

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-032780
 (43)Date of publication of application : 03.02.1998

(51)Int.Cl. H04N 5/85
 G11B 20/12
 G11B 20/12
 G11B 27/00
 H04N 5/92

(21)Application number : 09-086475 (71)Applicant : TOSHIBA CORP
 TOSHIBA AVE CORP
 (22)Date of filing : 04.04.1997 (72)Inventor : TAIRA KAZUHIKO
 MIMURA HIDENORI
 KIKUCHI SHINICHI
 KURANO TOMOAKI
 HAGIO TSUYOSHI

(30)Priority
 Priority number : 08111303 Priority date : 08.04.1996 Priority country : JP

(54) RECORDING MEDIUM FOR RECORDING ATTRIBUTE INFORMATION OF REGENERATIVE DATA TOGETHER WITH REGENERATIVE DATA

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an optical disk with which the optimum reproducing form according to the attributes of plural data of different classes can be set to a reproducing system.

SOLUTION: Video data are stored in the file of a video title set(VTS) 72 secured inside the information recording area of the optical disk. In the head area of this VTS 72, VTS information(VTSI) 94 is described for managing this VTS 72. This VTSI 94 is provided with a table (VTSI-MAT) 98 for managing the VTSI 94 and in this VTSI-MAT 98, the attribute peculiar for video data stored in this VTS 72 and the attributes peculiar for audio streams and sub-video streams to be reproduced together with these video data are described. By referring to this VTSI-MAT 98, optimum reproducing conditions are set to the reproducing system.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-32780

(43)公開日 平成10年(1998)2月3日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
H 04 N 5/85			H 04 N 5/85	B
G 11 B 20/12	1 0 2	9295-5D	G 11 B 20/12	1 0 2
	1 0 3	9295-5D		1 0 3
27/00			27/00	D
H 04 N 5/92			H 04 N 5/92	H

審査請求 有 請求項の数61 O L (全45頁)

(21)出願番号	特願平9-86475	(71)出願人	000003078 株式会社東芝 神奈川県川崎市幸区堀川町72番地
(22)出願日	平成9年(1997)4月4日	(71)出願人	000221029 東芝エー・ブイ・イー株式会社 東京都港区新橋3丁目3番9号
(31)優先権主張番号	特願平8-111303	(72)発明者	平良 和彦 東京都港区新橋3丁目3番9号 東芝エー・ブイ・イー株式会社内
(32)優先日	平8(1996)4月8日	(72)発明者	三村 英紀 神奈川県川崎市幸区柳町70番地 株式会社東芝柳町工場内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54)【発明の名称】 再生データの属性情報を再生データとともに記録した記録媒体

(57)【要約】

【課題】 種別の異なる複数のデータの属性に従った最適な再生形態を再生システムに設定することができる光ディスクを提供するにある。

【解決手段】 ビデオデータは、光ディスク10の情報記録領域28内に確保されたビデオタイトルセット(VTS)72のファイルに格納されている。このVTS72の先頭領域には、当該VTS72を管理するVTS情報(VTS1)94が記述されている。このVTS194には、VTS194の管理為のテーブル(VTS1_MAT)98が設けられ、このVTS1_MAT98には、当該VTS72に格納されたビデオデータに固有の属性、及びこのビデオデータとともに再生されるオーディオストリーム及び副映像ストリームの固有の属性が記述されている。このVTS1_MAT98を参照することによって最適な再生条件が再生システムでセットされる。

【特許請求の範囲】

【請求項1】ビデオデータ及びオーディオデータの少なくとも一方を含む再生データが格納されている再生データ領域と、

前記格納されている再生データ自体に関する管理情報及び再生データの再生手順に関する再生情報が記述され、再生データの再生に先だって検索されるべき再生情報領域であって前記管理情報は、ビデオデータ及びオーディオデータの前記一方の再生データを再生信号に変換する為に必要な固有の属性に関する情報を含む再生情報領域と、

を具備することを特徴とする記録媒体。

【請求項2】前記属性情報は、ビデオデータの圧縮モードに関する情報を含み、ビデオデータは、この圧縮モードを参照してデコードされるていることを特徴とする請求項1に記載の記録媒体。

【請求項3】前記属性情報は、ビデオデータのフレームレートに関する情報を含み、このフレームレートに従ってビデオデータは、所定のフレームレートで表示されるビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項4】前記属性情報は、ビデオデータの表示アスペクト比に関する情報を含み、ビデオデータは、この表示アスペクト比を有するビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項5】前記属性情報は、ビデオデータの表示モードに関する情報を含み、ビデオデータは、この表示モードを有するビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項6】前記属性情報は、特定の表示モードで表示することを許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項7】前記属性情報は、ビデオデータの第1及び第2の表示モードでの表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項8】前記属性情報は、ビデオデータの第1及び第2の表示アスペクト比の一方に関する情報を含み、ビデオデータは、この第1及び第2の表示アスペクト比の一方を有するビデオ信号に変換され、表示アスペクト比が第2の表示アスペクト比である際に、前記属性情報は、ビデオデータの第1及び第2の表示モードの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項7に記載の記録媒体。

【請求項9】前記属性情報は、3対4及び9対16の表示アスペクト比の一方でビデオデータが再現されるべきである旨の記述情報を含み、ビデオデータは、この記述

された表示アスペクト比を有するビデオ信号に変換され、表示アスペクト比が9対16である際に、前記属性情報は、パンスキャン及びレターボックスの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項10】前記属性情報は、オーディオデータのオーディオコーディングモードに関する情報を含み、オーディオデータは、このコーディングモードに従ってデコードされることを特徴とする請求項1に記載の記録媒体。

【請求項11】前記属性情報は、ビデオデータがNTSC及びPALテレビジョンシステムの信号の一方に変換されるべき変換情報を含み、オーディオコーディングモードは、変換情報に従って、選定可能なオーディオコーディングモードが定まるることを特徴とする請求項10に記載の記録媒体。

【請求項12】前記属性情報は、ビデオデータがNTSC及びPALテレビジョンシステムの信号の一方に変換されるべき変換情報を含み、NTSCテレビジョンシステムでは、オーディオコーディングモードは、ドルビーア-3及びリニアPCMオーディオから選択され、PALテレビジョンシステムでは、オーディオコーディングモードは、MPEG-1, MPEG-2及びリニアPCMオーディオから選択されることを特徴とする請求項10に記載の記録媒体。

【請求項13】前記属性情報は、オーディオデータのオーディオタイプに関する情報を含み、オーディオデータは、このオーディオタイプに適したオーディオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項14】前記属性情報は、オーディオデータのアプリケーションタイプに関する情報を含み、オーディオデータは、このアプリケーションタイプに適したオーディオ信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項15】前記属性情報は、オーディオデータの量子化ビット数に関する情報を含み、オーディオデータは、この量子化ビット数に従ってデコードされることを特徴とする請求項1に記載の記録媒体。

【請求項16】前記属性情報は、オーディオデータのサンプリング周波数に関する情報を含み、オーディオデータは、このサンプリング周波数に従ってデコードされることを特徴とする請求項1に記載の記録媒体。

【請求項17】前記属性情報は、オーディオデータのオーディオチャネル数に関する情報を含み、オーディオデータは、このオーディオチャネル数内で選定される数に対応するオーディオチャネル信号に変換されることを特徴とする請求項1に記載の記録媒体。

【請求項18】前記再生データは、副映像データを含むことを特徴とする請求項1に記載の記録媒体。

【請求項19】前記属性情報は、副映像データの副映像コード化モードに関する情報を含み、副映像データは、この副映像コード化モードに従ってデコードされることを特徴とする請求項18に記載の記録媒体。

【請求項20】前記属性情報は、副映像データの副映像表示タイプに関する情報を含み、副映像データは、この副映像表示タイプに適した副映像信号に変換されることを特徴とする請求項18に記載の記録媒体。

【請求項21】前記属性情報は、ビデオデータの第1及び第2の表示モードでの表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項18に記載の記録媒体。

【請求項22】前記属性情報は、ビデオデータの第1及び第2の表示アスペクト比の一方に関する情報を含み、ビデオデータは、この第1及び第2の表示アスペクト比の一方を有するビデオ信号に変換され、副映像表示アスペクト比が第2の表示アスペクト比である際に、前記属性情報は、ビデオデータの第1、第2及び第3の表示モードの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項18に記載の記録媒体。

【請求項23】前記属性情報は、3対4及び9対16の表示アスペクト比の一方でビデオデータが再現されるべきである旨の記述情報を含み、ビデオデータは、この記述された表示アスペクト比を有するビデオ信号に変換され、副映像表示アスペクト比が9対16である際に、前記属性情報は、ワイド、パンスキャン及びレターボックスの少なくとも1つ以上での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項18に記載の記録媒体。

【請求項24】前記属性情報は、副映像データの副映像タイプに関する情報を含み、副映像データは、この副映像タイプに適した副映像信号に変換されることを特徴とする請求項18に記載の記録媒体。

【請求項25】前記属性情報は、オーディオデータのマルチチャンネルオーディオストリームに関する情報を含み、オーディオデータは、マルチチャンネルオーディオストリームの属性に従ってデコードされることを特徴とする請求項1に記載の記録媒体。

【請求項26】前記属性情報は、オーディオデータのマルチチャンネルオーディオストリームに関する情報を含み、オーディオデータは、マルチチャンネルオーディオストリームの属性に従ってミキシングされることを特徴とする請求項1に記載の記録媒体。

【請求項27】前記再生データは、ビデオデータ、オーディオデータ、副映像データ及びこれらのデータの再生を制御する制御データを含み、制御データは、ビデオデ

ータの再生時間を規定する時間情報をビデオデータに同期して再生されるオーディオデータ及び副映像データに関する同期情報を含むことを特徴とする請求項1に記載の記録媒体。

【請求項28】管理情報は、オーディオデータに含まれるオーディオストリームの数を含むことを特徴とする請求項1に記載の記録媒体。

【請求項29】前記再生データは、副映像データを含み、前記管理情報は、この副映像データに含まれる副映像ストリームの数を含むことを特徴とする請求項1に記載の記録媒体。

【請求項30】前記再生データは、再生されるビデオデータに関するメニューを表示する為のメニューデータを含み、前記管理データは、メニューデータをメニュー用再生信号に変換する為に必要な固有の属性情報を含むことを特徴とする請求項1に記載の記録媒体。

【請求項31】前記再生データは、当該記録媒体に記録されたデータの選択項目を表示する為の管理メニューデータを含み、前記管理データは、管理メニューデータをメニュー用再生信号に変換する為に必要な固有の属性情報を含むことを特徴とする請求項1に記載の記録媒体。

【請求項32】ビデオデータ、オーディオデータ及び副映像データを含む再生データが格納されている再生データ領域と、

前記格納されている再生データ自体に関する管理情報及び再生データの再生手順に関する再生情報が記述され、再生データの再生に先だって検索されるべき再生情報領域であって前記管理情報は、ビデオデータ、オーディオデータ及び副映像データを再生信号に変換する為に必要な固有のビデオ、オーディオ及び副映像データの属性に関する情報を含む再生情報領域と、

を具備することを特徴とする記録媒体。

【請求項33】前記ビデオ属性情報は、ビデオデータの圧縮モードに関する情報を含み、ビデオデータは、この圧縮モードを参照してデコードされることを特徴とする請求項32に記載の記録媒体に記載の記録媒体。

【請求項34】前記ビデオ属性情報は、ビデオデータのフレームレートに関する情報を含み、このフレームレートに従ってビデオデータは、所定のフレームレートで表示されるビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項35】前記ビデオ属性情報は、ビデオデータの表示アスペクト比に関する情報を含み、ビデオデータは、この表示アスペクト比を有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項36】前記ビデオ属性情報は、ビデオデータの表示モードに関する情報を含み、ビデオデータは、この表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項37】前記ビデオ属性情報は、特定の表示モー

ドで表示することを許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項38】前記属性情報は、ビデオデータの第1及び第2の表示モードでの表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項39】前記属性情報は、ビデオデータの第1及び第2の表示アスペクト比の一方に関する情報を含み、ビデオデータは、この第1及び第2の表示アスペクト比の一方を有するビデオ信号に変換され、表示アスペクト比が第2の表示アスペクト比である際に、前記属性情報は、ビデオデータの第1及び第2の表示モードの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項38に記載の記録媒体。

【請求項40】前記属性情報は、3対4及び9対16の表示アスペクト比の一方でビデオデータが再現されるべきである旨の記述情報を含み、ビデオデータは、この記述された表示アスペクト比を有するビデオ信号に変換され、表示アスペクト比が9対16である際に、前記属性情報は、パンスキャン及びレターボックスの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項41】前記オーディオ属性情報は、オーディオデータのオーディオコーディングモードに関する情報を含み、オーディオデータは、このコーディングモードに従ってデコードされることを特徴とする請求項32に記載の記録媒体。

【請求項42】前記属性情報は、ビデオデータがNTSC及びPALテレビジョンシステムの信号の一方に変換されるべき変換情報を含み、オーディオコーディングモードは、変換情報に従って、選定可能なオーディオコーディングモードが定まることを特徴とする請求項41に記載の記録媒体。

【請求項43】前記属性情報は、ビデオデータがNTSC及びPALテレビジョンシステムの信号の一方に変換されるべき変換情報を含み、NTSCテレビジョンシステムでは、オーディオコーディングモードは、ドルビーア-3及びリニアPCMオーディオから選択され、PALテレビジョンシステムでは、オーディオコーディングモードは、MPEG-1, MPEG-2及びリニアPCMオーディオから選択されることを特徴とする請求項41に記載の記録媒体。

【請求項44】前記オーディオ属性情報は、オーディオデータのオーディオタイプに関する情報を含み、オーデ

ィオデータは、このオーディオタイプに適したオーディオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項45】前記オーディオ属性情報は、オーディオデータのアプリケーションタイプに関する情報を含み、オーディオデータは、このアプリケーションタイプに適したオーディオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項46】前記オーディオ属性情報は、オーディオデータの量子化ビット数に関する情報を含み、オーディオデータは、この量子化ビット数に従ってデコードされることを特徴とする請求項32に記載の記録媒体。

【請求項47】前記オーディオ属性情報は、オーディオデータのサンプリング周波数に関する情報を含み、オーディオデータは、このサンプリング周波数に従ってデコードされることを特徴とする請求項32に記載の記録媒体。

【請求項48】前記オーディオ属性情報は、オーディオデータのオーディオチャネル数に関する情報を含み、オーディオデータは、このオーディオチャネル数内で選定される数に対応するオーディオチャネル信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項49】前記副映像属性情報は、副映像データの副映像コード化モードに関する情報を含み、副映像データは、この副映像コード化モードに従ってデコードされることを特徴とする請求項32に記載の記録媒体。

【請求項50】前記副映像属性情報は、副映像データの副映像表示タイプに関する情報を含み、副映像データは、この副映像表示タイプに適した副映像信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項51】前記属性情報は、ビデオデータの第1及び第2の表示モードでの表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項52】前記属性情報は、ビデオデータの第1及び第2の表示アスペクト比の一方に関する情報を含み、ビデオデータは、この第1及び第2の表示アスペクト比の一方を有するビデオ信号に変換され、副映像表示アスペクト比が第2の表示アスペクト比である際に、前記属性情報は、ビデオデータの第1、第2及び第3の表示モードの両方或いは一方での表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項53】前記属性情報は、3対4及び9対16の表示アスペクト比の一方でビデオデータが再現されるべきである旨の記述情報を含み、ビデオデータは、この記述された表示アスペクト比を有するビデオ信号に変換され、副映像表示アスペクト比が9対16である際に、前

記属性情報は、ワイド、パンスキャン及びレターボックスの少なくとも1つ以上の表示を許可する情報を含み、ビデオデータは、この許可された表示モードを有するビデオ信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項54】前記副映像属性情報は、副映像データの副映像タイプに関する情報を含み、副映像データは、この副映像タイプに適した副映像信号に変換されることを特徴とする請求項32に記載の記録媒体。

【請求項55】前記オーディオ属性情報は、オーディオデータのマルチチャンネルオーディオストリームに関する情報を含み、オーディオデータは、マルチチャンネルオーディオストリームの属性に従ってデコードされることを特徴とする請求項32に記載の記録媒体。

【請求項56】前記オーディオ属性情報は、オーディオデータのマルチチャンネルオーディオストリームに関する情報を含み、オーディオデータは、マルチチャンネルオーディオストリームの属性に従ってミキシングされることを特徴とする請求項32に記載の記録媒体。

【請求項57】前記再生データは、ビデオデータ、オーディオデータ、副映像データ及びこれらのデータの再生を制御する制御データを含み、制御データは、ビデオデータの再生時間を規定する時間情報及びビデオデータに同期して再生されるオーディオデータ及び副映像データに関する同期情報を含むことを特徴とする請求項32に記載の記録媒体。

【請求項58】管理情報は、オーディオデータに含まれるオーディオストリームの数を含むことを特徴とする請求項32に記載の記録媒体。

【請求項59】前記再生データは、副映像データを含み、前記管理情報は、この副映像データに含まれる副映像ストリームの数を含むことを特徴とする請求項32に記載の記録媒体。

【請求項60】前記再生データは、再生されるビデオデータに関するメニューを表示する為のメニューデータを含み、前記管理データは、メニュー用再生信号に変換する為に必要な固有の属性情報を含むことを特徴とする請求項32に記載の記録媒体。

【請求項61】前記再生データは、当該記録媒体に記録されたデータの選択項目を表示する為の管理メニューデータを含み、前記管理データは、管理メニュー用再生信号に変換する為に必要な固有の属性情報を含むことを特徴とする請求項32に記載の記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】この発明は、再生データの属性情報を再生データとともに記録した記録媒体に係り、特に、特定の属性を有する再生データに限らず、種々の属性を有する再生データであっても記録でき、しかも、

その属性データに応じて適切な再生が可能な記録媒体に関する。

【0002】

【従来の技術】一般に知られている光ディスクとしてコンパクトディスク、いわゆる、CDが既に開発されているが、このような光ディスクは、その記憶容量の点から長時間に亘るムービーデータを記録し、再生することは困難であるとされている。このような観点から、ムービーデータをも高密度記録可能な光ディスクが研究され、開発されつつある。

【0003】

【発明が解決しようとする課題】このような高密度記録可能な光ディスクが出現するに伴い、このような光ディスクには、選択可能なビデオデータ、或いは、オーディオデータ等を複数個記録することが可能となり、また、複数のオーディオストリームを記録することで、一つのビデオに異なる音声を対応づけることができ、さらに、複数の副映像ストリームを記録することで、例えば、言語の種類が異なる字幕などを選択して表示することができる。

【0004】これらの再生データには、その選択数が増えるに従って、その再生形態が多様化し、その個々再生データに対する設定情報や、さらに同一時間帯で再生する選択可能なデータの相互関係を示すデータ相互情報或いは、選択のための情報をユーザへ提供するデータ内容情報等が必要となってくる。

【0005】しかし、従来、これらの設定情報、相互情報、或いは、内容情報に関しては、ディスクのデータ量の少なさから、固定になっている場合や、或いは、ディスク全体のある決まった領域に格納されているが、選択数が少なく、一部の情報については皆無に等しい問題がある。

【0006】この発明は、上述した事情に鑑みなされたものであって、その目的は、種別の異なる複数のデータが記録されているディスクにおいて、それぞれのデータ属性に従った最適な再生形態を再生システムに設定することができる光ディスクを提供するにある。

【0007】また、この発明の目的は、ビデオデータに対して複数のオーディオストリーム或いは副映像ストリームがある場合、指定した番号のオーディオストリームや副映像ストリームのデータ属性を容易に取得し、その属性に従って再生システムを設定することができる光ディスクを提供するにある。

【0008】更に、この発明の目的は、ビデオデータと同一時間帯に再生する複数のオーディオストリームに対して、オーディオストリームの最適なミキシングを再生システムに設定することができる光ディスクを提供するにある。

【0009】更にまた、この発明は、ビデオデータに対して選択可能な複数個のオーディオストリームや副映像

ストリームの属性情報をユーザに対して提供することができる光ディスクを提供するにある。

【0010】この発明の目的は、種別の異なる複数のデータが記録されているディスクにおいて、それぞれのデータ属性に従った最適な再生形態を再生システムに設定することができる光ディスクを提供するにある。

【0011】

【課題を解決するための手段】この発明によれば、ビデオデータ及びオーディオデータの少なくとも一方を含む再生データが格納されている再生データ領域と、前記格納されている再生データ自体に関する管理情報及び再生データの再生手順に関する再生情報が記述され、再生データの再生に先だって検索されるべき再生情報領域であって前記管理情報は、ビデオデータ及びオーディオデータの前記一方の再生データを再生信号に変換する為に必要な固有の属性に関する情報を含む再生情報領域と、を具備する記録媒体が提供される。

【0012】

【発明の実施の形態】以下、図面を参照してこの発明の実施例に係る光ディスク及び光ディスク再生装置を説明する。

【0013】図1は、この発明の一実施例に係る光ディスクからデータを再生する光ディスク再生装置のブロックを示し、図2は、図1に示された光ディスクをドライブするディスクドライブ部のブロックを示し、図3及び図4は、図1及び図2に示した光ディスクの構造を示している。

【0014】図1に示すように光ディスク再生装置は、キー操作/表示部4、モニター部6及びスピーカー部8を具備している。ここで、ユーザがキー操作/表示部4を操作することによって光ディスク10から記録データが再生される。記録データは、ビデオデータ、副映像データ及び音声データを含み、これらは、ビデオ信号及びオーディオ信号に変換される。モニター部6は、ビデオ信号によってビデオを表示し、スピーカー部8は、オーディオ信号によって音声を発生している。

【0015】既に知られるように光ディスク10は、種々の構造がある。この光ディスク10には、例えば、図3に示すように、高密度でデータが記録される読み出し専用ディスクがある。図3に示されるように光ディスク10は、一対の複合層18とこの複合ディスク層18間に介挿された接着層20とから構成されている。この各複合ディスク層18は、透明基板14及び記録層、即ち、光反射層16から構成されている。このディスク層18は、光反射層16が接着層20に接触するように配置される。この光ディスク10には、中心孔22が設けられ、その両面の中心孔22の周囲には、この光ディスク10をその回転時に押さえる為のクランピング領域24が設けられている。中心孔22には、光ディスク装置にディスク10が装填された際に図2に示されたスピ

ドルモータ12のスピンドルが挿入され、ディスクが回転される間、光ディスク10は、そのクランピング領域24でクランプされる。

【0016】図3に示すように、光ディスク10は、その両面のクランピング領域24の周囲に光ディスク10に情報を記録することができる情報領域25を有している。各情報領域25は、その外周領域が通常は情報が記録されないリードアウト領域26に、また、クランピング領域24に接するその内周領域が同様に、通常は情報が記録されないリードイン領域27に定められ、更に、このリードアウト領域26とリードイン領域27との間がデータ記録領域28に定められている。

【0017】情報領域25の記録層16には、通常、データが記録される領域としてトラックがスパイラル状に連続して形成され、その連続するトラックは、複数の物理的なセクタに分割され、そのセクタには、連続番号が付され、このセクタを基準にデータが記録されている。

情報記録領域25のデータ記録領域28は、実際のデータ記録領域であって、後に説明するように再生情報、ビデオデータ、副映像データ及びオーディオデータが同様にピット（即ち、物理的状態の変化）として記録されている。読み出し専用の光ディスク10では、透明基板14にピット列が予めスタンパーで形成され、このピット列が形成された透明基板14の面に反射層が蒸着により形成され、その反射層が記録層16として形成されることとなる。また、この読み出し専用の光ディスク10では、通常、トラックとしてのグループが特に設けられず、透明基板14の面に形成されるピット列がトラックとして定められている。

【0018】このような光ディスク装置12は、図1に示されるように更にディスクドライブ部30、システムCPU部50、システムROM/RAM部52、システムプロセッサ部54、データRAM部56、ビデオデコーダ部58、オーディオデコーダ部60、副映像デコーダ部62及びD/A及びデータ再生部64から構成されている。

【0019】図2に示すようにディスクドライブ部30は、モータドライブ回路11、スピンドルモータ12、光学ヘッド32（即ち、光ビックアップ）、フィードモータ33、フォーカス回路36、フィードモータ駆動回路37、トラッキング回路38、ヘッドアンプ40及びサーボ処理回路44を具備している。光ディスク10は、モータ駆動回路11によって駆動されるスピンドルモータ12上に載置され、このスピンドルモータ12によって回転される。光ディスク10にレーザビームを照射する光学ヘッド32が光ディスク10の下に置かれている。また、この光学ヘッド32は、ガイド機構（図示せず）上に載置されている。フィードモータ駆動回路37がフィードモータ33に駆動信号を供給する為に設けられている。モータ33は、駆動信号によって駆動され

て光学ヘッド32を光ディスク10の半径方向に移動している。光学ヘッド32は、光ディスク10に対向される対物レンズ34を備えている。対物レンズ34は、フォーカス回路36から供給される駆動信号に従ってその光軸に沿って移動される。

【0020】上述した光ディスク10からデータを再生するには、光学ヘッド32が対物レンズ34を介してレーザビームを光ディスク10に照射される。この対物レンズ34は、トラッキング回路38から供給された駆動信号に従って光ディスク10の半径方向に微動される。また、対物レンズ34は、その焦点が光ディスク10の記録層16に位置されるようにフォーカシング回路36から供給された駆動信号に従ってその光軸方向に沿って微動される。その結果、レーザビームは、最小ビームスポットをスパイナルトラック（即ち、ピット列）上に形成され、トラックが光ビームスポットで追跡される。レーザビームは、記録層16から反射され、光学ヘッド32に戻される。光ヘッド32では、光ディスク10から反射された光ビームを電気信号に変換し、この電気信号は、光ヘッド32からヘッドアンプ40を介してサーボ処理回路44に供給される。サーボ処理回路44では、電気信号からフォーカス信号、トラッキング信号及びモータ制御信号を生成し、これらの信号を夫々フォーカス回路36、トラッキング回路38、モータ駆動回路11に供給している。

【0021】従って、対物レンズ34がその光軸及び光ディスク10の半径方向に沿って移動され、その焦点が光ディスク10の記録層16に位置され、また、レーザビームが最小ビームスポットをスパイナルトラック上に形成する。また、モータ駆動回路11によってスピンドルモータ12が所定の回転数で回転される。その結果、光ディスク10のピット列が光ビームで線速一定で追跡される。

【0022】図1に示されるシステムCPU部50からアクセス信号としての制御信号がサーボ処理回路44に供給される。この制御信号に応答してサーボ処理回路44からヘッド移動信号がフィードモータ駆動回路37に供給されてこの回路37が駆動信号をフィードモータ33に供給することとなる。従って、フィードモータ33が駆動され、光ヘッド32が光ディスク10の半径方向に沿って移動される。そして、光学ヘッド32によって光ディスク10の記録層16に形成された所定のセクタがアクセスされる。再生データは、その所定のセクタから再生されて光学ヘッド32からヘッドアンプ40に供給され、このヘッドアンプ40で増幅され、ディスクドライブ部30から出力される。

【0023】出力された再生データは、システム用ROM及びRAM部52に記録されたプログラムで制御されるシステムCPU部50の管理下でシステムプロセッサ部54によってデータRAM部56に格納される。この

格納された再生データは、システムプロセッサ部54によって処理されてビデオデータ、オーディオデータ及び副映像データに分類され、ビデオデータ、オーディオデータ及び副映像データは、夫々ビデオデコーダ部58、オーディオデコーダ部60及び副映像デコーダ部62に出力されてデコードされる。デコードされたビデオデータ、オーディオデータ及び副映像データは、D/A及び再生処理回路64でアナログ信号としてのビデオ信号、オーディオ信号に変換されるとともにビデオ信号がモニタ6に、また、オーディオ信号がスピーカ部8に夫々供給される。その結果、ビデオ信号及び副映像信号によってモニタ部6にビデオが表示されるとともにオーディオ信号によってスピーカ部8から音声が再現される。

【0024】図1に示す光ディスク装置の詳細な動作については、次に説明する光ディスク10の論理フォーマットを参照して後により詳細に説明する。

【0025】図1に示される光ディスク10のリードインエリア27からリードアウトエリア26までのデータ記録領域28は、図4に示されるようなボリューム及びファイル構造を有している。この構造は、論理フォーマットとして特定の規格、例えば、マイクロUDF (microUDF) 及びISO9660に準拠されて定められている。データ記録領域28は、既に説明したように物理的に複数のセクタに分割され、その物理的セクタには、連続番号が付されている。下記の説明で論理アドレスは、マイクロUDF (microUDF) 及びISO9660で定められるように論理セクタ番号 (LSN) を意味し、論理セクタは、物理セクタのサイズと同様に2048バイトであり、論理セクタの番号 (LSN) は、物理セクタ番号の昇順とともに連続番号が付加されている。

【0026】図4に示されるようにこのボリューム及びファイル構造は、階層構造を有し、ボリューム及びファイル構造領域70、ビデオマネージャー (VMG) 71、少なくとも1以上のビデオタイトルセット (VTS) 72及び他の記録領域73を有している。これらの領域は、論理セクタの境界上で区分されている。ここで、従来のCDと同様に1論理セクタは、2048バイトと定義されている。同様に、1論理ブロックも2048バイトと定義され、従って、1論理セクタは、1論理ブロックと定義される。

【0027】ファイル構造領域70は、マイクロUDF及びISO9660に定められる管理領域に相当し、この領域の記述を介してビデオマネージャー71がシステムROM/RAM部52に格納される。ビデオマネージャー71には、図5を参照して説明するようにビデオタイトルセットを管理する情報が記述され、ファイル#0から始まる複数のファイル74から構成されている。また、各ビデオタイトルセット (VTS) 72には、後に説明するように圧縮されたビデオデータ、オーディオデータ及び副映像データ及びこれらの再生情報が格納さ

れ、同様に複数のファイル74から構成されている。ここで、複数のビデオタイトルセット72は、最大99個に制限され、また、各ビデオタイトルセット72を構成するファイル74(File#jからFile#j+11)の数は、最大12個に定められている。これらファイルも同様に論理セクタの境界で区分されている。

【0028】他の記録領域73には、上述したビデオタイトルセット72を利用可能な情報が記録されている。この他の記録領域73は、必ずしも設けられなくとも良い。

【0029】図5に示すようにビデオマネージャー71は、夫々が各ファイル74に相当する3つの項目を含んでいる。即ち、ビデオマネージャー71は、ビデオマネージャー情報(VMG I)75、ビデオマネージャーメニューの為のビデオオブジェクトセット(VMGM_VOBS)76及びビデオマネージャー情報のバックアップ(VMG I_BUP)77から構成されている。ここで、ビデオマネージャー情報(VMG I)75及びビデオマネージャー情報のバックアップ77(VMG I_BUP)77は、必須の項目とされ、ビデオマネージャーメニューの為のビデオオブジェクトセット(VMGM_VOBS)76は、オプションとされている。このVMGM用のビデオオブジェクトセット(VMGM_VOBS)76には、ビデオマネージャー71が管理する当該光ディスク中のボリュームに関するメニューのビデオデータ、オーディオデータ及び副映像データが格納されている。

【0030】このVMGM用のビデオオブジェクトセット(VMGM_VOBS)76によって後に説明されるビデオの再生のように当該光ディスクのボリューム名、ボリューム名表示に伴う音声及び副映像の説明が表示されるとともに選択可能な項目が副映像で表示される。例えば、VMGM用のビデオオブジェクトセット(VMGM_VOBS)76によって当該光ディスクがあるボクサーのワールドチャンピオンに至るまでの試合を格納したビデオデータである旨、即ち、ボクサーXの栄光の歴史等のボリューム名とともにボクサーXのファイティングポーズがビデオデータで再生されるとともに彼のテーマソングが音声で表示され、副映像で彼の年表等が表示される。また、選択項目として試合のナレーションを英語、日本語等のいずれの言語を選択するかが問い合わせされるとともに副映像で他の言語の字幕を表示するか、また、いずれの言語の字幕を選択するか否かが問い合わせされる。このVMGM用のビデオオブジェクトセット(VMGM_VOBS)76によってユーザは、例えば、音声は、英語で副映像として日本語の字幕を採用してボクサーXの試合のビデオを鑑賞する準備が整うこととなる。

【0031】ここで、図6を参照してビデオオブジェクトセット(VOBS)82の構造について説明する。図

6は、ビデオオブジェクトセット(VOBS)82の一例を示している。このビデオオブジェクトセット(VOBS)82には、2つのメニュー用及びタイトル用として3つのタイプのビデオオブジェクトセット(VOBS)76、95、96がある。即ち、ビデオオブジェクトセット(VOBS)82は、後に説明するようにビデオタイトルセット(VTS)72中にビデオタイトルセットのメニュー用ビデオオブジェクトセット(VTSM_VOBS)95及び少なくとも1つ以上のビデオタイトルセットのタイトルの為のビデオオブジェクトセット(VTSTT_VOBS)96があり、いずれのビデオオブジェクトセット82もその用途が異なるのみで同様の構造を有している。

【0032】図6に示すようにビデオオブジェクトセット(VOBS)82は、1個以上のビデオオブジェクト(VOB)83の集合として定義され、ビデオオブジェクトセット(VOBS)82中のビデオオブジェクト83は、同一の用途の供される。通常、メニュー用のビデオオブジェクトセット(VOBS)82は、1つのビデオオブジェクト(VOB)83で構成され、複数のメニュー用の画面を表示するデータが格納される。これに対してタイトルセット用のビデオオブジェクトセット(VTSTT_VOBS)82は、通常、複数のビデオオブジェクト(VOB)83で構成される。

【0033】ここで、ビデオオブジェクト(VOB)83は、上述したボクシングのビデオを例にすれば、ボクサーXの各試合のビデオデータに相当し、ビデオオブジェクト(VOB)を指定することによって、例えば、ワールドチャンピオンに挑戦する第11戦をビデオで再現することができる。また、ビデオタイトルセット72のメニュー用ビデオオブジェクトセット(VTSM_VOBS)95には、そのボクサーXの試合のメニューデータが格納され、そのメニューの表示に従って、特定の試合、例えば、ワールドチャンピオンに挑戦する第11戦を指定することができる。尚、通常の1ストーリの映画では、1ビデオオブジェクト(VOB)83が1ビデオオブジェクトセット(VOBS)82に相当し、1ビデオストリームが1ビデオオブジェクトセット(VOBS)82で完結することとなる。また、アニメ集、或いは、オムニバス形式の映画では、1ビデオオブジェクトセット(VOBS)82中に各ストーリに対応する複数のビデオストリームが設けられ、各ビデオストリームが対応するビデオオブジェクトに格納されている。従って、ビデオストリームに関連したオーディオストリーム及び副映像ストリームも各ビデオオブジェクト(VOB)83中で完結することとなる。

【0034】ビデオオブジェクト(VOB)83には、識別番号(IDN#j)が付され、この識別番号によってそのビデオオブジェクト(VOB)83を特定することができる。ビデオオブジェクト(VOB)83は、1又

は複数のセル84から構成される。通常のビデオストリームは、複数のセルから構成されることとなるが、メニュー用のビデオストリーム、即ち、ビデオオブジェクト(VOB)83は、1つのセル84から構成される場合もある。同様にセルには、識別番号(C_IDN#j)が付され、このセル識別番号(C_IDN#j)によってセル84が特定される。

【0035】図6に示すように各セル84は、1又は複数のビデオオブジェクトユニット(VOBU)85、通常は、複数のビデオオブジェクトユニット(VOBU)85から構成される。ここで、ビデオオブジェクトユニット(VOBU)85は、1つのナビゲーションパック(NVパック)86を先頭に有するパック列として定義される。即ち、ビデオオブジェクトユニット(VOBU)85は、あるナビゲーションパック86から次のナビゲーションパックの直前まで記録される全パックの集まりとして定義される。このビデオオブジェクトユニット(VOBU)の再生時間は、ビデオオブジェクトユニット(VOBU)中に含まれる単数又は複数個のGOPから構成されるビデオデータの再生時間に相当し、その再生時間は、0.4秒以上であって1秒より大きくならないように定められる。MPEGでは、1GOPは、通常0.5秒であってその間に15枚程度の画像が再生する為の圧縮された画面データであると定められている。

【0036】図6に示すようにビデオオブジェクトユニットがビデオデータを含む場合には、MPEG規格に定められたビデオパック(Vパック)88、副映像パック(SPパック)90及びオーディオパック(Aパック)91から構成されるGOPが配列されてビデオデータストリームが構成されるが、このGOPの数とは、無関係にGOPの再生時間を基準にしてビデオオブジェクトユニット(VOBU)85が定められ、その先頭には、常にナビゲーションパック(NVパック)86が配列される。また、オーディオ及び/又は副映像データのみの再生データにあってもこのビデオオブジェクトユニットを1単位として再生データが構成される。即ち、オーディオパックのみでビデオオブジェクトユニットが構成されても、ビデオデータのビデオオブジェクトと同様にそのオーディオデータが属するビデオオブジェクトユニットの再生時間内に再生されるべきオーディオパックがそのビデオオブジェクトユニットに格納される。

【0037】再び図5を参照してビデオマネージャー71について説明する。ビデオマネージャー71の先頭に配置されるビデオ管理情報75は、そのビデオマネージャー自身の情報、タイトルをサーチする為の情報、ビデオマネージャーメニューの再生の為の情報、及びビデオタイトルの属性情報の等のビデオタイトルセット(VTS)72を管理する情報が記述され、図5に示す順序で3つのテーブル78、79、80が記録されている。この各テーブル78、79、80は、論理セクタの境界に

一致されている。第1のテーブルであるビデオ管理情報管理テーブル(VMG_I_MAT)78は、必須のテーブルであってビデオマネージャー71のサイズ、このビデオマネージャー71中の各情報のスタートアドレス、ビデオマネージャーメニュー用のビデオオブジェクトセット(VMGM_VOBS)76のスタートアドレス及びその属性情報等が記述されている。後に詳述するようにこの属性情報には、ビデオの属性情報、オーディオの属性情報及び副映像の属性情報があり、これらの属性情報によってデコーダ58、60、62のモードが変更され、ビデオオブジェクトセット(VMGM_VOBS)76が適切なモードで再生される。

【0038】また、ビデオマネージャー71の第2のテーブルであるタイトルサーチポインターテーブル(TT_SRPT)79には、装置のキー及び表示部4からのタイトル番号の入力に応じて選定可能な当該光ディスク10中のボリュームに含まれるビデオタイトルセットのスタートアドレスが記載されている。

【0039】ビデオマネージャー71の第3のテーブルであるビデオタイトルセット属性テーブル(VTS_ATRT)80には、当該光ディスクのボリューム中のビデオタイトルセット(VTS)72に定められた属性情報が記載される。即ち、属性情報としてビデオタイトルセット(VTS)72の数、ビデオタイトルセット(VTS)72の番号、ビデオの属性、例えば、ビデオデータの圧縮方式等、オーディオストリームの属性、例えば、オーディオの符号化モード等、副映像の属性、例えば、副映像の表示タイプ等がこのテーブルに記載されている。

【0040】ボリューム管理情報管理テーブル(VMG_I_MAT)78、タイトルサーチポインターテーブル(TT_SRPT)79及びビデオタイトルセット属性テーブル(VTS_ATRT)80に記載の記述内容の詳細について、図7から図20を参照して次に説明する。

【0041】図7に示すようにボリューム管理情報管理テーブル(VMG_I_MAT)78には、ビデオマネージャー71の識別子(VMG_ID)、論理ブロック(既に説明したように1論理ブロックは、2048バイト)の数でビデオ管理情報のサイズ(VMG_I_SZ)、当該光ディスク、通称、ディジタルバーサタイルディスク(ディジタル多用途ディスク:以下、単にDVDと称する。)の規格に関するバージョン番号(VERN)及びビデオマネージャー71のカテゴリー(VMG_CAT)が記載されている。

【0042】ここで、ビデオマネージャー71のカテゴリー(VMG_CAT)には、このDVDビデオディレクトリーがコピーを禁止であるか否かのフラグ等が記載される。また、このテーブル(VMG_I_MAT)78には、ボリュームセットの識別子(VLMS_ID)、

ビデオタイトルセットの数 (VTS_Ns)、このディスクに記録されるデータの供給者の識別子 (PVR_ID)、ビデオマネージャーメニューの為のビデオオブジェクトセット (VMGM_VOBS) 76 のスタートアドレス (VMGM_VOBS_SA)、ボリュームマネージャー情報の管理テーブル (VMGI_MAT) 78 の終了アドレス (VMGI_MAT_EA)、タイトルサーチポインターーテーブル (TT_SRPT) 79 のスタートアドレス (TT_SRPT_SA) が記載されている。VMGメニューのビデオオブジェクトセット (VMGM_VOBS) 95 がない場合には、その開始アドレス (VMGM_VOBS_SA) には、"00000000h" が記載される。VMGI_MAT 78 の終了アドレス (VMGI_MAT_EA) は、VMGI_MAT 78 の先頭からの相対的なバイト数で記述され、TT_SRPT 79 のスタートアドレス (TT_SRPT_SA) は、VMGI 75 の先頭の論理ブロックからの相対的な論理ブロック数で記載されている。

【0043】更に、このテーブル 78 には、ビデオタイトルセット (VTS) 72 の属性テーブル (VTS_ATR) 80 のスタートアドレス (VTS_ATR_SA) が VMGI マネージャーテーブル (VMGI_MAT) 71 の先頭バイトからの相対的なバイト数で記載され、ビデオマネージャーメニュー (VMGM) ビデオオブジェクトセット 76 のビデオ属性 (VMGM_V_ATR) が記載されている。更にまた、このテーブル 78 には、ビデオマネージャーメニュー (VMGM) のオーディオストリームの数 (VMGM_AST_Ns)、ビデオマネージャーメニュー (VMGM) のオーディオストリームの属性 (VMGM_AST_ATR)、ビデオマネージャーメニュー (VMGM) の副映像ストリームの数 (VMGM_SPST_Ns) 及びビデオマネージャーメニュー (VMGM) の副映像ストリームの属性 (VMGM_SPST_ATR) が記載されている。

【0044】ビデオ属性 (VMGM_V_ATR) には、図 8 に示されるようにビット番号 b8 からビット番号 b15 にビデオマネージャーメニュー (VMGM) のビデオオブジェクトセット 76 ビデオの属性として圧縮モード、フレームレート、表示アスペクト比、及び表示モードが記述され、ビット番号 b0 からビット番号 b7 は、予約として今後の為に空けられている。ビット番号 b15、b14 に "00" が記述される場合には、MPEG-1 の規格に基づいてビデオ圧縮モードでメニュー用ビデオデータが圧縮されていることを意味し、ビット番号 b15、b14 に "01" が記述される場合には、MPEG-2 の規格に基づいてビデオ圧縮モードでメニュー用ビデオデータが圧縮されていることを意味し、他の記述は、予約として今後の為に空けられている。ビット番号 b13、b12 に "00" が記述される場合には、メニュー用ビデオデータは、毎秒 29.27 フレーム

10 10
20 20
30 30
40 40
50 50

ムが再現されるフレームレート (29.27/S) を有する旨を意味している。即ち、ビット番号 b13、b12 に "00" が記述される場合には、メニュー用ビデオデータは、NTSC 方式が採用された TV システム用のビデオデータであって、1 フレームを水平走査周波数 60 hz で走査線数 525 本で描くフレームレートを採用していることを意味している。また、ビット番号 b13、b12 に "01" が記述される場合には、メニュー用ビデオデータは、毎秒 25 フレームが再現されるフレームレート (25/S) を有する旨を意味している。即ち、PAL 方式が採用された TV システム用のビデオデータであって、1 フレームを周波数 50 hz で走査線数 625 本で描くフレームレートを採用していることを意味している。ビット番号 b13、b12 の他の記述は、予約として今後の為に空けられている。

【0045】更に、ビット番号 b11、b10 に "00" が記述される場合には、メニュー用ビデオデータは、表示のアスペクト比 (縦/横比) が 3/4 であることを意味し、また、ビット番号 b11、b10 に "11" が記述される場合には、メニュー用ビデオデータは、表示のアスペクト比 (縦/横比) が 9/16 であることを意味し、他の記述は、予約として今後の為に空けられている。

【0046】更に、表示のアスペクト比が 3/4 である場合、即ち、ビット番号 b11、b10 に "00" が記述される場合においては、ビット番号 b9、b8 には、"11" が記述される。表示のアスペクト比が 9/16 である場合、即ち、ビット番号 b11、b10 に "11" が記述される場合においては、メニュー用ビデオデータをパンスキヤン及び/又はレターボックスで表示することを許可しているか否かが記載される。即ち、ビット番号 b9、b8 に "00" が記述される場合には、パンスキヤン及びレターボックスの両者の何れでも表示することを許可する旨を意味し、ビット番号 b9、b8 に "01" が記述される場合には、パンスキヤンで表示することを許可するが、レターボックスでの表示を禁止する旨を意味している。また、ビット番号 b9、b8 に "10" が記述される場合には、パンスキヤンでの表示を禁止するが、レターボックスで表示を許可する旨を意味している。ビット番号 b9、b8 に "11" が記述される場合には、特に特定しない旨を意味している。

【0047】上述した光ディスクに記録されたビデオデータと TV モニター 6 上の再生スクリーン画像との関係が図 9 に示されている。ビデオデータに関しては、上述した属性情報としてビット番号 b11、b10 に表示アスペクト比及びビット番号 b9、b8 に表示モードが記述されていることから、図 9 に示されるような表示がなされる。本来の表示アスペクト比 (ビット番号 b11、b10 が "00") が 3/4 の画像データは、そのままの状態で圧縮されて記録されている。即ち、図 9 に示す

ように中心に円が描かれ、その周囲に4つの小円が配置された画像データは、表示モードがノーマル（ビット番号b9、b8が”00”）、パンスキャン（ビット番号b9、b8が”01”）及びレターボックス（ビット番号b9、b8が”10”）のいずれ場合にあっても、TVアスペクト比3/4を有するTVモニター6に表示形態を変えることなくそのまま中心に円が描かれ、その周囲に4つの小円が配置された画像として表示される。また、その画像データは、TVアスペクト比9/16を有するTVモニター6にあっても表示形態を変えることなくそのまま中心に円が描かれ、その周囲に4つの小円が配置された画像として表示され、TVモニター6のスクリーン上の両側部に画像の表示されない領域が生じるにすぎない。

【0048】これに対して、表示アスペクト比（ビット番号b11、b10が”11”）が9/16の画像データは、アスペクト比3/4を有するように縦長な表示に変形した状態で圧縮されて記録されている。即ち、本来、中心に円が描かれ、その周囲に4つの小円が配置され、その小円の外側に小円が配置された大きな1つの円及び8つの小円を有する9/16の表示アスペクト比を有する画像は、全ての円が縦長な表示に変形したデータとして圧縮されて記録されている。従って、表示モードがノーマル（ビット番号b9、b8が”00”）では、TVアスペクト比3/4を有するTVモニター6に表示形態を変えることなくそのまま中心に縦長な円が描かれ、その周囲に4つの縦長の小円が配置され、その小円の外側に縦長の小円が配置された大きな1つの円及び8つの小円を有する画像として表示される。これに対して、表示モードがパンスキャン（ビット番号b9、b8が”01”）にあっては、円の形状は、縦長とならず、本来の円として描かれるが、画面の周囲がトリミングされて小円の外側の小円がカットされ、中心に円が描かれ、その周囲に4つの小円が配置された画像としてTVアスペクト比3/4を有するTVモニター6に表示される。また、表示モードがレターボックス（ビット番号b9、b8が”10”）にあっては、アスペクト比が変わらないことから、円の形状は、縦長とならず、本来の円として描かれ、全ての画面、即ち、1つの大円及び8つの小円が表示されるが、スクリーン上の上下領域には、画像が表示されない状態でTVアスペクト比3/4を有するTVモニター6に表示される。当然のことながら、TVアスペクト比9/16を有するTVモニター6には、画像データの表示アスペクト比（ビット番号b11、b10が”11”）に一致する為、そのまま中心に正常な円が描かれ、その周囲に4つの正常な小円が配置され、その小円の外側に同様に正常な小円が配置された大きな1つの円及び8つの小円を有する画像として表示される。

【0049】上述したように表示アスペクト比（ビット

番号b11、b10が”11”）が9/16の画像データをTVアスペクト比3/4を有するTVモニター6に表示する場合には、スクリーン上の上下領域には、画像が表示されない部分が生じるが、この部分は、1フレームを水平走査周波数60Hzで走査線数525本で描くフレームレート（ビット番号b13、b12に”01”が記述される。）場合には、図10Aに示すように上下72本の水平走査線が黒（Y=16, U=V=128）を描くこととなり、黒として表示される。また、1フレームを周波数50Hzで走査線数625本で描くフレームレート（ビット番号b13、b12に”00”が記述される。）場合には、この部分は、図10Aに示すように上下60本の水平走査線が黒（Y=16, U=V=128）を描くこととなり、同様に黒として表示される。【0050】再び、図7に示したテーブルの内容について説明する。ビデオマネージャーメニュー（VMGM）のオーディオストリームの属性（VMGM_AST_ATR）には、図11に示されるようにビット番号b63からビット番号b48にオーディオコーディングモード、オーディオタイプ、オーディオのアプリケーションID、量子化、サンプリング周波数及びオーディオチャネルの数が記述され、ビット番号b47からビット番号b0は、今後の為に予約として空けられている。VMGMビデオオブジェクトセット76がない場合、或いは、そのビデオオブジェクトセットにオーディオストリームがない場合には、ビット番号b63からビット番号b0の各ビットに”0”が記述される。オーディオコーディングモードは、ビット番号b63からビット番号b61に記述されている。このオーディオコーディングモードに”000”が記述される場合には、ドルビーAC-3（Dolby Laboratories Licensing Corporationの商標）でオーディオデータがコード化されていることを意味し、オーディオコーディングモードに”010”が記述される場合には、拡張ビットストリーム無しにMPEG-1或いはMPEG-2でオーディオデータが圧縮されていることを意味している。また、オーディオコーディングモードに”011”が記述される場合には、拡張ビットストリームを備えてMPEG-2でオーディオデータが圧縮されていることを意味し、オーディオコーディングモードに”100”が記述される場合には、リニアPCMでオーディオデータがコード化されていることを意味している。オーディオデータについては、他の記述は、今後の為の予約とされている。ビデオデータの属性において、1フレームを水平走査周波数60Hzで走査線数525本で描くフレームレート（VMGM_V_ATRにおいてビット番号b13、b12に”01”が記述される。）場合には、ドルビーAC-3（ビット番号b63、b62、b61が”000”）或いは、リニアPCM（ビット番号b63、b62、b61が”100”）が設定されるべきであるとされている。また、ビデオデ

ータの属性において、1フレームを周波数50Hzで走査線数625本で描くフレームレート(VMGM_V_ATRにおいてビット番号b13、b12に"01"が記述される。)場合には、MPEG-1、MPEG-2(ビット番号b63、b62、b61が"010"又は"011")或いは、リニアPCM(ビット番号b63、b62、b61が"100")が設定されるべきであるとされている。

【0051】オーディオタイプは、ビット番号b59及びb58に記述され、特定しない場合には、"00"が記述され、その他は予約とされている。また、オーディオの応用分野のIDは、ビット番号b57及びb56に記述され、特定しない場合には、"00"が記述され、その他は予約とされている。更に、オーディオデータの量子化に関しては、ビット番号b55及びb54に記述され、ビット番号b55、b54が"00"の場合は、16ビットで量子化されたオーディオデータであることを意味し、ビット番号b55、b54が"01"の場合は、20ビットで量子化されたオーディオデータであることを意味し、ビット番号b55、b54が"10"の場合は、24ビットで量子化されたオーディオデータであることを意味し、ビット番号b55、b54が"11"の場合は、特定せずとされている。ここで、オーディオコーディングモードがリニアPCM(ビット番号b63、b62、b61が"100")に設定されている場合には、量子化を特定せず(ビット番号b55、b54が"11")が記述される。オーディオデータのサンプリング周波数Fsに関しては、ビット番号b53及びb52に記述され、サンプリング周波数Fsが48KHzである場合には、"00"が記述され、サンプリング周波数Fsが96KHzである場合には、"01"が記述され、その他は予約とされている。

【0052】オーディオチャネル数に関しては、ビット番号b50からb48に記述され、ビット番号b50、b49、b48が"000"である場合には、1チャネル(モノラル)であることを意味し、ビット番号b50、b49、b48が"0001"である場合には、2チャネル(ステレオ)であることを意味している。また、ビット番号b50、b49、b48が"010"である場合には、3チャネルであることを意味し、ビット番号b50、b49、b48が"011"である場合には、4チャネルであることを意味し、ビット番号b50、b49、b48が"100"である場合には、5チャネルであることを意味し、ビット番号b50、b49、b48が"101"である場合には、6チャネルであることを意味し、ビット番号b50、b49、b48が"110"である場合には、7チャネルであることを意味し、ビット番号b50、b49、b48が"111"である場合には、8チャネルであることを意味している。

【0053】図7に示したテーブルのビデオマネージャーメニュー(VMGM)の副映像ストリームの属性(VMGM_SPST_ATR)には、図12に示すようにビット番号b47からビット番号b40に副映像コード化モード、予約、副映像表示タイプ、副映像タイプが記述されている。副映像コード化モードの記述としてビット番号b47、b46、b45に"000"が記述される場合には、副映像データが2ビット/ピクセルタイプの規格に基づいてランレンジス圧縮されている旨が記載され、副映像コード化モードの記述としてビット番号b47、b46、b45に"001"が記述される場合には、副映像データが他の規格に基づいてランレンジス圧縮されている旨が記載され、他は予約とされている。

【0054】副映像表示タイプは、ビット番号b44、b43、b42に記述され、VMGM_V_ATR中の表示アスペクト比が3/4(ビット番号b11、b10が"00")のとき、ビット番号b44、b43、b42には、"000"が記述され、この属性情報は、使用しない旨を意味している。また、VMGM_V_ATR中の表示アスペクト比が9/16(ビット番号b11、b10が"11")で、ビット番号b44、b43、b42が"001"の場合には、この副映像ストリームがワイド表示のみを許す旨を意味し、ビット番号b44、b43、b42が"010"の場合には、この副映像ストリームがレターボックス表示のみを許す旨を意味し、ビット番号b44、b43、b42が"011"の場合には、この副映像ストリームがこの副映像ストリームがワイド表示及びレターボックス表示の両方を許す旨を意味し、ビット番号b44、b43、b42が"100"の場合には、この副映像ストリームがこの副映像ストリームがパンスキャン表示のみを許す旨を意味し、ビット番号b44、b43、b42が"110"の場合には、この副映像ストリームがパンスキャン表示及びレターボックス表示の両方を許す旨を意味し、ビット番号b44、b43、b42が"111"の場合には、この副映像ストリームがパンスキャン表示、レターボックス表示及びワイド表示の全てを許す旨を意味している。更に、副映像タイプについては、ビット番号b41、b40に記述され、ビット番号b41、b40が"00"である場合には、特定せず、他は予約とされている。

【0055】再び、図5に示す構造について説明する。図5に示すタイトルサーチポインターテーブル(TT_SRPT)79には、図13に示すように始めにタイトルサーチポインターテーブルの情報(TSPTI)が記載され、次に入力番号1からn(n≤99)に対するタイトルサーチポインタ(TT_SRPT)が必要な数だけ連続的に記載されている。この光ディスクのボリューム中に1タイトルの再生データ、例えば、1タイトルのビデオデータしか格納されていない場合には、1つのタイトルサーチポインタ(TT_SRPT)93しかこのテー

ブル (TT_SRPT) 79に記載されない。

【0056】タイトルサーチポインターテーブル情報 (TSPTR) 92には、図14に示されるようにエンタープログラムチェーンの数 (EN_PGC_Ns) 及びタイトルサーチポインタ (TT_SRPT) 93の終了アドレス (TT_SRPT_EA) が記載されている。このアドレス (TT_SRPT_EA) は、このタイトルサーチポインターテーブル (TT_SRPT) 79の先頭バイトからの相対的なバイト数で記載される。また、図15に示すように各タイトルサーチポインタ (TT_SRPT) には、ビデオタイトルセット番号 (VTS_N)、プログラムチェーン番号 (PGCN) 及びビデオタイトルセット72のスタートアドレス (VTS_SA) が記載されている。

【0057】このタイトルサーチポインタ (TT_SRPT) 93の内容によって再生成されるビデオタイトルセット (VTS) 72、また、プログラムチェーン (PGC) が特定されるとともにそのビデオタイトルセット72の格納位置が特定される。ビデオタイトルセット72のスタートアドレス (VTS_SA) は、ビデオタイトルセット番号 (VTS_N) で指定されるタイトルセットを論理ブロック数で記載される。

【0058】ここで、プログラムチェーン87とは、図16に示すようにあるタイトルのストーリーを再現するプログラム89の集合と定義される。メニュー用のプログラムチェーンにあっては、静止画或いは動画のプログラムが次々に再現されて1タイトルのメニューが完結されることとなる。また、タイトルセット用のプログラムチェーンにあっては、プログラムチェーンが複数プログラムから成るあるストーリーのある章が該当し、プログラムチェーンが連続して再現されることによってある1タイトルの映画が完結される。図16に示されるように各プログラム89は、再生順序に配列された既に説明したセル84の集合として定義される。

【0059】図5に示すようにビデオタイトルセット (VTS) 72の属性情報を記述したビデオタイトルセット属性テーブル (VTS_ATRT) 80は、ビデオタイトルセット属性テーブル情報 (VTS_ATRT) 66、n個のビデオタイトルセット属性サーチポインタ (VTS_ATR_SRPT) 67及びn個のビデオタイトルセット属性 (VTS_ATR) 68から構成され、その順序で記述されている。ビデオタイトルセット属性テーブル情報 (VTS_ATRT) 66には、このテーブル80の情報が記述され、ビデオタイトルセット属性サーチポインタ (VTS_ATR_SRPT) 67には、#1から#nまでのタイトルセットに対応した順序で記述され、同様に#1から#nまでのタイトルセットに対応した順序で記述されたビデオタイトルセット属性 (VTS_ATR) 68を検索するポインタに関する記述がされている。また、ビデオタイトルセット属性

10

20

30

40

50

(VTS_ATR) 68の夫々には、対応するタイトルセット (VTS) の属性が記述されている。

【0060】より詳細には、ビデオタイトルセット属性テーブル情報 (VTS_ATRT) 66には、図18に示すようにビデオタイトルの数がバラメータ (VTS_Ns) として記載され、また、ビデオタイトルセット属性テーブル (VTS_ART) 80の終了アドレスがバラメータ (VTS_ATRT_EA) として記載されている。また、図19に示すように各ビデオタイトルセット属性サーチポインタ (VTS_ATR_SRPT) 67には、対応するビデオタイトルセット属性 (VTS_ATR) 68の開始アドレスがバラメータ (VTS_ATR_SA) として記述されている。更に、ビデオタイトルセット属性 (VTS_ATR) 68には、図20に示すようにこのビデオタイトルセット属性 (VTS_ATR) 68の終了アドレスがバラメータ (VTS_ATR_EA) として記述され、対応するビデオタイトルセットのカテゴリーがバラメータ (VTS_CAT) として記述されている。更にまた、ビデオタイトルセット属性 (VTS_ATR) 68には、対応するビデオタイトルセットの属性情報がバラメータ (VTS_ATRI) として記述されている。このビデオタイトルセットの属性情報は、後に図21及び図22を参照して説明するビデオタイトルセット情報管理テーブル (VTS_MAT) に記述されるビデオタイトルセットの属性情報と同一内容が記述されるため、その説明は、省略する。

【0061】次に、図4に示されたビデオタイトルセット (VTS) 72の論理フォーマットの構造について図21を参照して説明する。各ビデオタイトルセット (VTS) 72には、図21に示すようにその記載順に4つの項目94、95、96、97が記載されている。また、各ビデオタイトルセット (VTS) 72は、共通の属性を有する1又はそれ以上のビデオタイトルから構成され、このビデオタイトル72についての管理情報、例えば、ビデオオブジェクトセット96を再生する為の情報、タイトルセットメニュー (VTS_M) を再生する為の情報及びビデオオブジェクトセット72の属性情報がビデオタイトルセット情報 (VTS_I) に記載されている。

【0062】このビデオタイトルセット情報 (VTS_I) 94のバックアップ97がビデオタイトルセット (VTS) 72に設けられている。ビデオタイトルセット情報 (VTS_I) 94とこの情報のバックアップ (VTS_I_BUP) 97との間には、ビデオタイトルセットメニュー用のビデオオブジェクトセット (VTS_M_VOBS) 95及びビデオタイトルセットタイトル用のビデオオブジェクトセット (VTS_TT_VOBS) 96が配置されている。いずれのビデオオブジェクトセット (VTS_M_VOBS及びVTS_TT_VOBS) 95、96は、既に説明したように図6に示す構造を有し

ている。

【0063】ビデオタイトルセット情報 (VTS_I) 94、この情報のバックアップ (VTS_I_BUP) 97及びビデオタイトルセットタイトル用のビデオオブジェクトセット (VTS_TT_VOBS) 96は、ビデオタイトルセット72にとって必須の項目され、ビデオタイトルセットメニュー用のビデオオブジェクトセット (VTS_M_VOBS) 95は、必要に応じて設けられるオプションとされている。

【0064】ビデオタイトルセット情報 (VTS_I) 94は、図21に示すように7つのテーブル98、99、100、101、111、112、113から構成され、この7つのテーブル98、99、100、101、111、112、113は、論理セクタ間の境界に一致されている。第1のテーブルであるビデオタイトルセット情報管理テーブル (VTS_I_MAT) 98は、必須のテーブルであってビデオタイトルセット (VTS) 72のサイズ、ビデオタイトルセット (VTS) 72中の各情報の開始アドレス及びビデオタイトルセット (VTS) 72中のビデオオブジェクトセット (VOBS) 82の属性が記述されている。

【0065】第2のテーブルであるビデオタイトルセットパートオブタイトルサーチポインターテーブル (VTS_PTT_SRPT) 99は、必須のテーブルであってユーザーが装置のキー操作/表示部4から入力した番号に応じて選定可能なビデオタイトルの部分、即ち、選定可能な当該ビデオタイトルセット72中に含まれるプログラムチェーン (PGC) 及び又はプログラム (PG) が記載されている。ユーザーは、光ディスク10の配布とともにパンフレットに記載した入力番号中から任意の番号をキー操作/表示部4で指定すると、その入力番号に応じたストーリー中の部分からビデオを鑑賞することができる。この選択可能なタイトルのパートは、タイトル提供者が任意に定めることができる。

【0066】第3のテーブルであるビデオタイトルセットプログラムチェーン情報テーブル (VTS_PGC_IT) 100は、必須のテーブルであってVTSのプログラムチェーンに関する情報、即ち、VTSプログラムチェーン情報 (VTS_PGC_I) を記述している。

【0067】第4のテーブルであるビデオタイトルセットメニューPGC_Iユニットテーブル (VTS_M_PGC_I_UT) 111は、ビデオタイトルセットメニュー用のビデオオブジェクトセット (VTS_M_VOBS) 95が設けられる場合には、必須項目とされ、各言語毎に設けられたビデオタイトルセットメニュー (VTS_M) を再現するためのプログラムチェーンについての情報が記述されている。このビデオタイトルセットメニューPGC_Iユニットテーブル (VTS_M_PGC_I_UT) 111を参照することによってビデオオブジェクトセット (VTS_M_VOBS) 95中の指定した言語の

プログラムチェーンを獲得してメニューとして再現することができる。

【0068】第5のテーブルであるビデオタイトルセットタイムサーチマップテーブル (VTS_MAPT) 101は、必要に応じて設けられるオプションのテーブルであって再生表示の一定時間に対するこのマップテーブル (VTS_MAPT) 101が属するタイトルセット72の各プログラムチェーン (PGC) 内のビデオデータの記録位置に関する情報が記述されている。

【0069】第6のテーブルであるビデオタイトルセットセルアドレステーブル (VTS_C_AD_T) 112は、必須項目とされ、図6を参照して説明したように全てのビデオオブジェクト83を構成する各セル84のアドレス或いは、セルを構成するセルピースのアドレスがビデオオブジェクトの識別番号の順序で記載されている。ここで、セルピースとは、セルを構成するピースであって、このセルピースを基準にインタリーブ処理されてセルがビデオオブジェクト83中に配列される。第7のテーブルであるビデオタイトルセットビデオオブジェクトユニットアドレスマップ (VTS_VOBU_AD_MAP) 113は、必須項目とされ、ビデオタイトルセット中のビデオオブジェクトユニット85のスタートアドレスが全てその配列順序で記載されている。

【0070】次に、図21に示したビデオタイトル情報マネージャーテーブル (VTS_I_MAT) 98及びビデオタイトルセットプログラムチェーン情報テーブル (VTS_PGC_IT) 100について図22から図34を参照して説明する。

【0071】図22は、ビデオタイトル情報マネージャーテーブル (VTS_I_MAT) 98の記述内容を示している。このテーブル (VTS_I_MAT) 98には、記載順にビデオタイトルセット識別子 (VTS_ID) 、ビデオタイトルセット72のサイズ (VTS_SZ) 、このDVDビデオ規格のバージョン番号 (VER_N) 、ビデオタイトルセット72のカテゴリー (VTS_CAT) が記載されるとともにこのビデオタイトル情報マネージャーテーブル (VTS_I_MAT) 98の終了アドレス (VTS_I_MAT_EA) が記載されている。また、このテーブル (VTS_I_MAT) 98には、VTSメニュー (VTS_M) のビデオオブジェクトセット (VTS_M_VOBS) 95の開始アドレス (VTS_M_VOBS_SA) 及びビデオタイトルセット (VTS) におけるタイトルの為のビデオオブジェクトのスタートアドレス (VTS_TT_VOB_SA) の開始アドレスが記述されている。VTSメニュー (VTS_M) のビデオオブジェクトセット (VTS_M_VOB_S) 95がない場合には、その開始アドレス (VTS_M_VOB_SA) には、“00000000h”が記載される。VTS_I_MATの終了アドレス (VTS_I_MAT_EA) は、ビデオタイトルセット情報管理テ

ーブル (VTSI_MAT) 94 の先頭バイトからの相対ブロック数で記載され、VTSM_VOBS の開始アドレス (VTSM_VOBS_SA) 及び VTSTT_VOB の開始アドレス (VTSTT_VOB_SA) は、このビデオタイトルセット (VTS) 72 の先頭論理ブロックからの相対論理ブロック数 (RLBN) で記述される。

【0072】更に、このテーブル (VTSI_MAT) 98 には、ビデオタイトルセットパートオブタイトルサーチポインタテーブル (VTS_PTT_SRPT) 99 のスタートアドレス (VTS_PTT_SRPT_SA) がビデオタイトルセット情報 (VTSI) 94 の先頭論理ブロックからの相対ブロック数で記載されている。また、このテーブル (VTSI_MAT) 98 には、ビデオタイトルセットプログラムチェーン情報テーブル (VTS_PGCIT) 100 のスタートアドレス (VTS_PGCIT_SA) 及びビデオタイトルセットメニュー用の PGC1 ユニットテーブル (VTS_PGC1_UT) 111 のスタートアドレス (VTS_PGC1_UT_SA) がビデオタイトルセット情報 (VTSI) 94 の先頭論理ブロックからの相対ブロック数で記載され、ビデオタイトルセット (VTS) のタイムサーチマップテーブル (VTS_MAPT) 101 のスタートアドレス (VTS_MAPT_SA) がこのビデオタイトルセット (VTS) 72 の先頭論理セクタからの相対論理セクタで記述される。同様に、VTS アドレステーブル (VTS_C_ADT) 112 及び VTS_VOBU のアドレスマップ (VTS_VOBU_ADMAP) 113 がこのビデオタイトルセット (VTS) 72 の先頭論理セクタからの相対論理セクタで記述される。

【0073】このテーブル (VTSI_MAT) 98 には、ビデオタイトルセット (VTS) 72 中のビデオタイトルセットメニュー (VTSM) の為のビデオオブジェクトセット (VTSM_VOBS) 95 のビデオ属性 (VTSM_V_ATR)、オーディオストリーム数 (VTSM_AST_Ns) 並びにそのオーディオストリーム属性 (VTSM_AST_ATR)、副映像ストリーム数 (VTSM_SPST_Ns) 及びその副映像ストリーム属性 (VTSM_SPST_ATR) が記述されている。同様にこのテーブル (VTSI_MAT) 98 には、ビデオタイトルセット (VTS) 72 中のビデオタイトルセット (VTS) のタイトル (VTSTT) の為のビデオオブジェクトセット (VTST_VOB) 96 のビデオ属性 (VTST_V_ATR)、オーディオストリーム数 (VTST_AST_Ns) 並びにそのオーディオストリーム属性 (VTST_AST_ATR)、副映像ストリーム数 (VTST_SPST_Ns) 及びその副映像ストリーム属性 (VTST_SPST_ATR) が記述されている。更に、ビデオタイトルセット

10 50

(VTS) のマルチチャンネルオーディオストリームの属性 (VTSM_MU_AST_ATR) がこのテーブル (VTSI_MAT) 98 に記述されている。

【0074】図 2 に記述したビデオ属性、オーディオストリーム属性及び副映像ストリーム属性に関して次に詳述する。VTSM の為のビデオオブジェクトセット (VTSM_VOBS) 95 のビデオ属性 (VTSM_V_ATR) 及びビデオタイトルセットタイトル (VTSTT) の為のビデオオブジェクトセット (VTST_VOB) 96 のビデオ属性 (VTST_V_ATR) には、既に図 8、図 9 及び図 10A、10B を参照して説明したビデオマネージャーメニュー用ビデオオブジェクト (VMGM_VOBS) のビデオ属性 (VMGM_V_ATR) と同様の属性情報が記述されている。即ち、ビデオ属性 (VTSM_V_ATR) 及び (VTST_V_ATR) には、図 8 に示されるようにビット番号 b 8 からビット番号 b 15 にビデオマネージャーメニュー (VMGM) のビデオオブジェクトセット 76 ビデオの属性として圧縮モード、フレームレート、表示アスペクト比、及び表示モードが記述され、ビット番号 b 0 からビット番号 b 7 は、予約として今後の為に空けられている。ビット番号 b 15、b 14 に "00" が記述される場合には、MPEG-1 の規格に基づいてビデオ圧縮モードでメニュー用ビデオデータが圧縮されていることを意味し、ビット番号 b 15、b 14 に "01" が記述される場合には、MPEG-2 の規格に基づいてビデオ圧縮モードでメニュー用ビデオデータが圧縮されていることを意味し、他の記述は、予約として今後の為に空けられている。ビット番号 b 13、b 15 に "00" が記述される場合には、メニュー用ビデオデータは、毎秒 29.27 フレームが再現されるフレームレート (29.27/S) を有する旨を意味している。即ち、ビット番号 b 13、b 12 に "00" が記述される場合には、メニュー用ビデオデータは、NTSC 方式が採用された TV システム用のビデオデータであって、1 フレームを水平走査周波数 60 Hz で走査線数 525 本で描くフレームレートを採用していることを意味している。また、ビット番号 b 13、b 12 に "01" が記述される場合には、メニュー用ビデオデータは、毎秒 25 フレームが再現されるフレームレート (25/S) を有する旨を意味している。即ち、PAL 方式が採用された TV システム用のビデオデータであって、1 フレームを周波数 50 Hz で走査線数 625 本で描くフレームレートを採用していることを意味している。、ビット番号 b 13、b 15 の他の記述は、予約として今後の為に空けられている。

【0075】更に、ビット番号 b 11、b 10 に "00" が記述される場合には、メニュー用ビデオデータは、表示のアスペクト比 (縦/横比) が 3/4 であることを意味し、また、ビット番号 b 11、b 10 に "11" が記述される場合には、メニュー用ビデオデータ

は、表示のアスペクト比（縦／横比）が9／16であることを意味し、他の記述は、予約として今後の為に空けられている。

【0076】更に、表示のアスペクト比が3／4である場合、即ち、ビット番号b11、b10に”00”が記述される場合においては、ビット番号b9、b8には、”11”が記述される。表示のアスペクト比が9／16である場合、即ち、ビット番号b11、b10に”11”が記述される場合においては、メニュー用ビデオデータをパンスキャン及び／又はレターボックスで表示することを許可しているか否かが記載される。即ち、ビット番号b9、b8に”00”が記述される場合には、パンスキャン及びレターボックスの両者の何れでも表示することを許可する旨を意味し、ビット番号b9、b8に”01”が記述される場合には、パンスキャンで表示することを許可するが、レターボックスでの表示を禁止する旨を意味している。また、ビット番号b9、b8に”10”が記述される場合には、パンスキャンでの表示を禁止するが、レターボックスで表示を許可する旨を意味している。ビット番号b9、b8に”11”が記述される場合には、特に特定しない旨を意味している。上述した光ディスクに記録されたビデオデータとTVモニター6上の再生スクリーン画像との関係は、図9及び図10A、10Bを参照した説明と同一であるのでその説明は省略する。

【0077】また、VTSMの為のビデオオブジェクトセット（VTSM_VOBS）95のオーディオストリーム属性（VTSM_AST_ATR）及びビデオタイトルセットタイトル（VTSTT）の為のビデオオブジェクトセット（VTST_VOBS）96のオーディオストリーム属性（VTS_AST_ATR）には、既に図11を参照して説明したビデオマネージャーメニュー用ビデオオブジェクト（VMGM_VOBS）のオーディオストリーム属性（VMGM_AST_ATR）と略同様の属性情報が記述されている。即ち、VTSメニュー用ビデオオブジェクトセット（VTSM_VOBS）95のオーディオストリームの属性（VTSM_AST_ATR）には、図23に示されるようにビット番号b63からビット番号b48にオーディオコーディングモード、オーディオタイプ、オーディオのアプリケーションID、量子化、サンプリング周波数、予約、及びオーディオチャネルの数が記述され、ビット番号b47からビット番号b0は、今後の為に予約として空けられている。ビデオタイトルセットタイトル（VTSTT）のオーディオストリームの属性（VTS_AST_ATR）には、図23に示されるようにビット番号b63からビット番号b48にオーディオコーディングモード、マルチチャネルの拡張、オーディオタイプ、オーディオのアプリケーションID、量子化、サンプリング周波数及びオーディオチャネルの数が記述され、ビット番号b47

からビット番号b40及びビット番号b39からビット番号b32には、特定コードが記述され、ビット番号b31からビット番号b24には、特定コードの為の予約が設けられている。また、ビット番号b23からビット番号b8は、今後の為に予約として空けられ、ビット番号b8からビット番号b0には、応用情報が記述されている。ここで、VTSメニュー用ビデオオブジェクトセット（VTSM_VOBS）95がない場合、或いは、そのビデオオブジェクトセットにオーディオストリームがない場合には、ビット番号b63からビット番号b0の各ビットに”0”が記述される。

【0078】VTSM及びVTSTのオーディオストリームの属性（VTSM_AST_ATR, VTS_AST_ATR）のいずれにおいてもオーディオコーディングモードは、ビット番号b63、b62、b61に記述されている。このオーディオコーディングモードに”000”が記述される場合には、ドルビーAC-3（Dolby Laboratories Licensing Corporationの商標）でオーディオデータがコード化されていることを意味し、オーディオコーディングモードに”010”が記述される場合には、拡張ビットストリーム無しにMPEG-1或いはMPEG-2でオーディオデータが圧縮されていることを意味している。また、オーディオコーディングモードに”011”が記述される場合には、拡張ビットストリームを備えてMPEG-2でオーディオデータが圧縮されていることを意味し、オーディオコーディングモードに”100”が記述される場合には、リニアPCMでオーディオデータがコード化されていることを意味している。オーディオデータについては、他の記述は、今後の為の予約とされている。ビデオデータの属性において、1フレームを水平走査周波数60hzで走査線数525本で描くフレームレート（VTSM_V_ATR及びVTS_V_ATRにおいてビット番号b13、b12に”00”が記述される。）場合には、ドルビーAC-3（ビット番号b63、b62、b61が”000”）或いは、リニアPCM（ビット番号b63、b62、b61が”100”）が設定されるべきであるとされている。また、ビデオデータの属性において、1フレームを周波数50Hzで走査線数625本で描くフレームレート（VTSM_V_ATR及びVTS_V_ATRにおいてビット番号b13、b12に”01”が記述される。）場合には、MPEG-1、MPEG-2（ビット番号b63、b62、b61が”010”又は”011”）或いは、リニアPCM（ビット番号b63、b62、b61が”100”）が設定されるべきであるとされている。VTSTのオーディオストリームの属性（VTS_AST_ATR）のオーディオコーディングモードにおいてビット番号b60には、マルチチャネルの拡張が記述されるが、このビット番号b60が”0”である場合には、オーディオストリームに関係したVTS

のマルチチャンネルオーディオストリーム属性 (VTS_MU_AST_ATR) が無効である旨を意味し、このビット番号 b 60 が "1" である場合には、オーディオストリームに関係した VTS のマルチチャンネルオーディオストリーム属性 (VTS_MU_AST_ATR) にリンクさせる旨を意味している。

【0079】オーディオタイプは、ビット番号 b 59 及び b 58 に記述され、特定しない場合には、"00" が記述され、言語、即ち、人の音声である場合には、"01" が記述され、その他は予約とされている。また、オーディオの応用分野の ID は、ビット番号 b 57 及び b 56 に記述され、特定しない場合には、"00" が記述され、カラオケの場合は、"01" が記述され、サラウンドの場合には、"10" が記述され、その他は予約とされている。更に、オーディオデータの量子化に関しては、ビット番号 b 55 及び b 54 に記述され、ビット番号 b 55 及び b 54 にが "00" の場合は、16 ビットで量子化されたオーディオデータであることを意味し、ビット番号 b 55 及び b 54 にが "01" の場合は、20 ビットで量子化されたオーディオデータであることを意味し、ビット番号番号 b 55 及び b 54 にが "10" の場合は、24 ビットで量子化されたオーディオデータであることを意味し、ビット番号番号 b 55 及び b 54 にが "11" の場合は、特定せずとされている。ここで、オーディオコーディングモードがリニア PCM (ビット番号 b 63, b 62, b 61 が "100") に設定されている場合には、量子化を特定せず (ビット番号 b 55, b 54 が "11") が記述される。オーディオデータのサンプリング周波数 Fs に関しては、ビット番号 b 69 及び b 68 に記述され、サンプリング周波数 Fs が 48 kHz である場合には、"00" が記述され、サンプリング周波数 Fs が 96 kHz である場合には、"01" が記述され、その他は予約とされている。

【0080】オーディオチャネル数に関しては、ビット番号 b 50 から b 48 に記述され、ビット番号 b 50, b 49, b 48 にが "000" である場合には、1 チャンネル (モノラル) であることを意味し、ビット番号 b 50, b 49, b 48 が "001" である場合には、2 チャンネル (ステレオ) であることを意味している。また、ビット番号 b 50, b 49, b 48 が "010" である場合には、3 チャンネルであることを意味し、ビット番号 b 50, b 49, b 48 が "011" である場合には、4 チャンネルであることを意味し、ビット番号 b 50, b 49, b 48 が "100" である場合には、5 チャンネルであることを意味し、ビット番号 b 50, b 49, b 48 が "101" である場合には、6 チャンネルであることを意味し、ビット番号番号 b 50, b 49, b 48 が "110" である場合には、7 チャンネルであることを意味し、ビット番号 b 50, b 49, b 48 が "111" である場合には、8 チャンネルであると

とを意味している。ここで、3 チャンネル以上がマルチチャネルとされる。特定コードは、b 47 から b 40 及び b 39 から b 32 に記載されるが、ここには、オーディオストリームのタイプが言語、即ち、音声である場合には、ISO-639 で定められたその言語のコードが言語シンボルで記載される。オーディオストリームのタイプが言語、即ち、音声でない場合には、この領域は、予約とされる。

【0081】VTS オーディオストリームの数 (VTS_AST_Ns) は、0 から 8 の間で設定される。この為、設定可能なストリーム数に対応して 8 個の VTS オーディオストリームの属性 (VTS_AST_ATR) が用意されている。即ち、VTS オーディオストリーム #0 から VTS オーディオストリーム #7 までの VTS オーディオストリーム属性 (VTS_AST_Ns) の領域が設けられ、VTS オーディオストリームが 8 個よりも少なく、対応するオーディオストリームがない場合には、ないオーディオストリームに対応する図 22 に示す VTS オーディオストリーム属性 (VTS_AST_Ns) の記述は、全てのビットが "0" となる。

【0082】更に、VTSM の為のビデオオブジェクトセット (VTSM_VOBS) 95 の副映像ストリーム属性 (VTSM_SPST_ATR) 及びビデオタイトルセットタイトル (VTSTT) の為のビデオオブジェクトセット (VTSTT_VOBS) 96 の副映像ストリーム属性 (VTSPST_ATR) には、既に図 11 を参照して説明したビデオマネージャーメニュー用ビデオオブジェクト (VMGM_VOBS) の副映像ストリーム属性 (VMGM_SPST_ATR) と同様の属性情報が記述されている。即ち、VTSM の為のビデオオブジェクトセット (VTSM_VOBS) 95 の副映像ストリーム属性 (VTSPST_ATR) においては、図 12 に示すようにビット番号 b 47 からビット番号 40 に副映像コード化モード、副映像表示タイプ、副映像タイプが記述され、ビット番号 b 39 からビット番号 b 0 が予約とされている。VTSTT の為のビデオオブジェクトセット (VTSTT_VOBS) 96 の副映像ストリーム属性 (VTSPST_ATR) においては、図 12 に示すようにビット番号 b 47 からビット番号 B 40 に副映像コード化モード、副映像表示タイプ、副映像タイプが記述され、ビット番号 b 39 からビット番号 b 32 及び b 31 にビット番号 b 31 からビット番号 b 24 に特定コードが記述され、ビット番号 b 23 からビット番号 b 16 が特定コードの予約とされ、ビット番号 b 15 からビット番号 b 8 が特定コードの拡張が記述されている。更に、ビット番号 b 7 からビット番号 b 0 は、予約とされている。

【0083】副映像コード化モードの記述としてビット番号 b 47, b 46, b 45 に "000" が記述される場合には、副映像データが 2 ビット / ピクセルタイプの

規格に基づいてランレンジス圧縮されている旨が記載され、副映像コード化モードの記述としてビット番号b 47, b 46, b 45に“0 0 1”が記述される場合には、副映像データが他の規格に基づいてランレンジス圧縮されている旨が記載され、他は予約とされている。予約には、例えば、圧縮されていない副映像データである旨を示すR o wの符号化方式である旨が記載されても良い。

【0 0 8 4】副映像表示タイプは、ビット番号b 44, b 43, b 42に記述され、V T S M _ V _ A T R、或いは、V M G M _ V _ A T R中の表示アスペクト比が3/4(ビット番号b 11, b 10が“00”)のとき、ビット番号b 44, b 43, b 42には、“0 0 0”が記述され、この属性情報は、使用しない旨を意味している。またV T S M _ V _ A T R、或いは、V M G M _ V _ A T R中の表示アスペクト比が9/16(ビット番号b 11, b 10が“11”)で、ビット番号b 44, b 43, b 42が“0 0 1”的場合には、この副映像ストリームがワイド表示のみを許す旨を意味し、ビット番号b 44, b 43, b 42が“0 1 1”的場合には、この副映像ストリームがこの副映像ストリームがワイド表示及びレターボックス表示の両方を許す旨を意味し、ビット番号b 44, b 43, b 42が“1 0 0”的場合には、この副映像ストリームがパンスキャン表示のみを許す旨を意味し、ビット番号b 44, b 43, b 42が“1 1 0”的場合には、この副映像ストリームがパンスキャン表示及びレターボックス表示の両方を許す旨を意味し、ビット番号b 44, b 43, b 42が“1 1 1”的場合には、この副映像ストリームがパンスキャン表示、レターボックス表示及びワイド表示の全てを許す旨を意味している。更に、副映像タイプについては、ビット番号b 41, b 40に記述され、ビット番号b 41, b 40が“0 0”である場合には、特定せず、ビット番号b 41, b 40が“0 1”である場合には、言語、即ち、字幕である旨を意味している。ビット番号b 41, b 40の他記述は予約とされている。この予約の例としては、絵柄等がある。

【0 0 8 5】ビット番号b 39からビット番号b 32及びビット番号b 31からビット番号b 24に特定コードが記載されるが、ここには、副映像ストリームのタイプが言語、字幕である場合には、I S O - 6 3 9で定められたその言語のコードが言語シンボルで記載される。副映像ストリームのタイプが言語でない場合には、この領域は、予約とされる。また、ビット番号b 15からビット番号b 8に記述される特定コードの拡張には、字幕のキャラクタのタイプが記述される。このビット番号b 15からビット番号b 8に“0 0 h”が記述される場合

には、副映像ストリームのキャラクタが通常のキャラクタ或いは分類がない旨を意味し、ビット番号b 15からビット番号b 8に“0 1 h”が記述される場合には、大きなキャラクタである旨を意味し、他は、システムの予約、或いは、ビデオ提供者によって定められる。

【0 0 8 6】V T Sメニューの副映像数(V T S M _ S P S T _ N s)は、基本的には、1つであるが、0から3の間の数字に設定できる。この場合、V T Sメニューの副映像の属性(V T S M _ S P S T _ A T R)は、夫々が図12のような記述を有する副映像のストリーム番号#0、ストリーム番号#1、ストリーム番号#2の順序で記述される。V T Sメニューの副映像ストリーム数(V T S M _ S P S T _ N s)が3より小さい場合には、その存在しないV T Sメニューの副映像ストリームに該当するV T Sメニューの副映像の属性(V T S M _ S P S T _ A T R)には、全てのビットに“0”が記述される。V T Sの副映像ストリーム数(V T S _ S P S T _ N s)は、0から32の間の数字に設定できる。この場合、V T Sの副映像の属性(V T S _ S P S T _ A T R)は、夫々が図12のような記述を有する副映像のストリーム番号#0からストリーム番号#31の順序で記述される。V T Sの副映像ストリーム数(V T S _ S P S T _ N s)が32より小さい場合には、その存在しないV T Sの副映像ストリームに該当するV T Sの副映像の属性(V T S M _ S P S T _ A T R)には、全てのビットに“0”が記述される。

【0 0 8 7】ビデオタイトルセット(V T S)のマルチチャンネルオーディオストリームの属性(V T S _ M U _ A S T _ A T R)には、マルチチャネルオーディオストリーム#0からマルチチャネルオーディオストリーム#7までの属性情報が記述されている。各マルチチャネルオーディオストリーム属性(V T S _ M U _ A S T _ A T R)には、オーディオチャネルの内容(カラオケ或いはサラウンド等)、オーディオミキシングの方式等が記述される。

【0 0 8 8】図21に示されるV T Sプログラムチェーン情報テーブル(V T S _ P G C I T)100は、図24に示すような構造を備えている。この情報テーブル(V T S _ P G C I T)100には、V T Sプログラムチェーン(V T S _ P G C)に関する情報(V T S _ P G C I)が記載され、始めの項目としてV T Sプログラムチェーン(V T S _ P G C)に関する情報テーブル(V T S _ P G C I T)100の情報(V T S _ P G C I T _ I)102が設けられている。この情報(V T S _ P G C I T _ I)102に続いてこの情報テーブル(V T S _ P G C I T)100には、この情報テーブル(V T S _ P G C I T)100中のV T Sプログラムチェーン(V T S _ P G C)の数(#1から#n)だけV T Sプログラムチェーン(V T S _ P G C)をサーチするV T S _ P G C Iサーチポインタ(V T S _ P G C I

T_SRP) 103が設けられ、最後にVTSプログラムチェーン(VTS_PGC)に対応した数(#1から#n)だけ各VTSプログラムチェーン(VTS_PGC)に関する情報(VTS_PGC1)104が設けられている。

【0089】VTSプログラムチェーン情報テーブル(VTS_PGC1T)100の情報(VTS_PGC1T_I)102には、図25に示されるようにVTSプログラムチェーン(VTS_PGC)の数(VTS_PGC_Ns)が内容として記述され及びこのテーブル情報(VTS_PGC1T_I)102の終了アドレス(VTS_PGC1T_EA)がこの情報テーブル(VTS_PGC1T)100の先頭バイトからの相対的なバイト数で記述されている。

【0090】また、VTS_PGC1Tサーチポインタ(VTS_PGC1T_SRP)103には、図26に示すようにビデオタイトルセット(VTS)72のプログラムチェーン(VTS_PGC)の属性(VTS_PGC_CAT)及びこのVTS_PGC情報テーブル(VTS_PGC1T)100の先頭バイトからの相対的なバイト数でVTS_PGC情報(VTS_PGC1)のスタートアドレス(VTS_PGC1_SA)が記述されている。ここで、VTS_PGC属性(VTS_PGC_CAT)には、属性として例えば、最初に再生されるエントリープログラムチェーン(エントリーPGC)か否かが記載される。通常、エントリープログラムチェーン(PGC)は、エントリープログラムチェーン(PGC)でないプログラムチェーン(PGC)に先だって記載される。

【0091】ビデオタイトルセット内のPGC情報(VTS_PGC1)104には、図27に示すように4つ項目が記載されている。このPGC情報(VTS_PGC1)104には、始めに必須項目のプログラムチェーン一般情報(PGC_G1)105が記述され、これに続いてビデオオブジェクトがある場合だけ必須の項目とされる少なくとも3つの項目106、107、108が記載されている。即ち、その3つの項目としてプログラムチェーンプログラムマップ(PGC_PGMAP)106、セル再生情報テーブル(C_PBIT)107及びセル位置情報テーブル(C_POSIT)108がPGC情報(VTS_PGC1)104に記載されている。

【0092】プログラムチェーン一般情報(PGC_G1)105には、図28に示すようにプログラムチェーン(PGC)のカテゴリー(PGC1_CAT)、プログラムチェーン(PGC)の内容(PGC_CNT)及びプログラムチェーン(PGC)の再生時間(PGC_PBTIME)が記載されている。PGCのカテゴリー(PGC1_CAT)には、当該PGCのコピーが可能であるか否か及びこのPGC中のプログラムの再生が

連続であるか或いはランダム再生であるか否か等が記載される。PGCの内容(PGC_CNT)には、このプログラムチェーンの構成内容、即ち、プログラム数、セルの数等が記載される。PGCの再生時間(PGC_PBTIME)には、このPGC中のプログラムのトータル再生時間等が記載される。この再生時間は、再生手順には無関係に連続してPGC内のプログラムを再生する場合のプログラムの再生時間が記述される。

【0093】また、プログラムチェーン一般情報(PGC_G1)105には、PGC副映像ストリーム制御(PGC_SPST_CTL)、PGCオーディオストリーム制御(PGC_AST_CTL)及びPGC副映像パレット(PGC_SP_PLT)が記載されている。PGC副映像ストリーム制御(PGC_SPST_CTL)には、PGCで使用可能な副映像数が記載され、PGCオーディオストリーム制御(PGC_AST_CTL)には、同様にPGCで使用可能なオーディオストリームの数が記載される。PGC副映像パレット(PGC_SP_PLT)には、このPGCの全ての副映像ストリームで使用する所定数のカラーパレットのセットが記載される。

【0094】更に、PGC一般情報(PGC_G1)105には、PGCプログラムマップ(PGC_PGMAP_SA)のスタートアドレス(PGC_PGMAP_SA_SA)、セル再生情報テーブル(C_PBIT)107のスタートアドレス(C_PBIT_SA)及びセル位置情報テーブル(C_POSIT)108のスタートアドレス(C_POSIT_SA)が記載されている。いずれのスタートアドレス(C_PBIT_SA及びC_POSIT_SA)もVTS_PGC情報(VTS_PGC1)の先頭バイトからの相対的な論理バイト数で記載される。

【0095】プログラムチェーンプログラムマップ(PGC_PGMAP)106は、図29に示すようにPGC内のプログラムの構成を示すマップである。このマップ(PGC_PGMAP)106には、図29及び図30に示すようにプログラムの開始セル番号であるエントリーセル番号(CELLLN)がセル番号の昇順に記述されている。また、エントリーセル番号の記述順にプログラム番号が1から割り当てられている。従って、このマップ(PGC_PGMAP)106の最初のエントリーセル番号は、#1でなければならないとされている。

【0096】セル再生情報テーブル(C_PBIT)107は、PGCのセルの再生順序を定義している。このセル再生情報テーブル(C_PBIT)107には、図31に示すようにセル再生情報(C_PBIT)が連続して記載されている。基本的には、セルの再生は、そのセル番号の順序で再生される。セル再生情報(C_PBIT)には、図32に示されるように再生情報(P_PBIT)としてセルカテゴリー(C_CAT)が記載され

る。このセルカテゴリー (C_CAT) には、セルがセルブロック中のセルであるか、また、セルブロック中のセルであれば最初のセルであるかを示すセルブロックモード、セルがブロック中の一部ではない、或いは、アングルブロックであるかを示すセルブロックタイプ、システムタイムクロック (STC) の再設定の要否を示すSTC不連続フラグが記載される。ここで、セルブロックとは、ある特定のアングルのセルの集合として定義される。アングルの変更は、セルブロックを変更することによって実現される。即ち、野球を例にとれば、外野からのシーンを撮影したアングルブロックから内野からのシーンを撮影したアングルブロックの変更がアングルの変更に相当する。

【0097】また、このセルカテゴリー (C_CAT) には、セル内では連続して再生するか或いはセル内の各ビデオオブジェクトユニット (VOBU) 単位で静止するかを示すセル再生モード、セルの再生の後に静止させるか否か或いはその静止時間を示すセルナビゲーション制御が記載されている。

【0098】また、図32に示すようにセル再生情報テーブル (C_PBIT) 107の再生情報 (P_PBI) は、PGCの全再生時間を記述したセル再生時間 (C_PBTM) を含んでいる。アングルセルブロックがPGC中にある場合には、そのアングルセル番号1の再生時間がそのアングルブロックの再生時間を表している。更に、セル再生情報テーブル (C_PBIT) 107には、当該セルが記録されているビデオオブジェクトユニット (VOBU) 85の先頭論理セクタからの相対的な論理セクタ数でセル中の先頭ビデオオブジェクトユニット (VOBU) 85のスタートアドレス (C_FVOBU_SA) が記載され、また、当該セルが記録されているビデオオブジェクトユニット (VOBU) 85の先頭論理セクタからの相対的な論理セクタ数でセル中の最終ビデオオブジェクトユニット (VOBU) 85のスタートアドレス (C_LVOBU_SA) が記載される。

【0099】セル位置情報テーブル (C_POSI) 108は、PGC内で使用するセルのビデオオブジェクト (VOB) の識別番号 (VOB_ID) 及びセルの識別番号 (C_ID) を特定している。セル位置情報テーブル (C_POSI) には、図33に示されるようにセル再生情報テーブル (C_PBIT) 107に記載されるセル番号に対応するセル位置情報 (C_POSI) がセル再生情報テーブル (C_PBIT) と同一順序で記載される。このセル位置情報 (C_POSI) には、図34に示すようにセルのビデオオブジェクトユニット (VOBU) 85の識別番号 (C_VOB_IDN) 及びセル識別番号 (C_IDN) が記述されている。

【0100】図6を参照して説明したようにセル84は、ビデオオブジェクトユニット (VOBU) 85の集

合とされ、ビデオオブジェクトユニット (VOBU) 85は、ナビゲーション (NV) パック86から始まるパック列として定義される。従って、セル84中の最初のビデオオブジェクトユニット (VOBU) 85のスタートアドレス (C_FVOBU_SA) は、NVパック86のスタートアドレスを表すこととなる。このNVパック86は、図35に示すようにパックヘッダ110、システムヘッダ111及びナビゲーションデータとしての2つのパケット、即ち、再生(presentation)制御情報 (PCI) パケット116及びデータサーチ情報 (DSI) パケット117から成る構造を有し、図35に示すようなバイト数が各部に付り当たられ、1パックが1論理セクタに相当する2048バイトに定められている。また、このNVパックは、そのグループオブピクチャー (GOP) 中の最初のデータが含まれるビデオパックの直前に配置されている。オブジェクトユニット85がビデオパックを含まない場合であってもNVパックがオーディオパック又は/及び副映像パックを含むオブジェクトユニットの先頭に配置される。このようにオブジェクトユニットがビデオパックを含まない場合であってもオブジェクトユニットがビデオパックを含む場合と同様にオブジェクトユニットの再生時間は、ビデオが再生される単位を基準に定められる。

【0101】ここで、GOPとは、MPEGの規格で定められ、既に説明したように複数画面を構成するデータ列として定義される。即ち、GOPとは、圧縮されたデータに相当し、この圧縮データを伸張させると動画を再生することができる複数フレームの画像データが再生される。パックヘッダ110及びシステムヘッダ111は、MPEG2のシステムレーヤで定義され、パックヘッダ110には、パック開始コード、システムクロックリファレンス (SCR) 及び多重化レートの情報が格納され、システムヘッダ111には、ビットレート、ストリームIDが記載されている。PCIパケット116及びDSIパケット117のパケットヘッダ112、114には、同様にMPEG2のシステムレーヤに定められているようにパケット開始コード、パケット長及びストリームIDが格納されている。

【0102】他のビデオ、オーディオ、副映像パック88、90、91は、図36に示すようにMPEG2のシステムレーヤに定められると同様にパックヘッダ120、パケットヘッダ121及び対応するデータが格納されたパケット122から構成され、そのパック長は、2048バイトに定められている。これらの各パックは、論理ブロックの境界に一致されている。

【0103】PCIパケット116のPCIデータ (PCI) 113は、VOBユニット (VOBU) 85内のビデオデータの再生状態に同期してプレゼンテーション、即ち、表示の内容を変更する為のナビゲーションデータである。即ち、PCIデータ (PCI) 113に

は、図37に示されるようにPCI全体の情報としてのPCI一般情報(PCI_GI)及びアングル変更時における各飛び先アングル情報としてのアングル情報(NSMLS_ANGLI)が記述されている。PCI一般情報(PCI_GI)には、図38に示されるようにPCI113が記録されているVOBU85の論理セクタからの相対的論理ブロック数でそのPCI113が記録されているNVパック(NV_PCK)86のアドレス(NV_PCK_LBN)が記述されている。また、PCI一般情報(PCI_GI)には、VOBU85のカテゴリー(VOBU_CAT)、VOBU85のスタート再現時間(VOBU_S_PTM)及び再現終了時間(VOBU_EPTM)が記述されている。ここで、VOBU85のスタートPTS(VOBU_SPTS)は、当該PCI113が含まれるVOBU85中のビデオデータの再生開始時間(スタートプレゼンテーションタイム)を示している。この再生開始時間は、VOBU85中の最初の再生開始時間である。通常は、最初のピクチャーは、MPEGの規格におけるIピクチャー(Intra-Picture)の再生開始時間に相当する。VOBU85の終了PTS(VOBU_EPTS)は、当該PCI113が含まれるVOBU85の再生終了時間(終了プレゼンテーションタイム)を示している。

【0104】図35に示したDSIパケット117のDSIデータ(DSI)115は、VOBユニット(VOBU)85のサーチを実行する為のナビゲーションデータである。DSIデータ(DSI)115には、図39に示すようにDSI一般情報(DSI_GI)、シームレス再生情報(SML_PBI)、アングル情報(SML_AGLI)、ナビゲーションパックのアドレス情報(NV_PCK_ADI)及び同期再生情報(SYNC_I)が記述されている。

【0105】DSI一般情報(DSI_GI)は、そのDSIデータ115全体の情報が記述されている。即ち、図40に示すようにDSI一般情報(DSI_GI)には、NVパック86のシステム時刻基準参照値(NV_PCK_SCR)が記載されている。このシステム時刻基準参照値(NV_PCK_SCR)は、図1に示す各部に組み込まれているシステムタイムクロック(STC)に格納され、このSTCを基準にビデオ、オーディオ及び副映像パックがビデオ、オーディオ及び副映像デコーダ部58、60、62でデコードされ、ビデオ及び音声がモニタ部6及びスピーカ部8で再生される。DSI一般情報(DSI_GI)には、DSI115が記録されているVOBセット(VOBS)82の先頭論理セクタからの相対的論理セクタ数(RLSN)でDSI115が記録されているNVパック(NV_PCK)86のスタートアドレス(NV_PCK_LBN)が記載され、VOBユニット(VOBU)の先頭論理セクタからの相対的論理セクタ数(RLSN)でDSI115が記録されているVOBユニット(VOBU)85中の最終バックのアドレス(VOBU_EA)が記載されている。

10

【0106】更に、DSI一般情報(DSI_GI)には、DSI115が記録されているVOBユニット(VOBU)の先頭論理セクタからの相対的論理セクタ数(RLSN)でこのVOBU内での最初のIピクチャーの最終アドレスが記録されているVパック(V_PCK)88の終了アドレス(VOBU_IP_EA)が記載され、当該DSI115が記録されているVOBU83の識別番号(VOBU_IP_IDN)及び当該DSI115が記録されているセルの識別番号(VOBU_C_IDN)が記載されている。

【0107】DSIのナビゲーションパックアドレス情報には、所定数のナビゲーションパックのアドレスが記述されている。このアドレスを参照してビデオの早送り等が実行される。また、同期情報(SYNC_I)には、DSI115が含まれるVOBユニット(VOBU)のビデオデータの再生開始時間と同期して再生する副映像及びオーディオデータのアドレス情報が記載される。即ち、図41に示すようにDSI115が記録されているNVパック(NV_PCK)86からの相対的な論理セクタ数(RLSN)で目的とするオーディオパック(A_PCK)91のスタートアドレス(A_SYNCA)が記載される。オーディオストリームが複数(最大8)ある場合には、その数だけ同期情報(SYNC_I)が記載される。また、同期情報(SYNC_I)には、目的とするオーディオパック(SP_PCK)91を含むVOBユニット(VOBU)85のNVパック(NV_PCK)86のアドレス(SP_SYNCA)がDSI115が記録されているNVパック(NV_PCK)86からの相対的な論理セクタ数(RLSN)で記載されている。副映像ストリームが複数(最大32)ある場合には、その数だけ同期情報(SYNC_I)が記載される。

【0108】次に、上述したビデオデータ属性(VMG_M_V_ATR, VTSM_V_ATR, VTS_V_ATR)、オーディオデータ属性(VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR)、副映像データ属性(VMGM_SPST_ATR, VTSM_SPST_ATR, VTS_SPST_AT)に応じてビデオデコーダ部58、オーディオデコーダ部60、副映像デコーダ部62、D/A&再生処理部64が適切にセットされることができる回路構成について次に説明する。

【0109】ビデオデコーダ部58は、図42に示すように、レジスタ58A、セレクタ58B、MPEG1デコーダ58C、及びMPEG2デコーダ58Dにより構成されている。図42に示す回路においては、システムCPU部50からシステムプロセッサ部54を介して供給されるビデオデータ属性(VMGM_V_ATR, V

TSM_V_ATR, VTS_V_ATR)に対応した制御信号がレジスタ58Aに保持され、その出力がセレクタ58Bに出力される。セレクタ58Bは、システムプロセッサ部54から供給されるビデオデータをレジスタ58Aからの出力に応じて、MPEG1デコーダ58C、或いは、MPEG2デコーダ58Dに選択的に出力している。MPEG1デコーダ58Cが選択される場合には、セレクタ58BからのビデオデータがMPEG1デコーダ58Cに供給され、MPEG1の符号化方式でビデオデータがデコードされる。MPEG2デコーダ58Dが選択される場合には、セレクタ58BからのビデオデータがMPEG2デコーダ58Dに供給され、ビデオデータがMPEG2の符号化方式でMPEG2デコーダ58Dによってデコードされる。MPEG1デコーダ58C或いは、MPEG2デコーダ58Dからのデコーダ出力は、ビデオデコーダ部58のデコーダ出力としてD/A&再生処理部64内の後述するビデオ再生処理部201へ出力される。

【0110】オーディオデコーダ部60は、図43に示すようにレジスタ60A、セレクタ60B、MPEG1デコーダ60C、AC3デコーダ60D、及びPCMデコーダ60E、により構成されている。図43に示す回路においては、システムCPU部50からシステムプロセッサ部54を介して供給されるオーディオデータ属性(VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR)に対応した制御信号がレジスタ60Aによって保持され、その出力はセレクタ60Bに出力される。セレクタ60Bは、システムプロセッサ部54から供給されるオーディオデータをレジスタ60Aからの出力に応じてMPEG1デコーダ60C、AC3デコーダ60D、或いは、PCMデコーダ60Eに選択的に出力される。MPEG1デコーダ60Cが選択される場合には、セレクタ60BからのオーディオデータがMPEG1デコーダ60CによってMPEG1の符号化方式でデコードされる。AC3デコーダ60Dが選択される場合には、セレクタ60Bからのオーディオデータは、AC3デコーダ60DによってAC3の符号化方式でデコードされる。PCMデコーダ60Eが選択される場合には、セレクタ60BからのディジタルのオーディオデータがPCMデコーダ60Eによってアナログのオーディオデータにデコードされる。MPEG1デコーダ60C、AC3デコーダ60D、或いは、PCMデコーダ60Eからのデコーダ出力は、オーディオデコーダ部60のデコーダ出力としてD/A&再生処理部64内の後述するオーディオ再生処理部202へ出力される。

【0111】副映像デコーダ部62は、図44に示すように、レジスタ62A、セレクタ62B、ピットマップデコーダ62C、及びランレンジングデコーダ62Dにより構成されている。図44に示す回路においては、シス

テムCPU部50からシステムプロセッサ部54を介して供給される副映像データ属性(VMGM_SPST_ATR, VTSM_SPST_ATR, VTS_SPS_T_ATR)に対応した制御信号がレジスタ62Aによって保持され、その出力はセレクタ62Bに出力される。セレクタ62Bは、システムプロセッサ部54から供給される副映像データをレジスタ62Aからの出力に応じて、ピットマップデコーダ62C、或いは、ランレンジングデコーダ62Dに選択的に出力する。ピットマップデコーダ62Cが選択される場合には、セレクタ62Bからの副映像データがピットマップデコーダ62Cによってピットマップの符号化方式でデコードされ、ランレンジングデコーダ62Dが選択される場合には、セレクタ62Bからの副映像データがランレンジングデコーダ62Dによってランレンジングの符号化方式でデコードされる。

【0112】D/A&再生処理部64は、図1に示すように、ビデオ再生処理部201、オーディオ再生処理部202、オーディオミキシング部203、副映像再生処理部207を有している。ビデオ再生処理部201は、図45に示すように、フレームレート処理部204、アスペクト処理部205、バンスキャン処理部206により構成されている。

【0113】フレームレート処理部204は、図45に示すようにレジスタ204A、セレクタ204B、NTSC部204C、PAL部204Dにより構成されている。図45に示す回路においては、システムCPU部50からシステムプロセッサ部54を介して供給されるビデオデータ属性(VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR)に対応した制御信号がレジスタ204Aに保持され、その出力はセレクタ204Bに出力される。セレクタ204Bは、ビデオデコーダ部58から供給されるビデオデータをレジスタ204Aからの出力に応じて、NTSC部204C、或いは、PAL部204Dに選択的に出力する。NTSC部204Cが選択された場合には、セレクタ204BからのビデオデータがNTSC部204CによってNTSCのフォーマットに変換される。即ち、1フレームを水平走査周波数60hzで走査線数525本で描くフレームレートを有するビデオデータがNTSC部204Cから出力される。PAL部204Dが選択される場合には、セレクタ204BからのビデオデータがPAL部204DによってPALのフォーマットに変換される。即ち、1フレームを周波数50hzで走査線数625本で描くフレームレートを有するビデオデータがPAL部204Dから出力される。NTSC部204C或いは、PAL部204Dからの出力、つまりフレームレート処理部204の出力は、アスペクト処理部205へ出力される。

【0114】アスペクト処理部205は、レジスタ205A、セレクタ205B、3/4アスペクト処理部20

5C、9/16アスペクト処理部205Dにより構成されている。システムCPU部50からシステムプロセッサ部54を介して供給されるビデオデータ属性(VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR)に対応した制御信号がレジスタ205Aによって保持され、その出力はセレクタ205Bに出力される。セレクタ205Bは、フレームレート処理部204から供給されるビデオデータをレジスタ204Aからの出力に応じて、3/4アスペクト処理部205C、或いは、9/16アスペクト処理部205Dに選択的に出力する。3/4アスペクト処理部205Cが選択された場合には、フレームレート処理部204からのビデオデータが3/4アスペクト処理部205Cによって3/4のアスペクト比を有するビデオデータ変換される。9/16アスペクト処理部205Dが選択された場合には、フレームレート処理部204からのビデオデータが9/16アスペクト処理部205Dによって9/16のアスペクト比を有するビデオデータに変換される。3/4アスペクト処理部205C、或いは、9/16アスペクト処理部205Dからの出力、つまりアスペクト処理部205の出力は、パンスキャン処理部206へ出力される。

【0115】パンスキャン処理部206は、図45に示されるようにレジスタ206A、セレクタ206B、パンスキャン・レターボックス・スルーパー206C、パンスキャン・レターボックス処理部206Dにより構成されている。システムCPU部50からシステムプロセッサ部54を介して供給されるビデオデータ属性(VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR)に対応した制御信号がレジスタ206Aに保持され、その出力はセレクタ206Bに出力される。ここで、ビデオデータ属性(VMGM_V_ATR, VTS_M_V_ATR, VTS_V_ATR)に従っての9/16アスペクト比を有するビデオデータを3/4アスペクト比を有するビデオデータに変換する場合には、パンスキャン或いはレターボックスが許可されているかをシステムCPU50が判別してその表示モードについて決定し、その決定がセレクタ206Bに出力される。セレクタ206Bは、アスペクト処理部205から供給されるビデオデータをレジスタ206Aからの出力に応じて、パンスキャン・レターボックス・スルーパー206C、或いは、パンスキャン・レターボックス処理部206Dに選択的に出力させる。パンスキャン・レターボックス・スルーパー206Cが選択された場合には、アスペクト処理部205からのビデオデータには、パンスキャン及びレターボックス処理が実行されずにノーマルビデオデータが outputされる。パンスキャン・レターボックス処理部206Dが選択される場合には、アスペクト処理部205からのビデオデータに対してパンスキャン或いはレターボックス処理がパンスキャン・レターボックス処理部206Dにおいて実行される。パンス

キャン・レターボックス・スルーパー206C、或いは、パンスキャン・レターボックス処理部206Dからの出力、つまりパンスキャン・レターボックス処理部206の出力は、図示しない副映像信号とビデオ信号とを合成するビデオ信号合成回路を介してモニタ部6へ出力される。従って、図9を参照して説明したように表示モニタ50への表示モードがノーマル、パンスキャン、及びレターボックスのいずれかに適するビデオデータが処理部206から出力される。

【0116】オーディオ再生処理部202は、図46に示すように、レジスタ202A、セレクタ202B、ステレオ出力部202C、モノラル出力部202D、サラウンド出力部202Eにより構成されている。図46に示す回路においては、システムCPU部50からシステムプロセッサ部54を介して供給されるオーディオデータ属性(VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR)に対応した制御信号がレジスタ202Aに保持され、その出力はセレクタ202Bに出力される。セレクタ202Bは、オーディオデコーダ部60から供給されるオーディオデータをレジスタ202Aからの出力に応じて、ステレオ出力部202C、モノラル出力部202D、或いは、サラウンド出力部202Eに選択的に出力する。ステレオ出力部202Cが選択された場合には、セレクタ202Bからのオーディオデータがステレオデータに変換される。また、モノラル出力部202Dが選択された場合には、セレクタ202Bからのオーディオデータがモノラルデータに変換される。サラウンド出力部202Eが選択された場合には、セレクタ202Bからのオーディオデータがサラウンドデータに変換される。ステレオ出力部202C、モノラル出力部202D、或いは、サラウンド出力部202Eからの出力、つまりオーディオ再生処理部202の出力は、直接スピーカ部8へ出力される。オーディオデータがマルチチャンネルオーディオデータである場合には、サラウンド出力部202Eからの出力がオーディオミキシング部203を介してスピーカ部から出力される。

【0117】オーディオミキシング部203は、図47に示すように、レジスタ203A、レジスタ203B、セレクタ203C、第1ストリーム処理部203D、第2ストリーム処理部203E、ミキシング処理部203Fにより構成されている。図47に示す回路においては、レジスタ203A、203Bには、システムCPU部50からシステムプロセッサ部54を介して供給されるVTSI_MAT中に記述のマルチチャンネルオーディオストリーム属性(VTS_MU_AST_ATR)に対応した制御信号が保持され、レジスタ203Aの出力はセレクタ203Cに出力され、レジスタ203Bの出力は、ミキシング処理部203Fに出力される。セレクタ203Cは、オーディオ再生処理部202から供給

されるオーディオデータをレジスタ203Aからの出力に応じて、第1ストリーム処理部203D、或いは、第2ストリーム処理部203Eに選択的に出力する。第1ストリーム処理部203Dが選択された場合には、セレクタ203Cからのオーディオデータが第1ストリーム処理部203Dによって第1ストリームのデータに変換される。第2ストリーム処理部203Eが選択された場合には、セレクタ203Cからのオーディオデータが第2ストリーム処理部203Eによって第2ストリームのデータに変換される。第1ストリーム処理部203D或いは、第2ストリーム処理部203Eからの出力は、ミキシング処理部203Fへ出力される。ミキシング処理部203Fでは、レジスタ203Aからの出力に応じて、ミキシング処理を実行し、このミキシング処理されたデータがオーディオミキシング部203からの出力としてスピーカ8等へ出力される。

【0118】次に、再び図1を参照して図4から図14に示す論理フォーマットを有する光ディスク10からのムービーデータの再生動作について説明する。尚、図1においてブロック間の実線の矢印は、データバスを示し、破線の矢印は、制御バスを示している。

【0119】図1に示される光ディスク装置においては、電源が投入され、光ディスク10が装填されると、システム用ROM及びRAM部52からシステムCPU部50は、初期動作プログラムを読み出し、ディスクドライブ部30を作動させる。従って、ディスクドライブ部30は、リードイン領域27から読み出し動作を開始し、リードイン領域27に続く、ISO-9660等に準拠してボリュームとファイル構造を規定したボリューム及びファイル構造領域70が読み出される。即ち、システムCPU部50は、ディスクドライブ部30にセットされたディスク10の所定位置に記録されているボリューム及びファイル構造領域70を読み出す為に、ディスクドライブ部30にリード命令を与え、ボリューム及びファイル構造領域70の内容を読み出し、システムプロセッサ部54を介して、データRAM部56に一旦格納する。システムCPU部50は、データRAM部56に格納されたバステーブル及びディレクトリコードを介して各ファイルの記録位置や記録容量等の情報やその他管理に必要な情報としての管理情報を抜き出し、システム用ROM&RAM部52の所定の場所に転送し、保存する。

【0120】次に、システムCPU部50は、システム用ROM&RAM部52から各ファイルの記録位置や記録容量の情報を参照してファイル番号0番から始まる複数ファイルから成るビデオマネージャー71を取得する。即ち、システムCPU部50は、システム用ROM及びRAM部52から取得した各ファイルの記録位置や記録容量の情報を参照してディスクドライブ部30に対してリード命令を与え、ルートディレクトリ上に存在す

るビデオマネージャー71を構成する複数ファイルの位置及びサイズを取得し、このビデオマネージャー71を読み出し、システムプロセッサ部54を介して、データRAM部56に格納する。

【0121】このビデオマネージャー71の第1番目のテーブルであるビデオマネージャー情報管理テーブル(VMG1_MAT)78がサーチされる。このサーチによってビデオマネージャーメニュー(VMGM)の為のビデオオブジェクトセット(VMGM_VOBS)76の開始アドレス(VMGM_VOBS_SA)が獲得され、ビデオオブジェクトセット(VMGM_VOB)76が再生される。このメニュー用のビデオオブジェクトセット(VMGM_VOBS)76の再生に関しては、ビデオタイトルセット(VTS)中のタイトルの為のビデオオブジェクトセット(VTSM_VOBS)と同様であるのでその再生手順は省略する。このビデオオブジェクトセット(VMGM_VOBS)76で言語の設定をすると、或いは、ビデオマネージャーメニュー(VMGM)がない場合には、ビデオマネージャー情報管理テーブル(VMG1_MAT)がサーチされてタイトルセットサーチポインタテーブル(TT_SRPT)79の開始アドレス、(TT_SRPT_SA)がサーチされる。ここで、ビデオマネージャーメニューの再生に際しては、システムCPU部50は、ビデオマネージャー(VMG1)75の情報管理テーブル(VMG1_MAT)78に記述されたビデオメニュー用のビデオ、オーディオ、副映像のストリーム数及びそれぞれの属性情報を取得して属性情報を基に、各々のビデオデコーダ部58、オーディオデコーダ部60及び副映像デコーダ部62にビデオマネージャーメニュー再生のためのパラメータが設定される。

【0122】このサーチによってタイトルセットサーチポインタテーブル(TT_SRPT)79がシステム用ROM&RAM部52の所定の場所に転送され、保存される。次に、システムCPU部50は、タイトルサーチポインタテーブル情報(TSPT1)92からタイトルサーチポインタテーブル(TT_SRPT)79の最終アドレスを獲得するとともにキー操作/表示部4からの入力番号に応じたタイトルサーチポインタ(TT_SRPT)93から入力番号に対応したビデオタイトルセット番号(VTSN)、プログラムチェーン番号(PGCN)及びビデオタイトルセットのスタートアドレス(VTS_SA)が獲得される。タイトルセットが1つしかない場合には、キー操作/表示部4からの入力番号の有無に拘らず1つのタイトルサーチポインタ(TT_SRPT)93がサーチされてそのタイトルセットのスタートアドレス(VTS_SA)が獲得される。このタイトルセットのスタートアドレス(VTS_SA)からシステムCPU部50は、目的のタイトルセットを獲得することとなる。

【0123】次に、図15に示すビデオタイトルセット72のスタートアドレス(VTS_SA)から図21に示すようにそのタイトルセットのビデオタイトルセット情報(VTS_I)94が獲得される。このビデオタイトルセット情報(VTS_I)94のビデオタイトルセット情報の管理テーブル(VTS_I_MAT)98から図22に示すビデオタイトルセット情報管理テーブル(VTS_I_MAT)98の終了アドレス(VTI_MAT_EA)が獲得される。また、オーディオ及び副映像データのストリーム数(VTS_AST_Ns、VTS_SPST_Ns)及びビデオ、オーディオ及び副映像データの属性情報(VTS_V_ATR、VTS_A_ATR、VTS_SPST_ATR)に基づいて図1に示される再生装置の各部がその属性に従って設定される。この属性情報に従った再生装置の各部の設定については、より詳細に後に説明する。

【0124】また、ビデオタイトルセット(VTS)の為のメニュー(VTSM)が単純な構成である場合には、図22に示すビデオタイトルセット情報管理テーブル(VTS_I_MAT)98からビデオタイトルセットのメニュー用のビデオオブジェクトセット(VTSM_VOB)95のスタートアドレス(VTSM_VOB_SA)が獲得されてそのビデオオブジェクトセット(VTSM_VOB)95によってビデオタイトルセットのメニューが表示される。このメニューを参照して特にプログラムチェーン(PGC)を選択せずに単純にタイトルセット(VTS)におけるタイトル(VTST)の為のビデオオブジェクトセット(VTT_VOBS)96を再生する場合には、図22に示すそのスタートアドレス(VTSTT_VOB_SA)からそのビデオオブジェクトセット96が再生される。

【0125】プログラムチェーン(PGC)をキー操作/表示部4で指定する場合には、次のような手順で対象とするプログラムチェーンがサーチされる。このプログラムチェーンのサーチは、ビデオタイトルセットにおけるタイトルの為のプログラムチェーンに限らず、メニューがプログラムチェーンで構成される比較的複雑なメニューにおいてもそのメニューの為のプログラムチェーンのサーチに関しても同様の手順が採用される。ビデオタイトルセット情報(VTS_I)94の管理テーブル(VTS_I_MAT)98に記述される図22に示すビデオタイトルセット(VTS)内のプログラムチェーン情報テーブル(VTS_PGC_IT)100のスタートアドレスが獲得されて図24に示すそのVTSプログラムチェーン情報テーブルの情報(VTS_PGC_IT_I)102が読み込まれる。この情報(VTS_PGC_IT_I)102から図25に示すプログラムチェーンの数(VTS_PGC_Ns)及びテーブル100の終了アドレス(VTS_PGC_IT_EA)が獲得される。

【0126】キー操作/表示部4でプログラムチェーン

の番号が指定されると、その番号に対応した図24に示すVTS_PGC_ITサーチポインタ(VTS_PGC_IT_SRP)103から図26に示すそのプログラムチェーンのカタゴリー及びそのサーチポインタ(VTS_PGC_IT_SRP)103に対応したVTS_PGC情報104のスタートアドレスが獲得される。このスタートアドレス(VTS_PGC_IT_SA)によって図27に示すプログラムチェーン一般情報(PGC_GI)が読み出される。この一般情報(PGC_GI)によってプログラムチェーン(PGC)のカタゴリー及び再生時間(PGC_CAT、PGC_PB_TIME)等が獲得され、その一般情報(PGC_GI)に記載したセル再生情報テーブル(C_PBIT)及びセル位置情報テーブル(C_POSIT)108のスタートアドレス(C_PBIT_SA、C_POSIT_SA)が獲得される。スタートアドレス(C_PBIT_SA)から図33に示すセル位置情報(C_POSI)として図34に示すようなビデオオブジェクトの識別子(C_VOB_IDN)及びセルの識別番号(C_IDN)が獲得される。

【0127】また、スタートアドレス(C_POSIT_SA)から図31に示すセル再生情報(C_PBI)が獲得され、その再生情報(C_PBI)に記載の図32に示すセル中の最初のVOBU85のスタートアドレス(C_FVOBU_SA)及び最終のVOBUのスタートアドレス(C_LVOBU_SA)が獲得されてその目的とするセルがサーチされる。セルの再生順序は、図27に示されるPGCプログラムマップ(PGC_P_GMAP)106の図29に示すプログラムのマップを参照して次々に再生セル84が決定される。このように決定されたプログラムチェーンのデータセル84が次々にビデオオブジェクト144から読み出されてシステムプロセッサ部54を介して、データRAM部56に入力される。このデータセル84は、再生時間情報を基にビデオデコーダ部58、オーディオデコーダ部60及び副映像デコーダ部62に与えられてデコードされ、D/A及び再生処理部64で信号変換されてモニター部6に画像が再現されるとともにスピーカー部8、9から音声が再生される。

【0128】次に、この光ディスク再生装置におけるビデオデータ属性情報(VTS_V_ATR)の取得及びこの属性情報(VTS_V_ATR)に従ったビデオデコーダ及びビデオ再生処理部201の設定処理について、図48に示すフローチャートを参照して説明する。設定処理が開始されると、ステップ10に示すようにシステムCPU部50は、ディスクドライブ部30を制御して、ビデオタイトルセット情報管理テーブル(VTS_I_MAT)98を光ディスク10から読み出し、一旦データRAM部56へ格納する。ステップS11に示すようにデータRAM部56内に格納したビデオタイトル

セット情報管理テーブル (VTSI_MAT) 98 に記録されたビデオデータ属性 (VTS_V_ATR) をシステムCPU部50 が取得する。システムCPU部50 は、ステップS12 に示すように取得したビデオデータ属性 (VTS_V_ATR) 内に記述されるビデオ圧縮モードがMPEG1、MPEG2 のいずれに準拠しているかの判別し、この判別結果に応じた制御信号をビデオデコーダ部58 のレジスタ58A に出力する。これにより、レジスタ58A に供給された制御信号に応じてセレクタ58B が切換えられ、ビデオ圧縮モード131 がMPEG1 に準拠している場合、システムプロセッサ部54 からのビデオデータはセレクタ58B を介してMPEG1 デコーダ58C に供給され、ビデオ圧縮モード131 がMPEG2 に準拠している場合、システムプロセッサ部54 からのビデオデータはセレクタ58B を介してMPEG2 デコーダ58D に供給される。システムCPU部50 は、ステップS13 に示すように取得したビデオデータ属性123 内に記述される表示アスペクト比が3/4 であるか9/16 であるかの判別し、この判別結果に応じた制御信号をD/A & 再生処理部64 におけるビデオ再生処理部201 のアスペクト処理部205 内のレジスタ205A に出力する。これにより、レジスタ205A に供給された制御信号に応じてセレクタ205B が切換えられ、表示アスペクト比が3/4 の場合、フレームレート処理部204 からのビデオデータはセレクタ205B を介して3/4 アスペクト処理部205C に供給され、表示アスペクト比が9/16 の場合、フレームレート処理部204 からのビデオデータはセレクタ205B を介して9/16 アスペクト処理部205D に供給される。

【0129】さらに、システムCPU部50 は、ステップS14 に示すように取得したビデオデータ属性に記述されるフレームレートがNTSC であるかPAL であるかの判別し、この判別結果に応じた制御信号をD/A & 再生処理部64 におけるビデオ再生処理部201 のフレームレート処理部204 内のレジスタ204A に出力する。これにより、レジスタ204A に供給された制御信号に応じてセレクタ204B が切換えられ、フレームレートがNTSC の場合、ビデオデコーダ部58 からのビデオデータはセレクタ204B を介してNTSC 部204C に供給され、フレームレートがPAL の場合、ビデオデコーダ部58 からのビデオデータはセレクタ204B を介してPAL 部204D に供給される。また、システムCPU部50 は、ステップS15 に示すように取得したビデオデータ属性123 内に記述されるパンスキャン134 の有無の判別を行い、この判別結果に応じた制御信号をD/A & 再生処理部64 におけるビデオ再生処理部201 のパンスキャン処理部206 内のレジスタ206A へ出力する。これにより、レジスタ206A に供給された制御信号に応じてセレクタ206B が切換えら

れ、パンスキャン或いはレターボックスが有りの場合、アスペクト処理部205 からのビデオデータはセレクタ206B を介してパンスキャン・レターボックス処理部206D に供給され、パンスキャン或いはレターボックスが無しの場合、アスペクト処理部205 からのビデオデータはセレクタ206B を介してパンスキャンループ206C に供給される。

【0130】以上の一連の処理によりビデオデコーダ部58 及びビデオ再生処理部201 が再生されるべきタイトルセットのビデオデータに対して最適にセットされることとなる。図48 のフローにおいて、ビデオデータ属性情報 (VMGM_V_ATR) に従ってビデオデコーダ58 及びビデオ再生処理部201 がセットされる場合には、ビデオタイトルセット情報管理テーブル (VTSI_MAT) 98 に代えてビデオ管理情報管理テーブル (VMGI_MAT) 78 が読み出されてビデオデータ属性情報 (VMGM_V_ATR) が獲得される。また、図48 のフローにおいて、ビデオデータ属性情報 (VTSI_V_ATR) に従ってビデオデコーダ58 及びビデオ再生処理部201 がセットされる場合には、ビデオデータ属性情報 (VTS_V_ATR) と同様にビデオタイトルセット情報管理テーブル (VTSI_MAT) 98 からビデオデータ属性情報 (VTSI_V_ATR) が獲得される。

【0131】次に、この光ディスク再生装置におけるオーディオデータ属性 (VTS_AST_ATR) の取得及びこの属性情報 (VTS_AST_ATR) に従ったビデオデコーダ及びビデオ再生処理部201 の設定処理について、図49 に示すフローチャートを参照して説明する。設定処理が開始されると、ステップ20 に示すようにシステムCPU部50 は、ディスクドライブ部30 を制御して、ビデオタイトルセット情報管理テーブル (VTSI_MAT) 98 を光ディスク10 から読み出し、一旦データRAM部56 へ格納する。ステップ21 に示すようにデータRAM部56 内に格納したビデオタイトルセット情報管理テーブル (VTSI_MAT) 98 記録されたオーディオストリーム数をシステムCPU部50 が取得する。ステップ32 に示すようにキー操作及び処理部4 の操作によってユーザが選択可能なオーディオストリーム番号を指定すると、ステップ22 に示すようにデータRAM部56 内に格納したビデオタイトルセット情報管理テーブル (VTSI_MAT) 98 のオーディオデータ属性群 (VTS_AST_ATR) からユーザ指定のストリーム番号に対応するオーディオ属性 (VTS_AST_ATR) をシステムCPU部50 が取得する。システムCPU部50 は、ステップ23 に示すように取得したオーディオデータ属性 (VTS_AST_ATR) 内に記述されるオーディオ圧縮モードがMPEG1、リニアPCM のいずれに準拠しているかの判別し、この判別結果に応じた制御信号をオーディオデ

ーダ部60のレジスタ60Aに出力する。

【0132】これにより、レジスタ60Aに供給された制御信号に応じてセレクタ60Bが切換えられ、オーディオ符号化モードがMPEG1に準拠している場合、システムプロセッサ部54からのオーディオデータはセレクタ60Bを介してMPEG1デコーダ60Cに供給され、オーディオ符号化モードがAC3に準拠している場合、システムプロセッサ部54からのオーディオデータはセレクタ60Bを介してAC3デコーダ60Dに供給され、ビデオ符号化モードがデジタルPCMに準拠している場合、システムプロセッサ部54からのオーディオデータはセレクタ60Bを介してPCMデコーダ60Eに供給される。

【0133】また、システムCPU部50は、ステップ24に示すように取得したオーディオデータ属性(VT_S_AST_ATR)内に記述されるオーディオモード152がステレオかモノラルかサラウンドのいずれであるかの判別し、この判別結果に応じた制御信号をオーディオ再生処理部202内のレジスタ202Aに出力する。これにより、レジスタ202Aに供給された制御信号に応じてセレクタ202Bが切換えられ、オーディオモード152がステレオの場合、オーディオデコーダ部60からのオーディオデータはセレクタ202Bを介してステレオ出力部202Cに供給され、オーディオモード152がモノラルの場合、オーディオデコーダ部60からのオーディオデータはセレクタ202Bを介してモノラル出力部202Dに供給され、オーディオモード152がサラウンドの場合、オーディオデコーダ部60からのオーディオデータはセレクタ202Bを介してサラウンド出力部202Eに供給される。

【0134】次に、システムCPU部50は、ステップ25に示すように取得したオーディオデータ属性125内に記述されるミキシングモードがミキシングが不可であるか、ミキシング可能なマスタストリームであるか、ミキシング可能なスレーブストリームであるかの判別し、この判別結果に応じた制御信号をオーディオミキシング部203のレジスタ203A、203Bに出力する。これにより、レジスタ203Aに供給された制御信号に応じてセレクタ203Cが切換えられ、ステップ25に示すようにミキシング可能なマスタストリームの場合、ステップ26に示すようにそのストリームを第1ストリームとして第1ストリーム処理部203Dに供給され、ステップ27に示すようにミキシング可能なスレーブストリームの場合、ステップ28に示すようにそのストリームを第2ストリームとして第2ストリーム処理部203Eに供給され、ミキシング不可能な独立ストリームの場合、そのストリームを第1ストリームとして第1ストリーム処理部203Dに供給される。また、レジスタ203Bに供給された制御信号に応じてミキシング処理部203Fの処理が切換えられ、ミキシング可能な場

合、第1ストリーム処理部203Dの第1ストリームと第2ストリーム処理部203Eの第2ストリームに対するミキシング処理を施してスピーカ部8へ出力され、ミキシング不可能な場合、第1ストリーム処理部203Dの第1ストリームのみがスピーカ部8へ出力される。

【0135】また、システムCPU部50は、ステップ30に示すように取得したオーディオデータ属性125内に記述されるオーディオ種別153が言語であるか否かを判定し、この判定結果が言語である場合、言語コード156より、言語コードを取得し、システム用ROM&RAM部52へ予め格納してある言語コード表より、対応する言語名を決定し、ステップ31に示すようにモニタ部6等でインジケートする。

【0136】逆にユーザから、言語コードが指定された場合には、オーディオストリーム数124と、オーディオデータ属性125から、目的の言語コードを有するオーディオストリームを特定することができる。

【0137】また、データ再生中に、ユーザイベント等によりオーディオストリーム番号の切り替え指示があった場合(S32)、のS22～S31までの処理によりオーディオデータ属性の取得設定を行う。

【0138】以上の一連の処理によりオーディオデコーダ部60、オーディオ再生処理部202及びオーディオミキシング部203が再生されるべきタイトルセットのビデオデータに対して最適にセットされることとなる。図49のフローにおいて、オーディオデータ属性(VMGM_AST_ATR)に従ってビデオデコーダ58及びビデオ再生処理部201がセットされる場合には、ビデオタイトルセット情報管理テーブル(VTSI_MAT)98に代えてビデオ管理情報管理テーブル(VMG_I_MAT)78が読み出されてオーディオデータ属性(VMGM_AST_ATR)が獲得される。また、図48のフローにおいて、オーディオデータ属性(VTSI_AST_ATR)に従ってオーディオデコーダ部60及びオーディオ再生処理部202がセットされる場合には、オーディオデータ属性(VTSM_AST_ATR)と同様にビデオタイトルセット情報管理テーブル(VTSI_MAT)98からオーディオデータ属性(VTSM_AST_ATR)が獲得される。

【0139】次に、この光ディスク再生装置における副映像属性情報(VTS_AST_ATR)の取得及びこの属性情報(VTS_SPST_ATR)に従った副映像デコーダ62及びビデオ再生処理部201の設定処理について、図48に示すフローチャートを参照して説明する。ステップ40に示すようにシステムCPU部50は、ディスクドライブ部30を制御して、ビデオタイトルセット情報管理テーブル(VTSI_MAT)98を光ディスク10から読み出し、一旦データRAM部56へ格納する。ステップ41に示すようにデータRAM部56内に格納したビデオタイトルセット情報管理テーブ

ル (VTSI_MAT) に記録された副映像ストリーム数 (VTS_SPSI_Ns) をシステムCPU部50が取得する。ステップ46に示すようにキー操作及び処理部4の操作によってユーザが選択可能な副映像ストリーム番号を指定すると、ステップ42に示すようにデータRAM部56内に格納したビデオタイトルセット情報管理テーブル (VTSI_MAT) に記録された副映像データ属性 (VTS_AST_ATR) からユーザ指定のチャネル番号に対応する (VTS_AST_ATR) をシステムCPU部50が取得する。システムCPU部50は、ステップ43に示すように取得した副映像データ属性 (VTS_AST_ATR) 内に記述される副映像圧縮モードがRaw (ビットマップに対応)、ランレンジス或いはその他であるかの判別し、この判別結果に応じた制御信号を副映像デコーダ部62のレジスタ62Aに出力する。これにより、レジスタ62Aに供給された制御信号に応じてセレクタ62Bが切換えられ、副映像圧縮モードがビットマップに対応している場合、システムプロセッサ部54からの副映像データはセレクタ62Bを介してビットマップデコーダ62Cに供給され、副映像圧縮モードがランレンジスに対応している場合、システムプロセッサ部54からの副映像データはセレクタ62Bを介してランレンジスデコーダ62Dに供給される。

【0140】また、システムCPU部50は、ステップ44に示すように取得した副映像データ属性127内に記述される副映像種別172が言語であるか否かの判別し、この判別結果が言語である場合、ステップ45に示すように言語コードより、言語コードを取得し、システム用ROM&RAM部52へ予め格納してある言語コード表より、対応する言語名を決定し、モニタ部6等でインジケートする。

【0141】ここで、ユーザから、言語コードが指定された場合には、副映像ストリーム数と、副映像データ属性127から、目的の言語コードを有する副映像ストリームを特定することができる。また、ステップ46に示すようにデータ再生中に、ユーザイベント等により副映像ストリーム番号の切換え指示があった場合、ステップS42～S45までの処理により副映像データ属性の取得設定が実行される。

【0142】以上の一連の処理により副映像デコーダ部62及び副映像再生処理部207が再生されるべきタイトルセットのビデオデータに対して最適にセットされることとなる。図49のフローにおいて、副映像属性 (VMGM_SPSI_ATR) に従って副映像デコーダ部62及び副映像再生処理部207がセットされる場合には、ビデオタイトルセット情報管理テーブル (VTSI_MAT) 98に代えてビデオ管理情報管理テーブル (VMGI_MAT) 78が読み出されて副映像属性 (VMGM_SPSI_ATR) が獲得される。また、

図48のフローにおいて、副映像属性 (VTSI_SPSI_ATR) に従ってオーディオデコーダ部60及びオーディオ再生処理部202がセットされる場合には、副映像属性属性 (VTS_SPSI_ATR) と同様にビデオタイトルセット情報管理テーブル (VTSI_MAT) 98から副映像属性属性 (VTSI_SPSI_ATR) が獲得される。

【0143】次に、図51から図53を参照して図4から図41に示す論理フォーマットで映像データ及びこの映像データを再生するための光ディスク10への記録方法及びその記録方法が適用される記録システムについて説明する。

【0144】図51は、映像データをエンコーダしてあるタイトルセット84の映像ファイル88を生成するエンコーダシステムが示されている。図51に示されるシステムにおいては、主映像データ、オーディオデータ及び副映像データのソースとして、例えば、ビデオテープレコーダ (VTR) 201、オーディオテープレコーダ (ATR) 202及び副映像再生器 (Sub picture, source) 203が採用される。これらは、システムコントローラ (Sys, con) 205の制御下で主映像データ、オーディオデータ及び副映像データを発生し、これらが夫々ビデオエンコーダ (VENC) 206、オーディオエンコーダ (AENC) 207及び副映像エンコーダ (SPENC) 208に供給され、同様にシステムコントローラ (Sys, con) 205の制御下でこれらエンコーダ206、207、208でA/D変換されると共に夫々の圧縮方式でエンコードされ、エンコードされた主映像データ、オーディオデータ及び副映像データ (Comp Video, Comp Audio, CompSub-pict) としてメモリ210、211、212に格納される。

【0145】この主映像データ、オーディオデータ及び副映像データ (Comp Video, Comp Audio, Comp Sub-pict) は、システムコントローラ (Sys, con) 205によってファイルフォーマット (FFMT) 214に出力され、既に説明したようなこのシステムの映像データのファイル構造に変換されるとともに各データの設定条件及び属性等の管理情報がファイルとしてシステムコントローラ (Sys, con) 205によってメモリ216に格納される。

【0146】以下に、映像データからファイルを作成するためのシステムコントローラ (Sys, con) 205におけるエンコード処理の標準的なフローを説明する。

【0147】図52に示されるフローに従って主映像データ及びオーディオデータがエンコードされてエンコード主映像及びオーディオデータ (Comp Video, Comp Audio) のデータが作成される。即ち、エンコード処理が開始されると、図52のステップ70に示すように主映像データ及びオーディオデータのエンコードにあたって必要なパラメータが設定される。この設定されたパラメー

タの一部は、システムコントローラ (Sys con) 205 に保存されるとともにファイルフォーマッタ (FFMT) 214 で利用される。ステップ S 271 で示すようにパラメータを利用して主映像データがブリエンコードされ、最適な符号量の分配が計算される。ステップ S 272 に示されるようにブリエンコードで得られた符号量分配に基づき、主映像のエンコードが実行される。このとき、オーディオデータのエンコードも同時に実行される。ステップ S 273 に示すように必要であれば、主映像データの部分的な再エンコードが実行され、再エンコードした部分の主映像データが置き換えられる。この一連のステップによって主映像データ及びオーディオデータがエンコードされる。また、ステップ S 274 及び S 275 に示すように副映像データがエンコードされエンコード副映像データ (Comp Sub-pict) が作成される。即ち、副映像データをエンコードするにあたって必要なパラメータが同様に設定される。ステップ S 274 に示すように設定されたパラメータの一部がシステムコントローラ (Sys con) 205 に保存され、ファイルフォーマッタ (FFMT) 214 で利用される。このパラメータに基づいて副映像データがエンコードされる。この処理により副映像データがエンコードされる。

【0148】図53に示すフローに従って、エンコードされた主映像データ、オーディオデータ及び副映像データ (Com Video, Com Audio, Comp Sub-pict) が組み合わされて図4及び図21を参照して説明したような映像データのタイトルセット構造に変換される。即ち、ステップ S 276 に示すように映像データの最小単位としてのセルが設定され、セルに関するセル再生情報 (C_PBI) が作成される。次に、ステップ S 277 に示すようにプログラムチェーンを構成するセルの構成、主映像、副映像及びオーディオ属性等が設定され (これらの属性情報の一部は、各データエンコード時に得られた情報が利用される。) 、図21に示すようにプログラムチェーンに関する情報を含めたビデオタイトルセット情報管理テーブル情報 (VTS_I_MAT) 及びビデオタイトルセットプログラムチェーンテーブル (VTS_PG_CIT) 100 が作成される。このとき必要に応じてビデオタイトルセットダイレクトアクセスポイントテーブル (VTS_DAPT) も作成される。エンコードされた主映像データ、オーディオデータ及び副映像データ (Com Video, Com Audio, Comp Sub-pict) が一定のパックに細分化され、各データのタイムコード順に再生可能なように、VOBU 単位毎にその先頭に NV パックを配置しながら各データセルが配置されて図6に示すような複数のセルで構成されるビデオオブジェクト (VOB) が構成され、このビデオオブジェクトのセットでタイトルセットの構造にフォーマットされる。

【0149】尚、図53に示したフローにおいて、プログラムチェーン情報は、ステップ S 277 の過程で、シ

ステムコントローラ (Sys con) 205 のデータベースを利用したり、或いは、必要に応じてデータを再入力する等を実行し、プログラムチェーン情報 (PGI) として記述される。

【0150】図54は、上述のようにフォーマットされたタイトルセットを光ディスクへ記録するためのディスクフォーマッタのシステムを示している。図54に示すようにディスクフォーマッタシステムでは、作成されたタイトルセットが格納されたメモリ 220、222 からこれらファイルデータがボリュームフォーマッタ (VFMT) 226 に供給される。ボリュームフォーマッタ (VFMT) 226 では、タイトルセット 84、86 から管理情報が引き出されてビデオマネージャー 71 が作成され、図4に示す配列順序でディスク 10 に記録されるべき状態の論理データが作成される。ボリュームフォーマッタ (VFMT) 226 で作成された論理データにエラー訂正用のデータがディスクフォーマッタ (DFMT) 228 において付加され、ディスクへ記録する物理データに再変換される。変調器 (Modulator) 230 において、ディスクフォーマッタ (DFMT) 228 で作成された物理データが実際にディスクへ記録する記録データに変換され、この変調処理された記録データが記録器 (Recoder) 232 によってディスク 10 に記録される。

【0151】上述したディスクを作成するための標準的なフローを図55及び図56を参照して説明する。図55には、ディスク 10 に記録するための論理データが作成されるフローが示されている。即ち、ステップ S 280 で示すように映像データファイルの数、並べ順、各映像データファイル大きさ等のパラメータデータが始めに設定される。次に、ステップ S 281 で示すように設定されたパラメータと各ビデオタイトルセット 72 のビデオタイトルセット情報 281 からビデオマネージャー 71 が作成される。その後、ステップ S 282 で示すようにビデオマネージャー 71、ビデオタイトルセット 72 の順にデータが該当する論理ブロック番号に沿って配置され、ディスク 10 に記録するための論理データが作成される。

【0152】その後、図56に示すようなディスクへ記録するための物理データを作成するフローが実行される。即ち、ステップ S 283 で示すように論理データが一定バイト数に分割され、エラー訂正用のデータが生成される。次にステップ S 284 で示すように一定バイト数に分割した論理データと、生成されたエラー訂正用のデータが合わされて物理セクタが作成される。その後、ステップ S 285 で示すように物理セクタを合わせて物理データが作成される。このように図56に示されたフローで生成された物理データに対し、一定規則に基づいた変調処理が実行されて記録データが作成される。その後、この記録データがディスク 10 に記録される。

【0153】上述したデータ構造は、光ディスク等の記録媒体に記録してユーザに頒布して再生する場合に限らず、図57に示すような通信系にも適用することができる。即ち、図51から図54に示した手順に従って図4に示すようなビデオマネージャー71及びビデオタイトルセット72等が格納された光ディスク10が再生装置300にロードされ、その再生装置のシステムCPU部50からエンコードされたデータがデジタル的に取り出され、モジュレータ／トランスミッター310によって電波或いはケーブルでユーザ或いはケーブル加入者側に送られても良い。また、図51及び図54に示したエンコードシステム320によって放送局等のプロバイダー側でエンコードされたデータが作成され、このエンコードデータが同様にモジュレータ／トランスミッター310によって電波或いはケーブルでユーザ或いはケーブル加入者側に送られても良い。このような通信システムにおいては、始めにビデオマネージャー71の情報がモジュレータ／トランスミッター310で変調されて或いは直接にユーザ側に無料で配布され、ユーザがそのタイトルに興味を持った際にユーザー或いは加入者からの要求に応じてそのタイトルセット72をモジュレータ／トランスミッター310によって電波或いはケーブルを介してユーザ側に送られることとなる。タイトルの転送は、始めに、ビデオマネージャー71の管理下でビデオタイトルセット情報94が送られてその後にこのタイトルセット情報94によって再生されるビデオタイトルセットにおけるタイトル用ビデオオブジェクト95が転送される。このとき必要であれば、ビデオタイトルセットメニュー用のビデオオブジェクト95も送られる。送られたデータは、ユーザ側でレシーバ／復調器400で受信され、エンコードデータとして図1に示すユーザ或いは加入者側の再生装置のシステムCPU部50で上述した再生処理と同様に処理されてビデオが再生される。

【0154】ビデオタイトルセット72の転送において、ビデオデータの管理情報として属性情報(VMGM_V_ATR、VMGM_AST_ATR、VMGM_SPST_ATR)、(VTSM_V_ATR、VTSM_AST_ATR)及び(VTS_V_ATR、VTS_AST_ATR、VTS_SPST_ATR)がタイトルセット毎に転送されることから、ユーザ側或いは加入者側の再生システムにおいて適切な再生条件でビデオデータ等を再生処理処理することができる。

【0155】上述した説明においては、ビデオオブジェクトユニットは、ビデオ、オーディオ及び副映像を含むデータ列として説明したが、ビデオ、オーディオ及び副映像のいずれかが含まれれば良く、オーディオパックのみ或いは副映像パックのみで構成されても良い。

【0156】

【発明の効果】上述したようにビデオ・オーディオ及び

副映像データの属性情報がビデオタイトルセット毎に記述され、これらの属性情報を参照することによってビデオタイトルセット内のデータを最適に再生できる。しかも、属性情報が異なるビデオ・オーディオ及び副映像データが格納されたタイトルセットを複数用意してこれらを光ディスクに格納することによって、規格が異なる再生システムであってもその再生システムに好適な態様でビデオ・オーディオ及び副映像データを再生することができる。

【0157】またこの発明は、ビデオデータに対するオーディオストリームや副映像ストリームが複数存在する場合、それぞれのストリームやチャネルに対する属性をそれぞれの個数分、それぞれ番号順に記録していることから、指定した番号のオーディオストリーム或いは副映像ストリームのデータ属性を容易に取得し、指定したオーディオストリーム或いは副映像ストリームに対応して再生システムを最適な再生状態に設定することができる。オリジナル映像に対して、再生画面に適合した表示モードへの変更を許可するか否かに関しての情報が属性情報として記述されることから、常に製作者の意図を反映させた状態でビデオ等を再生することができる。

【図面の簡単な説明】

【図1】この発明の一実施例に係る光ディスク装置の概略を示すブロック図である。

【図2】図1に示したディスクドライブ装置の機構部の詳細を示すブロック図である。

【図3】図1に示したディスクドライブ装置に装填される光ディスクの構造を概略的に示す斜視図である。

【図4】図3に示す光ディスクの論理フォーマットの構造を示す。

【図5】図4に示されるビデオマネージャーの構造を示す。

【図6】図5に示されビデオオブジェクトセット(VOB)の構造を示す例である。

【図7】図5に示されたビデオマネージャ(VMG1)内のボリュームマネージャ情報管理テーブル(VMG1_MAT)のパラメータ及び内容を示す。

【図8】図7に示されたVMGMのビデオ属性を記述したビットテーブルである。

【図9】VMGMのビデオ属性の記述内容に係る表示アスペクト比と表示モードとの関係を示す説明図である。

【図10】10A及び10Bは、フレームレートが異なる場合において、図9に示されたレターボックスの表示が変わることを説明する為の平面図である。

【図11】図7に示されたVMGMのオーディオストリーム属性を記述したビットテーブルである。

【図12】図7に示されたVMGMの副映像ストリーム属性を記述したビットテーブルである。

【図13】図5に示されたビデオマネージャ(VMG1)内のタイトルサーチポインターテーブル(TSPT)

の構造を示す。

【図14】図13に示したタイトルサーチポインタテーブル (T S P T) のタイトルサーチポインタテーブルの情報 (T S P T I) のパラメータ及び内容を示す。

【図15】図13に示したタイトルサーチポインタテーブル (T S P T) の入力番号に対応したタイトルサーチポインタ (T T _ S R P) のパラメータ及び内容を示す。

【図16】ファイルに記憶されるプログラムチェーンの構造を説明するための図。

【図17】図5に示されたビデオマネージャ (V M G I) 内のビデオタイトルセット属性テーブル (V T S _ A T R T) の構造を示す。

【図18】、図17に示されたビデオタイトルセット属性テーブル (V T S _ A T R T) のビデオタイトルセット属性テーブル情報 (V T S _ A T R T I) のパラメータ及び内容を示す。

【図19】図17に示されたビデオタイトルセット属性テーブル (V T S _ A T R T) のビデオタイトルセット属性サーチポインタ (V T S _ A T R _ S R P)) のパラメータ及び内容を示す。

【図20】図17に示されたビデオタイトルセット属性テーブル (V T S _ A T R T) のビデオタイトルセット属性 (V T S _ A T R) のパラメータ及び内容を示す。

【図21】図4に示したビデオタイトルセットの構造を示す。

【図22】図21に示したビデオタイトルセット情報 (V T S I) のビデオタイトルセット情報の管理テーブル (V T S I _ M A T) のパラメータ及び内容を示す。

【図23】図21に示したテーブル (V T S I _ M A T) に記述されるオーディオストリーム属性 (V T S _ A S T _ A T R) のビットマップテーブルを示している。

【図24】図21に示したビデオタイトルセットプログラムチェーン情報のテーブル (V T S _ P G C I T) の構造を示す。

【図25】図24に示したビデオタイトルセットプログラムチェーン情報のテーブル (V T S _ P G C I T) の情報 (V T S _ P G C I T I) のパラメータ及び内容を示す。

【図26】図24に示したビデオタイトルセットプログラムチェーン情報のテーブル (V T S _ P G C I T) のサーチポインタ (V T S _ P G C I T _ S R P) のパラメータ及び内容を示す。

【図27】図24に示したビデオタイトルセットプログラムチェーン情報のテーブル (V T S _ P G C I T) のプログラムチェーンに対応したビデオタイトルセットの為のプログラムチェーン情報 (V T S _ P G C I) の構造を示す。

【図28】図27に示したプログラムチェーン情報 (V T S _ P G C I) のプログラムチェーンの一般情報 (P G C _ G I) のパラメータ及び内容を示す。

【図29】図27に示したプログラムチェーン情報 (V T S _ P G C I) のプログラムチェーンのマップ (P G C _ P G M A P) の構造を示す。

10 【図30】図19に示したプログラムチェーンのマップ (P G C _ P G M A P) に記述されるプログラムに対するエントリーセル番号 (E C E L L N) のパラメータ及び内容を示す。

【図31】図27に示したプログラムチェーン情報 (V T S _ P G C I) のセル再生情報テーブル (C _ P B I T) の構造を示す。

【図32】図32に示したセル再生情報テーブル (C _ P B I T) のパラメータ及び内容を示す。

【図33】図27に示したプログラムチェーン情報 (V T S _ P G C I) のセル位置情報 (C _ P O S I) の構造を示す。

20 【図34】図33に示したセル位置情報 (C _ P O S I) のパラメータ及び内容を示す。

【図35】図6に示したナビゲーションバックの構造を示す。

【図36】図6に示したビデオ、オーディオ、副映像バックの構造を示す。

【図37】図35に示されるナビゲーションバックの再生制御情報 (P C I) のパラメータ及び内容を示す。

【図38】図37に示される再生制御情報 (P C I) 中の一般情報 (P C I _ G I) のパラメータ及び内容を示す。

【図39】図35に示されるナビゲーションバックのディスクサーチ情報 (D S I) のパラメータ及び内容を示す。

30 【図40】図39に示されるディスクサーチ情報 (D S I) のD S I一般情報 (D S I _ G I) のパラメータ及び内容を示す。

【図41】図37に示されるビデオオブジェクト (V O B) の同期再生情報 (S Y N C I) のパラメータ及びその内容を示す。

40 【図42】図1に示すビデオデコーダ部の回路構成を示すブロック図。

【図43】図1に示すオーディオデコーダ部の回路構成を示すブロック図。

【図44】図1に示す副映像デコーダ部の回路構成を示すブロック図。

【図45】図1に示すビデオ再生処理部の回路構成を示すブロック図。

【図46】図1に示すオーディオ再生処理部の回路構成を示すブロック図。

50 【図47】図1に示すオーディオミキシング部の回路構成を示すブロック図。

【図4 8】ビデオデータ属性の取得及び再生システムの設定処理を説明するためのフローチャート。

【図4 9】オーディオデータ属性の取得及び再生システムの設定処理を説明するためのフローチャート。

【図5 0】、副映像データ属性の取得及び再生システムの設定処理を説明するためのフローチャート。

【図5 1】ビデオデータをエンコーダしてビデオファイルを生成するエンコーダシステムを示すブロック図である。

【図5 2】図5 1に示されるエンコード処理を示すフローチャートである。

【図5 3】図5 2に示すフローでエンコードされた主ビデオデータ、オーディオデータ及び副映像データを組み合わせてビデオデータのファイルを作成するフローチャートである。

【図5 4】フォーマットされたビデオファイルを光ディスクへ記録するためのディスクフォーマッタのシステムを示すブロック図である。

【図5 5】図5 4に示されるディスクフォーマッタにおけるディスクに記録するための論理データを作成するフローチャートである。

【図5 6】論理データからディスクへ記録するための物理データを作成するフローチャートである。

【図5 7】図4に示すビデオタイトルセットを通信系を介して転送するシステムを示す概略図である。

【符号の説明】

- 4 … キー操作／表示部
- 6 … モニター部
- 8 … スピーカー部
- 10 … 光ディスク
- 11 … モータドライブ回路
- 12 … スピンドルモータ
- 16 … 光反射層
- 24 … クランピング領域
- 26 … リードアウト領域
- 27 … リードイン領域
- 28 … データ記録領域
- 30 … ディスクドライブ部
- 32 … 光学ヘッド32
- 33 … フィードモータ
- 36 … フォーカス回路
- 37 … フィードモータ駆動回路
- 38 … トランкиング回路
- 40 … ヘッドアンプ
- 44 … サーボ処理回路
- 50 … システムCPU部
- 52 … システムROM/RAM部
- 54 … システムプロッセッサ部
- 56 … データRAM部
- 58 … ビデオデコーダ部

- 60 … オーディオデコーダ部
- 62 … 副映像デコーダ部
- 64 … D/A及びデータ再生部
- 70 … ボリューム及びファイル構造領域
- 71 … ビデオマネージャ (VMG)
- 72 … ビデオタイトルセット (VTS)
- 73 … 他の記録領域
- 74 … ファイル
- 75 … ビデオマネージャ情報 (VMGI)
- 76 … ビデオマネージャメニューの為のビデオオブジェクトセット (VMGM_VOBS)
- 77 … ビデオマネージャ情報のバックアップ (VMGI_BUP)
- 78 … ビデオ管理情報管理テーブル (VMGI_MAT)
- 79 … タイトルサーチポインターテーブル (TT_SRPT)
- 80 … ビデオタイトルセット属性テーブル (VTS_ATRT)
- 82 … ビデオオブジェクトセット (VOBS)
- 83 … ビデオオブジェクト (VOB)
- 84 … セル95
- 85 … ビデオオブジェクトユニット (VOBU)
- 86 … ナビゲーションバック (NVバック)
- 88 … ビデオバック (Vバック)
- 90 … 副映像バック (SPバック)
- 91 … オーディオバック (Aバック)
- 95 … ビデオタイトルセットのメニュー用ビデオオブジェクトセット (VTS_M_VOBS)
- 96 … ビデオタイトルセットのタイトルの為のビデオオブジェクトセット (VTS_TT_VOBS)
- 97 … ビデオタイトルセット情報 (VTSI) のバックアップ
- 98 … ビデオタイトルセット情報管理テーブル (VTSI_MAT)
- 99 … ビデオタイトルセットパートオブタイトルサーチポインターテーブル (VTS_PTT_SRPT)
- 100 … ビデオタイトルセットプログラムチェーン情報テーブル (VTS_PGCIT)
- 101 … ビデオタイトルセットタイムサーチマップテーブル (VTS_MAPT)
- 104 … PGC情報 (VTS_PGC)
- 106 … プログラムチェーンプログラムマップ (PGC_PGMAP)
- 107 … セル再生情報テーブル (C_PBIT)
- 108 … セル位置情報テーブル (C_POSIT)
- 111 … ビデオタイトルセットメニューPGCIユニットテーブル (VTS_PGC1_UT)
- 112 … ビデオタイトルセットセルアドレステーブル (VTS_C_ADT)
- 50 113 … VTS_PGCITサーチポインタ (VTS_PGCIT_SPT)

【図4】

【図5】

【図8】

b15	b14	b13	b12	b11	b10	b9	b8
ビデオ圧縮モード	フレームレート	表示アスペクト比		表示モード			
b7	b6	b5	b4	b3	b2	b1	b0
予約 (0)							

【図7】

(記述順)	
VMG_ID	ビデオマネージャーの識別子
VMGL_SZ	ビデオ管理情報のサイズ
VERN	DVDの規格に関するバージョン番号
VMG_CAT	ビデオマネージャーのカテゴリー
VLM_S_ID	ボリュームセット識別子
VTS_Ns	ビデオタイトルセットの数
PVR_ID	提供者のID
VMGL_MAT_EA	VMGL_MATの終了アドレス
VMGM_VOBS_SA	VMGM_VOBSの開始アドレス
TT_SRPT_SA	TT_SRPTの開始アドレス
VTS_ATRT_SA	VTS_ATRTの開始アドレス
VMGM_V_ATR	VMGMのビデオ属性
VMGM_AST_Ns	VMGMのオーディオストリーム数
VMGM_AST_ATR	VMGMのオーディオストリーム属性
VMGM_SPST_Ns	VMGMの副映像ストリーム数
VMGM_SPST_ATR	VMGMの副映像ストリーム属性

【図10】

(a)

(b)

【図6】

ビデオオブジェクトセット(VOBS)				
83				82
ビデオオブジェクト (VOB_IDNI)	ビデオオブジェクト (VOB_IDN2)			ビデオオブジェクト (VOB_IDNj)
84				
セル (C_IDNI)	セル (C_IDN2)			セル (C_IDNj)
85				
ビデオオブジェクト ユニット (VOBU)	ビデオオブジェクト ユニット (VOBU)	ビデオオブジェクト ユニット (VOBU)		ビデオオブジェクト ユニット (VOBU)
86	88	90	91	
NAV	NAV	NAV	NAV	NAV
バック	バック	バック	バック	バック
NAV	NAV	NAV	NAV	NAV
バック	バック	バック	バック	バック
NAV	NAV	NAV	NAV	NAV
バック	バック	バック	バック	バック

【図9】

ディスク記録データ		TVモニタ上の再生画像イメージ				
表示アスペクト比	記述画像データ	表示モード				
00 (3/4)		3/4 00:ノーマル	01:パンスキャン	10:レターボックス	9/16	
11 (9/16)						

【図16】

87	プログラムチェーン #1	..	プログラムチェーン #j	
----	--------------	----	--------------	--

【図18】

VTS_ATRT	
VTS_Ns	内容 VTSの数
VTS_ATRT_EA	VTS_ATRTの終了アドレス

【図19】

89	プログラム #1	プログラム #2	プログラム #3	..	プログラム #k
84	セルID #1	セルID #2	セルID #5	..	セルID #n

VTS_ATR_SRP	
(1) VTS_ATR_SA	内容 VTS_ATRのスタートアドレス

【図11】

b63	b62	b61	b60	b59	b58	b57	b56
オーディオ コーディングモード	予約 (O)	オーディオタイプ	アプリケーション ID				
b55	b54	b53	b52	b51	b50	b49	b48
量子化	fs	予約 (O)	オーディオチャネル数				
b47	b46	b45	b44	b43	b42	b41	b40
予約 (O)							
b39	b38	b37	b36	b35	b34	b33	b32
予約 (O)							
b31	b30	b29	b28	b27	b26	b25	b24
予約 (O)							
b23	b22	b21	b20	b19	b18	b17	b16
予約 (O)							
b15	b14	b13	b12	b11	b10	b9	b8
予約 (O)		予約 (O)					
b7	b6	b5	b4	b3	b2	b1	b0
予約 (O)							

【図12】

b47	b46	b45	b44	b43	b42	b41	b40
副映像コーディングモード		副映像表示タイプ		副映像タイプ			
b39	b38	b37	b36	b35	b34	b33	b32
予約 (O) 或は特定コード							
b31	b30	b29	b28	b27	b26	b25	b24
予約 (O) 或は特定コード							
b23	b22	b21	b20	b19	b18	b17	b16
予約 (O) 或は特定コードの為の予約							
b15	b14	b13	b12	b11	b10	b9	b8
予約 (O) 或は特定コードの範囲							
b7	b6	b5	b4	b3	b2	b1	b0
予約 (O)		予約 (O)					

【図13】

TT_SRPT	
タイトルサーチポインタテーブル情報 (TSPT#1)	92
入力番号1のタイトルサーチポインタ (TT_SRPT#1)	93
入力番号2のタイトルサーチポインタ (TT_SRPT#2)	
⋮	
入力番号nのタイトルサーチポインタ (TT_SRPT#n)	79

VTS_ATRT	80
ビデオタイトルセット属性テーブル情報 (VTS_ATRT#1)	66
VTS#1のビデオタイトルセット属性サーチポインタ (VTS_ATR_SRPT#1)	67
⋮	
VTS#nのビデオタイトルセット属性サーチポインタ (VTS_ATR_SRPT#n)	
VTS#1のビデオタイトルセット属性 (VTS_ATR#1)	68
⋮	
VTS#nのビデオタイトルセット属性 (VTS_ATR#n)	

【図20】

VTS_ATR	内容
VTS_ATR_EA	VTS_ATRの終了アドレス
VTS_CAT	ビデオタイトルセットカテゴリー
VTS_ATR	ビデオタイトルセット属性情報

VTS_PGCIT_I	(記述領域)
VTS_PGC_Ns	内容
VTS_PGCIT_EA	VTS_PGCの終了アドレス

【図25】

【図21】

【図22】

VTSI_MAT	
VTS_ID	VTS識別子
VTSI_SZ	VTSのサイズ
VERN	DVDビデオ規格のバージョン番号
VTS_CAT	VTSカテゴリー
VTSI_MAT_EA	VTSI_MATの終了アドレス
VTSI_VBOS_SA	VTSI_VBOS の開始アドレス
VTSI_VBOS_SA	VTSI_VBOS の開始アドレス
VTSI_PTT_SRPT_SA	VTSI_PTT_SRPTの開始アドレス
VTSI_PGCIT_SA	VTSI_PGCIT の開始アドレス
VTSI_PGC1_UT_SA	VTSI_PGC1_UT の開始アドレス
VTSI_WAPL_SA	VTSI_WAPL の開始アドレス
VTSI_C_ADT_SA	セルアドレステーブルの開始アドレス
VTSI_VBUL_ADMAP_SA	VOBULアドレスマップの開始アドレス
VTSI_V_ATR	VTSのビデオ属性
VTSI_AST_Ns	VTSのオーディオストリーム数
VTSI_AST_ATR	VTSのオーディオストリーム属性
VTSI_SPST_Ns	VTSの副映像ストリーム数
VTSI_SPST_ATR	VTSの副映像ストリーム属性
VTS_V_ATR	VTSのビデオ属性
VTS_AST_Ns	VTSのオーディオストリーム数
VTS_AST_ATR	VTSのオーディオストリーム属性
VTS_SPST_NS	VTSの副映像ストリーム数
VTS_SPST_ATR	VTSの副映像ストリーム属性
VTS_WIL_AST_ATR	VTSのマルチチャンネルオーディオストリーム属性

VTSI_PGCIT

ビデオタイトルセット内のプログラムチェーンの為の情報テーブルの情報 (VTSI_PGCIT_I)	~102
VTSI_PGC1 #1 サーチポインタ (VTSI_PGCIT_SRPT#1)	~103
VTSI_PGC1 #2 サーチポインタ (VTSI_PGCIT_SRPT#2)	
⋮	
VTSI_PGC1 #n サーチポインタ (VTSI_PGCIT_SRPT#n)	
VTSI_PGC1 #1 (VTSI_PGC1_I)	~104
⋮	
VTSI_PGC1 #n (VTSI_PGC1_n)	

【図26】

100

VTSI_PGCIT_SRPT	
内容	(記述順)
VTSI_PGC_CAT	VTSI_PGCのカテゴリー
VTSI_PGC1_SA	VTSI_PGC情報の開始アドレス

【図30】

エントリーセル番号	
ECELLN	エントリーセル番号

【図23】

VTS_AST_ATR							
b63	b62	b61	b60	b59	b58	b57	b56
オーディオコーディングモード		予約①) 或は マルチチャンネル エクステンション		オーディオタイプ		アプリケーションID	
b55	b54	b53	b52	b51	b50	b49	b48
星子化		fs		予約②)		オーディオチャンネル数	
b47	b46	b45	b44	b43	b42	b41	b40
予約③) 或は特定コード(上位ビット)							
b39	b38	b37	b36	b35	b34	b33	b32
予約④) 或は特定コード(下位ビット)							
b31	b30	b29	b28	b27	b26	b25	b24
予約⑤) 或は特定コードのための予約							
b23	b22	b21	b20	b19	b18	b17	b16
予約⑥)							
b15	b14	b13	b12	b11	b10	b9	b8
予約⑦)							
b7	b6	b5	b4	b3	b2	b1	b0
予約⑧) 或はアプリケーション情報							

【図27】

VTS_PGC1	
プログラムチェーン一般情報 (PGC_GI)	~105
(必須)	
プログラムチェーンプログラムマップ (PGC_PGMAP)	~106
(VOBがある場合、必須)	
セル再生情報テーブル (C_PBIT)	~107
(VOBがある場合、必須)	
セル位置情報テーブル (C_POSIT)	~108
(VOBがある場合、必須)	104

PGC1_GI	
記述順	
PGC1_CAT	PGCカテゴリ
PGC_CNT	PGCの内容
PGC_PB_TIME	PGCの再生時間
PGC_SPST_CTL	PGC副映像ストリーム制御
PGC_AST_CTL	PGCオーディオストリーム制御
PGC_SP_PLT	PGC副映像パレット
PGC_PGMAP_SA	PGC_PGMAPの開始アドレス
C_PBIT_SA	C_PBITの開始アドレス
C_POSIT_SA	C_POSITの開始アドレス

【図29】

PGC_PGMAP	
プログラム#1のエントリーセル番号	
プログラム#2のエントリーセル番号	
:	
プログラム#nのエントリーセル番号	

C_PBIT	
セル再生情報 #1 (C_PBI1)	
セル再生情報 #2 (C_PBI2)	
:	
セル再生情報 #n (C_PBIn)	

【図32】

C_PBI	
内容	
C_CAT	セルカテゴリ
C_PBTM	セル再生時間
C_FVOBU_SA	セル中の最初のVOBUの開始アドレス
C_LVOBU_SA	セル中の最後のVOBUの開始アドレス

C_POSIT	
セル位置情報 #1 (C_POSIT1)	
:	
セル位置情報 #n (C_POSITn)	

【図33】

【図34】

C_POSI		内容
C_VOB_IDN		セル内のVOB ID番号
C_IDN		当該セルのID番号

【図35】

【図36】

【図37】

PCI		内容
PCI_GI		PCIの一般情報
NSMLS_ANGLI		アングル情報

【図38】

PCI_GI		内容
NV_PCK_LBN	NVパックのLBN	
VOBU_CAT	VOBUのカテゴリー	
VOBU_S_PTM	VOBUのスタートPTM	
VOBU_E_PTM	VOBUのエンドPTM	

DSI		内容
DSI_GI		DSIの一般情報
SML_PBI		シームレス再生情報
SML_AGLI		アングル情報
NV_PCK_ADI		ナビゲーションパックアドレス情報
SYNC1		同期再生情報

【図40】

DSIGI		内容
NV_PCK_SCR	NVパックのSCR	
NV_PCK_LBN	NVパックのLBN	
VOBU_EA	VOBUの終了アドレス	
VOBU_IP_EA	最初の1ピクチャーの終了アドレス	
VOBU_VOB_IDN	VOBのID番号	
VOBU_C_IDN	セルのID番号	

SYNC1		内容
A_SYNCA_0 to 7		同期対象のオーディオパックのアドレス
SP_SYNCA_0 to 31		VOBU内の対象副映像パックの開始アドレス

【図41】

【図42】

【図43】

【図44】

【図46】

【図47】

【図51】

【図54】

【図48】

【図50】

【図56】

【図53】

スタート

終了

【図49】

【図52】

【図55】

【図57】

フロントページの続き

(72)発明者 菊地 伸一
東京都港区新橋3丁目3番9号 東芝エ
ー・ブイ・イー株式会社内

(72)発明者 蔵野 智昭
神奈川県川崎市幸区柳町70番地 株式会社
東芝柳町工場内

(72)発明者 萩尾 剛志
東京都港区芝浦一丁目1番1号 株式会社
東芝本社事務所内