

ASESORÍA DE MATEMÁTICA Y FÍSICA M.A.E. NM

Guía de trabajo N.º 02: Ángulos compuestos y ángulos múltiples

Nombre y apellido:				
Grado: 4.° de secundaria	Sección: "	<u>"</u>	Fecha:	/10/21

De madrugada se les acercó Jesús, andando sobre el agua y les dijo: «¡Ánimo, soy yo, no tengáis miedo!» Pedro le contestó: «Señor, si eres tú, mándame ir hacia ti andando sobre el agua.» Él le dijo: «Ven.» Pedro bajó de la barca y echó a andar sobre el agua, acercándose a Jesús; pero, al sentir la fuerza del viento, le entró miedo, empezó a hundirse y gritó: «Señor, sálvame.» En seguida Jesús extendió la mano, lo agarró y le dijo: «¡Qué poca fe! ¿Por qué has dudado?» Los de la barca se postraron ante él, diciendo: «Realmente eres Hijo de Dios.» (Mt. 14, 22-36)

COMPETENCIA: Resuelve problemas de forma, movimiento y localización.

DESEMPEÑO: Combina y adapta estrategias heurísticas, recursos y procedimientos más convenientes para desarrollar las identidades trigonométricas de ángulos compuestos y ángulos múltiples en expresiones dadas, además, determina si se cumplen las equivalencias dadas.

IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA O DIFERENCIA DE DOS ÁNGULOS

- Aplique la identidad correspondiente en cada caso:
 - a) Sen(2x+3y) =
 - b) $Sen\left(50-\frac{x}{2}\right) =$
 - c) $Cos\left(\frac{\pi}{4} \theta\right) =$
 - d) Cos(7x + y) =
- 2. Reduzca a una sola expresión:
 - a) Sen 5x Cos 3y + Cos 5x Sen 3y =
 - b) $Sen 9\alpha Cos 5\beta Cos 9\alpha Sen 5\beta =$
 - c) Cos 7x Cos 2y Sen 7x Sen 2y =
 - d) $Cos 20^{\circ} Cos \theta + Sen 20^{\circ} Sen \theta =$
- 3. Si A y B son ángulos agudos, tal que: $Sen A = \frac{3}{5} \qquad \text{y} \qquad Cos \ B = \frac{12}{13} \, . \qquad \text{Calcule}$ Sen (A B)
- 4. Si se tiene: $Sen x = \frac{12}{13} (x \in IIC)$; $Cos y = 0, 6 (y \in IC)$. Calcule: Cos (x y)
- 5. La función f es definida en el dominio $\left[0, \pi\right]$ por $f(x) = 4Cos \, x + 3Sen \, x$.

- (a) Expresa f(x) en la forma $RCos(x-y) \text{ donde } 0 < y < \frac{\pi}{2}$
- (b) Por lo tanto, o de lo contrario, escriba debajo el valor de x para lo cual f(x) toma su máximo valor.
- 6. La función f es definida en el dominio $\left[0,\pi\right]$ por $f(x) = \sqrt{3} \cos x \operatorname{Sen} x$.
 - (a) Expresa f(x) en la forma RSen(y-x) donde $0 < y < \frac{\pi}{2}$
 - (b) Por lo tanto, o de lo contrario, escriba debajo el valor de x para lo cual f(x) toma su máximo valor.
- 7. Simplifique la siguiente expresión $F = \frac{\cos 65^{\circ} + \sqrt{3} Sen 65^{\circ}}{Sen 10^{\circ} + Cos 80^{\circ}}$

Nota: Realizar los ejercicios del libro Paul Urban pag. 313 (ejercicios del 14-24)

IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE Y MITAD

Nota: Ingresa a la pag. 315 de Paul Urban

- 1. Sabiendo que: $Sen \alpha = \frac{1}{4}$. Halle el valor de: $Sen 2\alpha$
- 2. Sabiendo que: $\cos\theta = \frac{\sqrt{3}}{2}$. Halle el valor de: $\cos 2\theta$
- 3. Halle el valor de $Tan\ 2\theta$. Siendo $Tan\ \theta = \frac{1}{3}$
- 4. Reducir: $P = \frac{Sen 2\theta}{1 + Cos 2\theta}$
- 5. Calcule $Sen\ 2\alpha$ y $Cos\ 2\alpha$; si: $Sen\ \alpha = \frac{3}{5},\ \alpha \in IC$
- 6. Calcule: $Sen\left(\frac{\theta}{2}\right)$ y $Cos\left(\frac{\theta}{2}\right)$, sabiendo que:

$$\cos\theta = \frac{1}{4}; \ 0 < \theta < \frac{\pi}{2}$$

- 7. Si $Csc\ \theta=1.25$, $\theta\in IC$, calcule el valor de: $Cos\left(\frac{\theta}{2}\right)$
- 8. Si $Cos \ x = -\frac{1}{4} \ x \in HIC$, calcule: $Sen\left(\frac{x}{2}\right)$
- 9. Reduzca: $M = \frac{Sen 2\theta}{2Sen \theta}$

10. Si:
$$Sen(\theta - 45^\circ) = \frac{\sqrt{3}}{4}$$
. Calcule: $Sen 2\theta$

- 11. Halle los valores de $\,\theta\,$ en el intervalo $\,0\,,\,\pi\,$ que satisface la ecuación $\,\cos\,2\theta=Sen^2\theta\,.$
- 12. De la figura, halle " $Tan \theta$ "

 $Sen \ \alpha = -\frac{2}{3}$, donde $\pi < \alpha < \frac{3\pi}{2}$. Halle el $Cos \ \alpha$ y por lo tanto halle el valor de $Sen \ 2\alpha$

- **13.**La línea recta cuya ecuación es $y = \frac{3}{4}x$, hace un ángulo agudo θ con el eje x.
 - a) Escriba el valor de $Tan \theta$
 - b) Halle el valor de $Sen\ 2\theta$ y $Cos\ 2\theta$

Nota: Realizar los ejercicios del libro Paul Urban pag. 317 (ejercicios del11-21)

Referencias:

- Urban P., Martin R., Haese R., Haese S., Haese M. & Humphries M. (Segunda edición). (2008).
 Mathematics HL. Australia: Haese & Harris publications.
- ii. Zill, D. & Dewar, J. (2012). Álgebra, trigonometría y geometría analítica. (3ª ed). México: McGraw-Hill Educación.
- iii. Alva Rubén (2005), Trigonometría Teoría y Práctica (Tercera edición), Lima Perú, Editorial San Marcos.