```
from IPython.core.interactiveshell import InteractiveShell
In [2]:
         InteractiveShell.ast node interactivity = "all"
In [3]:
         %matplotlib inline
         import numpy as np
         import pandas as pd
         import sklearn
         import warnings
         warnings.filterwarnings('ignore')
         ## Read data from csv file 'student-mat.csv'
In [4]:
         math_data = pd.read_csv('student-mat.csv', sep=';')
         ## Read data from csv file 'student-por.csv'
         port_data = pd.read_csv('student-por.csv', sep=';')
In [5]:
         math data.head()
         port_data.head()
Out[5]:
                                       famsize Pstatus
                                                        Medu
                                                             Fedu
                                                                                         famrel free
             school
                    sex age
                             address
                                                                       Mjob
                                                                                Fjob ...
          0
                GP
                      F
                          18
                                    U
                                          GT3
                                                     Α
                                                           4
                                                                    at_home
                                                                              teacher
                                                                                             4
                GP
                      F
                                                     Τ
          1
                          17
                                    U
                                          GT3
                                                           1
                                                                    at home
                                                                                other
                                                                                             5
          2
                GP
                      F
                          15
                                    U
                                          LE3
                                                     Т
                                                           1
                                                                    at_home
                                                                                             4
                                                                                other
          3
                GP
                      F
                          15
                                    U
                                          GT3
                                                     Τ
                                                           4
                                                                 2
                                                                             services
                                                                      health
                                                                                             3
                                                     Т
          4
                GP
                      F
                          16
                                    U
                                          GT3
                                                           3
                                                                 3
                                                                       other
                                                                                other
                                                                                              4
         5 rows × 33 columns
Out[5]:
             school
                              address
                                       famsize Pstatus
                                                        Medu Fedu
                                                                       Mjob
                                                                                         famrel free
                    sex
                         age
                                                                                Fjob ...
          0
                GP
                      F
                          18
                                    U
                                          GT3
                                                     Α
                                                           4
                                                                                             4
                                                                    at_home
                                                                              teacher
          1
                GP
                      F
                          17
                                    U
                                                     Τ
                                                           1
                                                                                             5
                                          GT3
                                                                    at_home
                                                                                other
          2
                GP
                      F
                          15
                                    U
                                          LE3
                                                     Τ
                                                           1
                                                                    at home
                                                                                other
                                                                                             4
          3
                GP
                      F
                          15
                                    U
                                          GT3
                                                     Т
                                                           4
                                                                 2
                                                                      health
                                                                                             3
                                                                             services
                                                     Т
                                                           3
                                                                 3
                GP
                      F
                          16
                                    U
                                          GT3
                                                                       other
                                                                                other
                                                                                             4
         5 rows × 33 columns
```

```
In [6]: math_data.shape
    port_data.shape
Out[6]: (395, 33)
Out[6]: (649, 33)
In [7]: # Making dummy variables in math data and saving as mathdata_dummy
    mathdata_dummy = pd.get_dummies(math_data, columns=['school','sex','address', 'famsize','Pstatus','Mjob','Fjob','reason','guardian','schoolsup','famsup','pa id','activities','nursery','higher','internet','romantic'], drop_first=True)
    mathdata_dummy.head()
```

Out[7]:

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	 guardian _.
0	18	4	4	2	2	0	4	3	4	1	
1	17	1	1	1	2	0	5	3	3	1	
2	15	1	1	1	2	3	4	3	2	2	
3	15	4	2	1	3	0	3	2	2	1	
4	16	3	3	1	2	0	4	3	2	1	

5 rows × 42 columns

```
In [11]: # Starting Regression
          # Creating MX AND MX1
          # MX - selecting only the predictor variables and not the response variable G3
          including G1 and G2
          # MX1 - Selecting all the predictor variables including G1 and G2
          MX = mathdata_dummy[['age',
           'Medu',
           'Fedu',
           'traveltime',
           'studytime',
           'failures',
           'famrel',
           'freetime',
           'goout',
           'Dalc',
           'Walc',
           'health',
           'absences',
           'school MS',
           'sex_M',
           'address_U',
           'famsize LE3',
           'Pstatus T',
           'Mjob_health',
           'Mjob other',
           'Mjob_services',
           'Mjob_teacher',
           'Fjob health',
           'Fjob_other',
           'Fjob_services',
           'Fjob_teacher',
           'reason_home',
           'reason other',
           'reason_reputation',
           'guardian mother',
           'guardian_other',
           'schoolsup_yes',
           'famsup_yes',
           'paid_yes',
           'activities_yes',
           'nursery_yes',
           'higher_yes',
           'internet_yes',
           'romantic_yes']]
         MX.head()
          print(MX.shape)
```

Out[11]:

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	 guardian _.
0	18	4	4	2	2	0	4	3	4	1	 _
1	17	1	1	1	2	0	5	3	3	1	
2	15	1	1	1	2	3	4	3	2	2	
3	15	4	2	1	3	0	3	2	2	1	
4	16	3	3	1	2	0	4	3	2	1	

5 rows × 39 columns

(395, 39)

```
#Listing the column names of math data
          list(mathdata_dummy.columns)
Out[12]: ['age',
           'Medu',
           'Fedu',
           'traveltime',
           'studytime',
           'failures',
           'famrel',
           'freetime',
           'goout',
           'Dalc',
           'Walc',
           'health',
           'absences',
           'G1',
           'G2',
           'G3',
           'school_MS',
           'sex_M',
           'address_U',
           'famsize_LE3',
           'Pstatus_T',
           'Mjob_health',
           'Mjob_other',
           'Mjob_services',
           'Mjob_teacher',
           'Fjob_health',
           'Fjob_other',
           'Fjob_services',
           'Fjob_teacher',
           'reason_home',
           'reason_other',
           'reason_reputation',
           'guardian_mother',
           'guardian_other',
           'schoolsup_yes',
           'famsup_yes',
           'paid_yes',
           'activities_yes',
           'nursery_yes',
           'higher_yes',
           'internet_yes',
           'romantic_yes']
```

```
In [13]: # Y dependent variable of mathdata dummy
         MY = mathdata_dummy['G3']
         MY.head()
Out[13]: 0
               6
               6
         2
              10
              15
         3
              10
         Name: G3, dtype: int64
In [29]: MXGrade = mathdata_dummy[['age','G1','G2','G3','failures','absences']]
In [30]: | correlation1 = MXGrade.corr()
In [31]: #checking correlation between age q1 q2 q3
         correlation1
         import seaborn
         seaborn.heatmap(correlation1)
```

Out[31]:

	age	G1	G2	G3	failures	absences
age	1.000000	-0.064081	-0.143474	-0.161579	0.243665	0.175230
G1	-0.064081	1.000000	0.852118	0.801468	-0.354718	-0.031003
G2	-0.143474	0.852118	1.000000	0.904868	-0.355896	-0.031777
G3	-0.161579	0.801468	0.904868	1.000000	-0.360415	0.034247
failures	0.243665	-0.354718	-0.355896	-0.360415	1.000000	0.063726
absences	0.175230	-0.031003	-0.031777	0.034247	0.063726	1.000000

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x269fdaffa90>


```
In [14]: #Regression Model Excluding G1 and G2
    import statsmodels.api as sb

MX = sb.add_constant(MX)
    mod1 = sb.OLS(MY,MX)
    fii1 = mod1.fit()

In [15]: fii1
Out[15]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x269f8f62f9
    8>
In [16]: som1 = fii1.summary()
```

In [17]: som1

Out[17]: OLS Regression Results

Dep. Variable:	G3	R-squared:	0.276
Model:	OLS	Adj. R-squared:	0.196
Method:	Least Squares	F-statistic:	3.463
Date:	Wed, 27 Nov 2019	Prob (F-statistic):	3.32e-10
Time:	16:50:35	Log-Likelihood:	-1097.5
No. Observations:	395	AIC:	2275.
Df Residuals:	355	BIC:	2434.
Df Model:	39		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	14.0777	4.481	3.142	0.002	5.265	22.890
age	-0.3752	0.217	-1.727	0.085	-0.802	0.052
Medu	0.4569	0.323	1.414	0.158	-0.179	1.092
Fedu	-0.1046	0.278	-0.377	0.707	-0.651	0.441
traveltime	-0.2403	0.339	-0.709	0.479	-0.907	0.426
studytime	0.5495	0.288	1.910	0.057	-0.016	1.115
failures	-1.7240	0.333	-5.179	0.000	-2.379	-1.069
famrel	0.2316	0.246	0.942	0.347	-0.252	0.715
freetime	0.3024	0.237	1.274	0.203	-0.164	0.769
goout	-0.5937	0.225	-2.644	0.009	-1.035	-0.152
Dalc	-0.2722	0.331	-0.823	0.411	-0.923	0.378
Walc	0.2634	0.248	1.062	0.289	-0.224	0.751
health	-0.1768	0.161	-1.098	0.273	-0.493	0.140
absences	0.0563	0.029	1.943	0.053	-0.001	0.113
school_MS	0.7256	0.792	0.917	0.360	-0.831	2.282
sex_M	1.2624	0.500	2.525	0.012	0.279	2.246
address_U	0.5513	0.584	0.944	0.346	-0.597	1.700
famsize_LE3	0.7028	0.488	1.439	0.151	-0.257	1.663
Pstatus_T	-0.3201	0.724	-0.442	0.659	-1.744	1.104
Mjob_health	0.9981	1.118	0.893	0.373	-1.201	3.197
Mjob_other	-0.3590	0.713	-0.503	0.615	-1.762	1.044
Mjob_services	0.6583	0.798	0.825	0.410	-0.911	2.227
Mjob_teacher	-1.2415	1.038	-1.196	0.233	-3.283	0.800
Fjob_health	0.3477	1.438	0.242	0.809	-2.480	3.176
Fjob_other	-0.6197	1.023	-0.606	0.545	-2.632	1.392

Fjob_services	-0.4658	1.057	-0.441	0.660	-2.544	1.613
Fjob_teacher	1.3262	1.297	1.023	0.307	-1.224	3.876
reason_home	0.0785	0.554	0.142	0.887	-1.011	1.168
reason_other	0.7771	0.818	0.950	0.343	-0.831	2.385
reason_reputation	0.6130	0.577	1.063	0.288	-0.521	1.747
guardian_mother	0.0698	0.546	0.128	0.898	-1.003	1.143
guardian_other	0.7501	0.999	0.751	0.453	-1.216	2.716
schoolsup_yes	-1.3506	0.667	-2.025	0.044	-2.662	-0.039
famsup_yes	-0.8618	0.479	-1.800	0.073	-1.803	0.080
paid_yes	0.3397	0.478	0.711	0.477	-0.600	1.279
activities_yes	-0.3295	0.445	-0.741	0.459	-1.205	0.546
nursery_yes	-0.1773	0.549	-0.323	0.747	-1.258	0.903
higher_yes	1.3705	1.078	1.272	0.204	-0.749	3.490
internet_yes	0.4981	0.620	0.804	0.422	-0.720	1.717
romantic_yes	-1.0945	0.469	-2.332	0.020	-2.017	-0.172

Omnibus: 30.431 Durbin-Watson: 2.054

Prob(Omnibus): 0.000 Jarque-Bera (JB): 35.239

Skew: -0.696 **Prob(JB):** 2.23e-08

Kurtosis: 3.450 **Cond. No.** 443.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [22]: # Starting Regression Model with Interaction effects # Created MX4 which contains all the variables MX4 = mathdata dummy[['age', 'Medu', 'Fedu', 'traveltime', 'studytime', 'failures', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3', 'school_MS', 'sex_M', 'address_U', 'famsize LE3', 'Pstatus_T', 'Mjob_health', 'Mjob_other', 'Mjob_services', 'Mjob_teacher', 'Fjob_health', 'Fjob_other', 'Fjob_services', 'Fjob_teacher', 'reason_home', 'reason_other', 'reason_reputation', 'guardian_mother', 'guardian_other', 'schoolsup_yes', 'famsup yes', 'paid_yes', 'activities_yes', 'nursery_yes', 'higher_yes', 'internet_yes', 'romantic yes']] MX4.head()

Out[22]:

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	 guardian _.
0	18	4	4	2	2	0	4	3	4	1	
1	17	1	1	1	2	0	5	3	3	1	
2	15	1	1	1	2	3	4	3	2	2	
3	15	4	2	1	3	0	3	2	2	1	
4	16	3	3	1	2	0	4	3	2	1	

5 rows × 42 columns

In [23]: # REGRESSION MODEL WITH INTERACTION EFFECTS import statsmodels.formula.api as smf model_interaction = smf.ols(formula='G3 ~ failures + goout + sex_M + schoolsup _yes + romantic_yes + failures:goout + failures:sex_M + failures:schoolsup_yes + failures:romantic_yes + goout:sex_M + goout:schoolsup_yes + goout:romantic_y es + sex_M:schoolsup_yes + sex_M:romantic_yes + schoolsup_yes:romantic_yes', da ta=MX4).fit() summary = model_interaction.summary() summary

Out[23]: OLS Regression Results

Dep. Variable:	G3	R-squared:	0.197
Model:	OLS	Adj. R-squared:	0.166
Method:	Least Squares	F-statistic:	6.210
Date:	Wed, 27 Nov 2019	Prob (F-statistic):	9.59e-12
Time:	16:54:45	Log-Likelihood:	-1117.8
No. Observations:	395	AIC:	2268.
Df Residuals:	379	BIC:	2331.
Df Model:	15		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	12.8078	1.137	11.268	0.000	10.573	15.043
failures	-2.9940	0.923	-3.243	0.001	-4.810	-1.178
goout	-0.5200	0.342	-1.521	0.129	-1.192	0.152
sex_M	1.1825	1.338	0.884	0.377	-1.448	3.813
schoolsup_yes	-0.4928	1.896	-0.260	0.795	-4.220	3.234
romantic_yes	-2.3911	1.402	-1.706	0.089	-5.147	0.365
failures:goout	0.3877	0.248	1.561	0.119	-0.101	0.876
failures:sex_M	-1.2273	0.620	-1.980	0.048	-2.446	-0.009
failures:schoolsup_yes	2.0577	0.928	2.217	0.027	0.233	3.883
failures:romantic_yes	-0.2817	0.606	-0.465	0.642	-1.472	0.909
goout:sex_M	-0.0426	0.395	-0.108	0.914	-0.820	0.735
goout:schoolsup_yes	-0.4057	0.552	-0.735	0.463	-1.490	0.679
goout:romantic_yes	0.3432	0.417	0.823	0.411	-0.476	1.163
sex_M:schoolsup_yes	-1.1113	1.378	-0.806	0.421	-3.822	1.599
sex_M:romantic_yes	0.9246	0.926	0.998	0.319	-0.897	2.746
schoolsup_yes:romantic_yes	1.0825	1.494	0.724	0.469	-1.856	4.021

 Omnibus:
 31.291
 Durbin-Watson:
 2.040

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 36.669

 Skew:
 -0.692
 Prob(JB):
 1.09e-08

 Kurtosis:
 3.558
 Cond. No.
 47.0

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [28]: # Intersecting lines represent Interaction effect

# Presence of Interaction effect of failures*schoolsup_yes on G3
import seaborn
seaborn.lmplot(y='G3', x='failures', hue='schoolsup_yes', data=MX4)

# Presence of Interaction effect of failures*sex_M on G3
seaborn.lmplot(y='G3', x='failures', hue='sex_M', data=MX4)

# No Presence of Interaction effect between failures*romantic_yes on G3
seaborn.lmplot(y='G3', x='failures', hue='romantic_yes', data=MX4)

# No Presence of Interaction effect between sex_M*schoolsup_yes on G3
seaborn.lmplot(y='G3', x='sex_M', hue='schoolsup_yes', data=MX4)
```

12/1/2019 MathRegressions_3

Out[28]: <seaborn.axisgrid.FacetGrid at 0x269fdb8b7f0>
Out[28]: <seaborn.axisgrid.FacetGrid at 0x269fdba7588>
Out[28]: <seaborn.axisgrid.FacetGrid at 0x269fdb456d8>
Out[28]: <seaborn.axisgrid.FacetGrid at 0x269fdc404e0>

In []: