Amat 307 Midterm Test Fall 2014

- 1. The following differential equation $y'' \cdot y' + t^2 y'' = y^3 \cos t$ is
 - A) Third order, nonlinear
 - B) Third order, linear
 - C) Second order, nonlinear (*)
 - D) Second order, linear
 - E) Second order, Bernoulli
- 2. The solution of the differential equation ty' + y = 0 satisfying the initial condition y(1) = 2 is
 - A) y = 1 + t
 - B) $y = \frac{2}{t} (*)$
 - C) y = 3 t
 - D) $y = 2(\ln(t) + 1)$
 - E) $y = \ln(e^{t-1} + 1)$
- 3. The solution of the differential equation 2ty' y = 6t, t > 0, satisfying the initial condition y(1) = 4 is
 - A) $y = 3t^{1/2} + t^{-1/2}$
 - B) $y = 3t^{3/2} + t^{1/2}$
 - C) $y = 2(t + t^{-1/2})$
 - D) $y = 6t 2t^{1/2}$ (*)
 - E) None of the above.
- 4. The equation $(y^2 3x^ay^b) \frac{dy}{dx} = 3x^2y^3 x$ is exact
 - A) for any a, b
 - B) never
 - C) for a = 2, b = 3 only
 - D) for a = 3, b = 2 only (*)
 - E) for a = b = 3 only
- 5. A tank initially contains 1000 litres of pure water. A solution with a salt concentration of 2.5 g/litre is added to the tank at 4 litres/minute, and the resulting mixture is drained out at 4 litres/minute. Which of the following initial value problems describe the amount Q(t) of salt in the tank at time t?

A)
$$Q'(t) + \frac{1}{250}Q(t) = 10$$
, $Q(0) = 1000$

B)
$$Q'(t) + \frac{1}{250}Q(t) = 10$$
, $Q(0) = 0$ (*)

C)
$$Q'(t) + \frac{1}{1000 + 4t}Q(t) = 10$$
, $Q(0) = 0$

D)
$$Q'(t) + \frac{1}{25}Q(t) = 10$$
, $Q(0) = 1000$

E) None of the above.

- 6. The mass of a radioactive substance is $20 \,\mathrm{g}$ at t = 0. After 100 hours, $10 \,\mathrm{g}$ of the radioactive material remains. What is the mass in grams m(t) after t hours?
 - A) $Q(t) = 20 \cdot e^{-\frac{\ln 2}{100}t}$ (*)
 - B) $Q(t) = 20 \cdot e^{\frac{\ln 2}{100}t}$
 - C) $Q(t) = 10 \cdot e^{-\frac{\ln 2}{100}t}$
 - D) $Q(t) = 10 \cdot e^{\frac{\ln 2}{100}t}$
 - E) $Q(t) = 20 \cdot e^{-\frac{\ln 2}{50}t}$
- 7. A solution for the exact differential equation $(2x+y^3)dx + (3xy^2+1)dy = 0$, with initial condition y(1) = -1 is
 - A) $3xy^2 + y + x^2 = 3$
 - B) $x^2 + y^3 + x = 1$
 - C) $x^2 + xy^3 + y = -1$ (*)
 - D) $x^2 + xy^3 = 0$
 - E) $x^2 + y^3 = 0$
- 8. According to the Euler numerical approximation method for $y'(t) = \cos(t)y + e^t$ with initial condition y(0) = 1 and step size $\Delta t = 0.5$, the first two approximate values y(0.5) and y(1) obtained are
 - A) $y(0.5) \approx 3$, $y(1) \approx 3 + 3\cos(0.5) + e^{0.5}$
 - B) $y(0.5) \approx 2$, $y(1) \approx 2 + 2\cos(0.5) + e^{0.5}$
 - C) $y(0.5) \approx 3$, $y(1) \approx 7$
 - D) $y(0.5) \approx 3$, $y(1) \approx 3 + \cos(0.5) + 1$
 - E) $y(0.5) \approx 2$, $y(1) \approx 2 + 0.5(2\cos(0.5) + e^{0.5})$ (*)
- 9. After the substitution $u(t) = y^a$ the differential equation $ty' + y = (ty)^{-3/2}$ becomes a linear differential equation in u = u(t) when
 - A) a = 5/2 (*)
 - B) a = 1/2
 - C) a = -5/2
 - D) a = -1/2
 - E) a = 3/2
- 10. The **largest** interval on which a unique solution to the initial value problem $(x+3)y'' + \frac{x}{x-3}y' + y = \frac{1}{x+2}$, y(1) = 2 is **guaranteed** to exist is
 - A) (-3, 0)
 - B) $(-2, \infty)$
 - C) (-3, 3)
 - D) (0, 3)
 - E) (-2, 3) (*)

- 11. The solution to the initial value problem: 3y'' 3y' 6y = 0, y(0) = 1, y'(0) = 1 is given by:
 - A) $\frac{1}{3}e^{-x} + \frac{2}{3}e^{2x}$ (*)
 - B) $\frac{1}{3}e^x + \frac{2}{3}e^{-2x}$
 - C) $3e^{-x} 2e^{-2x}$
 - D) $\frac{4}{3}e^{-x} \frac{1}{3}e^{2x}$
 - E) None of the above.
- 12. The solution to the initial value problem: 2y'' 4y' + 10y = 0, $y(\frac{\pi}{4}) = 1$, $y'(\frac{\pi}{4}) = 0$ is given by:
 - A) $-e^{-\frac{\pi}{2}}e^{2t}\cos(4t) + e^{-\frac{\pi}{2}}e^{2t}\sin(4t)$
 - B) $-e^{-\frac{\pi}{4}}e^t\cos(4t) + e^{-\frac{\pi}{4}}e^t\sin(4t)$
 - C) $\frac{1}{2}e^{-\frac{\pi}{4}}e^t\cos(2t) + e^{-\frac{\pi}{4}}e^t\sin(2t)$ (*)
 - D) $-\frac{1}{2}e^{-\frac{\pi}{4}}e^t\cos(2t) + \frac{1}{2}e^{-\frac{\pi}{4}}e^t\sin(2t)$
 - E) $\frac{1}{2}\cos(2t) + \sin(2t)$
- 13. If $2 + \ln(2)te^{3t}$ is a solution to a homogeneous constant coefficient linear differential equation, then so also must be
 - A) $\ln(2) 2t^2 e^{3t}$
 - B) $2(e^{3t} \sin(2))$ (*)
 - C) $te^{3t}\cos(2) t^2$
 - D) $2t(e^{3t} + 1)$
 - E) None of the above.
- 14. Let $y_1(t)$ and $y_2(t)$ be two solutions of the differential equation $ty'' + \cos(t)y' 3y = t \ln t$, t > 0. Which of the following is also a solution of this equation?
 - A) $y_1(t) + y_2(t)$
 - B) $2y_1(t) 3y_2(t)$
 - C) $y_1(t) y_2(t)$
 - D) $3y_2(t) 2y_1(t)$ (*)
 - E) $y_1(t) 2y_2(t)$
- 15. According to the method of undetermined coefficients, a particular solution to the equation $y'' 2y' + 2y = t^2 e^t \cos(t) + t e^{-3t}$ is of the form (where $A_0, A_1, A_2, B_0, B_1, B_2, C_0, C_1$ are real constants)
 - A) $(A_0t^2 + A_1t + A_2)e^t\cos(t) + C_0te^{-3t}$
 - B) $(A_0t^3 + A_1t^2 + A_2t)e^t\cos(t) + (B_0t^3 + B_1t^2 + B_2t)e^t\sin(t) + (C_0t + C_1)e^{-3t}$ (*)
 - C) $(A_0t^2 + A_1t + A_2)e^t\cos(t) + (B_0t^2 + B_1t + B_2)e^t\sin(t) + (C_0t + C_1)e^{-3t}$
 - D) $(A_0t^3 + A_1t^2 + A_2t)e^t\cos(t) + (C_0t + C_1)e^{-3t}$
 - E) $(A_0t^3 + A_1t^2 + A_2t)e^t\cos(t) + (B_0t^3 + B_1t^2 + B_2t)e^t\sin(t) + C_0te^{-3t}$
- 16. According to the method of undetermined coefficients, a particular solution to the equation $y^{(4)} + 2y'' + y = (x-2)e^{2x} + (x-1)\cos(x)$ is of the form (where $A_0, A_1, B_0, B_1, C_0, C_1$ are real constants)
 - A) $e^{2x}(A_0x + A_1) + [(B_0x + B_1)\cos(x) + (C_0x + C_1)\sin(x)]$
 - B) $e^{2x}(A_0x^2 + A_1x) + [B_0\cos(x) + C_0\sin(x)]$
 - C) $e^{2x}(A_0x^3 + A_1x^2) + (B_0x^3 + B_1x^2)\cos(x)$
 - D) $e^{2x}(A_0x + A_1) + [(B_0x^3 + B_1x^2)\cos(x) + (C_0x^3 + C_1x^2)\sin(x)]$ (*)
 - E) $e^{2x}(A_0x + A_1) + [B_0\cos(x) + C_0\sin(x)]$

- 17. The equation y'' + by' + cy = 0, where y is a function of t, has a solution $e^{2t} \cos(3t)$
 - A) for b = 4, c = 5 only
 - B) for b = -4, c = 9 only
 - C) for b = -4, c = 13 only (*)
 - D) for b = 4, c = 13 only
 - E) None of the above
- 18. Let y_1 and y_2 be solutions of y'' 3y + q(t)y = 0 such that their Wronskian at t = 0 equals 1: $W(y_1, y_2)(0) = 1$. Then the Wronskian at t = 2
 - A) cannot be found: insufficient data
 - B) $W(y_1, y_2)(2) = 2$
 - C) $W(y_1, y_2)(2) = e^{-3}$
 - D) $W(y_1, y_2)(2) = 3$
 - E) $W(y_1, y_2)(2) = e^6$ (*)
- 19. There is a homogeneous constant coefficient linear ordinary differential equation of order m for which the function $y(t) = 5t\cos(t) + 10$ is a solution. This is true when
 - A) m = 2
 - B) m = 3
 - C) m = 4
 - D) m = 5 (*)
 - E) None of the above.
- 20. The unique solution to the differential equation y'' 2y' 3y = 9t with initial conditions y(0) = 2, and y'(0) = 1 is:
 - A) $y = e^{3t} e^{-t} 3t + 2$ (*)
 - B) $y = \frac{3}{4}e^{3t} + \frac{5}{4}e^{-t} 3t$
 - C) $y = -e^{-3t} + e^t 3t + 2$
 - D) $y = \frac{3}{4}e^{-3t} + \frac{5}{4}e^t 3t$
 - E) None of the above.