17	Astronomers observing stars at the centre of our galaxy have suggested that many of them are orbiting a supermassive black hole. The mass of this black hole is 9.2×10^{36} kg.			
	(a)	Calculate the orbital period for a star in a circular orbit at a distance of $1.9\times10^{14}\mathrm{m}$ from a black hole of this mass.	(3)	
		Orbital period =		
	(b)	The star S0-2 is in a highly elliptical orbit around the position of the black hole.		
		At its point of closest approach, S0-2 is at a distance of 1.8×10^{13} m from the centre of the black hole.		
		At the most distant point of its orbit, S0-2 is 2.7×10^{14} m from the black hole.		
		(i) Show that the change in gravitational potential between the closest and most distant points in this orbit is about $3 \times 10^{13} \text{J kg}^{-1}$.		
		distant points in this orbit is about 3 × 10 3 kg.	(2)	
	, 			
		(ii) At its point of closest approach, the star is travelling at a speed of $8.1 \times 10^6 \mathrm{ms^{-1}}$		
		Calculate the speed of S0-2 at the furthest point in its orbit using the change in	•	
		gravitational potential.		
		mass of S0-2 = 2.4×10^{31} kg	(3)	
	, 			
		Spood -		
	(c)	Speed = Trigonometric parallax and Hubble's law are two methods used to determine		
		astronomical distances. Explain whether either of these methods is suitable to determine the distance to S0-2.		
			(3)	

(Total for Question 17 = 11 marks)