

Time Series

Fundamentals

Assumptions in Time Series Algorithms

- Consecutive Observations in the series are equally spaced
- Series is indexed on specific period of time. e.g. Weekly, Daily, Yearly etc.
- There aren't any missing values

Types of Trends

Linear

Periodic

Rapid Growth

Varying Variance

Some Transformations

- log: The log() function can linearize the rapid growth trend. It can also stabilize the varying variance series. It is only for positive values.
- diff: The diff() function can remove the linear trends. It can also remove periodic trends.

Stationary Process

- Stationary process is that stochastic (probabilistic) process whose joint probability distribution does not change when shifted in time.
- In our context of time series, it is that time series whose mean and variance do not change over time.
- White Noise Model is the simplest example of Stationary series.
- For weak stationarity, covariance of y_t and y_s is constant for all |t-s|=h, for all h. e.g. $Cov(y_3,y_7)=Cov(y_{22},y_{26})$

Stationary and Non-Stationary

Stationary

White Noise Model (WN Model)

- WN Model is a simple example of stationary process
- A weak White Noise has
 - A fixed constant mean
 - A fixed constant variance
 - No correlation of any time point value with any time point value

Random Walk (RW) Model

- RW Model is a simple example of non-stationary time series
- A random walk series has
 - No specific mean and variance
 - Strong dependence over time
- Changes or increments in RW series are white noise
- Random Walk Recursion: Today's value = Yesterday's Value + Noise
- In other words, $y_t = y_{t-1} + \in_t$, where \in_t is white noise with mean zero
- RW Model has only one parameter i.e. variance of the white noise σ_ϵ^2

Example of RW Model

Random Walk with Drift

- Random Walk Recursion: $Today's \ Value = Constant + Yesterday's \ Value + Noise$
- In other words, $y_t = c + y_{t-1} + \in_t$, where \in_t is white noise with mean zero
- ullet This has two parameters, drift constant c and σ_{ϵ}^2

Autocorrelation

What is Autocorrelation?

- Autocorrelation is correlation between the elements of a series and others from the same series separated from them by a given interval.
- Lag 1 Autocorrelation: Correlation of today's value with yesterday's value
- Lag 2 Autocorrelation: Correlation between today's and day before yesterday's values
- Lag k Autocorrelation: Correlation between Day 1 with Day k values

Calculating acf

```
> acf(JohnsonJohnson,10, plot = F)
Autocorrelations of series 'JohnsonJohnson', by lag
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
1.000 0.925 0.888 0.833 0.824 0.764 0.718 0.675 0.654 0.608 0.564
```

- Output shows quarterly autocorrelations. Plot is rendered FALSE so that the function doesn't produce graph. Here 10 is for maximum lags to produce.
- We observe that, the correlation goes on decreasing with the increase in the lag. This is not the case with every time series.

Plotting acf

acf(JohnsonJohnson, 10)

 We observe here that as the lag goes on increasing, the correlation goes on decreasing

Autoregressive Models

AR Process

Autoregressive Model

- In this model, we consider that today's observation is regressed on yesterday's observation or any of the previous day's observation.
- Model:

 Today's Value = Constant + Slope * Yesterday's Value + Noise
- Software may use mean centered version of this model as

```
(Today's\ Value - Mean) = Slope * (Yesterday's\ Value - Mean) + Noise
```

• By notations, $y_t - \mu = \phi(y_{t-1} - \mu) + \epsilon_t$, where ϵ_t is a white noise with mean 0 with variance σ_ϵ^2 and ϕ and μ are the slope and mean respectively

$$y_t - \mu = \phi(y_{t-1} - \mu) + \epsilon_t$$

- If slope $\phi=0$ then $y_t=\mu+\epsilon_t$ and y_t will be white noise with mean μ and variance σ^2_ϵ
- If slope $\phi \neq 0$ then the process of $\{y_t\}$ is autocorrelated
- Large value of Ø implies greater dependency of current values with previous values
- Negative value of Ø implies oscillatory time series
- If $\mu=0$ and slope $\phi=1$, then $y_t=y_{t-1}+\epsilon_t$, which is a random walk process

Simple Moving Average Model

MA Process

Simple Moving Average Model

- Simple MA model:

 Today's Value = Mean + Noise + Slope * (Yesterday's Noise)
- In mathematical notations,

$$y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

Where

 μ : Mean of the series

 θ : Slope

 ϵ_t : Error or Noise at time t which has mean 0 and some variance σ_ϵ^2

• At $\theta=0$, the model will be a white noise with mean μ and variance σ_ϵ^2

Simple Moving Average Model

$$y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- If θ is non-zero then y_t depends on both ϵ_t and ϵ_{t-1} and the process is auto correlated
- Larger values of θ imply greater autocorrelation
- Negative values of θ imply oscillatory time series