과일의 수확 후 생리특성

Basic Principle of Postharvest: Reudce of Respiration Rate

1. 발육생리 (Physiological development)

가. 과일의 생리적 단계

- 과일은 분화 이후 3개의 주요한 생리적 단계로 구분
 - 생장 (Growth): 세포분열과 세포확장단계로 과일의 최종 크기 결정
 - 성숙 (Maturation): 생장이 멈추기 전에 시작되어 먹기에 적합한 단계로 진행되는 것(숙성, Ripening)
 - 노화 (Senescence): 분해적인 대사과정으로 전환되는 기간으로 노쇠해지며 궁극적으로 조직의 고사에 이르게 되는 과정
 - ➡ 생장에서 노화로의 변화는 상대적으로 구별하기 쉬우나,모든 과정 사이에 뚜렷한 경계가 존재하지는 않음

그림 1. 개화 이후의 사과의 발육단계

나. 과일의 숙성 (fruit ripening)

- 숙성은 소비에 적합하도록 과일이 변화되는 단계
- 숙성 시 일어나는 변화
 - 탄수화물 조성의 변화: 전분(starch)이 당(sugar)으로 전환➡단맛 증가
 - 색깔의 변화
 - 조직감의 변화
 - 휘발성 향의 증가
 - 맛의 변화: 당과 유기산
 - 호흡 및 에틸렌의 변화
 - 탈리 (모체 식물로부터의 분리)
- 숙성 시 호흡 양상에 따른 과일의 분류
 - 호흡급등형 과일 (Climacteric fruit)
 - 비호흡급등형 과일 (Non-climacteric fruit)

그림2. 100ppm에틸렌 처리 후 20, 30°C에 저장했을 때 전분 함량의 변화

반응			*	*	*	
전분지수	5	4	3	2	1	0
수확상태	완전 미숙상태	미숙상태	약간 미숙상태	CA 저장 장기저장	단기저장	단기보관 즉시 출하

그림3. 사과의 성숙상태에 따른 전분 함량

그림 4. 숙성 단계에 따른 색깔 변화

Optimal Ripening of a Grape

Same Grape under Warmer Conditions

그림 5. 포도의 숙성 단계에 따른 변화

2. 호흡 생리 (Physiology of respiration)

가. 호흡이란?

- 과일이 숨을 쉬는 것으로, 수확 후에는 모식물체로부터 더 이상 양분이 공급
 되지 못한 채 조직 내에 이미 저장된 양분을 사용
- 시간이 지날수록 저장양분이 감소되어 맛(당도, 산도, 풍미)이 없어짐
- 호흡에 의한 열 발생으로 인하여 과일 내부의 온도가 상승
- 호흡과정

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 에너지 및 호흡열$

나. 호흡유형에 따른 과일의 분류

- 호흡급등형 과일 (Climacteric fruit)
 - 숙성 기간 동안 호흡이 일시적으로 급격하게 증가하는 과일
 - 숙성 시 에틸렌에 대한 민감도가 높은 과일
 - 바나나, 복숭아, 사과, 토마토, 파파야, 아보카도, 멜론, 배 등

그림 6. 수확 후 호흡급등형 몇몇 과일들의 호흡양상

- 비호흡급등형 과일 (Non-Climacteric fruit)
 - 숙성 기간 동안 호흡의 변화가 미미하게 발생하는 과일
 - 숙성 시 에틸렌에 대한 민감도가 낮거나 없는 과일
 - 감귤류, 포도, 파인애플, 딸기 등

다. 과일의 생장과 호흡양상

 ※ 호흡급등형의 경우 호흡이 급격히 증가하면서 숙성이 이루어지고 노화에 들어가며, 수확 적기는 호흡급등현상이 일어나기 전이고, 식용 적기는 숙성했을 때이다.
 과실을 냉장 보관하면 호흡급등현상이 일어나지 않는다.

3. 에틸렌의 생성과 작용 (Effect of ethylene)

H H H H 무색, 무취 기체

가. 에틸렌(ethylene, C_2H_4)

- 과실의 숙성, 잎이나 꽃의 노화를 촉진시키는 작용을 하는 식물호르몬
- 숙성(Ripening)호르몬, 노화 호르몬이라고도 함
- 합성에틸렌은 원예산물의 품질관리에 이용
 - 바나나의 후숙
 - 감귤의 후숙 (녹색→ 노란색, Degreening)
 - 키위의 후숙 등

● 물리적인 충격이나 상처, 스트레스 하에서도 에틸렌 발생하여 품질 저하

그림 5. 키위의 후숙에 이용되고 있는 에틸렌 발생제

나. 에틸렌의 생합성

• 식물세포에서 에틸렌 생합성

Increases in Ethylene biosynthesis enzymes, intermediates, and ethylene release are correlated

• 에틸렌 작용억제

- ① 에틸렌 수용체와의 결합 차단
 - silver thiosulfate(STS)
 - 1-MCP
 - 에탄올 등

1-methylcyclopropene

- ② 공기 중의 에틸렌 흡착
 - 과망간산칼륨
 - 제올라이트
 - 활성탄 등
 - ➡ 에틸렌 농도 감소

다. 과일의 호흡특성과 에틸렌의 생성

- 호흡급등형 과일: 호흡의 증가와 함께 에틸렌 생성도 급격히 증가 ➡ 숙성
 에틸렌 처리 시 호흡의 증가를 촉진하여 호흡증가시점이 앞당겨짐 ➡ 숙성 촉진
- 비호흡급등형 과일: 호흡이 증가하여도 에틸렌 생성은 미미함 에틸렌 처리 시 호흡은 일시적으로 증가 ➡ 숙성 영향 X

그림 7. 호흡급등형과 비호흡급등형 과실의 호흡에서 외부 에틸렌 주입 효과

* 과일의 노화 (fruit senescence)

 노화는 과일이 분해적인 대사과정으로 전환되는 기간으로 전체적인 품질이 감소하여 궁극적으로 조직의 고사에 이르게 되는 과정

참고) pectinase: 펙틴분해효소 ➡ 조직연화

참고문헌

- 1. 원예산물 수확 후 관리 (2015)
- 2. 원예작물학-수확 후 품질관리론 (2013)
- 3. 원예산물의 저장과 유통 (2011)
- 4. 과수 수확 후 현장 활용 기술 (2013)