Задание

- 1. Исследовать работу однополупериодной и двухполупериодной схем выпрямителя для случаев:
 - активной нагрузки;
 - емкостной нагрузки;
 - зарисовать форму выходного напряжения, а также форму тока, протекающего через диод.
- 2. Определить угол отсечки q и коэффициент пульсаций K_{n} для одно- и двухполупериодной схем.
- 3. Исследовать сглаживающее действие фильтра LC при одно- и двухполупериодном выпрямлении. Определить коэффициенты сглаживания.
- 4. Отснять нагрузочные характеристики выпрямителя и определить его выходное сопротивление.
- 5. Подключить к выпрямителю параметрический стабилизатор, снять нагрузочную характеристику стабилизатора и определить по ней его выходное сопротивление, определить коэффициент стабилизации (схема выпрямителя мостовая, фильтр-LC отключен).

Исходные данные

Таблица 1 – Исходные данные

Однополупериодный выпрямитель без фильтра

Рисунок 1.1 – Схема однополупериодного выпрямителя без фильтра

Проведем анализ переходных процессов для схемы однополупериодного выпрямителя без фильтра.

Рисунок 1.2 - Анализ переходных процессов

1. Постоянная составляющая напряжения вычисляется следующим образом:

$$U_0 = \frac{U_{am\pi\pi}}{\pi}$$

2. Так как $U_{\text{действ}}$ дано из условия, можно вычислить $U_{\text{ампл}}$:

$$U_{\text{ампл}} = \sqrt{2} * U_{\text{лейств}} = \sqrt{2} * 25 = 35,36 \text{ B}$$

$$U_0 = \frac{U_{\text{ампл}}}{\pi} = \frac{35,36}{\pi} = 11,25 \text{ B}$$

3. Далее определим коэффициент пульсации, используя формулу:

$$K_{\pi} = \frac{U_{m1}}{U_0}$$

 $U_{\rm m1}$ – амплитуда первой гармоники на выходе, для ее нахождения проведем анализ Фурье:

Рисунок 1.3 - Анализ переходных процессов

Из результатов анализа Фурье амплитуда первой гармоники на выходе

 $U_{\rm m1} = 17.2 \; {\rm B}$, а также постоянная составляющая напряжения $U_0 = {\rm DC} = 10.9$

4. Коэффициент пульсации из анализа Фурье:

$$K_{II} = \frac{17,2}{10,9} = 1,58$$

Коэффициент пульсации с U_0 , полученным по формуле:

$$K_{\pi} = \frac{17,2}{11,25} = 1,53$$

Точное значение коэффициента пульсации для данной схемы должно быть равно $K_{\pi}=\frac{\pi}{2}=1,57$. Следовательно, более точным является значение коэффициента, посчитанное с использованием значений, полученных из анализа Фурье.

5. Среднее значение выпрямленного тока:

$$J_{cp} = \frac{U_0}{R_H} = \frac{10.9}{1000} = 0.0109 \text{ A}$$

6. Амплитудное значение тока через диод:

$$J_{\text{max}} = \frac{U_{\text{ампл}}}{R_{\text{u}}} = \frac{35,36}{1000} = 0,03536 \text{ A}$$

Рисунок 1.4 – График формы тока однополупериодной схемы без фильтра

Рисунок 1.5 - График обратных напряжений на диоде

Однополупериодный выпрямитель с фильтром

К исходной схеме параллельно нагрузочному резистору добавлен конденсатор С1.

Рисунок 2.1 – Схема однополупериодного выпрямителя с фильтром

Рисунок 2.2 – Анализ переходных процессов однополупериодного выпрямителя с фильтром

1. Можно определить угол отсечки θ .

Из графика видно, что $t_1=2{,}9339~{\rm Mc}$, а $t_2=3{,}1339~{\rm Mc}$.

$$\theta = \omega * \frac{t2 - t1}{2} = \pi * 400 * 2 * 0,1 = 251,33$$
 рад

2. Вычислим U_0 по следующей формуле: $U_0 = U_{\text{ампл}} * \cos \theta$

$$U_0 = 35,355 * \cos(251,33) = 35,3549 B$$

3. Чтобы определить коэффициент пульсации K_{π} выполним анализ Фурье на нагрузке:

Рисунок 2.3 – Анализ Фурье однополупериодного выпрямителя с фильтром

Исходя из анализа Фурье, $U_{m1}=1,29346~B$, а DC= $U_0=32,7457~B$ Теперь вычислим коэффициент пульсации:

• $U_0 = 32,7457$ В (значение, полученное из анализа Фурье)

$$K_{\pi} = \frac{U_{m1}}{U_0} = \frac{1,29346}{32,7457} = 0,0395$$

• $U_0 = 35,3549 \text{ В (значение, полученное по формуле)}$

$$K_{\pi} = \frac{U_{m1}}{U_0} = \frac{1,29346}{35,3549} = 0,03658$$

Рисунок 2.4 – График формы тока однополупериодной схемы с фильтром

Определяем амплитудное значение тока через диод $I_{\rm amn} = 995{,}5794~{\rm MA}$

Также рассмотрим график формы обратных напряжений на диоде.

Рисунок 2.5 – График обратных напряжений на диоде Из графика обратных напряжений видно, что обратное напряжение на диоде $\left|U_{\text{обр}}\right|=67,8936\,\mathrm{B}$. Следовательно, расчетные данные верны, так как полученное значение не больше удвоенного значения амплитудного напряжения.

Мостовой выпрямитель без фильтра

Рисунок 3.1 – Схема мостового выпрямителя без фильтра

Рисунок 3.2 – Анализ переходных процессов мостового выпрямителя без фильтра

По графику видим, что $U_{\text{вых}} = 33,8629$ В.

Рисунок 3.3 - Анализ Фурье мостового выпрямителя без фильтра

Для нахождения постоянной составляющей напряжения U_0 данного выпрямителя воспользуемся формулой:

$$U_0 = 2 * \frac{U_{\text{ампл}}}{\pi} = 22,5 \text{ B}$$

Теперь при помощи анализа Фурье определим амплитуду первой гармоники U_{m1} . Также сравним значение DC-компонент и вычисленное значение U_0 . Для мостового выпрямителя анализ Фурье будем проводить на удвоенной частоте, то есть на частоте равной 800 Гц.

Исходя из анализа Фурье, $U_{\rm m1} = 14,9136~{\rm B}$ и $U_0 = 21,0754~{\rm B}$.

Теперь для каждого значения U_0 рассчитаем коэффициент пульсации K_{π} :

• $U_0 = 21,0754$ В(значение, полученное из анализа Фурье)

$$K_{\pi} = \frac{U_{m1}}{U_0} = \frac{14,9136}{21,0754 \text{ B}} = 0,7076$$

• $U_0 = 22,5$ В(значение, полученное по формуле)

$$K_{II} = \frac{U_{m1}}{U_0} = \frac{14,9136}{22,5} = 0,6628$$

Рисунок 3.4 – График обратных напряжений на диоде Мостовой выпрямитель с фильтром

Рисунок 4.1 - Схема мостового выпрямителя с фильтром

Рисунок 4.2 – График формы напряжений для мостового выпрямителя с фильтром

Из графика видно, что $t_1 = 5,4886 \text{ мс}$, а $t_2 = 5,6486 \text{ мс}$.

Чтобы определить коэффициент пульсации K_{π} выполним анализ Фурье на нагрузке:

						Схема4
1 Fourier analysis for V(3):					
2 DC component:	32.969					
3 No. Harmonics:	4					
4 THD:	59.3669 %					
5 Grid size:	128					
6 Interpolation Degree:	1					
7						
8 Harmonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase	
9 1	800	0.645613	-157.66	1	0	
9 1 10 2	1600	0.307876	44.0352	0.476874	201.699	
11 3 12 4	2400	0.189592	-113.62	0.293662	44.0454	
12 4	3200	0.127165	89.5255	0.196968	247.189	
13						

Рисунок 4.2 – График формы напряжений для мостового выпрямителя с фильтром

Исходя из анализа Фурье, $U_{m1} = 0,645613$ В, а DC= $U_0 = 32,969$ В

Перейдем к расчетам:

Определим угол отсечки: $\theta = \frac{\omega*(t_2-t_1)}{2} = \frac{2\pi*f_{BX}*(t_2-t_1)}{2}$

$$\theta = \frac{2 * \pi * 400 * (5,6486 - 5,4886) * 10^{-3}}{2} = 0,00098$$
 рад

Вычислим U_0 по следующей формуле:

$$U_0 = U_{amn\pi} * \cos \theta$$

$$U_0 = 35,355 * \cos(0,00098) = 35,354983 B$$

Видно, что, как и в предыдущей схеме, значение U_0 , вычисленное по формуле, практически совпадает (с учетом погрешности) со значением, полученным из анализа Фурье.

Теперь вычислим коэффициент пульсации:

• $U_0 = 32,969 \text{ В}$ (значение, полученное из анализа Фурье)

$$K_{\pi} = \frac{U_{m1}}{U_0} = \frac{0,64561}{32,969} = 0,01958$$

• $U_0 = 35,354983$ В (значение, полученное по формуле)

$$K_{\pi} = \frac{U_{m1}}{U_0} = \frac{0,64561}{35,354983} = 0,01826$$

Приведем график формы тока двухполупериодной схемы с фильтром:

Рисунок 4.3 - График формы тока мостовой схемы с фильтром Определяем амплитудное значение тока через диод $I_{\text{амп}} = 624{,}3151 \; \text{мA}$

Также рассмотрим график формы обратных напряжений на диоде.

Рисунок 4.4 - График формы обратных напряжений для мостового выпрямителя с фильтром

Из графика обратных напряжений видно, что обратное напряжение на диоде $\left| \mathrm{U_{oбp}} \right| = 34{,}59\mathrm{B}$.

Однополупериодный выпрямитель с П-образным фильтром

Рисунок 5.1 - Схема однополупериодного выпрямителя с Побразным фильтром

Рисунок 5.2 – Анализ переходных процессов

На графике найдем момент времени, начиная с которого переходные процессы завершатся, и значение напряжения будет относительно постоянно. Исходя из графика, переходные процессы закончатся в момент времени t = 50мc = 0,05c. Следовательно, при выполнении анализа Фурье время начала будем задавать равным 0,05c.

Далее проведем анализ Фурье на входе фильтра и на нагрузке.

Рисунок 5.3 – Анализ Фурье на входе фильтра

Рисунок 5.4 - Анализ Фурье на нагрузке фильтра

Вычислим коэффициенты пульсации на входе и на выходе:

• На входе в фильтр

$$U_0 = 29,08 \text{ B}$$
; $U_{m1} = 4,35 \text{B}$

$$K_{\text{II BX}} = \frac{U_{\text{m1}}}{U_0} = \frac{4,35}{29,08} = 0,15$$

• На выходе из фильтра

$$U_0 = 32,89 \text{ B}; U_{m1} = 0,574 \text{ B}$$

$$K_{\text{п вых}} = \frac{U_{\text{m1}}}{U_0} = \frac{0,574}{32,89} = 0,017$$

Теперь вычислим коэффициент сглаживания $K_{\text{сгл}}$:

$$K_{C\Gamma JI} = \frac{K_{\Pi BX}}{K_{\Pi BIX}} = \frac{0.15}{0.017} = 8.82$$

Мостовой выпрямитель с П-образным фильтром

Для рассмотрения работы мостового выпрямителя с П-образным фильтром построим его схему, представленную на рисунке 23:

Рисунок 6.1 - Схема мостового выпрямителя с П-образным фильтром

Проведем анализ переходных процессов для схемы мостового выпрямителя с фильтром:

Рисунок 6.2 - Анализ переходных процессов

На графике найдем момент времени, начиная с которого переходные процессы завершатся, и значение напряжения будет относительно постоянно. Исходя из графика, переходные процессы закончатся в момент времени t = 90мс = 0,09с. Следовательно, при выполнении анализа Фурье время начала будем задавать равным 0,09с.Далее проведем анализ Фурье на входе фильтра и на нагрузке.

Рисунок 6.3 - Анализ Фурье на входе фильтра

Рисунок 6.4 - Анализ Фурье на выходе из фильтра

Теперь вычислим коэффициенты пульсации на входе и на выходе:

ullet На входе в фильтр $U_0 = 32,9488 \, \mathrm{B}$

$$U_{m1} = 0,6692 B$$

$$K_{\text{II BX}} = \frac{U_{\text{m1}}}{U_0} = \frac{0,6692}{32,9488} = 0,0203$$

• На выходе

$$U_0 = 32,9647; U_{m1} = 0,01972 B_{\bullet}$$

$$K_{\text{п вых}} = \frac{U_{\text{m1}}}{U_{\text{o}}} = \frac{0,01972}{32,9647} = 0,000598$$

Теперь вычислим коэффициент сглаживания $K_{\mbox{\scriptsize cfr}}$

$$K_{C\Gamma JI} = \frac{K_{II BX}}{K_{II BAIX}} = \frac{0,0203}{0,000598} = 33,946$$

Нагрузочная характеристика для однополупериодного выпрямителя с П-образным фильтром

Изменим схему, необходимую для построения нагрузочной характеристики.

Рисунок 1.1 - Схема необходимая для построения нагрузочной характеристики

Установим начальный ток в генераторе тока равным 0 А и будем снимать выходное напряжение, при этом изменяя ток с шагом равным 0,1 А.

Таблица 2 - Зависимость выходного напряжения от изменения тока

I, A	0,005	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
U, B	34,323	29,398	25,021	21,193	17,806	14,8	12,133	9,722	7,695	5,879

Определим выходное дифференциальное сопротивление R

$$R_{\text{BMX 1}} = \frac{\Delta U}{\Delta I} = \frac{34,323 - 29,398}{0,1} = 49,25 \text{ Om}$$

$$R_{_{\mathrm{BMX}\,2}} = \frac{\Delta U}{\Delta I} = \frac{7,695 - 5,879}{0,1} = 18,16 \ \mathrm{Om}$$

График зависимости выходного напряжения от изменения тока представлен на рисунке:

Рисунок 7.2 - Зависимость напряжения от изменения тока

Нагрузочная характеристика для мостового выпрямителя с П-образным фильтром

Изменим схему, необходимую для построения нагрузочной характеристики.

Рисунок 8.1 - Схема необходимая для построения нагрузочной характеристики

Установим начальный ток в генераторе тока равным 5 mA и будем снимать выходное напряжение, при этом изменяя ток с шагом равным 0,1 A.

Таблица 3 - Зависимость выходного напряжения от изменения тока

I, A	0,005	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
U, B	33,725	31,455	29,598	28,069	26,787	25,7	24,778	23,994	23,33	22,77

Определим выходное дифференциальное сопротивление R

$$R_{\text{вых 1}} = \frac{\Delta U}{\Delta I} = \frac{33,725 - 31,455}{0,1} = 22,7 \text{ Ом}$$

$$R_{\text{Bbix 2}} = \frac{\Delta U}{\Delta I} = \frac{23,33 - 22,77}{0,1} = 5,6 \text{ Om}$$

График зависимости выходного напряжения от изменения тока представлен на рисунке:

Рисунок 8.2 - Зависимость напряжения от изменения тока

Мостовая схема с фильтром и стабилизатором

Рисунок 9.1 - Схема мостового выпрямителя с фильтром и стабилизатором

Проведем анализ переходных процессов для схемы мостового выпрямителя с фильтром и стабилизатором:

Рисунок 9.2 - Анализ переходных процессов

По данному графику можно заметить, что при напряжении на входе в фильтр равном 34 В, на выход подается только 12 В (что равно обратному напряжению стабилитрона).

$$U_{BX} = 33,8478 \text{ B}; U_{BMX} = 11,9859 \text{ B}$$

Нагрузочная характеристика для мостового выпрямителя с фильтром и стабилизатором

Изменим схему, необходимую для построения нагрузочной характеристики.

Рисунок 10.1 - Схема для построения нагрузочной характеристики

Установим начальный ток в генераторе тока равным 1 А и будем снимать выходное напряжение, при этом изменяя ток с шагом равным 10 мА.

Таблица 4 - Зависимость выходного напряжения от изменения тока

I, mA	0,5	10	20	30	40	50	60	70	80	90	100
U, B	12,002	12,009	12,014	12,019	12,022	12,025	12,028	12,03	12,032	12,034	12,036

Рисунок 10.2 – График зависимости выходного напряжения от изменения тока

Вычислим выходное сопротивление стабилитрона $R^pprox r_{\text{дин}}$

$$R = \frac{\Delta U}{\Delta I} = \frac{12,025 - 12,022}{10} * 1000 = 0,3 \text{ Om}$$

Вычислим коэффициент стабилизации $K_{\scriptscriptstyle \mathrm{CT}}$

$$K_{\text{CT}} = \left(\frac{R_{\text{бал}}}{r_{\text{дин}}} + 1\right) * \frac{U_{\text{вых}}}{U_{\text{вх}}} = \left(\frac{1000}{0.3} + 1\right) * \frac{11,9859}{33,8478} = 1177$$

Вывод

Изучены различные способы применения диодов в качестве компонентов выпрямителей, а также способы исследования и сравнения эффективности работы выпрямителей и их поведение под нагрузкой.