practical deep learning research and jobs

Alex Honchar University of Verona

Day 5 goals

- You understand modern research trends in deep learning
- You understand how to get a job in machine learning area
- You can perform the full deep learning pipeline after making a final project

New technologies?

- Multilayer perceptron (1969)
- Convolutional neural networks (1980s)
- Recurrent neural networks (LSTM 1997)

2k16

1. AlphaGo

2. Image style transfer

2. Image style transfer

3. Differentiable neural computer

4. OpenAl

5. Generative models

Generative adversarial networks (conceptual)

6. Neural networks compression

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
Baseline Caffemodel (BVLC)	42.78%	19.73%	240MB	1×
Fastfood-32-AD (Yang et al., 2014)	41.93%	-	131MB	$2\times$
Fastfood-16-AD (Yang et al., 2014)	42.90%	-	64MB	$3.7 \times$
Collins & Kohli (Collins & Kohli, 2014)	44.40%	-	61MB	$4 \times$
SVD (Denton et al., 2014)	44.02%	20.56%	47.6MB	$5 \times$
Pruning (Han et al., 2015)	42.77%	19.67%	27MB	$9 \times$
Pruning+Quantization	42.78%	19.70%	8.9MB	$27\times$
Pruning+Quantization+Huffman	42.78%	19.70%	6.9MB	35 ×

7. Voice generation

8. Donald Trump's win

9. CNNs for graphs

10. End-to-end machine translation

+ Good books

jobs

Main professions

- Data Scientist
- Machine learning Engineer
 - Researcher

Skills needed (computer science)

MUST:

- Programming skills (Python / C++ / Java / Matlab / Lua)
- Algorithms and data structures (discrete mathematics, graphs!)

IS A PLUS:

- Parallel computing
- Knowledge of GPU programming (CUDA)
- Backend development
- Data visualization skills

Skills needed (mathematics)

MUST (2-3 years of bachelors in math/CS/statistics):

- Linear algebra (all about matrixes, vector spaces, linear operators)
- Calculus (limits, partial derivatives, series analysis)
- Probability theory (random variables, distributions, mean, variance)
- Statistics (central limit theorem, statistics tests, regression, Bayesian stats)

IS A PLUS:

- Numerical analysis (interpolations, numerical derivatives, numerical optimization)
- Tensor algebra
- Stochastic processes
- Multivariate statistics
- Functional analysis (for reading and understanding latest white papers)

7 easy (no) steps to get a job

- 1. You must know and understand **basics** listed before
- 2. Complete one of the **machine learning** courses with certificate (Coursera Stanford course for example)
- 3. Make a submission on an easy Kaggle problem
- 4. Complete one or two courses / books in deep learning
- 5. Make a submission on intermediate / hard Kaggle problem
- 6. Implement one or two **white paper algorithms** from scratch using Theano / Tensorflow / Caffe and upload it to GitHub
- 7. Compile a resume and spam it on LinkedIn and head hunting sites

Steps MOOC mockup

- Python: https://www.codecademy.com/learn/python
- Algorithms: https://www.coursera.org/learn/introduction-to-algorithms
- Algebra: https://www.mooc-list.com/course/ut501x-linear-algebra-foundations-frontiers-edx
- Calculus: https://www.coursera.org/learn/calculus1
- Statistics: https://www.coursera.org/specializations/statistics
- Machine learning: https://www.coursera.org/learn/machine-learning
- Kaggle 1: https://www.kaggle.com/c/titanic
- Deep Learning 1 (computer vision): http://cs231n.stanford.edu/
- Deep Learning 2 (natural language processing): http://cs224d.stanford.edu/
- Kaggle 2: any from "featured" section
- White paper 1: http://arxiv.org/pdf/1603.08155v1.pdf (image style transfer project)
- White paper 2: https://arxiv.org/pdf/1609.08359v1.pdf (emoji project)

Next steps

- Read white papers. Every week, better every day. Notice the trends, use them. (arxiv, gitxiv, Twitter)
- Implement models (at least their parts) from scratch for educational purpose (implement custom convolutional layer for Keras)
- 3. Probably dive a bit more into theory
- 4. Practice with data: do all the "dirty job"
- 5. Publish papers / commit to Github

Self-study materials from zero

Find your PDF here: https://github.com/Rachnog/education

Project proposals

- Titanic survivors prediction
 - House price prediction
- Fashion image classification
 - Food image classification
 - Arrhythmia ECG detection
- Plants images classification
- Adult content recognition
 - Stock price prediction

- Face identification
- Motivational quotes generation
 - Chat bots
- Speech recognition
- Machine translation
- Stealing ML models from API
 - Your ideas

thank you for attention!