Ćwiczenie 3: Układy iteracyjne

Zadanie:

Zbudować iteracyjny komparator liczb binarnych poczynając od bitów młodszych.

Tabela komparatora liczb binarnych (od bitów młodszych)

p_1	p_0	а	b	p_1	p_0	Przeniesienia – kodowanie
0	0	0	0	0	0	
0	0	0	1	0	1	$\Rightarrow a = b$ $p_1 p_0$
0	0	1	0	1	0	$\boxed{\begin{array}{ccc} a & b \\ \hline 0 & 0 \end{array}} a = b \text{ (równe)}$
0	0	1	1	0	0	$ \begin{vmatrix} 0 & 0 & a & b & (16 \text{ Wile}) \\ 0 & 1 & a < b & (a \text{ mniejsze}) \end{vmatrix} $
0	1	0	0	0	1	$\begin{bmatrix} 1 & 0 & a > b & (a \text{ większe}) \end{bmatrix}$
0	1	0	1	0	1	
0	1	1	0	1	0	
0	1	1	1	0	1]]
1	0	0	0	1	0	
1	0	0	1	0	1	a > b $a > b$
1	0	1	0	1	0	n, ,
1	0	1	1	1	0	
1	1	0	0	X	X	$p_0 \longrightarrow p_0$
1	1	0	1	X	X	nie używane
1	1	1	0	X	X	ine azywane
1	1	1	1	X	X]

$$p_1' = f(p_1, p_0, a, b) = \Sigma (2, 6, 8, 10, 11, (12, 13, 14, 15))$$

 $p_0' = g(p_1, p_0, a, b) = \Sigma (1, 4, 5, 7, 9, (12, 13, 14, 15))$

Realizacja na dwóch mpx 16/1: (**przeniesienia początkowe:** p_1 p_0 = 0 0)

(UWAGA! W SPRAWOZDANIU KAŻDY SCHEMAT MUSI BYĆ NARYSOWANY RĘCZNIE)