A Rose by Any Other Name: LLM-Generated Explanations Are Good Proxies for Human Explanations to Collect Label Distributions on NLI

Beiduo Chen 🖴 🖶 Siyao Peng 🕰 🖶 Anna Korhonen 🖺 Barbara Plank 🕰 🖶

AmaiNLP, Center for Information and Language Processing, LMU Munich, Germany Munich Center for Machine Learning (MCML), Munich, Germany Language Technology Lab, University of Cambridge, United Kingdom

Introduction

Generating Model Explanations for NLI

Can Model Explanations Help LLMs Approximate HJD as Humans Do?

Distributions	Dist. Comparison	BERT Fine-	Tuning Compar	rison (dev/test)	RoBERTa Fine	-Tuning Compa	arison (dev/test) Glob	bal
	KL↓ JSD↓TVD.	, KL↓	CE Loss ↓	Weighted F1↑	KL↓	CE Loss↓	Weighted F1 ↑ D.Co	rr ↑
ChaosNLI HJD	0.000 0.000 0.000	0.073 / 0.077	7 0.967 / 0.974	4 0.645 / 0.609	0.062 / 0.060	0.933 / 0.922	0.696 / 0.653 1.00	00
VariErr dist.	3.604 0.282 0.296	0.177 / 0.179	1.279 / 1.279	9 0.552 / 0.522	0.166 / 0.173	1.246 / 1.261	0.616 / 0.594 0.68	88
MNLI dist.	1.242 0.281 0.295	0.104 / 0.100	1.062 / 1.042	2 0.569 / 0.555	0.101 / 0.093	1.052 / 1.020	0.625 / 0.607 0.79	95
Llama3	0.259 0.262 0.284	0.099 / 0.102	1.045 / 1.044	4 0.516 / 0.487	0.094 / 0.096	1.030 / 1.031	0.545 / 0.522 0.68	89
+ human-ex	0.238 0.250 0.269	0.098 / 0.099	1.043 / 1.039	9 0.575 / 0.556	0.091 / 0.092	1.021 / 1.019	0.641 / 0.616 0.77	71
+ LF model-ex	0.295 0.278 0.310	0.106 / 0.107	7 1.066 / 1.063	3 0.539 / 0.533	0.103 / 0.105	1.059 / 1.058	0.581 / 0.571 0.74	44
+ VariErr LG model-ex	0.234 0.247 0.266	0.097 / 0.098	3 1.041 / 1.037	7 0.558 / 0.544	0.089 / 0.091	1.016 / 1.014	0.633 / 0.626 0.76	60
+ MNLI LG model-ex	0.242 0.251 0.275	0.096 / 0.097	7 1.037 / 1.034	4 0.589 / 0.580	0.090 / 0.092	1.019 / 1.018	0.657 / 0.645 0.84	49
GPT-40	0.265 0.263 0.289	0.103 / 0.096	5 1.059 / 1.029	9 0.526 / 0.517	0.093 / 0.092	1.027 / 1.018	0.525 / 0.521 0.70	03
+ human-ex	0.187 0.207 0.223	0.093 / 0.098	3 1.027 / 1.036	6 0.570 / 0.552	0.079 / 0.080	0.986 / 0.987	0.617 / 0.617 0.7 6	69
+ LF model-ex	0.252 0.242 0.275	0.101 / 0.102	2 1.052 / 1.047	7 0.537 / 0.545	0.157 / 0.167	1.220 / 1.244	0.587 / 0.561 0.75	52
+ VariErr LG model-ex	(0.192 0.209 0.226	0.092 / 0.093	3 1.026 / 1.022	2 0.554 / 0.551	0.088 / 0.089	1.013 / 1.008	0.618 / 0.598 0.76	61
9,00	Q ₁₀₀		9,00	Q ₁₀₀		9,00	9,00	

Can Model-EX Enhance on OOD?

Trained Classifiers	BEI	RT FT	Гest	RoBERTa FT Test			
	R1 ↑	R2 ↑	R3 ↑	R1 ↑	R2 ↑	R3 ↑	
Zero-shot-LM	0.170	0.176	0.197	0.167	0.167	0.168	
MNLI-FT-LM	0.220	0.269	0.293	0.292	0.262	0.257	
ChaosNLI HJD	0.268	0.289	0.332	0.357	0.331	0.338	
VariErr dist	0.302	0.259	0.319	0.402	0.311	0.321	
MNLI dist	0.229	0.260	0.279	0.317	0.275	0.281	
Llama3	0.246	0.276	0.306	0.304	0.297	0.304	
+ human-ex	0.296	0.289	0.349	0.400	0.330	0.344	
+ LF model-ex	0.292	0.295	0.328	0.314	0.262	0.323	
+ VariErr LG model-ex	0.305	0.285	0.349	0.411	0.324	0.319	
+ MNLI LG model-ex	0.284	0.283	0.321	0.339	0.287	0.307	
GPT-40	0.258	0.263	0.295	0.309	0.282	0.302	
+ human-ex	0.351	0.294	0.332	0.393	0.324	0.325	
+ LF model-ex	0.285	0.283	0.315	0.350	0.282	0.310	
+ VariErr LG model-ex	0.341	0.293	0.330	0.393	0.324	0.323	

- Model explanations are comparable to humans in approximating HJD on NLI, and can be scaled up from a few annotations of datasets without explanations.
- Modeling HLV information can improve NLI classifiers' performance, and MJDs generated by our method are robust on OOD datasets w/o labels or explanations.

Human versus Model: Are They Different and Does It Matter?

Can Human Preference Lead to Better Selection?

Distributions	Dist. Comparison			RoBERTa Fine	Global		
Distributions	KL \	JSD↓	TVD ↓	KL↓	CE Loss ↓	Weighted F1↑	D.Corr ↑
Llama3	0.258	0.261	0.286	0.092 / 0.095	1.025 / 1.026	0.531 / 0.512	0.684
+ human ex	0.240	0.249	0.275	0.089 / 0.091	1.014 / 1.015	0.618 / 0.597	0.750
+ replace preferred mode	el ex			'			'
greedy 75.75%	0.241	0.248	0.274	0.088 / 0.090	1.013 / 1.013	0.619 / 0.594	0.733
representative 55.25%	0.240	0.248	0.274	0.088 / 0.091	1.013 / 1.014	0.619 / 0.597	0.739
+ replace unpreferred mo	del ex			•			'
greedy 68.5%	0.239	0.247	0.273	0.087 / 0.090	1.011 / 1.012	0.623 / 0.599	0.752
representative 63.25%	0.237	0.246	0.271	0.088 / 0.090	1.011 / 1.012	0.621 / 0.607	0.761

Datasets	Lexical			Syntactic			Semantic		AVG	
	$n = 1 \downarrow$	n = 2 \	n = 3↓	n = 1↓	n = 2↓	n = 3↓	Cos.↓	Euc.↓	AVG ↓	
human-ex	0.335	0.098	0.042	0.767	0.341	0.140	0.528	0.520	0.428	
replaced preferred model ex										
greedy	0.416	0.157	0.082	0.874	0.488	0.233	0.540	0.532	0.474	
represent.	0.392	0.149	0.089	0.835	0.426	0.205	0.542	0.541	0.466	
replaced unpreferred model ex										
greedy	0.387	0.130	0.069	0.841	0.432	0.196	0.527	0.528	0.457	
represent.	0.378	0.130	0.073	0.837	0.426	0.195	0.534	0.532	0.455	

- Model and human explanations result in similar performance, while noise replacement clearly hurts, indicating that the relevant contents of explanations are crucial
- The potential of variability as a metric for measuring the model explanations.

Conclusion

• Experiments show that MJDs from LLMs and model explanations result in comparable scores with MJDs from LLM and human explanations — A rose by any other name would smell as sweet. (A quote from Romeo and Juliet used to metaphorically argue the intrinsic qualities or nature of something remain the same, regardless of its name or origin.)

• Notably, our approach generalizes to explanation-free datasets and remains effective in challenging out-of-domain test sets. Results indicate that LLM-generated explanations can significantly reduce annotation costs, making it a scalable and efficient proxy for capturing human label variation.

Resource

Paper

