

Brennkraftmaschine

Die Erfindung betrifft eine Brennkraftmaschine mit einer Laser-Zündeinrichtung, mit einem gütegeschalteten, gepumpten Festkörperlaser mit einer gepulsten Pump-Lichtquelle, einem in einen Resonator eingebetteten festen Laserkristall, einem Güteschalter zur Erhöhung der Leistungsdichte, zumindest einem Auskoppelspiegel und einer Fokussiereinrichtung, über welche der Laserstrahl in einem Brennraum fokussierbar ist.

Weiters betrifft die Erfindung einen gütegeschalteten, gepumpten Festkörperlaser, insbesondere für eine Laser-Zündeinrichtung einer Brennkraftmaschine, mit einer durch Pumpdioden gebildeten gepulsten Pump-Lichtquelle, einem in einen Resonator eingebetteten festen Laserkristall, einem Güteschalter zur Erhöhung der Leistungsdichte, zumindest einem Auskoppelspiegel und einer Fokussiereinrichtung, wobei zur Kühlung des Resonators eine zumindest eine Peltier-Kühllemente aufweisende Kühleinrichtung vorgesehen ist.

Gütegeschaltete, gepumpte Festkörperlaser eignen sich insbesondere als Laser-Zündeinrichtung bei Brennkraftmaschinen.

Aus der US 4,416,226 A ist eine Laser-Zündeinrichtung für eine Brennkraftmaschine bekannt, wobei der Resonator des Lasers samt fotooptischer Fokussiereinrichtung in eine Zylinderkopfbohrung so eingeschraubt ist, dass die Zündeinrichtung direkt in den Brennraum einmündet. Die Laser-Zündeinrichtung wendet dabei das Prinzip eines Festkörperlasers mit einer gepulsten Pump-Lichtquelle an. Dies hat den Vorteil, dass mit relativ geringem Energieaufwand hohe Pulsennergien erreicht werden können. Als Pump-Lichtquelle wird dabei eine Blitzlampe verwendet. Zur Erhöhung der Leistungsdichte wird ein aktiv schaltbarer Güteschalter ("Q-Switch") eingesetzt. Beim sogenannten "Q-switching" wird die Energie während des Pumpvorganges des aktiven Mediums in der Laser-Kavität gespeichert und während einer sehr kurzen Emissionszeit freigesetzt. Hieraus resultiert ein extrem energiereicher Laserpuls. Aktiv schaltbare Güteschalter haben aber den Nachteil, dass für die Steuerung ein erheblicher Schaltungsaufwand erforderlich ist, und dass sie für schnelle Impulsfolgen weniger gut geeignet sind. Die fotooptische Einrichtung der bekannten Laserzündvorrichtung weist drei Linsen auf. Zusammen mit dem aktiven Güteschalter und der durch eine Blitzlampe gebildeten Pump-Lichtquelle ergibt sich der gravierendste Nachteil, dass die Einrichtung nicht zur Gänze in einem in einen Zündkerzenschacht einschraubbaren Bauteil untergebracht werden kann. Über die bei gepumpten Festkörperlasern

erforderliche Kühlung des Laserkristalls und der Lichtquelle sind der Druckschrift keine Informationen zu entnehmen.

Die US 6,413,077 B1 beschreibt eine Laserzündeinrichtung, bei der mehrere Laser, und zwar ein Anregungslaser und ein Zündlaser zum Einsatz kommen. Mittels eines Güteschalters werden die Pulse des Anregungslasers und des Zündlasers aufsummiert und somit die für eine Zündung erforderliche Energiedichte bereitgestellt. Diese bekannte Zündeinrichtung hat den Nachteil eines sehr hohen konstruktiven Aufwandes und benötigt zu viel Bauraum, um anstelle einer Zündkerze in einer Brennkraftmaschine eingesetzt werden zu können.

Obwohl seit langem bereits das Bedürfnis nach kompakten Laserzündeinrichtungen besteht, gibt es bisher keine konkreten konstruktiven Vorschläge für kleinbauende Laserzündeinrichtungen für Brennkraftmaschinen. Die Veröffentlichungen US 4,434,753 A und DE 37 36 442 A zeigen diesbezüglich auch nur rein schematische Darstellungen von Zündeinrichtungen. Wesentliche meist viel Bauraum beanspruchende Bauteile, wie Kühleinrichtungen, fehlen, weshalb diese Systeme für den praktischen Einsatz in Brennkraftmaschinen noch nicht geeignet sind.

Der Einsatz einer Laserzündung anstelle einer Funkenzündung bietet eine Reihe an Vorteilen. Zum einen benötigt der relativ frei wählbare Ort des Zündplasmas keinerlei materielle Struktur, die den Verbrennungsvorgang stören könnte. Weiters lässt die Wahl des Zündortes eine Optimierung des Verbrennungsvorganges zu, gegebenenfalls auch eine Mehrfachzündung. Die hohen Zünddrücke, wie sie bei Gasmotoren auftreten, kommen der Laserzündung entgegen, da die benötigte Pulsennergie bei höheren Drücken abnimmt. Mit der Laserzündung lassen sich noch magere Gemische zünden, wodurch sich sehr niedrige NO_x-Emissionswerte erzielen lassen.

Aus der Literatur ist es bekannt, dass ein fokussierter Laser auf einen hinreichend kleinen Fokusdurchmesser mit genügend Intensität zu einer Plasmabildung und zu einer lokalen Temperaturerhöhung und somit zu einer Zündung eines explosiven Gemisches führt. Für praktische Gasgemische wird vorwiegend der Lawineneffekt freier Elektronen für die Plasmabildung erklärt. Der Effekt ist dann praktisch unabhängig von der verwendeten Wellenlänge.

In der US 5,673,550 A wird die Zündung von Kraftstofftröpfchen unter Plasmabildung innerhalb des Kraftstoff-Luftnebels mittels eines über eine kohärente Lichtquelle gepulsten Lasers beschrieben.

Es ist bekannt, bei gepumpten Festkörperlasern Pumpdioden einzusetzen. Pumpdioden haben im Vergleich zu Blitzlampen den Vorteil eines höheren Wirkungs-

grades. Bei mit Pumpdioden gepumpten Festkörperlasern tritt allerdings das Problem auf, dass die Pumpdioden nur innerhalb eines sehr engen Temperaturbereiches betreibbar sind. Zu hohe Temperaturen würden die Lebensdauer der Pumpdioden drastisch vermindern.

Die US 5,187,714 A beschreibt einen laserioden gepumpten Festkörperlaser, wobei zur Kühlung eine Peltiereinrichtung vorgesehen ist. Weiters sind mit Peltierelementen gekühlte diodengepumpte Festkörperlaser aus den Veröffentlichungen JP 11-002849 A, JP 10-200177 A, JP 09-232665 A, JP 04-157778 A und JP 03-041787 A bekannt.

Für den Einsatz als Zündeinrichtung in Brennkraftmaschinen ist die Kühlung alleine durch Peltierelemente allerdings nicht ausreichend. Weiters wird die Kühlung noch durch die Forderung erschwert, dass die Laser-Zündeinrichtung möglichst kompakt gebaut und im Zündkerzendorf eines Zylinderkopfes einer Brennkraftmaschine untergebracht werden soll.

Aufgabe der Erfindung ist es, einen für den praktischen Einsatz in Brennkraftmaschinen als Laserzündeinrichtung geeigneten, temperaturstabilisierten Festkörperlaser zu schaffen, welcher nur wenig Bauraum beansprucht und welcher mit geringem konstruktiven Aufwand in Brennkraftmaschinen eingesetzt werden kann.

Erfindungsgemäß wird dies dadurch erreicht, dass Pump-Lichtquelle, Resonator samt Laserkristall, Güteschalter, Auskoppelspiegel, Fokussiereinrichtung, sowie eine Kühleinrichtung zur Kühlung des Resonators in einem einzigen, in einen Zündkerzenschacht einsetzbaren Bauteil integriert sind.

Durch die Verwendung eines gütegeschalteten, gepumpten Festkörperlasers können hohe Pulsennergien erreicht werden. Die wesentlichsten Elemente sind kompakt in einem einzigen Bauteil zusammengefasst, welcher sich anstelle einer Zündkerze in den Zündkerzenschacht einer Brennkraftmaschine einschrauben lässt.

Vorzugsweise ist vorgesehen, dass die Pump-Lichtquelle durch Pumpdioden gebildet ist. Pumpdioden haben im Vergleich zu Blitzlampen den Vorteil eines höheren Wirkungsgrades.

Um eine thermische Stabilisierung zu erreichen, ist in einer bevorzugten Ausführung der Erfindung vorgesehen, dass die Kühleinrichtung mindestens zwei, vorzugsweise drei verschiedene Kühlsysteme aufweist, wobei Peltier-Kühlelemente dem ersten Kühlsystem zur Kühlung der Pumpdioden zugeordnet sind.

Da die Wellenlänge der Pumpdioden sich mit der Temperatur des Lasersubstrats ändert und der Laserkristall eine nur sehr schmale Absorptionslinie besitzt, müssen die Pumpdioden thermisch stabilisiert werden. Untersuchungen haben gezeigt, dass zumindest zwei, vorzugsweise drei verschiedene Kühlsysteme für eine thermische Stabilisierung des Resonators von Vorteil sind. Da aber die Pumpdioden auf einem wesentlich niedrigeren Temperaturniveau als die Kühlwassertemperatur betrieben werden müssen, ist der Einsatz von thermoelektrischen Kühllementen (Peltier-Kühlementen) in diesem Fall erforderlich. Zumindest das erste Kühlsystem weist daher zumindest ein Peltier-Kühlement auf. Dabei ist vorgesehen, dass zur Kühlung des Laserkristalls und/oder der Pumpdioden der Resonator ein zweites Kühlsystem mit einem inneren Kühlmittelkreislauf aufweist. Vorzugsweise ist vorgesehen, dass die Pumpdioden von einem vorzugsweise konzentrisch zum Laserkristall angeordneten Wärmeverteiler umgeben sind, wobei der Wärmeverteiler vorzugsweise aus Kupfer besteht. Die Wärme des inneren Kreislaufes wird über den Wärmeverteiler an zumindest ein Peltier-Kühlement abgeleitet. Dabei ist vorgesehen, dass die Pumpdioden von zumindest einer Reihe in Richtung der Achse des Festkörperlasers angeordneten ersten äußeren Kühlkanälen des ersten Kühlmittelkreislaufes umgeben sind, wobei die ersten äußeren Kühlkanäle vorzugsweise im Wärmeverteiler angeordnet sind. Um eine gute Kühlung zu erreichen, ist es besonders günstig, wenn die Peltier-Kühlemente vorzugsweise konzentrisch zur Achse des Festkörperlasers außen um die Pumpdioden herum angeordnet sind, wobei vorzugsweise der Wärmeverteiler zwischen Pumpdioden und Peltier-Kühlementen angeordnet ist. Besonders vorteilhaft ist es, wenn zur Wärmeabfuhr vom Peltier-Kühlement der Resonator zumindest ein einen äußeren Kühlmittelkreislauf definierendes drittes Kühlsystem aufweist. Die Peltier-Kühlemente sind dabei von einem Wärmetauscher des dritten Kühlsystems mit in Richtung der Achse des Festkörperlasers angeordneten zweiten Kühlkanälen umgeben. Für zumindest ein Kühlsystem, und zwar das den äußeren Kühlmittelkreislauf aufweisende dritte Kühlsystem, bietet sich das temperaturgeregelte Kühlwasser der Brennkraftmaschine an. Für den inneren Kühlkreislauf ist das Kühlwasser der Brennkraftmaschine aber nicht geeignet, da bei der Wellenlänge der Pumpstrahlung keine Absorption und während der Erwärmung kein Phasenübergang auftreten darf.

Zumindest eines der Kühlsysteme kann dabei auch zum Aufwärmen der Pumpdioden ausgelegt sein. Besonders vorteilhaft ist es, wenn bei Kaltstart die Pumpdioden durch das Peltier-Kühlement auf die Betriebstemperatur erwärmbar sind.

Der Laserkristall kann prinzipiell entweder aus ND:YAG (Neodym:YAG) oder aus ND:YVO₄ (Neodym:Vanadat) bestehen. ND:YAG ist weit verbreitet, kostengünstig

und mechanisch gut belastbar, hat aber eine weit schmälere Absorptionslinie als ND:YVO₄. Der Einsatz von ND:YAG-Laserkristallen bedingt somit eine besonders gute Kühleinrichtung.

Eine sehr effektive Wärmeabfuhr aus dem Laserkristall wird erreicht, wenn der Laserkristall von zumindest einem vorzugsweise ringförmigen ersten inneren Kühlkanal des inneren Kühlmittelkreislaufes umgeben ist.

Pump-Lichtquelle, Resonator samt Laserkristall, Güteschalter, Auskoppelspiegel, Fokussiereinrichtung, sowie die Kühleinrichtung zur Kühlung des Resonators sind vorzugsweise in einem einzigen, in einen Zündkerzenschacht einsetzbaren Bauteil integriert.

Durch die Verwendung eines gütegeschalteten, gepumpten Festkörperlasers können hohe Pulsennergien erreicht werden. Die wesentlichsten Elemente sind kompakt in einem einzigen Bauteil zusammengefasst, welcher sich anstelle einer Zündkerze in den Zündkerzenschacht einer Brennkraftmaschine einschrauben lässt.

Die Laserdioden werden dabei mit einer Pulsennergie von einigen mJ und etwa 100-200µs gepulst betrieben, wodurch die Leistung pro Diode auf einige 10W beschränkt bleibt.

Hochleistungslaserdiode bestehen aus einem Array von vielen Einzeldioden und erreichen dadurch eine sehr hohe Pulsennergie. Durch die große Emissionsfläche und die nicht kontinuierliche Verteilung (geringe Güte) kann der Laserstrahl allerdings nur sehr schlecht fokussiert werden. Durch den langen Resonator kann mit einem Festkörperlaser eine wesentlich höhere Strahlgüte und damit geringerer Fokusdurchmesser erreicht werden.

Der gepulste Festkörperlaser ist aus den vier Hauptkomponenten Pumpdiode, Kristallstab, Resonator mit Auskoppelspiegel, Güteschalter (Q-Switch) und Fokussiereinrichtung aufgebaut. Über die Einstrahlung der Pumpdiode werden metastabile Energieniveaus im Laserkristall angeregt und die Energie damit gespeichert. Aufgrund einer geringen spontanen Emission beginnt der Laserkristall Licht auf der Laserwellenlänge (1064nm) zu emittieren.

Zur Verstärkung und Kohärenz des Lichtes ist der Laserkristall in einen optischen Resonator eingebettet, dessen Güte mit dem Güteschalter bei Erreichen der gewünschten Leistungsdichte pulsartig erhöht wird. Dadurch erhält man am Auskoppelspiegel einen kurzen, hohen Laserpuls. Es wird dabei ein passiver Güteschalter verwendet, welcher einerseits eine hohe Verstärkung, andererseits kurze Energieimpulse ohne aufwändige Steuerung ermöglicht.

Die Geometrie des Resonators ergibt sich aus der Forderung, dass die Pumpdiolen – für den Einsatz als Laser-Zündeinrichtung – am oberen Ende des Zündkerzenschachts angeordnet sein müssen. Zur Erzielung einer hohen Güte ist ein möglichst großer Abstand zwischen dem Laserkristall und dem Auskoppelspiegel nötig. Daraus ergibt sich die längliche Bauform, wobei sich der Kopfbereich mit Laserkristall an einem Ende und der Auskoppelspiegel am anderen Ende eines Tubus befinden.

An den Auskoppelspiegel schließt die aus einer einzigen Fokuslinse bestehende Fokussiereinrichtung an. Dies ermöglicht eine sehr kleine Bauweise.

Um eine sehr kompakte Bauweise der Zündeinrichtung zu ermöglichen, ist im Rahmen der Erfindung vorgesehen, dass mehrere Pumpdioden konzentrisch um den Laserkristall angeordnet sind, wobei vorzugsweise mindestens drei, besonders vorzugsweise mindestens sechs Pumpdioden gleichmäßig um den Laserkristall herum angeordnet sind. Die Pumpdioden sind dabei vorteilhafter Weise in Serie geschaltet sind. Der Laserkristall wird somit durch die Pumpdioden seitlich, das heißt radial, gepumpt. Zur Erhöhung der Pulsernergie können auch mehrere Ringe von Pumpdioden konzentrisch hintereinander um den Laserkristall herum angeordnet sein.

Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen

- Fig. 1 eine Laser-Zündeinrichtung mit einem erfindungsgemäßen Festkörperlaser in einer Schrägangsicht,
- Fig. 2 den Kopfteil der Laser-Zündeinrichtung im Detail in einer Schrägangsicht,
- Fig. 3 die Laser-Zündeinrichtung in einem Längsschnitt,
- Fig. 4 den Kopfteil der Laser-Zündeinrichtung in einer geschnittenen Schrägangsicht gemäß der Linie IV-IV in Fig. 1,
- Fig. 5 den Fußteil der Laser-Zündeinrichtung in einer geschnittenen Schrägangsicht,
- Fig. 6 die Laser-Zündeinrichtung schematisch in einem Längsschnitt gemäß der Linie VI-VI in Fig. 7,
- Fig. 7 die Laser-Zündeinrichtung in einem Schnitt gemäß der Linie VII-VII in Fig. 6 und
- Fig. 8 einen Zylinderkopf mit einer eingebauten Laser-Zündeinrichtung.

Der Festkörperlaser L für die Laser-Zündeinrichtung 1 besteht aus den Hauptkomponenten Laserkristall 2, Pumplichtquelle 30, passiver Güteschalter 4, Tubus 5, Auskoppelspiegel 6 und Fokussiereinrichtung 7 mit einer Fokuslinse 8, sowie einer Kühleinrichtung 11.

Ein hoher Wirkungsgrad lässt sich erzielen, wenn die Pumplichtquelle 30 durch Pumpdiode 3 gebildet ist.

Über die Einstrahlung der Pumpdiode 3 (808nm) werden metastabile Energieniveaus im Laserkristall 2 angeregt und die Energie damit gespeichert. Aufgrund einer geringen spontanen Emission beginnt der Laserkristall 2 Licht auf der Laserwellenlänge (1064nm) zu emittieren.

Zur Verstärkung und Kohärenz des Lichts ist der Laserkristall 2 in einen optischen Resonator 9 eingebettet, dessen Güte mit dem passiven Güteschalter 4 bei Erreichen der gewünschten Leistungsdichte pulsartig erhöht wird. Dadurch erhält man am Auskoppelspiegel 6 einen kurzen, starken Laserpuls 26.

Einzelne Pumpdiode 3 sind in Serie geschaltet und ringförmig seitlich um den Laserkristall 2 angeordnet.

Die Pumpdiode 3 müssen aufgrund stark eingeschränkter Lebensdauer bei höherer Betriebstemperatur bei relativ niedriger Temperatur von etwa 30°C betrieben werden. Darüber hinaus ändert sich die Wellenlänge der Pumpdiode 3 mit der Temperatur. Da der aus Neodym:YAG (ND:YAG) bestehende stabförmige Laserkristall 2 eine nur sehr schmale Absorptionslinie besitzt, müssen die Pumpdiode 3 thermisch stabilisiert werden. Dazu ist im Kopfbereich 10 der Laser-Zündeinrichtung 1 die Kühleinrichtung 11 vorgesehen.

Die Kühleinrichtung 11 beinhaltet drei verschiedene Kühlsysteme A, B, C. Das erste Kühlsystem A weist ringförmig um den Wärmeverteiler 28 verteilte Peltier-Kühlelemente 12 auf. Zur besseren Wärmeabfuhr sind weiters die Kühlsysteme B, C mit zwei Flüssigkeits-Kühlkreisläufen 13, 14 vorgesehen. Das Kühlmittel des inneren Kühlkreislaufs 13 durchströmt den Kopfteil 10 im Wesentlichen in Richtung der Achse 1a des Festkörperlasers L.

Der innere Kühlkreislauf 13 hat die Aufgabe, den Laserkristall 2 thermisch zu stabilisieren und dessen Verlustwärme an den Wärmeverteiler 28 zu übertragen. Der Laserkristall 2 ist dabei von zumindest einem ersten inneren Kühlkanal 16 umgeben, welcher als Ringkanal ausgebildet sein kann, wie aus Fig. 7 hervorgeht. An Stelle eines Ringkanals können auch mehrere erste innere Kühlkanäle 16 rund um den Laserkristall 2 angeordnet sein. Über zumindest eine Eintrittsöffnung 19a und einen Verteilerringraum 19 wird das Kühlmittel dem ersten in-

neren Kühlkanal 16 zu-, und über einen Sammelringraum 20 und Austrittsöffnungen 20a wieder abgeführt. Die Verlustwärme des Laserkristalls 2 wird zumindest teilweise beim Durchströmen der Ringräume 19, 20 an die Flanschplatte 17 und die Anschlussplatte 23 übertragen, diese wiederum übertragen die Wärme durch Wärmeleitung an den Wärmeverteiler 28.

Gegebenenfalls kann auch der Wärmeverteiler 28 axiale zweite innere Kühlkanäle 15 aufweisen, wie in Fig. 4 und Fig. 6 durch strichlierte Linien angedeutet ist. Das Kühlmedium tritt dabei durch Zutrittsöffnungen 19a in den Verteilerringraum 19 ein, durchströmt die zweiten inneren Kühlkanäle 15 des Wärmevertellers 28 und wird über den Übertrittskanal 18 in den ringförmigen ersten inneren Kühlkanal 16 geleitet. Danach strömt es durch den Sammelringraum 20 und Austrittsöffnungen 20a zu einer externen Pumpe.

Der äußere Kühlkreislauf 14 weist Eintrittsöffnungen 21 im äußeren Wärmetauscher 29 auf, welche zu äußeren Kühlkanälen 24 und weiter zu Austrittsöffnungen 22 führen. Das beispielsweise durch Wasser gebildete Kühlmittel gelangt über die Eintrittsöffnungen 21 in die äußeren Kühlkanäle 24, durchströmt den äußeren Wärmetauscher 29 und verlässt die Laser-Zündeinrichtung 1 wieder im Bereich der Austrittsöffnungen 22. Über die äußeren Kühlkanäle 24 wird also vor allem Wärme aus den Peltier-Kühlelementen 12 über den äußeren Wärmetauscher 29 abgeführt.

Durch die aus drei Kühlsystemen A, B, C – nämlich Peltier-Kühlelemente 12, innerem Kühlkreislauf 13 und äußerem Kühlkreislauf 14 – bestehende Kühleinrichtung 11 ist es möglich, als Material für den Laserkristall 2 das weit verbreitete, kostengünstige und mechanisch gut belastbare Neodym:YAG und als Pumplichtquelle Pumpdioden 3 zu verwenden. Durch die Kühleinrichtung 11 können die Pumpdioden 3 thermisch auf etwa 30°C stabilisiert werden, was sich vorteilhaft auf deren Lebensdauer auswirkt. Andererseits kann durch die thermische Stabilisierung erreicht werden, dass die Wellenlänge der Pumpdioden 3 stets innerhalb der schmalen Absorptionslinie des Laserkristalls 2 bleibt.

Der Laserkristall 2 ist im Bereich der stirnseitigen Anschlussplatte 23 für die Laserwellenlänge (1064nm) verspiegelt und am anderen Ende antireflektierend beschichtet.

Die Form der Laser-Zündeinrichtung 1 ergibt sich aus der Forderung, dass diese anstelle einer Zündkerze in den Zündkerzenschacht 31 eines Zylinderkopfes 32 montierbar sein soll und aus der Randbedingung, dass die Pumpdioden 3 im Kopfbereich 10 der Laser-Zündeinrichtung 1 angeordnet sein müssen. Zur Erzielung einer hohen Strahlgüte ist ein möglichst großer Abstand zwischen dem

Laserkristall 2 und dem Auskoppelspiegel 6 nötig. Der Auskoppelspiegel 6 ist daher im Fußbereich 25 der Laser-Zündeinrichtung 1 brennraumnahe angeordnet. Kurz nach dem Auskoppelspiegel 6 befindet sich die Fokussiereinrichtung 7 mit einer einzigen Fokuslinse 8, die gleichzeitig das Fenster zum Brennraum bildet und als plano-sphärische Linse ausgebildet ist. Als Material für die Fokussierlinse 8 eignet sich beispielsweise Saphir.

Der äußere Kühlkreislauf 14 kann mit der vorhandenen Wasserkühlung des Motors gekoppelt sein. Für den inneren Kühlkreislauf sind höhere optische, qualitative und thermische Bedingungen zu erfüllen, sodass hier ein eigenes Kühlmittel erforderlich ist.

Die Pumpdiode 3 müssen aufgrund stark eingeschränkter Lebensdauer bei höherer Betriebstemperatur bei etwa 30°C betrieben werden. Der Verlustwärmestrom wird über einen Wärmeverteiler 28, welcher aus Kupfer besteht, an die Peltier-Kühlelemente 12 abgeleitet, die den Wärmestrom auf das Temperaturniveau des Motorkühlwassers transformieren und über den äußeren Wärmetauscher 29 an dieses abgeben.

Da sich die Wellenlänge der Pumpdioden 3 mit der Temperatur verschiebt und das Absorptionsband des Laserkristalls 2 extrem schmal ist, muss eine schnelle und genaue Temperaturregelung vorgesehen sein. Die Temperatur auf der kalten Seite sollte dabei maximal um etwa +/- 1,5°C vom Sollwert abweichen. Um dies zu erreichen, werden die Peltier-Kühlelemente 12 mit mindestens einem Temperatursensor und einer Stromquelle in einem geschlossenen Regelkreis betrieben.

Über die vorzugsweise sechs rund um den Laserkristall 2 angeordneten Pumpdioden 3 werden Lichtimpulse dem Laserkristall 2 zugeführt. Über die Einstrahlung der Pumpdioden 3 (808nm) werden metastabile Energieniveaus im Laserkristall 2 angeregt und die Energie damit gespeichert. Aufgrund einer geringen spontanen Emission beginnt der Laserkristall 2 Licht auf der Laserwellenlänge (1064nm) zu emittieren. Zur Verstärkung und Kohärenz des Lichtes ist der Laserkristall 2 in einen optischen Resonator 9 eingebettet, dessen Güte mit dem passiven Güteschalter 4 (Q-Switch) bei Erreichen der gewünschten Leistungsdichte pulsartig erhöht wird. Dadurch erhält man am Auskoppelspiegel 6 einen hohen, kurzen Laserpuls 26, welcher über die Fokussierlinse 8 in einem Brennpunkt 27 fokussiert wird.

Wie aus Fig. 8 ersichtlich ist, kann die Laser-Zündeinrichtung 1 mit dem erfundungsgemäßen Festkörperlaser L zur Gänze im Zündkerzenschacht 31 eines Zylinderkopfes 32 einer Brennkraftmaschine angeordnet werden. Die Laser-Zünd-

einrichtung 1 eignet sich somit für den Einsatz in bestehende konventionelle Zylinderkopfkonzepte für fremdgezündete Brennkraftmaschinen. Um Verunreinigungen der Fokussiereinrichtung möglichst gering zu halten schließt die Fokussierlinse 8 zum Brennraum 33 hin plan an die Zylinderkopfdeckfläche 34 an.

Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge ohne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder Zeichnungen offenbare Merkmale zu beanspruchen.

In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmale der rückbezogenen Unteransprüche zu verstehen.

Die Gegenstände dieser Unteransprüche bilden jedoch auch selbständige Erfindungen, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.

Die Erfindung ist auch nicht auf das (die) Ausführungsbeispiel(e) der Beschreibung beschränkt. Vielmehr sind im Rahmen der Erfindung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination oder Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten erfinderisch sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.

P A T E N T A N S P R Ü C H E

1. Brennkraftmaschine mit einer Laser-Zündeinrichtung, mit einem gütgeschalteten, gepumpten Festkörperlaser mit einer gepulsten Pump-Lichtquelle, einem in einen Resonator eingebetteten festen Laserkristall, einem Güteschalter zur Erhöhung der Leistungsdichte, zumindest einem Auskopplspiegel und einer Fokussiereinrichtung, über welche der Laserstrahl in einem Brennraum fokussierbar ist, **dadurch gekennzeichnet**, dass Pump-Lichtquelle, Resonator samt Laserkristall, Güteschalter, Auskopplspiegel, Fokussiereinrichtung sowie eine Kühleinrichtung zur Kühlung des Resonators in einem einzigen, in einen Zündkerzenschacht der Brennkraftmaschine einsetzbaren Bauteil integriert sind.
2. Brennkraftmaschine, insbesondere nach Anspruch 1, **dadurch gekennzeichnet**, dass die Pump-Lichtquelle durch Pumpdioden gebildet ist.
3. Brennkraftmaschine, insbesondere nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, dass der Güteschalter passiv ausgebildet ist.
4. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, dass die Fokussiereinrichtung eine einzige Fokussierlinse aufweist.
5. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 4, **dadurch gekennzeichnet**, dass die Kühleinrichtung mindestens zwei, vorzugsweise drei verschiedene Kühlsysteme aufweist.
6. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet**, dass zur Kühlung der Pumpdioden der Resonator zumindest ein Peltier-Kühlelement aufweist.
7. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 6, **dadurch gekennzeichnet**, dass zur Kühlung des Laserkristalls der Resonator einen inneren ersten Kühlmittelkreislauf aufweist.
8. Brennkraftmaschine, insbesondere nach Anspruch 6 oder 7, **dadurch gekennzeichnet**, dass zur Wärmeabfuhr vom Peltier-Kühlelement der Resonator zumindest einen äußeren zweiten Kühlmittelkreislauf aufweist.
9. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 8, **dadurch gekennzeichnet**, dass der Laserkristall von zumindest einem vorzugsweise ringförmigen ersten Kühlkanal umgeben ist.

10. Brennkraftmaschine, insbesondere nach einem der Ansprüche 2 bis 9, **dadurch gekennzeichnet**, dass mehrere Pumpdioden konzentrisch um den Laserkristall angeordnet sind.
11. Brennkraftmaschine, insbesondere nach Anspruch 10, **dadurch gekennzeichnet**, dass zumindest drei, vorzugsweise zumindest sechs Pumpdioden gleichmäßig um den Laserkristall herum angeordnet sind.
12. Brennkraftmaschine, insbesondere nach einem der Ansprüche 1 bis 11, **dadurch gekennzeichnet**, dass bei Kaltstart die Pumpdioden durch das Peltier-Kühlelement auf die Betriebstemperatur erwärmbar sind.
13. Brennkraftmaschine, insbesondere nach einem der Ansprüche 2 bis 12, **dadurch gekennzeichnet**, dass die Pumpdioden in Serie geschaltet sind.
14. Gütegeschalteter, gepumpter Festkörperlaser, insbesondere für eine Laser-Zündeinrichtung einer Brennkraftmaschine, mit einer durch Pumpdioden gebildeten gepulsten Pump-Lichtquelle, einem in einen Resonator eingebetteten festen Laserkristall, einem Güteschalter zur Erhöhung der Leistungsdichte, zumindest einem Auskoppelspiegel und einer Fokussiereinrichtung, wobei zur Kühlung des Resonators eine zumindest ein Peltier-Kühlelement aufweisende Kühleinrichtung vorgesehen ist, **dadurch gekennzeichnet**, dass die Kühleinrichtung mindestens zwei, vorzugsweise drei verschiedene Kühlsysteme aufweist, wobei Peltier-Kühlelemente dem ersten Kühlsystem zur Kühlung der Pumpdioden zugeordnet sind.
15. Festkörperlaser, insbesondere nach Anspruch 14, **dadurch gekennzeichnet**, dass zur Kühlung des Laserkristalls der Resonator einen dem zweiten Kühlsystem zugeordneten inneren Kühlmittelkreislauf aufweist.
16. Festkörperlaser, insbesondere nach Anspruch 14 oder 15, **dadurch gekennzeichnet**, dass zur Wärmeabfuhr vom Peltier-Kühlelement der Resonator zumindest einen dem dritten Kühlmittelsystem zugeordneten äußeren Kühlmittelkreislauf aufweist.
17. Festkörperlaser, insbesondere nach einem der Ansprüche 15 oder 16, **dadurch gekennzeichnet**, dass der Laserkristall von zumindest einem vorzugsweise ringförmigen ersten inneren Kühlkanal des inneren Kühlmittelkreislaufes umgeben ist.
18. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 18, **dadurch gekennzeichnet**, dass mehrere Pumpdioden konzentrisch um den Laserkristall angeordnet sind.

19. Festkörperlaser, insbesondere nach Anspruch 18, **dadurch gekennzeichnet**, dass zumindest drei, vorzugsweise zumindest sechs Pumpdioden gleichmäßig um den Laserkristall herum angeordnet sind.
20. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 19, **dadurch gekennzeichnet**, dass die Pumpdioden in Serie geschaltet sind.
21. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 20, **dadurch gekennzeichnet**, dass die Pumpdioden von einem vorzugsweise konzentrisch zum Laserkristall angeordneten Wärmeverteiler umgeben sind, wobei der Wärmeverteiler vorzugsweise aus Kupfer besteht.
22. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 21, **dadurch gekennzeichnet**, dass die Pumpdioden von zumindest einer Reihe in Richtung der Achse des Festkörperlasers angeordneten ersten äußeren Kühlkanälen des ersten Kühlmittelkreislaufes umgeben sind, wobei die ersten äußeren Kühlkanäle vorzugsweise im Wärmeverteiler angeordnet sind.
23. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 22, **dadurch gekennzeichnet**, dass die Peltier-Kühlelemente vorzugsweise konzentrisch zur Achse außen um die Pumpdioden herum angeordnet sind, wobei vorzugsweise der Wärmeverteiler zwischen Pumpdioden und Peltier-Kühlelementen angeordnet sind.
24. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 23, **dadurch gekennzeichnet**, dass die Peltier-Kühlelemente von einem vorzugsweise konzentrisch zur Achse des Festkörperlasers angeordneten Wärmetauscher des dritten Kühlsystems umgeben sind.
25. Festkörperlaser, insbesondere nach Anspruch 24, **dadurch gekennzeichnet**, dass der Wärmetauscher zumindest eine Reihe von im Wesentlichen konzentrisch um die und in Richtung der Achse des Festkörperlasers angeordnete zweiten Kühlkanäle aufweist.
26. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 25, **dadurch gekennzeichnet**, dass zumindest der innere Kühlmittelkreislauf von einem für die Laserwellenlänge optisch durchlässigen Medium durchströmt wird.
27. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 26, **dadurch gekennzeichnet**, dass der äußere Kühlmittelkreislauf mit dem Kühlmittelkreislauf einer Brennkraftmaschine verbunden ist.

28. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 27, **durch gekennzeichnet**, dass bei Kaltstart die Pumpdioden durch das Peltier-Kühlelement auf die Betriebstemperatur erwärmbar sind.
29. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 28, **durch gekennzeichnet**, dass der Güteschalter passiv ausgebildet ist.
30. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 29, **durch gekennzeichnet**, dass die Fokussiereinrichtung eine einzige Fokussierlinse aufweist.
31. Festkörperlaser, insbesondere nach einem der Ansprüche 14 bis 30, **durch gekennzeichnet**, dass Pump-Lichtquelle, Resonator samt Laserkristall, Güteschalter, Auskoppelspiegel, Fokussiereinrichtung sowie die Kühlseinrichtung zur Kühlung des Resonators in einem einzigen, in einen Zündkerzenschacht einer Brennkraftmaschine einsetzbaren Bauteil integriert sind.

1 / 3

Fig. 2

Fig.4

Fig.5

Fig. 6

Fig. 7

3 / 3

Fig.8

INTERNATIONAL SEARCH REPORT

International Application No

PCT/AT2004/000320

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 F02P23/04 H01S3/042 H01S3/0941

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 F02P H01L H01S F02C F23Q H01T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WALTER KOECHNER: "Solid-State Laser Engineering" 1992, SPRINGER-VERLAG , GERMANY , XP002304489 * 3rd Edition, ISBN 0-387-53756-2 page 337, paragraph 6.3.1 - page 352; figures 6.67,6.68 ----- US 4 416 226 A (NISHIDA MINORU ET AL) 22 November 1983 (1983-11-22) cited in the application figure 1 column 3, lines 15-18 -----	1-11, 13-26, 29-31
Y	----- -/-	1-11, 13-26, 29-31

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 January 2005

25/01/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Olivieri, E

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No
PCT/AT2004/000320

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 99/27621 A (KRAUSZ FERENC ; STINGL ANDREAS (AT); FEMTOLASERS PRODUKTIONS GMBH (AT)) 3 June 1999 (1999-06-03) page 3, paragraphs 2,3 page 4, lines 2,3 page 5, line 3 – page 6, line 2 page 9, line 5 – page 10, line 3 claims 1,7; figures 2,3,6 -----	1-11, 13-26, 29-31
Y	EP 0 987 799 A (CUTTING EDGE OPTRONICS INC) 22 March 2000 (2000-03-22) paragraphs '0010!, '0016!, '0019!, '0079! – '0083!; figures 4,14,15 -----	1-11, 13-26, 29-31
Y	US 6 413 077 B1 (EARLY JAMES W ET AL) 2 July 2002 (2002-07-02) cited in the application column 4, lines 4-7 column 5, line 58 – column 6, line 8 column 11, lines 35-56 -----	1-11, 13-26, 29-31

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No PCT/AT2004/000320

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4416226	A	22-11-1983	JP	57200672 A	08-12-1982
WO 9927621	A	03-06-1999	AT	405776 B	25-11-1999
			AT	199297 A	15-03-1999
			WO	9927621 A1	03-06-1999
			AU	737909 B2	06-09-2001
			AU	9615598 A	15-06-1999
			DE	59801270 D1	27-09-2001
			EP	1034584 A1	13-09-2000
			JP	2001524761 T	04-12-2001
			US	6625184 B1	23-09-2003
EP 0987799	A	22-03-2000	US	6351478 B1	26-02-2002
			US	6307871 B1	23-10-2001
			AT	234522 T	15-03-2003
			DE	69905829 D1	17-04-2003
			DE	69905829 T2	14-08-2003
			EP	0987799 A2	22-03-2000
			IL	131838 A	01-12-2002
			JP	2000091672 A	31-03-2000
			US	2002018498 A1	14-02-2002
US 6413077	B1	02-07-2002	US	6394788 B1	28-05-2002
			US	6428307 B1	06-08-2002
			US	6382957 B1	07-05-2002
			US	6514069 B1	04-02-2003
			US	6676402 B1	13-01-2004
			AU	6949298 A	13-11-1998
			WO	9848221 A2	29-10-1998

BEST AVAILABLE COPY

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/AT2004/000320

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 F02P23/04 H01S3/042 H01S3/0941

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 F02P H01L H01S F02C F23Q H01T

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	WALTER KOECHNER: "Solid-State Laser Engineering" 1992, SPRINGER-VERLAG , GERMANY , XP002304489 * 3rd Edition, ISBN 0-387-53756-2 Seite 337, Absatz 6.3.1 - Seite 352; Abbildungen 6.67,6.68	1-11, 13-26, 29-31
Y	US 4 416 226 A (NISHIDA MINORU ET AL) 22. November 1983 (1983-11-22) in der Anmeldung erwähnt Abbildung 1 Spalte 3, Zeilen 15-18	1-11, 13-26, 29-31
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

19. Januar 2005

25/01/2005

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5018 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Ulivieri, E

BEST AVAILABLE COPY

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/AT2004/000320

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	WO 99/27621 A (KRAUSZ FERENC ; STINGL ANDREAS (AT); FENTOLASERS PRODUKTIONS GMBH (AT)) 3. Juni 1999 (1999-06-03) Seite 3, Absätze 2,3 Seite 4, Zeilen 2,3 Seite 5, Zeile 3 – Seite 6, Zeile 2 Seite 9, Zeile 5 – Seite 10, Zeile 3 Ansprüche 1,7; Abbildungen 2,3,6 -----	1-11, 13-26, 29-31
Y	EP 0 987 799 A (CUTTING EDGE Optronics INC) 22. März 2000 (2000-03-22) Absätze '0010!, '0016!, '0019!, '0079! - '0083!; Abbildungen 4,14,15 -----	1-11, 13-26, 29-31
Y	US 6 413 077 B1 (EARLY JAMES W ET AL) 2. Juli 2002 (2002-07-02) in der Anmeldung erwähnt Spalte 4, Zeilen 4-7 Spalte 5, Zeile 58 – Spalte 6, Zeile 8 Spalte 11, Zeilen 35-56 -----	1-11, 13-26, 29-31

BEST AVAILABLE COPY

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/AT2004/000320

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 4416226	A	22-11-1983	JP	57200672 A		08-12-1982
WO 9927621	A	03-06-1999	AT	405776 B		25-11-1999
			AT	199297 A		15-03-1999
			WO	9927621 A1		03-06-1999
			AU	737909 B2		06-09-2001
			AU	9615598 A		15-06-1999
			DE	59801270 D1		27-09-2001
			EP	1034584 A1		13-09-2000
			JP	2001524761 T		04-12-2001
			US	6625184 B1		23-09-2003
EP 0987799	A	22-03-2000	US	6351478 B1		26-02-2002
			US	6307871 B1		23-10-2001
			AT	234522 T		15-03-2003
			DE	69905829 D1		17-04-2003
			DE	69905829 T2		14-08-2003
			EP	0987799 A2		22-03-2000
			IL	131838 A		01-12-2002
			JP	2000091672 A		31-03-2000
			US	2002018498 A1		14-02-2002
US 6413077	B1	02-07-2002	US	6394788 B1		28-05-2002
			US	6428307 B1		06-08-2002
			US	6382957 B1		07-05-2002
			US	6514069 B1		04-02-2003
			US	6676402 B1		13-01-2004
			AU	6949298 A		13-11-1998
			WO	9848221 A2		29-10-1998

BEST AVAILABLE COPY