Planetary Gearhead GP 62 A ∅62 mm, 8–50 Nm

Technical Data				
Planetary Gearhead		straig	ht teeth	
Output shaft			steel	
Bearing at output		ball	bearing	
Radial play, 7 mm from flange	:	max. 0	.08 mm	
Axial play		max	c. 1 mm	
Max. axial load (dynamic)			120 N	
Max. force for press fits	1000 N			
Direction of rotation, drive to o	output		=	
Max. continuous input speed		30	00 rpm	
Recommended temperature r	ange	-30	+140°C	
Number of stages	1	2	3	
Max. radial load, 24 mm				
from flange	240 N	360 N	570 N	

Stock program Standard program Special program (on request)			Part Numbers									
		[110499	110501	110502	110503	110504	110505	110506	110507	110508	
Ge	arhead Data											
1	Reduction		5.2:1	19:1	27:1	35:1	71:1	100:1	139:1	181:1	236:1	
2	Absolute reduction		57/11	3591/187	3249/121	1539/44	226223/3179	204687/2057	185193/1331	87723/484	41553/176	
3	Max. motor shaft diameter	mm	8	8	8	8	8	8	8	8	8	
4	Number of stages		1	2	2	2	3	3	3	3	3	
5	Max. continuous torque	٧m	8	25	25	25	50	50	50	50	50	
6	Max. intermittent torque at gear output	٧m	12	37	37	37	75	75	75	75	75	
7	Max. efficiency	%	80	75	75	75	70	70	70	70	70	
8	Weight	g	950	1250	1250	1250	1540	1540	1540	1540	1540	
9	Average backlash no load	0	1.0	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.0	
10	Mass inertia go	cm ²	109	100	105	89	104	105	102	88	89	
11	Gearhead length L1	nm	72.5	88.3	88.3	88.3	104.2	104.2	104.2	104.2	104.2	

maxon Modu	lar Syste	em												
+ Motor	Page	+ Sensor		Page	Brake	Page	Overall len	gth [mm] =	Motor length	+ gearhead le	ength + (senso	or/brake) + as	sembly parts	
RE 50, 200 W	143					180.6	196.4	196.4	196.4	212.3	212.3	212.3	212.3	212.3
RE 50, 200 W	143	HEDS 5540	363			201.3	217.1	217.1	217.1	233.0	233.0	233.0	233.0	233.0
RE 50, 200 W	143	HEDL 5540	365			201.3	217.1	217.1	217.1	233.0	233.0	233.0	233.0	233.0
RE 50, 200 W	143	HEDL 9140	369			243.0	258.8	258.8	258.8	2747	274.7	274.7	274.7	278.7
RE 50, 200 W	143			AB 44	412	243.0	258.8	258.8	258.8	2747	274.7	274.7	274.7	278.7
RE 50, 200 W	143	HEDL 9140	369	AB 44	412	256.0	271.8	271.8	271.8	287.7	287.7	287.7	287.7	287.7
EC 45, 250 W	217					216.6	232.4	232.4	232.4	248.3	248.3	248.3	248.3	248.3
EC 45, 250 W	217	HEDL 9140	368			232.2	248.0	248.0	248.0	263.9	263.9	263.9	263.9	263.9
EC 45, 250 W	217	Res 26	374			216.6	232.4	232.4	232.4	248.3	248.3	248.3	248.3	248.3
EC 45, 250 W	217			AB 28	409	224.0	239.8	239.8	239.8	255.7	255.7	255.7	255.7	255.7
EC 45, 250 W	217	HEDL 9140	368	AB 28	409	241.0	256.8	256.8	256.8	272.7	272.7	272.7	272.7	272.7