

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013

QUÍMICA

TEMA 5: EQUILIBRIO QUÍMICO

- Junio, Ejercicio 3, Opción B
- Junio, Ejercicio 6, Opción B
- Reserva 1, Ejercicio 5, Opción B
- Reserva 2, Ejercicio 3, Opción A
- Reserva 3, Ejercicio 3, Opción A
- Reserva 3, Ejercicio 6, Opción B
- Septiembre, Ejercicio 6, Opción A

Para la reacción: $A(g) \to B(g) + C(g)$ el valor de la constante de velocidad a una cierta temperatura es $1,5\cdot 10^{-3}~L\cdot mol^{-1}\cdot s^{-1}$

- a) ¿Cuál es el orden de la reacción?.
- b) ¿Cuál es la ecuación de velocidad?.
- c) A esa misma temperatura, ¿cuál será la velocidad de la reacción cuando la concentración de A sea 0,242 M?

QUÍMICA. 2013. JUNIO. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

a) La ecuación de velocidad para esta reacción es: $v = k \cdot \left[A(g)\right]^n$.

Para determinar el orden de la reacción, analizamos las unidades en la ecuación de la velocidad:

$$v = k \cdot \left[A(g)\right]^n \Rightarrow \frac{mol}{L \cdot s} = \frac{L}{mol \cdot s} \cdot \frac{mol^n}{L^n} \Rightarrow \frac{mol^2}{L^2} = \frac{mol^n}{L^n} \Rightarrow n = 2$$

Luego, el orden de la reacción es 2.

- b) La ecuación de velocidad para esta reacción es: $v = 1.5 \cdot 10^{-3} \cdot [A(g)]^2$
- c) A la misma temperatura la constante de velocidad es la misma, luego:

$$v = 1'5 \cdot 10^{-3} \cdot \left[A(g)\right]^2 = 1'5 \cdot 10^{-3} \cdot \left[0'242\right]^2 = 8'78 \cdot 10^{-5} \text{ mol} \cdot L^{-1} \cdot s^{-1}$$

A 350°K la constante de equilibrio K_c de la reacción de descomposición del bromuro de carbonilo vale 0,205: $COBr_2(g) \iff CO(g) + Br_2(g)$. Si en un recipiente de 3L se introducen

3,75 moles de bromuro de carbonilo y se calienta hasta alcanzar esa temperatura:

a) ¿Cuáles son las concentraciones de todas las especies en el equilibrio?.

b) ¿Cuál es el grado de disociación del bromuro de carbonilo en esas condiciones?.

OUÍMICA. 2013. JUNIO. EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

ayb)

$$\begin{array}{cccc} & COBr_2(g) & \rightleftarrows CO(g) + Br_2(g) \\ \\ \text{inicialmente} & c & 0 & 0 \\ \\ \text{equilibrio} & c(1-\alpha) & c\alpha & c\alpha \\ \end{array}$$

Calculamos la concentración:

$$c = \frac{3'75}{3} = 1'25.$$

$$K_{C} = \frac{\left[Br_{2}\right] \cdot \left[CO\right]}{\left[COBr_{2}\right]} \Rightarrow 0'205 = \frac{c\alpha^{2}}{1-\alpha} = \frac{1'25\alpha^{2}}{1-\alpha} \Rightarrow \alpha = 0'33$$

Calculamos las concentraciones de todas las especies en el equilibrio:

$$[Br_2] = [CO] = c \cdot \alpha = 1'25 \cdot 0'33 = 0'4125 M$$

$$[COBr_2] = c \cdot (1-\alpha) = 1'25 \cdot (1-0'33) = 0'8375 \text{ M}$$

Una mezcla gaseosa de 1 L, constituida inicialmente por 7,94 mol de gas dihidrógeno (H₂) y 5,30 mol de gas diyodo (I₂), se calienta a 445 °C, formándose en el equilibrio 9,52 mol de yoduro de hidrógeno gaseoso.

- a) Calcule el valor de la constante de equilibrio K_c , a dicha temperatura.
- b) Si hubiésemos partido de 4 mol de gas dihidrógeno y 2 mol de gas diyodo, ¿cuántos moles de yoduro de hidrógeno gaseoso habría en el equilibrio?

QUÍMICA. 2013. RESERVA 1. EJERCICIO 5. OPCIÓN B

Como nos dicen que: $2x = 9'52 \Rightarrow x = 4'76$. Por lo tanto:

$$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right] \cdot \left[I_{2}\right]} = \frac{\left(\frac{9'52}{1}\right)^{2}}{\left(\frac{3'18}{1}\right) \cdot \left(\frac{0'54}{1}\right)} = 52'77$$

$$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right] \cdot \left[I_{2}\right]} = \frac{\left(\frac{2x}{1}\right)^{2}}{\left(\frac{4-x}{1}\right) \cdot \left(\frac{2-x}{1}\right)} = 52'77 \Rightarrow 48'77x^{2} - 316'62x + 422'16 = 0 \Rightarrow x = 1'87$$

Luego, los moles de yoduro de hidrógeno en el equilibrio serán: $2x = 2 \cdot 1'87 = 3'74$ moles

Para la siguiente reacción en equilibrio: $2BaO_2(s) \rightleftharpoons 2BaO(s) + O_2(g) \quad \Delta H > 0$

- a) Escriba la expresión de las constantes de equilibrio K $_{\rm c}$ y K $_{\rm p}$.
- b) Justifique en qué sentido se desplazará el equilibrio si se eleva la temperatura.
- c) Justifique cómo evoluciona el equilibrio si se eleva la presión a temperatura constante.

QUÍMICA. 2013. RESERVA 2. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

a) Para el equilibrio: $2BaO_2(s) \rightleftharpoons 2BaO(s) + O_2(g) \Delta H > 0$

$$\mathbf{K}_{c} = \left[\mathbf{O}_{2} \right]$$

$$K_p = P_{O_p}$$

- b) El aumento de temperatura favorece la reacción endotérmica, luego, el equilibrio se desplaza hacia la derecha.
- c) Si aumenta la presión el volumen debe disminuir, luego, se desplaza hacia la izquierda.

A 298° K se establece el siguiente equilibrio químico: $2NO(g) + O_2(g) \rightleftarrows 2NO_2(g)$ $\Delta H < 0$. Razone la veracidad o falsedad de las siguientes afirmaciones:

a) La relación entre K_c y K_p es $K_p = K_c \cdot R \cdot T$.

- b) Si se aumenta la temperatura K_c aumenta.
- c) El equilibrio se puede desplazar en el sentido de los productos con la adición de un catalizador adecuado.

QUÍMICA. 2013. RESERVA 3. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

- a) Falsa, ya que la relación entre K_c y K_p viene dada por la fórmula: $K_c = K_p \cdot (RT)^{-\Delta n}$ y, en nuestro caso $\Delta n = -1$, luego, la relación es: $K_c = K_p \cdot R \cdot T$
- b) Falsa, ya que al aumentar la temperatura el equilibrio se desplaza hacia la izquierda y disminuye $K_{\rm c}$
- c) Falsa. El catalizador sólo influye en la velocidad de reacción pero no desplaza el equilibrio en ningún sentido.

Se introduce una cantidad de NaHCO₃ sólido en un recipiente de 2 L a 100° C y se establece el siguiente equilibrio: 2NaHCO₃(s) \rightleftharpoons Na₂CO₃(s) + H₂O(g) + CO₂(g). Si el valor de K _p a esa temperatura es 0,231, calcule:

- a) La presión de CO₂ y los gramos de carbonato de sodio en el equilibrio.
- b) Las concentraciones de las especies gaseosas en el equilibrio, al añadir al equilibrio anterior 0,01 mol de gas ${\rm CO}_2$.

Datos: R = 0,082 atm·L·moI-1·K-1. Masas atómicas C = 12; H = 1; O = 16; Na = 23. OUÍMICA. 2013. RESERVA 3. EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

a)
$$K_P = P_{H_2O} \cdot P_{CO_2} = (P_{CO_2})^2 = 0'231 \Rightarrow P_{CO_2} = \sqrt{0'231} = 0'481 \text{ atm}$$

$$n_{CO_2} = \frac{P \cdot V}{R \cdot T} = \frac{0'481 \cdot 2}{0'082 \cdot 373} = 0'031 \text{ moles}$$

$$0'031 \text{ moles } CO_2 \cdot \frac{1 \text{mol } Na_2CO_3}{1 \text{mol } CO_2} \cdot \frac{106 \text{ g } Na_2CO_3}{1 \text{mol } Na_2CO_3} = 3'286 \text{ g } Na_2CO_3$$

b) Escribimos el equilibrio:

$$2\,\text{NaHCO}_3(\text{s}) \rightleftarrows \text{Na}_2\text{CO}_3(\text{s}) + \text{H}_2\text{O}(\text{g}) + \text{CO}_2(\text{g})$$
 inicialmente
$$0'031 \quad 0'041$$
 equilibrio
$$0'031 - \text{x} \quad 0'041 - \text{x}$$

Calculamos $K_c = K_p(RT)^{-\Delta n} = 0'231 \cdot (0'082 \cdot 373)^{-2} = 2'47 \cdot 10^{-4}$

$$K_c = 2'47 \cdot 10^{-4} = [H_2O] \cdot [CO_2] = (\frac{0'031 - x}{2}) \cdot (\frac{0'041 - x}{2}) \Rightarrow x = 0'0045$$

Luego, las concentraciones de las especies gaseosas en el equilibrio son:

$$[H_2O] = \left(\frac{0'031 - 0'0045}{2}\right) = 0'01325$$
$$[CO_2] = \left(\frac{0'041 - 0'0045}{2}\right) = 0'01825$$

A 473° K y 2 atm de presión total, el PCl_5 se disocia en un 50% en PCl_3 y Cl_2 . Calcule:

- a) Las presiones parciales de cada gas en el equilibrio.
- b) Las constantes K_c y K_p .

Dato: $\mathbf{R} = 0.082 \text{ atm} \cdot \mathbf{L} \cdot \text{mol}^{-1} \cdot \mathbf{K}^{-1}$

QUÍMICA. 2013. SEPTIEMBRE. EJERCICIO 6. OPCIÓN A

RESOLUCIÓN

El número total de moles es: $n_T = n(1-\alpha) + n\alpha + n\alpha = n(1+\alpha)$.

$$P_{PCl_3} = P_{Cl_2} = \frac{n \cdot \alpha}{n \cdot (1 + \alpha)} \cdot P_T = \frac{0.5}{1.5} \cdot 2 = 0.66 \text{ at}$$

$$P_{PCl_5} = \frac{n \cdot (1 - \alpha)}{n \cdot (1 + \alpha)} \cdot P_T = \frac{0.5}{1.5} \cdot 2 = 0.66 \text{ at}$$

b)
$$K_{p} = \frac{\left(\frac{n\alpha}{n(1+\alpha)}P_{T}\right) \cdot \left(\frac{n\alpha}{n(1+\alpha)}P_{T}\right)}{\left(\frac{n(1-\alpha)}{n(1+\alpha)}P_{T}\right)} = \frac{\alpha^{2} \cdot P_{T}}{1-\alpha^{2}} = \frac{0.5^{2} \cdot 2}{1-0.5^{2}} = 0.66 \text{ at}$$

$$K_c = K_p (RT)^{-\Delta n} = 0'66 \cdot (0'082 \cdot 473)^{-1} = 0'017$$