MDV: cours 1

Systèmes de déduction

Initiation à Coq

Qu'est ce qu'un assistant de preuve?

Un système informatique pour

- écrire des énoncés logiques (spécifier),
- puis les prouver (vérifier).

L'outil informatique apporte

- de la rigueur,
- de l'automatisation.

Un tel système repose sur une logique formelle

Logique formelle

Un logique formelle comprend

- un langage pour écrire des formules,
- une interprétation (sémantique) pour donner du sens aux formules (définir les formules valides),
- un système de déduction pour construire des preuves de formules (définir les formules prouvables).

Méta-théorie

- contradictoire : toute formule est-elle valide ? (sinon la logique est dite cohérente)
- correction (soundness): toute formule prouvable est elle valide?
- complétude : toute formule valide est elle prouvable ?
- décidabilité : existe-t-il un algorithme pour décider si une formule est valide ou non?

① Qu'est ce qu'un assistant de preuve?

Qu'est ce qu'un assistant de preuve?

2 Logique propositionnelle

Qu'est ce qu'un assistant de preuve?

- 2 Logique propositionnelle
- 3 Logique du premier ordre

Qu'est ce qu'un assistant de preuve?

- 2 Logique propositionnelle
- 3 Logique du premier ordre

Logique propositionnelle

- Syntaxe
- Sémantique
- Systèmes de déduction
- Exercices en Coq

Syntaxe

$$\phi \quad ::= \quad \bot \quad | \quad x \quad | \quad \neg \phi' \quad | \quad \phi' \lor \phi'' \quad | \quad \phi' \land \phi'' \quad | \quad \phi' \Rightarrow \phi''$$

avec x une variable propositionnelle choisie dans un ensemble (dénombrable) $\{p_1, p_2, \ldots\}$.

Exemple:

$$(n_1 \vee n_2) \Rightarrow \neg n_1$$

Sémantique

Domaine d'interprétation :

$$\mathbb{B} = \{\mathbf{t}, \mathbf{f}\}$$

Interprétation des connecteurs : on associe à chaque opérateur élémentaire o, une interprétation $[\![o]\!] \in \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ (ou $\mathbb{B} \to \mathbb{B}$) décrite par une table de vérité.

x	$[\![\neg]\!]x$
t	f
f	t

x	y	$x [\![\wedge]\!] y$	$x \llbracket \vee \rrbracket y$	$x \parallel \Rightarrow \parallel y$
t	t	t	t	t
t	f	f	t	f
f	t	f	t	t
f	f	f	f	t

Sémantique (2)

Interprétation des formules : dépend d'une valuation $\rho \in P \to \mathbb{B}$

$$\llbracket \boldsymbol{\Phi} \rrbracket : (P \to \mathbb{B}) \to \mathbb{B}$$

$$\begin{split} & \llbracket \bot \rrbracket_{\rho} &= & \mathfrak{f} \\ & \llbracket x \rrbracket_{\rho} &= & \rho(x) \\ & \llbracket \neg \varphi \rrbracket_{\rho} &= & \llbracket \neg \rrbracket \llbracket \varphi \rrbracket_{\rho} \\ & \llbracket \varphi_{1} o \varphi \rrbracket_{\rho} &= & \llbracket \varphi_{1} \rrbracket_{\rho} \llbracket o \rrbracket \llbracket \varphi_{2} \rrbracket_{\rho}, \quad o \in \{ \vee, \wedge, \Rightarrow \} \end{split}$$

Exemple : si
$$\rho = [p_1 \mapsto t, p_2 \mapsto f]$$

$$\begin{split} [\![(p_1 \lor p_2) \Rightarrow \neg p_1]\!]_{\rho} &= (t[\![\lor]\!]\mathfrak{f})[\![\Rightarrow]\!]([\![\neg]\!]\mathfrak{t}) \\ &= t[\![\Rightarrow]\!]\mathfrak{f} \\ &= \mathfrak{f} \end{split}$$

Sémantique (3)

Quelques définitions

▶ Une formule ϕ est satisfaite par une valuation $\rho \in P \to \mathbb{B}$ si

$$[\![\varphi]\!]_{\rho} = t$$

• Une formule φ est valide si elle est satisfaite par toute valuation :

$$\forall \rho \in P \rightarrow \mathbb{B}, \llbracket \varphi \rrbracket_{\rho} = \mathfrak{t}$$

Nous le notons :

$$\models \phi$$

• Une formule ϕ est conséquence logique d'un ensemble de formules Γ si elle est satisfaite par toutes les valuations qui satisfont les formules de Γ :

$$\forall \rho \in P \to \mathbb{B}, \ (\forall \phi' \in \Gamma, \ \llbracket \phi' \rrbracket_{\rho} = \mathfrak{t}) \Rightarrow \llbracket \phi \rrbracket_{\rho} = \mathfrak{t}$$

Nous le notons :

$$\Gamma \models \Phi$$

Système de déduction

Un système de déduction comprend

- des axiomes (feuilles de l'arbre de preuve),
- des règles de déduction (feuilles ou embranchements de l'arbre de preuve).

Plusieurs systèmes pour la logique propositionnelle

- ▶ *à la Hilbert* (avec des variantes)
- déduction naturelle
- calcul des séquents

Preuve à la Hilbert

▶ 12 familles d'axiomes (pour toutes formules *A*, *B* et *C*)

$$A \Rightarrow (B \Rightarrow A) \qquad (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

$$\bot \Rightarrow A \qquad A \Rightarrow (\neg A \Rightarrow \bot) \qquad (A \Rightarrow \bot) \Rightarrow \neg A$$

$$(A \land B) \Rightarrow A \qquad (A \land B) \Rightarrow B \qquad A \Rightarrow (B \Rightarrow (A \land B))$$

$$A \lor (\neg A) \qquad A \Rightarrow (A \lor B)) \qquad B \Rightarrow (A \lor B))$$

$$(A \lor B) \Rightarrow ((A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow C))$$

2 règles de déduction

$$\frac{A \Rightarrow B \quad A}{B} MP \qquad (modus ponens)$$

$$\frac{A \Rightarrow B \quad A}{B} MP \qquad (axiome contextuel)$$

Preuve à la Hilbert (2)

Une preuve (à la Hilbert) d'une formule ϕ est un arbre

- dont la racine est étiqueté par φ,
- ▶ les sous-arbres sont des preuves de formules ϕ_1, \dots, ϕ_n tels que

$$\frac{\Phi_1 \dots \Phi_n}{\Phi}$$

est une règle de déduction.

Quand une telle preuve existe, nous notons

$$\vdash_H \phi$$

Preuve à la Hilbert : exemple

$$\frac{(p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))}{(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)} \frac{Ax}{p \Rightarrow ((p \Rightarrow p) \Rightarrow p)} \frac{Ax}{p \Rightarrow ((p \Rightarrow p) \Rightarrow p)} \frac{Ax}{p \Rightarrow (p \Rightarrow p)} \frac{Ax}{p \Rightarrow (p \Rightarrow p)} \frac{Ax}{p \Rightarrow (p \Rightarrow p)}$$

Un peu fastidieux...

Preuve à la Hilbert : propriétés

Théorème de correction:

$$\vdash_H \phi$$
 implique $\models \phi$

Théorème de complétude :

$$\models \phi$$
 implique $\vdash_H \phi$

Déduction naturelle

On veut pouvoir prouver $A \Rightarrow B$ en admettant A et en prouvant B. Il faut alors manipuler un contexte dans les règles de déduction : notion de séquent.

$$\Gamma \vdash \Phi$$

 Γ représente un ensemble de formules $\{\phi_1, \dots, \phi_p\}$.

Remarques

- Γ ∪ { ϕ } est noté Γ, ϕ .
- ► En général, un séquent est de la forme $\phi_1, \dots, \phi_p \vdash \psi_1, \dots, \psi_n$, mais en déduction naturelle n = 1.

Déduction naturelle

Une preuve (en déduction naturelle) d'un séquent $\Gamma \vdash \varphi$ est un arbre

- dont la racine est étiquette par $\Gamma \vdash \phi$,
- ▶ les sous-arbres sont des preuves des séquents $\Gamma_1 \vdash \varphi_1, ..., \Gamma_n \vdash \varphi_n$ tels que

$$\frac{\Gamma_1 \vdash \varphi_1 \dots \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

est une instance de l'une des règles de déduction suivantes

Déduction naturelle

$$\frac{\Gamma,A \vdash A}{\Gamma \vdash A} \text{ Ax} \qquad \frac{\Gamma \vdash A \lor (\neg A)}{\Gamma \vdash A \lor (\neg A)} \text{ Tiers Exclu}$$

$$\frac{\Gamma,A \vdash \bot}{\Gamma \vdash A} \text{ élim}\bot$$

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash A \Rightarrow B} \text{ intro}\Rightarrow \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A \Rightarrow B} \text{ élim}\Rightarrow$$

$$\frac{\Gamma \vdash A \land \Gamma \vdash B}{\Gamma \vdash A \land B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash A \lor B} \text{ intro}^{\uparrow}$$

Déduction naturelle : exemple

$$\frac{\overline{A \land (A \Rightarrow B) \vdash A \land (A \Rightarrow B)}}{\underbrace{A \land (A \Rightarrow B) \vdash A \Rightarrow B}} \stackrel{Ax}{i_{\land}} \frac{\overline{A \land (A \Rightarrow B) \vdash A \land (A \Rightarrow B)}}{A \land (A \Rightarrow B) \vdash A} \stackrel{i_{\land}}{i_{\land}} \frac{\overline{A \land (A \Rightarrow B) \vdash A}}{\vdash (A \land (A \Rightarrow B)) \Rightarrow B} \stackrel{i_{\Rightarrow}}{i_{\Rightarrow}}$$

Exercice

Prouver en déduction naturelle les axiomes du système de Hilbert.

Déduction naturelle : propriétés

Théorème de correction:

$$\Gamma \vdash \Phi$$
 prouvable implique $\Gamma \models \Phi$

Théorème de complétude :

$$\models \varphi$$
 implique $\Gamma \vdash \varphi$ prouvable

Déduction naturelle : preuve constructive

Une preuve est constructive si elle n'utilise pas la règle du Tiers Exclu.

$$\overline{\Gamma \vdash A \lor (\neg A)}$$
 Tiers Exclu

La déduction naturelle constructive est correcte (mais pas complète) pour la logique propositionnelle.

Exemple de tautologie non démontrable en déduction naturelle constructive : formule de Peirce

$$(((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$$

Coq: un assistant de preuve en logique constructive

Nous allons découvrir les commandes de base de Coq, en nous restreignant à la logique propositionnelle.

Nous nous interdirons d'utiliser l'automatisation dans cette séance.

Il faut faire ses gammes!

Notations

Notation:

$$\Rightarrow$$
 est noté \rightarrow (->)

Parenthésage:

$$A \rightarrow (B \rightarrow C)$$
 est simplement noté $A \rightarrow B \rightarrow C$.

But courant:

```
un séquent A_1,\ldots,A_n \vdash A s'affiche H_1:A_1 \ldots H_n:A_n
```

L'environnement de travail

Deux fenêtres : le fichier courant + les réponses de Coq.

L'évaluation du fichier se fait linéairement.

Utilisez les raccourcis Ctrl+flèches pour faire avancer/reculer la zone d'évaluation.

Règle intro⇒

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \text{ intro} \Rightarrow$$

в

Commande: intros H.

Remarques

- ▶ on peut enchainer plusieurs introductions : intros H1 H2.
- on peut laisser le système nommer les hypothèses : intros.

Règle élim⇒

$$\frac{\Gamma \vdash A \Rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B} \text{ \'elim}_{\Rightarrow}$$

Commande: apply н.

Remarques

- ► contrairement à élim \Rightarrow , il y un seul sous arbre de preuve : il faut avoir déjà une preuve de $A \Rightarrow B$ dans son contexte
- ▶ pour forcer Coq à générer un sous-but pour $A \Rightarrow B$, on peut taper assert (A→B).

Règle Ax

$$\overline{\Gamma,A \vdash A}$$
 Ax

Commande: apply н.

Remarque

▶ on peut éviter de nommer l'hypothèse en utilisant la commande assumption.

Règle intro∧

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \text{ intro}_{\land}$$

H: A H0: B =====A

H : A H0 : B

В

Commande: split.

Règle élim∧

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \text{ \'elim}^1_{\land} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \text{ \'elim}^2_{\land}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \text{ \'elim}_{A}^{2}$$

Commande: destruct H.

Remarque

 on peut nommer les hypothèses introduites avec la syntaxe destruct H as [H H0].

Règle intro_V

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \text{ intro}_{\lor}^{1} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \text{ intro}_{\lor}^{2}$$

Commande: left.

Remarque

• $intro^2_{\lor}$ correspond à la commande right.

Règle élim \vee

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} \text{ \'elim}_{\lor}$$

Commande: destruct H.

Règle élim⊥

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \text{ \'elim}^1_\bot$$

Commande: elim H.

Remarque

▶ elim H peut aussi s'utiliser quand $H:A1 \rightarrow ... \rightarrow An \rightarrow False$ (mais il faut alors décharger n sous-buts)

Règle intro-

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A}$$
 intro-

False

Commande: intros H.

Remarque

- ▶ ¬ A est en fait du sucre syntaxique pour A \rightarrow False.
- ▶ intros. ne marche pas ici.

Règle élim,

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \text{ élim}_{\neg}$$

____A

. и

В

-----A

Commande: absurd A.

Remarque

▶ la commande est utile même quand B n'est pas égal à False.

Règle du tiers exclu

$$\overline{\Gamma \vdash A \lor \neg A}$$
 Tiers Exclu

Il faut ajouter un axiome (excluded middle)!

Variable em :
$$\forall$$
 P:**Prop**, P $\vee \neg$ P.

Commande: destruct (em A).

Exercices

Prouver les lemmes du fichier prop. v en remplaçant à chaque fois la tactique d'automatisation tauto présente.

Plan

Qu'est ce qu'un assistant de preuve?

- 2 Logique propositionnelle
- 3 Logique du premier ordre

Logique du premier ordre

- Syntaxe
- Sémantique
- Systèmes de déduction
- Exercices en Coq

Syntaxe

Définition des termes

Soit $\mathcal F$ un ensemble de symboles chacun munis d'une arité (nombre de paramètres). Soit $\mathcal X$ un ensemble de variables.

L'ensemble des termes $\mathfrak{T}(\mathfrak{F},\mathfrak{X})$ est défini par

$$t ::= x \mid f(t_1,\ldots,t_n)$$

avec $x \in \mathcal{X}$, $f \in \mathcal{F}$ un symbole de fonction d'arité n et t_1, \ldots, t_n des termes de $\mathcal{T}(\mathcal{F}, \mathcal{X})$

Exemple : Soient $\mathcal{F} = \{f : 1, g : 2, a : 0\}$ et $\mathcal{X} = \{x, y, z\}$.

$$f(x)$$
 a z $f(g(a(x),f(a)))$ $g(x,x)$ sont des termes de $\mathfrak{T}(\mathfrak{F},\mathfrak{X})$.

Syntaxe

Définition des formules

Soit \mathcal{P} un ensemble de symboles de prédicats munis d'une arité. L'ensemble des formules sur \mathcal{F} , \mathcal{X} et \mathcal{P} est défini par

avec $x \in \mathcal{X}$, $t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ et $p \in \mathcal{P}$ un symbole de prédicat d'arité n.

Exemple : si $P = \{p : 1, q : 2, \leq : 2\}$, les expressions suivantes sont des formules

$$p(f(a))$$
 $q(g(f(a),x),y)$ $\forall x \exists y f(y) \leq x$

Sémantique

Une interprétation I de P et F comprend :

- un ensemble non vide D_I (domaine),
- ▶ une interprétation $[\![f]\!]_I \in D_I^n \to D_I$ pour chaque symbole $f \in \mathcal{F}$ d'arité n,
- ▶ une interprétation $[\![p]\!]_I \in D_I^n \to \mathbb{B}$ pour chaque symbole de prédicat $p \in P$ d'arité n.

Une valuation sur un ensemble de variables $\mathfrak X$ est une fonction $\mathfrak X \to D_I$ avec D_I un domaine d'interprétation.

Notation : pour $\rho \in \mathcal{X} \to D_I$, $x \in \mathcal{X}$ et $d \in D_I$, la valuation $\rho[x \mapsto d]$ est définie par

$$\rho[x \mapsto d](y) = \begin{cases} d & \text{si } x = y \\ \rho(y) & \text{si } x \neq y \end{cases}$$

Sémantique (2)

Étant donné une interprétation I de P et F, l'interprétation $[\![t]\!]_I \in (\mathcal{X} \to D_I) \to D_I$ d'un terme t est définie par

L'interprétation $\llbracket f \rrbracket_I \in (\mathfrak{X} \to D_I) \to \mathbb{B}$ d'une formule f est définie par

```
 \begin{aligned} & \llbracket p(t_1,\ldots,t_n) \rrbracket_I \rho &= & \llbracket p \rrbracket_I \left( \llbracket t_1 \rrbracket_I \rho,\ldots, \llbracket t_n \rrbracket_I \rho \right) \\ & \llbracket \bot \rrbracket_I \rho &= & \mathsf{f} \\ & \llbracket \neg \varphi \rrbracket_I \rho &= & \ldots \\ & & \ldots \\ & \llbracket \forall x \, \varphi \rrbracket_I \rho &= & \mathsf{t} \quad \text{si pour } d \in D_I, \llbracket \varphi \rrbracket_I \rho [x \mapsto d] = \mathsf{t} \\ & & \mathsf{f} \quad \text{sinon} \end{aligned}   \llbracket \exists x \, \varphi \rrbracket_I \rho &= & \mathsf{t} \quad \text{s'il existe } d \in D_I \text{ tel que } \llbracket \varphi \rrbracket_I \rho [x \mapsto d] = \mathsf{t} \\ & & \mathsf{f} \quad \text{sinon}
```

Sémantique (3)

Quelques définitions

• Une formule ϕ est valide dans une interprétation I ssi :

$$\forall \rho \in \mathfrak{X} \to \mathbb{B}, \ \llbracket \varphi \rrbracket_I \rho = \mathfrak{t}$$

- Une formule φ est satisfiable ssi elle est valide dans au moins une interprétation *I*.
- Une formule φ est universellement valide ssi elle est valide dans toute interprétation *I*.
- ▶ Une interprétation I est un modèle d'un ensemble de formules Γ (appelé théorie) ssi toutes les formules de Γ sont valides dans I.

Exercice

$$\mathcal{F} = \{c : 0, f : 1, \circ : 2, \bullet : 2\} \qquad \mathcal{X} = \{x, y\} \qquad P = \{z : 1, \bowtie : 2\}$$
$$\Phi = z(c) \land \forall x \forall y \ (f(x \circ y) \bowtie (f(x) \bullet f(y)))$$

- ▶ Montrer que ϕ est valide dans plusieurs interprétations sur \mathbb{R}
- ► Montrer que **•** n'est pas universellement valide

Déduction naturelle en logique du premier ordre

On rajoute 4 règles de déduction

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \text{ intro}_{\forall} \qquad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t/x]} \text{ élim}_{\forall}$$

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x A} \text{ intro}_{\exists} \qquad \frac{\Gamma \vdash \exists x A \qquad \Gamma, A \vdash B}{\Gamma \vdash B} \text{ élim}_{\exists}$$

Pour la règle intro $_{\forall}$, x ne doit pas être libre dans A. Pour la règle élim $_{\exists}$, x ne doit pas être libre dans B et Γ .

A[t/x] représente la substitution de la variable x par le terme t.

Exercice : définir formellement les notions de variable libre et de substitution (attention aux captures de variable).

Propriétés

Théorème de correction:

Si $\Gamma \vdash \varphi$ est prouvable alors φ est valide dans tous les modèles de Γ .

Théorème de complétude :

Si ϕ est valide dans tous les modèles de Γ alors $\Gamma \vdash \phi$ est prouvable.

Si on retire la règle du tiers exclu le système de déduction est correct mais pas complet.

Lecture à la maison : lire introduction, chapitre 1 et 4 du poly¹ de Gilles Dowek pour en apprendre plus sur les propriétés des preuves constructives.

http://www.lix.polytechnique.fr/~dowek/Cours/proof.ps.gz

Décidabilité, vérification de preuve

Logique propositionnelle:

- ► |= [?] φ est décidable,
- on peut vérifier $\vdash \varphi$ (et donc $\models \varphi$) en vérifiant la cohérence de l'arbre de preuve,
- on peut vérifier $\models \phi$ en faisant une table de vérité.

Logique du premier ordre :

- ► |= [?] φ est indécidable,
- on peut vérifier $\vdash \varphi$ (et donc $\models \varphi$) en vérifiant la cohérence de l'arbre de preuve,
- ▶ on ne peut pas vérifier (mécaniquement) $\models \Phi$ en se basant uniquement sur la notion sémantique (circularité)

Logique du premier ordre en Coq

Notations:

- ▶ ∀ se note forall,
- ightharpoonup ightharpoonup se note exists

Règle intro \forall

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x \, A} \text{ intro}_{\forall}$$

Commande: intros a.

Règle élim_∀

$$\frac{\Gamma \vdash \forall x \, A}{\Gamma \vdash A[t/x]} \, \text{\'elim}_{\forall}$$

Commande: apply н.

Remarque

▶ si H est de la forme \forall x y, Q y \rightarrow P x, il faut aider un peu Coq en donnant les substitutions à utiliser : apply (H a b) (ici x=a et y=b).

Règle intro∃

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x \, A} \text{ intro}_{\exists}$$

Commande: exists a.

Règle élim∃

$$\frac{\Gamma \vdash \exists x \, A \qquad \Gamma, A \vdash B}{\Gamma \vdash B} \text{ \'elim}_{\exists}$$

Commande: destruct H.

Remarque

▶ destruct H as [a H]. permet de nommer les objets générés.

Exercice

Prouver les lemmes du fichier pred.v en remplaçant à chaque fois la tactique d'automatisation firstorder présente.

La prochaine fois...

Nous aborderons la notion de définition inductive...

... que nous avons déjà largement utilisée tout au long de ce cours!