

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

PARAFUSOS

TÓPICOS ABORDADOS

- 1. INTRODUÇÃO
- 2. TIPOS DE PARAFUSOS
- 3. TIPOS DE ROSCA
- 4. DEFINIÇÕES
- 5. MATERIAIS E SIMBOLOGIA
- 6. PROCESSO DE FABRICAÇÃO
- 7. PARAFUSO DE TRANSMISSÃO
- 8. DIMENSIONAMENTO EXERCÍCIOS
- 9. UNIÃO POR PARAFUSOS
 EXERCÍCIOS

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

- Parafusos são elementos de $\left\{ egin{array}{ll} UNIÃO \\ ou \\ TRANSMISSÃO \end{array}
ight.$

- São fabricados nas mais diferentes configurações, variando principalmente:
 - a geometria e as dimensões
 - o tipo de rosca
 - o material de fabricação
 - as formas de cabeça
 - o processo de fabricação

UFRJ

Engenharia Mecânica Politécnica - COPPE UPRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

1. INTRODUÇÃO

Parafusos de União

Engenharia

Parafusos de Transmissão

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Parafuso hexagonal ou sextavado, porcas, arruelas e arruelas de pressão.

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Parafuso e porcas, especiais.

Engenharia Mecânica Politécnica - COPPE URIJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Mec Pol

Representações gráficas

Engenharia Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Parafusos "Allen"

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Parafusos "Allen"

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS

Diversas formas e geometrias de cabeças de parafusos.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS - Travamento de porcas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS - Aplicações especiais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS - Aplicações especiais

Politécnica COPPE UFR

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

2. TIPOS DE PARAFUSOS - Aplicações especiais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

- 3.1) Métrica
- 3.2) Quadrada
- *3.3) ACME*
- 3.4) Apoio
- 3.5) Whitworth
- 3.6) Redonda

Elementos de Máquinas I - Parafusos

Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.1) Rosca Métrica

P = passo

 $H = altura\ do\ triângulo\ fundamental = 0.86603.$

D = d = diâmetro nominal da rosca (maior diâmetro)

$$D_2 = d_2 = d_m = d - \frac{3}{4}H = d - 0.64953 \cdot P$$

$$D_1 = d_2 - 2 \cdot \left(\frac{H}{2} - \frac{H}{4}\right) = d - 2 \cdot h_i = d - 1.08253 \cdot P$$

$$d_1 = d_2 - 2 \cdot \left(\frac{H}{2} - \frac{H}{6}\right) = d - 1.22687 \cdot P$$

$$h_i = \frac{5}{8} \cdot H = 0.54127 \cdot P$$

$$h_e = \frac{17}{24} \cdot H = 0.61343 \cdot P$$

$$R = \frac{H}{6} = 0.14434 \cdot P$$

H = 0.86603.p

Rosca Externa (parafuso)

UNI Mecânica Depo

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.1) Rosca Métrica - padronização

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

- 3.1) Rosca Métrica
- Designação: parafuso M12 x 1.75 x 60 classe 5.8
- Aplicação: Indústria em geral.

Tabela 1 – dimensões padronizadas e área sob tensão

Diâmetro Nominal (Maior) d [mm]	Passo grosso			Passo fino		
	Passo P [mm]	Área sob tração - A [mm²]	Área do diâmetro menor [mm²]	Passo P [mm]	Área sob tração – A [mm²]	Área do diâmetro menor [mm²]
1.6	0.35	1.27	1.07			
2	0.40	2.07	1.79			
2.5	0.45	3.39	2.98			
3	0.5	5.03	4.47			
3.5	0.6	6.78	6			
4	0.7	8.78	7.75			
5	0.8	14.2	12.7			
6	1	20.1	17.9			
8	1.25	36.6	32.8	1	39.2	36
10	1.5	58	52.3	1.25	61.2	56.3
12	1.75	84.3	76.3	1.25	92.1	86
14	2	115	104	1.5	125	116
16	2	157	144	1.5	167	157
20	2.5	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	561	519	2	621	596
36	4	817	759	2	915	884
42	4.5	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5.5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2980
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1.5	4850	4800
90	6	5590	5360	2	6100	6020
100	6	6990	6740	2	7560	7470
110				2	9180	9080

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.2) Rosca Quadrada (transmissão)

Exemplos de aplicação

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.2) Rosca Quadrada (transmissão)

Exemplos de aplicação – M.Opt.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Mecânica

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.2) Rosca Quadrada (transmissão)

Exemplos de aplicação – M.Opt.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

- 3.3) ACME (a) Aplicação: Fusos
- 3.3) ACME stub (b) Aplicação: Fusos
- 3.2) Quadrada (c) (transmissão)
- 3.2) Quadrada (d) modificada
- 3.4) Apoio (e) Aplicação: altas forças em uma direção

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

3. TIPOS DE ROSCA

3.5. Whitworth

- Rosca 55°
- Aplicação: Indústria em geral

Engenharia

3.6. Redonda

- Aplicação: Acoplamentos de tubos, lâmpadas

técnica COPPE UFR

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

4. DEFINIÇÕES

 $\ell \rightarrow avanço \mid \ell = n \times p$

$$\ell = n \times p$$

onde:

Mecânica

- avanço (ℓ)= distancia percorrida em 1 volta (360°)
- $n = n^{o}$ de entradas do parafuso

 $\lambda \rightarrow \hat{a}$ ngulo de inclinação da rosca

$$tg\lambda = \frac{\ell}{\pi \cdot d_m}$$

Parafuso de duas entradas. n=2

Parafuso de tres entradas. n = 3

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

5. MATERIAIS E SIMBOLOGIA

Os parafusos e porcas são normalmente selecionados baseado na resistência mecânica, vida, peso, resistência à corrosão, propriedades magnéticas, custo e etc.

Os principais materiais são:

- Aço
- Ferro Fundido
- Latão, etc.

A resistência mecânica é especificada pelo grau ou classe do parafuso. As tabela 8-9, 8-10 e 8-11 fornecem o valor desta resistência.

Simbologia:

M20

Mecânica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.1. Processos Manuais
 - "Macho" e "Cossinete"

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Fresamento de roscas

Fresamento de rosca interna

Fresamento de rosca externa

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Torneamento de roscas

Detalhe da ferramenta para torneamento de rosca externa

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Turbilhonamento de roscas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Retificação de roscas de precisão

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Rosqueamento com cabeçotes automáticos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 1. Usinagem Rosqueamento com cabeçotes automáticos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

- 6.2. Processos Automáticos
 - 2. Conformação
- Rolamento
- Fresamento
- Laminadora planetária

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

- 6.2. Processos Automáticos
 - 2. Conformação
- Rolamento
- Fresamento
- Laminadora planetária

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO (de acionamento ou de potência)

- Normalmente rosca quadrada ou quadrada modificada.
- Transformar movimento angular em linear.
- Permitem grandes reduções (sem-fim/coroa)
- Pequenos deslocamentos (diferencial)

Exemplos:

- Fusos de máquinas operatrizes;
- Máquinas de tração;
- Máquinas elevadoras ("macaco" de automóvel);
- Presilhas em "C";

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada

 $F \rightarrow Carga \ a \ ser \ deslocada$

P → Esforço necessário

 $T \rightarrow Torque$ para elevar ou baixar

$$T = P \cdot \frac{d_{m}}{2}$$

ica COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Subir:

Equações de equilíbrio:

$$\sum F_H = 0 \implies P - N \cdot \sin \lambda - \mu \cdot N \cdot \cos \lambda = 0 \implies P = N \cdot (\sin \lambda + \mu \cdot \cos \lambda)$$

$$\sum F_{v} = 0 \implies F - N \cdot \cos \lambda + \mu \cdot N \cdot \sin \lambda = 0 \implies F = N \cdot (\cos \lambda - \mu \cdot \sin \lambda)$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Subir:

$$N = \frac{P}{\sin \lambda + \mu \cdot \cos \lambda} = \frac{F}{\cos \lambda - \mu \cdot \sin \lambda} \Rightarrow$$

$$P = F \cdot \left(\frac{\sin \lambda + \mu \cdot \cos \lambda}{\cos \lambda - \mu \sin \lambda} \right) \qquad \div \cos \lambda, vem:$$

$$P = F \cdot \frac{\left(\frac{\sin \lambda}{\cos \lambda}\right) + \mu \cdot \left(\frac{\cos \lambda}{\cos \lambda}\right)}{\left(\frac{\cos \lambda}{\lambda}\right) - \mu \cdot \left(\frac{\sin \lambda}{\lambda}\right)} = F \cdot \frac{tg\lambda + \mu}{1 - \mu \cdot tg\lambda} \qquad mas, tg\lambda = \frac{\ell}{\pi \cdot d_m}$$

$$P = F \cdot \frac{\left(\frac{\ell}{\pi \cdot d_m}\right) + \mu}{1 - \mu \cdot \left(\frac{\ell}{\pi \cdot d_m}\right)}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Descer:

$$\sum F_{H} = 0 \Longrightarrow P - \mu \cdot N \cdot \cos \lambda + N \cdot \sin \lambda = 0 \Longrightarrow \quad P = N \cdot (\mu \cdot \cos \lambda - \sin \lambda)$$

$$\sum F_{v} = 0 \Rightarrow F - N \cdot \cos \lambda - \mu \cdot N \cdot \sin \lambda = 0 \Rightarrow F = N(\cos \lambda + \mu \cdot \sin \lambda)$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Descer:

$$N = \frac{P}{\mu \cdot \cos \lambda - \sin \lambda} = \frac{F}{\cos \lambda + \mu \cdot \sin \lambda} \Rightarrow$$

Idem,

Idem,

Engenharia

idem...

Politécnica

$$P = F \cdot \frac{\mu - \left(\frac{\ell}{\pi \cdot d_m}\right)}{\mu \cdot \left(\frac{\ell}{\pi \cdot d_m}\right) + 1}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada

Torque necessário:
$$T = P \cdot \frac{d}{dt}$$

Assim, para ELEVAR a carga F e vencer a componente do atrito, vem:

Para BAIXAR a carga F, vem:

$$T_D = \frac{F \cdot d_m}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_m - \ell}{\pi \cdot d_m + \mu \cdot \ell} \right) \qquad \dots (2)$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Torque no "COLAR" T_c

$$Tc = \frac{F \cdot \mu_c \cdot dm_c}{2}$$

onde: $dm_c \rightarrow di$ âmetro médio do colar

Mecâ

Polited

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada

Assim, o torque total é:

$$T_{s} = \frac{F \cdot d_{m}}{2} \cdot \left(\frac{\ell + \mu \cdot \pi \cdot d_{m}}{\pi \cdot d_{m} - \mu \cdot \ell}\right) + \frac{F \cdot \mu_{c} \cdot dm_{c}}{2}$$

$$T_{D} = \frac{F \cdot d_{m}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{m} - \ell}{\pi \cdot d_{m} + \mu \cdot \ell} \right) + \frac{F \cdot \mu_{C} \cdot dm_{c}}{2}$$

Politécnica COPPE UFRA

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Condição de auto-travamento: $T_D \neq 0$

Eq. (2):
$$T_{D} = \frac{F \cdot d_{m}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{m} - \ell}{\pi \cdot d_{m} + \mu \cdot \ell} \right)$$

Se
$$\pi \cdot \mu \cdot dm \le \ell \Rightarrow T_D = 0$$
 Engenharia

⇒ Não é necessário qualquer esforço para baixar a carga.

Então,
$$\pi \cdot \mu \cdot dm > \ell \Rightarrow \mu > \frac{\ell}{\pi \cdot dm} \Rightarrow \mu > \frac{\ell}{\pi \cdot dm}$$

OBS.:

- determina a faixa de ângulos de inclinação dos parafusos $\Rightarrow \lambda = f(d, p, material)$

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 1. Rosca quadrada Eficiência da transmissão e: (subida)

$$e = \frac{T_0}{T_S}$$

$$\Rightarrow T_0 = T_s, \ caso \ \mu = 0 \Rightarrow T_s = \frac{F \cdot d_m}{2} \cdot \left(\frac{\ell + \mu \cdot \pi \cdot d_m}{\pi \cdot d_m - \mu \cdot \ell}\right) = T_0 = \frac{F \cdot \ell}{2 \cdot \pi}$$

Assim,

$$e = \frac{F \cdot \ell}{2 \cdot \pi \cdot T_s}$$
 Politécnica COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

7. PARAFUSO DE TRANSMISSÃO

- 7.1. Torque para elevar (Ts) e baixar (Td) uma carga F:
 - 2. Rosca qualquer (métrica, whitworth, etc.)

$$T_{S} = \frac{F \cdot dm}{2} \cdot \left[\frac{\ell + \pi \cdot \mu \cdot dm \cdot sec \,\alpha}{\pi \cdot dm - \mu \cdot \ell \cdot sec \,\alpha} \right] + \frac{F \cdot \mu_{C} \cdot dm_{c}}{2}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - TENSÃO NOS FILETES

1. Cisalhamento: $\tau = \frac{F}{A}$

- parafuso:
$$A_{cis} = \pi \cdot d_r \cdot \left(\frac{h}{2}\right)$$

- porca:
$$A_{cis} = \pi \cdot d \cdot \left(\frac{h}{2}\right)$$

Politéd

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - TENSÃO NOS FILETES

Substituindo, vem:

$$\tau_p = \frac{2 \cdot F}{\pi \cdot d_r \cdot h}$$

$$\tau_r = \frac{2 \cdot F}{\pi \cdot d \cdot h}$$

Engenharia

OBS.: - se parafuso e porca fabricados do mesmo material, dimensionar apenas o parafuso.

$$| au_P| > | au_r|$$

Politécnica COPPE UFRA

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - TENSÃO NOS FILETES

2. Compressão:

$$\sigma = \frac{F}{A}$$

$$A_{comp} = \frac{\pi}{4} \cdot \left(d^2 - d_r^2\right) \cdot \frac{h}{p}$$

Substituindo, vem:

$$\sigma = \frac{4 \cdot F \cdot p}{\pi \cdot h \cdot \left(d^2 - d_r^2\right)}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - TENSÃO NOS FILETES

Assim, as tensões atuantes nos filetes de rosca dos parafusos são:

$$\tau_{p} = \frac{2 \cdot F}{\pi \cdot d_{r} \cdot h}$$

 \Rightarrow Cisalhamento

$$\sigma = \frac{4 \cdot F \cdot p}{\pi \cdot h \cdot \left(d^2 - d_r^2\right)}$$

 $\Rightarrow Compressão$

Politécnica COPPE UFR

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - TENSÃO NOS FILETES

- Distribuição de tensões nos filetes da rosca

OBS:

- Devido à incerteza da distribuição de tensões nos filetes e por filete de rosca recomenda-se o seguinte intervalo para o coeficiente de segurança: 2 < CS < 3

Departamento de Engenharia Mecânica

8. DIMENSIONAMENTO - Exercícios

- 1. Um parafuso de acionamento de rosca quadrada deve movimentar uma carga de 6670 N. As características do parafuso são:
- passo [mm] = 3
- diâmetro nominal [mm] = 24
- diâmetro médio do colar [mm] = 40
- coeficiente de atrito: $\mu = \mu_c = 0.08$
- material do parafuso e da porca: Aço médio carbono Su_t [MPa] = 550 S_v [MPa] = 300

Pede-se:

- a) a profundidade, diâmetro médio e da raiz e o avanço do parafuso;
- b) o torque necessário para elevar e abaixar a carga;
- c) a altura mínima necessária à rosca;
- d) a potência necessária ao motor para que a altura de 2.4 m seja atingida em 20 s;
- e) a eficiência do parafuso.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.1. Aplicações

Vedação e selagem de tubulações

Válvulas

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.2. Tensões Limite de Parafusos

 $S_p \Rightarrow tens\~ao \ de \ prova \ [MPa] \ - carga \ m\'axima \ sem \ deforma\~c\~ao$

 $S_v \Rightarrow tensão de escoamento [MPa]$

 $Su_t \Rightarrow tensão de ruptura [MPa]$

Tabela 8-11, pág. 446

S_p	$< S_y$

$$S_p = \frac{F_p}{A_t}$$

_						Tabela 0 11,	r
	Classe	Tamanho	Tensão de Prova Sp [MPa]	Tensão de Escoamento Sy [MPa]	Tensão de Ruptura Su _t [MPa]	Material	Marcação
	4.6	M5 – M36	225	240	400	Baixo ou médio carbono	4.6
	4.8	M1.6 – M16	310	340	420	Baixo ou médio carbono	4.8
	5.8	M5 – M24	380	420	520	Baixo ou médio carbono	5.8
	8.8	M16 – M36	600	660	830	Médio carbono, Q&T	8.8
	9.8	M1.6 – M16	650	720	900	Médio carbono, Q&T	9.8
	10.9	M5 – M36	830	940	1040	Baixo carbono, martensita Q&T	10.9
	12.9	M1.6 – M36	970	1100	1220	Liga Q&T	12.9

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.3. Nomenclatura e componentes

 $\ell = comprimento total da junta = \ell_1 + \ell_2 + \ell_3 + \ell_4$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

 $\ell = comprimento total da junta = \ell_1 + \ell_2 + \ell_3 + \ell_4$

Fi = carga inicial de apertoP = carga externa na junta

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.4. Análise da Montagem

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.4. Análise da Montagem

Fi = carga inicial

 $P = carga \ externa \ atuante \ na \ junta$

Pb = porção da carga P absorvida pelo parafuso

Pm = porção da carga P absorvida pela junta

$$Fb = Pb + Fi \Big|_{[...(1)]}$$

$$Fm = Pm - Fi$$
 ...(2)

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

Fm = Pm - Fi

Fb = Pb + Fi

9. UNIÃO POR PARAFUSOS

9.5. Determinação das cargas Pb e Pm

$$Pb = Kb \cdot \Delta \delta_b$$

$$Pm = Km \cdot \Delta \delta_m$$

$$P = Pm + Pb \dots (3)$$

Dentro da faixa elástica (mola) e sem separação.

- Determinação das constantes Km e Kb: $\delta = \frac{F \cdot \ell}{A \cdot E}$

Área

$$K = \frac{F}{\mathcal{S}} = \frac{A \cdot E}{\ell} = \frac{4}{\ell} \cdot E_p \Rightarrow Kb = \frac{\pi \cdot d^2 \cdot E}{4 \cdot \ell}$$

Área sob tensão no parafuso (?)

Politécnica COPPE UFR Elementos de Máquinas I - Parafusos

9. UNIÃO POR PARAFUSOS

9.5. Determinação das cargas Pb e Pm

$$Pb = Kb \cdot \Delta \delta_b$$
 $Pm = Km \cdot \Delta \delta_m$
 $Pb = Pm + Pb$

- Determinação das constantes Km e Kb:

$$\delta = \frac{F \cdot \ell}{A \cdot E}$$

$$|K = \frac{1}{\delta} = \frac{1}{\ell}$$

$$= \frac{\pi}{4} \cdot (9 \cdot d^2 - d^2) \cdot E$$

$$= \frac{1}{\ell} \Rightarrow Km = \frac{2 \cdot \pi \cdot d^2 \cdot E}{\ell}$$

Área sob tensão na junta (?)

Departamento de Engenharia Mecânica

Fm = Pm Fi Fb = Pb Fi

9. UNIÃO POR PARAFUSOS

9.5. Determinação das cargas Pb e Pm

Observações:

1. Se parafuso e porca fabricados do mesmo material $\Rightarrow E_b = E_m \Rightarrow$

$$Kb = \frac{\pi \cdot d^2 \cdot E}{4 \cdot \ell} \times 8 = Km = \frac{2 \cdot \pi \cdot d^2 \cdot E}{\ell}$$

$$Km = 8 \cdot Kb$$

2. Se elementos de junta fabricados com materiais diferentes \Rightarrow

$$\frac{1}{Km} = \frac{1}{K_{1}} + \frac{1}{K_{2}} + \dots \qquad \frac{1}{Km} = \frac{1}{\left(\frac{2 \cdot \pi \cdot d^{2} \cdot E_{1}}{\ell_{1}}\right)} + \frac{1}{\left(\frac{2 \cdot \pi \cdot d^{2} \cdot E_{2}}{\ell_{2}}\right)} + \dots$$

$$Km = \frac{2 \cdot \pi \cdot d^{2} \cdot E}{\ell}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

Fm = Pm Fi Fb = Pb

9. UNIÃO POR PARAFUSOS

9.5. Determinação das cargas Pb e Pm

$$\Delta \delta_{B} = \frac{Pb}{Kb}$$

$$\Delta \delta_{M} = \frac{Pm}{Km}$$

$$\Delta \delta_{M} = \frac{Pm}{Km}$$

$$\cos \Delta \delta_{b} = \Delta \delta_{m} \Rightarrow \frac{Pb}{Kb} = \frac{Pm}{Km} \dots (4)$$

Departamento de Engenharia Mecânica

Fm = Pm - Fi

Fb = Pb + Fi

64

9. UNIÃO POR PARAFUSOS

9.5. Determinação das cargas Pb e Pm

$$Fb = Pb + Fi \quad ...(1)$$

$$Fm = Pm - Fi \mid ...($$

Assim,
$$\begin{cases} P = Pm + Pb & \dots(3) \\ \hline Pb & = \frac{Pm}{Kb} & \dots(4) \end{cases}$$

- Substituindo (3) em (4), vem:-

$$Pb = \frac{P \cdot Kb}{Km + Kb}$$

$$Pm = \frac{P \cdot Km}{Km + Kb}$$

Politécnica

- Substituindo em (1) e (2), vem:

$$Fb = \frac{P \cdot Kb}{Km + Kb} + Fi$$

$$Fm = \frac{P \cdot Km}{Km + Kb} - Fi$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

- 9.6. Análise da carga inicial de aperto Fi
 - 9.6.1. Torque inicial T_i

$$T_i = k_1 \cdot Fi \cdot d$$

9.6.2. Carregamento estático

- Recomendações
$$\begin{cases} Fi = \\ 0.75 \end{cases}$$

$$Fi = At \cdot S_y - Cb \cdot n \cdot P$$

 $0.75 \cdot F_p \le Fi \le 0.9 \cdot F_p$

9.6.3. Carregamento variável

$$-Recomendações \begin{cases} Fi = A_t \cdot Su_t - \frac{Cb \cdot n \cdot h}{2} \\ Fi = A_t \cdot Sy - Cb \cdot n \cdot h \end{cases}$$

Utilizar O MENOR !!

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.6. Análise da carga inicial de aperto - Fi

9.6.1. Torque inicial - T_i

$$T_{i} = \frac{Fi \cdot dm}{2} \left(\frac{\ell + \pi \cdot \mu \cdot dm \cdot \sec \alpha}{\pi \cdot dm - \mu \cdot tg \lambda \cdot \sec \alpha} \right) + \frac{Fi \cdot \mu_{c} \cdot d_{c}}{2}$$

$$tg\lambda = \frac{\ell}{\pi \cdot dm}$$

 $1.5 \cdot d$

$$T_{i} = \frac{Fi \cdot dm}{2} \left(\frac{tg\lambda + \pi \cdot \mu \cdot \sec \alpha}{1 - \mu \cdot tg\lambda \cdot \sec \alpha} \right) + \frac{Fi \cdot \mu_{c} \cdot d_{c}}{2}$$

$$d_{c} = \frac{d + 1.5 \cdot d}{2} = 1.25 \cdot d$$

$$T_{i} = Fi \cdot d \cdot \left[\left(\frac{dm}{2 \cdot d} \right) \left(\frac{tg\lambda + \pi \cdot \mu \cdot sec \alpha}{1 - \mu \cdot tg\lambda \cdot sec \alpha} \right) + 0.625 \cdot \mu_{c} \right]$$

Utilizando valores padronizados para λ e α;

Aço:
$$\mu = \mu_c = 0.15$$

$$\Rightarrow l_{z_1} = 0.20$$

$$|T_i = k_1 \cdot Fi \cdot d$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

 $m = \frac{P \cdot Km}{Km + Kb} - Fi$ $Fb = \frac{P \cdot Kb}{Km + Kb} + Fi$

9. UNIÃO POR PARAFUSOS

- 9.6. Análise da carga inicial de aperto Fi
 - 9.6.2. Carregamento estático

$$Fb = P \cdot \underbrace{\left(\frac{Kb}{Kb + Km}\right) + Fi}_{Cb} \implies Fb = Cb + Fi$$

- Análise da montagem - Limites:

Não haver ruptura do parafuso

Engenharia Mecânica Politécnica - COPPE UFRJ

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

 $Fm = \frac{P \cdot Km}{Km + Kb} - Fi$ $Fb = \frac{P \cdot Kb}{Km + Kb} + Fi$

9. UNIÃO POR PARAFUSOS

9.6. Análise da carga inicial de aperto - Fi

9.6.2. Carregamento estático

$$Su_t \Rightarrow tensão de ruptura [MPa]$$

$$S_v \Rightarrow$$
 tensão de escoamento [MPa]

$$S_p \Rightarrow$$
 tensão de prova [MPa]

Círculo de Mohr

$$S_p < S_y$$

$$S_p = \frac{F_p}{A_t}$$

$$0.75 \cdot F_p \le Fi \le 0.9 \cdot F_p$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

 $n = \frac{P \cdot Km}{Km + Kb} - Fi$ $Fb = \frac{P \cdot Kb}{Km + Kb} + Fi$

9. UNIÃO POR PARAFUSOS

- 9.6. Análise da carga inicial de aperto Fi
 - 9.6.3. Carregamento variável

$$\boxed{Fb = P \cdot \underbrace{\left(\frac{Kb}{Kb + Km}\right)}_{Cb} + Fi} \Rightarrow Fb = Cb + Fi$$

$$P_{m\acute{a}x} = 0 \implies Fb_{min} = Fi$$
 $P_{m\acute{a}x} = P \implies Fb_{m\acute{a}x} = Cb \cdot P + Fi$

$$Fb_{a} = \frac{Fb_{m\acute{a}x} - Fb_{m\acute{n}}}{2} = \frac{Cb \cdot P + Fi - Fi}{2} = \frac{Cb \cdot P}{2}$$

$$\sigma_{a} = \frac{Fb_{a}}{A_{t}} \Rightarrow \sigma_{a} = \frac{Cb \cdot P}{2 \cdot A_{t}}$$

$$\boxed{Fb_m = \frac{Fb_{m\acute{a}x} + Fb_{m\acute{i}n}}{2}} = \frac{Cb \cdot P + Fi + Fi}{2} = \frac{Cb \cdot P}{2} + Fi \qquad \sigma_m = \frac{Fb_m}{A_t} \Rightarrow \boxed{\sigma_m}$$

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

 $m = \frac{P \cdot Km}{Km + Kb} - Fi$ $Fb = \frac{P \cdot Kb}{Km + Kb} + Fi$

9. UNIÃO POR PARAFUSOS

- 9.6. Análise da carga inicial de aperto Fi
 - 9.6.3. Carregamento variável

$$\sigma_{a} = \frac{Cb \cdot P}{2 \cdot A_{t}}$$

$$\sigma_{m} = \frac{Cb \cdot P}{2 \cdot A_{t}} + \frac{Fi}{A_{t}}$$

Obs.:

Parafusos são fabricados com materiais de alta dureza (HB > 200) ⇒ Critério de Goodman

$$\frac{\sigma_a}{Se} + \frac{\sigma_m}{Su_t} = 1 \implies Fi = A_t \cdot Su_t - \frac{Cb \cdot n \cdot P}{2} \cdot \left(\frac{Su_t}{Se} + 1\right)$$

Recomendação 3

 $Fi = A_t \cdot S_y - Cb \cdot n \cdot P$

Recomendação 1

Utilizar O MENOR!!

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

9.7. Fadiga em Parafusos

Valores de k_f^*

Grau	Grau	Processo de Fabricação			
SAE	Métrico	laminadas	cortadas	filetadas	
0 a 2	3.6 a 5.8	2.2	2.8	2.1	
4 a 8	6.6 a 10.9	3.0	3.8	2.3	

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS

- 9.7. Fadiga em Parafusos
 - Concentração de tensões no parafuso

- Parafuso USINADO

Meca

- Parafuso CONFORMADO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS - Exercícios

EXERCÍCIO 2

A união abaixo é realizada por parafusos hexagonais M14 x 2 x 70, classe 4.8, rosca grossa. Sabendo que parafuso e elementos de junta são fabricados do mesmo material e que a carga externa é de 6000 N por parafuso, determine:

a) A carga inicial de aperto;

- b) O torque necessário para o aperto;
- c) As cargas totais no parafuso e junta.

Engenharia Mecânica Politerina - COPPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS - Exercícios

EXERCÍCIO 3

A figura abaixo mostra a seção de um vaso de pressão fabricado com ferro fundido BS-150 e fixado por parafusos hexagonais M16 x 2 x 60, classe 5.8, rosca grossa e conformada. Sabendo que a confiabilidade é 99%, a temperatura de trabalho é ambiente e a carga externa varia de 0 a 50000 N por parafuso, determine:

- a) O limite de resistência à fadiga;
- b) A força e o torque inicial de aperto;
- c) A margem de segurança utilizada no projeto.

Engenharia Mecânica Politicnos - COPPE

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS - Exercícios

EXERCÍCIO 4

A figura abaixo mostra dispositivo de ancoragem (transporte) fixado a uma estrutura de aço. Sabendo que a carga externa varia de 8 a 40 kN, verifique a possibilidade de utilização de <u>1</u> parafuso hexagonal M10 x 1.5 x 100, classe 9.8, rosca grossa e usinada.

Dados:

- confiabilidade 50%
- temperatura de trabalho ambiente.

Mecânica Dev

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Departamento de Engenharia Mecânica

9. UNIÃO POR PARAFUSOS - Exercícios

EXERCÍCIO 5

O cilindro mostrado abaixo está submetido a uma pressão interna variada entre 0 e 10 MPa e é vedado por uma tampa fixada por N parafusos. Para os dados abaixo determine o número mínimo de parafusos hexagonais necessário à vedação.

Dados:

- confiabilidade 90%
- temperatura de trabalho = 400° C.
- parafuso hexagonal **M16** x **2** x **80**, classe 8.8, rosca grossa e usinada.
- carga inicial: 59100 N
- parafusos e elementos de junta fabricados em aço.
- coeficiente de segurança: $CS_{Se} = 2$
- diâmetro interno do cilindro: 100 mm

