1s_B$ orbitals remain constant over the sphere of radius $0.1a_0$.	2 marks
(c)	In the planar molecule formaldehyde ($H_2C=0$), the H-C-O bond angles are 121°. Evaluate the expressions for the hybrid AOs (in terms of the valence shell AOs of Carbon) which are used for σ -bonding. Consider the geometry where $H_2C=0$ is in xz plane with the C-O bond along positive z-axis ($\underline{hybrid\ orbital\ h_1}$ is defined along +z).	2 marks
	Question 4	
(a)	What is Born-Oppenheimer approximation? <i>Answer in ONE sentence/equation</i> (no more than two lines!)	1 mark
(b)	If one considers the bond in H_2 as an anharmonic oscillator and a non-rigid rotor, will the vibrational (infrared) and rotational (microwave) transitions be allowed for the H_2 molecule? <i>Justify in one sentence/equation</i> .	1 mark
(c)	For HCl ³⁵ , the transition $(v=0, J=1) \rightarrow (v=1, J=2)$ occurs at 2926 cm ⁻¹ , while the oscillation (vibrational) frequency (ω_{osc}) is 2886 cm ⁻¹ . Evaluate the transition energy (in cm ⁻¹) of $(v=0, J=1) \rightarrow (v=1, J=2)$ for HCl ³⁷ . Assume (<i>i</i>) rigid rotor and harmonic oscillator models, and (<i>ii</i>) bond lengths are unchanged for HCl ³⁵ and HCl ³⁷ .	2 marks
(d)	Predict whether an electronic transition from an occupied 1s-1s σ^* (anti-bonding) M0 to an unoccupied 2s-2s σ^* (anti-bonding) M0 in a homonuclear diatomic molecule is allowed or not? Show your work.	2 marks

-----SEE NEXT PAGE FOR THE EQUATION SHEET-----

Useful constants

 $h{=}6.64\mathrm{x}10^{-34}~\mathrm{Js};~c{=}3\mathrm{x}10^{8}~\mathrm{m/s};~m_{e}{=}9.1\mathrm{x}10^{-31}~\mathrm{kg};~e{=}6\mathrm{x}10^{-19}\mathrm{C};~k_{B}{=}1.31\mathrm{x}10^{-23}~\mathrm{J/K}$

Useful equations

1.
$$\psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$$

2.
$$\psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$$

3.
$$\psi_{3d_{z^2}} = \frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0} \left(3\cos^2\theta - 1\right)$$

4.
$$\hat{H}_e \psi_e(r, \theta, \phi) = E_n \psi_e(r, \theta, \phi)$$
, with $E_n = -\frac{Z^2 \mu e^4}{8\epsilon_0^2 h^2 n^2} = -\frac{13.6Z^2}{n^2} \text{eV}$, with $n = 1, 2, ...$

5.
$$\hat{L}^2 \psi_e(r,\theta,\phi) = \hbar^2 l(l+1) \psi_e(r,\theta,\phi)$$
, with $l=0,1,...,n-1$

6.
$$L_Z\psi_e(r,\theta,\phi) = \hbar m\psi_e(r,\theta,\phi)$$
, with $m = -l,...,0,...,l$

7.
$$E_{\sigma} = E_{1s} + \frac{Qe^2}{R_{AB}} - Qe^2 \frac{J+K}{1+S}$$

8.
$$E_{\sigma^*} = E_{1s} + \frac{Qe^2}{R_{AB}} - Qe^2 \frac{J-K}{1-S}$$

9.
$$J = \int d\tau_e \frac{|1s_A|^2}{r_{1B}}$$

10.
$$K = \int d\tau_e \frac{1s_A 1s_B}{r_{1B}}$$

11. Rotational constant (in cm⁻¹):
$$B = \frac{h}{8\pi^2 c \mu r_0^2}$$

- 12. Rotational energy: $E_J = BJ(J+1)$
- 13. Vibrational frequency (in cm⁻¹): $\omega_{osc} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$
- 14. Vibrational energy (harmonic oscillator): $E_v = \omega_{osc}(v + 1/2)$
- 15. Vibrational energy (anharmonic oscillator): $E_v = \omega_{osc}(v+1/2) \omega_{osc}x_e(v+1/2)^2$, $x_e = \omega_{osc}/(4D_e)$
- 16. Electronic dipole moment operator: $\vec{\mu} = q\vec{r}$