WYKŁAD 3

Modelowanie danych

Plan wykładu

- Wprowadzenie do modelowania i projektowania systemów informatycznych
- Model związków-encji
 - encje
 - atrybuty encji
 - związki pomiędzy encjami
 - hierarchia generalizacji

Modelowanie - modele

- Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w
 systemie informatycznym (bazie danych)
- Modele
 - konceptualne
 - reprezentacja obiektów w uniwersalnym modelu niezależnym od modelu implementacyjnego
 - model związków-encji
 - model UML
 - implementacyjne
 - modele wykorzystywane do implementacji modeli konceptualnych
 - modele danych (relacyjne, obiektowe, itp.)

Cykl projektowania SI

Obiekty świata rzeczywistego

- Obiekty materialne
 - samochody, budynki, sprzęt komputerowy
 - zasoby ludzkie (grupa pracowników)
- Obiekty niematerialne
 - wiedza (znajomość technologii)
 - zdarzenia (otrzymanie nagrody, urlopu)
 - stany rzeczywistości (stan rachunku bankowego, polisa ubezpieczeniowa)

Model związków encji

- Model związków-encji (entity-relationship model ER)
 - obiekty świata rzeczywistego reprezentowane za pomocą encji (entities)
 - powiązania między obiektami świata rzeczywistego reprezentowane za pomocą związków (relationships) pomiędzy encjami
- Notacje modelu ER
 - Chen
 - Barker (Oracle)

Encja

- Reprezentuje zbiór obiektów opisany tymi samymi cechami (atrybutami, własnościami)
- Informacje o tych obiektach będą przechowywane w bazie danych
- Konkretny obiekt świata rzeczywistego jest reprezentowany jako wystąpienie encji (instancję encji)

Modelowanie encji (1)

Obiekty świata rzeczywistego

Firma zatrudnia pracowników. Chcemy przechowywać informacje nt. danych personalnych pracowników (imię, nazwisko, adres i numer telefonu).

Modelowanie encji (2)

Obiekty świata rzeczywistego

Parking firmy jest przeznaczony do parkowania wielu różnych samochodów. Chcemy przechowywać informacje o samochodach (marka, model, numer rejestracyjny), które mogą parkować na parkingu firmy.

Modelowanie encji (3)

- Każda encja posiada
 - unikalną nazwę
 - zbiór cech (atrybutów)
- Encje wchodzą w związki z innymi encjami
 - wyjątkiem są encje reprezentujące dane słownikowe i konfiguracyjne
- Dowolna rzecz lub obiekt może być reprezentowana tylko przez jedną encję
- Nazwa encji powinna być rzeczownikiem w liczbie pojedynczej

Atrybut encji

- Identyfikatory
 - atrybut lub zbiór atrybutów jednoznacznie identyfikujący wystąpienie encji
 - zbiór atrybutów + związki
 - związki
 - Identyfikatory naturalne
 - PESEL, NIP, nr dowodu, nr paszportu, nr rejestracyjny, ISBN
 - Identyfikatory sztuczne
 - numer pozycji katalogowej, identyfikator pracownika
- Deskryptory (atrybuty deskrypcyjne)
 - wszystkie inne atrybuty poza identyfikatorami
 - reprezentują podstawowe cechy/własności encji
 - cechy te będą przechowywane w bazie danych
 - atrybuty z wartościami opcjonalnymi
 - atrybuty z wartościami obowiązkowymi

Definicja atrybutu encji

- Nazwa
- Dziedzina
 - typ danych i maksymalny rozmiar
 - zbiór dozwolonych wartości
 - zakres dozwolonych wartości
- Dozwolone / niedozwolone wartości puste
- Opcjonalnie unikalność wartości

ograniczenia integralnościowe

Atrybuty encji - przykład

Pracownicy firmy są opisani numerem PESEL, adresem zamieszkania, pensją i opcjonalnie numerem telefonu (zapis Barker – ORACL)

Związek (asocjacja)

- Związek (asocjacja) reprezentuje powiązania pomiędzy obiektami świata rzeczywistego
 - klienci posiadają rachunki bankowe
 - studenci otrzymują oceny z egzaminów
- W modelu ER związek łączy encje
- Związek z każdego końca posiada krótki opis ułatwiający interpretację związku

Modelowanie związków (1)

Związki

Pracownicy firmy posiadają różne samochody. Chcemy przechować informację na temat faktu posiadania samochodu przez pracownika.

Cechy związków

- Stopień związku
 - unarny (binarny rekursywny)
 - binarny
 - ternarny
 - *n*-arny
- Typ asocjacji (kardynalność)
 - jeden-do-jeden (1:1)
 - jeden-do-wiele (1:M)
 - wiele-do-wiele (M:N)
- Istnienie (klasa przynależności)
 - opcjonalny
 - obowiązkowy

Cechy związków – przykład (1)

związek Pracownik-Samochód stopień związku: binarny

- Pracownicy firmy posiadają samochody
- W celu udostępnienia miejsca parkingowego należy zarejestrować pracownika i jego samochód
- Każdy pracownik ma prawo parkować tylko jeden konkretny samochód
- Nie każdy pracownik ma samochód_

Pracownik (1): Samochód (1)

typ asocjacji

istnienie

 Zarejestrowany w rejestrze parkingowym samochód na pewno jest własnością jednego pracownika

Pracownik może posiadać typ asocjacji Pracownik (1): Samochód (1) istnienie

Samochód musi być własnością

Cechy związków – przykład (2)

- Związek binarny (łączy dwie encje)
- Związek opcjonalny od strony pracownika (linia przerywana)
- Związek obowiązkowy od strony samochodu (linia ciągła)
- Związek 1:1 (1 pracownik posiada 1 samochód)

Typ asocjacji 1:1 – przykład

Związek binarny jeden-do-jeden (1:1)

Każdy dział musi mieć kierownika, natomiast pracownik może być kierownikiem co najwyżej jednego działu.

Typ asocjacji 1:M – przykład

Związek binarny typu jeden-do-wiele (1:M)

Każdy pracownik pracuje dokładnie w jednym dziale. Dział może zatrudniać (ale nie koniecznie) wielu pracowników.

Typ asocjacji 1:M – przykład

Typ asocjacji M:N – przykład

Związek binarny typu wiele-do-wiele (M:N)

Pracownik może brać udział w jednym lub wielu projektach; może też nie brać udziału w żadnym projekcie. Każdy projekt realizuje przynajmniej jeden pracownik.

Typ asocjacji M:N – przykład

Typ asocjacji M:N – przykład

Atrybuty związku (1)

Atrybuty związku (2)

- jeśli związek posiada dodatkowe cechy to należy wprowadzić dodatkową encję (Realizacja)
- do encji tej dochodzą obowiązkowe związki typu wiele
 - interpretacja obowiązkowości związków
- jeśli istnieje wystąpienie encji Realizacja, to musi ono dotyczyć jakiegoś projektu i pracownika
- nie może istnieć realizacja bez pracownika i projektu

Encja słaba

Encja słaba (weak entity)

- nie posiada swojego identyfikatora
- wystąpienia encji mogą istnieć tylko w kontekście wystąpień encji powiązanych z encją słabą
- konkretne wystąpienie encji Realizacja może wystąpić wyłącznie w kontekście konkretnego pracownika i konkretnego projektu

Identyfikator encji słabej

Związek binarny rekursywny

Pracownicy posiadają swich kierowników. Istnieją pracownicy, którzy nie są kierownikami.

Związek ternarne (1)

Związek ternarne (2)

Związki wyłączne

Hierarchia encji (1)

Dziedziczenie atrybutów

Firma zatrudnia pracowników kontraktowych i godzinowych. Wszyscy pracownicy posiadają pewien zbiór wspólnych atrybutów (PESEL, imię, nazwisko, adres). Pracownicy kontraktowi i godzinowi posiadają specyficzne dla siebie atrybuty. Dla pracowników kontraktowych jest to numer kontraktu, a dla pracowników godzinowych są to: liczba godzin pracy w tygodniu i

Hierarchia encji (2)

Związki niedozwolone

Koniec wykładu 3