A High-Order Low-Order Algorithm with Exponentially-Convergent Monte Carlo for k-Eigenvalue Problems

Simon R. Bolding & Jim E. Morel

21 November 2014 CLASS seminar

- Overview
- 2 Low-Order Solver
- 3 High-Order Solver
- 4 HOLO Algorithm
- Test Problems
- 6 Conclusions

- Overview

0000

• Slab geometry, one-speed transport equation

$$\mu \frac{\partial \psi}{\partial x} + \Sigma_t \psi(x, \mu) = \frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}} \right) \phi(x)$$
$$\phi(x) = 2\pi \int_{-1}^1 \psi(x, \mu) d\mu$$

Eigenvalue Problem

• Slab geometry, one-speed transport equation

$$\mu \frac{\partial \psi}{\partial x} + \Sigma_t \psi(x, \mu) = \frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}} \right) \phi(x)$$
$$\phi(x) = 2\pi \int_{-1}^1 \psi(x, \mu) d\mu$$

- Monte Carlo (MC) allows for high fidelity solutions, but is expensive
 - Typically power iteration with batch estimates of $k_{\rm eff}$ and fission source
 - Could accelerate source with lower-rank solution (e.g., CMFD)

Eigenvalue Problem

Low-Order Solver

• Slab geometry, one-speed transport equation

$$\mu \frac{\partial \psi}{\partial x} + \Sigma_t \psi(x, \mu) = \frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}} \right) \phi(x)$$
$$\phi(x) = 2\pi \int_{-1}^1 \psi(x, \mu) d\mu$$

- Monte Carlo (MC) allows for high fidelity solutions, but is expensive
 - Typically power iteration with batch estimates of $k_{\rm eff}$ and fission source
 - Could accelerate source with lower-rank solution (e.g., CMFD)

Alternatively, we use a low-order solution to determine k_{eff} and $\phi(x)$, corrected by MC solutions

A High-Order Low-Order Solution to a Transport Problem

Basic Idea

Overview

A High-Order Low-Order Solution to a Transport Problem

Basic Idea

Overview

A High-Order Low-Order Solution to a Transport Problem

Basic Idea

- LO system is lower-dimensional, "S2-like" equations
 - Handles scattering and fission source iterations
 - Useful for coupled physics and non-linear systems
 - Produces FE representation of sources for HO system

Basic Idea

Overview

- LO system is lower-dimensional, "S2-like" equations
 - Handles scattering and fission source iterations
 - Useful for coupled physics and non-linear systems
 - Produces FE representation of sources for HO system
- HO system is a fixed-source, pure absorber transport problem
 - MC does not directly determine k_{eff} or fission source, only used to evaluate consistency terms
 - We will solve the HO system with ECMC

Overview of Exponentially Convergent Monte Carlo

- Iterative form of Residual Monte Carlo
 - Each batch tallies the error in current estimate of solution, which is a transport problem with a reduced source
 - Can reduce statistical error globally $\propto e^{-\alpha N}$
 - Does not make difficult problems easier

- Iterative form of Residual Monte Carlo
 - Each batch tallies the error in current estimate of solution, which is a transport problem with a reduced source
 - Can reduce statistical error globally $\propto e^{-\alpha N}$
 - Does not make difficult problems easier
- Requires a discretized form of the angular flux
 - Use projection onto space-angle FE mesh
 - Adaptive mesh refinement mitigates truncation error, allowing convergence to be maintained

High-Order Low-Order Algorithm

Overview

0000

- 2 Low-Order Solver
- 3 High-Order Solver
- 4 HOLO Algorithm
- 5 Test Problems
- 6 Conclusions

 Linear discontinuous (LD) FE in space and half range angular averages

LO Discretization & Space-Angle Moments

• Linear discontinuous (LD) FE in space and half range angular averages

Low-Order Solver

•000

• Examples of moments:

Spatial: left basis
$$\langle \cdot \rangle_{L,i} = \frac{\frac{2}{h_i} \int_{x_{i-1/2}}^{x_{i+1/2}} b_{L,i}(x)(\cdot) dx}{\int_{0}^{+}(x) = 2\pi \int_{0}^{1} \psi(x,\mu) d\mu}$$

Angular: positive flow

• Taking moments of TE yields 4 equations, per cell i, e.g.

$$\begin{split} -2\mu_{i-1/2}^{+}\phi_{i-1/2}^{+} + \langle\mu\rangle_{L,i}^{+}\langle\phi\rangle_{L,i}^{+} + \langle\mu\rangle_{R,i}^{+}\langle\phi\rangle_{R,i}^{+} + \Sigma_{t}h_{i}\langle\phi\rangle_{L,i}^{+} \\ -\frac{\Sigma_{s}h_{i}}{4\pi}\left(\langle\phi\rangle_{L,i}^{+} + \langle\phi\rangle_{L,i}^{-}\right) &= \frac{1}{k_{\mathrm{eff}}}\frac{\nu\Sigma_{f}h_{i}}{4\pi}\left(\langle\phi\rangle_{L,i}^{+} + \langle\phi\rangle_{L,i}^{-}\right) \end{split}$$

• Cell unknowns are moments: $\langle \phi \rangle_{L,i}^+, \langle \phi \rangle_{R,i}^+, \langle \phi \rangle_{L,i}^-, \langle \phi \rangle_{R,i}^-$

• Taking moments of TE yields 4 equations, per cell i, e.g.

$$\begin{split} &-2\mu_{i-1/2}^{+}\phi_{i-1/2}^{+}+\langle\mu\rangle_{L,i}^{+}\langle\phi\rangle_{L,i}^{+}+\langle\mu\rangle_{R,i}^{+}\langle\phi\rangle_{R,i}^{+}+\Sigma_{t}h_{i}\langle\phi\rangle_{L,i}^{+}\\ &-\frac{\Sigma_{s}h_{i}}{4\pi}\left(\langle\phi\rangle_{L,i}^{+}+\langle\phi\rangle_{L,i}^{-}\right)=\frac{1}{k_{\mathrm{eff}}}\frac{\nu\Sigma_{f}h_{i}}{4\pi}\left(\langle\phi\rangle_{L,i}^{+}+\langle\phi\rangle_{L,i}^{-}\right) \end{split}$$

- Cell unknowns are moments: $\langle \phi \rangle_{L,i}^+$, $\langle \phi \rangle_{R,i}^+$, $\langle \phi \rangle_{L,i}^-$, $\langle \phi \rangle_{R,i}^-$
- To close system, need angular consistency terms and spatial closure
 - \bullet Estimate average μ terms from HO solution
 - Use the LD spatial closure, consistent with our HO solver

• For $\mu > 0$, L moment

Overview

$$\langle \mu \rangle_{L,i}^{+} \simeq \frac{\int\limits_{0}^{1} \int\limits_{x_{i-1/2}}^{x_{i+1/2}} \mu \ b_{L,i}(x) \tilde{\psi}^{HO}(x,\mu) \mathrm{d}x \mathrm{d}\mu}{\int\limits_{0}^{1} \int\limits_{x_{i-1/2}}^{x_{i+1/2}} b_{L,i}(x) \tilde{\psi}^{HO}(x,\mu) \mathrm{d}x \mathrm{d}\mu}$$

• For $\mu > 0$, L moment

Overview

$$\langle \mu
angle_{L,i}^+ \simeq rac{\int\limits_0^1 \int\limits_{x_{i-1/2}}^{x_{i+1/2}} \mu \ b_{L,i}(x) ilde{\psi}^{HO}(x,\mu) \mathrm{d}x \mathrm{d}\mu}{\int\limits_0^1 \int\limits_{x_{i-1/2}}^1 b_{L,i}(x) ilde{\psi}^{HO}(x,\mu) \mathrm{d}x \mathrm{d}\mu}$$

- ECMC gives LDFE representation of $\tilde{\psi}^{HO}(x,\mu)$
 - Evaluate consistency terms directly
 - For initial solve, use S₂: $\langle \mu \rangle^{\pm} = \pm \frac{1}{\sqrt{3}}$

$$\mathbf{D}(\mu^{HO})\Phi = \frac{1}{k_{\text{eff}}}\mathbf{F}\Phi$$

Solving LO System with Power Iteration

Global System:

$$\mathbf{D}(\mu^{HO})\Phi = \frac{1}{k_{\mathrm{eff}}}\mathbf{F}\Phi$$

Algorithm

1 Guess $\Phi^{(0)}$ and $k_{\text{eff}}^{(0)}$

$$\Phi^{(l+1)} = \frac{1}{k_{\text{eff}}^{(l)}} \mathbf{D}^{-1} \mathbf{F} \Phi^{(l)}$$

$$\begin{split} \boldsymbol{\Phi}^{(l+1)} &= \frac{1}{k_{\mathrm{eff}}^{(l)}} \mathbf{D}^{-1} \mathbf{F} \boldsymbol{\Phi}^{(l)} \\ k_{\mathrm{eff}}^{(l+1)} &= k_{\mathrm{eff}}^{(l)} \frac{\int \nu \boldsymbol{\Sigma}_f \boldsymbol{\phi}^{(l+1)} \mathrm{d} \boldsymbol{x}}{\int \nu \boldsymbol{\Sigma}_f \boldsymbol{\phi}^{(l)} \mathrm{d} \boldsymbol{x}}. \end{split}$$

Solving LO System with Power Iteration

Global System:

Low-Order Solver

$$\mathbf{D}(\mu^{HO})\Phi = \frac{1}{k_{\mathsf{eff}}}\mathbf{F}\Phi$$

Algorithm

• Guess $\Phi^{(0)}$ and $k_{\text{eff}}^{(0)}$

$$\Phi^{(l+1)} = \frac{1}{k_{\text{eff}}^{(l)}} \mathbf{D}^{-1} \mathbf{F} \Phi^{(l)}$$

$$\begin{split} \boldsymbol{\Phi}^{(l+1)} &= \frac{1}{k_{\mathrm{eff}}^{(l)}} \mathbf{D}^{-1} \mathbf{F} \boldsymbol{\Phi}^{(l)} \\ k_{\mathrm{eff}}^{(l+1)} &= k_{\mathrm{eff}}^{(l)} \frac{\int \nu \Sigma_f \phi^{(l+1)} \mathrm{d}x}{\int \nu \Sigma_f \phi^{(l)} \mathrm{d}x}. \end{split}$$

- **2** Accelerate $\Phi^{(l+1)}$ and $k_{\text{eff}}^{(l+1)}$ after each power iteration with Nonlinear Krylov Acceleration (NKA)
- **3** Converge $\Delta \Phi^{(I)}$ and $\Delta k_{off}^{(I)}$

Outline

- 3 High-Order Solver

Space-Angle LDFE Mesh

- $\tilde{\psi}(x,\mu)$ is linear over each cell, preserving 0th and 1st moment in x and μ
- Use path-length estimators of flux to approximate moments e.g.

$$\langle \psi \rangle_{\mu,ij} = \frac{6}{h_{\mu}^2 h_{x}} \iint_{\mathcal{D}} (\mu - \mu_{i}) \psi(x,\mu) dx d\mu$$

Space-Angle LDFE Mesh

• Use standard LD and upwinding to get face terms

• Pure absorber transport problem

$$\left[\mu \frac{\partial}{\partial x} + \Sigma_t\right] \psi(x, \mu) = \boxed{\frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}^{LO}}\right) \phi^{LO}(x)}$$

$$\mathbf{L}\psi = q^{LO}$$

• Pure absorber transport problem

$$\left[\mu \frac{\partial}{\partial x} + \Sigma_t\right] \psi(x, \mu) = \boxed{\frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}^{LO}}\right) \phi^{LO}(x)}$$

$$\mathbf{L}\psi = q^{LO}$$

ECMC Algorithm

Overview

• Residual Equation:
$$\mathbf{L}(\psi - \tilde{\psi}^{(m)}) = q^{LO} - \mathbf{L}\tilde{\psi}^{(m)}$$

$$\mathbf{L}\tilde{\epsilon}^{(m)} = \tilde{r}^{(m)}$$

• Pure absorber transport problem

$$\left[\mu \frac{\partial}{\partial x} + \Sigma_t\right] \psi(x, \mu) = \boxed{\frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}^{LO}}\right) \phi^{LO}(x)}$$
$$\mathbf{L}\psi = q^{LO}$$

ECMC Algorithm

- ullet Residual Equation: $oldsymbol{\mathsf{L}}(\psi- ilde{\psi}^{(m)})=q^{LO}-oldsymbol{\mathsf{L}} ilde{\psi}^{(m)}$ $oldsymbol{\mathsf{L}} ilde{\epsilon}^{(m)}= ilde{r}^{(m)}$
- Compute $\tilde{\epsilon}^{(m)} = \mathbf{L}^{-1}\tilde{r}^{(m)}$ with MC, projecting the solution
- ullet Update: $ilde{\psi}^{(m+1)} = ilde{\psi}^{(m)} + ilde{\epsilon}^{(m)}$

Pure absorber transport problem

$$\left[\mu \frac{\partial}{\partial x} + \Sigma_t\right] \psi(x, \mu) = \boxed{\frac{1}{4\pi} \left(\Sigma_s + \frac{\nu \Sigma_f}{k_{\text{eff}}^{LO}}\right) \phi^{LO}(x)}$$

$$\mathbf{L}\psi = q^{LO}$$

ECMC Algorithm

Overview

- Residual Equation: $\mathbf{L}(\psi \tilde{\psi}^{(m)}) = a^{LO} \mathbf{L}\tilde{\psi}^{(m)}$ $\mathbf{I} \stackrel{\sim}{\epsilon}(m) = \stackrel{\sim}{\epsilon}(m)$
- Compute $\tilde{\epsilon}^{(m)} = \mathbf{L}^{-1}\tilde{r}^{(m)}$ with MC, projecting the solution
- Update: $\tilde{\psi}^{(m+1)} = \tilde{\psi}^{(m)} + \tilde{\epsilon}^{(m)}$
 - If $\tilde{\epsilon}$ is reduced each batch, exponential convergence achieved
 - h-refine when $\epsilon(x,\mu)$ not represented sufficiently
- Repeat until $\|\tilde{\epsilon}\|_2 < \text{tol} \times \|\psi\|_2$

Conclusions

Other MC Details

Improving Statistics and Efficiency

• Particles only stream: $w(s) = w_0 e^{-\sum_t s}$

Other MC Details

Overview

Improving Statistics and Efficiency

- Particles only stream: $w(s) = w_0 e^{-\sum_t s}$
- Cell-wise, global representation accommodates stratified sampling
 - $N_{ij} \propto |r_{ij}(x,\mu)|$
 - Force $N_{ii} \geq N_{\min}$

Improving Statistics and Efficiency

- Particles only stream: $w(s) = w_0 e^{-\sum_t s}$
- Cell-wise, global representation accommodates stratified sampling
 - $N_{ii} \propto |r_{ii}(x,\mu)|$
 - Force $N_{ii} > N_{\min}$
- Initialize $\tilde{\psi}(x,\mu)$ to latest HO solution for first batch

HOLO Algorithm

- 4 HOLO Algorithm

- Test Problems

Critical slab benchmark

Problem Parameters

- $k_{\infty} = 2.29$, $\Sigma_t = 0.326 \text{ cm}^{-1}$
- Initially 100 x & 20 μ cells
- Adaptive HO convergence

Critical slab benchmark

Problem Parameters

- $k_{\infty} = 2.29$, $\Sigma_t = 0.326$ cm⁻¹
- Initially 100 x & 20 μ cells
- Adaptive HO convergence

- $|\Delta\Phi|_{\rm rel} < 10^{-4}$ in 4 outer iterations, using $\sim 2.4 \times 10^7$ histories
- For 10 independent simulations:

$\overline{k_{\mathrm{eff}}}$	0.999998
$\sigma(\textit{k}_{eff})$	0.4 pcm
$\Delta k_{ m eff}^{ m max}$	1.1 pcm
$\overline{\sigma_{rel}(\phi_i)}$	1.4 pcm

Optically thick, near-critical slab

Problem Parameters

- $k_{\infty} = 1$, $\Sigma_t = 5.0 \text{ cm}^{-1}$, $\Sigma_s = 4.5 \text{ cm}^{-1}$, DR $\simeq 0.984$
- Relative Tolerance of 1.0E-05 for HO and LO solvers, 1.0E-04 outer

Optically thick, near-critical slab

Problem Parameters

- $k_{\infty} = 1$, $\Sigma_t = 5.0 \text{ cm}^{-1}$, $\Sigma_s = 4.5 \text{ cm}^{-1}$, DR $\simeq 0.984$
- Relative Tolerance of 1.0E-05 for HO and LO solvers, 1.0E-04 outer

- LO fission source convergence:
 - PI: 389 iterations
 - NKA: 27 iterations
- 3 outer iterations, 4.4×10⁶ total histories
- $k_{\rm eff} = 0.99793$

Comparison of statistical noise for standard and ECMC HO solvers

One HOLO solve, with a fixed 1.5×10^5 histories. Comparison of ECMC with 5 batches and standard MC (SMC)

Comparison of statistical noise for standard and ECMC HO solvers

One HOLO solve, with a fixed 1.5×10^5 histories. Comparison of ECMC with 5 batches and standard MC (SMC)

Comparison of statistical noise for standard and ECMC HO solvers

One HOLO solve, with a fixed 1.5×10^5 histories. Comparison of ECMC with 5 batches and standard MC (SMC)

$$egin{aligned} rac{\|\sigma(\psi^{ extit{SMC}})\|}{\| ilde{\epsilon}^{ extit{ECMC}}\|+\|\sigma(\epsilon^{ extit{ECMC}})\|} = 16 \end{aligned}$$

- 6 Conclusions

- Able to solve for k_{eff} and fission source with HOLO method
 - Pure absorber histories are more efficient than standard MC simulations
 - FCMC works well in HOLO context.

- Able to solve for $k_{\rm eff}$ and fission source with HOLO method
 - Pure absorber histories are more efficient than standard MC simulations
 - FCMC works well in HOLO context.
- Stratified source sampling produces less variance than a constant number of histories per cell

Observations & Future Work

- Able to solve for $k_{\rm eff}$ and fission source with HOLO method
 - Pure absorber histories are more efficient than standard MC simulations

HOLO Algorithm

- FCMC works well in HOLO context
- Stratified source sampling produces less variance than a constant number of histories per cell
- Need to use the estimated statistical error in tallies for $\tilde{\epsilon}(x,\mu)$
 - Run more particles on refined meshes, monitoring local error
 - Source biasing

Observations & Future Work

- Able to solve for $k_{\rm eff}$ and fission source with HOLO method
 - Pure absorber histories are more efficient than standard MC simulations
 - FCMC works well in HOLO context
- Stratified source sampling produces less variance than a constant number of histories per cell
- Need to use the estimated statistical error in tallies for $\tilde{\epsilon}(x,\mu)$
 - Run more particles on refined meshes, monitoring local error
 - Source biasing
- Working on application to thermal radiative transfer problems

Marshak Wave Problem, Radiation Temperature Profile

- IMC: 100,000 particles per time step
- HOLO-ECMC: 15,000 particles per time step

A High-Order Low-Order Algorithm with Exponentially-Convergent Monte Carlo for k-Eigenvalue Problems

Simon R. Bolding & Jim E. Morel

21 November 2014

ECMC procedure

Algorithm

- $\tilde{\psi}^{(0)} = \tilde{\psi}$ or from last batch this time step
- 2 Using Monte Carlo, $\epsilon^{(m)} = \mathbf{L}^{-1} \tilde{r}^{(m)}$
 - Use volumetric tallies, weighted with x and μ basis moments time ψ to construct LD $\tilde{\epsilon}^{(m)}(x,\mu)$ over the current space-angle mesh
- $\tilde{\psi}^{(j+1)} = \tilde{\psi}^{(m)} + \tilde{\epsilon}^{(m)}$
- IF error stagnation:
 - ullet Refine mesh based on relative jump error in $ilde{\psi}(x,\mu)$
- **3** Repeat 2-4 until $\|\tilde{\epsilon}\|_2 < \operatorname{tol} \times \|\psi\|_2$

HOLO Algorithm

Algorithm

- **1** Initialize $\langle \mu \rangle^{\pm}$ parameters to S_2
- Solve LO system using power iteration
- Solve $\tilde{\psi}(x,\mu) = \mathbf{L}^{-1}q^{LO}$ using ECMC
- $\begin{tabular}{ll} \hline \bullet & {\sf Compute new} \ \langle \mu \rangle^{\pm} \ {\sf parameters using} \ \tilde{\psi}^{HO} \ {\sf over LO mesh} \\ \hline \end{tabular}$
- **6** Repeat 2-5 until Φ^{LO} is converged
 - Use adaptive convergence criteria

Space-Angle Mesh and MC Implementation Details

$$\tilde{\psi}(x,\mu) = \psi_{a,i} + \psi_{x,i} \frac{2}{h_x} (x - x_i) + \psi_{\mu,i} \frac{2}{h_\mu} (\mu - \mu_i)$$

$$(x_i, \mu_j)$$

$$\Phi$$
Path-length estimators of moments, e.g.
$$\psi_{x,i} = \frac{6}{h_x^2 h_\mu} \iint_{\mathcal{D}} (x_{c,j} - x_i) \psi(x, mu) \mathrm{d}x \mathrm{d}\mu$$

- Particles only stream $w(s) = w_0 e^{-\sum_t s}$
- LDFE and upwinding eliminates surface tallies
- Cell-wise, global representation allows for stratified sampling
- $N_{i,i} \propto |r_i(x,\mu)|$
 - Force $N_i \geq N_{\min}$ and adjust particle weights

Overview of Exponentially Convergent Monte Carlo

• We will use ECMC to solve HO transport problem

Overview of Exponentially Convergent Monte Carlo

- We will use ECMC to solve HO transport problem
- An iterative form of residual Monte Carlo, performed in batches
 - Use information about current estimate of solution to solve transport problem with a reduced source
- Can reduce statistical error globally $\propto e^{-\alpha N}$
 - Does not make difficult problems easier, but reduces variance

Overview of Exponentially Convergent Monte Carlo

- We will use ECMC to solve HO transport problem
- An iterative form of residual Monte Carlo, performed in batches
 - Use information about current estimate of solution to solve transport problem with a reduced source
- Can reduce statistical error globally $\propto e^{-\alpha N}$
 - Does not make difficult problems easier, but reduces variance
- Requires a discretized form of the angular flux
 - Use finite element representation
 - Adaptive mesh refinement allows the error to continue to be reduced