- We work in the language $L_E = \{\bar{0}, +, v, f, ', (,), -, \rightarrow, \forall, =, \leqslant, \#\}$
 - **Definition 1.** A subset $A \subseteq \mathbb{N}^k$ is definable if there is a formula $\varphi(v_1, \ldots, v_k)$ such that

$$(n_1,\ldots,n_k)\in A\iff \varphi(\overline{n_1},\ldots,\overline{n_k})$$

- **Definition 2.** A subset $A \subseteq \mathbb{N}^k$ is provably definable if there is $\varphi(\mathbf{x})$ such that $S \vdash \varphi(\mathbf{n}) \iff \mathbf{n} \in A$
- and $S \vdash \neg \varphi(\mathbf{n}) \iff \mathbf{n} \notin A$
- **Definition 3.** A function $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ is definable if $A = \{\mathbf{x}, f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{N}^k\}$ is definable.
- 5 It is weakly provably definable from S if A is provably definable from S.
- 6 It is provably definable if for all $\mathbf{n} \in \mathbb{N}^k$, $S \vdash \forall v (\varphi(\bar{\mathbf{n}}, v) \leftrightarrow f(\bar{\mathbf{n}}) = v)$
- ⁷ **Definition 4.** 1. $^+$: $\mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ is injective.
- 2. Adding and multiplying by 0 on the right: $\forall v(v+\bar{0}=\bar{0})$ and $\forall v(v\times\bar{0}=\bar{0})$
- 3. Addition, multiplication: $\forall v_1 \forall v_2 (v_1 + v_2^+ = (v_1 + v_2)^+)$ and $\forall v_1 \forall v_2 (v_1 \times v_2^+ = v_1 \times v_2 + v_2)$.
- 4. Relation \leq is a total order, $\bar{0}$ is the least element, n^+ is the successor of n.
 - 5. For any formula $\varphi(x)$ in one variable:

$$\left(\varphi(\bar{0}) \wedge \forall v_0 \left(\varphi(v_0) \to \varphi(v_0^+)\right)\right) \to \forall v_0 \left(\varphi(v_0)\right)$$

- Definition 5. For $\varphi = \sigma_0 \dots \sigma_n$ a formula of L, $\lceil \varphi \rceil = \sum_{i=0}^n \lceil \sigma_i \rceil 13^i$
- Building $Pr_S(\lceil \overline{\varphi} \rceil)$
- 1. Syntax: $\lfloor \sqrt[13]{n} \rfloor$, k++l, k is prefix/suffix/substring of n and formula sequence last of which is σ .
- 2. Define isNumeral and isVariable by \exists . Define isTerm by valid sequence of term construction.
- 3. Identify formulas: isAtomic, and isAxiomFirstOrder.
- 4. So for S a definable set of formulas in Δ_i , $\operatorname{proof}_S(\bar{n}, \overline{m})$, is Δ_i . $\operatorname{Pr}_S(\lceil \overline{\varphi} \rceil) = (\exists x) \operatorname{proof}_S(\lceil \overline{\varphi} \rceil, x)$.
- 5. Define PA in Δ_1 , we need the exists for the induction scheme.
- Definition 6 (Quasi-substitution). For $\varphi(v_i)$ and term t let $\varphi[t] = \forall v_i(v_i = t \to \varphi)$. We have PA $\varphi(t) \leftrightarrow \varphi[t]$. The benefit of this definition is that it is easy to tell the Gödel number of $\varphi[t]$ from φ .
- Definition 7. $\Sigma_0 = \Pi_0 = \Delta_0$ formulas without unbounded quantifiers. Σ_{n+1} : formulas of the form
- $\exists x \varphi(x)$, with $\varphi \in \Pi_n$. Similarly, Π_{n+1} is the formulas of the form $\forall x \varphi(x)$ with $\varphi \in \Sigma_n$.
- A formula ψ is provably Σ_n from S if there is a $\varphi \in \Sigma_n$, such that $S \vdash \psi \leftrightarrow \varphi$.

Lemma 8 (Diagonal Lemma). For any formula $F(v_1)$ there is a formula C such that:

$$\mathrm{PA} \vdash F(\overline{\ }\overline{C} \, \overline{\ }) \leftrightarrow C$$

- Let E_n the expression with Gödel number n.
- Let d(n) be $E_n[\bar{n}]$ and D(m,n) be the formula $n = \lceil d(m) \rceil$.
- Consider, $F(\lceil y \rceil)$, then $F(\lceil d(y) \rceil) \vdash \forall \psi(y) = \forall z(D(y,z) \to F(z))$. Let $k = \lceil \psi \rceil$, $C = \psi[\bar{k}]$. Then,
- 26 $C \vdash \exists \psi(\bar{k}) \vdash \exists F(\overline{\ \ }d(k))$. But $k = \lceil \psi \rceil$, so $C = E_k[\bar{k}]$ which is defined to be d(k). So, $C \vdash \exists F(\overline{\ \ }C \rceil)$.
- So, truth is undefinable, let $\mathbb{N} \models \text{True}(\lceil \overline{C} \rceil)$ if and only if $\mathbb{N} \models \varphi$. Then, $F(v_1) = \neg \text{True}(v_1)$ so there is C such that $C \models \exists \neg \text{True}(\lceil \overline{C} \rceil) \models \exists \neg C$.

29 Recursive Functions

- Definition 9. Primitive recursive functions contain zero and succ and are closed under, projection,
- 31 composition and primitive recursion. Recursive functions are closed under minimilisation as well.
- Proposition 10. Equivalences: A is a decidable set \iff A is Δ_1 -definable.
- ³³ A is a recursively enumerable set \iff A is Σ_1 -definable.

1 Provability Rules

- ² For S a provably definable set of assumptions.
- 1. If $S \vdash \varphi$ then $PA \vdash Pr_S(\overline{\lceil \varphi \rceil})$.
- $2. \ \mathrm{PA} \vdash \mathrm{Pr}_{S}(\overline{\lceil \varphi \to \psi \rceil}) \to (\mathrm{Pr}_{S}(\overline{\lceil \varphi \rceil}) \to \mathrm{Pr}_{S}(\overline{\lceil \psi \rceil})).$
- $\text{3. If PA} \subseteq S \text{ then PA} \vdash \Pr_S(\lceil \overline{\varphi} \rceil) \to \Pr_S(\lceil \Pr_S(\lceil \overline{\varphi} \rceil) \rceil)$
- Additionally, $S \vdash \varphi$ if and only if $\mathbb{N} \models \Pr_S(\overline{\neg \varphi})$.
- Let $PA \subseteq S$ a provably definable set of sentences. Then, there is a formula $G, \mathbb{N} \models G$ but $S \nvDash G$.
- **Definition 11.** A set S of assumptions is n-inconsistent if for some Σ_n formula $\exists x \psi(x), S \vdash \exists x \psi(x)$ but
- for all $m \in \mathbb{N}$, $S \vdash \neg \psi(\overline{m})$. It is *n*-consistent if it is not *n*-inconsistent.
- Definition 12. Formulas S are Σ_n -complete if every Σ_n sentence true in \mathbb{N} is provable from S.
- Definition 13 (Weaker arithmetics). Q is PA without the induction schema, so it is finitely axioma-
- tisable. \mathcal{R} is the collection of all valid sentences of the form $\overline{m} + \overline{n} = \overline{k}$, $\overline{m} \times \overline{n} = \overline{k}$, $\overline{m} \neq \overline{n}$,
- $\forall v_1(v_1 \leq \bar{n} \rightarrow (v_1 = \bar{0} \vee \ldots \vee \bar{n})) \text{ and } \forall v_1(v_1 \leq \bar{n} \vee \bar{n} \leq v_1).$
- Proposition 14. For every $r \in \mathcal{R}$, $\mathcal{Q} \vdash r$.
- Proposition 15. \mathcal{R} is Σ_0 -complete. Hence, so is \mathcal{Q} and PA.
- Proposition 16. If S is Σ_0 -complete then it is Σ_1 -complete. Hence, \mathcal{R} , \mathcal{Q} and PA are Σ_1 -complete.
- Theorem 17 (1st Incompleteness). There exists a Π_1 sentence G such that if PA is consistent then
- PA $\nvdash G$, if PA is 1-consistent then PA $\nvdash \neg G$.
- Theorem 18 (Rosser's). Let PA $\subseteq S$ any provably definable consistent set of sentences. Then there is
- 20 a sentence G such that $S \nvDash G$ and $S \nvDash \neg G$.
- Theorem 19 (2nd Incompleteness). Let $PA \subseteq S$ a provably definable set of sentences.
- If $S \vdash G \leftrightarrow \neg \Pr_S(\overline{G})$, then for any $\varphi, S \vdash \neg \Pr_S(\overline{\varphi}) \to \neg \Pr_S(\overline{G})$.
- So, $S \vdash \neg \Pr_S(\lceil \overline{\varphi} \rceil)$ implies $S \vdash G$. But, if S is consistent $S \not\vdash G$.
- In particular, $S \nvdash \neg \Pr_S(\bar{0} = \bar{1})$ which is Con_S .
- Theorem 20 (Lob's Theorem). Let $PA \subseteq S$ provably definable. Then, from $S \vdash \Pr_S(\lceil \overline{\varphi} \rceil) \to \varphi$ we can
- deduce $S \vdash \varphi$.