

Confusion matrix and ROC - I

Dr A. RAMESH

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- **Confusion matrix**
- Receiver operating characteristics curve

Why Evaluate?

- Multiple methods are available to classify or predict
- For each method, multiple choices are available for settings
- To choose best model, need to assess each model's performance

Accuracy Measures (Classification)

Misclassification error

 Error = classifying a record as belonging to one class when it belongs to another class.

 Error rate = percent of misclassified records out of the total records in the validation data

Confusion Matrix

Classification Confusion Matrix		
	Predicted Class	
Actual Class	1	0
1	201	85
0	25	2689

201 1's correctly classified as "1"

85 1's incorrectly classified as "0"

25 0's incorrectly classified as "1"

2689 0's correctly classified as "0"

Error Rate

Classification Confusion Matrix		
Predicted Class		
Actual Class	1	0
1	201	85
0	25	2689

Overall error rate = (25+85)/3000 = 3.67%

Accuracy =
$$1 - err = (201 + 2689) = 96.33\%$$

If multiple classes, error rate is:

(sum of misclassified records)/(total records)

Cutoff for classification

Most algorithms classify via a 2-step process: For each record,

- 1. Compute probability of belonging to class "1"
- 2. Compare to cutoff value, and classify accordingly
- Default cutoff value is 0.50

```
If >= 0.50, classify as "1"
If < 0.50, classify as "0"
```

- Can use different cutoff values
- Typically, error rate is lowest for cutoff = 0.50

Cutoff Table

Actual Class	Prob. of "1"	Actual Class	Prob. of "1"
1	0.996	1	0.506
1	0.988	0	0.471
1	0.984	0	0.337
1	0.980	1	0.218
1	0.948	0	0.199
1	0.889	0	0.149
1	0.848	0	0.048
0	0.762	0	0.038
1	0.707	0	0.025
1	0.681	0	0.022
1	0.656	0	0.016
0	0.622	0	0.004

- If cutoff is 0.50: 11 records are classified as "1"
- If cutoff is 0.80: seven records are classified as "1"

Confusion Matrix for Different Cutoffs

Cut off Prob.Val. for Success (Updatable)

0.25

Classification Confusion Matrix			
	Predicted Class		
Actual Class	()) owner	non-owner	
owner ()	11	1	
non-owner(0)	4	8	

Cut off Prob.Val. for Success (Updatable)

0.75

Classification Confusion Matrix		
	Predicted Class	
Actual Class	owner	non-owner
owner	(7	5
non-owner	1	(11)

Compute Outcome Measures

Confusion Matrix:

	Predicted Class = 0	Predicted Class = 1
Actual Class = 0	True Negatives (TN)	False Positives (FP)
Actual Class = 1	False Negatives (FN)	True Positives (TP)

N = number of observations

Overall accuracy =
$$(TN + TP)/N$$
 Overall error rate = $(FP + FN)/N$
Sensitivity = $TP/(TP + FN)$ False Negative Error Rate = $FN/(TP + FN)$
Specificity = $TN/(TN + FP)$ D False Positive Error Rate = $FP/(TN + FP)$

When One Class is More Important

In many cases it is more important to identify members of one class

- Tax fraud
- Credit default
- Response to promotional offer (0 1)
- Detecting electronic network intrusion
- Predicting delayed flights

In such cases, we are willing to tolerate greater overall error, in return for better identifying the important class for further attention

ROC curves

- ROC = Receiver Operating Characteristic
- Started in electronic signal detection theory (1940s 1950s)
- Has become very popular in biomedical applications, particularly radiology and imaging
- Also used in machine learning applications to assess classifiers
- Can be used to compare tests/procedures

ROC curves: simplest case

- Consider diagnostic test for a disease
- Test has 2 possible outcomes:
 - 'positive' = suggesting presence of disease
 - 'negative'
- An individual can test either positive or negative for the disease

ROC Analysis

- True Positives = Test states you have the disease when you do have the disease
- True Negatives = Test states you do not have the disease when you do not have the disease
- False Positives = Test states you have the disease when you do not have the disease
- False Negatives = Test states you do not have the disease when you do

Specific Example

Threshold

Test Result

Some definitions ...

Moving the Threshold: right

Moving the Threshold: left

Threshold Value

- The outcome of a logistic regression model is a probability
- Often, we want to make a binary prediction
- We can do this using a threshold value t
- If $P(y = 1) \ge t$, predict positive
 - If P(y = 1) < t, predict negative
 - What value should we pick for t?

Threshold Value

- Often selected based on which errors are "better"
- If t is large, predict positive rarely (when P(y=1) is large)
 - More errors where we say negative , but it is actually positive
 - Detects patients who are negative
- If t is **small**, predict negative rarely (when P(y=1) is small)
 - More errors where we say positive, but it is actually negative
 - Detects all patients who are positive
- With no preference between the errors, select t = 0.5
 - Predicts the more likely outcome

Selecting a Threshold Value

Compare actual outcomes to predicted outcomes using a *confusion matrix* (classification matrix)

	Predicted = 0	Predicted = 1
Actual = 0	True Negatives (TN)	False Positives (FP)
Actual = 1	False Negatives (FN)	True Positives (TP)

True disease state vs. Test result

Test Disease	not rejected/accepted	rejected
No disease	\odot	Х
(D=0)	specificity	Type I error
		(False +)
		α
Disease	X	\odot
(D = 1)	Type II error	Power 1-β;
	(False -)	sensitivity
	β	

Classification matrix: Meaning of each cell

	Predicted Class		
Actual Class	C _o	C ₁	
Co	$n_{o.o} = \text{number of } C_o \text{ cases}$ classified correctly	$n_{0.1} = \text{number of } C_0 \text{ cases}$ classified incorrectly as C_1	
C ₁	$n_{1.0} = \text{number of } C_1 \text{ cases}$ classified incorrectly as C_0	$n_{1.1} = \text{number of } C_1 \text{ cases}$ classified correctly	

Alternate Accuracy Measures

If "C₁" is the important class, Sensitivity = % of "C₁" class correctly classified Sensitivity = $n_{1,1} / (n_{1,0} + n_{1,1})$ Specificity = % of "C₀" class correctly classified Specificity = $n_{0,0} / (n_{0,0} + n_{0,1})$

- \rightarrow False positive rate = % of predicted "C₁'s" that were not "C₁'s"
- \rightarrow False negative rate = % of predicted " C_0 's" that were not " C_0 's"

Receiver Operator Characteristic (ROC) Curve

- True positive rate (sensitivity) on y-axis
 - Proportion of positive
- False positive rate (1-specificity) on x-axis
 - Proportion of negative labelled as positive
- Low Threshold
 - Low specificity
 - High sensitivity

FPR

Selecting a Threshold using ROC

- Captures all thresholds simultaneously
- High threshold
 - High specificity
 - Low sensitivity
- Low Threshold
 - Low specificity
 - High sensitivity

Thank You

