Nucleons in magnetic field with Stochastic Variational Method

Moti Eliyahu

1 LO EFT

We need to solve the equation

$$H\Psi = E\Psi$$

The LO EFT Hamiltonian H, contain magnetic field strength B, point in the z direction, can be written as, see [1].

$$H = -\frac{\hbar^2}{2m_N} \sum_{i} \nabla_i^2 + \frac{\hbar^2}{2m_N} \left(\frac{eB}{\hbar}\right)^2 \sum_{i} y_i^2 - \frac{\hbar^2}{2m_N} \left(\frac{eB}{\hbar}\right) \sum_{i} g_i \sigma_{zi} + \sum_{i < j < k} \sum_{cyc} D_1 e^{-a(r_{ij}^2 + r_{jk}^2)}$$

Where $\frac{\hbar^2}{m_N}=41.47~Mev\cdot fm^2$ and $\frac{eB}{\hbar}$ is input parameter for the magnetic field. $r_{ij}^2=x_{ij}^2+y_{ij}^2+z_{ij}^2$ are the distance between the pair ij, $x_{ij}=x_i-x_j$, and $P_{ij}^\sigma=\frac{1+\sigma_i\cdot\sigma_j}{2}$. The LEC C_1,C_3,D [2] and the cutoff a are from our Effective field theory without magnetic field. The basis function are $\Psi=\psi^x\psi^y\psi^z$ where $\psi^x=e^{-\frac{1}{2}x^TA^xx}$ etc. and $x=(x_1\dots x_N)$. In SVM we choose randomly distance between particles d_{ij} and A^x is symmetrical matrix translated from $\psi^x=\exp\left(-\sum_{i< j}^N\frac{(x_i-x_j)^2}{2d_{ij}^2}-\sum_i^N\varepsilon_ix_i^2\right)$.

The analytical expressions of the matrix element of the spatial basis function of all part of the Hamiltonian are: (same expression for y, z coordinats of course) [3][4][5][6][7]

$$\langle \psi'^{x} | \psi^{x} \rangle = \sqrt{\frac{(2\pi)^{N}}{\det(A^{x} + A'^{x})}}$$

$$\left\langle \psi'^{x} \left| \frac{\partial^{2}}{\partial x_{i}^{2}} \right| \psi^{x} \right\rangle = -\langle \psi'^{x} | \psi^{x} \rangle \sum_{k}^{N} A_{ik}^{\prime x} A_{ik}^{x} \left(A^{x} + A'^{x} \right)_{kk}^{-1}$$

$$\left\langle \psi'^{x} \left| x_{i}^{2} \right| \psi^{x} \right\rangle = \langle \psi'^{x} | \psi^{x} \rangle (A^{x} + A'^{x})_{ii}^{-1}$$

$$\left\langle \psi'^{x} \left| e^{-ax_{ij}^{2}} \right| \psi^{x} \right\rangle = \langle \psi'^{x} | \psi^{x} \rangle (2as + 1)^{-1/2}$$

$$\left\langle \psi'^{x} \left| e^{-a\left(x_{ik}^{2} + x_{jk}^{2}\right)} \right| \psi^{x} \right\rangle = \langle \psi'^{x} | \psi^{x} \rangle (2aB + I)^{-1/2}$$
Where $s = \mathbf{C}_{ij}^{T} (A^{x} + A'^{x})^{-1} \mathbf{C}_{ik}$ $\mathbf{C}_{ik}^{T} (A^{x} + A'^{x})^{-1} \mathbf{C}_{jk}$

$$\mathbf{C}_{jk}^{T} (A^{x} + A'^{x})^{-1} \mathbf{C}_{ik}$$
 $\mathbf{C}_{jk}^{T} (A^{x} + A'^{x})^{-1} \mathbf{C}_{jk}$

I is 2×2 unit matrix and $\boldsymbol{C}_{ij}^T = (0, \dots, \underbrace{1}_{i}, \dots 0, \dots, \underbrace{-1}_{j}, \dots 0)$.

[1] Let us assume the field, of strength B, point in the z direction. There are various choices for **A**, we choose here $\mathbf{A} = \left(-\frac{1}{2}By, \frac{1}{2}Bx, 0\right)$ we get

$$\frac{\hbar^2}{2m_N} \left(-i \nabla - \frac{e}{\hbar} A \right)^2 = -\frac{\hbar^2}{2m_N} \nabla^2 + i \left(\frac{\hbar^2}{2m_N} \right) \left(\frac{eB}{\hbar} \right) \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) + \left(\frac{\hbar^2}{2m_N} \right) \left(\frac{eB}{\hbar} \right)^2 \frac{1}{4} (x^2 + y^2)$$

The matrix element of the $y \frac{\partial}{\partial x}$ are zero because Gaussian function are symmetric.

$$\left\langle \Psi' \middle| y \frac{\partial}{\partial x} \middle| \Psi \right\rangle = \left\langle \psi'^x \psi'^y \psi'^z \middle| y \frac{\partial}{\partial x} \middle| \psi^x \psi^y \psi^z \right\rangle = \left\langle \psi'^x \middle| \frac{\partial}{\partial x} \middle| \psi^x \right\rangle \underbrace{\left\langle \psi'^y \middle| y \middle| \psi^y \right\rangle}_{=0} \left\langle \psi'^z \middle| \psi^z \right\rangle = 0$$

[2] The energy of spin magnetic term is

$$E = -\gamma \mathbf{B} \cdot \mathbf{S} = -\gamma B \hbar \sigma_z$$

Where $\sigma_Z = \pm \frac{1}{2}$ and $\gamma = \frac{g\mu}{\hbar}$ and $\mu = \frac{e\hbar}{2m_p}$ and $g_p = 5.586$, $g_n = -3.826$.

All together gives

$$-\frac{\hbar^2}{2m_N} \left(\frac{eB}{\hbar}\right) g \sigma_z$$

So if we set the minimal coupling and the contact potential to zero and choose $\left(\frac{eB}{\hbar}\right) = \left(\frac{\hbar^2}{m}\right)^{-1}$ then the energy of deuteron (np system) for example need to be

$$-0.5(0.5g_p + 0.5g_n) = -0.439 \qquad for |\uparrow\uparrow\rangle$$

$$0 \qquad for \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

$$-0.5(-0.5g_p - 0.5g_n) = 0.439 \qquad for |\downarrow\downarrow\rangle$$

- [3] The connection between our LEC to $C_{S,T}$ LEC are $C_1 = \frac{C_{1,0} + C_{0,1}}{2}$, $C_3 = \frac{C_{1,0} C_{0,1}}{2}$.
- [4]
- [5]
- [6]
- [7]
- [8]
- [9] The dimension of the parameter $\frac{eB}{\hbar}$ is $length^{-2}$. So if B=1T, the numerical value of $\frac{e}{\hbar}B$ in unit of fm^{-2} will be $\frac{1\cdot 1\cdot 6\cdot 10^{-19}\cdot 1}{6\cdot 6\cdot 10^{-34}}(10^{-15})^2=2.4\cdot 10^{-16}\,fm^{-2}$ so just large magnetic field like $10^{15}T$ will be significant. eB/\hbar is eB in the input files

[10] Identity

$$\sum_{i}^{n} y_{i}^{2} = \frac{1}{n} \left[\left(\sum_{i}^{n} y_{i} \right)^{2} + \sum_{i < j} (y_{j} - y_{i})^{2} \right]$$

Or

$$\sum_{i}^{n} y_{i}^{2} = nY^{2} + \frac{1}{n} \sum_{i < j} y_{ij}^{2}$$

Where $y_{ij} = y_j - y_i$ and $Y = \frac{1}{n} \sum_{i=1}^{n} y_i$

In the same way

$$\sum_{i} (p_{y})_{i}^{2} = \frac{1}{n} P_{y}^{2} + \frac{4}{n} \sum_{i \leq i} p_{ij}^{2}$$

Where $p_{ij} = \frac{p_j - p_i}{2}$ and $P_y = \sum_{i=1}^{n} p_i$

Such that $[Y, P_y] = i\hbar$ and $[y_{ij}, p_{ij}] = i\hbar$

Write
$$\frac{\hbar^2}{2m} \left(\frac{eB}{\hbar}\right)^2 = \frac{1}{2} m\omega^2$$
 where $\omega = \frac{eB}{m}$

We get for our Hamiltonian,

$$\frac{1}{2m} \sum_{i} (p_{y})_{i}^{2} + \frac{\hbar^{2}}{2m} \left(\frac{eB}{\hbar}\right)^{2} \sum_{i} y_{i}^{2} = \frac{1}{2m} \left(\frac{1}{n} P_{y}^{2} + \frac{4}{n} \sum_{i < j} p_{ij}^{2}\right) + \frac{1}{2} m \omega^{2} \left(nY^{2} + \frac{1}{n} \sum_{i < j} y_{ij}^{2}\right)$$

$$= \frac{1}{2M} P_{y}^{2} + \frac{1}{2} M \omega^{2} Y^{2} + \sum_{i < j} \left(\frac{1}{2 \left(\frac{M}{4}\right)} p_{ij}^{2} + \frac{1}{2} \left(\frac{M}{4}\right) \left(\frac{2\omega}{n}\right)^{2} y_{ij}^{2}\right)$$

The ground state energy of the $\frac{1}{2M}P_y^2 + \frac{1}{2}M\omega^2Y^2$ is $\frac{1}{2}\hbar\omega$ and for each $\frac{1}{2\left(\frac{M}{4}\right)}p_{ij}^2 + \frac{1}{2}\left(\frac{M}{4}\right)\left(\frac{2\omega}{n}\right)^2y_{ij}^2$

is $\frac{1}{2}\hbar\left(\frac{2\omega}{n}\right)$ and for all pair is $(n-1)\frac{1}{2}\hbar\omega$ or $(\frac{n-1}{2})\left(\frac{\hbar^2}{m}\right)\left(\frac{eB}{\hbar}\right)$ in terms of our parametes.

So if we calculate the ground state for two, three, and four systems without the term $\frac{1}{2}M\omega^2Y^2$ (the center of mass vanish..) in magnetic field along z direction and with zero contact interaction, if we choose $\left(\frac{eB}{\hbar}\right) = \left(\frac{\hbar^2}{m}\right)^{-1}$ we need to get 0.5, 1, 1.5 for deuteron triton and helium.

If our Hamiltonian will be just

$$\frac{1}{2m} \sum_i (p_x)_i^2 + \frac{1}{2m} \sum_i (p_z)_i^2 + \frac{1}{2M} P_y^2 + \sum_{i < j} \left(\frac{1}{2 \left(\frac{M}{4} \right)} p_{ij}^2 + \frac{1}{2} \left(\frac{M}{4} \right) \left(\frac{2\omega}{n} \right)^2 y_{ij}^2 \right)$$