Simple Example

Fast Fourier Transformation (FFT) How-to implement a FFT in Real Time

Rainer Nitsche / February 2024

DFT / FFT Objectives

FESTO

General objectives of the discrete fourier transformation

- Analyzing a time domain signa in the frequncy domain → Fourier Transform
- The fast fouriet transform (FFT) is an efficient method to numerically compute a dicrete fourier transform (DFT)
- The goal is to analyze to following signal:

$$x(t) = c + a_1 \sin(\omega_1 t) + a_2 \cos(\omega_2 t);$$

discrete time

$$x[n] = c + a_1 \sin(\omega_1 n T_s) + a_2 \sin(\omega_2 n T_s), \quad n = 0, 1, 2, \dots$$

with sample time $T_{\rm s}$ or sample frequency $f_{\rm s}=\frac{1}{T_{\rm s}}$.

Overview

FESTO

- Objectives: time domain to frequency domain
- time signal discrete time signal DFT FFT
- Sample Time / Number of Samples / Bin Width / Nyquist Frequency / Leackage effect
- Simulink Simulation
- dSpace Implementation in Real Time

Some Remarks on FFT

This is a text in second frame. For the sake of showing an example. See also [1]

FESTO

Good youtube videos from Steve Brunton about Fourier Transform:

▶ Link

Understanding the Discrete Fourier Transform and the FFT...

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$

FESTO

This is a text in second frame. For the sake of showing an example. See also |1|

- Good youtube videos from Steve Brunton about Fourier Transform:
 - ▶ Link

Introduction

 Understanding the Discrete Fourier Transform and the FFT... ▶ Link

Good help from dSpace home page...

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$

Simple Example

Some Remarks on FFT

FESTO

This is a text in second frame. For the sake of showing an example. See also [1]

- Good youtube videos from Steve Brunton about Fourier Transform:
 - ▶ Link
- Understanding the Discrete Fourier Transform and the FFT...
- Good help from dSpace home page...
- Simulink Implementations
- Plotting results as post processing tool

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$

Some Remarks on FFT

FESTO

4/9

This is a text in second frame. For the sake of showing an example. See also [1]

- Good youtube videos from Steve Brunton about Fourier Transform:
 - ▶ Link
- Understanding the Discrete Fourier Transform and the FFT...
- Good help from dSpace home page...
- Simulink Implementations
- Plotting results as post processing tool
- Text visible on slide 4

$$A(t) = c + a_1 \sin(\omega t) + a_2 \cos(\omega t)$$
 (1)

FESTO

Visualization

```
3 % Umsortieren fuer einen 3 D Plot
5 % Anzahl der Zeitfenster kann man ausrechnen:
6 \% 1 sec / (1024*Ts) ; simTime = 1 sec; Ts = 6.25e-5;
7 % => 16 Pakete bei 1 Sekunde...
8 for i = 1:length(matFFT(1,1,:))
9  % t(i) = i;
t(i,:) = matFFT(:,i);
11 end
13 figure(10); mesh(t)
15 f_vec = [0:1:length(matFFT(:,1))-1]*1/Ts/length(matFFT);
17 LW=1.5:
```

A motivating Example for FFT in Simulink

FESTO

Example

Sliding mode of the system [2]:

$$\ddot{x} = \sin(3t) + u \tag{2}$$

with sliding surface

$$s = c\dot{x} + x \tag{3}$$

with control law

$$u = -M\operatorname{sgn}(s) \tag{4}$$

Simulation results for M=3and $c = 1 \, \text{s}^{-1}$

If the system is in sliding mode, i. e. s=0, the dynamics is $s=\dot{x}+x=0$ and therefore indepentend of system parameters or disturbance → robust!

Sample frame title

FESTO

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

TikZ Test

FESTO

References

FESTO

- [1] S.L. Brunton and J.N. Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022. ISBN: 9781009098489. URL: https://books.google.de/books?id=rxNkEAAAQBAJ.
- [2] Vadim I. Utkin et al. Road map for sliding mode control design. 6330 Cham, Switzerland: Springer, 2020. ISBN: 978-3030417086. DOI: 10.1007/978-3-030-41709-3.