Suppose I-A is not invertible. Then
$$\exists \chi \neq 0$$
 such that

$$(I-A)\chi = 0$$

$$\Rightarrow \chi = A\chi$$

$$\Rightarrow A\chi = A^2\chi$$

. x=0 Confradiction

Explicitely constructing inverse:

$$\left(\underline{I} - \underline{A} \right) \left(\underline{I} + \underline{A} + \underline{A}^2 + \dots + \underline{A}^{k-1} \right) = \underline{I}$$

$$A \mathcal{X} = \lambda \mathcal{X}$$

$$\rightarrow A^2 \mathcal{X} = \lambda A \mathcal{X} = \lambda^2 \mathcal{X}$$

$$A^k \chi = \lambda^k \chi = 0$$

$$\frac{A^{2}x}{A^{2}} = \frac{A^{2}x}{A^{2}} = 0$$

$$\frac{A^{2}x}{A^{2}} = 0$$

$$\frac$$

(d) If commuting:
$$A^k = 0$$
 $B^{k_2} = 0$ $k = \max(k_1, k_2)$ $(AB)^k = A^k B^k = 0$ $(AB)^k = 0$

If non-commuting:

... Non commuting

Product is not nilpotent:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Aside: How do check if $\bigwedge_{n=1}^{\infty}$ is nilpotent i.e. atmost how many k's do you need to check
Lemma: If a matrix $\bigwedge_{n \neq n}$ is nilpotent then, $\bigwedge_{n \neq n}$
Proof: Recall Schur's theorem: every matrix is unitarily
upper triangularizable
: A = U V UT qunitary
7 upper \triangle
Moreover, the diagonal entries of the upper triangular
matrix obtained are the eigenvalues of A with their geometric multiplities
(Proof: it has the same eigenvalues of A. Now
look at its characteristic equation)
$\therefore \ \ \bigvee = \left[\begin{array}{c} \\ \\ \\ \end{array} \right]$
0 :
hxn hxn
$A^2 = U V^2 U^T$
Now notice that $\sqrt{1}$ has the diagonal besides the principle
diagonal also as all zeroes. In general, we can easily
prove (by induction), that \bigvee^k will have zeroes till the $(k-1)^{t+}$ beside the principle
11 ² - [b] 1/k [b]
- 66 - 6 - 6
0 9 3 1
Hence,
$\sqrt{n} = 0$
J. P.
$A^{n} = UV^{n}U^{T} = 0$

Q2 (a)
$$P^2 = P$$
 $(I-P)^2 = I^2 - 2P + P^2 = I-2P+P = I-P$

(b) $\exists x \neq 0$, $\lambda \in C$
 $P_{\lambda} = \lambda x$
 $\Rightarrow P^2 x = \lambda^2 x = Px = \lambda x$
 $\Rightarrow \lambda = 0,1$

(c) $P^2 = P$

If invertible:

 $P^1 P^2 = P^1 P \Rightarrow P = I$

(d) Suppose:

 $\exists x \neq 0, x \neq 0,$

So, P has n linearly independent eigenvectors; the k basis vectors of the null space for eigenvalue 0 and $\rho_{V_{k+1}}$, ρ_{V} for eigenvalue 1. So it is diagonalizable.

$$H_{o}x = \lambda x$$

$$\rightarrow \chi - \eta \eta^{T} \chi = \lambda \chi$$

$$\rightarrow n(n^Tx) = \chi(1-\lambda)$$

diagonalizable

It is also idempotent

$$H_0^2 = (I - \eta n^T)(I - \eta n^T)$$

= $I - 2\eta n^T + \eta (n^T \eta) n^T$
= $I - \eta n^T = H_0$

Geometrically, this is because, $\[\[\] \]$ projects any vector into the plane, and then acts on any vector in a plane trivially

$H = I - 2nn^T$

diagonalizable

$$2 n(n^T x) = \chi(1-\lambda)$$

Hence ntx=0 or x/1n

In general, if X is diagonalizable so is XX+BI

PXP

P(XX+BI) P

Not idempotent:

$$H^2 = (I - 2nn^T)(I - 2nn^T)$$

$$= I - 4nnT + 4n(nTn)nT = I \neq H$$

96
$$f: R^3 \rightarrow R^3$$
, $f(o) = 0$, $||f(x) - f(y)|| = ||x - y||$
Put $y = 0$
 $||f(x)|| = ||x|| \forall x$
Hence,
 $||f(x) - f(y)||^2 = ||x - y||^2$
 $\rightarrow ||f(x)||^2 + ||f(x)||^2 - 2f(x)^T f(y)$
 $= ||x||^2 + ||y||^2 - 2x^T y$
Consider $e_1 e_2 e_3$ as the orthonormal basis of R^2
 $f(e_1)^T f(e_2) = 0$ and so on
Also, $||f(e_1)|| = ||e_1|| = 1$

Let:
$$g = f(e_1)$$
, $g = f(e_2)$, $g = f(e_3)$
these form an orthonormal basis for R^3 R^3 R^3 R^3

$$f(x)^{T}g_{1} = \alpha_{1} \cdots = x^{T}e_{1}$$

$$g_{2} = \alpha_{2}$$

Hence:

$$f(x) = a_1g_1 + a_2g_2 + a_3g_3$$

Clearly:

$$f(x+y) = f(x) + f(y)$$

 $f(\alpha x) = \alpha f(x)$

Hence, f(x) is linear, so f(x)=Ax for some A

Given that: $f(\kappa) = A \kappa$
$\rightarrow \ A(x-y)\ = \ x-y\ $
put z= 2-4
$\rightarrow Az = z $
square both sides:
$\rightarrow z^T A^T A z = z^T z$

Now, $(\uparrow \uparrow \land \neg I)$ is a real symmetric matrix, hence, it is orthogonally diagonalizable. If (\downarrow) is some eigenvalue and z is the corresponding eigenvector, then: $(A^TA - I)_Z = \lambda_Z$

$$\frac{1}{12} \frac{1}{12} = 0$$

$$\frac{1}{12} \frac{1}{12} = 0$$

Hence, A is orthorous A = A = A. A = A = AHence, A = A A = AHence, A = AHence,

$$\rightarrow A^TA = I$$

Hence, A is orthogonal