

Amendments to the Claims:

Please amend claim 64. This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-31 (canceled)

1 32 (previously presented): A mass spectrometry probe comprising:

2 (a) a sample presenting surface, wherein the sample presenting surface is a
3 surface of the probe;

4 (b) energy absorbing molecules immobilized by chemical bonding to the
5 sample presenting surface; and

6 (c) an affinity reagent immobilized by chemical bonding to the sample
7 presenting surface, wherein the energy absorbing molecules are different
8 from the affinity reagent.

1 33 (previously presented): The probe of claim 32, wherein the sample presenting
2 surface does not have additional matrix molecules.

1 34 (previously presented): The probe of claim 32, wherein the probe comprises
2 metal.

1 35 (previously presented): The probe of claim 32, wherein the energy absorbing
2 molecules are covalently bound to the sample presenting surface.

1 36 (previously presented): The probe of claim 32, wherein the energy absorbing
2 molecules and affinity reagent are arranged on the sample presenting surface in a predetermined
3 array.

1 37 (previously presented): The probe of claim 32, wherein the energy absorbing
2 molecules are selected from the group consisting of dimethoxy hydroxycinnamic acid,
3 cinnamamide, cinnamyl bromide, dihydroxybenzoic acid, and cyanohydroxycinnamic acid.

1 38. (previously presented): The probe of claim 32, wherein the affinity reagent is
2 covalently bound to the sample presenting surface.

1 39. (previously presented): The probe of claim 32, wherein the affinity reagent is
2 selected from the group consisting of a metal ion, a protein, a peptide, a nucleic acid and a dye.

1 40. (previously presented): The probe of claim 39, wherein the affinity reagent
2 comprises a metal ion.

1 41. (previously presented): The probe of claim 40, wherein the metal ion is
2 selected from copper or iron.

1 42. (previously presented): The probe of claim 39, wherein the affinity reagent
2 comprises a protein or peptide.

1 43 (previously presented): The probe of claim 42, wherein the protein or peptide
2 is an immunoglobulin.

1 44 (previously presented): The probe of claim 39, wherein the affinity reagent
2 comprises a nucleic acid.

1 45 (previously presented): The probe of claim 44, wherein the nucleic acid is
2 DNA.

1 46 (previously presented): The probe of claim 32, wherein the analyte comprises
2 a protein.

1 47 (previously presented): The probe of claim 32, wherein the analyte comprises
2 a nucleic acid.

1 48 (previously presented): The probe of claim 32, wherein the analyte is bound
2 to the affinity reagent.

1 49 (previously presented): A method for detecting an analyte comprising:
2 (a) capturing an analyte on a sample presenting surface of a mass
3 spectrometry probe, wherein the sample presenting surface is a surface of
4 the probe, wherein the probe comprises (i) energy absorbing molecules
5 immobilized by chemical bonding to the sample presenting surface, (ii) an
6 affinity reagent immobilized by chemical bonding to the sample
7 presenting surface, wherein the energy absorbing molecules are different
8 from the affinity reagent, wherein the analyte is not dispersed in a matrix
9 crystalline structure, but is presented within, on or above the energy
10 absorbing molecules; and
11 (b) detecting the captured analyte by laser desorption/ionization mass
12 spectrometry.

1 50 (previously presented): The method of claim 49, wherein additional matrix
2 molecules are not added.

1 51 (previously presented): The method of claim 49, wherein the energy
2 absorbing molecules are covalently bound to the sample presenting surface.

1 52 (previously presented): The method of claim 49, wherein the energy
2 absorbing molecules and affinity reagent are arranged on the sample presenting surface in a
3 predetermined array.

1 53 (previously presented): The method claim 49, wherein the energy absorbing
2 molecules are selected from the group consisting of dimethoxy hydroxycinnamic acid,
3 cinnamamide, cinnamyl bromide, dihydroxybenzoic acid, and cyanohydroxycinnamic acid.

1 54. (previously presented): The method of claim 49, wherein the affinity reagent
2 is covalently bound to the sample presenting surface.

1 55. (previously presented): The method of claim 49, wherein the affinity reagent
2 is selected from the group consisting of a metal ion, a protein, a peptide, a nucleic acid and a dye.

1 56. (previously presented): The method of claim 55, wherein the affinity reagent
2 comprises a metal ion selected from copper or iron.

1 57. (previously presented): The method of claim 55, wherein the affinity reagent
2 comprises an immunoglobulin.

1 58 (previously presented): The method of claim 55, wherein the affinity reagent
2 comprises DNA.

1 59 (previously presented): The method of claim 49, wherein the sample is
2 selected from the group consisting of blood, tears, urine, saliva, gastrointestinal fluids, spinal
3 fluid, amniotic fluid, bone marrow, bacteria, viruses, cells in culture, biopsy tissue, plant tissue
4 or fluids and insect tissue or fluids.

1 60 (previously presented): The method of claim 49, wherein the analyte
2 comprises a protein.

1 61 (previously presented): The method of claim 49, wherein the analyte
2 comprises a nucleic acid.

1 62 (previously presented): The method of claim 61, wherein the nucleic acid is
2 DNA.

1 63 (previously presented): A mass spectrometry apparatus comprising:
2 (a) a probe comprising:
3 i. a sample presenting surface;
4 ii. energy absorbing molecules immobilized by chemical bonding to
5 the sample presenting surface;
6 iii. an affinity reagent capable of binding an analyte immobilized by
7 chemical bonding to the sample presenting surface; and
8 iv. an analyte that is not dispersed in a matrix crystalline structure, but
9 is presented within, on or above the energy absorbing molecules,
10 wherein the energy absorbing molecules are different from the
11 affinity reagent;
12 (b) an energy source that directs laser energy to the sample presenting surface
13 for desorbing and ionizing the analyte;
14 (c) a detector that detects the desorbed, ionized analyte
15 (d) a spectrometer tube into which ionized analyte is accelerated;
16 (e) means for applying an accelerating electrical potential to the desorbed,
17 ionized analyte; wherein the mass spectrometer is a time-of-flight mass
18 spectrometer; and
19 (f) vacuum means for applying a vacuum to the interior of the tube.

1 64 (currently amended): The probe apparatus of claim 63, wherein the sample
2 presenting surface does not have additional matrix molecules.

1 65 (previously presented): The apparatus of claim 63, wherein the detector
2 comprises an electron multiplier.

1 66 (previously presented): The apparatus of claim 63, wherein the energy source
2 is energy from a nitrogen laser or an Nd-YAG laser.

1 67 (previously presented): The apparatus of claim 63, wherein the energy
2 absorbing molecules are noncovalently bound to the sample presenting surface.

1 68 (previously presented): The apparatus of claim 63, wherein the energy
2 absorbing molecules are covalently bound to the sample presenting surface.

1 69 (previously presented): The apparatus of claim 63, wherein the energy
2 absorbing molecules are selected from the group consisting of dimethoxy hydroxycinnamic acid,
3 cinnamamide, cinnamyl bromide, dihydroxybenzoic acid, and cyanohydroxycinnamic acid.

1 70. (previously presented): The apparatus of claim 63, wherein the affinity
2 reagent is noncovalently bound to the sample presenting surface.

1 71. (previously presented): The apparatus of claim 63, wherein the affinity
2 reagent is covalently bound to the sample presenting surface.

1 72. (previously presented): The apparatus of claim 63, wherein the affinity
2 reagent is selected from the group consisting of a metal ion, a protein, a peptide, a nucleic acid
3 and a dye.

1 73. (previously presented): The apparatus of claim 72, wherein the affinity
2 reagent comprises a metal ion.

1 74. (previously presented): The apparatus of claim 73, wherein the metal ion is
2 selected from copper or iron.

1 75. (previously presented): The apparatus of claim 72, wherein the affinity
2 reagent comprises a protein or peptide.

1 76 (previously presented): The apparatus of claim 75, wherein the protein or
2 peptide is an immunoglobulin.

1 77 (previously presented): The apparatus of claim 72, wherein the affinity
2 reagent comprises a nucleic acid.

1 78 (previously presented): The apparatus of claim 77, wherein the nucleic acid is
2 DNA.

1 79 (previously presented): The apparatus of claim 63, wherein the analyte
2 comprises a protein.

1 80 (previously presented): The apparatus of claim 63, wherein the analyte
2 comprises a nucleic acid.

1 81 (previously presented): The apparatus of claim 80, wherein the nucleic acid is
2 DNA.