Circuit Verification by Projectagon Based Reachability Analysis

Chao Yan

The University of British Columbia

Outline

- Motivation
- Related Work
- Соно and Verification Flow
- Examples
 - Synchronous: Toggle Circuit, Latch and Flip-Flop
 - Asynchronous: Arbiter Circuit
 - Analog: Rambus Ring Oscillator
- Conclusion and Future Work

Overview

- Motivation
 - Simulation: coverage, expensive
 - Formal verification
 - Circuit-level verification
- Challenges
 - How to model circuits?
 - How to specify properties?
 - How to represent regions?
 - How to compute system states?
- Our Approach
 - Model circuit as non-linear ODEs
 - Brockett's annulus
 - Projectagon
 - Соно algorithm

Related Tools

- Related Work
 - Real-time System: UPPAAL, KRONOS
 - verify safety and liveness properties of timed automata
 - discrete states
 - Hybrid System: HYTECH, PHAver, d/dt, CheckMate, etc.
 - model systems with switched, continuous dynamics
 - models must be either linear or very low dimension
 - Control System: VeriSHIFT, Level Set
 - VeriSHIFT uses ellipsoidal methods, only works with linear systems
 - level sets limited to low dimensions because boundary must be computed explicity.

- System Model
 - Hybrid automata
 - state machine augmented with continuous dynamics
 - timed automata, linear hybrid automata, nonlinear hybrid automata, etc.
 - Transition system
 - abstracted as states and transition
 - bisimulation
 - Hybrid Petri net
 - combine discrete Petri nets and continuous Petri nets
- Specification
- Space Representation
- Reachability Techniques

- System Model
- Specification
 - Temporal logic
 - digital systems
 - LTL, CTL,etc
 - Timed logic
 - dense time
 - RTCTL, TCTL, MITL,etc
 - Real-value logic
 - uncountable state space
 - AnaCTL, CTL-AT, CTL-AMS, ICTL, etc.
 - Others
 - digital or analog circuits
 - PSL, ASL, etc.
- Space Representation
- Reachability Techniques

- System Model
- Specification
- Space Representation
 - Symbolic data structure
 - discrete states
 - BDD, CDD, etc.
 - Polyhedra
 - large number of faces, expensive operations
 - convex polytope, flow pipe
 - Hyper-rectangle
 - large approximation error
 - interval, face regions, ORH, orthogonal polyhedra, etc.
 - Zonotope
 - close under Minkowski sum, compact representation
 - order of zonotope increases
 - Others: ellipsoid, level set
- Reachability Techniques

- System Model
- Specification
- Space Representation
- Reachability Techniques
 - Discretization
 - abstraction ignores analog characteristics
 - number of grids increases exponentially
 - Reachability analysis
 - constant ODE: mathematical solution
 - linear ODE: optimal control, Minkowski sum
 - nonlinear ODE: hybridization, interval, error analysis, level set, etc
 - Bisimulation
 - construct a finite-state transition system
 - Compositional reasoning
 - reduce system complexity

Applications

- Hybrid Systems
 - low dimensional or linear systems
- Circuits
 - tunnel-diode oscillator
 - voltage controlled oscillator
 - delta-sigma modulator
- Limitations
 - Small demo examples
 - Abstracted circuit models
 - Does not support circuits directly

COHO: A Reachability Analysis Tool

- Representing and manipulating high-dimensional space: projectagon
 - Provides a tractable representation.
 - Exploits extensive algorithms for 2D computational geometry.
- Solving dynamic systems: linear differential inclusions.
 - Approximate nonlinear ODE by $\dot{v} \in Av + b \pm u$, where u is an error term.
 - Solved by Maximum Principle without integration.
- All approximations overapproximate the reachable space:
 - Соно is sound for verifying safety properties.
 - False negatives are possible.
- Stability, performance and accuracy
 - Соно LP solver and projection algorithm
 - Interval closure
 - Guess-verify strategy

Projectagon

- COHO projects high-dimensional polyhedron onto two-dimensional subspaces.
- Projectagons are efficiently manipulated using two-dimensional geometry computation algorithms.
- Projectagon faces correspond to projection polygon edges.

Solving dynamic systems

Given a region represented by

$$Px \leq q$$

Approximate non-linear ODE in the region by

$$\dot{x} \in Ax + b \pm u$$

Compute foward reachable region using Maximum Principle as

$$\begin{array}{rcl} PEx & \leq & \hat{q} \\ E & = & e^{-At} \\ \hat{q} & = & q + P(I - E)A^{-1}q + P(I - E)A^{-1}q \cdot *sign(P)u \end{array}$$

Basic Step of COHO

- Extremal trajectories original from projectagon faces.
- A bounding projectagon is obtained by moving each face forward in time.
- The advanced face is projected onto two-dimensional subspaces to maintain the structure of projectagon.

Verification of AMS Circuits

- Support AMS circuit verification directly
 - Modeling circuits as ODE systems
 - Abstracting signals by Brockett's annulus
- Integration with Соно
 - Simulation and Verification
 - Linear differential inclusion
 - Least square method
 - Quadratic interpolataion method
 - Error and Performance
 - Multiple models
 - Partitioning state space
 - Assume-guarantee strategy
 - Decompose complex circuits

Circuit Model

- Transistors modeled as voltage controlled current sources.
- The I_{ds} function is obtained by tabulated data from HSPICE simulations.

- Construct system ODEs automatically
 - computes a model of the form $i_1 = A_1 v + b_1 \pm u_1$. Likewise for i_2 .
 - bounds $i_c = (A_2 + A_2)v + (b_1 + b_2) \pm (u_1 + u_2)$.
 - $\dot{V} = C^{-1} \cdot I$
- Approximate the ODEs by *linear differential inclusions*:

$$A \begin{bmatrix} v \\ in \end{bmatrix} + b - u \leq \dot{v} \leq A \begin{bmatrix} v \\ in \end{bmatrix} + b + u$$

Brockett's Annulus

- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
- Brockett's annulus allows entire families of signals to be specified.

Examples: Toggle Circuit

- Challenge
 - Seven dimensional system
 - Circuit-level model
- Solution
 - Divide reachability computation into phases
 - Partition state space
 - Add keeper circuit
- Result
 - The period of output is twice that of the clock
- The output satisfies the same brockett annulus of the clock \Rightarrow a ripper counter Proposal Presentation 2^{nd} June, 2010 Circuit Verification by Projectagon Based Reachability Analysis p.14/20

Latch Circuit

- Challenge
 - One input and one clock signal
- Solution
 - Partition state space

- Input Specification: input signal can not change when the clock falls
- Output Specification: output signal is stable when the clock is clear low or rising

Latch Circuit

- Challenge
 - One input and one clock signal
- Solution
 - Partition state space
- Result
 - The upper bound of clock-to-q delay is 200ps
 - Clock frequency is up to 1.3GHz

Arbiter

- Challenge
 - Asynchronous inputs
 - Stiffness
 - Metastability
- Solution
 - Changing variables, pre-computed constraints
 - Almost surely verification
- Result

Arbiter

- Challenge
- Solution
- Result
 - Safety Properties
 - Mutual exclusion,
 - Handshake protocol,
 - Brockett annulus specification
 - Liveness Properties
 - Initialization, Uncontested Requests, Contested Request
 - Reset, Fairness

Rambus Oscillator

- Challenge
 - Analog circuit
 - Failures have been observed for real chips
 - All possible initial conditions
- Solution
 - Differential Operation: coordinate transformation, space reduction
 - Metastable Region: Almost-surely verification?
 - Reachability Analysis: 4D → 2D

Rambus Oscillator

- Problems to be solved
 - A general solution for high-dimensional metastability problem
 - current condition is not correct
 - sufficient condition is too conservative
 - Extend the method to n-stage Rambus oscillator
 - much more expensive computation
 - harmonic behaviors
 - Verifying other ring oscillators
 - similar structure
 - shifting equilibrium points

Contributions

- A robust and efficient implementation of Соно tool.
 - A projection based representation of high dimensional, non-convex regions
 - Reachability algorithms for linear differential inclusion
 - Interval computation and arbitrary precision rational arithmetic
- A framework of modeling and verifying circuits
 - Model a circuit as a system of non-linear ODEs
 - Use Brockett's annulus to represent a family of signals
 - Techniques to reduce approximation error and improve performance
- Examples of practical circuit verification
 - Synchronous circuits: toggle circuit, latch and flip-flop
 - Asynchronous circuit: arbiter circuit
 - Analog circuit: Rambus ring oscillator

Projectagon based reachability analysis can formally verify digital and analog circuits using nonlinear, ordinary differential equation models.

Research Plan and Time line

Research plan

- Release Coho to public research community
- Solve the metastability problem in the Rambus oscillator's verification
- Extend the Rambus oscillator verification to other oscillators
- Apply to other hybrid systems or analog circuits

Timeline

- Jun. 2: proposal defense
- Oct. 1: thesis to committee
- Nov. 1: thesis to FOGS
- Feb. 1, 2011: defend

Conclusions

- Formal methods are extended to circuit-level verification
 - Implemented an efficient and robust reachability analysis tool
 - Developed a verification flow for circuit
 - Verified synchronous, asynchronous and analog circuits
- Graduation plan
 - Research is 90% done
 - Clean up the code and fix the problem of oscillator verification
 - Plan to graduate in early 2011