

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/721,616	11/24/2003	Seiji Sugiura	TOW-051	5616
959	7590	06/20/2008	EXAMINER	
LAHIVE & COCKFIELD, LLP ONE POST OFFICE SQUARE BOSTON, MA 02109			LEWIS, BEN	
ART UNIT	PAPER NUMBER			
			1795	
MAIL DATE	DELIVERY MODE			
			06/20/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/721,616	Applicant(s) SUGIURA ET AL.
	Examiner Ben Lewis	Art Unit 1795

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on _____.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-3,5 and 6 is/are pending in the application.
 4a) Of the above claim(s) ____ is/are withdrawn from consideration.
 5) Claim(s) ____ is/are allowed.
 6) Claim(s) 1-3,5 and 6 is/are rejected.
 7) Claim(s) ____ is/are objected to.
 8) Claim(s) ____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 24 November 2003 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO-166/08)
 Paper No(s)/Mail Date 12/21/107

4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application
 6) Other: _____

Detailed Action

1. The Applicant's amendment filed on February 20th, 2008 was received. Claim 1 was amended. Claim 4 was cancelled.

2. The text of those sections of Title 35, U.S.C. code not included in this action can be found in the prior Office Action (issued on September 20th, 2007).

Claim Rejections - 35 USC § 103

3. Claim 1-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ogami et al. (U.S. Pub. No. 2003/0064266 A1).

With respect to claims 1 and 4, Ogami et al disclose a polymer electrolyte fuel cell stack and method for operating the same and gas vent valve wherein fuel cell stack comprises membrane electrode assemblies (3) in which gas diffusion electrodes (2a, 2b) are arranged on both sides of an ion exchange membrane (1) and a reactant gas supply separators (5) interposed between the membrane electrode assemblies (3). The reactant gas supply separators (5) each has a first surface having first reactant gas supply grooves (9a) for supplying first reactant gas, a second surface having second reactant gas supply grooves (9b) for supplying an second reactant gas, and water supply means for supplying water to the first reactant gas supply grooves (9a) (See

abstract). Ogami et al also teach that the present invention is related to a polymer electrolyte fuel cell stack, and more specifically to a fuel cell stack structure for uniformly distributing mixed fluid of fuel gas and water "coolant" to each fuel cell unit in a polymer electrolyte fuel cell stack utilizing latent heat cooling with supply of water to reactant gas (Paragraph 003). FIG. 13 shows the gas vent hole **24** and its vicinity in the reactant gas supply separator **5**, seen from the oxidant gas supply surface. The gas vent hole **24** is connected to the buffer section **17**. As shown in FIG. 14, the fastening end plate **21** of the fuel cell stack **10** formed with the reactant gas supply separators **5** described above is equipped with and connected to a gas vent pipe **25**. A valve **26** is connected to the gas vent pipe **25** for selectively venting and blocking the gas vent holes **24** (Paragraph 0127). In the sixth embodiment described above, the valve **26** may be operated to open to communicate the gas vent holes **24** to the atmosphere when the water is supplied during the start-up operation of the fuel cell stack **10**, so that gas remained in the buffer sections **17** may be vented. Typically, water supply is stopped when the power generation by the fuel cell stack **10** is stopped. At that time, bubbles in the water passages to the communication holes **16** may be removed, because the water held below the communication holes **16** is remained there and the water supply manifold **14** is positioned below the buffer sections **17** (Paragraph 0128). On the other hand, the water held above the communication holes **16** is drained through the communication holes **16** to the fuel gas supply grooves **9a**. In the sixth embodiment, the gas bubbles which may be present above the communication holes **16** can be fully vented in a short

time by venting the residual gas in the buffer sections 17 through the gas vent holes 24 "air releasing passage" (Paragraph 0129) (See Fig. 13).

Also, it is noted that the fuel passages of Ogami et al. also function as coolant flow fields since the fuel passages contains both coolant and fuel. Since Ogami et al teach that the fuel gas branched from the fuel gas supply manifold 11a and the water branched from the water manifold 14 are mixed in the fuel gas introductory portion 18 and then flow through the fuel gas supply grooves 9a as two-phase flows (Paragraph 0092) (See Fig. 6).

FIG. 6

With respect to the coolant supply passage being provided at a middle position of one end of said separator and coolant discharge passage is provided at a middle positon at the other end of said separator presents no novel or unexpected result over the location of the coolant supply and discharge passages in the Ogami et al. reference. The positioning of the coolant supply and discharge passages in lieu of those used in the references solves no stated problem and would be an obvious matter of design choice within the skill of the art. In re Launder, 42 CCPA 886, 222 F.2d 371, 105 USPQ 446 (1955); Flour City Architectural Metals v. Alpana Aluminum Products, Inc., 454 F. 2d 98, 172 USPQ 341 (8th Cir. 1972); National Connector Corp. v. Malco Manufacturing

Co., 392 F.2d 766, 157 USPQ 401 (8th Cir.) cert. denied, 393 U.S. 923, 159 USPQ 799 (1968).

With respect to claims 2 and 3, Ogami et al teach that bubbles in the water passages to the communication holes **16** may be removed, because the water held below the communication holes **16** is remained there and the water supply manifold **14** is positioned below the buffer sections **17** (Paragraph 0128). On the other hand, the water held above the communication holes **16** is drained through the communication holes **16** to the fuel gas supply grooves **9a**. In the sixth embodiment, the gas bubbles which may be present above the communication holes **16** can be fully vented in a short time by venting the residual gas in the buffer sections **17** through the gas vent holes **24** "air releasing passage" (Paragraph 0129).

With respect to claims 5 and 6, Ogami et al disclose a polymer electrolyte fuel cell stack and method for operating the same and gas vent valve wherein fuel cell stack comprises membrane electrode assemblies (3) in which gas diffusion electrodes (2a,2b) are arranged on both sides of an ion exchange membrane (1) and a reactant gas supply separators (5) interposed between the membrane electrode assemblies (3). The reactant gas supply separators (5) each has a first surface having first reactant gas supply grooves (9a) for supplying first reactant gas, a second surface having second reactant gas supply grooves (9b) for supplying an second reactant gas, and water

supply means for supplying water to the first reactant gas supply grooves (9a) (See abstract). (See Fig. 5). Now, the fuel gas supply surface of the reactant gas supply separator 5 is explained referring to FIG. 5. The fuel gas supply grooves **9a** are formed for fuel gas flowing there through in the central part of the reactant gas supply separator 5. FIG. 5 shows the opposite side of the reactant gas supply separator **5** shown in FIG. 3. Therefore, the locations of the manifolds **11a** and **11b** for fuel gas, the manifolds **12a** and **12b** for oxidant gas and the water supply manifold **14** in the marginal portions are in the opposite side in left and right sides when FIGS. 3 and 5 are compared (Paragraph 0091) (See Fig. 5).

FIG. 5

Response to Arguments

4. Applicant's arguments filed on February 20th, 2008 have been fully considered but they are not persuasive.

Applicant's principal arguments are

(a) During the interview, Applicants discussed a proposed claim amendment with the Examiner with reference to Figure 2 of the present application. Applicants argued to the Examiner that the Ogami reference does not disclose the coolant flow field of the present Application.

In response, the Examiner indicated that he understood the structural distinction between the present application and the Ogami reference. The Examiner, however, noted that he needs to review further the proposed claim language and the cited art.

In a follow-up discussion with the Examiner on February 7, 2008, the Examiner indicated that the proposed claim amendment may overcome the outstanding rejections. Applicants appreciate the Examiner's assistance in this regard.

In contrast, claim 1 requires that the separator includes first and second metal plates which are stacked together, and the coolant flow field is formed between the first and second metal plates. For example, as shown in FIG. 2 of the present application, the fuel cell (10) may include a membrane electrode assembly (12) and metal separators (13) for sandwiching the membrane electrode assembly (12). In the present application, each of the metal separators (13) may include first and second plates (14, 16) stacked together to form a coolant flow field (42) therebetween. The Ogami reference does not disclose this feature. In the Ogami reference, each separator (5) has only a single plate. There is no disclosure in the Ogami reference of a separator including metal plates stacked together to form a coolant flow field therebetween. In view of reasons set forth above, Applicants respectfully submit that the Ogami reference fails to teach or suggest all of the limitation of claim 1. Therefore, Applicants respectfully request the Examiner to reconsider and withdraw the rejection of claim 1.

In response to Applicant's arguments, please consider the following comments.

(a) Examiner notes that Applicant has not claimed that the coolant is in contact with the first and second separator plates which would distinguish over the structure of Ogami. However, applicant's claim of the coolant flow field is formed between said first and second metal plates is anticipated by Ogami.

Examiner notes that in the Ogami reference the separator plates of Ogami are stacked therefore in Fig. 7 of Ogami the separator plate with coolant channel 15 has separator plates above and below it which would place the coolant channel 15 of Ogami between separator plates since the MEAs of Ogami are stacked.

Conclusion

5. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ben Lewis whose telephone number is 571-272-6481. The examiner can normally be reached on 8:30am - 5:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Patrick Ryan can be reached on 571-272-1292. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Ben Lewis/
Examiner, Art Unit 1795

/PATRICK RYAN/
Supervisory Patent Examiner, Art Unit 1795

Application/Control Number: 10/721,616

Art Unit: 1795

Page 12