

Potential Outcomes

USAID MENA Advanced MEL Workshop

Session I

2024-05-01

Welcome!

- Who we are
- What we do
- How we hope to help you

Objectives of impact evaluation sessions

- Understand the need for impact estimation of USAID activities
- Understand how impact estimation fits into the Agency performance management framework
- Gain practical knowledge about impact evaluation to help USAID staff better manage and support IEs

Benchmarks for success

By the end of this session, participants will be able to:

- Explain the fundamental problem of causal inference
- Explain how impact estimation can be seen as a problem of missing data
- Relive unpleasant schoolhood memories of having to learn algebra

Benchmarks for success

Bonus content:

- Is causal inference a two-body or three-body problem?
- How has causal inference developed out of traditions from MENA region?

The Fundamental Problem

Measuring social benefit

We want to know the causal effect of a project on its beneficiaries

- Job training on earnings and employment
- Teacher qualifications on student outcomes
- Humanitarian assistance on food security

Identifying a treatment assignment

- ullet Consider an indicator for a potential beneficiary, D_i
- D tells us whether there is an activity, or a "treatment"
- ullet The subscript i denotes a single individual who is either treated or not treated
 - D_i = I means participation in an activity
 - D_i = 0 means no participation in an activity

Identifying an outcome

Now consider an indicator for the outcome of a potential beneficiary, Y_i , where i denotes each person or unit under study.

- ullet Y_i^1 is the outcome after activity participation $(D_i=1)$
- $Y_i^{\,0}$ is the outcome without the activity $(D_i=0)$
- Note that Y_1 and Y_0 denote possibilities for the same person, unit i!

Switching across treated and untreated outcomes

We use what is called a 'switching equation' to connect a treatment assignment to a realized outcome

$$ullet Y_i = D_i Y_i^{\ 1} + (1-D_i) Y_i^{\ 0}$$

(Plug in $D_i = 1$ and $D_i = 0$ and see what you end up with)

ALGEBRA ALERT

$$Y_i = D_i Y_i^{\, 1} + (1 - D_i) Y_i^{\, 0}$$
 where $D_i = 1$

- $ullet Y_i = 1 * Y_i^1 + 1 * Y_i^0 1 * Y_i^0$
- $ullet Y_i = Y_i^{\, 1} + Y_i^{\, 0} Y_i^{\, 0}$
- ullet $Y_i = Y_i^{\ 1}$

ALGEBRA ALERT

$$Y_i = D_i Y_i^{\, 1} + (1-D_i) Y_i^{\, 0}$$
 where $D_i = 0$

$$ullet Y_i = 0 * Y_i^1 + 1 * Y_i^0 - 0 * Y_i^0$$

- $Y_i = 0 + Y_i^0 0$
- $\bullet Y_i = Y_i^0$

Difference between assignment and mechanism

- The switching equation determines where (to whom) treatment is assigned
- We call this the treatment assignment
- The switching equation does NOT address HOW treatment is assigned
- We call this the treatment assignment mechanism

From assignment to treatment effect

We can also write the switching equation this way:

$$ullet Y_i = Y_i^{\ 0} + (Y_i^{\ 1} - Y_i^{\ 0})D_i$$

- Notice our treatment effect $Y_i^{\,1}-Y_i^{\,0}$, or the difference between the treated and untreated outcome
- ullet We call the difference $Y_i^{\ 1}-Y_i^{\ 0}\ delta$, or δ_i
- Remember that the treatment effect δ_i refers to the same individual!

Recap:

- ullet The effect of the activity (treatment effect) on person i is the difference between the two potential outcomes
- Treatment effect = $Y_i^{\ 1} Y_i^{\ 0}$, or δ_i
- This is the difference in potential outcomes for the same person
- A person participates in an activity, and then goes back in time and does not participate in the activity

You ask the impossible

- But how can one person be both treated and untreated?
- ullet In the real world, person i experiences one of the potential outcomes, but not both
- If $D_i=1$, the potential outcome of Y_i becomes $Y_i^{\,1}$ in fact and the potential outcome of $Y_i^{\,0}$ is unobserved
- ullet If $D_i=0$, the potential outcome of Y_i becomes $Y_i^{\,0}$ in fact and the potential outcome of $Y_i^{\,1}$ is unobserved

The fundamental problem of causal inference

- This is the fundamental problem of causal inference
- We observe only one outcome, but we need both outcomes to describe the effect of the project
- We refer to the outcome that didn't happen as the counterfactual, or what would have happened in the absence of the project

The Missing Data Problem

Something is missing

Group	Yi1	Yi0
Treatment	Observed	Counterfactual
Control	Counterfactual	Observed

- Researchers sometimes refer to impact evaluation as a "missing data problem"
- We are missing two pieces of information about what happens with or without the treatment

What do we do now?

- How do we estimate the effect of a project, if we cannot observe the same person go through both potential outcomes?
- We must compare a person who was treated with a person who was not treated
- But, what are the differences between those two people?
 How do we know that project participation is the only difference between them?

CLIFFHANGER

Tune into the next session for a resolution of the Fundamental Problem of Causal Inference!

Teaser:

- Experimental impact evaluation
- Quasi-experimental impact evaluation
- Prediction via machine learning
- Artificial General Intelligence (AGI)

Bonus content

- Causal inference as a two-body or a three-body problem
- Causal inference from traditions in Middle East and North Africa

The Three-Body Problem

Scienc

Why Is the Three-Body Problem Unsolvable?

Let's break down the chaos.

BY CAROLINE DELBERT PUBLISHED: NOV 06, 2019 2:08 PM EST

Philip G. Breen, Christopher N. Foley, Tjarda Boekholt, Simon Portegies Zwart

- Researchers have solved a set of simple examples of the chaotic three-body problem.
- · Space travel and most real-life systems are chaotic, making this research valuable.
- Neural networks have the potential to solve, or at least model, chaotic problems better than traditional supercomputers.

Causal inference in the MENA tradition