NGBoost: Natural Gradient Boosting for Probabilistic Prediction

Kobe University 201T264T Fuki Yamamoto

発表の流れ

- 1. 論文の背景, 概要
- 2. 準備
- 3. 手法の説明
- 4. 実験結果
- 5. まとめ

論文の概要

タイトル

NGBoost: Natural Gradient Boosting for Probabilistic Prediction 著者

Duan, Tony, et al.

出典

International Conference on Machine Learning. PMLR, 2020.

- 回帰問題において、<u>予測の不確かさ</u>を扱うことができる
 Gradient Boosting Decision Tree (GBDT)モデルを提案
- 勾配にnatural gradient(自然勾配)(Amari, 1998)を用いている

背景 (予測の不確かさとは)

回帰問題において, 予測値だけでなく,

確率分布そのものを出力できれば活用の幅が広がる

 $\rightarrow x$ °C以上になる確率は?, xヶ月以内に亡くなる確率は?

予測の信頼度はどの程度はtinty estimate) (

(分類問題では普通)

What will be the temperature at noon tomorrow?

73.4 Fahrenheit

How long will this patient live?

11.3 months

既存の手法は、単純なモデルであったり、計算コストが高い

GBDT とは

- ・複数のweak learner(浅い決定木)を組み合わせたモデル
- テーブルデータに経験的に高精度
- XGBoost, Light GBM, Cat Boostなどが存在する

NGBoostとは

- 各サンプルに対し分布のパラメータ(正規分布なら σ , μ)を出力
- 学習をうまく進めるためnatural gradient(自然勾配)を導入
- 各パラメータ毎にGBDTを学習するmultiparameter boostingを導入 (正規分布の場合)

NGBoost: 学習アルゴリズム

Algorithm 1 NGBoost for probabilistic prediction

Data: Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$.

Input: Boosting iterations M, Learning rate η , Probability distribution with parameter θ , Proper scoring rule \mathcal{S} , Base learner f.

Output: Scalings and base learners $\{\rho^{(m)}, f^{(m)}\}_{m=1}^{M}$. $\theta^{(0)} \leftarrow \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{S}(\theta, y_i)$ {initialize to marginal} for $m \leftarrow 1, \ldots, M$ do

$$\begin{vmatrix} \mathbf{for} \ i \leftarrow 1, \dots, n \ \mathbf{do} \\ g_i^{(m)} \leftarrow \mathcal{I}_{\mathcal{S}} \left(\theta_i^{(m-1)} \right)^{-1} \nabla_{\theta} \mathcal{S} \left(\theta_i^{(m-1)}, y_i \right) \end{vmatrix}$$

end

$$f^{(m)} \leftarrow \operatorname{fit}\left(\left\{x_{i}, g_{i}^{(m)}\right\}_{i=1}^{n}\right)$$

$$\rho^{(m)} \leftarrow \operatorname{arg\,min}_{\rho} \sum_{i=1}^{n} \mathcal{S}\left(\theta_{i}^{(m-1)} - \rho \cdot f^{(m)}(x_{i}), y_{i}\right)$$

for
$$i \leftarrow 1, \dots, n$$
 do

$$\mid \; heta_i^{(m)} \leftarrow heta_i^{(m-1)} - \eta \left(
ho^{(m)} \cdot f^{(m)}(x_i)
ight)$$

\ end

M:weak learnerの数

n: サンプル数

η: 学習率

θ: 分布のパラメータ

 $f^{(m)}$: m個目のlearner

(正規分布ならば、

 $\sigma = \{\mu, \sigma\}, f^{(m)} = \{f_{\mu}^{(m)}, f_{\sigma}^{(m)}\}\}$ 自然勾配を用いて勾配を更新

木を学習,

パラメータを更新

NGBoost: 学習アルゴリズム

Algorithm 1 NGBoost for probabilistic prediction

Data: Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$.

Input: Boosting iterations M, Learning rate η , Probability distribution with parameter θ , Proper scoring rule \mathcal{S} , Base learner f.

Output: Scalings and base learners $\{\rho^{(m)}, f^{(m)}\}_{m=1}^{M}$. $\theta^{(0)} \leftarrow \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{S}(\theta, y_i)$ {initialize to marginal} for $m \leftarrow 1, \ldots, M$ do

$$\begin{cases} \mathbf{for} \ i \leftarrow 1, \dots, n \ \underline{\mathbf{do}} \\ g_i^{(m)} \leftarrow \mathcal{I_S} \left(\theta_i^{(m-1)}\right)^{-1} \nabla_{\theta} \mathcal{S} \left(\theta_i^{(m-1)}, y_i\right) \end{cases}$$
 end

$$f^{(m)} \leftarrow \text{fit}\left(\left\{x_i, g_i^{(m)}\right\}_{i=1}^n\right)$$

$$\rho^{(m)} \leftarrow \arg\min_{\rho} \sum_{i=1}^n \mathcal{S}\left(\theta_i^{(m-1)} - \rho \cdot f^{(m)}(x_i), y_i\right)$$

\ end

M:weak learnerの数

n: サンプル数

η: 学習率

θ: 分布のパラメータ

 $f^{(m)}$: m個目のlearner

(正規分布ならば、

プーズμ, σ}, f^(m) = {f^(m), f^(m)}) 自然勾配を用いて勾配を更新

木を学習,

パラメータを更新

通常の勾配降下法では

パラメータの変動のユークリッド距離を ϵ (ϵ は微小な定数)で固定し、その中で最もモデルを改善する方向を示すしかし、

- ・パラメータ間のユークリッド距離は分布間の差異に対応しない
- ・パラメータの変動をユークリッド距離で固定しても、パラメータ毎の感度が違えば分布の変動は固定されない

点A, B間と点C, D間のユークリッド距離は同じだが,

それらの点が示す分布(正規分布)同士の差異は大きく異なる

通常の勾配 $(g = V_{\theta}S)$

- 分布の各パラメータが分布の変動に与える影響は均一でない
- 通常の勾配ではそれらを加味できない

自然勾配 (Amari, 1998)
$$\left[g_i^{(m)} \leftarrow \mathcal{I}_{\mathcal{S}} \left(\theta_i^{(m-1)} \right)^{-1} \nabla_{\theta} \mathcal{S} \left(\theta_i^{(m-1)}, y_i \right) \right]$$

- 分布間の差異とパラメータ間の距離を対応させることができる
- パラメータの変動でなくモデルの変動を固定して方向を決定する
- \bullet $I_{S}(heta)$ によってパラメータ毎の歪みを考慮

 $I_S(heta)$, Sは分布間の差異として何を用いるかによって変化する

1. KL-divergence

$$S = -\log(P_{\theta}(y)), I_{S}(\theta) = F(\theta)$$
 (フィッシャー情報量行列)

2. L2-divergense

$$S = \text{CRPS}, I_S(\theta) = \dots$$
 (式は論文に記載されています)

N(0,1)からの標本で勾配を計算 (左:通常の勾配 右:自然勾配)

下図のような1次元データで学習を行なった図

(上: 通常の勾配, 下: 自然勾配)

通常勾配(上側)

平均はほとんど更新されず,中央の分散ばかり学習自然勾配(下側) 全体的にバランスが取れている

12

NGBoost: 学習アルゴリズム

Algorithm 1 NGBoost for probabilistic prediction

Data: Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$.

Input: Boosting iterations M, Learning rate η , Probability distribution with parameter θ , Proper scoring rule \mathcal{S} , Base learner f.

Output: Scalings and base learners $\{\rho^{(m)}, f^{(m)}\}_{m=1}^{M}$. $\theta^{(0)} \leftarrow \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{S}(\theta, y_i)$ {initialize to marginal}

for $m \leftarrow 1, \dots, M$ do

$$\begin{vmatrix} \mathbf{for} \ \underline{i} \leftarrow \underline{1, \dots, n} \ \underline{\mathbf{do}} \\ g_i^{(m)} \leftarrow \mathcal{I}_{\mathcal{S}} \left(\theta_i^{(m-1)} \right)^{-1} \nabla_{\theta} \mathcal{S} \left(\theta_i^{(m-1)}, y_i \right) \end{vmatrix}$$

end

$$f^{(m)} \leftarrow \text{fit}\left(\left\{x_i, g_i^{(m)}\right\}_{i=1}^n\right)$$

$$\rho^{(m)} \leftarrow \arg\min_{\rho} \sum_{i=1}^n \mathcal{S}\left(\theta_i^{(m-1)} - \rho \cdot f^{(m)}(x_i), y_i\right)$$

for $i \leftarrow 1, \dots, n$ do

$$\mid \theta_i^{(m)} \leftarrow \theta_i^{(m-1)} - \eta \left(\rho^{(m)} \cdot f^{(m)}(x_i) \right)$$

\ end

end

M:weak learnerの数

n: サンプル数

η: 学習率

θ: 分布のパラメータ

 $f^{(m)}$: m個目のlearner

、(正規分布ならば、

つ={ μ, σ}, **f**^(m) = { f^(m), f^(m)}) 自然勾配を用いて勾配を更新

木を学習,

パラメータを更新

NGBoost: パラメータの更新

 $f^{(m)}$ の学習

m個目のfの出力に対するスケールパラメータ

大きな
$$f^{(m)} \leftarrow \operatorname{fit}\left(\left\{x_i, g_i^{(m)}\right\}_{i=1}^n\right)$$
 $ho^{(m)} \leftarrow \arg\min_{\rho} \sum_{i=1}^n \mathcal{S}\left(\theta_i^{(m-1)} - \rho \cdot f^{(m)}(x_i), y_i\right)$ for $i \leftarrow 1, \ldots, n$ do $\theta_i^{(m)} \leftarrow \theta_i^{(m-1)} - \eta\left(\rho^{(m)} \cdot f^{(m)}(x_i)\right)$ end

以下の三つの実験でNGBoostの有用性を検証した

- 1. 他の確率回帰モデルとの精度比較 (NLL)
- NGBoostにおいて、
 自然勾配以外の勾配を用いた場合と比較 (NLL)
- 3. 他のモデル(確率回帰モデル以外)との精度比較 (RMSE)

全ての手法において、NGBoostの以下のパラメータは固定 木の深さ:3, η : {0.1(MSD), 0.01(others)}, S: $-\log(P_{\theta}(y))$, 分布:正規分布 更新回数Mのみhold-outでチューニング

1. 他の確率回帰モデルとの精度比較 (NLL)

Dataset	N	NGBoost	MC dropout	Deep Ensembles	Concrete Dropout	Gaussian Process	GAMLSS	DistForest
Boston	506	$\textbf{2.43} \pm \textbf{0.15}$	2.46 ± 0.25	$\textbf{2.41} \pm \textbf{0.25}$	2.72 ± 0.01	$\textbf{2.37} \pm \textbf{0.24}$	2.73 ± 0.56	2.67 ± 0.08
Concrete	1030	$\textbf{3.04} \pm \textbf{0.17}$	3.04 ± 0.09	$\textbf{3.06} \pm \textbf{0.18}$	3.51 ± 0.00	$\textbf{3.03} \pm \textbf{0.11}$	3.24 ± 0.08	3.38 ± 0.05
Energy	768	0.60 ± 0.45	1.99 ± 0.09	1.38 ± 0.22	2.30 ± 0.00	$\textbf{0.66} \pm \textbf{0.17}$	1.24 ± 0.86	1.53 ± 0.14
Kin8nm	8192	-0.49 ± 0.02	-0.95 ± 0.03	$\textbf{-1.20} \pm \textbf{0.02}$	-0.65 ± 0.00	-1.11 ± 0.03	-0.26 ± 0.02	-0.40 ± 0.01
Naval	11934	-5.34 ± 0.04	-3.80 ± 0.05	-5.63 ± 0.05	-5.87 \pm 0.05	-4.98 ± 0.02	-5.56 ± 0.07	-4.84 ± 0.01
Power	9568	2.79 ± 0.11	2.80 ± 0.05	2.79 ± 0.04	2.75 ± 0.01	2.81 ± 0.05	2.86 ± 0.04	$\textbf{2.68} \pm \textbf{0.05}$
Protein	45730	2.81 ± 0.03	2.89 ± 0.01	2.83 ± 0.02	2.81 ± 0.00	2.89 ± 0.02	3.00 ± 0.01	$\textbf{2.59} \pm \textbf{0.04}$
Wine	1588	$\textbf{0.91} \pm \textbf{0.06}$	0.93 ± 0.06	$\textbf{0.94} \pm \textbf{0.12}$	1.70 ± 0.00	$\textbf{0.95} \pm \textbf{0.06}$	$\textbf{0.97} \pm \textbf{0.09}$	1.05 ± 0.15
Yacht	308	0.20 ± 0.26	1.55 ± 0.12	1.18 ± 0.21	1.75 ± 0.00	$\textbf{0.10} \pm \textbf{0.26}$	0.80 ± 0.56	2.94 ± 0.09
Year MSD	515345	$3.43 \pm NA$	$3.59 \pm NA$	$3.35 \pm NA$	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$
	,							

データセット10個中5つが太字(最良+標準偏差で重なる)

→ 他の手法と比較しても, 上位の性能を誇ってる

2. NGBoostにおいて、

自然勾配以外の勾配を用いた場合と比較 (NLL)

Dataset	N	/ NGBoost	2nd-Order	Multiparameter	Homoscedastic
Boston	506	$\textbf{2.43} \pm \textbf{0.15}$	3.57 ± 0.20	3.17 ± 0.13	$\textbf{2.79} \pm \textbf{0.42}$
Concrete	1030	$\textbf{3.04} \pm \textbf{0.17}$	4.21 ± 0.05	3.94 ± 0.09	$\textbf{3.22} \pm \textbf{0.29}$
Energy	768	0.60 ± 0.45	3.64 ± 0.06	3.24 ± 0.09	$\textbf{0.68} \pm \textbf{0.25}$
Kin8nm	8192	-0.49 ± 0.02	0.10 ± 0.07	$\textbf{-0.52} \pm \textbf{0.03}$	-0.37 ± 0.05
Naval	11934	-5.34 ± 0.04	-2.80 ± 0.01	-3.46 ± 0.00	-4.35 ± 0.07
Power	9568	2.79 ± 0.11	4.11 ± 0.03	3.79 ± 0.13	$\textbf{2.66} \pm \textbf{0.11}$
Protein	45730	$\textbf{I} \ \textbf{2.81} \pm \textbf{0.03}$	3.23 ± 0.00	3.04 ± 0.02	2.86 ± 0.01
Wine	1588	0.91 ± 0.06	1.21 ± 0.09	0.93 ± 0.07	$\textbf{1.34} \pm \textbf{0.67}$
Yacht	308	0.20 ± 0.26	4.11 ± 0.17	3.29 ± 0.20	2.02 ± 0.21
Year MSD	515345	$3.43 \pm NA$	3.80 ± 0.00	$3.60 \pm NA$	$3.63 \pm NA$

データセット10個中8つが太字

→ 自然勾配を用いた場合が最も高精度

3. 他のモデル(確率回帰モデル以外)との精度比較 (RMSE)

Dataset	N	NGBoost	Elastic Net	Random Forest	Gradient Boosting	GAMLSS	Distributional Forest
Boston	506	2.94 ± 0.53	4.08 ± 0.16	2.97 ± 0.30	$\textbf{2.46} \pm \textbf{0.32}$	4.32 ± 1.40	3.99 ± 1.13
Concrete	1030	$\textbf{5.06} \pm \textbf{0.61}$	12.1 ± 0.05	5.29 ± 0.16	$\textbf{4.46} \pm \textbf{0.29}$	6.72 ± 0.59	6.61 ± 0.83
Energy	768	0.46 ± 0.06	2.75 ± 0.03	0.52 ± 0.09	$\textbf{0.39} \pm \textbf{0.02}$	1.43 ± 0.32	1.11 ± 0.27
Kin8nm	8192	0.16 ± 0.00	0.20 ± 0.00	0.15 ± 0.00	$\textbf{0.14} \pm \textbf{0.00}$	0.20 ± 0.01	0.16 ± 0.00
Naval	11934	$\textbf{0.00} \pm \textbf{0.00}$					
Power	9568	3.79 ± 0.18	4.42 ± 0.00	3.26 ± 0.03	$\textbf{3.01} \pm \textbf{0.10}$	4.25 ± 0.19	3.64 ± 0.24
Protein	45730	4.33 ± 0.03	5.20 ± 0.00	$\textbf{3.60} \pm \textbf{0.00}$	3.95 ± 0.00	5.04 ± 0.04	3.89 ± 0.04
Wine	1588	0.63 ± 0.04	0.58 ± 0.00	$\textbf{0.50} \pm \textbf{0.01}$	0.53 ± 0.02	0.64 ± 0.04	0.67 ± 0.05
Yacht	308	$\textbf{0.50} \pm \textbf{0.20}$	7.65 ± 0.21	0.61 ± 0.08	$\textbf{0.42} \pm \textbf{0.09}$	8.29 ± 2.56	4.19 ± 0.92
Year MSD	515345	$8.94 \pm NA$	$9.49 \pm NA$	$9.05 \pm NA$	$8.73 \pm NA$	$NA \pm NA$	$NA \pm NA$

データセット10個中4つが太字

→ 他手法と比較しても上位の性能

関連論文

Uncertainty in Gradient Boosting via Ensembles

Ustimenko, Aleksei, Liudmila Prokhorenkova, and Andrey Malinin arXiv preprint arXiv:2006.10562 (2020).

- Yandexが発表
- NGBoostより後発
- NGBoostと同じく自然勾配を利用
- ・CatBoost(Yandexが開発)に実装されている

詳しい内容, 差異は読んでないためわかりません.

まとめ

内容

回帰問題で,

予測の不確かさ(分布)を出力可能なGBDTモデルNGBoostを提案 貢献

- ・勾配計算に自然勾配を導入
- ・パラメータ毎に異なるモデルを用いるmultiparameter boostingを導入 メリット
- ・チューニングが容易 (NNベースのモデルと比較して)
- ・様々な分布を適用可能 (パラメータで表現できるもの)
- ・他の手法に劣らない精度 (実験 1,3)