IOE 511/MATH 562 **HOMEWORK 10**

10 Chien-Yi Tsai (chienyit@umich.edu)

<Question 1>

- (a) The objective function of (P_c) is $f_c(x) = \frac{1}{2}(x^Tx 2c^Tx + c^Tc)$. On the other hand, the objective function of (P_d) is $f_d(x) = \frac{1}{2}(x^Tx - 2c^Tx + c^Tc - 2(\frac{1-e^Tc}{n}) + 2(\frac{1-e^Tc}{n})c^Te + (\frac{1-e^Tc}{n})^2e^Te)$. Observe that $f_d(x) = f_c(x) + a$ where a is a constant, so solving (P_d) is the same as solving (P_c) and they will thus have the same optimal solutions.
- (b) First, $x^* = d \ge 0$ is feasible to (P_d) : $e^T d = 1$ and $d \ge 0$.

Second, it is optimal because $f_d(d) = 0$ and it can not further improve since the euclidean norm is always greater or equal to zero.

- (c) Want to show that when $d_i < 0$ and $x_i > 0$, there exists a contradiction. When $d_i < 0$ and $x_i > 0$, by complementarity $x_i u_i = 0$, $u_i = 0$. Moreover, the gradient condition is x-d+ve-u=0, so $x_j-d_j+v-u_j=0$ and v<0. Multiplying both sides of the gradient condition equation by e, we get $x^Te - d^Te + ve^Te - u^Te = 0$ or $vn - u^Te = 0$. Since $u \ge 0$, $v = \frac{u^Te}{n} \ge 0$, which gets us a contradiction. So $x_j = 0$.
- (d) The method is as follows:

Step 1: Solve (P_d) and get d

Step 2: If $d \ge 0$ then d is the solution of P_c , stop. Otherwise, got to Step 3.

Step 3: Eliminate x_j where $d_j < 0$ from (P_d) , then go back to Step 1.

<Question 2>

Clearly if C = D the support functions are equal. So we want to show that if the support functions are equal, then C = D, by showing that $D \subseteq C$ and $C \subseteq D$.

 $D \subseteq C$: Suppose there exists $x_0 \in D$, $x_0 \notin C$. Since C is closed, x_0 can be strictly separated from C, *i.e.*, there exists an $a \neq 0$ with $a^T x_0 > b$ and $a^T x < b$ for all $x \in C$. This means that

$$sup_{x \in C} a^T x \le b < a^T x_0 \le sup_{x \in D} a^T x$$

which means that $S_C(a) \neq S_D(a)$. By repeating the argument with the roles of C and D reversed, we can show that $C \subseteq D$.

<Question 3>

Question $S > L(x, u) = f(x) + \sum_{i=1}^{m} u_i g_i(x), \ \bar{L}(x, u) = f(x) + \sum_{i=1}^{r} u_i g_i(x).$ Since $L(x, u) = f(x) + \sum_{i=1}^{r} u_i g_i(x) + \sum_{i=r+1}^{m} u_i g_i(x)$, so it can be written as $L(x, u) = \bar{L}(x, u) + \sum_{i=r+1}^{m} u_i g_i(x)$. By the fact that $u_i \ge 0$ and $g_i \le 0$, $\sum_{i=r+1}^{m} u_i g_i(x) \le 0$, so $L(x, u) \le \bar{L}(x, u)$. It follows, by the fact that $\bar{X} \subseteq X$ that

$$v^* = \inf_{x \in X} L(x, u) \le \inf_{x \in \bar{X}} L(x, u) \le \inf_{x \in \bar{X}} \bar{L}(x, u) = \bar{v}^*$$

And $v^* \leq \bar{v}^* \leq f^*$ follows by weak duality.

<Question 4>

(a) Approach 1:

$$\min_{\substack{f_1(x)\\\text{s.t. } f_j(x) \leq b_j, \ j = 2, ..., s\\g_i(x) \leq 0, \ i = i, ..., m}}$$

Date: March 30, 2017.

Approach 2:

$$\min \sum_{j=1}^{s} w_j f_j(x)$$

s.t. $g_i(x) \le 0, i = 1, ..., m$

(b) Denote (P_1) to be the problem in Approach 1, (P_2) to be that in Approach 2. Suppose x' solves (P_2) and $b_j = f_j(x')$, j = 2, ..., s. We want to show there exists contradiction if x' does not solve P_1 . Suppose x' is not optimal for P_1 , then there exists $x: f_1(x) < f_1(x')$ and is feasible, so $f_j(x) \le f_j(x')$, j = 2, ..., s. It follows that

$$\sum_{j=1}^{s} w_j f_j(x) = w_1 f_1(x) + \sum_{j=2}^{s} w_j f_j(x) \le w_1 f_1(x) + \sum_{j=2}^{s} w_j f_j(x') \le w_1 f_1(x') + \sum_{j=2}^{s} w_j f_j(x') = \sum_{j=1}^{s} w_j f_j(x')$$

which is a contradiction since x' is supposed to be optimal for P_2 .

(c) For (P_1) : If x is optimal to (P_1) , then there exists $(u_2, ..., u_s, v_1, ..., v_m)$ which together with x satisfies the following conditions: primal feasibility:

$$g_i(x) \le 0, i = 1, ..., m$$

 $f_j(x) \le b_j, j = 2, ..., s$

dual feasibility:

$$(u_2, ..., u_s, v_1, ..., v_m) \ge 0$$

complementarity:

$$(f_j(x) - b_j)u_j = 0, j = 2, ..., s$$

 $g_i(x)v_i = 0, i = 1, ..., m$

gradient condition:

$$\nabla f_1(x) + \sum_{j=2}^{s} \nabla f_j(x) u_j + \sum_{j=1}^{m} \nabla g_j(x) v_j = 0$$

For (P_2) : If x is optimal to (P_2) , then there exists $(v_1, ..., v_m)$ which together with x satisfies the following conditions: primal feasibility:

$$g_i(x) \le 0, i = 1, ..., m$$

dual feasibility:

$$(v_1, ..., v_m) \ge 0$$

complementarity:

$$q_i(x)v_i = 0, i = 1, ..., m$$

gradient condition:

$$\sum_{j=1}^{s} \nabla f_j(x) w_j + \sum_{j=1}^{m} \nabla g_j(x) v_j = 0$$

(d) Since all the functions are convex and a constraint qualification is satisfied, both (P_1) and (P_2) are convex problems. Therefore, their KKT conditions are necessary and sufficient. Suppose x solves (P_1) , then x with $(u_2, ..., u_s, v_1, ..., v_m)$ satisfies KKT conditions for (P_1) . If the weights in P_2 are set as follows: $w_1 = 1$, $w_j = u_j$, then the x and $(v_1, ..., v_m)$ derived from (P_1) will also satisfies KKT conditions for (P_2) . This means that x also solves (P_2) .

<Question 5>

Write problem (3) in Lagrangian function:

$$L(x_{ij}, v) = \sum_{(i,j) \in A} (\frac{1}{2} R_{ij} x_{ij}^2 - t_{ij} x_{ij}) + \sum_{i \in N} v_i (\sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ij})$$

IOE 511/MATH 562 HOMEWORK 10

And use it to formulate the KKT conditions of problem (3):

$$\sum_{j:(i,j)\in A} x_{ij} = \sum_{j:(j,i)\in A} x_{ij}$$
$$\nabla_{x_{ij}} L(x_{ij}, v) = R_{ij} x_{ij} - t_{ij} - v_i + v_j = 0$$

It is observed that the first condition corresponds to law (1) while second to law (2). Therefore, a point that satisfies the two laws, or the KKT conditions, will be the global solution of the problem.

Now we need to show the uniqueness of the solution. Suppose x^* is optimal, then we can show that $f(x^*) < f(x)$ for any other feasible point x.

Since f is a strictly convex quadratic function,

$$f(x) = f(x^*) + \nabla f(x^*)^T (x - x^*) + (x - x^*)^T \nabla^2 f(x^*) (x - x^*)$$

Since $\nabla^2 f(x^*) = diag(R_{ij})$ where $(i, j) \in A$ and $x - x^* \neq 0$, the last term is strictly greater than 0. Since x, x^* are feasible, $x - x^*$ also satisfies

$$\sum_{j:(i,j)\in A} x_{ij} - x_{ij}^* = \sum_{j:(j,i)\in A} x_{ji} - x_{ji}^*$$

And we know that $\frac{\partial f}{\partial x_{ij}} = R_{ij}x_{ij} - t_{ij} = v_i - v_j$. So the middle term can be written as

$$\sum_{(i,j)\in A} (v_i - v_j)(x_{ij} - x_{ij}^*) = \sum_{(i,j)\in A} v_i(x_{ij} - x_{ij}^*) - \sum_{(i,j)\in A} v_j(x_{ij} - x_{ij}^*) = \sum_{(i,j)\in A} v_i(x_{ij} - x_{ij}^*) - \sum_{(i,j)\in A} v_i(x_{ij} - x_{ij}^*) - \sum_{(i,j)\in A} v_i(x_{ij} - x_{ij}^*) = 0$$

So $f(x) > f(x^*)$ and the optimal solution is thus unique.