## **Ensemble Learning**

Jakub Kuciński

#### Introduction

The idea of ensemble learning is to build a prediction model by combining the strengths of a collection of simpler base models.

Main types of ensemble learning:

- a) bagging
- b) boosting
- c) stacking



#### Early example

|                      | Digit | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $C_6$ | • • • | $C_{15}$ |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
|                      | 0     | 1     | 1     | 0     | 0     | 0     | 0     |       | 1        |
| Multi-class          | 1     | 0     | 0     | 1     | 1     | 1     | 1     |       | 0        |
| classification using | 2     | 1     | 0     | 0     | 1     | 0     | 0     |       | 1        |
| error-correcting     |       |       |       |       |       |       |       |       |          |
| output codes.        | :     | :     | :     | :     | :     | :     | :     |       | :        |
|                      | 8     | 1     | 1     | 0     | 1     | 0     | 1     |       | 1        |
|                      | 9     | 0     | 1     | 1     | 1     | 0     | 0     |       | 0        |

- 1. Learn a separate classifier for each of the L=15 two class problems defined by the columns of the coding matrix.
- 2. At a test point x, let  $\hat{p}_{\ell}(x)$  be the predicted probability of a one for the  $\ell$ th response.
- 3. Define  $\delta_k(x) = \sum_{\ell=1}^L |C_{k\ell} \hat{p}_{\ell}(x)|$ , the discriminant function for the kth class, where  $C_{k\ell}$  is the entry for row k and column  $\ell$  in Table 16.1.

### Penalized Regression

J-terminal node regression trees  $\mathcal{T} = \{T_k\}$ 

$$f(x) = \sum_{k=1}^{K} \alpha_k T_k(x)$$

Since the number of basis trees will be very large we need to add regularization.

$$\min_{\alpha} \left\{ \sum_{i=1}^{N} \left( y_i - \sum_{k=1}^{K} \alpha_k T_k(x_i) \right)^2 + \lambda \cdot J(\alpha) \right\}$$
ridge regression,

$$J(\alpha) = \sum_{k=1}^{K} |\alpha_k|^2$$
 ridge regression,  
 $J(\alpha) = \sum_{k=1}^{K} |\alpha_k|$  lasso,

#### Forward Stagewise Linear Regression

#### Algorithm 16.1 Forward Stagewise Linear Regression.

- 1. Initialize  $\check{\alpha}_k = 0, \ k = 1, \dots, K$ . Set  $\varepsilon > 0$  to some small constant, and M large.
- 2. For m=1 to M:

(a) 
$$(\beta^*, k^*) = \arg\min_{\beta, k} \sum_{i=1}^{N} \left( y_i - \sum_{l=1}^{K} \check{\alpha}_l T_l(x_i) - \beta T_k(x_i) \right)^2$$
.

- (b)  $\check{\alpha}_{k^*} \leftarrow \check{\alpha}_{k^*} + \varepsilon \cdot \operatorname{sign}(\beta^*)$ .
- 3. Output  $f_M(x) = \sum_{k=1}^K \check{\alpha}_k T_k(x)$ .

#### Forward Stagewise Linear Regression



#### Forward Stagewise Linear Regression

- If basis functions are mutually uncorrelated or  $\alpha_{\mathbf{k}}(\lambda)$  in lasso are all monotone functions of  $\lambda$  then FSLR yields same solution as lasso.
- This is often the case when the correlation between the variables is low.
- When the  $\alpha_{\mathbf{k}}(\lambda)$  are not monotone in  $\lambda$ , then the solution sets are not identical.
- Coefficient paths are piece-wise linear functions, both for the lasso and forward stagewise hence they can be calculated with same cost as a single least-squares fit.
- Tree boosting with shrinkage closely resembles FSLR with the learning rate parameter v corresponding to ε. Thus, one can view tree boosting with shrinkage as a form of monotone ill-posed regression on all possible (J-terminal node) trees, with the lasso penalty as a regularizer.

#### The "Bet on Sparsity" Principle

#### L2 norm is computionaly easier than L1. Why use L1 then?

Example: Consider we have 10'000 points and our model is a linear combination of 1'000'000 trees.

- If small number (e.g. 1000) of trees' coefficients should be nonzero then lasso will work better.
- If coefficients arose from a Gaussian distribution, then best predictor is ridge regression. However in this scenario neither method does very well since there is too little data from which to estimate such a large number of nonzero coefficient.

"Use a procedure that does well in sparse problems, since no procedure does well in dense problems."

# The "Bet on Sparsity" Principle

Simulations that show the superiority of the L1 (lasso) penalty over L2 (ridge) in regression and classification



#### Lasso and infinitesimal forward stagewise paths



#### Lasso and infinitesimal forward stagewise paths



#### Margin

There have been suggestions that boosting performs well (for two-class classification) because it exhibits maximal-margin properties, much like the support-vector machines.

define the normalized  $L_1$  margin of a fitted model  $f(x) = \sum_k \alpha_k T_k(x)$  as

$$m(f) = \min_{i} \frac{y_i f(x_i)}{\sum_{k=1}^{K} |\alpha_k|}.$$
 (16.7)

where  $y_i \in \{-1, +1\}$ . L1 margin m(f) measures the distance to the closest training point in  $L_{\infty}$  units (maximum coordinate distance).

### Margin



#### Margin

- Adaboost increases m(f) with each iteration, converging to a margin-symmetric solution.
- Adaboost with shrinkage converges asymptotically to a L1-margin-maximizing solution.
- As λ ↓0, for particular loss functions the solution converges to a margin-maximizing configuration. In particular this is the case for the exponential loss of Adaboost and binomial deviance.

"The sequence of boosted classifiers form an L1-regularized monotone path to a margin-maximizing solution."

The margin-maximizing end of the path can be a very poor, overfit solution. One should use early stopping with validation set to get best performing solution\*.

<sup>\*</sup>Sometimes model generalizes to data much later then the validation dataset loss starts raising (e.g. with heavily overparametriezed models like NN <a href="https://mathai-iclr.github.io/papers/papers/MATHAI\_29\_paper.pdf">https://mathai-iclr.github.io/papers/papers/MATHAI\_29\_paper.pdf</a>, <a href="https://arxiv.org/abs/2108.12284">https://arxiv.org/abs/2108.12284</a>)

#### **Learning Ensembles**

Again we consider functions of the form:

$$f(x) = \alpha_0 + \sum_{T_k \in \mathcal{T}} \alpha_k T_k(x)$$

- A finite dictionary  $T_L = \{T_1(x), T_2(x), \dots, T_M(x)\}$  of basis functions is induced from the training data;
- A family of functions  $f_{\lambda}(x)$  is built by fitting a lasso path in this dictionary:

$$\alpha(\lambda) = \arg\min_{\alpha} \sum_{i=1}^{N} L[y_i, \alpha_0 + \sum_{m=1}^{M} \alpha_m T_m(x_i)] + \lambda \sum_{m=1}^{M} |\alpha_m|.$$
 (16.9)

#### **Learning Ensembles**

Horizontal lines represents the test errors of the baseline models.

The orange and blue curves are the test errors after post-processing baseline models.



#### Learning a Good Ensemble

For the post-processor to be effective we want basis functions that covers the space well in places where they are needed and are sufficiently different from each other.

We want to find a set of M evaluation points  $\gamma_m \in \Gamma$  and corresponding weights  $\alpha_m$  so that  $f_M(x) = \alpha_0 + \sum_{m=1}^M \alpha_m b(x; \gamma_m)$  approximates f(x) well over the domain of x where  $\gamma \in \Gamma$  indexes the basis functions  $b(x; \gamma)$ .

We want to introduce randomness in the selection of  $\gamma$  to make them more diverse, but give more weight to relevant regions of the space  $\Gamma$ .

#### Importance sampled learning ensemble

#### Algorithm 16.2 ISLE Ensemble Generation.

1. 
$$f_0(x) = \arg\min_c \sum_{i=1}^{N} L(y_i, c)$$

2. For 
$$m = 1$$
 to  $M$  do

(a) 
$$\gamma_m = \arg\min_{\gamma} \sum_{i \in S_m(\eta)} L(y_i, f_{m-1}(x_i) + b(x_i; \gamma))$$

(b) 
$$f_m(x) = f_{m-1}(x) + \nu b(x; \gamma_m)$$

3. 
$$T_{ISLE} = \{b(x; \gamma_1), b(x; \gamma_2), \dots, b(x; \gamma_M)\}.$$

 $S_{m}(\eta)$  refers to a subsample of N  $\cdot \eta$  ( $\eta \in (0, 1]$ ) of the training observations. On the obtained new set of basis functions we can perform lasso post-processing.

#### Special cases of ISLE

- Bagging has η = 1, but samples with replacement, and has v = 0.
- Random forest sampling is similar, with more randomness introduced by the selection of the splitting variable. Reducing η < 1/2 in ISLE has a similar effect to reducing m in random forests.
- Gradient boosting with shrinkage uses  $\eta = 1$ , but typically does not produce sufficient spread of basis functions.
- Stochastic gradient boosting follows the recipe exactly.

## Importance sampled learning ensemble

Gradient boosting model trained with  $\eta = 1/2$ , v = 0.05 and trees with five terminal nodes.



## Importance sampled learning ensemble

GBM (0.1, 0.01) refers to a gradient boosted model, with parameters ( $\eta$ , v), RF to random forest.

