HW 1, STAT 450

Due: Friday, September 6

Directions: The assignment should be completed using Quarto and submitted to Canvas as a self-contained HTML or PDF file.

Exercise 1

- (a) What are the four common data types of vectors in R?
- (b) Determine the data type of each vector below. Print out the value of each vector and use the class() function.

```
a <- c(1, 2, 3, 4, 5)
b <- 1:5
c <- c("blue", "orange", "red")
d <- c(T, T, T, T)
e <- c("1", 2, 3)
f <- c(7, NA, NA, 5 , 3)
g <- c(7, "NA", "NA", 5 , 3)
h <- c()</pre>
```

Exercise 2

Use R to calculate the sum of the squares of all integers from 1 to 100:

$$1^2 + 2^2 + 3^2 + \dots + 100^2$$

Exercise 3

R has a built-in vector called rivers which contains the lengths of 141 major North American rivers. Type help(rivers) in the console to learn about the data set.

```
# print out first 6 river lengths
head(rivers)
```

[1] 735 320 325 392 524 450

- (a) Find the mean and standard deviation of the river lengths.
- (b) What is the longest river length? What is the shortest river length?
- (c) How many rivers in the data set are longer than 1000 miles?
- (d) What percent of rivers in the data set are longer than 1000 miles?

Exercises 4 and 5 will use the airquality data frame, which is already loaded into R.

head(airquality)

```
##
     Ozone Solar.R Wind Temp Month Day
## 1
         41
                 190
                      7.4
                             67
## 2
                                     5
         36
                 118
                      8.0
                             72
                                          2
                             74
                                     5
                                          3
## 3
         12
                 149 12.6
                 313 11.5
                                     5
                                          4
## 4
         18
                             62
                  NA 14.3
                                     5
                                          5
## 5
         NA
                             56
## 6
         28
                  NA 14.9
                             66
                                     5
                                          6
```

The data frame contains daily air quality measurements in New York from May to September 1973. Type help(airquality) in the console to read about this data in the help menu.

Exercise 4

Run the following code to subset the Ozone column and assign it to a variable called Ozone1.

```
Ozone1 <- airquality$Ozone
```

- (a) Use is.na() to remove the missing data (NA values) from the vector Ozone1. Assign the vector with the missing values removed to a variable called Ozone2. How many NA values were removed?
- (b) Compute the min, median, mean, max, and standard deviation of the numeric vector Ozone2.
- (c) Run the following commands, and explain how each command handles missing data.

```
summary(airquality$0zone)
sd(airquality$0zone, na.rm = TRUE)
```

Exercise 5

Make a scatter plot with Temp on x-axis and Ozone on the y-axis. Label the x-axis "Temperature (degrees F)" and the y-axis "Ozone (ppb)". Describe the association between the two variables.