B1-CLAT3-18MAB101T-Calculus and Linear Algebra

pp0783@srmist.edu.in Switch account

Draft saved

Your email will be recorded when you submit this form

* Required

PART-B(35*2=70 marks)Answer all the questions

choose the correct answer

The value of $\lim_{n\to\infty} \frac{n^2}{n+1}$ is

- A)0 B) ∞ C)1 D) $\frac{1}{2}$

The definite integral $\int_0^1 x^{m-1} (1-x)^n dx$ represents

- A) $\beta(m+1,n)$ B) $\beta(m,n)$ C) $\beta(m,n+1)$ D) $\beta(m,n-1)$

Radius of curvature of $f(x) = x^2 + 5x$ at the point (1,6) is

- A) $125\sqrt{2}$ B) $\frac{5\sqrt{2}}{2}$ C) $25\sqrt{2}$ D) $\frac{5}{\sqrt{2}}$

- \bigcirc D

The value of $\beta(2,3)$ is

- A) $\frac{1}{6}$ B) $\frac{1}{3}$ C) $\frac{1}{12}$ D) $\frac{1}{24}$

The value of $\lim_{n\to\infty} \frac{1}{n\sqrt{n}}$ is

- A)0

- B) ∞ C)1 D) $\frac{1}{2}$

If $y_1 = 1$ and $y_2 = -3$ at x = 1 on the curve $y = \frac{\log x}{x}$ then the radius of curvature is

- A) $\sqrt{2}$ B) $\frac{2}{\sqrt{3}}$ C) $\frac{2\sqrt{2}}{3}$ D) $\frac{3}{\sqrt{2}}$
- (A
- () E

*

The (n+1)th term of the series $\frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \cdots + \infty$ is

- A) $\frac{1}{n\sqrt{n}}$ B) $\frac{1}{n\sqrt{n+1}}$ C) $\frac{1}{(n+1)\sqrt{n}}$ D) $\frac{1}{(n+1)\sqrt{(n+1)}}$
- O A
- O B
- 00
- D

If $\lim_{n\to\infty} \left|\frac{u_n}{v_n}\right| = \frac{1}{2}$ and $v_n = \frac{1}{n}$ then the series $\sum u_n$ is

- A) convergent B) absolutely convergent C) Divergent D) not absolutely convergent
- (A
- () B
- O D

*

The value of $\Gamma(1/4)$. $\Gamma(1-1/4)$ is

A) $\sqrt{2}$ B) $\pi\sqrt{2}$ C) $\frac{\pi}{\sqrt{2}}$ D) $2\sqrt{2}$

- O A
- B
- 0
- O D

Radius of curvature of the curve xy=4 at the point (2,2) is

- A)2 B) $\sqrt{2}$ C) $2\sqrt{2}$ D) $\frac{1}{\sqrt{2}}$
- A
- () B
- \bigcirc c

*

If the series $\sum v_n = \frac{1}{n^3}$ then it is

A) convergent B) divergent C) conditionally convergent D) conditionally divergent

- () A
- B
- \bigcirc
- \bigcap D

In Limit comparison test if $u_n = \frac{n+1}{2n^2+2}$ then v_n can as be chosen as

- B) $\frac{n}{2n+1}$ C) $\frac{n}{n+1}$ D) $\frac{1}{n^2}$

The envelope of the family of lines $y = mx + \sqrt{(1+m^2)}$, m being the parameter is A) $x^2 + y^2 = 1$ B) $x^2 + y^2 = 0$ C) $x^2 + y^2 = 4$ D) $x^2 - y^2 = 0$

The series $\sum \frac{x^n}{n^n}$ is

A) conditionally convergent B) divergent C) convergent D) Absolutely convergent

- \bigcap D

Curvature of the curve y = Cosh(x/c) at the point (0, 1) is

- A) 1/c B) 1 C) \sqrt{c} D) $1/c^2$

Radius of the curvature of the Parabola $y^2 = 4x$ at (1,2) is

- A) 2
- B) $4\sqrt{2}$ C) $2\sqrt{2}$ D) $\frac{1}{\sqrt{2}}$

If $\lim_{n \to \infty} {u_n}^{1/n} < 1$ then the series $\sum u_n$ is

A) absolutely convergent B) convergent C) divergent D) Conditionally convergent

The parametric equations $x = a \cos\theta$, $y = b \sin\theta$ represent the curve

- A) Ellipse B. Cycloid C. Hyperbola D. Parabola
- A
- () E
- 0
- \bigcap D

×

If
$$\sum u_n = \sum \frac{1}{\sqrt{n^2+1}}$$
 then $\lim_{n\to\infty} \frac{u_n}{v_n} =$

- A)0 B)1 C) $\frac{1}{2}$ D) ∞
- A
- E
- 0
- O D

The (n+1)th term of the series $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{4^3} + \cdots + \infty$ is

- A) $\frac{1}{n}$ B) $\frac{n}{n+1}$ C) $\frac{1}{(n+1)^n}$ D) $\frac{1}{(n+2)^{n+1}}$

- D

The envelope for the quadratic family of curves $Am^2 + Bm + C = 0$ (where m is the parameter) is

- A) $B^2 = AC$ B) $C^2 = 4AB$ C) $B^2 = 4AC$ D) B = AC.

- \bigcirc D

The nth term of the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \cdots + to \infty$ is

- A) $\frac{x^n}{(n+1)2n}$ B) $\frac{x^n}{(2n+1)2n}$ C) $\frac{x^n}{(2n+3)2n}$ D) $\frac{x^n}{(2n-1)2n}$

If f(n) is a positive monotonic decreasing function and if $\int_1^\infty f(x)dx$ is infinite then the series $\sum f(n)$ is

A) absolutely convergent B) convergent C) divergent D) Conditionally convergent

For the curve y = f(x), if $y' = \infty$, then the direction of the tangent is

- A) Parallel to X-axis B) Parallel to Y-Axis C) Inclined at 30 ° D)Inclined at 45 °.
- A
- \bigcirc C

*

- . The radius of curvature formula $\left[\frac{\left\{1+\left(\frac{dx}{dy}\right)2\right\}^{\frac{3}{2}}}{x''}\right]$ is suitable when the derivative y' is equal to
 - A)0
- B)1
- C)-1
- D) ∞

- O A
- O 0
- () D

In Raabe's test if $\lim_{n\to\infty} n\left[\frac{u_n}{u_{n+1}}-1\right]=l$ then the series is ------if l<1.

A)convergent B) absolutely convergent C) divergent D) Conditionally convergent

The x-coordinate of the centre of curvature is

A)
$$x + \frac{y_1(1+y_1^2)}{y_2}$$
 B) $x - \frac{y_1(1+y_1^2)}{y_2}$ C) $x - \frac{(1+y_1^2)}{y_2}$ D) $x + \frac{(1+y_1^2)}{y_2}$

B)
$$x - \frac{y_1(1+y_1)^2}{y_2}$$

C)
$$x - \frac{(1+y_1^2)^2}{y_2}$$

D)
$$x + \frac{(1+y_1^2)}{y_2}$$

The equation $(x - \bar{x})^2 + (y - \bar{y})^2 = \rho^2$ represents (where (\bar{x}, \bar{y}) coordinates of centre of curvature)

- A) Circle of curvature B) Envelope C) Evolute D) Curvature
- A
- B
- \bigcirc \bigcirc

*

If $f(x) = \frac{1}{x^2+1}$ then f(x) is -----function.

- A) a monotonically Increasing B) a monotonically decreasing C)an oscillating
- D) a convex
- (A
- (E
- \bigcirc c

If $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=0$ then the series $\sum |u_n|$ is

- A) absolutely convergent B) convergent C) divergent D) Conditionally convergent

The value of $\beta(\frac{5}{2}, \frac{3}{2})$ is

- A) $\frac{\pi}{4}$ B) $\frac{\pi}{16}$ C) $\frac{\pi}{8}$ D) $\frac{\pi}{32}$

Radius of curvature of the Parabola $y=x^2$ at (2, 4) is

- A) $\frac{17\sqrt{17}}{4}$ B) $\frac{17\sqrt{17}}{2}$ C) $\frac{5\sqrt{5}}{2}$ D) $\frac{5\sqrt{5}}{4}$
- (A
- B
- \bigcirc
- O D

*

The parametric equations $x = at^2$, y = 2at represent the curve

- A) Ellipse B) Cycloid C) Hyperbola D) Parabola
- (E
- \bigcirc
- D

If
$$u_n = \frac{n^n}{n!} x^n$$
 then $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} =$

- A) e B) e. x C) $\frac{e}{x}$ D) $\frac{1}{e}$
- A
- B
- O C
- (D

×

The nth term of the sequence $\frac{1}{4}$, $\frac{2}{9}$, $\frac{3}{16}$, is

A)
$$\frac{1}{n}$$
B) $\frac{n}{2n+1}$ C) $\frac{n}{n+1}$ D) $\frac{n}{(n+1)^2}$

- (A
- O B
- O C
- C

Back

Submit

Clear form

Never submit passwords through Google Forms.

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms