Карнаухов Георгий М3101

Вариант 14

x	5	15	25	35	45	55
у	2,2	2,4	2,6	2,7	2,8	2,9

Рассмотрим несколько случаев подбора аппроксимирующей функций y = f(x, a, b)

Решение

1. Линейная функция

Выберем значения коэффициентов a и b так, чтобы сумма квадратов отклонений была минимальной.

Функция S(a, b) будет принимать минимальное значение, если обращаются в нуль частные производные S'_a и S'_b

$$\begin{cases} S'_a(a,b) = \sum_{i=1}^n 2(ax_i + b - y_i) * x_i = 0 \\ S'_b(a,b) = \sum_{i=1}^n 2(ax_i + b - y_i) * 1 = 0 \end{cases}$$

Преобразуем уравнения системы:

$$\begin{cases}
\left(\sum_{i=1}^{n} x_i^2\right) * a + \left(\sum_{i=1}^{n} x_i\right) * b = \sum_{i=1}^{n} x_i * y_i \\
\left(\sum_{i=1}^{n} x_i\right) * a + n * b = \sum_{i=1}^{n} y_i
\end{cases}$$

$$\sum_{i=1}^{6} x_i = 180, \sum_{i=1}^{6} y_i = 15,6, \sum_{i=1}^{6} x_i^2 = 7150, \sum_{i=1}^{6} x_i * y_i = 492$$

Тогда система уравнений примет вид

$$\begin{cases}
7150 * a + 180 * b = 492 \\
180 * a + 6 * b = 15,6
\end{cases}$$

Решим систему уравнений по формулам Крамера:

$$a=\frac{\Delta_1}{\Delta}$$
, $b=\frac{\Delta_2}{\Delta}$,

где

$$\Delta = \begin{vmatrix} 7150 & 180 \\ 180 & 6 \end{vmatrix} = 10500, \ \Delta_1 = \begin{vmatrix} 492 & 180 \\ 15.6 & 6 \end{vmatrix} = 144,$$

$$\Delta_2 = \begin{vmatrix} 7150 & 492 \\ 180 & 15,6 \end{vmatrix} = 22980$$

Тогда
$$a=\frac{\Delta_1}{\Delta}=0$$
,013714281801; $b=\frac{\Delta_2}{\Delta}=2$,18818014286.

Следовательно, искомая линейная функция будет иметь вид:

$$y = 0.013714281801x + 2.18818014286$$

2. Степенная функция

Найдем зависимость y от x в виде степенной функции $y = \beta * x^a$.

Прологарифмируем равенство $y = \beta * x^a$ по основанию Θ и получим $\ln y = a * \ln x + \ln \beta$.

Обозначим $Y = \ln y$, $X = \ln x$, $b = \ln \beta$.

Тогда получим линейную функцию Y = a * X + b, где переменные X и Y связаны следующей табличной зависимостью:

$X = \ln x$	1,6094379124	2,7080502011	3,2188758249	3,5553480615	3,8066624898	4,007333185232
$Y = \ln y$	0,78841803604	0,8754687374	0,955511445	0,993251773	1,02961941718	1,064710737150

Таким образом, данная задача свелась к задаче 1.1

Система имеет вид:

$$\begin{cases}
\left(\sum_{i=1}^{n} \ln x_{i}^{2}\right) * a + \left(\sum_{i=1}^{n} \ln x_{i}\right) * b = \sum_{i=1}^{n} \ln x_{i} * \ln y_{i} \\
\left(\sum_{i=1}^{n} \ln x_{i}\right) * a + n * b = \sum_{i=1}^{n} \ln y_{i}
\end{cases}$$

Коэффициенты системы:

$$\sum_{i=1}^{6} \ln x_i = 18,90180076749, \sum_{i=1}^{6} \ln y_i = 5,70701947,$$

$$\sum_{i=1}^{6} \ln x_i^2 = 63,47488558180, \sum_{i=1}^{6} \ln x_i * \ln y_i = 221,8349238949$$

Тогда система уравнений примет вид

$$\begin{cases} 63,47488558180*a+18,90180076749*b=221,8349238949\\ 18,90180076749*a+6*b=5,70701947 \end{cases}$$

Решим систему уравнений по формулам Крамера:

$$a=\frac{\Delta_1}{\Delta}, b=\frac{\Delta_2}{\Delta},$$

где

$$\Delta = \begin{vmatrix} 63,47488558180 & 18,90180076749 \\ 18,90180076749 & 6 \end{vmatrix} = 23,4235308254,$$

$$\Delta_1 = \begin{vmatrix} 221,8349238949 & 18,90180076749 \\ 5,70701947 & 6 \end{vmatrix} = 1 223,11430118046,$$

$$\Delta_2 = \begin{vmatrix} 63,47488558180 & 221,8349238949 \\ 18,90180076749 & 5,70701947 \end{vmatrix} = -3 831,6938153471$$

Тогда
$$a=\frac{\Delta_1}{\Delta}=52$$
,2173326768 и $b=\frac{\Delta_2}{\Delta}=-163$,58310128.
$$\beta=e^b=9{,}05235926109{\times}10^{-72}.$$

получаем искомую степенную функцию:

$$y = 9,05235926109 \times 10^{-72} * x^{52,2173326768}$$
.

3. Показательная функция

Найдем зависимость y от x в виде показательной функции $y = \beta * e^{ax}$.

Прологарифмируем равенство $y = \beta * e^{ax}$ по основанию e и получим $\ln y = ax + \ln \beta$.

Обозначим $Y = \ln y$, $b = \ln \beta$.

Тогда получим линейную функцию Y = ax + b, где переменные x и Y связаны следующей табличной зависимостью:

x	5	15	25	35	45	55
$Y = \ln y$	0,78841803604	0,8754687374	0,955511445	0,993251773	1,02961941718	1,064710737150

Таким образом, задача свелась к задаче 1.1.

$$\begin{cases} \left(\sum_{i=1}^{n} x_{i}^{2}\right) * a + \left(\sum_{i=1}^{n} x_{i}\right) * b = \sum_{i=1}^{n} x_{i} * \ln y_{i} \\ \left(\sum_{i=1}^{n} x_{i}\right) * a + n * b = \sum_{i=1}^{n} \ln y_{i} \end{cases}$$

Коэффициенты системы:

$$\sum_{i=1}^{6} x_i = 180,$$

$$\sum_{i=1}^{6} \ln y_i = 5,70701947,$$

$$\sum_{i=1}^{6} x_i^2 = 7150,$$

$$\sum_{i=1}^{6} x_i * \ln y_i = 180,6178803506.$$

Тогда система уравнений примет вид

$$\begin{cases} 7150 * a + 180 * b = 180,6178803506 \\ 180 * a + 6 * b = 5,70701947 \end{cases}$$

Определители системы:

$$\Delta = \begin{vmatrix} 7150 & 180 \\ 180 & 6 \end{vmatrix} = 10500,$$

$$\Delta_{1} = \begin{vmatrix} 180,6178803506 & 180 \\ 5,70701947 & 6 \end{vmatrix} = 56,4437775036,$$

$$\Delta_{2} = \begin{vmatrix} 7150 & 180,6178803506 \\ 180 & 5,70701947 \end{vmatrix} = 8293,970747392.$$

Тогда
$$a=\frac{\Delta_1}{\Delta}=~0$$
,0053755978180 и $b=\frac{\Delta_2}{\Delta}=~0$,7899019759.

$$\beta = e^b = 2,2031804509.$$

Получаем искомую показательную функцию

$$y = 2,2031804509 * e^{0,0053755978180x}$$
.

4. Квадратичная функция

Найдем зависимость y от x в виде квадратичной функции $y = ax^2 + bx + c$. Выберем коэффициенты a, b и c так, чтобы сумма квадратов отклонений $S(a,b,c) = \sum_{i=1}^{n} (ax_i^2 + bx_i + c - y_i)^2$ была минимальной.

Функция S(a, b, c) будет принимать минимальное значение, если частные производные $S'_a(a, b, c), S'_b(a, b, c), S'_c(a, b, c)$ обращаются в нуль:

$$\begin{cases} S'_a(a,b,c) = \sum_{i=1}^n 2(ax_i^2 + bx_i + c - y_i) * x_i^2 = 0 \\ S'_b(a,b,c) = \sum_{i=1}^n 2(ax_i^2 + bx_i + c - y_i) * x_i = 0 \\ S'_c(a,b,c) = \sum_{i=1}^n 2(ax_i^2 + bx_i + c - y_i) * 1 = 0 \end{cases}$$

Преобразуем уравнения системы следующим образом:

уем уравнения системы следующим образом.
$$\left\{ \left(\sum_{i=1}^{n} x_i^4 \right) * a + \left(\sum_{i=1}^{n} x_i^3 \right) * b + \left(\sum_{i=1}^{n} x_i^2 \right) * c = \sum_{i=1}^{n} x_i^2 * y_i \right.$$

$$\left\{ \left(\sum_{i=1}^{n} x_i^3 \right) * a + \left(\sum_{i=1}^{n} x_i^2 \right) * b + \left(\sum_{i=1}^{n} x_i \right) * c = \sum_{i=1}^{n} x_i * y_i \right.$$

$$\left(\sum_{i=1}^{n} x_i^2 \right) * a + \left(\sum_{i=1}^{n} x_i \right) * b + n * c = \sum_{i=1}^{n} y_i$$

Коэффициенты системы:

$$\sum_{i=1}^{6} x_i^4 = 15193750, \ \sum_{i=1}^{6} x_i^3 = 319500, \ \sum_{i=1}^{6} x_i^2 = 7150, \ \sum_{i=1}^{6} x_i = 180,$$

$$\sum_{i=1}^{6} x_i * y_i = 492,$$

$$\sum_{i=1}^{6} x_i^2 * y_i = 19970, \sum_{i=1}^{6} y_i = 15.6$$

Тогда система уравнений примет вид:

$$\begin{cases}
15193750 * a + 319500 * b + 7150 * c = 19970 \\
319500 * a + 7150 * b + 180 * c = 492 \\
7150 * a + 180 * b + 6 * c = 15,6
\end{cases}$$

Решим систему уравнений по формулам Крамера:

$$\Delta$$
= 3920000000
 Δ_1 = -630000
 Δ_2 = 91560000
 Δ_3 = 8195950000

Тогда

$$a = \frac{\Delta_1}{\Delta} = -0,0001607142857,$$
 $b = \frac{\Delta_2}{\Delta} = 0,02335714286,$
 $c = \frac{\Delta_3}{\Delta} = 2,09080357143.$

Следовательно, искомая квадратичная функция будет иметь вид:

$$y = -0.0001607142857 * x^2 + 0.02335714286 * x + 2.09080357143$$

Вывод

Построим в плоскости *Оху* графики полученных функций и нанесем экспериментальные точки.

Для этого составим таблицу значений полученных функций

x	5	15	25	35	45	55
у	2,2	2,4	2,6	2,7	2,8	2,9
y = 0,013714281801x + 2,18818014286	2.256751551865	2.393894369875	2.531037187885	2.668180005895	2.8053228239049997	2.9424656419149997
$y = $ 9,05235926109 * $10^{-72} * x^{52,2173326768}.$	2.85147234063737e- 35	2.3394313952738053e -10	89.83804169092309	3835981720.124782	1919152997789994.0	6.8211769697612644e +19
$y = 2,2031804509 *$ $e^{0,0053755978180x}.$	2,2632	2,3882	2,52	2,6593	2,806	2.9611
$y = -0,0001607142857$ $* x^2 + 0,02335714286$ $* x + 2,09080357143$	2,2036	2,405	2,5743	2,71143	2,81643	2,8893

Сравним полученные результаты. Для этого найдем соответствующие суммарные погрешности.

$$S_1(a,b) = 0.010858062035536731$$

$$S_2(a,b) = 4.652845528963295e + 39$$

$$S_3(a,b) = 0.015950562093898973$$

В данной задаче лучшей аппроксимирующей функцией является квадратичная функция:

$$y = -0.0001607142857 * x^2 + 0.02335714286 * x + 2.09080357143$$