Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Quiz-IV

- 1. Let $\langle \cdot, \cdot \rangle$ be an inner product on V over \mathbb{R} . Consider the following statements
 - (I) If $\langle u, v \rangle = \langle 2u, -v \rangle$ for all $v \in V$, then u = 0
 - (II) $|\langle u, v \rangle| \leq \frac{1}{2}(\langle u, u \rangle) + \langle v, v \rangle)$ for all $u, v \in \mathbb{V}$

Then which of the following options is correct

- (a) both (I) and (II) are correct
- (b) both (I) and (II) are false
- (c) (I) is correct (II) is false
- (d) (I) is false (II) is correct

Option (a) is correct as both the statements are correct. Note that if $\langle u, v \rangle = \langle 2u, -v \rangle$ for all $v \in V$, then in particular, choose v = u, to get $\langle u, u \rangle = -2\langle u, u \rangle \implies \langle u, u \rangle = 0$ or u = 0. The second statement follows from Cauchy-Schwartz inequality together with direct application of the inequality $ab < \frac{1}{2}(a^2 + b^2)$.

2. Let $P_2(\mathbb{R})$ be an inner product space of polynomials of degree at state 2 over a real filed with inner product defined as

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$

Let $\{f_1, f_2, f_3\}$ be an orthogonal set in $P_2(\mathbb{R})$, where $f_1(x) = 1$, $f_2(x) = x + c_1$, $f_3(x) = x^2 + c_2 f_2 + c_3$, then value of $2c_1 + c_2 + 3c_3$ is equal to

- (a) 1
- (b) -2
- (c) -3
- (d) 0

Correct option is (c). It can be verified by solving a system of 3 equations obtained from $\langle f_1, f_2 \rangle = 0$, $\langle f_2, f_3 \rangle = 0$ and $\langle f_3, f_1 \rangle = 0$.

3. Let V be a finite dimensional vector space over \mathbb{R} and T be a non-zero linear operator on V satisfying $T^2 = \lambda T$ for some $\lambda \in \mathbb{R} \setminus \{0\}$ and $Tx \neq \lambda x$ for some $x \in V$. Then which of the following statement are correct

- (a) T is invertible
- (b) T is diagonalizable
- (c) null space of (T) is non-trivial
- (d) λ is the only eigenvalue of T

A annihilating polynomial for T is $x^2 - \lambda x$. The choices for minimal polynomial are $t, t - \lambda$ and $t(t - \lambda)$ but $T \neq 0$ and $T \neq \lambda I$ (as if $T = \lambda I$, then there $Tx = \lambda x$ for all $x \in V$ contradicting the given assumption). Hence the minimal polynomial of T is $t(t-\lambda)$. As 0, is an eigenvalue, T will not be invertible as matrix of T relative to any ordered basis of V will have zero determinant and consequently will have a nontrivial null space. Moreover, as minimal polynomial of T is written in the product of distinct linear factors, T will be diagonalizable. Option (d) is incorrect as 0 is also an eigenvalue other than λ .

4. Let M be a 3×3 real symmetric matrix with eigen values as 1, 0, 3. The eigen vectors corresponding the eigenvalues 1 and 0 are $(1,1,1)^t$ and $(1,-1,0)^t$ respectively. Find the value of M_{33} .

Let $M = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$. Then by trace formula a + d + f = 4 and using $M \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1$. $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $M \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = 0$. $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, we get a + b + c = b + d + e = c + e + f = 1

and a = b, b = d, c = e. On solving these equations we get $M_{33} = f = 7/3$.

5. Let M be a 3×3 matrix such that $M \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 0 \end{bmatrix}$. Then find out the vector

 $M^3 \left[\begin{array}{c} 1 \\ -1/2 \\ 0 \end{array} \right]$. Observe that -3 is an eigenvalue of M with corresponding eigenvector

 $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$. Now $(-3)^3 = -27$ will be an eigenvalue for M^3 with eigenvector $\begin{bmatrix} 1 \\ -1/2 \\ 0 \end{bmatrix}$

as well because $\begin{bmatrix} 1 \\ -1/2 \\ 0 \end{bmatrix} = -1/2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ which gives $M^3 \begin{bmatrix} 1 \\ -1/2 \\ 0 \end{bmatrix} = . \begin{bmatrix} -27 \\ 27/2 \\ 0 \end{bmatrix}$