Rohini Vishwanathan

Knowledge Discovery and Data Mining

IST 340

IST340 Computer Exercise (CE2)

Decision Trees Part 2

<u>Q1.</u>

1. Evaluation Approach

Performance Measures Table

Measure	Description	Definition of Value Function	Weight	Threshold		
Loss	Measures misclassification cost	(FP+2 x FN)/ (TP + TN +FP +FN)	0.60	Lower is better		
Simplicity	Prefers simpler tress (lower depth)	1/ Tree Depth	0.30	Higher is better		
Stability	Measures consistency across train and test	(1– (Train Accuracy–Test Accuracy)	0.10	Higher is better		
Combination Function	Overall Score = $w_{Accuracy}*Score_{Accuracy} + w_{Simplicity}*Score_{Simplicity}$ $0.60 \times (1 - Loss) + 0.30 \times Simplicity + 0.10 \times Stability$					

2. Summary of Results

Results Table (Using Loss Matrix)

DT Label/ Description	Performance Measures						
	Loss (or Profit)		Simplicity		Stability		Overall Score
	Value	Score	No of Leaves	Score	Score	Justification	Score
Entropy (3%)	0.2623	0.7377	20	0.1429	0.9312	High stability as the model generalizes well across train and test data	0.5786
Entropy (6%)	0.4426	0.5574	11	0.2000	0.9237	Slightly lower stability but still acceptable, less complex model	0.4868

3. Description of the best decision tree

- The best Decision Tree was trained using Entropy with min_samples_leaf=3%.
- It had the lowest Loss (0.2623), meaning fewer costly misclassifications.
- While slightly deeper, it remained highly stable (0.9312).
- Its final performance score was 0.5786, making it the best model for Q1.

4. Evidence of Experimentation

• Confusion Matrices for both models (demonstrating classification performance).

Entropy 3%

Entropy 6%

• Tree depths evaluation (to assess simplicity).

```
# Simplicity = Inverse of tree depth (lower depth is better)
simplicity_entropy_3 = 1 / dt_entropy.get_depth()
simplicity_entropy_6 = 1 / dt_entropy_6.get_depth()

print(f"Simplicity (Entropy, 3% min samples leaf): {simplicity_entropy_3:.4f}")
print(f"Simplicity (Entropy, 6% min samples leaf): {simplicity_entropy_6:.4f}")

Simplicity (Entropy, 3% min samples leaf): 0.1429
Simplicity (Entropy, 6% min samples leaf): 0.2000
```

• Decision tree visualization- (best model)

Entropy 3%

• Final weighted scores calculation (to validate performance scoring).

```
# Compute final weighted performance score for both models
final_score_entropy_3 = (0.60 * (1 - loss_entropy_3)) + (0.30 * simplicity_entropy_3) + (0.10 * stability_entropy_3)
final_score_entropy_6 = (0.60 * (1 - loss_entropy_6)) + (0.30 * simplicity_entropy_6) + (0.10 * stability_entropy_6)

print(f"Final Score (Entropy, 3% min samples leaf): {final_score_entropy_3:.4f}")
print(f"Final Score (Entropy, 6% min samples leaf): {final_score_entropy_6:.4f}")

Final Score (Entropy, 3% min samples leaf): 0.5786
Final Score (Entropy, 6% min samples leaf): 0.4868
```

• Train-Test Split verification screenshot (showing dataset partitioning)

```
# Define Features (X) and Target (y)

X = df.drop("target", axis=1) # All features except target
y = df["target"] # Target variable (BAD = 1, GOOD = 0)

# Perform an 80%-20% train-test split with stratification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

# Verify dataset sizes
print("Training Set Size:", X_train.shape)
print("Testing Set Size:", X_test.shape)

Training Set Size: (242, 20)
Testing Set Size: (61, 20)
```

1. Evaluation Approach

Performance Measures Table

Measure	Description	Definition of Value Function	Weight	Threshold			
Loss	Measures prediction error	RMSE (Root Mean Squared Error) / MAE (Mean Absolute Error)	0.55	Lower is better			
Simplicity	Prefers simpler trees (lower depth)	1/ tree depth	0.25	Higher is better			
Stability	Measures consistency across train and test	1- (Train accuracy - Test Accuracy)	0.20	Higher the better			
Combination Function	Overall Score = $w_{Accuracy}$ *Score _{Accuracy} + $w_{Simplicity}$ *Score _{Simplicity} 0.55 x (1- Loss) + 0.25 x Simplicity + 0.20 x Stability						

2. Summary of Results

Results Table

DT Label/ Description	Performance Measures						
	Loss		Simplicity		Stability		Overall Score
	Value	Score	No of Leaves	Score	Score	Justification	Score
Squared Error (2% min samples leaf)	0.1011	0.8989	25	0.1429	0.3652	Moderate stability; more leaves (25) make the tree slightly sensitive to variations.	0.1643

Squared Error, 5% min samples leaf	0.236	0.7633	12	0.2500	0.6940	Highest stability; fewer leaves (12) ensure better generalization	0.3315
Absolute Error, 2% min samples leaf)	-0.1553	1.1553	47	0.0769	0.2774	Lower stability; more prone to overfitting due to high sensitivity.	-0.0107
Absolute Error, 5% min samples leaf	-0.2543	1.2543	16	0.1429	0.4613	Improved stability but still sensitive compared to squared error models.	-0.0119

3. Description of the best decision tree

- Best Model Selected: Squared Error, 5% min samples leaf
 - Chosen due to highest final score (0.3315), better stability (0.6940), and balanced accuracy and simplicity.

Key Decision Rules from the Best Model

- If pain $4 \le 0.5$ and thal $7.0 \le 0.5$ and age ≤ 55.5 , then thalach ≤ 153.50 High probability of positive outcome.
- If pain_4 > 0.5 and oldpeak > 0.7 and thalach <= 129.0, then lower probability of positive outcome.
- Splits involving thalach, oldpeak, age, and pain 4 are strong predictors of the outcome.

Justification for Selection

- Good Rules-
 - pain_4, oldpeak, thalach, and age are strong medical predictors of heart disease risk.
 - \circ Splits at thalach ≤ 153.50 and oldpeak ≤ 0.7 effectively separate patient risk levels.

4. Evidence of Experimentation

• Decision Tree Visualizations of the best model

• Extracted Decision Rules (Best Model)

• Final Weighted Scores Computation

```
→ Accuracy (Squared Error, 2% min samples leaf): 0.1011
    Simplicity (Squared Error, 2% min samples leaf): 0.1429
    Stability (Squared Error, 2% min samples leaf): 0.3652
    Final Score (Squared Error, 2% min samples leaf): 0.1643
   Accuracy (Absolute Error, 2% min samples leaf): -0.1553
   Simplicity (Absolute Error, 2% min samples leaf): 0.0769
   Stability (Absolute Error, 2% min samples leaf): 0.2774
   Final Score (Absolute Error, 2% min samples leaf): -0.0107
   Accuracy (Squared Error, 5% min samples leaf): 0.2367
   Simplicity (Squared Error, 5% min samples leaf): 0.2500
    Stability (Squared Error, 5% min samples leaf): 0.6940
   Final Score (Squared Error, 5% min samples leaf): 0.3315
   Accuracy (Absolute Error, 5% min samples leaf): -0.2543
   Simplicity (Absolute Error, 5% min samples leaf): 0.1429
    Stability (Absolute Error, 5% min samples leaf): 0.4613
    Final Score (Absolute Error, 5% min samples leaf): -0.0119
```

• Train-Test Split Verification

```
# Import necessary libraries
     from sklearn.tree import DecisionTreeRegressor
     import numpy as np
     # Define min_samples_leaf as 2% and 5% of training data
     min_samples_2 = int(0.02 * len(X_train))
     min_samples_5 = int(0.05 * len(X_train))
     # Train Decision Tree using Squared Error (2% min samples leaf)
     dt_squared_error_2 = DecisionTreeRegressor(criterion="squared_error", min_samples_leaf=min_samples_2, random_state=42)
     dt_squared_error_2.fit(X_train, y_train)
     # Train Decision Tree using Absolute Error (2% min samples leaf)
     dt_absolute_error_2 = DecisionTreeRegressor(criterion="absolute_error", min_samples_leaf=min_samples_2, random_state=42)
     dt_absolute_error_2.fit(X_train, y_train)
     # Train Decision Tree using Squared Error (5% min samples leaf)
     dt_squared_error_5 = DecisionTreeRegressor(criterion="squared_error", min_samples_leaf=min_samples_5, random_state=42)
     dt_squared_error_5.fit(X_train, y_train)
     # Train Decision Tree using Absolute Error (5% min samples leaf)
     \label{eq:dt_absolute_error_5} \ = \ Decision Tree Regressor (criterion = "absolute_error", min_samples_leaf = min_samples_5, random_state = 42)
    dt_absolute_error_5.fit(X_train, y_train)
     # Display trained models
    dt_squared_error_2, dt_absolute_error_2, dt_squared_error_5, dt_absolute_error_5
(DecisionTreeRegressor(min_samples_leaf=4, random_state=42), DecisionTreeRegressor(criterion='absolute_error', min_samples_leaf=4,
                              random_state=42),
      DecisionTreeRegressor(min_samples_leaf=12, random_state=42), DecisionTreeRegressor(criterion='absolute_error', min_samples_leaf=12,
                              random_state=42))
```

Google Colab Link-

https://colab.research.google.com/drive/1-5HXe0g_OnIcHkbrRR5w95X6cv-WrnKt?usp=sharing