

★ Título: Análisis del Flujo de Datos y Protocolos Activos en una Comunicación Web Segura

© Objetivo del ejercicio:

Simular, observar y analizar la interacción de varios protocolos del modelo TCP/IP durante una sesión de navegación web, utilizando herramientas de inspección de red como Wireshark o el navegador.

📝 Escenario:

Trabajas como técnico de soporte en una pequeña empresa. El gerente solicita que verifiques qué protocolos se activan al acceder al portal interno seguro de la empresa:

https://intranet.miempresa.local

Debes simular esta navegación y **analizar paso a paso qué protocolos participan** desde que se ingresa la URL hasta que la página carga completamente.

Tu tarea:

1. Analiza la ruta de datos en capas TCP/IP.

Completa el siguiente cuadro indicando qué protocolo participa en cada capa y qué rol cumple:

Capa TCP/IP	Protocolo(s)	Función principal
	usado(s)	

Aplicación

Transporte

Internet

2. Realiza una captura de red local (opcional):

- Usa Wireshark o el inspector de red del navegador (F12 > Red/Network)
- Accede a https://intranet.miempresa.local
- Filtra los paquetes por protocolo (ej. TCP, DNS, TLS)
- Toma nota de al menos 3 paquetes y su propósito

3. Responde las siguientes preguntas breves:

- ¿Qué protocolo tradujo el nombre de dominio en una IP?
- ¿Qué protocolo garantizó que los datos llegaron correctamente?
- ¿Qué protocolo cifró la conexión para que fuera segura?
- ¿Cuál fue el protocolo responsable del direccionamiento IP?

4. Reflexiona:

📌 ¿Por qué es importante que protocolos como HTTPS, TCP y DNS trabajen juntos?

🔽 Resultado esperado:

- Reconocimiento de protocolos: HTTPS, TCP, IP, DNS, Ethernet
- Correcta asociación con las capas del modelo TCP/IP
- Comprensión básica de cómo se encapsulan y desencapsulan los datos
- Identificación de herramientas básicas de análisis de red

Entrega sugerida:

- Cuadro de capas y protocolos completado
- Capturas de red (si se usó Wireshark o navegador)
- Respuestas breves a las preguntas
- Conclusión personal/reflexiva (5 líneas aprox.)

💡 Herramientas recomendadas:

- **@ Wireshark** (captura real de tráfico)
- Firefox/Chrome DevTools
- Eisco Packet Tracer (en modo simulación) si no se permite usar redes reales

X Ejercicio Práctico – Solución

Análisis del Flujo de Datos y Protocolos Activos en una Comunicación Web Segura

© Objetivo

Simular y analizar los protocolos activos durante el acceso a un sitio web seguro dentro de una red local, identificando su relación con las capas del modelo TCP/IP y utilizando herramientas de análisis de red como Wireshark o las DevTools del navegador.

📝 Escenario

Durante una sesión de soporte, el gerente solicita un informe sobre los protocolos que se activan al visitar https://intranet.miempresa.local, un sitio interno de la empresa. El técnico debe inspeccionar el flujo de datos desde que se ingresa la URL hasta que la página carga completamente.

El Cuadro: Capas del Modelo TCP/IP y Protocolos Involucrados

Capa TCP/IP	Protocolo(s) usado(s)	Función principal
Aplicación	HTTPS, DNS	Permite la navegación web segura y la resolución de nombres de dominio a IP.
Transporte	TCP	Establece conexión confiable, garantiza la entrega de los datos y controla errores.
Internet	IP (IPv4/IPv6)	Direcciona y enruta los paquetes entre el cliente y el servidor web.
Enlace de Datos	Ethernet (o Wi-Fi)	Gestiona la transmisión física de los datos dentro de la red local.

📡 Captura de red (opcional)

Herramienta utilizada: DevTools de Chrome (F12 → Red) Sitio accedido: https://intranet.miempresa.local Protocolo observado en la columna "Protocol": HTTPS

Paquetes observados y su propósito:

- 1. **DNS:** Solicitud de resolución de intranet.miempresa.local → IP local
- 2. TCP SYN: Inicio de la conexión TCP con el servidor (puerto 443)
- 3. TLS Handshake: Establecimiento de la conexión segura entre cliente y servidor

(Opcional: insertar captura de pantalla del panel de red filtrado por "Protocol" o por "Name")

🧠 Preguntas clave

- ¿Qué protocolo tradujo el nombre de dominio en una IP? \rightarrow DNS
- ¿Qué protocolo garantizó que los datos llegaron correctamente? $\to \mathsf{TCP}$

- ¿Qué protocolo cifró la conexión para que fuera segura?
 → TLS (dentro de HTTPS)
- ¿Cuál fue el protocolo responsable del direccionamiento IP?
 → IP (Internet Protocol)

🤔 Reflexión final

📌 ¿Por qué es importante que protocolos como HTTPS, TCP y DNS trabajen juntos?

Porque forman una cadena de funciones que permite que la comunicación sea segura, confiable y funcional. Si alguno falla, el usuario no podrá acceder al sitio correctamente. DNS localiza el servidor, TCP garantiza la entrega y orden de los datos, y HTTPS protege la privacidad e integridad de la información. Su trabajo conjunto es esencial para cualquier transacción web segura.

Conclusión

Este ejercicio demuestra cómo múltiples protocolos interactúan en una simple acción como abrir una página web. El modelo TCP/IP permite entender esta interacción por capas, lo que resulta muy útil para análisis, solución de problemas y gestión de la seguridad en redes reales. Herramientas como Wireshark o las DevTools del navegador son clave para observar estos procesos en acción y verificar el buen funcionamiento de los servicios de red.

🧩 Documentación Técnica

Despliegue Local con Docker + Nginx + Dominio Personalizado

Objetivo

Permitir acceder a una aplicación web en entorno local con una URL personalizada como:

http://intranet.miempresa.local

Estructura del Proyecto

mi-proyecto/
docker-compose.ym
— Dockerfile
mginx.conf
— app/
ĺ └── index.html

* Archivos del Proyecto

1. docker-compose.yml

```
version: '3.8'
services:
 nginx:
  image: nginx
  ports:
   - "80:80"
  volumes:
   - ./nginx.conf:/etc/nginx/conf.d/default.conf
   - ./app:/usr/share/nginx/html:ro
  networks:
   - mi_red
 app:
  build: .
  networks:
   - mi_red
networks:
 mi_red:
  driver: bridge
```

2. Dockerfile

FROM nginx:alpine

Este archivo es mínimo, puedes extenderlo más adelante para backend reales (Flask, FastAPI, Node, etc.)

3. nginx.conf

```
server {
  listen 80;
  server_name intranet.miempresa.local;
  root /usr/share/nginx/html;
  index index.html;
  location / {
     try_files $uri $uri/ =404;
  }
}
```

4. app/index.html

```
<!DOCTYPE html>
<html lang="es">
<head>
 <meta charset="UTF-8">
 <title>Intranet de Mi Empresa</title>
</head>
<body>
 <h1>Bienvenido a la intranet de miempresa.local</h1>
</body>
</html>
```

Configuración del archivo hosts en Windows

Requiere permisos de administrador

Pasos:

- 1. Abre Bloc de notas como administrador:
 - Busca "Bloc de notas" en el menú inicio
 - Clic derecho → **Ejecutar como administrador**

2. En Bloc de notas:

- Archivo → Abrir
- o Ve a: C:\Windows\System32\drivers\etc
- Cambia filtro: "*.txt" a "Todos los archivos"
- Abre hosts

Agrega al final del archivo:

127.0.0.1 intranet.miempresa.local

- 3.
- 4. Guarda y cierra.

🚀 Ejecución del proyecto

Desde la raíz del proyecto:

docker-compose up --build

Acceso en navegador

Abre:

http://intranet.miempresa.local

Verificación rápida

Ping al dominio:

ping intranet.miempresa.local

Debe responder con: 127.0.0.1.

Resultado esperado

Visualizarás el contenido de index.html en tu navegador con la dirección:

http://intranet.miempresa.local

Notas adicionales

- Si usas WSL2 o una red específica, asegúrate de que Docker Desktop expone correctamente los puertos.
- Puedes agregar certificados TLS locales (HTTPS) con mkcert si deseas navegación segura.
- Este entorno es ideal para desarrollo de **intranets**, **sistemas internos**, y pruebas locales con dominios simulados.

📋 Instrumento de Evaluación – Ejercicio Práctico

Análisis del Flujo de Datos y Protocolos en una Comunicación Web Segura Puntaje total: 10 puntos

Nota mínima para aprobar: 6 puntos

Criterio Evaluado	
Cuadro de capas TCP/IP completo con protocolos y funciones correctamente asignados	3 pts
Respuestas correctas a las preguntas clave (DNS, TCP, TLS, IP)	2 pts
Captura de red (Wireshark o DevTools) con al menos 3 paquetes comentados (DNS, TCP, TLS) (opcional)	1 pt

Explicación reflexiva sobre la importancia del trabajo conjunto de los protocolos	2 pts
Informe claro, bien estructurado y con evidencias (cuadro, respuestas, capturas si aplican)	2 pts