Tutorial (For 09-22 and 09-25)

1. How to compare two R.V.
$$\begin{cases} Mx & V.S. Mx \longrightarrow Mx - Mx \\ \delta x^2 & V.S. \delta^2 \rightarrow \frac{\delta x^2}{\delta^2 x} \end{cases}$$

· Assumption: O X and I are independent

$$\textcircled{2}$$
 \upphi \upphi

· Point Guess (Point Estimation):

· Interval Gillers (Interval Estimation) and H.T.

Pistribution of (x-F) 7

proof:

$$E(\overline{y}-\overline{y})=E(\overline{x})-E(\overline{y})=Mx-My$$

$$Var(\bar{x} - \bar{y}) = Var(\bar{x}) + Var(\bar{x}) - 200V(\bar{x}, \bar{y})$$

= $\frac{6^2x}{n} + \frac{6x^2}{m} = \frac{6^2}{n} + \frac{6^2}{m}$

the linear transform of 2. r. V.s that follow Mormal. Will be still normal distributed: LX-Y, X+Y)

Sp. 14 7

$$Cn+m-2)Sp^2 = (n-1)S_x^2 + (m-1)S_y^2$$

$$\Rightarrow \frac{(\overline{x}_{n} - \overline{y}_{n}) - (\mathcal{U}_{x} - \mathcal{U}_{x})}{Sp \cdot J_{m} + \dot{n}} = \frac{(\overline{x}_{n} - \overline{y}_{n}) - (\mathcal{U}_{x} - \mathcal{U}_{x})}{6J_{n} + \dot{m}} = \begin{cases} N(0.1) \\ \sqrt{\frac{(n+m-2)C_{p}^{2}/6^{2}}{n+m-2}} \end{cases}$$

Conclusion:

100(1-1)% C.I. for Mx-My, when $6x^2=6y^2$ one unphrow is. $5c.+y\pm t$ nem2, $\pm \cdot Sp$ $\sqrt{n}+m$.

Oxact value?

SR language: 9t.9f.

Let-distribution critical value table

https://www.stat.tamu.edu/~lzhou/stat302/T-Table.pdf

Moment and Central moment

Definition (Population moments): For a positive integer k,

the k^{th} population moment (about 0) of X is denoted by μ'_k and defined as (i)

$$\mu'_k = E(X^k)$$
 if it exists.

Note that μ'_1 is the population mean μ of X.

the k^{th} population CENTRAL moment of X is denoted by μ_k and defined as (i) $\mu_k = E(X - \mu)^k$ if it exists.

Note that $\mu_1=0$. For population variance, we have $\sigma^2=E(X-\mu)^2=\mu_2$.

For the sake of convenience, we define $\sigma^k = (\sigma^2)^{k/2}$ for any positive integer k.

<u>Caution</u>: Except for k = 2, $\sigma^k \neq \mu_k$.

Name	Type	k.	explanation
Mean	Central	1	
Variance	Central	2	_
Spewner	Centrarl	3	Symming
Kurtosic	Central	4	tail behavior

Theorem 2: Let X and Y be two random variables. Suppose that their mgfs, $M_X(t)$ and $M_Y(t)$, both exist and are equal for all t in (-h, h) for some h > 0. Then, the distributions of X and Y are equal.

This theorem is particularly useful when the distribution of an independent sum of random variables has to be determined.

For instance, we can use it to prove Propositions 1 and 2, and (iii) of Theorem 1.

Noted:

If $\frac{\Theta \times ist}{U}$, $M_X(t) \iff F(X)$ Ossumption: Existence.

What if $M_X(t)$ doesn't exist?

3. Moment Generating Function (MGF)

Definition (Moment generating function): The moment generating function (mgf) of a random variable X is denoted by $M_X(t)$ and is defined as $M_X(t) = E(e^{tX})$, if the expectation exists for t in a neighborhood of 0. To be more precise, there is a positive h such that, for all t in (-h,h), $E(e^{tX})$ exists.

More explicitly, we write the mgf of X as

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

if the random variable X is continuous and $f(\cdot)$ is the pdf of X, or

$$M_X(t) = \sum_x e^{tx} p(x)$$

if X is discrete and $p(\cdot)$ is the pmf of X.

Distribution	Interpretation	E(X)	VAR(X)	M(t)=E(exp(tx))	$Cdf(X) = P(X \le x)$ of Likelihood Func.	Pmf/Pdf
Binomial(n,p)	K successes in n Bernoulli trials	np	np(1-p)	$(1-p+pe^t)^n$	$L(\pi) = \binom{n}{k} \pi^k (1 - \pi)^{n-k}$	$P(X=k) = \binom{n}{k} p^k q^{n-k}$
Bernoulli(p)	Probability of success	P	p(1-p)			$P(x) = p^{x}(1-p)^{1-x}$ if $x = 0$ or $x = 1$, 0 o.w.
Geom(p)	Prob that N trials for 1st success	1/ p	$(1-p)/p^2$	(e ^t p)/(1-(1-p)e ^t)	$L(\pi) = (1 - \pi)^n \pi$	$P(X = n) = p(1-p)^{n-1}$
Neg Bin(n,p)	Prob that N trials for R successes Generalization of Geometric Sum of R independent geo RV's	r/p	$r(1-p)/p^2$	$\left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r$	$L(\pi) = \binom{N-1}{k-1} \pi^k (1-\pi)^{N-k}$	$P(X=k) = \binom{n-1}{r-1} p^r q^{n-r}$
Poisson(λ)	Limit of a binomial distribution as $n \rightarrow \inf$, $p \rightarrow 0$. $\lambda = \text{rate per unit of time}$ at which events occur. Sum of Poi~Poi($\lambda 1 + \lambda 2$)	λ	λ	$e^{\lambda(e'-1)}$	$L(\lambda) = \prod \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0,1,$
$N(\mu, \sigma^2)$	For X, Y ind., X~N(m1,v1), Y~N(m2,v2), then X+Y~(m1+m2,v1+v2)	μ	σ^2	$e^{\mu}e^{\sigma^2t^2/2}$	No Closed Form for CDF $L(\lambda) = \prod \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{x_i - \mu}{-2\sigma}\right]$	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$
$Gamma(\alpha,\lambda)$	Sum of exponential RV's with parameter λ . If sum of 2 exp RV, then $\alpha = 2$, and 2 λ (if iid exp(λ))	α/λ	α/λ^2	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, t < \lambda$		$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x \ge 0$
Exp(λ)	Gamma with $\alpha = 1$ So if X-exp(λ), Y -exp(λ), then X+Y ~ Gamma(2,2 λ)	1/λ	1/22	$\lambda/(\lambda-t), t < \lambda$	$P(0 \le X \le x) = 1 - e^{-\lambda x} \text{ for } x \ge 0, \text{ o}$ o.w. $\Rightarrow P(X > x) = e^{-\lambda x} (x \ge 0)$	$\lambda e^{-\lambda x}$ for $x \ge 0$, 0 o.w.
Chi Sqr (n)	Gamma with $a = \frac{1}{2}$, $L = \frac{1}{2}$, n D.F.					
Uni[a,b]		(b+a)/2	(b-a) ² /12	$e^{\lambda(e^t-1)}$	x/(b-a) for x in [a,b], 0 o.w.	1/(b-a) for x in [a,b], 0 o.w.
$Cauchy(heta,\sigma)$	A special case of Student's T distribution, when d.f. = 1 (that is, X/Y for X, Y independent N(0,1)). No Moments!	Does Not Exist	Does Not Exist	Does Not Exist		$\frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x - \theta}{\sigma}\right)^2}$
Chi-Squared(p)	Sum of p iid Z^2 r.v., $Z \sim N(0,1)$ Note: Sum of p independent X^2 is Chisq(df_1++df_p)	P	2p	$(1-2t)^{-p/2}$		$\frac{(1/2)^{p/2}}{\Gamma(p/2)} x^{p/2 - 1} e^{-x/2}$

Mone details: http://www.stat.tamu.edu/~twehrly/611/distab.pdf

4. Central limit Theorem C CLT)

Theorem 4 (Central Limit Theorem, standard version): Suppose that $\{X_n: n=1,2,...\}$ is a sequence of i.i.d. random variables with a positive variance, each with an existing mgf $M_{X_n}(t)$, for all t in a neighborhood of 0. Denote by $ar{X}_n$ the sample mean of $X_1, ..., X_n$. Then, the limiting distribution of

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \sim \mathcal{N}(0, 4)$$

is a standard normal distribution, where μ is the common population mean of X_1,\ldots,X_n

Note that both μ and σ^2 are finite since the mgfs exist.

why we need CLT-?

Before (in last tutorial),

this condition is not necessary.

I and results are more general.

We usually assume that a r.v. X ~ N(M, 62)

But Indeed, if we don't have this assumption, the results Can be valid

- Population X is unknown.

 = 1.2, 3... 3 2s 2.2.d. Gn>0
 - . If n 35 large enough
- $\Rightarrow \sqrt{n(\pi_n M)} \sim N(0.1)$

· proof

Target:
$$\begin{cases} \frac{\sqrt{n} \left(\frac{\sqrt{n} - M}{N} \right)}{6} & N(0, 1) \end{cases}$$
By MGF

$$U_n := \frac{\overline{X_n - M}}{6\sqrt{J_n}} = \frac{1}{\sqrt{J_n}} \cdot \sum_{i=1}^n V_i$$
 where $V_i := \frac{X_i - M}{6^2}$

$$M_{\mathbf{y}}(\vec{h}) = E(e^{\frac{1}{h} \cdot \mathbf{y}}) = \sum_{i=1}^{N} \frac{(\vec{h})^{i}}{2!} E(\mathbf{y}^{i})$$

$$= 1 + \frac{1}{4!} \underline{M}' + \frac{1}{2!} \underline{M}' + R_{3}(\frac{1}{h})$$

$$= 1 + \frac{1}{4!} \underline{M}' + \frac{1}{2!} \underline{M}' + R_{3}(\frac{1}{h})$$

$$= 1 + \frac{1}{4!} \underline{M}' + \frac{1}{2!} \underline{M}' + R_{3}(\frac{1}{h})$$

$$= 1 + \frac{1}{4!} \underline{M}' + \frac{1}{2!} \underline{M}' + R_{3}(\frac{1}{h})$$

$$= 1 + \frac{1}{4!} \underline{M}' + \frac{1}{4!}$$

$$R_{3}(\vec{h}) = \sum_{k=3}^{\infty} \frac{(\vec{h})^{k}}{k!} E(V_{2}^{k})$$

$$F = \sum_{k=3}^{\infty} \frac{(\vec{h})^{k}}{k!} E(V_{2}^{k})$$

(1)
$$t=0$$
 $\lim_{n\to\infty} \left[n R_{3} (\frac{1}{2}) \right] = \lim_{n\to\infty} \left[t^{2} \cdot \frac{R_{3}}{2} \right]$

Conclusion: