Capítulo 5 – Desenvolvimento de algoritmos

Introdução

Uma solução de problema que comporte o uso de um computador deve ser bem caracterizada. Existe um tipo diferente para cada uma das etapas de seu desenvolvimento completo.

Fase	Domínio	Requisitos
Conceitual	Entidades abstratas	Habilidade em
/	Associações lógicas	decompor o modelo em ações
Modelo	Valores abstratos	componentes
	Objetos (dados)	Adequação à
Algorítmica	Operações abstratas	linguagem Compreensão da linguagem e
	Valores construídos	métodos computacionais
Implementação	Estruturas de dados	
/	Operações primitivas	Precisão de mapeamento
Programa	Valores básicos	тарсателю
Física	Armazenamento	
/	Operações reais	Eficiência de código
Processo	Valores binários	SSAIGS

Existem vários métodos que podem ser aplicados durante a fase de desenvolvimento de algoritmos. Muitos desses métodos são conhecidos como *métodos de análise estruturada*, ou seja, aqueles cujas metodologias permitem, a partir de uma definição formal de um problema, chegar a algoritmo pronto capaz de resolvê-lo.

O mais importante para o desenvolvimento é conhecer o problema e os elementos que compõem o seu universo de relações, onde, possivelmente, um caminho para a solução pode ser encontrado.

A maior dificuldade na etapa de elaboração da solução por meio de algoritmos é vencer a distância conceitual entre o quê deve ser feito (a ação) e como expressá-la (a descrição). Um algoritmo não se limita ao texto (aspecto estático), mas exprime ações (aspecto dinâmico), coordenadas por um fluxo de controle.

Ao desenvolver um algoritmo deve-se preocupar :

- com a estrutura de dados, ou seja, a representação das entidades com as quais se irá trabalhar;
- com a **estrutura lógica**, ou seja, a seqüência e necessidade dos processos que alterarão as entidades;
- com a decomposição lógica, ou seja, a organização da estrutura lógica em módulos funcionais (descrições mais gerais);
- com a complexidade lógica dos módulos, ou seja, a descrição de cada processo por meio de ações mais simples, até que se consiga a sua expressão por meio da notação adotada.

Um algoritmo deve reunir as seguintes qualidades :

- ser claro, legível e confiável;
- ser auto-explicativo (bem documentado);
- permitir a sua verificação e modificação.

Para tentar atender estes requisitos sugere-se :

- evitar o crescimento da complexidade;
- colocação de comentários :
- para descrição da função do algoritmo;
- para mostrar como utilizá-lo;
- para explicar o significado e uso de variáveis;
- para descrever estruturas de dados;
- para especificar métodos e referências utilizadas;
- para indicar autor, data e identificação;
- utilização de espaços em branco e parênteses;
- colocação de um comando por linha;
- agrupamento de comandos em blocos.

Qualquer metodologia empregada deverá permitir flexibilidade bastante para que o desenvolvimento possa ser feito de modo a diminuir a complexidade e aumentar as facilidades para se atingir o texto final.

Apresentaremos a seguir, como exemplo, uma destas metodologias.

Desenvolvimento de soluções por algoritmos

- Etapas de desenvolvimento

Compreensão do problema

É preciso compreender, de forma bem abrangente, antes de buscar uma solução.

Qual é a incógnita? Quais são os dados? Qual é a condição?

É possível satisfazer a condição ? A condição é suficiente para determinar a incógnita ? Ou é insuficiente ? Ou redundante ? Ou contraditória ?

Traçar figuras, quando possível. Adotar uma notação adequada, se necessário. Separar as diversas partes da condição, se complexa.

Estudo do problema

É necessário encontrar a conexão entre os dados e o resultado.

Já viu o problema antes ? Ou apresentado de forma diferente ? Conhece um problema correlato ? Ou que lhe poderia ser útil ?

É possível que seja obrigado a considerar problemas auxiliares se não puder encontrar uma conexão imediata.

Conhece outro problema que determine o mesmo resultado, ou semelhante ?

Se existe tal problema já resolvido é possível usá-lo ? É possível utilizar o seu método ? Ou adaptá-lo ? Se for introduzido algum elemento auxiliar, pode-se usá-lo ?

É possível reformular o problema?

Elaboração da solução

É necessário expressar a solução de maneira clara e completa.

Voltar às definições.

É possível imaginar um problema correlato mais acessível ? É possível imaginar um problema mais genérico ? É possível imaginar um problema mais específico ?

É possível resolver parte do problema?

Há algum problema análogo?

Todos os dados são necessários ?
Toda a condição é necessária ?
Todas as noções essenciais implicadas foram consideradas ?
Se usar parte da condição pode-se determinar o resultado ?
Se variar a incógnita, ou dados, ou todos eles, melhora a compreensão do problema ?
É possível variar a condição ?
É possível tirar mais alguma coisa de útil dos dados ?
É possível imaginar outros dados úteis ?

Implementação da solução

É necessário executar a solução passo a passo.

É possível verificar se o passo está correto? É possível demonstrar que ele está correto?

Avaliação da solução

É necessário examinar a solução obtida.

É possível verificar o resultado?

É possível verificar o argumento?

É possível chegar ao resultado por um caminho diferente?

É possível utilizar o resultado, ou o método, em outro problema?

Desenvolvimento de algoritmos por diagramas básicos :

? ? *
Sequência * Repetição

Regras de montagem :

- cada diagrama deve representar uma única ação fundamental;
- os diagramas podem se estruturar em níveis, executando-se uma ação por vez, em ordem, da esquerda para a direita;
- cada diagrama deve ser refinado até representar a ação fundamental por meio de ações primitivas.

Exemplo de montagem de um algoritmo típico :

O diagrama acima deve ser entendido como a representação de um algoritmo que faz a leitura de dados, executa algum cálculo sobre eles e mostra os resultados.

Para esboço de um algoritmo podem ser empregados diagramas semelhantes às estruturas de controle.

Estrutura	Diagrama			
	comando 1		comando 1	
Seqüência simples				
		(comando N	
Alternativa simples	teste?	V	bloco	
Alternativa	teste ?	V	bloco 1	
dupla	leste :	F	bloco 2	
,				
		1	bloco 1	
Alternativa		2	bloco 2	
múltipla	valor		blocos	
		F	bloco N	
Repetição	teste?			
com teste no início		bloco		
Repetição com teste			bloco	
no fim	teste?	•	_	

Cada diagrama pode ser combinada com os demais formando blocos maiores, ou mais complexos, dependendo da necessidade do algoritmo.

Exemplos.

Exemplo 1.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor do resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1
R2	real		resistor 2
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados Resultado R1 = 10 [ohms] R2 = 5 [ohms] R3 = 15 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 1	
Ação	Bloco
! definir dados	1
! ler dados do teclado	
! calcular equivalente em série	
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 1		
Ação	Bloco	
! definir dados	1	
real R1, ! primeiro resistor		
R2, ! segundo resistor		
R3; ! resistor equivalente		
! ler dados do teclado	2	
! calcular equivalente em série		
! mostrar resultado		

Terceira versão, refinar o segundo bloco.

Exemplo 1	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
! mostrar resultado	

Quarta versão, refinar o segundo bloco.

Exemplo 1	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4

Quinta versão, refinar o quarto bloco.

Exemplo 1	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 1
     // Dados dois resistores, calcular o resistor equivalente em serie.
     // 1. definir dados
       R1 = 0.0; // primeiro resistor
       R2 = 0.0; // segundo resistor
       R3 = 0.0; // resistor equivalente
     // 2. ler dados do teclado
                               // limpar a area de trabalho
       R1 = input ( "\nR1 " ); // ler primeiro valor
       R2 = input ( "\nR2 " ); // ler segundo valor
     // 3. calcular equivalente em serie
       R3 = R1 + R2;
     // 4. mostrar resultado
       printf ( "\nR3=R1+R2= %f [ohms]", R3 );
     // pausa para terminar
       printf ( "\nPressionar ENTER para terminar.\n" );
     // fim do programa
Programa em C:
     // Exemplo 1
     // Dados dois resistores, calcular o resistor equivalente em serie.
     // bibliotecas necessarias
     #include <stdio.h>
     #include <stdlib.h>
     int main (void)
     // 1. definir dados
       float R1, // primeiro resistor
             R2, // segundo resistor
             R3; // resistor equivalente
     // 2. ler dados do teclado
       printf ( "\nR1=" );
scanf ( "%f", &R1; // ler primeiro valor
printf ( "\nR2=" );
scanf ( "%f", &R2; // ler segundo valor
     // 3. calcular equivalente em serie
       R3 = R1 + R2;
     // 4. mostrar resultado
       printf ( "\nR3=R1+R2=%f %s", R3, " [ohms]" );
     // pausa para terminar
       printf ( "\nPressionar ENTER para terminar." );
       getchar ();
       return (0);
     } // fim do programa
```

Programa em C++: // Exemplo 1 // Dados dois resistores, calcular o resistor equivalente em serie. // bibliotecas necessarias #include <iostream> using namespace std; int main (void) // 1. definir dados double R1, // primeiro resistor R2, // segundo resistor R3; // resistor equivalente // 2. ler dados do teclado // 3. calcular equivalente em serie R3 = R1 + R2;// 4. mostrar resultado cout << "\nR3=R1+R2=" << R3 << " [ohms]"; // pausa para terminar cout << "\nPressionar ENTER para terminar."; cin.get(); return EXIT_SUCCESS; } // fim do programa Programa em C#: * Exemplo 1 * Dados dois resistores, calcular o resistor equivalente em serie. using System; class Exemplo_1 public static void Main () // 1. definir dados double R1, // primeiro resistor R2, // segundo resistor R3; // resistor equivalente // 2. ler dados do teclado Console.Write ("\nR1="); R1 = int.Parse (Console.ReadLine ()); // ler primeiro valor Console.Write ("\nR2="); R2 = int.Parse (Console.ReadLine ()); // ler segundo valor // 3. calcular equivalente em serie R3 = R1 + R2;// 4. mostrar resultado Console.WriteLine ("\nR3=R1+R2=" + R3 + " [ohms]"); // pausa para terminar Console.Write ("\nPressionar ENTER para terminar.");

Console.ReadLine ();

} // end Main ()

} // fim Exemplo_1 class

Programa em Java:

```
* Exemplo 1
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 1
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                        // primeiro resistor
           R2,
                                        // segundo resistor
           R3;
                                        // resistor equivalente
 // 2. ler dados do teclado
   System.out.print ( ^{\text{NR1}} = ^{\text{"}} );
                                        // ler primeiro valor
   R1 = Integer.parseInt ( System.console( ).readLine( ) );
   System.out.print ( ^{"}nR2 = ^{"} );
                                        // ler segundo valor
   R2 = Integer.parseInt ( System.console( ).readLine( ) );
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   System.out.println ( \nR3 = R1 + R2 = " + R3 + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_1 class
Programa em Python:
# Exemplo 1
# Dados dois resistores, calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
# 2. ler dados do teclado
R1 = float (input ("\nR1 = ")); # ler primeiro valor
R2 = float (input ("\nR2 = ")); # ler segundo valor
#3. calcular equivalente em serie
R3 = R1 + R2;
#4. mostrar resultado
print ( "\nR3=R1+R2= ", R3, " [ohms]" );
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler o valor de um raio de círculo
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro.
- 2. Fazer um algoritmo para:
 - ler três valores reais (lados de um triângulo);
 - calcular e mostrar cada lado e o ângulo oposto a ele.
- 3. Repetir o exercício anterior para calcular e mostrar :
 - o perímetro e
 - a área do triângulo.
- 4. Fazer um algoritmo para:
 - calcular e mostrar a força elétrica entre duas cargas;
 - ler o valor das cargas (em Coulombs)
 - ler o raio (em metros)
 - supor :

$$k = 9 \times 10^9 \qquad e \qquad \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

5. Refazer o exercício anterior para um valor de raio lido em centímetros.

Exemplo 2.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor de resistor equivalente em série, se os dados forem válidos.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 2	
Ação	Bloco
! definir dados	1
! ler dados do teclado	2
! testar validade dos dados	
! calcular equivalente em série	3.1
! mostrar resultado	3.2

Segunda versão, refinar o primeiro bloco.

Exemplo 2	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! testar validade dos dados	3
! calcular equivalente em série	3.1
! mostrar resultado	3.2

Terceira versão, refinar o segundo bloco.

	Exemplo 2	v.3
	Ação	Bloco
! definir da	dos	1
real R1, !	primeiro resistor	
R2, !	segundo resistor	
R3; !	resistor equivalente	
! ler dados	do teclado	2
tela ← "\n	R1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\n	R2 = "; R2 ← teclado, ! ler segundo valor	
! testar vali	dade dos dados	3
	! calcular equivalente em série	3.1
R1>0	R3 ← R1 + R2;	
& V	! mostrar resultado	3.2
R2>0?	tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Quarta versão, refinando novamente o terceiro bloco.

Exemplo 2	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
se (R1>0 & R2 > 0)	
! calcular equivalente em série	3.1
R3 ← R1 + R2;	
! mostrar resultado	3.2
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim se ! fim se dados válidos	

Programa em SCILAB:

} // fim do programa

```
// Exemplo 2
     // Dados dois resistores, calcular o resistor equivalente em serie.
     // 1. definir dados
       R1 = 0.0; // primeiro resistor
       R2 = 0.0; // segundo resistor
       R3 = 0.0; // resistor equivalente
     // 2. ler dados do teclado
                              // limpar area de comandos
       R1 = input ( "\nR1 " ); // ler primeiro valor
       R2 = input ( "\nR2 " ); // ler segundo valor
     // 3. testar a validade dos dados
       if (R1 > 0 \& R2 > 0)
      // 3.1. calcular equivalente em serie
         R3 = R1 + R2;
       // 3.2. mostrar resultado
        printf ( "\nR3=R1+R2= %f [ohms]", R3 );
       end // se dados validos
     // pausa para terminar
       printf ( "\nPressionar ENTER para terminar.\n" );
       halt:
     // fim do programa
Programa em C:
     // Exemplo 1
     // Dados dois resistores, calcular o resistor equivalente em serie.
     // bibliotecas necessarias
     #include <stdio.h>
     #include <stdlib.h>
     int main (void)
     // 1. definir dados
       float R1, // primeiro resistor
            R2, // segundo resistor
            R3; // resistor equivalente
     // 2. ler dados do teclado
      printf ( "\nR1=" );
scanf ( "%f", &R1; // ler primeiro valor
       printf ( "\nR2=" );
       scanf ( "%f", &R2; // ler segundo valor
     // 3. testar a validade dos dados
       if (R1>0 && R2 > 0)
                                     // se dados validos
       { // 3.1. calcular equivalente em serie
         R3 = R1 + R2;
         // 3.2. mostrar resultado
         printf ( "\nR3=R1+R2=%f %s", R3, " [ohms]" );
       } // fim se dados validos
     // pausa para terminar
       printf ( "\nPressionar ENTER para terminar." );
       getchar ();
      return (0);
```

Programa em C++:

```
// Exemplo 2
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
// 2. ler dados do teclado
  \begin{array}{ll} cout << "\nR1="; & cin >> R1; // \ ler \ primeiro \ valor \\ cout << "\nR2="; & cin >> R2, // \ ler \ segundo \ valor \\ \end{array} 
// 3. testar a validade dos dados
  if (R1>0 \&\& R2>0)
                                  // se dados validos
  { // 3.1. calcular equivalente em serie
     R3 = R1 + R2;
    // 3.2. mostrar resultado
     cout << "\nR3=R1+R2=" << R3 << " [ohms]";
  } // fim se dados validos
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
* Exemplo 2
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_2
  public static void Main ()
  // 1. definir dados
    double R1, // primeiro resistor
            R2, // segundo resistor
            R3; // resistor equivalente
  // 2. ler dados do teclado
    Console.Write ( "\nR1=" );
R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
    Console.Write ( "\nR2=" );
R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
  // 3. testar a validade dos dados
    if (R1 > 0 \&\& R2 > 0)
                                   // se dados validos
    { // 3.1. calcular equivalente em serie
       R3 = R1 + R2;
     // 3.2. mostrar resultado
       Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
    } // fim se dados validos
  // pausa para terminar
    Console.Write ( "\nPressionar ENTER para terminar." );
    Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_2 class
```

Programa em Java:

```
* Exemplo 2
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 2
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                       // primeiro resistor
          R2,
                                       // segundo resistor
          R3;
                                       // resistor equivalente
 // 2. ler dados do teclado
   System.out.print ( ^{n} = ^{n} );
                                       // ler primeiro valor
   R1 = Integer.parseInt ( System.console( ).readLine( ) );
   System.out.print ( \nR2 = \n);
                                       // ler segundo valor
   R2 = Integer.parseInt ( System.console( ).readLine( ) );
 // 3. testar a validade dos dados
   if (R1 > 0 \&\& R2 > 0)
                               // se dados validos
   { // 3.1. calcular equivalente em serie
      R3 = R1 + R2;
    // 3.2. mostrar resultado
      System.out.println ( "\nR3 = R1+R2 = " + R3 + " [ohms]" );
   } // fim se dados validos
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_2 class
Programa em Python:
# Exemplo 2
# Dados dois resistores, calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
# 2. ler dados do teclado
R1 = float (input ("\nR1 = ")); # ler primeiro valor
R2 = float (input ("\nR2 = ")); # ler segundo valor
#3. testar a validade dos dados
if (R1 > 0.0 and R2 > 0.0):
 #3.1. calcular equivalente em serie
   R3 = R1 + R2;
 #3.2. mostrar resultado
   print ( "\nR3=R1+R2= ", R3, " [ohms]" );
# se dados validos
# pausa para terminar
```

```
print ( "\nPressionar ENTER para terminar.\n" ); input ( ); # fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo.
- 2. Fazer um algoritmo para:
 - ler três valores reais (lados de um triângulo), todos maiores que zero, e
 - calcular e mostrar cada lado e o ângulo oposto a ele.
- 3. Fazer um algoritmo para:
 - ler um valor válido da diagonal de um retângulo e,
 - sabendo que um dos lados é a metade do outro,
 - calcular e mostrar o tamanho de cada lado e a área do retângulo.
- 4. Fazer um algoritmo para:
 - ler um valor válido de um ângulo em graus,
 - convertê-lo para radianos, e
 - calcular e mostrar a área do setor circular de raio unitário.
- 5. Fazer um algoritmo para:
 - ler o valor das cargas (em Coulombs),
 - ler um valor válido para o raio (em metros),
 - calcular e mostrar a força elétrica entre duas cargas;
 - supor :

$$k = 9 \times 10^9 \qquad e \qquad \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 3.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado;
- calcular e mostrar o valor de resistor equivalente em série, se os dados forem válidos;
- caso não sejam fornecidos dados válidos, indicar ocorrência de erro.

Análise de dados:

- Dados do problema:

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 3	
Ação	Bloco
! definir dados	1
! ler dados do teclado	2
! testar validade dos dados	
! calcular equivalente em série	3.1
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 3	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! testar validade dos dados	3
! inválidos, indicar erro	3.1
! válidos	3.2
! calcular equivalente em série	3.2.1
! mostrar resultado	3.2.2

Terceira versão, refinar o segundo bloco.

Exemplo 3	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
! inválidos, indicar erro	3.1
! válidos	3.2
! calcular equivalente em série	3.2.1
! mostrar resultado	3.2.2

Quarta versão, refinar o terceiro bloco.

	Exemplo 3	v.4
	Ação	Bloco
! definir dad	los	1
real R1, !	orimeiro resistor	
R2, !	segundo resistor	
R3; !	resistor equivalente	
! ler dados	do teclado	2
tela ← "\n	R1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\n	R2 = "; R2 ← teclado, ! ler segundo valor	
! testar valid	dade dos dados	3
	! inválidos	3.1
V	tela ← "\nERRO: Dados inválidos";	
R1≤0		
	! calcular equivalente em série	3.2.1
R2≤0?	R3 ← R1 + R2;	
F	! mostrar resultado	3.2.2
	tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
	-	

Quinta versão, refinando novamente o terceiro bloco.

Exemplo 3	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	
! testar validade dos dados	3
se (R1 ≤ 0 R2 ≤ 0)	
! inválidos	
tela ← "\nERRO: Dados inválidos";	
senão ! válidos	
! calcular equivalente em série	
R3 ← R1 + R2;	
! mostrar resultado	
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim se! dados válidos	

Programa em SCILAB:

```
// Exemplo 3
// Dados dois resistores, calcular o resistor equivalente em serie.
// 1. definir dados
  R1 = 0.0; // primeiro resistor
  R2 = 0.0; // segundo resistor
  R3 = 0.0; // resistor equivalente
// 2. ler dados do teclado
                       // limpar a area de trabalho
  R1 = input ( "\nR1 " ); // ler primeiro valor
  R2 = input ( "\nR2 " ); // ler segundo valor
// 3. testar a validade dos dados
  if ( R1 \le 0 \mid R2 \le 0 )
  // 3.1. invalidos
    printf ( "\nERRO: Dados invalidos" );
  else // validos
  // 3.2.1. calcular equivalente em serie
    R3 = R1 + R2;
  // 3.2.2. mostrar resultado
    printf ( "\nR3=R1+R2= %f [ohms]", R3 );
   end // se dados validos
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
  halt;
// fim do programa
```

Programa em C:

```
// Exemplo 3
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
  float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
// 2. ler dados do teclado
 printf ( "\nR1=" );
scanf ( "%f", &R1; // ler primeiro valor
 printf ( "\nR2=" );
  scanf ( "%f", &R2; // ler segundo valor
// 3. testar a validade dos dados
  if (R1<=0 || R2<= 0)
  {
   // 3.1. invalidos
     printf ( "\nERRO: Dados invalidos" );
  else // validos
   // 3.2.1. calcular equivalente em serie
     R3 = R1 + R2;
   // 3.2.2. mostrar resultado
     printf ( "\nR3=R1+R2=\%f \%s", R3, " [ohms]" );
  } // fim se dados validos
// pausa para terminar
  cout << "\nPressionar ENTER para terminar.";</pre>
  getchar ();
  return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 3
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
// 2. ler dados do teclado
  \begin{array}{ll} cout << "\nR1="; & cin >> R1; // \ ler \ primeiro \ valor \\ cout << "\nR2="; & cin >> R2, // \ ler \ segundo \ valor \\ \end{array} 
// 3. testar a validade dos dados
  if (R1<=0 || R2<= 0)
  {
   // 3.1. invalidos
     cout << "\nERRO: Dados invalidos";</pre>
  else // validos
  {
   // 3.2.1. calcular equivalente em serie
     R3 = R1 + R2;
   // 3.2.2. mostrar resultado
     cout << "\nR3=R1+R2=" << R3 << " [ohms]";
  } // fim se dados validos
// pausa para terminar
  cout << "\nPressionar ENTER para terminar.";</pre>
  cin.get ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
* Exemplo 3
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo_3
  public static void Main ()
  // 1. definir dados
    double R1, // primeiro resistor
            R2, // segundo resistor
            R3; // resistor equivalente
  // 2. ler dados do teclado
    Console.Write ( "\nR1=" );
R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
    Console.Write ( "\nR2=" );
R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
  // 3. testar a validade dos dados
    if (R1<=0 || R2<= 0)
    {
     // 3.1. invalidos
       Console.WriteLine ( "\nERRO: Dados invalidos" );
    else // validos
    {
     // 3.2.1. calcular equivalente em serie
       R3 = R1 + R2;
    // 3.2.2. mostrar resultado
      Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
    } // fim se dados validos
  // pausa para terminar
    Console.Write ( "\nPressionar ENTER para terminar." );
    Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_3 class
```

Programa em Java:

} // fim Exemplo_3 class

```
* Exemplo 3
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo_3
 public static void main ( String [ ] args )
 // 1. definir dados
   double R1,
                                         // primeiro resistor
           R2,
                                         // segundo resistor
           R3;
                                         // resistor equivalente
 // 2. ler dados do teclado
   System.out.print ( "\nR1 = " ); // ler primeiro valor R1 = Integer.parseInt ( System.console( ).readLine( ) );
   System.out.print ( ^{\text{NR2}} = ^{\text{"}} );
                                         // ler segundo valor
   R2 = Integer.parseInt ( System.console( ).readLine( ) );
 // 3. testar a validade dos dados
   if (R1 <= 0 || R2 <= 0)
                                         // se dados validos
   { // 3.1. invalidos
       System.out.println ( "\nERRO: Dados invalidos" );
   }
   else
   { // 3.2.1. calcular equivalente em serie
       R3 = R1 + R2;
     // 3.2. mostrar resultado
       System.out.println ( "\nR3 = R1+R2 = " + R3 + " [ohms]" );
   } // fim se dados validos
 // pausa para terminar
    System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ( )
```

Programa em Python:

```
# Exemplo 3
# Dados dois resistores, calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
# 2. ler dados do teclado
R1 = float (input ("\nR1 = ")); # ler primeiro valor
R2 = float (input ("\nR2 = ")); # ler segundo valor
#3. testar a validade dos dados
if ( R1 \le 0.0 or R2 \le 0.0 ):
  #3.1. invalidos
   print ( "\nERRO: Dados invalidos" );
else: # validos
 # 3.2.1. calcular equivalente em serie
   R3 = R1 + R2;
  #3.2.2. mostrar resultado
   print ( "\nR3=R1+R2= ", R3, " [ohms]" );
# se dados validos
# pausa para terminar
print ( "\nPressionar ENTER tecla para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo;
 - se o valor for inválido, informar o erro.

2. Fazer um algoritmo para:

- ler três valores reais (lados de um triângulo), todos maiores que zero, e
- calcular e mostrar cada lado e o ângulo oposto a ele;
- se o valor for inválido, informar o erro.

3. Fazer um algoritmo para:

- ler um valor válido da diagonal de um retângulo e,
- sabendo que um dos lados é a metade do outro,
- calcular e mostrar o tamanho de cada lado e a área do retângulo;
- se o valor for inválido, usar o valor absoluto da diagonal.

4. Fazer um algoritmo para:

- ler um valor válido de um ângulo em graus,
- convertê-lo para radianos, e
- calcular e mostrar a área do setor circular de raio unitário;
- se o valor for negativo, converter para o primeiro quadrante.

5. Fazer um algoritmo para:

- ler o valor das cargas (em Coulombs),
- ler um valor válido para o raio (em metros),
- calcular e mostrar a força elétrica entre duas cargas;
- se o valor do raio for negativo, usar o valor absoluto,
- se o valor do raio for nulo, informar o erro;
- supor :

$$k = 9 \times 10^9 \qquad e \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 4.

Fazer um algoritmo para:

- ler os valores de dois resistores do teclado e garantir que sejam válidos;
- calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema:

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 0 [ohms] R2 = 5 [ohms]	(sem resultado)
R1 = 10 [ohms] R2 = 0 [ohms]	(sem resultado)
R1 = 0 [ohms] R2 = 0 [ohms]	(sem resultado)

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 4	v.1
Ação	Bloco
! definir dados	1
! ler dados válidos do teclado	2
! calcular equivalente em série	3
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 4	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados do teclado	2
! calcular equivalente em série	3
! mostrar resultado	4

Terceira versão, refinar o segundo bloco.

Exemplo 4	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados válidos do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1
R1 ≤ 0 ?	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2
R2 ≤ 0 ?	
! calcular equivalente em série	3
! mostrar resultado	4

Quarta versão, refinar o terceiro bloco.

Exemplo 4	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados válidos do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1
R1 ≤ 0 ?	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2
R2 ≤ 0 ?	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4

Quinta versão, refinar o quarto bloco.

Exemplo 4	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados válidos do teclado	2
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	2.1
R1 ≤ 0 ?	
tela ← "\nR2 = "; R2 ← teclado, ! ler segundo valor	2.2
R2 ≤ 0?	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 4	v.6
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! ler dados válidos do teclado	2
repetir até (R1>0)	2.1
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R1 ≤ 0)	
repetir até (R2>0)	2.2
tela ← "\nR2 = "; R2 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R2 ≤ 0)	
! calcular equivalente em série	3
R3 ← R1 + R2;	
! mostrar resultado	4
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 4
// Dados dois resistores, calcular o resistor equivalente em serie.
// 1. definir dados
  R1 = 0.0; // primeiro resistor
  R2 = 0.0; // segundo resistor
  R3 = 0.0; // resistor equivalente
// 2. ler dados do teclado
// 2.1. ler primeiro valor
                          // limpar a area de trabalho
  R1 = input ( "\nR1 " ) ; // ler primeiro valor
  while (R1 \le 0)
    R1 = input ( "\nR1 " ); // ler primeiro valor
  end // ( R1 \le 0 )
// 2.2. ler segundo valor
  R2 = input ( "\nR2 " ); // ler segundo valor
  while (R2 \le 0)
   R2 = input ( "\nR2 " ); // ler segundo valor
  end // (R2 <= 0)
// 3. calcular equivalente em serie
  R3 = R1 + R2;
// 4. mostrar resultado
  printf ( "\nR3=R1+R2= %f [ohms]", R3 );
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
  halt;
// fim do programa
```

Programa em C:

```
// Exemplo 4
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
// 2. ler dados do teclado
// 2.1. ler primeiro valor
 do
 {
   printf ( "\nR1=" );
   scanf ( "%f", &R1; // ler primeiro valor
  while (R1<=0);
// 2.2. ler segundo valor
 do
 {
   printf ( "\nR2=" );
   scanf ( "%f", &R2; // ler segundo valor
  while (R2<=0);
// 3. calcular equivalente em serie
 R3 = R1 + R2;
// 4. mostrar resultado
 printf ( "\nR3=R1+R2= %f %s", R3, " [ohms]" );
// pausa para terminar
 printf ("Pressionar ENTER para terminar.");
 getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 4
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 double R1, // primeiro resistor
         R2, // segundo resistor
         R3; // resistor equivalente
// 2. ler dados do teclado
// 2.1. ler primeiro valor
 do
 {
   cout << "\nR1="; cin >> R1; // ler primeiro valor
  while (R1<=0);
// 2.2. ler segundo valor
 do
 {
   cout << "\nR2="; cin >> R2, // ler segundo valor
 }
  while (R2<=0);
// 3. calcular equivalente em serie
 R3 = R1 + R2;
// 4. mostrar resultado
 cout << "\nR3=R1+R2=" << R3 << " [ohms]";
// pausa para terminar
 cout << "Pressionar ENTER para terminar.";</pre>
 cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
/*
* Exemplo 4
```

} // end Main ()

} // fim Exemplo_4 class

```
* Dados dois resistores, calcular o resistor equivalente em serie.
*/
using System;
```

```
class Exemplo 4
 public static void Main ()
 // 1. definir dados
   double R1, // primeiro resistor
          R2, // segundo resistor
          R3; // resistor equivalente
 // 2. ler dados do teclado
 // 2.1. ler primeiro valor
   do
     Console.Write ( "\nR1=" );
     R1 = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
   while (R1 \le 0);
 // 2.2. ler segundo valor
   do
     Console.Write ( "\nR2=" );
     R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
   while (R2 \le 0);
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
```

Programa em Java:

```
* Exemplo 4
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo_4
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                      // primeiro resistor
          R2,
                                      // segundo resistor
          R3;
                                      // resistor equivalente
 // 2. ler dados do teclado
 // 2.1. ler primeiro valor
   do
   {
     System.out.print ( "\nR1 = " );
                                      // ler primeiro valor
     R1 = Double.parseDouble ( System.console( ).readLine( ) );
   while ( R1 <= 0 );
 // 2.2. ler segundo valor
   do
     System.out.print ( "\nR2 = " );
                                   // ler segundo valor
     R2 = Double.parseDouble ( System.console( ).readLine( ) );
   while (R2 \le 0);
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   System.out.println ( \n R3 = R1+R2 = " + R3 + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_4 class
```

Programa em Python:

```
# Exemplo 4
# Dados dois resistores, calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
# 2. ler dados do teclado
# 2.1. ler primeiro valor
R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
while (R1 \le 0):
  R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
# (R1 <= 0)
# 2.2. ler segundo valor
R2 = float (input ("\nR2 = ")); # ler segundo valor
while ( R2 <= 0 ):
  R2 = float (input ("\nR2 = ")); # ler segundo valor
\#(R2 \le 0)
#3. calcular equivalente em serie
R3 = R1 + R2;
# 4. mostrar resultado
print ( "\nR3=R1+R2= ", R3, " [ohms]" );
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um valor de um raio de círculo, garantido que seja válido (maior que zero) e
 - calcular e mostrar o volume do cilindro de altura igual ao diâmetro do círculo.

2. Fazer um algoritmo para:

- ler três valores reais (lados de um triângulo), todos maiores que zero,
- verificar se formam mesmo um triângulo (todo lado deve ser menor que a soma dos outros),
- calcular e mostrar cada lado e o ângulo oposto a ele.

3. Fazer um algoritmo para:

- ler um valor de diagonal de um retângulo, garantindo que esteja no intervalo [1,100] e
- sabendo que um dos lados é a metade do outro,
- calcular e mostrar o tamanho de cada lado e a área do retângulo.

4. Fazer um algoritmo para:

- ler um valor válido de um ângulo em graus, e se não for,
- convertê-lo para o equivalente em radianos no primeiro quadrante, e
- calcular e mostrar a área do setor circular de raio unitário.

5. Fazer um algoritmo para:

- ler o valor das cargas (em Coulombs),
- ler um valor válido (maior que zero) para o raio (em metros),
- calcular e mostrar a força elétrica entre duas cargas;
- supor :

$$k = 9 \times 10^9 \qquad e \qquad \qquad F = k \cdot \frac{Q_1 \cdot Q_2}{R^2}$$

Exemplo 5.

Fazer um algoritmo para:

- repetir as ações abaixo 5 vezes:
- ler os valores de dois resistores do teclado e
- garantir que sejam válidos;
- calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 10 [ohms] R2 = 2 [ohms]	R3 = 12 [ohms]
R1 = 10 [ohms] R2 = 1 [ohms]	R3 = 11 [ohms]
R1 = 5 [ohms] R2 = 2 [ohms]	R3 = 7 [ohms]
R1 = 2 [ohms] R2 = 1 [ohms]	R3 = 3 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 5	v.1
Ação	Bloco
! definir dados	1
! repetir 5 vezes	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Segunda versão, refinar o primeiro bloco.

Exemplo 5	v.2
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir 5 vezes	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Terceira versão, refinar o segundo bloco.

Exemplo 5	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	2
X = 1:5:1 ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Quarta versão, refinar o segundo bloco.

Exemplo 5	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	2
X = 1:5:1 ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
R1 ≤ 0 ?	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler segundo valor	
R2 ≤ 0 ?	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	

Quinta versão, refinar novamente o segundo bloco.

Ação Bloco ! definir dados real R1,! primeiro resistor R2,! segundo resistor R3;! resistor equivalente inteiro X; ! contador do número de vezes ! repetir 5 vezes
real R1, ! primeiro resistor R2, ! segundo resistor R3; ! resistor equivalente inteiro X; ! contador do número de vezes
R2, ! segundo resistor R3; ! resistor equivalente inteiro X; ! contador do número de vezes
R3; ! resistor equivalente inteiro X; ! contador do número de vezes
inteiro X; ! contador do número de vezes
! repetir 5 vezes
X = 1:5:1 ! (de 1 até 5 de 1 em 1)
! ler dados válidos do teclado 2.1
repetir até (R1 > 0)
tela ← "\nR1 = ";
R1 ← teclado; ! ler primeiro valor
fim repetir! enquanto (R1 ≤ 0)
repetir até (R2 > 0)
tela ← "\nR2 = ";
R2 ← teclado; ! ler primeiro valor
fim repetir! enquanto (R2 ≤ 0)
! calcular equivalente em série 2.2
R3 ← R1 + R2;
! mostrar resultado 2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");

Sexta versão, refinar novamente o segundo bloco.

Exemplo 5	v.5
Ação	Bloco
! definir dados	
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro X; ! contador do número de vezes	
! repetir 5 vezes	
repetir para (X = 1:5:1) ! (de 1 até 5 de 1 em 1)	
! ler dados válidos do teclado	2.1
repetir até (R1 > 0)	
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
fim repetir ! para X = 1:5:1	

Programa em SCILAB:

```
// Exemplo 5a
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// 1. definir dados
 R1 = 0.0; // primeiro resistor
 R2 = 0.0; // segundo resistor
 R3 = 0.0; // resistor equivalente
  X = 0; // contador do numero de vezes
// 2. repetir 5 vezes (primeira forma)
           // limpar a area de trabalho
 clc:
 for X = 1:1:5 // repetir 5 vezes
 // 2.1.1 ler primeiro valor
   R1 = input ( "\nR1 " ); // ler primeiro valor
   while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
   end // ( R1 \le 0 )
 // 2.2. ler segundo valor
   R2 = input ( "\nR2" ); // ler segundo valor
   while (R2 \le 0)
      R2 = input ( "\nR2 " ); // ler segundo valor
   end // ( R2 \le 0 )
 // 3. calcular equivalente em serie
   R3 = R1 + R2;
 // 4. mostrar resultado
   printf ( "\nR3=R1+R2= %f [ohms]", R3 );
  end // repetir para X = 1:5:1
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
 halt:
// fim do programa
```

Programa em SCILAB:

```
// Exemplo 5b
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// 1. definir dados
 R1 = 0.0; // primeiro resistor
 R2 = 0.0; // segundo resistor
 R3 = 0.0; // resistor equivalente
  X = 0; // contador do numero de vezes
// 2. repetir 5 vezes (segunda forma)
           // limpar a area de trabalho
  clc:
  X = 1; // valor inicial
  while (X \le 5)
 // 2.1.1 ler primeiro valor
    R1 = input ( "\nR1 " ); // ler primeiro valor
    while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
    end // (R1 <= 0)
 // 2.2. ler segundo valor
    R2 = input ( "\nR2 " ); // ler segundo valor
    while (R2 \le 0)
     R2 = input ( "\nR2 " ); // ler segundo valor
    end // ( R2 \le 0 )
 // 3. calcular equivalente em serie
    R3 = R1 + R2;
 // 4. mostrar resultado
    printf ( "\nR3=R1+R2= %f [ohms]", R3 );
    X = X + 1; // proximo valor
  end // repetir para X = 1:5:1
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
 halt:
// fim do programa
```

Programa em C:

```
// Exemplo 5a
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
 int X; // contador do numero de vezes
// 2. repetir 5 vezes (primeira forma)
 for (X = 1; X <= 5; X = X+1)
   // 2.1.1 ler primeiro valor
   do
     printf ( "\nR1=" );
     scanf ( "%f", &R1 ); // ler primeiro valor
   while (R1 <= 0);
   // 2.1.2. ler segundo valor
   do
     printf ( "\nR2=" );
     scanf ( "%f", &R2 ); // ler primeiro valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   printf ( "\nR3=R1+R2=%f %s", R3, " [ohms]" );
  \} // \text{ fim repetir para } X = 1:5:1
// pausa para terminar
  printf ("Pressionar ENTER para terminar.");
  getchar ();
 return (0);
} // fim do programa
```

Programa em C:

```
// Exemplo 5b
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
  int X; // contador do numero de vezes
// 2. repetir 5 vezes (segunda forma)
 X = 1; // valor inicial
  while (X \le 5)
 {
   // 2.1.1 ler primeiro valor
   do
     printf ( "\nR1=" );
     scanf ( "%f", &R1 ); // ler primeiro valor
   while (R1 \le 0);
   // 2.1.2. ler segundo valor
   do
   {
     printf ( "\nR2=" );
     scanf ( "%f", &R2 ); // ler primeiro valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   printf ( "\nR3=R1+R2=%f %s", R3, " [ohms]" );
   X = X + 1; // próximo valor
  \} // \text{ fim repetir para } X = 1:5:1
// pausa para terminar
  printf ( "Pressionar ENTER para terminar." );
  getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 5a
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R1, // primeiro resistor
         R2, // segundo resistor
         R3; // resistor equivalente
         X; // contador do numero de vezes
// 2. repetir 5 vezes (primeira forma)
 for (X = 1; X <= 5; X = X+1)
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 <= 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
 \} // fim repetir para X = 1:5:1
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

Programa em C++:

```
// Exemplo 5b
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R1, // primeiro resistor
         R2, // segundo resistor
         R3; // resistor equivalente
         X; // contador do numero de vezes
// 2. repetir 5 vezes (segunda forma)
 X = 1; // valor inicial
  while (X \le 5)
 {
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 \le 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
   X = X + 1; // próximo valor
  \} // \text{ fim repetir para } X = 1:5:1
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 5a
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo 5a
 public static void Main ()
 // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
 // 2. ler dados do teclado
 // 1. definir dados
   double R1, // primeiro resistor
           R2, // segundo resistor
           R3; // resistor equivalente
           X; // contador do numero de vezes
 // 2. repetir 5 vezes (primeira forma)
   for (X = 1; X \le 5; X = X+1)
   // 2.1.1. ler primeiro valor
     do
     {
       Console.Write ( "\nR1=" );
       R1 = int.Parse (Console.ReadLine ()); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     Console.WriteLine ( \nR3=R1+R2="+R3+"[ohms]");
   \} // fim repetir para X = 1.5.1
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console ReadLine ();
 } // end Main ()
} // fim Exemplo_5a class
```

Outra versão do programa em C#:

```
* Exemplo 5b
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo 5b
  public static void Main ()
  // 1. definir dados
   double R1,
                                          // primeiro resistor
                                         // segundo resistor
           R2,
           R3;
                                         // resistor equivalente
   int
           X;
                                         // contador do numero de vezes
  // 2. repetir 5 vezes (primeira forma)
   X = 1;
   while (X \le 5)
   // 2.1.1. ler primeiro valor
     do
       Console.Write ( "\nR1=" );
       R1 = int.Parse (Console.ReadLine ()); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
      Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
     X = X + 1;
                             // proximo valor
   \} // fim repetir para X = 1:5:1
  // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
  } // end Main ()
} // fim Exemplo_5b class
```

Programa em Java:

```
* Exemplo 5a
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 5a
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                    // primeiro resistor
           R2,
                                    // segundo resistor
           R3;
                                    // resistor equivalente
                                    // contador do numero de vezes
   int
          X;
 // 2. repetir 5 vezes (primeira forma)
   for (X = 1; X \le 5; X = X+1)
   {
    // 2.1.1. ler primeiro valor
      do
      {
       System.out.print ( "\nR1 = " ); // ler primeiro valor
       R1 = Double.parseDouble ( System.console( ).readLine( ) );
      while (R1 \le 0);
    // 2.1.2. ler segundo valor
      do
       System.out.print ( "\nR2 = " ); // ler segundo valor
       R2 = Double.parseDouble ( System.console( ).readLine( ) );
      while (R2 \le 0);
    // 2.2. calcular equivalente em serie
      R3 = R1 + R2;
    // 2.3. mostrar resultado
      System.out.println ( \nR3 = R1+R2 = " + R3 + " [ohms]" );
   \} // \text{ fim repetir para } X = 1:5:1
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_5a class
```

Outra versão do programa em Java:

```
* Exemplo 5b
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 5a
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                  // primeiro resistor
           R2,
                                  // segundo resistor
           R3;
                                  // resistor equivalente
                                  // contador do numero de vezes
   int
          Χ;
 // 2. repetir 5 vezes (segunda forma)
   X = 1;
   while (X \le 5)
   {
    // 2.1.1. ler primeiro valor
      do
      {
       System.out.print ( "\nR1 = " ); // ler primeiro valor
       R1 = Double.parseDouble (System.console().readLine());
      while (R1 \le 0);
    // 2.1.2. ler segundo valor
       System.out.print ( "\nR2 = " ); // ler segundo valor
       R2 = Double.parseDouble ( System.console( ).readLine( ) );
      while (R2 \le 0);
    // 2.2. calcular equivalente em serie
      R3 = R1 + R2;
    // 2.3. mostrar resultado
      System.out.println ( ^{n}R3 = R1 + R2 = ^{n} + R3 + ^{n} [ohms] );
      X = X + 1;
                                     // proximo valor
   \} // fim repetir para X = 1:5:1
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ( )
} // fim Exemplo 5b class
```

Programa em Python:

```
# Exemplo 5a
# Dados dois resistores,
# calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
X = 0; # contador do numero de vezes
# 2. repetir 5 vezes (primeira forma)
for X in range (1, 5+1, 1):
                                    # repetir 5 vezes
 # 2.1.1 ler primeiro valor
  R1 = float (input ("\nR1 = ")); # ler primeiro valor
  while (R1 \le 0):
    R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
  # (R1 <= 0)
 # 2.2. ler segundo valor
  R2 = float ( input ( "\nR2 = " ) ); # ler segundo valor
  while (R2 \le 0):
    R2 = float (input ("\nR2 = ")); # ler segundo valor
 \#(R2 \le 0)
 # 2.3. calcular equivalente em serie
  R3 = R1 + R2;
 # 2.4. mostrar resultado
  print ( "\nR3=R1+R2= ", R3, " [ohms]" );
# repetir para X = 1:5:1
# pausa para terminar
print ( "\nPressionar <ENTER> para terminar.\n" );
input ();
# fim do programa
```

Outra versão do programa em Python:

```
# Exemplo 5b
# Dados dois resistores,
# calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
X = 0; # contador do numero de vezes
# 2. repetir 5 vezes (segunda forma)
X = 1;
         # valor inicial
while (X \le 5):
                                    # repetir 5 vezes
 # 2.1.1 ler primeiro valor
  R1 = float (input ("\nR1 = ")); # ler primeiro valor
  while (R1 \le 0):
    R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
  # (R1 <= 0)
 # 2.2. ler segundo valor
  R2 = float (input ("\nR2 = ")); # ler segundo valor
  while (R2 \le 0):
    R2 = float (input ("\nR2 = ")); # ler segundo valor
 \#(R2 \le 0)
 # 2.3. calcular equivalente em serie
  R3 = R1 + R2;
 # 2.4. mostrar resultado
  print ( "\nR3=R1+R2= ", R3, " [ohms]" );
  X = X + 1; # proximo valor
# repetir para X = 1:5:1
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um número inteiro (N) do teclado;
 - calcular e mostrar a soma dos (N) primeiros números naturais.
- 2. Fazer um algoritmo para:
 - calcular e mostrar a soma dos pares entre100 e 500.
- 3. Fazer um algoritmo para:
 - ler dois números inteiros (M e N, M < N) do teclado;
 - calcular e mostrar a soma dos números entre (M) e (N).
- 4. Fazer um algoritmo para:
 - ler dois números inteiros (M e N, M < N) do teclado;
 - calcular e mostrar a soma dos quadrados dos números entre eles.
- 5. Fazer um algoritmo para:
 - ler um número inteiro (N) do teclado;
 - ler N outros valores reais (P) do teclado, um por vez;
 - calcular e mostrar o produto destes valores.

Exemplo 6.

Fazer um algoritmo para:

- repetir para um número indeterminado de vezes:
 - ler os valores de dois resistores do teclado e garantir que sejam válidos;
 - calcular e mostrar o valor de resistor equivalente em série.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R1	real		resistor 1 > 0 (válido)
R2	real		resistor 2 > 0 (válido)
R3	real		resistor equivalente

- Fórmulas que relacionam os dados :

$$R3 = R1 + R2$$

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
R1 = 10 [ohms] R2 = 5 [ohms]	R3 = 15 [ohms]
R1 = 10 [ohms] R2 = 2 [ohms]	R3 = 12 [ohms]
R1 = 10 [ohms] R2 = 1 [ohms]	R3 = 11 [ohms]
R1 = 5 [ohms] R2 = 2 [ohms]	R3 = 7 [ohms]
R1 = 2 [ohms] R2 = 1 [ohms]	R3 = 3 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 6	v.1
Ação	Bloco
! definir dados	1
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Segunda versão, refinar o primeiro bloco.

Exemplo 6	v.2
Ação	Bloco
! definir dados	
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3

Terceira versão, refinar o segundo bloco.

Exemplo 6	v.3
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
! calcular equivalente em série	2.2
! mostrar resultado	2.3
enquanto houver dados	

Quarta versão, refinar o segundo bloco.

Exemplo 6	v.4
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
! repetir até parar	2
! ler dados válidos do teclado	2.1
tela ← "\nR1 = ";	
R1 ← teclado; ! ler primeiro valor	
R1 ≤ 0 ?	
tela ← "\nR2 = ";	
R2 ← teclado; ! ler segundo valor	
R2 ≤ 0 ?	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
enquanto houver dados	

Quinta versão, refinar novamente o segundo bloco.

Exemplo 6	v.5
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro Resposta; ! controle da repetição	
! repetir até parar	
! ler dados válidos do teclado	2.1
repetir até (R1 > 0)	
tela ← "\nR1 = "; R1 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2 = "; R2 ← teclado; ! ler segundo valor	
fim repetir ! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
! verificar se há mais dados	2.4
tela ← "\nMais dados (Sim=1,Não=0) ? ";	
Resposta ← teclado;	
Resposta = 1 ?	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 6	٧.6
Ação	Bloco
! definir dados	1
real R1, ! primeiro resistor	
R2, ! segundo resistor	
R3; ! resistor equivalente	
inteiro Resposta; ! controle da repetição	
! repetir até parar	
repetir até Resposta ≠ 1	2.1
! ler dados válidos do teclado	
repetir até (R1 > 0)	
tela ← "\nR1="; R1 ← teclado; ! ler primeiro valor	
fim repetir! enquanto (R1 ≤ 0)	
repetir até (R2 > 0)	
tela ← "\nR2="; R2 ← teclado; ! ler primeiro valor	
fim repetir ! enquanto (R2 ≤ 0)	
! calcular equivalente em série	2.2
R3 ← R1 + R2;	
! mostrar resultado	2.3
tela ← ("\nR3=R1+R2=", R3, " [ohms]");	
! verificar se há mais dados	2.4
tela ← "\nMais dados (Sim=1,Não=0)?";	
Resposta ← teclado;	
fim repetir! enquanto Resposta = 1	
·	

Programa em SCILAB:

```
// Exemplo 6
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// 1. definir dados
 R1 = 0.0;
                // primeiro resistor
 R2 = 0.0;
                // segundo resistor
  R3 = 0.0;
                // resistor equivalente
  Resposta = 0; // contador do numero de vezes
// 2. repetir até parar
                // limpar a area de trabalho
  clc:
  Resposta = input ( "\nMais dados (Sim=1,Nao=0)?");
  while (Resposta == 1)
 // 2.1.1 ler primeiro valor
   R1 = input ( "\nR1 " ); // ler primeiro valor
   while (R1 \le 0)
     R1 = input ( "\nR1 " ); // ler primeiro valor
    end // ( R1 \le 0 )
 // 2.1.2. ler segundo valor
   R2 = input ( "\nR2 " ); // ler segundo valor
   while (R2 \le 0)
     R2 = input ( "\nR2 " ); // ler segundo valor
   end // ( R2 \le 0 )
 // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
 // 2.3. mostrar resultado
   printf ( "\nR3=R1+R2= %f [ohms]", R3 );
 // 2.4. verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  end // enquanto houver dados
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
 halt:
// fim do programa
```

Programa em C:

```
// Exemplo 6
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R1, // primeiro resistor
       R2, // segundo resistor
       R3; // resistor equivalente
  int Resposta; // controle da repeticao
// 2. repetir ate' parar
 do
 {
   // 2.1.1 ler primeiro valor
   do
     printf ( "\nR1=" );
     scanf ( "%f", &R1 ); // ler primeiro valor
   while (R1 <= 0);
   // 2.1.2. ler segundo valor
   do
     printf ( "\nR2=" );
     scanf ( "%f", &R2 ); // ler primeiro valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   printf ( "\nR3=R1+R2=%f %s", R3, " [ohms]" );
   // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Nao=0)?";
   cin >> Resposta;
  while (Resposta == 1); // enquanto houver dados
// pausa para terminar
 printf ( "\nPressionar ENTER para terminar." );
 getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 6
// Dados dois resistores,
// calcular o resistor equivalente em serie.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R1, // primeiro resistor
         R2, // segundo resistor
         R3; // resistor equivalente
         Resposta; // controle da repeticao
// 2. repetir ate' parar
 do
 {
   // 2.1.1 ler primeiro valor
   do
    cout << "\nR1=";
    cin >> R1; // ler primeiro valor
   while (R1 <= 0);
   // 2.1.2. ler segundo valor
   do
    cout << "\nR2=";
    cin >> R2, // ler segundo valor
   while (R2 \le 0);
   // 2.2. calcular equivalente em serie
   R3 = R1 + R2;
   // 2.3. mostrar resultado
   cout << "\nR3=R1+R2=" << R3 << " [ohms]";
   // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Nao=0) ? ";</pre>
   cin >> Resposta;
  while (Resposta == 1); // enquanto houver dados
// pausa para terminar
  cout << "\nPressionar ENTER para terminar.";</pre>
  cin.get ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 6
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo 6
 public static void Main ()
 // 1. definir dados
   double R1, // primeiro resistor
          R2, // segundo resistor
          R3; // resistor equivalente
          Resposta; // controle da repeticao
 // 2. repetir ate' parar
   do
   // 2.1.1. ler primeiro valor
     do
       Console.Write ( "\nR1=" );
       R1 = int.Parse (Console.ReadLine ()); // ler primeiro valor
     while (R1 \le 0);
   // 2.1.2. ler segundo valor
     do
       Console.Write ( "\nR2=" );
       R2 = int.Parse ( Console.ReadLine ( ) ); // ler segundo valor
     while (R2 \le 0);
   // 2.2. calcular equivalente em serie
     R3 = R1 + R2;
   // 2.3. mostrar resultado
     Console.WriteLine ( "\nR3=R1+R2=" + R3 + " [ohms]" );
   // 2.4. verificar se ha' mais dados
     Console.Write ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1); // enquanto houver dados
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ()
} // fim Exemplo_6 class
```

Programa em Java:

```
* Exemplo 6
 * Dados dois resistores, calcular o resistor equivalente em serie.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 6
 public static void main (String [] args)
 // 1. definir dados
   double R1,
                                   // primeiro resistor
           R2,
                                   // segundo resistor
           R3;
                                   // resistor equivalente
           Resposta;
                                   // controle da repeticao
   int
 // 2. repetir ate" parar
   {
    // 2.1.1. ler primeiro valor
      do
       System.out.print ( "\nR1 = " ); // ler primeiro valor
       R1 = Double.parseDouble ( System.console( ).readLine( ) );
      while (R1 \le 0);
    // 2.1.2. ler segundo valor
      do
       System.out.print ( "\nR2 = " ); // ler segundo valor
       R2 = Double.parseDouble ( System.console( ).readLine( ) );
      while (R2 \le 0);
    // 2.2. calcular equivalente em serie
      R3 = R1 + R2;
    // 2.3. mostrar resultado
      System.out.println ( \nR3 = R1+R2 = " + R3 + " [ohms]" );
    // 2.4. verificar se ha' mais dados
      System.out.print ( "\nMais dados (Sim=1,Nao=0) ? " );
      Resposta = Integer.parseInt ( System.console( ).readLine( ) );
   while (Resposta == 1); // enquanto houver dados
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ( )
} // fim Exemplo 6 class
```

Programa em Python:

```
# Exemplo 6
# Dados dois resistores,
# calcular o resistor equivalente em serie.
#1. definir dados
R1 = 0.0; # primeiro resistor
R2 = 0.0; # segundo resistor
R3 = 0.0; # resistor equivalente
Resposta = 0:
                   # controle da repeticao
# 2. repetir ate' parar
Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
while (Resposta == 1):
 # 2.1.1 ler primeiro valor
  R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
  while (R1 \le 0):
    R1 = float ( input ( "\nR1 = " ) ); # ler primeiro valor
  \#(R1 \le 0)
 # 2.2. ler segundo valor
  R2 = float (input ("\nR2 = ")); # ler segundo valor
  while (R2 \le 0):
    R2 = float (input ("\nR2 = ")); # ler segundo valor
 \#(R2 \le 0)
 # 2.3. calcular equivalente em serie
  R3 = R1 + R2;
 # 2.4. mostrar resultado
  print ( "\nR3=R1+R2= ", R3, " [ohms]" );
 # 2.5. verificar se ha' mais dados
  Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
# enquanto houver dados
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

1. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- calcular e mostrar o número de dados lidos e quantos valores são maiores que 18 anos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- sabendo-se que o último dado conterá o valor zero e não entrará nos cálculos,
- calcular e mostrar o número de dados lidos e quantos valores são maiores que 18 anos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar quantas notas estão acima de 60 pontos e quantas estão abaixo;
- o último dado, e que não será processado, conterá a nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros positivos,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a porcentagem de valores pares e ímpares.

5. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a porcentagem de valores negativos, nulos e positivos.

Exemplo 7.

Fazer um algoritmo para:

- ler 10 valores de resistores testados em laboratório;
- calcular e mostrar o valor médio desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
SOMA	real	0.0	somatório de valores
MÉDIA	real		valor médio

- Fórmulas que relacionam os dados :

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms] 10.00 [ohms] 09.96 [ohms] 10.00 [ohms] 09.95 [ohms] 09.99 [ohms]	
10.00 [ohms]	Valor médio = 10.00 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 7	v.1
Ação	Bloco
! definir dados	1
! repetir 10 vezes	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio	3
! mostrar resultado	4

Segunda versão, refinar o primeiro bloco.

Exemplo 7	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
! repetir 10 vezes	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio	3
! mostrar resultado	4

Terceira versão, refinar o segundo bloco.

Exemplo 7	v.3
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
inteiro X; ! contador do numero de vezes	
! repetir 10 vezes	2
X ← 1:10:1	
! ler dados válidos do teclado	2.1
! acumular valores	2.2
! calcular valor médio	3
! mostrar resultado	4

Quarta versão, refinar o segundo bloco.

F	4
Exemplo 7	v.4
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
inteiro X; ! contador do numero de vezes	
! repetir 10 vezes	2
X ← 1:10:1	
! ler dados válidos do teclado	2.1
tela ← "\nR = ";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	2.2
SOMA ← SOMA + R;	
! calcular valor médio	3
! mostrar resultado	4

Quinta versão, refinar o terceiro e quarto blocos.

Exemplo 7	v.5
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
inteiro X; ! contador do numero de vezes	
! repetir 10 vezes	2
X ← 1:10:1	
! ler dados válidos do teclado	2.1
tela ← "\nR = ";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	2.2
SOMA ← SOMA + R;	
! calcular valor médio	3
MEDIA ← SOMA / 10;	
! mostrar resultado	4
tela ← ("\nValor médio =", MEDIA, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 7	v.5
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA; ! valor médio	
inteiro X; ! contador do numero de vezes	
! repetir 10 vezes	2
repetir para (X ← 1:10:1)	
! ler dados válidos do teclado	
repetir até (R > 0)	
tela ← "\nR=";	
R ← teclado; ! ler valor	
fim repetir! enquanto (R<=0)	
! acumular valores	
$SOMA \leftarrow SOMA + R;$	
fim repetir ! para (X ← 1:10:1)	
! calcular valor médio	3
MEDIA ← SOMA / 10;	
! mostrar resultado	4
tela ← ("\nValor médio =", MEDIA, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 7
// Dados valores de resistores, calcular o valor medio.
// 1. definir dados
        = 0.0; // resistor
 SOMA = 0.0; // somatorio de valores
 MEDIA = 0.0; // valor medio
         = 0; // contador do numero de vezes
 Χ
// 2. repetir 10 vezes
                // limpar a area de trabalho
 clc;
 for X = 1:1:10
 // 2.1. ler um valor
   R = input ( "\nR " ); // ler primeiro valor
   while (R \le 0)
     R = input ( "\nR " ); // ler outro valor
   end //(R \le 0)
 // 2.2. acumular valores
   SOMA = SOMA + R;
  end // repetir para ( X = 1 : 10 : 1 )
// 3. calcular valor medio
 MEDIA = SOMA / 10;
// 4. mostrar resultado
 printf ( "\nValor medio = %f [ohms]", MEDIA );
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
 halt;
// fim do programa
```

Programa em C:

```
// Exemplo 7
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R.
                    // resistor
      SOMA = 0.0, // somatorio de valores
      MEDIA;
                    // valor medio
                    // contador do numero de vezes
 int X;
// 2. repetir 10 vezes
 for (X=1; X=10; X=X+1)
   // 2.1. ler um valor
   do
    printf ( \nR=" );
    scanf ( "%f", &R ); // ler valor
   while (R \le 0);
   // 2.2. acumular valores
   SOMA = SOMA + R;
 } // fim repetir
// 3. calcular valor medio
 MEDIA = SOMA / 10;
// 4. mostrar resultado
 printf ( "\nValor medio = %f, %s", MEDIA, " [ohms]" );
// pausa para terminar
 printf ( "Pressionar ENTER para terminar." );
 getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 7
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
 double R.
                      // resistor
         SOMA = 0.0, // somatorio de valores
        MEDIA;
                       // valor medio
                       // contador do numero de vezes
 int
        X;
// 2. repetir 10 vezes
 for (X=1; X=10; X=X+1)
   // 2.1. ler um valor
   do
    cout << "\nR=";
    cin >> R; // ler valor
   while (R \le 0);
   // 2.2. acumular valores
   SOMA = SOMA + R;
 } // fim repetir
// 3. calcular valor medio
 MEDIA = SOMA / 10;
// 4. mostrar resultado
 cout << "\nValor medio =" << MEDIA << " [ohms]";</pre>
// pausa para terminar
 cout << "Pressionar ENTER para terminar.";</pre>
 cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 7
* Dados dois resistores, calcular o resistor equivalente em serie.
using System;
class Exemplo 7
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
           SOMA = 0.0, // segundo resistor
           MEDIA= 0.0; // resistor equivalente
   int
                        // contador do numero de vezes
 // 2. repetir 10 vezes
   for (X = 1; X \le 10; X = X+1)
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
   } // fim repetir
 // 3. calcular o valor medio
   MEDIA = SOMA / 10;
 // 4. mostrar resultado
   Console.WriteLine ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ( )
```

} // fim Exemplo_7 class

Programa em Java:

```
* Exemplo 7
 * Dados valores de resistores, calcular o valor medio.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo_7
 public static void main (String [] args)
 // 1. definir dados
   double R,
                                 // resistor
          SOMA = 0.0,
                                 // segundo resistor
          MEDIA= 0.0;
                                 // resistor equivalente
                                 // contador do numero de vezes
   int
          X;
 // 2. repetir 10 vezes
   for (X = 1; X \le 10; X = X+1)
   // 2.1. ler dado valido do teclado
     do
      System.out.print ( "\nR = " );// ler valor
      R = Integer.parseInt ( System.console( ).readLine( ) );
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
   } // fim repetir
 // 3. calcular o valor medio
   MEDIA = SOMA / 10;
 // 4. mostrar resultado
   System.out.println ( "\nValor medio = " + MEDIA + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ( )
} // fim Exemplo_7 class
```

Programa em Python:

```
# Exemplo 7
# Dados valores de resistores, calcular o valor medio.
# 1. definir dados
     = 0.0; # resistor
SOMA = 0.0; # somatorio de valores
MEDIA = 0.0; # valor medio
       = 0; # contador do numero de vezes
# 2. repetir 10 vezes
for X in range (1, 10+1, 1):
 #2.1. ler um valor
  R = float (input ("\nR = ")); # ler primeiro valor
  while (R \le 0):
    R = float (input ("\nR = ")); # ler outro valor
  # enquanto (R <= 0)
 # 2.2. acumular valores
  SOMA = SOMA + R;
# repetir para (X = 1:10:1)
#3. calcular valor medio
MEDIA = SOMA / 10.0;
# 4. mostrar resultado
print ( "\nValor medio = ", MEDIA, " [ohms]" );
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler valores de idade de 10 indivíduos;
 - calcular e mostrar a idade média deste grupo de indivíduos.

2. Fazer um algoritmo para:

- ler valores de idade de 10 indivíduo;
- calcular e mostrar a idade média dos maiores que 18 anos.

3. Fazer um algoritmo para:

- ler o número de valores em um conjunto de dados (N) contendo, cada um, uma nota;
- ler o valor de cada nota:
- determinar e mostrar a média dos valores maiores que 60 pontos.

4. Fazer um algoritmo para:

- ler o número de valores em um conjunto de dados (N);
- ler (N) valores inteiros positivos,
- calcular e mostrar a soma dos valores pares e a soma dos valores ímpares.

5. Fazer um algoritmo para:

- ler o número de valores em um conjunto de dados (N);
- ler (N) valores inteiros positivos,
- calcular e mostrar a diferença entre o valor médio negativo e o valor médio positivo.

Exemplo 8.

Fazer um algoritmo para:

- ler um número indeterminado de valores de resistores testados em laboratório;
- calcular e mostrar o valor médio desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
SOMA	real	0.0	somatório de valores
N	inteiro	0	número de elementos >
			0
MÉDIA	real	0.0	valor médio

- Fórmulas que relacionam os dados :

MÉDIA = SOMA / N; ! se N diferente de zero

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms]	
10.04 [ohms]	
10.01 [ohms]	
10.05 [ohms]	
10.00 [ohms]	
09.96 [ohms]	
10.00 [ohms]	
09.95 [ohms]	
09.99 [ohms]	
10.00 [ohms]	Valor médio = 10.00 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 8	v.1
Ação	Bloco
! definir dados	1
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio, se houver dados	3
! mostrar resultado	4

Segunda versão, refinar o primeiro bloco.

Exemplo 8	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro N=0; ! numero de elementos	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! acumular valores	2.2
! calcular o valor médio, se houver dados	3
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 8	v.4
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro N=0; ! numero de elementos	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	2.2
SOMA ← SOMA + R;	
N ← N + 1; ! mais um dado valido	
até parar	
! calcular valor médio	3
! mostrar resultado	4

Quarta versão, refinar o terceiro e quarto blocos.

	Exemplo 8	v.4
	Ação	Bloco
! definir	dados	1
real	R, ! resistor	
	SOMA ← 0.0, ! somatório de valores	
	MEDIA ← 0.0; ! valor médio	
inteir	N=0; ! numero de elementos	
	enquanto houver dados	2
! ler	dado válido do teclado	2.1
te	ela ← "\nR=";	
F	R ← teclado; ! ler valor	
F	? ≤ 0 ?	
! acı	ımular valores	2.2
SC	MA ← SOMA + R;	
N •	N + 1; ! mais um dado valido	
até	parar	
! calcula	ar valor médio	3
	V ! não houve dados	3.1
N=0?	tela ← "\nNão houve dados";	
	F ! houve dados	3.2
	MEDIA ← SOMA / N;	
! mostra	ar resultado	4
tela ←	· ("\nValor médio = ", MEDIA, " [ohms]");	

Quinta versão, refinar novamente o segundo bloco.

Exemplo 8	v.4
Ação	Bloco
! definir dados	1
real R, ! resistor	
SOMA ← 0.0, ! somatório de valores	
MEDIA ← 0.0; ! valor médio	
inteiro $N \leftarrow 0$, ! numero de elementos	
Resposta; ! controle da repetição	
	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! acumular valores	2.2
SOMA ← SOMA + R;	
N ← N + 1; ! mais um dado valido	
! verificar se há mais dados	2.3
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
Resposta = 1	
! calcular valor médio	3
V ! não houve dados	
N=0? tela ← "\nNão houve dados";	
F ! houve dados	
MEDIA ← SOMA / N;	
! mostrar resultado	4
tela ← ("\nValor médio = ", MEDIA, " [ohms]");	

Sexta versão, refinar novamente o segundo e terceiro blocos.

Exemplo 8	v.4
Ação	Bloco
! definir dados	1
real R. ! resistor	'
SOMA ← 0.0, ! somatório de valores	
MEDIA=0.0; ! valor médio	
inteiro N \leftarrow 0, ! numero de elementos	
Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
repetir até (Resposta ≠ 1)	
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela ← "\nR=";	
$R \leftarrow \text{teclado}$; ! ler valor	
fim repetir! enquanto ($R \le 0$)	
! 2.2 acumular valores	
SOMA ← SOMA + R;	
N ← N + 1;	
! 2.3 verificar se há mais dados	
tela ← "∖nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir! enquanto (Resposta = 1);	
! calcular valor médio	3
se (N = 0)	
! não houve dados	
tela ← "\nNão houve dados";	
senão	
! houve dados, calcular a média	
MEDIA ← SOMA / N;	
fim se! houve dados	
! mostrar resultado	4
tela ← ("\nValor médio = ", MEDIA, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 8
// Dados valores de resistores, calcular o valor medio.
// 1. definir dados
          = 0.0; // resistor
 R
  SOMA = 0.0; // somatorio de valores
 MEDIA = 0.0; // valor medio
           = 0; // numero de elementos
  Resposta = 0; // controle da repeticao
// 2. repetir ate' parar
                  // limpar a area de trabalho
  Resposta = input ( "\nMais dados (Sim=1,Nao=0)?");
  while (Resposta == 1)
 // 2.1.1 ler dado valido do teclado
   R = input ( "\nR " ); // ler valor
   while (R \le 0)
     R = input ( "\nR " ); // ler valor
   end // ( R<=0 )
 // 2.2. acumular valores
   SOMA = SOMA + R;
   N = N + 1; // mais um dado valido
  // 2.3. verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  end // enquanto houver dados
// 3. calcular o valor medio
 if (N == 0)
 // nao houve dados
   printf ( "\nNao houve dados" );
  else
 // houve dado, calcular a media
   MEDIA = SOMA / N;
  end // fim se houve dados
// 4. mostrar resultado
  printf ( "\nValor medio= %f [ohms]", MEDIA );
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
  halt;
// fim do programa
```

Programa em C:

```
// Exemplo 8
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R.
                    // resistor
       SOMA = 0.0. // somatorio de valores
       MEDIA= 0.0; // valor medio
 int N = 0;
                    // numero de elementos
       Resposta; // controle da repeticao
// 2. repetir ate' parar
 do
 // 2.1 ler dado valido do teclado
   do
   {
     printf ( "\nR=" );
     scanf ( "%f", &R ); // ler valor
   while (R \le 0);
 // 2.2 acumular valores
   SOMA = SOMA + R;
   N = N + 1;
 // 2.3 verificar se ha' mais dados
   printf ( "\nMais dados (Sim=1,Não=0) ? " );
   scanf ( "%d", &Resposta );
  while (Resposta == 1);
// 3. calcular o valor medio
 if (N == 0)
 // nao houve dados
   printf ( "\nNao houve dados" );
 else
 // houve dados, calcular a media
   MEDIA = SOMA / N;
  } // fim se houve dados
// 4. mostrar resultado
  printf ( "\nValor medio = %f %s", MEDIA, " [ohms]" );
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar." );
  getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 8
// Dados valores de resistores, calcular o valor medio.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R.
                      // resistor
         SOMA = 0.0, // somatorio de valores
         MEDIA= 0.0; // valor medio
 int
         N = 0;
                      // numero de elementos
         Resposta;
                      // controle da repeticao
// 2. repetir ate' parar
 do
 // 2.1 ler dado valido do teclado
   do
   {
     cout << "\nR=";
    cin >> R; // ler valor
   while (R \le 0);
 // 2.2 acumular valores
   SOMA = SOMA + R;
   N = N + 1;
 // 2.3 verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
  while (Resposta == 1);
// 3. calcular o valor medio
 if (N == 0)
 // nao houve dados
   cout << "\nNao houve dados";
 else
 // houve dados, calcular a media
   MEDIA = SOMA / N;
 } // fim se houve dados
// 4. mostrar resultado
  cout << "\nValor medio=" << MEDIA << " [ohms]";
// pausa para terminar
  cout << "\nPressionar ENTER para terminar.";</pre>
  cing.get ();
  return EXIT SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 8
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_8
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
          SOMA = 0.0, // segundo resistor
          MEDIA= 0.0; // resistor equivalente
   int
                        // numero de elementos
           N = 0,
           Resposta;
                        // controle da repeticao
 // 2. repetir ate' parar
   do
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R;
     N = N + 1;
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   }
   while (Resposta == 1);
 // 3. calcular o valor medio
   if (N == 0)
   // nao houve dados
     Console.WriteLine ( "\nNao houve dados" );
   }
   else
   // houve dados, calcular a media
     MEDIA = SOMA / N;
   } // fim se houve dados
 // 4. mostrar resultado
   Console.WriteLine ( "\nValor medio=" + MEDIA + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ()
} // fim Exemplo_8 class
```

Programa em Java:

```
* Exemplo 8
 * Dados valores de resistores, calcular o valor medio.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 8
 public static void main (String [] args)
 // 1. definir dados
   double R,
                                  // resistor
          SOMA = 0.0,
                                  // segundo resistor
          MEDIA= 0.0;
                                  // resistor equivalente
                                  // numero de elementos
   int
          N = 0,
          Resposta;
                                  // controle da repeticao
 // 2. repetir ate' parar
   do
   // 2.1. ler dado valido do teclado
     do
     {
      System.out.print ( "\nR = " ); // ler valor
      R = Integer.parseInt (System.console().readLine());
     while (R \le 0);
   // 2.2. acumular valores
     SOMA = SOMA + R:
     N = N + 1:
   // 2.3. verificar se ha' mais dados
     System.out.print ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = Integer.parseInt ( System.console( ).readLine( ) );
   while (Resposta == 1);
 // 3. calcular o valor medio
   if (N == 0)
   // nao houve dados
     System.out.println ( "\nNao houve dados" );
   else
   // houve dados, calcular a media
     MEDIA = SOMA / N;
   } // fim se houve dados
 // 4. mostrar resultado
   System.out.println ( "\nValor medio = " + MEDIA + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_8 class
```

Programa em Python:

```
# Exemplo 8
# Dados valores de resistores, calcular o valor medio.
#1. definir dados
        = 0.0; # resistor
R
SOMA = 0.0; # somatorio de valores
MEDIA = 0.0; # valor medio
         = 0; # numero de elementos
Resposta = 0; # controle da repeticao
# 2. repetir ate' parar
Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
while (Resposta == 1):
 # 2.1.1 ler dado valido do teclado
  R = float (input ("\nR = ")); # ler valor
  while (R \le 0):
    R = float (input ("\nR = ")); # ler valor
  # ( R<=0 )
 # 2.2. acumular valores
  SOMA = SOMA + R;
  N = N + 1; # mais um dado valido
 # 2.3. verificar se ha' mais dados
  Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
# enquanto houver dados
#3. calcular o valor medio
if (N == 0):
 # nao houve dados
   print ( "\nNao houve dados" );
else:
 # houve dado, calcular a media
   MEDIA = SOMA / N;
# fim se houve dados
# 4. mostrar resultado
print ( "\nValor medio= ", MEDIA, " [ohms]" );
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

1. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
- calcular e mostrar a idade média deste grupo de indivíduos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- sabendo-se que o último dado conterá o valor zero e não entrará nos cálculos,
- calcular e mostrar a idade média dos maiores que 18 anos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar a média dos valores maiores que 60 pontos;
- o último dado, e que não será processado, conterá a nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros positivos,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a soma dos valores pares e a soma dos valores ímpares.

5. Fazer um algoritmo para:

- ler um número indeterminado de valores inteiros,
- o último dado, que não será processado, conterá o valor 9999;
- calcular e mostrar a diferença entre o valor médio negativo e o valor médio positivo.

Exemplo 9.

Fazer um algoritmo para:

- ler um número indeterminado de valores de resistores testados em laboratório;
- calcular o maior valor desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
MAIOR	real	0.0	maior valor

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Resultado
Maior valor = 10.05 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 9	v.1
Ação	Bloco
! definir dados	1
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! mostrar resultado	

Segunda versão, refinar o primeiro bloco.

Exemplo 9	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 9	v.3
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR \leftarrow 0.0; ! maior valor	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! testar se é o maior	2.2
R>MAIOR ? V MAIOR ← R; ! guardar o novo	
enquanto houver dados	
! mostrar resultado	
_	

Quarta versão, refinar novamente o segundo bloco.

Exemplo 9	v.4	
Ação	Bloco	
! definir dados	1	
real R, ! resistor		
MAIOR ← 0.0; ! maior valor		
inteiro Resposta; ! controle da repetição		
! repetir enquanto houver dados	2	
! ler dado válido do teclado	2.1	
tela ← "\nR=";		
R ← teclado; ! ler valor		
R ≤ 0 ?		
! testar se é o maior		
R>MAIOR ? V MAIOR ← R; ! guardar o novo		
! verificar se há mais dados		
tela ← "\nMais dados (Sim=1,Não=0) ?";		
Resposta ← teclado;		
Resposta = 1?		
! mostrar resultado		

Quinta versão, refinar o terceiro bloco.

Exemplo 9	v.5
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
inteiro Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
tela ← "\nR=";	
R ← teclado; ! ler valor	
R ≤ 0 ?	
! testar se é o maior	2.2
R>MAIOR ? V MAIOR ← R; ! guardar o novo	
! verificar se há mais dados	2.3
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
Resposta = 1?	
! mostrar resultado	3
tela ← ("\nMaior valor = ", Maior, " [ohms]");	

Sexta versão, refinar novamente o segundo bloco.

Exemplo 9	v.6
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR ← 0.0; ! maior valor	
inteiro Resposta; ! controle da repetição	
! repetir enquanto houver dados	2
repetir até (Resposta ≠ 1)	
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela \leftarrow "\nR=";	
R ← teclado; ! ler valor	
fim repetir! enquanto $(R \le 0)$	
! 2.2 testar se é o maior	
se (R>MAIOR)	
MAIOR = R; ! guardar o novo	
fim se! maior	
! 2.3 verificar se há mais dados	
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir ! enquanto (Resposta = 1)	
! mostrar resultado	3
tela ← ("\nMaior valor = ", Maior, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 9
// Dados valores de resistores, calcular o maior valor.
// 1. definir dados
           = 0.0; // resistor
  R
  MAIOR = 0.0, // maior valor
  Resposta = 0; // controle da repeticao
// 2. repetir enquanto houver dados
                  // limpar a area de trabalho
  Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  while (Resposta == 1)
  // 2.1 ler dado valido do teclado
   R = input ( "\nR " ); // ler valor
   while (R \le 0)
     R = input ( "\nR " ); // ler valor
   end // (\dot{R} \ll 0)
  // 2.2. testar se e' o maior
   if (R > MAIOR)
     MAIOR = R;
   end // fim do teste se maior
  // 2.3. verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
  end // enquanto houver dados
// 3. mostrar resultado
  printf ( "\nMaior valor = %f [ohms]", MAIOR );
// pausa para terminar
  printf ( "\nPressionar ENTER para terminar.\n" );
  halt;
// fim do programa
```

Programa em C:

```
// Exemplo 9
// Dados valores de resistores, calcular o maior valor.
// bibliotecas necessárias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
 float R.
                     // resistor
       MAIOR = 0.0, // maior valor
 int Resposta;
                     // controle da repeticao
// 2. repetir enquanto houver dados
 do
 // 2.1. ler dado valido do teclado
   do
   // 2.1 ler um valor do teclado
     printf ( "\nR=" ); scanf ( "%f", &R ); // ler valor
   while (R \le 0);
 // 2.2. testar se é o maior
   if (R > MAIOR)
   {
     MAIOR = R; // guardar o novo
   } // fim do teste do maior
 // 2.3. verificar se ha' mais dados
   printf ( "\nMais dados (Sim=1,Não=0) ? " );
   scanf ( "%d", &Resposta );
 }
 while (Resposta == 1);
// 3. mostrar resultado
 printf ( "\nMaior valor = %f %s", MAIOR, " [ohms]";
// pausa para terminar
 printf ("Pressionar ENTER para terminar.");
  getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 9
// Dados valores de resistores, calcular o maior valor.
// bibliotecas necessárias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R.
                       // resistor
         MAIOR = 0.0, // maior valor
                       // controle da repeticao
         Resposta;
// 2. repetir enquanto houver dados
 do
 // 2.1. ler dado valido do teclado
   do
   // 2.1 ler um valor do teclado
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
 // 2.2. testar se é o maior
   if (R > MAIOR)
   {
     MAIOR = R; // guardar o novo
   } // fim do teste do maior
 // 2.3. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
 }
 while (Resposta == 1);
// 3. mostrar resultado
 cout << "\nMaior valor = " << MAIOR << " [ohms]";</pre>
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
  return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 9
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_9
 public static void Main ()
 // 1. definir dados
   double R,
                          // resistor
           MAIOR = 0.0, // maior valor
           MEDIA = 0.0; // resistor equivalente
           Resposta;
                          // controle da repeticao
 // 2. repetir enquanto houver dados
   do
   {
// 2.1. ler dado valido do teclado
     do
     {
       Console.Write ( "\nR=" );
       R = int.Parse ( Console.ReadLine ( ) ); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
      MAIOR = R; // guardar o novo maior
     } // fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1);
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
```

} // end Main ()

} // fim Exemplo_9 class

Programa em Java:

```
* Exemplo 9
 * Dados valores de resistores, calcular o maior valor.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 9
 public static void main (String [] args)
 // 1. definir dados
   double R,
                                  // resistor
           MAIOR = 0.0,
                                  // maior valor
           MEDIA = 0.0;
                                  // resistor equivalente
           Resposta;
                                  // controle da repeticao
   int
 // 2. repetir enquanto houver dados
   // 2.1. ler dado valido do teclado
     do
      System.out.print ( "\nR = " ); // ler valor
      R = Integer.parseInt ( System.console( ).readLine( ) );
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
      MAIOR = R; // guardar o novo maior
     } // fim do teste do maior
   // 2.3. verificar se ha' mais dados
     System.out.print ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = Integer.parseInt ( System.console( ).readLine( ) );
   while (Resposta == 1);
 // 3. mostrar resultado
   System.out.println ( "\nMaior valor = " + MAIOR + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_9 class
```

Programa em Python:

```
# Exemplo 9
# Dados valores de resistores, calcular o maior valor.
# 1. definir dados
R
        = 0.0; # resistor
MAIOR = 0.0; # maior valor
Resposta = 0; # controle da repeticao
# 2. repetir enquanto houver dados
Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
while (Resposta == 1):
  # 2.1 ler dado valido do teclado
   R = float (input ("\nR = ")); # ler valor
   while (R \le 0):
     R = float (input ("\nR = ")); # Ier valor
   \#(R \le 0)
  # 2.2. testar se e' o maior
   if (R > MAIOR):
     MAIOR = R;
   # fim do teste se maior
  # 2.3. verificar se ha' mais dados
   Resposta = int ( input ( "\nMais dados (Sim=1,Nao=0) ? " ) );
# enquanto houver dados
#3. mostrar resultado
print ( "\nMaior valor = ", MAIOR, " [ohms]" );
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
 - o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
 - calcular e mostrar a maior idade neste grupo de indivíduos.

2. Fazer um algoritmo para:

- ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo;
- o último dado, não entrará nos cálculos, e conterá o valor da idade igual a zero;
- calcular e mostrar a menor idade neste grupo de indivíduos.

3. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar quantas notas são iguais a 60 pontos;
- o último dado, e que não será processado, contém nota = 999.

4. Fazer um algoritmo para:

- ler um número indeterminado de dados;
- cada dado possui um valor, o último dado, e que não será processado, contém o valor 9999;
- calcular e mostrar os dois maiores valores lidos.

5. Modificar o algoritmo anterior de forma a :

- ler um número indeterminado de dados;
- cada dado possui um valor, mas só serão válidos os valores maiores que zero,
- o último dado, e que não será processado, contém o valor 9999;
- calcular e mostrar os dois maiores valores lidos.

Exemplo 10.

- Fazer um algoritmo para:
 ler um número indeterminado de valores de resistores testados em laboratório;
- calcular o maior e o menor valor desta amostra.

Análise de dados:

- Dados do problema :

Dado	Tipo	Valor Inicial	Obs.
R	real		resistor > 0 (válido)
MAIOR	real	primeiro lido	maior valor
MENOR	real	primeiro lido	menor valor

Diagrama funcional:

- Avaliação da solução :
 - Para teste podem ser usados os seguintes valores:

Dados	Resultado
10.00 [ohms] 10.04 [ohms] 10.01 [ohms] 10.05 [ohms]	
10.00 [ohms] 09.96 [ohms] 10.00 [ohms]	
09.95 [ohms] 09.99 [ohms]	
10.00 [ohms]	Maior valor = 10.05 [ohms] Menor valor= 09.95 [ohms]

Algoritmo:

Esboço:

Primeira versão, só comentários.

Exemplo 10	v.1
Ação	Bloco
! definir dados	1
! ler primeiro valor	1.1
! usar o dado lido como valor inicial	1.2
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! testar se é o menor	2.3
! mostrar resultado	3

Segunda versão, refinar o primeiro bloco.

Exemplo 10	v.2
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR, ! maior valor	
MENOR; ! menor valor	
! ler o primeiro valor	1.1
tela ← "\nQual o primeiro valor ?";	
R ← teclado; ! supor válido	
! usar dado lido como valor inicial	1.2
$MAIOR \leftarrow R;$	
$MENOR \leftarrow R;$	
! repetir enquanto houver dados	2
! ler dado válido do teclado	2.1
! testar se é o maior	2.2
! testar se é o menor	2.3
! mostrar resultado	

Terceira versão, refinar o segundo bloco.

Exemplo 10							
Ação	Bloco						
! definir dados	1						
real R, ! resistor							
MAIOR, ! maior valor							
MENOR; ! menor valor							
! 1.1 ler o primeiro valor							
tela ← "\nQual o primeiro valor ?";							
R ← teclado; ! supor válido							
! 1.2 usar dado lido como valor inicial							
$MAIOR \leftarrow R;$							
$MENOR \leftarrow R;$							
! repetir enquanto houver dados							
! ler dado válido do teclado	2.1						
! testar se é o maior	2.2						
! testar se é o menor	2.3						
até parar							
! mostrar resultado							

Quarta versão, refinar novamente o segundo bloco.

	Exemplo 10						
Ação						Bloco	
	efinir dados					1	
real R, ! resistor							
	MAIOR, ! maior valor						
MENOR; ! menor valor							
! 1.1 ler o primeiro valor							
tela ← "\nQual o primeiro valor ?";							
	R ← teclado; ! supor válido						
! 1	! 1.2 usar dado lido como valor inicial						
N	$MAIOR \leftarrow R;$						
$MENOR \leftarrow R;$							
! re	epetir enquant					2	
	! ler dado váli	do	do teclado			2.1	
	tela ← "\nl	₹="	,				
R ← teclado; ! ler valor							
	R ≤ 0 ?						
	! testar se é o maior						
		V	$V \mid MAIOR \leftarrow R;$				
	R>MAIOR?	F	! testar se é o menor			2.3	
			R < MENOR ?	٧	MENOR←R;		
						2.4	
	! verificar se há mais dados						
	tela ← "\nMais dados (Sim=1,Não=0) ?";						
Resposta ← teclado;							
Resposta = 1 ?							
! mostrar resultado						3	

Quinta versão, refinar o terceiro bloco.

Exemplo 10							
		Ação			Bloco		
! definir dados					1		
•	real R, ! resistor						
MAIOR, ! maior valor							
MENOR; ! menor valor							
! 1.1 ler o primeiro valor							
tela ← "\nQual o primeiro valor ?";							
	R ← teclado; ! supor válido						
	do	como valor inicial					
$MAIOR \leftarrow R;$							
MENOR ← R;							
! repetir enquant					2.1		
! ler dado váli					2.1		
tela ← "\nl		•					
	R ← teclado; ! ler valor						
	R ≤ 0 ? ! testar se é o maior						
! testar se e c	THE	aior I			2.2		
	٧	MAIOR ← R;					
R>MAIOR?	F	! testar se é o me	eno	r	2.3		
		R < MENOR ?			,		
! verificar se h	! verificar se há mais dados						
tela ← "\nMa	tela ← "\nMais dados (Sim=1,Não=0) ?";						
Resposta ← teclado;							
Resposta = 1 ?							
! mostrar resultado							
tela ← ("\nMaior valor = ", MAIOR , " [ohms]");							
tela ← ("\nMenor valor = ", MENOR, " [ohms]");							

Sexta versão, refinar novamente o segundo bloco.

Exemplo 10	v.6
Ação	Bloco
! definir dados	1
real R, ! resistor	
MAIOR, ! maior valor	
MENOR; ! menor valor	
! 1.1 ler o primeiro valor	
tela ← "\nQual o primeiro valor ?";	
R ← teclado; ! supor válido	
! 1.2 usar dado lido como valor inicial	
$MAIOR \leftarrow R;$	
$MENOR \leftarrow R;$	
! repetir enquanto houver dados	2
repetir até (Resposta != 1)	
! 2.1 ler dado válido do teclado	
repetir até (R > 0)	
tela ← "\nR=";	
R ← teclado; ! ler valor	
fim repetir! enquanto (R ≤ 0)	
! 2.2 testar se é o maior	
se (R>MAIOR)	
MAIOR ← R; ! guardar o novo maior	
senão	
! 2.3 testar se é o menor	
se (R < MENOR)	
MENOR ← R; ! guardar o novo menor	
fim se! menor	
fim se ! maior	
! 2.4 verificar se há mais dados	
tela ← "\nMais dados (Sim=1,Não=0) ?";	
Resposta ← teclado;	
fim repetir ! enquanto (Resposta = 1)	
! mostrar resultado	3
tela ← ("\nMaior valor = ", MAIOR , " [ohms]");	
tela ← ("\nMenor valor = ", MENOR, " [ohms]");	

Programa em SCILAB:

```
// Exemplo 10
// Dados valores de resistores, calcular o maior valor.
// 1. definir dados
           = 0.0; // resistor
  R
  MAIOR = 0.0; // maior valor
  MENOR = 0.0 // menor valor
  Resposta = 0; // controle da repeticao
// 1.1 ler primeiro valor valido
                 // limpar a area de trabalho
 R = input ( "\nQual o primeiro valor ? " ); // ler valor
 while (R \le 0)
   R = input ( "\nR " ); // ler valor
 end // (R \le 0)
// 1.2 usar dado lido como valor inicial
 MAIOR = R;
 MENOR = R;
// 2. repetir enquanto houver dados
 Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
 while (Resposta == 1)
 // 2.1 ler dado valido do teclado
   R = input ( "\nR " ); // ler valor
   while (R<=0)
     R = input ( "\nR " ); // ler valor
   end // ( R <= 0 )
 // 2.2 testar se e' o maior
   if (R > MAIOR)
    MAIOR = R;
                        // guardar o novo maior
   else
   // 2.3 testar se e' o menor
     if (R < MENOR)
       MENOR=R:
                       // guardar o novo menor
      end // fim do teste do menor
   end // fim do teste se maior
 // 2.4 verificar se ha' mais dados
   Resposta = input ( "\nMais dados (Sim=1,Nao=0) ? " );
 end // enquanto houver dados
// 3. mostrar resultado
 // pausa para terminar
 printf ( "\nPressionar ENTER para terminar.\n" );
 halt;
// fim do programa
```

Programa em C:

```
// Exemplo 10a
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <stdio.h>
#include <stdlib.h>
int main (void)
// 1. definir dados
  float R.
                 // resistor
       MAIOR.
                 // maior valor
       MENOR; // menor valor
  int Resposta; // controle da repeticao
// 1.1 ler o primeiro valor
  printf ( "\nQual o primeiro valor ?" );
  scanf ( "%f", &R );
                      // supor válido
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
  MENOR = R;
// 2. repetir
  Resposta = 1;
  while (Resposta == 1)
 // 2.1. ler dado valido do teclado
   do
   {
     printf ( "\nR=" );
     scanf ( "%f", &R ); // ler valor
   while (R \le 0);
  // 2.2. testar se é o maior
   if (R>MAIOR)
     MAIOR = R;
                     // guardar o novo maior
   }
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
       MENOR = R; // guardar o novo menor
     } // fim do teste do menor
   } // fim do teste do maior
 // 2.4. verificar se ha' mais dados
   printf ( "\nMais dados (Sim=1,Não=0) ? " );
   scanf ( "%f", &Resposta );
// 3. mostrar resultados
  printf ( "\nMaior valor = %f %s", MAIOR, " [ohms]" );
  printf ( "\nMenor valor = %f %s", MENOR, " [ohms]" );
// pausa para terminar
  printf ( "Pressionar ENTER para terminar." );
  getchar ();
 return (0);
} // fim do programa
```

Programa em C:

```
// Exemplo 10b
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  float R.
                 // resistor
       MAIOR. // major valor
       MENOR; // menor valor
  int Resposta; // controle da repeticao
// 1.1 ler primeiro valor valido
 do
  {
   printf ( "\nQual o primeiro valor ?" );
   scanf ( "%f", &R );
                         // ler apenas valor válido
  while (R \le 0);
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
                  MENOR = R;
// 2. repetir
  do
  // 2.1. ler dado valido do teclado
   do
     printf ( "\nR=" );
     scanf ( "%f", &R ); // ler valor
   while (R \le 0);
  // 2.2. testar se e' o maior
   if (R>MAIOR)
   \{ MAIOR = R; \}
                          // guardar o novo maior
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
     { MENOR = R; } // guardar o novo menor
   } // fim do teste do maior
  // 2.4. verificar se ha' mais dados
   printf ( "\nMais dados (Sim=1,Não=0) ? " );
   scanf ( "%f", &Resposta );
  while (Resposta == 1);
// 3. mostrar resultado
  printf ( "\nMaior valor = %f %s", MAIOR, " [ohms]" );
  printf ( "\nMenor valor = %f %s", MENOR, " [ohms]" );
// pausa para terminar
  printf ( "Pressionar ENTER para terminar." );
  getchar ();
 return (0);
} // fim do programa
```

Programa em C++:

```
// Exemplo 10a
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  double R.
                   // resistor
         MAIOR.
                   // maior valor
         MENOR; // menor valor
 int
         Resposta; // controle da repeticao
// 1.1 ler o primeiro valor
  cout << "\nQual o primeiro valor ?";
               // supor válido
  cin >> R;
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
  MENOR = R;
// 2. repetir
  Resposta = 1;
  while (Resposta == 1)
 // 2.1. ler dado valido do teclado
   do
   {
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
  // 2.2. testar se é o maior
   if (R>MAIOR)
     MAIOR = R;
                     // guardar o novo maior
   }
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
      MENOR = R; // guardar o novo menor
     } // fim do teste do menor
   } // fim do teste do maior
  // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
// 3. mostrar resultados
  cout << "\nMaior valor = " << MAIOR << " [ohms]";
  cout << "\nMenor valor = " << MENOR << " [ohms]";
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

Programa em C++:

```
// Exemplo 10b
// Dados valores de resistores, calcular o maior e o menor valor.
// bibliotecas necessarias
#include <iostream>
using namespace std;
int main (void)
// 1. definir dados
  float R.
                // resistor
      MAIOR. // major valor
      MENOR; // menor valor
  int Resposta; // controle da repeticao
// 1.1 ler primeiro valor valido
 do
  {
   cout << "\nQual o primeiro valor ?";
   cin >> R; // ler apenas valor válido
  while (R \le 0);
// 1.2 usar dado lido como valor inicial
  MAIOR = R;
                 MENOR = R;
// 2. repetir
  do
  // 2.1. ler dado valido do teclado
   do
   {
     cout << "\nR=";
     cin >> R; // ler valor
   while (R \le 0);
  // 2.2. testar se e' o maior
   if (R>MAIOR)
   \{ MAIOR = R; \}
                         // guardar o novo maior
   else
   // 2.3. testar se e' o menor
     if (R < MENOR)
     { MENOR = R; } // guardar o novo menor
   } // fim do teste do maior
  // 2.4. verificar se ha' mais dados
   cout << "\nMais dados (Sim=1,Não=0)?";
   cin >> Resposta;
  while (Resposta == 1);
// 3. mostrar resultado
  cout << "\nMaior valor = " << MAIOR << " [ohms]";
  cout << "\nMenor valor = " << MENOR << " [ohms]";
// pausa para terminar
  cout << "Pressionar ENTER para terminar.";
  cin.get ();
 return EXIT_SUCCESS;
} // fim do programa
```

```
Programa em C#:
* Exemplo 10a
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_10a
 public static void Main ()
 // 1. definir dados
   double R.
                        // resistor
           MAIOR,
                        // maior valor
           MENOR;
                        // resistor equivalente
           Resposta;
                        // controle da repeticao
 // 1.1. ler o primeiro valor
   Console.Write ( "\n o primeiro valor ? " );
R = int.Parse ( Console.ReadLine ( ); // ler primeiro valor
 // 1.2. usar dado lido como valor inicial
   MAIOR = R; MENOR = R;
 // 2. repetir
    Resposta = 1;
   while (Resposta == 1)
   // 2.1. ler dado valido do teclado
     do
     {
       Console.Write ( "\nR=" );
       R = int.Parse (Console.ReadLine ()); // ler valor
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
        MAIOR = R; } // guardar o novo maior
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
       { MENOR = R; } // guardar o novo menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = int.Parse ( Console.ReadLine ( ) );
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
   Console.WriteLine ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ( )
} // fim Exemplo_10a class
```

Outra versão do programa em C#:

```
* Exemplo 10b
* Dados valores de resistores, calcular o valor medio.
using System;
class Exemplo_10b
 public static void Main ()
 // 1. definir dados
   double R.
                         // resistor
           MAIOR,
                         // maior valor
           MENOR;
                         // resistor equivalente
           Resposta;
                         // controle da repeticao
 // 1.1. ler o primeiro valor
   Console. Write ( "\n o primeiro valor ? " ); 
 R = int.Parse ( Console.ReadLine ( ) ); // ler primeiro valor
 // 1.2. usar dado lido como valor inicial
   MAIOR = R; MENOR = R;
 // 2. repetir
   do
   // 2.1. ler dado valido do teclado
     do
       Console.Write ( "\nR=" );
       R = int.Parse (Console.ReadLine ()); // ler valor
     while (R \le 0):
   // 2.2. testar se e' o maior
      if (R > MAIOR)
       MAIOR = R; // guardar o novo maior
     }
      else
     // 2.3. testar se e' o menor
       if (R < MENOR)
         MENOR = R; // guardar o novo menor
       } // fim do teste do menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
      Console.WriteLine ( "\nMais dados (Sim=1,Nao=0) ? " );
      Resposta = int.Parse ( Console.ReadLine ( ) );
   while (Resposta == 1);
 // 3. mostrar resultado
   Console.WriteLine ( "\nMaior valor = " + MAIOR + " [ohms]" );
   Console.WriteLine ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   Console.Write ( "\nPressionar ENTER para terminar." );
   Console.ReadLine ();
 } // end Main ()
} // fim Exemplo_10b class
```

Programa em Java:

```
* Exemplo 10a
 * Dados valores de resistores, calcular o maior e o menor valor.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo 10a
 public static void main (String [] args)
 // 1. definir dados
   double R,
                                  // resistor
          MAIOR,
                                  // maior valor
          MENOR;
                                  // menor valor
          Resposta;
                                  // controle da repeticao
   int
 // 1.1. ler o primeiro valor
   System.out.print ( "\nR = " );
                                  // ler valor
   R = Integer.parseInt (System.console().readLine());
 // 1.2. usar dado lido como valor inicial
   MAIOR = R;
   MENOR = R;
 // 2. repetir
   Resposta = 1;
   while (Resposta == 1)
   // 2.1. ler dado valido do teclado
     do
     {
      System.out.print ( "\nR = " ); // ler valor
      R = Integer.parseInt (System.console().readLine());
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
        MAIOR = R;
                                  // guardar o novo maior
     {
     else
      // 2.3. testar se e' o menor
       if (R < MENOR)
        \{ MENOR = R;
                                  // guardar o novo menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     System.out.print ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = Integer.parseInt ( System.console( ).readLine( ) );
 // 3. mostrar resultado
   System.out.println ( "\nMaior v alor = " + MAIOR + " [ohms]" );
   System.out.println ( "\nMenor valor = " + MENOR + " [ohms]" );
 // pausa para terminar
   System.out.print ( "\nPressionar ENTER para terminar." );
   System.console().readLine();
 } // end main ()
} // fim Exemplo_10a class
```

Outra versão do programa em Java:

```
* Exemplo 10b
 * Dados valores de resistores, calcular o maior e o menor valor.
// ----- classes necessarias
// ----- definicao de classe
class Exemplo_10b
 public static void main (String [] args)
 // 1. definir dados
   double R,
                                  // resistor
          MAIOR,
                                  // maior valor
          MENOR;
                                  // resistor equivalente
          Resposta;
                                  // controle da repeticao
   int
 // 1.1. ler primeiro valor valido
   do
    System.out.print ( "\nR = " ); // ler valor
    R = Integer.parseInt ( System.console( ).readLine( ) );
   while (R \le 0);
 // 1.2. usar dado lido como valor inicial
   MAIOR = R;
   MENOR = R;
 // 2. repetir
   do
   // 2.1. ler dado valido do teclado
     do
      System.out.print ( "\nR = " ); // ler valor
      R = Integer.parseInt (System.console().readLine());
     while (R \le 0);
   // 2.2. testar se e' o maior
     if (R > MAIOR)
      MAIOR = R;
                                  // guardar o novo maior
     }
     else
     // 2.3. testar se e' o menor
       if (R < MENOR)
        MENOR = R; // guardar o novo menor
       } // fim do teste do menor
     }// fim do teste do maior
   // 2.3. verificar se ha' mais dados
     System.out.print ( "\nMais dados (Sim=1,Nao=0) ? " );
     Resposta = Integer.parseInt ( System.console( ).readLine( ) );
   while (Resposta == 1);
```

```
// 3. mostrar resultado
    System.out.println ( "\nMaior valor = " + MAIOR + " [ohms]" );
    System.out.println ( "\nMenor valor = " + MENOR + " [ohms]" );

// pausa para terminar
    System.out.print ( "\nPressionar ENTER para terminar." );
    System.console().readLine();
    } // end main ()
} // fim Exemplo_10b class
```

Programa em Python:

```
# Exemplo 10
# Dados valores de resistores, calcular o maior valor.
# 1. definir dados
        = 0.0;
R
                      # resistor
MAIOR = 0.0;
                      # maior valor
MENOR = 0.0
                      # menor valor
                      # controle da repeticao
Resposta = 0;
# 1.1 ler primeiro valor valido
R = float (input ("\nQual o primeiro valor?")); # ler valor
while (R \le 0):
  R = float (input ("\nR = ")); # ler valor
\#(R \le 0)
# 1.2 usar dado lido como valor inicial
MAIOR = R;
MENOR = R;
# 2. repetir enquanto houver dados
Resposta = int ( input ( "\nMais dados (Sim=1,Nao=0) ? " ) );
while (Resposta == 1):
 # 2.1 ler dado valido do teclado
   R = float (input ("\nR = ")); # ler valor
   while ( R<=0 ):
    R = float (input ("\nR = ")); # ler valor
   # (R <= 0)
 # 2.2 testar se e' o maior
   if (R > MAIOR):
    MAIOR = R;
                       # guardar o novo maior
   else:
 # 2.3 testar se e' o menor
    if (R < MENOR):
      MENOR=R:
                       # guardar o novo menor
    # fim do teste do menor
   # fim do teste se maior
 # 2.4 verificar se ha' mais dados
   Resposta = int (input ("\nMais dados (Sim=1,Nao=0)?"));
# enquanto houver dados
# 3. mostrar resultado
# pausa para terminar
print ( "\nPressionar ENTER para terminar.\n" );
input ();
# fim do programa
```

Exercícios

- 1. Fazer um algoritmo para:
 - ler um conjunto de dados contendo, cada um, uma nota;
 - determinar e mostrar a maior e a menor nota da turma;
 - o último dado, e que não será processado, contém nota = 999.

2. Fazer um algoritmo para:

- ler um conjunto de dados contendo, cada um, uma nota;
- determinar e mostrar as duas maiores e as duas menores notas da turma;
- o último dado, e que não será processado, contém nota = 999.

3. Fazer um algoritmo para:

- ler um número indeterminado de dados;
- cada dado possui um valor, o último dado, e que não será processado, contém o valor 9999;
- calcular e mostrar os dois maiores valores lidos, e que sejam diferentes.

4. Modificar o algoritmo anterior de forma a :

- ler um valor (N) do teclado;
- calcular e mostrar os dois maiores e o menor valor entre (N) outros valores lidos do teclado.

5. Fazer um algoritmo para:

- ler um conjunto de 50 dados contendo, cada um, a altura e um código para masculino (1), e outro para feminino (2);
- calcular e mostrar :
 - a maior e a menor altura da turma;
 - a média de altura das mulheres;
 - a média de altura da turma.

Exercícios propostos

- Há três candidatos a uma vaga no senado. Feita a eleição a contagem de votos deverá ser feita através do computador. Fazer um algoritmo para :
 - ler um conjunto de dados contendo, cada um, o voto de um eleitor. O último dado deve conter um valor negativo. Os dados estão organizados segundo o seguinte critério :

1, 2, 3 - número dos três candidatos, respectivamente;

0 - voto em branco;

4 - voto nulo;

- calcular e mostrar :
 - o número do candidato vencedor e o quantos votos obteve:
 - o número de votos em branco e o número de votos nulos;
 - o número de eleitores que compareceram às urnas.
- 2. Pode-se calcular a raiz quadrada de um número positivo através do método de aproximação sucessivas de Newton, descrito a seguir :
 - seja "a" o número do qual deseja-se obter a raiz quadrada;
 - a primeira aproximação para a raiz quadrada será dada por :

$$x_1 = a / 2$$

- a próxima ou sucessiva aproximação é dada por :

$$x_{n+1} = \frac{(x_n^2 + a)}{2x_n}$$

- fazer um algoritmo para:
- ler o valor de "a" do teclado;
- calcular e mostrar a 25ª. aproximação.
- 3. A conversão de graus Farenheit para Centígrados é obtida por :

$$C = 5 (F - 32) / 9$$

- fazer um algoritmo para calcular e mostrar uma tabela de graus Centígrados em função de graus Farenheit, que variem de 50 a 150 de 1 em 1.
- 4. Fazer um algoritmo para gerar e mostrar a seguinte seqüência :

5. Fazer um algoritmo para calcular e mostrar o valor "s":

$$s = 1 + 3/2 + 5/3 + 7/4 + ... + 99/50$$

6. Fazer um algoritmo para calcular e mostrar o enésimo termo da série abaixo, onde o valor de (n) é lido do teclado.

7. Sendo s = 1² + 2² + 3² +...+ n², e "k", um número inteiro maior que 1, fazer um algoritmo para calcular e mostrar o maior valor de "n" que torne a relação s < k verdadeira. O valor de "k" será lido do teclado.

8. O valor aproximado de π (PI) pode ser calculado usando a série :

$$s = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 \dots$$
 e $\pi = \sqrt[3]{s \cdot 32}$

Fazer um algoritmo para calcular e mostrar o valor de π usando os 51 primeiros termos da série.

- 9. Supondo que a população de um país "a" seja de 90.000.000 de habitantes, com uma taxa anual de crescimento de 3//; e que a população de um país "b" seja, aproximadamente, de 200.000.000 de habitantes, com uma taxa anual de crescimento de 1,5//. Fazer um algoritmo para calcular e mostrar o número de anos necessários para que a população do país "a" ultrapasse ou se igual a população do país "b", mantidas essas taxas de crescimento.
- 10. O número 3025 possui a seguinte característica :

$$30 + 25 = 55$$

 $55^2 = 3025$

- fazer um algoritmo para calcular e mostrar todos os números de 4 algarismos que apresentam esta propriedade.
- 11. O número 1221 possui a propriedade de que lido de "trás-para-frente" é igual lido de "frente-para-trás". Estes números são chamados de "palíndromos". Calcular e mostrar todos os números palíndromos de 5 algarismos.
- 12. Calcular e mostrar todos os números palíndromos menores que 30.000 e que sejam quadrados perfeitos.
- 13. Fazer um algoritmo para:
 - ler 1000 dados contendo, cada, o valor de uma nota fiscal;
 - calcular e mostrar :
 - o número de notas fiscais, cujo valor é menor ou igual a R\$1000,00;
 - o número de notas fiscais, cujo valor é maior que R\$1000,00 e menor ou igual R\$2000,00;
 - o número das notas fiscais, cujo valor é maior que R\$2000,00;
 - o total arrecadado durante o mês.
- 14. Fazer um algoritmo para:
 - ler um conjunto de dados contendo, cada um, uma quantidade expressa em milímetros.
 - o último dado, que não entrará nos cálculos, conterá essa quantidade igual a zero;
 - calcular e mostrar, para cada dado lido, a quantidade correspondente expressa em metros, decímetros, centímetros e milímetros.

Exemplo: 82453 milímetros

82 metros, 4 decímetros, 5 centímetros e 3 milímetros

15. Fazer um algoritmo para calcular e mostrar os 100 primeiros termos da série de Fibonacci, esta série é gerada da seguinte forma: o primeiro e segundos termos valem 1 e os seguintes são calculados somando-se os dois termos anteriores a ele.

$$f = 1, 1, 2, 3, 5, 8, ...$$

 Fazer um algoritmo para calcular e mostrar os números primos compreendidos entre 500 e 600.