A Tensor Compiler with Automatic Data Packing for Simple and Efficient Fully Homomorphic Encryption

Aleksandar Krastev*, Nikola Samardzic*, Simon Langowski, Srinivas Devadas, Daniel Sanchez

*Authors contributed equally

Why use Fully Homomorphic Encryption (FHE)?

- Compute on encrypted data
- Private cloud computing

- The server never decrypts anything!
- 10,000× slower on CPU
 - GPU¹, FPGA [FAB², Poseidon³]: 100× speedup
 - ASICs [SHARP⁴, ARK⁵, BTS⁶, CraterLake⁷]: 10,000× speedup

- 1. Jung et al. '21
- 2. Agrawal et al. HPCA '23
- 3. Yang et al. HPCA '23
- 4. Kim et al. ISCA '23
- 5. Kim et al. MICRO '22
- 6. Kim et al. ISCA '22
- 7. Samardzic et al. ISCA '22

Why an FHE Compiler?

- $f_{\text{FHF}} \neq f$; writing f_{FHF} is hard
 - ResNet¹, RNN², Logistic Regression³, CryptoNets⁴

```
def f(x: Tensor):
   for i in range(10):
     x = convLayer(x, w)
   return x
```


Low-level FHE ops

Fhelipe bridges this gap!

High-level description

- vs. manual:
 - o 10–48× less code
 - 1.0–12.5× faster

- 1. Lee et al. ICML '22
- 2. Podschwadt and Takabi '20
- 3. Han et al. '19
- 4. Brutzkus et al. ICML '19

Fhelipe's Contributions and Prior Compilers

Data Layouts

- FHE: Huge vectors with expensive reorder
- Manual: avoid reordering ⇒ many layouts
 - Fast, but hard to write
- Prior compilers:
 - Few layouts: slow
 [CHET¹, HECO², HeLayers³]
 - Superoptimizers: tiny programs
 [Coyote⁴]
- Fhelipe: novel layout representation
 - Large programs; 2.2–322.4× faster

Focus of this talk

4. Malik et al. PLDI '23

- 1. Dathathri et al. PLDI '19
- 2. Viand et al. USENIX Sec '23
- 3. Aharoni et al. PoPETs '23

Noise Management

- FHE: Random noise for security
 - Aux ops: rescale and bootstrap
- Rescale: prior compilers do well [EVA⁵, HECATE⁶, ELASM⁷]
- Bootstrap: limited prior work
 - Appears only in large programs
- Fhelipe: novel bootstrap placement
 - First to match manual

In the paper

- 5. Dathathri et al. PLDI '20
- 6. Lee et al. CGO '22
- 7. Lee et al. USENIX Sec '23

Challenges of FHE Layouts

FHE Programing Interface

- CKKS (state-of-the-art FHE scheme)
- Ciphertexts: vectors of fixed-point numbers

- No random access or reorder
- Large vectors: 32K elements
 - Unused slots are wasted
- Good fit: linear algebra & machine learning

Example: Sequence of Matrix-Vector Multiplies

- E.g., fully-connected or recurrent NNs
- A: [128 × 128]; x: [128]
 - Fills a 16K-element ciphertext
- Diagrams: $[128 \times 128] \rightarrow [4 \times 4]$

16K → 16 elements/ciphertext

```
x: Vector
A: List[Matrix]

for A_i in A:
    x = mv_mul(A_i, x)
    return x
```

Tensors

Ciphertexts

Uses only 1/128 of slots!

Replicate to Enable Data Parallelism

Efficient Matrix-Vector Multiply

- Efficient: O(log n) ops for n dot products
- But, different output layout
- What can we do?

Convert Back to Original Layout?

O(n) ops!

Work with the Layout As-Is?

- Efficient!
- Manually stitching layouts: tedious and error-prone
 - Many more layouts for different matrix sizes
- We want a compiler

Fhelipe: Tensor FHE Compiler

Fhelipe Language

- Python DSL
- Datatype: Tensor
 - For FHE data parallelism

Tensor Operation	Description			
t + u	Elementwise add			
t * u	Elementwise multiply			
<pre>t.rotate(dim: int, by: int)</pre>	Cyclic shift along dim			
t.replicate(dim: int, n: int)	Copy tensor n times, forming a new dimension dim			
t.sum(dim: int)	Sum along dimension dim, discarding it			
t.stride(dim: int, by: int)	Discard indices i = 0 (mod by); by must be a power of 2			
<pre>t.extend(dim: int, size: int)</pre>	Zero-pad dim up to size			
t.shrink(dim: int, size: int)	Shrink dim down to size			
t.drop_dim(dim: int)	Discard a dimension of size 1			
t.insert_dim(dim: int)	Insert a dimension of size 1			
t.reorder_dim(p: List[int])	Permute dimensions (e.g., transpose)			

Fhelipe Operations Compose!

- Functions: write once and reuse
- Enabled by automatic layouts and noise management

```
def mv_mul(m: Tensor, v: Tensor) -> Tensor:
```

```
def approx_tanh(x: Tensor) -> Tensor:
    c_1 = 0.249476365628036
    c_3 = -0.00163574303018748
    return c_1 * x + (c_3 * x) * (x * x)
```

Operations Used:

Tensor Operation	Description			
t.replicate(dim: int, n: int)	Copy tensor n times, forming a new dimension dim			
t * u	Elementwise multiply			
t.sum(dim: int)	Sum along dimension dim, discarding it			

Compilation Flow

Fhelipe Layouts

Fhelipe Layouts

Fhelipe Layout: permutation of dimension index bits with interleaved gap bits

Layouts: Transpose

Layouts: Shrink

Layouts: Stride

Layouts: Large Tensors

Layouts: Compaction

- Flexible layouts ⇒ compaction:
 - Cheap: 1 rotate-add / ciphertext
 - Utilizes all slots

- Prior compilers ⇒ no compaction
 - Remove gaps ⇒ expensive [CHET, HECO]
 - Leave gaps ⇒ unused slots [HeLayers]

Layout Assignment


```
for A_i in A:
   x = mv_mul(A_i, x)
return x
```

- Inputs: row-major
- Greedily fill gaps
- Match layouts on binary operations
- Compact eagerly

Mismatch!

- Backtrack
- Add conversion (if necessary)

Evaluation

				Runtime CraterLake [ms]			Speedup vs	
Application	Ops	LoC	Compile	Fhelipe	Manual	CHET+	Manual	CHET+
ResNet-20	120M	100	14.7 s	235.8	236.1	526.4	1.0×	2.2×
RNN	13M	80	1.6 s	434.7	452.4	2,223	1.0×	5.1×
LogReg	77M	60	27.3 s	141.5	1,741	4,592	12.3×	32.5×
LoLa-MNIST	1M	50	0.8 s	0.3	0.9	90.1	3.2×	322.4×
						gmean	2.5×	18.5×

Summary

- Easy-to-use tensor FHE language
- Automates layouts and noise management
 - Enables reuse and composition
- Great performance
 - First to match state-of-the-art manual implementations