From applications viewpoint:

- 1) Moving camera, e.g. panorama
- 2) Moving objects in the scene
- 3) Changing the camera/modality (inter-modality), e.g. MR-CT
- 4) Changing the subject (inter-subject, inter patient), e.g. Atlas.
- 5) Changing the time of imaging, e.g. medical follow-ups every 6 months for tumor growth monitoring

When modality is not changed: intra-modality When subject is not changed: intra-subject

From Transformation viewpoint: Geometric transformations transformations تغی باسنت Rigid Nonrigid Linear Nonlinear Affine **Affine** Nonlinear Translation Rotation Rotation Scaling Rotation Scaling Scaling Translation Shear Shear Shear Similarity Translation Rotation Translation Rotation Scaling

از نقاط استیاره میلنیم

Feature-basedRegistration

ه ببه اس د و کمی

Tie points

Tie points found by user or automatically.

Tie points

Feature based registration

Tie points / contours

Optical / Physical markers
Fiducial markers

Anatomical landmarks

Similarity transform

$$p = [x \quad y]^T \qquad \qquad p' = [x' \quad y']^T$$

Similarity transform

$$p = [x \quad y]^T \qquad \qquad p' = [x' \quad y']^T$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
s \cos\theta & -s \sin\theta & t_x \\
s \sin\theta & s \cos\theta & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}$$

 $=\begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ by the first point of the second secon

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$p' = Ap$$

$$x'_{i} = a_{11}x_{i} + a_{12}y_{i} + a_{13}$$

 $y'_{i} = a_{21}x_{i} + a_{22}y_{i} + a_{23}$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n & x_n & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix} = \begin{bmatrix} x'_1 \\ \vdots \\ x'_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n & x_n & 1 \end{bmatrix} \begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} y'_1 \\ \vdots \\ y'_n \end{bmatrix}$$

Point set registration

الولعداد سادله ماسعن زياد ساري

Affine transform

$$M\alpha = \beta$$

$$\min_{\bowtie} ||M\alpha - \beta||^2$$

$$M^T M \alpha = M^T \beta$$

$$\alpha = (M^T M)^{-1} M^T \beta$$

$$\downarrow$$
Columns linearly independent

$$(M\alpha - \beta)^T (M\alpha - \beta) = (\alpha^T M^T - \beta^T)(M\alpha - \beta)$$

$$= \alpha^T M^T M \alpha - \alpha^T M^T \beta - \beta^T M \alpha + \beta^T \beta$$

$$= \alpha^T M^T M \alpha - 2\alpha^T M^T \beta + \beta^T \beta$$

$$\frac{\partial}{\partial \alpha} = M^T M \alpha - M^T \beta = 0 \Longrightarrow \alpha = (M^T M)^{-1} M^T \beta$$

Landmark

Leon d'ingri

Intensity-based Registration

از بین های سدت استاده ی نیم

Intensity-based registration

Transformation

Tie points in the image

Tie points after geometric distortion

Distorted using nearest neighbor interpolation

Restored

Distorted using Bilinear interpolation

Restored

Before geometric distortion

Distorted using bilinear interpolation

Difference

Restored

Match (Similarity) Measure or Mismatch (Dissimilarity) Measure

For intramodality:

Sum of absolute differences (SAD): Min $\iint_{\Delta} |f - g|$

$$\rightarrow \sum_{i,j \in A} \sum |f(i,j) - g(i+u,j+v)|$$

Sum of squared differences (SSD): Min $\iint_A [f-g]^2$

$$\rightarrow \sum_{i,j\in\Lambda} \sum [f(i,j) - g(i+u,j+v)]^2 \rightarrow Difference only in noise.$$

Image

را نیلانات صالبت. سزی دارالا ناست. سزی دارالا

$$Min \iint_{A} [f-g]^2 = Min \left(\iint_{A} f^2 + \iint_{A} g^2 - 2 \iint_{A} fg \right)^{\frac{g}{\text{constant}}} Max \iint_{A} fg$$

$$\rightarrow Drawback \ when \ g \ has \ varying \ energy.$$

Cauchy – Schwartz:
$$\iint_A f \cdot g \le \sqrt{\iint_A f^2 \cdot \iint_A g^2}$$
, Equality: $g = cf$

$$\sum_{i,j\in A} \sum f(i,j).g(i,j) \leq \sqrt{\sum_{i,j\in A} \sum_{j\in A} f^2(i,j)} \sum_{i,j\in A} \sum_{j\in A} g^2(i,j)$$

Equality:
$$g(i,j) = cf(i,j)$$

$$\iint\limits_A f(x,y).g\underbrace{(x+u,y+v)}_{Shift:u,v} dxdy \le \sqrt{\iint\limits_A f^2(x,y)dxdy}.\iint\limits_A g^2(x+u,y+v)dxdy$$

$$\iint_{1}^{+\infty} f(x,y).g(x+u,y+v)dxdy \to Cross Correlation of f \& g$$

 \rightarrow Cannot directly be used as similarity measure.

http://paulbourke.net/miscellaneous/correlate/

https://en.wikipedia.org/wiki/File:Comparison convolution correlation.svg

https://en.wikipedia.org/wiki/File:Cross correlation animation.gif

$$C_{fg} = \iint_{-\infty}^{+\infty} f(x,y).g(x + u,y + v)dxdy$$

 $Normalized\ Cross\ Correlation\ (NCC) =$

$$NCC = \frac{C_{fg}}{\sqrt{\iint_A g^2(x+u,y+v)dxdy}}$$

 $Maximum\ when: g = cf$

سنہ رهم نکس ش موب جن کی فردی از کے ماست

Intensity based registration

معیار شباهت: سکی معیار شباهت:
$$\widehat{T} = rg min \ D(I_f, I_m, T)$$
 $\widehat{T} = rg max \ S(I_f, I_m, T)$ \widehat{T}

$$p = \begin{bmatrix} x_p \\ y_p \end{bmatrix} \qquad p = T(q)$$

$$q = \begin{bmatrix} x_q \\ y_q \end{bmatrix} \qquad q = T^{-1}(p)$$

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = T \left(\begin{bmatrix} x_q \\ y_q \end{bmatrix} \right)$$

$$I_m$$

$$I'_{m}(\mathbf{p}) = I_{m}(q) = I_{m}(T^{-1}(p)) \rightarrow \sum_{p \in \Omega} [I_{f}(p) - I'_{m}(\mathbf{p})]^{2} = \sum_{p \in \Omega} [I_{f}(p) - I_{m}(T^{-1}(p;\theta))]^{2}$$

$$\min_{T} E = \min_{T} E(\theta) \longrightarrow E(\theta) = \sum_{p \in \Omega} \left[I_f(p) - I_m(T^{-1}(p;\theta)) \right]^2$$

optizimation

Gradient Descent:
$$\theta = [\theta_1, \theta_2, ..., \theta_k]^T$$

$$\theta_{t+1} = \theta_t - \eta \nabla E(\theta_t)$$
 $\nabla E(\theta_t) = \frac{\partial E}{\partial \theta}(\theta_t)$

$$\nabla E(\theta_t) = \frac{\partial E}{\partial \theta}(\theta_t)$$

Numerical Computation: $\theta = [\theta_1, \theta_2, ..., \theta_k]^T$

$$\theta = [\theta_1, \theta_2, \dots, \theta_k]^T$$

$$\frac{\partial E}{\partial \theta_{i}} = \frac{E(\theta_{1}, \dots, \theta_{i} + \Delta \theta_{i}, \dots, \theta_{k}) - E(\theta_{1}, \dots, \theta_{i}, \dots, \theta_{k})}{\Delta \theta_{i}}$$

Continuous (Chain rule):

$$\frac{\partial E}{\partial \theta} = \sum_{p \in \Omega} -2 \left[I_f(p) - I_m(T'(p;\theta)) \right] \frac{\partial I_m}{\partial T'} \frac{\partial T'}{\partial \theta}$$

$$T' = T^{-1}$$

$$\frac{\partial I_m}{\partial T'}(T'(p)) = \left[I_{mx}(T'(p;\theta)) \qquad I_{my}(T'(p;\theta))\right]$$

$$I_{mx}(T'(p;\theta)) = \frac{I_m(x + \Delta x, y) - I_m(x, y)}{\Delta x} \qquad I_{my}(T'(p;\theta)) = \frac{I_m(x, y + \Delta y) - I_m(x, y)}{\Delta y}$$

$$T'(p;\theta) = \begin{bmatrix} ax_p - by_p + t_x \\ bx_p + ay_p + t_y \end{bmatrix}$$

Continuous (Chain rule):

$$\frac{\partial E}{\partial \theta} = \sum_{p \in \Omega} -2 \left[I_f(p) - I_m(T'(p;\theta)) \right] \frac{\partial I_m}{\partial T'} \frac{\partial T'}{\partial \theta} \qquad T' = T^{-1}$$

$$\frac{\partial I_m}{\partial T'}(T'(p)) = \left[I_{mx}(T'(p;\theta)) \qquad I_{my}(T'(p;\theta))\right]$$

$$I_{mx}\big(T'(p;\theta)\big) = \frac{I_m(x+\Delta x,y) - I_m(x,y)}{\Delta x} \qquad I_{my}\big(T'(p;\theta)\big) = \frac{I_m(x,y+\Delta y) - I_m(x,y)}{\Delta y}$$

$$T'(p;\theta) = \begin{bmatrix} ax_p - by_p + t_x \\ bx_p + ay_p + t_y \end{bmatrix} \qquad \begin{array}{l} \theta = [a \quad b \quad t_x \quad t_y]^T \\ p = [x_p \quad y_p] \end{array} \qquad \begin{array}{l} \frac{\partial T'}{\partial \theta} = \begin{bmatrix} ax_p - by_p + t_y \\ bx_p + ay_p + by \end{bmatrix} \qquad \begin{array}{l} \frac{\partial T'}{\partial \theta} = \begin{bmatrix} ax_p - by_p + t_y \\ bx_p + ay_p + by \end{bmatrix} \end{array}$$

$$\frac{\partial E}{\partial \theta} = \sum_{p \in \Omega} -2 \left[I_f(p) - I_m(T'(p;\theta)) \right] \frac{\partial I_m}{\partial T'} \frac{\partial T'}{\partial \theta}$$

$$T' = T^{-1}$$

$$\frac{\partial I_m}{\partial T'} \left(T'(p) \right) = \left[I_{mx} \left(T'(p;\theta) \right) - I_{my} \left(T'(p;\theta) \right) \right]$$

$$T' = T^{-1}$$

$$\frac{\partial I_m}{\partial T'}(T'(p)) = [I_{mx}(T'(p;\theta))]$$

$$I_{my}(T'(p;\theta))$$

$$I_{mx}(T'(p;\theta)) = \frac{I_m(x + \Delta x, y) - I_m(x, y)}{\Delta x}$$

$$I_{mx}\big(T'(p;\theta)\big) = \frac{I_m(x+\Delta x,y) - I_m(x,y)}{\Delta x} \qquad I_{my}\big(T'(p;\theta)\big) = \frac{I_m(x,y+\Delta y) - I_m(x,y)}{\Delta y}$$

$$T'(p;\theta) = \begin{bmatrix} ax_p - by_p + t_x \\ bx_p + ay_p + t_y \end{bmatrix} \qquad \begin{array}{l} \theta = \begin{bmatrix} a & b & t_x & t_y \end{bmatrix}^T \\ p = \begin{bmatrix} x_p & y_p \end{bmatrix} \qquad \begin{array}{l} \frac{\partial T'}{\partial \theta} = \begin{bmatrix} x_p & -y_p & 1 & 0 \\ y_p & x_p & 0 & 1 \end{bmatrix} \end{array}$$
Jacobian

$$\theta = \begin{bmatrix} a & b & t_x & t_y \end{bmatrix}^T$$

$$\theta = \begin{bmatrix} x_0 & y_0 \end{bmatrix}$$

$$\frac{\partial T'}{\partial \theta} = \begin{bmatrix} x_p & -y_p & 1 & 0 \\ y_p & x_p & 0 & 1 \end{bmatrix}$$
Jacobian

Intensity-based registration

For intermodality:

- 1. Feature based registration
- 2. Remapping
- 3. Mutual information as similarity measure

Polytechnic) Biomedical Engineering Department

Mutual information:

Entropy:

$$H(I) = -\sum_{i} P_i \log P_i$$

$$P_i = \frac{n_i}{MN}$$

$$P(I) = 1 \Longrightarrow$$

$$H(I) = -\sum_{i \in \{I_0\}} 1 \times \log 1 = 0$$

$$P_{i} = \frac{1}{w} \Longrightarrow$$

$$H = -\sum_{i \in \{I_{0}, \dots, I_{w-1}\}} \frac{1}{w} \times \log \frac{1}{w}$$

$$= -w \times \frac{1}{w} \log \frac{1}{w} = \log w$$

Joint histogram:

Joint Entropy:

$$H(I,J) = -\sum_{i,j} P_{ij} \log P_{ij} \xrightarrow{j \text{ odd}} I$$

$$= -\sum_{i} \sum_{j} P_{i} P_{j} \log (P_{i} P_{j})$$

$$= -\sum_{i} \sum_{j} P_{i} P_{j} (\log P_{i} + \log P_{j})$$

$$= -\sum_{i} \sum_{j} P_{i} P_{j} \log P_{i} - \sum_{i} \sum_{j} P_{i} P_{j} \log P_{j}$$

$$= -\sum_{i} P_{i} \log P_{i} - \sum_{j} P_{j} \log P_{j} = H(I) + H(J)$$

Conditional Entropy: $H(I | J) = E_I \{ H(I | J = j) \} \rightarrow Entropy \ of \ I \ conditioned \ on \ J = j$

$$H(I | J) = -\sum_{j} P_{j} \sum_{i} P_{i|j} \log(P_{i|j})$$

$$= -\sum_{j} \sum_{i} P_{j} \frac{P_{ij}}{P_{j}} \log\left(\frac{P_{ij}}{P_{j}}\right) = -\sum_{i,j} P_{ij} \log\frac{P_{ij}}{P_{j}}$$

$$\Rightarrow H(I|J) = H(I,J) - H(J)$$

Mutual information:

$$MI(I,J) = \sum_{i} \sum_{j} P_{ij} \log \left(\frac{P_{ij}}{P_i P_j} \right) = H(I) - H(I|J) = H(I) + H(J) - H(I,J)$$
 $MI = 0$ مستقل i , j
 $MI = H(I) = H(J)$ يكسان

$$MI(I,J) = \sum_{i} \sum_{j} P_{i|j} P_{j} \log \left(\frac{P_{i|j} P_{j}}{P_{i} P_{j}} \right) = \sum_{i} \sum_{j} P_{i|j} P_{j} \left(\log(P_{i|j}) - \log P_{j} \right)$$

$$= \sum_{i} P_{i|j} \log P_{i|j} - \sum_{i} P_{i} \log P_{i} = \sum_{i,j} P_{i,j} \log \frac{P_{ij}}{P_{j}} - \sum_{i} P_{i} \log P_{i} = H(I) - H(I|J)$$