

CÁLCULO INTEGRAL- 220146 INGENIERÍA CIVIL INFORMÁTICA

Dra. Yrina Vera

15 de julio, 2021

ECUACIONES PARAMÉTRICAS

Si f y g son funciones definidas sobre un intervalo I, entonces el conjunto de puntos (f(t), g(t)) es una curva plana. Las ecuaciones

$$x = f(t) \quad , \quad y = g(t),$$

donde $t \in I$, son ecuaciones paramétricas para la curva, con parámetro t

EJEMPLO

Trace la curva definida por las ecuaciones paramétricas

$$x = t^2 - t \quad , \quad y = t - 1$$

EJEMPLO

Describa y grafique la trayectoria del cuerpo.

$$x = \cos(t)$$
 , $y = \sin(t)$, $t \ge 0$.

EJEMPLO

Elimine el parámetro y trace la gráfica de las ecuaciones paramétricas

$$x = \sin(t)$$
 , $y = 2 - \cos^2(t)$.

COORDENADAS POLARES

La transformación polar es la aplicación $T: D \subset \mathbb{R}^2$ definida por $T(r,\theta) = (x,y)$, donde

$$x = r\cos\theta, \qquad y = r\sin\theta.$$

A los números (r, θ) se les llama coordenadas polares del punto (x, y).

✓ De la definición de coordenadas polares se tiene que

$$x^2 + y^2 = r^2, \qquad \tan \theta = \frac{y}{r}.$$

✓ Las variaciones maximales de (r, θ) son

$$r \ge 0$$
, $\alpha \le \theta \le \alpha + 2\pi (\alpha \text{ fijo})$.