

Review Last Lecture

- Frequent itemsets (patterns): Itemset, k-itemset, (absolute/relative) support, minimum support
- Association rules: Support, confidence
- Closed patterns and Max-patterns
- Apriori
 - The downward closure property: Any subset of a frequent itemset must be frequent
 - Algorithm: Level-wise, candidate generation, test
 - Partition for parallelization

Today's Lecture

- Frequent itemset mining
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Direct hashing and pruning: DHP (Park, Chen, Yu@SIGMOD'95)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li@KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)
- Closed itemset mining
 - Pattern growth-based approach: CLOSET+ (Wang et al. @KDD'03)

Today's Learning Goals

- Describe DHP, Eclat, FPGrowth, and CLOSET+
- Implement FPGrowth
 - Solve the frequent itemset mining problem by hand if the database is small, say, 10 transactions
 - Solve the problem by programming given an arbitrary size of transaction database and minimum support

Review: The Apriori Algorithm

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

F	Itemset	sup
1 1	{A}	2
	{B}	3
•	{C}	3
	{E}	3

F_{2}	Itemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3 rd scan	F_3

Itemset	sup
{B, C, E}	2

Review: The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{ frequent 1-itemset } \}
                                                         Issue: Too many candidates!!!
While (F_k != \emptyset) do { // when F_k is non-empty
  C_{k+1} := \text{candidates generated from } F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at
   minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

Today's Lecture

- Frequent itemset mining
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Direct hashing and pruning: DHP (Park, Chen, Yu@SIGMOD'95)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li@KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)
- Closed itemset mining
 - Pattern growth-based approach: CLOSET+ (Wang et al. @KDD'03)

Improving Efficiency of Apriori

- Bottlenecks
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Shrink number of candidates
 - Reduce passes of transaction database scans
 - Reduce number of transactions
 - Facilitate support counting of candidates

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): Hash k-itemsets into buckets and a k-itemset whose bucket count is below the threshold cannot be frequent
- Especially useful for 2-itemsets
 - Generate a hash table of 2-itemsets during the scan for 1-itemset
 - Hash entries
 - {ab, ad, ae}
 - {bd, be, de}

— ...

Itemsets	Count
{ab, ad, ae}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD'95.

*Hash Table

DHP (cont.)

- Especially useful for 2-itemsets
 - Generate a hash table of 2-itemsets during the scan for 1-itemset
 - If the count of a bucket is below minimum support count, the itemsets in the bucket should not be included in candidate 2-itemsets
 - Frequent 1-itemset: a, b, d, e
 - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold (e.g., 50)

Itemsets	Count
{ab, ad, ae}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

Today's Lecture

- Frequent itemset mining
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Direct hashing and pruning: DHP (Park, Chen, Yu@SIGMOD'95)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li@KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)
- Closed itemset mining
 - Pattern growth-based approach: CLOSET+ (Wang et al. @KDD'03)

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- Tid-List: List of transaction-ids containing an itemset
 - Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

ECLAT (cont.)

- Properties of Tid-Lists
 - t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - t(X) \subset t(Y): transaction having X always has Y (e.g., t(ac) \subset t(ce))

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

ECLAT (cont.)

- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids

-
$$t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset(ce, e) = \{T_{20}\}$$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

Today's Lecture

- Frequent itemset mining
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Direct hashing and pruning: DHP (Park, Chen, Yu@SIGMOD'95)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li@KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)
- Closed itemset mining
 - Pattern growth-based approach: CLOSET+ (Wang et al. @KDD'03)

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Idea: Frequent pattern growth (FPGrowth)
 - Find frequent single items and partition the database based on each such item
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called *conditional database*)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed

FPGrowth (cont.)

- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path — single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FPGrowth: Example

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

2. Sort frequent items in frequency descending order, f-list

F-list = f-c-a-b-m-p

TID	Items in the Transaction
100	{f, a, c, d, g, i, m, p}
200	$\{a, b, c, f, l, m, o\}$
300	{b, f, h, j, o, w}
400	{b, c, k, s, p}
500	$\{a, f, c, e, l, p, m, n\}$

TID	Ordered, frequent items
100	{f, c, α, m, p}
200	$\{f, c, a, b, m\}$
300	{ <i>f</i> , <i>b</i> }
400	{c, b, p}
500	{f, c, α, m, p}

FPGrowth: Example (cont.)

3. Scan DB again, construct FP-tree

TID	Ordered, frequent items
100	{f, c, a, m, p}
200	$\{f, c, a, b, m\}$
300	{ <i>f</i> , <i>b</i> }
400	{c, b, p}
500	{f, c, a, m, p}

Divide and Conquer Based on Patterns and Data

F-list = f-c-a-b-m-p

- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: fcαm:2, cb:1
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1
 - **–**
- p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

<u>Item</u>	Conditional pattern base
c	f:3
а	fc:3
b	fcα:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Pattern-Base Recursively

Conditional pattern bases

<u>item cond. pattern base</u>

c f:3

min_support = 3

а fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

p-conditional PB: fcam:2, $cb:1 \rightarrow c:3$

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

a-conditional PB: $fc:3 \rightarrow fc:3$

c-conditional PB: $f:3 \rightarrow f:3$

Mine Each Conditional Pattern-Base Recursively

For each conditional pattern-base

- Mine single-item patterns
- Construct its cond. FP-tree & mine it

p-conditional PB: fcam:2, $cb:1 \rightarrow c:3$

m-conditional PB: fca:2, $fcab:1 \rightarrow fca:3$

b-conditional PB: $fca:1, f:1, c:1 \rightarrow \phi$

a-conditional PB: $fc:3 \rightarrow fc:3$

c-conditional PB: $f:3 \rightarrow f:3$

Actually, for single branch FP-tree, all frequent patterns can be generated in one shot

```
m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3
```

Can you find all the frequent itemsets?

Item	Frequency	Header	>f:4
f	4		$\begin{array}{c c} & c:3 \\ \hline \end{array} \begin{array}{c} b:1 \\ \hline \end{array} \begin{array}{c} b:1 \\ \hline \end{array}$
С	4		
a	3		>\a:3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
b	3		
m	3),
р	3		> p:2 m:1

Conditional pattern bases

item cond. pattern base

*f:*3

fca:2, fcab:1

fcam:2, cb:1

Answer:

f:4, a:3, c:4, b:3, m:3, p:3; fa:3, fc:3, fm:3, ac:3, am:3,

cm: 3, cp:3;

fcm: 3, fam:3, cam: 3;

fcam: 3.

{}

Handout Exercise: FPGrowth vs. Apriori

Answer: 1-itemsets: A:2, B:3, C:3, E:3; 2-itemsets: AC:2, BC: 2,

BE: 3, CE: 2; 3-itemset: BCE: 2.

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree has a shared single prefix-path
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Scaling FP-growth by Database Projection

More efficient than Apriori

- What if FP-tree cannot fit in memory? DB projection
 - Project the DB based on patterns
 - Construct & mine FP-tree for each projected DB

Scaling FP-growth by Database Projection (cont.)

- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

Today's Lecture

- Frequent itemset mining
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Direct hashing and pruning: DHP (Park, Chen, Yu@SIGMOD'95)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li@KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)
- Closed itemset mining
 - Pattern growth-based approach: CLOSET+ (Wang et al. @KDD'03)

CLOSET+: Mining Closed Itemsets by Pattern-Growth

- Efficient, *direct* mining of closed itemsets
- Ex. Itemset merging: If Y appears in every occurrence of X, then Y is merged with X

TID	Items
1	acdef
2	abe
3	cefg
4	acdf

Let min_support = 2

a:3, b:1, c:3, d:2, e:3, f:3, g:1

F-List: a-c-e-f-d

d-proj. db: {acef, acf}

→ acfd-proj. db: {e}, thus we get: acfd:2

J. Wang, J. Han, and Jian Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In KDD'03. https://www.cs.umd.edu/class/spring2018/cmsc644/wang03closet.pdf

CLOSET+ (cont.)

- Many other tricks (but not detailed here), such as
 - Hybrid tree projection
 - Bottom-up physical tree-projection

TID	Ordered, frequent items
100	{f, c, α, m, p}
200	$\{f, c, \alpha, b, m\}$
300	{ <i>f</i> , <i>b</i> }
400	{c, b, p}
500	{f, c, α, m, p}

CLOSET+ (cont.)

- Many other tricks (but not detailed here), such as
 - Hybrid tree projection
 - Bottom-up physical tree-projection
 - Top-down pseudo tree-projection

TID	Ordered, frequent items
100	{f, c, α, m, p}
200	$\{f, c, a, b, m\}$
300	{f, b}
400	{c, b, p}
500	{f, c, α, m, p}

CLOSET+ (cont.)

- Many other tricks (but not detailed here), such as
 - Hybrid tree projection
 - Bottom-up physical tree-projection
 - Top-down pseudo tree-projection
 - Sub-itemset pruning
 - Item skipping
 - Efficient subset checking
 - Two-level hash-indexed result tree

Have Some Fun: Frequent Pattern Mining *Research*

References (I) Basic Concepts

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

References (II) Efficient Pattern Mining Methods

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014