(a) SMALLSUM $\in P$: Consider the following algorithm.

```
SS(S,t):

for i \leftarrow 1,...,n:

if x_i \leq t:

return True

return False
```

The algorithm examines each number once and performs one comparison for each one, in linear time. The total time is therefore $\mathcal{O}(m^2)$, where m is the total bit-size of (S, t).

Moreover, if $x_i \le t$ for any i, then $\{x_i\}$ is a subset whose sum is at most t, and if $x_i > t$ for every i, then no non-empty subset has sum at most t (because every non-empty subset contains at least one x_i).

(b) LargeSums $\in P$: Consider the following algorithm.

```
LS(S,t):

for i \leftarrow 1,...,n:

if x_i < t:

return False

return True
```

The algorithm examines each number once and performs one comparison for each one, in linear time. The total time is therefore $\mathcal{O}(m^2)$, where m is the total bit-size of (S, t).

Moreover, if $x_i < t$ for any i, then $\{x_i\}$ is a subset whose sum is *not* at least t, and if $x_i \ge t$ for every i, then every non-empty subset has sum at least t (because every non-empty subset contains at least one x_i).

(c) ExactSum \in *NP*: Consider the following verifier.

```
ES(S, t, c):

if c \subseteq S and \sum_{x \in c} x = t:

return True

return False
```

The verifier checks that its certificate c is a subset of S (time $O(m^2)$ if we search for each element of c in S), then adds up the elements of c: each addition takes linear time, for total time $O(m^2)$, where m is the total bit-size of (S, t).

Also, if ES(S, t, c) = True for some c, then c is a subset of S whose sum is exactly t. And if there is some subset c of S whose sum is exactly t, then ES(S, t, c) = True.