Esercizio 4

1 Descrizione del Problema

Si consideri un meccanismo costituito da due aste rigide di lunghezza l. La prima asta è vincolata all'origine O=(0,0) tramite una cerniera. Un punto A posto sull'estremità della prima asta funge da cerniera di collegamento con la seconda asta. L'altra estremità della seconda asta è vincolata al punto B che, per vincolo, si muove lungo l'asse x. Indicando con α l'angolo formato dalla prima asta con l'asse x, le posizioni dei due punti sono:

$$A = (l\cos\alpha, \, l\sin\alpha)$$
 e $B = (2l\cos\alpha, \, 0)$.

Inizialmente le aste sono allineate lungo l'asse x (quindi $\alpha=0$). Successivamente il punto B viene spostato verso l'origine O con velocità costante $v_{b,0}$. Determinare:

- la legge oraria per α ;
- le componenti della velocità del punto A;
- le componenti dell'accelerazione del punto A.

2 Determinazione della Legge Oraria per α

La coordinata x di B è:

$$x_B = 2l\cos\alpha$$
.

Dato che B viene fatto muovere verso O con velocità costante $v_{b,0}$ (cioè, $dx_B/dt = -v_{b,0}$), si ha:

$$\frac{dx_B}{dt} = \frac{d}{dt} (2l\cos\alpha) = -2l\sin\alpha \frac{d\alpha}{dt} = -v_{b,0}.$$

Pertanto,

$$\frac{d\alpha}{dt} = \frac{v_{b,0}}{2l\sin\alpha}.$$

Separando le variabili e integrando con la condizione iniziale t=0 per cui $\alpha=0$ (ricordando che $\int_0^\alpha \sin\alpha'\,d\alpha'=1-\cos\alpha$):

$$\int_0^\alpha \sin \alpha' \, d\alpha' = \frac{v_{b,0}}{2l} \int_0^t dt',$$
$$1 - \cos \alpha = \frac{v_{b,0}t}{2l},$$

da cui la legge oraria è:

$$\cos \alpha = 1 - \frac{v_{b,0}t}{2l} \implies \alpha(t) = \arccos\left(1 - \frac{v_{b,0}t}{2l}\right).$$

3 Velocità del Punto A

Le coordinate di A sono:

$$x_A = l\cos\alpha, \quad y_A = l\sin\alpha.$$

3.1 Componente x della Velocità di A

Calcoliamo la derivata di x_A rispetto al tempo:

$$v_{A,x} = \frac{dx_A}{dt} = -l\sin\alpha \,\frac{d\alpha}{dt}.$$

Sostituendo $\frac{d\alpha}{dt} = \frac{v_{b,0}}{2l \sin \alpha}$ otteniamo:

$$v_{A,x} = -l\sin\alpha \cdot \frac{v_{b,0}}{2l\sin\alpha} = -\frac{v_{b,0}}{2}.$$

Quindi,

$$v_{A,x} = -\frac{v_{b,0}}{2}.$$

3.2 Componenti Cartesiane della Velocità di A

Per la componente y si ha:

$$v_{A,y} = \frac{dy_A}{dt} = l\cos\alpha \frac{d\alpha}{dt} = l\cos\alpha \cdot \frac{v_{b,0}}{2l\sin\alpha} = \frac{v_{b,0}}{2}\cot\alpha.$$

Pertanto, il vettore velocità di A è:

$$\vec{v}_A = (v_{A,x}, v_{A,y}) = (-\frac{v_{b,0}}{2}, \frac{v_{b,0}}{2} \cot \alpha).$$

4 Accelerazione del Punto A

Le componenti dell'accelerazione si ottengono derivando le componenti della velocità.

4.1 Componente x dell'Accelerazione di A

Poiché $v_{A,x} = -\frac{v_{b,0}}{2}$ è costante:

$$a_{A,x} = \frac{dv_{A,x}}{dt} = 0.$$

4.2 Componente y dell'Accelerazione di A

Deriviamo la componente y:

$$v_{A,y} = \frac{v_{b,0}}{2} \cot \alpha,$$

quindi:

$$a_{A,y} = \frac{d}{dt} \left(\frac{v_{b,0}}{2} \cot \alpha \right) = \frac{v_{b,0}}{2} \left(-\csc^2 \alpha \right) \frac{d\alpha}{dt}.$$

Sostituendo $\frac{d\alpha}{dt} = \frac{v_{b,0}}{2l \sin \alpha}$ (e ricordando che csc $\alpha = \frac{1}{\sin \alpha}$):

$$a_{A,y} = -\frac{v_{b,0}}{2} \cdot \frac{1}{\sin^2 \alpha} \cdot \frac{v_{b,0}}{2l \sin \alpha} = -\frac{v_{b,0}^2}{4l \sin^3 \alpha}.$$

Pertanto,

$$a_{A,y} = -\frac{v_{b,0}^2}{4l \sin^3 \alpha}.$$