Making Kerr quasinormal mode frequency computation robust

Sashwat Tanay, Leo Stein (Univ. of MS)

APS April meeting 2023

• **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.

- **Physical system:** A spinning (Kerr) BH in the ringdown stage (result of a BBH merger).
- Final Kerr BH oscillates at the quasinormal mode (QNM) frequencies.
- Determining QNM frequencies is essential for GW data analysis.
- **Objective:** work towards improving the spectral variants of Leaver's method of arXiv: 1410.7698 (Cook & Zalutskiy) and arXiv: 1908.10377 (Leo Stein).

• Notation: ω = QNM frequency. a = BH spin.

- Notation: $\omega = QNM$ frequency. a = BH spin.
- QNM frequencies are complex.

- Notation: $\omega = QNM$ frequency. a = BH spin.
- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with 0 < a < 1.

- Notation: ω = QNM frequency. a = BH spin.
- QNM frequencies are complex.
- $\omega_0 = \omega_0(a)$ with 0 < a < 1.
- Note: won't show actual QNM curves; will use fake curves for simplicity.

QNM frequency ω_0 : root of $\mathscr{C}(\omega) = 0$

6

QNM frequency ω_0 : root of $\mathscr{C}(\omega) = 0$

6

• ω_0 's are solutions of $\mathscr{C}(\omega) = 0$ (via Newton-Raphson root finding)

QNM frequency ω_0 : root of $\mathscr{C}(\omega, a) = 0$

- ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$ (via Newton-Raphson root finding).
- Finding ω_0 's \sim parameterized (by a) numerical root-finding problem.

QNM frequency ω_0 : root of $\mathscr{C}(\omega, a) = 0$

- ω_0 's are solutions of $\mathscr{C}(\omega; a) = 0$. (via Newton-Raphson root finding)
- Finding ω_0 's \sim parameterized (by a) numerical root-finding problem.
- Important: Distinguish b/w $\mathscr{C}(\omega, a)$ (bottom) and ω_0 (up).

• Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies must take small steps $(da \sim 0.02)$ in BH spin a.

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies must take small steps $(da \sim 0.02)$ in BH spin a.
- We can take large steps $(da \sim 0.25)$ in a if we have $d\omega_0/da$.

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \Longrightarrow must take small steps $(da \sim 0.02)$ in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- **Result:** we provide $d\omega_0/da$ analytically.

Recall...

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- **Result:** we provide $d\omega_0/da$ analytically.
- **Result:** we provide $dC/d\omega$ for Newton-Raphson analytically.

Results

- Previously found $\omega_0(a)$ is used as a guess to find $\omega_0(a+da)$.
- Root can't be found if the guess is too far \implies take small steps ($da \sim 0.02$) in BH spin a.
- We can take large steps ($da \sim 0.25$) in a if we have $d\omega_0/da$.
- **Result:** we provide $d\omega_0/da$ analytically.
- **Result:** we provide $dC/d\omega$ for Newton-Raphson analytically.
- Analytical derivatives preferred over numerical ones (see Secs. 5.7, 9.4, 9.6, and 9.7 of Numerical Recipes in C).

• Integration could be hard; isn't differentiation trivial?

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$

(we don't know a priori how many fractions to keep)

• Integration could be hard; isn't differentiation trivial?

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$
 (we don't know a priori how many fractions to keep)

• **Problem 1:** Naive $d\mathcal{C}/d\omega$ computation is non-iterative & inefficient.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$
 (we don't know a priori how many fractions to keep)

- **Problem 1:** Naive $d\mathcal{C}/d\omega$ computation is non-iterative & inefficient.
- I lied; we have 2 equations in 2 unknowns (ω_0, A) ; A = some eigenvalue.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}$$
 (we don't know a priori how many fractions to keep)

- **Problem 1:** Naive $d\mathcal{C}/d\omega$ computation is non-iterative & inefficient.
- I lied; we have 2 equations in 2 unknowns (ω_0, A) ; A = some eigenvalue.
- We deliver $(d\omega_0/da, d\mathcal{C}/d\omega, dA/da)$.

$$\mathscr{C} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \frac{a_5}{b_5 + \cdots}}}}}.$$
 (we don't know a priori how many fractions to keep)

- **Problem 1:** Naive $d\mathcal{C}/d\omega$ computation is non-iterative & inefficient.
- I lied; we have 2 equations in 2 unknowns (ω_0, A) ; A = some eigenvalue.
- We deliver $(d\omega_0/da, d\mathcal{C}/d\omega, dA/da)$.
- **Problem 2:** Redo Griffiths' quantum mech. pert. theory with *non-hermitian* matrix.

Summary

- **Result:** we provided derivatives $(d\omega_0/da, d\mathcal{C}/d\omega \& dA/da)$ to make QNM frequency computation more efficient.
- **Result:** $d\omega_0/da$ lets us take larger step sizes $da \sim 0.02 \rightarrow 0.25$.
- Future: Calculate and incorporate $d^2\omega_0/da^2$; can let us take $da \sim 0.65$.
- Future: apply this method to beyond Kerr QNMs (within GR) and beyond GR.
- **Refs:** arXiv: 2210.03657, github.com/sashwattanay/qnm

