# Implementação do Método Simplex

Bruno Sesso 8536002 Gustavo Estrela de Matos 8536051

14 de Junho de 2015

# 1 Introdução

#### 1.1 Apresentação do problema

Os problemas de Programação Linear (PL) são casos específicos de otimização combinatória em que a função objetivo e as restrições são ambos lineares. Portanto a função objetivo é da forma  $c^Tx$  e as restrições são da forma  $a_i^Tx \geq b_i$  ou  $a_i^Tx \leq b_i$ , com  $c, x, a_i \in \mathbb{R}^n$  e  $b_i \in \mathbb{R}$ .

Multiplicando por -1 todas as restrições da forma  $a_i^T x \ge b_i$ , podemos escrever qualquer PL como:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax \leq b, \\ & A \in R^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Também é possível mostrar que qualquer PL pode ser escrito na forma:

Se for escrito dessa maneira, dizemos que o problema está no formato padrão. Adotaremos esse formato durante todo o trabalho.

Se vale que  $Ax^1=b$  e  $x^1\geq 0$  dizemos que  $x^1$  é um ponto viável. O conjunto  $P=\{x|Ax=b,x\geq 0\}$  de todos os pontos viáveis é chamado conjunto viável.

Uma solução ótima do problema é um ponto  $x^1 \in P$  que minimiza  $^1$  a função objetivo c. Se  $x^1$  existe, dizemos que o custo ótimo é  $c^Tx$ . Se  $x^1$  não existe, ou não existem pontos viáveis ( $P = \emptyset$ ), ou podemos diminuir o custo o quanto quisermos e dizemos que o custo ótimo é  $-\infty$ .

### 1.2 Objetivos do trabalho

Neste trabalho, temos o objetivo de desenvolver, na linguagem Octave, o algoritmo simplex para resolver problemas de Programação Linear.

<sup>&</sup>lt;sup>1</sup>Se o interesse for maximizar  $c^Tx$ , podemos simplismente conseguir um problema equivalente em que o objetivo seja minimizar  $-c^Tx$ .

## 2 Conceitos fundamentais

Antes de introduzirmos o funcionamento do nosso algoritmo, precisamos definir alguns conceitos que são fundamentais para garantir sua corretude.

Seja o nosso problema de Programação Linear o seguinte:

$$\begin{array}{ll} \text{minimizar} & c^Tx \\ \text{sujeito a} & Ax = b \\ & x \geq 0 \\ & \text{com} & c, x \in \mathbb{R}^n, \, A \in \mathbb{R}^{m \times n} \text{ e } b \in \mathbb{R}^m. \end{array}$$

Além disso, vamos usar a notação  $a_i$  para a i-ésima linha de A e  $A_i$  para a i-ésima coluna de A.

### 2.1 Restrições e degenerecência

Uma restrição  $a_i^Tx \geq b_i$  (ou  $a_i^Tx \leq b_i$ ), com  $a_i \in \mathbb{R}^n$  e  $b_i \in \mathbb{R}$ , é uma restrição ativa em um ponto  $x^1 \in \mathbb{R}^n$  se  $a_i^Tx^1 = b_i$ . Uma restrição de igualdade é sempre ativa. Um conjunto de restrições será dito LI se os vetores  $a_i$  correspondentes forem LI.

Diremos que  $x^1$  uma solução viavel básica é *degenerada* se existem mais de n restrições ativas LI nesse ponto. Como as m restrições de igualdade são sempre cumpridas, temos que as soluções básicas degeneradas possuem mais do que n-m componentes nulas, enquanto que as não degeneradas possuem exatamente n-m.

### 2.2 Soluções Viáveis Básicas

Dizemos que um ponto  $x \in \mathbb{R}^n$  do conjunto viável P é uma solução viável básica, se existem n restrições ativas em x que são LI. Note que para problemas no formato padrão, existem sempre m restrições ativas LI vindas de Ax = b, e as outras n - m vem, necessariamente de  $x \ge 0$ . Portanto, uma solução viável básica possui ao menos n - m componentes nulas.

Se  $x^1$  é uma solução básica não degenerada e seja B(1),...,B(m) os índices das componentes não nulas de x. A matriz  $B = \begin{bmatrix} A_{B(1)},...,A_{B(m)} \end{bmatrix}$  é chamada *matriz básica* associada a  $x^1$ .

Se o conjunto P tem uma solução viável básica, então ou o custo ótimo é  $-\inf$  ou existe  $x^1 \in P$  solução viável básica que é ótimo, ou seja, o custo de qualquer ponto do conjunto viável é maior ou igual do que o custo de  $x^1$ . Portanto, na solução de um PL com ao menos uma solução viável básica, podemos limitar a esses elementos a nossa busca por um ponto de custo ótimo [1].

### 2.3 Direções básicas

Se  $x^1$  é um solução viável básica de P, com índices básicos B(1),...,B(m). Dizemos que  $d \in \mathbb{R}^n$ , tal que  $d_j = 1$ , Ad = 0  $(A(x + \theta d) = b)$  e  $d_i = 0$  para todo  $i \notin \{B(1),...,B(m)\}$ , é a j-ésima direção básica partindo de  $x^1$ . Seja  $d_B = \begin{bmatrix} d_{B(1)},...,d_{B(m)} \end{bmatrix}$ , como  $A(x + \theta d) = b$ , temos que  $d_B = -B^{-1}A_j$ . Usaremos  $u = -d_B = B^{-1}A_j$  por facilidade de notação, durante o trabalho.

A figura 2.3 dá um exemplo de direções básicas, di e dj a partir de uma solução viável básica  $x^1$ . Note que o poliedro pode ou não limitar um  $\theta$  tal que o ponto  $y = x^1 + \theta * d$  (d direção básica) seja viável, e como veremos em 2.5 isso pode implicar em custo  $-\infty$  se nessa direção o custo diminui.



#### 2.4 Custos reduzidos

Seja  $x^1$  uma solução viável básica, B a matriz básica associada e  $c_B = [c_{B(1)}, ..., c_{B(m)}]$ . Definimos, para cada  $j \in \{1, ..., n\}$  o custo reduzido:

$$\overline{c}_i = c_i - c_B^T B^{-1} A_i.$$

Seja  $x^1$  uma solução viável básica e  $\overline{c}$  o vetor de custos reduzidos correspondente. Sabemos que se  $\overline{c} \geq 0$ , então  $x^1$  é ótimo. Além disso, se  $x^1$  for ótimo e não degenerado, então  $\overline{c} \geq 0$  [1]. Portanto, se estivermos em uma solução viável básica e  $\overline{c} \geq 0$ , então estamos em um ponto ótimo.

Note que ao escolhermos uma direção viável básica, o custo de um ponto  $y=x^1+\theta d_j$  é  $c^T(x^1+\theta d_j)=c^Tx^1+\theta(c_j-c_B^TB^{-1}A_j)=c^Tx^1+\theta\overline{c}.$  Portanto, podemos dizer que o custo reduzido representa a variação do custo ao percorrer uma direção básica.

### 2.5 Soluções Viáveis Básicas adjacentes

Seja  $x^1$  uma solução viável básica com índices básicos B(1),...,B(m). Uma solução viável básica é *adjacente* a  $x^1$  se compartilha m-1 índices com  $x^1$ . Para achar uma solução viável básica adjacente, vamos usar as direções básicas, pois elas forçam o crescimento de uma variável j nãobásica, mantendo Ax=b e  $x\geq 0$ . Veremos que para um  $\theta\geq 0$ , o ponto  $x^1+\theta d_j$  é solução viável básica adjacente a  $x^1$ , com  $d_j$  como foi definido em 2.4.

Vamos tomar  $\theta = \min_{i=1,\dots,m|u_i>0} \{x_{B(i)}/u_i\}$  e ver que  $x^2 = x^1 + \theta d_j$  é de fato uma solução viável básica adjacente a  $x^1$ . Caso todas as componentes de  $u_i$  sejam menores ou igual a zero e o custo reduzido na direção j menor do que zero teremos que o problema tem custo ótimo  $-\infty$ , como será explicado a seguir.

Se  $\theta$  definido acima não existe, temos que todas as componentes de  $u_i$  são menores ou igual a zero  $(d \geq 0)$ , logo qualquer ponto  $x^2 = x^1 + \theta d$  é viável com  $\theta \geq 0$ , pois a restrição  $Ax^2 = b$  é verificada (por construção), e  $x_j^2 = x_j^1 + \theta \geq x_j^1 \geq 0$ , e para i básico  $x_j^2 = x_j^1 + \theta d_j \geq x_j^1 \geq 0$ . Se ainda tivermos que o custo diminui nessa direção, poderemos diminuir o custo o quanto quisermos e a solução do problema será  $-\infty$ .

Se  $\theta \in \mathbb{R}$ , como  $d_i = 0 \ \forall i \in \{B(1),...,B(m)\}, i \neq j$ , temos que para essas mesmas componentes  $x^2$  é nulo. Logo, temos n-1 restrições ativas LI em  $x^2$ . Suponha que para  $l \in \{1,..,m\}$  vale que  $\theta = x_{B(l)}/u_l$ , então  $x_{B(l)}^2 = x_{B(l)}^1 + (-x_B^1(l)/d_{B(l)})*d_{B(l)} = 0$  (diremos que B(l) sai da base), logo existem n restrições ativas LI em  $x^2$ . Além disso, por construção, vale que Ax = b e  $x \geq 0$  para variáveis não básicas e para  $x_B(l)$ . Para B(k) básico diferente de B(l), temos que  $x_B^2(k) \geq x_{B(k)}^1 + (-x_B^1(k)/d_{B(k)}) *d_{B(k)} = 0$ .

Portanto  $x^2$  é solução viável básica adjacente a  $x^1$  e, como a base de  $x^2$  é  $\{B(1),...,B(l-1),j,B(l+1),...,B(m)\}$ ,  $x^2$  é adjacente a  $x^1$ .

## 3 O algoritmo

## 3.1 Objetivo

Nossa motivação é solucionar um problema de programação linear (*PL*) que consiste em minimizar uma função linear (função de custos) sujeita a restrições lineares. Agora que temos os conceitos necessários, vamos desenvolver um algoritmo para solucionar tal problema.

### 3.2 O que temos a princípio

Dado o problema:

Queremos achar o x que satisfaça todas as restrições e minimize  $c^Tx$ . Portanto temos como informação inicial:

- **A** Matriz  $m \times n$
- **b** Vetor de dimensão m

### 3.3 Ideia do algoritmo

A ultima seção apresenta ideias essenciais para a construção da fase 2 do algoritmo simplex. Dentre elas, as mais importantes são: podemos reduzir nosso espaço de busca as soluções viaveis básicas; se  $\overline{c} \geq 0$  e estamos em uma solução viável básica, então esse ponto é ótimo.

Portanto, utilizamos uma dinâmica que percorre as soluções viáveis básicas, com auxilio das direções básicas, sempre diminuindo a função custo, até que não seja mais possível sair de um ponto sem aumentar ou manter o custo, ou até encontrar uma direção que podemos diminuir o custo sem limitações.

## 3.4 Pseudocódigo da fase 2 do simplex

Na implementação do nosso algoritmo simplex, utilizamos uma estrutura chamada de I que guarda os índices básicos e não básicos, representados respectivamente pelos vetores I.b e I.n.

#### 3.4.1 Função custoDirecao

A função custoDirecao é responsável por escolher uma direção básica j com custo reduzido menor do que zero.

```
\begin{aligned} & \textbf{function} \ custoDirecao(A,B^{-1},c,n,m,I) \\ & j \leftarrow 1 \\ & \textbf{while} \ j \leq n-m \ \textbf{do} \\ & redc = c(I.n(j)) - c_B^T A_{I.n(j)} \\ & \textbf{if} \ redc < 0 \ \textbf{then} \\ & ij \leftarrow j \\ & u \leftarrow B^{-1} A_{I.n(ij)} \\ & \textbf{return} \ (redc,u,ij) \\ & \textbf{end if} \\ & j \leftarrow j+1 \\ & \textbf{end while} \\ & \textbf{return} \ (0,-1,NIL) \\ & \textbf{end function} \end{aligned}
```

#### 3.4.2 Função calculaTheta

A função calcula Theta é responsável por calcular  $\theta$  como foi explicado na seção 2.5.

```
\begin{aligned} & \textbf{function} \ calcula Theta(x,u,I) \\ & imin = -1 \\ & theta = \infty \\ & \textbf{for} \ i = 1 \ \textbf{to} \ m \ \textbf{do} \\ & \textbf{if} \ u_i > 0 \ \textbf{then} \\ & t = x_{I.b(i)}/u_i \\ & \textbf{if} \ t < theta \ \textbf{then} \\ & theta = t \\ & imin = i \\ & \textbf{end} \ \textbf{if} \end{aligned}
```

```
end if end for return (imin, teta) end function
```

#### 3.4.3 Atualização da base

Atualizações nas bases ocorrem quando tiramos um índice da base e adicionamos outro. Esta operação ocorre tanto na fase 1 quanto na fase 2 do método simplex.

O cálculo da inversa de uma matriz é uma operação muito cara, portanto devemos investigar uma maneira de atualizar a inversa de B ao invés de recalculá-la a todo momento. Seja B uma base, e  $\overline{B}$  a base depois de uma atualização, tirando o l-ésimo indice básico e adicionando o índice j a base. Note que:

$$B^{-1}\overline{B} = (B^{-1}A_{B(1)} \cdots B^{-1}A_{B(l-1)} B^{-1}A_j \cdots B^{-1}A_{B(m)})$$
$$= (e_1 \cdots e_{l-1} u \cdots e_m)$$

Portanto, se pré-multiplicarmos  $B^{-1}$  por matrizes fazendo com que, no lado direito da equação, u se torne  $e_l$ , teremos que  $B^{-1}$  pré-multiplicada pelas mesmas matrizes será igual a  $\overline{B^{-1}}$ .

O pseudo-código:

```
function atualizaBase(I, B^-1, u, imin, ij, m) (I.b(imin), I.b(ij)) \leftarrow (I.n(ij), I.b(imin)) for i=1 to m do if i \neq imin then B_{i,j}^{-1} \leftarrow B_{i,j}^{-1} - (u_i/u_{imin}) * B_{imin,j}^{-1} \text{ for } j=1,...,n end if end for B_{i,j}^{-1} \leftarrow B_{i,j}^{-1}/u(imin) \text{ for } j=1,...,n end function
```

#### 3.4.4 A função fase2

```
function fase2(A, b, c, m, n, x, I, B^{-1})
```

```
 \begin{array}{l} (redc,u,ij) \leftarrow custoDirecao(A,B^{-1},c,n,m,I) \\ \textbf{while } redc < 0 \textbf{ do} \\ (imin,teta) \leftarrow calculaTheta(x,u,I) \\ \textbf{if } imin = -1 \textbf{ then} \\ \textbf{return } (-1,u) & \rhd \textbf{ custo } \textbf{ ótimo } = -\infty \\ \textbf{end if} \\ x \leftarrow atualizax(x,teta,u,I.n(ij),I) \\ (I,B^{-1}) = atualizaBase(I,B^{-1},u,imin,ij,m) \\ (redc,u,ij) \leftarrow custoDirecao(A,B^{-1},c,n,m,I) \\ \textbf{end while} \\ \textbf{return } (0,x) \\ \textbf{end function} \end{array}
```

# 4 Fase 1 do simplex

Para iniciar a fase 2 do algoritmo simplex precisamos de uma solução viável básica  $x^1$ , a sua base associada e a inversa da matriz básica. Nesta seção explicaremos o funcionamento da fase 1 do método simplex, responsável por descobrir estes parâmetros.

Para descobrir esses parâmetros vamos criar um problema auxiliar de programação linear:

$$\begin{split} & \text{minimizar} & \quad \sum_{i=1}^m y_i \\ & \text{sujeito a} & \quad \left[ \begin{array}{c} A \mid I \end{array} \right] \left[ \frac{x}{y} \right] \leq b, \\ & \text{com} & \quad A \in R^{m \times n}; \, b, y \in \mathbb{R}^m; \, I \in \mathbb{R}^{m \times m} \\ & \quad x, y \geq 0 \end{split}$$

Chamaremos as variáveis de y aritificiais, e a matriz  $[A \mid I]$  de  $\overline{A}$ .

Note que o ponto [0,...,0|b] é uma solução viável básica do problema auxiliar, assumindo  $b \geq 0$ , com índices básicos n+1,...,n+m e matrix básica B=I. Portanto, temos os parametros necessários para embalar a fase 2 do simplex para o problema auxiliar.

Assumimos no último parágrafo que  $b \ge 0$ . É fácil verificar que isso não implica em uma perda de generalidade, pois, se  $b_i < 0$ , basta multiplicar a i-ésima restrição por -1.

# 4.1 Custo ótimo do problema auxiliar e viabilidade do problema original

Observe que qualquer ponto viável do problema tem custo maior ou igual a zero. Além disso, se existe uma solução viável  $x^1$  do problema original, o ponto  $[x^1|0,...,0]$  é uma solução viável com custo zero, portanto com custo ótimo. Sendo assim, temos que se o problema original possui solução viável, então o problema auxiliar tem custo ótimo igual a zero. Na contra-positiva, se acharmos uma solução ótima para o problema auxiliar com custo diferente de zero, então o problema original é inviável.

### 4.2 Solução do problema auxiliar

Como o custo do problema auxiliar é sempre maior ou igual a zero, o custo ótimo nunca será  $-\infty$ , portanto a fase 2 sempre descobrirá alguma solução viável básica ótima. Se o custo dessa solução for maior que zero, o problema original é inviável, como explicado na seção 4.1. Se o custo for zero, a solução do problema auxiliar [x|y] = [x|0,...,0] também será uma solução do problema original.

Porém, mesmo que [x|0,...,0] seja uma solução viável básica do problema original, é possível que a base dada pela fase 2 do problema auxiliar tenha índices das variáveis artificiais, que serão eliminadas para iniciar a fase 2 para o problema original. Veremos na proxima seção como remover os índices ariticiais da base.

### 4.3 Remoção de índices artificiais da base

Suponha que temos um índice l>m aritificial que esteja na base. Queremos tirá-lo da base e adicionar um índice  $j\leq m$  na base. Veremos agora, como descobrir tal índice e como mudar a base.

Suponha, sem perca de generalidade, que apenas os k < m primeiros indices básicos não são de variáveis artificiais. Para o índice j na base, devemos garantir que  $A_j$  é LI com  $\{A_{B(1)},...,A_{B(k)}\}$ . Suponha que a matriz básica é B e que queremos remover a l-ésima variável da base, por ser atificial. Veja que  $B^{-1}A_{B(i)}=e_i$  para  $1 \le i \le k$ , portanto, basta escolher j não artificial tal que  $(B^{-1}A_j)_l=A_j \ne 0$  e teremos garantia de que estamos escolhendo uma coluna LI para formar a base.

Se não ouver j como descrito acima, teremos que  $(B^{-1}A_j)l=0$  para todo  $1\leq j\leq m$ . Veja que se  $g^T$  é a l-ésima linha de  $B^{-1}$ , então  $g^TA=0$ , ou seja,  $g_1a_1+\ldots+g_ma_m=0$ , portanto as linhas de A são LD e podemos então, eliminar a l-ésima linha de A do nosso problema [1].

Veja abaixo o pseudocódigo para remoção de índices artificiais da base:

```
function RemoveAritificiais(A, I, B^{-1}, m, n)
for all \{l \in \{B(1), ..., B(m)\} | l > n\} do
candidates \leftarrow \{i \in I.n | i < n\}
x \leftarrow length(candidates)
k \leftarrow 1;
```

```
 \begin{array}{l} \textbf{while} \ k \leq x \ \text{and} \ B_l^{-1}A_{I.n(candidates(k))} \ \textbf{do} \\ k \leftarrow k+1 \\ \textbf{end while} \\ \textbf{if} \ k > x \ \textbf{then} \\ m \leftarrow m-1 \\ \textbf{remova} \ l\text{-}\acute{e}sima \ \text{linha} \ \text{de} \ A \\ \textbf{remova} \ a \ l\text{-}\acute{e}sima \ \text{entrada} \ \text{de} \ l.b \\ \textbf{remova} \ a \ l\text{-}\acute{e}sima \ \text{entrada} \ \text{de} \ b \\ \textbf{else} \\ u \leftarrow B^{-1}A_k \\ atualizaBase(I,invB,u,l,k,m) \\ \textbf{end if} \\ \textbf{end for} \\ \textbf{end function} \end{array}
```

# 5 Pseudocódigo do algoritmo simplex

```
function Simplex(A, b, c, m, n)
     for all i|b_i < 0 do
          b_i \leftarrow b_i * -1
     end for
     A \leftarrow [A|I], I \in \mathbb{R}^{m \times m}
     x \leftarrow [\vec{0}, b], \vec{0} \in \mathbb{R}^n
     c1 \leftarrow [\vec{0}, \vec{ac}], \, \vec{ac} = [1, ..., 1] \in \mathbb{R}^m
     I.b \leftarrow [n+1, ..., n+m]
     I.n \leftarrow [1, ..., n]
     B^{-1} = I, I \in \mathbb{R}^{m \times m}
     (ind, x, d, I, B^{-1}) = fase2(A, b, c1, m, n + m, x, I, B^{-1})
     if c1^Tx > 0 then
          return (1, NIL, NIL)
                                                                            ⊳ Problema inviável
     end if
     (I, A, invB, m) \leftarrow removeArtificials(A, I, invB, m, n, b)
     x \leftarrow [x_1, ..., x_n]
     (ind, x, d, I, B^{-1}) = fase2(A, b, c, m, n, x, I, B^{-1})
     if ind = -1 then
                                                                           \triangleright Custo ótimo = -\infty
          return (-1, x, d)
     else
```

 $\begin{array}{c} \text{return } (0,x,d) \\ \text{end if} \\ \text{end function} \end{array}$ 

## ⊳ Solução ótima encontrada

# Referências

[1] Dimitris Bertsimas, John N. Tsitsiklis. Introduction to Linear Optimization. 1997.