



Кафедра суперкомпьютеров и квантовой информатики

#### Диссертация на тему:

«Исследование эффективности метода движущихся наименьших квадратов при реконструкции трёхмерной поверхности на суперкомпьютере»

Хабибулин Марат СКИ-638 Научный руководитель: к.ф.-м.н., доцент Никольский Илья Михайлович

# APL SO DE SEPOS ACA O LES CONTROL SE CONTROL

# Актуальность















# APL STANDER AND ACADE STANDER ACADE STANDER

# Актуальность



# Цель работы и постановка задачи

- Целью настоящей работы является разработка параллельного метода реконструкции поверхности на высокопроизводительных кластерах, позволяющего добиться оптимальных результатов как в эффективности, так и в качестве восстановления поверхности.
- Постановка задачи
  - 1) Изучить существующие методы реконструкции поверхности
  - 2) Разработать алгоритм реконструкции поверхности, на распределенной памяти
  - 3) Протестировать разработанный алгоритм и оценить его эффективность, ускорение а также качество восстановленной поверхности

# Алгоритм MLS(Moving Least Squares)



$$p_i \in R^3, i \in \{1,\ldots,N\}$$
 (1)

$$H = \{x \mid \langle n, x 
angle - D = 0, x \in R^3\}, n \in R^3, \parallel n \parallel = 1$$
 (2)

$$\sum_{i=1}^{N}(\langle n,p_i\rangle-D)^2\theta(\parallel p_i-q\parallel) \tag{3}$$

#### Повышение плотности точек





## Рендеринг

25000000 полигонов



25000000 точек



#### Предложенный параллельный метод

**Алгоритм 1** Параллельный метод движущихся наименьших квадратов с MPI и OpenMP

**Вход:** набор точек  $P = \{p_i\} \ i = 1..n$ 

Выход: поверхность представленная набором точек

- 1: for each process u do
- 2:  $P^{(u)} = read(P)$  // каждый процесс считывает свой сегмент облака точек  $P^{(u)} = \{p_i\}$  j = 1..m
- 3:  $P_l^{(u)} = send_recv(P_r^{(u-1)})$  // получение левой границы
- 4:  $P_r^{(u)} = send_recv(P_l^{(u+1)})$  // получение правой границы
- 5: pragma omp parallel for
- 6: **for each** point j = 1..m **do**
- 7:  $H = generate \ plane(p_i)$
- 8:  $g = generate\_local\_polynomial\_approximation(H)$
- 9:  $result\_point = project\_on\_polynom(p_j, polynom)$
- 10: end for



# Граф информационной зависимости MLS



**Алгоритм 1** Параллельный метод движущихся наименьших квадратов с MPI и OpenMP

**Вход:** набор точек  $P = \{p_i\} \ i = 1..n$ 

Выход: поверхность представленная набором точек

1: for each process u do

- 2:  $P^{(u)} = read(P)$  // каждый процесс считывает свой сегмент облака точек  $P^{(u)} = \{p_j\}$  j = 1..m
- 3:  $P_l^{(u)} = send_recv(P_r^{(u-1)})$  // получение левой границы
- 4:  $P_r^{(u)} = send_recv(P_l^{(u+1)})^{'}//$  получение правой границы
- 5: pragma omp parallel for
- 6: **for each** point j = 1..m **do**
- 7:  $H = generate\_plane(p_i)$
- 8:  $g = generate\_local\_polynomial\_approximation(H)$
- 9:  $result\_point = project\_on\_polynom(p_i, polynom)$
- 10: end for

# APL STR MAN STR MAN SWEET STR

## Распределение сегментов облака точек по процессам





# APL SO MAN ACA O MEN ACA O

#### Вычислительная сложность основных этапов алгоритма

| Этап алгоритма                                   | Вычислительная сложность                          |  |  |  |
|--------------------------------------------------|---------------------------------------------------|--|--|--|
| Построение k-d дерева                            | O(n*k*log(n)) (Несбалансированное O(n(k+log(n)))) |  |  |  |
| Поиск точек в окрестности <b>R</b> по k-d дереву | O(log n)                                          |  |  |  |
| Метод наименьших квадратов                       | $O(C^2*m)$ (C = 4)                                |  |  |  |
| Интерполяция полиномом                           | O(m <sup>2</sup> )                                |  |  |  |

https://jcgt.org/published/0004/01/03/

https://math.stackexchange.com/questions/84495/computational-complexity-of-least-square-regression-operation https://cs.stackexchange.com/questions/93936/complexity-of-polynomial-interpolation

# MPI программа



$$S_p = \frac{t_1}{t_p}$$

$$S_p = \frac{t_1}{t_p},$$
 
$$E_p = \frac{S_p}{p} * 100\%$$

# MPI + OpenMP



Сравнение ускорения для МРІ и гибридной программы(R = 0.0016):

| np*nt | MPI   | MPI + OpenMP |  |  |
|-------|-------|--------------|--|--|
| 4     | 3.38  | 3.51         |  |  |
| 8     | 6.3   | 6.7          |  |  |
| 16    | 11.61 | 12.9         |  |  |
| 32    | 21.65 | 23.7         |  |  |

# Результат работы алгоритма





Зашумленное облако точек

После применения MLS

# API STAND BERN ACA O WHIST TO STAND ACA O WHIST TO

# Результат работы алгоритма

| применен MLS | σ     | R     | ср. геом. откл. | ср. кв. откл. | min      | max     |
|--------------|-------|-------|-----------------|---------------|----------|---------|
| ×            | 0.005 | _     | 0.00484         | 0.00269       | 3.8e-05  | 0.0245  |
| ✓            | 0.005 | 0.005 | 0.00372         | 0.00181       | 5.5e-05  | 0.01418 |
| ✓            | 0.005 | 0.01  | 0.00434         | 0.00245       | 6.7e-05  | 0.01715 |
| ✓            | 0.005 | 0.03  | 0.00248         | 0.00117       | 3.5e-05  | 0.01676 |
| ✓            | 0.005 | 0.05  | 0.00277         | 0.00185       | 1.3e-05  | 0.02362 |
| ×            | 0.01  | _     | 0.00854         | 0.00563       | 0.0001   | 0.04387 |
| ✓            | 0.01  | 0.005 | 0.00578         | 0.00339       | 6.2e-05  | 0.02481 |
| ✓            | 0.01  | 0.01  | 0.00741         | 0.0045        | 8.7e-05  | 0.03055 |
| ✓            | 0.01  | 0.03  | 0.00334         | 0.002         | 9e-06    | 0.04387 |
| ✓            | 0.01  | 0.05  | 0.00344         | 0.00226       | 6.1e-05  | 0.03942 |
| ×            | 0.03  | _     | 0.02333         | 0.01722       | 0.000167 | 0.13393 |
| ✓            | 0.03  | 0.005 | 0.01424         | 0.01001       | 0.000167 | 0.06133 |
| ✓            | 0.03  | 0.01  | 0.01672         | 0.01168       | 0.000158 | 0.07857 |
| ✓            | 0.03  | 0.03  | 0.02065         | 0.01572       | 0.00012  | 0.10811 |
| ✓            | 0.03  | 0.05  | 0.01284         | 0.01116       | 8.3e-05  | 0.11659 |

Модель: Bunny

#### Основные результаты

- Реализованы следующие варианты параллельного алгоритма реконструкции поверхности:
  - для систем с общей памятью (с использованием OpenMP),
  - с распределённой памятью (с использованием MPI)
  - гибридный вариант (MPI + OpenMP)
- Исследована эффективность, разработанного алгоритма а также проведены тесты реконструкции реальных поверхностей.

# 

1. М.И. Хабибулин. Исследование эффективности метода движущихся наименьших квадратов при реконструкции трёхмерной поверхности на суперкомпьютере. Конференция "Ломоносов": труды международной научной конференции "Ломоносов". 10-21 апреля 2023 г., С. 40-43, Москва.



# Спасибо за внимание

#### Список литературы

- 1. Levoy S. R. M. QSplat: A Multiresolution Point Rendering System for Large Meshes //
  Stanford University. 2000. C. 1.
- 2. Morton G. M. A computer oriented geodetic data base; and a new technique in file sequencing // IBM Ltd., Tech. Rep. 1966.
- 3. Levin. D. The approximation power of moving least-squares // Mathematics of Computation. 1998. C. 224.