Tema 6 Algebră liniară

- 1. În spațiul vectorial \mathbb{R}^3 înzestrat cu produsul scalar standard, să se calculeze măsura în radiani a unghiului dintre vectorii $v = (-1, 2, 5)^T$ $w = (3, -1, -2)^T$ și să se precizeze dacă unghiul dintre cei doi vectori este mai mic sau mai mare decât $\pi/2$. Calculați apoi măsura unghiului dintre v și versorul w^0 . Pentru a explica relația dintre cele măsuri calculate, desenați vectorii implicați în calcule.
- **2**. Dacă w_1, w_2, w_3, w_4 sunt vectori ortogonali doi câte doi, câti pivoți are forma scară a matricii $A = [w_1|w_2|w_3|w_4]$?
- 3. În $(\mathbb{R}^3, <, >)$ se consideră baza arbitrară:

$$\mathcal{B} = (f_1 = (2, 1, 3)^T, f_2 = (-1, 0, 1)^T, f_3 = (-1, 1, -2))^T$$

și vectorii $v_1 = -2f_1 + f_3$, $v_2 = 3f_1 + f_2 - 2f_3$. Să se calculeze produsul scalar $< v_1, v_2 >$ și norma vectorului v_1 .

4. Să se arate că într-un spațiu vectorial V, înzestrat cu produs scalar, are loc relația lui Pitagora:

$$||v+w||^2 = ||v||^2 + ||w||^2$$
, oricare ar fi vectorii ortogonali $v, w \in V$

Indicație: calculați < v + w, v + w >.

5. În \mathbb{R}^3 se dă baza

$$\mathcal{B}' = (v_1 = (1, 1, 1)^T, v_2 = (1, -3, 2)^T, v_3 = (5, -1, -4)^T)$$

- a) Să se verifice că \mathcal{B}' este o bază ortogonală și să se construiască din ea o bază \mathcal{B}'' , ortonormată.
- b) Să se determine coordonatele vectorului $v=(-2,0,1)^T$ relativ la baza \mathcal{B}'' și cosinușii directori ai direcției și sensului lui v, relativ la această bază.
- 6. a)Să se arate că matricea

$$A = [u_1|u_2|u_3] = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

este o matrice ortogonală și să se calculeze
$$A^{-1}X$$
, unde $X = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$.

- 7. Să se arate că o matrice $A \in \mathbb{R}^{n \times n}$, $A = [\mathbf{c}_1 | \mathbf{c}_2 | \dots | \mathbf{c}_n]$, este ortogonală dacă și numai dacă oricare două coloane distincte sunt ortogonale și norma fiecărui vector coloană este egală cu 1 (**Țineți minte această proprietate!!!**). Verificați această particulariate pentru matricea A, de la problema precedentă.
- b) Să se arate că și liniile unei matrici ortogonale sunt vectori ortogonali doi câte doi și fiecare are norma 1.

Verificați această proprietate pe matricea A din problema precedentă.

Indicatie: a) Observăm că un element arbitrar al produsului $P = A^T A$ este $p_{ij} = \langle c_i, c_j \rangle$.

- b) Liniile unei matrici ortogonale sunt coloane în transpusă și ...
- 8. În spațiul vectorial euclidian $(\mathbb{R}^3, <, >)$ se consideră baza canonică \mathcal{B} și baza ortonormată:

$$\mathcal{B}' = \left(u_1 = \left(\frac{2}{\sqrt{5}}, 0, -\frac{1}{\sqrt{5}}\right)^T, u_2 = \left(\frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}}\right)^T, u_3 = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\right)^T$$

- a) Să se determine matricea de trecere $T_{\mathcal{B}'\mathcal{B}}$. Fără a efectua verificarea precizați dacă $T_{\mathcal{B}'\mathcal{B}}$ este sau nu o matrice ortogonală. Argumentați răspunsul.
- b) Să se determine coordonatele vectorului $v = (0, -1, 2)^T$ relativ la baza \mathcal{B}' , prin cele două metode studiate în Cursul 6.
- c) Să se calculeze măsura unghiului dintre vectorii $v_1 = 2u_1 u_2 + 4u_3$, $v_2 = -u_1 + u_3$.
- 9. Se dă baza ortonormată

$$\mathcal{B}' = \left(u_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T, u_2 = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T, u_3 = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^T\right)$$

și vectorul $v = (2, -1, 1)^T \in \mathbb{R}^3$. Să se determine descompunerea, $v = y_1u_1 + y_2u_2 + y_3u_3$, a vectorului v, după vectorii bazei \mathcal{B}' Calculați apoi cosinusul unghiurilor $\widehat{v, u_i}$, i = 1, 2, 3. Ce relație există între aceste cosinusuri si coordonatele versorului lui v în baza \mathcal{B}' ?