3-2-2.다항함수의 정적분

수학 계산력 강화

(2)정적분으로 정의된 함수

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2019-03-15

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

적분 구간이 상수인 경우

 $f(x) = g(x) + \int_a^b f(t)dt(a, b$ 는 상수)의 꼴일 때, 함수 $\Rightarrow \int_{-a}^{b} f(t) dt = k(k$ 는 상수)로 놓고 f(x) = g(x) + k임을

 $lacksymbol{\square}$ 임의의 실수 x에 대하여 함수 f(x)가 주어진 식을 만족할 때, f(1)의 값을 구하여라.

1.
$$f(x) = 2x + \int_0^2 f(t) dt$$

2.
$$f(x) = 12x - 2 + 2 \int_0^1 f(t) dt$$

3.
$$f(x) = x^2 - x + \int_0^2 f(t) dt$$

4.
$$f(x) = x^2 - 2x + 3 \int_0^1 f(t) dt$$

5.
$$f(x) = 3x^2 + x + \int_0^2 f(t)dt$$

6.
$$f(x) = 3x^2 + 2x + 2\int_0^1 f(t)dt$$

7.
$$f(x) = 3x^2 + 4x - \int_0^2 f(t) dt$$

8.
$$f(x) = -3x^2 + 2x + \int_0^2 f(t)dt$$

9.
$$f(x) = 2x - 3 \int_{0}^{2} f(t) dt$$

10.
$$f(x) = x^3 - 2x + \int_0^1 f'(y) dy$$

11.
$$f(x) = x^3 - 4x^2 + 3x \int_0^1 f(t) dt$$

12.
$$f(x) = x^2 - 2x + \int_0^1 tf(t) dt$$

13.
$$f(x) = x^2 - 3x + \int_0^1 tf(t) dt$$

02 / 적분 구간에 변수가 있는 경우

- (1) $\int_{-x}^{x} f(t)dt = g(x)$ 의 꼴일 때, 함수 f(x)는
 - \Rightarrow 양변을 x에 대하여 미분하고 $\int_a^a f(t)dt = 0$ 임을
- (2) $\int_{-x}^{x} (x-t)f(t)dt = g(x)$ 의 꼴일 때, 함수 f(x)는
- \Rightarrow 좌변을 $x\int_{a}^{x}f(t)dt-\int_{a}^{x}tf(t)dt$ 로 변형한 후 양변을 x에 대하여 미분한다.
- $oldsymbol{\square}$ 모든 실수 x에 대하여 다음 등식이 성립할 때, f(x)를 구하여

14.
$$\int_{1}^{x} f(t) dt = 2x^{2} - 3x$$

15.
$$\int_{0}^{x} f(t) dt = x^{3} - 1$$

16.
$$\int_0^x f(t) dt = x^3 + 5x^2 - 4x + 1$$

 $oldsymbol{\square}$ 임의의 실수 x에 대하여 다음을 만족하는 상수 a의 값과 다항 함수 f(x)를 각각 구하여라.

17.
$$\int_{a}^{x} f(t)dt = x^{2} - 4x + 4$$

18.
$$\int_{a}^{x} f(t)dt = x^2 + 3x - 4$$

19.
$$\int_{a}^{x} f(t)dt = x^{2} + 6x + 9$$

20.
$$\int_{a}^{x} f(t) dt = x^{3} + 1$$

21.
$$\int_{a}^{x} f(t)dt = x^{3} + 8$$

22.
$$\int_{a}^{x} f(t)dt = x^3 - 1$$

23.
$$\int_{a}^{x} f(t)dt = x^{3} + x^{2} - ax - 1$$

24.
$$\int_{a}^{x} f(t)dt = x^{3} - x^{2} - x + a$$
 (단, a는 양수)

☑ 다음 물음에 답하여라.

25. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{0}^{x} f(t) dt = x^2 - ax - 6$ 을 만족할 때, f(5)의 값을 구하여라. (단, a는 상수이다.)

26. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{1}^{x} f(t) dt = x^{2} + 2ax - a$ 을 만족할 때, f(5)의 값을 구하여라. (단, a는 상수이다.)

- 27. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{-x}^{x} f(t)dt = x^3 + x^2 + ax$ 를 만족할 때, f(1)의 값을 구하여라. (단, a는 상수)
- **28.** 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{-1}^{x} f(t)dt = x^3 - 2x^2 + ax + 1$ 을 만족할 때, f(1)의 값을 구하여라. (단, a는 상수)

29. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{1}^{x} f(t) dt = x^{3} - 2ax^{2} + ax$ 를 만족할 때, f(3)의 값 을 구하여라. (단, a는 상수이다.)

30. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{-1}^{x} f(t)dt = x^4 + x^3 - 2ax$ 를 만족할 때, f(1)의 값을 구하여라. (단, a는 상수이다.)

31. 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{0}^{x} (t-1)f(t)dt = x^3 - x^2 - x + a$ 를 만족할 때, f(1)의 값을 구하여라. (단, a는 상수)

 $\mathbf{32.}$ 다항함수 f(x)가 임의의 실수 x에 대하여 $\int_{0}^{x} (t+1)f(t)dt = x^3 + x^2 - x + a$ 를 만족할 때, f(1)의 값을 구하여라. (단, a는 상수이다.)

☑ 다음 물음에 답하여라.

- 33. 임의의 실수 x에 대하여 다항함수 f(x)가 $x^2 f(x) = 2x^6 - x^4 + 2 \int_{1}^{x} t f(t) dt$ 만족할 때, f(-1)의 값을 구하여라.
- **34.** 임의의 실수 x에 대하여 다항함수 f(x)가 $x^{2}f(x) = 3x^{6} - x^{4} + 2\int_{1}^{x} tf(t) dt$ 만족할 f(-1)의 값을 구하여라.
- **35.** 임의의 실수 x에 대하여 다항함수 f(x)가 $xf(x) = x^4 - 2x^2 + \int_{-\pi}^{x} tf'(t)dt$ 를 만족할 때, f(2)의 값을 구하여라. (단, a는 상수이다.)

36. 임의의 실수 x에 대하여 다항함수 f(x)가 $xf(x) = \frac{2}{3}x^3 + \int_{-x}^{x} f(t)dt, \ f(0) = 0$ 을 만족할 때, f(3)의 값을 구하여라. (단, a는 상수이다.)

- **37.** 1보다 큰 실수 $\int_{1}^{x}(x-t)f(t)dt=x^{4}-2x^{2}+1$ 이 성립할 때, f(1)의 값을 구하여라.
- **38.** 임의의 실수 x에 대하여 $f(x) = 3x^2 + \int_0^1 (2x-1)f(t)dt$ 를 만족할 $\int_{0}^{1} f(x) dx$ 의 값을 구하여라.

03 / 정적분으로 정의된 함수의 극대·극소

 $f(x) = \int_{a}^{x} g(t)dt$ (a는 상수)로 정의된 다항함수 f(x)의

 \Rightarrow 양변을 x에 대하여 미분한 후 f'(x) = 0을 만족시키는 x의 값을 구한다.

- ☑ 다음 물음에 답하여라.
- **39.** 함수 $f(x) = \int_{0}^{x} (t^2 + t 2) dt$ 의 극솟값을 구하여
- **40.** 함수 $f(x) = \int_{0}^{x} (t^2 2t 3) dt$ 의 극댓값을 구하여 라.
- **41.** 함수 $f(x) = \int_{1}^{x} (t^2 4t + 3) dt$ 의 극댓값과 극솟값 의 합을 구하여라.

- **42.** 함수 $f(x) = \int_{0}^{x} (t^2 6t + 8) dt$ 의 극댓값을 구하여
- **43.** $0 \le x \le 5$ 에서 정의된 함수 y = f(x)의 그래프가 다음 그림과 같다. $F(x) = \int_{0}^{x} f(t)dt$ 의 극솟값을 구 하여라.

주어진 닫힌구간에서 f'(x)=0이 되는 x의 값과 양 끝 값에서의 함숫값 중 최댓값과 최솟값을 찾는다.

- 다음 물음에 답하여라.
- **44.** 구간 [-1,0]에서 함수 $f(x) = \int_{-\infty}^{x+1} (t^2 + t) dt$ 의 최솟값을 구하여라.
- **45.** 이차함수 y = f(x)의 그래프가 다음 그림과 같을 때, 구간 [-1,2]에서 함수 $F(x) = \int_{0}^{x} f(t)dt$ 의 최솟 값을 구하여라.

46. f(0) = 2인 함수 f(x)의 도함수 y = f'(x)의 그래 프가 다음 그림과 같다. 함수 $F(x) = \int_{0}^{1} f(x-t)dt$ 의 최솟값을 구하여라.

05 / 정적분으로 정의된 함수의 극한

(1)
$$\lim_{x \to a} \frac{1}{x-a} \int_{a}^{x} f(t)dt = f(a)$$

(2)
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{x+a} f(t)dt = f(a)$$

☑ 다음 극한값을 구하여라.

47.
$$\lim_{h\to 0} \frac{1}{h} \int_0^h (x^2 + 2x - 8) \, dx$$

48.
$$\lim_{x \to 1} \frac{1}{x-1} \int_{1}^{x} (x-1)(x+3) dx$$

ightharpoons f(x)의 한 부정적분을 F(x)라고 할 때, 다음 극한값을 구하여

49.
$$f(x) = x^2 + 2x - 1$$
일 때, $\lim_{x \to 0} \frac{1}{x} \int_{0}^{x} f(t) dt$ 의 값

50.
$$f(x) = (x-1)^3$$
일 때, $\lim_{x\to 0} \frac{1}{x} \int_0^x f(t)dt$ 의 값

51.
$$f(x) = x^3 - 4x^2 + 5x - 2$$
일 때, $\lim_{x \to 1} \frac{1}{x - 1} \int_1^x f(t) dt$ 의 값

52.
$$f(x) = (x+1)^3$$
일 때, $\lim_{x \to 1} \frac{1}{x-1} \int_1^x f(t) dt$ 의 값

53.
$$f(x) = 4x^2 - 3x + 1$$
일 때, $\lim_{x \to 1} \frac{1}{x^2 - 1} \int_{1}^{x} f(t) dt$ 의 값

54.
$$f(x) = x^3 + 2x^2 + x$$
일 때, $\lim_{x \to 1} \frac{1}{x^2 - 1} \int_1^x f(t) dt$ 의 값

55.
$$f(x) = x^2 + 3x - 2$$
일 때, $\lim_{x \to 2} \frac{1}{x^2 - 4} \int_2^x f(t) dt$ 의 값

56.
$$f(x) = 4x - 3$$
일 때, $\lim_{x \to 0} \frac{1}{x} \int_{1}^{1+x} f(t) dt$ 의 값

57.
$$f(x) = 2x^2 + 3x + 1$$
일 때, $\lim_{h\to 0} \frac{1}{h} \int_{1}^{1+h} f(x) dx$ 의 값

58.
$$f(x) = 3x^2 + 1$$
일 때, $\lim_{x \to 0} \frac{1}{2x} \int_{3}^{3+x} f(t) dt$ 의 값

59.
$$f(x) = \int_0^x (3t^2 - 2t + 1) dt$$
일 때,
$$\lim_{h \to 0} \frac{f(1+h) - f(1-h)}{2h}$$
의 값

60.
$$f(x) = x^3 - 4x^2 + 1$$
일 때, $\lim_{x \to 2} \frac{1}{x - 2} \int_{4}^{x^2} f(t) dt$ 의 값

61.
$$f(x) = 2x^2 - x + 2$$
일 때,
$$\lim_{x \to 1} \frac{x^2 + 3x + 1}{x - 1} \int_{1}^{x^2} f(t) dt$$
의 값

$$1) -2$$

$$\Rightarrow \int_{0}^{2} f(t)dt = k (k = k)$$

라 하면
$$f(x) = 2x + k$$

이것을 🗇에 대입하면

$$\int_{0}^{2} (2t+k)dt = k, \ \left[t^{2} + kt\right]_{0}^{2} = k, \ 4 + 2k = k$$

따라서
$$f(x) = 2x - 4$$
이므로 $f(1) = -2$

$$\Rightarrow \int_{0}^{1} f(t)dt = k (k = \%)$$

라 하면
$$f(x) = 12x - 2 + 2k$$

이것을 ⊙에 대입하면

$$\int_0^1 (12t - 2 + 2k) dt = k, \ \left[6t^2 - 2t + 2kt \right]_0^1 = k$$

$$6-2+2k=k$$

$$\therefore k = -4$$

따라서
$$f(x) = 12x - 10$$
이므로 $f(1) = 2$

3)
$$-\frac{2}{3}$$

라 하면
$$f(x) = x^2 - x + k$$

이것을 ③에 대입하면

$$\int_{0}^{2} (t^{2} - t + k) dt = k, \ \left[\frac{1}{3} t^{3} - \frac{1}{2} t^{2} + kt \right]_{0}^{2} = k$$

$$\frac{8}{3} - 2 + 2k = k$$
 : $k = -\frac{2}{3}$

$$\therefore k = -\frac{c}{c}$$

따라서
$$f(x) = x^2 - x - \frac{2}{3}$$
이므로 $f(1) = -\frac{2}{3}$

라 하면
$$f(x) = x^2 - 2x + 3k$$

이것을 🗇에 대입하면

$$\int_{0}^{1} (t^{2} - 2t + 3k) dt = k, \left[\frac{1}{3} t^{3} - t^{2} + 3kt \right]_{0}^{1} = k$$

$$\frac{1}{3} - 1 + 3k = k$$
, $2k = \frac{2}{3}$ $\therefore k = \frac{1}{3}$

$$\therefore k = -$$

따라서
$$f(x) = x^2 - 2x + 1$$
이므로

$$f(1) = 0$$

$$5) -6$$

$$f(x) = 3x^2 + x + k$$

이것을 🗇에 대입하면

$$\int_{0}^{2} (3t^{2} + t + k) dt = k$$

$$\left[t^{3} + \frac{1}{2}t^{2} + kt\right]_{0}^{2} = k$$

$$8+2+2k=k$$
 : $k=-10$

따라서
$$f(x) = 3x^2 + x - 10$$
이므로

$$f(1) = -6$$

$$\Rightarrow \int_{0}^{1} f(t)dt = k \ (k는 상수) \cdots \square 으로 놓으면$$

$$f(x) = 3x^2 + 2x + 2k$$

이것을 🗇에 대입하면

$$\int_{0}^{1} (3t^{2} + 2t + 2k) dt = k$$

$$[t^3 + t^2 + 2kt]_0^1 = k$$

$$1+1+2k=k \qquad \therefore k=-2$$

따라서
$$f(x) = 3x^2 + 2x - 4$$
이므로 $f(1) = 1$

7)
$$\frac{5}{3}$$

$$f(x) = 3x^2 + 4x - k$$

이것을 🗇에 대입하면

$$\int_{0}^{2} (3t^{2} + 4t - k) dt = k$$

$$[t^3 + 2t^2 - kt]_0^2 = k$$

$$8+8-2k=k$$
, $3k=16$ $\therefore k=\frac{16}{3}$

따라서
$$f(x) = 3x^2 + 4x - \frac{16}{3}$$
이므로

$$f(1) = \frac{5}{3}$$

$$\Rightarrow \int_0^2 f(t)dt = k \ (k는 상수) \cdots ①으로 놓으면$$

$$f(x) = -3x^2 + 2x + k$$

이것을 🗇에 대입하면

$$\int_{0}^{2} (-3t^{2} + 2t + k)dt = k$$

$$\left[-t^{3}+t^{2}+kt\right]_{0}^{2}=k$$

$$-8+4+2k=k :: k=4$$

따라서
$$f(x) = -3x^2 + 2x + 4$$
이므로

$$f(1) = -3 + 2 + 4 = 3$$

9)
$$\frac{2}{7}$$

 $k = [y^3 - 2y]_0^1 = -1$

 $\therefore k = \frac{13}{6}$

따라서
$$f(x) = x^3 - 4x^2 + \frac{13}{2}x$$
이므로 $f(1) = \frac{7}{2}$

$$f(1) = 1 - 2 - \frac{5}{6} = -\frac{11}{6}$$

- 14) f(x) = 4x 3⇒ 주어진 식의 양변을 x에 대하여 미분하면 f(x) = 4x - 3
- 15) $f(x) = 3x^2$ ⇒ 주어진 식의 양변을 x에 대하여 미분하면 $f(x) = 3x^2$
- 16) $f(x) = 3x^2 + 10x 4$ ⇒ 주어진 식의 양변을 x에 대하여 미분하면 $f(x) = 3x^2 + 10x - 4$
- 17) a=2, f(x)=2x-4 \Rightarrow 주어진 등식의 양변에 x = a를 대입하면 $\int_{a}^{a} f(t)dt = 0$ 이므로 $a^2 - 4a + 4 = (a-2)^2 = 0$, a = 2주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에서 $f(x) = (x^2 - 4x + 4)' = 2x - 4$ $\therefore a = 2, f(x) = 2x - 4$
- 18) a = -4 + 2 = 1, f(x) = 2x + 3 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면 $\int_{0}^{a} f(t)dt = 0$ 이므로 $a^2+3a-4=(a+4)(a-1)=0$ $\therefore a = -4 \quad \text{£} \quad a = 1$
- 주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여 $f(x) = (x^2 + 3x - 4)' = 2x + 3$
- 19) a = -3, f(x) = 2x + 6 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면 $\int_{0}^{a} f(t)dt = 0$ 이므로 $a^2 + 6a + 9 = (a+3)^2 = 0$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여

$$f(x) = (x^2 + 6x + 9)' = 2x + 6$$

20) a = -1, $f(x) = 3x^2$

 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면

$$\int_{a}^{a} f(t)dt = 0$$
이므로 $a^{3} + 1 = 0$ $\therefore a = -1$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여

$$f(x) = (x^3 + 1)' = 3x^2$$

21) a = -2, $f(x) = 3x^2$

 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면

$$\int_{a}^{a} f(t)dt = 0$$
이므로 $a^{3} + 8 = 0$: $a = -2$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여

$$f(x) = (x^3 + 8)' = 3x^2$$

22) a = 1, $f(x) = 3x^2$

 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면

$$\int_{a}^{a} f(t)dt = 0$$
이므로 $a^{3} - 1 = 0$, $a = 1$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에서

$$f(x) = (x^3 - 1)' = 3x^2$$

$$\therefore a = 1, f(x) = 3x^2$$

23) a = 1, $f(x) = 3x^2 + 2x - 1$

 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면

$$\int_{a}^{a} f(t)dt = 0$$
이므로 $a^{3} + a^{2} - a^{2} - 1 = 0$

$$a^3-1=0$$
 $\therefore a=1$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에서

$$f(x) = (x^3 + x^2 - x - 1)' = 3x^2 + 2x - 1$$

$$\therefore a = 1, f(x) = 3x^2 + 2x - 1$$

24) a=1. $f(x)=3x^2-2x-1$

 \Rightarrow 주어진 등식의 양변에 x=a를 대입하면

$$\int_{a}^{a} f(t)dt = 0$$
이므로 $a^{3} - a^{2} - a + a = 0$

$$a^3 - a^2 = 0$$
, $a^2(a-1) = 0$ $\therefore a = 1(\because a > 0)$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에서

$$f(x) = (x^3 - x^2 - x + 1)' = 3x^2 - 2x - 1$$

$$\therefore a = 1, f(x) = 3x^2 - 2x - 1$$

$$\Rightarrow \int_{2}^{x} f(t)dt = x^{2} - ax - 6$$
의 양변에 $x = 2$ 를 대입하

$$0 = 4 - 2a - 6$$
 : $a = -1$

$$\int_2^x f(t)dt = x^2 + x - 6$$
의 양변을 x 에 대하여 미분하면
$$f(x) = 2x + 1 \ \therefore f(5) = 2 \cdot 5 + 1 = 11$$

$$0 = 1 + 2a - a$$
 : $a = -1$

$$\int_{1}^{x} f(t)dt = x^{2} - 2x + 1$$
의 양변을 x 에 대하여 미분하면

$$f(x) = 2x - 2$$

$$\therefore f(5) = 2 \cdot 5 - 2 = 8$$

27) 3

$$\Rightarrow$$
 주어진 등식의 양변에 $x=1$ 을 대입하면

$$\int_{1}^{1} f(t)dt = 0$$
이므로 $0 = 1 + 1 + a$, $a = -2$

주어진 등식의 양변을 x에 대하여 미분하면 $f(x) = 3x^2 + 2x + a$

$$a = -2$$
를 대입하면 $f(x) = 3x^2 + 2x - 2$
 $\therefore f(1) = 3$

28) -1

 \Rightarrow 주어진 등식의 양변에 x=1을 대입하면

$$\int_{1}^{1} f(t)dt = 0$$
이므로 $0 = 1 - 2 + a + 1$, $a = 0$

주어진 등식의 양변을 x에 대하여 미분하면

$$f(x) = 3x^2 - 4x + a$$

$$a = 0$$
을 대입하면 $f(x) = 3x^2 - 4x$

$$\therefore f(1) = -1$$

$$\int_{1}^{1} f(t)dt = 1 - 2a + a, \ 0 = 1 - a \ \therefore a = 1$$

$$\int_{1}^{x} f(t)dt = x^3 - 2ax^2 + ax$$
의 양변을 x 에 대하여 미

$$\frac{d}{dx} \int_{1}^{x} f(t)dt = \frac{d}{dx} (x^3 - 2ax^2 + ax)$$

$$f(x) = 3x^2 - 4ax + a = 3x^2 - 4x + 1$$

$$\therefore f(3) = 27 - 12 + 1 = 16$$

30) 5

 \Rightarrow 주어진 등식의 양변에 x=1을 대입하면

$$\int_{1}^{1} f(t)dt = 0$$
이므로 $0 = 2 - 2a$: $a = 1$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여

$$f(x) = 4x^3 + 3x^2 - 2a = 4x^3 + 3x^2 - 2$$

$$f(1) = 4 + 3 - 2 = 5$$

31) 4

$$\int_{0}^{0} (t-1)f(t)dt = 0$$
이므로 $a=0$

주어진 등식의 양변을 x에 대하여 미분하면 $(x-1)f(x) = 3x^2 - 2x - 1 = (3x+1)(x-1)$ $\therefore f(x) = 3x + 1 \quad \therefore f(1) = 4$

 \Rightarrow 주어진 등식의 양변에 x=0을 대입하면

$$\int_{0}^{0} (t+1)f(t)dt = 0$$
이므로 $a=0$

주어진 등식의 양변을 x에 대하여 미분하면 정적분과 미분의 관계에 의하여

$$(x+1)f(x) = 3x^2 + 2x - 1 = (3x-1)(x+1)$$

따라서 $f(x) = 3x - 1$ 이므로 $f(1) = 2$

33) 1

$$\Rightarrow x^2 f(x) = 2x^6 - x^4 + 2 \int_{1}^{x} t f(t) dt \qquad \cdots \quad \bigcirc$$

의 양변을 미분하면

$$2xf(x) + x^2f'(x) = 12x^5 - 4x^3 + 2xf(x)$$

따라서 $f'(x) = 12x^3 - 4x$ 이므로

$$f(x) = 3x^4 - 2x^2 + C$$
 (C는 적분상수) ····· ©

한편, \bigcirc 의 양변에 x=1을 대입하면

$$f(1) = 2 - 1 + 2 \int_{1}^{1} t f(t) dt = 1 + 0 = 1$$

이므로 \bigcirc 에서 f(1) = 3 - 2 + C = 1따라서 $f(x) = 3x^4 - 2x^2$ 이므로 f(-1) = 1

34) 2

$$\Rightarrow x^2 f(x) = 3x^6 - x^4 + 2 \int_1^x t f(t) dt \cdots$$

 \bigcirc 의 양변에 x=1을 대입하면

$$f(1) = 3 - 1 + 2 \int_{1}^{1} tf(t) dt = 2 + 0 = 2 \cdots$$

○의 양변에 미분하면

$$2xf(x) + x^2f'(x) = 18x^5 - 4x^3 + 2xf(x)$$

$$\therefore f'(x) = 18x^3 - 4x$$

따라서
$$f(x) = \frac{9}{2}x^4 - 2x^2 + C$$

 \bigcirc 에서 $f(1) = 2 \circ | = 2 \circ |$

$$f(1) = \frac{9}{2} - 2 + C = 2$$
 :: $C = -\frac{1}{2}$

따라서
$$f(x) = \frac{9}{2}x^4 - 2x^2 - \frac{1}{2}$$
이므로

$$f(-1) = 2$$

35) 24

$$\Rightarrow xf(x) = x^4 - 2x^2 + \int_a^x tf'(t)dt$$
의 양변을 x 에 대하

여 미분하면

$$f(x) + xf'(x) = 4x^3 - 4x + xf'(x)$$

따라서
$$f(x) = 4x^3 - 4x$$
이므로 $f(2) = 24$

36) 9

$$f(x) + xf'(x) = 2x^2 + f(x)$$

따라서
$$f'(x) = 2x$$
이므로

$$f(x) = x^2 + C$$
 (C는 적분상수)

이때,
$$f(0) = 0$$
이므로 $C = 0$ 에서 $f(x) = x^2$
 $\therefore f(3) = 9$

37) 8

$$\Rightarrow \int_{1}^{x} (x-t)f(t)dt = x^{4} - 2x^{2} + 1 \text{ on } \forall t$$

$$x \int_{1}^{x} f(t)dt - \int_{1}^{x} tf(t)dt = x^{4} - 2x^{2} + 1$$

 \bigcirc 의 양변을 x에 대하여 미분하면

$$\int_{1}^{x} f(t)dt + xf(x) - xf(x) = 4x^{3} - 4x$$

$$\therefore \int_{1}^{x} f(t)dt = 4x^{3} - 4x \qquad \cdots$$

©의 양변을 x에 대하여 미분하면 $f(x) = 12x^2 - 4$ 이 므로 f(1) = 8

라 하면 $f(x) = 3x^2 + (2x-1)k = 3x^2 + 2kx - k$ 이것을 🗇에 대입하면

$$\int_{0}^{1} (3t^{2} + 2kt - k) dt = k, \ \left[t^{3} + kt^{2} - kt \right]_{0}^{1} = k$$

$$1+k-k=k \qquad \qquad \therefore \quad k=1$$

$$\therefore \int_{0}^{1} f(x) dx = \int_{0}^{1} f(t) dt = k = 1$$

39)
$$-\frac{7}{6}$$

$$\ \ \, \mathop{\Longrightarrow} \ f(x) = \int_0^x (t^2 + t - 2) dt$$
의 양변을 x 에 대하여 미

분하면
$$f'(x) = x^2 + x - 2 = (x+2)(x-1)$$

$$f'(x) = 0$$
에서 $x = -2$ 또는 $x = 1$

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x	•••	-2	•••	1	•••
f'(x)	+	0	_	0	+
f(x)	7	극대	×	극소	7

따라서 함수 f(x)는 x=1에서 극소이므로 극솟값은

$$f(1) = \int_0^1 (t^2 + t - 2) dt = \left[\frac{1}{3} t^3 + \frac{1}{2} t^2 - 2t \right]_0^1 = -\frac{7}{6}$$

40)
$$\frac{5}{3}$$

$$\Leftrightarrow f(x) = \int_0^x (t^2 - 2t - 3) dt$$
의 양변을 x 에 대하여 미

$$f'(x) = x^2 - 2x - 3 = (x+1)(x-3)$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 3$

x	•••	-1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	7	극대	7	극소	7

따라서 함수 f(x)는 x=-1에서 극대이므로 극댓값

$$f(-1) = \int_{0}^{-1} (t^2 - 2t - 3) dt$$

$$= \left[\frac{1}{3}t^3 - t^2 - 3t\right]_0^{-1} = \frac{5}{3}$$

41)
$$-\frac{4}{3}$$

$$\Rightarrow f(x) = \int_1^x (t^2 - 4t + 3) dt$$
의 양변을 x 에 대하여 미

분하면
$$f'(x) = x^2 - 4x + 3 = (x-1)(x-3)$$

$$f'(x) = 0$$
에서 $x = 1$ 또는 $x = 3$

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x	•••	1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	1	극대	7	극소	1

따라서 함수 f(x)는 x=1에서 극대, x=3에서 극소 이므로 극댓값과 극솟값의 합은

$$f(1) + f(3)$$

$$= \int_{1}^{1} (t^{2} - 4t + 3) dt \int_{1}^{3} (t^{2} - 4t + 3) dt$$

$$=0+\left[\frac{1}{3}t^{3}-2t^{2}+3t\right]_{1}^{3}=-\frac{4}{3}$$

42)
$$\frac{20}{3}$$

$$\Rightarrow f(x) = \int_0^x (t^2 - 6t + 8) dt$$
의 양변을 x 에 대하여 미

$$f'(x) = x^2 - 6x + 8 = (x - 2)(x - 4)$$

 $f'(x) = 0$ odd $x = 2$ $\pm \pm x = 4$

따라서 함수 f(x)는 x=2에서 극대이므로 극댓값은

$$f(2) = \int_0^2 (t^2 - 6t + 8) dt = \left[\frac{1}{3} t^3 - 3t^2 + 8t \right]_0^2 = \frac{20}{3}$$

43)
$$-\frac{1}{2}$$

$$\Rightarrow$$
 $F(x) = \int_0^x f(t)dt$ 의 양변을 x 에 대하여 미분하면

$$F'(x) = f(x)$$

이때,
$$F'(x) = f(x) = 0$$
에서

$$x=1$$
 또는 $x=3$ 또는 $x=5$

$$0 < x < 1$$
일 때 $F'(x) > 0$

$$1 < x < 3$$
일 때 $F'(x) < 0$

$$3 < x < 5$$
일 때 $F'(x) > 0$

이므로 F(x)는 x=3일 때 극소이고 극솟값은

$$F(3) = \int_{0}^{3} f(t)dt = \int_{0}^{2} (1-t)dt + \int_{2}^{3} (t-3)dt$$

$$= \left[t - \frac{1}{2}t^2\right]_0^2 + \left[\frac{1}{2}t^2 - 3t\right]_2^3 = -\frac{1}{2}$$

44)
$$-\frac{1}{6}$$

$$\Rightarrow f(x) = \int_{x}^{x+1} (t^2 + t) dt$$
의 양변을 x 에 대하여 미분

$$f'(x) = \{(x+1)^2 + (x+1)\} - (x^2 + x) = 2(x+1)$$

$$f'(x) = 0 \text{ on } k \text{ } x = -1$$

x		-1	
f'(x)	_	0	+
f(x)	7	극소	1

따라서 함수 f(x)는 x=-1에서 최소이므로 구하는

$$f(-1) = \int_{-1}^{0} (t^2 + t) dt = -\int_{0}^{-1} (t^2 + t) dt$$
$$= -\left[\frac{1}{3}t^3 + \frac{1}{2}t^2\right]_{0}^{-1} = -\frac{1}{6}$$

45) F(0)

$$\Rightarrow F(x) = \int_0^x f(t)dt$$
의 양변을 x 에 대하여 미분하면 $F'(x) = f(x)$

$$f(x) = 0$$
에서 $x = 0$ 또는 $x = 2$

x		0		2	•••
f'(x)	_	0	+	0	_
f(x)	7	극소	1	극대	7

따라서 함수 F(x)는 x=0에서 극소이면서 최소이므 로 구하는 최솟값은 F(0)

46)
$$\frac{25}{12}$$
 $\Rightarrow f'(x) = 2x$ 이므로

 $f(x) = \int f'(x) dx = \int 2x dx = x^2 + C$ (C는 적분상수)
이때, $f(0) = 2$ 이므로 $C = 2$
따라서 $f(x) = x^2 + 2$ 이므로

 $F(x) = \int_0^1 f(x-t) dt = \int_0^1 \{(x-t)^2 + 2\} dt$

$$= \int_0^1 (x^2 - 2xt + t^2 + 2) dt$$

$$= \left[x^2t - xt^2 + \frac{1}{3}t^3 + 2t\right]_0^1$$

$$= x^2 - x + \frac{7}{3} = \left(x - \frac{1}{2}\right)^2 + \frac{25}{12}$$

따라서 함수
$$F(x)$$
는 $x=\frac{1}{2}$ 일 때 최솟값 $F\left(\frac{1}{2}\right)=\frac{25}{12}$ 를 갖는다.

47)
$$-8$$

$$\Rightarrow F'(x) = x^2 + 2x - 8$$
이라 하면
$$\lim_{h \to 0} \frac{1}{h} \int_0^h (x^2 + 2x - 8) dx = \lim_{h \to 0} \frac{F(h) - F(0)}{h}$$

$$= F'(0) = -8$$

48) 0

$$\Rightarrow F'(x) = (x-1)(x+3)$$
이라 하면

$$\lim_{x \to 1} \frac{1}{x-1} \int_{1}^{x} (x-1)(x+3) dx = \lim_{x \to 1} \frac{F(x) - F(1)}{x-1}$$

$$= F'(1) = 0$$

49)
$$-1$$

$$\Rightarrow \lim_{x \to 0} \frac{1}{x} \int_{0}^{x} f(t) dt = \lim_{x \to 0} \frac{F(x) - F(0)}{x}$$

$$= F'(0) = f(0) = -1$$

50) -1

$$\Rightarrow f(x)$$
의 한 부정적분을 $F(x)$ 라 하면

$$\lim_{x\to 0} \frac{1}{x} \int_{0}^{x} f(t) dt = \lim_{x\to 0} \frac{F(x) - F(0)}{x}$$

$$= F'(0) = f(0) = -1$$

51) 0

$$\Rightarrow f(x)$$
의 한 부정적분을 $F(x)$ 라 하면

$$\int_{1}^{x} f(t)dt = F(x) - F(1)$$
이므로

$$\lim_{x \to 1} \frac{1}{x - 1} \int_{1}^{x} f(t)dt = \lim_{x \to 1} \frac{F(x) - F(1)}{x - 1}$$

$$= F'(1) = f(1) = 0$$

52) 8
$$\Rightarrow f(x)$$
의 한 부정적분을 $F(x)$ 라 하면
$$\lim_{x\to 1} \frac{1}{x-1} \int_{-1}^{x} f(t) dt = \lim_{x\to 1} \frac{F(x) - F(1)}{x-1}$$

$$= F'(1) = f(1) = 2^3 = 8$$

53) 1
$$\Rightarrow \lim_{x \to 1} \frac{1}{x^2 - 1} \int_{1}^{x} f(t) dt = \lim_{x \to 1} \frac{F(x) - F(1)}{x - 1} \cdot \frac{1}{x + 1}$$

$$= \frac{1}{2} F'(1) = \frac{1}{2} f(1) = \frac{1}{2} (4 - 3 + 1) = 1$$

54) 2
$$\Rightarrow \lim_{x \to 1} \frac{1}{x^2 - 1} \int_{-1}^{x} f(t) dt = \lim_{x \to 1} \frac{F(x) - F(1)}{x - 1} \cdot \frac{1}{x + 1}$$

$$= \frac{1}{2} F'(1) = \frac{1}{2} f(1) = \frac{1}{2} (1 + 2 + 1) = 2$$

$$55) 2$$

$$\Rightarrow \lim_{x \to 2} \frac{1}{x^2 - 4} \int_{2}^{x} f(t) dt$$

$$= \lim_{x \to 2} \frac{F(x) - F(2)}{x - 2} \cdot \frac{1}{x + 2}$$

$$= \frac{1}{4} F'(2) = \frac{1}{4} f(2)$$

$$= \frac{1}{4} (4 + 6 - 2) = 2$$

$$\Rightarrow \lim_{x \to 0} \frac{1}{x} \int_{1}^{1+x} f(t) dt = \lim_{x \to 0} \frac{F(1+x) - F(1)}{x}$$

$$= F'(1) = f(1) = 4 - 3 = 1$$

$$\Rightarrow \lim_{x \to 0} \frac{1}{2x} \int_{3}^{3+x} f(t) dt = \frac{1}{2} \lim_{x \to 0} \frac{F(3+x) - F(3)}{x}$$

$$= \frac{1}{2} F'(3) = \frac{1}{2} f(3) = \frac{1}{2} (3 \cdot 3^{2} + 1) = 14$$

$$\Rightarrow f(x)$$
의 한 부정적분을 $F(x)$ 라 하면

$$\begin{split} &\lim_{x\to 2} \frac{1}{x-2} \int_{4}^{x^2} f(t)dt \\ &= \lim_{x\to 2} \frac{1}{x-2} \left\{ F(x^2) - F(4) \right\} \\ &= \lim_{x\to 2} \left\{ \frac{F(x^2) - F(4)}{x^2 - 4} \times (x+2) \right\} \\ &= F'(4) \times 4 = 4F'(4) = 4f(4) \\ &= 4(64 - 64 + 1) = 4 \end{split}$$

61) 30

$$\lim_{x \to 1} \frac{x^2 + 3x + 1}{x - 1} \int_{1}^{x^2} f(t)dt$$

$$= \lim_{x \to 1} \frac{x^2 + 3x + 1}{x - 1} \left\{ F(x^2) - F(1) \right\}$$

$$= \lim_{x \to 1} \left\{ \frac{F(x^2) - F(1)}{x^2 - 1} \times (x^2 + 3x + 1)(x + 1) \right\}$$

$$= F'(1) \times 5 \times 2 = 10F'(1) = 10f(1)$$

$$= 10 \times (2 - 1 + 2) = 30$$