

Ch 4. Combinational logic

4.2 Combinational circuits

- Outputs are determined from the present inputs
- Consist of input/output variables and logic gates

Fig. 4-1 Block Diagram of Combinational Circuit

4.3 Analysis procedure

To determine the function of circuit

- Analysis procedure
 - Make sure the circuit is combinational or sequential
 - Obtain the output Boolean functions or the truth table

4.3 Analysis procedure

- Boolean function
 - Label all gate outputs
 - Make output functions at each level
 - Substitute final outputs to input variables
- Truth table
 - Put the input variables to binary numbers
 - Determine the output value at each gate
 - Obtain truth table

4.3 Analysis procedure

Table 4-1Truth Table for the Logic Diagram of Fig. 4-2

			T					
Α	В	С	F ₂	F ₂	<i>T</i> ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Fig. 4-2 Logic Diagram for Analysis Example

4.4 Design procedure

- Procedure to design
 - Determine the required number of input and output from specification
 - Assign a letter symbol to each input/output
 - Derive the truth table
 - Obtain the simplified Boolean functions
 - Draw the logic diagram and verify design correctness

4.5 Binary adder-subtractor

- Binary adder
 - Half adder: performs the addition of 2-bits(x+y)
 - Full adder : performs the addition of 3-bits(x+y+z)
 - Two half adder can be employed to a full adder
- Realization of Binary adder-subtractor
 - Half adder
 - Full adder
 - Cascade of n-full adder
 - Providing a complementing circuit

4.5 Binary adder-subtractor - Half Adder

- Sum of 2 binary inputs
 - 1. Determine # of input & outputs
 - 2-bit input, 2-bit output
- Input : X(augend), Y(addend) 2. assign variables

Output: S(sum), C(carry)

3. draw truth table 4. simplify logic if possible

Table 4-3 Half Adder

x	у	С	S
)	0	0	0
)	1	0	1
1	0	0	1
1	1	1	0

4.5 Binary adder-subtractor - Half Adder

(a)
$$S = xy' + x'y$$

 $C = xy$

(b)
$$S = x \oplus y$$

 $C = xy$

Fig. 4-5 Implementation of Half-Adder

4.5 Binary adder-subtractor - Full adder

- Sum of 3 binary inputs
- Input: X,Y(2 significant bits),Z(1 carry bit)
- Output : S(sum),C(carry)

Table 4-4
Full Adder

X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

Fig. 4-6 Maps for Full Adder

4.5 Binary adder-subtractor - Full adder

Fig. 4-7 Implementation of Full Adder in Sum of Products

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

4.5 Binary adder-subtractor - Binary adder

- Sum of two n-bit binary numbers
 - 4-bit adderA=1011, B=0011

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Fig. 4-9 4-Bit Adder

4.5 Binary adder-subtractor - Carry propagation

- Rising of delay time(carry delay)
- One solution is carry lookahead
- O All carry is a function of P_i,G_i and C₀

Fig. 4-10 Full Adder with P and G Shown

$$C_{i+1} = G_i + P_i C_i$$

$$S_i = P_i \oplus C_i$$

4.5 Binary adder-subtractor - Carry propagation

Carry lookahead generator

$$C_0$$
 = input carry
 $C_1 = G_0 + P_0 C_0$
 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4.5 Binary adder-subtractor - Carry propagation

4-bit adder with carry lookahead

Fig. 4-12 4-Bit Adder with Carry Lookahead

4.5 Binary adder-subtractor - Binary subtractor

- A-B equals A+(2'complement of B)
- When M=0(act as adder) M=1(subtractor)

Fig. 4-13 4-Bit Adder Subtractor

4.5 Binary adder-subtractor - Overflow

- Sum of *n* digit number occupies *n*+1digit
- Occurs when two numbers are same sign

(examples of overflow)

carries:	0	1		carries:	1	0	
+70		0	1000110	-70		1	0111010
+80		0	1010000	-80		1	0110000
+150		1	0010110			0	1101010

4.6 Decimal adder

- Calculate binary and represent decimal in binary coded form
- Decimal adder for the BCD code

Table 4.5 *Derivation of BCD Adder*

	Bin	ary S	um			В	CD Su	m		Decimal
K	Z ₈	Z_4	Z ₂	Z ₁	C	S ₈	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

4.6 Decimal adder - BCD Adder

BCD digit output of 2-B
 CD digit sum

Carry arise if output 101 0~1111

 \circ C=K+Z₈Z₄+Z₈Z₂

Fig. 4-14 Block Diagram of a BCD Adder

4.7 Binary multiplier

• 2bit x 2bit = 4bit(max)

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4.7 Binary multiplier

(K-bit) x (J-bit)(K x J) AND gates,(J-1) K-bit adder needed

 $B_3B_2B_1B_0$ $X A_2A_1A_0$

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4.8 Magnitude comparator

- X_i=1only if the pair of bits in *i* are equal
- \circ (A=B)= $x_3x_2x_1x_0$
- $(A>B)=A_3B_3'+x_3A_2B_2'+x_3x_2A_1$ $B_1'+x_3x_2x_1A_0B_0'$
- $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'$ $B_1 + x_3x_2x_1A_0'B_0$

Fig. 4-17 4-Bit Magnitude Comparator

4.9 Decoders

- Generate the 2ⁿ(or less) minterms of n input variables
 - Eg)3 to 8 line decoder

Table 4-6 *Truth Table of a 3-to-8-Line Decoder*

	Input	S		Outputs							
X	y	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D ₇	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Fig. 4-18 3-to-8-Line Decoder

4.9 Decoders

- 2 to 4 line decoder with Enable input
 - Control circuit operation by E

E	A	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

4.9 Decoders

 Decoders with enable inputs can be a larger decoder circ uit

Eg)4x16 decoder by t wo 3x8 decoders

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

4.9 Decoders - Combinational logic implementation

- Combinational logic implementation
 - Any combinational circuit can be implemented with lin e decoder and OR gates
 - Eg)full adder

Table 4-4
Full Adder

uuei			
у	Z	С	S
0	0	0	0
0	1	0	
1	0	0	
1	1		0
0	0	0	\bigcirc
0	1		0
1	0		0
1	1		

Fig. 4-21 Implementation of a Full Adder with a Decoder

4.10 Encoders

- Inverse operation of a decoder
- Generate n outputs of 2ⁿ input values
 - Eg) octal to binary encoder

Table 4-7 *Truth Table of Octal-to-Binary Encoder*

Inp	uts		Outputs							
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	х	y	z.
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

4.10 Encoders - Priority encoder

- Problem happens two or more inputs equal to 1 at the same time
- Give a priority function to circuit

Table 4-8 *Truth Table of a Priority Encoder*

	Inp	uts	Outputs				
D_0	D ₁	D ₂	D_3	X	у	V	
0	0	0	0	X	X	0	
1	0	0	0	0	0	1	
X	1	0	0	0	1	1	
X	X	1	0	1	0	1	
X	X	X	1	1	1	1	

(x100 means 0100, 1100)

Fig. 4-22 Maps for a Priority Encoder

- Select a binary information from many input lines
- Selection is controlled by a set of selection lines
- 2ⁿ input lines have *n* selection lines

• 4 to 1 line multiplexer

s_1	s_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

(b) Function table

(a) Logic diagram

Quadruple 2 to 1line multiplexer

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

4.11 Multiplexers - Boolean function implementation

- Boolean function implementation
 - Minterms of function are generated in a MUX
 - n input variables, n-1 selection input

х	y	z	F	
0	0	0	0	
0	0	1	1	F = z
0	1	0	1	E -/
0	1	1	0	F = z'
1	0	0	0	E = 0
1	0	1	0	F = 0
1	1	0	1	r 1
1	1	1	1	F = 1
(a) Truth table				

(b) Multiplexer implementation

$$F=xy+yz'+x'y'z$$

4.11 Multiplexers - Three-state gates

- Three-state gates
 - Logic 1, 0 and high-impedance
 - High-impedance behaves like an open circuit

Fig. 4-29 Graphic Symbol for a Three-State Buffer

Multiplexers with three-state gates

Fig. 4-30 Multiplexers with Three-State Gates

(b) 4 - to - 1 line mux