חדו"א 1 סמסטר א' תשפ"ד עבודה עצמית 1

שאלות שמסומנת עם * מיועדת להעשרה בלבד ולא על הסילבוס.

שאלה 1

נתונה הפונקציה

$$sgn x = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

- א) בנו את גרף הפונקציה
- $|x| = x \cdot \operatorname{sgn} x$ ב) הוכיחו כי

שאלה 2

שאלה 3 שרטטו את הגרפים של הפונקציות הבאות:

$$f(x) = \begin{cases} x - 3 & x < 2 \\ -(x - 3)^2 & x \ge 2 \end{cases}$$

$$g(x)=egin{cases} rac{3}{2x^2} & x
eq 0 \ 1 & x=0 \end{cases}$$

$$h(x) = \begin{cases} 1 & x < 0 \\ \cos x & x \ge 0 \end{cases}$$

$$i(x) = \begin{cases} e^x & x \le 0 \\ -x + 2 & x > 0 \end{cases}$$

שאלה 4

נתונה פונקציה
$$f(x)=rac{1-x}{1+x}$$
 מצאו את

ب
$$\frac{1}{f(x)}$$
 (x

$$f\left(\frac{1}{x}\right)$$
 (2

$$f(x) + 1$$
 (x)

$$f(x+1)$$
 (1

,
$$f(-x)$$
 (ກ

$$.f(0)$$
 (1)

שאלה 5

$$\max(x,y)$$
 (1

$$\min(x,y)$$
 (2

$$|x|$$
 (3

$$|x| < 1$$
 (1 , $|x| > 1$ (2 , $|x - 2| < 3$ (3 , $|x - 3| < 2$ (4

$$|x-3| < 2$$
 (4

הוכיחו כי ()

$$\max(x, y) + \min(x, y) = x + y$$

הוכיחו כי (7

$$\max(x, y) - \min(x, y) = |x - y|$$

. בעזרת הפונקציה ערך $\min(x,y)$ ו- $\max(x,y)$ את הבעו **(**1)

[-1,2] באיור נתון גרף הפונקציה f(x) המוגדרת בקטע שאלה 6

ציירו את הגרפים של הפונקציות

$$f(x+1)$$

$$f(x-1)$$

$$f(x)+1$$

$$f(x)-1$$

$$f(-x)$$
 (7

$$-f(x)$$
 (1)

$$f(2x)$$
 (?

$$f\left(\frac{x}{2}\right)$$
 (n

$$\frac{f(x)}{2}$$
 (v

$$f(|x|)$$
 (*

$$|f(x)|$$
 (אי

$$f(\max(x,0))$$
 ند

$$f(\min(x,0))$$
 (x)

$$\max(f(x),0)$$

באות: מתונה הפונקציות הבאות: $f(x)=x^2$ נתונה הפונקציות הבאות:

- f(x) (x
- f(x+2)
- f(x)+4
- f(x+3)
- f(|x|+3) (7)
- f(x+3) + 4 (1)
 - f(x) + 8 (1)
 - f(x-5) (n
 - f(|x| 5) (v
- f(x-5) + 8 (*
 - f(-x) (x)
 - -f(x) (2)

באות: מתונה הפונקציה $f(x)=x^3$ בתונה הפונקציות הבאות:

- f(x) (x
- |f(x)|
- f(x+2)
- |f(x+2)|
 - f(x-3)
 - f(x+3)
- f(|x|+3) (*
- f(x+3) + 4 (n
 - f(x) + 8 (v
 - f(x-5)
 - f(|x|-5) (۲
- f(x-5) + 8 (2)
 - f(-x) (x)

-f(x) (7)

 $f(x)=\sqrt{x-2}+1$ הפונקציה בקטע באיור נתון גרף הפונקציה $f(x)=\sqrt{x-2}+1$

ציירו את הגרפים של הפונקציות

- f(x-2) (x
- f(x+2)
- f(x) 1 (x)

 $f(x)=\sqrt{x}-2$ המוגדרת בקטע באיור נתון גרף הפונקציה באיור הפונקציה 10, ∞

ציירו את הגרפים של הפונקציות

- f(-x) (x
- f(|x|) (2
- |f(x)| (x
- -|f(x)|
- f(-|x|) (7

שאלה 11 * הוכיחו את הטענות הבאות ע"י אינדוקציה מתמטית או בכל דרך אחרת:

- $n \geq 4$ לכל $2^n \geq n^2$ א
- $n \geq 3$ לכל מספר טבעי $2^n > 2n+1$
- $n \geq 2$ לכל מספר טבעי $3^n > 3n+1$
- $a \geq -1$ לכל מספר טבעי ולכל מספר לכל ($1+a)^n \geq 1+na$
 - $n \geq 10$ לכל מספר טבעי $2^n > n^3$
 - $n \geq 17$ לכל מספר טבעי $2^n > n^4$

 $\frac{x+1}{x}>1$ שאלה אבי, מתקיים \star הוכיחו כי לכל x ממשי וחיובי, מתקיים \star

פתרונות

שאלה 1

(N

בתחום x>0 בתחום x>0 נשים לב כי |x|=x ו- |x|=x לכי גx>0 בתחום $|x|=x=x\cdot \mathrm{sgn}(x)$

x>0 כשאר

לפיכך . $\operatorname{sgn}(x)\cdot x=-1\cdot x=-x$ לכן , $\operatorname{sgn}(x)=-1$ ו- |x|=-x לפיכך ,x<0 בתחום $|x|=-x=x\cdot\operatorname{sgn}(x)$

x < 0 כשאר

בסה"כ $|x|=0= ext{sgn}(x)\cdot x$,x=0

 $|x| = \operatorname{sgn}(x) \cdot x$

x לכל

שאלה 2

מספר הוא מספר גדול מ-1 שמתחלק בעצמו או מספר בלבד.

x-מספרים ראשוניים קטן או שווה ל	f(x)	x
{}	0	x = 0
{}	0	x < 1
-{}	0	x = 1
{2}	1	$x \leq 2$
$\{2,3\}$	2	$x \leq 3$
$\{2,3\}$	2	$x \leq 4$
$\{2,3,5\}$	3	$x \leq 5$
$\{2, 3, 5, 7\}$	4	$x \le 7$
$\{2, 3, 5, 7, 11\}$	5	$x \le 11$
$\{2, 3, 5, 7, 11, 13\}$	6	$x \le 13$
$\{2, 3, 5, 7, 11, 13, 17\}$	7	$x \le 17$
${2,3,5,7,11,13,17,19}$	6	$x \le 19$

שאלה 3

$$f(x) = egin{cases} x - 3 & x < 2 \\ -(x - 3)^2 & x \ge 2 \end{cases}$$
 (x)

$$g(x) = \begin{cases} \frac{3}{2x^2} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

$$--g(x)$$

$$h(x) = \begin{cases} 1 & x < 0 \\ \cos x & x \ge 0 \end{cases}$$

--h(x)

$$i(x) = \begin{cases} e^x & x \le 0 \\ -x + 2 & x > 0 \end{cases}$$

--i(x)

<u>שאלה 4</u>

$$\frac{1}{f(x)} = \frac{1+x}{1-x} \qquad (x)$$

$$f\left(\frac{1}{x}\right) = \frac{x-1}{x+1} \qquad \textbf{(2)}$$

$$f(x) + 1 = \frac{2}{x+1}$$
 (2)

$$f(x+1) = \frac{1 - (x+1)}{1 + x + 1} = \frac{-x}{2 + x} \qquad (7)$$

$$f(-x) = rac{1+x}{1-x} = rac{1}{f(x)}$$
 (7)

$$f(0) = 1$$
 (1)

<u>שאלה 5</u>

(1 (N

$$\max(x,y) = \begin{cases} x & x \ge y \\ y & y \ge x \end{cases}.$$

 $\min(x,y) = \begin{cases} y & x \ge y \\ x & y \ge x \end{cases}.$ (2

|x| < 1 \Rightarrow -1 < x < 1

 $|x| > 1 \qquad \Rightarrow \qquad \{x < -1\} \cup \{x > 1\}$

 $\{-1 < x < 2\} \cup \{2 < x < 5\}$.

 $\underline{x=y}$ מצב (ג)

 $\max(x,y) = x = y,$ $\min(x,y) = x = y,$

לכן

 $\max(x,y) + \min(x,y) = x + y \ .$

x>y :2 מצב

 $\max(x, y) = x,$ $\min(x, y) = y,$

לכן

 $\max(x,y) + \min(x,y) = x + y .$

x < y :3 מצב

$$\max(x,y) = y,$$

$$\min(x,y) = x,$$

$$\max(x,y) + \min(x,y) = y + x = x + y \; .$$

x=y בעב וי (ד

$$\max(x,y)=x=y,$$

$$\min(x,y)=x=y,$$

$$\max(x,y)-\min(x,y)=x-x=0,$$
 אנם $|x-y|=0$, לפיכך , $|x-y|=0$

x>y :2 מצב

$$\max(x,y)=x,$$

$$\min(x,y)=y,$$
 לכן
$$\max(x,y)-\min(x,y)=x-y\;,$$
 וגם $|x-y|=x-y$, לפיכך $\max(x,y)-\min(x,y)=|x-y|$.

x < y :3 מצב

$$\max(x,y)=y,$$

$$\min(x,y)=x,$$
 לכן
$$\max(x,y)-\min(x,y)=y-x\ ,$$
 געם $|x-y|=y-x$, לפיכך , $|x-y|=y-x$, $\max(x,y)-\min(x,y)=|x-y|\ .$

(1)

$$\max(x,y) = \frac{1}{2} \left(\max(x,y) + \min(x,y) \right) + \frac{1}{2} \left(\max(x,y) - \min(x,y) \right) = \frac{1}{2} \left(x + y \right) + \frac{1}{2} |x - y|$$

$$\min(x,y) = \frac{1}{2} \left(\max(x,y) + \min(x,y) \right) - \frac{1}{2} \left(\max(x,y) - \min(x,y) \right) = \frac{1}{2} \left(x + y \right) - \frac{1}{2} |x - y|$$

<u>שאלה 6</u>

 $\underline{f(x+1)}$ (x

f(x-1) (2

 $\underline{f(x)+1}$ (3

 $\underline{f(x)-1}$ (7

 $\underline{f(-x)}$ (ភ

 $\underline{-f(x)}$ (1)

f(2x) (7

$$f\left(\frac{x}{2}\right)$$
 (n

$$\frac{f(x)}{2}$$
 (v

 $\underline{f(|x|)}$ (*

|f(x)| (אי

 $f(\max(x,0))$ ند

 $\underline{f(\min(x,0))}$ (x)

$\max(f(x),0)$ (7)

<u>שאלה 7</u>

(N

(2

()

(†

(1)

(1

1)

(n

(0

()

(אי

(2)

<u>שאלה 8</u>

(N

()

(†

(1

<u>שאלה 9</u>

(N

(2

()

<u>שאלה 10</u>

(N

(2

()

(7

(1)

שאלה 11

שלב הבסיס:

עבור $n=4^2$ נשים לב כי $2^4=16$ ו- $2^4=16$ לכן n=4 מתקיים.

שלב האינדוקציה

נניח כי
$$2^{m+1} > (m+1)^2$$
 כאשר $m>4$ שלם. נוכיח כי $2^m > m^2$ הרי
$$2^{m+1} = 2 \cdot 2^m$$

לפי ההנחת האינדוקציה, $2^m>m^2$. לפיכך

$$2^{m+1} > 2 \cdot m^2 = m^2 + m^2 .$$

מכיוון ש-5-5 אז

$$2^{m+1} > m^{2} + 5 \cdot m$$

$$= m^{2} + 2 \cdot m + 3 \cdot m$$

$$> m^{2} + 2m + 3 \cdot 5$$

$$= m^{2} + 2m + 15$$

$$> m^{2} + 2m + 1$$

$$= (m+1)^{2}.$$

 $m \geq 17$ לכל $2^m > m^4$ כי אינדוקציה ע"י אינדוקציה לכן . $2^{m+1} > (m+1)^4$ ליא

ב) שלב הבסיס:

n=3 עבור

מתקיים.

: שלב האינדוקציה

 $2^{m+1} > 2(m+1)+1$ נניח שעבור m>3 טבעי m>3 נוכיח כי נוכיח א

$$2^{m+1} = 2 \cdot 2^m > 2 \cdot (2m+1) = 4m+2$$

לפי ההנחת האינדוקציה. מכיוון ש-3-m>3 אז

$$2^{m+1} > 4m + 2$$

$$= 2m + 2m + 2$$

$$> 2m + 2 \cdot 3 + 2$$

$$= 2m + 7$$

$$= 2(m+1) + 5$$

$$> 2(m+1) + 1.$$

 $2^m>2m+1$ כי אינדוקציה ע"י אינדוקציה . $2^{m+1}>2(m+1)+1$ ז"א

(ג) שלב הבסיס:

n=2 עבור

$$3^2 > 3 \cdot 2 + 1$$

מתקיים.

: שלב האינדוקציה

 $3^{m+1} > 3(m+1)+1$ נניח שעבור m>2 טבעי m>3 טבעי m>3

$$3^{m+1} = 3 \cdot 3^m > 3 \cdot (3m+1) = 9m+3$$

לפי ההנחת האינדוקציה. מכיוון ש-m>2 אז

$$3^{m+1} > 9m + 3$$

$$= 3m + 6m + 3$$

$$> 3m + 3 \cdot 6 + 3$$

$$= 3m + 19$$

$$= 3(m+1) + 16$$

$$> 3(m+1) + 1.$$

 $3^m > 3m+1$ כי אינדוקציה ע"י אינדוקציה. $3^{m+1} > 3(m+1)+1$ ז"א

:שלב הבסיס

עבור n=1, לכל n=1 ממשי מתקיים

$$(1+a)^1 = 1+a .$$

שלב האינדוקציה:

נניח כי עבור m>1 - ממשי ו- $a\geq -1$ טבעי מתקיים

$$(1+a)^m \ge 1 + ma .$$

נוכיח כי $(1+a)^{m+1} > 1 + (m+1)a$. הרי

$$(1+a)^{m+1} = (1+a) \cdot (1+a)^m . \tag{*1}$$

נשים לכ, מכיוון ש-1+a שיז לכן, בגלל ש-1+a שיז לכן, בגלל ש-1+a לפי ההנחת האינדוקציה, נשים לכ, מכיוון ש-1+a שז גם 1+a (1+a) שיז גם 1+a (1+a) בי (1+a

$$(1+a)^{m+1} > (1+a) \cdot (1+ma) = 1+a+ma+ma^2 = 1+(m+1)a+ma^2$$
. (*2)

(*2) נשים לב, $a^2>0$ ו- $a^2>0$ לכן m>1 ו- $a^2>0$ כי

$$(1+a)^{m+1} > 1 + (m+1)a$$
.

. טבעי. $a \geq 1$ לכן, הוכחנו ע"י אינדוקציה כי $a \geq 1$ לכן, הוכחנו ע"י אינדוקציה כי

:שלב הבסיס

עבור n=10 מתקיים. n=10 מתקיים.

שלב האינדוקציה

נניח כי $2^{m+1} > (m+1)^3$ כאשר m>10 שלם. נוכיח כי $2^m > m^3$ הרי

$$2^{m+1} = 2 \cdot 2^m$$

לפיכך $.2^m > m^3$ לפיכך לפיכך

$$2^{m+1} > 2 \cdot m^3 = m^3 + m^3$$
.

מכיוון ש- m > 10 אז

$$2^{m+1} > m^{3} + 10 \cdot m^{2}$$

$$= m^{3} + 3 \cdot m^{2} + 7 \cdot m^{2}$$

$$> m^{3} + 3m^{2} + 7 \cdot 10 \cdot m$$

$$= m^{3} + 3m^{2} + 70 \cdot m$$

$$= m^{3} + 3m^{2} + 3m + 67m$$

$$> m^{3} + 3m^{2} + 3m + 67 \cdot 10$$

$$= m^{3} + 3m^{2} + 3m + 670$$

$$> m^{3} + 3m^{2} + 3m + 1$$

$$= (m+1)^{3}.$$

 $.m \geq 10$ לכל $2^m > m^3$ כי מינדוקציה ע"י אינדוקציה לכן . $2^{m+1} > (m+1)^3$ א"א

שלב הבסיס:

. עבור n=17 לכן $17^4>17^4$ לכן $17^4=83521$ ו- $17^{17}=131072$ מתקיים. n=17

שלב האינדוקציה

נניח כי
$$2^{m+1} > (m+1)^3$$
 כאשר $m>17$ כאשר $2^m>m^4$ נניח כי
$$2^{m+1} = 2 \cdot 2^m$$

לפיכך $.2^m > m^4$, לפיכך האינדוקציה, לפיכך

$$2^{m+1} > 2 \cdot m^4 = m^4 + m^4 .$$

מכיוון ש- 17 אז

$$\begin{split} 2^{m+1} > & m^4 + 17 \cdot m^3 \\ &= m^4 + 4 \cdot m^3 + 13 \cdot m^3 \\ > & m^4 + 4m^3 + 13 \cdot 17 \cdot m^2 \\ &= m^4 + 4m^3 + 221 \cdot m^3 \\ > & m^4 + 4m^3 + 221 \cdot 17m^2 \\ &= m^4 + 4m^3 + 3757m^2 \\ &= m^4 + 4m^3 + 6m^2 + 3751m^2 \\ > & m^4 + 4m^3 + 6m^2 + 3751 \cdot 17m \\ &= m^4 + 4m^3 + 6m^2 + 63869m \\ &= m^4 + 4m^3 + 6m^2 + 4m + 63865m \\ > & m^4 + 4m^3 + 6m^2 + 4m + 63865 \cdot 17 \\ &= m^4 + 4m^3 + 6m^2 + 4m + 1 \\ &= (m+1)^4 \; . \end{split}$$

 $2m \geq 17$ לכל $2^m > m^4$ כי אינדוקציה ע"י אינדוקציה לכן . $2^{m+1} > (m+1)^4$ ליא

שאלה 12

$$\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x} \ .$$

מכיוון ש-x>0 אז גם x>0 לכן

$$1 + \frac{1}{x} > 1 + 0$$
 \Rightarrow $1 + \frac{1}{x} > 1$.

נציב
$$1+rac{1}{x}=rac{1+x}{x}$$
 ונקבל

$$\frac{1+x}{x} > 1 .$$