Fluorescence decay

Mathematical supplement S1: An exponential model of fluorescence decay

Let P(i) be the "prompt" (instrumental response) and Y(i) the "decay" (experimental response) for channel i. The times of measurement are δi , with δ the time interval between channels.

The decay is given by a mixture of exponentials with characteristic times τ_k and scaling parameters C_k (\mathcal{H} is the Heavyside function):

$$G(t) = \mathcal{H}(t) \sum_k C_k e^{-t/\tau_k}$$

Convolving with the Prompt response P(i) gives the model, with $B_k = \delta C_k$ scaling parameters:

$$F(i) = \sum_{j=0}^{\infty} P(j)\mathcal{H}(t) \sum_{k} B_{k} e^{-\delta(i-j)/\tau_{k}}$$

For the optimization procedures, we reparametrize the τ_k to $\theta_k = \log \tau_k$.

Listing S1: Final NLME models for both the inner and outer membranes (in the R statistical language)

```
library(nlme)
# Shared coefficients between Hacd1-KO and WT
model_A <- nlme(</pre>
 Decay ~ ...,
  fixed = theta1 + B1 + theta2 + B2 + theta3 + B3 \sim 1,
  random = list(
   File = pdDiag(B1 + B2 + B3 + theta1 + theta2 + theta3 ~ 1)
  weights = varConstPower(fixed = c(power = 0.5), const = 1, form = ~ fitted(.))
# Only Bs (resolving to mixing proportions) allowed to be different
# in Hacd1-KO and WT populations
model_B1 <- update(</pre>
  model_A,
 fixed = list(
    theta1 + theta2 + theta3 ~ 1,
    B1 + B2 + B3 \sim Population
)
# Only thetas (resolving to characteristic times) allowed to be different
model_B2 <- update(</pre>
  model_A,
 fixed = list(
    theta1 + theta2 + theta3 ~ Population,
    B1 + B2 + B3 ~ 1
 )
# All coefficients allowed to be different
model_C <- update(</pre>
  model_A,
  fixed = theta1 + B1 + theta2 + B2 + theta3 + B3 ~ Population
```

Table S1: Non-linear mixed-effects models of fluorescence decay for the inner membrane (mitoplasts)

	Dependent variable: Experimental response (event count/ns)				
	Α	B1	B2	С	
	(1)	(2)	(3)	(4)	
$\overline{\theta_1}$	0.455*** (0.153)	0.505*** (0.153)			
B_1	0.025*** (0.001)	, ,	0.025*** (0.001)		
$ heta_{ extsf{2}}$	-2.852*** (0.242)	-2.631*** (0.257)	, ,		
B_2	0.0002* (0.0001)	, ,	0.0001* (0.0001)		
θ_3	-0.697*** (0.087)	-0.667**** (0.094)	, ,		
B_3	0.016*** (0.001)	, ,	0.016*** (0.001)		
B ₁ (intercept) ^a	, ,	0.029*** (0.002)	, ,	0.029*** (0.002)	
$B_1 (WT)^a$		-0.007***(0.002)		-0.007***(0.002)	
B ₂ (intercept)		0.001*** (0.0002)		0.0005*** (0.0002)	
B_2 (WT)		-0.0004(0.0003)		-0.0004 (0.0003)	
B ₃ (intercept)		0.018*** (0.001)		0.018*** (0.001)	
B_3 (WT)		-0.002(0.002)		-0.002(0.002)	
θ_1 (intercept)		. ,	0.752*** (0.160)	0.846*** (0.172)	
θ_1 (WT)			-0.647**** (0.226)	-0.708*** (0.243)	
θ_2 (intercept)			-2.629*** (0.316)	-2.432*** (0.336)	
θ_2 (WT)			-0.509(0.448)	-0.549(0.476)	
θ_3 (intercept)			-0.727*** (0.121)	-0.692*** (0.126)	
θ_3 (WT)			0.040 (0.171)	0.028 (0.178)	
Observations	57,344	57,344	57,344	57,344	
Log Likelihood	-136,223.600	-136,133.900	-136,268.900	-136,157.800	
Akaike Inf. Crit.	272,475.200	272,301.900	272,571.700	272,355.600	
Bayesian Inf. Crit.	272,600.600	272,454.100	272,724.000	272,534.800	

Note:

$$p<0.1; **p<0.05; ***p<0.01$$

$$L = \begin{array}{c} \text{Hacd1-KO} & \text{WT} \\ \text{WT} & \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \end{array}$$

For instance, the mean θ_1 for population *Hacd1-KO* would be the intercept, and the mean θ_1 for population WT would be (intercept) + (WT).

^a Whether the experiment concerns the *WT* or *Hacd1-KO* population is encoded in a categorical factor with the following contrast matrix:

Table S2: Non-linear mixed-effects models of fluorescence decay for the outer membrane (whole mitochondria)

	Dependent variable:					
	Experimental response (event count/ns)					
	Α	B1	B2	С		
	(1)	(2)	(3)	(4)		
$\overline{ heta_1}$	0.371*** (0.043)	0.370*** (0.042)				
B_1	0.019*** (0.0004)		0.019*** (0.0003)			
$ heta_{ extsf{2}}$	-1.767*** (0.030)	-1.764**** (0.029)				
B_2	0.001*** (0.0001)		0.001*** (0.0001)			
$ heta_3$	-0.822^{***} (0.020)	-0.822^{***} (0.020)				
B_3	0.017*** (0.0003)		0.017*** (0.0003)			
B_1 (intercept) ^a		0.018*** (0.0004)		0.018*** (0.0004)		
$B_1 (WT)^a$		0.002** (0.001)		0.001** (0.001)		
B ₂ (intercept)		0.001*** (0.0001)		0.001*** (0.0001)		
B_2 (WT)		-0.0003 (0.0002)		-0.0002 (0.0002)		
B_3 (intercept)		0.017*** (0.0005)		0.016*** (0.0005)		
B_3 (WT)		-0.0001 (0.001)		0.0001 (0.001)		
θ_1 (intercept)			0.350*** (0.060)	0.363*** (0.060)		
θ_1 (WT)			0.033 (0.085)	0.010 (0.084)		
θ_2 (intercept)			-1.812^{***} (0.041)	-1.808^{***} (0.040)		
θ_2 (WT)			0.094 (0.058)	0.083 (0.057)		
θ_3 (intercept)			-0.877^{***} (0.025)	-0.869^{***} (0.025)		
θ_3 (WT)			0.104*** (0.035)	0.092*** (0.035)		
Observations	73,728	73,728	73,728	73,728		
Log Likelihood	-162,949.900	-162,940.500	-162,954.600	-162,943.100		
Akaike Inf. Crit.	325,927.700	325,915.000	325,943.200	325,926.100		
Bayesian Inf. Crit.	326,056.600	326,071.600	326,099.700	326,110.300		

Note:

*p<0.1; **p<0.05; ***p<0.01

^a See note *a* of table S1.