Universidade Federal de Goiás Instituto de Informática Introdução à Programação - 2017-1 Lista de Exercícios 1 (L1)

Professores:

Gustavo Teodoro Laureano Luciana de Oliveira Beretta Thierson Couto Rosa

Tarefa L1-A

Introdução

A primeira lista de exercícios - Lista de exercícios 1 (L1) contém 30 exercícios. Essa lista está dividida em três tarefas (assignments) no sistema Sharif. Essa é a primeira tarefa (L1-A) e contém os 11 primeiros exercícios de L1. Todos os exercícios de L1-A devem ser resolvidos individualmente. Para cada exercício deve ser escrito um programa, o qual deve ser submetido para avaliação no sistema Sharif¹. Os exercícios de L1 são classificados em quatro níveis de dificuldade sob o ponto de vista de um aluno iniciante: fácil, intermediário, difícil e muito difícil. Cada grau de dificuldade é indicado por um emoticon distinto, colocado ao lado direito to título do exercício. O valor de cada nível é mostrado na tabela a seguir:

Tabela 1: Valor de cada nível de exercício

Nível	Emoticon	Valor
Fácil	<u> </u>	0, 3
Intermediário	<u> </u>	0, 5
Difícil	<u> </u>	1,0
Muito Difícil	e	2,0

A lista L1 vale 10 pontos. O aluno pode conseguir somar 10 pontos de várias maneiras, resolvendo uma combinação de exercícios dos quatro níveis espalhados entre as três tarefas que formam a L1. Embora não seja necessário a resolução de todos os exercícios da lista L1, recomenda-se, principalmente aos iniciantes em programação que tentem resolver o maior número de exercícios possível. O treinamento é muito importante para desenvolver o raciocínio lógico na solução de problemas.

¹http://sharif.inf.ufg.br/thierson/index.php/login.

Tempo em Segundos ³

Fazer um programa que leia um valor de tempo expresso em horas, minutos e segundos e que converta esse tempo para um valor em segundos.

Entrada

O programa deve ler três linhas na entrada. A primeira contém um valor em horas, a segunda, contém um valor em minutos e a terceira, contém um valor em segundos. Os valores são todos números inteiros.

Saída

O programa deve imprimir uma linha contendo a frase: O TEMPO EM SEGUNDOS E = X, onde X é o valor do tempo convertido em segundos. Após o valor do tempo em segundos, o programa deve imprimir um caractere de quebra de linha: '\n'.

Entrada							
5	Sa	ida:					
12	0	TEMPO	EM	SEGUNDOS	Ε	=	18721
1							

Cálculo do Delta na Equação de Báskara 🙂

Fazer um programa para ler os valores dos coeficientes A, B e C de uma equação quadrática e calcular e imprimir o valor do discriminante (Δ). O valor de Δ é dado pela fórmula: $\Delta = B^2 - 4AC$.

Entrada

O programa deve ler três valores reais na entrada. O primeiro valor corresponde ao valor do coeficiente A, o segundo, do coeficiente B e o terceiro, do coeficiente C, de uma equação do seguro grau. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE DELTA E = X, onde X é o valor de delta computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor de delta, o programa deve imprimir um caractere de quebra de linha: "\n".

Observação

Para imprimir uma expressão do tipo float com duas casas decimais, você deve usar a formatação %.2f na função de impressão printf(). Supondo que você usou a variável delta para armazenar o valor do discriminante, você poderia imprimir o conteúdo dessa variável com duas casas decimais usando a função de impressão do seguinte modo: printf("%.2f\n", delta);.

Entrada
5
12
4

Sa	aída:					
0	VALOR	DE	DELTA	Ε	=	64.00

Conversões para o Sistema Métrico

- Ler uma temperatura em Fahrenheit e imprimir o equivalente em Celsius (C = (5F 160)/9).
- Ler uma quantidade de chuva dada em polegadas e imprimir o equivalente em milímetros (1 polegada = 25.4 mm).

Entrada

O programa deve ler dois valores na entrada: um valor em Fahrenheit e outro valor em polegadas. Ambos os valores são do tipo float. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir duas linhas. Aa primeira contém a frase: O VALOR EM CELSIUS = X, onde X é o valor de temperatura convertido de Fahrenheit para Celsius e deve ter duas casas decimais. A segunda linha deve conter a frase: A QUANTIDADE DE CHUVA E = Y, onde Y é o valor em milímetros correspondente ao valor em polegadas dado como entrada. Y é um valor real (float) e deve ter duas casas decimais. Logo após o valor de Y, o programa deve imprimir o caractere de quebra de linha '\n'.

Entrada
53
120

Saída:
O VALOR EM CELSIUS = 11.67
A QUANTIDADE DE CHUVA E = 3048.00

Cálculo do Determinante de uma Matriz Quadrada de Duas Dimensões

Fazer um programa tal que dados os quatro elementos de uma matriz 2×2 , calcule e escreva o valor do determinante desta matriz.

Considerações:

Dada uma matriz quadrada bidimensional $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o determinante de M, denotado por det(M) é definido como: det(M) = ad - bc.

Entrada

O programa deve ler os quatro elementos a, b, c e d que formam uma matriz quadrada bidimensional. Há um valor por linha de entrada. Cada valor corresponde a um número real (float).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DO DETERMINANTE E=X, onde X é o valor do determinante computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor do determinante, o programa deve imprimir um caractere de quebra de linha: "\n".

En	trada
4	
3	
5	
4	

Saída:					
O VALOR	DO	DETERMINANTE	Ε	=	1.00

Cálculo da Área de um Triângulo ²²

Desenvolver um algoritmo para ler os comprimentos dos três lados de um triângulo $(L_1, L_2 \in L_3)$ e calcular a área do triângulo.

Considerações

A área de um triângulo pode ser computada pela fórmula:

$$A = \sqrt{T(T - L_1)(T - L_2)(T - L_3)}$$

onde

$$T = \frac{L_1 + L_2 + L_3}{2}$$

A função sqrt () computa a raiz quadrada de uma expressão. Para usar essa função você deve incluir o arquivo de cabeçalho math.h, inserindo a seguinte diretiva de pré-processamento logo no início do seu arquivo com o programa em C: **#include**<math.h>

Entrada

O programa deve ler três valores reais na entrada, cada um correspondendo ao comprimento de um lado do triângulo. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: A AREA DO TRIANGULO E = X, onde X é o valor da área do triângulo e deve conter no máximo 2 casas decimais. Após o valor da área do triângulo, o programa deve imprimir um caractere de quebra de linha: "\n".

Entrada	
4	
5	
6	

Custo Final de um Carro ⁹

O custo ao consumidor de um carro novo é a soma do custo de fábrica com a porcentagem do distribuidor e dos impostos (aplicados ao custo de fábrica). Supondo que a porcentagem do distribuidor seja de x% do preço de fábrica e os impostos de y% do preço de fábrica, fazer um programa para ler o custo de fábrica de um carro, a percentagem do distribuidor e o percentual de impostos, calcular e imprimir o custo final do carro ao consumidor.

Entrada

O programa deve ler três valores na entrada: o preço de fábrica do carro, o percentual do distribuidor e o percentual de impostos. Cada valor aparece em uma linha de entrada. Todos os valores são do tipo float.

Saída

O programa deve imprimir uma linha, contento a frase O VALOR DO CARRO E = Z, onde Z é o valor do preço final do carro ao consumidor. O valor de Z deve ter duas casas decimais. Após imprimir o valor do preço final, o program deve imprimir o caractere de quebra de linha '\n'.

Entrada
25000
12
30

Saída:				
O VALOR	DO	CARRO	E =	35500.00

Distância entre Dois pontos ⁹

Dados dois pontos A e B, cujas coordenadas $A(x_1, y_1)$ e $B(x_2, y_2)$ serão informadas via teclado, desenvolver um programa que calcule a distância entre A e B.

Considerações

A distância entre dois pontos é computada pela fórmula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Você pode usar a função sqrt() para calcular a raiz quadrada na fórmula da distância. Para computar o quadrado de um valor x você pode usar a função pow(x,2). Para usar essas funções, você precisa colocar #include {math.h} no início do texto do programa.

Entrada

O programa deve ler os quatro valores reais correspondendo às coordenadas dos dois pontos: $x_1, y_1, x_2, y_2,$ nessa ordem, e um valor por linha.

Saída

O programa deve imprimir uma linha contendo a frase: A DISTANCIA ENTRE A e B=X, onde X é o valor da distância entre os dois pontos e deve conter no máximo 2 casas decimais. Após o valor da distância, o programa deve imprimir um caractere de quebra de linha: '\n'.

Entrada	
3	Saída:
4	A DISTANCIA ENTRE A e B = 2.83
5	

Custo da Lata de Cerveja ²²

Um fabricante de latas deseja desenvolver um programa para calcular o custo de uma lata cilíndrica de alumínio, sabendo-se que o custo do alumínio por m² é R\$ 100,00.

Entrada

O programa deve ler dois valores na entrada: o raio e a altura da lata. Ambos os valores correspondem a valores em metros. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir a frase: O VALOR DO CUSTO E = XXX.XX, onde XXX.XX é o valor do custo da lata. Logo após o valor do custo da lata o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

- O seu programa deve utilizar a constante M_PI como valor de π . Essa constante é uma constante do tipo double e esta definida no arquivo math.h.
- O valor total da área de um cilindro é dada por $A_t = 2 \times A_c + A_l$, onde A_c é a área do círculo, calculada como: $A_c = \pi \times raio^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2 \times \pi \times r \times altura$

Entrada					
0.02					
0.09					

Sa	aída:					
0	VALOR	DO	CUSTO	Е	=	1.38

Valor em Notas e Moedas 😀

Escreva um algoritmo par ler um valor em reais e calcular qual o menor número possível de notas de \$R 100, \$R 50, \$R 10 e moedas de \$R 1 em que o valor lido pode ser decomposto. O programa deve escrever a quantidade de cada nota e moeda a ser utilizada.

Entrada

O programa deve ler uma única linha na entrada, contendo um valor em Reais. Considere que somente um número inteiro seja fornecido como entrada.

Saída

O programa deve imprimir quatro frases, uma em cada linha: NOTAS DE 100 = X, NOTAS DE 50 = Y, NOTAS DE 10 = Z, MOEDAS DE 1 = W, onde X, Y, Z e W correspondem às quantidades de cada nota ou moeda necessárias para corresponder ao valor em Reais dado como entrada. Após cada quantidade, o programa deve imprimir um caractere de quebra de linha: '\n'.

Exemplo

Entrada 46395

Saída:
NOTAS DE 100 = 463
NOTAS DE 50 = 1
NOTAS DE 10 = 4
MOEDAS DE 1 = 5

Quatro Algarismos 😀

Dado um número inteiro de três algarismos, construir outro número inteiro de quatro algarismos de acordo com a seguinte regra: os três primeiros algarismos, contados da esquerda para a direita são iguais ao número dado. O quarto algarismo é um digito de controle calculado da seguinte forma: primeiro algarismo + segundo algarismo $\times 3$ + terceiro algarismo $\times 5$. O dígito de controle é igual ao resto da divisão dessa soma por 7.

Entrada

O programa deve ler uma linha de dados contendo apenas um número com três algarismos.

Saída

O programa deve imprimir uma linha contendo a frase: O NOVO NUMERO E = X, onde X é o novo número inteiro com quatro algarismos, seguido por um caractere de quebra de linha: '\n'.

Entrada	Sa	aída:				
123	0	NOVO	NUMERO	Е	=	1231

Sistemas de Equação Linear

Dado um sistema de equações lineares do tipo:

$$ax + by = c$$
$$dx + ey = f$$

Escreva um programa para ler os valores dos coeficientes: a, b, c, d, e e f e calcular os valores de x e y.

Entrada

O programa deve ler os valores de a, b, c, d, e, f nesta ordem, um valor por linha. Os valores são números reais (float).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE X E = z, onde z é o valor da variável x, escrito com duas casas decimais. O programa deve imprimir uma segunda linha contendo a frase: O VALOR DE Y E = w, onde w corresponde ao valor da variável y escrito com duas casas decimais. Ao final da segunda linha o programa deve imprimir um caractere de quebra de linha: '\n'.

Sa	aída:					
0	VALOR	DE	X	Ε	=	-1.09
0	VALOR	DE	Y	E	=	2.45