Mondat-kiegészítések – megoldások nélkül

2016. december 11.

1.	Egy m és egy 2m tömegű test gravitációs kölcsönhatásban van egymással. A 2m tömegű tes
2.	Az SI mértékrendszerben db alapmennyiséget használunk a mechanika leírására.
3.	Ha egy testet kétszer annyi ideig hagyunk szabadon esni, mozgási energiája
4.	Súrlódásmentes lejtőn lecsúsztatott test sebessége a lejtő aljánmint a lejtő magasságából szabadon ejtett testé.
5.	Nehézségi erőtérben mozgó vonatkoztatási rendszerben súlytalanságot tapasztalunk. A vonatkoztatási rendszer gyorsulása
6.	Az egyenlítőn nyugvó testekre ható centrifugális erő irányul.
7.	Az egyenlítőn függőlegesen felfelé kilőtt puskagolyó pályája felé elhajlik.
8.	Konzervatív erőtér munkája nem függ az erőtérben mozgó test által megtett úttól, csak a mozgás
9.	A Föld gravitációs erőterébe helyezett test potenciális energiája akkor a legnagyobb, ha a testet a
10.	Egy sportoló <i>h</i> magasságba emel egy <i>m</i> tömegű súlyzót, majd visszateszi oda, ahonnar elvette. A sportoló nehézségi erőtér ellenében végzett munkája
11.	Ha egy csúzliba kétszer akkora tömegű követ helyezünk, a kilőtt kő sebességeszorosára/-szeresére változik az egységnyi tömegű kavics kilövéseko elért sebességhez képest, feltéve, hogy a gumi tömegét elhanyagoljuk, és mindkét esetber ugyanannyira nyújtjuk meg.
12.	Egy körmozgás sugarát és szögsebességét is megduplázzuk. A körmozgást végző tes centripetális gyorsulásaszorosára/-szeresére nő.

13. A	tenetetienseg torvenye csakben ervenyes	
	üggőelegesen elhajítunk egy labdát, mely h magasságba emelkedik, majd visszaesik és uk. Az elmozdulás nagysága	
15. A	ferde hajítás során a test vektora mindvégig állandó	
16. Le	ejtőre helyezett testre ható tartóerő a lejtő hajlásszögének arányos	
	z F_{ts} tapadási súrlódási erő és a felületeket összenyomó F_t erő között az alábbi összefüggés an:	
	gy elütött jégkorong lassulásának nagysága 0,5 m/s². A jég és a korong közti csúszási lási együttható értéke közelítőleg:	
19. A Föld déli féltekén északi irányban közlekedő vonatokra		
20. Le	efelé gyorsuló liftben a testre ható gravitációs erő	
energi	Egy Hooke-törvénynek engedelmeskedő rugalmas erőtérben mozgó test potenciális áját az alábbi összefüggés adja meg:	
22. A	Nap gravitációs erőterének Földön végzett munkája egy év alatt	
	értelmében a testre ható erők eredőjének munkája egyenlő a ozgási energiájának megváltozásával.	
24. Ko	onzervatív erőtérben mozgó test megmarad.	
ará	A testek mozgásállapot-változtató hatás ellenében tanúsított ellenállását a tömeggel, a homogén nehézségi erőtér kifejezésében szereplő nyossági tényezőt a tömeggel adjuk meg.	
26.	Rugalmas ütközés előtt a testek mechanikai energiáinak összege mindig	

27. Inercia-rendszerekben igaz a törvénye.
28. Egy hullámvasút egy függőleges síkú hurok legfelső pontján mozog, az utasok mégser
esnek ki. Ekkor a jármű gyorsulása nagyobb, mir
29. Tömegpontrendszer teljes impulzusa megmarad, ha a tömegpontrendszerre ható küls
30. Centrális erőtérben mozgó testre ható erő zérus, tehát
test centrumra vonatkoztatott impulzusmomentuma megmarad.
31. Kepler III. törvénye értelmében a bolygópályák nagytengelyeinek
úgy aránylanak egymáshoz, mint a keringési idők
32. Hőtágulás következtében egy forgó test minden mérete arányosan megnő ρ-szorosára.
tehetetlenségi nyomatéka ekkor szorosára nő.
33. A értelmében a testre ható erők munkája egyenlő a tes
mozgási energiájának megváltozásával.
34. A mindkét végén nyitott síp alapharmonikusának, mint állóhullámnak a duzzadópontja a sí
található.
35. Egymást kioltó hullámok fázisai között különbség van.
36 folyamatokban a gáz nyomása egyenesen arányos
hőmérséklettel.
37. Adiabatikus folyamat esetén az zérus, mert
hőközlés zérus.
38. A értelmében nem konstruálhat
olyan hőerőgép, mely a befektetett hőt teljes egészében mechanikai munkává tudná alakítani.
39. Az intenzív állapotjellemzők kölcsönhatás során
40. A testek mozgásállapot változtató hatás ellenében tanúsított ellenállását a
tömeggel jellemezzük.
41. Rugalmas ütközés előtt a testek mechanikai energiáinak összege mindig
mint ütközés után.
42. Inercia-rendszerekben igaz a törvénye.

43. Egy hullámvasút egy függőleges síkú hurok legfelső pontján mozog, az utasok mégsem esnek ki. Ekkor a járműgyorsulása nagyobb, mint
44. Tömegpontrendszer teljes impulzusa megmarad, ha a tömegpontrendszerre ható külső
45. Centrális erőtérben mozgó testre ható erő
46. Kepler III. törvénye értelmében a bolygópályák nagytengelyeinek
47. Hőtágulás következtében egy forgó test minden mérete arányosan megnő γ-szorosára. A tehetetlenségi nyomatéka ekkor
48. A munkatétel értelmében a testre ható erők munkája egyenlő a test
49. A mindkét végén nyitott síp alapharmonikusának, mint állóhullámnak a csomópontja a síp található.
50. Egymást kioltó hullámok fázisai között különbség van.
51 folyamatokban a gáz nyomása egyenesen arányos a hőmérséklettel.
52. Izochor folyamat esetén a megegyezik a gázzal közölt hőmennyiséggel.
53. A értelmében nem konstruálható olyan hőerőgép, mely a befektetett hőt teljes egészében mechanikai munkává tudná alakítani.
54. Az

56.	Forgó koordináta rendszerben centrifugális erő nem hat a
elhe	lyezett testekre.
57.	Tömegpontra ható erők eredője egyenlő időegységenként
meg	változásával.
58.	Kepler II. törvénye egyenértékű a bolygómozgásra alkalmazot
<u></u>	megmaradásának törvényével.
59.	Egy testre ható súrlódási erő munkája nem nulla, ha a test zárt görbén mozog, tehát
súrl	ódási erő
60.	Forgó koordinátarendszerben a mozgo
teste	ekre nem hat Coriolis-erő.
61.	Ha egy 10 N súlyú testet 1 N erővel próbálunk vízszintes talajon elmozdítani, ahol a felületel
közt	i tapadási súrlódási együttható μ_0 =0,2, akkor az ébredő tapadási súrlódási erő nagysága
<u></u>	N
62	
04.	Hullámvezető zárt végéről visszaverődő hullám értékű fázisugrás
	Hullámvezető zárt végéről visszaverődő hullám <u></u> értékű fázisugrás ved.
szen	
szen 63.	ved.
szen 63. sorá	ved. Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás
szen 63. sorá 64.	rved. Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten.
szen 63. sorá 64. válto	rved. Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten. Matematikai inga hosszát megkétszerezzük. A periódusidő szeresér
szen 63. sorá 64. válto 65.	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten. Matematikai inga hosszát megkétszerezzük. A periódusidő szeresérezik. Síkbeli merev testek síkra merőleges tengely körüli forgása esetén az impulzusmomentun
szen 63. sorá 64. válto 65. arán	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten. Matematikai inga hosszát megkétszerezzük. A periódusidő szeresérezik. Síkbeli merev testek síkra merőleges tengely körüli forgása esetén az impulzusmomentunyos a szögsebességgel, az arányossági tényező a
szen 63. sorá 64. válto 65. arán 66.	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten. Matematikai inga hosszát megkétszerezzük. A periódusidő szeresérezik. Síkbeli merev testek síkra merőleges tengely körüli forgása esetén az impulzusmomentun
szen 63. sorá 64. válto 65. arán 66. hőm	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n az egyensúlyi helyzeten. Matematikai inga hosszát megkétszerezzük. A periódusidő szeresérezzik. Síkbeli merev testek síkra merőleges tengely körüli forgása esetén az impulzusmomentunyos a szögsebességgel, az arányossági tényező a folyamatokban a gáz térfogata egyenesen arányos
szen 63. sorá 64. válto 65. arán 66. hőm	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n
szen 63. sorá 64. válto 65. arán 66. hőm 67. a	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n
szen 63. sorá 64. válto 65. arán 66. hőm 67. a	Túlcsillapított rezgő rendszert egyensúlyi helyzetéből kitérítve magára hagyunk. Mozgás n

70. Elhajítunk egy marék búzát. A búzaszemek alkotta tömegpontrendszer teljes impulzusa mert a rendszerre
71. Asztalon nyugvó testre csak aerő és a erő hat.
72. Ha egy forgó korong szögsebessége felére csökken, akkor a forgástengelytőlszer távolabb kell elhelyezkednünk, hogy a centripetális gyorsulásunk ugyanakkora maradjon.
73. A tömegpont gravitációs terében a potenciális energia a távolsághatványával arányos.
74. Ha egy bolygó pályájának legtávolabbi pontján kétszer olyan távol van a naptól, mint napközelben, akkor naptávolban a sebessége
75. Ha kétszer akkora tömeget akasztunk egy rugóra, rezgő rendszer frekvenciájaszeresére változik.
76. Ha egy mindkét végén nyitott síp egyik végét befogjuk, a síp alaphangjának frekvenciája
77. Egy lejtőn ugyanazon magasságból egyszerre indítunk egy tömör és egy üreges hengert. Mindkettő tisztán gördül. A lejtő aljára a henger ér le hamarabb.
78. Az a pörgettyű nem végez precessziós mozgást, amelyik avan felfüggesztve.
79. Bármely merev test tömegközépponton átmenő tengelyre vonatkoztatott tehetetlenségi nyomatéka a leg
80. Tömegpontrendszerre ható külső erők forgatónyomatékainak összege arányos a tömegpontrendszer időegységenkénti megváltozásával.
81. A értelmében a gázokat egymással és az edény falával ütköző tömegpontok sokaságával modellezzük.
82. Állandó hőmérsékleten az ideális gáz térfogata a nyomással

83. A megadja, mennyi hőt kell közölnünk 1 kg tömegű anyaggal, hogy					
hőmérséklete 1 C° -kal emelkedjen.					
84. Egy melegebb és egy hidegebb test termikus kölcsönhatásba lép egymással. Az egyes testek					
entrópia-változásainak összege mint nulla.					
85. Egyenletesen gyorsuló körmozgás esetén a centripetális gyorsulás a "t" idő					
hatványával növekszik.					
86. Egy tömegpont "v ₀ " állandó nagyságú sebességgel görbe vonalú pályán mozog. Ekkor a gyorsulásának az iránya a pályához rajzolható simuló kör mutat.					
87. Két egyforma tömegű gépkocsi azonos E_K kinetikus energiával, egymásra merőlegesen mozogva rugalmatlanul összeütközik. Az összetapadt roncsok a talajon való csúszás után megállnak. A súrlódó erő munkája legfeljebb értékű volt.					
88. Egy kövér és egy sovány ember nagyon csúszós jégen áll (μ=0). Egy kötél két végét fogják,					
és kölcsönösen elkezdik egymást húzni, addig, amíg nem találkoznak. Bármilyen módon húzzák					
a kötelet, a találkozás helye mindig ugyanaz a pont, amelynek a neve:					
89. Newton III. axiómája szerint aerők mindig párosával lépnek fel.					
90. Az állóhullámot valójábanhullám hozza létre.					
91. A termodinamika II. főtétele az entrópiával kifejezve irreverzibilis folyamatokra:					
92. Ideális gáz C_V és C_p mólhőinek kapcsolata:					
93. Adiabatikus állapotváltozás közben a rendszernem változik, mert a környezettel reverzibilisen cserélt hő zérus.					
94. A rezgés túlcsillapított, ha ω_0					
95. Ha egy megpörgetett bicikli kereket a tengelye egyik végén felfüggesztünk, akkor					
mozgás jön létre.					
96. Tetszőleges anyaggal végzett Carnot körfolyamat hatásfoka csak a függvénye.					
97. L hosszúságú, mindkét végén nyitott csőben lévő légoszlop alap harmonikusának					
97. <i>L</i> hosszúságú, mindkét végén nyitott csőben lévő légoszlop alap harmonikusának hullámhossza					

99. Az időegység alatt hővezetéssel átáramló hő k	zifejezése: $\frac{\Delta Q}{\Delta Q}$ = .
	Δt
100. Ha egy egyenes vonalon mozgó pont sebessé	Ége a $v(t) = v_0 \cdot \cos(\omega t)$ függvénnyel adható
meg, akkor gyorsulásának időfüggvénye: $a(t) = $ _	
101. Sík mezőn egy vadász elsüti vízszintes csövű	í puskáját és az elsütés pillanatában elejti a
távcsövét. Ekkor a távcső	idő alatt éri el a talajt, mint a kilőt
lövedék.	
102. Egy r sugarú körpályán mozgó tömegpont se	besség- és gyorsulásvektora egymással
tompaszöget zár be. Ekkor a tömegpont sebessége	ének nagyságaa
mozgás során.	
103. Két egyforma m tömegű, $(+v)$ és $(-v)$ sebesse	égű gyurmagolyó rugalmatlanul ütközik,
összetapadnak és megállnak. Ekkor a rendszer im	pulzusának a megváltozása
$\Delta p = \underline{\hspace{1cm}}$.	
104. Egyenletes v sebességgel haladó gépkocsi m	otorja P teljesítményt fejt ki. Ekkor a
közegellenállási és súrlódási erők együttes értéke:	$\Sigma F = \underline{\hspace{1cm}}$.
105. Az inerciarendszerek olyan vonatkoztatási re	endszerek, amelyekben érvényes a
törvénye, vagyis	axiómája.
106. Az O-tengelytől r_i távolságra lévő m_i ($i = 1, 2$	$2, \dots N$) tömegpontok O-tengelyre vett
tehetetlenségi nyomatéka Θ =	·
107. Csillapított oszcillátornál az $\omega = \omega_0$ esetén a	fázisszög
108. Azonos hosszúságú, mindkét végén befogott	vastag és vékony húrt egyforma erővel
megfeszítünk, majd a húrokat enyhén megpendítj	ük. Ekkor a mélyebb hangú rezgés
nagyobb, mint a magasabb	hangúé.
109. Az abszolút hőmérsékleti skála fogalma azér	t nagyon fontos, mert
független.	
110. L hosszúságú, egyik végén nyitott csőben lév	ő légoszlop alap harmonikusának
hullámhossza	
111. A fázisátalakuláskor keletkező hőmennyiség	kifejezése:

112. Az időegység alatt hővezetéssel átáramló hő kifejezése: $\frac{dQ}{dt} =$		
.113. Ideális gáz C_V és C_p moláris fajlagos hőmennyiségeinek kapcsolata:		
.114. Egy nagyon nagy, 25 °C-os szobába beviszünk egy pohár 15 °C-os vizet. A víz		
felmelegedése közben a szoba víz nélkül számított entrópiája		