

NON-LOCAL KALMAN: A RECURSIVE VIDEO DENOISING ALGORITHM

Thibaud Ehret, Jean-Michel Morel and Pablo Arias
CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

Contributions Non-local Kalman Experiments

We suggest a video denoising pipeline with the following advantages:

- Particularly suited for real-time processing
- Produces temporally consistent videos, which are much better visually
- Competitive with current state-of-the-art denoising methods

Non-local denoising method

Patch trajectories

Spatial denoising

$$\widehat{p} = \mu + C(C + \sigma^2 I)^{-1} (q - \mu). \ \widehat{\mu} = \frac{1}{N} \sum_{i=1}^N q_i \text{ and } \widehat{C} = \frac{1}{N} \sum_{i=1}^N \overline{q}_i \overline{q}_i^T - \sigma^2 I,$$

Temporal filtering

$$\begin{split} p_{t+1,i} &= p_{t,i} + w_{t,i} \text{ with } w_{t,i} \sim \mathcal{N}(0,C_t) \\ q_{t,i} &= p_{t,i} + n_{t,i} \text{ with } n_{t,i} \sim \mathcal{N}(0,\sigma^2 I). \end{split}$$

Quantitative evaluation

Our algorithm is compared against VBM3D and VBM4D, two current state-of-the-art methods

σ	Method	Bus	Foreman	Pedestrian_area	Crowd_run	Touchdown_pass	Station2	Average
10	VBM3D	33.32/.7824	37.40/.6681	40.78/.6577	35.62/.8017	39.08/.6103	38.92/.7266	37.52/.7078
	VBM4D	33.39/.8237	37.39/.6871	40.56/.7463	35.69/.8457	39.60/.6752	39.93/.7746	37.76/.7588
	NL-Kalman	33.34/.8502	36.16/.6782	38.67/.7420	34.29/.8383	38.82/.6940	39.91/.7916	36.86/.7657
	NL-Kalman (oracle)	33.87/.8713	36.93/.7230	39.23/.7592	34.64/.8514	39.58/.7433	40.50/.8059	37.46/.7923
20	VBM3D	29.57/.6064	34.60/.5763	36.93/.5579	32.22/.7122	36.09/.4703	35.45/.5689	34.14/.5820
	VBM4D	29.55/.6856	34.61/.6073	36.75/.6468	32.07/.7439	36.41/.4795	36.23/.6395	34.27/.6338
	NL-Kalman	29.58/.7291	33.19/.5844	35.61/.6444	30.89/.7478	35.91/.5181	36.81/.6868	33.66/.6518
	NL-Kalman (oracle)	30.43/.7752	34.18/.6301	36.45/.6738	31.44/.7746	36.99/.6135	37.46/.7116	34.49/.6965
30	VBM3D	27.59/.4995	32.77/.5224	34.44/.4869	30.14/.6394	34.55/.3906	33.36/.4536	32.14/.4987
	VBM4D	27.53/.5988	32.91/.5612	34.45/.5745	29.95/.6704	34.76/.3801	34.14/.5420	32.29/.5545
	NL-Kalman	27.30/.6327	31.27/.5335	33.27/.5680	28.64/.6708	33.91/.4034	34.73/.5986	31.52/.5678
	NL-Kalman (oracle)	28.48/.6993	32.50/.5802	34.43/.6102	29.44/.7078	35.20/.5186	35.46/.6338	32.59/.6250

Qualitative evaluation

Remarks

References

- [1] Barnes et al. "PatchMatch: a randomized correspondence algorithm for structural image editing". ACM Transactions on Graphics-TOG, 2009.
- [2] Korman and Avidan "Coherency sensitive hashing". *IEEE ICCV*, 2011.

(1)

- [3] Arias et al. "Analysis of a variational framework for exemplar-based image inpainting". *SIAM*, 2012.
- [4] Kaiming and Sun "Computing Nearest-Neighbor Fields via Propagation-Assisted KD-trees". *IEEE CVPR*, 2012.