IC260- Signals and Systems Tutorial-3

Date : 29/04/2013

Time : 02.00 pm to 02.50 pm

Max. marks : 20

Good Luck!!

Q.1 Consider the periodic signals $x_1(t)$, $x_2(t)$ & $x_3(t)$ (shown in Figure 1) and determine the followings:

Figure 1:

- (a) The Fourier series coefficients of the signal $x_1(t)$.
- (b) The relation between the Fourier series coefficients of $x_1(t)$ & $x_2(t)$.
- (c) The relation between the Fourier series coefficients of $x_1(t)$ & $x_3(t)$.

Marks: 6

- Q.2 Determine and sketch the sequence x[n] based on the following parameters:
 - (a) x[n] is periodic with period N = 6.
 - (b) $\sum_{n=0}^{5} x[n] = 2$.
 - (c) $\sum_{n=2}^{7} (-1)^n x[n] = 1$.
 - (d) x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

[Hint: Use Fourier series representation of discrete time sequence]

Marks: 4

Q.3 Suppose signal $x(t) = \sum_{k=-3}^{3} a_k e^{jk2\pi t}$ is given as input to a LTI system whose impulse response is $h(t) = e^{-t}u(t)$. Then how many harmonics will be presented in the response? Also calculate the strength of the harmonics. Given: a_0 = area under a unit impulse, $a_{-1} = a_1 = \frac{a_0}{4}$, $a_{-2} = a_2 = \frac{1}{2a_0}$ and $a_{-3} = a_3 = \frac{1}{a_0+2}$.

Marks: 4

Q.4 One LTI system is defined by the following difference equation:

$$y[n] - ay[n-1] = x[n].$$

Plot the frequency response (magnitude and phase) of the system for any negative value of a > -1 and any posistive value of a < 1. Also calculate the step response of the system.

Marks: 6