Noise Analysis Optomechanical Cavity

Leon Oleschko 17.01.2025

> Modeling Quantum Hardware: open dynamics and control Universität Konstanz

Problem Statement

Hamiltonian

Optical Cavity \hat{a} , $\omega_o(\hat{x}_{\mathsf{mech}}) = \omega_o + \frac{g}{\omega_o}\hat{x}_{\mathsf{mech}}$; mechanical oscillations \hat{b} , ω_m ; coupling g; Drive E, ω_L

$$H = \underbrace{\omega_o \ a^\dagger a}_{\text{Cavity}} + \underbrace{\omega_m \ b^\dagger b}_{\text{Mechanical}} - \underbrace{g \ a^\dagger a \ (b + b^\dagger)}_{\text{Interaction}} + \underbrace{E(a e^{i\omega_L t} + a^\dagger e^{-i\omega_L t})}_{\text{Drive}}$$

Rotating Wave Approximation at ω_L with $\Delta = \omega_o - \omega_L$, $a \to ae^{i\omega_L t}$:

$$H_{\text{RWA}} = \Delta \ a^{\dagger} a + \omega_m \ b^{\dagger} b - g \ a^{\dagger} a \left(b^{\dagger} + b \right) + E(a + a^{\dagger})$$

 $\hbar = 1$

Hamiltonian Linearization (Currently not used)

$$H_{\text{RWA}} = \Delta a^{\dagger} a + \omega_m b^{\dagger} b - g a^{\dagger} a (b^{\dagger} + b) + E(a + a^{\dagger})$$

Linearize $a = \alpha + \delta a$, $b = \beta + \delta b$; with α, β steady state.

$$H_{\text{Interaction}} = -g \ a^{\dagger} a \ (b^{\dagger} + b)$$

$$\approx -\underbrace{g|\alpha|}_{G} \left(\delta a + \delta a^{\dagger} + \mathcal{O}(a^{2} + \delta a \delta a^{\dagger})\right) \left(\delta b + \delta b^{\dagger} + 2\beta\right)$$

$$a + a^{\dagger} = |\alpha| + \delta a + \delta a^{\dagger} \sim \delta a + \delta a^{\dagger}$$

Therefore for small *G*:

$$H_{\text{lin}} = \Delta \, \delta a^{\dagger} \delta a + \omega_m \delta b^{\dagger} \delta b - G(\delta a + \delta a^{\dagger})(\delta b + \delta b^{\dagger}) + E(a + a^{\dagger})$$
$$\sim \frac{\Delta}{2} (\hat{X}^2 + \hat{Y}^2) + \frac{\omega}{2} (\hat{Q}^2 + \hat{P}^2) - G\hat{X}\hat{Q} + E\hat{X}$$

Linearization in Quadratures

$$X = \delta a + \delta a^{\dagger} \quad Q = \delta b + \delta b^{\dagger}$$

$$Y = i(\delta a^{\dagger} - \delta a) \quad P = i(\delta b^{\dagger} - \delta b)$$

$$n = \delta a^{\dagger} a \quad m = \delta b^{\dagger} b$$

$$H_{\text{RWA}} = \Delta n + \omega m - g n Q + E X$$

$$H_{\text{lin}} = \Delta n + \omega m - G X Q + E X$$

The drive EX is not getting lost in linearization. There is no point in the linearization if solved numerically.

Do I understand it correctly?

Dissipation

As Lindblad jump operator L with a coupling to the n_T, m_T thermal mode with coupling strengths κ, γ

Optical:

$$L = \sqrt{\kappa(n_T + 1)} \, \delta a + \sqrt{\kappa n_T} \, \delta a^{\dagger}$$

Mechanical:

$$+ \sqrt{\gamma(m_T+1)} \; \delta b + \sqrt{\gamma m_T} \; \delta b^{\dagger}$$

Continous measurement

Lindblad Master Equation:

$$\dot{\rho} = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger}J, \rho\}$$

Stochastic Master Equation:

$$\dot{\rho} = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger}J, \rho\} + \left(C\rho + \rho C^{\dagger} - \text{Tr}(C\rho + \rho C^{\dagger})\right) \xi(t)$$

Let's measure the Quadrature $C = \eta \sqrt{\kappa} (\delta a + \delta a^{\dagger})$ Or the non hermitian $C = \eta \sqrt{\kappa} \delta a$

QuantumOptics.jl, Krämer et al. 2024 (Stochastic Master equation, Quantum Zeno Effect)
"A Straightforward Introduction to Continuous Quantum Measurement", Jacobs et al. 2006

Harmonic Osciallator

For stability $dt \ll 1/\omega$, therefore much longer compute time (2s).

Implementation

truncated Fock Basis: $F_{\text{optical}} \otimes F_{\text{mechanical}}$

definition of H, J with $\delta a \otimes 1$

$$\psi(0) = |0\rangle \otimes |0\rangle$$

Time Evolution using the Stochastic Master Equation

Power Dependence ~ G

Took 3h of compute time to be stable!

Expectation

"Nanomechanical motion measured with an imprecision below that at the standard quantum limit", Teufel et al. 2009 (Fig. 1)

 $P/P^{SQL} = \{0.1, 0.4, 1, 4, 10\}$

Quantum Optomechanics, Bowen et al. 2015 (Fig. 3.5)

Analytical Solution

$$\overline{S}_{\mathsf{det}}(\omega) = \frac{1}{8\eta\Gamma|C_{\mathsf{eff}}|} + 2\Gamma|\chi(\omega)|^2|C_{\mathsf{eff}}|$$

$$C_{\text{eff}}(\omega) = \frac{4G^2}{\kappa\Gamma(1-2i\omega/\kappa)^2}$$
$$\chi(\omega) = \frac{\Omega}{\Omega^2 - \omega^2 - i\omega\gamma}$$

η: Detection efficiency Γ = γ: Damping of oscillator

$$\overline{S}_{\mbox{det}}(\omega) = \frac{\kappa\Gamma|1-2i\omega/\kappa|}{8\eta\Gamma 4g^2|\alpha|^2} + 2\Gamma\frac{\Omega^2}{|\Omega^2-\omega^2-i\omega\gamma|^2} \frac{4g^2|\alpha|^2}{\kappa\Gamma(1-2i\omega/\kappa)^2} \label{eq:detection}$$

Quantum Optomechanics, Bowen et al. 2015 (eq. 3.51)

$$P/P^{SQL} = \{0.1, 0.4, 1, 4, 10\}$$

Quantum Optomechanics, Bowen et al. 2015 (Fig. 3.5)

Parameter Space

Parameter	Searched Values		
κ	0.1 1		
γ	0.1 1		
g	0.1 1		
n_T	$0.001 \dots 1$		
m_T	$0.001 \dots 1$		
Δ	$-\omega,\omega$		
C	$Q, \delta a$		
$S_{\scriptscriptstyle \square}$	Q, C		

With multiple compute hours per run this space is too large.

How to procede?

Pivot to Quantum Zeno Effect

Krämer et al., QuantumOptics.jl, Quantum Zeno Effect

Reduce the complexity?

Carmichael, An open systems approach to quantum optics: Lectures presented at the Université Libre de Bruxelles, 2009

Krämer et al., QuantumOptics.jl, Stochastic Schrödinger equation

Go into depth with the SME

Adding Poisson Process to detection

Jacobs and Steck, "A Straightforward Introduction to Continuous Quantum Measurement", 10.2