

指导单位:

主办单位: \$\int_Gability GreatIPS Community OOPSA Open OPS Alliance

大会时间: 2019年4月12日-13日

大会地址:深圳市南山区圣淘沙大酒店(翡翠店)

云计算时代携程的网络架构变迁

Ctrip Network Architecture Evolution In the Cloud Computing Era

赵亚楠 携程资深架构师

Yanan Zhao, Senior Architect @Ctrip

About Me

- Join Ctrip Cloud @2016
- Currently Lead Ctrip Cloud Network & Storage Team
- Focus
 - Networking
 - Distributed storage
- Blog: https://arthurchiao.github.io

目录

- About Ctrip Cloud
- 1 VLAN-based L2 Network
- 2 SDN-based Large L2 Network
- **3** K8S & Hybrid Network
- 4 Cloud Native Solutions

0. About Ctrip Cloud

- Cloud team
 - ~2013
 - OpenStack / Baremetal / Mesos / K8S
- CDOS: unified resource management
- Private cloud
 - VM, BM, Container
- Public cloud
 - Vendors: AWS / Tecent / UCloud / others
 - VM, Container

Fig 1. Ctrip Datacenter Operating System (CDOS)

0. About Ctrip Cloud

Fig 2. Ctrip network architecture evolution

- OpenStack-based private cloud
 - ~ 2013
 - VM and BM
- Network requirements
 - High Performance
 - Instance-to-instance latency, throughput, etc
 - L2 isolation
 - Routable instance IP
 - Security requirements less critical

Bare Metal

- Solution
 - Based on OpenStack "provider network" model [1]
- Advantages
 - Network GW on HW device
 - Instance IP routable
 - Higher performance
 - No overlay encapsulation/decapsulation
 - Routing by HW device

Fig 3. Provider network model in OpenStack

- Other aspects
 - L2 segmentation: VLAN
 - ML2: OVS
 - L2 Agent : Neutron OVS Agent
 - L3 Agent: NO
 - DHCP: NO
 - Floating IP: NO
 - Security Group: NO

Fig 3. Provider network model in OpenStack

Fig 4. Physical network topology in data center

Fig 5. Designed virtual network topology within a compute node

Fig 6. Virtual network topology within a compute host in legacy OpenStack

Advantages

- Fewer OpenStack components
 - No L3 agent、DHCP agent、neutron metadata agent、network node
 - Ease of Dev & Ops
- Fewer hops in traffic path, lower latency
 - Instance-to-instance: 24 -> 18 hops
- GW on HW device, higher performance compared with SW solution
- Instance IP routable, benefit tracking & monitoring systems
- Disadvantages
 - Security: no security group (compensated by HW firewall)
 - Automation: network/subnet provision relies on HW configuration

- New challenges
 - ~2016
 - Hierarchical network topology: hard to scale
 - Core router: the potential bottleneck, large failure radius
 - Host throughput ceiling: 2 x 1Gbps physical NIC
 - Flooding in large VLAN segments
 - VLAN hard limit: 4096
 - Multi-tenancy & VPC needs
 - Automatic network provision needs

- Solution
 - HW + SW
 - OpenStack + SDN
- Spine-Leaf topology [2]
 - Shorter traversing path
 - Full-mesh connectivity
 - Ease of expansion
 - More resilient to HW failures
- 2 x 10/25Gbps/NIC for each host

Fig 7. Network topology in new data center: Spine-Leaf

- Custom SDN solution
- Separated control & data plane [2]
 - Data plane: VxLAN
 - Control plane: MP-BGP-EVPN
- Distributed GW
- Multi-Tenancy

Fig 7. Network topology in new data center: Spine-Leaf

- CNC: Ctrip Network Controller
 - Central SDN controller
 - Mange all Spine and Leaf nodes
 - Dynamic configurations to Spine/Leaf
 - Integration with Neutron server
- Neutron server
 - Add CNC ML2 & L3 plugins
 - New finite state machine (FSM) for port status
 - New APIs interact with CNC
 - DB schema changes

Fig 8. Monitoring panel for the neutron ports' states

Fig 9. HW + SW topology of the designed SDN solution

Fig 10. Network setup steps during instance spawning

- Summary
 - HW
 - Shorter traversing path in physical network
 - Distributed gateway
 - More resilient to HW failures, ease of expansion
 - SW
 - Central SDN controller, integrate with Neutron via plugins
 - Dynamic configuration to HW devices
 - Support both VM and BM provision
 - Multi-tenancy & VPC support

GOPS 2019 shenzhen

- Container platform
 - ~2017
 - Migrate some apps from VM/BM to container
- Container platform characteristics
 - Large scale instances, 10K ~ 100K containers per cluster
 - Higher deploy/destroy frequencies
 - Shorter spawn/destroy time: ~10s (VM: ~100s)
 - Container failure/drifting is the norm rather than exception

GOPS 2019 shenzhen

- Network Requirements
 - High performance, concurrent network APIs
 - Compatibility with existing systems
 - · Container drifting with the same IP
 - Host agent/binary
 - Fast add/delete network for containers
- Solution: extend SDN to support Mesos/K8S
 - Reuse existing infrastructures
 - Neutron, CNC, OVS, Neutron-OVS-Agent
 - Develop a CNI plugin for neutron

- Neutron changes
 - New APIs
 - Allocate port by network labels
 - Performance Optimization
 - Bulk port API
 - Database access optimizations
 - Async API for high concurrency
 - Critical path refactor
 - Backport new features from upstream
 - Graceful OVS agent restart

- K8S CNI plugin for neutron
 - Counterpart of the libvirt network driver in VM provision
 - Create veth pair, attach to OVS and container netns
 - Configure MAC, IP, GW, etc
 - Update port to neutron server
- Existing network services/components upgrade
 - OVS: 2.3.1 LTS -> 2.5.6 LTS
 - ovs-vswitchd 100% CPU bug [3]
 - OVS port mirror bug [4]

Fig 11. Pod drifting with the same IP within a K8S cluster

- Summary
 - Quickly integrate container platform into existing infra
 - Single global IPAM manages VM/BM/container network
- Current deployment scale
 - 4 availability zones (AZ)
 - Up to 500+ physical nodes (VM/BM/Container hosts) per AZ
 - Up to 500+ instances per host
 - Up to 20K+ instances per AZ

Fig 12. Layered view of the future network architecture

- Global deployment needs
 - ~2018
 - Private overseas DC: long design & building period
 - Public cloud vendors: quickly integrate into current (private cloud) infra
- Solution
 - VM/BM instances from public cloud vendors
 - Custom deployed and maintained K8S clusters
 - CDOS API: abstract vendor-specific details
 - Networking solution

- Network solution for K8S cluster (AWS)
 - Global IPAM
 - CNI
 - plug/unplug ENI to EC2 [5, 6]
 - Support attach/detach floating IP
- Sub-IP
 Primary-IP
 ENI

- ENI
 - As Pod network interface
 - One ENI dedicated to one Pod
 - Drifting with Pod
- IP drifts with Pod

Fig 13. K8S network solution on public cloud vendor (AWS)

- Global networking
 - VPC
 - Private cloud
 - Public cloud vendors
 - Non-overlapped CIDR from private cloud VPC
 - Interconnect private & public VPC with Direct Connect
 - IP routable between private & public cloud if needed

Fig 14. VPCs distributed over the globe

- New challenges faced
 - IPAM
 - Central IPAM may be the new bottleneck
 - Neutron is not designed for performance
 - Cloud native: prefer local IPAM (IPAM per host)
 - Large failure radius: IP drifting among entire AZ
 - Dense deployment of containers will hit HW limit of leaf nodes
 - Increasingly strong host firewall (L4-L7) needs
- Candidates
 - Calico/Cilium/Others

- Brand-new solution [7]
- Kernel 4.8+
- eBPF/BPF: extended Berkeley Packet Filter
- BPF-based connectivity & security
- L4-L7 network policy
- Components
 - CLI
 - Plugin for orchestrator integration
 - Policy repository
 - Host agent

Fig 15. Cilium

- Host Networking
 - Per-host CIDR
 - Gateway on host device
 - Inst-to-inst: BPF + Kernel Stack L2 forward
 - Inst-to-host: BPF + L3 Routing
- Cilium Agent
 - Listen endpoint changes
- CNI plugin
 - Create & configure veth pair
 - Generate BPF code

Fig 16. Cilium host networking

- Multi-host networking
 - VxLAN
 - Overlay
 - Software VTEP in host
 - BGP
 - Private cloud
 - Public cloud BGP API

- Advantages
 - K8S-native L4-L7 security policy support
 - High performance network policy enforcement
 - Theoretical complexity: BPF O(1) vs iptables O(n)
 - High performance forwarding plane (veth pair, IPVLAN)

- Dual stack support (IPv4/IPv6)
- Support run over flannel (Cilium only handles network policy)
- Active community
 - Development driven by a company
 - Core developers from kernel community

- Disadvantages
 - Latest kernel (4.8+ at least, 4.14+ better)
 - Not enough user stories & best practices yet
 - Higher dev & ops cost
 - Kernel stack (data structure, packet traversing path, etc)
 - BPF knowledge
 - Not enough trouble shooting tools (e.g. tracing, debug)
- Have a try and find the fun!

Q & A

References

- 1. OpenStack Doc: Networking Concepts, https://docs.openstack.org/neutron/rocky/admin/intro-os-networking.html
- Cisco Data Center Spine-and-Leaf Architecture: Design Overview,
 https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-737022.pdf
- 3. ovs-vswitchd: Fix high cpu utilization when acquire idle lock fails, https://mail.openvswitch.org/pipermail/ovs-dev/2014-October/290600.html
- 4. openvswitch port mirroring only mirrors egress traffic, https://bugs.launchpad.net/cloud-archive/+bug/1639273
- 5. Lyft CNI plugin, https://github.com/lyft/cni-ipvlan-vpc-k8s
- 6. Netflix: run container at scale, https://www.slideshare.net/aspyker/container-world-2018
- 7. Cilium Project, https://cilium.io/
- 8. Cilium Cheat Sheet, https://arthurchiao.github.io/blog/cilium-cheat-sheet/
- 9. Cilium Code Walk Through: CNI Create Network, https://arthurchiao.github.io/blog/cilium-code-walk-through-create-network/

Thanks

高效运维社区 开放运维联盟

荣誉出品

