物理实验报告 LATEX 模板

张福轩

2024年9月22日

1 整理表格

整理表格如图 1。

表 25-1 数据记录表 (λ标 = 6.328e-7 m)

 $\Delta d0 = 0.00005 \text{ mm}$

	d0	d50	d100	d150	d200	d250
dm/mm	52.92515	52.94112	52.95692	52.97311	52.99925	53.00547
	d300	d350	d400	d450	d500	d550
dm+300/mm	53.02125	53.03702	53.05312	53.07898	53.08514	53.10089
Δd300/mm	0.09610	0.09590	0.09620	0.10587	0.08589	0.09542
Δd300/mm平均值	0.09590					
λ平均值/mm	6.393E-04					

图 1. 实验数据表格

2 结果展示

计算中间及最终结果如下:

$$\overline{\lambda} = 6.304 \times 10^{-7} \,\mathrm{m}$$
 $S = 6.324 \times 10^{-3} \,\mathrm{mm}$
 $\Delta \lambda = 4.216 \times 10^{-8} \,\mathrm{m}$
 $\lambda = (6.304 \pm 0.422) \times 10^{-7} \,\mathrm{m}$
 $E_r = 1.03\%$

这里我使用 python 进行计算, 代码运行结果如下:

```
lambda_mean = 6.393e-07 m
S = 6.324e-03 mm
Δlambda_mean = 4.216e-08 m
lambda_mean = 6.393e-07 +/- 4.216e-08 m
E_r = 1.03%
```

3 计算过程

完整版的 Python 代码如下:

```
# 计算 Δlambda
delta_lambda = (2 / 300) * (S**2 + delta_B**2) ** 0.5
# 计算 lambda, 单位转换为米
lambda_overline *= 1e-3 # 转换为 m
delta_lambda *= 1e-3 # 转换为 m
# lambda_ 标
lambda_standard = 6.328e-7 # 单位 m
# 计算 Er
E_r =
abs(lambda_standard - lambda_overline)
/ lambda_standard * 100
# 输出结果
print(f"lambda_mean = {lambda_overline:.3e} m")
print(f"S = {S:.3e} mm")
print(f"\Dambda = {delta_lambda:.3e} m")
print(f"lambda = {lambda_overline:.3e}
 +/- {delta_lambda:.3e} m")
print(f"E_r = \{E_r: .2f\}\%")
```