B.Sc. (Hons.) Computer Science III Semester (NEP)

Data Structures Guidelines

S. No.	Торіс	Reference	Contents
1	Unit 1 - Growth of Functions,	[1]	Ch-4
	Recurrence Relations		4.1, 4.2: 4.2.1-4.2.5
		[2]	Ch-4: 4.3, 4.4, 4.5
2	Unit 2 - Arrays, Linked Lists,	[1]	Ch-3: 3.1 (till page 114 – excluding tic-tac-toe)
	Stacks, Queues, Deques	✓	3.2, 3.3, 3.4
		[1] 🗸	ch-5: 5.1, 5.2, 5.3: 5.3.1-5.3.3
3	Unit 3 - Recursion	[1]	ch-3: 3.5 upto page 135, 3.5.1, 3.5.2 ch-4: 4.2.6 \checkmark
			ch-4: 4.2.6 V
4	Unit 4 - Trees, Binary trees	\[1]	ch-/: 7.1, 7.2, 7.3.1-7.3.4, 7.3.6 upto page 299
5	Unit 5 - Binary Search Trees,	[1]	ch-10: 10.1, 10.2 upto 10.2.1
	Balanced Search Trees	~	(10.2.2 to be covered for practicals only)
6	Unit 6 - Binary Heap	[2]	ch-6: 6.1-6.3

References

- 1. Goodrich, M.T, Tamassia, R., & Mount, D., Data Structures and Algorithms Analysis in C++, 2nd edition. Wiley, 2011.
- 2. Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. Introduction to Algorithms, 4th edition, Prentice Hall of India, 2022.

Additional References

- (i) Sahni, S., Data Structures, Algorithms and applications in C++, 2nd edition, Universities Press, 2011.
- (ii) Langsam Y., Augenstein, M. J., & Tanenbaum, A. M. Data Structures Using C and C++, Pearson, 2009.

Practicals List

- 1. Write a program to implement singly linked list as an ADT that supports the following operations:
 - i. Insert an element x at the beginning of the singly linked list
 - ii. Insert an element x at i^{th} position in the singly linked list
 - iii. Remove an element from the beginning of the doubly linked list
 - iv. Remove an element from i^{th} position in the singly linked list.
 - vi. Search for an element x in the singly linked list and return its pointer
- 2. Write a program to implement doubly linked list as an ADT that supports the following operations:
 - i. Insert an element x at the beginning of the doubly linked list
 - ii. Insert an element x at the end of the doubly linked list
 - iii. Remove an element from the beginning of the doubly linked list
 - iv. Remove an element from the end of the doubly linked list
- 3. Write a program to implement circular linked list as an ADT which supports the following operations:
 - i. Insert an element x in the list
 - ii. Remove an element from the list
 - iii. Search for an element x in the list and return its pointer
- 4. Implement Stack as an ADT and use it to evaluate a prefix/postfix expression.
- 5. Implement Queue as an ADT.
- 6. Write a program to implement Binary Search Tree as an ADT which supports the following operations:
 - i. Insert an element x
 - ii. Delete an element x
- iii. Search for an element x in the BST
- iv. Display the elements of the BST in preorder, inorder, and postorder traversal
- 7. Write a program to implement insert and search operation in AVL trees.