Straight-Line Planar Graph Drawing — Part 2

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 24.04.2018

Last Week

Theorem: Every n-vertex embedded planar graph G=(V,E) has a straight-line planar drawing on a grid of size $(2n-4)\times(n-2)$. [de Fraysseix, Pach, Pollack 1988]

Theorem: The corresponding shift algorithm can be implemented to run in O(n) time. [Chrobak, Payne 1995]

- From Euler's characteristic |V| |E| + |F| = 2 we can derive for triangulated graphs that
 - |E| = 3|V| 6
 - |F| = 2|V| 4

It is sufficient to focus on drawing maximally planar, i.e., triangulated planar graphs.

- From Euler's characteristic |V| |E| + |F| = 2 we can derive for triangulated graphs that
 - |E| = 3|V| 6
 - $\blacksquare |F| = 2|V| 4$

Today: direct assignment of coordinates based on combinatorial properties of planar drawings

Overview

Barycentric representations

Schnyder labeling

Schnyder realizer

Planar straight-line drawings

Def: For three points $A,B,C\in\mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha,\beta,\gamma)\in\mathbb{R}^3_{>0}$ with

- $\alpha + \beta + \gamma = 1$
- $P = \alpha A + \beta B + \gamma C$

Def: For three points $A,B,C\in\mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha,\beta,\gamma)\in\mathbb{R}^3_{>0}$ with

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C$$

Def: For three points $A,B,C\in\mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha,\beta,\gamma)\in\mathbb{R}^3_{>0}$ with

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C$$

Def: For three points $A,B,C\in\mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha,\beta,\gamma)\in\mathbb{R}^3_{>0}$ with

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C$$

Def: For three points $A,B,C\in\mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha,\beta,\gamma)\in\mathbb{R}^3_{>0}$ with

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C$$

Def: For three points $A, B, C \in \mathbb{R}^2$ and a point P in the triangle $\triangle ABC$, a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ with

$$\alpha + \beta + \gamma = 1$$

$$P = \alpha A + \beta B + \gamma C$$

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

What do the two conditions mean?

Def: A barycentric representation of a graph G = (V, E) is an injective map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- for every edge $(u, v) \in E$ and every $x \in V \setminus \{u, v\}$ there exists $k \in \{1, 2, 3\}$ with $u_k < x_k$ and $v_k < x_k$.

Variation

Def: A weak barycentric representation of a graph G = (V, E) is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{>0}$ with

- $v_1 + v_2 + v_3 = 1 \text{ for all } v \in V$
- for every edge $(u,v)\in E$ and every $x\in V\setminus\{u,v\}$ there exists $k\in\{1,2,3\}$ with

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let collines $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\Delta(A, B, C)$.

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Proof:

no vertices inside forbidden triangles

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Proof:

no vertices inside forbidden triangles

lacksquare can a pair of edges (u,v) and (x,y) cross?

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Proof:

no vertices inside forbidden triangles

lacksquare can a pair of edges (u,v) and (x,y) cross?

No! More precisely for some $1 \leq i, j, k, l \leq 3$

$$x_i > u_i, v_i \quad y_j > u_j, v_j$$

$$u_k > x_k, y_k \quad v_l > x_l, y_l$$

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Proof:

no vertices inside forbidden triangles

lacksquare can a pair of edges (u,v) and (x,y) cross?

No! More precisely for some $1 \leq i, j, k, l \leq 3$

$$x_i > u_i, v_i \quad y_j > u_j, v_j$$

$$u_k > x_k, y_k \quad v_l > x_l, y_l$$

$$\Rightarrow \{i,j\} \cap \{k,l\} = \emptyset$$

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Proof:

no vertices inside forbidden triangles

lacksquare can a pair of edges (u,v) and (x,y) cross?

No! More precisely for some $1 \le i, j, k, l \le 3$

$$x_i > u_i, v_i \quad y_j > u_j, v_j$$

$$u_k > x_k, y_k \quad v_l > x_l, y_l$$

$$\Rightarrow \{i,j\} \cap \{k,l\} = \emptyset$$
 other cases we analogous

assume $i=j=2 \Rightarrow x_2,y_2>u_2,v_2$

 $\Rightarrow (u,v)$ and (x,y) are separated by straight line

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\triangle(A, B, C)$.

Variation

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a **weak** barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\Delta(A, B, C)$.

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\Delta(A, B, C)$.

Variation

Lemma: Let $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3_{\geq 0}$ be a **weak** barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping $f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$ yields a planar straight-line drawing of G inside $\Delta(A, B, C)$.

What do we need to apply the lemmas for our purpose?

Overview

Barycentric representations

Schnyder labeling

Schnyder realizer

Planar straight-line drawings

Schnyder Labeling

Schnyder Labeling

Def: A **Schnyder labeling** of a plane triangulated graph is a labeling of all internal angles with labels 1, 2, 3 such that

- A ace each triangle contains all three labels 1, 2, 3 in counterclockwise order
- Ver tex around each internal vertex labels 1, 2, 3 form non-empty contiguous intervals in counterclockwise order

Schnyder Labeling

Def: A **Schnyder labeling** of a plane triangulated graph is a labeling of all internal angles with labels 1, 2, 3 such that

- face each triangle contains all three labels 1, 2, 3 in counterclockwise order
- vertex around each internal vertex labels 1, 2, 3 form non-empty contiguous intervals in counterclockwise order

Edge Contractions

An edge contraction G/(u,v) of an edge (u,v) in a graph G removes vertices u and v and replaces them by a new vertex z that is adjacent to all previous neighbors of u and v.

Edge Contractions

An edge contraction G/(u,v) of an edge (u,v) in a graph G removes vertices u and v and replaces them by a new vertex z that is adjacent to all previous neighbors of u and v.

An edge (u,v) in a plane triangulated graph G is **contractible** if u and v have exactly two common neighbors. Contracting a contractible edge leaves G/(u,v) plane and triangulated.

Edge Contractions

An edge contraction G/(u,v) of an edge (u,v) in a graph G removes vertices u and v and replaces them by a new vertex z that is adjacent to all previous neighbors of u and v.

An edge (u,v) in a plane triangulated graph G is **contractible** if u and v have exactly two common neighbors. Contracting a contractible edge leaves G/(u,v) plane and triangulated.

An edge (u,v) is contractible if and only if it is not part of a

separating triangle.

Lemma: Let G be a plane triangulated graph with $n \geq 4$ vertices and let a,b,c be the vertices of its outerface. Then there is a neighbor x of a such that $x \notin \{b,c\}$, and $\{a,x\}$ is contractible.

Lemma: Let G be a plane triangulated graph with $n \geq 4$ vertices and let a,b,c be the vertices of its outerface. Then there is a neighbor xof a such that $x \notin \{b, c\}$, and $\{a, x\}$ is contractible.

Proof: by induction on n

Lemma: Let G be a plane triangulated graph with $n \geq 4$ vertices and let a,b,c be the vertices of its outerface. Then there is a neighbor x of a such that $x \notin \{b,c\}$, and $\{a,x\}$ is contractible.

Theorem: Every plane triangulated graph has a Schnyder labeling.

Lemma: Let G be a plane triangulated graph with $n \geq 4$ vertices and let a,b,c be the vertices of its outerface. Then there is a neighbor x of a such that $x \notin \{b,c\}$, and $\{a,x\}$ is contractible.

Theorem: Every plane triangulated graph has a Schnyder labeling.

Proof: by induction on n

■ Let a be an outer vertex. Show that there is a Schnyder labeling with all angles at a having label 1.

• obviously true for n=3

Martin Nöllenburg · Graph Drawing Algorithms: Straight-Line Planar Graph Drawing – Part 2

Lemma: Let G be a plane triangulated graph with $n \geq 4$ vertices and let a,b,c be the vertices of its outerface. Then there is a neighbor x of a such that $x \notin \{b,c\}$, and $\{a,x\}$ is contractible.

Theorem: Every plane triangulated graph has a Schnyder labeling.

Proof: by induction on n

- Let a be an outer vertex. Show that there is a Schnyder labeling with all angles at a having label 1.
- \blacksquare obviously true for n=3
- Let (a, x) be a contractible edge incident to a (exists by above Lemma).
- Take Schnyder labeling for G/(a,x) (induction hypothesis) and extend.

Overview

Barycentric representations

Schnyder labeling

Schnyder realizer

Planar straight-line drawings

From a Schnyder labeling of a plane triangulated graph G we can obtain edge orientations and labelings for G.

From a Schnyder labeling of a plane triangulated graph G we can obtain edge orientations and labelings for G.

From a Schnyder labeling of a plane triangulated graph G we can obtain edge orientations and labelings for G.

Def: A **Schnyder realizer** of a plane triangulated graph G = (V, E) is a partition and orientation of its edge set E in three sets T_1 , T_2 , T_3 of directed edges, so that for each internal vertex $v \in V$:

- lacksquare v has out-degree 1 in each of T_1 , T_2 , and T_3 .
- The counterclockwise order of edges around v is: outgoing T_1 , incoming T_3 , outgoing T_2 , incoming T_1 , outgoing T_3 , incoming T_2 .

From a Schnyder labeling of a plane triangulated graph G we can obtain edge orientations and labelings for G.

Def: A **Schnyder realizer** of a plane triangulated graph G = (V, E) is a partition and orientation of its edge set E in three sets T_1 , T_2 , T_3 of directed edges, so that for each internal vertex $v \in V$:

- lacksquare v has out-degree 1 in each of T_1 , T_2 , and T_3 .
- The counterclockwise order of edges around v is: outgoing T_1 , incoming T_3 , outgoing T_2 , incoming T_1 , outgoing T_3 , incoming T_2 .

We know that every plane triangulated graph has a Schnyder labeling, hence by the above construction also a Schnyder realizer.

for each v the three paths $P_1(v)$, $P_2(v)$, and $P_3(v)$ to the root in T_1 , T_2 , T_3 divide G into three regions $R_1(v)$, $R_2(v)$, and $R_3(v)$

Lemma: Let u, v be two distinct inner vertices of a plane triangulated graph G with a Schnyder realizer and $i \in \{1, 2, 3\}$. If $u \in R_i(v)$ then $R_i(u) \subsetneq R_i(v)$.

For each region $R_i(v)$ let $f_i(v)$ be the number of faces in $R_i(v)$.

For each region $R_i(v)$ let $\eta_i(v)$ be the number of vertices in $R_i(v) - P_{i-1}(v)$.

Overview

Barycentric representations

Schnyder labeling

Schnyder realizer

Planar straight-line drawings

Finally, let's put it all together!

Theorem: For a plane triangulated graph G the mapping $f \colon v \mapsto \frac{1}{2n-5}(f_1(v), f_2(v), f_3(v))$ is a barycentric representation of G.

Finally, let's put it all together!

Theorem: For a plane triangulated graph G the mapping $f \colon v \mapsto \frac{1}{2n-5}(f_1(v), f_2(v), f_3(v))$ is a barycentric representation of G.

· edge (n,v), vtx x & { {a, v}}

Finally, let's put it all together!

Theorem: For a plane triangulated graph G the mapping $f \colon v \mapsto \frac{1}{2n-5}(f_1(v), f_2(v), f_3(v))$ is a barycentric representation of G.

Set A=(2n-5,0,0), B=(0,2n-5,0), and C=(0,0,0). Then the resulting drawing is planar and can be projected to a $(2n-5)\times(2n-5)$ -grid.

Finally, let's put it all together!

Theorem: For a plane triangulated graph G the mapping $f\colon v\mapsto \frac{1}{2n-5}(f_1(v),f_2(v),f_3(v))$ is a barycentric representation of G.

Set A=(2n-5,0,0), B=(0,2n-5,0), and C=(0,0,0). Then the resulting drawing is planar and can be projected to a $(2n-5)\times(2n-5)$ -grid.

Variation

Theorem: For a plane triangulated graph G the mapping

$$g: v \mapsto \frac{1}{n-1}(\eta_1(v), \eta_2(v), \eta_3(v))$$

is a weak barycentric representation of G.

Finally, let's put it all together!

Theorem: For a plane triangulated graph G the mapping $f \colon v \mapsto \frac{1}{2n-5}(f_1(v), f_2(v), f_3(v))$ is a barycentric representation of G.

Set A=(2n-5,0,0), B=(0,2n-5,0), and C=(0,0,0). Then the resulting drawing is planar and can be projected to a $(2n-5)\times(2n-5)$ -grid.

Variation

Theorem: For a plane triangulated graph G the mapping $g\colon v\mapsto \frac{1}{n-1}(\eta_1(v),\eta_2(v),\eta_3(v))$ is a weak barycentric representation of G.

Set A=(n-1,0,0), B=(0,n-1,0), and C=(0,0,0). Then the resulting drawing is planar and can be projected to an $(n-2)\times (n-2)$ -grid.

Running Times

Steps for computing straight-line drawings:

- Schnyder labeling O(n) time, related to canonical ordering
- Schnyder realizer -> consider each edge once -> O(a)
- barycentric representation O(n) by tree traversals [details in likerature]

Running Times

Steps for computing straight-line drawings:

- Schnyder labeling
- Schnyder realizer
- barycentric representation

Theorem: Every n-vertex embedded planar graph G=(V,E) has a straight-line planar drawing on a grid of size $(n-2)\times(n-2)$. It can be computed in O(n) time.

[Schnyder 1990]

Canonical Ordering and Schnyder Realizers

In fact, canonical orderings and Schnyder realizers can be transformed into each other!

Summary

Last week:

Theorem: Every n-vertex embedded planar graph G=(V,E) has a straight-line planar drawing on a grid of size $(2n-4)\times(n-2)$. It can be computed in O(n) time.

[de Fraysseix, Pach, Pollack 1988], [Chrobak, Payne 1995]

Today:

Theorem: Every n-vertex embedded planar graph G=(V,E) has a straight-line planar drawing on a grid of size $(n-2)\times(n-2)$. It can be computed in O(n) time. [Schnyder 1990]

Martin Nöllenburg · Graph Drawing Algorithms: Straight-Line Planar Graph Drawing – Part 2