WHAT IS CLAIMED IS:

- . An isolated polynucleotide comprising a polynucleotide selected from:
- a) a polynucleotide comprising at least 20 contiguous bases selected from SEQ IN NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).
- 2. A recombinant expression cassette comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).
- 3. A vector comprising a recombinant expression cassette comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS; 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).
- 4. A host cell comprising a recombinant expression cassette comprising a polynucleotide selected from the group consisting of:

- a) a polynucleotide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).
- 5. The host cell of Claim 4 wherein the cell is a plant cell
- 6. The host cell of Claim 5 wherein the cell is selected from the group consisting of maize, sorghum, wheat, tomato, soybean, alfalfa, sunflower, canola, cotton, and rice.
- A transformed plant comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).
- 8. A plant seed comprising a polynucleotide selected from the group consisting of:
- a) a polynucleolide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- c) a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - d) a polynucleotide complementary to a polynucleotide of (a) through (c).

- 9. A method of reducing pathogenicity of a fungus producing fumonisin or a structurally related mycotoxin, comprising:
- a) transforming a plant cell with a vector comprising a polynucleotide selected from the group consisting of:
 - i. a polynucleotide comprising at least 20 contiguous bases selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - iii. a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - iv. a polynucleotide complementary to a polynucleotide of i. through iii. operably linked to a promoter;
 - b) growing the plant cell under plant growing conditions; and
- c) inducing expression of said polynucleotides for a time sufficient for amounts of the fumonisin esterase and APAO enzymes to accumulate to levels that can inhibit the fungus.
- 10. A method of making an APAO enzyme comprising the steps of:
 - expressing a polynucleotide in a recombinantly engineered
 cell, wherein the polynucleotide is selected from the group consisting of:
 - i. a polynucleotide comprising at least 20 contiguous bases selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - iii. a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - iv. a polynucleotide complementary to a polynucleotide of i. throughiii. operably linked to a promoter;

and

b) purifying the enzyme.

- a) expressing a polynucleotide in a plant, wherein said polynucleotide is selected from the group consisting of:
 - i. a polynucleotide comprising at least 20 contiguous bases selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 70% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - iii. a polynucleotide comprising at least 80% sequence identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - iv. a polynucleotide complementary to a polynucleotide of i. throughiii. operably linked to a promoter;

and

- b) purifying the enzyme from the plant seed or other plant parts.
- 12. An isolate polynucleotide comprising a polynucleotide selected from:
- a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).
- 13. A recombinant expression cassette comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).

- A vector comprising a recombinant expression cassette comprising a polynucleotide selected from the group consisting of:
- a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).
- 15. A host cell comprising a recombinant expression cassette comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).
- 16. The host cell of Claim 15 wherein the cell is a plant cell
- 17. The host cell of Claim 16 wherein the cell is selected from the group consisting of maize, sorghum, wheat, tomato, soybean, alfalfa, sunflower, canola, cotton, and rice.

- 18. A transformed plant comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
- b) a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).
- 19. A plant seed comprising a polynucleotide selected from the group consisting of:
- a) a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQID NOS: 35, 37, 39, 41, 43, and 45;

- a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - c) a polynucleotide complementary to a polynucleotide of (a) through (b).
- 20. A method of reducing pathogenicity of a fungus producing fumonisin or a structurally related mycotoxin, comprising:
- a) transforming a plant cell with a vector comprising a polynucleotide selected from the group consisting of:
 - a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 90% identity to a
 polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and
 45; and
 - iii. a polynucleotide complementary to a polynucleotide of (a) through(b).
 - b) growing the plant cell under plant growing conditions; and
- c) inducing expression of said polynucleotides for a time sufficient for amounts of the fumonisin esterase and APAO enzymes to accumulate to levels that can inhibit the fungus.
- 21. A method of making an APAO enzyme comprising the steps of:
 - expressing a polynucleotide in a recombinantly engineered
 cell, wherein the polynucleotide is selected from the group consisting of:
 - a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 90% identity to a
 polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and
 45; and
 - iii. a polynucleotide complementary to a polynucleotide of (a) through(b).

- b) purifying the enzyme.
- 22. A method of making an APAO enzyme comprising the steps of:
- a) expressing a polynucleotide in a plant, wherein said polynucleotide is selected from the group consisting of:
 - i. a polynucleotide which hybridizes under high stringency conditions to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45;
 - ii. a polynucleotide comprising at least 90% identity to a polynucleotide selected from SEQ ID NOS: 35, 37, 39, 41, 43, and 45; and
 - iii. a polynucleotide complementary to a polynucleotide of (a) through(b).

and

b) purifying the enzyme from the plant seed or other plant part.