$$f(x) = \begin{cases} x + x^2 & \text{si } x < 0 \\ \text{Ssen } x & \text{si } x \geq 0 \end{cases}$$

· Si x <0: intervalos de crecimiento y decrecimiento:

$$\chi(0 \Rightarrow) f(x) = \alpha + x + x^{2}$$

$$f'(x) = 1 + 2x$$

$$\frac{-1/2}{\text{minimo local}}$$

$$\Rightarrow$$
 f DECRECE si $x \in (-\infty, -1/2)$
f CRECE si $x \in (-1/2, 0)$
 $\Rightarrow x = -1/2$ MTMINO LOCAL

· dip: f derivable en xo = 0.

Continuidad en xo = 0:

$$f(0) = \beta x = 0 = 0 = \lim_{x \to 0^+} f(x)$$

 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (\alpha + 2 + 2^2) = \alpha$

footime en
$$x = 0$$

Derivabilidad en 20=0. Es necesario que q=0-

En ese caso:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{\beta \sin x}{x} = \beta$$

 $f'_{-}(0) = \lim_{x \to 0-} \frac{x + x^{2}}{x} = \Delta$

$$f$$
 es derivable en $x_0=0 \Leftrightarrow \beta=1=f'(0)$

$$\alpha = 0$$
 $\beta = 1$

· Si x=0, B=1 df(x); z ER?

Independientemente del valor de « y ß, la función f es denivable $\forall x \neq 0$:

xe(-00,0) = 51(x) = 1+2x

x ∈ (0,00) = f(x) = B cos x

Cuando x = 0, $\beta = 1$, f es derivable en todo R y se cumple qx

 $f'(x) = \begin{cases} 1+2x & \text{si } x < 0 \\ \cos x & \text{si } x \geq 0 \end{cases}$

es una función continua en R.

• x = -1; $\beta = 1$ $f(x) = \begin{cases} -1 + x + x^2 & ; & x < 0 \\ sen x & ; & x \ge 0 \end{cases}$

≠ maximo absoluto

intrino absoluto: $f(-1/2) = -\frac{5}{4}$ se alcanta en $x = -\frac{1}{2}$