

Ecuaciones Diferenciales y Cálculo Numérico

Grado en Ingeniería de Tegnologías de Telecomunicación

Convocatoria Ordinaria de Junio

1 de julio de 2014

Apellidos:		Firma:
Nombre:	D.N.I. (o Pasaporte):	

ACLARACIONES SOBRE EL EXAMEN

- La duración del examen es de 3 horas.
- No se permite el uso de calculadora programable.
- El examen corresponde a la parte de teoría y problemas, constando de 6 preguntas tipo test y 4 ejercicios. Será valorada sobre 7 puntos (1.5 el test y 5.5 los ejercicios).
- Dos ejercicios no se desarrollarán en una misma cara de una hoja de examen.

Preguntas tipo TEST (M1)

1.	(0.25 puntos) Las soluciones de la ecuación diferencial $x' = ln(x^2 - 4) - 2$ son
	\square a) crecientes en su dominio.
	\square b) decrecientes en su dominio.
	\square c) monótonas en su dominio.
	\square d) Ninguna de las opciones a), b), c) es correcta.

2. (0.25 puntos) La solución del problema de valores iniciales

$$x' = ln(x^2 - 4) - 2$$
, $x(0) = 3$,

puede satisfacer la condición ...

- \Box a) x(t) = -3.5 para algún valor de t > 0.
- \Box b) x(t) = 2.5 para algún valor de t > 0.
- \Box c) x(t) = 3.5 para algún valor de t > 0.
- \Box d) Ninguna de las opciones a), b), c) es correcta.

Observación: En las preguntas 1 y 2 debemos tener en cuenta las posibles soluciones constantes.

3.	$\left(0.25\;\mathrm{puntos}\right)$ Un sistema fundamental de soluciones de la ecuación diferencial
	(2t - 1)x''(t) - 4t x'(t) + 4x(t) = 0,
	definida para $t > 1/2$, es \Box a) $\{e^{2t}, 2e^{2t}\}$ \Box b) $\{e^{2t}\}$ \Box c) $\{e^{2t}, t\}$ \Box d) Ninguna de las opciones a), b), c) es correcta.
4.	(0.25 puntos) Sea f una función continua que tiene una única raíz en el intervalo $[-3.5, 4.5]$. Si deseamos aproximar dicha raíz con un error inferior a 10^{-5} mediante el método de bisección entonces, en general, necesitamos realizar
5.	(0.25 puntos) Se considera la función $f(x) = (x^2 - 3x + 1)e^{(x/7)}$, $\forall x \in [0,3]$. Se tiene asegurada la convergencia del método de Newton-Raphson tomando como aproximación inicial \Box a) $x_0 = 0.2$. \Box b) $x_0 = 1.7$. \Box c) $x_0 = 2.9$. \Box d) Las opciones a) y b) son adecuadas pero no la c). \Box e) Las opciones b) y c) son adecuadas pero no la a). \Box f) Las opciones a) y c) son adecuadas pero no la b). \Box g) Las tres opciones a), b) y c) son adecuadas. \Box h) Ninguna de las opciones a), b), c) es adecuada.
6.	(0.25 puntos) Sea $s(x)$ un spline cúbico natural. Entonces

EJERCICIOS

1. (2 puntos) Se considera la ecuación diferencial

$$t^2x'(t) + 5x(t) = e^{(t^{-1})}. (1)$$

- a) Determina los posibles dominios maximales de (1).
- b) Fijada una condición inicial $x(t_0) = x_0$ cualquiera, ¿existe una única solución de la ecuación (1)? Justifica adecuadamente tu respuesta.
- c) Comprueba que, mediante el cambio de variables $s = \frac{1}{t}$, la ecuación (1) se transforma en una ecuación lineal de coeficientes constantes.
- d) Calcula <u>todas</u> las soluciones de la ecuación (1). (Puedes hacerlo directamente o usando la ecuación obtenida en el apartado anterior.)
- e) Halla, si es posible, la solución de (1) que satisface la condición inicial x(-2) = 0.
- 2. (1 punto) Se considera el sistema de ecuaciones diferenciales lineales

$$\begin{cases} x_1'(t) = 4x_1(t) - 2x_2(t) + e^{2t}, \\ x_2'(t) = 2x_1(t) + 8x_2(t) + 2. \end{cases}$$
 (2)

- a) Sin usar la transformada de Laplace o pasar a una ecuación diferencial lineal equivalente, calcula todas las soluciones <u>reales</u> de (2).
- b) Halla <u>todas</u> las soluciones de (2) que satisfacen la condición inicial $\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 3. (1.5 puntos) Se considera la ecuación

$$x^4 - 5x^3 + 20x^2 - 36x + 2 = 0. (3)$$

- a) Determina justificadamente el número exacto de soluciones reales de (3).
- b) Determina justificadamente un intervalo en el que se pueda aplicar el método de la secante para obtener una sucesión convergente a una solución de (3).
- c) Aplicando el método de Newton-Raphson, con una elección justificada de la aproximación inicial, calcula una solución de (3) con al menos dos decimales exactos.
- 4. (1 punto) Se considera la siguiente tabla de datos

- a) Calcula el spline cúbico de clase uno s(x) que interpola los datos de la tabla anterior.
- b) ¿Es s(x) un spline cúbico periódico? Justifica tu respuesta.

Observación: recuerda que toda función está definida por una ley y un dominio.

EJERCICIO PARA NOTA (1 punto)

Este ejercicio es de carácter voluntario. Previamente se deben haber realizado el test y los cuatro ejercicios obligatorios. Además, sólo se corregirá cuando la calificación obtenida sea igual o superior a 4.

5. Queremos diseñar un método de resolución numérica de ecuaciones diferenciales ordinarias de primer orden que mejore al de Euler pero con menos cálculos que el de Runge-Kutta de cuarto orden. Así pues, sea el problema de valores iniciales

$$\begin{cases} x'(t) = f(t, x(t)), \\ x(t_0) = x_0. \end{cases}$$
 (4)

donde $f: D \to \mathbb{R}$ es una función continua definida en un subconjunto $D \subseteq \mathbb{R}^2$ abierto y arco-conexo. Además, supondremos que f(t,x) admite derivada parcial continua con respecto a x para asegurar la existencia y unicidad de solución.

a) Justifica que x(t) es la única solución del problema (4) si y sólo si x(t) es la única solución de la ecuación integral

$$x(t) = \int_{t_0}^{t} f(s, x(s)) dx + x_0.$$
 (5)

- b) Ahora la idea es tomar un paso h e ir calculando sucesivos valores de la solución x(t) en los instantes $t_k = t_0 + kh$. Para ello procedemos como sigue.
 - b1) A partir de (5), deduce que

$$x(t_{k+1}) = \int_{t_k}^{t_{k+1}} f(s, x(s)) \, \mathrm{d}x + x(t_k). \tag{6}$$

b2) Aplica en (6) la fórmula de cuadratura del punto medio (o regla central del rectángulo) para llegar a la expresión

$$x(t_{k+1}) = x(t_k) + hf\left(t_k + \frac{h}{2}, x\left(t_k + \frac{h}{2}\right)\right).$$
 (7)

- b3) Ya que $x\left(t_k + \frac{h}{2}\right)$ es desconocido, aplica el método de Euler para hacer una estimación de este valor. (Recuerda que el método de Euler viene dado por la recurrencia $x(t_{k+1}) = x(t_k) + hf(t_k, x(t_k))$.)
- c) Aplica el método diseñado para realizar una estimación de x(1) siendo x(t) la única solución del problema de valores iniciales

$$\begin{cases} x'(t) = tx(t), \\ x(0) = 1, \end{cases}$$
 (8)

tomando h = 0.5 como paso.