

Spanning Tree Protocol (Advanced)

Cisco Networking Academy® Mind Wide Open®

Outline

- PVST+ Per-VLAN Spanning Tree
- How to manage multiple concurrent spanning trees
- Extended System IDs
- Configuring Per-VLAN priorities
- Rapid PVST+
- New Port roles
- PortFast and BPDU Guard
- Load Balancing

List of Spanning Tree Protocols

Protocol	Standard	Resources Needed	Convergence	Tree Calculation
STP	802.1D	Low	Slow	All VLANs
PVST+	Cisco	High	Slow	Per VLAN
RSTP	802.1w	Medium	Fast	All VLANs
Rapid PVST+	Cisco	Very high	Fast	Per VLAN
MSTP	802.1s Cisco	Medium or high	Fast	Per Instance

	Slow to converge	Fast to converge
One STP shared by all VLANs	STP	RSTP
Different STP for each VLAN	PVST+	RPVST+

PVST+

Overview of PVST+

STP only maintains one Spanning Tree for the entire network

With PVST+, we run an independent IEEE 802.1D STP instance for each VLAN in the network

Pros

- Utilisation of previously unused links
- Better load balancing of traffic

Cons

- More CPU usage to calculate spanning-tree for each VLAN
- More bandwidth lost as we have a unique BPDU for each VLAN

PVST+

Overview of PVST+

PYST STP implementation – no VLANs. PVST and Bridge IDs

Changed to include VLAN ID.

PVST+

Extended System ID

- The extended ID ensures each switch has a unique BID for each VLAN
- The new VLAN ID leaves fewer bits available for the bridge priority
- As a result, the bridge priority is assigned in multiples of 4096
- For example, the VLAN 2 default BID would be 32770; priority 32768, plus the extended system ID of 2

PVSTP+

Extended System ID

In the example, the priority of all the switches is 32769. The value is based on the 32768 default priority and the VLAN 1 assignment associated with each switch (32768+1)

MAC Address-based decision

Configuring Priorities

Verifying Root Bridges and Priorities

```
S3# show spanning-tree
VLAN0001
 Spanning tree enabled protocol ieee
 Root ID
           Priority 24577
           Address 00A.0033.3333
           This bridge is the root
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 24577 (priority 24576 sys-id-ext 1)
           Address
                     000A.0033.3333
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time
                     300
Interface Role Sts Cost Prio.Nbr
                                           Type
Fa0/1 Desg FWD 4 128.1
                                           p2p
         Desg FWD 4 128.2
Fa0/2
                                         p2p
S3#
```


Verifying Per-VLAN Configuration

Rapid PVST+ Overview of Rapid PVST+

- RSTP is the preferred protocol for preventing Layer 2 loops in a switched network environment
- RSTP supports a new port type: an alternate port in discarding state.
- There are no blocking ports. RSTP defines port states as discarding, learning, or forwarding
- RSTP (802.1w) supersedes STP (802.1D) while retaining backward compatibility
- Rapid PVST+ is an independent instance of RSTP for each VLAN

Rapid PVST+

Overview of Rapid PVST+

Rapid PVST+ **Edge Ports**

Rapid PVST+ Link Types

The link type can determine whether the port can immediately transition to forwarding state. Edge port connections and point-to-point connections are candidates for rapid transition to forwarding state

PortFast and BPDU Guard

- When a switch port is configured with PortFast that port transitions from blocking to forwarding state immediately
- BPDU guard puts the port in an error-disabled state on receipt of a BPDU

PortFast and BPDU Guard

S2(config)# interface FastEthernet 0/11
S2(config-if)# spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to
a single host. Connecting hubs, concentrators, switches,
bridges, etc... to this interface when portfast is enabled,
can cause temporary bridging loops.
Use with CAUTION

%Portfast has been configured on FastEthernet0/11 but will only
have effect when the interface is in a non-trunking mode.
S2(config-if)# spanning-tree bpduguard enable
S2(config-if)# end

PVST+ Configuration PVST+ Load Balancing

Spanning Tree Protocol (Advanced) **Summary**

In this lecture, we covered:

- PVST+ Per-VLAN Spanning Tree
- How to manage multiple concurrent spanning trees
- Extended System IDs
- Configuring Per-VLAN priorities
- Rapid PVST+
- New Port roles
- PortFast and BPDU Guard
- Load Balancing

