Homework 7

Problem 1. Let $U \subseteq \mathbb{R}^n$. A path $\phi: I \to U$ is called piecewise-linear if there exist $0 = x_0 < x_1 < \cdots < x_n = 1$ such that on every interval $[x_i, x_{i+1}]$, ϕ has the form

$$\phi(t) = \mathbf{a}_i t + \mathbf{b}_i$$

for some $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^n$. (Note that $\mathbf{a}_i, \mathbf{b}_i$ need not lie in U.)

Let U be a connected open subset of \mathbb{R}^n . Use the Local-to-Global Lemma to show that there is a piecewise-linear path in U between any two points.

Proof. Define a relation on the points of U where $\mathbf{x} \sim \mathbf{y}$ if and only if there is a piecewise-linear path between \mathbf{x} and \mathbf{y} . This relation is reflexive since the constant path is piecewise-linear. The relation is symmetric since reversing the direction of any path from \mathbf{x} to \mathbf{y} is a path from \mathbf{y} to \mathbf{x} . The relation is transitive because a path from \mathbf{y} from \mathbf{x} to \mathbf{y} can be composed with a path ψ from \mathbf{y} to \mathbf{z} . This composed path will still be piecewise-linear as the line segments in \mathbb{R}^n remain the same and the intervals in I become $[x_i/2, x_{i+1}/2]$ for ϕ and $[x_i/2 + 1/2, x_{i+1}/2 + 1/2]$ for ψ . Thus \sim is an equivalence relation.

Let $\mathbf{x} \in U$ and consider an ε -ball B around \mathbf{x} contained in U. But all the points $\mathbf{y} \in B$ have a piecewise-linear path connecting them to \mathbf{x} . Namely, $\phi(t) = (\mathbf{y} - \mathbf{x})t + \mathbf{x}$. Thus, every point of U has a neighborhood of equivalent points. By the Local-to-Global Lemma there is a piecewise-linear path between any two points in U.

Problem 2. (a) Show that every connected proper open set of \mathbb{R} is either an open interval or an open ray. (b) Let U be an open subset of \mathbb{R}^n . Show that the components of U are open.

(c) Show that every proper open subset of \mathbb{R} is a countable disjoint union of open intervals and (at most two) open rays.

Proof. (a) Let A be a connected open subset of \mathbb{R} . Suppose that there exists $a, b \in A$ such that a < b and $c \in (a, b)$ such that $c \notin A$. Then $\{(-\infty, c), (c, \infty)\}$ forms a separation of A. Thus $c \in A$ and every connected subset of \mathbb{R} is convex. Note that if A is not bounded above or below, but is a proper subset of \mathbb{R} then there exists $c \notin A$ and $(-\infty, c)$ and (c, ∞) form a separation of A. Thus A must be bounded above or below.

Suppose first that A is bounded above and below by u and v respectively. Note that v must be a limit point of A because otherwise there would be some neighborhood V of v which didn't intersect A except at v. This set and $\mathbb{R}\backslash V$ would form a separation of A. Likewise, u must be a limit point of A. Then every open neighborhood of v intersects A and every open neighborhood of v intersects A. In particular, points arbitrarily close to v and v are in v and since v is convex, every point between v and v must be in v as well. Therefore v is v in v in v in v is v in v i

- (b) Let U be an open subset of \mathbb{R}^n and let C be a component of U. Let $\mathbf{x} \in C$ and consider all the paths which go from \mathbf{x} to points less than ε away from \mathbf{x} . Each of these paths form a connected set, so \mathbf{x} is connected to each of these points. But the union of these points is simply the ε -ball around \mathbf{x} . This is then contained in C so C is open.
- (c) Let U be an open proper subset of \mathbb{R} . Using part (b), the components of U are open connected subsets and these are either intervals or open rays by part (a). Note that the components of U are disjoint by definition and since each interval or open ray contains a rational number, there can be at most countably many components. Also, if three of the components of U are rays, then one necessarily contains the other, so there can only be two rays. Therefore U is a countable disjoint union of open intervals and at most two open rays.

Problem 3. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Proof. For each $n \in \mathbb{N}$ there exists some point p_n such that $p_n \in A_n \cap A_{n+1}$. We use induction on n to show that $\bigcup_{i=1}^n A_n$ is connected for every n. For the n=1 case we're done since A_1 is connected by assumption. Suppose $\bigcup_{i=1}^n A_n$ is connected but $\{C,D\}$ is a separation of $\bigcup_{i=1}^{n+1} A_n$. Note that $p_n \in \bigcup_{i=1}^{n+1} A_n$ so without loss of generality suppose $p_n \in C$. Then since $\bigcup_{i=1}^n A_n$ is connected, this entire set must also be in C. But also $p_n \in A_{n+1}$ so $A_{n+1} \subseteq C$ as well. Then $D = \emptyset$ and $\{C,D\}$ isn't a separation. Therefore $\bigcup_{i=1}^n A_n$ is connected for all natural numbers n. Note that $\bigcup_n A_n$ is the union of each of these sets and each set in this union contains some point in A_1 . Therefore $\bigcup_n A_n$ is connected as well.

Problem 4. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) \setminus (A \times B)$$

is connected.

Proof. Let $Z = (X \times Y) \setminus (A \times B)$. Choose $a \in X \setminus A$ and $b \in Y \setminus B$ and form the sets $\{a\} \times Y$ and $X \times \{b\}$. Each of these sets is homeomorphic to a connected set so they're both connected. Let $T = (\{a\} \times Y) \cup (X \times \{b\})$ and note that T is the union of two connected sets intersecting in (a, b) so T is connected. Now choose an arbitrary point $(x, y) \in Z$ and note either $x \notin A$ or $y \notin B$. If $x \notin A$ then note that $A_x = \{x\} \times Y$ is a subset of Z. Otherwise, if $y \notin B$ then note that $A_y = X \times \{y\}$ is a subset of Z. But each A_x and A_y is homeomorphic to Y or X and is thus connected. Each A_x and A_y intersects T at (x, b) or (a, y). Therefore the collection $\{(A_x \cup T), (A_y \cup T) \mid (x, y) \in Z\}$ is a set of connected sets which all intersect at the point (a, b). Their union must then be connected. But this union is Z.

Problem 5. (a) Show that no two of the spaces (0,1), (0,1], and [0,1] are homeomorphic.

- (b) Suppose that there exist imbeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic.
- (c) Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.
- *Proof.* (a) Note that removing any point x from (0,1) results in a disconnected space with separation $\{(-\infty,x)\cap(0,1),(x,\infty)\cap(0,1)\}$. But if we remove 1 from (0,1] or [0,1] we get connected spaces since these are intervals in \mathbb{R} . Thus (0,1) is not homeomorphic to (0,1] or [0,1]. Furthermore, removing any two points from (0,1] results in a disconnected space since at least one of them must be some $x\in(0,1)$ and $\{(-\infty,x)\cap(0,1],(x,\infty)\cap(0,1]\}$ is a separation of this space. But we can remove the points 0 and 1 from [0,1] and still have a connected space, so (0,1] cannot be homeomorphic to [0,1]. Thus, no two of these spaces are homeomorphic.
- (b) Let $f:(0,1) \to [0,1]$ be the identity and $g:[0,1] \to (0,1)$ be given by g(x) = 1/4 + x/2. We see that f is clearly a homeomorphism onto it's image as is g since it simply scales open intervals to make them smaller, but still open. But by part (a) we know (0,1) and [0,1] are not homeomorphic.
- (c) We know $\mathbb{R}^n \setminus \{0\}$ for n > 1 is a connected space. It follows that \mathbb{R}^n without any single point x is still connected. On the other hand, $\mathbb{R} \setminus \{0\}$ is disconnected. So \mathbb{R}^n is connected after removing one point and \mathbb{R} is not. Thus the two spaces can't be homeomorphic.

Problem 6. Let $f: S^1 \to \mathbb{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Proof. Note that S^1 is connected set since it's clearly path connected. Consider the function g(x) = f(x) - f(-x) and let $a \in S^1$. Note that g(x) = -g(-x). If g(a) = 0 then we're clearly done. Suppose that g(a) > 0. Then g(-a) = -g(a) < 0. On the other hand, if g(a) < 0 then g(-a) = -g(a) > 0. In both cases since S^1 is connected there must exist some $b \in S^1$ such that g(b) = 0. Thus f(b) = f(-b) and we're done.

Problem 7. Assume that \mathbb{R} is uncountable. Show that if A is a countable subset of \mathbb{R}^2 , then $\mathbb{R}^2 \setminus A$ is path connected.

Proof. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. There are two cases to consider. If \mathbf{x} and \mathbf{y} are not collinear with some point $\mathbf{a} \in A$, then we're done since the line connecting \mathbf{x} and \mathbf{y} serves as a path from \mathbf{x} to \mathbf{y} . Otherwise, note that there are uncountably many lines in \mathbb{R}^2 intersecting \mathbf{x} and only countably many points of A. Therefore, at least

one of these lines passing through \mathbf{x} is not collinear with any point of A. Call it l. Likewise, at least two distinct lines m and n passing through \mathbf{y} contain no points of A. Note that only one of m or n is possibly parallel to l, so we can assume m is not parallel to l. Thus l and m intersect in some point \mathbf{z} . Then the line from \mathbf{x} to \mathbf{z} composed with the line from \mathbf{z} to \mathbf{y} is a path in \mathbb{R}^2 from \mathbf{x} to \mathbf{y} which doesn't intersect A. Therefore it's a path in $\mathbb{R}^2 \setminus A$ and this set is path connected.