Introduction to Algorithms

Meng-Tsung Tsai

11/12/2019

Announcements

Programming Quiz 1 will be held in EC 315/316/324 this Saturday (Nov 16) 13:30 - 17:30.

There are 5 problem sets and you may bring codes/slides/ebooks (electronic copies) with you using a USB flash drive and/or physical books/cheeting sheets.

The total size of e-files cannot exceed 200 MB, the number of physical books is at most 2, and the number of cheeting sheets is at most 4.

- 1. (60%) Monotonic Paths -- A Yes/No problem.
- 2. (20%) Young Tableau -- A variation. You need to get familar with how to search in a Young tableau.
- 3. (15%) Enclosing Squares -- A variation.
- 4. (15%) A challening problem. (DP/Greedy/D&C)
- 5. (15%) A more challenging problem. (DP/Greedy/D&C)

It is hard to get fewer than 30 points. Please attend this quiz.

Amortized Analysis

Stack operations

Given an empty stack S and a sequence of Push(S, x), Pop(S), MultiPop(S, k) operations.

What is the worst-case running time for a sequence of n Push, Pop, and MultiPop operations?

Every Push and Pop operation needs O(1) time.

MultiPop

```
\begin{array}{c} \text{MultiPop}(S,k) \{ \\ \text{while}(!S.\text{empty}() \text{ and } k > 0) \{ \\ \text{S.Pop}(); \\ \text{k} \leftarrow \text{k-1}; \\ \} \\ \end{array}
```

MultiPop

```
\begin{array}{c} \text{MultiPop}(S,k) \{\\ \text{while}(!S.empty() \text{ and } k > 0) \{\\ \text{S.Pop}();\\ \text{k} \leftarrow \text{k-1};\\ \}\\ \}\\ \end{array}
```

Eevery MultiPop operation needs O(k) time.

Naive analysis

Note that there are at most n Push(S, x) in a sequence of n operations.

MultiPop(S, k) needs O(k) = O(n) time because there are at most n elements in the stack at any time.

The running time of a sequence of n Pop(), Push(), and MultiPop() operations is O(n²) in the worst case.

Aggregate analysis

Note that there are at most n Push(S, x) in a sequence of n operations.

All MultiPop(S, k) operations need O(n) time because there are at most n elements in the stack at any time.

The running time of a sequence of n Pop(), Push(), and MultiPop() operations is O(n) in the worst case.

The accounting method

i-th operation	actual cost c _i	amortized cost ĉ _i
Push(S, x)	1	2
Pop()	1	0
MultiPop(S, k)	min(S , k)	0

At Push(S, x), it prepays the cost for Pop x. We have $\sum_{1 \le i \le n} c_i \le \sum_{1 \le i \le n} \hat{c}_i = O(n)$.

The potential method

i-th operation	actual cost c _i	amortized cost ĉ _i
Push(S, x)	1	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i - \mathbf{\Phi}_{i-1} = 2$
Pop()	1	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i - \mathbf{\Phi}_{i-1} = 0$
MultiPop(S, k)	min(S , k)	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i$ - $\mathbf{\Phi}_{i-1} = 0$

At Push(S, x), instead of prepaying for x, we prepay for the potential change to the system. We define the system potential to be # elements in stack S. Let Φ_i be the system potential after i operations are performed.

The potential method

i-th operation	actual cost c _i	amortized cost ĉ _i
Push(S, x)	1	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i - \mathbf{\Phi}_{i-1} = 2$
Pop()	1	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i - \mathbf{\Phi}_{i-1} = 0$
MultiPop(S, k)	min(S , k)	$\hat{\mathbf{c}}_i = \mathbf{c}_i + \mathbf{\Phi}_i$ - $\mathbf{\Phi}_{i-1} = 0$

$$\begin{aligned} \mathbf{O}(\mathbf{n}) &= \sum_{1 \leq i \leq n} \, \hat{\mathbf{c}}_i = \sum_{1 \leq i \leq n} \, \mathbf{c}_i \, + \, \mathbf{\Phi}_i - \, \mathbf{\Phi}_{i-1} \\ &= \mathbf{\Phi}_n - \, \mathbf{\Phi}_0 + \sum_{1 \leq i \leq n} \, \mathbf{c}_i \\ &\geq \sum_{1 \leq i \leq n} \, \mathbf{c}_i \end{aligned}$$

Incrementing a binary counter

Given a k-bit binary counter and a sequence of n Inc() operations.

What is the worst-case running time for a sequence of n Inc() operations?

Inc

```
Inc(A){
  for(i=0; i<k; ++i){
    A[i] = 1 - A[i];
    if(A[i] == 1) break;
}
</pre>
```

counter	$A[3](2^3)$	$A[2](2^2)$	A[1](21)	$A[0](2^0)$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0

Inc

```
Inc(A){
for(i=0; i<k; ++i){
    A[i] = 1 - A[i];
    if(A[i] == 1) break;
```

The values of the gray cells are changed by Inc().

counter	$A[3](2^3)$	$A[2](2^2)$	$A[1](2^1)$	$A[0](2^0)$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0

Naive analysis

Each Inc() changes at most k bits.

The running time of a sequence of n Inc() operations is O(nk) in the worst case.

Aggregate analysis

A[0] changes every Inc(), A[1] changes every other Inc(), A[2] changes once every four Inc(), ...

Total running time is thus O(n)+O(n/2)+...=O(n).

counter	$A[3](2^3)$	$A[2](2^2)$	$A[1](2^1)$	$A[0](2^0)$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0

The accounting method

i-th Inc()	actual cost c _i	amortized cost ĉ _i
$\begin{array}{c} \text{set }\alpha \text{ 1-bits to 0}\\ \text{and}\\ \text{set }\beta \text{ 0-bits to 1} \end{array}$	$\alpha + \beta$	$2\beta = 2$ (\beta must be 1)

While setting a bit to 1, it prepays the cost for resetting the bit back to 0. We have $\sum_{1 \le i \le n} c_i \le \sum_{1 \le i \le n} \hat{c}_i = O(n)$.

The potential method

i-th Inc()	actual cost c _i	amortized cost ĉ _i
$\begin{array}{c} \text{set } \alpha \text{ 1-bits to 0} \\ \text{and} \\ \text{set } \beta \text{ 0-bits to 1} \end{array}$	$\alpha + \beta$	$\hat{\mathbf{c}}_{i} = \mathbf{c}_{i} + \mathbf{\Phi}_{i} - \mathbf{\Phi}_{i-1}$ $= \alpha + \beta - (\alpha - \beta)$ $= 2\beta = 2$

We define the system potential to be # 1-bits in array S. Let Φ_i be the system potential after i operations are performed.

The potential method

i-th Inc()	actual cost c _i	amortized cost ĉ _i
set α 1-bits to 0 and set β 0-bits to 1	$\alpha + \beta$	$\hat{\mathbf{c}}_{i} = \mathbf{c}_{i} + \mathbf{\Phi}_{i} - \mathbf{\Phi}_{i-1}$ $= \alpha + \beta - (\alpha - \beta)$ $= 2\beta = 2$

$$\begin{aligned} \mathbf{O}(\mathbf{n}) &= \sum_{1 \le i \le n} \, \hat{\mathbf{c}}_i = \sum_{1 \le i \le n} \, \mathbf{c}_i + \mathbf{\Phi}_i - \mathbf{\Phi}_{i-1} \\ &= \mathbf{\Phi}_n - \mathbf{\Phi}_0 + \sum_{1 \le i \le n} \, \mathbf{c}_i \\ &\geq \sum_{1 \le i \le n} \, \mathbf{c}_i \end{aligned}$$

Exercise

Input: an n by n boolean matrix M.

Output: Mv for all $v \in \{0, 1\}^n$.

Example.

Let
$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Show that this problem can be solved in O(2ⁿ n) time.

$$M \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, M \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, M \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, M \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Huffman Codes

Data compression

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a binary string B that represents S. In other words, one can recover S by decompressing B.

Example.

Let S be "I can can a can."

The binary representation of S is \rightarrow

 $1001001000000100 \\ 1100011010000110 \\ 0111011000000110 \\ 1100110100000100 \\ 10000110100000110 \\ 0111011011001110100$

Data compression

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a binary string B that represents S. In other words, one can recover S by decompressing B.

Example.

Let S be "I can can a can."

The binary representation of S is \rightarrow

There are a lot of repeated substrings.

```
1001001000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 1100011010000110 \\ 0111011011001110100
```

Character code

Let S be "I can can a can."

```
1001001000000100 \\ 11000110100000110 \\ 0111011000000100 \\ 11000110100000110 \\ 0111011000000110 \\ 1100011010000110 \\ 0111011001110100
```

0001010011011010 0110110110010011 0110000

Raw data: 128 bits.

 \Rightarrow

Compressed data: 39 bits. (Rate = 30.5%)

Character code - encoding

Each character is represented by a unique binary string.

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

I can can a can.


```
0001010011011010 \\ 0110110110010011 \\ 0110000
```

Prefix code

It is a **character code** in which no codeword is a prefix of some other codeword.

character	codeword
'n	11
'a'	10
6 7	01
c'	001
·I'	0001
6 ,	0000

character	codeword	
'n	11	a prefix
'a'	10	
6 ,	01	
c'	001	
'I'	0001	
6 ,	1	

Prefix code

It is a **character code** in which no codeword is a prefix of some other codeword.

character	codeword
'n	11
'a'	10
6 7	01
c'	001
·I'	0001
	0000

character	codeword	
'n	11	a pref
'a'	10	
6 7	01	
c'	001	
'I'	0001	
. ,	1	

Not a prefix code.

Prefix code - decoding

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
	0000

000101001101101001101101100100110110000

Prefix code - decoding

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

000101001101101001101101100100110110000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
. ,	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
. ,	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
. ,	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
6 9	0000

character	codeword
'n,	11
'a'	10
6 9	01
c'	001
·I'	0001
. ,	0000

101101001101101100100110110000

I_c

Repeat this procedure until all codewords are decoded.

Huffman code

Input: a sequence S of n characters, where each character c_i for each $i \in [1, k]$ has f_i occurrences in the sequence.

Output: a prefix code mapping each c_i to a codeword e_i so that $\sum_{1 \le i \le k} f_i$ · length(e_i) is minimized. In other words, the desired output is a prefix code that minimizes the length of compressed data.

Construct_Huffman_Code(input){

Represent each character c_i by a tree composed of a single root node with frequency f_i .

character	frequency
'n	3
'a'	4
6 9	4
c'	3
·I'	1
6 9	1

While (there are multiple connected components) {
 (1) Pick two trees T₁, T₂ whose root has lowest frequencies.

(2) Connect T_1 , T_2 by a new node z. Let z.left be the root of T_1 and z.right be the root of T_2 . Let z.freq be the sum of the frequency at the roots of T_1 and T_2 .

Replacing the lowest frequency and the second lowest frequency by their sum can be done in O(log n) time by a min-heap. The total running time is O(n log n).

Why is Huffman code optimal?

Claim 1. If a prefix code is optimal ($\sum_{1 \le i \le k} f_i$ · length(e_i) is minimized), then in the tree T representing the code every internal node has exactly two child nodes.

We can get a more succint code by removing the internal nodes that have one child node.

Why is Huffman code optimal?

Claim 2. Let x, y be the characters that have the lowest frequencies. There exists an optimal code so that the codewords for x and y have the same length and differ only in the last bit.

Let leaves a, b be siblings of maximum depth. Replacing a, b with x, y cannot increase $\sum_{1 \le i \le k} f_i \cdot length(e_i)$.

Why is Huffman code optimal?

Claim 3. Let C be the character set. Let x, y be the characters that have the lowest frequencies in C.

Let $C' = C - \{x, y\} \cup \{z\}$ and z.freq = x.freq + y.freq. Let T' be any tree representing an optimal code for C'. Then, the tree T obtained from T' by replacing z with an internal node having x and y as children, represents an optimal code for C.

To show:

If T' is optimal for C', then T is optimal for C.

Note that w(T') = w(T) - z.freq.

Proof of Claim 3

Suppose tree T does not represent the optimal code, then there exists a tree P representing the optimal code so that w(P) < w(T) and x, y are siblings in P (due to Claim 1).

Let P' be the tree obtained from P by replacing the subtree rooted at the parent of x and y with a node z and letting z.freq = x.freq + y.freq.

Proof of Claim 3

Suppose tree T does not represent the optimal code, then there exists a tree P representing the optimal code so that w(P) < w(T) and x, y are siblings in P.

Let P' be the tree obtained from P by replacing the subtree rooted at the parent of x and y with a node z and letting z.freq = x.freq + y.freq.

