f506 Study Guide

Lecture 1 Introduction:

- "All models are wrong, but some are useful"
 - Not every example of a problem fits all its specifications, but it can be useful in identifying some information
- Positive examples: examples that follow a hypothesis model
- Negative examples: examples that do not follow a hypothesis model
- Models are a function of features we've extracted from the data set
- Data science workflow
 - Process data -> explore data -> extract features -> create model
- Types of data:
 - M-dimensional points/vectors
 - 3 tuples of data ex: (name, age, income)
 - Graphs
 - Nodes connected by edges
 - Can be represented in an adjacency matrix/list
 - Images
 - Grids of pixels
 - Text
 - List of words
 - Corpus of documents
 - Lots of documents described through a table
- Types of learning
 - Unsupervised Learning
 - Find interesting structure within the data (clustering)
 - Goals:
 - better understand/ describe data
 - Find anomalies
 - Data exploration/visualization
 - Extract features
 - Fill in gaps in data
 - Make algorithms faster
 - Get rid of noise
 - Supervised learning
 - Making predictions based on known inputs and outputs
 - Making predictions on new/unknown data based upon old data

Lecture 2 – distance and similarity

- Data points are rows
- Features are columns
- Feature space
 - o All possible values for the collection of features in our data set
 - Feature space is in the Euclidian plane defined by vectors

- Dissimilarity
 - Method of comparing data points to see how unalike they are
 - Dissimilarity function: takes two objects and returns a large value if these objects are dissimilar
 - o A special type of Dissimilarity function is a distance function
- Distance function:
 - D is a distance function only if
 - D(I,j) = 0

I and j are the same

- D(I,j) = D(j,i)
- $D(I,j) \le d(I,k) + d(k,j)$ where k is some middle point
- Minkowski Distance

$$_{\circ} L_{p}(x,y) = \left(\sum_{i=1}^{d} |x_{i} - y_{i}|^{p}\right)^{\frac{1}{p}}$$

- o P= 2 is the Euclidian distance
- P = 1 is the Manhattan distance
- d=dimensions (characteristics/attributes)
- Jaccard Similarity

$$\circ \ JSim(x,y) = \frac{|x \cap y|}{|x \cup y|}$$

Jaccard Distance

$$\circ \ JDist(x,y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

- Similarity Function
 - Similarity function: is a function that takes two objects (data points) and returns a large value if these objects are similar
 - o $s(x, y0 = \cos(\theta))$ where theta is the angel between x and y
 - o two proportional vectors have a cosine similarity of 1
 - two orthogonal vectors have a cosine similarity of 0
 - o two opposite vectors have a cosine similarity of -1
- when should you use cosine (dis)similarity over Euclidean distance?
 - When direction matters more then magnitude
- Norms
 - O Norm(x) = distance(0,x) or d(0,x) = ||x|| (they mean the same thing)
 - O Distance between a and b : d(a,b) = ||a b||

Lecture 4 Clustering – Kmeans

- Clustering: a grouping or assignment of objects (data points) such that objects in the same group/cluster are similar to each other or dissimilar to objects in other groups
 - Applications
 - Outlier detection /anomaly detection
 - Data cleaning/ processing
 - Feature extraction
 - Filling in gaps in data
- Types of clustering
 - Partitional
 - Each object belongs to exactly one cluster
 - Goal: partition dataset into k partitions
 - Hierarchical
 - A set of nested clusters organized in a tree
 - Density based
 - Defined based on the location of density points
 - Soft Clustering
 - Each point is assigned to every cluster with a certain probability
- Cost function
 - Way to evaluate and compare solutions

$$\sum_{i}^{k} \sum_{x \in C_{i}} d(x, \mu_{i})^{2}$$

- 0
- K-Means
 - o Given a dataset X= $\{x1...xn\}$, d the Euclidian distance, and k , find k centers $\{\mu 1...\mu k\}$ that minimize the cost function
 - o This is an NP-hard problem
- K-means Lloyd's Algorithm
 - Randomly pick k centers
 - Assign each point in the dataset to its closest center
 - Compute the new centers as the means of each cluster
 - Repeat 2 and 3 until convergence
 - o !!!! Lloyds algorithm always converges !!!! but not always to the optimal solution

Lecture 5 Kmeans++

- K-means++
 - Start with a random center
 - O Let D(x) be the distance between x and the closest of the centers picked so far. Choose the next center with probability proportional to $D(x)^2$
 - o How to choose the right k?
 - Iterate through different values of k (elbow method)
 - The graph is y = cost and x=k

- The elbow in the graph is the point of diminishing returns
- Use empiricle / domain specific knowledge
- Metric for evaluating clustering output
- Goal
 - Find a clustering so that similar points are in the same cluster and dissimilar points are in different clusters
- Silhouette Scores
 - For each data point i,
 - ai is the mean distance from point I to every other point in its cluster
 - bi is the smallest mean distance from point I to every point in another cluster
 - the overall Silhouette Score is:
 - $s_i = (b_i a_i)/max(a_i, b_i)$

Lecture 6 - Hierarchical Clustering

- Two types of hierarchical clustering
 - Agglomerative
 - Start with every point in its own cluster
 - Compute the distance between all pairs of clusters
 - Merge the two closest clusters
 - Repeat 3 and 4 until all points are in the same cluster
 - o Divisive
 - Start with every point in the same cluster
 - At each step split until every point is in its own cluster
- Distance functions
 - Lets define
 - Distance between points: d(p1, p2)
 - Distance between clusters: D(C1, C2)
 - Single Link Distance
 - Single link distance is the minimum of all the pairwise distances between a point from one cluster and a point from the other

$$D_{SL}(C_1, C_2) = \min \left\{ d(p_1, p_2) \mid p_1 \in C_1, p_2 \in C_2 \right\}$$

Dependent on the choice of d (dimensions)

o Complete-Link Distance

 Is the maximum of all the pairwise distances between a point from one cluster and a point from the other cluster

$$D_{CL}(C_1, C_2) = \max \{ d(p_1, p_2) \mid p_1 \in C_1, p_2 \in C_2 \}$$

Average Link Distance

 Is the average of all the pairwise distances between a point from one cluster and a point from the other cluster

$$D_{AL}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{p_1 \in C_1, p_2 \in C_2} d(p_1, p_2)$$

Less susceptible to noise and outliers but is more biased toward globular clusters

Centroid Distance

The distance between the centroids of the clusters

$$D_C(C_1, C_2) = d(\mu_1, \mu_2)$$

Ward's Distance

 The difference between the spread / variance of the points in the merged clusters and the unmerged clusters

Lecture 7 - Density-Based Clustering

- o Goal: cluster points that are densely packed together
- Density: Given a fixed radius ε around a point, if there are at least min_pts number of points in that area, then this area is dense.
- O Core points: if its ε neighborhood contains at least min_pts
- O Border point: if its in the ε neighborhood of a core points
- o Noise points: if it is neither a core nor border point
- o DBScan Algorithm:
 - 1. Find the ε-neighborhood of each point
 - 2. Label the point as core if it contains at least min_pts
 - 3. For each core point, assign to the same cluster all core points in its neighborhood (crux of the algorithm)
 - o 4. Label points in its neighborhood that are not core as border
 - o 5. Label points as noise if they are neither core nor border
 - 6. Assign border points to nearby clusters