The cooking-units package*

Ben Vitecek b.vitecek@gmx.at

September 13, 2017

Abstract

This package enables user to globally format units, to switch between them and since v1.10 you can also change your recipes for a given number of persons. It should be used for light-hearted things like cookery books (and not e.g. scientific texts). Please read through the section "Important Changes"

1 Introduction

While writing on a cookery book I used – for reasons whatsoever – three different units for weight: kilogram (kg), gram (g) and decagram (dag, or older: dkg). Later my mother told me that she doesn't like it if a cookery book uses more than two different units (for weight in this case). Happily I hardly used Decagram and therefore didn't have many problems changing the units. But, well . . . I am using IATEX and changing those units by hand seemed not very IATEXlike, so I started writing some code to convert units. I expanded the code, rewrote it in IATEX3 (which is much more pleasant than IATEX 2ε) and here it is.

1.1 Important Changes

Language I am now using the translations package and I hope it makes things easier. As such, declaring the used language through class-options shouldn't be necessary anymore.

Phrases This package now supports the usage of "phrases" (words used instead of certain integers) (which I think are called "counting measures" in english, but I am not sure).

\cutext and \Cutext If no translation is found for a specific language, \cutext and \Cutext are replaced by \cunum with a warning is given.

Commands Currently, it seems that alowing *label* to be set by arrow-brackets was not the best idea as it leads to problems if they are made active (e.g. babel and option spanish). As such, < is not allowed as a "special-sign" anymore as this package tries to "fix" this (at least make it work).

^{*}This document corresponds to Benedikt Vitecek v1.11, dated 2017/03/10.

 $^{^1\}mathrm{I}$ did hide some grammatical and spelling errors for easter egg hunters $\odot.$

1.2 Supported languages

- German
- English
- French (currently suboptimal²)

Have another language to add or a correction of an existing one? See section 10 for more details. Wanna just check the existing translations? See appendix A.

2 The Commands

This package offers the following commands for unit printing (and converting):

```
• \cunum \langle label \rangle [\langle options \rangle] \{\langle amount \rangle\} [\langle space \rangle] \{\langle unit-key \rangle\}
```

- $\cite{abel} [\langle options \rangle] \{\langle amount \rangle\} \{\langle unit-key \rangle\}$
- $\colone{cuam}\langle label\rangle [\langle options\rangle] \{\langle amount\rangle\}$
- \cusetup{\langle options \rangle}

Numbers and units are printed using \cunum. The numerical part can interpret _ and / as (mixed) fractions and -- as a separator for ranges; to convert units use the option $\langle old-unit\rangle = \langle new-unit\rangle^3$. It furthermore allows the sign ? to be used as a placeholder for not known amounts and raises a warning to remind that this amount needs a checkup⁴. $[\langle space \rangle]$ adds a space between the number and the unit using \phantom.

For a list of predefined units have a look at table 1. $\langle label \rangle$ is explained in section 3.

```
1 \,\mathrm{kg}
                                          \cunum{1}{kg}\
                                          \cunum{2.3}{kg}\
2.3 \, \mathrm{kg}
2.3\,\mathrm{kg}
                                          \cunum{2,3}{kg}\
2-3 \,\mathrm{kg}
                                          \sum_{2--3}{kg}
2.5 - 3.5 \,\mathrm{kg}
                                          \cumum{2.5--3.5}{kg}
2500-3500\,\mathrm{g}
                                          \cunum[kg=g]{2.5--3.5}{kg}
392°F
                                          \cunum[C=F]{200}{C}\\
356 - 392 \,{}^{\circ}\mathrm{F}
                                          \cunum[C=F]{180--200}{C}\\
                                          \cunum{1/2}{m}\\
1/_{2} \, \mathrm{m}
1 \frac{1}{2} m
                                          \cunum{1_1/2}{m}\
1 \frac{1}{2} m
                                          \cmm[m=cm]{1_1/2}{m}\
?\ell
                                          \cunum{?}{1}\\
50 \, \mathrm{dag}
                                          \cunum{50}{dag}\\
5 dag
                                          \cunum{5}[0]{dag}\\
                                          \cunum{1.1234}{m}
1.12\,\mathrm{m}
```

²You can only get limited information from the internet.

³New keys can be added and defined, see section 5 and section 6 for further information.

⁴You can customize this behavior, see section 9

Decimal numbers are automatically rounded to 2 digits after the colon, temperatures (C, F, K and Re) are automatically rounded to integers.⁵

\cutext and \Cutext print the number and the written name of the unit. Since v1.10 it works similar⁶ to \cunum: it allows the conversion between units and interprets the numerical part (again _ and / are used for (mixed) fractions and -- for ranges). Furthermore, if the package option use-numerals is used, integers below a specific integer (by default 13; see use-numerals-below) are written out with \Cutext capitalizing the first letter (using package fmtcount).

and using package option use-numerals=true

Furthermore, since v1.10 \cutext and \Cutext also allows their units to be changed (this behavior can be altered using cutext-change-unit):

```
\cusetup{1=ml}
1000 millilitres \cutext{1}{1}\\
1000 millilitres \Cutext{1}{1}\\
1000-2000 millilitres \cutext{1--2}{1}\\
12000 millilitres \cutext{12}{1}\\
13000 millilitres \Cutext{13}{1}\\
? litres \Cutext{1}\}\\
```

\cuam works like \cunum, but without a unit, so changing units doesn't affect it. Like \cunum _ and / are used to imply a (mixed) fraction and -- is used for ranges.

Furthermore it allows the concept of "phrases" (replacing a number by a word, such as "12" to "docen"⁷) which can be activated by the option use-phrases (as I don't know any english phrases, I switched the language to german for the following examples)

⁵You can – of course – change this behavior, see section 9.

⁶One could also say "exactly like".

 $^{^7\}mathrm{At}$ least I think

```
\cusetup{use-phrases=true}

1 Dutzend \cuam{12}\\
13 \cuam{13}\\
2 Dutzend \cuam{24}\\
1-2 Dutzend \cuam{12--24}\\
12-13 \cuam{12--13}\\
18 \cuam{18}\\
5 Dutzend \cuam{60}
```

3 Label & refs: Changing the amount of the recipe

What if you don't want to change units, but the amounts of the recipe because you cook not for 4 persons, but for 2 and don't like to do the math? Simple, use the following commands:

```
• \culabel \{\langle label \rangle\}\ \{\langle number\ of\ persons \rangle\}
```

• \curef {\langle label \rangle}

The first one is the important one: It defines a $\langle label \rangle$ for a recipe which is initially for $\langle number\ of\ persons \rangle$. Afterwards $\langle label \rangle$ can be used to tell the commands from section 2 that the given amounts are for $\langle number\ of\ persons \rangle$ people. Each $\langle label \rangle$ must be unique and an error is raised if a $\langle label \rangle$ is already defined.

If you would like to print the number of persons this recipe is for, use \curef, which is fully expandable.

The following example uses \culabel to specify that the recipe is initially intended for 2 persons:

```
\label{recipe} $$ \culabel{recipe}_{2}$ recipe for 2 persons: $$ \cunum<recipe>_{10-20}_{dag} flour, $$ \cunum<recipe>_{10-20}_{dag} flour, $$ \cunum<recipe>_{1/2}_{1}$ water, $$ \culoum<recipe>_{1/2}_{1}$ water, $$ \culoum</recipe>_{1/2}_{1}$ water, $$ \culoum</re>
```

Now with combination of the option set-number-of-persons and setting recalculate-amount to true you can have this recipe changed to four persons:

```
\culabel{recipe}{2}
%% adding options:
\cusetup{set-number-of-persons=4,recalculate-amount=true}
                                     recipe for \curef{recipe} persons:\\
   recipe for 4 persons:
                                     \cunum<recipe>{10--20}{dag} flour,\\
   20-40\,\mathrm{dag} flour,
                                     \cunum<recipe>{1/2}{1} water,\\
   1\ell water,
                                     \cutext[ref=recipe]{10}{g} nuts,\\
   20 gramme nuts,
                                     \cuam<recipe>{2--3} eggs,\\
   4-6 eggs,
                                     \cunum{180}{C}
   180\,^{\circ}\mathrm{C} (356 ^{\circ}\mathrm{F}) open fire
                                     (\sum_{C=F} {180}{C}) open fire
```

Note that fractions are automatically evaluated and that only values with a $\langle label \rangle$ are changed (\cunum{180}{C} for example stays the same which also makes sense as the heat should be the same).

4 Some Interesting options

This package has some options which might be of interest for a user of this package and to highlight them, this section exists. All options can be found in section 9.

use-numerals use-numerals print-numerals

As seen above, you can use the *package*-option use-numerals to let integers from \cutext and \Cutext below use-numerals-below be printed by fmtcount. You can still decide if numerals should be printed or not with print-numerals.

Note: use-numerals is a package option as it needs to load fmtcount which is not loaded by default.

use-phrases

In (I presume) all languages there exist phrases for a given amount bzw. number of things (think it is called "counting measurement"). In German you may say instead of "12": "ein Dutzend". Using this option you can tell this package to replace predefined integers used in \cum \cum by phrases for given language (to define new ones, see section 8.1)

Using (for example) language ngerman (or naustrian, etc.) with package option use-phrases=true gives:

```
\cusetup{use-phrases=true}

1 Dutzend \cuam{12}\\
2 Dutzend \cuam{24}\\
1-2 Dutzend \cuam{12--24}\\
12-13 \cuam{12--13}\\
18 \cuam{18}\\
5 Dutzend \cuam{60}
```

This of course also works with the *package*-option use-numerals:

```
\cusetup{use-phrases=true}
ein Dutzend \cuam{12}\\
zwei Dutzend \cuam{24}\\
ein-zwei Dutzend \cuam{12--24}\\
12-13 \cuam{12--13}\\
18 \cuam{18}\\
fünf Dutzend \cuam{60}
```

Note: Curently only the lower-case variant for use-numerals is supported. Furthermore this feature is only available for \cuam.

5 Predefined units & some notes

In table 1 and table 2 (and table 3) you can find all predefined units. In appendix A all translations available are listed.

6 Defining units

New units can be defined using \declarecookingunit, \newcookingunit and \providecookingunit:

Table 1: The first column shows a list of predefined unit-keys. The column "default-symbol" shows the abbreviation used if for given language no translation is defined. The third column "unitname" is language dependent and shows the name printed while using cutext and Cutext. Note that "electron volt" exists just for fun.

unit-key	default-symbol	unitname
kg	kg	kilogramme
dag	dag	decagramme
g	g	gramme
oz	oz	ounce
lb	lb	pound
C	°C	degree Celsius
F	°F	degree Fahrenheit
Re	°Ré	degree Réaumur
K	K	kelvin
d	d	day
h	h	hour
min	min	minute
s	s	second
m dm cm mm in	m dm cm mm in	metre decimetre centimetre millimitre inch
l	l	litre
dl	dl	decilitre
cl	cl	centilitre
ml	ml	millilitre
cal	cal	calorie
kcal	kcal	kilocalorie
J	J	joule
kJ	kJ	kilojoule
eV	eV	electron volt

Table 2: A (not only) spoonful of (more or less) country and language dependent units. Please note that sometimes a translation is nearly impossible as a unit (e.g. "saltspoonful") may not exist in another language (like german; at least I never heard of it). So please only use units known to you.

unitname	unit-key	default symbol
pn	pinch	pinch
EL TL dsp csp	EL TL dsp. csp.	tablespoon teaspoon dessertspoonful coffeespoonful
Msp	ssp. Msp.	saltspoonful Messerspitze

Table 3: List of nonsense units (exist just for fun, there will be no support for those units).

unit-key	symbol
eVc-2	eV/c^2
hbareV-1	\hbar/eV
${\it chbare V-1}$	$c\hbar/eV$
(chbareV-1)3	$c^3\hbar^3/eV^3$

\declarecookingunit \newcookingunit \providecookingunit

These commands define the unit $\langle unit\text{-}key\rangle$. If the key is not the same as the printed symbol use $[\langle symbol\rangle]$. Note that $\langle unit\text{-}key\rangle$ should neither contain / nor ,.

\newcookingunit raises an error if the unit is already defined, \declarecookingunit creates or (if given) overwrites $\langle symbol \rangle$ and \providecookingunit does nothing if the unit is already defined.

Some examples (note: the definition of the printed degree Celsius is directly copied & pasted from [a maybe older version of] siunitx):

```
\declarecookingunit{kg}
\declarecookingunit{g}
\declarecookingunit[Msp.] {Msp}
\declarecookingunit[\ensuremath{{}^{\circ}}\kern-\scriptspace C] {C}
```

7 Defining options

Options (to change units) can be newly defined or added to already existing keys using

- \cudefinekeys
- \cudefinesinglekey

- \cuaddkeys
- \cuaddsinglekeys
- \cuaddtokeys

I apologize for the (name) inconsistency between \cudefinekeys and \cudefinesinglekey.

\cudefinekeys \cudefinesinglekey

If you define new units (see section 6) and cannot add them to already existing keys you can use \cudefinekeys bzw. \cudefinesinglekey to define new keys.

 $\colon definekeys$ takes the $\{\langle unit\text{-}key\text{-}1\rangle\}$ as a "basis", defines a key with the name $\langle unit\text{-}key\text{-}1\rangle$ and adds the values $\langle unit\text{-}key\text{-}1\rangle$, $\langle unit\text{-}key\text{-}2\rangle$, $\langle unit\text{-}key\text{-}3\rangle$, etc. Furthermore this command also defines the keys $\langle unit\text{-}key\text{-}2\rangle$, $\langle unit\text{-}key\text{-}3\rangle$, etc. with the same values as $\langle unit\text{-}key\text{-}1\rangle$. Please note that $\langle \dots \rangle$ has to be a number.

Sometimes it is not that easy and the conversion of one unit into another needs are more complicated formula (see for example temperatures). If that is the case use $\colon cudefinesinglekey$. As the name says it defines *only* the key $\langle unit\text{-}key\text{-}1\rangle$ with the values $\langle unit\text{-}key\text{-}1\rangle$, $\langle unit\text{-}key\text{-}2\rangle$, etc. The advantage of this command is that now $\langle \dots \rangle$ can be a formula and the numerical input can be placed explicitly using #1.

Example: This example defines following keys with their respective value:

- the key kg with the values kg, dag, g and oz
- the key dag with the values kg, dag, g and oz
- the key g with the values kg, dag, g and oz
- the key oz with the values kg, dag, g and oz
- the key d with the values d, h, min and s
- ...

```
1 \,\mathrm{kg} = 1 \,\mathrm{kg} 1 \,\mathrm{kg} = 100 \,\mathrm{dag} 1 \,\mathrm{kg} = 1000 \,\mathrm{g} 1 \,\mathrm{kg} = 35.273 \,99 \,\mathrm{oz} 1 \,\mathrm{kg} = 2.204 \,622 \,6 \,\mathrm{lb}
```

```
\cudefinekeys {kg}
{
    {dag}{ 100 } %% 1 kg are 100 dag
    {g} { 1000 } %% 1 kg are 1000 g
    {oz} { 35.27399 } %% 1 kg are 35.27399 oz
    {1b} { 2.204 622 6 } %% 1 kg are 2.204 622 6 lb
}
\cudefinekeys {d}
    {
        {h} { 24 } %% 1 day are 24 hours
        {min}{ 1440 } %% 1 day are 1440 minutes
        {s} { 86400 } %% 1 day are 86400 seconds
}
```

To convert degree Fahrenheit to degree Celsius, kelvin and degree Réamur one needs the formulas

$$T_C = (T_F - 32) \cdot \frac{5}{9}$$

$$T_K = (T_F - 459.67) \cdot \frac{5}{9}$$

$$T_{Re} = (T_F - 32) \cdot \frac{4}{9}$$

with T_F being the input temperature in degree Fahrenheit and T_C being the same temperature in degree Celsius, etc. Using \cudefinesinglekey the key F and the values C, K and Re are defined:

```
\cudefinesinglekey {F}
{
    {C} { ( #1 - 32 ) * 5/9 } %% see formulas above
    {K} { ( #1 + 459.67 ) * 5/9 }
    {Re} { ( #1 - 32 ) * 4/9 }
```

This defines the key F with the values F, C, K and Re.

\cuaddkeys \cuaddsinglekeys

```
\cuaddkeys{\(\lambda\) unit-key-1\)}
{
\{\(\lambda\) unit-key-1 are \dots unit-key-2\)}
\{\(\lambda\) unit-key-1 are \dots unit-key-3\)}
\{\(\lambda\) unit-key-1 are \dots unit-key-3\)}
\{\(\lambda\) unit-key-1 are \dots unit-key-4\)}
\dots
\}
\cuaddsinglekeys{\(\lambda\) unit-key-1\)}
\{\(\lambda\) unit-key-2\)}
\{\(\lambda\) unit-key-2 are \dots unit-key-1\)}
\{\(\lambda\) unit-key-3\)}
\{\(\lambda\) unit-key-3 are \dots unit-key-1\)}
\dots
```

These commands add $\langle unit\text{-}key\text{-}2\rangle$, etc. to the already defined key $\langle unit\text{-}key\text{-}1\rangle$.

\cuaddkeys takes the already defined key $\{\langle unit\text{-}key\text{-}1\rangle\}$ as a "basis", and adds $\langle unit\text{-}key\text{-}2\rangle$, $\langle unit\text{-}key\text{-}3\rangle$, etc. to its values. Furthermore it adds those new values to other keys linked to $\langle unit\text{-}key\text{-}1\rangle$ and defines the new keys $\langle unit\text{-}key\text{-}2\rangle$, etc. with the same values as $\langle unit\text{-}key\text{-}1\rangle$.

If the conversion is more complicated use \cuaddsinglekeys . It adds $\cunit-key-2\)$, etc. as values to $\cunit-key-1\)$. The numerical input can be placed using #1 (see \cudefinesinglekey). This command neither defines new keys nor does it add values to other keys than $\cunit-key-1\)$.

Example: Suppose you are British (I am sorry, I can't think of another reason to use those units) and you want to implement 'stone' (yes, I was surprised myself that such a unit exists, but it even appears in a Sherlock-Holmes story). You exactly know that 1 st equals 14 lb, well ... now you have two choices. \cuaddkeys or \cuaddtokeys (use the one best fitting). This example uses the first, the next the latter one.

```
\newcookingunit {st} %% defining new unit 'stone'
\cuaddkeys {lb} \% adding st to lb (could also add to kg, dag and oz)
  {
    {st} { 1/14 } %% 1 lb are 1/14 st as 14 lb are 1 st
  }
    0.07\,\mathrm{st}
                                       \cunum[lb=st]{1}{lb}\\
                                       \cunum[st=lb]{1}{st}\\
    14 lb
    6350.29\,\mathrm{g}
                                       \cunum[st=g]{1}{st}\\
    6.35\,\mathrm{kg}
                                       \cunum[st=kg]{1}{st}
    0.16\,\mathrm{st}
                                       \cunum[kg=st]{1}{kg}\\
    101.6\,\mathrm{kg}
                                       \cunum[st=kg]{16}{st}
```

Example: Now you want to add degree Rømer and convert Celsius to degree Rømer:

$$T_{R\emptyset} = T_C * \frac{21}{40} + 7.5$$

```
%% defining new unit 'degree R{\o}mer'
\newcookingunit [\ensuremath{ {} ^ { \circ } }\kern-\scriptspace R{\o}] {Ro}
\cuaddsinglekeys {C} %% adds value 'Ro' to 'C'.
{
```

```
{Ro} { #1 * 21/40 + 7.5 }
}
\cusetup \( \text{" round to integer automatically} \) {
    set-option-for-Ro = { round-to-int = true }
}

10 \( \text{C} \) \\
    13 \( \text{Rg} \) \\
    \cunum [C=Ro] \{10\} \{C\}
```

\cuaddtokeys

Example: Continuing the example from before, this time with \cuaddtokeys:

```
\newcookingunit {st} %% defining (again) new unit 'stone'
\cuaddtokeys {lb} {st} { 14 } %% 1 st are 14 lb
```

```
\begin{array}{lll} 0.07\, \mathrm{st} & \text{$\setminus \text{cunum}[lb=st]\{1\}\{lb\}$/$}\\ 14\, lb & \text{$\setminus \text{cunum}[st=lb]\{1\}\{st\}$/$}\\ 6350.29\, \mathrm{g} & \text{$\setminus \text{cunum}[st=g]\{1\}\{st\}$/$}\\ 6.35\, \mathrm{kg} & \text{$\setminus \text{cunum}[st=kg]\{1\}\{st\}$/$}\\ 0.16\, \mathrm{st} & \text{$\setminus \text{cunum}[kg=st]\{1\}\{kg\}$/$}\\ 101.6\, \mathrm{kg} & \text{$\setminus \text{cunum}[st=kg]\{16\}\{st\}$/$}\\ \end{array}
```

8 Language support

The unit-names and symbols depend on the language. To change the name depending on the language you can use \cudefinename and to only change symbols use \cudefinesymbol.

decimal-mark
one(m)
one(f)
one(n)

Those are special keys (as they cannot be used as units). Not only are printed units language depending, but as is the decimal mark ("." or ","). To set the decimal mark use decimal-mark (see examples below).

Furthermore if you are using the package-option use-numerals you may also use the keys one(m), one(f) and one(n). If you use this option, integers below a certain value (see option use-numerals-below) are written-out. The only problem is the written-out "1" mostly depends on the gender of the following word (e.g. "ein Baum" (m), "eine Pflanze" (f) and "ein Auto" (n)). To set the written-out 1 to be correct with the gender of the used unit, use this key (see also examples below)

\cudefinename

\cudefinesymbol

This command defines the names (and optionally the symbol) of the commands printed in \cutext and \cutext (and \cutext are regarding the symbol) for the specific \cutext (anguage). For details regarding \cutext see the translation-documentation.

If the plural form of the name differs from the singular form use $\lceil \langle plural \rangle \rceil$ to specify the plural form, if no $\lceil \langle plural \rangle \rceil$ is given the plural will be set equal to its singular. The singular is only used if the number in $\backslash cutext$ and $\backslash cutext$ is equal to 1.

 $\langle gender \rangle$ can be m (maskulin), f (feminin) or n (neutrum). If not given m is used as default.

```
\cudefinename {English}
  {
    {kg}
           {kilogramme}
    {oz}
           {ounce}
    \{h\}
            {hour} [hours]
            {degree \space Celsius} [degrees \space Celsius]
    {C}
    {decimal-marker} {.}
    {one(m)} {one}
    {one(f)} {one}
    {one(n)} {one}
 }
\cudefinename {German}
  {
    {kg}
           {Kilogramm} <n>
    {oz}
           {Unze} <f>
            {Tag} [Tage]
    {d}
            {Stunde} [Stunden] <f>
    {h}
    {C}
            {Grad\space Celsius}
    {decimal-marker} {,}
    {one(m)} {ein}
    {one(f)} {eine}
    {one(n)} {ein}
\cudefinesymbol{\language\}
    {\langle unit-key-1 \rangle} {\langle symbol-1 \rangle}
    {\langle unit-key-2 \rangle} {\langle symbol-2 \rangle}
```

This command defines the symbols of the units printed in \cunum for the specific $\langle language \rangle$. It works similar as \cudefinename, but only the symbols (and no names) can be set. For details regarding $\langle language \rangle$ see the translation-documentation.

```
\cudefinesymbol {English}
```

```
{
    {decimal-mark} {.}
    {one(m)} {one}
    {one(f)} {one}
    {one(n)} {one}
  }
\cudefinesymbol {German}
    {decimal-mark} {,}
    {one(m)} {ein}
    {one(f)} {eine}
    {one(n)} {ein}
\cudefinesymbol {French}
  {
    {1} {L}
    {dl} {dL}
    {cl} {cL}
    {ml} {mL}
    {decimal-mark} {.}
    \{one(m)\}\ \{un\}
    {one(f)} {une}
    \{one(n)\}\ \{un\}
  }
```

Example: Imageine that insetad of the abbrevation "dag" for "decagramm" you want to use "ducks" (because . . . I don't know). You can easily do this via

```
\cudefinesymbol {English}
  {
      {dag} {ducks}
  }
```

As you can see it may be a bit suboptimal, as there is no plural version allowed. You do it anyway and end up with:

```
12 ducks weed \cunum{12}{dag} weed\\
3 ducks nuts \cunum{3}{dag} nuts\\
10 ducks duckmeat \cunum{10}{dag} duckmeat
```

8.1 Phrases

Each language has synonyms for certain (integer) numbers. This package supports those phrases and they can be implemented with the following commands and used by **\cuam**:

\cudefinephrase

This command pairs for a given $\{\langle Language \rangle\}$ the number $\{\langle integer-1 \rangle\}$ with $\{\langle phrase-1 \rangle\}$ (plural and gender). The package then checks if the amount given in \cum is either this number or a *multiple* of it.

If the behavior of checking for a multiple is not wanted, you can use the optional star * for a given $\{\langle integer \rangle\}$

 $\langle gender \rangle$ can be m, f or n. It is m by default.

Afterwards the numbers are ordered from highest to lowest so that the phrase with the highest number is used (if used at all).

Furthermore, it chooses star-(*)-phrases over non-star phrases.

Note: Numbers with the optional star * are stored as negative numbers.

Example: The following example creates some prabses for the language "German".

Let's just use them (activating the german language):

```
\cusetup{use-phrases=true}

1 Dutzend \cuam{12}\\
2 Dutzend \cuam{24}\\
1 Schock \cuam{60}\\
2 Schock \cuam{120}\\
1 halbes Dutzend \cuam{6}\\
18 \cuam{18}
```

As you can see, "Schock" (60) is preferred over "Dutzend" (12) as it linked to the higher number. Furthermore, for 6 the phrase "halbes Dutzend" (half a dozen) is used, but because it is a star version it is *not* used for 18.

9 Options

Options in cooking-units can mostly be set globally using \cusetup or locally using the optional argument of the respective command (but *not* as a package option). The only exception is the option given in section 9.1 which needs to be used as a package option.

9.1 Load time options

use-numerals

 $\usepackage[use-numerals=\langle true/false \rangle] \{cooking-units\}$

If set to true loads package fmtcount and uses \numberstringnum for \cutext and \numberstringnum for \cutext to write-out numbers below use-numerals-below (13 by default), integers above are printed as numbers. Please note the keys one(m), one(f) and one(n) to change the printed "one" (as "one" is in many languages dependent on the gender of the following word. E.g in German: Masculine: ein Baum, Feminin: eine Pflanze, Neutrum: ein Auto).

You can decide to not print any numerals by setting print-numerals.

Note: use-numerals is a package option as it needs to load fmtcount which is not loaded by default.

```
one kilogramme
                              \cutext{1}{kg}\
One kilogramme
                              \Cutext{1}{kg}\\
two kilogramme
                              \cutext{2}{kg}\
Two kilogramme
                              \Cutext{2}{kg}\
twelve kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
14 kilogramme
                              \Cutext{14}{kg}
```

9.2 Normal options

This option can only be set as local options or using \cusetup, but not as load time options.

\cusetup

Options can be set globally using \cusetup.

9.2.1 Unit Specific options

```
\underbrace{\text{unit}}_{} \langle \text{unit-key-1} \rangle = \langle \text{unit-key-2} \rangle
```

Convert units from $\langle unit\text{-}key\text{-}1\rangle$ to $\langle unit\text{-}key\text{-}2\rangle$ (see section 7 to define new options).

set-option-for-<unit-key>
add-option-for-<unit-key>
erase-all-options

```
\label{eq:set-option-for-anit-key} \begin{array}{l} \texttt{set-option-for-}\langle unit-key \rangle = \langle key1=value1, \ldots \rangle \\ \texttt{add-option-for-}\langle unit-key \rangle = \langle key1=value1, \ldots \rangle \\ \texttt{erase-all-options} \end{array}
```

Sets and adds $\langle key1=value1,...\rangle$, for a specific $\langle unit\text{-}key\rangle$ erase-all-options is used to erase all options for all $\langle unit\text{-}key\rangle$ s.

You may want to attach some options to a special $\langle unit\text{-}key\rangle$. Those options are automatically activated if (and only if) the specific $\langle unit\text{-}key\rangle$ is used (or changed into this unit). Setting options overwrites old options. Adding options, well ... adds the options to the old ones.

The following rounds the values to integers for F, C, K and Re.

```
\cusetup
{
   set-option-for-F = { round-to-int = true } ,
   set-option-for-C = { round-to-int = true } ,
   set-option-for-K = { round-to-int = true } ,
   set-option-for-Re = { round-to-int = true } ,
}
```

You can "delete" the options by setting an empty value for a specific $\langle unit\text{-}key\rangle$ (or use erase-all-options to erase all options for all $\langle unit\text{-}key\rangle$ s)

9.2.2 Command behavior

cutext-to-cunum

```
cutext-to-cunum = \langle true/false \rangle
```

Want to get rid of all \cutext and \Cutext? Set this option to true and all \cutext and \Cutext are changed into \cunum.

```
1 kilogramme
                                 \cutext{1}{kg}\
2 kilogramme
                                 \Cutext{2}{kg}\
½ kilogramme
                                 \cutext{1/2}{kg}
? kilogramme
                                 \cutext{?}{kg}\\
1000-2000 gramme
                                 \cutext[kg=g]{1--2}{kg}
                                 \cusetup{cutext-to-cunum=true}
1 \, \mathrm{kg}
                                 \cutext{1}{kg}
2 \,\mathrm{kg}
                                 \Cutext{2}{kg}\
1/2 kg
                                 \cutext{1/2}{kg}\
                                 \cutext{?}{kg}\\
?kg
1000-2000\,\mathrm{g}
                                 \cutext[kg=g]{1--2}{kg}
```

cuam-version
cutext-version

```
cuam-version = \langle old/new \rangle
cutext-version = \langle old/new \rangle
```

Since v1.10 this package also parses and checks the input of \cutext and \cutext. Both of them are set to new by default.

 $2\!\!-\!\!6$ kilogramme 2/6 kilogramme

cutext-change-unit

```
cutext-change-unit = \langle true/false \rangle
```

Set this option to true if you do *not* want the units of \cutext and \Cutext to be changed.

```
1000 gramme \cutext [kg=g] {1}{kg}\\

1/2 kilogramme \cutext [kg=g] {1/2}{kg}\\

1000-2000 gramme \cutext [kg=g] {1--2}{kg}\\

\cutext [kg=g] {1--2}{kg}\\

\cutext [kg=g] {1}{kg}\\

\cutext [kg=g] {1}{kg}\\

\cutext [kg=g] {1/2}{kg}\\

\cutext [kg=g] {1/2}{kg}\\

\cutext [kg=g] {1/2}{kg}\\

\cutext [kg=g] {1/2}{kg}\\

\cutext [kg=g] {1--2}{kg}\\

\cutext [kg=g]
```

9.2.3 Input and signs

set-special-sign add-special-sign

```
set-special-sign = \langle character(s) \rangle
add-special-sign = \langle character(s) \rangle
```

Allows $\langle character(s) \rangle$ to be used in the first mandatory argument of \backslash cunum without raising an error (you can customize this behavior, see set-unknown-message). By default it is set to ?. Please note that the sign < is not allowed as a special sign.

set-unknown-message

set-unknown-message = \(\text{error/warning/none} \)

Using a special sign (? by default) causes a warning to be raised. Set this option to error if you want an error (as an extra emphasis), warning if you want a warning (default) and none if you don't want to know anything about it.

print-numerals

```
print-numerals = \langle true/false \rangle
```

If the package option use-numerals is set to true you can deactivate the printing of numerals by setting print-numerals to false and activate them by setting it to true.

Note that this option is automatically set to true if use-numerals is used.

```
one kilogramme
                              \cutext{1}{kg}
two kilogramme
                              \cutext{2}{kg}\
twelve kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
                              \cusetup{print-numerals=false}
1 kilogramme
                              \cutext{1}{kg}\\
2 kilogramme
                              \cutext{2}{kg}\
12 kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
```

use-numerals-below

use-numerals-below = \(\(\text{integer} \) \)

Only usable if the package option use-numerals is active. Prints the name of the numbers for integers used in $\colon cutext$ and $\colon cutext$ smaller than $\langle integer \rangle$. $\langle integer \rangle$ is by default 13. Package pkgfmtcount is used for this purpose.

```
one kilogramme
                              \cutext{1}{kg}\
two kilogramme
                              \cutext{2}{kg}\
twelve kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
                              \cusetup{use-numerals-below=10}
one kilogramme
                              \cutext{1}{kg}\
two kilogramme
                              \cutext{2}{kg}\
12 kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
                              \cusetup{use-numerals-below=0}
1 kilogramme
                              \cutext{1}{kg}
2 kilogramme
                              \cutext{2}{kg}\
12 kilogramme
                              \cutext{12}{kg}\
13 kilogramme
                              \cutext{13}{kg}\
                              \cusetup{use-numerals-below=12001}
one thousand gramme
                              \cutext[kg=g]{1}{kg}
two thousand gramme
                              \cutext[kg=g]{2}{kg}\
twelve thousand gramme
                              \cutext[kg=g]{12}{kg}\
13000 gramme
                              \cutext[kg=g]{13}{kg}
```

parse-number

```
parse-number = \langle true/false \rangle
```

If set to false prints the number of \cunum, \cutext, \Cutext and \cuam as they are (after some ... well ... parsing due to "_"). It is true by default.

```
\cusetup{parse-number=false}
1 \, \mathrm{kg}
                                      \cunum[kg=g]{1}{kg}\\
1-2 \,\mathrm{kg}
                                      \cunum{1--2}{kg}\
         -2 kg
                                      \cunum{1-----2}{kg}\\
1—
1.2\,\mathrm{kg}
                                      \cunum{1.2}{kg}\\
1.2 \,\mathrm{kg}
                                      \operatorname{kg=g} \{1,2\} \{kg\} \setminus
1/2 \,\mathrm{kg}
                                      \cunum{1/2}{kg}
1_{2/3 \, \text{kg}}
                                      \cunum{1_2/3}{kg}\
1/2_3 \, \text{kg}
                                      \cunum{1/2_3}{kg}\
qwertzuiop kg
                                      \cunum{qwertzuiop}{kg}\\
1 kilogramme
                                      \cutext{1}{kg}\
100 \text{ kilogramme}
                                      \cutext{100}{kg}\
gjfak kilogramme
                                      \cutext{gjfak}{kg}\\
12 kilogramme
                                      \cutext[kg=g]{12}{kg}\
                                      \cuam{1----2}\\
1-
1,2
                                      \operatorname{(cuam{1,2})}
1 \ 1/2
                                      \operatorname{cuam}\{1_1/2\}\
kwflk
                                      \cuam{kwflk}\\
```

```
\frac{\texttt{range-sign}}{\texttt{cunum-range-sign}} \quad \begin{array}{ll} \texttt{range-sign} = \langle \textit{string} \rangle \\ \texttt{cunum-range-sign} = \langle \textit{string} \rangle \\ \texttt{cutext-range-sign} = \langle \textit{string} \rangle \end{array}
```

The second sets the *printed* range-sign used in \cunum (and \cum) to $\langle string \rangle$, the third sets the printed range-sign used in \cutext/\Cutext to $\langle string \rangle$.

range-signs for both \cunum (and \cuam) and \cutext/\Cutext to $\langle string \rangle$. The default for $\langle string \rangle$ is -- (for both).

```
\cusetup{cunum-range-sign={~to~}}
1 \text{ to } 2 \text{ kg}
                                   \cunum{1--2}{kg}\\
1 to 2
                                   \sum {1--2}
1-2 kilogramme
                                   \cutext{1--2}{kg}\
1-2 kilogramme
                                   \Cutext{1--2}{kg}
                                   \cusetup{cutext-range-sign={~to~}}
                                   \cunum{1--2}{kg}\\
1-2 \,\mathrm{kg}
1-2
                                   \operatorname{cuam}\{1--2\}\
1 to 2 kilogramme
                                   \cutext{1--2}{kg}
1 to 2 kilogramme
                                   \Cutext{1--2}{kg}
                                   \cusetup{range-sign={~to~}}
1 \text{ to } 2 \text{ kg}
                                   \cunum{1--2}{kg}\
1 to 2
                                   \cuam{1--2}\\
1 to 2 kilogramme
                                   \cutext{1--2}{kg}\
1 to 2 kilogramme
                                   \Cutext{1--2}{kg}
```

9.2.4 Rounding options

round-precision

round-precision = \langle integer \rangle

Rounds the amount automatically to $\langle integer \rangle$ digits after the colon. Note that units like C, F, K and Re are still rounded to integers due to set-option-for- $\langle unit-key \rangle$.

```
\cusetup{round-precision=5}
                                          \cunum{1.23456789}{kg}\\
1.23457\,\mathrm{kg}
                                          \cum [g=kg] {12.587}{g}
0.01259\,\mathrm{kg}
194 \, \mathrm{kg}
                                          \cunum{194}{kg}\\
                                          \cunum[C=F]{200--210}{C}\\
392 - 410 \, ^{\circ}\mathrm{F}
-273\,^{\circ}\mathrm{C}
                                          \cunum[K=C]{0.0012}{K}\\
                                          \cusetup{round-precision=1}
1.2\,\mathrm{kg}
                                          \cunum{1.23456789}{kg}\\
12.6\,\mathrm{kg}
                                          \cunum{12.58}{kg}\
                                          \cum[g=kg]{194}{g}\
0.2\,\mathrm{kg}
392\text{--}410\,{}^{\circ}\mathrm{F}
                                          \cunum[C=F]{200--210}{C}\\
-273\,^{\circ}\mathrm{C}
                                          \cum [K=C] {0.0012} {K}
```

 ${\tt round-to-int}$

round-to-int = $\langle true/false \rangle$

Rounds the amount to an integer if set true.

round-half

round-half = \langle default/commercial \rangle

This option is only important for half-way numbers (e.g. 0.005). By setting it to default the value will be rounded to the nearest even number is chosen (which is the default rounding for expl3, hence the name). Setting it to commercial rounds the value away from zero.

It is set to default by ... default.

Note: default actually refers to the fact that it is the default rounding algorightm used by \fp_eval:n { round() } without a third argument.

	\cusetup{round-half=default}
$0 \mathrm{kg}$	\cunum{0.005}{kg}\\
$-0\mathrm{kg}$	\cunum{-0.005}{kg}\\
$1.24\mathrm{kg}$	\cunum{1.245}{kg}\\
	\cusetup{round-half=commercial}
$0.01\mathrm{kg}$	\cunum{0.005}{kg}\\
$-0.01\mathrm{kg}$	\cunum{-0.005}{kg}\\
$1.25\mathrm{kg}$	\cunum{1.245}{kg}

9.2.5 Fractions

eval-fraction

```
eval-fraction = \langle true/false \rangle
```

This option takes true or false as values. If set to true fractions are evaluated. Please note that divisions through zero are not allowed.

	\cusetup{eval-fraction=true}
$0.33\mathrm{kg}$	$\sum_{1/3}{kg}$
$0.5\mathrm{kg}$	$\cunum{1/2}{kg}\$
$500\mathrm{g}$	$\sum [kg=g] {1/2}{kg}$
$1.5\mathrm{kg}$	$\cunum{1_1/2}{kg}\$
$1500{\rm g}$	$\cunum[kg=g]{1_1/2}{kg}\\$
$-1500\mathrm{g}$	$\sum_{kg=g} \{-1_1/2\} \{kg\} \setminus$

fraction-command

fraction-command = (\command)

Sets the command used for printing fractions equal to \\command\\. \\command\\ has to take two arguments. By default it is equal to \\sfrac from xfrac.

Please note that the amount is *not* printed inside a math environment by default.

```
\newcommand\myfrac[2]{#1/#2}
                                   \cusetup{fraction-command=\myfrac}
1/8
                                   \cuam{1/8}\\
1/2 \,\mathrm{kg}
                                   \cunum{1/2}{kg}\
4/5 °C
                                   \cunum{4/5}{C}\\
12/3 \,\mathrm{kg}
                                   \cunum{1_2/3}{kg}\
                                   \cusetup{fraction-command=\nicefrac}
1/8
                                   \cuam{1/8}\\
1/2 \text{ kg}
                                   \cunum{1/2}{kg}\\
4/5 °C
                                   \cunum{4/5}{C}\\
12/3 \text{ kg}
                                   \cunum{1_2/3}{kg}
```

fraction-inline

fraction-inline = $\langle input \ containing \ \#1 \ and \ \#2 \rangle$

Similar to fraction-command only that you don't have to define a command to alter the output of the fraction.

```
\cusetup{fraction-inline={#1/#2}}
1/8
                                   \cuam{1/8}\\
1/2 \,\mathrm{kg}
                                   \cumum{1/2}{kg}\
4/5°C
                                   \cunum{4/5}{C}\\
12/3 \,\mathrm{kg}
                                   \cunum{1_2/3}{kg}\
                                   \cusetup{fraction-inline={\nicefrac{#2}{#1}}}
                                   \sum {1/8} \
8/1
2/1 \,\mathrm{kg}
                                   \cunum{1/2}{kg}\
5/4 °C
                                   \cunum{4/5}{C}\\
1^{3/2} kg
                                   \cunum{1_2/3}{kg}
```

9.2.6 spaces

mixed-fraction-space

mixed-fraction-space = $\langle length \rangle$

Sets the length between the fraction and the number in a mixed-fraction, default is 0.1em (because I said so).

```
1^{2/_{3}}
                                          \sum_{1_2/3}
1 \frac{2}{3} \text{ kg}
                                          \cum\{1_2/3\}\{kg\}\
10^{2/3} \,\mathrm{kg}
                                          \cunum{10_2/3}{kg}\\
                                          \cusetup{mixed-fraction-space=1em}
                                          \sum_{1_2/3}
1^{2/3}
1 \frac{2}{3} \, \text{kg}
                                          \cumum{1_2/3}{kg}\
10^{-2/3} \, \text{kg}
                                          \cunum{10_2/3}{kg}\\
                                          \cusetup{mixed-fraction-space=0em}
1^{2}/_{3}
                                          \operatorname{1_2/3}
1^2/3 \text{ kg}
                                          \cumum{1_2/3}{kg}\
10^2/3 \,\mathrm{kg}
                                          \cunum{10_2/3}{kg}
```

cutext-space

cutext-space = \langle string\rangle

 $\langle string \rangle$ is inserted between the numeral part and the unit part when using $\backslash cutext$ and $\backslash cutext$. By default it is set to $\backslash space$. Use this option if you want to e.g. insert an unbreakable space.

 $\begin{array}{ccc} 1 \; kilogramme & \ \ \ \ \\ 10 \; kilogramme & \ \ \ \ \ \\ \hline \\ 10 \; kilogramme & \ \ \ \ \ \\ \end{array}$

\cusetup{cutext-space=~}

1 kilogramme \cutext{1}{kg}\\
10 kilogramme \Cutext{10}{kg}\\

\cusetup{cutext-space={}}

 $\begin{array}{ll} 1 & \text{$$ \text{kg}} \\ 10 & \text{$$ \text{cutext}\{1\}\{kg\}$} \\ \end{array}$

\cusetup{cutext-space={qwe}}

1qwekilogramme \cutext{1}{kg}\\
10qwekilogramme \Cutext{10}{kg}\\

phrase-space

phrase-space = $\langle string \rangle$

 $\langle string \rangle$ is inserted between the numeral part and the phrase part while using \cuam. By default it is set to \space. Use this option if you want to e.g. insert an unbreakable space.

\selectlanguage{ngerman}

1 Dutzend \cuam{12}\\

\cusetup{phrase-space=~}

1 Dutzend \cuam{12}\\

\cusetup{phrase-space={}}

1Dutzend \cuam{12}\\

\cusetup{phrase-space={qwe}}

1qweDutzend \cuam{12}\\

9.2.7 label & refs for People

recalculate-amount

 $recalculate-amount = \langle true/false \rangle$

Set this option to true if you want to change your recipes to the given number of people set by set-number-of-persons. Note that only those values who have a label are changed.

set-number-of-persons

set-number-of-persons = \langle integer \rangle

With this option you can determine the number of people your recipes are. Note that this option only has an effect on those who have a $\langle label \rangle$ given. It is set to 4 by default.

```
\culabel{anotherrecipe}{2}
2 persons
                                \curef{anotherrecipe}~persons\\
                                \cusetup{recalculate-amount=true}
4 persons
                                \curef{anotherrecipe}~persons\\
2 \,\mathrm{kg}
                                \cunum<anotherrecipe>{1}{kg}\\
                                \cuam<anotherrecipe>{1}\\
2 kilogramme
                                \cutext<anotherrecipe>{1}{kg}\\
20 kilogramme
                                \Cutext[ref=anotherrecipe]{10}{kg}\\
                                \cusetup{set-number-of-persons=3}
3 persons
                                \curef{anotherrecipe}~persons\\
1.5 \, \mathrm{kg}
                                \cunum<anotherrecipe>{1}{kg}\\
1.5
                                \cuam<anotherrecipe>{1}\\
1.5 kilogramme
                                \cutext<anotherrecipe>{1}{kg}\\
15 kilogramme
                                \Cutext[ref=anotherrecipe]{10}{kg}\\
                                \cusetup{set-number-of-persons=2}
2 persons
                                \curef{anotherrecipe}~persons\\
1 \, \mathrm{kg}
                                \cunum<anotherrecipe>{1}{kg}\\
1
                                \cuam<anotherrecipe>{1}\\
1 kilogramme
                                \cutext<anotherrecipe>{1}{kg}\\
10 kilogramme
                                \Cutext[ref=anotherrecipe]{10}{kg}\\
                                \cusetup{set-number-of-persons=1}
1 person
                                \curef{anotherrecipe}~person\\
0.5\,\mathrm{kg}
                                \cunum<anotherrecipe>{1}{kg}\\
0.5
                                \cuam<anotherrecipe>{1}\\
0.5 kilogramme
                                \cutext<anotherrecipe>{1}{kg}\\
5 kilogramme
                                \Cutext[ref=anotherrecipe]{10}{kg}\\
```

label label = $\langle string \rangle * \langle integer \rangle$

The key-value version of $\cline{culabel}$. It defines the label $\langle string \rangle$ which is originally for $\langle integer \rangle$ people. Please note that the * is mandatory as it separates the string from the integer. Note that each label is defined globally and must be unique.

```
\cusetup{label=Toast*1}
1 person
2 \curef{Toast}~person\\
2 \cuam<Toast>{2}\\
2 dag \cunum<Toast>{2}{dag}\\
\cusetup{recalculate-amount=true}
4 persons
\curef{Toast}~persons\\
8 \cuam<Toast>{2}\\
8 dag \cunum<Toast>{2}\{\dag}
\cunum<Toast>{2}\\
```

get-label get-label = (label)

The key-value version of \curef. Note that this key doesn't save the value inside a macro but rather prints it directly into the document.

```
\culabel{Schinken}{3}

cusetup{get-label=Schinken}\\
curef{Schinken}\\
cusetup{recalculate-amount=true}

cusetup{get-label=Schinken}\\
curef{Schinken}\\
```

```
ref ref = (label)
```

Instead of using the first optional arguments of the commands in section 2 you may use this option. It requires a valid value and throws an error if $\langle label \rangle$ is not defined.

```
\culabel{Kaese}{3}

10 dm \cunum<Kaese>[m=dm]{1}{m}\\
10 dm \cunum[ref=Kaese,m=dm]{1}{m}\\
\cusetup{recalculate-amount=true}

13.33 dm \cunum[ref=Kaese,m=dm]{1}{m}\\
\cunum[ref=Kaese,m=dm]{1}{m}\\
\cunum[ref=Kaese,m=dm]{1}{m}\\
\cunum[ref=Kaese,m=dm]{1}{m}\\
\cunum[ref=Kaese,m=dm]{1}{m}\\
\cunum[ref=Kaese,m=dm]{1}{m}\\
```

9.3 Weird options

check-temperature

check-temperature = $\langle true/false \rangle$

Checks if the used temperature is below the absolute zero point. Currently C, F, K and Re are supported. While \cunum{0}{K} is ok, \cunum{-1}{K} raises an error, same for the others. Is set to false by default. To add new units see add-temperature-to-check.

add-temperature-to-check

This option adds $\langle unit\text{-}key\text{-}1 \rangle$ and so on to the list of units to be checked if check-temperature is active. The argument can be a comma-separated list of $\langle unit\text{-}key \rangle = \langle minimum\text{-}value \rangle$. This sets the allowed minimum value of $\langle unit\text{-}key \rangle$ to $\langle minimum\text{-}value \rangle$.

For example, this package implements the allowed minimum values for the temperatures C, F, K and Re to be checked if check-temperature is active using:

```
\cusetup
{
   add-temperature-to-check =
      {
         K = 0,
         C = -273.15 ,
         F = -459.67 ,
         Re = -218.52
   }
}
```

If you want to add a new value, for example degree Rømer (which has be defined in another example) you can write:

```
\cusetup
{
   add-temperature-to-check = { Ro = -135.90375 }
}
```

convert-to-eV

```
convert-to-eV = \langle true/false \rangle
```

Converts (nearly) every unit in table 1 to electron volt or the respective derivative. Note that this option is: a) experimental and probably will forever be and b) just a joke, you are not supposed to use this units in a cookery book (and as you see this package doesn't support the arrangement of such huge numbers). Also you may want to check the values if you really want to use them, just to be sure.

use-phrases

Language depended,

Note: Sorted by size! At first 144, then 60, then 12.

10 Bugs & Feedback

Bug reports are always welcome. If you are sending a bug report please include a minimal working example showing the bug and a short description. Furthermore please add "cooking-units" to the e-mail header. GMX has the habit of putting e-mails into the spam account and adding "cooking-units" to the header makes it easier to recognize those e-mails.

Feedback and requests (commands, units) are most welcome. Please also add (if possible) an example of the desired output into the minimal example (and also add "cooking-units" to the header).

Furthermore, as you can see I am not able to speak too many languages (german and english to be precise; I managed to add french with the help of the internet, which is not optimal) so if you are able to speak a language not yet implemented and would like to help you can send me a list of the translations of the units given in section 5 or (for better overview) appendix A. I would need

- their singular (and plural) form,
- the gender,
- the printed symbol (if different),
- decimal-mark and one(m), one(f), one(n)

Oh yeah, if someone has a better idea of how to deal with languages I am happy to know.

A Translations

This section contains the list of available translations. Each table shows the available translations for the printed unit, the unit-name (printed if \cutext or \Cutext is used) and the plural form (if different from the singular form). A second table shows the translations used for phrases (if given).

If a translation is not available a "—" is shown.

A.1 English

$\langle unit\text{-}key \rangle$	printed unit	unit-name	(plural)	gender
kg	kg	kilogramme		m
dag	dag	decagramme		m
g	g	gramme		m
OZ	OZ	ounce		m
lb	lb	pound	(pounds)	m
\mathbf{C}	$^{\circ}\mathrm{C}$	degree Celsius	(degrees Celsius)	m
\mathbf{F}	$^{\circ}\mathrm{F}$	degree Fahrenheit	(degrees Fahrenheit)	m
Re	°Ré	degree Réaumur	(degrees Réaumur)	m
K	K	kelvin		m
d	d	day	(days)	m
h	h	hour	(hours)	m
min	\min	minute	(minutes)	m
S	S	second	(seconds)	m
m	m	metre	(metres)	m
dm	dm	decimetre	(decimetres)	m
cm	cm	centimetre	(centimetres)	m
mm	mm	millimitre	(millimitres)	m
in	in	inch	(inches)	m
1	ℓ	litre	(litres)	m
dl	dl	decilitre	(decilitres)	m
cl	cl	centilitre	(centilitres)	m
ml	ml	millilitre	(millilitres)	m
cal	cal	calorie	(calories)	m
kcal	kcal	kilocalorie	(kilocalories)	m
J	J	joule	(joules)	m
kJ	kJ	kilojoule	(kilojoules)	m
eV	eV	electron volt		m
pn	pinch	pinch	(pinches)	m
EL	tbsp.	tablespoon	(tablespoons)	m
TL	tsp.	teaspoon	(teaspoons)	m
csp	csp.	coffeespoonful		m
dsp	dsp.	dessertspoonful		m
ssp	ssp.	saltspoonful		m
Msp	Msp.	Messerspitze	(Messerspitzen)	f
decimal-mark	_	•	_	m
one(m)		one	_	m
one(f)		one	_	m
one(n)	_	one	_	m

A.2 american

$\langle unit\text{-}key \rangle$	printed unit	unit-name	(plural)	gende
kg	kg	kilogram		m
dag	dag	decagram		m
g	g	gram		m
OZ	OZ	ounce		m
lb	lb	pound	(pounds)	m
C	$^{\circ}\mathrm{C}$	degree Celsius	(degrees Celsius)	\mathbf{m}
F	$^{\circ}\mathrm{F}$	degree Fahrenheit	(degrees Fahrenheit)	m
Re	°Ré	degree Réaumur	(degrees Réaumur)	m
K	K	kelvin		m
d	d	day	(days)	m
h	h	hour	(hours)	m
min	\min	minute	(minutes)	m
S	S	second	(seconds)	\mathbf{m}
m	m	meter	(meters)	m
dm	dm	decimeter	(decimeters)	m
cm	cm	centimeter	(centimeters)	m
mm	mm	millimiter	(millimiters)	m
in	in	inch	(inches)	\mathbf{m}
1	ℓ	liter	(liters)	m
dl	dl	deciliter	(deciliters)	\mathbf{m}
cl	cl	centiliter	(centiliters)	\mathbf{m}
ml	ml	milliliter	(milliliters)	\mathbf{m}
cal	cal	calorie	(calories)	m
kcal	kcal	kilocalorie	(kilocalories)	m
J	J	joule	(joules)	m
kJ	kJ	kilojoule	(kilojoules)	m
eV	eV	electron volt		m
pn	pn.	pinch	(pinches)	m
EL	tbsp.	tablespoon	(tablespoons)	m
TL	tsp.	teaspoon	(teaspoons)	m
csp	csp.	coffeespoonful		\mathbf{m}
dsp	dsp.	dessertspoonful		m
ssp	ssp.	saltspoonful		m
Msp	Msp.	Messerspitze	(Messerspitzen)	f
decimal-mark			_	m
one(m)	_	one	_	m
one(f)	_	one	_	\mathbf{m}
one(n)	_	one	_	\mathbf{m}

A.3 German

$\langle unit\text{-}key \rangle$	printed unit	unit-name	(plural)	gender
kg	kg	Kilogramm		n
dag	dag	Dekagramm		n
g	g	Gramm		n
OZ	OZ	Unze		f
lb	lb	Pfund		n
\mathbf{C}	$^{\circ}\mathrm{C}$	Grad Celsius		m
F	$^{\circ}\mathrm{F}$	Grad Fahrenheit		m
Re	$^{\circ}\mathrm{R\acute{e}}$	Grad Réamur		m
K	K	Kelvin		n
d	d	Tag	(Tage)	m
h	h	Stunde	(Stunden)	f
min	\min	Minute	(Minuten)	f
S	S	Sekunde	(Sekunden)	f
m	m	Meter		n
dm	dm	Dezimeter		n
cm	cm	Centimeter		n
mm	mm	Millimeter		n
in	in	Zoll		m
1	1	Liter		m
dl	dl	Deziliter		m
cl	cl	Centiliter		m
ml	$_{ m ml}$	Milliliter		m
cal	cal	Kalorie	(Kalorien)	f
kcal	kcal	Kilokalorie	(Kilokalorien)	f
J	J	Joule	,	m
kJ	kJ	Kilojoule		m
eV	eV	Elektronenvolt		n
pn	Prise	Prise	(Prisen)	f
EL	EL	Esslöffel	,	m
TL	TL	Teelöffel		m
csp	KL	Mokkalöffel		m
dsp	dsp.	_		m
ssp	ssp.	_		m
Msp	Msp.	Messerspitze	$({\it Messerspitzen})$	f
decimal-mark	_	,	_	m
one(m)	_	ein	_	m
one(f)	_	eine	_	m
one(n)		ein	_	m

$\langle number \rangle$	name	Not	е	(plural)	gender
60	Schock	(5 Dutzend,	12 * 5)		n
144	Gros	(12 Dutzend,	12 * 12)		n
1728	Großgros	(12 Groß,	12 * 144)		n

Note that Großgros has other (probably more common) synonyms.

A.4 French

$\langle unit\text{-}key \rangle$	printed unit	unit-name	(plural)	gender
kg	kg	kilogramme	(kilogrammes)	m
dag	dag	décagramme	(décagrammes)	m
g	g	gramme		\mathbf{m}
OZ	OZ	once		f
lb	lb	livre	(livres)	f
\mathbf{C}	$^{\circ}\mathrm{C}$	degré Celsius	(degrés Celsius)	m
F	$^{\circ}\mathrm{F}$	kelvin	(kelvins)	m
Re	°Ré	échelle Réaumur	(degrés Réaumur)	\mathbf{m}
K	K	degré Fahrenheit	(degrés Fahrenheit)	m
d	d	jour	(jours)	m
h	h	heure	(heures)	f
min	\min	minute	(minutes)	f
S	S	seconde	(secondes)	f
m	m	mètre	(mètres)	m
dm	dm	décimètre	(décimètres)	\mathbf{m}
cm	cm	centimètre	(centimètres)	\mathbf{m}
mm	mm	millimètre	(millimètres)	\mathbf{m}
in	po	pouce	(pouces)	m
1	L	litre	(litres)	m
dl	dL	décilitre	(décilitres)	\mathbf{m}
cl	cL	centilitre	(centilitres)	\mathbf{m}
ml	mL	millilitre	(millilitres)	m
cal	cal	calorie		m
kcal	kcal	kilocalorie	(kilocalories)	\mathbf{m}
J	J	joule	(joules)	\mathbf{m}
kJ	kJ	kilojoule	(kilojoules)	\mathbf{m}
eV	eV	électron-volt	(électron-volts)	m
pn	pinch	pincée		f
EL	EL	cuillére à soupe		f
TL	TL	cuillére à café		f
csp	csp.			m
dsp	dsp.	_		m
ssp	ssp.	_		\mathbf{m}
Msp	Msp.	_		m
decimal-mark	_	•	_	m
one(m)	_	un	_	m
one(f)	_	une	_	m
one(n)	_	un	_	m