Jonathan Tannen

sixty-six wards

- A datascience blog about Philadelphia Politics.
- "FiveThirtyEight for Philadelphia"
- www.sixtysixwards.com

For me the challenges are

- rigor with simplification
- storytelling.

Alternatively: Question formation.

Alternatively 2: The killer plot.

sixty-six wards

- A datascience blog about Philadelphia Politics.
- "FiveThirtyEight for Philadelphia"
- www.sixtysixwards.com

Here are Andrew Stober and Kristin Combs's maps from 2015.

▼ View code

```
library(sf)
divs <- st_read("../../data/gis/2019/Political_Divisions.shp'</pre>
 rename(warddiv = DIVISION N)df council <- df council %>%
 group_by(year, election, WARD19, DIV19) %>%
 mutate(pvote = votes/sum(votes))
ggplot(
 divs %>% left join(
    df_council %>%
     filter(
        year == 2015,
        election=="general",
        CANDIDATE %in% c("ANDREW C STOBER", "KRISTIN COMBS")
     ) %>%
      mutate(warddiv = paste0(WARD19, DIV19), Candidate = for
 geom_sf(aes(fill = 100 *pvote), color=NA) +
 facet wrap(~Candidate) +
 scale_fill_viridis_c("Percent\nof Votes") +
 theme_map_sixtysix() %+replace%
 theme(legend.position = "right") +
  ggtitle("Third Party votes come from the Wealthy Progressiv
```

Third Party votes come from the Wealthy Progressive Divisions

C Stober Kristin C

Today

Two data visualization stories:

- The Turnout Tracker

- Philadelphia Voting Blocs

Live 2019 Flection Turnout Tracker

NOTE: This is not an example of expected work for this course.

• If people share where and when they vote in real time, can we predict total turnout?

	A	В	С	D	E	F
1	Timestamp	Ward (1 - 66)	Division (1 - 51)	Time of day	Voter number at	I voted
2	6/1/2020 8:01:58	27	14	9:00:00 AM	215	by mail
3	6/1/2020 8:47:39	2	5	2:22:00 AM	8	by mail
4	6/1/2020 8:48:25	2	5	3:07:00 AM	567	by mail
5	6/1/2020 9:04:45	18	17	12:00:00 PM	69	by mail
6	6/1/2020 9:16:40	18	17	12:00:00 PM	69	by mail
7	6/1/2020 12:27:00	36	35	12:00:00 AM	0	by mail
8	6/1/2020 12:33:32	18	17	6:00:00 PM	2	by mail
9	6/1/2020 13:30:37	27	11	10:00:00 AM	0	by mail
10	6/2/2020 7:32:18	18	10	7:00:00 AM	1	by mail
11	6/2/2020 8:17:07	39	46	7:00:00 AM	1	by mail
12	6/2/2020 8:19:45	60	08	7:22:00 AM	22	by mail
13	6/2/2020 8:25:46	2	24	3:00:00 PM	22	by mail
14	6/2/2020 8:28:30	22	1	4:20:00 PM	69	by mail
15	6/2/2020 8:32:02	14	4	11:00:00 AM	20	by mail
16	6/2/2020 8:32:08	36	2	12:34:00 PM	55378008	by mail
17	6/2/2020 8:35:04	34	30	8:00:00 AM	20	by mail
18	6/2/2020 9:01:06	36	37	4:20:00 PM	255	by mail
19	6/2/2020 Q·07·06	27	6	12.00.00 DM	ES	hy mail

Live 2019 Election Turnout Tracker

Welcome to the Sixty-Six Wards turnout tracker! Voters across Philadelphia are sharing their turnout to support citizen science.

First, vote! Then, share your division and Voter Number at http://bit.ly/sixtysixturnout.

Live Results

Estimated Election Turnout

A meta view on the nature of this work

Table 1 | A schematic for organizing empirical modelling along two dimensions, representing the different levels of emphasis placed on prediction and explanation •

	No intervention or distributional changes	Under interventions or distributional changes
Focus on specific features or effects	Quadrant 1: Descriptive modelling Describe situations in the past or present (but neither causal nor predictive)	Quadrant 2: Explanatory modelling Estimate effects of changing a situation (but many effects are small)
Focus on predicting outcomes	Quadrant 3: Predictive modelling Forecast outcomes for similar situations in the future (but can break under changes)	Quadrant 4: Integrative modelling Predict outcomes and estimate effects in as yet unseen situations

From Hofman, J.M., Watts, D.J., Athey, S. *et al.* Integrating explanation and prediction in computational social science. *Nature* **595**, 181–188 (2021).

Meta takeaways

- Understanding-focused approach to statistical modeling.
- Practical full-stack problem solving.

A naïve approach

- x_i = response i
- t_i = time of response i
- d_i = division of response i
- T_y = City-wide turnout in year y
- $T_{d,y}$ = Final turnout for division d in year y

$$\widehat{T}_{2019} = T_{2015} * avg \left(\frac{x_i}{T_{d_i,2015}} * \frac{13}{t_i} \right)$$

Turnout Tracker: the challenges

- Different divisions have different baseline turnouts.
- Divisions may swing together.
- We don't know the time pattern.
- There's *definitely* selection bias into who shares.
- Knowing uncertainty in the estimate is everything.

The solution:
$$\log(x_i) = \alpha_{y_i} + \mu_{d_i} + \gamma_{d_i y_i} + f(t_i) + e_i$$

Turnout Tracker: the model

At time t in division d, year y the voter number x_i so far is

$$\log(x_i) = \alpha_{y_i} + \mu_{d_i} + \gamma_{d_i y_i} + f(t_i) + e_i$$

Turnout Tracker: the model

At time t in division d, year y the number of votes v_{ytd} so far is

Estimating turnout

$$\log(x_i) = \alpha_{y_i} + \mu_{d_i} + \gamma_{d_i y_i} + f(t_i) + e_i$$

- We can estimate μ_{d_i} from historic data.
- $\gamma_{d_i y_i}$ needs to allow divisions to covary.
 - Model it as $\gamma_{d_i y_i} \sim N(0, \Sigma)$
 - Can estimate Σ from historic data.
- $\alpha_{y_i} + f(t_i)$ need to be estimated in real time.

Estimating Turnout: Baseline Levels μ

Singular Value Decomposition

We are interested in a giant D \times D matrix of how all divisions correlate with each other. This would require more than 1,703 elections.

Instead, find an approximation using "dimension reduction". (Note: I do this for the D x E matrix of Divisions to Elections).

Even after we've adjusted for (a) each division's baseline turnout and (b) covarying swings, how do we compare data at 8am with data from 2pm?

$$\log(x_i) = \frac{\alpha_y}{\alpha_y} + \mu_d + \gamma_{dy} + f(t) + e_i$$

Even after we've adjusted for (a) each division's baseline turnout and (b) covarying swings, how do we compare data at 8am with data from 2pm?

$$\log(x_i) = \frac{\alpha_y}{\alpha_y} + \mu_d + \gamma_{dy} + f(t) + e_i$$

$$\alpha_y + f(t) = E[\log(x_i)] - \mu_d - \gamma_{dy}$$

Even after we've adjusted for (a) each division's baseline turnout and (b) covarying swings, how do we compare data at 8am with data from 2pm?

$$\log(x_i) = \alpha_y + \mu_d + \gamma_{dy} + f(t)$$

$$\alpha_y + f(t) = E[\log(x_i)] - \mu_d - \gamma_{dy}$$

Two ways to fit the model

$$\log(x_i) = \alpha_y + \mu_d + \gamma_{dy} + f(t) + e_i$$

- Iteratively fit random effects γ_{dy} and time effects $\alpha_y + f(t)$.
 - Maximum Likelihood approach. γ_{dy} has closed form solution. Use loess smoother for $\alpha_v + f(t)$.
- Model f(t) as a Gaussian Process, so everything is a conditional normal.

Turnout Tracker: the challenges

- Different divisions have different baseline turnouts.
- Divisions may swing together.
- We don't know the time pattern.
- There's *definitely* selection bias into who shares.
- Knowing uncertainty in the estimate is everything.

Turnout Tracker: the challenges

- Different divisions have different turnouts.
 - Use each division's baseline rate from past elections.

- Divisions may swing together.
 - Estimate the covariance in divisions' swings from election to election.
- We don't know the time pattern.
 - Estimate it on the fly.

- There's *definitely* selection bias into who shares.
 - oof.

Selection bias & Uncertainty

- If selection is only correlated with γ_d , we're safe.
- Use bootstrapping to generate uncertainty.

- How do we know if this works?
 - Integration Tests!

Integration/Back Tests

- Test full runs of the package on known results.
- Tests for
 - Composition errors
 - Correctness errors

```
Run
library(testthat)
library(dplyr)
TRACKER_DIR <- "C:/Users/Jonathan Tannen/Dropbox/sixty_six/posts/turnout_
olddir <- setwd(TRACKER_DIR)</pre>
METHOD <- "loess"
source("R/load_data.R", chdir=TRUE)
source("R/fit_submissions.R", chdir=TRUE)
source("R/bootstrap.R", chdir=TRUE)
source("R/precalc_params.R", chdir=TRUE)
setwd(olddir)
test_elections <- tribble(</pre>
 ~folder, ~turnout,
 "phila_202105", 160e3,
  "phila_202011", 360e3,
  "phila_201911", 306e3,
  "phila_201905", 243e3,
  "phila_201811", 553e3,
  "phila_201805", 170e3
```


The Turnout Tracker: The Tech

- Google Form to collect responses
- R script that downloads google sheet, processes data.
- R script that generates predictions and bootstraps.
- RMarkdown document generates HTML report.
- httr command to push html to website.
- TODO:
 - Docker Container

https://github.com/jtannen/turnout tracker

SVD to the rescue!

SVD + buckets to the rescue!

Dimensions of Philadelphia's Votes

The end!

Questions?

Appendix

$$\log(x_i) = \alpha_y + \mu_d + \gamma_{dy} + f(t)$$

The total city turnout at the end of the day is...

$$\sum_{d} \exp\{\alpha_y + \mu_d + \gamma_{dy} + f(t)\}$$

$$= \exp\{\alpha_y + f(t)\} \sum_{d} \exp\{\mu_d + \gamma_{dy}\}$$

