Nearest neighbor methods Lecture 11

David Sontag
New York University

Slides adapted from Vibhav Gogate, Carlos Guestrin, Mehryar Mohri, & Luke Zettlemoyer

Nearest Neighbor Algorithm

- Learning Algorithm:
 - Store training examples
- Prediction Algorithm:
 - To classify a new example \mathbf{x} by finding the training example $(\mathbf{x}^i, \mathbf{y}^i)$ that is *nearest* to \mathbf{x}
 - Guess the class $y = y^i$

K-Nearest Neighbor Methods

• To classify a new input vector x, examine the k-closest training data points to x and assign the object to the most frequently occurring class

common values for k: 3, 5

Decision Boundaries

• The nearest neighbor algorithm does not explicitly compute decision boundaries. However, the decision boundaries form a subset of the Voronoi diagram for the training data.

1-NN Decision Surf ace

 The more examples that are stored, the more complex the decision boundaries can become

Example results for k-NN

7-Nearest Neighbors

[Figures from Hastie and Tibshirani, Chapter 13]

Nearest Neighbor

When to Consider

- Instance map to points in \mathbb{R}^n
- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

Issues

- Distance measure
 - Most common: Euclidean
- Choosing k
 - Increasing k reduces variance, increases bias
- For high-dimensional space, problem that the nearest neighbor may not be very close at all!
- Memory-based technique. Must make a pass through the data for each classification. This can be prohibitive for large data sets.

Distance

Notation: object with p features

$$X^{i} = (X_{1}^{i}, X_{2}^{i}, ..., X_{p}^{i})$$

• Most common distance metric is *Euclidean* distance:

$$d_{E}(x^{i}, x^{j}) = \left(\sum_{k=1}^{p} (x_{k}^{i} - x_{k}^{j})^{2}\right)^{\frac{1}{2}}$$

- ED makes sense when different features are commensurate; each is variable measured in the same units.
- If the features are different, say length and weight, it is not clear.

Normalization of features

Can divide features by them by the standard deviation, making them all equally important

The estimate for the standard deviation of feature k:

$$\hat{\sigma}_k = \left(\frac{1}{n} \sum_{i=1}^n \left(x_k^i - \overline{x}_k\right)^2\right)^{\frac{1}{2}}$$

where \overline{x}_k is the sample mean:

$$\overline{X}_k = \frac{1}{n} \sum_{i=1}^n X_k^i$$

Weighted Euclidean distance

Finally, if we have some idea of the relative importance of each variable, we can weight them:

$$d_{WE}(i, j) = \left(\sum_{k=1}^{p} W_k(X_k^i - X_k^j)^2\right)^{\frac{1}{2}}$$