Web Algorithms

Eng. Fabio Persia, PhD

Algorithmic techniques: dynamic programming (Part 1)

Characteristics

- Like divide-and-conquer paradigm, break up a problem into smaller subproblems, solve recursively each subproblem, and combine solutions of subproblems to form solution to original problem.
- Easy-to-compute recurrence that allows one to determine the solution to a subproblem from the solution to smaller subproblems.
- Differently from divide-and-conquer, subproblems are not independent, but overlap, that is during the decomposizions same subproblems occur frequently
- Idea: each subproblems is solved only once, thus reducing time complexity
- Differently from divide-and-conquer, usually bottom-up approach instead of top-down, that is starting from smaller subproblems solving in progress bigger ones, till the initial problem

Applications

Areas

- Computer science: theory, graphics, AI, compilers, systems,...
- Bioinformatics
- Control theory
- Information theory
- Operations research

• ...

Some famous dynamic programming algorithms

- Unix diff for comparing two files
- genetic sequence alignment (Smith-Waterman)
- shortest paths in networks (Bellman-Ford)

• ...

Let's give a closer look ...

- The Divide-and-Conquer paradigm is based on the decomposition of problems in smaller subproblems:
 - recursively solves subproblems
 - combines the solutions of the subproblems to determine the solution of the initial problem
- If a problem of size n is decomposed in k subproblems of sizes
 n₁,...,n_k<n, respectively, then the time complexity can be expressed by
 the recurrence

$$T(n) = T(n_1) + \ldots + T(n_k) + C(n),$$

with C(n) time of combining the k subsolutions

 The recurrence can be solved with different methods, as for instance resorting on the famous Master Theorem

- A classical example of application of Divide-and-Conquer is the computation of Fibonacci numbers
- The algorithm comes directly from the recursive definition of such numbers:
 - base case (n≤2): F(1)=F(2)=1
 - inductive case (n>2): F(n)=F(n-1)+F(n-2), n
- Let's see the resulting algorithm....

Algorithm Fibonacci(n)

Time Complexity:

•
$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$
, that gives
$$T(n) = O(2^n)$$

Let's have a look to the tree of the recursive calls:

Remark:

- inefficient: same subproblems are solved again many times
- dynamic programming: store the solution of every subproblem in a table or array, thus avoiding solving it again
- in the resulting algorithm, *F* is an external global array visible to all the recursive calls:

Algorithm Fibonacci2(n)


```
Begin
if (n=1) or (n=2) let F[n]=1 and return F[n]
else
if F[n] has been already assigned return F[n]
else
let F[n]=Fibonacci2(n-1)+Fibonacci2(n-2)
return F[n]
End
```

Let us see the new tree of the recursive calls for n=5

	5	3	2	1	1
		3	2	1	1
			2	1	1
				1	1
nstant				1	
Hətalit					

Algorithm Fibonacci3(n)

Example n=5

1 1

1 1 2 3

1 1 2 3 5

Performance comparison

Actual running time on different platforms:

	Fibonacci(58)	Fibonacci2(58)
Pentium IV 1700MHz	15820 s (≃ 4 hours)	0.7 millionths of s
Pentium III 450 MHz	43518 s (≃ 12 hours)	2.4 millionths of s
PowerPC G4 500 MHz	58321 s (≃ 16 hours)	2.8 millionths of s

Summarizing...

In dynamic programming:

- the initial problem can be recursively decomposed in subproblems
- same subproblems occur many times and are solved once
- the solution of a subproblem can be obtained combining the ones of smaller subproblems

Two possible implementations:

- top-down with table annotation (memoization)
- bottom-up

Top-down versus bottom-up

- Top-down
 - exploits table annotation
 - pros: solves only the strictly needed subproblems
 - cons: overhead of recursive chain of calls

- Bottom-up
 - is the typical choice in dynamic programming
 - cons: solves also unnecessary subproblems
 - pros: it is anyway generally more efficient because it eliminates the weight of recursion, which affects more the overall performance

Divide-and-Conquer versus dynamic progr.

Divide-and-Conquer:

- Recursive technique
- Top-down approach (problems split in subproblems)
- Profitable when subproblems are indipendent (i.e. different)
- Otherwise, same subproblems solved multiple times

Dynamic programming:

- Iterative technique
- Typically bottom-up approach
- Profitable when subproblems overlap (i.e. coincide)
- Each subproblem solved only once