eMBB Multiconnectivity URLLC Multicell eMBB URLLC Puncturing

Phong-Binh Tran

Department of Computer Science, National Tsing Hua University, Hsinchu,

August 4, 2022

Supervised by Chair Professor Jang-Ping Sheu.

System

- Homogeneous base stations, mmWave, downlink transmission, OFDMA, multiple-input eMBB and single-input URLLC users.
- Saturated eMBB traffic [4]: Each eMBB user has infinite amount of data to be served.
- Strict URLLC constraint: Each URLLC has an amount of data required to be served within a minislot.
- The system aims to maximize eMBB total average rate and fairness while satisfying URLLC demands.

Scenario

- There are approximately 750 people per 1000 square meters living in suburban area¹[3].
- These are potential eMBB users, who surf the Web, watching videos, and download data.
- During work hours and at night, only a few self-driving vehicles operate that employ URLLC utilities.
 - Uplink transmission (whose bandwidth is independent from that of downlink) is used to upload the vehicles' observations e.g. camera images, sensors data, etc. to the cloud for navigation processing.
 - Downlink transmission accounts for the automobiles' control messages.

¹Example

Poor Edge Service

- Since mmWave is extremely vulnerable to path loss, URLLC reliability is not guaranteed.
- Similarly, eMBB users at cell edges experience low throughput.

• URLLC multicell and eMBB multiconnectivity are prominent candidates to mitigate this issue.

Singlecell

Figure: Singlecell framework

Multicell

Figure: Multicell framework

Multicell Co-channel Interference

- Since the base stations are homogeneous i.e. use the same frequency band, there exists 3 types of interference:
 - eMBB-eMBB interference e.g. at subchannel 3, signal from base station 0 to eMBB user 0 interferes with that from base station 1 to eMBB user 1.
 - eMBB-URLLC interference e.g. at subchannel 0, signal from base station 0 to eMBB user 0 interferes with that from base station 2 to URLLC user 1.
 - URLLC-URLLC interference e.g. at subchannel 4, signal from base station 1 to URLLC user 0 interferes with that from base station 2 to URLLC user 1.

- A viable solution might be 5G Non-orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC).
- Inspired by Low-Energy Adaptive Clustering Hierarchy (LEACH), we propose an orthogonal multiple access (OMA) scheme based on 3G Code Division Multiple Access (CDMA) to tackle the problem².

²Example

- Our scheme works well with the often small number of base stations.
- Our scheme encompasses URLLC multiconnectivity via joint transmission.
- This hence introduces a joint CDMA/OFDMA scheme.

Spectrum Inefficiency

- Dedicated URLLC bandwidth wastes spectral resources significantly in multicell systems.
 - If 2 subchannels of each base station are dedicated to URLLC traffic, then we would have 6 subchannels sitting idle for most of the time in the aforementioned scenario.

- This problem can be addressed by leveraging URLLC superposition/puncturing scheme.
- URLLC superposition scheme employs 5G NOMA SIC, whose performance equals to puncturing when the considered eMBB and URLLC users have the same channel gain.
- URLLC puncturing scheme is discussed here.

Problem

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\delta}}^{\text{maximize}}$$

$$\sum_{u} \ln \bar{R}_{u} \tag{1a}$$

subject to

$$\sum \alpha_{u,n,s,l} \le 1 \qquad \forall n \forall s \forall l, \tag{1b}$$

$$\alpha_{u,n,s,l} \in \{0,1\} \ \forall u \forall n \forall s \forall l,$$
 (1c)

$$\sum \delta_{v,n,m,s} \le 1 \qquad \forall v \forall n \forall m, \tag{1d}$$

$$\beta_{v,u,n,m,s,l} \le \delta_{v,n,m,s} \forall v \forall u \forall n \forall m \forall s \forall l, \tag{1e}$$

$$\delta_{v,n,m,s} \in \{0,1\} \ \forall v \forall n \forall m \forall s, \tag{1f}$$

$$\sum \beta_{\nu,u,n,m,s,l} \le \alpha_{u,n,s,l} \,\forall u \forall n \forall m \forall s \forall l, \tag{1g}$$

$$R_{v,n,m} \ge R_{v,n,m}^{dm} \ \forall v \forall n \forall m, \tag{1h}$$

$$\beta_{v,u,n,m,s,l} \in \{0,1\} \ \forall v \forall u \forall n \forall m \forall s \forall l$$
 (1i)

- The system maximizes eMBB traffic's total average rate and fairness (1a).
- For each time slot, the system
 - schedules a subchannel to at most one eMBB user (1b).
 - either un-schedules or schedules a subchannel to an eMBB user (1c).

- For each time minislot, the system
 - associates at most one base station to a URLLC user (1d).
 - schedules a subchannel to a URLLC user only if it associates the corresponding base station to the user (1e).
 - either un-associates or associates a base station to a URLLC user (1f).
 - schedules a subchannel to at most one URLLC user, and punctures the subchannel for a URLLC user only if it schedules the subchannel to the corresponding eMBB user (1g)³.
 - serves demands of URLLC users without delays (1h).
 - employs URLLC puncturing scheme instead of superposition (1i).

³Proof in supplementary

Issues and Solutions Problem

- Do note that current eMBB users' rate models for URLLC puncturing scheme in the literature are mostly non-linear [2].
- Whilst proposed linear models are either intractable [5] or inappropriate [1] for discrete subchannel scheduling with multiple URLLC users.

eMBB Problem

$$\underset{\boldsymbol{\alpha}}{\text{maximize}} \quad \sum_{u} \ln \bar{R}_{u} \tag{2a}$$

subject to
$$\sum_{u} \alpha_{u,n,s,l} \leq 1 \quad \forall n \forall s \forall l,$$
 (2b)

$$\alpha_{u,n,s,l} \in \{0,1\} \forall u \forall n \forall s \forall l \tag{2c}$$

Relaxed eMBB Problem

$$\begin{array}{ccc}
\text{maximize} & \sum_{u} \ln \bar{R}'_{u} \\
\alpha' & & & & \\
\end{array} \tag{3a}$$

subject to
$$\sum_{u} \alpha'_{u,n,s,l} \leq 1 \forall n \forall s \forall l,$$
 (3b)
$$\alpha'_{u,n,s,l} \geq 0 \forall u \forall n \forall s \forall l$$
 (3c)

$$\alpha'_{u,n,s,l} \ge 0 \forall u \forall n \forall s \forall l \tag{3c}$$

Gradient Problem

$$\begin{array}{cc}
\text{maximize} & \sum_{u} \frac{r'_{u,n_0}}{\tilde{r}'_{u,n_0}} \\
\end{array} \tag{4a}$$

subject to
$$\sum_{u} \alpha'_{u,n_0,s,l} \leq 1 \forall s \forall l, \tag{4b}$$

$$\alpha'_{u,n_0,s,l} \geq 0 \forall u \forall s \forall l \tag{4c}$$

$$\alpha'_{u,n_0,s,l} \ge 0 \forall u \forall s \forall l \tag{4c}$$

 The relaxed moving average rate of eMBB user is defined based on exponential moving average (EMA) as

$$\tilde{r}'_{u,n} = \begin{cases} \frac{1}{n} \sum_{s,l} \frac{1}{u} \mathfrak{r}_{u,n,s,l} & n = 0\\ (1 - \epsilon) \, \tilde{r}'_{u,n-1} + \epsilon r'_{u,n-1} & n = 1, \dots, n - 1 \end{cases} \begin{bmatrix} \frac{bits}{slot} \end{bmatrix} \forall u.$$
(5)

 $oldsymbol{\circ}$ The initial value of which is defined by the feasible policy $\hat{oldsymbol{lpha}}'$ for the relaxed eMBB problem where⁴

$$\hat{\alpha}'_{u,n,s,l} = \begin{cases} \frac{1}{u} & n = 0\\ 0 & n = 1, \dots, n - 1 \end{cases} \forall u \forall s \forall l. \tag{6}$$

⁴Proof in supplementary

• Given a policy $\hat{\alpha}$ where for n = 0, ..., n - 1, $\hat{\alpha}_n$ is a basic optimal point for the n^{th} gradient problem, then $\hat{\alpha}$ is an asymptotically optimal policy for the eMBB problem⁵.

⁵Proof in supplementary

 The following policy is asymptotically optimal with respect to the eMBB problem⁶:

$$\hat{\alpha}_{u,n,s,l} = \begin{cases} 1 & u = \min_{\hat{u}} \arg \max_{\hat{u}} \frac{\mathfrak{r}_{\hat{u},n,s,l}}{\tilde{r}_{\hat{u},n}'} \ \forall n \forall s \forall l \forall u. \end{cases}$$
 (7)

⁶Proof in supplementary

References

- Arjun Anand, Gustavo de Veciana, and Sanjay Shakkottai. "Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks". In: IEEE/ACM Transactions on Networking 28.2 (2020), pp. 477–490. DOI: 10.1109/TNET.2020.2968373.
- [2] Anupam Kumar Bairagi et al. "Coexistence Mechanism Between eMBB and URLLC in 5G Wireless Networks". In: IEEE Transactions on Communications 69.3 (2021), pp. 1736–1749. DOI: 10.1109/TCOMM.2020.3040307.
- [3] Richard Florida. How Should We Define the Suburbs? 2019. URL: https://www.bloomberg.com/news/articles/2019-06-12/why-we-need-a-standard-definition-of-the-suburbs (visited on 07/13/2022).
- [4] Alexander L. Stolyar. "On the Asymptotic Optimality of the Gradient Scheduling Algorithm for Multiuser Throughput Allocation". In: Operations Research 53.1 (2005), pp. 12–25. DOI: 10.1287/opre.1040.0156.
- Hao Yin, Lyutianyang Zhang, and Sumit Roy. "Multiplexing URLLC Traffic Within eMBB Services in 5G NR: Fair Scheduling". In: IEEE Transactions on Communications 69.2 (2021), pp. 1080–1093. DOI: 10.1109/TG0MW.2020.3035882