

Week 43: Lecture 2
Introduction to multivariate Gaussian distributions

Geir-Arne Fuglstad

October 21, 2020

Information

- Reference group meeting will be on October 22.
- You can use the Google form https://s.ntnu.no/tma4265_Meeting2 to let the reference group know your opinion on the course.
- Scores are available for Project 1.
- Project 2 will be made available on Thursday evening.

Section 1 (Note)

There are two perspectives for Gaussian processes

- Mathematical treatment of continuous-time Markov chains.
 See Sections 8.1–8.2 in the book.
- Statistical approach to Gaussian processes. See the note on Gaussian processes.

Sections 2.1–2.2 (Note)

Definition

The stochastic variable X has a **Gaussian distribution** with **mean** $\mu \in \mathbb{R}$ and **variance** $\sigma^2 > 0$ if the probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right), \quad x \in \mathbb{R}.$$

We will write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Notation

We will use $\phi(\cdot)$ and $\Phi(\cdot)$ to denote the probability density function and cumulative distribution function, respectively, of $Z \sim \mathcal{N}(0,1)$. This means

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right), \quad z \in \mathbb{R},$$

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx, \quad z \in \mathbb{R}.$$

Example

Let X_t = "Average temperature on day t". Assume that $X_t \sim \mathcal{N}(15, 2.5^2)$ for $t = 0, 1, \dots$

- a) Calculate the probability that the average temperature on day 10 is greater than 20.
- b) Assume that $Y_1 \sim \mathcal{N}(0, \sigma^2)$ and $\epsilon_2 \sim \mathcal{N}(0, \sigma^2)$ are independent. Determine the distribution of $Y_2 = \rho Y_1 + \sqrt{1 \rho^2} \epsilon_2$ for $-1 < \rho < 1$.

Definition

The stochastic vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ has an n-dimensional multivariate Gaussian distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_n)$ and $n \times n$ covariance matrix Σ if its probability density function is given by

$$f(\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \frac{1}{|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right), \quad \mathbf{x} \in \mathbb{R}^n.$$

We will write $\boldsymbol{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Theorem

Let X_1, X_2, \ldots, X_n be stochastic variables, $a_1, a_2, \ldots, a_n \in \mathbb{R}$, and $b_1, b_2, \ldots, b_n \in \mathbb{R}$, then

$$\operatorname{Cov}\left[\sum_{i=1}^n a_i X_i, \sum_{j=1}^n b_j X_j\right] = \sum_{i=1}^n \sum_{j=1}^n a_i b_j \operatorname{Cov}[X_i, X_j].$$

This means that $Cov[\cdot, \cdot]$ is bilinear.

Example

Assume $\sigma^2 > 0$ and $-1 < \rho < 1$, and let $X_t = \rho X_{t-1} + \sqrt{1 - \rho^2} \epsilon_t$, $t = 2, 3, \ldots$, where $X_1, \epsilon_2, \epsilon_3, \ldots \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$. Determine the distribution of (X_1, X_2, X_3) .

Section 2.3 (Note)

Theorem

Assume $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, \mathbf{A} is an $m \times n$ matrix, and \mathbf{b} is a vector of length m. If $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$, then

$$\mathbf{Y} \sim \mathcal{N}_{m}(\mathbf{A}\boldsymbol{\mu} + \boldsymbol{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathrm{T}}).$$