Why not include eta?

 η is included, just not interacted with x, i.e. excluded from the partial derivatives. The result in its most general form is

$$\frac{\partial \pi^{u}\left(x,\bar{\varepsilon}\right)}{\partial x} = \bar{\Phi}_{x}\left(x,\bar{\varepsilon},\boldsymbol{y},\bar{S}^{u}\left(\boldsymbol{x},\bar{\varepsilon}\right)\right).$$

If we assume the partial derivative of $\bar{\Phi}$ with respect to x does not depend on η , then

$$\frac{\partial \pi^{u}(x,\bar{\varepsilon})}{\partial x} = \bar{\Phi}_{x}(x,\bar{\varepsilon}, \boldsymbol{y}, \bar{S}^{u}(x,\bar{\varepsilon}))$$
$$= \bar{\Phi}_{x}(x,\bar{\varepsilon}, \boldsymbol{y}),$$

where the identified object on the right-hand-side is a structural function of the model and does not depend on the equilibrium outcome.

Without this assumption, i.e. allowing the derivative to depend on η , you suggested that we just define

$$\bar{\Phi}_x\left(x,\bar{\varepsilon},\boldsymbol{y}\right) \equiv \bar{\Phi}_x\left(x,\bar{\varepsilon},\boldsymbol{y},\bar{S}^u\left(x,\bar{\varepsilon}\right)\right),\tag{1}$$

and we have

$$\frac{\partial \pi^{u}\left(x,\bar{\varepsilon}\right)}{\partial x} = \bar{\Phi}_{x}\left(x,\bar{\varepsilon},\boldsymbol{y}\right),\,$$

where $\bar{\Phi}$ is defined in (1). However, in this case $\bar{\Phi}_x(x,\bar{\varepsilon},\boldsymbol{y})$ is no longer a structural function as it depends on the equilibrium outcome $\bar{S}^u(x,\bar{\varepsilon})$. Further, $\bar{S}^u(x,\bar{\varepsilon})$ is not identified in the data.

Could you plot the non parametric derivative rather than doing the parametric least squares exercise?

Yes. Here is a plot of partial derivatives from the same Monte-Carlo exercise. The horizontal axis is x_i , and the vertical axis is $\frac{\partial \pi^u(x_i,\bar{\varepsilon}_i)}{\partial x}$ or estimates of $\bar{\Phi}_x\left(x_i,\bar{\varepsilon}_i, \boldsymbol{y}=\bar{T}^u(x_i,\bar{\varepsilon}_i)\right)$.

Here is a plot of the partial derivatives for the data.

Instead of plotting the partial derivatives at $(x_i\bar{\varepsilon}_i)$, I can instead do it for a fixed $\bar{\varepsilon}$ for different x_i , i.e. $(x_i\bar{\varepsilon}_i)$. The orange points are the partial derivatives for $\bar{\varepsilon}=0.8$, and the red ones are for $\bar{\varepsilon}=0.4$.

Also, people typically report root integrated mean squared error for estimates of functions.

Correct! I didn't do this initially as I was focused on the MSE of parameter estimates. The IMSEs for the estimates of $\bar{\Phi}_x(x,\bar{\varepsilon},\boldsymbol{y})$ decrease pretty well with the sample size in the Monte-Carlo exercise.

 $IMSE_{250} = 0.97, IMSE_{500} = 0.66, IMSE_{1000} = 0.40.$