### Outline for Part 2

Measuring prediction performance

Sample splitting

Resampling methods

### Which model is best for prediction?

#### Example: Regularization/Variable selection by Lasso

#### Idea:

Penalize (shrink towards zero) regression coefficients by adding penalty term to LS criterion.

Thereby, "non-relevant" coefficients are estimated as exactly 0 and can be excluded.

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \bigg\{ \sum_{i=1}^{N} \bigl( y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \bigr)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \bigg\}$$



- small  $\lambda \Rightarrow$  many variables in model
- large  $\lambda \Rightarrow$  few variables in model



 $\Rightarrow$  How to select  $\lambda$  to minimize prediction error?

# Measuring prediction performance

To evaluate model performance on a given data set, measure how well its predictions actually match the observed data.

How close is the predicted value to the true value for that observation?

• Linear Regression: Mean squared error:

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• 2-class Classification: Brier score:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{p}(y_i = 1|x_i))^2$$

### Performance measures

Some models are used only for parameter estimation and testing

#### But:

- If used for prediction/classification, need to consider accuracy of predictions
- Two major aspects of prediction accuracy that need to be assessed:
  - (1) Reliability or calibration of a model:
    - ability of the model to make unbiased estimates of the outcome
    - observed responses agree with predicted responses
  - (2) Discrimination ability:
    - the model is able, through the use of predicted responses, to separate subjects

### Performance measures for classification tasks

#### Steyerberg et al, 2010 (Table 1)

| Aspect              | Measure                    | Visualization                      | Characteristics                                                                                                                               |
|---------------------|----------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Overall performance | R <sup>2</sup> Brier score | Validation graph                   | Better with lower distance between Y and $\hat{Y}$ . Captures calibration and discrimination aspects.                                         |
| Discrimination      | C statistic → AUC          | ROC curve                          | Rank order statistic; Interpretation for a pair of patients with and without the outcome                                                      |
|                     | Discrimination slope       | Box plot                           | Difference in mean of predictions between outcomes; Easy visualization                                                                        |
| Calibration         | Calibration-in-the-large   | Calibration or<br>validation graph | Compare mean(y) versus mean( $\hat{y}$ ); essential aspect for external validation                                                            |
| (                   | Calibration slope          |                                    | Regression slope of linear predictor; essential aspect for internal and external validation related to 'shrinkage' of regression coefficients |
|                     | Hosmer-Lemeshow test       |                                    | Compares observed to predicted by decile of predicted probability                                                                             |



https://drive.hhs.gov/pediatric\_challenge.html



How many retrieved items are relevant?



How many relevant items are retrieved?





$$F_eta = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

### Quantitative score (85 %):

$$\frac{1}{3} \left( \left( \max_{\text{threshold } t} F_2(t) \right)^2 + \text{AUPR}^2 + \left( \text{Mean}(\text{AUROC}) - \text{Var}(\text{AUROC}) \right)^2 \right)$$

### Qualitative score (15 %):

- Timeliness
- Interpretability
- Context Utility
- Technical Reproducibility
- Prediction Reproducibility

# How to estimate the performance measure in an unbiased manner?

# How to estimate performance in an unbiased manner?

**Need:** Model assessment/validation to ascertain whether predicted values from the model are likely to accurately predict responses on future subjects or subjects not used to develop the model

#### Two modes of validation

- External:
  - Use different sets of subjects for building the model (including tuning) and testing
- Internal:
  - (i) Apparent (or training) error: evaluate fit on same data used to create fit
  - (ii) Data splitting and its extensions
  - (iii) Resampling methods

- Two fundamental problems with estimation on the training data:
  - The final model will over-fit the training data. Problem is more pronounced with models with a large number of variables.
  - The error estimate will be overly optimistic (too low).
- A much better idea is to split the data into disjoint subsets or use resampling methods
- Training error: Classification error in the training data set
- Generalisation error: Expected error for the classification of new samples → This is what we want to estimate!

The training error is a bad estimator for the generalisation error!

### Over-fitting is a major problem

# Behaviour of training sample error as the model complexity is varied



# Over-fitting is a major problem

#### Behaviour of test and training sample error as the model complexity is varied



### The Bias-Variance Trade-Off

- A simple model might have more model bias, but
- A complex model has more model variance.

For  $Y = f(X) + \epsilon$  with  $E(\epsilon) = 0$  and  $Var(\epsilon) = \sigma_{\epsilon}^2$ , the expected prediction error of  $\hat{f}(X)$  at point  $x_0$  with squared error loss is:

$$\operatorname{Err}(x_0) = E[(Y - \hat{f}(x_0))^2 | X = x_0]$$

$$= \sigma_{\varepsilon}^2 + [\operatorname{E}\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - \operatorname{E}\hat{f}(x_0)]^2$$

$$= \sigma_{\varepsilon}^2 + \operatorname{Bias}^2(\hat{f}(x_0)) + \operatorname{Var}(\hat{f}(x_0))$$

$$= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^2 + \operatorname{Variance}. \tag{7.9}$$

from Hastie et al. (2009), chapter 7.3

# Things are different for very large (deep learning) models



- Underparameterised region
- Overparameterised region
- Double descent region: beyond overfitting to training data.

Belkin et al. (2019). doi:10.1073/pnas.1903070116 Lafon & Thomas (2024). doi:10.48550/arXiv.2403.10459

# Model building, selection and assessment

- 1. How to decide which method is the "best", i.e. has the smallest generalisation error, in a specific situation?
- 2. And how large is that smallest generalisation error anyway?
- Model building and selection: For a variety of different methods
  - Fit ("train") the models,
     i.e. perform parameter tuning/ variable selection
  - 2. Estimate the prediction errors.
  - 3. Choose the "best" method for a specific situation.

#### Model assessment

 For the final selected model estimate the generalisation error on new data.

# Sample splitting

→ Split data in several independent subsets before model building.

### Sample splitting

In a data-rich situation, we can split the available data.



- **Training set**: Fit ("train") the various prediction models
- Validation set:
  - Estimate the prediction errors of the models
  - Final model: Choose model with smallest prediction error
- Test set: Estimate the generalisation error by applying the final model to a new test data set

# Sample splitting

#### Model building and selection $\rightarrow$



 $\rightarrow$  Model assessment

# Drawbacks of sample splitting

#### One-time sample splitting has two basic drawbacks:

- We may not be able to afford the "luxury" of setting aside a portion of the data set for testing, as it might result in a large loss of power.
- The assessment can vary greatly when taking different splits:
   Since it is a single train-and-test experiment, the estimate of the error rate will be misleading if we happen to get an "unfortunate" split.

# Resampling methods

- → Cross-validation
- → Bootstrapping

### Cross-validation

- Alternative to data splitting in not so data-rich situations (i.e. most of the time...)
- Partition the data set into K roughly equal-sized subsets
- Each subset will be the test data set once, with the remaining samples making up the training data



 Cross-validation error: The results are pooled from all test sets to estimate the performance of the model (each case is used exactly once).

### Cross-validation

#### • K-fold cross-validation



#### Leave-one-out cross-validation



### Nested cross-validation

- Inner CV loop: Model building and selection
  - Feature selection, model selection, parameter tuning
  - Choose the model with the smallest CV error within inner loop
- Outer CV loop: Model assessment
  - Estimate the generalisation error for the final model





from: Maros et al. (2020)

## K-fold cross-validation: Training set size bias



#### Hypothetical learning curve:

The performance of the predictor improves as the training set size increases to about 100 observations.

Increasing this number further brings only a small benefit.

#### Drawbacks of cross-validation

- Leave-one-out CV: may have large variance
- K-fold CV: may have large bias, depending on the choice of the number of observations to be held out from each fit. The bias is possibly severe for training set sizes < 50, say. If the learning curve has a considerable slope at the given training set size, 5 or 10-fold CV will strongly overestimate the true prediction error.
- Possible solution: estimate prediction error by bootstrapping