CSC373 Winter 2015 Problem Set # 8

Name: Weidong An Student Number: 1000385095 UTOR email: weidong.an@mail.utoronto.ca March 15, 2015

1. Incorrect.

The reduction function does not preserve answers. Consider the graph $G = (\{a,b\}, \{(a,b)\})$. Clearly, there are even no cycles in G, but there is a Hamiltonian path $(\{(a,b)\})$. Also, this is not actually a proof but just a restatement of the result.

2. Incorrect.

The direction is not correct. HP \leq_p HC does not imply HP is NP-hard.

3. Incorrect.

The reduction function depends on C which is not part of the input. Also, it lacks detailed argument of the "iff".

4. Correct.

5. Incorrect.

The last part of the proof: the Hamiltonian path may not start from v_1 . Consider a counter example: $G = (\{v_1, v_2, v_3\}, \{(v_1, v_2), (v_2, v_1), (v_3, v_1)\}).$

Then $G' = (\{v_1, v_2, v_3, v_1'\}, \{(v_1, v_2), (v_2, v_1), (v_3, v_1), (v_2, v_1'), (v_3, v_1')\}).$

Note that $(v_3, v_1), (v_1, v_2), (v_2, v'_1)$ is a Hamiltonian path for G', but there is no Hamiltonian cycle in G.