

NORX

A Parallel and Scalable Authenticated Encryption Scheme

Jean-Philippe Aumasson¹ (@veorq)
Philipp Jovanovic² (@daeinar)
Samuel Neves³ (@sevenps)

¹Kudelski Security, Switzerland ²University of Passau, Germany ³University of Coimbra, Portugal

DTU Compute, Copenhagen July 31, 2014

Outline

- 1. Motivation
- 2. Specification of NORX
- 3. Analysis of NORX
- 4. Conclusion

What is Authenticated Encryption?

Non-AE

Non-AE

 $C = E_K(\text{Let's meet at } 18:00)$

Non-AE

 $C = E_K(\text{Let's meet at } 18:00)$

Non-AE

AE

AE

 $(C, T) = AEE_K(Let's meet at 18:00)$

AE

 $(C, T) = AEE_K(Let's meet at 18:00)$

AE

$$(C, T) = AEE_K(Let's meet at 18:00)$$

$$AED_K(C', T) = (P', T'), T \neq T'$$

Images by https://xkcd.com

Eve

Types

- ▶ AE: ensure confidentiality, integrity, and authenticity of a message.
- ► AEAD: AE + ensure *integrity* and *authenticity* of associated data (e.g. routing information in IP packets).

Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (integrity)

Types

- ▶ AE: ensure confidentiality, integrity, and authenticity of a message.
- ► AEAD: AE + ensure *integrity* and *authenticity* of associated data (e.g. routing information in IP packets).

Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (integrity)

Crypto Disasters

Problems with Existing AEAD Schemes

- ▶ Interaction flaws: enc. ←→ auth. (generic composition)
- ► Weak primitives (e.g. RC4)
- ► Broken modes (e.g. EAXprime)
- No misuse resistant solutions
- **.** . . .
- ▶ More examples: http://competitions.cr.yp.to/disasters.html
- ⇒ Lots of room for improvements . . .

Crypto Disasters

Problems with Existing AEAD Schemes

- ▶ Interaction flaws: enc. ←→ auth. (generic composition)
- ► Weak primitives (e.g. RC4)
- ► Broken modes (e.g. EAXprime)
- No misuse resistant solutions
- **.**..
- ▶ More examples: http://competitions.cr.yp.to/disasters.html
- \Rightarrow Lots of room for improvements . . .

CAESAR

- Competition for Authenticated Encryption: Security,
 Applicability, and Robustness.
- ► **Goals**: Identify a portfolio of *authenticated ciphers* (one primitive) that
 - offer advantages over AES-GCM (the current de-facto standard) and
 - are suitable for widespread adoption.

Overview:

- March 15 2014 End of 2017
- 1st round: 57 submissions
- http://competitions.cr.yp.to/caesar.html

Further Information:

- AEZoo: https://aezoo.compute.dtu.dk
- Speed comparison: http://www1.spms.ntu.edu.sg/~syllab/speed

NORX

Main Design Goals

- ► High security
- Efficiency
- Simplicity
- Scalability

- Online
- Single pass
- Timing resistance
- High key agility

General

- ► Family of AEAD schemes
- ► Type: nonce-based stream cipher
- ▶ Mode: (parallel) MonkeyDuplex (introduced with Keccak)
- ► Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
- Name: "NO(T A)RX"

General

- ► Family of AEAD schemes
- ► Type: nonce-based stream cipher
- ▶ Mode: (parallel) MonkeyDuplex (introduced with Keccak)
- ► Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
- Name: "NO(T A)RX"

General

- ► Family of AEAD schemes
- ► Type: nonce-based stream cipher
- ▶ Mode: (parallel) MonkeyDuplex (introduced with Keccak)
- Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
- ► Name: "NO(T A)RX"

Parameters

▶ Word size: $W \in \{32,64\}$ bits

Number of rounds: 1 < R < 63

▶ Parallelism degree: $0 \le D \le 255$

► Tag size: $|A| \le 10W$ (default: 4W bits)

Encryption Mode

- Input: key K (4W bits), nonce N (2W bits), and message $M = H \parallel P \parallel T$ with H header, P payload, and T trailer.
- Output: encrypted payload C and authentication tag A.

Parameters

▶ Word size: $W \in \{32,64\}$ bits

Number of rounds: 1 < R < 63

▶ Parallelism degree: $0 \le D \le 255$

► Tag size: $|A| \le 10W$ (default: 4W bits)

Encryption Mode

Input: key K (4W bits), nonce N (2W bits), and message $M = H \parallel P \parallel T$ with H header, P payload, and T trailer.

▶ Output: encrypted payload C and authentication tag A.

Proposed Instances

	NORXW-R-D	Key size	Tag size	Classification
1	NORX64-4-1	256	256	standard
2	NORX32-4-1	128	128	standard
3	NORX64-6-1	256	256	high security
4	NORX32-6-1	128	128	high security
5	NORX64-4-4	256	256	high throughput

Target Platforms

NORX32: 8- to 32-bit CPUs, low-resource hardware

NORX64: 64-bit CPUs, high performance hardware

Proposed Instances

	NORXW-R-D	Key size	Tag size	Classification
1	NORX64-4-1	256	256	standard
2	NORX32-4-1	128	128	standard
3	NORX64-6-1	256	256	high security
4	NORX32-6-1	128	128	high security
5	NORX64-4-4	256	256	high throughput

Target Platforms

▶ NORX32: 8- to 32-bit CPUs, low-resource hardware

▶ NORX64: 64-bit CPUs, high performance hardware

MonkeyDuplex

The Encryption / Decryption Process

Figure: NORX in Sequential Mode (D = 1)

The Encryption / Decryption Process

Figure: NORX in Parallel Mode (D = 2)

The State

▶ NORX operates on a state of 16 W-bit sized words

	Size	Rate	Capacity
NORX32	512	320	192
NORX64	1024	640	384

► Arrangement of rate (data processing) and capacity (security) words:

s_0	s_1	s_2	s_3
s_4	s_5	s_6	s_7
s_8	s_9	s_{10}	s_{11}
s_{12}	s_{13}	s_{14}	s_{15}

Initialisation

▶ Load nonce, key and constants into state *S*:

u_0	n_0	n_1	u_1
k_0	k_1	k_2	k_3
u_2	u_3	u_4	u_5
u_6	u_7	u_8	u_9

► Parameter integration:

$$s_{14} \leftarrow s_{14} \oplus (R \ll 26) \oplus (D \ll 18) \oplus (W \ll 10) \oplus |A|$$

ightharpoonup Apply round permutation F^R to S

The Core Permutation F^R

The Permutation F

The Permutation G

1:
$$a \leftarrow (a \oplus b) \oplus ((a \wedge b) \ll 1)$$

$$2: d \longleftarrow (a \oplus d) \gg r_0$$

$$3: c \longleftarrow (c \oplus d) \oplus ((c \wedge d) \ll 1)$$

$$4: b \longleftarrow (b \oplus c) \ggg r_1$$

$$5: a \longleftarrow (a \oplus b) \oplus ((a \land b) \ll 1)$$

$$6:\ d\longleftarrow (a\oplus d)\ggg r_2$$

$$7:\ c\longleftarrow (c\oplus d)\oplus \big((c\wedge d)\ll 1\big)$$

8:
$$b \leftarrow (b \oplus c) \gg r_3$$

Rotation Offsets

- NORX32: $(r_0, r_1, r_2, r_3) = (8, 11, 16, 31)$
- NORX64: $(r_0, r_1, r_2, r_3) = (8, 19, 40, 63)$

Security Goals

Requirements for secure usage of NORX:

- 1. Unique nonces
- 2. Abort on tag verification failure

Expected security levels (in bits):

Security goal	NORX32	NORX64
Plaintext confidentiality	128	256
Plaintext integrity	128	256
Associated data integrity	128	256
Public message number integrity	128	256

Security Goals

Requirements for secure usage of NORX:

- 1. Unique nonces
- 2. Abort on tag verification failure

Expected security levels (in bits):

Security goal	NORX32	NORX64
Plaintext confidentiality	128	256
Plaintext integrity	128	256
Associated data integrity	128	256
Public message number integrity	128	256

Sponge Security Level

Classical Bound

$$\min\{2^{c/2},2^{|K|}\}$$

- NORX designed towards this bound
- ▶ Usage exponent e = 2W, i.e. 64 and 128
- Minimal expected security levels (c e 1): 127 and 255 bits

Improved Bound*

$$\min\{2^{b/2}, 2^c, 2^{|K|}\}$$

- For nonce-based sponges in the ideal permutation model
- Also includes NORX with $D \neq 1$
- ▶ Effects: rate +2W bits ($\approx +16\%$ performance)

^{*} P. Jovanovic, A. Luykx, and B. Mennink, Beyond 2^{c/2} Security in Sponge-Based Authenticated Encryption Modes, Cryptology ePrint Archive: Report 2014/373

Sponge Security Level

Classical Bound

$$\min\{2^{c/2}, 2^{|K|}\}$$

- NORX designed towards this bound
- ▶ Usage exponent e = 2W, i.e. 64 and 128
- Minimal expected security levels (c e 1): 127 and 255 bits

Improved Bound*

$$\min\{2^{b/2},2^c,2^{|K|}\}$$

- For nonce-based sponges in the ideal permutation model
- ▶ Also includes NORX with $D \neq 1$
- Effects: rate +2W bits ($\approx +16\%$ performance)

^{*} P. Jovanovic, A. Luykx, and B. Mennink, Beyond 2^{c/2} Security in Sponge-Based Authenticated Encryption Modes, Cryptology ePrint Archive: Report 2014/373

Performance of NORX

SW Performance (x86)

Platform	Implementation	cpb	MiBps
Ivy Bridge: i7 3667U @ 2.0 GHz	AVX	3.37	593
Haswell: i7 4770K @ 3.5 GHz	AVX2	2.51	1390

Table: NORX64-4-1 performance

SW Performance (ARM)

Platform	Implementation	cpb	MiBps
BBB: Cortex-A8 @ 1.0 GHz	NEON	8.96	111
iPad Air: Apple A7 @ 1.4 GHz	Ref	4.07	343

Table: NORX64-4-1 performance

SW Performance (SUPERCOP)

titan0	wintermate	sochr	hydra9	h6dragon	flops	hisandy	gce16	Boodyberry	hlmips
aegis1281	uesl 28 gcmvl	mores640128v1	aegis1281	prex6441v1	morus640128v1	morus640128v1	morus640128v1	perx6441v1	morus1280128v1
tiaoxiny l	ues256gcmv1	mores1280128v1	tiaoxinvl	morus640128v1	norx3241v1	morus1280128v1	morus1280256v1	porx6461v1	morus1280256v1
aegis128	nors6441v1	mores1280256v1	acgis128	porx3241v1	hslsivlovl	morus1280256v1	morus1280128v1	porx3241v1	halaistovi
aegis256	ncex6461v1	porx6441v1	segis256	morus1280128v1	prex6441v1	ncex6441v1	hal sivloy I	perx6444v1	wheelity1mr3fr1t256
kiasuneq128v1	noex3241v1	acgis1281	kiasmog128v1	morus1280256v1	morus1280128v1	noex3241v1	nora6441v1	ascon96v1	wheeshtv1mr3fr1t128
morus1280128v1	nors6444v1	norx6461v1	abrery1	norx6461v1	morus1280256v1	noex6461v1	halsivel	morus640128v1	norx3241v1
morusi 280256v1	morus640128v1	aogis128	morus1280128v1	hstaivlavt	norx3261v1	hslairíovi	ascon96v1	porx3261v1	negis1281
silverv1	perx3261v1	norx3241v1	deoxysneq128128v1	norx3261v1	aegis1281	aes128gcmv1	norx6444v1	aes128gcmv1	hslaivel
morus640128v1	uscon96v1	aegis256	deoxysneq256128v1	aegis1281	wheeshtv1mr3fr1t128	tiaoxinv1	norx3241v1	aes256gemv1	wheeshtv1mr3fr3t256
kiasuoq128v1	uscon128v1	nors3261v1	kiasueq128v1	wheeshtv1mr3fr1t256	wheeshtv1mr3fr1t256	wheeshtv1mr3fr1t128	norx6461v1	ascon128v1	oegisl 28
deoxysneq128128v1	ues128otrsv1	ses128gcmv1	morus1280256v1	wheeshtv1mr3fr1t128	hslsievl	wheeshtv1mr3fr1t256	acgis1281	pi64cipher128v1	nora6441v1
deoxysneq256128v1	ucs128otrpv1	norx6444v1	deoxyseq128128v1	tiansiny!	norx6461v1	negis1281	acgis128	pi64cipher256v1	noex3261v1
ses128gemv1	per256otrw1	sex256gemv1	morau640128v1	aegis128	negis128	nes256gemv1	ascon128v1	ags128otrev1	acgis256
acs256gcmv1	perjambay1	acx128otrev1	deoxyseq256128v1	wheeshtv1mr3fr3t256	wheeshtr1me3fr3t256	helsivyl	pi64cipher256v1	ags128otrpv1	backiny1
dooxyseq128128v1	pos256otrpv1	aes128otrpv1	aes128gcmv1	hstaivet	aegis256	whoeshtr1mr3fr3t256	pi64cipher128v1	omdsha512k256s256tas256v1	nors6444v1
aes128cpfbv1	lorndsha512k512n256tus256v1	pi32cipher256v1	aos128cpfbv1	argis256	aes128gcmv1	norx3261v1	aogis256	omdsha512k512n256tau256v1	hstsishiv1
deoxyseq256128v1	omdsha512k256n256tuu256v1	pi32cipher128v1	aer256gcmv1	aes128gcmv1	aes256gcmv1	pegis128	silveryl	omdsha512k128n128tau128v1	torx6461v1
perx6441v1	omdsha512k128n128tau128v1	aer25fotrsv1	aes256cp@v1	hslsivhivl	hslsivhivl	norx6444v1	cepole256av1	pi32cipher256v1	silvery1
aes256cpfbv1	stribob192r1	acijambov l	porx6441v1	aes256gcmv1	wheeshtv1me5fr7t256	uegis256	icepolel 28av1	pi32cipher128v1	wheeshtv1mr5fr7t256
norx6461v1	omdshu256k128n96tau64v1	sei25fotrpv1	hstsivlov1	porx6444v1	cbal	Instairchivel	icepole128v1	acqumbuv1	yacs128v2
hal sivley I	omdshu256k128n96tau96v1	kiasuneq128v1	wheeshtv1mr3fr1t128	wheeshiv1mr5fr7t256	cha3	kiasenoq128v1	nors3261v1	acs256otrw1	acid 28 otrov 1
norx3241v1	omdsha256k192n104tau128v1	ascon96v1	wheeshtv1mr3fr1t256	chaß	cha2	scream10v2	sex128epébv1	acs256otrpv1	acs128otrpv1
wheeshtv1mr3fr1t128	omdsha256k128n96tax128v1	pi64cipher256v1	norx3241v1	chal	chal	scream10v1	pi32cipher128v1	omdsha256k192n104tau128v1	cepole256av1
wheeshtv1mr3fr1t256	omdsha256k256n104ssa160v1	pi64cipher128v1	nors6461v1	cha4	chań	ascon96v1	pi32cipher256v1	omdsha256k256n104tax160v1	Scepole128v1
hst sive1	omdsha256k256n248tus256v1	ascon128v1	wheeshtv1mr3fr3s256	kba5	cba5	scream12v2	aes128omsv1	omdsha256k128a96tau64v1	Scepole128av1
parx6444v1	lakekeyakvl	kiasueq128v1	Islávil	aes128cpfbv1	chu8	wheeshtv1mr5fr7t256	vues128v2	omdshx256k128x96tax128v1	chal
wheeshev1mr3fr3t256	peakeyakv l	stribob192r1	norx6444v1	cbu3	aes128cpfbv1	scream12v1	aesl 28otrpv1	omdshx256k128s96tax96v1	chs3
ascon96v1	oceankeyakv1	trivia0v1	ascon96v1	silverv1	cbu7	iscream12v2	cbs2	omdshx256k256x248txx256v1	chi2
norx3261v1	ketjesev1	ifeedacs128n104v1	perjambay l	cbu2	seadses128ochtagles96v1	iscream12v1	chu3	lakekeyakvl	cha7
hstrivkiv1	riverkeyakv1	ifeedaex128n96v1	nors3261v1	cbu?	seadaes128ochtagles128v1	pi64cipher256v1	chal	seakeyakvl	cha4
pi64cipher256v1	ketjejry1	lakekeyakv1	wheeshtv1mr5fr7t256	lcbu6	olverv1	scepole128av1	cha4	trivia0v1	cha5
acquinter1	brivia0v1	riverkeyakv1	hal sixhir l	acadacs128ochtagles128v1	acadacs128ochtagles64v1	silvery1	cha8	mibob192r1	chaß
scream10v2	post 28 poety Lacs4	seakeyakv1	scream10v1	acadaes128ochtaglen64v1	cha9	icepole256av1	cha5	oceankeyakv1	kba6
scream10v1	aes128poetv1aes128	pi16cipher096v1	scream10v2	aeadaes128ochtaglen96v1	neadnes192ochtaglen96v1	icepole128v1	chu7	pi16cipher096v1	peadaes128ochtaglen96v1
icepole25fav1	ues128poetv1gf128mul	pi16cipher128v1	ascon128v1	cbu9	acadaes192ochtaglen64v1	iscream14v2	cha6	pi16cipher128v1	acadaes128ocbtaglen64v1
icepole128av1		lacv11	icepole128av1	yaes128v2	seadses192ochtaglen128v1	iscream14v1	uest 28n8clocv1	riverkeyakvl	ueudaes128ochtaglen128v1
icepole128v1		ketjesry1	icepole128v1	seadaes192ochtagles128v1	cbu10	ues128cpfbv1	ses128n12clocv1	ketjesryl	ues128±8cloev1
ascon128v1	i e	oceankeyakv1	icepole256av1	seadaes192ochtaglen96v1	yaest 28v2	kiaseeq128v1	seadaes128ochtsglen128v1	ketjejrv1	ses128n12clocv1
scream12v2	ì	deoxysneq128128v1	pi64cipher256v1	seadaes192ochtaglen64v1	porx6444v1	pi64cipher128v1	seadaes128ochtsglen96v1	acs128poety1acs4	ser256etrw1
scream12v1	Î	ketjejrv1	cream12v2	cbu10	seadses256ochtagles128v1	ascon128v1	seadaes128ochtsglen64v1	acs128poety1acs128	post 28 opthy t
scream12v2	Ť	deoxysneg256128v1	scream12v1	lacadacs25fochtacles128v1	lacadacs256ochtacles64v1	lacs128otrey1	sex128n12silev1	lacs128poety1ef128mel	becor/Hv1

Source: http://www1.spms.ntu.edu.sg/~syllab/speed

- NORX among the fastest CAESAR ciphers
- ► Fastest Sponge-based scheme
- ▶ Reference implementation has competitive speed, too

SW Performance (SUPERCOP)

Source: http://www1.spms.ntu.edu.sg/~syllab/speed

- NORX among the fastest CAESAR ciphers
- Fastest Sponge-based scheme
- Reference implementation has competitive speed, too

HW Performance (ASIC)

ASIC implementation and hardware evaluation by ETHZ students (under supervision of Frank K. Gürkaynak):

▶ Supported parameters: $W \in \{32,64\}$, $R \in \{2,\ldots,16\}$ and D=1

Targeted at high data throughput

► Technology: 180 nm UMC

► Frequency: 125 MHz

Area requirements: 59 kGE

▶ NORX64-4-1 performance: $10 \, \text{Gbps} \approx 1200 \, \text{MiBps}$

The Non-Linear Operation H

$$\mathsf{H}:\{0,1\}^{2n}\rightarrow\{0,1\}^n,(a,b)\mapsto(a\oplus b)\oplus\big((a\wedge b)\ll1\big)$$

Properties

"Approximation" of integer addition:

$$a+b=(a\oplus b)+((a\wedge b)\ll 1)$$

- Carries can only affect the next bit (effects on security?)
- ightharpoonup Permutation on \mathbb{F}_2^n if one input argument is fixed
- ► Hardware efficiency++
- ▶ No SBoxes/integer additions: timing resistance in sw & hw

The Non-Linear Operation H

$$\mathsf{H}:\{0,1\}^{2n}\to\{0,1\}^n,(a,b)\mapsto(a\oplus b)\oplus((a\wedge b)\ll1)$$

Properties

"Approximation" of integer addition:

$$a+b=(a\oplus b)+((a\wedge b)\ll 1)$$

- Carries can only affect the next bit (effects on security?)
- ▶ Permutation on \mathbb{F}_2^n if one input argument is fixed
- ► Hardware efficiency++
- ▶ No SBoxes/integer additions: timing resistance in sw & hw

Diffusion properties of F^R on 1-bit input differences:

		١	NORX32			Cha	Cha (32-bit)
R	min	max	avg	median	min	max	avg	median
1	83	280	179.222	181	73	294	182.195	185
2	194	307	256.024	256	199	312	255.999	256
3	198	312	255.995	256	204	313	255.988	256
4	201	307	255.996	256	200	314	255.989	256
		l	NORX64			Cha	Cha (64-bit)
R	min	max	avg	median	min	max	avg	median
1	95	429	230.136	222	73	506	248.843	246
2	440	589	511.982	512	430	591	512.013	512
3	434	589	512.008	512	439	589	511.971	512
4	428	589	511.986	512	435	585	512.008	512

- ► Full diffusion after F² (as fast as ChaCha's!)
- ▶ Diffusion test used in search for non-linear op. / rotation offsets

Diffusion properties of F^R on 1-bit input differences:

		١	NORX32		ChaCha (32-bit)				
R	min	max	avg	median	min	max	avg	median	
1	83	280	179.222	181	73	294	182.195	185	
2	194	307	256.024	256	199	312	255.999	256	
3	198	312	255.995	256	204	313	255.988	256	
4	201	307	255.996	256	200	314	255.989	256	
		1	NORX64		ChaCha (64-bit)				
R	min	max	avg	median	min	max	avg	median	
1	95	429	230.136	222	73	506	248.843	246	
2	440	589	511.982	512	430	591	512.013	512	
3	434	589	512.008	512	439	589	511.971	512	
4	428	589	511.986	512	435	585	512.008	512	

- ► Full diffusion after F² (as fast as ChaCha's!)
- ▶ Diffusion test used in search for non-linear op. / rotation offsets

Figure: Diffusion Visualisation of F^R .

NODE – The (NO)RX (D)ifferential Search (E)ngine*

- Framework for automatic search of differentials in F^R
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- ► Available on GitHub: https://github.com/norx/NODE
- ► Best differential trails in F⁴ (full state):

▶ Differential trail bounds for F (init., diffs in nonce only):

$$< 2^{-60} \ (32 ext{-bit}) \ \mathsf{and} \ < 2^{-53} \ (64 ext{-bit})$$

 Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates

* J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

NODE – The (NO)RX (D)ifferential Search (E)ngine*

- ► Framework for automatic search of differentials in F^R
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- ► Available on GitHub: https://github.com/norx/NODE
- ▶ Best differential trails in F⁴ (full state):

▶ Differential trail bounds for F (init., diffs in nonce only):

$$< 2^{-60}$$
 (32-bit) and $< 2^{-53}$ (64-bit)

 Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates

^{*} J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

NODE – The (NO)RX (D)ifferential Search (E)ngine*

- ► Framework for automatic search of differentials in F^R
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- ▶ Best differential trails in F⁴ (full state):

$$2^{-584}$$
 (32-bit) and 2^{-836} (64-bit)

▶ Differential trail bounds for F (init., diffs in nonce only):

$$< 2^{-60}$$
 (32-bit) and $< 2^{-53}$ (64-bit)

 Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates

^{*} J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

NODE – The (NO)RX (D)ifferential Search (E)ngine*

- ► Framework for automatic search of differentials in F^R
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- ▶ Best differential trails in F⁴ (full state):

$$2^{-584}$$
 (32-bit) and 2^{-836} (64-bit)

Differential trail bounds for F (init., diffs in nonce only):

$$< 2^{-60}$$
 (32-bit) and $< 2^{-53}$ (64-bit)

 Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates

^{*} J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

Algebraic Properties of G

		#ро	lynomia	ls by	degr		#mc	nomials	5	
W	3	4	5	6	7	8	min	max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

- ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory
- High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

Other Properties of F^R

We also examined weak states, fixed points, rotational properties, ...

Algebraic Properties of G

		#po	lynomia	als by	degr		#mc	nomials	5	
W	3	4	5	6	7	8	min	max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

- ► ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory
- ► High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

Other Properties of F^R

We also examined weak states, fixed points, rotational properties, ...

Algebraic Properties of G

		#po	lynomia	als by	degr		#mc	nomials	5	
W	3	4	5	6	7	8	min	max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

- ► ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory
- ► High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

Other Properties of F^R

We also examined weak states, fixed points, rotational properties, ...

NORX vs AES-GCM

	NORX	AES-GCM
High performance	yes (on many platforms)	depends (high with AES-NI)
High key agility	yes	no
Timing resistance	yes	no (bit-slicing, AES-NI required)
Misuse resistance	$A+N / LCP+X (exposes P \oplus P')$	no (exposes K)
Parallelisation	yes	yes
Extensibility	yes (sessions, secret msg. nr., etc.)	no
Simple implementation	yes	no

Conclusion

- ▶ NORX superior to AES-GCM in many important points
- ► Fast on a broad range of architectures
- Resistance vs timing attacks in hw & sw (no Int. add. & no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- Additional protection: MonkeyDuplex, restrictive initialisation
- ▶ NORX seems to have a good security margin
- ► However, much more (3rd party (!)) cryptanalysis required

Conclusion

- ▶ NORX superior to AES-GCM in many important points
- Fast on a broad range of architectures
- ▶ Resistance vs timing attacks in hw & sw (no Int. add. & no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- Additional protection: MonkeyDuplex, restrictive initialisation
- NORX seems to have a good security margin
- ► However, much more (3rd party (!)) cryptanalysis required

Conclusion

- ▶ NORX superior to AES-GCM in many important points
- Fast on a broad range of architectures
- ▶ Resistance vs timing attacks in hw & sw (no Int. add. & no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- ▶ Additional protection: MonkeyDuplex, restrictive initialisation
- ▶ NORX seems to have a good security margin
- ► However, much more (3rd party (!)) cryptanalysis required

Further Information

https://norx.io

References

- J-P. Aumasson, P. Jovanovic, and S. Neves, NORX A First Round Candidate in CAESAR
- J-P. Aumasson, P. Jovanovic, and S. Neves, NORX: Parallel and Scalable AEAD, European Symposium on Research in Computer Security (ESORICS 2014), Wroclaw, Poland
- ▶ J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317
- ▶ P. Jovanovic, A. Luykx, and B. Mennink, Beyond 2^{c/2} Security in Sponge-Based Authenticated Encryption Modes, Cryptology ePrint Archive: Report 2014/373

Comic by http://dilbert.com

Philipp Jovanovic @Daeinar jovanovic@fim.uni-passau.de https://norx.io