Year / Sem : III / V

Sub. Code & Subject : MA2265- Discrete Mathematics (DM)

TWO MARK QUESTION & ANSWERS

Unit-I&II

1.Define negation?

If p is a statement, then negation of p written as p (or p) or 7p and read as "not p". the truth table is as follows

р	~p
Т	F
F	Т

Example: P: madras is a city

~p:madras is not a city or it is not the case that madras is a city.

2.define conjunction?

The conjunction if 2 statements P and Q is the statement P^Q which is read as "P and Q". the statement P^Q has a truth value T whenever both P and Q have the truth table T; otherwise it has truth value F. the conjunction is defined by the truth table as follows.

Р	Q	P^Q
T	Т	Т
T	F	F
F	Т	F
F	F	F

Example: P: jack went up the hill

Q: jill went up the hill

P^Q: jack and jill went up the hill

3.define disjunction?

The disjunction of 2 statements P and Q is the statement P v Q which is read as "P or Q". the statement P v Q has a truth value F only when both P and Q have truth value F otherwise it is true. The disjunction is defined by following table.

|--|

Т	T	T
Т	F	Т
T T F	Т	Т
F	F	F

Example:

- 1.I shall go to market or a cinema.
- 2. there is something wrong with the bulb or wiring.

4.state molecular statements?

Those statements which contain one or more atomic statements and some connectives are called molecular statements.

Examples;

~P,P^~Q,P v Q.

5. Define conditional and biconditional?

If P and Q are any two statements then the statement P-> Q which is read as "if P then Q" is called a conditional statement. Here P is called antecedent and Q is called consequent.

Truth table:

Р	Q	P>
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

Example:

P: it is hot.

Q: 5+3=8.

p-> is false only when P is true and Q is false. Otherwise p->Q is true.

Biconditional

If P and Q are any two statements, then the statement P<-> which is read as "P if only if Q" is called Biconditional statement, the statement p<->Q has the truth value T whenever both P and Q have identical truth values. the truth table for biconditional is as follows;

Р	Q	Р
Т	Т	Т
Т	F	F
F	Т	F
f	F	T

6.define Tautology and Contradiction?

A statement formula which is true regardless of the truth values of the statements which replace the variables in it is called a universally valid formula or a tautology or a logical truth.

Example:

P v~P

Р	~P	PV~P
T	F	T
F	T	T

Contradiction:

A statement formula which is false regardless of the truth table values of the statements which replace variables in it is called a contradiction.

Example:

р∧∼р

Truth table for PV~P

Р	~P	P^~P
T	F	F
F	T	F

7.define Duality law?

Two formula A and A* are duals of each other if other if either one can be obtained from the other by replacing^ and v are also called duals of each other.

8.prove the following implications:

(i) $(P^Q)=>(P->Q)$; (ii)P=>(Q->p)

Assume the consequent to be false (i.e)P->Q is false . by definition of conditional P is True and O is false

(ii) Assume Q->P is false Q is True but P is false. Therefore P is false.

9.define DNF and CNF

DNF:

A formula which is equivalent to a given formula and which consists of sum of elementary products is called a disjunctive normal form of the given formula.

CNF:

A formula which is equivalent to a given formula and which consists of product of elementary sums is called conjuctive normal form of the given formula.

10.state inference theory?

Rule P: a given premises may be introduced at any stage in the derivative.

Rule T: a formula S may be introduced in a derivation if S is tautologically implied by one or more of the preceding formula in to derivation.

Rule CP: if the conclusion is the form R->S then we include R is an additional premises and derive S from the given act of premises and R.this rule is called rule CP.

11.define PDNF and PCNF

PDNF: a formula which is equivalent to a given formula which is consists of sum its minterms is called PDNF.

PCNF: a formula which is equivalent to a given formula which consists of product of maxterms is called PCNF.

12.construct the truth table for (q ^ (P->Q))->P)

Solution;

Р	Q	P->Q	Q^(P->Q)	(Q^(P->Q))->P
Т	Т	T	T	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т

13 .construct the truth table for (P^Q)v()7p^Qv(P^7Q)v(7p^7Q)

Solution;

р	Q	7P	7Q	P^Q	7P^Q	p^7Q	7P^7Q	Т	R	S
Т	Т	F	F	Т	F	F	F	Т	F	Т
Т	F	F	Т	F	F	Т	F	F	Т	Т
F	Т	Т	F	F	Т	F	F	Т	F	Т
T	F	Т	Т	F	F	F	Т	F	Т	Т

14.construct the truth table for (PvQ)v7P

Solution:

Р	q	PVQ	7P	(PVQ)V7P
Т	Т	T	F	T
Т	F	Т	F	Т
F	Т	T	Т	T
F	F	F	Т	Т

15.construct the truth table for (P->Q)^(q->P)

Solution:

Р	Q	P->Q	Q->P	(P->Q)^(Q->P)
Т	Т	T	T	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	F	Т

16.construct the truth table for(P->Q)<->(7PVQ)

Solution:

Р	ď	7P	P->Q	7PVQ	(P->Q)<->(7PVQ)
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	T	Т
F	F	Т	Т	Т	T

17.find the PDNF for 7PvQ

```
Sol:
7pvQ⇔(7P^T)v(T^Q)
⇔(7P^(Qv7Q))v((Pv7P)^Q)
⇔(7P^Q)v(7P^7Q)v(P^Q)v(7P^Q)
⇔(P^Q)v(7P^Q)v(7p^7Q)

18.obtain the PDNF for P->((P->Q)^7(7Qv7P))

Solution;
P->((P->Q^7(QV7P))
⇔P->((7PVQ)^(Q^P))
⇔7PV(7PVQ)^(Q^P))
⇔7P^(QV7Q)V(F^Q)V(P^Q)
⇔(7P^Q)V(7P^7Q)V(P^Q)
```

UNIT-III&IV

1.Define a simple statement function.

A simple statement function of one variable is defined to be an expression consisting of a predicate symbol and an individual variable. Such a statement function becomes a statement when the variable is replaced by the name of any object.

Ex:

If "X is a teacher" is denoted by T(x), it is a statement function. if X is replaced by John, then "Johan is a teacher" is statement.

2.Define a compound statement function.

A compound stament function is obtained by combining one or more simple statement functions by logical connectives.

Ex:

 $M(x)^H(x)$

M(x)->H(x)

 $M(x)\sqrt{7}H(x)$

An extension of this idea to the statement functions of two or more variables is straight forward.

3. Define universal Quantifiers and existential Quantifiers.

Universal Quantifiers:

The universal Quantification of P(x) is the proposition." P(x) is true for all values of x in the universe of discourse".

The notation Yx P(x) denotes the universal quantification of P(x). Here Y is called the universal quantifier.

Existential Quantifier:

The existential Quantification of P(x) is the proposition." There exists an element x in the universe of discourse such that P(x) is true".

We use the notation $\exists x \ P(x)$ for the existential quantification of p(x).here \exists is called the existential quantifier.

4. what are the rules of Quantifier?

- 1.Rule US (Universal specification)
- 2. Rule UG (Universal generalization)
- 3. Rule ES (Existential Specification)
- 4. Rule EG (Existential Specification)

5.what are the rules of inference?

1. Rule P

A given premises may be introduced at any stage in the derivation.

2. Rule T

A formula S may be introduced in a derivation if S is tautologically implied by one or more of the proceeding formulae in the derivation .

3. Rule CP

If we can derive S from R and a set of given premises, then we can derive R->S from the set of premises alone.

6. symbolize the expression "x is the father of the mother of y"

P(x): x is a person F(x,y): x is a father of y M(x,y): x is a mother of y

We symbolize this as($\exists z$)(p(z) \land F(x,z) \land M(z,y))

7. Express the statement, "Some people who trust others are rewarded" in symbolic form.

 $(\exists x)[P(x) \land T(x) \land R(x)]$ P(x) : x is aperson T(x) : x trusts others R(x) : x is rewarded

8. Give an example of free and bound variable in predicate logic.

 $(\mathbf{Y}\mathbf{x}) P(\mathbf{x}, \mathbf{y}) : \mathbf{x} \text{ is a bound variable}$

Y is a free variable

9. Define statement function of one variable. When it will become a statement?

Statement function of one variable is defined to be an expression consisting of a predicate symbol and an individual variable. The statement function becomes a statement, when the variable is replaced by the name of an object.

10. Use quantifiers to express the associate law for multiplication of real numbers.

Universe of discourse: Set of real numbers.

P(x,y,z): (x*y)*z Q(x,y,z): x*(y*z) $(x)(y)(z)(P(x,y,z) \Leftrightarrow Q(x,y,z))$

11. Define simple statement function.

A simple statement function contains a predicate symbol followed by one (or) more variables. It gives the statement when the variables are replaced by objects from a designated set.

EX: R(x) : x is Red Q(x,y) : x+y=10

12. Express the statement "For every 'x' there exist a 'y' such that $x^2 + y^2 \ge 100$ " in symbolic form.

Universe of discourse = Set of all integers.

$$(x)(\exists y)(x^2 + y^2 \ge 100)$$

13. Give an example to show that $(\exists x)$ $(A(x)\land B(x))$ need not be a conclusion from $(\exists x)$ a(x) B(x).

Let the universe of discourse be the set of all integers.

Let A(x):
$$2x + 1 = 5$$
 and B(x): $x^2 = 9$.

The statements $(\exists x) A(x) and (\exists x) B(x)$ are true. The statement $(\exists x) (A(x) \land B(x))$ is false, because there is no integer 'a' such that 2a+1=5 and $a^2=9$. But the state

14.show that $^{\sim}P(a,b)$ follows logically from (x),(y)(P(x,y)->W(x,y)) and $^{\sim}W(a,b)$

- (i) (x)(y)(P(x,y)->W(x,y)rule P
- (ii) (y)(P(a,y)->W(a,y))
 - US,(i)
- (iii) P(a,b)->W(a,b)

(iv) ~W(a,b)

- (ii), US
 - rule P(v) ~P(a,b)

rule T(iii,iv)

15. show that $(x) (p(x))->Q(x))^{(x)}(Q(x))->R(x))=>(x)(p(x))->R(x))$

Solution;

Sno	Premises	Rule	reason
1	(x)(p(x))->Q(x))	Р	Given premises
2	P(a)->Q(a)	Т	From(1),US rule
3	(x)(Q(x)->R(x))	Р	GP
4	Q(a)->R(a)	Т	From(3),US rule
5	P(a)->R(a)	Т	From(2),(4)(p->Q),(Q->R)=>P->R
6	(x)(p(x)->R(x))	Т	From(5),UG rule

16.using CP or otherwise obtain the following implication

(x)(P(x)) - Q(x), (x)(R(x) - Q(x)) = (x) r(x) - P(x)

Solution:

Sno	Premises	rules	Reason
1	$(\mathbf{Y}\mathbf{x})(\mathbf{p}(\mathbf{x})-\mathbf{Q}(\mathbf{x})$	Р	Given premises
2	2 P(a)->Q(a)		US rule
3	3 R(x)		Additional premises
4	4 (¥x)(R(x)-		GP
	>~Q(x))		
5	R(a)->~Q(a)	Т	US rule
6	~(~Q(a)->~R(a)	Р	From (5)
			P->Q⇔~Q->~P
7	Q(a)->~R(a)	Т	From(6)
8	P(a)->~R(a)	Т	From(2)&(7)P->Q
9	~(~R(a))->~P(a)	Т	From(8)
10	10 R(a)->~P(a)		From(9)
11	11 (¥x)(R(x)-		UG rule
	>~P(x)		

17. which of the following are statements?

 $i.(x)(P(x)vQ(x))^R.$

 $ii.(x)(P(x)^Q(x))^S(x)$

solution:

i.is not a statement

ii.is a statement

٠

18.using CP ot otherwise obtain the following implication:

(x)(P(x)->Q(x)),

(x)(R(x)->7Q(x))=>(x)(R(x)->7P(x))

Sol:

(x)(P(x)->Q(x)) rule P

2.(x) R(x) - 7Q(x) rule T

3.Q(x)->7R(x) rule $T_{*,2},3$

4.R(x)->7P(x) rule T,4

Unit-V

1.define function.

Let X and Y be any two sets A relation f from X to Y is called a function if for every $x \in X$ there is a unique $y \in Y$ such that $(x, y) \in f$.

2. define graph of a function.

With each function we can associate a graph ,which is a diagrammatic representation of a function.if the domain x and codomain Y of a function f are finite, we can represent such a function as follows

We draw a circle for each element x of X and each element y of Y and join x with y by a directed line, directed from x to y, if $(x,y) \in f$

.

3. define identity map

A mapping $I_x:X\to X$ is called an identify map if $I_x=\{(x,x)\,|\,\{x\in X\}$

4. define commutative property

A binary operation f:X x X ->X is said to be commutative if for every x, y \in X ,f(x, y)=f(y, x).

5 define distributive

A binary operation f: $X^*X->X$ denote by * is said to be , distributive over the operation g: $X^*X->X$, denoted by ° if for every x, y, z $\in X$. $X^*(y^oz))=(x^*Y)^o(x^*z)$

6. define idempotent

Let * be a binary operation on X an element a €X is called idempotent with respect to * if a*a=a.

Ι

7. define primitive recursion

A function is called primitive recursive if and if it can be obtained from the initial functions by a finite number of operations of composition and recursion.

8. define onto (or) surjective (or) surjection

A mapping of f:X->Y is called onto if the range $r_f = Y$; otherwise it is called into.

9.Define injective

A mapping f:X->Y is called one-to-one if it is both one-to-one such a mapping is also called a one- to- one correspondence between X and Y.

10. define graph of functions

With each function, we can associate a graph, which is a diagrammatic representation of a function if the domain X and codomain Y of a function f are finite, we can represent such a function as follows.

We draw a circle for each element x of X and for each element of Y and join x with y by a directed line directed from x to y, if(x, y) \in f.

11. define identity map

A mapping $I_x=X->X$ is called an identity map if $I_x=\{(x, x) | \{x \in X\}$

12. define inverse function

If it is a function from X to Y if f, the converse of f, given by $(y, x) \in f$ whenever $(x, y) \in f$, need not be a function from Y to X.

13.define binary and n- ary operation

Let X be a set and f be a mapping f:X x X->X then f is called a binary operation on X. in general, a mapping f: X^n ->Xis called an n-ary operation and n is called the order of the operation . for n=1,f:X->X is called a unary operation.

14 define primitive recursion

A function is called primitive recursive if and only if it can be obtained from the initial functions by a finite number of operations of composition and recursion.

15.Define permutation

A bijection from a set A to itself is called permutation of A.

16.define function.

Let x and Y be any two set. A relation F From X to Y is called a function if every $X \in \text{there is a unique Y such that } (X,Y) \notin F$.

For a from $F: X \to Y$, if $(X, Y) \in F$, then Xs c argument and corresponding Y a X. The pair $(X, Y) \in F$, is also written as Y=F (X), X is then said to be mapped into XY.

17.define into

Led F: $X \to Y$ such that there is at least one element $b \in Y$ which has no pre image under F, then F is said to be a pinto be a into function from X into Y.

Clear $F: X \rightarrow Y$ is an into function if (X) = Y.

18.definr one to one

A mapping $F: X \to Y$ is called one (injection, or 1-1) if distinct element of X are mapped into element of Y.

In other ,F is one to one if X1# F(X2) X1 = X2.