

TC4054 (文件编号: S&CIC1076)

0.5A 线性锂离子电池充电器 IC

概述

TC4054 是恒流/恒压座充充电器芯片,主要应用于单节锂电池充电。无需外接检测电阻,其内部为 MOSFET 结构, 因此无需外接反向二极管。

TC4054 在大功率和高环境温度下可以调节充电电流以限制芯片温度。它的充电电压固定在 4.2V, 充电电流可 以通过外置一个电阻器进行调节。当达到浮充电压并且充电电流下降到设定电路的 1/10 时, TC4054 自动终止充 电过程。当输入电压移开之后,TC4054 自动进入低电流模式,从电池吸取少于 2uA 的电流。当 TC4054 进入待机 模式时,供电电流小于 25uA。

TC4054 还可以监控充电电流,具有电压检测、自动循环充电的特性,并且具有一个指示管脚指示充电终止状 态和输入电压状态。

特性

- 可达 500mA 的可编程充电电流 \triangleright
- 无需外接 MOSFET、检测电阻、反向二极管
- 恒流/恒压模式操作,具有热保护功能
- 可通过 USB 端口为锂电池充电 \triangleright
- 具有 1%精度的预设充电电压
- 产品应用
 - 手机、掌上电脑、MP3播放器
 - 蓝牙耳机
- 四、 应用线路

- 待机模式下电流为 20uA
- 2.9V 涓流充电电压
- 软启动限制了浪涌电流
- 采用 SOT23-5 封装

TC4054 (文件编号: S&CIC1076)

0.5A 线性锂离子电池充电器 IC

管脚图及功能说明 五、

六、 绝对最大额定值

参数	符号	额定值	单位
输入电源电压	Vcc	7	V
PROG 电压	V_{PROG}	VCC+0.3	V
BAT 电压	V_{BAT}	7	V
CHRG 电压	V_{CHRG}	7	V
BAT 短路		Continuous	
热阻	$ heta_{JA}$	250	°C/W
BAT 电流	I _{BAT}	500	mA
PROG 电流	I _{PROG}	800	μΑ
最高结温	T_J	125	${\mathbb C}$
储藏温度	Ts	-65 to +125	$^{\circ}$
焊接温度(不超过 10 秒)		300	${\mathbb C}$

TC4054 (文件编号: S&CIC1076)

0.5A 线性锂离子电池充电器 IC

七、电气特性(V_{IN}=5V: T_I=25℃, 除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
Vcc	输入电源电压		4.25		6	V
Icc		充电模式 ⁽³⁾ ,R _{PROG} =10K		110	500	μA
		待机模式 (充电终止)		70		μA
	相/ 、 电/赤电/加	关断模式(R _{PROG} 未连接,		20	40	
		$V_{CC} < V_{BAT}, V_{CC} < V_{UV})$		20	40	μA
V _{FLOAT}	可调输出 (浮充) 电压	I _{BAT} =30 mA,I _{CHRG} =5 mA	4.20	4.24	4.28	V
		R _{PROG} = 10k,电流模式	90	110	130	mA
I _{BAT}		R _{PROG} = 2k,电流模式		500		mA
	BAT 端电流	VBAT=4.2V,待机模式	0	+/-1	+/-5	μΑ
		关断模式, R _{PROG} 未连接		+/-0.5	+/-5	μΑ
		休眠模式,VCC=0V		+/-1	+/-5	μΑ
I _{TRIKL}	涓流充电电流	V _{BAT} < V _{TRIKL} , R _{PROG} = 10k		10		mA
V _{TRIKL}	涓流充电阈值电压	R _{PROG} = 10k, V _{BAT} Rising	2.8	2.9	3.0	V
V _{UV}	VCC 欠压锁定阈值			3.4		V
V _{UVHYS}	VCC 欠压锁定滞后	From VCC Low to High		100		V
V _{MSD}	手动关断阈值电压	PROG Pin 上升		1.25		V
	于幼大剧网值电压	PROG Pin 下降		1.2		V
V _{ASD}	VCC VDAT 阅传由压	VCC 从低到高		100		mV
	VCC-VBAT 阈值电压	VCC 从高到低		30		mV
I _{TERM}		$R_{PROG} = 10k^{(4)}$		0.1		mA/mA
	C/TOZ 经正电流网值	R _{PROG} = 2k		0.1		mA/mA
V_{PROG}	PROG 端电压	R _{PROG} = 10k,电流模式	0.9	1.03	1.1	V
I _{CHRG}	CHRG 端弱下拉电流	V _{CHRG} = 3V		15		μΑ
V _{CHRG}	CHRG 端输出低电压	I _{CHRG} = 5mA		0.6		V
ΔV _{RECHRG}	电池阈值电压	V _{FLOAT} - V _{RECHRG}		100		mV
T _{LIM}	热保护温度			120		$^{\circ}$
t _{SS}	软启动时间	I _{BAT} = 0 to 1000V/R _{PROG}		100		μs
trechrge	再充电比较器过滤时间	V _{BAT} High to Low		1		ms
t _{TERM}	终止比较器过滤时间	I _{BAT} Falling Below I _{CHG} /10		1000		μs
I _{PROG}	PROG 端上拉电流			1		μΑ

注:

- 1、超出最大工作范围可能会损坏芯片。
- 2、超出器件工作参数极限,不保证其正常功能。
- 3、电源电流包括 PROG 端电流(大约 100uA),不包括通过 BAT 端传输到电池的其他电流(大约 100uA)。
- 4、 充电终止电流一般是设定充电电流的 0.1 倍。

TC4054 (文件编号: S&CIC1076)

0.5A 线性锂离子电池充电器 IC

八、 波形图

浮动电压 VS 电源电压

充电电流 VS 电源电压

涓流充电电流 VS 电源电压

浮动电压 VS 温度

TC4054 (文件编号: S&CIC1076)

0.5A 线性锂离子电池充电器 IC

封装尺寸图 九、

SOT23-5

规格							
尺寸	英寸		毫米				
	最小值	最大值	最小值	最大值			
Α	0.110	0.120	2.80	3.05			
В	0.059	0.070	1.50	1.75			
С	0.036	0.051	0.90	1.30			
D	0.014	0.020	0.35	0.50			
E		0.037		0.95			
F		0.075		1.90			
Н	_	0.006	_	0.15			
J	0.0035	0.008	0.090	0.20			
K	0.102	0.118	2.60	3.00			