# **HW-4**: Supporting Vector Machine

Deadlines: 2017.05.2-23:59:59

In this homework, you are asked to use <u>SVM</u> models dealing with the classification problem of the hand-written numbers from zero to four. The whole mission can be accomplished easily with the <u>LIBSVM</u> library which is highly recommended to adopt. The official website of LIBSVM is shown bellowed:

• https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download



### **♦** Data

### Training data

- **X** train.csv is a 5000x784 matrix. Every row corresponds to a 28x28 gray-scale image.
- T train.csv is a 5000x1 matrix, which records the class of the training samples.

### Test data

- **X** test.csv is a 2500x784 matrix. Every row corresponds to a 28x28 gray-scale image
- T test.csv is a 2500x1 matrix, which records the class of the test samples.

(Please do remember that the test data is not used for optimizing your model!!)

### **◆** Installation Guide

### Matlab users

1. The **Visual Studio** is necessary for compiling mex files. Please install the corresponding Visual Studio version by yourself.

- 2. Download the LIBSVM package from the website and unzip it:

  <a href="http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+zip">http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+zip</a>
- **3.** Open the **Matlab** software and set the path to /path\_to\_libsvm-3.21/matlab/ and type the commands bellow:

```
matlab>> mex -setup
matlab>> make
```

**4.** Read the **README** file in the folder and try to implement the LIBSVM models. The most important two code lines would be:

```
model = svmtrain(T_train, X_train, ['options']);
[predict_label, accuracy, prob_estimates] = ...
svmpredict(T_test, X_test, model, '-b 1');
```

## • Python & C++ users

Please help yourself to find the information on the LIBSVM website. https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download

About the SVM **training options**, please take a look at the webpage of LIBSVM. If you are planning for **changing the kernel**, you should do something to the training options!

## **♦** Models

### C-SVM

According to the lecture note, the problem of SVM can be transferred into the dual representation:

$$maximize \qquad \tilde{L}(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m)$$
 
$$subject \ to \qquad 0 \le a_n \le C$$
 
$$\sum_{n=1}^{N} a_n \ t_n = 0$$

### ν-SVM

An alternative, equivalent formulation of the SVM:

$$\begin{aligned} maximize & \quad \tilde{L}(a) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m) \\ subject to & \quad 0 \leq a_n \leq 1/N \\ & \quad \sum_{n=1}^{N} a_n t_n = 0 \quad and \quad \sum_{n=1}^{N} a_n \geq v \end{aligned}$$

## **♦** Tasks

### 1. v-SVM

Implement the v-SVM models with the different kernel types below

- <u>Linear function</u>
- **Polynomial function** with degree = 2,3,4
- Radial basis function

And compare the performance between them.

### 2. C-SVM

Implement the v-SVM models with the different kernel types below

- **Linear function**
- **Polynomial function** with degree = 2,3,4
- **Radial basis function**

And compare the performance between them. If you design the v properly, you might get the same outcomes with Task 1.

# 3. Supporting Vectors

Choose one of the models you've trained to do analysis and find those "**supporting vectors**" and "**outliners**" for this model. You should use PCA to map data down to two dimensions

Please plot at least 30 samples for each and discuss your observations.

| What should be uploaded? |                                                                             |
|--------------------------|-----------------------------------------------------------------------------|
|                          | Your source code with comments.                                             |
|                          | The <b>ReadMe.txt</b> file which describes how to run your program.         |
|                          | Your <b>report</b> in the format of .pdf or .doc.                           |
| Reminders:               |                                                                             |
|                          | Report within 12 pages                                                      |
|                          | There won't be a need for demonstration.                                    |
|                          | Please make sure your source code can be compiled by Matlab, Python or C++. |
|                          | <b>DO NOT COPY!!!</b> (懶人包、考古題亦同)                                           |