[IT CookBook, 경영경제통계학] 정오표

- 본 자료는 <경영경제통계학> 정오표입니다.
- 초판(1쇄)의 수정 내용을 정오표에 정리하였습니다.
- 정오표 이외에 추가적으로 수정이 필요한 부분이 있다면 <u>sungmu@hanbit.co.kr</u>로 해당 내용을 보내주시길 부탁드리겠습니다. 다음 2쇄에 적용하도록 하겠습니다.
- 2쇄부터는 다음 수정 사항을 교재에 모두 반영할 예정입니다.

Chapter 03. 기술통계량

- 87p [예제 3-7 모표준편차]

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} =$$

$$= \sqrt{\frac{1}{15} \begin{bmatrix} (4 - 5.4)^2 + (7 - 5.4)^2 + (0 - 5.4)^2 + (11 - 5.4)^2 + (2 - 5.4)^2 \\ + (4 - 5.4)^2 + (6 - 5.4)^2 + (3 - 5.4)^2 + (6 - 5.4)^2 + (2 - 5.4)^2 \\ + (5 - 5.4)^2 + (4 - 5.4)^2 + (8 - 5.4)^2 + (10 - 5.4)^2 + (9 - 5.4)^2 \end{bmatrix}} = 3.1578$$

$$\Rightarrow \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} =$$

$$= \sqrt{\frac{1}{15} \begin{bmatrix} (4 - 5.4)^2 + (7 - 5.4)^2 + (0 - 5.4)^2 + (11 - 5.4)^2 + (2 - 5.4)^2 \\ + (4 - 5.4)^2 + (6 - 5.4)^2 + (3 - 5.4)^2 + (6 - 5.4)^2 + (2 - 5.4)^2 \\ + (5 - 5.4)^2 + (4 - 5.4)^2 + (8 - 5.4)^2 + (10 - 5.4)^2 + (9 - 5.4)^2 \end{bmatrix}} = 3.0507$$

- 94p [하나 더 알기 - 모공분산과 표본공분산의 간편식 도출 과정]

$$= \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y = \left(\frac{1}{n} \sum_{i=1}^{n} x_i y_i\right) - \mu_X \cdot \mu_Y$$

$$\Rightarrow$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y = \left(\frac{1}{N} \sum_{i=1}^{N} x_i y_i\right) - \mu_X \cdot \mu_Y$$

Chapter 05. 확률변수와 확률분포

- 162p [표 5-7]

표 5-7 이산확률변수 X의 기댓값

X	$x_1 = 0$	$x_2 = 1$	$x_3 = 2$	$x_4 = 3$	합계
$P(X=x_i)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1
$x_i^2 P(X = x_i)$	0	3 8	$\frac{6}{8}$	3 8	E(X) = 1.5

 \rightarrow

표 5-7 이산확률변수 *X*의 기댓값

X	$x_1 = 0$	$x_2 = 1$	$x_3 = 2$	$x_4 = 3$	합계
$P(X=x_i)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1
$x_i P(X = x_i)$	0	3/8	<u>6</u> 8	3/8	E(X) = 1.5

- 162p

기댓값의 법칙(Law of Expected Value)

임의의 상수 c에 대하여,

$$\bigcirc E(X+c) = E(X)+c$$

$$\odot E(c \cdot X) = c \cdot E(X)$$

-

기댓값의 법칙(Law of Expected Value)

임의의 상수 c에 대하여,

$$\bigcirc E(c) = c$$

$$\bigcirc E(X+c) = E(X)+c$$

$$\Im E(c \cdot X) = c \cdot E(X)$$

풀이

(1) X+Y의 기댓값 E(X+Y)와 분산 V(X+Y)

X와 Y의 합인 E(X+Y)는 각각 확률변수의 기댓값의 합 E(X)+E(Y)와 동일함을 이미확인하였다. 이에 따라 다음과 같이 계산할 수 있다.

$$(X+Y) = E(X) + E(Y) = \sum_{i=1}^{3} x_i \cdot P(X = x_i) + \sum_{i=1}^{3} y_i \cdot P(Y = y_i)$$
$$= [x_i P(x_1) + x_2 P(x_2) + x_3 P(x_3)] + [y_i P(y_1) + y_2 P(y_2) + y_3 P(y_3)]$$

풀이

(1) X+Y의 기댓값 E(X+Y)와 분산 V(X+Y)

X와 Y의 합인 E(X+Y)는 각각 확률변수의 기댓값의 합 E(X)+E(Y)와 동일함을 이미확인하였다. 이에 따라 다음과 같이 계산할 수 있다.

$$E(X+Y) = E(X) + E(Y) = \sum_{i=1}^{3} x_i \cdot P(X=x_i) + \sum_{i=1}^{3} y_i \cdot P(Y=y_i)$$
$$= [x_i P(x_1) + x_2 P(x_2) + x_3 P(x_3)] + [y_i P(y_1) + y_2 P(y_2) + y_3 P(y_3)]$$

- 177p~178p [예제 5-5]

(2) 포트폴리오 $R_p = 0.4R_X + 0.6R_Y$ 의 분산

포트폴리오의 분산은 다음과 같이 계산할 수 있다.

$$V(R_p) = V(0.4R_X + 0.6R_Y) = 0.4^2V(R_X) + 0.6^2V(R_Y) + 2 \cdot 0.4 \cdot 0.6 \cdot Cov(R_X, R_Y)$$

$$= 0.4^2V(R_X) + 0.6^2V(R_Y) + 2 \cdot 0.4 \cdot 0.6 \cdot \sigma(R_X) \sigma(R_Y) \rho(R_X, R_Y)$$

$$= 0.16 \cdot 5\% + 0.36 \cdot 7\% + 2 \cdot 0.4 \cdot 0.6 \cdot 10\% \cdot 15\% \rho(R_X, R_Y)$$

$$= 0.0008 + 0.0252 + 0.0072 \cdot \rho(R_X, R_Y) = 0.026 + 0.0072 \cdot \rho(R_X, R_Y)$$

다음의 각 상관관계에 대하여 포트폴리오의 분산을 각각 계산해보자.

① $\rho(R_X,R_Y) = -0.1$ 인 경우

$$V(R_p) = 0.026 + 0.0072 \cdot \rho(R_X, R_Y) = 0.026 + 0.0072 \cdot (-0.1) = 0.025928$$

Chapter 05 확률변수와 확률분포 **177**

$$V(R_p) = 0.026 + 0.0072 \cdot \rho(R_X, R_Y) = 0.026 + 0.0072 \cdot (0) = 0.026000$$

③ $\rho(R_X, R_Y) = 0.1$ 인 경우

$$V(R_p) = 0.026 + 0.0072 \cdot \rho(R_X, R_Y) = 0.026 + 0.0072 \cdot (0.1) = 0.026072$$

④ $\rho(R_X,R_Y) = 0.5$ 인 경우

$$V(R_p) = 0.026 + 0.0072 \cdot \rho(R_X, R_Y) = 0.026 + 0.0072 \cdot (0.5) = 0.026360$$

→

$$\begin{split} V(R_p) &= V(0.4R_X + 0.6R_Y) = 0.4^2 V(R_X) + 0.6^2 V(R_Y) + 2 \cdot 0.4 \cdot 0.6 \cdot Cov(R_X, R_Y) \\ &= 0.4^2 V(R_X) + 0.6^2 V(R_Y) + 2 \cdot 0.4 \cdot 0.6 \cdot \sigma(R_X) \sigma(R_Y) \rho(R_X, R_Y) \\ &= 0.16 \cdot (10\%)^2 + 0.36 \cdot (15\%)^2 + 2 \cdot 0.4 \cdot 0.6 \cdot 10\% \cdot 15\% \rho(R_X, R_Y) \\ &= 0.0016 + 0.0081 + 0.0072 \cdot \rho(R_X, R_Y) = 0.0097 + 0.0072 \cdot \rho(R_X, R_Y) \end{split}$$

다음의 각 상관관계에 대하여 포트폴리오의 분산을 각각 계산해보자.

①
$$\rho(R_X, R_Y) = -0.1$$
인 경우

$$V(R_n) = 0.0097 + 0.0072 \cdot \rho(R_X, R_Y) = 0.0097 + 0.0072 \cdot (-0.1) = 0.00898$$

②
$$\rho(R_X, R_Y) = 0$$
인 경우

$$V(R_n) = 0.0097 + 0.0072 \cdot \rho(R_X, R_Y) = 0.0097 + 0.0072 \cdot (0) = 0.0097$$

③
$$\rho(R_X, R_Y) = 0.1$$
인 경우

$$V(R_p) = 0.0097 + 0.0072 \cdot \rho(R_X, R_Y) = 0.0097 + 0.0072 \cdot (0.1) = 0.01042$$

④
$$\rho(R_X, R_Y) = 0.5$$
인 경우

$$V(R_n) = 0.0097 + 0.0072 \cdot \rho(R_X, R_Y) = 0.0097 + 0.0072 \cdot (0.5) = 0.0133$$

- 194p 연습문제 10번

Y	$x_1 = 0$	$x_2 = 1$	$x_3 = 2$
$y_1 = 0$	$P(x_1, y_1) = 0.17$	$P(x_2, y_1) = 0.10$	$P(x_3, y_1) = 0.15$
$y_2 = 1$	$P(x_1, y_2) = 0.07$	$P(x_2, y_2) = 0.15$	$P(x_3, y_2) = 0.20$
$y_3 = 2$	$P(x_1, y_3) = 0.06$	$P(x_2, y_3) = 0.05$	$P(x_3, y_3) = 0.05$

- 194p 연습문제 12번

Y	$x_1 = 0$	$x_2 = 1$	$x_3 = 2$
$y_1 = 0$	$P(x_1, y_1) = 0.04$	$P(x_2, y_1) = 0.03$	$P(x_3, y_1) = 0.07$
$y_2 = 1$	$P(x_1, y_2) = 0.09$	$P(x_2, y_2) = 0.11$	$P(x_3, y_2) = 0.15$
$y_3 = 2$	$P(x_1, y_3) = 0.13$	$P(x_2, y_3) = 0.17$	$P(x_3, y_3) = 0.21$

Chapter 06. 이산확률분포

- 209p [표 6-6]

- 212p

특정사건 x가 발생확률이 매우 적은 포이송분포를 따르는 확률변수 X가 있다. 단위 구간이나 시간 내에서 발생하는 x사건의 평균횟수를 μ 라 할 때, 확률변수 X의 확률은 다음과 같은 수식으로 정의한다.

$$P(X=x) = \frac{\lambda^x}{x!} \cdot e^{-\lambda} \tag{6.12}$$

→

λ 로 수정

- 215p

② 포아송분포의 통계량

이번에는 포아송분포의 평균과 분산에 대하여 학습한다. 우선 결론부터 기술하면 평균과 분산은 동일하게 μ 이다. 이에 대하여 실제로 증명할 수 있으나, 예제를 풀 때에는 결과만 알고 적용해도 무방하다. 평균과 분산이 동일하다는 점은 포아송분포가 갖는 또 하나의 장점 중 하나이다.

포아송분포의 평균은 주로 λ 라 쓴다. 분산도 평균과 동일하게 μ 이다. 이제부터 이를 증명해 보기로 한다. 포아송분포의 확률은 다음과 같다.

→

λ 로 수정

풀0

1,600개의 생산품 중 불량품이 $2(=1,600 \times 0.125\%)$ 개 초과일 확률을 계산해야 한다. 1,600개 중 불량품의 개수를 확률변수 X라 하여 포이송분포 또는 이항분포를 가정하여 계산해보자.

(1) 포아송분포를 가정한 확률 계산식은 다음과 같다.

$$P(X>2) = P(X \ge 3) = \sum_{x=3}^{\infty} \frac{2^x}{x!} \cdot e^{-2}$$

여기서 x=3부터 ∞ 까지의 포아송분포를 실제 계산하기 어려울 것이므로 전체 확률 1에서 x=0, x=1, x=2일 때의 확률을 차감하여 계산하면 비교적 간단하다.

$$1-P(X \le 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - \left(\frac{2^{0}}{0!} \cdot e^{-2} + \frac{2^{1}}{1!} \cdot e^{-2} + \frac{2^{2}}{2!} \cdot e^{-2}\right)$$

$$= 1 - (0.13533528 + 0.27067057 + 0.27067057)$$

$$= 0.32332358 = 32.332358\%$$

(2) 이항분포를 가정한 확률 계산식은 다음과 같다.

$$P(X > 2) = P(X \ge 3) = \sum_{x=3}^{\infty} {}_{1600}C_x \cdot (0.00125)^x \cdot (1 - 0.00125)^{1600 - x}$$

마찬가지로 전체 확률 1에서 x=0, x=1, x=2일 때의 확률을 차감하여 계산하면 비교적 간단 하다.

$$1-P(X \le 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - ({}_{1600}C_0 \cdot (0.00125)^0 \cdot (1 - 0.00125)^{1600} + {}_{1600}C_1 \cdot (0.00125)^1 \cdot (1 - 0.00125)^{1599}$$

$$+ {}_{1600}C_2 \cdot (0.00125)^2 \cdot (1 - 0.00125)^{1598})$$

얼핏 보면 잘 알 수 없지만, 이항분포에 대한 수식을 실제 단순한 계산기를 통하여 풀어내는 것은 대단히 복잡한 과정이다. 예를 들어 공학용 계산기를 이용하지 않고 $(1-0.00125)^{600}$ 을 계산하는 것은 거의 불가능하다. 또한 $_{1600}C_2$ 는 그래도 간단하지만 문제에 따라서 $_{1600}C_{213}$ 을 계산해야 한다면 어떨까? 이럴 때는 고민 없이 엑셀 등의 컴퓨터 프로그램을 이용하면된다. 위의 식을 계산하면 다음과 같다.

$$= 1 - \big(0.13516608 + 0.27067050 + 0.27083988\big) = 0.32332354 = 32.332354\%$$

→ (전반적 수정)

(1) 포아송분포를 가정한 확률 계산시 평균 λ 를 우선 산출해야한다. λ 는 다음과 같이 계산한다.

$$\lambda = E(X) = 1600 \cdot (0.1\%) = 1.6$$

불량률이 0.125%가 초과될 확률식은 다음과 같다.

$$P(X > 1600 \cdot (0.125\%)) = P(X > 2) = P(X \ge 3) = \sum_{x=3}^{\infty} \frac{1.6^x}{x!} \cdot e^{-1.6}$$

여기서 포아송분포를 x=3 부터 ∞ 까지의 포아송 분포를 실제 계산하기 어려울 것이므로 전체 확률 1에서 x=0, x=1, x=2 일 때의 확률을 차감하여 계산하면 비교적 간단한다.

$$1 - P(X \le 2) = 1 - \left(P(X = 0) + P(X = 1) + P(X = 2)\right)$$

$$= 1 - \left(\frac{1.6^{0}}{0!} \cdot e^{-1.6} + \frac{1.6^{1}}{1!} \cdot e^{-1.6} + \frac{1.6^{2}}{2!} \cdot e^{-1.6}\right)$$

$$= 1 - (0.201897 + 0.323034 + 0.258428) = 1 - 0.783358 = 21.6642\%$$

(2) 이항분포를 가정한 확률 계산식은 다음과 같다.

$$P(X > 2) = P(X \ge 3) = \sum_{x=3}^{\infty} {}_{1600}C_x \cdot (0.001)^x \cdot (1 - 0.001)^{1600 - x}$$

마찬가지로 전체 확률 1에서 에서 x = 0, x = 1, x = 2 일 때의 확률을 차감하여 계산하면 비교적 간단한다.

$$1 - P(X \le 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1$$

$$- ({}_{1600}C_0 \cdot (0.001)^0 \cdot (1 - 0.001)^{1600} + {}_{1600}C_1 \cdot (0.001)^1 \cdot (1 - 0.001)^{1599}$$

$$+ {}_{1600}C_2 \cdot (0.001)^2 \cdot (1 - 0.001)^{1598})$$

얼핏 보면 잘 알 수 없지만, 이항분포에 대한 수식을 실제 단순한 계산기를 통하여 풀어내는 것은 대단히 복잡한 과정이다. 예를 들어 공학용 계산기를 이용하지 않고 $(1-0.001)^{1600}$ 을 계산하는 것은 거의 불가능하다. 또한 $_{1600}C_2$ 은 그래도 간단하지만 문제에 따라서 $_{1600}C_{213}$ 을 계산해야 한다면 어떨까? 이럴 때는 고민 없이 엑셀 등의 컴퓨터 프로그램을 이용하여야 하겠다. 위의 식을 계산하면 다음과 같다.

$$= 1 - (0.201735 + 0.323099 + 0.258576) = 1 - 0.783410 = 21.6590\%$$

포아송분포와 이항분포를 가정하여 계산한 확률값의 차이가 매우 미미하다는 것을 확인하자. 둘의 확률 차이는 0.000004%(= 32.332358% - 32.332354%)로 정말 작은 차이가 난다. 이는 대상이 되는 1,600개의 수가 비교적 크기 때문이다. 만약 더 많은 수를 대상으로계산한다면 해당 차이는 더 줄어들 것이며, 만약 대상의 수가 1,600개보다 더 적으면 두 분포의 차이는 커질 것이다.

해당 결과를 기반으로 경영진은 어떠한 판단을 내릴 것이다. 경영자가 해당 확률에 대하여 매우 우려하고 있는 상황인 제 32%~33%의 확률을 확인하였으니 근심은 더욱 커질 것으로 짐작한다. 경영진은 공장의 평균 불량률을 낮추기 위한 방안을 고심하거나, 아니면 반대로 완성품에 대한 불량 검사 시스템을 갖추어 사전에 불량품을 제거하고자 해야 한다.

(전반적 수정)

포아송분포와 이항분포를 가정하여 계산한 확률 값의 차이가 매우 미미하다는 것을 확인하자. 둘의 확률 차이는 0.0052%(= 21.6642% - 21.6590%)로 정말 작은 차이가 난다. 이는 대상이 되는 1,600개의 수가 비교적 크기 때문이다. 만약 더 많은 수를 대상으로 계산한다면 해당 차이는 더 줄어들 것이며 만약 대상의 수가 1,600개 보다 더 적으면 두 분포의 차이는 커질 것이다.

해당 결과를 기반으로 경영진은 어떠한 판단을 내릴 것이다. 경영자가 해당 확률에 대하여 매우 우려하고 있는 상황인데 21%~22%의 확률을 확인하였으니 근심은 보다 커질 것으로 짐작한다. 경영진은 공장의 평균 불량률을 낮추기 위한 방안을 고심할 것이고, 아니면 반대로 완성품에 대한 불량 검사 시스템을 갖추어 사전에 불량품을 제거하고자 할 수도 있다.

Chapter 07. 연속확률분포

- 236p

- 240p

그림 7-5 균등분포의 확률밀도함수 그래프

이와 같이 모든 x의 발생확률이 같은 분포를 균등분포라고 한다. 균등분포의 보다 일반적인 경우를 살펴보자. 어떤 x가 a와 b사이에서 결정되는 균등분포라 가정하면 $a \le x \le b$ 에서 결정되는 확률 밀도함수는 $f(x) = \frac{1}{b-a}$ 이다. $P(a \le X \le b)$ 를 계산하기 위해서는 x축과 확률밀도함수 사이의 넓이를 계산하면 된다. 균등분포는 단순히 직사각형의 넓이를 구해도 되고, 적분을 통한 계산으로 확인할 수도 있다.

$$P(a \le X \le b) = \frac{1}{b-a} \cdot (b-a) = \int_a^b \frac{1}{b-a} dx = \left[\frac{1}{b-a} x \right]_a^b = \frac{1}{b-a} \cdot (b-a) = 1$$
 (7.6)

이를 그래프로 나타내면 [그림 7-6]과 같다.

그림 7-6 $a \le x \le b$ 에서 결정되는 균등분포의 확률밀도함수 f(x) 그래프

→

f(x) 에서 f(x)의 크기가 아래첨자처럼 작게 나타남. f(x)으로 수정

a, b를 a, b로 이탤릭체로 수정

- 241p

우선 각 문제를 풀기 전에 해당 균등분포에 대한 그래프를 그려보자. 우선 전체 확률이 1이 되어야 하므로 그래프는 [그림 7-7]과 같이 나타날 것이다.

그림 7-7 $20,000 \le x \le 65,000에서 결정되는 균등분포의 확률밀도함수 <math>f(x)$ 그래프

f(x) 에서 f(x)의 크기가 아래첨자처럼 작게 나타남. f(x)으로 수정

- 245p 오타

을 찾아낼 수 있다. 다음은 이 교재의 부록에 있는 표준정규분포표의 일부이다. 다음의 표준정규분포표는 P(Z < z)를 나타내며 이를 그래프로 표현하면 [-1] 7[-10]과 같다.

그림 7-10 표준정규분포표에서 명시하는 P(Z < z)

→

그래프에서 z우측에 색을 다른 색상으로 변경

그래프 맨 우측의 z를 대문자 Z로 수정

- 246p [예제 7-2 풀이]

- (1) 오늘 하루 음료수 생산량이 4,900ℓ에서 5,100ℓ 사이일 확률을 계산하시오.
- (2) 오늘 하루 음료수 생산량**(** 4.800ℓ **)** 상일 확률을 계산하시오.
- (3) 표준편차가 100원인 경우 (1)번과 (2)번 물음에 답하시오.

풀이

우선 각 문제를 풀기 전에 확률변수의 정의를 내려야 한다. 하루에 생산되는 음료수의 양을 연속확률변수 X라 하자. 연속확률변수 X는 평균이 5,000, 표준편차가 50인 정규분포를 따른다. $X\sim(5,000,\,50^2)$ 여기서 표준정규분포표를 이용하여 문제를 계산하려면 연속확률변수 X를 표준화해야 한다. 새로운 연속확률변수 Z를 $\frac{X-5,000}{50}$ 으로 정의하면 Z는 표준정규분포를 따른다. $Z\sim(0,\,1^2)$ 여기서부터 이제 각 문제를 해결해 보도록 하자.

(1) P(4,900 < X < 5,100)을 구하는 문제이다. 연속확률변수 X를 표준화하는 과정을 표현하면 다음과 같다.

$$P(4,900 < X < 5,100) = P\left(\frac{4,900 - 5,000}{50} < \frac{X - 5,000}{50} < \frac{5,100 - 5,000}{50}\right)$$
$$= P(-2 < Z < 2)$$

결국 P(-2 < Z < 2)를 계산하는 문제로 단순화되었다. 표준정규분포표는 P(Z < a)의 모양으로 구성되어 있어 이와 같은 표현 형태로 바꾸어 계산하자.

$$P(-2 < Z < 2) = P(Z < 2) - P(Z < -2) = P(Z < 2) - \{1 - P(Z < 2)\}$$

= 2P(Z < 2) - 1

부록의 표준정규분포표를 확인하여 P(Z < 2) 값을 찾아보면(0.4772)을 확인할 수 있다. 이를 대입하면 (20.9772 - 1 = 0.95775) 계산된다. 즉 (95.77%) 확률이다.

→

(2) 오늘 하루 음료수 생산량이 4,950% 이상일 확률을 계산하시오.

표준정규분포표를 확인하여 P(Z < 2)값을 찾아보면 0.9772임을 확인할 수 있다. 이를 대입하면 $2 \cdot (0.9772) - 1 = 0.9544$ 로 계산된다. 즉, 95.44%의 확률이다.

- 262p 연습문제 06번 문제 마지막에 넣기

$$(P(Z < 4) = 0.99997)$$

- 262p 연습문제 7번 문제 마지막에 넣기

$$(P(Z \le 0.625) = 0.7340)$$

- 262p 연습문제 8번 문제 마지막에 넣기

$$(P(Z < 0.357) = 0.6395)$$

- 263p 연습문제 9번 문제 마지막에 넣기

$$(P(Z < 1.667) = 0.9522)$$

- 263p 연습문제 11번 문제 마지막에 넣기

$$(P(Z < 0.524) = 0.700)$$

Chapter 08. 표본통계량분포

- 283p [예제 8-3 풀이]

풀이

S 통신사를 선호하는 고객의 수는 n=100, p=0.48의 이항확률변수이다. 여기서 100명의 표본에서 선호도 50% 이상 나타날 확률을 표본비율 \hat{p} 으로 나타내면 $P(\hat{p}>0.5)$ 이다. 표본의 수 100이 정규성을 확보할 만큼 크다고 가정하였으므로 표본비율 \hat{p} 은 평균이 0.48이고, 표준편차는 다음과 같으며, 정규분포를 근사적으로 따른다.

$$\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.48 \cdot (1-0.48)}{100}}$$

따라서 원하는 확률은 다음과 같은 식으로 계산된다.

$$P(\hat{p} > 0.5) = P\left(\frac{\hat{p} - 0.48}{\sqrt{100 \cdot 0.48 \cdot (1 - 0.48)}} > \frac{0.5 - 0.48}{\sqrt{100 \cdot 0.48 \cdot (1 - 0.48)}}\right) = P\left(Z > \frac{0.02}{0.05}\right)$$
$$= P(Z > 0.4) = 1 - P(Z \le 0.4) = 1 - 0.6554 = 0.3446$$

.. 마케팅 담당자는 34.46%의 확률로 승진 기회를 얻을 수 있다.

7

$$P(\hat{p} > 0.5) = P\left(\frac{\hat{p} - 0.48}{\sqrt{\frac{0.48 \cdot (1 - 0.48)}{100}}} > \frac{0.5 - 0.48}{\sqrt{\frac{0.48 \cdot (1 - 0.48)}{100}}}\right) = P\left(Z > \frac{0.02}{0.05}\right) = P(Z > 0.4)$$
$$= 1 - P(Z \le 0.4) = 1 - 0.6554 = 0.3446$$

- 295p 연습문제 4번 문제에 추가

$$(P(Z < 4.8) = 0.999999, P(Z < 3.2) = 0.9993)$$

- 296p 연습문제 6번 문제에 추가

$$(P(Z \le 1.325) = 0.9074, \ P(Z < 0.883) = 0.8114)$$

- 296p 연습문제 7번 문제에 추가

$$(P(Z < 1.325) = 0.9999)$$

- **296p** 연습문제 8번 문제에 추가 (P(Z < 1.2857) = 0.9007)
- 297p 연습문제 10번 문제에 추가
 (P(Z < 0.46) = 0.6772)
- **297p** 연습문제 11번 문제에 추가 (P(Z < 0.707) = 0.7602)
- **297p** 연습문제 12번 문제에 추가 (P(Z < 0.33333) = 0.6306)
- **298p** 연습문제 13번 문제에 추가 (P(Z < 0.1905) = 0.5755)
- **298p** 연습문제 14번 문제에 추가 (P(Z < 1.818) = 0.9655)
- **298p** 연습문제 15번 문제에 추가 (P(Z < 0.4113) = 0.6596)
- **299p** 연습문제 16번 문제에 추가 (P(Z < 0.3467) = 0.6356)

Chapter 09. 추정

- 331p 연습문제 14번
 - 14 어느 공장에서 제품을 생산하는데 생산 공정상 불량품이 발생하기 마련이다. 해당 공장에서 100개의 제품에 대한 표본을 선택한 결과 1%의 불량률이 확인되었다. 이를 기반으로 공장 제품의 불량률에 대한 신뢰구간을 추정하고자 한다. (1) 90%, (2) 95%, (3) 99%라는 신뢰수준에서 각각의 모집단에 대한 불량률의 신뢰구간을 추정하시오.

1,000개로 수정

Chapter 10. 가설검정

- 343p

$$P\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{z_{\alpha}}{2}\right) + P\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\right) = \alpha$$
 (10.4)

여기서 $\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ 가 표준정규분포를 따른다는 것을 이미 확인하였다. 앞으로 모표준편차를 알고 있다는 가정하에 모평균에 대한 가설을 검정할 때 $z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ 를 검정통계량으로 설정한다. 해당 검정통계량이 다음의 표준정규분포표의 \mathbf{x} 축에서 기각역에 해당하는지 아닌지를 통하여 귀무가설의기각여부를 판단한다.

7

$$P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < -z_{\frac{\alpha}{2}}\right) + P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\right) = \alpha$$

$$z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- 344p [예제 10-1 풀이]

(1) 5% 유의수준하에서 귀무가설의 기각여부 확인

5% 유의수준이므로 $\alpha = 0.05$ 이고 $\frac{\alpha}{2} = 0.025$ 이다.

$$P\left(\overline{X} < \mu - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) + P\left(\overline{X} > \mu + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = \alpha$$

$$P\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{z_{\frac{\alpha}{2}}}{\frac{\sigma}{\sqrt{n}}}\right) + P\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\right) = \alpha$$

$$P\left(Z < \frac{z_{\frac{\alpha}{2}}}{\frac{\sigma}{2}}\right) + P\left(Z > z_{\frac{\alpha}{2}}\right) = \alpha$$

→

$$P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < -z_{\frac{\alpha}{2}}\right) + P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\right) = \alpha$$

$$P\left(Z < -z_{\frac{\alpha}{2}}\right) + P\left(Z > z_{\frac{\alpha}{2}}\right) = \alpha$$

- 345p [예제 10-1 풀이]

以 コーコーコーコー モーノ コーロー・

$$z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{37 - 35}{\frac{4}{\sqrt{25}}} = 2.500$$

2.5는 -1.960과 1.960 사이에 있지 않으므로 [그림 10-6]과 같이 기각역에 존재한다. 따라서 귀무가설을 기각한다.

그림 10-6 5% 유의수준에서 검정통계량 $z = \frac{\overline{X} - \mu}{\sigma}$ 에 따른 귀무가설 기각여부

: 결론적으로 중고차 판매원 한 명당 평균적으로 35대를 판매한다고 볼 수 없다.

(2) 1% 유의수준하에서 귀무가설의 기각여부 확인

1% 유의수준이므로 $\alpha = 0.01$ 이고 $\frac{\alpha}{2} = 0.005$ 이다.

$$\begin{split} P\bigg(\overline{X} < \mu - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\bigg) + P\bigg(\overline{X} > \mu + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\bigg) &= \alpha \\ P\bigg(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \stackrel{Z_{\frac{\alpha}{2}}}{>}\bigg) + P\bigg(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\bigg) &= \alpha \\ P\bigg(Z \stackrel{Z_{\frac{\alpha}{2}}}{>}\bigg) + P\bigg(Z > z_{\frac{\alpha}{2}}\bigg) &= \alpha \end{split}$$

$$z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{37 - 35}{\frac{4}{\sqrt{25}}} = 2.500$$

$$P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < -z_{\frac{\alpha}{2}}\right) + P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > z_{\frac{\alpha}{2}}\right) = \alpha$$

$$P\left(Z < -z_{\frac{\alpha}{2}}\right) + P\left(Z > z_{\frac{\alpha}{2}}\right) = \alpha$$

- 346p [예제 10-1 풀이]

- 347p

- 349p [예제 10-2 풀이]

$$z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{37 - 35}{\frac{4}{\sqrt{25}}} = 2.500$$

2.5는 1.645보다 큰 기각역에 존재한다. 따라서 귀무가설을 기각한다. 기각역이 표준정규 분포에서 $z=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ 가 1.645보다 큰 영역임을 확인하였다. 표본평균을 기준으로 기각역을

확인한다면 $\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>1.645$ 에서 표본평균 \overline{X} 가 얼마인지 확인함으로써 비교해볼 수도 있다.

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > 1.645, \quad \frac{\overline{X} - 35}{\frac{4}{\sqrt{25}}} > 1.645$$

$$\overline{X} - 35 > 1.645 \frac{4}{\sqrt{25}}, \quad \overline{X} > 35 + 1.645 \frac{4}{\sqrt{25}}$$

$$\overline{X} > 36.316$$

즉, 표본평균이 36.316보다 크면 귀무가설을 기각한다고 볼 수 있다. 따라서 이 문제에서 표본평균이 37이었으므로 귀무가설을 기각한다.

$$z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- 350p [예제 10-2 풀이]

여기서 z_a 는 $z_{0.01}$ 이고, 문제에서 주어졌듯이 2.326이다. 귀무가설의 기각여부는 검정통계량 $z= \overline{X-\mu}$ 가 2.326보다 큰 기각역에 있는가 아닌가를 통하여 결정한다. 검정통계량은 문제에서 주어진 값에 의하여 다음과 같이 계산한다.

$$z = \sqrt{\frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}} = \frac{37 - 35}{\frac{4}{\sqrt{25}}} = 2.500$$

2.5는 2.326보다 큰 기각역에 존재한다. 따라서 귀무가설을 기각한다. 기각역이 표준정규분 포에서 $z \neq \frac{\overline{X} - \mu}{\sqrt{n}}$ 2.326보다 큰 영역임을 확인하였다. 표본평균을 기준으로 기각역을 확

인한다면 $\frac{\overline{X}-\mu}{\sigma}$ 2.326에서 표본평균 \overline{X} 가 얼마인지 확인함으로써 비교해볼 수도 있다.

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > 2.326, \frac{\overline{X} - 35}{\frac{4}{\sqrt{25}}} > 2.326$$

$$\overline{X} - 35 > 2.326 \frac{4}{\sqrt{25}}, \overline{X} > 35 + 2.326 \frac{4}{\sqrt{25}}$$

$$\overline{X} > 36.861$$

→

$$z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

[24] 357p

$$P\left(\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} + P\left(\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} > t_{\frac{\alpha}{2}}\right) = \alpha$$
 (10.10)

여기서 $\frac{\overline{X}-\mu}{\frac{s}{\sqrt{n}}}$ 가 검정통계량이다. 모표준편차를 모를 때 $\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ 가 t-분포에서 기각역에 해당하는

지 아닌지를 통하여 귀무가설의 기각여부를 판단한다. 모표준편차를 모를 때 t-분포를 가정한 양측검정에 대한 실제 예제를 다음의 [예제 10-4] 를 통하여 확인하도록 하자.

→

$$P\left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} < -t_{\frac{\alpha}{2}}\right) + P\left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} > t_{\frac{\alpha}{2}}\right) = \alpha$$

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

- 358p [예제 10-4 풀이]

→

$$P\left(\overline{X} < \mu - t_{\underline{\alpha}} \frac{s}{\sqrt{n}}\right) + P\left(\overline{X} > \mu + t_{\underline{\alpha}} \frac{s}{\sqrt{n}}\right) = \alpha$$

$$P\left(\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \left(t_{\underline{\alpha}}\right) + P\left(\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} > t_{\underline{\alpha}}\right)\right) = \alpha$$

$$P\left(T\left(t_{\underline{\alpha}}\right) + P\left(T > t_{\underline{\alpha}}\right)\right) = \alpha$$

여기서 $t_{\frac{\alpha}{2}}$ 는 $t_{0.025}$ 이고 문제에서 주어졌듯이 2.064이다. 귀무가설의 기각여부는 검정통계량

 $\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$ 가 -2.064와 2.064 사이에 있는가 아닌가를 통하여 결정한다. 검정통계량은 문제에

서 주어진 값에 의하여 다음과 같이 계산한다.

$$\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} = \frac{37 - 35}{\frac{3.594}{\sqrt{25}}} = 2.782$$

∴ 2.782는 -1.960과 1.960 사이에 있지 않으므로 [그림 10-16]과 같이 기각역에 존재한다. 따라서 귀무가설을 기각한다. 결론적으로 중고차 판매원 한 명당 평균적으로 35대를 판매한다고 볼 수 없다.

$$P\left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} < -t_{\frac{\alpha}{2}}\right) + P\left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} > t_{\frac{\alpha}{2}}\right) = \alpha$$

$$P\left(T < -t\frac{\alpha}{2}\right) + P\left(T > t\frac{\alpha}{2}\right) = \alpha$$

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{37 - 35}{\frac{3.594}{\sqrt{25}}} = 2.782$$

-2.064와 2.064

=-2.064 , =2.064

- 359p [예제 10-4 풀이]

여기서 $z_{\frac{\alpha}{2}}$ 는 $z_{0.005}$ 이고, 이 값은 2.797이다. 귀무가설의 기각여부는 검정통계량 $\frac{\overline{X} - \mu}{\sqrt{n}}$ 7 -2.797과 2.797 사이에 있는가 아닌가를 통하여 결정한다. 검정통계량은 문제에서 무어진 값에 의하여 다음과 같이 계산한다.

$$\left(\frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}\right) = \frac{37 - 36}{\frac{4}{\sqrt{25}}} = 2.782$$

∴ 2.782는 -2.797과 2.797 사이에 있으므로 귀무가설을 기각할 수 없다. 중고차 판매원한 명당 평균적으로 35대를 판매한다고 볼 수 있다. '평균적으로 35대를 판매한다는 귀무가설을 기각할 수 없다'라고 표현하는 것이 보다 통계학적 진술이다.

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

- 361p

- 362p [예제 10-5 풀이]

표본비율 \hat{p} 은 38%로 관측되었고, 표본의 크기 n은 3,600이다. 다음과 같이 검정통계량을 계산할 수 있다.

$$\frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1 - 37\%)}{3600}}} = 2.574$$

4

$$\frac{\hat{p} - p_0}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1-37\%)}{3600}}} = 1.243$$

- 363p [예제 10-5 풀이]

 $z_{0.05}$ 는 문제에서 주어진 바와 같이 1.645이다. 따라서 검정통계량,

$$\frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1-37\%)}{3600}}} = 2.574$$

가 1.645보다 큰지 작은지를 기준으로 귀무가설의 기각여부를 결정한다.

.: 2.574는 1.645보다 크므로 5% 유의수준하에서 기각역에 존재하게 되어 귀무가설을 기 각한다.

(2) 1% 유의수준하에서 귀무가설검정

1% 유의수준이므로 $\alpha = 0.01$ 이다. 기각역은 다음과 같이 나타난다.

$$P(Z > z_{\underline{\alpha}}) = \alpha$$
$$P(Z > z_{0.01}) = 1\%$$

 z_{001} 은 문제에서 주어진 바와 같이 2.326이다. 따라서 검정통계량,

$$\frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1-37\%)}{3600}}} = 2.574$$

가 2,326보다 큰지 작은지를 기준으로 귀무가설의 기각여부를 결정한다.

: 2.574는 2.326보다 크므로 1% 유의수준하에서 기각역에 존재하게 되어 귀무가설을 기 각한다.

$$\frac{\hat{p} - p_0}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1-37\%)}{3600}}} = 1.243$$

∴ 1.243은 1.645보다 작으므로 5% 유의수준 하에서 기각역에 존재하지 않아 귀무가설을 기각할 수 없다.

$$\frac{\hat{p} - p_0}{\sqrt{\frac{p(1-p)}{n}}} = \frac{38\% - 37\%}{\sqrt{\frac{37\%(1-37\%)}{3600}}} = 1.243$$

∴ 1.243은 2.326보다 작으므로 5% 유의수준 하에서 기각역에 존재하지 않아 귀무가설을 기각할 수 없다.

- 371p 07번 문제

100명 → 101명

- **372p** 연습문제 9번 문제에 추가

(P(Z < 1.138) = 0.8724)

- **373p** 연습문제 10번 문제에 추가

 $(P(Z \le 1.355) = 0.9123, P(Z \le 0.674) = 0.7497)$

부록 Ⅱ 해답

- 461p Ch6 연습문제 13번 해답 수정
- 13. 0.3679
- 462p Ch07 연습문제 11번 해답 수정
- 11. 67.86
- 462p Ch08 연습문제 4번 해답 수정
- 04. (1) 0.6730 (2) 0.8490 (3) 0.9993
- 462p Ch08 연습문제 6번 해답 수정
- 06. 0.8114
- 462p Ch08 연습문제 10번 해답 수정
- 10. 0.3228
- 463p Ch08 연습문제 12번 해답 수정
- 12. 0.1587
- 463p Ch09 연습문제 4번 해답 수정
- (1) $P(9.013 < \mu < 10.987) = 0.90$
- (2) $P(8.824 < \mu < 11.176) = 0.95$
- (3) $P(8.454 < \mu < 11.546) = 0.99$

→ 신뢰수준이 증가함에 따라 신뢰구간의 폭은 넓어진다.

- 463p Ch09 연습문제 5번 해답 수정

- (1) $P(95.1 < \mu < 104.9) = 0.95$
- (2) $P(97.06 < \mu < 102.94) = 0.95$
- (3) $P(98.53 < \mu < 101.47) = 0.95$
- → 표본의 크기가 증가함에 따라 신뢰구간의 폭은 좁아진다.

- 463p Ch09 연습문제 6번 해답 수정

- (1) $P(97.85 < \mu < 102.15) = 0.99$
- (2) $P(197.85 < \mu < 202.15) = 0.99$
- (3) $P(497.85 < \mu < 502.15) = 0.99$
- → 다른 정보가 모두 동일하고 표본평균만 달라지는 경우, 신뢰구간의 폭은 변화 없다.

- 463p Ch09 연습문제 11번 해답 수정

 $27.2583 < \mu < 32.7417$

- 464p Ch09 연습문제 14번 해답 수정

- (1) 0.4824%
- (2) 0.3833%
- (3) 0.1895%

- 464p Ch10 연습문제 6번 해답 수정

검정통계량: -8.994, 기각역: P(Z < -1.645),

 H_0 : $\mu \ge 200$, H_1 : $\mu < 200$

검정통계량이 기각역에 존재하므로 H_0 를 기각한다. 5% 유의수준 하에서 통계적으로 유의미하게 200통 이하로 문의 전화가 줄었다.

- 464p 연습문제 7번 해답 수정

검정통계량: 5.918, 기각역: P(Z < -1.960), P(Z > 1.960),

 H_0 : $\mu = 100$, H_1 : $\mu \neq 100$

검정통계량이 기각역에 존재하므로 H_0 를 기각한다. 5% 유의수준 하에서 통계적으로 유의미하게 중학생의 평균 IQ가 100이라 할 수 없다.

- 467p Ch11 연습문제 10번 해답 수정

10.

 H_0 : 연봉 방식에 따른 연봉 금액의 차이는 없다.

 H_1 : 연봉 방식에 따라 연봉 금액이 모두 같은 것은 아니다.

F통계량: 0.2450, 기각역: P(F > 6.0129), F통계량이 기각역에 존재하지 않으므로 H_0 를 기각할 수 없다. 5% 유의수준 하에서 연봉 방식 별로 연봉 금액의 차이는 없다.

- 468p Ch12 연습문제 06번 해답 수정

06. (1) y = -0.0943x + 4.3230

(2) $R^2 = 0.7211$

- 468p Ch12 연습문제 10번 해답 수정

10.

(2) $R^2 = 0.9823$