K-Map (With Don't Care):

- In practice, in some applications the function is not specified for certain combinations of the variables.
- As an example, the four-bit bin for the decimal digits has six combinations that are not used and consequently are considered to be unspecified.
- Functions that have unspecified outputs for some input combinations are called incompletely specified functions.
- In most applications, we simply don't care what value is assumed by the function for the unspecified minterms/maxterms. For this reason, it is customary to call the unspecified minterms/maxterms of a function as don't-care conditions
- These don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

K-Map (With Don't Care): SOP den tare min terms
$$f(w, x, y, z) = \sum_{m \in \mathbb{Z}} m(2,4,5,6,10) + D(12,13,14,15)$$

and V	_				
	', Z 00	01	11	10	•
w,x	m_0	m_1	m_3	m_2	
00	0	0	0	1	
01	1	1	0	n_6	
$\int 11$	m_{12} ϕ_{z1}	m_{13} $\phi = 1$	$\phi^{m_{15}}$	$\phi = 0$	
10	0	0	0	1	3 PT 3 Likerols

$$f(w,x,y,z) = \overline{w} \cdot x \cdot \overline{y} + \overline{w} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z}$$
14 Feb. 2022

$$f(w, x, y, z) = x \cdot \bar{y} + y \cdot \bar{z}$$

K-Map (With Don't Care): POS

$$f(w, x, y, z) = \sum m(2,4,5,6,10) + D(12,13,14,15)$$

$$f(x,y,z) = (x+y) \cdot (w + \overline{y} + \overline{z}) \cdot (x + \overline{y} + \overline{z})$$

$$f(x,y,z) = (x+y) \cdot (\bar{y} + \bar{z})$$

14 Feb. 2022

K-Map (With Don't Care)

- Assigning the same values to the don't-cares for both SOP and POS implementations is not always a good choice.
- Sometimes it may be advantageous to give a particular don't-care the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
- In such cases the optimal SOP and POS expressions will represent different functions, but these functions will differ only for the valuations that correspond to these don't-cares.

K-Map (7-segment display)

K-Map (7-segment display)

14 Feb. 2022

K-Map (5-Variable):

K-Map (5-Variable)

- In 5-variable K-map, find PIs in each 4-variable section. Then, find overlapping PIs.
- Use these overlapping map without the fifth variable.

K-Map (5-Variable)

• $f(A, B, C, D, E) = \sum m(0,1,2,4,5,6,10,13,14,18,21,22,24,26,29,30)$

14 Feb. 2022

$$f(A, B, C, D, E) = \sum_{i=1}^{n} m(0,1,2,3,8,10,16,18,20,25)$$

Green: Complete Square grouping

Black: Upper Triangle grouping

Red: Lower Triangle Grouping

$$f(A,B,C,D,E) = \overline{B} \cdot \overline{C} \cdot \overline{E} + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} \cdot \overline{E} + A \cdot \overline{B} \cdot \overline{D} \cdot \overline{E} + A \cdot B \cdot \overline{C} \cdot \overline{D} \cdot E$$

ABC