(答案在后面)

				余 红巾	Щ /			
得	分		一、 填空匙	厦(每空1分	,共 10 分)			
评分	入							
1.			」 有程序 I/O 方式、 I/O 控制方式		I/O 控制力	方式、	DMA	_I/O 控
2.	操作	系统向用户提供	的两个基本接口是	型 <u>程序</u>	接口和	用户	接口。	
3.			是系统中,某作业的 物理地址是			大小为 10)24 字节,逻辑	揖地址
			页号	클	块号			
			0		2			
			1		3			
			2		1			
			3		6			
4.			E、及时性和交互性				_操作系统。	
5.	通道	用于控制	没备控制器	_与内存之[间的信息交换。			
6.	事务	的最基本特性是	<u> </u>	0				
7.		央大小为 4KB, ———。	每个盘块号占4号	字节,在采	用两级索引时允	许的最大	文件长度为_	
得评分	分分人		二、单选是	蔥(每题 2 分	,共 20 分)			
1.	用磁	带作为文件存贮	2介质时,文件只能	 生组织成()。			
	А. 🤟	页序文件	B. 链接文件	C. 索引	文件	D. 目录	文件	

《操作系统》试卷共12页,第1页

2. 一作业 8:00 到达系统,估计运行时间为 1 小时,若 10:00 开始执行该作业,则其响应比是

(C)_°

3.	文件系统采用多级目录结构后,对于不同	用户的文件,其文件名(C)。
	A . 应该相同 B . 应该不同 C .	可以相同,也可以不同	D. 受系统约束
4.	死锁预防是保证系统不进入死锁状态的静之一。下列方法中破坏了"循环等待"条件		不产生死锁的四个必要条件
	A. 银行家算法 B. 一次性分配策略	C. 剥夺资源法	D. 资源有序分配法
5.	进程状态从就绪态到运行态的转化工作是	由(B)完成的。	
	A. 作业调度 B. 进程调度	C. 页面调度	D. 设备调度
6.	采用缓冲技术的主要目的是(C)。		
	A. 改善用户编程环境	B. 提高 CPU 的处理	里速度
	C. 提高 CPU 和设备间的并行程度	D. 实现与设备无关	性
7.	目录文件所存放的信息是(D)。		
	A. 该目录中所有数据文件目录	B. 某一文件存放的	数据信息
	C. 某一个文件的文件目录	D. 该目录中所有文	件的目录
8.	最容易形成很多小碎片的可变分区分配算	法是(D)。	
	A. 首次适应算法	B. 循环首次适应算法	
	C. 最坏适应算法	D. 最佳适应算法	
9.	用户程序与实际使用的物理设备无关是由	(A) 功能实现	的。
	A. 设备独立性 B. 设备驱动	C. 虚拟设备	D. 设备分配
10.	下面关于顺序文件、链接文件和索引文件		
	A. 显示链接文件是在每个盘块中设置一个 B. 顺序文件必须采用连续分配方式,而银		
	C. 顺序文件适用于对诸记录进行批量存取		
	D. 在交互应用场合,需要经常查找访问单	色个记录时,更适合用顺序	亨或索引文件
得	分		
L			

B. 1 C. 3

A. 2

D. 0.5

评分人

三、 简答题。(每题 4 分, 共 20 分)

1. 文件系统对目录管理的主要要求是什么?

(I)	사가다	"按名存取"	(1分)
()	가 네	"妆名45脚"	('71')

- ② 提高对目录的检索速度 (1分)
- ③ 文件共享 (1分)
- ④ 允许文件重名 (1分)

2. 什么是 Spooling 技术, Spooling 系统由哪几部分组成?

SPOOLING 技术是一种虚拟设备技术,它可以把一台独占设备改造成为虚拟设备,在进程所需的物理设备不存在或被占用的情况下,使用该设备。SPOOLING 技术是对脱机输入,输出系统的模拟,又称为假脱机操作。(2分)

SPOOLING 系统主要由三部分组成:输入井和输出井、输入缓冲区和输出缓冲区、输入进程和输出进程。(2分)

3. 文件分配表 FAT 的作用及类别。

- 4. 某系统中有 4 个并发进程,都需要同类资源 5 个,假设现在用信号量 S 代表该资源,当前 S 的值为-2。请回答:
- ① 保证该系统不会发生死锁的最少资源数是几个?

17个

- ② 假设信号量 S 的初值等于第①问中的结果,那么系统中的相关进程至少执行了几次 P(S)操作? 19 次
- ③ 与信号量 S 相关的处于阻塞状态的进程有几个? 两个
- ④ 要使信号量 S 的值大于 0, 应该进行怎样的操作?

V(S)操作释放信号量的次数至少要比 P(S)操作多 3 次。

- 5. 试分别从以下方面对进程和线程进行比较:
- ① 地址空间:

线程是进程内的一个执行单元,进程至少拥有一个线程,同属一个进程的多个线程共享该进程的地址空间;而进程则有自己独立的地址空间。

② 资源拥有:

进程是资源分配和拥有的基本单位,同一个进程所属的多个线程共享进程所有的资源。

③ 处理机调度:

线程是处理机调度的基本单位

④ 能否并发执行:

进程和线程均可以并发执行

得分	
评分人	

四、 应用题(每题 10 分,共 30 分)

- 1. 某请求分页式存储管理系统,接收一个共7页的作业。作业运行时的页面走向如下: 1、5、2、1、3、2、4、7、2、4。假定系统为该作业分配了3块内存空间,内存页块初始均为空,假设FIFO 算法以队列,LRU 算法以堆栈作为辅助结构,请填表并计算:
- ① 采用先进先出(FIFO)页面淘汰算法时,会产生多少次缺页中断?缺页率是多少?

页面走向	1	5	2	1	3	2	4	7	2	4
队列										
是否缺页										
换出页										

② 采用最近最久未用(LRU)页面淘汰算法时,会产生多少次缺页中断?缺页率是多少?

缺页率为:

缺页中断次数为:_____

页面走向	1	5	2	1	3	2	4	7	2	4
44.41										
堆栈										

-	是否缺页					
	换出页					

缺页中断次数为:	缺页率为:	
9\\J\ B U\\J\/J\	 ウベン ハー フ リ・	

- 2. 假定磁盘的移动臂现在处于第 10 柱面,由内向外运动(磁道号由小到大)。现有一组磁盘请求以 60、8、15、4、20、40 柱面的次序到达磁盘驱动器,移动臂移动一个柱面需要 6ms,请完成下面的问题:
- ① 访问磁盘所需的时间由哪三部分构成?
- ② 若采用先来先服务 FCFS 算法进行磁盘调度,请给出柱面访问序列,计算平均寻道时间。
- ③ 若采用最短寻找时间优先 SSTF 算法进行磁盘调度,请给出柱面访问序列,计算平均寻道时间。
- ④ 若采用电梯扫描 SCAN 算法进行磁盘调度,请给出柱面访问序列,计算平均寻道时间。
- 3. 系统中有 4 类资源(A,B,C,D)和 5 个进程 $P0\sim P4$,T0 时刻的系统状态如下表所示,系统采用银行家算法实施死锁避免策略。

Process	Allocation	Need	Available
P0	1,2,3,4	0,0,1,2	1,2,2,3
P1	1,0,0,0	1,7,5,0	
P2	0,2,1,0	2,3,5,6	
Р3	0,2,1,0	0,6,5,8	
P4	1,0,1,1	0,6,5,7	

请回答:

① 系统中的 4 类资源总量分别是多少?

4888

② T0 状态是否安全? 为什么?

T0 时刻存在一个安全序列{P0, P2, P4, P3, P1}, 故系统是安全的。

③ 在 T0 状态的基础上, 若进程 P2 提出请求 Request (1, 1, 0, 1), 系统能否将资源分配给它? 请说明理由。

进程 P2 提出请求 Request (1,1,0,1) 后,因 Request≤Need 且 Request≤Available,故系统可考虑将资源分配给它,分配后,Available 将变为(0, 1, 2, 2),进行安全性检测,发现存在一个安全序列{P0, P2, P4, P3, P1},故系统是安全的。

④ 在 T0 状态的基础上, 若进程 P1 提出请求 Request (1, 1, 2, 0), 系统能否将资源分配给它? 请说明理由。

P1 提出请求 Request(1,1,2,0)后,因 Request≤Need 且 Request≤Available,故系统可考虑将资源分配给它,分配后,Available 将变为(0,1,0,3),进行安全性检测,发现已不能满足任何进程需要,系统会进入不安全状态,所以此时系统不能为 P1 分配资源。

得分	
评分人	

五、 综合分析题(每题10分,共20分)

1. 有一个多道批处理系统,作业调度采用"短作业优先"调度算法;进程调度采用"优先数抢占式"调度算法,且优先数越小优先级越高。若系统拥有打印机一台,采用<mark>静态方法</mark>分配,忽略系统的调度开销。现有如下作业序列到达系统:

作业名	到达时间	Cpu 运行时间	打印机需求	优先数
J1	2: 00	50min	1	4
J2	2: 20	40min	0	2
J3	2: 30	50min	1	3
J4	2: 50	20min	0	5
J5	3: 10	10min	1	1

请填写下表,根据表格内容求出各个作业的平均周转时间和平均带权周转时间,同时指出各个作业运行结束的次序。

作业名	到达时间	Cpu 运行时间	打印机需求	优先数	开始时间	结束时间	周转时间	带权 周转时间
J1	2: 00	50min	1	4	2: 00	3:30		
J2	2: 20	40min	0	2	2:20	3:00		
Ј3	2: 30	50min	1	3	3:40	4:50		
J4	2: 50	20min	0	5	4:30	3:40		
J5	3: 10	10min	1	1	3:30	3:40		

各个作业的平均周转时间为:

各个作业的平均带权周转时间为:

各个作业运行结束的次序为:

- 2. 有一间教室,教室内只有一位教师为学生答疑。教室内有 10 张可供学生等待答疑的椅子,如果没有学生需要答疑,则教师休息;如果有学生进入教室发现教师在休息,则要叫醒该教师;教师正在答疑时若有新来的同学,则进入教室坐下等待,但是若教室内已无空位,那新来的同学要先离开。要求:
- ① 请分析为了实现同步控制,总共需要用到几个信号量,其含义和初始值分别为多少。
- ② 请使用伪码描述教师和学生之间的同步关系。

→ 、	填空题(每空1	分.	共10	分)	١
•	**************************************	// /	/\ IU	/3 /	

1	中断驱动	直接存储器访问(或 DMA)	通道
1.	丁四月2027	且,按付限的则则(以DMA)	

- 2. 用户 程序
- 3. 6154
- 4. 分时
- 5. 设备控制器
- 6. 原子性
- 7. 4GB

二、单选题(每题 2 分, 共 20 分)

1. A	2. C	3. C	4. D	5. B
6 C	7 D	8 D	9 А	10 A

三、简答题(每题 4 分, 共 20 分)

- 1. 文件系统对目录的管理有以下要求:
 - ⑤ 实现"按名存取" (1分)
 - ⑥ 提高对目录的检索速度 (1分)
 - ⑦ 文件共享 (1分)
 - ⑧ 允许文件重名 (1分)
- 2. SPOOLING 技术是一种虚拟设备技术,它可以把一台独占设备改造成为虚拟设备,在进程所需的物理设备不存在或被占用的情况下,使用该设备。SPOOLING 技术是对脱机输入,输出系统的模拟,又称为假脱机操作。(2分)

SPOOLING 系统主要由三部分组成:输入井和输出井、输入缓冲区和输出缓冲区、输入进程和输出进程。(2分)

3. 可以把用于链接文件各物理块的指针,显式地存放在内存的一张链接表中,分配给各个文件的 所有盘块号都放在该表中,由于查找记录的过程在内存中进行,因而显著提高了检索速度,该 表称为文件分配表 FAT(File Allocation Table)。 (2分)

根据 FAT 表项的位宽不同, FAT 可分为 FAT12、FAT16、FAT32 和 NTFS 等不同类别。(2 分)

4.

- ① 保证不会发生死锁的资源数至少为17个。(1分)
- ② 至少执行了 19 次 P(S)操作; (1分)
- ③ 阻塞进程有2个; (1分)
- ④ V(S)操作释放信号量的次数至少要比 P(S)操作多 3 次。(1分)

5.

- ⑤ 地址空间:线程是进程内的一个执行单元,进程至少拥有一个线程,同属一个进程的多个线程 共享该进程的地址空间;而进程则有自己独立的地址空间。(1分)
- ⑥ 资源拥有: 进程是资源分配和拥有的基本单位,同一个进程所属的多个线程共享进程所有的资源。(1分)
- ⑦ 处理机调度:线程是处理机调度的基本单位。(1分)
- ⑧ 并发执行:进程和线程均可以并发执行。(1分)

四、计算题(每题 10 分, 共 30 分)

- 1. 解:
- ① 采用 FIFO 算法时,发生缺页的次数为7,缺页率为:70%(5分)

页面走向	1	5	2	1	3	2	4	7	2	4
			2	2	3	3	4	7	2	2
队列		5	5	5	2	2	3	4	7	7
	1	1	1	1	5	5	2	3	4	4
是否缺页	V	1	V		V		V	1	1	
换出页					1		5	2	3	

② 采用 LRU 算法时,发生缺页的次数为 6,缺页率为:60% (5分)

页面走向	1	5	2	1	3	2	4	7	2	4
			2	1	3	2	4	7	2	4
堆栈		5	5	2	1	3	2	4	7	2
	1	1	1	5	2	1	3	2	4	7
是否缺页	√	1	1		1		1	V		
换出页					5		1	32		

- 2 解.
- ① 磁盘访问时间由: 寻道时间、旋转延迟时间和数据传输时间三部分构成。(1分)
- ② 先来先服务算法: (3分)

柱面访问序列为: 60、8、15、4、20、40

平均寻道时间为: $\frac{(50+52+7+11+16+20)\times 6}{6} = 156ms$

③ 最短寻找时间优先算法: (3分) 柱面访问序列为: 8、4、15、20、40、60

平均寻道时间为:
$$\frac{(2+4+11+5+20+20)\times 6}{6} = 62ms$$

④ 电梯调度算法: (3分)

柱面访问序列为: 15、20、40、60、8、4

平均寻道时间为:
$$\frac{(5+5+20+20+52+4)\times 6}{6} = 106ms$$

3. 解:

① 系统中 4 类资源的总数为: (4,8,8,8)。(2分)

② T0 时刻存在一个安全序列{P0, P2, P4, P3, P1}, 故系统是安全的。(2分)

资源 进程 情况	Work	Need	Allocation	Work+Allocation	Finish
P0	1,2,2,3	0,0,1,2	1,2,3,4	2,4,5,7	ture
P2	2,4,5,7	2,3,5,6	0,2,1,0	2,6,6,7	ture
P4	2,6,6,7	0,6,5,7	1,0,1,1	3,6,7,8	ture
Р3	3,6,7,8	0,6,5,8	0,2,1,0	3,8,8,8	ture
P1	3,8,8,8	1,7,5,0	1,0,0,0	4,8,8,8	ture

③ 进程 P2 提出请求 Request (1,1,0,1) 后,因 Request Need 且 Request Available,故系统可考虑将资源分配给它,分配后,Available 将变为(0,1,2,2),进行安全性检测,发现存在一个安全序列{P0,P2,P4,P3,P1},故系统是安全的。(3分)

资源 进程 情况	Work	Need	Allocation	Work+Allocation	Finish
P0	0,1,2,2	0,0,1,2	1,2,3,4	1,3,5,6	ture
P2	1,3,5,6	1,2,5,5	1,3,1,1	2,6,6,7	ture
P4	2,6,6,7	0,6,5,7	1,0,1,1	3,6,7,8	ture
Р3	3,6,7,8	0,6,5,8	0,2,1,0	3,8,8,8	ture
P1	3,8,8,8	1,7,5,0	1,0,0,0	4,8,8,8	ture

④ P1 提出请求 Request(1,1,2,0)后,因 Request \leq Need 且 Request \leq Available,故系统可考虑将资源分配给它,分配后,Available 将变为(0,1,0,3),进行安全性检测,发现已不能满足任何进程需要,系统会进入不安全状态,所以此时系统不能为 P1 分配资源。(3分)

五、综合分析题(每题 10 分, 共 20 分)

1. 填表: (7分)

作业名	到达时间	Cpu 运行时间	打印机需求	优先数	开始时间	结束时间	周转时间	带权 周转时间
J1	2: 00	50min	1	4	2: 00	3: 30	90	1.8或9/5
J2	2: 20	40min	0	2	2: 20	3: 00	40	1
Ј3	2: 30	50min	1	3	3: 40	4: 30	120	2.4或12/5
J4	2: 50	20min	0	5	4: 30	4: 50	120	6
J5	3: 10	10min	1	1	3: 30	3: 40	30	3

```
各个作业的平均周转时间为: (90+40+120+120+30)/5 = 80 (1分)
各个作业的平均带权周转时间为: (1.8+1+2.4+6+3)/5 = 2.84 (1分)
各个作业运行结束的次序为: J2——J1——J5——J4 (1分)
```

2. 解:根据题意,需要使用3个信号量:(2分)

v(students);

```
students: 用于记录等候的学生数量,初值为0;
teacher: 用于表示教师是否正在答疑, 初值为 0;
mutex:用于教师进程和学生进程的互斥,初值为1。
另,还需使用一个共享变量 waiter,用于记录等候的学生数量,初值为 0。
伪码如下:
semaphore students = 0, teacher = 0, mutex = 1;
int waiter = 0;
/***********************************
parbegin
void teacher( )
                   (4分)
{ while (1)
  { p(students); /*是否有学生等待答疑*/
     p(mutex);
     waiter = waiter-1; /*等待答疑的学生减少一人*/
     v(mutex);
     v(teacher);
                /*教师答疑*/
     answer();
   }
void student( )
                     (4分)
{ p(mutex);
  if(waiter < 10)
  { waiter = waiter + 1;
```

```
v(mutex);
p(teacher);
getanswer();
}
else v(mutex);
}
parend
```