Tutorato MMI - Resto 1 12/05/2023

Definizione ricorsiva

Sia A l'insieme dei numeri interi positivi che **non** sono multipli di 5.

- a. Fornire una definizione ricorsiva dell'insieme A.
- b. Fornire una definizione non ricorsiva dell'insieme A.

Esercizio 1 - Soluzione

Soluzione (a):

- Passo base. $1, 2, 3, 4 \in A$.
- Passo ricorsivo. Se $a \in A$, allora $(a + 5) \in A$.

Soluzione (b):

$$A := \{ a \in \mathbb{N} \mid \exists k \ge 0, \exists h \in \{1, 2, 3, 4\} : a = 5k + h \}.$$

Definizione ricorsiva

Siano f(n) i numeri definiti dalla relazione seguente:

- f(1) = 2.
- $f(n) = f(n-1) + f(n-2) + \ldots + f(1) + 2, n \ge 2.$

Fornire una definizione ricorsiva di f(n).

Esercizio 2 - Soluzione

Soluzione:

Calcoliamo i primi valori della relazione.

- f(1) = 2.
- f(2) = f(1) + 2 = 4.
- f(3) = f(2) + f(1) + 2 = 4 + 2 + 2 = 8.
- f(4) = f(3) + f(2) + f(1) + 2 = 8 + 4 + 2 + 2 = 16.

Osserviamo quindi che il valore di f(n), $n \ge 2$ è uguale a 2f(n-1).

Possiamo quindi definire ricorsivamente la relazione come segue:

- **Passo base.** f(1) = 2.
- Passo ricorsivo. $f(n) = 2f(n-1), n \ge 2$.

Definizione ricorsiva

Sia A l'insieme dei numeri interi non negativi che sono pari e multipli di 3.

- a. Fornire una definizione ricorsiva dell'insieme A.
- b. Fornire una definizione non ricorsiva dell'insieme A.

Esercizio 3 - Soluzione

Soluzione (a):

Osserviamo che i numeri interi non negativi pari che sono anche multipli di 3 sono tutti i multipli di 6. Denotiamo tale insieme come A e definiamolo ricorsivamente come segue:

- Passo base. $0 \in A$.
- Passo ricorsivo. Se $a \in A$, allora $(a + 6) \in A$.

Soluzione (b):

$$A := \{ a \in \mathbb{N}_0 \mid \exists k \ge 0 : a = 6k \}.$$

Definizione ricorsiva

Fornire una definizione non ricorsiva della seguente funzione:

- **Passo base.** f(1) = 1.
- Passo ricorsivo. $f(n+1) = f(n) + 2n + 1, n \ge 1$.

Esercizio 4 - Soluzione

Soluzione:

Sviluppiamo i primi passi della ricorsione.

- f(1) = 1.
- f(2) = f(1) + 2 + 1 = 4.
- f(3) = f(2) + 4 + 1 = 9.
- f(4) = f(3) + 6 + 1 = 16.
- f(5) = f(4) + 8 + 1 = 25.

Notiamo che il valore di f(n) è uguale ad n^2 . Possiamo quindi definire in modo non ricorsivo la funzione come segue:

$$f(n) = n^2, \forall n >= 1.$$

Definizione ricorsiva

Fornire una definizione ricorsiva di $f : \mathbb{N} \Rightarrow \mathbb{N}, f(n) = n^3$.

Esercizio 5 - Soluzione

Soluzione:

Calcoliamo il valore di
$$f(n+1)$$
.
 $f(n+1) = (n+1)^3 = n^3 + 3n^2 + 3n + 1$
 $= f(n) + 3n^2 + 3n + 1$.

Possiamo quindi definire ricorsivamente la relazione come segue:

- Passo base. f(1) = 1.
- Passo ricorsivo. $f(n+1) = f(n) + 3n^2 + 3n + 1, n \ge 1.$

Definizione ricorsiva

Fornire una definizione ricorsiva di $f: \mathbb{N}_0 \Rightarrow \mathbb{N}_0, f(n) = 2n + 1$.

Esercizio 6 - Soluzione

Soluzione:

Calcoliamo il valore di f(n+1).

$$f(n+1) = 2(n+1) + 1$$

= $2n + 2 + 1$
= $f(n) + 2$.

Possiamo quindi definire ricorsivamente la relazione come segue:

- **Passo base.** f(0) = 1.
- **Passo ricorsivo.** $f(n+1) = f(n) + 2, n \ge 0.$

Definizione ricorsiva

Fornire una definizione ricorsiva del seguente insieme di coppie di interi $S = \{(2,4), (3,5), (4,6), \dots, (x,x+2)\}.$

Esercizio 7 - Soluzione

Soluzione:

- **Passo base.** $(2,4) \in S$.
- Passo ricorsivo. Se $(x, y) \in S$, allora $(x + 1, y + 1) \in S$.