

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A

AFATL-TR-85-69

Estimating the Magnus Moment Effect on Stability of 30-mm Boomed Projectiles

Richard H Byers, 2 Lt Ken Cobb

GUNS AND PROJECTILE BRANCH MUNITIONS DIVISION

AUGUST 1985

FINAL REPORT FOR PERIOD DECEMBER 1984 - FEBRUARY 1985

FILE COP

Approved for public release; distribution unlimited

Air Force Armament Laboratory
AIR FORCE SYSTEMS COMMAND * UNITED STATES AIR FORCE *EGLIN AIR FORCE BASE, FLORIDA

85 09 30 112

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN A. PALMER, Colonel, USAF Chief, Munitions Division

Even though this report may contain special release rights held by the controlling office, please do not request copies from the Air Force Armament Laboratory. If you qualify as a recipient, release approval will be obtained from the originating activity by DTIC. Address your request for additional copies to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFATL/ \underline{DLJG} , Eglin AFB FL 32542.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

	REPORT DOCUMENTATION PAGE							
16. REPORT	SECURITY CLASSIFIE	LASSIFICATION			1b. RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILABILITY OF REPORT				
25 DECLAS	BIFICATION/	DOWNGRADING S	CHEDL	JLE	Approved fo	r public re	elease; dist	cribution
					unlimited.			
4. PERFORM	MING ORGAN	IZATION REPORT	NUMB	ER(S)	5. MONITORING OR		EPORT NUMBER	S)
ĺ					AFATL-TR-85-69			
GL NAME O	F PERFORMI	NG ORGANIZATIO	ON E	b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
Muniti	ons Divi	sion	ŀ	DLJ	Guns and Pro	jectiles Br	anch (DLJG)	1
Sc. ADDRES	S (City, State	and ZIP Code)			7b. ADDRESS (City,	State and ZIP Cod	le)	
Air Fo	rce Arman	ment Laborat	orv		AFATL			
		rida 32542-5	•		Eglin AFB, F	L 32542-50	000	
		SPONSORING	1	Bb. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION N	NUMBER
	ization ons Divis:	ion	İ	(If applicable) DLJ				
Sc. ADDRES	SS (City, State	and ZIP Code)			10. SOURCE OF FU	NDING NOS.		
Air Fo	rce Arman	ment Laborato	orv		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
		ida 32542-50	-		ECEMENT NO.	1	100.	, NO.
Moment Project	Include Securit	y Classification) Es n Stability	tima;	ting the Magnus	62602F	2502	12	11
12. PERSON	IAL AUTHOR				<u> </u>			
		H. Byers/Ke			14. DATE OF REPO	PT (Vr. Mo. Dev	15. PAGE	COUNT
Final FROM 3-11-84 TO 1-5-85			;	August 1985 35				
	MENTARY NO							
	None							
17.	COSATI	CODES	7	18. SUBJECT TERMS (C	ontinue on reverse if n	ecessary and identi	fy by block number	
FIELD	GROUP	SUB. GR.		Ammunition Ana				
				Boom Effects				
19 ABSTRA	ACT (Continue	on reverse if necessa	ary and	Magnus Moment identify by block number				
range	tests a	ort document nd PRODASMAG	NUS (e results obtai computer stabil	ned from a comity results f	mparison oi or 30mm spi	: rree-rligh .n stabilize	it spark
jecti	lles. Tw	o configurat	ions	were considere	d, each with	the same bo	om diameter	c of
				nch boom length				NUS can
accur	ately pr	edict the er	iect	s of a boom's p	resence on pro	ojectile st	ability.	
20 DISTRIE	UTION/AVA	LABILITY OF ABS	TRACT	,	21. ABSTRACT SECU	JRITY CLASSIFIE	CATION	
		TED SAME AS			INCLASSIFIED			
		BLE INDIVIDUAL		J UTIC USERS L			20. 055:05 0:::	400:
					(Include Area Code)		22c OFFICE SYN	ABOL
2d Lt Richard H. Byers					(304/002-0193		אראמ -	

PREFACE

This test report documents the computer analysis results obtained on 30mm boomed projectiles. This analysis was conducted by the Guns and Projectile Branch, Munitions Division, Air Force Armament Laboratory, Eglin Air Force Base, Florida 32542, during December 1984 through February 1985. The project engineer was Lieutenant Richard H. Byers (DLJG). Technical assistance was provided by Mr. Ken Cobb (DLYS).

40 00 5	sion For	_	DTI
DTIC Unann	GRA&I TAB cupeed fication		Gorac
By Dist:	ibution/		1
Avai	lobility (lode s	
Dist	Avoil and Special	-	
A-1			

TABLE OF CONTENTS

Section	Title	Page
I	INTRODUCTION	1
II	STABILITY ANALYSIS MODEL	2
	1. Stability Parameters	2
	2. Stability Equations	
	3. FORTRAN Code	
	4. Algorithm Coefficients	9
III	BALLISTIC RANGE TESTS	12
	1. Models	12
	2. Test Procedure and Conditions	12
IV	RESULTS AND DISCUSSION	18
v	CONCLUSION	25
	REFERENCES	27
	APPENDIX	28

LIST OF FIGURES

BERTH PRESERVED RESERVED SERVED SERVE

Figure	Title					
1	Projectile Parameters	4				
2	Dynamic Stability	8				
3а	Computer Model of 30mm Boomed Projectile	13				
3b	30mm Boomed Projectile	14				
4	Dynamic Stability vs Boom Length	22				
5 a	PRODASMAGNUS (PM) Stability Results, 1.0" x 0.5"	23				
5h	PPODASMACNIS (PM) Stability Popults 1 25" v 0 5"	24				

LIST OF TABLES

Table	Title	Page
1	Test Conditions Summary	16
2	Mass Properties	17
3	Magnus moment coefficient comparison	18
4	Linear Theory Parameter Results	19
5	6 DOF Multiple Fit Results	20

SYMBOLS AND NOMENCLATURE

SYMBOL	DESCRIPTION	UNITS
A	Projectile Cross-Sectional Area	ft ²
Clp	Spin Deceleration Coefficient	$M_{1p}/\overline{q}Ad(pd/2V)$
C _m	Pitching Moment Coefficient	$M_{m}/\overline{q}Ad$
C_{mq}	Damping Moment Coefficient	$M_{mq}/\overline{q}Ad(qd/2V)$
c_{np}	Magnus Moment Coefficient	$M_{np}/\overline{q}Ad(pd/2V)$
c_N	Normal Force Coefficient	$F_{N}/\overline{q}A$
c_{Yp}	Magnus Force Coefficient	$F_{Yp}/\overline{q}A(pd/2V)$
c_{X}	Axial Force Coefficient	$F_{X}/\overline{q}A$
CG	Center of Gravity, Calibers From Nose	
$\mathbf{I}_{\mathbf{x}}$	Axial Moment of Inertia	slugs-ft ²
Iy	Transverse Moment of Inertia	slugs-ft ²
F_N	Normal Force	lbs
F_{Yp}	Magnus Force	lbs
$F_{\mathbf{X}}$	Axial Force	lbs
M_{lp}	Spin Damping Moment	ft-lbs
M _m	Pitching Moment About CG	ft-lbs
$M_{\mathbf{mq}}$	Damping Moment About CG	ft-lbs
M_{np}	Magnus Moment About CG	ft-lbs
v	Total Velocity	ft/sec
đ	Projectile Diameter	ft
g	Gravity	32.174 ft/sec^2
m	Projectile Mass	slugs
р	Projectile Spin Rate	rad/sec

SYMBOLS AND NOMENCLATURE (CONCLUDED)

SYMBOL	DESCRIPTION	UNITS
q	Projectile Pitch Rate	rad/sec
$\frac{-}{q}$	Dynamic Pressure (50V ²)	$1b/ft^2$
α ,	Total Angle of Attach	radians
£	Air Density	slugs/ft ³
BMD	Boom Diameter/Projectile Diameter	
BML	Boom Length/Projectile Length	
k_1^{-2}	md^2/I_x	
k_2^{-2}	md^2/I_y	
K	VCG	
M_{tr}	Pitching Moment Derivative with α	
s_d	Dynamic Stability Factor	
s_{g}	Gyroscopic Stability Factor	
•	Axial Spin Rate	
VВ	Boattail Length	
VCG	Distance From Nose to CG	
VL	Projectile Length	
VN	Projectile Nose Length	
CNPA	Magnus Moment Coefficient	
CYPA	Magnus Force Coefficient	
CPF	Magnus Force Center of Pressure	
CXCL	VL - VN - VB - 1.5	
CVN	VN - 2.5	
CVB	VB	
CVL	VL	

vii (The reverse of this page is blank)

SECTION I

INTRODUCTION

Work has been going on for several years in the development of telescoped ammunition. The Guns and Projectiles Branch (DLJG) of the Air Force Armament Laboratory (AFATL) is currently sponsoring an Advanced Gun Technology (AGT) program that will include development of a projectile for 20mm telescoped ammunition. This projectile differs from a conventional projectile in that there is a boom attached to the projectile base. In support of the AGT ammunition development, DLJG conducted an in-house boomed projectile stability program.

Previous interest in the area of boomed projectile stability (Ref 1) provided some useful data on 30mm projectiles with various boom configurations. The primary tool used by DLJG in the design and analysis of spin stabilized projectiles is PRODAS (Ref 2). However, when modeling boomed projectiles, PRODAS does not consider the effects of the boom on the aerodynamic coefficients that influence the dynamic stability.

The purpose of this report is to document the work done in developing a mathematical expression that accurately models the boom effects on projectile stability, primarily the Magnus moment coefficient. The results generated by the expression, for a specific test model, will be compared to statistical multifit data taken from ballistic range tests.

The model evaluated was constructed from a 30mm Honeywell HE round. The models weighed approximately 4000 grains (259.24 grams) each. This was the suggested weight of 30mm telescoped ammunition (Ref 3). Boom lengths of 1.0 and 1.25 inches were considered, while all projectiles had boom diameters of 0.5 inch. A total of 12 projectiles were fired in the Aeroballistic Range Facility located at Eglin Air Force Base, Florida.

SECTION II

STABILITY ANALYSIS MODEL

1. STABILITY PARAMETERS. The stability analysis model makes use of the spin stabilized projectile analysis segment of PRODAS. The objective of this program was to modify PRODAS to model boomed projectiles to evaluate their dynamic stability. The evaluation would be accomplished by developing a boom projectile prediction equation. The stability parameters of interest were $C_{np\alpha}$, the Magnus moment coefficient with respect to the total angle of attack, α , and the dynamic stability factor, S_d . The relationship between $C_{np\alpha}$, S_d , and the gyroscopic stability factor, S_g , will be shown later.

The various coefficients used in the stability equations sake use of parameters that describe a typical spin stabilized projectile. These parameters can be seen in Figure 1. The method used to develop the boom equation is similar to the empirical techniques employed in References 4 and 5. In general, an equation of the following form was used:

$$cX_{i} = a_{1} + a_{2}X_{i1} + a_{3}X_{i2} + \dots + a_{n}X_{i(n-1)}$$

$$+ b_{1}X_{i1}X_{i2} + b_{2}X_{i1}X_{i3} + \dots + b_{(n-1)}X_{i1}X_{in}$$

$$+ c_{1}X_{i1}^{2} + c_{2}X_{i2}^{2} + \dots + c_{n}X_{in}^{2} + \dots$$
(1)

where a_1 , ... a_n , b_1 ... $b_{(n-1)}$, and c_1 , ... c_n are coefficients to be determined. The terms X, ... X_{mn} are dependent upon a particular projectile geometry. Equation 1 is an example of a multiple linear regression fit for n parameters of X. This technique is commonly used when data for many firings of a particular projectile are available. For the case of the boomed projectile reduction equation, we only had two parameters to fit, boom diameter and boom length. The fit was also done for only 11 shots

divided into three configurations. When determining the Magnus force coefficient derivative $(C_{\gamma p_{\alpha}})$, Magnus moment coefficient derivative $(C_{np_{\alpha}})$, and the Magnus Force center of pressure (C_{p_F}) , the following approach was used: (Many of the following equations are written here as they appear in the computer program.)

$$CVL = VL$$
 (2)

$$CVB = VB$$
 (3)

$$CXCL = VL - VN - VB - 1.5 \tag{4}$$

$$CVN = VN - 2.5 \tag{5}$$

$$CYPA = E_1(CVL) - 0.1(CVB)$$
 (6)

CYPA is the Magnus force coefficient derivative with respect to $\bar{\alpha}$. For $\bar{\alpha} = 1.0^{\circ}$:

$$CNPAN = -E_1(CVL)[E_2 + 0.55(CXCL) + 0.80(CVN)] + CVB(CVL/4.7)$$
 (7)

$$CPF_{(\alpha=1)} = -CNPAN/CYPA$$
 (8)

$$C_{\mathbf{Yp}_{\alpha}} = C\mathbf{YPA}$$
 (9)

$$C_{np\alpha} = (VCG - CPF_{(1)})CYPA$$
 (10)

Equation 10 is the Magnus moment coefficient derivative with respect to $\alpha = 1.0^{\circ}$. PRODAS code was modified with respect to CNPA for both $\alpha = 1.0^{\circ}$ and $\alpha = 5.0^{\circ}$ calculations.

For $\frac{-}{\alpha} = 5.0^{\circ}$

Consisted the second of the second second

Figure 1. Projectile Parameters

$$CNPAN = -E_1(CVL)[E_4 + 0.55(CXCL) + 0.80(CVN)] + CVB(CVL/4.7)$$
 (11)

$$CPF_{(\alpha = 5)} = -CNPAN/CYPA$$
 (12)

$$C_{Yp\alpha} = CYPA$$
 (13)

$$C_{\text{np}\alpha}(5) = (\text{VCG} - \text{CPF}(5))\text{CYPA}$$
 (14)

The best place to start modeling the boom's effects was in the Magnus moment coefficient, $C_{np_{\alpha}}$.

In order to do this, Equations 10 and 14 must be modified to consider configurations with and without booms attached. The required modification led to the following expression:

$$C_{np\alpha} = (VCG - CPF)CYPA + [VCG - (K + X1(BML) + X2(BMD) + X3(BML*BMD))]CYPA (15)$$

where K = VCG (16)

 $\rm X_1$, $\rm X_2$, and $\rm X_3$ are correlation constants to be determined. Equation 15 was substituted for Equations 10 and 14 in the PRODAS code. The modified computer program was called PRODASMAGNUS and will be referred to as the PM program.

2. STABILITY EQUATIONS. The stability equations are defined by

parameters: C_X , $C_{n\alpha}$, $C_{m\alpha}$, $C_{np\alpha}$, C_{mq} , and $C_{\ell p}$. The gyroscopic stability factor, S_g , is:

$$S_g = \frac{2I_x 2p^2}{\pi I_v C_{m\alpha} d^3 V^2 \rho}$$
 (19)

or

$$S_g = (\omega^2 I_x^2)/(4I_y M_\alpha)$$
 (20)

where

$$M_{\alpha} = 1/2 \rho A V^2 dC_{m \alpha}$$
 (21)

The gyroscopic stability factor is basically the ratio of the gyroscopic moment to the static overturning (tumbling) moment. The dynamic stability factor, $S_{\rm d}$, is:

$$S_{y} = \frac{2(C_{n\alpha} - C_{X} + (k_{1}^{-2}/2)C_{np\alpha})}{(C_{n\alpha} - C_{X} - (k_{2}^{-2}/2)C_{mq} + (k_{1}^{-2}/2)C_{2p})}$$
(22)

$$k_1^{-2} = md^2/I_x$$
 (23)

$$k_2^{-2} = md^2/I_y$$
 (24)

The Magnus moment coefficient, $C_{np_{\alpha}}$, and the pitch damping coefficient, C_{mq} , are the aerodynamic coefficients that have the greatest effect on dynamic

stability. Mathematically, the gyroscopic-dynamic stability relationship is given by:

$$\frac{1}{S_g} \stackrel{\leq}{=} S_d(2 - S_d) \tag{25}$$

The resulting stability regions are illustrated in Figure 2.

3. FORTRAN CODE. The following FORTRAN statements were encoded into the SPINNER Program Overlay of PRODAS:

BML = BOOM

IF(BML .NE. 0.0) BTEST = 1

XA8(J) = (VCG - XA7(J))*XA6(J)

IF (BTEST .NE. 1) GO TO 401

CNPAT = XA8(J)

CALL MAGNUS (E)

CPFB = E(1)*BML + E(2)*BMD + E(3)*BML*BMD + VCG

XA8(J) = CNPAT + (VCG - CPFB)*XA6(J)

401 CONTINUE

The same procedure was used for $\frac{1}{\alpha}$ = 5.0°. The following FORTRAN variable equivalence is established:

$$XA6(J) = CYPA \tag{26}$$

$$XA7(J) = CPF (27)$$

$$XA8(J) = CNPA \tag{28}$$

Figure 2. Dynamic Stability

It can be seen that Equation 15 takes on the form of Equation 10, for $\frac{1}{\alpha} = 1.0^{\circ}$, when the projectile has no boom. In the case of no boom, the logical variable BTEST = 0, and all of the boom coefficients equal zero, leaving the program as it was originally encoded.

4. ALGORITHM COEFFICIENTS. Calculation of the boom algorithm coefficients was dependent upon the results of the work done by Hathaway (Ref 1). The projectile parameters were:

Configuration	Mach No	CNPA	BML (in)	BMD (in)
В	2.886	0.79	1.0	0.375
D	2.817	4.86	2.5	0.75
E	2.892	1.55	1.0	0.75

Values for VCG, CPF, and CYPA in Equation 15 were taken from the multifit data of the previous tests (Ref 1). All boom coefficients were expressed in non-dimensional calibers (see Equations 17 and 18).

Configuration	VCG	BML (cal.)	BMD (cal.)	BMLxBMD
В	3.1243	0.8467	0.3175	0.2688
D	3.3101	2.1169	0.6351	1.3444
E	. 3.1408	0.8467	0.6351	0.5377

For Mach number approximately equal to 2.9 and $\bar{\alpha}$ = 1.0°,

$$CPF = 3.398$$
 (29)

$$CYPA = -0.743 \tag{30}$$

Equation 15 was then solved for each projectile configuration used. For configuration B:

$$0.79 = (3.1243 - 3.398)(-0.743) + .6291X_1 + .2359X_2 + .1997X_3$$
 (31)

For configuration D:

$$4.86 = (3.3101 - 3.398)(-0.743) + 1.5728X_1 + .4719X_2 + .9989X_3$$
 (32)

For configuration E:

$$1.55 = (3.1408 - 3.398)(-0.743) + .6291X_1 + .4719X_2 + .3995X_3$$
 (33)

Combining all three equations, 31, 32, and 33 and expressing in matrix notation:

$$\begin{bmatrix} 0.5866 \\ 1.3589 \\ = \\ 0.6291 \\ 0.4719 \\ 0.3995 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (34)

Solving the linear system by a Gauss-Jordan technique yields:

$$X_1 = 0.29491$$
 (37)

$$X_2 = -1.972925$$
 (38)

$$X_3 = 6.196368$$
 (39)

These coefficients, X_1 , X_2 , and X_3 , are similar to a_1 , ... a_n ,

 b_1 , ... $b_{(n-1)}$, and c_1 , ... c_n in Equation 1. Since the coefficients were based upon limited experimental data, it was decided not to enter them directly into the PM program. Instead, the coefficients were put into subroutine MAGNUS and called into the main program when needed. This was done to accommodate later changes depending upon availability of additional boom projectile test results.

After calculation of the coefficients and implementation of the algorithm, the program was run using a carefully constructed PRODAS model. This projectile design, as described by the computer model, was then built by the machine shop and fired in the ARF. It was anticipated that the multifit data would verify the accuracy of the boom projectile algorithm.

SECTION III

BALLISTIC RANGE TESTS

1. MODELS. The test model is illustrated in Figures 3a and 3b. All models were 30mm Honeywell HE projectiles with PES plastic bands. This particular projectile was chosen because it was readily available due to band tests being conducted by DLJG. All projectiles were cut down 1.0 inch from the forward end and fitted with an aluminum nose cone that conformed to the original ogive plus the M505 fuze assembly. Every effort was made to build a stable boomed projectile that would weigh approximately 4000 grains, the anticipated weight of 30mm telescoped ammunition.

Each projectile was fitted with a solid aluminum boom that was threaded into the base of the projectile. Extreme care was made to center the boom into the base to prevent in-bore balloting and unstable flight after launch. A boom diameter of 0.5 inches was chosen since that dimension was recommended for actual 30mm telescoped ammunition.

A total of 12 projectiles were supplied to the ARF for testing. Six models had boom lengths of 1.0 inch. and the remaining six models had boom lengths of 1.25 inches. Once again, it was anticipated that 30mm telescoped ammunition would require a boom length somewhere between 1.0 and 1.25 inches (Ref 3). These boom configurations also filled a data void left by the previous 30mm boomed projectile tests.

2. TEST PROCEDURE AND CONDITIONS. Prior to firing these projectiles in the ARF, several were fired in the Interior Ballistics Laboratory (Bay 10). The purpose of these tests was to insure model integrity during both the internal ballistics phase and the in-flight phase by using witness cards and

Figure 3b. 30mm Boomed Projectiles

in-flight photography. All but one projectile flew straight with no yaw indication on the cards. The one failure was attributed to a poor fit between the HE body and the aluminum nose cone.

The models were fired from a 30mm rifled barrel with a twist rate of one turn in 18 calibers. All models were launched at atmospheric pressure conditions and at essentially the same Mach number of 3.0.

A test summary of all models fired during the test is contained in Table 1. Mass properties of the free-flight models are presented in Table 2. Ballistic range data was extracted for 11 of the 12 projectiles. Data from one projectile was excluded because the nose cone separated from the body while in flight.

TABLE 1. TEST CONDITIONS SUMMARY

Shot No.	Boom Length, in.	Mach No.	$\overline{\delta}^2$ Deg. 2	Temp. °C	Press MBAR	Rel. Hum.	Freon
BS84112683	1.00	3.15	4.1	21.87	1022.7	0.54	_
BS84112684	1.00	3.03	1.7	21.79	1022.7	0.54	
BS85011890	1.25	3.01	0.1	21.23	1014.9	0.50	
BS85011891	1.25	3.00	1.6	21.34	1014.8	0.50	
BS85011892	1.00	3.03	0.3	21.26	1014.9	0.50	-
BS85011893	1.25	3.03	1.7	21.41	1014.9	0.50	
BS85031404	1.00	2.97	38.0	22.55	1019.3	0.50	725
BS85031405	1.00	2.95	37.6	22.68	1018.0	0.52	725
BS85031506	1.00	2.98	3.2	22.70	1021.7	0.52	725
BS85031507	1.25	3.00	52.1	22.73	1022.0	0.51	·725
BS85031508	1.25	3.00	13.1	19.77	1022.0	0.52	725
BS85031509	1.25	NOSE	CAME OF	F			

TABLE 2. MASS PROPERTIES DATA

POLL NO NO VES VES VES VES
27 C C C C C C C C C C C C C C C C C C C
PRC0 200 200 200 200 200 200 200 200 200 2
12.03.03.03.03.03.03.03.03.03.03.03.03.03.
12 GN-CN2 JR17.8 JR29.4 JR29.4 JR29.1.4 JR29.7.2
GP-CR2 3217.2 3220.4 3221.4 32311.4 3231.4
1X 67-CR2 369-483 376-116 376-116 377-693 371-693
PASS CRAMS 253.83 255.16 255.16 255.05 255.05 255.05 255.05
0.000.000 0.00000 0.000000 0.0000000000
SHOT NO. BSBS6311465 BSBS6311465 BSBS6311465 BSBS63116684 BSBS6311892 BSBS6311892

1.0-Inch Boom Length

ROLL PINS NO NO VES VES
C3 FC C3 FC C3 E2 C9 C3 C3 C9 br>C9 C3 C9 br>C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9
E 200 000 000 000 000 000 000 000 000 000
LENGTH CM 14.336 14.353 14.323 14.331 14.331
12 1382-6 1370-3 1370-3 1355-4 1355-4
17 5118 3138.0 3370.3 3355.4 3355.4
1x 6R-CR2 371.268 376.714 371.697 371.528
257.16 257.16 256.75 256.75 255.90
0.000 0.000
SHOT NO. 1585031507 1585031508 1585031890 1585031890

1.25-Inch Boom Length

SECTION IV

RESULTS AND DISCUSSION

The Magnus moment coefficients extracted from the data reduction of the free flight trajectories of the 11 models are compared in Table 3. The flights were all at approximately the same Mach number of 3.0.

1. ARF DATA. The results of the in-flight analysis can be seen in Table 4, the Linear Theory Parameter Results, and in Table 5, the 6 DOF Multifit Results. The parameters of primary importance in this test were the values of CNPA, Magnus moment coefficient derivative, for each boom configuration. The following table illustrates the comparison of CNPA for Mach = 3.0 between the PM program, the multifit results, and the original PRODAS program:

TABLE 3. MAGNUS MOMENT COEFFICIENTS

BOOM CONFIGURATION	PM	Multifit	PRODAS
(1.0" x 0.5")			
^C npa ₍₁ °)	0.998	n/a	0.137
^C npa ₍₄ °)	1.035	1.02	0.175
(1.25" x 0.5")			
^C npa ₍₁ °)	1.355	n/a	0,122
C _{npa (4} 0)	1.395	1.50	0.162

The PRODASMAGNUS and the Multifit results agree very well. The small difference suggests a good approximation of the actual boomed projectile

TABLE 4. LINEAR THEORY PARAMETER RESULTS

รูสุทิตตาน เกากตุลกับ เกากตุลกับ
04449 0466 0466 0466 0466 0466 0466 0466
2.0.0.0.1 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
CBS SS 85.778 SS 85.778 SS 85.778 SS 85.788 SS
94444444 44444444444444444444444444444
2004 2000 2000 2000 2000
30.000 E
5407 NO. 858591 495 858591 494 858591 596 858591 858 85851 18684 858591 885

1.0-Inch Boom Length

7
2444444 2444444 244444
CTA 3.732 3.978 4.729 4.729
0.4.0.45 5.0.0.45 5.0.0.0.0 5.0.0.0 6.0.0.0
CDS0 5.989 6.617 6.617
2000 2000 2000 2000 2000 2000 2000 200
9.000 min.
5.45 5.45 5.45 6.45
3.000 00 00 00 00 00 00 00 00 00 00 00 00
2407 H7. 2585931597 2585931598 2585931598 2585911899 2585911899

1.25-Inch Boom Length

TABLE 5. 6 DOF MULTIPLE FIT RESULTS

		.2517	
F. X. E. A.	22 23 23 33	. 6024	2295 1296 1296
355			
STO SEASO	. 268 3.307 -1.00 4.066 -21.2 .07 -0.208 .07.000700 .00.00 .00.00 .00.00 .00.00 .00.00 .00.00	.268 3.266 -1.00 4.061 -21.2 .920191 1.151 13.980 .00-12.961 .0 8.650700 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	.266 3.309 -1.40 4.056 -21.8 1.120189 1.224 12.447 .00-12.891 .0 1.890700 .00 .00 .00 .00 .00
233	7	<u>.</u>	7
555	13.61	4.061 -12.061	-12.691 -0.
CHA CYPA CHA CHAS CYPAS CHAS	**	38 7	7
S S S S S S S S S S S S S S S S S S S		3.266 13.980	12.44 14.44
222 222			
200	60 6.4	26.3	
FACIN	. 9 9 9	2.00	2. 98 4. 98
SHOT MUNDERS	BSBS 0314 0S	865631405	9585011892 9584112684
SHOT NUMBERS	9828931 484 9888931 484	DSB4112684 DSB5031 DSB5031404	8585031405 8585031506 8585031404
MULT. FIT NO.	•	~	ത

1.0-Inch Boom Length

		1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			10000	*****	*****							
	1015	MUNDERS	PACIE	20 20	202	444 5555	CYPA CYPA3		225	CNTA 3	355	×2.	4 e	· 6 6 1 1 6 6 6 6
4	1585011893 1585031507	9585011891 9585031508	3.966	9.5.	1.337	. 265 3.253 1.337 12.000	2. CS- 210. t 23	20.50 20.50 20.50 20.50	-83.5		1.28 - 0205 8.32 - 0700	i		. 6 5 6 8 9 9 8
6	9585011893 B585031508	1891198856	 • • • • • • • • • • • • • • • • • • •	4.0 0	200.2		2.991 12.900 .00-26.341 .0 .000209 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	4.218 26.341		÷.			.0094 .3164	
9	8585011893 8585031507	1081195850	3.010	17.7	282.	3.177	.267 3.17774 3.926 -22.9 1.192 12.000 .00 -7.095 .0	3.826 -7.695	2	20.26	2020 - 38.1 8 6070 - 11.81 0 790. 8.18.1		.2675	
~	0505611000 0505611003	BSGS011891 BSGS031507	3.011	5.7	*****	4.4 84.5 84.5	.866 4.065 -1.00 3.920 -26.8 1.740210 4.30 6.730 6.730 6.720 6.		*	7			. 2421	

1.25-Inch Boom Length

Magnus moment by the mathematical model. Only values of CNPA for $4-5^\circ$ were provided by the 6 DOF reduction. The PRODAS values are significantly smaller than PM or Multifit. This outcome was anticipated since PRODAS does not consider the influence of the boom on projectile stability, in particular, CNPA. Smaller values of CNPA, provided by PRODAS, will tend to predict optimistic dynamic stability results of boomed projectiles. For the same boomed projectile configuration PM may predict unstable, or at best, marginally stable dynamic stability. By holding the boom diameter constant and increasing the boom length, the trend is to increase values of S_d for the 30mm model. This trend can best be seen in Figure 4. This figure illustrates the curve generated by a 0.5-inch diameter boom modeled at Mach = 3.0 for the following boom lengths: 1.0, 1.25, 1.5, 2.0, and 2.5 inches. The "no boom" configuration is included as a reference point.

The entire PM stability results for both boom configurations can be seen in Figures 5a and 5b. The results used to generate the boom effects versus boom length curve are included in the Appendix.

SEES - Expression belowers the continues

Figure 4. Dynamic Stability Versus Boom Lengths

							9819	
	B/REV B/REV	: St.		CIP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		12-5	800 30 20 20 20 20 20 20 20 20 20 20 20 20 20
	RIFLING TWIST 21.321968/F 18.099099/F	BOOM DIA CALIBERS 4237		Q	- 715 - 715	77777 77777 77777 77777 77777	9-17	991729 991883 991893 991893 991893 991993 991993 991993 991993 991993 991993 991993
	261VE RADIJS 15. 460996 13. 135568	BOOM DIA INCHES SBBBB		CNPA-5	### ##################################		77	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	EPLAT AMETER 284393 24:200	102 - 208 - 20 - 20 - 20 - 20 - 20 - 20 -		1 CPF-5	សសាសាសាសាសាសាសាសា 	เพพพพพ	5	80000000000000000000000000000000000000
	16 7E 1620 DIA 19661	18 185-1		AS CPF-	2000 2000	-	75	20000000000000000000000000000000000000
	84%0 DIATETE 1 2 150	AX (AL MOR. LBS- IN-50		A3 CNP	200 - 100 -	<u> </u>	3	2000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	C. C. ROF NOSE \$ 849011	DENS 11V GS/F13 B02376		A CNP	@@@4W~= -W@FV@W@FF	เพลเพพ	IN DELT	
		SLUC SLUC		Č		28888	3	200 - 44 - 40 - 40 - 40 - 40 - 40 - 40 -
		TEMPERATURE DEG-F 50 DB230		CVPA	25		REC IP-5	
13/85/85	80A11A1. LENGTH 866238 886238	CUN BORE INCHES 1 184522		MA CPN	22 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -		SBAR-5	44wwd
.E-132mm9	0C1VE EEVC11 P 945932 P 455763	WE 15H" C	15	Ch.A CT	2000 400 000 000 000 000 000 000 000 000	- - - - - - - - - - - - - - - - - - -	PECIP	アンスクルートーの自由ののならに
11	.,,,,	_	CCEFFICIENT	Cx2	24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	**************************************	PARANETERS SBAR	M44W-@@@@@@@@W@
BALL ISTICS	101AL LENGTH 6 565288 5 566240	DIANETER INCHES I . 180282	POSTNAMIC CO	5	200222 200222 200322 200322 200322 200322 200322 200322 200322 200322 200322 20032 2		ABILITY PARJ GYRO	##52575575755## ###52575757575 ##########
ã	IN INCRES		00HTV	#3 % E		- 00 m 4 m	STABI	######################################

Figure 5a. PRODASMAGNUS (PM) Stability Results, 1.0" By 0.5"

Figure 5b. PRODASMAGNUS (PM) Stability Results, 1.25" By 0.5"

SECTION V

CONCLUSION

The formulation of a mathematical expression based upon empirical data for estimating the Magnus moment aerodynamic coefficient has been completed. The method was encoded into PRODAS and the results appear to be very good for projectile configurations within the limits of the PRODAS data base.

The method should be a useful tool in the stability analysis of boomed projectiles within the 20mm to 30mm range. The best approach, however, would have been to include the boomed test data in the PRODAS data base and then solve for X_1 , X_2 , and X_3 using a multifit linear regression technique.

This empirical method, with some modifications, would be useful in obtaining estimates for the other aerodynamic coefficients influenced by the boom's presence.

REFERENCES

- 1. Hathaway, W., Buff, R., and Lemmers, P., "Free Flight Range Aerodynamic Test: 30-mm Boomed Projectiles", AFATL-TR-84-77, January 85.
- 2. Burnett, J., Hathaway, W., Whyte, R., "Projectile Design and Analysis System (PRODAS-81)", AFATL-TR-81-43, April 81.
- 3. Clarke, S., Hendry, J., LaFeber, C., "Advanced Development of High-Performance Telescoped Ammunition", AFATL-TR-83-22, March 83.
- 4. Sears, E., "An Empirical Method for Predicting Aerodynamic Coefficients for Projectiles Drag Coefficients", AFATL-TR-72-173, August 72.
- 5. Whyte, R., "SPIN-73 An Updated Version of the Spinner Computer Program", AMCMS TR 4588, November 73.

APPENDIX

DYNAMIC STABILITY VS BOOM LENGTH

BML (in)	BMD (in)	Mach #	Dynamic Stability (S _d)	Gyroscopic Stability (Sg)
0.0	0.0	3.00	0.593	0.28877
1.0	0.5	3.00	1.158	0.33267
1.25	0.5	3.00	1.431	0.34941
1.5	0.5	3.00	1.724	0.36873
2.0	0.5	3.00	2.389	0.41684
2.5	0.5	3.00	3.178	0.47916

The curve generated by plotting S_g as a function of S_d has an equation of the form: Y = aX + b. For the data represented above, that equation takes on the form of:

$$1/S_g = 0.24553 + 0.07279 * S_d$$

END

FILMED

11-85

DTIC