Control de CTC: 12 de Marzo de 2014

Sean los siguientes polinomios con coeficientes en $\mathbb{Z}/\langle 2 \rangle$

$$f := X^6 + X^5 + 1$$

$$g := X^6 + X^3 + X^2 + X + 1$$

$$h := X^6 + X^4 + X^2 + X + 1$$

Se pide:

- (i) Deducir razonadamente cuáles son irreducibles y cuáles son primitivos.
- (ii) Considérese el anillo/cuerpo $\mathbb{F}_{64}:=\mathbb{F}_2[X]/\equiv_f$, y sea $\alpha:=[X]_f$. Calcular si existe el inverso de α^2+1 en ese anillo/ cuerpo.
- (iii) Considérese el anillo/cuerpo $\mathbb{F}'_{64} := \mathbb{F}_2[X]/\equiv_h$, y sea $\gamma := [X]_h$. Calcular el orden multiplicativo de γ y también de $\gamma + 1$.

Ejercicio de Evaluación CTC: (1 de dic de 2014).

- 1. Resolver la ecuación en congruencias $14x \equiv 21 \mod 91$.
- 2. Sabiendo que 91 = 7 × 13 Calcular $3^{57} \bmod 91$
- 3. Sea $f = X^6 + X^3 + 1 \in \mathbb{Z}/\langle 2 \rangle[X]$, Demostrar que no tiene factores irreducibles en $\mathbb{Z}/\langle 2 \rangle[X]$ de grados 1 ni 2. Concluir que f es irreducible en $\mathbb{Z}/\langle 2 \rangle[X]$. ¿Es primitivo?
- 4. Llamemos $\alpha := [X]_f$. Escribir el inverso de $\alpha + 1$ en el cuerpo $\mathbb{F}_f = \mathbb{Z}/\langle 2 \rangle [X]/\langle f \rangle$ expresándolo en función de la base

$$B := \{1, \alpha, \alpha^2, \alpha^3, \alpha^3, \alpha^4, \alpha^5\}$$

de \mathbb{F}_f como $\mathbb{Z}/\langle 2 \rangle$ -espacio vectorial.

Control CTC: (15 de Diciembre 2014).

- 1. Sea el polinomio $f \in \mathbb{F}_2[X], f = X^6 + X^3 + 1$. Se pide:
 - (i) Demostrar que f es irreducible ξ Es f primitivo?
 - (ii) En el cuerpo $\mathbb{F}_{64} = \mathbb{F}_2[X]/\langle f \rangle$ llamamos $\alpha := X \mod f$. Calcular el inverso de $\alpha^3 + \alpha$ expresándolo en funcion de la base $B := \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5\}$ de \mathbb{F}_{64} como \mathbb{F}_2 espacio vectorial.
 - (iii) Calcular el orden de α^3 en el grupo multiplicativo \mathbb{F}_{64}^* .
 - (iv) Calcular el polinomio mínimo de α^3 sobre \mathbb{F}_2
 - (iv) Descomponer en factores irreducibles sobre $\mathbb{F}_2[X]$ el siguiente polinomio $g:=X^6+X^5+X^4+X^3+1$
- 2. Calcular las soluciones en congruencias de a) $16x \equiv 12 \mod 24$, b) $x^2 \equiv 23 \mod 77$

Ejercicio de Evaluación CTC: (10 de Abril de 2013).

- 1. Resolver la ecuación en congruencias $x^2 \equiv 58 \mod 77$.
- 2. Sabiendo que 91 = 7 × 13 Calcular $3^{57} \bmod 91$
- 3. Sea $f = X^3 X 1 \in \mathbb{Z}/\langle 3 \rangle [X]$, ¿Es f es irreducible en $\mathbb{Z}/\langle 3 \rangle [X]$? ¿ Es primitivo?.
- 4. Continuación de 3.: Llamemos $\alpha := [X]_f$. Escribir el inverso de $\alpha + 1$ en el cuerpo $\mathbb{F}_f = \mathbb{Z}/\langle 3 \rangle [X]/\langle f \rangle$ expresándolo en función de la base

$$B := \{1, \alpha, \alpha^2\}$$

de \mathbb{F}_f como $\mathbb{Z}/\langle 3 \rangle$ -espacio vectorial. Calcular el orden de α^4 en el grupo multiplicativo $\mathbb{F}_f \setminus \{0\}$.