

MASTER THESIS

PRACTICAL CYBER-ATTACKS ON AUTONOMOUS VEHICLES

Bas G.B. Stottelaar

Faculty of Electrical Engineering, Mathematics and Computer Science Services, Cybersecurity and Security Research Group

Committee:

Prof. Dr. Frank Kargl

Prof. Dr. Ir. Raymond Veldhuis

Dr. Jonathan Petit

Dipl.-Inf. Michael Feiri

May 4, 2015 Version: 2123ddc

ABSTRACT

This thesis explores the field of Autonomous Vehicle (AV) sensor technologies and potential cyber-attacks on sensors. The research on AVs is increasing tremendously, as the first vehicles are due to hit the road by 2020. Unfortunately, the literature on cyber-attacks on AVs is limited and theoretical. The first part of this work addresses the available sensor technologies, including limitations, attacks and countermeasures. Examples of sensor technologies include Laser Image Detection and Ranging (Lidar), Tirepressure Monitoring System (TPMS) and Global Navigation Satellite System (GNSS). In the second part of this thesis, practical attacks on the hardware layer of Lidar and camera sensors will be demonstrated on actual hardware (MobilEye C2-270 Advanced Driver Assistance System (ADAS) and ibeo LUX 3 Lidar system). Camera-related attacks include blinding and auto controls confusion attacks. The Lidar attacks include jamming, relaying and spoofing attacks. The attacks are evaluated according to an external attacker model with limited money and knowledge. The experiments are proof-of-concept, and are conducted in a lab environment. It was found that the MobilEye C2-270 is sensitive to low-cost near-infrared light sources, but these light sources cannot blind it. However, a low-budget low-power visible lasers can. The Lidar was susceptible to jamming, relay and spoofing attacks using low-cost hardware. Counterfeit signals can also influence the tracking software. Three examples of the impact of the attacks on the application level have also been shown, including an attack on sensor fusion. The last section of this work discusses several countermeasures that can mitigate or limit the demonstrated attacks.

ACKNOWLEDGEMENTS

Without the enthusiasm of my supervisors I would never haven chosen this topic. Their way of thinking helped me a lot, and got me through the easy and hard times. When I first contacted Jonathan and Michael to talk about this thesis topic, I was told that it would be hard and that the outcome would be unknown. Nevertheless, it would be a very practical topic and the result would be eye-opening. Thanks to you guys, I got the possibility to challenge myself and show what I could do. I hope that I have properly wrote down all the practical things I did.

Furthermore, many thanks to my girlfriend Mirjam, family and friends for supporting and providing feedback. Even though my due date changed many, many, many times, you still kept believing in what I did, even in hard times. This will mark the end of my study career at the University of Twente. Special thanks to Dirk, Kevin, Lambert, Marijn and Ties for helping me to improve the text. I have concluded that I am better at writing program code than text.

Also, many thanks to Geert Jan Laanstra. He provided me a place to work for more than one year, and his knowledge was valuable while reverse engineering the Lidar, doing the measurements and debating camera countermeasures. It is also thanks to him that I can still use my eyes. Playing with lasers can be very dangerous!

Finally, I would like to thank V-Tron B.V. in Deventer and Ibeo Automotive Systems GmbH in Hamburg for providing the MobilEye C2-270 and ibeo LUX 3 to experiment with. Without their generosity, this work would not have been possible. I had fun playing with the devices and find attack possibilities while simultaneously reverse engineering the hardware in terms of operation.

CONTENTS

```
1 INTRODUCTION
   1.1 Problem statement
   1.2 Research questions
       Contributions
   1.4 Organization
                         3
  DEFINITIONS AND ATTACKER MODEL
                                         5
   2.1 Degrees of Automation
   2.2 Cyber-attacks
       2.2.1 Definition
              Types of attack
                                 7
   2.3 Attacker model
   2.4 Attack scenarios
3 AUTONOMOUS VEHICLE SENSORS
                                     13
   3.1 Sensor Technologies
             Lidar
       3.1.1
                       14
       3.1.2
             GNSS
                        17
              Camera
       3.1.3
                         27
        3.1.4
              TPMS
   3.2 Sensor Fusion
        3.2.1 Kalman Filter
                               36
       3.2.2 Particle Filter
                              39
        3.2.3 Attacks
              Countermeasures
        3.2.4
  ATTACKING AUTONOMOUS VEHICLE SENSORS
                                               47
   4.1 Camera
                   48
              Calibrating the hardware
       4.1.1
              Testing sensitivity
       4.1.2
              Blinding the camera
       4.1.3
       4.1.4
              Confusing the auto controls
   4.2 Lidar
       4.2.1
              Interfacing the hardware
                                         67
              Understanding the Lidar
                                         69
       4.2.2
              Jamming the signal
       4.2.3
       4.2.4
              Relaying the signal
                                    79
              Spoofing the signal
       4.2.5
                                    80
   4.3 Conclusions
5 DISCUSSION
                  87
   5.1 Impact on application level
        5.1.1 Camera
        5.1.2 Lidar
        5.1.3 Sensor fusion
   5.2 Countermeasures
        5.2.1 Camera
                         92
        5.2.2 Lidar
                       95
   5.3 Limitations
                      97
```

CONTENTS

```
6 CONCLUSIONS AND FUTURE WORK
   6.1 Summary 101
  6.2 Research questions 102
  6.3 Future work 104
       6.3.1 Camera 105
       6.3.2 Lidar 105
6.3.3 Application level 106
       6.3.4 Countermeasures
A SENSOR FUSION: A CASE STUDY 107
  A.1 Kalman Filter 107
  A.2 Particle Filter 109
B SPECTROMETRY 113
C RESULTS OF CAMERA EXPERIMENTS 117
  C.1 Testing sensitivity 117
  C.2 Blinding the camera 121
  c.3 Confusing the auto controls
D OVERVIEW OF HARDWARE 141
   D.1 MobilEye C2-270 141
   D.2 ibeo LUX 3 142
   D.3 Light sources 143
       D.3.1 Infrared 143
       D.3.2 Spots 144
D.3.3 Lasers 145
   D.4 Cameras 146
   D.5 Measurement tools 147
   D.6 Other 148
ACRONYMS 151
BIBLIOGRAPHY 153
```

LIST OF FIGURES

Figure 1	Problem statement on external sensing 2	
Figure 2	Example of an attack tree 9	
Figure 3	Lidar perception of the world 15	
Figure 4	Three-dimensional view of a Lidar 16	
Figure 5	Dilution of precision in GNSS 20	
Figure 6	x-y plot of GPS points 20	
Figure 7	Sensor fusion with Emap 22	
Figure 8	Visual overlay of Emap algorithm 23	
Figure 9	CWI inference from a car GPS jammer 24	
Figure 10	Adaptive Notch filtering applied to CWI 26	
Figure 11	Example of rolling shutter effect 28	
Figure 12	Multiband image capturing example 29	
Figure 13	Result of thresholding an image 30	
Figure 14	Common Haar-like features 31	
Figure 15	Simplified setup of stereoscopic vision 31	
Figure 16	Example of a Dazzler weapon and beam 32	
Figure 17	Laser damaged CMOS sensor 33	
Figure 18	Front and back of a TPMS sensor 34	
Figure 19	Mean, K-window and Kalman filtering compared	37
Figure 20	Flowchart of a KF 38	
Figure 21	Flowchart of a PF 40	
Figure 22	Posterior, prior and likelihood relation 41	
Figure 23	PF applied to robot localization problem 44	
Figure 24	Ambiguity in a PF with two and three beacons 4.	5
Figure 25	MobilEye C2-270 installed in a car 48	
Figure 26	MobilEye C2-270 SeeQ Camera Calibration Tester	50
Figure 27	Sensitivity of an eye compare to image sensors 5	
Figure 28	Inverse-square law of light sources 53	
Figure 29	Setup of light sensitivity test 54	
Figure 30	650 nm laser @ 50 cm 55	
Figure 31	850 nm LED @ 50 cm 55	
Figure 32	860 nm LED @ 50 cm 56	
Figure 33	Effects of auto controls 57	
Figure 34	Setup of blinding experiment 58	
Figure 35	White Spot in light @ 50 cm 58	
Figure 36	850 nm Spot in light @ 50 cm 59	
Figure 37	940 nm 5x5 LED Matrix in dark @ 200 cm 59	
Figure 38	365 nm spot in light @ 100 cm 63	
Figure 39	White spot in light @ 50 cm 64	
Figure 40	940 nm 5x5 LED matrix in dark @ 100 cm 64	
Figure 41	Typical test setup of the ibeo LUX 3 68	
Figure 42	Screenshot of Ibeo Laser View Premium 68	
Figure 43	Lidar pattern visualized 70	
Figure 44	Angular resolution of Lidar 70	
Figure 45	Measuring angular resolution 71	
Figure 46	Setup of Lidar mirror experiment 72	
Figure 47	Result of Lidar mirror experiment 72	
Figure 48	Result of Lidar mirror experiment 73	
O 1-	T	

LIST OF FIGURES

Figure 49	Setup of Lidar glass experiment 73
Figure 50	Result of the Lidar glass experiment 74
Figure 51	Setup of Lidar patterns visualization 75
Figure 52	Visualization of three Lidar pulses 76
Figure 53	Visualization of one Lidar pulse 77
Figure 54	Setup of a Lidar jamming attack 77
Figure 55	Lidar jamming signal visualized 78
Figure 56	Lidar jamming parameters 78
Figure 57	Lidar jamming attack 79
Figure 58	Setup of a Lidar relay attack 80
Figure 59	Lidar relay attack 80
Figure 60	Setup of a Lidar injection attack 81
Figure 61	Result of the Lidar injection attack 82
Figure 62	Lidar spoofing parameters 82
Figure 63	Result of the Lidar spoofing attack 83
Figure 64	Result of the Lidar spoofing attack 83
Figure 65	Tracking identification number over time 84
Figure 66	Lidar attack window 84
Figure 67	MobilEye live blinding experiment 88
Figure 68	Second MobilEye live blinding experiment 88
Figure 69	ibeo LUX 3 live experiment 89
Figure 70	Spoofing the PF with alternating beacons 90
Figure 71	Spoofing the PF with moving beacons 91
Figure 72	Spoofing the PF with random beacons 92
Figure 73	Combined setup of spectrometer and camera. 94
Figure 74	Illustration of image channel separation 95