

PROJECT ANALYSIS

Week 3 Assignment

ABSTRACT

This document was created for UMUC Course, CMSC 495, and analyzes aspects of the (TNC)

Group 3 Members

Name: Christiano, Andrew Name: Fernandez, Yrume Name: Orwick, Brian Name: Sell, Julia

Class: CMSC 495 - Current Trends and Projects in

Computer Science

Professor: Dr. Hung Dao Due: 10 September 2018

Version Control

Revision #	Date	Name	Descriptions	Contact Info
TNC_PA_0001	9/4/2018	Brian Orwick	Created	Orwick12@outlook.com
TNC_PA_0002	9/5/2018	Yrume Fernandez	Revisions	Yrume.fernandez@gmail.com
TNC_PA_0003	9/6/2018	Andrew Christiano	Revisions	ajchristiano91@gmail.com
TNC_PA_0004	9/6/2018	Julia Sells	Revisions	selljm14@gmail.com
TNC_PA_0005	9/7/2018	Andrew	Validated	ajchristiano91@gmail.com
		Christiano, Brian		orwick12@outlook.com
		Orwick, Julia Sells,		selljm14@gmail.com
		Yrume Fernandez		yrume.fernandez@gmail.com
TNC_PA_0006	10/9/2018	Brian Orwick	Reviewed	orwick12@outlook.com
TNC_PA_0007	10/9/2018	Andrew Christiano	Reviewed	ajchristiano91@gmail.com
TNC_PA_0008	10/9/2018	Julia Sell	Reviwed	selljm14@gmail.com
TNC_PA_0009	10/11/2018	Yrume Fernandez	Modified /	yrume.fernandez@gmail.com
			Updated	
			diagrams	

Table of Contents

1.	Outside Systems	. 4
2.	Input Data	. 4
3.	Output Data	. 4
4.	Data Processing	. 5
5.	Subsystem Requirements	. 6
6.	Data Interfaces	. 7
7.	Potential Risk and Mitigation	. 7
8.	Future Enhancements	. 8
Tal	ole 1- Data Flow Diagram	. 4
Tal	ole 2 - Subsystem Diagram	. 5
Tal	ole 3- Subsystems and Implemented Requirements	. 6
	ole 4 - Flow Diagram	

1. Outside Systems

The Trusted News Code (TNC) software connects to various news websites and provides the user a correlated webpage displaying articles using Newspaper3k and Flask python libraries. This software requires internet connection to operate. The following is a list of trusted sources that are hardcoded for TNC to check, and a level 0 Data Flow Diagram (DFD):

- https://www.foxnews.com
- https://www.usatoday.com
- https://www.cnn.com
- https://www.bbc.com
- http://www.apnews.com

Table 1- Data Flow Diagram

2. Input Data

TNC does not require any input data from a user. A user will navigate to the TNC Server Web Page and receive statistical information on articles posted within the list of trusted news sources. TNC takes input data from web pages that are part of a hardcoded list of trusted news websites. This data is then parsed and structured for storage and retrieval using the SQLite Data Base that is part of the system. The retrieval of the data from the news websites will occur asynchronously in separate threads.

3. Output Data

The data that has been aggregated by the TNC will presented from the SQLite Data Base (DB). This database will house all the required information to statistically analyze the trustworthiness of posted articles. Trustworthiness, as presented by the TNC, is the verifiability of news story across multiple news sources. A trustworthy story is prevalent across organizations and is more likely to be published multiple times by many different people. The following provides information on the proposed structure of the database table used during execution of the TNC:

NEWS ARTICLE (TABLE NAME)					
ID (TEXT)	NUMBER (INT)	NAME (TEXT)	COUNT (INT)		
Web-Page URL	Article Number	Article Name	Article Count		

4. Data Processing

Information captured and stored within the TNC is used to identify the trustworthiness of an article. Initially the TNC software, using the newspaper library, connects and downloads a copy of newspaper articles housed within the source websites. This information is captured and stored for subsequent processing within the SQLite DB. After each site, within the list of trusted sites, is captured and stored the TNC software parses and iterates through the contents of each articles sequentially comparing each word within articles. As the system compares each article a counter is incremented when common words are found, and a percentage of common words is calculated. If two articles have over 70%-word commonality (> 70), then both articles are assumed related. The system adds a count to each article identified as related, and articles acquiring a higher count of related articles are assumed more trustworthy than lesser related articles. All data is stored in database for storage and retrieval.

Table 2 - Subsystem Diagram

5. Subsystem Requirements

The TNC Software requires connections to local database (SQLite DB) which provides a structure to maintain information for analysis in a persistent manner. This DB also provides the capability of running analysis on stored articles while the system is offline. It also requires access to local systems networking services to retrieve the required information from external websites while online. The following table provides a mapping between requirements and subsystems:

Requirements #	Description	Subsystem
1	The system shall search the web for news sites	Scraper
2	The system shall pull the full text of articles	Scraper, Database (DB)
	from news sites	
3	The system shall analyze and compare the text	
	of each article with every other article to	
	identify related articles	
4	4 The system shall measure the trustworthiness	
	(identifying the number of times an article is	
	referenced on the web) for each article, based	
	on the number of related articles discussed	
	within trusted news sites.	
5	5 The system shall count all references to each	
	article analyzed	
6 The system shall display a list of all articles		Web, DB
	analyzed in order of trustworthiness	
7 The system shall NOT evaluate verbatim		Scraper
	articles from different news organizations.	
8 The system shall present an appropriate error		Scraper, DB, Web
message to the user when the program		
	performs in a way other than expected	

Table 3- Subsystems and Implemented Requirements

6. Data Interfaces

The proposed Data Interfaces are as follows:

- 1. Web
 - a. routes()
 - b. queryDB()
- 2. Scraper
 - a. get_articles()
 - b. parse()
 - c. download()
 - d. generate_news()
- 3. DB
- a. create_table()
- b. db_insert()
- c. db update()
- d. db_query()
- e. mass update()

Below is a flow diagram that shows how the different classes will interact:

 $Table\ 4-Flow\ Diagram$

7. Potential Risk and Mitigation

Potential risk when operating the system are:

- 1. The system may fail to retrieve information from trusted websites (due to https certificate error, no internet connection, or other unknown circumstances)
 - a. Mitigation: System will check for error code 200 to ensure website is available prior to submitting get-request for html.

- 2. System may fail to provide adequate information if fake-news goes viral and a number of articles are found on the internet based on false information.
 - a. Mitigation: System will have a fake-news option that will lower the trustworthiness of the article.

8. Future Enhancements

- 1. Sentiment analysis:
 - a. Attempt to show if there is any correlation between rate of occurrence of certain words and their impact on the trustworthiness of an article
 - b. Create visualizations to illustrate vocabulary, determine the relationships between word choice and trustworthiness.
- 2. Search functionality:
 - a. Provide a way for users to search through all content to discover the trustworthiness of a specific article, or specifically tagged articles.
- User related:
 - a. Provide a way for users to have a dialogue about articles
 - b. Provide a way for users to propose additional articles for analysis
 - c. Provide a way for users to propose additional websites for automated analysis
 - d. Present users with their history, to show them their implicit biases
- 4. Advanced Tracking:
 - a. Present metadata regarding publishing dates to expose when stories are posted on different websites
 - b. Track if the same exact story is published by a different author(s) (plagiarism)
 - c. Track if the same exact story is published by the same author(s)
 - d. Track the trustworthiness of individual author(s)