Making Decisions Against an Opponent

- Two people/teams in competition
- Outcome depends on both sides' <u>simultaneous</u> decisions
- Many examples in business, sports, economics, and even everyday life

So, what's the outcome?

- Lisa should choose the column with the best results (paper), and wins 40% more
- In general, Bart's overall result equals the value of Lisa's best (lowest) column.
- But... if Bart knows Lisa will choose paper, he should choose scissors... and so on

Bart's Mathematical Model

- x = probability that Bart chooses rock,
- y = probability that Bart chooses paper,
- z = probability that Bart chooses scissors

	Rock	Paper	Scissors
(x) Rock	0	-1	1
(y) Paper	1	0	-1
(z) Scissors	<u>-1</u>	1	0
Average =	y - z	z - X	x - y

- v = total value (smallest of column totals)
- Let's use a Linear Programming Model

Linear Programming Models

- "Objective Function" minimize or maximize
- "Constraints" mathematical restrictions
- All linear functions
 - No powers (x²)
 - No square roots, trig functions, logs, etc.
 - No variables multiplied by each other
- Find values for the variables that
 - satisfy all constraints
 - give the best (optimal) objective function value

Bart's Linear Program

	Rock	Paper	Scissors
(x) Rock	0	-1	1
(y) Paper	1	0	<u>-1</u>
(z) Scissors	- <u>1</u>	<u>1</u>	0
Average =	y - z	z - X	x - y
Maximize	V		

Subject to $V \leq y - z$ (Rock)

 $V \leq Z - X$

 $V \leq X - Y$ (Scissors)

(Paper)

X + y + Z = 1

 $x \ge 0$, $y \ge 0$, $z \ge 0$

Lisa's Mathematical Model

a = probability that Lisa chooses rock,

b = probability that Lisa chooses paper,

c = probability that Lisa chooses scissors

	Rock(a)	Paper(b)	Scissors(c)	Avg.
Rock	0	<u>-1</u>	1	c - b
Paper	1	0	-1	a - c
Scissors	- <u>1</u>	1	0	b - a

d = total value (largest of row totals)

Another <u>Linear Programming Model</u>

Lisa's Linear Program

	Rock(a)	Paper(b)	Scissors(c)	Avg.
Rock	0	-1	1	c - b
Paper	1	0	-1	a - c
Scissors	<u>-1</u>	1	0	b - a

Minimize

 $d \ge b - c$ Subject to (Rock)

 $d \ge c - a$ (Paper)

 $d \ge a - b$ (Scissors)

a+b+c=1

 $a \ge 0, b \ge 0, c \ge 0$

Two Optimization Models

Bart's Model

Lisa's Model

- Maximize outcome
- Minimize outcome

– Value = 0

- Outcome = lowest column average
- Outcome = highest row average
- Solution: x = y = z = 1/3
- Solution: a = b = c = 1/3

– Value = 0

Note: The two values will always be equal

A More Interesting Example: 2-point conversions in football

- Offense gets the ball at 3 yard line, has one play to score
- Many offensive play choices
- Many defensive strategies

So, let's simplify a little bit...

Simplified Model: Run or Pass

- Offense can choose to run or to pass
- Defense can choose run defense or pass defense

	Run	Pass
	Defense	Defense
Run	30%	50%
Pass	80%	40%

Success Rates

What do you expect?

Two Linear Programs

	Run (a)	Pass (b)
	Defense	Defense
Run (x)	30%	50%
Pass (y)	80%	40%

Offense		Defense	
Maximize	V	Minimize	d
Subject to	v ≤ .3x + .8y	Subject to	d ≥ .3a + .5b
	$v \le .5x + .4y$		d ≥ .8a + .4b
	x + y = 1		a + b = 1
	x > 0, y > 0		$a > 0 \ b > 0$

Summary

- Start with a complex problem (making decisions against an opponent)
- Create a simplified mathematical model (Optimization/linear programming)
- Use the model to suggest a strategy (in this case, a surprising strategy!)

Slides at www.isye.gatech.edu/~jsokol/2030.ppt