Classificações topológicas reveladas pelo fluxo de Ricci

Matheus Andrade Ribeiro de Moura Horácio

03 de agosto de 2022

Sumário

- 1 Geometria e cosmologia: o começo
- 2 Classificações topológicas
- 3 O fluxo de Ricci
- 4 Referências

Eratóstenes: o homem que mediu o mundo

• "Geometria" vem do grego e significa "medir" a Terra. A primeira pessoa que temos registro de fazer isso foi o grande astrônomo e matemático grego Eratóstenes, há mais de 2200 anos.

Eratóstenes: o homem que mediu o mundo

Os primeiros cosmólogos

• A "forma" da Terra, porém, era um assunto de interesse aos antigos gregos séculos antes de Eratóstenes.

Os primeiros cosmólogos

- A "forma" da Terra, porém, era um assunto de interesse aos antigos gregos séculos antes de Eratóstenes.
- Tales de Mileto acreditava que a Terra era um disco plano flutuando num oceano gigante.

Os primeiros cosmólogos

 Por outro lado, Anaximandro, discípulo de Tales, pensava que a Terra tinha a forma de um cilindro, onde os continentes estavam localizados numa de suas faces circulares.

• De modo geral, podemos perguntar quais são todas as formas possíveis que a Terra poderia assumir. Nos limitando somente à perspectiva matemática abstrata (ou seja, sem nos preocuparmos na existência de leis físicas que constituam obstruções à possíveis formatos), tal pergunta admite a seguinte formalização:

• De modo geral, podemos perguntar quais são todas as formas possíveis que a Terra poderia assumir. Nos limitando somente à perspectiva matemática abstrata (ou seja, sem nos preocuparmos na existência de leis físicas que constituam obstruções à possíveis formatos), tal pergunta admite a seguinte formalização:

Pergunta

Quais são todas as topologias possíveis de uma superfície fechada?

• De modo geral, podemos perguntar quais são todas as formas possíveis que a Terra poderia assumir. Nos limitando somente à perspectiva matemática abstrata (ou seja, sem nos preocuparmos na existência de leis físicas que constituam obstruções à possíveis formatos), tal pergunta admite a seguinte formalização:

Pergunta

Quais são todas as topologias possíveis de uma superfície fechada?

• Por "fechada", queremos dizer compacta e sem bordo.

• Podemos ir ainda além e indagar:

• Podemos ir ainda além e indagar:

Pergunta

 $Qual \ \'e \ a \ ``melhor" \ m\'etrica \ que \ uma \ superf\'icie \ fechada \ qualquer \ admite?$

• Podemos ir ainda além e indagar:

Pergunta

 $Qual \ \'e \ a \ ``melhor" \ m\'etrica \ que \ uma \ superf\'icie \ fechada \ qualquer \ admite?$

• Veremos que essas duas perguntas estão intimamente relacionadas.

O Cosmos

• Nas palavras de Carl Sagan, o Cosmos é tudo o que existe, existiu ou existirá.

O Cosmos

- Nas palavras de Carl Sagan, o Cosmos é tudo o que existe, existiu ou existirá.
- A teoria da relatividade geral de Einstein modela o Cosmos como uma variedade pseudo-Riemanniana de dimensão 4, cuja geometria local é descrita pela seguinte equação:

$$\operatorname{Ric} - \frac{1}{2} \cdot \operatorname{Scal} \cdot g + \Lambda g = \frac{8\pi G}{c^4} T$$

O Cosmos

• Sendo assim, podemos muito bem perguntar: dada uma fibração do Cosmos por "fatias temporais" tri-dimensionais, quais são todas as topologias e geometrias possíveis de tais fatias?

Observações importantes

• Em dimensão ≤ 3 ,

classificações topológicas \iff classificações diferenciáveis

Para mais detalhes, consulte [1]. Podemos então reformalizar os problemas anteriores da seguinte maneira:

Observações importantes

Pergunta

Para cada $n \leq 3$, existe um conjunto finito \mathscr{F}_{τ}^{n} de classes de equivalência de variedades diferenciáveis tal que toda variedade diferenciável fechada \mathcal{M}^{n} satisfaz $[\mathcal{M}] \in \mathscr{F}_{\tau}$?

Observações importantes

Pergunta

Para cada $n \leq 3$, existe um conjunto finito \mathscr{F}_{τ}^{n} de classes de equivalência de variedades diferenciáveis tal que toda variedade diferenciável fechada \mathcal{M}^{n} satisfaz $[\mathcal{M}] \in \mathscr{F}_{\tau}$?

Pergunta

Para cada $n \leq 3$, existe um conjunto finito \mathscr{F}_g^n de classes de equivalência de métricas Riemannianas tal que toda variedade diferenciável fechada admite $g_{\mathcal{M}}$ satisfazendo $[g_{\mathcal{M}}] \in \mathscr{F}_{\tau}$?

Dimensão 1: curvas

• Qualquer variedade (conexa) de dimensão 1 sem bordo é difeomorfa ou ao círculo \mathbb{S}^1 ou à reta real \mathbb{R} . A presença de bordo introduz os casos adicionais [0,1] e [0,1). Compacidade e a presença de bordo são portanto invariantes topológicos que juntos determinam completamente variedades de dimensão 1.

Dimensão 1: curvas

- Qualquer variedade (conexa) de dimensão 1 sem bordo é difeomorfa ou ao círculo \mathbb{S}^1 ou à reta real \mathbb{R} . A presença de bordo introduz os casos adicionais [0,1] e [0,1). Compacidade e a presença de bordo são portanto invariantes topológicos que juntos determinam completamente variedades de dimensão 1.
- Geometrização em dimensão 1 é portanto trivial. Não existe um invariante geométrico intrínseco que distingua duas variedades quaisquer de dimensão 1.

• Dadas duas superfícies fechadas \mathcal{M} e \mathcal{N} , existe uma maneira de construir uma superfície nova chamada da soma conexa de \mathcal{M} e \mathcal{N} , que denotaremos por $\mathcal{M}\sharp\mathcal{N}$.

- Dadas duas superfícies fechadas M e N, existe uma maneira de construir uma superfície nova chamada da soma conexa de M e N, que denotaremos por M#N.
- Escolhemos duas bolas V_1, V_2 , em \mathcal{M} e \mathcal{N} respectivamente, pequenas o suficiente de forma a serem homeomorfas a discos. Em seguida removemos o interior dessas duas bolas, resultando em dois bordos ∂V_1 e ∂V_2 homeomorfos a \mathbb{S}^2 . Ao identificar esses bordos, obtemos uma nova superfície conexa.

A soma conexa de duas superfícies

Figura: a soma conexa de um toro com um bi-toro

A soma conexa de duas superfícies

Figura: a soma conexa com uma esfera

Figura: a representação poligonal de um toro

Figura: representações do plano projetivo \mathbb{RP}^2

É possível mostrar que toda superfície compacta admite uma representação polígonal. Em geral, temos também a seguinte:

A classificação de superfícies fechadas

Toda variedade bi-dimensional \mathcal{M}^2 conexa e fechada é homeomorfa a exatamente um dos sequintes espaços:

É possível mostrar que toda superfície compacta admite uma representação polígonal. Em geral, temos também a seguinte:

A classificação de superfícies fechadas

Toda variedade bi-dimensional \mathcal{M}^2 conexa e fechada é homeomorfa a exatamente um dos seguintes espaços:

• $a \ esfera \mathbb{S}^2$

É possível mostrar que toda superfície compacta admite uma representação polígonal. Em geral, temos também a seguinte:

A classificação de superfícies fechadas

Toda variedade bi-dimensional \mathcal{M}^2 conexa e fechada é homeomorfa a exatamente um dos sequintes espaços:

- $a \ esfera \mathbb{S}^2$
- ullet a soma conexa finita de uma ou mais cópias do toro $\mathbb{T}^2=\mathbb{S}^1 imes\mathbb{S}^1$

É possível mostrar que toda superfície compacta admite uma representação polígonal. Em geral, temos também a seguinte:

A classificação de superfícies fechadas

Toda variedade bi-dimensional \mathcal{M}^2 conexa e fechada é homeomorfa a exatamente um dos seguintes espaços:

- $a \ esfera \mathbb{S}^2$
- \bullet a soma conexa finita de uma ou mais cópias do toro $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$
- a soma conexa finita de uma ou mais cópias do plano projetivo \mathbb{RP}^2

• O número g de toros presentes na decomposição de \mathcal{M} é chamado do $g\hat{e}nero$ de \mathcal{M} .

- O número g de toros presentes na decomposição de \mathcal{M} é chamado do $g\hat{e}nero$ de \mathcal{M} .
- A característica de Euler é um invariante topológico que justifica o "exatamente" citado na classificação anterior. Ela e a orientabilidade são invariantes topológicos que determinam completamente a topologia de uma superfície fechada.

- O número g de toros presentes na decomposição de \mathcal{M} é chamado do $g\hat{e}nero$ de \mathcal{M} .
- A característica de Euler é um invariante topológico que justifica o "exatamente" citado na classificação anterior. Ela e a orientabilidade são invariantes topológicos que determinam completamente a topologia de uma superfície fechada.
- Na busca de invariantes topológicos em dimensões mais altas, Poincaré descobriu o grupo fundamental.

E quanto à geometria?

Um dos teoremas fundamentais no estudo de superfícies é o seguinte:

Teorema da uniformização

Toda superfície fechada \mathcal{M}^2 admite uma métrica Riemanniana de curvatura seccional constante.

Consequentemente, toda superfície compacta é difeomorfa a exatamente um quociente de uma das três seguintes geometrias modelo: \mathbb{S}^2 , \mathbb{R}^2 e \mathbb{H}^2 . A topologia e geometria se relacionam pelo teorema de Gauss-Bonnet:

$$\int_{\mathcal{M}^2} K \, dA = 2\pi \cdot \chi(\mathcal{M}^2)$$

Como uniformizar superfícies com gênero?

• Podemos definir uma métrica de curvatura zero no toro ao "descer" a métrica do recobrimento \mathbb{R}^2 ao toro \mathbb{T}^2 .

Como uniformizar superfícies com gênero?

- Podemos definir uma métrica de curvatura zero no toro ao "descer" a métrica do recobrimento \mathbb{R}^2 ao toro \mathbb{T}^2 .
- E porque não podemos fazer o mesmo para n-toros com $n \geq 2$? A resposta é que os ângulos da geometria Euclidiana são "gordos" demais:

$$(4g-2)\pi > 2\pi \ \forall g \ge 2$$

Como uniformizar superfícies com gênero

 Podemos consertar tal problema ao considerar a geometria hiperbólica. No disco de Poincaré, a soma dos ângulos internos de um polígono hiperbólico é dada por

$$(4g-2)\pi - A$$

onde A denota a área do polígono. Portanto existem polígonos hiperbólicos de ângulos internos $\frac{2\pi}{4g}$, de forma que toda superfície fechada de gênero n admite uma métrica hiperbólica.

Como uniformizar superfícies com gênero

Figura: octágono hiperbólico com identificações rotuladas que geram o bi-toro com geometria hiperbólica

Antes de abordarmos o caso de dimensão 3, vamos tentar visualizar alguns exemplos.

Figura: visualização plana de $\mathbb{S}^1 \times [0,1]$

Figura: visualização de $\mathbb{S}^2 \times [0,1]$

Figura: visão num universo modelado pelo toro \mathbb{T}^3

Figura: visualização plana de \mathbb{S}^2 como dois discos colados ao longo do bordo \mathbb{S}^1

Figura: visualização de \mathbb{S}^3 como duas bolas colados ao longo do bordo \mathbb{S}^2

Figura: visualização de \mathbb{RP}^3 como a esfera \mathbb{S}^2 com pontos antípodas identificados

Figura: visualização do dodecaedro de Poincaré

Figura: geometria esférica do dodecaedro de Poincaré

Figura: visão dentro dum universo de uma só galáxia modelado pelo dodecaedro de Poincaré

• Em dimensão 3, ainda temos as três geometrias-modelo de curvatura constante - a saber, \mathbb{S}^3 , \mathbb{R}^3 e \mathbb{H}^3 . Mas não há esperança de uma classificação tão boa quanto em dimensão 2: de fato, existem infinitas variedades tri-dimensionais que não admitem nenhuma métrica de curvatura seccional constante.

Cinco outras geometrias-modelos surgem de produtos cartesianos ou "torcidos" de geometrias de dimensão mais baixa:

• o produto $\mathbb{S}^2 \times \mathbb{R}$

Cinco outras geometrias-modelos surgem de produtos cartesianos ou "torcidos" de geometrias de dimensão mais baixa:

- o produto $\mathbb{S}^2 \times \mathbb{R}$
- o produto $\mathbb{H}^2 \times \mathbb{R}$

Cinco outras geometrias-modelos surgem de produtos cartesianos ou "torcidos" de geometrias de dimensão mais baixa:

- o produto $\mathbb{S}^2 \times \mathbb{R}$
- o produto $\mathbb{H}^2 \times \mathbb{R}$
- ullet o recobrimento universal $\widetilde{SL}(2,\mathbb{R})$ (um fibrado torcido sobre \mathbb{H}^2)

Cinco outras geometrias-modelos surgem de produtos cartesianos ou "torcidos" de geometrias de dimensão mais baixa:

- o produto $\mathbb{S}^2 \times \mathbb{R}$
- o produto $\mathbb{H}^2 \times \mathbb{R}$
- ullet o recobrimento universal $\widetilde{SL}(2,\mathbb{R})$ (um fibrado torcido sobre \mathbb{H}^2)
- o grupo de Heisenberg (um fibrado torcido sobre \mathbb{R}^2); e

Cinco outras geometrias-modelos surgem de produtos cartesianos ou "torcidos" de geometrias de dimensão mais baixa:

- o produto $\mathbb{S}^2 \times \mathbb{R}$
- o produto $\mathbb{H}^2 \times \mathbb{R}$
- ullet o recobrimento universal $\widetilde{SL}(2,\mathbb{R})$ (um fibrado torcido sobre \mathbb{H}^2)
- o grupo de Heisenberg (um fibrado torcido sobre \mathbb{R}^2); e
- a variedade Sol (um \mathbb{T}^2 -fibrado torcido sobre \mathbb{S}^1)

• A conjectura da geometrização de Thurston afirma que toda 3-variedade fechada pode ser apropriadamente decomposta de maneira que cada pedaço da decomposição admita uma das geometrias citadas anteriormente. Mais precisamente,

• A conjectura da geometrização de Thurston afirma que toda 3-variedade fechada pode ser apropriadamente decomposta de maneira que cada pedaço da decomposição admita uma das geometrias citadas anteriormente. Mais precisamente,

A conjectura da geometrização de Thurston

Seja \mathcal{M}^3 uma variedade fechada, orientável e prima. Então existe um mergulho de uma união disjuntas de toros e garrafas de Klein $\sqcup_i T_i^2 \subset \mathcal{M}$ tal que cada componente do complemento admite uma métrica Riemanniana localmente homogênea e de volume finito.

• Dizemos que uma superfície fechada $S \subset \mathcal{M}^3$ de gênero $g \geq 1$ é incompressível se existe uma injeção de seu grupo fundamental $\pi_1(S)$ no grupo fundamental $\pi_1(\mathcal{M}^3)$ de \mathcal{M}^3 .

- Dizemos que uma superfície fechada $S \subset \mathcal{M}^3$ de gênero $g \geq 1$ é incompressível se existe uma injeção de seu grupo fundamental $\pi_1(S)$ no grupo fundamental $\pi_1(\mathcal{M}^3)$ de \mathcal{M}^3 .
- ullet Pode-se provar que toros e garrafas de Klein são incompressíveis. Uma reformalização da conjectura é então que existe uma decomposição de \mathcal{M}^3 ao longo de toros e garrafas de Klein incompressíveis em pedaços cujos interiores admitem métricas localmente homogêneas de volume finito.

• 3-variedades fechadas de grupo fundamental finito não têm toros ou garrafas de Klein incompressíveis e portanto tal decomposição é trivial. Como a única geometria modelo compacta é \mathbb{S}^3 , concluímos que se $\pi_1(\mathcal{M}^3)$ é finito então o recobrimento universal de \mathcal{M}^3 é a esfera. A fortiori,

geometrização \implies conjectura de Poincaré

• Thurston verificou que uma grande classe de variedades, chamadas variedades de Haken, satisfazia sua conjectura.

- Thurston verificou que uma grande classe de variedades, chamadas variedades de Haken, satisfazia sua conjectura.
- Tal trabalho foi importantíssimo. Nas palavras de John Morgan,

- Thurston verificou que uma grande classe de variedades, chamadas variedades de Haken, satisfazia sua conjectura.
- Tal trabalho foi importantíssimo. Nas palavras de John Morgan,

A importância do trabalho de Thurston

"Na minha perspectiva, antes do trabalho de Thurston em 3-variedades hiperbólicas e sua formalização da Conjectura da Geometrização, não havia consenso entre os especialistas quanto à validade da conjectura de Poincaré. Depois do trabalho de Thurston (não obstante o fato de que o mesmo não tinha nenhuma consequência direta à Conjectura de Poincaré), se desenvolveu um consenso de que ambas a Conjectura de Poincaré e a Conjectura da Geometrização eram verdadeiras."

• Comece com uma 3-variedade fechada arbitrária munida de uma métrica qualquer. Onde a curvatura for grande, deforme a métrica para que a mesma diminua, e onde for pequena, deforme para que aumente. A princípio, o melhor que se pode esperar é que a deformação deixe a variedade inicial com uma geometria "uniforme", de curvatura constante. Mas qual curvatura considerar?

$$\frac{\partial}{\partial t}g = ?$$

• Em dimensão 3, Ric determina Rm. É natural então considerar

$$\frac{\partial}{\partial t}g = c \cdot \text{Ric}$$

para alguma constante $c \neq 0$.

• Uma vez que

$$-2 \cdot \operatorname{Ric}_{jk} = -2 \left\{ \operatorname{Rm}_{pjk}^{p} \right\}$$

$$= -2 \left\{ \partial_{p} \Gamma_{jk}^{p} - \partial_{j} \Gamma_{pk}^{p} + \Gamma_{jk}^{q} \Gamma_{pq}^{p} - \Gamma_{pk}^{q} \Gamma_{jq}^{p} \right\}$$

$$= -\partial_{p} \left\{ g^{pq} \left(\partial_{j} g_{kq} + \partial_{k} g_{jq} - \partial_{q} g_{jk} \right) \right\}$$

$$+ \partial_{j} \left\{ g^{pq} \left(\partial_{p} g_{kq} + \partial_{k} g_{pq} - \partial_{q} g_{kp} \right) \right\} + \left\{ -2 \Gamma_{jk}^{q} \Gamma_{pq}^{p} + 2 \Gamma_{pk}^{q} \Gamma_{jq}^{p} \right\}$$

$$= \cdots$$

$$= \Delta g_{jk} + Q \left(\partial g, g^{-1} \right)$$

a escolha natural é c = -2.

• Consideraremos então a equação

$$\frac{\partial}{\partial t}g = -2 \cdot \operatorname{Ric}_{g(t)}$$

• Consideraremos então a equação

$$\frac{\partial}{\partial t}g = -2 \cdot \operatorname{Ric}_{g(t)}$$

Hamilton mostrou o sucesso da estratégia descrita anteriormente em dimensão 2. Apesar da sua prova original usar o teorema da uniformização, tal dependência foi removida por Chen-Lu-Tian em [5], de forma que o fluxo pode ser usado para provar o teorema da uniformização.

Exemplos

• Suponha que (\mathcal{M}, g_0) é Einstein, de forma que $\operatorname{Ric}_{ij}(p,0) = \lambda g_{ij}(p,0)$ para todo $p \in \mathcal{M}$, onde λ é uma constante. Fazendo o palpite de que $g_{ij}(x,t) = \rho^2(t)g_{ij}(x,0)$ vemos que $\operatorname{Ric}_{ij}(p,t) = \operatorname{Ric}_{ij}(p,0) = \lambda g_{ij}(p,0)$.

Exemplos

- Suponha que (\mathcal{M}, g_0) é Einstein, de forma que $\operatorname{Ric}_{ij}(p,0) = \lambda g_{ij}(p,0)$ para todo $p \in \mathcal{M}$, onde λ é uma constante. Fazendo o palpite de que $g_{ij}(x,t) = \rho^2(t)g_{ij}(x,0)$ vemos que $\operatorname{Ric}_{ij}(p,t) = \operatorname{Ric}_{ij}(p,0) = \lambda g_{ij}(p,0)$.
- Nesse caso, a equação do fluxo de Ricci se escreve então como:

$$\frac{\partial}{\partial t} \left(\rho^2(t) g_{ij}(p,0) \right) = -2\lambda g_{ij}(x,0)$$

que nos dá a EDO

$$\frac{d\rho}{dt} = -\frac{\lambda}{\rho}$$

cuja solução é dada por

$$\rho^2(t) = 1 - 2\lambda t$$

Exemplos

• Em particular, uma esfera encolhe a um ponto em tempo finito e sua curvatura "explode" perto do tempo de singularidade.

Exemplos: variedades de Einstein

• Por outro lado, em uma variedade \mathbb{H}^3/Γ de curvatura negativa constante, o fluxo simplesmente expande a variedade sem nunca "explodir".

Exemplos: os sólitons de Ricci

• Um sóliton de Ricci é uma variedade Riemanniana (\mathcal{M}, g) que admite um campo vetorial X tal que

$$\operatorname{Ric}_g + \frac{1}{2} \mathcal{L}_X g = \lambda g$$

para alguma constante $\lambda \in \mathbb{R}$.

Exemplos: os sólitons de Ricci

• Um sóliton de Ricci é uma variedade Riemanniana (\mathcal{M}, g) que admite um campo vetorial X tal que

$$\operatorname{Ric}_g + \frac{1}{2} \mathcal{L}_X g = \lambda g$$

para alguma constante $\lambda \in \mathbb{R}$.

• Quando existe $f \in \mathcal{C}^{\infty}(\mathcal{M})$ tal que $X = \nabla f$, tal equação se escreve como

$$\operatorname{Ric} + \operatorname{Hess}(f) = \lambda g$$

Exemplos: os sólitons de Ricci

• Um sóliton de Ricci é uma variedade Riemanniana (\mathcal{M}, g) que admite um campo vetorial X tal que

$$\operatorname{Ric}_g + \frac{1}{2} \mathcal{L}_X g = \lambda g$$

para alguma constante $\lambda \in \mathbb{R}$.

• Quando existe $f \in \mathcal{C}^{\infty}(\mathcal{M})$ tal que $X = \nabla f$, tal equação se escreve como

$$Ric + Hess(f) = \lambda g$$

• Sólitons são soluções autossimilares: sob o fluxo de Ricci, eles encolhem, expandem homoteticamente ou permanecem "firmes" (steady).

Os primeiros resultados de Hamilton

• Existência a curto prazo e unicidade. Se (\mathcal{M}, g_0) é uma variedade Riemanniana compacta, existe $\varepsilon > 0$ dependendo somente de g_0 e uma única solução g(t) do fluxo de Ricci definida para $t \in [0, \varepsilon)$ com $g(0) = g_0$.

Os primeiros resultados de Hamilton

- Existência a curto prazo e unicidade. Se (\mathcal{M}, g_0) é uma variedade Riemanniana compacta, existe $\varepsilon > 0$ dependendo somente de g_0 e uma única solução g(t) do fluxo de Ricci definida para $t \in [0, \varepsilon)$ com $g(0) = g_0$.
- Caracterização da formação de singularidades pela curvatura. Se a solução do fluxo existe num intervalo temportal [0,T) mas não se estende a nenhum intervalo maior $[0,T+\delta)$ com $\delta>0$, então existe um ponto $x\in\mathcal{M}$ tal que o tensor curvatura $\operatorname{Rm}(x,t)$ da métrica g(t) "explode", i.e

$$\lim_{t \to T^{-}} \left(\sup_{x \in \mathcal{M}} \|\operatorname{Rm}(x, t)\| \right) = \infty$$

Os primeiros resultados de Hamilton

- Existência a curto prazo e unicidade. Se (\mathcal{M}, g_0) é uma variedade Riemanniana compacta, existe $\varepsilon > 0$ dependendo somente de g_0 e uma única solução g(t) do fluxo de Ricci definida para $t \in [0, \varepsilon)$ com $g(0) = g_0$.
- Caracterização da formação de singularidades pela curvatura. Se a solução do fluxo existe num intervalo temportal [0,T) mas não se estende a nenhum intervalo maior $[0,T+\delta)$ com $\delta>0$, então existe um ponto $x\in\mathcal{M}$ tal que o tensor curvatura $\operatorname{Rm}(x,t)$ da métrica g(t) "explode", i.e

$$\lim_{t\to T^-} \left(\sup_{x\in\mathcal{M}} \|\operatorname{Rm}(x,t)\|\right) = \infty$$

• A positividade do operador curvatura $Rm: \Lambda^2(\mathcal{M}) \to \Lambda^2(\mathcal{M})$ é preservada pelo fluxo.

Obstáculos

• A noção de que sob o fluxo a métrica deve "convergir" a uma métrica de curvatura constante precisa ser formalizada.

Obstáculos

- A noção de que sob o fluxo a métrica deve "convergir" a uma métrica de curvatura constante precisa ser formalizada.
- O fluxo pode encontrar singularidades do tipo

Figure 1.6: Neck pinch

Obstáculos

• Para contornar esse problema, Hamilton teve a ideia de fazer "cirurgias" na variedade e logo após retomar o fluxo

Figure 1.7: Surgery

Obstáculos |

• Para contornar esse problema, Hamilton teve a ideia de fazer "cirurgias" na variedade e logo após retomar o fluxo

Figure 1.7: Surgery

 Hamilton não conseguiu mostrar que tal processo não fica preso numa situação do tipo do paradoxo de Zeno. Perelman introduziu noções de cirurgia que evitavam tal situação.

• O primeiro indício de que o plano de ataque via o fluxo de Ricci descrito anteriormente era promissor foi o seguinte resultado, obtido originalmente por Hamilton:

• O primeiro indício de que o plano de ataque via o fluxo de Ricci descrito anteriormente era promissor foi o seguinte resultado, obtido originalmente por Hamilton:

Um caso muito particular da conjectura de Poincaré

Seja \mathcal{M}^3 uma 3-variedade diferenciável fechada que admite uma métrica Riemanniana de curvatura de Ricci estritamente positiva. Então o recobrimento universal de \mathcal{M} é \mathbb{S}^3 . Em particular, se \mathcal{M} é simplesmente conexa, então \mathcal{M} é \mathbb{S}^3 .

• O primeiro indício de que o plano de ataque via o fluxo de Ricci descrito anteriormente era promissor foi o seguinte resultado, obtido originalmente por Hamilton:

Um caso muito particular da conjectura de Poincaré

Seja \mathcal{M}^3 uma 3-variedade diferenciável fechada que admite uma métrica Riemanniana de curvatura de Ricci estritamente positiva. Então o recobrimento universal de \mathcal{M} é \mathbb{S}^3 . Em particular, se \mathcal{M} é simplesmente conexa, então \mathcal{M} é \mathbb{S}^3 .

• Para abordarmos a demonstração desse resultado, precisaremos de algumas noções preliminares antes. A ideia é evoluir a métrica inicial de forma que a sua curvatura de Ricci seja "pinçada" e convirja a uma métrica de curvatura de Ricci constante.

Usando o princípio do máximo, podemos mostrar o seguinte resultado

"Explosão" uniforme da curvatura

Suponha que g(t) é um fluxo de Ricci numa variedade fechada \mathcal{M} , que existe num intervalo $t \in [0,T]$. Se Scal $\geq \delta > 0$ no instante inicial t=0, então vale que

$$\operatorname{Scal} \ge \frac{\delta}{1 - \left(\frac{2\delta}{n}\right)t}$$

Em particular, se o fluxo é definido em [0,T) e Scal $\geq \delta > 0$ no instante inicial t=0, então $T\leq \frac{n}{2\delta}$.

A estratégia

Iremos aplicar mudanças de escala (ou "inflações") na variedade a fim de diminuir a curvatura. A análise do que acontece em tal limite inflacionário nos permitirá identificar a topologia de \mathcal{M}^3 .

Figure 1.4: Blowing up.

• Uma exaustão de uma variedade \mathcal{M} é uma sequência de abertos $(U_k)_{k\in\mathbb{N}}$ tais que $\overline{U_k}$ é compacto, $\overline{U_k}\subset U_{k+1}\ \forall k$ e $\bigcup_{k\in\mathbb{N}}U_k=\mathcal{M}$.

- Uma exaustão de uma variedade \mathcal{M} é uma sequência de abertos $(U_k)_{k\in\mathbb{N}}$ tais que $\overline{U_k}$ é compacto, $\overline{U_k}\subset U_{k+1}\ \forall k$ e $\bigcup_{k\in\mathbb{N}}U_k=\mathcal{M}$.
- Em particular, se $K \subset \mathcal{M}$ é um subconjunto compacto, existe $n_0 \in \mathbb{N}$ tal que $K \subset U_n$, seja qual for $n \geq n_0$. Consequentemente, se \mathcal{M} é compacta então $U_n = \mathcal{M}$ para todo n suficientemente grande.

Diremos que uma sequência $(\mathcal{M}_i, g_i, p_i)$ de variedades Riemannianas completas marcadas *converge* (suavemente) à variedade Riemanniana completa e marcada (\mathcal{M}, g, p) conforme $i \to \infty$ se existirem

• uma sequência de compactos $\Omega_i \subset \mathcal{M}$ que exausta \mathcal{M} satisfazendo $p \in \operatorname{int}(\Omega_i)$ para cada $i \in \mathbb{N}$

tais que

$$\phi_i^* g_i \to g$$

suavemente conforme $i \to \infty$, no sentido de que para quaisquer compactos $K \subset \mathcal{M}$, o tensor $\phi_i^* g_i - g$ e todas as suas derivadas covariantes de todas as ordens (com respeito a qualquer conexão inicial fixada) convergem uniformemente a zero em K.

Diremos que uma sequência $(\mathcal{M}_i, g_i, p_i)$ de variedades Riemannianas completas marcadas converge (suavemente) à variedade Riemanniana completa e marcada (\mathcal{M}, g, p) conforme $i \to \infty$ se existirem

- uma sequência de compactos $\Omega_i \subset \mathcal{M}$ que exausta \mathcal{M} satisfazendo $p \in \operatorname{int}(\Omega_i)$ para cada $i \in \mathbb{N}$
- uma sequência de aplicações suaves $\phi_i: \Omega_i \to \mathcal{M}_i$ que são difeomorfismos sobre suas imagens e satisfazem $\phi_i(p) = p_i$ para cada $i \in \mathbb{N}$

tais que

$$\phi_i^* g_i \to g$$

suavemente conforme $i \to \infty$, no sentido de que para quaisquer compactos $K \subset \mathcal{M}$, o tensor $\phi_i^* g_i - g$ e todas as suas derivadas covariantes de todas as ordens (com respeito a qualquer conexão inicial fixada) convergem uniformemente a zero em K.

• Em particular, se \mathcal{M} for compacta, \mathcal{M}_i é difeomorfa a \mathcal{M} (a priori teríamos que \mathcal{M} é difeomorfa somente à sua imagem por ϕ_i , mas como cada ϕ_i é um difeomorfismo e \mathcal{M} é trivialmente simultaneamente aberta e fechada em \mathcal{M} , suas imagens são simultaneamente abertas e fechadas em \mathcal{M}_i , e portanto no caso em que \mathcal{M} é compacta, \mathcal{M} é difeomorfa a img $(\phi_i) = \mathcal{M}_i$).

Pode-se provar que duas consequências da convergência $(\mathcal{M}_i, g_i, p_i) \to (\mathcal{M}, g, p)$ são que

• para qualquer s > 0 e $k \in \{0\} \cup \mathbb{N}$,

$$\sup_{i \in \mathbb{N}} \sup_{B_{g_i}(p_i,s)} \|\nabla^k \operatorname{Rm}(g_i)\| < \infty$$

Pode-se provar que duas consequências da convergência $(\mathcal{M}_i, g_i, p_i) \to (\mathcal{M}, g, p)$ são que

• para qualquer s > 0 e $k \in \{0\} \cup \mathbb{N}$,

$$\sup_{i \in \mathbb{N}} \sup_{B_{g_i}(p_i,s)} \|\nabla^k \operatorname{Rm}(g_i)\| < \infty$$

0

$$\inf_{i\in\mathbb{N}}\inf(\mathcal{M}_i,g_i,p_i)>0$$

Pode-se provar que duas consequências da convergência $(\mathcal{M}_i, g_i, p_i) \to (\mathcal{M}, g, p)$ são que

• para qualquer s > 0 e $k \in \{0\} \cup \mathbb{N}$,

$$\sup_{i \in \mathbb{N}} \sup_{B_{g_i}(p_i,s)} \|\nabla^k \operatorname{Rm}(g_i)\| < \infty$$

0

$$\inf_{i\in\mathbb{N}}\inf(\mathcal{M}_i,g_i,p_i)>0$$

 Na verdade, as condições acima são suficientes para subconvergência.

"Arzelà-Ascoli" para convergência de Cheeger-Gromov

Suponha que $(\mathcal{M}_i, g_i, p_i)$ é uma sequência de variedades Riemannianas completas e marcadas (todas com a mesma dimensão n) satisfazendo as duas condições anteriores. Então existe uma variedade Riemanniana completa e marcada (\mathcal{M}, g, p) (também de dimensão n) tal que após passar a uma subsequência em i,

$$(\mathcal{M}_i, g_i, p_i) \to (\mathcal{M}, g, p)$$

As seguintes estimativas nos garantem metade do que precisamos para lidar com o caso de curvatura de Ricci inicial positiva:

Estimativas BBS

Suponha que M > 0 é uma constante e que g(t) é um fluxo de Ricci numa variedade fechada \mathcal{M}^n , onde $t \in [0, M^{-1}]$. Então para qualquer $k \in \mathbb{N}$, existe uma constante C = C(n,k) tal que se $\|\mathrm{Rm}\| \leq M$ em $\mathcal{M} \times [0, M^{-1}]$, então para qualquer $t \in [0, M^{-1}]$, vale

$$\|\nabla^k \operatorname{Rm}\| \le \frac{CM}{t^{\frac{k}{2}}}$$

A estimativa no raio de injetividade também é satisfeita (veja?).

• Considere $(\mathcal{M}_i, g_i(t))$ uma sequência de famílias suaves de variedades Riemannianas completas para $t \in (a, b)$, onde $-\infty \leq a < 0 < b \leq \infty$, $p_i \in \mathcal{M}_i$ pontos de \mathcal{M}_i para cada i, $(\mathcal{M}, g(t))$ uma família suave de variedades Riemannianas completas e $p \in \mathcal{M}$ um ponto de \mathcal{M} .

- Considere $(\mathcal{M}_i, g_i(t))$ uma sequência de famílias suaves de variedades Riemannianas completas para $t \in (a, b)$, onde $-\infty \leq a < 0 < b \leq \infty$, $p_i \in \mathcal{M}_i$ pontos de \mathcal{M}_i para cada i, $(\mathcal{M}, g(t))$ uma família suave de variedades Riemannianas completas e $p \in \mathcal{M}$ um ponto de \mathcal{M} .
- Diremos que

$$(\mathcal{M}_i, g_i(t), p_i) \to (\mathcal{M}, g(t), p)$$

conforme $i \to \infty$ se existirem:

• uma sequência de compactos $\Omega_i \subset \mathcal{M}$ que exausta \mathcal{M} e satisfaz $p \in \operatorname{int}(\Omega_i)$ para cada i

tais que

$$\phi_i^* g_i(t) \to g(t)$$

conforme $i \to \infty$ no sentido de que $\phi_i^*g(t) - g(t)$ e suas derivadas de todas as ordens (onde aqui nos referimos tanto às derivadas com respeito ao tempo quanto às derivadas covariantes espaciais com respeito a qualquer conexão inicial fixada) convergem uniformemente a zero em todo subconjunto compacto de $\mathcal{M} \times (a,b)$.

- uma sequência de compactos $\Omega_i \subset \mathcal{M}$ que exausta \mathcal{M} e satisfaz $p \in \operatorname{int}(\Omega_i)$ para cada i
- uma sequência de aplicações suaves $\phi_i : \Omega_i \to \mathcal{M}_i$ que são difeomorfismos sobre suas imagens e satisfazem $\phi_i(p) = p_i$

tais que

$$\phi_i^* g_i(t) \to g(t)$$

conforme $i \to \infty$ no sentido de que $\phi_i^*g(t) - g(t)$ e suas derivadas de todas as ordens (onde aqui nos referimos tanto às derivadas com respeito ao tempo quanto às derivadas covariantes espaciais com respeito a qualquer conexão inicial fixada) convergem uniformemente a zero em todo subconjunto compacto de $\mathcal{M} \times (a,b)$.

Seja \mathcal{M}_i uma sequência de variedades de dimensão n, e sejam $p_i \in \mathcal{M}_i$ pontos de \mathcal{M}_i para cada i. Suponha que $g_i(t)$ é uma sequência de fluxos de Ricci completos em \mathcal{M}_i para $t \in (a,b)$, onde $-\infty \leq a < 0 < b \leq \infty$. Suponha que

$$\sup_{i \in \mathbb{N}} \sup_{\substack{x \in \mathcal{M}_i \\ t \in (a,b)}} \|\operatorname{Rm}(g_i(t))\|(x) < \infty; \ e$$

Então existe uma variedade \mathcal{M} de dimensão n, um fluxo de Ricci completo g(t) em \mathcal{M} para $t \in (a,b)$, e um ponto $p \in \mathcal{M}$ tal que, após passar a uma subsequência em i, vale

$$(\mathcal{M}_i, g_i(t), p_i) \to (\mathcal{M}, g(t), p)$$

conforme $i \to \infty$.

•

Seja \mathcal{M}_i uma sequência de variedades de dimensão n, e sejam $p_i \in \mathcal{M}_i$ pontos de \mathcal{M}_i para cada i. Suponha que $g_i(t)$ é uma sequência de fluxos de Ricci completos em \mathcal{M}_i para $t \in (a,b)$, onde $-\infty \leq a < 0 < b \leq \infty$. Suponha que

•

$$\sup_{i \in \mathbb{N}} \sup_{\substack{x \in \mathcal{M}_i \\ t \in (a,b)}} \|\operatorname{Rm}(g_i(t))\|(x) < \infty; \ e$$

•

$$\inf_{i\in\mathbb{N}}\inf(\mathcal{M}_i,g_i(0),p_i)>0$$

Então existe uma variedade \mathcal{M} de dimensão n, um fluxo de Ricci completo g(t) em \mathcal{M} para $t \in (a,b)$, e um ponto $p \in \mathcal{M}$ tal que, após passar a uma subsequência em i, vale

$$(\mathcal{M}_i, g_i(t), p_i) \to (\mathcal{M}, g(t), p)$$

conforme $i \to \infty$.

• Estamos interessados em aplicar os teoremas vistos anteriormente para analisar mudanças de escala de fluxos de Ricci perto de suas singularidades. Seja $(\mathcal{M}, g(t))$ uma solução do fluxo de Ricci com \mathcal{M} fechada no intervalo maximal [0, T). Já vimos que

$$\sup_{x \in \mathcal{M}} \|\mathrm{Rm}\|(x,t) \to \infty$$

conforme $t \uparrow T$.

• Estamos interessados em aplicar os teoremas vistos anteriormente para analisar mudanças de escala de fluxos de Ricci perto de suas singularidades. Seja $(\mathcal{M}, g(t))$ uma solução do fluxo de Ricci com \mathcal{M} fechada no intervalo maximal [0, T). Já vimos que

$$\sup_{x \in \mathcal{M}} \|\mathrm{Rm}\|(x,t) \to \infty$$

conforme $t \uparrow T$.

• Tomaremos pontos (p_i, t_i) que maximizem $\|Rm\|$ no compacto $\mathcal{M} \times \left[0, T - \frac{1}{i}\right]$, ou seja

$$\|\text{Rm}\|(p_i, t_i) = \sup_{\substack{x \in \mathcal{M} \\ t \in [0, t_i]}} \|\text{Rm}\|(x, t)$$

• Em particular, $\|\text{Rm}\|(p_i, t_i) \to \infty$ conforme $i \to \infty$. Definiremos fluxos re-escalados (e transladados) $g_i(t)$ por

$$g_i(t) = \|\text{Rm}\|(p_i, t_i)g\left(t_i + \frac{t}{\|\text{Rm}\|(p_i, t_i)}\right)$$

• Em particular, $\|\text{Rm}\|(p_i, t_i) \to \infty$ conforme $i \to \infty$. Definiremos fluxos re-escalados (e transladados) $g_i(t)$ por

$$g_i(t) = \|\text{Rm}\|(p_i, t_i)g\left(t_i + \frac{t}{\|\text{Rm}\|(p_i, t_i)}\right)$$

• Tais fluxos estão definidos nos intervalos

$$-t_i \|\text{Rm}\|(p_i, t_i) \le t \le (T - t_i) \|\text{Rm}\|(p_i, t_i)\|$$

Além disso, para cada i, temos $\|\operatorname{Rm}_{g_i(0)}\|(p_i) = 1$.

Os limites inflacionários

O limite inflacionário de singularidades

Suponha que \mathcal{M}^n é uma variedade fechada, e g(t) é um fluxo de Ricci num intervalo maximal [0,T) com $T<\infty$. Então existem sequências $p_i \in \mathcal{M}$ e $t_i \uparrow T$ satisfazendo

$$\|\text{Rm}\|(p_i, t_i) = \sup_{\substack{x \in \mathcal{M} \\ t \in [0, t_i]}} \|\text{Rm}\|(x, t) \to \infty$$

tais que, definindo

$$g_i(t) = \|\text{Rm}\|(p_i, t_i)g\left(t_i + \frac{t}{\|\text{Rm}\|(p_i, t_i)}\right)$$

existem b = b(n) > 0, um fluxo de Ricci completo $(\mathcal{N}, \hat{g}(t))$ definido em $t \in (-\infty, b)$, e $p_{\infty} \in \mathcal{N}$ tal que $(\mathcal{M}, g_i(t), p_i) \to (\mathcal{N}, \hat{g}(t), p_{\infty})$ conforme $i \to \infty$. Além disso, $\|\operatorname{Rm}_{\hat{g}(0)}\|(p_{\infty}) = 1$, e $\|\operatorname{Rm}_{\hat{g}(t)}\| \le 1$ seja qual for $t \le 0$.

Um tensor de tipo curvatura em um espaço vetorial \mathbb{V} é um tensor $R \in \mathscr{T}_4^0(\mathbb{V})$ satisfazendo as simetrias:

• R(x, y, z, w) = -R(y, x, z, w) = -R(x, y, w, z)

sejam quais forem $x, y, z, w \in \mathbb{V}$. Denotaremos o espaço vetorial de todos os tensores de tipo curvatura em \mathbb{V} por $\mathscr{R}(\mathbb{V})$.

Um tensor de tipo curvatura em um espaço vetorial \mathbb{V} é um tensor $R \in \mathscr{T}_4^0(\mathbb{V})$ satisfazendo as simetrias:

- R(x, y, z, w) = -R(y, x, z, w) = -R(x, y, w, z)
- $R(x, y, z, \cdot) + R(y, z, x, \cdot) + R(z, x, y, \cdot) = 0$

sejam quais forem $x, y, z, w \in \mathbb{V}$. Denotaremos o espaço vetorial de todos os tensores de tipo curvatura em \mathbb{V} por $\mathscr{R}(\mathbb{V})$.

• Em uma variedade Riemanniana (\mathcal{M}^n, g) , definimos o fibrado de tensores de tipo curvatura em \mathcal{M}^n como

$$\mathscr{R}(T\mathcal{M}) \doteq \bigcup_{p \in \mathcal{M}} \mathscr{R}(T_p\mathcal{M})$$

• Em uma variedade Riemanniana (\mathcal{M}^n, g) , definimos o fibrado de tensores de tipo curvatura em \mathcal{M}^n como

$$\mathscr{R}(T\mathcal{M}) \doteq \bigcup_{p \in \mathcal{M}} \mathscr{R}(T_p\mathcal{M})$$

• Seja $R \in \mathcal{R}(\mathbb{V})$. A contração de Ricci de R é o tensor $\mathsf{RICC}(R) \in \mathcal{T}_2^0(\mathbb{V})$ dado por $\mathsf{RICC}(R) \doteq \mathrm{tr}_{1,4}(R)$. A curvatura escalar de R é o número $\mathsf{SC}(R) \doteq \mathrm{tr}_{1,2}(\mathsf{RICC}(R))$.

• Em uma variedade Riemanniana (\mathcal{M}^n, g) , definimos o fibrado de tensores de tipo curvatura em \mathcal{M}^n como

$$\mathscr{R}(T\mathcal{M}) \doteq \bigcup_{p \in \mathcal{M}} \mathscr{R}(T_p\mathcal{M})$$

- Seja $R \in \mathcal{R}(\mathbb{V})$. A contração de Ricci de R é o tensor $\mathsf{RICC}(R) \in \mathcal{T}_2^0(\mathbb{V})$ dado por $\mathsf{RICC}(R) \doteq \mathrm{tr}_{1,4}(R)$. A curvatura escalar de R é o número $\mathsf{SC}(R) \doteq \mathrm{tr}_{1,2}(\mathsf{RICC}(R))$.
- Seja $R \in \mathcal{R}(\mathbb{V})$. O tensor de Einstein de R é o tensor $E(R) \in \mathcal{S}(\mathbb{V})$ definido por

$$E(R) = \mathsf{RICC}(R) - \frac{\mathsf{SC}(R)}{n}g$$

• O tensor de Schouten de $R \in h(R) \in \mathcal{S}(\mathbb{V})$ dado por

$$h(R) = \mathsf{RICC}(R) - \frac{\mathsf{SC}(R)}{2(n-1)}g$$

• O tensor de Schouten de $R \in h(R) \in \mathcal{S}(\mathbb{V})$ dado por

$$h(R) = \mathsf{RICC}(R) - \frac{\mathsf{SC}(R)}{2(n-1)}g$$

 \bullet O tensor de Weyl de R é $W(R) \in \mathscr{R}(\mathbb{V})$ dado (quando n > 2) por

$$W(R) = R - \frac{2}{n-2}(g \bigotimes h(R))$$

• O tensor de Schouten de $R \in h(R) \in \mathcal{S}(\mathbb{V})$ dado por

$$h(R) = \mathsf{RICC}(R) - \frac{\mathsf{SC}(R)}{2(n-1)}g$$

 \bullet O tensor de Weyl de R é $W(R) \in \mathcal{R}(\mathbb{V})$ dado (quando n>2) por

$$W(R) = R - \frac{2}{n-2}(g \bigotimes h(R))$$

• Definiremos também $\mathscr{W}(\mathbb{V}) = \{W \in \mathscr{R}(\mathbb{V}) \mid \mathsf{RICC}(W) = 0\}.$

Notações

• Denotaremos por $\mathcal{S}(\mathbb{V})$ o espaço de todos os tensores simétricos de tipo (0,2) em \mathbb{V} .

Notações

- Denotaremos por $\mathcal{S}(\mathbb{V})$ o espaço de todos os tensores simétricos de tipo (0,2) em \mathbb{V} .
- Vamos também fixar a notação

$$g \otimes \mathcal{S}(\mathbb{V}) \doteq \{g \otimes T \in \mathscr{R}(\mathbb{V}) \mid T \in \mathcal{S}(\mathbb{V})\}\$$

e

$$g \otimes \mathcal{S}(\mathbb{V})_0 \doteq \{g \otimes T \in \mathscr{R}(\mathbb{V}) \mid T \in \mathcal{S}(\mathbb{V}) \text{ satisfaz } \mathrm{tr}_{1,2}(T) = 0\}$$

Decomposição do fibrado de tensores de tipo curvatura

Em geral, temos a seguinte decomposição:

Decompondo tensores de tipo curvatura

Seja (\mathcal{M}^n,g) uma variedade Riemanniana de dimensão n. Então $\mathscr{R}(T\mathcal{M})$ admite a seguinte decomposição ortogonal:

$$\mathscr{R}(T\mathcal{M}) = \mathbb{R}(g \bigotimes g) \oplus (g \bigotimes \mathcal{S}(T\mathcal{M})_0) \oplus \mathscr{W}(T\mathcal{M})$$

A fortiori, a decomposição explícita do tensor curvatura de \mathcal{M} é dada por:

$$Rm = \frac{Scal}{n(n-1)}(g \bigotimes g) + \frac{2}{n-2}(g \bigotimes E) + W$$

Determinação de Rm por Ric

• Em geral,

$$Rm = \frac{Scal}{n(n-1)}(g \otimes g) + \frac{2}{n-2}(g \otimes E) + W$$

Determinação de Rm por Ric

• Em geral,

$$Rm = \frac{Scal}{n(n-1)}(g \otimes g) + \frac{2}{n-2}(g \otimes E) + W$$

• Pela sua construção, o tensor de Weyl tem as mesmas simetrias do tensor de curvatura Riemanniano e todos os seus traços se anulam. Usando tais observações, é simples mostrar que o tensor de Weyl é identicamente nulo em dimensão ≤ 3 . Portanto, em dimensão ≤ 3 , Ric determina completamente Rm.

Para cada $x \in \mathcal{M}$, podemos considerar a solução (que é única e existe enquanto o fluxo de Ricci existir) $e_a(x,t)$ do seguinte sistema de 3 EDO's:

$$\frac{\partial}{\partial t}e_a(x,t) = \operatorname{Ric}_{g(t)}(e_a(x,t))$$
$$e_a(x,0) = e_a^0$$

Um cálculo direto mostra que

$$\frac{\partial}{\partial t}g(t)(e_a(t), e_b(t)) = 0$$

de forma que $\{e_a(t)\}_{1\leq a\leq 3}$ permanece um referencial global ortonormal ao longo do fluxo.

Considere agora o fibrado trivial $F = \mathcal{M} \times \mathbb{R}^3$ com a métrica Euclidiana usual h nas fibras. Temos então isometrias de fibrados

$$\iota(t):(E,h)\to (T\mathcal{M},g(t))$$

definidas por

$$\iota(t)(x, \mathbf{v} = (v^1, v^2, v^3)) = \sum_{a=1}^{3} v^a e_a(x, t)$$

Note que $\iota(t)^*(e_a(x,t)) = \mathbf{e}_a$, onde $\{\mathbf{e}_a\}_{1 \leq a \leq 3}$ denota a base Euclidiana usual, e portanto $g(t)(e_a(t),e_b(t)) = h(\mathbf{e}_a,\mathbf{e}_b) = \delta_{ab}$.

• Podemos então considerar isomorfismos de fibrados $\iota(t): E \to T\mathcal{M}$ que resolvem a EDO:

$$\frac{\partial}{\partial t}\iota(t) = \operatorname{Ric}_{g(t)} \circ \iota(t)$$
$$\iota(0) = \iota_0$$

• Podemos então considerar isomorfismos de fibrados $\iota(t): E \to T\mathcal{M}$ que resolvem a EDO:

$$\frac{\partial}{\partial t}\iota(t) = \operatorname{Ric}_{g(t)} \circ \iota(t)$$
$$\iota(0) = \iota_0$$

• Um cálculo simples mostra que

$$\frac{\partial}{\partial t}\left(\left(\iota^{*}g\right)\left(X,Y\right)\right) = 0, \ \forall X,Y \in \Gamma(T\mathcal{M})$$

de forma que $(\iota(t))^*(g(t))$ é temporalmente constante e portanto é igual a $\iota^*(g(0))$ enquanto o fluxo existe.

 No contexto fornecido pelo truque de Uhlenbeck, é possivel mostrar que a equação de evolução do operador curvatura M associado a Rm se escreve como

$$\left(\frac{\partial}{\partial t} - \Delta\right) \mathbb{M} = \mathbb{M}^2 + \mathbb{M}^\#$$

 No contexto fornecido pelo truque de Uhlenbeck, é possivel mostrar que a equação de evolução do operador curvatura M associado a Rm se escreve como

$$\left(\frac{\partial}{\partial t} - \Delta\right) \mathbb{M} = \mathbb{M}^2 + \mathbb{M}^\#$$

• Em dimensão 3, os elementos de $\Lambda^2(\mathcal{M})$ são todos decomponíveis, o que nos dá uma maneira concreta e simples de expressar $\mathbb{M}^2 + \mathbb{M}^\#$. Diagonalizando \mathbb{M} , id est, escolhendo uma base ortonormal $\{\varphi^{\alpha}\}$ de $\Lambda^2(\mathcal{M})$ tal que

$$\left(\mathbb{M}\left(\varphi^{\alpha}, \varphi^{\beta}\right)\right)_{1 \leq \alpha, \beta \leq 3} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{pmatrix}$$

• onde (sem perda de generalidade) $\lambda \geq \mu \geq \nu$, vemos que a matriz $((\mathbb{M}^2 + \mathbb{M}^{\#})(\varphi^{\alpha}, \varphi^{\beta}))_{1 \leq \alpha, \beta \leq 3}$ também é diagonal, e satisfaz

$$((\mathbb{M}^2 + \mathbb{M}^{\#})(\varphi^{\alpha}, \varphi^{\beta}))_{1 \le \alpha, \beta \le 3} = \begin{pmatrix} \lambda^2 + \mu\nu & 0 & 0\\ 0 & \mu^2 + \lambda\nu & 0\\ 0 & 0 & \nu^2 + \lambda\mu \end{pmatrix}$$

• Podemos também identificar \mathbb{M} com a matriz (\mathbb{M}_{pq}) determinada em cada fibra $\Lambda^2(T_x\mathcal{M}^3)$ do fibrado $\Lambda^2(\mathcal{M}^3)$ por

$$\langle \operatorname{Rm}(e_i, e_j) e_k, e_\ell \rangle = \sum_{p,q} \mathbb{M}_{pq} C_{ij}^p C_{\ell k}^q$$

Uma vez que $\lambda = \mathbb{M}_{11}, \, \mu = \mathbb{M}_{22}$ e $\nu = \mathbb{M}_{33}$, temos então

$$\lambda = 2 \cdot \text{Rm}_{2323}$$

$$\mu = 2 \cdot \mathrm{Rm}_{1313}$$

$$\nu = 2 \cdot \mathrm{Rm}_{1212}$$

ou seja, os autovalores correspondem ao dobro das curvaturas seccionais.

• A análise da evolução de M pode ser feita ao descartarmos o termo do laplaciano, ou seja, ao considerarmos (para cada $x \in \mathcal{M}$ fixado) a EDO para $\mathbf{R}(t): \Lambda^2(\mathcal{M}) \to \Lambda^2(\mathcal{M})$ definida por

$$\frac{\partial}{\partial t}\mathbf{R} = \mathbf{R}^2 + \mathbf{R}^\#$$

• A análise da evolução de \mathbb{M} pode ser feita ao descartarmos o termo do laplaciano, ou seja, ao considerarmos (para cada $x \in \mathcal{M}$ fixado) a EDO para $\mathbf{R}(t): \Lambda^2(\mathcal{M}) \to \Lambda^2(\mathcal{M})$ definida por

$$\frac{\partial}{\partial t}\mathbf{R} = \mathbf{R}^2 + \mathbf{R}^\#$$

ullet Denotando os autovalores de ${\bf R}$ da mesma maneira que os de ${\mathbb M}$, vemos que tal EDO é equivalente ao sistema

$$\begin{split} \frac{\partial \lambda}{\partial t} &= \lambda^2 + \mu \nu \\ \frac{\partial \mu}{\partial t} &= \mu^2 + \lambda \nu \\ \frac{\partial \nu}{\partial t} &= \nu^2 + \lambda \mu \end{split}$$

Em particular, M(t) permanece diagonal.

Além disso, como

$$\frac{\partial}{\partial t}(\lambda - \mu) = (\lambda - \mu)(\lambda + \mu - \nu)$$
$$\frac{\partial}{\partial t}(\mu - \nu) = (\mu - \nu)(-\lambda + \mu + \nu)$$

a desigualdade $\lambda(0) \ge \mu(0) \ge \nu(0)$ também é preservada, ou seja, $\lambda(t) \ge \mu(t) \ge \nu(t)$. Note também que

$$Ric_{11} = Rm_{1212} + Rm_{1313} = \frac{1}{2}(\mu + \nu)$$

$$Ric_{22} = Rm_{2121} + Rm_{2323} = \frac{1}{2}(\lambda + \nu)$$

$$Ric_{33} = Rm_{3232} + Rm_{3131} = \frac{1}{2}(\lambda + \mu)$$

Portanto

$$\operatorname{Ric} = \frac{1}{2} \begin{pmatrix} \mu + \nu & 0 & 0 \\ 0 & \lambda + \nu & 0 \\ 0 & 0 & \lambda + \mu \end{pmatrix}$$

donde vem também

$$Scal = tr(Ric) = \lambda + \mu + \nu$$

Pinçamento dos auto-valores

Controle em dimensão 3

Para quaisquer constantes $0 < \beta < B < \infty$ constantes tais que

$$\beta g(0) \le \operatorname{Ric}_{g(0)} \le Bg(0)$$

existem constantes $A=A(\beta,B)>0$ e $\theta\in\left(\frac{1}{2},1\right)$ tal que

$$\lambda - \nu \le A(\lambda + \mu)^{\theta}$$

e tal desigualdade é preservada pelo fluxo de Ricci.

"Arredondamento" em dimensão 3

Controle da curvatura

Para quaisquer constantes $0 < \beta < B < \infty$ tais que

$$\beta g_0 \le \operatorname{Ric}_{g(0)} \le B g_0$$

e para qualquer $\varepsilon > 0$, existe uma constante $C_{\varepsilon} = C(\beta, B, \varepsilon)$ tal que

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g \right\|_{g(t)} \le \varepsilon \cdot \operatorname{Scal}_{g(t)} + C_{\varepsilon}$$

A primeira classificação em dimensão 3

Seja (\mathcal{M}^3, g_0) uma 3-variedade Riemanniana com curvatura de Ricci positiva. Então o fluxo de Ricci g(t) de \mathcal{M} definido num intervalo maximal [0, T) se arredonda no seguinte sentido: existem

 \bullet uma métrica g_{∞} em ${\mathcal M}$ de curvatura seccional constante e positiva,

tal que ao definirmos novos fluxos de Ricci $g_i(t)$ para $t \leq 0$ por

$$g_i(t) = \|\operatorname{Rm}\|(p_i, t_i) \cdot g\left(t_i + \frac{t}{\|\operatorname{Rm}\|(p_i, t_i)}\right)$$

então

$$(\mathcal{M}, g_i(t), p_i) \to (\mathcal{M}, (c-t)g_{\infty}, p_{\infty})$$

A primeira classificação em dimensão 3

Seja (\mathcal{M}^3, g_0) uma 3-variedade Riemanniana com curvatura de Ricci positiva. Então o fluxo de Ricci g(t) de \mathcal{M} definido num intervalo maximal [0,T) se arredonda no seguinte sentido: existem

- ullet uma métrica g_{∞} em \mathcal{M} de curvatura seccional constante e positiva,
- uma sequência $\{t_i\}_{i\in\mathbb{N}}$ tal que $t_i \uparrow T$,

tal que ao definirmos novos fluxos de Ricci $g_i(t)$ para $t \leq 0$ por

$$g_i(t) = \|\text{Rm}\|(p_i, t_i) \cdot g\left(t_i + \frac{t}{\|\text{Rm}\|(p_i, t_i)}\right)$$

então

$$(\mathcal{M}, g_i(t), p_i) \to (\mathcal{M}, (c-t)g_{\infty}, p_{\infty})$$

A primeira classificação em dimensão 3

Seja (\mathcal{M}^3, g_0) uma 3-variedade Riemanniana com curvatura de Ricci positiva. Então o fluxo de Ricci g(t) de \mathcal{M} definido num intervalo maximal [0,T) se arredonda no seguinte sentido: existem

- ullet uma métrica g_{∞} em \mathcal{M} de curvatura seccional constante e positiva,
- uma sequência $\{t_i\}_{i\in\mathbb{N}}$ tal que $t_i \uparrow T$,
- um ponto $p_{\infty} \in \mathcal{M}$ e uma sequência $\{p_i\}_{i \in \mathbb{N}} \subset \mathcal{M}$,

tal que ao definirmos novos fluxos de Ricci $g_i(t)$ para $t \leq 0$ por

$$g_i(t) = \|\text{Rm}\|(p_i, t_i) \cdot g\left(t_i + \frac{t}{\|\text{Rm}\|(p_i, t_i)}\right)$$

então

$$(\mathcal{M}, g_i(t), p_i) \to (\mathcal{M}, (c-t)g_{\infty}, p_{\infty})$$

• Usando os teoremas vistos anteriormente, obtemos uma constante b>0, sequências $\{p_i\}_{i\in\mathbb{N}}\subset\mathcal{M},\ \{t_i\uparrow T\}_{i\in\mathbb{N}},\ \text{fluxos por mudanças}$ de escalas $g_i(t)$ e (para $t\in(-\infty,b)$) um limite do fluxo de Ricci $(\mathcal{N},\hat{g}(t))$ com um ponto base $p_\infty\in\mathcal{N}$. Como também já vimos, para quaisquer $t\in[0,T)$ e $\varepsilon>0$, vale

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g \right\|_{g(t)} \le \varepsilon \cdot \operatorname{Scal}_{g(t)} + C_{\varepsilon}$$

• Usando os teoremas vistos anteriormente, obtemos uma constante b>0, sequências $\{p_i\}_{i\in\mathbb{N}}\subset\mathcal{M},\ \{t_i\uparrow T\}_{i\in\mathbb{N}}$, fluxos por mudanças de escalas $g_i(t)$ e (para $t\in(-\infty,b)$) um limite do fluxo de Ricci $(\mathcal{N},\hat{g}(t))$ com um ponto base $p_\infty\in\mathcal{N}$. Como também já vimos, para quaisquer $t\in[0,T)$ e $\varepsilon>0$, vale

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g \right\|_{g(t)} \le \varepsilon \cdot \operatorname{Scal}_{g(t)} + C_{\varepsilon}$$

• Uma vez que $g_i(t)$ difere de g(t) somente por uma translação temporal e uma mudança de escala, então com respeito a $g_i(0)$ vale que

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g_i(0) \right\|_{g_i(0)} \le \varepsilon \cdot \operatorname{Scal}_{g_i(0)} + \frac{C_{\varepsilon}}{\|\operatorname{Rm}\|(p_i, t_i)}$$

• Fazendo $i \to \infty$, obtemos

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g_i(0) \right\|_{\hat{g}(0)} \le \varepsilon \cdot \operatorname{Scal}_{\hat{g}(0)}$$

• Fazendo $i \to \infty$, obtemos

$$\left\| \operatorname{Ric} - \frac{1}{3} \operatorname{Scal} \cdot g_i(0) \right\|_{\hat{g}(0)} \le \varepsilon \cdot \operatorname{Scal}_{\hat{g}(0)}$$

• Segue da arbitrariedade de $\varepsilon > 0$ que

$$\operatorname{Ric}_{\hat{g}(0)} - \frac{1}{3} \operatorname{Scal}_{\hat{g}(0)} \cdot \hat{g}(0) \equiv 0$$

e portanto $(\mathcal{N}, \hat{g}(0))$ é uma variedade de Einstein, de forma que $\mathrm{Scal}_{\hat{g}(0)}$ é constante.

• Como dim $(\mathcal{M}) = 3$, segue que $\hat{g}(0)$ tem curvatura seccional constante.

- Como dim $(\mathcal{M}) = 3$, segue que $\hat{g}(0)$ tem curvatura seccional constante.
- Uma vez que $\operatorname{Scal}_{g(t)} > 0$, segue que $\operatorname{Scal}_{g_i(t)} > 0$ e portanto $\operatorname{Scal}_{\hat{g}(0)} \geq 0$.

- Como dim $(\mathcal{M}) = 3$, segue que $\hat{g}(0)$ tem curvatura seccional constante.
- Uma vez que $\operatorname{Scal}_{g(t)} > 0$, segue que $\operatorname{Scal}_{g_i(t)} > 0$ e portanto $\operatorname{Scal}_{\hat{g}(0)} \geq 0$.
- Vemos então que o valor constante que a curvatura seccional de $\hat{g}(0)$ assume é não-negativo. Mas lembrando que $\|\operatorname{Rm}(\hat{g}(0))\|(p_{\infty})=1$, concluímos que na verdade $\hat{g}(0)$ é uma métrica de curvatura seccional estritamente positiva e constante.

• Pelo teorema de Bonnet-Myers, segue que \mathcal{N} é uma variedade fechada. Como já vimos anteriormente, \mathcal{N} é então difeomorfa a \mathcal{M} .

- Pelo teorema de Bonnet-Myers, segue que \mathcal{N} é uma variedade fechada. Como já vimos anteriormente, \mathcal{N} é então difeomorfa a \mathcal{M} .
- Pela unicidade do fluxo, vemos que $\hat{g}(t) = (c-t)g_{\infty}$, onde g_{∞} é um múltiplo positivo de $\hat{g}(0)$ e c > 0 é uma constante. Portanto

$$(\mathcal{M}, g_i(t), p_i) \to (\mathcal{M}, (c-t)g_{\infty}, p_{\infty})$$

como queríamos mostrar.

• Qualquer tensor P de curvatura de tipo (0,4) determina uma forma bilinear

$$\widetilde{P}: \Lambda^2(\mathcal{M}) \times \Lambda^2(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$

ao exigir que localmente $\widetilde{P}\left(\mathbf{e}^{i} \wedge \mathbf{e}^{j}, \mathbf{e}^{k} \wedge \mathbf{e}^{\ell}\right) = P_{ij\ell k}$.

• Qualquer tensor P de curvatura de tipo (0,4) determina uma forma bilinear

$$\widetilde{P}: \Lambda^2(\mathcal{M}) \times \Lambda^2(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$

ao exigir que localmente $\widetilde{P}\left(\mathbf{e}^{i}\wedge\mathbf{e}^{j},\mathbf{e}^{k}\wedge\mathbf{e}^{\ell}\right)=P_{ij\ell k}.$

• Usando a multi-linearidade, podemos determinar \widetilde{P} em todo $\Lambda^2(\mathcal{M}) \times \Lambda^2(\mathcal{M})$ usando tal relação

• Qualquer tensor P de curvatura de tipo (0,4) determina uma forma bilinear

$$\widetilde{P}:\Lambda^2(\mathcal{M})\times\Lambda^2(\mathcal{M})\to\mathcal{C}^\infty(\mathcal{M})$$

ao exigir que localmente $\widetilde{P}\left(\mathbf{e}^{i}\wedge\mathbf{e}^{j},\mathbf{e}^{k}\wedge\mathbf{e}^{\ell}\right)=P_{ij\ell k}.$

- Usando a multi-linearidade, podemos determinar \widetilde{P} em todo $\Lambda^2(\mathcal{M}) \times \Lambda^2(\mathcal{M})$ usando tal relação
- Equivalentemente, podemos exigir que para quaisquer $x, y, v, w \in T_p \mathcal{M}$ valha $\tilde{P}(x \wedge y, v \wedge w) = P(x, y, w, v)$, com $p \in \mathcal{M}$ arbitrário).

• Equivalentemente, a relação:

$$g(\widehat{P}(x \wedge y), v \wedge w) = \widetilde{P}(x \wedge y, v \wedge w) \ \forall x, y, v, w \in T_p \mathcal{M}, \ \forall p \in \mathcal{M}$$

determina também um operador $\widehat{P}: \Lambda^2(\mathcal{M}) \to \Lambda^2(\mathcal{M})$. É simples verificar que \widehat{P} está bem definido (ou seja, $P(\omega) \in \Lambda^2(\mathcal{M})$ para cada $\omega \in \Lambda^2(\mathcal{M})$).

Decomposição pela estrela de Hodge

Seja (\mathcal{M}^4,g) uma variedade Riemanniana orientada de dimensão 4. Então o fibrado $\Lambda^2(\mathcal{M})$ das 2-formas em \mathcal{M} admite a seguinte decomposição de autofibrados \star -invariantes:

$$\Lambda^2(\mathcal{M}) = \Lambda^2_+(\mathcal{M}) \oplus \Lambda^2_-(\mathcal{M})$$

onde
$$\Lambda^2_{\pm}(\mathcal{M}) = \{\omega \in \Lambda^2(\mathcal{M}) \mid \star \omega = \pm \omega\}.$$

 De fato, em dimensão 4 vale *² = * ∘ * = Id. Portanto um autovalor de * é necessariamente ±1. Note também que dada ω ∈ Λ²(M), definindo as 2-formas:

$$\omega^+ = \frac{1}{2}(\omega + \star \omega) \in \Lambda^2_+(\mathcal{M})$$

e

$$\omega^{-} = \frac{1}{2}(\omega - \star \omega) \in \Lambda^{2}_{-}(\mathcal{M})$$

Temos $\omega = \omega^+ + \omega^-$. Finalmente, é óbvio que $\Lambda^2_+(\mathcal{M}) \cap \Lambda^2_-(\mathcal{M}) = \{0\}$, donde segue o resultado desejado.

 De fato, em dimensão 4 vale *² = * ∘ * = Id. Portanto um autovalor de * é necessariamente ±1. Note também que dada ω ∈ Λ²(M), definindo as 2-formas:

$$\omega^+ = \frac{1}{2}(\omega + \star \omega) \in \Lambda^2_+(\mathcal{M})$$

е

$$\omega^{-} = \frac{1}{2}(\omega - \star \omega) \in \Lambda^{2}_{-}(\mathcal{M})$$

Temos $\omega = \omega^+ + \omega^-$. Finalmente, é óbvio que $\Lambda^2_+(\mathcal{M}) \cap \Lambda^2_-(\mathcal{M}) = \{0\}$, donde segue o resultado desejado.

• Elementos de $\Lambda^2_+(\mathcal{M})$ são chamados de auto-duais, enquanto que elementos de $\Lambda^2_-(\mathcal{M})$ são chamados de anti-auto-duais.

Decomposição de Rm

A decomposição em blocos correspondente à decomposição de $\Lambda^2(\mathcal{M})$ via a estrela de Hodge \star do operador de curvatura é dada por

$$\operatorname{Rm} = \left(\begin{array}{c|c} \left(\mathcal{W}^{+} + \frac{\mathcal{S}}{12} \right) \Big|_{\Lambda_{+}^{2}(\mathcal{M})} & \mathcal{E}|_{\Lambda_{-}^{2}(\mathcal{M})} \\ \hline \\ \mathcal{E}|_{\Lambda_{+}^{2}(\mathcal{M})} & \left(\mathcal{W}^{-} + \frac{\mathcal{S}}{12} \right) \Big|_{\Lambda_{-}^{2}(\mathcal{M})} \end{array} \right)$$

• Após mudanças de escalas apropriadas, a mesma estratégia utilizada em dimensão 3 pode ser usada para mostrar que uma 4-variedade fechada \mathcal{M}^4 admite uma métrica g_{∞} cujo operador de curvatura é dado por

$$Rm = \begin{pmatrix} 2 \cdot Id & 0 \\ 0 & 2 \cdot Id \end{pmatrix}$$

Em particular, Rm é um múltiplo de $g \otimes g$ e portanto \mathcal{M}^4 tem curvatura seccional constante. Em dimensão par as únicas tais variedades são esferas e espaços projetivos.

Sonhos mais altos

• Hamilton conjecturou que variedades fechadas de qualquer dimensão com operador de curvatura positivo são formas espaciais. Em [6], Bohm e Wiliking confirmaram tal conjectura.

Sonhos mais altos

- Hamilton conjecturou que variedades fechadas de qualquer dimensão com operador de curvatura positivo são formas espaciais. Em [6], Bohm e Wiliking confirmaram tal conjectura.
- Em 1926, Hopf propôs o seguinte problema:

Em 2007, Simon Brendle e Richard Schoen usaram o fluxo de Ricci para provar que sim.

Sonhos mais altos

- Hamilton conjecturou que variedades fechadas de qualquer dimensão com operador de curvatura positivo são formas espaciais. Em [6], Bohm e Wiliking confirmaram tal conjectura.
- Em 1926, Hopf propôs o seguinte problema:

Teorema da esfera diferenciável

É verdade que toda variedade Riemanniana com curvaturas seccionais contidas no intervalo $\left(\frac{1}{4},1\right]$ é difeomorfa a uma esfera?

Em 2007, Simon Brendle e Richard Schoen usaram o fluxo de Ricci para provar que sim.

[1] mathoverflow

Classification of surfaces and the TOP, DIFF and PL categories for manifolds

[1] mathoverflow

Classification of surfaces and the TOP, DIFF and PL categories for manifolds

[3] B. Chow et al

Hamilton's Ricci Flow

[1] mathoverflow

Classification of surfaces and the TOP, DIFF and PL categories for manifolds

[3] B. Chow et al Hamilton's Ricci Flow

[4] John W. Morgan

Recent Progress on the Poincaré Conjecture and the Classification of 3-Manifolds

[1] mathoverflow

Classification of surfaces and the TOP, DIFF and PL categories for manifolds

[3] B. Chow et al Hamilton's Ricci Flow

[4] John W. Morgan

Recent Progress on the Poincaré Conjecture and the Classification of 3-Manifolds

[5] Chen, Xiuxiong; Lu, Peng; Tian, Gang. A note on uniformization of Riemann surfaces by Ricci flow. *Proc. Amer. Math. Soc.* **134** (2006), no. 11, 3391–3393. MR2231924

[1] mathoverflow

Classification of surfaces and the TOP, DIFF and PL categories for manifolds

[3] B. Chow et al Hamilton's Ricci Flow

[4] John W. Morgan Recent Progress on the Poincaré Conjecture and the Classification of 3-Manifolds

[5] Chen, Xiuxiong; Lu, Peng; Tian, Gang. A note on uniformization of Riemann surfaces by Ricci flow. *Proc. Amer. Math. Soc.* **134** (2006), no. 11, 3391–3393. MR2231924

[6] Böhm, Christoph; Wilking, Burkhard. Manifolds with positive curvature operators are space forms. Ann. of Math. (2) 167 (2008), no. 3, 1079–1097. MR2415394

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series **325** C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series **325** C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[8] Huai-Dong Cao, Xi-Ping Zhu. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics, 10(2) 165-492 Junho de 2006.

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series **325** C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[8] Huai-Dong Cao, Xi-Ping Zhu. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics, 10(2) 165-492 Junho de 2006.

[9] Bennet Chow, Dan. Knopf. The Ricci Flow: An Introduction. American Mathematical Society, 2004.

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series 325 C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[8] Huai-Dong Cao, Xi-Ping Zhu. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics, 10(2) 165-492 Junho de 2006.

[9] Bennet Chow, Dan. Knopf. *The Ricci Flow: An Introduction*. American Mathematical Society, 2004.

[10] R. Hamilton. *Three-Manifolds with Positive Ricci Curvature*. Journal of Differential Geometry 17 (1982), pp. 255–306.

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series 325 C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[8] Huai-Dong Cao, Xi-Ping Zhu. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics, 10(2) 165-492 Junho de 2006.

[9] Bennet Chow, Dan. Knopf. *The Ricci Flow: An Introduction*. American Mathematical Society, 2004.

[10] R. Hamilton. *Three-Manifolds with Positive Ricci Curvature*. Journal of Differential Geometry 17 (1982), pp. 255–306.

[11] R. Hamilton. *Four-Manifolds with Positive Curvature Operator*. Journal of Differential Geometry 24 (1986), pp. 153–179

[7] P. M. Topping, Lectures on the Ricci flow. L.M.S. Lecture note series 325 C.U.P. (2006) http://www.warwick.ac.uk/ maseq/RFnotes.html

[8] Huai-Dong Cao, Xi-Ping Zhu. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics, 10(2) 165-492 Junho de 2006.

[9] Bennet Chow, Dan. Knopf. *The Ricci Flow: An Introduction*. American Mathematical Society, 2004.

[10] R. Hamilton. *Three-Manifolds with Positive Ricci Curvature*. Journal of Differential Geometry 17 (1982), pp. 255–306.

[11] R. Hamilton. *Four-Manifolds with Positive Curvature Operator*. Journal of Differential Geometry 24 (1986), pp. 153–179

[12] Jeff. Weeks, The shape of space.