The Effect of Reducing the Number of Tests in the Armed Services Vocational Aptitude Battery (ASVAB)

Joseph Zeidner, Cecil Johnson, Yefim Vladimirsky, and Susan Weldon George Washington University

20001228 007

United States Army Research Institute for the Behavioral and Social Sciences

December 2000

Approved for public release; distribution is unlimited.

DTIC QUALITY IN 2000 4

U.S. Army Research Institute for the Behavioral and Social Sciences

A Directorate of the U.S. Total Army Personnel Command

EDGAR M. JOHNSON Director

Research accomplished under contract for the Department of the Army

The George Washington University

Technical Review by

Peter M. Greenston

NOTICES

DISTRIBUTION: Primary distribution of this Study Note has been made by ARI. Please address correspondence concerning distribution of reports to: U.S. Army Research Institute for the Behavioral and Social Sciences, Attn: TAPC-ARI-PO, 5001 Eisenhower Ave., Alexandria, VA 22333-5600.

FINAL DISPOSITION: This Study Note may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The findings in this Study Note are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 2000	3. REPORT TYPE AND Final August		COVERED ecember 1998
4. TITLE AND SUBTITLE The Effect of Reducing the Number o Aptitude Battery (ASVAB)	f Tests in the Armed Service	es Vocational		
6. AUTHOR(S) Joseph Zeidner, Cecil Johnson, Yefin		ı		
(The George Washington Un	iversity)			
7. PERFORMING ORGANIZATION NAME Joseph Zeidner 8621 Old Chester Court Bethesda, MD 20814	S) AND ADDRESS(ES)			DRMING ORGANIZATION RT NUMBER
9. SPONSORING / MONITORING AGENCUS. Army Research Institute for the	Y NAME(S) AND ADDRESS(ES) Rehavioral and Social Science	295		NSORING / MONITORING
ATTN: TAPC-ARI-RS 5001 Eisenhower Ave.	Bellavioral and Social Science			y Note 2001-01
Alexandria, VA 22333-5600				
11. SUPPLEMENTARY NOTES				
ARI Contracting Officer's	s Representative: I	or. Peter Greens	ston	¥.
12a. DISTRIBUTION / AVAILABILITY STA Approved for public release; distribut			12b. DIS	TRIBUTION CODE
13. ABSTRACT (Maximum 200 words)				
The major goal of this research is Operations (NO) and Coding Speed (0 tests would not significantly reduce the gender and racial fairness of the batte. Two data sets were used. The firsecond set (a subset of the first) consity Qualification Test (SQT) data from Formaries indicate that a significant removing NO and CS. The loss is 6.3. The loss incurred from dropping NO significantly greater than dropping eit. Dropping NO and CS would result would not only increase gender unfair prediction for females. The pattern of	cs) tests from the battery. It is mean predicted performance, then removing these tests st set consisted of 150 job fasted of 66 job families contains 1987-89. It loss in MPP would be incuted percent for the 150 job families much less than from dropping the test alone. It in a greater loss of MPP for ness of the battery, but would be mean pressed to the statery of the statery.	f it could be shown that be (MPP) of ASVAB of would become defense milies containing 260, ning 83,000 observations arred by reducing the 9 or silved data set and 8.1 people of the combi- bor females than for the disgnificantly reduce	at removicularsifical sible. 000 first ons. The electrons that the ercent for ined loss at total sar	ing either or both of these tion or would not affect -tour enlistees, and the e criterion data were Skill ery to a 7-test battery by the 66 job family data set, of dropping both tests is mple. Dropping the two tests
14. SUBJECT TERMS military personnel classification, Arm classification efficiency	ed Services Vocational Aptit	rude Battery (ASVAB)),	15. NUMBER OF PAGES 225
·				

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

20. LIMITATION OF

Unlimited

ABSTRACT

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

17. SECURITY CLASSIFICATION OF REPORT

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

VOLUME 1

Joseph Zeidner, Cecil Johnson, Yefim Vladimirsky and Susan Weldon

The George Washington University

December 1998

ACKNOWLEDGMENTS

The authors would like to thank the staff of the Selection and Assignment Unit of ARI for their contributions to this research, including Dr. Michael Rumsey, Dr. Peter Greenston, and Dr. Peter Legree. The Contracting Officer's Representative for this effort was Dr. Peter Greenston.

THE EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY

EXECUTIVE SUMMARY

Research Requirement

In a related research effort, the authors proposed a new classification system to replace the aptitude area composites presently used by the Army. The proposed system would use an invisible black-box first tier in which separate least squares estimate (LSE) composites are computed for each of 150 core Military Operational Specialties (MOS) representing the approximately 190 entry-level MOS. A visible second-tier system, in which 17 families encompass all MOS, is proposed for recruiting, counseling, the computing of minimum cut scores and administration. The proposed changes were based on an analysis of the classification efficiency of various assignment composites using operational Skill Qualification Tests (SQTs) as measures of job proficiency.

Another study dealt with the credibility of SQTs as the criterion measure. While hands-on performance measures are considered by many to be benchmarks of job proficiency, their costs in construction and administration make them prohibitively expensive for classification research that would necessarily include a great number of core jobs. The SQT was considered to be an adequate substitute for core technical proficiency (CTP: a composite of job-specific hands-on and job knowledge test scores) since findings showed that the same developmental decisions were reached with either criterion. Decisions to be made include the selection of tests for best assignment composites and the determination of weights for these tests.

In recent years, some groups within the selection and classification research community have suggested that the Numerical Operations (NO) and Coding Speed (CS) tests of the Armed Services Vocational Aptitude Battery (ASVAB) be dropped. (The ASVAB is used for selection and classification of U.S. enlisted military personnel.) Reasons sometimes given include that (1) these tests make, at best, little contribution to incremental validity of aptitude area composites used for selection; (2) eliminating these tests would save time and leave room for the addition of possible new tests to ASVAB; and (3) speeded tests are costly to maintain (e.g., in constructing alternate forms, especially, for computer-based administration). However, there is little or no data showing the effect of dropping these two tests on classification efficiency as measured by mean predicted performance (MPP) or the effect of dropping these tests on gender and racial fairness of assignment composites. (Fairness is traditionally defined as the absence of underprediction for the minority group for which discrimination potentially exists.) The

overall purpose of the present study, then, is to evaluate the impact of dropping these two tests in the context of the Army's proposed new two-tiered classification system.

Procedures

Two data sets were employed. The first set was composed of 150 job families with a sample of 260,000 first-tour enlistees. This data set is identical to the data set used to establish the two-tiered classification system under consideration for operational use. The second data set of 66 job families with 83,000 enlistees is identical to the data set used in an earlier demonstration study that examined the feasibility of using a two-tiered system. ASVAB and SQT scores for an accession cohort from FY 1987-1989 were available from official records.

A series of simulation-based comparisons are made between the operational nine-test ASVAB with eight-test ASVABs (without either NO or CS tests) and with a seven-test ASVAB (without both NO and CS). Classification efficiency is measured in terms of MPP after optimal assignment of recruits to job families are made. Optimal assignments are made using best-weighted composites as assignment variables. The simulation, using a triple cross-analysis design, provides completely unbiased estimates of MPP.

Findings

There is a significant loss of MPP of 6.2 percent in the total sample for the 150 job family and 8.7 percent for the 66 job family when ASVAB is reduced from a 9-test to a 7-test battery. In the 66 job family data set, where gender and race information is directly associated with each individual's score vector, a substantial loss of MPP for females and a lesser loss for blacks was found. The MPPs for job families which have the largest proportion of females show a reduction of .046 compared to an average loss of .018 for all job families. A pattern of loss for blacks similar to that of females is not as clear.

The overall conclusion, then, is that dropping both the NO and CS tests would significantly reduce the classification efficiency of both the first-tiered and second-tiered systems. The loss from dropping NO alone is much less than for dropping CS, but the combined loss of dropping both is significantly higher. Dropping these tests would not only significantly reduce the accuracy of predicted performance, but would greatly increase gender unfairness in some traditionally female job families.

ABBREVIATIONS

ASVAB	Armed Services Vocational Aptitude Battery
AV	Assignment Variable
CE	Classification Efficiency
CTP	Core Technical Proficiency
EV	Evaluation Variable
LP	Linear Programming
LSE	Least Squares Estimate
MOS	Military Occupational Specialty
MPP	Mean Predicted Performance
PV	Predictive Validity
SME	Subject Matter Expert
SQT	Skill Qualification Test

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

VOLUME 1

CONTENTS

Introduction	. 1
Procedures	. 2
A. General Approach	. 2
B. The Simulation Paradigm	. 2
C. Data	3
D. Skill Qualification Test Data	5
E. Corrections for Attenuation and Restriction in Range	
Results for Part A	7
A. Job Families	7
B. Classification Efficiency for the 150 Job Family, First-Tier System	8
C. Classification Efficiency for the 17 Job Family, Second-Tier System	. 10
Results for Part B	. 15
Summary and Conclusions	. 30
A. Summary	. 30
B. Conclusions	. 31
Postscript	. 32
References	. 54

FIGURES AND TABLES

Figure 1 Figure 2	4 6
Table 3 MPPs for Four ASVAB Battery Conditions (First Tier)	9
Table 7 MPPs for the 17 Job Families Ordered by Percentages of Blacks in the 17 Job Families	
(Second Tier)	12
(17 Job Families)	
Table 9 MPPs for Two ASVAB Conditions for 10 Job Families with the Largest Proportion of Blacks	
(17 Job Families)	15 12
Table 12 Grand MPPs and SDs for Four ASVAB Conditions by Total, Gender and Race (66 MOS) 1 Table 13 MPPs for the 9-Test Battery by Gender, Race and Total (25 Job Families)	10 17
Table 14 MPPs for the 8-Test Battery by Gender, Race and Total, Without NO (25 Job Families)	20
Table 15 MPPs for the 8-Test Battery by Gender, Race and Total, Without CS (25 Job Families) 2	23
Table 16 MPPs for the 7-Test Battery by Gender, Race and Total, Without NO and CS	26
(25 Job Families)	20
Females (25 Job Families)	29
Table 18 MPPs for Two ASVAB Conditions for the Five Job Families with the Largest	30
Table 1 The 150 Job Family First-Tier System	33
Table 2 The 17 Family Second-Tier System	39
Table 10 The 66 Job Families ²	49
Table 11 Names of the 25 Job Families	51

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

VOLÚME 2

ONTENTS
ppendix A1 Percent Acquisition by MOS from Seabrook Reports (in 1989)
ppendix A2 Percent Acquisition by Job Family from Seabrook Reports (in 1989) 5
ppendix B1 Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier) 6
ppendix B2 MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier)
ppendix B3 MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier)
ppendix C1 MPPs and SDs for the 9-test ASVAB Battery (First Tier)
ppendix C2 MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)
ppendix C3 MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)
ppendix C4 MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)
ppendix D1 Computations for Obtaining First Tier Statistical Standard Scores from Operational ASVAB Test Scores, Without Either NO or CS or Both
ppendix D2 Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A + B + C and 150 Job Families)
ppendix D3 Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Appendix D4 Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A + B + C and 150 Job Families)
Appendix D5 Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)
Appendix D6 Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A + B + C and 150 Job Families)
Appendix D7 Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)
Appendix E1 Computations for Obtaining Second Tier Statistical Standard Scores from Operational ASVAB Test Scores Without Either NO or CS or Both
Appendix E2 Eight-Test Composite Weights for ASVAB Tests Without NO Using the Samples A + B + C. Only Positive Weights Used
Appendix E3 Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO (17 job families)
Appendix E4 Eight-Test Composite Weights for ASVAB Tests Without CS Using the Samples A + B + C. Only Positive Weights Used
Appendix E5 Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without CS (17 job families)
Appendix E6 Seven-Test Composite Weights for ASVAB Tests Without NO and CS Using the Samples A + B + C. Only Positive Weights Used
Appendix E7 Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO and CS (17 job families)
Appendix F1 Sample Sizes by Total, Gender and Race for Each Family (66 Families)
Appendix F2 Sample Sizes by Total, Gender and Race for Each Family (25 Families)

Append	MPPs and SDs for the 9-Test Battery for Females, Blacks and Total (66 MOS)	139
Append	dix G2 MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without NO (66 MOS)	143
Append	dix G3 MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without CS (66 MOS)	147
Append	dix G4 MPPs and SDs for the 7-Test Battery for Females, Blacks and Total, Without NO and CS (66 MOS)	151

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

Introduction

A. Background

In recent years some suggestions have been made in the Department of Defense (DOD) by the selection and classification research community that the number of tests in the ASVAB should be reduced from 9 to 7 tests. For many years the ASVAB has had 10 constituent tests, with the Word Knowledge and Paragraph Comprehension tests combined to form the verbal test. Thus, analyses of ASVAB are generally accomplished on a 9-test battery.

The candidate tests suggested for removal from the ASVAB are the two speeded tests, Numerical Operations (NO) and Coding Speed (CS). Reasons variously given for dropping these tests include that: (1) they make little contribution to the incremental validity of operational test composites or aptitude areas in the selection process; (2) dropping these tests would save testing time and better allow for the addition of new tests such as the experimental Assembling Objects (AO) test; and (3) it is difficult to construct alternate forms of speeded tests and their maintenance is cumbersome and costly.

It is important to point out, however, that no known study explicitly measures the effect of dropping one or the other or both of these two tests from ASVAB in terms of classification efficiency as contrasted to conventional selection efficiency.

Two studies show that the inclusion of NO and CS in optimally weighted test composites used for classification can make contributions to unbiased estimates of classification efficiency. Scholarios, Johnson and Zeidner (1994) conducted several simulation experiments in which tests were sequentially selected from among 29 ASVAB and experimental predictors to form tailored assignment composites that increased overall classification efficiency as measured by H_d , the Horst differential index (see Johnson, Zeidner, and Leaman (1992), p. 4). In the experiments, NO and CS were selected early for inclusion in assignment composites for most job families in the study, indicating that these speeded tests were potentially effective components of weighted composites in a classification system.

Zeidner, Johnson and Vladimirsky (1997) conducted several simulations in which tests for inclusion in assignment variables (AVs), determined as LSEs, were sequentially selected to maximize validity in terms of multiple correlation coefficients, or R. The early selection of CS and, to a lesser extent, NO to maximize R in AV test composites is another indication supporting their retention in ASVAB.

B. Objectives of the Study

The overall aim of the present study is to determine the contribution that the NO and CS tests make to the classification efficiency (CE) of ASVAB. More specifically, the objectives of the present study are to: (1) determine the change in mean predicted performance (MPP) of ASVAB resulting from the deletion of either NO or CS tests or of both; (2) determine the effect of assignment composites after deletion of either or both NO and CS for CE on gender and racial fairness; and (3) in the event either or both of the speeded tests were dropped, to provide conversion tables of weights and constants to use in directly transforming operational ASVAB test scores to statistical standard scores for use in the first tier and composite Army standard scores for use in the second tier of a two-tiered classification system.

Procedures

A. General Approach

The present study consists of a series of comparisons between the nine-test ASVAB with eight-test ASVABs (without either NO or CS) and with a seven-test ASVAB (without both NO and CS). The index used in judging the change in classification efficiency is mean predicted performance (MPP).

CE is measured in terms of MPP after simulated optimal assignment of recruits to job families are made. Optimal assignments in the cross samples are made using assignment variables (AVs) for which test weights have been obtained in an independent analysis sample. Assignment variables are based on the least squares estimates (LSEs) of the full set of 9 ASVAB tests or of the reduced set of 8 or 7 tests. The evaluation variables are obtained in a separate sample always using all 9 predictor tests and criterion scores within each job or job family to provide the best available estimate of criterion scores.

B. The Simulation Paradigm

In the simulated system, the assignment of a recruit to a job family optimizes the sum of all recruits' predicted performance scores for the job family to which each is assigned. A linear programming algorithm is used to maximize this total sum as the objective function, under the constraint of meeting quotas for each assignment target. These assignment targets are set proportionately to the accession numbers for the job families which are included in the analysis. In this study, the constraint was that allocation should conform proportionately to the actual operational distribution of enlistees to jobs in FY 1989, the most relevant year in terms of the data. For example, this data indicates, as reported in Table A1 in the Appendix, the infantryman MOS 11B would receive 12.5 percent, or 2,500, of the 20,000 enlistees assigned to the 150 jobs.

The general simulation paradigm used can be described in terms of three independent samples of recruits (Johnson, Zeidner & Vladimirsky, in preparation; Zeidner, Scholarios & Johnson, 1997). Each sample is assigned a different role in a triple cross-validation design: (1) Sample A has the analysis role in which jobs are clustered into job families and then weights are computed for the least squares estimates composites which are used as assignment variables; (2) Sample B has an evaluation role in which weights are computed for least squares estimate variables using all predictor tests and criterion scores within each job or job family to provide the best estimate of criterion scores; and (3) Sample C has a simulation role in which recruits are optimally assigned to job families using regression weights from Sample A to compute the assignment variables. The final mean predicted performance (MPP) scores on which the experimental evaluation is based are computed following assignment of the recruits from Sample C using regression weights from Sample B. Figure 1 illustrates this division of the total empirical sample into the three samples and the computation of final MPP results. It should be stressed that this design, a triple cross-analysis design, using three independent samples, produces completely unbiased results.

C. Data

The recruits for whom selection and assignment is being simulated are represented by sampling from a real data set provided by individuals possessing predictor and criterion scores. Several earlier differential assignment theory (DAT) simulation studies have relied on synthetic scores which represent the effect of selection from a youth population (e.g., Johnson & Zeidner, 1991; Johnson, Zeidner & Scholarios, in preparation; Scholarios, et al., 1994; Statman, 1992). By contrast, the present study uses empirical scores derived from Army test and criterion data sets. See Nord and Schmitz (1991) for a comparison of these two approaches.

The present study uses two different empirical data sets. The first data set, comprising Part A (and not to be confused with Sample A, etc), contains soldiers in the 150 job families of the first tier and again in the 17 job families of the second tier. This data set—the family structure and sample—is identical to the data set employed that led to the proposed new operational classification system (Zeidner, Johnson, Vladimirsky & Weldon, in preparation).

Figure 1 Generalized Research Design

The second data set, Part B, uses a 66 job family structure in the first tier and a set of 25 job families in the second tier. The second-tier system was designed to consist of relatively homogeneous job families. This data set is identical to the one used earlier to demonstrate the classification effectiveness of a two-tiered system (Johnson, Zeidner, Vladimirsky, in preparation) prior to the study leading to the proposed new operational system. The second data set is actually a subset of the data set used in Part A, but, unlike the larger data set, gender and race information is associated with each individual's test and criterion score vector.

Gender and race information for the 150 job family data set (Part A of the analysis) was available by job rather than by individual. Although the first set provides data on the largest number of different jobs obtainable and represents the operational system actually recommended, only the second data set (part B of the analysis) permitted further examination of gender and racial effects.

In the present study, for both Parts A and B, the AV and EV subsamples were randomly divided into two samples: one provides an AV source and the other provides an EV source. The simulation was then accomplished twice, reversing the roles of the AV and EV samples in the second simulation, a procedure that not only produces unbiased results, but also permits analysis of design issues. The MPP results are averaged across the two simulations. This design is shown in Figure 2 giving Part A subsample sizes. The total sample size for the 150 job families is 260,000 and the total sample size for 66 job families is 83,000.

D. Skill Qualification Test Data

There are about 190 entry-level military occupational specialties (MOS) in the Army. Each of these MOS is composed of one to five skill levels, with skill level 1 being the lowest and including paygrades E-1 through E-4. Prior to 1983, the SQT had both written and hands-on components measuring job proficiency in an MOS. After 1983, the SQT was designed only as a task-based paper-and-pencil test of job proficiency. The SQT program was canceled in 1991. Soldiers were required to take the SQT annually after completing 11 months or more of service. In the present research study, SQT scores for FY 1987-1989 were obtained from official records for the cohort sample. These SQT years were considered by ARI to be psychometrically good SQT years in terms of discriminability and reliability of the measures.

STEP ONE

Figure 2 Triple Cross Analysis Design Sample Sizes

The SQT for an MOS were composed of significant task elements. The tasks to be measured were selected by subject matter experts (SMEs) using job analysis information and manuals. Test questions were standard four alternative multiple-choice items, with one correct answer. The tests were administered through a local Training Standards Office once each fiscal year during a three month Army-wide SQT period. The SQT scores were utilized in considering soldiers for promotion to the next higher skill level and to identify those that could be barred from reenlistment. A report by R. C. Campbell (1994) provides a history of the development and use of SQT.

The predictors consisted of the nine ASVAB tests standardized to have a mean of zero and a standard deviation of one in the Army input sample. The SQT scores in each MOS were also standardized (within each MOS) to have a mean of zero and a standard deviation of one.

E. Corrections for Attenuation and Restriction in Range

The population of soldiers entering the Army is the target population used to correct data in Samples A and B. Test intercorrelations and validities in both samples were corrected for attenuation and restriction in range separately by MOS to provide estimates of the Army input population. When the Army input is designated as the population in this way, restriction in range is attributable only to the operational classification and assignment process due to the impact of assignment to MOS from a common entry pool. No correction was made for restriction due to the selection process. Validities were also corrected for attenuation in the criterion variables prior to correcting for restriction in range. All regression weights and mean criterion scores were computed from the corrected intercorrelation matrices and relate to the Army input population rather than the youth population.

Results for Part A

A. Job Families

Table 1 (starting on page 32) shows the 150 first-tier job families included in the present study along with sample sizes for each family. Table 2 (starting on page 38) shows the 17 family second-tier system. Together, these tables show the two-tiered family structure proposed to replace the operational 9-job family structure. The Appendices in Volume 2 provide additional details of the Part A analyses including: (1) the acquisition numbers used in the simulations; (2) the MPPs and standard deviations (SDs) for each job/job family by each ASVAB condition; and (3) the transformation weights and constants used to convert operational ASVAB test scores to statistical standard scores used in the two-tiered system for each condition.

B. Classification Efficiency for the 150 Job Family, First-Tier System

Table 3 shows MPP results for eight assignment conditions. Classification efficiency is measured by MPP in the simulation process as described in the Procedures section. First, examining the results for the biased vs the unbiased condition, we find, as expected, much larger MPPs for the biased estimates than for the unbiased estimates across all conditions. The unbiased MPPs, based on the triple cross-analysis design, provide an accurate, totally uninflated estimate. Except for this table, shown for comparison purposes, all other results are shown only for the unbiased condition.

Table 3

MPPs for Four ASVAB Battery Conditions (First Tier)								
	Bia	ised	<u>U</u> nb	iased				
Condition	MPP	SD	MPP	SD				
9-test	.334	.012	.195	.013				
8-test (without NO)	.321	.012	.193	.013				
8-test (without CS)	.315	.012	.188	.013				
7-test (without NO or CS)	.299	.012	.183	.013				

Second, we examine the unbiased results for the four battery conditions. Table 3 shows a slight reduction in MPP as the battery size changes from 9-test to 8-test. We find a loss of .012 or 6.2 percent when battery size is reduced from 9-test to a 7-test battery. All critical ratios among the battery sizes are statistically significant at the .01 level. The NO test contributes less than the CS test to MPP, but their combined effect on MPP reduction is significantly larger. The SDs for all conditions remain the same.

As described in the Procedures section, we could not tie gender and race information with test and criterion scores for each individual in the 150 job family set. We, however, had operational data for our sample that provided gender and race percentages by family. Using this information, we divided our 150 job families into three groups of 50 each based on an ordered list of job families by concentration of females and by blacks. Thus the top 50 job families had the largest percentage of females and the bottom 50 had the lowest percentage. The job families with the largest concentration tend to be in the more traditional female occupations.

Table 4 shows the MPPs for the four ASVAB conditions ordered by percentage of females in each family group. The mean MPPs presented are based on the total sample of males and females in each of the three family groups. In the top 50 job families, those with the highest female concentrations, we find an MPP loss of .026 when the battery is reduced from 9-test to 7-test. This compares to a loss of

.012 across the 150 job families. This difference in MPP provides an indication that the AVs of females in some traditional female jobs may be more greatly reduced than the AVs of males in all jobs by dropping either the NO or CS test or both. The critical ratios of differences between the 9- and 7-test batteries for each group are statistically significant at the .01 level. This indicates that predicted performance scores (operational AVs) for females are less fair when the two tests are dropped.

Table 4

MPPs for Four ASVAB Conditions Ordered by Percentages of Females in Jobs (First Tier)

Jobs by	9-7	Test .	8-Test	(-NO)	8-Tes	t (-CS)		Test D/CS)	Diff. (9-7 Tests)
Female Percentages	M	SD	M	SD	M	SD	M	SD	
Top 50	.266	.124	.264	.119	.247	.125	.240	.120	.026
Mid 50	.359	.093	.365	.091	.363	.089	.358	.089	.001
Bottom 50	.067	.085	.059	.079	.059	.083	.052	.078	.015

Table 5 shows the MPPs for the four ASVAB conditions ordered by percentage of blacks in each first-tier job family. Here the results for job families with large concentrations of blacks are not as clear as for females. In Table 5, we find both MPP losses and gains in going from the 9-test to the 7-test condition. We also find very large SDs in each group of 50 job families, a result also found for each group of females ordered by concentration.

Table 5

MPPs for For Jobs by	***************************************	Test		(-NO)	***	t (-CS)	7-7	Test D/CS)	Diff. (9-7 Tests)
Black Percentages	M	SD	M	SD	M	SD	M	SD	
Top 50	.176	.085	.179	.082	.166	.084	.160	.083	.016
Mid 50	.477	.087	.479	.087	.510	.078	.537	.092	060
Bottom 50	.074	.091	.067	.085	.067	.086	.058	.048	.016

C. Classification Efficiency for the 17 Job Family, Second-Tier System

Table 6 shows the MPPs for the four ASVAB conditions ordered by percentage of females in each of the 17 job families of the second tier. Percentage of females varied from 48.0 percent (CL1) to 2.8 percent (MM2) for non-combat job families. (The 17 job family names follow the naming pattern of the existing nine AA job families.) As noted in the Procedures section, the percentages for this first set are obtained from the actual operational data.

1 '	1	-
 ìп	9	h

MPPs for Four ASVAB Conditions Ordered by Percentages of Females in the 17 Job Families (Second Tier)								
Family Name/ Cluster	Male N /%	Female N / %	Total N/%	9-Tests MPP/SD	8-Tests (-NO) MPP/SD	8-Tests (-CS) MPP/SD	7-Tests (-NO/CS) MPP/SD	
CL1	16300	15618	31918	.301	.333	.282	.283	
1	51.07	48.93	100	.176	.173	.181	.184	
ST1	15506	5847	21353	.130	.174	.098	.161	
15	72.62	27.38	100	.253	.252	.250	.233	
ST2	6322	2181	8503	.358	.320	.294	.271	
16	74.35	25.65	100	.203	.192	.208	.199	
SC	7907	1671	9578	.064	.049	.062	.062	
14	82.55	17.45	100	.101	.110	.106	.105	
ST3	16622	3137	19759	055	041	027	087	
17	84.12	15.88	100	.146	.127	.130	.138	
EL2	9315	1723	11038	.415	.411	.384	.397	
6	84.39	15.61	100	.169	.186	.183	.178	
							1.00	
CL2	24006	4382	28388	.162	.152	.166	.162	
2	84.56	15.44	100	.067	.063	.065	.063	

Family Name/ Cluster	Male N /%	Female N / %	Total N/%	9-Tests MPP/SD	8-Tests (-NO) MPP/SD	8-Tests (-CS) MPP/SD	7-Tests (-NO/CS) MPP/SD
OF	30855	4036	34891	.217	.232	.198	.196
13	88.43	11.57	100	.132	.116	.129	.123
EL1	13000	1664	14664	.294	.278	.288	.295
5	88.65	11.35	100	.237	.226	.243	.244
EL3	7066	726	7792	.392	.413	.349	.288
7	9.68	9.32	100	.238	.254	.246	.255
GM2	11632	876	12508	.096	.092	.092	.097
10	93.00	7.00	100	.196	.196	.196	.187
MM1	30712	1659	32371	.592	.610	.587	.596
11	94.88	5.12	100	.122	.113	.123	.125
GM1	10453	451	10904	.761	.772	.747	.757
9	95.86	4.14	100	.195	.183	.175	.167
MM2	9836	287	10123	.421	.440	.421	.412
12	97.16	2.84	100	.231	.206	.213	.218
CO2	27155	0	27155	.193	.173	.195	.184
4	100	0	100	.141	.127	.140	.120
CO1	51293	0	51293	162	181	170	195
3	100	0	100	.060	.059	.060	.056
FA	25723	0	25723	.369	.382	.380	.374
8	100	0	100	.131	.123	.117	.102

Table 7 shows the same type of information as Table 6, but ordered by percentage of blacks. Percentages of blacks range from 48.0 percent in the Clerical 1 job family to 8.1 percent in the Mechanical Maintenance 2 family.

Tal	ble	7

Family Name/ Cluster	Whites N /%	Blacks N / %	Total N/%	9-Tests MPP/SD	8-Tests (-NO) MPP/SD	8-Tests (-CS) MPP/SD	7-Tests (-NO/CS) MPP/SD
CL1	16585	15333	31918	.301	.333	.282	.283
1	51.96	48.04	100	.176	.173	.181	.184
CL2	15801	12587	28388	.162	.152	.166	.162
2	55.66	44.34	100	.067	.063	.065	.063
FA	15524	10199	25723	.369	.382	.380	.374
8	60.35	39.65	100	.131	.123	.117	.102
EL2	7206	3832	11038	.415	.411	.384	.397
6	65.28	34.72	100	.169	.186	.183	.178
EL1	9650	5014	14664	.294	.278	.288	.295
5	65.81	34.19	100	.237	.226	.243	.244
OF	23208	11683	34891	.217	.232	.198	.196
13	66.52	33.48	100	.132	.116	.129	.123
ST1	15370	5983	21353	.130	.174	.098	.161
15	71.98	28.02	100	.253	.252	.250	.233
GM2	9017	3491	12508	.096	.092	.092	.097
10	72.09	27.91	100	.196	.196	.196	.187
SC	7218	2360	9578	.064	.049	.062	.062
14	75.36	24.64	100	.101	.110	.106	.105

Family Name/ Cluster	Whites N / %	Blacks N / %	Total N/%	9-Tests MPP/SD	8-Tests (-NO) MPP/SD	8-Tests (-CS) MPP/SD	7-Tests (-NO/CS) MPP/SD
0.0000							
MM1	25368	7003	32371	.592	.610	.587	.596
11	78.37	21.63	100	.122	.113	.123	.125
GM1	8671	2233	10904	.761	.772	.747	.757
9	79.52	20.48	100	.195	.183	.175	.167
CO2	21975	5180	27155	.193	.173	.195	.184
4	80.92	19.08	100	.141	.127	.140	.120
EL3	6327	1465	7792	.392	.413	.349	.288
7	81.20	18.80	100	.238	.254	.246	.255
CO1	43422	7871	51293	162	181	170	195
3	84.65	15.35	100	.060	.059	.060	.056
ST2	7422	1081	8503	.358	.320	.294	.271
16	87.29	12.71	100	.203	.192	.208	.199
ST3	17298	2461	19759	055	041	027	087
17	87.54	12.46	19739	.146	.127	.130	.138
MM2	9304	819	10123	.421	.440	.421	.412
12	91.91	8.09	100	.231	.206	.213	.218

Tables 8 and 9 compress the previous two tables and show only the MPPs for two ASVAB conditions (9-test and 7-test) for the 10 job families with the largest proportion of females and of blacks.

Table 8

MPPs for Two ASVAB Conditions for 10 Job Families with the Largest Proportion of Females (17 Job Families)

Job Family	Designation	% Female	9-Test	7-Test	Difference (9-7 Test)
CL1	001	48.9	.301	.283	.018
ST1	015	27.4	.130	.161	030
ST2	016	25.7	.358	.271	.087
SC	014	17.5	.064	.062	.002
ST3	017	15.9	055	087	.031
EL2	006	15.6	.415	.397	.018
CL2	002	15.4	.162	.162	.000
OF	013	11.6	.217	.196	.021
EL1	005	11.4	.294	.295	.001
EL3	007	9.3	.392	.288	.104

Nine of the ten job families with the largest concentration of females show a loss when tests are reduced from 9 to 7 by withholding NO and CS. Several losses are quite large, i.e., MPP is reduced by .104 for EL3 and by .087 for ST2. Again, the MPPs for the job families are based on the total number of males and females in each family. These data, as do the data for the first tier, provide an indication that in some families the AVs of females may be more greatly impacted than for males by dropping the NO and CS tests.

Table 9 shows the same type of information as Table 8, but ordered by percentage of blacks in each job family of the second tier. Unlike the job families with large concentrations of females, no distinct pattern is evident.

Table 9

MPPs for Two ASVAB Conditions for 10 Job Families with the Largest Proportion of Blacks (17 Job Families)

Job Family	Designation	% Black	9-Test	7-Test	Difference (9-7 Test)
CL1	001	48.0	.301	.283	.018
CL2	002	44.3	.162	.162	.000
FA	008	39.7	.369	.374	005
EL2	006	34.7	.415	.397	.018
EL1	005	34.2	.294	.295	001
OF	013	33.5	.217	.196	.021
ST1	015	28.0	.130	161	031
GM2	010	27.9	.096	097	001
SC	014	24.6	.101	105	005
MM1	011	21.6	.592	596	004

Results for Part B

As noted earlier, Part B provides the results of the 66 job family system. Also noted earlier, research on the 66 job family set was originally carried out to demonstrate the value of employing a two-tiered system that could be applied to the largest number of job families obtainable.

In conducting the optimization simulations for the 66 job family system, we imposed an operational constraint, in addition to quotas, that the number of blacks assigned to infantry families, as a percentage of blacks in our sample, would not exceed the total percentage of blacks in the Army. This constraint, as all constraints on optimization do, lowers the objective function, MPP.

Table 10 (starting on page 48) shows the 66 first-tier job families used in Part B of the present study along with the sample sizes for each family. Table 11 (starting on page 50) lists the jobs (MOS) in each second-tier job family. The Appendices in Volume 2 provide additional details of the Part B analysis such as sample sizes by total, gender and race for each family and MPPs and SDs for each condition.

Table 12 shows MPP results for the four ASVAB conditions by total, gender and race for the 66 jobs.

Table 12

		Number of Tests				
Group		9-Test	8-Test (-NO)	8-Test (-CS)	7-Test (-NO and -CS)	
Total	MPP	.173	.174	.163	.159	
	SD	.017	.016	.017	.017	
Female	MPP	.013	.015	.005	005	
	SD	.082	.080	.080	.082	
Black	MPP	227	228	240	244	
	SD	.032	.028	.031	.028	

First we examine the differences in MPP as the battery is reduced from 9 to 8 and to a 7-test battery in each of the three groups. The 7-test battery has a .014 loss in MPP for the total; the loss is .018 for females and .017 for blacks. The critical ratios are statistically significant at the .01 level.

Second, we note the variations in SDs across the three groups. We find that the SDs across the four conditions for the total sample are quite small, about .02. In contrast, the SDs are about five times larger for females than for the total while SDs for blacks are only slightly larger than for the total sample. The female group contains 46 pecent black females, but only 17 percent of the black sample is female.

Third, we find that the MPP differences between the 9-test and 7-test batteries in the 66 job family structure is quite comparable to the difference in the 150 job family structure, .012 vs .014, respectively.

Table 13 shows the MPPs for the 9-test battery by gender, race and for the total for each of the 25 job families. Tables 14 through 16 show the same type of data for the 8-test battery without NO, for the 8-test battery without CS, and for the 7-test battery without NO and CS. The tables also show the percentages of females and blacks in each job family. The data in these tables allow us to further examine the effect of reducing battery sizes by groups across different job families. (Text continues on page 29.)

Table 13

MPPs for the 9-Test Battery by Gender, Race and Total (25 Job Families) MPP / SD Percent Family Total Designation Female Black Black Female 0.060281 0.000000 -0.342468 17.84 0.0012C 0.039114 0.000000 0.144768 -0.307133 42.21 -0.352935 -0.460709 13R 6.36 0.176015 0.2823720.228932 0.288290 1.089737 0.918086 19.50 29V 43.48 0.427225 0.166169 0.499806 -0.249257 -0.226420 0.689244 24.93 33T 17.55 0.468491 0.316811 0.304909 0.431356 0.000000 0.086577 0.00 9.23 63T 0.094497 0.343058 0.000000 0.129199-0.213807 -0.198262 32.37 4.21 67V 0.087542 0.245660 0.223703 -0.294705 -0.440546 57.11 -0.253897 **72E** 22.01 0.046002 0.101786 0.243595 56.34 0.219348 0.113034 0.301317 76C 23.91 0.125510 0.114741 0.264418 -0.236310 -0.182454 71.47 -0.213491 88H 25.55 0.106288

0.183807

0.118297

Table 13 continued

MPPs for the	MPPs for the 9-Test Battery by Gender, Race and Total (25 Job Families)						
Family .	Percent						
Designation	Female	Black	Female	Black	Total		
95B	19.19	23.33	0.165855	0.013511	0.351222		
			0.263929	0.224279	0.090011		
	1 77.5	20.10	-0.077212	-0,286229	-0.092959		
11	1.75	39.10	0.206320	0.135446	0.065722		
			0.20020				
12	0.46	47.13	-0.083092	-0.302579	-0.036960		
			0.182490	0.082337	0.015580		
10	0.42	<i>(</i> 10	0.020257	0.304013	0.814982		
13	0.42	6.10					
			0.090591	0.381095	0.097845		
14	40.02	43.84	-0.000902	-0.127654	0.039990		
			0.322026	0.268822	0.233519		
			0.040560	0.154274	0.001700		
15	43.40	72.22	-0.049569	-0.154274	-0.081790		
			0.170743	0.117288	0.073153		
16	2.00	20.19	0.009509	-0.034474	0.374832		
			0.105239	0.295545	0.193453		
		A.W. 60	0.550156	0.277051	0.742520		
17	34.03	35.60	0.572156	0.377051	0.742529		
			0.335453	0.392336	0.245527		
18	7.84	32.57	-0.133873	-0.210935	0.093180		
			0.185385	0.152246	0.093175		
					0 #11 #0 =		
19	2.58	11.26	-0.002157	-0.044294	0.511505		
			0.194695	0.252069	0.117259		

Table 13 continued

MPPs for the 9	7-Test Battery b	y Gender, Race an	nd Total (25 Job Fan	iilies)		
Family _	Percent		MPP / SD			
Designation _	Female	Black	Female	Black	Total	
20	0.07	17.11	-0.123115	-0.448565	-0.157303	
			0.271010	0.096097	0.023815	
21	12.32	6.90	0.488589	0.326255	1.213570	
			0.577915	0.512655	0.183779	
22	1.00	4.12	0.061901	0.180998	1.185953	
		•	0.197805	0.359121	0.110742	
23	9.83	33.93	-0.238189	-0.336511	-0.036753	
			0.227391	0.131397	0.060078	
24	20.49	50.63	-0.159429	-0.270747	-0.013429	
			0.317199	0.160057	0.100894	
25	53.90	52.67	0.321647	0.180224	0.314353	
			0.200464	0.191212	0.148837	

Table 14

MPPs for the 8-Test Battery by Gender, Race and Total, Without NO (25 Job Families) MPP / SD Percent Family Black Total Black Female Designation Female 0.000000 -0.308331 0.072729 17.87 0.00 12C 0.138025 0.044360 0.000000-0.140120 2.42 42.92 -0.132325 -0.316499 13R 0.163064 0.249538 0.244386 0.388243 1.196017 0.989885 29V 44.98 16.36 0.248317 0.507286 0.517080 -0.206220 -0.259310 0.710177 24.09 18.02 33T 0.431183 0.273589 0.305712 0.425716 -0.004245 0.020478 9.13 63T 0.25 0.090032 0.320852 0.017558 -0.102955 -0.173917 0.145732 33.48 67V 2.84 0.226970 0.097241 0.254798 -0.292500 -0.373890 -0.462279 57.92 72E 23.94 0.113155 0.036554 0.207661 58.39 0.1619980.123675 0.285537 76C 25.52 0.152173 0.128100 0.259406 -0.165366 -0.111081 68.76 -0.120135 88H 24.45 0.0889420.164098 0.106306 0.009392 0.343252 19.69 22.38 0.103592 95B 0.236535 0.104872 0.227336

Table 14 continued

MPPs for the &	MPPs for the 8-Test Battery by Gender, Race and Total, Without NO (25 Job Families)						
Family _	Per	cent	MPP / SD				
Designation	Female	Black	Female	Black	Total		
11	2.37	42.80	-0.101673	-0.327086	-0.100672		
			0.256949	0.110584	0.048501		
12	0.38	47.30	-0.039442	-0.302671	-0.037822		
			0.132273	0.078966	0.017054		
13	0.49	6.06	0.038880	0.219846	0.831696		
			0.138842	0.372989	0.094256		
14	37.81	44.79	-0.008168	-0.142823	0.029861		
			0.285000	0.274767	0.239240		
15	43.89	72.15	-0.050111	-0.160868	-0.085878		
			0.174384	0.117023	0.064492		
16	3.46	22.21	-0.009082	-0.057873	0.335074		
			0.124226	0.244672	0.187575		
17	34.49	41.27	0.540196	0.342137	0.679371		
			0.322418	0.376954	0.253149		
18	7.96	32.27	-0.142714	-0.217364	0.069823		
			0.201362	0.172322	0.097069		
19	2.10	10.15	-0.013630	-0.056306	0.498585		
			0.245709	0.244655	0.126532		

Table 14 continued

MPPs for the 8-Test Battery by Gender, Race and Total, Without NO (25 Job Families)						
Family _	Percent		MPP / SD			
Designation _	Female	Black	Female	Black	Total	
20	0.06	17.07	-0.139563	-0.430117	-0.151276	
			0.261857	0.099148	0.022871	
21	11.61	5.96	0.505201	0.305289	1.236601	
			0.594527	0.514398	0.168975	
22	1.06	3.85	0.051100	0.173994	1.182909	
			0.203364	0.356556	0.106151	
23	9.91	33.65	-0.259527	-0.360486	-0.037578	
			0.207122	0.137020	0.050015	
24	19.26	50.05	-0.153754	-0.247711	-0.004372	
			0.309520	0.160359	0.095316	
25	55.44	51.47	0.270122	0.151475	0.295284	
			0.189142	0.203191	0.136785	

Table 15

MPPs for the 8-Test Battery by Gender,	Race and Total,	Without CS (25 Job Families)

Family - Designation	Percent		MPP / SD		
	Female	Black	Female	Black	Total
12C	0.00	17.87	0.000000	-0.401096	0.044625
			0.000000	0.120872	0.046911
13R	6.16	41.51	-0.290185	-0.489277	-0.384470
			0.273050	0.205887	0.144105
29V	49.30	19.38	0.975259	0.357460	1.052591
			0.425075	0.545508	0.173302
33T	11.14	24.15	-0.122359	-0.222389	0.600128
			0.318812	0.313411	0.410498
63T	0.25	9.70	0.015180	0.038421	0.412801
			0.067887	0.291471	0.098600
67V	4.54	34.05	-0.243615	-0.207138	0.116355
			0.319569	0.197932	0.067796
72E	20.43	58.88	-0.234325	-0.410872	-0.267440
			0.243200	0.089838	0.043040
76C	25.40	52.59	0.203990	0.123336	0.299979
			0.263636	0.154655	0.126807
88H	26.23	71.56	-0.066425	-0.152689	-0.089656
0022			0.167674	0.088856	0.080293
95B	18.54	26.20	0.145773	0.013049	0.308948
7025	10.01		0.320647	0.214986	0.091057

Table 15 continued

Family _	Percent		MPP / SD			
Designation -	Female	Black	Female	Black	Total	
11	1.71	36.53	-0.075201	-0.295978	-0.092202	
			0.201595	0.132335	0.050594	
12	0.48	46.88	-0.082202	-0.282677	-0.033156	
			0.205912	0.080026	0.014430	
13	0.31	4.74	0.008541	0.227201	0.824417	
			0.038197	0.369233	0.092215	
14	34.79	46.31	-0.049127	-0.208702	-0.041346	
			0.321397	0.318102	0.266585	
15	45.38	73.77	-0.057784	-0.166922	-0.093583	
			0.165070	0.113071	0.076270	
16	4.26	19.41	-0.017961	-0.022790	0.361124	
			0.202993	0.276265	0.177936	
17	35.42	44.97	0.543108	0.339786	0.631051	
			0.321656	0.315695	0.272125	
18	10.04	30.68	-0.147111	-0.238352	0.063196	
			0.220892	0.144167	0.093560	
19	2.84	11.26	-0.028558	-0.073885	0.483221	
17	∠ ,∪-1	11.20	0.203092	0.264992	0.119974	

Table 15 continued

MPPs for the 8	MPPs for the 8-Test Battery by Gender, Race and Total, Without CS (25 Job Families)					
Family	Percent		MPP / SD			
Family Designation	Female	Black	Female	Black	Total	
20	0.07	17.08	-0.117362	-0.432152	-0.140579	
			0.289818	0.096698	0.021966	
21	11.25	6.94	0.465679	0.284788	1.206194	
			0.585093	0.496308	0.172805	
22	1.48	3.71	0.073487	0.156645	1.209179	
			0.239357	0.353857	0.107814	
23	9.19	33.41	-0.254932	-0.336628	-0.040694	
			0.179309	0.117737	0.068423	
24	21.07	49.83	-0.168003	-0.312384	-0.061446	
			0.287354	0.167472	0.084914	
25	48.78	54.02	0.266826	0.093487	0.233651	
			0.184039	0.204060	0.138022	

Table 16

MPPs for the 7	MPPs for the 7-Test Battery by Gender, Race and Total, Without NO and CS (25 Job Families)					
Family _	Per	cent		MPP / SD		
Designation	Female	Black	Female	Black	Total	
12C	0.00	17.91	0.000000	-0.379182	0.036618	
			0.000000	0.136968	0.048215	
13R	4.05	39.52	-0.186910	-0.428052	-0.262564	
			0.278102	0.152506	0.114501	
29V	42.41	25.79	0.870032	0.279438	0.952301	
			0.529275	0.438914	0.245606	
33T	5.31	26.43	-0.136219	-0.252223	0.415156	
			0.262846	0.292081	0.424395	
63T	0.25	10.52	0.015180	0.047712	0.419110	
			0.067887	0.302040	0.094670	
67V	3.27	32.26	-0.164104	-0.160153	0.181116	
			0.240598	0.225085	0.074258	
72 E	24.90	57.59	-0.274170	-0.400669	-0.203195	
		•	0.201132	0.116321	0.037150	
76C	29.22	47.41	0.259404	0.095435	0.300134	
			0.287118	0.150854	0.137155	
88H	22.22	71.23	-0.078039	-0.160252	-0.108711	
			0.171475	0.099300	0.079995	
95B	17.36	27.88	0.012411	-0.045406	0.268147	
			0.284390	0.207227	0.085210	

Table 16 continued

MPPs for the 7-Test Battery by Gender, Race and Total, Without NO and CS (25 Job Families)						
Family -	Per	cent	MPP / SD			
Designation	Female	Black	Female	Black	Total	
11	3.13	38.95	-0.154758	-0.318784	-0.098206	
			0.273297	0.128375	0.034312	
12	0.37	46.11	-0.072523	-0.283745	-0.028641	
			0.203851	0.083010	0.014881	
13	0.31	4.58	0.008541	0.233138	0.852145	
			0.038197	0.378242	0.098166	
14	37.88	48.08	-0.064382	-0.217826	-0.062520	
			0.291577	0.278905	0.237247	
15	43.27	75.04	-0.060105	-0.178763	-0.101112	
			0.169277	0.120307	0.074009	
16	4.13	22.57	-0.032314	-0.050521	0.322165	
			0.129939	0.243995	0.183723	
17	34.00	49.05	0.537818	0.312508	0.581381	
			0.356054	0.346900	0.279634	
18	12.26	29.01	-0.178773	-0.290654	0.029278	
			0.199802	0.191425	0.082922	
19	2.29	9.33	0.006360	-0.080281	0.482922	
17	2.27	7.55	0.213784	0.260685	0.123382	

Table 16 continued

MPPs for the 7	MPPs for the 7-Test Battery by Gender, Race and Total, Without NO and CS (25 Job Families)					
Family _	Percent		MPP / SD			
Designation _	Female	Black	Female	Black	Total	
20	0.11	17.02	-0.210493	-0.422607	-0.139886	
		•	0.272636	0.095109	0.023505	
21	10.42	8.18	0.532127	0.304293	1.203588	
			0.577539	0.533063	0.166475	
22	1.51	3.38	0.081796	0.137099	1.203743	
			0.223009	0.339920	0.092910	
23	9.38	32.47	-0.238018	-0.357770	-0.046791	
			0.244399	0.121592	0.058070	
24	20.92	49.70	-0.185209	-0.297534	-0.045697	
			0.282710	0.172414	0.087452	
25	48.60	60.30	0.238263	0.052210	0.192286	
			0.244223	0.164482	0.141860	

In Table 17, we show MPPs for two ASVAB conditions for the five job families with the largest concentration of females. The percentages of females in these families range from 53.9 percent to 34.0 percent, compared to about 12 percent females in the total sample.

Table 17

MPPs for Two ASVAB Conditions for the Five Job Families with the Largest Proportion of Females (25 Job Families)

Job Family Designation	% Female	MPP 9-Test	MPP 7-Test	Difference (9 - 7 Tests)		
25	53.9	.322	.238	.084		
29V	43.5	.918	.870	.038		
15	43.4	050	060	.010		
14	40.4	000	064	.064		
17	34.0	.572	.538	.034		
Average MPP Difference for 5 Job Families .046						
Average MPP Difference for 66 MOS .018						

We find an average MPP loss of .046 for females across the five jobs with the largest concentration of females as the battery is reduced from 9 tests to 7 tests. This compares to a .018 loss for females across all 66 jobs. The job families with very high concentrations of females tend to be traditionally female jobs. Three of the five job families consist of administrative and financial jobs (job family designation 25), personnel records and unit supply jobs (job family designation 15), and legal and personnel administrative jobs (job family 17). The remaining two job families are operator jobs (job family designation 14) or first echelon repair jobs (job family designation 29V and job family designation 17). These data indicate that the impact of dropping both NO and CS from the battery is quite large for females for jobs that are traditionally associated as being "female jobs."

Table 18 makes the same type of comparisons as above for blacks. The pattern is not as clear for blacks as for females, but it appears that the loss in MPP for some jobs might be great, i.e., the loss is .128 for administrative and finance specialists (job family designation 25).

Table 18

MPPs for Two ASVAB Conditions for the Five Job Families with the Largest Proportion of Blacks (25 Job Families)

Job Family Designation	% Black	MPP 9-Test	MPP 7-Test	Difference (9 - 7 Tests)			
15	72.2	154	179	.025			
88H	71.5	236	160	076			
72E	57.1	441	400	041			
76C	56.3	.113	.095	.018			
25	52.7	.180	.052	.128			
Average MPP Dif	Average MPP Difference for 5 Job Families .011						
Average MPP Dif	ference for 66 MC	os		.017			

Summary and Conclusions

A. Summary

One major goal of this research was to determine the change in mean predicted performance (MPP) of ASVAB if either the Numerical Operations (NO) or Coding Speed (CS) test or both were to be dropped from the battery. Conversely, we wished to determine the contribution that the NO and CS tests make to the classification efficiency of ASVAB. A second major goal was to determine the effect on gender and racial fairness of ASVAB test composites by a reduction in the number of tests. Fairness is traditionally defined as the absence of underprediction for the minority group for which discrimination potentially exists (Cleary, 1968). Thus, if a test is used for selection and is underpredicting minority groups, members of a minority group may be rejected when they were capable of adequate performance. If a test is used for classification and is underpredicting minority group performance, members of a minority group would likely be assigned to a different sets of jobs at lower predicted performance than they otherwise would have been. A third goal was to provide conversion tables to use in transforming operational ASVAB test scores to operational composite scores (both tier 1 and tier 2 test composites) in the event of a change in the composition of tests in ASVAB.

For the first-tiered system, the 150 job families, a significant loss of MPP would be incurred by reducing the 9-test battery to a 7-test battery. Without the use of NO and CS, the MPP for the total sample would drop from .195 to .183, a reduction in classification efficiency of 6.2 percent for the first tier. Without the use of NO and CS, there is an indication that the 50 MOS with the largest concentration of females would have a greater loss of MPP in the first tier than the remaining 100 MOS. The loss in MPP for the top 50 jobs (by concentration of females) would be .026 compared to a loss of .008 for the remaining 100 jobs. The pattern of greater loss of MPP for blacks in the first tier is not as clear. The loss in MPP in the second tier for the top 10 of 17 job families with the largest concentration of females shows a clear pattern of greater losses than the remaining families. The pattern is, again, not as clear for blacks.

For the 66 job families in the demonstration study, there is a significant loss of MPP for both the total sample and separately for females and for blacks by reducing the 9-test battery to a 7-test battery. Without the use of NO and CS, MPP is reduced from .173 to .159 for the total, an 8.1 percent loss; for females, from .013 to -.005; and for blacks, from -.227 to -.244. The MPPs for the top 5 out of 25 job families with the largest proportion of females shows a reduction of .046 compared to .018 for all 25 job families. The MPPs for the top 5 out of 25 job families with the largest proportion of blacks show an MPP of .011 compared to .017 for all 25 families, a reduction of .006 in MPP.

B. Conclusions

Dropping NO and CS would significantly reduce the classification efficiency of both the first-tiered and second-tiered operational system. The loss from dropping NO is slight compared to CS, but the combined effect of dropping both is greater than dropping CS alone.

The loss in mean predicted performance for females is consistent with increased underprediction of performance. Dropping NO and CS has a greater impact on females than on the total sample, since females score relatively higher on NO and CS tests. Dropping these tests and recalculating the composites reduces composite predicted values (of performance) for females relative to males. This results in a tendency toward underprediction, making the composites less fair to females. Dropping the tests would not only increase gender unfairness, but would also significantly reduce the accuracy of predicted performance for females. The impact of dropping NO and CS on blacks is comparable to the impact on the total group. There are, however, a number of jobs in which the loss of MPP for blacks is large.

Based on these findings, the authors recommend retaining the current 9-test battery and continuing to explore the addition of new tests that would increase the classification efficiency of the ASVAB.

A set of conversion tables has been computed for Army use, in the event that the size of the battery is altered by dropping NO or CS or both. This would allow for the continued use of the recommended two-tiered system.

Postscript

The Office of the Secretary of Defense is implementing plans to delete the NO and CS subtests from the ASVAB. A December 2001 target date has been established.

Table 1

The 150 J	The 150 Job Family First-Tier System					
Family	N	MOS	Title			
1	5000	11B	Infantryman			
2	5000	11C	Indirect Fire Infantryman			
3	5000	11H	Heavy Anti-Armor Weapons Infantryman			
4	4593	11M	Fighting Vehicle Infantryman			
5	5000	12B	Combat Engineer			
6	1950	12C	Bridge Crewmember			
7	603	12F	Engineering Tracked Vehicle Crewman			
8	5000	13B	Cannon Crewmember			
9	720	13C	Tacfire Operations Specialist			
10	1919	13E	Cannon Fire Direction Specialist			
11	4101	13F	Fire Support Specialist			
12	776	13M	Multiple Launch Rocket Sys (MLRS) Crewmember			
13	2724	13N	Lance Crewmember			
14	592	13R	Fa Firefinder Radar Operator			
15	683	14D	Hawk Missile Crewmember			
16	703	16E	Hawk Fire Control Crewmember			
17	1104	16P	Chaparral Crewmember			
18	1996	16R	Vulcan Crewmember			
19	2406	16S	Man Portable Air Defense System Crewmember			
20	5000	19D	Cavalry Scout			
21	4764	19E	M48-M60 Armor Crewman			
22	5000	19K	M1 Abrams Armor Crewman			
23	752	24Z 24C 24G 24N 21L	Combined Hawk Firing Section Mechanic Hawk Information Coordination Center Mechanic Chaparral System Mechanic Pershing Electronics Repairer			
24	358	25S	Still Documentation Specialist			
25	898	27E	TOW/Dragon Repairer			
26	852	29V	Strategic Microwave Systems Repairer			
27	5000	31C	Single Channel Radio Operator			
28	5000	31K	Combat Signaler			

The 150 J	The 150 Job Family First-Tier System				
Family	N	MOS	Title		
29	2778	31L	Wire Systems Installer		
30	709	31N	Communications Systems/Circuit Controller		
31	563	31P	Microwave Systems Operator-Maintainer		
32	1394	31Q	Tactical Satellite/Microwave System Operator		
33	5000	31R	Multichannel Transmission Systems Operator		
34	498	31S	Satellite Communications System Operator		
35	4278	31V	Unit Level Communications Maintainer		
36	1021	35E	Radio and Communications Security Repairer		
37	307	35H	TMDE Maintenance Support Specialist		
38	1034	35J	Telecommunications Terminal Device Repairs		
39	737	35N	Wire Systems Equipment Repairer		
40	1201	36M	Switching Systems Operator		
41	323	41C	Fire Control Instrument Repairer		
42	1045	44B	Metal Worker		
43	592	44E	Machinist		
44	612	45B	Small Arms Repairer		
45	565	45D	Self-Propelled FA Turret Mechanic		
46	546	45E	M1 Abrams Tank Turret Mechanic		
47	817	45K	Tank Turret Repairer		
48	448	45L	Artillery Repairer		
49	563	45N	M60A1/A3 Tank Turret Mechanic		
50	509	45T	Bradley Fighting Vehicle Sys Turret Mech		
51	498	46Z 46Q 46R	Combined Journalist Broadcast Journalist		
52	2037	51B	Carpentry and Masonry Specialist		
53	532	51K	Plumber		
54	327	51M	Firefighter		
55	723	51R	Interior Electrician		
56	344	51T	Technical Engineering Specialist		
57	529	52C	Utility Equipment Repairer		

The 150 J	ob Family	First-Tie	r System
Family	N	MOS	Title
58	5000	52D	Power Generator Equipment Repairer
59	1380	54B	Chemical Operations Specialist
60	2457	55B	Ammunitions Specialist
61	415	55D	Explosive Ordinance Disposal (EOD) Spec
62	791	57E	Laundry and Bath Specialist
63	3054	62B	Construction Equipment Repairer
64	1522	62E	Heavy Construction Equipment Operator
65	527	62F	Crane Operator
66	887	62J	General Construction Equipment Operator
67	5000	63B	Light-Wheel Vehicle Mechanic
68	1234	63D	Self-Propelled Field Artillery Sys Mech
69	1376	63E	M1 Abrams Tank System Mechanic
70	785	63G	Fuel and Electrical System Repairer
71	2396	63H	Track Vehicle Repairer
72	1302	63J	Quartermaster and Chemical Equip Repairer
73	750	63N	M60A1/A3 Tank System Mechanic
74	2506	63S	Heavy-Wheel Vehicle Mechanic
75	3378	63T	Bradley Fighting Vehicle Sys Mechanic
76	3062	63W	Wheel Vehicle Repairer
77	987	63Y	Track Vehicle Mechanic
78	1359	67N	Utility Helicopter Repairer
79	236	67R	AH-64 Attack Helicopter Repairer
80	1564	67T	Tactical Transport Helicopter Repairer
81	1632	67U	Medium Helicopter Repairer
82	1751	67V	Observation/Scout Helicopter Repairer
83	1168	67Y	AH-1 Attack Helicopter Repairer
84	640	68B	Aircraft Powerplant Repairer
85	740	68D	Aircraft Powertrain Repairer
86	712	68F	Aircraft Electrician
87	904	68G	Aircraft Structural Repairer
88	1128	68J	Aircraft Armament/Missile Systems Repairer

The 150 J	The 150 Job Family First-Tier System					
Family	N	MOS	Title			
89	388	68M	Aircraft Weapon Systems Repairer			
90	900	68N	Avionic Mechanic			
91	324	68Z 68L 68Q 68R	Combined Avionic Communications Equipment Repairer Avionic Nav & Flight Control Equipment Repairer Avionic Special Equipment Repairer			
92	1431	71D	Legal Specialist			
93	1145	71G	Patient Administration Specialist			
94	5000	71L	Administrative Specialist			
95	972	71M	Chaplain Assistant			
96	1651	72E	Tactical Telecommunications Center Op			
97	1738	72G	Automatic Data Telecommunications Center Op			
98	2246	73C	Finance Specialist			
99	500	73D	Accounting Specialist			
100	1184	74B	Information Systems Operator			
101	4113	75B	Personnel Administration Specialist			
102	2505	75C	Personnel Management Specialist			
103	2714	75D	Personnel Records Specialist			
104	1379	75E	Personnel Actions Specialist			
105	624	75F	Personnel Information Sys Mgt Specialist			
106	997	76J	Medical Supply Specialist			
107	2897	76P	Material Control and Accounting Specialist			
108	5000	76V	Material Storage and Handling Specialist			
109	541	76X	Subsistence Supply Specialist			
110	5000	77F	Petroleum Supply Specialist			
111	805	77W	Water Treatment Specialist			
112	331	81L	Printing and Bindery Specialist			
113	808	82C	Field Artillery Surveyor			
114	1525	88H	Cargo Specialist			
115	5000	88M	Motor Transport Operator			
116	1954	88N	Traffic Management Coordinator			
117	5000	91A	Medical Specialist			

The 150 J	The 150 Job Family First-Tier System				
Family	N	MOS	Title		
118	748	91D	Operating Room Specialist		
119	1209	91E	Dental Specialist		
120	474	91F	Psychiatric Specialist		
121	309	91G	Behavioral Science Specialist		
122	1478	91K	Medical Laboratory Specialist		
123	513	91M	Hospital Food Service Specialist		
124	695	91P	X-Ray Specialist		
125	682	91Q	Pharmacy Specialist		
126	558	91R	Veterinary Food Inspection Specialist		
127	514	91S	Preventive Medicine Specialist		
128	345	91T	Animal Care Specialist		
129	641	91Z 91H 91J 91U 91Y	Combined Orthopedic Specialist Physical Therapy Specialist Ear, Nose and Throat Specialist Eye Specialist		
130	5000	92A	Automated Logistical Specialist		
131	5000	92G	Food Service Specialist		
132	298	92M	Mortuary Affairs Specialist		
133	1009	92R	Parachute Rigger		
134	5000	92Y	Unit Supply Specialist		
135	626	93C	Air Traffic Control (ATC) Operator		
136	1327	93P	Flight Operations Coordinator		
137	5000	95B	Military Police		
138	323	95C	Corrections Specialist		
139	818	96B	Intelligence Analyst		
140	361	96D	Imagery Analyst		
141	792	96R	Ground Surveillance Systems Operator		
142	429	97B	Counterintelligence Agent		
143	562	98C	Signals Intelligence Analyst		
144	1242	98G	EW Signal Intelligence Voice Interrogator		
145	966	98H	Morse Interceptor		

The 150 J	The 150 Job Family First-Tier System				
Family	N	MOS	Title		
146	463	98Z 98D 98J 98K	Combined (98D, 98J, 98K) Emitter Locator/Identifier Noncommunications Interceptor/Analyst Non-Morse Interceptor/Analyst		
147					
	215	55G	Nuclear Weapons Specialist		
	303	93F	Field Artillery Meteorological Crewmember		
148					
	548	27Z 24K 24M 27H 27M 27N	Combined Hawk Continuous Wave Radar Repairer Vulcan System Mechanic Hawk Firing Section Repairer Multiple Launch Rocket System Repairer Forward Area Alerting Radar (FAAR) Repairer		
	433	29Z 29F 29M	Combined Fixed Communications Security Equipment Repairer Tactical Satellite Microwave Repairer		
149					
	451	25M	Graphics Documentation Specialist		
	372	25Z 25C 25P	Combined Cartographer Visual Information/Audio Documentation Specialist		
	372	97E	Interrogator		
150					
	224	15E	Pershing Missile Crewmember		
	171	16J	Defense Acquisition Radar Operator		

T_{-1}	L 1	_	2	
1 2	nı	e	Z	

The 17 F	The 17 Family Second-Tier System		
Cluster	MOS	Job Title	
		Clerical Administration (CL) 1	
1	71D	Legal Specialist	
	71G	Patient Administration Specialist	
	71L	Administrative Specialist	
	71M	Chaplain Assistant	
	73C	Finance Specialist	
	73D	Accounting Specialist	
	75B	Personnel Administration Specialist	
	75C	Personnel Management Specialist	
	75D	Personnel Records Specialist	
	75E	Personnel Actions Specialist	
	75F	Personnel Information Sys Mgt Specialist	
	75H	Personnel Services Specialist	
	76P	Material Control and Accounting Specialist	
	88N	Traffic Management Coordinator	
		Clerical Administration (CL) 2	
2	76J	Medical Supply Specialist	
	76V	Material Storage and Handling Specialist	
	76X	Subsistence Supply Specialist	
	77 F	Petroleum Supply Specialist	
	92A	Automated Logistical Specialist	
	92Y	Unit Supply Specialist	
		Combat (CO) 1	
3	11B	Infantryman	
	11C	Indirect Fire Infantryman	
	11H	Heavy Anti-Armor Weapons Infantryman	
	11M	Fighting Vehicle Infantryman	
	18B	Special Forces Weapons Sergeant	
	18X	Special Forces Candidate	
	18X	Special Forces Candidate	

Combat (CO) 2

The 17 F	Family Se	cond-Tier System
Cluster	MOS	Job Title
4	12B	Combat Engineer
	12C	Bridge Crewmember
	12F	Engineering Tracked Vehicle Crewman
	18C	Special Forces Engineer Sergeant
	19D	Cavalry Scout
	19E	M48-M60 Armor Crewman
	19K	M1 Abrams Armor Crewman
		Electronics (EL) 1
5	14E	Patriot Fire Control Enhanced Operator/Maintainer
	14L	AN/TSQ-73 Air Defense Command and Control Operator/Maintainer
	14M	Man Portable Air Defense System Crewmember (RC)
	18E	Special Forces Communications Sergeant (Special Operators Communications Spec)
	24Z	Combined
	24C	Hawk Firing Section Mechanic
	24G	Hawk Information Coordination Ctr Mech
	24N	Chaparral System Mechanic
	21L	Pershing Electronics Repairer
	25L	AN/TSQ-73 ADA Cmnd/Control System Operator/Repairer
	31L	Wire Systems Installer
	31R	Multichannel Transmission Systems Operator
	31V	Unit Level Communications Maintainer
	51R	Interior Electrician
	52G	Transmission and Distribution Specialist
	68M	Aircraft Weapon Systems Repairer
	68X	AH-64 Armament/Electrical Systems Repairer
		Electronics (EL) 2
6	25V	Combat Documentation/Production Specialist
	31K	Combat Signaler
	31N	Communications Systems/Circuit Controller
	31P	Microwave Systems Operator-Maintainer

Cluster	MOS	Job Title
	31Q	Tactical Satellite/Microwave System Op
	31S	Satellite Communications System Operator
	31U	Signal Support Systems Specialist
	35Y	Integrated Family of Test Equipment (IFTE) Operator/Maintainer
	36M	Switching Systems Operator
	39Y	FA Tactical Fire Direction Systems Specialist
	55G	Nuclear Weapons Specialist
	74G	Telecommunications Computer Operator/Maintainer
	93F	Field Artillery Meteorological Crewmember
	96H	Air Intelligence Specialist
	96R	Ground Surveillance Systems Operator
		Electronics (EL) 3
7	25R	Visual Information Equipment Operator/Maintainer (Audio/Visual Equip Repairer)
	27E	TOW/Dragon Repairer
	27F	Vulcan Repairer
	27G	Chaparral/Redeye Repairer
	27K	Hawk Fire Control/Continuous Wave Radar Repairer
	27T	Avenger System Repairer
	27X	Patriot System Repairer
	27Z	Combined
	24K	Hawk Continuous Wave Radar Repairer
	24M	Vulcan System Mechanic
	27H	Hawk Firing Section Repairer
	27M	Multiple Launch Rocket System Repairer
	27N	Forward Area Alerting Radar (FAAR) Repairer
	29H	Automatic Digital Message Switch Equipment Repairer
	29V	Strategic Microwave Systems Repairer
	29Z	Combined
	29F	Fixed Communications Security Equip Repairer
	29M	Tactical Satellite Microwave Repairer
	31F	Network Switching Sys Op/Maintainer (Mobile Subscriber Equip Network Sys Op)
	33R	Electronic Warfare/Intercept Aviation Systems Repairer

The 17 F		econd-Tier System
Cluster	MOS	Job Title
	35B	Land Combat Supply Systems Test Specialist
	35D	Air Traffic Control Equipment Repairer
	35E	Radio and Communications Security Repairer
	35H	TMDE Maintenance Support Specialist
	35J	Telecommunications Terminal Device Repairs
	35L	Avionic Communications Equipment Repairer
	35N	Wire Systems Equipment Repairer
	35Q	Avionic Flight Systems Repairer
	39B	Automatic Test Equipment Operator/Maintainer
	45G	Fire Control Repairer
	68J	Aircraft Armament/Missile Systems Repairer
	68N	Avionic Mechanic
	68 Z	Combined
	68L	Avionic Communications Equipment Repairer
	68Q	Avionic Nav & Flight Control Equip Repairer
	68R	Avionic Special Equipment Repairer
	93D	ATC Systems, Subsystems and Equipment Repairer
		Field Artillery (FA)
8	13B	Cannon Crewmember
	13C	Tacfire Operations Specialist
	13E	Cannon Fire Direction Specialist
	13F	Fire Support Specialist
	13P	MLRS/Lance Operations/Fire Direction Specialist
		General Maintenance (GM) 1
9	41C	Fire Control Instrument Repairer
	44B	Metal Worker
	44E	Machinist
	45B	Small Arms Repairer
	45D	Self-Propelled FA Turret Mechanic
	45K	Tank Turret Repairer
	45L	Artillery Repairer
	45T	Bradley Fighting Vehicle Sys Turret Mech

		econd-Tier System
Cluster	MOS	Job Title
	52C	Utility Equipment Repairer
	52D	Power Generator Equipment Repairer
	52F	Turbine Engine Driven Generator Repairer
		General Maintenance (GM) 2
10	43M	Fabric Repair Specialist
	51B	Carpentry and Masonry Specialist
	51K	Plumber
	51M	Firefighter
	55B	Ammunitions Specialist
	55D	Explosive Ordinance Disposal (EOD) Spec
	57E	Laundry and Bath Specialist
	62E	Heavy Construction Equipment Operator
	62F	Crane Operator
	62G	Quarrying Specialist
	62H	Concrete and Asphalt Equipment Operator
	62J	General Construction Equipment Operator
	77W	Water Treatment Specialist
	88H	Cargo Specialist
	92M	Mortuary Affairs Specialist
	92R	Parachute Rigger
		Mechanical Maintenance (MM) 1
11	24T	Patriot Operator and System Mechanic
	45E	M1 Abrams Tank Turret Mechanic
	45N	M60A1/A3 Tank Turret Mechanic
	62B	Construction Equipment Repairer
	63B	Light-Wheel Vehicle Mechanic
	63D	Self-Propelled Field Artillery Sys Mech
	63E	M1 Abrams Tank System Mechanic
	63G	Fuel and Electrical System Repairer
	63H	Track Vehicle Repairer
	63J	Quartermaster and Chemical Equip Repairer

Cluster	MOS	Job Title
	63N	M60A1/A3 Tank System Mechanic
	63S	Heavy-Wheel Vehicle Mechanic
	63T	Bradley Fighting Vehicle Sys Mechanic
	63W	Wheel Vehicle Repairer
	63Y	Track Vehicle Mechanic
	88K	Watercraft Operator
	88L	Watercraft Engineer
	88P	Railway Equipment Repairer (RC)
	88Q	Railway Car Repairer
	88R	Airbrake Repairer
	88S	Locomotive Electrician
	88T	Railway Section Repairer (RC)
	88U	Railway Operators Crewmember
	88V	Train Crewmember
		Mechanical Maintenance (MM) 2
12	67G	Utility Airplane Repairer
12	67H	Observation Airplane Repairer
	67N	Utility Helicopter Repairer
	67S	Helicopter Repairer
	67T	Tactical Transport Helicopter Repairer
	67U	Medium Helicopter Repairer
	67V	Observation/Scout Helicopter Repairer
	67X	Heavy Lift Helicopter Repairer
	67Y	AH-1 Attack Helicopter Repairer
	68B	Aircraft Powerplant Repairer
	68D	Aircraft Powertrain Repairer
	68F	Aircraft Electrician
	68G	Aircraft Structural Repairer
		Operators & Food (OF)
13	13M	Multiple Launch Rocket Sys (MLRS) Crewmember
13	13N	Lance Crewmember

The 17 F	Family Se	cond-Tier System
Cluster	MOS	Job Title
	14D	Hawk Missile Crewmember
	14J	Early Warning Systems Operator (F)
	14R	Sight Forward Heavy Crewmember (F)
	14S	Avenger Crewmember
	15E	Pershing Missile Crewmember
	16D	Hawk Missile Crewmember
	16E	Hawk Fire Control Crewmember
	16H	Air Defense Artillery Operator/Intelligence Assistant
	16J	Defense Acquisition Radar Operator
	16P	Chaparral Crewmember
	16R	Vulcan Crewmember
	16S	Man Portable Air Defense System Crewmember
	16T	Patriot Missile Crewmember
	16X	Feeds 16B, 16D, 16E and 16T (CMF 16 Trainee)
	88M	Motor Transport Operator
	91M	Hospital Food Service Specialist
	92G	Food Service Specialist
		Surveillance & Communication (SC)
14	13R	Fa Firefinder Radar Operator
	13T	Remotely Piloted Vehicle Crewmember
	31C	Single Channel Radio Operator
	72E	Tactical Telecommunications Center Op
	72G	Automatic Data Telecommunications Center Op
	74C	Telecommunications Operator/Maintainer
		Skilled Technical (ST) 1
15	18D	Special Forces Medical Sergeant
	42C	Orthotic Specialist
	42E	Optical Laboratory Specialist
	77L	Petroleum Laboratory Specialist
	91A	Medical Specialist
	91B*	Medical NCO (called Medical Equipment Repairer, 91A, on CMF listing)
	7 . 10	7F

Table 2 continued

The 17 I	The 17 Family Second-Tier System			
Cluster	MOS	Job Title		
	91D	Operating Room Specialist		
	91E	Dental Specialist		
	91F	Psychiatric Specialist		
	91G	Behavioral Science Specialist		
	91K	Medical Laboratory Specialist		
	91N	Cardiac Specialist		
	91P	X-Ray Specialist		
	91Q	Pharmacy Specialist		
	91R	Veterinary Food Inspection Specialist		
	91S	Preventive Medicine Specialist		
	91T	Animal Care Specialist		
	91V	Respiratory Specialist		
	91X	Mental Health Specialist		

The 17 I	The 17 Family Second-Tier System			
Cluster	MOS	Job Title		
	91Z	Combined		
	91H	Orthopedic Specialist		
	91J	Physical Therapy Specialist		
	91U	Ear, Nose and Throat Specialist		
	91Y	Eye Specialist		
		Skilled Technical (ST) 2		
16	25M	Graphics Documentation Specialist		
	25S	Still Documentation Specialist		
	25Z	Combined		
	25C	Cartographer		
	25P	Visual Info/Audio Documentation Specialist		
	33T	Electronic Warfare/Intercept Tactical Systems Repairer		
	33V	Electronic Warfare/Intercept Aerial Sensor		
	33Y	Strategic Systems Repairer (EW Tactical Systems Repairer)		
	37F	Psychological Operations Specialist		
	38A	Civil Affairs Specialist		
	46 Z	Combined		
	46Q	Journalist		
	46R	Broadcast Journalist		
	51T	Technical Engineering Specialist		
	55R	Ammunitions Stock Control and Account Specialist		
	71C	Executive Administrative Specialist		
	74B	Information Systems Operator		
	81C	Cartographer		
	81L	Printing and Bindery Specialist		
	81Q	Terrain Analyst		
	81T	Topographic Analyst		
	82D	Topographic Surveyor		
	93B	Aeroscout Observer		
	96B	Intelligence Analyst		
	96D	Imagery Analyst		

The 17 F	The 17 Family Second-Tier System		
Cluster	MOS	Job Title	
	96F	Psychological Operations Specialist	
	96 U	Unmanned Aerial Vehicle Operator	
	97B	Counterintelligence Agent	
	97E	Interrogator	
	97G	Multi-Discipline Counter Intelligence	
	97L	Translator/Interpreter (RC)	
	97X	Linguist	
	98C	Signals Intelligence Analyst	
	98G	EW Signal Intelligence Voice Interrogator	
	98H	Morse Interceptor	
	98Z	Combined	
	98D	Emitter Locator/Identifier	
	98J	Noncommunications Interceptor/Analyst	
	98K	Non-Morse Interceptor/Analyst	
	98X	EW/SIGNIT Specialist	
		Skilled Technical (ST) 3	
17	54B	Chemical Operations Specialist	
	82C	Field Artillery Surveyor	
	93C	Air Traffic Control (ATC) Operator	
	93P	Flight Operations Coordinator	
	95B	Military Police	
	95C	Corrections Specialist	

Table 10

The 66 Jo	b Families		
Family	N	MOS	Title
1	3490	11B	Infantryman
2	1896	11C	Indirect Fire Infantryman
3	1027	11H	Heavy Anti-Armor Weapons Infantryman
4	1416	11M	Fighting Vehicle Infantryman
5	726	12C	Bridge Crewmember
6	7851	13B	Cannon Crewmember
7	1757	13F	Fire Support Specialist
8	375	13M	Multiple Launch Rocket Sys (MLRS) Crewmember
9	474	13N	Lance Crewmember
10	162	13R	FA Firefinder Radar Operator
11	279	16D	Hawk Missile Crewmember
12	450	16P	Chaparral Crewmember
13	399	16R	Vulcan Crewmember
14	837	16S	Man Portable Air Defense System Crewmember
15	1661	19E	M48 - M60 Armor Crewman
16	2714	19K	M1 Abrams Armor Crewman
17	395	29E	Radio Repairer
18	273	2 9J	Telecommunications Terminal Device Repairer
19	307	29N	Telephone Central Office Repairer
20	149	29V	Strategic Microwave Systems Repairer
21	2839	31C	Single Channel Radio Operator
22	2750	31K	Combat Signaller
23	1087	31L	Wire Systems Installer
24	1729	31V	Unit Level Communications Maintainer
25	71	33T	EW/I Tactical Systems Repairer
26	197	35K	Avionic Mechanic
27	377	43E	Parachute Rigger
28	417	44B	Metal Worker
29	234	44E	Mechanist
30	328	45K	Tank Turret Repairer
31	859	51B	Carpentry and Masonry Specialist
32	2394	52D	Power Generator Equipment Repairer
33	1078	54B	Chemical Operations Specialist
34	919	55B	Ammunitions Specialist
35	1123	62B	Construction Equipment Repairer
36	683	62E	Heavy Construction Equipment Operator
37	382	62J	General Construction Equipment Operator
38	4439	63B	Light-Wheel Vehicle Mechanic
39	540	63E	M1 Abrams Tank System Mechanic

The 66 J	The 66 Job Families			
Family	N	MOS	Title	
40	311	63G	Fuel and Electrical system Repairer	
41	947	63S	Heavy-Wheel Vehicle Mechanic	
42	700	63T	Bradley Fighting Vehicle Systems Mechanic	
43	757	67V	Observation/Scout Helicopter Repairer	
44	256	68B	Aircraft Powerplant Repairer	
45	384	68G	Aircraft Structural Repairer	
46	367	68J	Aircraft Armament/Missile Systems Repairer	
47	550	71D	Legal Specialist	
48	765	71L	Administrative Specialist	
49	377	71M	Chaplain Assistant	
50	638	72E	Tactical Telecommunications Ctr Op	
51	649	72G	Automatic Data Telecommunications Ctr Op	
52	799	73C	Finance Specialist	
53	327	74D	Computer/Machine Operator	
54	1542	75B	Personnel Administration Specialist	
55	989	75D	Personnel Records Specialists	
56	2403	76C	Equipment Records and Parts Specialist	
57	4279	76Y	Unit Supply Specialist	
58	2846	77F	Petroleum Supply Specialist	
59	129	81E	Graphics Documentation Specialist	
60	95	84B	Still Documentation Specialist	
61	91	84F	Visual Info/Audio Documentation Specialist	
62	533	88H	Cargo Specialist	
63	5368	88M	Motor Transport Operator	
64	1790	91A	Medical Specialist	
65	3787	94B	Food Service Specialist	
66	2369	95B	Military Police	
Total	83132			

Table 11

Names of the 25 Job Families			
Family Number	MOS	Name	
1	12C	Bridge Crewmember	
2	13R	Fa Firefinder Radar Operator	
3	29V	Strategic Microwave Systems Repairer	
4	33T	EW/I Tactical Systems Repairer	
5	63T	Bradley Fighting Vehicle Sys Mechanic	
6	67V	Observation/Scout Helicopter Repairer	
7	72E	Tactical Telecommunications Center Op	
8	76C	Equipment Records and Parts Specialist	
9	88H	Cargo Specialist	
10	95B	Military Police	
11	31L	Wire Systems Installer	
	31V	Unit Level Communications Maintainer	
12	13B	Cannon Crewmember	
	43E	Parachute Rigger	
13	62B	Construction Equipment Repairer	
	63B	Light-Wheel Vehicle Mechanic	
	63E	M1 Abrams Tank System Mechanic	
14	29N	Telephone Central Office Repairer	
	71M	Chaplain Assistant	
	74D	Computer/Machine Operator	
15	13M	Multiple Launch Rocket Sys (MLRS) Crewmember	
	35K	Avionic Mechanic	
	72G	Automatic Data Telecommunications Center Op	
	75D	Personnel Records Specialist	
	76Y	Unit Suply Specialist	
16	16R	Vulcan Crewmember	
	45K	Tank Turret Repairer	

Names of the 25 Job Families		
Family Number	MOS	Name
17	71D	Legal Specialist
	75B	Personnel Administration Specialist
	81E	Graphics Documentation Specialist
18	13F	Fire Support Specialist
	16S	Man Portable Air Defense System Crewmember
19	16D	Hawk Missile Crewmember
	16P	Chaparral Crewmember
	44B	Metal Worker
	62 E	Heavy Construction Equipment Operator
	63G	Fuel and Electrical System Repairer
	63S	Heavy-Wheel Vehicle Mechanic
	77F	Petroleum Supply Specialist
	88M	Motor Transport Operator
20	11B	Infantryman
	11C	Indirect Fire Infantryman
	11H	Heavy Anti-Armor Weapons Infantryman
	11 M	Fighting Vehicle Infantryman
	68B	Aircraft Powerplant Repairer
21	29 E	Radio Repairer
	29Ј	Telecommunications Terminal Device Repairer
	84B	Still Documentation Specialist

Names of the 25 Job Families			
Family Number	MOS	Name	
22	44E	Machinist	
	52D	Power Generator Equipment Repairer	
	54B	Chemical Operations Specialist	
	68G	Aircraft Structural Repairer	
23	19E	M48-M60 Armor Crewman	
	19K	M1 Abrams Armor Crewman	
	31K	Combat Signaler	
	51B	Carpentry and Masonry Specialist	
	62J	General Construction Equipment Operator	
	91A	Medical Specialist	
24	13N	Lance Crewmember	
	31C	Single Channel Radio Operator	
	55B	Ammunitions Specialist	
	68J	Aircraft Armament/Missile Systems Repairer	
	84F	Visual info/AudiDocumentation Specialist	
	94B	Food Service Specialist	
25	71L	Administrative Specialist	
	73C	Finance Specialist	

References

- Campbell, R. C. (1994, February). *The Army Skill Qualification Test (SQT) program: a synopsis.* Interim Report, IR-PRD-94-05. Alexandria, VA: Human Resources Research Organization.
- Johnson, C.D. & Zeidner, J. (1991). The economic benefits of predicting job performance; Vol 2: Classification Efficiency. New York: Praeger.
- Johnson, C.D., Zeidner, J., & Leaman. (1992). Improving Classification Efficiency by Restructuring Army Job Families. (Technical Report 947). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Johnson, C.D., Zeidner, J., & Scholarios, D.M. (In preparation). Selection from a common applicant pool (Technical Note). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Johnson, C.D., Zeidner, J., & Vladimirsky, Y. (In preparation). Developing classification efficient job families using differential assignment theory techniques. (Research Report). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Scholarios, D.M., Johnson, C.D. & Zeidner, J. (1994). Selecting predictors for maximizing the classification efficiency of a battery. *Journal of Applied Psychology*, 68, 407-414.
- Statman, M.A. (1992, August). Developing optimal predictor equations for differential job assignment and vocational counseling. Paper presented at the American Psychological Association Annual Meeting, Washington, D.C.
- Zeidner, J., Johnson, C.D., & Vladimirsky, Y. (1997). The substitutability of criteria in the development and evaluation of ASVAB classification procedures. Technical Report 1071, Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Zeidner, J., Johnson, C.D., Vladimirsky, Y., & Weldon, S. (In preparation). Specifications for an Operational Two-Tiered Classification System for the Army. (Research Report). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Zeidner, J., Scholarios, D., & Johnson, C.D. (1997). Evaluating military selection and classification systems in the multiple job context. *Military Psychology*, *9*, 169-186.

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

VOLUME 2 APPENDICES

Joseph Zeidner, Cecil Johnson, Yefim Vladimirsky and Susan Weldon

The George Washington University

EFFECT OF REDUCING THE NUMBER OF TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

VOLUME 2

CONTENTS	
Appendix A1 Percent Acquisition by MOS from Seabrook Reports (in 1989)	. 1
Appendix A2 Percent Acquisition by Job Family from Seabrook Reports (in 1989)	. 5
Appendix B1 Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)	. 6
Appendix B2 MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier)	
Appendix B3 MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier)	42
Appendix C1 MPPs and SDs for the 9-test ASVAB Battery (First Tier)	60
Appendix C2 MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)	66
Appendix C3 MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)	. 72
Appendix C4 MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)	78
Appendix D1 Computations for Obtaining First Tier Statistical Standard Scores from Operational ASVAB Test Scores, Without Either NO or CS or Both	84
Appendix D2 Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A + B + C and 150 Job Families)	85
Appendix D3 Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)	91

	r. De	
Appen	dix D5 Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier	
	Without CS (150 Job Families)	1
Appen	dix D6	
	Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A + B + C and 150 Job Families)	1
Appen	dix D7	
	Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)	1
Appen	dix E1	
	Computations for Obtaining Second Tier Statistical Standard Scores from Operational ASVAB Test Scores Without Either NO or CS or Both	13
Appen	dix E2	
	Eight-Test Composite Weights for ASVAB Tests Without NO Using the Samples A + B + C. Only Positive Weights Used	12
Appen		
	Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO (17 job families)	12
Appen		
	Eight-Test Composite Weights for ASVAB Tests Without CS Using the Samples A + B + C. Only Positive Weights Used	13
Appen		
	Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without CS (17 job families)	12
Appen		
	Seven-Test Composite Weights for ASVAB Tests Without NO and CS Using the Samples A + B + C. Only Positive Weights Used.	12
Appen		
	Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO and CS (17 job families)	12
Appen	dix F1 Sample Sizes by Total, Gender and Race for Each Family (66 Families)	12
	dix F2	

Appendix G1 MPPs and SDs for the 9-Test Battery for Females, Blacks and Total (66 MOS)	139
Appendix G2 MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without NO (66 MOS)	143
Appendix G3 MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without CS (66 MOS).	147
Appendix G4 MPPs and SDs for the 7-Test Battery for Females, Blacks and Total, Without NO and CS (66 MOS)	151

Appendix A1

Percent Acquisition by MOS from Seabrook Reports (in 1989)				
MOS	Name	Percent		
11B	Infantryman	12.50		
11C	Indirect Fire Infantryman	1.87		
11H	Heavy Anti-Armor Weapons Infantryman	1.99		
11M	Fighting Vehicle Infantryman	0.32		
12B	Combat Engineer	3.34		
12C	Bridge Crewmember	0.41		
12F	Engineering Tracked Vehicle Crewman	0.22		
13B	Cannon Crewmember	4.17		
13C	Tacfire Operations Specialist	0.13		
13E	Cannon Fire Direction Specialist	0.59		
13F	Fire Support Specialist	1.20		
13M	Multiple Launch Rocket Sys (MLRS) Crewmember	0.62		
13N	Lance Crewmember	0.31		
13R	Fa Firefinder Radar Operator	0.16		
14D	Hawk Missile Crewmember	0.03		
16E	Hawk Fire Control Crewmember	0.33		
16P	Chaparral Crewmember	0.85		
16R	Vulcan Crewmember	1.09		
16S	Man Portable Air Defense System Crewmember	1.76		
19D	Cavalry Scout	5.20		
19E	M48-M60 Armor Crewman	0.22		
19K	M1 Abrams Armor Crewman	0.03		
24Z	Combined (24C, 24G, 24N)	0.18		
25S	Still Documentation Specialist	0.01		
27E	TOW/Dragon Repairer	0.27		
29V	Strategic Microwave Systems Repairer	0.04		
31C	Single Channel Radio Operator	1.62		
31K	Combat Signaler	1.64		
31L	Wire Systems Installer	0.86		
31N	Communications Systems/Circuit Controller	0.25		
31P	Microwave Systems Operator-Maintainer	0.16		
31Q	Tactical Satellite/Microwave System Op	0.40		
31R	Multichannel Transmission Systems Operator	1.70		
31S	Satellite Communications System Operator	0.15		
31V	Unit Level Communications Maintainer	0.94		
35E	Radio and Communications Security Repairer	0.18		
35H	TMDE Maintenance Support Specialist	0.07		
35J	Telecommunications Terminal Device Repairs	0.15		
35N	Wire Systems Equipment Repairer	0.20		
36M	Switching Systems Operator	0.21		
41C	Fire Control Instrument Repairer	0.04		

Percent Ac	quisition by MOS from Seabrook Reports (in 1989)	
MOS	Name	Percent
44B	Metal Worker	0.29
44E	Machinist	0.07
45B	Small Arms Repairer	0.09
45D	Self-Propelled FA Turret Mechanic	0.12
45E	M1 Abrams Tank Turret Mechanic	0.21
45K	Tank Turret Repairer	0.19
45L	Artillery Repairer	0.10
45N	M60A1/A3 Tank Turret Mechanic	0.04
45T	Bradley Fighting Vehicle Sys Turret Mech	0.23
46Z	Combined (46Q, 46R)	0.13
51B	Carpentry and Masonry Specialist	0.28
51K	Plumber	0.06
51M	Firefighter	0.03
51R	Interior Electrician .	0.07
51T	Technical Engineering Specialist	0.02
52C	Utility Equipment Repairer	0.30
52D	Power Generator Equipment Repairer	1.16
54B	Chemical Operations Specialist	1.08
55B	Ammunitions Specialist	0.59
55D	Explosive Ordinance Disposal (EOD) Spec	0.08
57E	Laundry and Bath Specialist	0.12
62B	Construction Equipment Repairer	0.43
62E	Heavy Construction Equipment Operator	0.47
62F	Crane Operator	0.19
62J	General Construction Equipment Operator	0.38
63B	Light-Wheel Vehicle Mechanic	3.05
63D	Self-Propelled Field Artillery Sys Mech	0.34
63E	M1 Abrams Tank System Mechanic	0.53
63G	Fuel and Electrical System Repairer	0.09
63H	Track Vehicle Repairer	0.51
63J	Quartermaster and Chemical Equip Repairer	0.36
63N	M60A1/A3 Tank System Mechanic	0.11
63S	Heavy-Wheel Vehicle Mechanic	0.99
63T	Bradley Fighting Vehicle Sys Mechanic	0.81
63W	Wheel Vehicle Repairer	1.04
63Y	Track Vehicle Mechanic	0.34
67N	Utility Helicopter Repairer	0.35
67R	AH-64 Attack Helicopter Repairer	0.27
67T	Tactical Transport Helicopter Repairer	0.39
67U	Medium Helicopter Repairer	0.25
67V	Observation/Scout Helicopter Repairer	0.17
67Y	AH-1 Attack Helicopter Repairer	0.28

MOS	Name	Percen
68B	Aircraft Powerplant Repairer	0.00
68D	Aircraft Powertrain Repairer	0.08
68F	Aircraft Electrician	0.0
68G	Aircraft Structural Repairer	0.14
68J	Aircraft Armament/Missile Systems Repairer	0.24
68M	Aircraft Weapon Systems Repairer	0.09
68N	Avionic Mechanic	0.04
68Z	Avionic Communications Equipment Repairer	0.02
71D	Legal Specialist	0.23
71G	Patient Administration Specialist	0.1
71L	Administrative Specialist	1.24
71M	Chaplain Assistant	0.20
72E	Tactical Telecommunications Center Op	0.75
72G	Automatic Data Telecommunications Center Op	0.54
73C	Finance Specialist	0.20
73D	Accounting Specialist	0.09
74B	Information Systems Operator	0.10
75B	Personnel Administration Specialist	0.7.
75C	Personnel Management Specialist	0.1
75D	Personnel Records Specialist	0.1
75E	Personnel Actions Specialist	0.2
75F	Personnel Information Sys Mgt Specialist	0.1
76J	Medical Supply Specialist	0.0
76P	Material Control and Accounting Specialist	0.63
76V	Material Storage and Handling Specialist	1.19
76X	Subsistence Supply Specialist	0.2
77F	Petroleum Supply Specialist	1.25
77W	Water Treatment Specialist	0.0
81L	Printing and Bindery Specialist	0.0
82C	Field Artillery Surveyor	0.43
88H	Cargo Specialist	0.38
88M	Motor Transport Operator	4.2
88N	Traffic Management Coordinator	0.09
91A	Medical Specialist	4.3
91D	Operating Room Specialist	0.1
91E	Dental Specialist	0.2
91F	Psychiatric Specialist	0.0
91G	Behavioral Science Specialist	0.0
91K	Medical Laboratory Specialist	0.2
91M	Hospital Food Service Specialist	0.0
91P	X-Ray Specialist	0.0
91Q	Pharmacy Specialist	0.0

Percent Acquisition by MOS from Seabrook Reports (in 1989)				
MOS	Name	Percent		
91R	Veterinary Food Inspection Specialist	0.11		
91S	Preventive Medicine Specialist	0.11		
91T	Animal Care Specialist	0.07		
91 Z	Combined (91H, 91J, 91U, 91X)	0.16		
92A	Automated Logistical Specialist	2.19		
92G	Food Service Specialist	2.82		
92M	Mortuary Affairs Specialist	0.03		
92R	Parachute Rigger	0.28		
92Y	Unit Supply Specialist	1.91		
93C	Air Traffic Control (ATC) Operator	0.26		
93P	Flight Operations Coordinator	0.21		
95B	Military Police	3.93		
95C	Corrections Specialist	0.08		
96B	Intelligence Analyst	0.46		
96D	Imagery Analyst	0.17		
96R	Ground Surveillance Systems Operator	0.24		
97B	Counterintelligence Agent	0.33		
98C	Signals Intelligence Analyst	0.79		
98G	EW Signal Intelligence Voice Interrogator	1.23		
98H	Morse Interceptor	0.17		
98Z	Combined (98D, 98J, 98K)	0.43		
55G/93F	Nuclear Weapons Spec/FA Meteorological Crewmember	0.19		
27Z/29Z	Combined (24K, 24M, 27H, 27M, 27N, 29V, 29F, 29M)	0.46		
25M/25Z/97E	Graphics Documentation Spec/Combined (25C, 25P)/Interrogator	0.38		
15E/16J	Pershing Missile Crewmember/Defense Acquisition Radar Operator	0.49		

Appendix A2

Percent Acquisition by Job Family from Seabrook Reports (in 1989)

3	<u> </u>
Family	Percent
CL1	4.26
CL2	6.82
CO1	16.67
CO2	9.42
EL1	3.83
EL2	3.24
EL3	1.68
FA	6.09
GM1	2.58
GM2	2.95
MM1	8.86
MM2	2.07
OF	12.62
SC	3.06
ST1	5.60
ST2	3.95
ST3	6.30

Appendix B1

Sample Si	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)				
MOS	Men	Women	Whites	Blacks	Total
Name	N/%	N/%	N / %	N/%	N/%
11B	35173	4	29601	5576	35177
	99.99	0.01	84.15	15.85	100.00
					•
11C	6193	0	5348	845	6193
	100.00	0.00	86.36	13.64	100.00
11H	5633	0	4849	784	5633
	100.00	0.00	86.08	13.92	100.00
11M	4294	0	3626	668	4294
	100.00	0.00	84.44	15.56	100.00
12B	8278	0	6627	1651	8278
	100.00	0.00	80.06	19.94	100.00
12C	1868	0	1526	342	1868
	100.00	0.00	81.69	18.31	100.00
12F	571	0	449	122	571
	100.00	0.00	78.63	21.37	100.00
				•	
13B	19382	0	10529	8853	19382
	100.00	0.00	54.32	45.68	100.00

Sample Siz	zes by Total, Ger	nder and Race	for Each Job/F	family (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N/%	N / %	N/%	N / %
13C	676	1	517	160	677
	99.85	0.15	76.37	23.63	100.00
13E	1809	0	1366	443	1809
	100.00	0.00	75.51	24.49	100.00
13F	3856	0	3113	743	3856
	100.00	0.00	80.73	19.27	100.00
13M	746	0	663	83	746
	100.00	0.00	88.87	11.13	100.00
13N	2585	65	2204	446	2650
	97.55	2.45	83.17	16.83	100.00
13R	577	2	459	120	579
	99.65	0.35	79.27	20.73	100.00
14D	583	79	544	118	662
	88.07	11.93	82.18	17.82	100.00
16E	619	64	542	141	683
	90.63	9.37	79.36	20.64	100.00

Sample Si	zes by Total, Gei	nder and Race	for Each Job/F	amily (First Ti	ier)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N/%	N/%	N/%
16P	1061	0	894	167	1061
	100.00	0.00	84.26	15.74	100.00
16R	1919	0	1611	308	1919
	100.00	0.00	83.95	16.05	100.00
16S	2282	0	1409	873	2282
•	100.00	0.00	61.74	38.26	100.00
19D	5493	0	4579	914	5493
	100.00	0.00	83.36	16.64	100.00
19E	4489	0	3553	936	4489
	100.00	0.00	79.15	20.85	100.00
		-	50.11	1017	(450
19K	6456	3	5244	1215	6459
	99.95	0.05	81.19	18.81	100.00
24Z	699	35	652	82	734
24Z	95.23	4.77	88.83	11.17	100.00
	93.23	4.//	60.00	11.1/	100.00
25S	283	61	300	44	344
<i>200</i>	82.27	17.73	87.21	12.79	100.00
	02.2,		~····		

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N/%	N/%	N / %
27E	794	72	627	239	866
	91.69	8.31	72.40	27.60	100.00
29V	760	73	725	108	833
	91.24	8.76	87.03	12.97	100.00
31C	5292	526	4857	961	5818
	90.96	9.04	83.48	16.52	100.00
31K	4406	415	2936	1885	4821
	91.39	8.61	60.90	39.10	100.00
31L	2088	541	1330	1299	2629 ·
	79.42	20.58	50.59	49.41	100.00
31N	474	209	500	183	683
	69.40	30.60	73.21	26.79	100.00
				• 4.5	505
31P	376	161	297	240	537
	70.02	29.98	55.31	44.69	100.00
210	1107	1.40	001	245	1226
31Q	1186	140	981	345	1326
	89.44	10.56	73.98	26.02	100.00

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N/%	N/%	N/%	N / %
31R	5432	773	3964	2241	6205
	87.54	12.46	63.88	36.12	100.00
31S	430	55	452	33	485
	88.66	11.34	93.20	6.80	100.00
31V	3754	302	2850	1206	4056
	92.55	7.45	70.27	29.73	100.00
35E	902	76	805	173	978
	92.23	7.77	82.31	17.69	100.00
			27.	17	202
35H	245	47	276	16	292
	83.90	16.10	94.52	5.48	100.00
35J	921	69	846	144	990
330	93.03	6.97	85.45	14.55	100.00
35N	647	62	479	230	709
	91.26	8.74	67.56	32.44	100.00
	•				
36M	1292	654	1089	857	1946
	66.39	33.61	55.96	44.04	100.00

Sample Siz	es by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N/%	N/%	N/%	N/%	N / %
41C	237	62	174	125	299
	79.26	20.74	58.19	41.81	100.00
44B	983	15	802	196	998
	98.50	1.50	80.36	19.64	100.00
44E	550	8	519	39	558
	98.57	1.43	93.01	6.99	100.00
45B	582	14	503	93	596
	97.65	2.35	84.40	15.60	100.00
45D	543	0	453	90	543
	100.00	0.00	83.43	16.57	100.00
45E	504	0	388	116	504
	100.00	0.00	76.98	23.02	100.00
45K	761	21	652	130	782
	97.31	2.69	83.38	16.62	100.00
45L ·	390	27	351	66	417
	93.53	6.47	84.17	15.83	100.00

Sample Siz	zes by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	ier)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N/%	N / %	N / %	N / %
				٠	
45N	528	0	419	109	528
	100.00	0.00	79.36	20.64	100.00
45T	493	0	376	117	493
	100.00	0.00	76.27	23.73	100.00
46Z	292	196	450	38	488
	59.84	40.16	92.21	7.79	100.00
51B	1921	44	1576	389	1965
	97.76	2.24	80.20	19.80	100.00
51K	505	0	338	167	505
	100.00	0.00	66.93	33.07	100.00
51M	313	7	262	58	320
	97.81	2.19	81.88	18.13	100.00
51R	682	. 0	563	119	682
	100.00	0.00	82.55	17.45	100.00
51T	290	37	278	49	327
	88.69	11.31	85.02	14.98	100.00

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	Family (First Ti	ier)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N / %	N/%	N / %
52C	444	58	402	100	502
	88.45	11.55	80.08	19.92	100.00
				•	
52D	5470	246	4439	1277	5716
	95.70	4.30	77.66	22.34	100.00
54B	1158	112	934	336	1270
	91.18	8.82	73.54	26.46	100.00
55B	2143	196	1679	660	2339
	91.62	8.38	71.78	28.22	100.00
55D	369	32	395	6	401
	92.02	7.98	98.50	1.50	100.00
57E	577	156	237	496	733
	78.72	21.28	32.33	67.67	100.00
62B	2836	79	2257	658	2915
	97.29	2.71	77.43	22.57	100.00
62E	1465	10	1292	183	1475
	99.32	0.68	87.59	12.41	100.00

Sample Size	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total		
Name	N/%	N/%	N / %	N / %	N / %		
62F	472	23	384	111	495		
	95.35	4.65	77.58	22.42	100.00		
62J	842	8	700	150	850		
	99.06	0.94	82.35	17.65	100.00		
63B	10458	997	8485	2970	11455		
	91.30	8.70	74.07	25.93	100.00		
63D	1198	0	1113	85	1198		
	100.00	0.00	92.90	7.10	100.00		
63E	1304	0	1132	172	1304		
	100.00	0.00	86.81	13.19	100.00		
63G	719	28	631	116	747		
	96.25	3.75	84.47	15.53	100.00		
					·		
63H	2113	160	1581	692	2273		
	92.96	7.04	69.56	30.44	100.00		
63J	1060	172	563	669	1232		
	86.04	13.96	45.70	54.30	100.00		

Sample Siz	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total		
Name	N/%	N / %	N / %	N/%	N / %		
63N	721	0	603	118	721		
	100.00	0.00	83.63	16.37	100.00		
				•			
63S	2391	43	2236	198	2434		
	98.23	1.77	91.87	8.13	100.00		
63T	3240 .	0	3042	198	3240		
	100.00	0.00	93.89	6.11	100.00		
63W	2714	164	2063	815	2878		
	94.30	5.70	71.68	28.32	100.00		
63Y	926	16	855	87	942		
	98.30	1.70	90.76	9.24	100.00		
67N	1259	25	1203	81	1284		
	98.05	1.95	93.69	6.31	100.00		
67R	220	8	188	40	228		
	96.49	3.51	82.46	17.54	100.00		
67T	1465	46	1397	114	1511		
	96.96	3.04	92.46	7.54	100.00		

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N / %	N/%	N / %
67U	1501	11	1374	138	1512
	99.27	0.73	90.87	9.13	100.00
67V	1622	36	1528	130	1658
	97.83	2.17	92.16	7.84	100.00
67Y	1125	4	1062	67	1129
	99.65	0.35	94.07	5.93	100.00
		•			
68B	509	93	557	45	602
	84.55	15.45	92.52	7.48	100.00
68D ·	673	20	618	75	693
	97.11	2.89	89.18	10.82	100.00
				5 0	
68F	634	30	606	58	664
	95.48	4.52	91.27	8.73	100.00
60C	000	14	771	71	842
68G	828		91.57	8.43	100.00
	98.34	1.66	91.37	0.43	100.00
68J	1016	32	889	159	1048
003	96.95	3.05	84.83	15.17	100.00
	70.75	5.00	2		

Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total	
Name	N / %	N/%	N/%	N / %	N/%	
68M	345	13	291	67	358	
	96.37	3.63	81.28	18.72	100.00	
68N	338	117	352	103	455	
	74.29	25.71	77.36	22.64	100.00	
68Z	565	109	517	157	674	
	83.83	16.17	76.71	23.29	100.00	
71D	902	456	1063	295	1358	
	66.42	33.58	78.28	21.72	100.00	
71G	574	441	478	537	1015	
	56.55	43.45	47.09	52.91	100.00	
	•					
71L	4235	6793	5661	5367	11028	
	38.40	61.60	51.33	48.67	100.00	
					04.5	
71M	594	322	709	207	916	
	64.85	35.15	77.40	22.60	100.00	
		000	000	(0.1	1560	
72E	1223	339	938	624	1562	
	78.30	21.70	60.05	39.95	100.00	

Sample Si	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total		
Name	N / %	N / %	N / %	N / %	N/%		
72G	815	804	964	655	1619		
	50.34	49.66	59.54	40.46	100.00		
73C	1159	912	1107	964	2071		
	55.96	44.04	53.45	46.55	100.00		
		•					
73D	285	183	348	120	468		
	60.90	39.10	74.36	25.64	100.00		
74B	800	338	911	227	1138		
	70.30	29.70	80.05	19.95	100.00		
75B	2546	1279	1986	1839	3825		
	66.56	33.44	51.92	48.08	100.00		
75C	1196	1142	1051	1287	2338		
	51.15	48.85	44.95	55.05	100.00		
					2520		
75D	910	1628	1045	1493	2538		
	35.86	64.14	41.17	58.83	100.00		
75 15	501	762	540	744	1204		
75E	521	763	540	744 57.04	1284		
	40.58	59.42	42.06	57.94	100.00		

Sample Siz	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total		
Name	N / %	N / %	N / %	N / %	N / %		
75F	331	268	359	240	599		
•	55.26	44.74	59.93	40.07	100.00		
76J	610	309	446	473	919		
	66.38	33.62	48.53	51.47	100.00		
76P	2090	598	1271	1417	2688		
	77.75	22.25	47.28	52.72	100.00		
76V	4126	1089	2815	2400	5215		
	79.12	20.88	53.98	46.02	100.00		
76X	349	172	254	267	521		
	66.99	33.01	48.75	51.25	100.00		
77F	5762	946	3754	2954	6708		
	85.90	14.10	55.96	44.04	100.00		
77W	615	126	363	378	741		
	83.00	17.00	48.99	51.01	100.00		
81L	218	98	164	152	316		
	68.99	31.01	51.90	48.10	100.00		

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	Family (First Ti	ier)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N/%	N / %	N / %	N / %
82C	766	0	587	179	766
	100.00	0.00	76.63	23.37	100.00
88H	1275	170	841	604	1445
	88.24	11.76	58.20	41.80	100.00
88M	12214	1588	9449	4353	13802
	88.49	11.51	68.46	31.54	100.00
88N	957	833	967	823	1790
	53.46	46.54	54.02	45.98	100.00
91A	11512	2821	10344	3989	14333
	80.32	19.68	72.17	27.83	100.00
		-0.5	504	100	606
91D	401	295	504	192	696
	57.61	42.39	72.41	27.59	100.00
91E .	586	524	634	476	1110
FIE ,	52.79	47.21	57.12	42.88	100.00
	34.19	71.21	31.12	72.00	100.00
91F	239	206	330	115	445
	53.71	46.29	74.16	25.84	100.00

Sample Si	zes by Total, Ger	nder and Race	for Each Job/F	Family (First Ti	er)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N / %	N/%	N/%
91G	142	151	251	42	293
	48.46	51.54	85.67	14.33	100.00
91K	657	643	915	385	1300
	50.54	49.46	70.38	29.62	100.00
91M	241	248	310	179	489
	49.28	50.72	63.39	36.61	100.00
91P	424	245	547	122	669
	63.38	36.62	81.76	18.24	100.00
91Q	363	232	415	180	595
	61.01	38.99	69.75	30.25	100.00
	2.60			1.46	500
91R	368	155	377	146	523
	70.36	29.64	72.08	27.92	100.00
91S	250	213	324	139	463
913	54.00	46.00	69.98	30.02	100.00
	34.00	70.00	07.70	50.02	100.00
91T	173	150	283	40	323
	53.56	46.44	87.62	12.38	100.00

Sample Siz	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)					
MOS	Men	Women	Whites	Blacks	Total	
Name	N / %	N/%	N/%	N / %	N/%	
91Z	391	212	446	157	603	
	64.84	35.16	73.96	26.04	100.00	
92A	4849	290	2943	2196	5139	
	94.36	5.64	57.27	42.73	100.00	
92G	8241	1977	5273	4945	10218	
	80.65	19.35	51.61	48.39	100.00	
92M	247	34	170	111	281	
	87.90	12.10	60.50	39.50	100.00	
92R	888	70	780	178	958	
	92.69	7.31	81.42	18.58	100.00	
92Y	8310	1576	5589	4297	9886	
	84.06	15.94	56.53	43.47	100.00	
		=0	5.00	4.0	600	
93C	529	79	562	46	608	
	87.01	12.99	92.43	7.57	100.00	
02D	706	527	005	247	1252	
93P	726	526	905	347	1252	
	57.99	42.01	72.28	27.72	100.00	

Sample Si	Sample Sizes by Total, Gender and Race for Each Job/Family (First Tier)						
MOS	Men	Women	Whites	Blacks	Total		
Name	N / %	N / %	N / %	N/%	N / %		
95B	13154	2400	14091	1463	15554		
	84.57	15.43	90.59	9.41	100.00		
95C	289	20	219	90	309		
	93.53	6.47	70.87	29.13	100.00		
96B	614	171	722	63	785		
	78.22	21.78	91.97	8.03	100.00		
96D	202	138	273	67	340		
	59.41	40.59	80.29	19.71	100.00		
96R	753	0	595	158	753		
	100.00	0.00	79.02	20.98	100.00		
97B	354	68	409	13	422		
	83.89	16.11	96.92	3.08	100.00		
98C	415	133	537	11	548		
	75.73	24.27	97.99	2.01	100.00		
				<u>.</u> .			
98G	953	255	1174	34	1208		
	78.89	21.11	97.19	2.81	100.00		

Sample Siz	zes by Total, Ger	nder and Race	for Each Job/F	amily (First Ti	ier)
MOS	Men	Women	Whites	Blacks	Total
Name	N / %	N / %	N/%	N / %	N/%
98H	757	181	812	126	938
	80.70	19.30	86.57	13.43	100.00
98Z	319	123	371	71	442
	72.17	27.83	83.94	16.06	100.00
147	398	89	356	131	487
	81.72	18.28	73.10	26.90	100.00
148	878	69	811	136	947
	92.71	7.29	85.64	14.36	100.00
149	825	382	1021	186	1207
	68.35	31.65	84.59	15.41	100.00
150	364	15	309	70	379
	96.04	3.96	81.53	18.47	100.00
				•	
Totals	313703	44266	259372	98597	357969
	87.63	12.37	72.46	27.54	100.00

Appendix B2

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
				,			
75D	910	1628	2538	.266	.282	.315	.306
	35.86	64.14	100	.224	.205	.204	.179
71L	4235	6793	11028	.431	.420	.400	.381
	38.40	61.60	100	.088	.090	.083	.082
75E	521	763	. 1284	.831	.799	.738	.730
	4.58	59.42	100	.208	.193	.223	.214
91G	142	151	293	.309	.274	.051	.236
	48.46	51.54	100	.455	.471	.436	.441
91M	241	248	489	.115	.157	047	044
	49.28	50.72	100	.323	.269	.317	.292
72G	815	804	1619	146	158	154	149
	50.34	49.66	100	.098	.120	.109	.106
91K	657	643	1300	038	036	045	025
	50.54	49.46	100	.137	.133	.132	.122
75C	1196	1142	2338	.345	.409	.333	.266
	51.15	48.85	100	.224	.190	.218	.222
91E É	586	524	1110	.134	.047	020	013
	52.79	47.21	100	.146	.143	.172	.164

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier) Dropping No and CS Dropping Dropping Men Women Total 9 Tests No CS MPP/SD MPP/SD MPP/SD N/% MPP/SD N/% N/% Name -.117 -.168 -.098 -.092 957 833 1790 88N .141 .143 46.54 100 .120 .128 53.46 -.090 -.133 -.177 150 323 -.195 173 91T .283 .268 .298 100 .264 53.56 46.44 -.052 -.076 -.046 239 206 445 -.083 91F .185 .222 .181 .207 53.71 46.29 100 .306 .301 .369 91S 250 213 463 .337 .251 .368 .353 54.00 46.00 100 .388 268 599 -.043 .149 -.040 .136 75F 331 .269 44.74 100 .237 .249 .240 55.26 912 2071 .107 .152 .094 .030 73C 1159 .094 .139 .097 .147 100 55.96 44.04 .385 .501 .429 441 1015 .491 71G 574 .186 100 .224 .204 .238 56.55 43.45 .653 .612 .596 .643 295 696 91D 401 .205 .174 .204 100 .228 57.61 42.39 1.245 526 1252 1.389 1.371 1.263 93P 726 .152 100 .121 .146 42.01 .119 57.99 1.334 1.269 1.326 1.267 96D 202 138 340

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS MPP/SD
Name	N / %	N / %	N/%	MPP/SD	MPP/SD	MPP/SD	
	59.41	40.59	100	.161	.198	.177	.198
46Z	292	196	488	.391	.363	.380	.346
	59.84	40.16	100	.252	.201	.271	.240
73D	285	183	468	.465	.471	.497	.523
	60.90	39.10	100	.303	.315	.323	.337
91Q	363	232	595	.646	.744	.509	.633
	61.01	38.99	100	.263	.307	.280	.272
91P	424	245	669	.051	.117	.039	.109
	63.38	36.62	100	.319	.329	.341	.287
91Z	391	212	603	305	186	268	233
	64.84	35.16	100	.207	.164	.169	.163
71 M	594	322	916	.191	.196	.127	.141
	64.85	35.15	100	.211	.185	.202	.224
76J	610	309	919	.581	.564	.452	.487
	66.38	33.62	100	.260	.257	.319	.314
36M	1292	654	1946	122	142	011	015
	66.39	33.61	100	.192	.204	.207	.179
71D	902	456	1358	1.157	1.174	1.048	1.073
	66.42	33.58	100	.153	.159	.166	.162

MPPs a	nd Sample Size	es for 150 Jobs	s/Job Familie	s Ordered by P	ercentages of F	emales in Jobs (First Tier)
	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
75B	2546	1279	3825	.721	.723	.675	.670
	66.56	33.44	100	.091	.074	.100	.088
76X	349	172	521	.371	.337	.377	.324
	66.99	33.01	100	.177	.161	.186	.183
1.10	005	202	1007	002	454	122	441
149	825	382	1207	083			.159
	68.35	31.65	100	.208	.172	.205	.139
81L	218	98	316	549	575	778	811
	68.99	31.01	100	.435	.386	.356	.373
31N	474	209	683	.715	.730	.689	.697
	69.40	30.60	100	.217	.227	.217	.189
31P	376	161	537	220	251	239	252
311	70.02	29.98	100	.160	.144	.155	.151
	70.02	29.90	100	.100	.2		
74B	800	338	1138	.499	.413	.386	.329
	70.30	29.70	100	.259	.280	.310	.314
						•	
91R	368	155	523	.331	.520	.424	.543
	70.36	29.64	100	.297	.350	.328	.309
		4		600	602	2.40	.314
98Z	319	123	442	.688	.683	.342	
	72.17	27.83	100	.211	.223	.299	.264

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N / %	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
68N	338	117	455	.576	.536	.486	.400
	74.29	25.71	100	.285	.315	.325	.313
98C	415	133	548	.981	1.083	.961	1.084
	75.73	24.27	100	.091	.085	.092	.068
76P	2090	598	2688	.229	.254	.214	.207
	77.75	22.25	100	.124	.130	.134	.131
96B	614	171	785	1.300	1.266	1.233	1.177
	78.22	21.78	100	.130	.119	.135	.141
72E	1223	339	1562	028	032	048	049
	78.30	21.70	100	.107	.109	.120	.106
57E	577	156	733	.004	098	088	100
	7 <u>8</u> .72	21.28	100	.154	.182	.172	.155
98G	953	255	1208	338	347	309	314
	78.89	21.11	100	.065	.067	.064	.057
76V	4126	1089	5215	024	076	.019	013
	79.12	20.88	100	.082	.082	.068	.065
41C	237	62	299	236	162	224	202
	79.26	20.74	100	.349	.306	.335	.313
31L	2088	541	2629	.029	.041	.039	.080

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	79.42	20.58	100	.113	.091	.102	.065
91A	11512	2821	14333	164	153	187	178
	80.32	19.68	100	.043	.036	.040	.042
92G	8241	1977	10218	.711	.721	.730	.731
	80:65	19.35	100	.047	.039	.043	.042
98H	757	181	938	173	196	088	098
	80.70	19.30	100	.217	.186	.189	.212
First 50	Average						
	1178	617	1795	.266	.264	.247	.240
	63.87	36.13	100	.124	.119	.125	.120
147	398	89	487	.581	.549	.466	.512
	81.72	18.28	100	.167	.199	.218	.196
25S	283	61	344	.559	.595	.620	.762
	82.27	17.73	100	.461	.415	.404	.378
77W	615	126	741	178	240	158	202
	83.00	17.00	100	.172	.208	.232	.221
68Z	565	109	674	1.073	1.064	.919	.697
	83.83	16.17	100	.273	.269	.266	.361

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier) Dropping Men Women Total 9 Tests Dropping Dropping No and CS No CS N/% N/% N/% MPP/SD MPP/SD MPP/SD MPP/SD Name 97B 354 68 422 .413 .507 .370 .551 83.89 16.11 100 .265 .225 .249 .235 47 35H 245 292 -.029 .099 .008 .104 .285 83.90 16.10 100 .243 .344 .297 92Y 8310 1576 9886 -.256 -.261 -.267 -.267 84.06 15.94 100 .038 .031 .033 .031 68B 509 93 602 -.474 -.514 -.370 -.385 84.55 15.45 100 .291 .230 .238 .270 95B 13154 2400 15554 .103 .095 .129 .118 84.57 15.43 100 .067 .062 .056 .055 77F 5762 946 6708 .760 .771 .798 .781 85.90 14.10 100 .058 .063 .060 .064 63J 1060 172 1232 .318 .272 .328 .246 86.04 13.96 100 .133 .141 .125 .164 93C 529 79 608 -.008 .028 -.029 -.098 87.01 12.99 100 .196 .177 .192 .187 31R 5432 773 6205 .523 .504 .553 .511 87.54 12.46 100 .058 .076 .067 .077 92M 247 34 281 -.064 -.066 -.103 -.087

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier) Dropping No and CS Total 9 Tests Dropping Dropping Men Women No CS MPP/SD MPP/SD MPP/SD N/% MPP/SD N/% N/% Name .318 .328 .317 87.90 12.10 100 .326 .698 .652 .588 79 662 .437 583 14D .292 .298 .277 100 .347 88.07 11.93 -.169 -.161 -.194 -.215 88H 1275 170 1445 .104 .097 100 .103 .102 88.24 11.76 .518 .500 52C 444 58 502 .623 .618 .198 .184 100 .235 .234 88.45 11.55 .009 .012 12214 1588 13802 .020 .026 88M .035 100 .036 .036 .036 88.49 11.51 .782 430 55 485 .900 .957 .807 31S 100 .225 .274 .217 .233 88.66 11.34 .370 .295 .191 51T 290 37 327 .165 .344 .381 .395 .338 88.69 11.31 100 .292 140 1326 .312 .316 .268 31Q 1186 .134 .162 .150 .155 1.56 100 89.44 -.163 -.090 -.134 683 -.120 619 64 16E .194 .165 .152 9.63 9.37 100 .179 .537 .479 .511 5292 526 5818 .477 31C .078 .093 9.04 100 .087 .087 9.96

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N / %	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
54B	1158	112	1270	1.332	1.335	1.294	1.283
J4D	91.18	8.82	100	.071	.069	.076	.069
29V	760	73	833	.377	.467	.276	.290 .335
	91.24	8.76	100	.367	.315	.322	.555
35N	647	62	709	.251	.265	.125	.031
	91.26	8.74	100	.195	.212	.249	.178
63B	10458	997	11455	.863	.860	.858	.816
	91.30	8.70	100	.047	.058	.054	.048
31K	4406	415	4821	.502	.527	.616	.628
	91.39	8.61	100	.071	.058	.050	.049
55B	2143	196	2339	.571	.571	.384	.282
	91.62	8.38	100	.115	.119	.147	.111
27E	794	72	866	148	162	159	201
I <u></u>	91.69	8.31	100	.162	.155	.151	.178
	260	20	401	020	.055	036	.201
55D	369 92.02	32 7.98	401 100	.030 .409	.055	.378	.288
	72.02	,.,,	200				
35E	902	76	978	.441	.425	.358	.374
	92.23	7.77	100	.257	.282	.212	.253

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N / %	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
31V	3754	302	4056	.352	.329	.341	.329
	92.55	7.45	100	.122	.094	.100	.107
92R	888	70	958	122	040	118	.011
	92.69	7.31	100	.149	.153	.129	.150
148	878	69	947	.312	.336	.183	.072
	92.71	7.29	100	.132	.140	.143	.107
63H	2113	160	2273	103	095	133	115
	92.96	7.04	100	.114	.117	.111	.106
35J	921	69	990	.504	.599	.464	.581
	93.03	6.97	100	.215	.227	.216	.213
45L	390	27	417	.442	.414	.324	.290
	93.53	6.47	100	.374	.316	.294	.281
95C	289	20	309	706	666	632	752
	93.53	6.47	100	.234	.192	.197	.218
63W	2714	164	2878	.896	.930	.877	.953
	94.30	5.70	100	.067	.069	.066	.075
92A	4849	290	5139	.339	.327	.346	.343
	94.36	5.64	100	.062	.062	.060	.057
24Z	699	35	734	426	407	410	382

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	95.23	4.77	100	.152	.144	.175	.167
62F	472	23	495	.319	.368	.517	.468
	95.35	4.65	100	.269	.252	.262	.248
68F	634	30	664	.616	.844	.695	.611
	95.48	4.52	100	.326	.293	.324	.341
52D	5470	246	5716	1.440	1.447	1.455	1.474
	95.70	4.30	100	.059	.054	.055	.043
150	364	15	379	530	522	523	524
	96.04	3.96	100	.171	.184	.189	.199
63G	719	28	747	.085	.361	.119	.132
	96.25	3.75	100	.337	.209	.295	.303
68M	345	13	358	.082	.052	.038	010
	96.37	3.63	100	.338	.353	.380	.376
67R	220	8	228	.371	.395	.239	.295
	96.49	3.51	100	.269	.240	.225	.214
68J	1016	32	1048	218	210	.023	053
	96.95	3.05	100	.221	.216	.203	.212
Second	50 Average						
	2163	259	2422	.359	.365	.363	.358

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	9.30	9.70	100	.093	.091	.089	.089
67T	1465	46	1511	.702	.711	.696	.741
	96.96	3.04	100	.156	.170	.177	.156
58D	673	20	693	397	460	439	482
	97.11	2.89	100	.336	.280	.303	.328
62B	2836	79	2915	1.091	1.094	1.136	1.195
	97.29	2.71	100	.087	.088	.089	.088
45K	761	21	782	.536	.538	.524	.546
	97.31	2.69	100	.184	.194	.194	.173
13N	2585	65	2650	.051	.127	.080	.161
	97.55	2.45	100	.132	.117	.172	.110
45B	582	14	596	.326	.461	.411	.448
	97.65	2.35	100	.322	.248	.267	.244
51B	1921	44	1965	.271	.194	.249	.188
	97.76	2.24	100	.128	.140	.109	.117
51M	313	7	320	031	029	132	221
	97.81	2.19	100	.263	.240	.283	.233
67 V .	1622	36	1658	.115	.067	028	053

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS MPP/SD
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	
	97.83	2.17	100	.236	.206	.151	.186
67N	1259	25	1284	1.059	1.033	1.097	1.089
	98.05	1.95	100	.134	.093	.129	.114
		•					
63S	2391	43	2434	.583	.571	.579	.570
	98.23	1.77	100	.088	.087	.095	.082
63Y	926	16	942	1.024	.995	.988	1.015
	98.30	1.70	100	.114	.116	.133	.105
68G	828	14	842	1.073	1.088	1.030	1.140
	98.34	1.66	100	.170	.166	.180	.143
44B	983	15	998	.816	.827	.822	.829
	98.50	1.50	100	.162	.178	.150	.158
44E	550	8	558	1.219	1.294	1.374	1.393
	98.57	1.43	100	.234	.221	.232	.226
62J	842	8	850	.260	.231	.221	.201
	99.06	.94	100	.154	.141	.131	.130
67U	1501	11	1512	1.331	1.350	1.325	1.270
	99.27		100	.096	.102	.096	.118
62E	1465	10	1475	.647	.662	.728	.671
	99.32		100	.139	.135	.117	.107

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N / %	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
67Y	1125	4	1129	.682	.669	.729	.696
	99.65	.35	100	.124	.129	.135	.117
13R	577	2	579	.236	176	.203	178
	99.65	.35	100	.225	.217	.182	.228
11B	35173	0	35173	372	388	399	406
	100	0	100	.015	.015	.014	.014
63N	721	0	721	.714	.667	.685	.692
	100	0	100	.191	.198	.187	.224
12C	1868	0	1868	.175	.164	.242	.273
	100	0	100	.135	.136	.120	.108
45D	543	0	543	062	072	102	113
	100	0	100	.223	.236	.227	.258
13E	1809	0	1809	.708	.701	.785	.746
	100	0	100	.094	.095	.097	.100
45E	504	0	504	438	520	346	280
	100	0	100	.161	.176	.155	.164
11C	6193	0	6193	.054	.001	.061	010
	100	0	100	.067	.072	.064	.064

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Females in Jobs (First Tier) Dropping Women 9 Tests Dropping Dropping No and CS Men Total No CS Name N/% N/% N/% MPP/SD MPP/SD MPP/SD MPP/SD 63E 1304 0 1304 .721 .762 .719 .761 100 0 100 .103 .105 .126 .114 13M 746 0 746 -.292 -.147 -.171 -.319 0 100 100 .126 .100 .138 .136 45N 528 0 528 .839 .744 .878 .756 100 0 . 100 .323 .356 .281 .374 0 13B 19382 19382 -.271 -.256 -.303 -.304 0 100 100 .039 .036 .041 .041 82C 766 0 766 1.070 1.067 1.055 1.034 100 0 100 .093 .109 .115 .118 11M 4294 0 4294 -.453 -.466 -.438 -.451 100 0 100 .074 .072 .080 .078 45T 0 493 493 .422 .422 .421 .467 100 0 100 .216 .209 .212 .188 51K 505 0 505 .676 .639 .606 .565 100 0 100 .227 .243 .239 .295 63D 1198 0 1198 .605 .595 .603 .607 100 0 100 .133 .109 .132 .112 51R 682 0 682 .402 .399 .410 .516

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	100	0	100	.397	.357	.393	.398
					•		
19K	6456	0	6456	.366	.329	.340	.279
	100	0	100	.224	.177	.226	.177
13F	3856	0	3856	.302	.345	.312	.351
	100	0	100	.103	.094	.096	.062
19E	4489	0	4489	.148	.111	.156	.188
	100	. 0	100	.145	.137	.135	.117
13C	676	0	676	.704	.697	.687	.651
	100	0	100	.296	.274	.240	.216
19D	5493	0	5493	.141	.134	.145	.160
	100	0	100	.047	.038	.039	.041
12F	571	0	571	.092	.100	.071	.016
	100	0	100	.138	.168	.171	.163
16S	2282	0	2282	120	131	070	109
	100	0	100	.089	.079	.073	.077
12B	8278	0	8278	009	.000	.016	.020
	100	0	100	.056	.049	.057	.051
16R	1919	0	1919	.339	.293	.324	.282
	100	0	100	.107	.087	.088	.094

	Men	Women	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
11H	5633	0	5633	.124	.125	.090	.082
	100	0	100	.074	.067	.068	.056
16P	1061	0	1061	.402	.395	.392	.367
	100	0	100	.104	.107	.108	.100
96R	753	0	753	.468	.474	.450	.451
	100	0	100	.161	.161	.153	.183
63T	3240	0	3240	.434	.474	.464	.472
	100	0	100	.068	.061	.074	.075
Third 50) Average						
	2932	10	2942	.067	.059	.059	.052
	99.28	.72	100	.085	.079	.083	.078

Appendix B3

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N / %	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
57E	237	496	733	.004	098	088	100
37E	32.33	67.67	100	.154	.182	.172	.155
75D	1045	1.402	2538	.266	.282	.315	.306
75D	1045 41.17	1493 58.83	100	.224	.205	.204	.179
75E	540	744	1284	.831	.799	.738	.730
.02	42.06	57.94	100	.208	.193	.223	.214
75C	1051	1287	2338	.345	.409	.333	.266
	44.95	55.05	100	.224	.190	.218	.222
63J	563	669	1232	.318	.272	.328	.246
	45.70	54.30	100	.133	.141	.125	.164
71G	478	537	1015	.491	.501	.429	.385
	47.09	52.91	100	.224	.204	.238	.186
76P	1271	1417	2688	.229	.254	.214	.207
	47.28	52.72	100	.124	.130	.134	.131
76J	446	473	919	.581	.564	.452	.487
	48.53	51.47	100	.260	.257	.319	.314
76X	254	267	521	.371	.337	.377	.324

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N/%	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	48.75	51.25	100	.177	.161	.186	.183
77 W	363	378	741	178	240	158	202
	48.99	51.01	100	.172	.208	.232	.221
31L	1330	1299	2629	.029	.041	.039	.080
	50.59	49.41	100	.113	.091	.102	.065
71L	5661	5367	11028	.431	.420	.400	.381
	51.33	48.67	100	.088	.090	.083	.082
92G	5273	4945	10218	.711	.721	.730	.731
	51.61	48.39	100	.047	.039	.043	.042
BIL	164	152	316	549	575	778	811
	51.90	48.10	100	.435	.386	.356	.373
′5B	1986	1839	3825	.721	.723	.675	.670
	51.92	48.08	100	.091	.074	.100	.088
′3C	1107	964	2071	.107	.152	.094	.030
	53.45	46.55	100	.094	.139	.097	.147
6V	2815	2400	5215	024	076	.019	013
	53.98	46.02	100	.082	.082	.068	.065
8N	967	823	1790	098	092	117	168

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	54.02	45.98	100	.120	.128	.143	.141
13B	10529	8853	19382	271	256	304	303
	54.32	45.68	100	.039	.036	.041	.041
31P	297	240	537	220	251	239	252
	55.31	44.69	100	.160	.144	.155	.151
36M	1089	857	1946	122	142	011	015
	55.96	44.04	100	.192	.204	.207	.179
77F	3754	2954	6708	.760	.771	.781	.798
	55.96	44.04	100	.058	.063	.060	.064
92Y	5589	4297	9886	256	261	267	267
	56.53	43.47	100	.038	.031	.033	.031
91E	634	476	1110	.134	.047	020	013
	57.12	42.88	100	.146	.143	.172	.164
92A	2943	2196	5139	.339	.327	.346	.343
	57.27	42.73	100	.062	.062	.060	.057
41C	174	125	299	236	162	224	202
	58.19	41.81	100	.349	.306	.335	.313

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
88H	841	604	1445	194	215	161	169
	58.20	41.80	100	.103	.102	.104	.097
72G	964	655	1619	146	158	154	149
	59.54	40.46	100	.098	.120	.109	.106
75F	359	240	599	043	.149	040	.136
	59.93	40.07	100	.237	.249	.240	.269
72E	938	624	1562	028	032	048	049
	60.05	39.95	100	.107	.109	.120	.106
92M	170	111	281	064	066	103	087
	60.50	39.50	100	.326	.328	.317	.318
31K	2936	1885	4821	.502	.527	.616	.628
	60.90	39.10	100	.071	.058	.050	.049
16S	1409	873	2282	120	131	070	109
	61.74	38.26	100	.089	.079	.073	.077
91M	.310	179	489	.115	.157	047	044
	63.39	36.61	100	.323	.269	.317	.292
31R	3964	2241	6205	.523	.504	.553	.511
	63.88	36.12	100	.058	.076	.067	.077

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS 9 Tests Dropping Dropping Whites Blacks Total CS No MPP/SD MPP/SD N/% N/% MPP/SD MPP/SD N/% Name .606 .565 51K 338 167 505 .676 .639 .239 .295 .243 66.93 33.07 100 .227 479 230 709 .251 .265 .125 .031 35N .178 100 .195 .212 .249 67.56 32.44 .012 .009 4353 .026 9449 13802 .020 88M 100 .036 .036 .036 .035 68.46 31.54 63H 1581 692 2273 -.103 -.095 -.133 -.115 69.56 30.44 100 .114 .117 .111 .106 595 .509 .633 91Q 415 180 .646 .744 .307 .272 69.75 100 .263 .280 30.25 .306 .301 .369 .337 91S 324 139 463 .251 69.98 30.02 100 .388 .368 .353 1206 4056 .329 .341 .329 31V 2850 .352 100 .094 .100 .107 70.27 29.73 .122 91K 915 385 1300 -.038 -.036 -.045 -.025 .132 .122 70.38 29.62 100 .137 .133 95C 219 90 309 -.706 -.666 -.632 -.752 70.87 29.13 100 .234 .192 .197 .218

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N / %	N / %	MPP/SD	MPP/SD	MPP/SD	MPP/SD
63W	2063	815	2878	.896	.930	.877	.953
	71.68	28.32	100	.067	.069	.066	.075
55B	1679	660	2339	.571	.571	.384	.282
	71.78	28.22	100	.115	.119	.147	.111
91R	377	146	523	.331	.520	.424	.543
	72.08	27.92	100	.297	.350	.328	.309
91A	10344	3989	14333	164	153	187	178
	72.17	27.83	100	.043	.036	.040	.042
93P	905	347	1252	1.389	1.371	1.263	1.245
	72.28	27.72	100	.119	.121	.146	.152
27E	627	239	866	148	162	159	201
	72.40	27.60	100	.162	.155	.151	.178
First 50	Average	·····					
	1900	1332	3232	.176	.179	.166	.160
	58.41	41.59	100	.085	.082	.084	.083
91D	504	192	696	.596	.643	.653	.612
	72.41	27.59	100	.228	.174	.204	.205

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping Dropping No and CS Dropping 9 Tests Whites Blacks Total CS No MPP/SD MPP/SD MPP/SD N/% N/% MPP/SD Name N/% .466 .512 131 487 .581 .549 147 356 .196 .199 .218 73.10 26.90 100 .167 .689 .697 183 .715 .730 31N 500 683 .227 .217 .189 73.21 26.79 100 .217 1.283 1.332 1.335 1.294 54B 934 336 1270 73.54 26.46 100 .071 .069 .076 .069 -.233 91Z 446 157 603 -.305 -.186 -.268 .207 .164 .169 .163 73.96 26.04 100 31Q 981 345 1326 .312 .316 .268 .292 100 .162 .150 .155 73.98 26.02 .134 2970 .860 .858 .816 8485 11455 .863 63B .047 .048 74.07 25.93 100 .058 .054 91F 115 -.083 -.052 -.076 -.046 330 445 .181 .207 .185 74.16 25.84 100 .222 .523 73D 348 120 468 .465 .471 .497 74.36 25.64 100 .303 .315 .323 .337 .701 .746 13E 1366 443 1809 .708 .785 .100 75.51 100 .094 .095 .097 24.49

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Whites Blacks Total 9 Tests Dropping Dropping No CS MPP/SD MPP/SD MPP/SD MPP/SD N/% N/% N/% Name .421 .467 493 .422 .422 45T 376 117 .212 .188 76.27 23.73 100 .216 .209 .651 .704 .697 .687 516 160 676 13C .216 76.33 23.67 100 .296 .274 .240 82C 587 179 766 1.070 1.067 1.055 1.034 .093 .109 .118 100 .115 76.63 23.37 68Z 517 157 674 1.073 1.064 .919 .697 76.71 .266 .361 23.29 100 .273 .269 388 116 504 -.438 -.520 -.346 -.280 45E 76.98 100 .176 .155 .164 23.02 .161 .400 68N 352 103 455 .576 .536 .486 .315 .325 .313 77.36 22.64 100 .285 71M 709 207 916 .191 .196 .127 .141 .185 .202 .224 77.40 22.60 100 .211 2915 1.091 1.094 1.136 1.195 62B 2257 · 658 77.43 22.57 100 .087 .088 .089 .088 62F 384 .368 .517 .468 111 495 .319 .262 .248 77.58 22.42 100 .269 .252

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
52D	4439	1277	5716	1.440	1.447	1.455	1.474
	77.66	22.34	100	.059	.054	.055	.043
71D	1063	295	1358	1.157	1.174	1.048	1.073
	78.28	21.72	100	.153	.159	.166	.162
12F	449	122	571	.092	.100	.071	.016
	78.63	21.37	100	.138	.168	.171	.163
96R	595	158	753	.468	.474	.450	.451
	79.02	20.98	100	.161	.161	.153	.183
19E	3553	936	4489	.148	.111	.156	.188
	79.15	20.85	100	.145	.137	.135	.117
13R	459	120	579	.236	176	.203	178
	79.27	20.73	100	.225	.217	.182	.228
16E	542	141	683	120	163	090	134
	79.36	20.64	100	.179	.152	.194	.165
45N	419	109	528	.839	.744	.878	.756
	79.36	20.64	100	.323	.356	.281	.374
74B	911	227	1138	.499	.413	.386	.329
	80.05	19.95	100	.259	.280	.310	.314

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Total 9 Tests Dropping Dropping Whites Blacks CS No MPP/SD MPP/SD N/% N/% MPP/SD MPP/SD N/% Name .016 .020 1651 8278 -.009 .000 12B 6627 .051 80.06 19.94 100 .056 .049 .057 .500 52C 402 100 502 .623 .618 .518 80.08 19.92 100 .235 .234 .184 .198 51B 1576 389 1965 .271 .194 .249 .188 80.20 100 .128 .140 .109 .117 19.80 96D 273 67 340 1.326 1.267 1.334 1.269 19.71 100 .198 .177 .198 80.29 .161 802 196 998 .816 .827 .822 .829 44B 80.36 19.64 100 .162 .178 .150 .158 13F 3113 743 3856 .302 .345 .312 .351 .094 .096 80.73 19.27 100 .103 .062 19K 5241 1215 6456 .366 .329 .340 .279 81.18 100 .224 .226 .177 18.82 .177 68M 291 67 358 .082 .052 .038 -.010 81.28 18.72 100 .338 .353 .380 .376 92R 780 178 958 -.122 -.040 -.118 .011 81.42 100 .149 .153 .129 .150 18.58

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Blacks Total 9 Tests Dropping Dropping Whites CS No MPP/SD MPP/SD N/% MPP/SD MPP/SD N/% N/% Name -.524 309 70 379 -.530 -.522 -.523 150 100 .171 .184 .189 .199 81.53 18.47 .273 .164 .242 12C 1526 342 1868 .175 .135 .136 .120 .108 81.69 18.31 100 .039 .109 122 669 .051 .117 91P 547 81.76 100 .319 .329 .341 .287 18.24 51M 262 58 320 -.031 -.029 -.132 -.221 .283 .233 81.88 18.13 100 .263 .240 .698 14D 544 118 662 .437 .652 .588 .292 .298 82.18 17.82 100 .347 .277 35E 805 173 978 .441 .425 .358 .374 .282 .212 .253 82.31 17.69 100 .257 62J 700 150 850 .260 .231 .221 .201 82.35 100 .154 .141 .131 .130 17.65 .239 .295 67R 188 40 228 .371 .395 82.46 17.54 100 .269 .240 .225 .214 .516 51R 119 682 .402 .399 .410 563 .397 .357 .393 .398 82.55 17.45 100

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Total 9 Tests Dropping Dropping Whites Blacks CS No MPP/SD MPP/SD N/% N/% N/% MPP/SD MPP/SD Name 2204 446 2650 .051 .127 .080 .161 13N .110 83.17 16.83 100 .132 .117 .172 4579 914 5493 .160 19D .141 .134 .145 83.36 16.64 100 .047 .038 .039 .041 652 130 45K 782 .536 .538 .524 .546 83.38 16.62 100 .184 .194 .194 .173 453 90 45D 543 -.062 -.072 -.102 -.113 83.43 16.57 100 .223 .236 .227 .258 Second 50 Average 1304 351 1655 .488 .485 .488 .484 78.79 21.21 100 .130 .126 .130 .121 31C 4857 961 5818 .477 .479 .511 .537 83.48 16.52 100 .087 .087 .078 .093 63N 603 118 721 .714 .692 .667 .685 83.63 16.37 100 .191 .198 .187 .224 98Z 371 71 442 .688 .683 .342 .314 83.94 16.06 100 .211 .223 .299 .264 16R 308 1919 .282 1611 .339 .293 .324

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N/%	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
	83.95	16.05	100	.107	.087	.088	.094
11B	29599	5574	35173	372	388	- 399	406
	84.15	15.85	100	.015	.015	.014	.014
45L	351	66	417	.442	.414	.324	.290
	84.17	15.83	100	.374	.316	.294	.281
16P	894	167	1061	.402	.395	.392	.367
	84.26	15.74	100	.104	.107	.108	.100
45B	503	93	596	.326	.461	.411	.448
	84.40	15.60	100	.322	.248	.267	.244
11M	3626	668	4294	453	466	438	- 451
	84.44	15.56	100	.074	.072	.080	.078
63G	631	116	747	.085	.361	.119	.132
	84.47	15.53	100	.337	.209	.295	.303
149	1021	186	1207	083	454	122	441
	84.59	15.41	100	.208	.172	.205	.159
58J	889	159	1048	218	210	.023	053
	84.83	15.17	100	.221	.216	.203	.212
51T	278	49	327	.165	.295	.191	.370

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Total 9 Tests Dropping Dropping Whites Blacks No CS MPP/SD MPP/SD MPP/SD MPP/SD N/% N/% N/% Name .344 .395 .338 14.98 100 .381 85.02 990 .504 .599 .464 .581 144 35J 846 .213 .216 .215 .227 85.45 14.55 100 .072 .312 .336 .183 148 811 136 947 .132 .140 .143 .107 85.64 14.36 100 .051 .236 91G 251 42 293 .309 .274 85.67 14.33 100 .455 .471 .436 .441 .090 .082 11H 4849 784 5633 .124 .125 .074 .067 .068 .056 86.08 13.92 100 .001 .061 -.010 11C 5348 845 6193 .054 .072 .064 .064 86.36 13.64 100 .067 -.098 98H 812 126 938 -.173 -.196 -.088 86.57 100 .217 .186 .189 .212 13.43 1304 .721 .762 .719 .761 63E 1132 172 .114 100 .103 .105 .126 86.81 13.19 .276 .290 108 833 .377 .467 29V 725 .335 87.03 12.97 100 .367 .315 .322 .762 **25S** 300 44 344 .559 .595 .620

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Dropping Dropping Whites Blacks Total 9 Tests No CS MPP/SD MPP/SD N/% MPP/SD MPP/SD Name N/% N/% .378 .415 .404 87.21 12.79 100 .461 1292 1475 .647 .662 .728 .671 62E 183 .107 .135 .117 87.59 12.41 100 .139 -.090 283 40 323 -.195 -.133 -.177 91T .268 .298 100 .264 .283 87.62 12.38 24Z 652 82 -.407 -.410 -.382 734 -.426 88.83 11.17 100 .152 .144 .175 .167 663 83 746 -.319 -.292 13M -.147 -.171 88.87 11.13 100 .126 .100 .138 .136 75 68D 618 693 -.397 -.460 -.439 -.482 89.18 10.82 100 .336 .280 .303 .328 95B 14091 1463 .103 .095 .129 .118 15554 90.59 9.41 100 .067 .062 .056 .055 .995 .988 1.015 1.024 63Y 855 87 942 90.76 9.24 100 .114 .116 .133 .105 1.325 1.270 67U 1374 138 1512 1.331 1.350 9.13 100 .096 .102 .096 .118 90.87

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping Dropping No and CS Dropping Whites Blacks Total 9 Tests CS No MPP/SD MPP/SD N/% MPP/SD MPP/SD N/% N/% Name .611 .844 .695 606 58 664 .616 68F .293 .324 .341 91.27 8.73 100 .326 1.088 1.030 1.140 771 71 1.073 68G 842 .166 .180 .143 91.57 8.43 100 .170 63S 2236 198 2434 .583 .571 .579 .570 .082 .088 .087 .095 91.87 8.13 100 1.233 1.177 96B 722 63 785 1.300 1.266 91.97 8.03 100 .130 .119 .135 .141 130 .067 -.028 -.053 67V 1528 1658 .115 92.16 7.84 100 .236 .206 .151 .186 46Z 450 38 488 .391 .363 .380 .346 .201 .271 .240 92.21 7.79 100 .252 -.098 93C 562 46 608 -.008 .028 -.029 7.57 100 .196 .177 .192 .187 92.43 1511 .696 .741 67T 1397 114 .702 .711 92.46 7.54 100 .156 .170 .177 .156 557 45 602 -.514 -.370 -.385 68B -.474 .230 .238 .270 92.52 7.48 100 .291

MPPs and Sample Sizes for 150 Jobs/Job Families Ordered by Percentages of Blacks in Jobs (First Tier) Dropping No and CS Dropping Dropping Whites Blacks Total 9 Tests No CS MPP/SD MPP/SD N/% MPP/SD MPP/SD N/% N/% Name .607 1198 .605 .595 .603 1113 85 63D .109 .132 .112 92.90 7.10 100 .133 1.393 39 1.294 1.374 44E 519 558 1.219 93.01 6.99 100 .234 .221 .232 .226 33 485 .900 .957 .807 .782 31S 452 .233 6.80 100 .225 .274 .217 93.20 67N 1203 81 1284 1.059 1.033 1.097 1.089 6.31 100 .093 .129 .114 93.69 .134 198 .472 63T 3042 3240 .434 .474 .464 93.89 6.11 100 .068 .061 .074 .075 1062 67 .669 .729 .696 67Y 1129 .682 94.07 5.93 100 .124 .129 .135 .117 35H 276 16 292 -.029 .099 .008 .104 94.52 5.48 100 .344 .285 .297 .243 97B 409 13 422 .507 .370 .551 .413 .235 96.92 3.08 100 .265 .225 .249 98G 34 1208 -.338 -.347 -.309 -.314 1174 .065 .067 .064 .057 97.19 2.81 100

	Whites	Blacks	Total	9 Tests	Dropping No	Dropping CS	Dropping No and CS
Name	N / %	N/%	N/%	MPP/SD	MPP/SD	MPP/SD	MPP/SD
98C	537	11	548	.981	1.083	.961	1.084
	97.99	2.01	100	.091	.085	.092	.068
55D	395	6	401	.030	.055	036	.201
	98.50	1.50	100	.409	.346	.378	.288
Third 50) Average						
	1983	289	2272	.074	.067	.067	.058
	89.22	10.78	100	.091	.085	.086	.085

Appendix C1

MPPs and SDs for the 9-test ASVAB Battery (First Tier)

Job	MPP	SD
Avg	.195	.013
1	372	.015
2	.054	.067
3	.124	.074
4	453	.074
5	009	.056
6	.175	.135
7	.092	.138
8	271	.039
9	.704	.296
10	.708	.094
11	.302	.103
12	147	.126
13	.051	.132
14	.236	.225
15	.437	.347
16	120	.179
17	.402	.104
18	.339	.107
19	120	.089
20	.141	.047
21	.148	.145
22	.366	.224
23	426	.152

MPPs and SDs for the 9-test ASVAB Battery (First Tier)		
Job	MPP	SD
24	.559	.461
25	148	.162
26	.377	.367
27	.477	.087
28	.502	.071
29	.029	.113
30	.715	.217
31	220	.160
32	.312	.134
33	.523	.058
34	.900	.225
35	.352	.122
36	.441	.257
37	029	.243
38	.504	.215
39	.251	.195
40	122	.192
41	236	.349
42	.816	.162
43	1.219	.234
44	.326	.322
45	062	.223
46	438	.161
47	.536	.184
48	.442	.374
49	.839	.323

Job	MPP	SD
50	.422	.216
51	.391	.252
52	.271	.128
53	.676	.227
54	031	.263
55	.402	.397
56	.165	.381
57	.623	.235
58	1.440	.059
59	1.332	.071
60	.571	.115
61	.030	.409
62	.004	.154
63	1.091	.087
64	.647	.139
65	.319	.269
66	.260	.154
67	.863	.047
68	.605	.133
69	.721	.103
70	.085	.337
71	103	.114
72	.318	.133
73	.714	.191

.583

.434

.088

.068

74

75

77 1.024 .114 78 1.059 .134 79 .371 .269 80 .702 .156 81 1.331 .096 82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 98 .107 .094	Job	MPP	SD
78 1.059 .134 79 .371 .269 80 .702 .156 81 1.331 .096 82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	76	.896	.067
79 .371 .269 80 .702 .156 81 1.331 .096 82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	77	1.024	.114
80 .702 .156 81 1.331 .096 82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	78	1.059	.134
81 1.331 .096 82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	79	.371	.269
82 .115 .236 83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 98 .107 .094	80	.702	.156
83 .682 .124 84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 98 .107 .094	81	1.331	.096
84 474 .291 85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 98 .107 .094	82	.115	.236
85 397 .336 86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	83	.682	.124
86 .616 .326 87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	84	474	.291
87 1.073 .170 88 218 .221 89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	85	397	.336
.218 .221 .89 .082 .338 .90 .576 .285 .91 1.073 .273 .92 1.157 .153 .93 .491 .224 .94 .431 .088 .95 .191 .211 .96028 .107 .97146 .098 .98 .107 .094	86	.616	.326
89 .082 .338 90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96 028 .107 97 146 .098 98 .107 .094	87	1.073	.170
90 .576 .285 91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96028 .107 97146 .098 98 .107 .094	88	218	.221
91 1.073 .273 92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96028 .107 97146 .098 98 .107 .094	89	.082	.338
92 1.157 .153 93 .491 .224 94 .431 .088 95 .191 .211 96028 .107 97146 .098 98 .107 .094	90	.576	.285
93 .491 .224 94 .431 .088 95 .191 .211 96028 .107 97146 .098 98 .107 .094	91	1.073	.273
.94 .431 .088 .95 .191 .211 .96 028 .107 .97 146 .098 .98 .107 .094	92	1.157	.153
95 .191 .211 96028 .107 97146 .098 98 .107 .094	93	.491	.224
96028 .107 97146 .098 98 .107 .094	94	.431	.088
97146 .098 98 .107 .094	95	.191	.211
98 .107 .094	96	028	.107
	97	146	.098
99 .465 .303	98	.107	.094
	99	.465	.303

100

101

.499

.721

.259

.091

MPPs and SDs for the 9-test ASVAB Battery (First Tier)		
Job	MPP	SD
102	.345	.224
103	.266	.224
104	.831	.208
105	043	.237
106	.581	.260
107	.229	.124
108	024	.082
109	.371	.177
110	.760	.058
111	178	.172
112	549	.435
113	1.070	.093
114	194	.103
115	.020	.036
116	098	.120
117	164	.043
118	.596	.228
119	.134	.146
120	083	.222
121	.309	.455
122	038	.137
123	.115	.323
124	.051	.319
125	.646	.263
126	.331	.297
127	.337	.388

MPPs and SDs for the 9-test ASVAB Battery (First Tier)		
Job	MPP	SD
128	195	.264
129	305	.207
130	.339	.062
131	.711	.047
132	064	.326
133	122	.149
134	256	.038
135	008	.196
136	1.389	.119
137	.103	.067
138	706	.234
139	1.300	.130
140	1.326	.161
141	.468	.161
142	.413	.265
143	.981	.091
144	338	.065
145	173	.217
146	.688	.211
147	.581	.167
148	.312	.132
149	083	.208
150	530	.171

Appendix C2

MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)

Job	MPP	SD
Avg	.193	.013
1	388	.015
2	.001	.072
3	.125	.067
4	- 466	.072
5	.000	.049
6	.164	.136
7	.100	.168
8	256	.036
9	.697	.274
10	.701	.095
11	.345	.094
12	171	.100
13	.127	.117
14	176	.217
15	.652	.277
16	163	.152
17	.395	.107
18	.293	.087
19	131	.079
20	.134	.038
21	.111	.137
22	.329	.177
23	407	.144

MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)		
Job	MPP	SD
24	.595	.415
25	162	.155
26	.467	.315
27	.479	.087
28	.527	.058
29	.041	.091
30	.730	.227
31	251	.144
32	.316	.162
33	.504	.076
34	.957	.274
35	.329	.094
36	.425	.282
37	.099	.344
38	.599	.227
39	.265	.212
40	142	.204
41	162	.306
42	.827	.178
43	1.294	.221
44	.461	.248
45	072	.236
46	520	.176
47	.538	.194
48	.414	.316

49

.744

.356

MPPs and SDs for the 8-test ASVAB
Battery Without NO (First Tier)

Job	MPP	SD
50	.422	.209
51	.363	.201
52	.194	.140
53	.639	.243
54	029	.240
55	.399	.357
56 .	.295	.395
57	.618	.234
58	1.447	.054
59	1.335	.069
60	.571	.119
61	.055	.346
62	098	.182
63	1.094	.088
64	.662	.135
65	.368	.252
66	.231	.141
67	.860	.058
68	.595	.109
69	.762	.105
70	.361	.209
71	095	.117
72	.272	.141
73	.667	.198
74	.571	.087
75	.474	.061

MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)

Job	MPP	SD
76	.930	.069
77	.995	.116
78	1.033	.093
79	.395	.240
80	.711	.170
81	1.350	.102
82	.067	.206
83	.669	.129
84	514	.230
85	460	.280
86	.844	.293
87	1.088	.166
88	210	.216
89	.052	.353
90	.536	.315
91	1.064	.269
92	1.174	.159
93	.501	.204
94	.420	.090
95	.196	.185
96	032	.109
97	158	.120
98	.152	.139
99	.471	.315
100	.413	.280
101	.723	.074

MPPs and SDs for the 8-test ASVAB
Battery Without NO (First Tier)

Job	MPP	SD
102	.409	.190
103	.282	.205
104	.799	.193
105	.149	.249
106	.564	.257
107	.254	.130
108	076	.082
109	.337	.161
110	.771	.063
111	240	.208
112	575	.386
113	1.067	.109
114	215	.102
115	.026	.036
116	092	.128
117	153	.036
118	.643	.174
119	.047	.143
120	052	.181
121	.274	.471
122	036	.133
123	.157	.269
124	.117	.329
125	.744	.307
126	.520	.350
127	.306	.368

MPPs and SDs for the 8-test ASVAB Battery Without NO (First Tier)				
Job	MPP	SD		

Job	MPP	SD
128	133	.283
129	186	.164
130	.327	.062
131	.721	.039
132	066	.328
133	040	.153
134	261	.031
135	.028	.177
136	1.371	.121
137	.095	.062
138	666	.192
139	1.266	.119
140	1.267	.198
141	.474	.161
142	.507	.225
143	1.083	.085
144	347	.067
145	196	.186
146	.683	.223
147	.549	.199
148	.336	.140
149	454	.172
150	522	.184

Appendix C3

MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)

Job	MPP	SD
Avg	.188	.013
1	399	.014
2	.061	.064
3	.090	.068
4	438	.080
5	.016	.057
6	.242	.120
7	.071	.171
8	304	.041
9	.687	.240
10	.785	.097
11	.312	.096
12	319	.138
13	.080	.172
14	.203	.182
15	.588	.292
16	090	.194
17	.392	.108
18	.324	.088
19	070	.073
20	.145	.039
21	.156	.135
22	.340	.226
23	410	.175

MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)

Job	MPP	SD
24	.620	.404
25	159	.151
26	.276	.322
27	.511	.078
28	.616	.050
29	.039	.102
30	.689	.217
31	239	.155
32	.268	.150
33	.553	.067
34	.807	.217
35	.341	.100
36	.358	.212
37	.008	.285
38	.464	.216
39	.125	.249
40	011	.207
41	224	.335
42	.822	.150
43	1.374	.232
44	.411	.267
45	102	.227
46	346	.155
47	.524	.194
48	.324	.294
49	.878	.281

MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)				
Job	MPP	SD		
50	.421	.212		
51	.380	.271		
52	.249	.109		
53	.606	.239		
54	132	.283		
55	.410	.393		
56	.191	.338		
57	.518	.184		
58	1.455	.055		
59	1.294	.076		
60	.384	.147		
61	036	.378		
62	088	.172		
63	1.136	.089		
64	.728	.117		
65	.517	.262		
66	.221	.131		
67	.858	.054		
68	.603	.132		
69	.719	.126		
70	.119	.295		
71	133	.111		
72	.328	.125		
73	.685	.187		
74	.579	.095		

.464

.074

75

MPPs and SDs for the 8-test ASVAB
Battery Without CS (First Tier)

Job	MPP	SD
76	.877	.066
77	.988	.133
78	1.097	.129
79	.239	.225
80	.696	.177
81	1.325	.096
82	028	.151
83	.729	.135
84	370	.238
85	439	.303
86	.695	.324
87	1.030	.180
88	.023	.203
89	.038	.380
90	.486	.325
91	.919	.266
92	1.048	.166
93	.429	.238
94	.400	.083
95	.127	.202
96	048	.120
97	154	.109
98	.094	.097
99	.497	.323
100	.386	.310
101	.675	.100

MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)

Job	MPP	SD
102	.333	.218
103	.315	.204
104	.738	.223
105	040	.240
106	.452	.319
107	.214	.134
108	.019	.068
109	.377	.186
110	.781	.060
111	158	.232
112	778	.356
113	1.055	.115
114	161	.104
115	.012	.036
116	117	.143
117	187	.040
118	.653	.204
119	020	.172
120	076	.207
121	.051	.436
122	045	.132
123	047	.317
124	.039	.341
125	.509	.280
126	.424	.328
127	.301	.353

MPPs and SDs for the 8-test ASVAB Battery Without CS (First Tier)

Job	MPP	SD
128	177	.268
129	268	.169
130	.346	.060
131	.730	.043
132	103	.317
133	118	.129
134	267	.033
135	029	.192
136	1.263	.146
137	.129	.056
138	632	.197
139	1.233	.135
140	1.334	.177
141	.450	.153
142	.370	.249
143	.961	.092
144	309	.064
145	088	.189
146	.342	.299
147	.466	.218
148	.183	.143
149	122	.205
150	523	.189

Appendix C4

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

Thirtout IN	Juna CB (1 trai 1 to				
Job	MPP	SD			
Avg	.183	.013			
1	406	.014			
2	010	.064			
3	.082	.056			
4	451	.078			
5	.020	.051			
6	.273	.108			
7	.016	.163			
8	303	.041			
9	.651	.216			
10	.746	.100			
11	.351	.062			
12	292	.136			
13	.161	.110			
14	178	.228			
15	.698	.298			
16	134	.165			
17	.368	.100			
18	.282	.094			
19	109	.077			
20	.160	.041			
21	.188	.117			
22	.279	.177			
23	382	.167			

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

<u> </u>			
MPP	SD		
.762	.378		
201	.178		
.290	.335		
.537	.093		
.628	.049		
.080	.065		
.697	.189		
252	.151		
.292	.155		
.511	.077		
.782	.233		
.329	.107		
.374	.253		
.104	.297		
.581	.213		
.031	.178		
015	.179		
202	.313		
.829	.158		
1.393	.226		
.448	.244		
113	.258		
280	.164		
.546	.173		
.290	.281		
.756	.374		
	MPP .762 201 .290 .537 .628 .080 .697 252 .292 .511 .782 .329 .374 .104 .581 .031015202 .829 1.393 .448113280 .546 .290		

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

Job	MPP	SD
50	.467	.188
51	.346	.240
52	.188	.117
53	.565	.295
54	221	.233
55	.516	.398
56	.370	.344
57	.500	.198
58	1.474	.043
59	1.283	.069
60	.282	.111
61	.201	.288
62	100	.155
63	1.195	.088
64	.671	.107
65	.468	.248
66	.201	.130
67	.816	.048
68	.607	.112
69	.761	.114
70	.132	.303
71	115	.106
72	.246	.164
73	.692	.224
74	.570	.082
75	.472	.075

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

Job	MPP	SD
76	.953	.075
77	1.015	.105
78	1.089	.114
79	.295	.214
80	.741	.156
81	1.270	.118
82	053	.186
83	.696	.117
84	385	.270
85	482	.328
86	.611	.341
87	1.140	.143
88	053	.212
89	010	.376
90	.400	.313
91	.697	.361
92	1.073	.162
93	.385	.186
94	.381	.082
95	.141	.224
96	049	.106
97	149	.106
98	.030	.147
99	.523	.337
100	.329	.314
101	.670	.088

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

C 4114 CD (2 1151 211	
MPP	SD
.266	.222
.306	.179
.730	.214
.136	.269
.487	.314
.207	.131
013	.065
.324	.183
.798	.064
202	.221
811	.373
1.034	.118
169	.097
.009	.035
168	.141
178	.042
.612	.205
013	.164
046	.185
.236	.441
025	.122
044	.292
.109	.287
.633	.272
.543	.309
.369	.251
	MPP .266 .306 .730 .136 .487 .207013 .324 .798202811 1.034169 .009168178 .612013046 .236025044 .109 .633 .543

MPPs and SDs for the 7-test ASVAB Battery Without NO and CS (First Tier)

Job	MPP	SD
128	090	.298
129	233	.163
130	.343	.057
131	.731	.042
132	087	.318
133	.011	.150
134	267	.031
135	098	.187
136	1.245	.152
137	.118	.055
138	752	.218
139	1.177	.141
140	1.269	.198
141	.451	.183
142	.551	.235
143	1.084	.068
144	314	.057
145	098	.212
146	.314	.264
147	.512	.196
148	.072	.107
149	441	.159
150	524	.199

Appendix D1

Computations for Obtaining First Tier Statistical Standard Scores from Operational ASVAB Test Scores, Without Either NO or CS or Both

The actual beta weights used in the simulations are shown in appendix D2. They are not needed for operational computations. The weights, u, and constants, k, for each job family for the first tier are shown in appendix D3. These are the weights to be used in operational computations.

The procedure for transforming the operational ASVAB test scores into the specific standard scores required for use in the black-box first tier system is given below:

- (1) Obtain the sum of the products of the nine u weighted ASVAB operational test scores for each composite.
- (2) Subtract the constant k for each composite from the sum of the weighted scores obtained in (1) above.

This transformation results in obtaining the modified statistical standard score composite for each soldier for each job family required for use in the first tier black box optimization process.

Appendix D2

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE
1	.03235	.03319	.00907	.09388	.15170	.09350	.04299	.02885
2	.04291	.13077	.05771	.18143	.10713	.07847	.05178	.04745
3	.06480	.08154	00605	.16669	.18055	.06083	.04096	.05260
4	.06765	.08348	.01831	.11253	.09203	.08161	.05110	.01681
5	.08423	.07478	.04643	.11289	.14930	.11810	.04697	.03004
6	.08300	.07928	.05281	.17198	.15153	.16841	.01258	00706
7	09016	.11337	.08415	.36849	.10339	.06561	.01122	.09824
8	.03512	.06354	00849	.11484	.13069	.14103	.03567	.04433
9	.03852	01398	.14022	.25582	.21025	.13985	.08230	.04105
10	01069	.25042	.05620	.04126	.20784	.04480	.07932	.12256
11	.05711	.15537	01281	.11716	.16393	.02178	.06515	.10667
12	.02982	.15577	.12898	.09685	.14496	.03787	.02582	.09442
13	.00086	.09083	.03916	.13922	.19158	.07449	.02870	.10697
14	.03072	.16583	.04300	.19990	.05224	.05848	.03237	.08422
15	.09399	.27648	.08581	.32262	01189	.06327	06941	.06079
16	.12390	.15819	.05503	.14815	.12101	.08643	.02285	.01774
. 17	.06649	.07678	.09480	.24478	.10127	.17013	.06069	.04058
18	.03105	.18161	01369	.17834	.11606	.13209	.10700	04607
19	.02724	.13869	.03664	.10049	.12245	.11174	.00551	.11863
20	.04003	.10440	.03544	.14344	.10185	.08690	.10261	.09088
21	.08245	.08856	.01474	.13890	.10167	.12054	.06721	.07680
22	.05431	.16046	.02783	.16105	.06857	.14826	.08360	.05387
23	01412	.16616	.03048	.12473	.01110	.09367	.13772	.08342
24	.08988	05074	.15915	.13726	.26076	.08321	.15042	.14224
25	03074	.19513	.07041	01128	.00919	.14299	.07307	.11216
26	.01677	.13061	.15546	.12102	.02216	.13444	02499	.31153

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	МС	EI	VE
27	.00901	.11355	.04055	.13286	.14624	.06452	.13537	.13205
28	.05126	.07921	.01625	.12641	.16249	.10573	.10731	.08000
29	02230	.08758	00379	.21680	.10098	.10055	.08616	.09237
30	.05952	.18175	.08764	.08670	.21049	.06889	.14466	.05524
31	06530	.03288	.11725	.10830	.15716	.00629	.18169	.06874
32	04495	.10378	.00628	.13886	.15967	.12393	.16689	.04781
33	.04485	.13481	.04998	.14339	.10471	.08476	.12700	.09711
34	.10539	.19755	.11482	.08709	.18342	.01466	.08244	.17087
35	01972	.09694	.03963	.18615	.14747	.04911	.12144	.10258
36	.08506	.26434	.10950	.15056	.12638	.04039	.04886	.06709
37	.18223	.16375	.05562	.00870	.23635	05082	.08675	.09343
38	.08850	.11587	.09655	.06591	.18443	.00869	.14989	.21182
39	04164	.10876	.15844	.09124	.07218	.05652	.08287	.29019
40	.11389	.02414	03174	.18837	.14033	.09280	.08815	.00533
41	.01743	.07274	.07830	.24096	.08808	.06737	.08649	.11644
42	.11237	.04180	.02208	.32978	.14794	.05791	.04601	.15418
43	.14510	.11400	.00571	.13346	.26334	.17343	.18185	00142
44	02482	.03602	.06771	.36333	.11806	.14719	.00058	.18568
45	.12583	.14423	01525	.16410	.07387	.09931	.09169	01598
46	.10948	.05047	00712	.15478	.12850	.07123	.11430	03446
47	07264	.24457	.03037	.20797	.11517	.05252	.07316	.13353
48	.13753	.00698	.16329	.14567	.15559	.25572	02302	.00274
49	06670	00811	.05063	.25956	.22240	.06022	.19279	.15319
50	.13902	.31990	.00831	.20239	12300	03488	.02903	.12798
51	.17149	.04611	.06257	00298	.23605	.01117	.06491	.20037
52	.02787	.06455	.02997	.22871	.15861	.13395	.06709	.01379
53	.19210	.03238	.07081	.16961	.11272	.14882	.16548	07651

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	мс	EI	VE
54	11278	.04723	.12661	.18972	.04239	.02330	.19353	.05755
55	08282	.07753	00382	.21431	.27374	.06008	.17797	.03866
56	04017	08041	.04861	.30972	.31772	13256	.18764	.10895
57	.04923	.16759	.11583	.09156	.03316	.05010	.28913	.06689
58	.05446	.20755	.01319	.22349	.16467	.11532	.20209	00447
59	.03060	.17503	.08045	.24321	.15156	.15155	.12327	.06001
60	.11901	.13527	.17062	.12665	.09154	00019	.09957	.09978
61	.15992	.13332	04667	.21445	.03044	.09018	06380	.23849
62	.05921	03510	.05375	.14904	.05794	.12627	.07131	06665
63	.04507	.09625	.04209	.34973	.12824	.12853	.13521	.02328
64	.10025	.13503	04381	.23578	.11281	.13002	.06271	.00846
65	.13567	.07087	02817	.13362	.12759	.20959	.18036	02668
66	.08485	.03875	.00568	.22602	.14164	.15497	.08262	.01534
67	.04771	.08907	04270	.40791	.08189	.14966	.14126	02081
68	02427	.06242	.04179	.45748	.04056	.14631	.08874	.12650
69	.00365	.01817	.00767	.43077	.14525	.08448	.20061	.04397
70	.05112	.13518	.11094	.34662	00651	.03626	.15935	.00769
71	01546	.11878	.05456	.16618	.08979	.09625	.03923	.13715
72	03305	.11189	.09019	.30906	.06498	.12921	.03700	.05067
73	.07850	.06625	.00806	.43185	.08196	.17244	.06872	00595
74	01980	.05457	.03029	.44110	.07934	.10444	.10746	.10327
75	.01904	.08931	.02350	.40221	.03300	.07651	.12634	.04525
76	.02204	.11483	.02500	.35342	.04836	.18052	.12282	.05304
77	01255	.13000	.03028	.44865	.06128	.13876	.10018	.07333
78	01558	.09905	.03723	.32156	.17767	.09806	.03497	.16456
79	07027	.22262	06503	.15956	.05370	.29829	02857	.15518
80	00981	.09464	.03436	.23712	.16749	.11387	.09284	.13157

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE
81	.07673	.15432	.11083	.21526	.12503	.12570	.09825	.07893
82	00777	.09288	.10114	.18485	.05138	.16678	.09179	.06235
83	.00013	.11764	.04764	.24901	.05569	.14981	.15725	.08116
84	.00862	05594	00725	.05359	.19225	.01556	12476	.22026
85	00673	.06758	.11796	.21138	.16009	.05420	06166	.20509
86	.09607	.16392	.18044	.17869	.12239	.08539	.13292	.04092
87	.09722	.26674	.06481	.06305	.12975	.08490	.11937	.03666
88	.04572	.09535	.12290	.08796	.14204	00634	.10664	.12722
89	.11756	10847	.06644	.19436	.08711	.15342	.10913	.06276
90	.00453	.09899	.14522	.05623	.22456	.00988	.09759	.22384
91	.01133	.31170	.20474	.03370	.14406	.07259	.01182	.15461
. 92	05420	.18918	.13918	01114	.24861	.03477	.07504	.25271
93	.08066	.19452	.18225	03038	.12475	12082	.10020	.23962
94	01620	.21872	.13323	04818	.17792	.01018	02044	.21950
95	.03235	.11727	.09908	.07750	.13377	.04068	06949	.31098
96	01445	.05044	.07127	.09476	.21051	.11338	.08348	.04768
97	.01539	.13558	.06098	04109	.19042	.04664	.09193	.08033
98	01696	.19412	.15376	00873	.19860	02054	02552	.15095
99	.08902	.13884	.09211	05301	.29854	07282	.04318	.15917
100	.01109	.16372	.15633	04396	.11844	00861	.09657	.30769
101	03958	.23922	.10797	.02461	.24294	.01698	.03320	.15357
102	.03296	.22691	.14018	00213	.16227	03789	.04428	.15124
103	01925	.22300	.11357	.00327	.21176	00742	.07866	.09627
104	05432	.27853	.13316	.00090	.19786	06825	.09587	.22302
105	.03149	.24432	.11258	.10047	.16203	06267	13182	.17055
106	01696	.18853	.16489	.04294	.24098	05712	00706	.18073
107	01450	.21782	.11457	06458	.19835	00081	.09920	.10925

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE
108	.02206	.15052	.04138	.07446	.08529	.10703	.08807	.09366
109	05321	.27539	.08346	.00526	.05307	.11518	.07937	.23796
110	.05802	.15052	.01300	.19419	.13559	.10105	.08447	.04285
111	03240	.10286	.05565	.09770	.13228	.18015	.06296	.03600
112	.03295	.14225	.22563	.18648	.05751	02219	.00932	06911
113	.10779	.13860	.09146	.16679	.27837	.06634	.07918	.01271
114	.00114	.03819	.04443	.19584	.20996	01391	.04670	.05720
115	.02171	.11779	.01002	.22863	.04343	.10643	.07571	.06075
116	02163	.11229	.12259	.00679	.10219	04986	.01243	.14498
117	.05346	.09387	.07036	.11752	.08340	.11213	.05099	.08254
118	.25292	.16345	.01712	03731	.16476	.03237	.03535	.06215
119	.04465	:18024	.14293	09503	.02465	.02941	.06069	.14019
120	14254	.09293	.02570	.10410	.14641	01284	01794	.06907
121	.20929	.21221	00586	.01219	.05956	.17205	.05004	.10719
122	05396	.08077	.08650	06988	.20969	01882	.13302	.00974
123	.04299	.12589	.18405	.02382	.05316	05887	.14259	.25713
124	.10110	.20301	.09507	.06845	.24015	.00817	00577	.05096
125	.18774	.17514	.09948	00168	.11266	.14677	.03825	.05541
126	.13215	.27325	.02289	01695	.11465	.09298	.11682	.04686
127	.04943	.13413	.05646	.01601	.08233	.19470	.16756	00415
128	02119	.15579	.05160	.06558	.18329	11394	.03761	.20135
129	.02673	.14287	.00981	04041	.01779	.12477	.03478	.20863
130	02838	.23774	.05451	.03645	.18831	.08088	00697	.11347
131	.06921	.16335	.04937	.17747	.05230	.09456	.08205	.12788
132	.19493	.27819	.11610	.12771	08262	.05585	01102	.04353
133	.00704	.02204	.09259	.15808	.21492	.10912	.04592	05248
134	01520	.16725	.06395	.02916	.13710	01155	.05105	.12264

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE
135	00479	.04381	.12582	.03077	.13817	00923	.18070	.24774
136	00552	.23033	.13687	.02040	.15601	.10485	.09654	.27622
137	.02142	.10550	.07467	.09793	.13028	.10875	.04796	.14534
138	02568	.18661	.09177	.04586	.06803	.10895	.01772	.03852
139	00257	.17227	.15148	.08667	.24023	.10901	.00751	.29956
140	.05107	.13689	.09405	.22145	.26306	.12572	03394	.17358
141	01614	.10069	.11128	.32068	.10343	.08053	.03140	.17671
142	.14250	01134	.06364	01709	.17559	.09275	.13107	.25952
143	03914	.24183	.07031	.06461	.16013	.10577	.05430	.26414
144	.01313	.16672	.05198	.02417	.10087	.05063	.06162	.07400
145	03797	.24607	.06102	.08193	.17781	.04028	03326	.11344
146	.04347	.14446	.16877	.18766	.19248	.09007	03833	.18931
147	.14607	.17956	.12620	.10894	.24861	.01999	01173	05941
148	.03520	.12479	.15604	.09751	.11482	.10286	.08211	.11327
149	.1.7665	.12787	.06849	.09666	.01856	.11752	.03004	.11739
150	.02555	.01340	.05900	.13768	.22877	.11811	.10658	08663

Appendix D3

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE	k
1	.00428	.00469	.00131	.01063	.01953	.01108	.00518	.00517	3.25032
. 2	.00568	.01849	.00831	.02054	.01379	.00930	.00624	.00849	4.78477
3	.00858	.01153	00087	.01887	.02324	.00721	.00493	.00942	4.35132
4	.00896	.01180	.00264	.01274	.01185	.00967	.00616	.00301	3.51477
5	.01115	.01057	.00669	.01278	.01922	.01399	.00566	.00538	4.49320
6	.01099	.01121	.00761	.01947	.01951	.01996	.00152	00126	4.69071
7	01194	.01603	.01212	.04172	.01331	.00777	.00135	.01759	5.18527
8	.00465	.00898	00122	.01300	.01683	.01671	.00430	.00794	3.75046
9	.00510	00198	.02020	.02896	.02707	.01657	.00992	.00735	5.96682
10	00141	.03541	.00810	.00467	.02676	.00531	.00956	.02194	5.78340
11	.00756	.02197	00185	.01326	.02110	.00258	.00785	.01909	4.80010
12	.00395	.02202	.01858	.01097	.01866	.00449	.00311	.01690	5.18781
13	.00011	.01284	.00564	.01576	.02466	.00883	.00346	.01915	4.75604
14	.00407	.02345	.00619	.02263	.00672	.00693	.00390	.01508	4.69380
15	.01244	.03909	.01236	.03653	00153	.00750	00836	.01088	5.75959
. 16	.01640	.02237	.00793	.01677	.01558	.01024	.00275	.00318	5.00569
17	.00880	.01086	.01366	.02771	.01304	.02016	.00731	.00726	5.74827
18	.00411	.02568	00197	.02019	.01494	.01565	.01289	00825	4.37899
19	.00361	.01961	.00528	.01138	.01576	.01324	.00066	.02124	4.78314
20	.00530	.01476	.00511	.01624	.01311	.01030	.01236	.01627	4.92002
21	.01092	.01252	.00212	.01573	.01309	.01428	.00810	.01375	4.76726
22	.00719	.02269	.00401	.01823	.00883	.01757	.01007	.00964	5.18200
23	00187	.02349	.00439	.01412	.00143	.01110	.01659	.01493	4.44419
24	.01190	00717	.02293	.01554	.03357	.00986	.01812	.02546	6.83982
25	00407	.02759	.01014	00128	.00118	.01694	.00880	.02008	4.19625
26	.00222	.01847	.02240	.01370	.00285	.01593	00301	.05577	6.79463

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE	k
27	.00119	.01605	.00584	.01504	.01883	.00765	.01631	.02364	5.49687
28	.00679	.01120	.00234	.01431	.02092	.01253	.01293	.01432	5.01085
29	00295	.01238	00055	.02455	.01300	.01191	.01038	.01654	4.49962
30	.00788	.02570	.01262	.00982	.02710	.00816	.01743	.00989	6.21782
31	00865	.00465	.01689	.01226	.02023	.00074	.02189	.01231	4.21708
32	00595	.01467	.00090	.01572	.02056	.01468	.02011	.00856	4.69500
33	.00594	.01906	.00720	.01623	.01348	.01004	.01530	.01738	5.50713
34	.01395	.02793	.01654	.00986	.02361	.00174	.00993	.03059	7.03939
35	00261	.01371	.00571	.02107	.01898	.00582	.01463	.01836	5.03292
36	.01126	.03737	.01577	.01705	.01627	.00479	.00589	.01201	6.32749
37	.02413	.02315	.00801	.00098	.03043	00602	.01045	.01673	5.62351
38	.01172	.01638	.01391	.00746	.02374	.00103	.01806	.03792	6.83112
39	00551	.01538	.02282	.01033	.00929	.00670	.00998	.05195	6.38492
40	.01508	.00341	00457	.02133	.01807	.01100	.01062	.00095	3.98547
41	.00231	.01028	.01128	.02728	.01134	.00798	.01042	.02084	5.36894
42	.01488	.00591	.00318	.03734	.01905	.00686	.00554	.02760	6.34101
43	.01921	.01612	.00082	.01511	.03390	.02055	.02191	00025	6.67729
44	00329	.00509	.00975	.04114	.01520	.01744	.00007	.03324	6.28436
45	.01666	.02039	00220	.01858	.00951	.01177	.01105	00286	4.35816
46	.01450	.00714	00103	.01752	.01654	.00844	.01377	00617	3.70747
47	00962	.03458	.00438	.02355	.01483	.00622	.00881	.02390	5.61917
48	.01821	.00099	.02352	.01649	.02003	.03030	00277	.00049	5.66793
49	00883	00115	.00729	.02939	.02863	.00714	.02323	.02742	5.95266
50	.01841	.04523	.00120	.02291	01584	00413	.00350	.02291	4.96856
51	.02271	.00652	.00901	00034	.03039	.00132	.00782	.03587	5.92821
52	.00369	.00913	.00432	.02589	.02042	.01587	.00808	.00247	4.73621
53	.02543	.00458	.01020	.01920	.01451	.01763	.01994	01370	5.14121

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE	k
54	01493	.00668	.01824	.02148	.00546	.00276	.02331	.01030	3.87275
55	01097	.01096	00055	.02426	.03524	.00712	.02144	.00692	4.95020
56	00532	01137	.00700	.03507	.04090	01571	.02261	.01950	4.84037
57	.00652	.02369	.01669	.01037	.00427	.00594	.03483	.01197	6.00845
58	.00721	.02934	.00190	.02530	.02120	.01366	.02435	00080	6.41768
59	.00405	.02475	.01159	.02754	.01951	.01796	.01485	.01074	6.90253
60	.01576	.01912	.02458	.01434	.01178	00002	.01200	.01786	6.06641
61	.02117	.01885	00672	.02428	.00392	.01069	00769	.04269	5.66073
62	.00784	00496	.00774	.01687	.00746	.01496	.00859	01193	2.46346
63	.00597	.01361	.00606	.03960	.01651	.01523	.01629	.00417	6.19375
64	.01327	.01909	00631	.02669	.01452	.01541	.00756	.00151	4.83051
65	.01796	.01002	00406	.01513	.01643	.02484	.02173	00478	5.11580
66	.01123	.00548	.00082	.02559	.01823	.01836	.00995	.00275	4.87038
67	.00632	.01259	00615	.04618	.01054	.01773	.01702	00373	5.30981
68	00321	.00882	.00602	.05179	.00522	.01734	.01069	.02264	6.32742
69	.00048	.00257	.00110	.04877	.01870	.01001	.02417	.00787	5.99439
70	.00677	.01911	.01598	.03924	00084	.00430	.01920	.00138	5.55270
71	00205	.01679	.00786	.01881	.01156	.01140	.00473	.02455	4.94534
72	00438	.01582	.01299	.03499	.00837	.01531	.00446	.00907	5.11840
73	.01039	.00937	.00116	.04889	.01055	.02043	.00828	00107	5.71489
74	00262	.00772	.00436	.04994	.01021	.01238	.01295	.01849	6.00230
75	.00252	.01263	.00339	.04554	.00425	.00907	.01522	.00810	5.32560
76	.00292	.01624	.00360	.04001	.00623	.02139	.01480	.00950	6.06905
77	00166	.01838	.00436	.05079	.00789	.01644	.01207	.01313	6.42612
78	00206	.01400	.00536	.03641	.02287	.01162	.00421	.02946	6.42993
79	00930	.03148	00937	.01807	.00691	.03534	00344	.02778	5.17554
80	00130	.01338	.00495	.02685	.02156	.01349	.01119	.02355	5.99116

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE	k
81	.01016	.02182	.01597	.02437	.01610	.01490	.01184	.01413	6.81213
82	00103	.01313	.01457	.02093	.00661	.01976	.01106	.01116	5.09137
83	.00002	.01663	.00686	.02819	.00717	.01775	.01894	.01453	5.81808
84	.00114	00791	00104	.00607	.02475	.00184	01503	.03943	2.58815
85	00089	.00955	.01699	.02393	.02061	.00642	00743	.03672	5.58985
86	.01272	.02318	.02599	.02023	.01576	.01012	.01601	.00733	6.91145
87	.01287	.03771	.00934	.00714	.01670	.01006	.01438	.00656	6.02217
88	.00605	.01348	.01770	.00996	.01829	00075	.01285	.02277	5.26763
89	.01556	01534	.00957	.02201	.01121	.01818	.01315	.01123	4.52201
90	.00060	.01400	.02092	.00637	.02891	.00117	.01176	.04007	6.49823
91	.00150	.04407	.02949	.00382	.01855	.00860	.00142	.02768	7.11018
92	00718	.02675	.02005	00126	.03201	.00412	.00904	.04524	6.75863
93	.01068	.02750	.02625	00344	.01606	01432	.01207	.04290	6.16323
94	00214	.03092	.01919	00546	.02291	.00121	00246	.03929	5.43053
95	.00428	.01658	.01427	.00877	.01722	.00482	00837	.05567	5.96936
96	00191	.00713	.01027	.01073	.02710	.01343	.01006	.00854	4.48500
97	.00204	.01917	.00879	00465	.02451	.00553	.01107	.01438	4.22843
98	00225	.02745	.02215	00099	.02557	00243	00307	.02702	4.89823
99	.01179	.01963	.01327	00600	.03843	00863	.00520	.02849	5.32316
100	.00147	.02315	.02252	00498	.01525	00102	.01163	.05508	6.46944
101	00524	.03382	.01555	.00279	.03128	.00201	.00400	.02749	5.85506
102	.00436	.03208	.02019	00024	.02089	00449	.00533	.02708	5.51202
103	00255	.03153	.01636	.00037	.02726	00088	.00948	.01723	5.17053
104	00719	.03938	.01918	.00010	.02547	00809	.01155	.03992	6.30353
105	.00417	.03454	.01622	.01137	.02086	00743	01588	.03053	4.95419
106	00225	.02666	.02375	.00486	.03102	00677	00085	.03235	5.69928
107	00192	.03080	.01651	00731	.02553	00010	.01195	.01956	4.96877

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	МС	EI	VE	k
108	.00292	.02128	.00596	.00843	.01098	.01268	.01061	.01677	4.72050
109	00705	.03894	.01202	.00060	.00683	.01365	.00956	.04260	6.17980
110	.00768	.02128	.00187	.02199	.01746	.01197	.01018	.00767	5.26588
111	00429	.01454	.00802	.01106	.01703	.02135	.00758	.00644	4.31437
112	.00436	.02011	.03250	.02111	.00740	00263	.00112	01237	3.77207
113	.01427	.01960	.01318	.01888	.03584	.00786	.00954	.00228	6.36295
114	.00015	.00540	.00640	.02217	.02703	00165	.00563	.01024	3.95046
115	.00287	.01665	.00144	.02588	.00559	.01261	.00912	.01088	4.49444
116	00286	.01588	.01766	.00077	.01316	00591	.00150	.02595	3.47061
117	.00708	.01327	.01014	.01331	.01074	.01329	.00614	.01478	4.67979
118	.03349	.02311	.00247	00422	.02121	.00384	.00426	.01113	4.97351
119	.00591	.02548	.02059	01076	.00317	.00348	.00731	.02510	4.22177
120	01887	.01314	.00370	.01179	.01885	00152	00216	.01237	1.95916
121	.02771	.03000	00084	.00138	.00767	.02039	.00603	.01919	5.86676
122	00714	.01142	.01246	00791	.02699	00223	.01603	.00174	2.66591
123	.00569	.01780	.02651	.00270	.00684	00698	.01718	.04603	6.08661
124	.01339	.02870	.01370	.00775	.03092	.00097	00069	.00912	5.43259
125	.02486	.02476	.01433	00019	.01450	.01739	.00461	.00992	5.79080
126	.01750	.03863	.00330	00192	.01476	.01102	.01407	.00839	5.54124
127	.00654	.01896	.00813	.00181	.01060	.02307	.02019	00074	4.66380
128	00281	.02203	.00743	.00742	.02360	01350	.00453	.03605	4.43069
129	.00354	.02020	.00141	00457	.00229	.01478	.00419	.03735	4.18114
130	00376	.03361	.00785	.00413	.02424	.00958	00084	.02031	4.99693
131	.00916	.02310	.00711	.02009	.00673	.01121	.00989	.02289	5.81045
132	.02581	.03933	.01673	.01446	01064	.00662	00133	.00779	5.21285
133	.00093	.00312	.01334	.01790	.02767	.01293	.00553	00940	3.78473
134	00201	.02365	.00921	.00330	.01765	00137	.00615	.02195	4.11672

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO (150 Job Families)

Job Family	GS	AR	CS	AS	MK	MC	EI	VE	k
135	00063	.00619	.01812	.00348	.01779	00109	.02177	.04435	5.77737
136	00073	.03257	.01972	.00231	.02008	.01242	.01163	.04945	7.76169
137	.00284	.01492	.01076	.01109	.01677	.01289	.00578	.02602	5.32455
138	00340	.02638	.01322	.00519	.00876	.01291	.00214	.00690	3.80405
139	00034	.02436	.02182	.00981	.03093	.01292	.00090	.05363	8.10905
140	.00676	.01935	.01355	.02507	.03387	.01490	00409	.03107	7.39580
141	00214	.01424	.01603	.03631	.01332	.00954	.00378	.03163	6.48626
142	.01887	00160	.00917	00194	.02260	.01099	.01579	.04646	6.31980
143	00518	.03419	.01013	.00732	.02061	.01253	.00654	.04728	7.02637
144	.00174	.02357	.00749	.00274	.01299	.00600	.00742	.01325	3.94853
145	00503	.03479	.00879	.00928	.02289	.00477	00401	.02031	4.82238
146	.00576	.02042	.02431	.02125	.02478	.01067	00462	.03389	7.19179
147	.01934	.02539	.01818	.01233	.03201	.00237	00141	01064	5.09986
148	.00466	.01764	.02248	.01104	.01478	.01219	.00989	.02028	5.95222
149	.02339	.01808	.00987	.01094	.00239	.01393	.00362	.02102	5.44420
150	.00338	.00189	.00850	.01559	.02945	.01399	.01284	01551	3.67671

Appendix D4

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	MC	EI	VE
1	.03371	.02934	.02649	.09579	.14533	.09565	.04471	.03089
2	.03879	.13102	.03775	.17878	.10561	.08138	.05234	.05609
3	.06458	.08277	01060	.16621	.18269	.05998	.04038	.05148
4	.06689	.08250	.01758	.11232	.08988	.08300	.05173	.01974
5	.08112	.07456	.03257	.11100	.14742	.12062	.04759	.03706
6	.07560	.08655	00261	.16536	.16123	.16800	.01015	00038
7	09623	.11385	.05446	.36456	.10136	.06980	.01199	.11082
8	.03471	.06548	01600	.11405	.13403	.13974	.03476	.04272
9	.03145	01907	.12185	.25277 .	.19759	.14940	.08605	.06303
10	01508	.25139	.03292	.03824	.20751	.04731	.07956	.13084
11	.05975	.15197	.00930	.11974	.15899	.02259	.06642	.10533
12	.01374	.16963	.01416	.08301	.16253	.03857	.02151	.11141
13	.00016	.08694	.04705	.13984	.18416	.07823	.03077	.11354
14	.04218	.13789	.17669	.21469	.00679	.07291	.04455	.09554
15	.08301	.28623	.00658	.31309	.00064	.06350	07250	.07201
16	.12305	.15246	.06753	.14918	.11016	.09180	.02588	.02701
17	.05927	.07805	.05748	.23991	.10014	.17453	.06125	.05462
18	.02710	.19110	05940	.17328	.13147	.12724	.10288	04978
19	.02473	.13863	.02511	.09894	.12115	.11368	.00596	.12415
20	.03428	.11078	00971	.13810	.11073	.08597	.10035	.09510
21	.08063	.09010	.00180	.13734	.10362	.12063	.06674	.07874
22	.05006	.16495	00490	.15717	.07473	.14775	.08204	.05727
23	01725	.16814	.01018	.12223	.01321	.09440	.13724	.08766
24	.07718	04748	.09054	.12842	.26063	.09011	.15090	.16562
25	03145	.18706	.09030	00952	00586	.15018	.07726	.12416
26	.00468	.13318	.09165	.11274	.02108	.14144	02427	.33446

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE
27	.00410	.11762	.00593	.12867	.15132	.06486	.13414	.13744
28	.04872	.08194	00342	.12407	.16626	.10539	.10635	.08197
29	02524	.09378	03530	.21327	.11087	.09765	.08353	.09073
30	.05447	.17978	.06975	.08408	.20448	.07433	.14650	.06877
31	07666	.03916	.04622	.09947	.16317	.00968	.18041	.08528
32	04383	.10079	.02005	.14037	.15476	.12556	.16821	.04928
33	.04321	.13129	.05242	.14332	.09751	.08890	.12905	.10524
34	.09744	.19756	.07767	.08211	.17965	.02066	.08375	.18814
.35	02636	.10450	01306	.17993	.15805	.04788	.11874	.10723
36	.07280	.27338	.02636	.14043	.13702	.04217	.04634	.08199
37	.17425	.17175	00459	.00152	.24711	05140	.08405	.10041
38	.08186	.11578	.06587	.06178	.18109	.01378	.15104	.22636
39	05320	.10990	.10129	.08369	.06872	.06431	.08423	.31383
40	.11517	.02591	03087	.18869	.14418	.09037	.08704	.00025
41	.01093	.07483	.04195	.23632	.08879	.07055	.08652	.12786
42	.10642	.05035	03022	.32373	.16069	.05534	.04269	.15602
43	.14670	.11012	.02434	.13553	.25704	.17542	.18354	.00011
44	03721	.05093	03291	.35151	.13932	.14423	00487	.19328
45	.12069	.15621	07361	.15762	.09325	.09329	.08651	02036
46	.10915	.05208	01332	.15413	.13127	.07016	.11354	03581
47	07412	.24336	.02695	.20738	.11227	.05464	.07402	.13831
48	.11422	.03022	01220	.12474	.18681	.25412	03086	.02327
49	06662	01504	.07087	.26150	.20981	.06589	.19627	.16201
50	.12945	.33730	08630	.19166	09586	04203	.02185	.12620
51	.15972	.06050	03362	01427	.25665	.00816	.05962	.20729
52	.02941	.05755	.05724	.23158	.14659	.13857	.07036	.01951
53	.18307	.04036	.00580	.16178	.12295	.14904	.16297	06725

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE
54	11953	.04333	.10632	.18655	.03206	.03162	.19662	.07727
55	08313	.07865	00850	.21380	.27563	.05940	.17746	.03790
56	05043	06707	03755	.29966	.33714	13583	.18262	.11394
57	.03934	.17122	.05921	.08438	.03506	.05457	.28894	.08369
58	.05286	.20889	.00185	.22212	.16635	.11543	.20168	00272
59	.02460	.17586	.05006	.23922	.15021	.15539	.12384	.07197
60	.10478	.13995	.09075	.11646	.09328	.00668	.09957	.12463
61	.16863	.12273	.02437	.22279	.01528	.09236	05990	.23331
62	.05077	02597	01183	.14127	.07054	.12510	.06811	06015
63	.04200	.09656	.02685	.34772	.12734	.13060	.13556	.02956
64	.10042	.14056	05888	.23438	.12297	.12532	.05990	.00091
65	.13540	.07516	04172	.13229	.13528	.20625	.17824	03166
66	.08564	.03645	.01599	.22714	.13783	.15627	.08364	.01660
67	.04857	.09312	05032	.40734	.08969	.14566	.13908	02794
68	02940	.06676	.00538	.45308	.04602	.14660	.08741	.13203
69	.00419	.01609	.01616	.43167	.14172	.08579	.20157	.04549
70	.04548	.13122	.09598	.34417	01641	.04378	.16228	.02506
71	02304	.12615	00199	.15942	.09960	.09588	.03678	.14407
72	03660	.10667	.08861	.30826	.05378	.13619	.04022	.06514
73	.07915	.06392	.01776	.43289	.07802	.17388	.06978	00433
74	02385	.05834	.00060	.43754	.08428	.10438	.10623	.10718
75	.01603	.09199	.00176	.39960	.03644	.07657	.12549	.04832
76	.01734	.12057	01337	.34892	.05657	.17933	.12071	.05581
77	01663	.13384	.00022	.44505	.06632	.13867	.09892	.07722
78	01571	.09431	.05021	.32277	.16898	.10207	.03737	.17099
79	05341	.19871	.08224	.17663	.01819	.30531	01932	.14955
80	01470	.09950	00241	.23273	.17401	.11355	.09121	.13589

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	MC	EI	VE
81	.07139	.14981	.09890	.21315	.11425	.13347	.10142	.09639
82	01577	.09481	.05829	.17932	.05108	.17123	.09215	.07723
83	00402	.11930	.02350	.24595	.05673	.15157	.15711	.08804
84	.01360	06461	.04090	.05908	.17883	.01896	12122	.22067
85	01821	.07399	.04602	.20245	.16628	.05757	06298	.22173
86	.08206	.16686	.10667	.16912	.12105	.09354	.13377	.06755
87	.08455	.28258	03976	.05080	.15256	.08138	.11349	.04366
88	.03670	.09633	.07799	.08204	.13953	00035	.10765	.14553
89	.11988	12186	.11570	.19946	.06382	.16273	.11550	.07508
90	00759	.10299	.07722	.04756	.22605	.01572	.09760	.24499
91	00477	.31543	.11890	.02260	.14317	.08166	.01262	.18476
92	07038	.20184	.02737	02471	.26395	.03652	.07135	.27144
93	.06619	.19811	.10441	04042	.12439	11286	.10080	.26641
94	02686	.22149	.07555	05561	.17789	.01593	02007	.23906
95	.01849	.13083	00450	.06513	.15185	.03995	07401	.32353
96	02291	.05727	.01221	.08760	.21890	.11413	.08145	.05722
97	.01051	.13687	.03451	04449	.19042	.04927	.09209	.08928
98	02173	.18275	.16415	00862	.17560	00755	01899	.17605
99	.08747	.12950	.11167	05143	.28079	06394	.04814	.17465
100	00464	.17323	.05563	05640	.12825	00459	.09440	.32956
101	04987	.24467	.04431	.01669	.24795	.02024	.03217	.16886
102	.02478	.22398	.11041	00645	.15300	02929	.04712	.17284
103	02844	.22557	.06334	00318	.21205	00261	.07890	.11291
104	06572	.28275	.06784	00739	.20011	06313	.09564	.24232
105	.02203	.24753	.05923	.09367	.16338	05819	13186	.18692
106	03251	.19654	.06931	.03102	.24815	05200	00851	.20414
107	01923	.21162	.11029	06585	.18480	.00787	.10311	.12756

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE
108	.01970	.14954	.03319	.07325	.08237	.10962	.08896	.10005
109	05324	.26427	.11524	.00827	.03278	.12439	.08498	.25244
110	.05680	.15114	.00552	.19326	.13614	.10146	.08436	.04469
111	03329	.09713	.06794	.09870	.12141	.18556	.06599	.04537
112	.01725	.14241	.15191	.17661	.05030	01047	.01185	03520
113	.10054	.14038	.05254	.16176	.27815	.07034	.07949	.02616
114	00079	.03596	.04187	.19524	.20498	01061	.04814	.06427
115	.01856	.12255	01834	.22536	.05060	.10488	.07384	.06143
116	02879	.10972	.09656	.00301	.09409	04234	.01492	.16387
117	.04457	.10166	.00651	.10983	.09335	.11241	.04855	.09177
118	.25330	.16040	.02765	03624	.15941	.03459	.03682	.06525
119	.02435	.20038	00962	11323	.05166	.02810	.05392	.15819
120	14504	.09433	.01000	.10215	.14777	01211	01823	.07270
121	.21443	.20304	.04446	.01791	.04531	.17574	.05381	.10790
122	06131	.08341	.04461	07520	.21099	01545	.13291	.02229
123	.02425	.13750	.06328	.00892	.06537	05432	.13986	.28280
124	.09741	.19742	.09384	.06766	.22821	.01558	00234	.06623
125	.17709	.18242	.02891	01033	.12084	.14880	.03635	.06911
126	.12894	.27640	00115	01982	.11885	.09280	.11577	.04976
127	.04782	.12968	.06175	.01622	.07344	.19960	.17007	.00512
128	02786	.16178	.00330	.05977	.19102	11386	.03570	.20808
129	.02507	.14478	00340	04197	.02046	.12445	.03410	.20977
130	03398	.24126	.01832	.03199	.19205	.08219	00781	.12106
131	.06648	.16200	.04053	.17613	.04854	.09773	.08318	.13554
132	.18475	.28235	.05664	.12020	07990	.06011	01142	.06027
133	00329	.02962	.02263	.14954	.22380	.11065	.04382	03987
134	01978	.16754	.04178	.02622	.13544	00834	.05167	.13221

Eight-Test, First-Tier Composite Beta Weights for ASVAB Tests Without CS (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE
135	01421	.04519	.07789	.02449	.13618	00326	.18158	.26643
136	01889	.23786	.05288	.00998	.16335	.10872	.09497	.29550
137	.01375	.11033	.02501	.09181	.13544	.11054	.04680	.15573
138	02301	.16916	.15429	.05228	.03750	.12135	.02607	.05536
139	01397	.17405	.09314	.07904	.23803	.11614	.00851	.32203
140	.04926	.12778	.11179	.22281	.24560	.13461	02905	.18931
141	02552	.10395	.05815	.31392	.10488	.08492	.03132	.19288
142	.13801	01118	.04225	01994	.17373	.09601	.13174	.26907
143	05151	.25634	02903	.05292	.18067	.10312	.04904	.27220
144	.00970	.16638	.03699	.02212	.09861	.05350	.06236	.08187
145	04063	.24305	.05725	.08109	.17104	.04478	03129	.12315
146	.02529	.15703	.04786	.17285	.20671	.09341	04164	.21251
147	.13516	.18376	.06323	.10097	.25106	.02475	01204	04116
148	.02821	.11743	.14452	.09514	.09806	.11423	.08699	.13802
149	.15791	.15496	09670	.07755	.05898	.10929	.01951	.12299
150	.02227	.01184	.04820	.13605	.22435	.12187	.10791	07749

Appendix D5

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

(======================================									
Job Family	GS	AR	NO	AS	MK	MC	EI	VE	k
1	.00446	.00415	.00409	.01084	.01871	.01133	.00539	.00553	3.39601
2	.00514	.01852	.00583	.02024	.01360	.00964	.00631	.01004	4.71065
3	.00855	.01170	00164	.01882	.02352	.00711	.00486	.00921	4.30822
4	.00886	.01166	.00271	.01272	.01157	.00983	.00623	.00353	3.53411
5	.01074	.01054	.00503	.01257	.01898	.01429	.00573	.00663	4.45040
6	.01001	.01224	00040	.01872	.02076	.01991	.00122	00007	4.33846
7	01274	.01610	.00841	.04127	.01305	.00827	.00144	.01984	5.07265
8	.00460	.00926	00247	.01291	.01726	.01656	.00419	.00765	3.68140
9	.00416	00270	.01882	.02862	.02544	.01770	.01037	.01128	6.01723
10	00200	.03554	.00508	.00433	.02671	.00561	.00958	.02342	5.68179
11	.00791	.02149	.00144	.01356	.02047	.00268	.00800	.01886	4.95192
12	.00182	.02398	.00219	.00940	.02092	.00457	.00259	.01994	4.48468
13	.00002	.01229	.00727	.01583	.02371	.00927	.00371	.02032	4.86983
14	.00558	.01950	.02728	.02431	.00087	.00864	.00537	.01710	5.77571
15	.01099	.04047	.00102	.03545	.00008	.00752	00873	.01289	5.27007
16	.01629	.02156	.01043	.01689	.01418	.01088	.00312	.00484	5.17634
17	.00785	.01104	.00888	.02716	.01289	.02068	.00738	.00978	5.59178
18	.00359	.02702	00917	.01962	.01692	.01508	.01239	00891	4.01046
19	.00327	.01960	.00388	.01120	.01560	.01347	.00072	.02222	4.74481
20	.00454	.01566	00150	.01563	.01426	.01019	.01209	.01702	4.62265
21	.01068	.01274	.00028	.01555	.01334	.01429	.00804	.01410	4.68831
22	.00663	.02332	00076	.01779	.00962	.01751	.00988	.01025	4.96945
23	00228	.02377	.00157	.01384	.00170	.01119	.01653	.01569	4.33037
. 24	.01022	00671	.01398	.01454	.03355	.01068	.01818	.02965	6.53145
25	00416	.02645	.01394	00108	00075	.01780	.00931	.02223	4.44444
26	.00062	.01883	.01415	.01276	.00271	.01676	00292	.05987	6.51796

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

Job Family	GS	AR	NO	AS	MK	MC	EI	VE	k
27	.00054	.01663	.00092	.01457	.01948	.00769	.01616	.02460	5.28709
28	.00645	.01159	00053	.01405	.02140	.01249	.01281	.01467	4.88237
29	00334	.01326	00545	.02415	.01427	.01157	.01006	.01624	4.25326
30	.00721	.02542	.01077	.00952	.02632	.00881	.01765	.01231	6.20032
31	01015	.00554	.00714	.01126	.02101	.00115	.02174	.01527	3.83315
32	00580	.01425	.00310	.01589	.01992	.01488	.02027	.00882	4.80892
33	.00572	.01856	.00810	.01623	.01255	.01053	.01555	.01884	5.59391
34	.01290	.02793	.01199	.00930	.02313	.00245	.01009	.03368	6.91149
35	00349	.01477	00202	.02037	.02035	.00567	.01431	.01920	4.68361
36	.00964	.03865	.00407	.01590	.01764	.00500	.00558	.01468	5.84031
37	.02307	.02428	00071	.00017	.03181	00609	.01013	.01797	5.23839
38	.01084	.01637	.01017	.00699	.02331	.00163	.01820	.04052	6.72778
39	00704	.01554	.01564	.00948	.00885	.00762	.01015	.05618	6.16331
40	.01525	.00366	00477	.02136	.01856	.01071	.01049	.00004	3.94891
41	.00145	.01058	.00648	.02676	.01143	.00836	.01042	.02289	5,19738
42	.01409	.00712	00467	.03665	.02069	.00656	.00514	.02793	5.97076
43	.01942	.01557	.00376	.01534	.03309	.02079	.02211	.00002	6.82767
44	00493	.00720	00508	.03980	.01794	.01709	00059	.03460	5.60639
45	.01598	.02209	01137	.01785	.01200	.01105	.01042	00364	3.89072
46	.01445	.00736	00206	.01745	.01690	.00831	.01368	00641	3.65037
47	00981	.03441	.00416	.02348	.01445	.00647	.00892	.02476	5.63431
48	.01512	.00427	00188	.01412	.02405	.03011	00372	.00416	4.54709
49	00882	00213	.01094	.02961	.02701	.00781	.02365	.02900	6.17660
50	.01714	.04769	01333	.02170	01234	00498	.00263	.02259	4.25571
51	.02115	.00855	00519	00162	.03304	.00097	.00718	.03711	5.27713
52	.00389	.00814	.00884	.02622	.01887	.01642	.00848	.00349	4.98577
53	.02424	.00571	.00090	.01832	.01583	.01766	.01963	01204	4.74009

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

Job Family	GS	AR	NO	AS	MK	MC	EI	VE	k
54	01583	.00613	.01642	.02112	.00413	.00375	.02369	.01383	3.88994
55	01101	.01112	00131	.02421	.03548	.00704	.02138	.00678	4.90920
56	00668	00948	00580	.03393	.04340	01610	.02200	.02040	4.24712
57	.00521	.02421	.00914	.00955	.00451	.00647	.03481	.01498	5.73290
58	.00700	.02953	.00029	.02515	.02142	.01368	.02430	00049	6.34885
59	.00326	.02486	.00773	.02708	.01934	.01841	.01492	.01288	6.77952
60	.01387	.01979	.01401	.01318	.01201	.00079	.01200	.02231	5.68755
61	.02233	.01735	.00376	.02522	.00197	.01094	00722	.04177	6.14094
62	.00672	00367	00183	.01599	.00908	.01482	.00821	01077	2.03474
63	.00556	.01365	.00415	.03937	.01639	.01547	.01633	.00529	6.13450
64	.01330	.01987	00909	.02654	.01583	.01485	.00722	.00016	4.65551
65	.01793	.01063	00644	.01498	.01742	.02444	.02147	00567	4.97366
66	.01134	.00515	.00247	.02572	.01774	.01852	.01008	.00297	4.95701
67	.00643	.01317	00777	.04612	.01155	.01726	.01676	00500	5.19332
68	00389	.00944	.00083	.05130	.00592	.01737	.01053	.02364	6.10566
69	.00056	.00227	.00250	.04887	.01825	.01016	.02428	.00814	6.06988
70	.00602	.01855	.01482	.03897	00211	.00519	.01955	.00449	5.58936
71	00305	.01784	00031	.01805	.01282	.01136	.00443	.02579	4.58685
72	00485	.01508	.01368	.03490	.00692	.01614	.00485	.01166	5.22919
73	.01048	.00904	.00274	.04901	.01004	.02060	.00841	00078	5.80014
74	00316	.00825	.00009	.04954	.01085	.01237	.01280	.01919	5.81632
75	.00212	.01301	.00027	.04524	.00469	.00907	.01512	.00865	5.19122
76	.00230	.01705	00207	.03950	.00728	.02125	.01454	.00999	5.80936
77	00220	.01892	.00003	.05039	.00854	.01643	.01192	.01382	6.23731
78	00208	.01333	.00775	.03654	.02175	.01209	.00450	.03061	6.58003
79	00707	.02810	.01270	.02000	.00234	.03618	00233	.02677	6.21416
80	00195	.01407	00037	.02635	.02240	.01345	.01099	.02433	5.75656

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE	k
81	.00945	.02118	.01527	.02413	.01471	.01581	.01222	.01726	6.87183
82	00209	.01341	.00900	.02030	.00658	.02029	.01110	.01383	4.90117
83	00053	.01687	.00363	.02785	.00730	.01796	.01893	.01576	5.69817
84	.00180	00914	.00632	.00669	.02302	.00225	01460	.03950	2.94685
85	00241	.01046	.00711	.02292	.02141	.00682	00759	.03969	5.19992
86	.01086	.02359	.01647	.01915	.01558	.01108	.01612	.01209	6.59261
87	.01120	.03995	00614	.00575	.01964	.00964	.01367	.00782	5.31002
88	.00486	.01362	.01204	.00929	.01796	00004	.01297	.02605	5.09134
89	.01587	01723	.01787	.02258	.00822	.01928	.01391	.01344	4.98958
90	00100	.01456	.01192	.00538	.02910	.00186	.01176	.04386	6.17563
91	00063	.04460	.01836	.00256	.01843	.00968	.00152	.03308	6.73213
92	00932	.02854	.00423	00280	.03398	.00433	.00860	.04859	6.09246
93	.00876	.02801	.01612	00458	.01601	01337	.01214	.04769	5.81574
94	00356	.03132	.01167	00630	.02290	.00189	00242	.04280	5.17053
95	.00245	.01850	00070	.00737	.01955	.00473	00892	.05792	5.31150
96	00303	.00810	.00189	.00992	.02818	.01352	.00981	.01024	4.13002
97	.00139	.01935	.00533	00504	.02451	.00584	.01109	.01598	4.10885
98	00288	.02584	.02535	00098	.02261	00089	00229	.03152	5.18730
99	.01158	.01831	.01724	00582	.03615	00758	.00580	.03126	5.59842
100	00061	.02449	.00859	00639	.01651	00054	.01137	.05900	5.91165
101	00660	.03459	.00684	.00189	.03192	.00240	.00388	.03023	5.51491
102	.00328	.03167	.01705	00073	.01970	00347	.00568	.03094	5.47515
103	00377	.03189	.00978	00036	.02730	00031	.00951	.02021	4.94078
104	00870	.03998	.01048	00084	.02576	00748	.01152	.04338	5.98499
105	.00292	.03500	.00915	.01061	.02103	00690	01589	.03346	4.69920
106	00430	.02779	.01070	.00351	.03195	00616	00102	.03654	5.19233
107	00255	.02992	.01703	00746	.02379	.00093	.01242	.02284	5.09207

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

Job Family	GS	AR	NO	AS	MK	МС	EI	VE	k
108	.00261	.02114	.00512	.00829	.01060	.01299	.01072	.01791	4.71420
109	00705	.03736	.01780	.00094	.00422	.01474	.01024	.04519	6.53676
110	.00752	.02137	.00085	.02188	.01753	.01202	.01016	.00800	5.22635
111	00441	.01373	.01049	.01117	.01563	.02199	.00795	.00812	4.48431
112	.00228	.02014	.02346	.01999	.00648	00124	.00143	00630	3.51525
113	.01331	.01985	.00811	.01831	.03581	.00834	.00958	.00468	6.18963
114	00010	.00508	.00646	.02211	.02639	00126	.00580	.01151	3.99135
115	.00246	.01733	00283	.02551	.00651	.01243	.00890	.01100	4.29096
116	00381	.01551	.01491	.00034	.01211	00502	.00180	.02933	3.43840
117	.00590	.01437	.00101	.01243	.01202	.01332	.00585	.01643	4.28692
118	.03354	.02268	.00427	00410	.02052	.00410	.00444	.01168	5.07745
119	.00322	.02833	00149	01282	.00665	.00333	.00650	.02832	3.24882
120	01920	.01334	.00154	.01157	.01902	00143	00220	.01301	1.87404
121	.02839	.02871	.00687	.00203	.00583	.02082	.00648	.01932	6.24391
122	00812	.01179	.00689	00851	.02716	00183	.01601	.00399	2.46315
123	.00321	.01944	.00977	.00101	.00842	00644	.01685	.05063	5.41299
124	.01290	.02791	.01449	.00766	.02938	.00185	00028	.01186	5.55275
125	.02345	.02579	.00446	00117	.01556	.01763	.00438	.01237	5.38617
126	.01707	.03908	00018	00224	.01530	.01100	.01395	.00891	5.38847
127	.00633	.01833	.00954	.00184	.00945	.02365	.02049	.00092	4.78124
128	00369	.02287	.00051	.00677	.02459	01349	.00430	.03725	4.13125
129	.00332	.02047	00053	00475	.00263	.01475	.00411	.03755	4.09340
130	00450	.03411	.00283	.00362	.02472	.00974	00094	.02167	4.79417
131	.00880	.02291	.00626	.01994	.00625	.01158	.01002	.02426	5.81005
132	.02446	.03992	.00875	.01361	01029	.00712	00138	.01079	4.91590
133	00044	.00419	.00349	.01693	.02881	.01311	.00528	00714	3.37538
134	00262	.02369	.00645	.00297	.01744	00099	.00622	.02367	4.03415

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without CS (150 Job Families)

Job Family	GS	AR	NO	AS	MK	MC	EI	VE	k
135	00188	.00639	.01203	.00277	.01753	00039	.02188	.04770	5.58193
136	00250	.03363	.00817	.00113	.02103	.01288	.01144	.05290	7.30527
137	.00182	.01560	.00386	.01039	.01744	.01310	.00564	.02788	5.04613
138	00305	.02392	.02382	.00592	.00483	.01438	.00314	.00991	4.40762
139	00185	.02461	.01438	.00895	.03064	.01376	.00102	.05765	7.86893
140	.00652	.01807	.01726	.02523	.03162	.01595	00350	.03389	7.65969
141	00338	.01470	.00898	.03554	.01350	.01006	.00377	.03453	6.23115
142	.01827	00158	.00652	00226	.02237	.01138	.01587	.04817	6.24282
143	00682	.03624	00448	.00599	.02326	.01222	.00591	.04873	6.36176
144	.00128	.02352	.00571	.00250	.01270	.00634	.00751	.01466	3.90463
145	00538	.03436	.00884	.00918	.02202	.00531	00377	.02205	4.87666
146	.00335	.02220	.00739	.01957	.02661	.01107	00502	.03804	6.49628
147	.01790	.02598	.00976	.01143	.03232	.00293	00145	00737	4.78981
148	.00373	.01660	.02232	.01077	.01262	.01353	.01048	.02471	6.07665
149	.02091	.02191	01493	.00878	.00759	.01295	.00235	.02202	4.27304
150	.00295	.00167	.00744	.01540	.02888	.01444	.01300	01387	3.67439

Appendix D6

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	AS	MK	MC	EI	VE
1	.03112	.03435	.09280	.15323	.09347	.04261	.03002
2	.03510	.13817	.17452	.11687	.07826	.04935	.05485
3	.06562	.08076	.16741	.17953	.06085	.04122	.05182
4	.06517	.08583	.11033	.09513	.08155	.05033	.01916
5	.07794	.08073	.10733	.15714	.11793	.04501	.03599
6	.07585	.08605	.16565	.16045	.16822	.01036	00029
7	10156	.12416	.35841	.11761	.06531	.00768	.10903
8	.03627	.06246	.11586	.12926	.14107	.03603	.04324
9	.01953	.00400	.23903	.23394	.13934	.07640	.05902
10	01830	.25763	.03453	.21733	.04459	.07695	.12976
11	.05884	.15373	.11869	.16177	.02182	.06568	.10502
12	.01235	.17231	.08141	.16675	.03740	.02039	.11095
13	00445	.09585	.13454	.19819	.07435	.02705	.11199
14	.02489	.17135	.19475	.05950	.05832	.03056	.08973
15	.08237	.28748	.31235	.00260	.06296	07302	.07179
16	.11644	.16525	.14156	.13031	.08623	.02054	.02479
17	.05365	.08894	.23342	.11728	.16978	.05670	.05273
18	.03291	.17985	.17998	.11375	.13214	.10758	04782
19	.02227	.14339	.09611	.12864	.11161	.00397	.12332
20	.03523	.10894	.13919	.10783	.08677	.10112	.09542
21	.08046	.09044	.13714	.10416	.12049	.06659	.07868
22	.05054	.16402	.15772	.07327	.14816	.08243	.05744
23	01825	.17006	.12108	.01625	.09356	.13644	.08732
24	.06832	03034	.11820	.28764	.08263	.14373	.16264
25	04028	.20416	01971	.02108	.14273	.07011	.12119
26	00429	.15053	.10240	.04842	.13388	03153	.33145

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A + B + C and 150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE_
27	.00352	.11875	.12801	.15309	.06437	.13367	.13725
28	.04906	.08129	.12446	.16524	.10567	.10662	.08208
29	02179	.08710	.21725	.10034	.10056	.08632	.09189
30	.04764	.19298	.07621	.22529	.06857	.14098	.06648
31	08118	.04791	.09426	.17696	.00586	.17676	.08377
32	04580	.10458	.13810	.16074	.12391	.16663	.04862
33	.03808	.14122	.13740	.11315	.08457	.12490	.10352
34	.08984	.21226	.07334	.20282	.01425	.07761	.18558
35	02508	.10202	.18140	.15416	.04896	.11977	.10766
36	.07022	.27837	.13745	.14488	.03999	.04425	.08112
37	.17470	.17088	.00204	.24574	05102	.08441	.10056
38	.07542	.12825	.05435	.20074	.00834	.14583	.22420
39	06311	.12907	.07226	.09894	.05595	.07621	.31050
40	.11819	.02007	.19217	.13497	.09292	.08949	.00126
41	.00682	.08278	.23158	.10130	.06708	.08320	.12648
42	.10938	.04463	.32714	.15167	.05783	.04508	.15701
43	.14432	.11473	.13278	.26431	.17341	.18161	00069
44	03399	.04470	.35522	.12950	.14695	00227	.19436
45	.12790	.14228	.16593	.07129	.09937	.09233	01794
46	.11045	.04956	.15563	.12730	.07126	.11460	03537
47	07676	.24847	.20434	.12030	.05241	.07188	.13743
48	.11541	.02791	.12612	.18317	.25512	02989	.02367
49	07356	00162	.25350	.23096	.06004	.19066	.15968
50	.13790	.32096	.20139	12160	03491	.02868	.12904
51	.16301	.05414	01047	.24662	.01094	.06228	.20839
52	.02381	.06839	.22512	.16367	.13384	.06583	.01763
53	.18250	.04145	.16113	.12468	.14856	.16251	06744

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	AS	MK	MC	EI	VE
54	12993	.06346	.17455	.06378	.02284	.18820	.07378
55	08230	.07704	.21476	.27310	.06010	.17814	.03817
56	04675	07417	.30390	.32593	13273	.18559	.11518
57	.03354	.18244	.07770	.05272	.04968	.28425	.08174
58	.05267	.20924	.22191	.16690	.11527	.20154	00278
59	.01970	.18534	.23357	.16515	.15126	.11988	.07033
60	.09590	.15714	.10622	.12036	00081	.09239	.12165
61	.16624	.12734	.22004	.02255	.09035	06183	.23251
62	.05193	02821	.14261	.06702	.12608	.06905	05976
63	.03937	.10164	.34469	.13535	.12838	.13344	.02868
64	.10618	.12941	.24102	.10540	.13018	.06456	.00284
65	.13948	.06726	.13700	.12283	.20970	.18154	03029
66	.08408	.03948	.22534	.14260	.15495	.08238	.01607
67	.05349	.08359	.41302	.07468	.14981	.14306	02629
68	02993	.06777	.45247	.04762	.14616	.08699	.13185
69	.00261	.01915	.42985	.14655	.08445	.20029	.04495
70	.03609	.14940	.33334	.01223	.03585	.15468	.02191
71	02285	.12577	.15965	.09900	.09605	.03694	.14414
72	04527	.12345	.29826	.08022	.12888	.03321	.06223
73	.07741	.06728	.43088	.08332	.17241	.06838	00492
74	02391	.05845	.43747	.08446	.10433	.10618	.10716
75	.01586	.09232	.39940	.03697	.07642	.12535	.04826
76	.01865	.11804	.35043	.05258	.18043	.12177	.05625
77	01666	.13388	.44502	.06639	.13865	.09891	.07721
78	02062	.10382	.31710	.18396	.09793	.03340	.16934
79	06146	.21428	.16735	.04272	.29852	02583	.14684
80	01446	.09904	.23300	.17329	.11374	.09140	.13597

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE
81	.06172	.16853	.20199	.14375	.12530	.09359	.09314
82	02147	.10585	.17274	.06846	.16641	.08753	.07531
83	00632	.12375	.24330	.06374	.14964	.15525	.08727
84	.00960	05687	.05446	.19103	.01559	12446	.21933
85	02271	.08270	.19726	.18001	.05377	06662	.22021
86	.07162	.18705	.15709	.15287	.08473	.12533	.06405
87	.08844	.27505	.05529	.14070	.08466	.11664	.04496
88	.02907	.11110	.07324	.16280	00678	.10148	.14297
89	.10856	09996	.18641	.09833	.15318	.10634	.07128
90	01515	.11761	.03884	.24909	.00935	.09148	.24245
91	01641	.33794	.00918	.17864	.07184	.00321	.18086
92	07306	.20702	02780	.27211	.03426	.06919	.27054
93	.05597	.21788	05220	.15554	12148	.09254	.26298
94	03425	.23580	06414	.20043	.00969	02605	.23658
95	.01893	.12997	.06564	.15051	.04032	07366	.32368
96	02410	.05958	.08622	.22255	.11312	.08048	.05682
97	.00713	.14340	04839	.20072	.04642	.08936	.08814
98	03779	.21383	02714	.22457	02110	03198	.17066
99	.07655	.15064	06403	.31410	07315	.03931	.17098
100	01008	.18376	06268	.14485	00918	.09000	.32773
101	05420	.25306	.01169	.26117	.01658	.02866	.16741
102	.01398	.24488	01891	.18594	03840	.03838	.16921
103	03464	.23756	01033	.23094	00783	.07389	.11083
104	07236	.29560	01504	.22035	06873	.09027	.24009
105	.01624	.25875	.08699	.18105	06308	13655	.18498
106	03930	.20966	.02320	.26883	05772	01399	.20186
107	03002	.23251	07830	.21770	00123	.09438	.12393

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE
108	.01645	.15582	.06950	.09228	.10688	.08633	.09896
109	06452	.28609	00473	.06716	.11488	.07586	.24866
110	.05626	.15219	.19263	.13779	.10101	.08392	.04451
111	03994	.11000	.09103	.14168	.17995	.06062	.04313
112	.00238	.17118	.15947	.09562	02301	00017	04019
113	.09540	.15032	.15584	.29382	.06601	.07533	.02443
114	00488	.04389	.19052	.21747	01407	.04483	.06290
115	.02035	.11908	.22743	.04512	.10639	.07529	.06204
116	03824	.12800	00789	.12289	05031	.00728	.16069
117	.04393	.10289	.10910	.09529	.11188	.04803	.09156
118	.25060	.16564	03935	.16766	.03230	.03463	.06435
119	.02529	.19856	11214	.04879	.02889	.05468	.15851
120	14602	.09622	.10102	.15075	01294	01902	.07237
121	.21008	.21146	.01290	.05857	.17207	.05029	.10644
122	06568	.09185	08024	.22430	01913	.12938	.02083
123	.01806	.14948	.00178	.08425	05954	.13485	.28072
124	.08823	.21519	.05707	.25621	.00783	00977	.06315
125	.17427	.18789	01359	.12946	.14641	.03406	.06816
126	.12905	.27618	01969	.11851	.09290	.11586	.04980
127	.04178	.14137	.00925	.09187	.19450	.16518	.00309
128	02819	.16241	.05940	.19201	11413	.03544	.20797
129	.02540	.14413	04158	.01945	.12473	.03437	.20988
130	03577	.24473	.02992	.19752	.08068	00926	.12046
131	.06252	.16968	.17156	.06063	.09438	.07998	.13421
132	.17921	.29308	.11381	06301	.05543	01590	.05841
133	00550	.03391	.14699	.23055	.10879	.04203	04062
134	02387	.17545	.02151	.14791	01178	.04836	.13084

Seven-Test, First-Tier Composite Beta Weights for ASVAB Tests Without NO and CS (Using the Total Sample A+B+C and 150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE
135	02183	.05994	.01571	.15942	00969	.17541	.26387
136	02406	.24788	.00401	.17913	.10436	.09079	.29377
137	.01130	.11507	.08898	.14290	.10848	.04482	.15491
138	03811	.19838	.03487	.08353	.10862	.01386	.05029
139	02309	.19169	.06853	.26582	.10846	.00114	.31897
140	.03833	.14894	.21019	.27895	.12538	03790	.18564
141	03121	.11496	.30736	.12223	.08012	.02672	.19097
142	.13388	00318	02471	.18634	.09252	.12839	.26768
143	04867	.25084	.05619	.17201	.10552	.05134	.27315
144	.00608	.17339	.01795	.10965	.05045	.05943	.08066
145	04624	.25389	.07463	.18812	.04006	03582	.12126
146	.02061	.16609	.16745	.22099	.08946	04543	.21094
147	.12897	.19573	.09383	.26992	.01954	01704	04324
148	.01406	.14479	.07883	.14117	.10230	.07555	.13327
149	.16738	.13665	.08846	.03013	.11727	.02716	.12617
150	.01756	.02097	.13061	.23873	.11789	.10409	07907

Appendix D7

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE	k
1	.00412	.00486	.01051	.01973	.01108	.00513	.00537	3.19326
2	.00465	.01953	.01976	.01505	.00927	.00595	.00982	4.42167
3	.00869	.01142	.01895	.02311	.00721	.00497	.00928	4.38939
4	.00863	.01213	.01249	.01225	.00966	.00606	.00343	3.39954
5	.01032	.01141	.01215	.02023	.01397	.00542	.00644	4.20106
6	.01004	.01217	.01875	.02066	.01993	.00125	00005	4.35841
7	01345	.01755	.04058	.01514	.00774	.00092	.01952	4.65580
8	.00480	.00883	.01312	.01664	.01672	.00434	.00774	3.80386
9	.00259	.00057	.02706	.03012	.01651	.00920	.01057	5.08455
10	00242	.03643	.00391	.02798	.00528	.00927	.02323	5.42980
11	.00779	.02174	.01344	.02083	.00259	.00791	.01880	4.88072
12	.00164	.02436	.00922	.02147	.00443	.00246	.01986	4.37631
13	00059	.01355	.01523	.02552	.00881	.00326	.02005	4.50966
14	.00330	.02423	.02205	.00766	.00691	.00368	.01606	4.42322
15	.01091	.04065	.03536	.00034	.00746	00880	.01285	5.21971
16	.01542	.02336	.01603	.01678	.01022	.00247	.00444	4.65945
17	.00710	.01257	.02643	.01510	.02012	.00683	.00944	5.15177
18	.00436	.02543	.02038	.01464	.01566	.01296	00856	4.46512
19	.00295	.02027	.01088	.01656	.01322	.00048	.02208	4.55262
20	.00466	.01540	.01576	.01388	.01028	.01218	.01708	4.69701
21	.01065	.01279	.01553	.01341	.01428	.00802	.01409	4.67455
22	.00669	.02319	.01786	.00943	.01756	.00993	.01028	5.00693
23	00242	.02404	.01371	.00209	.01109	.01644	.01563	4.25243
24	.00905	00429	.01338	.03703	.00979	.01732	.02912	5.83843
25	00533	.02887	00223	.00271	.01691	.00845	.02169	3.75324
26	00057	.02128	.01159	.00623	.01586	00380	.05933	5.81646

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE	k
27	.00047	.01679	.01449	.01971	.00763	.01610	.02457	5.24172
28	.00650	.01149	.01409	.02127	.01252	.01285	.01469	4.90858
29	00289	.01231	.02460	.01292	.01192	.01040	.01645	4.52348
30	.00631	.02729	.00863	.02900	.00813	.01698	.01190	5.66642
31	01075	.00677	.01067	.02278	.00069	.02129	.01500	3.47933
32	00606	.01479	.01564	.02069	.01468	.02007	.00870	4.65548
33	.00504	.01997	.01556	.01457	.01002	.01505	.01853	5.19263
34	.01189	.03001	.00830	.02611	.00169	.00935	.03322	6.31698
35	00332	.01442	.02054	.01985	.00580	.01443	.01927	4.78356
36	.00930	.03936	.01556	.01865	.00474	.00533	.01452	5.63854
37	.02313	.02416	.00023	.03164	00605	.01017	.01800	5.27355
38	.00999	.01813	.00615	.02584	.00099	.01757	.04013	6.22361
39	00836	.01825	.00818	.01274	.00663	.00918	.05558	5.38801
40	.01565	.00284	.02176	.01738	.01101	.01078	.00023	4.18519
41	.00090	.01170	.02622	.01304	.00795	.01002	.02264	4.87629
42	.01448	.00631	.03704	.01953	.00685	.00543	.02811	6.20207
43	.01911	.01622	.01503	03403	.02055	.02188	00012	6.64134
44	00450	.00632	.04022	.01667	.01741	00027	.03479	5.85832
45	.01693	.02012	.01879	.00918	.01177	.01112	00321	4.45413
46	.01462	.00701	.01762	.01639	.00844	.01381	00633	3.75230
47	01016	.03513	.02313	.01549	.00621	.00866	.02460	5.42806
48	.01528	.00395	.01428	.02358	.03023	00360	.00424	4.64050
49	00974	00023	.02870	.02973	.00711	.02297	.02858	5.63409
50	.01826	.04538	.02280	01565	00414	.00346	.02310	4.91627
51	.02158	.00765	00119	.03175	.00130	.00750	.03731	5.53451
52	.00315	.00967	.02549	.02107	.01586	.00793	.00316	4.54763
53	.02416	.00586	.01824	.01605	.01760	.01958	01207	4.69566

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	MC	EI	VE	k
54	01720	.00897	.01976	.00821	.00271	.02267	.01321	3.07611
55	01090	.01089	.02431	.03516	.00712	.02146	.00683	4.97425
56	00619	01049	.03441	.04196	01573	.02236	.02062	4.53455
57	.00444	.02579	.00880	.00679	.00589	.03425	.01463	5.27965
58	.00697	.02958	.02512	.02149	.01366	.02428	00050	6.33472
59	.00261	.02620	.02644	.02126	.01792	.01444	.01259	6.39632
60	.01270	.02222	.01203	.01549	00010	.01113	.02178	4.99289
61	.02201	.01800	.02491	.00290	.01071	00745	.04162	5.95439
62	.00688	00399	.01615	.00863	.01494	.00832	01070	2.12528
63	.00521	.01437	.03903	.01743	.01521	.01608	.00513	5.92895
64	.01406	.01830	.02729	.01357	.01543	.00778	.00051	5.10619
65	.01847	.00951	.01551	.01581	.02485	.02187	00542	5.29303
66	.01113	.00558	.02551	.01836	.01836	.00992	.00288	4.83461
67	.00708	.01182	.04676	.00961	.01775	.01723	00471	5.57849
68	00396	.00958	.05123	.00613	.01732	.01048	.02360	6.06451
69	.00035	.00271	.04867	.01887	.01001	.02413	.00805	5.94615
70	.00478	.02112	.03774	.00157	.00425	.01864	.00392	4.85467
71	00302	.01778	.01807	.01275	.01138	.00445	.02580	4.60208
72	00599	.01745	.03377	.01033	.01527	.00400	.01114	4.55096
73	.01025	.00951	.04878	.01073	.02043	.00824	00088	5.66418
74	00317	.00826	.04953	.01087	.01236	.01279	.01918	5.81170
75	.00210	.01305	.04522	.00476	.00906	.01510	.00864	5.17772
76	.00247	.01669	.03967	.00677	.02138	.01467	.01007	5.91174
77	00221	.01893	.05038	.00855	.01643	.01192	.01382	6.23562
78	00273	.01468	.03590	.02368	.01160	.00402	.03031	6.19570
79	00814	.03030	.01895	.00550	.03537	00311	.02629	5.58469
80	00191	.01400	.02638	.02231	.01348	.01101	.02434	5.77498

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	MC	EI	VE	k
81	.00817	.02383	.02287	.01851	.01485	.01128	.01667	6.11478
82	00284	.01497	.01956	.00881	.01972	.01055	.01348	4.45501
83	00084	.01750	.02755	.00821	.01773	.01870	.01562	5.51830
84	.00127	00804	.00617	.02459	.00185	01499	.03926	2.63379
85	00301	.01169	.02233	.02317	.00637	00803	.03942	4.84767
86	.00948	.02645	.01778	.01968	.01004	.01510	.01147	5.77614
87	.01171	.03889	.00626	.01811	.01003	.01405	.00805	5.61437
88	.00385	.01571	.00829	.02096	00080	.01223	.02559	4.49434
89	.01437	-:01413	.02110	.01266	.01815	.01281	.01276	4.10396
90	00201	.01663	.00440	.03207	.00111	.01102	.04340	5.58452
91	00217	.04778	.00104	.02300	.00851	.00039	.03238	5.82197
92	00967	.02927	00315	.03503	.00406	.00833	.04843	5.88293
93	.00741	.03081	00591	.02002	01439	.01115	.04708	5.01650
94	00453	.03334	00726	.02580	.00115	00314	.04235	4.59223
95	.00251	.01838	.00743	.01938	.00478	00887	.05794	5.34596
96	00319	.00842	.00976	.02865	.01340	.00970	.01017	4.03655
97	.00094	.02028	00548	.02584	.00550	.01077	.01578	3.84473
98	00500	.03023	00307	.02891	00250	00385	.03055	3.93080
99	.01013	.02130	00725	.04044	00867	.00474	.03061	4.74363
100	00134	.02598	00710	.01865	00109	.01084	.05867	5.48583
101	00718	.03578	.00132	.03362	.00197	.00345	.02997	5.17575
102	.00185	.03462	00214	.02394	00455	.00462	.03029	4.63002
103	00459	.03359	00117	.02973	00093	.00890	.01984	4.45598
104	00958	.04179	00170	.02837	00814	.01088	.04298	5.46569
105	.00215	.03658	.00985	.02331	00747	01645	.03311	4.24583
106	00520	.02964	.00263	.03461	00684	00169	.03614	4.66183
107	00398	.03287	00886	.02803	00015	.01137	.02219	4.24788

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	МС	EI	VE	<u>k</u>
108	.00218	.02203	.00787	.01188	.01266	.01040	.01772	4.46015
109	00854	.04045	00054	.00865	.01361	.00914	.04451	5.65465
110	.00745	.02152	.02181	.01774	.01197	.01011	.00797	5.18409
111	00529	.01555	.01031	.01824	.02132	.00730	.00772	3.96423
112	.00032	.02420	.01805	.01231	00273	00002	00720	2.35244
113	.01263	.02125	.01764	.03783	.00782	.00908	.00437	5.78748
114	00065	.00621	.02157	.02800	00167	.00540	.01126	3.67089
115	.00269	.01684	.02575	.00581	.01261	.00907	.01111	4.43137
116	00506	.01810	00089	.01582	00596	.00088	.02877	2.69930
117	.00582	.01455	.01235	.01227	.01326	.00579	.01639	4.23710
118	.03318	.02342	00446	.02158	.00383	.00417	.01152	4.86580
119	.00335	.02807	01270	.00628	.00342	.00659	.02838	3.32249
120	01933	.01360	.01144	.01941	00153	00229	.01295	1.79748
121	.02781	.02990	.00146	.00754	.02039	.00606	.01905	5.90360
122	00870	.01299	00908	.02888	00227	.01559	.00373	2.12167
123	.00239	.02113	.00020	.01085	00706	.01625	.05025	4.92859
124	.01168	.03043	.00646	.03298	.00093	00118	.01130	4.83443
125	.02307	.02657	00154	.01667	.01735	.00410	.01220	5.16486
126	.01709	.03905	00223	.01526	.01101	.01396	.00891	5.39725
127	.00553	.01999	.00105	.01183	.02305	.01990	.00055	4.30854
128	00373	.02296	.00673	.02472	01352	.00427	.03723	4.10599
129	.00336	.02038	00471	.00250	.01478	.00414	.03757	4.11943
130	00474	.03460	.00339	.02543	.00956	00112	.02156	4.65396
131	.00828	.02399	.01942	.00781	.01118	.00964	.02403	5.49984
132	.02373	.04144	.01289	00811	.00657	00192	.01046	4.48235
133	00073	.00479	.01664	.02968	.01289	.00506	00727	3.20219
134	00316	.02481	.00243	.01904	00140	.00583	.02342	3.71436

Transformation Weights (u) and Constants (k) to Apply to ASVAB Tests in the First Tier Without NO and CS (150 Job Families)

Job Family	GS	AR	AS	MK	MC	EI	VE	k
135	00289	.00847	.00178	.02052	00115	.02113	.04724	4.98572
136	00319	.03505	.00045	.02306	.01237	.01094	.05259	6.90052
137	.00150	.01627	.01007	.01840	.01285	.00540	.02773	4.85470
138	00505	.02805	.00395	.01075	.01287	.00167	.00900	3.22664
139	00306	.02710	.00776	.03422	.01285	.00014	.05710	7.15597
140	.00507	.02106	.02380	.03591	.01486	00457	.03323	6.80402
141	00413	.01625	.03480	.01574	.00949	.00322	.03419	5.78606
142	.01773	00045	00280	.02399	.01096	.01547	.04792	5.91939
143	00644	.03547	.00636	.02214	.01250	.00619	.04890	6.58395
144	.00081	.02451	.00203	.01412	.00598	.00716	.01444	3.62147
145	00612	.03590	.00845	.02422	.00475	00432	.02171	4.43842
146	.00273	.02348	.01896	.02845	.01060	00547	.03776	6.12990
147	.01708	.02767	.01062	.03475	.00231	00205	00774	4.30585
148	.00186	.02047	.00892	.01817	.01212	.00910	.02386	4.97044
149	.02216	.01932	.01002	.00388	.01390	.00327	.02259	5.01324
150	.00232	.00296	.01479	.03073	.01397	.01254	01415	3.30547

Appendix E1

Computations for Obtaining Second Tier Statistical Standard Scores from Operational ASVAB Test Scores Without Either NO or CS or Both

The actual beta weights used in the simulations are shown in appendix E2. They are not needed for operational computations. The weights, u, and constants, k, for each job family for the first tier are shown in appendix E3. These are the weights to be used in operational computations.

The procedure for transforming the operational ASVAB test scores into traditional Army standard AA scores required for use in the second tier system is given below:

- (1) Obtain the sum of the products of the nine u weighted ASVAB operational test scores for each composite.
- (2) Subtract the constant k for each composite from the sum of the weighted scores obtained in (1) above.

This transformation results in obtaining the Army standard score composite for each soldier for each of the 17 job families required for use in the second tier for record-keeping, counseling and establishing minimum cut score.

Eight-Test Composite Weights for ASVAB Tests Without NO Using the Samples A + B + C. Only Positive Weights Used.

Appendix E2

	luster	GS	AR	CS	AS	MK	MC	EI	VE
1	CL1	.00090	.00000	.15576	.00766	.32836	.04585	.00000	.30720
2	CL2	.00000	.22609	.06048	.06711	.15638	.06283	.04655	.15976
3	COI	.04674	.06906	.01727	.11906	.17521	.09482	.04817	.06304
4	CO2	.06422	.11183	.05106	.13581	.13733	.10670	.08025	.09494
5	EL1	.01042	.13162	.04081	.16717	.12459	.08244	.12093	.14386
6	EL2	.04610	.11426	.04786	.13402	.18174	.08986	.10986	.10633
7	EL3	.03325	.17189	.14137	.07194	.11074	.05974	.07996	.21921
8	FA	.04164	.11954	.00000	.11243	.16709	.11699	.04958	.09799
9	GM1	.07021	.20045	.04004	.19602	.11929	.08809	.14434	.06690
10	GM2	.08287	.09569	.05956	.18148	.15159	.09535	.08002	.04094
11	MM1	.02418	.10178	.00747	.36922	.08690	.13225	.12730	.04698
12	MM2	.00568	.15307	.05605	.20011	.12494	.13161	.06568	.17822
13	OF	.04456	.15919	.04494	.17639	.09514	.10910	.06870	.10213
14	SC	.00568	.12436	.06418	.09126	.18331	.07481	.11276	.14871
15	ST1	.06485	.12910	.08598	.08099	.10447	.10449	.05901	.11975
16	ST2	.03651	.17430	.09724	.05862	.15126	.07413	.04111	.23455
17	ST3	.02851	.14006	.09544	.11210	.15260	.10500	.06876	.18519

Appendix E3

Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO (17 job families)

C	luster	GS	AR	CS	AS	MK	MC	EI	VE	k
1	CL1	.00244	.00000	.42479	.02089	.89552	.12504	.00000	.83781	15.32469
2	CL2	.00000	.68970	.18451	.20473	.47704	.19168	.14199	.48735	18.84961
3	CO1	.17797	.26295	.06577	.45332	.66713	.36104	.18341	.24002	20.58016
4	CO2	.20029	.34882	.15925	.42359	.42834	.33282	.25032	.29613	21.97726
5	EL1	.03082	.38931	.12072	.49449	.36854	.24387	.35770	.42553	21.54932
6	EL2	.13508	.33481	.14025	.39271	.53253	.26331	.32192	.31158	21.60887
7	EL3	.09151	.47308	.38909	.19800	.30478	.16441	.22006	.60332	22.21171
8	FA	.14019	.40246	.00000	.37852	.56254	.39385	.16691	.32991	18.71922
9	GM1	.18294	.52229	.10434	.51073	.31081	.22952	.37608	.17432	20.55166
10	GM2	.25859	.29858	.18586	.56628	.47301	.29752	.24970	.12776	22.86526
11	MM1	.06343	.26697	.01959	.96845	.22793	.34688	.33390	.12322	17.51833
12	MM2	.01517	.40860	.14963	.53417	.33352	.35131	.17531	.47574	22.17276
13	OF	.13545	.48384	.13659	.53613	.28918	.33161	.20882	.31043	21.60254
14	SC	.01713	.37527	.19367	.27539	.55316	.22575	.34028	.44876	21.46998
15	ST1	.21228	.42259	.28145	.26512	.34195	.34204	.19316	.39200	22.52922
. 16	ST2	.10099	.48212	.26896	.16214	.41838	.20504	.11371	.64875	20.00414
17	ST3	.07876	.38693	.26366	.30968	.42158	.29007	.18995	.51160	22.61149

Appendix E4

Eight-Test Composite Weights for ASVAB Tests Without CS Using the Samples A + B + C. Only Positive Weights Used.

C	luster	GS	AR	NO	AS	MK	МС	EI	VE
1	CL1	.00000	.00000	.12513	.00000	.31892	.03828	.01835	.32196
2	CL2	.00000	.22309	.03747	.06128	.15864	.06636	.04485	.17369
3	CO1	.04695	.06130	.03292	.11742	.17082	.09774	.04986	.05900
4	CO2	.06292	.11601	.01006	.13096	.14428	.10793	.07695	.11492
5	EL1	.00961	.13184	.01808	.16331	.12785	.08428	.11924	.15616
6	EL2	.04517	.11422	.02216	.12949	.18534	.09209	.10798	.12041
7	EL3	.03154	.15714	.11253	.05855	.11063	.07033	.07886	.24357
8	FA	.04164	.11954	.00000	.11243	.16709	.11699	.04958	.09799
9	GM1	.06903	.20618	.00000	.19222	.12654	.08838	.14100	.08546
10	GM2	.08179	.09461	.03091	.17583	.15531	.09841	.07799	.05724
11	MM1	.02396	.10285	.00000	.36851	.08825	.13230	.12667	.05044
12	MM2	.00519	.14467	.05283	.19480	.12302	.13650	.06602	.18488
13	OF	.04353	.16151	.01322	.17213	.10025	.11055	.06621	.11812
14	SC	.00438	.12496	.02761	.08518	.18862	.07763	.11003	.16836
15	ST1	.06261	.13706	.01397	.07284	.11684	.10631	.05316	.15448
16	ST2	.03422	.17991	.02675	.04940	.16275	.07711	.03554	.26982
17	ST3	.02669	.13954	.04563	.10305	.15946	.10958	.06513	.21273

Appendix E5

Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without CS (17 job families)

C	luster	GS	AR	NO	AS	MK	MC	EI	VE	k
1	CL1	.00000	.00000	.34398	.00000	.87668	.10524	.05043	.88505	13.06940
2	CL2	.00000	.68176	.11450	.18727	.48480	.20280	.13705	.53081	16.94935
3	CO1	.17866	.23323	.12525	.44681	.64996	.37191	.18972	.22452	21.00311
4	CO2	.19665	.36256	.03144	.40927	.45088	.33730	.24048	.35913	19.38504
5	EL1	.02845	.39034	.05353	.48352	.37855	.24953	.35305	.46236	19.96620
6	EL2	.13253	.33512	.06502	.37990	.54378	.27019	.31679	.35327	19.83001
7	EL3	.08730	.43495	.31148	.16207	.30622	.19466	.21829	.67420	19.45834
8	FA	.14019	.40245	.00000	.37851	.56253	.39384	.16690	.32990	18.71629
9	GM1	.18000	.53767	.00000	.50125	.32998	.23048	.36768	.22285	18.49481
10	GM2	.25575	.29583	.09665	.54983	.48565	.30772	.24388	.17900	20.71526
11	MM1	.06284	.26975	.00000	.96651	.23146	.34699	.33224	.13229	17.10368
12	MM2	.01385	.38636	.14108	.52025	.32855	.36455	.17633	.49375	21.23559
13	OF	.13248	.49157	.04025	.52389	.30514	.33648	.20152	.35951	19.54179
14	SC	.01326	.37804	.08352	.25768	.57061	.23483	.33287	.50931	19.00596
15	ST1	.20621	.45141	.04602	.23989	.38481	.35012	.17509	.50879	18.11731
16	ST2	.09516	.50030	.07439	.13737	.45259	.21444	.09883	.75033	16.16966
17	ST3	.07406	.38720	.12662	.28596	.44248	.30406	.18074	.59030	19.57075

Appendix E6

Seven-Test Composite Weights for ASVAB Tests Without NO and CS Using the Samples A+B+C. Only Positive Weights Used.

Clus	ster	GS	AR	AS	MK	MC	EI	VE
1 0	CLI	.00000	.00000	.00000	.36801	.03534	.00815	.37378
2 (CL2	.00000	.23472	.06118	.16708	.06309	.04109	.18704
3 C	CO1	.04623	.07153	.11742	.17833	.09494	.04673	.07104
4 C	CO2	.06270	.11914	.13096	.14657	.10708	.07599	.11860
5 E	EL1	.00921	.13746	.16330	.13198	.08274	.11752	.16277
6 E	EL2	.04468	.12111	.12948	.19041	.09021	.10587	.12851
7 E	EL3	.02906	.19213	.05853	.13633	.06077	.06816	.28471
8 F	FA	.04164	.11954	.11243	.16709	.11699	.04958	.09799
9 (GM1	.06903	.20618	.19222	.12654	.08838	.14100	.08546
10 C	GM2	.08111	.10422	.17583	.16237	.09578	.07505	.06854
11 N	MM1	.02396	.10285	.36851	.08825	.13230	.12667	.05044
12 N	мм2	.00402	.16109	.19479	.13509	.13202	.06100	.20419
13 C	DF	.04323	.16562	.17213	.10328	.10943	.06495	.12295
14 S	SC	.00377	.13355	.08517	.19493	.07528	.10741	.17845
15 S	ST1	.06231	.14141	.07284	.12003	.10512	.05183	.15959
16 S	ST2	.03363	.18822	.04939	.16886	.07484	.03299	.27960
17 S	ST3	.02568	.15373	.10304	.16988	.10570	.06079	.22941

Appendix E7

Transformation weights (u) and constants (k) to apply to ASVAB tests in the Second Tier Without NO and CS (17 job families)

C	luster	GS	AR	AS	MK	MC	EI	VE	k
1	CL1	.00000	.00000	.00000	1.01608	.09756	.02250	1.03199	8.40654
2	CL2	.00000	.71792	.18713	.51103	.19298	.12569	.57210	15.34294
3	CO1	.17608	.27246	.44723	.67927	.36164	.17798	.27058	19.26222
4	CO2	.19597	.37236	.40929	.45809	.33465	.23750	.37065	18.92512
5	EL1	.02728	.40706	.48359	.39085	.24503	.34802	.48202	19.19236
6	EL2	.13113	.35544	.37999	.55878	.26474	.31069	.37714	18.89584
7	EL3	.08095	.53519	.16303	.37977	.16928	.18985	.79309	15.55793
8	FA	.14019	.40246	.37852	.56254	.39385	.16691	.32991	18.71933
9	GM1	.18000	.53768	.50126	.32999	.23048	.36769	.22285	18.49790
10	GM2	.25378	.32608	.55014	.50804	.29969	.23482	.21446	19.35053
11	MM1	.06285	.26978	.96662	.23148	.34703	.33227	.13230	17.11728
12	MM2	.01076	.43078	.52089	.36125	.35303	.16311	.54603	19.29216
13	OF	.13160	.50414	.52394	.31436	.33310	.19771	.37426	18.95577
14	SC	.01142	.40419	.25777	.58996	.22784	.32507	.54009	17.81739
15	ST1	.20523	.46579	.23991	.39537	.34626	.17074	.52569	17.44907
16	ST2	.09356	.52361	.13740	.46975	.20820	.09178	.77780	15.10488
17	ST3	.07134	.42701	.28623	.47190	.29361	.16887	.63726	17.81072

Appendix F1

Sample Size	es by Total, Gend	er and Race for	Each Family (60	6 Families)	
Family	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Family Name	N/%	N/%	N/%	N/%	N / %
11B	3490	0	2906	584	3490
	100.00	0.00	83.27	16.73	100.00
11C	1896	0	1605	291	1896
	100.00	0.00	84.65	15.35	100.00
11H	1027	0	873	154	1027
	100.00	0.00	85.00	15.00	100.00
11M	1416	0	1157	259	1416
	100.00	0.00	81.71	18.29	100.00
12C	726	0	596	130	726
	100.00	0.00	82.09	17.91	100.00
13B	7851	0	4242	3609	7851
	100.00	0.00	54.03	45.97	100.00
13F	1757	0	1431	326	1757
	100.00	0.00	81.45	18.55	100.00
13M	375	0	342	33	375
	100.00	0.00	91.20	8.80	100.00

C:1	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Family Name	N/%	N / %	N/%	N/%	N/%
13N	463	11	387	87	474
	97.68	2.32	81.65	18.35	100.00
13R	162	0	134	28	162
	100.00	0.00	82.72	17.28	100.00
16D	247	32	230	49	279
	88.53	11.47	82.44	17.56	100.00
16P	450	0	378	72	450
	100.00	0.00	84.00	16.00	100.00
16R	399	0	340	59	399
	100.00	0.00	85.21	14.79	100.00
16S	837	0	521	316	837
	100.00	0.00	62.25	37.75	100.00
19E	1661	0	1298	363	1661
	100.00	0.00	78.15	21.85	100.00
19K	2714	0	2222	492	2714
	100.00	0.00	81.87	18.13	100.00
29E	368	27	331	64	395
	93.16	6.84	83.80	16.20	100.00

Sample Size	es by Total, Gena	ler and Race for	Each Family (60	6 Families)	
Family	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Name	N/%	N / %	N / %	N/%	N / %
29J	259	14	235	38	273
	94.87	5.13	86.08	13.92	100.00
29N	281	26	198	109	307
	91.53	8.47	64.50	35.50	100.00
29V	135	14	133	16	149
	90.60	9.40	89.26	10.74	100.00
31C	2587	252	2376	463	2839
	91.12	8.88	83.69	16.31	100.00
31K	2531	219	1667	1083	2750
	92.04	7.96	60.62	39.38	100.00
31L	857	230	570	517	1087
	78.84	21.16	52.44	47.56	100.00
31V	1599	130	1224	505	1729
	92.48	7.52	70.79	29.21	100.00
33T	68	3	70	1	71
	95.77	4.23	98.59	1.41	100.00
			4.50	22	107
35K	161	36	159	38	197
	81.73	18.27	80.71	19.29	100.00

Sample Size	es by Total, Gend	ler and Race for	Each Family (60	6 Families)	
Family	Men	Women	Whites	Blacks	<u>Total</u>
Name	N/%	N/%	N/%	N/%	N / %
43E	354	23	317	60	377
	93.90	6.10	84.08	15.92	100.00
44B	410	7	335	82	417
	98.32	1.68	80.34	19.66	100.00
44E	232	2	217	17	234
	99.15	0.85	92.74	7.26	100.00
45K	321	7	274	54	328
	97.87	2.13	83.54	16.46	100.00
					0.70
51B	839	20	697	162	859
	97.67	2.33	81.14	18.86	100.00
52D	2285	109	1872	522	2394
	95.45	4.55	78.20	21.80	100.00
54B	995	83	781	297	1078
	92.30	7.70	72.45	27.55	100.00
·					
55B	840	79	664	255	919
	91.40	8.60	72.25	27.75	100.00
62B	1090	33	864	259	1123
	97.06	2.94	76.94	23.06	100.00

Sample Size	es by Total, Gena	er and Race for	Each Family (60	ramilles)	
Family	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Name	N/%	N / %	N / %	N / %	N/%
					•
62E	676	7	599	84	683
	98.98	1.02	87.70	12.30	100.00
62J	378	4	311	71	382
	98.95	1.05	81.41	18.59	100.00
63B	4040	399	3284	1155	4439
OSD		8.99	73.98	26.02	100.00
	91.01	6.99	73.90	20.02	100.00
63E	540	0	467	73	540
	100.00	0.00	86.48	13.52	100.00
63G	300	11	261	50	311
	96.46	3.54	83.92	16.08	100.00
63S	931	16	873	74	947
	98.31	1.69	92.19	7.81	100.00
63T	700	0	662	38	700
	100.00	0.00	94.57	5.43	100.00
C	741	16	696	61	757
67V	741	16		8.06	100.00
	97.89	2.11	91.94	6.00	100.00
68B	215	41	235	21	256
	83.98	16.02	91.80	8.20	100.00

Family	<u>Men</u>	Women	<u>Whites</u>	Blacks	<u>Total</u>
Name	N/%	N / %	N / %	N / %	N/%
			252	21	201
68G	378 98.44	6 1.56	353 91.93	31 8.07	384 100.00
	30.11	1.00	11 -		
68J	355	12	307	60	367
	96.73	3.27	83.65	16.35	100.00
71D	378	172	440	110	550
/1D	68.73	31.27	80.00	20.00	100.00
71L	238	527	358	407	765
	31.11	68.89	46.80	53.20	100.00
71M	249	128	298	79	377
	66.05	33.95	79.05	20.95	100.00
72E	502	136	372	266	638
	78.68	21.32	58.31	41.69	100.00
72G	324	325	388	261	649
	49.92	50.08	59.78	40.22	100.00
				2.62	700
73C	449	350	437	362	799
	56.20	43.80	54.69	45.31	100.00
74D	200	127	236	91	327
	61.16	38.84	72.17	27.83	100.00

Б 4	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Family Name	N/%	N/%	N / %	N/%	N/%
75B	1051	491	821	721	1542
	68.16	31.84	53.24	46.76	100.00
75D	337 .	652	414	575	989
	34.07	65.93	41.86	58.14	100.00
76C	2263	140	1402	1001	2403
	94.17	5.83	58.34	41.66	100.00
76Y	3591	688	2432	1847	4279
	83.92	16.08	56.84	43.16	100.00
77F	2456	390	1621	1225	2846
,,,	86.30	13.70	56.96	43.04	100.00
81E	81	48	108	21	129
	62.79	37.21	83.72	16.28	100.00
84B	84	11	84	11	95
ОЧБ	88.42	11.58	88.42	11.58	100.00
	2011				
84F	58	33	60	31	91
	63.74	36.26	65.93	34.07	100.00
			216	217	5 22
88H	469	64	316	217	533

F:1	<u>Men</u>	Women	<u>Whites</u>	<u>Blacks</u>	<u>Total</u>
Family Name	N/%	N / %	N/%	N/%	N/%
88M	4758	610	3694	1674	5368
	88.64	11.36	68.82	31.18	100.00
91A	1493	297	1306	484	1790
	83.41	16.59	72.96	27.04	100.00
94B	3069	718	1772	2015	3787
	81.04	18.96	46.79	53.21	100.00
95B	2059	310	2182	187	2369
	86.91	13.09	92.11	7.89	100.00
Totals:	75046	8086	58435	24697	83132
•	90.27	9.73	70.29	29.71	100.00

Appendix F2

Sample Sizes by Total, Gender and Race for Each Family (25 Families)					
Family	<u>Men</u>	Women	Whites	Blacks	<u>Total</u>
Family Name	N/%	N/%	N/%	N/%	N/%
12C	726	0	596	130	726
	100.00	0.00	82.09	17.91	100.00
13R	162	0	134	28	162
•	100.00	0.00	82.72	17.28	· 100.00
29V	135	14	133	16	149
	90.60	9.40	89.26	10.74	100.00
33T	68	3	70	1	71
	95.77	4.23	98.59	1.41	100.00
63T	700	0	662	38	700
	100.00	0.00	94.57	5.43	100.00
67V	741	16	696	61	757
	97.89	2.11	91.94	8.06	100.00
72E	502	136	372	266	638
	78.68	21.32	58.31	41.69	100.00
76C	2263	140	1402	1001	2403
	94.17	5.83	58.34	41.66	100.00

Sample Siz	zes by Total, Gend	er and Race for	Each Family (25	Families)	
88H	469	64	316	217	533
	87.99	12.01	59.29	40.71	100.00
95B	2059	310	2182	187	2369
	86.91	13.09	92.11	7.89	100.00
011	2456	360	1794	1022	2816
	87.22	12.78	63.71	36.29	100.00
012	8205	23	4559	3669	8228
	99.72	0.28	55.41	44.59	100.00
013	5670	432	4615	1487	6102
	92.92	7.08	75.63	24.37	100.00
014	730	281	732	279	1011
	72.21	27.79	72.40	27.60	100.00
015	4788	1701	3735	2754	6489
	73.79	26.21	57.56	42.44	100.00
016	720	7	614	113	727
	99.04	0.96	84.46	15.54	100.00
017	1510	711	1369	852	2221
	67.99	32.01	61.64	38.36	100.00
018	2594	0	1952	642	2594
	100.00	0.00	75.25	24.75	100.00

Sample Size	es by Total, Gend	er and Race for	Each Family (2.	5 Families)	
019	10228	1073	7991	3310	11301
	90.51	9.49	70.71	29.29	100.00
020	8044	41	6776	1309	8085
	99.49	0.51	83.81	16.19	100.00
021	. 711	52	650	113	763
	93.18	6.82	85.19	14.81	100.00
022	3890	200	3223	867	4090
	95.11	4.89	78.80	21.20	100.00
023	9616	540	7501	2655	10156
	94.68	5.32	73.86	26.14	100.00
024	7372	1105	5566	2911	8477
	86.96	13.04	65.66	34.34	100.00
025	687	877	795	769	1564
. 023	43.93	56.07	50.83	49.17	100.00
Totals:	75046	8086	58435	24697	83132
i Otais.	90.27	9.73	70.29	29.71	100.00

Appendix G1

	ndix G1	for the	O Most Batt	orus for Formalog	Blacks and	Total	(66 MC	251
MPPs				ery for Females,		TOLAT	(00 140	13/
	Female	Black	Female	Black	Total			
MOS	8	ક	MPP/SD	MPP/SD	MPP/SD			
				0 445560	0.000074			
11B	0.00	16.73	0.00000	-0.415562	-0.086274			
			0.000000	0.080420	0.011707			
11C	0.00	15.35	0.000000	-0.589823	-0.227501			
			0.000000	0.126196	0.040392			
11H	0.00	15.01	0.000000	-0.387578	-0.171777			
			0.000000	0.152727	0.040960			
					0.005000			
11M	0.00	18.29	0.000000	-0.475739	-0.237380			
			0.000000	0.087708	0.029271			
12C	0.00	17.84	0.000000	-0.342468	0.060281			
			0.000000	0.144768	0.039114			
					0.011500			
13B	0.00	45.76	0.000000	-0.295639	-0.011699			
			0.000000	0.072337	0.005879			
					0 485036			
13F	0.00	18.54	0.000000	-0.228723	0.175836			
			0.000000	0.222129	0.096578			
				0.156636	. 0 020030			
13M	58.06	66.83	-0.073682		-0.079839			
			0.203254	0.136890	0.083503			
4 222	00.66	60.04	0 205406	0 547404	-0.429169			
13N	20.66	60.84	-0.385486	-0.547424 0.220320	0.143234			
			0.379277	0.220320	0.143234			
120	C 2C	40 01	-0.352935	-0.460709	-0.307133			
13R	6.36	42.21	0.282372	0.228932	0.176015			
			0.262372	0.220932	0.170013			
1.60	10 44	24 22	-0.019230	0.055870	0.546871			
16D	10.44	34.33	0.048336	0.266950	0.459043			
			0.046550	0.200930	0.437043			
16P	4.14	26.40	-0.020893	-0.136361	0.193467			
TOP	4.14	20.40	0.052527	0.262957	0.242226			
			0.032327	0.202557	0.242220			
16R	1.76	36.11	-0.032767	-0.026072	0.330647			
TOK	1.70	30.11	0.084064	0.020072	0.167055			
			0.004004	0.237541	0.10,033			
16S	23.84	61.19	-0.133873	-0.199946	-0.075359			
102	23.04	01.19	0.185385	0.109071	0.086237			
			0.10000	0.1070/1	J.000237			
105	0.00	18.47	0.000000	-0.298359	-0.053449			
19E	0.00	10.4/	0.000000	0.287944	0.128287			
			0.000000	0.20/344	0.120207			
19K	0.00	17.11	0.000000	-0.386012	0.022526			
TAV	0.00	T / . T T	0.000000	0.177422	0.022320			
			0.000000	0.1/122	J.00JJII			
2017	12 60	2.85	0.595970	0.230935	1.577863			
29E	12.68	∠.85	0.595970	0.230333	±.5//005			

			0.703855	0.531937	0.166255
29J	12.27	9.12	0.410035 0.480085	0.435275 0.541891	0.962356 0.171819
29N	37.63	42.22	-0.013812 0.311303	-0.165723 0.267224	0.025787 0.173803
29V	43.48	19.50	0.918086 0.499806	0.288290 0.427225	1.089737 0.166169
31C	12.30	50.46	-0.129551 0.367405	-0.192836 0.133457	0.080935 0.092442
31K	8.38	60.58	-0.137817 0.405533	-0.214838 0.160280	-0.004416 0.077437
31L	0.66	40.96	-0.020345 0.074854	-0.251802 0.156874	-0.119941 0.072695
31V	2.17	38.39	-0.083778 0.221499	-0.300173 0.126767	-0.082716 0.063075
33Т	17.55	24.93	-0.249257 0.316811	-0.226420 0.304909	0.689244 0.468491
35K	24.05	69.75	-0.191562 0.295065	-0.293079 0.190111	-0.231917 0.164766
43E	5.14	61.02	-0.083092 0.182490	-0.355372 0.158401	-0.293196 0.113987
44B	1.31	12.29	0.018680 0.083540	0.104145 0.213075	0.856720 0.245881
44E	2.50	7.78	-0.006790 0.030366	0.076823 0.238563	0.972389 0.497123
45K	2.15	9.89	0.031903 0.116456	-0.054326 0.384391	0.403425 0.210535
51B	15.27	37.62	-0.120160 0.260055	-0.151674 0.292092	0.236689 0.235106
52D	0.53	1.98	0.094817 0.348652	0.285056 0.540372	1.461626 0.072575
54B	0.59	3.54	0.049830 0.131401	0.191196 0.328068	0.944632 0.097346
55B	24.66	36.92	0.010053 0.438761	-0.108853 0.319700	0.261113 0.264857
62B	1.10	6.42	0.000180	0.030384	0.571443

			0.000805	0.128665	0.162932
62E	0.00	6.54	0.000000	0.089740 0.244308	0.649902 0.144456
62J	7.33	35.40	-0.138348 0.235208	-0.397110 0.418370	-0.356949 0.261352
63B	0.32	4.79	0.036698 0.164116	0.508000 0.483687	0.946061 0.063898
63E	0.41	9.38	0.007302 0.032658	0.105205 0.310545	0.567764 0.161116
63G	15.02	26.16	0.008245 0.106436	-0.000803 0.199617	0.288264 0.416759
63S	0.00	4.76	0.000000	0.127372 0.280231	0.633181 0.111506
63Т	0.00	9.23	0.000000	0.086577 0.343058	0.431356 0.094497
67V	4.21	32.37	-0.213807 0.245660	-0.198262 0.223703	0.129199 0.087542
68B	20.02	78.17	-0.123115 0.271010	-0.262201 0.245125	-0.313457 0.219870
68G	10.04	33.74	0.060770 0.173329	0.112281 0.285093	0.610858 0.443404
68J	35.20	60.19	-0.309051 0.339662	-0.508765 0.272535	-0.423308 0.229916
71D	34.26	41.03	0.385451 0.442521	0.141583 0.455936	0.688071 0.374040
71L	56.12	42.58	0.339021 0.185626	0.167016 0.208484	0.343666 0.142010
71M	43.94	43.99	-0.004137 0.410341	-0.106238 0.303751	-0.065834 0.377511
72E	22.01	57.11	-0.253897 0.243595	-0.440546 0.101786	-0.294705 0.046002
72G	59.03	77.89	0.066411 0.213197	-0.040689 0.174003	-0.003957 0.122420
73C	47.17	83.29	0.258960 0.254000	0.200701 0.164434	0.225455 0.169542
74D	49.94	53.78	0.063481	0.036571	0.263967

			0.273139	0.240130	0.422323	
75B	38.62	37.46	0.633681 0.317323	0.473934 0.384769	0.757824 0.179415	
75D	30.53	91.08	-0.072995 0.254632	-0.218887 0.238350	-0.178358 0.174802	
76C	23.91	56.34	0.219348 0.264418	0.113034 0.125510	0.301317 0.114741	
76Y	43.89	71.44	-0.052406 0.116815	-0.130047 0.059318	-0.040478 0.017145	
77F	2.66	4.34	0.135933 0.317592	0.174896 0.359339	0.995863 0.093165	
81E	11.70	21.31	0.126236 0.318134	-0.001869 0.336990	0.721906 0.438956	
84B	7.55	30.20	-0.031463 0.134358	-0.124823 0.325666	0.043322 0.672003	
84F	17.26	51.50	-0.048885 0.244446	-0.188436 0.314302	-0.326896 0.389942	
88н	25.55	71.47	-0.213491 0.183807	-0.236310 0.118297	-0.182454 0.106288	
88M	2.98	13.10	-0.035546 0.206517	-0.095653 0.242934	0.324968 0.084660	
91A	14.63	34.75	-0.262887 0.199684	-0.386497 0.077256	-0.064479 0.019225	
94B	25.73	50.66	-0.149118 0.245334	-0.268284 0.106657	-0.007430 0.014202	
95B	19.19	23.33	0.165855 0.263929	0.013511 0.224279	0.351222 0.090011	

Appendix G2
MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without NO (66 MOS)

NO (66 MOS)					
	Female	Black	Female	Black	Total	
MOS	ક્ષ	ક	MPP/SD	MPP/SD	MPP/SD	
11B	0.00	16.73	0.000000	-0.392004	-0.079329	
111	0.00	10.,0	0.000000	0.075609	0.011257	
			0.00000	0,0,000	••••	
110	0 00	15 25	0.00000	-0.520705	-0.202632	
11C	0.00	15.35		0.136385	0.038820	
			0.000000	0.136363	0.030020	
		4 = 04	0 000000	0 271611	0 100050	
11H	0.00	15.01	0.000000	-0.371611	-0.169959	
			0.00000	0.170535	0.045161	
11M	0.00	18.29	0.000000	-0.474737	-0.238176	
			0.00000	0.098665	0.026578	
12C	0.00	17.87	0.00000	-0.308331	0.072729	
			0.000000	0.138025	0.044360	
13B	0.00	45.75	0.000000	-0.295372	-0.012356	
			0.000000	0.068540	0.008266	
13F	0.00	18.54	0.000000	-0.226988	0.139446	
			0.000000	0.234683	0.106994	
13M	57.55	65.42	-0.110422	-0.142339	-0.062119	
			0.142060	0.181579	0.078404	•
			•			
13N	17.66	54.48	-0.350177	-0.583260	-0.471271	
			0.345282	0.233721	0.117759	
13R	2.42	42.92	-0.132325	-0.316499	-0.140120	
1010	2.12		0.249538	0.244386	0.163064	
			5,22,555	• • • • • • • • • • • • • • • • • • • •		
16D	0.00	18.16	0.000000	0.048042	0.471807	
102	0.00	20.24	0.000000	0.168214	0.483645	
			0.00000	• • • • • • • • • • • • • • • • • • • •		
16P	3.41	26.39	-0.059025	-0.244755	0.145744	
101	3.41	20.35	0.137379	0.273539	0.210868	
			0.15/5/5	0.2,000	• • • • • • • • • • • • • • • • • • • •	
16R	2.76	39.22	-0.054038	-0.087632	0.227148	
TOK	2.70	37.22	0.111810	0.225537	0.166745	
			0.111010	0.223337	0.100,10	
16S	24.20	60.28	-0.142714	-0.211329	-0.072143	
702	24.20	00.20	0.201362	0.133213	0.076830	•
			0.201302	0.133213	0.070050	
100	0.00	10 50	0.000000	-0.424672	-0.073357	
19E	0.00	19.50		0.291764	0.136871	
			0.00000	0.231/04	0.1300/1	
1 0 **	0.00	17 07	0 00000	-0.448446	0.026087	
19K	0.00	17.86	0.000000	0.165523	0.020087	
			0.000000	0.103323	0.074000	

29E	11.76	2.54	0.587661 0.735062	0.231830 0.534664	1.589171 0.153293
29J	11.57	7.51	0.457258 0.493876	0.408470 0.558382	0.987664 0.156886
29N	37.05	42.93	-0.018964 0.273025	-0.193791 0.267942	0.003852 0.180319
29V	44.98	16.36	0.989885 0.507286	0.388243 0.517080	1.196017 0.248317
31C	12.82	51.04	-0.170538 0.351379	-0.154846 0.135348	0.114444 0.099032
31K	8.06	61.83	-0.092616 0.343680	-0.217307 0.152440	0.005883 0.070263
31L	0.91	43.34	-0.035862 0.173832	-0.295321 0.157391	-0.105529 0.058225
31V	2.92	42.60	-0.109459 0.266782	-0.339354 0.092506	-0.098828 0.044810
33Т	18.02	24.09	-0.206220 0.273589	-0.259310 0.305712	0.710177 0.431183
35K	28.01	76.09	-0.208469 0.295844	-0.323322 0.130524	-0.275944 0.139224
43E	4.24	63.06	-0.039442 0.132273	-0.356382 0.155689	-0.296140 0.106199
44B	1.31	8.08	0.018680 0.083540	0.091753 0.255032	0.848264 0.204557
44E	2.50	8.15	-0.006790 0.030366	0.081880 0.271635	0.966950 0.496569
45K	3.92	11.20	0.011400 0.129883	0.009563 0.288033	0.404914 0.201054
51B	2.27	34.07	0.007773 0.150499	-0.139711 0.254776	0.161910 0.124032
52D	0.73	1.41	0.094817 0.348652	0.166459 0.455519	1.479318 0.067521
54B	0.82	3.60	0.020723 0.124175	0.226272 0.389807	0.915029 0.095040
55B	29.37	40.36	0.024841 0.409938	-0.140383 0.261530	0.188912 0.205913

62B	0.73	8.59	0.000180 0.000805	0.040000 0.150218	0.595174 0.170293
62E	0.62	7.97	0.040875 0.126450	0.064050 0.284238	0.569122 0.171953
62J	11.54	35.00	-0.202648 0.250067	-0.408492 0.418050	-0.357015 -0.250397
63B	0.48	4.19	0.057865 0.204426	0.430113 0.471127	0.954946 0.063556
63E	0.41	9.93	0.007302 0.032658	0.049041 0.338259	0.602062 0.145041
63G	11.02	24.05	-0.004365 0.089624	-0.032525 0.218597	0.273597 0.413655
63S	0.17	2.87	0.006405 0.028644	0.082485 0.225101	0.641099 0.116043
63Т	0.25	9.13	-0.004245 0.017558	0.020478 0.320852	0.425716 0.090032
67V	2.84	33.48	-0.102955 0.254798	-0.173917 0.226970	0.145732 0.097241
68B	16.70	67.29	-0.139563 0.261857	-0.342288 0.219266	-0.358536 0.191453
68G	6.76	33.20	0.049142 0.162950	0.132431 0.281123	0.646250 0.416651
68J	27.47	53.76	-0.172109 0.338039	-0.403735 0.285415	-0.268858 0.246154
71D	29.32	53.59	0.312005 0.396713	0.115104 0.419065	0.538929 0.351082
71L	55.75	41.52	0.278766 0.184768	0.127511 0.220268	0.318134 0.129057
71M	36.24	47.64	-0.018439 0.363294	-0.071918 0.343215	-0.030402 0.391636
72E	23.94	57.92	-0.373890 0.207661	-0.462279 0.113155	-0.292500 0.036554
72G	56.50	80.05	0.086127 0.245191	-0.037733 0.161924	-0.003371 0.107857
73C	54.51	81.63	0.243311 0.202709	0.188440 0.176848	0.225986 0.160222

74D	44.59	52.72	0.058518 0.265782	0.034427 0.230401	0.269307 0.412341	
75B	40.67	41.95	0.597025 0.316048	0.451875 0.364644	0.719254 0.194063	
75D	28.27	83.46	-0.050487 0.299759	-0.205996 0.220713	-0.138001 0.146416	
76C	25.52	58.39	0.161998 0.259406	0.123675 0.152173	0.285537 0.128100	
76Y	44.36	69.44	-0.039640 0.127572	-0.132960 0.074028	-0.040197 0.016768	
77F	2.45	3.53	0.135933 0.317592	0.136734 0.302689	0.983687 0.090652	
81E	9.71	25.94	0.064663 0.232177	-0.056028 0.388067	0.624076 0.442531	
84B	10.06	31.52	-0.008055 0.111159	-0.043983 0.300667	0.208314 0.630786	
84F	16.99	54.07	-0.122935 0.228113	-0.298434 0.383077	-0.441869 0.375296	
88н	24.45	68.76	-0.120135 0.164098		-0.111081 0.088942	
88M	2.46	12.31	-0.056239 0.265992	-0.074518 0.236094	0.322124 0.102552	
91A	15.31	33.81	-0.286619 0.187445	-0.413798 0.094837	-0.065406 0.014173	
94B	22.42	49.83	-0.171597 0.238571		-0.006322 0.012174	
95B	19.69	22.38	0.103592 0.227336	0.009392 0.236535	0.343252 0.104872	·

Appendix G3

MPPs and SDs for the 8-Test Battery for Females, Blacks and Total, Without CS (66 MOS)

CS (66 MOS)					
	Female	Black	Female	Black	Total	
MOS	8	ક	MPP/SD	MPP/SD	MPP/SD	
					0.00000	
11B	0.00	16.73	0.000000	-0.402118	-0.067295	
			0.000000	0.074564	0.011475	
		45 25	0.00000	0 520612	-0.201863	
11C	0.00	15.35	0.000000	-0.539612	0.036813	
			0.00000	0.145655	0.030613	
11H	0.00	15.01	0.000000	-0.385982	-0.163707	
TIU	0.00	13.01	0.000000	0.181217	0.039606	
			0.00000	0.10121,	3.333333	
11M	0.00	18.29	0.000000	-0.463596	-0.225419	
			0.000000	0.084254	0.025403	
12C	0.00	17.87	0.00000	-0.401096	0.044625	•
			0.000000	0.120872	0.046911	
13B	0.00	45.55	0.00000	-0.276805	-0.007102	
			0.000000	0.067766	0.005430	
40-	0 00	10 54	0 000000	-0.258761	0.140754	
13F	0.00	18.54	0.000000 0.000000	0.199780	0.100825	
			0.000000	0.199760	0.100025	
13M	57.15	68.84	-0.165126	-0.247223	-0.153550	
TOM	37.13	00.01	0.230495	0.149901	0.107948	
13N	22.24	56.39	-0.386448	-0.565711	-0.409183	
			0.347460	0.215089	0.161560	
13R	6.16	41.51	-0.290185	-0.489277	-0.384470	
			0.273050	0.205887	0.144105	
1.65	4 00	20 50	0 007255	0.062145	0.587115	
16D	4.99	20.50	-0.007355 0.025958	0.002145	0.385656	
			0.023330	0.171325	0.303030	
16P	1.26	24.15	-0.026697	-0.268850	0.001990	
101	1.20	21.15	0.086862	0.268454	0.219772	
16R	2.94	36.73	-0.041513	-0.016160	0.314651	
			0.080764	0.262587	0.156311	
16S	30.52	55.42	-0.147111	-0.224431	-0.094950	
			0.220892	0.106231	0.078745	
	0 0 0	10.55	0.00000	0 202674	0 106202	
19E	0.00	18.77	0.000000	-0.383674	-0.106393 0.124997	
			0.000000	0.236834	U.14331	
19K	0.00	17.02	0.000000	-0.367851	0.002032	
エンレ	0.00	11.04	0.000000	0.162981	0.109695	
			0.00000	0.202501		

29E	9.91	5.25	0.524214 0.706021	0.348367 0.592734	1.485819 0.180951
29J	12.48	7.26	0.448340 0.520271	0.321899 0.491426	1.024976 0.141696
29N	32.64	45.13	-0.099520 0.308079	-0.264487 0.317103	-0.089591 0.208232
29V	49.30	19.38	0.975259 0.425075	0.357460 0.545508	1.052591 0.173302
31C	13.05	51.70	-0.120921 0.298351	-0.230152 0.136828	0.030876 0.079202
31K	7.22	58.56	-0.041544 0.249136	-0.225660 0.143494	-0.002630 0.072049
31L	1.20	39.95	-0.016488 0.137879	-0.286856 0.147352	-0.106814 0.051296
31V	1.91	35.23	-0.089205 0.216792	-0.299905 0.125870	-0.086655 0.050328
33Т	11.14	24.15	-0.122359 0.318812	-0.222389 0.313411	0.600128 0.410498
35K	30.11	71.56	-0.272904 0.201719	-0.364773 0.153207	-0.297549 0.134804
43E	5.31	60.36	-0.082202 0.205912	-0.327624 0.173870	-0.297434 0.105724
44B	2.53	10.16	0.015277 0.085698	0.088702 0.238558	0.857249 0.256031
44E	3.04	11.31	0.032705 0.106803	0.075360 0.229672	0.816464 0.468901
45K	5.11	8.21	-0.009192 0.248500	-0.041986 0.315862	0.391197 0.191929
51B	9.87	34.67	-0.103345 0.275943	-0.049342 0.337006	0.290793 0.226492
52D	0.49	1.85	0.078165 0.349565	0.242906 0.541407	1.511872 0.063706
54B	1.26	3.15	0.082337 0.171591	0.159083 0.283386	0.949387 0.097229
55B	25.57	49.76	-0.030637 0.383468	-0.193064 0.276757	0.051878 0.160176

62B	1.10	5.27	0.000180 0.000805	0.068653 0.180845	0.533089 0.175223
62E	1.81	6.28	0.040570 0.152509	0.135260 0.244000	0.657668 0.146954
62J	4.33	31.57	-0.058740 0.159008	-0.361741 0.419141	-0.327796 0.272273
63B	0.16	3.13	0.018110 0.080991	0.409778 0.485119	0.963965 0.059307
63E	0.41	8.69	0.007302 0.032658	0.093422 0.304256	0.573235 0.146089
63G	8.86	13.28	-0.010842 0.096243	-0.026517 0.170255	0.108523 0.373858
63S	0.00	4.22	0.000000	0.100666 0.248692	0.605573 0.118643
63Т	0.25	9.70	0.015180 0.067887	0.038421 0.291471	0.412801 0.098600
67V	4.54	34.05	-0.243615 0.319569	-0.207138 0.197932	0.116355 0.067796
68B	19.66	70.06	-0.117362 0.289818	-0.195171 0.275315	-0.269473 0.214523
68G	14.77	26.99	0.069415 0.277406	0.106058 0.324321	0.635063 0.500382
68J	30.41	61.86	-0.275054 0.362096	-0.496695 0.268276	-0.416265 0.246624
71D	30.72	45.93	0.355962 0.500262	0.161964 0.461114	0.607536 0.380417
71L	48.11	45.47	0.276689 0.184111	0.036638 0.203832	0.237494 0.131298
71M	39.98	45.14	0.037395 0.380692	-0.157902 0.381395	-0.024321 0.436118
72E	20.43	58.88	-0.234325 0.243200	-0.410872 0.089838	-0.267440 0.043040
72G	56.40	81.93	0.131134 0.268528	-0.026831 0.181817	0.025465 0.132755
73C	50.81	79.93	0.238503 0.183833	0.191564 0.204454	0.221996 0.158415

74D	41.62	55.19	0.091396 0.313801	0.023026 0.257025	0.238148 0.414224	
75B	43.02	46.64	0.578084 . 0.297401	0.436619 0.270471	0.677253 0.194972	
75D	44.15	76.72	-0.081495 0.272039		-0.179013 0.154314	
76C	25.40	52.59	0.203990 0.263636	0.123336 0.154655	0.299979 0.126807	
76Y	45.34	73.44		-0.115389 0.064620	-0.029511 0.027077	
77F	1.77	2.71	0.083796 0.263614	0.177390 0.342023	1.021171 0.070862	
81E	3.38	36.00	0.056049 0.226412	-0.043833 0.417205	0.431181 0.538528	
84B	10.07	27.69		-0.078050 0.234094	0.099388 0.604568	
84F	17.80	72.13	-0.172651 0.317682	-0.583770 0.444050	-0.770621 0.286409	
88н	26.23	71.56		-0.152689 0.088856	-0.089656 0.080293	
88M	3.83	14.73	0.220140	-0.103307 0.269201	0.098083	
91A	14.25	34.77	0.167094	-0.390647 0.064775	0.025285	
94B	26.73	42.94	0.228768		0.012449	
95B	18.54	26.20	0.145773 0.320647	0.013049 0.214986	0.308948 0.091057	

Appendix G4

19K

0.00

17.19

MPPs and SDs for the 7-Test Battery for Females, Blacks and Total, Without NO and CS (66 MOS) Total Female Black Female Black MPP/SD MPP/SD MPP/SD ક્ષ MOS ક્ષ 0.000000 -0.321035-0.0013540.00 16.73 11B 0.005527 0.079565 0.000000 -0.289965 -0.0027420.00 0.000000 11C 15.21 0.143651 0.025451 0.000000 -0.166452 0.005276 0.000000 0.00 15.01 11H 0.023215 0.146448 0.000000 -0.230159 0.001317 0.000000 0.00 18.29 11M 0.009019 0.000000 0.082978 -0.163020 0.247341 0.000000 12C 0.00 17.91 0.057114 0.152161 0.000000 -0.0002970.000000 -0.27594944.98 13B 0.00 0.005484 0.000000 0.070060 -0.220217 0.195709 0.000000 13F 0.00 18.41 0.213691 0.090937 0.000000 0.034146 0.047876 -0.08167255.98 67.39 13M 0.125368 0.216937 0.247240 0.039981 -0.062060 -0.17594456.34 13N 15.80 0.071440 0.241532 0.205995 0.479590 0.145865 0.042592 13R 4.05 39.52 0.195838 0.140112 0.110044 0.784583 5.26 17.05 0.055235 0.079970 16D 0.245696 0.239718 0.420295 0.502666 -0.082675 16P 4.70 31.80 -0.032235 0.210566 0.100699 0.176224 0.043966 0.358608 16R 3.50 43.80 -0.004420 0.248241 0.173781 0.036420 0.012637 -0.119358 -0.055678 16S 37.27 50.63 0.031753 0.192105 0.182207 0.045209 0.000000 -0.265563 20.27 19E 0.00 0.125820 0.266024 0.000000

0.000000

0.000000

-0.308360

0.143601

0.142106

0.095944

29E	8.21	7.70	0.536744 0.728066	0.445052 0.665284	1.574413 0.140595
29J	12.63	6.68	0.733254 0.686149	0.433495 0.648532	1.376260 0.090793
29N	37.05	46.28	0.308047 0.281234	0.201616 0.262322	0.393894 0.180722
29V	42.41	25.79	0.964562 0.530418	0.389022 0.470912	1.100890 0.224726
31C	14.32	49.00	-0.109159 0.262323	-0.075329 0.156158	0.189742 0.098175
31K	12.84	59.10	-0.177037 0.347082	-0.197813 0.170977	0.025892 0.058628
31L	2.85	40.95	-0.040227 0.181810	-0.190768 0.169127	0.002784 0.034524
31V	3.23	38.19	-0.133738 0.253195	-0.235088 0.115708	0.011222 0.026012
33Т	5.31	26.43	0.354181 0.429434	0.543447 0.303993	1.789458 0.284407
35K	37.44	81.74	-0.051871 0.193566	0.019104 0.130968	0.061202 0.090810
43E	4.09	57.58	-0.018775 0.129310	-0.092799 0.121864	0.008275 0.049919
44B	1.31	6.41	0.028350 0.126785	0.089188 0.251837	0.977770 0.222331
44E	8.03	4.99	0.139302 0.290942	0.068056 0.304356	1.472303 0.287320
45K	4.53	8.84	0.107564 0.181710	0.282412 0.415309	0.941187 0.163671
51B	6.04	26.36	-0.057815 0.241626	-0.037983 0.240399	0.296140 0.153327
52D	0.42	1.97	0.115742 0.410008	0.210721 0.517242	1.541971 0.053134
54B	1.51	3.48	0.065171 0.181902	0.201624 0.329456	0.937015 0.085368
55B	26.77	52.73	-0.051433 0.320593	-0.200089 0.224850	0.027618 0.109046

62B	1.10	5.76	0.006907 0.030891	0.107283 0.265714	0.794218 0.162147
62E	0.72	8.25	0.010200 0.045616	0.149589 0.238495	0.786285 0.128980
62J	10.66	27.91	0.090030 0.165180	0.105163 0.233301	0.540370 0.232717
63B	0.16	2.84	0.018587 0.083126	0.367809 0.479045	0.974789 0.063371
63E	0.41	8.62	0.018388 0.082231	0.382422 0.480476	1.051130 0.123992
63G	5.00	12.17	0.033185 0.116236	0.020598 0.152166	0.290542 0.324533
63S	0.00	3.01	0.000000	0.051978 0.187010	0.667075 0.123448
63Т	0.25	10.52	0.019127 0.085541	0.168945 0.278164	0.542094 0.094232
67V	3.27	32.26	-0.045346 0.117498	0.150453 0.276110	0.592271 0.077053
68B	29.42	57.30	0.167163 0.232843	0.277710 0.303506	0.409210 0.223093
68G	10.05	18.31	0.160048 0.329348	0.059396 0.165880	1.157350 0.367607
68J	30.47	60.45	0.256895 0.299623	0.172204 0.154557	0.339041
71D	27.96	58.27	0.464572 0.514639	0.447946 0.481989	0.986496 0.276211
71L	48.22	51.79	0.543669 0.246781	0.344680 0.178241	0.544082 0.151109
71M	42.63	49.11	0.307704 0.396297	0.229891 0.324551	0.454192 0.258261
72E	24.90	57.59	-0.128359 0.188893	-0.195108 0.099570	-0.003098 0.016204
72G	55.23	81.44	0.154605 0.233197	0.002919 0.178164	0.067869 0.108938
73C	49.76	86.09	0.298132 0.264185	0.221517 0.160822	0.249263 0.159240

74D	37.03	58.03	0.229942 0.348589	0.223868 0.375738	0.615755 0.433854
75B	40.34	49.31	0.710553 0.329735	0.521915 0.288701	0.745337 0.213595
75D	29.80	72.28	-0.002535 0.263623	-0.079878 0.266651	0.071659 0.135877
76C	29.22	47.41	0.286534 0.287935	0.124724 0.156388	0.337936 0.139420
76Y	40.36	73.05	0.031570 0.092493	-0.089480 0.058474	-0.002247 0.026667
77F	1.88	1.74	0.131955 0.218083	0.117942 0.296302	1.085138 0.074093
81E	9.35	38.83	0.210487 0.457691	0.407548 0.513292	1.089606 0.391936
84B	5.03	42.78	0.032730 0.146373	0.450372 0.580885	1.271752 0.405199
84F	24.34	72.44	0.111763 0.219010	0.151016 0.339306	0.374130 0.354687
88н	22.22	71.23	0.025191 0.184914	-0.019707 0.134978	0.043714 0.092163
M88	2.88	11.24	0.023249 0.250314	-0.026814 0.292665	0.339979 0.106948
91A	12.99	33.51	-0.200502 0.226606	-0.342152 0.069749	0.003619 0.013536
94B	25.66	44.84	-0.157853 0.247718	-0.279115 0.108156	0.002692 0.016404
95B	17.36	27.88	0.191983 0.281235	0.150286 0.210014	0.479100 0.084312