

IEL – protokol k projektu

$\begin{array}{c} {\rm Nikita,\,Smirnov} \\ {\rm xsmirn} 02 \end{array}$

8.února2023

Obsah

1	Příklad 1	2
	1.1 Výpočet R _{ekv}	2
	1.2 Výpočet U_{R2} a I_{R2}	5
	.3 Dosazení	6
2	Příklad 2	7
	2.1 Výpočet R_i (odpor náhradního obvodu)	7
	2.2 Výpočet U_{i} (napětí náhradního obvodu)	7
	2.3 Výpočet U_5 a I_5	8
	2.4 Dosazení	9
3	Příklad 3	10
	3.1 Nahrazení napěťového zdroje za proudový	10
	3.2 Výpočet uzlových napětí	10
	3.3 Výpočet U_{R4} a I_{R4}	11
	3.4 Dosazení	11
4	Příklad 4	13
	4.1 Metoda smyčkových proudů	13
	4.2 Výpočet φ_{C2} a $ U_{C2} $	14
	1.3 Dosazení	14
5	Příklad 5	15
6	Shrnutí výsledků	16

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk	. <i>U</i>	[V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
])	105	85	420	980	330	280	310	710	240	200

Výpočet R_{ekv}

Sečtení sériově zapojených napětových zdrojů: ${\cal U}={\cal U}_1+{\cal U}_2$

Zjednodušení rezistorů: R₂, R₃ na R₂₃: $R_{23} = \frac{R_2 \times R_3}{R_2 + R_3}$ R₆, R₈ na R₆₈: $R_{68} = R_6 + R_8$

Transfigurace trojůhelník \rightarrow hvězda.

$$R_{\rm A} = \frac{R_{68} \times R_7}{R_5 + R_{68} + R_7}$$

$$R_{\rm B} = \frac{R_5 \times R_{68}}{R_5 + R_{68} + R_7}$$

$$R_{\rm C} = \frac{R_5 \times R_7}{R_5 + R_{68} + R_7}$$

Zjednodušení rezistorů:

 ${f R}_{23}, \, {f R}_{
m B}$ na ${f R}_{{
m B}23}$: $R_{{
m B}23}=R_{
m B}+R_{23}$ ${f R}_4, \, {f R}_{
m C}$ na ${f R}_{{
m C}4}$: $R_{{
m C}4}=R_{{
m C}}+R_4$

Zjednodušení rezistorů:

 R_{B23}, R_{C4} na R_{BC234} : $R_{BC234} = \frac{R_{B23} \times R_{C4}}{R_{B23} + R_{C4}}$ R_{1}, R_{A}, R_{BC234} na R_{ekv} : $R_{ekv} = R_{1} + R_{A} + R_{BC234}$

Výpočet U_{R2} a I_{R2}

Rozložíme obvod zpětně pokud R_2 se neobjeví, a s tohoto vypočítáme U_2 a I_2 . Můžeme upozornit že v tomto obvodě tyto hodnoty se budou rovnat: $I = I_{BC234}, \, U_{BC234} = U_{B23}, \, I_{B23} = I_{23}, \, U_{23} = U_2$

$$\frac{U}{R_{\mathrm{ekv}}} = I$$

 $I_{\mathrm{BC234}} \times R_{\mathrm{BC234}} = U_{\mathrm{BC234}}$

$$\frac{U_{\rm B23}}{R_{\rm B23}} = I_{\rm B23}$$

$$I_{23} \times R_{23} = U_{23}$$

$$\tfrac{U_2}{R_2} = I_2$$

A z tohoto získáme:

$$\frac{R_{23} \times \frac{R_{\mathrm{BC234}} \times \frac{U}{R_{\mathrm{ekv}}}}{R_{\mathrm{B23}}}}{R_{2}} = I_{2}$$

Pak vypočítáme U₂:

$$U_2 = I_2 \times R_2$$

$$U = U_1 + U_2 = 105 + 85 = 190 \, \mathrm{V}$$

$$R_{23} = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{980 \times 330}{980 + 330} = 246.8702 \, \Omega$$

$$R_{68} = R_6 + R_8 = 710 + 200 = 910 \, \Omega$$

$$R_A = \frac{R_{68} \times R_7}{R_5 + R_{68} + R_7} = \frac{910 \times 240}{310 + 910 + 240} = 149.5890 \, \Omega$$

$$R_B = \frac{R_5 \times R_{68}}{R_5 + R_{68} + R_7} = \frac{310 \times 910}{310 + 910 + 240} = 193.2192 \, \Omega$$

$$R_C = \frac{R_5 \times R_7}{R_5 + R_{68} + R_7} = \frac{310 \times 240}{310 + 910 + 240} = 50.9589 \, \Omega$$

$$R_{B23} = R_B + R_{23} = 193.2192 + 246.8702 = 440.0894 \, \Omega$$

$$R_{C4} = R_C + R_4 = 50.9589 + 280 = 330.9589 \, \Omega$$

$$R_{BC234} = \frac{R_{B23} \times R_{C4}}{R_{B23} + R_{C4}} = \frac{440.0894 \times 330.9589}{440.0894 + 330.9589} = 188.9006 \, \Omega$$

$$R_{ekv} = R_1 + R_A + R_{BC234} = 420 + 149.5890 + 188.9006 = 758.4896 \, \Omega$$

$$I_2 = \frac{R_{23} \times \frac{R_{BC234} \times \frac{U}{R_{ckv}}}{R_{B23}}}{R_2} = \frac{246.8702 \times \frac{188.9006 \times \frac{190}{755.4890}}{440.0894}}{980} = 27.0856 \, \mathrm{mA}$$

$$U_2 = I_2 \times R_2 = 0.0270856 \times 980 = 26.5439 \, \mathrm{V}$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
G	180	250	315	615	180	460

Výpočet R_i (odpor náhradního obvodu)

Odpojíme řešený odpor R_5 a uzly, na které byl tento odpor připojen označíme jako A a B. Mezi těmito dvěma body najdeme odpor R_i

$$R_{\rm i} = \frac{(R_3 + R_1 + R_2) \times R_4}{R_3 + R_1 + R_2 + R_4}$$

Výpočet U_i (napětí náhradního obvodu)

Pro tento výpočet taky odstraníme součástku ${\rm R}_5$ a nejdeme proud ${\rm I}_{\rm A}.$

$$I_{\rm A} = \frac{C}{R_1 + R_3 + R_4 + R_2}$$

 Teď můžeme najít napětí U_i , které můžeme spočítat mezi body A a B určené při vypočtu R_i a použit I_A.

Výpočet U_5 a I_5

 $\label{eq:total_state} \text{Teď máme } U_i \text{ a } R_i, \text{ a už můžeme vypočítat } I_i \text{ a pak zjistit hodnoty } I_5 \text{ a } U_5 \text{ pomoci náhradního obvodu.}$

$$\begin{split} R_{\rm i} &= \frac{(R_3 + R_1 + R_2) \times R_4}{R_3 + R_1 + R_2 + R_4} = \frac{(615 + 250 + 315) \times 180}{615 + 250 + 315 + 180} = 156.1765 \,\Omega \\ I_{\rm A} &= \frac{U}{R_1 + R_3 + R_4 + R_2} = \frac{180}{250 + 615 + 180 + 315} = 132.3529 \,\mathrm{mA} \\ U_{\rm i} &= I_{\rm A} \times R_4 = 0.1323529 \times 180 = 23.8235 \,\mathrm{V} \\ I_{\rm i} &= \frac{U_{\rm i}}{R_{\rm i} + R_5} = \frac{23.8235}{156.1765 + 460} = 38.6634 \,\mathrm{mA} \\ U_5 &= I_{\rm i} \times R_5 = 0.0386634 \times 460 = 17.7852 \,\mathrm{V} \\ I_5 &= \frac{U_5}{R_5} = \frac{17.7852}{460} = 38.6635 \,\mathrm{mA} \end{split}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	110	0.85	0.75	44	31	56	20	30

Nahrazení napěťového zdroje za proudový

Pro náhradu použijme ${\rm I_n} = {\rm G_1U}$ (pro snazší počítání vodivosti)

Výpočet uzlových napětí

Použijme metodu uzlových napětí a vypočítáme $\mathbf{U}_{\mathbf{A}},\,\mathbf{U}_{\mathbf{B}},\,\mathbf{U}_{\mathbf{C}}$

$$I_{R1} - I_{R2} - I_{R3} = 0$$
$$I_{R2} - I_{R4} - I_2 = 0$$
$$I_{R4} + I_2 - I_{R5} - I_1 = 0$$

$$G_1(U - U_{\rm A}) - G_2(U_{\rm A} - U_{\rm B} - U_{\rm C}) - G_3U_{\rm A} = 0$$

$$G_2(U_{\rm A} - U_{\rm B} - U_{\rm C}) - G_4(U_{\rm B} - U_{\rm C}) = I_2$$

$$G_4(U_{\rm B} - U_{\rm C}) - G_5U_{\rm C} = I_1 - I_2$$

$$(G_1 + G_2 + G_3)U_A - G_2U_B - G_2U_C = G_1U$$

$$G_2U_A - (G_2 + G_4)U_B - (G_2 - G_4)U_C = I_2$$

$$G_4U_B - (G_4 + G_5)U_C = I_1 - I_2$$

Teď převedeme soustavu na matice (A je matice vodivosti, x je matice napětí, B je matice proudu). A pak najdeme matici x pomocí $Ax = B \implies x = A^{-1}B$ (To už bude při dosazováni)

$$\begin{pmatrix} G_1 + G_2 + G_3 & -G_2 & -G_2 \\ G_2 & -G_2 - G_4 & G_4 - G_2 \\ 0 & G_4 & -G_4 - G_5 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} G_1 U \\ I_2 \\ I_1 - I_2 \end{pmatrix}$$

Výpočet U_{R4} a I_{R4}

Nyní zbývá jen vypočítat napětí na odporu R₄ a pak už stačí jen použít Ohmův zákon k určení proudu.

$$U_{\mathrm{R4}} = U_{\mathrm{B}} - U_{\mathrm{C}}$$
$$I_{\mathrm{R4}} = \frac{U_{\mathrm{R4}}}{R_{\mathrm{4}}}$$

$$\begin{pmatrix} 0.0728 & -0.03223 & -0.0323 \\ 0.0323 & -0.08223 & 0.0177 \\ 0 & 0.05 & -0.3833 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 2.5 \\ 0.75 \\ 0.1 \end{pmatrix}$$

$$\begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 19.97 & -14.8259 & -10.1943 \\ 9.5829 & -20.4602 & -7.8726 \\ 5.7437 & -12.3361 & -16.1216 \end{pmatrix} \times \begin{pmatrix} 2.5 \\ 0.75 \\ 0.1 \end{pmatrix}$$

$$U_{\rm A} = 37.786 \, {
m V}$$

 $U_{\rm B} = 7.8248 \, {
m V}$
 $U_{\rm C} = 3.495 \, {
m V}$

$$U_{\rm R4} = U_{\rm B} - U_{\rm C} = 7.8248 - 3.495 = 4.3298 \, {\rm V}$$

$$U_{\rm R4} = \frac{U_{\rm R4}}{R_4} = \frac{4.3298}{20} = 216.4859 \, {\rm mA}$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
D	4	5	13	15	180	90	210	75	85

Metoda smyčkových proudů

$$\begin{split} I_{\rm A}: U_1 + U_{\rm R1} + U_{\rm L1} + U_{\rm R2} + U_{\rm L2} &= 0 \\ I_{\rm B}: U_{\rm L1} + U_{\rm C1} + U_{\rm C2} &= 0 \\ I_{\rm C}: U_{\rm L2} + U_{\rm L1} + U_{2} &= 0 \end{split}$$

$$\begin{split} U &= I \times Z \\ I_{\rm A}: I_{\rm A}(Z_{\rm R1} + Z_{\rm L1} + Z_{\rm R2} + Z_{\rm L2}) - I_{\rm B}(Z_{\rm L1} + Z_{\rm R2}) - I_{\rm C}Z_{\rm L2} &= -U_1 \\ I_{\rm B}: -I_{\rm A}(Z_{\rm L1} + Z_{\rm R1}) + I_{\rm B}(Z_{\rm L1} + Z_{\rm R1} + Z_{\rm C1} + Z_{\rm C2}) - I_{\rm C}Z_{\rm C1} &= 0 \\ I_{\rm C}: -I_{\rm A}Z_{\rm L2} - I_{\rm B}Z_{\rm C1} + I_{\rm C}(Z_{\rm C1} + Z_{\rm L2}) &= -U_2 \end{split}$$

$$\begin{pmatrix} Z_{\text{R1}} + Z_{\text{L1}} + Z_{\text{R2}} + Z_{\text{L2}} & Z_{\text{L1}} + Z_{\text{R2}} & Z_{\text{L2}} \\ Z_{\text{L1}} + Z_{\text{R1}} & Z_{\text{L1}} + Z_{\text{R1}} + Z_{\text{C1}} + Z_{\text{C2}} & Z_{\text{C1}} \\ Z_{\text{L2}} & Z_{\text{C1}} & Z_{\text{C1}} + Z_{\text{L2}} \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} \begin{pmatrix} -U_1 \\ 0 \\ -U_2 \end{pmatrix}$$

Výpočet φ_{C2} a $|\mathbf{U_{C2}}|$

$$\begin{split} U_{\mathrm{C2}} &= I_{\mathrm{B}} \times \frac{-j}{\omega C_2} \\ |U_{\mathrm{C2}}| &= \sqrt{Re(U_{\mathrm{C2}})^2 + Im(U_{\mathrm{C2}})^2} \\ \varphi_{C2} &= \arctan(\frac{Im(U_{\mathrm{C2}})}{Re(U_{\mathrm{C2}})}) \times \frac{\pi}{180} + \pi \end{split}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$ i_L(0) $ [A] $ $
	H	8	50	40	4
	R				,
t = 0 s			i_ 7 _ L		
U	=		777		

Shrnutí výsledků

Příklad	Skupina	Výsledky				
1	D	$U_{R2} = 26.5439 \mathrm{V}$	$I_{R2} = 27.0856 \mathrm{mA}$			
2	G	$U_{R5} = 17.7852 \mathrm{V}$	$I_{R5} = 38.6635 \mathrm{mA}$			
3	C	$U_{R4} = 4.3298 \mathrm{V}$	$I_{R4} = 216.4859 \mathrm{mA}$			
4	D	$ U_{C_2} =$	$\varphi_{C_2} =$			
5	H	i_L	=			