Tamira Marie A. Laki BS Mathematics CS

Relations: Domain and Range, Identity, and **Inverse Relations**

1 Introduction: Relations

- If two ordered pair of elements are written, separated by comma and enclosed by parentheses like (a, b), they form a binary relation. In a binary relation (a, b), a-coordinate is called the left component or the domain and the b-coordinate is called the right component or the range.
- Relations can be used to store information in the computer databases. Relationships between people, numbers, events, letters, sets, and many other entities can be formalized in the idea of a binary relation. It is a binary relation because it relates two objects.

Definition 3.1

A binary relation or simply a relation from a set A to a set B is a subset R of the cartesian product $A \times B$. If $(a,b) \in R$, we write aRb and say that a is related to b. On the other hand, aRb or $(a,b) \not\in R$ means a is not related to b.

Definition 3.2

The Domain of R (denoted by D_R) is the set of all left components of the elements of R.

$$D_R = \{ a \in A \mid (a, b) \in R \text{ for some } b \in B \} = \{ a \mid aRb \}$$

Definition 3.3

The Range of R (denoted by R_R) is the set of all right components of the elements of R.

$$R_R = \{b \in B \mid (a, b) \in R \text{ for some } a \in A\} = \{b \mid aRb\}$$

Example

Suppose $A = \{1, 2, 3\}, B = \{a, b, c\}, R =$ $\{(1,a),(3,b),(2,b)\}$ and R is a relation from A to B since R is a subset of $A \times B$ with respect to relation R, 1Ra, 3Rb but 1Rb, 1Rc, 2Ra, 2Rc, 3Ra, 3Rc

Methods of Describing Relations

1. Relations through Ordered Pairs

$$R = \{(1, x), (2, y), (3, z), (4, w)\}$$

2. Relations through Rule Form

$$R = \{(a, b) | b = a^2\}$$

$$R = \{(a, b) | b < a + 2\}$$

3. Relation through Arrow Diagrams

4. Relations through Table

x	1	2	3
y = f(x)	1	4	9

5. Relation through Rectangular Array Matrix

$$R = \{(1, y), (1, z), (3, y)\}\$$

Note:

The rows of the matrix are considered as the elements of A and the columns are considered as the elements of B. Put "1" if $a \in R$ and "0" if $a \in R$

Example 1

Suppose the relation R is described by the diagram at the right, express R using:

- 1. A list of ordered pairs
- 2. Rule form

Solution:

- 1. $R = \{(-1,1), (1,1), (2,4), (-2,4)\}$
- 2. In the figure, you have noticed that $(-1)^2 =$ $1.1^2 = 1.(-2)^2 = 4$, and $2^2 = 4$.

This means that number in the first set is paired with its square in the second set. Hence, $b = a^2$ and therefore we can describe the relation R as $R = \{(a,b) \mid b = a^2, a = -1, 1, -2, 2\}$

Example 2

Suppose $R = \{(1, y), (1, z), (3, y)\}$ is a relation from $A = \{1, 2, 3\}$ to $B = \{x, y, z\}$. Write down the elements of A and elements of B in two disjoint disks, and then draw from $a \in A$ to $b \in B$ whenever a is related to b.

Solution:

Definition 3.4

Let R be a relation from a set A to itself. A relation on the set A is a subset of $A \times A$.

Example 3

Let $A = \{1, 2, 3, 4\}$, $R = \{(a, b) | a \text{ divides } b\}$. Which ordered pairs are in the relation R?

Note:

"a divides b" means b can be divided by a. However, the other way around is not applicable.

Solution:

Since (a, b) is in the relation R if and only if a and b are positive integers exceeding 4 such that a divides b. The following are the elements of $A \times A$:

$$\begin{array}{l} A\times A = \\ \{(1,1),(1,2),(1,3),(1,4),\\ (2,1),(2,2),(2,3),(2,4),\\ (3,1),(3,2),(3,3),(3,4),\\ (4,1),(4,2),(4,3),(4,4)\} \end{array}$$

$$R = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$$

Example 4

Suppose A=1,2,3,4 and the following relations from $A\times A$

$$R_1 = \{(a,b) : a \ge b\}$$

$$R_2 = \{(a,b) : a < b\}$$

$$R_3 = \{(a,b) : a < b\}$$

$$R_4 = \{(a,b) : a + 1 = b\}$$

$$R_5 = \{(a,b) : a + b \ge 7\}$$

Which of the following contain each of the pairs (1,1), (2,2), (3,3) and (4,4)?

Solution:

The relation on a set A is simply a subset of $A \times A$. i.e.

$$\begin{array}{l} A\times A = \\ \{(1,1),(1,2),(1,3),(1,4),\\ (2,1),(2,2),(2,3),(2,4),\\ (3,1),(3,2),(3,3),(3,4),\\ (4,1),(4,2),(4,3),(4,4)\} \end{array}$$

2 Identity and Inverse Relation

Definition 3.5

Let A be a set. The **identity relation** is denoted by I_A , and is given by the symbols: $I_A = \{(a, a) | a \in A\}$

Note:

Identity relation is also called *equality* or *diago-nal relation on* A. It is denoted by '=" sometimes " \triangle_A " or simply " \triangle ".

Definition 3.6

Let R be a relation from A to B. The *inverse of* R, denoted by R_{-1} , is the relation from B to A given by $bR_{-1}a$ if and only if aRb. In symbols, $R^{-1} = \{(b,a) \mid (a,b) \in R\}$

Remark:

If R is any relation, then $(R^{-1})^{-1} = R$. The domain of R^{-1} is the range of R and vice versa. If R is a relation to A, i.e. R is a subset of $A \times A$, R^{-1} is also a relation on A.

3 Composition of Relations

Definition: Let R be a relation from A to B and S be a relation from B to C. The composition of R and S, denoted by RoS, is the relation from A to C defined by: $RoS = \{(a,b) \mid (a,b) \in R \ and \ (b,c) \in S \ for \ some \ a \in A, b \in B, c \in C\}$

Example 1

Suppose $A = \{1, 2, 3\}; B = \{2, 4, 6, 8\}; C = \{m, a, t\};$ and Let $R = \{(1, 2), (1, 6), (3, 4), (3, 8)\}$ be a relation from set A to set B.

and $S = \{(2, m), (4, t), (6, t), (8, m)\}$ be a relation from set B to set C.

Solution:

Using the diagram the composition of $RoS = \{(1, m), (1, t), (3, t), (3, m)\}.$

Suppose R is a relation from a set A to itself. The RoR, the composition of R to itself, is always defined, and RoR is sometimes denoted by R^2 . Similarly, $R^3 = RoR = RoRoR$, and so on. Thus R is defined for all positive numbers.

Example 2

Suppose $A = \{1, 2, 3\}$, and let $R = \{(1, 2), (1, 3), (2, 2), (3, 3)\}$ be a relation from set A to set A. Then, the composition of the relation R^3 is the set $\{(1, 2), (1, 3), (2, 2), (3, 3)\}$.

Digraph of Relations

If a is a finite set and R is a relation on A, we can represent R pictorially as follows. Draw a small circle for each element of A and label the circle with corresponding element of A. These circle are called vertices, Draw a directed line, called an edge, from a_i to a_j and only if a_iRa_j . The resulting pictorial representation of R is called a directed graph or digraph of R. Thus, if R is a relation on A, the edges in the digraph of R correspond exactly to the pairs (a_i,a_j) in R, and the vertices correspond exactly to the elements of set A.

Note:

Arrangement of the vertex or vertices is arbitrary, you can also make your own composition, unless otherwise provided in the given problem.

Example 1

Let $A = \{1, 2, 3, 4\}$; $R = \{(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)\}$. Then the digraph of R is shown below. Observe that there is an arrow from 2 to itself, it is because 2 is related to 2 under R.

Example 2

Solution:

 $R = \{(1,2),(2,2),(1,3),(2,3),(3,3),(4,2),(4,3),(4,4)\}$

Definition:

If R is a relation on a set A, and $a \in A$, the in-degree of a vertex is the number of edges terminating at the vertex and the out-degree is the number of edges leaving the vertex.

Example 1

Example 2

Let $A = \{a, b, c, d\}$, and let R be the relation on A that has the matrix. Determine R, construct the digraph of R and list in-degrees and out-degrees of all vertices.

$$M_R = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

Solution:

The digraph of $R = \{(a, a), (b, b), (c, a), (c, b), (c, c), (d, b), (d, d)\}$ and the table of the in-degrees and out-degrees is shown below:

Path of Length (n)

Definition 1

Suppose that R is a relation on a set A. A path of the length n in R from a to b is a finite sequence $\pi = a, x_1, x_2, ..., x_{n-1}, b$ beginning with a and ending with b, such that $aRx_1, aRx_2, ..., x_{n-1}Rb$.

Definition 2

A path that begins and ends at the same vertex is called a **cycle**. A path of length n involves n+1 elements of A, although they are not necessarily distinct. Simply put, the length of a path is the number of edges in the path, where the vertices need not all be distinct.

Example 1

Consider the digraph below. The $\pi_1 = 1, 2, 3, 4, 5$ is a path length 4 from vertex 1 to vertex 3, $\pi_2 = 1, 2, 5, 1$ is a path length of 3 from vertex 1 to itself, and $\pi_3 = 2, 2$ is path length of 1 from vertex 2 to itself.

4 Properties of Relations

Definition 3.11

A relation R is reflexive if for every $a \in A(a, a) \in R$. A relation is not reflexive if there exists $a \in A$ such that $(a, a) \not\in R$.

Example

Consider the following relations on $\{1, 2, 3, 4\}$.

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}
R_2 = \{(1, 1), (1, 2), (2, 1)\}
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}
R_4 = \{(3, 1), (2, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}
R_6 = A \times A. \text{ the universal relations}
```

Definition 3.12

A relation R is symmetric if whenever $(a, b) \in R$, then $(b, a) \in R$. A relation is not symmetric if there exists $(a, b) \in A$ such that $(a, b) \in R$ but $(b, a) \notin R$.

Example

Consider the following relations on $\{1, 2, 3, 4\}$.

```
\begin{split} R_1 &= \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\} \\ R_2 &= \{(1,1), (1,2), (2,1)\} \\ R_3 &= \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\} \\ R_4 &= \{(3,1), (2,1), (3,2), (4,1), (4,2), (4,3)\} \\ R_5 &= \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\} \\ R_6 &= A \times A, \text{ the universal relations} \end{split}
```

Definition 3.13

A relation R is antisymmetric if whenever (a, b) or (b, a) belong to R then a = b. Otherwise, it is not antisymmetric.

Example

Consider the following relations on $\{1, 2, 3, 4\}$.

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}
R_2 = \{(1, 1), (1, 2), (2, 1)\}
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}
R_4 = \{(3, 1), (2, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}
R_6 = A \times A. \text{ the universal relations}
```

Definition 3.14

A relation R on a set A is transitive if whenever $(a,b),(b,c) \in R$ then $(a,c) \in R$. A relation is not transitive if there exists $a,b,c \in A$ such that $(a,b),(b,c) \in R$, but $(a,c) \in R$.

Example

Consider the following relations on $\{1, 2, 3, 4\}$.

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}
R_2 = \{(1, 1), (1, 2), (2, 1)\}
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}
R_4 = \{(3, 1), (2, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}
R_6 = A \times A, \text{ the universal relations}
```

5 Closure Relations

The reflexive, symmetric and transitive closures of a relation R is to be denoted by respectively by: reflexive (R), symmetric (R), and transitive (R),

Definition:

Reflexive (R) can be obtained by adding to R those identity elements (a,a) which do not belong to R.

```
 \begin{array}{ll} \textit{Example 1. Suppose } A = & \{1,2,3,4\} \text{ and let } R = \{(1,1),(1,3),(2,4),(3,1),(3,3),(4,3)\} \\ & Solution: & \textit{Reflexive } (R) = \textit{R} \cup I_A \\ & = \textit{R} \cup \{(2,2),(4,4)\} \\ & = \{(1,1),(1,3),(2,4),(3,1),(3,3),(4,3),(2,2),(4,4)\} \\ & \textit{Example 2. What is the } \textit{reflexive closure } \textit{of the relation } R = \{(a,b):a < b \} \textit{ on the set of integers?} \\ & Solution: & \textit{Reflexive } (R) \textit{ is } \textit{R} \cup I_A = \{(a,b):a < b \} \cup \{\ (a,a):a \in \textit{Z}\ \} \\ & = \{(a,b):a \le b\ \} \end{array}
```

Definition:

Solution:

Symmetric (R) can be obtained by adding to R all pairs of (b,a) whenever (a,b) belong to R.

```
Example 1. Suppose A = \{1, 2, 3, 4\} and let R = \{(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)\} Solution: Symmetric (R) = R \cup R^{-1}
= R \cup \{(4, 2), (3, 4)\}
= \{(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3), (4, 2), (3, 4)\}
Example 2. What is the symmetric closure of the relation R = \{(a, b) : a > b\} on the set of positive integers?
```

Symmetric (R) is $R \cup R^{-1} = \{(a, b) : a > b\} \cup \{(b, a) : a > b\}$

5.1 Definition:

Let R be a relation on a set A with n elements. Recall that $R^2 = RoR$ and $R^n = R^{n-1}oR$, Then, transitive (R) $-R \cup R^2 \cup ... \cup R^n$.

```
Example. Let R be the relation on A = \{1, 2, 3\}; and R = \{(1, 2), (2, 3), (3, 3)\}. Then R^2 = RoR = \{(1, 3), (2, 3), (3, 3)\} and R^3 = R^2oR = \{(1, 3), (2, 3), (3, 3)\} Accordingly, Transitive (R) = R \cup R^2 \cup R^3 = \{(1, 2), (2, 3), (3, 3), (1, 3)\}
```