Functional Analysis Assignment V

YANG, Ze (5131209043)

May 3, 2016

Problem 1. Let $f \in C^{\infty}(0,1)$. Use the **Lax-Milgram thm** to show that BVP

$$\begin{cases} -v'' + \frac{1}{10}v' + v = f \\ v(0) = 0, \ v(1) = 0 \end{cases}$$

Has a unique solution $v \in \mathcal{L}^2(0,1)$

Proof. Assume v is a classical solution, then $\forall \phi \in H_0^1$, we have

$$\int v'\phi' + \int \frac{1}{10}v'\phi + \int v\phi = \int f\phi \tag{1}$$

We define

$$A(v,\phi) := \int v'\phi' + \int \frac{1}{10}v'\phi + \int v\phi \tag{2}$$

It is clear that A is a bilinear function, but not symmetric. We further set $\xi = e^{\frac{-x}{10}}$. Then the former equation can be written as

$$-(\xi v')' + \xi v = \xi f \tag{3}$$

Define on H_0^1 the symmetric continuous bilinear form

$$B(v,\phi) = \int \xi v'\phi' + \int \xi v\phi \tag{4}$$

This form is coercive, apply Lax-Milgram, there exists a unique $v \in H_0^1$ such that $B(v, \phi) = \int \xi f \phi$, for any $\phi \in H_0^1$.

Problem 2. Show that the closed linear span of a set is the closure of its linear span.

Proof. By their definition, linear span and closed linear span of a set S is defined as

$$\operatorname{cspan}\{S\} = \bigcap_{\substack{S \subseteq C \\ C \text{ closed}}} C$$

$$\operatorname{span}\{S\} = \bigcap_{\substack{S \subseteq Y \\ S \neq X}} Y$$

$$\overline{\operatorname{span}\{S\}} = \bigcap_{\substack{\text{span}\{S\} \subseteq Z \\ Z \text{ closed}}} Z$$
(5)

Where C, Y, Z are all linear subspaces. Denote $\{C\}, \{Y\}, \{Z\}$ as the families of sets forms the above intersection.

First we show $\overline{\operatorname{span}\{S\}} \subseteq \operatorname{cspan}\{S\}$.

- · Take any $x \in \text{cspan}\{x\}$, then $x \in C$ for all $C \in \{C\}$.
- · Since $S \subseteq \text{span}\{S\} \subseteq Z$. We have $\{Z\} \subseteq \{C\}$. Hence $x \in Z$ for all $Z \in \{Z\}$.

Next we show the another direction.

• Take any $x \in \overline{\text{span}\{S\}}$, then $x \in Z$ for all $Z \in \{Z\}$.

- · Since span $\{S\} \subseteq \overline{\operatorname{span}\{S\}} \Rightarrow x \in \operatorname{span}\{S\}$. Hence $x \in Y$ for all $Y \in \{Y\}$.
- · Clearly $\{C\} \subseteq \{Y\}$, so $x \in C$ for all $C \in \{C\}$

Problem 3. (Lemma 8.) Let H be a Hilbert space $\{x_j\}$ an orthonormal set in H. $\overline{\operatorname{span}\{S\}} = \{\sum a_j x_j, \sum a_j^2 < \infty\}$ Show that $y \in \overline{\operatorname{span}\{S\}}$ converges. That is, $\sum a_j^2 < \infty \iff$ For Λ an index set, $\forall \epsilon > 0$, exists a finite index subset $I_{\epsilon} \subset \Lambda$, such that $\forall I \supset I_{\epsilon}$,

$$\left\| \sum_{I} a_j x_j - x \right\|^2 < \epsilon^2$$

For some $x \in H$.

Proof. (\Rightarrow) Given $\sum a_j^2 < \infty$, we define $a := \sup \sum a_j^2 < \infty$. Then for all $\epsilon > 0$, there exists I_{ϵ} , such that $\forall I \supset I_{\epsilon}$

$$\left| \sum_{I} a_j^2 - a \right| < \epsilon^2$$

Therefore

$$\left\| \sum_{I_{\epsilon}} a_j x_j - \sum_{I} a_j x_j \right\|^2 \le \left\| \sum_{I_{\epsilon}} a_j x_j \right\|^2 + \left\| \sum_{I} a_j x_j \right\|^2$$

$$= \sum_{I_{\epsilon}} |a_j|^2 + \sum_{I} |a_j|^2$$

$$\le \left| \sum_{I_{\epsilon}} |a_j|^2 - a \right| + \left| \sum_{I} |a_j|^2 - a \right|$$

$$< 2\epsilon^2$$

$$(6)$$

 $(\Leftarrow)\ \forall \epsilon > 0$, exists a finite index subset $I_{\epsilon} \subset \Lambda$, such that $\forall I \supset I_{\epsilon}, \ \left\|\sum_{I} a_{j} x_{j} - x\right\|^{2} < \epsilon^{2}$. Hence

$$\left\| \sum_{I \setminus I_{\epsilon}} a_j x_j \right\|^2 \le \left\| \sum_{I} a_j x_j - x \right\|^2 + \left\| x - \sum_{I_{\epsilon}} a_j x_j \right\|^2 < 2\epsilon^2 \tag{7}$$

It is clear that $\left\|\sum_{I_{\epsilon}} a_j x_j\right\|^2 < C$ is bounded, since there are finitely many terms.

$$\sum_{I} |a_{j}|^{2} = \left\| \sum_{I} a_{j} x_{j} \right\|^{2} \le \left\| \sum_{I \in I} a_{j} x_{j} \right\|^{2} + \left\| \sum_{I \in I} a_{j} x_{j} \right\|^{2} < C + 2\epsilon^{2} < \infty$$
 (8)

Finished the proof. \Box

Problem 4. (*Thm.9'*) Let $\{y_j\}$ be a sequence of vectors in Hilbert space whose closed linear span is all of H. Then there exists an orthonormal basis $\{x_j\}$ such that the linear span of $\{x_1, ..., x_n\}$ contains $y_1, ..., y_n$.

(Ex.8) Let H be Hilbert space; show that any two orthonormal bases in H have same cardinality. (Thm.10) Let H be Hilbert space, $\{x_j\}$, $\{y_j\}$ two orthonormal bases. For all $x \in H$, has representation $x = \sum a_j x_j$, $a_j = \langle x, x_j \rangle$. Then the mapping

$$x \to y = \sum a_j y_j$$

is an isometry of H onto H, $0 \mapsto 0$. Furthermore every isometry of H onto H $0 \mapsto 0$ can be obtained in this fashion.

Proof. By hypothesis, we have

$$\overline{\operatorname{span}\{y_j\}} = H$$

Let $u_1 = y_1, x_1 = \frac{u_1}{\|u_1\|}$. Then let

$$u_{2} = y_{2} - \langle y_{2}, u_{1} \rangle \cdot \frac{u_{1}}{\|u_{1}\|^{2}}$$

$$x_{2} = \frac{u_{2}}{\|u_{2}\|}$$
(9)

It is easy to check that $\langle u_1, u_2 \rangle = \langle u_1, y_2 \rangle - \langle y_2, u_1 \rangle \frac{\langle u_1, u_1 \rangle}{\|u_1\|^2} = 0$, hence $\langle x_1, x_2 \rangle = 0$. Then keep on doing this,

$$u_{k} = y_{k} - \sum_{i=1}^{k-1} \langle y_{k}, u_{i} \rangle \frac{u_{i}}{\|u_{i}\|^{2}}$$

$$x_{k} = \frac{u_{k}}{\|u_{k}\|}$$
(10)

Stop at n until $u_n = 0$. This must happen at some $n < \infty$ since $\overline{\operatorname{span}\{y_j\}} = H$. Claim. $\{x_k\}$ are orthonormal.

Proof of Claim. $||x_k|| = 1$ is straightforward in construction. It suffices to show they are orthogonal. We prove by induction.

Assume $u_k \perp u_s$ for all $1 \leq s \leq k-1$. The basic case $u_2 \perp u_1$ is checked in the first step. Now at k+1, for any $1 \leq s \leq k$:

$$\langle u_{s}, u_{k+1} \rangle = \left\langle u_{s}, y_{k+1} - \sum_{i=1}^{k} \langle y_{k+1}, u_{i} \rangle \frac{u_{i}}{\|u_{i}\|^{2}} \right\rangle$$

$$= \langle u_{s}, y_{k+1} \rangle - \sum_{i=1}^{k} \langle y_{k+1}, u_{i} \rangle \frac{\langle u_{s}, u_{i} \rangle}{\|u_{i}\|^{2}}$$

$$= \langle u_{s}, y_{k+1} \rangle - \langle y_{k+1}, u_{s} \rangle \frac{\langle u_{s}, u_{s} \rangle}{\|u_{s}\|^{2}} \quad \text{(By assumption, } \langle u_{s}, u_{i} \rangle = \delta_{si})$$

$$= 0$$

Which finished the proof.

Proof. If H has finite dimension, the statement is obvious.

If H is infinite dimensional, let $\{x_i\}_{i\in I}$ and $\{y_j\}_{j\in J}$ be two orthonormal bases. I,J are infinite index sets. By Parseval's Identity, for any $z\in H$

$$||z||^2 = \sum_{i \in I} \langle z, x_i \rangle^2 \tag{12}$$

So $\langle z, x_i \rangle \neq 0$ for countable number of i. We pick $z = y_j$, denote $I_j = \{i \in I, \langle y_j, x_i \neq 0 \rangle\}$, we have $|I_j| = |\mathbb{N}|$. Now for any $i \in I$, using orthonormal basis $\{y_j\}$, we can also write

$$||x_i||^2 = \sum_{j \in J} \langle x_i, y_j \rangle^2 = 1$$
 (13)

So for any $i \in I$, there exists $j \in J$ such that $\langle x_i, y_j \rangle \neq 0$. Therefore, $I = \bigcup_{j \in J} I_j$. We conclude that $|I| = |J \times \mathbb{N}| \leq |J|$.

Apply similar argument for the reverse direction, we obtain $|J| = |I \times \mathbb{N}| \le |I|$, $\Rightarrow |I| = |J|$, finished the proof.

Proof. (1) Define this mapping $T: x \mapsto y = \sum a_j y_j$, $a_j = \langle x, x_j \rangle$. We have

$$||x|| = \left(\sum |a_j|^2\right)^{\frac{1}{2}} = \left\|\sum_j a_j y_j\right\| = ||Tx||$$
 (14)

Hence T is an isometry. By lemma.8, $\forall x \in H$, x has orthonormal expansion. Hence T is onto.

(2) There exists a orthonormal basis $\{e_j\}$ for H. For any onto isometry $T: H \to H$, and any $x, y \in H$, we have

$$||Tx + Ty||^2 = ||x + y||^2 \Rightarrow \langle Tx, Ty \rangle = \langle x, y \rangle \quad (\dagger)$$
(15)

We define $\{f_j\} = \{Te_j\}$. Clearly $||f_j|| = ||Te_j|| = ||e_j|| = 1$. And by (\dagger) , for $i \neq j$

$$\langle f_i, f_i \rangle = \langle Te_i, Te_j \rangle = \langle e_i, e_j \rangle = 0$$
 (16)

Moreover, since T is onto $\{f_j\}$ is an orthonormal basis.

Problem 5. Show that every infinite dimensional separable Hilbert space is isomorphic with ℓ^2 .

$$\ell^2 = \left\{ x = (a_1, a_2, \dots), \sum |a_j|^2 < \infty \right\}$$

$$||x|| = \left(\sum |a_j|^2\right)^{\frac{1}{2}}$$

Proof. Since H is separable, it has countably dense orthonormal basis $\{e_i\}_{i=1}^{\infty}$. By previous results in lecture, ℓ^2 is Hilbert space with inner product $\langle x,y\rangle=\sum x_j\bar{y}_j$. Hence we define

$$T: H \to \ell^2$$

$$x \mapsto (\langle x, e_1 \rangle, ..., \langle x_j, e_j \rangle, ...) =: (z_1, ..., z_j, ...)$$
(17)

We check that T is isometry:

$$||x|| = \left(\sum \langle x_j, e_j \rangle^2\right)^{\frac{1}{2}} = \left(\sum |z_j|^2\right)^{\frac{1}{2}} = ||Tx||$$
 (18)

And T is onto due to lemma 8. Thus H is isomorphic with ℓ^2 .

Problem 6. Show that $C_0^{\infty}(D)$ is an inner product space under $\langle f, g \rangle_0$ and $\langle f, g \rangle_1$. Where

$$\langle f, g \rangle_0 = \int_D fg \quad \langle f, g \rangle_1 = \int_D \sum \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_j}$$

Proof. For both cases, symmetry is clear. For $\langle \cdot \rangle_0$:

$$\langle f, \alpha g + \beta h \rangle_0 = \int_D f(\alpha g + \beta h) = \alpha \int_D fg + \beta \int_D fh = \alpha \langle f, g \rangle_0 + \beta \langle f, h \rangle_0 \tag{19}$$

$$\langle f, f \rangle_0 = \int_D f^2 = 0 \Rightarrow f = 0 \text{ almost surely}$$
 (20)

Since $f \in C_0^{\infty} \Rightarrow f \equiv 0$.

For $\langle \cdot \rangle_1$:

$$\langle f, \alpha g + \beta h \rangle_1 = \int_D \sum \frac{\partial f}{\partial x_j} \left(\alpha \frac{\partial g}{\partial x_j} + \beta \frac{\partial h}{\partial x_j} \right) = \alpha \langle f, g \rangle_1 + \beta \langle f, h \rangle_1$$
 (21)

$$\langle f, f \rangle_1 = 0 \Rightarrow \int_D \sum_i \left(\frac{\partial f}{\partial x_j} \right)^2 = 0 \Rightarrow \sum_i \left(\frac{\partial f}{\partial x_j} \right)^2 = 0 \text{ a.s.}$$
 (22)

Since $f \in C_0^{\infty}$, $S = \sum_{j=0}^{\infty} \left(\frac{\partial f}{\partial x_j}\right)^2$ is continuous, hence $S \equiv 0$, which implies that $\frac{\partial f}{\partial x_j} \equiv 0$ for all x_j , $x \in D$. Hence $f \equiv C$, C is constant.

Moreover, since f have compact support and supp $f \subset D$, we have f = 0 on $\partial D \Rightarrow C = 0$.

Problem 7. (Ex.1) Show Y^{\perp} is a closed linear subspace of X'.

(Ex.2) Let Y be a closed linear subspace of a normed linear space X. Show that the dual of (X/Y) is isometrically isomorphic with Y^{\perp} .

Proof. By its definition, the annihilator of subset $Y \subseteq X$ is

$$Y^{\perp} := \{ \ell \in X' : \ell(x) = 0 \text{ for all } x \in Y \}$$

We define linear functional $\kappa_x \in (X')'$, i.e. $\kappa_x : X' \to \mathbb{R}$ as $\kappa_x(\ell) = \ell(x)$. Then κ_x is continuous by definition of dual space. Hence the null space of κ_x

$$\mathcal{N}(\kappa_x) = \{ \ell \in X' : \kappa_x(\ell) = \ell(x) = 0 \}$$

is closed, because of the fact that $\mathcal{N}(\kappa_x) = \kappa_x^{-1}(\{0\})$, and continuity. Therefore by definition

$$Y^{\perp} = \bigcap_{x \in Y} \mathcal{N}(\kappa_x)$$

is intersection of closed sets, hence closed, finished the proof.

Proof. We define

$$\sigma: (X/Y)' \to X' \ \sigma(f) = f \circ Q$$

For all $f \in (X/Y)'$, and $Q : X \to X/Y$ is quotient map. First we show $\sigma(\cdot)$ is onto Y^{\perp} , i.e. its range $\mathcal{R}(\sigma) = Y^{\perp}$.

- · Notice that $\sigma(f)(Y) = f(QY) = f(0) = 0$, so $\mathcal{R}(\sigma) \subseteq Y^{\perp}$.
- · For any $g \in Y^{\perp}$, $\mathcal{N}(g) \supseteq Y$. Hence there exists $\hat{g} \in (X/Y)'$ such that $\hat{g} \circ Q = g$ and $\|\hat{g}\| = \|g\|$. Hence $\mathcal{R}(\sigma) \supseteq Y^{\perp}$

Next we show σ is an isometry. For all $f \in (X/Y)'$, there exists $\{x_n\} \subset X$, s.t. $\|Qx_n\| < 1$ and $\|f(Qx_n)\| \to \|f\|$. We pick $y_n \in Y$ s.t. $\|x_n + y_n\| < 1$, then

$$||f \circ Q(x_n + y_n)|| = ||f(Q(x_n))|| \to ||f||$$
 (23)

So $||f \circ Q|| \ge ||f||$. We already have $||f \circ Q|| \le ||f||$. So we finish with the proof.

Problem 8. (Ex.3) Show that Y' is isometrically isomorphic with X'/Y^{\perp} . (Ex.4) Show that the closed linear span of $\{y_j\}$ is the closure of linear span Y of $\{y_j\}$, consisting of all finite linear combinations of the y_j :

$$y = \sum_{F} a_j y_j$$

Proof. By definition

$$Y^{\perp} := \{ \ell \in X', \ell(y) = 0 \ \forall y \in Y \}$$

We define

$$\rho: X' \to Y' \quad \rho(\ell) = \ell|_Y \tag{24}$$

Then the null space $\mathcal{N}(\rho) = Y^{\perp}$, because $\ell(Y) = 0 \ \forall \ell \in Y^{\perp}$. Hence we have $\rho(Y^{\perp} + \ell) = \rho(\ell)$. We can define

$$\hat{\rho}: X'/Y^{\perp} \to Y' \quad \rho(\ell + Y^{\perp}) = \rho(\ell) = \ell|_{Y}$$
(25)

First we show $\hat{\rho}$ is onto. For any $\phi \in Y'$, by **Hahn-Banach**, there exists extension $f \in X'$ such that $f|_{Y} = \phi$. Hence we have $f + Y^{\perp} \in X'/Y^{\perp}$

$$\hat{\rho}(f + Y^{\perp}) = \rho(f) = \phi \tag{26}$$

indicates that $\hat{\rho}$ is onto.

Next we show $\hat{\rho}$ is isometry. For any $f + Y^{\perp} \in X'/Y^{\perp}$,

$$\|\hat{\rho}(f+Y^{\perp})\| = \|f|_{Y}\| = \|f\| \ge \inf_{m \in Y^{\perp}} \|f-m\| = \|f+Y^{\perp}\|$$
 (27)

Since for all $m \in Y^{\perp}$, $||f - m|| \ge ||f|_Y||$, it's clear that $||f + Y^{\perp}|| \ge ||f|_Y|| = ||\hat{\rho}(f + Y^{\perp})||$. So $||\hat{\rho}(f + Y^{\perp})|| = ||f + Y^{\perp}||$. Completed the proof that $\hat{\rho}$ gives an isometric isomorphism.

Proof. closedspan $\{y_j\} = \overline{\text{span}\{y_j\}}$ is a duplicate of problem 2. We only show this definitions are equivalent to definition using finite linear combinations. That is, it suffices to show

$$U_1 := \bigcap_{C \in \mathscr{C}} C = \overline{\left\{ \sum_{j \in F} a_j y_j, F \text{ is finite} \right\}} =: \overline{U_2}$$

Where $\mathscr{C} = \{C : \{y_j\} \subseteq C, C \text{ closed linear subspace}\}\$

(Step.1) U_2 is a linear subspace, since

$$\alpha \sum_{j \in F_1} a_j y_j + \beta \sum_{k \in F_2} b_k y_k = \sum_{i \in F_1 \cup F_2} (\alpha a_i \mathbb{1}_{\{i \in F_1\}} + \beta b_i \mathbb{1}_{\{i \in F_2\}}) y_i$$

And the closure of a linear subspace is again a linear subspace.

 $\overline{U_2} \supseteq \{y_j\}$, we just take $a_i = \delta_{ij}$. (i.e. $a_i = 1$ for i = j, otherwise 0). Moreover, $\overline{U_2}$ is closed since it's a closure. Hence $\overline{U_2} \in \mathscr{C} \Rightarrow U_1 \subseteq \overline{U_2}$.

(Step.2) Pick $z \in U_2$. Then for any $C \in \mathscr{C}$, since $\{y_j\} \subseteq C$, and C is linear subspace $\Rightarrow z \in C$. Since C is an aribitrary one in \mathscr{C} , we conclude that $U_2 \subseteq U_1$.

Since U_1 is closed, any limit point of U_2 is also in U_1 .

Hence
$$\overline{U_2} \subseteq U_1$$
, finished the proof.

Problem 9. Show that if the total measure equals 1, then $||x||_p$ is an increasing function of p. I.e. for s > p

$$||x||_{n} \leq ||x||_{s}$$

Proof. For s=p clearly the equility holds. We assume s>p. If the full measure $\mu\left(\Omega\right)=1$, by Holder's Inequality: for r>1:

$$\left| \int_{\Omega} fg \right| \le \left(\int_{\Omega} |f|^r \right)^{\frac{1}{r}} \left(\int_{\Omega} |g|^{\frac{r}{r-1}} \right)^{1-\frac{1}{r}} \tag{28}$$

We take $g = \mathbb{1}_{\Omega} \equiv 1$, $f = |x|^p$, $r = \frac{s}{n} > 1$, \Rightarrow

$$\left| \int_{\Omega} |x|^{p} \right| \leq \left(\int_{\Omega} |x|^{s} \right)^{\frac{p}{s}} \left(\int_{\Omega} |\mathbb{1}_{\Omega}|^{\frac{s}{s-p}} \right)^{1-\frac{p}{s}}$$

$$\Rightarrow \left(\int_{\Omega} |x|^{p} \right)^{\frac{1}{p}} \leq \left(\int_{\Omega} |x|^{s} \right)^{\frac{1}{s}}$$
(29)

Since $\int_{\Omega} |\mathbb{1}_{\Omega}|^{\frac{s}{s-p}} = \mu(\Omega) = 1$. The proof is finished.