

1/43

# Linguagens Formais e Autómatos / Compiladores

Gramáticas independentes do contexto (GIC)

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt>

DETI, Universidade de Aveiro

Ano letivo de 2020-2021

## Sumário

- Gramáticas independentes do contexto (GIC)
- 2 Derivação e árvore de derivação
- 3 Ambiguidade
- 4 Projeto de gramáticas
- 6 Operações sobre GIC
- 6 Limpeza de gramáticas

## Gramáticas Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito n\u00e3o vazio de s\u00eambolos terminais;
- N, com N ∩ T = Ø, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma α → β;
- $S \in N$  é o símbolo inicial.
- α e β são designados por cabeça da produção e corpo da produção, respetivamente.
- No caso geral  $\alpha \in (N \cup T)^* \times N \times (N \cup T)^*$  e  $\beta = (N \cup T)^*$ .
- Em ANTLR:
  - os terminais são representados por ids começados por letra maíscula
  - os n\u00e3o terminais s\u00e3o representados por ids come\u00fcados por letra min\u00eascula

ACP/MOS (UA) LFA+C-2019/2020 maio/2021

# Gramáticas independentes do contexto - GIC

 ${\cal D}$  Uma gramática G=(T,N,P,S) diz-se **independente do contexto** (ou **livre de contexto**) se, para qualquer produção  $(\alpha \to \beta) \in P$ , as duas condições seguintes são satisfeitas

$$\alpha \in N$$
$$\beta \in (T \cup N)^*$$

- A linguagem gerada por uma gramática independente do contexto diz-se independente do contexto
- as gramáticas regulares são independentes do contexto
- As gramáticas independentes do contexto são fechadas sob as operações de reunião, concatenação e fecho
  - mas não o são sob as operações de intersecção e complementação.

• Note que: se  $\beta \in T^* \cup T^*N$ , então  $\beta \in (T \cup N)^*$ 

# Derivação Exemplo

 $\mathcal Q$  Considere, sobre o alfabeto  $T = \{a,b,c\}$ , a gramática

$$S \rightarrow \varepsilon \mid \mathsf{a} \; B \mid \mathsf{b} \; A \mid \mathsf{c} \; S$$
 
$$A \rightarrow \mathsf{a} \; S \mid \mathsf{b} \; A \; A \mid \mathsf{c} \; A$$
 
$$B \rightarrow \mathsf{a} \; B \; B \mid \mathsf{b} \; S \mid \mathsf{c} \; B$$

e transforme o símbolo inicial S na palavra <code>aabcbc</code> por aplicação sucessiva de produções da gramática

 $\mathcal{R}$ 

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aabSB\Rightarrow aabcSB\Rightarrow aabcbS$$
  
 $\Rightarrow aabcbcS\Rightarrow aabcbc$ 

- Acabou de se obter uma derivação à esquerda da palavra aabcbc
- Cada passo dessa derivação é uma derivação direta à esquerda
- Quando há dois ou mais símbolos não terminais, opta-se por expandir primeiro o mais à esquerda

# Derivação Definições

 ${\mathcal D}$  Dada uma palavra lpha Aeta, com  $A\in N$  e  $lpha, eta\in (N\cup T)^*$ , e uma produção  $(A o\gamma)\in P$ , com  $\gamma\in (N\cup T)^*$ , chama-se **derivação direta** à rescrita de lpha Aeta em  $lpha\gamma\beta$ , denotando-se

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 ${\mathcal D}$  Dada uma palavra lpha Aeta, com  $A\in N,\ lpha\in T^*$  e  $eta\in (N\cup T)^*$ , e uma produção  $(A o\gamma)\in P,$  com  $\gamma\in (N\cup T)^*$ , chama-se **derivação direta à esquerda** à rescrita de lpha Aeta em  $lpha \gamma eta$ , denotando-se

$$\alpha A\beta \stackrel{E}{\Rightarrow} \alpha \gamma \beta$$

 ${\mathcal D}$  Dada uma palavra lpha Aeta, com  $A\in N,\, lpha\in (N\cup T)^*$  e  $eta\in T^*$ , e uma produção  $(A o\gamma)\in P$ , com  $\gamma\in (N\cup T)^*$ , chama-se **derivação direta à direita** à rescrita de lpha Aeta em  $lpha\gamma eta$ , denotando-se

$$\alpha A\beta \stackrel{D}{\Rightarrow} \alpha \gamma \beta$$

# Derivação Definições

Chama-se derivação a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta \equiv \alpha = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à esquerda a uma sucessão de zero ou mais derivações diretas à esquerda, denotando-se

$$\alpha \stackrel{E}{\Rightarrow} {}^*\beta \qquad \equiv \qquad \alpha = \alpha_0 \stackrel{E}{\Rightarrow} \alpha_1 \stackrel{E}{\Rightarrow} \cdots \stackrel{E}{\Rightarrow} \alpha_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à direita a uma sucessão de zero ou mais derivações diretas à direita, denotando-se

$$\alpha \stackrel{D}{\Rightarrow} {}^*\beta \equiv \alpha = \gamma_0 \stackrel{D}{\Rightarrow} \gamma_1 \stackrel{D}{\Rightarrow} \cdots \stackrel{D}{\Rightarrow} \gamma_n = \beta$$

onde n é o comprimento da derivação.

### Derivação Exemplo

 $\mathcal Q$  Considere, sobre o alfabeto  $T = \{a,b,c\}$ , a gramática seguinte

$$S \to \varepsilon \mid \texttt{a} \ B \mid \texttt{b} \ A \mid \texttt{c} \ S$$
 
$$A \to \texttt{a} \ S \mid \texttt{b} \ A \ A \mid \texttt{c} \ A$$
 
$$B \to \texttt{a} \ B \ B \mid \texttt{b} \ S \mid \texttt{c} \ B$$

Determine as derivações à esquerda e à direita da palavra aabcbc

 $\mathcal{R}$ 

à esquerda

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aabSB\Rightarrow aabcSB$$
  
 $\Rightarrow aabcB\Rightarrow aabcbS\Rightarrow aabcbcS\Rightarrow aabcbc$ 

à direita

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aaBbS \Rightarrow aaBbcS$$
  
 $\Rightarrow aaBbc \Rightarrow aabSbc \Rightarrow aabcSbc \Rightarrow aabcbc$ 

• Note que se usou  $\Rightarrow$  em vez de  $\stackrel{D}{\Rightarrow}$  e  $\stackrel{E}{\Rightarrow}$ 

maio/2021

### Derivação Alternativas de derivação

 O grafo seguinte capta as alternativas de derivação. Considera-se novamente a palavra aabcbc e a gramática anterior



• Identifique os caminhos que correspondem às derivações à direita e à esquerda

## Derivação Árvore de derivação

- ${\cal D}$  Uma **árvore de derivação** (*parse tree*) é uma representação de uma derivação onde os nós-ramos são elementos de N e os nós-folhas são elementos de T.
  - A árvore de derivação da palavra aabcbc na gramática anterior é



# **Ambiguidade**

### Ilustração através de um exemplo

- Considere a gramática  $S \to S + S \mid S S \mid$  ( S )  $\mid$  n e desenhe a árvore de derivação da palavra n+n-n
- ${\cal R}\,$  Podem obter-se duas árvores de derivação diferentes



Há duas interpretações diferentes para a palavra; há ambiguidade

# Ambiguidade Definição

- Diz-se que uma palavra é derivada ambiguamente se possuir duas ou mais árvores de derivação distintas
- Diz-se que uma gramática é ambígua se possuir pelo menos uma palavra gerada ambiguamente
  - Frequentemente é possível definir-se uma gramática não ambígua que gera a mesma linguagem que uma ambígua
- No entanto, há gramáticas inerentemente ambíguas

Por exemplo, a linguagem

$$L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \lor j = k \}$$

não possui uma gramática não ambígua que a represente.

# Ambiguidade

### Remoção da ambiguidade

 ${\cal R}\,$  Considere-se novamente a gramática

$$S 
ightarrow S + S \mid S - S \mid$$
 (  $S$  )  $\mid$  n

e obtenha-se uma gramática não ambígua equivalente

 $\mathcal{R}$ 

$$S \to K \mid S + K \mid S - K$$
$$K \to n \mid (S)$$

Q Desenhe a árvore de derivação da palavra n+n-n na nova gramática



Exemplo #1, solução #1

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 $\mathcal{R}_1$ 

$$S 
ightarrow arepsilon \mid$$
 a  $S$  b  $S \mid$  b  $S$  a  $S$ 

Q A gramática é ambígua? Analise a palavra aabbab





18/43

maio/2021

Exemplo #1, solução #2

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 $\mathcal{R}_2$ 

$$S \to \varepsilon \mid a B \mid b A$$
  
 $A \to a S \mid b A A$   
 $B \to a B B \mid b S$ 

Q A gramática é ambígua? Analise a palavra aababb.



Falta expandir alguns nós

Exemplo #1, solução #3

 $\mathcal{R}_3$ 

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{\omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$$
  $S \to \varepsilon \mid \mathtt{a} \mathrel{B} S \mid \mathtt{b} \mathrel{A} S$   $A \to \mathtt{a} \mid \mathtt{b} \mathrel{A} A$   $B \to \mathtt{a} \mathrel{B} B \mid \mathtt{b}$ 

Q A gramática é ambígua? Analise a palavra aababb

#### Projeto de gramáticas Exemplo #2

 $\mathcal{R}$ 

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b,\mathtt c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L_2 = \{\omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$$
  $S \to \varepsilon \mid \mathtt{a} \mid B \mid S \mid \mathtt{b} \mid A \mid S \mid \mathtt{c} \mid S$   $A \to \mathtt{a} \mid \mathtt{b} \mid A \mid A \mid \mathtt{c} \mid A$   $B \to \mathtt{a} \mid B \mid B \mid \mathtt{b} \mid \mathtt{c} \mid B$ 

Q A gramática é ambígua?

Exemplo #3, solução #1

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b,\mathtt c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$\begin{split} L_3 \ = \ \{\omega \in T^* \ : \ \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \land \\ \forall_{i \le |\omega|} \ \#(\mathbf{a}, \mathsf{prefix}(i,\omega)) \ge \#(\mathbf{b}, \mathsf{prefix}(i,\omega)) \} \end{split}$$

 $\mathcal{R}_1$ 

$$S \to \varepsilon \mid$$
 a  $S$  b  $S \mid$  c  $S$ 

Q A gramática é ambígua? Analise a palavra aababb

ACP/MOS (UA) LFA+C-2019/2020 maio/2021

Esta linguagem faz-vos lembrar algo que conheçam?

<sup>•</sup> Solução inspirada na do exemplo 1.1 removendo a produção  $S 
ightarrow \mathtt{b} \ S \ \mathtt{a} \ S$ 

Exemplo #3: solução #2

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b,\mathtt c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$\begin{array}{ll} L_3 \,=\, \{\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega) \wedge \\ & \forall_{i \leq |\omega|} \,\, \#(\mathtt{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathtt{b},\mathsf{prefix}(i,\omega))\} \end{array}$$

 $\mathcal{R}_2$ 

Q A gramática é ambígua? Analise a palavra aababb

ACP/MOS (UA) LFA+C-2019/2020 maio/2021

Solução inspirada na do exemplo 1.2 removendo a produção  $S\to \mathsf{b}\ A$  e as começadas por A

Exemplo #3: solução #3

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b,\mathtt c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$\begin{array}{ll} L_3 \,=\, \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \wedge \\ & \forall_{i \leq |\omega|} \ \#(\mathbf{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b},\mathsf{prefix}(i,\omega))\} \end{array}$$

 $\mathcal{R}_3$ 

$$S \to \varepsilon$$
 | a  $B S$  | c  $S$  |  $B \to$  a  $B B$  | b | c  $B$ 

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.3 removendo a produção  $S\to \flat\ A\ S$  e as começadas por A

#### Projeto de gramáticas Exercício

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt{a},\mathtt{b},\mathtt{c},(,),+,\star\}$ , determine uma gramática independente do contexto que represente a linguagem

```
L = \{\, \omega \in T^* : \\ \omega \text{ representa uma expressão regular sobre o alfabeto } \{\mathtt{a},\mathtt{b},\mathtt{c}\} \}
```

R Em ANTLR, poder-se-ia fazer

mas em geral não, porque, em geral, as alternativas estão todas ao mesmo nível

 Como escrever a gramática de modo à precedência ser imposta por construção?

Está a usar-se o operador + em vez do |

#### Projeto de gramáticas Exercício (cont.)

#### $\mathcal{R}$ Em geral

- Uma expressão é vista como uma 'soma' de termos
- Um termo é visto como um 'produto' (concatenação) de fatores
- Um fator é visto como um 'fecho' de operandos
- Um operando ou é um elemento base ou uma expressão entre parêntesis

Está a usar-se o operador + em vez do |

## Reunião de GIC Exemplo

Q Sobre o conjunto de terminais  $T = \{a, b, c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \lor \#(\mathbf{a}, \omega) = \#(\mathbf{c}, \omega) \}$$

$$\begin{array}{|c|c|c|}\hline \mathcal{R} & & \\ \hline L_1 = \{\, \omega \in T^* \, : \, \#(\mathtt{a}, \omega) = \#(\mathtt{b}, \omega) \,\} & \begin{array}{|c|c|c|c|}\hline S_1 \to \varepsilon \mid \mathtt{a} \, S_1 \, \mathtt{b} \, S_1 \\ & \mid \mathtt{b} \, S_1 \, \mathtt{a} \, S_1 \mid \mathtt{c} \, S_1 \end{array} \\ \hline L_2 = \{\, \omega \in T^* \, : \, \#(\mathtt{a}, \omega) = \#(\mathtt{c}, \omega) \,\} & \begin{array}{|c|c|c|c|}\hline S_2 \to \varepsilon \mid \mathtt{a} \, S_2 \, \mathtt{c} \, S_2 \\ & \mid \mathtt{b} \, S_2 \mid \mathtt{c} \, S_2 \, \mathtt{a} \, S_2 \end{array} \\ \hline L = L_1 \cup L_2 & \begin{array}{|c|c|c|c|c|}\hline S_1 \to \varepsilon \mid \mathtt{a} \, S_1 \, \mathtt{b} \, S_1 \\ & \mid \mathtt{b} \, S_1 \, \mathtt{a} \, S_1 \mid \mathtt{c} \, S_1 \\ \hline S_2 \to \varepsilon \mid \mathtt{a} \, S_2 \, \mathtt{c} \, S_2 \\ & \mid \mathtt{b} \, S_2 \mid \mathtt{c} \, S_2 \, \mathtt{a} \, S_2 \end{array} \end{array}$$

• Para esta linguagem, mesmo que as gramáticas de  $L_1$  e  $L_2$  não sejam ambíguas, a de L será ambígua. Porquê?

#### Operações sobre GICs Reunião

 $\mathcal{D}$  Sejam  $G_1=(T_1,N_1,P_1,S_1)$  e  $G_2=(T_2,N_2,P_2,S_2)$  duas gramáticas independentes do contexto quaisquer, com  $N_1\cap N_2=\emptyset$ .

A gramática G=(T,N,P,S) onde

$$\begin{array}{l} T = T_1 \ \cup \ T_2 \\ N = N_1 \ \cup \ N_2 \ \cup \ \{S\} \quad \text{com} \quad S \not\in (N_1 \cup N_2) \\ P = \{S \rightarrow S_1, S \rightarrow S_2\} \ \cup \ P_1 \ \cup \ P_2 \end{array}$$

é independente do contexto e gera a linguagem  $L=L(G_1)\cup L(G_2)$ 

- As novas produções  $S \to S_i$ , com i=1,2, permitem que G gere a linguagem  $L(G_i)$
- Esta definição é idêntica à que foi dada para a operação de reunião nas gramáticas regulares

ACP/MOS (UA) LFA+C-2019/2020 maio/2021

## Concatenação de GIC Exemplo

 $\mathcal{Q}$  Sobre o conjunto de terminais  $T = \{a, b, c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$\begin{split} L &= \big\{\,\omega_1\omega_2\,:\,\omega_1,\omega_2 \in T^* \\ &\quad \wedge \#(\mathbf{a},\omega_1) = \#(\mathbf{b},\omega_1)\,\wedge\,\#(\mathbf{a},\omega_2) = \#(\mathbf{c},\omega_2)\,\big\} \end{split}$$

 $\mathcal{R}$ 

| $L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |
|--------------------------------------------------------------------------------|----------------------------------------------------|
| $L_2 = \{ \omega \in T^* : \#(a, \omega) = \#(c, \omega) \}$                   | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |
| $L=L_1\cdot L_2$                                                               | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |

30/43

maio/2021

# Operações sobre gramáticas: Concatenação

 $\mathcal{D}$  Sejam  $G_1=(T_1,N_1,P_1,S_1)$  e  $G_2=(T_2,N_2,P_2,S_2)$  duas gramáticas independentes do contexto quaisquer, com  $N_1\cap N_2=\emptyset$ .

A gramática G = (T, N, P, S) onde

$$\begin{split} T &= T_1 \, \cup \, T_2 \\ N &= N_1 \, \cup \, N_2 \, \cup \, \{S\} \quad \mathsf{com} \quad S \not\in (N_1 \cup N_2) \\ P &= \{S \to S_1 S_2\} \, \cup \, P_1 \, \cup \, P_2 \end{split}$$

é independente do contexto e gera a linguagem  $L = L(G_1) \cdot L(G_2)$ 

- A nova produção  $S \to S_1S_2$  justapõe palavras de  $L(G_2)$  às de  $L(G_1)$
- Esta definição é diferente da que foi dada para a operação de concatenação nas gramáticas regulares

ACP/MOS (UA) LFA+C-2019/2020 maio/2021 31/43

# Fecho de Kleene de GIC Exemplo

 $\mathcal{Q}$  Sobre o conjunto de terminais  $T = \{a, b, c\}$ , determine uma gramática independente do contexto que represente a linguagem

$$L \,=\, \{\, \omega \in T^* \,:\, \#(\mathbf{a},\omega) \geq \#(\mathbf{b},\omega) \}$$

$$\mathcal{R}$$

| $X = \{ \omega \in T^* : \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega)\}$        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|----------------------------------------------------------------------------------|-------------------------------------------------------|
| $A = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) + 1 \}$ | Basta usar o $A$ anterior como símbolo inicial        |
| $L = X \cup A^*$                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

• O fecho de A inclui a palavra vazia mas não as outras palavras com  $\#_a = \#_b$ 

# Operações sobre gramáticas

Seja  $G_1=(T_1,N_1,P_1,S_1)$  uma gramática independente do contexto qualquer. A gramática G=(T,N,P,S) onde

$$T = T_1$$

$$N = N_1 \cup \{S\} \quad \text{com} \quad S \notin N_1$$

$$P = \{S \rightarrow \varepsilon, S \rightarrow S_1 S\} \cup P_1$$

é independente do contexto e gera a linguagem  $L = (L(G_1))^*$ 

- A produção  $S \to \varepsilon$ , per si, garante que  $L^0(G_1) \subseteq L(G)$
- As produções  $S \to S_1 S$  e  $S \to \varepsilon$  garantem que  $L^i(G_1) \subseteq L(G)$ , para qualquer i>0
- Esta definição é diferente da que foi dada para a operação de fecho nas gramáticas regulares

ACP/MOS (UA) LFA+C-2019/2020 maio/2021 33/43

### Símbolos produtivos e improdutivos Exemplo de ilustração

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$ , considere a gramática

$$S \rightarrow a \ A \ b \ | \ b \ B$$
 
$$A \rightarrow c \ C \ | \ b \ B \ | \ d$$
 
$$B \rightarrow d \ D \ | \ b$$
 
$$C \rightarrow A \ C \ | \ B \ D \ | \ S \ D$$
 
$$D \rightarrow A \ D \ | \ B \ C \ | \ C \ S$$
 
$$E \rightarrow a \ A \ | \ b \ B \ | \ \varepsilon$$

- Tente expandir (através de uma derivação) o símbolo não terminal A para uma sequência apenas com símbolos terminais ( $S \Rightarrow^* u$ , com  $u \in T^*$ )
  - $A \Rightarrow d$
- ullet Faça o mesmo com o símbolo C
  - Não consegue
- A é um símbolo **produtivo**; C é um símbolo **improdutivo**

### Símbolos produtivos e improdutivos Definição de símbolo produtivo

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo não terminal A diz-se produtivo se for possível expandi-lo para uma expressão contendo apenas símbolos terminais
- Ou seja, A é produtivo se

$$A \Rightarrow^+ u \quad \land \quad u \in T^*$$

- Caso contrário, diz-se que A é improdutivo
- Uma gramática é improdutiva se o seu símbolo inicial for improdutivo
- Na gramática

$$S \rightarrow ab \mid aSb \mid X$$
  
 $X \rightarrow cX$ 

- $S \not\in \mathsf{produtivo}$ , porque  $S \Rightarrow \mathsf{ab} \land \mathsf{ab} \in T^*$

#### Símbolos produtivos Algoritmo de cálculo

• O conjunto dos símbolos produtivos,  $N_p$ , pode ser obtido por aplicação sucessiva das seguintes regras construtivas

$$\begin{array}{l} \mathbf{if} \ (A \to \alpha) \in P \ \ \mathbf{and} \ \alpha \in T^* \ \ \mathbf{then} \ A \in N_p \\ \mathbf{if} \ (A \to \alpha) \in P \ \ \mathbf{and} \ \alpha \in (T \cup N_p)^* \ \ \mathbf{then} \ A \in N_P \end{array}$$

until nothingAdded or  $N_n = N$ 

Algoritmo de cálculo:

```
N_p \leftarrow \emptyset
                                        # no fim, ficará com todos os símbolos produtivos
P_p \leftarrow \operatorname{orded}(P)
                                                  lista ordenada de produções a processar
repeat
     nothingAdded \leftarrow true
     (A \to \alpha) \leftarrow \text{headOf}(P_p)
                                                        \# retira o primeiro elemento de P_n
     if A \in N_p then
                                                        # A já foi marcado como produtivo
          continue
     else if \alpha \in (T \cup N_n)^* then
                                                   # se todos são terminais ou produtivos
          N_n \leftarrow N_n \cup \{A\}
                                                                      # então A é produtivo
          nothingAdded ← false
     else
          tailOf(P_p) \leftarrow (A \rightarrow \alpha)
                                                         # para ser processado mais tarde
```

# Símbolos acessíveis e inacessíveis Exemplo de ilustração

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$ , considere a gramática

$$S 
ightarrow a A b \mid b B$$
 $A 
ightarrow c C \mid b B \mid d$ 
 $B 
ightarrow d D \mid b$ 
 $C 
ightarrow A C \mid B D \mid S D$ 
 $D 
ightarrow A D \mid B C \mid C S$ 
 $E 
ightarrow a A \mid b B \mid \varepsilon$ 

- Tente alcançar (através de uma derivação) o símbolo não terminal C a partir do símbolo inicial (S)  $(S \Rightarrow^* \alpha C \beta, \text{ com } \alpha, \beta \in (T \cup N)^*)$ 
  - $S \Rightarrow b B \Rightarrow b d D \Rightarrow b d B C$
- ullet Faça o mesmo com o símbolo E
  - Não consegue
- C é um símbolo acessível; E é um símbolo inacessível

# Símbolos acessíveis e inacessíveis Definição de símbolo acessível

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo terminal ou não terminal x diz-se **acessível** se for possível expandir S (o símbolo inicial) para uma expressão que contenha x
- Ou seja, x é acessível se

$$S \Rightarrow^* \alpha \, x \, \beta$$

- Caso contrário, diz-se que x é inacessível
- Na gramática

$$S \to \varepsilon$$
 | a  $S$  b | c  $C$  c  $C \to$  c  $S$  c  $D \to$  d  $X$  d  $X \to C$   $C$ 

- D, d, e X são inacessíveis
- Os restantes são acessíveis

# Símbolos acessíveis Algoritmo de cálculo

• O conjunto dos seus símbolos acessíveis,  $V_A$ , pode ser obtido por aplicação das seguintes regras construtivas

$$S \in V_A$$
 if  $A o lpha B eta \in P$  and  $A \in V_A$  then  $B \in V_A$ 

Algoritmo de cálculo:

```
V_A \leftarrow \{S\}
                                      # no fim. ficará com todos os símbolos acessíveis
N_A \leftarrow \{S\}
                          # conjunto de símbolos não terminais acessíveis a processar
repeat
    X \leftarrow \text{elementOf}(N_A)
                                                   \# retira um elemento qualquer de N_A
    foreach (X \to \alpha) \in P do
         foreach x in \alpha do
              if x \not\in V_A then
                                          # se ainda não está marcado como acessível
                   V_A \leftarrow V_A \cup \{x\}
                                                                          # passa a estar
                   if x \in N then
                                                      # se adicinalmente é não terminal
                        N_A \leftarrow N_A \cup \{x\}
                                                                # terá de ser processado
until N_A = \emptyset
```

# Gramáticas limpas Algoritmo de limpeza

- Numa gramática, os símbolos inacessíveis e os símbolos improdutivos são símbolos inúteis
- Se tais símbolos forem removidos obtém-se uma gramática equivalente
- Diz-se que uma gramática é limpa se não possuir símbolos inúteis
- Para limpar uma gramática deve-se:
  - começar por a expurgar dos símbolos improdutivos
  - só depois remover os inacessíveis

# Gramáticas limpas Exemplo #1

 $\mathcal Q$  Sobre o conjunto de terminais  $T=\{\mathtt a,\mathtt b,\mathtt c,\mathtt d\}$ , determine uma gramática limpa equivalente à gramática seguinte

$$\begin{array}{l} S \rightarrow \text{a} \ A \ \text{b} \ | \ \text{b} \ B \\ A \rightarrow \text{c} \ C \ | \ \text{b} \ B \ | \ \text{d} \\ B \rightarrow \text{d} \ D \ | \ \text{b} \\ C \rightarrow A \ C \ | \ B \ D \ | \ S \ D \\ D \rightarrow A \ D \ | \ B \ C \ | \ C \ S \\ E \rightarrow \text{a} \ A \ | \ \text{b} \ B \ | \ \varepsilon \end{array}$$

- Cálculo dos símbolos produtivos
  - 1 Inicialmente  $N_p \leftarrow \emptyset$
  - $2 A \to d \land d \in T^* \implies N_p \leftarrow N_p \cup \{A\}$
  - $3 B \to b \land b \in T^* \implies N_p \leftarrow N_p \cup \{B\}$
  - $4 E \to \varepsilon \land \varepsilon \in T^* \implies N_p \leftarrow N_p \cup \{E\}$
  - $5 \ S \to \mathtt{a} \, A \, \mathtt{b} \ \land \ \mathtt{a}, A, \mathtt{b} \in (T \cup N_p)^* \quad \Longrightarrow \quad N_p \leftarrow N_p \cup \{S\}$
  - 6 Nada mais se consegue acrescentar a  $N_p \implies C$  e D são improdutivos

#### Gramáticas limpas Exemplo #1, cont.

Gramática após a remoção dos símbolos improdutivos

$$\begin{array}{l} S \to \mathbf{a} \ A \ \mathbf{b} \ | \ \mathbf{b} \ B \\ A \to \mathbf{b} \ B \ | \ \mathbf{d} \\ B \to \mathbf{b} \\ E \to \mathbf{a} \ A \ | \ \mathbf{b} \ B \ | \ \varepsilon \end{array}$$

- Cálculo dos símbolos não terminais acessíveis sobre a nova gramática
  - 1 S é acessível, porque é o inicial
  - 2 sendo S acessível, de  $S \to \mathsf{a} \ A$  b, tem-se que A é acessível
  - 3 sendo S acessível, de  $S \rightarrow \bowtie B$ , tem-se que B é acessível
  - 4 de A só se chega a B, que já foi marcado como acessível
  - 5 de B não se chega a nenhum não terminal
  - 6 Logo E não é acessível, pelo que a gramática limpa é

$$S \to \mathbf{a} \ A \ \mathbf{b} \ | \ \mathbf{b} \ B$$
 
$$A \to \mathbf{b} \ B \ | \ \mathbf{d}$$
 
$$B \to \mathbf{b}$$