

VS78M09 Three-terminal positive voltage regulator

FEATURES

Maximum output current

I_{OM}: 0.5 A

Output voltage

Vo: 9V

Continuous total dissipation

 P_D : 1.25 W(T_a = 25 °C)

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	35	V
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	80	°C/W
Operating Junction Temperature Range	T _{OPR}	-40~+125	°C
Storage Temperature Range	T _{STG}	-65~+150	°C

ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE (Vi=16V, Io=350mA, Ci=0.33µF, Co=0.1µF, unless otherwise specified)

Pa rameter	Symbol	Test conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J =25℃	8.73	9	9.27	V
		11.5≤V _i ≤24V, lo=5mA-350mA	8.55	9	9.45	\ \
Load Regulation	ΔVο	lo=5mA-500mA ,T _J =25℃		20	180	mV
		Io=5mA-200mA,T _J =25°C		10	90	mV
Line Regulation	ΔVο	11.5V≤V _i ≤26V, lo=200mA,T _J =25°C		6	100	mV
		12V≤V _i ≤26V, lo=200mA,T _J =25℃		2	50	mV
Quiescent Current	Iq	T _J =25℃		4.6	6	mA
Quiescent Current Change	Δlq	11.5V≤V _i ≤26V, lo=200mA			0.8	mA
	Δlq	5mA≤l _O ≤350mA			0.5	mA
Output Noise Voltage	V _N	10Hz≤ f ≤100KHz,T _J =25°C		60		μV/Vo
Ripple Rejection	RR	13≤V _i ≤23V,f=120Hz,lo=300mA	56	80		dB
Dropout Voltage	Vd	Io=350mA,T _J =25°C		2		V
Short Circuit Current	Isc	Vi=16V,T _J =25℃		250		mA
Peak Current	lpk	T _J =25℃		0.5		Α

^{*} Pulse test.

TYPICAL APPLICATION

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

