GLY 4734/6932 - Coastal Morphology and Processes Alongshore Sediment Transport

March 14, 2019

Names: Solution key	Group:
1. Describe how each of the following changes as	wave angle changes:
(a) Alongshore component of wave energy der 1 pt for identifying positive relations	
(b) The ratio of distance between wave rays at reach the shore (W_{break}/W_{shore}) 1 pt for identifying negative relation	t breaking to distance between wave rays when theyship
(c) Sediment flux 1 pt for identifying positive relations	ship up to 45° and negative to 90°

2.	Describe how each of the following changes as wave height changes:
	(a) Alongshore component of wave energy density (E_y) 1 pt for identifying positive relationship
	(b) The ratio of distance between wave rays at breaking to distance between wave rays when the reach the shore (W_{break}/W_{shore}) 1 pt for identifying no change
	(c) Sediment flux 1 pt for identifying positive relationship
3.	How much alongshore sediment transport potential exists when wave angle is 0? Why is this? 1 pt for identifying no potential; 1pt for rational - there is no alongshore componer of wave energy to drive alongshore transport
4.	How much alongshore sediment transport potential exists when wave angle is 90? Why is this? 1 pt for identifying no potential; 1pt for rational - the alongshore component of wave energy is spread across an infinite stretch of shoreline (1/2 pt for "no interaction with the shore")
5.	What wave angle would you expect to yield the highest alongshore sediment transport? Why? 1 pt for identifying 45°; 1pt for rational - maximizes the competition between the alongshore component of wave energy and the spread of wave energy

6. Recall that alongshore sediment transport is primarily driven by wave-generated alongshore currents. Komar (1971) used this relationship to define the volumetric alongshore sediment transport potential (Q_s) as follows:

$$Q_s = K_1 H_b^{5/2} \cos(\alpha) \sin(\alpha)$$

where K_1 is an empirical constant, H_b is the breaking wave height, and α is the angle of the wave crest relative to the shoreline.

- (a) What does $\cos(\alpha)$ represent in this formula? 1 pt for "spread of wave energy" or "ratio of W_{break}/W_{shore} "
- (b) What does sin(α) represent in this formula?
 1 pt for alongshore component of wave energy density"
- 7. Use the diagram below to illustrate the relationship between alongshore sediment transport potential and wave angle when all other variables are held constant.

1 pt for a downward parabolic figure

8. Use the diagram below to illustrate the relationship between alongshore sediment transport potential and breaking wave height when all other variables are held constant.

1 pt for a positive relationship; 1 pt for 5/2 relationship

References

- 1. Ashton, A., Murray, A. B., & Arnoult,. O. (2001). Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature, 414(6861), 296.
- 2. Komar, P. D. (1971), The mechanics of sand transport on beaches, J. Geophys. Res., 76, 713721.