CHAPTER 1

GROUPS

1 Basix

Definition 1.1: A group (G, \cdot)

A group consists of a set and a binary relation $\cdot: G \times G \to G$ (which makes it closed by definition) such that:

- 1. $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associative)
- 2. There exists an element $e \in G$ called identity so that for every $a \in G$ we have $a \cdot e = e \cdot a = a$
- 3. For every element a in G we have another element a^{-1} so that $aa^{-1}=a^{-1}a=e$

A way to remember group axioms is to remember ASCII: **AS**sociative, **C**losed, **I**dentity, and **I**nverse

Example: Some group examples:

 \mathbb{Z} with the usual addition, with 0 as identity. Inverse being -a.

 $\mathbb{Z}/n\mathbb{Z}$ with the modular addition, with identity being $\overline{0}$ and inverse being $\overline{-a}$.

In fact $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups with respective addition, identity being 0 and inverse being -a.

 $\mathbb{R}^+, \mathbb{C} - \{0\}, \mathbb{R} - \{0\}$, etc. are groups with multiplication as the operation. Here identity is 1, and inverse is $\frac{1}{a}$.

 $\mathbb{Z}/n\mathbb{Z}*$, the set of all congruence classes in $\mathbb{Z}/n\mathbb{Z}$ which have a multiplicative inverse (or equivalently, those that have gcd with n as 1) forms a group under multiplication. The identity is $\overline{1}$ and the inverse is that \overline{c} , which was shown to exist, such that $\overline{a} \cdot \overline{c} = \overline{1}$.

Definition 1.2: Direct Product

If (A, !) and (B, *) are each groups, then we define the **Direct Product** as the group formed by $A \times B := \{(a, b) : a \in A, b \in B\}$ with the operation $\& : (A \times B) \times (A \times B) \rightarrow A \times B$ defined by $(a_1, b_1)\&(a_2, b_2) = (a_1!a_2, b_1 * b_2)$

Proposition 1.3

If G, \cdot is a group, then the following hold:

- 1. The identity element e is unique.
- 2. for every $a \in G$, the inverse element a^{-1} is unique
- 3. $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- 4. For any $a_1, a_2, \ldots a_n \in G$, the expression $a_1 \cdot a_2 \cdot \cdots \cdot a_n$ is independent of how it is bracketed.
- **Proof.** (1) Suppose the identity is not unique, i.e, there exists e_1 and e_2 so that it obeys identity axioms. We have $a \cdot e = e \cdot a = a$, which means $(e_1)e_2 = e_2(e_1) = e_2$, treating e_2 as true identity. But also, $(e_2)e_1 = e_1(e_2) = e_1, = e_2$. Hence we see easily that $e_1 = e_2$.
- (2) Suppose two inverses x and y exist. ax = e, which means yax = ye = y, but from associativity, (ya)x = x = y. Hence, $x = y := a^{-1}$
- (3) $a \cdot b(a \cdot b)^{-1} = e$ which implies $a^{-1}a \cdot b(a \cdot b)^{-1} = a^{-1} \implies b^{-1}(a^{-1}a) \cdot b(a \cdot b)^{-1} = b^{-1}a^{-1}$ which directly gives $(a \cdot b)^{-1} = b^{-1}a^{-1}$
- (4) (PEDANTIC PROOF AHEAD, SKIP IF NOT A PEDANT) For just one element a_1 , there is no need to even check. Assume that the bracketing does not change the meaning for any consequetive n operations. Consider

$$a_1 \cdot a_2 \cdot a_3 \cdot \cdot \cdot a_n \cdot a_{n+1}$$

First look at the bracketing

$$\{(a_1 \cdot a_2 \cdot a_3 \cdots a_n)\} \cdot (a_{n+1})$$

From induction hypothesis, no bracketing inside the $\{\}$ affects the operations. Next, consider the kind

$$\{(a_1 \cdot a_2 \cdot a_3 \cdots)\}(a_n \cdot a_{n+1})$$

Again, from induction, no bracketing affects the operations. By means of reverse induction, we show that no bracketing affects the end result of these operations. \Box

Proposition 1.4

Let G be a group and let a, b be elements in the group. Then the equations ax = b and ya = b have unique solutions. Explicitly, we have the left and right cancellation laws:

If au = av, then u = v

If ub = vb, then u = v

Proof. If au = av, we multiply both sides by a^{-1} to preserve equality u = v. Similarly, we multiply b^{-1} to either side of the equation ub = vb which gives u = b

Definition 1.5: Order of an element g in a group G

We say an element g in G is of order $n \in \mathbb{N}$ if n is the smallest natural number so that $g^n = g \cdot g \cdots g = e$, the identity. We denote this as O(g).

Definition 1.6: Order of a Group G, denoted by |G|.

The cardinality of the group.

Theorem 1.7

If G is a group and a an element in G with O(a) = n, then $a^m = 1$ if and only if n|m

Proof for Theorem.

 \implies) Given O(a) = n we have n to be the smallest natural number so that $a^n = 1$. If we have that $a^m = 1$, and $n \not \mid m$, then m = qn + r where 0 < r < n. Therefore, $a^r \neq 1$. We have that $a^{qn+r} = a^{qn} \cdot a^r = a^r \neq 0$ which is absurd.

 \iff) Given n|m, obviously then $a^m = 1$.

Theorem 1.8

If O(a) = n, then $O(a^m) = \frac{n}{acd(m,n)}$.

Proof for Theorem.

We understand that $\frac{n}{\gcd(m,n)}$ is at least a candidate, since we can see clearly that $(a^m)^{\frac{n}{\gcd(m,n)}} = (a^n)^{\frac{m}{\gcd(m,n)}} = 1$. Suppose k is the order, with $k < \frac{n}{\gcd(m,n)}$ so that $a^{mk} = 1$. From the previous theorem, we see that n|mk. i.e, $n\delta = mk \implies \frac{n}{\gcd(m,n)}\delta = \frac{m}{\gcd(m,n)}k$. Note that $\frac{n}{(m,n)}$ and $\frac{m}{(m,n)}$ share no common divisors, for if they did, then that, multiplied with the

actual gcd would yield a divisor larger than the gcd. Hence, $gcd(\frac{n}{(m,n)},\frac{m}{(m,n)})=1$. This means, from previous lemmas, that $\frac{n}{(m,n)}$ divides k. This is, ofcourse, absurd.

Theorem 1.9: Real Numbers mod(1)

Let $G := \{x \in \mathbb{R} : 0 \le x < 1\}$. Define $x \circ y = \{x + y\}$ where $\{\cdot\}$ denotes the fractional part (and $[\cdot]$ denotes the integral part, or the GIF). Then, G is an abelian group under $\{\circ\}$

Proof for Theorem.

Closure of $x \circ y$ is pretty obvious. We freely use $\{\cdot\}$, $frac\{\cdot\}$ and $\underline{\cdot}$ interchangibly. We consider $x \circ (y \circ z) = frac(\underline{x} + [x] + frac(y + z)) = frac(\underline{x} + [x] + frac(\underline{y} + [x])) = frac(\underline{x} + frac(\underline{y} + \underline{z})) = frac(\underline{x} + (\underline{y} + \underline{z}) - [\underline{y} + \underline{z}]) = frac(\underline{x} + \underline{y} + \underline{z})$

Now consider $(x \circ y) \circ z = frac(frac(\underline{x} + \underline{y}) + \underline{z} + [z]) = frac(frac(\underline{x} + \underline{y}) + \underline{z}) = frac((\underline{x} + \underline{y}) - [\underline{x} + \underline{y}] + \underline{z} + [z]) = frac(\underline{x} + \underline{y} + \underline{z})$. Hence we see \circ is associative. Trivial to note that the idenity element is $\underline{0}$ and the inverse for every \underline{x} is -x.

Theorem 1.10: Group of the *n*-th roots of unity

Suppose $G := \{ z \in \mathbb{C} : z^n = 1 : \text{ for some } n \}$

Proof for Theorem.

We want to solve $z^n=1$. Applying polar coordinates we have $|z|^n(cis(\theta))^n=1$. Taking mod gives us |z|=1. We have to solve for, then, $cis(theta)^n=1$. It is simple computation to see that $cis(\theta)^n=cis(n\theta)$ which gives us $cis(n\theta)=1$. The solutions to this are $\theta=\frac{2\pi k}{n}$ for any integer k. Therefore, the solutions to $z^n=1$ are of the form $z=cis(\frac{2k\pi}{n})$. We assume a modulo 2π structure, i.e, we classify solutions of the kind $\theta+2k\pi$ in the class of θ . We see then, that for $k\leq n-1$, each solution is unique. If we let $\omega=cis(\frac{2\pi}{n})$. We see that all the other elements are generated by ω since for k=2, we just have ω^2 (from the way cis powers work). Till k=n-1, we have unique solutions generated by ω given by $1,\omega,\omega^2\cdots\omega^{n-1}$. We see that when k=n we get $\theta=\frac{2\pi n}{n}=2\pi\equiv0\bmod(2\pi)$. For n+j where j< n, we see that $\theta=\frac{2\pi(n+j)}{n}=2\pi+\frac{2\pi j}{n}\equiv\frac{2\pi j}{n}\bmod(2\pi)$. Hence, all the unique solutions are $1,\omega,\omega^2\cdots\omega^{n-1}$.

To see that this is a group under multiplication, we note that $\omega^x(\omega^y\omega^z) = (\omega^x\omega^y)\omega^z = \omega^{(x+y+z)mod(n)}$. Every element has an inverse since $\omega^j \cdot \omega^{n-j} = 1$ (1 is the identity here since $1\omega^j = \omega^j \cdot 1 = \omega^j$)

G, though a group under multiplication, is not one under addition. For example, consider $1 + 0i \in G$. 1 + 1 = 2 + 0i which is not in G.

Fact 1.11

If $a, b \in G$, then |ab| = |ba|

Proof. We have $(ab)(ab)\cdots(ab)=(ab)^n=e$. Rearranging the brackets we get $a(ba)(ba)\cdots(b)=a(ba)^{n-1}(b)=e$ which gives $(ba)^{n-1}=a^{-1}b^{-1}=(ba)^{-1}$ which eventually gives $(ba)^n=e$. Therefore, if m was the order of ba, then m|n. Similarly we can re-run the argument in the other direction starting with $(ba)^m=e$ to get n|m. This gives n=m.

Fact 1.12

If $x^2 = 1$ for every $x \in G$, then G is abelian

Proof. Let $ab \neq ba \implies a^2b = b \neq a(ba)$. This implies $b^2 = e \neq (ba)^2 \implies 1 \neq 1$. Absurd.

Fact 1.13

Any finite group of even order contains an element a with order 2.

Proof. Suppose that for every non-identity element x we have $o(x) = p \neq 2$ with $p \geq 3$. We can then notice that for every element, $x \neq x^{-1}$. Hence, every element along with its inverses would form an even sized set (due to uniqueness of inverses, none overlap). Hence, adding identity to this would make the group odd.

Example: $G = \{1, a, b, c\}$ is |G| = 4 with 1 identity. Say no element has order 4. Then this group has a unique multiplication table

We can immediately fill up the initial parts:

Since this is a finite group of order 4, there should be at least one element with order 2. We WLOG select that element to be b so that $b^2 = 1$. Is ab = a or b? Nope, since that would make either one identity. So ab = c. Is ba = a or b? In much the same way, we conclude ba = ab = c. b(ba) = bc = a and $(ab)b = ab^2 = cb$. Hence bc = cb = a. So far we got: (This is applicable for any group of size 4, since we did not use the property that this group has no element with order 4.)

(The Klein Route) Is $a^2 = b$? Can't be, because then, since $b^2 = 1$, we'd have $a^4 = 1$ which is against hypothesis. Hence $a^2 = 1$, or $a^2 = c$. Likewise, we can conclude that $c^2 = 1$ or $c^2 = a$ (Ask the same questions, is $c^2 = b$? No). Suppose $a^2 = 1$ and $c^2 = a$. That would make $c^4 = 1$, which is against hypothesis. Hence, if $a^2 = 1$ then $c^2 = 1$ as well. Likewise, if $c^2 = 1$, then $a^2 = 1$ as well. Suppose neither, i.e, $c^2 = a$ and $a^2 = c$. Then $c^4 = a^2 = c$ and $a^4 = c^2 = a$. We have $a^3 = 1$ and $c^3 = 1$. $(ba)a^2 = b$ which means $ca^2 = b \implies c^2 = b$. But $c^2 = a$. Absurd. Hence, this scenario is impossible. Hence, for the Klein route, $a^2 = c^2 = 1$.

Question for ac and ca, then arises. Is ac = 1? That would mean $a^2c = 1c = a$, absurd. Hence, ac = b. Similarly, is ca = 1? we would then have c = a again. Therefore, ac = ca = b. This completes the Klein Route:

 x
 1
 a
 b
 c

 1
 1
 a
 b
 c

 a
 a
 1
 c
 b

 b
 b
 c
 1
 a

 c
 c
 b
 a
 1

(The $\mathbb{Z}/4\mathbb{Z}$ Route) Suppose that G has an element of order 4. Since the size of the cyclic subgroup of this element is 4 as well, this group is cyclic. WLOG, assume that $G = \langle a \rangle$. Then every element is 1, a = a, $a^2 = b$, $a^3 = c$. We have (for a general 4 membered group)

 x
 1
 a
 b
 c

 1
 1
 a
 b
 c

 a
 a
 x
 c
 x

 b
 b
 c
 1
 a

 c
 c
 x
 a
 x

Since the group is cyclic, we can immediately write $a^2 = b$. Since $a^3 = c$, $a^6 = a^2 = c^2 = b$. We can write that in as well. All that is left is ac and ca. Let us rule out the obvious: $ac \neq a$, $ca \neq a$, $ac \neq c$, $ca \neq q$. Is ac = b? That would mean $a^4 = b$, which makes b = 1. Same way, $ca \neq b$. Hence, ac and ca have only one option left, 1. We can fill that in to get the $\mathbb{Z}/4\mathbb{Z}$ isomorph:

 x
 1
 a
 b
 c

 1
 1
 a
 b
 c

 a
 a
 b
 c
 1

 b
 b
 c
 1
 a

 c
 c
 1
 a
 b

Note that Klein is the unique 4 membered group with no element of order 4. $\mathbb{Z}/4\mathbb{Z}$ isomorph is the unique group with one element with order 4.

Definition 1.14: Subgroup

A set $H \subseteq G$ of group G is said to be a subgroup if H is itself a group, i.e, follows ASCII axioms under the operation inherited from G. If H is a proper subgroup of G, then we denote it by H < G. Else, $H \le G$

Definition 1.15: Cyclic Subgroup

Suppose G, \cdot is a group, with an element a. Suppose < a > is a subgroup of G that contains a. Must definitely have e which is notated to be a^0 . It must then definitely have $a \cdot a$, $a \cdot a \cdot a$ and so on till a^n where o(a) = n. If no order exists, we take it to be $\forall n \in \mathbb{Z}$. $< a > := \{a^n : n \in \mathbb{Z}\}$ This is enough for it to be a group:

 $e=a^0$ is in the group. For every b, i.e, a^k in the group, a^{-k} is also in the group by definition. It obeys ASCII.

Fact: $\langle a \rangle$ is the smallest subgroup of G containing a. Analogous to span.

Example: Some groups cyclically generated

 $\mathbb{Z}/n\mathbb{Z}$ as an additive group is generated by 1. That is, <1> is precisely $\mathbb{Z}/n\mathbb{Z}$.

n-th roots of unity: $1, \omega, \omega^2 \cdots \omega^{n-1}$, is generated by $<\omega>$.

Fact 1.16

If $O(a) = n < \infty$ for $a \in G$ and $G = \langle a \rangle$, then |G| = n

Theorem 1.17

Suppose $G = \langle a \rangle$ with $O(a) = n < \infty$, then $\langle a^j \rangle = G$ if and only if gcd(j, n) = 1

Proof for Theorem.

 \implies) Since O(a)=n, the order of a^j is given by $n/\gcd(j,n)$. If $\gcd(j,n)\neq 1$, then clearly the orders are different, implying the groups they generate will be of different cardinality.

 \iff) Suppose gcd(j,n)=1 with O(a)=n and $G=\langle a\rangle$. Then $O(a^j)=n$. Note that $\langle a^j\rangle \leq \langle a\rangle$ since every element of the former is in the latter. But the order of each is the same, whilst being finite. Therefore, $\langle a^j\rangle = \langle a\rangle$

Example : An application of the previous theorem to $\mathbb{Z}/n\mathbb{Z}$

We know that $\langle 1 \rangle = \mathbb{Z}/n\mathbb{Z}$ under addition. Order of 1 is n here. Consider another element $j \in \mathbb{Z}/n\mathbb{Z}$ so that gcd(j,n) = 1. Then order of j is n. As such, $\langle j \rangle = \mathbb{Z}/n\mathbb{Z}$. All the elements of $\mathbb{Z}/n\mathbb{Z}$ that generate $\mathbb{Z}/n\mathbb{Z}$ belong to the multiplicative $\mathbb{Z}/n\mathbb{Z}^*$ group.

Corollary 1.18

The number of generators for a cyclic group of order n is $\phi(n)$.

Theorem 1.19

Subgroup of a cyclic group is cyclic.

Proof for Theorem.

Let $G = \langle a \rangle$. Suppose $H \leq G = \langle a \rangle$ is the subgroup of G.

Say $e, a^{j_1}, a^{j_2} \cdots a^{j_n} \cdots$ are in H. Case (1), if there exists a finite subcollection of these indices so that their gcd is 1. Let them be $j_1, j_2 \cdots j_n$. This means $gcd(j_1, j_2 \cdots j_n) = 1$ and from generalised bezout, we have $x_1j_1 + x_2j_2 \cdots x_nj_n = 1$ whence we see that H has to be G necessarily.

The other case, case (2) is that for every finite subcollection of $\{j_1, j_2 \cdots \}$, their gcd is not 1. Does this mean that $gcd(j_1, j_2 \cdots (\text{till } \infty))$ is not 1? i.e, do they all share one common factor? Suppose there exists j'_1 and j'_2 so that they do not share a common factor. This would mean that $gcd(j'_1, j'_2) = 1$, which contradicts the hypothesis of case (2). Hence, in this case, every j is a multiple of some number γ which makes $H = \langle a^{\gamma} \rangle$.

Alt Proof:(Similar) Let m be the smallest index so that $a^m \in H$. We claim a^m is the cyclic generator of H. Suppose a^n where n > m is in the group H. Then $a^n = a^{mq+r}$ where $0 \le r < m$. This means $a^n \cdot (a^m)^{-q} = a^r$. By virtue of being a group which is closed, we see that $a^r \in H$. If $r \ne 0$, we get a contradiction. Hence, r = 0. Therefore, every element is $(a^m)^{\text{something}}$.

Corollary 1.20

If G is a cyclic group generated by a and a subgroup has two elements a^j and a^k , then this subgroup would necessarily have to be the bigger group G if (j, k) = 1.

Proof for Corollary.

Let $G = \langle a \rangle := \{a^n : n \in \mathbb{Z}\}$ where $a \in G$ (the generator of G). Cosider a H subgroup of G, given by elements $a^j : j \in \{n_1, n_2, \cdots\}$ where n_1, n_2, \cdots is a sequence of integers. Note that, since a^{n_1} is in H, $(a^{q(n_1)})$ for $q \in \mathbb{Z}$ is also in H. Suppose that there exists n_j and n_k indices so that $gcd(n_j, n_k) = 1$. This means that $xn_j + yn_k = 1$. Hence, $(a^{n_j})^x(a^{n_k})^y = a$ Which would make $a^{xn_j+yn_k}$ the cyclic generator of G itself, which would force H to become G.

Example:

Consider $G = \mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle$. Consider a subgroup that is known to contain 2 and 3. In notation, $3 = 1^3$ and $2 = 1^2$, and gcd(3, 2) = 1. This means that This subgroup must be

 $\mathbb{Z}/n\mathbb{Z}$ itself.

Example:

Consider $\mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle$. Let a subgroup be such that it contains 2, 4 and 3, 6. The $\gcd(2,4)=2\neq 1$ and the $\gcd(3,6)=3\neq 1$, but $\gcd(2,1)=1$. This means that this subgroup must necessarily be the main group.

Lemma 1.21

If a cyclic group is infinite, then every subgroup is infinite (except the trivial subgroup)

Proof for Lemma

Suppose $G = \langle a \rangle$ that is infinite. i.e, a has no order. Consider a subgroup that is non trivial, i.e, has an element $a^j, j \neq 0$. If this group is of finite order, then a^j must be of finite order, obviously. $O(a^j) = q$ which means $a^{qj} = 1$ which is absurd.

1.1 The Dihedral Group D_{2n}

Given an n-gon that is regular, we define the symmetries on it by permutation maps or bijective maps from $\{1, 2, 3 \cdots, n\}$ into itself.

Definition 1.22: Rotation r

 $r:\{1,2,3\cdots n\}\to\{1,2,\cdots,n\}$ is defined as

$$1 \xrightarrow{\mathbf{r}} 2$$

$$2 \stackrel{\mathrm{r}}{\longrightarrow} 3$$

:

$$n-1 \stackrel{\mathbf{r}}{\longrightarrow} n$$

$$n \stackrel{\mathbf{r}}{\longrightarrow} 1$$

Whose inverse is, as one can guess:

$$2 \stackrel{\text{inverse(r)}}{\longrightarrow} 1$$

$$3 \stackrel{\mathrm{inverse}(r)}{\longrightarrow} 2$$

:

$$n \xrightarrow{\text{inverse(r)}} n - 1$$

$$1 \xrightarrow{\text{inverse(r)}} n$$

11

Definition 1.23: Symmetry, or flipping, or mirror whatever

s is defined as $s:\{1\cdots n\}\to\{1\cdots n\}$ as follows:

$$1 \stackrel{s}{\mapsto} 1$$

$$2 \stackrel{s}{\mapsto} n$$

$$3 \stackrel{s}{\mapsto} n - 1$$

:

$$n \stackrel{s}{\mapsto} 2$$

Note that, $s^2 = 1$

Some Properties of D_{2n} The symmetries of D_{2n} are the functions listed above. Note the following:

- 1. 1, $r, \dots r^{n-1}$ form distinct elements. |r| = n since $r^n = 1$
- 2. r follows $\mathbb{Z}/n\mathbb{Z}$ structure in that, r^j has, as its inverse, r^{n-j} . It obeys similar modular structure.
- 3. $s^2 = 1$
- 4. $rs = sr^{-1}$. Note that rs amounts to "Pivoting" about 2 and flipping the dihedron, which can be achieved by reverse rotating, i.e, r^{-1} first, and then flipping, i.e sr^{-1} . Hence, $rs = sr^{-1}$.
- 5. Since the inverse elements of r^i are r^{-1} , the previous result can be more generally written as $(r^i)s = sr^{-i}$. In a spoon feedy way we see that $rs = sr^{-1} \implies r(rs) = r^2s = r(sr^{-1}) = (rs)(r^{-1}) = (sr^{-1}r^{-1}) = sr^{-2}$. Keep going as such.
- 6. The elements $1, r, r^2, \dots r^{n-1}$ constitute the subgroup of rotations, each one corresponding to a rotation of $\frac{2j\pi}{n}$.
- 7. The elements $s, rs, r^2s \cdots r^{n-1}s$ correspond to "pivoting" the j-th number and flipping about that. These on their own dont constitute a group for, $(r^ns)(r^ms) = r^n(sr^m)s = r^n(r^{-m})$ which falls into the rotation group.
- 8. Note that $s \neq r^i$ for any i. This ought to be intuitively clear.
- 9. $sr^i \neq sr^j$ since flipping about different pivots achieves a different structure, one that is different by rotations alone (obviously).
- 10. The set $\{1, r, r^2 \cdots r^{n-1}; s; rs, r^2s, \cdots r^{n-1}s\}$ Constitutes a group, of order 2n. This is stated formally in the next theorem, with proof.

Theorem 1.24

The set $\{1, r, r^2 \cdots r^{n-1}; s; rs, r^2s, \cdots r^{n-1}s\}$ Constitutes a group, of order 2n.

Proof for Theorem.

We note that $1, r, r^2, \dots r^{n-1}$ all obey ASCII. So does s, since it is self inverse (The identity here is the identity function). Consider the permutations of the kind r^js . These have inverses as well, for if we compose this with r^{n-j} , we would have $r^{n-j} \circ (r^js) = s$. If we compose this still, with s, we get 1. The total composition on r^js would have been sr^{n-j} . Infact, these elements too are self inverses. Easier way to see this is $(r^is)(r^is) = r^i(sr^i)s = r^i(r^{-i}s)s = 1$. These also, then follow ASCII.

1.2 More basix, Homomorphisms, isomorphisms, centers

Definition 1.25: Homomorphism

Let $\langle G, \cdot \rangle$ and $\langle H, * \rangle$ be two groups. We say a function $\phi : G \to H$ is a **homomorphism** if $\forall x, y \in G$, $\phi(x \cdot y) = \phi(x) * \phi(y)$.

Some notable features of a homomorphism are:

- 1. $\phi(e_G) = e_H$
- 2. $\phi(a^{-1}) = \phi(a)^{-1}$

Definition 1.26: Group Isomorphism

A homomorphism from $\langle G, \cdot \rangle$ to $\langle H, * \rangle$ is a group isomorphism if it is bijective.

Theorem 1.27

Let $\langle G, \cdot \rangle$ be a group. Consider $*: G \times G \to G$ a binary operation defined as

$$a * b = b \cdot a$$

. Then this is a group isomorphism from G to G, *.

Proof for Theorem.

Consider $\phi: G \to G$ given by $\phi(a) = a^{-1}$. This is a bijection since every a maps to a unique a^{-1} , and vice versa. Consider $\phi(a \cdot b) = b^{-1} \cdot a^{-1} = \phi(b) \cdot \phi(a) = \phi(a) * \phi(b)$, which makes ϕ a homomorphism, hence, an isomorphism.

Definition 1.28: Centralizer of $a \in G$

Centralizer of an element a in group G is defined as

$$H_a := \{ x \in G : xa = ax \}$$

or, the set of all elements in G that commute with a.

Lemma 1.29

Centralizer of $a \in G$ is a subgroup of G

Proof for Lemma

e is obviously in H_a . Suppose some $b \in H_a$, i.e, ab = ba. Consider $abb^{-1} = a = bab^{-1} \implies b^{-1}a = ab^{-1}$ which means that if $b \in H_a$, b^{-1} is also in H_a . That it is closed and associative is also obvious (since ba = ab and ca = cb would mean bca = abc).

Definition 1.30: Centralizer of a subset $S \subset G$

Centralizer of a set S in G is defined as

$$H_S := \{ x \in G : xz = zx \forall z \in S \}$$

Lemma 1.31

Centralizer of a set $S \subset G$ is a subgroup of G

Proof for Lemma

Again, obviously e is in H_S . Let $b \in H_S$, i.e, $bx = xb, \forall x \in S$. $b^{-1}bx = x = b^{-1}xb \implies xb^{-1} = b^{-1}xbb^{-1}$ which gives $xb^{-1} = b^{-1}x, \forall x \in S$. Hence, $b^{-1} \in H_S$. Suppose $a, b \in H_S$, i.e, $ax = xa, \forall x \in S$ and $bx = xb, \forall x \in S$. a(bx) = a(xb) = (ax)b = x(ab) which makes $ab \in H_S$.

Definition 1.32: Center of a group G

The center of a group G is defined as the centralizer of G, i.e

$$H_G := \{x \in G : xz = zx, \forall z \in G\}$$

by the previous lemma, this is also a group.

Lemma 1.33

Center of a group G is an abelian subgroup.

Proof for Lemma

14

 $H_G := \{x \in G : xz = zx, \forall z \in G\}$ is easily seen to be a group. Consider $k_1, l_2 \in H_G$, and consider $k_1 \cdot k_2 \in H_G$ (which exists in H_G due to closure). Treating k_1 as an element in H_G and k_2 as an element in G, we note that by definition, $k_1(k_2) = k_2k_1$. Hence, the group is abelian.

Something on Cosets and Lagrange's Theorem

Let G be a group and H be a subgroup of G. Define the equivalence relation \equiv on G as follows: $a \equiv b$ if and only if $ab^{-1} \in H$. This is clearly an equivalence relation since $a \equiv a$, and $a \equiv b$ gives us $ab^{-1} = h \in H$ which gives us $h^{-1} = ba^{-1} \in H$ which means $b \equiv a$. Similarly easy to see that if $a \equiv b$, $b \equiv c$, then $a \equiv c$.

The equivalence classes of this equivalence relation are denoted [b] which constitutes the set of all $x \in G$ so that $x \equiv b$ or $xb^{-1} \in H$ (or $bx^{-1} \in H$).

Definition:(Left Coset) We digress to define what is called a left coset of $H \leq G$ given an element $b \in G$ (denoted bH).

$$bH := \{ z \in G : \exists h \in H : z = bh \}$$

or equivalently

$$bH := \{bh : h \in H\}$$

Definition:(Right Coset) Similarly, a Right Coset of $H \leq G$ given an element $a \in G$ (denoted Ha) is defined as

$$Ha := \{ z \in G : \exists h \in H : z = ha \}$$

or equivalently

$$Ha := \{ha : h \in H\}$$

From this definition, it is clear that the set of all equivalence classes are precisely the left cosets of H. i.e, [b] is the set of all $x \in G$ so that $x \equiv b$ which means $xb^{-1} = h \in H$ or equivalently $x = bh, h \in H$ which means $x \in bH$. Every element in [b] is an element in bH, and conversely, consider an element $z \in bH$ which means $z = bh, h \in H$ which means immediately that $z \equiv b$ or $z \in [b]$. Consider two elements in the set of all distinct equivalence classes, [a] and [b]. Note that [a] = aH and [b] = bH. Note here that there exists a bijective map from [a] to [b], given by $\psi : aH \to bH$ defined by $ah \mapsto bh$. $\psi(ah_1) = \psi(ah_2) \implies bh_1 = bh_2$ or $h_1 = h_2 \implies ah_1 = ah_2$, whence injectivity is clear. Consider $bh \in bH$. There exists ah so that $\psi(ah) = bh$ which means that ψ is bijective. This means that |[a]| = |[b]| i.e, the cardinality of [a] is the same as the cardinality of [b].

Note that, if we look at [e], i.e, the set $eH := \{eh = h : h \in H\} = H$, we see from the previous result that for whatever $a \in G$, |[a]| = |aH| = |H|. The size of any equivalence class is the size of the subgroup itself.

Note that the collection of distinct equivalence classes form a partion of the entire group G. If G is finite, say, of order n, then the sum of the cardinalities of all the equivalce classes ought to give us n. Formally this means, suppose $X = \{[a] : a \in G\}$ be the collection of all (distinct) equivalence classes. Then

$$\sum_{[a] \in X} |[a]| = |G|$$

But since |[a]| = |aH| = |H|, we can rewrite the above as:

$$\sum_{i=1}^{|\{[a]:a\in G\}|} |H| = |G|$$

which implies

$$|\{[a] : a \in G\}| \cdot |H| = |G|$$

This is Lagrange's theorem:

Theorem 1.34: Lagrange's Theorem

Suppose G is a given finite group, and H a subgroup of G. Then, $|H| \mid |G|$

Proof for Theorem.

We saw from the previous analysis that for some integer k, k|H| = |G|. This means that for any subgroup H of finite group G, |H| divides |G|.

Corollary 1.35

(**Euler's Theorem**) Let gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 mod(n)$ where $\phi(n)$ is the totient function.

Proof for Corollary.

Consider $(\mathbb{Z}/n\mathbb{Z})^*$, the multiplicative group. This has, as we know, $\phi(n)$ elements (i.e, all numbers q smaller than n such that gcd(q,n)=1). Cosnider a given a so that (a,n)=1, which means $a \in \mathbb{Z}/n\mathbb{Z}^*$. Cosnider $\langle a \rangle \leq (\mathbb{Z}/n\mathbb{Z})^*$. Since the main group is of finite order, this cyclic subgroup also has to have finite order k. i.e, $a^k=1$. Moreover, from Lagrange's theorem, we note that any subgroup's cardinality divides the main group's cardinality, which means $k|\phi(n)$. This means $k\gamma=\phi(n)$ which gives us $(a^k)^{\gamma}=a^{\phi(n)}=1$, which proves the reuslt.

Alt proof: work in progress....

Corollary 1.36

Fermat's Little Theorem Let $a, p \in \mathbb{Z}$, p being a prime, with gcd(a, p) = 1, then $a^{p-1} \equiv 1 mod(p)$

Proof for Corollary.

Simply plug n = p and $\phi(n) = \phi(p) = p - 1$ into Euler's Theorem. We are done.

Alt proof: work in progress....

1.3 Even more basix, Gnerators etc.

Definition 1.37: Generator

Let G be a group and S a subset of G. We say G is **generated by** S, denoted by $G = \langle S \rangle$ if every element of G can be written as a finite sequence of products of elements in S. More specifically, for every $x \in G$, there exists q_1, q_2, \dots, q_{n_x} (needn't all be distinct) and indices $p_1, p_2 \dots p_{n_x}$ so that $x = q_1^{p_1} q_2^{p_2} \dots q_{n_x}^{p_{n_x}}$.

$$\langle S \rangle := \{ a_1^{e_1} a_2^{e_2} \cdots a_n^{e_n} : \text{for any } a_1, a_2 \cdots a_n \text{ in } S, \text{ and any } e_1, e_2 \cdots e_n \in \mathbb{Z} \}$$

Theorem 1.38

Let G be a cyclic group $\langle a \rangle$ of order n. Suppose m|n, then there exists a cyclic subgroup of order m in G. Moreover, this group is the unique subgroup of order m.

Proof for Theorem.

Consider $\langle a^{n/m} \rangle$. $O(a^{m/n}) = n/(gcd(n/m, n)) = n/(n/m) = m$. So existence is clear. Now onto uniqueness:

We found $\langle a^{n/m} \rangle$ to be one such group. Suppose another subgroup $\langle a^j \rangle$ also is m order. $O(a^j) = n/\gcd(j,n)$ which is the order of the group. Hence $n/(j,n) = m \implies n/m = \gcd(j,n)$ which means n/m|j or $\delta(n/m) = j$ which puts a^j inside $\langle a^{n/m} \rangle$ which makes $\langle a^j \rangle$ a subgroup of $\langle a^{n/m} \rangle$. But since order is the same, the two groups must be same.