Contents

1.1 1.2	1 Problems in Cryptography	4 5
Lesson 2.1	2 Message Authentication	7 7
Lesson 3.1	Randomness Extraction	9 9
Lesson	4	12
$4.1 \\ 4.2$	One-Way Functions	12 13 14
$\frac{4.3}{4.4}$	Computational Indistinguishability	15 17
5.1 5.2 5.3	Stretching a PRG	18 18 21 22
6.1 6.2	Computationally secure encryption	23 23 26 28
Lesson 7.1		29 32
Lesson 8.1	Domain extension	36 36 36 37

Lesson	9	40
9.1 9.2	Message Authentication Codes and unforgeability	40
	Domain extension for MAC schemes	42
	9.2.1 Universal hash functions	43
	9.2.2 Hash function families from finite fields	46
Lesson	10	48
10.1	Domain extension for PRF-based MAC schemes	48
	10.1.1 Hash function families from PRFs	48
	10.1.2 XOR-mode	48
	10.1.3 CBC-mode MAC scheme	49
	10.1.4 XOR MAC	49
10.2	Cca-security	51
10.3	Authenticated encryption	52
	10.3.1 Combining SKE & MAC schemes	53
Lesson	11	56
11.1	Authenticated encryption (continued)	56
11.2	Pseudorandom permutations	57
	11.2.1 Feistel network	57
Lesson	12	60
12.1	Hashing	60
	12.1.1 Merkle-Damgård construction	60
	12.1.2 Domain extension	60
	12.1.3 Compression functions	60
Lesson	13	61
13.1	Number theory	61
	Standard model assumptions	61
Lesson	14	62
	14.0.1 Decisional Diffie-Hellman assumption	62
	14.0.2 Naor-Reingold encryption scheme	62
14.1	Public key encryption schemes	62
Lesson	15	63
15.1	Public key encryption recap	63
	15.1.1 Trapdoor permutation	64
	15.1.2 TDP examples	64
	Textbook RSA	65
	15.2.1 Trapdoor Permutation from Factoring	66
	15.2.2 Rabin's Trapdoor permutation	67
Lesson	16	70
	PKE schemes over DDH assumption	70
	16.1.1 El Gamal scheme	70
	16.1.2 Cramer-Shoup PKE scheme	73

Lesson	17
17.1	Construction of a CCA-secure PKE
	$17.1.1 \;\; \text{Instantiation of U-HPS (Universal Hash Proof System)} .$
Lesson	18
18.1	Digital signatures
	18.1.1 Public Key Infrastructure
Lesson	19
19.1	Bilinear Map
19.2	Waters signatures
Lesson	20
20.1	Random Oracle Model (ROM)
20.2	ID Scheme
20.3	Honest Verifier Zero Knowledge (HVZK) and Special Soundness
	(SS)
Lesson	21
21.1	Full domain hashing
Lesson	22
22.1	Examples of ID schemes
Lesson	23
23.1	Bilinear DDH assumption
Lesson	24
94.1	CCA proof for ???

1.1 Problems in Cryptography

- Confidential communication

T0D0 1: Image of Alice, Bob, Eve in ske

Kerckhoffs's principle: No security by obscurity.

Security should only rely on the secrecy of the key. However sharing the key between two parties is a costly operation.

Syntax:

- $\mathcal{K} = \text{Key Space}$
- $\mathcal{M} = \text{Message Space}$
- C = Ciphertext Space
- $Enc: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$
- $Dec: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$

Correctness:

 $\forall m \in \mathcal{M}, \forall k \in \mathcal{K} : Dec(k, Enc(k, m)) = m$

Definition 1. Perfect Secrecy (SHANNON)

Let M be any distribution over \mathcal{M} .

Let K be uniform over K.

We say that (Enc, Dec) is perfectly secret if $\forall M, \forall m \in \mathcal{M}, \forall c \in \mathcal{C}$.

$$Pr[M=m] = Pr[M=m|C=c]$$

Meaning that the ciphertext does not reveal anything about the message.

Theorem 1. Let M, K, C as above. The following are equivalent:

I
$$Pr[M=m] = Pr[M=m|C=c]$$

II M and C are INDEPENDENT

III
$$\forall m, m' \in \mathcal{M}, \forall c \in C \ Pr[Enc(k, m) = c] = Pr[Enc(k, m') = c]$$

Proof.
$$(I) \implies (II)$$

$$Pr[M = m \land C = c] = Pr[C = c]Pr[M = m|C = c] = Pr[C = c]Pr[M = m]$$

They are independent.

$$\begin{array}{c} (II) \implies (III) \text{ Fix M, any } m \in M, c \in C \\ \\ \Pr[\mathsf{Enc}(K,m) = c] = \\ \\ = \Pr[\mathsf{Enc}(K,M) = c | M = m] = \\ \\ = \Pr[C = c | M = m] = \Pr[C = c] \end{array}$$

$$(III) \implies (I)$$

$$\begin{split} \Pr[C=c] &= \sum_{m'} Pr[C=c \land M=m'] \\ &= \sum_{m'} Pr[Enc(K,M)=c \land M=m'] \\ &= \sum_{m'} Pr[Enc(K,M)=c|M=m']Pr[M=m'] \\ &= \sum_{m'} Pr[Enc(K,m')=c]Pr[M=m'] \\ &= \Pr[Enc(K,m)=c] \sum_{m'} Pr[M=m'] \\ &= \Pr[Enc(K,m)=c] \qquad \text{(Using III)} \\ &= \Pr[Enc(K,m)=c] \qquad \text{(Using total prob.)} \\ &= \Pr[C=c|M=m] \end{split}$$

Furthermore:

$$\begin{split} \Pr[C=c] = \Pr[C=c|M=m] &\implies \Pr[M=m] = \Pr[C=c|M=m] \\ &\implies \Pr[M=m] = \frac{\Pr[C=c]\Pr[M=m|C=c]}{\Pr[C=c|M=m]} \\ &\implies \Pr[M=m] = \Pr[M=m|C=c] \end{split}$$

1.2 One Time Pad (OTP)

$$K = M = C = \{0, 1\}^{l}$$

$$K \leftarrow \$ \{0, 1\}^{l}$$

- $Enc(k, m) = k \oplus m = c$
- $Dec(k, c) = k \oplus c = m$

Theorem 2. OTP is perfectly secret

 \Diamond

Proof. Fix any $m, c \in \{0, 1\}^l$:

$$\begin{split} Pr[Enc(k,m) = c] &= Pr[k \oplus m = c] = \\ &= Pr[k = c \oplus m] = 2^{-l} \text{(because k is uniform)} \\ &= Pr[Enc(k,m') = c] \forall m' \end{split}$$

This satisfies (III)

Problems:

- 1. |k| = |m| (the key must have the same length of the message)
- 2. There must be one different key for each message ($One\ Time$). Otherwise:

$$c_1 = k \oplus m_1; c_2 = k \oplus m_2 \implies c_1 \oplus c_2 = m1 \oplus m_2$$

Not independent! (OTP is malleable¹)

Theorem 3. In any perfectly secret SKE we must have $|\mathcal{K}| \geq |\mathcal{M}|$

Proof. Take M to be uniform over \mathcal{M} and take c s.t. Pr[C=c]>0. Consider $M'=\{Dec(K,c):k\in K\}$ (decryption of c with every key) and assume $|\mathcal{K}|<|\mathcal{M}|$

$$\implies |M'| \leq |K| \leq |M|$$

$$\implies \exists m \in M \setminus M'$$

$$\operatorname{Now} Pr[M = m] = \frac{1}{|\mathcal{M}|}$$
 By assumption all the c "creates" M'
$$Pr[\underbrace{M = m}_{m \text{ is not inside } M'} | \underbrace{C = c}] = \emptyset$$

The above notion can be represented with the following picture:

Meaning that c is not an encryption of m!

 $^{^1}$ An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption c of a plaintext m, it is possible to generate another valid ciphertext c', for a known Enc, Dec, without necessarily knowing or learning m.

2.1 Message Authentication

T0D0 2: Msg auth image (bob, eve, tag)

2.1.1 Message Authentication Code (MAC or Tag)

Syntax:

- $\mathcal{K} = \text{Key space}$, $\mathcal{M} = \text{Message space}$, $\Phi = \text{Tag space}$
- K is uniform over K
- Tag: $\mathcal{K} \times \mathcal{M} \to \Phi$
- Verify: $\mathcal{K} \times \mathcal{M} \times \Phi \rightarrow \{0,1\}$

Correctness:

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}$$
 Verify $(k, m, \text{Tag}(k, m)) = 1$

Assume Tag is <u>deterministic</u>, then $Vrf(k,m,\phi)=1\Leftrightarrow Tag(k,m)=\phi$ **Security:** Unforgeability \to The attacker is not able to forge ϕ **Definition** (ε -statistical one-time security): we say that Mac has ε -statistical one-time security if $\forall m,m'\in\mathcal{M}s.t.m\neq m',\forall\phi,phi'\in\Phi$

$$Pr[Mac(K, m') = \phi' | Mac(K, m) = \phi] \le \varepsilon$$

T0D0 3: Not really sure of the Correctness of the following thins

Think of an "Unbounded" adversary choosing $m \in \mathcal{M}$ and obtaining $\phi = Mac(k, m)$. His goal is to forge on $m' \neq m'$ a tag ϕ' such that $Mac(k, m') = \phi'$ (with no knowledge of k).

Tool: Pairwise Independent Hashing

Definition 2. A family of (Hash) functions $H = \{h_s : \mathcal{M} \to \Phi\}_{s \in S}$ is said to be pairwise independent iff, for any two distinct messages m and m', we have that $(h_s(m), h_s(m'))$ is uniform over Φ^2 for random choice of seed $s \in S$. Meaning that:

$$\forall m, m's.t.m \neq m', \forall \phi, \phi' \in \Phi$$
$$Pr[h_s(m) = \phi \land h_s(m') = \phi'] = \frac{1}{|\Phi|^2}$$

 \Diamond

Construction: Let p be a prime number.

Define $h_{(a,b)}(x) = ax + b \mod p$ now $S = \mathbb{Z}_p^2, M = \Phi = \mathbb{Z}_p = \{0,1,...,p-1\}$ Thus the following group will be defined $(\mathbb{Z}_p,+)$

Theorem 4. Above H is Pairwise Independent Proof.

$$\begin{aligned} \operatorname{Fixm}, m' &\in \mathcal{Z}_p s.t.m \neq m', \phi, \phi' \in \mathcal{Z}_p \\ Pr_{(a,b)}[h_{a,b}(m) &= \phi \wedge h_{a,b}(m') = \phi'] = \\ &= Pr_{(a,b)}[am + b = \phi \wedge am' + b = \phi'] = \\ &= Pr_{(a,b)}[\begin{pmatrix} m & 1 \\ m' & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \phi \\ \phi' \end{pmatrix}] = \\ &= Pr_{(a,b)}[\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} m & 1 \\ m' & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} \phi \\ \phi' \end{pmatrix}] = \\ &= \frac{1}{|\mathcal{Z}_p|^2} = \frac{1}{p^2} \end{aligned}$$

Where $Pr_{(a,b)}$ denotes the probability over (a,b) random in \mathcal{Z}_p

Theorem 5. Let $Mac(K, m) = h_k(m)$ for $\mathcal{H} = \{h_k : \mathcal{M} \to \Phi\}_k$ be Pairwise Independent. The Mac is $\frac{1}{|\Phi|}$ -statistical one-time secure. \diamond Proof.

$$\forall m \in \mathcal{M}, \phi \in \Phi$$

$$Pr[Mac(K, m) = \phi] = Pr_k[h_k(m) = \phi] = \frac{1}{|\Phi|}$$
 For any $m \neq m', \phi, \phi' \in \Phi$
$$Pr[Mac(K, m) = \phi \land Mac(K, m') = \phi'] = \frac{1}{|\Phi|^2}$$

$$\Longrightarrow Pr[Mac(K, m') = \phi'|Mac(K, m) = \phi] =$$

$$= \frac{\Pr[Mac(K, m) = \phi \land Mac(K, m') = \phi']}{Pr[Mac(K, m) = \phi]} =$$

$$= \frac{1}{|\Phi|^2} / \frac{1}{|\Phi|} = \frac{1}{|\Phi|}$$

Theorem 6. Any t-time($\varepsilon = 2^{-\lambda}$)-statistical secure MAC has a key of size $(t+1)\lambda$ for any $\lambda > 0$. No proof

3.1 Randomness Extraction

Goal: extract "real" randomness from "imperfect" randomness.

Suppose to have a biased coin $Bs.t.Pr[B=0]=p\neq \frac{1}{2}$ and Pr[B=1]=1-p. Can you make it uniform?

3.1.1 Von Neumann Extractor

- 1. Sample $b_1 \leftarrow B; b_2 \leftarrow B$
- 2. If $b_1 = b_2$ go to 1.
- 3. Else:
 - If $b_1 = 0$; $b_2 = 1$ output 1
 - If $b_1 = 1; b_2 = 0$ output 0

Considerations:

- The probability of both cases in 3. is p(p-1)
- The probability to reach 3. is 2p(p-1)
- $Pr[\text{Fail n-times}] = (1 2p(1 p))^n$ which is very small

Goal: Let X be a Random Variable, I want to design an Extractor such that Ext(X) is uniform. <u>PROBLEM:</u> Impossible as stated. What if X is constant? \Longrightarrow Add the requirement that X has uncertainty (ENTROPY)

Definition 3. MIN-ENTROPY of X (written as H_{∞}) is:

$$H_{\infty}(X) = -log_2 max_x Pr[X = x]$$

 \Diamond

Where max_x is the x that maximize the probability.

Example 1. Say $X = \{0, 1\}^n$

- 1. X is constant $(Pr[X = \bar{x}] = 1, Pr[X = x \neq \bar{x}] = 0)$ $\implies H_{\infty}(X) = 0$
- 2. $X \equiv U_n \implies H_{\infty}(x) = n$ (since X is uniform $Pr[X = x] = 2^{-n}$)

Question: We want $Ext: \{0,1\}^n \to \{0,1\}$ working $\forall Xs.t.H_{\infty}(X) \ge k$ **Claim:** Impossible even for k=n-1

Proof. Let Ext be any candidate extractor, Let b be any binary value s.t. $|Ext^-1(b)|$ is maximal $(Ext^-1:\{0,1\}\to\{0,1\}^n)$

$$\implies |Ext^{-}1(b)| \ge 2^{n-1} = \frac{2^2}{2}$$

Define X to be uniform over $Ext^{-1}(b)$ so $H_{\infty}(x)=n-1$ but Ext(X)=b CONSTANT.

T0D0 4: Help with the proof

Theorem 7. Way-Out-Seeded-Extractor allow X to take SMALL uniformly random SEED(catalyst)

$$Ext: \underbrace{\{0,1\}^d}_{seed(public)} \times \underbrace{\{0,1\}^n}_{input} \to \underbrace{\{0,1\}^m}_{output}$$

 \Diamond

Definition 4. We say that $Ext: \{0,1\}^d \times \{0,1\}^n \to \{0,1\}^l$ is a (k,ε) -extractor ("good") if $\forall xs.t.H_{\infty}(X) \geq k$ we have:

$$SD((S, Ext(S, x)), (S, U_l)) \le \varepsilon$$

where $S \equiv U_d$, SD denotes the statistical distance and we are basically comparing two uniform values $(x \text{ and } U_l)$ \diamond

Idea: Even if the seed is public the SD must not be influenced. Therefore the two compared variables should be uniform so that ε is small. In this way the output of the extractor can't be distinguished from a uniform string.

Definition 5. Statistical Distance: a distance between two random variables.

Say that X, X' are Random Variables over \mathcal{X} . $SD(x, x') = \frac{1}{2} \sum_{x \in \mathcal{X}} |Pr[X = x] - Pr[X' = x]|$

T0D0 5: Image of the statistical distance

 \Diamond

T0D0 6: Leftover hash lemma

4.1 Negligible function

What is exactly a negligible function? Below here there is a possible interpretation of this notion:

"In real life, we can just consider adversaries with limited computational power; even if every non-perfectly secure authentication scheme can resist to unbounded computational power, the true unbounded computational power doesn't exist at all. So, it's reasonable to consider just bounded adversaries.

So consider a scheme Π where the only attack against it is brute-force attack. We consider Π to be secure if it cannot be broken by a brute-force attack in polynomial time.

The idea of **negligible probability** encompasses this exact notion. In Π , let's say that we have a polynomial-bounded adversary. Brute force attack is not an option.

But instead of brute force, the adversary can try (a polynomial number of) random values and hope to guess the right one. In this case, we define security using negligible functions: The probability of success has to be smaller than the reciprocal of any polynomial function.

And this makes a lot of sense: if the success probability for an individual guess is a reciprocal of a polynomial function, then the adversary can try a polynomial amount of guesses and succeed with high probability. If the overall success rate is $\frac{1}{poly(\lambda)}$ then we consider this attempt a feasible attack to the scheme, which makes the latter insecure.

So, we require that the success probability must be less than the reciprocal of every polynomial function. This way, even if the adversary tries $poly(\lambda)$ guesses, it will not be significant since it will only have tried: $\frac{poly(\lambda)}{superpoly(\lambda)}^2$

As λ grows, the denominator grows far faster than the numerator and the success probability will not be significant³."

²If we design a function hard for $superpoly(\lambda)$ possible attempts and the attacker completed $poly(\lambda)$ attempts, he has just $\mathcal{P}[\frac{poly(\lambda)}{superpoly(\lambda)}]$ of finding the key to break the scheme

³ "What exactly is a negligible (and non-negligible) function?" — Cryptography Stack Exchange

Definition

Let $\nu : \mathbb{N} \to [0,1]$ be a function. Then it is deemed **negligible** iff:

$$\forall p(\lambda) \in poly(\lambda) \implies \nu(\lambda) \in o(\frac{1}{p(\lambda)})$$

Exercise 8. Let $p(\lambda), p'(\lambda) \in poly(\lambda)$ and $\nu(\lambda), \nu'(\lambda) \in negl(\lambda)$. Then prove the following:

- 1. $p(\lambda) \cdot p'(\lambda) \in \text{poly}(\lambda)$
- 2. $\nu(\lambda) + \nu'(\lambda) \in \text{negl}(\lambda)$

Solution 1 (1.1). T0D0 7: Questa soluzione usa disuguaglianze deboli; per essere negligibile una funzione dev'essere strettamente minore di un polinomiale inverso. Da approfondire

We need to show that for any $c \in \mathbb{N}$, then there is n_0 such that $\forall n > n_0 \implies h(n) \leq n^{-c}$.

So, consider an arbitrary $c \in \mathbb{N}$. Then, since $c+1 \in \mathbb{N}$, and both f and g are negligible, there exists n_f and n_g such that:

$$\forall n \ge n_f \implies f(n) \le n^{-(c+1)}$$

 $\forall n \ge n_q \implies g(n) \le n^{-(c+1)}$

Fix $n_0 = \max(n_f, n_g)$. Then, since $n \ge n_0 \ge 2$, $\forall n \ge n_0$ we have:

$$h(n) = f(n) + g(n)$$

$$\leq n^{-(c+1)} + n^{-(c+1)}$$

$$= 2n^{-(c+1)}$$

$$\leq n^{-c}$$

Thus we conclude h(n) is negligible.

4.2 One-Way Functions

A One-Way Function (OWF) is a function that is "easy to compute", but "hard to invert".

Definition 6. Let $f: \{0,1\}^{n(\lambda)} \to 0, 1^{n(\lambda)}$ be a function. Then it is a OWF iff:

$$\forall \text{ PPT } \mathcal{A} \exists \nu(\lambda) \in \text{negl}(x) : \Pr \left[\text{Game}_{f,A}^{\text{OWF}}(\lambda) = 1 \right] \leq \nu(\lambda) \tag{4.1}$$

 \Diamond

Do note that the game does not look for the equality x' = x, but rather for the equality of their images computed by f.

Figure 4.1: One-Way Function hardness

Exercise 9.

- 1. Show that there exists an inefficient adversary that wins $GAME^{OWF}$ with probability 1
- 2. Show that there exists an efficient adversary that wins $GAME^{OWF}$ with probability 2^{-n}

One-Way puzzles

A one-way function can be thought as a function which is very efficient in generating puzzles that are very hard to solve. Furthermore, the person generating the puzzle can efficiently verify the validity of a solution when one is given.

For a given couple $(\mathcal{P}_{GEN}, \mathcal{P}_{VER})$ of a puzzle generator and a puzzle verifier, we have:

Figure 4.2: The puzzle game

So, we can say that one-way puzzle is a problem in NP, because the verifier enables efficient solution verification, but not in P because finding a solution from scratch is impractical by definition.

4.2.1 Impagliazzo's Worlds

Suppose to have Gauss, a genius child, and his professor. The professor gives to Gauss some mathematical problems, and Gauss wants to solve them all.

Imagine now that, if using one-way functions, the problem is f(x), and its solution is x. According to Impagliazzo, we live in one of these possible worlds:

 \bullet Algorithmica: P = NP, meaning all efficiently verifiable problems are also efficiently solvable.

The professor can try as hard as possible to create a hard scheme, but he won't succeed because Gauss will always be able to efficiently break it using the verification procedure to compute the solution

• *Heuristica*: NP problems are hard to solve in the worst case but easy on average.

The professor, with some effort, can create a game difficult enough, but Gauss will solve it anyway; here there are some problems that the professor cannot find a solution to

- Pessiland: NP problems are hard on average but no one-way functions exist
- *Minicrypt*: One-way functions exist but public-key cryptography is impractical
- Cryptomania: Public-key cryptography is possible: two parties can exchange secret messages over open channels

4.3 Computational Indistinguishability

Distribution ensembles $X=\{X_{\lambda\in\mathbb{N}}\}$ and $Y=\{Y_{\lambda\in\mathbb{N}}\}$ are distribution sequences.

Definition 7. X and Y are computationally indistinguishable $(X \approx_c Y)$ if $\forall \text{ PPT } D, \exists \nu(\lambda) \in \text{negl } (\lambda) \text{ such that:}$

$$|\Pr[D(X_{\lambda}) = 1] - \Pr[D(Y_{\lambda}) = 1]| < \nu(\lambda)$$

 \Diamond

T0D0 8: AP181129-2344: There may be room for improvement, but I like how it's worded: it puts some unusual perspective into the cryptographic game, and it could be a good thing since it closely precedes our first reduction, and the whole hybrid argument mish-mash.

Suppose we have this mental game: a Distinguisher D receives the value z. This value has been chosen by me, the Challenger, among X_{λ} and Y_{λ} , and the Distinguisher has to distinguish which was the source of z. What does this formula mean?

This formula means that, fixed 1 as one of the sources, the *probability* that D says "1!" when I pick z from X_{λ} is **not so far** from the *probability* that D says "1!" when I pick z from Y_{λ} .

So, this means that, when this property is verified by two random variables, there isn't too much *difference* between the two variables in terms of exposed information (reachable by D), otherwise the distance between the two probabilities should be much more than a *negligible* quantity.

What's the deep meaning of this formula? This is something to do.

Lemma 1.
$$\forall \text{ PPT } f, \ X \approx_{\text{C}} Y \implies f(x) \approx_{\text{C}} f(y)$$

Proof. We want to show that $f(x) \approx_{\mathbb{C}} f(y)$. So, let's suppose this property is not true.

Assume $\exists \text{ PPT } f, A \text{ and some } p'(\lambda) \in \text{poly}(\lambda) \text{ such that }$

$$|\Pr[D'(f(x)) = 1] - \Pr[D'(f(y)) = 1]| \ge \frac{1}{p'(\lambda)}$$
 (4.2)

.

Figure 4.3: A distinguisher for f

In the game depicted by figure 4.3, the adversary can make use of f, because it is PPT. Thus, if such a distinguisher exists, then it can be used to distinguish X from Y, as shown in figure 4.4. So, if A could efficiently distinguish between f(x) and f(y), then D can efficiently distinguish between x and y. This contradicts the hypothesis $X \approx_{\mathbb{C}} Y$, which in turn means $f(X) \approx_{\mathbb{C}} f(Y)$.

Figure 4.4: Distinguisher reduction

4.4 Pseudorandom Generators

A deterministic function $G:\{0,1\}^{\lambda}\to\{0,1\}^{\lambda+l(\lambda)}$ is called a PseudoRandom Generator, or PRG iff:

- ullet G runs in polinomial time
- $|G(s)| = \lambda + l(\lambda)$
- $G(U_{\lambda}) \approx_c U_{\lambda + l(\lambda)}$

Figure 4.5: The pseudorandom game

So, if we take $s \leftarrow U_{\lambda}$, the output of G will be indistinguishable from a random draw from U_{λ} .

5.1 Stretching a PRG

Consider this algorithm that uses G to construct G^l , as depicted in figure 5.6:

- 1. Let $s_0 \leftarrow \{0,1\}^{\lambda}$
- 2. $\forall i \in [l(\lambda)]$, let $G(s_{i-1}) = (s_i, b_i)$, where b_i is the extra bit generated by G
- 3. Compose $(b_1, b_2, ..., b_{l(\lambda)}, s_{l(\lambda)})$ and output the result; the outputted string will be $\lambda + l(\lambda)$ bits long

Figure 5.6: Constructing $G^{l(\lambda)}$ form $G(\lambda)$

To prove that this construct is a valid PRG, we will make use of a known technique for proving many other results, which relies heavily on reductions, and is called **the hybrid argument**.

Lemma 2. (*Hybrid Argument*) Let
$$X = \{X_n\}, Y = \{Y_n\}, Z = \{Z_n\} : X \approx_{\mathbb{C}} Y \wedge Y \approx_{\mathbb{C}} Z$$
. Then $X \approx_{\mathbb{C}} Z$.

Proof. \forall PPT D, by using the triangle inequality:

$$\begin{split} &|\Pr[D(X_n) = 1] - \Pr[D(Z_n) = 1]| \\ &= |(\Pr[D(X_n) = 1] - \Pr[D(Y_n) = 1]) + (\Pr[D(Y_n) = 1] - \Pr[D(Z_n) = 1])| \\ &\leq |\Pr[D(X_n) = 1] - \Pr[D(Y_n) = 1]| + |\Pr[D(Y_n) = 1] - \Pr[D(Z_n) = 1]| \\ &\leq negl(n) + negl(n) \\ &= negl(n) \end{split}$$

In essence, the hybrid argument proves that computational indistinguishability is transitive across a "hybrid" game, or by extension more than one. This property will be very useful in all future proofs.

Theorem 10. If there exists a PRG $G(\lambda)$ with one bit stretch, then there exists a PRG $G^{l(\lambda)}$ with polynomial stretch relative to its input length:

$$G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1} \implies \forall l(\lambda) \in \operatorname{poly} \lambda \exists G^l: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+l(\lambda)} \diamond$$

Proof. First off, do observe that, since both G and l are polynomial in λ , then $G^{l(\lambda)}$, which combines G l-many times is polynomial in λ too. To prove that $G^{l(\lambda)}$ is indeed a PRG, we will apply the hybrid argument. The hybrids are defined as:

• $H^0_{\lambda} := G^{l(\lambda)}(U_{\lambda})$, which is the original construct

•
$$H_{\lambda}^{i} := \begin{cases} b_{1},...,b_{i} \leftarrow \{0,1\} \\ s_{i} \leftarrow \{0,1\}^{\lambda+i} \\ (b_{i+1},...,b_{l(\lambda)},s_{l(\lambda)}) := G^{l(\lambda)-i}(s_{i}) \end{cases}$$

•
$$H_{\lambda}^{l(\lambda)} := U_{\lambda+l}$$

Focusing on two subsequent generic hybrids, as shown in figures 5.7 and 5.8, it can be observed that the only difference between the two resides in how b_{i+1} is generated: in H^i it comes from an instance of G, whereas in H^{i+1} is chosen at random. H^0_{λ} is the starting point where all bits are pseudorandom, which coincides with the $G^{l(\lambda)}$, and $H^{l(\lambda)}_{\lambda}$ will generate a totally random string.

Figure 5.8: H_{λ}^{i+1}

So let's fix a step i in the gradual substitution, and consider the following function f_i :

$$f_i(s_{i+1}, b_{i+1}) = (b_1, \dots, b_i, b_{i+1}, b_{i+2}, \dots, b_{l(\lambda)}, s_{l(\lambda)})$$

where the first i bits are chosen uniformly at random, and the remaining ones are obtained by subsequent applications of G $(\forall j \in \{i+2,\ldots,l(\lambda)\} \implies G(s_{j-1}) = (s_j,b_j))$. It can be observed that:

- $f_i(G(U_\lambda))$ has the same distribution of H^i_λ
- $f_i(U_{\lambda+1})$ has the same distribution of H_{λ}^{i+l}

Since by PRG definition $G(U_{\lambda}) \approx_{\mathbb{C}} U_{\lambda+1}$, by lemma 1, we can deduce that $f_i(G(U_{\lambda})) \approx_{\mathbb{C}} f_i(U_{\lambda+1})$, which in turn, by how f is defined, implies $H^i \approx_{\mathbb{C}} H^{i+1}$. This holds for an arbitrary choice of i, so by extension:

$$G^{l(\lambda)}(U_{\lambda}) = H^0_{\lambda} \approx_{\mathbf{C}} H^1_{\lambda} \approx_{\mathbf{C}} \dots \approx_{\mathbf{C}} H^{l(\lambda)}_{\lambda} = U_{\lambda + l(\lambda)}$$

which proves that G^l is indeed a PRG.

Proof. (Contradiction): This is an alternate proof that, instead of looking for a function f to model hybrid transitioning, aims for a contradiction.

Suppose G^l is not a PRG; then there must be a point in the hybrid chain $H^0_\lambda \approx_{\mathbb{C}} \ldots \approx_{\mathbb{C}} H^l_\lambda$ where $H^i_\lambda \not\approx_{\mathbb{C}} H^{i+1}_\lambda$. Thus there exists a distinguisher D' able to tell apart H^i_λ from H^{i+1}_λ , as shown in figure 5.9:

$$\exists i \in [0, l], \exists \text{ ppt } D' : |\Pr[D'(H_{\lambda}^{i}) = 1] - \Pr[D'(H_{\lambda}^{i+l}) = 1]| \ge \frac{1}{\text{poly}(\lambda)}$$

Figure 5.9: Distinguisher for H^i_{λ} and H^{i+1}_{λ}

If such a distinguisher exists, it can be also used to distinguish an output of G from a $\lambda + 1$ uniform string by "crafting" a suitable bit sequence, which will distribute exactly as the hybrids in question, as shown in the reduction in figure 5.10. This contradicts the hypothesis of f being a PRG, which by definition is to be indistinguishable from a truly random distribution. Therefore, G^l is indeed a PRG.

Figure 5.10: Reducing to a distinguisher for G, where $\beta = (b_1, \ldots, b_{i-1})$ and $\sigma = (b_{i+1}, \ldots, b_{l(\lambda)}, s_{l(\lambda)})$

5.2 Hardcore predicate

We've seen how to reuse a PRG in order to obtain an arbitrary length of pseudorandom bits starting from a PRG with one bit stretch. How to construct a 1-bit PRG?

Consider a typical one-way function f, s.t. f(x) = y.

Question 1. Which bits of the input x are hard to compute given y = f(x)? Is it always true that, given f, the first bit of f(x) is hard to compute $\forall x$?

Example 2. Given an OWF f, then $f'(x) = x_0 || f(x)$ is a OWF.

Definition 1. A polynomial time function $\mathfrak{hc}: \{0,1\}^n \to \{0,1\}$ is **hard core** for a given function $f: \{0,1\}^n \to \{0,1\}^n$ if, $\forall \text{ PPT } A$:

$$\Pr(A(f(x)) = \mathfrak{hc}(x) | x \leftarrow \mathfrak{s} \{0, 1\}^n) \in \operatorname{negl}(\lambda))$$

Figure 5.11: The hardcore game, f and \mathfrak{hc} are known

There is also an alternative definition:

Definition 2. A polynomial time function $\mathfrak{hc}: \{0,1\}^n \to \{0,1\}$ is hard-core for a function f iff:

$$(f(x), h(x)) \approx_{\mathrm{C}} (f(x), b)$$

where $x \leftarrow \$ \{0,1\}^n$ and $b \leftarrow \$ \{0,1\}$.

Figure 5.12: Another hardcore game, f and \mathfrak{hc} are known

Having made this definition, some observations are in order:

Claim 1. There is no universal hardcore predicate \mathfrak{HC} .

Proof. Suppose there exists such a predicate \mathfrak{HC} . Let $f'(x) = \mathfrak{HC}(x)||f(x)|$ for a given function f. Then \mathfrak{HC} cannot be a hardcore predicate of f', because any image obtained by f reveals the predicate image itself. This contradicts the universally assumption.

Nevertheless, it has been proven always possible to construct a hardcore predicate for a OWF, given another OWF:

Theorem 11 (Goldreich-Levin, '99). Let f be a OWF and consider g(x,r) = (f(x), r) for $r \in \{0, 1\}^n$. Then g is a OWF and:

$$h(x,r) = \langle x, r \rangle = \sum_{i=1}^{n} x_i r_i \mod 2 = \bigoplus_{i=1}^{n} x_i r_i$$

 \Diamond

is hard core for g.

Proof. T0D0 9: TO BE COMPLETED (...did we actually do this? è una bella menata dimostrare questo)

Exercise 12. Prove that g is a OWF if f is a OWF (Hint: do a reduction).

5.3 One Way Permutation

 $f: \{0,1\}^n \to \{0,1\}^n$ is an OWF and

$$\forall x, |x| = |f(x)| \land x \neq x' \Rightarrow f(x) \neq f(x')$$

Corollary 1. If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWP, then for g(),h() as in the GL theorem,

$$G(s) = (g(s), h(s))$$

is a PRG.

Proof. By GL , if f is an OWP, so is g. This means that if we want to invert g, since g depends on f we have to invert a OWP. Moreover h is hardcore for g. Hence

$$G(U_{2n}) \equiv (g(U_{2n}), h(U_{2n})) \equiv \underbrace{(f(U_n), U_n, h(U_{2n})) \approx_c (f(U_n), U_n, U_1)}_{\text{definition 1 of hard core pred.}} \equiv U_{2n+1}$$

We are stretching just 1 bit, but we know we can stretch more than one.

6.1 Computationally secure encryption

Question 2. How to define the concept of **computationally secure encryption**?

Find a task/scheme that is computationally hard for an attacker to break (supposing the attacker is poly λ , we want a scheme which requires an amount of time near ,as much as possible, to $superpoly(\lambda)$ to be broken).

This scheme should have these properties:

- one wayness w.r.t. key (given c = Enc(k, m), it should be hard to recover k)
- one wayness w.r.t. message (given c = Enc(k, m), hard to obtain the message)
- no information leakage about the message

Consider the experiment depicted in figure 6.13 for the encryption scheme $\Pi = (Enc, Dec)$, where the adversary wins the game when the challenger outputs 1.

Figure 6.13: Game $_{\Pi,A}^{\text{IND}}(\lambda,b)$

Definition 8. Π is said to be computationally **one time secure** iff:

$$\mathrm{Game}_{\Pi,\mathsf{A}}^{\scriptscriptstyle{\mathrm{IND}}}(\lambda,0)\approx_{\scriptscriptstyle{\mathrm{C}}}\mathrm{Game}_{\Pi,\mathsf{A}}^{\scriptscriptstyle{\mathrm{IND}}}(\lambda,1)^{4}$$

 $^{^4{}m Game}_{\Pi,A}^{
m IND}$ refers to the indistinguishability of the messages sent by A during the game

or, alternatively \forall PPT A:

$$|\Pr[\operatorname{Game}_{\Pi,\mathsf{A}}^{\operatorname{IND}}(\lambda,0)=1] - \Pr[\operatorname{Game}_{\Pi,\mathsf{A}}^{\operatorname{IND}}(\lambda,1)=1]| \in \operatorname{negl}(\lambda)$$

 \Diamond

This last definition is compliant with the three properties exposed beforehand. In particular, if a scheme is **one time secure**, then it has each one of these 3 properties:

T0D0 10: TO BE REVIEWED

- compliance with point 1: suppose point 1 is not valid, and k is not hard to discover for A. Then A is able to perfectly distinguish m and m_0 every time, therefore the scheme cannot be one time secure;
- compliance with point 2: suppose point 2 is not valid, and then the encrypted message can be easily discovered by A. Then, as before, A can win every game with Pr[1], so the scheme couldn't be one time secure;
- compliance with point 3: suppose point 3 is not valid, and some information about m is leaked in c, for example the first bit of c is the same bit of m. A could forge $m_0 = m$ such that they have the same bits but just the first is different. When A obtains c, he can look at the first bit and distinguish which was the message encrypted. Thus, the scheme wouldn't be one time secure.

What is not **two time secure**? Here is an apparently safe scheme, Π_{\oplus} , where $G: \{0,1\}^{\lambda} \to \{0,1\}^{l}$ is a PRG:

- $k \leftarrow \{0,1\}^{\lambda} = \mathcal{K}$
- $Enc(k, m) = G(k) \oplus m, m \in \{0, 1\}^l$
- $Dec(k,c) = c \oplus G(k) = m$

To prove that Π_{\oplus} is not **two time secure**, assume an adversary A knows the pair $(\bar{m}, \bar{c} = G(k) \oplus \bar{m})$. Then, given any ciphertext $c = G(k) \oplus m$, where m is unknown, A can efficiently compute the following:

$$\bar{c} = G(k) \oplus m = c \oplus m \oplus \bar{m} \Rightarrow c \oplus \bar{c} = m \oplus \bar{m}$$

and thus, by XORing the result with \bar{m} , obtain the entire unknown message⁵. Nevertheless, this scheme is still **one time secure**:

Theorem 13. If G is a PRG, then Π_{\oplus} is computationally one time secure \diamond Proof. We need to show that, \forall PPT A:

$$Game_{\Pi_{\oplus}, \mathbf{A}}^{IND}(\lambda, 0) \approx_{\scriptscriptstyle{\mathbf{C}}} Game_{\Pi_{\oplus}, \mathbf{A}}^{IND}(\lambda, 1)$$

Consider the hybrid game in figure 6.14, where the original encryption routine is changed to use a random value instead of $G(k)^6$. Compare with the

Figure 6.14: $\text{Hyb}_{\Pi_{\oplus},\mathsf{A}}(\lambda,b)$

original **one time secure** definition in figure 6.13 to observe that it perfectly matches.

Lemma 3.
$$\text{Hyb}_{\Pi_{\oplus},A}(\lambda,0) \equiv \text{Hyb}_{\Pi_{\oplus},A}(\lambda,1)$$

Proof. This is true because distribution of c does not depend on $b \in \{0, 1\}$.

T0D0 11: Eh?

Lemma 4. $\forall b \in \{0,1\}, \text{HyB}_{\Pi_{\oplus},\mathcal{A}}(\lambda,b) \approx_{\text{\tiny C}} \text{GAME}_{\Pi_{\oplus},\mathcal{A}}^{\text{IND}}(\lambda,b)$

Proof. The proof proceeds by reduction as depicted in figure 6.15, by assuming there exists a distinguisher D^{IND} for $c = G(k) \oplus m_b$ and $c = r \oplus m_b$, and using it to break the PRG itself.

Figure 6.15: Reducing to breaking a PRG

 $^{^5{\}rm This}$ example models a technique called "Chosen Plaintext Attack", which will be discussed in depth later

⁶The observant student may recognize that this modification yields exactly the One-Time Pad encryption scheme discussed in lesson 1

Do observe that the adversary always encrypts m_0 , but this game can be modified for m_1 by switching b'''s assignments without loss of generality; the crucial point is to see if the distinguisher guesses which message the adversary has encrypted:

- if D^{IND} is wrong, then A can deduce with high probability that the value given by C^{PRG} is in fact truly random;
- \bullet if $D^{\mbox{\tiny IND}}$ is right, then A has a sensibly greater probability of having received a pseudorandom value from $C^{\mbox{\tiny PRG}}.$

Either way, by the existence of $\mathsf{D}^{\text{IND}},\,\mathsf{A}$ gains an edge in efficiently breaking a PRG, which is absurd.

Finally, by the two above lemmas, the proof can be concluded by transitivity:

$$\mathrm{Game}_{\Pi_{\oplus},\mathsf{A}}^{\scriptscriptstyle{\mathrm{IND}}}(\lambda,0)\approx_{\scriptscriptstyle{\mathrm{C}}}\mathrm{Hyb}_{\Pi_{\oplus},\mathsf{A}}(\lambda,0)\equiv\mathrm{Hyb}_{\Pi_{\oplus},\mathsf{A}}(\lambda,1)\approx_{\scriptscriptstyle{\mathrm{C}}}\mathrm{Game}_{\Pi_{\oplus},\mathsf{A}}^{\scriptscriptstyle{\mathrm{IND}}}(\lambda,1)$$

6.2 Pseudorandom functions

PRGs are practically used as a stepping stone for building *PseudoRandom Functions* (PRF), which in turn form the basis for most, if not all cryptographic schemes. Before introducing what a PRF formally is, a more intuitive definition of a *truly random function* is given.

Definition 9. A random function $R: \{0,1\}^n \to \{0,1\}^l$ is a function that, depending on what is known about its previous applications:

- if x is "fresh" (in formal terms, R has never been applied to x beforehand), then a value y is chosen UAR from R's codomain, and it is permanently associated as the image of x in R^7 :
- if x is not fresh, then R(x) is directly returned instead.

<

It should be noted that such functions occupy too much space, if we were to memorize it anywhere: supposing all the possible outputs of R have been generated and stored as an array in memory, its size in bits will be $2^{n}l$.

So we look for a kind of function which is "random", but does not require to be memorized as a whole map, while still being efficiently computable. This is where pseudorandomness comes in: a function is deemed pseudorandom (a PRF) when it is (computationally) indistinguishable from a truly random one.

 $^{^7{\}rm this}$ property is also called $lazy\ sampling$

Usually, PRFs come as function families F_k , where k is a key that identifies a single function inside the family itself⁸.

With this in mind, let $\mathcal{F} = \{F_k : \{0,1\}^{n(\lambda)} \to \{0,1\}^{l(\lambda)}\}_{k \in \{0,1\}^{\lambda}}$ be the keyed function family that defines a PRF. Consider the two games in figure 6.16, each one involving respectively \mathcal{F} and a random function R, where $\mathcal{R} = \{R : \{0,1\}^n \to \{0,1\}^l\}$, also written as $\mathcal{R}(\lambda,n,l)$ is the set of all random functions from n-bit strings to l-bit strings.

Figure 6.16: $Real_{\mathcal{F},\mathcal{A}}(\lambda)$ vs $Rand_{\mathcal{R},\mathcal{A}}(\lambda)$

 $b' \in \{0,1\}$ is a convention and 1 is assigned to *Real* or *Rand*; so in this game the adversary **recognizes** which machine he is talking with.

Definition 10. F_k is a PRF iff:

$$Real_{\mathcal{F},\mathcal{A}}(\lambda) \approx_{\mathrm{C}} Rand_{\mathcal{R},\mathcal{A}}(\lambda)$$

 \Diamond

Exercise 14. Show that no PRG is secure against unbounded attackers.

Exercise 15. Show the same as above, but for any PRF instead.

 $^{^8{\}rm Those}$ unfamiliar with the "currying" technique may see the key as an additional argument to pass to the "main" function F

6.2.1 GGM-tree

In this section, it is described how to construct a PRF starting from a given PRG, using a technique devised form Goldreich, Goldwasser and Micali, called the GGM-tree.

Construction 1. Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a PRG such that it doubles the length of its input, and splits ithe images in halves, effectively returning string couples:

$$G(k) = (G_0(k), G_1(k))$$

Consider the GGM-tree depicted in figure 6.17, which describes how G will be used to craft a PRF. To lighten up the notation, a function composition $G_a(G_b(G_c(k)))$ will be contracted to $G_{abc}(k)$. So let $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^{\lambda}\}$ be a family of functions such that:

$$F_k(r) = G_{r_n}(G_{r_{n-1}}(\dots G_{r_2}(G_{r_1}(k))\dots))$$

Figure 6.17: The GGM-tree for G

<

An example, with a string value of 001 for r would evaluate as $F_k(001) = G_0(G_0(G_1(k)))$.

Recall the GGM-tree construct used to define a function family $\mathcal{F} := \{F_k\}$ from a PRG G. From now on we will refer to this function family as F_k , implicitly stating that k represents a uniform probability distribution. Our wish is that F_k is indeed a PRF.

Theorem 16. If G is a PRG, then F_k is a PRF.

Proof. Concerning F_k 's efficiency, one can observe that it involves computing G a polynomial number of times, and G itself is efficient, thus F_k is indeed easy to compute.

The rest of the proof, regarding F_k 's hardness, will proceed by induction over F_k 's domain length n, which indirectly defines its GGM-tree's height.

Base case (n = 1): F_k 's domain is restricted to $\{0, 1\}$, meaning that its images will be respectively the two halves on a single iteration of G(k), which are pseudorandom by G's definition:

$$(F_k(0), F_k(1)) = (G_0(k), G_1(k)) \approx_{\mathbb{C}} U_{2\lambda}$$

therefore, in this case, F_k is pseudorandom.

Inductive step: Let $F_k^{'}: \{0,1\}^{n-1} \to \{0,1\}^{\lambda}$ be a PRF. Define $F_k(x,y)$ as $G_x(F_k'(y))$, where $F_k: \{0,1\}^n \to \{0,1\}^{\lambda}$ and $x \in \{0,1\}$. It must be proven that if F_k' is a PRF, then so is F_k . We will proceed by hybrid games, depicted in figures 7.18, 7.19 and 7.20:

Figure 7.18: $\text{Hyb}_{\mathcal{F},A}^{0}(\lambda) = \text{Game}_{\mathcal{F},A}^{\text{PRF}}(\lambda)$

Lemma 5.
$$HYB_{\mathcal{F},\mathcal{A}}^0(\lambda) \approx_{\scriptscriptstyle{\mathbb{C}}} HYB_{\overline{\mathcal{R}},\mathcal{A}}^1(\lambda)$$

Proof. Assume \exists PPT D that can distinguish F_k from H; then an adversary A can use D as in figure 7.21 to break the induction hypothesis (i.e. can distinguish F'_k from \overline{R}).

 \Diamond

$$\begin{array}{c|c} & & & & \\ \hline & r = (r_0, r_{1...n}) \\ \hline & & & \\ \hline & &$$

Figure 7.19: $\text{Hyb}_{\overline{\mathcal{R}},\mathsf{A}}^1(\lambda)$

Figure 7.20: $\text{Hyb}^2_{\mathcal{R},\mathsf{A}}(\lambda)$

Figure 7.21

Before tackling the reduction from the last two hybrids, it is best to introduce another lemma:

Lemma 6. If $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ is a PRG, then for any $t(\lambda) \in \text{poly}\lambda$:

$$(G(k_1),\ldots,G(k_t)) \approx_{\mathbf{C}} (U_{2\lambda},\ldots,U_{2\lambda}) \quad \forall k_i \leftarrow \mathbf{S} U_{\lambda}$$

 \Diamond

Proof. T0D0 12: Idea: all values are independent and pseudorandom on their own, hybridize progressively...

Now for the final lemma:

Lemma 7.
$$\text{HYB}^{\frac{1}{R},A}(\lambda) \approx_{\text{C}} \text{HYB}^{2}_{R,A}(\lambda)$$
 \diamond

Proof. T0D0 13: Bad proof: the idea is to reduce to a distinguishing game for the previous lemma)

Consider the distinguishing game for H and R in figure 7.22. The random functions \overline{R} and R are entirely independant, and G transforms randomness in pseudorandomness, so this game boils down into distinguishing pseudorandom values from random ones, which is possible only with negligible probability.

Figure 7.22: The distinguishing game between H in $\mathsf{HYB}^1_{\Pi,\mathsf{A}}$ and R in $\mathsf{HYB}^2_{\Pi,\mathsf{A}}$

In the end the hybrids are proven to mutually indistinguishable, therefore the inductive step is correct, proving the theorem.

7.1 CPA-security

Now it's time to define a stronger notion of security, which is widely used in cryptology for first assessments on cryptographic schemes. Let $\Pi := (Enc, Dec)$ be a SKE scheme, and consider the game depicted in figure 7.23. Observe that this time, the adversary can "query" the challenger for the ciphertexts of any messages of his choice, with the only reasonable restriction that the query amount must be polynomially bound by λ . This kind of game/attack is called the *Chosen Plaintext Attack*, because of the adversary's capability of obtaining ciphertexts from messages. The usual victory conditions found in n-time security games, which are based on ciphertext distinguishability, apply.

Figure 7.23: The CPA-security game: $GAME_{\Pi,A}^{CPA}(\lambda, b)$

Definition 11. A scheme is CPA-secure if $GAME_{\Pi,A}^{CPA}(\lambda,0) \approx_{C} GAME_{\Pi,A}^{CPA}(\lambda,1)$ \diamond

Having given this definition of security, recall the Π_{\oplus} scheme defined in the previous lesson. It is easy to see that Π_{\oplus} is not CPA-secure for the same reasons that it is not computationally 2-time secure; however this example sheds some new light about a deeper problem:

Observation 1. No deterministic scheme can achieve CPA-security. ⋄

This is true, because nothing prevents the adversary from asking the challenger to encrypt either m_0 or m_1 , or even both, before starting the actual challenge; just as in the 2-time case for Π_{\oplus} , he will know the messages' ciphertexts in advance, so he will be able to tell which message the challenger has encrypted every time. The solution for obtaining a CPA-secure encryption scheme consists of returning different ciphertexts for the same message, even better if they look random. This can be achieved by using PRFs.

Consider the following SKE scheme $\Pi_{\mathcal{F}}$, with $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^l\}$ being a PRF:

- $Enc(k, m) = (c_1, c_2) = (r, F_k(r) \oplus m)$, where $k \leftrightarrow \{0, 1\}^{\lambda}$ and $r \leftrightarrow \{0, 1\}^n$
- $Dec(k, (c_1, c_2)) = F_k(c_1) \oplus c_2$

Observe that the random value r is part of the ciphertext, making it long n+l bits; also more importantly, the adversary can and will always see r. The key k though, which gives a flavour to the PRF, is still secret.

Theorem 17. If \mathcal{F} is a PRF, then $\Pi_{\mathcal{F}}$ is CPA-secure.

Proof. We have to prove that $GAME_{\Pi_{\mathcal{F}},\mathsf{A}}^{CPA}(\lambda,0) \approx_{\mathtt{C}} GAME_{\Pi_{\mathcal{F}},\mathsf{A}}^{CPA}(\lambda,1)$; to this end, the hybrid argument will be used. Let the first hybrid $HYB_{\Pi,\mathsf{A}}^0$ be the original game, the second hybrid $HYB_{\Pi,\mathsf{A}}^1$ will have a different encryption routine:

- $r \leftarrow \$ \{0,1\}^n$
- $R \leftarrow \mathcal{R}(\lambda, n, l)$
- $c = (r, R(r) \oplus m)$, where m is the plaintext to be encrypted

and then the last hybrid $HYB_{\Pi,A}^2$ will simply output $(r_1, r_2) \iff U_{n+l}$.

Lemma 8.
$$\forall b \in \{0,1\} \implies \text{HyB}_{\Pi,A}^0(\lambda,b) \approx_{\text{\tiny C}} \text{HyB}_{\Pi,A}^1(\lambda,b).$$

Proof. As usual, the proof is by reduction: suppose there exists a distinguisher D capable of telling the two hybrids apart; then D can be used to break \mathcal{F} 's property of being a PRF. The way to use D is to make it play a CPA-like game, as shown in figure 7.249, where the adversary attempting to break \mathcal{F} decides which message to encrypt between m_0 and m_1 beforehand, and checks whether D guesses which message has been encrypted. Either way, the adversary can get a sensible probability gain in guessing if the received values from the challenger were random, or generated by \mathcal{F} . Thus, assuming such D exists, A can efficiently break \mathcal{F} , which is absurd.

 $^{^9\}mathrm{An}$ observant student may notice a striking similarity with a previously exposed reduction in figure 6.15

Figure 7.24: Breaking a PRF, for fixed message choice of m_0

Lemma 9.
$$\forall b \in \{0,1\} \implies \text{HyB}^1_{\Pi,A}(\lambda,b) \approx_{\text{\tiny C}} \text{HyB}^2_{\Pi,A}(\lambda,b).$$

Proof. Firstly, it can be safely assumed that any ciphertext $(r_i, R(r_i) \oplus m_b)$ distributes equivalently with its own sub-value $R(r_i)$, because of R's true randomness, and independency from m_b .

Having said that, the two hybrids apparently distribute uniformly, making them perfectly equivalent; however there is a caveat: if both games are run and one value \bar{r} is queried twice in both runs, then on the second query the adversary will receive the same image in $\text{HyB}_{\Pi,A}^1$, but almost certainly a different one in $\text{HyB}_{\Pi,A}^2$. This is because the first hybrid uses a function, which is deterministic by its nature, whereas the image in the second hybrid is picked completely randomly from the codomain. Nevertheless, this sneaky issue about "collisions" can be proven to happen with negligible probability.

Call Repeat this collision event on \bar{r} between 2 consecutive games. Then:

$$\begin{split} \Pr[\text{Repeat}] &= \Pr[\exists i, j \in q \text{ such that } r_i = r_j] \\ &\leq \sum_{i \neq j} \Pr[r_i = r_j] \\ &= Col(U_n) \\ &= \sum_{i \neq j} \sum_{e \in \{0,1\}^n} \Pr[r_1 = r_2 = e] \\ &= \sum_{i \neq j} \sum_{e \in \{0,1\}^n} \Pr[r = e]^2 \\ &= \binom{q}{2} 2^n \frac{1}{2^{2n}} \\ &= \binom{q}{2} 2^{-n} \\ &\leq q^2 2^{-n} \in \operatorname{negl}(\lambda) \end{split}$$

which proves that the REPEAT influences negligibly on the two hybrids' equivalence. Thus $\text{HyB}_{\Pi,A}^1(\lambda,b) \approx_{\text{\tiny C}} \text{HyB}_{\Pi,A}^2(\lambda,b)^{10}$.

With the above lemmas, and observing that $\mathrm{HYB}^2_{\Pi,\mathsf{A}}(\lambda,0) \equiv \mathrm{HYB}^2_{\Pi,\mathsf{A}}(\lambda,1)$, we can reach the conclusion that $\mathrm{HYB}^0_{\Pi,\mathsf{A}}(\lambda,0) \approx_{\scriptscriptstyle \mathbb{C}} \mathrm{HYB}^0_{\Pi,\mathsf{A}}(\lambda,1)$, which is what we wanted to demonstrate.

 $\overline{}^{10}$ Do note that the hybrids lose their originally supposed perfect equivalence (HyB $_{\Pi,A}^1(\lambda,b)$) \equiv HyB $_{\Pi,A}^2(\lambda,b)$) because of the Repeat event. The lemma, though, is still proven.

35

8.1 Domain extension

Up until now, encryption has been dealt with messages of fixed size around a polynomial function to λ . How to deal with messages with aritrary size? Setting a maximum bound to message length seems impractical, both for waste reasons when messages are too short, and for practicality when messages eventually get too long. The solution takes the form of a "block-cipher", where a message of a given size is split into equally-sized blocks, and then encrypted using a fixed-size encryption scheme. Various instances of this technique, called modes, have been devised.

8.1.1 Electronic Codebook mode

The operation of ECB-mode is straightforward: Given a message split into blocks (m_1, \ldots, m_t) , apply the scheme's encryption routine to each block, as shown in figure 8.25:

$$c_i = F_k(r) \oplus m_i \quad \forall i \in \{0, \dots, t\}$$

Decryption is trivially implemented by XOR-ing the ciphered blocks with $F_k(r)$.

Figure 8.25: ECB-mode block-cipher in action, using a PRF as the encryption routine

This approach has the advantage of being completely parallelizable, as each block can clearly be encrypted separately; however there is a dangerous flaw in being not CPA-secure, even when using a PRF-based encryption scheme. To understand why, observe that random nonces for ciphertext randomization are chosen per-message; this means the encryption of message blocks become deterministic in the message scope, enabling an adversary to attack the scheme

within a single plaintext. It is sufficient to choose an all-0 or all-1 message to realize that all its blocks would encrypt to the same ciphered block.

8.1.2 Cipher block chaining mode (CBC)

This mode serializes block encryption by using the preceding ciphered block in the formula:

$$c_i = P_k(r) \oplus m_i \quad \forall i \in \{0, \dots, t\}$$

This time, a pseudorandom permutation(PRP) is used instead of a PRF; they will be discussed later on. The diagram in figure 8.26 shows a general view of CBC-mode's operation. The decryption process is analogous but in a reversed fashion, by computing the preimage of a ciphered block and XOR-ing it with the preceding ciphered block:

$$m_i = P_k^{-1}(c_i) \oplus c_{i-1}$$

Figure 8.26: CBC-mode block-cipher in action, using a PRP as the encryption routine

8.1.3 Counter mode

This mode closely resembles ECB-mode but uses a "rolling" nonce instead of a static one, as shown in figure 8.27. At each successive block, the nonce is incremented by 1 and then used in a single block encryption. Since the nonce is in $\{0,1\}^n$, the increment is done modulo 2^n so that the value will wrap around to 0 it it ever overflows. Decryption is analogous.

Figure 8.27: Counter-mode block-cipher in action, using a PRF as the encryption routine

This apparently innocuous change to EBC is enough to ensure CPA-security, at the cost of perfect parallelization.

Theorem 18. Assume F_k is a PRF, then the counter-mode block cipher (CTR) is CPA-secure for variable length messages¹¹.

Proof. Figure 8.28 models a CPA attack to a counter-mode block-cipher. The proof will proceed by hybrid argument starting from this game, therefore the statement to verify will be $\text{GAME}_{\text{CTR},A}^{\text{CPA}}(\lambda,0) \approx_{\text{C}} \text{GAME}_{\text{CTR},A}^{\text{CPA}}(\lambda,1)$.

Figure 8.28: A chosen plaintext attack to counter-mode block-cipher

Define the two hybrid games from the original CPA game as follows:

- HYB¹_{CTR,A}(λ, b): A random function R is chosen UAR from $\mathcal{R}(\lambda, n, n)$ at the beginning of the game, and is used in place of F_k in all block encryptions;
- $\text{HyB}^2_{\text{CTR},\mathsf{A}}(\lambda,b)$: The challenger will pick random values from $\{0,1\}^n$ as ciphered blocks, disregarding any encryption routine.

Lemma 10. Game^{CPA}_{CTR,A}
$$(\lambda, b) \approx_{\text{C}} \text{HyB}^1_{\text{CTR},A}(\lambda, b) \quad \forall b \in \{0, 1\}$$

Proof. The proof is left as exercise.

Hint: Since the original game and the first hybrid are very similar, we can use a distinguisher which plays the CPA-game; since this is a lemma, our goal in the reduction is to break the precondition contained in the theorem statement. \Box

Lemma 11.
$$\text{HyB}^1_{\text{CTR},\mathcal{A}}(\lambda,b) \approx_{\text{C}} \text{HyB}^2_{\text{CTR},\mathcal{A}}(\lambda,b) \quad \forall b \in \{0,1\}$$

¹¹ Variable length messages exactly means every message $m = (m_1, ..., m_t)$ is made of t blocks, and t can change from any message to a different one.

Proof. Since m_i doesn't affect the distribution of the result at all, for any i, if $R(r^*)$ behaves like a true random extractor, then the two hybrids are indistinguishable in the general case $(R(r+i) \oplus m_i \approx R(r+i))$. However, there is a sneaky issue: if in both games it happens that a given nonce r_i is used in both one query encryption and the challenge mesage encryption at any step, the subsequent encrypted blocks will be completely random in the second hybrid, whereas in the first hybrid the function's images, albeit random, become predictable, enabling a CPA.

Nevertheless, it can be proved that these "collisions" happen with negligible probability within ${\rm HYB}^1_{\rm CTR,A}$. Let:

- q = number of encryption queries in a game run
- t_i = number of blocks for the *i*-th query
- τ = number of blocks for the challenge ciphertext
- Overlap event: $\exists i, j, \iota : r_i + j = \rho + \iota$

The OVERLAP event exactly models our problematic scenario. Now it suffices to show that it occurs negligibly. For simplicity, assume the involved messages are of same length, that is $t_i = \tau =: t$. Denote with OVERLAP_i to be the event that the *i*-th query overlaps the challenge sequence as specified above.

Fix some ρ . One can see that OVERLAP_i happens if:

$$\rho - t + 1 \le r_i \le \rho + t - 1$$

which means that r_i should be chosen at least in a way that:

- the sequence $\rho, \ldots, \rho + t 1$ comes before the sequence $r_i, \ldots, r_i + t 1$, and they overlap just for the last element $\rho + t 1 = r_i$ or
- the sequence $r_i, \ldots, r_i + t 1$ comes before the sequence the sequence $\rho, \ldots, \rho + t 1$, and they overlap just for the last element $r_i + t 1 = \rho$. Then:

$$\begin{split} \Pr[\text{Overlap}_i] &= \frac{(\rho + t - 1) - (\rho - t + 1) + 1}{2^n} \\ &= \frac{2t - 1}{2^n} \\ \Pr[\text{Overlap}] &\leq \sum_{i=1}^t \Pr[\text{Overlap}_i] \\ &\leq 2\frac{t^2}{2^n} \in \operatorname{negl}(\lambda) \end{split}$$

which proves that our collision scenario happens with negligible pobability, thus the two hybrids are indistinguishable.

Having proven the indistinguishability between the hybrids, the conclusion is reached:

$$\operatorname{Game}_{\operatorname{ctr},\mathsf{A}}^{\operatorname{cpa}}(\lambda,0) \approx_{\scriptscriptstyle{\mathbf{C}}} \operatorname{Game}_{\operatorname{ctr},\mathsf{A}}^{\operatorname{cpa}}(\lambda,1)$$

9.1 Message Authentication Codes and unforgeability

After having explored the security conerns and challenges of the SKE realm, it is time to turn the attention to symmetric MAC schemes. Recall that a MAC scheme is a couple (Tag, Verify), with the purpose of auhenticating the message's source. In this chapter, the tagging function will be denoted as Tag_k , akin to a PRF.

The desirable property that a MAC scheme should hold is to prevent any attacker from generating a valid couple (m^*, ϕ^*) , even after querying a tagging oracle polynomially many times¹². The act of generating a valid couple from scratch is called *forging*, and the aforementioned property is defined as *unforge-ability against chosen-message attacks* (or UFCMA, in short); its game diagram is shown in figure 9.29. Do note that m^* is stated to be outside the query set M, expressing the "freshness" of the forged couple¹³. In formal terms:

Definition 12. A MAC scheme Π is UFCMA-secure iff:

$$\forall \text{ PPT A} \implies \Pr[Game_{\Pi,A}^{ufcma}(\lambda) = 1] \in \operatorname{negl}(\lambda)$$

<

Figure 9.29: $GAME_{\Pi,A}^{UFCMA}(\lambda)$

 $^{^{12}\}mathrm{Do}$ note how this property resembles CPA-security in the encryption setting

¹³Observe how this setup resembles the original OWF game

Having defined a good notion of security in the MAC scheme domain, we turn our attention to a somewhat trivial scheme, and find out that it is indeed secure:

Theorem 19. Let Π be a MAC scheme such that $Tag_k = Verify_k = F_k$, where F_k is a PRF. Then Π is UFCMA-secure.

Proof. The usual proof by randomic hybridization entails. The original game is identical to the UFCMA game, where the tagging function is the PRF, whereas the hybrid game will have it replaced with a truly random function, as shown in figure 9.30.

Figure 9.30: $\text{HyB}_{\Pi,\mathsf{A}}^1(\lambda)$

Lemma 12. Game
$$_{\Pi,\mathcal{A}}^{\text{UFCMA}}(\lambda) \approx_{\text{C}} \text{HyB}_{\Pi,\mathcal{A}}^{1}(\lambda)$$

Proof. By assuming there is a distinguisher D^{UFCMA} capable of disproving the lemma, it can be used to distinguish the PRF itself, as depicted by the reduction in figure 9.31

Lemma 13.
$$\forall \text{ PPT } A \implies \Pr[\text{HyB}_{\Pi,A}^1(\lambda) = 1] \leq 2^{-l} \diamond$$

Proof. This is true because attacker has to predict the output $R(m^*)$ on a fresh input m^* to win the game, which can happen at most with probability 2^{-l} . \square

Thus, the conclusion is that Π is UFCMA-secure. \square

Figure 9.31: Distinguishing a PRF by using D^{UFCMA}

9.2 Domain extension for MAC schemes

The previous scheme works on fixed length messages; as in the encryption domain, there are techinques for tagging variable length messages which are UFCMA-secure. However, before showing them, some other apparently secure modes are described here to give some possible insights on how to tackle the problem.

Assume the message $m=(m_1,\ldots,m_t)\in\{0,1\}^{n\cdot t}$ for some $t\geq 1$. Given the tagging function $Tag_k:\{0,1\}^n\to\{0,1\}^l$, an attempt to tag the whole message may be to:

- XOR all the message blocks, and then tag: $\phi = Tag_k(\bigoplus_{i=1}^t m_i)$. But then, given an authenticated message (m, ϕ) , an adversary can always forge a valid couple (m', ϕ) , where m' is the original message with two flipped bits in two distinct blocks at the same offset; the resulting XOR would be the same.
- define the tag to be a t-sequence of tags, one for each message block. Hovever, an adversary can just flip the position of two arbitrary distinct message blocks and their relative tags, and would successfully forge a distinct authenticated message.
- attempt a variant of the above approach, by adding the block number to the block itself to avoid the previous forging. Again, this is not UFCMA-secure: the adversary may just make two queries on two distinct messages, obtain the two tag sequences, and then forge an authenticated message by choosing at each position i whether to pick the message-tag blocks from the first or second query.

9.2.1 Universal hash functions

A devised solution which has been proven to be secure relies on the following definition: a function family \mathcal{H} which can be used to "shrink" variable length messages and then composed with a PRF:

$$\mathcal{H} = \{h_s : \{0,1\}^{n \cdot t} \to \{0,1\}^n\}_{s \in \{0,1\}^{\lambda}}$$
$$Tag_{k,s}(m) = F_k(h_s(m))$$

So what are the properties of the induced family $\mathcal{F}(\mathcal{H}) = \{F_k(h_s(.))\}$? The main problem are *collisions*, since for each $m \in \{0, v1\}^{n \cdot t}$ it should be hard to find $m' \neq m$ such that $h_s(m) = h_s(m')$. But collisions do exist for functions in $\mathcal{F}(\mathcal{H})$, because they map elements from $\{0,1\}^{n \cdot t}$ to $\{0,1\}^t$, and since the codomain is smaller than the domain, the functions cannot be injective in any way.

To overcome this problem, we can consider two options:

- assume collisions are hard to find given $s \in \{0,1\}^{\lambda}$ publicly, and we have a *collision resistant hashing*;
- let s be secret, and assume collisions are hard to find because it is hard to know how h_s works.

Definition 13. A function family \mathcal{H} is deemed ε -universal iff:

$$\forall x \neq x' \in \{0,1\}^{n \cdot t} \implies \Pr_{s \leftarrow \P\{0,1\}^{\lambda}}[h_s(x) = h_s(x')] \le \varepsilon$$

\rightarrow

If $\varepsilon = 2^{-n}$, meaning the collision probability is minimized, then the family is also called *perfectly universal*; in the case where $\varepsilon \in \text{negl}(\lambda)$ isntead, it is defined as *almost universal* (AU). Take care about telling the difference between universality and pairwise independence, which states:

$$(h_s(x), h_s(x')) \equiv U_{2n}$$

Lemma 14. Show that any pairwise independent hash function is perfectly universal.

Proof. The proof is left as exercise. (should I use Col for solving this? What is the difference and when I should use Col instead of one-shot-probability?) **ASK FOR SOLVING PROPERLY** (Thoughts: when I ask what's the probability that, chosen 2 distinct x-es, their hashes are the same on a certain value?, maybe I have to use one-shot, because one-shot refers to the prob. that the two inputs collide on a specific value, even if not specified.

Instead, if I consider what's the prob. that, chosen 2 distinct x-es, their hashes are the same?, maybe I have to calculate all the possible collisions, because I want to know if the 2 inputs can collide in general.) \Box

Theorem 20. Assuming \mathcal{F} is a PRF with n-bit domain and \mathcal{H} is AU, then $\mathcal{F}' = \mathcal{F}(\mathcal{H})$ is a PRF on $(n \cdot t)$ - bit domain, for $t \geq 1$.

Figure 9.32: $Real_{\mathcal{F},\mathcal{A}}(\lambda)$

Figure 9.33: $\mathcal{HYB}_{\mathcal{R},\mathcal{A}}(\lambda)$

Figure 9.34: $Rand_{\mathcal{R}',\mathcal{A}}(\lambda)$

Proof. This proof too will proceed by hybridizing the original game up to the ideal random one. Consider the three sequences depicted in figures 9.32, 9.33 and 9.34:

Lemma 15.

$$Real_{\mathcal{F},\mathcal{A}}(\lambda) \approx_{\mathrm{C}} \mathcal{HYB}_{\mathcal{R},\mathcal{A}}(\lambda)$$

Proof. The proof is left as exercise.

Lemma 16.

$$\mathcal{HYB}_{\mathcal{R},\mathcal{A}}(\lambda) \approx_{\mathrm{C}} Rand_{\mathcal{R}',\mathcal{A}}(\lambda)$$

 \Diamond

Proof. Again, collisions come into play there, but in a much sneakier way. Given two queries with arguments x_1, x_2 returning the same image y, the random game can model two scenarios:

- the arguments are equal, but with negligible probability
- the arguments are distinct

while the hybrid can model three of them:

- the arguments are equal, again with negligible probability
- the arguments are distinct, and so are their hashes
- the arguments are distinct, but not their hashes

We want to show that the collision at hash level is negligible: as long as they don't happen, the random function \overline{R} is run over a sequence of distinct points, and behaves just as the random game's function R does. So let BAD be the event:

$$\exists i \neq j \in [q] : h_s(x_i) = h_s(x_i)$$

where q denotes the adversary's query count. It suffices to show that $Pr[BAD] \in negl(\lambda)$.

Since we don't care what happens after a collision, we can alternatively consider a mental experiment where we answer all queries at random, and only at the end sample $s \leftarrow \{0,1\}^{\lambda}$ and check of collisions: this does not change the value of Pr(BAD). Now queries are independent of s, and this eases our proof:

$$\begin{aligned} \Pr[\text{Bad}] &= \Pr_s[\exists x_i \neq x_j, h_s(x_i) = h_s(x_j)] \\ &\leq \sum_{i \neq j} \Pr_s[h_s(x_i) = h_s(x_j)] \\ &\leq \binom{q}{2} \operatorname{negl}(\lambda) \in \operatorname{negl}(\lambda) \end{aligned} \quad h_s \text{ is AU by definition}$$

By ruling out this event, the lemma is proven.

So now we have $Real \approx_{\text{\tiny C}} \mathcal{HYB} \approx_{\text{\tiny C}} Rand$

Corollary 1. Let $\Pi = (Tag, Verify)$ be a variable length message MAC scheme where, given a PRF F_k and an AU hash function family h_s , the tagging function is defined as $F_k(h_s)$. Then Π is UFCMA-secure.

9.2.2 Hash function families from finite fields

A generic 2^n -order finite field has very useful properties: adding two of its elements is equal to XOR-ing their binary representations, while multiplying them is done modulo 2^n . It is possible to define a hash function family that makes good use of these properties, and is suitable for a UFCMA-secure MAC scheme.

Construction 2. Let $\mathbb{F} = GF(2^n)$ be a finite field (or "Galois field") of 2^n elements, and let $m = (m_1, \ldots, m_t) \in \mathbb{F}^t$ and $s = (s_1, \ldots, s_t) \in \mathbb{F}^t$. The desired hash function family will have this form:

$$h_s(m) = \sum_{i=1}^t s_i m_i = \langle s, m \rangle = q_m(s)$$

Lemma 17. The above function family h_s is almost universal.

Proof. In order for h_s to be almost universal, collisions must happen negligibly. Suppose we have a collision with two distinct messages m and m':

$$\sum_{i=1}^{t} m_i s_i = \sum_{i=1}^{t} m_i' s_i$$

Let $\delta_i = m_i - m_i'$ and assume, without loss of generality, that $\delta \neq 0$. Then, by using the previous equation, when a collision happens:

$$0 = \sum_{i=1}^{t} m_i s_i - \sum_{i=1}^{t} m'_i s_i = \sum_{i=1}^{t} \delta_i s_i$$

Since the messages are different from each other, there is at least some i-th block that contains some of the differences. Assume, without loss of generality, that some of the differences are contained in the first block (i = 1); the sum can then be split between the first block itself $\delta_1 s_1$ and the rest:

$$\begin{split} \sum_{i=1}^t \delta_i s_i &= \delta_1 s_1 + \sum_{i=2}^t \delta_i s_i = 0 \\ \delta_1 s_1 &= -\sum_{i=2}^t \delta_i s_i \\ s_1 &= \frac{-\sum_{i=2}^t \delta_i s_i}{\delta_1} \end{split}$$

which means when a collision happens, s_1 must be exactly equal to the sum of the other blocks, which is another element of \mathbb{F} . But since every seed is chosen at random among \mathbb{F} , the probability of picking the element s_1 satisfying the above equation is just $|\mathbb{F}|^{-1} = 2^{-n} \in \text{negl}(\lambda)$. By repeating this reasoning for every difference-block, a sum of negligible probabilities is obtained, which is in turn negligible; therefore the hash function family h_s is almost universal.

 \Diamond

0

\mathcal{H} with Galois fields elements and polynomials

Construction 3. Take $\mathbb{F} = GF(2^n)$, a *Galois field* of 2^n elements. Let $m = (m_1, ..., m_t) \in \mathbb{F}^t$ and $s \leftarrow \mathbb{F}^t$. We state that

$$h_s(m) = \sum_{i=1}^t s^{i-1} m_i$$

 \Diamond

Exercise 21. Prove that this construction is almost universal.

(possible proof: to be almost universal, looking at the definition, collisions with $m \neq m'$ must be negligible.

So consider a collision as above: it must be true that

$$\sum_{i=1}^{t} m_i s^{i-1} = \sum_{i=1}^{t} m_i' s^{i-1} \Leftrightarrow \sum_{i=1}^{t} m_i s^{i-1} - \sum_{i=1}^{t} m_i' s^{i-1} = 0 \Leftrightarrow q_{m-m'}(s) = 0$$

How can we make a polynomial equal to 0? We have to find the **roots** of the polynomial, which we know are at most the **grade** of the polynomial. So, the grade of this polynomial is t-1, and the probability of picking a root from \mathbb{F} as seed of $h_s(.)$ is

$$\mathcal{P}[s=root] = \frac{t-1}{2^n} \in \text{negl}(\lambda)$$

)

10.1 Domain extension for PRF-based MAC schemes

10.1.1 Hash function families from PRFs

Another way to obtain domain extension for a MAC scheme, using the $\mathcal{F}_k(h_s)$ approach, is to construct the hash function family from another PRF. We expect to have:

- $\Pr[h_s(m) = h_s(m'), s \leftarrow \{0, 1\}^{\lambda}, (m, m') \leftarrow \{A(1^{\lambda})\} \in \operatorname{negl}(\lambda);$
- We need two PRFs: one is F_k , and the other is F_s

10.1.2 xor-mode

Assume that we have this function

$$h_s(m) = F_s(m_1||1) \oplus ... \oplus F_s(m_t||t)$$

so that the input to the PRF $F_s(.)$ is $n + log_2 t$ bytes long.

Lemma 18. Above \mathcal{H} is computational AU if F_s is a PRF.

Proof. The proof is left as exercise.

(Hint: The pseudorandom functions can be defined as $F_s = F_k'(0, ...)$ and $F_k = F_k'(1...)$).

Possible proof: we have to show that

$$\mathcal{P}[h_s(m) = h_s(m')] \in \text{negl}(\lambda)$$

with $m \neq m'$. This means that

$$\Pr\left[\left(\bigoplus_{i=1}^{t} F_s(m_i, i)\right) = \left(\bigoplus_{i=1}^{t} F_s(m'_i, i)\right)\right]$$
$$= \Pr\left[\forall i \quad F_s(m_i, i) \oplus F_s(m'_i, i) = \bigoplus_{j=1, j \neq i}^{t} F_s(m_j, j) \oplus F_s(m'_j, j) = \alpha\right]$$

for each $i \in [1, t]$. But α is one unique random number chosen over 2^n possible candidates, so the collision probability is negligible.

10.1.3 CBC-mode MAC scheme

This is part of the standard, used in TLS. It's used with a PRF F_s , setting the starting vector as $IV = 0^n = c_0$ and running this PRF as part of CBC. The last block otained by the whole process is the message's signature:

$$h_s(m) = F_s(m_t \oplus F_s(m_{t-1} \oplus F_s(\dots F_s(m_2 \oplus F_s(m_1 \oplus IV)) \dots)))$$

Lemma 19. CBC MAC defines completely an AU family. ♦ Proof. (not proven)

We can use this function to create an **encrypted CBC**, or **E-CBC**:

$$E - CBC_{K,S}(m) = F_k(h_s^{CBC}(m))$$

Theorem 22. Actually if F_k is a PRF, CBC-MAC is already a MAC with domain $n \cdot t$ for arbitrarily fixed $t \in \mathbb{N}$.

$$Proof.$$
 (not proven)

10.1.4 XOR MAC

Instead of $\mathcal{F}(\mathcal{H})$ now the Tag() function outputs $\phi = (\eta, F_k(\eta) \oplus h_s(m))$ where $\eta \leftarrow \{0,1\}^n$ is random and it's called *nonce*.

Authentication is done as:

$$(m,(\eta,F_k(\eta)\oplus h_s(m)))$$

When I want to verify a message and I get the couple $(m, (\eta, v))$, I just check that $v = F_k(\eta) \oplus h_s(m)$. It should be hard to find a value called a such that, given $m \neq m'$,

$$h_s(m) \oplus a = h_s(m')$$

In fact, since an adversary who wants to break this scheme has to send a valid couple (m^*, ϕ^*) after some queries, he could:

- ask for message m and store the tag $(\eta, F_k(\eta) \oplus h_s(m))$
- try to find $a = h_s(m) \oplus h_s(m')$ and modify the previous stored tag adding $v \oplus a$,

so now he could send the authenticated message

$$(m',(\eta,F_k(\eta)\oplus h_s(m')))$$

which is a valid message.

T0D0 14: AXU property definition is missing

Lemma 20. XOR mode gives computational AXU (Almost Xor Universal) ⋄ Proof. (not proven)

Theorem 23. If \mathcal{F} is a PRF and \mathcal{H} is computational AXU, then XOR-MAC is a MAC.

$$Proof.$$
 (not proven)

Summary

T0D0 15: not sure what to do with this bullet list...

With variable input lenght:

- $\bullet\,$ AXU based XOR mode is secure;
- $\mathcal{F}(\mathcal{H})$ is insecure with polynomial construction $h_s(m) = q_m(s)$, but can be fixed;
- CBC-MAC is not secure, left as exercise;
- E-CBC is secure.

10.2 Cca-security

Going back to the encryption realm, a new definition of attack to a SKE scheme will be introduced. Now the adversary can query a decryption oracle, along with the CPA-related encryption oracle, for polynomially many queries. This attack is called the *Chosen Ciphertext Attack* ¹⁴, and schemes that are proven to be CCA-secure are also defined as *non-malleable*, on the reasoning that an attacker cannot craft fresh valid ciphertexts from other valid ones.

Figure 10.35: The chosen ciphertext attack, on top of CPA

Exercise 24. Show that the scheme $\Pi_{\mathcal{F}}$ defined in theorem 17, while CPA-secure, is not CCA-secure.

Proof. Let m_0 and m_1 be the messages the adversary sends to the challenger as the challenge plaintexts; on receiving the ciphertext $c_b = (r, F_k(r \oplus m_b) : b \leftarrow \{0,1\}$, the adversary crafts another ciphertext with an arbitrary value α :

$$\widehat{c_b} = (r, F_k(r) \oplus m_b \oplus \alpha)$$

¹⁴Different versions of the CCA notion exist. The one defined here is also called CCA2, or adaptive Chosen Ciphertext Attack

and queries the decryption oracle on it. The latter will decrypt the new ciphertext and return a plaintext, which can be easily manipulated by the adversary to reveal exactly which message was encrypted during the challenge:

$$Dec_k(\widehat{c_b}) = Dec_k(r, F_k(r) \oplus m_b \oplus \alpha)$$
$$= F_k(r) \oplus F_k(r) \oplus m_b \oplus \alpha$$
$$= m_b \oplus \alpha$$

Therefore, the adversary certainly wins after just one decryption query, proving the scheme's vulnerability to CCA attacks.

10.3 Authenticated encryption

Instead of tackling the CCA-security problem upfront, it might be useful to consider a construction that achieves both secrecy and authentication: that is, a scheme that encrypts messages and authenticates their respective senders at the same time. In the encryption setting, such a scheme is defined as being CPA-secure with an additional AUTH property denoting the scheme's resistance to forgeries, much like its MAC cousins. The game shown in figure 10.36 models this AUTH property of a scheme $\Pi = (Enc, Dec)$, with an additional quirk to the decryption routine:

$$Dec: \mathcal{K} * \mathcal{C} \to M \cup \{\bot\}$$

where the \perp value is returned whenever the decryption algorithm is supplied an invalid or malformed ciphertext.

Figure 10.36: Game $_{\Pi,A}^{AUTH}(\lambda)$

Theorem 25. Let Π be a SKE scheme. If it is CPA-secure, and has the AUTH property, then it is also CCA-secure.

Proof. The proof is left as an exercise.

Hint: consider the experiment where Dec(k, c):

• if c not fresh (i.e. output of previous encryption query m, output m)

• else output ⊥

The approach would be to reduce cca to cpa; given D^{cca} , we can build D^{cpa} . D^{cca} will ask decryption queries, but D^{cpa} can answer just with these two properties shown above, so it can reply just if he asked these (c, m) before to its challenger C.

10.3.1 Combining SKE & MAC schemes

Let $\Pi_1 = (Enc, Dec)$ be a SKE scheme, and $\Pi_2 = (Tag, Verify)$ be a MAC scheme; there are 3 ways to combine them into an authenticated encryption scheme:

- Encrypt-and-Tag:
 - 1. $c \leftarrow \$Enc(k_1, m)$
 - 2. $\phi \leftarrow STag(k_2, m)$
 - 3. $c^* = (c, \phi)$
- Tag-then-encrypt:
 - 1. $\phi \leftarrow Tag(k_2, m)$
 - 2. $c \leftarrow SEnc(k_1, (\phi, m))$
 - 3. $c^* = c$
- *Encrypt-then-Tag*:
 - 1. $c \leftarrow \$ Enc(k_1, m)$
 - 2. $\phi \leftarrow Tag(k_2, c)$
 - 3. $c^* = (c, \phi)$

Of the three options, only the last one is proven to be CCA-secure for arbitrary scheme choices; the other approaches are not secure "a-priori", with some couples proven to be secure by themselves. Notable examples are the *Transport Layer Security* (TLS) protocol, which employs the second strategy, and has been proven to be secure because of the chosen ecnryption scheme; *Secure SHell* (SSH) instead uses the first strategy.

Theorem 26. If an authenticated encryption scheme Π is made by combining a CPA-secure SKE scheme Π_1 with a strongly unforgeable MAC scheme Π_2 in the Encrypt-then-tag method. Then Π is CPA-secure and auth-secure. \diamond

Proof. Assume that Π is not CPA-secure; then an adversary can use the resulting distinguisher $\mathsf{D}^{\mathsf{CPA}}$ to direct a successful CPA against Π_1 , as shown in figure 10.37: the point is to run the two components of Π separately.

T0D0 16: Professor says that we have to show that $Game^{cpa}(\lambda,0) \approx_c Game^{cpa}(\lambda,1)$, but why??? Isn't this proof enough?

Figure 10.37

Proved for the cpa-security property, now we have to prove, in a similar way, that the auth property must be holded by Π if Π_2 is an auth-secure scheme.

Exercise 27. Prove it! Similar to the cpa-security proof.

11.1 Authenticated encryption (continued)

Having proven that an authenticated encryption scheme in an *Encrypt-then-Tag* mode is CPA-secure, it remains to prove that it has the AUTH property. Before this, a new unforgeability definition is needed:

Definition 14. Let $\Pi = (\mathit{Tag}, \mathit{Verify})$ be a MAC scheme. Then Π is EUFCMA-secure iff it is UFCMA-secure, that is:

$$\Pr[\operatorname{Game}_{\Pi,\mathsf{A}}^{\operatorname{ufcma}}(\lambda) = 1] \in \operatorname{negl}(\lambda)$$

with the additional restriction that the tag ϕ^* of the forged message must be "fresh" itself.

Note the small difference in security between UFCMA and EUFCMA.

Theorem 28. Let $\Pi = (Enc, Dec, Tag, Verify)$ be an authenticated encryption scheme, composed by a SKE scheme Π_1 and a MAC scheme Π_2 . If Π_2 is EUFCMA, then Π has the AUTH property.

Proof. The proof is analogous to the previous proof regarding the scheme's CPA security. Suppose that Π has not the AUTH property; then an adversary can use the distinguisher D^{AUTH} to successfully forge authenticated messages with fresh signatures against Π_2 , as depicted in figure 11.38.

From A^{auth} perspective, all the couples (c_i, ϕ_i) received are made with the following schema:

$$c_i \in Enc(k_1, m \in \mathcal{M}) \land \phi_i \leftarrow \$Enc(k_2, c_i)$$

Since \mathcal{A}^{auth} wins $Game^{auth}$, the challenge couple $(c*, \phi^*)$ which breaks $Game^{auth}$ will be produced to be decrypted as

$$Dec(k, (c^*, \phi^*)) \to Dec(k_1, c^*) \in \mathcal{M} \land Dec(k_2, \phi^*) = c^*$$

But if this happens, then \mathcal{A} can use the same challenge couple of \mathcal{A}^{auth} to win $Game^{ufcma}$, which is impossible.

It could happen that, for $c^* = c$ previously seen, ϕ^* is a new fresh tag, never seen before. Just in this case the *auth* game would be valid because (c^*, ϕ^*) would have never been seen before, but **not** the eufcma game, because c^* was previously sent to the challenger.

Now we want an ufcma secure scheme able to resist against message-tag challenge couples where the tag is fresh but the message has been already requested to the challenger.

Figure 11.38: Breaking authenticity of Π_2

11.2 Pseudorandom permutations

T0D0 17: Luby-Rackoff is cited here, but it's related to both PRFs-PRPs and the Feistel network analysis

Nothing prevents a PRF F_k to be bijective; in this case, it is referred to as a pseudorandom permutation, or PRP in short. Their definition is analogous to a generic PRF: as shown in figures 11.39 and 11.40, PRPs are computationally indistinguishable from a random permutation:

$$Real_{\mathcal{F},\mathcal{A}}(\lambda) \approx_c Ideal_{\mathcal{F},\mathcal{A}}(\lambda)$$

An important difference is that F_k is efficiently invertible, although knowledge of k is required in order to do so.

Figure 11.39: $Real_{\mathcal{F},\mathcal{A}}(\lambda)$

11.2.1 Feistel network

PRPs have been successfully constructed by using existing PRFs into what is called a *Feistel network*. As a starting point, let $F: \{0,1\}^n \to \{0,1\}^n$ be a PRF,

Figure 11.40: $Ideal_{\mathcal{P},\mathcal{A}}(\lambda)$

and define the function ψ_F as follows:

$$\psi_F(x,y) = (y, x \oplus F(y)) = (x', y')$$

$$\psi_F^{-1}(x', y') = (F(x') \oplus y', x') = (F(y) \oplus x \oplus F(y), y) = (x, y)$$

Figure 11.41: A single-round Feistel network

While this construct is invertible and uses a PRF, it is not pseudorandom itself, because the first n bits of ψ_F 's image are always equal to y, and thus visible to any adversary. A first attempt at fixing this vulnerability would be to apply the construct two times on two different PRFs $\psi_{F,F'}^2$, in an attempt to "hide" y. Yet, this approach still leaks valuable information:

$$\psi_{F,F'}(x,z) \oplus \psi_{F,F'}(y,z) = (x \oplus y, \dots)$$

However, this example with additional restrictions will be useful very soon, so it is reworded as the following lemma:

Lemma 21. For any unbounded adversary making $q \in \text{poly}(\lambda)$ queries, the following games in figure 11.42 are statistically close as long as y_1, \ldots, y_q are mutually distinct. \diamond

Proof. T0D0 18: Idea: Hybridize over the queries before the challenge, from PR to random; prove that the stat distance between i and i+1 is negligible

Figure 11.42

Going back to the Feistel networks in general, it should be easy to see that they can be made of an arbitrary number of rounds, by simply chaining output with input. The l-th iteration is denoted as:

$$\psi_{\Phi}^{l}(x,y) = \psi_{F}(\psi_{F''}(\dots\psi_{F^{(l)}}(x,y)\dots))$$

where Φ is the sequence of PRFs used at each single step. It can be shown that the rounds need to obtain a network that is indeed pseudorandom is just 3; also, the same PRF can be used, it is sufficient to change the seed on each iteration¹⁵:

Theorem 29. Let F_i, F_j, F_k be a PRF over three seeds. Then $\psi^3_{i,j,k}$ is a PRP. \diamond

Proof. T0D0 19: Idea: Four total games: original, swap prfs with random functions, swap the three functions with a single one (use previous lemma), swap random function with random permutation (avoid bad events generated by injection property)

¹⁵That is actually the purpose of using a PRF

- 12.1 Hashing
- 12.1.1 Merkle-Damgård construction
- 12.1.2 Domain extension
- 12.1.3 Compression functions

- 13.1 Number theory
- 13.2 Standard model assumptions

- 14.0.1 Decisional Diffie-Hellman assumption
- 14.0.2 Naor-Reingold encryption scheme
- 14.1 Public key encryption schemes

15.1 Public key encryption recap

 $\mathrm{Game}_{\Pi,\mathcal{A}}^{pke-cca}\colon$

Figure 15.43: CCA on a PKE scheme

(Reminder): Encryptions are made like this: $Enc(k,m)=(r,F_k(r)\oplus m),r\simeq \mathcal{U}nif(\{0,1\}^{\lambda}).$

Every time an encryption is made, a fresh value r is picked UAR.

15.1.1 Trapdoor permutation

A TDP(TrapDoor Permutation) is a OWP family structured has these features:

- A key pair is chosen UAR by a key generator algorithm: $(pk, sk) \leftarrow \mathcal{KG}en(1^{\lambda})$
- There is a function family $f_{pk} \subseteq (V_{pk} \to V_{pk})$ such that:
 - Computing f_{pk} is efficient
 - Sampling from the domain $(x \leftarrow V_{pk})$ is efficient
- There is an efficient function g_{sk} that "inverts" f_{pk} (sk is the "trapdoor"):

$$g(sk, f(pk, x)) = x$$

• No efficient adversary is able to invert f_{pk} without knowing sk

Note: Since pk is public, any adversary gets the capability of encrypting messages for free, without requiring n external challenger/oracle!

Therefore, if left deterministic, a TDP is not CPA-secure.

Here, in this scheme, we combine randomness and the notion of hardcore predicate \mathfrak{hc} :

- $(pk, sk) \leftarrow \mathcal{KG}en(1^{\lambda})$
- $r \leftarrow \Xi_{pk}$
- $c := Enc(pk, m) = (f_{pk}(r), \mathfrak{hc}(r) \oplus m)$
- Correctness: $Dec(sk,c) = \mathfrak{hc}(g_{sk}(c_1)) \oplus c_2$

Theorem 30. If $(\mathcal{KG}en, f, g)$ is a TDP, and \mathfrak{hc} is hardcore for f, then the above scheme is CPA-secure. \diamond

Proof. The proof is left as exercise

T0D0 20: Apparently, the reduction here is not easy at all, some hints are needed.

15.1.2 TDP examples

One example stems form the factoring problem: let's look again at \mathbb{Z}_n^{\times} , where $n = pq, p, q \in \mathbb{P}$:

Theorem 31. (Chinese remainder, or CRT): The following isomorphisms to \mathbb{Z}_n^{\times} are true:

- $\mathbb{Z}_n \simeq \mathbb{Z}_p \times \mathbb{Z}_q$
- $\mathbb{Z}_n^{\times} \simeq \mathbb{Z}_p^{\times} \times \mathbb{Z}_q^{\times}$

Note that the theorem is more general, and holds for any p,q that are coprime. \diamond

How to use this theorem for constructing a PKE scheme: Reminder (Euler's theorem):

REVIEW: $\forall x \in \mathbb{Z}_n \implies x^{\varphi(n)} = x \mod n$ maybe the correct one is $\forall x \in \mathbb{Z}_n \implies x^{\varphi(n)} = 1 \mod n$

Reminder: $\forall p, q \in \mathbb{P} \implies \varphi(pq) = (p-1)(q-1)$

So let a be the public key such that $gcd(a, \varphi(n)) = 1$, then $\exists! b \in \mathbb{Z}_n : ab = 1 \mod \varphi(n)$, b will be our private key.

Define encryption as $f(a,m)=m^a \mod n$, and then decryption as $g(b,c)=c^b \mod n$.

Observe that

$$g(b, f(a, m)) = (m^a)^b = m^{ab} = m^{k\varphi(n)+1} = (m^{\varphi(n)})^k m = m \mod n$$

because $ab = 1 \mod \varphi(n)$.

So we conjecture that the above is a valid TDP-based PKEscheme. This is actually referred to as the RSA assumption, and is depicted in figure 15.44

Figure 15.44: The RSA assumption

Relation to the factoring problem: RSA \implies FACT

Proof: Given p, q, an adversary can compute $\varphi(n) = (p-1)(q-1)$, and then find the inverse of the public key in \mathbb{Z}_{pq}^{\times} .

It hasn't been proven that FACT \Longrightarrow RSA

15.2 Textbook RSA

This is an <u>insecure</u> toy example of the more complex RSA (Rivest Shamir Adleman) algorithm. The key generation algorithm: KGen = Gen $RSA(1^{\lambda})$ outputs $P_k = (n, e)$ and $S_k = d$, then we have

$$Enc(P_k, m) = m^e \pmod{n}$$

 $Dec(S_k, c) = c^d \pmod{n}$

Since the output of Enc is deterministic this is **not CPA secure!** However it can be used with HARD-CORE Predicate.

Preprocess the message to add randomness:

$$\hat{m} = r || m \text{ where } r \leftarrow \$\{0, 1\}^l$$

now Enc is not deterministic.

Facts:

1. $l \in super(log(\lambda))$ otherwise it is possible to bruteforce in PPT.

REVIEW:

- 2. If $m \in \{0,1\}$ then I can prove it CPA secure under RSA (just use standard TDP)
- 3. If m is "in the middle" $(\{0,1\} \le m \le \{0,1\}^l)$ RSA is believed to be secure and is standardized (PKCS#1,5)

REVIEW:

4. Still not CCA secure! counterexample?

15.2.1 Trapdoor Permutation from Factoring

Let's look at $f(x) = x^2 \pmod{n}$ where $f: \mathbb{Z}_n^* \to \mathbb{QR}_n (\subset \mathbb{Z}_n^*)$, this is not a permutation in general.

Now let's consider the Chinese Reminder Theorem (CRT) representation:

$$x = (x_p, x_q) \to x_p \equiv x \pmod{p}, x_q \equiv x \pmod{q}$$

$$f(x) = x^2 \pmod{p}; x \leftarrow \$\mathcal{Z}_p^*$$

Since Z_p^* is cyclic I can always write:

$$Z_p^* = \{g^0, g^1, g^2, \dots, g^{\frac{p-1}{2}-1}, g^{\frac{(p-1)}{2}}, \dots, g^{p-2}\}$$

$$\mathbb{QR}_p = \{g^0, g^2, g^4, \dots, g^{\frac{p-1}{2}-1} in Z_p^*, \dots\}$$

$$|\mathbb{QR}_p| = \frac{p-1}{2}$$

Moreover, since $(g^{\frac{p-1}{2}})^2 \equiv 1 \pmod p$ and $g^{\frac{p-1}{2}}$ cannot be 1 (since $g^0 \neq g^{\frac{p-1}{2}} \neq g^{p-1}$) but must be one of the p-1 elements of Z_p^* , then $g^{\frac{p-1}{2}} \equiv -1 \pmod p$.

Now it's possible to show that $f: \mathbb{QR}_p \to \mathbb{QR}_p$ is a permutation, and we are going to show a method to invert it, aka f^{-1} .

Assume $p \equiv 3 \pmod 4$ ([*] $p = 4t + 3 \Rightarrow t = \frac{p-3}{4}$), then squaring Modp is a permutation because, given $\underline{y = x^2 \pmod p}$ if I compute:

$$(y^{t+1})^2 = \underbrace{y^{2t+2}}_{[*]\ 2t+2 = \frac{p-3}{2} + 2 = \frac{p+1}{2} = \frac{p-1}{2} + 1} = (x^2)^{\frac{p-1}{2} + 1} = 1x^2 = x^2$$

$$\implies x = \pm y^{t+1}$$

But only 1 among the above $\pm y^{t+1}$ is a square, in particular only the positive one. Since we have that:

$$p = k4 + 3 \Rightarrow \frac{p-1}{2} = \frac{4k+2}{2} = 2k+1$$

so $\frac{p-1}{2}$ is odd.

Now, since we are considering just $\mathbb{QR}_p = \{y \in \mathbb{Z}_p^* : \exists x \in \mathbb{Z}_p^* x^2 = y\}$ and we can write each $x \in \mathbb{Z}_p^*$ as g^z for a $z \in \mathbb{Z}_p$,

$$y = x^2 \Leftrightarrow y = (g^z)^2 = g^{2z}$$

So, $y = g^{z'} \in \mathbb{QR}_p \Leftrightarrow z'$ is even. If z' is odd, then $y \notin \mathbb{QR}_p$.

Since $\frac{p-1}{2}$ is odd, then $g^{\frac{p-1}{2}} \not\in \mathbb{QR}_p$, and since it is possible to generate all of the other numbers with odd exponents

$$g^{odd} = g^{\frac{p-1}{2} \pm even} = g^{\frac{p-1}{2}} g^{\pm even} \Rightarrow -1(g^{\pm even})$$

0

and g powered to odd exponents will have this form.

From that, it's possible to state the following:

Lemma 22.
$$\forall z, z \in \mathbb{QR}_p \implies -z \notin \mathbb{QR}_p$$

15.2.2 Rabin's Trapdoor permutation

Now we study a one way function built on previous deductions about number theory and modular arithmetic.

The Rabin trapdoor permutation is defined as

$$f(x) = x^2 \bmod n$$

where n = p * q for primes p, q = 3 mod 4.

We can observe that the image of this function is \mathbb{QR}_n , a subset of \mathbb{Z}_n^* .

For Chinese remainder theorem it is possible to state that f maps as follows

$$x = (x_p, x_q) \mapsto (x_p^2, x_q^2)$$

since each element of \mathbb{Z}_n has always two different forms , in \mathbb{Z}_p and in \mathbb{Z}_q . So

$$y \in \mathbb{QR}_n \Leftrightarrow y_p \in \mathbb{QR}_p \land y_q \in \mathbb{QR}_q$$

As before, the image of f is exactly

$$\mathbb{QR}_n = \{ y : \exists x : y = x^2 \bmod n \}$$

If we try to invert the function f, even without applying the previous inversion algorithm, we easily note that among the 4 possible values:

$$f^{-1}(y) = \{(x_p, x_q), (-x_p, x_q), (x_p, -x_q)(-x_p, -x_q)\}$$

only 1 is a quadratic residue since we said, in the last lemma, that only one out of $-x_k, x_k$ is a quadratic residue for k = q, p.

Therefore, we have that the Rabin's TDP is a permutation in \mathbb{QR}_n , and that the cardinality of \mathbb{QR}_n is $\frac{|\mathbb{Z}_n^*|}{4}$.

Furthermore, with the following claim we can state that the Rabin cryptosystem is OWF thanks to the hardness of factoring.

Claim 1. Given x, z such that $x^2 \mod n \equiv z^2 \mod n \equiv y \mod n$,

$$x \neq \pm z \Rightarrow we can factor n$$

 \Diamond

Proof. Since $f^{-1}(y)$ has only one value out of four, $x \neq \pm z$ and $z \in \{(x_p, x_q), (-x_p, -x_q)\}$, then $x \in \{(x_p, -x_q), (-x_p, x_q)\}$ and

$$x + z \in \{(0, 2x_q), (2x_p, 0)\}$$

Now assume $x+z=(2x_p,0)$ without loss of generality, since the proof for the other case is the same. We have that $x+z\equiv 0 \mod q$ and $x+z\not\equiv 0 \mod p$. But then $\gcd(x+z,n)=q$, and we obtain q.

Theorem 32. Squaring mod n, where n is a Blum integer ¹⁶ is a trapdoor permutation under the factoring assumption.

Since we have already shown tha Rabin's function is a permutation since it is invertible, we have to show that Rabin's function is also OWF.

In other words

Factoring is hard $\Rightarrow f(x)$ is OWF, aka inverting it is hard

The following proof is by contraddiction.

Proof. Assume that exists an adversary PPT who, given $y = x^2 \mod n$, can find a $z \in \mathbb{Z}_n$ such that $z^2 \mod n = y$ but $z \neq \pm x$.

We can build the following reduction to show that \mathcal{A} choses x, here $\mathcal{BG}en$ is a sampler for Blum integers:

Once obtained $z \neq \pm x$ which $z^2 = y$ we can use **Claim 1**(just summing x and z and analyzing the result) to factorize n in polytime. But factorizing n in polytime is not possible.

 $^{^{16}\}mathrm{a}$ Blum integer n is the product of two numbers p and q such that $p,q=3\mod 4,$ as the definition of Rabin's TDP

16.1 PKE schemes over DDH assumption

16.1.1 El Gamal scheme

Let's define a new $\Pi = (KGen, Enc, Dec)$. Generate the needed (**public**) parameters $(G, g, q) \leftarrow GroupGen(1^{\lambda})^{17}$.

The KeyGen algorithm is defined as follows:

- Pick $x \leftrightarrow \mathbb{Z}_q$
- Output the key pair (pk, sk) as (g^x, x)

The encryption routine Enc(pk, m) will:

- Pick $r \leftrightarrow \mathbb{Z}_q$
- Output $c = (c_1, c_2) = (g^r, pk^r \cdot m)^{18}$

The decryption routine Dec(sk, c) will:

• Compute $\hat{m} = c_1^{-sk} \cdot c_2$

Correctness of this scheme follows from some algebric steps:

$$\begin{split} \hat{m} &= Dec(sk, Enc(pk, m)) \\ &= Dec(x, Enc(g^x, m)) \\ &= Dec(x, (g^r, (g^x)^r \cdot m)) \\ &= (g^r)^{-x} \cdot (g^x)^r \cdot m \\ &= m \end{split}$$

Theorem 33. Assuming DDH, the El Gamal scheme is CPA-secure.

Proof. Consider the two following games $H_0(\lambda, b)$ and $H_1(\lambda, b)$ defined as follows. Observe that b can be fixed without loss of generality.

 $^{^{17}\}mathrm{G}$ could be any "valid" group such as \mathbb{QR}_p or an Elliptic Curve

¹⁸We need r because we want to re-randomize c

 $H_0(\lambda, b)$:

 $H_1(\lambda,b)$:

Note: it is important to note that we can measure the advantage of A, so

fixed its output
$$Adv_{\mathcal{A}}(\lambda) = |\underbrace{Pr[A \to 1 | b = 0]}_{\text{"A loses"}} - \underbrace{Pr[A \to 1 | b = 1]}_{\text{"A wins"}}|$$
. Since b is

fixed the above formula will give a value λ innegl, generally the advantage of an adversary is: $\frac{1}{2} + \lambda$ (random guessing + a negligible factor).

Proof techinique: $H_0(\lambda, 0) \approx_c H_0(\lambda, 1) \equiv H_1(\lambda, 0) \approx_c H_1(\lambda, 1)$

$$\implies H_0(\lambda,0) \approx_c H_1(\lambda,1)$$

Lemma 23. $\forall b \in \{0,1\}, H_0(\lambda,0) \approx_c H_0(\lambda,1)$

Fix b. (Reduction to DDH)

Assume \exists PPT D which is able to distinguish $H_0(\lambda, b)$ and $H_1(\lambda, b)$ with non negl. probability. \diamond

Proof. Consider the following Game:

Contradiction: \mathcal{D} should be able to compute log_g to distinguish the message.

Lemma 24.
$$H_1(\lambda, 0) \equiv H_1(\lambda, 1)$$

Proof. This follows from the fact that: $(g^x, (g^r, g^z m_0)) \equiv (g^x, (g^r, U_\lambda) \equiv \equiv (g^x, (g^r, g^z m_1)))$

 \Diamond

Lemma 25.
$$H_1(\lambda, 1) \equiv H_0(\lambda, 1)$$

This is proved in the exact same way as **Lemma 20.** As a matter of fact it is the second part of the proof (where b is fixed to 1).

Properties of of El Gamal PKE scheme

Some useful observations can be made about this scheme:

• It is **homomorphic**: Given two ciphertexts (c_1, c_2) and (c'_1, c'_2) , then doing the product between them yields another valid ciphertext:

$$(c_1 \cdot c'_1, c_2 \cdot c'_2)$$

= $(g^{r+r'}, h^{r+r'}(m \cdot m'))$

thus, decrypting $c \cdot c'$, gives $m \cdot m'$.

• It is **re-randomizable**: Given a ciphertext (c_1, c_2) , and $r' \leftarrow \mathbb{Z}_q$, then computing $(g^{r'} \cdot c_1, h^{r'} \cdot c_2)$ results in a "fresh" encryption for the same message: the random value used at the encryption step will change from the original r to r + r'

So this is not CCA-Secure!

These properties of the El Gamal scheme can be desirable in some use cases, where a message must be kept secret to the second party. In fact, there are some PKE schemes which are designed to be **fully homomorphic**, i.e. they are homomorphic for any kind of function.

Consider the following use case: a client C has an object x and wants to apply a function f over it, but it lacks the computational power to execute it. There is another subject S, which is able to efficiently compute f, so the goal is to let it compute f(x) but the client wishes to keep x secret from him. This can be achieved using a FH-PKE scheme as follows:

Figure 16.45: Delegated secret computation

However one important consideration must be made: All these useful characteristics expose an inherent malleability of any fully homomorphic scheme: any attacker can manipulate ciphertexts efficiently, and with some predictable results. This compromises even CPA security of such schemes.

16.1.2 Cramer-Shoup PKE scheme

This scheme is based on the standard DDH assumption, and has the advantage of being CCA secure. A powerful tool, called **Designated Verifier Non-Interactive Zero-Knowledge (DVNIZK)**, or alternatively **Hash-Proof System**, is used here.

Proof systems

Let L be a Turing-recognizable language in NP, and a predicate $\mathcal{R} \in X \times Y \to \{0,1\}$ such that:

$$L := \{ y \in Y : \exists x \in X \ \mathcal{R}(x, y) = 1 \}$$

where x is called a "witness" of y.

In our instance, let y = pq, x = (p, q)

 $\Pi = (Setup, Prove, Verify)$

 $(\omega, \tau) \leftarrow \mathcal{S}etup(1^{\lambda})$, where ω is the **Common Reference String**, and τ is the **trapdoor**.

Additional notes:

• ω is public (=pk)

- τ is part of the secret key
- $\tau = (x, y) : \mathcal{R}(x, y) = 1$
- There is presumably a common third-party, which samples from the setup and publishes ω , while giving τ to only B.

Figure 16.46: Overview of Cramer-Shoup operation

Proof system - purpose: a way to convince B that A knows something Can compute the proof in two different ways, this is the core notion of ZK No $\tau \implies ZK$

Properties

- (implicit, against malicious Bob) **Zero-knowledge**: Proof for x can be simulated without knowing x itself
- (stronger, against malicious ALice) Soundness: It is hard to produce a valid proof for any $y \notin L$
- honest people Completeness: $\forall y \in L, \forall (\omega, \tau) \leftarrow \mathcal{S}etup(1^{\lambda}) : \mathcal{P}rove(\omega, x, y) = \mathcal{V}erify(\tau, y)$

T0D0 21: to review and understand/better

t-universality

Definition 15. Let Π be DV-NIKZ¹⁹.

We say it is t-universal if for any distinct

$$y_1, \ldots, y_t$$
 s.t. $y_i \notin L(\forall i \in [t])$

we have

$$(\omega, Ver(\tau, y_1), \dots, Ver(\tau, y_t)) = (\omega, v_1, \dots, v_t)$$

where $(\omega, \tau) \leftarrow$ \$ $Setup(1^{\lambda})$ and $v_1, \ldots, v_t \leftarrow$ \$ \mathcal{P} where \mathcal{P} should be the proofs' space.

¹⁹Designated verifier non-interactive zero-knowledge

Enriching DV-NIKZ

Can we enrich DV-NIKZ with labels $l \in \{0, 1\}^*$? Suppose to have the following:

$$L' = L || \{0, 1\}^* = \{(y, l) : y \in L \land l \in \{0, 1\}^*\}$$

Then our scheme changes : $Prove(\omega,(y,l),x) = \Pi; Ver(\tau,(y,l))$ and , for t-universality , now we can consider 2 distinct (y_i,l_i) .

Membership Hard Language (MH)

Definition 16. Language L is MH if $\exists \bar{L}$ such that:

- 1. $L \cap \bar{L} = \emptyset$
- 2. $\exists \text{ PPT } \text{Samp } \text{outputting } y \leftrightarrow \mathcal{Y} \text{ together with } x \in \bar{\mathcal{X}} \text{ such that }$

$$R(y,x) = 1$$

(it's possible to say that $Samp(1^{\lambda}) \leftarrow \(y, x))

- 3. $\exists PPT \ \bar{Samp} \ \text{outputting} \ y \leftrightarrow \bar{L}$
- 4. $\{y:(y,x) \leftarrow Samp(1^{\lambda})\} \approx_c \{y:y \leftarrow Samp(1^{\lambda})\}$

<

17.1 Construction of a CCA-secure PKE

This section exposes a construction of a CCA-secure PKE scheme, using hashproof systems, membership-hardness, and the n-universality property.

Let Π_1, Π_2 be two distinct hash-proof systems for some NP language L and the range of $Prove_2$ supports labels $(L' = L || \{0, 1\}^{\ell})$.

Construct the CCA scheme as follows: $\Pi := (\mathcal{KG}en, Enc, Dec)$

Construct the CCA scheme as follows:
$$\Pi := (\mathcal{K}Gen, Enc, Dec)$$

• $((\omega_1, \omega_2), (\tau_1, \tau_2)) \iff \mathcal{K}Gen(1^{\lambda})$, $(\omega_1, \tau_1) \iff Setup_1(1^{\lambda}), (\omega_2, \tau_2) \iff Setup_2(1^{\lambda})$

• Encryption routine: $Enc((\omega_1, \omega_2), m)$

$$-(y,x) \leftarrow Sample_1(1^{\lambda})$$

$$-\pi_1 \leftarrow Prove_1(\omega_1,y,x)$$

$$-l := \pi_1 \cdot m$$

$$-\pi_2 \leftarrow Prove_2(\omega_2,(y,l),x)$$

$$-c := (c_1,c_2) = ((y,l),\pi_2)$$

• Decryption routine: $Dec((\tau_1, \tau_2), (c_1, c_2))$

-
$$\hat{\pi}_2 = Verify_2(\tau_2, c_1)$$
)
- IF $\hat{\pi}_2 \neq c_2$ THEN OUTPUT FALSE
- Recall: $c_1 = (y, l)$
- $\hat{\pi}_1 = Verify_1(\tau_1, y)$
- OUTPUT $l \cdot \hat{\pi}_1^{-1}$

Correctness (assume $\hat{\pi}_i = \pi_i \forall i$):

$$\hat{m} = Dec(sk, Enc(pk, m))$$

$$= Dec((\tau_1, \tau_2), Enc((\omega_1, \omega_2), m))$$

$$= Dec((\tau_1, \tau_2), ((y, l), \pi_2))$$

$$= l \cdot \hat{\pi}_1^{-1}$$

$$= \pi_1 \cdot m \cdot \hat{\pi}_1^{-1}$$

$$= m$$

Some additional notes (may be incorrect):

- The message space of the second prover is the range of the first prover.
- The message space of the first prover is a multiplicative group
- The message space of the second prover is a polylogarithmic language in (λ)

Theorem 34. Assuming π_1 is 1-universal, π_2 is 2-universal and L is a membershiphard language; then the above scheme is CCA-secure. \diamond

Proof. Five different games will be defined, from $GAME_{\Pi,A}^0$ up to $GAME_{\Pi,A}^4$; the first game will be an analogous formalization of how the above PKE scheme works. It shall be proven that, for arbitrarily fixed b in $\{0,1\}$:

$$\mathrm{Game}_{\Pi,\mathsf{A}}^0(\lambda,b) \equiv \mathrm{Game}_{\Pi,\mathsf{A}}^1(\lambda,b) \approx_C \mathrm{Game}_{\Pi,\mathsf{A}}^2(\lambda,b) \approx_S \mathrm{Game}_{\Pi,\mathsf{A}}^3(\lambda,b) \equiv \mathrm{Game}_{\Pi,\mathsf{A}}^4(\lambda,b)$$

and finally that $Game_{\Pi,A}^4(\lambda,0) = Game_{\Pi,A}^4(\lambda,1)$, therefore concluding that $Game_{\Pi,A}^0(\lambda,0) \approx_C Game_{\Pi,A}^0(\lambda,1)$, and proving this scheme is CCA-secure.

T0D0 22: Non sono per niente sicuro riguardo all'origine di x ed y, né tantomeno dove sia definito il sampler per essi

The games are defined as follows:

Figure 17.47: Original CCA game

 $\rm T0D0$ 23: Non è stato chiaro sull'origine di x ed y, inoltre mi manca da scrivere le query di decifratura

Lemma 26.

$$\forall b, G_0(\lambda, b) \equiv G_1(\lambda, b)$$

 \Diamond

Figure 17.48: Use verifiers

Figure 17.49: Sample statements outside the language

Figure 17.50: Modify decryption queries

Figure 17.51: π_1 is chosen UAR

Proof. This follows by the correctness of Π_1 and Π_2

$$\Pi_1 = \tau_1 = Ver_1(\tau, y)$$

$$\Pi_2 = \tilde{\Pi}_2 = Ver_2(\tau, y)$$

with probability 1 over the choice of $(\omega_1, \tau_1) \leftarrow$ \$ $Setup_1(1^{\lambda})$

$$\Pi_1 \leftarrow Prove_1(\omega, y, x), (\omega_2, \tau_1) \leftarrow Setup_2(1^{\lambda})$$

$$\Pi_2 \leftarrow Prove(\omega_2, (y, l), x) \forall y \in L, l \in \mathcal{P}_1$$

Lemma 27.

$$\forall b, G_1(\lambda, b) \approx_c G_2(\lambda, b)$$

 \Diamond

Proof. Straight forward reduction from membership hardness.

Lemma 28.

$$\forall b, G_2(\lambda, b) \approx_c G_3(\lambda, b)$$

 \Diamond

T0D0 24: I'm not completely sure the next proof is complete

Proof. Recall that the difference between G_2 and G_3 is that

$$(g^{(i)}, l^{(i)}, \Pi_2^{(i)})$$
 such that $y^{(i)} \not\in L$

are answered \perp in G_3 , instead in G_2

$$\bot \;$$
 comes out as output $\Leftrightarrow \tilde{\Pi}_2^{(i)} = Ver(\tau, y^{(i)} \neq \Pi_2^{(i)})$

It's possible to distinguish **two cases** , looking at $c=(y,l,\Pi_2)$:

- 1. if $(y^{(i)}, l^{(i)}) = (y, l)$ and $\tilde{\Pi}_2^{(i)} = \Pi_2^{(i)}$, it outputs \bot if in the decryption scheme $(\Pi_2^{(i)} \neq \tilde{\Pi}_2^{(i)})$ it outputs \bot .
- 2. ²⁰ otherwise $(y^{(i)}, l^{(i)}) \neq (y, l)$ if $y^{(i)} \notin L$ we want that $\Pi_2^{(i)}$ doesn't output exactly $Ver_2(\tau, (y^{(i)}, l^{(i)}))$, but it should output \bot .

EVENT BAD: If we look at the view of \mathcal{A} , the only information he knows is

$$(\omega_2, \tilde{\Pi}_2 = Ver_2(\tau_2, y))$$

for $y \notin L$.

The value

$$Ver_2(\tau_2, (y^{(i)}, x^{(i)}))$$

for $y^{(i)} \in L$ and $(y^{(i)}, l^{(i)}) \neq (y, l)$ is random. So,

$$\mathcal{P}[BAD] = 2^{-|\mathcal{P}_2|}$$

Lemma 29.

$$\forall b, G_3(\lambda, b) \equiv G_4(\lambda, b)$$

 \Diamond

Proof. If we look at the view of \mathcal{A} , the only information known about τ_1 is ω_1 , since the decryption oracle only computes for $y^{(i)} \in L$

$$Ver_1(\tau, y^{(i)}) = Prove_1(\omega_1, y^{(i)}, x^{(i)})$$

By 1-universality, $\Pi = Ver_1(\tau, y)$ for any $y \in L$ is random.

Lemma 30.

$$G_4(\lambda,0) \equiv G_4(\lambda,1)$$

 \Diamond

Proof. The challenge ciphertext is independent of b.

REVIEW: referencing something from another part of lesson 17

17.1.1 Instantiation of U-HPS (Universal Hash Proof System)

MHL(Membership Hard Language) from DDH

 $\exists r$ using a DDH language such that $L_{DDH} = \{(c_1, c_2), \exists r | c_1 = g_1^r, c_2 = g_2^r\}$ Given a group $\mathcal G$ of order q with (g_1, g_2) as generators, we will have (g_1, g_2, c_1, c_2) but if we impose $g_1 = g$ and $g_2 = g^a$ then the previous construction becomes (g, g^a, c_1, c_2) . But for definition $c_1 = g_1^{r_1}$ and $c_2 = g_2^{r_2}$ then I can write (g, g^a, g^r, g^{ar}) .

Now we can define our U-HPS $\Pi := (Setup, Prove, Verify)$

²⁰when decryption oracle doesn't output the challenge

- $Setup(1^{\lambda})$: Pick $x_1, x_2 \leftarrow \mathcal{Z}_q$ and define: $\omega = h_1 = (g_1^{x_1}, g_2^{x_2}), \ \tau = (x_1, x_2)$
- $Prove(\omega,\underbrace{(c_1,c_2)}_{y},r)$ output $\Pi=\omega^2$
- $Verify(\tau,\underbrace{(c_1,c_2)}_{u})$ output $\widetilde{\Pi}=c_1^{x_1}c_2^{x_2}$

Correctness: $\Pi = \omega^2 = (g_1^{x_1} g_2^{x_2})^r = g_1^{rx_1} g_2^{rx_2} = c_1^{x_1} c_2^{x_2} = \widetilde{\Pi}$

Theorem 35. Above construction defines a 1-universal DVNIZK for L_{DDH} \diamond

Proof. We want to prove that if we take any $(c_1, c_2) \notin L_DDH$ the distribution $(\omega = h_1, \widetilde{\Pi} = Verify(\tau, (c_1, c_2)))$ uniformly distributed.

Define a MAP $\mu(x_1, x_2) = (\omega, \Pi) = (g_1^{x_1}, g_2^{x_2}, c_1^{x_1}, c_2^{x_2})$ it suffices to prove that μ is injective. This can easily be done with some constrains:

 $\mu'(x_1,x_2) = \log_{g_1}(\mu(x_1,x_2)) = (\log_{g_1}(\omega),\log_{g_1}(\Pi))$ For $r_1 \neq r_2$ then $c_1 = g_1^{r_1}, c_2 = g_2^{r_2} = g^{\alpha r_2}$. For $\alpha = \log_{g_2}g_1$ then $\Pi = c_1^{x_1}c_2^{x_2} = g_1^{r_1x_1}g_2^{r_1x_1+\alpha r_2x_2}$.

$$\mu'(x_1, x_2) = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 1 & \alpha \\ r_1 & r_2 \alpha \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Since Det $\begin{pmatrix} 1 & \alpha \\ r_1 & r_2 \alpha \end{pmatrix} = \alpha (r_2 - r_1) \neq 0$ the map is injective.

- $Setup(1^{\lambda})$:
 - Pick $x_3, x_4, x_5, x_6 \leftarrow \mathcal{Z}_q$ and define:
 - * $\omega = (h_2, h_3, s) = (g_1^{x_3}, g_2^{x_4}, g_1^{x_5}, g_2^{x_6}, s)$ where s is a **seed** for a CRH $\to \mathcal{H} = \{H_s\}$
- $Prove(\omega, (c_1, c_2, l), r)$
 - Compute $\beta = H_s(c_1, c_2, l) \in \mathcal{Z}_p$
 - Output $\Pi = h_2^r h_3^{r\beta}$
- $Verify(\tau,(c_1,c_2,l))$
 - Compute $\beta = H_s(c_1, c_2, l) \in \mathcal{Z}_q$
 - Output $\tilde{\Pi} = c_1^{x_3 + \beta x_5} c_2^{x_4 + \beta x_6}$

Correctness:

$$\Pi = h_2^r h_3^{r\beta} = (g_1^{x_3} g_2^{x_4})^r (g_1^{x_5} g_2^{x_6})^r = c_1^{x_3} c_2^{x_4} c_1^{\beta x_5} c_2^{\beta x_6} = c_1^{x_3 + \beta x_5} c_2^{x_4 + \beta x_6} = \widetilde{\Pi}$$

Theorem 36. The above construction define a 2-universal DVNIZK for L_{DDH}

Proof. Same goal and procedure as before

- Take any $(c_1, c_2) \notin L_{DDH}$
- Fix $(c_1, c_2, l) \neq (c'_1, c'_2, l')$ s.t. $(c_1, c_2), (c'_1, c'_2) \notin L_{DDH}$ which means:

•
$$(c_1, c_2) = (g_1^{r_1} g_2^{r_2})$$

• $(c'_1, c'_2) = (g_1^{r'_1} g_2^{r'_2})$

$$r_1 \neq r_2 \text{ and } r'_1 \neq r'_2$$

- $\beta = H_s(c_1, c_2, l)$
- $\beta' = H_s(c'_1, c'_2, l')$
- Let's define a MAP

$$\begin{split} \mu'(x_3,x_4,x_5,x_6) &= (\omega,\widetilde{\Pi} = Ver(\tau,(c_1,c_2,l)),\widetilde{\Pi'} = Ver(\tau,(c_1',c_2',l'))) = \\ &= \underbrace{(\underbrace{(h_2,h_3)}_{\omega},c_1^{x_3+\beta x_5}c_2^{x_4+\beta x_6},c_1'^{x_3+\beta'x_5}c_2'^{x_4+\beta'x_6}}_{=} = \\ &= ((g_1^{x_3}g_2^{x_4},g_1^{x_5}g_2^{x_6}),g_1^{r_1x_3+\beta r_1x_5}g_2^{r_2x_4+\beta r_2x_6},g_1^{r_1'x_3+\beta'r_1'x_5}g_2^{r_2'x_4+\beta'r_2'x_6}) \end{split}$$

But I can rewrite g_2 as $g_2 = g_1^{\alpha}$ since they are generators. So:

$$\begin{aligned} &((g_1^{x_3+\alpha x_4},g_1^{x_5+\alpha x_6}),g_1^{r_1x_3+\beta r_1x_5}g_1^{\alpha(r_2x_4+\beta r_2x_6)},g_1^{r_1'x_3+r_1'\beta'x_5}g_1^{\alpha(r_2'x_4+\beta'r_2'x_6)}) = \\ &= ((g_1^{x_3+\alpha x_4},g_1^{x_5+\alpha x_6}),g_1^{r_1x_3+\alpha r_2x_4+\beta r_1x_5+\alpha\beta r_2x_6},g_1^{r_1'x_3+\alpha r_2'x_4+r_1'\beta'x_5+\alpha\beta'r_2'x_6}) = \\ &\begin{pmatrix} z_1\\z_2\\z_3\\z_4 \end{pmatrix} = \begin{pmatrix} 1&\alpha&0&0\\0&0&1&\alpha\\r_1&\alpha r_2&\beta r_1&\alpha\beta r_2\\r_1'&\alpha r_2'&\beta'r_1'&\alpha\beta'r_2' \end{pmatrix} \cdot \begin{pmatrix} x_3\\x_4\\x_5\\x_6 \end{pmatrix}$$

 $\overbrace{r_2 \neq r_1, r_2' \neq r_1', \beta \neq \beta'} \rightarrow \text{this last condition is true because we picked } H_s$ collision resistant.

Otherwise H_s computed on different elements $((c_1, c_2, l))$ and (c_1', c_2', l') will have to output the same $\beta (= \beta')$.

Cramer-Shoup scheme construction

From the above two proof systems we can construct a PKE scheme, which is attributed to Cramer and Shoup:

T0D0 25: split definition from correctness

• $(pk, sk) \leftarrow \mathcal{KG}en$, where:

$$- pk := (h_1, h_2, h_3) = (g_1^{x_1} g_2^{x_2}, g_1^{x_3} g_2^{x_4}, g_1^{x_5} g_2^{x_6})$$
$$- sk := (x_1, x_2, x_3, x_4, x_5, x_6)$$

- Encryption procedure:
 - $-r \leftarrow \mathbb{Z}_{q}$ $-\beta = H_{s}(c_{1}, c_{2}, c_{3}) = (g_{1}^{r}, g_{2}^{r}, h_{1}^{r}m)$ $-Enc(pk, m) = (c_{1}, c_{2}, c_{3}, (h_{2}h_{3}^{\beta})^{r})$
- Decryption procedure:
 - Check that $c_1^{x_3+\beta x_5}c_2^{x_4+\beta x_6}=c_4$. If not, output FALSE.
 - Else, output $\hat{m} = c_3 c_1^{-x_1} c_2^{-x_2}$

18.1 Digital signatures

In this section we explore the solutions to the problem of authentication with the use of an asymmetric key scheme. Some observations are in order:

• In a symmetric setting, a verifier routine could be banally implemented as recomputing the signature using the shared secret key and the message. Here, Bob cannot recompute σ as he's missing Alice's secret key (and for good reasons too...). Thus, the verifying routine must be defined otherwise

Figure 18.52: Asymmetric authentication

• In a vaguely similar manner to how an attacker could encrypt messages by itself in the asimmetric scenario, because the public key is known to everyone, any attacker can verify any signed messages, for free

Nevertheless, proving that a DS scheme is secure is largely defined in the same way as in the symmetric scenario, with the UF-CMA property:

Figure 18.53: Unforgeable digital signatures

18.1.1 Public Key Infrastructure

The problem now is that Alice has a public key, but she wants "the blue check" over it, so Bob is sure that public key comes only from the true Alice.

To obtain the blue check, Alice needs an universally-trusted third party, called *Certification Authority*, which will provide a special *signature* to Alice for proving her identity to Bob.

The scheme works as follows:

The CA message pk' is also called as $cert_A$, the signature of the CA for Alice.

Now, when Bob wants to check the validity of the Alice's public key:

How can Bob recognize a valid certificate from an expired/invalid one?

The infrastructure provides some servers which contain the lists of the currently valid certificates.

Theorem 37. Signatures are in Minicrypt.

This is a counterintuitive result, not proven during the lesson, but very interesting because it implies that we can create valid signatures only with hash functions, without considering at all public key encryption.

In the next episodes:

- Digital Signatures from TDP*
- Digital Signatures from ID Scheme*
- Digital Signatures from CDH

Where \ast appears, something called *Random Oracle Model* is used in the proof. Briefly, this model assumes the existance of an ideal hash function which behaves like a truly random function (outputs a random y as long as x was never queried, otherwise gives back the already taken y).

T0D0 26: Warining: e' venuto fuori un casino in questa lezione, ho cercato di riordinare le cose

19.1 Bilinear Map

Let's define a **Bilinear Group** as $(\mathcal{G}, \mathcal{G}_t, q, g, \hat{e}) \leftarrow BilGen(1^{\lambda})$ where:

- $\mathcal{G}, \mathcal{G}_t$ are prime order groups (order q).
- g is a random generator of \mathcal{G} .
- (\mathcal{G}, \cdot) is a multiplicative group and \mathcal{G}_t is called <u>target</u> group.
- \hat{e} is a (bilinear) MAP: $\mathcal{G} \times \mathcal{G} \to \mathcal{G}_t$ efficiently computable. Defined as follows:

$$\rightarrow$$
 Take a generator g for \mathcal{G} and an element h in \mathcal{G} .
 $\forall g, h \in \mathcal{G}, a, b \in \mathcal{Z}_q \hat{e}(g^a, h^b) = \hat{e}(g, h)^{ab} = \hat{e}(g^{ab}, h)$ and $\hat{e}(g, g) \neq 1$ (Non degenerative)

"I can move the exponents"

Venturi said something here related to Weil pairing over an elliptic curve. I found this. Interesting but not useful.

Assumption: CDH is HARD in \mathcal{G} . **Observation:** DDH is EASY in \mathcal{G} !

Proof. $(g, g^a, g^b, g^c) \approx_c (g, g^a, g^b, g^{ab}) \implies \hat{e}(g^a, g^b) =_? \hat{e}(g, g^c)$ now just move the exponents and I can transform the first element in $\hat{e}(g, g^{ab})$ and check if it is equal to $\hat{e}(g, g^c)$.

Now $KGen(1^{\lambda})$ will:

- Generate some params = $(\mathcal{G}, \mathcal{G}_t, g, q, \hat{e}) \leftarrow BilGen(1^{\lambda})$
- Pick $a \leftarrow \mathcal{Z}_q$ then $g_1 = g^a$
- Pick $g_2 = g^b$ and $g_2, u_0, u_1, ..., u_k \leftarrow \mathcal{G}$.
- Then output:

$$- P_k = (params, g_1, g_2, u_0, ..., u_k)$$

$$- S_k = g_2^a = g^{ab}$$

 $Sign(S_k, m)$:

- Divide the message m of length k in bits and not it as follows: m =(m[1],...,m[k])
- Now define $\alpha(m) = u_0 \prod_{i=1}^k u_i^{m[i]}$
- Pick $r \leftarrow \mathcal{Z}_q$ and output the signature $\sigma = (\underbrace{g_2^a}_{S_r} \cdot \alpha(m)^r, g^r) = (\sigma_1, \sigma_2)$

 $Vrf(P_k, m, (\sigma_1, \sigma_2))$

• Check $\hat{e}(q, \sigma_1) = \hat{e}(\sigma_2, \alpha(m)) = \hat{e}(q_1, q_2)$

Correctness: "Just move the exponents" I can separate the second part for bilinearity

$$\hat{e}(g, \sigma_1) = \widehat{e}(g, g_2^a \cdot \alpha(m)^a) = \hat{e}(g, g_2^a) \cdot \hat{e}(g, \alpha(m)^r) = \hat{e}(g_1, g_2) \cdot \hat{e}(\sigma_2, \alpha(m)) = \hat{e}(g, g_2^a) \cdot \hat{e}(g, \alpha(m)^r) = \hat{e}(g, \alpha(m)^r)$$

We can say that we are moving the exponents from the "private domain" to the "public domain".

 \Diamond

19.2 Waters signatures

Theorem 38. The Waters' signature scheme is UFCMA

The trick is to "program the 'u's" (Venturi) Proof.

T0D0 27: Sequence is incomplete/incorrect, have to study it more...

T0D0 28: The following explanation is roundabout, will rectify later

The following describes how the Waters' challenger constructs the u string. The main idea is, given k as the message length, to choose each single bit of ufrom 1 up to k such that:

$$\alpha(m) = g_2^{\beta(m)} g^{\gamma(m)}, \quad \beta(m) = x_0 + \sum_{i=1}^k m_i x_i, \quad \gamma(m) = y_0 + \sum_{i=1}^k m_i y_i$$

where $x_0 \leftarrow \{-kl, \ldots, 0\}, x_{1-k} \leftarrow \{0, \ldots, l\}, y_{0-k} \leftarrow \{2q\}$ In particular: $l = 2q_s$, where q_s is the number of sign queries made by the adversary.

Therefore, let $u_i = g_2^{x_i} g^{y_i} \quad \forall i \in [0, k]$. Then:

$$\alpha(m) = g_2^{x_0} g^{y_0} \prod_{i=1}^k (g_2^{x_i} g^{y_i})^{m_i} = g_2^{x_0 + \sum_{i=1}^k m_i x_i} g^{y_0 + \sum_{i=1}^k m_i y_i} = g_2^{\beta(m)} g^{\gamma(m)}$$

Figure 19.54: Reducing Waters' scheme to CDH

T0D0 29: Partizioni, doppi if.... qui non ci ho capito 'na mazza

Step 1:
$$\sigma = (\sigma_1, \sigma_2) = (g_2^a \alpha(m)^{\bar{r}}, g^{\bar{r}})$$
, for $\bar{r} \leftarrow \mathbb{Z}_q$ $\bar{r} = r - a\beta^{-1}$

$$\sigma_1 = g_2^a \alpha(m)^{\bar{r}}$$

$$= g_2^a \alpha(m)^{r-a\beta^{-1}}$$

$$= g_2^a (g_2^{\beta(m)} g^{\gamma(m)})^{r-a\beta^{-1}}$$

$$= g_2^a g_2^{\beta(m)r-a} g^{\gamma(m)r-\gamma(m)a\beta^{-1}}$$

$$= g_2^{\beta(m)r} g^{\gamma(m)r} g^{-\gamma(m)\beta^{-1}}$$

20.1 Random Oracle Model (ROM)

The Random Oracle Model treats an Hash function ${\mathcal H}$ as a truly random function.

- 20.2 ID Scheme
- $\begin{array}{ccc} \textbf{20.3} & \textbf{Honest Verifier Zero Knowledge (HVZK)} \\ & \textbf{and Special Soundness (SS)} \end{array}$

21.1 Full domain hashing

22.1 Examples of ID schemes

23.1 Bilinear DDH assumption

24.1 CCA proof for ???