2005 AP® CHEMISTRY FREE-RESPONSE QUESTIONS

3. Answer the following questions related to the kinetics of chemical reactions.

$$I^{-}(aq) + ClO^{-}(aq) \xrightarrow{OH^{-}} IO^{-}(aq) + Cl^{-}(aq)$$

Iodide ion, I⁻, is oxidized to hypoiodite ion, IO⁻, by hypochlorite, ClO⁻, in basic solution according to the equation above. Three initial-rate experiments were conducted; the results are shown in the following table.

Experiment	[I ⁻] (mol L ⁻¹)	[ClO ⁻] (mol L ⁻¹)	Initial Rate of Formation of IO ⁻ (mol L ⁻¹ s ⁻¹)
1	0.017	0.015	0.156
2	0.052	0.015	0.476
3	0.016	0.061	0.596

- (a) Determine the order of the reaction with respect to each reactant listed below. Show your work.
 - (i) I -(aq)
 - (ii) ClO -(aq)
- (b) For the reaction,
 - (i) write the rate law that is consistent with the calculations in part (a);
 - (ii) calculate the value of the specific rate constant, k, and specify units.

The catalyzed decomposition of hydrogen peroxide, $H_2O_2(aq)$, is represented by the following equation.

$$2 \text{ H}_2\text{O}_2(aq) \xrightarrow{\text{catalyst}} 2 \text{ H}_2\text{O}(l) + \text{O}_2(g)$$

The kinetics of the decomposition reaction were studied and the analysis of the results show that it is a first-order reaction. Some of the experimental data are shown in the table below.

$[H_2O_2]$ $(\text{mol } L^{-1})$	Time (minutes)	
1.00	0.0	
0.78	5.0	
0.61	10.0	