Supplementary Results for Measuring Clone Detection Model Alignment

February 27, 2024

1 Evaluation Results

Here we present the results from the second alternate code mutation strategy. For these mutations, a code pair is mutated using original label values of two human evaluators to obtain code segments for removal.

We perform similarity removals at two levels based on two mutation scopes; (1) removing code segments representing core similarities only for which a label value of +2 is assigned by both human evaluators and (2) removing code segments representing all core and non-core similarities for which a label value of either +1 or +2 is assigned by both the human evaluators. Note that the label values may be the same for both human evaluators (both assign +1 or both assign +2) or conflicting (at least one evaluator assigns +1 or +2).

Similarly, we perform differences removals at two levels based on two mutation scopes; (1) removing code representing core differences only for which a label value of -2 is assigned by both human evaluators and (2) removing code representing all core and non-core differences, for which a label value of either -1 or -2 is assigned by both the human evaluators. Note that the label values may be the same for both human evaluators (both assign -1 or both assign -2) or conflicting (at least one evaluator assigns -1 or -2).

Model	Scope	$ACE_{\Delta s,TP}$	$ACE_{\Delta s,FP}$	$ACE_{\Delta d,TN}$	$ACE_{\Delta d,FN}$
CodeBERT	core	0.024	-0.033	0.556	0.046
CodeBERT	any	0.022	0.016	0.652	0.184
CodeT5	core	0.294	-0.000	0.043	-0.004
CodeT5	any	0.428	0.499	0.042	0.112
${\bf Code Graph 4CC Detector}$	core	0.422	0.136	0.043	-0.057
CodeGraph4CCDetector	any	0.262	0.192	0.046	-0.018
GPT-Turbo-3.5	core	0.370	-	0.051	0.013
GPT-Turbo-3.5	any	0.473	0.45	0.173	0.038

Table 1: Average Causal Effects (ACE) for models M across mutation scopes 'core' and 'any' for different mutation styles. Mutations are performed as value-based mutations using code label values to determine range of mutation scope.

Model	ACE_{sim}	ACE_{diff}	$ACE_{s\cup d}$
CodeBERT	0.020	0.468	0.169
CodeT5	0.358	0.054	0.174
${\bf Code Graph 4CC Detector}$	0.305	0.007	0.107
GPT-Turbo-3.5	0.425	0.083	0.128

Table 2: Aggregated Average Causal Effects of human-identified code similarities and differences on various models semantic code clone predictions. (Results based on code mutations based on unresolved code labels).

M	$ flips(\mu_1) $	$ \mu_1 $	$ flips(\mu_2) $	$ \mu_2 $	A_{sim}
CodeBERT	5	117	5	128	0.041
CodeT5	24	82	38	88	0.365
${\bf Code Graph 4CC Detector}$	19	26	13	26	0.615
GPT-Turbo-3.5	20	22	23	23	0.955

Table 3: Human-model code similarity intuition alignment A_{sim} for model types M over mutated sets of clones μ_1 and μ_2 (using original label values for value-based mutations)

Figure 1: Model prediction shifts on mutated clone pairs for core removals only (a,c,e,g) and for both core and non-core removals including conflicts (b,d,f,h). M1 = CodeBERT, M2 = CodeGraph4CCDetector, M3 = GPT-Turbo-3.5, M4 = CodeT5

Model	Scope	$ flips(\mu_1) $	$ \mu_1 $	$ flips(\mu_2) $	$ \mu_2 $	$ flips(\mu_3) $	$ \mu_3 $	F
CodeBERT	core	0	8	12	34	12	117	0.779
CodeBERT	any	2	37	8	31	123	128	0.678
CodeT5	core	0	4	0	19	58	82	0.552
CodeT5	any	3	8	7	62	50	88	0.38
CodeGraph4CCDetector	core	0	2	1	14	7	26	0.19
CodeGraph4CCDetector	any	7	14	4	56	13	26	0.25
GPT-Turbo-3.5	core	-	-	1	23	2	22	0.066
GPT-Turbo-3.5	any	2	4	6	93	-	-	0.08

Table 4: Confounding frequency F for various models aggregated from frequency of prediction flips for different mutation configurations and prediction outcomes μ_1, μ_2, μ_3 . Where $\mu_1 = \mu(\Delta s_x, FP), \mu_2 = \mu(\Delta d_x, FN)$, and $\mu_3 = \mu(\Delta s_x, TP)$. Mutations are value-based as the code label values are used directly to determine mutation scope.

Model	$ACE_{s\cup d}$	A_{sim}	F	С	A_M
CodeBERT	0.169	0.041	0.728	1.00	0.12
CodeT5	0.174	0.365	0.466	1.00	0.27
${\bf Code Graph 4CC Detector}$	0.107	0.615	0.220	1.00	0.37
GPT-Turbo-3.5	0.128	0.955	0.073	0.75	0.44

Table 5: Model Alignment (A_M) of semantic code clone detection of models (Values based on mutations resulting from code label values without resolving labels)