Knowledge representation and Reasoning

Robert Hoehndorf

Knowledge, Representation and Reasoning

Object-oriented representation of knowledge

- So far, most knowledge about some x is scattered across the KB
- Need to find a way to organize axioms better
- We see *objects* and *kinds* of objects in the world: use these as structuring principles
 - toys have a color, shape, weight, etc.
 - a class (situation) has: a room, teacher, day, time, seating arrangement, etc.

Frames

- Let's call the object structures frames
- Two types of frames:
 - Individual frame: represents single objects, like a single person
 - generic frame: represents categories of objects
- An individual frame is a named list of buckets called slots
- What goes in the bucket is called a filler of the slot
 - Individual frames: jeddah
 - slot names: :Population (with ":" at start)
 - generical frames: SaudiCity

Instances and specialization

• Generic frames have a similar slot called :IS-A, filled by another generic frame:

```
(SaudiCity
  <:IS-A City>
  <:Province SaudiProvince>
  <:Country saudiArabia>
...
)
```

• We say that Jeddah is an instance of the frame SaudiCity, and that SaudiCity is a specialization of the frame City.

IS-A and inheritance

- Specialization relation implies that fillers of more general frames also apply for more specific ones
- Same holds for procedures (used to calculate/update slot fillers)

Reasoning with frames

- Basic reasoning: user instantiates a frame, i.e., declares that an object exists
- slot fillers are inherited, if possible
- slot values are calculated using procedures
- Examples: see book
- Here, we will not consider frame-based systems further

Description Logics

- used to formalize the terminology of an application domain
 - define important notions (concepts, relations) in the domain
 - state constraints in a way that these notions can be interpreted
 - infer consequences of these constraints

Description Logics

- Derived from semantic networks and frames
- initially, used incomplete systems
- later, developed tableau-based systems, complexity results, first implementations
- then: highly expressive DLs, highly optimized tableau-based systems, relation to modal logics and (fragments of) FOL

Description Logics: overview

- TBox: defines the terminology of the domain
- ABox: states facts (assertions) about the world
- Reasoning: derive implicitly represented knowledge (e.g., subsumption)

Description Logic: ALC

Definition

Let N_C be a set of concept names and N_R be a set of relation names, $N_C \cap N_R = \emptyset$. \mathcal{ALC} concept descriptions are inductively defined as:

- If $A \in N_C$, then A is an \mathcal{ALC} concept description
- If C, D are \mathcal{ALC} concept description, and $r \in N_R$, then the following are \mathcal{ALC} concept descriptions:
 - \bullet $C \sqcap D$
 - C ⊔ D
 - ¬C
 - $\forall r.C$
 - ∃r.C
- We use \bot as abbreviation of $A \sqcap \neg A$, \top as abbreviation of $A \sqcup \neg A$

Description Logic: ALC

Definition

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function $\cdot^{\mathcal{I}}$:

- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_C$,
- $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $r \in N_R$

The interpretation function is extended to \mathcal{ALC} concept descriptions as follows:

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- \bullet $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} C^{\mathcal{I}}$
- $\bullet \ \, (\forall r. \mathcal{C})^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \text{for all } e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \text{ implies } e \in \mathcal{C}^{\mathcal{I}} \}$
- $(\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} | \text{there is } e \in \Delta^{\mathcal{I}} : (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \}$

Description Logic: ALC

- ALC can be seen as a fragment of FOL:
 - concept names are unary predicates, role names binary predicates
 - concept descriptions are formulas with one free variable
- the formulas resulting from transformation to FOL are known to be decidable (two-variable fragment)

Description Logic: extensions of ALC

- Description Logics are a family of logics
- Many different constructors
- Number restrictions: $\leq nr.C$, $\geq nr.C$ with semantics: $(\geq nr.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} | card(\{e|(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}) \geq n\}$ etc
- More later!

Description Logic: terminologies

- A concept definition is of the form $A \equiv C$ where
 - A is a concept name
 - C is a concept description
- A TBox is a finite set of concept definitions such that it
 - does not contain multiple definitions,
 - does not contain cyclic definitions
- A defined concept occurs on the left-hand side of a definition
- A primitive concept does not occur on the left-hand side of a definition
- An interpretation \mathcal{I} is a model of a TBox \mathcal{T} if it satisfies all its concept definitions: $A^{\mathcal{I}} = C^{\mathcal{I}}$ for all $A \equiv C \in \mathcal{T}$

Description Logic: terminologies

- Also possible to use more general constraints for the definition of concepts
- A generalized concept inclusion (GCI) is of the form C
 □ D
 where C, D may be concept descriptions
- An interpretation $\mathcal I$ is a model of a set of GCIs $\mathcal T$ (a general TBox) if it satisfies all its concept inclusion axioms: $C^{\mathcal I}\subseteq D^{\mathcal I}$ for all $C\subseteq D\in \mathcal T$

Description Logic: assertions

- An assertion is of the form C(a) (concept assertion) or r(a, b) (role assertion), where C is a concept description, r is a role, a, b are individual names from a set N_I of such names
- An ABox is a finite set of assertions
- An interpretation $\mathcal I$ is a model of an ABox $\mathcal A$ if it satisfies all its assertions:
 - $a^{\mathcal{I}} \in C^{\mathcal{I}}$ for all $C(a) \in \mathcal{A}$
 - $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ for all $r(a, b) \in \mathcal{A}$

- Subsumption: Is C a subconcept of D?
 - $C \sqsubseteq_{\mathcal{T}} D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T}
- Satisfiability: Is the concept C non-contradictory?
 - C is satisfiable w.r.t. \mathcal{T} iff $C^{\mathcal{I}} \neq \emptyset$ for some model \mathcal{I} of \mathcal{T}
- Consistency: Is the ABox A non-contradictory?
 - \bullet $\, {\cal A}$ is consistent w.r.t. $\, {\cal T}$ iff it has a model that is also a model of $\, {\cal T} \,$
- Instantiation: Is e an instance of C?
 - $\mathcal{A} \models_{\mathcal{T}} \mathcal{C}(e)$ iff $e^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} and \mathcal{A} .

- Reducing subsumption to satisfiability: $C \sqsubseteq_{\mathcal{T}} D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{T}
- Reducing satisfiability to subsumption: C is satisfiable w.r.t. \mathcal{T} iff not $C \sqsubseteq_{\mathcal{T}} \bot$
- Reducing satisfiability to consistency: C is satisfiable w.r.t. \mathcal{T} iff $\{C(a)\}$ is consistent w.r.t. \mathcal{T}
- Reducing instantiation to consistency: a is an instance of C w.r.t. \mathcal{T} and \mathcal{A} iff $\mathcal{A} \cup \{\neg C(a)\}$ is inconsistent w.r.t. \mathcal{T}
- Reducing consistency to instantiation: \mathcal{A} is consistent w.r.t. \mathcal{T} iff a is not an instance of \bot w.r.t. \mathcal{T} and \mathcal{A}

Definition

For a given TBox $\mathcal T$ and concept description C, the expansion $C^{\mathcal T}$ of C w.r.t. $\mathcal T$ if obtained from C by

- replacing defined concept by their definition,
- until no more defined concepts occur.

- TBox acyclic, therefore expansion always terminates
- Size of the expanded concept?
- ullet C is satisfiable w.r.t. $\mathcal T$ iff $C^{\mathcal T}$ is satisfiable w.r.t. the empty $\mathsf{TBox}\ \emptyset$
- $C \sqsubseteq_{\mathcal{T}} D$ iff $C^{\mathcal{T}} \sqsubseteq_{\emptyset} D^{\mathcal{T}}$
- same for consistency and instantiation

- ullet We are looking for a *decision procedure* for reasoning in \mathcal{ALC} :
 - sound: positive answers are correct
 - complete: generate all answers, negative answers are correct
 - termination: answer in finite time
- efficient: best possible (worst-case) complexity
- Remember: FOL has no decision procedure

- Sufficient to decide consistency of ABox without TBox
 - TBox can be eliminated by concept expansion
 - all reasoning problems can be reduced to consistency
- a tableau-based consistency algorithm tries to generate a finite model for the input ABox \mathcal{A}_0
 - applies tableau rules to extend the ABox
 - checks for obvious contradictions
 - an ABox that is complete (no more rules can be applied) and open (no contradictions found) describes a model

 \mathcal{T} : $GoodStudent \equiv Smart \sqcap Studious$

• Subsumption question:

 \exists attendedBy.Smart $\sqcap \exists$ attendedBy.Studious \sqsubseteq ?

 $\exists attended By. Good Student$

- Subsumption question:
 ∃attendedBy.Smart □ ∃attendedBy.Studious ⊑?
 ∃attendedBy.GoodStudent
- Reduction to satisfiability: is the following concept unsatisfiable w.r.t. T: ∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent

- Subsumption question:
 ∃attendedBy.Smart □ ∃attendedBy.Studious ⊑?
 ∃attendedBy.GoodStudent
- Reduction to satisfiability: is the following concept unsatisfiable w.r.t. T: ∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent
- Reduction to consistency: is the following ABox inconsistent w.r.t. T: {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent)(a)}

- Subsumption question:
 ∃attendedBy.Smart □ ∃attendedBy.Studious ⊑?
 ∃attendedBy.GoodStudent
- Reduction to satisfiability: is the following concept unsatisfiable w.r.t. T: ∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent
- Reduction to consistency: is the following ABox inconsistent w.r.t. T: {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent)(a)}
- Expansion: is the following ABox inconsistent: {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.(Smart □ Studious))(a)}

- Subsumption question:
 ∃attendedBy.Smart □ ∃attendedBy.Studious ⊑?
 - $\exists attended By. Good Student$
- Reduction to satisfiability: is the following concept unsatisfiable w.r.t. T: ∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent
- Reduction to consistency: is the following ABox inconsistent w.r.t. T: {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.GoodStudent)(a)}
- Expansion: is the following ABox inconsistent:
 {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ¬∃attendedBy.(Smart □ Studious))(a)}
- Negation Normal Form: {(∃attendedBy.Smart □ ∃attendedBy.Studious □ ∀attendedBy.(¬Smart □ ¬Studious))(a)}

Tableau algorithm

- Input: \mathcal{ALC} ABox \mathcal{A}_0
- ullet Output: "yes" if \mathcal{A}_0 is consistent, "no" otherwise
- ullet Preprocessing: transform all concept descriptions in \mathcal{A}_0 in Negation Normal Form with the following rules:
 - $\neg (C \sqcap D) \Rightarrow \neg C \sqcup \neg D$
 - $\neg (C \sqcup D) \Rightarrow \neg C \sqcap \neg D$
 - $\neg \neg C \Rightarrow C$
 - $\neg(\exists r.C) \Rightarrow \forall r.\neg C$
 - $\neg(\forall r.C) \Rightarrow \exists r.\neg C$
- NNF can be computed in polynomial time, does not change the semantics of the concept

Tableau algorithm

- ullet Datastructure: a set of ABoxes, start with $\{\mathcal{A}_0\}$
- Rule application: take one ABox from the set, replace with finite number of new ABoxes
- Termination: if no more rules apply to any of the ABoxes in the set
- complete ABox: no rule applies to it
- Answer "yes" if the set contains an open ABox, i.e., an ABox not containing a contradiction of the form C(a) and $\neg C(a)$ for some individual name a
- Answer "no" if all ABoxes in the set are closed

Tableau rules

- The □-rule:
 - Condition: A contains $(C \sqcap D)(a)$ but not both C(a) and D(a)
 - Action: $A' = A \cup \{C(a), D(a)\}$
- - Condition: A contains $(C \sqcup D)(a)$ but neither C(a) nor D(a)
 - Action: $A' = A \cup \{C(a)\}\$ and $A'' = A \cup \{D(a)\}\$
- The ∃-rule:
 - Condition: A contains $(\exists r.C)(a)$ but there is no c with $\{r(a,c),C(c)\}\subseteq A$
 - Action: $A' = A \cup \{r(a, b), C(b)\}$ where b is a new individual name
- The ∀-rule:
 - Condition: A contains $(\forall r.C)(a)$ and r(a,b) but not C(b)
 - Action: $A' = A \cup \{C(b)\}$

Tableau algorithm

- Local correctness (rules preserve consistency)
- Termination (no infinite paths)
- Soundness (any complete and open ABox has a model)
- Completeness (closed ABoxes have no model)

Tableau algorithm: summary

- Starting with a finite ABox A_0 in NNF, the algorithm always terminates with a finite set of complete ABoxes $A_1, ..., A_n$
- Local correctness: A_0 is consistent iff one of $A_1, ..., A_n$ is consistent
- Answer "no": none of $A_1,...,A_n$ is open, $A_1,...,A_n$ are inconsistent $\Rightarrow A_0$ is inconsistent
- Answer "yes": one of $A_1, ..., A_n$ is open, therefore one of $A_1, ..., A_n$ consistent $\Rightarrow A_0$ is consistent

Number restrictions $\leq nr.C$, $\geq nr.C$ with semantics:

- $\bullet \ (\geq \textit{nr.C})^{\mathcal{I}} = \{ \textit{d} \in \Delta^{\mathcal{I}} | \textit{card}(\{\textit{e}|(\textit{d},\textit{e}) \in \textit{r}^{\mathcal{I}} \land \textit{e} \in \textit{C}^{\mathcal{I}}\}) \geq \textit{n} \}$
- $\bullet \ (\leq \textit{nr.C})^{\mathcal{I}} = \{\textit{d} \in \Delta^{\mathcal{I}} | \textit{card}(\{\textit{e}|(\textit{d},\textit{e}) \in \textit{r}^{\mathcal{I}} \land \textit{e} \in \textit{C}^{\mathcal{I}}\}) \leq \textit{n}\}$

NNF:

- $\neg (\geq (n+1)r.C) \Rightarrow (\leq nr.C)$
- $\neg (\geq 0r.C) \Rightarrow \bot$
- $\neg (\leq nr.C) \Rightarrow (\geq (n+1)r.C)$

New assertions:

• Inequality assertions of the form $x \neq y$ with semantics $x^{\mathcal{I}} \neq y^{\mathcal{I}}$ (symmetric)

- The > rule:
 - Condition: \mathcal{A} contains $(\geq nr.C)(a)$ but there are no $c_1,...,c_n$ with $\{r(a,c_1),C(c_1),...,r(a,c_n),C(c_n)\}\cup\{c_i\neq c_j|1\leq i\leq n,1\leq j\leq n,i\neq j\}\subseteq \mathcal{A}$
 - Action: $\mathcal{A}' = \mathcal{A} \cup \{r(a, b_1), C(b_1), ..., r(a, b_n), C(b_n)\} \cup \{b_i \neq b_j | 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$ where $b_1, ..., b_n$ are new individual names.
- The \leq rule:
 - Condition: \mathcal{A} contains $(\leq nr.C)(a)$, and there are $b_1,...,b_{n+1}$ with $\{r(a,b_1),C(b_1),...,r(a,b_n),C(b_n),r(a,b_{n+1}),C(b_{n+1})\}\subseteq \mathcal{A}$ but $\{b_i\neq b_i|1\leq i\leq n,1\leq j\leq n,i\neq j\}\not\subset \mathcal{A}$
 - for all $i \neq j$ with $b_i \neq b_j \notin \mathcal{A}$, $\mathcal{A}_{i,j} = \mathcal{A}[b_i/b_j]$ (replace b_i with b_j)

- New contradictions:
 - A contains $a \neq a$ for some individual a
 - \mathcal{A} contains $(\leq nr.C)(a)$, and there are $b_1,...,b_{n+1}$ with $\{r(a,b_1),C(b_1),...,r(a,b_{n+1}),C(b_{n+1})\}\subseteq \mathcal{A}$ and $\{b_i\neq b_i|i\neq j\}\subset \mathcal{A}$

Is this a decision procedure?

• local correctness: rules preserve consistency

Is this a decision procedure?

- local correctness: rules preserve consistency
- completeness: a closed ABox does not have a model

Is this a decision procedure?

- local correctness: rules preserve consistency
- completeness: a closed ABox does not have a model
- soundness: a complete and open ABox has a model (no!)

Is this a decision procedure?

- local correctness: rules preserve consistency
- completeness: a closed ABox does not have a model
- soundness: a complete and open ABox has a model (no!)
- termination: there is no infinite chain of rule applications (no!)

- The choose rule:
 - Condition: A contains $(\leq nr.C)(a)$ and r(a,b) but neither C(b) nor $\overline{C(b)}$ $(\overline{C(b)}$ is NNF of $\neg C(b)$
 - Action: $A' = A \cup \{C(b)\}\$ and $A'' = A \cup \{\overline{C(b)}\}\$

• Apply generating rules (\exists, \geq) with lower priority

Adding GCIs

- A finite set of GCIs can be encoded in one GCI of the form $\top \sqsubseteq C$:
 - $\{C_1 \sqsubseteq D_1, ..., C_n \sqsubseteq D_n\} \Rightarrow \{\top \sqsubseteq (\neg C_1 \sqcup D_1) \sqcap ... \sqcap (\neg C_n \sqcup D_n)\}$
- Given a GCI of the form $\top \sqsubseteq C$ where C is in NNF:
 - Condition: A contains individual name a but not C(a)
 - Action: $A' = A \cup \{C(a)\}$

Adding GCIs

- Termination does not hold: test consistency of $\{P(a)\}$ with $\top \sqsubseteq \exists r.P$
- Solution: blocking
 - y is blocked by x iff $label(y) \subseteq label(x)$
 - generating rules are not applied to blocked individuals
 - to avoid cyclic blocking, fix an enumeration of individual names, and add to the blocking condition that y comes after x in the enumeration

Adding GCIs

- soundness must be reconsidered
 - because of blocking, ABox can be complete, although a generating rule applies
 - modication of canonical interpretation: the r-successors of a blocked individual are the r-successors of the least individual (in the enumeration) blocking it

Complexity of ALC reasoning

Concept satisfiability and ABox consistency for \mathcal{ALC} are PSPACE-complete.

Proof (by reduction to Quantified Boolean Formula problem): Attributive concept descriptions with complements. Manfred Schmidt-Schauss and Gert Smolka. Artificial Intelligence, 48(1):1-26, 1991.

Extensions of ALC(Q)

Description Logic complexity navigator:

http://www.cs.man.ac.uk/~ezolin/dl/

- Role constructors: inverse, intersection, negation, union, role chains,...
- Role axioms: transitivity, reflexivity, role inclusions
- Concept constructors: functionality, nominals