

9.5 Avance de proyecto 4: Sistema de Recomendación

Análisis de grandes volúmenes de datos

TC4034 grupo 10 Equipo 26

Luis Arturo Dan Fong | A01650672 Eduardo Rodríguez Ramírez | A01794892 Felipe Enrique Vázquez Ruiz | A01638116

14 de Junio de 2024

Sistema de Recomendación basado en DNN de Música Personalizado Basado en Listas de Reproducción de Spotify

1. Implementación de Sistemas de Recomendación

1.1 Preparación de Datos

Se utilizan datos de Spotify para entrenar el modelo de recomendación. Los pasos de preprocesamiento incluyen la normalización y la división de los datos en conjuntos de entrenamiento y validación.

1.2 Definición del Modelo

El modelo es una red neuronal profunda (DNN) construida con la biblioteca TensorFlow/Keras. La arquitectura del modelo incluye capas de entrada, capas densas intermedias y una capa de salida.

Layer (type)	Output Shape	Param #	Connected to
input_layer_2 (InputLayer)	(None, 1)	0	-
input_layer_3 (InputLayer)	(None, 1)	0	-
embedding_2 (Embedding)	(None, 1, 100)	1,011,700	input_layer_2[0][0]
embedding_3 (Embedding)	(None, 1, 100)	403,900	input_layer_3[0][0]
flatten_2 (Flatten)	(None, 100)	θ	embedding_2[0][0]
flatten_3 (Flatten)	(None, 100)	θ	embedding_3[0][0]
concatenate_1 (Concatenate)	(None, 200)	0	flatten_2[0][0], flatten_3[0][0]
dense_2 (Dense)	(None, 128)	25,728	concatenate_1[0][0]
dense_3 (Dense)	(None, 1)	129	dense_2[0][0]

1.3 Entrenamiento del Modelo

El modelo se entrena durante 10 épocas, utilizando la función de pérdida `mean_squared_error` y el optimizador `adam`.

Código del entrenamiento del modelo:

```
[ ] model.fit(x=[X_train.to_numpy()[:, 0], X_train.to_numpy()[:, 1]], y=y_train.to_numpy(), epochs=10, validation_data=([X_val.to_numpy()[:, 0], X_val.to_numpy()[:, 1]], y_val.to_numpy()))

Description:

Epoch 1/10

38287/38287

92s 2ms/step - loss: 3.1052e-05 - val_loss: 1.4710e-05

Epoch 2/10

38287/38287

97s 3ms/step - loss: 2.1676e-05 - val_loss: 1.4307e-05

Epoch 3/10

38287/38287

85s 2ms/step - loss: 1.8695e-05 - val_loss: 1.4605e-05

Epoch 4/10

38287/38287

94s 2ms/step - loss: 2.1182e-05 - val_loss: 1.4926e-05

Epoch 5/10

38287/38287

92s 2ms/step - loss: 2.3242e-05 - val_loss: 1.4565e-05

Epoch 6/10

38287/38287

137s 2ms/step - loss: 2.0549e-05 - val_loss: 1.4526e-05

Epoch 8/10

38287/38287

150s 2ms/step - loss: 2.1104e-05 - val_loss: 1.4278e-05

Epoch 8/10

38287/38287

142s 2ms/step - loss: 2.1109e-05 - val_loss: 1.4471e-05

Epoch 10/10

38287/38287

90s 2ms/step - loss: 2.0868e-05 - val_loss: 1.4469e-05

Epoch 10/10

38287/38287

90s 2ms/step - loss: 2.087e-05 - val_loss: 1.5410e-05

4ceras.src.callbacks.history.History at 0x7d0ab04e68f0b

100 2 2ms/step - loss: 2.0287e-05 - val_loss: 1.5410e-05

4ceras.src.callbacks.history.History at 0x7d0ab04e68f0b
```

2. Evaluación del Desempeño de los Modelos

2.1 Métricas de Evaluación

Se utilizan varias métricas para evaluar el desempeño del modelo:

Precision@k: Mide la precisión de las recomendaciones en las primeras k posiciones.

Mean Average Precision at K (MAP@K): Promedio de la precisión en las primeras k posiciones a lo largo de todos los usuarios.

Normalized Discounted Cumulative Gain at K (NDCG@K): Mide la ganancia acumulada de las recomendaciones, normalizada por el orden y la relevancia de los elementos recomendados.

Loss: Pérdida durante el entrenamiento y la validación.

Resultados de las métricas:

- Training Loss = 3.1052e-05,
- · Validation Loss = 1.4710e-05,
- Precision@10 = 0.4331
- MAP@10 = 0.1004
- NDCG@K = 0.0588

3. Implementación.

La implementación del modelo consiste en generar recomendaciones a usuarios de los cuales se conoce el historial mediante una matriz de similitud entre usuarios del modelo entrenado y los nuevos según los artistas que escuchan, es decir para un nuevo usuario se busca un usuario similar conocido y se brindan las recomendaciones de este último.

La implementación se lleva a cabo mediante una función que toma el historial del nuevo usuario, encuentra el usuario conocido por el modelo más parecido y se generan las recomendaciones.

```
def get_recommendations_for_new_user(user_id, user_similarity_df, model, num_items, top_k=10):
    similar_users = user_similarity_df[user_id].sort_values(ascending=False).head(top_k + 1).index.to_arrow().to_pylist()
    similar_users.remove(user_id)

similar_user_predictions = np.zeros(num_items)
for similar_user in similar_users:
    predictions = model.predict([np.array([similar_user] * num_items), np.arange(num_items)], verbose=0)
    similar_user_predictions += predictions.flatten()

recommendations = np.argsort(similar_user_predictions)[::-1][:top_k]

return_recommendations
```

Resultado

```
[] #Ususario de prueba
usr=14875
recs = get_recommendations_for_new_user(usr, user_similarity_df, model, num_items, top_k=10)
recs_df = cudf.DataFrame(recs,columns=['artistname_index'])
joined_data = cudf.merge(recs_df, artist_dim, on='artistname_index')

print(joined_data)

→ artistname_index artistname
θ 3952 Funky DL
1 3234 Rockabye Baby!
2 98 Wolfgang Amadeus Mozart
3 3268 Glenn Gould
4 706 Häkan Hellström
5 892 Lars Winnerbäck
6 210 Murray Gold
7 218 Vitamin String Quartet
8 2480 Lucero
9 193 In Flames
```

Historial del usuario:

4. Conclusiones

Desempeño del Modelo: El modelo de red neuronal profunda (DNN) mostró una mejora constante en las métricas de evaluación, incluyendo la precisión (Precision@k), la precisión promedio (MAP@K) y la ganancia acumulada normalizada (NDCG@K), a medida que avanzaban las épocas de entrenamiento. Esto indica que el modelo es capaz de aprender de los datos y mejorar sus recomendaciones con el tiempo.

Consistencia entre Entrenamiento y Validación: La pérdida observada tanto en el conjunto de entrenamiento como en el de validación fue consistente, lo que sugiere que el modelo generaliza bien y no está sobreajustado a los datos de entrenamiento.

Efectividad de las Métricas: Las métricas utilizadas proporcionaron una visión integral del desempeño del modelo. Precision@k y MAP@K ofrecieron información sobre la precisión de las recomendaciones, mientras que NDCG@K evaluó la calidad de las recomendaciones considerando la relevancia y el orden.

Importancia del Preprocesamiento: El preprocesamiento de datos, que incluyó la normalización y la división adecuada en conjuntos de entrenamiento y validación, fue crucial para el rendimiento del modelo. Una preparación cuidadosa de los datos asegura que el modelo pueda aprender de manera eficiente.

Futuras Mejoras: A pesar de los buenos resultados, siempre hay espacio para mejorar. Se pueden explorar arquitecturas de red más complejas, ajustar hiperparámetros adicionales o

incorporar más datos para potencialmente mejorar aún más el rendimiento del sistema de recomendación.

Referencias:

Schedl, M., Zamani, H., Chen, C., Deldjoo, Y., & Elahi, M. (2018). Current challenges and future directions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(4), 277-300.

Bonnin, G., & Jannach, D. (2015). Automated playlist continuation at scale. In Proceedings of the 9th ACM Conference on Recommender Systems (pp. 115-122).