RELATIVE INFORMATION AND THE DUAL NUMBERS

Shaowei Lin Topos Institute (with Chris Hillar)

20250110

Joint Mathematics Meetings: AMS Special Session on Algebraic Methods in Machine Learning and Optimization

RELATIVE INFORMATION

▶ Given probability distributions q and p on a *finite* set \mathcal{E}_X , the *relative information* (Kullback-Leibler divergence, relative entropy) from p to q is

$$I_{q||p} := \sum_{x \in \mathcal{E}_Y} q(x) \log \frac{q(x)}{p(x)}.$$

▶ Given probability densities q and p on an *infinite* set \mathcal{E}_X , the relative information is

$$I_{q||p} := \int q(x) \log \frac{q(x)}{p(x)} dx.$$

- ▶ Well-defined only when p(x) = 0 implies q(x) = 0 for all x (absolute continuity $q \ll p$).
- ▶ Think of *q* as the *reference* or *true* distribution, and we want to know the distance of a *model* distribution *p* to the truth. This distance is not symmetric, i.e. $I_{q||p} \neq I_{p||q}$.

INFORMATION IS RELATIVE!

▶ Relative information $I_{q||p}$ is well-defined for large classes of statistical models. Entropy H_p , on the other hand, is often ill-defined. In fact, when defined, we have

$$H_p = I_{\Delta_p \parallel pp} = \iint \Delta_p(x, y) \log \frac{\Delta_p(x, y)}{p(x)p(y)} dxdy = \int p(x) \log \frac{1}{p(x)} dx$$

where $\Delta_p(x,y) = \mathbb{I}_{x=y} p(x)$ and pp(x,y) = p(x)p(y) are distributions on $\mathcal{E}_X \times \mathcal{E}_X$.

- ► To remind myself that information in a distribution should always be measured relative to another, I use the mantra: **INFORMATION IS RELATIVE!**
- ▶ Generally, let q, p be finite measures on a measurable space $(\mathcal{E}_X, \mathcal{B}_X)$ with *total measure* $T_q = T_p$. If $q \ll p$, let dq/dp be the Radon-Nikodym derivative. Define the *relative information*

$$I_{q||p} := \int dq \, \log \frac{dq}{dp} = T_q \, I_{\bar{q}||\bar{p}}$$

where \bar{q}, \bar{p} are the normalized measures with $T_{\bar{q}} = T_{\bar{p}} = 1$.

MOTIVATION: SINGULAR LEARNING

Let $\{p(\cdot|\omega), \omega \in \Omega\}$ be a parametric model (a family of distributions) on X. Let $\varphi(\omega)$ be a prior on the parameter space Ω . Let q be the true distribution of X. Suppose we observe data $x_{[n]} = (x_1, \dots, x_n) \in X^n$.

Marginal likelihood
$$Z_n = \int_{\Omega} \prod_i p(x_i|\omega) \, \varphi(\omega) d\omega$$
 Empirical entropy $S_n = -\frac{1}{n} \sum_i \log q(x_i)$ Relative information $I(\omega) = \int q(x) \log \frac{q(x)}{p(x|\omega)} dx$

Theorem (Convergence of stochastic complexity - Watanabe)

The *stochastic complexity* has an asymptotic expansion (as $n \to \infty$)

$$-\log Z_n = nS_n + \lambda_q \log n - (\theta_q - 1) \log \log n + O_p(1)$$

where λ_q is the *real log canonical threshold* of relative information $I(\omega)$ over Ω with respect to $\varphi(\omega)$, and θ_q its multiplicity. For regular models, this is the Bayesian Information Criterion.

MOTIVATION: SINGULAR LEARNING

Density of states

¹Jesse Hoogland, "Physics I: The Thermodynamics of Learning", Singular Learning Theory and Alignment Summit 2023.

MOTIVATION

What properties of relative information uniquely define it?

How do we generalize relative information to non-statistical settings?

CONDITIONAL RELATIVE INFORMATION (PROBABILITIES)

- ▶ Consider joint probabilities q(y, x) for $(y, x) \in Y \times X$.
- ► Conditional probabilities are q(y|x) := q(y,x)/q(x) when $q(x) := \sum_{y} q(y,x) \neq 0$.
- \blacktriangleright Given distributions q, p on $Y \times X$, the *conditional* relative information from p to q is

$$I_{q\parallel p}(Y|X) := \sum_{x \in X} q(x) \sum_{y \in Y} q(y|x) \log \frac{q(y|x)}{p(y|x)}.$$

▶ Important concept for variational inference, expectation-maximization algorithm.

CONDITIONAL RELATIVE INFORMATION (MEASURES)

- ▶ More generally, let $\mathcal{M}_Z = (\mathcal{E}_Z, \mathcal{B}_Z)$ and $\mathcal{M}_X = (\mathcal{E}_X, \mathcal{B}_X)$ be measurable spaces. Assume that \mathcal{B}_Z contains the singletons $\{z\}$ for all $z \in \mathcal{E}_Z$, and similarly for \mathcal{B}_X . Let $\pi : \mathcal{M}_Z \to \mathcal{M}_X$ be a *measurable surjection*. Think of \mathcal{M}_Z as a *refinement* of \mathcal{M}_X .
- ▶ Given a finite measure q on \mathcal{M}_Z , the pushforward $q_\pi(dx) := d(\pi_*q)$ gives a measure on \mathcal{M}_X . The pullback $\pi^*\mathcal{B}_X$ is a sub σ -algebra of \mathcal{B}_Z , so the *conditional expectation* $\mathbb{E}_q[\cdot|\pi^*\mathcal{B}_X]: \mathcal{E}_Z \to \mathbb{R}$ exists for any measurable $f: \mathcal{E}_Z \to \mathbb{R}$. The preimages $\pi^{-1}(x), x \in \mathcal{E}_X$, generate \mathcal{B}_Z , so $\mathbb{E}_q[f|\pi^*\mathcal{B}_X]$ is constant on each preimage. Given $x \in \mathcal{E}_X$, define the *conditional measure* $q_\pi(dz|x)$ on \mathcal{M}_Z by

$$q_{\pi}(B|x) := \mathbb{E}_q[\mathbb{I}_B|\pi^*\mathcal{B}_X](z)$$
 for all $B \in \mathcal{B}_Z$ and any $z \in \pi^{-1}(x)$.

▶ Given finite measures q, p on \mathcal{M}_Z with $T_q = T_p$ and $q \ll p$, let $q_\pi(dz|x)/p_\pi(dz|x)$ denote the Radon-Nikodym derivative. The *conditional relative information* is

$$I_{q||p}(Z|X) := \int q_{\pi}(dx) \int q_{\pi}(dz|x) \log \frac{q_{\pi}(dz|x)}{p_{\pi}(dz|x)}.$$

CHAIN RULE

Let $\pi: \mathcal{M}_Z \to \mathcal{M}_X$ be a measurable surjection. Let q, p be finite measures on \mathcal{M}_Z . By abuse of notation, we also let q, p denote their pushforwards on \mathcal{M}_X .

Theorem (Chain Rule for Total Measure)

$$T_q(Z) = T_q(X)$$

Theorem (Chain Rule for Relative Information) $I_{q||p}(Z) = I_{q||p}(Z|X) + I_{q||p}(X)$ Proof (for probability measures over finite sets)

$$\begin{split} I_{q||p}(Y,X) &= \sum_{x,y} q(y,x) \log \frac{q(y,x)}{p(y,x)} \\ &= \sum_{x,y} q(y|x) q(x) \log \frac{q(y|x) q(x)}{p(y|x) p(x)} \\ &= \sum_{x,y} q(y|x) q(x) \log \frac{q(y|x)}{p(y|x)} + \sum_{x,y} q(y|x) q(x) \log \frac{q(x)}{p(x)} = I_{q||p}(Y|X) + I_{q||p}(X) \end{split}$$

SUM AND PRODUCT RULES (TOTAL MEASURE)

- ▶ Suppose we have measure spaces $(\mathcal{E}_X, \mathcal{B}_X, \mu_X)$ and $(\mathcal{E}_Y, \mathcal{B}_Y, \mu_Y)$ with finite μ_X, μ_Y .
- Let the sum $\mathcal{E}_X + \mathcal{E}_Y$ be the disjoint union $\mathcal{E}_X \sqcup \mathcal{E}_Y$. Let the sum $\mathcal{B}_X + \mathcal{B}_Y$ be the collection of $B \subseteq \mathcal{E}_X + \mathcal{E}_Y$ such that $B \cap \mathcal{E}_X \in \mathcal{B}_X$, $B \cap \mathcal{E}_Y \in \mathcal{B}_Y$. Let the sum $\mu_X + \mu_Y$ satisfy $\mu_X + \mu_Y(B) = \mu_X(B \cap \mathcal{E}_X) + \mu_Y(B \cap \mathcal{E}_Y)$ for all $B \in \mathcal{B}_X + \mathcal{B}_Y$.
- Let the product $\mathcal{E}_X \times \mathcal{E}_Y$ be the Cartesian product of sets. Let the product $\mathcal{B}_X \times \mathcal{B}_Y$ be the σ -algebra generated by $\mathcal{B}_X \times \mathcal{B}_Y$ for all $\mathcal{B}_X \in \mathcal{B}_X, \mathcal{B}_Y \in \mathcal{B}_Y$. Let the product $\mu_X \times \mu_Y$ satisfy $\mu_X \times \mu_Y(\mathcal{B}_X \times \mathcal{B}_Y) = \mu_X(\mathcal{B}_X)\mu_Y(\mathcal{B}_Y)$ for all $\mathcal{B}_X \in \mathcal{B}_X, \mathcal{B}_Y \in \mathcal{B}_Y$.
- Total measures satisfy the sum and product rules.

$$T_{\mu_X + \mu_Y} = T_{\mu_X} + T_{\mu_Y}$$
$$T_{\mu_X \times \mu_Y} = T_{\mu_X} T_{\mu_Y}$$

SUM AND PRODUCTS (RELATIVE INFORMATION)

For relative information, we also have sum and product rules. For each $i \in \{1, 2\}$, let q_i and p_i be finite measures on $(\mathcal{E}_{Y_i}, \mathcal{B}_{Y_i})$ and $(\mathcal{E}_{X_i}, \mathcal{B}_{X_i})$ respectively, with $T_{q_i} = T_{p_i}$.

Theorem (Sum Rule)

$$I_{(q_1+q_2)\parallel(p_1+p_2)}(Y_1+Y_2|X_1+X_2) = I_{q_1\parallel p_1}(Y_1|X_1) + I_{q_2\parallel p_2}(Y_2|X_2)$$

[similar to $d(f+g) = df + dg$]

Theorem (Product Rule)

$$I_{(q_1 \times q_2) \parallel (p_1 \times p_2)}(Y_1 \times Y_2 | X_1 \times X_2) = T_{q_2} I_{q_1 \parallel p_1}(Y_1 | X_1) + T_{q_1} I_{q_2 \parallel p_2}(Y_2 | X_2)$$
[similar to $d(fg) = g df + f dg$]

AXIOMATIZATION OF RELATIVE INFORMATION

- ▶ We see that relative information satisfies the chain, sum and product rules.
- ▶ Under appropriate conditions (e.g. continuity), the only functions on probabilities that satisfy those rules² are scalar multiples of relative information. There are similar axiomatization results for classical and quantum entropy. See papers and talks below for more information.
 - Baez, Fritz, Leinster. "A characterization of entropy in terms of information loss." Entropy 13(11), 2011.
 - Baez, Fritz. "A Bayesian characterization of relative entropy." arXiv:1402.3067, 2014.
 - Baudot, Bennequin. "The homological nature of entropy." Entropy 17(5), 2015.
 - Vigneaux. "Information structures and their cohomology." arXiv:1709.07807, 2017.
 - Bradley. "Entropy as a topological operad derivation." Entropy 23(9), 2021.
 - Maszczyk. "Hochschild cohomology for abstract convexity and Shannon entropy." youtu.be/Zt9xO56CBG0, 2023.

²Turns out that the chain and sum rules are enough. The product rule is a consequence of these two rules.

RIGS AND MEASURE SPACES

- ▶ A *rig category* \mathbf{C} is one that has a symmetric monoidal structure $(\mathbf{C}, +, 0)$ for *addition*, a monoidal structure $(\mathbf{C}, \times, 1)$ for *multiplication*, and some natural isomorphisms for distributivity and annihilation, that together satisfy some coherence laws. A *rig functor* $\mathcal{F}: \mathbf{C} \to \mathbf{D}$ is one that preserves the rig structure on \mathbf{C} and \mathbf{D} .
- ▶ Let **Mble** be the category whose objects are *measurable* spaces $\mathcal{M}_X = (\mathcal{E}_X, \mathcal{B}_X)$ and whose morphisms $\pi : \mathcal{M}_Z \to \mathcal{M}_X$ are measurable surjections $\pi_{\mathcal{E}} : \mathcal{E}_Z \to \mathcal{E}_X$.
- ▶ Let **Meas** be the category whose objects are *measure* spaces $\mathcal{M}_X = (\mathcal{E}_X, \mathcal{B}_X, \mu_X)$ and whose morphisms $\pi : \mathcal{M}_Z \to \mathcal{M}_X$ are measurable surjections satisfying $\mu_X = (\pi_{\mathcal{E}})_* \mu_Y$.
- **b** Both **Mble** and **Meas** are rig categories under disjoint union + and Cartesian product \times .

INFORMATION RIGS

- ▶ A *poset* is a category where between any two objects, there is at most one morphism.
- ▶ An *information rig* is a pair (\mathbf{P} , \mathcal{M}) for some *rig poset* \mathbf{P} and some *rig functor* \mathcal{M} : \mathbf{P} → \mathbf{Mble} .
- ▶ To introduce finite measures q, p for comparison in $I_{q||p}$, we need a clever way to assign measures to objects of **P** in a consistent way that avoids explicit tracking of pushforwards.
- ▶ Let \mathcal{U} : **Meas** → **Mble** be the *forgetful functor* that ignores the measures.
- ▶ Let $(\mathbf{P}, \mathcal{M})$ be an information rig. We say that a rig functor $q : \mathbf{P} \to \mathbf{Meas}$ is a *lift* of \mathcal{M} if $\mathcal{U} \circ q = \mathcal{M}$. We say that q is *finite* if q maps each $X \in \mathrm{Ob} \, \mathbf{P}$ to a measure space with finite measure q_X . We say that q, p have the *same total measure* if $T_{q_X} = T_{p_X}$ for all $X \in \mathrm{Ob} \, \mathbf{P}$. We say that $q \ll p$ if $q_X \ll p_X$ for all $X \in \mathrm{Ob} \, \mathbf{P}$.

THE RIG OF DUAL NUMBERS

- ▶ Let $\mathbb{R}_{\geq 0}$ be the extended nonnegative reals $[0, \infty]$ as a rig/semiring with addition + and multiplication \times , satisfying $a + \infty = \infty$ for all $a, a \times \infty = \infty$ for all $a \neq 0$, and $0 \times \infty = 0$.
- ▶ The rig of *duals* is $\mathcal{R} = \mathbb{\bar{R}}_{>0}[\varepsilon]/\langle \varepsilon^2 \rangle$. Think of ε is an infinitesimal with $\varepsilon^2 = 0$.
- ▶ We shall think of the rig of duals as a *category* **R**, where
 - the extended nonnegative reals $a \in \mathbb{R}_{>0}$ are *objects*;
 - the duals $a + b\varepsilon \in \mathcal{R}$ are morphisms from a to itself, i.e. loops;
 - the morphisms *compose* by tangent addition $(a + b\varepsilon) \circ (a + c\varepsilon) = a + (b + c)\varepsilon$;
 - the dual $a + 0\varepsilon \in \mathcal{R}$ is the *identity* morphism from a to itself.
- ▶ The category **R** is a *rig category* under addition + and multiplication \times .
 - $(a + b\varepsilon) + (c + d\varepsilon)$ is the morphism $(a + c) + (b + d)\varepsilon$ from the object a + c to itself.
 - $(a + b\varepsilon) \times (c + d\varepsilon)$ is the morphism $(ac) + (ad + bc)\varepsilon$ from the object ac to itself.

RELATIVE INFORMATION FROM A RIG FUNCTOR

- ► Fix an information rig (\mathbf{P} , \mathcal{M}). Assume that the finite rig functors q, p : \mathbf{P} → **Meas** are lifts of \mathcal{M} , have the same total measure and satisfy $q \ll p$.
- ▶ For each morphism $\pi: Z \to X$ in **P**, denote the total measure by

$$T_q(Z) := T_{q_Z} \quad T_q(X) := T_{q_X} \quad T_q(\pi) := T_{q_Z} = T_{q_X}.$$

► For each morphism $\pi: Z \to X$ in **P**, let $q_{\pi}(dx) := q_X(dx)$ and $q_{\pi}(dz|x)$ be the associated conditional measure. Denote the relative information by

$$I_{q||p}(\pi) := \int q_{\pi}(dx) \int q_{\pi}(dz|x) \log \frac{q_{\pi}(dz|x)}{p_{\pi}(dz|x)}.$$

Theorem

Let $F_{q||p}: \mathbf{P} \to \mathbf{R}$ map each object X to the real number $T_q(X)$, and each morphism $\pi: Z \to X$ to the dual number $T_q(\pi) + I_{q||p}(\pi)\varepsilon$. Then $F_{q||p}$ is a *rig functor*.

RELATIVE INFORMATION FROM A RIG FUNCTOR

Proof Outline

Claims about total measure.

• Check that $F_{a||p}$ maps morphisms $\pi: Z \to X$ in **P** to loops $a \to a$ in **R**, i.e.

$$T_q(Y) = T_q(X) = a.$$

▶ Check that $F_{q||p}$ maps disjoint unions of objects in **P** to sums of reals in **R**, i.e.

$$T_q(X_1 + X_2) = T_q(X_1) + T_q(X_2).$$

▶ Check that $F_{q||p}$ maps Cartesian products of objects in **P** to products of reals in **R**, i.e.

$$T_q(X_1 \times X_2) = T_q(X_1) T_q(X_2).$$

Indeed, the claims follow the chain rule, sum rule and product rule for total measure.

RELATIVE INFORMATION FROM A RIG FUNCTOR

Proof Outline

Claims about relative information.

▶ Check that $F_{a||p}$ maps compositions in **P** to tangent sums in **R**, i.e.

$$I_{q||p}(\pi_1 \circ \pi_2) = I_{q||p}(\pi_1) + I_{q||p}(\pi_2).$$

▶ Check that $F_{q||p}$ maps disjoint unions of morphisms in **P** to sums of duals in **R**, i.e.

$$I_{q||p}(\pi_1 + \pi_2) = I_{q||p}(\pi_1) + I_{q||p}(\pi_2).$$

▶ Check that $F_{q||p}$ maps Cartesian products in **P** to products in **R**, i.e.

$$I_{q||p}(\pi_1 \times \pi_2) = T_q(\pi_2) \cdot I_{q||p}(\pi_1) + T_q(\pi_1) \cdot I_{q||p}(\pi_2).$$

Indeed, the claims follow from the chain, sum and product rules for relative information.

WHY RELATIVE INFORMATION?

- Generalized relative information from rig functors, from cohomology
- ▶ Beautiful algebra, geometry and combinatorics

Information is relative! Information is energy! It from bit! 4

³Jesse Hoogland, "Physics I: The Thermodynamics of Learning", Singular Learning Theory and Alignment Summit 2023.

⁴Wheeler, J.A. (1989). Information, physics, quantum: the search for links. Int Symp on Foundations of Quantum Mechanics. Tokyo: pp. 354-358.

Thank you!

shaoweilin.github.io