Calibration, falsifiablity and Macau

Dean Foster

Amazon.com, NYC

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better of error
 - you falsify a forecast by betting against it
 - The amount it loses is its macau.

- Setting: On-line decision making (aka adversarial data or robust time series)
- Goal: Use economic forecasts for decision making
- Problem: Accuracy doesn't guarantee good decisions (We'll take "accuracy" = "low regret." Regret compares actual decisions to "20/20 hindsight." 100s of papers say how to get low regret.)
- Solution: Falsifiable is better of error
 - you falsify a forecast by betting against it
 - The amount it loses is its macau.

Take Aways

crazy-Calibration + low-regret \implies low-macau \implies good decisions

Prove the Earth is round!

 Fun question: What personal evidence do you have that the earth is round?

Prove the Earth is round!

- Fun question: What personal evidence do you have that the earth is round?
- Can you prove it is round? NO!
- But, you can make claims that could easily be shown wrong.
- Called falsifiability

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$E\left(B\left(Y-\hat{Y}\right)\right)$$

(Start with bet B)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$Macau \equiv \max_{|B| \le 1} E\left(B\left(Y - \hat{Y}\right)\right)$$

(worry about worst bet)

- We will falsify someone's claim by winning bets placed against them
- Claim: $\hat{Y} \approx EY$
 - Prove it wrong by winning lots of money:

expected winnings =
$$E\left(B\left(Y-\hat{Y}\right)\right)$$

- $(Y \hat{Y})$ is a "fair" bet
- B is amount bet
- How to avoid being proven wrong by:

$$\min_{\hat{Y}} \max_{|B| \le 1} E\left(B\left(Y - \hat{Y}\right)\right)$$
(mini-max)

On to calibration

Y	X_1	X_2	X_3	X_4
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X ₂₄
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	X_{33}	<i>X</i> ₃₄
<i>Y</i> ₄	X_{41}	X_{42}	X_{43}	X ₄₄
:	÷	÷	:	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}

Starting with our data that we observed up to time t

Y	X_1	X_2	X_3	X_4
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}
<i>Y</i> ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	X_{33}	X_{34}
<i>Y</i> ₄	X_{41}	X_{42}	X_{43}	X_{44}
:	÷	÷	:	÷
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}

$$\hat{\beta}_t = \arg\min_{\beta} \sum_{i=1}^t (Y_i - \beta' X_i)^2$$

We can fit $\hat{\beta}_t$ on everything up to time t

Y	X_1	X_2	<i>X</i> ₃	X_4
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄
Y_2	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	X_{33}	X_{34}
Y_4	X_{41}	X_{42}	X_{43}	X_{44}
÷	÷	:	:	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}
	$X_{t+1,1}$	$X_{t+1,2}$	$X_{t+1,3}$	$X_{t+1,4}$

From a new X_{t+1} we can compute \hat{Y}_{t+1}

Y	X_1	X_2	X_3	X_4	\hat{eta}
<i>Y</i> ₁	<i>X</i> ₁₁	X ₁₂	X ₁₃	X ₁₄	0
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$
<i>Y</i> ₄	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$
:	:	:	:	:	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$

Looking at only the first part of the data, we can generate:

$$\hat{\beta}_0$$
, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$, ..., $\hat{\beta}_{t-1}$

Y	X_1	X_2	X_3	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃			$\hat{Y}_1 = 0$
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
<i>Y</i> ₄	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3' X_4$
	÷	:	:	:	:	:
Y_t	X_{t1}	X_{t2}			$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Each of these leads to a next round

$$\hat{Y}_1, \quad \hat{Y}_2, \quad \hat{Y}_3, \quad \hat{Y}_4, \quad \dots, \quad \hat{Y}_t$$

Y	X_1	X_2	X_3	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄		$\hat{Y}_1 = 0$
Y_2	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{eta}_1' X_2$
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
Y_4	X_{41}	X_{42}	X_{43}	X_{44}	$\hat{\beta}_3$	$\hat{Y}_4 = \hat{eta}_3' X_4$
:	:	:		:	1	:
Y_t	X_{t1}	X_{t2}	X_{t3}	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem (Foster 1991, Forster 1999)

Such an on-line least squares forecast generates low regret:

$$\sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta' X_t)^2 \leq O(\log(T))$$

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄	0	$\hat{Y}_1 = 0$
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	X_{23}	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
<i>Y</i> ₃	<i>X</i> ₃₁	X_{32}	<i>X</i> ₃₃	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
<i>Y</i> ₄	X_{41}	X_{42}	X_{43}		\hat{eta}_3	$\hat{Y}_4 = \hat{eta}_3' X_4$
:	÷	÷	:	:	:	:
Y_t	X_{t1}	X_{t2}			$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Works no matter what the X's are.

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	X ₁₁	X ₁₂	\hat{Y}_1	X ₁₄		$\hat{Y}_1 = 0$
<i>Y</i> ₂	<i>X</i> ₂₁	X_{22}	\hat{Y}_2	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{\beta}_1' X_2$
<i>Y</i> ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	\hat{Y}_3	X_{34}	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{eta}_2' X_3$
<i>Y</i> ₄	X_{41}	X_{42}	\hat{Y}_4	X_{44}	\hat{eta}_3	$\hat{Y}_4 = \hat{eta}_3^{\prime\prime} X_4$
:	:	÷	:	:	•	:
Y_t	X_{t1}	X_{t2}	\hat{Y}_t	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Even if one of the X's were \hat{Y} !

Y	X_1	X_2	<i>X</i> ₃	X_4	\hat{eta}	Ŷ
<i>Y</i> ₁	<i>X</i> ₁₁	X ₁₂	\hat{Y}_1	X ₁₄	0	$\hat{Y}_1 = 0$
Y_2	<i>X</i> ₂₁	X_{22}	\hat{Y}_2	X_{24}	$\hat{\beta}_1$	$\hat{Y}_2 = \hat{eta}_1' X_2$
<i>Y</i> ₃	<i>X</i> ₃₁	<i>X</i> ₃₂	\hat{Y}_3	X ₃₄	$\hat{\beta}_2$	$\hat{Y}_3 = \hat{\beta}_2' X_3$
<i>Y</i> ₄	X ₄₁	X_{42}	\hat{Y}_4	X_{44}	\hat{eta}_3	$\hat{Y}_4 = \hat{eta}_3^{\prime} X_4$
1	÷	:	:	÷	:	:
Y_t	X_{t1}	X_{t2}	\hat{Y}_t	X_{t4}	$\hat{\beta}_{t-1}$	$\hat{Y}_t = \hat{\beta}'_{t-1} X_t$

Theorem (⇒ Foster and Kakade 2008, Foster and Hart 2018)

Adding the crazy calibration variable generates low macau:

$$(\forall i)$$
 $\sum_{t=1}^{T} X_{t,i}(Y_t - \hat{Y}_t) = O(\sqrt{T \log(T)})$

$$E(Y|X)$$
 Least squares Normal equations Statistics $\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$ $\sum X_i \ (Y_i - \beta \cdot X_i) = 0$

The normal equation is the same as:

$$\max_{\alpha} \sum_{i} \alpha' X_{i} (Y_{i} - \beta' X_{i})) = 0$$

Which is solved by the β minimizer:

$$\min_{\beta} \max_{\alpha} \sum_{i} \alpha' X_{i} (Y_{i} - \beta' X_{i})) = 0$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$

Statistics
$$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2 = \min_{\beta} \max_{\alpha} \sum \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$$

Probability $\min_{f} E((Y - f(X))^2) = (\forall g) E(g(X) \ (Y - f(X))) = 0$

The normal equation is the same as:

$$\max_{g} E(g(X)(Y - f(X))) = 0$$

Which is solved by the $f(\cdot)$ minimizer:

$$\min_{f} \max_{g} E\left(g(X)(Y - f(X))\right) = 0$$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E\left(g(X) \ (Y - f(X))\right)$

E(Y X)	Least squares	Normal equations
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E\left(g(X) \ (Y - f(X))\right)$
online	low regret	low macau

$$\textit{Regret} \equiv \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 - \min_{\beta} \sum_{t=1}^{T} (Y_t - \beta \cdot X_t)^2$$

E(Y X)	Least squares	Normal equations				
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$				
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E\left(g(X) \ (Y - f(X))\right)$				
online	low regret	low macau				

$$\textit{Macau} \equiv \max_{\alpha: |\alpha| \le 1} \sum_{t=1}^{T} \alpha \cdot X_t \left(Y_t - \hat{Y}_t \right)$$

E(Y X)	Least squares	Normal equations			
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$			
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E\left(g(X) \ (Y - f(X))\right)$			
online	low regret	low macau			

- ullet statistics: Least squares \iff normal equations
- probability: Least squares ormal equations

E(Y X)	Least squares	Normal equations			
Statistics	$\min_{\beta} \sum (Y_i - \beta \cdot X_i)^2$	$\min_{\beta} \max_{\alpha} \sum_{\alpha} \alpha \cdot X_i \ (Y_i - \beta \cdot X_i)$			
Probability	$\min_{f} E((Y - \underbrace{f(X)}_{aka})^{2})$	$\min_{f} \max_{g} E\left(g(X) \ (Y - f(X))\right)$			
online	low regret	low macau			

Take Aways

on-line low regret

→ on-line low macau

No regret ⇒ not falsified

	t	1	2	3	4	 T-1	Т	T+1	T+2	T+3	 зт	
Y	ī	0	0	0	0	 0	1	1	1	1	 1	
Х		1	1	1	1	 1	1	1	1	1	 1	
Ŷ	i	0	0	0	0	 0	0	1	1 1 2 7+1	3 T+2	 2 3	

How about a bet?

Not falsified ⇒ no regret

t	1	2	3	4	 Т	T+1	
Y_t	0	1	0	1	 0	1	
X_t	1	1	1	1	 1	1	
\hat{Y}_t	.6	.4	.6	.4	 .6	1 1 .4	

- Macau is zero
 Regret is T/9
- So: low macau ⇒ low regret

- Macau is zero
- Regret is T/9
- So: low macau ⇒ low regret

(Skipping these proofs)

Economic forecasting for decision making

- Action A makes X dollars, action B makes Y dollars
 - We want forecasts that are close to X and Y
 - We want to be close on average
 - We will use least squares to estimate X and Y
- But, we want to take actions
- Will good estimates of X and Y lead to good decisions about A vs B?

Some notation:

```
a = \text{action taken} \in \Re^k(\text{eg inventory levels})
```

 X_t = Context at time t

 a_t^* = best action at time t

 $r_t(a)$ = Reward at time t playing a

$$V_t^* = \max_{a} E(r_t(a)|X_t) = E(r_t(a^*)|X_t)$$

$$\underline{q}_t(a) \leq E(r_t(a)|X_t) \leq \overline{q}_t(a)$$

Some notation:

```
a = 	ext{action taken} \in \Re^k(	ext{eg inventory levels})
X_t = 	ext{Context at time } t
a_t^* = 	ext{best action at time } t
r_t(a) = 	ext{Reward at time } t 	ext{ playing } a
V_t^* = 	ext{max } E(r_t(a)|X_t) = E(r_t(a^*)|X_t)
q_t(a) \leq E(r_t(a)|X_t) \leq \overline{q}_t(a)
```

What are good falsifiable claims about *a**?

Some notation:

$$a = \text{action taken} \in \Re^k(\text{eg inventory levels})$$

 $X_t = \text{Context at time } t$
 $a_t^* = \text{best action at time } t$

$$r_t(a)$$
 = Reward at time t playing a

$$V_t^* = \max_{a} E(r_t(a)|X_t) = E(r_t(a^*)|X_t)$$

$$\underline{q}_t(a) \leq E(r_t(a)|X_t) \leq \overline{q}_t(a)$$

Too precise:

"Here are two bounding functions \underline{q} and \overline{q} :

•
$$\underline{q}_t(a) = \overline{q}_t(a)$$
"

Some notation:

```
a = \operatorname{action taken} \in \Re^k(\operatorname{eg inventory levels})
X_t = \operatorname{Context} \operatorname{at time} t
a_t^* = \operatorname{best action} \operatorname{at time} t
r_t(a) = \operatorname{Reward} \operatorname{at time} t \operatorname{playing} a
V_t^* = \max_a E(r_t(a)|X_t) = E(r_t(a^*)|X_t)
\underline{q}_t(a) \leq E(r_t(a)|X_t) \leq \overline{q}_t(a)
```

Too loose:

• "Here is a_t^* ."

Contextual Bandits

Some notation:

$$a = \text{action taken} \in \Re^k(\text{eg inventory levels})$$

 $X_t = \text{Context at time } t$

$$\lambda_t = \text{Context at time } t$$

$$a_t^*$$
 = best action at time t

$$r_t(a)$$
 = Reward at time t playing a

$$V_t^* = \max_{a} E(r_t(a)|X_t) = E(r_t(a^*)|X_t)$$

$$\underline{q}_t(a) \leq E(r_t(a)|X_t) \leq \overline{q}_t(a)$$

Just right:

"Here is a target V^* and approximating quadratics around a^* :

•
$$\overline{q}_t(a) = V_t^* - q||a - a_t^*||^2$$

$$\bullet \ \overline{q}_t(a) - q_t(a) = \Delta ||a - a_t^*||^2$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

- Supposed each $c_t(\cdot)$ is convex
- Goal: play a to minimize C(a)
- Eg: We could use SGD on $\nabla c_t()$
- called "on-line convex optimization" with regret:

regret
$$\equiv \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

regret
$$=\sum_{t=1}^{T}(c_t(\hat{a}_t)-c_t(a^*))$$

 $\leq \sum_{t=1}^{T}(\hat{a}_t-a^*)\cdot \nabla c_t(\hat{a}_t)$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

$$\begin{split} \text{regret} & = \sum_{t=1}^T (c_t(\hat{a}_t) - c_t(a^*)) \\ & \leq \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ & = \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \end{split}$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

regret
$$= \sum_{t=1}^{T} (c_t(\hat{a}_t) - c_t(a^*))$$

$$\leq \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t)$$

$$= \sum_{t=1}^{T} (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t)$$

$$(macaul) \qquad (zero @ \hat{a}_t)$$

$$C(a) = \sum_{t=1}^{T} c_t(a)$$
 $a^* \equiv \arg\min_{a} C(a)$

$$\begin{array}{ll} \text{regret} &=& \displaystyle \sum_{t=1}^T (c_t(\hat{a}_t) - c_t(a^*)) \\ &\leq & \displaystyle \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \nabla c_t(\hat{a}_t) \\ &= & \displaystyle \sum_{t=1}^T (\hat{a}_t - a^*) \cdot \left(\nabla c_t(\hat{a}_t) - \widehat{\nabla c_t}(\hat{a}_t) \right) + (\hat{a}_t - a^*) \cdot \widehat{\nabla c_t}(\hat{a}_t) \\ \text{regret} &< & \mathsf{macau} \end{array}$$

without crazy-calibration variable

Using the crazy-calibration variable

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if $\hat{Y}_t = [X_t]_0$, we have R = o(T) iff M = o(T).

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if $\hat{Y}_t = [X_t]_0$, we have R = o(T) iff M = o(T).

Note: Typically, $R = O(\log(T))$ iff $M = \tilde{O}(\sqrt{T})$ for the actual algorithms I know.

(Sasha Rakhlin and Dylan Foster have a proof for IID.)

Calibration Theorem

Theorem (\implies F. and Kakade 2008, \iff new)

Let R be the quadratic regret of a forecast \hat{Y}_t against a linear regression on X_t . Let M be the Macau of \hat{Y}_t using linear functions of X_t to create falsifying bets. Then if $\hat{Y}_t = [X_t]_0$, we have R = o(T) iff M = o(T).

Proof sketch: Consider the forecasts $(1 - w)\hat{Y}_t + w\alpha \cdot X_t$ for the *any* α . Let Q(w) be the total quadratic error of this family of forecast. The following are equivalent:

- $Q(0) \le Q(w)$ (No regret condition)
- Q'(0) is zero. (No macau condition)

Recipe for good decisions

- List bets that you would make to show \hat{a}_t is not optimial
- Convert these to regression variables
- Add the crazy-calibration variable
- Run a low regret least squares algorithm
- Make decision based on this forecast

What bets to place?

	Bet
convex	$[\hat{a}_t - a^*]_i$
experts	$oldsymbol{e}_{a*} - oldsymbol{e}_{\hat{a}_t}$
internal regret	$(e_a-e_b)I_{\hat{a}_t=b}$
bandits	$rac{I_{a_t=a}}{P(a_t=a)} - rac{I_{a_t=\hat{a}_t}}{P(a_t=\hat{a}_t)}$
contextual	$X_t imes \left(rac{I_{a_t=a}}{P(a_t=a)} - rac{I_{a_t=\hat{a}_t}}{P(a_t=\hat{a}_t)} ight)$
continuous	$(a_t - Mx_t)^2$
LQR	$(a_t - \sum_{i=1}^{\log T} M_i x_{t-i})^2$
reinforcement Learning	TD learn

What bets to place?

	Bet	dimension
convex	[â _t – a*] _i	$\in \Re^{oldsymbol{d}}$
experts	$e_{a*}-e_{\hat{a}_t}$	$\in \Re^k$
internal regret	$(e_a-e_b)I_{\hat{a}_t=b}$	$\in \Re^{k^2}$
bandits	$rac{I_{a_t=a}}{P(a_t=a)} - rac{I_{a_t=\hat{a}_t}}{P(a_t=\hat{a}_t)}$	$\in \Re^{\pmb{k}}$
contextual	$X_t imes \left(rac{I_{a_t=a}}{P(a_t=a)} - rac{I_{a_t=\hat{a}_t}}{P(a_t=\hat{a}_t)} ight)$	$\in \Re^{ extit{dk}}$
continuous	$(a_t - Mx_t)^2$	$\in \Re^{ extit{dk}}$
LQR	$(a_t - \sum_{i=1}^{\log T} M_i x_{t-i})^2$	$\in \Re^{dk \log(T)}$
reinforcement Learning	TD learn	

RL: Falsifiability value estimation

Theorem (Dicker 2019)

Least squares plus the calibration variable generates an estimate of the RL value function with low Macau.

Theorem (Dicker 2019)

A tweaked version of TD learning with 1/sqrt(T) rates generates an estimate of the RL value function with low Macau.

RL: Falsifiability value estimation

Theorem (Dicker 2019)

Least squares plus the calibration variable generates an estimate of the RL value function with low Macau.

Proof: Follows from F. and Kakade 2008.

Theorem (Dicker 2019)

A tweaked version of TD learning with 1/sqrt(T) rates generates an estimate of the RL value function with low Macau.

Proof: Similar to Dicker and F. 2018.

Conclusions

Take Aways

 $\textit{crazy-Calibration} + \textit{low-regret} \iff \textit{low-macau} \implies \textit{good decisions}$

Conclusions

Take Aways

 $\textit{crazy-Calibration} + \textit{low-regret} \iff \textit{low-macau} \implies \textit{good decisions}$

Thanks!

Appendix slides

Proofs by example:

- Iow Regret ⇒ Iow Macau

Bets:

- Experts
- No Internal Regret
- Bandits, (scalar version), (exploration).
- Contextual Bandits
- Continuous action contextual Bandits
- Convex optimization, (one point), (1/T with smooth)
- Reinforcement Learning
- LQR

No regret *⇒* not falsified

t	1	2	3	4	 T-1	Τ	T+1	T+2	T+3	 3T
$\overline{Y_t}$	0	0	0	0	 0	1	1	1	1	 1
X_t	1	1	1	1	 1	1	1	1	1	 1
\hat{Y}_t	0	0	0	0	 0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 <u>2</u>

no regret ==/==> not falsified

No regret ⇒ not falsified

									T+2		
$\overline{Y_t}$	0	0	0	0		0	1	1	1 1	1	 1
X_t	1	1	1	1		1	1	1	1	1	 1
\hat{Y}_t	0	0	0	0	• • •	0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 <u>2</u>

On-line least squares suffers no-regret:

- β_t minimizes $\sum_{i=1}^t (Y_i \beta \cdot X_t)^2$
- $\bullet \ \hat{Y}_t = \beta_{t-1} \cdot X_t$
- Total error: $\sum (Y_t \hat{Y}_t)^2 = \min_{\beta} \sum (Y_t \beta X_t)^2 + 4/9$
- In general, on-line least squares has log(T) total regret
- In this case, it actually wins by about O(1).

No regret \implies not falsified

								T+2		
$\overline{Y_t}$	0	0	0	0	 0	1	1	1 1	1	 1
X_t	1	1	1	1	 1	1	1	1	1	 1
\hat{Y}_t	0	0	0	0	 0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 <u>2</u>

How about a bet?

No regret → not falsified

								T+2		
$\overline{Y_t}$	0	0	0	0	 0	1	1	1 1	1	 1
X_t	1	1	1	1	 1	1	1	1	1	 1
\hat{Y}_t	0	0	0	0	 0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$	 <u>2</u>

How about a bet?

How about a bet?

- $Y_t > \hat{Y}_t$, so that is a safe bet!
- Construct this bet only using X_t

$$\sum_{i=1}^{T} X_t(Y - \hat{Y}_t) \approx T \frac{\log_e(3)}{2}$$

Betting loses Ω(T)

No regret \implies not falsified

t	1	2	3	4	• • •	T-1	Τ	T+1	T+2	T+3	• • •	3T
$\overline{Y_t}$	0	0	0	0		0	1	1	1	1		1
X_t	1	1	1	1		1	1	1	1	1		1
\hat{Y}_t	0	0	0	0		0	0	$\frac{1}{T}$	$\frac{2}{T+1}$	$\frac{3}{T+2}$		<u>2</u>

- Regret is *O*(1)
- Macau is T/2
- ullet So: low regret \implies low macau

Not falsified \implies no regret

t	1	2	3	4	 Т	T+1	
Y_t	0	1	0	1	 0	1	
X_t	1	1	1	1	 1	1	
\hat{Y}_t	.6	.4	.6	.4	 .6	1 1 .4	

Not falsified *⇒* no regret

Betting

- No bet based on X_t will win anything
- In other words,

$$\max_{\alpha} \sum_{i=1}^{T} \alpha \cdot X_{t} (Y - \hat{Y}_{t}) = 0$$

ullet This forecast is not falsified using linear functions of X_t

But, a better forecast exists

•
$$\sum (Y_t - \hat{Y}_t)^2 = .36T$$

$$\bullet \ \operatorname{min}_{\beta}(Y_t - \beta X_t)^2 = .25T$$

- Regret is .11T
- So, regret is Ω(T)

Not falsified \implies no regret

t	1	2	3	4	 Т	T+1	
$\overline{Y_t}$	0	1	0	1	 0	1	
X_t	1	1	1	1	 1	1	
\hat{Y}_t	.6	.4	.6	.4	 .6	1 1 .4	

- Macau is zero
- Regret is T/9
- So: low macau ⇒ low regret

Bet: Convex optimization (with gradients)

In the convex optimization problem, we observe a sequence of convex functions $c_t(\cdot)$. Or goal is to figure out a action \hat{x}_t^* to take at each point in time t to minimize $\sum_t c_t(\hat{x}_t^*)$.

- Forecast: Gradient of c_t at each point in time t $(g_t(x) \equiv \nabla c_t(x))$
- Strategy: Pick a \hat{x}_t^* such that $\hat{g}_t(\hat{x}_t^*) = 0$.
- Worry: "The real optimum x* would generate better performance."
- Macau bets: $[x^* \hat{x}_t^*]_i$ bet against $[g_t]_i [\hat{g}_t]_i$

$$\mathsf{Macau}_i = \sum_{t=1}^T [x^* - \hat{x}_t^*]_i ([g_t]_i - [\hat{g}_t]_i)$$

Bet:
$$[x^* - \hat{x}_t^*]_i$$

Bet: Convex optimization (no gradients)

In the convex optimization problem, we observe a sequence of convex functions $c_t(\cdot)$. Or goal is to figure out a action \hat{x}_t^* to take at each point in time t to minimize $\sum_t c_t(\hat{x}_t^*)$.

- Forecast: $c_t(x)$ at points near \hat{x}_t^* , for example $x_t \hat{x}_t^* \sim N(0, \sigma^2 I)$
- Strategy: Pick a \hat{x}_t^* to minimize $\hat{c}(\cdot)$
- Worry: "The real optimum x* would generate better performance."
- Macau bets: $(x^* \hat{x}_t^*) \cdot (x_t \hat{x}_t^*)$

Macau =
$$\sum_{t=1}^{T} (x^* - \hat{x}_t^*) \cdot (x_t - \hat{x}_t^*) c(x)$$

Bet:
$$[x^* - \hat{x}_t^*]_i$$

Bet: Optimizing continuous convex functions (with gradient)

Also assume each c_t is smooth, say $c_t \in C_2$. We'll keep all else the same.

- We can use the macau to look at bets for how for $\hat{\beta}$ is from the best after the fact β
- Thus we know the optimum point is close to the best hind sight deciosion point (say $1/\sqrt{T}$ accuracy)
- This means the error in payoff space is 1/T
- So it doesn't require a new algorithm or even new features

Bet: Experts

In the experts problem, we observe the payoff of k different experts. Our goal is to generate as much value as the best expert.

- Forecast: one value for each arm ($Y_t \in \Re^k$, so $\hat{Y}_t \in \Re^k$ also)
- Strategy: Pick arm with highest forecast $(\hat{a}_t = \arg \max_i [\hat{Y}_t]_i)$
- Worry: "Always playing arm b would generate more"
- Macau bet: e_b = [0, 0, 0, ..., 1, ..., 0][']

Macau =
$$\max_{b \in \{1,...,k\}} \sum_{t} (e_b - e_{\hat{a}_t}) \cdot (Y_t - \hat{Y}_t)$$

Bet:
$$e_b - e_{\hat{a}_t}$$

Bet: No Internal Regret

In the no-internal regret problem, we observe the payoff of k different experts. Our goal is to avoid feeling regret about possibly switching one of our actions to some other action.

- Forecast: one value for each expert ($Y_t \in \Re^k$, so $\hat{Y}_t \in \Re^k$ also)
- Strategy: Pick arm with highest forecast $(\hat{a}_t = \arg \max_i [\hat{Y}_t]_i)$
- Worry: "Playing c when we previously played b would have been better ($R^{c \to b} > 0$)."
- Macau bet:

$$\left(I_{\hat{a}_t=c}(e_b-e_c)\right)\cdot\left(Y_t-\hat{Y}_t\right)$$

Bet on
$$c \rightarrow b$$
: $I_{\hat{a}_t=c}(e_b-e_c)$

The rest isn't done yet!

Bet: Bandits (vector structure)

We only see outcomes on the one of k arms we pull.

- Forecast: Each arms payoff: $[Y_t]_i = \frac{r_t I_{a_t=i}}{p(a_t=i)}$, so $\hat{Y}_t \in \Re^k$.
- Strategy: Pick arm with highest forecast $(\hat{a}_t = \arg \max_i [\hat{Y}_t]_i)$ with some exploration also.
- Worry: Always playing b might have been better.
- Macau bet:

$$(e_b - e_{\hat{a}_t}) \cdot (Y_t - \hat{Y}_t)$$

Bet on
$$b$$
: $(e_b - e_{\hat{a}_t})$

Bet: Bandits (scalar version)

Play $a_t \in \{1, ..., k\}$ and only see its outcome.

- Forecast: the arm actually played: $Y_t = \frac{r_t(a_t)}{p_t(a_t)}$, so $\hat{Y}_t(a_t) \in \Re$.
- Strategy: Pick arm with highest forecast $(\hat{a}_t = \arg \max_i \hat{Y}_t(i))$ with some exploration also.
- Worry: Always playing b might have been better.
- Macau bet:

$$\left(\frac{\textit{I}_{\textit{a}_t = \textit{b}}}{\textit{p}_t(\textit{b})} - \frac{\textit{I}_{\textit{a}_t = \hat{\textit{a}}_t}}{\textit{p}_t(\hat{\textit{a}}_t)}\right) (\textit{Y}_t - \hat{\textit{Y}}_t)$$

Bet on
$$b$$
:
$$\frac{I_{a_t=b}}{p_t(b)} - \frac{I_{a_t=\hat{a}_t}}{p_t(\hat{a}_t)}$$

Bandits exploration

- Macau keeps the mean correct
- We would also high probability statements
- So, we need $p_t(b)$ to not be too small
 - Easy math: $p_t(b) \ge t^{-1/3}$, but not optimal rates of convergence
 - Giving up a log: $p_t(b) \ge t^{-1/2}$. But, as $\hat{Y}_t(b)$ gets closer to $\hat{Y}_t(\hat{a}_t)$ we sample more often. On a log scale, this means we need $k \log(T)$ features.
 - Note: the fixed point solution will generate some randomization above and beyond that given by the lower bounds
- Similar behavior to UCB, but a different philosophy to justify it.

Bet: Contextual Bandits (vector version)

First we observe $X_t \in \mathbb{R}^d$, then we play an arm a_t and observe its outcome (vector version: $[Y_t]_i = \frac{r_t I_{a_t=i}}{p(a_t=i)}$):

- Forecast: $\hat{Y}_t = X_t \beta_{t-1}$, with $\beta \in \Re^{d \times k} \hat{Y}_t \in \Re^k$.
- Strategy: Pick arm with highest forecast $(\hat{a}_t = \arg \max_i [\hat{Y}_t]_i)$.
- Worry: Using some other β^* might be better.
- Naive Macau bet $(\hat{a}_t \rightarrow b)$:

$$(I_{X_t(\beta_b^*-\beta_{\hat{a}_t}^*)>0}-e_{\hat{a}_t})\cdot(Y_t-\hat{Y}_t)$$

 These are hard to put in a linear space. But, given the low dimension (VC=d + 2) hope spring eternal.

Bet on
$$b$$
: $(e_b - e_{\hat{a}_t})$

Bet: Continuous action for contextual Bandits

First we observe $X_t \in \Re^d$, then we play an action $a_t \in \mathcal{A} \subset \Re^k$ and observe its outcome. (We'll actually penalize a quadratically and hence avoid the set \mathcal{A} .)

- Forecast: $\hat{Y}_t(a) = X_t^{\top} \beta_{t-1} a a^{\top} a/2$, with $\beta \in \Re^{d \times k}$ and $\hat{Y}_t(a) \in \Re^k$.
- Strategy: Pick "best" action: $\hat{a}_t = \arg\max_{a \in \mathcal{A}} \hat{Y}_t(a) = X_t^{\top} \hat{\beta}_{t-1}$.
- Worry: Using some other β^* might be better.
- Naive Macau bet $(\hat{a}_t \to (1 \epsilon)\hat{a}_t + \epsilon X_t^{\top} \beta^*)$:

$$(X_t^{\top} \beta^* - X_t^{\top} \hat{\beta}_t^*) \cdot (a_t - \hat{a}_t) (Y_t(a_t) - \hat{Y}_t(a_t))$$

Bet in direction $X_t^{\top} \beta^*$: (fillin)

Reinforcement Learning

The RL value function:

$$V_t^* = \max_{\pi} E\left(\sum_{i=t}^{\infty} \gamma^{i-t} r_i(a_i^{\pi}) \middle| \mathcal{F}_t\right)$$

(γ is discount rate.) Recursively:

$$V_t^* = E\left(r_t(a) + \gamma V_{t+1}^* \middle| \mathcal{F}_t\right)$$

Reinforcement Learning

The RL value function:

$$V_t^* = \max_{\pi} E\left(\sum_{i=t}^{\infty} \gamma^{i-t} r_i(a_i^{\pi}) \middle| \mathcal{F}_t\right)$$

(γ is discount rate.) Recursively:

$$V_t^* = E\left(r_t(a) + \gamma V_{t+1}^* \middle| \mathcal{F}_t\right)$$

V[∗] is a Y-variable and an X-variable!