Model Evaluation

Confusion Matrix, Accuracy, Recall, Precision, f1-score, ROC, AUC

Confusion matrix

- Actual 1, Predicted 1 ==> True Positive (TP)
- Actual 1, Predicted 0 ==> False Negative (FN)
- Actual 0, Predicted 0 ==> True Negative (TN)
- Actual 0, Predicted 1 ==> False Positive (FP)

- Accuracy = Correct Prediction / Total observation
- = (TP + TN) / (TP + TN + FP + FN)

Confusion Matrix

- To evaluate the performance of your model, you collect
 - 10,000 manually classified transactions out of which
 - 300 are fraudulent transactions and
 - **9,700** *non-fraudulent* transactions.
- Run your classifier on every transaction and predict the class label
 - fraudulent or non-fraudulent
 - and summarize the results in a confusion matrix

Confusion Matrix

Trick:

TP: Truly predicted Positive

TN: Truly predicted Negative

FP: Falsely predicted Positive

FN: Falsely predicted Negative

- True Positive (TP=100) the model correctly predicts the positive (fraudulent) class.
- True Negative (TN=9,000) the model correctly predicts the negative (non-fraudulent) class.
- False Positive (FP=700) the model incorrectly predicts the positive (fraudulent) class
- False Negative (FN=200) the model incorrectly predicts the negative (non-fraudulent) class.

Accuracy

N Predicted P
N 7N 9,000 FP 700

Actual FN 200 TP 100

• Accuracy: Correctness of predictions

$$Accuracy = \frac{True}{True+False} = \frac{TP+TN}{TP+TN+FP+FN} = \frac{100+9,000}{100+9,000+700+200} = \frac{9,100}{10,000} = 0.91$$

• In case we predict all transactions as non-fraudulent:

 $Accuracy = \frac{True}{True+False} = \frac{TP+TN}{TP+TN+FP+FN} = \frac{0+9,700}{100+9,000+700+200} = \frac{9,700}{10,000} = 0.97$

	N Predicted P		
N Actual P	TN 9,700	FP 0	
	FN 300	TP 0	

Recall, Precision, f1 score

- Recall: What proportion of positives are being predicted correctly?
 - The classifier caught 33.3% of the fraudulent transactions (True +ve / Total +ve)

$$Recall(TruePositiveRate) = \frac{TP}{TP+FN} = \frac{100}{100+200} \approx 0.333$$

- Precision: What proportion of predicted positives are correct?
 - When your classifier predicts that a transaction is *fraudulent*, **only 12.5% of the time your classifier is correct** (*True +ve / Total predicted +ve*)

$$Precision = \frac{TP}{TP+FP} = \frac{100}{100+700} = 0.125$$

- f1 Score combines Recall and Precision to one performance metric
 - Harmonic mean of Recall and Precision
 - This score takes both false positives and false negatives into account

$$F1 = 2 * \frac{Recall * Precision}{Recall + Precision} = 2 * \frac{0.333 * 0.125}{0.333 + 0.125} \approx 0.182$$

	N	Predicted		Р
N	N TN 9,700		FP 0	
Actual				
Actual	FN 30	00	TP	0
Р				

Recall, Precision, f1 score

- **Recall:** What proportion of positives are being predicted correctly?
 - TP / (TP + FN)
 - Which calculates to 0!!
- Precision: What proportion of predicted positives are correct?
 - TP / (TP + FP)
 - Which again calculates to 0!!

- **f1 Score** combines Recall and Precision to one performance metric
 - Harmonic mean of Precision and Recall.
 - This score takes both false positives and false negatives into account
 - 2 * (Recall * Precision) / (Recall + Precision)

Intuition

- Accuracy % of correct prediction = TP + TN / TP+FN+TN+FP
- Recall % of positives predicted correctly = TP / TP + FN
- **Precision** % of predicted positives are correct = TP / TP + FP
- F1 Harmonic mean of Precision and Recall
 - = 2* (Recall*Precision) / (Recall + Precision)

ROC (Receiver Operating Characteristics)

- True Positive Rate (TPR) = % of positives predicted correctly = Recall = TP / TP + FN
- False Positive Rate (FPR) % error in predicting negatives = FP / FP+TN

- ROC Curves are used to see how well your classifier can separate positive and negative examples
- To be able to use the ROC curve, your classifier should be able to rank examples such that the ones with higher rank are more likely to be positive (fraudulent).
- As an example, Logistic
 Regression outputs
 probabilities, which is a score
 that you can use for ranking

AUC (Area Under the ROC)

- The model performance is determined by looking at the area under the ROC curve (or AUC).
- An excellent model has AUC near to the 1.0, which means it has a good measure of separability