1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)

ОТЧЕТ

Лабораторная работа №3

по дисциплине: Машинное с	бучение		
на тему: Обработка про категориальных призна	-		•
СтудентИУ5-63Б (Группа)	(Подпис	сь, дата)	Садыков М.Р. (И.О.Фамилия)
Руководитель	(Подпис	 сь, дата)	(И.О.Фамилия)

Лабораторная работа №3

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Мы научимся обрабатывать пропуски в данных для количественных (числовых) и категориальных признаков и масштабировать данные. Также мы научимся преобразовывать категориальные признаки в числовые.

В чем состоит проблема?

- Если в данных есть пропуски, то большинство алгоритмов машинного обучения не будут с ними работать. Даже корреляционная матрица не будет строиться корректно.
- Большинство алгоритмов машинного обучения требуют явного перекодирования категориальных признаков в числовые. Даже если алгоритм не требует этого явно, такое перекодирование возможно стоит попробовать, чтобы повысить качество модели.
- Большинство алгоритмов показывает лучшее качество на масштабированных признаках, в особенности алгоритмы, использующие методы градиентного спуска.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка и первичный анализ данных

Используем данные информации о содержании веществ в воздухе

```
In [2]:
```

```
# Будем использовать только обучающую выборку data = pd.read_csv('Measurement_summary.csv', sep=",")
```

In [3]:

```
# размер набора данных
data.shape
```

Out[3]:

(647511, 11)

In [4]:

типы колонок data.dtypes

Out[4]:

Measurement date object Station code int64 Address object float64 Latitude float64 Longitude float64 S02 N02 float64 03 float64 C0 float64 PM10 float64 PM2.5 float64 dtype: object

In [5]:

проверим есть ли пропущенные значения data.isnull().sum()

Out[5]:

Measurement date 0 Station code 0 Address 0 Latitude 0 0 Longitude S02 0 N02 0 03 0 C0 0 PM10 329 PM2.5 0

In [6]:

```
# Первые 5 строк датасета data.head()
```

Out[6]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со	PM10	ı
0	2017-01-01 00:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.059	0.002	1.2	73.0	
1	2017-01-01 01:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.058	0.002	1.2	71.0	
2	2017-01-01 02:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0	
3	2017-01-01 03:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0	
4	2017-01-01 04:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.003	0.051	0.002	1.2	69.0	

In [7]:

```
total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
```

Всего строк: 647511

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

In [8]:

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

Out[8]:

((647511, 11), (647511, 10))

In [9]:

```
data_new_1.head()
```

Out[9]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со	PM2.5
0	2017-01-01 00:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.059	0.002	1.2	57.0
1	2017-01-01 01:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.058	0.002	1.2	59.0
2	2017-01-01 02:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	59.0
3	2017-01-01 03:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	58.0
4	2017-01-01 04:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.003	0.051	0.002	1.2	61.0

In [10]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[10]:

((647511, 11), (647182, 11))

In [11]:

data_new_2.head()

Out[11]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со	PM10 I
0	2017-01-01 00:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.059	0.002	1.2	73.0
1	2017-01-01 01:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.058	0.002	1.2	71.0
2	2017-01-01 02:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0
3	2017-01-01 03:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0
4	2017-01-01 04:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.003	0.051	0.002	1.2	69.0
4										•

In [12]:

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе катего риальные колонки
data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[12]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со	PM10	ı
0	2017-01-01 00:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.059	0.002	1.2	73.0	
1	2017-01-01 01:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.058	0.002	1.2	71.0	
2	2017-01-01 02:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0	
3	2017-01-01 03:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0	
4	2017-01-01 04:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.003	0.051	0.002	1.2	69.0	
4										•	

1.2. "Внедрение значений" - импьютация (imputation)

1.2.1. Обработка пропусков в числовых данных

In [13]:

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.f
ormat(col, dt, temp_null_count, temp_perc))
```

Колонка РМ10. Тип данных float64. Количество пустых значений 329, 0. 05%.

In [14]:

Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num

Out[14]:

	PM10
0	73.0
1	71.0
2	70.0
3	70.0
4	69.0
5	70.0
6	66.0
7	71.0
8	72.0
9	74.0
10	76.0
11	83.0
12	93.0
13	94.0
14	93.0
15	87.0
16	87.0
17	91.0
18	91.0
19	92.0
20	94.0
21	93.0
22	89.0
23	91.0
24	93.0
25	92.0
26	90.0
27	92.0
28	92.0
29	92.0
647481	54.0
647482	47.0
647483	40.0
647484	35.0
647485	28.0
647486	30.0

4.2020	
	PM10
647487	43.0
647488	36.0
647489	38.0
647490	43.0
647491	42.0
647492	31.0
647493	28.0
647494	25.0
647495	25.0
647496	20.0
647497	20.0
647498	18.0
647499	19.0
647500	22.0
647501	23.0
647502	24.0
647503	27.0
647504	27.0
647505	24.0
647506	23.0
647507	25.0
647508	24.0
647509	25.0
647510	27.0

647511 rows × 1 columns

In [15]:

```
# Гистограмма по признакам

for col in data_num:
   plt.hist(data[col], 50)
   plt.xlabel(col)
   plt.show()
```

/home/mark/.local/lib/python3.7/site-packages/numpy/lib/histograms.p
y:824: RuntimeWarning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
/home/mark/.local/lib/python3.7/site-packages/numpy/lib/histograms.p
y:825: RuntimeWarning: invalid value encountered in less_equal
 keep &= (tmp a <= last edge)</pre>

In [16]:

Фильтр по пустым значениям поля MasVnrArea data[data['PM10'].isnull()]

Out[16]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	03	со
33421	2017-11-10 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.057	0.002	0.8
33422	2017-11-10 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.059	0.002	0.8
33423	2017-11-10 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.065	0.002	1.0
33424	2017-11-10 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.065	0.002	0.9
33425	2017-11-10 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.070	0.003	1.2
33426	2017-11-10 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.071	0.002	1.2
33427	2017-11-10 10:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.073	0.004	1.0
33428	2017-11-10 11:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.045	0.017	0.7
33429	2017-11-10 12:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.039	0.022	0.6
33430	2017-11-10 13:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.028	0.5
33431	2017-11-10 14:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.027	0.4

		Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	СО
•	33432	2017-11-10 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.030	0.021	0.5
	33433	2017-11-10 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.026	0.020	0.6
	33434	2017-11-10 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.019	0.025	0.5
	33435	2017-11-10 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.022	0.023	0.5
	33436	2017-11-10 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.030	0.016	0.5
	33437	2017-11-10 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.023	0.020	0.4
	33438	2017-11-10 21:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.027	0.3
	33439	2017-11-10 22:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.015	0.024	0.3
	33440	2017-11-10 23:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.024	0.3
	33441	2017-11-11 00:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.024	0.3
	33442	2017-11-11 01:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.012	0.024	0.3
	33443	2017-11-11 02:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.010	0.025	0.3

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
334	2017-11-11 03:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.011	0.023	0.3
334	45 2017-11-11 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.010	0.022	0.3
334	46 2017-11-11 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.013	0.019	0.3
334	47 2017-11-11 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.015	0.3
334	48 2017-11-11 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.023	0.010	0.3
334	49 2017-11-11 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.020	0.013	0.4
334	50 2017-11-11 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.014	0.019	0.3
337	20 2017-11-22 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.029	0.029	0.7
337	2017-11-22 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.028	0.024	0.5
337	2017-11-22 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.018	0.5
337	2017-11-22 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.023	0.020	0.4

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	03	со
33724	2017-11-22 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.023	0.3
33725	2017-11-22 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.019	0.021	0.4
33726	2017-11-22 21:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.019	0.020	0.4
33727	2017-11-22 22:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.019	0.020	0.4
33728	2017-11-22 23:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.018	0.020	0.4
33729	2017-11-23 00:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.021	0.4
33730	2017-11-23 01:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.015	0.022	0.4
33731	2017-11-23 02:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.012	0.025	0.4
33732	2017-11-23 03:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.012	0.024	0.4
33733	2017-11-23 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.013	0.023	0.4
33734	2017-11-23 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.008	0.5
33735	2017-11-23 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.038	0.002	0.5

		Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
•	33736	2017-11-23 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.041	0.002	0.7
	33737	2017-11-23 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.003	0.6
	33738	2017-11-23 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.004	0.7
	33739	2017-11-23 10:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.005	0.6
	33740	2017-11-23 11:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.016	0.023	0.3
	33741	2017-11-23 12:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.009	0.030	0.3
	33742	2017-11-23 13:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.009	0.029	0.3
	33743	2017-11-23 14:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.011	0.028	0.3
	33744	2017-11-23 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.013	0.026	0.3
	33745	2017-11-23 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.016	0.022	0.3
	33746	2017-11-23 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.027	0.013	0.3
	33747	2017-11-23 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.031	0.009	0.4

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33748	2017-11-23 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.033	0.007	0.4
33749	2017-11-23 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.034	0.006	0.4

329 rows × 11 columns

In [17]:

```
# Запоминаем индексы строк с пустыми значениями flt_index = data[data['PM10'].isnull()].index flt_index
```

Out[17]:

In [18]:

Проверяем что выводятся нужные строки data[data.index.isin(flt_index)]

Out[18]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33421	2017-11-10 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.057	0.002	0.8
33422	2017-11-10 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.059	0.002	0.8
33423	2017-11-10 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.065	0.002	1.0
33424	2017-11-10 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.065	0.002	0.9
33425	2017-11-10 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.070	0.003	1.2
33426	2017-11-10 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.071	0.002	1.2
33427	2017-11-10 10:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.006	0.073	0.004	1.0
33428	2017-11-10 11:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.045	0.017	0.7
33429	2017-11-10 12:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.039	0.022	0.6
33430	2017-11-10 13:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.028	0.5
33431	2017-11-10 14:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.027	0.4

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33432	2017-11-10 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.030	0.021	0.5
33433	2017-11-10 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.026	0.020	0.6
33434	2017-11-10 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.019	0.025	0.5
33435	2017-11-10 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.022	0.023	0.5
33436	2017-11-10 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.030	0.016	0.5
33437	2017-11-10 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.023	0.020	0.4
33438	2017-11-10 21:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.027	0.3
33439	2017-11-10 22:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.015	0.024	0.3
33440	2017-11-10 23:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.024	0.3
33441	2017-11-11 00:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.014	0.024	0.3
33442	2017-11-11 01:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.012	0.024	0.3
33443	2017-11-11 02:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.010	0.025	0.3

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33444	2017-11-11 03:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.011	0.023	0.3
33445	2017-11-11 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.010	0.022	0.3
33446	2017-11-11 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.013	0.019	0.3
33447	2017-11-11 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.015	0.3
33448	2017-11-11 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.023	0.010	0.3
33449	2017-11-11 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.020	0.013	0.4
33450	2017-11-11 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.002	0.014	0.019	0.3
33720	2017-11-22 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.029	0.029	0.7
33721	2017-11-22 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.005	0.028	0.024	0.5
33722	2017-11-22 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.018	0.5
33723	2017-11-22 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.023	0.020	0.4

		Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	03	СО
•	33724	2017-11-22 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.023	0.3
	33725	2017-11-22 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.019	0.021	0.4
	33726	2017-11-22 21:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.019	0.020	0.4
	33727	2017-11-22 22:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.019	0.020	0.4
	33728	2017-11-22 23:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.018	0.020	0.4
	33729	2017-11-23 00:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.017	0.021	0.4
	33730	2017-11-23 01:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.015	0.022	0.4
	33731	2017-11-23 02:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.012	0.025	0.4
	33732	2017-11-23 03:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.012	0.024	0.4
	33733	2017-11-23 04:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.013	0.023	0.4
	33734	2017-11-23 05:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.029	0.008	0.5
	33735	2017-11-23 06:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.038	0.002	0.5

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33736	2017-11-23 07:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.041	0.002	0.7
33737	2017-11-23 08:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.003	0.6
33738	2017-11-23 09:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.004	0.7
33739	2017-11-23 10:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.040	0.005	0.6
33740	2017-11-23 11:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.016	0.023	0.3
33741	2017-11-23 12:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.004	0.009	0.030	0.3
33742	2017-11-23 13:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.009	0.029	0.3
33743	2017-11-23 14:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.011	0.028	0.3
33744	2017-11-23 15:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.013	0.026	0.3
33745	2017-11-23 16:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.016	0.022	0.3
33746	2017-11-23 17:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.027	0.013	0.3
33747	2017-11-23 18:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.031	0.009	0.4

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со
33748	2017-11-23 19:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.033	0.007	0.4
33749	2017-11-23 20:00	102	15, Deoksugung- gil, Jung-gu, Seoul, Republic o	37.564263	126.974676	0.003	0.034	0.006	0.4

329 rows × 11 columns

In [19]:

фильтр по колонке
data_num[data_num.index.isin(flt_index)]['PM10']

Out[19]:

33421 NaN 33422 NaN 33423 NaN 33424 NaN 33425 NaN 33426 NaN 33427 NaN 33428 NaN 33429 NaN 33430 NaN 33431 NaN NaN 33432 33433 NaN 33434 NaN 33435 NaN 33436 NaN 33437 NaN 33438 NaN 33439 NaN 33440 NaN 33441 NaN NaN 33442 33443 NaN 33444 NaN NaN 33445 33446 NaN 33447 NaN 33448 NaN 33449 NaN 33450 NaN . . 33720 NaN 33721 NaN 33722 NaN 33723 NaN NaN 33724 33725 NaN 33726 NaN NaN 33727 33728 NaN 33729 NaN 33730 NaN 33731 NaN 33732 NaN 33733 NaN 33734 NaN NaN 33735 33736 NaN 33737 NaN 33738 NaN 33739 NaN 33740 NaN 33741 NaN 33742 NaN 33743 NaN 33744 NaN 33745 NaN 33746 NaN 33747 NaN

33748 NaN 33749 NaN

Name: PM10, Length: 329, dtype: float64

Будем использовать встроенные средства импьютации библиотеки scikit-learn - https://scikit-learn.org/stable/modules/impute.html#impute (https://scikit-learn.org/stable/modules/impute.html#impute)

```
In [20]:
```

```
data_num_PM10 = data_num[['PM10']]
data_num_PM10.head()
```

Out[20]:

PM10

- **0** 73.0
- **1** 71.0
- **2** 70.0
- **3** 70.0
- 4 69.0

In [21]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

In [22]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_PM10)
mask_missing_values_only
```

Out[22]:

С помощью класса SimpleImputer (https://scikit-

learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer)
можно проводить импьютацию различными показателями центра распределения
(https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0

```
→
```

In [23]:

```
strategies=['mean', 'median','most_frequent']
```

In [24]:

```
def test_num_impute(strategy_param):
   imp_num = SimpleImputer(strategy=strategy_param)
   data_num_imp = imp_num.fit_transform(data_num_PM10)
   return data_num_imp[mask_missing_values_only]
```

```
In [25]:
```

strategies[0], test_num_impute(strategies[0])

Out[25]:

```
('mean',
array([43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
```

```
43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206.
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
       43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
206,
        43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126
```

206, 43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126 206, 43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126 206, 43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126 206, 43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126 206, 43.71126206, 43.71126206, 43.71126206, 43.71126206, 43.71126

In [26]:

```
strategies[1], test_num_impute(strategies[1])
```

Out[26]:

```
('median',
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35.,
35., 35., 35., 35.]))
```

In [27]:

strategies[2], test_num_impute(strategies[2])

```
Out[27]:
```

```
('most frequent',
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27.,
27., 27., 27., 27.]))
```

```
In [28]:
```

```
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test_num_impute_col(dataset, column, strategy_param):
    temp data = dataset[[column]]
    indicator = MissingIndicator()
    mask missing values only = indicator.fit transform(temp data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled data = data num imp[mask missing values only]
    return column, strategy param, filled data.size, filled data[0], filled data
[filled data.size-1]
In [29]:
data[['PM10']].describe()
Out[29]:
             PM10
count 647182.000000
          43.711262
 mean
         71.153913
  std
  min
          -1.000000
 25%
         22.000000
 50%
         35.000000
         53.000000
 75%
        3586,000000
  max
In [30]:
test_num_impute_col(data, 'PM10', strategies[0])
Out[30]:
('PM10', 'mean', 329, 43.711262056114045, 43.711262056114045)
In [31]:
test num impute col(data, 'PM10', strategies[1])
Out[31]:
('PM10', 'median', 329, 35.0, 35.0)
In [32]:
test_num_impute_col(data, 'PM10', strategies[2])
Out[32]:
('PM10', 'most frequent', 329, 27.0, 27.0)
```

1.2.2. Обработка пропусков в категориальных данных

In [35]:

```
# Будем использовать только обучающую выборку data = pd.read_csv('battles.csv', sep=",")
```

In [60]:

```
data.head()
```

Out[60]:

	name	year	battle_number	attacker_king	defender_king	attacker_1	attacker_2	d
0	Battle of the Golden Tooth	298	1	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	
1	Battle at the Mummer's Ford	298	2	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	
2	Battle of Riverrun	298	3	Joffrey/Tommen Baratheon			NaN	
3	Battle of the Green Fork	298	4	Robb Stark	Joffrey/Tommen Baratheon	Stark	NaN	
4	Battle of the Whispering Wood	298	5	Robb Stark	o Stark Joffrey/Tommen Baratheon		Tully	
4							l	>

In [36]:

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.f
ormat(col, dt, temp_null_count, temp_perc))
```

Колонка attacker_king. Тип данных object. Количество пустых значений 2, 0.0%.

Колонка defender_king. Тип данных object. Количество пустых значений 3, 0.0%.

Колонка attacker_2. Тип данных object. Количество пустых значений 2 8.0.0%.

Колонка defender_1. Тип данных object. Количество пустых значений 1, 0.0%.

Колонка battle_type. Тип данных object. Количество пустых значений 1 8, 0.0%.

Колонка attacker_commander. Тип данных object. Количество пустых зна чений 1, 0.0%.

Колонка location. Тип данных object. Количество пустых значений 1, 0.0%.

Какие из этих колонок Вы бы выбрали или не выбрали для построения модели?

```
In [37]:
```

```
cat_temp_data = data[['battle_type']]
cat_temp_data.head()
```

Out[37]:

battle_type

- 0 pitched battle
- 1 ambush
- 2 pitched battle
- 3 pitched battle
- 4 ambush

In [38]:

```
cat_temp_data['battle_type'].unique()
```

Out[38]:

array(['pitched battle', 'ambush', 'siege', nan, 'razing'], dtype=ob
ject)

```
In [39]:
cat_temp_data[cat_temp_data['battle_type'].isnull()].shape
Out[39]:
(18, 1)
In [40]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
Out[40]:
array([['pitched battle'],
       ['ambush'],
       ['pitched battle'],
       ['pitched battle'],
       ['ambush'],
       ['ambush'],
       ['pitched battle'],
       ['pitched battle'],
       ['siege'],
       ['ambush'],
       ['pitched battle'],
       ['ambush'],
       ['pitched battle'],
       ['razing'],
       ['siege'],
       ['siege'],
       ['siege'],
       ['siege']], dtype=object)
```

In [41]:

```
# Пустые значения отсутствуют
np.unique(data imp2)
Out[41]:
array(['ambush', 'pitched battle', 'razing', 'siege'], dtype=object)
In [42]:
# Импьютация константой
imp3 = SimpleImputer(missing values=np.nan, strategy='constant', fill value=
'!!!!')
data imp3 = imp3.fit transform(cat temp data)
data imp3
Out[42]:
array([['pitched battle'],
       ['ambush'],
       ['pitched battle'],
       ['pitched battle'],
       ['ambush'],
       ['ambush'],
       ['pitched battle'],
       ['pitched battle'],
       ['siege'],
       ['ambush'],
       ['pitched battle'],
       ['ambush'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!!'].
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['!!!'],
       ['pitched battle'],
       ['pitched battle'],
       ['razing'],
       ['siege'],
       ['siege'],
       ['siege'],
       ['siege']], dtype=object)
```

```
In [43]:
    np.unique(data_imp3)

Out[43]:
    array(['!!!', 'ambush', 'pitched battle', 'razing', 'siege'], dtype=
    object)

In [44]:
    data_imp3[data_imp3=='!!!'].size

Out[44]:
18
```

2. Преобразование категориальных признаков в числовые

```
In [45]:
```

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
```

Out[45]:

	c1
0	pitched battle
1	ambush
2	pitched battle
3	pitched battle
4	ambush
5	ambush
6	pitched battle
7	pitched battle
8	siege
9	ambush
10	pitched battle
11	ambush
12	pitched battle
13	pitched battle
14	pitched battle
15	pitched battle
16	pitched battle
17	pitched battle
18	pitched battle
19	pitched battle
20	pitched battle
21	pitched battle
22	pitched battle
23	pitched battle
24	pitched battle
25	pitched battle
26	pitched battle
27	pitched battle
28	pitched battle
29	pitched battle
30	pitched battle
31	pitched battle
32	razing
33	siege
34	siege
35	siege

siege

36

2.1. Кодирование категорий целочисленными значениями - <u>label encoding (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelE</u>

```
In [46]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [47]:
le = LabelEncoder()
cat enc le = le.fit transform(cat enc['c1'])
In [48]:
cat enc['c1'].unique()
Out[481:
array(['pitched battle', 'ambush', 'siege', 'razing'], dtype=object)
In [491:
np.unique(cat enc le)
Out[491:
array([0, 1, 2, 3])
In [50]:
le.inverse transform([0, 1, 2, 3])
Out[50]:
array(['ambush', 'pitched battle', 'razing', 'siege'], dtype=object)
2.2. Кодирование категорий наборами бинарных значений -
one-hot encoding (https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.OneHc
In [51]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
```

```
In [52]:
cat_enc.shape
Out[52]:
(37, 1)
In [53]:
cat_enc_ohe.shape
Out[53]:
(37, 4)
In [54]:
cat_enc_ohe
Out[54]:
<37x4 sparse matrix of type '<class 'numpy.float64'>'
        with 37 stored elements in Compressed Sparse Row format>
In [55]:
cat_enc_ohe.todense()[0:10]
Out[55]:
matrix([[0., 1., 0., 0.],
        [1., 0., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [1., 0., 0., 0.],
        [1., 0., 0., 0.],
        [0., 1., 0., 0.],
        [0., 1., 0., 0.],
        [0., 0., 0., 1.],
        [1., 0., 0., 0.]])
```

In [56]:

cat_enc.head(10)

Out [56]:

c1
0 pitched battle
1 ambush
2 pitched battle
3 pitched battle
4 ambush
5 ambush

6 pitched battle

7 pitched battle

8 siege

9 ambush

2.3. <u>Pandas get_dummies (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html)</u> - быстрый вариант one-hot кодирования

In [57]:

pd.get_dummies(cat_enc).head()

Out[57]:

	c1_ambush	c1_pitched battle	c1_razing	c1_siege
0	0	1	0	0
1	1	0	0	0
2	0	1	0	0
3	0	1	0	0
4	1	0	0	0

In [58]:

pd.get_dummies(cat_temp_data, dummy_na=True).head()

Out[58]:

	battle_type_ambush	battle_type_pitched battle	battle_type_razing	battle_type_siege	battle_type_
0	0	1	0	0	
1	1	0	0	0	
2	0	1	0	0	
3	0	1	0	0	
4	1	0	0	0	

4

In []:

3. Масштабирование данных

Термины "масштабирование" и "нормализация" часто используются как синонимы. Масштабирование предполагает изменение диапазона измерения величины, а нормализация - изменение распределения этой величины.

Если признаки лежат в различных диапазонах, то необходимо их нормализовать. Как правило, применяют два подхода:

• МіпМах масштабирование:

$$x_{ ext{ iny HOBBJreve{M}}} = rac{x_{ ext{ iny CTAPBJreve{M}}} - min(X)}{max(X) - min(X)}$$

В этом случае значения лежат в диапазоне от 0 до 1.

Масштабирование данных на основе <u>Z-оценки (https://ru.wikipedia.org/wiki/Z-%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0)</u>:

$$x_{ ext{новый}} = rac{x_{ ext{старый}} - AVG(X)}{\sigma(X)}$$

В этом случае большинство значений попадает в диапазон от -3 до 3.

где X - матрица объект-признак, AVG(X) - среднее значение, σ - среднеквадратичное отклонение.

In [59]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

3.1. <u>MinMax масштабирование (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMa</u>

In [67]:

```
data = pd.read_csv('Measurement_summary.csv', sep=",")
data.head()
```

Out[67]:

	Measurement date	Station code	Address	Latitude	Longitude	SO2	NO2	О3	со	PM10 I
0	2017-01-01 00:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.059	0.002	1.2	73.0
1	2017-01-01 01:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.058	0.002	1.2	71.0
2	2017-01-01 02:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0
3	2017-01-01 03:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.004	0.056	0.002	1.2	70.0
4	2017-01-01 04:00	101	19, Jong-ro 35ga-gil, Jongno- gu, Seoul, Republ	37.572016	127.005007	0.003	0.051	0.002	1.2	69.0
4										>

In [68]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['PM2.5']])
```

In [76]:

```
plt.hist(data['Latitude'], 10)
plt.show()
```


In [77]:

```
plt.hist(sc1 data, 10)
plt.show()
```


3.2. Масштабирование данных на основе <u>Z-оценки</u> (https://ru.wikipedia.org/wiki/Z-

%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0) -

StandardScaler (https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.Standa

In [81]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['Latitude']])
```

In [82]:

```
plt.hist(sc2_data, 10)
plt.show()
```


3.3. <u>Нормализация данных (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Norma</u>

In [83]:

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['Latitude']])
```

In [84]:

```
plt.hist(sc3_data, 10)
plt.show()
```

