Colle 1 Raisonnements

- ➤ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mercredi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 1.1

Une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dite polynomiale de degré $n \in \mathbb{N}$ lorsque : $\exists a_0, \dots, a_n \in \mathbb{R}: \forall x \in \mathbb{R}, \quad f(x) = a_0 + a_1 x + \dots + a_n x^n.$

Déterminer l'ensemble des fonctions polynomiales de degré 3 impaires.

Exercice 1.2

Soient $p, q \in [1, +\infty[$ tels que $p \leqslant q$. Soit $r \in [p, q]$.

Montrer que :

$$\exists \theta \in [0,1]: \quad \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

Exercice 1.3

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction.

La fonction f est dite paire lorsque $\forall x \in \mathbb{R}, f(-x) = f(x).$

Montrer que f est paire si, et seulement si, il existe une unique fonction $g: \mathbb{R}_+ \longrightarrow \mathbb{R}$ telle que :

$$\forall x \in \mathbb{R}, \quad f(x) = g(x^2).$$

Exercice 1.4

Déterminer l'entier le plus proche de $\sqrt{73}$.

Exercice 1.5

1. Soit $a \ge 0$. Montrer que :

$$\forall n \in \mathbb{N}, (1+a)^n \geqslant 1+n a.$$

- **2.** Soit $q \in \mathbb{R}$.
 - (a) Montrer que, si q > 1, $q^n \longrightarrow +\infty$.
 - **(b)** Montrer que, si $q \in [0, 1[, q^n \longrightarrow 0]$

Exercice 1.6

1

Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $p \in \mathbb{N}^*$ et $k_1, \dots, k_p \in \mathbb{N}$ tous distincts tels que :

$$n=2^{k_1}+\cdots+2^{k_p}.$$

Exercice 1.7

Soit $n \in \mathbb{N}$. On suppose que n est le carré d'un entier. Le nombre 2n peut-il être le carré d'un entier?

Exercice 1.8

1. Déterminer la solution r_0 de l'équation :

$$x^2 - 10x + 25 = 0.$$

2. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \ u_{n+2} = 10u_{n+1} - 25u_n.$$

Montrer que :

$$\exists \lambda, \mu \in \mathbb{R} : \forall n \in \mathbb{N}, u_n = (\lambda n + \mu) r_0^n.$$

Exercice 1.9

Soit $\lambda \in \mathbb{R}$.

Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles telles que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} - \lambda u_n = v_n.$$

- **1.** Soit $K \in \mathbb{N}$.
 - (a) Exprimer u_0 en fonction des termes v_0, \dots, v_K et u_{K+1} .
 - **(b)** De même, pour $n \in \mathbb{N}$, exprimer u_n .
- **2.** Si $u_n \longrightarrow 0$ et $\lambda \geqslant 1$, que peut-on en déduire sur la suite $\left(\sum_{k=0}^K \frac{v_k}{\lambda^{k+1}}\right)_K$?

Exercice 1.10

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction vérifiant :

$$\forall x, y \in \mathbb{R}, \quad \forall \lambda \in \mathbb{R}, \quad f(\lambda x + y) = \lambda f(x) + f(y).$$

- **1.** Déterminer, pour $x \in \mathbb{R}$, l'expression de f(x).
- 2. On suppose que :

$$\forall x \in \mathbb{R}, \quad f(f(x)) = x.$$

Montrer que, pour tout $x\in\mathbb{R}$, il existe un unique couple $(x_1,x_2)\in\mathbb{R}^2$ tels que :

$$f(x_1) = x_1$$
, $f(x_2) = -x_2$ et $x = x_1 + x_2$.