

What is claimed is:

1 1. A system of automatic beam energy control,
2 comprising:

3 a substrate holding apparatus, holding a substrate;
4 a measurement apparatus, measuring thickness and
5 hydrogen content of the substrate; and

6 a comparing apparatus, providing a database further
7 comprising critical hydrogen content limits and
8 appropriate beam energy levels for substrates of
9 different thicknesses, allowing determination of whether
10 a measured hydrogen content value exceeds a critical
11 hydrogen content limit, providing an appropriate beam
12 energy level accordingly; and

13 a energy beam apparatus, delivering beam energy to
14 the substrate accordingly.

1 2. The system as claimed in claim 1, wherein the
2 measurement apparatus utilizes ellipsometry.

1 3. The system as claimed in claim 1, wherein the
2 comparing apparatus issues a warning or alarm when
3 hydrogen content exceeds a critical hydrogen content
4 limit.

1 4. The system as claimed in claim 1, wherein the
2 comparing apparatus instructs the measurement apparatus
3 to measure thickness when the hydrogen content does not
4 exceed the critical hydrogen content limit.

1 5. The system as claimed in claim 1, wherein
2 hydrogen content is calculated in accordance with the

3 relationship between a light extinction coefficient and a
4 bandgap of the substrate.

1 6. The system as claimed in claim 1, wherein
2 thickness is calculated in accordance with a refractive
3 index of the substrate.

1 7. The system as claimed in claim 1, wherein the
2 substrate comprises amorphous silicon.

1 8. The system as claimed in claim 7, wherein the
2 database comprises appropriate beam energy levels
3 required by different thicknesses of amorphous silicon
4 for reconstitution into crystal silicon.

5 9. A method of automatic beam energy control,
6 comprising:

7 providing a substrate;
8 measuring hydrogen content of the substrate;
9 determining if hydrogen content exceeds a critical
10 hydrogen content limit;
11 issuing a warning or alarm when hydrogen content
12 exceeds a critical hydrogen content limit;
13 measuring substrate thickness when hydrogen content
14 does not exceed a critical hydrogen content
15 limit;
16 providing a database comprising a plurality of
17 appropriate beam energy values corresponding to
18 substrates of different thicknesses;
19 the database determining an appropriate beam energy
20 level corresponding to the measured thickness;
21 and

22 delivering beam energy to the substrate accordingly.

1 10. The method as claimed in claim 9, wherein
2 thickness is calculated by measuring a refractive index
3 of the substrate using a reflection meter.

1 11. The method as claimed in claim 10, wherein
2 thickness is calculated by measuring a refractive index
3 of the substrate using ellipsometry.

1 12. The method as claimed in claim 9, wherein
2 hydrogen content is calculated in accordance with the
3 relationship between a light extinction coefficient and a
4 bandgap by measuring the light extinction coefficient of
5 the substrate using ellipsometry.

1 13. The method as claimed in claim 9, wherein the
2 substrate comprises amorphous silicon.

1 14. The method as claimed in claim 9, wherein the
2 database is populated by determining appropriate beam
3 energy levels required by different thicknesses of
4 amorphous silicon for reconstitution into crystal
5 silicon.

1 15. A method of automatic beam energy control,
2 comprising:

3 providing a substrate on a substrate holding
4 apparatus;
5 measurement of substrate hydrogen content by
6 ellipsometry;

7 determining if hydrogen content exceeds a critical
8 hydrogen content limit using a comparing
9 apparatus;
10 the comparing apparatus issuing a warning or alarm
11 when hydrogen content exceeds a critical
12 hydrogen content limit;
13 measurement of substrate thickness by ellipsometry
14 when hydrogen content does not exceed a
15 critical hydrogen content limit;
16 providing a database comprising a plurality of
17 energy values individually absorbed by
18 substrates of different thickness;
19 determining a beam energy value corresponding to the
20 measured thickness according to the database,
21 using a comparing apparatus; and
22 a energy beam apparatus delivering energy to the
23 substrate accordingly.

1 16. The method as claimed in claim 15, wherein
2 thickness is calculated by measuring a refractive index
3 of the substrate.

1 17. The method as claimed in claim 15, wherein
2 hydrogen content is calculated in accordance with the
3 relationship between a light extinction coefficient and a
4 bandgap by measuring the light extinction coefficient of
5 the substrate.

1 18. The method as claimed in claim 15, wherein the
2 substrate comprises amorphous silicon.

1 19. The method as claimed in claim 15, wherein the
2 database is populated by determining appropriate energy
3 levels required by different thicknesses of amorphous
4 silicon for reconstitution into crystal silicon.

1 20. The method as claimed in claim 15, wherein
2 amorphous silicon is reconstitute into crystal silicon
3 after receiving the beam energy.