Trabajo Práctico N° 1

Armado de esquemáticos y Simulación Xschem & Ngspice

Alumno: MUGNI, Juan Mauricio

2.1 Canal Corto Vs Canal Largo

M1: $L=0.15\,um$ $W=0.75\,um$ NMOS M2: $L=2\,um$ $W=10\,um$ NMOS M3: $L=4\,um$ $W=20\,um$ NMOS

 $\rightarrow I_D vs V_{GS}$ escala lineal

Podemos visualizar como los transistores NMOS canal largo (M2-azúl y M3-amarillo) cumplen con la función de transferencia de una curva cuadrática para el rango analizado. Mientras que el canal corto (M1-rojo) es más bien lineal.

El $V_{\it TH}$ de los transistores canal largo es $0.5307\,V$ para M3, $0.5465\,V$ para M2 y $0.7683\,V$ para M1. La tensión umbral aumenta a medida que el canal se reduce.

 \rightarrow $I_{\scriptscriptstyle D}$ (escala logaritmica) $vs V_{\scriptscriptstyle GS}$

Se puede apreciar que la corriente que circula antes de que $V_{GS} > T_{TH}$, es una orden de magnitud menor para el canal corto que para el canal largo.

 $\rightarrow I_D vs V_{DS}$ barriendo V_{GS} de forma paramétrica

Para los transistores canal largo se aprecia una corriente con menos pendiente, es decir, $\frac{1}{ro} \rightarrow 0$. Mientras que el canal corto tiene más pendiente.

A medida que aumenta $V_{\it GS}$ tambien lo hace $I_{\it D}$, analizando para un mismo transistor. Pero al hacer la comparación entre los distintos canales, se nota que el canal corto presenta menos variación en la corriente al variar $V_{\it GS}$. Es decir, vemos las curvas más cercanas entre sí, y para canal largo más alejadas.

Como consecuencia de la saturación por velocidad, se visualiza que el transistor canal corto satura antes que los de canal largo.

$$\rightarrow gm/I_D vs I_D$$

$\rightarrow gm/I_D vs V_{GS}$

Se puede visualizar como la curva es prácticamente independiente del transistor a utilizar. Lo que cambia es el punto medio, que me indica $V_{\it TH}$. Para notar esto es necesario entrar por el eje de ordenadas.

Conociendo $\frac{gm}{I_D}$ se puede saber en que región esta operando el transistor. Para $V_{GS} < V_{TH}$ la ley cuadrática falla, ya que nos encontramos en la zona lineal.

$\rightarrow gm/I_{D} vs I_{D}$ (escala logaritmica)

 $\rightarrow \quad C_{\scriptscriptstyle G \, G} vs \, V_{\scriptscriptstyle G \, S} \quad \text{con} \quad V_{\scriptscriptstyle D \, S} = 0 \quad \mathbf{y} \quad - V_{\scriptscriptstyle D \, D} < V_{\scriptscriptstyle G \, S} < V_{\scriptscriptstyle D \, D}$

Analizando para un V_{DS} constante de saturación. Se observa un desplazamiento hacía arriba de las curvas cgg, al variar V_{GS} . Indicando un incremento de la capacitancia a medida que se aumenta el largo del canal y la tensión V_{GS} .

→ Condiciones de polarización

• Apagado:

$$V_{GS} < V_{TH}$$
 y $V_{DS} = 0$

Subumbral:

$$V_{GS} < V_{TH}$$
 y $V_{DS} > 0$

• <u>Triodo</u>:

$$V_{GS}$$
> V_{TH} y V_{DS} < $(V_{GS}$ - $V_{TH})$

Saturación:

$$\boldsymbol{V_{GS}} \hspace{-0.1cm} \hspace{-0.1cm} \boldsymbol{V_{TH}} \hspace{0.3cm} \boldsymbol{y} \hspace{0.3cm} \boldsymbol{V_{DS}} \hspace{-0.1cm} \hspace{-0.1cm} \hspace{-0.1cm} \boldsymbol{V_{GS}} \hspace{-0.1cm} - \boldsymbol{V_{TH}} \hspace{-0.1cm} \boldsymbol{)}$$

2.2 NMOS Vs PMOS

M1: L=2um W=10um NMOS M2: L=2um W=10um PMOS

 $\rightarrow I_D vs V_{GS}$ escala lineal

La corriente y tensión $V_{\rm GS}$ negativa corresponde al PMOS (M2-lado izquierdo). Tiene un $V_{\rm TH} {<} 0$.

La corriente y tensión $V_{\rm GS}$ positiva corresponde al NMOS (M1-lado derecho). Tiene un $V_{\rm TH} > 0$.

$\rightarrow I_D vs V_{DS}$ barriendo V_{GS} de forma paramétrica

Las tensiones negativas de $V_{\rm DS}$ corresponde al PMOS (M2-lado izquierdo), y la tensiones positiva al NMOS (M1-lado derecho).

Estas gráficas nos indican el sentido de la corriente y tensión entre Drain y Source dependiendo del tipo de transistor.