Linear Algebra Hand-in Assignment

Ivan Kirev CID: 01738166

Problem 1

We are given a transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$. First, lets construct a matrix A such that T(v) = Av for all $v \in \mathbb{R}^n$. Since $v \in \mathbb{R}^n$ we can write v as $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ for some scalars $v_1, ..., v_n$. The vector v can be written as follows:

$$v = v_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + v_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
$$= v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$
$$= \sum_{i=1}^n v_i e_i,$$

where e_i for $i \in (1,...,n)$ form a basis for \mathbb{R}^n .

Now let's consider T(v).

$$T(v) = T(\sum_{i=1}^{n} v_i, e_i)$$

$$= \sum_{i=1}^{n} T(v_i, e_i) \text{ (T preserves addition)}$$

$$= \sum_{i=1}^{n} v_i T(e_i) \text{ (T preserves scalar multiplication)}.$$

We define the matrix $A_{m \times n}$ as

$$A = \begin{pmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix},$$

where each column of *A* is $T(e_i)$ for $i \in (1,...,n)$, a vector $\in \mathbb{R}^m$. Then by the definition of matrix and vector multiplication we get that

$$Av = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= \begin{pmatrix} v_1 a_{11} & + \dots + & v_n a_{1n} \\ \vdots \\ v_1 a_{m1} & + \dots + & v_n a_{mn} \end{pmatrix}$$

$$= v_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + v_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$= v_1 T(e_1) + \dots + v_n T(e_n)$$

$$= \sum_{i=1}^n v_i T(e_i)$$

Therefore, we got that

$$T(v) = \sum_{i=1}^{n} v_i T(e_i) = Av.$$

So we constructed matrix A such that T(v) = Av for all $v \in \mathbb{R}^n$. Now all we need to show is that this matrix is unique.

Suppose *B* is a 4×4 matrix different from *A*, such that Bv = T(v) for all $v \in \mathbb{R}^n$. Because $B \neq A$ there is at least one element in *B*, let's say $b_{jk} \neq a_{jk}$ for some $j,k \in (1,...,m), (1,...,n)$.

Now consider
$$T(e_k)$$
. We know $T(e_k) = Ae_k = A \begin{pmatrix} 0 \\ \vdots \\ 1_k \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1k} \\ \vdots \\ a_{jk} \\ \vdots \\ a_{mk} \end{pmatrix} = Be_k$. But

$$Be_k = B egin{pmatrix} 0 \ dots \ 1_k \ dots \ 0 \end{pmatrix} = egin{pmatrix} b_{1k} \ dots \ b_{jk} \ dots \ b_{mk} \end{pmatrix}
eq egin{pmatrix} a_{1k} \ dots \ a_{jk} \ dots \ a_{mk} \end{pmatrix}$$

since $a_{jk} \neq b_{jk}$, so we get a contradiction. Therefore A is unique.

Problem 2

First, let's find $T\left(\begin{pmatrix}1\\0\end{pmatrix}\right)$ and $T\left(\begin{pmatrix}0\\1\end{pmatrix}\right)$. We know that $\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix} + \frac{1}{2}\begin{pmatrix}1\\-1\end{pmatrix}$, so we get

$$\begin{split} T\bigg(\begin{pmatrix}1\\0\end{pmatrix}\bigg) &= T\bigg(\frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix} + \frac{1}{2}\begin{pmatrix}1\\-1\end{pmatrix}\bigg) \\ &= T\bigg(\frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix}\bigg) + T\bigg(\frac{1}{2}\begin{pmatrix}1\\-1\end{pmatrix}\bigg) \text{ (T preserves addition)} \\ &= \frac{1}{2}T\bigg(\begin{pmatrix}1\\1\end{pmatrix}\bigg) + \frac{1}{2}T\bigg(\begin{pmatrix}1\\-1\end{pmatrix}\bigg) \text{ (T preserves scalar multiplication)} \\ &= \frac{1}{2}\begin{pmatrix}-1\\8\\0\end{pmatrix} + \frac{1}{2}\begin{pmatrix}-1\\0\\4\end{pmatrix} \\ &= \begin{pmatrix}-\frac{1}{2}\\4\\0\end{pmatrix} + \begin{pmatrix}-\frac{1}{2}\\0\\2\end{pmatrix} \\ &= \begin{pmatrix}-1\\4\\2\end{pmatrix}. \end{split}$$

Similarly, we find

$$\begin{split} T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) &= T\left(\frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix} - \frac{1}{2}\begin{pmatrix}1\\-1\end{pmatrix}\right) \\ &= T\left(\frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix}\right) + T\left(-\frac{1}{2}\begin{pmatrix}1\\-1\end{pmatrix}\right) \text{ (T preserves addition)} \\ &= \frac{1}{2}T\left(\begin{pmatrix}1\\1\end{pmatrix}\right) - \frac{1}{2}T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) \text{ (T preserves scalar multiplication)} \\ &= \frac{1}{2}\begin{pmatrix}-1\\8\\0\end{pmatrix} - \frac{1}{2}\begin{pmatrix}-1\\0\\4\end{pmatrix} \\ &= \begin{pmatrix}-\frac{1}{2}\\4\\0\end{pmatrix} - \begin{pmatrix}-\frac{1}{2}\\0\\2\end{pmatrix} \\ &= \begin{pmatrix}0\\4\\-2\end{pmatrix}. \end{split}$$

Now we can set the transformation as follows:

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = T\left(x\begin{pmatrix} 1 \\ 0 \end{pmatrix} + y\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$$

$$= xT\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) + yT\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$$

$$= x\begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} + y\begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} -1x & 0y \\ 4x & 4y \\ 2x & -2y \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 4 & 4 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

The matrix corresponding to T is

$$A = \begin{pmatrix} -1 & 0 \\ 4 & 4 \\ 2 & -2 \end{pmatrix}.$$

By problem 1 this matrix is unique.

Problem 3

By using that $Av_1 = v_3$ and $Av_3 = v_1$ we get that:

$$Av_1 = v_3$$

$$A^2v_1 = Av_3 = v_1$$

$$A^2v_1 = v_1$$

Similarly, we can show that

$$A^2v_2 = v_2$$
$$A^2v_3 = v_3$$
$$A^2v_4 = v_4.$$

First we will show that plugging in I_4 for A^2 is a solution. We know that $I_4v_i = v_i$ for all $i \in (1,2,3,4)$ by properties of the identity matrix. Hence we get that $A^2 = I_4$ is a solution. Now we want to show that it is also unique.

First, by Proposition 4.1.7 in the Lecture Notes, we know that if we have two vector spaces V and W over F with $(v_1, v_2, ..., v_n)$ a basis for V and $(w_1, w_2, ..., w_n)$ any vectors in W, then there exists a unique linear transformation

$$T:V\longrightarrow W$$

$$T(v_i) = w_i \text{ for all } i \in (1, ..., n).$$

In our case, we have that $V=W=\mathbb{R}^4$, (v_1,v_2,v_3,v_4) is a basis for \mathbb{R}^4 , and $v_1,v_2,v_3,v_4\in\mathbb{R}^4$. Therefore, there exists a unique linear transformation

$$T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

$$T(v_i) = v_i \text{ for all } i \in (1, 2, 3, 4).$$

Now using problem 1, we know that there exists a unique matrix $M_{4\times4}$ such that T(v)=Mv for all $v\in\mathbb{R}^4$. Because we know that $M=A^2=I_4$ is one solution to our problem (we know that A^2 is a 4×4 matrix as A is a 4×4 matrix) and we now know that it is unique, we get

$$A^2 = I_4$$
.