, מבוא ללוגיקה, מטלה -02 מבוא פתרון

8 בנובמבר 2024

שאלה 1

```
.\varphi=(\lnot((P\to(\lnot Q))\land((\lnot R)\lor S)))יהיי וL=\{P,Q,R,S\} תהי שפה נכתוב עץ בינארי מיושר לשמאל מיושר לשמאל לי(T,f)ל־מיושר מטנדרטי סטנדרטי פתרון נגדיר פתרון נגדיר
```

$$f=\{(\langle\rangle,\neg),(\langle0,0,1\rangle,\neg),(\langle0,1,0\rangle,\neg),(\langle0\rangle,\wedge),(\langle0,0\rangle,\rightarrow),$$

$$(\langle0,1\rangle,\vee),(\langle0,0,0\rangle,P),(\langle0,0,1,0\rangle,Q),(\langle0,1,0,0\rangle,R),(\langle0,1,1\rangle,S)\}$$
 עוד נגדיר $T=(\mathrm{dom}f,\preceq)$ עץ היצירה של $T=(\mathrm{dom}f,\preceq)$ נגדיר $\psi:T\to\mathrm{sent}_L$ נגדיר $\psi:T\to\mathrm{sent}_L$

$$\begin{split} \psi &= \{ (\langle \rangle, (\neg((P \rightarrow (\neg Q)) \land ((\neg R) \lor S)))), \\ &\quad (\langle 0 \rangle, ((P \rightarrow (\neg Q)) \land ((\neg R) \lor S))), \\ &\quad (\langle 0, 0 \rangle, (P \rightarrow (\neg Q))), \\ &\quad (\langle 0, 0, 0 \rangle, P), \\ &\quad (\langle 0, 0, 1 \rangle, (\neg Q)), \\ &\quad (\langle 0, 0, 1, 0 \rangle, Q), \\ &\quad (\langle 0, 1 \rangle, ((\neg R) \lor S)), \\ &\quad (\langle 0, 1, 0 \rangle, (\neg R)), \\ &\quad (\langle 0, 1, 0, 0 \rangle, R), \\ &\quad (\langle 0, 1, 1 \rangle, S) \} \end{split}$$

שאלה 2

תהי שהב, נוכיח שהביטוי $p\in \exp_L$ הוא פסוק אם ורק שפה, נוכיח שהביטוי תהי

 $\square \in B$ לכל F_{\lnot}, F_{\Box} תחת הסגורה הסגורה מינימלית של מינימלית מינימלית ארל $sent_L^+$ לכל

נניח כי $\varphi\in sent_L^+$ אמינימלית בגללה. $\varphi\in sent_L^+$ עניח כי $\varphi\in sent_L^+$ אמינימלית בגללה. $\varphi\in sent_L^+$ אונגדיר $\varphi\in sent_L^+$ בכסיס נניח מהגדרת $\varphi\in sent_L^+$ קיימת סדרת יצירה לי φ , נגדירה כי $\varphi= \varphi$ וסיימנו. נניח עתה כי אורך הרשימה הוא p, ועוד נניח כי לכל p מתקיים p מתקיים p וסיימנו. נניח עתה כי אורך הרשימה הוא p, ועוד נניח כי לכל p איז סיימנו, אילו מתקיים p וסיימנו. עבור p עבור p עבור p או נקבל שיp אוניה אבל p אוניה אם כן שמתקיים p עבור p עבור p עבור p אוניה אם כן שמתקיים p ולכן עבור p עבור p אוניה אוניה אוניה אוניה אוניה אוניה עעד האינדוקציה ולכן קיבלנו שמתקיים p אוד האינדוקציה ולכן קיבלנו שמתקיים p אוד היים ולכן p אוניה ולכן p בלבד. p

 $.sent_L = sent_L^+$ נסיק, $.sent_L = S = sent_L^+$ נסיק,

שאלה 3

 $.\Box\in B$ פונקציה לכל פסוקים, $\epsilon_\Box:X^2 o X$ ו שפה לתחשיב פונקציה וו $\epsilon_\Box:X o X$ פונקציה לכל פונקציה לכל שפה לתחשיב פסוקים, אונקציה לכל פונקציה אונקציה וו

'סעיף ב

נוכיח בין $\forall \varphi = (\neg \psi), \bar{h}(\varphi) = \epsilon_\neg(\bar{h}(\psi))$ וכן $\forall \varphi \in L, \bar{h}(\varphi) = h(\varphi)$ בין בין $\bar{h}: sent_L \to X$ ועבור כל $\varphi = (\psi_0 \Box \psi_1) \implies \bar{h}(\varphi) = \epsilon_\square(\bar{h}(\psi_0), \bar{h}(\psi_1))$

. עבורו (T_{ψ}, f_{ψ}) יצירה עץ לכן קיים $\psi \in sent_L$ יהי הוכחה.

 $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=h(f(t))$ היזידה המקיימת לכל עלה בעץ היזידה ה $ilde{g}_{\psi,(T_{\psi},f_{\psi})}:T_{\psi}\to X$ אונגדיר את ניזכר בשאלה 3 ממטלה 1 ונגדיר את $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים $ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\neg}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים $ilde{e}_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים $ilde{e}_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$ בעל שני עוקבים $ilde{e}_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)=\epsilon_{\phi}(ilde{g}_{\psi,(T_{\psi},f_{\psi})}(t)$

. נגדיר עתה אכן שהתנאים ונבדוק ונבדוק $ar{h}(\psi) = ilde{g}_{\psi,(T_\psi,f_\psi)}(\langle
angle)$ נגדיר עתה

תחילה נבחין כי ממסקנה מהכיתה נובע כי עץ היצירה לכל פסוק הוא יחיד, לכן הגדרה זו יחד עם יחידות g היא תקפה, ונוכל לדון לא בתוקפה אלא בקיום התכונות הרצויות בלבד.

 $ar{h}(\psi)= ilde{g}_{\psi,(T_\psi,f_\psi)}(\langle
angle)=h(f_\psi(\langle
angle))=h(\psi)$ נניח כי $\psi\in L^1$ נניח כי

עתה נשתמש בטענה זו כבסיס למהלך אינדוקטיבי על מבנה הפסוק, נניח כי הטענה נכונה עבור φ ועוד נניח שמתקיים על נקבל ψ , אז נקבל ψ , אז נקבל ψ , אז נקבל $\bar{h}(\psi)=\bar{g}_{\psi,(T_{\psi},f_{\psi})}(\langle \rangle)=\epsilon_{\neg}(\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(\langle 0\rangle))=\epsilon_{\neg}(\bar{h}(\varphi))$ נבחין כי השתמשנו פה פעמיים בהגדרה שסיפקנו ל $\bar{h}(\psi)=\tilde{g}_{\psi,(T_{\psi},f_{\psi})}(\langle 0\rangle)=\epsilon_{\neg}(\bar{h}(\varphi))$ נניח אם כן שמתקיים $\bar{h}(\psi)=\bar{g}_{\psi,(T_{\psi},f_{\psi})}(\langle 0\rangle)=\epsilon_{\sigma}(\bar{h}(\varphi),\bar{h}(\varphi))=\epsilon_{\sigma}(\bar{h}(\varphi),\bar{h}(\varphi))$ ושוב $\bar{h}(\psi)=\bar{h}(\psi)=\bar{h}(\psi)=\bar{h}(\psi)$ עבור $\bar{h}(\psi)=\bar{h}(\psi)=\bar{h}(\psi)=\bar{h}(\psi)=\bar{h}(\psi)$ המהלך האינדוקטיבי.

בהתאם נוכל להסיק כי $ar{h}$ לא רק מוגדרת באופן חזק, אלא גם מקיימת את שלושת התנאים.

'סעיף ג

נוכיח כי הפונקציה $ar{h}$ מוגדרת ביחידות.

. התנאים את המקיימות פונקציות שתי \bar{h}, \bar{h}' שתי התנאים.

 $ar{h}(\psi)=ar{h}'(\psi)$ יהי $ar{h}'(\psi)=h(\psi)$ ולכן בפרט $ar{h}(\psi)=h(\psi)=h(\psi)$ יהי מהתכונות שמצאנו מתקיים

 $ar{h}(arphi)=ar{h}'(arphi)$ ש־arphi כך ש־arphi כך ש־arphi כך ש- $ar{h}(arphi)=ar{h}'(arphi)=ar{h}'(arphi)$ כך ש-arphi כך ש-arphi כך ש-arphi כך ש-arphi כך ש-arphi מקיימים את הטענה, ושוב הגענו לשוויון. נניח אם כך $\dot{h}(arphi)=ar{h}'(arphi)=ar{h}'(arphi)=ar{h}'(arphi)=ar{h}'(arphi)=ar{h}'(arphi)=ar{h}'(arphi)$ מקיימים את הטענה, $\dot{h}(arphi)=ar{h}(\dot{h}(arphi))=ar{h}(\dot{h}(arphi))=ar{h}'(arphi)$ השלמנו אם כך את מהלך עבור $\dot{h}(arphi)=ar{h}(\dot{h}(arphi))=ar{h}'(arphi)$ היא אכן יחידה.