

$$| b(T_{i}z, a, b) | = 2$$

$$\varphi(5xt) \varphi(5xt) = \varphi(15xt) \varphi(5xt) = \varphi(15xt) \varphi(2xt) = 2$$

$$\varphi(5xt) \varphi(5xt) = \varphi(15xt) \varphi(5xt) = 2$$

$$\varphi(15xt) \varphi(15xt) = 2$$

$$\varphi(15xt) \varphi(15xt$$

Older Systems

			I	LO	IIT!	IG I	POI	I TI	ATA	7		
	_	-	-	_	-	_	-	-	-	-	-	_
	_	-	-	_	-	_	-	-	-	-	-	_
12	-	-	_	_	_	_	-	-	-	-	-	_
IONS	_	-	-	_	-	_	-	-	-	-	-	_
ILL	_	-	-	_	-	_	-	-	-	-	-	_
M	_	-	_	_	_	_	_	_	-	-	_	_
	_	-	-	_	-	-	-	-	-	-	-	_
	_	-	_	_	-	_	_	_	_	_	_	_

MILLIONS

		I	LOI	ATIN	IG I	POI	I TV	ATA	Ą		
_	_	-	_	-	-	-	-	-	-	-	_
_	_	-	_	_	-	-	-	-	-	-	_
_	_	-	_	_	_	_	-	-	-	-	_
_	_	_	_	_	_	_	_	_	-	_	_
_	_	_	_	_	_	_	_	_	-	_	_
_	_	_	_	_	_	_	_	_	_	_	_
_	_	-	_	_	_	_	_	-	-	-	_
_	_	_	_	-	_	-	_	_	_	_	_

			Ŀ	, TO	<i>7.</i> T. T I	NG F	SOTI	A.T. T)A'I' <i>A</i>	7		
	-	-	-	-	-	-	_	-	-	-	_	_
	-	-	-	-	-	-	-	-	-	-	_	_
)	_	-	_	_	_	_	-	_	_	_	_	_
- - -	_	_	-	_	-	_	-	_	_	_	_	_
1	_	_	-	_	-	_	-	_	_	_	_	_
	-	-	-	-	-	-	-	-	_	_	_	-
	-	-	-	-	-	-	_	-	-	-	-	_
	_	-	_	_	_	_	-	_	_	_	_	_

MILLIONS

FLOW CYTOMETRY STRANDARD

			F	'LO	ATI	NG I	OII	I TV	DATA	7		
	-	-	-	-	_	-	-	-	-	-	-	-
	-	_	_	-	_	_	_	-	-	-	-	-
)	-	_	_	-	_	-	_	-	-	-	-	-
- }	_	_	_	_	_	_	_	-	_	-	-	_
1	_	-	-	_	_	-	-	-	_	-	_	-
	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	_	_	_	_	_	_	_	_	_	_
	_	-	-	_	-	_	-	_	_	-	-	-

MILLIONS

FLOW CYTOMETRY STRANDARD

PRO
WIDELEY USED

FLOW CYTOMETRY STRANDARD

PRO
WIDELEY USED

CONNO COMPRESSION

Lossless Compression

Lossless Compression

Lossless Compression

Better alternative?

167.131

CODEC	RATIO
LZIP	0.533
LZMA	0.533
XZ	0.533
GLZA	0.558
LZHAM	0.568
CSC	0.590
BROTLI	0.598
TORNADO	0.622
ZSTD	0.626
XPACK	0.637
ZLING	0.665
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
UCL_NRV2D	0.725
UCL_NRV2E	0.725
UCL_NRV2B	0.734
LZ01X	0.755
LZ01Z	0.757
LZSSE8	0.758
LZ01Y	0.768
LZSSE2	0.768
LIZARD	0.770
DENSITY	0.771
LZ02A	0.774
LZ01B	0.775
LZ4HC	0.777
• • •	• • •

CODEC	RATIO
ZPAQ	0.460
BCM	0.510
LZIP	0.533
LZMA	0.533
FLZMA2	0.539
LZHAM	0.569
BROTLI	0.571
BZIP2	0.580
CSC	0.590
BALZ	0.598
XPACK	0.612
ZSTD	0.625
ZOPFLI	0.674
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
BRIEFLZ	0.727
DOBOZ	0.750
LZSSE8	0.758
BSCQLFC	0.763
LZSSE2	0.768
LZ4	0.777
LZSSE4	0.781
LZG	0.803
SUBOTIN	0.819
FASTAC	0.819
ZLIBH	0.823
•••	• • •

CODEC	RATIO
LZIP	0.533
LZMA	0.533
XZ	0.533
GLZA	0.558
LZHAM	0.568
CSC	0.590
BROTLI	0.598
TORNADO	0.622
ZSTD	0.626
XPACK	0.637
ZLING	0.665
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
UCL_NRV2D	0.725
UCL_NRV2E	0.725
UCL_NRV2B	0.734
LZ01X	0.755
LZ01Z	0.757
LZSSE8	0.758
LZ01Y	0.768
LZSSE2	0.768
LIZARD	0.770
DENSITY	0.771
LZ02A	0.774
LZ01B	0.775
LZ4HC	0.777
	•••

CODEC	RATIO
ZPAQ	0.460
BCM	0.510
LZIP	0.533
LZMA	0.533
FLZMA2	0.539
LZHAM	0.569
BROTLI	0.571
BZIP2	0.580
CSC	0.590
BALZ	0.598
XPACK	0.612
ZSTD	0.625
ZOPFLI	0.674
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
BRIEFLZ	0.727
DOBOZ	0.750
LZSSE8	0.758
BSCQLFC	0.763
LZSSE2	0.768
LZ4	0.777
LZSSE4	0.781
LZG	0.803
SUBOTIN	0.819
FASTAC	0.819
ZLIBH	0.823
•••	•••

CODEC	RATIO
LZIP	0.533
LZMA	0.533
XZ	0.533
GLZA	0.558
LZHAM	0.568
CSC	0.590
BROTLI	0.598
TORNADO	0.622
ZSTD	0.626
XPACK	0.637
ZLING	0.665
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
UCL_NRV2D	0.725
UCL_NRV2E	0.725
UCL_NRV2B	0.734
LZ01X	0.755
LZ01Z	0.757
LZSSE8	0.758
LZ01Y	0.768
LZSSE2	0.768
LIZARD	0.770
DENSITY	0.771
LZ02A	0.774
LZ01B	0.775
LZ4HC	0.777
	•••

CODEC	RATIO
ZPAQ	0.460
BCM	0.510
LZIP	0.533
LZMA	0.533
FLZMA2	0.539
LZHAM	0.569
BROTLI	0.571
BZIP2	0.580
CSC	0.590
BALZ	0.598
XPACK	0.612
ZSTD	0.625
ZOPFLI	0.674
LIBDEFLATE	0.676
LZFSE	0.690
CRUSH	0.692
ZLIB	0.695
BRIEFLZ	0.727
DOBOZ	0.750
LZSSE8	0.758
BSCQLFC	0.763
LZSSE2	0.768
LZ4	0.777
LZSSE4	0.781
LZG	0.803
SUBOTIN	0.819
FASTAC	0.819
ZLIBH	0.823
•••	•••

chameleon	
cheetah	
lion	
Izop	
crush	_ _
zlib	_
Izfse	_ _
deflate*	
brotli	— —
xpack	
tornado	
zstd	
CSC	
bzip2	
Izma*	
bcm	
zpaq	
	ώ 4 π α α ν α α α
	000000

Implementation in R

chameleon	
cheetah	
lion	
lzop	
crush	
zlib	
Izfse	
deflate*	
brotli	
xpack	
tornado	
zstd	
CSC	
bzip2	
lzma*	
bcm	
zpaq	
	ω4πον ∞ο
	000000

Implementation in R

base::memCompress(type="XZ")

Implementation in R

Bioconductor - flowCore

Bioconductor - flowCore

NO COMPRESSION

```
C:\input.fcs
flowCore::read.FCS
 flowSom::FlowSOM
flowCore::write.FCS
        C:\output.fcs
```


C:\input\01.fcs
C:\input\02.fcs

flowCore: read.flowSet
flowCore: write.flowSet

C:\output\01.fcs
C:\output\02.fcs

C:\input.zip base: unzip C:\input\01.fcs C:\input\02.fcs flowCore::read.flowSet flowCore::write.flowSet

C:\output\01.fcs

C:\output\02.fcs

```
C:\input.zip
    base::unzip
        C:\input\01.fcs
        C:\input\02.fcs
flowCore::read.flowSet
flowCore::write.flowSet
        C:\output\01.fcs
        C:\output\02.fcs
    base::zip
        C:\output.zip
```

```
C:\input.zip
    base::unzip
        C:\input\01.fcs
        C:\input\02.fcs
flowCore::read.flowSet
flowCore::write.flowSet
        C:\output\01.fcs
        C:\output\02.fcs
    base::zip
        C:\output.zip
```



```
C:\input.zip
    base::unzip
         C:\input\01.fcs
         C:\input\02.fcs
flowCore::read.flowSet
flowCore::write.flowSet
         C:\output\01.fcs
         C:\output\02.fcs
    base::zip
         C:\output.zip
```



```
C:\input.zip
    base: unzip
        C:\input\01.fcs
        C:\input\01.fcs
flowCore::read.flowSet
flowCore::write.flowSet
        C:\output\01.fcs
        C:\output\01.fcs
    base::zip
        C:\output.zip
```

C:\input.acs

flowCore: read.flowSet
flowCore: write.flowSet

C:\output.acs

C:\input.fcs.xz

```
flowCore: :read.FCS
flowCore: :write.FCS
```

C:\output.fcs.xz

C:\input.acs

flowCore: read.flowSet
flowCore: write.flowSet

C:\output.acs

flowCore: read.FCS
flowCore: write.FCS

C:\output.fcs.xz

C:\input.acs

flowCore: read.flowSet
flowCore: write.flowSet

C:\output.acs

PROPERFORMANCE

flowCore: :read.FCS
flowCore: :write.FCS

C:\output.fcs.xz

PRO PERFORMANCE <u>CON</u> COMPATIBILITY

C:\input.acs

flowCore: read.flowSet
flowCore: write.flowSet

C:\output.acs

flowCore: :read.FCS
flowCore: :write.FCS

C:\output.fcs.xz

<u>PRO</u>

PERFORMANCE

<u>CON</u> COMPATIBILITY

C:\input.acs

flowCore: :read.flowSet
flowCore: :write.flowSet

C:\output.acs

PRO

COMPATIBILITY

flowCore::read.FCS
flowCore::write.FCS

C:\output.fcs.xz

PRO

PERFORMANCE

CON

COMPATIBILITY

C:\input.acs

flowCore::read.flowSet
flowCore::write.flowSet

C:\output.acs

<u>PRO</u>

COMPATIBILITY

<u>CON</u>

PERFORMANCE

flowCore: :read.FCS
flowCore: :write.FCS

C:\output.fcs.xz

PRO PERFORMANCE EASY <u>CON</u> COMPATIBILITY

C:\input.acs

flowCore::read.flowSet
flowCore::write.flowSet

C:\output.acs

PRO COMPATIBILITY EASY <u>CON</u> PERFORMANCE

flowCore: :read.FCS

flowCore::write.FCS

C:\output.fcs.xz

PRO

PERFORMANCE

EASY

BENIFIT

CON

COMPATIBILITY

C:\input.acs

flowCore::read.flowSet

flowCore::write.flowSet

C:\output.acs

PRO

COMPATIBILITY

EASY

BENIFIT

CON

PERFORMANCE

Questions?

Cytometry

Journal of Quantitative Cell Science

Lossless Compression of Cytometric Data

Anne E. Bras & Vincent H. J. van der Velden