

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-{[(Pyridin-2-yl)amino]methyl}phenol

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 25 June 2012; accepted 10 July 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 9.7.

The planes of the aromatic rings of the title compound, $C_{12}H_{12}N_2O$, are twisted by 50.33 (15)°. The phenol O atom is a hydrogen-bond donor to the pyridine N atom, resulting in the formation of an eight-membered ring in the molecule. The amino N atom is a hydrogen-bond donor to the phenol O atom of an adjacent molecule; this hydrogen bond leads to the formation of a helical chain that runs along the a axis.

Related literature

For the related compound 2-{[(pyrazin-2-yl)amino]methyl}-phenol, see: Gao & Ng (2012). For 2-[(pyridin-3-ylamino)methyl]phenol, see: Xu *et al.* (2011). For the metal adducts of 2-[(pyridin-2-ylamino)methyl]phenol, see: Yalçın *et al.* (2007).

Experimental

Crystal data

 $C_{12}H_{12}N_2O$ $M_r = 200.24$ Orthorhombic, $P2_12_12_1$ a = 6.3331 (4) Å b = 10.6761 (9) Å c = 15.3714 (10) Å $V = 1039.30 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K $0.25 \times 0.19 \times 0.15 \text{ mm}$ Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.979, \, T_{\rm max} = 0.988$

10221 measured reflections 1391 independent reflections 887 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.047$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.131$ S = 1.041391 reflections 144 parameters 2 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \mathring{A}}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdot\cdot\cdot A$
$ \begin{array}{c} O1-H1\cdots N1 \\ N2-H2\cdots O1^{i} \end{array} $	0.85 (1)	1.83 (2)	2.658 (3)	166 (5)
	0.88 (1)	2.06 (1)	2.928 (3)	172 (3)

Symmetry code: (i) x + 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023 and No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010td03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5581).

References

Polyhedron, 26, 3301-3309.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2472.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3259.
Yalçın, B., Fatullayeva, P. A., Büyükgüngör, O., Koşar, B., Taşcıoğlu, S., Israfilov, A. I., Ibayev, Z. D., Medjidov, A. A. & Aydın, A. (2007).

supplementary materials

Acta Cryst. (2012). E68, o2473 [doi:10.1107/S1600536812031340]

2-{[(Pyridin-2-yl)amino]methyl}phenol

Shan Gao and Seik Weng Ng

Comment

Salicylaldehyde condenses with aromatic amines to yield Schiff bases, which serve as chelating ligands to a plethora of metal systems. These Schiff bases can be readily reduce to the corresponding secondary amines, which can also function as chelating ligands. Curiously, there are only few 2-(arylamino)methylphenols compared with the plethora of Schiff bases in the chemical literature. Among the aminopyridine derivatives, only the crystal structure of 2-((pyridin-3-yl-amino)methyl)phenol has been reported (Xu *et al.*, 2011). The 2-((pyridin-2-ylamino)methyl)phenol analog (Scheme I) has been described as its metal adducts only (Yalçın *et al.*, 2007).

The two aromatic rings of the reduced Schiff-base, $C_{12}H_{12}N_2O$, are twisted along the $-CH_2-NH$ - single-bond by 50.3 (1) °. The hydroxy O atom is hydrogen-bond donor to the pyridyl N atom and an eight-membered ring is formed (Fig. 1). The slightly flattened secondary amino N atom is hydrogen-bond donor to the O atom of an adjacent molecule; this hydrogen bond leads to the formation of a helical chain that runs along the *a*-axis of the orthorhombic unit cell (Fig. 2, Table 1).

Experimental

A solution of 2-aminopyridine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Light yellow crystals were obtained by recrystallization from methanol in 80% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88 ± 0.01 Å and O–H 0.84 ± 0.01 Å; their temperature factors were refined.

In the absence of heavy scatters, 980 Friedel pairs were merged.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acta Cryst. (2012). E68, o2473 Sup-1

Figure 1 Thermal ellipsoid plot (Barbour, 2001) of $C_{12}H_{12}N_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2
Hydrogen-bonded chain motif.

2-{[(Pyridin-2-yl)amino]methyl}phenol

Crystal data

F(000) = 424 $C_{12}H_{12}N_2O$ $M_r = 200.24$ $D_{\rm x} = 1.280 {\rm \ Mg \ m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Orthorhombic, P2₁2₁2₁ Hall symbol: P 2ac 2ab Cell parameters from 6231 reflections a = 6.3331 (4) Å $\theta = 3.3-27.4^{\circ}$ b = 10.6761 (9) Å $\mu = 0.08 \text{ mm}^{-1}$ c = 15.3714 (10) ÅT = 295 K $V = 1039.30 (13) \text{ Å}^3$ Prism, faint yellow Z = 4 $0.25 \times 0.19 \times 0.15$ mm

Data collection

Rigaku R-AXIS RAPID IP 10221 measured reflections 1391 independent reflections diffractometer 887 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube $R_{\rm int} = 0.047$ Graphite monochromator $\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$ ω scan $h = -8 \rightarrow 8$ Absorption correction: multi-scan $k = -13 \rightarrow 13$ (ABSCOR; Higashi, 1995) $l = -19 \rightarrow 19$ $T_{\min} = 0.979, T_{\max} = 0.988$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.043$ Hydrogen site location: inferred from $wR(F^2) = 0.131$ neighbouring sites S = 1.04H atoms treated by a mixture of independent 1391 reflections and constrained refinement 144 parameters $w = 1/[\sigma^2(F_0^2) + (0.0773P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 2 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\text{max}} = 0.001$ direct methods $\Delta \rho_{\rm max} = 0.13 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.18 \text{ e Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.6052(3)	0.1233 (2)	0.18887 (14)	0.0752 (7)	
N1	0.8839(3)	0.0670(2)	0.06566 (14)	0.0570 (6)	
N2	1.1470 (4)	0.1185 (3)	0.16368 (15)	0.0672 (8)	
C1	0.8251 (6)	0.0489(3)	-0.01804(18)	0.0672 (8)	
H1A	0.6882	0.0212	-0.0286	0.081*	
C2	0.9537 (6)	0.0687(3)	-0.0877(2)	0.0762 (9)	
H2A	0.9069	0.0534	-0.1441	0.091*	
C3	1.1575 (6)	0.1126(3)	-0.0720(2)	0.0706 (9)	
Н3	1.2483	0.1294	-0.1181	0.085*	
C4	1.2220 (5)	0.1305(3)	0.01124 (19)	0.0636 (8)	
H4	1.3573	0.1600	0.0227	0.076*	
C5	1.0823 (4)	0.1041(3)	0.08020 (17)	0.0542 (7)	
C6	1.0371 (5)	0.0617(3)	0.23756 (18)	0.0652 (8)	
H6A	1.1414	0.0269	0.2769	0.078*	

supplementary materials

H6B	0.9513	-0.0071	0.2163	0.078*
C7	0.8978 (4)	0.1498 (3)	0.28793 (17)	0.0564 (7)
C8	0.9675 (5)	0.2047 (3)	0.36466 (18)	0.0672 (9)
Н8	1.1032	0.1872	0.3843	0.081*
C9	0.8415 (6)	0.2848 (3)	0.4129 (2)	0.0761 (9)
Н9	0.8911	0.3193	0.4645	0.091*
C10	0.6432 (6)	0.3126 (3)	0.3835 (2)	0.0763 (10)
H10	0.5583	0.3673	0.4150	0.092*
C11	0.5680 (5)	0.2601 (3)	0.30782 (18)	0.0692 (8)
H11	0.4334	0.2801	0.2881	0.083*
C12	0.6935 (4)	0.1769 (3)	0.26072 (17)	0.0567 (7)
H1	0.694 (5)	0.093 (4)	0.153 (2)	0.119 (17)*
H2	1.2851 (18)	0.126 (4)	0.167 (2)	0.092 (11)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0449 (10)	0.1083 (19)	0.0723 (13)	-0.0019 (12)	-0.0022 (11)	-0.0175 (13)
N1	0.0441 (11)	0.0614 (15)	0.0655 (13)	0.0003 (11)	-0.0053(11)	-0.0049(11)
N2	0.0426 (12)	0.099(2)	0.0599 (14)	-0.0044 (13)	-0.0005 (11)	-0.0014 (13)
C1	0.0658 (18)	0.068(2)	0.0680 (18)	-0.0014 (15)	-0.0109 (16)	-0.0112 (15)
C2	0.094(2)	0.073(2)	0.0620 (16)	-0.001 (2)	-0.0054 (19)	-0.0145 (16)
C3	0.084(2)	0.064(2)	0.0638 (18)	0.0032 (17)	0.0141 (16)	-0.0084 (14)
C4	0.0585 (16)	0.0609 (19)	0.0715 (19)	-0.0017 (15)	0.0113 (15)	-0.0067 (14)
C5	0.0471 (14)	0.0553 (17)	0.0601 (14)	0.0020 (13)	0.0012 (13)	-0.0030(13)
C6	0.0544 (15)	0.078(2)	0.0634 (16)	0.0060 (15)	-0.0075(14)	0.0105 (15)
C7	0.0471 (14)	0.0667 (19)	0.0555 (14)	-0.0064(13)	0.0017 (13)	0.0094 (13)
C8	0.0610 (17)	0.082(2)	0.0581 (15)	-0.0153 (17)	-0.0026(15)	0.0086 (15)
C9	0.090(2)	0.077(2)	0.0616 (16)	-0.022 (2)	0.0027 (18)	-0.0032(17)
C10	0.087(2)	0.071(2)	0.0709 (18)	-0.0049(19)	0.0184 (18)	-0.0051 (16)
C11	0.0581 (16)	0.078(2)	0.0713 (17)	0.0046 (17)	0.0107 (15)	0.0055 (17)
C12	0.0497 (14)	0.0644 (19)	0.0561 (15)	-0.0075(13)	0.0031 (13)	-0.0002(13)

Geometric parameters (Å, °)

O1—C12	1.364 (3)	C4—H4	0.9300
O1—H1	0.851 (10)	C6—C7	1.504 (4)
N1—C5	1.336 (4)	C6—H6A	0.9700
N1—C1	1.353 (3)	C6—H6B	0.9700
N2—C5	1.356 (3)	C7—C8	1.389 (4)
N2—C6	1.464 (4)	C7—C12	1.390 (4)
N2—H2	0.879 (10)	C8—C9	1.384 (5)
C1—C2	1.362 (5)	C8—H8	0.9300
C1—H1A	0.9300	C9—C10	1.367 (5)
C2—C3	1.395 (5)	С9—Н9	0.9300
C2—H2A	0.9300	C10—C11	1.377 (4)
C3—C4	1.357 (4)	C10—H10	0.9300
C3—H3	0.9300	C11—C12	1.394 (4)
C4—C5	1.409 (4)	C11—H11	0.9300

supplementary materials

C12—O1—H1 114 (3) C7—C6—H6A 108.6 C5—N1—C1 117.4 (3) N2—C6—H6B 108.6 C5—N2—C6 122.9 (3) C7—C6—H6B 108.6 C5—N2—H2 111 (2) H6A—C6—H6B 107.5 C6—N2—H2 118 (2) C8—C7—C12 117.6 (3) N1—C1—C2 124.1 (3) C8—C7—C6 121.0 (3) N1—C1—H1A 118.0 C12—C7—C6 121.4 (3) C2—C1—H1A 118.0 C9—C8—C7 122.1 (3) C1—C2—G3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C1—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C8—C9—H9 120.5 (3) C3—C4—H4 120.2 C11—C10—H10 119.7 C3—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—C4 121.6 (3) C12—C1—H11				
C5—N2—C6 122.9 (3) C7—C6—H6B 108.6 C5—N2—H2 111 (2) H6A—C6—H6B 107.5 C6—N2—H2 118 (2) C8—C7—C12 117.6 (3) N1—C1—C2 124.1 (3) C8—C7—C6 121.0 (3) N1—C1—H1A 118.0 C12—C7—C6 121.4 (3) C2—C1—H1A 118.0 C9—C8—C7 122.1 (3) C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—H4 120.2 C11—C10—H10 119.7 C3—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 <	C12—O1—H1	114 (3)	C7—C6—H6A	108.6
C5—N2—H2 111 (2) H6A—C6—H6B 107.5 C6—N2—H2 118 (2) C8—C7—C12 117.6 (3) N1—C1—C2 124.1 (3) C8—C7—C6 121.0 (3) N1—C1—H1A 118.0 C12—C7—C6 121.4 (3) C2—C1—H1A 118.0 C9—C8—C7 122.1 (3) C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C7<	C5—N1—C1	117.4 (3)	N2—C6—H6B	108.6
C6—N2—H2 118 (2) C8—C7—C12 117.6 (3) N1—C1—C2 124.1 (3) C8—C7—C6 121.0 (3) N1—C1—H1A 118.0 C12—C7—C6 121.4 (3) C2—C1—H1A 118.0 C9—C8—C7 122.1 (3) C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—H11 120.0 N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C5—C4 120.0 (2) O1—C12—C1	C5—N2—C6	122.9 (3)	C7—C6—H6B	108.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N2—H2	111 (2)	H6A—C6—H6B	107.5
NI—C1—H1A 118.0 C2—C1—H1A 118.0 C2—C8—C7 122.1 (3) C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C1—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C1—C9—C8 119.1 (3) C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C5—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—H11 120.0 N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C8—C9 -0.6 (4) N1—C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4 1.8 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 1.9 (4) C3—C4—C5—N1 1.8 (5) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 1.9 (4) C3—C4—C5—N1 1.9 (2) 178.2 (3) C6—C7—C12—O1 176.6 (3) C5—N2—C6—C7 179.2 (3)	C6—N2—H2	118 (2)	C8—C7—C12	117.6 (3)
C2—C1—H1A 118.0 C9—C8—C7 122.1 (3) C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—C7 14 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12	N1—C1—C2	124.1 (3)	C8—C7—C6	121.0 (3)
C1—C2—C3 118.0 (3) C9—C8—H8 118.9 C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C7 122.5 (3) N2—C6—H6A 108.6 C7—C12—C11 117.0 (3) N2—C6—C7—C12 82.9 (4) N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) <td>N1—C1—H1A</td> <td>118.0</td> <td>C12—C7—C6</td> <td>121.4 (3)</td>	N1—C1—H1A	118.0	C12—C7—C6	121.4 (3)
C1—C2—H2A 121.0 C7—C8—H8 118.9 C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C1 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) <td>C2—C1—H1A</td> <td>118.0</td> <td>C9—C8—C7</td> <td>122.1 (3)</td>	C2—C1—H1A	118.0	C9—C8—C7	122.1 (3)
C3—C2—H2A 121.0 C10—C9—C8 119.1 (3) C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N2—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C1 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 <td< td=""><td>C1—C2—C3</td><td>118.0 (3)</td><td>C9—C8—H8</td><td>118.9</td></td<>	C1—C2—C3	118.0 (3)	C9—C8—H8	118.9
C4—C3—C2 119.3 (3) C10—C9—H9 120.4 C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—N2 112.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—H6A 108.6 C7—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4	C1—C2—H2A	121.0	C7—C8—H8	118.9
C4—C3—H3 120.4 C8—C9—H9 120.4 C2—C3—H3 120.4 C9—C10—C11 120.5 (3) C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C7 122.5 (3) N2—C6—H6A 108.6 C7—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 <td>C3—C2—H2A</td> <td>121.0</td> <td>C10—C9—C8</td> <td>119.1 (3)</td>	C3—C2—H2A	121.0	C10—C9—C8	119.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	119.3 (3)	C10—C9—H9	120.4
C3—C4—C5 119.5 (3) C9—C10—H10 119.7 C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—N1 -3.0 (5) C8—C7—C12—O1 1.9 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3)	C4—C3—H3	120.4	C8—C9—H9	120.4
C3—C4—H4 120.2 C11—C10—H10 119.7 C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—N1 -3.0 (5) C8—C7—C12—C11 1.9 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) <td>C2—C3—H3</td> <td>120.4</td> <td>C9—C10—C11</td> <td>120.5 (3)</td>	C2—C3—H3	120.4	C9—C10—C11	120.5 (3)
C5—C4—H4 120.2 C10—C11—C12 120.1 (3) N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) <td>C3—C4—C5</td> <td>119.5 (3)</td> <td>C9—C10—H10</td> <td>119.7</td>	C3—C4—C5	119.5 (3)	C9—C10—H10	119.7
N1—C5—N2 118.4 (2) C10—C11—H11 120.0 N1—C5—C4 121.6 (3) C12—C11—H11 120.0 N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C3—C4—H4	120.2	C11—C10—H10	119.7
N1—C5—C4	C5—C4—H4	120.2	C10—C11—C12	120.1 (3)
N2—C5—C4 120.0 (2) O1—C12—C7 122.5 (3) N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 —1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 —1.3 (5) C12—C7—C8—C9 —0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 —179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 —1.1 (5) C1—N1—C5—N2 —177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 —176.6 (3) C6—N2—C5—C4 —162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 —3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 —179.2 (3) C5—N2—C6—C7 —101.6 (3) C10—C11—C12—O1 176.6 (3)	N1—C5—N2	118.4 (2)	C10—C11—H11	120.0
N2—C6—C7 114.8 (3) O1—C12—C11 117.0 (3) N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	N1—C5—C4	121.6 (3)	C12—C11—H11	120.0
N2—C6—H6A 108.6 C7—C12—C11 120.5 (3) C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	N2—C5—C4	120.0 (2)	O1—C12—C7	122.5 (3)
C5—N1—C1—C2 -1.4 (5) N2—C6—C7—C12 82.9 (4) N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	N2—C6—C7	114.8 (3)	O1—C12—C11	117.0 (3)
N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	N2—C6—H6A	108.6	C7—C12—C11	120.5 (3)
N1—C1—C2—C3 -1.3 (5) C12—C7—C8—C9 -0.6 (4) C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)				
C1—C2—C3—C4 1.8 (5) C6—C7—C8—C9 -179.1 (3) C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C5—N1—C1—C2	-1.4(5)	N2—C6—C7—C12	82.9 (4)
C2—C3—C4—C5 0.2 (5) C7—C8—C9—C10 -1.1 (5) C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	N1—C1—C2—C3	-1.3 (5)	C12—C7—C8—C9	-0.6(4)
C1—N1—C5—N2 -177.7 (3) C8—C9—C10—C11 1.1 (5) C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C1—C2—C3—C4	1.8 (5)	C6—C7—C8—C9	-179.1(3)
C1—N1—C5—C4 3.6 (4) C9—C10—C11—C12 0.6 (5) C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C2—C3—C4—C5	0.2 (5)	C7—C8—C9—C10	-1.1(5)
C6—N2—C5—N1 18.7 (5) C8—C7—C12—O1 -176.6 (3) C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C1—N1—C5—N2	-177.7(3)	C8—C9—C10—C11	1.1 (5)
C6—N2—C5—C4 -162.5 (3) C6—C7—C12—O1 1.9 (4) C3—C4—C5—N1 -3.0 (5) C8—C7—C12—C11 2.3 (4) C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C1—N1—C5—C4	3.6 (4)	C9—C10—C11—C12	0.6 (5)
C3—C4—C5—N1	C6—N2—C5—N1	18.7 (5)	C8—C7—C12—O1	-176.6(3)
C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C6—N2—C5—C4	-162.5(3)	C6—C7—C12—O1	1.9 (4)
C3—C4—C5—N2 178.2 (3) C6—C7—C12—C11 -179.2 (3) C5—N2—C6—C7 -101.6 (3) C10—C11—C12—O1 176.6 (3)	C3—C4—C5—N1	-3.0(5)	C8—C7—C12—C11	2.3 (4)
	C3—C4—C5—N2	178.2 (3)	C6—C7—C12—C11	
N2—C6—C7—C8 —98.6 (3) C10—C11—C12—C7 —2.3 (4)	C5—N2—C6—C7	-101.6 (3)	C10—C11—C12—O1	176.6 (3)
	N2—C6—C7—C8	-98.6 (3)	C10—C11—C12—C7	-2.3 (4)

Hydrogen-bond geometry (Å, o)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O1—H1···N1	0.85(1)	1.83 (2)	2.658 (3)	166 (5)
N2—H2···O1 ⁱ	0.88(1)	2.06 (1)	2.928 (3)	172 (3)

Symmetry code: (i) x+1, y, z.