Rule Learning

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"All models are wrong but some are useful."
-George Box

Can we use *rules* as models?

*This lesson refers to chapter 8 of the GIDS book

What you will learn

Rule Learning

- Propositional Rules
- Rule Learners
- Geometrical Rule Learners
- Heuristic Rule Learners

Propositional Rules

Propositional Rules

Rules consisting of atomic facts and their combinations using logical operators

Antecedent

→ Indicating conditions to be fulfilled

Consequent

→ True when conditions are met

Atomic facts

- Numeric attributes: e.g., <, >, =, etc.
- Nominal attributes: e.g., =, ∈ $\{set\}$, etc.
- − Ordinal attributes: e.g., <, >, =, $\in \{set\}$, $\in [interval]$, etc.

Extracting Rules from Decision Trees

Consider a decision tree:

Extracting Rules from Decision Trees

Rules can be extracted from a decision tree

Extracting Rules from Decision Trees

Rules from a decision tree are:

- Mutually exclusive (no overlap)
- Unordered
- Complete (covers the entire data)

Problems with rules from a decision tree:

- Instability (due to recursive nature of the trees)
- Redundancy (splitting constraints appear in multiple rules)

Ordered Rules from Decision Trees

Non-redundant and ordered rule set:

 R_1 : IF temperature ≤ 20 THEN class "cold"

 R_2 : IF humidity ≤ 50 THEN class "comfortable"

 R_3 : IF temperature ≤ 35 THEN class "comfortable"

 R_4 : class = "unbearable"

Rules have to be examined in the order

Rule Learners

Learning Propositional Rules

Categorization of propositional rule learners:

- Supported attribute types
 - Nominal only → relatively small hypothesis space
 - Numerical only → geometrical rule learners
 - Mixed attrigutes → more complex heuristics needed
- Learning strategies
 - Specializing
 - Generalizing

Learning Propositional Rules: Generalizing

- Example
- Given a training instance (x, k) with x = (12, 3.5, red), an initial special rule looks like:

$$IF x_1 = 12 AND x_2 = 3.5 AND x_3 = red$$
 THEN class k

- With a second sample (x, k) with x = (12, .33.5, blue), the rule is generalized as:

$$IFx_1 \in [12,12.3] \ AND \ x_2 = 3.5 \ AND \ x_3 \in \{red, blue\} \ THEN \ class \ k$$

Learning Propositional Rules: Generalizing

Two main options for generalization exist:

- Generalize existing rule to cover one more pattern
- Merge two existing rules

The resulting training algorithms generally are:

- Greedy
 - Complete search of merge tree is infeasible
- Differ in
 - The choice of rules / patterns to merge
 - The used stopping criteria

Learning Propositional Rules: Specializing

Specialization follows the same principle

Start with very general rules

IF true THEN class k

Iteratively specialize the rule

Finding a Set of Rules

So far we only generalized/specialized one rule.

- Most real world data sets are too complex to be explained by one rule only.
- Many rule learning algorithms wrap the learning of one rule into an outer loop based on set covering strategy (sequential covering):
 - attempts to build most important rules first
 - iteratively adds smaller / less important rules

Geometrical Rule Learners

Geometrical Rule Learners

Limited to numerical attributes (of comparable magnitudes)
 Goal:

- Find rectangular area(s) that are occupied only by patterns for one class
- Such areas represent a rule:

$$IF \ x_1 \in [a_1, b_1] \land \dots \land \dots \land x_n \in [a_n, b_n] \quad THEN \ class \ k$$

Keep creating rules until no more useful rule can be found

Example – Geometric Rule Learners

Geometric Rule Learners

To find a rule:

- Draw a random starting point
- Find a rectangular area around the point, with points belonging to the same class

When possible

- Find nearest neighbors of the same class
- Generalize rectangles to includes this point

Geometric Rule: Specialized and Generalized

Specialized

Generalized

CN2 Rule Learning Algorithm

- Prominent, early example of rule learning algorithm
- Set covering approach
- Greedy algorithm rule specialization
- Simple heuristic for most important rule selection

Algorithm BuildRuleSet (D, p_{\min})

```
training data D
input:
parameter: performance threshold p_{\min}
                a rule set R matching D with performance \geq p_{\min}
output:
                R = \emptyset
                D_{\text{rost}} = D
                while (Performance(R, D_{rest}) < p_{min})
                     r = \text{FindOneGoodRule}(D_{\text{rest}})
5
                     R = R \cup \{r\}
                     D_{\text{rest}} = D_{\text{rest}} - \text{covered}(r, D_{\text{rest}})
6
                endwhile
8
                return R
```

Heuristic Rule Learners

Heuristics for FindOneGoodRule

How do we evaluate the accuracy A of a rule?

– Base assumption:

$$A(IF\ Conditions\ THEN\ class\ k) = p(k/Conditions)$$

Estimating the probability using relative frequencies

$$p(k/Conditions) = \frac{\# covered \ correct}{\# covered \ total}$$

Probability Estimates

Relative frequency of covered correctly:

$$p(k/R) = \frac{\text{\# covered correct}}{\text{\# covered total}}$$

→ Problems with small samples

Laplace estimate

$$p(k/R) = \frac{\# covered \ correct + 1}{\# \ covered \ total + \# \ classes}$$

→ Assumes uniform prior distribution of classes

Probability Estimates

– m-estimate:

$$p(k/R) = \frac{\text{\# covered correct} + m \cdot p(k)}{\text{\# covered total} + m}$$

– Where:

$$p(k) = \frac{1}{\# classes}$$
 and $m = \# classes$

- Special case:
- Takes into account prior class probabilities
- Independent of number of classes
- -m is domain dependent (more noise, larger m)

FindOneGoodRule

Algorithm FindOneGoodRule (D_{rest})

```
(subset of) training data D_{\rm rest}
input:
              one good rule r explaining some instances of the training data
output:
               h_{\rm best} = {\rm true} // most general hypothesis
               H_{\text{candidates}} = \{h_{\text{best}}\}
3
               while H_{\rm candidates} \neq \emptyset
                     H_{\text{candidates}} = \text{specialize} (H_{\text{candidates}})
5
                     h_{\text{best}} = \arg\max_{h \in H_{\text{candidates}} \cup \{h_{\text{best}}\}} \{\text{Performance}(h, D_{\text{rest}})\}
6
                     update(H_{candidates}) // clean up
               endwhile
8
               return 'IF h_{\text{best}} THEN \operatorname{arg\,max}_k\{|\operatorname{covered}_k(h_{\text{best}}, D_{\text{rest}})|\}'
```

Limitations of Propositional Rules

Propositional rule learners cannot express rules such as:

IF x is father of y AND y is female THEN y is daughter of x

They would need to cover training examples for all possible (x,y) combinations

→ For this, other types of rules are more appropriate

