Рекуррентные нейронные сети

Виктор Китов

v.v.kitov@yandex.ru

Работа с последовательностями

- Данные в виде последовательности
 - динамика цен на акции
 - динамика действий посетителя веб-сайта
 - динамика погоды
 - предложения последовательности слов
 - речь последовательность звуков
 - видео последовательность кадров
- Для текстов: необходимо представление входов небольшой фикс. длины
 - Word2Vec, glove, и др.
- Возможно использование сверточных нейросетей над последовательностями
 - но свертка имеет ограниченную область видимости в историю
- Решение: рекуррентные нейросети (Recurrent neural net, RNN)
 - помнят (в теории) всю историю

Реккурентные нейросети

- ullet Входная последовательность $oldsymbol{\mathsf{x}}_{i:j} := oldsymbol{\mathsf{x}}_i, ... oldsymbol{\mathsf{x}}_i \in \mathbb{R}^{d_{in}}.$
- ullet RNN выдает вектор фикс. размера $\widehat{\mathbf{y}}_{\mathbf{n}} \in \mathbb{R}^{d_{out}}$:

$$\widehat{\mathbf{y}}_{\mathbf{n}} = RNN(\mathbf{x}_{1:\mathbf{n}})$$

 Варьируя п получаем отображения RNN* из последовательности в последовательность:

$$\begin{split} \widehat{y}_{1:n} &= \textit{RNN}^*\left(x_{1:n}\right) \\ \widehat{y}_i &= \textit{RNN}\left(x_{1:i}\right) \end{split}$$

- Т.к. RNN сжимает всю историю $\mathbf{x}_{1:n}$ в вектор фикс. размера \mathbf{y}_n , его можно подавать как вектор признаков др. модели
 - например MLP

Модель рекуррентной нейросети

$$extit{RNN}^*(\mathsf{x}_{1:\mathsf{n}},\mathsf{s}_{\mathsf{0}}) = \mathsf{y}_{1:\mathsf{n}}$$
 $\widehat{\mathsf{y}}_{\mathsf{i}} = O(\mathsf{s}_{\mathsf{i}})$ $\mathsf{s}_{\mathsf{i}} = R(\mathsf{s}_{\mathsf{i}-1},\mathsf{x}_{\mathsf{i}})$ $\mathsf{x}_{\mathsf{i}} \in \mathbb{R}^{d_{in}}, \mathsf{y}_{\mathsf{i}} \in \mathbb{R}^{d_{out}}, \mathsf{s}_{\mathsf{i}} \in \mathbb{R}^{d_{state}}$ Обычно $O(\mathsf{s}) \equiv \mathsf{s}, \ d_{state} = d_{out}, \ s_{\mathsf{0}} = \mathsf{0}.$

Развернутая нейросеть (unrolled RNN)

$$\begin{aligned} s_4 &= R(s_3, x_4) = R(R(s_2, x_3), x_4) \\ &= R(R(R(s_1, x_2), x_3), x_4) = R(R(R(R(s_0, x_1), x_2), x_3), x_4) \end{aligned}$$

Обучение

Обучение: развернуть RNN и использовать неизменность весов для разных t.

- называется backpropagation through time (ВРТТ)
- на практике: развернуть RNN для всех не пересекающихся подпоследовательностей фикс. длины из длинной последовательности.

```
init s_0

for i in 0, 1, ... n/k - 1:
\mathbf{y_{ki+1:ki+k}} = RNN^*(\mathbf{x_{ki+1:ki+k}}, \mathbf{s_{ki}})
calculate loss \sum_{j=ki+1}^{ki+k} L(\mathbf{y_j}, \mathbf{y_j})
backpropagate gradients, update weights
```

• Распарралелить вычисления в рамках последовательности нельзя - последующее состояние зависит от предыдущего.

Архитектуры обычной и реккурентных нейросетей

Архитектуры обычной и реккурентных нейросетей:

- one to one: классическая классификация и регрессия в MI.
- one to many: описание изображений (image captioning), генерация текстов по заданной теме.
- many to one: классификация текстов, например определение тональности (sentiment analysis).
- many to many: машинный перевод, суммаризация длинного текста.
- synced many to many: разметка частей речи, определение событий на видео, распознавание речи.

Варианты применения RNN

- Acceptor: выдает итоговый \widehat{y}_n .
 - пример: прочитать комментарий и указать его полярность.
- Encoder: закодировать последовательность в виде высокоразмерного $\hat{\mathbf{y}}_{\mathbf{n}}$
 - машинный перевод: перевод выполняется декодирующей RNN, стартующей из $\mathbf{s_0} = \widehat{\mathbf{y}_n}$.
 - описание текста вектором фикс. длины $\widehat{\mathbf{y}}_{\mathbf{n}}$, на основе которого будет производиться суммаризация текста
- Transducer: по $x_1, ... x_n$ выдать $y_1, ... y_n$.
 - разметка частей речи, предсказание следующего слова (языковое моделирование), текст->речь, речь->текст
 - Ф-ция потерь:

$$\mathcal{L}\left(\widehat{\mathbf{y}}_{1:n},\mathbf{y}_{1:n}\right) = \sum_{i=1}^{n} L\left(\widehat{\mathbf{y}}_{i},\mathbf{y}_{i}\right)$$

Содержание

- П Расширения RNN
- 2 Простая модель и основные проблемы
- 3 Рекуррентные сети с вентилями

Двунаправленная RNN

- Двунаправленная рекуррентная нейросеть (bidirectional RNN) состоит из 2x RNN:
 - forward RNN (R^f, O^f) с состоянием $\mathbf{s_i^f}, i = \overline{1, n}$
 - ullet backward RNN $\left(R^b,O^b
 ight)$ с состоянием $\mathbf{s_i^b}$, $i=\overline{1,n}$
- \bullet Forward RNN идет слева-направо $x_1, x_2...x_n$.
- ullet Backward RNN идет справа-налево $x_n, x_{n-1}...x_1$.

Двунаправленная RNN

- В каждый момент і имеем 2 состояния:
- Для каждого і выдаем их конкатенацию, которую подаем на вход др. модели (MLP)

$$\begin{aligned} \textit{biRNN}(\mathbf{x}_{1:n}, \textit{i}) &= \widehat{\mathbf{y}_i} = [\widehat{\mathbf{y}_i^f}; \widehat{\mathbf{y}_i^b}] = [\textit{RNN}^f(\mathbf{x}_{1:i}); \; \textit{RNN}^b(\mathbf{x}_{n:i})] \\ \textit{biRNN}^*(\mathbf{x}_{1:n}) &= \mathbf{y}_{1:n} = [\textit{biRNN}(\mathbf{x}_{1:n}, 1); ...; \textit{biRNN}(\mathbf{x}_{1:n}, \textit{n})] \end{aligned}$$

- Двунаправленная RNN эффективно размечает последовательность (режим Transducer), например по тексту разметить части речи.
 - т.к. выход учитывает контекст и справа, и слева.

Многослойная RNN (stacked RNN)

- Выход предыдущего слоя вход для следующего.
- На практике работают точнее однослойных RNN.
- Можно использовать многослойную двунаправленную RNN.

Содержание

- 1 Расширения RNN
- 2 Простая модель и основные проблемы
- 3 Рекуррентные сети с вентилями

Bag-of-words RNN

Bag-of-words RNN:

$$\begin{aligned} \mathbf{s_i} &= \mathbf{s_{i-1}} + \mathbf{x_i} \\ \mathbf{y_i} &= \mathbf{s_i} \end{aligned}$$

- X;: вход
- s_i: скрытый слой
- y_i: выход

Порядок входов не имеет значения, поэтому на практике не применяется.

Сеть Элмана

Сеть Элмана (Elman net, simple RNN):

$$\begin{aligned} \mathbf{s_i} &= g_s \left(W_s \mathbf{s_{i-1}} + V_s \mathbf{x_i} + \mathbf{b_s} \right) \\ \mathbf{y_i} &= g_y (W_y \mathbf{s_i} + \mathbf{b_y}) \end{aligned}$$

- x_i: вход
- s_i: скрытый слой
- y_i: выход
- ullet $W_s,\,V_s,\,W_y$: матрицы параметров
- ullet b_s, b_v : векторы параметров
- ullet $g_s(\cdot), g_y(\cdot)$: функции активации

Свойства сети Элмана

- Сеть Элмана чувствительна к порядку входов.
- Зависимость $s_i \leftarrow s_{i-1} \leftarrow s_{i-1} \leftarrow \cdots \leftarrow s_0$ через W_s .
- ullet Из-за рекуррентной зависимости от W_s возможны:
 - проблема взрывающегося градиента (exploding gradient) при $|\lambda|\gg 1$
 - проблема затухающего градиента (vanishing gradient) при $|\lambda| \approx 0$

Проблема взрывающегося градиента

Exploding gradient problem:

Проблема взрывающегося градиента

Решение проблемы взрывающегося градиента:

- добавить регуляризацию
- обрезать норму градиента по порогу

если
$$\|\nabla_w L(\widehat{\mathbf{y}}_i, \mathbf{y}_i)\| \le t$$
: $w \to w - \varepsilon \nabla_w L(\widehat{\mathbf{y}}_i, \mathbf{y}_i)$

если
$$\|\nabla_w L(\widehat{y_i}, y_i)\| > t$$
: $w \to w - \varepsilon \frac{t}{\|\nabla_\theta L(\widehat{\mathbf{y_i}}, \mathbf{y_i})\|} \nabla_\theta L(\widehat{\mathbf{y_i}}, \mathbf{y_i})$

Проблема затухающего градиента

- Инициализировать $W_s = I, b_s = 0, g_s = ReLU, LeakyReLU.$
- Добавить регуляризацию на несильное отклонение от ортогональности

$$\left\|W_s^TW_s - I\right\|_F^2$$
 либо $\left\|W_s^TW_s - I\right\|_F^2 + \left\|W_sW_s^T - I\right\|_F^2$

т.к. у ортогональных матриц все $|\lambda_i|=1^{ ext{1}}.$

- Разделить состояние на быстро и медленно меняющиеся компоненты: $s_t = [s_t^{slow}; s_t^{fast}]$
 - $s_t^{slow} = \alpha s_{t-1}^{slow} + (1-\alpha)W_{slow}x_t, \ \alpha \leq 1$
 - $s_t^{fast} = \sigma \left(V_x x_t + V_{fast} s_{t-1}^{fast} + V_{slow} s_t^{slow} \right)$

¹Докажите.

Содержание

- 1 Расширения RNN
- 2 Простая модель и основные проблемы
- 3 Рекуррентные сети с вентилями

Проблема обычной RNN

- Проблема обычной RNN: вся память перезаписывается на каждой итерации.
 - поэтому RNN быстро забывает прошлое (или градиент взрывается)
- Важно помнить прошлое глубоко в истории:
 - автоматические ответы на вопросы
 - машинный перевод
 - суммаризация текстов

Проблема обычной RNN

- Проблема обычной RNN: вся память перезаписывается на каждой итерации.
 - поэтому RNN быстро забывает прошлое (или градиент взрывается)
- Важно помнить прошлое глубоко в истории:
 - автоматические ответы на вопросы
 - машинный перевод
 - суммаризация текстов
- Решение: использование вентилей

Вентили

- Пусть s-старое состояние, x-новый вход, s'-новое состояние, $s, s', x \in \mathbb{R}^n$.
- ullet Вентиль $g \in \{0,1\} \in \mathbb{R}^n$ контролирует позиции, которые нужно обновить:
- Пример (⊙ поэлементное умножение):

$$\begin{bmatrix} 8 \\ 11 \\ 3 \\ 7 \\ 5 \\ 15 \\ 15 \\ \mathbf{s'} \\ \mathbf{g} \\ \mathbf{x} \\ \begin{bmatrix} 0 \\ 10 \\ 0 \\ 0 \\ 0 \\ 11 \\ 12 \\ 13 \\ 0 \\ 14 \\ 15 \\ \mathbf{g} \\ \mathbf{x} \\ \mathbf{(1-g)} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{g} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{(1-g)} \\ \mathbf{s} \\ \mathbf{s$$

- Какие вентили перекрывать? нужно их настраивать.
- Кусочно-постоянный вентиль не сможем оптимизировать.
 - поэтому используем гладкий вентиль $\mathbf{g} = \sigma(f(\mathbf{x}, \mathbf{s}, \theta))$
 - ullet heta: настраиваемые параметры
 - f: любая гладкая функция

Популярные RNN с вентилями

Популярные RNN с вентилями:

- Long short-term memory (LSTM)
 - "сеть долгой кратковременной памяти"
- Gated recurrent unit (GRU)

RNN с вентилями работают лучше на больших данных чем простые RNN.

Long short-term memory (LSTM)

$$\begin{split} &f_t = \sigma\left(W_f x_t + U_f h_{t-1} + b_f\right) & \text{forget gate} \\ &i_t = \sigma\left(W_i x_t + U_i h_{t-1} + b_i\right) & \text{input gate} \\ &o_t = \sigma\left(W_o x_t + U_o h_{t-1} + b_0\right) & \text{output gate} \\ &c_t = f_t \odot c_{t-1} + i_t \odot \tanh\left(W_c x_t + U_c h_{t-1} + b_c\right) & \text{inner state} \\ &h_t = o_t \odot \tanh\left(c_t\right) & \text{observed output} \end{split}$$

 \mathbf{x}_t -вход, \mathbf{h}_t -выход.

Параметры:

- ullet матрицы: $W_f, U_f, W_i, U_i, W_o, U_o, W_c, U_c$
- вектора: b_f, b_i, b_o, b_c
- инициализация: c₀, h₀

Иллюстрация

Вход-внизу, память-в середине, выход-наверху.

Комментарии

- $c_t = f_t \odot c_{t-1} + ...$ обеспечивает более долгую память (но все равно не бесконечную см. memory networks)
- ullet Рекомендуется инициализация $b_f \geq 1$
 - вначале сеть пытается запоминать все

Gated recurrent unit (GRU)

$$\begin{split} & z_{t} = \sigma \left(\textit{W}_{\textit{z}} x_{t} + \textit{U}_{\textit{z}} h_{t-1} + b_{z} \right) \\ & r_{t} = \sigma \left(\textit{W}_{\textit{r}} x_{t} + \textit{U}_{\textit{r}} h_{t-1} + b_{r} \right) \\ & h_{t} = \left(1 - \textit{z}_{t} \right) \odot h_{t-1} + \textit{z}_{t} \odot \textit{tanh} \left(\textit{W}_{\textit{h}} x_{t} + \textit{U}_{\textit{h}} \left(r_{t} \odot h_{t-1} \right) + b_{\textit{h}} \right) \end{split}$$

 $\mathbf{x_t}$ - вход, $\mathbf{z_t}$ - forget gate, $\mathbf{r_t}$ - input gate, $\mathbf{h_t}$ - выход.

Параметры:

- ullet матрицы: $W_z,\,U_z,\,W_r,\,U_r,\,W_h,\,U_h$
- ullet вектора: b_z, b_r, b_h
- инициализация: h₀

Комментарии

- По сравнению с LSTM GRU:
 - имеет 2, а не 3 вентиля
 - память и выход то же самое
- GRU содержит меньше параметров и меньше переобучается.

Dropout в RNN

- Проблема: dropout во времени нарушает временные связи.
- Решения
 - (Pham et al. [2013]): применять dropout к нереккурентным связям.
 - (Gal [2015], variational RNN dropout): для каждой последовательности $x_{1:T}$ регенерировать и фиксировать маску.
 - маска не меняется от времени.
 - маска регенерируется для другой последовательности.

Иллюстрация вариантов dropout в RNN

Иллюстрация dropout в решениях 1 и 2.

Заключение

- Рекуррентные нейросети удобная модель для обработки и генерации последовательных данных.
- Специфические проблемы настройки рекуррентных нейросетей:
 - взрывающийся градиент
 - решение: обрезка градиента по норме
 - затухающий градиент
 - решение: использование архитектур с вентилями.