ENGR 133—Fall 2019 Ma1 PA Answer Sheet

Ma1 PA Answer Sheet

Your Name: Zach Williams Your login: will2051

Task 1: MATLAB as a Calculator

Part A: Use MATLAB to calculate the value of each expression. Copy the command from MATLAB into the second column of the table below and the result from MATLAB into the third column.

Expression	MATLAB command	MATLAB result
$p = (2+7)^3 + (273^{2/3})/2 + (55^2)/3$	p = (2 + 7) ³ + (273 ^(2/3))/2 + (55 ²)/3	1.7584e+03
$q = 2^3 + 7^3 + (273^2)/2 + 55^{2/3}$	q = 2^3 + 7^3 + (273^2)/2 + 55^(2/3)	3.7630e+04
$r = 1 - 0.4 \tan^{-1}(\pi/6) $	r = abs(14*atan(pi/6))	0.8071

Part B: Define the variables x and z as x = 9.6 and z = 8.1. Use MATLAB to calculate the value of each expression. Copy the command from MATLAB into the second column of the table below and the result from MATLAB into the third column.

Expression	MATLAB command	MATLAB result
$a = xz^2 - \left(\frac{2z}{3x}\right)^{3/5}$	$a = x * z^2 - ((2*z) / (3*x))^(3/5)$	629.1479
$b = \frac{443z}{2x^3} + \frac{e^{-xz}}{x+z}$	$b = ((443*z) / (2*x^3)) + (exp(-x*z) / (x+z))$	2.0279
c = ln(z)	c = log(z)	2.0919
$d = \log(z)$	d = log10(z)	0.9085

ENGR 133—Fall 2019 Ma1 PA Answer Sheet

Task 2: Assigning Vectors & Performing Operations

Part A: Complete the table below.

Mathematical Operation		M <i>A</i> Answei	ATLAB r/Respo	nse	Explanation of the Result
					0 + 0 = 0
Arowvector + Arowvector		•	_	6	1 + 1 = 2
	0	2	4		2 + 2 = 4
					3 + 3 = 6
					0 + 4 = 4
			2	1	1 + 2 = 3
Arowvector + Browvector	4	3			2 + 0 = 2
			3 + -2 = 1		
			5	6	0 + 3 = 3
7		_			1 + 3 = 4
Arowvector + Ascalar	3	4			2 + 3 = 5
					3 + 3 = 6
					0 - 0 = 0
	0 (0	1 - 1 = 0
Arowvector - Arowvector		0	0		2 - 2 = 0
					3 - 3 = 0
Arowvector - Crowvector		Matrix dimensions must			Arowvector is 4 elements long
					and Crowvector is 3 elements
	agree.				long
Acolvector + Bcolvector	Matrix dimensions must				Acolvector is 4 elements long
				s must	and Bcolvector is 3 elements
	agree.			long	
Arowvector + Bcolvector	-5	-4	-3	-2	0 1 2 3 + -5 = -5 -4 -3 -2
	0	1	2	3	0123+0=0123
	5	6	7	8	0123+5=5678

Part B: Complete the table below.

Mathematical Operation	MATLAB Answer/Response	Explanation of the Operation
Arowvector * Browvector	<pre>Incorrect dimensions for matrix multiplication.</pre>	Two row vectors must be multiplied using .*
Arowvector .* Browvector	0 2 0 -6	0 * 4 = 0

Ma1 PA Answer Sheet

Arowvector ./ Browvector	0	0.5	Inf	-1.5	3*3 = 9 $0/4 = 0$ $1/2 = .5$ $2/0 = No solution$
T .	Incorrect dimensions for raising a matrix				3 / -2 = -1.5
Arowvector ./ Browvector	0	0.5	Inf	-1.5	
Arowvector .* Ascalar	0	3	6	9	0 / 4 = 0
				<u>.</u>	2 * 3 = 6 3 * 3 = 9 0 * 3 = 0 1 * 3 = 3
Arowvector * Ascalar	0	3	6	9	0 * 3 = 0 1 * 3 = 3
					1 * 2 = 2 2 * 0 = 0 3 * -2 = -6

Task 3: *Matrix Manipulations*

ENGR 133—Fall 2019

Part B: Complete the table below.

Function	MATLAB Command
Create a Bmatrix by replacing the middle row of Amatrix with the Bvector .	Bmatrix = [Amatrix(1,:);Bvector;Amatrix(3,:)]
Create the Gvector by extracting the third row in Amatrix .	Gvector = Amatrix(3,:)
Extract row 2, column 3 from Amatrix	y = Amatrix(2,3)
Replace the value 2 in Amatrix (row 1 and column 1) with the value 55.	Amatrix(1,1) = 55