

Subject Index

Aircraft Technology, Conventional, STOL/VTOL

Aerodynamics

A Model for Vortex Breakdown on Slender Wings J87-276

Vortex Roll-Up from an Elliptic Wing at Moderately Low Reynolds Number J87-264

Similarity Rule for Sidewall Boundary-Layer Effects in Airfoil Testing J87-260

Hysteresis of Vortex Development and Breakdown on an Oscillating Delta Wing J87-255

Experimental Investigations of the Flowfield of an Airfoil with Spoiler J87-240

Discrete Vortex Computation of Separated Airfoil Flow J87-239

Use of Conformal Mapping in Grid Generation for Complex Three-Dimensional Configurations J87-223

Global Marching Technique for Predicting Separated Flows over Arbitrary Airfoils J87-216

Exact and Asymptotic Expressions of the Lift Slope Coefficient of an Elliptic Wing J87-215

Improper Integrals in Theoretical Aerodynamics: The Problem Revisited J87-214

Further Visualization of Combined Wing Tip and Starting Vortex Systems J87-199

Control of the Discrete Vortices from a Delta Wing J87-177

Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers J87-176

Entrainment Effect of a Leading-Edge Vortex J87-175

Finite-Element Solutions of the Compressible Navier-Stokes Equations J87-163

Flow Over a Trailing Flap and Its Asymmetric Wake J87-157

Analytic Near-Field Boundary Conditions for Transonic Flow Computations J87-151

Aerodynamic Coefficients of a Thin Elliptic Wing in Unsteady Motion J87-133

Trailing-Edge Separation/Stall Alleviation J87-106

Force Coefficients for a NACA-0015 Airfoil Undergoing Constant Pitch Rate Motions J87-105

Self-Adaptive-Grid Method with Application to Airfoil Flow J87-087

Total Pressure Loss in Vortical Solutions of the Conical Euler Equations J87-062

Transonic Airfoil Design Procedure Utilizing a Navier-Stokes Analysis Code J87-061

Response of the Cavity Shear Layer Oscillations to External Forcing J87-007

Numerical Modeling of the Vortex/Airfoil Interaction J87-001

Aeroelasticity

Aeroelastic Derivatives as a Sensitivity Analysis of Nonlinear Equations J87-195

Structural Design (including Loads)

Efficient Computation of Mode-Shape De-

rivatives for Large Dynamic Systems J87-235

Structural Materials

Temperature Variation of the Elastic Constants of Aluminum Alloy 2090-T81 J87-219

Vibration

Component Mode Iteration for Frequency Calculations J87-169

Stochastic Response of Nonlinear Structures with Parameter Random Fluctuations J87-058

Energy

Combustion

Extinction of a Stagnation-Point Diffusion Flame at Reduced Gravity J87-167

Spectral and Total Radiation Properties of Turbulent Carbon Monoxide/Air Diffusion Flames J87-059

Lasers

Mixing Enhancement in Chemical Lasers, Part II: Theory J87-166

Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers J83-239

Fluid Dynamics

Aeroacoustics

Numerical Investigation of Acoustic Refraction J87-271

Reformulation of the Parabolic Approximation for Waves in Stratified Moving Media J87-267

Pressure Field Generated by Jet-On-Jet Impingement J87-227

Prediction of Sound Fields in Cavities Using Boundary-Element Methods J87-204

Characterization of Large-Scale Structures in a Forced Ducted Flow with Dumb J87-202

Computational Aeroacoustics as Applied to the Diffraction of Sound by Cylindrical Bodies J87-164

Significance of Unsteady Thickness Noise Sources J87-144

Effects of Acoustic Disturbances on Measured Flow Characteristics Through a Contraction J87-115

Pressure Fluctuation Measurements with Passive Shock/Boundary-Layer Control J87-107

Numerical Solution for the Scattering of Sound Waves by a Circular Cylinder J87-095

Spectra Noise and Amplified Turbulence Emanating from Shock-Turbulence Interaction J87-074

Boundary Layers and Convective Heat Transfer-Laminar

Unsteady Compressible Laminar Boundary-

Layer Formed within a Centered Expansion Wave J87-258

Migration of Solid Particles Perpendicular to a Local Shear Flow Due to Local Instabilities J87-172

Laminar Flow at the Trailing Edge of a Flat Plate J87-160

Calibrating Boundary Layers for Suction J87-152

Boundary Layers in Planes of Symmetry, Part II: Calculations for Laminar and Turbulent Flows J87-140

Effect of Vectored Suction on a Shock-Induced Separation J87-129

Boundary Layers in Planes of Symmetry, Part I: Experiments in Turbulent Flow J87-094

Finite-Volume Solution of the Compressible Boundary-Layer Equations J87-090

Analysis of Three-Dimensional Separated Flow with the Boundary-Layer Equations J87-066

Navier-Stokes Similarity Solution for the Planar Liquid Wall Jet J87-035

The Influence of Acceleration on Laminar Similar Boundary Layers J85-266

Boundary Layers and Convective Heat Transfer-Turbulent

Baldwin-Lomax Factors for Turbulent Boundary Layers in Pressure Gradients J87-277

Interpretation of Separation Lines from Surface Tracers in a Shock-Induced Turbulent Flow J87-266

Two-Equation Turbulence Model Consistent with the Second Law J87-265

Comparison of Five Methods for Determination of the Wall Shear Stress J87-261

Calculating Turbulent Reacting Flows Using Finite Chemical Kinetics J87-233

Structure of Supersonic Turbulent Flow Past a Sharp Fin J87-229

Simulation of Large-Eddy Structures in a Turbulent Boundary Layer J87-208

Viscid/Inviscid Interaction Analysis of Subsonic Turbulent Trailing-Edge Flows J87-205

Experimental Study of a Pressure-Driven, Three-Dimensional, Turbulent Boundary Layer J87-184

Stagnating Turbulent Flows J87-182

Time-Dependent Behavior of a Reattaching Shear Layer J87-159

Flow Past V-Groove Circular Cylinders J87-139

Turbulent Boundary-Layer Properties Downstream of the Shock-Wave/Boundary-Layer Interaction J87-116

Experimental Investigation of a Swirling, Axisymmetric, Turbulent Boundary Layer with Pressure Gradient J87-088

Skin Friction Measurements Following Manipulation of a Turbulent Boundary Layer J87-083

Direct Measurements of Drag of Ribbon-Type Manipulators in a Turbulent Boundary Layer J87-067

Passive Shock-Wave/Boundary-Layer Control on a Wall-Mounted Model J87-049

Transonic Separated Flow Predictions with an Eddy-Viscosity/Reynolds-Stress Closure Model	J87-046	Upwind Navier-Stokes Solutions for Separated Periodic Flows	J87-092	Jets	J87-002
Experimental Study of a Three-Dimensional, Shear-Driven, Turbulent Boundary Layer	J87-006	Upwind Relaxation Algorithms for the Navier-Stokes Equations	J87-091	Multiphase Flows	
Scaling of Wall Shear Stress Fluctuations in a Turbulent Duct Flow	J87-004	Relaxation Algorithms for the Euler Equations	J87-089	Two-Phase Flow Around a Two-Dimensional Cylinder	J87-113
Wall Pressure Fluctuations in a Three-Dimensional Shock-Wave/Turbulent Boundary Interaction	J87-003	Hybrid MacCormack and Implicit Beam-Warming Algorithms for a Supersonic Compression Corner	J87-069	Motion of Bubbles in a Varying Pressure Field	J87-084
Boundary-Layer Stability and Transition		Efficient Simulation of Separated Three-Dimensional Viscous Flows Using the Boundary-Layer Equations	J87-068		
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils	J87-231	Marching Control Volume Finite-Element Calculation for Developing Entrance Flow			
Coupling Between Vehicle Motion and Slender Cone Transition	J87-206	Numerical Analysis of a Natural and Excited Two-Dimensional Mixing Layer	J87-050	Nonsteady Aerodynamics	
Transition from Laminar to Turbulent Flow in Separated Shear Layers	J87-153	Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear Coordinates		Arbitrary Motion Aerodynamics Using an Aeroacoustic Approach	J87-245
Investigation of Two-Dimensional Shock-Wave/Boundary-Layer Interactions	J87-135	High Reynolds Number Separated Flow Solutions Using Navier-Stokes and Approximate Equations	J87-047	Numerical Simulation and Comparison with Experiment for Self-Excited Oscillations in a Diffuser Flow	J87-162
Analysis of Transitional Separation Bubbles on Infinite Swept Wings	J87-072	Numerical Simulation of Transient Inviscid Shock Tube Flows	J87-045	Lifting Surface Calculations in the Laplace Domain with Application to Root Loci	J87-120
Numerical Study of Transition Control by Periodic Suction Blowing	J87-048	A Fast, Time Accurate, Unsteady Full Potential Scheme	J87-043	Computation of Dynamic Stall of a NACA-0012 Airfoil	J87-070
Computational Methods		Generalized Discrete Vortex Method for Cylinders Without Sharp Edges	J87-040		
Entropy Production in Nonsteady General Coordinates	J87-279	Conservative Full-Potential Model for Unsteady Transonic Rotor Flows	J87-039	Nozzle and Channel Flow	
Modification to the Osher Upwind Scheme for Use in Three Dimensions	J87-278	Conical Separated Flows with Shock and Shed Vorticity	J87-032	Stability of Normal Shock Waves in Diffusers	J87-257
Second-Order Upwind Differencing in a Recirculating Flow	J87-244	Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers	J83-239	Flow-Angle Measurements in a Rarefied Nozzle Plume	J87-225
Influence of Numerical Dissipation on Computational Euler Equations for Vortex-Dominated Flows	J87-243	Jets, Wakes, and Viscid-Inviscid Flow Interactions		Improved Predictions of Confined Jets with a Parabolic Computation of the Entrance Region	J87-193
Adaptive Triangular Mesh Generation	J87-232	Low Reynolds Number Modeling of Turbulent Flows With and Without Wall Transpiration	J87-268	Numerical Boundary Condition Procedures for Euler Solvers	J87-180
Flow Interactions During Axisymmetric Spinup	J87-226	Coherent Large-Scale Structures in High Reynolds Number Supersonic Jets	J87-242	Experiments on Supersonic Turbulent Flow Development in a Square Duct	J87-119
Block-Structured Solution Scheme for Analyzing Three-Dimensional Transonic Potential Flows	J87-224	Vortex Simulation of Forced/Unforced Mixing Layers	J87-241	Turbulent Channel and Couette Flows Using an Anisotropic $k-\epsilon$ Model	J87-071
Effects of Various Implicit Operators on a Flux Vector Splitting Method	J87-201	Conditional Sampling of Velocity in a Turbulent Nonpremixed Propane Jet	J87-228	Effect of Reynolds Number on the Structure of Recirculating Flow	J87-030
Three-Dimensional Unsteady Euler Equations Solution on Dynamic Grids	J87-200	Similarity of Ejector Wall-Pressure Distributions	J87-217	Formulas for Venting or Charging Gas from a Single Volume	J86-305
Computation of Separated Flow Using the Space-Marching Conservative Supra-Characteristics Method	J87-181	Measurements of Entrainment and Mixing in Turbulent Jets	J87-209	Plasmadynamics and MHD	
Lower-Upper Implicit Scheme for High-Speed Inlet Analysis	J87-179	Turbulent Wake of a Flat Plate	J87-183	Thermal Effects on Weak Waves in a Radiative Magnetogasdynamical Media	J87-171
Numerical Solutions of Euler Equations Using Simplified Flux Vector Splitting	J87-178	New Eddy Viscosity Model for Computation of Swirling Turbulent Flows	J87-174	Reactive Flows	
New Eddy Viscosity Model for Computation of Swirling Turbulent Flows	J87-174	Effects of Pitot Probe Shape on Measurement of Flow Turbulence	J87-154	Integrating Combustion Kinetic Rate Equations by Selective Use of Stiff and Nonstiff Methods	J87-246
Computation of Rotating Turbulent Flow with an Algebraic Reynolds Stress Model	J87-165	Two-Dimensional Turbulent Separated Flow	J87-134	Electron and Vibrational Energy Conservation Equations for Aeroassisted Orbital Transfer Vehicles	J87-034
Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations	J87-161	Characteristics of Air Jets Discharging Normally into a Swirling Crossflow	J87-073	Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers	J83-239
Computation of Low-Speed Flow with Heat Addition	J87-143	Variation of Entrainment in Annular Jets	J87-065		
Stability of Similarity Solutions by Two-Equation Models of Turbulence	J87-142	Spanwise Propagation of Upstream Influence in Conical Swept Shock/Boundary-Layer Interactions	J87-051		
Concurrent-Processing Adaptations of a Multiple-Grid Algorithm	J87-137	Coherent Motion in Excited Free Shear Flows	J87-041		
Multigrid Approximate Factorization Scheme for Two-Element Airfoil Flows	J87-136	Flows about a Rotating Circular Cylinder by the Discrete-Vortex Method	J87-036		
Numerical Analysis of Three-Dimensional Elastic Membrane Wings	J87-117	Experimental Evaluation of Approximations for w^2 and vw^2	J87-031		
Numerical Solution of Incompressible Flows by a Marching Multigrid Nonlinear Method	J87-112	Turbulent Mixing in Nonsteady Jets	J87-029		
Noniterative Parabolic Grid Generation for Parabolized Equations	J87-093	Velocity Predictions of Contrawirling Jets in a Suddenly Expanding Confinement	J87-027		
		Interaction of Two Nonequal Plane Parallel	J87-027		

Supersonic and Hypersonic Flow

Extension of Hypersonic, High-Incidence, Slender-Body Similarity J87-259
 Newtonian Theory for the Compression Surface of Airfoils at Moderate or Large Incidence J87-222
 Supersonic Laminar Flow Development in a Square Duct J87-033

Transonic Flow

Block-Structured Solution of Euler Equations for Transonic Flows J87-270
 Improved Finite-Difference Schemes for Transonic Potential Flow Calculations J87-247

Two-Dimensional Transonic Aerodynamic Design Method J87-207

Refined Numerical Solution of the Transonic Flow Past a Wedge J87-203

Computation of Unsteady Transonic Aerodynamics with Truncation Error Injection J87-173

Accurate Transonic Wave Drag Prediction Using Simple Physical Models J87-138

Effect of Porosity Strength on Passive Shock-Wave/Boundary-Layer Control J87-128

Navier-Stokes Simulations of Transonic Flows over a Practical Wing Configuration J87-063

Viscous Nonboundary-Layer Flows

Experimental Study of an Axisymmetric Cavitylike Flow J87-273

Navier-Stokes Simulations of Transonic Flows over a Wing-Fuselage Combination J87-272

Tangential Velocity and Static Pressure Distributions in Vortex Chambers J87-192

Time-Consistent Pressure Relaxation Procedure for Compressible Reduced Navier-Stokes Equations J87-158

Influence of Initial and Boundary Conditions on Vortex Ring Development J87-064

Wave Motion and Sloshing

Moment Exerted on a Coning Projectile by a Spinning Liquid in a Spheroidal Cavity J87-280

Interdisciplinary Topics***Atmospheric and Space Sciences***

Interaction of Aircraft and Explosive Eruption Clouds: A Volcanologist's Perspective J87-010

Computer Software

Advances and Trends in Computational Structural Mechanics J87-168

Lasers and Laser Applications

Laser-Sustained Plasmas in Forced Convective Argon Flow, Part II: Comparison of Numerical Model with Experiment J87-210

Laser-Sustained Plasmas in Forced Argon Convective Flow, Part I: Experimental Studies J87-185

Several Numerical Schemes for the Computation of Unsteady Flow in Pulsed Lasers J87-145

Two-Dimensional Analysis of a 16- μm CO₂ Downstream-Mixing Gasdynamic Laser J87-122

Laser-Ablation in Graphite: Application of the Heat-Balance Integral Method J87-121

Turbulence-Induced Spectral Bias in Laser Anemometry

J87-054
 Holographic Interferometry Study of an Axisymmetric Shock-Wave/Boundary Layer Strong Interaction Flow J87-052

Research Facilities and Instrumentation

Wind-Tunnel Wall Corrections on a Two-Dimensional Plate by Conformal Mapping J87-262

Particle Sampling in Supersonic Streams with a Thin-Walled Cylindrical Probe J87-186

Initial Instability in a Freejet Mixing Layer Measured by Laser Doppler Anemometry J87-108

Time-Averaged Pressure of Fluctuating Gas Motion in Small-Diameter Tubes J87-096

New Method for Eliminating the Statistical Bias in Highly Turbulent Flow Measurements J87-075

Reconstruction of a Three-Dimensional, Transonic Rotor Flowfield from Holographic Interferograms J87-053

Wide-Field Shadowgraphy of Tip Vortices from a Helicopter Rotor J87-012

A High Flux Source of Energetic Oxygen Atoms for Material Degradation Studies J87-011

Acoustic and Turbulence Influences on Stall Hysteresis J87-009

Propulsion***Airbreathing Propulsion***

Rapid Computation of Unsteady Transonic Cascade Flows J87-130

Laser Measurements of Solid-Particle Rebound Parameters Impacting on 2024 Aluminum and 6A1-4V Titanium Alloys J87-123

Solution of Inverse Problem of Transonic Flow on S₂ Surface Using an Elliptic Algorithm J87-076

Numerical Solutions of Viscous Transonic Flow in Turbomachinery Cascades J87-037

Computation of Transonic Flows in Turbomachines Using the Runge-Kutta Integration Scheme J87-013

Combustion and Combustor Designs

Efficient Calculation of Chemically Reacting Flow J87-146

Numerical Examination of a Tube-and Disk-Type Combustor Configuration J87-131

Effect of Geometry on Ignition of a Reactive Solid: Square Corner J87-100

Heat Release Effects on Shear-Layer Growth and Entrainment J87-098

Experimental Examination of a Prevaporized Premixed Combustor J87-097

Prediction of Central Recirculation Zone Size for a Complete Burner-Quarl-Furnace System J87-077

Direct Numerical Simulation of Axisymmetric Jets J87-017

Prediction of Aluminum Combustion Efficiency in Solid Propellant Rocket Motors J87-016

Combustion Stability, Ignition, and Detonation

Experimental Investigation of the Characteristics of Solid-Propellant, Velocity-Coupled Response Functions J87-099

Numerical Investigation of Unsteady Inlet Flowfields J87-015

Electric and Advanced Space Propulsion

Cathode Erosion Studies on MPD Thrusters J87-187

Fuels and Propellants, Properties of

Drop Formation Mechanism in a Vertically Vibrated Liquid Column J87-124

Preheating Slow-Burning Pyrotechnic Compositions to Aid Ignition and Combustion J87-014

Spacecraft Technology***Configurational and Structural Design (including Loads)***

Buckling and Nonlinear Response of Imperfect Three-Legged Truss Columns J87-057

Dynamics and Control

Use of Piezoelectric Actuators as Elements of Intelligent Structures J87-234

Force-State Mapping Identification of Nonlinear Joints J87-170

An Analytical and Experimental Study of a Control System's Sensitivity to Structural Modifications J87-055

Structural Mechanics and Materials***Aeroelasticity and Hydroelasticity***

Active Control of Aerofoil Flutter J87-190

Nonlinear Analysis of Pretwisted Rods Using 'Principal Curvature Transformation,' Part II: Numerical Results J87-101

Perfect Gas Effects in Compressible Fluid Distortion Theory J87-086

Nonlinear Analysis of Pretwisted Rods Using 'Principal Curvature Transformation' Part I: Theoretical Derivation J87-079

Computation of Second-Order Accurate Unsteady Aerodynamic Generalized Forces J86-082

Materials, Properties of

Thermodynamically Consistent Constitutive Equations for Nonisothermal Large-Strain, Elastoplastic, Creep Behavior J87-020

Structural Composite Materials

Compressive Failure Model for Anisotropic Plates with a Cutout J87-250

Buckling Coefficients for Fiber-Reinforced Plastic-Faced Sandwich Plates Under Combined Loading J87-125

Frequency-Load Interaction of Imperfect Angle-Ply Cylindrical Panels Under Compression and Pressure J87-081

Effective Moduli of Composite Materials in Dynamic Problems J87-078

Large-Deflection and Nonlinear Vibration of Multilayered Sandwich Plates J87-022

Effects of Transverse Shearing on Cylindrical Bending, Vibration, and Buckling of Laminated Plates J87-021

Geometrical and Material Nonlinear Properties of Two-Dimensional Fabric Composites J87-019

Large Deflection Behavior of Circular Quasi-Isotropic Laminates Under Point Loading J87-018

Structural Design

Iterative Study for Three-Dimensional Finite-Element Stress Analysis J87-282

Optimum Design of Structures in a Fuzzy Environment J87-281

Accuracy of the Domain Material Derivative Approach to Shape Design Sensitivities J87-274
 Approximate Analysis of Deflections and Frequencies of Short Beams J87-263
 Large Displacement Analysis of Naturally Curved and Twisted Composite Beams J87-249
 Nonlinear Sensitivity Coefficients and Corrections in System Identification J87-248
 Space Frame Optimization Subject to Frequency Constraints J87-237
 Sensitivity of Total Strain Energy of a Vehicle Structure to Local Joint Stiffness J87-236
 Optimal Design of a Vibrating Beam with Coupled Bending and Torsion J87-211
 An Approach to Structure/Control Simultaneous Optimization for Large Flexible Spacecraft J87-191
 Design Sensitivity Analysis and Optimization of Nonlinear Structural Response Using Incremental Procedure J87-189
 Finite-Element Method for a Uniformly Loaded Cantilever Beam with General Cross Section J87-132
 Optimization of Equivalent Periodic Truss Structures J87-085
 Structural Sizing by Generalized, Multilevel Optimization J87-024
 Effect of Sensor and Actuator Errors on Static Shape Control for Large Space Structures J87-023

Structural Dynamics

Random Vibration of Cylindrical Shells J87-284
 Error Bounds for Eigenvalues of Unconstrained Structures J87-283
 Vibration of Symmetrically Laminated Rec-

tangular Plates Considering Deformation and Rotatory Inertia J87-254
 Direct Update of Dynamic Mathematical Models from Modal Test Data J87-253
 Momentum Redistribution in a Briefly, Intensely Irradiated, Structural Element J87-252
 Green's Function and Receptance for Structures Consisting of Beams and Plates J87-251
 Buckling, Postbuckling, and Nonlinear Vibrations of Imperfect Plates J87-230
 Localized Vibrations of Disordered Multi-span Beams: Theory and Experiment J87-213
 Mode Localization Phenomena in Large Space Structures J87-212
 Control of Flexible Structures by Applied Thermal Gradients J87-150
 Nonlinear Substructuring Method for Concurrent Processing Computers J87-149
 Mean-Square Response of an Infinite Bernoulli-Euler Beam to Nonstationary Random Excitation J87-148
 Component Mode Synthesis for Damped Structures J87-126
 Nonlinear Dynamics of Slender Rods J87-103
 A Modular Approach for Three-Dimensional Shape Optimization of Structures J87-082
 Static and Dynamic Analysis of Clamped Orthotropic Plates Using Lagrangian Multiplier Technique J87-056
 Driven-Base Tests for Modal Parameter Estimation J87-026
 Free Vibration Solution for Clamped Orthotropic Plates Using Lagrangian Multiplier Technique J87-025

Structural Stability

Buckling of Shear-Deformable Plates J87-218

First-Order Second-Moment Analysis of the Buckling of Shells with Random Imperfections J87-188
Dynamics of Cylindrical Shells Containing Fluid Flows with a Developing Boundary Layer J87-147
Dynamic Buckling of Orthotropic Spherical Caps Supported by Elastic Media J87-109
Postbuckling Behavior of a Clamped, Elastically Supported Planar Structure Under Follower Force J87-102
Buckling of Viscoelastic Beam Columns J87-080
Optimal Barrel-Shaped Shells Under Buckling Constraints J87-038

Structural Statics

Finite Difference Analysis of Rotationally Symmetric Shells Under Discontinuous Distributed Loadings J87-275

Thermophysics and Thermochemistry

Ablation, Pyrolysis, Thermal Decomposition and Degradation (including Refractories)

Surface Recession and Backface Temperature of Laser-Irradiated Opaque Slabs J87-008

Radiatively Coupled Flows and Heat Transfer

Characteristics, Control, and Uses of Liquid Streams in Space J87-127

Thermal Modeling and Analysis

Explanation of Thermal Rectification J87-104

Author Index

Acharya, S., J87-157
 Adair, D., J87-157
 Addy, A. L., J87-116
 Adelman, H. M., J87-023
 Agrawal, D. P., J87-027
 Ahmadi, G., J87-265
 Ahmed, S. A., J87-073
 Ahuja, K. K., J87-164, J87-242
 Amatucci, V. A., J87-116
 Anderson, S. D., J87-184
 Anderson, W. K., J87-201
 Anshelovitz, D., J85-266
 Antonia, R. A., J87-004
 Arboczi, J., J87-188
 Argrow, B. M., J87-279
 Arora, J. S., J87-189
 Ashenberg, J., J87-276
 Atluri, S. N., J87-168
 Atta, R., J87-255
 Austin, M. W., J87-219
 Auweter-Kurtz, M., J87-187
 Avidor, J. M., J87-108
 Ayoub, A., J87-130
 Azad, R. S., J87-031
 Babcock, C. D., J87-057
 Back, L. H., J87-012
 Baek, J. H., J87-094, J87-140
 Bagannoff, D., J87-217
 Bahl, R., J87-152
 Bailey, A. B., J87-225
 Bank, W., J87-199
 Bardou, M. F., J87-014
 Barnett, M., J87-205
 Barnwell, R. W., J87-259
 Baron, J. R., J87-062
 Basuki, J., J87-239
 Bauchau, O. A., J87-249
 Baum, J. D., J87-271
 Belk, D. M., J87-200
 Bendiksen, O. O., J87-212
 Bennighof, J. K., J87-169
 Bergan, P., J87-149
 Berlemon, A., J87-005
 Bernhard, R. J., J87-204
 Bershad, D., J87-045
 Binder, G., J87-193
 Bindolino, G., J87-195
 Biringen, S., J87-044
 Blachut, J., J87-038
 Blackwelder, R. F., J87-177, J87-208
 Bodapati, S., J87-240
 Bogar, T. J., J87-162
 Bogdonoff, S., J87-229
 Bogdonoff, S. M., J87-003
 Boris, J. P., J87-017
 Botkin, M. E., J87-082, J87-274
 Bowlin, J. A., J87-254
 Bozzola, R., J87-013
 Brando, M. P., J87-214
 Braza, M., J87-050
 Breidenthal, R. E., J87-029
 Brown, J. L., J87-052
 Brown, W. H., J87-164, J87-242
 Burrin, R. H., J87-242
 Busnaina, A. A., J87-265
 Caesar, B., J87-253
 Caledonia, G. E., J87-011
 Caradonna, F. X., J87-039
 Carlson, R. L., J87-020
 Carrier, G. F., J87-252
 Carter, J. E., J87-066
 Carter J. E., J87-072
 Caruso, M. J., J87-044
 Chakravarty, P., J87-122
 Chambers, F. W., J87-067
 Chandrasekhara, M. S., J87-217
 Chang, S., J87-078
 Chassaing, P., J87-050
 Chattopadhyay, A., J87-211
 Chen, H., J87-076
 Chen, H. C., J87-160, J87-183
 Chen, J. J. J., J87-139
 Chen, P. C., J87-025, J87-056
 Cho, Y. I., J87-012
 Choi, Y., J87-143
 Chon, C. T., J87-236
 Chow, S. T., J87-218
 Chowdhury, S. J., J87-265
 Christie, G. W., J87-117
 Chuang, A. H., J87-243
 Chuang, H., J87-035
 Chung, M. K., J87-174
 Claes, D., J87-178, J87-201
 Coakley, T., J87-015
 Coakley, T. J., J87-162
 Collins, P., J87-015
 Crawley, E. F., J87-170, J87-234
 Cristea, E. B., J87-077
 Cruickshank, J., J87-145
 Czyż, J. A., J87-283
 Dahm, W. J. A., J87-209
 Dang, T. H., J87-031
 Daniel, B. R., J87-099
 Däppen, H., J87-262
 Darrigo, R., J87-005
 Davis, D. O., J87-033
 Davis, R. L., J87-072
 de Groot, W. A., J87-194
 de Luis, J., J87-234
 Deiwert, G. S., J87-087
 Dibble, R. W., J87-228
 Dimotakis, P. E., J87-098, J87-209
 Dolling, D. S., J87-266
 Dowell, E. H., J87-213
 Drela, M., J87-207, J87-231
 Driscoll, R. J., J87-166
 Driver, D. M., J87-006, J87-088,
 J87-159
 Drummond, J. P., J87-146
 Du, I., J87-081
 Dunagan, S. E., J87-052
 Dwyer, H., J87-226
 Eaton, J. K., J87-184
 Ecer, A., J87-224, J87-270
 Edberg, D. L., J87-150
 Edwards, D. E., J87-066
 Einav, S., J87-108
 Eiseman, P. R., J87-232
 Eklund, D. R., J87-146
 Elbanna, H., J87-002
 Elber, W., J87-018
 Elishakoff, I., J87-188
 Elyada, D., J87-057
 Emanuel, G., J87-279
 Ericsson, L. E., J87-206
 Erlebacher, G., J87-232
 Faeth, G. M., J87-059
 Fang, Z., J87-060
 Farell, C., J87-264
 Fendell, F. E., J87-252
 Ferguson, S. D., J87-119
 Fichman, M., J87-172
 Finaish, F., J87-199
 Flack, R. D., J87-104
 Flax, A. H., J86-082
 Fletcher, L. S., J87-104
 Forney, L. J., J87-186
 Foutch, D. W., J87-167
 Freymuth, P., J87-199
 Fu, J.-K., J87-173
 Fujii, K., J87-063, J87-272
 Fung, K.-Y., J87-173
 Fung, K.-Y., J87-203
 Gad-el-Hak, M., J87-177, J87-208
 Gardner, B. K., J87-204
 Garris, C. A., J87-064
 Gaster, M., J87-108
 Gaur, M., J87-171
 Gentilman, R. L., J87-121
 Gessner, F. B., J87-033, J87-119
 Gharib, M., J87-007
 Ghia, U., J87-114
 Ghoniem, A. F., J87-030
 Giles, M. B., J87-207, J87-231
 Glass, I. I., J87-042
 Glazer, J., J87-219
 Glegg, S. A. L., J87-144
 Gore, J. P., J87-059
 Gorski, J., J87-043
 Gouesbet, G., J87-005
 Govindaraju, S. P., J87-067
 Graham, G. M., J87-105
 Graham, J. M. R., J87-239
 Gramann, R. A., J87-266
 Granville, P. S., J87-277
 Greber, I., J87-135
 Green, B. D., J87-011
 Griffin, L. W., J87-273
 Grinstein, F. F., J87-017
 Groenewegen, B. C., J87-029
 Guevremont, G., J87-163
 Gürdal, Z., J87-250
 Gutmark, E., J87-108, J87-202
 Habashi, W. G., J87-163
 Haerli, A., J87-178
 Hafez, M., J87-247
 Hafez, M. M., J87-089, J87-163
 Haftka, R. T., J87-023, J87-055,
 J87-191, J87-250
 Halim, A., J87-114
 Halim, A. A. M., J87-216
 Hallauer, W. L., Jr., J87-055
 Halsey, N. D., J87-223
 Hamed, A., J87-123
 Haminh, H., J87-050
 Hanagud, S., J87-211
 Harandi, S., J87-115
 Harten, A., J87-048
 Hartmann, V., J87-228
 Hashimoto, H., J87-124
 Hassan, H. A., J87-146
 Hauptman, A., J87-133, J87-215
 Hayashi, Y., J87-019
 Hebbar, S. K., J87-006, J87-088
 Hemdan, H. T., J87-222
 Heo, H., J87-058
 Hermance, C. E., J87-100
 Hermanson, J. C., J87-098
 Hessenius, K. A., J87-278
 Higuchi, H., J87-264
 Hildebrand, G., J87-227
 Hingst, W. R., J87-135
 Hirata, K., J87-075
 Hirose, N., J87-061
 Hiroshi, I., J87-043
 Hodge, J. K., J87-093
 Hoffman, J. D., J87-180
 Hong, C. H., J87-249
 Horstman, C. C., J87-229

Hsieh, S., J87-141
 Hsieh, T., J87-015, J87-162
 Huang, D., J87-141
 Huang, X. Y., J87-190
 Hui, D., J87-081
 Hung, C., J87-256
 Hwang, W. C., J87-282
 Ibrahim, R. A., J87-058
 Ibrani, S., J87-226
 Inger, G. R., J87-051
 Inoue, O., J87-241
 Irdmusa, J. Z., J87-064
 Ishikawa, T., J87-019
 Israeli, M., J87-112
 Iyer, V., J87-037
 Jackson, P. S., J87-117
 Jacob, H., J87-138
 Jagoda, J. I., J87-194
 Jain, R. K., J87-109
 James, B. B., J87-024
 Jameson, A., J87-161, J87-179
 Janus, J. M., J87-200
 Jegley, D. C., J87-021
 Jeng, S., J87-210
 Jeng, S. -M., J87-059
 Jenkins, R. C., J87-154
 Johnson, D. A., J87-046
 Johnson, G. M., J87-137
 Kandil, O. A., J87-243
 Kapania, R. K., J87-230
 Kassab, S. Z., J87-031
 Kato, H. T., J86-305
 Kato, S. M., J87-029
 Kawai, N., J87-061
 Kazimierski, Z., J87-096
 Keefer, D., J87-185
 Keefer, D. R., J87-210
 Keelkar, A., J87-018
 Kelkel, K., J87-251
 Kentzer, C. P., J87-269
 Kerlick, G. D., J87-033
 Kerschen, E. J., J87-086
 Khan, M. M. S., J87-164
 Kim, K. Y., J87-174
 Kim, S. A., J87-219
 Kimura, T., J87-036
 Kipp, C. R., J87-204
 Kittleson, J. K., J87-053
 Klein, C. A., J87-008, J87-121
 Klevenhusen, K. D., J87-138
 Knight, D., J87-069
 Knight, D. D., J87-229
 Ko, N. W. M., J87-139
 Koenig, K., J87-273
 Koura, K., J87-034
 Kourta, A., J87-050
 Krech, R. H., J87-011
 Krothapalli, A., J87-217
 Kruisbrink, A. C. H., J87-175
 Kubomura, K., J87-126
 Kueny, J. L., J87-193
 Kuhlman, J. M., J87-065
 Kumar, S. P., J87-137
 Kuntz, D. W., J87-116
 Kuo, C. P., J87-248
 Kurtz, H. L., J87-187
 Kuwahara, K., J87-070
 Lajczok, M., J87-085
 Lakshminarayana, B., J87-165
 Larson, R. S., J87-016
 Latham, R., J87-194
 Le Toulouzan, J. N., J87-005
 Ledbetter, H. M., J87-219
 Lee, C. S., J87-240
 Lee, K. H., J87-218
 Leonard, A., J87-241
 Leone, S. A., J87-093
 Lepikovsky, J., J87-242
 Leung, Y. C., J87-139
 Levine, J. N., J87-271
 Liang, S. -M., J87-203
 Lim, S. P., J87-218
 Lin, S. C., J87-132
 Ling, R. T., J87-095
 Liu, G. C., J87-092
 Liu, Y., J87-118
 Lo, C. H., J87-119
 Loewy, R. G., J87-079, J87-101, J87-103
 Lomax, H., J87-118
 Lombard, C. K., J87-045
 Long, L. N., J87-245
 Loyd, B., J87-090
 Mabey, D. G., J87-049
 Macekyo, M. K., J87-148
 Malak, M. F., J87-123
 Malhotra, R. C., J87-027
 Mantegazza, P., J87-195
 Marchman, J. F., III, J87-009
 Marconi, F., J87-032
 Marcum, D. L., J87-180
 Martinovic, Z. N., J87-055
 Marvin, J. G., J87-159
 Mateescu, A. D., J87-147
 Mathew, Mathew B., J87-101
 Mathew, M. B., J87-079, J87-103
 Matsuo, K., J87-257
 Matsushima, M., J87-019
 McAninch, G. L., J87-267
 McCarty, R. L., J87-093
 McGhie, R. D., J87-148
 McGregor, W. K., J87-186
 Mellor, A. M., J87-097, J87-131
 Merkle, C. L., J87-143
 Mertens, J., J87-138
 Metzger, D. E., J83-239
 Meyer, W. L., J87-182
 Miles, J. B., J87-052
 Miloh, T., J87-133
 Mochizuki, H., J87-257
 Mollo, C. G., J87-204
 Mond, M., J87-084
 Moran, J., J87-145
 Morris, J. W., Jr., J87-219
 Mueller, T. J., J87-176
 Muirhead, L. P., J87-252
 Mungal, M. G., J87-098
 Muntz, E. P., J87-127
 Murman, E. M., J87-090
 Murman Earl M., J87-062
 Murphy, C. A., J87-280
 Murthy, A. V., J87-260
 Myers, M. R., J87-086
 Nakahashi, K., J87-087
 Nakao, S., J87-075
 Napolitano, M., J87-047
 Narayanaswami, L. L., J87-099
 Nath, Y., J87-109
 Neitzel, G. P., J83-239
 Nguyen, V. D., J87-083
 Niederdrerk, P., J87-151
 Nisizima, S., J87-071
 Nixon, D., J87-130
 Noor, A. K., J87-168
 Nosseir, N., J87-227
 Nutt, W. E., J87-044
 Obayashi, S., J87-063, J87-272
 O'Donnell, K. J., J87-170
 Ojalvo, I. U., J87-235
 O'Meara, M. M., J87-176
 Ong, C., J87-069
 Ono, K., J87-070
 Onoda, J., J87-191
 Oran, E. S., J87-017
 Orme, M., J87-127
 Osher, S., J87-043, J87-247
 Pade, O., J85-266
 Paidoussis, M. P., J87-147
 Palazotto, A. N., J87-254
 Panaras, A. G., J87-001
 Parthasarathy, S. P., J87-012
 Patel, V. C., J87-094, J87-140, J87-160, J87-183
 Paterson, R. W., J87-106
 Peeters, M. F., J87-163
 Peled, U., J87-227
 Perez, E. S., J87-062
 Persselin, S. F., J83-239
 Peter, J., J87-253
 Peters, C., J87-185
 Peter, C. E., J87-210
 Peters, N., J87-142
 Petersen, R. A., J87-041
 Perre, C., J87-213
 Pruehl, D., J87-172
 Postan, A., J85-266
 Potter, J. L., J87-153
 Powell, K. G., J87-062
 Presz, W. M., Jr., J87-106
 Proctor, C. L., II, J87-097, J87-131
 Przybylski, J., J87-102
 Purohit, S. C., J87-129
 Quadrelli, J., J87-264
 Quan, V., J83-239
 Radhakrishnan, K., J87-246
 Raghava, A. K., J87-027
 Raghunathan, S., J87-049
 Raghunathan, S., J87-107
 Raghunathan, S., J87-128
 Rai, A., J87-171
 Rai, M. M., J87-278
 Rajagopal, S. V., J87-022
 Raju, I. S., J87-018
 Ram, R., J87-171
 Ramakrishnan, S. V., J87-158
 Ramkumar, R. L., J87-025, J87-056
 Rao, K. M., J87-125
 Rao, S. S., J87-281
 Rao, V. K., J87-014
 Rasmussen, M. L., J87-279
 Reddy, K. P. J., J87-122
 Reddy, N. M., J87-122
 Reshotko, E., J87-072
 Ribner, H. S., J87-074
 Riff, R., J87-020
 Riley, M. F., J87-024
 Rockwell, D., J87-255
 Rose, W. L., J87-010
 Rosen, A., J87-079, J87-101, J87-103
 Rosenfeld, M., J87-112
 Rubek, V., J87-270
 Rubel, A., J87-035
 Rubin, S. G., J87-158
 Rumsey, C. L., J87-092
 Sabbagh, J. A., J87-002
 Saber, A. J., J87-060
 Sadasiva Rao, Y. V. K., J87-022
 Saetran, L. R., J87-261
 Sanders, W. J., J87-025
 Savill, A. M., J87-083
 Schadow, K. C., J87-202
 Schaefer, C. G., J87-009
 Schamel, G., J87-055
 Schefer, R. W., J87-228
 Schrade, H. O., J87-187
 Seegmiller, H. L., J87-159
 SenthilmaThan, N. R., J87-218
 Sethian, J. A., J87-030
 Shah, D. A., J87-004
 Shankar, V., J87-043
 Shapey, B., J87-229
 Shida, Y., J87-070
 Sigman, R. K., J87-182
 Simites, G. J., J87-020
 Simpson, R. L., J87-134
 Singh, A. V., J87-284
 Singh, G., J87-022
 Singh, S. N., J87-027
 Skebe, S. A., J87-135
 Smith, C. V., J87-211

Smith, F. T., J87-066
 Smith, P.A., J87-040
 Smith, T. A., J87-275
 So, R. M. C., J87-073, J87-268
 Sobieszczanski-Sobieski, J., J87-024
 Somers R. R., II, J87-104
 Soucy, Y., J87-026
 Spyropoulos, J. T., J87-224, J87-270
 Srivastava, B. N., J87-145
 Stansby, P. K., J87-040
 Stark, V. J. E., J86-082
 Steger, J. L., J87-068
 Stein, M., J87-021
 Stookeberry, D. C., J87-181
 Storaasli, O. O., J87-149
 Straile, W. C., J87-182, J87-194
 Straw, R. C., J87-039
 Strickland, J. H., J87-105
 Strigberger, J., J87-028
 Stütgen, W., J87-142
 Subramanian, S. V., J87-013
 Sudo, S., J87-124
 Sultanian, B. K., J83-239
 Sumantran, V., J87-009
 Sun, C. T., J87-282
 Suzuki, S., J87-263
 Swisshelm, J. M., J87-137
 Tabakoff, W., J87-113, J87-123
 Takami, H., J87-070
 Takanashi, S., J87-061
 Tan-atichat, J., J87-115
 Tan, D. K. M., J87-003
 Tang, D. M., J87-213

Tannehill, J. C., J87-181
 Terao, Y., J87-075
 Thomas, J. L., J87-091, J87-092
 T'ien, J. S., J87-167
 Tomski, L., J87-102
 Tran, T. T., J87-003
 Trojnar, J., J87-096
 Tropea, C., J87-054
 Tsutahara, M., J87-036
 Twardawa, P., J87-014
 Tzuoo, K., J87-130
 Ueda, T., J87-120
 Van Dalsem, W. R., J87-068
 van Manen, S., J87-188
 van Niekerk, B., J86-082
 Vanka, S. P., J87-244
 Vatistas, G. H., J87-192
 Verdon, J. M., J87-205
 Verhaagen, N. G., J87-175
 Vermeulen, P. G., J87-188
 Vigneron, F. R., J87-026
 Vincent, L. D., J87-273
 Vinogradov, A. M., J87-080
 Vittal, B. V. R., J87-113
 Volpe, G., J87-136
 von Lavante, E., J87-037, J87-178,
 J87-201
 Vorstveld, L. G., J87-100
 Vos, J. B., J87-233
 Wada, B. K., J87-248
 Waldman, G., J87-145
 Walters, R. W., J87-091
 Wang, T. J., J87-258

Wardlaw, A. B., Jr., J87-015
 Warfield, M. J., J87-165
 Warren, G. P., J87-092
 Watts, G. A., J87-245
 Wedemeyer, E., J87-151
 Welle, R., J87-185, J87-210
 Werle, M. J., J87-104
 Westphal, R. V., J87-083
 Whitelaw, J. H., J87-157
 Whitfield, D. L., J87-200
 Whitlow, W., Jr., J87-247
 Whitney, J. M., J87-254
 Wilson, K. J., J87-202
 Wolfshtein, M., J85-266
 Woo, T. H., J87-237
 Wormon, S. F., J87-089
 Wortman, A., J85-266
 Wu, C., J87-076
 Wu, C. C., J87-189
 Wygnanski, I. J., J87-041
 Yaga, M., J87-257
 Yang, H. T., J86-305
 Yang, J. Y., J87-045, J87-118
 Yang, R. J., J87-082, J87-274
 Yang, T. T., J83-239
 Yang, T. Y., J87-230
 Yee, H. C., J87-048
 Yoo, G. J., J87-268
 Yoon, S., J87-161, J87-179
 Yoshizawa, A., J87-071
 Yu, Y. H., J87-053
 Zhu, J., J87-193
 Zinn, B. T., J87-099

Chronological Index

J83-239 Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers. Victor Quan, Saul F. Persselin and Tien Tsai Yang, *Rockwell International/Rocketdyne Division* (21, 9, p. 1283) Article based on AIAA Paper 82-0402
 Technical Comment by B. K. Sultanian, *General Motors Corporation*; G. P. Neitzel and D. E. Metzger, *Arizona State University* (25, 6, p. 893)

J85-266 The Influence of Acceleration on Laminar Similar Boundary Layers. O. Pade, A. Postan and D. Anshelovitz, *Ministry of Defense (Israel); and M. Wolfshtein, Technion -- Israel Institute of Technology* (23, 10, p. 1469) Article
 Technical Comment by A. Wortman, *ISTAR Inc.* (25, 4, p. 634)
 Reply (25, 4, p. 634)

J86-082 Computation of Second-Order Accurate Unsteady Aerodynamic Generalized Forces. Becker van Niekerk, *Stanford University* (24, 3, p. 492) Article based on AIAA Paper 85-0597 CP851
 Technical Comment by Alexander H. Flax, *National Academy of Engineering* (25, 6, p. 893)
 Technical Comment by Valter J. E. Stark, *Saab Scania AB, Sweden* (25, 8, p. 1148)

J86-305 Formulas for Venting or Charging Gas from a Single Volume. H. T. Yang, *Hughes Aircraft Company* (24, 10, p. 1709) Technical Note
 Technical Comment by H. T. Kato, *Ford Aerospace and Communications Corporation* (25, 9, p. 1273)
 Reply (25, 9, p. 1274)

J87-001 Numerical Modeling of the Vortex/Airfoil Interaction.

Argyris G. Panaras, *Defense Industries Directorate, Greece* (25, 1, p. 5) Article

J87-002 Interaction of Two Nonequal Plane Parallel Jets. H. Elbanna and J. A. Sabbagh, *King Abdulaziz University, Saudi Arabia* (25, 1, p. 12) Synoptic

J87-003 Wall Pressure Fluctuations in a Three-Dimensional Shock-Wave/Turbulent Boundary Interaction. D. K. M. Tan, T. T. Tran and S. M. Bogdonoff, *Princeton University* (25, 1, p. 14) Article based on AIAA Paper 85-0125

J87-004 Sealing of Wall Shear Stress Fluctuations in a Turbulent Duct Flow. D. A. Shah and R. A. Antonia, *University of Newcastle, Australia* (25, 1, p. 22) Article

J87-005 Experimental and Theoretical Study of a Low-Pressure Axisymmetric Arcjet. J. N. Le Toulouzan, G. Gouesbet, R. Darrigo and A. Berlemont, *Institut National des Sciences Appliquées, France* (25, 1, p. 30) Article based on AIAA Paper 21100

J87-006 Experimental Study of a Three-Dimensional, Shear-Driven, Turbulent Boundary Layer. David M. Driver and Shesagiri K. Hebbar, *NASA Ames Research Center* (25, 1, p. 35) Article based on AIAA Paper 85-1610

J87-007 Response of the Cavity Shear Layer Oscillations to External Forcing. M. Gharib, *California Institute of Technology* (25, 1, p. 43) Article based on AIAA Paper 85-0528

J87-008 Surface Recession and Backface Temperature of Laser-Irradiated Opaque Slabs. Claude A. Klein, *Raytheon*

Company (25, 1, p. 48) Synoptic based on AIAA Paper 84-1782

J87-009 Acoustic and Turbulence Influences on Stall Hysteresis. J. F. Marchman III, V. Sumantran and C. G. Schaefer, *Virginia Polytechnic Institute and State University* (25, 1, p. 50) Synoptic based on AIAA Paper 86-0170

J87-010 Interaction of Aircraft and Explosive Eruption Clouds: A Volcanologist's Perspective. William I. Rose, *Michigan Technological University* (25, 1, p. 52) Article

J87-011 A High Flux Source of Energetic Oxygen Atoms for Material Degradation Studies. George E. Caledonia, Robert H. Krich and Byron D. Green, *Physical Sciences Inc.* (25, 1, p. 59) Article based on AIAA Paper 85-7015 CP859

J87-012 Wide-Field Shadowgraphy of Tip Vortices from a Helicopter Rotor. S. P. Parthasarathy, Y. I. Cho and L. H. Back, *Jet Propulsion Laboratory, California Institute of Technology* (25, 1, p. 64) Article based on AIAA Paper 85-1557

J87-013 Computation of Transonic Flows in Turbomachines Using the Runge-Kutta Integration Scheme. S. V. Subramanian and R. Bozzola, *AVCO-Lycoming Textron* (25, 1, p. 71) Synoptic based on AIAA Paper 85-1332

J87-014 Preheating Slow-Burning Pyrotechnic Compositions to Aid Ignition and Combustion. V. K. Rao and M. F. Bardon, *Royal Military College of Canada*; and P. Twardawa, *Defense Research Establishment Valcartier, Canada* (25, 1, p. 73) Article

J87-015 Numerical Investigation of Unsteady Inlet Flowfields. T. Hsieh, A. B. Wardlaw Jr. and P. Collins, *U. S. Naval Surface Weapons Center*; and T. Coakley, *NASA Ames Research Center* (25, 1, p. 75) Article based on AIAA Paper 84-0031

J87-016 Prediction of Aluminum Combustion Efficiency in Solid Propellant Rocket Motors. Richard S. Larson, *Sandia National Laboratories* (25, 1, p. 82) Article

J87-017 Direct Numerical Simulation of Axisymmetric Jets. F. F. Grinstein, *Berkeley Research Associates, Inc.*; E. S. Oran and J. P. Boris, *U. S. Naval Research Laboratory* (25, 1, p. 92) Article based on AIAA Paper 86-0039

J87-018 Large Deflection Behavior of Circular Quasi-Isotropic Laminates Under Point Loading. Ajit Kelkar, *North Carolina A&T State University*; W. Elber, *NASA Langley Research Center*; and I. S. Raju, *Analytical Services and Materials Inc.* (25, 1, p. 99) Article based on AIAA Paper 85-0723 CP851

J87-019 Geometrical and Material Nonlinear Properties of Two-Dimensional Fabric Composites. Takashi Ishikawa, Masamichi Matsushima and Youichi Hayashi, *National Aerospace Laboratory, Japan* (25, 1, p. 107) Article

J87-020 Thermodynamically Consistent Constitutive Equations for Nonisothermal Large-Strain, Elastoplastic, Creep Behavior. Richard Riff, Robert L. Carlson and George J. Simitses, *Georgia Institute of Technology* (25, 1, p. 114) Article based on AIAA Paper 85-0621 CP851

J87-021 Effects of Transverse Shearing on Cylindrical Bending, Vibration, and Buckling of Laminated Plates. Manuel Stein and Dawn C. Jegley, *NASA Langley Research Center* (25, 1, p. 123) Article based on AIAA Paper 85-0774 CP851

J87-022 Large-Deflection and Nonlinear Vibration of Multi-

layered Sandwich Plates. S. V. Rajagopal, Gajbir Singh and Y. V. K. Sadasiva Rao, *Vikram Sarabhai Space Centre, India* (25, 1, p. 130) Article

J87-023 Effect of Sensor and Actuator Errors on Static Shape Control for Large Space Structures. Raphael T. Haftka, *Virginia Polytechnic Institute and State University*; and Howard M. Adelman, *NASA Langley Research Center* (25, 1, p. 134) Article

J87-024 Structural Sizing by Generalized, Multilevel Optimization. Jaroslaw Sobieszczański-Sobieski, *NASA Langley Research Center*; Benjamin B. James and Michael F. Riley, *Kentron International, Inc.* (25, 1, p. 139) Article based on AIAA Paper 85-0697 CP851

J87-025 Free Vibration Solution for Clamped Orthotropic Plates Using Lagrangian Multiplier Technique. R. L. Ramkumar, P. C. Chen and W. J. Sanders, *Northrop Corporation* (25, 1, p. 146) Article

J87-026 Driven-Base Tests for Modal Parameter Estimation. F. R. Vigneron and Y. Soucy, *Communications Research Center, Canada* (25, 1, p. 152) Article based on AIAA Paper 86-0870 CP863

J87-027 Velocity Predictions of Contrawirling Jets in a Suddenly Expanding Confinement. Sidh N. Singh, Dev P. Agrawal, Ramesh C. Malhotra and Ashok K. Raghava, *Indian Institute of Technology* (25, 1, p. 161) Technical Note

J87-028 Relationship Between Pseudocompressible and Unsteady Compressible Flow at Low Mach Numbers. Jack Strigberger, *Eisenhower Medical Center* (25, 1, p. 163) Technical Note

J87-029 Turbulent Mixing in Nonsteady Jets. S. M. Kato, B. C. Groenewegen and R. E. Breidenthal, *University of Washington* (25, 1, p. 165) Technical Note based on AIAA Paper 86-0042

J87-030 Effect of Reynolds Number on the Structure of Recirculating Flow. Ahmed F. Ghoniem, *Massachusetts Institute of Technology*; and James A. Sethian, *University of California, Berkeley* (25, 1, p. 168) Technical Note based on AIAA Paper 85-0146

J87-031 Experimental Evaluation of Approximations for w^2 and vw^2 . R. S. Azad, S. Z. Kassab and T. H. Dang, *University of Manitoba, Canada* (25, 1, p. 171) Technical Note

J87-032 Conical Separated Flows with Shock and Shed Vorticity. F. Marconi, *Grumman Corporate Research Center* (25, 1, p. 173) Technical Note

J87-033 Supersonic Laminar Flow Development in a Square Duct. D. O. Davis and F. B. Gessner, *University of Washington*; and G. D. Kerlick, *NASA Ames Research Center* (25, 1, p. 175) Technical Note

J87-034 Electron and Vibrational Energy Conservation Equations for Aeroassisted Orbital Transfer Vehicles. Katsuhisa Koura, *National Aerospace Laboratory, Japan* (25, 1, p. 178) Technical Note

J87-035 Navier-Stokes Similarity Solution for the Planar Liquid Wall Jet. Arthur Rubel, *Grumman Corporate Research Center* (25, 1, p. 179) Technical Note

Technical Comment by H. Chuang, *University of Louisville* (25, 8, p. 1147)
Reply (25, 8, p. 1148)

J87-036 Flows about a Rotating Circular Cylinder by the Discrete-Vortex Method. Takeyoshi Kimura and Michihisa Tsutahara, *Kobe University, Japan* (25, 1, p. 182) Technical Note

J87-037 Numerical Solutions of Viscous Transonic Flow in Turbomachinery Cascades. V. Iyer and E. von Lavante, *Texas A&M University* (25, 1, p. 184) Technical Note based on AIAA Paper 85-0007

J87-038 Optimal Barrel-Shaped Shells Under Buckling Constraints. J. Blachut, *University of Liverpool, England* (25, 1, p. 186) Technical Note

J87-039 Conservative Full-Potential Model for Unsteady Transonic Rotor Flows. Roger C. Strawn and Francis X. Caradonna, *U. S. Army Aeroflightdynamics Directorate, NASA Ames Research Center* (25, 2, p. 193) Article based on AIAA Paper 86-0079

J87-040 Generalized Discrete Vortex Method for Cylinders Without Sharp Edges. P.A. Smith and P. K. Stansby, *University of Manchester, England* (25, 2, p. 199) Synoptic

J87-041 Coherent Motion in Excited Free Shear Flows. Israel J. Wygnanski, *Tel-Aviv University, Israel*; and Robert A. Petersen, *University of Arizona* (25, 2, p. 201) Article based on AIAA Paper 85-0539

J87-042 Some Aspects of Shock Wave Research. I. I. Glass, *University of Toronto Institute for Aerospace Studies* (25, 2, p. 214) Article based on AIAA Paper 86-0306

J87-043 A Fast, Time Accurate, Unsteady Full Potential Scheme. Vijaya Shankar, Ide Hiroshi and Joseph Gorski, *Rockwell International Science Center*; and Stanley Osher, *University of California* (25, 2, p. 230) Article based on AIAA Paper 85-1512 CP854

J87-044 Numerical Study of Transition Control by Periodic Suction Blowing. Biringen, S., *University of Colorado*; W. E. Nutt and M. J. Caruso, *University of New Hampshire* (25, 2, p. 239) Article based on AIAA Paper 85-1700

J87-045 Numerical Simulation of Transient Inviscid Shock Tube Flows. J. Y. Yang, *NASA Ames Research Center*; C. K. Lombard, *PEDA Corporation*; and D. Bershad, *Stanford University* (25, 2, p. 245) Article based on AIAA Paper 85-1679

J87-046 Transonic Separated Flow Predictions with an Eddy-Viscosity/Reynolds-Stress Closure Model. D. A. Johnson, *NASA Ames Research Center* (25, 2, p. 252) Article based on AIAA Paper 85-1683

J87-047 High Reynolds Number Separated Flow Solutions Using Navier-Stokes and Approximate Equations. M. Napolitano, *Università degli Studi di Bari, Italy* (25, 2, p. 260) Article based on AIAA Paper 85-1668

J87-048 Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear Coordinates. H. C. Yee, *NASA Ames Research Center*; and A. Harten, *Tel Aviv University, Israel* (25, 2, p. 266) Article based on AIAA Paper 85-1513 CP854

J87-049 Passive Shock-Wave/Boundary-Layer Control on a Wall-Mounted Model. S. Raghunathan, *The Queen's University of Belfast, Northern Ireland*; and D. G. Mabey, *Royal Aircraft Establishment, England* (25, 2, p. 275) Article based on AIAA Paper 86-0285

J87-050 Numerical Analysis of a Natural and Excited Two-

Dimensional Mixing Layer. A. Kourta, *Institut de Mécanique des Fluides de Toulouse, France*; M. Braza, P. Chassaing and H. Haminh, *Institut de Mécanique des Fluides de Toulouse, France* (25, 2, p. 279) Article

J87-051 Spanwise Propagation of Upstream Influence in Conical Swept Shock/Boundary-Layer Interactions. G. R. Inger, *Iowa State University* (25, 2, p. 287) Article

J87-052 Holographic Interferometry Study of an Axisymmetric Shock-Wave/Boundary Layer Strong Interaction Flow. S. E. Dunagan and J. L. Brown, *NASA Ames Research Center*; and J. B. Miles, *University of Missouri* (25, 2, p. 294) Article based on AIAA Paper 85-1564

J87-053 Reconstruction of a Three-Dimensional, Transonic Rotor Flowfield from Holographic Interferograms. Yung H. Yu and John K. Kittleson, *Aeroflightdynamics Directorate* (25, 2, p. 300) Article based on AIAA Paper 85-0370

J87-054 Turbulence-Induced Spectral Bias in Laser Anemometry. C. Tropea, *Universität Erlangen-Nürnberg, Federal Republic of Germany* (25, 2, p. 306) Article

J87-055 An Analytical and Experimental Study of a Control System's Sensitivity to Structural Modifications. Raphael T. Haftka, Zoran N. Martinovic, William L. Hallauer Jr. and George Schamel, *Virginia Polytechnic Institute and State University* (25, 2, p. 310) Article based on AIAA Paper 85-0807 CP851

J87-056 Static and Dynamic Analysis of Clamped Orthotropic Plates Using Lagrangian Multiplier Technique. P. C. Chen and R. L. Ramkumar, *Northrop Corporation* (25, 2, p. 316) Article based on AIAA Paper 86-0932 CP863

J87-057 Buckling and Nonlinear Response of Imperfect Three-Legged Truss Columns. Dov Elyada and Charles D. Babcock, *California Institute of Technology* (25, 2, p. 324) Article based on AIAA Paper 86-0974 CP863

J87-058 Stochastic Response of Nonlinear Structures with Parameter Random Fluctuations. R. A. Ibrahim and H. Heo, *Texas Tech University* (25, 2, p. 331) Article based on AIAA Paper 86-0962 CP863

J87-059 Spectral and Total Radiation Properties of Turbulent Carbon Monoxide/Air Diffusion Flames. J. P. Gore, S.-M. Jeng and G. M. Faeth, *University of Michigan* (25, 2, p. 339) Article based on AIAA Paper 86-0294

J87-060 Marching Control Volume Finite-Element Calculation for Developing Entrance Flow. Zhigang Fang and Aaron Jaan Saber, *Concordia University, Canada* (25, 2, p. 346) Technical Note

J87-061 Transonic Airfoil Design Procedure Utilizing a Navier-Stokes Analysis Code. Naoki Hirose, *National Aerospace Laboratory Japan*; Susumu Takanashi and Nobuhiro Kawai, *National Aerospace Laboratory, Japan* (25, 3, p. 353) Article based on AIAA Paper 85-1592

J87-062 Total Pressure Loss in Vortical Solutions of the Conical Euler Equations. Kenneth G. Powell, Murman Earll M., Eric S. Perez and Judson R. Baron, *Massachusetts Institute of Technology* (25, 3, p. 360) Article based on AIAA Paper 85-1701

J87-063 Navier-Stokes Simulations of Transonic Flows over a Practical Wing Configuration. Kozo Fujii, *National Aerospace Laboratory, Japan*; and Shigeru Obayashi, *University of Tokyo* (25, 3, p. 369) Synoptic based on AIAA Paper 86-0513

J87-064 Influence of Initial and Boundary Conditions on Vortex Ring Development. J. Z. Irdmusa and C. A. Garris, *George Washington University* (25, 3, p. 371) Synoptic

J87-065 Variation of Entrainment in Annular Jets. John M. Kuhlman, *West Virginia University* (25, 3, p. 373) Article based on AIAA Paper 86-1111

J87-066 Analysis of Three-Dimensional Separated Flow with the Boundary-Layer Equations. David E. Edwards and James E. Carter, *United Technologies Research Center*; and Frank T. Smith, *University College London, England* (25, 3, p. 380) Article based on AIAA Paper 85-1499 CP854

J87-067 Direct Measurements of Drag of Ribbon-Type Manipulators in a Turbulent Boundary Layer. S. P. Govindaraju and F. W. Chambers, *Lockheed-Georgia Company* (25, 3, p. 388) Article based on AIAA Paper 86-0284

J87-068 Efficient Simulation of Separated Three-Dimensional Viscous Flows Using the Boundary-Layer Equations. William R. Van Dalsem and Joseph L. Steger, *NASA Ames Research Center* (25, 3, p. 395) Article based on AIAA Paper 85-4064

J87-069 Hybrid MacCormack and Implicit Beam-Warming Algorithms for a Supersonic Compression Corner. C. Ong and D. Knight, *Rutgers, The State University of New Jersey* (25, 3, p. 401) Article based on AIAA Paper 86-0204

J87-070 Computation of Dynamic Stall of a NACA-0012 Airfoil. Yoshifumi Shida, *University of Tokyo*; Kunio Kuwahara, *Institute of Space and Astronautical Science, Japan*; Kiyoshi Ono, *Nihon University, Japan*; and Hideo Takami, *University of Tokyo* (25, 3, p. 408) Article based on AIAA Paper 86-0116

J87-071 Turbulent Channel and Couette Flows Using an Anisotropic $k-\epsilon$ Model. Shoiti Nisizima and Akira Yoshizawa, *University of Tokyo* (25, 3, p. 414) Article

J87-072 Analysis of Transitional Separation Bubbles on Infinite Swept Wings. R. L. Davis and Carter J. E., *United Technologies Research Center*; and E. Reshotko, *Case Western Reserve University* (25, 3, p. 421) Article based on AIAA Paper 85-1685

J87-073 Characteristics of Air Jets Discharging Normally into a Swirling Crossflow. Saad A. Ahmed and Ronald M. C. So, *Arizona State University* (25, 3, p. 429) Article

J87-074 Spectra Noise and Amplified Turbulence Emanating from Shock-Turbulence Interaction. Herbert S. Ribner, *University of Toronto and NASA Langley Research Center* (25, 3, p. 436) Article

J87-075 New Method for Eliminating the Statistical Bias in Highly Turbulent Flow Measurements. Shin-ichi Nakao and Yoshiya Terao, *National Research Laboratory of Metrology, Japan*; and Kei-ichiro Hirata, *Kitakyushu Industrial Research Institute, Japan* (25, 3, p. 443) Article

J87-076 Solution of Inverse Problem of Transonic Flow on S_2 Surface Using an Elliptic Algorithm. Hongji Chen and Chung-Hua Wu, *Chinese Academy of Sciences, China* (25, 3, p. 448) Article

J87-077 Prediction of Central Recirculation Zone Size for a Complete Burner-Quarl-Furnace System. Eugen-Dan B. Cristea, *Institute of Scientific Research and Engineering for Power Equipment, Romania* (25, 3, p. 457) Article

J87-078 Effective Moduli of Composite Materials in Dynamic Problems. Shangchow Chang, *Northwestern Polytechnical University, China* (25, 3, p. 464) Article

J87-079 Nonlinear Analysis of Pretwisted Rods Using 'Principal Curvature Transformation' Part I: Theoretical Derivation. Aviv Rosen, Robert G. Loewy and Mathew B. Mathew, *Rensselaer Polytechnic Institute* (25, 3, p. 470) Article

J87-080 Buckling of Viscoelastic Beam Columns. A. M. Vinogradov, *University of Calgary, Canada* (26, 3, p. 479) Article based on AIAA Paper 86-0975 CP863

J87-081 Frequency-Load Interaction of Imperfect Angle-Ply Cylindrical Panels Under Compression and Pressure. Isaac Du and David Hui, *Ohio State University* (25, 3, p. 484) Article

J87-082 A Modular Approach for Three-Dimensional Shape Optimization of Structures. R. J. Yang and M. E. Botkin, *General Motors Research Laboratories* (25, 3, p. 492) Article based on AIAA Paper 86-1009 CP863

J87-083 Skin Friction Measurements Following Manipulation of a Turbulent Boundary Layer. V. D. Nguyen, *Laval University, Canada*; A. M. Savill, *University of Cambridge, England*; and R. V. Westphal, *NASA Ames Research Center* (25, 3, p. 498) Technical Note

J87-084 Motion of Bubbles in a Varying Pressure Field. Michael Mond, *Ben-Gurion University of the Negev, Israel* (25, 3, p. 500) Technical Note

J87-085 Optimization of Equivalent Periodic Truss Structures. M. Lajczok, *Martin Marietta Denver Aerospace* (25, 3, p. 502) Technical Note

J87-086 Perfect Gas Effects in Compressible Rapid Distortion Theory. E. J. Kerschen and M. R. Myers, *University of Arizona* (25, 3, p. 504) Technical Note

J87-087 Self-Adaptive-Grid Method with Application to Airfoil Flow. Kazuhiro Nakahashi, *National Aerospace Laboratory, Japan*; and George S. Deiwert, *NASA Ames Research Center* (25, 4, p. 513) Article based on AIAA Paper 85-1525 CP854

J87-088 Experimental Investigation of a Swirling, Axisymmetric, Turbulent Boundary Layer with Pressure Gradient. S. K. Hebbard, *Tuskegee University*; and D. M. Driver, *NASA Ames Research Center* (25, 4, p. 521) Synoptic based on AIAA Paper 85-1668

J87-089 Relaxation Algorithms for the Euler Equations. S. F. Wornom, *NASA Langley Research Center*; and M. M. Hafez, *University of California* (25, 4, p. 523) Synoptic based on AIAA Paper 85-1516 CP854

J87-090 Finite-Volume Solution of the Compressible Boundary-Layer Equations. Bernard Loyd and Earll M. Murman, *Massachusetts Institute of Technology* (25, 4, p. 525) Synoptic based on AIAA Paper 86-0436

J87-091 Upwind Relaxation Algorithms for the Navier-Stokes Equations. James L. Thomas, *NASA Langley Research Center*; and Robert W. Walters, *Virginia Polytechnic Institute & State University* (25, 4, p. 527) Article based on AIAA Paper 85-1501 CP854

J87-092 Upwind Navier-Stokes Solutions for Separated Periodic Flows. Christopher L. Rumsey, James L. Thomas, Gary P. Warren and Grace C. Liu, *NASA Langley Research Center* (25, 4, p. 535) Article based on AIAA Paper 86-0247

J87-093 Noniterative Parabolic Grid Generation for Parabolized

Equations. J. K. Hodge, S. A. Leone and R. L. McCarty, *U. S. Air Force Institute of Technology* (25, 4, p. 542) Article based on AIAA Paper 85-1682

J87-094 Boundary Layers in Planes of Symmetry, Part I: Experiments in Turbulent Flow. V. C. Patel and J. H. Baek, *University of Iowa* (25, 4, p. 550) Article

J87-095 Numerical Solution for the Scattering of Sound Waves by a Circular Cylinder. R. T. Ling, *Northrop Aircraft Division* (25, 4, p. 560) Article based on AIAA Paper 86-1880

J87-096 Time-Averaged Pressure of Fluctuating Gas Motion in Small-Diameter Tubes. Zbyszko Kazimierski and Janusz Trojnarski, *Technical University of Lodz, Poland* (25, 4, p. 567) Article

J87-097 Experimental Examination of a Prevaporized Premixed Combustor. C. L. Proctor II, *University of Florida*; and A. M. Mellor, *Drexel University* (25, 4, p. 573) Article based on AIAA Paper 82-1074

J87-098 Heat Release Effects on Shear-Layer Growth and Entrainment. J. C. Hermanson, M. G. Mungal and P. E. Dimotakis, *California Institute of Technology* (25, 4, p. 578) Article based on AIAA Paper 85-0142

J87-099 Experimental Investigation of the Characteristics of Solid-Propellant, Velocity-Coupled Response Functions. L. L. Narayanaswami, B. T. Zinn and B. R. Daniel, *Georgia Institute of Technology* (25, 4, p. 584) Article based on AIAA Paper 85-0235

J87-100 Effect of Geometry on Ignition of a Reactive Solid: Square Corner. Lolke G. Vorsteveld and C. E. Hermance, *University of Vermont* (25, 4, p. 592) Article based on AIAA Paper 86-0530

J87-101 Nonlinear Analysis of Pretwisted Rods Using 'Principal Curvature Transformation,' Part II: Numerical Results. Avi Rosen, Robert G. Loewy and Mathew B. Mathew, *Rensselaer Polytechnic Institute* (25, 4, p. 598) Article

J87-102 Postbuckling Behavior of a Clamped, Elastically Supported Planar Structure Under Follower Force. Lech Tomski and Jacek Przybylski, *Czestochowa Institute of Technology, Poland* (25, 4, p. 605) Article

J87-103 Nonlinear Dynamics of Slender Rods. A. Rosen, R. G. Loewy and M. B. Mathew, *Rensselaer Polytechnic Institute* (25, 4, p. 611) Article

J87-104 Explanation of Thermal Rectification. Somers R. R. II, *IIRW Consulting Engineers*; L. S. Fletcher, *Texas A&M University*; and R. D. Flack, *University of Virginia* (25, 4, p. 620) Synoptic based on AIAA Paper 84-0398

J87-105 Force Coefficients for a NACA-0015 Airfoil Undergoing Constant Pitch Rate Motions. J. H. Strickland, *Sandia National Laboratories*; and G. M. Graham, *Ohio University* (25, 4, p. 622) Technical Note based on AIAA Paper 86-0008

J87-106 Trailing-Edge Separation/Stall Alleviation. M. J. Werle, R. W. Paterson and W. M. Presz Jr., *United Technologies Research Center* (25, 4, p. 624) Technical Note

J87-107 Pressure Fluctuation Measurements with Passive Shock/Boundary-Layer Control. Northern Ireland Raghu-nathan S., *The Queen's University of Belfast* (25, 4, p. 626) Technical Note

J87-108 Initial Instability in a Freejet Mixing Layer Measured by Laser Doppler Anemometry. S. Einav, J. M. Avidor and E. Gutmark, *Tel Aviv University, Israel*; and M. Gaster, *National Maritime Institute, England* (25, 4, p. 628) Technical Note Errata (25, 10, p. 1404)

J87-109 Dynamic Buckling of Orthotropic Spherical Caps Supported by Elastic Media. R. K. Jain and Y. Nath, *Indian Institute of Technology, India* (25, 4, p. 630) Technical Note

J87-112 Numerical Solution of Incompressible Flows by a Marching Multigrid Nonlinear Method. Moshe Rosenfeld and Moshe Israeli, *Technion-Israel Institute of Technology* (25, 5, p. 641) Article based on AIAA Paper 85-1500 CP854

J87-113 Two-Phase Flow Around a Two-Dimensional Cylinder. B. V. R. Vittal and W. Tabakoff, *University of Cincinnati* (25, 5, p. 648) Article based on AIAA Paper 86-0349

J87-114 Longitudinal Flow Along Circular Cylinders and Thick Plates, Including Blunt Leading-Edge Separation. A. Halim, *U. S. Air Force Institute of Technology*; and U. Ghia, *University of Cincinnati* (25, 5, p. 655) Article based on AIAA Paper 82-0024

J87-115 Effects of Acoustic Disturbances on Measured Flow Characteristics Through a Contraction. J. Tan-atichat and S. Harandi, *State University of New York at Buffalo* (25, 5, p. 659) Article based on AIAA Paper 86-0766 CP861

J87-116 Turbulent Boundary-Layer Properties Downstream of the Shock-Wave/Boundary-Layer Interaction. D. W. Kuntz, *Sandia National Laboratories*; V. A. Amatucci and A. L. Addy, *University of Illinois at Urbana-Champaign* (25, 5, p. 668) Article based on AIAA Paper 86-0348

J87-117 Numerical Analysis of Three-Dimensional Elastic Membrane Wings. P. S. Jackson, *University of Auckland, New Zealand*; and G. W. Christie, *Systems Science and Research, New Zealand* (25, 5, p. 676) Article

J87-118 Computation of Shock Wave Reflection by Circular Cylinders. J. Y. Yang, Yen Liu and Harvard Lomax, *NASA Ames Research Center* (25, 5, p. 683) Article based on AIAA Paper 86-0272

J87-119 Experiments on Supersonic Turbulent Flow Development in a Square Duct. F. B. Gessner, *University of Washington*; S. D. Ferguson, *Boeing Aerospace Company*; and C. H. Lo, *Spectra Technology Inc.* (25, 5, p. 690) Article based on AIAA Paper 86-1038

J87-120 Lifting Surface Calculations in the Laplace Domain with Application to Root Loci. Tetsuhiko Ueda, *National Aerospace Laboratory, Japan* (25, 5, p. 698) Article based on AIAA Paper 86-0866 CP863

J87-121 Laser-Ablation in Graphite: Application of the Heat-Balance Integral Method. Claude A. Klein and Richard L. Gentilman, *Raytheon Company* (25, 5, p. 705) Article based on AIAA Paper 85-0940

J87-122 Two-Dimensional Analysis of a 16- μm CO₂ Downstream-Mixing Gasdynamic Laser. Purandar Chakravarty, *Indian Institute of Science, India*; N. M. Reddy and K. P. J. Reddy, *Indian Institute of Science, India* (25, 5, p. 713) Article

J87-123 Laser Measurements of Solid-Particle Rebound Parameters Impacting on 2024 Aluminum and 6A1-4V Titanium Alloys. W. Tabakoff, M. F. Malak and A. Hamed, *University*

of Cincinnati (25, 5, p. 721) Article based on AIAA Paper 85-1570

J87-124 Drop Formation Mechanism in a Vertically Vibrated Liquid Column. H. Hashimoto and S. Sudo, *Tohoku University, Japan* (25, 5, p. 727) Article

J87-125 Buckling Coefficients for Fiber-Reinforced Plastic-Faced Sandwich Plates Under Combined Loading. Koganti Mohana Rao, *Indian Institute of Technology, India* (25, 5, p. 733) Article

J87-126 Component Mode Synthesis for Damped Structures. Kenji Kubomura, *Beloit Manhattan, Inc.* (25, 5, p. 740) Article

J87-127 Characteristics, Control, and Uses of Liquid Streams in Space. E. P. Muntz and Melissa Orme, *University of Southern California* (25, 5, p. 746) Article based on AIAA Paper 85-0305

J87-128 Effect of Porosity Strength on Passive Shock-Wave/Boundary-Layer Control. S. Raghunathan, *The Queen's University of Belfast, Northern Ireland* (25, 5, p. 757) Technical Note

J87-129 Effect of Vectored Suction on a Shock-Induced Separation. Sharad C. Purohit, *Vikram Sarabhai Space Center, India* (25, 5, p. 759) Technical Note

J87-130 Rapid Computation of Unsteady Transonic Cascade Flows. David Nixon, Keh-Lih Tzuoo and Alfred Ayoub, *Nielsen Engineering and Research, Inc.* (25, 5, p. 760) Technical Note

J87-131 Numerical Examination of a Tube-and Disk-Type Combustor Configuration. C. L. Proctor II, *University of Florida*; and A. M. Mellor, *Drexel University* (25, 5, p. 762) Technical Note based on AIAA Paper 82-1074

J87-132 Finite-Element Method for a Uniformly Loaded Cantilever Beam with General Cross Section. S. C. Lin, *Westinghouse Electric Corporation* (25, 5, p. 765) Technical Note

J87-133 Aerodynamic Coefficients of a Thin Elliptic Wing in Unsteady Motion. A. Hauptman and T. Miloh, *Tel-Aviv University, Israel* (25, 6, p. 769) Article

J87-134 Two-Dimensional Turbulent Separated Flow. Roger L. Simpson, *Virginia Polytechnic Institute and State University* (25, 6, p. 775) Synoptic based on AIAA Paper 85-0178

J87-135 Investigation of Two-Dimensional Shock-Wave/Boundary-Layer Interactions. Stanley A. Skebe, *United Technologies Research Center*; Isaac Greber, *Case Western Reserve University*; and Warren R. Hingst, *NASA Lewis Research Center* (25, 6, p. 777) Article

J87-136 Multigrid Approximate Factorization Scheme for Two-Element Airfoil Flows. G. Volpe, *Grumman Corporate Research Center* (25, 6, p. 784) Article based on AIAA Paper 86-1664

J87-137 Concurrent-Processing Adaptations of a Multiple-Grid Algorithm. Gary M. Johnson and Julie M. Swisselm, *Institute for Scientific Computing*; and Swarn P. Kumar, *Colorado State University* (25, 6, p. 792) Article based on AIAA Paper 85-1508 CP854

J87-138 Accurate Transonic Wave Drag Prediction Using Simple Physical Models. Josef Mertens, Karl D. Klevenhusen and Heinz Jacob, *Messerschmidt-Bölkow-Blohm GmbH, Federal Republic of Germany* (25, 6, p. 799) Article based on AIAA Paper 86-0512

J87-139 Flow Past V-Groove Circular Cylinders. N. W. M. Ko, Y. C. Leung and J. J. J. Chen, *University of Hong Kong* (25, 6, p. 806) Article

J87-140 Boundary Layers in Planes of Symmetry, Part II: Calculations for Laminar and Turbulent Flows. V. C. Patel and J. H. Baek, *University of Iowa* (25, 6, p. 812) Article

J87-141 Flow Characteristics of Laminar Separation on Surface-Mounted Ribs. Shou-Shing Hsieh, *National Sun-Yat Sen University, Taiwan*; and Durn-Yuan Huang, *National Kaohsiung Institute of Technology, Taiwan* (25, 6, p. 819) Article

J87-142 Stability of Similarity Solutions by Two-Equation Models of Turbulence. W. Stützgen and N. Peters, *Rhein-Westf. Technische Hochschule, Federal Republic of Germany* (25, 6, p. 824) Article

J87-143 Computation of Low-Speed Flow with Heat Addition. Charles L. Merkle and Yun-Ho Choi, *The Pennsylvania State University* (25, 6, p. 831) Article

J87-144 Significance of Unsteady Thickness Noise Sources. Stewart A. L. Glegg, *Florida Atlantic University* (25, 6, p. 839) Article based on AIAA Paper 86-1964

J87-145 Several Numerical Schemes for the Computation of Unsteady Flow in Pulsed Lasers. B. N. Srivastava, G. Waldman, J. Cruickshank and J. Moran, *Avco Research Laboratory* (25, 6, p. 845) Article based on AIAA Paper 86-1076

J87-146 Efficient Calculation of Chemically Reacting Flow. Dean R. Eklund, *North Carolina State University*; J. Philip Drummond, *NASA Langley Research Center*; and H.A. Hassan, *North Carolina State University* (25, 6, p. 855) Synoptic based on AIAA Paper 86-0653 CP862

J87-147 Dynamics of Cylindrical Shells Containing Fluid Flows with a Developing Boundary Layer. M.P. Paidoussis and A.D. Mateescu, *McGill University, Canada* (25, 6, p. 857) Article

J87-148 Mean-Square Response of an Infinite Bernoulli-Euler Beam to Nonstationary Random Excitation. M. K. Macekyo, *Structural Dynamics Research Corporation*; and R. D. McGhie, *San Diego State University* (25, 6, p. 864) Article

J87-149 Nonlinear Substructuring Method for Concurrent Processing Computers. Olaf O. Storaasli, *NASA Langley Research Center*; and Pål Bergan, *Det Norske Veritas, Norway* (25, 6, p. 871) Article

J87-150 Control of Flexible Structures by Applied Thermal Gradients. Donald L. Edberg, *Jet Propulsion Laboratory, California Institute of Technology* (25, 6, p. 877) Article

J87-151 Analytic Near-Field Boundary Conditions for Transonic Flow Computations. P. Niederdrerk and E. Wedemeyer, *DFVLR-AVA, Federal Republic of Germany* (25, 6, p. 884) Technical Note

J87-152 Calibrating Boundary Layers for Suction. Ravi Bahl, *Punjab Engineering College, India* (25, 6, p. 886) Technical Note

J87-153 Transition from Laminar to Turbulent Flow in Separated Shear Layers. J. Leith Potter, *Vanderbilt University* (25, 6, p. 888) Technical Note

J87-154 Effects of Pitot Probe Shape on Measurement of Flow

Turbulence. Richard C. Jenkins, *Grumman Corporate Research Center* (25, 6, p. 889) Technical Note

J87-157 Flow Over a Trailing Flap and Its Asymmetric Wake. S. Acharya, D. Adair and J.H. Whitelaw, *Imperial College, England* (25, 7, p. 897) Article

J87-158 Time-Consistent Pressure Relaxation Procedure for Compressible Reduced Navier-Stokes Equations. S.V. Ramakrishnan and S.G. Rubin, *University of Cincinnati* (25, 7, p. 905) Article

J87-159 Time-Dependent Behavior of a Reattaching Shear Layer. David M. Driver, H. Lee Seegmiller and Joe G. Marvin, *NASA Ames Research Center* (25, 7, p. 914) Article based on AIAA Paper 83-1712

J87-160 Laminar Flow at the Trailing Edge of a Flat Plate. H. C. Chen and V. C. Patel, *University of Iowa* (25, 7, p. 920) Article

J87-161 Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations. Antony Jameson and Seokkwan Yoon, *Princeton University* (25, 7, p. 929) Article based on AIAA Paper 86-0105

J87-162 Numerical Simulation and Comparison with Experiment for Self-Excited Oscillations in a Diffuser Flow. T. Hsieh, *U. S. Naval Surface Weapons Center; T. J. Bogar, McDonnell Douglas Research Laboratories; and T. J. Coakley, NASA Ames Research Center* (25, 7, p. 936) Article based on AIAA Paper 85-1475

J87-163 Finite-Element Solutions of the Compressible Navier-Stokes Equations. W. G. Habashi, *Concordia University, Canada; M. F. Peeters, Pratt & Whitney, Canada; G. Guevremont, Concordia University, Canada; and M. M. Hafez, University of California at Davis* (25, 7, p. 944) Article

J87-164 Computational Aeroacoustics as Applied to the Diffraction of Sound by Cylindrical Bodies. M. M. S. Khan, W. H. Brown and K. K. Ahuja, *Lockheed-Georgia Company* (25, 7, p. 949) Article based on AIAA Paper 86-1879

J87-165 Computation of Rotating Turbulent Flow with an Algebraic Reynolds Stress Model. Matthew J. Warfield and B. Lakshminarayana, *The Pennsylvania State University* (25, 7, p. 957) Article based on AIAA Paper 86-0214

J87-166 Mixing Enhancement in Chemical Lasers, Part II: Theory. Richard J. Driscoll, *Bell Aerospace Textron* (25, 7, p. 965) Article

J87-167 Extinction of a Stagnation-Point Diffusion Flame at Reduced Gravity. David W. Fouch and James S. Tien, *Case Western Reserve University* (25, 7, p. 972) Article

J87-168 Advances and Trends in Computational Structural Mechanics. Ahmed K. Noor, *George Washington University, NASA Langley Research Center; and Satya N. Atluri, Georgia Institute of Technology* (25, 7, p. 977) Survey Paper

J87-169 Component Mode Iteration for Frequency Calculations. Jeffrey K. Bennighof, *University of Texas* (25, 7, p. 996) Article based on AIAA Paper 86-1023 CP863

J87-170 Force-State Mapping Identification of Nonlinear Joints. Edward F. Crawley and Kevin J. O'Donnell, *Massachusetts Institute of Technology* (25, 7, p. 1003) Article based on AIAA Paper 86-1013 CP863

J87-171 Thermal Effects on Weak Waves in a Radiative

Magnetogasdynamics Media. Arisudan Rai, M. Gaur and R. Ram, *Banaras Hindu University, India* (25, 7, p. 1011) Article

J87-172 Migration of Solid Particles Perpendicular to a Local Shear Flow Due to Local Instabilities. M. Fichman and D. Pnueli, *Technion-Israel Institute of Technology, Israel* (25, 7, p. 1016) Technical Note

J87-173 Computation of Unsteady Transonic Aerodynamics with Truncation Error Injection. K.-Y. Fung and J.-K. Fu, *University of Arizona* (25, 7, p. 1018) Technical Note based on AIAA Paper 85-1644

J87-174 New Eddy Viscosity Model for Computation of Swirling Turbulent Flows. Kwang Yong Kim, *Inha University, Korea; and Myung Kyoon Chung, Korea Advanced Institute of Science and Technology* (25, 7, p. 1020) Technical Note

J87-175 Entrainment Effect of a Leading-Edge Vortex. N. G. Verhaagen and A. C. H. Kruisbrink, *Delft University of Technology, the Netherlands* (25, 8, p. 1025) Article based on AIAA Paper 85-1584

J87-176 Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers. M. M. O'Meara and T. J. Mueller, *University of Notre Dame* (25, 8, p. 1033) Article based on AIAA Paper 86-1065

J87-177 Control of the Discrete Vortices from a Delta Wing. Mohamed Gad-el-Hak, *University of Notre Dame; and Ron F. Blackwelder, University of Southern California* (25, 8, p. 1042) Article based on AIAA Paper 86-1915

J87-178 Numerical Solutions of Euler Equations Using Simplified Flux Vector Splitting. E. von Lavante, *Old Dominion University; A. Haertl and D. Claes, Ruhr Universitaet, Federal Republic of Germany* (25, 8, p. 1050) Synoptic based on AIAA Paper 85-1333

J87-179 Lower-Upper Implicit Scheme for High-Speed Inlet Analysis. Seokkwan Yoon, *Sverdrup Technology, Inc.; and Antony Jameson, Princeton University* (25, 8, p. 1052) Synoptic based on AIAA Paper 86-1520

J87-180 Numerical Boundary Condition Procedures for Euler Solvers. David L. Marcum and Joe D. Hoffman, *Purdue University* (25, 8, p. 1054) Article based on AIAA Paper 86-0107

J87-181 Computation of Separated Flow Using the Space-Marching Conservative Supra-Characteristics Method. David C. Stookey and J. C. Tannehill, *Iowa State University* (25, 8, p. 1063) Article based on AIAA Paper 86-0564

J87-182 Stagnating Turbulent Flows. W. C. Strahle, R. K. Sigman and W. L. Meyer, *Georgia Institute of Technology* (25, 8, p. 1071) Article based on AIAA Paper 86-0437

J87-183 Turbulent Wake of a Flat Plate. V. C. Patel and H. C. Chen, *University of Iowa* (25, 8, p. 1078) Article

J87-184 Experimental Study of a Pressure-Driven, Three-Dimensional, Turbulent Boundary Layer. Shawn D. Anderson and John K. Eaton, *Stanford University* (25, 8, p. 1086) Article based on AIAA Paper 86-0211

J87-185 Laser-Sustained Plasmas in Forced Argon Convective Flow, Part I: Experimental Studies. Richard Welle, Dennis Keefer and Carroll Peters, *University of Tennessee Space Institute* (25, 8, p. 1093) Article based on AIAA Paper 86-1077

J87-186 Particle Sampling in Supersonic Streams with a

Thin-Walled Cylindrical Probe. L. J. Forney, *Georgia Institute of Technology*; and W. K. McGregor, *Sverdrup Technology, Inc.* (25, 8, p. 1100) Article

J87-187 Cathode Erosion Studies on MPD Thrusters. H. O. Schrade, M. Auweter-Kurtz and H. L. Kurtz, *University of Stuttgart, Federal Republic of Germany* (25, 8, p. 1105) Article based on AIAA Paper 85-2019

J87-188 First-Order Second-Moment Analysis of the Buckling of Shells with Random Imperfections. I. Elishakoff, *Techion-Israel Institute of Technology, Israel*; S. van Manen, *TNO-Institute for Building Materials and Structures, the Netherlands*; P. G. Vermeulen, *Fokker-Schiphol Oost, the Netherlands*; and J. Arbocz, *Delft University of Technology, the Netherlands* (25, 8, p. 1113) Article

J87-189 Design Sensitivity Analysis and Optimization of Nonlinear Structural Response Using Incremental Procedure. C. C. Wu and J. S. Arora, *University of Iowa* (25, 8, p. 1118) Article

J87-190 Active Control of Aerofoil Flutter. X. Y. Huang, *University of Cambridge, England* (25, 8, p. 1126) Article

J87-191 An Approach to Structure/Control Simultaneous Optimization for Large Flexible Spacecraft. Junjiro Onoda and Raphael T. Haftka, *Virginia Polytechnic Institute and State University* (25, 8, p. 1133) Article

J87-192 Tangential Velocity and Static Pressure Distributions in Vortex Chambers. Georgios H. Vatistas, *Concordia University, Canada* (25, 8, p. 1139) Technical Note

J87-193 Improved Predictions of Confined Jets with a Parabolic Computation of the Entrance Region. J. Zhu, G. Binder and J. L. Kueny, *Institut de Mecanique de Grenoble, France* (25, 8, p. 1141) Technical Note

J87-194 Rayleigh Measurements of Species Concentration in a Complex Turbulent Flow. W. A. de Groot, R. Latham, J. I. Jagoda and W. C. Strahle, *Georgia Institute of Technology* (25, 8, p. 1142) Technical Note

J87-195 Aeroelastic Derivatives as a Sensitivity Analysis of Nonlinear Equations. Giampiero Bindolino and Paolo Mantegazza, *Politechnico di Milano, Italy* (25, 8, p. 1145) Technical Note

J87-199 Further Visualization of Combined Wing Tip and Starting Vortex Systems. P. Freymuth, F. Fainash and W. Bank, *University of Colorado* (25, 9, p. 1153) Article

J87-200 Three-Dimensional Unsteady Euler Equations Solution on Dynamic Grids. Dave M. Belk, *U.S. Air Force Armament Laboratory, Eglin AFB*; J. Mark Janus and David L. Whitfield, *Mississippi State University* (25, 9, p. 1160) Synoptic based on AIAA Paper 85-1704

J87-201 Effects of Various Implicit Operators on a Flux Vector Splitting Method. E. von Lavante, *Old Dominion University*; D. Claes, *Ruhr Universität Bochum, Federal Republic of Germany*; and W. K. Anderson, *NASA Langley Research Center* (25, 9, p. 1162) Synoptic based on AIAA Paper 86-0273

J87-202 Characterization of Large-Scale Structures in a Forced Ducted Flow with Dumb. K. C. Schadow and K. J. Wilson, *U. S. Naval Weapons Center*; and E. Gutmark, *Tel Aviv University, Israel* (25, 9, p. 1164) Article

J87-203 Refined Numerical Solution of the Transonic Flow Past a Wedge. S. -M. Liang and K. -Y. Fung, *University of Arizona* (25, 9, p. 1171) Article based on AIAA Paper 85-1593

J87-204 Prediction of Sound Fields in Cavities Using Boundary-Element Methods. R. J. Bernhard, B. K. Gardner and C. G. Mollo, *Purdue University*; and C. R. Kipp, *AT&T Bell Laboratories* (25, 9, p. 1176) Article based on AIAA Paper 86-1864

J87-205 Viscid/Inviscid Interaction Analysis of Subsonic Turbulent Trailing-Edge Flows. Mark Barnett and Joseph M. Verdon, *United Technologies Research Center* (25, 9, p. 1184) Article based on AIAA Paper 87-0457

J87-206 Coupling Between Vehicle Motion and Slender Cone Transition. L. E. Ericsson, *Lockheed Missiles & Space Company, Inc.* (25, 9, p. 1194) Article based on AIAA Paper 86-1823 CP865

J87-207 Two-Dimensional Transonic Aerodynamic Design Method. Michael B. Giles and Mark Drela, *Massachusetts Institute of Technology* (25, 9, p. 1199) Article

J87-208 Simulation of Large-Eddy Structures in a Turbulent Boundary Layer. Mohamed Gad-el-Hak, *University of Notre Dame*; and Ron F. Blackwelder, *University of Southern California* (25, 9, p. 1207) Article based on AIAA Paper 87-0587

J87-209 Measurements of Entrainment and Mixing in Turbulent Jets. W. J. A. Dahm and P. E. Dimotakis, *California Institute of Technology* (25, 9, p. 1216) Article based on AIAA Paper 85-0056

J87-210 Laser-Sustained Plasmas in Forced Convective Argon Flow, Part II: Comparison of Numerical Model with Experiment. San-Mou Jeng, Dennis R. Keefer, Richard Welle and Carroll E. Peters, *University of Tennessee Space Institute* (25, 9, p. 1224) Article based on AIAA Paper 86-1078

J87-211 Optimal Design of a Vibrating Beam with Coupled Bending and Torsion. S. Hanagud, Aditi Chattopadhyay and C. V. Smith, *Georgia Institute of Technology* (25, 9, p. 1231) Article based on AIAA Paper 85-0643 CP851

J87-212 Mode Localization Phenomena in Large Space Structures. Oddvar O. Bendiksen, *Princeton University* (25, 9, p. 1241) Article based on AIAA Paper 86-0903 CP863

J87-213 Localized Vibrations of Disordered Multispan Beams: Theory and Experiment. Christophe Pierre, *University of Michigan*; De Man Tang and Earl H. Dowell, *Duke University* (25, 9, p. 1249) Article based on AIAA Paper 86-0934 CP863

J87-214 Improper Integrals in Theoretical Aerodynamics: The Problem Revisited. Mauricio Pazini Brandao, *Stanford University* (25, 9, p. 1258) Technical Note

J87-215 Exact and Asymptotic Expressions of the Lift Slope Coefficient of an Elliptic Wing. Aharon Hauptman, *California Institute of Technology* (25, 9, p. 1261) Technical Note

J87-216 Global Marching Technique for Predicting Separated Flows over Arbitrary Airfoils. Ahmad A. M. Halim, *U.S. Air Force Institute of Technology, Wright-Patterson AFB* (25, 9, p. 1263) Technical Note based on AIAA Paper 87-0591

J87-217 Similarity of Ejector Wall-Pressure Distributions. M. S. Chandrasekhara and A. Krothapalli, *Florida State University*; and D. Baganoff, *Stanford University* (25, 9, p. 1266) Technical Note

J87-218 Buckling of Shear-Deformable Plates. N. R. Senthilnathan, S. P. Lim, K. H. Lee and S. T. Chow, *National University of Singapore* (25, 9, p. 1268) Technical Note

J87-219 Temperature Variation of the Elastic Constants of Aluminum Alloy 2090-T81. J. Glazer and J. W. Morris Jr., *Lawrence Berkeley Laboratory*; S. A. Kim, M. W. Austin and H. M. Ledbetter, *National Bureau of Standards* (25, 9, p. 1271) Technical Note

J87-222 Newtonian Theory for the Compression Surface of Airfoils at Moderate or Large Incidence. H. T. Hemdan, *King Saud University, Saudi Arabia* (25, 10, p. 1281) Article

J87-223 Use of Conformal Mapping in Grid Generation for Complex Three-Dimensional Configurations. N. D. Halsey, *Douglas Aircraft Company* (25, 10, p. 1286) Article based on AIAA Paper 86-0497

J87-224 Block-Structured Solution Scheme for Analyzing Three-Dimensional Transonic Potential Flows. Akin Ecer and John T. Spyropoulos, *Purdue University at Indianapolis* (25, 10, p. 1292) Article

J87-225 Flow-Angle Measurements in a Rarefied Nozzle Plume. A. B. Bailey, *Calspan Corporation* (25, 10, p. 1301) Article

J87-226 Flow Interactions During Axisymmetric Spinup. S. Ibrani and H. Dwyer, *University of California at Davis* (25, 10, p. 1305) Article based on AIAA Paper 86-0036

J87-227 Pressure Field Generated by Jet-On-Jet Impingement. Nagy Nosseir, Uri Peled and Gregory Hildebrand, *San Diego State University* (25, 10, p. 1312) Article

J87-228 Conditional Sampling of Velocity in a Turbulent Nonpremixed Propane Jet. R. W. Schefer, V. Hartmann and R. W. Dibble, *Sandia National Laboratory* (25, 10, p. 1318) Article

J87-229 Structure of Supersonic Turbulent Flow Past a Sharp Fin. Doyle D. Knight, *Rutgers University*; C. C. Horstman, *NASA Ames Research Center*; Brian Shapey and Seymour Bogdonoff, *Princeton University* (25, 10, p. 1331) Article based on AIAA Paper 86-0343

J87-230 Buckling, Postbuckling, and Nonlinear Vibrations of Imperfect Plates. Rakesh K. Kapuria, *Virginia Polytechnic Institute and State University*; and T. Y. Yang, *Purdue University* (25, 10, p. 1338) Article

J87-231 Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils. Mark Drela and Michael B. Giles, *Massachusetts Institute of Technology* (25, 10, p. 1347) Article

J87-232 Adaptive Triangular Mesh Generation. Gordon Erlebacher, *NASA Langley Research Center*; and Peter R. Eiseman, *Columbia University* (25, 10, p. 1356) Article based on AIAA Paper 84-1607

J87-233 Calculating Turbulent Reacting Flows Using Finite Chemical Kinetics. J. B. Vos, *Delft University of Technology, the Netherlands* (25, 10, p. 1365) Article based on AIAA Paper 86-1655

J87-234 Use of Piezoelectric Actuators as Elements of Intelligent Structures. Edward F. Crawley and Javier de Luis, *Massachusetts Institute of Technology* (25, 10, p. 1373) Article based on AIAA Paper 86-0878 CP863

J87-235 Efficient Computation of Mode-Shape Derivatives for Large Dynamic Systems. I. U. Ojalvo, *University of Bridgeport* (25, 10, p. 1386) Article based on AIAA Paper 86-0871 CP863

J87-236 Sensitivity of Total Strain Energy of a Vehicle Structure to Local Joint Stiffness. Choon T. Chon, *Ford Motor Company* (25, 10, p. 1391) Article

J87-237 Space Frame Optimization Subject to Frequency Constraints. Tze Hsin Woo, *TRW Space and Technology Group* (25, 10, p. 1396) Article based on AIAA Paper 86-0877 CP863

J87-239 Discrete Vortex Computation of Separated Airfoil Flow. J. Basuki, *Indonesian Aircraft Industries, Indonesia*; and J. M. R. Graham, *Imperial College, England* (25, 11, p. 1409) Synoptic

J87-240 Experimental Investigations of the Flowfield of an Airfoil with Spoiler. Chyang S. Lee, *Stanford University*; and Satya Bodapati, *U. S. Naval Postgraduate School* (25, 11, p. 1411) Article

J87-241 Vortex Simulation of Forced/Unforced Mixing Layers. Osamu Inoue, *NASA Ames Research Center*; and Anthony Leonard, *California Institute of Technology* (25, 11, p. 1417) Synoptic based on AIAA Paper 87-0288

J87-242 Coherent Large-Scale Structures in High Reynolds Number Supersonic Jets. J. Lepikovsky, K. K. Ahuja and W. H. Brown, *Lockheed-Georgia Company*; and R. H. Burrin, *Lockheed Georgia Company* (25, 11, p. 1419) Article based on AIAA Paper 86-1941

J87-243 Influence of Numerical Dissipation on Computational Euler Equations for Vortex-Dominated Flows. Osama A. Kandil and Andrew H. Chuang, *Old Dominion University* (25, 11, p. 1426) Article

J87-244 Second-Order Upwind Differencing in a Recirculating Flow. S. P. Vanka, *Argonne National Laboratory* (25, 11, p. 1435) Article

J87-245 Arbitrary Motion Aerodynamics Using an Aeroacoustic Approach. Lyle N. Long and George A. Watts, *Lockheed California Company* (25, 11, p. 1442) Article

J87-246 Integrating Combustion Kinetic Rate Equations by Selective Use of Stiff and Nonstiff Methods. Krishnan Radhakrishnan, *NASA Lewis Research Center* (25, 11, p. 1449) Article based on AIAA Paper 85-0237

J87-247 Improved Finite-Difference Schemes for Transonic Potential Flow Calculations. M. Hafez, *University of California at Davis*; W. Whitlow Jr., *NASA Langley Research Center*; and S. Osher, *University of California at Los Angeles* (25, 11, p. 1456) Article based on AIAA Paper 84-0092

J87-248 Nonlinear Sensitivity Coefficients and Corrections in System Identification. C. P. Kuo and B. K. Wada, *Jet Propulsion Laboratory* (25, 11, p. 1463) Article based on AIAA Paper 86-0967 CP863

J87-249 Large Displacement Analysis of Naturally Curved and Twisted Composite Beams. O. A. Bauchau and C. H. Hong, *Rensselaer Polytechnic Institute* (25, 11, p. 1469) Article

J87-250 Compressive Failure Model for Anisotropic Plates with a Cutout. Zafer Gürdal and Raphael T. Haftka, *Virginia Polytechnic Institute and State University* (25, 11, p. 1476) Article based on AIAA Paper 86-1017 CP863

J87-251 Green's Function and Receptance for Structures Consisting of Beams and Plates. K. Kelkel, *University of Darmstadt, Federal Republic of Germany* (25, 11, p. 1482) Article based on AIAA Paper 86-0927 CP863

J87-252 Momentum Redistribution in a Briefly, Intensely Irradiated, Structural Element. George F. Carrier, *Harvard University*; Francis E. Fendell and Lawrence P. Muirhead, *TRW Space & Technology Group* (25, 11, p. 1490) Article

J87-253 Direct Update of Dynamic Mathematical Models from Modal Test Data. Bernd Caesar, *Dornier System GmbH, Federal Republic of Germany*; and Jörg Peter, *Technische Hochschule Darmstadt, Federal Republic of Germany* (25, 11, p. 1494) Article

J87-254 Vibration of Symmetrically Laminated Rectangular Plates Considering Deformation and Rotatory Inertia. J. A. Bowles, *U. S. Air Force Wright Aeronautical Laboratories*; A. N. Palazotto, *U. S. Air Force Institute of Technology*; and J. M. Whitney, *U. S. Air Force Wright Aeronautical Laboratories* (25, 11, p. 1500) Article

J87-255 Hysteresis of Vortex Development and Breakdown on an Oscillating Delta Wing. R. Atta and D. Rockwell, *Lehigh University* (25, 11, p. 1512) Technical Note

J87-256 Extrapolation of Velocity for Inviscid Solid Boundary Conditions. Ching-mao Hung, *NASA Ames Research Center* (25, 11, p. 1513) Technical Note

J87-257 Stability of Normal Shock Waves in Diffusers. Kazuyasu Matsuo, *Kyushu University, Japan*; Minoru Yaga, *Kyushu University, Japan*; and Hiroaki Mochizuki, *Kyushu University, Japan* (25, 11, p. 1515) Technical Note

J87-258 Unsteady Compressible Laminar Boundary-Layer Formed within a Centered Expansion Wave. T. J. Wang, *Chung-Shan Institute of Science & Technology, Taiwan* (25, 11, p. 1517) Technical Note

J87-259 Extension of Hypersonic, High-Incidence, Slender-Body Similarity. Richard W. Barnwell, *NASA Langley Research Center* (25, 11, p. 1519) Technical Note

J87-260 Similarity Rule for Sidewall Boundary-Layer Effects in Airfoil Testing. A. V. Murthy, *Old Dominion University Research Foundation* (25, 11, p. 1522) Technical Note

J87-261 Comparison of Five Methods for Determination of the Wall Shear Stress. Lars R. Saetran, *University of Trondheim NTH, Norway* (25, 11, p. 1524) Technical Note

J87-262 Wind-Tunnel Wall Corrections on a Two-Dimensional Plate by Conformal Mapping. Heinz Däppen, *Eidgenössische Technische Hochschule, Switzerland* (25, 11, p. 1527) Technical Note

J87-263 Approximate Analysis of Deflections and Frequencies of Short Beams. Shin-ichi Suzuki, *Nagoya University, Japan* (25, 11, p. 1530) Technical Note

J87-264 Vortex Roll-Up from an Elliptic Wing at Moderately Low Reynolds Number. Hiroshi Higuchi, José Quadrelli and Cesar Farell, *University of Minnesota* (25, 12, p. 1537) Article based on AIAA Paper 86-0562

J87-265 Two-Equation Turbulence Model Consistent with the Second Law. A. A. Busnaina, G. Ahmadi and S. J. Chowdhury, *Clarkson University* (25, 12, p. 1543) Synoptic based on AIAA Paper 86-0027

J87-266 Interpretation of Separation Lines from Surface Tracers in a Shock-Induced Turbulent Flow. Richard A. Gramann and David S. Dolling, *University of Texas at Austin* (25, 12, p. 1545) Synoptic based on AIAA Paper 86-1033

J87-267 Reformulation of the Parabolic Approximation for Waves in Stratified Moving Media. Gerry L. McAninch, *NASA Langley Research Center* (25, 12, p. 1547) Article based on AIAA Paper 86-1921

J87-268 Low Reynolds Number Modeling of Turbulent Flows

With and Without Wall Transpiration. Ronald M. C. So and Gevin Jong Yoo, *Arizona State University* (25, 12, p. 1556) Article

J87-269 Ray Theory of Gas Dynamic Discontinuities. Czeslaw P. Kentzer, *Purdue University* (25, 12, p. 1565) Article

J87-270 Block-Structured Solution of Euler Equations for Transonic Flows. Akin Ecer, John T. Spyropoulos and Vladimir Rubek, *Purdue University at Indianapolis* (25, 12, p. 1570) Article

J87-271 Numerical Investigation of Acoustic Refraction. Joseph D. Baum, *U. S. Naval Research Laboratory*; and Jay N. Levine, *Edwards Air Force Base* (25, 12, p. 1577) Article based on AIAA Paper 86-0533

J87-272 Navier-Stokes Simulations of Transonic Flows over a Wing-Fuselage Combination. Kozo Fujii, *National Aerospace Laboratory, Japan*; and Shigeru Obayashi, *University of Tokyo, Japan* (25, 12, p. 1597) Article based on AIAA Paper 86-1831 CP865

J87-273 Experimental Study of an Axisymmetric Cavitylike Flow. Keith Koenig, *Mississippi State University*; Larry D. Vincent, *Lockheed-Georgia Company*; and Lisa W. Griffin, *Lockheed Missle and Space Company* (25, 12, p. 1597) Article based on AIAA Paper 86-1067

J87-274 Accuracy of the Domain Material Derivative Approach to Shape Design Sensitivities. R. J. Yang and M. E. Botkin, *General Motors Research Laboratories* (25, 12, p. 1606) Article

J87-275 Finite Difference Analysis of Rotationally Symmetric Shells Under Discontinuous Distributed Loadings. Troy Alvin Smith, *U. S. Army Missile Command, Redstone Arsenal* (25, 12, p. 1611) Article

J87-276 A Model for Vortex Breakdown on Slender Wings. Joshua Ashenberg, *RAFAEL Armament Development Authority, Ministry of Defense, Israel* (25, 12, p. 1622) Technical Note

J87-277 Baldwin-Lomax Factors for Turbulent Boundary Layers in Pressure Gradients. Paul S. Granville, *David Taylor Naval Ship Research and Development Center* (25, 12, p. 1624) Technical Note

J87-278 Modification to the Osher Upwind Scheme for Use in Three Dimensions. Kristin A. Hessenius and Man Mohan Rai, *NASA Ames Research Center* (25, 12, p. 1625) Technical Note

J87-279 Entropy Production in Nonsteady General Coordinates. B. M. Argrow, G. Emanuel and M. L. Rasmussen, *University of Oklahoma* (25, 12, p. 1629) Technical Note

J87-280 Moment Exerted on a Coning Projectile by a Spinning Liquid in a Spheroidal Cavity. Charles A. Murphy, *U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground* (25, 12, p. 1631) Technical Note

J87-281 Optimum Design of Structures in a Fuzzy Environment. S. S. Rao, *Purdue University* (25, 12, p. 1633) Technical Note

J87-282 Iterative Study for Three-Dimensional Finite-Element Stress Analysis. W. C. Hwang and C. T. Sun, *University of Florida* (25, 12, p. 1636) Technical Note

J87-283 Error Bounds for Eigenvalues of Unconstrained Structures. Jaroslaw A. Czyz, *Industrial Institute of Construction Machinery, Poland* (25, 12, p. 1638) Technical Note

J87-284 Random Vibration of Cylindrical Shells. Anand V. Singh, *University of Western Ontario, Canada* (25, 12, p. 1641) Technical Note

