Работа 3.1.3 Измерение магнитного поля Земли

Шарапов Денис, Б05-005

Содержание

1	Ан	нотация 2				
2	Теоретические сведения					
	2.1	Точечный магнитный диполь				
	2.2	Неодимовые магнитные шары				
	2.3	Экспериментальное определение величины магнитного момента магнит-				
		ных шариков				
	2.4	Измерение горизонтальной составляющей индукции магнитного поля Зем-				
		ля				
	2.5	Измерение вертикальной составляющей индукции магнитного поля Земли 3				
3	Per	вультаты измерений и обработка данных				
	3.1	Определение магнитного момента				
	3.2	Определение горизонтальной составляющей				
	3.3	Определение вертикальной составляющей				
	3.4	Подсчёт индукции магнитного поля Земли				
4	Вы	вод				

1 Аннотация

Цель работы: определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются: 12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0, 5-0, 6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25 \times 30 \times 60 \text{ мм}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики $(\sim 20 \text{ шт.})$ и неодимовые магниты в форме параллелепипедов (2 шт.), набор гирь и разновесов.

2 Теоретические сведения

2.1 Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент $\vec{P_m}$ тонкого витка площадью S с током I равен:

$$\vec{P_m} = \frac{I}{c}\vec{S} = \frac{I}{c}S\vec{n},$$

где c — скорость света в вакууме, $\vec{S} = S\vec{n}$ — вектор площади контура, образующий направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление $\vec{P_m}$ принимается за направление $S \to N$ от южного к северному полюсу).

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарного электрического диполя:

$$\vec{B} = 3 \frac{(\vec{P_m}, \vec{r})\vec{r}}{r^5} - \frac{\vec{P_m}}{r^3}.$$

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь $\vec{P_m}$ действует механический момент сил:

$$\vec{M} = \vec{P_m} \times \vec{B}$$
.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -(\vec{P_m}, \vec{B}).$$

Зная магнитные моменты P_1 и P_2 двух небольших постоянных магнитов, можно рассчитать силу их взаимодействия. Если магнитные моменты $P_1=P_2=P_m$ двух одинаковых небольших магнитов направлены вдоль соединяющей их прямой, а расстояние между ними равно r, то магниты взаимодействуют с силой:

$$F = P_m \frac{\partial B}{\partial r} = P_m \frac{\partial (2P_m/r^3)}{\partial r} = -6 \frac{P_m^2}{r^4}.$$

2.2 Неодимовые магнитные шары

Магнитное поле однородно намагниченного шара радиуса R на расстояниях $r \geq R$ от центра шара совпадает с полем точечного магнитного диполя $\vec{P_m}$, равного полному магнитному моменту шара и расположенного в его центре.

По определению намагниченность — это магнитный момент единицы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p_m} = \frac{\vec{P_m}}{V},$$

где V — объем шара.

Индукция магнитного поля $\vec{B_p}$ на полюсах однородно намагниченного шара связана с величиной намагниченности $\vec{p_m}$ и с остаточной магнитной индукцией $\vec{B_r}$, формулой:

$$\vec{B_p} = (8\pi/3)\vec{p_m} = (2/3)\vec{B_r}.$$

2.3 Экспериментальное определение величины магнитного момента магнитных шариков

При максимальном расстоянии сила тяжести шариков равна силе их магнитного притяжения:

$$\frac{6P_m^2}{r_{max}^4} = mg, \quad P_m = \sqrt{\frac{mgr_{max}^4}{6}}.$$

Максимальная величина индукции наблюдается на полюсах:

$$\vec{B_p} = \frac{2\vec{P_m}}{R^3}.$$

2.4 Измерение горизонтальной составляющей индукции магнитного поля Земля

Магнитное поле Земли в настоящей работе определяется по периоду крутильных колебаний магнитной стрелки вокруг вертикальной оси.

Период крутильных колебаний

$$T = 2\pi \sqrt{\frac{I_n}{P_0 B_h}} = 2\pi \sqrt{\frac{I_n}{n P_m B_h}},$$

где $P_0 = nP_m$ — полный магнитный момент магнитной стрелки, составленной из n шариков.

Момент инерции стрелки, состоящей из n шариков:

$$I_n = \frac{1}{12}n^3md^2.$$

В приближении период колебаний маятника оказывается пропорциональным числу шаров n, составляющих стрелку:

$$T(n) = \pi n \sqrt{\frac{md^2}{3P_m B_h}}.$$

2.5 Измерение вертикальной составляющей индукции магнитного поля Земли

С помощью небольшого дополнительного грузика стрелку можно выровнять, расположив её горизонтально: в этом случае момент силы тяжести груза относительно точки подвеса будет равен моменту сил, действующих на стрелку со стороны магнитного поля Земли. Если масса уравновешивающего груза равна $m_{\rm rp}$, плечо силы тяжести $r_{\rm rp}$, а полный магнитный момент стрелки $P_0=nP_m$, то в равновесии:

$$m_{\text{\tiny TD}}gr_{\text{\tiny TD}} = P_0B_v = nP_mB_v,$$

где B_v — вертикальная составляющая поля Земли. Видно, что момент M(n) силы тяже-

$$M(n) = An,$$

где $A = P_m B_v$.

3 Результаты измерений и обработка данных

3.1 Определение магнитного момента

Взвесим шарики на весах и определим их диаметр. Затем выясним, на каком максимальном расстоянии r_{max} шарики удерживают друг друга в поле тяжести Земли. Результаты измерений занесём в таблицу 1.

т, г	d, mm	r_{max} , MM
$0.850 \pm 0,001$	$6,10 \pm 0,01$	$19,00 \pm 0,01$

Таблица 1: геометрические размеры шариков

Рассчитаем величину магнитного момента магнитика P_m , величину намагниченности материала шариков p_m , величину магнитного поля B_p на полюсах шарика, величину остаточной магнитной индукции B_r :

P_m , эрг/Гс	$p_m, \Gamma c$	B_p , к Γ с	B_r , к Γ с
$42,600 \pm 0,001$	$358, 4 \pm 10$	$3,00 \pm 0,09$	$4,50 \pm 0,14$

Измерим величину поля B_p на полюсах шарика датчиком:

$$B_p = 2,87 \pm 0,01$$
 кГс.

3.2 Определение горизонтальной составляющей

Соберём крутильный маятник и исследуем зависимость периода T крутильных колебаний стрелки от количества магнитных шариков n, составляющих стрелку. Измерения представлены в таблице 2.

n, iiit	12	11	10	9	8	7	6	5	4	3
T, c	3,1	2,8	2,6	2,4	2,2	1,9	1,7	1,4	1,1	0,8

Таблица 2: зависимость периода колебаний от количества шариков

Из МНК определяем коэффициент наклона k:

$$k = 0,249 \pm 0,006$$
 c.

По значению углового коэффициента рассчитаем величину горизонтальной составляющей B_h магнитного поля Земли:

$$B_h = 0,396 \pm 0,024 \; \Gamma c.$$

3.3 Определение вертикальной составляющей

Определим механический момент сил, десйтвующих со стороны магнитного поля Земли на горизонтально расположенную магнитную стрелку. Для этого с помощью проволки уравновесим стрелку. С помощью весов определим массу уравновешивающего груза $m_{\rm rp}$. Результаты измерений приведены в таблице 3.

n, шт	m_{rp} , г	M , дин \cdot см
10	$0,195 \pm 0,001$	$573,300 \pm 0,003$
8	$0,206 \pm 0,001$	$484,500 \pm 0,004$
6	$0,231 \pm 0,001$	$407,400 \pm 0,005$
4	$0,313 \pm 0,001$	$368,100 \pm 0,005$

Таблица 3: результаты измерения механического момента

Из МНК определяем угловой коэффициент k:

$$k = 34, 6 \pm 4, 0$$
 дин \cdot см.

Откуда рассчитаем величину вертикальной составляющей B_v магнитного поля Земли:

$$B_v = 0.81 \pm 0.01 \,\mathrm{\Gamma c}$$
.

3.4 Подсчёт индукции магнитного поля Земли

Полная величина индукции В:

$$B = \sqrt{B_v^2 + B_h^2} \approx 0,90 \pm 0,06$$
 Γc.

Магнитное наклонение β :

$$\beta = arctan \frac{B_v}{B_h} \approx 63^{\circ}.$$

4 Вывод

В работе были определены характеристики шарообразных неодимовых магнитов. Также были измерены вертикальная и горизонтальная составляющие индукции магнитного поля Земли и магнитное наклонение.

Также в ходе работы

- 1. был определён магнитный момент по силе сцепления магнитных шариков;
- 2. была определена горизонтальная составляющая индукции магнитного поля Земли;
- 3. была определена вертикальная составляющая индукции магнитного поля Земли;
- 4. были подсчитаны индукция магнитного поля Земли и магнитное наклонение. При этом результат измерения индукции получился большим, чем табличное значение, которое находится в диапазоне 0,60-0,65 Гс.