LISTA 5

1) Arătați că grupul abelian (\mathbb{R}_+^*,\cdot) este un \mathbb{R} -spațiu vectorial în raport cu operația externă * definită prin

$$\alpha * x = x^{\alpha}, \ \alpha \in \mathbb{R}, \ x \in \mathbb{R}_{+}^{*}.$$

2) Fie V un K-spaţiu vectorial şi M o mulţime. Să se arate că V^M este K-spaţiu vectorial în raport cu operațiile definite punctual în V^M , adică

$$(f+g)(x) = f(x) + g(x), \ (\alpha f)(x) = \alpha f(x), \ \forall f, g \in V^M, \ \forall \alpha \in K.$$

- 3) Poate fi organizată o mulțime finită ca un spațiu vectorial peste un corp infinit?
- 4) Fie $p \in \mathbb{N}$ prim. Poate fi organizat grupul abelian $(\mathbb{Z}, +)$ ca spațiu vectorial peste corpul $(\mathbb{Z}_p, +, \cdot)$?
- 5) Fie (V,+) un grup abelian, $V \neq \{0\}$, K un corp și $\alpha \in K$. Să se arate că:
- i) dacă (V,+) este un K-spațiu vectorial și

$$t_{\alpha}: V \to V, \ t_{\alpha}(x) = \alpha x$$

atunci t_{α} este endomorfism al grupului (V,+) și aplicația

$$\varphi: K \to End(V, +), \ \varphi(\alpha) = t_{\alpha}$$

este omomorfism injectiv de inele;

ii) dacă $\varphi: K \to End(V, +)$ este omomorfism injectiv de inele atunci grupul (V, +) este K-spațiu vectorial în raport cu operația externă definită prin

$$\alpha x = (\varphi(\alpha))(x);$$

- iii) există o bijecție între operațiile externe pe V cu domeniul de operatori K cu proprietatea că înzestrează grupul (V, +) cu o structură de K-spațiu vectorial și omomorfismele injective de inele între K și End(V, +).
- 6) Fie (V, +) un grup abelian și K un corp. Să se arate că:
- i) există o structură de K-spațiu vectorial pe (V, +) dacă și numai dacă inelul $(End(V, +) +, \circ)$ are un subinel care este corp izomorf cu K:
- ii) oricare ar fi K un corp nu există nici o structură de K-spațiu vectorial pe grupul $(\mathbb{Z}, +)$;
- iii) există pe grupul $(\mathbb{Q}, +)$ o structură de K-spațiu vectorial dacă și numai dacă corpurile K și \mathbb{Q} sunt izomorfe.
- 7) Fie V un K-spaţiu vectorial, $\alpha, \beta, \gamma \in K$, $x, y, z \in V$ astfel încât $\alpha \gamma \neq 0$ şi $\alpha x + \beta y + \gamma z = 0$. Să se arate că $\langle x, y \rangle = \langle y, z \rangle$.
- 8) Formează polinoamele $f_1 = 3X + 2$, $f_2 = 4X^2 X + 1$, $f_3 = X^3 X^2 + 3$ un sistem de generatori pentru \mathbb{R} -spațiul vectorial $P_3(\mathbb{R}) = \{f \in \mathbb{R}[X] \mid \text{grad } f \leq 3\}$? Justificați răspunsul.
- 9) Fie V_1, V_2 substații ale unui spațiu vectorial V. Să se arate că următoarele afirmații sunt echivalente:
- a) $V_1 \cup V_2$ este subspațiu al lui V;
- b) $V_1 + V_2 = V_1 \cup V_2$;
- c) $V_1 \subseteq V_2$ sau $V_2 \subseteq V_1$.
- 10) În \mathbb{R} -spațiul vectorial $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ considerăm

$$(\mathbb{R}^{\mathbb{R}})_i = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ este impară} \}, \ (\mathbb{R}^{\mathbb{R}})_p = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ este pară} \}.$$

1

Să se arate că $(\mathbb{R}^{\mathbb{R}})_i$ şi $(\mathbb{R}^{\mathbb{R}})_p$ sunt subspații ale lui $\mathbb{R}^{\mathbb{R}}$ şi că $\mathbb{R}^{\mathbb{R}} = (\mathbb{R}^{\mathbb{R}})_i \oplus (\mathbb{R}^{\mathbb{R}})_p$.