Team Turtle

Dylan, Wisoo, Kaihong, Arnav

Turtle Results

Link:

https://deepnote.com/project/6c8403a5-0093-4399-b6a6-d4b2f6663e50#%2FHarvard_3d_scanner_team_turtle%2Fswept_plane.ipynb

Turtle Video

Masks

"The book"

CalibrateCamera()

Connecting 3d points in world coordinate space to 2d points on the image plane

 create a linear system of boards to camera matrix K

computeTwoPlanes()

For each board,

- 1. Extract image points
- 2. Normalize the image points
- 3. Compute the homography
- Extract R and T from H
- 5. $\mathbf{\Pi}^c = \mathbf{G}^{-T} \mathbf{\Pi}^p$
 - a. Π p is the plane normal (0, 0, 1, 0)
 - b. Simplified: $\Pi c = (r3, -r3^Tt)$
- 6. Visualize the planes

now visl creating figure!

processVideo()

computeShadowPlane()

- shadow_planes: dictates shadow plane at ith video frame
 - Backproject 2 points from image plane shadow line onto Pi_h and Pi_v
 - 2. Use SVD to best-fit shadow plane to 4 points

Pablo Qicasso

A.k.a. Claude Guonet

A.k.a. Vincent Van Qi

computeObjectPoints()

- point_cloud: contains 3D points in world coordinate system
 - Backproject every points on object in image plane
 - 2. Find intersection of each point with correct shadow plane

Sources of Error

- Video compression?
- Video rotation?
- Angle of the light source?
- Programming errors (most likely)!

