Notebook 1: Cheat Sheet

- 1. Qubits can be in a superposition state
 - $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$
 - Represented by a vector in a complex vector space

3. Bloch sphere

- \circ **Visual representation of a qubit** as a vector on a sphere with θ and ϕ as coordinates for the state : $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$
- 4. Quantum **gates** are **unitary matrices** and act on qubits like **rotations** on the Bloch sphere.
- 5. A **quantum circuit** is a sequence of unitary transformations (gates) applied to an initial state.
 - $|\psi_{\text{final}}\rangle = U_n \cdots U_2 U_1 |\psi_{\text{initial}}\rangle$
 - Measurement gives probabilistic results based on the final state of the qubit

Notebook 2: Cheat Sheet

PENNYLANE

1. Quantum circuits are composed of gates

Gate	Circuit Element	Matrix Representation	Action on Basis States
Hadamard Gate H	—[H]—	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
Pauli-X Gate X	— <u>X</u> —	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X 0\rangle = 1\rangle$ $X 1\rangle = 0\rangle$
Pauli-Y Gate Y	<u>-</u> Y	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$
Pauli-Z Gate Z	_Z_	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$Z 0\rangle = 0\rangle$ $Z 1\rangle = - 1\rangle$
CNOT Gate	-	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$

2. Quantum circuits must return a measurement

(qml.state, qml.expval, qml.probs, qml.counts)

3. Link a circuit and a device together with a Qnode

