

KI Labor - Wintersemester 2021

NLP - Sprintwechsel & Vorstellung Assignment

Schedule

Datum	Thema	Inhalt	Präsenz
01.10.21	Allg.	Organisation, Teamfindung	Nein
08.10.21	CV	Vorstellung CV	Nein
15.10.21	CV	Q&A Sessions	Nein
22.10.21	CV	Sprintwechsel, Vorstellung Assignment	Ja
29.10.21	CV	Q&A Sessions	Nein
05.11.21	CV/NLP	Abgabe CV, Vorstellung NLP	Ja
12.11.21	NLP	Q&A Sessions	Nein
19.11.21	NLP	Sprintwechsel, Vorstellung Assignment	Ja
26.11.21	NLP	Q&A Sessions	Nein
03.12.21	NLP	Keine Veranstaltung Q&A Sessions	Nein
10.12.21	NLP/RL	Abgabe NLP, Vorstellung RL	Ja
17.12.21	RL	Q&A Sessions	Nein
14.01.22	RL	Sprintwechsel, Vorstellung Assignment	Ja
21.01.22	RL	Q&A Sessions	Nein
28.01.22	RL	Abgabe RL, Abschluss KI Labor	Ja

Agenda

> Besprechung Übungsaufgaben

- Word Embeddings Alice im Wunderland (Aufgabe 1)
- Sentiment Analyse für Twitter Posts (Aufgabe 2)

Vorstellung Assignment

- Sequence-To-Sequence Modelle
- Implementierung eines Seq2Seq Modells, oder
- Sequential Transfer Learning mit Transformern

Sequence-**To**-Sequence

Sequence2Sequence Model

UseCase: Maschinelles Übersetzen (Encoder/Decoder)

Encoder-Decoder Architektur

Maschinelles Übersetzen

LSTM - Long Short Term Memory

Attention

Transformer

- Keine Rekurrenz: Statt Wort-für-Wort werden Sequenzen (Wörter, Sätze) parallel verarbeitet
- Self-Attention: Wichtigkeit von Wörtern im Satz wird gelernt
- Positional Encodings kombiniert mit Embeddings um Position im Satz zu behalten.

Implementierung eines Seq2Seq Modells

Implementierung Encoder- Decoder

Encoder

- > Auswahl von RNN / Attention / Transformer
- > Bei RNNs: Uni- oder Bidirektional
- > Embeddings (Chars, Wörter)
- Padding

Decoder

- Welche Inputs werden bei Training/Inferenz benötigt
- > Was ist genau der Output

Padding

Problem: Nicht alle Sequenzen haben die gleiche Länge...

> Beispiel

- Text_1: ["Die", "Ente", "tanzt", "und", "quakt"]
- Text_2: ["Die", "Ente", "schwimmt"]
- > Die beiden Sätze sind in einem Batch und sollen an das NN gefüttert werden.
- Problem: Wir müssen mit Tensoren arbeiten, die die gleichen Dimensionen haben.
- Lösung Padding:
 - Text_1: ["Die", "Ente", "tanzt", "und", "quakt"]
 - Text_2: ["Die", "Ente", "schwimmt", "PADDING", "PADDING"]
 - Batch : [[1,2,3,4,5],[1,2,6,0,0]]

Decoder I/O während Training/Inferenz

- Beispiel Machine Translation
- > Training: Der Decoder wird mit dem Übersetzungstext der Zielsprache trainiert
- > Inferenz: Start Token von Zielsprache und Encoder State wird übergeben

Sequential Transfer Learning mit Transformern

Language Model

Language Model (LM): Gegeben eines Kontexts, was ist das nächste Wort?

→ the weather was <target> ⇒ target = hot

- ⇒ Semi-Supervised Task
- ⇒ Große LMs sind Grundlage für Transfer Lernen in NLP
- ⇒ Sprachmodelle können bidirektional sein.

Transfer Lernen in NLP

Sequential Transfer Learning

1. Pre-Training 2. Fine-Tuning Classification Typically: Language modeling Seq2Seq (Translation, ..) Source task Target task(s)

OpenAl Transformer

BERT

- > Basiert auf Transformer Encodern
- Masked-Language Model

Aber: Transfer Learning Idee bleibt.

BERT

Adaptionen und Weiterentwicklungen

- > Robustere BERT Modelle (z. B. ROBERTa)
- Verschiedene Sprachen (z.B. <u>CamemBERT</u>)
- > Verkleinerung des Modells (z.B. <u>DistillBERT</u>)
- > Text-To-Text Transfer Transformer (T5)
- Viele weitere (siehe tomohideshibata/BERT-related-papers)

Huggingface Transformers

- > Python Library für Training, Fine-Tuning, Deployment, ...
- > Model Hub: Tausende Modelle für unterschiedliche
 - > Tasks
 - › Datensätze
 - Sprachen
 - https://huggingface.co/models für Text2Text

Assignment

Assignment

Open-Ended Assignment

Minimale Anforderungen

- > Wähle einen passenden Seq2Seq-Task (Machine Translation, Text summarization, Text generation, ...) und Datensatz.
 - > Datensatz und Task verstehen und erklären.
 - > Netzwerk und Ergebnisse verstehen und erklären.
- > Entweder (nur 1 aussuchen und machen!):
 - > Implementierung eines Seq2Seq Modells und auf Datensatz / Task anwenden, oder
 - > Fine-Tuning eines Transformers auf Datensatz / Task

Assignment

- > Quellen zur Inspiration
 - https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-network s-python-keras/
 - https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in--keras.html
 - https://machinelearningmastery.com/the-bahdanau-attention-mechanism/
 - https://paperswithcode.com/method/seq2seq
 - https://huggingface.co/models

