

INVESTIGACIÓN DE OPERACIONES EN INGENIERÍA II

Modelo de REDES ALGORITMO DE DE FLUJO MÁXIMO

Ingeniería de Sistemas
Ing. Néstor Muñoz

Logro de sesión

 Al culminar la sesión, el estudiante aplica el algoritmo de de flujo máximo

ALGORITMOS DE DE FLUJO MÁXIMO

El algoritmo de flujo máximo se basa en determinar **rutas de irrupción** que tengan flujo neto *positivo* entre los nodos fuente (origen) y sumidero (destino). Cada ruta comunica parte o todas las capacidades de sus arcos al flujo total en la red.

Considérese el arco (i, j) con capacidades iniciales $(\overline{Cij}, \overline{Cji})$. A medida que partes de esas capacidades contribuyen al flujo en el arco, se actualizan los **residuales** (o capacidades remanentes). La red con los residuales actualizados se llama **red residual**. Se usará la notación (c_{ij}, c_{ji}) para representar esos residuales.

Para un nodo j que recibe flujo del nodo i, se define una etiqueta $[a_i, i]$, donde a_i es el flujo del nodo i al nodo j. Los pasos del algoritmo se resumen como sigue.

ALGORITMOS DE DE FLUJO MÁXIMO PASOS:

Paso 1. Para todos los arcos (i, j) se iguala la capacidad residual con la capacidad inicial; esto es, $(c_{ij}, c_{ji}) = (\overline{Cij}, \overline{Cji})$. Sea $a_1 = \infty$ y se etiqueta el nodo fuente 1 con $[\infty, -]$. Se iguala i = 1 y se prosigue en el paso 2.

Paso 2. Determinar S_i , el conjunto de nodos j no etiquetados que se pueden alcanzar directamente desde el nodo i, con arcos con residuales *positivos* (esto es, $c_{ij} > 0$ para toda $j \in S_i$. Si $\neq \phi$, ir al paso 3. En caso contrario ir al paso 4.

Paso 3. Determinar $k \in S_i$ tal que

$$c_{ik} = \max_{j \in S_i} \{c_{ij}\}$$

Igualar $a_k = c_{ik}$ y etiquetar el nodo k con $[a_k, i]$. Si k = n, el nodo de sumidero se ha etiquetado, y se ha encontrado una *ruta de irrupción*; ir al paso 5. En caso contrario, igualar i = k y seguir en el paso 2.

ALGORITMOS DE DE FLUJO MÁXIMO PASOS:

Paso 4. (*Retroceso*). Si i = 1, no hay otras irrupciones posibles; ir al paso 6. En caso contrario, sea r el nodo que se ha etiquetado *inmediatamente* antes del nodo actual i y quitar i del conjunto de nodos adyacentes a r. Igualar i = r y continuar en el paso 2.

Paso 5. (*Determinación de la red residual*). Sea N_p (1, k_1 , k_2 , ..., n); se definen los nodos de la p-ésima ruta de irrupción del nodo fuente 1 al nodo destino n. Entonces el flujo máximo por la ruta se calcula como

$$f_p = \min \{a_1, a_{k_1}, a_{k_2}, \dots, a_n\}$$

La capacidad residual de cada arco a lo largo de la ruta de irrupción se *disminuye* en f_p unidades en la dirección del flujo y se *aumenta* f_p unidades en la dirección contraria; esto es, para los nodos i y j en la ruta, el flujo residual se cambia del actual (c_{ij} , c_{ji}) a

- **a)** $(C_{ij} f_p, c_{ji} + f_p)$ si el flujo va de i a j
- **b**) $(c_{ij} + f_p, c_{ji} f_p)$ si el flujo va de j a i

Se reinstalan todos los nodos que se hayan eliminado en el paso 4. Poner i = 1 y regresar al paso 2 para intentar una nueva ruta de irrupción.

ALGORITMOS DE DE FLUJO MÁXIMO PASOS:

Paso 6. (Solución)

a) Si se han determinado m rutas de irrupción, el flujo máximo en la red es

$$F = f_1 + f_2 + \dots + f_m$$

Determinar el flujo máximo en la siguiente red.

Iteración 1. Igualar los residuales iniciales (c_{ij}, c_{ji}) a las capacidades iniciales $(\overline{C}_{ij}, \overline{C}_{ji})$.

- Paso 1. Igualar a₁ = ∞ y etiquetar el nodo 1 con [∞, —]. Poner i = 1.
- **Paso 2.** $S_1 = \{2, 3, 4\} (\neq \emptyset)$.
- **Paso 3.** k = 3 porque $c_{13} = \max\{c_{12}, c_{13}, c_{14}\} = \max\{20, 30, 10\} = 30$. Tomar $a_3 = c_{13} = 30$ y etiquetar el nodo 3 con [30, 1]. Igualar t = 3 y repetir el paso 2.
- **Paso 2.** $S_3 = (4, 5)$.
- **Paso 3.** k = 5 y $a_5 = c_{35} = máx\{10, 20\} = 20$. Etiquetar el nodo 5 con [20, 3]. Se obtuvo una irrupción. Ir al paso 5.
- **Paso 5.** La ruta de irrupción se determina con las etiquetas comenzando en el nodo 5 y terminando en el nodo 1; esto es, $(5) \rightarrow [20, 3] \rightarrow (3) \rightarrow [30, 1] \rightarrow (1)$. Así, $N_1 = \{1, 3, 5\}$ y $f_1 = \min\{a_1, a_3, a_5\} = \{\infty, 30, 20\} = 20$. Las capacidades residuales a lo largo de la ruta N_1 son

$$(c_{13}, c_{31}) = (30 - 20, 0 + 20) = (10, 20)$$

 $(c_{35}, c_{53}) = (20 - 20, 0 + 20) = (0, 20)$

$$(a) f_1 - 20$$

Iteración 2.

- **Paso 1.** Poner $a_1 = \infty$ y etiquetar el nodo 1 con $[\infty, -]$. Igualar t = 1.
- **Paso 2.** $S_1 = \{2, 3, 4\}.$
- **Paso 3.** k = 2 y $a_2 = c_{12} = max\{20, 10, 10\} = 20$. Poner i = 2 y repetir el paso 2.
- **Paso 2.** $S_2 = \{3, 5\}.$
- **Paso 3.** k = 3 y $a_3 = c_{23} = 40$. Etiquetar el nodo 3 con [40, 2]. Poner t = 3 y repetir el paso 2.
- **Paso 2.** $S_3 = \{4\}$ (observe que $c_{35} = 0$; en consecuencia el nodo 5 no puede incluirse en S_3).
- **Paso 3.** k = 4 y $a_4 = c_{34} = 10$. Etiquetar el nodo 4 con [10, 3]. Igualar i = 4 y repetir el paso 2.
- Paso 2. S₄ = {5] (observe que los nodos 1 y 3 ya se han etiquetado y en consecuencia no se pueden incluir en S₄).
- **Paso 3.** k = 5 y $a_5 = c_{45} = 20$. Etiquetar el nodo 5 con [20, 4]. Se ha logrado la irrupción. Ir al paso 5.
- **Paso 5.** $N_2=\{1,2,3,4,5\}$ y $f_2=\min\{\infty,20,40,10,20\}=10$. Los residuales a lo largo de la ruta de N_2 son

$$(c_{12}, c_{21}) = (20 - 10, 0 + 10) = (10, 10)$$

$$(c_{23}, c_{32}) = (40 - 10, 0 + 10) = (30, 10)$$

$$(c_{34}, c_{43}) = (10 - 10, 5 + 10) = (0, 15)$$

$$(c_{45}, c_{54}) = (20 - 10, 0 + 10) = (10, 10)$$

(b)
$$f_2 = 10$$

Iteración 3.

Paso 1. Poner $a_1 = \alpha$ q y etiquetar el nodo 1 con $[\alpha, -]$; poner i = 1.

Paso 2. S_1 {2, 3, 4}.

Paso 3. k 2 y a_2 c_{12} máx $\{10, 10, 10\}$ =10 (aunque los empates se rompen en forma arbitraria, los programas como TORA selecciona siempre el nodo empatado que tenga el índice menor; usaremos esta convención en el ejemplo). Etiquetar el nodo 2 con [10, 1]. Poner i = 2 y repetir el paso 2.

Paso 2. $S_2 = \{3, 5\}.$

Paso 3. k=3 y $a_3=c_{23}=30$. Etiquetar el nodo 3 con [30, 2]. Poner t=3 y repetir el paso 2.

Paso 2. $S_3 = \emptyset$ (porque $c_{34} = c_{35} = 0$). It all paso 4 para retroceder.

Paso 4. La etiqueta [30, 2] en el nodo 3 da el nodo inmediato anterior r = 2. Sacar el nodo 3 de más consideraciones en esta iteración, tachándolo. Repetir el paso 2 con t = r = 2.

Paso 2. $S_2 = \{5\}$; nótese que el nodo 3 se ha eliminado en el paso de retroceso.

Paso 3. k = 5 y a₅ = c₂₅ = 30. Etiquetar el nodo 5 con [30, 2]. Se ha logrado la irrupción; proseguir en el paso 5.

Paso 5. $N_3 = \{1, 2, 5\}$ y $c_5 = \min\{\infty, 10, 30\} = 10$. Los residuales a lo largo de la trayectoria de N_3 son

$$(c_{12}, c_{21}) = (10 - 10, 10 + 10) = (0, 20)$$

$$(c_{25}, c_{52}) = (30 - 10, 0 + 10) = (20, 10)$$

Iteración 4. En esta iteración se obtiene $N_4 = \{1, 3, 2, 5\}$ con $f_4 = 10$ (¡compruébelo!).

Iteración 5. En esta iteración se obtiene $N_5 = \{1, 4, 5\}$ con $f_5 = 10$ (¡compruébelo!).

Iteración 6. Todos los arcos que salen del nodo 1 tienen residuales cero. En consecuencia no hay más irrupciones posibles. Pasaremos al paso 6 para determinar la solución.

Paso 6. El flujo máximo en la red es $F = f_1 + f_2 + \ldots + f_5 = 20 + 10 + 10 + 10 + 10 = 60$ unidades. El flujo en los distintos arcos se calcula restando los últimos residuales (c_{yy}, c_{yy}) en las iteraciones 6 de las capacidades iniciales $(\overline{C}_{ty}, \overline{C}_{yy})$, como se ve en la tabla siguiente.

Arco	$(\overline{C}_q, \overline{C}_p) - (c_q, c_p)_6$	Flujo	Dirección
(1, 2)	(20, 0) - (0, 20) = (20, -20)	20	1 → 2
(1, 3)	(30, 0) - (0, 30) - (30, -30)	30	$1 \rightarrow 3$
(1, 4)	(10, 0) - (0, 10) - (10, -10)	10	$1 \rightarrow 4$
(2, 3)	(40, 0) - (40, 0) = (0, 0)	0	2→5
(2, 5)	(30, 0) - (10, 20) = (20, -20)	20	
(3, 4)	(10, 5) - (0, 15) = (10, -10)	10	$3 \rightarrow 4$
(3, 5)	(20, 0) - (0, 20) = (20, -20)	20	$3 \rightarrow 5$
(4, 5)	(20, 0) - (0, 20) - (20, -20) (20, 0) - (0, 20) - (20, -20)	20	$4 \rightarrow 5$

(f) Sin irrupción

Practicamos:

Determinar el flujo máximo en la siguiente red.

