Множество классов образуют кольцо.

- Элементы кольца можно исследовать.
- 2) Элементы кольца можно перемножать.
- 3) (a + b)*c = ac + bc

<u>Обозначение</u>: Z_m (или Z/mZ) — кольцо остатков по mod m (включает и множество 1, 2,...,m-1, и операции «+», «*»).

```
Пример:
```

$$(1000000 + 11*12*13)*1000000 \bmod 7 = ?$$

$$1000000 = 100*100*100 = 2*2*2 \bmod 7 = 8 = 1$$

$$1000000 = (-1)*(-1)\bmod 7 = 1, \ \text{t.k.} \ 1001 = 7*11*13$$

$$11*12*13 = (-3)*(-2)*(-1)\bmod 7 = -6 = 1\bmod 7$$

$$\text{Итого:} \ (1000000 + 11*12*13)*1000000 = (1+1)*1\bmod 7 = 2$$

Признаки делимости:

1) mod 3, mod 9

$$10 = 1 \mod 3 \ / \mod 9$$
 $a_n a_{n-1} \dots a_{0-10} = a_n * 10^n + \dots + a_0 = a_n * 1^n + \dots + a_0 \mod 3 \ / \mod 9 = a_n + \dots + a_0 = \phi(x)$ где $\phi(x)$ — сумма цифр числа Итого, $x = \phi(x) \mod 3 \ / \mod 9$

Следствие,
$$x : 3 \leftrightarrow \phi(x) : 3$$
, $x : 9 \leftrightarrow \phi(x) : 9$

2) mod 11

$$10 = -1 \mod 11$$

$$x = \overline{a_n a_{n-1} \dots a_0} \ _{10} = a_n * 10^n + \dots + a_0 = a_0 - a_1 + a_2 - a_3 + \dots \pm a_n$$

$$x = a_0 - a_1 + a_2 - \dots$$

Пример:

$$57121 = 1 - 2 + 1 - 7 + 5 \mod 11 = -2 = 9 \mod 11$$

3) mod 7 $a_n a_{n-1} \dots a_{0 \ 10} = a_2 a_1 a_0 + 1000 * \overline{a_5 a_4 a_3} + 1000^3 * \overline{a_8 a_7 a_6} + \dots$

$$1273957121 = 121 - 957 + 273 - 1 \mod 7 = -4 = 3 \mod 7$$

4) mod 2 / mod 5 / mod 10

$$10 = 0 \mod \mod 2 \ / \mod 5 \ / \mod 10$$

$$x = \overline{a_n a_{n-1} \dots a_0}_{10} = a_0 \mod 2 \ / \mod 5 \ / \mod 10$$

Системы вычетов

Определение: Полная система вычетов mod m — это множество M, такое что оно состоит из чисел, которые имею все возможные остатки по модулю m, т.е

- 1) для любого r (остаток) существует x ϵ M: x mod m = r (0 \leq r \leq m)
- 2) для любого $x \neq y \in M$, $x \mod m \neq y \mod m$

Пример:

Утверждение: 1) Множество {0, 1, 2,..., m-1} —полная система вычетов (ПСВ). 2) В ПСВ всего т элементов.

Утверждение: Для любого с є M, где M — ПСВ mod m, справедливо: 1) M + c = $\{x + c \mid x \in M\}$ — ПСВ, 2) M*c = $\{x * c \mid x \in M\}$ — ПСВ, если (c, m) = 1.

Доказательство:

Обозначим M + c как M', M*c как M''.

Проверим определения.

1) Для любого $r (0 \le r \le m)$, рассмотрим $y \in M$: $y \mod m = (r - c) \mod m$ (такой $y \in M$: $y \mod m = (r - c) \mod m$ (такой $y \in M$).

$$y + c \in M'$$
 и $y \pm c = (r - c + c) \mod m = r$

Следовательно, у + с подходит, он ϵ М' и имеет нужный остаток r.

2) Для любых x, y ϵ M', x \neq y, проверим, что x \neq y mod m.

Это верно, т.к. \overline{x} + c $\neq \overline{y}$ + c, т.к. $\overline{x} \neq \overline{y}$ mod m, ч.т.д.

Пример:

$$M = \{0, 1, 2, 3\} \longrightarrow \Pi CB \mod 4$$

 $M + 5 = \{5, 6, 7, 8\}$

Другое доказательство:

Проверим вторую часть определения.

Почему все остатки есть в М'?

В M' ровно m чисел и (по второму определению) и они имеют разные остатки \rightarrow они имеют все возможные остатки.

Теперь про умножение.

• Для любых $x, y \in M$ ", $x \neq y$, проверим, что $x = y \mod m$.

Докажем от противного.

Пусть \overline{x} *c = \overline{y} *c, тогда сократим на c, т.к. (c, m) = 1.

Получаем $\overline{x} = \overline{y}$ — противоречие.

• Из соображений количества $|M''| = m \rightarrow M$ — содержит все остатки.

Пример:

Следствие о делимости

Пусть a, b, m \in Z, (a, m) = 1, m \ge 2.

Тогда существует x, такое что $ax = b \mod m$.

*Замечание: x — частное от деления b на a mod m.

Доказательство:

Рассмотрим a*M, где $M = \{0, 1, 2, ..., m-1\}$ — ПСВ.

a*M содержит $y = b \mod m$, где y — это ax $(x \in M)$. Т.е. x — ответ, ч.т.д.

Пример:

 $45 \mod 11 = 1 \rightarrow x = 9$

Замечание:

Мы поняли, что mod m всегда можно поделить на любое взаимно простое число.

Ответ по mod m единственный, т.к в $a*M = \{0, a, 2a, ..., a*(m-1)\}$ все остатки разные.