

US005724579A

United States Patent [19]
Suzuki

[11] Patent Number: **5,724,579**
[45] Date of Patent: **Mar. 3, 1998**

[54] **SUBORDINATE IMAGE PROCESSING APPARATUS**

[75] Inventor: **Takeshi Suzuki, Hachiohji, Japan**

[73] Assignee: **Olympus Optical Co., Ltd., Tokyo, Japan**

[21] Appl. No.: **399,336**

[22] Filed: **Mar. 6, 1995**

[30] **Foreign Application Priority Data**

Mar. 4, 1994 [JP] Japan 6-059884

[51] Int. Cl.⁶ **G06F 17/30**

[52] U.S. Cl. **395/615; 382/305; 382/282; 358/403; 358/453**

[58] **Field of Search** **350/403, 404, 350/444, 426, 432; 382/305, 248, 250; 364/715.02, 225.4, 413.13; 395/600**

[56] **References Cited**

U.S. PATENT DOCUMENTS

4,602,333 7/1986 Komori 364/413.13

4,931,984	6/1990	Ny	364/600
4,992,887	2/1991	Aragaki	358/403
5,129,011	7/1992	Nishikawa et al.	364/225.4
5,165,103	11/1992	Takeda et al.	364/715.02

**Primary Examiner—Scott A. Rogers
Attorney, Agent, or Firm—Cushman, Darby & Cushman IP Group of Pillsbury, Madison & Sutro LLP**

[57] **ABSTRACT**

Subordinate images are produced by extracting parts of photographically obtained or externally supplied main image data of a predetermined image area for improving retrieval properties. First, subordinate image is produced by extracting part of photographically obtained or externally supplied main image data of a predetermined image area, and a second subordinate image is produced by extracting part of the image data of the first subordinate image produced by the first subordinate image producing means. Thus, the subordinate image can be produced from subordinate image data, increasing the freedom degree of the subordinate image production, and it is possible to extract only the necessary data.

10 Claims, 32 Drawing Sheets

(A)

(B)

(C)

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-245723

(43)公開日 平成7年(1995)9月19日

(51)Int.Cl.⁶

H 0 4 N
5/225
5/262

識別記号 庁内整理番号

Z

F I

技術表示箇所

審査請求 未請求 請求項の数33 FD (全24頁)

(21)出願番号 特願平6-59884

(22)出願日 平成6年(1994)3月4日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 鈴木猛士

東京都渋谷区幡ヶ谷2丁目43番2号 オリ
ンパス光学工業株式会社内

(74)代理人 弁理士 福山正博

(54)【発明の名称】 画像取扱装置

(57)【要約】

【目的】高速な画像検索を可能とし、操作性を改善した
画像取扱装置を提供することにある。

【構成】主画像の画像情報のうちの一部の画像情報を取
り出して生成さし、生成された副画像データと主画像デ
ータをそれぞれ関連付け、識別可能に記録する。また、
記録された副画像を読み出し、再生し、又は単独に、又
は主画像と関連付けて消去する。更に、生成された副
画像のデータを伝送し、受信側からの応答信号に基づいて
伝送した副画像に対応する主画像のデータを伝送する。

【特許請求の範囲】

【請求項1】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する副画像生成手段を備えて成ることを特徴とする画像取扱装置。

【請求項2】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する第1の副画像生成手段と、該第1の副画像生成手段に基づく第1の副画像の画像情報のうちの一部の画像情報を取り出して第2の副画像として生成する第2の副画像生成手段を備えて成ることを特徴とする画像取扱装置。

【請求項3】前記副画像生成手段は、前記主画像の特定エリアの情報を前記一部の画像情報とするエリア選択手段を有する請求項1に記載の画像取扱装置。

【請求項4】前記エリア選択手段は、前記特定エリアのサイズを変更するサイズ変更手段と、前記特定エリアの位置を変更するエリア位置変更手段の少なくとも一方の手段を有する請求項3に記載の画像取扱装置。

【請求項5】前記副画像生成手段は、前記主画像を縮小した縮小画像情報を前記一部の画像情報とする画像縮小手段を有する請求項1に記載の画像取扱装置。

【請求項6】前記副画像生成手段は、前記主画像のデータを圧縮して得られる圧縮画像情報を前記一部の画像情報とする画像圧縮手段を有する請求項1に記載の画像取扱装置。

【請求項7】前記第1の副画像生成手段は、前記主画像の特定エリアの情報を前記一部の画像情報とする第1エリア選択手段、又は前記主画像を縮小した縮小画像情報を前記一部の画像情報とする第1画像縮小手段を有し、前記第2の副画像生成手段は、前記第1の副画像の特定エリアの情報を前記一部の画像情報とする第2エリア選択手段、前記第1の副画像を縮小した縮小画像情報を前記一部の画像情報とする第2画像縮小手段又は前記第1の副画像のデータを圧縮して得られる圧縮画像情報を前記一部の画像情報とする画像圧縮手段の中から選ばれる少なくとも一つの手段を有することを特徴とする請求項2に記載の画像取扱装置。

【請求項8】前記画像圧縮手段は、画像データを直交変換してAC直交係数とDC直交係数を出力する手段を有し、前記DC直交係数のみを用いて副画像を生成する請求項6又は7に記載の画像取扱装置。

【請求項9】前記画像圧縮手段は、圧縮後のデータ量を一定として前記圧縮を行なう請求項6又は7に記載の画像取扱装置。

【請求項10】前記画像圧縮手段は、圧縮率を一定として前記圧縮を行なう請求項6又は7に記載の画像取扱装置。

【請求項11】撮影により生成され乃至は外部より供給

された所定領域の画像から成る主画像のデータと、該主画像の画像情報のうちの一部の画像情報から成る副画像のデータとを生成し、記録媒体に記録される前記主画像データの後に、前記副画像のデータを記録する手段を備えて成ることを特徴とする画像取扱装置。

【請求項12】前記副画像生成手段は、生成した副画像のデータを当該コンピュータのフォーマットに適合するフォーマットのデータに変換するデータフォーマット手段を有する請求項1に記載の画像取扱装置。

【請求項13】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータを、ファイルヘッダーをもつ画像ファイルのデータ記録部に書き込み、前記ファイルヘッダーに前記副画像の書き込み開始アドレスを書き込む手段を備えて成ることを特徴とする画像取扱装置。

【請求項14】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータをファイルヘッダーをもつ画像ファイルに書き込む際、前記ファイルヘッダーに記録されているタブル情報を解釈し、副画像毎のオプションタブルを作成し、作成されたオプションタブルに前記副画像のデータを書き込む手段を備えて成ることを特徴とする画像取扱装置。

【請求項15】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、前記主画像のデータをパソコン用画像データフォーマットに変換する手段と、生成された副画像データを前記変換された個々の主画像データ毎の画像ヘッダー部に書き込む際、前記個々の画像ヘッダー部に記録されている情報を解釈して前記画像ヘッダー部毎に前記副画像のデータを書き込む手段を備えて成ることを特徴とする画像取扱装置。

【請求項16】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録する手段とを備えて成ることを特徴とする画像取扱装置。

【請求項17】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ及び副画像のデータの関連付け情報を特

定の情報ファイルとしてのリレーションファイルに記録する手段とを備えて成ることを特徴とする画像取扱装置。

【請求項18】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータが記録されている画像ファイルのファイルヘッダーに前記副画像のデータの関連情報を記録することを特徴とする画像取扱装置。

【請求項19】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータに基づく前記複数の副画像のデータは、互いに識別可能なファイル名を付して記録する手段とを備えて成ることを特徴とする画像取扱装置。

【請求項20】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、互いに識別可能な異なるディレクトリに記録する手段とを備えて成ることを特徴とする画像取扱装置。

【請求項21】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、一つの画像ファイルに一括して記録する手段とを備えて成ることを特徴とする画像取扱装置。

【請求項22】一定時間毎隔で、それぞれが所定領域の画像から成る複数の主画像が連続的に得られる画像取扱装置において、前記連続的に得られる複数の主画像のうち特定の主画像についてのみ当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段とを備えて成ることを特徴とする画像取扱装置。

【請求項23】前記特定の主画像は、前記連続的に得られる複数の主画像のうちの最初の一枚または最後の一枚である請求項22に記載の画像取扱装置。

【請求項24】前記特定の主画像は、前記一定時間毎隔の長さに応じて選択され、前記一定時間毎隔が短い又は長いほど前記特定の主画像に対応する複数の主画像の枚数が減少又は増加するようにしたことを特徴とする請求項22に記載の画像取扱装置。

【請求項25】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成する手段を有するとともに、前記主画像の再生、表示時に、対応する副画像の有無情報を表示することを特徴とする画像取扱装置。

【請求項26】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成する手段を有するとともに、該手段は、前記主画像の再生、表示時に、複数の対応する副画像を生成することを特徴とする画像取扱装置。

【請求項27】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている特定の副画像のデータのみ消去する手段を備えて成ることを特徴とする画像取扱装置。

【請求項28】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている複数の副画像を一括消去する手段を備えて成ることを特徴とする画像取扱装置。

【請求項29】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている主画像と該主画像に対応する副画像を一括して消去する手段を備えて成ることを特徴とする画像取扱装置。

【請求項30】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備えて成ることを特徴とする画像取扱装置。

【請求項31】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、前記伝送された副画像のデータを受信した受信側からの応答信号を受け、該応答信号に基づいて前記伝送した副画像に対応する主画像のデータを伝送することを特徴とする画像取扱装置。

【請求項32】撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうち

の一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、前記伝送された副画像のデータを受信した受信側からの作成モードを指定する指定信号を受け、該指定信号で指定された副画像の作成モードに従って前記副画像を生成して伝送することを特徴とする画像取扱装置。

【請求項33】撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段を備え、前記主画像のデータ又は生成された副画像のデータを同一の画像ファイルにそれぞれ書込む際、各データの書き込み開始アドレスが 2^n (nは整数)で表わされるアドレスであることを特徴とする画像取扱装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は画像取扱装置に関し、特に検索性及び操作性を改善した画像取扱装置に関する。

【0002】

【従来の技術】ICメモリカード、磁気媒体(ハードディスクやフロッピーディスク)、光磁気媒体等の記録媒体に画像データ、音声データ、制御データなどをファイルとして記録するデジタルスチルカメラが実用化されている。

【0003】

【発明が解決しようとする課題】上記のようなデジタルスチルカメラ等の画像を取り扱う画像取扱装置は、画像を画像データとして取り込み、コンピュータによる処理や画像データ伝送が簡単に行なえるため、今後の利用分野の拡大が期待されている。

【0004】かかる画像取扱装置では、ICカード等の記録媒体に記録されている画像データは、一枚分のデータであり、記録画像を検索する場合には、各画像データを順次読み出して再生する必要がある。しかしながら、一般的に、画像データはデータ量が多く、特にデータの読み込みスピードのおそいFD等の場合、データを読み込んで再生するのに時間がかかる。又、データ圧縮を使用することによって、データ量を減らすことが知られているが、画像を再生するには、読み出した個々の画像データを伸長処理しなければならず、再生処理に時間がかかり、高速な検索が困難であるという問題がある。

【0005】

【発明の目的】そこで、本発明の目的は、高速な画像検索を可能とし、操作性を改善した画像取扱装置を提供することにある。

【0006】

【課題を解決するための手段】前記課題を解決するために、本発明による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画

像の画像情報のうちの一部の画像情報を取り出して副画像として生成する副画像生成手段を備えて構成される。

【0007】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して第1の副画像として生成する第1の副画像生成手段と、該第1の副画像生成手段に基づく第1の副画像の画像情報のうちの一部の画像情報を取り出して第2の副画像として生成する第2の副画像生成手段を備えて構成される。

【0008】本発明の更に他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報のうちの一部の画像情報から成る副画像のデータとを生成し、記録媒体に記録される前記主画像データの後に、前記副画像のデータを記録する手段を備えて構成される。

【0009】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータを、ファイルヘッダーをもつ画像ファイルのデータ記録部に書き込み、前記ファイルヘッダーに前記副画像の書き込み開始アドレスを書き込む手段を備えて構成される。

【0010】本発明の更に他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータをファイルヘッダーをもつ画像ファイルに書き込む際、前記ファイルヘッダーに記録されているタプル情報を解釈し、副画像毎のオプションタップルを作成し、作成されたオプションタップルに前副画像のデータを書き込む手段を備えて構成される。

【0011】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、前記主画像のデータをパソコン用画像データフォーマットに変換する手段と、生成された副画像データを前記変換された個々の主画像データ毎の画像ヘッダー部に書き込む際、前記個々の画像ヘッダー部に記録されている情報を解釈して前記画像ヘッダー部毎に前記副画像のデータを書き込む手段を備えて構成される。

【0012】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の

画像ファイルに記録する手段とを備えて構成される。

【0013】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ及び副画像のデータの関連付け情報を特定の情報ファイルとしてのリレーションナルファイルに記録する手段とを備えて構成される。

【0014】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータが記録されている画像ファイルのファイルヘッダーに前記副画像のデータの関連情報を記録するように構成される。

【0015】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータに基づく前記複数の副画像のデータは、互いに識別可能なファイル名を付して記録する手段とを備えて構成される。

【0016】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、互いに識別可能な異なるディレクトリに記録する手段とを備えて構成される。

【0017】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、一つの画像ファイルに一括して記録する手段とを

備えて構成される。

【0018】本発明の他の態様による画像取扱装置は、一定時間毎隔で、それぞれが所定領域の画像から成る複数の主画像が連続的に得られる画像取扱装置において、前記連続的に得られる複数の主画像のうち特定の主画像についてのみ当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段を備えて構成される。

【0019】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成する手段を有するとともに、前記主画像の再生、表示時に、対応する副画像の有無情報を表示するように構成される。

【0020】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成する手段を有するとともに、該手段は、前記主画像の再生、表示時に、複数の対応する副画像を生成するように構成される。

【0021】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている特定の副画像のデータのみ消去する手段を備えて構成される。

【0022】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている複数の副画像を一括消去する手段を備えて構成される。

【0023】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている主画像と該主画像に対応する副画像を一括して消去する手段を備えて構成される。

【0024】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備えて構成される。

【0025】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、

前記伝送された副画像のデータを受信した受信側からの応答信号を受け、該応答信号に基づいて前記伝送した副画像に対応する主画像のデータを伝送するように構成される。

【0026】本発明の他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、前記伝送された副画像のデータを受信した受信側からの作成モードを指定する指定信号を受け、該指定信号で指定された副画像の作成モードに従って前記副画像を生成して伝送するように構成される。

【0027】本発明の更に他の態様による画像取扱装置は、撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段を備え、前記主画像のデータ又は生成された副画像のデータを同一の画像ファイルにそれぞれ書込む際、各データの書き込み開始アドレスが 2^n （nは整数）で表わされるアドレスであるように構成される。

【0028】

【作用】上記列挙の各発明によれば、以下に述べるような種々の作用のうち各該当する作用が為されることになる。すなわち、主画像の画像情報のうちの一部の画像情報を取り出して生成し、生成された副画像データと主画像データをそれぞれ関連付け、識別可能に記録する。また、記録された副画像を読み出し、再生し、又は単独に、又は主画像と関連付けて消去する。更に、生成された副画像のデータを伝送し、受信側からの応答信号に基づいて伝送した副画像に対応する主画像のデータを伝送する。

【0029】

【実施例】次に、本発明の実施例について図面を参照しながら説明する。図1は、本発明による画像取扱装置のデジタルスチルカメラへの適用例を示す構成ブロック図である。被写体画像は、光学系（レンズ）1を介して、光電変換手段であるCCD等の撮像素子を有する撮像回路2で電気信号に変換される。この変換された電気信号は、クランプ回路3で所定のクランプ処理が施された後、A/D変換回路4でデジタルデータに変換され、フレームメモリ11に書き込まれる。フレームメモリ11の書き込みと読み出しが、システムコントローラ16からの制御を受けたメモリコントローラ10により制御される。フレームメモリ11から読み出された画像データは、デジタルプロセス回路5において、キャラクタジェネレータ9から送出されるキャラクタデータとともにデジタル処理された後、D/A変換回路6でアナログ信号に変換される。変換されたアナログ画像信号は、増幅回

路7で増幅された後、外部端子EXTと電子ビューファインダ8に供給される。

【0030】データ記録時には、フレームメモリ11から読み出された画像データは、DCT/I DCT（離散コサイン変換／逆離散コサイン変換）回路12で直交変換され、得られた直交係数がコーダ／デコーダ13で符号化され、JPEG方式等に準拠した圧縮方式で圧縮処理が施される。こうして圧縮された画像データが記憶手段としてのICメモリカード15に記録される。ここでこのメモリカードは、装置本体に対して着脱自在であっても、又、予め内蔵固定されていてもよいものである。

【0031】再生時には、ICメモリカード15から読み出された画像データが、コーダ／デコーダ13とDCT/I DCT回路12の処理を介して伸長処理され、フレームメモリ11に書き込まれる。フレームメモリ11から読み出された画像データは、デジタルプロセス回路5、D/A変換回路6、増幅回路7を経て外部端子EXTと電子ビューファインダ8とに出力される。

【0032】システムコントローラ16は、データバスB1を介してデータを授受し、カメラ動作の全体を制御する。例えば、LCD等よりなる表示部17の表示を制御するとともに、操作部18からの操作情報に基づいてカメラ動作を制御する。システムコントローラ16は、またキャラクタジェネレータ9を制御して所望のキャラクタ情報出力を制御し、データバスB2とデータ入出力部19を介して外部との通信を制御する。補助メモリ14は、データの各種処理の際に用いられるワークメモリである。

【0033】図1に示すような構成において、本発明では、一枚の画像（以下、主画像と称する）についての画像情報の一部を取り出した一部画像情報から成る副画像（例えば、間引き画像、縮小画像等）を生成し、生成画像のメモリへの記憶、他の画像取扱装置への伝送等を行なう。

【0034】かかる副画像のメモリへの記録は、システムコントローラ16の動作を介して行なわれ、以下に説明するような各種の記録態様がある。

【0035】ところで、メモリカード、磁気媒体（ハードディスクやフロッピーディスク）及び光磁気媒体等の記録媒体に画像データ、音声データ及び制御データ等をファイルとして記録するデジタルスチルカメラでは、記録媒体にデータをもファイル形式で記録する場合がある。このとき、メモリ管理は、例えばデータ互換性の面でパーソナルコンピュータ等で標準的なDOS（ディスクオペレーティングシステム）形式で行なわれるが望ましい。そして記録媒体には、その動作を制御したり、各ファイル間の関連付けを行なったりするための制御情報を制御ファイル（コントロールファイルまたはリレーショナルファイルとも称するが、以下、リレーショナルファイルと称する）として記録することも検討され

ている。

【0036】第1の記録態様は、上記ファイル形式での記録時に、画像ファイルに主画像データと副画像データを記録するものである。図2には3種類の記録態様例が示されている。かかる画像ファイルへの記録により、コマ番号が従来どおり管理でき、移動、コピー、削除等を主画像と副画像を意識せずに一緒に扱える。図2(A)では、一枚の画像データを記録する際、画像ファイルにはファイルヘッダー部、主画像データ部、続いて副画像データ部が順次記録される。その結果、副画像だけの消去が容易となり、副画像を複数作成するときには追加が容易で、主画像の再生も容易となる。図2(B)では、ファイルヘッダー部、副画像データ部、続いて主画像データ部が順次記録される。したがって、副画像再生モードによる検索時に、より高速な検索が可能となる。また、図2(C)は、副画像が複数枚あるときの記録態様を示し、ファイルヘッダー部に続いて、主データ開始アドレスから主画像データが書き込まれ、副画像データ1開始アドレスから副画像データ1が書き込まれた後、副画像データ2開始アドレスから副画像データ2が書き込まれる。

【0037】図3には、ファイルヘッダーの記入例が示されており、規格化されたフォーマットタブル、記録日付タブルに続いて、オプションタブル1に副画像データ1のパラメータが、オプションタブル2には副画像データ2のパラメータが記録され、画像データとして主画像データと副画像データが連続して記録されている。上記副画像データのパラメータとしては、副画像データ開始アドレス、副画像データタイプ(圧縮/非圧縮、画素サイズ等)、更には、主画像に対する縮小率1/(2のn乗)を副画像パラメータとすることができます。縮小副画像を作成したとき、画素サイズをパラメータとして記録するよりも、縮小率だけを記録する方が簡単であるし、データ量も少なくて済む。副画像データの作成日付等がある。こうして、上述の効果の他、主画像だけの抜き出しが容易となる。

【0038】図4は、ファイルヘッダーへの記録フォーマット例を示す。フォーマットタブル、記録日付タブルに続いて、オプションタブル1には記録されている副画像データのパラメータが記録され、オプションタブル2には副画像データ1の本体が、オプションタブル3には副画像データ2の本体が記録されている。主画像データ本体が画像ファイルのファイルヘッダー以外の領域に記録されている。上記副画像データパラメータの例としては、副画像データの有無や個数、副画像データのタイプ(圧縮/非圧縮、画素サイズ、縮小率等)等がある。

【0039】図5は、主画像データがパソコン用画像データフォーマットの一方式であるJPEG方式で圧縮され記録される場合の画像ヘッダー(JPEGヘッダー)への記録例を示す図である。ファイルヘッダーに続くJ

PEGヘッダーには、SOI(Start of Image)マーク等のデータ、APP(Application Marker)に副画像データ本体が、SOSマークに主画像データ本体がEOI(End of Image)マーク一部まで記録されている。こうすることにより、図2に示す例の場合と同様な効果が得られる。パソコン用画像データフォーマットとしては、JPEGの他、TIFF、PICT、BMP等があるが、これらの方にも本発明が適用できる。

【0040】図6には、副画像データを主画像データと別ファイルに記録し、上記したリレーションナルファイルに当該データの関連付けデータを記録する例が示されている。別ファイルへの記録により1枚の画像が1つのファイルになるので、ファイル管理イメージで画像管理が行なえる。そして、このリレーションナルファイルによれば、関連付けの情報が一括して管理されるので、データの管理が容易になる。

【0041】ファイル(FILE)1として、同図(A)に示すように、ファイルヘッダーと主画像データ本体から成る主画像ファイルが、ファイル2として、同

20 図(B)に示すように、ファイルヘッダーと副画像データ1の本体から成る副画像1ファイルが、ファイル3として、同図(C)に示すように、ファイルヘッダーと副画像データ2の本体から成る副画像2ファイルが、それぞれ用意され、また同図(D)に示すようなリレーションナルファイルが用意されている。同図(D)のリレーションナルファイルには、例えば、"MAIN5"は5コマ目の主画像データが同図(A)のファイル(FILE)1に記録されていることを示し、"SUB5"で5コマ目の副画像データが同図(B)と(C)のファイル2とファイル3に記録されていることを示している。

【0042】図7は、副画像データを主画像データ本体と別ファイルに記録し、主画像データ用のファイル(同図(A))のファイルヘッダーに、副画像データファイルについての関連情報を記録している例を示す。このファイルヘッダーは、フォーマットタブル、記録日付タブル、副画像ファイル名1が記録されているオプションタブル1、副画像ファイル名2が記録されているオプションタブル2を含んでいる。同図(B)には副画像データ1の本体が記録されているファイルが、同図(C)には副画像データ2の本体が記録されているファイルがそれぞれ示されている。こうすることによって、主画像を読めば必然的に副画像がわかる。また副画像データのファイルヘッダーと主画像データファイルについての関連情報を記録しておけば副画像から主画像の関連がわかり、余分なファイルを読まなくても良い。

【0043】図8は、主画像データと副画像データをそれぞれ別ファイルに記録し、これらデータの識別、関連付けをファイル名により行なう例を示している。本例では、拡張子により主画像データファイルと副画像データファイルを区別している。その結果、主画像だけ再生、

または副画像だけ再生する操作が容易となる。またファイルの画像を再生しなくともファイル名から判別できるようになるので、ファイル操作による画像管理がある程度可能となる。

【0044】同図左側には、拡張子“J 6 I”が付された主画像データファイル例が示されている。拡張子“J 6 I”的うち“J”が圧縮方式であるJPEGを、“6”が68Pinを、“I”がImageであることを示す。また、同図右側には、拡張子“T 6 N”(Nは自然数)が付された副画像データファイル例が示されている。拡張子“T 6 N”的うち“T”が“Thumbnail”(サムネイル)とされる副画像データを、“6”が68Pinを、“N”が当該副画像データのコマ番号を示す。

【0045】図9は、同様に主画像データと副画像データを別ファイルに記録し、各ファイルの関連付けをディレクトリで行なうディレクトリ構造例を示す。このディレクトリを用いることにより、ファイル名を用いた場合と同様な効果だけでなく、コマ番号の管理も容易となる。これは、他の別ファイル記録の例と異なり、主画像のみ記録されるディレクトリが作成されるので、従来行なっているディレクトリエンタリイでのコマ番号管理がそのまま行なえる。

【0046】本例では、ディレクトリ“MAIN”に主画像データ群が含まれ、ディレクトリ“SUB 1”に副画像1のデータ群が含まれ、ディレクトリ“SUB 2”に副画像2のデータ群が含まれていることを示す。例えば、ファイル“DSC002.J 6 I”的副画像1は“\$SUB1 \$DSC002.J 6 T”で、ファイル“DSC002.J 6 I”的副画像2は“\$SUB2 \$DSC002.J 6 T”で表示される。

【0047】図10は、主画像データと副画像データを別ファイルに記録し、主画像ファイルは別個のファイルとするが、副画像ファイルは一括ファイルに格納している例を示す。この方法によれば、副画像データを一括ファイルにすることによって、インデックス表示(副画像のみの再生)等が容易に行なえる。又、副画像の一括消去等を容易に行なえる。

【0048】同図(A)には、フォーマットタブル、記録日付タブル、オプションタブル、副画像データオフセットアドレスが記録されたヘッダー部に統いて、主画像データが記録された主画像ファイルDSC001.J 6 Iの例が示され、同図(B)には、フォーマットタブル、記録日付タブル、オプションタブル、副画像データオフセットアドレスが記録されたヘッダー部に統いて、主画像データが記録された主画像ファイルDSC011.J 6 Iの例が示され、また同図(C)には、これらの主画像データについての副画像データを記録する唯一の副画像ファイルが示されている。同図(C)の副画像ファイルには、ファイルヘッダーに統いて、ファイルDSC001.J 6 Iの副画像が副画像データ1とし

て、以下、同様に、副画像データ2、副画像データ3、…として記録され、例えば、DSC011.J 6 Iの副画像が副画像データ1として記録され、副画像データ12まで記録されている。

【0049】上記副画像一括ファイルのファイルヘッダーとしては、副画像の個数、副画像の画像パラメータ、それぞれの副画像データの先頭アドレスや終了アドレス、それぞれの副画像に対する主画像のファイル名等があり、副画像一括ファイルをインデックスファイルとして用いたとき、副画像から主画像を検索できる。

【0050】図11には、画像データ記録開始アドレスをクラスタ単位で指定する例が示されている。クラスタ1にファイルヘッダーが、クラスタ2, 3, …に主画像データが、クラスタ10, 11, …に副画像データ1が、クラスタ20, 21, …に副画像データ2が記録されている。本実施例によれば、副画像データ1を消去するときには、副画像データ自体は一切操作することなく、画像ファイルのFATチェーン中の副画像部分を消去し、FATチェーンを書き換えるだけで済む。一方、従来の記録開始アドレスを指定する場合には、副画像データ1だけを消去するには、副画像データ1を消去後、消去した場所へ副画像データ2を詰める作業が必要となる。従って、記録開始アドレスを2のn乗バイトにすることにより、画像の高速検索、主画像のみの抜き出しが容易となり、更に、副画像データの消去も容易となる。

【0051】次に、本発明の実施例におけるデジタルスチルカメラの動作シーケンスを図12のフローチャートを参照して説明する。

【0052】パワーON後、ズーミング初期化等、カメラ動作条件の初期化処理をし(ステップS1)、副画像作成モードにあるか否かを判定し(ステップS2)、あれば、副画像作成モードであることを表示部17に表示するとともに、その旨を示すフラグをセットした後(ステップS3)、主画像から副画像として取り出すべきエリアを選択するエリア選択モードか否かを判定する(ステップS4)。ステップS2において、副画像作成モードでなければ、後述するステップS13の処理に移行する。

【0053】ステップS4において、エリア選択モードであれば、エリア選択モードであることを表示するとともに、その旨を示すフラグをセットし(ステップS5)、画像を縮小する画像縮小化モードか否かを判定する(ステップS6)。またエリア選択モードでないときもステップS6に移行する。ここで、画像縮小化モードであれば、画像縮小化モードである旨の表示とフラグセットを行なった後(ステップS7)、また、画像縮小化モードでないときは、次に画像圧縮モードか否かを判定する(ステップS8)。上記縮小化により、小サイズで全体イメージをつかむことができる。

【0054】ステップS8において、画像圧縮モードで

あれば、圧縮の際に用いられる手法として、圧縮率を一定化する手法と、サイズ（データ量）を一定化する手法のいずれの手法が設定されているのかを判定するため、サイズ一定モードか否かを判定する（ステップS9）。ここで、サイズ一定モードであれば、圧縮後、サイズ一定である旨を表示するとともにフラグをセットし（ステップS10）、サイズ一定モードでなければ、圧縮率一定モードであるから圧縮率一定モードである旨を表示するとともにフラグをセットする（ステップS11）。ステップS8で画像圧縮モードでないと判定されると、非圧縮モードである旨を表示するとともにフラグをセットする（ステップS12）。

【0055】ステップS10～S12の処理の後、操作部18からの操作による操作入力が検出され（ステップS13）、パワーOFFを判定し（ステップS14）、パワーOFFであれば、パワーをOFFとして動作を終了し、パワーOFFでなければ、入力操作に対応する各種の処理を実行して（ステップS15）、ステップS13の処理に戻る。

【0056】図13は、主画像データ記録後に副画像データを記録する場合の画像データ記録処理シーケンスを示すフローチャートである。

【0057】例えば、操作部18からの操作による記録指示を受けて処理が開始され、先ず、図1に示す光学系1、撮像回路2、クランプ回路3、A/D変換回路4による処理に続く、フレームメモリ11への書き込み処理を含む撮像処理が実行され（ステップS21）、フレームメモリ11から読み出した主画像データについてDCT/I DCT回路12及びコーダ/デコーダ13による主画像圧縮処理が実行された後（ステップS22）、圧縮された主画像データがICメモリカード15に記録される（ステップS23）。次に、副画像を作成するか否かを判定する（ステップS24）。この判定は、例えば、図12のステップS3における副画像作成モードとしてセットされたフラグの有無に基づいて行なわれる。

【0058】ステップS24において、副画像を作成すると判定されると、副画像の作成処理が実行され（ステップS25）、ICメモリカードへの副画像記録処理（ステップS26）の後、ファイルメントナンス処理を実行して（ステップS27）、処理を終了する。ステップS24において、副画像を作成しないと判定されたときには、そのままステップS27のファイルメントナンス処理が実行される。ファイルメントナンス処理としては、例えば、ファイルをDOSフォーマットで管理して記録する場合には、ディレクトリエンタリ、FAT等のフォーマット書き込み処理がある。

【0059】図14は、図13のステップS25における副画像作成処理の作成シーケンスを示すフローチャートである。先ず、主画像に対する副画像作成エリアを選択するエリア選択モードか否かを判定し（ステップS3

1）、エリア選択モードであれば、エリアのサイズを変更するエリアサイズ変更処理（ステップS32）し、エリアの位置を変更するエリア位置変更処理（ステップS33）を実行した後、ステップS34の判定を行なうが、この場合、ステップS31において、エリア選択モードでないと判定した場合にも、同様に、画像を縮小するか否かを判定する。ここで、画像を縮小化すると判定されたときには、フレームメモリ11からの画像データの間引き読み出し等により画像の縮小化処理を実行した後（ステップS35）、またステップS34において、画像を縮小化しないと判定したときは、画像を圧縮するか否かを判定する（ステップS36）。ここで、画像を圧縮すると判定すると、圧縮の際、圧縮率を一定化するかサイズ（データ量）を一定化するかを判別するために、サイズ一定が指示されているか否かを判定する（ステップS37）。

【0060】ステップS37において、サイズ一定と判定されれば、圧縮後のサイズを一定とした圧縮処理を実行し（ステップS38）、サイズ一定と判定されなければ、圧縮率を一定として圧縮処理を実行して（ステップS39）、処理を終了する。ステップS36において、画像を圧縮しないと判定されると、フレームメモリ11から読み出した画像データを圧縮せずに、例えば、パソコン処理に必要なフォーマットへの変換等の非圧縮データ変換処理を実行して（ステップS40）、処理を終了する。この場合、カメラ内で画像データを扱うときには上記変換処理は実行せずに、そのまま画像データはICメモリに書き込まれる。縮小圧縮画像の作成は、DCT/I DCT回路12から出力される直交係数のうちDC成分のみを記録することにより、1/8縮小画像を得ても良い。この処理により、通常の間引き処理による縮小画像よりも再現性の高い、良好な画質が得られるばかりでなく、メモリ制御は主画像も副画像も同様で良いので、回路が簡略化される。

【0061】上記した図14に示す例では、副画像生成手段として、エリア選択手段、画像縮小手段、画像圧縮手段の3つの具体的な副画像生成手段を有しており、操作者が、隨時任意にこれらの3つの手段を取捨選択するようにして所望の副画像を生成するように構成してあるが、本発明に於いては上記した例に限定されることなく、例えば上記3つの手段のうちの1つ乃至は2つの手段を有するものや、或いは、上記3つの手段の処理順序を適宜入れ換えて構成しても勿論良いものである。この場合、先に処理される副画像生成手段を第1の副画像生成手段とし、この後に処理される副画像生成手段を第2の副画像生成手段とするものであるが、この第1の副画像生成手段と第2の副画像生成手段による現実のデータの処理タイミングについては、先のフレームメモリ11上で同時に処理したり又は時分割による処理を行なうことの何れもが含まれる。

【0062】この非圧縮データ変換処理の手順が図15のフローチャートに示されている。図15において、先ず、当該コンピュータのフォーマットで記憶するか否かを判定し（ステップS41）、当該コンピュータのフォーマットでなければ、そのまま処理を終了し、当該コンピュータのフォーマットであれば、パソコン用フォーマットに変換して（ステップS42）、処理を終了する。非圧縮時のデータ記録方式としては、RGB方式とYCbCr方式の2つが一般的だが、RGB時はパソコンでの再生に適し、YCbCr時はカメラでの再生に適する。

【0063】図13のステップS26における副画像記録処理は、図16に示すフローチャートの手順で実行される。すなわち、画像書き込みアドレスを作成し（ステップS51）、作成されたアドレスに副画像データを書き込み（ステップS52）、ファイルヘッダーに副画像開始アドレスを書き込み（ステップS53）、迅速な再生を可能とする。

【0064】ファイルヘッダーへのデータの書き込みは図4でも説明したが、その処理手順は図17に示すように、先ず、ファイルヘッダーを解釈し（ステップS61）、副画像毎のオプションタブルを作成し（ステップS62）、このタブルに副画像データを書き込み（ステップS63）、タブルメンテナンスを実行して（ステップS64）、処理を終了する。このタブルメンテナンスは、書き込みが完了した後に定まるファイルヘッダーの大きさを書き込むような処理である。

【0065】図18は、図5に示す副画像データのJPEGヘッダーへの記録処理手順を示すフローチャートである。先ず、JPEGヘッダーを解釈（JPEGフォーマットを解釈）し（ステップS71）、アプリケーション（APP）マーカーを作成し（ステップS72）、作成されたAPPマーカに副画像データを書き込む（ステップS73）。

【0066】図19は、図6に示すリレーショナルファイルを用いた画像データ間の関連付けを行なう副画像記録シーケンスを示すフローチャートである。先ず、副画像データファイルを作成し（ステップS81）、リレーショナルファイルの有無を判定する（ステップS82）、ここで、リレーショナルファイルが有れば、リレーショナルファイルを読み込み、解釈した後（ステップS83）、無ければ、リレーショナルファイルを作成した後（ステップS85）、主画像データとの関連情報を書き込んで（ステップS84）、処理を終了する。

【0067】図20は、図7に示すファイルヘッダーによる関連付けを行なう副画像記録シーケンスを示すフローチャートである。このシーケンスでは、副画像データファイルを作成し（ステップS91）、主画像データファイルヘッダーを解釈した後（ステップS92）、主画像ファイルヘッダーへ関連情報を書き込んで（ステップS93）、処理を終了する。

(10)
18

【0068】図21は、図8に示すファイル名による関連付けを行なう副画像記録シーケンスを示すフローチャートである。本シーケンスでは、ファイル名構成を確認して、その構成と矛盾しない適切なファイル名を作成し（ステップS101）、作成されたファイル名で副画像データファイルを作成して（ステップS102）、処理を終了する。

【0069】図22は、図9に示すようにディレクトリでの関連付けを行なう副画像記録シーケンスを示すフローチャートである。先ず、ディレクトリの有無を判定し（ステップS111）、有れば、副画像用ディレクトリを検索した後（ステップS112）、副画像の有無を判定する（ステップS113）。ここで、副画像が有れば、ステップS111の処理に戻り、次のディレクトリを検索し、無ければ副画像データファイル書き込み処理を実行して（ステップS114）、処理を終了する。また、ステップS111において、ディレクトリが無いと判定されると、副画像用ディレクトリを作成して（ステップS115）、ステップS114の処理に移行する。

【0070】図23は、図10に示すように副画像用一括ファイルを利用した副画像データを記録するシーケンスを示すフローチャートである。本シーケンスでは、先ず、副画像ファイルの有無を判定し（ステップS121）、有れば、副画像一括ファイルを検索して（ステップS122）、副画像の枚数やファイルヘッダー中に書き込まれているデータの確認等を行ない、副画像データ記録開始アドレスを作成する（ステップS123）。ステップS121において、副画像ファイルが無いと判定されると、副画像一括ファイルを作成して（ステップS124）、ステップS123の処理に移行する。ステップS123の処理の後、副画像データを書き込み（ステップS125）、主画像データとの関連情報を書き込んで（ステップS126）、処理を終了する。

【0071】次に、デジタルスチルカメラによる連写時の動作について図24を参照して説明する。シャッターボタン押下等に応答して記録動作が開始され、先ず、主画像データを得るための撮像処理を実行し（ステップS131）、得られた主画像データを圧縮し（ステップS132）、主画像データを記録した後（ステップS133）、副画像作成モードか否かを判定する（ステップS134）。ここで、副画像作成モードであれば、連写が設定されているか否かを判定し（ステップS135）、連写が設定されていれば、副画像の作成条件を判定する（ステップS136）。この判定は、連写により得られる主画像のうち、どの画像についての副画像を作成するかを決定するための処理である。

【0072】その後、副画像を作成するか否かをフラグを検出することにより判定し（ステップS137）、副画像を作成するのであれば、副画像作成及び記録処理を実行し（ステップS138）、上述と同様なファイルメ

ンテナンス処理を実行する（ステップS139）。また、ステップS134において、副画像作成モードでないと判定された場合及びステップS137において、副画像を作成しないと判定された場合は、そのままステップS139の処理に移行し、ステップS135において、連写でないと判定された場合は、ステップS138の処理に移行する。ステップS139においてファイルメントナンス処理を実行した後、続けて記録するか（連写動作続行）否かを判定し（ステップS140）、続けて記録すると判定された場合には、ステップS131の撮像処理に戻り、続けて記録しないと判定された場合には、処理を終了する。

【0073】図25には、図24のステップS136の連写時の副画像作成条件を判定するシーケンス例がフローチャートとして示されている。本例は、連写で得られる複数の主画像のうち1枚目の主画像について副画像を作成する場合の動作を示し、作成する副画像は、複数の主画像のうちどの1枚を対象としても良い。

【0074】すなわち、先ず、副画像を作成すべき主画像が得られているか否かを、連写1枚目か否かを判定し（ステップS141）、連写1枚目であれば副画像作成フラグをセットして（ステップS142）、処理を終了し、1枚目でなければ、副画像作成フラグをクリアして（ステップS143）、処理を終了する。尚、この例に於ける副画像を作成すべき主画像を、連写の最後の1枚目に設定してもよいものである。

【0075】図26は、図25とは異なり、連写速度に合わせて複数の主画像から副画像を作成する主画像を自動的に選択して作成するシーケンスを示すフローチャートである。本例は、連写モードとして高速連写モードと低速連写モードが設定されており、高速連写モードでは4枚に1枚の主画像について、低速連写モードでは2枚に1枚の主画像についての副画像を得る例を示している。

【0076】動作開始後、連写が1枚目か否かを判定し（ステップS151）、1枚目であれば、カウンタの値*i*を0に初期化し（ステップS152）、連写が高速連写モードか否かを判定する（ステップS153）。また、ステップS151において、1枚目でないと判定すると、ステップS153の処理にそのまま移行する。

【0077】ステップS153において、高速連写モードであると判定されたときには、カウンタ値*i*が2より大きいか否かを判定し（ステップS154）、大きければ、副画像作成を指示するため副画像作成フラグをセットした後（ステップS155）、カウンタ値*i*を0に設定して（ステップS156）処理を終了する。

【0078】ステップS153において、低速連写モードであると判定されると、カウンタ値*i*が0より大きいか否かを判定し（ステップS157）、大きければ、ステップS155の処理に移行し、0より大きくなけれ

ば、副画像作成フラグをクリアし（ステップS158）、カウンタ値*i*を1だけインクリメントして（ステップS159）、処理を終了する。ステップS154において、カウンタ値*i*が2より大きくなれば、ステップS158の処理に移行する。

【0079】本実施例では、カウンタ値*i*を最初に0にリセットし、高速連写時にはステップS154で“2”との比較、低速連写時にはステップS157で“0”との比較を行なうことにより、高速連写時には4枚に1枚、低速連写時には2枚に1枚の副画像記録を自動的に指示、作成することができる。

【0080】上述の処理により副画像データがICメモリカード等の記録媒体に記録されるが、記録された副画像データは、図1の電子ビューファインダー8や外部端子EXTに接続されているモニタ画面上に再生され、記録画像情報の検索性が向上される。

【0081】図27には、モニタ上の主画像が表示されている画面内に副画像を同時に表示させる、いわゆるピクチャーINピクチャーの表示例が示されている。

【0082】また、モニタ上に表示されている主画像画面の一部（右上部）にコマ番号と副画像の個数情報をキャラクタ表示する例が図28に示されている。

【0083】更に、モニタ上に表示されている主画像から、所望により副画像として取り出すエリアを選択エリアとしてエリアの大／小とともに設定する例が図29と図30に示されている。

【0084】図29（A）の表示主画像に対して、選択エリアで指定されている中央部分の画像が、エリアの大／小指定に基づいて、取り出され副画像として同図（B）に示すように表示される。

【0085】また、図30（A）の主画像に対して選択された選択エリアの画像がエリア大／小指定及びエリア位置指定に基づいて、同図（B）に示すように表示される。

【0086】図31は、図29と図30が主画像の一部を副画像としているのに対して、主画像を縮小し、更に圧縮処理した画像を副画像として用いる例を示し、同図（A）の主画像を、データサイズ30kBで縮小した副画像が同図（B）に、データサイズ30kBで縮小した副画像を更に圧縮することによってデータサイズ1kBにしたもののが同図（C）に示されている。

【0087】図32は、画像の再生シーケンスを示すフローチャートである。この再生シーケンスについて以下説明する。再生モード（コマ送りを含む）が設定され、再生動作が開始されると、先ず、ファイルの判別処理を行なって（ステップS161）、再生しようとしている当該コマのファイルを判別し、再生可能か否かを判定する（ステップS162）。ここで、再生可能であれば、その画像が主画像か否かを判定し（ステップS163）、主画像であれば、当該主画像を再生処理した後

(ステップS164)、副画像の有無を判定する(ステップS165)。ステップS165において、副画像があると判定されると、図27や図28に示すように副画像情報を表示する処理を行なって(ステップS166)、処理を終了する。ステップS165において、副画像が無いと判定されると、副画像無しでの表示処理を実行する(ステップS167)。

【0088】ステップS163において、主画像でないときは、副画像であるから、副画像のみ再生処理して(ステップS168)、処理を終了する。また、ステップS162において、再生が不可能と判定されたときは、当該ファイルは音声ファイルやパソコンのデータファイル等であるから、再生表示が不可能である旨の警告表示処理を実行して(ステップS169)、処理を終了する。

【0089】図33には、再生時の副画像作成シーケンスのフローチャートが示されている。このシーケンスは、主画像が既に再生、表示されており、これから副画像を作成する例を想定している。この例によれば、装置が記録状態にあるときに副画像を生成するのに比べて、主画像をゆっくり観察しながら副画像を所望に応じて選択できるので、より適確な副画像が得られる。

【0090】副画像の作成動作が開始されると、副画像が既に有るか否かを判定し(ステップS171)、副画像が既に有れば、副画像の追加準備処理を実行する(ステップS172)。この準備処理は、副画像データの書き込みフォーマット、主画像データへの副画像データの埋め込み等の準備処理である。ステップS171において、副画像が無いときには、ステップS172をスキップしてステップS173へ移行する。副画像作成処理(ステップS173)、副画像記録処理(ステップS174)を実行した後、ファイルメンテナンス処理(ステップS175)を実行して処理を終了する。

【0091】ところで、インターバル再生時やマルチ再生時には、副画像のみを再生して、高速再生検索時に有効となり、副画像がないときは、スキップ、ミュート、キャラクタ表示等を行なうことができる。

【0092】次に、副画像データの消去シーケンスを図34のフローチャートを参照して説明する。消去コマンド入力等により消去動作が開始されると、先ず、副画像のみを消去するモードであるか否かを判定し(ステップS181)、そうであれば、副画像の有無を判定する(ステップS182)。ここで、副画像があれば、副画像は1枚か否かを判定し(ステップS183)、1枚であれば、当該副画像を消去して(ステップS184)、処理を終了し、1枚でなければ、複数枚の副画像のうちどの副画像を消去するかを選択する副画像選択処理を実行して(ステップS186)、ステップS184の処理に移行する。

【0093】ステップS182において、副画像が無い

と判定されると、副画像が無い旨をモニタ上に表示して警告する(ステップS187)。また、ステップS181において、副画像のみの消去モードでないと判定されると、主画像及び副画像の消去を行なって(ステップS188)、処理を終了する。以上の処理において、主画像のみについての消去も可能であることは勿論である。

【0094】図35は、別ファイルで副画像を書き込んだときの一括消去を行なうための実施例についてのシーケンスを示すフローチャートである。

【0095】一括ファイルに副画像を記録した場合には、一括ファイルは同時消去可能であるが、別ファイルのときには主画像の消去に伴ない副画像も消去したい要望がある。本実施例は、この要望を満足させるシーケンスである。

【0096】先ず、副画像を検索して、消去したい主画像に対応する副画像を検索する処理を、例えば、主画像のファイルヘッダーやリレーションナルファイルを用いて実行する(ステップS191)。次に、副画像の有無を判定し(ステップS192)、有れば、当該副画像を消去して(ステップS193)、ステップS191の処理に戻る。ステップS192において、副画像が無いと判定されると、主画像を消去して(ステップS194)、処理を終了する。

【0097】次に、上述のような処理で得られた副画像データを電話回線等の有線回線や無線回線を介して伝送する画像取扱装置の実施例について説明する。

【0098】図36は、副画像データと主画像データの伝送手順を示すフローチャートである。同図において、送信側では、送信動作のスタート後、先ず、副画像データのみを送信する(ステップS201)。受信側では、この副画像データを受信後、再生して(ステップS301)、必要な画像を選択し(ステップS302)、選択した画像のコマ番号やファイル名等の指定情報を送信側に伝送する(ステップS303)。

【0099】この指定情報を受信した送信側では、指定されたコマ番号の主画像データを受信側に送信する(ステップS202)。受信側では、指定主画像データを受信し、再生して確認した後、動作終了を知らせる終了信号を送信側に送信して(ステップS304)、処理を終了する。

【0100】図37は、副画像を受信側からの要求に応じてリアルタイムで自動作成して送信する実施例のフローチャートである。

【0101】送信側では、縮小した副画像のデータを自動作成し(ステップS211)、作成した副画像データを送信する(ステップS212)。受信側では、この副画像を受信後、再生し(ステップS311)、画像の副画像作成モード(例えば、エリア選択等)を選択し(ステップS312)、選択した作成モードを送信側に伝送する(ステップS313)。

【0102】送信側では、受信した作成モードで副画像を自動作成し（ステップS213）、作成した副画像を送信する（ステップS214）。受信側では、この副画像を受信後、再生し（ステップS314）、通信終了信号を送信側に伝送して（ステップS315）、処理を終了する。

【0103】図37に示すシーケンスについて図38を参照して具体的に説明すると、送信側で主画像（A1）から間引き処理により縮小画像（A2）を自動作成して副画像として伝送する（ステップS211, S212）。

【0104】受信側では、この副画像を受信、再生し、再生された副画像（B1）に基づいて必要とする領域部分をエリア選択により選択し（B2）、エリア選択情報を送信側に伝送する（ステップS311～S313）。

【0105】送信側では、受信したエリア情報に基づいて、主画像（C1）のエリア選択部についての副画像（C2）を自動作成して受信側に伝送する（ステップS213, S214）。

【0106】最後に、受信側では、受信した副画像を再生して（D）に示すような要求に合致した副画像を再生して、通信終了信号を伝送する（ステップS314, S315）。

【0107】

【発明の効果】上述した実施態様によれば以下の如き各構成が得られる。

（1）撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する副画像生成手段を備えて成る画像取扱装置。この構成によれば、検索性が格段に改善される。

【0108】（2）撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して第1の副画像として生成する第1の副画像生成手段と、該第1の副画像生成手段に基づく第1の副画像の画像情報のうちの一部の画像情報を取り出して第2の副画像として生成する第2の副画像生成手段を備えて成る画像取扱装置。この構成によれば、副画像から更に副画像を作成することによって、より副画像作成の自由度が増し、必要なデータのみ取り出すことができる。

【0109】（3）前記副画像生成手段は、前記主画像の特定エリアの情報を前記一部の画像情報とするエリア選択手段を有する画像取扱装置。この構成によれば、不必要的データが削除され、検索性が改善される。

【0110】（4）前記エリア選択手段は、前記特定エリアのサイズを変更するサイズ変更手段と、前記特定エリアの位置を変更するエリア位置変更手段の少なくとも一方の手段を有する（3）の画像取扱装置。この構成によれば、副画像から更に副画像を作成することによっ

て、より副画像作成の自由度がまし、必要なデータのみ取り出すことができ、領域選択がより柔軟になる。

【0111】（5）前記副画像生成手段は、前記主画像を縮小した縮小画像情報を前記一部の画像情報とする画像縮小手段を有する（1）の画像取扱装置。この構成によれば、小さいデータサイズで全体のイメージがわかり、検索性が改善される。

【0112】（6）前記副画像生成手段は、前記主画像のデータを圧縮して得られる圧縮画像情報を前記一部の画像情報とする画像圧縮手段を有する（1）の画像取扱装置。この構成によれば、ほとんど同じ画質でより小さいデータサイズにことができ、検索性が改善される。

【0113】（7）前記第1の副画像生成手段は、前記主画像の特定エリアの情報を前記一部の画像情報とする第1エリア選択手段、又は前記主画像を縮小した縮小画像情報を前記一部の画像情報とする第1画像縮小手段を有し、前記第2の副画像生成手段は、前記第1の副画像の特定エリアの情報を前記一部の画像情報とする第2エリア選択手段、前記第1の副画像を縮小した縮小画像情報を前記一部の画像情報とする第2画像縮小手段又は前記第1の副画像のデータを圧縮して得られる圧縮画像情報を前記一部の画像情報とする画像圧縮手段の中から選ばれる少なくとも一つの手段を有する（2）の画像取扱装置。この構成によれば、よりサイズを小さくして本当に必要なデータを作成することができ、検索性も改善される。

【0114】（8）前記画像圧縮手段は、画像データを直交変換してAC直交係数とDC直交係数を出力する手段を有し、前記DC直交係数のみを用いて副画像を生成する（6）または（7）の画像取扱装置。この構成によれば、単なる縮小化よりも画質が向上し、メモコンハードも簡略化され、検索性も改善される。

【0115】（9）前記画像圧縮手段は、圧縮後のデータ量を一定として前記圧縮を行なう（6）または（7）の画像取扱装置。この構成によれば、副画像のデータ量を一定にできるのでアドレスの管理が容易にでき、検索性も改善される。

【0116】（10）前記画像圧縮手段は、圧縮率を一定として前記圧縮を行なう（6）、（7）の画像取扱装置。この構成によれば、画質を一定にできるので、どのような絵を撮影しても、記録画が破綻する事なく、検索性も改善される。

【0117】（11）撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報のうちの一部の画像情報から成る副画像のデータとを生成し、記録媒体に記録される前記主画像データの後に、前記副画像のデータを記録する手段を備えて成る画像取扱装置。この構成によれば、同一ファイルへの記録時などは、主画像を先に書くことに

よって副画像を追加する時や副画像だけを消去する時などに便利である。主画像が先頭にあるので、パソコン用の一般ソフト等で再生する時に主画像を再生することができる。

【0118】(12) 前記副画像生成手段は、生成した副画像のデータを当該コンピュータのフォーマットに適合するフォーマットのデータに変換するデータフォーマット手段を有する(1)の画像取扱装置。この構成によれば、パソコンでデータを取り扱う時、より簡単に、且つより高速に扱うことが可能であり、検索性も改善される。

【0119】(13) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータを、ファイルヘッダーをもつ画像ファイルのデータ記録部に書き込み、前記ファイルヘッダーに前記副画像の書き込み開始アドレスを書き込む手段を備えて成る画像取扱装置。この構成によれば、関連ファイルが一つのファイルになるので、移動やコピー、削除等時に主画像と副画像を常に一緒に扱うことができ、コマ番号が従来どうり管理できる。

【0120】(14) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、生成された副画像のデータをファイルヘッダーをもつ画像ファイルに書き込む際、前記ファイルヘッダーに記録されているタプル情報を解釈し、副画像毎のオプションタップルを作成し、作成されたオプションタップルに前副画像のデータを書き込む手段を備えて成る画像取扱装置。この構成によれば、同一ファイルへの記録時などは、主画像を先に書くことによって副画像を追加する時や副画像だけを消去する時などに便利である。主画像が先頭があるので、パソコン用の一般ソフト等で再生する時に主画像を再生することができる。また、ファイルヘッダーを削除すれば主画像だけ残るので、主画像の抜き出しに便利である。

【0121】(15) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報を取り出して副画像として生成する手段と、前記主画像のデータをパソコン用画像データフォーマットに変換する手段と、生成された副画像データを前記変換された個々の主画像データ毎の画像ヘッダ一部に書き込む際、前記個々の画像ヘッダ一部に記録されている情報を解釈して前記画像ヘッダ一部毎に前記副画像のデータを書き込む手段を備えて成る画像取扱装置。この構成によれば、同一ファイルへの記録時などは、主画像を先に書くことによって副画像を追加する時や副画像だけを消去する時などに便利である。主画像が先頭があるので、パソコン用の一般ソフト等で再生する

時に主画像を再生することができる。また、ファイルヘッダーと違い、1画像に1つの画像ヘッダーということを生かして、同一ファイルに主が複数ある様な場合、それぞれに副画像を規定することができる。

【0122】(16) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録する手段とを備えて成る画像取扱装置。この構成によれば、1枚の画像が1つのファイルになるので、ファイルイメージで画像の管理が可能である。

【0123】(17) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ及び副画像のデータの関連付け情報を特定の情報ファイルとしてのリレーションナルファイルに記録する手段とを備えて成る画像取扱装置。この構成によれば、関連付け情報を一括されているので、管理が簡単に行なえる。

【0124】(18) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータが記録されている画像ファイルのファイルヘッダーに前記副画像のデータの関連情報を記録することを特徴とする画像取扱装置。この構成によれば、主画像から副画像、副画像から主画像という様にイモズル式に関連がわかるので、余分なファイルを読まなくてもよく、高速に検索が行なえる。

【0125】(19) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータに基づく前記複数の副画像のデータは、互いに識別可能なファイル名を付して記録する手段とを特徴とする画像取扱装置。この構成によれば、主画像だけ再生、又は副画像だけ再生等がより簡単にでき、名前だけで主画像と副画像の区別がつき、関連もわかるので、再生しなくても簡単に管理ができる。

【0126】(20) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそ

それに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、互いに識別可能な異なるディレクトリに記録する手段とを備えて成る画像取扱装置。この構成によれば、関連付け情報が一括されているので管理が簡単に行なえ、コマ番号の管理が従来と同じにできる。

【0127】(21) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記主画像のデータ及び生成された複数の副画像のデータをそれぞれ別個の画像ファイルに記録するとともに、前記主画像のデータ、前記副画像のデータのうち少なくとも副画像のデータは、一つの画像ファイルに一括して記録する手段とを備えて成る画像取扱装置。この構成によれば、主画像だけ、又は副画像だけの再生等に便利であり、特に副画像だけ再生し、インデックス再生時にその効果を発する。更に、副画像の一括消去にも有効である。

【0128】(22) 一定時間毎隔で、それぞれが所定領域の画像から成る複数の主画像が連続的に得られる画像取扱装置において、前記連続的に得られる複数の主画像のうち特定の主画像についてのみ当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段を備えて成る画像取扱装置。この構成によれば、連写は同じ様な一連の絵なので、代表的な画像に対する副画像を作成することによって、より容量を節約する。

【0129】(23) 前記特定の主画像は、前記連続的に得られる複数の主画像のうちの最初の一枚または最後の一枚である(22)の画像取扱装置。この構成によれば、副の作成が1回だけで済むので、連写のスピードがより高速にできる。また、関連付け情報が一括されているので管理が簡単に行なえ、コマ番号の管理が従来と同じにできる。

【0130】(24) 前記特定の主画像は、前記一定時間毎隔の長さに応じて選択され、前記一定時間毎隔が短い又は長いほど前記特定の主画像に対応する複数の主画像の枚数が減少又は増加するようにした(22)の画像取扱装置。この構成によれば、連写のスピードが遅い時は時間的に余裕があるので、副画像の作成間隔を短くすることが可能となり、連写のあき時間をうまく使用して副画像を作成することができる。

【0131】(25) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成す

る手段を有するとともに、前記主画像の再生、表示時に、対応する副画像の有無情報を表示する画像取扱装置。この構成によれば、主画像を再生する時に副画像の有無を表示できれば、より使いがっても向上することができる。

【0132】(26) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像と、該主画像の画像情報の一部の画像情報から成る副画像を生成する手段を有するとともに、該手段は、前記主画像の再生、表示時に、複数の対応する副画像を生成する画像取扱装置。この構成によれば、再生画を見ながら副画像を作成でき、より自由度の高い副画像を作成することができる。

【0133】(27) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている特定の副画像のデータのみ消去する手段を備えて成る画像取扱装置。この構成によれば、副画像のみの消去ができる、不要な副画像を消去し、また作成し直すといったことも可能となる。

【0134】(28) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている複数の副画像を一括消去する手段を備えて成る画像取扱装置。この構成によれば、副画像だけの一括消去ができ、より使い勝手が向上する。

【0135】(29) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像のデータと、該主画像の画像情報の一部の画像情報から成る副画像のデータが記憶手段に記憶され、該記憶手段に記憶されている主画像と該主画像に対応する副画像を一括して消去する手段を備えて成る画像取扱装置。この構成によれば、主画像と副画像が別ファイルの時などは、主画像を消去すると自動的に副画像も消去されると、より使い勝手が向上する。

【0136】(30) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備えて成る画像取扱装置。この構成によれば、主画像に対して副画像の方がデータサイズが小さいので伝送時には有利である。

【0137】(31) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、前記伝送された副画像のデータを受信した受信側からの応答信号を受け、該応答信号に基

ついて前記伝送した副画像に対応する主画像のデータを伝送する画像取扱装置。この構成によれば、先ず、サイズの小さい副画像を送り、それから、相手の要望に合わせて主画像を送ることにより、本当に必要な主画像だけを送れば良いので、より経済的である。

【0138】(32) 撮影により生成され乃至は外部より供給された所定領域の画像から成る主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段と、前記生成された副画像のデータを伝送する伝送手段とを備え、前記伝送された副画像のデータを受信した受信側からの作成モードを指定する指定信号を受け、該指定信号で指定された副画像の作成モードに従って前記副画像を生成して伝送することを特徴とする画像取扱装置。この構成によれば、受信側は、必ずしも主画像のすべてのデータを必要とするわけではないので、受信側の要望に合わせて副画像を作成して、その副画像を伝送することによって本当に必要なデータのみを伝送すれば良い。

【0139】(33) 撮影により生成され乃至は外部より供給された所定領域の画像から成る複数の主画像のそれぞれに対応して、当該主画像の画像情報のうちの一部の画像情報から成る副画像を生成する副画像生成手段を備え、前記主画像のデータ又は生成された副画像のデータを同一の画像ファイルにそれぞれ書込む際、各データの書き込み開始アドレスが 2^n (nは整数)で表わされるアドレスである画像取扱装置。この構成によれば、画像データ自体の独立性が増すので、各データごとの汎用性が向上する。また、画像データだけの抜き出しや消去等で役に立つ。更に、先頭アドレスの検索性も改善される。

【図面の簡単な説明】

【図1】本発明による画像取扱装置のデジタルスチルカメラへの適用例を示す構成ブロック図である。

【図2】本発明の実施例における3種類の記録態様例を示す図である。

【図3】本発明の実施例におけるファイルヘッダーの記入例を示す図である。

【図4】本発明の実施例におけるファイルヘッダーへの記録フォーマット例を示す図である。

【図5】本発明の実施例における主画像データがJPEG方式で圧縮されて記録される場合のJPEGヘッダーへの記録を示す図である。

【図6】本発明の実施例における副画像データを主画像データと別ファイルに記録し、リレーションナルファイルに当該データの関連付けデータを記録する例を示す図である。

【図7】本発明の実施例における副画像データを主画像データと別ファイルに記録し、主画像データ用のファイルのファイルヘッダーに、副画像データファイルについての関連情報を記録する例を示す図である。

【図8】本発明の実施例における主画像データと副画像データをそれぞれ別ファイルとして記録し、これらデータの識別、関連付けをファイル名により行なう例を示す図である。

【図9】本発明の実施例における主画像データと副画像データを別ファイルに記録し、各ファイルの関連付けをディレクトリで行なうディレクトリ構造例を示す図である。

【図10】本発明の実施例における主画像データと副画像データを別ファイルに記録し、主画像ファイルは別個のファイルとするが、副画像ファイルは一括ファイルに格納する例を示す図である。

【図11】本発明の実施例における画像データ記録開始アドレスをクラスタ単位で指定する例を示す図である。

【図12】本発明の実施例によるデジタルスチルカメラの動作シーケンスを示すフローチャートである。

【図13】本発明の実施例における主画像データ記録後に副画像データを記録する場合の画像データ記録処理シーケンスを示すフローチャートである。

【図14】図13のステップS25における副画像作成処理の作成シーケンスを示すフローチャートである。

【図15】図14における非圧縮データ変換処理の手順を示すフローチャートである。

【図16】図13のステップS26における副画像記録処理手順を示すフローチャートである。

【図17】ファイルヘッダーへのデータの書き込みの処理手順を示すフローチャートである。

【図18】図14に示す副画像データのJPEGヘッダーへの記録処理手順を示すフローチャートである。

【図19】図6に示すリレーションナルファイルを用いた画像データ間の関連付けを行なう副画像記録シーケンスを示すフローチャートである。

【図20】図7に示すファイルヘッダーによる関連付けを行なう副画像記録シーケンスを示すフローチャートである。

【図21】図8に示すファイル名による関連付けを行なう副画像記録シーケンスを示すフローチャートである。

【図22】図9に示すディレクトリでの関連付けを行なう副画像記録シーケンスを示すフローチャートである。

【図23】図10に示す副画像用一括ファイルを利用した副画像データを記録するシーケンスを示すフローチャートである。

【図24】本発明の実施例におけるデジタルスチルカメラの連写時の動作シーケンスを示すフローチャートである。

【図25】図24のステップS136の連写時の副画像作成条件を判定するシーケンス例を示すフローチャートである。

【図26】本発明の実施例における連写スピードに合わせて複数の主画像から副画像を作成するシーケンスを示す

すフローチャートである。

【図27】本発明の実施例におけるモニタ上の主画像が表示されている画面内に副画像を同時に表示させるピクチャーバイナリ表示例を示す図である。

【図28】本発明の実施例におけるモニタ上に表示されている主画像画面の一部(右上部)にコマ番号と副画像の個数情報をキャラクタ表示する例を示す図である。

【図29】本発明の実施例におけるモニタ上に表示されている主画像から、所望により副画像として取り出すエリアを選択エリアとしてエリアの大/小とともに設定する例を示す図である。

【図30】本発明の実施例におけるモニタ上に表示されている主画像から、所望により副画像として取り出すエリアを選択エリアとしてエリアの大/小とともに設定する例を示す図である。

【図31】本発明の実施例における主画像を縮小し、更に圧縮処理した画像を副画像として用いる例を示す図である。

【図32】本発明の実施例における画像の再生シーケンスを示すフローチャートである。

【図33】本発明の実施例における再生時の副画像作成シーケンスを示すフローチャートである。

【図34】本発明の実施例における副画像の消去処理シーケンスを示すフローチャートである。

【図35】本発明の実施例における別ファイルで副画像を書き込んだときの一括消去を行なうシーケンスを示すフローチャートである。

* 【図36】本発明の実施例における副画像データと主画像データの伝送手順を示すフローチャートである。

【図37】本発明の実施例における副画像を受信側からの要求に応じてリアルタイムで自動作成して送信する処理手順を示すフローチャートである。

【符号の説明】

- | | |
|----|------------------------------|
| 1 | 光学系レンズ |
| 2 | 撮像回路 |
| 3 | クランプ回路 |
| 4 | A/D変換回路 |
| 5 | デジタルプロセス回路 |
| 6 | D/A変換回路 |
| 7 | 增幅回路 |
| 8 | 電子ビューファインダ |
| 9 | キャラクタジェネレータ |
| 10 | メモリコントローラ |
| 11 | フレームメモリ |
| 12 | DCT/IDCT(離散コサイン変換/逆離散コサイン変換) |
| 13 | コード/デコード |
| 14 | 補助メモリ |
| 15 | I Cメモリカード |
| 16 | データバスB1 |
| 17 | 表示部 |
| 18 | 操作部 |
| 19 | データ入出力部 |

*

【図1】

【図3】

【図2】

【図4】

【図5】

【図8】

【図6】

【図 7】

【図 10】

【図 9】

【図 16】

【図 17】

【図 11】

【図 15】

【図 18】

【図12】

【図13】

【図19】

【図20】

【図21】

【図22】

【図23】

【図25】

【図27】

【図24】

【図26】

【図28】

【図29】

【図30】

【図32】

【図33】

【図34】

【図35】

【図36】

【図37】

【図38】

