Шина PCI express

Преимущества последовательных шин и интерфейсов:

- Больший акцент на сложную логику при простой топологии физического уровня;
- Перспектива перехода на оптический физический уровнеь;
- Экономия пространства печатных плат и снижение сложности монтажа;
- Простота реализации PnP и динамическую конфигурацию в любом смысле;
- Возможность выделять гарантированные и изохронные каналы;
- Переход от разделяемых шин с арбитражем к более предсказуемым соединениям точка-точка;
- Лучшая с точки зрения затрат и более гибкая с точки зрения топологии масштабируемость;

Сравнение пропускной способности шин семейства PCI

PCI и PCI-X

Bus Type	Clock Frequency	Peak Bandwidth *	Number of Card Slots per Bus
PCI 32-bit	33 MHz	133 MBytes/sec	4-5
PCI 32-bit	66 MHz	266 MBytes/sec	1-2
PCI-X 32-bit	66 MHz	266 MBytes/sec	4
PCI-X 32-bit	133 MHz	533 MBytes/sec	1-2
PCI-X 32-bit	266 MHz effective	1066 MBytes/sec	1
PCI-X 32-bit	533 MHz effective	2131 MByte/sec	1

PCI Express

PCI Express	Line	Transfer	Throughput ^[i]					
version	code	rate ^[i]	×1	×2	×4	×8	×16	
1.0	8b/10b	2.5 GT/s	250 MB/s	500 MB/s	1 GB/s	2 GB/s	4 GB/s	
2.0	8b/10b	5.0 GT/s	500 MB/s	1 GB/s	2 GB/s	4 GB/s	8 GB/s	
3.0	128b/130b	8.0 GT/s	984.6 MB/s	1.97 GB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s	
4.0	128b/130b	16.0 GT/s	1969 MB/s	3.94 GB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s	
5.0 ^{[30][31]} (expected in Q2 2019) ^[33]	128b/130b	32.0 GT/s ^[ii]	3938 MB/s	7.9 GB/s	15.8 GB/s	31.5 GB/s	63.0 GB/s	

Соединение между двумя устройствами PCI Express называется link, и состоит из одного (называемого 1x) или нескольких (2x, 4x, 8x, 12x, 16x и 32x) двунаправленных последовательных соединений lane. Каждое устройство должно поддерживать соединение 1x.

- Уровень транзакций отвечает за взаимодействие с пригладным уровнем, сборку и разборку TLP пакетов (используются для передачи транзакций на нижние уровни, чтение и запись, передача событий). Уровень транзакций также отвечает за управление кредитами.
- Уровень линка данных принимает TLP пакеты от транзакционного уровня и осуществляет их передачу через физический уровень. Основные обязанности уровня линка данных включают управление линками и обеспечение целостности данных при передаче, включая обнаружение ошибок и исправление ошибок.
- Физический уровень включает в себя все необходимые схемы для работы интерфейса, параллельно-последовательные преобразователи, кодеры и декодеры 8/10, ФАПЧ(ы), схемы согласования сопротивлений.

- •TLP, которые не проходят проверку целостности данных (LCRC и порядковый номер) или которые теряются при передаче из одного компонента в другой, повторно отправляются передатчиком.
- •Передатчик хранит копию всех отправленных TLP, повторно отправляет эти копии, когда это необходимо, и очищает копии только тогда, когда он получает положительное подтверждение безошибочного получения от другого компонента.
- •Если положительное подтверждение не было получено в течение указанного периода времени, Передатчик автоматически начнет повторную передачу.
- •Приемник может запросить немедленную повторную передачу, используя отрицательное подтверждение NAK.

Transaction Type	Non-Posted or Posted
Memory Read	Non-Posted
Memory Write	Posted
Memory Read Lock	Non-Posted
IO Read	Non-Posted
IO Write	Non-Posted
Configuration Read (Type 0 and Type 1)	Non-Posted
Configuration Write (Type 0 and Type 1)	Non-Posted
Message	Posted

Участниками транзакции является Requester (инициатор) и Completer (исполнитель).

Транзакции Non-Posted предполагают получение ответа инициатором от исполнителя об успешном завершении.

Транзакция Posted не требует ответа от исполнителя.

Способы кодирования данных при приемопередаче

Кодирование 8/10 (PCIe v1.0, v2.0)

Всевозможных 10-битовых комбинаций больше, чем реально используется для представления 256 обычных символов. В наборе символов представлены числовые данные D и специальные символы K (control symbols).

Каждый символ имеет два образа: с положительным/отрицательным балансом нулевых и единичных бит (или с одинаковым количеством нулевых и единичных символов).

При получении 10-битовой последовательности битов, не соответствующей ни D-типу, ни K-типу, получатель сигнализирует об ошибке кодирования.

Encoding	Symbol	Name	Description
K28.5	СОМ	Comma	Used for Lane and Link initialization and management
K27.7	STP	Start TLP	Marks the start of a Transaction Layer Packet
K28.2	SDP	Start DLLP	Marks the start of a Data Link Layer Packet
K29.7	END	End	Marks the end of a Transaction Layer Packet or a Data Link Layer Packet
K30.7	EDB	EnD Bad	Marks the end of a nullified TLP
K23.7	PAD	Pad	Used in Framing and Link Width and Lane ordering negotiations
K28.0	SKP	Skip	Used for compensating for different bit rates for two communicating Ports
K28.1	FTS	Fast Training Sequence	Used within an Ordered Set to exit from L0s to L0
K28.3	IDL	ldle	Used in the Electrical Idle Ordered Set (EIOS)
K28.4			Reserved
K28.6			Reserved
K28.7	EIE	Electrical Idle Exit	Reserved in 2.5 GT/s Used in the Electrical Idle Exit Ordered Set (EIEOS) and sent prior to sending FTS at data rates other than 2.5 GT/s

Data Byte Value		Bits HGF EDCBA	Current RD - abcdei fghj	Current RD + abcdei fghj		
K28.0	1C	000 11100	001111 0100	110000 1011		
K28.1	3C	001 11100	001111 1001	110000 0110		
K28.2	5C	010 11100	001111 0101	110000 1010		
K28.3	7C	011 11100	001111 0011	110000 1100		
K28.4	9C	100 11100	001111 0010	110000 1101		
K28.5	BC	101 11100	001111 1010	110000 0101		
K28.6	DC	110 11100	001111 0110	110000 1001		
K28.7	FC 111 11100		001111 1000	110000 0111		
K23.7	F7	111 10111	111010 1000	000101 0111		
K27.7	FB	111 11011	110110 1000	001001 0111		
K29.7	FD	111 11101	101110 1000	010001 0111		
K30.7	FE	111 11110	011110 1000	100001 0111		

Physical Layer Protocol

Формат пакетов TS1 на Physical Layer

Table 4-5: TS1 Ordered Set

Symbol Number	Description					
0	When operating at 2.5 or 5.0 GT/s: COM (K28.5) for Symbol alignment.					
.50	When operating at 8.0 GT/s or above: Encoded as 1Eh (TS1 Ordered Set).					
1	Link Number.					
	Ports that do not support 8.0 GT/s or above: 0-255, PAD.					
	Downstream Ports that support 8.0 GT/s or above: 0-31, PAD.					
	Upstream Ports that support 8.0 GT/s or above: 0-255, PAD.					
	When operating at 2.5 or 5.0 GT/s: PAD is encoded as K23.7.					
	When operating at 8.0 GT/s or above: PAD is encoded as F7h.					
2	Lane Number within Link.					
	When operating at 2.5 or 5.0 GT/s: 0-31, PAD. PAD is encoded as K23.7.					
	When operating at 8.0 GT/s or above: 0-31, PAD. PAD is encoded as F7h.					
3	N_FTS. The number of Fast Training Sequences required by the Receiver: 0-255.					
4	Data Rate Identifier					
	Bit 0 - Reserved					
	Bit 1 – 2.5 GT/s Data Rate Supported. Must be set to 1b.					
	Bit 2 - 5.0 GT/s Data Rate Supported. Must be set to 1b if Bit 3 is 1b.					
	Bit 3 – 8.0 GT/s Data Rate Supported.					
	Bit 4:5 – Reserved.					
	Bit 6 – Autonomous Change/Selectable De-emphasis.					
	Downstream Ports: This bit is defined for use in the following LTSSM states: Polling.Active, Configuration.LinkWidth.Start, and Loopback.Entry. In all other LTSSM states, it is Reserved.					
	Upstream Ports: This bit is defined for use in the following LTSSM states: Polling.Active, Configuration, Recovery, and Loopback.Entry. In all other LTSSM states, it is Reserved.					
	Bit 7 – speed_change. This bit can be set to 1b only in the Recovery.RcvrLock LTSSM state. In all other LTSSM states, it is Reserved.					
5	Training Control					
	Bit 0 - Hot Reset					
	Bit 0 = 0b, De-assert					
	Bit 0 = 1b, Assert					
	Bit 1 - Disable Link					
	Bit 1 = 0b, De-assert Bit 1 = 1b, Assert					
	Bit 2 – Loopback					
	Bit 2 = 0b, De-assert					
	Bit 2 = 1b, Assert					
	Bit 3 – Disable Scrambling in 2.5 GT/s and 5.0 GT/s data rates; Reserved in other data rates					
	Bit 3 = 0b, De-assert					
	Bit 3 = 1b, Assert					
	Bit 4 - Compliance Receive					
	Bit 4 = 0b, De-assert Bit 4 = 1b, Assert					
	Ports that support 5.0 GT/s and above data rate(s) must implement the Compliance Receive bit. Ports that support only 2.5 GT/s data rate may optionally implement the Compliance Receive bit. If not implemented, the bit is Reserved.					
	Bit 5:7 – Reserved					

Формирование пакетов DLLP и TLP уровней

Пример передачи пакетов на РНҮ уровне

Инициализация физического соединения

Figure 4-22: Main State Diagram for Link Training and Status State Machine

Опрос линий (POLLING_ACTIVE)

Определение разрядности линка (CONFIGURATION_LINKWIDTH_START)

Определение номеров линий (CONFIGURATION_LANENUM_ACCEPT)

Готовность к приему и передаче (L0)

Waveform - DEV:1										ď ⊠									
Bus/Signal	х	О	650	651 	652 	653 	654 	655 	656	657 	658 	659 	660 	661 	662 	663	664 	665 	ť
⊶ RX_DATA	4545	4545			0000				X BC00	1010	(50 <mark>10</mark>)	0040	0000 X	5D0E	(5CFD	0050	(0000	3AE5	5
⊶ RXCHARISK	0	0			0				2	X :	3 X		0		3		0		d II
∽ RXCHARISCOMMA	0	0			0				2							0			
⊶ RXDISPERR	0	0									0								
∽ TX_DATA	F7BC	F7BC		ı	0000				X 5C00	0040	X 0000 X	5D0E	OOFD	5C00	0050	0000	(3AE5	00FD	3
≎ State	06	06	0B			Χ								0C					
ms12_cntr_f	0	0																	_
TS1_detected	0	0																	_4
TS2_detected	0	0																	
TS1_1024_fi	0	0																	
TS1_8_finished	0	0																	
TS2_8_finished	1	1																	
- RXLOCK	1	1																	$\exists \parallel$
- TXLOCK	1	1																	-
TS1_TS2_rcvd	1	1																	
ms24_cntr_f	0	0																	
Waveform captured 1	,	4∥ ▶ 018 16										х:	0 1	0:	0 4	Δ(X-0):	0	,

Data Link Layer Protocol

Формат Data Link Layer Packet

Состояния DLL

Типы пакетов DLLP

Encodings	DLLP Type
0000 0000	Ack
0001 0000	Nak
0010 0000	PM_Enter_L1
0010 0001	PM_Enter_L23
0010 0011	PM_Active_State_Request_L1
0010 0100	PM_Request_Ack
0011 0000	Vendor Specific – Not used in normal operation
0100 0v ₂ v ₁ v ₀	InitFC1-P (v[2:0] specifies Virtual Channel)
0101 0v ₂ v ₁ v ₀	InitFC1-NP
0110 0v ₂ v ₁ v ₀	InitFC1-CpI
1100 0v ₂ v ₁ v ₀	InitFC2-P
1101 0v ₂ v ₁ v ₀	InitFC2-NP
1110 0v ₂ v ₁ v ₀	InitFC2-CpI
1000 0v ₂ v ₁ v ₀	UpdateFC-P
1001 0v ₂ v ₁ v ₀	UpdateFC-NP
1010 0v ₂ v ₁ v ₀	UpdateFC-Cpl
All other encodings	Reserved

Форматы DLLP пакетов

OM13781A

Figure 3-6: Data Link Layer Packet Format for Ack and Nak

OM13782A

Figure 3-7: Data Link Layer Packet Format for InitFC1

OM13784A

Figure 3-9: Data Link Layer Packet Format for UpdateFC

OM14304A

Figure 3-10: PM Data Link Layer Packet Format

Получение кредитов FC1, FC2, UpdateFC по DLLP

Передача кредитов FC1, FC2, UpdateFC по DLLP

Пример пакета TLP записи*

Значение 0x12345678 читается по адресу 0xfdaff040 (2 LSB бита не передаются)

Формат идентификатора устройства

- (*)
- •Серые поля зарезервированы (игнорируются получателем).
- •Зеленые поля могут иметь ненулевые значения, но используются редко.
- •Значения определенного пакета помечаются красным цветом.

Поля заголовка пакета

- Формат пакета
- ≻Тип пакета
- ²Длина для всех связанных данных
- [>]Описатель транзакций, включая:
 - идентификатор транзакции
 - Атрибуты
 - класс трафика
- [>]Информация об адресе/маршрутизации
- Разрешенние байт
- >Кодировка сообщения
- ^{*}Состояние завершения

Типы транзакций

TLP Type	Fmt	Type	Description		
	[2:0] ² (b)	[4:0] (b)			
MRd	000	0 0000	Memory Read Request		
	001				
MRdLk	000	0 0001	Memory Read Request-Locked		
	001				
MWr	010	0 0000	Memory Write Request		
	011				
IORd	000	0 0010	I/O Read Request		
ЮWr	010	0 0010	I/O Write Request		
CfgRd0	000	0 0100	Configuration Read Type 0		
CfgWr0	010	0 0100	Configuration Write Type 0		
CfgRd1	000	0 0101	Configuration Read Type 1		
CfgWr1	010	0 0101	Configuration Write Type 1		
TCfgRd	000	1 1011	Deprecated TLP Type ³		
TCfgWr	010	1 1011	Deprecated TLP Type 3		
Msg	001	1 0r ₂ r₁r ₀	Message Request – The sub-field r[2:0] specifies the Message routing mechanism (see Table 2-18).		
MsgD	011	1 Or≱r₁ro	Message Request with data payload – The sub-field r[2:0] specifies the Message routing mechanism (see Table 2-18).		
СрІ	000	0 1010	Completion without Data – Used for I/O and Configuration Write Completions with any Completion Status. Also used for AtomicOp Completions and Read Completions (I/O, Configuration, or Memory) with Completion Status other than Successful Completion.		
CpID	010	0 1010	Completion with Data – Used for Memory, I/O, and Configuration Read Completions. Also used for AtomicOp Completions.		
CplLk	000	0 1011	Completion for Locked Memory Read without Data – Used only in error case.		
CpIDLk	010	0 1011	Completion for Locked Memory Read – otherwise like CpID.		

TLP Type	Fmt	Туре	Description
	[2:0] ² (b)	[4:0] (b)	
FetchAdd	010	0 1100	Fetch and Add AtomicOp Request
	011		
Swap	010	0 1101	Unconditional Swap AtomicOp Request
	011		
CAS	010	0 1110	Compare and Swap AtomicOp Request
	011		
LPrfx	100	0L ₃ L ₂ L ₁ L ₀	Local TLP Prefix – The sub-field L[3:0] specifies the Local TLP Prefix type (see Table 2-30).
EPrfx	100	1E ₃ E ₂ E ₁ E ₀	End-End TLP Prefix – The sub-field E[3:0] specifies the End-End TLP Prefix type (see Table 2-31).
			All encodings not shown above are Reserved (see Section 2.3).

Пример пакета TLP записи

Значение 0x12345678 читается по адресу 0xfdaff040 (2 LSB бита не передаются)

Формат идентификатора устройства

Пример пакета TLP чтения

Значение читается по адресу 0xfdaff040 (2 LSB бита не передаются)

Пример пакета завершения (completion)

Значение 0х12345678 передаются инициатору

Прием и декодирование пакетов TLP

Сигналы разъема PCI Express

Pin	Side B	Side A	Description
1	+12 V	PRSNT1#	Must connect to farthest PRSNT2# pin
2	+12 V	+12 V	Main newer pine
3	+12 V	+12 V	Main power pins
4	Ground	Ground	
5	SMCLK	TCK	
6	SMDAT	TDI	
7	Ground	TDO	SMBus and JTAG port pins
8	+3.3 V	TMS	
9	TRST#	+3.3 V	
10	+3.3 V aux	+3.3 V	Standby power
11	WAKE#	PERST#	Link reactivation; fundamental reset
			Key notch
12	CLKREQ#	Ground	Request running clock
13	Ground	REFCLK+	Reference clock differential pair
14	HSOp(0)	REFCLK-	Lane 0 transmit data, + and -
15	HSOn(0)	Ground	Lane o dansinicuata, + and -
16	Ground	HSIp(0)	Lane 0 receive data, + and -
17	PRSNT2#	HSIn(0)	Lane o receive data, + and -
18	Ground	Ground	
	P	CI Express	×1 cards end at pin 18

Плата ML605

