ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	ОЙ		
ПРЕПОДАВАТЕЛЬ			
Доц., канд. техн. нау			О.О. Жаринов
должность, уч. степень,	звание	подпись, дата	инициалы, фамилия
(ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБ	OTE №4
РАБОТКА СЧЕ	ТЧИКА С ЗА	ДАННЫМ ОСНОВА	АНИЕМ СЧЕТА НА ЈК-
111201111101		AX В СРЕДЕ QUAR	
		CVEMOTEVIIIIV	Λ
	по курс	у: СХЕМОТЕХНИК	A
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4142		К.С. Некрасов
		подпись, дата	инициалы, фамилия

Санкт-Петербург 2024

Цель работы

Разработать проект счетчика с заданным основанием счета на ЈКтриггерах в среде программирования Quartus, попутно изучив элементы методологии работы с неполностью определенными таблицами истинности.

Вариант 2

Основание счёта - 17

Ход работы

№	Q ₄	Q_3	Q_2	Q_1	Q_0	J_4	K ₄	J ₃	K ₃	J ₂	K ₂	J_1	K ₁	J _o	K ₀
0	0	0	0	0	0	0	X	0	X	0	X	0	X	1	X
1	0	0	0	0	1	0	X	0	X	0	X	1	X	X	1
2	0	0	0	1	0	0	X	0	X	0	X	X	0	1	x
3	0	0	0	1	1	0	X	0	X	1	X	X	1	X	1
4	0	0	1	0	0	0	X	0	X	X	0	0	X	1	X
5	0	0	1	0	1	0	X	0	X	X	0	1	X	X	1
6	0	0	1	1	0	0	X	0	X	X	0	X	0	1	X
7	0	0	1	1	1	0	X	1	X	X	1	X	1	X	1
8	0	1	0	0	0	0	X	X	0	0	X	0	X	1	x
9	0	1	0	0	1	0	X	X	0	0	X	1	X	X	1
10	0	1	0	1	0	0	X	X	0	0	X	X	0	1	X
11	0	1	0	1	1	0	X	X	0	1	X	X	1	X	1
12	0	1	1	0	0	0	X	X	0	X	0	0	X	1	X
13	0	1	1	0	1	0	X	X	0	X	0	1	X	X	1
14	0	1	1	1	0	0	X	X	0	X	0	X	0	1	X
15	0	1	1	1	1	1	X	X	1	X	1	X	1	X	1
16	1	0	0	0	0	X	1	X	X	0	X	0	X	0	X

Рисунок 1 – Таблица истинности, необходимая для реализации счётчика

Полученные выражения

$$J_0=\bar{Q_4}; K_0=1; J_1=Q_0; K_1=Q_0$$

$$J_2 = Q_0 \wedge Q_1; K_2 = Q_0 \wedge Q_1 = J_2; J_3 = Q_0 \wedge Q_1 \wedge Q_2 = J_2 \wedge Q_2; K_3 = Q_0 \wedge Q_1 \wedge Q_2 \wedge Q_3$$

$$J_4=Q_0\wedge Q_1\wedge Q_2\wedge Q_3=K_3; K_4=Q_4$$

Рисунок 2 - Схема устройства

Рисунок 3 – Временная диаграмма работы схемы

Вывод

Был разработан проект счетчика с основанием счета 17 на JK-триггерах в среде программирования Quartus, попутно были изучены элементы методологии работы с неполностью определенными таблицами истинности.