Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Базовые компоненты интернет-технологий»

Отчет по лабораторной работе №1 «Основные конструкции языка Python»

Выполнил:

студент группы ИУ5-32Б Секретов Кирилл

Подпись и дата:

Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Подпись и дата:

Описание задания

Разработать программу в виде консольного приложения на языке Python для решения биквадратного уравнения. Программа должна осуществлять ввод с клавиатуры коэффициентов *a*, *b*, и *c*, проверяя их на корректность. Некорректно заданные значения коэффициентов необходимо игнорировать и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент - это коэффициент, значение которого может быть без ошибок преобразовано в действительное число. Также необходимо предусмотреть возможность передачи значений коэффициентам или какой-то их части в виде параметров командной строки, проверив их на корректность. На выходе программа должна вывести все действительные корни заданного уравнения или сообщить об их отсутствии.

Текст программы

Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Базовые компоненты интернет-технологий»

Отчет по лабораторной работе №1 «Основные конструкции языка Python»

Выполнил:

студент группы ИУ5-32Б Арзамасцев Артем

Подпись и дата:

Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Подпись и дата:

Москва, 2022 г.

Описание задания

Разработать программу в виде консольного приложения на языке Python для решения биквадратного уравнения. Программа должна осуществлять ввод с клавиатуры коэффициентов *a*, *b*, и *c*, проверяя их на корректность. Некорректно заданные значения коэффициентов необходимо игнорировать и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент - это коэффициент, значение которого может быть без ошибок преобразовано в действительное число. Также необходимо предусмотреть возможность передачи значений коэффициентам или какой-то их части в виде параметров командной строки, проверив их на корректность. На выходе программа должна вывести все действительные корни заданного уравнения или сообщить об их отсутствии.

Текст программы

```
import sys
import math
class MismatchError(Exception):
class SquaredRoot:
  def init (self, a, b, c):
    if a == 0.0:
       raise MismatchError("Уравнение с такими коэффициентами" +
                    "не является квадратным")
     self.a = a
     self.b = b
     self.c = c
  def calculate(self):
     descriminant = self.b * self.b - 4 * self.a * self.c
    if descriminant < 0.0:
       return []
     elif descriminant == 0.0:
       return [-self.b / (2 * self.a)]
     descriminant = math.sqrt(descriminant)
    return list(map(lambda x: (-self.b + x) / (2 * self.a),
            (-descriminant, descriminant)))
class BiSquareRoot:
  def init (self, a, b, c):
    if a == 0.0:
       raise MismatchError("Уравнение с такими коэффициентами не " +
                    "является биквадратным")
     self.a = a
     self.b = b
     self.c = c
  def calculate(self):
     equation = SquaredRoot(self.a, self.b, self.c)
     roots = equation.calculate()
    res = []
     for i in list(filter(lambda x: x \ge 0, roots)):
       if i == 0.0:
          res.append(0.0)
          root = math.sqrt(i)
          res.extend((-root, root))
```

```
return res
```

```
def update_list_factors(lst, val):
  try:
     lst.append(float(val))
  except ValueError:
     return 1st
  except Exception:
     return 1st
  return 1st
def read_factors():
  lst = []
  name_factors = ["a", "b", "c"]
  for i in sys.argv[1:]:
     lst = update_list_factors(lst, i)
     if len(1st) == 3:
       return 1st
  while len(lst) != 3:
     lst = update_list_factors(
       input(f"введите коэффициент {name_factors[len(lst)]}: ")
  return 1st
def main():
  list_factors = read_factors()
     equation = BiSquareRoot(*list_factors)
     roots = equation.calculate()
     if len(roots) == 0:
       print("корней нет")
     else:
       print("корни уравнения: ", *roots)
  except MismatchError as err:
     print(err)
  except Exception as err:
     print(err)
if__name__== "_main_":
  main()
```

Примеры выполнения программ

```
C. (Oser's (Mainoser (Desktop)) авторования выберите вид уравнения: квадратное 1, биквадратное 2

Введите коэффициент А:

Введите коэффициент В:

Введите коэффициент С:

Нет корней

С:\Users\MainUser\Desktop>lab1.py
Выберите вид уравнения: квадратное 1, биквадратное 2

Введите коэффициент А:

Введите коэффициент В:

Введите коэффициент В:

Введите коэффициент С:

Введите коэффициент С:

4

Нет корней
```

```
Выберите вид уравнения:квадратное 1, биквадратное 2
1
Введите коэффициент А:
1
Введите коэффициент В:
5
Введите коэффициент С:
2
Два корня: -0.4384471871911697 и -4.561552812808831
```