PRIMA PROVA IN ITINERE

Prova a risolvere i seguenti problemi, giustificando il ragionamento seguito.

La motivazione del processo è molto più importante della risposta numerica.

Puoi usare una calcolatrice o un regolo per i conti, così come R sul calcolatore dell'aula. Puoi controllare i tuoi appunti, le note del corso o un libro di testo tra quelli consigliati. Lavora per tuo conto, senza aiuto esterno, ma discuti pure i problemi e le tue soluzioni finita la prova. I problemi non sono in ordine di difficoltà. Indica nome e cognome (e numero di matricola) sui fogli, così come il numero del problema o della domanda. Lascia un po' di spazio per i commenti. Le parti in R possono essere copiate sul foglio, oppure salvate come file (.R, .txt, .Rhistory) indicando con un commento (introdotto dal carattere #) a quale esercizio e domanda il codice si riferisce. Se parte di un problema è svolta in R, indicalo sul foglio in corrispondenza del punto dell'esercizio corrispondente. Non dimenticare di caricare il file nella risorsa esamionline al termine dell'esame.

Buon lavoro!

Problema 1. Ogni persona ha, per quanto riguarda il colore degli occhi, un aspetto genetico (genotipo) e un aspetto fenomenologico (fenotipo). I due sono legati tra loro.

I genotipi associati al colore degli occhi sono $\{MM, AA, MA, AM\}$. Si sviluppa il fenotipo A (i.e. si hanno gli occhi azzurri) se e solo se si ha il genotipo AA. Si sviluppa il fenotipo M (occhi marroni) se e solo se si ha uno tra i genotipi $\{MA, AM, MM\}$.

Secondo le leggi di Mendel, il genotipo della prole (biologica) di due individui è equamente distribuito tra le possibili quattro combinazioni (X_iY_j) , dove X_i e Y_i rappresentano, rispettivamente, il primo e il secondo elemento del genotipo del genitore G_i ($i \in \{1,2\}$). A titolo di esempio, si considerino le seguenti tabelle.

Tabella 1. Sinistra: possibili esiti per genitori con genotipi AM e MM. Il figlio avrà genotipo AM con probabilità $\frac{2}{4}$, mentre avrà genotipo MM con probabilità $\frac{2}{4}$. Destra: possibili esiti per genitori con genotipi AM e MA. Il figlio avrà genotipo AM, AA, MM, MA con probabilità $\frac{1}{4}$.

Supponiamo di vivere in una popolazione omogenea, ovvero che P(AA) = P(AM) = P(MA) = P(MM) = 1/4, per ogni individuo della popolazione.

Denotiamo G_1 e G_2 i genitori.

- 1. Se un individuo ha gli occhi azzurri e G_1 ha gli occhi azzurri, qual è la probabilità che anche G_2 abbia gli occhi azzurri?
- 2. Se un individuo ha gli occhi marroni e G_1 ha gli occhi azzurri, qual è la probabilità che G_2 abbia gli occhi marroni?
- 3. Se un individuo ha gli occhi azzurri, qual è la probabilità che almeno uno dei due genitori abbia gli occhi marroni?

Problema 2. Sia $f_X: \mathbb{R} \to \mathbb{R}$ definita come

$$f_X(x) := \begin{cases} c(x^2 + \alpha x) & \text{se } x \in [0, 1], \\ 0 & \text{altrimenti,} \end{cases}$$

ove $c \ge 0$ e $\alpha \in \mathbb{R}$.

- 1. Per quali valori dei parametri α , c risulta che f_X è una densità di probabilità?
- 2. Sia X la variabile aleatoria con densità f_X . Determina, se esistono, i valori dei parametri α e c per cui la media di X vale 0.7.
- 3. Utilizzando i valori ottenuti al punto 2., definiamo $Y := X^2$. Determina la funzione densità f_Y e la funzione di ripartizione F_Y di Y.
- 4. Quanto valgono $P(Y \ge \frac{\pi}{3})$ e $P(Y \in [0, \frac{1}{2}])$?

Problema 3. In una fabbrica di graffette vengono usati due macchinari diversi. Il primo produce 1000 graffette all'ora, mentre il secondo le produce a un ritmo variabile. Entrambi i macchinari producono in media ogni ora 50 graffette difettose. Chiamiamo X e Y le variabili aleatorie che descrivono il numero di graffette difettose prodotte dal primo e dal secondo macchinario, rispettivamente, nell'arco di una certa ora.

- 1. Che distribuzione possiamo ipotizzare per X e Y? Come mai?
- 2. Sia *Z* il numero totale di graffette difettose prodotte in un'ora. Calcolane il momento primo e momento centrato secondo.
- 3. Ogni giorno un'ora è dedicata al controllo qualità: tutte le graffette prodotte da entrambi i macchinari vengono controllate. Il conteggio determina che ci sono 160 graffette difettose. Quanto è sorprendente questo numero?