M1-HAX710X Année: 2024-2025

Estimation Ponctuelle

Ludovic Menneteau

1 Généralités

Problématique 1 On considère une v.a. $X: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathcal{X}, \mathcal{B})$ de loi \mathbb{P}_X inconnue. On suppose que \mathbb{P}_X appartient à une famille de loi $(P_{\theta})_{\theta \in \Theta}$ indexée par un ensemble Θ et entièrement spécifiée, i.e. qu'il existe $\theta_v \in \Theta$ $(\theta_v : \theta \ vrai)$ tel que $\mathbb{P}_X = P_{\theta_v}$. Notre objectif est d'étudier des procédures permettant à partir de X, d'obtenir de l'information sur \mathbb{P}_X en estimant θ_v (ou une fonction de θ_v). Comme θ_v peut prendre n'importe quelle valeur dans Θ , les procédures d'estimations devront être évaluées uniformément en θ .

Définition 2 On dit que $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ est un modèle statistique si $(\mathcal{X}, \mathcal{B})$ est un espace mesurable (i.e. \mathcal{X} est un ensemble, \mathcal{B} est une tribu sur \mathcal{X}) et $(P_{\theta})_{\theta \in \Theta}$ est une famille de probabilités sur $(\mathcal{X}, \mathcal{B})$ indéxée par un ensemble Θ (appelé ensemble des paramètres du modèle).

Si $X : (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathcal{X}, \mathcal{B})$ est une v.a. telle que \mathbb{P}_X appartient à $(P_{\theta})_{\theta \in \Theta}$, on dira que X est **associée** au modèle statistique $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$.

Définition 3 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique et $(\mathcal{Y}, \mathcal{D})$, un espace mesurable.

- 1. On appelle **statistique** à valeurs dans $(\mathcal{Y}, \mathcal{D})$ toute fonction mesurable $s: \mathcal{X} \to \mathcal{Y}$ ne dépendant pas de θ .
- 2. Soit $\varphi : \Theta \to \varphi(\Theta)$ une fonction telle que $\varphi(\Theta) \subset \mathcal{Y}$. Une statistique $\widehat{\varphi} : \mathcal{X} \to \mathcal{Y}$ est appelée un **estimateur** de $\varphi(\theta)$.

Notations 4 Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique.

- 1. Pour $p \ge 1$, on dit que $h \in \mathcal{L}^p\left((P_\theta)_{\theta \in \Theta}\right)$ si $h \in \mathcal{L}^p\left(P_\theta\right)$ pour tout $\theta \in \Theta$.
- 2. Soient $h: \mathcal{X} \to \mathbb{R}$ et $\theta \in \Theta$.
 - (a) Si $h \in \mathcal{L}^1(P_\theta)$, on définit :

$$E_{\theta}(h) := \int_{\mathcal{X}} h \ dP_{\theta}.$$

(b) Si $h \in \mathcal{L}^2(P_\theta)$, on définit :

$$V_{\theta}(h) := E_{\theta}\left(\left(h - E_{\theta}(h)\right)^{2}\right).$$

(c) Si g et $h \in \mathcal{L}^2(P_\theta)$, on définit :

$$Cov_{\theta}(g,h) := E_{\theta}\left(\left(g - E_{\theta}(g)\right)\left(h - E_{\theta}(h)\right)\right).$$

3. Soient $X:(\Omega,\mathcal{A},\mathbb{P})\to(\mathcal{X},\mathcal{B})$ une v.a. associée au modèle statistique $(\mathcal{X},\mathcal{B},(P_{\theta})_{\theta\in\Theta})$ et $\theta\in\Theta$.

- (a) Si $h \in \mathcal{L}^1(P_\theta)$, et si on suppose que $\theta_v = \theta$, alors l'espérance de $h(X) : \mathbb{E}(h(X)) := \int_{\Omega} h(X) d\mathbb{P}$ sera notée $\mathbb{E}_{\theta}(h(X))$.
- (b) Si $h \in \mathcal{L}^{2}(P_{\theta})$, et si on suppose que $\theta_{v} = \theta$, alors la variance de $h(X) : \mathbb{V}(h(X)) := \mathbb{E}\left((h(X)) \mathbb{E}(h(X))^{2}\right)$ sera notée $\mathbb{V}_{\theta}(h(X))$.
- (c) Si g et $h \in \mathcal{L}^2(P_\theta)$, et si on suppose que $\theta_v = \theta$, alors la covariance de q(X) et h(X):

$$\mathbb{C}ov\left(g\left(X\right),h\left(X\right)\right) := \mathbb{E}\left(\left(g\left(X\right)\right) - \mathbb{E}\left(g\left(X\right)\right) \;\left(h\left(X\right)\right) - \mathbb{E}\left(h\left(X\right)\right)\right)$$
sera notée $\mathbb{C}ov_{\theta}\left(g\left(X\right),h\left(X\right)\right)$.

4. NB : Par le Théorème de transfert, il est clair que :

$$\mathbb{E}_{\theta}\left(h\left(X\right)\right) = E_{\theta}\left(h\right), \ \mathbb{V}_{\theta}\left(h\left(X\right)\right) = V_{\theta}\left(h\right) \ \text{et} \ \mathbb{C}ov_{\theta}\left(g\left(X\right), h\left(X\right)\right) = \mathrm{Cov}_{\theta}\left(g, h\right).$$

Définition 5 Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique. Pour $n \geq 1$, le modèle produit

$$\left(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta}\right)^{n} := \left(\mathcal{X}^{n}, \mathcal{B}^{\otimes n}, \left(P_{\theta}^{\otimes n}\right)_{\theta \in \Theta}\right)$$

est appelé modèle d'échantillonage (d'ordre n) associé à $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$.

Rappels 6 Soient $(\mathcal{X}, \mathcal{B})$ est un espace mesurable et ν et μ deux mesures σ -finies sur $(\mathcal{X}, \mathcal{B})$.

- 1. On dit que ν est **absolument continue** par rapport à μ et on note $\nu \ll \mu$ si l'une des deux conditions équivalentes (par le Théorème de Radon Nycodym) suivantes est vérifiée :
 - i) $[N \in \mathcal{B} \text{ et } \mu(N) = 0] \Rightarrow [\nu(N) = 0]$.
 - ii) Il existe $f: \mathcal{X} \to \mathbb{R}^+$ mesurable telle que $\nu = f.\mu$, i.e. pour tout $B \in \mathcal{B}$:

$$\nu(B) = \int_{\mathcal{X}} \mathbf{1}_{B}(x) f(x) d\mu(x).$$

On dit que f est une **densité** de ν par rapport à μ .

- 2. En général, f n'est pas unique puisque toutes autre fonction mesurable positive μpp égale à f convient aussi. On note parfois $\frac{d\nu}{d\mu}$ la classe d'équivalence des densités de ν par rapport à μ , on écrira $f \in \frac{d\nu}{d\mu}$ pour dire que f est une densité de ν par rapport à μ .
- 3. Si $\nu \ll \mu$ et $\mu \ll \nu$ les mesures sont dites **équivalentes** et on note $\mu \sim \nu$. Il est facile de voir que cela revient à dire que $\frac{d\nu}{d\mu}$ contient une version f strictement positive (et qu'alors $\frac{1}{f}$ est une version de $\frac{d\mu}{d\nu}$).

Définition 7 Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique.

On dit que le modèle est dominé s'il existe une mesure σ-finie μ sur (X, B) telle que , ∀θ ∈ Θ : P_θ ≪ μ.
 μ est appelée une mesure dominante du modèle.
 Pour θ ∈ Θ, on note f_θ une version de la densité dP_θ/dμ et on appelle fonction de vraisemblance du modèle par rapport à la mesure dominante μ la fonction :

 $f:(x,\theta)\in\mathcal{X}\times\Theta\mapsto f_{\theta}(x)\in\mathbb{R}^{+}.$

2. On dit que le modèle est **homogène** si toutes les mesures P_{θ} sont équivalentes.

Remarques 8 1) Comme les f_{θ} , f dépend non seulement du modèle mais aussi de μ . De plus, comme les densités, la fonction de vraisemblance n'est pas unique en tant que fonction puisque si g est une fonction définie sur $\mathcal{X} \times \Theta$ telle que pour tout $\theta \in \Theta$, $g(.,\theta) = f(.,\theta)$ $\mu-p.p.$ (en x), alors g est aussi une fonction de vraisemblance du modèle par rapport à μ (f et g sont deux versions de la même vraisemblance). Dans la suite, lorsque l'on écrit soit f la vraisemblance (resp. la densité), il faut comprendre "une version de la vraisemblance (resp. la densité)".

2) Sans perte de généralité, on peut supposer (si besoin) que μ est une probabilité. En effet, comme μ est σ -finie, on peut trouver $\{A_k : k \in K\}$ une partition mesurable de \mathcal{X} telle que K est dénombrable et $\forall k \in K, \ \mu(A_k) \in]0, \infty[$. Il est facile de voir que, si $(p_k)_{k \in K}$ est une famille de réels strictement positifs telle que $\sum_{k \in K} p_k = 1$, la mesure

$$\nu: B \in \mathcal{B} \mapsto \sum_{k \in K} p_k \frac{\mu(A_k \cap B)}{\mu(A_k)}$$

est une probabilité équivalente à μ et peut donc être choisie comme une mesure dominante du modèle.

Proposition 9 Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique dominé par une mesure μ . Alors, pour tout $n \geq 1$, le modèle statistique d'échantillonage $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})^n$ est dominé par $\mu^{\otimes n}$. De plus si, pour $\theta \in \Theta$, $P_{\theta} = f_{\theta} \cdot \mu$ alors $P_{\theta}^{\otimes n} = f_{\theta,n} \cdot \mu^{\otimes n}$ avec

$$f_{\theta,n}:(x_1,...,x_n)\in\mathcal{X}^n\mapsto\prod_{1\leq j\leq n}f_{\theta}\left(x_j\right).$$

Preuve. On suppose que $P_{\theta} = f_{\theta}.\mu$.

Pour $(B_1, ..., B_n) \in \mathcal{B}^n$,

$$P_{\theta}^{\otimes n} \left(\prod_{1 \leq j \leq n} B_j \right) = \prod_{1 \leq j \leq n} P_{\theta} \left(B_j \right)$$

$$= \prod_{1 \leq j \leq n} \int_{B_j} f_{\theta} \left(x_j \right) d\mu \left(x_j \right)$$

$$= \int_{\prod_{1 \leq j \leq n} B_j} \left(\prod_{1 \leq j \leq n} f_{\theta} \left(x_j \right) \right) d\mu^{\otimes n} \left(\left(x_1, \dots, x_n \right) \right)$$

$$:= f_{\theta, n} \left(x_1, \dots, x_n \right)$$

Les mesures finies $P_{\theta}^{\otimes n}$ et $f_{\theta,n}.\mu^{\otimes n}$ coïncidant sur le π système $\left\{\prod_{1\leq j\leq n} B_j: (B_1,...,B_n)\in \mathcal{B}^n\right\}$, elles coïncident aussi sur $\mathcal{B}^{\otimes n}=\sigma\left\{\prod_{1\leq j\leq n} B_j: (B_1,...,B_n)\in \mathcal{B}^n\right\}$.

Le résultat suivant montre que, si $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ est un modèle dominé, il existe des mesures dominantes particulières pouvant s'exprimer comme des combinaisons convexes dénombrables des éléments de $(P_{\theta})_{\theta \in \Theta}$, ce qui aura un intérêt pour établir certains résultats (par exemple le Théorème 21).

Théorème 10 Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique dominé. Alors :

1. Il existe un sous ensemble dénombrable $T \subset \Theta$ tel que :

$$[B \in \mathcal{B} \text{ et } \forall t \in T : P_t(B) = 0] \Longrightarrow [\forall \theta \in \Theta : P_\theta(B) = 0].$$

2. On pose

$$P^* := \sum_{t \in T} c(t) P_t$$

où $(c(t))_{t\in T}$ est une famille de nombres strictement positifs telle que $\sum_{t\in T} c(t) = 1$. Alors, pour tout $\theta \in \Theta$ et pour toute mesure μ dominant le modèle, on a:

$$P_{\theta} \ll P^* \ll \mu$$

(i.e. P^* est une probabilité qui domine le modèle et est dominée par μ). P^* est appelée une **mesure dominante privilégiée** du modèle.

 $(NB: P^* \ est \ un \ suprémum \ de \ (P_{\theta})_{\theta \in \Theta} \ pour \ le \ semi \ ordre \ partiel induit par \ll sur l'espace des mesures \sigma-finies \mu \ sur \ (\mathcal{X}, \mathcal{B})).$

Preuve. 1) a) Construction de l'ensemble T:

Soit μ_0 une mesure dominante du modèle. Sans perte de généralités (c.f. la Remarque 8-2), on peut supposer que μ_0 est une probabilité (une mesure bornée suffirait pour l'argument que l'on va développer). Pour tout $\theta \in \Theta$, on considère f_{θ} une densité de P_{θ} par rapport à μ_0 . Soit

$$\mathcal{C}_0 = \{ \{ f_\theta > 0 \} : \theta \in \Theta \}$$

 et

 $C = \{ \text{unions dénombrables d'éléments de } C_0 \}.$

On a $C_0 \subset C \subset \mathcal{B}$. Montrons que $m := \sup_{C \in \mathcal{C}} \mu_0(C)$ est atteint. Comme μ_0 est bornée, m est fini. De plus, par définition du sup, il existe, pour tout $n \geq 1$, $C_n \in \mathcal{C}$ tel que :

$$m - \frac{1}{n} \le \mu_0\left(C_n\right) \le m.$$

On pose alors $C^* := \bigcup_{n \geq 1} C_n$. Une union dénombrable d'unions dénombrables étant dénombrable, on a $C^* \in \mathcal{C}$ et donc $\mu_0\left(C^*\right) \leq m$. Par ailleurs, pour tout $n \geq 1, C_n \subset C^*$ donc

$$\forall n \geq 1 : m - \frac{1}{n} \leq \mu_0(C^*) \leq m \text{ i.e. } \mu_0(C^*) = m.$$

Comme $C^* \in \mathcal{C}$, il existe $T \subset \Theta$ tel que T est dénombrable et $C^* = \bigcup_{t \in T} \{f_t > 0\}$. b) Montrons que T convient :

Soit $B \in \mathcal{B}$, tel que $\forall t \in T : P_t(B) = 0$. Montrons que $\forall \theta \in \Theta : P_{\theta}(B) = 0$. Pour $\theta \in \Theta$, on a :

$$P_{\theta}(B) = P_{\theta}(B \cap C^*) + P_{\theta}(B \cap (C^*)^c)$$

$$\leq \left(\sum_{t \in T} P_{\theta}(B \cap \{f_t > 0\})\right) + P_{\theta}((C^*)^c).$$

Il suffit donc de montrer que $P_{\theta}((C^*)^c) = 0$ et que,

$$\forall t \in T : P_{\theta} (B \cap \{f_t > 0\}) = 0.$$

-) Pour montrer que $P_{\theta}((C^*)^c) = 0$, observons que

$$P_{\theta} ((C^*)^c) = \int_{\mathcal{X}} \mathbf{1}_{(C^*)^c} f_{\theta} d\mu_0 = \int_{\{f_{\theta} > 0\}} \mathbf{1}_{(C^*)^c} f_{\theta} d\mu_0$$
$$= P_{\theta} ((C^*)^c \cap \{f_{\theta} > 0\}).$$

Donc, comme $P_{\theta} \ll \mu_0$, il suffit de montrer que

$$\mu_0((C^*)^c \cap \{f_\theta > 0\}) = 0.$$

Or, (comme $C^* \cup \{f_{\theta} > 0\} = C^* \uplus ((C^*)^c \cap \{f_{\theta} > 0\})),$

$$\mu_0\left(C^* \cup \{f_\theta > 0\}\right) = \mu_0\left(C^*\right) + \mu_0\left(\left(C^*\right)^c \cap \{f_\theta > 0\}\right)$$

de ce fait comme μ_0 est bornée :

$$\mu_0\left(\left(C^*\right)^c \cap \{f_\theta > 0\}\right) = \mu_0\left(C^* \cup \{f_\theta > 0\}\right) - \mu_0\left(C^*\right).$$

De plus, $C^* \cup \{f_\theta > 0\} \in \mathcal{C}$, d'où par définition de C^* :

$$m = \mu_0(C^*) \le \mu_0(C^* \cup \{f_\theta > 0\}) \le m \text{ i.e. } \mu_0(C^* \cup \{f_\theta > 0\}) = \mu_0(C^*) = m,$$

et donc :

$$\mu_0((C^*)^c \cap \{f_\theta > 0\}) = m - m = 0.$$

-) Montrons que, $\forall t \in T : P_{\theta}(B \cap \{f_t > 0\}) = 0.$

$$[P_t(B) = 0] \Leftrightarrow \left[\int_{\mathcal{X}} \mathbf{1}_B \ f_t \ d\mu_0 = 0 \right] \Leftrightarrow \left[\mathbf{1}_B \ f_t = 0 \ \mu_0 \text{ p.p.} \right]$$
$$\Leftrightarrow \left[\mu_0 \left(\left\{ \mathbf{1}_B \ f_t \neq 0 \right\} \right) = 0 \right] \Leftrightarrow \left[\mu_0 \left(B \cap \left\{ f_t > 0 \right\} \right) = 0 \right]$$
$$\Rightarrow \left[P_\theta \left(B \cap \left\{ f_t > 0 \right\} \right) = 0 \right] \qquad (\text{car } P_\theta \ll \mu_0).$$

2) Comme $(c(t))_{t \in T}$ est une famille de nombres strictement positifs telle que $\sum_{t \in T} c(t) = 1$, $P^* = \sum_{t \in T} c(t) P_t$ est clairement une probabilité sur $(\mathcal{X}, \mathcal{B})$. De plus :

$$\left[P^{*}\left(B\right)=0\right]\Leftrightarrow\left[\forall t\in T:P_{t}\left(B\right)=0\right]\underset{\text{par }1)}{\Longrightarrow}\left[\forall\theta\in\Theta:P_{\theta}\left(B\right)=0\right],$$

donc, $\forall \theta \in \Theta : P_{\theta} \ll P^*$. Enfin, soit μ une mesure dominante du modèle. Comme μ domine $(P_{\theta})_{\theta \in \Theta}$:

$$\left[\mu\left(B\right)=0\right]\Longrightarrow\left[\forall t\in T:P_{t}\left(B\right)=0\right]\Leftrightarrow\left[P^{*}\left(B\right)=0\right]$$

donc $P^* \ll \mu$.

2 Estimation d'une fonction réelle du paramètre

2.1 Biais. Risque quadratique. Comparaison d'estimateurs.

Définition 11 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique et $\varphi : \Theta \to \varphi(\Theta)$ une fonction telle que $\varphi(\Theta) \subset \mathbb{R}$.

1. Si $\widehat{\varphi}$ est un estimateur de $\varphi(\theta) \in \mathbb{R}$ tel que $\widehat{\varphi} \in \mathcal{L}^1((P_{\theta})_{\theta \in \Theta})$, alors on définit le **biais** de $\widehat{\varphi}$ par rapport à $\varphi(\theta)$:

$$B_{\theta}^{\varphi}(\widehat{\varphi}) := E_{\theta}(\widehat{\varphi}) - \varphi(\theta)$$
.

 $Si \ \forall \theta \in \Theta, \ B_{\theta}^{\varphi}(\widehat{\varphi}) = 0, \ on \ dit \ que \ \widehat{\varphi} \ est \ un \ estimateur \ sans \ biais \ de \ (\varphi(\theta))_{\theta \in \Theta}.$

2. $Si \ \widehat{\varphi} \in \mathcal{L}^2\left((P_{\theta})_{\theta \in \Theta}\right)$, on définit le **risque** (ou écart) quadratique moyen entre $\widehat{\varphi}$ et $\varphi(\theta)$ par

$$R_{\theta}^{\varphi}\left(\widehat{\varphi}\right) := E_{\theta}\left(\left(\widehat{\varphi} - \varphi\left(\theta\right)\right)^{2}\right)$$

- 3. Si $\widehat{\varphi}$ et $\widetilde{\varphi} \in \mathcal{L}^2\left((P_{\theta})_{\theta \in \Theta}\right)$, on dit que $\widehat{\varphi}$ est (uniformément) préférable à $\widetilde{\varphi}$ si $\forall \theta \in \Theta$, $R_{\theta}^{\varphi}\left(\widehat{\varphi}\right) \leq R_{\theta}^{\varphi}\left(\widetilde{\varphi}\right)$. Cette relation de préférence introduit une relation de semi ordre partiel $sur \mathcal{E}_{\omega}$.
- 4. Si $\mathcal{F}_{\varphi} \subset \mathcal{L}^2\left((P_{\theta})_{\theta \in \Theta}\right)$, on dit qu'un estimateur $\widehat{\varphi}$ est **optimal** sur \mathcal{F}_{φ} si $\widehat{\varphi} \in \mathcal{F}_{\varphi}$ et s'il est préférable à tout autre estimateur appartenant à \mathcal{F}_{φ} (en général, l'existence d'un tel estimateur n'est pas garantie).
- 5. On note

$$\mathcal{E}_{\varphi}^{0} = \left\{ \widehat{\varphi} \in \mathcal{L}^{2} \left((P_{\theta})_{\theta \in \Theta} \right) : \forall \theta \in \Theta, \ E_{\theta} \left(\widehat{\varphi} \right) = \varphi \left(\theta \right) \right\}$$

la classe des **estimateurs sans biais** de $(\varphi(\theta))_{\theta \in \Theta}$ dans $\mathcal{L}^{2}((P_{\theta})_{\theta \in \Theta})$.

Proposition 12 (Décomposition biais-variance du risque quadratique) Considérons un modèle statistique $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ avec $\Theta \subset \mathbb{R}$, une fonction $\varphi:\Theta\to\varphi(\Theta)\subset\mathbb{R}\ et\ \widehat{\varphi}\in\mathcal{L}^2\left((P_\theta)_{\theta\in\Theta}\right).\ Alors:$

1. Pour tout $\theta \in \Theta$:

$$R_{\theta}^{\varphi}\left(\widehat{\varphi}\right) = B_{\theta}^{\varphi}\left(\widehat{\varphi}\right)^{2} + V_{\theta}\left(\widehat{\varphi}\right).$$

2. $Si \ \widehat{\varphi} \in \mathcal{E}_{\varphi}^{0} \ alors \ R_{\theta}^{\varphi} \ (\widehat{\varphi}) = V_{\theta} \ (\widehat{\varphi})$.

Un estimateur optimal dans $\mathcal{E}_{\varphi}^{0} \ (s'il \ existe)$ est donc un estimateur de $(\varphi(\theta))_{\theta\in\Theta}$ sans biais et de variance minimale (**esbvm**).

Preuve. Pour tout $\theta \in \Theta$:

$$E_{\theta}\left(\left(\widehat{\varphi}-\varphi\left(\theta\right)\right)^{2}\right)$$

$$=E_{\theta}\left(\left(\left(\widehat{\varphi}-E_{\theta}\left(\widehat{\varphi}\right)\right)+\left(E_{\theta}\left(\widehat{\varphi}\right)-\varphi\left(\theta\right)\right)\right)^{2}\right)$$

$$=\underbrace{E_{\theta}\left(\left(\widehat{\varphi}-E_{\theta}\left(\widehat{\varphi}\right)\right)^{2}\right)}_{=V_{\theta}\left(\widehat{\varphi}\right)}+2\underbrace{\left(E_{\theta}\left(\widehat{\varphi}\right)-\varphi\left(\theta\right)\right)}_{=0}\underbrace{\underbrace{E_{\theta}\left(\left(\widehat{\varphi}-E_{\theta}\left(\widehat{\varphi}\right)\right)\right)}_{=0}+\underbrace{\underbrace{E_{\theta}\left(\left(E_{\theta}\left(\widehat{\varphi}\right)-\varphi\left(\theta\right)\right)^{2}\right)}_{=B_{\theta}^{\varphi}\left(\widehat{\varphi}\right)^{2}}.$$

En général, il n'existe pas forcément d'esbym de $(\varphi(\theta))_{\theta\in\Theta}$ (ni même d'esb, voir par exemple en cours du modèle binomial $(B(n,\theta))_{\theta\in\Theta}$ Le résultat suivant fournit une cns d'existence d'esbym et montre que, s'il existe un esbym, il est essentiellement unique.

Proposition 13 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique, $\varphi : \Theta \to \varphi(\Theta) \subset$ \mathbb{R} et $\widehat{\varphi} \in \mathcal{E}_{\varphi}^0$. Alors:

- 1. Les deux assertions suivantes sont équivalentes :

 - i) $\widehat{\varphi}$ est un esbvm de $(\varphi(\theta))_{\theta \in \Theta}$. ii) $\forall \widetilde{\varphi} \in \mathcal{E}_{\varphi}^{0}$ et $\forall \theta \in \Theta : \operatorname{Cov}_{\theta}(\widehat{\varphi}, \widetilde{\varphi} \widehat{\varphi}) = 0$.

2. $Si \ \widehat{\varphi} \ et \ \widetilde{\varphi} \ sont \ deux \ esbvm \ de \ (\varphi(\theta))_{\theta \in \Theta}$, alors

$$\forall \theta \in \Theta : \widetilde{\varphi} = \widehat{\varphi} \quad P_{\theta} - \text{p.p.}$$

Preuve. 1) $(i) \Rightarrow (ii)$: On suppose que $\widehat{\varphi}$ est un esbym de $(\varphi(\theta))_{\theta \in \Theta}$. Soit $\widetilde{\varphi} \in \mathcal{E}_{\varphi}^{0}$. Pour $\alpha \in \mathbb{R}$, on pose

$$\widetilde{\varphi}_{\alpha} := (1 - \alpha) \ \widehat{\varphi} + \alpha \ \widetilde{\varphi} = \widehat{\varphi} + \alpha (\widetilde{\varphi} - \widehat{\varphi}).$$

Pour tout $\theta \in \Theta$, $\widetilde{\varphi}_{\alpha} \in \mathcal{L}^2(P_{\theta})$ et

$$E_{\theta}(\widetilde{\varphi}_{\alpha}) = (1 - \alpha) E_{\theta}(\widehat{\varphi}) + \alpha E_{\theta}(\widetilde{\varphi}) = (1 - \alpha) \varphi(\theta) + \alpha \varphi(\theta) = \varphi(\theta),$$

donc $\widetilde{\varphi}_{\alpha} \in \mathcal{E}_{\varphi}^{0}$. De ce fait, par optimalité de $\widehat{\varphi}$ on a

$$\forall \theta \in \Theta : V_{\theta}(\widetilde{\varphi}_{\alpha}) \geq V_{\theta}(\widehat{\varphi}).$$

Or

$$V_{\theta}(\widetilde{\varphi}_{\alpha}) = V_{\theta}(\widehat{\varphi} + \alpha (\widetilde{\varphi} - \widehat{\varphi})) = V_{\theta}(\widehat{\varphi}) + 2\alpha \operatorname{Cov}_{\theta}(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) + \alpha^{2}V_{\theta}(\widetilde{\varphi} - \widehat{\varphi}).$$

On en déduit que : $\forall \theta \in \Theta, \forall \alpha \in \mathbb{R}$:

$$2\alpha \operatorname{Cov}_{\theta}(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) + \alpha^{2} V_{\theta}(\widetilde{\varphi} - \widehat{\varphi}) \ge 0.$$
 (*)

Si $\alpha > 0$, (*) conduit à

$$2 \operatorname{Cov}_{\theta} (\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) + \alpha V_{\theta} (\widetilde{\varphi} - \widehat{\varphi}) \ge 0.$$

et en faisant $\alpha \downarrow 0^+$, on obtient que $\operatorname{Cov}_{\theta}(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) \geq 0$. Si $\alpha < 0$, (*) conduit à

$$2 \operatorname{Cov}_{\theta} (\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) + \alpha V_{\theta} (\widetilde{\varphi} - \widehat{\varphi}) \leq 0.$$

En faisant $\alpha \uparrow 0^-$, on obtient que $Cov_{\theta} (\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) \leq 0$.

On a donc bien $Cov_{\theta}(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) = 0$.

2) $(ii) \Rightarrow (i)$: On suppose (ii).

Soient $\widetilde{\varphi} \in \mathcal{E}_{\varphi}^0$ et $\theta \in \Theta$. On a

$$\begin{split} V_{\theta}\left(\widetilde{\varphi}\right) &= V_{\theta}\left(\widehat{\varphi} + \left(\widetilde{\varphi} - \widehat{\varphi}\right)\right) \\ &= V_{\theta}\left(\widehat{\varphi}\right) + 2\underbrace{\operatorname{Cov}_{\theta}\left(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi}\right)}_{=0 \text{ par } (ii)} + \underbrace{V_{\theta}\left(\widetilde{\varphi} - \widehat{\varphi}\right)}_{>0} \geq V_{\theta}\left(\widehat{\varphi}\right), \end{split}$$

donc $\widehat{\varphi}$ est bien un esbym.

2) Si $\widehat{\varphi}$ et $\widetilde{\varphi}$ sont deux esbym de $\varphi(\theta)$, alors $\forall \theta \in \Theta$:

$$V_{\theta}(\widetilde{\varphi} - \widehat{\varphi}) = \operatorname{Cov}_{\theta}(\widetilde{\varphi} - \widehat{\varphi}, \ \widetilde{\varphi} - \widehat{\varphi})$$

$$= \operatorname{Cov}_{\theta}(\widetilde{\varphi}, \widetilde{\varphi} - \widehat{\varphi}) - \operatorname{Cov}_{\theta}(\widehat{\varphi}, \widetilde{\varphi} - \widehat{\varphi})$$

$$= 0 - 0 = 0 \quad \text{(par 1))}$$

Donc il existe $c(\theta) \in \mathbb{R}$ tel que $\widetilde{\varphi} - \widehat{\varphi} = c(\theta)$ P_{θ} -p.p. et comme

$$E_{\theta}(\widetilde{\varphi} - \widehat{\varphi}) = \varphi(\theta) - \varphi(\theta) = 0$$
, on obtient que $c(\theta) = 0$,

et donc $\widetilde{\varphi} = \widehat{\varphi} \quad P_{\theta}$ -p.p.

2.2 Estimateur du maximum de vraisemblance et estimateur des moments

Dans ce court paragraphe, on définit deux procédures d'estimations classiques.

Définition 14 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$, un modèle statistique dominé par une mesure μ et

$$f:(x,\theta)\in\mathcal{X}\times\Theta\mapsto f_{\theta}(x)\in\mathbb{R}^{+}$$

une fonction de vraisemblance associée et soit $(X_1,...,X_n)$ un échantillon i.i.d de v.a. associé à ce modèle (i.e. $(X_1,...,X_n)$ est associé au modèle produit $(\mathcal{X},\mathcal{B},(P_{\theta})_{\theta\in\Theta})^n$). On dit que $\widehat{\Theta}_n$,est un estimateur du maximum de vraisemblance (emv) de $(\theta)_{\theta\in\Theta}$ si

$$\widehat{\Theta}_n \in \underset{\theta \in \Theta}{\operatorname{arg\,max}} \prod_{1 \le j \le n} f(X_j, \theta).$$

Remarques 15 1) L'existence et l'unicité d'un emv n'est pas garantie (voir TD 2).

2) On a aussi

$$\widehat{\Theta}_n \in \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{1 < j < n} \ln f(X_j, \theta)$$

ce qui est parfois plus maniable au niveau des calculs.

3) si $\widehat{\Theta}_n$ est un emv de $(\theta)_{\theta \in \Theta}$, $\varphi\left(\widehat{\Theta}_n\right)$ est appelé emv de $(\varphi(\theta))_{\theta \in \Theta}$.

Définition 16 Soient $(\mathbb{R}, \mathcal{B}(\mathbb{R}), (P_{\theta})_{\theta \in \Theta})$, un modèle statistique et soit $(X_1, ..., X_n)$ un échantillon i.i.d de v.a. associé à ce modèle On suppose qu'il existe une fonction Ψ et $\ell \geq 1$ tels que $\forall \theta \in \Theta$, $\theta = \Psi(\mathbb{E}_{\theta}(X_1^k): 1 \leq k \leq \ell)$ et, pour $1 \leq k \leq \ell$, on pose

$$\overline{X}_n^{(k)} := \frac{1}{n} \sum_{1 \le i \le n} X_j^k.$$

Alors

$$\widetilde{\Theta}_n := \Psi\left(\overline{X}_n^{(k)} : 1 \le k \le \ell\right)$$

est appelé estimateur des moments de $(\theta)_{\theta \in \Theta}$.

Voir le TD2 pour de multiples exemples.

2.3 Exhaustivité. Amélioration d'estimateurs sans biais.

Rappels 17 Soient $(\mathcal{X}, \mathcal{B}, P)$ un espace probabilisé, $(\mathcal{Y}, \mathcal{D})$, un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une fonction mesurable.

1. La sous tribu de \mathcal{B}

$$\sigma(s) := \left\{ s^{-1}(D) : D \in \mathcal{D} \right\}$$

est appelée tribu engendrée par s.

- 2. On montre qu'une fonction $w: \mathcal{X} \to \mathbb{R}$ est $\sigma(s) \mathcal{B}(\mathbb{R})$ mesurable ssi il existe $g: \mathcal{Y} \to \mathbb{R}$ telle que g est $\mathcal{D} \mathcal{B}(\mathbb{R})$ mesurable et $w = g \circ s$.
- 3. Pour tout $h \in \mathcal{L}^1(P)$, on peut montrer qu'il existe $w : \mathcal{X} \to \mathbb{R}$ fonction $\sigma(s) \mathcal{B}(\mathbb{R})$ mesurable telle que, pour tout $D \in \mathcal{D}$:

$$E_P\left(w\ \mathbf{1}_{s^{-1}(D)}\right) = E_P\left(h\ \mathbf{1}_{s^{-1}(D)}\right)$$

(i.e. il existe $g: \mathcal{Y} \to \mathbb{R}$ telle que pour tout $D \in \mathcal{D}$,

$$E_P((g \circ s) \ \mathbf{1}_{s^{-1}(D)}) = E_P(h \ \mathbf{1}_{s^{-1}(D)}).$$

De plus, $w \in \mathcal{L}^1(P)$ et w est unique modulo l'identification des fonctions P-p.s. égales. $w(=g \circ s)$ est notée $E_P(h \mid s)$ et appelée l'**espérance** conditionnelle (sous P) sachant s de h.

Pour $y \in \mathcal{Y}$, g(y) est aussi notée $E_P(h \mid s = y)$.

- 4. On montre que :
 - (a) L'application

$$h \in \mathcal{L}^1(P) \mapsto E_P(h \mid s)$$

est linéaire et croissante.

(b) $\forall h \in \mathcal{L}^1(P)$, $\forall v \text{ fonction } \sigma(s) - \mathcal{B}(\mathbb{R}) \text{ mesurable telle que } v \ h \in \mathcal{L}^1(P)$:

$$E_P(v \mid h \mid s) = v E_P(h \mid s)$$
.

(c) $\forall h \in \mathcal{L}^1(P)$:

$$E_P(E_P(h \mid s)) = E_P(h)$$
.

Définition 18 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique, $(\mathcal{Y}, \mathcal{D})$, un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une fonction mesurable. On dit que s est une **statistique exhaustive** (par rapport au modèle) si, pour tout $h \in \mathcal{L}^1((P_{\theta})_{\theta \in \Theta})$, $E_{\theta}(h \mid s)$ ne dépend pas de θ (comme d'habitude, on note E_{θ} pour $E_{P_{\theta}}$). Dans la suite, on notera $E(h \mid s)$ la valeur commune des $E_{\theta}(h \mid s)$.

Remarques 19 1) Intuitivement, une statistique exhaustive est une transformation des données (i.e. de x) qui conserve toute l'information disponible sur θ (voir le Théorème ?? pour plus de précisions à ce propos).

- 2) L'identité $id_{\mathcal{X}}: x \in \mathcal{X} \mapsto x$ est évidemment toujours exhaustive (mais n'a aucun intérêt en temps que résumé de l'information).
- 3) Si s est exhaustive et $b: \mathcal{Y} \to \mathcal{Y}$ est bijective, alors $b \circ s$ est exhaustive (car $\sigma(b \circ s) = \sigma(s)$).

On va maintenant montrer comment, à partir d'une statistique exhaustive, il est possible d'améliorer un estimateur sans biais initial (via le Théorème 20), et même, parfois, d'obtenir l'esbym (via le Théorème 24). Voir le TD 4 pour des applications de cette démarche.

Théorème 20 (de Rao Blackwell)

Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique, $\widehat{\varphi}$ un estimateur sans biais de $\varphi(\theta) \in \mathbb{R}$, $(\mathcal{Y}, \mathcal{D})$ un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une statistique exhaustive. Alors $\widehat{\varphi}_{|s} := E(\widehat{\varphi} \mid s)$ est un estimateur sans biais de $\varphi(\theta)$, de plus, $\widehat{\varphi}_{|s}$ est préférable à $\widehat{\varphi}$ i.e. $\forall \theta \in \Theta$:

$$E_{\theta}\left(\left(\widehat{\varphi}_{|s}-\varphi\left(\theta\right)\right)^{2}\right)\leq E_{\theta}\left(\left(\widehat{\varphi}-\varphi\left(\theta\right)\right)^{2}\right).$$

Preuve. Comme s est exhaustive, $\widehat{\varphi}_{|s} = E_{\theta}(\widehat{\varphi} \mid s)$ ne dépend pas de θ : c'est bien une statistique. De plus, $\forall \theta \in \Theta$:

$$E_{\theta}\left(\left(\widehat{\varphi} - \varphi\left(\theta\right)\right)^{2} \mid s\right) = E_{\theta}\left(\left(\widehat{\varphi} - \widehat{\varphi}_{\mid s}\right)^{2} \mid s\right) + 2E_{\theta}\left(\left(\left(\widehat{\varphi} - \widehat{\varphi}_{\mid s}\right)\left(\widehat{\varphi}_{\mid s} - \varphi\left(\theta\right)\right)\right) \mid s\right) + E_{\theta}\left(\left(\left(\widehat{\varphi}_{\mid s} - \varphi\left(\theta\right)\right)\right)^{2} \mid s\right)$$

$$= E_{\theta}\left(\left(\widehat{\varphi} - \widehat{\varphi}_{\mid s}\right)^{2} \mid s\right) + \left(\widehat{\varphi}_{\mid s} - \varphi\left(\theta\right)\right)^{2} + 2\left(\widehat{\varphi}_{\mid s}$$

avec (*) car $\widehat{\varphi}_{|s} - \varphi(\theta)$ est $\sigma(s)$ mesurable donc

$$E_{\theta} \left(\left(\left(\widehat{\varphi} - \widehat{\varphi}_{|s} \right) \left(\widehat{\varphi}_{|s} - \varphi \left(\theta \right) \right) \right) \mid s \right)$$

$$= \left(\widehat{\varphi}_{|s} - \varphi \left(\theta \right) \right) E_{\theta} \left(\left(\widehat{\varphi} - \widehat{\varphi}_{|s} \right) \mid s \right)$$

$$= \left(\widehat{\varphi}_{|s} - \varphi \left(\theta \right) \right) \left(\widehat{\varphi}_{|s} - \widehat{\varphi}_{|s} \right) = 0.$$

On en déduit que :

$$E_{\theta}\left(\left(\widehat{\varphi}-\varphi\left(\theta\right)\right)^{2}\right) = E_{\theta}\left(E_{\theta}\left(\left(\widehat{\varphi}-\varphi\left(\theta\right)\right)^{2} \mid s\right)\right)$$

$$\geq E_{\theta}\left(\left(\widehat{\varphi}_{\mid s}-\varphi\left(\theta\right)\right)^{2}\right)..$$

Le résultat suivant fournit un critère maniable pour établir l'exhaustivité d'une statistique.

Théorème 21 (Critère de factorisation de Fisher Neyman)

Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique dominé, $(\mathcal{Y}, \mathcal{D})$, un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une fonction mesurable.

Les 2 assertions suivantes sont équivalentes :

- i) s est exhaustive.
- ii) Si μ est une dominante du modèle, alors $\forall \theta \in \Theta$, il existe des fonctions mesurables

$$g_{\theta}: y \in \mathcal{Y} \mapsto g_{\theta}(y) \in \mathbb{R}^+$$

et

$$u: x \in \mathcal{X} \mapsto u(x) \in \mathbb{R}^+$$

telles que $P_{\theta} = f_{\theta} \cdot \mu$. avec

$$f_{\theta}: x \in \mathcal{X} \mapsto u(x) \ g_{\theta}(s(x)).$$

Preuve. 1) $(i) \Rightarrow (ii)$: On suppose que s est exhaustive et pour h mesurable positive et $\theta \in \Theta$, on note $E(h \mid s)$ la valeur commune des $E_{\theta}(h \mid s)$.

- a) Soit $P^* := \sum_{t \in T} c(t) P_t$ une dominante privilégiée du modèle (voir Théorème
- 10) Pour tout $\theta \in \Theta$, on considère $f_{\theta}^* \in \frac{dP_{\theta}}{dP^*}$ et on veut montrer que f_{θ}^* est (i.e. admet une version) $\sigma(s)$ —mesurable.

Pour h mesurable positive et tout $s^{-1}\left(D\right) \in \sigma\left(s\right)$:

$$\begin{split} E_* \left(h \ \mathbf{1}_{s^{-1}(D)} \right) &= \sum_{t \in T} c \left(t \right) \ E_t \left(h \ \mathbf{1}_{s^{-1}(D)} \right) \\ &= \sum_{t \in T} c \left(t \right) \ E_t \left(E_t \left(h \mid s \right) \ \mathbf{1}_{s^{-1}(D)} \right) \\ &= \sum_{t \in T} c \left(t \right) \ E_t \left(E \left(h \mid s \right) \ \mathbf{1}_{s^{-1}(D)} \right) \\ &= E_* \left(E \left(h \mid s \right) \ \mathbf{1}_{s^{-1}(D)} \right), \end{split}$$

donc $\forall \theta \in \Theta$:

$$E_*(h \mid s) = E(h \mid s) = E_{\theta}(h \mid s).$$
 (*)

Et, $\forall B \in \mathcal{B}, \ \forall \theta \in \Theta$:

$$E_{*}(f_{\theta}^{*} \mathbf{1}_{B}) = E_{\theta}(\mathbf{1}_{B}) = E_{\theta}(E_{\theta}(\mathbf{1}_{B} \mid s)) = E_{\theta}(E_{*}(\mathbf{1}_{B} \mid s)) \quad \text{(par (*))}$$

$$= E_{*}(f_{\theta}^{*} E_{*}(\mathbf{1}_{B} \mid s)) = E_{*}(E_{*}(f_{\theta}^{*} E_{*}(\mathbf{1}_{B} \mid s) \mid s))$$

$$= E_{*}(E_{*}(f_{\theta}^{*} \mid s) E_{*}(\mathbf{1}_{B} \mid s)) = E_{*}(E_{*}(E_{*}(f_{\theta}^{*} \mid s) \mathbf{1}_{B} \mid s))$$

$$= E_{*}(E_{*}(f_{\theta}^{*} \mid s) \mathbf{1}_{B}),$$

donc $E_*\left(f_{\theta}^*\mid s\right)\in\frac{dP_{\theta}}{dP^*}$ et elle est bien $\sigma\left(s\right)$ –mesurable i.e. il existe une fonction mesurable

$$g_{\theta}: y \in \mathcal{Y} \mapsto g_{\theta}(y) \in \mathbb{R}^+$$

telle que $P_{\theta} = (g_{\theta} \circ s) \cdot P^*$.

b) Soit μ est une dominante quelconque.

 $\forall \theta \in \Theta$, on a $P^* \ll \mu$ (c.f. Théorème 10) donc il existe une fonction $u: \mathcal{X} \to \mathbb{R}^+$ telle que

$$P^* = u \cdot \mu$$

donc, par a), $P_{\theta} = (u \times (g_{\theta} \circ s)) \cdot \mu$.

 $(ii) \Rightarrow (i)$: Soient μ est une dominante du modèle,

$$g_{\theta}: y \in \mathcal{Y} \mapsto g_{\theta}(y) \in \mathbb{R}^+ \quad (\theta \in \Theta)$$

et

$$u: x \in \mathcal{X} \mapsto u(x) \in \mathbb{R}^+$$

des fonctions mesurables telles que $P_{\theta} = f_{\theta} \cdot \mu$. avec $f_{\theta} = u \times (g_{\theta} \circ s)$. a) On considère $P^* := \sum_{t \in T} c(t) P_t$ une dominante privilégiée. Montrons que $\frac{dP_{\theta}}{dP^*}$ admet une version $f_{\theta}^* \sigma(s)$ —mesurable. Si on pose

$$g: y \in \mathcal{Y} \mapsto \sum_{t \in T} c(t) \ g_t(y),$$

il est facile de voir que $P^* = f^* \cdot \mu$. avec

$$f^*: x \in \mathcal{X} \mapsto u(x) \ g(s(x))$$
.

Pour $\theta \in \Theta$, définissons la fonction $f_{\theta}^* : \mathcal{X} \longrightarrow \mathbb{R}^+$ telle que :

$$f_{\theta}^{*}(x) = \frac{g_{\theta}(s(x))}{g(s(x))}$$
 si $g(s(x)) > 0$
= 0 sinon

Il est clair que f_{θ}^* est $\sigma(s)$ –mesurable. On va montrer que $f_{\theta}^* \in \frac{dP_{\theta}}{dP^*}$. Pour tout $B \in \mathcal{B}$:

$$E_*\left(f_{\theta}^* \ \mathbf{1}_B\right) = E_*\left(f_{\theta}^* \ \mathbf{1}_{B\cap\{g\circ s>0\}}\right) + E_*\left(f_{\theta}^* \ \mathbf{1}_{B\cap\{g\circ s=0\}}\right).$$

Or $E_*\left(f_{\theta}^* \mathbf{1}_{B\cap\{g\circ s=0\}}\right)=0$ car $P^*\left(\{g\circ s=0\}\right)\leq P^*\left(\{f^*=0\}\right)=0$. On a donc

$$\begin{split} E_* \left(f_{\theta}^* \; \mathbf{1}_B \right) &= E_* \left(f_{\theta}^* \; \mathbf{1}_{B \cap \{g \circ s > 0\}} \right) = \int_{\mathcal{X}} \mathbf{1}_{B \cap \{g \circ s > 0\}} \; f_{\theta}^* \; f^* \; d\mu \\ &= \int_{\mathcal{X}} \mathbf{1}_{B \cap \{g \circ s > 0\}} \; \frac{g_{\theta} \circ s}{g \circ s} \; u \; g \circ s \; d\mu \\ &= \int_{\mathcal{X}} \mathbf{1}_{B \cap \{g \circ s > 0\}} \; u \; g_{\theta} \circ s \; d\mu \\ &= \int_{\mathcal{X}} \mathbf{1}_{B \cap \{g \circ s > 0\}} \; f_{\theta} \; d\mu \\ &= P_{\theta} \left(B \cap \{g \circ s > 0\} \right) \underset{(*)}{=} P_{\theta} \left(B \right) \quad \text{i.e. } f_{\theta}^* \in \frac{dP_{\theta}}{dP^*}. \end{split}$$

Où, au niveau de (*) on a utilisé le fait que $P_{\theta}(\{g \circ s = 0\}) = 0$ (car $P^*(\{g \circ s = 0\}) = 0$ et $P_{\theta} \ll P^*$).

b) Soit h une fonction mesurable positive, on va montrer que $\forall \theta \in \Theta$:

$$E_{\theta}(h \mid s) = E_{*}(h \mid s)$$
 (et donc ne dépend pas de θ),

ce qui établira l'exhaustivité de s.

Pour tout $\theta \in \Theta$ et tout $s^{-1}(D) \in \sigma(s)$:

$$E_{\theta} \left(h \; \mathbf{1}_{s^{-1}(D)} \right) = E_{*} \left(f_{\theta}^{*} \; h \; \mathbf{1}_{s^{-1}(D)} \right)$$

$$= E_{*} \left(E_{*} \left(f_{\theta}^{*} \; h \; \mathbf{1}_{s^{-1}(D)} \mid s \right) \right)$$

$$= E_{*} \left(E_{*} \left(h \mid s \right) \; f_{\theta}^{*} \mathbf{1}_{s^{-1}(D)} \right) \quad (\operatorname{car} \; f_{\theta}^{*} \mathbf{1}_{s^{-1}(D)} \operatorname{est} \; \sigma \left(s \right) - \operatorname{mesurable} \right)$$

$$= E_{\theta} \left(E_{*} \left(h \mid s \right) \; \mathbf{1}_{s^{-1}(D)} \right)$$

i.e. $E_{\theta}(h \mid s) = E_*(h \mid s)$ c.q.f.d.

Définition 22 Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique, $(\mathcal{Y}, \mathcal{D})$ un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une statistique. On dit que s est **complète** (ou totale) si:

$$\left[w \in \mathcal{L}^{2}\left(\left(P_{\theta}\right)_{\theta \in \Theta}\right), \ \sigma\left(s\right) - \mathcal{B}\left(\mathbb{R}\right) \text{ mesurable et } E_{\theta}\left(w\right) = 0, \ \forall \theta \in \Theta\right] \Rightarrow \left[w = 0 \ P_{\theta} - \text{p.s. } \forall \theta \in \Theta\right],$$

i.e. si

$$\left[g \circ s \in \mathcal{L}^2\left((P_\theta)_{\theta \in \Theta}\right) \text{ et } E_\theta\left(g \circ s\right) = 0, \ \forall \theta \in \Theta\right] \Rightarrow \left[g \circ s = 0 \ P_\theta - \text{p.s. } \forall \theta \in \Theta\right].$$

Remarques 23 Dans la définition précédente, on peut remplacer les \mathcal{L}^2 par toutes classes de parties denses dans \mathcal{L}^2 .

Théorème 24 (de Lehmann Scheffé)

Soient $(\mathcal{X}, \mathcal{B}, (P_{\theta})_{\theta \in \Theta})$ un modèle statistique, $\widehat{\varphi}$ un estimateur sans biais de $\varphi(\theta) \in \mathbb{R}$, $(\mathcal{Y}, \mathcal{D})$ un espace mesurable et $s : \mathcal{X} \to \mathcal{Y}$ une statistique exhaustive et complète.

Alors $\widehat{\varphi}_{|s} := E(\widehat{\varphi} \mid s)$ est l'estimateur sans biais optimal de $(\varphi(\theta))_{\theta \in \Theta}$.

Preuve. Soit $\widetilde{\varphi}$ un estimateur sans biais de $(\varphi(\theta))_{\theta \in \Theta}$. Comme s est exhaustive, le Théorème de Rao Blackwell assure que $E\left(\widetilde{\varphi}\mid s\right)$ est un esb préférable à $\widetilde{\varphi}$. De plus $E\left(\widehat{\varphi}\mid s\right) - E\left(\widetilde{\varphi}\mid s\right)$ est $\sigma\left(s\right)$ mesurable et, comme, pour tout $\theta \in \Theta$,

$$E_{\theta} (E(\widehat{\varphi} \mid s) - E(\widetilde{\varphi} \mid s)) = E_{\theta} (E(\widehat{\varphi} - \widetilde{\varphi} \mid s))$$

$$= E_{\theta} (E_{\theta} (\widehat{\varphi} - \widetilde{\varphi} \mid s))$$

$$= E_{\theta} (\widehat{\varphi} - \widetilde{\varphi}) = \varphi(\theta) - \varphi(\theta) = 0,$$

la complétude de s conduit à $E\left(\widehat{\varphi}\mid s\right)-E\left(\widetilde{\varphi}\mid s\right)=0$ i.e. $E\left(\widehat{\varphi}\mid s\right)=E\left(\widetilde{\varphi}\mid s\right)$ et $E\left(\widehat{\varphi}\mid s\right)$ est donc préférable à $\widetilde{\varphi}$.