LP 8 : PHENOMÈNES DE TRANSPORT.

PRÉSENTÉ PAR: RAPHAEL AESCHLIMANN

TYPES DETRANSPORT

CAS D'ETUDE

Rayonnement thermique

CAS D'ETUDE

Rayonnement thermique

Diffusion de particules

CAS D'ETUDE

Rayonnement thermique

Diffusion de particules

Convection thermique

ORIGINE MICROSCOPIQUE

Mouvement brownien

ANALOGIES

	Diffusion thermique	Diffusion de particules	Diffusion électrique
Grandeur intensive f	Température	Densité de particule	Potentiel électrique
Cause	$-\overrightarrow{grad} T \neq 0$	$-\overrightarrow{grad} n \neq 0$	$-\overrightarrow{grad} V \neq 0$
Grandeur extensive G	Énergie interne	Nombre de particules	Charge électrique
Effet	$\delta Q = \overrightarrow{j_Q} \overrightarrow{dS} dt$	$\delta N = \overrightarrow{j_N} \overrightarrow{dS} dt$	$\delta q = \vec{j} \; \overrightarrow{dS} \; dt$
Loi phenomenologique	$\overrightarrow{j_Q} = -\lambda \overrightarrow{grad} \ T$ loi de Fourier	$\overrightarrow{j_N} = -D \overrightarrow{grad} \ n$ loi de Fick	$\vec{j} = -\sigma \overrightarrow{grad} V$ loi d'Ohm
Equation de conservation	$div \overrightarrow{j_Q} + \mu c_V \frac{\partial T}{\partial t} = 0$	$\overrightarrow{j_N} + \frac{\partial n}{\partial t} = 0$	$div\vec{j} + \frac{\partial\rho}{\partial t} = 0$

COMPARAISON DES DIFFERENT TYPES DE TRANSPORT

Adapté de Stender, D. et al. Journal of Applied Physics 118, 165306 (2015).

CONVECTION VS DIFFUSION

Nombre de Prandtl

RETOUR SUR LE CAFÉ

- Rayonnement : $\overrightarrow{j_Q} = \sigma T^4 \approx 593 W.m^2$
- Diffusion : $\overrightarrow{j_Q} = \lambda \overrightarrow{grad} \ T \approx 1000 \ W.m^2$
- Convection : $\overrightarrow{j_Q} = h \Delta T \approx 1000 6000 W.m^2$

OUVERTURE

Effet Seebeck

Effet Peltier

OUVERTURE

