AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently Amended) A method for executing a fail instruction to
2	facilitate transactional execution on a processor, comprising:
3	executing a start transactional execution instruction to start transactionally
4	executing a block of instructions within a program, wherein the start transactional
5	execution instruction marks the beginning of a block of instructions to be
6	executed transactionally, and wherein the start transactional execution instruction
7	specifies an action to take if transactional execution of the block of instructions
8	fails, and wherein the action to take can include acquiring a lock on the block of
9	instructions;
0	transactionally executing a block of instructions within a program;
1	wherein changes made during the transactional execution are not
2	committed to the architectural state of the processor unless the transactional
13	execution successfully completes; and
4	if the fail instruction is encountered during the transactional execution,
5	terminating the transactional execution without committing results of the
6	transactional execution to the architectural state of the processor, wherein
17	terminating the transactional execution involves branching to a location specified
8	by the fail instruction or to a location specified by a start transactional execution
9	(STE) instruction at the beginning of the transactional execution; or setting state
20	information in the processor and continuing the transactional execution, wherein
21	the processor handles the failure later.

22	retrying the transactional execution a specified number of times, and
23	if the fail instruction continues to be encountered after the specified
24	number of times, obtaining a lock for the block of instructions.
1	2. (Original) The method of claim 1, wherein terminating the transactional
2	execution involves discarding changes made during the transactional execution.
1	3. (Original) The method of claim 2, wherein discarding changes made
2	during the transactional execution involves:
3	discarding register file changes made during the transactional execution;
4	clearing load marks from cache lines;
5	draining store buffer entries generated during transactional execution; and
6	clearing store marks from cache lines.
1	4-5. (Cancelled)
1	6. (Original) The method of claim 1, wherein terminating the transactional
2	execution additionally involves attempting to re-execute the block of instructions.
1	7. (Previously Presented) The method of claim 1, wherein if the
2	transactional execution of the block of instructions is successfully completed, the
3	method further comprises:
4	atomically committing changes made during the transactional execution;
5	and
6	resuming normal non-transactional execution.

1	8. (Original) The method of claim 1, wherein potentially interfering data
2	accesses from other processes are allowed to proceed during the transactional
3	execution of the block of instructions.
1	9. (Original) The method of claim 1, wherein if an interfering data access
2	from another process is encountered during the transactional execution, the
3	method further comprises:
4	discarding changes made during the transactional execution; and
5	attempting to re-execute the block of instructions.
1	10. (Original) The method of claim 1, wherein the block of instructions to
2	be executed transactionally comprises a critical section.
1	11. (Original) The method of claim 1, wherein the fail instruction is a
2	native machine code instruction of the processor.
1	12. (Original) The method of claim 1, wherein the fail instruction is
2	defined in a platform-independent programming language.
1	13. (Currently Amended) A computer system that supports a fail
2	instruction to facilitate transactional execution, comprising:
3	a processor; and
4	an execution mechanism within the processor;
5	wherein the execution mechanism is configured to execute a start
6	transactional execution instruction to transactionally execute a block of
7	instructions within a program, wherein the start transactional execution instruction
8	marks the beginning of a block of instructions to be executed transactionally, and
9	wherein the start transactional execution instruction specifies an action to take if

10	transactional execution of the block of instructions fails, and wherein the action to
11	take can include acquiring a lock on the block of instructions;
12	wherein the execution mechanism is configured to transactionally execute
13	a block of instructions within a program;
14	wherein changes made during the transactional execution are not
15	committed to the architectural state of the processor unless the transactional
16	execution successfully completes; and
17	wherein if the fail instruction is encountered during the transactional
18	execution, the execution mechanism is configured to:
19	terminate the transactional execution without committing results of
20	the transactional execution to the architectural state of the processor,
21	wherein terminating the transactional execution involves branching to a
22	location specified by the fail instruction or to a location specified by a star
23	transactional execution (STE) instruction at the beginning of the
24	transactional execution, or to set state information in the processor and
25	continue transactional execution, wherein the execution mechanism is
26	configured to handle the failure later
27	retry the transactional execution a specified number of
28	times, and
29	if the fail instruction continues to be encountered after the
30	specified number of times, obtain a lock for the block of
31	instructions.
1	14. (Original) The computer system of claim 13, wherein while
2	terminating the transactional execution, the execution mechanism is configured to
3	discard changes made during the transactional execution.

1	15. (Original) The computer system of claim 14, wherein while discarding
2	changes made during the transactional execution, the execution mechanism is
3	configured to:
4	discard register file changes made during the transactional execution;
5	clear load marks from cache lines;
6	drain store buffer entries generated during transactional execution; and to
7	clear store marks from cache lines.
1	16-17. (Cancelled)
1	18. (Original) The computer system of claim 13, wherein while
2	terminating the transactional execution, the execution mechanism is additionally
3	configured to attempt to re-execute the block of instructions.
1	19. (Previously Presented) The computer system of claim 13, wherein if
2	the transactional execution of the block of instructions is successfully completed,
3	the execution mechanism is configured to:
4	atomically commit changes made during the transactional execution; and
5	to
6	resume normal non-transactional execution.
1	20. (Original) The computer system of claim 13, wherein the computer
2	system is configured to allow potentially interfering data accesses from other
3	processes to proceed during the transactional execution of the block of
4	instructions.

1	21. (Original) The computer system of claim 13, wherein if an interfering
2	data access from another process is encountered during the transactional
3	execution, the execution mechanism is configured to:
4	discard changes made during the transactional execution; and to
5	attempt to re-execute the block of instructions.
1	22. (Original) The computer system of claim 13, wherein the block of
2	instructions to be executed transactionally comprises a critical section.
1	23. (Original) The computer system of claim 13, wherein the fail
2	instruction is a native machine code instruction of the processor.
1	24. (Original) The computer system of claim 13, wherein the fail
2	instruction is defined in a platform-independent programming language.
1	25. (Currently Amended) A computing means that supports that supports a
2	fail instruction to facilitate transactional execution, comprising:
3	a processing means; and
4	an execution means within the processing means;
5	wherein the execution means is configured to execute a start transactional
6	execution instruction to transactionally execute a block of instructions within a
7	program, wherein the start transactional execution instruction marks the beginning
8	of a block of instructions to be executed transactionally, and wherein the start
9	transactional execution instruction specifies an action to take if transactional
10	execution of the block of instructions fails, and wherein the action to take can
11	include acquiring a lock on the block of instructions;
12	wherein the execution means is configured to transactionally execute a
13	block of instructions within a program;

14	wherein changes made during the transactional execution are not
15	committed to the architectural state of the processor unless the transactional
16	execution successfully completes; and
17	wherein if the fail instruction is encountered during the transactional
18	execution, the execution means is configured to:
19	terminate the transactional execution without committing results of
20	the transactional execution to the architectural state of the processor,
21	wherein terminating the transactional execution involves branching to a
22	location specified by the fail instruction or to a location specified by a start
23	transactional execution (STE) instruction at the beginning of the
24	transactional execution, or to set state information in the processor and
25	continue transactional execution, wherein the execution means is
26	configured to handle the failure later.
27	retry the transactional execution a specified number of
28	times, and
29	if the fail instruction continues to be encountered after the
30	specified number of times, obtain a lock for the block of
31	instructions.