ACTIVIDAD INTEGRADORA

TC2008B

Diagrama de clases

Protocolo de agentes

Estrategia cooperativa para la solución del problema

Para generar el modelo se definió primero como se iban a posicionar las cajas y los robots, se decidió por posiciones aleatorias para generar mas casos de prueba. Al principio me guie mucho en los modelos de GameOfLife y segregation debido a que toman decisiones a partir de los agentes que los rodean. El modelo que se desarrollo genera dos tipos de agentes, robots y cajas, los primeros tienen la tarea de buscar las cajas en base a sus vecinos cercanos, tomarlas y regresarlas a un punto para generar pilas de 5 cajas, para ello las cajas deben mandar su posición y su estado para saber si se movió, fue tomada o llego a una pila. Una vez que llega la pila a 5 cajas esta cambia su color, indicando que llego a su límite.

Crear la estructura del modelo fue bastante sencilla debido a que no hay tantos tipos de agentes. Sin embargo, fue un reto hacer que los robots regresaran las cajas a las pilas hasta que esta tuviera 5 cajas.

Los resultados que a mayor numero de robots, el tiempo para apilar todas las cajas se reducía drásticamente y a mayor número de cajas este aumenta. Del mismo modo el tamaño del almacén

tienen que hacer los robots aumentaba.		

juega un papel importante, porque entre mayor sea su tamaño la cantidad de movimientos que