Lecture X Introduction to Nonlinear Programming

Equality Constraints

☐ Instead of starting with NLP theory for equality constraints, we will start with inequalities and derive the former:

$$h(x) = 0 \Leftrightarrow \begin{cases} h(x) \le 0 \\ -h(x) \le 0 \end{cases}$$

3

A. Introduction

□ Consider the generalized nonlinear programming [NLP] problem:

min
$$f(\mathbf{x})$$

subject to: $\mathbf{x} \in \mathbf{S}$
 $\mathbf{S} = \{\mathbf{x} \mid \mathbf{g}(\mathbf{x}) \le \mathbf{0}\}$
where $f(\cdot)$ and $\mathbf{g}(\cdot)$ are differentiable;
 $\mathbf{x} \in E^n$; $f: E^n \to E^1$; $\mathbf{g}: E^n \to E^m$

Level Sets (cont.)

Tangent Plane

□ Suppose some given \mathbf{x}^* lies on boundary (i.e., at least 1 constraint is active at \mathbf{x}^*).

Then, a tangent hyperplane (or **tangent plane**) @ **x*** is the set of all **x** such that:

$$\mathbf{a}^T \mathbf{x} = c$$

7

Active Constraints

□ Define:

$$A(\mathbf{x}) = \{i \mid g_i(\mathbf{x}) = 0, i = 1,...,m\}$$

□ Constraint is **active** if:

if $i \in A(\mathbf{x})$ for given \mathbf{x}

□ Constraint is **inactive** if:

if $i \not\in A(\mathbf{x})$ for given \mathbf{x}

6

Tangent Plane (cont.)

where

$$\mathbf{a} = \nabla g_i(\mathbf{x}^*)$$
 for each $i \in \mathsf{A}(\mathbf{x}^*)$

$$c = \nabla g_i(\mathbf{x}^*)^T \mathbf{x}^*$$

i.e.,

$$\nabla g_i(\mathbf{x}^*)^T \mathbf{x} = \nabla g_i(\mathbf{x}^*)^T \mathbf{x}^*$$

Feasible Directions

□ Notice that those **d** such that:

$$\nabla g(\mathbf{x}^*)^T\mathbf{d}<0$$

are **feasible directions** (if g nonlinear).

□ For 2 active constraints, tangent planes are:

$$\mathbf{M}_{1} = \left\{ \mathbf{x} \mid \nabla g_{1}(\mathbf{x}^{*})^{T} \left[\mathbf{x} - \mathbf{x}^{*} \right] = 0 \right\}$$

$$\mathbf{M}_{2} = \left\{ \mathbf{x} \mid \nabla g_{2}(\mathbf{x}^{*})^{T} \left[\mathbf{x} - \mathbf{x}^{*} \right] = 0 \right\}$$

Tangent Plane (cont.)

□ Note that ∇g and any $\mathbf{d} = \mathbf{x} - \mathbf{x}^*$ (for any \mathbf{x} contained in the tangent plant) are **orthogonal**:

$$\nabla g(\mathbf{x}^*)^T \left[\mathbf{x} - \mathbf{x}^*\right] = 0$$
, or

$$\nabla g(\mathbf{x}^*)^T \mathbf{d} = 0$$

 \forall **d** emanating from \mathbf{x}^* and lying in the tangent plane.

10

Feasible Directions (cont.) $g_{1}(\mathbf{x}) = 0 \quad \text{tangent hyperplane } \mathbf{M}_{1} \quad \nabla g_{1}(\mathbf{x}^{*})$ $\mathbf{g}(\mathbf{x}) \leq \mathbf{0} \quad \mathbf{d}^{*}$ $\mathbf{g}(\mathbf{x}) \leq \mathbf{0} \quad \mathbf{d}^{*}$ $\mathbf{g}_{2}(\mathbf{x}) = 0 \quad \text{tangent hyperplane } \mathbf{M}_{2}$ $\mathbf{g}_{2}(\mathbf{x}) = 0 \quad \mathbf{d}^{*}$

Linear Case

B. Constraint Qualification

☐ The set of all feasible directions and all limits of feasible directions from some pt. **x** * can be expressed as:

$$\mathbf{D}(\mathbf{x}^*) = \left\{ \mathbf{d} \mid \nabla g_i(\mathbf{x}^*)^T \mathbf{d} \leq \mathbf{0} ; \forall i \in \mathsf{A}(\mathbf{x}^*) \right\}$$
 as long as the following **qualification** is made: the vectors $\nabla g_i(\mathbf{x}^*)$ are **linearly independent** $\forall i \in \mathsf{A}(\mathbf{x}^*)$ (active).

15

Linear Case (cont.)

☐ In the linear case, the feasible directions satisfy:

$$\nabla g_1(\mathbf{x}^*)^T \mathbf{d} \le 0$$
$$\nabla g_2(\mathbf{x}^*)^T \mathbf{d} \le 0$$

14

Constraint Qualification (cont.)

- □ Points where CQ holds are called regular points.
- □ In the following example, CQ not satisfied at \mathbf{x}^* since $\nabla g_1(\mathbf{x}^*)$ and $\nabla g_2(\mathbf{x}^*)$ are linearly dependent and \mathbf{d} is **not** a feasible direction, but \mathbf{d} still satisfies:

$$\nabla \mathbf{g}(\mathbf{x}^*)^T \mathbf{d} \le 0$$

Constraint Qualification (cont.)

C. Farkas' Lemma

Given
$$\mathbf{c} \in E^n$$
, $\mathbf{A} = \begin{pmatrix} \mathbf{a}^1, ..., \mathbf{a}^m \end{pmatrix}^T$ where $\mathbf{a}^i \in E^n$ for $i = 1, ..., m$, then $\mathbf{c}^T \mathbf{x} \ge 0 \quad \forall \mathbf{x} \ni \mathbf{A} \mathbf{x} \le \mathbf{0}$ $\Leftrightarrow \exists \ \lambda \ge \mathbf{0} \ni \mathbf{c}^T + \lambda^T \mathbf{A} = \mathbf{0}$ or $\exists \ \lambda_i \quad \text{s.t.} \ \sum_{i=1}^m \lambda_i \mathbf{a}^i = -\mathbf{c}$

Constraint Qualification (cont.)

- □ CQ is automatically satisfied if:
- 1. All constraints linear
- 2. All constraints defined by convex functions with nonempty interiors

proof:

 (\Rightarrow) Set up the following linear programming problem:

$$\min \mathbf{c}^T \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{0} \quad -\mathbf{A}\mathbf{x} \geq \mathbf{0}$$

 $\mathbf{c}^T \mathbf{x} \geq 0 \quad \mathbf{c}^T \mathbf{x} \geq 0$
 $\mathbf{x} \text{ free}$

20

Proof (cont.):

(\Rightarrow) An obvious optimal solution is $\mathbf{x}^* = \mathbf{0}$. Therefore, since the primal has a finite optimum, then so does the dual:

$$\max \lambda^T \cdot \mathbf{0} + \upsilon \cdot 0$$

s.t.
$$\left[\boldsymbol{\lambda}^T \ \upsilon \right] \left[\begin{matrix} -\mathbf{A} \\ \mathbf{c}^T \end{matrix} \right] = \mathbf{c}^T$$
$$\boldsymbol{\lambda}, \upsilon \ge \mathbf{0}$$

$$\lambda, \upsilon \ge \mathbf{0}$$

$$or \quad -\lambda^T \mathbf{A} + \upsilon \mathbf{c}^T = \mathbf{c}^T$$

21

Proof (cont.):

 (\Rightarrow) Notice that any feasible solution is also optimal. Set $\upsilon^* = 0$, then

$$-\lambda^T \mathbf{A} = \mathbf{c}^T$$

$$(\Leftarrow) \mathbf{c}^{T} + \boldsymbol{\lambda}^{T} \mathbf{A} = \mathbf{0}$$

$$\mathbf{c}^{T} \mathbf{x} + \underbrace{\boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{x}}_{\geq 0} = 0 \implies \mathbf{c}^{T} \mathbf{x} \geq 0 \parallel$$

22

D. Necessary Conditions

Recall Theorem II-1 (1st order necessary conditions) Given \mathbf{x}^* is a local minimum of $f \in \mathbf{C}^1$ over \mathbf{X} , then: $\nabla f(\mathbf{x}^*)^T \mathbf{d} \ge 0$ for any feasible \mathbf{d} . We now want to update this theorem for feasible directions (and limits of feasible directions) $\mathbf{d} \in \mathbf{D}(\mathbf{x}^*)$

Theorem 1

☐ If \mathbf{x}^* is a local minimum and the constraint qualification (CQ) holds at \mathbf{x}^* , then $\mathbf{x}^* \cdot \mathbf{x}^T \cdot \mathbf{x} \cdot \mathbf{x}^T \cdot \mathbf{x}^T$

$$\nabla f(\mathbf{x}^*)^T \mathbf{d} \ge 0$$

$$\forall \mathbf{d} \in \mathbf{D}(\mathbf{x}^*)$$

Proof:

From CQ, the vectors $\nabla g_i(\mathbf{x}^*)$ are assumed linearly independent.

25

Proof (cont.):

or

$$\nabla f(\mathbf{x}^*)^T \mathbf{d} + \sum_{i \in \mathbf{A}(\mathbf{x}^*)} \lambda_i \nabla g_i(\mathbf{x}^*)^T \mathbf{d} = 0$$

Notice then that...

$$\nabla f(\mathbf{x}^*)^T \mathbf{d} \ge 0$$

$$\forall \mathbf{d} \text{ s.t. } \nabla g_i(\mathbf{x}^*)^T \mathbf{d} \leq 0$$

27

Proof (cont.):

We can directly apply Farkas' Lemma by letting $\mathbf{c} = \nabla f(\mathbf{x}^*)$

$$\mathbf{a}^i = \nabla g_i(\mathbf{x}^*)^T$$
 (row vector)

$$\mathbf{x} = \mathbf{d}$$

Therefore $\exists \lambda_i \geq 0$ not all zero such that :

$$\underbrace{\nabla f(\mathbf{x}^*)}_{\mathbf{c}} + \sum_{i \in A(\mathbf{x}^*)} \lambda_i \underbrace{\nabla g_i(\mathbf{x}^*)}_{\mathbf{a}^{iT}} = \mathbf{0}$$

26

E. Karush-Kuhn-Tucker Theorem

□ Theorem 2:

IF \mathbf{x}^* is a local minimum and regular point,

THEN $\exists \lambda_i \geq 0 \text{ [not all 0] } \forall i \in A(\mathbf{x}^*) \text{ s.t.}$

$$\nabla f(\mathbf{x}^*) + \sum_{i \in A(\mathbf{x}^*)} \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$

or
$$-\nabla f(\mathbf{x}^*) = \sum_{i \in A(\mathbf{x}^*)} \lambda_i \nabla g_i(\mathbf{x}^*)$$

Proof: Follows from Farkas' Lemma

KKT Conditions

☐ **Theorem 3: IF** x* local min. and reg. pt.,

 $\exists \lambda_i^* \ge 0 [i = 1,...,m]$ such that:

- 1) $g_i(\mathbf{x}^*) \le 0$ (i = 1,...,m) [Feasibility]
- 2) $\lambda_i^* \cdot g_i(\mathbf{x}^*) = 0 \ (i = 1, ..., m)$

[Complementary Slackness]

3) $\nabla f(\mathbf{x}^*) + \boldsymbol{\lambda}^{*T} \cdot \nabla \mathbf{g}(\mathbf{x}^*) = \mathbf{0}$ [Stationarity Conditions]

29

KKT Conditions (cont.)

Proof (cont.):

and 0
$$\lambda_{i}^{*} g_{i}(\mathbf{x}^{*}) = 0 \quad \forall i \in \mathsf{A}(\mathbf{x}^{*})$$
0
$$\lambda_{i}^{*} g_{i}(\mathbf{x}^{*}) = 0 \quad \forall i \not\in \mathsf{A}(\mathbf{x}^{*})$$

31

KKT Conditions (cont.)

Proof:

From Theorem 2:

$$\nabla f(\mathbf{x}^*) + \sum_{i \in A(\mathbf{x}^*)} \lambda_i^* \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$

Let $\lambda_i^* = 0 \ \forall i \not\in A(\mathbf{x}^*)$

Let
$$\lambda_i^* = 0 \ \forall i \not\in \mathsf{A}(\mathbf{x}^*)$$

Then

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) = \mathbf{0}$$

30

Lagrange Multipliers

- \square The λ_i^* are Lagrange multipliers:
- ☐ The KKT conditions can be expressed concisely in terms of the Lagrangian function:

$$L(\mathbf{x}, \ \lambda) = f(\mathbf{x}) + \lambda^T \cdot \mathbf{g}(\mathbf{x})$$
$$= f(\mathbf{x}) + \sum_{i=1}^m \lambda_i \cdot g_i(\mathbf{x})$$

Restatement of KKT Conditions

KKT Conditions: IF \mathbf{x}^* a local minimum, and a regular pt., THEN $\exists \lambda^* \geq \mathbf{0}$ (not all zero) such that:

- 1') $\nabla_{\lambda} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \leq \mathbf{0}$ [feasibility]
- 2') $L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = f(\mathbf{x}^*)$ [comp. slack]
- 3') $\nabla_x L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0}$ [stationarity]

Complementary Slackness

□ Complementary slackness:

$$\lambda_i^* g_i(\mathbf{x}^*) = 0 \quad \forall i \in \mathsf{A}(\mathbf{x}^*)$$
$$\lambda_i^* g_i(\mathbf{x}^*) = 0 \quad \forall i \not\in \mathsf{A}(\mathbf{x}^*)$$

- □ For any constraint which is slack (inactive) at \mathbf{x}^* , its $\lambda_i^* = 0$ [i.e., $g_i(x^*) < 0$]
- For any constraint which is tight (active) at \mathbf{x}^* , its $\lambda_i^* \ge 0$ [i.e., $g_i(x^*) = 0$]

Economic Interpretation (cont.)

Proof (cont.):

So...

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda^T \cdot [\mathbf{g}(\mathbf{x}) - \mathbf{b}]$$

Suppose **x***(**b**) solves the above problem (i.e., solution depends on given **b**). Applying Condition 3' of KKT conditions:

39

F. Economic Interpretation of Lagrange Mulipliers

$$\lambda_i^* = -\frac{\partial f}{\partial b_i} | b_i = g_i(\mathbf{x}^*) = 0$$

Proof:

Define a more general problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t.:
$$\mathbf{g}(\mathbf{x}) \le \mathbf{b}$$

38

Economic Interpretation (cont.)

Proof (cont.):

$$\frac{\partial L}{\partial x_j} = \frac{\partial f(\mathbf{x}^*(\mathbf{b}))}{\partial x_j} + \sum_{i=1}^m \lambda_i^* \frac{\partial g_i(\mathbf{x}^*(\mathbf{b}))}{\partial x_j} = 0$$

For all active constraints, we have...

$$g_i(\mathbf{x}^*(\mathbf{b})) = b_i$$

Economic Interpretation (cont.)

Proof (cont.):

So...
$$\frac{\partial g_i(\mathbf{x}^*(\mathbf{b}))}{\partial b_k} = 1$$
 for $i = k$ $\frac{\partial g_i(\mathbf{x}^*(\mathbf{b}))}{\partial b_k} = 0$ for all $i \neq k$

For all inactive constraints:

$$\lambda_i^* = 0 \left[\forall i \notin \mathbf{A}(\mathbf{x}^*) \right]$$

41

Economic Interpretation (cont.)

Proof (cont.): $\frac{\partial f}{\partial b_{k}} \left(\frac{\partial b_{k}}{\partial x_{j}} + \lambda_{k}^{*} \frac{\partial g_{k}}{\partial b_{k}} \frac{\partial b_{k}}{\partial x_{j}} \right) + \sum_{\substack{i=1\\i\neq k}}^{m} \lambda_{i}^{*} \frac{\partial g_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial x_{j}} = 0 \quad \|$

Equality Constraints (cont.)

 $\exists \lambda^* \in E^m$ (free) such that:

1")
$$\nabla_{\lambda} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0}$$

$$2") \nabla_{x} L(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}) = \mathbf{0}$$

47

G. KKT Conditions for Equality Constraints

Consider:

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s.t.:
$$\mathbf{h}(\mathbf{x}) = \mathbf{0}$$
 or
$$\begin{cases} \mathbf{h}(\mathbf{x}) \le \mathbf{0} \\ -\mathbf{h}(\mathbf{x}) \le \mathbf{0} \end{cases}$$

$$L(\mathbf{x}, \boldsymbol{\lambda}_1, \boldsymbol{\lambda}_1) = f(\mathbf{x}) + \boldsymbol{\lambda}_1^T \mathbf{h}(\mathbf{x}) + \boldsymbol{\lambda}_2^T \left[-\mathbf{h}(\mathbf{x}) \right]$$
$$= f(\mathbf{x}) + \left[\underbrace{\boldsymbol{\lambda}_1^T}_{\geq 0} - \underbrace{\boldsymbol{\lambda}_2^T}_{\geq 0} \right] \cdot \mathbf{h}(\mathbf{x}) = f(\mathbf{x}) + \underbrace{\boldsymbol{\lambda}_1^T}_{\text{free}} \mathbf{h}(\mathbf{x})$$
free 46

H. Sufficient Conditions

- \Box **Theorem 4:** Assume f and g are:
 - i. differentiable
 - ii. convex*

Then if the KKT conditions (1-3) or (1'-3') are satisfied for some \mathbf{x}^* , then that \mathbf{x}^* must be the **global optimum**.

^{*}f pseudo convex; g_i quasiconvex

Sufficient Conditions (cont.)

Proof:

 $L(\mathbf{x}, \boldsymbol{\lambda}^*)$ must be convex w.r.t. \mathbf{x} : Therefore, if Condition 3' is satisfied

where

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

then by convexity:

$$L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \le L(\mathbf{x}, \boldsymbol{\lambda}^*) \ \forall \mathbf{x} \in E^n$$

49

I. Example

min
$$(x_1-1)^2 + (x_2-2)^2$$

subject to:

$$-x_1 + x_2 = 1$$

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

51

Sufficient Conditions (cont.)

Proof (cont.):

Therefore... = 0
$$f(\mathbf{x}^*) + \lambda^{*T} \mathbf{g}(\mathbf{x}^*)$$

$$\leq f(\mathbf{x}) + \lambda^{*T} \mathbf{g}(\mathbf{x})$$

$$\Rightarrow f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \neq \mathbf{g}(\mathbf{x}) \leq \mathbf{0} \quad \|$$

50

Example (cont.)

- □ To apply KKT conditions, we will temporarily **relax** nonnegativity constraints and then see if they are satisfied anyway.
 - these are normally included in Lagrangian function with associated Lagrange multipliers (unlike simplex method where nonnegativity holds)

Example (cont.)

□ KKT conditions:

 $\exists \mathbf{x} \text{ and } \exists \lambda_1 \text{ free } ; \lambda_2 \geq 0 \text{ such that:}$

1)
$$-x_1 + x_2 = 1$$

 $x_1 + x_2 \le 2$

2)
$$\lambda_2 [x_1 + x_2 - 2] = 0$$

3)
$$\frac{\partial L}{\partial x_1} = 0 = 2(x_1 - 1) - \lambda_1 + \lambda_2$$
$$\frac{\partial L}{\partial x_2} = 0 = 2(x_2 - 2) + \lambda_1 + \lambda_2$$

53

Example (cont.)

□ For this problem, the KKT conditions are both necessary and sufficient: $g_i(\mathbf{x})$ linear $f(x) = (x_1 - 1)^2 + (x_2 - 2)^2$

$$\frac{\partial f}{\partial x_1} = 2(x_1 - 1) \qquad \frac{\partial f}{\partial x_2} = 2(x_1 - 2)$$

$$\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad \det \mathbf{H} = 4 > 0$$

55

Example (cont.)

Assume:

$$x_1 + x_2 = 2$$
 2) OK!

From 1):
$$x_1^* = \frac{1}{2} \quad x_2^* = \frac{3}{2}$$

From 3):
$$2\left[\frac{1}{2}-1\right] - \lambda_1 + \lambda_2 = 0$$

 $2\left[\frac{3}{2}-2\right] + \lambda_1 + \lambda_2 = 0$

$$\lambda_1^* = 0 \quad \lambda_2^* = 1 \ (\ge 0) \ \text{OK!}$$

54

J. Analytical KKT Solutions

□ Suppose we have the following problem:

min
$$\mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

$$s.t.$$
 $Ax = b$

where the \mathbf{x} variables are free

$$L(\mathbf{x}, \lambda) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \lambda^T \left[-\mathbf{A} \mathbf{x} + \mathbf{b} \right]$$

Analytical Solution (cont.)

□ KKT conditions:

 $\exists x \text{ and } \exists \lambda \text{ free such that:}$

- 1) $\mathbf{A}\mathbf{x} = \mathbf{b}$
- $2) \mathbf{c} + \mathbf{Q}\mathbf{x} \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}$

$$\mathbf{x} = \mathbf{Q}^{-1} \left[\mathbf{A}^T \mathbf{\lambda} - \mathbf{c} \right]$$

$$\mathbf{A} \left[\mathbf{Q}^{-1} \left[\mathbf{A}^T \boldsymbol{\lambda} - \mathbf{c} \right] \right] = \mathbf{b}$$

57

Affine Scaling Optimal Direction

Let us relate this analytical solution to \mathbf{c}_p calculated for the affine scaling algorithm.

$$\min \left\| -\hat{\mathbf{c}}\mathbf{D} - \mathbf{d} \right\|^2$$

s.t. $\mathbf{Bd} = \mathbf{0}$

[different \mathbf{c} - call it $\hat{\mathbf{c}}$]

59

Analytical Solution (cont.)

$$\begin{bmatrix} \mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^{T} \end{bmatrix} \boldsymbol{\lambda} - \mathbf{A}\mathbf{Q}^{-1}\mathbf{c} = \mathbf{b}$$

$$\boldsymbol{\lambda} = \begin{bmatrix} \mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^{T} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A}\mathbf{Q}^{-1}\mathbf{c} + \mathbf{b} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{Q}^{-1} \begin{bmatrix} \mathbf{A}^{T} \begin{bmatrix} \mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^{T} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A}\mathbf{Q}^{-1}\mathbf{c} + \mathbf{b} \end{bmatrix} - \mathbf{c} \end{bmatrix}$$

58

Affine Scaling Direction (cont.)

□ Objective function as quadratic form:

$$\min \begin{bmatrix} \hat{\mathbf{c}}^T \mathbf{D} \end{bmatrix}^T \begin{bmatrix} \hat{\mathbf{c}}^T \mathbf{D} \end{bmatrix} + 2 \begin{bmatrix} \hat{\mathbf{c}}^T \mathbf{D} \end{bmatrix}^T \mathbf{d}$$
$$+ \mathbf{d}^T \mathbf{I} \mathbf{d}$$

□ Comparing with general KKT solution:

$$\mathbf{x} = \mathbf{d} \quad \mathbf{Q} = 2\mathbf{I} \quad \mathbf{c} = 2 \left[\hat{\mathbf{c}}^T \mathbf{D} \right]$$

$$b=0$$
 $A=B$

Affine Scaling Direction (cont.)

$$\mathbf{x} = \frac{1}{2} \mathbf{I} \left\{ \mathbf{B}^{T} \left[\mathbf{B} \frac{1}{2} \mathbf{I} \mathbf{B}^{T} \right]^{-1} \left[\mathbf{B} \frac{1}{2} \mathbf{I} \cdot 2 \hat{\mathbf{c}}^{T} \mathbf{D} \right] - 2 \hat{\mathbf{c}}^{T} \mathbf{D} \right\}$$

$$\mathbf{x} = \frac{1}{2} \left\{ \mathbf{B}^{T} 2 \left[\mathbf{B} \mathbf{B}^{T} \right]^{-1} \left[\mathbf{B} \hat{\mathbf{c}}^{T} \mathbf{D} - 2 \cdot \mathbf{I} \hat{\mathbf{c}}^{T} \mathbf{D} \right] \right\}$$

$$\mathbf{x} = \mathbf{c}_{p} = \left\{ \mathbf{B}^{T} \left[\mathbf{B} \mathbf{B}^{T} \right]^{-1} \mathbf{B} - \mathbf{I} \right\} \underbrace{\hat{\mathbf{c}}^{T} \mathbf{D}}_{\mathbf{D}\hat{\mathbf{c}}} \quad \text{since } \mathbf{D} = \mathbf{D}_{-61}^{T}$$