PROOFS FOR TOPOLOGY

TONY DENG

BEFORE PRESENTATION

Example 3.8. In a metric space, the "closed ball" $\overline{B}(x,\epsilon) = \{y \in X : d(x,y) \le \epsilon\}$ is indeed closed, but, despite the unfortunate notation, is not necessarily the closure of the open ball $B(x,\epsilon)$.

Version: 1

Comments / Collaborators: Used example 1.22

Proof. Let the metric $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

For all $x \neq y$, $d(x, y) = 1 \geq 0$ and only when x = y, d(x, y) = 0.

d(x,y) = 1 = d(y,x).

 $d(x,y) + d(y,z) = 2 \ge 1 = d(x,z).$

So we know that my d is a metric.

Now, construct the metric topology based on my metric.

Pick B(0,1). We know that $B(0,1) = \{0\}$. Thus the closure is $\{0\}$.

Pick $\overline{B}(0,1)$. We know that $\overline{B}(0,1) = \mathbb{R}$.

Obviously, $\overline{B}(0,1) \neq \{0\}.$

Date: October 4, 2021.

Example 3.10. The set of limit points of $(0,1) \subset \mathbb{R}$ is [0,1] with respect to \mathcal{T}_l , and all of \mathbb{R} with respect to \mathcal{T}_{FC} .

Version: 1

Comments / Collaborators:

Proof. For \mathcal{T} :

For every $y \in (0,1)$, for all open set U that contains y, there exists an open ball $B = B(y, \epsilon)$, where $1 > \epsilon > 0$, such that is a subset of U by the virtue of U being open. Then there exists $y + \epsilon/2$, such that $y + \epsilon/2 \in (0,1) \setminus \{y\}$. Thus all element in (0,1) is a limit point of (0,1).

For y=0, for all open set U containing y, there exists an open ball $B=B(0,\epsilon)$, where $1>\epsilon>0$, such that is a subset of U by the virtue of U being open. Then there exists $\epsilon/2$, such that $\epsilon/2\in(0,1)$. Thus 0 is a limit point.

Similarly, 1 is a limit point.

For an arbitrary y > 1, say $y = 1 + \epsilon_1$. Pick $U = B(y, \epsilon_1/2)$. We know that U shares no element with (0,1). Thus $y = 1 + \epsilon_1$ cannot be a limit point in \mathcal{T} .

Similarly, $0 - \epsilon_1$ can never be a limit point in \mathcal{T} .

Thus, the set of limit points in \mathcal{T} is [0,1].

For \mathcal{T}_l :

For all $y \in (0,1)$, for all open set U containing y, there exists an open ball $B = [y, \epsilon)$, where $1 - y > \epsilon > 0$, such that $y \in B \subset U$, by the virtue of U being open. There always exist $y + \epsilon/2$ that is always in $(0,1)\setminus\{y\}$. Thus all points in (0,1) is a limit point in \mathcal{T}_l .

For y = 0, for all open set U containing y. There exists $B = [0, \epsilon)$, where $1 > \epsilon > 0$, such that $y \in B \subset U$. There always exist $\epsilon/2$ that is always in (0, 1). Thus 0 is a limit point in \mathcal{T}_l .

For all $y \ge 1$, pick $U = B = [y, y + \epsilon)$, then we know that $U \cap (0, 1) = \emptyset$. Thus all y greater or equal to 1 is not a limit point.

Similarly, all y smaller than 0 is not a limit point.

Thus, the set of limit points in \mathcal{T}_l is [0,1).

For \mathcal{T}_{FC} :

For all $y \in \mathbb{R}$, for all open set U containing y, the only possibility that y is not a limit point is that $\mathbb{R}\backslash U = (0,1)\backslash \{y\}$. However, $(0,1)\backslash \{y\}$ is not a finite set, thus impossible.

Thus, the set of limit points in \mathcal{T}_{FC} is \mathbb{R} .