Lab Report

Week 2

Ritobroto Maitra (1301CS50)

02/02/2016

■ Title

▶ Draw basic primitives (a line, a circle and a polygon) in OpenGL.

Procedure

We create three files for the given code and then compile and run them with the openGL linker to get the desired output. The following steps are to be followed:

- 1. Write the attached code in three files, namely line.c, circle.c and polygon.c.
- 2. Compile the C source files as follows:

```
g++\ line.c -framework OpenGL -framework GLUT -o line g++\ circle.c -framework OpenGL -framework GLUT -o circle g++\ polygon.c -framework OpenGL -framework GLUT -o polygon
```

3. Run the program by using the command

```
./line
./circle
./polygon
```

```
#include <math.h>
    #include <GLUT/glut.h>
    #include <OpenGL/gl.h>
    #include <stdio.h>
    //Initialize OpenGL
    void init(void) {
      glClearColor(1, 1, 1, 1);
glViewport(0, 0, 500, 500);
glMatrixMode(GL_PROJECTION);
      glLoadIdentity();
      glOrtho(0, 500, 0, 500, 1, -1);
glMatrixMode(GL_MODELVIEW);
      glLoadIdentity();
14
15
16
17
    void drawLines(void) {
18
         glClear(GL_COLOR_BUFFER_BIT);
         glColor3f(0,0,1);
20
         glPointSize(3.0);
21
22
23
24
         glBegin(GL_LINES);
         glVertex2d(200, 150);glVertex2d(400, 350);
         glFlush();
26
27
28 }
```

```
int main(int argc, char**argv) {
    glutInit(&argc, argv);
    glutInitWindowPosition(10,10);
    glutInitWindowSize(500,500);
    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutCreateWindow("Example");
    init();
    glutDisplayFunc(drawLines);
    glutDisplayFunc(drawLines);
    glutMainLoop();
}
```

line.c

Fig: Output of the above code

```
#include <GLUT/glut.h>
    #include <OpenGL/gl.h>
#include <math.h>
    #include <stdio.h>
void Draw() {
   glClear(GL_COLOR_BUFFER_BIT);
           glColor3f(1.0, 1.0, 1.0);
          glBegin(GL_QUADS);
glColor3f (0.0, 0.0, 0.0);
10
11
12
13
             glVertex3f (0.1, 0.1, 0.0);
glVertex3f (0.9, 0.1, 0.0);
glVertex3f (0.9, 0.9, 0.0);
glVertex3f (0.1, 0.9, 0.0);
16
17
18
19
           glEnd();
           glFlush();
20
21
           // DrawCircle(0.5, 0.5, 0.2, 5);
    }
22
    void DrawCircle()
{
23
24
25
          float cx = 0.5, cy = 0.5, r = 0.2, num_segments = 50;
glBegin(GL_LINE_LOOP);
26
27
           for(int ii = 0; ii < num_segments; ii++)</pre>
28
29
30
                 float theta = 2.0f * 3.1415926f * float(ii) / float(num_segments);//get the current angle
```

```
float x = r * cosf(theta);//calculate the x component
float y = r * sinf(theta);//calculate the y component
31
32
33
34
35
                           glVertex2f(x + cx, y + cy);//output vertex
 36
                  glEnd();
 37
38
39
40
                  glFlush();
        }
 41
        void Initialize() {
   glClearColor(1.0, 1.0, 1.0, 0.0);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}
 42
 43
44
45
46
 47
       int main(int iArgc, char** cppArgv) {
   glutInit(&iArgc, cppArgv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(950, 950);
   glutInitWindowPosition(200, 200);
   glutCreateWindow("Universum");
   Initalize();
}
 49
 50
51
52
53
54
55
56
57
58
59
                  Initialize();
                 Draw();
                 glutDisplayFunc(DrawCircle);
glClear(GL_COLOR_BUFFER_BIT);
// glColor3f(1.0, 1.0, 1.0);
 60
                  // DrawCircle(0.5, 0.5, 0.2, 5);
                  glutMainLoop();
63
64
65
                  return 0;
```

circle.c

 $Fig: Output\ of\ the\ above\ code$

```
#include <math.h>
#include <GLUT/glut.h>
#include <OpenGL/gl.h>
#include <stdio.h>

//Initialize OpenGL
```

```
void init(void) {
  glClearColor(1, 1, 1, 1);
  glViewport(0, 0, 500, 500);
  glMatrixMode(GL_PROJECTION);
         glLoadIdentity();
         glOrtho(0, 500, 0, 500, 1, -1);
glMatrixMode(GL_MODELVIEW);
13
14
15
16
         glLoadIdentity();
      void drawLines(void) {
   glClear(GL_COLOR_BUFFER_BIT);
             glColor3f(0,0,1);
glPointSize(3.0);
19
20
21
22
             glBegin(GL_LINES);
             glVertex2d(200, 150);glVertex2d(400, 350);
glVertex2d(400, 350);glVertex2d(500, 200);
23
24
             glVertex2d(500, 200);glVertex2d(200, 150);
25
             glEnd();
glFlush();
26
27
28
29
30
     }
     int main(int argc, char**argv) {
   glutInit(&argc, argv);
   glutInitWindowPosition(10,10);
   glutInitWindowSize(500,500);
32
33
34
35
36
             glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
37
38
39
40
41
42
             glutCreateWindow("Example");
             init();
             glutDisplayFunc(drawLines);
glutMainLoop();
```

polygon.c

Fig: Output of the above code

Plotting in MATLAB

We plot the same figures in MATLAB as well.

$Drawing\ a\ line$

```
function line = drawLine(x1, y1, x2, y2)
%This function draws line between two points
X = [x1, x2];
Y = [y1, y2];
plot(X,Y);
end
```


Drawing a circle

```
function circle = DrawCircle()
% This function draws a circle
sides = 11000;
angle = 2*pi/sides;
angle_in_degree = 0:angle:360-angle;
radius=ones(1,numel(angle_in_degree));
polar(angle_in_degree,radius);
end
```


 $Drawing\ a\ polygon$

```
function polygon = DrawPolygon(sides)
% This function draws any n-sided polygon
angle = 2*pi/sides;
angle_in_degree = 0:angle:360-angle;
radius=ones(1,numel(angle_in_degree));
```

6 polar(angle_in_degree,radius);
7 end

