Multi Layer Perceptron (MLP)

Reti Neurali Totalmente Connesse

Architettura MLP

I calcoli per produrre un output dato un input vanno in questa direzione

L'errore (in funzione di $w \in b$), ovvero la funzione di costo o perdita, viene calcolato in questa direzione

Funzioni di Attivazione

Metriche di Valutazione Modelli

(Root) Mean Square Error - (R)MSE

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)}$$

Metriche di Valutazione Modelli

(Binary) Cross Entropy - (B)CE

$$CE_x = -\sum_{i=1}^{C} t_i \log(p_i)$$

$$BCE_x = -(t \log(p) + (1 - t)\log(1 - p))$$

Metriche di Valutazione Modelli

Accuratezza e Confusion Matrix

PREDICTED

$$ACC = \frac{1}{n} \sum_{i=0}^{n} \mathbb{I}(y_i = \hat{y}_i) = \frac{\#pred_corrette}{\#pred_totali}$$

Overfitting e Dropout

Underfitting Overfitting Right Fit Classification (Possibile) Soluzione Regression Problema

Standard Neural Net

After applying dropout

One-Hot-Encoding

Trasformare Variabili Categoriche in Vettori


```
0,0,0,0,0,0,0,0,0,0,1
1 2 3 4 5 6 7 8 9
```