Getting Started

1. Download code nbody6.tar.gz

2. Unzip gunzip nbody6.tar.gz

3. Extract files tar xvf nbody6.tar

4. Check params.h NMAX, LMAX, KMAX, MMAX

5. Compile the code make nbody6

6. Create run directory mkdir Run

7. Run test input time nbody6 <input >output &

8. Profiling Makefile with -O3 -pg

9. Performance data gprof nbody6 gmon.out -p >OUT

NBODY6 Input File

1 20.0

1000 1 5 50000 95 1

0.02 0.03 0.3 2.0 10.0 100.0 2.0D-05 1.0 0.5

0 0 0 0 1 0 1 0 0 0

 $0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$

1 0 2 0 0 2 0 0 0 2

 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$

1.0D-05 1.0D-04 0.2 1.0 1.0D-06 0.001

2.3 10.0 0.2 0 0.02 0

 $0.5 \ 0 \ 0 \ 0$

KSTART TCOMP

N NFIX NCRIT NRAND NNBMAX NRUN

ETAI ETAR RS0 DTADJ DELTAT TCRIT QE RBAR ZMBAR OPTIONS (40)

DTMIN RMIN ETAU ECLOSE GMIN GMAX

ALPHA BODY1 BODYN NBIN0 ZMET EPOCH0

 $Q \ 0 \ 0 \ 0$

Essential Input Parameters

Particle numbers $N, n_{\text{max}}, N_{\text{crit}}$

Integration variables $\eta_{\rm I}, \ \eta_{\rm R}, \ S_0, \ \Delta T, \ T_{\rm crit}, \ Q_{\rm E}, \ R_{\rm pc}, \ \bar{m}$

Optional procedures consult list of 40 choices

KS parameters $\Delta t_{\rm cl}, R_{\rm cl}, \eta_{\rm U}, \gamma_{\rm min}$

IMF $\alpha, m_1, m_N, N_b, \#20$

Virial theorem $Q_{\rm V}=0.5$ for equilibrium

Primordial binaries $a_{\text{max}}, e_0, m_1/m_2, a_{\text{min}}, \#20$

Numerical examples $N = 1000, n_{\text{max}} = 70, \eta_{\text{I}} = 0.02, \eta_{\text{R}} = 0.03,$

 $S_0 = 0.3, \, \Delta T = 2, \, T_{\text{crit}} = 100,$

 $Q_{\rm E} = 1 \times 10^{-5}, R_{\rm pc} = 2, \bar{m} = 0.5$

1, 2, 5, 7, 14, 16, 20, 23

 $\Delta t_{\rm cl} = 10^{-4}, R_{\rm cl} = 0.001, \eta_{\rm U} = 0.2, \gamma_{\rm min} = 10^{-6}$

 $\alpha = 2.3, m_1 = 10.0, m_N = 0.2, \#20 = 1$

Integration Parameters

$\eta_{ m I}$	Time-step parameter for irregular force	0.02
$\eta_{ m R}$	Time-step parameter for regular force	0.03
S_0	Initial radius of the neighbour sphere	0.30
$n_{\rm max}$	Maximum neighbour number	70
Δt_{adj}	Time interval for energy check	2.0
Δt_{out}	Time interval for main output	10.0
Q_{E}	Tolerance for energy check	1×10^{-5}
$R_{\rm V}$	Virial cluster radius (length unit) in pc	2.0
$M_{ m S}$	Mean stellar mass in solar units	0.5
$Q_{ m vir}$	Virial theorem ratio $(T/ U+2W)$	0.5
$\Delta t_{\rm cl}$	Time-step criterion for close encounters	1×10^{-4}
$R_{\rm cl}$	Distance criterion for KS regularization	1×10^{-3}
$\eta_{ m U}$	Regularized time-step parameter	0.2
$h_{ m hard}$	Energy per unit mass for hard binary	1.0
$\gamma_{ m min}$	Limit for unperturbed KS motion	1×10^{-6}
$\gamma_{ m max}$	Termination criterion for soft binaries	0.001

Basic Variables

\mathbf{x}_0	ХО	Primary coordinates
\mathbf{v}_0	XODOT	Primary velocity
\mathbf{X}	X	Prediction coordinates
\mathbf{V}	XDOT	Prediction velocity
\mathbf{F}	F	One half the total force (per unit mass)
$\mathbf{F}^{(1)}$	FDOT	One sixth the total force derivative
m	BODY	Particle mass (also initial mass m_0)
Δt	STEP	Irregular time-step
t_0	TO	Time of last irregular force
\mathbf{F}_{I}	FI	Irregular force
$\mathbf{D}_{\mathrm{I}}^{1}$	FIDOT	First irregular force derivative
$\mathbf{D}_{\mathrm{I}}^{2}$	D2	Second irregular force derivative
$\mathbf{D}_{\mathrm{I}}^{3}$	D3	Third irregular force derivative
ΔT	STEPR	Regular time-step
T_0	TOR	Time of last regular forcex
\mathbf{F}_{R}	FR	Regular force
$\mathbf{D}^1_{\mathrm{R}}$	FRDOT	First regular force derivative
$\mathbf{D}_{\mathrm{R}}^{2}$	D2R	Second regular force derivative
$\mathbf{D}_{\mathrm{R}}^{3}$	D3R	Third regular force derivative
$R_{\rm s}$	RS	Neighbour sphere radius
L	LIST	Neighbour and perturber list

KS Variables

$\mathbf{U_0}$	UO	Primary regularized coordinates
\mathbf{U}	U	Regularized prediction coordinates
\mathbf{U}'	UDOT	Regularized velocity
\mathbf{F}_{U}	FU	One half the regularized force
$\mathbf{F}_{\mathrm{U}}^{\prime}$	FUDOT	One sixth the regularized force derivative
$\mathbf{F}_{\mathrm{U}}^{(2)}$	FUDOT2	Second regularized force derivative
$\mathbf{F}_{\mathrm{U}}^{(3)}$	FUDOT3	Third regularized force derivative
h	Н	Binding energy per unit reduced mass
h'	HDOT	First derivative of specific binding energy
$h^{(2)}$	HDOT2	Second derivative of binding energy
$h^{(3)}$	HDOT3	Third derivative of binding energy
$h^{(4)}$	HDOT4	Fourth derivative of binding energy
$\Delta \tau$	DTAU	Regularized time-step
$t^{(2)}$	TDOT2	Second regularized derivative of time
$t^{(3)}$	TD0T3	Third regularized derivative of time
R	R	Two-body separation
R_0	RO	Initial value of the two-body separation
γ	GAMMA	Relative perturbation

Optional Procedures

- 1 Manual common save on unit 1 at any time
- 2 Common save on unit 2 at output time or restart
- 3 Data bank on unit 3 with specified frequency
- 5 Different types of initial conditions
- 7 Output of Lagrangian radii
- 8 Primordial binaries (extra input required)
- 10 Two-body regularization diagnostics
- 14 External tidal force; open or globular clusters
- 15 Multiple regularization or hierarchical systems
- 16 Updating of regularization parameters $R_{\rm cl}$, $\Delta t_{\rm cl}$
- 17 Modification of $\eta_{\rm I}$ and $\eta_{\rm R}$ by tolerance $Q_{\rm E}$
- 19 Synthetic stellar evolution with mass loss
- 20 Different types of initial mass functions
- 23 Removal of distant escapers (isolated or tidal)
- 26 Slow-down of KS and/or chain regularization
- 27 Tidal circularization (sequential or continuous)
- 28 Magnetic braking and gravitational radiation
- 30 Chain regularization (with special diagnostics)

N-Body Scheduling

$$\Delta t_{\min} \& t_{\min}, \quad i = 1, \dots, N$$

$$L_{\rm Q}$$
 from $\Delta t_{\rm quant}(L) = \Delta t_{\rm min}$

$$t_{\rm L} = t$$

$$N(L), [L_{Q} - 4, L_{Q}], i = 1, N$$

$$\sum N(L) = N^{1/2}, \quad L = L^*$$

$$t_{\rm L} + \Delta t(L^*) \Rightarrow t_{\rm L}$$

$$t_i + \Delta t_i \leq t_L, \quad i = 1, \dots, N$$

$$t_{\min} = \min\left(t_i + \Delta t_i\right)$$

$$t_i + \Delta t_i = t_{\min}, \quad i = 1, \dots, N_{\mathcal{Q}}$$

$$t_{\text{block}} = t_k + \Delta t_k$$

$$t_{\rm block} > t_{\rm L} \implies \# 4$$

$$t_{\min} = \min(t_i + \Delta t_i), \quad i = 1, N_{\text{block}}$$

$$\Rightarrow #1$$

$$\Rightarrow #9$$
 or $#6$ (after new case)

Modification of COMMON

(a) Constant size

Existing dummies ..., XDUM(10), NDUM(10)

New variables XNEW(2), NEW

..., XNEW(2), XDUM(8), NEW, NDUM(9)

(b) Enlargement

Increase COMMON COMMON/EXTRA/A(5), B, NEW(6)

Add to MYDUMP REAL*4 XNEW

New COMMON COMMON/EXTRA/XNEW(18)

Add READ/WRITE ..., XNEW

NBODY6 Output

Control line $T \ Q_{\rm V} \ DE/E \ E_{\rm tot} \ R_{\rm cl} \ \Delta t_{\rm min}$

Main output T N NB KS NM MM NS NSTEPS DE/E

Optional Procedures:

Cluster core N^2 algorithm for core radius and density centre

Lagrangian radii Percentile mass radii and half-mass radius

Error control Automatic error check and restart from last time

Escape Removal of distant members and table updates

Time offset Rescaling of all global times

Events Stellar types and energy partition

Binary analysis Regularized binary histograms and energy budget

Binary data bank Characteristic parameters for regularized binaries

HR diagram Evolutionary state of single stars and binaries

General data bank Detailed snapshots for data analysis

Energy Budget

Definition of total energy

$$E_{\text{tot}} = T + U + E_{\text{tide}} + E_{\text{bin}} + E_{\text{merge}} + E_{\text{coll}} + E_{\text{mdot}} + E_{\text{cdot}} + E_{\text{ch}} + E_{\text{sub}}$$

T Kinetic energy of single bodies and c.m. particles

U Potential energy of single and c.m. bodies

 $E_{\rm tide}$ Tidal energy due to external perturbations

 $E_{\rm bin}$ Binding energy in regularized pairs

 E_{merge} Total internal energy of hierarchical systems

 E_{coll} Sum of binding energies released in collisions

 $E_{\rm mdot}$ Energy change from mass loss and Roche mass transfer

 $E_{\rm cdot}$ Neutron star kicks and common envelope evolution

 $E_{\rm ch}$ Total energy of any existing chain subsystem

 $E_{\rm sub}$ Energy of unperturbed triple and quadruple subsystems

 ΔE Energy change due to removal of escapers