The Vector Space and \mathcal{R}^n

The Vector Space and \mathcal{R}^n

Vector Space
Subspace
Basis(Bases)
Inner Product Space
Least-Squares Solutions to Inconsistent Systems
Least-Squares Fits to Data
Theory of Least Squares
Orthogonal Projections

Vector Space

Def. Vector Space

A set of elements V is said to be a **vector space** over a scalar field S if:

- 1. An addition operation is defined between any two elements in V.
- 2. A scalar multiplication operation is defined between any elements of S and any vector in V.
- 3. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and any $a, b \in S$, these 10 properties must hold.
 - 1. Closure Properties:

1.
$$({\bf u} + {\bf v}) \in V$$
.

2.
$$a\mathbf{v} \in V$$
.

2. Properties of addition:

1.
$$u + v = v + u$$
.

2.
$$u + (v + w) = (u + v) + w$$
.

3.
$$\exists \theta \in V, s.t. \ \forall \mathbf{v} \in V, \mathbf{v} + \theta = \mathbf{v}.$$

4.
$$\forall \mathbf{v} \in V, \exists -\mathbf{v} \in V, s.t. \mathbf{v} + (-\mathbf{v}) = \theta.$$

3. Properties of scalar multiplication:

1.
$$a(b\mathbf{v}) = (ab)\mathbf{v}$$
.

$$2. a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

3.
$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$
.

4.
$$\forall \mathbf{v} \in V, \ 1\mathbf{v} = \mathbf{v}.$$

Note. When the set of scalars S is the set of real numbers, V is called a **real vector space**.

Th. Cancellation Laws for Vector Addition

Let V be a vector space, and let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in V:

1. If
$$\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$$
, then $\mathbf{v} = \mathbf{w}$.

2. If $\mathbf{v} + \mathbf{v} = \mathbf{v} + \mathbf{v} + \mathbf{v} = \mathbf{v}$

Th. If V is a vector space, then:

- 1. The zero vector, θ , is unique.
- 2. For each \mathbf{v} , the additive inverse $-\mathbf{v}$ is unique.
- 3. $\forall \mathbf{v} \in V, \ 0\mathbf{v} = \theta$, where 0 is the zero scalar.
- 4. $a\theta = \theta$ for every scalar a.
- 5. If $a\mathbf{v} = \theta$, then a = 0 or $\mathbf{v} = \theta$.
- 6. $(-1)\mathbf{v} = -\mathbf{v}$.

Subspace

Def. Subspace

Let W be a subset of a vector space V. Then W is a **subspace** of V if and only if:

- 1. The zero vector θ , of V is in W. (or W is not empty).
- 2. $\mathbf{u} + \mathbf{v} \in W$ if $\mathbf{u} \in W$ and $\mathbf{v} \in W$.
- 3. $\forall a \in S \text{ and } \forall \mathbf{u} \in W \text{ we have } a\mathbf{u} \in W.$

Def. Span

If $Q = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a set of vectors in a vector space V, then the **span** of Q, denoted Sp(Q), is the set of all linear combinations of vectors in Q, or:

$$Sp(Q) = \{ \mathbf{v} | \mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_m \mathbf{v}_m \}$$
 (1)

Def. Spanning Set

Let V be a vector space, and let $Q = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m\}$ be a set of vectors in V. If every vector $\mathbf{v} \in V$ is a linear is a linear combination of vectors in Q, i.e.:

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_m \mathbf{v}_m, \tag{2}$$

then we say that Q is a **spanning set** for V.

Th. If V is a vector space and $Q = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of vectors in V, then Sp(Q) is a subspace of V. And Sp(Q) is also called the **subspace spanned by Q**.

Def. Minimal Spanning Sets

A linearly independent spanning set is a minimal spanning set.

Def. Null Space of a Matrix

Let A be an $(m \times n)$ matrix. The **null space** of A [denoted $\mathcal{N}(A)$] is the set of vectors in \mathbb{R}^n defined by:

$$\mathcal{N}(A) = \{ \mathbf{x} | A\mathbf{x} = \theta, \ \mathbf{x} \in \mathbb{R}^n \}$$
 (3)

Th. If A is an $(m \times n)$ matrix, then $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .

Def. Range of a Matrix (or Column Space of a Matrix)

Let A be an $(m \times n)$ matrix. The **range** of A [denoted $\mathcal{R}(A)$] is the set of vectors in \mathbb{R}^m defined by:

$$\mathcal{R}(A) = \{ \mathbf{y} | \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } R^n \}$$
 (4)

In a words, the range of A consists of the set of all vectors $\mathbf{y} \in R^m$ s.t. the linear system $A\mathbf{x} = \mathbf{y}$ is consistent.

Note.
$$\mathcal{R}(A) = Sp(\{\mathbf{A}_1, \cdots, \mathbf{A}_n\}).$$

Th. If A is an $(m \times n)$ matrix and if $\mathcal{R}(A)$ is the range of A, then $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m .

Def. Row Space of a Matrix

Let A be an $(m \times n)$ matrix. The **row space** of A is defined to be $\mathcal{R}(A^T)$

Th. Let A be an $(m \times n)$ matrix, and suppose that A is row equivalent to the $(m \times n)$ matrix B. Then A and B have the same row space.

Th. If the nonzero matrix A is row equivalent to the matrix B in echelon form, then the nonzero rows of B form a basis for the row space of A.

Basis(Bases)

Def. Basis

Let V be a vector space, and let $B = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ be a spanning set for V. If B is linearly independent, then B is a **basis** for V.

i.e.: Basis is minimal spanning set.

Th. All bases of same vector space have same number of vectors.

Th. Let W be a vector space, and let $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_p\}$ be a spanning set for W containing p vectors. Then any set of p+1 or more vectors in W is linearly dependent.

Def. Dimension

Let V be a vector space.

- 1. If V has a basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ of n vectors, then V has **dimension** n, and we write dim(V) = n. If $V = \{\theta\}$, then dim(V) = 0.
- 2. If V is nontrivial and does not have a basis containing a finite number of vectors, then V is an **infinite-dimensional** vector space.

Th. The V be a vector space, and let $Q = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ be a spanning set for V. Then there is a subset Q' of Q that is a basis of V.

Th. Let V be a finite-dimensional vector space with dim(V) = p.

- 1. Any set of p+1 or more vectors in V is linearly dependent.
- 2. Any spanning set for V must contain at least p vectors.
- 3. Any set of p linearly independent vectors in V is a basis for V.
- 4. Any set of p vectors that spans V is a basis for V.

Def. Coordinate

Given a vector space V and its basis $B = { \mathbb{V}_{1}, \mathbb{v}_{1}, \mathbb{v}_{p} }$, for any vector $v \in V$, we have

$$\mathbf{v} = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_p \mathbf{v}_p \tag{5}$$

or

$$[\mathbf{v}]_B = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} \tag{6}$$

We will call the unique scalars w_1, w_2, \dots, w_p the **coordinates** of \mathbf{v} with respect to the basis B, and $[\mathbf{v}]_B$ the **coordinate vector** of \mathbf{v} with respect to B.

Lemma. Let V be a vector space with basis $B = { \mathbb{V} \in V}_{1}$, \mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p} \}. If \mathbf{u} and \mathbf{v} are vectors in V and if c if a scalar, then the following hold:

- 1. $[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$.
- 2. $[c\mathbf{u}]_B = c[\mathbf{u}]_B$.

Th. Let V be a vector space with basis $B = \mathcal V_{1}, \mathcal V_{2}, \cdot \mathbb V_{2}, \cdot \mathbb V_{1}, \cdot \mathbb V_{2}, \cdot$

- 1. A vector $\mathbf{u} \in V$ is in Sp(S) if and only if $[\mathbf{u}]_B \in T$.
- 2. The set S is linearly independent in V if and only if the set T is linearly independent in \mathbb{R}^p .

Corollary. S is a basis for V if and only if T is a basis for \mathbb{R}^p .

Def. Nullity of a Matrix

For a $(m \times n)$ matrix A, the dimension of the null space is called the the **nullity** of A.

Def. Rank of a Matrix

For a $(m \times n)$ matrix A, the dimension of the range of A is called the **rank** of A. i.e. the rank of matrix A is the dimension of column space of A:

$$rank(A) = dim(Sp(\{\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n\})) = dim(\mathcal{R}(A))$$
(7)

Th. If A is an $(m \times n)$ matrix, we have $rank(A) = rank(A^T)$.

Corollary.: If A is an $(m \times n)$ matrix, then the row space and the column space of A have the same dimension.

Th. If A is an $(m \times n)$ matrix, then $n = \operatorname{rank}(A) + \operatorname{nullity}(A)$.

Th. An $(m \times n)$ system of linear equations, $A\mathbf{x} = \mathbf{b}$, is consistent if and only if $\operatorname{rank}(A) = \operatorname{rank}([A|\mathbf{b}])$.

Th. An $(n \times n)$ matrix A is nonsingular if and only if rank(A) = n.

Inner Product Space

Def. Inner Product

An **Inner Product** on a real vector space V is a function that assigns a real number, $\langle \mathbf{u}, \mathbf{v} \rangle$, to each pair of vectors \mathbf{v} and \mathbf{u} is V, and that s.t. these properties:

- 1. $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{u} = \theta$.
- 2. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- 3. $\langle a\mathbf{u}, \mathbf{v} \rangle = a \langle \mathbf{u}, \mathbf{v} \rangle$.
- 4. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$.

Th. The operation $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T A \mathbf{v}$ is an valid inner product for \mathcal{R}^n if and only if A is symmetric positive-definite matrix.

Def. Inner Product Space

We call a **vector space** with an inner product is an **inner-product space**.

Def. Norm

If V is an inner-product space, then for each $\mathbf{v} \in V$ we define $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ the **norm** of \mathbf{v}

Def. Orthogonal

If ${\bf u}$ and ${\bf v}$ are vectors in an inner-product space V, we say these two vectors are **orthogonal** if $\langle {\bf u}, {\bf v} \rangle = 0$.

Def. Orthogonal Set

Vector set $B = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is an **orthogonal set** in inner-product space V if $\forall i \neq j, \ \mathbf{v}_i \in B, \ \mathbf{v}_j \in B, \ s.t. \ \langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0.$

Def. Orthogonal Basis

If an orthogonal set of vectors B is a basis for inner-product space V, we call B an **orthogonal basis** for V.

Furthermore, if $\forall \mathbf{u} \in B$, $\|\mathbf{u}\| = 1$, then B is said to be an **orthonormal basis** for V.

Th. In \mathbb{R}^n , let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be a set of vectors in \mathbb{R}^n and $\forall i, \mathbf{u}_i \neq \theta$. If S is an orthogonal set of vectors, then S is a linearly independent set of vectors.

Proof.

Suppose $\sum_i c_i \mathbf{u}_i = \theta$, then for any j, we have $\sum_i c_i \mathbf{u}_j^T \mathbf{u}_i = c_j \mathbf{u}_j^T \mathbf{u}_j = \theta$. So $c_j = 0$ because $\mathbf{u}_i \neq \theta$.

Corollary. Let W be a subspace of \mathbb{R}^n , where $\dim(W) = p$. If S is an orthogonal set of p **nonzero** vectors and is also a subset of W, then S is an orthogonal basis for W.

Th. Coordinate

Let $B = \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$ be an orthogonal basis for an inner-product space V. If \mathbf{u} is any vector in V, we have:

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$
(8)

Th. Gram-Schmidt Orthogonalization

[Used for constructing an orthogonal basis]

Let V be an inner-product space, and let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ be any basis for V. Let $\mathbf{v}_1 = \mathbf{u}_1$, and other vectors defined by:

$$\mathbf{v}_k = \mathbf{u}_k - \sum_{j=1}^{k-1} \frac{\langle \mathbf{u}_k, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle} \mathbf{v}_j \tag{9}$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is an orthogonal basis for V.

Least-Squares Solutions to Inconsistent Systems

If $A\mathbf{x} = \mathbf{b}$ is inconsistent. We want to find a approximating solution.

Def. Overdetermined Systems

A linear system with more equations than unknowns is called **overdetermined systems**.

Def. Residual Vector and Least-square Solution

Consider the linear system $A\mathbf{x} = \mathbf{b}$ where A is $(m \times n)$. If x is a vector in \mathbb{R}^n , then the vector $\mathbf{r} = A\mathbf{x} - \mathbf{b}$ is called a **residual vector**. A vector $\mathbf{x}^* \in \mathbb{R}^n$ that yields the smallest possible residual vector is called a least-squares solution to $A\mathbf{x} = \mathbf{b}$. Or \mathbf{x}^* is a **least-squares solution** to $A\mathbf{x} = \mathbf{b}$ if

$$||A\mathbf{x}^* - \mathbf{b}|| \le ||A\mathbf{x} - \mathbf{b}||, \text{ for all } \mathbf{x} \in \mathbb{R}^n$$
 (10)

Consider a special case of an inconsistent (3×2) system $A\mathbf{x} = \mathbf{b}$ suggests how we can calculate least-squares solutions. In particular, consider figure below with illustrates a vector \mathbf{b} that is not in $\mathcal{R}(A)$.

Let the vector \mathbf{y}^* in $\mathcal{R}(A)$ be the closest vector in $\mathcal{R}(A)$ to \mathbf{b} , we have:

$$\|\mathbf{y}^* - \mathbf{b}\| \le \|\mathbf{y} - \mathbf{b}\|, \text{ for all } \mathbf{y} \in \mathcal{R}(A)$$
 (11)

Geometry suggests that the vector $\mathbf{y}^* - \mathbf{b}$ is orthogonal to any vector in $\mathcal{R}(A)$. I.e.: for any column vector \mathbf{A}_i of A. we have:

$$\mathbf{A}_i^T(\mathbf{y}^* - \mathbf{b}) = 0 \tag{12}$$

Or in matrix-vector terms,

$$A^{T}(\mathbf{y}^* - \mathbf{b}) = \theta \tag{13}$$

Since $\mathbf{y}^* = A\mathbf{x}^*$, we have:

$$A^T A \mathbf{x}^* = A^T \mathbf{b} \tag{14}$$

Th. Consider the $(m \times n)$ system $A\mathbf{x} = \mathbf{b}$:

- 1. The associated system $A^T A \mathbf{x} = A^T \mathbf{b}$, which is called the **normal equations**, is always consistent.
- 2. The least-squares solutions of $A\mathbf{x} = \mathbf{b}$ are precisely the solutions of $A^T A\mathbf{x} = A^T \mathbf{b}$.
- 3. The least-squares solution is unique if and only if A has rank n. If rank(A) < n, we say that A is **rank deficient** and may have infinitely many solutions.

Least-Squares Fits to Data

Def. Least-squares Criterion

- 1. Best Least-squares Linear Fit: Find m and c to minimize $\sum_{i=0}^n [(mt_i+c)-y_i]^2$. 2. Best Least-squares Quadratic Fit: Find a,b,c to minimize $\sum_{i=0}^n [(at_i^2+bt_i+c)-y_i]^2$

Consider the following table of data:

t	t_0	t_1	t_2	•••	t_m
У	y_0	y_1	y_2		y_m

Suppose we decide to fit these data with an n-th degree polynomial:

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$
(15)

We want to minimize

$$Q(a_0, a_1, \dots, a_n) = \sum_{i=0}^{m} [p(t_i) - y_i]^2$$
(16)

Let

$$A = \begin{bmatrix} 1 & t_0 & t_0^2 & \cdots & t_0^n \\ 1 & t_1 & t_1^2 & \cdots & t_1^n \\ \vdots & & & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^n \end{bmatrix}, \mathbf{x} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}, \mathbf{b} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_m \end{bmatrix}.$$
(17)

We have

$$Q(a_0, a_1, \dots, a_n) = ||A\mathbf{x} - \mathbf{b}||^2$$
(18)

As before, we can minimize this by solving $A^T A \mathbf{x} = A^T \mathbf{b}$.

Theory of Least Squares

Def. The Least-Squares Problem in \mathbb{R}^n

Let W be a p-dim subspace of R^n . Given a vector $\mathbf{v} \in R^n$, find a vector $\mathbf{w}^* \in W, \ s.t.$:

$$\|\mathbf{v} - \mathbf{w}^*\| \le \|\mathbf{v} - \mathbf{w}\|, \ \forall \ \mathbf{w} \in W. \tag{19}$$

The vector \mathbf{w}^* is called the **best least-squares approximation** of \mathbf{v} .

Th. Let W be a p-dim subspace of R^n , and let \mathbf{v} be a vector in R^n . Suppose there is a vector \mathbf{w}^* such that $(\mathbf{v} - \mathbf{w}^*)^T \mathbf{w} = 0$ for every vector \mathbf{w} in W. Then \mathbf{w}^* is the best least-squares approximation of \mathbf{v} .

Th. Let W be a p-dim subspace of R^n , and let $\{\mathbf v}_{1}$, \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p} \}\$ be a basis for W. Let $\mathbf v$ be a vector in R^n . Then $(\mathbf v - \mathbf w^*)^T \mathbf w = 0$ for all $\mathbf w \in W$ if and only if:

$$(\mathbf{v} - \mathbf{w}^*)^T \mathbf{u}_i = 0, \ 1 \le i \le p. \tag{20}$$

Th. Let W be a p-dim subspace of \mathbb{R}^n , and let \mathbf{v} be a vector in \mathbb{R}^n . Then there is **one and only one** best least-squares approximation in W to \mathbf{v} . And if we have an orthogonal basis $\mathcal{V}_{1}, \mathcal{V}_{2}, \cdot \mathcal{V}_{2}, \cdot \mathcal{V}_{3}$ for W, then:

$$\mathbf{w}^* = \sum_{i=1}^p \frac{\mathbf{v}^T \mathbf{u}_i}{\mathbf{u}_i^T \mathbf{u}_i} \mathbf{u}_i \tag{21}$$

Orthogonal Projections

Def. Projections

Let V be an inner-product space and let W be a subspace of V. Given a vector \mathbf{v} in V, if there exist a vector $\mathbf{w}^* \in W$ $s.t. \|\mathbf{v} - \mathbf{w}^*\| \le \|\mathbf{v} - \mathbf{w}\| \ \forall \ \mathbf{w} \in W$. We say that \mathbf{w}^* is the **projection** of \mathbf{v} onto W, or (frequently) **the best least-squares approximation** to \mathbf{v} .

Th. Let V be an inner-product space and let W be a subspace of V. Let \mathbf{v} be a vector in V, and suppose \mathbf{w}^* is a vector in W such that:

$$\langle \mathbf{v} - \mathbf{w}^*, \mathbf{w} \rangle = 0, \ \forall \ \mathbf{w} \in W. \tag{22}$$

Then we have $\|\mathbf{v} - \mathbf{w}^*\| < \|\mathbf{v} - \mathbf{w}\| \ \forall \ \mathbf{w} \in W$ with equality holding only for $\mathbf{w} = \mathbf{w}^*$.

Th. Let V be an inner-product space, and let \mathbf{v} be a vector in V. Let W be an n-dimensional subspace of V, and let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be an **orthogonal** basis for W. Then

$$\|\mathbf{v} - \mathbf{w}^*\| \le \|\mathbf{v} - \mathbf{w}\|, \ \forall \ \mathbf{w} \in W. \tag{23}$$

hold if and only if

$$\mathbf{w}^* = \frac{\langle \mathbf{v}, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 + \frac{\langle \mathbf{v}, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 + \dots + \frac{\langle \mathbf{v}, \mathbf{u}_n \rangle}{\langle \mathbf{u}_n, \mathbf{u}_n \rangle} \mathbf{u}_n$$
(25)