

2023

Información general - Simuladores - Educación superior

Tomáš Jeřábek and the FERTILE Group

This material © 2023 by Tomas Jerabek and the FERTILE group is licensed under CC BY-SA 4.0. To view a copy of this license visit http://creativecommons.org/licenses/by-sa/4.0/

Educational Robotics does not use only physical robots, but in some cases also simulated robots and virtual environments can be useful and necessary. Among the many simulators, we list those related to some of the robots in the previous section. Some of them are very versatile in the context of a programming language, others in the context of the robot being simulated.

Simulador	Web	Entorno	Comentarios
Open Roberta	https://lab.open-robe rta.org/#	NEPO (bloques)	21 entornos diferentes
Kibotics	https://kibotics.org/	Bloques, programación textual (Scratch, Python)	Mbot, dron Tello, Lego EV3 and others
TinkerCad	https://www.tinkercad.com/	Diseño 3D CAD, simulación electrónica, y programación basada en bloques	Arduino
Webots	https://cyberbotics.c om/#webots	Software de código abierto para la simulación de robots	22 robots diferentes

Open Roberta

- una plataforma en línea que permite a niños y estudiantes programar diferentes tipos de robots
- una herramienta útil para la enseñanza y aprendizaje de STEM
- ofrece un lenguaje de programación visual
- proporciona una amplia gama de materiales educativos, tutoriales y proyectos
- fomenta una comunidad de profesores, estudiantes y entusiastas de la robótica

Kibotics

- entorno en línea disponible en Windows, Linux y MacOS desarrollado por la Universidad de Madrid
- sigue un enfoque práctico con diversos desafíos para que los estudiantes los superen
- ofrece lecciones/actividades ya preparadas para los estudiantes

- posibilidad de programar robots reales si están disponibles: Mbot, Tello Drone, Gopigo,
 LegoEv3 o Keybot
- adecuado para STEM
- también ofrece desafíos relacionados con la visión por computadora

TinkerCad

- originalmente una herramienta de diseño en 3D en línea (objetivo principal: permitir a las personas crear modelos en 3D, animaciones y prototipos sin descargar o instalar herramientas sofisticadas de modelado e impresión en 3D)
- una herramienta adecuada para proyectos de bricolaje y STEM
- ofrece funciones para programar e interactuar con modelos en 3D
- creación de circuitos electrónicos utilizando microcontroladores programables (Arduino), incluida la capacidad de agregar chips programables a los modelos en 3D
- permite crear proyectos de IoT donde se pueden programar sensores, interactuar con servicios en la nube y crear dispositivos inteligentes
- programación utilizando el entorno de desarrollo integrado de Arduino (Arduino IDE) o el propio lenguaje de programación en bloques de Tinkercad

Webots

- software de código abierto para simular varios robots
- funciona en Windows, Linux y MacOS
- utiliza ODE (Open Dynamics Engine) para la detección de colisiones y simulaciones dinámicas
- una herramienta de programación visual diseñada para enseñar programación y robótica
- compatible con varios tipos de robots, incluyendo robots con ruedas, brazos robóticos y más
- código fuente disponible en https://github.com/cyberbotics/webots

