

ADA 083261

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 2. GOVT ACCESSION NO. DTNSRDC-80/049 E OF REPORT & PERIOD COVERED STANDARDIZATION TRIALS OF THE STABLE SEMISUBMERGED PLATFORM, SSP KAIMALINO, WITH A MODIFIED Final-PERFORMING ORG. REPORT NUMBER BUOYANCY CONFIGURATION. 8. CONTRACT OR GRANT NUMBER(*) AUTHOR(s) Everett L, Woo Jerry L. Mauck 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS David W. Taylor Naval Ship R&D Center Work Unit 1100-200 Bethesda, Maryland 20084 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS Apr 1 180 Naval Sea Systems Command 13. NUMBER OF PAGES Washington, DC 20362 122 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if differen 55F4341121 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Standardization Trials SSP KAIMALINO Modified Buoyancy Module TRACT (Continue on reverse side if necessary and identify by block number) This report contains the results of heavy, medium, and light displacements standardization trials conducted on the Stable Semisubmerged Platform (SSP) KAIMALINO in a new buoyancy module configuration. Measurements of shaft rpm, shaft torque, ship speed, ship's heading, position of ship's control surfaces, ship's roll, ship's pitch, and relative wind velocity and direction were made throughout the speed range of 4.68 to 17.96 knots. A comparison of power-(Continued on reverse side) DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(Block 20 continued)

characteristics of the old and the newly increased buoyancy configurations is presented. The new buoyancy scheme proved significantly superior below 13.2 knots and less desirable above that speed. Comparisons are made between the ship's automatic control system and a fixed control surfaces condition. No significant powering changes were noted. Comparisons between different nominal trim conditions were made which produced modest differences. Calm and nominally rough water trials were also compared and the effects of the sea state on powering characteristics was found to be minimal.

	GRA&I	U
DDC T		
	ounced fication_	
Ву		
fstr	ibution/	
r ··· i	O X	Codes
		-
ist	A.ail and	/or·

TABLE OF CONTENTS

7	Page
LIST OF FIGURES	iii
LIST OF TABLES	v
FRONTISPIECE	ix
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
TRIAL CONDITIONS	3
TRIAL PROCEDURES AND INSTRUMENTATION	3
PRESENTATION AND DISCUSSION OF TRIAL RESULTS	5
CONCLUSIONS	11
ACKNOWLEDGMENTS	12
APPENDIX - STATIC AND OPERATIONAL DRAFT MEASUREMENTS	15
REFERENCES	111
e la 1865 de la como en el como de la reputation de la re	will -
LIST OF FIGURES	
1 - SSP KAIMALINO, Dimensions of the New Buoyancy Module Configuration	17
2 - Instrumentation Block Diagram	18
3 - Comparison of SSP KAIMALINO Standardization Trial	mail
Results for the Non-Blister and Blister Module	
Hull Configurations	19
4 - Comparison of Statically Trimmed by the Stern Heavy and Light Displacement Standardization Trial	
Results versus Heavy Displacement	
Statically 0 Degree Trim Standardization Trial	
Results	20
5 - Comparison of Automatic Control System versus Fixed	
Control Surfaces Standardization Trial Results	21

6	_	Compa	rison of	Ro	nugh	and Calm Water Standardization	Page
					1000		22
7	-	Medi	um Displa	acen	nent	Standardization Trial Results	23
8	-	Time	History	of	Run	0110s	24
9	-	Time	History	of	Run	0190N	26
10	-	Time	History	of	Run	0280s	28
11	-	Time	History	of	Run	0320s	30
12	-	Time	History	of	Run	0440N	32
13	-	Time	History	of	Run	0540N	34
14	-	Time	History	of	Run	0660S	36
15	-	Time	History	of	Run	0710S	38
16	-	Time	History	of	Run	0810	40
17	-	Time	History	of	Run	0820	42
18	-	Time	History	of	Run	0830	44
19	-	Time	History	of	Run	0840	46
20	-	Time	History	of	Run	0850	48
21	-	Time	History	of	Run	0860	50
22	-	Time	History	of	Run	0950	52
23	-	Time	History	of	Run	0960	54
24	-	Time	History	of	Run	0970	56
25	-	Time	History	of	Run	0980	58
26	-	Time	History	of	Run	0990	60
27	-	Time	History	of	Run	1000	62
28	-	Time	History	of	Run	1140	64
29	-	Time	History	of	Run	1150	66
30	-	Time	History	of	Run	1160	68
31	-	Time	History	of	Run	1170	70

32	-	Time History of Run 1260	Page
		Elsh Univer II September 1479, Cala	
		Time History of Run 1270	74
3,4	-	Time History of Run 1280	76
35	-	Time History of Run 1290	78
36	-	Time History of Run 1360S	80
37	-	Time History of Run 1420S	82
38	-	A Typical Video Tape View of the Starboard Struts During a Trial Run	84
		LIST OF TABLES	
1	-	Principal Ship and Propeller Characteristics	85
2	-	Summary of Trial Runs	87
3	-	Summary of Trial Conditions	88
4	-	List of Data Channels and Accuracy Levels	89
5	-	SSP KAIMALINO Standardization Trial Results, English Units: 19 September 1979, Calm Water, Heavy Displacement = 237.1 Tons, Statically 0 Degree Trim, Fixed Control Surfaces	90
6	-	SSP KAIMALINO Standardization Trial Results, Metric Units: 19 September 1979, Calm Water, Heavy Displacement = 240.9 Metric Tons, Statically 0 Degree Trim, Fixed Control Surfaces	91
7	-	SSP KAIMALINO Standardization Trial Results, English Units: 20 September 1979, Calm Water, Heavy Displacement = 237.8 Tons, Statically Trimmed by the Stern, Fixed Control Surfaces	
8	-	SSP KAIMALINO Standardization Trial Results, Metric Units: 20 September 1979, Calm Water, Heavy Displacement = 241.6 Metric Tons, Statically Trimmed by the Stern, Fixed Control Surfaces	

			Page
9	-	SSP KAIMALINO Standardization Trial Results, English Units: 21 September 1979, Calm	
		Water, Light Displacement = 217.4 Tons,	
		Statically Trimmed by the Stern, Fixed Control Surfaces	94
		Control Surfaces	74
10	-	SSP KAIMALINO Standardization Trial Results,	
10		Metric Units: 21 September 1979, Calm	
		Water, Light Displacement = 220.9	
		Metric Tons, Statically Trimmed	
		by the Stern, Fixed Control	
		Surfaces	95
		Parties Canadamas and Toward was a market included	D A
11	-	SSP KAIMALINO Standardization Trial Results,	
		English Units: 25 September 1979, Calm	
		Water, Heavy Displacement = 237.8 Tons,	
		Statically O Degree Trim, Automatic	
		Control System	96
		A Bull miles of the fill of the cities and the	
12	-	SSP KAIMALINO Standardization Trial Results,	
		Metric Units: 25 September 1979, Calm	
		Water, Heavy Displacement = 241.6	
		Metric Tons, Statically O Degree	
		Trim, Automatic Control System	97
10		CCD VATNALTING CO. 1. 11	
13	-	SSP KAIMALINO Standardization Trial Results,	
		English units: 27 September 1979, Rough	
		water, neurum Displacement - 220.4 lons,	
		Statically Trimmed by the Stern, Automatic Control System	98
		Automatic Control System	90
14	_	SSP KAIMALINO Standardization Trial Results,	
		Metric Units: 27 September 1979, Rough	
		Water, Medium Displacement = 232.1	
		by the beeting nationality	
		Control System	99
1.		COR VITWITTING CO. 1 11 11 11 TO THE TOTAL THE TOTAL TO T	
13	-	SSP KAIMALINO Standardization Trial Results,	
		English Units: 28 September 1979, Rough	
		Water, Light Displacement = 215.0 Tons, Statically Trimmed by the Stern,	
		Fixed Control Surfaces	100
		TIMEG CONCIUI SUITACES	100
16	_	SSP KAIMALINO Standardization Trial Results,	
		Metric Units: 28 September 1979, Rough	
		Water, Light Displacement = 218.4	
		Metric Tons, Statically Trimmed	
		by the Stern, Fixed Control	
		Curfaces	101

17 - SSP KAIMALINO Standardization Trial Results, English Units: 2 October 1979, Calm	Page
Water, Medium Displacement = 226.7 Tons, Statically Trimmed by the	
Stern, Fixed Control Surfaces	102
<pre>18 - SSP KAIMALINO Standardization Trial Results, Metric Units: 2 October 1979, Calm Water, Medium Displacement = 230.3 Metric Tons, Statically Trimmed by the Stern, Fixed</pre>	
Control Surfaces	103
19 - Summary of Video-Taped Draft Readings	104

ABSTRACT

This report contains the results of heavy, medium, and light displacements standardization trials conducted on the Stable Semisubmerged Platform (SSP) KAIMALINO in a new buoyancy module configuration. Measurements of shaft rpm, shaft torque, ship speed, ship's heading, position of ship's control surfaces, ship's roll, ship's pitch, and relative wind velocity and direction were made throughout the speed range of 4.68 to 17.96 knots. A comparison of power characteristics of the old and the newly increased buoyancy configurations is presented. The new buoyancy scheme proved significantly superior below 13.2 knots and less desirable above that speed. Comparisons are made between the ship's automatic control system and a fixed control surfaces condition. No significant powering changes were noted. Comparisons between different nominal trim conditions were made which produced modest differences. Calm and nominally rough water trials were also compared and the effects of the sea state on powering characteristics was found to be minimal.

ADMINISTRATIVE INFORMATION

The work described herein was performed for the Small Waterplane Area Twin Hull (SWATH) Ship Development Office (Code 1110) in the Systems Development Department of the David W. Taylor Naval Ship Research and Development Center (DTNSRDC). This project was carried out under DTNSRDC Work Unit Number 1100-200. The funding source was the SWATH Ship Exploratory Development Program under the Ships, Submarines, and Boats Program Task Area SF 43411211, Task 19424. The Program Manager was Mr. James L. Schuler of the Naval Sea Systems Command (NAVSEA 031R).

INTRODUCTION

The Stable Semisubmerged Platform (SSP) KAIMALINO is a two-strut per hull, Small Waterplane Area Twin Hull (SWATH) ship operated by the Hawaii Laboratory of the Naval Ocean Systems Center (NOSC). Principal ship and propeller characteristics are shown in Figure 1 and Table 1. The present configuration of KAIMALINO differs from that of the original in that a buoyancy blister was added to each of the two submerged, parallel, torpedo-

shaped hulls. These submerged hulls support a cross-structure above water by means of four vertical, surface-piercing struts. Control of the vessel is by means of two canards (one at the forward end of each hull), a full-span stabilizing fin with two flaps located near the hull sterns, twin rudders, and two controllable, reversible pitch propellers (CRP). All control surfaces are hydraulically operated from the pilot house. The rudders operate in tandem while each canard and flap can be independently controlled. Propeller pitch is changed by mechanical rather than hydraulic means with control again being exercised from the pilot house.

Twin General Electric GE-T64 gas turbines located in the cross-structure are used in conjunction with the four-bladed, 6.5-ft (1.98-m) diameter Wilkinson CRP's. Each 2100 shaft horsepower (15.66 kW) rated engine is connected via a four tier chain-drive system to the propellers. An auxiliary diesel propulsion system, compatible with the gas turbine/chain-drive system, is utilized when getting underway and while maneuvering in port. This enables the gas turbines to be put on-line with the SSP already underway. Further description and details of the SSP can be found in Reference 1.*

Calm and nominally rough water standardization trials were conducted on SSP at the Fleet Operational Readiness Accuracy Check Site (FORACS) Range, Lualualei, Hawaii and in the ocean off the entrance to Kaneohe Bay, Hawaii, respectively. During the period 19 September through 2 October 1979, a series of standardization trials, each emphasizing a different variable's effect on the powering curves, was accomplished. The variables included the new buoyancy blister configuration, rough water, calm water, automatic control system, fixed control surfaces, statically 0-deg trim, statically trimmed by the stern, heavy displacement, medium displacement, and light displacement.

These trials were carried out by representatives of the David W. Taylor Naval Ship Research and Development Center (DTNSRDC), FORACS Range personnel, and Kentron Incorporated personnel under contract to the Naval Ocean Systems Command's Hawaii Laboratory.

^{*}A complete listing of references is given on page 111.

TRIAL CONDITIONS

The SSP standardization trials were conducted according to the schedule shown in Table 2. To ensure accurate base-line powering curves for the new buoyancy module configuration, Kentron, Inc. divers cleaned the underwater hulls and other appendages during the period 3 through 14 September 1979.

A propeller pitch survey was conducted and the full ahead and full astern pitches were determined to be 87.96 in (2.23 m) ahead and 29.06 in (0.74 m) astern for the starboard propeller. The port propeller pitch was 87.96 in (2.23 m) ahead and 29.85 in (0.76 m) astern. However, during operations, it was difficult to maintain full ahead propeller pitch due to the vagaries of the control system.

All of the trials were conducted with both propellers set to full ahead pitch. However, during some runs (see Tables 9 and 10, Run 480N), it was observed that the pitch on one or the other propeller would drop off as evidenced by reduced torque on the port shaft at the same rpm. When this occurred, adjustments were made in the pilot house to bring the propeller pitch back to full ahead.

Sea conditions were acceptable throughout the calm water trial period (State 0 to State 1 seas). Nominally rough water (State 2 sea) was encountered for the fifth and sixth days of trials. Normally a State 3 sea or above would be considered rough water for a standardization trial. The average true wind velocity for the standardization trials was 10 knots. A more in-depth look at the day-to-day trial conditions may be found in Table 3.

TRIAL PROCEDURES AND INSTRUMENTATION

The standardization trials were conducted in accordance with Chapter 094 of the Naval Ship's Technical Manual. Data were obtained from 4.68 to 17.96 knots for various conditions. Two to three runs, alternating in direction and of three minutes duration, were made at each speed. An average was applied to take into account the effects of current. For a three spot pass, the odd direction run was doubled and the four spots were then averaged. All runs were conducted with the propellers set at full ahead pitch, as previously mentioned.

The prior SSP standardization trials² utilized a fixed control surfaces method to achieve an initial even keel operation condition. Once the control surfaces were adjusted so that a nominally even keel was achieved, the run was conducted with the controls fixed. The majority of the runs reported herein were also conducted in this manner.

The SSP is presently equipped with an automatic control system with which some runs were conducted. This system takes inputs from a Humphrey Stable Table Package to improve dynamic stability. The Humphrey Stable Table Package was located on the bridge along the ship's centerline. It consisted of gyros and accelerometers on a stable table which generates a signal of the ship's six degrees of freedom (roll, pitch, heave, yaw, sway, and surge). A feedback control system was used to translate the signals into commands instigating control surface movement.

The automatic control system consisted of two operational modes; the platform mode and the contouring mode, respectively. In the platform mode, pitch and roll measurements taken from the Humphrey Stable Table were the inputs selected for the feedback control system. These two motions were kept to a minimum and hence improved the SSP's dynamic stability. The majority of the runs using the automatic control system were conducted in the platform mode.

A contouring mode, where pressure sensors along the hull below the waterline are used as inputs to the feedback control system, was the other alternative. These inputs enabled the SSP to follow the wave motion and maintain a selected hull depth in relation to the waves. This mode was utilized for one selected speed as a comparison.

Figure 2 is an instrumentation block diagram which shows how the raw data was obtained and utilized. A list of the channels recorded and appropriate levels of accuracy can be found in Table 4.

These data were recorded at a rate of 21 samples every two seconds by using a Hewlett-Packard (HP) digital acquisition system. This digital acquisition system employs a HP-2240A measurement and control processor that scans all the data and converts it into a digital format (excepting the range data which is output in a digital form) at preselected rates. These data are recorded on a flexible disc (HP-9885M) which has a high-speed (23 kbytes per second) and a large storage capacity (500,000 bytes).

This process is made functional by an HP-9835B desktop computer which was programmed to collect the data at certain rates and to perform various engineering conversions with the data before the data were recorded.

The torque data were obtained using strain gages that were bonded to the propulsion shafts. The torque signals were telemetered from the shafts using an ACUREX torque-strain monitoring system. The rpm signal for each shaft was generated by a magnetic pick-up mounted adjacent to a 60-tooth gear. This frequency signal was converted to an analog voltage with an F/V converter. Roll and pitch angles were taken from a DTNSRDC stabilization gyro that was mounted in a compartment adjacent to the bridge. These angles were converted from a three-phase, 60-cycle format to an analog voltage using solid state S/A converters.

Ship's heading was obtained from the ship's gyro mounted on the bridge. It is a single speed, three-phase, 60-cycle signal. It was converted to an analog voltage using a solid state S/A converter. Wind direction and speed were generated by a DTNSRDC furnished Bendix anemometer Model 120 that was laboratory calibrated. Ship's position was determined by using a Motorola Mini-Ranger III System (MRS III). The MRS III, operating on the principle of radar, uses a transmitter (located on the SSP) to interrogate the two reference station transponders (shore units). The elapsed time between the transmitted interrogation produced by the MRS III transmitter and the reply received from each transponder was used as the basis for determining the range to each transponder. This range information, together with the known location of each transponder, was triangulated to provide a position fix of the SSP for speed calculations. Wave height was recorded during the rough water runs. This signal came from a wave-rider buoy with a transmitter/receiver located on the SSP. The actual wave height was related to the heave motion of the buoy. This analog voltage output was proportioned to the significant wave height.

PRESENTATION AND DISCUSSION OF TRIAL RESULTS

The results of the standardization trials conducted on SSP KAIMALINO are presented in Figures 3 through 7 and tabulated in Tables 5 through 18.

The SSP was ballasted to achieve the static, in-harbor trim required each day. A comparison of this trim and the operational trim for each calm water run is presented in the Appendix (Table 19). These measurements should be acknowledged when reviewing the results of each day's operations.

Figure 3 is a comparison of the SSP original, non-blister hull and the blister module hull configurations. In the original hull configuration, Stenson² reports the following maximum powering performance characteristics.

- 1. Ship speed 19.08 knots.
- 2. Shaft rpm 307.8 rpm.
- 3. Shaft torque 50,095 ft-1b (68,930 Nm).
- 4. Shaft power 2,936 shp (2,190 kW).

The new blister module hull configuration proved, as expected, to produce a lower maximum ship speed for corresponding power. This was due to the increased displacement and correspondingly greater resistance. For similar operating conditions, SSP attained the following maximum power performance characteristics.

- 1. Ship speed 17.95 knots.
- 2. Shaft rpm 318.4 rpm.
- 3. Shaft torque 56,810 ft-1b (77,020 Nm).
- 4. Shaft power 3,445 shp (2,570 kW).

Hence, above the "hump" cross-over point of 13.2 knots, it took more power to achieve the same speed compared to the original, non-blister hull trial.

Both of these standardization trials utilized fixed control surfaces and were run in calm water. However, the blister module hull trial was run at a displacement of 226.7 tons (230.3 metric tons) as compared to the original hull displacement of 193.7 tons (196.8 metric tons). The effect of the additional displacement tended to decrease the speed range covered by the hump. No longer is it possible to achieve as great a speed range (10 to 13.5 knots versus 10 to 10.6 knots) for a minimal increase in power. For a speed of 10.3 knots, the blister module hull requires 7 percent less rpm, 31 percent less shaft horsepower, and 25 percent less shaft torque. However, powering levels at 13.2 knots for both conditions are comparable.

Figure 4 represents a comparison of how the statically trimmed by the stern heavy and light displacement conditions contrast with a statically

O-deg trim heavy displacement condition. All three trials were run in calm water utilizing fixed control surfaces. The ship speed hump occurred in the 9.7- to 11.6-knot range. In the hump region, the heavy displacement trimmed by the stern condition required 7 percent less shaft torque and shaft horsepower than the statically O-deg trim condition. Below the hump, both heavy displacement curves are similar with the trimmed by the stern condition being marginally more desirable. The tailing off of the heavy displacement trimmed by the stern condition above 16 knots is due to the lower stabilizer control flap angles needed to keep the ship on an even keel. This can be observed in Tables 7 and 8 where it can be seen that at 12.84 and 14.46 knots, the stabilizer flap angles averaged 22.4 deg and 16.8 deg (trailing edge up), respectively.

As expected, less power was needed to achieve a desired speed when operating in the light displacement condition as compared to the heavy displacement condition. The heavy displacement trimmed by the stern condition required 9 percent more rpm, 33 percent more shaft horsepower, and 25 percent more shaft torque to develop a comparable speed in the 9.7-to 11.6-knot range. For the rest of the speed range above and below the hump, the light displacement trimmed by the stern condition generally required 6 percent less rpm, 19 percent less shaft horsepower, and 13 percent less shaft torque than its heavy displacement counterpart.

An attempt was made to determine the effect of 0-deg control surfaces versus fixed controls/level trim operation on the powering traits. Control surface angles were set at 0-deg in the pilot house but due to the fineness of the control system, it was not always possible to attain this condition. This can be seen in Tables 7 through 10. As can be seen in Figure 4, there was essentially little or no effect on the light displacement curve below 11.6 knots. With an approximate 10-deg difference in stabilizer flap angles, these points were in agreement with their fixed control surfaces counterparts. Higher speed, with resultant large stabilizer flap angles in the magnitude of 15 deg and higher, were not investigated at the light displacement condition. Deviation in the heavy displacement curve at 15 knots was due to the large 16.8-deg stabilizer control flap angle necessary to maintain an even keel. These control flap angles are tabulated in Tables 7 and 8.

The maximum powering point reached for the heavy displacement (237.1 tons, 240.9 metric tons), statically 0-deg trim condition was:

- ship speed 17.51 knots;
- 2. shaft rpm 313.7 rpm;
- 3. shaft torque 56,830 ft-lb (77,050 Nm); and
- 4. shaft power 3,395 shp (2,530 kW).

Comparable powering traits for the heavy displacement (237.8 tons, 241.6 metric tons), statically trimmed by the stern condition were:

- 1. ship speed 17.47 knots;
- 2. shaft rpm 317.6 rpm;
- 3. shaft torque 53,810 ft-1b (72,960 Nm); and
- 4. shaft power 3,255 shp (2,425 kW).

The light displacement (217.4 tons, 220.9 metric tons) trimmed by the stern condition attained the following maximum powering performance characteristics:

- ship speed 17.83 knots;
- 2. shaft rpm 315.5 rpm;
- 3. shaft torque 51,490 ft-1b (69,810 Nm); and
- 4. shaft power 3,095 shp (2,310 kW).

An additional speed of 4.7 knots was conducted using the auxiliary diesels to propel the SSP. This point appears to fall very nicely along the powering curve associated with the gas turbine mode of operation.

Figure 5 can be used as a guide for comparing the automatic control system and the fixed control surfaces operational method. Both trials were conducted in calm water after the ship was statically trimmed to 0-deg at dockside. Below 9.8 knots, the automatic control system proved less desirable, needing on the average 9 percent more rpm, 23 percent more shaft power, and 18 percent more shaft torque to achieve a speed comparable to one obtained using the fixed control surfaces approach. However, above 9.8 knots, there was only a 1 percent rpm difference and a 3 percent shaft power and shaft torque difference between the two operational modes. The automatic control system proved slightly more desirable in this speed range. Data for these runs are presented in Tables 5, 6, 11, and 12.

As can be seen from the following data, the maximum powering points reached are quite similar. For the fixed control surfaces (237.1 tons, 240.9 metric tons), this was:

- 1. ship speed 17.51 knots;
- 2. shaft rpm 313.7 rpm;
- 3. shaft torque 56,830 ft-1b (77,050 Nm); and
- 4. shaft power 3,395 shp (2,530 kW).

The automatic control system (237.8 tons, 241.6 metric tons) top spot was:

- 1. ship speed 17.58 knots;
- 2. shaft rpm 315.1 rpm;
- 3. shaft torque 56,450 ft-1b (76,540 Nm); and
- 4. shaft power 3,390 shp (2,530 kW).

On the average, there is only a 2 percent difference in the powering data.

A comparison of statically trimmed by the stern rough and calm water trials was accomplished. These results are portrayed in Figure 6 and tabulated in Tables 9, 10, 15, and 16. As can be seen from the curves, there is very little difference in the powering characteristics. This was due to the fact that the difference between rough and calm water was not as great as desired. However, it should be noted that the calm water trial did indeed evince the fact that it would take less power to achieve a speed in calm water than in rough water.

The calm water trials (217.4 tons, 220.9 metric tons) reached a maximum powering performance of:

- 1. ship speed 17.83 knots;
- 2. shaft rpm 315.5 rpm;
- 3. shaft torque 51,490 ft-1b (69,810 Nm); and
- 4. shaft power 3,095 shp (2,310 kW).

The maximum powering characteristics of the rough water trials (215.0 tons, 218.4 metric tons) were:

- 1. ship speed 17.53 knots;
- 2. shaft rpm 308.3 rpm;
- 3. shaft torque 51,730 ft-1b (70,140 Nm); and
- 4. shaft power 3,035 shp (2,265 kW).

On the average, only a 1 percent difference was found in the powering data.

A view of two trimmed by the stern medium displacement trials is shown in Figure 7 and tabulated in Tables 13, 14, 17, and 18. Due to the disparities in the trial conditions, no real comparison can be made. Each of these curves should be looked upon as two entirely independent sets of powering trials data.

The maximum powering characteristics for the fixed control surfaces (226.7 tons, 230.3 metric tons) calm water trial were:

- 1. ship speed 17.95 knots;
- 2. shaft rpm 318.4 rpm;
- 3. shaft torque 56,810 ft-1b (77,020 Nm); and
- 4. shaft power 3,445 shp (2,570 kW).

The maximum powering characteristics for the automatic control system (228.4 tons, 232.1 metric tons) rough water trial were:

- 1. ship speed 17.83 knots;
- 2. shaft rpm 321.0 rpm;
- 3. shaft torque 56,610 ft-1b (76,750 Nm); and
- 4. shaft power 3,460 shp (2,580 kW).

A wave profile run was conducted at the top speed. The data for this run are comparable to the rough water automatic control system data obtained. The purpose of this run was to compare the two operational modes of the automatic control system: the contouring and platforming modes, respectively. This particular run was unique in that the automatic control system in the contouring mode operated the control surfaces according to the wave profile. By utilizing heave pressure sensors mounted in the ship hulls, a constant hull depth in relation to the waves was possible. All other automatic control system runs in the platform mode used 0-deg operational trim as the criteria for control surface movement. This was achieved by the monitoring of the pitch and roll gyros in the Humphrey Stable Table and keeping these motions to a minimum.

Figures 8 through 37 are actual computer time histories of the various full-scale trial conditions. Depicted on these graphs are all the control surfaces: roll and pitch angles; relative wind speed and direction; significant wave height (where applicable); shaft rpm; and shaft torque.

For the calm water trials, a run with a speed just above the speed hump and a high-speed run were the two runs chosen to give a representative example of each day's operation.

Rough water trials are represented by showing each of the types of seas in which the SSP operated. For the rough water trials, powering data were found by averaging the port and starboard beam seas data together. Other types of seas were head, following, starboard bow quartering, and starboard stern quartering.

By observing these figures it is possible to determine the interaction of each variable on the powering data.

CONCLUSIONS

The results of the various standardization trials on SSP KAIMALINO are considered to be good and the data applicable to the new buoyancy module configuration of the SSP with clean hulls and propellers. The following conclusions can be drawn from the standardization trials.

- 1. The original non-blister hull configuration proved more desirable above the speed of 13.2 knots. However, below this speed, the new blister hull configuration is markedly superior in terms of power needed to achieve comparable speeds.
- 2. Operations using a statically trimmed by the stern configuration provided a 7 percent shaft torque and shaft power savings with essentially the same rpm over that of a statically 0-deg trim vessel in the hump region.
- 3. At low ship speeds, the SSP will trim naturally by the bow; at higher speeds (over the hump), the SSP will tend to trim by the stern. Between 12 and 16 knots, it is recommended that the SSP operate initially at a statically 0-deg trim. When operating in this speed range in a statically trimmed by the stern condition, large stabilizer flap angles were required to maintain level flight. Above and below this speed range, a statically trimmed by the stern condition appears to be beneficial.
- 4. As expected, light displacement statically trimmed by the stern required less power (on the average of 6 percent less shaft rpm, 19 percent less shaft power, and 13 percent less shaft torque) than its heavy displacement counterpart above and below the hump region of 9.7 to 11.6

knots. Even greater power savings of 9 percent less shaft rpm, 33 percent less shaft power, and 25 percent less shaft torque were realized in the hump region.

- 5. Little or no powering difference was observed between a 0-deg control surfaces status and a fixed control surfaces status for the light displacement at speeds below 11.6 knots. With an approximate 10-deg difference in stabilizer flap angles, these points were in agreement with their fixed-control surfaces counterpart. Major changes in operational trim did not occur until a speed of approximately 12 knots was obtained.
- 6. It is recommended that a further study be conducted on the broad range effects of control surface angles on the dynamic stability of the SSP.
- 7. Above 9.8 knots, the automatic control system is marginally superior to the fixed-control surfaces operating mode (needs 1 percent less shaft rpm and 3 percent less shaft torque and shaft power to reach the desired speed). Below this speed, the fixed-control surfaces condition appears to be more desirable.
- 8. As expected, rough water operations require more power (on the average of 1 percent more shaft rpm, shaft torque, and shaft power) to reach a desired speed than does calm water operations. No meaningful power savings figures can be extrapolated from the data due to the lack of significant contrast between our nominal rough and calm water conditions. It is recommended that an additional series of trials be undertaken in rough water (State Seas 3 to 5) to further investigate the effectiveness of the automatic control system versus the fixed control surfaces mode of operation.
- 9. A further extensive investigation into the contouring mode and the platform mode of operation of the automatic control system is recommended. From the data, it appears that the contouring (wave profile) mode is favorably comparable to its automatic control system counterpart.

ACKNOWLEDGMENTS

The authors would like to thank Mssrs. Charles W. Tate, Kenneth E. Newton, and Richard J. Stenson for their invaluable assistance in editing, compilation of data, and technical assistance. Without their help, this

report would not have been possible. We would also like to thank Mrs. Patricia A. Woolaver for her efforts spent in editing and typing this report.

APPENDIX

STATIC AND OPERATIONAL DRAFT MEASUREMENTS

In order to obtain an estimate of the operational draft, a video tape recorder television system was utilized. Cameras mounted on the well deck catwalk were trained on both starboard struts. From the video tapes of each run, it was possible to devise a set of criteria for measuring ship operational draft. Draft mark measurements were taken at the leading edge of each starboard strut during periods of minimal swell and turbulence. From an average of several measurements taken during the duration of each three-minute run, an average forward and aft draft was determined. A video tape example of the measurement modus operandi is presented in Figure 38. Table 19 is a tabulation of the draft measurements obtained.

A comparison of average operational trim calculated from the video tapes and that obtained using DTNSRDC roll and pitch gyros, is presented in Table 19 for the calm water runs. Both trims compare well for a majority of the runs. Discrepancies occur due to the difficulty in reading the video tape draft markings. For this reason, rough water comparison runs are not presented though they were recorded. Camera lens condensation, camera positioning difficulties, and spray were a few of the problems encountered. It is suggested that a sonic waveheight probe, in conjunction with the video system, be utilized for future draft mark determination.

Figure 2 - Instrumentation Block Diagram

Figure 3 - Comparison of SSP KAIMALINO Standardization Trial Results for the Non-Blister and Blister Module Hull Configurations

Figure 4 - Comparison of Statically Trimmed by the Stern Heavy and Light Displacement Standardization Trial Results versus Heavy Displacement Statically O Degree Trim Standardization Trial Results

Figure 5 - Comparison of Automatic Control System versus Fixed Control Surfaces Standardization Trial Results

Figure 6 - Comparison of Rough and Calm Water Standardization Trial Results

Figure 7 - Medium Displacement Standardization Trial Results

Figure 8 - Time History of Run 0110S

Figure 8a - Time History of Run OllOS: Calm Water, Displacement = 237.1 tons (240.9 metric tons), Statically 0 deg Trim, Fixed Control Surfaces, Ship Speed = 13.34 knots

Figure 8 (Continued)

Figure 8b - Time History of Run OllOS: Calm Water, Displacement = 237.1 tons (240.9 metric tons), Statically 0 deg Trim,
Fixed Control Surfaces, Ship Speed = 13.34 knots

Figure 9 - Time History of Run 0190N

Figure 9a - Time History of Run 0190N: Calm Water, Displacement = 237.1 tons (240.9 metric tons), Statically 0 deg Trim,
Fixed Control Surfaces, Ship Speed = 17.44 knots

Figure 9 (Continued)

Figure 9b - Time History of Run 0190N: Calm Water, Displacement = 237.1 tons (240.9 metric tons), Statically 0 deg Trim, Fixed Control Surfaces, Ship Speed = 17.44 knots

Figure 10 - Time History of Run 0280S

Figure 10a - Time History of Run 0280S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 13.02 knots

Figure 10 (Continued)

Figure 10b - Time History of Run 0280S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 13.02 knots

Figure 11 - Time History of Run 0320S

Figure 11a - Time History of Run 0320S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 17.67 knots

0

Figure 11 (Continued)

Figure 11b - Time History of Run 0320S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 17.67 knots

Figure 12 - Time History of Run 0440N

Figure 12a - Time History of Run 0440N: Calm Water, Displacement = 217.4 tons (220.9 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 12.19 knots

Figure 12 (Continued)

Figure 12b - Time History of Run 0440N: Calm Water, Displacement = 217.4 tons (220.9 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 12.19 knots

Figure 13 - Time History of Run 0540N

Figure 13a - Time History of Run 0540N: Calm Water, Displacement = 217.4 tons (220.9 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 17.18 knots

Figure 13 (Continued)

Figure 13b - Time History of Run 0540N: Calm Water, Displacement = 217.4 tons (220.9 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 17.18 knots

Figure 14 - Time History of Run 0660S

Figure 14a - Time History of Run 0660S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically 0 deg Trim,
Automatic Control System, Ship Speed = 13.58 knots

Figure 14 (Continued)

Figure 14b - Time History of Run 0660S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically 0 deg Trim,
Automatic Control System, Ship Speed = 13.58 knots

Figure 15 - Time History of Run 0710S

Figure 15a - Time History of Run 0710S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically 0 deg Trim,
Automatic Control System, Ship Speed = 17.83 knots

Figure 15 (Continued)

Figure 15b - Time History of Run 0710S: Calm Water, Displacement = 237.8 tons (241.6 metric tons), Statically 0 deg Trim,
Automatic Control System, Ship Speed = 17.83 knots

Figure 16 - Time History of Run 0810

Figure 16a - Time History of Run 0810: Rough Water, Head Seas Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 11.16 knots

Figure 16 (Continued)

Figure 16b - Time History of Run 0810: Rough Water, Head Seas Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 11.16 knots

Figure 17 - Time History of Run 0820

Figure 17a - Time History of Run 0820: Rough Water, Starboard Bow Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 12.19 knots

Figure 17 (Continued)

Figure 17b - Time History of Run 0820: Rough Water, Starboard Bow Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 12.19 knots

Figure 18 - Time History of Run 0830

Figure 18a - Time History of Run 0830: Rough Water, Starboard Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 12.65 knots

Figure 18 (Continued)

Figure 18b - Time History of Run 0830: Rough Water, Starboard Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 12.65 knots

Figure 19 - Time History of Run 0840

Figure 19a - Time History of Run 0840: Rough Water, Starboard Stern Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 13.00 knots

Figure 19 (Continued)

Figure 19b - Time History of Run 0840: Rough Water, Starboard Stern Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 13.00 knots

Figure 20 - Time History of Run 0850

Figure 20a - Time History of Run 0850: Rough Water, Following Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 13.06 knots

Figure 20 (Continued)

Figure 20b - Time History of Run 0850: Rough Water, Following Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 13.06 knots

Figure 21 - Time History of Run 0860

Figure 21a - Time History of Run 0860: Rough Water, Port Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 11.96 knots

Figure 21 (Continued)

Figure 21b - Time History of Run 0860: Rough Water, Port Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 11.96 knots

Figure 22 - Time History of Run 0950

Figure 22a - Time History of Run 0950: Rough Water, Starboard Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 18.32 knots

Figure 22 (Continued)

Figure 22b - Time History of Run 0950: Rough Water, Starboard Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 18.32 knots

Figure 23 - Time History of Run 0960

Figure 23a - Time History of Run 0960: Rough Water, Starboard Stern Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 19.53 knots

Figure 23 (Continued)

Figure 23b - Time History of Run 0960: Rough Water, Starboard Stern Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 19.53 knots

Figure 24 - Time History of Run 0970

Figure 24a - Time History of Run 0970: Rough Water, Following Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 19.50 knots

Figure 24 (Continued)

Figure 24b - Time History of Run 0970: Rough Water, Following Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 19.50 knots

Figure 25 - Time History of Run 0980

Figure 25a - Time History of Run 0980: Rough Water, Port Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 17.34 knots

Figure 25 (Continued)

Figure 25b - Time History of Run 0980: Rough Water, Port Beam Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 17.34 knots

Figure 26 - Time History of Run 0990

Figure 26a - Time History of Run 0990: Rough Water, Head Seas,
Displacement = 228.4 tons (232.1 metric tons),
Statically Trimmed by the Stern, Automatic Control System,
Ship Speed = 17.52 knots

Figure 26b - Time History of Run 0990: Rough Water, Head Seas,
Displacement = 228.4 tons (232.1 metric tons),
Statically Trimmed by the Stern, Automatic Control System,
Ship Speed = 17.52 knots

Figure 27 - Time History of Run 1000

Figure 27a - Time History of Run 1000: Rough Water, Starboard Bow Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 18.01 knots

Figure 27 (Continued)

Figure 27b - Time History of Run 1000: Rough Water, Starboard Bow Quartering Seas, Displacement = 228.4 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System, Ship Speed = 18.01 knots

Figure 28 - Time History of Run 1140

Figure 28a - Time History of Run 1140: Rough Water, Head Seas,
Displacement = 215.0 tons (218.4 metric tons),
Statically Trimmed by the Stern, Fixed Control Surfaces,
Ship Speed = 11.37 knots

Figure 28 (Continued)

Figure 28b - Time History of Run 1140: Rough Water, Head Seas,
Displacement = 215.0 tons (218.4 metric tons),
Statically Trimmed by the Stern, Fixed Control Surfaces,
Ship Speed = 11.37 knots

Figure 29 - Time History of Run 1150

Figure 29a - Time History of Run 1150: Rough Water, Starboard Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 12.37 knots

Figure 29 (Continued)

Figure 29b - Time History of Run 1150: Rough Water, Starboard Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 12.37 knots

Figure 30 - Time History of Run 1160

Figure 30a - Time History of Run 1160: Rough Water, Following Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 12.01 knots

Figure 30 (Continued)

Figure 30b - Time History of Run 1160: Rough Water, Following Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 12.01 knots

Figure 31 - Time History of Run 1170

Figure 31a - Time History of Run 1170: Rough Water, Port Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 11.23 knots

Figure 31 (Continued)

Figure 31b - Time History of Run 1170: Rough Water, Port Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 11.23 knots

Figure 32 - Time History of Run 1260

Figure 32a - Time History of Run 1260: Rough Water, Head Seas,
Displacement = 215.0 tons (218.4 metric tons),
Statically Trimmed by the Stern, Fixed Control Surfaces,
Ship Speed = 17.05 knots

Figure 32 (Continued)

Figure 32b - Time History of Run 1260: Rough Water, Head Seas,
Displacement = 215.0 tons (218.4 metric tons),
Statically Trimmed by the Stern, Fixed Control Surfaces,
Ship Speed = 17.05 knots

Figure 33 - Time History of Run 1270

Figure 33a - Time History of Run 1270: Rough Water, Starboard Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 18.03 knots

Figure 33 (Continued)

Figure 33b - Time History of Run 1270: Rough Water, Starboard Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 18.03 knots

Figure 34 - Time History of Run 1280

Figure 34a - Time History of Run 1280: Rough Water, Following Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 17.68 knots

6

Figure 34 (Continued)

Figure 34b - Time History of Run 1280: Rough Water, Following Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 17.68 knots

Figure 35 - Time History of Run 1290

Figure 35a - Time History of Run 1290: Rough Water, Port Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 17.02 knots

Figure 35 (Continued)

Figure 35b - Time History of Run 1290: Rough Water, Port Beam Seas, Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 17.02 knots

Figure 36 - Time History of Run 1360S

Figure 36a - Time History of Run 1360S: Calm Water, Displacement = 226.7 tons (230.3 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 13.39 knots

Figure 36 (Continued)

Figure 36b - Time History of Run 1360S: Calm Water, Displacement = 226.7 tons (230.3 metric tons), Statically Trimmed by the Stern,
Fixed Control Surfaces, Ship Speed = 13.39 knots

Figure 37 - Time History of Run 1420S

Figure 37a - Time History of Run 1420S: Calm Water, Displacement = 226.7 tons (230.3 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 18.89 knots

Figure 37 (Continued)

Figure 37b - Time History of Run 1420S: Calm Water, Displacement = 226.7 tons (230.3 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces, Ship Speed = 18.89 knots

SSP KAIMALINO

STARBOARD FORWARD STRUT

RUN 440N 21 SEPTEMBER 1979

Figure 38 - A Typical Video Tape View of the Starboard Struts During a Trial Run

TABLE 1 - PRINCIPAL SHIP AND PROPELLER CHARACTERISTICS

SHIP DIMENSIONS

Length Overall, ft (m)	88.33 (26.92)
Maximum Beam, ft (m)	49.66 (15.14)
Displacement, ton (metric ton)	237.80 (241.60)
Draft, ft (m)	16.97 (5.17)
Overall Height, ft (m)	31.75 (9.68)
Deck Width, ft (m)	45.00 (13.72)
Lower Hull Diameter, ft (m)	6.50 (1.98)
<pre>Height, Waterline to Deck, ft (m)</pre>	12.78 (3.90)
Deck Well, ft (m)	23.0 x 12.5 (7.01 x 3.81)
Distance between Lower Hull Centerlines, ft (m)	40.00 (12.19)

CANARDS (each)

Section Profile, NACA	64-015
Span, ft (m)	6.00 (1.83)
Longitudinal Distance from CG to Hinge Axis, ft (m)	28.30 (8.63)
Longitudinal Distance from Trailing Edge to Hinge Axis, ft (m)	4.90 (1.49)
Vertical Distance from Baseline to Hinge Axis, ft (m)	3.25 (0.99)
Maximum Chord, ft (m)	7.50 (2.29)
Minimum Chord, ft (m)	4.00 (1.22)
Thickness, ft (m)	0.86 (0.26)

STERN FOIL

Chord, ft (m)	7.80 (2.38)
Section Profile, Modified NACA (wedge-shaped trailing edge)	64-021
Span at Leading Edge, ft (m)	34.60 (10.55)
Longitudinal Distance from CG	30.00 (9.14)

TABLE 1 (Continued)

Chord, Each Flap, ft (m)	1.95 (0.59)
Span, Flaps, Total, ft (m)	34.60 (10.55)
Thickness, ft (m)	1.64 (0.50)
Height from Baseline to Chord Line, ft (m)	3.25 (0.99)

RUDDERS (each)

Chord, Trailing Edge to Hinge Axis, ft (m)	2.88 (0.88)
Span, ft (m)	9.25 (2.82)
Transverse Distance from Centerline to Hinge Axis, ft (m)	20.00 (6.10

PROPELLER CHARACTERISTICS

Wilkinson Controllable Pitch Propellers	2
Diameter, ft (m)	6.50 (1.98)
Pitch Diameter Ratio	Variable
Number of Blades, each	4
Direction of Rotation	Right-Hand

TABLE 2 - SUMMARY OF TRIAL RUNS

Calm Water, Heavy Displacement = 237.1 tons (240.9 metric tons), Statically 0° Trim, Fixed Control Surfaces
Calm Water, Heavy Displacement = 237.8 tons (241.6 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces
Calm Water, Light Displacement = 217.4 tons (220.9 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces
Calm Water, Heavy Displacement = 237.8 tons (241.6 metric tons), Statically 0° Trim, Automatic Control System
Rough Water, Medium Displacement = 2 tons (232.1 metric tons), Statically Trimmed by the Stern, Automatic Control System
Rough Water, Light Displacement = 215.0 tons (218.4 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces
Calm Water, Medium Displacement = 226.7 tons (230.3 metric tons), Statically Trimmed by the Stern, Fixed Control Surfaces

TABLE 3 - SUMMARY OF TRIAL CONDITIONS

State		0-1		0-1		0-1				2		2		1
Water Specific Gravity		1.023		1.023		1.022		1.023		1.022		-		•
ir cature (deg C)		30.0		30.0		30.6		31.1		30.0		30.0		29.4
Air Temperature (deg F) (deg		98		98	and service free	87		88		98		98		85
Water Temperature :8 F) (deg C)	1979	26.7	1979	26.7	1979	27.2	1979	27.8	1979	26.7	1979	26.7	1979	26.7
War Temper (deg F)	19 September 1979	80	20 September 1979	80	September 1979	81	25 September 1979	82	27 September 1979	08	28 September 1979	08	02 October 1979	80
Trim Stern (m)	19	00.0	20	67.0	21	91.0	25	60.0	27	0.79	28	0.55	02	0.73
Static Trim by the Stern (ft) (m)		0.0		1.6		2.5		0.3		2.6		1.8	100	2.4
Average True Wind Velocity (knot)		6		6		12		11		10		6		6
Average True Wind Direction (deg)		262		265		240		108		73		81		777
Displacement on) (metric ton)		240.9		237.8		220.9		241.6	***************************************	232.1		218.4		230.3
Disp] (ton)		237.1		237.8		217.4		237.8		228.4		215.0		226.7

TABLE 4 - LIST OF DATA CHANNELS AND ACCURACY LEVELS

Channel	Accuracy Level
Heading	<u>+</u> 2%
Wind Direction	<u>+</u> 2%
Wind Velocity	<u>+</u> 2%
Range A	<u>+</u> 10 ft (<u>+</u> 3 m)
Range B	<u>+</u> 10 ft (<u>+</u> 3 m)
Run Time	N.A.
Torque, Starboard	<u>+</u> 5%
Torque, Port	<u>+</u> 5%
RPM, Starboard	<u>+</u> 1%
RPM, Port	<u>+</u> 1%
Propeller Pitch, Starboard	N.A.
Propeller Pitch, Port	N.A.
Rudder Angle, Starboard	<u>+</u> 2%
Rudder Angle, Port	<u>+</u> 2%
Canard Angle, Starboard	<u>+</u> 2%
Canard Angle, Port	<u>+</u> 2%
Stabilizer Flap Angle, Starboard	<u>+</u> 2%
Stabilizer Flap Angle, Port	<u>+</u> 2%
Roll Angle	<u>+</u> 1%
Pitch Angle	<u>+</u> 1%
Wave Height (Sonic Buoy)	<u>+</u> 2%

TABLE 5 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 19 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 237.1 TONS, STATICALLY 0 DEGREE TRIM, FIXED CONTROL SURFACES

Mini- ranger Speed		Average Pitch* (deg)	Average Roll* (deg)	Aver Can Ang	Average Canard Angles* (deg)	Aver Stabi Flap A (de	Average Stabilizer Flap Angles* (deg)		Shaft RPM	PM	Sh	Shaft Torque (ft-1bf)	ne	Но	Shaft Horsepower	er
nors	(knots)			Stbd	Port	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total
4.87	1	-0.3	0.2	8.9-	7.2	5.0	21.7	86.9	64.7	75.8	2,250	800	3,050	35	10	45
4.49	'	6.0-	6.0	1-9-	7.2	5.1	21.7	87.3	66.3	76.8	2,360	076	3,300	07	10	50
4.68	1									76.3		7	3,180			50
8.46	1	0	0.2	-2.4	4.5	3.9	8.2	150.4	156.3	153.4	6,470	7,810	14,280	185	235	420
7.55	,	-0.5	0.8	-2.3	9.9	4.0	8.2	149.3	155.5	152.4	6,510	7,890	14,400	185	235	420
8.37	1	1.3	0.3	-2.4	0.1	4.0	8.2	151.6	156.5	154.1	6,620	7,870	14,490	190	235	425
7.98	1									153.0			14,390			420
9.65	-	-0.5	6.0	-1.6	7.0-	-2.1	0	214.8	210.9	212.9	15,530	15,820	31,350	635	635	1270
9.92	-	0	7.0	-1.6	1.0-	-2.1	-8.1	216.2	212.2	214.2	15,660	15,980	31,640	949	645	1290
9.79	1									213.5			31,500			1280
12.99		0.7	1.0	-1.5	9.0-	4.8	7.4	241.5	237.7	239.6	17,060	18,250	35,310	785	825	1610
13.34	1	0.7	0.5	-1.1	-1.0	8.7	10.7	243.9	239.1	241.5	17,350	18,240	35,590	805	830	1635
13.17	-									240.6			35,450			1625
14.90	-	-0.7	1.5	6.5-	-7.1	3.6	4.1	277.6	274.6	276.1	22,220	23,140	45,360	5211	1210	2385
15.10		-0.4	0.7	-5.9	-7.5	3.3	3.8	282.0	276.2	279.1	22,980	23,050	46,030	1235	1210	2445
15.00	1									277.6			45,700			2415
17.44	1	-0.7	6.0	6.0-	-1.9	-1.9	-1.6	314.5	311.5	313.0	27,720	28,960	56,680	1660	1720	3380
17.58	1	-0.1	0.2	-0.7	-2.0	-1.7	-1.8	316.9	311.9	314.4	28,100	28,870	56,970	1695	1715	3410
17.51	1								8	313.7			56,830			3395

* + Trailing Edge Up Canard and Stabilizer
- Trailing Edge Down Flap Angles

Pitch + Bow Up - Bow Down

+ Stbd Roll - Port Roll

TABLE 6 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 19 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 240.9 METRIC TONS, STATICALLY 0 DEGREE TRIM, FIXED CONTROL SURFACES

7 7 0	Mini- ranger Speed	Doppler Log Speed	Average Pitch* (deg)	Average Roll*	Averag Canarc Angles (deg)	Average Canard Angles* (deg)	Averag Stabilia Flap Angl	Average Stabiliger Flap Angles* (deg)		Shaft RPM	PM	Sh	Shaft Torque (N-m)	enl	P.	Power (kW)	<u> </u>
5	lots)	(knots)			Stbd	Port	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total
4	4.87	1	-0.3	0.2	8.9-	7.2	5.0	21.7	86.9	64.7	75.8	3,050	1,085	4,140	25	10	35
4	4.49	-	6.0-	6.0	-6.7	7.2	5.1	21.7	87.3	66.3	76.8	3,200	1,275	4,470	30	10	07
4	4.68	•									76.3			4,310			07
00	8.46		0	0.2	-2.4	4.5	3.9	8.2	150.4	156.3	153.4	8,770	10,590	19,360	140	175	315
1	7.55	1	-0.5	8.0	-2.3	9.9	4.0	8.2	149.3	155.5	152.4	8,820	10,700	19,520	140	175	315
0	8.37	1	1.3	0.3	-2.4	0.1	4.0	8.2	151.6	156.5	154.1	8,980	10,670	19,650	140	175	315
7	7.98	-									153.0			19,510			315
6	9.65	-	-0.5	6.0	-1.6	1.0-	-2.1	0	214.8	210.9	212.9	21,060	21,450	42,510	475	475	950
6	9.92	-	0	7.0	-1.6	7.0-	-2.1	-8.1	216.2	212.2	214.2	21,230	21,670	42,900	480	480	096
6	9.79	-									213.5			42,710			955
12	12.99	1	0.7	1.0	-1.5	9.0-	4.8	7°L	241.5	237.7	239.6	23,130	24,740	47,870	585	615	1200
13	13.34	-	1.0	6.0	-1.1	-1.0	8.7	10.7	6.842	239.1	241.5	23,520	24,730	48,250	009	620	1220
13	13.17	-									240.6			48,060			1210
14	14.90	-	-0.7	1.5	-5.9	-7.1	3.6	4.1	277.6	274.6	276.1	30,130	31,370	61,500	875	905	1780
15	15.10	1	-0.4	0.7	-5.9	-7.5	3.3	3.8	282.0	276.2	279.1	31,160	31,250	62,410	920	905	1825
15	15.00	1									277.6			61,960			1800
17	17.44	-	-0.7	6.0	6.0-	-1.9	-1.9	-1.6	314.5	311.5	313.0	37,580	39,270	76,850	1240	1280	2520
17	17.58	-	-0.1	0.2	-0.7	-2.0	-1.7	-1.8	6.918	311.9	314.4	38,100	39,140	77,240	1265	1280	2545
17	17.51	-									313.7			77.050			2530

* + Trailing Edge Up Canard and Stabilizer
- Trailing Edge Down Flap Angles

Pitch + Bow Up - Bow Down

+ Stbd Roll - Port Roll

TABLE 7 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 20 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 237.8 TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

Run	Mini- ranger Speed	Doppler Log Speed	Average Pitch* (deg)	Average Roll* (deg)	Ave Car Ang	Average Canard Angles* (deg)	Aver Stabi Flap A (de	Average Stabilizer Flap Angles* (deg)		Shaft RPM	иъм	Sh	Shaft Torque (ft-1bf)	en	Но	Shaft Horsepower	er
	(kilots)	(KIIOLS)			Stbd	Port	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total
2308	7.68	1	-2.3	0.3	1.2	-4.7	14.9	10.7	151.5	152.3	151.9	6,610	6,580	13,190	190	190	380
240N	7.65	-	-2.8	6.0	-0.1	-3.3	13.5	12.2	150.9	151.3	151.1	099,9	6,570	13,230	190	190	380
	7.69	1									151.5			13,210			380
2508	9.72	-	-2.0	-0.2	-0.4	-3.0	5.5	4.3	211.1	211.2	211.2	14,350	14,290	28,640	575	575	1150
260N	9.58	1	-2.7	0.1	-1.4	-1.9	4.4	5.4	210.3	212.0	211.2	14,320	14,520	28,840	575	585	1160
	9.65	1									211.2			28,740			1155
2808	13.02	1	-2.2	0.1	1.7	6.4-	25.7	21.6	245.6	246.9	246.3	17,610	18,080	35,690	825	850	1675
290N	12.65	1	-2.5	1.8	1.4	-5.0	23.2	19.1	247.2	248.1	247.7	17,680	18,120	35,800	830	855	1685
	12.84	1									247.0			35,750			1680
3008	14.60	1	-2.6	1.1	1.6	-5.2	19.2	14.5	277.1	277.8	277.5	22,240	22,210	44,450	1175	1175	2350
310N	14.31	-	-3.1	-0.4	0.5	-4.0	18.0	15.6	279.2	278.5	278.9	22,700	22,350	45,050	1205	1185	2390
	14.46	1									278.2			44,750			2370
3208	17.67	1	-2.4	0.2	-0.1	-3.5	4.7	2.6	317.3	317.8	317.5	27,280	26,700	53,980	1650	1615	3265
330N	17.27	1	-3.2	8.0	0.4	-4.2	5.3	2.0	7.918	318.6	317.7	27,080	26,560	53,640	1635	1610	3245
	17.47	-									317.6			53,810			3255
340S**	15.18	-	1.3	6.0	-0.2	-3.4	0.2	-2.0	279.3	279.9	279.6	21,600	21,670	43,270	1150	1155	2305
350N**	14.78	1	0.8	0.5	-0.1	-3.5	0.1	-2.0	278.1	279.0	278.5	21,520	21,650	43,170	1140	1150	2290
	14.98	1									279.1			43,220			2295

Canard and Stabilizer Flap Angles * + Trailing Edge Up - Trailing Edge Down

+ Bow Up - Bow Down Pitch

+ Stbd Roll - Port Roll

** 0 deg flaps and canards

TABLE 8 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 20 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 241.6 METRIC TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

Doppler Log Speed	Average Pitch* (deg)	Average Roll* (deg)	Average Canard Angles* (deg)	age ard es*	Average Stabilizer Flap Angles* (deg)	age lizer ngles*		Shaft RPM	PM	Sh	Shaft Torque (N-m)	an	Po	Power (kW)	િ
	5	5	Stbd	Port	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total
-2	-2.3	0.3	1.2	-4.7	14.9	10.7	151.5	152.3	151.9	8,960	8,920	17,880	140	140	280
-2	-2.8	6.0	-0.1	-3.3	13.5	12.2	150.9	151.3	151.1	9,030	8,910	17,940	140	140	280
									151.5			17,910			280
1	-2.0	-0.2	-0.4	-3.0	5.5	4.3	211.1	2111.2	211.2	19,460	19,370	38,830	430	430	860
1	-2.7	0.1	-1.4	-1.9	4.4	5.4	210.3	212.0	211.2	19,410	19,690	39,100	430	435	865
									211.2			38,970			860
'	-2.2	0.1	1.7	6.4-	25.7	21.6	245.6	246.9	246.3	23,880	24,510	48,390	615	635	1250
('	-2.5	1.8	1.4	-5.0	23.2	19.i	247.2	248.1	247.7	23,970	24,570	48,540	620	049	1260
									247.0			48,470			1255
'	-2.6	1.1	1.6	-5.2	19.2	14.5	277.1	277.8	277.5	30,150	30,110	60,260	875	875	1750
1'	-3.1	-0.4	0.5	-4.0	18.0	15.6	279.2	278.5	278.9	30,780	30,300	61,080	006	880	1780
									278.2			029,09			1765
1	-2.4	0.2	-0.1	-3.5	4.7	2.6	317.3	317.8	317.5	36,990	36,200	73,190	1230	1205	2435
'	-3.2	0.8	0.4	-4.2	5.3	2.0	316.7	318.6	317.7	36,720	36,010	72,730	1220	1200	2420
									317.6			72,960			2425
	1.3	0.5	-0.2	-3.4	0.2	-2.0	279.3	279.9	279.6	29,290	29,380	58,670	098	098	1720
	8.0	0.5	-0.1	-3.5	0.1	-2.0	278.1	279.0	278.5	29,180	29,350	58,530	850	855	1705
									279.1			58,600			1710

* + Trailing Edge Up Canard and Stabilizer
- Trailing Edge Down Flap Angles

Pitch + Bow Up - Bow Down

+ Stbd Roll - Port Roll

** 0 deg flaps and canards

TABLE 9 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 21 SEPTEMBER 1979, CALM WATER, LIGHT DISPLACEMENT = 217.4 TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

verage Average Pitch* Roll* (deg) (deg)	٠.		verag Roll* (deg)	and the same of the same of	Average Canard Angles* (deg)	age es*	Average Stabilize Flap Angle (deg)	Average Stabilizer Flap Angles* (deg)	745	Shaft RPM	RPM Average	ds 3	Shaft Torque (ft-1bf)	Total	¥ 74	Shaft Horsepower	Total
0.1 -0.2 1.3	-0.2	-0.2	-	Stbd	1	Port	Stbd	Port 1.8	156.1	159.7	Average 157.9	St 54	6.800		-	-	
-0.4	-0.4	-0.4	+	1.5		-3.0	8.8	5.6	155.2	159.0	1	6,630	6,800		_	1	
-0.8 -0.4 -0.3	-0.4	-0.4		-0.3	_	-1.1	6.3	7.0	155.6	159.5	157.5	6,600	6,780	13,380	195	205	007
											157.4			13,410			007
0.3 0.7	0.3	0.3	-	0.7	-	-1.6	9.1	8.4	204.7	200.9	202.8	11,250	10,480	21,730	077	007	840
-1.1 0.4 0.3	9.0	9.0		0	_	-1.3	-3.4	-4.2	195.4	9.761	195.0	11,730	10,810	22,540	435	700	835
-0.4 -0.7 0.1	-0.7	-0.7		0		-1.0	-3.7	-3.9	197.0	194.5	195.8	11,870	10,750	22,620	445	700	845
											1.761			22,360			840
0.3 -0.5 0.9	-0.5	-0.5		0.	6	-2.4	10.7	9.3	201.9	210.1	206.0	10,410	12,020	22,430	400	780	880
0 -0.7 -0.1	-0.7	-0.7		-0-	-	9.1-	10.3	10.8	205.0	210.9	208.0	10,840	12,010	22,850	425	780	908
0 -0.7 0.7	-0.7	-0.7		0	-	-2.3	13.5	12.8	206.9	211.4	1.602	11,105	12,020	23,130	435	485	920
											207.8			22,810			006
-0.2 -1.1 -0.1	-1.1	-1.1		-0.1		-1.4	10.3	11.1	243.0	242.9	243.0	16,530	14,430	30,960	765	999	1430
0.2 -0.5 0.5	-0.5	-0.5		0.5		-1.6	6.6	8.6	245.3	243.2	244.2	16,270	17,440	33,710	760	805	1565
-0.5 -0.3 0	-0.3	-0.3		0		-1.0	9.3	10.4	245.6	242.8	244.2	16,480	17,550	34,030	770	810	1580
											243.9			33,100			1535
-0.8 -1.0 -0.1	-1.0	-1.0	_	-0.1		6.0-	1.3	2.0	277.5	277.7	277.6	20,640	22,480	43,120	0601	1190	2280
0.3 -0.9 0.1	6.0-	6.0-		0.	_	-1.2	6.0	1.2	278.5	277.4	278.0	20,870	22,440	43,310	1105	1185	
											277.8			43,210			2285
-1.2 -0.1 -0.2	-0.1	-0.1		-0.	~	8.0-	-3.3	-3.0	312.8	315.8	314.3	26,100	25,370	51,470	1555	1525	3080
4.2 -1.9 0.	-1.9	-1.9	+	0	3	-1.1	-3.7	-4.3	315.2	318.3	316.7	26,200	25,300	51,500	1575	1535	
				1							315.5			51,490			3095
0.9 -1.0 -0.4	-1.0	-1.0		0	7	-6.8	-1.3	9.0-	156.7	160.4	158.6	9,660	6,840	13,500	200	210	410
1.4 -1.7 -0.5	-1.7	-1.7		-0	5	8.0-	-1.3	9.0-	156.1	159.5	157.8	6,680	6,820	13,500	200	205	405
0.9 -0.4 -0.3	-0.4	-0.4		-0	3	-1.1	6.0-	-0.7	155.8	160.0	157.9	6,570	6,810	13,380	195	205	007
											158.1			13,470			405
2.7 -1.5 -0.2	-1.5	-1.5		-0-	2	-1.3	8.0-	-0.7	205.5	210.8	208.2	10,880	12,030	22,910	425	485	910
2.3 -0.3 -0.3	-0.3	-0.3	-	-0	3	-1.3	-1.2	-1.0	206.4	211.1	208.8	10,940	12,030	22,970	430	485	913
3.1 -1.4 -0.3	-1.4	7 1		0	3	-1.2	-1.4	-1.1	207.9	211.1	209.5	11,070	11,980	23,050	077	780	920
		-1.4	1											000			010

* + Trailing Edge Up | Canard and Stabilizer - Trailing Edge Down | Flap Angles

+ Bow Up - Bow Down | Pitch

+ Stbd Roll - Port Roll

** 0 deg Control Surfaces

TABLE 10 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 21 SEPTEMBER 1979, CALM WATER, LIGHT DISPLACEMENT = 220.9 METRIC TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

Run		360N	3908	400N		2095	S70N	2808		4308	440N	4708	1	N085	2005	S10N		520N	5308		240N	5055		370N**	3808**	410N**		450S**	**N057	**8097	
Mini- ranger Speed	(Knots)	8.82	1.17	8.86	8.31	11.45	9.25	69.6	16.6	11.17	12.19	11.64	11.80	13.05	13.77	13.15	13.46	14.90	15.67	15.29	17.18	18.47	17.83	8.75	8.07	8.94	8.46	11.36	12.30	11.56	11.88
Doppler Log Speed	(knors)	-	-	,	,	-	-	-	•	-	-	-	-	-		,	1	-	-	-	-	-	-	-	-	-	,	-			
Average Pitch* (deg)		1.0	-0.5	8.0-		0.3	-1.1	-0.4		0.3	0	0		-0.2	0.2	-0.5		-0.8	0.3		-1.2	4.2		6.0	1.4	6.0		2.7	2.3	3.1	
Average Roll* (deg)		-0.2	-0.4	-0.4		0.3	7.0	-0.7		-0.5	-0.7	-0.7		-1.1	-0.5	-0.3		-1.0	6.0-		-0.1	-1.9		-1.0	-1.7	-0.4		-1.5	-0.3	-1.4	
Ave. Can Ang.	Stbd	1.3	1.5	-0.3		0.7	0.3	0.1		6.0	-0.1	0.7		-0.1	0.5	0		-0.1	0.1		-0.2	0.3		7.0-	-0.5	-0.3		-0.2	-0.3	-0.3	
Average Canard Angles* (deg)	Port	-2.1	-3.0	-1.1		-1.6	-1.3	-1.0		-2.4	-1.6	-2.3		-1.4	-1.6	-1.0		6.0-	-1.2		-0.8	-1.1		8.0-	-0.8	-1.1		-1.3	-1.3	-1.2	
Average Stabilizer Flap Anglesi (deg)	Stbd	4.1	8.8	6.3		9.1	-3.4	-3.7		10.7	10.3	13.5		10.3	6.6	9.3		1.3	6.0		-3.3	-3.7		-1.3	-1.3	6.0-		8.0-	-1.2	-1.4	
Average Stabilizer Flap Angles* (deg)	Port	1.8	5.6	7.0		7.8	-4.2	-3.9		9.3	10.8	12.8		11.1	8.6	10.4		0.2	1.2		-3.0	-4.3		9.0-	9.0-	7.0-		-0.7	-1.0	-1.1	
	Stbd	156.1	155.2	155.6	100	204.7	195.4	197.0		201.9	205.0	206.9	The same	243.0	245.3	245.6		277.5	278.5		312.8	315.2		156.7	156.1	155.8		205.5	206.4	207.9	
Shaft RPM	Port	159.7	159.0	159.5		200.9	9.461	194.5		210.1	210.9	211.4		242.9	243.2	242.8		7.772	277.4		315.8	318.3		160.4	159.5	160.0		210.8	211.1	211.1	
W.	Average	157.9	1.721	157.5	157.4	202.8	195.0	195.8	1.761	206.0	208.0	209.1	207.8	243.0	244.2	244.2	243.9	277.6	278.0	277.8	314.3	316.7	315.5	158.6	157.8	157.9	158.1	208.2	208.8	209.5	9 900
Sh	Stbd	8,950	8,990	8,950		15,250	15,900	16,090		14,110	14,700	15,060		22,410	22,060	22,340		27,980	28,300		35,390	35,520		9,030	090'6	8,910		14,750	14,830	15,010	
Shaft Torque (N-m)	Port	9,220	9,220	061'6		14,210	14,660	14,580		16,300	16,280	16,300		19,570	23,640	23,800		30,480	30,420		34,400	34,300		9,270	9,240	9,230		16,310	16,310	16,240	
e n	Total	18,170	18,210	18,140	18,180	79,460	30,560	30,670	30,310	30,410	30,980	31,360	30,930	086,14	45,700	051,95	74,880	097,85	58,720	28,590	062.69	69,820	018,69	18,300	18,300	18,140	18,260	31,060	31,140	31,250	31 140
Po	Stbd	145	145	145		330	325	330		300	315	325		570	595	575		815	825		1160	1175		150	150	145		320	320	330	
Power (kW)	Port	155	155	155		300	300	300		355	355	360		567	009	909		888	885		1135	1145		155	150	150		360	360	355	
-	Total	300	300	300	300	630	625	630	625	655	670	685	670	1065	1165	1180	1145	1700	1710	1705	2295	2320	2310	305	300	295	300	089	680	685	400

* + Trailing Edge Up | Canard and Stabilizer - Trailing Edge Down | Flap Angles

+ Bow Up - Bow Down

+ Stbd Roll - Port Roll ** 0 deg Control Surfaces

TABLE 11 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 25 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 237.8 TONS, STATICALLY 0 DEGREE TRIM, AUTOMATIC CONTROL SYSTEM

Shaft Horsepower	Port Total	130 275	155 260	265	215 430	240 480	455	660 1270	665 1290	670 1300	1290	750 1445	745 1440	740 1445	1440	1230 2420	1235 2435	1235 2425	2430	1760 3395	1760 3385	3390
Hor	Stbd	145	105		215	240		019	625	630		969	695	705		1190	1200	1190		1630	1625	
a	Total	10,700	10,320	10,510	14,400	15,610	15,000	31,030	31,270	31,600	31,290	32,290	32,300	32,340	32,310	45,640	45,860	45,490	45,710	26,590	56,310	56,450
Shaft Torque (ft-1bf)	Port	5,150	5,840		7,120	7,820		16,090	16,100	16,300		16,740	16,710	16,620		23,310	23,380	23,200		29,280	29,160	
Sha	Stbd	5,550	4,480		7,280	7,790		14,940	15,170	15,300		15,550	15,590	15,720		22,330	22,480	22,290		27,310	27,150	
М	Average	133.8	131.8	132.8	157.3	160.6	159.0	215.0	216.1	215.7	215.7	234.6	233.9	234.8	234.3	278.6	278.7	279.7	278.9	314.9	315.4	315.1
Shaft RPM	Port	132.1	137.5		158.6	160.3		216.2	216.5	216.1		234.5	233.7	234.5		277.6	7.772	279.0		316.0	316.7	
S	Stbd	135.5	126.2		155.9	160.9		213.7	215.7	215.3		234.7	234.2	235.2		279.5	279.6	280.4		313.7	314.1	
age izer gles* g)	Port	0.3	0.7		7.0	9.0-		-4.1	-6.1	-3.3		8.5	8.9	9.5		3.3	3.6	1.1		-3.1	-3.7	
Average Stabilizer Flap Angles* (deg)	Stbd	0.7	-0.7		*	1.4		-1.2	0.4-	-1.9		8.1	10.0	9.3		3.9	4.3	2.6		-2.1	-2.3	
age ird es*	Port	-19.4	-19.0		-17.1	-17.9		-12.8	-13.1	-11.7		-10.9	-10.5	8.6-		8.6-	-9.2	-9.5		-7.1	-7.8	
Average Canard Angles* (deg)	Stbd	-17.3	-18.4		-13.6	-13.9		-8.4	9.6-	-8.8		0.6-	-7.3	-7.6		-7.4	6.9-	-6.7		-5.4	-5.4	
Average Roll* (deg)		0.1	0.1		-0.1	0.2		0.1	0	-0.2		0.1	0	0.1		0.5	8.0	0.2		0.1	0	
Average Pitch* (deg)		-0.1	-0.4		-0.2	-0.3		9.0-	8.0-	8.0-		-0.1	0	-0.5		-0.5	-0.2	9.0-		-0.7	1.0	
Doppler Log Speed	(knots)	7.6	7.6	7.6	9.8	8.8	8.7	9.7	9.6	10.4	8.6	13.1	13.2	13.3	13.2	14.2	15.2	15.2	15.0	17.2	17.4	17.3
Mini- ranger Speed	(knots)	7.86	6.03	6.95	7.60	7.61	7.61	10.34	9.19	10.38	9.78	12.24	13.58	12.23	12.91	13.98	15.93	14.74	15.15	17.83	17.32	17.58
Run		7308	740N		S065	N009		8019	620N	630S		N059	S099	N029		N089	S069	700N		7108	720N	

⁺ Trailing Edge Up Canard and Stabilizer - Trailing Edge Down Flap Angles

⁺ Bow Up - Bow Down

⁺ Stbd Roll - Port Roll

^{**} Not instrumented

TABLE 12 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 25 SEPTEMBER 1979, CALM WATER, HEAVY DISPLACEMENT = 241.6 METRIC TONS, STATICALLY 0 DEGREE TRIM, AUTOMATIC CONTROL SYSTEM

Run	Mini- ranger Speed	Doppler Log Speed	Average Pitch* (deg)	Average Roll* (deg)	Average Canard Angles (deg)	Average Canard Angles* (deg)	Average Stabilizer Flap Angles (deg)	Average Stabilizer Flap Angles* (deg)		Shaft RPM	ЬМ	Sh	Shaft Torque (N-m)	ant	ŭ	Power (kW)	(%)
	(knots)	(knors)			Stbd	Port	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total
7308	7.86	7.6	-0.1	0.1	-17.3	-19.4	0.7	0.3	135.5	132.1	133.8	7,520	6,980	14,500	110	95	205
740N	6.03	7.6	-0.4	0.1	-18.4	0.61-	-0.7	0.7	126.2	137.5	131.8	6,070	7,920	13,990	80	115	195
	6.95	7.6									132.8			14,250			200
2069	7.60	9.8	-0.2	-0.1	-13.6	-17.1	*	0.4	155.9	158.6	157.3	9,870	9,650	19,520	160	160	320
N009	7.61	8.8	-0.3	0.2	-13.9	-17.9	1.4	9.0-	160.9	160.3	160.6	10,560	10,600	21,160	180	180	360
	7.61	8.7									159.0			20,340			340
910S	10.34	6.7	9.0-	0.1	-8.4	-12.8	-1.2	-4.1	213.7	216.2	215.0	20,260	21,820	42,080	455	067	945
620N	9.19	9.6	8.0-	0	9.6-	-13.1	0.4-	-6.1	215.7	216.5	216.1	20,570	21,830	42,400	465	495	096
630s	10.38	10.4	8.0-	-0.2	-8.8	-11.7	-1.9	-3.3	215.3	216.1	215.7	20,740	22,100	42,840	7.00	200	970
	9.78	8.6									215.7			42,430			096
650N	12.24	13.1	-0.1	0.1	0.6-	-10.9	8.1	8.5	234.7	234.5	234.6	21,080	22,700	43,780	520	999	1080
S099	13.58	13.2	0	0	-7.3	-10.5	10.0	8.9	234.2	233.7	233.9	21,140	22,660	43,800	520	555	1075
NO 29	12.23	13.3	-0.5	0.1	9.7-	8.6-	9.3	9.5	235.2	234.5	234.8	21,310	22,530	43,840	525	550	1075
	12.91	13.2									234.3			43,810			1075
N089	13.98	14.2	-0.5	0.5	-7.4	8.6-	3.9	3.3	279.5	277.6	278.6	30,280	31,600	61,880	885	920	1805
S069	15.93	15.2	-0.2	0.8	6.9-	-9.2	4.3	3.6	279.6	7.772	278.7	30,480	31,700	62,180	895	920	1815
700N	14.74	15.2	9.0-	0.2	-6.7	-9.5	2.6	1.1	280.4	279.0	279.7	30,220	31,460	61,680	885	920	1805
	15.15	15.0									278.9			086,19			1810
7105	17.83	17.2	-0.7	0.1	-5.4	-7.1	-2.1	-3.1	313.7	316.0	314.9	37,030	39,700	76,730	1215	1315	2530
720N	17.32	17.4	-1.0	0	-5.4	-7.8	-2.3	-3.7	314.1	316.7	315.4	36,810	39,540	76,350	1210	1315	2525
	17.58	17.3									315.1			76,540			2530

* + Trailing Edge Up | Canard and Stabilizer - Trailing Edge Down | Flap Angles

+ Bow Up - Bow Down

+ Stbd Roll - Port Roll ** Not instrumented

TABLE 13 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 27 SEPTEMBER 1979, ROUGH WATER, MEDIUM DISPLACEMENT = 228.4 TONS, STATICALLY TRIMMED BY THE STERN, AUTOMATIC CONTROL SYSTEM

į	Total	395	410	395	405	390	007	700	1005		1015	1060	1250	1255	1250	1245	1250	1250	2215	2205	2215	2225	2095	2375	2295	3480	3435	3435	3440	3440	3425	3460	
Shaft	Port	185	195	185	190	185	185		485	067		260	620	625	625	625	625		1045	1050	1050	1055	1095	1225		1755	1750	1730	1760	1755	1750		
2	Stbd	210	215	210	215	205	215		520	240		200	630	630	625	620	620		1170	1155	1165	1170	1000	1150		1725	1685	1680	1680	1680	1675		
	Total	13,550	13,860	13,610	13,820	13,430	13,650	13,630	25,920	26,630	26,270	26,150	29,170	29,390	29,220	28,840	29,120	29,250	42,060	41,950	42,140	41,960	40,810	44,420	43,280	57,100	55,850	55,780	56,120	26,190	56,130	96,610	
Shaft Torque (ft-1bf)	Port	6,470 1	6,680 1	6,520 1	6,610 1	6,450 1	067.9	1	12,690 2	12,900 2	2	13,750 2	14,620 2	14,740 2	14,740 2	14,620 2	14,750 2	2	016.61	20,030 4	20,030 4	7 006,61	21,340 4	22,990 4	7	28,970 5	28,530 5	28,560 5	28,780 5	28,820 5	28,770 5	2	-
Sbaf	Stbd	080'	7,180	060.7	7,210	6,980	7,160		13,230 13	13,730 1:		12,400 1	14,550 14	14,650 14	14,480 14	14,220 14	14,370 1		22,150 19	21,920 20	22,110 20	22,060 19	19,470 2	21,430 2		28,130 20	27,320 2	27,220 28	27,340 21	27,370 2	27,360 21		
	-	152.6	153.9	152.9	152.1	152.8	153.4	153.1		203.3 13	203.3	213.6 12	224.3 14	224.4 14	225.3 14	226.5 14	225.3 14	8.422	27.0 22	276.0 21	276.4 22	278.6 22	269.1 19	281.1 21	278.8	320.4 28	323.1 27	323.4 27	321.6 27	321.3 27	320.3 27	321.0	-
2	Average		200					153			203			8				224	-						278			200			_	321	-
Shaft RPM	Port	150.5	151.6	150.3	152.1	150.5	150.8			199.7		214.3	221.9	222.4	223.4	224.6	223.3		276.3	275.6	275.9	278.2	269.0	280.2		318.3	321.9	322.2	320.8	320.1	319.1		-
	Stbd	154.8	156.2	155.4	157.3	155.1	155.9		205.8	206.8		212.8	226.7	226.4	227.1	228.4	227.3		277.6	276.3	276.9	279.0	269.3	282.0		322.4	324.2	324.5	322.4	322.5	321.5		-
Stabilizer Flap Angles* (deg)	Port	1.5	0	-0.5	9.0-	-0.2	2.5		-1.8	-5.5		8.5	10.0	10.4	11.11	8.5	9.1		4.0	4.3	4.4	3.6	3.4	2.2		-5.1	0.4-	-4.7	-3.8	-5.4	-4.7		
Stab:	Stbd	3.3	4.4	4.7	3.5	2.2	1.3		-0.2	4.8		10.3	13.2	14.1	12.9	8.9	9.1		5.8	6.7	7.9	7.4	7.0	4.2		-1.7	-2.0	-2.4	-1.6	-2.4	-1.7		
Canard Angles* (deg)	Port	-2.4	-3.7	0.4-	-3.4	-2.6	-0.8		-2.2	9-9-		-2.7	-3.5	-4.0	-3.0	-2.1	-1.7		-2.6	-2.9	-3.5	-3.7	-6.3	-2.7		-3.3	-2.5	-2.7	-2.6	-2.9	-2.9		
	Stbd	9.0	2.0	2.5	1.9	1.2	-0.5		0.5	4.7		0.8	1.5	2.0	1.2	4.0	-0. i		0.7	1.0	1.6	1.8	-1.0	0.8		1.3	9.0	0.7	0.7	6.0	6.0		
Rudder Angles* (deg)	Port	0.1	-0.5	-0.7	-0.3	0.2	0.5		7.0	0.3		1.0	0.5	7.0	6.0	1.7	1.5		0	-0.2	-0.7	0	0.5	0.8		-0.3	9.0	0.1	0.9	7.0	-0.2		
Ang Kud	Stbd	-0.9	-1.5	-1.4	-1.3	-0.9	-0.3		-0.4	-0.5		0.1	-0.3	-0.4	-1.3	9.0	0.7		8.0-	-0.9	-1.2	8.0-	-0.3	0.1		-1.0	-0.1	-0.5	0.4	0.1	-0.7		
Average Roll*	9	-0.1	-0.2	-0.3	-0.2	-0.2	-0.1		6.0-	0.2		0.1	7.0	9.0	0	0.3	-0.2		0	0.5	0.5	0.7	-0.2	-0.4		6.0	0.5	0.3	-0.2	0.3	7.0		
Average Pitch* (deg)		-0.2	-0.3	-0.4	-0.5	-0.4	-0.3		-1.0	-1.4		0	-0.3	-0.4	8.0-	-0.3	0.1		9.0-	9.0-	-0.8	-1.2	-0.5	-0.5		-1.0	-1.2	-1.3	-0.8	8.0-	8.0-		
Type of Sea		Head	Stbd Bow Quartering	Stbd Beam	Stbd Stern Quartering	Following	Port Beam		Stbd Beam	Port Beam		Неад	Stbd Bow Quartering	Stbd Beam	Stbd Stern Quartering	Following	Port Beam		Head	Stbd Bow Quartering	Stbd Beam	Stbd Stern Quartering	Following	Port Beam		Stbd Beam	Stbd Stern Quartering		Port Beam	Head	Stbd Bow Quartering		
Speed	(knots)	10	6	=	12	13	13		9	7		10	8	=	13	13	13		12	01	9	10	14	6		9	10	13	12	8	1		
-	(gap)	79	19	98	78	11	11		53	99		53	11	06	85	80	67		07	72	89	74	69	59		112	112	96	63	17	99		
Log Speed		8.4	9.8	9.6	9.6	8.8	8.7	8.7	10.2	10.3	10.3	12.2	12.3	11.2	12.0	12.8	12.6	11.9	9.41	14.2	13.2	14.0	13.9	15.3	14.3	15.4	16.9	18.3	17.5	17.3	16.0	16.5	-
	(knots) (7.46	7.81	8.24	8.53	8.22	7.53	7.89	8.83	10.21	9.52	11.16	12.19	12.65	13.00	13.06	11.96	12.31	13.67	14.46	14.93	15.50	15.18	14.62	14.78	18.32	19.53	19.50	17.34	17.52	18.01	17.83	-
2		750	160	770	780	790	800		1040	1050		810	820	830	840	850	960		870	980	068	006	1020	1030		950	096	970	980	066	1000		1

* + Trailing Edge Up | Canards and Stabilizer - Trailing Edge Down | Flap Angles

+ Stbd Roll
- Port Roll
+ Left Rudder
- Right Rudder

+ Bow Up - Bown Down | Pitch

TABLE 14 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 27 SEPTEMBER 1979, ROUGH WATER, MEDIUM DISPLACEMENT = 232.1 METRIC TONS, STATICALLY TRIMMED BY THE STERN, AUTOMATIC CONTROL SYSTEM

Doppler		True !	Wind	Type of Sea	Average	Average Roll*	Average Rudder Angles*		Average Canard Angles*	Stab Flap	Average Stabilizer Flap Angles*		Shaft RPM	5	s	Shaft Torque (N-m)	9	ă	Power (KW)	•
Speed (knots)		Direction (deg)	Speed (knots)		(deg)	(deg)	(deg) Stbd Port	See	(deg)	Str	(deg)	Stbd	d Port	Average	Stbd	Port	Total	Stbd	Port	Total
8.4	-	99	10	Read	-0.2	1 0	-0.9 0.	0.1	0.8 -2.4	3.3	1.5	154.8	8 150.5	5 152.6	009.6	8,770	18,370	155	140	295
8.6		19	6	Stbd Bow Quartering	-0.3	-0.2	-1.5 -0.5	.5 2.0	0 -3.7	4.4	0	156.2	2 151.6	6 153.9	9,730	090'6	18,790	160	145	305
8.6		986	=	Stbd Beam	4.0-	-0.3	-1.4 -0.7	.7 2.5	5 -4.0	4.7	-0.5	155.4	4 150.3	3 152.9	9,610	8,840	18,450	155	140	295
8.6		84	12	Stbd Stern Quartering	-0.5	-0.2	-1.3 -0.3	.3 1.9	9 -3.4	3.5	9.0- 9	157.3	3 152.1	1 152.1	9,780	8,960	18,740	160	140	300
8.8		11	13	Following	-0.4	-0.2	-0.9 0.	0.2 1.2	2 -2.6	2.2	2.0-	1.55.1	1 150.5	5 152.8	9.460	8,750	18,210	150	140	290
8.7		11	13	Port Beam	-0.3	-0.1	-0.3 0.	0.5 -0.5	5 -0.8	1.3	3 2.5	155.9	9 150.8	8 153.4	9,710	8,800	18,510	160	140	300
8.7							-	-						153.1			18,480			300
10.2		53	9	Stbd Beam	-1.0	-0.9	-0.4 0.	0.4 0.5	5 -2.2	-0.2	-1.8	205.8	8 200.6	6 203.2	17,940	17,200	35,140	390	360	750
10.3	_	99	1	Port Beam	-1.4	0.2	-0.5 0.	0.3 4.7	9.9- 1	8.4	3 -5.5	206.8	8 199.7	7 203.3	18,620	17,490	36,110	405	365	770
10.3	_													203.3			35,620			760
12.2	2	53	10	Head	0	0.1	0.1 1.	1.0 0.8	8 -2.7	10.3	8.8	212.8	8 214.3	3 213.6	16,810	18,640	35,450	370	420	190
12.3	_	11		Stbd Bow Ouartering	-0.3	7.0	-0.3 0.	0.5 1.5	5 -3.5	13.2	10.0	226.7	7 221.9	9 224.3	19,730	19,820	39,550	027	597	935
11.2	_	06	=	Stbd Beam	-0.4	9.0	-0.4 0.	0.4 2.0	0 -4.0	14.1	10.4	226.4	4 222.4	4 224.4	19,860	19,990	39,850	470	465	935
12.0		88	13	Stbd Stern Quartering	-0.8	0	-1.3 0.	0.9 1.2	2 -3.0	12.9	11.11	227.1	1 223.4	4 225.3	19,630	19,990	39,620	597	465	930
12.8	-	80	13	Pollowing	-0.3	0.3	0.8	1.7 0.4	4 -2.1	8.9	8.8	228.4	4 224.6	6 226.5	19,280	19,820	39,100	465	597	930
12.6	5	19	13	Port Beam	0.1	-0.2	0.7 1.	1.5 -0.1	1 -1.7	9.1	9.1	227.3	3 223.3	3 225.3	19,480	20,000	39,480	465	465	930
11.9	6													224.8			39,660			930
14.6	9	07	12	Head	9.0-	0	-0.8 0	0.7	7 -2.6	5.8	9 4.0	277.6	6 276.3	3 277.0	30,030	27,000	57,030	875	780	1655
14.2	2	72	10	Stbd Bow Quartering	9.0-	0.5	-0.9 -0.2	.2 1.0	0 -2.9	6.7	4.3	276.3	3 275.6	6 276.0	29,720	27,160	56,880	860	785	1645
13.2	2	89	9	Stbd Beam	-0.8	0.5	-1.2 -0.7	.7 1.6	6 -3.5	7.9	4.4	276.9	9 275.9	9 276.4	29,980	27,160	57,140	870	785	1655
14.0	0	7.4	01	Stbd Stern Quartering	-1.2	0.7	-0.8 0	1.8	8 -3.7	7.4	3.6	279.0	0 278.2	2 278.6	29,910	26,980	26,890	875	785	1660
13.9	6	69	71	Following	-0.5	-0.2	-0.3 0.	0.1- 6.0	0 -6.3	7.0	3.4	269.3	3 269.0	0 269.1	26,400	28,930	55,330	145	818	1560
15.3	3	59	6	Port Beam	-0.5	-0.4	0.1 0.	8.0 8.0	8 -2.7	4.2	2.2	282.0	.0 280.2	2 281.1	29,050	31,170	60,220	855	918	1770
14.3	3													278.8			58,680			1710
15.4	4	112	9	Stbd Beam	-1.0	6.0	-1.0 -0.3	.3 1.3	3 -3.3	-1.7	-5.1	322.4	4 318.3	3 320.4	38,140	39,280	17,420	1285	1310	2595
16.9	6.	112	10	Stbd Stern Quartering	-1.2	0.5	-0.1 0.	9.0 9.0	6 -2.5	-2.0	0.4-0	324.2	2 321.9	9 323.1	37,040	38,680	75,720	1255	1305	2560
18.3	3	96	13	Following	-1.3	0.3	-0.5 0.	0.1 0.7	7 -2.7	-2.4	1-4.7	324.5	.5 322.2	2 323.4	36,910	38,720	75,630	1255	1305	2560
17.5	2	63	12	Port Beam	-0.8	-0.2	0.4 0.	0.9 0.7	7 -2.6	9.I-	5 -3.8	322.4	4 320.8	8 321.6	37,070	39,020	76,090	1255	1310	2565
17.3	3	17	80	Head	-0.8	0.3	0.1 0.	0.4 0.9	9 -2.9	-2.4	1-5.4	322.5	.5 320.1	1 321.3	37,110	39,070	76,180	1255	1310	2565
16.0		59	1	Stbd Bow Quartering	8.0-	4.0	-0.7 -0.2	.2 0.9	9 -2.9	-1.7	1-4.7	321.5	319.1	1 320.3	37,090	39,010	76,100	1250	1305	2555
16.5	2													321.0			76,750			2580
14.6	9	103	=	Wave Profile	9.2	0.2	-0.7 -0.	-0.3 -1.9	1.9- 6	-5.7	-9.5	320.1	1 318.2	2 319.2	37,230	39,240	76,470	1250	1310	1560
	1				1	1	1	1	1	-	-	-	1	1	1		A COUNTY OF THE PERSON	Commercial	The second	1

+ + Trailing Edge Up | Canard and Stabilizer - Trailing Edge Down | Flap Angles

+ Stbd Roll
- Port Roll
+ Left Rudder
- Right Rudder

+ Bow Up - Bow Down | Pitch

TABLE 15 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 28 SEPTEMBER 1979, ROUGH WATER, LIGHT DISPLACEMENT = 215.0 TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

Shaft Horsepower	Port Total	220 425	220 425	215 420	225 430	425	780 780	395 780	395 780	395 780	780	016 095	506 597	506 597	470 915	910	750 1490	755 1520	755 1520	760 1525	1525	1110 2235	1105 2215	1105 2210	1105 2210	2210	1550 3030	1555 3040	1550 3035	1550 3035
I	Stbd	205	205	205	205		380	385	385	385		450	077	077	445		240	765	265	765		1125	1110	1105	1100		1480	1485	1485	1485
en en	Total	13,940	13,950	13,860	14,000	13,970	21,360	21,280	21,220	21,310	21,300	22,880	22,840	23,060	23,060	22,950	32,080	32,570	33,180	33,070	32,820	42,640	42,280	42,170	42,260	42,270	51,670	51,760	51,790	51,700
Shaft Torque (ft-1bf)	Port	7,060	7,080	7,030	7,140		10,730	10,670	10,620	10,670		11,450	11,610	11,710	11,680		16,030	16,050	16,670	16,610		21,330	21,250	21,180	21,290		26.380	26,440	26,470	26,390
Sha	Stbd	6,880	6,870	6,830	6,860		10,630	10,610	10,600	10,640		11,430	11,230	11,350	11,380		16,050	16,520	16,510	16,460		21,310	21,030	20,990	20,970		25,290	25,320	25,320	25,310
	Average	159.3	159.4	159.6	160.6	160.0	191.8	8.161	192.4	192.4	192.1	208.7	208.0	205.7	208.0	208.0	243.8	245.4	8.052	242.2	243.8	275.7	275.0	275.3	274.6	274.8	307.8	308.5	307.5	308.2
Shaft RPM	Port /	6.191	161.8	162.3	163.8	-	194.7	194.3	1.561	195.2		210.0	209.9	208.6	210.6		245.8	246.6	237.9	240.1		273.9	273.4	274.0	273.2		308.4	308.8	307.5	308.5
s	Stbd	156.6	157.0	157.0	157.4		88.8	189.4	189.7	189.5		207.3	206.0	202.8	205.4		241.8	244.1	243.8	244.3		277.5	276.6	276.6	276.0		307.1	308.2	307.5	307.9
gles*	Port	5.3	5.3	5.3	5.3		-5.3	-5.2	-5.2	-5.2		6.6	9.6	8.9	11.7		9.3	8.3	6.6	10.2		0.2	-0.2	-0.2	6.0		-3.7	-3.5	-3.5	-3.5
Average Stabilizer Flap Angles* (deg)	Stbd P	6.9	6.9	6.4	6.9	-	-5.0 -	-5.1	-5.1	-5.1		10.2	9.11	8.8	9.0		6.6	10.8	9.3	9.1		0.5	- 6.0	8.0	0.1		-4.2 -	-4.1	-4.0	-4.1
	Port	-3.6	-3.6	-3.6	-3.6	-	-2.1	-2.0	-2.0	-2.1		-4.2	-5.0	-5.0	-2.7		-2.9	-3.9	-2.3	-2.1		-1.9	-2.2	-2.2	-1.4		-1.3	-1.3	-1.3	-1.3
Average Canard Angles* (deg)	Stbd	-2.1	-2.1	-2.1	-2.1		-0.8	-1.0	-1.0	-1.0		-1.8	-1.0	7	-3.2		-0.5	0.5	-1:1	-1.3		-0.3	-3.5	-5.5	6.0-		-1.0	-1.1	-1.0	-1.1
age der es*	Port	8.0	0.1	0.4	1.5		0.2	-0.1	7.0	0.7		2.1	-0.4	4.0	-0.5		0.5	9.0	-2.3	5.0		0.2	0.1	-1.3	0.7		0.1	-0.5	-0.2	6.0
Average Rudder Angles* (deg)	Stbd	-0.1	-0.8	-0.5	0.7		-0.6	6.0-	-0.5	-0.2		1.4	-1.1	-0.5	-1.4		-0.4	-0.2	-3.3	-0.3		-0.5	9.0-	8.0-	-0.1		-0.2	-1.1	-0.7	0.3
Average Roll*	(9,5)	-0.1	-1.8	-0.5	0.5		-0.2	-1.1	9.0-	0.2		1.7	-1.1	0	-1.8		-0.2	1.1	-3.5	-0.4		-0.3	-0.4	0.2	9.0-		6.0-	-1.4	9.0-	9.0-
Average Pitch*	i i	-0.3	-0.5	-1.1	9.0-		-0.7	-0.7	-1.1	-0.7		9.0	0.1	-1.6	0		0.1	-0.2	-0.3	-0.1		0.2	-0.1	9.0-	0.3		9.0-	-1.1	-0.5	8.0-
Type of Sea		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam
Wind	(knots)	8	8	12	10		7	9	10	6		9	5	12	11		6	7	15	12		8	8	17	13		6	9	91	13
True W	(deg)	57	68	107	75		55	16	06	76		67	105	98	80		19	104	91	- 79		54	103	96	70		45	109	102	73
-	(knots)	6.8	8.8	8.8	0.6	8.9	5.6	9.6	9.5	9.6	9.5	11.3	11.2	11.11	11.4	11.3	12.4	12.7	12.8	12.8	12.8	13.8	14.2	14.2	14.2	14.2	17.3	16.2	15.8	16.5
Mini- ranger Speed	(knots)	7.94	9.10	90.6	8.13	8.62	8.85	10.03	10.05	8.95	67.6	11.37	12.37	12.01	11.23	11.80	12.69	13.86	13.76	12.76	13.31	14.54	15.60	15.56	14.52	15.06	17.05	18.03	17.68	17.02
Run		0901	0201	080	0601		1100	0111	120	1130		0511	1150	1160	1170		1180	0611	1200	1210		1220	1230	1240	1250		1260	1270	1280	1290

* + Trailing Edge Up
- Trailing Edge Down
- Trailing Edge Down
+ Bow Up
- Bow Down
- Bow Down

+ Stbd Roll - Port Koll

TABLE 16 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 28 SEPTEMBER 1979, ROUGH WATER, LIGHT DISPLACEMENT = 218.4 METRIC TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

ŝ	Total	320	320	315	330	320	580	580	580	580	580	680	675	675	089	089	1110	1135	1135	1135	1135	1665	1650	1650	1650	1650	2260	2265	2260	2260	I
Power (KW)	Port	165	165	160	130		300	295	295	295		345	345	345	350	-	260		565	565	-	825	825	825	825	T	1155	1160	1155	1155	-4
Po	Stbd	155	155	155	155		280	285	285	285		335	330	330	330		550	570	570	570		840	825	825	825		1105	1105	1105	1105	
	Total	18 900	18.910	18.790	18 980	18.940	28.960	28,850	28,770	28,900	28,880	31,020	30.970	31,270	31,270	31,120	43,490	44,160	44,990	44,840	44,500	57,810	57,320	57,180	57,300	57,310	70,060	71,180	70,220	70,100	-
Shaft Torque (N-in)	Port 7	9.570			+	-	14.550 2	-		14,470 2	2	15,520 3	15.740 3	15,880 3	15,840 3	3	21,730 4	21,760 44	22,600 4	22,520 44	-	28,920 5		28,720 5	28,870 5	5.	35,770 70	35,850 7	35,890 70	35,780 70	4
Shaft	Stbd	9.330	+	-	+	+	14,410 14	14,380 14	14,370 14,400	14,430 14		15,500 15	15,230 15	15,390 15	15,430 15		21,760 21	22,400 21	22,390 22	22,320 22	-	28,890 28	28,510 28,810	28,460 28	28,430 28	-	34,290 35.	34,330 35	34,330 35,	34,320 35	7
	Average St	159.3 9.	+	159.6	+	-	191.8 14.	191.8 14,	+-	+	-:	-	208.0 15,		-	0.	+-	-	+-	-	1	-	_	-	_	8.	_	-	_	-	
RPM .	-	9 159	_	╀	+	+	+	-	1 192.4	2 192.4	192.1	0 208.7	-	6 205.7	6 208.0	208.0	8 243.8	6 245.4	8 240.8	1 242.2	243.8	9 275.7	4 275.0	0 275.3	2 274.6	274.8	4 307.8	8 308.5	5 307.5	5 308.2	
Shaft RPM	Port	192	-	0 162.3	4 163.8	+	8 194.7	4 194.3	7 195.1	5 195.2		3 210.0	0 209.9	3 208.6	210.6		3 245.8	246.6	8 237.9	1 240.1		5 273.9	273.4	274.0	1 273.2		308.4	308.8	307.5	308.5	-
	Stbd	156.6	157.0	157.0	157.4		188.	189.4	189.7	189.5		207.3	206.0	202.8	205.4		241.8	244.1	243.8	244.3		277.5	276.6	276.6	276.0		307.1	308.2	307.5	307.9	
Average Stabilizer Flap Angles* (deg)	Port	5.3	5.3	5.3	5.3		-5.3	-5.2	-5.2	-5.2		6.6	9.6	6.8	11.7		9.3	8.3	6.6	10.2		0.2	-0.2	-0.2	6.0		-3.7	-3.5	-3.5	-3.5	
Stat Flap	Stbd	4.9	6.4	4.9	4.9		-5.0	-5.1	-5.1	-5.1		10.2	11.6	8.8	0.6		6.6	10.8	9.3	9.1		0.5	0.9	0.8	0.1		-4.2	-4.1	0.4-	-4.1	
Average Canard Angles* (deg)	Port	-3.6	-3.6	-3.6	-3.6		1-2.1	1 -2.0	-2.0	1-5.1		1-4.2	1-5.0	-5.0	-2.7		-2.9	-3.9	-2.3	-2.1		-1.9	-2.2	-2.2	-I.4		-1.3	-1.3	-1.3	-1.3	
	Stbd	1 -2.1	-2.1	-2.1	-2.1		8.0-	-1.0	-1.0	-1.0		-1.8	-1.0	-1.1	-3.2		-0.5	0.5	-1.1	-1.3		-0.3	-3.5	-5.5	6.0-		-1.0	-1.1	-1.0	-1.1	ĺ
Average Rudder Angles* (deg)	Port	8.0	0,1	9.0	1.5		0.2	-0.1	7.0	0.7		2.1	-0.4	7.0	-0.5		0.5	9.0	-2.3	0.4		0.2	0.1	-1.3	0.7		0.1	-0.5	-0.2	6.0	
	Stbd	-0.1	-0.8	-0.5	0.7		9.0-	6.0-	-0.5	-0.2		1.4	-1.1	-0.5	-1.4		-0.4	-0.2	-3.3	-0.3		-0.5	9.0-	-0.8	-0.1		-0.2	-1.1	-0.7	0.3	
Average Roll* (deg)		-0.1	-1.8	-0.5	0.5		-0.2	-1.1	9.0-	0.2		1.7	-1.1	0	-1.8		-0.2	1.1	-3.5	-0.4		-0.3	-0.4	0.2	-0.6		-0.9	-1.4	9.0-	-0.6	
Average Pitch* (deg)		-0.3	-0.5	-1.1	9.0-		-0.7	-0.7	-1.1	-0.7		9.0	0.1	-1.6	0		0.1	-0.2	-0.3	-0.1		0.2	-0.1	9.0-	0.3		9.0-	-1.1	-0.5	8.0-	
Type of Sea		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam		Head	Stbd Beam	Following	Port Beam	
Wind	(knots)	80	80	12	10		7	9	10	6		9	5	12	11		6	1	15	12		80	80	17	13	1	6	9	16	13	
True Wi		57	89	101	7.5		55	97	06	76		67	105	98	980		19	104	16	79		54	103	96	70		45	109	102	73	The second secon
Log Speed Speed		8.9	8.8	8.8	0.6	8.9	7.6	5.6	9.5	9.6	9.5	11.3	11.2	1:1	11.4	11.3	12.4	12.7	12.8	12.8	12.8	13.8	14.2	14.2	14.2	14.2	17.3	16.2	15.8	16.5	
Mini- ranger Speed	(wholes)	7.94	9.10	90.6	8.13	8.62	8.85	10.03	10.05	8.95	67.6	11.37	12.37	12.01	11.23	11.80	12.69	13.86	13.76	12.76	13.31	14.54	15.60	15.56	14.52	15.06	17.05	18.03	17.68	17.02	
g g		1060	1070	1080	1090		1100	-	-+	1130	-	-+	-	-+	1170	-	-			1210	-	-	-	-	1250	-	-	+	-	1290	

* + Trailing Edge Up | Canards and Stabilizer - Trailing Edge Down | Flap Angles

+ Bow Up - Bow Down | Pitch

+ Stbd Roll - Port Roll

+ Left Rudder - Right Rudder

TABLE 17 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, ENGLISH UNITS: 2 OCTOBER 1979, CALM WATER, MEDIUM DISPLACEMENT = 226.7 TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

Doppler Log Speed	Average Pitch* (deg)	Average Roll* (deg)	Aver Can Ang	Average Canard Angles* (deg)	Average Stabilizer Flap Angles (deg)	Average Stabilizer Flap Angles* (deg)		Shaft RPM	M.	is .	Shaft Torque (ft-1bf)	an!	ž	Shaft Horsepower	ler
,			Stbd	Por:	Stbd	Port	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Port Total
6.5	-0.3	0.3	-5.7	1.4	1.4-	4.3	128.9	131.7	130.3	4,700	4,720	9,420	115	120	235
6.4	-0.8	-0.3	-5.7	1.4	-4.7	4.3	128.3	129.2	128.8	4,730	4,550	9,280	115	110	225
6.3	-0.3	0.2	-5.7	1.3	1.4-	4.3	126.8	130.9	128.8	4,500	4,630	9,130	110	115	225
4.9									129.2			9,280			230
8.3	-0.1	0.4	8.0-	-1.7	0.5	8.0	158.7	158.7	158.7	7,210	7,880	15,090	215	240	455
3	0.3	0.7	-1.4	-1.1	-0.1	1.5	159.1	159.5	159.3	7,260	8,020	15,280	220	245	465
8.3									159.0			15,190			760
6.7	-2.0	0.5	-3.9	-4.5	i.9	2.9	131.7	195.9	193.8	11,360	12,860	24,220	415	780	895
7.6	-2.3	-0.1	-3.9	-4.5	1.9	2.9	191.5	196.2	193.9	11,250	12,940	24,190	410	485	895
7.8	-1.6	0.1	9.4-	-3.7	9.0-	1.7	191.0	196.2	193.6	11,250	12,970	24,220	410	485	895
7.7									193.8			24,200			895
10.1	0.3	0.4	-2.2	-2.2	7.7	6.7	231.3	227.1	229.2	14,950	15,720	30,670	099	680	1340
10.4	0	0.8	-1.7	-3.1	8.6	9.3	230.9	227.6	229.3	14,840	15,920	30,760	650	069	1340
9.01	0.3	-0.1	-2.8	-2.1	7.6	10.3	231.2	228.1	229.6	14,920	15,990	30,910	655	695	1350
10.4									229.3			30,780			1345
12.8	-0.8	1.1	-1.0	-3.5	5.0	0.4	268.3	272.5	270.4	19,990	22,670	42,660	1020	1175	2195
11.9	9.0-	-0.1	-2.0	-2.5	4.0	5.1	269.1	273.2	271.2	19,990	22,850	42,840	1025	1190	2215
12.3	9.0-	-0.6	-2.0	-2.4	4.0	5.1	268.3	271.9	270.2	19,9%	22,910	42,900	1020	1185	2205
12.2									270.7			42,810			2210
14.2	-2.3	-0.5	-2.3	-2.2	-1.1	0.5	318.2	319.8	319.0	27,180	29,310	56,490	1645	1785	3430
15.0	-2.6	-1.7	-2.4	-2.3	-1.2	9.0	316.6	317.8	317.2	27,440	29,460	56,900	1655	1785	3440
14.0	-2.6	-0.2	-2.4	-2.3	-1.1	0.4	319.8	320.7	320.2	27,600	29,350	56,950	1680	1795	3475
14.6									310 /			0.0			37.75

Canard and Stabilizer Flap Angles * + Trailing Edge Up - Trailing Edge Down

Pitch + Bow Up - Bow Down

+ Stbd Roll - Port Roll

TABLE 18 - SSP KAIMALINO STANDARDIZATION TRIAL RESULTS, METRIC UNITS: 2 OCTOBER 1979, CALM WATER, MEDIUM DISPLACEMENT = 230.3 METRIC TONS, STATICALLY TRIMMED BY THE STERN, FIXED CONTROL SURFACES

(%)	Total	180	170	170	170	340	345	345	999	999	999	999	1000	1000	1010	1000	1635	1650	1645	1645	2555	2565	2590	2570
Power (kW)	Port	06	80	06		180	180		355	360	360		510	515	520		875	885	885		1330	1330	1340	
P _O	Stbd	06	06	80		160	165		310	305	305		067	485	067		760	765	160		1225	1235	1250	
e e	Total	12,770	12,580	12,380	12,580	20,460	20,720	20,590	32,840	32,800	32,840	32,820	41,580	41,700	41,910	41,720	57,840	58,080	58,160	58,040	76,590	77,150	77,210	77,020
Shaft Torque (N-m)	Port	007,9	6,170	6,280		10,680	10,880		17,440	17,550	17,590		21,310	21,580	21,680		30,740	30,980	31,060		39,740	39.950	39,790	
Sha	Stbd	6,370	6,410	6,100		9,780	0,840		15,400	15,250	15,250		20,270	20,120	20,230		27,100	27,100	27,100		36,850	37,200	37,420	
¥.	Average	130.3	128.8	128.8	129.2	158.7	159.3	159.0	193.8	193.9	193.6	193.8	229.2	229.3	229.6	229.3	270.4	271.2	270.2	270.7	319.0	317.2	320.2	318.4
Shaft RPM	Port	131.7	129.2	130.9		158.7	159.5		195.9	196.2	196.2		227.1	227.6	228.1		272.5	273.2	271.9		319.8	317.8	320.7	
S	Stbd	128.9	128.3	126.8		158.7	1.951		191.7	191.5	0.161		231.3	230.9	231.2		268.3	1.692	268.3		318.2	316.6	319.8	
ige izer gles*	Port	4.3	4.3	4.3		8.0	1.5		2.9	2.9	1.7		9.7	9.3	10.3		0.4	5.1	5.1		0.5	0.4	7.0	
Average Stabilizer Flap Angles* (deg)	Stbd	-4.7	1.4-	-4.7		0.5	-0.1		1.9	1.9	9.0-		7.7	8.6	7.6		5.0	4.0	4.0		-1.1	-1.2	-1.1	
age ard es*	Port	1.4	1.4	1.3		-1.7	-1.1		-4.5	-4.5	-3.7		-2.2	-3.1	-2.1		-3.5	-2.5	-2.4		-2.2	-2.3	-2.3	
Average Canard Angles* (deg)	Stbd	-5.7	-5.7	-5.7		8.0-	-1.4		-3.9	-3.9	-4.6		-2.2	-1.7	-2.8		-1.0	-2.0	-2.0		-2.3	-2.4	-2.4	-
Average Roll* (deg)		0.3	-0.3	0.2		0.4	0.7		0.5	-0.1	0.1		9.0	8.0	-0.1		1.1	-0.1	9.0-		-0.5	-1.7	-0.2	
Average Pitch* (deg)		-0.3	-0.8	-0.3		-0.1	0.3		-2.0	-2.3	-1.6		0.3	0	0.3		8.0-	9.0-	9.0-		-2.3	-2.6	-2.6	
Doppler Log Speed	(killots)	6.5	6.4	6.3	6.4	8.3	8.3	8.3	7.9	7.6	7.8	7.7	10.1	10.4	9.01	10.4	12.8	11.9	12.3	12.2	14.2	15.0	14.0	14.6
Mini- ranger Speed	(killots)	8.02	5.93	8.05	86.9	7.93	8.76	8.35	9.83	8.90	9.85	9.37	13.39	12.25	13.53	12.86	13.94	15.55	13.86	14.73	18.89	17.01	18.90	17.95
Run		14608	1470N	1480S		1300N	13108		1330S	1340N	13508		13608	1370N	13808		1390N	14008	1410N		14208	1430H	14408	

* + Trailing Edge Up | Canard and Stabilizer - Trailing Edge Down | Flap Angles

+ Bow Up - Bow Down Pitch

+ Stbd Roll - Port Roll

TABLE 19 - SUMMARY OF VIDEO-TAPED DRAFT READINGS

	Mini-ranger		Static	Draft		Running	g Draft	Ave Operatio	rage nal Trim
Run	Speed (knots)	Forv	ward ling (m)		ft ding (m)	Forward Reading ft (m)	Aft Reading ft (m)	Video Tape deg	Stable Table deg
						37.1 Tons (240 of Surfaces, 0°	.9 Metric Tons) Static Trim		
0115	4.87	16.86	(5.14)	16.83	(5.13)	16.50 (5.03)	16.50 (5.03)	0	-0.2
020N	4.49					16.50 (5.03)	16.75 (5.11)	0.57	0.4
040s	8.46					16.83 (5.13)	16.25 (4.95)	-0.57	-0.5
050N	7.55					16.50 (5.03)	16.50 (5.03)	0	0
060s	8.37					16.67 (5.08)	16.83 (5.13)	0	-0.5
070N	9.65					16.83 (5.13)	17.00 (5.18)	-0.29	0
080s	9.92					17.25 (5.26)	17.25 (5.26)	0	-0.6
100N	12.99					17.00 (5.18)	16.75 (5.11)	0.29	-1.3
110s	13.34					17.50 (5.33)	16.50 (5.03)	1.14	-1.2
130N	14.90					16.50 (5.03)	15.50 (4.72)	1.14	0.2
140s	15.10					16.75 (5.11)	15.75 (4.80)	1.14	-0.1
190N	17.44					16.75 (5.11)	16.75 (5.11)	0	0.1
200s	17.58		+			16.50 (5.03)	16.50 (5.03)	0	-0.4
	Calm					7.8 Tons (241. es, 1.78° Stat	6 Metric Tons) ic Trim by the	Stern	
					(5.41)	15 50 (1 70)	16 75 (5 11)		
230s	7.68	16.19	(4.93)	17.75	(3.41)	15.50 (4.72)	16.75 (5.11)	-1.14	1.3
230s 240N	7.68 7.65	16.19	(4.93)	17.75	(3.41)	15.50 (4.72)	16.75 (5.11)	-1.14	1.3
240N		16.19	(4.93)	17.75	(3.41)				
240N 250S	7.65	16.19	(4.93)	17.75	(3,41)	15.50 (4.72)	16.75 (5.11)	-1.43	1.8
240N 250S 260N	7.65 9.72	16.19	(4.93)	17.75	(3,41)	15.50 (4.72) 16.00 (4.88)	16.75 (5.11) 17.25 (5.26)	-1.43 1.43	1.8
	7.65 9.72 9.58	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33)	-1.43 1.43 2.00	1.8 1.5 2.0
240N 250S 260N 280S 290N	7.65 9.72 9.58 13.02	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33) 15.75 (4.80)	-1.43 1.43 2.00 -0.29	1.8 1.5 2.0 1.8
240N 250S 260N 280S 290N 300S	7.65 9.72 9.58 13.02 12.65	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.75 (4.80)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33) 15.75 (4.80) 16.00 (4.88)	-1.43 1.43 2.00 -0.29 0.29	1.8 1.5 2.0 1.8 1.9
240N 250S 260N 280S 290N 300S 310N	7.65 9.72 9.58 13.02 12.65 14.60	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33) 15.75 (4.80) 16.00 (4.88) 16.00 (4.88)	-1.43 1.43 2.00 -0.29 0.29	1.8 1.5 2.0 1.8 1.9
240N 250S 260N 280S	7.65 9.72 9.58 13.02 12.65 14.60 14.31	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.50 (4.72)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33) 15.75 (4.80) 16.00 (4.88) 16.00 (4.88) 15.75 (4.80)	-1.43 1.43 2.00 -0.29 0.29 0	1.8 1.5 2.0 1.8 1.9 2.1 2.6
240N 250S 260N 280S 290N 300S 310N 320S	7.65 9.72 9.58 13.02 12.65 14.60 14.31 17.67	16.19	(4.93)	17.75	(3.41)	15.50 (4.72) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.75 (4.80) 16.00 (4.88) 15.50 (4.72) 15.75 (4.80)	16.75 (5.11) 17.25 (5.26) 17.50 (5.33) 15.75 (4.80) 16.00 (4.88) 16.00 (4.88) 15.75 (4.80) 15.50 (4.72)	-1.43 1.43 2.00 -0.29 0.29 0 0.57 1.14	1.8 1.5 2.0 1.8 1.9 2.1 2.6

TABLE 19 (Continued)

Calm W .82 .77 .86 .45 .25 .69 .17 .19 .64	Read ft	Fixed C	Aft Readift placement ontrol Su 15.13 (4	ing (m) t = 21 urface	Forward Reading ft (m) 7.4 Tons (220. s, 2.91° Stati 14.00 (4.27) 14.50 (4.42) 16.00 (4.88) 14.00 (4.27)	Aft Reading ft (m) 9 Metric Tons) c Trim by the 13.50 (4.11) 13.50 (4.11) 13.50 (4.11) 13.50 (4.11) 14.00 (4.27)	Video Tape deg Stern -0.57 -0.57 -1.14 -2.85	-0.6 0 0.2
Calm W .82 .77 .86 .45 .25 .69 .17 .19	ater, I	Fixed C	ontrol Su	urface	14.00 (4.27) 14.00 (4.27) 14.00 (4.27) 14.50 (4.42) 16.00 (4.88)	13.50 (4.11) 13.50 (4.11) 13.50 (4.11) 13.50 (4.11)	-0.57 -0.57 -1.14	0
.77 8.86 .45 .25 .69 .17 .19	12.58(3.83)	15.13 (4	4.61)	14.00 (4.27) 14.50 (4.42) 16.00 (4.88)	13.50 (4.11) 13.50 (4.11) 13.50 (4.11)	-0.57 -1.14	0
. 86 . 45 . 25 . 69 . 17 . 19			18.0	A	14.50 (4.42) 16.00 (4.88)	13.50 (4.11) 13.50 (4.11)	-1.14	0.2
.45 .25 .69 .17 .19					16.00 (4.88)	13.50 (4.11)		
.25 .69 .17 .19			1883	6/			-2.85	-0.8
.69 .17 .19					1/ 00 (/ 27)	14 00 (4 27)		The second secon
.17				190	14.00 (4.27)	14.00 (4.27)	0	0.6
.19				200	14.25 (4.34)	14.25 (4.34)	0	-0.1
.64					15.00 (4.57)	13.25 (4.04)	-2.00	-0.8
					15.00 (4.57)	13.25 (4.04)	-2.00	-0.5
.05					14.50 (4.42)	13.50 (4.11)	-1.14	-0.5
.05					14.75 (4.50)	12.50 (3.81)	-2.57	-0.3
.77			1,85.1		15.50 (4.72)	13.75 (4.19)	-2.57	-0.7
.15					15.25 (4.65)	13.25 (4.04)	-2.28	-0.1
.90					15.25 (4.65)	13.25 (4.04)	-2.28	0.3
.67					15.50 (4.72)	13.00 (3.96)	-2.85	-0.8
.18					15.25 (4.65)	14.25 (4.34)	-1.14	0.7
3.47			+		15.50 (4.72)	14.25 (4.34)	-1.43	-
								ana na pana
.75	12.58	(3.83)	15.13 (4.61)	14.50 (4.42)	13.00 (3.96)	-1.71	-1.4
3.07					14.50 (4.42)	13.50 (4.11)	-1.14	-1.9
.94					15.00 (4.57)	13.50 (4.11)	-1.71	-1.4
.36					15.00 (4.57)	13.25 (4.04)	-2.00	0.2
.30			I Want	- UT A	15.00 (4.57)	13.25 (4.04)	-3.14	-1.4
.56					15.50 (4.72)	13.00 (3.96)	-2.85	-3.2
3 3	Calm W .75 .07 .94 .36 .30 .56	Calm Water, C. 75 12.58 .07 .94 .36 .30 .56	Calm Water, O Deg Co	Calm Water, 0 Deg Control Su .75	Calm Water, 0 Deg Control Surfaces .75	Calm Water, 0 Deg Control Surfaces, 2.91° Stations of the control Surfaces, 2.91° Stat	Calm Water, 0 Deg Control Surfaces, 2.91° Static Trim by the .75	14.50 (4.42) 13.50 (4.11) -1.14 15.00 (4.57) 13.50 (4.11) -1.71 15.00 (4.57) 13.25 (4.04) -2.00 15.00 (4.57) 13.25 (4.04) -3.14 15.50 (4.72) 13.00 (3.96) -2.85

TABLE 19 (Continued)

	Mini-ranger		Static	Draft		Runnin	g Draft		rage nal Trim'
Run	Speed (knots)	The second second	ward ding (m)	100.0	ft ding (m)	Forward Reading	Aft Reading ft (m)	Video Tape deg	Stable Table deg
	Calm Wa	25 Sep	79 Disp Automati	lacemen c Conti	nt = 237	.8 Tons (241.6 em, 0.41° Stat	Metric Tons)	e Stern	
730S	7.86	16.79	(5.12)	17.15	(5.23)	16.50 (5.03)	15.50 (4.72)	-1.14	-0.5
740N	6.03					16.50 (5.03)	16.50 (5.03)	0	-0.1
590s	7.60					16.50 (5.03)	16.50 (5.03)	0	-0.4
600N	7.61					16.50 (5.03)	16.25 (4.95)	-0.29	-0.2
610S	10.34					16.50 (5.03)	16.75 (5.11)	0.29	0.1
620N	9.19					16.50 (5.03)	16.50 (5.03)	0	0.2
630s	10.38					16.25 (4.95)	17.00 (5.18)	0.86	0.3
650N	12.24					16.50 (5.03)	14.50 (4.42)	-2.28	-0.5
660s	13.58					16.00 (4.88)	15.50 (4.72)	-0.57	-0.5
670N	12.23					16.00 (4.88)	15.00 (4.57)	-1.14	-0.1
680N	13.98					16.00 (4.88)	14.75 (4.50)	-1.43	0
690s	15.93					16.50 (5.03)	15.00 (4.57)	-1.71	-0.3
700N	14.74					16.50 (5.03)	15.25 (4.65)	-1.43	0.1
710s	17.83					15.75 (4.80)	15.50 (4.72)	-0.29	0.1
720N	17.32		+		•	16.00 (4.88)	15.50 (4.72)	-0.57	0.5
	Rough						l Metric Tons) atic Trim by t		
750	7.46	14.25	(4.34)	16.81	(5.12)	15.00 (4.57)	15.00 (4.57)		Table 1
760	7.81					14.50 (4.42)	14.75 (4.50)		
770	8.24					15.50 (4.72)	14.50 (4.42)		
780	8.53					15.50 (4.72)	14.50 (4.42)		
790	8.22					15.50 (4.72)	15.00 (4.57)		
800	7.53					15.00 (4.57)	15.00 (4.57)		
040	8.83					15.00 (4.57)	15.00 (4.57)		
050	10.21		+			14.50 (4.42)	15.00 (4.57)		

TABLE 19 (Continued)

		St	atic	Draft			Runnin	g Draft	
Run	Mini-ranger Speed (knots)	Forward Reading ft (1	Secretary and the second		ft ding (m)		ward ding (m)	THE REPORT OF STREET, SALES	ft ding (m)
810	11.16	1				15.00	(4.57)	15.00	(4.57)
820	12.19			in us Ti		15.00	(4.57)	14.75	(4.50)
830	12.65					15.00	(4.57)	14.75	(4.50)
840	13.00					15.50	(4.72)	14.75	(4.50)
850	13.06			28.113		15.00	(4.57)	15.00	(4.57)
860	11.96	1-15-5		(2) (2)		15.00	(4.57)	14.50	(4.42)
870	13.67					15.00	(4.57)	14.50	(4.42)
880	14.46					15.00	(4.57)	14.75	(4.50)
890	14.93					15.50	(4.72)	14.75	(4.50)
900	15.50	y central in	3-03			15.50	(4.72)	14.50	(4.42)
910	16.26					14.75	(4.50)	14.75	(4.50)
920	14.13					15.00	(4.57)	14.50	(4.42)
1020	15.18					15.25	(4.65)	15.00	(4.57)
1030	14.62					15.00	(4.57)	14.50	(4.42)
930	16.85					15.75	(4.80)	14.25	(4.34)
940	17.40					16.00	(4.88)	14.25	(4.34)
950	18.32					15.75	(4.80)	14.25	(4.34)
960	19.53					16.00	(4.88)	14.50	(4.42)
970	19.50					15.50	(4.72)	15.00	(4.57)
980	17.34					15.75	(4.80)	14.75	(4.50)
990	17.52					15.50	(4.72)	14.75	(4.50)
1000	18.01	0-38 A1 18				15.25	(4.65)	14.25	(4.34)
Ro	28 Sep 79 ugh Water, Fix	Displacemed Contro	nent ol Su	= 215.0 rfaces,	7 Tons , 2.00°	(218.4 N Static	Metric T	ons) the St	ern
1060	7.94	12.63 (3.	85)	14.38	(4.38)	14.00	(4.27)	12.50	(3.81)
1070	9.10					14.00	(4.27)	12.50	(3.81)
1080	9.06					13.75	(4.19)	13.00	(3.96)
1090	8.13	+			\	13.75	(4.19)	12.75	(3.89)

TABLE 19 (Continued)

	THE TURK	bra	Static	Draft		Runnin	g Draft	Operatio	rage nal Tri
Run	Mini-ranger Speed (knots)	Forw Read ft			ft ding (m)	Forward Reading ft (m)	Aft Reading ft (m)	Video Tape deg	Stable Table deg
1100	8.85					14.00 (4.27)	13.25 (4.04)		1 10
1110	10.03	10.00	(0)			14.00 (4.27)	13.25 (4.04)	100.03	
1120	10.05					13.75 (4.19)	13.25 (4.04)	2 1	
1130	8.95					13.75 (4.19)	13.25 (4.04)		
1140	11.37					14.00 (4.27)	13.00 (3.96)		
1150	12.37	15 3 10	100.7			13.88 (4.23)	12.00 (3.66)	10 E	
1160	12.01	1000	749			14.00 (4.27)	12.25 (3.73)		
1170	11.23					14.00 (4.27)	12.00 (3.66)		
1180	12.69					13.75 (4.19)	11.50 (3.51)		
1190	13.86					14.00 (4.27)	11.50 (3.51)		
1200	13.76		0.0	La		14.00 (4.27)	11.50 (3.51)	10.00	
1210	12,76	FT. 23				14.00 (4.27)	11.50 (3.51)		
1220	14.54					14.00 (4.27)	11.50 (3.51)		
1230	15.60					14.50 (4.42)	12.00 (3.66)		
1240	15.56					14.00 (4.27)	11.50 (3.51)		
1250	14.52					14.50 (4.42)	11.50 (3.51)		
1260	17.05					14.00 (4.27)	11.75 (3.58)		
1270	18.03					14.50 (4.42)	12.75 (3.89)		
1280	17.68					14.25 (4.34)	12.00 (3.66)		
1290	17.02					14.75 (4.50)	12.00 (3.66)	0,44	
	Calm V	2 Oct Nater,	79 Disp Fixed C	lacemen	nt = 226 Surface	o.7 Tons (230.3 es, 2.81° State	Metric Tons)	Stern	0.0
1460s	8.02	14.00	(4.27)	16.46	(5.02)	15.50 (4.72)	14.50 (4.42)	-1.14	-0.2
1470N	5.93					15.50 (4.72)	14.50 (4.42)	-1.14	0.3
1480s	8.05					15.50 (4.72)	14.50 (4.42)	-1.14	-0.2
1300N	7.93					15.50 (4.72)	14.50 (4.42)	-1.14	-0.5
13105	8.76					15.75 (4.80)	14.50 (4.42)	-1.43	-0.9

TABLE 19 (Continued)

Run	Mini-ranger Speed (knots)	Static Draft		Running Draft		Average Operational Trim*	
		Forward Reading ft (m)	Aft Reading ft (m)	Forward Reading ft (m)	Aft Reading ft (m)	Video Tape deg	Stable Table deg
1320N	11.26			15.00 (4.57)	14.00 (4.27)	-1.14	-1.1
1330S	9.83			14.50 (4.42)	15.00 (4.57)	0.57	1.5
1340N	8.90			14.25 (4.34)	14.50 (4.42)	0.29	1.8
1350s	9.85			14.75 (4.50)	14.75 (4.50)	0	1.1
1360S	13.39			15.25 (4.65)	14.25 (4.34)	-1.14	-0.8
1370N	12.25			15.50 (4.72)	14.00 (4.27)	-1.71	-0.5
1380s	13.53			15.50 (4.72)	14.00 (4.27)	-1.71	-0.8
1390N	13.94			15.25 (4.65)	14.00 (4.27)	-1.43	0.2
1400S	15.55			15.25 (4.65)	13.75 (4.19)	-1.71	0.1
1410N	13.86			15.50 (4.72)	13.75 (4.19)	-2.00	0.1
1420S	18.89			14.25 (4.34)	12.75 (3.89)	-1.71	1.7
1430N	17.01			14.25 (4.34)	13.25 (4.04)	-1.14	2.1
1440S	18.90	+		14.00 (4.27)	12.75 (3.89)	-1.43	2.0

- Bow Down

REFERENCES

- 1. Lang, T.G. et al., "Design and Development of the 190-Ton Stable Semisubmerged Platform (SSP)," Journal of Engineering for Industry, Trans., American Society of Marine Engineers, pp. 1105-1111 (Nov 1974).
- 2. Stenson, R.J., "Full-Scale Powering Trials of the Stable Semi-submerged Platform, SSP KAIMALINO," David W. Taylor Naval Ship Research and Development Center Report SPD-650-01 (Apr 1976).

INITIAL DISTRIBUTION

Copies		CENTER	DISTRIBUTION		
7	CNO 1 OP 373	Copies	Code	Name	
	1 OP 951	6	1110		
	1 OP 961 1 OP 965	2	1170	S. Hawkins	
	1 OP 987 1 OP 987L	1	15	W.B. Morgan	
	1 OP 982F11	1	1502	V.J. Monacella	
2	NAVMAT	1	1507	R.R. Rothblum	
	1 MAT 08D1	1	152		
	1 MAT 08T23	1	1524	W.C. Lin	
1	ONR/Arlington	1 3	1536 1536	R.J. Stenson E.L. Woo	
1	ONR/Boston	1	154		
1	ONR/New York	1	156	G.R. Hagen	
1	NORDA (600)	1	1561	C.M. Lee	
		1	1572	M.D. Ochi	
3	NOSC/San Diego 2 NOSC 631 1 NOSC 8214	10	5211.1	Reports Distribution	
6	NOSC/Kailua, HI (53)	1	522.1	Unclassified Lib (C)	
3	NAVAIRENGCEN 1 AIR 09 1 AIR 903 1 AIR 9032B	1	522.2	Unclassified Lib (A)	
10	NAVSEA 6 SEA 03R12 1 SEA 06B 2 SEA 3124 1 SEA 521				
12	DTIC				
1	USCG GDST/62TRTT				

DATE ILMED