PM1-AHAS1 nucleotide sequence(SEQ ID NO: 1) and translated amino acid sequence (SEQ ID NO: 101)

PM2-AHAS3 nucleotide sequence (SEQ ID NO:2) and translated amino acid sequence (SEQ ID NO: 102)

1	TTCATCATMTCTCTCTCTCTCTCTCTCTCTCATCTAACCATGGCGGCGGCAACATCGTCTTCTCCGATCTCCTTAACCGCTAAACCTTCTTCCAAAT M A A A T S S S P I S L T A K P S S K
101	CCCCTCTACCCATTTCCAGATTCTCCCTTCCCTTCTCTTAACCCCACAGAAACCCTCCTCCCGTCTCCACCGTCCACTCGCCATCTCCGCCGTTCTCAA S P L P I S R F S L P F S L T P Q K P S S R L H R P L A I S A V L N
201	CTCACCCGTCAATGTCGCACCTGAAAAAACCGACAAGATCAAGACTTTCATCTCCCGCTACGCTCCCGACGAGCCCCGCAAGGGTGCTGATATCCTCGTG S P V N V A P E K T D K I K T F I S R Y A P D E P R K G A D I L V
301	GAAGCCCTCGAGCGTCAAGGCGTCGAAACCGTCTTCGCTTATCCCGGAGGTGCCTCCATGGAGATCCACCAAGCCTTGACTCGCTCCTCCACCATCCGTA E A L E R Q G V E T V F A Y P G G A S M E I H Q A L T R S S T I R
401	ACGTCCTCCCCCGTCACGAACAAGGAGGAGTCTTCGCCGCCGAGGGTTACGCTCGTTCCTCCGGCAAACCGGGAATCTGCATAGCCACTTCGGGTCCCGG N V L P R H E Q G G V F A A E G Y A R S S G K P G I C I A T S G P G
501	AGCTACCAACCTCGTCAGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCCATCACAGGACAGGTCCCTCGCCGGATGATCGGTACTGAC A T N L V S G L A D A M L D S V P L V A I T G Q V P R R M I G T D
601	GCGTTCCAAGAGACGCCAATCGTTGAGGTAACGAGGTCTATTACGAAACATAACTATCTGGTGATGGATG
701	CATTCTTTCTAGCTACTTCCGGTAGACCCGGACCGGTTTTGGTTGATGTTCCTAAGGATATTCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGGATATCAGCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTATAGAGATAGAGAGATATCAGAGAGAG
801	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
901	TACGTTGGTGGTGGAAGCTTGAACTCGAGTGAAGAACTGGGGAGATTTGTCGAGCTTACTGGGATCCCTGTTGCGAGTACGCTGATGGGGCTTGGCTCTT Y V G G G S L N S S E E L G R F V E L T G I P V A S T L M G L G S
1001	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1101	TGTTAGGTTTGATGACCGTGTCACGGGAAAGCTCGAGGGGGTTTGCGAGCAGGGCTAAGATTGTGCACATAGACATTGATTCTGCTGAGATTGGGAAGAAT V R F D D R V T G K L E A F A S R A K I V H I D I D S A E I G K N
1201	AAGACACCTCACGTGTCTGTGTGTGATGTAAAGCTGGCTTTGCAAGGGATGAACAAGGTTCTTGAGAACCGGGCGGAGGAGCTCAAGCTTGATTTCG K T P H V S V C G D V K L A L Q G M N K V L E N R A E E L K L D F
1301	GTGTTTGGAGGAGTGAGCGAGCAGAAACAGAAGTTCCCGTTGAGCTTCAAAACGTTTGGAGAAGCCATTCCTCCGCAGTACGCGATTCAGGTCCT G V W R S E L S E Q K Q K F P L S F K T F G E A I P P Q Y A I Q V L
1401	AGACGAGCTAACCCAAGGGAAGGCAATTATCAGNACTGGTGTTGGACAGCATCAGATGTGGGCGGCGCAGTTTTACAAGTACAGGAAGCCGAGGCAGTGG D E L T Q G K A I I X T G V G Q H Q M W A A Q F Y K Y R K P R Q W
1501	CTGTCGTCCTCAGGACTCGGAGCTATGGGTTTCGGACTTCCTGCTGCGATTGGAGCGTCTGTGGCGAACCCTGATGCGATTGTTGTGGACATTGACGGTG L S S S G L G A M G F G L P A A I G A S V A N P D A I V V D I D G
	ATGGAAGCTTCATAATGAACGTTCAAGAGCTGGCCACAATCCGTGTAGAGAATCTTCCTGTGAAGATACTCTTGTTAAACAACCAGCATCTTGGGATGGT D G S F I M N V Q E L A T I R V E N L P V K I L L L N N Q H L G M V
1701	CATGCAATT GAAGATCGGTTCTACAAAGCTAACAGAGCTCACACTTATCTCGGGGACCCGGCAAGGGAGAACGAGATCTTCCCTAACATGCTGCAGTTT MQLEDRFYKANRAHTYLGDPARENEIFPNMLQF
1801	GCAGGAGCTTGCGGGATTCCAGCTGCGAGAGTGACGAAGAAGAAGAAGAAGAAGCTATTCAGACAATGCTGGATACACCTGGACCGTACCTGTTGG A G A C G I P A A R V T K K E E L R E A I Q T M L D T P G P Y L L
1901	ATGCCATCTGTCCGCACCAAGAACATGTGTTACCGATGATCCCAAGTGGTGGCACTTTCAAAGATGTAATAACCGAAGGGGATGGTCGCACTAAGTACTG D A I C P H Q E H V L P M I P S G G T F K D V I T E G D G R T K Y
2001	${\tt AGAGATGAAGCTGGTGATCCATCGTATGGTAAAAGACTTAGTTTCAGTTTCAGTTTCTTTTGTGTGTAATTTGGGTTTGTCAGTTGTTTTTTTT$

2101 TGGTTTGTTCCCNKAC

T-AHAS1 nucleotide sequence (SEQ ID NO:3) and translated amino acid sequence (SEQ ID NO: 103)

TCATCATCTCTCTCTCTCTAACCATGGCGGCGCAACATCGTCTTCTCCGATCTCCTTAACCGCTAAACCTTCTTCCAAATCCCCTCTACCCATTTCCA M A A A T S S S P I S L T A K P S S K S P L P I S GATTCTCCCTTCCCTTCTCTTAACCCCACAGAAAGACTCCTCCCGTCTCCACCGTCTCTCGCCATCTCCGCCGTTCTCAACTCACCCGTCAATGTCGC R F S L P F S L T P Q K D S S R L H R P L A I S A V L N S P V N V A ACCTCCTTCCCCTGAAAAAACCGACAAGAACAAGACTTTCGTCTCCCGCTACGCTCCCGACGAGCCCCGCAAGGGTGCTGATATCCTCGTCGAAGCCCTC P P S P E K T D K N K T F V S R Y A P D E P R K G A D I L V E A L E R Q G V E T V F A Y P G G A S M E I H Q A L T R S S T I R N V L $\tt CCCGTCACGAACAAGGAGGAGTTTCGCCGCGAGGGTTACGCTCGTTCCTCCGGCAAACCGGGAATCTGCATAGCCACTTCGGGTCCCGGAGCTACCAA$ P R H E Q G G V F A A E G Y A R S S G K P G I C I A T S G P G A T N L V S G L A D A M L D S V P L V A I T G Q V P R R M I G T D A F Q E T P I V E V T R S I T K H N Y L V M D V D D I P R I V Q E A F F L A T S G R P G P V L V D V P K D I Q Q L A I P N W D Q P M R L P G Y M S R L P Q P P E V S Q L G Q I V R L I S E S K R P V L Y V G $\texttt{G} \quad \texttt{G} \quad \texttt{S} \quad \texttt{L} \quad \texttt{N} \quad \texttt{S} \quad \texttt{E} \quad \texttt{E} \quad \texttt{L} \quad \texttt{G} \quad \texttt{R} \quad \texttt{F} \quad \texttt{V} \quad \texttt{E} \quad \texttt{L} \quad \texttt{T} \quad \texttt{G} \quad \texttt{I} \quad \texttt{P} \quad \texttt{V} \quad \texttt{A} \quad \texttt{S} \quad \texttt{T} \quad \texttt{L} \quad \texttt{M} \quad \texttt{G} \quad \texttt{L} \quad \texttt{G} \quad \texttt{S} \quad \texttt{Y} \quad \texttt{P} \quad \texttt{C}$ 1001 ACGATGAGTTGTCCCTGCAGATGCTTGGCATGCACGGGACTGTGTATGCTAACTACGCTGTGGAGCATAGTGATTTGTTGCTGGCGTTTTGGTGTTAGGTT N D E L S L Q M L G M H G T V Y A N Y A V E H S D L L L A F G V R F 1101 TGATGACCGTGTCACGGGAAAGCTCGAGGCTTTCGCTAGCAGGGCTAAAATTGTGCACATAGACATTGATTCTGCTGAGATTGGGAAGAATAAGACACCT D D R V T G K L E A F A S R A K I V H I D I D S A E I G K N K T P 1201 CACGTGTCTGTGTGTGTGAAAGCTGGCTTTGCAAGGGATGAACAAGGTTCTTGAGAACCGGGCGGAGGAGCTCAAGCTTGATTTCGGTGTTTTGGA H V S V C G D V K L A L Q G M N K V L E N R A E E L K L D F G V W ${\tt 1301} \>\>\> \mathsf{GGAGTGAGTTGAGCGAGAAACAGAAGTTCCCTTTGAGCTTCAAAACGTTTGGAGAAGCCATTCCTCCGCAGTACGCGATTCAGATCCTCGACGAGCT$ R S E L S E Q K Q K F P L S F K T F G E A I P P Q Y A I Q I L D E L 1401 AACCGAAGGGAAGCCAATTATCAGTACTGGTGTTGGACAGCATCAGATGTGGGCGGCGCGCAGTTTTACAAGTACAGGAAGCCGAGACAGTGGCTGTCGTCA T E G K A I I S T G V G Q H Q M W A A Q F Y K Y R K P R Q W L S S 1501 TCAGGCCTCGGAGCTATGGGTTTTGGACTTCCTGCTGCGATTGGAGGCTCTGTGGCGAACCCTGATGCGATTGTTGTGGATATTGACGGTGATGGAAGCT S G L G A M G F G L P A A I G A S V A N P D A I V V D I D G D G S 1601 TCATAATGAACGTTCAAGAGCTGGCCACAATCCGTGTAGAGAATCTTCCTGTGAAGATACTCTTGTTAAACAACCAGCATCTTGGGATGGTCATGCAATG F I M N V Q E L A T I R V E N L P V K I L L N N Q H L G M V M Q W 1701 GGAAGATCGGTTCTACAAAGCTAACAGAGCTCACACTTATCTCGGGGACCCGGCAAGGGAGAACGAGATCTTCCCTAACATGCTGCAGTTTGCAGGAGCT EDRFYKANRAHTYLGDPARENEIFPNMLQFAGA $1801\ \ TGCGGGATTCCAGCTGCGAGAGAAGAAGAAGAAGCTCCGAGAAGCTATTCAGACAATGCTGGATACACCAGGACCATACCTGTTGGATGTGATAT$ C G I P A A R V T K K E E L R E A I Q T M L D T P G P Y L L D V I 1901 GTCCGCACCAAGAACATGTGTTACCGATGATCCCAAGTGGTGGCACTTTCAAAGATGTAATAACAGAAGGGGATGGTCGCACTAAGTACTGAGAGATGAA C P H Q E H V L P M I P S G G T F K D V I T E G D G R T K Y 2001 GCTGGTGATCGATCATATGGTAAAAGACTTAGTTTCAGTTTCCAGTTTCTTTTGTGTGGTAATTTGGGTTTGTCAGTTGTTGT

T-AHAS3 (SEQ ID NO: 4) nucleotide sequence and translated amino acid sequence (SEQ ID NO: 104)

1	TTMMACATCTCTCTCATTNCACTCTCCCTCATCTAACCATGGCGGCGCAACATCGCCTTCTCCGATCTCCTTAACCGCTAAACCTTCTTCCAAAT M A A T S P S P I S L T A K P S S K
101	CCCCTCTACCCATTTCCAGATTCTCCCTTCCCTTAACCCCACAGAAACCCTCCTCCCGTCTCCACCGTCCACTCGCCATCTCCGCCGTTCTCAA S P L P I S R F S L P F S L T P Q K P S S R L H R P L A I S A V L N
201	CTCACCCGTCAATGTCGCACCTGAAAAAACCGACAAGATCAAGACTTTCATCTCCCGCTACGCTCCCGACGAGCCCCGCAAGGGTGCTGATATCCTCGTG S P V N V A P E K T D K I K T F I S R Y A P D E P R K G A D I L V
301	GAAGCCCTCGAGCGTCAAGGCGTCGAAACCGTCTTCGCTTATCCCGGAGGTGCCTCCATGGAGATCCACCAAGCCTTGACTCGCTCCTCCACCATCCGTA E A L E R Q G V E T V F A Y P G G A S M E I H Q A L T R S S T I R
401	ACGTCCTCCCCCGTCACGAACAAGGAGGAGTCTTCGCCGCCGAGGGTTACGCTCGTTCCTCCGGCAAACCGGGAATCTGCATAGCCACTTCGGGTCCCGG N V L P R H E Q G G V F A A E G Y A R S S G K P G I C I A T S G P G
501	AGCTACCAACCTCGTCAGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCCATCACAGGACAGGTCCCTCGCCGGATGATCGGTACTGAC A T N L V S G L A D A M L D S V P L V A I T G Q V P R R M I G T D
601	GCGTTCCAAGAGACGCCAATCGTTGAGGTAACGAGGTCTATTACGAAACATAACTATCTGGTGATGGATG
701	CATTCTTTCTAGCTACTTCCGGTAGACCCGGACCGGTTTTGGTTGATGTTCCTAAGGATATTCAGCAGCAGCTTGCGATTCCTAACTGGGATCAACCTAT A F F L A T S G R P G P V L V D V P K D I Q Q Q L A I P N W D Q P M
801	GCGCTTGCCTGGCTACATGTCTAGGCTGCCTCAGCCACCGGAAGTTTCTCAGTTAGGCCAGATCGTTAGGTTGATCTCGGAGTCTAAGAGGCCTGTTTTG R L P G Y M S R L P Q P P E V S Q L G Q I V R L I S E S K R P V L
901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1001	ATCCTTGTAACGATGAGTTGTCCCTGCAGATGCTTGGCATGCACGGGACTGTGTATGCTAACTACGCTGTGGAGCATAGTGATTTGTTGCTGGCGTTTGG Y P C N D E L S L Q M L G M H G T V Y A N Y A V E H S D L L A F G
1101	TGTTAGGTTTGATGACCGTGTCACGGGAAAGCTCGAGGCGTTTGCGAGCAGGGCTAAGATTGTGCACATAGACATTGATTCTGCTGAGATTGGGAAGAAT V R F D D R V T G K L E A F A S R A K I V H I D I D S A E I G K N
1201	AAGACACCTCACGTGTCTGTGTGTGTGAAAGCTGGCTTTGCAAGGGATGAACAAGGTTCTTGAGAACCGGGCGGAGGAGCTCAAGCTTGATTTCG K T P H V S V C G D V K L A L Q G M N K V L E N R A E E L K L D F
1301	GTGTTTGGAGGAGTGAGTTGAGCGAGCAGAAACAGAAGTTCCCGTTGAGCTTCAAAACGTTTGGAGAAGCCATTCCTCCGCAGTACGCGATTCAGGTCCT G V W R S E L S E Q K Q K F P L S F K T F G E A I P P Q Y A I Q V L
1401	AGACGAGCTAACCCAAGGGAAGGCAATTATCAGTACTGGTGTTGGACAGCATCAGATGTGGGCGGCGCAGTTTTACAAGTACAGGAAGCCGAGGCAGTGG D E L T Q G K A I I S T G V G Q H Q M W A A Q F Y K Y R K P R Q W
1501	CTGTCGTCCTCAGGACTCGGAGCTATGGGTTTCGGACTTCCTGCTGCGATTGGAGCGTCTGTGGCGAACCCTGATGCGATTGTTGTGGACATTGACGGTG L S S S G L G A M G F G L P A A I G A S V A N P D A I V V D I D G
1601	ATGGAAGCTTCATAATGAACGTTCAAGAGCTGGCCACAATCCGTGTAGAGAATCTTCCTGTGAAGATACTCTTGTTAAACAACCAGCATCTTGGGATGGT D G S F I M N V Q E L A T I R V E N L P V K I L L N N Q H L G M V
1701	CATGCAATGGGAAGATCGGTTCTACAAAGCTAACAGAGCTCACACTTATCTCGGGGACCCGGCAAGGGAGAACGAGATCTTCCCTAACATGCTGCAGTTT M Q W E D R F Y K A N R A H T Y L G D P A R E N E I F P N M L Q F
1801	GCAGGAGCTTGCGGGATTCCAGCTGCGAGAGTGACGAAGAAAGA
1901	ATGTCATCTGTCCGCACCAAGAACATGTGTTACCGATGATCCCAAGTGGTGGCACTTTCGAAGATGTAATAACCGAAGGGGATGGTCGCACTAAGTACTG D V I C P H Q E H V L P M I P S G G T F E D V I T E G D G R T K Y
2001	${\tt AGAGATGAAGCTGGTGATCCATCATATGGTAAAAGACTTAGTTTCAGTTTACAGTTTCTTTTTGTGTGGTAATTTGGGTTTGTCAGTTGTTCTGCTTT}$

2101 TGGTTTGTTCCCWKAC

Compositions and Methods for Identifying Plants Having Increased Tolerance to Imidazolinone Herbicides Cheung, Wing Y., et al. Docket No. 15039-2

List of oligonucleotides suitable for detection of the PM1 and PM2 mutations. All oligonuceotides are in 5'-3' orientation.

SEQ ID		SEQ ID		SEO ID		SEO ID	
	AHAS1-PM1 forward	NO.	AHAS1-PM1 reverse	NO.	AHAS3-PM2 forward	NO.	AHAS3-PM2 reverse
2	TTATCTCGGGGACCCGGCAA	24	CATCTTTGAAAGTGCCACCA	47	CTCAGGACTCGGAGCTATGG	99	CTTTGTAGAACCGATCTTCC
9	GACCCGGCAAGGGAGAACGA	25	TCTGTTATTACATCTTTGAA	48	GGAGCTATGGGTTTCGGACT	29	GCTCTGTTAGCTTTGTAGAA
7	GGGAGAACGAGATCTTCCCT	26	Accarcccrrcrgrrarra	49	GTTTCGGACTTCCTGCTGCG	89	ATAAGTGTGAGCTCTGTTAG
8	GATCTTCCCTAACATGCTGC	27	ACTTAGTGCGACCATCCCCT	05	TCCTGCTGCGATTGGAGCGT	69	GGTCCCCGAGATAAGTGTGA
0	AACATGCTGCAGTTTGCAGG	28	Arcrcrestactrages	51	ATTGGAGCGTCTGTGGCGAA	7.0	rcccrrecceegrccccaae
10	AGTTTGCAGGAGCTTGCGGG	29	CACCAGCTTCATCTCAGT	52	crereccaacccrearece	71	GATCTCGTTGCCG
11	AGCTTGCGGGATTCCAGCTG	30	TATGATCGATCACCAGCTTC	53	cccrgargcgarrgragg	72	TGTTAGGGAAGATCTCGTTC
12	ATTCCAGCTGCGAGAGTGAC	31	TCTTTTACCATATGATCGAT	54	ATTGTTGTGGACATTGACGG	73	AACTGCAGCATGTTAGGGAA
13	CGAGAGTGACGAAGAAGAA	32	TGAAACTAAGTCTTTTACCA	55	ACATTGACGGTGATGGAAGC	74	AGCTCCTGCAAACTGCAGCA
14	GAAGAAGAAGAACTCCGAG	33	AACTGGAAACTGAAACTAAG	95	TGATGGAAGCTTCATAATGA	75	GAATCCCGCAAGCTCCTGCA
15	GAACTCCGAGAAGCTATTCA	34	ACACAAAAGAAACTGGAAAC	57	TTCATAATGAACGTTCAAGA	76	CTCGCAGCTGGAATCCCGCA
16	AAGCTATTCAGACAATGCTG	35	CCAAATTACCACACAAAGA	58	ACGTTCAAGAGCTGGCCACA	7.7	CTTCGTCACTCTCGCAGCTG
17	GACAATGCTGGATACACCAG	36	ACTGACAAACCCAAATTACC	65	GCTGGCCACAATCCGTGTAG	78	GITCITICITICGICACT
18	GATACACCAGGACCATACCT	37	TAGTACAACAACTGACAAAC	09	ATCCGTGTAGAGAATCTTCC	42	GCTTCTCGGAGTTCTTCTTT
19	GACCATACCTGTTGGATGTG	38	CAACCAAAAGTAGTACAACA	61	AGAATCTTCCTGTGAAGATA	80	TGTCTGAATAGCTTCTCGGA
20	GTTGGATGTGATATGTCCGC	39	CGTCTGGGAACAACCAAAAG	62	TGTGAAGATACTCTTGTTAA	81	TATCCAGCATTGTCTGAATA
21	ATATGTCCGCACCAAGAACA	40	ACAGCGAGTACGTCTGGGAA	63	CTCTTGTTAAACAACCAGCA	82	GGTCCAGGTGTATCCAGCAT
22	ACCAAGAACATGTGTTACCG	41	CAAAACAACAACAGCGAGTA	64	ACAACCAGCATCTTGGGATG	83	CAACAGGTACGGTCCAGGTG
23	TGTGTTACCGATGATCCCAA	42	AAAAAGGAAACAAAAA	65	TCTTGGGATGGTCATGCAAT	84	AGATGACATCCAACAGGTAC
43	ATGATCCCAAGTGGTGGCACT	44	AGTGCCACCACTTGGGATCAT	85	GTCATGCAATGGGAAGATCGG	98	CCGATCTTCCCATTGCATGAC
45	ATGATCCCAAATGGTGGCACT	46	AGTGCCACCATTTGGGATCAT	87	GTCATGCAATTGGAAGATCGG	88	CCGATCTTCCAATTGCATGAC

All oligonucleotides noted as being in the forward direction are located on the 5' side of either PM1 or PM2 mutation, in reference to SEQ ID:1 and SEQ ID:2. All oligonucleotides noted as being in the reverse direction are located on the 3' side of either the PM1 or PM2 mutation, in reference to SEQ ID:3 and SEQ ID:4.

Figure 1E

"PM1" Test

AHAS1

Figure 2

"PM2" Test

AHAS3

Met Gln Trp Glu Asp Arg Phe Tyr Lys Ala (SEQ ID NO :111) 'Topas' ATG CAA TGG GAA GAT CGG TTC TAC AAA GCT

3' C CTT CTA GCC AAG ATG TTT C 5' (SEQ ID NO :112) PM2 primer (SEQ ID NO:66) ddATP ddCTP AmpliTaq® ddGTP DNA polymerase ddTTP Met Gln Trp Glu Asp Arg Phe Tyr Lys Ala (SEQ ID NO :111) ATG CAA TGG GAA GAT CGG TTC TAC AAA GCT (SEQ ID NO :112) 3' CC CTT CTA GCC AAG ATG TTT C 5' PM2 primer (SEQ ID NO:113)

Figure 3

Dou	ıbled Haploid Canola Liı	nes
Plant number	class	GH Rating
2	"PM1/PM2"	0
	"PM1/PM2"	0
3	"PM1/PM2"	0
4	"PM1/PM2"	0
6	"PM1/PM2"	5
7	"PM1/PM2"	5
37	"PM2"	20
38	"PM2"	20
39	"PM2"	20
40	"PM2"	25
41	"PM2"	25
42	"PM2"	25
68	"PM1"	40
69	"PM1"	40
70	"PM1"	40
71	"PM1"	40
72	"PM1"	40
73	"PM1"	45
103	WT	80
104	WT	80
105	WT	80
106	WT	80
107	WT	85
108	WT	85
<u>-</u>	"PM1"	-
-	"PM2"	-
-	WT	-

Figure 4

Summary of results from "PM1" and "PM2" mutation tests with three replicates using the ABI PRISM® Technology

		"PM1"	mutation tes	t	"PM2"	mutation tes	t
DNA class	Plant	Observed ³	Expected ⁴	"PM1"	Observed ³	Expected ⁴	"PM2"
	number ²			mutation			mutation
"PM1/PM2" class	1	(C)- T	C-T	yes	(C)- A	C-A	yes
	2	(C)- T	C-T	yes	(C)- A	C-A	yes
	3	(C)- T	C- T	yes	(C)- A	C-A	yes
	4	(C)- T	C-T	yes	(C)- A	C-A	yes
	6	(C)- T	C-T	yes	(C)- A	C-A	yes
	7	(C)- T	C- T	yes	(C)- A	C-A	yes
"PM2" class	37	(C)- T	С	yes	(C)- A	C-A	yes
	38	(C)- T	С	yes	C-A	C-A	yes
	39	(C)- T -(A)	С	yes	(C)- A	C-A	yes
	40	С	С	no	(C)- A	C-A	yes
	41	(C)- T	С	yes	(C)- A	C-A	yes/no
	42	(C)- T	С	yes	(C)- A	C-A	yes
"PM1" class	68	T	C- T	yes	С	С	no
	69	T	C- T	yes	С	С	no
	70	Τ	C-T	yes	С	С	no
	71	Τ	C-T	yes	С	С	no
	72	T	C-T	yes	С	С	no
	73	T	C-T	yes	С	С	no
"WT" class	103	С	С	no	С	С	no
	104	С	С	no	С	С	no
	105	С	С	no	С	С	no
	106	С	С	no	С	С	no
	107	С	С	no	С	С	no
	108	С	С	no	С	С	no
'PM1' control ¹	-	(C)- T	C-T	yes	С	С	no
'PM2' control ¹		С	С	no	C-A	C-A	yes
'Topas' (WT) control ¹	-	С	С	no	С	С	no

¹'PM1' control and 'PM2' control are DNA isolated from "PM1" and "PM2" plants used to develop the tests.

²This number refers to the plant number for DH line identified in Figure 4

³ In **Bold** and *italics* are the peaks related to the mutations and in brackets are the peaks that are not always present in all the three replicates.

⁴Expected results assuming that the AHAS amplification reaction using AHAS1/AHAS3 amplification primers (SED ID NO:90 and 91) amplified similar amounts of both *AHAS1* and *AHAS3* sequences and that the PM1 extension primers will anneal also to the *AHAS3* sequence and the PM2 extension primers will anneal also to the *AHAS1* sequence.

Compositions and Methods for Identifying Plants Having Increased Tolerance to Imidazolinone Herbicides Cheung, Wing Y., et al.

Docket No. 15039-2

Summary of results from "PM1" and "PM2" mutation tests using the Pyrosequencing PSQTM96 Technology

	"PM1" mutation test	on test	"PM2" mutation test	n test		
DNA sample	Pyrosequencing results	SEQ ID NO	"PM1" Mutation	quencing results SEQ ID NO "PM1" Mutation Pyrosequencing results SEQ ID NO "PM2" Mutation	SEQ ID NO	"PM2" Mutation
, bM I '	CAAATGGTGG	86	SəK	GGGAAGATC	66	No
, bM2,	CAAGTGGTGG	26	٥N	TGGAAGATC	100	Yes
Topas' (WT)	CAAGTGGTGG	64	٥N	GGGAAGATC	66	No

FIGURE 6