Name:	
EC200	Econometrics and Applications

Unit 1 Quiz

You have 1 hour and 15 minutes to complete this quiz. There are 47 total points.

1. (16 points) What are the five Gauss Markov assumptions for multiple linear regression? First, state each assumption. Then, for each assumption, briefly describe a real-world situation in which it would be violated. One assumption is filled in for you as an example.

#	Assumption [2 points each]	Violation [2 points each]
1	The population model is linear in parameters	Estimating a non-linear function, like a Cobb- Douglas function $(Y = AL^{\alpha}K^{1-\alpha})$
2		
3		
4		
5		

- 2. [4 points] Assuming all five Gauss-Markov assumptions hold is sufficient to prove which of the following statements? Circle the appropriate answer(s), and note that multiple answers may be correct. No justification is needed.
 - (a) OLS estimates are unbiased
 - (b) OLS is BLUE
 - (c) $\hat{\sigma^2} = \frac{SSR}{n-k-1}$ is an unbiased estimator of σ^2
 - (d) $\frac{\hat{\beta}_j \beta}{se(\hat{\beta}_j)} \sim t_{n-k-1}$

3. [27 points] Suppose you are interested in the effect of attendance (attend) on final exam scores (final, out of 40 points), controlling for students' past GPA (priGPA). A description of each variable is on the last page of the quiz. You use OLS to predict final and you get the following results:

ttend priGPA						
SS	df	MS	Numb	er of obs	=	680
			- F(2,	677)	=	52.48
2021.72415	2	1010.8620	7 Prob	> F	=	0.0000
13040.2229	677	19.261776	8 R-sq	uared	=	0.1342
			- Adj	R-squared	=	0.1317
15061.9471	679	22.182543	5 Root	MSE	=	4.3888
Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
0172012	.0341483	-0.50	0.615	084250	04	.0498481
3.237554	.3419779	9.47	0.000	2.566	09	3.909019
17.96611	.9660608	18.60	0.000	16.069	28	19.86295
	SS 2021.72415 13040.2229 15061.9471 Coef. 0172012 3.237554	SS df 2021.72415 2 13040.2229 677 15061.9471 679 Coef. Std. Err. 0172012 .0341483 3.237554 .3419779	SS df MS 2021.72415 2 1010.8620 13040.2229 677 19.261776 15061.9471 679 22.182543 Coef. Std. Err. t 0172012 .0341483 -0.50 3.237554 .3419779 9.47	SS df MS Numb F(2, 2021.72415 2 1010.86207 Prob 13040.2229 677 19.2617768 R-sq Adj 15061.9471 679 22.1825435 Root Coef. Std. Err. t P> t 0172012 .0341483 -0.50 0.615 3.237554 .3419779 9.47 0.000	SS df MS Number of obs F(2, 677) 2021.72415	SS df MS Number of obs = F(2, 677) = 2021.72415

.

(a) List the dependent variable(s) and independent variable(s).

[2 points]

(b) What is the population model that this regression estimates?

[2 points]

(c) What is the estimating equation?

[2 points]

(d) Interpret $\hat{\beta}_{attend}$. That is, what does -0.0172 mean? (Note that it is not sufficient to only say that there is a positive or negative relationship). [2 points]

(e) Fill in the following table with the corresponding estimates:

[3 points]

\hat{eta}_0	$se(\hat{eta}_{priGPA})$	
R^2	degrees of freedom	
SSE	SSR	

(f) Suppose you want to test whether β_{attend} is statistically significant from zero at the 5% level. Conduct a hypothesis test by filling in the table below. You do not need to show your work.

[3 points]

Null hypothesis:	
Alternative hypothesis:	
Test statistic(s):	
P-value:	
Decision:	

(g) Suppose Rogetta decides that since she wants to know about the effect of missing classes, she will add missed, the number of classes missed, to the regression in addition to the previous independent variables. Explain why this is a bad idea.

[3 points]

(h) Suppose that you estimate the previous model, but now you control for student's ACT scores (ACT). You get the following results:

reg final a	ttend priGPA	ACT				
Source	SS	df	MS	Number of ob	s =	680
				F(3, 676)	=	56.79
Model	3032.09408	3	1010.69803	Prob > F	=	0.0000
Residual	12029.853	676	17.7956405	R-squared	=	0.2013
				Adj R-square	d =	0.1978
Total	15061.9471	679	22.1825435	Root MSE	=	4.2185
final	Coef.	Std. Err.	t F	P> t [95%	Conf.	Interval]
attend	.0793386	.0352349	2.25	0.025 .0101	556	.1485216
priGPA	1.915294	.372614	5.14	1.183	674	2.646914
ACT	.4010639	.0532268	7.54	.000 .2965	542	.5055736
_cons	9.834203	1.423709	6.91	7.038	779	12.62963

i. Based on this and the previous result (and assuming no correlation between ACT score and prior GPA), what is the correlation between ACT score and attendance?

[3 points]

ii. After including ACT score in the model, is it likely that omitted variable bias persists? If yes, provide one example of a variable that would be likely to contribute to this bias and explain why. If no, explain your reasoning.

[3 points]

(i) Suppose you instead predict the \log of final exam scores, lfinal. You now obtain the following estimates:

Source	SS	df	MS	Numb	er of obs	=	680
				- F(3,	676)	=	50.10
Model	4.44557174	3	1.4818572	5 Prob	> F	=	0.0000
Residual	19.9956331	676	.029579339	9 R-sq	uared	=	0.1819
				- Adj	R-squared	=	0.1783
Total	24.4412048	679	.035995883	3 Root	MSE	=	.17199
lfinal	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
attend	.0027021	.0014365	1.88	0.060	000118	35	.0055226
priGPA	.0751518	.0151914	4.95	0.000	.045323	39	.1049797
ACT	.0152682	.00217	7.04	0.000	.011007	74	.0195291
_cons	2.627812	.0580442	45.27	0.000	2.51384	14	2.741781

.

i. Interpret $\hat{\beta}_{attend}$. That is, what does 0.0027 mean? (Note that it is not sufficient to only say that there is a positive or negative relationship). [2 points]

ii. Of the three models estimated in this quiz, which model best fits the data? Explain why you believe it is the best fit. [2 points]

Version: October 4, 2016

.

. describe

Contains data from attend.dta

obs: 680 vars: 9 size: 16,320

29 Jul 2005 21:00 (_dta has notes)

variable name	storage type	display format	value label	variable label
final attend missed priGPA priGPA_sq ACT ACT_sq lpriGPA lfinal	byte byte float float byte float float float	%8.0g %8.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		final exam score (out of 40) classes attended out of 32 number of classes missed cumulative GPA prior to term cumulative GPA prior to term, squared ACT score ACT score, squared log of cumulative GPA prior to term log of final exam score

Sorted by

Note: Dataset has changed since last saved.

.

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
final	680	25.89118	4.709835	10	39
attend	680	26.14706	5.455037	2	32
missed	680	5.852941	5.455037	0	30
priGPA	680	2.586775	.5447141	.857	3.93
priGPA_sq	680	6.987682	2.892395	.734449	15.4449
ACT	680	22.51029	3.490768	13	32
ACT_sq	680	518.8809	158.8418	169	1024
lpriGPA	680	.9272564	.2192617	1543174	1.368639
lfinal	680	3.236557	.1897258	2.302585	3.663562

.