CPSC 340 and 532M: Machine Learning and Data Mining

Mark Schmidt
University of British Columbia, Fall 2019
www.cs.ubc.ca/~schmidtm/Courses/340-F19

Big Data Phenomenon

- We are collecting and storing data at an unprecedented rate.
- Examples:
 - YouTube, Facebook, MOOCs, news sites.
 - Credit cards transactions and Amazon purchases.
 - Transportation data (Google Maps, Waze, Uber)
 - Gene expression data and protein interaction assays.
 - Maps and satellite data.
 - Large hadron collider and surveying the sky.
 - Phone call records and speech recognition results.
 - Video game worlds and user actions.

Big Data Phenomenon

- What do you do with all this data?
 - Too much data to search through it manually.
- But there is valuable information in the data.
 - How can we use it for fun, profit, and/or the greater good?

 Data mining and machine learning are key tools we use to make sense of large datasets.

Data Mining

Automatically extract useful knowledge from large datasets.

Usually, to help with human decision making.

Machine Learning

 Using computer to automatically detect patterns in data and use these to make predictions or decisions.

- Most useful when:
 - We want to automate something a human can do.
 - We want to do things a human can't do (look at 1 TB of data).

Data Mining vs. Machine Learning

- Data mining and machine learning are very similar:
 - Data mining often viewed as closer to databases.
 - Machine learning often viewed as closer AI.

- Both are similar to statistics, but more emphasis on:
 - Large datasets and computation.
 - Predictions (instead of descriptions).
 - Flexible models (that work on many problems).

Deep Learning vs. Machine Learning vs. Al

- Traditional we've viewed ML as a subset of AI.
 - And "deep learning" as a subset of ML.

Spam filtering:

Credit card fraud detection:

Product recommendation:

\$91.66 \Prime

Hardcover

\$65.68 Prime

>

Motion capture:

Optical character recognition and machine translation:

• Speech recognition:

• Face detection:

• Object detection:

KLAY THOMPSON

• Sports analytics:

Personal Assistants:

• Medical imaging:

• Self-driving cars:

• Scene completion:

• Image annotation:

logprob: -7.79

a display case filled with lots of different types of logprob: -7.78

a group of people sitting at a table with wine glasses logprob: -6.71

Discovering new cancer subtypes:

Automated Statistician:

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

• Mimicking artistic styles:

Fast physics-based animation:

- Mimicking art style in <u>video</u>.
- Recent work on generating text/music/voice/poetry/dance.

• Beating humans in Go and Starcraft:

- Summary:
 - There is a lot you can do with a bit of statistics and a lot data/computation.
- We are in exciting times.
 - Major recent progress in fields like speech recognition and computer vision.
 - Things are changing a lot on the timescale of 3-5 years.
 - NeurIPS conference sold out in ~11 minutes last year.
 - A bubble in ML investments (most "AI" companies are just doing ML).
- But it is important to know the limitations of what you are doing.
 - "The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data." – John Tukey
 - A huge number of people applying ML are just "overfitting".
 - Or don't understand the assumptions needed for them to work.
 - Their methods do not work when they are released "into the wild".

Bonus Slides

- I will include a lot of "bonus slides".
 - May mention advanced variations of methods from lecture.
 - May overview big topics that we don't have time for.
 - May go over technical details that would derail class.

- You are not expected to learn the material on these slides.
 - But they're useful if you want to take 540 or work in this area.
- I'll use this colour of background on bonus slides.

Course Outline

Next class discusses "exploratory data analysis".

- After that, the remaining lectures focus on five topics:
 - 1) Supervised Learning.
 - 2) Unsupervised learning.
 - 3) Linear prediction.
 - 4) Latent-factor models.
 - 5) Deep learning.

"What is Machine Learning?" (overview of many class topics)

Photo I took in the UK on the way home from the "Optimization and Big Data" workshop:

