- Dijkstrats Algo (Revision)
- Bulman Ford
 Floyd Marshall

Dijksko's Algorithm (Single sourced shocket path)

D) There are N cities in a country, you are living in city-1.

Find minimum distance to reach every other Lity from city-1.

Expected output

D

distr 0 7 8 12 11 16 13

1 2 3 4 5 6 7

-> minimum wto so far starting from the source.

(6,1b)

```
# cock.-
   dut [N+1] , // \dist(i) = INT-max;
   minteap c Pair> heap;
  heap.inscut ( new Pair ( src, 0));
   while ( heap-size () !=0){
           Pair rp = heap. remove Min();
           if (dist (rp.v7 != INT-max) of confiner g
          else {
                   dist (rp.v) = rp.wsf;
                    for (int nbr: graph (rp.v7) {
                   If (dist (nbr) == INT-MAX) of

heap.insent (new Pair (nbr, rp. wsf + wt of));

current
edge
                                                     SC- O(Flog F)
     return dist [7;
```

→ If we have -re weights.

Shortest distance from 1 to 4 -> 6

But, if we apply Dijkstrois algo - 7. which is wrong.

arredy algorithm => it fails with -re weights.

Is it always possible to find the shortest distance from one node to another node? = No

3+2+(-6)+3+(-1)+2+(-6)+5=2.

Ty a graph dourit have -ve edge wit cycle, then how to find min distance to all nodes?

Bellman ford Algorithm

ky idea. → Minimum distance can be found by relating

all the edges at more N-1 times, irrespective

of the order in which edges are selected.

Why N-1 fimes?

The can have a maximum of all-ledges b/w

any pair of nodes.

N=6, E=6 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$. $\frac{1}{2}$ $\frac{1}{2}$

There is an updation in NH_ iteration, that means

there exists a path when no. of edges are greater than (

NI-1.

At least one of the edge is visited multiple times.

Defection of -ve edge weight cycle.

```
# code -->
             int dist[N+1], +i, dist[i] = 0
              dist(src] = 0;
\begin{cases} \operatorname{fir}(\hat{j}=1; \hat{j} \leq \hat{\epsilon}; \hat{j}^{*+}) \leq \\ \operatorname{dist} \left[ \operatorname{graph}[\hat{j}](\hat{0}) + \operatorname{graph}[\hat{j}](\hat{0}) \leq \\ \operatorname{dist} \left[ \operatorname{graph}[\hat{j}](\hat{0}) \right] = \operatorname{dist} \left[ \operatorname{graph}[\hat{j}](\hat{0}) \right] + \operatorname{graph}[\hat{j}](\hat{0}) \end{cases}
                                                                                                                                                             \begin{bmatrix} T_1C \rightarrow & O(N \times E) \\ S_2C \rightarrow & O(1) \end{bmatrix}
           ruturn dist(7;
```

(a) - y all edge who are +re Apply Dijkstra's algo by considering every node as the Lource nucle. T. C -> O(N. E. 109 E)

Apply Bellman Ford's Algo considering every node as source node. T. C. O(N2. 7)

Floyd Marshall's Algo

V noclus, consider them as intermediate nodes & try to relax the connected edges.

adj matrix

5

0

D

1

2

0

M

2 3 -4 00 D0 2

(70)

D

nucle-0 as intermediate node

1 - int node

	0	1	2	3
D	0	9	-4	11
١	6	D	2	2
,	11	5	10	7
2	11	3		0
3	Ø			

2 - int. node

Ф

D	1	2	3
		-4	3
	D	2	2
6		th.	7
11	2		
12	6	1	b
	0 0 6	0 1	0 1 -4

	0	1	2	3
D	0	1	-4	3
		, D	2	2
'	6			7
2)	5	6	T
3	12	6		b
ے				

code -