Math 704 midterm exam solutions

Problem 1. Let

$$f(z) = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n^z + n} \right),$$

where, as usual, $n^z = e^{z \log n}$.

(i) Prove that the infinite product converges compactly in the right half-plane $U = \{z \in \mathbb{C} : \text{Re}(z) > 1\}$, so $f \in \mathcal{O}(U)$.

Fix an arbitrary a > 1. Suppose $z = x + iy \in U$ with x = Re(z) > a. We have $|n^z| = |e^{z \log n}| = e^{x \log n} = n^x > n^a$, so

$$|n^z + n| \ge |n^z| - n > n^a - n \ge \frac{1}{2}n^a$$

for all large enough n (depending on a). Since $\sum 1/n^a$ converges, the Weierstrass M-test shows that $\sum 1/|n^z+n|$ converge uniformly in the half-plane $\{z: \operatorname{Re}(z) > a\}$. Since a was arbitrary, it follows that $\sum 1/|n^z+n|$ converges compactly in U. Theorem 8.15 now shows that the infinite product $f(z) = \prod (1+1/(n^z+n))$ converges compactly in U, hence $f \in \mathcal{O}(U)$.

(ii) Show that the vertical line $\partial U = \{z \in \mathbb{C} : \text{Re}(z) = 1\}$ is the natural boundary of f by verifying that every point of ∂U is an accumulation point of zeros of f.

Let us find the zeros of f explicitly. By Theorem 8.15, f(z) = 0 if and only if $1/(n^z + n) = -1$ or $n^z = -(n + 1)$ for some $n \ge 1$. Writing z = x + iy and taking the real and imaginary parts of each side of $n^z = -(n + 1)$ gives the pair of equations

$$\begin{cases} n^x \cos(y \log n) = -(n+1) \\ n^x \sin(y \log n) = 0. \end{cases}$$

There is no solution in x if n = 1, so let us assume $n \ge 2$. In this case the second equation implies $\sin(y \log n) = 0$ so $y = k\pi/\log n$ for some $k \in \mathbb{Z}$. Plugging this into the first equation gives $n^x(-1)^k = -(n+1)$ or $n^x = (-1)^{k+1}(n+1)$, which implies k is odd and $x = \log(n+1)/\log n$. Thus, the set of zeros of f consists of all complex numbers of the form

$$z_{n,k} = \frac{\log(n+1)}{\log n} + i \frac{(2k+1)\pi}{\log n}$$
 with $n \ge 2, k \in \mathbb{Z}$.

Since $\operatorname{Re}(z_{n,k}) = \log(n+1)/\log n$ tends to 1 as $n \to \infty$, and since the vertical separation between $z_{n,k}$ and $z_{n,k+1}$ which is $2\pi/\log n$ tends to 0 as $n \to \infty$, it follows that every point of the line $\operatorname{Re}(z) = 1$ is accumulated by a sequence of zeros $z_{n,k}$. Explicitly (if you prefer a strictly formal argument), given $y_0 \in \mathbb{R}$ there is a sequence $\{k_n\}$ of integers such that $(2k_n+1)\pi/\log n \to y_0$ as $n \to \infty$: simply choose k_n to

be the integer part of $y_0 \log n/(2\pi)$. Then the subsequence $\{z_{n,k_n}\}$ of the zeros will converge to $1 + iy_0$ as $n \to \infty$.

Problem 2. Does there exist a bounded $f \in \mathcal{O}(\mathbb{D})$ such that

(1)
$$f\left(1 - \frac{1}{n}\right) = \frac{(-1)^n}{n} \quad \text{for all integers } n \ge 1?$$

The answer is no. Suppose there is such f. Then the function g(z) = f(z) + z - 1 is bounded and holomorphic in \mathbb{D} and by (1),

$$g\left(1 - \frac{1}{2k}\right) = f\left(1 - \frac{1}{2k}\right) - \frac{1}{2k} = 0$$
 for all $k \ge 1$.

Since $\sum 1/(2k) = \infty$, Theorem 8.34 (see also Example 8.35) implies that g is identically zero, that is, f(z) = 1 - z everywhere in \mathbb{D} . But then

$$f\left(1 - \frac{1}{2k+1}\right) = \frac{1}{2k+1} \quad \text{for all } k \ge 1,$$

which contradicts (1) for odd n.

Problem 3. Let f be a meromorphic function in \mathbb{C} with no poles on the real line. Show that we can decompose f as g+h, where g,h are meromorphic in \mathbb{C} , with all poles of g in the upper half-plane and all poles of h in the lower half-plane. To what extent is such decomposition unique?

Let E^+ and E^- be the set of poles of f in the upper and lower half-planes, respectively. By Mittag-Leffler's Theorem 9.1, there is a meromorphic function g in the plane which has poles precisely along E^+ , with the principal parts equal to those of f. The meromorphic function h=f-g has removable singularities at every point of E^+ and has poles precisely along E^- with the principal parts equal to those of f since g is holomorphic in the lower half-plane.

It is clear that if g,h give such decomposition of f, so do $g+\phi,h-\phi$ for any $\phi\in\mathcal{O}(\mathbb{C})$. Conversely, suppose g,h and \tilde{g},\tilde{h} are two such decompositions of f. Then $g+h=f=\tilde{g}+\tilde{h}$, so $\tilde{g}-g=h-\tilde{h}$ everywhere in the plane. Since the left side is holomorphic in the lower half-plane and the right side is holomorphic in the upper half-plane, each side is an entire function. Thus, $\tilde{g}=g+\phi,\tilde{h}=h-\phi$ for some $\phi\in\mathcal{O}(\mathbb{C})$.

Problem 4. Let $\mathbb{Q} \subset \mathbb{R}$ denote the countable set of rational numbers. Show that there exists a sequence $\{P_n\}$ of polynomials such that for every $q \in \mathbb{Q}$, $P_n \to q$ uniformly on compact subsets of the line Re(z) = q as $n \to \infty$.

Let $\{q_n\}_{n\geq 1}$ be an enumeration of \mathbb{Q} . For each integer $n\geq 1$, let K_n be the union of closed vertical segments in \mathbb{C} of length 2n centered at q_1,\ldots,q_n :

$$K_n = \{q_j + it : |t| \le n \text{ and } 1 \le j \le n\}.$$

Evidently each K_n is a full compact set and $K_n \subset K_{n+1}$. Define $f_n : K_n \to \mathbb{C}$ by setting it equal to the constant function q_j on the vertical segment in K_n centered at q_j :

$$f_n(q_j + it) = q_j$$
 if $|t| \le n$ and $1 \le j \le n$.

Then f_n extends holomorphically to an open set containing K_n (simply take disjoint open neighborhoods of each vertical segment in K_n and extend f_n as a constant function in each neighborhood). By the special case of Runge's Theorem, Corollary 9.19, there is a polynomial P_n such that $\sup_{z \in K_n} |P_n(z) - f_n(z)| < 1/n$. The sequence $\{P_n\}$ obtained this way has the desired property. In fact, fix some $q \in \mathbb{Q}$ and a compact subset K of the vertical line $\operatorname{Re}(z) = q$. Take $N \ge 1$ large enough to guarantee $q \in \{q_1, \ldots, q_N\}$ and $K \subset \{q+it: |t| \le N\}$. Then $K \subset K_n$ for all $n \ge N$. Hence, for all $z \in K$ and all $n \ge N$,

$$|P_n(z) - q| = |P_n(z) - f_n(z)| < \frac{1}{n}.$$

This shows $P_n \to q$ uniformly on K as $n \to \infty$.

Problem 5. Consider the first quadrant $U = \{x + iy \in \mathbb{C} : x > 0, y > 0\}$. Suppose $f \in \mathcal{O}(U)$ has the property that $|f(z)| \to 1$ as z tends to any point of the boundary ∂U . Show that f extends to a meromorphic function in \mathbb{C} which is even and satisfies $f(z)\overline{f(\overline{z})} = 1$ for all $z \in \mathbb{C}$. Conclude that |f(0)| = 1 and Re(f''(0)/f(0)) = 0.

We use Schwarz reflection twice to extend f to all of \mathbb{C} . Since $|f(z)| \to 1$ as z tends to any point of $(0, +\infty)$, we can apply the Schwarz reflection principle to extend f to the right half-plane $V = \{x + iy \in \mathbb{C} : x > 0\}$ by using the reflection $z \mapsto \overline{z}$ in the domain and $z \mapsto 1/\overline{z}$ in the target. Hence this extension (still denoted by f) satisfies

(2)
$$f(\overline{z}) = \frac{1}{f(z)} \quad \text{for all } z \in V.$$

If the original f has a zero at $p \in U$, the extended f has a pole at \overline{p} . Thus, f is meromorphic in V, or can be thought of as a holomorphic map $f: V \to \widehat{\mathbb{C}}$.

Now the map $f: V \to \widehat{\mathbb{C}}$ still has the property that $|f(z)| \to 1$ when z tends to any point of $\partial V = \{x + iy \in \mathbb{C} : x = 0\}$. Thus, we can apply the Schwarz reflection principle once more to extend f to the whole plane, using $z \mapsto -\overline{z}$ in the domain and $z \mapsto 1/\overline{z}$ in the target. The resulting extension $f: \mathbb{C} \to \widehat{\mathbb{C}}$ satisfies

(3)
$$f(-\overline{z}) = \frac{1}{\overline{f(z)}} \quad \text{for all } z \in \mathbb{C}.$$

Observe that since $f:V\to\widehat{\mathbb{C}}$ satisfies (2) in V, the extension $f:\mathbb{C}\to\widehat{\mathbb{C}}$ must satisfy (2) in all of \mathbb{C} by the identity theorem:

(4)
$$f(\overline{z}) = \frac{1}{f(z)} \quad \text{for all } z \in \mathbb{C}.$$

Evidently (3) and (4) imply that f(-z) = f(z) and $f(z)\overline{f(\overline{z})} = 1$ for all z.

Let us verify the remaining claim. Since f is holomorphic in a neighborhood of the origin, it has a power series representation $f(z) = a_0 + a_2 z^2 + a_4 z^4 + \cdots$ will all odd powers missing because f is an even function. Here $a_n = f^{(n)}(0)/n!$ and we need to verify that $|a_0| = 1$ and $\text{Re}(a_2/a_0) = 0$. Imposing the condition $f(z)\overline{f(\overline{z})} = 1$ gives

$$(a_0 + a_2 z^2 + a_4 z^4 + \cdots)(\overline{a_0} + \overline{a_2} z^2 + \overline{a_4} z^4 + \cdots) = 1$$

for all z sufficiently close to 0. In particular,

$$a_0\overline{a_0} = 1$$
 and $a_0\overline{a_2} + a_2\overline{a_0} = 0$.

The first relation gives $|a_0| = 1$ (of course we could have deduced this from the fact that the extended f has to send $0 \in \partial U$ to some point on the unit circle). The second relation gives

$$\operatorname{Re}(a_2\overline{a_0}) = \operatorname{Re}\left(\frac{a_2}{a_0}\right) = 0,$$

as required.