Examples of binary relations involving various properties

The following table gives examples of relations of various combinations in terms of reflexive, symmetric, transitive and anti-symmetric. All examples are on the set $\{1, 2, 3\}$. To simplify the entries, we let $Z = \{(1, 1), (2, 2), (3, 3)\}$.

Reflexive	Symmetric	Transitive	Anti-symmetric	
Y	Y	Y	Y	Z
Y	Y	Y	N	$Z \cup \{(1,2),(2,1)\}$
Y	Y	N	Y	Not possible
Y	Y	N	N	$Z \cup \{(1,2), (2,1), (2,3), (3,2)\}$
Y	N	Y	Y	$Z \cup \{(1,2)\}$
Y	N	Y	N	$Z \cup \{(1,2), (2,1), (1,3), (2,3)\}$
Y	N	N	Y	$Z \cup \{(1,2),(2,3)\}$
Y	N	N	N	$Z \cup \{(1,2), (2,3), (2,1)\}$
N	Y	Y	Y	Ø
N	Y	Y	N	$\{(1,2),(2,1),(1,1),(2,2)\}$
N	Y	N	Y	Not possible
N	Y	N	N	$\{(1,2),(2,1)\}$
N	N	Y	Y	$\{(1,2)\}$
N	N	Y	N	$\{(1,2),(2,1),(1,1),(2,3),(1,3),(2,2)\}$
N	N	N	Y	$\{(1,2),(2,3)\}$
N	N	N	N	$\{(1,2),(2,1),(2,3)\}$

The following proposition covers the two "not possible" cases.

Proposition:

Let R be a relation on A. If R is symmetric and anti-symmetric, then R is transitive. Proof: Let $(a,b),(b,c) \in R$. We want to show that $(a,c) \in R$. Since R is symmetric, $(b,a),(c,b) \in R$. Now $(a,b),(b,a) \in R$ implies a=b as R is anti-symmetric. Hence $(a,c)=(b,c) \in R$ as required.