Solutions to Hatcher's algebraic topology book

Jack Ceroni*
(Dated: Thursday 1st May, 2025)

I. Chapter 0

Solution I.1 (Problem 0.1). Recall that $T^2 = S^1 \times S^1$, remove point $(0,1) \times (0,1)$. We can represent points in $S^1 \times S^1$ by a pair of angles in $S = [-\pi, \pi] \times [-\pi, \pi] - (0,0)$, the idea is to homotop this pair to the boundary of the square $[-\pi, \pi] \times [-\pi, \pi]$ (which we can do continuously as we omit the origin). The resulting boundary of the square is precisely the space $-1 \times S^1 \cup S^1 \times -1$, which is a pair of circles wedged at (-1, -1).

Solution I.2 (Problem 0.2). Simply use $F(x,t) = (1-t)x + \frac{tx}{||x||}$.

Solution I.3 (Problem 0.3). If $X \to Y$ and $Y \to Z$ are homotopy equivalences (called f_1 and g_1 respectively, with corresponding backward maps f_2 and g_2), then

$$(g_1 \circ f_1) \circ (f_2 \circ g_2) \simeq g_1 \circ g_2 \simeq \mathrm{id}$$
 (1)

with similar logic showing that $(f_2 \circ g_2) \circ (g_1 \circ f_1) \simeq id$, where we construct a homotopy by concatenating the homotopy $f_1 \circ f_2 \simeq id$ and the homotopy $g_1 \circ g_2 \simeq id$. This same concatenation argument shows that if maps $f, g: X \to Y$ are homotopic via F and $g, h: X \to Y$ are homotopic via G, then f and h are homotopic via $G \star F$. Finally, if f is homotopic to $g: X \to Y$, which is a homotopy equivalence with backward map $h: Y \to X$, then by transitivity of homotopy proved earlier,

$$f \circ h \simeq g \circ h \simeq \text{id}$$
 and $h \circ f \simeq h \circ g \simeq \text{id}$ (2)

so that f is a homotopy equivalence.

Solution I.4 (Problem 0.4). Let $r: X \to A$ be defined as $r(x) = f_1(x)$. Then note that $r \circ \iota : A \to A$ is homotopic to the identity via the homotopy $G: A \times [0,1] \to A$ given by $G(x,t) = f_t(x)$, which is well-defined at $f_t(A) \subset A$ for all t. Similarly, $\iota \circ r$ is homotopic to the identity via $F = f_t$.

II. Chapter 1

A. Section 1.1

Solution II.1 (Problem 1.1.17). The idea is to loop the first circle of the wedge around the second one exactly n times. In particular, suppose $S^1 \vee S^1$ is realized as the space $S^1 \times \{1\} \cup \{1\} \times S^1$ (where we think of $S^1 \subset \mathbb{C}$. We define $r_n : S^1 \vee S^1 \to \{1\} \times S^1$ as

$$r_n(e^{i\theta} \times 1) = 1 \times e^{in\theta}$$
 and $r_n(1 \times e^{i\theta}) = 1 \times e^{i\theta}$. (3)

It is clear that this function is continuous. This is clearly a retraction onto $\{1\} \times S^1 \simeq S^1$. To see that all of the r_n are not mutually homotopic, recall that each of the homotopy classes of S^1 based at 1 are represented by the loops $\omega_n : t \mapsto e^{2\pi i n t}$ for $t \in [0,1]$. If we had $r_n \simeq r_m$ via homotopy H for $m \neq n$, this would give a homotopy between ω_n and ω_m via

$$G(s,t) = (\pi_2 \circ H)(e^{2\pi i s} \times 1, t) \tag{4}$$

^{*} jceroni@uchicago.edu

where $\pi_2: \{1\} \times S^1 \to S^1$ is projection. In particular,

$$G(s,0) = (\pi_2 \circ H)(e^{2\pi i s} \times 1, 0) = (\pi_2 \circ r_n)(e^{2\pi i s} \times 1) = e^{2\pi i n s} = r_n(s)$$
(5)

and

$$G(s,1) = (\pi_2 \circ H)(e^{2\pi i s} \times 1, 1) = (\pi_2 \circ r_m)(e^{2\pi i s} \times 1) = e^{2\pi i m s} = r_m(s)$$
(6)

which is a contradiction.

Solution II.2 (Problem 1.1.18). Let $f: S^{n-1} \to A$ be the attaching map which attaches e^n to A to form $X \simeq D^n \sqcup_f A$. Then X is the union of open sets $e^n = \operatorname{Int}(D^n)$ and $X - \{p\}$ for some $p \in e^n$. The intersection of these open sets is $e^n - \{p\}$ which is path-connected (as $n \geq 2$), and from Lemma 1.15 we can write any loop in $\pi_1(X, x_0)$ for some $x_0 \in e^n - \{p\}$ as a product of loops contained in either of these open sets. Of course, any loop in e^n is nullhomotopic, so any loop is a product of loops contained in $X - \{p\}$.

Thus, the inclusion $\iota_*: \pi(X - \{p\}, x_0) \to \pi_1(X, x_0)$ is a surjection. We can choose some $y_0 \in A$, and note that since A (thus the whole space X and $X - \{p\}$ are, as we attach a cell of dimension 2 or more) is path-connected, a path from x_0 to y_0 will induce isomorphisms $\pi_1(X - \{p\}, x_0) \simeq \pi_1(X - \{p\}, y_0)$ and $\pi_1(X, x_0) \simeq \pi_1(X, y_0)$. The overall effect of composing these maps with ι_* is to take a loop in $X - \{p\}$ based at y_0 , move its basepoint to x_0 , map it via inclusion into X, and move the basepoint back to x_0 . This is the same map on homotopy classes as the inclusion $\iota_*: \pi_1(X - \{p\}, y_0) \to \pi_1(X, y_0)$, so this map is an inclusion. Finally, note that $\iota_*: \pi_1(A, y_0) \to \pi_1(X - \{p\}, y_0)$ is an isomorphism, as $X - \{p\}$ deformation retracts to A. Thus, the inclusion of A in X induces a surjection on fundamental groups. From here:

- $S^1 \vee S^2$ is obtained by attaching a two-cell to S^1 at a single point, so $\iota_* : \pi_1(S^1, x_0) \to \pi_1(S^1 \vee S^2, x_0)$ is a surjection. Moreover, $S^1 \vee S^2$ retracts to S^1 , so ι_* is also an injection. Thus, $\pi_1(S^1 \vee S^2, x_0) \simeq \mathbb{Z}$.
- Assuming that X contains finitely many cells, note that X can be constructed by repeatedly attaching cells e^n with $n \geq 2$ to X^1 . Composing each of these inclusions gives the desired result. In the case that X contains infinitely many cells, we know that a compact subset of X is contained in a finite subset of the cells. Thus, given some $[\gamma] \in \pi_1(X, x_0)$, note that the image of γ is compact and therefore contained in some finite subsets of cell Y, which can be obtained by attaching finitely many cells to X^1 . Define $\eta:[0,1] \to Y$ as $\eta(t) = \gamma(t)$, so that $j_*[\eta] = [\gamma]$ for inclusion $j:Y \to X$. From above, the inclusion $\iota_*:\pi_1(X^1,x_0) \to \pi_1(Y,x_0)$ will be a surjection, so pick θ where $\iota_*[\theta] = j_*[\eta] = [\gamma]$, and we have the desired result.

Solution II.3 (Problem 1.1.19). Let γ be a loop in X, since γ is compact we can assume, without loss of generality, that X is made up of a finite number of cells (see Problem 1.1.18). Let e_1^1, \ldots, e_k^1 be the set of 1-cells in X. For the j-th cell e_j^1 , let $\Phi_j: D^1 \to X$ be the corresponding characteristic map. Depending on whether both endpoints of $D^1 \simeq [0,1]$ are attached to $p \in X^0$ or just one, choose an open set U_j of one or both endpoints of the form $[0,\varepsilon)$, $(1-\varepsilon,1]$, or $[0,\varepsilon) \cup (1-\varepsilon,1]$. Then $\Phi_j(U_j)$ is a contractible open neighbourhood of p.

From here, we cover X with the 1-cells, along with all of the contractible $\Phi_j(U_j)$. Let $R_t^j: X \to X$ be the homotopy which shrinks $\Phi_j(U_j)$ to p and stretches $\Phi_j([0,1]-U_j)$ so that $[0,1]-U_j$ is mapped homeomorphically onto all of $\overline{e_j^1}$, with the endpoint (or endpoints) in ∂U_j taken to p. We note that we can partition [0,1] into a finite collection on intervals $[s_j,s_{j+1}]$ taken by γ into one of the open sets described (by the Lebesgue number lemma). This allows us to write γ as a (finite) product of paths in each of the open sets, $\beta_1 \star \cdots \star \beta_n$.

Let R_t be the concatenation of all homotopies R_t^j . We note that R_t will fix the basepoint x_0 of γ , which is assumed to be a 0-cell, so $R_t \circ \gamma$ is a path-homotopy, so

$$\gamma \simeq R_1 \circ \gamma = R_1 \circ (\beta_1 \star \cdots \star \beta_n) = (R_1 \circ \beta_1) \star \cdots \star (R_1 \circ \beta_n)$$
 (7)

which has the effect of shrinking the β_k contained in some $\Phi_j(U_j)$ to a point and stretching β_k in e_j^1 to the closure $\overline{e_j^1}$. Thus, without loss of generality, we can assume that γ is path-homotopic to a composition of

paths each of which is contained in some $\overline{e_j^1}$. Moreover, by combining neighbouring paths in the composition which lie in the same cell-closure, we can assume that the endpoints of each β_k are the endpoints of a cell. Depending on whether these endpoints are the same or different, we can use a straight-line homotopy, which preserves endpoints, taking β_k to its single endpoint, or the path going from one endpoint to the other. This gives us the desired result: γ is path-homotopic to a finite composition of paths traversing the edges of the cell-complex.

B. Section 1.2

Before jumping into the exercises of this section, we find it necessary to provide our own brief proof of Seifert Van-Kampen, following both the detailed treatment of Munkres and the brief treatment of Hatcher.

Definition II.1. Let G be a group. A word in G is an element of the set of finite-length tuples of elements of W(G), of the form (g_1, \ldots, g_n) . A word (g_1, \ldots, g_n) represents $g \in G$ if $g_1 \cdots g_n = g$.

Definition II.2 (Free product). Given a collection of subgroups $\{G_{\alpha}\}_{{\alpha}\in J}$, we say that a word (g_1,\ldots,g_n) is a word in these subgroups if each g_j is in some G_{α} . We say that (g_1,\ldots,g_n) is reduced if $g_j\neq 1$ for all j and adjacent g_j and g_{j+1} are contained in distinct G_{α} . We say that G is a *free product* of the G_{α} if $G_{\alpha}\cap G_{\beta}=\{1\}$ for $\alpha\neq\beta$ and each $g\in G$ is represented by a *unique* reduced word in the G_{α} .

Lemma II.1. Let G be a group with subgroups $\{G_{\alpha}\}_{{\alpha}\in J}$, let (w_1,\ldots,w_{ℓ}) be a word in the G_{α} representing w. Then there exists a reduced word representing w which can be obtained from (w_1,\ldots,w_{ℓ}) be removing all instances of 1 and then performing a finite sequence of mappings

$$(w_1, \dots, w_\ell) \mapsto (w_1, \dots, w_{n-1}, w_n w_{n+1}, w_{n+2}, \dots, w_\ell)$$
 when $w_n, w_{n+1} \in G_\alpha$ and $w_n w_{n+1} \neq 1$ (8)

$$(w_1, \dots, w_\ell) \mapsto (w_1, \dots, w_{n-1}, w_{n+2}, \dots, w_\ell)$$
 when $w_n, w_{n+1} \in G_\alpha$ and $w_n w_{n+1} = 1$ (9)

Proof. Of course, removing instances of 1 does not change the element of G that (w_1, \ldots, w_ℓ) represents, so without loss of generality, assume $w_j \neq 1$ for all j. Additionally, the above operations do not change the element of G that the word represents. If (w_1, \ldots, w_ℓ) is a word such that *neither* of the above operations can be performed, we must have all adjacent w_j in distinct G_α , so (w_1, \ldots, w_ℓ) is reduced. Since the above operations strictly reduce the length of the word, it follows by induction on the length of the word that the claim holds.

Proposition II.1 (Extension property of free products). Suppose G is a free product of $\{G_{\alpha}\}_{{\alpha}\in J}$. Then if H is another group, and $\varphi_{\alpha}:G_{\alpha}\to H$ are homomorphisms, there is a unique homomorphism $\Phi:G\to H$ such that $\Phi|_{G_{\alpha}}=\varphi_{\alpha}$.

Proof. If G is a free product of the G_{α} , given $g \in G$ there is a unique reduced word in the G_{α} , called (g_1, \ldots, g_n) such that $g_1 \cdots g_n = g$. Define $\Phi(g) = \varphi_{\alpha_1}(g_1) \cdots \varphi_{\alpha_n}(g_n)$ where $g_j \in G_{\alpha_j}$. To check that this is a homomorphism, take some h represented by reduced word (h_1, \ldots, h_m) with $h_j \in G_{\beta_j}$. We have

$$\Phi(g)\Phi(h) = \varphi_{\alpha_1}(g_1)\cdots\varphi_{\alpha_n}(g_n)\varphi_{\beta_1}(h_1)\cdots\varphi_{\beta_m}(h_m)$$
(10)

Consider the word $w = (g_1, \ldots, g_n, h_1, \ldots, h_m)$. This word represents gh, which has a unique reduced representation. As was explained earlier, we can obtain this unique reduced representation by performing a finite sequence of manipulations to w:

$$(w_1, \dots, w_\ell) \mapsto (w_1, \dots, w_{n-1}, w_n w_{n+1}, w_{n+2}, \dots, w_\ell)$$
 when $\gamma_n = \gamma_{n+1}$ and $w_n w_{n+1} \neq 1$ (11)

$$(w_1, \dots, w_\ell) \mapsto (w_1, \dots, w_{n-1}, w_{n+2}, \dots, w_\ell)$$
 when $\gamma_n = \gamma_{n+1}$ and $w_n w_{n+1} = 1$ (12)

It is easy to see that none of these moves

Remark II.1. Conversely, if G satisfies this extension property for some collection of homomorphisms $\varphi_{\alpha}: G_{\alpha} \to H$ from subgroups, then G is a free product of the G_{α} . This proof is harder.

Definition II.3 (External free products).

We have defined what an external free product of a collection of groups is, but the question still remains as to whether they even *exist*. As it turns out, they do.

Proposition II.2 (Existence of external free products).

Remark II.2.

Proposition II.3 (Extension property of external free products).

III. Section 1.3

IV. Chapter 2

A. Section 2.2

Solution IV.1 (Problem 2.2.43). First, let us state what it means for a chain complex to split into a direct sum. If we consider the chain complex of groups C_n , it splits into a direct sum of chain complexes of groups A_n and B_n if we have a diagram

where each of the vertical sequences is short exact and splits, that is $C_n \simeq A_n \oplus B_n$ for all n. As a first step, consider the short exact sequence

$$0 \longrightarrow \operatorname{Ker}(\partial) \longrightarrow C_n \longrightarrow \operatorname{Im}(\partial) \longrightarrow 0$$

where the C_n are free Abelian groups. Because C_n is free Abelian, it has a basis $\{x_{\alpha}^{(n)}\}_{\alpha\in J}$ where each subgroup $C_{n,\alpha}=\langle x_{\alpha}^{(n)}\rangle$ is infinite cyclic and C is the direct sum of the $C_{n,\alpha}$. Let $I\subset J$ be the collection of α such that $\partial x_{\alpha}^{(n)}=0$ and let K=J-I. We define a family of homomorphisms $\phi_{\alpha}:C_{n,\alpha}\to \mathrm{Ker}(\partial)$ as follows: if $\alpha\in I$, then $\phi_{\alpha}=\iota$, inclusion, and if $\alpha\in K$, then $\phi_{\alpha}=0$. It then follows from the extension property of the direct sum that we can extend this family of homomorphisms uniquely to a homomorphism $\Phi:C_n\to\mathrm{Ker}(\partial)$ which restricts to the ϕ_{α} on the subgroups. It is clear that $\Phi\circ\iota=\mathrm{id}$, so from the splitting lemma, our short exact sequence splits and we have $C_n\simeq\mathrm{Ker}(\partial)\oplus\mathrm{Im}(\partial)$.

This procedure gives us the following commutative diagram

If we let $K_n = \text{Ker}(\partial_n)$ and $L_{n+1} = \text{Im}(\partial_{n+1})$, then this diagram becomes

so that the direct sum of the complexes in the bottom and top row is $0 \to L_{n+1} \to C_n \to K_{n-1} \to 0$. We can repeat this process inductively to write the entire chain complex as an iterated direct sum of length-at-most-2 subcomplexes.

Moving on to Part B, let us assume that each of the C_n are finitely generated.