ÖVEGES JÓZSEF Fizikaverseny

2023. március 13. *Megyei szakasz*

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

Tudod-e? Karikázd be a helyes választ! (Minden helyes válasz 0,2 pontot ér, összesen 2,6 pontot.)

a) Miben áll a diffúzió jelensége?	melegedés	keveredés	olvadás
b) Milyen anyagoknál a leggyorsabb a	gáz	folyadék	szilárd
diffúzió?	_	-	
c) A részecskék milyen jellegű mozgását	kaotikus	szabályos	rendezett
igazolja a Brown-féle mozgás?			
d) Melyik a hőmérő legfontosabb része?	tok	hőérzékelő	skála
e) Melyik az összefüggés a Celsius- és a	T(K) =	$t(^{o}C) =$	t(°C) =
Kelvin-skála között?	$t(^{\circ}C) - 273,15$	T(K) - 273,15	T(K) + 273,15
f) Milyen formában terjed a hő fémekben?	sugárzás	áramlás	vezetés
g) Mikor van két test hőegyensúlyban?	$T_1 = T_2$	$T_1 < T_2$	$T_1 > T_2$
h) A hőerőgép által végzett munka értéke:	$L = Q_1 = Q_2 $	$L = Q_1 - Q_2 $	$L = Q_1 + Q_2 $
i) A hőerőgép hatásfoka a valóságban:	$\eta = L/Q_1 > 1$	$\eta = L/Q_1 < 1$	$\eta = L/Q_1 = 1$
j) A hőkapacitás képlete:	$C = Q/\Delta t$	$Q = m \cdot c \cdot \Delta t$	$C = Q/m \cdot \Delta t$
k) A hármaspont értéke:	273,16 K	0,1°C	273,15 K
1) A fűtőérték mértékegysége:	J/mol	J/kg	J/K
m) Milyen állapotváltozás a deszublimálás?	olvadás	kristályosodás	párolgás

Magyarázd meg!

- I. Nyári kánikulában Jucika úgy akarja lehűteni a szobát, hogy új, kompresszoros hűtőszekrényét bekapcsolja, és az ajtaját nyitva hagyja. Lehűl-e ily módon a szoba? (0,2 pont)
- II. Két azonos hőmérsékletű és tömegű test egyike fémből, a másik fából készült. Ha megérintjük őket, miért tűnik a fémtest hidegebbnek, mint a fából készült? Milyen hőmérsékleten érzékeljük úgy, hogy a két test hőmérséklete egyforma? (0,2 pont)
- III. Mivel magyarázható a megszilárduló, olvasztott viasz felületének behorpadása? És miért reped meg az üvegpalack, ha benne megfagy a víz? (0,2 pont)

1. Feladat (0,4 pont)

- a) Miért áztatjuk hosszasan vízzel megtöltve a már régen kiürült lekváros üveget ahelyett, hogy azonnal kimosnánk?
- b) Miért jobb forró vízzel áztatni az üveget?

2. Feladat (0,6 pont)

Három, különböző, egymással keveredő, azonos hőmérsékletű folyadékot összekeverünk. A folyadékok tömegei m_1 , m_2 , m_3 és fajhői c_1 , c_2 , c_3 . A keverés során kémiai reakciók nem lépnek fel. Határozd meg a keverék fajhőjét!

3. Feladat (1,2 pont)

Két kellően forró, azonos hőmérsékletű, vasból készült hengert, amelyeknek azonos az alapterületük, de a tömegeik aránya kétszeres, vastag viaszlapra helyezünk. Melyik süllyed mélyebbre és hányszor mélyebbre? Állításodat számítással igazold!

4. Feladat (3,6 pont)

Az m = 0.5 kg tömegű jégdarab kezdeti hőmérséklete $t_0 = -12$ °C. Számítsd ki:

- a) Azt a Q_{hasznos} hőt, amely a jeget normál nyomáson a víz forráspontjára melegíti. Ábrázold grafikusan a folyamat időbeli lefolyását!
- b) A tüzelőanyag mennyiségét, amellyel az a) pontban leírt melegítés megvalósítható, ha a hőhasznosítás hatásfoka $\eta = 2/3$.
- c) A θ egyensúlyi hőmérsékletet egy elhanyagolható hőkapacitású kaloriméterben, amely kezdetben M=6 kg tömegű, t=50°C hőmérsékletű vizet tartalmaz, ha az m tömegű, t_0 hőmérsékletű jeget belerakjuk. Ábrázoljuk grafikusan a folyamat időbeli lefolyását!

Adott: a jég fajhője $c_{\text{jég}} = 2090 \text{ J/kg·K}$, a víz fajhője $c_{\text{víz}} = 4180 \text{ J/kg·K}$, a jég fajlagos látens olvadáshője: $\lambda_{\text{jég}} = 330 \text{ kJ/kg}$, a tüzelőanyag fűtőértéke q = 30 MJ/kg.

Hivatalból: (1 pont)

Munkaidő: 2 óra