산업 컴퓨터 비전 실제

중간 프로젝트

CONTENTS

- 01. 주제 선정
- **02.** 알고리즘
- 03. 결과
- 04. 향후 연구 방향

01. 주제 선정

1. 주제

- 비행기 이미지에서 전경과 배경의 세분화를 통한 객체 식별

2. 주제 선정 이유

현업

Prepar3D 엔진을 사용하여 지상통제장치, 조종석 등 개발

이유

공항 보안 및 항공 교통 관리의 효율성을 높이기 위한 기술적 도전 과제로, 비행기와 그 배경을 정확 하게 분리하고 식별하는 것은 매우 중요함

02. 알고리즘

1. GrabCut

이미지에서 객체의 정확한 실루엣을 추출할 수 있어 복잡한 배경 속에서도 비행기를 효과적으로 분리할 수 있으므로 GrabCut 사용

2. K-means 클러스터링

색상 데이터를 기반으로 이미지를 세그먼트로 나누어 각 구성 요소를 더욱 명확하게 구분할 수 있으므로 K-means 클러스터링 사용

3. 코드

```
apply_kmeans_and_return_labels(image, n_clusters=2):
    data = image.reshape((-1, 3))
   data = np.float32(data)
   kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(data)
   labels = kmeans.labels
   return labels.reshape(image.shape[:2])
   visualize_with_original_colors(image, labels):
   unique labels = np.unique(labels)
   segmented_image = np.zeros_like(image)
   for label in unique labels:
       mask = labels == label
       segmented_image[mask] = image[mask]
   return segmented_image
   grabcut_and_cluster(image):
   mask = np.zeros(image.shape[:2], np.uint8)
   bgdModel = np.zeros((1, 65), np.float64)
   fgdModel = np.zeros((1, 65), np.float64)
   rect = (5, 5, 620, 410)
   cv2.grabCut(image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
   mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
   foreground = image * mask2[:, :, np.newaxis]
   background = image * (1 - mask2)[:, :, np.newaxis]
   foreground_labels = apply_kmeans_and_return_labels(foreground)
   background_labels = apply_kmeans_and_return_labels(background)
   foreground clustered = visualize with original colors(foreground, foreground labels)
   background clustered = visualize with original colors(background, background labels)
   plt.figure(figsize=(10, 5))
   plt.subplot(1, 3, 1)
   plt.imshow(cv2.cvtColor(foreground clustered, cv2.COLOR BGR2RGB))
   plt.title('Foreground (Original Colors)')
   plt.subplot(1, 3, 2)
   plt.imshow(cv2.cvtColor(background_clustered, cv2.COLOR_BGR2RGB))
   plt.title('Background (Original Colors)')
   plt.subplot(1, 3, 3)
   plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
   plt.title('Original Image')
   plt.show()
image path = '../../data/airplane1.jpg'
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
if image is None:
   print("이미지를 로드할 수 없습니다. 경로를 확인하세요.")
   image = cv2.resize(image, (660, 440))
   grabcut_and_cluster(image)
```

K-means 클러스터링 적용

↓
원본 색상 유지
↓
GrabCut 사용하여 전경, 배경 분리
↓
시각화

1. 결과 시각화

전경 – GrabCut 알고리즘 이미지 비행기 분리 및 K-means 클러스터링 적용 배경 – 전경에서 분리된 후 동일한 클러스터링 과정 적용

03. 결과

2. 분석

전경 처리 결과

- 비행기 이미지의 전경 성공적으로 추출, K-means 클러스터링을 통해 세부적인 색상 구조 유지, 명확하게 구분되는 색상 영역으로 나눔

배경 처리 결과

- 상대적으로 단순화되어 전경의 비행기와 대조적으로 잘 나타남

3. 고찰

성능 평가

- GrabCut은 복잡한 배경 속에서도 전경 객체를 효과적으로 분리할 수 있으나, 초기 사각형 위치와 크기에 따라 결과가 달라질 수 있음. 최적의 결과를 얻기 위해서는 사각형 영역을 적절히 설정하는 것이 중요함

K-means 클러스터링 효과, 한계

 이미지의 다양한 요소를 강조할 수 있지만,클러스터 수의 선택이 결과에 큰 영향을 미침. 클러스터 수가 적절하지 않으면 세부적인 특징이 손실될 수 있음

향후 개선 방안

- 사용자가 사각형 영역을 보다 정밀하게 조정할 수 있도록 개선해야 함.
- 클러스터 수를 자동으로 결정하는 기법을 도입하여 더 강력한 도구를 개발

04. 향후 연구 방향

1. 다양한 환경에서의 적용성 향상

다양한 조명 조건, 다중 객체 환경, 다양한 배경을 포함하는 이미지 데이터셋에 대한 알고리즘의 적용성을 테스트하고, 이러한 복잡한 환경에서도 높은 성능을 유지할 수 있는 기법을 개발

2. 상업적 및 산업적 응용 분야 확장

비행기 식별 및 분리 기술을 공항 보안 검사, 항공 교통 관리, UAV 모니터링 시스템에 적용하여, 이 기술의 상업적 및 산업적 가치를 높이는 방안 모색