හියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

නව නිර්දේශය/பුනිய பாடத்නිட்டம்/New Syllabus

eom hwo echibossiqo (eom dwo echbos நடித்து நடிக்கு நடிக்கு நிரை குடிக்கும் இன்ற குடிக்கம் இலங்கைப் பநின்ற நிரைக்களம் ions, Sri Lanka Department இலங்கைப் Salphina நிரைக்களம் is, Sri Lanka Department இலங்கைப் Salphina நிரைக்களம் is, Sri Lanka Department இலங்கைப் Salphina நிரைக்களம் நிரைக்களம் இலங்கைப் பநின்ற குடிக்கும் நிரைக்களம் இலங்கைப் பநின்ற குடிக்கும் நிரைக்களம் இலங்கைப் பநின்ற கிரைக்களம் இலங்கைப் பநின்ற கிரைக்களம் இலங்கைப் பநின்ற கிரைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

05.08.2019 / 0830 = 1140

சேடே றூ3 மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනින්තු 10 යි **ගෙහනුන භාඅව්ධ ලෝග් - 10 නි**ඟියා්සණ් Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

கட்டெண்				
	T-10000-0000-000-000-000-000-000-000-000			

அறிவுறுத்தல்கள் :

- * இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1 10), **பகுதி B** (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * பகுதி A : எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- ※ பகுதி В:
 - **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** இன் விடைத்தாளானது **பகுதி B** இன் விடைத்தாள்களுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் **பகுதி B ஐ மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த கணிதம் 1					
பகுதி	வினா எண்	புள்ளிகள்			
	1				
	2				
	3				
	4				
A	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	மொத்தம்				

(10) Boogstr roofinis I

	மொத்தம்
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
1 பரிசீலித்தவர்:	
ப்புசலித்தவர். 2	
மேற்பார்வை செய்தவர்:	

	பகுதி А
1.	கணிதத் தொகுத்தறிவுக் கோட்பாட்டைப் பயன்படுத்தி, எல்லா $n\!\in\!\mathbb{Z}^+$ இந்கும் $\sum_{r=1}^n (2r\!-\!1) = n^2$ என நிறுவுக.
2.	ஒரே வரிப்படத்தில் $y=\left 4x-3\right ,\;y=3-2\left x\right $ ஆகியவற்றின் வரைபுகளைப் பரும்படியாக வரைக.
	இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 2x-3 + x <3$ ஐத் திருப்தியாக்கும் x இன் எல்லா
	மெய்ப் பெறுமானங்களையும் காண்க.

3.	ஓர் ஆகண் வரிப்படத்தில், $\operatorname{Arg}\left(z-2-2i\right)=-rac{3\pi}{4}$ ஐத் திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வ	ക്ഷ
	குறிக்கும் புள்ளிகளின் ஒழுக்கைப் பரும்படியாக வரைக.	
	இதிலிருந்து அல்லது வேறு விதமாக, $\operatorname{Arg} \left(z-2-2i\right) = -\frac{3\pi}{4}$ ஆக இருக்கத்தக்கதாக $\left i\overline{z}+1\right $ இழிவுப் பெறுமானத்தைக் காண்க.	இ ன்
		•••
		• • •
•	$\left(x^3+rac{1}{2} ight)^7$ இன் ஈருறுப்பு விரியில் உள்ள x^6 இன் குணகம் 35 எனக் காட்டுக.	•••
١.	$\left(x^3+\frac{1}{x^2}\right)^7$ இன் ஈருறுப்பு விரியில் உள்ள x^6 இன் குணகம் 35 எனக் காட்டுக. மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	•••
•••	X /	
•	X /	
•	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
•	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
•	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	The state of the s
	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
•	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
ļ.,	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
! .	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
Į.	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
į.	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
Į.	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	
Į.	் x / மேற்குறித்த ஈருறுப்பு விரியில் x ஐச் சாராத உறுப்பு இல்லை எனவும் காட்டுக.	

5.	$\lim_{x\to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi}$ எனக் காட்டுக.
6.	$y = \sqrt{\frac{x+1}{x^2+1}}$, $x = 0$, $x = 1$, $y = 0$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிரதேசம் x - அச்சைப்
6.	$y = \sqrt{\frac{x+1}{x^2+1}}$, $x = 0$, $x = 1$, $y = 0$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிரதேசம் x - அச்சைப் பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	• • • • • • • • • • • • • • • • • • • •
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழந்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{\pi}{4}(\pi+\ln 4)$ எனக் காட்டுக.

7.	C ஆனது $t\in\mathbb{R}$ இந்கு $x=at^2,\;y=2at$ ஆகியவந்றினால் பரமானமுறையாகத் தரப்படும் பரவளைவெனக்
	கொள்வோம்; இங்கு $a eq 0$. பரவளைவு C இற்குப் புள்ளி $\left(at^2,2at ight)$ இல் உள்ள செவ்வன் கோட்டின்
	சமன்பாடு $y+tx=2at+at^3$ இனால் தரப்படுகின்றதெனக் காட்டுக.
	பரவளைவு C மீது புள்ளி $P \equiv (4a,4a)$ இல் உள்ள செவ்வன் கோடு இப்பரவளைவை மறுபடியும் புள்ளி $C = (-T^2,2-T)$ இல் உள்ள செவ்வன் கோடு
	$Q\equiv (aT^2,2aT)$ இந் சந்திக்கின்றது. $T=-3$ எனக் காட்டுக.
8.	l_1 , l_2 ஆகியன முறையே $x+y=4$, $4x+3y=10$ ஆகியவற்றினால் தரப்படும் நேர்கோடுகளெனக்
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும்
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q
	கொள்வோம். கோடு l_1 மீது P,Q என்னும் இரு வேறுவேறான புள்ளிகள், அப்புள்ளிகள் ஒவ்வொன்றிலும் இருந்து கோடு l_2 இந்கான செங்குத்துத் தூரம் 1 அலகாக இருக்கத்தக்கதாக, உள்ளன. P,Q

வட்டம் $S=0$ காண்க.	നമി ഉപ											
		*****	*****					********	• • • • • • •			
				· · · · · · · · ·		•••••	•••••					
. , , , , , , , , , , , , , , , , , , ,				• • • • • • • •	•••••			.,,,,,,,,,		*******		*******
		••••					•••••		• • • • • • •			
	•••••					• • • • • • • • • • • • • • • • • • • •						
	******	******				*******			<i></i>	,		
		*********						,,,,,,,,,,			*****	
	********	*********	******					**********		********		
					• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	******				
					• • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				•••••
	******		******			*****	•••••				*****	
				******	* * * * * * * *							•••••
										• • • • • • • •		
						<i>.</i>						
	* * * * * * * * * * * * * * * * * * * *					• • • • • • • • • • • • • • • • • • • •						
$\theta \neq (2n+1)\pi$	 இற்கு <i>t</i>	$=\tan\frac{\theta}{2}$	ıனக் 6						cost	$\theta = \frac{1-t}{1+t}$	 2 2 616	 னக் கோ
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{2}$	இற்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6						cost	$\theta = \frac{1-t}{1+t}$,2 2 616	 னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{2n+1}$	இற்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.		$\theta = \frac{1 - t}{1 + t}$,2 -2 616	 னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$\theta = \frac{1 - t}{1 + t}$	2 2 616	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$\theta = \frac{1-t}{1+t}$,2 ,2 ,2 ,3 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$\theta = \frac{1 - t}{1 + t}$; 2 616	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> /3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$\theta = \frac{1-t}{1+t}$,2 (2) 616	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> /3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$g = \frac{1-t}{1+t}$,2 (2) 616	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> /3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$g = \frac{1-t}{1+t}$,2 616	னக் கள
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> /3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$g = \frac{1-t}{1+t}$,2 616	னக் கா
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இற்கு <i>t</i> /3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$g = \frac{1-t}{1+t}$,2 616	னக் கள
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இந்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cost	$g = \frac{1-t}{1+t}$	2 616	от въ въп
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இந்கு <i>t</i> √3 என s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cost	$\theta = \frac{1-t}{1+t}$	2 616	от въ въп
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இ遊母 t √3 6166 s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cost	$\theta = \frac{1-t}{1+t}$	2 616	னக் கள
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இ遊母 t √3 GEGGT \$1	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$9 = \frac{1-t}{1+t}$	2 616	னக் கள
$\theta \neq (2n+1)\pi$ $\tan \frac{\pi}{12} = 2 - \sqrt{\frac{\pi}{12}}$	இ遊母 t /3 area s	$=\tan\frac{\theta}{2}$	ıனக் 6					ஆகும்.	cosé	$\theta = \frac{1-t}{1+t}$	2 616	от въ въп

සියලු ම හිමිකම් ඇව්රිනි / மුழுப் பதிப்புநிமையுடையது / All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

வேறிய அதி இருவர்களில் இலங்கைப் படுக்கு இருவருக்கும் இருவருக்கும் இருவருக்கும் இருவருக்கும் இருவருக்கும் இலங்கைப் பழிக்கத் திணைக்களம் வருவருக்கும் இருவருக்கும் இலங்கைப் பழிக்கத் திணைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

பகுதி B

- * ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11. (a) $p \in \mathbb{R}$ எனவும் 0 எனவும் கொள்வோம். <math>1 ஆனது சமன்பாடு $p^2x^2 + 2x + p = 0$ இன் ஒரு மூலம் அன்று எனக் காட்டுக.

 $lpha,\ eta$ ஆகியன இச்சமன்பாட்டின் மூலங்களெனக் கொள்வோம். $lpha,\ eta$ ஆகிய இரண்டும் மெய்யெனக் காட்டுக.

 $\alpha+eta$, lphaeta ஆகியவற்றை p இல் எழுதி

$$\frac{1}{(\alpha-1)} \cdot \frac{1}{(\beta-1)} = \frac{p^2}{p^2 + p + 2}$$

எனக் காட்டுக.

 $rac{lpha}{lpha-1}$, $rac{eta}{eta-1}$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு

 $(p^2+p+2)x^2-2(p+1)x+p=0$ எனவும் இம்மூலங்கள் இரண்டும் நேர் எனவும் காட்டுக.

(b) c,d ஆகியன இரு **பூச்சியமல்லாத** மெய்யெண்கள் எனவும் $f(x) = x^3 + 2x^2 - dx + cd$ எனவும் கொள்வோம். (x-c) ஆனது f(x) இன் ஒரு காரணி எனவும் f(x) ஆனது (x-d) இனால் வகுக்கப்படும்போது மீதி cd எனவும் தரப்பட்டுள்ளது. c,d ஆகியவற்றின் பெறுமானங்களைக் காண்க.

c,d ஆகியவற்றின் இப்பெறுமானங்களுக்கு, f(x) ஆனது $(x+2)^2$ இனால் வகுக்கப்படும்போது மீதியைக் காண்க.

 $12.(a)\ P_1,\ P_2$ ஆகியன முறையே $\left\{A,B,C,D,E,1,2,3,4
ight\}$, $\left\{F,G,H,I,J,5,6,7,8
ight\}$ ஆகியவற்றினால் தரப்படும்

இரு தொடைகளெனக் கொள்வோம். $P_1 \cup P_2$ இலிருந்து எடுக்கப்பட்ட 3 வெவ்வேறு எழுத்துகளையும்

- 3 வெவ்வேறு இலக்கங்களையும் கொண்டு 6 மூலகங்களைக் கொண்ட ஒரு கடவுச்சொல்லை உருவாக்க வேண்டியுள்ளது. பின்வரும் ஒவ்வொரு வகையிலும் அமைக்கத்தக்க அத்தகைய வெவ்வேறு கடவுச்சொற்களின் எண்ணிக்கையைக் காண்க:
- (i) எல்லா 6 மூலகங்களும் P_1 இலிருந்து மாத்திரம் தெரிந்தெடுக்கப்படுகின்றன.
- (ii) 3 மூலகங்கள் P_1 இலிருந்தும் ஏனைய 3 மூலகங்கள் P_2 இலிருந்தும் தெரிந்தெடுக்கப்படுகின்றன.
- $(b) \ r \in \mathbb{Z}^+$ இற்கு $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ எனவும் $V_r = \frac{1}{r(r+1)(r+2)}$ எனவும் கொள்வோம்.

 $r\!\in\!\mathbb{Z}^+$ இற்கு $V_r\!-\!V_{r+2}\!=\!6\,U_r$ எனக் காட்டுக.

இதிலிருந்து, $n\in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n U_r = \frac{5}{144} - \frac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ எனக் காட்டுக.

 $r \in \mathbb{Z}^+$ இற்கு $W_r = U_{2r-1} + U_{2r}$ எனக் கொள்வோம்.

 $n\in \mathbb{Z}^+$ இற்கு $\sum_{r=1}^n W_r=rac{5}{144}-rac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ என உய்த்தறிக.

இதிலிருந்து, முடிவில் தொடர் $\sum_{r=1}^{\infty} W_r$ ஒருங்குகின்றதெனக் காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.

13. (a)
$$\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ ஆகியன் $\mathbf{A}\mathbf{B}^{\mathsf{T}} = \mathbf{C}$ ஆக

இருக்கத்தக்கதாகத் தாயங்களெனக் கொள்வோம்; இங்கு $a,b\!\in\!\mathbb{R}$.

a=2, b=1 எனக் காட்டுக.

அத்துடன் ${f C}^{-1}$ **இருப்பதில்லை** எனவும் காட்டுக.

 ${f P}=rac{1}{2}({f C}-2{f I})$ எனக் கொள்வோம். ${f P}^{-1}$ ஐ எழுதி, $2{f P}({f Q}+3{f I})={f P}-{f I}$ ஆக இருக்கத்தக்கதாகத் தாயம் ${f Q}$ ஐக் காண்க; இங்கு ${f I}$ ஆனது வரிசை ${f 2}$ இன் சர்வசமன்பாட்டுத் தாயமாகும்.

- (b) $z,z_1,z_2\in\mathbb{C}$ எனக் கொள்வோம்.
 - (i) Re $z \le |z|$ எனவும்

(ii)
$$z_2 \neq 0$$
 இற்கு $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$ எனவும் காட்டுக.

$$z_1 + z_2 \neq 0$$
 இற்கு $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) \leq \frac{\left|z_1\right|}{\left|z_1 + z_2\right|}$ என உய்த்தறிக.

$$z_1 + z_2 \neq 0$$
 இற்கு $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) + \operatorname{Re}\left(\frac{z_2}{z_1 + z_2}\right) = 1$ ஐ வாய்ப்புப் பார்த்து,

$$z_1,z_2\in\mathbb{C}$$
 இற்கு $\left|z_1+z_2\right|\leq \left|z_1\right|+\left|z_2\right|$ எனக் காட்டுக.

$$(c)$$
 $\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$ எனக் கொள்வோம்.

 $1+\omega$ ஐ $r(\cos\theta+i\sin\theta)$ என்னும் வடிவத்தில் எடுத்துரைக்க; இங்கு r(>0) , $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ ஆகியனதுணியப்பட வேண்டிய மாறிலிகள்.

த மோய்வரின் தேற்றத்தைப் பயன்படுத்தி $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ எனக் காட்டுக.

14.(a)
$$x \neq 3$$
 இற்கு $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ எனக் கொள்வோம்.

 $x \neq 3$ இற்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ இனால் தரப்படுகின்றதெனக் காட்டுக.

y=f(x) இன் வரைபை அணுகுகோடுகள், y- வெட்டுத்துண்டு, திரும்பற் புள்ளிகள் ஆகியவற்றைக் காட்டிப் பரும்படியாக வரைக.

 $x \neq 3$ இந்கு $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ **எனத் தரப்பட்டுள்ளது.** y = f(x) இன் வரைபின் விபத்திப் புள்ளிகளின் x – ஆள்கூறுகளைக் காண்க.

(b) அருகே உள்ள உருவில் அடியைக் கொண்ட ஒரு செவ்வட்டக் கூம்பின் அடித்துண்டின் வடிவத்தில் உள்ள ஒரு பேசின் காட்டப்பட்டுள்ளது. அதன் சாய்ந்த நீளம் $30\,\mathrm{cm}$ உம் மேல் வட்ட விளிம்பின் ஆரை அடியின் ஆரையின் இரு மடங்கும் ஆகும். அடியின் ஆரை $r\,\mathrm{cm}$ எனக் கொள்வோம். பேசினின் கனவளவு $V\,\mathrm{cm}^3$ ஆனது $0\,<\,r\,<\,30$ இற்கு $V=\frac{7}{3}\,\pi\,r^2\sqrt{900-r^2}$ இனால் தரப்படுகின்றதெனக் காட்டுக.

பேசினின் கனவளவு உயர்ந்தபட்சமாக இருக்கத்தக்கதாக r இன் பெறுமானத்தைக் காண்க.

பக். 9 ஐப் பார்க்க

- 15.(a) $0 \le \theta \le \frac{\pi}{4}$ இற்குப் பிரதியீடு $x = 2\sin^2\theta + 3$ ஐப் பயன்படுத்தி, $\int\limits_3^4 \sqrt{\frac{x-3}{5-x}} \,\mathrm{d}x$ இன் பெறுமானத்தைக் காண்க.
 - (b) பகுதிப் பின்னங்களைப் பயன்படுத்தி, $\int \frac{1}{(x-1)(x-2)}\,\mathrm{d}x$ ஐக் காண்க.

$$t > 2$$
 இற்கு $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ எனக் கொள்வோம்.

t>2 இந்கு $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ என உய்த்தறிக.

பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி, $\int \ln{(x-k)}\,\mathrm{d}x$ ஐக் காண்க; இங்கு k ஒரு மெய்ம் மாறிலி.

இதிலிருந்து, $\int f(t) \, \mathrm{d}t$ ஐக் காண்க.

(c) a,b ஆகியன மாறிலிகளாாக இருக்கும் சூத்திரம் $\int_a^b f(x)\mathrm{d}x = \int_a^b f(a+b-x)\,\mathrm{d}x$ ஐப் பயன்படுத்தி

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} \, dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} \, dx$$
 எனக் காட்டுக.

இதிலிருந்து, $\int\limits_{-\pi}^{\pi} \frac{\cos^2 x}{1+e^x} \, \mathrm{d}x$ இன் பெறுமானத்தைக் காண்க.

16. 12x-5y-7=0, y=1 என்னும் நேர்கோடுகளின் வெட்டுப் புள்ளி A இன் ஆள்கூறுகளை எழுதுக. இக்கோடுகளினால் ஆக்கப்படும் கூர்ங்கோணத்தின் இருகூறாக்கி l எனக் கொள்வோம். நேர்கோடு l இன் சமன்பாட்டைக் காண்க.

P ஆனது l மீது உள்ள ஒரு புள்ளியெனக் கொள்வோம். P இன் ஆள்கூறுகளை $(3\lambda+1,\,2\lambda+1)$ என எழுதலாமெனக் காட்டுக; இங்கு $\lambda\in\mathbb{R}$.

 $B \equiv (6,0)$ எனக் கொள்வோம். B,P ஆகிய புள்ளிகளை ஒரு விட்டத்தின் முனைகளாகக் கொண்ட வட்டத்தின் சமன்பாட்டை $S + \lambda U = 0$ என எழுதலாமெனக் காட்டுக; இங்கு $S \equiv x^2 + y^2 - 7x - y + 6$, $U \equiv -3x - 2y + 18$.

AB ஐ ஒரு விட்டமாகக் கொண்ட வட்டத்தின் சமன்பாடு S=0 என **உய்த்தறிக.**

B இனூடாக, ℓ இற்குச் செங்குத்தாக உள்ள நேர்கோட்டின் சமன்பாடு U = 0 எனக் காட்டுக.

எல்லா λ \in \mathbb{R} இந்கும் சமன்பாடு $S+\lambda U=0$ ஐக் கொண்ட வட்டங்களின் மீது இருப்பதுவும் B இலிருந்து வேறுபட்டதுமான நிலைத்த புள்ளியின் ஆள்கூறுகளைக் காண்க.

S=0 இனால் தரப்படும் வட்டம் $S+\lambda\,U=0$ இனால் தரப்படும் வட்டத்திற்கு நிமிர்கோணமாக இருக்கத்தக்கதாக λ இன் பெறுமானத்தைக் காண்க.

17. (a) $\sin{(A+B)}$ ஐ \sin{A} , \cos{A} , \sin{B} , \cos{B} ஆகியவற்றில் எழுதி, $\sin{(A-B)}$ இற்கு ஓர் இயல்பொத்த கோவையைப் பெறுக.

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
 எனவும்

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$
 எனவும்

உய்த்தறிக.

இதிலிருந்து, $0 < \theta < \frac{\pi}{2}$ இற்கு $2\sin 3\theta \cos 2\theta = \sin 7\theta$ ஐத் தீர்க்க.

(b) ஒரு முக்கோணி ABC இல் AC மீது புள்ளி D ஆனது BD = DC ஆகவும் AD = BC ஆகவும் இருக்கத்தக்கதாக உள்ளது. $B\hat{A}C = \alpha$ எனவும் $A\hat{C}B = \beta$ எனவும் கொள்வோம். உகந்த முக்கோணிகளுக்குச் சைன் நெறியைப் பயன்படுத்தி $2\sin\alpha\cos\beta = \sin(\alpha + 2\beta)$ எனக் காட்டுக.

 $\alpha: \beta=3:2$ எனின், மேலே (a) இல் உள்ள இறுதிப் பேறைப் பயன்படுத்தி $\alpha=\frac{\pi}{6}$ எனக் காட்டுக.

(c) $2 an^{-1} x + an^{-1} (x+1) = \frac{\pi}{2}$ ஐத் தீர்க்க. **இதிலிருந்து,** $\cos \left(\frac{\pi}{4} - \frac{1}{2} an^{-1} \left(\frac{4}{3} \right) \right) = \frac{3}{\sqrt{10}}$ எனக் காட்டுக.

米米米

Bag ම හිමිකම් ඇව්රිම් / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

(නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

07.08.2019 / 0830 - 1140

டிப் තුනයි **மூன்று மணித்தியாலம்** Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **மேலதிக வாசி**ப்பு **நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

#LGL600it

அறிவுறுத்தல்கள் :

- * இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1 10), **பகுதி B** (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * பகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B:
 - **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** இன் விடைத்தாளானது **பகுதி B** இன் விடைத்தாள்களுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் **பகுதி B ஐ மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.
- 🔻 இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

	0) இணைந்த கண	
பகுதி	வினா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	

	கார்த்திய
இலக்கத்தில்	ţ.
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
1	
பரிசீலித்தவர்: 2	
மேற்பார்வை செய்தவர்:	

	/JK	Ð		Δ
_	IO3	COM	٠.	73

1.	OSIPOTOS POR						
	ஒப்பமான கிடை மேசை மீது ஒரு நேர்கோட்டில் வைக்கப்பட்டுள்ள மோதுமாறு துணிக்கை A இந்கு வேகம் u தரப்படுகிறது. துணிக்கை B இயங்கித் துணிக்கை C உடன் நேரடியாக மோதுகின்றது. A இந்கும் குணகம் e ஆகும். முதலாம் மோதுகைக்குப் பின்னர் B இன் வேகத்ன	எ. து A உட <i>B</i> இர நதக்	ணிக்ன .ன் மே ந்குமின காண்ச	கை <i>B</i> ഉ எதிய பி டயே உ s.	_டன் (ன்னர் த எள்ள மீ	நேரடியா பணிக் ைவைவு	க க க
	B இற்கும் C இற்குமிடையே உள்ள மீளமைவுக் குணகமும் e ஆகும் வேகத்தை எழுதுக.	b. B	உடன்	மோதிய	ப பின்ன	ή <i>C</i> Q 0	ळा
		· · · · · ·	• • • • • • • •				
			• • • • • • •				
							•
			• • • • • • •				
				• • • • • • • • • •	******		
			• • • • • • •	*****		,	
			• • • • • • • •	.,	*******		,
							.
		* * * * * * *					
		• • • • • •			* • • • • • • • •		
		• • • • • •			• • • • • • • • •		.
		• • • • •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •		
		* * * * * * *	•••••	••,•••••	* * * * * * * * * * *	• • • • • • • •	٠
		• • • • • •					٠
	கிடைக் கூறும் நிலைக்குத்துக் கூறும் முறையே \sqrt{ga} , $\sqrt{6ga}$ ஆகவுள்ள		•••••				٠
	ஒரு வேகத்துடன் கிடை நிலத்தின் மீது உள்ள ஒரு புள்ளி O இலிருந்து ஒரு துணிக்கை எறியப்படுகின்றது. உருவிற் காட்டப்பட்டுள்ளவாறு						
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு	√6g	$\frac{1}{8a}$	a	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	$\sqrt{6g}$	ga/	a = a-	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு	√68 1 0	$\frac{\sqrt{ga}}{\sqrt{ga}}$	a	<i>b</i>		,
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	√68 0	$\frac{1}{\sqrt{ga}}$	a = a-	<i>b</i>		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a a a a a a a a</i>	b		,
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	√68 0	\sqrt{ga}	<i>a a a a a a a a a a</i>	<i>b</i> →		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	√68 0	\sqrt{ga}	a	<i>b</i> →		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a a a a a a a a</i>	<i>b</i>		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a a a a a a a a</i>	<i>b</i>		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a a a a a a a a</i>	<i>b</i>		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.		\sqrt{ga}	<i>a a a a a a a a a a</i>	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a</i>	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	0	\sqrt{ga}	<i>a a a</i>	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	√68 1 0	\sqrt{ga}	<i>a a a a a a a a a a</i>	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.	√68 0	\sqrt{ga}	<i>a a a</i>	b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.		\sqrt{ga}		b		
	ஒன்றிலிருந்தொன்று கிடைத் தூரம் a இல் இருக்கும் a , b ஆகிய உயரங்கள் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது. உயரம் a ஐ உடைய சுவரைக் கடந்து செல்லும்போது துணிக்கையின் வேகத்தின் நிலைக்குத்துக் கூறு $2\sqrt{ga}$ எனக் காட்டுக.		\sqrt{ga}		b		

AL/2019/10/T-H(NEW)

3.	உருவில் A, B, C ஆகியன முறையே m, m, M திணிவுகள் உள்ள துணிக்கைகளாகும். A, B ஆகிய துணிக்கைகள் ஓர் இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டுள்ளன. ஓர் ஒப்பமான கிடை மேசை மீது உள்ள துணிக்கை C ஆனது மேசையின் விளிம்பில் நிலைப்படுத்தப்பட்ட ஓர் ஒப்பமான சிறிய கப்பியின் மேலாகச் செல்லும் வேறோர் இலேசான நீட்டமுடியாத இழையினால் B உடன் இணைக்கப்பட்டுள்ளது. எல்லாத் துணிக்கைகளும் இழைகளும் ஒரே நிலைக்குத்துத் தளத்தில் உள்ளன. இழைகள் இறுக்கமாக இருக்கத்தக்கதாகத் தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. A ஐயும் B ஐயும் தொடுக்கும் இழையின் இழுவையைத் துணிவதற்குப் போதிய சமன்பாடுகளை எழுதுக.
	,
	······································
	a control of the second of the
	நேர் வீதி வழியே கீழ்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத் தடை $R (> Mg \sin \alpha) \mathrm{N}$ உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \mathrm{m} \mathrm{s}^{-2}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க. வீதி வழியே கார் கீழ்நோக்கி இயங்கத்தக்க மாறாக் கதி $\frac{1000 P}{R - Mg \sin \alpha} \mathrm{m} \mathrm{s}^{-1}$ என உய்த்தறிக.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.
	உள்ளது. ஒரு குறித்த கணத்தில் காரின் ஆர்முடுகல் $a \ { m m \ s^{-2}}$ ஆகும். இக்கணத்தில் காரின் வேகத்தைக் காண்க.

5.	5. ஒவ்வொன்றும் திணிவு m ஐ உடைய A, B என்னும் இரு துணிக்கைகள் ஓர் ஒப்பமான நிலைத்த கப்பியின் மேலாகச் செல்லும் ஓர் இலேசான நீட்டமுடியாத இழையின் இரு நுனிகளுடனும் இணைக்கப்பட்டு நாப்பத்தில் தொங்குகின்றன. A இற்கு நிலைக்குத்தாக மேலே தூரம் a இல் உள்ள ஒரு புள்ளியில் ஓய்விலிருந்து விடுவிக்கப்படும் அதே திணிவு m ஐ உடைய ஒரு சிறிய மணி C புவியீர்ப்பின் கீழ்ச் சுயாதீனமாக இயங்கி A உடன் மோதி இணைகின்றது (உருவைப் பார்க்க). A இற்கும் C இற்குமிடையே மோதுகை நடைபெறும் கணத்தில் இழையின் கணத்தாக்கையும் மேற்குறித்த மோதுகைக்குச் சற்றுப் பின்னர் B பெறும் வேகத்தையும் துணிவதற்குப் போதிய சமன்பாடுகளை எழுதுக.	A B m

	•••••••••••••••••••••••••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••	

		- 1
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உந்பத்தி O பந்நி A,B என்னும் இரு புள்ளிகளின் தான	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $\hat{AOC}=\hat{AOD}=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ A	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உந்பத்தி O பந்நி A,B என்னும் இரு புள்ளிகளின் தான	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $\hat{AOC}=\hat{AOD}=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ A	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்
6.	வழக்கமான குறிப்பீட்டில், ஒரு நிலைத்த உற்பத்தி O பற்றி A,B என்னும் இரு புள்ளிகளின் தான முறையே $2\mathbf{i}+\mathbf{j}$, $3\mathbf{i}-\mathbf{j}$ எனக் கொள்வோம். $A\hat{O}C=A\hat{O}D=\frac{\pi}{2}$ ஆகவும் $OC=OD=\frac{1}{3}$ இருக்குமாறு C,D ஆகிய இரு வேறுவேறான புள்ளிகளின் தானக் காவிகளைக் காண்க.	க் காவிகள்

7.	கிடையுடன் முறையே α , $\frac{\pi}{3}$ ஆகிய கோணங்களை ஆக்கும் A
	Wஐ உடைய ஒரு துணிக்கை P உருவில் காட்டப்பட்டுள்ளாறு நாப்பத்தில் உள்ளது. இழை AP இல் உள்ள இழுவையை W , $lpha$ ஆகியவற்றிற் காண்க.
	இதிலிருந்து, இவ்விழுவையின் இழிவுப் பெறுமானத்தையும் அதனை ஒத்த $lpha$ இன் பெறுமானத்தையும் காண்க.
8.	நீளம் $2a$ ஐயும் நிறை W ஐயும் உடைய ஒரு சீரான கோல் AB அதன் முனை A ஒரு கரடான கிடை நிலத்தின் மீதும் முனை B ஓர் ஒப்பமான நிலைக்குத்துச் சுவருக்கு எதிரேயும் இருக்குமாறு வைக்கப்பட்டுள்ளது. சுவருக்குச் செங்குத்தாக ஒரு நிலைக்குத்துத் தளத்தில் கோல் நாப்பத்தில், முனை A இல் சுவரை நோக்கிப் பிரயோகிக்கப்படும் பருமன் P ஐ உடைய ஒரு கிடை விசையினால் பேணப்படுகின்றது. உருவில் F உம் R உம் முறையே A இல் உள்ள உராய்வு விசையையும் செவ்வன் மறுத்தாக்கத்தையும் குறிக்கின்றன. B இல் சுவரின் மூலம் உண்டாக்கப்படும் மறுதாக்கம்
	உருவிற் காட்டப்பட்டுள்ளவாறு $rac{W}{2}$ அத்துடன் கோலிற்கும்
	நிலத்திந்குமிடையே உள்ள உராய்வுக் குணகம் $\frac{1}{4}$ எனின், $\frac{W}{4} \le P \le \frac{3W}{4}$ எனக் காட்டுக.

	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

II

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

> අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය **இணைந்த கணிதம்**

இணைந்த கணிதம் II Combined Mathematics II [10] T [II]

பகுதி B

* ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

(இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.)

- 11. (a) P, Q என்னும் இரு கார்கள் ஒரு நேர் வீதி வழியே மாறா ஆர்முடுகல்களுடன் ஒரே திசையில் இயங்குகின்றன. நேரம் t=0 இல் P இன் வேகம் u m s^{-1} உம் Q இன் வேகம் (u+9) m s^{-1} உம் ஆகும். P இன் மாறா ஆர்முடுகல் f m s^{-2} உம் Q இன் மாறா ஆர்முடுகல் $\left(f+\frac{1}{10}\right)$ m s^{-2} உம் ஆகும்.
 - (i) $t \geq 0$ இற்கு P,Q ஆகியவற்றின் இயக்கங்களுக்கு ஒரே வரிப்படத்திலும்
 - (ii) $t \geq 0$ இற்கு P தொடர்பாக Q இன் இயக்கத்திற்கு வேறொரு வரிப்படத்திலும்

வேக - நேர வரைபுகளைப் பரும்படியாக வரைக.

நேரம் t=0 இல் கார் P ஆனது கார் Q இலும் பார்க்க 200 மீற்றர் முன்னால் இருக்கின்றதென மேலும் தரப்பட்டுள்ளது. Q ஆனது P ஐக் கடந்து செல்வதற்கு எடுக்கும் நேரத்தைக் காண்க.

(b) சமாந்தரமான நேர்க் கரைகள் உள்ள அகலம் a ஐ உடைய ஓர் ஆறு சீரான வேகம் u உடன் பாய்கின்றது. உருவில் கரைகளின் மீது உள்ள A,B,C,D என்னும் புள்ளிகள் ஒரு சதுரத்தின் உச்சிகளாகும். நீர் தொடர்பாக மாறாக் கதி v (>u) உடன் இயங்கும் B_1,B_2 என்னும் இரு படகுகள் ஒரே கணத்தில் A இலிருந்து அவற்றின் பயணங்களை ஆரம்பிக்கின்றன. படகு B_1 முதலில் \overrightarrow{AC} வழியே C இற்குச் சென்று பின்னர் திசை \overrightarrow{CD} இல் ஆறு வழியே எதிர்ப்போக்கில் D இற்குச் செல்கின்றது. படகு B_2 முதலில் திசை \overrightarrow{AB} இல்

ஆறு வழியே அதன் போக்கில் B இற்குச் சென்று பின்னர் BD வழியே D இற்குச் செல்கின்றது. ஒரே உருவில் B_1 இன் A இலிருந்து C வரைக்கும் B_2 இன் B இலிருந்து D வரைக்குமான இயக்கங்களுக்கு வேக முக்கோணிகளைப் பரும்படியாக வரைக.

இதிலிருந்து, A இலிருந்து C இற்கான இயக்கத்தில் படகு B_1 இன் கதி $\frac{1}{\sqrt{2}}\Big(\sqrt{2\,v^2\,-u^2}\,+u\Big)$ எனக் காட்டி, B இலிருந்து D இற்கான இயக்கத்தில் படகு B_2 இன் கதியைக் காண்க. B_1, B_2 ஆகிய இரு படகுகளும் ஒரே கணத்தில் D ஐ அடையுமென மேலும் காட்டுக.

12. (a) உருவில் ABC, LMN ஆகிய முக்கோணிகள் $A\hat{C}B = L\hat{N}M = \frac{\pi}{3}$, $A\hat{B}C = L\hat{M}N = \frac{\pi}{2}$ ஆகவுள்ள BC, MN ஆகியவற்றைக் கொண்ட முகங்கள் ஓர் ஒப்பமான கிடை நிலத்தின் மீது வைக்கப்பட்டுள்ள முறையே X, Y என்னும் இரு ஒப்பமான சீரான சர்வசம ஆப்புகளின் புவியீர்ப்பு மையங்களினூடாக உள்ள நிலைக்குத்துக் குறுக்கு வெட்டுகளாகும். திணிவு 3m ஐ உடைய ஆப்பு X ஆனது நிலத்தின் மீது சுயாதீனமாக இயங்கத்தக்கதாக இருக்கும்

அதே வேளை ஆப்பு Y **நிலைப்படுத்தி** வைக்கப்பட்டுள்ளது. AC, LN ஆகிய கோடுகள் உரிய முகங்களின் அதியுயர் சரிவுக் கோடுகளாகும். A, L ஆகியவற்றில் நிலைப்படுத்தப்பட்ட இரு ஒப்பமான சிறிய கப்பிகளுக்கு மேலாகச் செல்லும் ஓர் இலேசான நீட்ட முடியாத இழையின் இரு நுனிகளுடன் முறையே m, 2m என்னும் திணிவுகளை உடைய P, Q என்னும் துணிக்கைகள் இணைக்கப்பட்டுள்ளன. உருவிற் காட்டப்பட்டுள்ளவாறு தொடக்க அமைவில் இழை இறுக்கமாக இருக்க AP = AL = LQ = a ஆக இருக்கத்தக்கதாக P, Q ஆகிய துணிக்கைகள் முறையே AC, LN ஆகியவற்றின் மீது வைக்கப்பட்டுள்ளன. தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. X ஆனது Y ஐ அடைய எடுக்கும் நேரத்தை a, g ஆகியவற்றில் துணிவதற்குப் போதிய சமன்பாடுகளைப் பெறுக.

(b) உருவிற் காட்டப்பட்டுள்ளவாறு ஓர் ஒடுங்கிய ஒப்பமான குழாய் ABCDE ஒரு நிலைக்குத்துத் தளத்தில் நிலைப்படுத்தப்பட்டுள்ளது. நீளம் $2\sqrt{3}a$ ஐ உடைய பகுதி AB நேராக இருக்கும் அதே வேளை அது B இல் ஆரை 2a ஐ உடைய வட்டப் பகுதி BCDE இற்குத் தொடலியாக இருக்கின்றது. A, E ஆகிய முனைகள் மையம் O இற்கு நிலைக்குத்தாக மேலே உள்ளன. திணிவு m ஐ உடைய ஒரு துணிக்கை P ஆனது A இல் குழாயினுள்ளே வைக்கப்பட்டு ஓய்விலிருந்து மெதுவாக விடுவிக்கப்படுகின்றது. \overrightarrow{OA} உடன் கோணம் $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ ஐ \overrightarrow{OP} ஆக்கும்போது துணிக்கை P இன் கதி v ஆனது $v^2 = 4ga(2-\cos\theta)$ இனால் தரப்படுகின்றதெனக் காட்டி, அக்கணத்தில் துணிக்கை P மீது குழாயினால் ஆக்கப்படும் மறுதாக்கத்தைக் காண்க.

துணிக்கை P இன் A இலிருந்து B இற்கான இயக்கத்தில் அதன் மீது குழாயினால் ஆக்கப்படும் மறுதாக்கத்தையும் காண்க.

துணிக்கை P ஆனது B ஐக் கடக்கும்போது துணிக்கை P மீது குழாயினால் ஆக்கப்படும் மறுதாக்கம் சடுதியாக மாறுகின்றதெனக் காட்டுக.

13. கிடையுடன் கோணம் $\frac{\pi}{6}$ இற் சாய்ந்த ஓர் ஒப்பமான நிலைத்த தளத்தின் ஓர் அதியுயர் சரிவுக் கோட்டின் மீது O ஆனது ஆகவும் கீழே உள்ள புள்ளியாக இருக்க O, A, B ஆகிய புள்ளிகள் அதே வரிசையில் OA = a ஆகவும் AB = 2a ஆகவும் இருக்குமாறு உள்ளன. இயற்கை நீளம் a ஐயும் மீள்தன்மை மட்டு mg ஐயும் உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி O உடன் இணைக்கப்பட்டிருக்கும் அதே வேளை மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை P உடன் இணைக்கப்பட்டுள்ளது. துணிக்கை P ஆனது புள்ளி B

ஐ அடையும் வரைக்கும் இழை கோடு OAB வழியே இழுக்கப்படுகின்றது. அதன் பின்னர் துணிக்கை P ஒய்விலிருந்து விடுவிக்கப்படுகின்றது. B இலிருந்து A வரைக்கும் P இன் இயக்கச் சமன்பாடானது $0 \le x \le 2a$ இற்கு $\ddot{x} + \frac{g}{a} \left(x + \frac{a}{2} \right) = 0$ இனால் தரப்படுகின்றதெனக் காட்டுக; இங்கு AP = x ஆகும்.

 $y=x+rac{a}{2}$ எனக் கொண்டு மேற்குறித்த இயக்கச் சமன்பாட்டினை $rac{a}{2} \le y \le rac{5a}{2}$ இற்கு வடிவம் $\ddot{y}+\omega^2 y=0$ இல் மறுபடியும் எழுதுக; இங்கு $\omega=\sqrt{rac{g}{a}}$.

மேற்குறித்த எளிய இசை இயக்கத்தின் மையத்தைக் கண்டு சூத்திரம் $\dot{y}^2 = \omega^2 \, (c^2 - y^2)$ ஐப் பயன்படுத்தி வீச்சம் c ஐயும் A ஐ அடையும்போது P இன் வேகத்தையும் காண்க.

O ஐ அடையும்போது P இன் வேகம் $\sqrt{7ga}$ எனக் காட்டுக.

B இலிருந்து O இற்கு இயங்குவதற்கு P எடுக்கும் நேரம் $\sqrt{\frac{a}{g}}\left\{\cos^{-1}\left(\frac{1}{5}\right)+2k\right\}$ எனவும் காட்டுக; இங்கு $k=\sqrt{7}-\sqrt{6}$.

துணிக்கை P ஆனது O ஐ அடையும்போது அது தளத்திற்குச் செங்குத்தாக O இல் நிலைப்படுத்தப்பட்டுள்ள ஓர் ஒப்பமான தடுப்புடன் மோதுகின்றது. P இற்கும் தடுப்புக்குமிடையே உள்ள மீளமைவுக் குணகம் e ஆகும். $0 < e \le \frac{1}{\sqrt{7}}$ எனின், பின்னர் நிகழும் P இன் இயக்கம் எளிய இசை **இயக்கமன்று** எனக் காட்டுக.

 $14.(a)\ OACB$ ஓர் இணைகரம் எனவும் D ஆனது AC மீது AD:DC=2:1 ஆக இருக்கத்தக்கதாக உள்ள புள்ளி எனவும் கொள்வோம். O பற்றி A,B ஆகிய புள்ளிகளின் தானக் காவிகள் முறையே λa , b ஆகும்; இங்கு $\lambda > 0$ ஆகும். $\overrightarrow{OC},\overrightarrow{BD}$ ஆகிய காவிகளை a, b, λ ஆகியவற்றில் எடுத்துரைக்க.

இப்போது \overrightarrow{OC} ஆனது \overrightarrow{BD} இற்குச் செங்குத்தானதெனக் கொள்வோம். $3\left|\mathbf{a}\right|^2\lambda^2+2\left(\mathbf{a}\cdot\mathbf{b}\right)\lambda-\left|\mathbf{b}\right|^2=0$ எனக் காட்டி, $\left|\mathbf{a}\right|=\left|\mathbf{b}\right|$ ஆகவும் $A\hat{O}B=\frac{\pi}{3}$ ஆகவும் இருப்பின், λ இன் பெறுமானத்தைக் காண்க.

(b) மையம் O ஆகவும் ஒரு பக்கத்தின் நீளம் 2a ஆகவும் உள்ள ஓர் ஒழுங்கான அறுகோணி ABCDEF இன் தளத்தில் உள்ள மூன்று விசைகளை ஒரு தொகுதி கொண்டுள்ளது. உற்பத்தி O இலும் Ox-அச்சு \overrightarrow{OB} வழியேயும் Oy-அச்சு \overrightarrow{OH} வழியேயும் இருக்க விசைகளும் அவற்றின் தாக்கப் புள்ளிகளும் வழக்கமான குறிப்பீட்டில் கீழேயுள்ள அட்டவணையிற் காட்டப்பட்டுள்ளன; இங்கு H ஆனது CD இன் நடுப்புள்ளியாகும். (P நியூற்றனிலும் a மீற்றரிலும் அளக்கப்படுகின்றன.)

தாக்கப் புள்ளி	தானக் காவி	ഖിങ്ങഴ
A	$a\mathbf{i} - \sqrt{3}a\mathbf{j}$	$3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
С	ai+√3aj	$-3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
E	2ai	-2√3 <i>P</i> j

தொகுதி ஓர் இணைக்குச் சமவலுவுள்ளதெனக் காட்டி, இணையின் திருப்பத்தைக் காண்க. இப்போது \overrightarrow{FE} வழியே தாக்கும் பருமன் 6P N ஐ உடைய ஒரு மேலதிக விசை இத்தொகுதியில் புகுத்தப்படுகின்றது. புதிய தொகுதி ஒடுங்கும் தனி விசையின் பருமன், திசை, தாக்கக் கோடு ஆகியவற்றைக் காண்க.

15.(a) ஒவ்வொன்றும் நீளம் 2a ஐ உடைய AB, BC என்னும் இரு சீரான கோல்கள் B இல் ஒப்பமாக மூட்டப்பட்டுள்ளன. கோல் AB இன் நிறை W உம் கோல் BC இன் நிறை 2W உம் ஆகும். முனை A ஒரு நிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. AB, BC ஆகிய கோல்கள் கீழ்முக நிலைக்குத்துடன் முறையே α , β என்னும் கோணங்களை ஆக்கிக்கொண்டிருக்க இத்தொகுதி ஒரு நிலைக்குத்துத் தளத்தில் உருவிற் காட்டப்பட்டுள்ளவாறு C இல் BC இற்குச் செங்குத்தான ஒரு திசையில் பிரயோகிக்கும் ஒரு விசை $\frac{W}{2}$ இனால் நாப்பத்தில் வைத்திருக்கப்படுகின்றது. $\beta = \frac{\pi}{6}$ எனக் காட்டி, மூட்டு B இல் கோல் AB ஆனது கோல் BC மீது உஞற்றும் மறுதாக்கத்தின் கிடைக் கூறையும் நிலைக்குத்துக் கூறையும் காண்க.

$$\tan \alpha = \frac{\sqrt{3}}{9}$$
 எனவும் காட்டுக.

(b) உருவிற் காட்டப்பட்டுள்ள சட்டப்படல் அவற்றின் முனைகளில் ஒப்பமாக மூட்டப்பட்ட AB, BC, BD, DC, AC என்னும் ஐந்து இலேசான கோல்களைக் கொண்டுள்ளது. இங்கு AB = CB = a, CD = 2a, $B\hat{A}C = \frac{\pi}{6}$ எனத் தரப்பட்டுள்ளது. சட்டப்படல் A இல் ஒரு நிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. மூட்டு D இல் ஒரு சுமை W தொங்கவிடப்பட்டு, AC நிலைக்குத்தாகவும் CD கிடையாகவும் இருக்க மூட்டு C இல் கோல் AB இற்குச் சமாந்தரமாக உருவிற் காட்டப்பட்டுள்ள திசையில் பீரயோகிக்கும் ஒரு விசை P இணால் ஒரு நிலைக்குத்துத் தளத்தில் சட்டப்படல் நாப்பத்தில் வைக்கப்பட்டுள்ளது. போவின் குறிப்பீட்டைப் பயன்படுத்தி D, B, C ஆகிய மூட்டுகளுக்கு ஒரு தகைப்பு வரிப்படத்தை வரைக.

இதிலிருந்து

காண்க.

- (i) இழுவைகளா, உதைப்புகளா என எடுத்துரைத்து ஐந்து கோல்களிலும் உள்ள தகைப்புகளையும்
- (ii) P இன் பெறுமானத்தையும்

- a 26. (i) ஆரை a ஐ உடைய ஒரு சீரான மெல்லிய அரைவட்டக் கம்பியின் திணிவு மையம் அதன் மையத்திலிருந்து $\frac{2a}{\pi}$ தாரத்திலும்
 - (ii) ஆரை a ஐ உடைய ஒரு சீரான மெல்லிய அரைக்கோள ஓட்டின் திணிவு மையம் அதன் மையத்திலிருந்து $\frac{a}{2}$ தூரத்திலும்

இருக்கின்றதெனக் காட்டுக.

மையம் O ஐயும் ஆரை 2a ஐயும் உடைய ஒரு சீரான மெல்லிய அரைக்கோள ஓட்டுடன் உருவிற் காட்டப்பட்டுள்ளவாறு நீளம் $2\pi\,a$ ஐ உடைய ஒரு நேர்ப் பகுதி AB ஐயும் விட்டம் BD ஆனது AB இற்குச் செங்குத்தாக இருக்குமாறு ஆரை a ஐ உடைய ஓர் அரைவட்டப் பகுதி BCD ஐயும் கொண்ட ஒரு சீரான கம்பியினால் செய்யப்படும் ஒரு மெல்லிய கைப்பிடி ABCD ஐ விறைப்பாகப் பொருத்துவதன் மூலம் ஒரு கரண்டி செய்யப்பட்டுள்ளது. புள்ளி A ஆனது அரைக்கோளத்தின் விளிம்பு மீது இருக்கும் அதே வேளை OA ஆனது AB இற்குச் செங்குத்தாகவும் OD ஆனது AB இற்குச் சமாந்தரமாகவும் உள்ளன. மேலும் BCD ஆனது OABD இன் தளத்தில் அமைந்துள்ளது. அரைக்கோளத்தின் அலகுப் பரப்பளவின் திணிவு σ உம் கைப்பிடியின் அலகு நீளத்தின் திணிவு σ உம் கைப்பிடியின் அலகு நீளத்தின் திணிவு σ உம் ஆகும். கரண்டியின் திணிவு மையம் σ இற்குக் கீழே தூரம் σ இனர்க்கே இலும் σ இனுடாகவும் σ

இனூடாகவும் செல்லும் கோட்டிலிருந்து தூரம் $\frac{5}{19}a$ இலும் உள்ளதெனக் காட்டுக. கரண்டி ஒரு கரடான கிடை மேசை மீது அரைக்கோள மேற்பரப்பு அதனுடன் தொடுகையுறுமாறு வைக்கப்பட்டுள்ளது. அரைக்கோள மேற்பரப்புக்கும் மேசைக்குமிடையே உள்ள உராய்வுக் குணகம் $\frac{1}{7}$ ஆகும். \overrightarrow{AO} இன் திசையிலே

B

A இந் பிரயோகிக்கப்படும் ஒரு கிடை விசையினால் OD நிலைக்குத்தாக இருக்கக் கரண்டி நாப்பத்தில் வைத்திருக்கப்படலாமெனக் காட்டுக.

- 17. (a) தொடக்கத்தில் ஒவ்வொன்றும் வெள்ளை நிறமாக அல்லது கறுப்பு நிறமாக உள்ள, நிறங்களில் தவிர எல்லா விதத்திலும் சர்வசமனான 3 பந்துகள் ஒரு பெட்டியில் உள்ளன. இப்போது நிறத்தைத் தவிர பெட்டியில் உள்ள பந்துகளுக்கு எல்லா விதத்திலும் சர்வசமனான ஒரு வெள்ளை நிறப் பந்து பெட்டியில் இடப்பட்டுப் பின்னர் பெட்டியிலிருந்து ஒரு பந்து எழுமாற்றாக வெளியே எடுக்கப்படுகின்றது. பெட்டியில் உள்ள பந்துகளின் தொடக்கச் சேர்க்கைகளின் நான்கு இயல்தகவுகளும் சம சந்தர்ப்பமானவை என எடுத்துக்கொண்டு,
 - (i) வெளியே எடுத்த பந்து வெள்ளைப் பந்தாக,
 - (ii) வெளியே எடுத்த பந்து வெள்ளைப் பந்தெனத் தரப்படும்போது தொடக்கத்தில் பெட்டியில் செப்பமாக 2 கறுப்பு நிறப் பந்துகள் இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (b) μ , σ ஆகியன முறையே பெறுமானத் தொடை $\left\{x_i:i=1,2,\ldots,n\right\}$ இன் இடையும் நியம விலகலும் ஆகுமெனக் கொள்வோம். பெறுமானத் தொடை $\left\{\alpha x_i:i=1,2,\ldots,n\right\}$ இன் இடையையும் நியம விலகலையும் காண்க; இங்கு α ஒரு மாறிலி. ஒரு குறித்த கம்பனியின் 50 தொழிலாளர்களின் மாதச் சம்பளங்கள் பின்வரும் அட்டவணையில் பொழிப்பாக்கப்பட்டுள்ளன:

மாதச் சம்பளம் (ஆயிரம் ருபாயில்)	தொழிலாளர்களின் எண்ணிக்கை
5 – 15	9
15 – 25	11
25 – 35	14
35 – 45	10
45 – 55	6

50 தொழிலாளர்களினதும் மாதச் சம்பளங்களின் இடைபையும் நியம விலகளையும் மதிப்பிடுக.

ஓர் ஆண்டின் தொடக்கத்தில் ஒவ்வொரு தொழிலாளரினதும் மாதச் சம்பளம் p% இனால் அதிகரிக்கப்படுகின்றது. மேற்குறித்த 50 தொழிலாளர்களினதும் புதிய மாதச் சம்பளங்களின் இடை 6. 29 172 எனத் தரப்பட்டுள்ளது. p இன் பெறுமானத்தையும் 50 தொழிலாளர்களினதும் புதிய மாதச் சம்பளங்களின் நியம விலகலையும் மதிப்பிடுக.

Dear students!
We have Past Papers and Answers (Marking Schemes), Model Papers and Note books for English, Tamil and Sinhala Medium).

Please visit:

www.freebooks.lk

or click on this page to vist our site!