语法分析

魏恒峰

hfwei@nju.edu.cn

2020年11月18日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Syntax Tree)

语法分析举例

语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

4/22

语法分析阶段的主题之二: 构建语法分析树

	$\langle \mathrm{Stmt} \rangle$													
if ((Expr))					(St	$\mathrm{mt}\rangle$				
if ((Expr)	(Optr)	(Expr))					(St	$mt\rangle$				
if ($\langle \mathrm{Id} \rangle$	(Optr)	(Expr)						(St	$\mathrm{mt}\rangle$				
if (x	(Optr)	(Expr)						St	$\mathrm{mt} \rangle$				
if (x	>	$\langle \text{Expr} \rangle$						St	$\mathrm{mt} \rangle$				
if (x	>	(Num))	$\langle \mathrm{Stmt} \rangle$									
if (x	>	9)	$\langle \mathrm{Stmt} \rangle$									
if (x	>	9) -	{ (StmtList)								}	
if (>	9		{	(StmtList)					tmt)		- j	
if (>	9		}	(Stmt)			\sim $\langle \text{Stmt} \rangle$					
if (>	9		\ <u>\ld</u>		(Expr)	;			tmt)			
if (x	>	9		x	_	(Expr)				$\langle tmt \rangle$			
if (x	>	9		{ x	=	(Num)				$\langle tmt \rangle$			
if (>	9			=	0				$\langle { m tmt} \rangle$			
if (x	>	9		{ x			; \(\lambda \) Id) =		(Expr)		; }	
if (>	9		{ x			; <u>y</u>	_ =		(Expr)		: }	
if (>	9			-		; y	=	(Expr)	(Optr)	(Expr)	: }	
if (x	>	9		{ x	=		, y	=	$\langle \mathrm{Id} \rangle$	(Optr)	(Expr)		
if (>	9		{ x			; y	=	У	$\langle \mathrm{Optr} \rangle$	$\langle Expr \rangle$: }	
if (>	9					, ,	-	y	+	$\langle \text{Expr} \rangle$: }	
if (>	9			_		, y	=		+	(Num)		
if (x	>	9)	{ x	=	0	; v	=	y	+	1	; }	
(-				-	, ,				3	. ,	

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

6/22

上下文无关文法

Definition (Context-Free Grammar (CFG); 上下文无关文法)

上下文无关文法 G 是一个四元组 G = (T, N, P, S):

- ▶ T 是<mark>终结符号</mark> (Terminal) 集合, 对应于词法分析器产生的词法单元;
- ▶ N 是<mark>非终结符号</mark> (Non-terminal) 集合;
- ► P 是产生式 (Production) 集合;

$$\alpha \in N \longrightarrow \beta \in (T \cup N)^*$$

头部/左部 (Head): 唯一的非终结符

体部/右部 (Body): 终结符与非终结符构成的串, 也可以是空串 ϵ

▶ S 为开始 (Start) 符号。要求 $S \in N$ 且唯一。

$$G = (\{S\}, \{(,)\}, P, S)$$

$$S \longrightarrow SS,$$

$$S \longrightarrow (S),$$

$$S \longrightarrow ()$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$S \longrightarrow aSb$$

$$S \longrightarrow \varepsilon$$

- $stmt \rightarrow if expr then stmt else stmt$
 - if stmt then stmt
 - begin stmtList end

 $stmtList \rightarrow stmt$; $stmtList \mid stmt$

关于语句块与条件语句的文法

约定: 如果没有明确指定, 第一个产生式的头部就是开始符号

关于**终结符号**的约定

- 1) 下述符号是终结符号:
- ① 在字母表里排在前面的小写字母,比如 $a \setminus b \setminus c_o$
- ② 运算符号,比如+、*等。
- ③ 标点符号,比如括号、逗号等。
- ④ 数字 0、1、…、9。
- ⑤ 黑体字符串,比如 id 或 if。每个这样的字符串表示一个终结符号。

关于**非终结符号**的约定

- 2) 下述符号是非终结符号:
- ① 在字母表中排在前面的大写字母, 比如 $A \setminus B \setminus C$ 。
- ② 字母 S。它出现时通常表示开始符号。
- ③ 小写、斜体的名字, 比如 expr 或 stmt。

$$E \rightarrow E + E + E * E + (E) + id$$

推导即是将某个产生式的左边替换成它的右边

每一步推导需要选择替换哪个非终结符号, 以及使用哪个产生式

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \rightarrow E + E + E + E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E:$ 经过一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$: 经过一步或多步推导得出

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E$: 经讨一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$: 经过一步或多步推导得出

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(E+id) \implies -(id+id)$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + E) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + E) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentence; 句子)

如果 $S \stackrel{*}{\Rightarrow} w$, 且 $w \in T^*$, 则称 w 是文法 G 的一个句子。

Definition (文法 G 生成的语言 L(G))

文法 G 的语言 L(G) 是它能推导出的所有句子构成的集合。

$$w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$$

$$S \rightarrow SS$$
,
 $S \rightarrow (S)$,
 $S \rightarrow ()$

$$L(G) =$$

$$S \rightarrow SS$$
,
 $S \rightarrow (S)$,
 $S \rightarrow ()$

$$L(G) = \{$$
长度 ≥ 2 的已匹配括号串 $\}$

$$S \to aSb$$
$$S \to \varepsilon$$

$$L(G) =$$

$$S \rightarrow SS$$
,
 $S \rightarrow (S)$,
 $S \rightarrow ()$

$$L(G) = \{$$
长度 ≥ 2 的已匹配括号串 $\}$

$$S \to aSb$$
$$S \to \varepsilon$$

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$egin{array}{ll} P &
ightarrow \epsilon \ P &
ightarrow 0 \ P &
ightarrow 1 \ P &
ightarrow 0 P0 \ P &
ightarrow 1 P1 \end{array}$$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$egin{array}{ll} P &
ightarrow \epsilon \ P &
ightarrow 0 \ P &
ightarrow 1 \ P &
ightarrow 0 P 0 \ P &
ightarrow 1 P 1 \end{array}$$

 $P \rightarrow \epsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\underset{\text{lm}}{\Longrightarrow}} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E + E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\underset{\text{lm}}{\Longrightarrow}} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

$$E \Longrightarrow_{\operatorname*{rm}} -E \Longrightarrow_{\operatorname*{rm}} -(E) \Longrightarrow_{\operatorname*{rm}} -(E+E) \Longrightarrow_{\operatorname*{rm}} -(E+\operatorname{id}) \Longrightarrow_{\operatorname*{rm}} -(\operatorname{id}+\operatorname{id})$$

Definition (Left-sentential Form; 最左句型)

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最左句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

Definition (Right-sentential Form; 最右句型)

如果 $S \xrightarrow{*} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最右句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

语法分析树

语法分析树是静态的,它不关心动态的推导顺序

一棵语法分析树对应多个推导

语法分析树

语法分析树是静态的, 它不关心动态的推导顺序

一棵语法分析树对应多个推导

但是,一棵语法分析树与最左(最右)推导一一对应

Thank You!

Office 926 hfwei@nju.edu.cn