Examenul de bacalaureat naţional 2013 Proba E. d) Fizică

BAREM DE EVALUARE ŞI DE NOTARE

MODEL

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	
l. 1.	d	3р
2.	d	3р
3.	a	3р
4.	C	3р
5.	C	3р
TOTAL	TOTAL pentru Subiectul I	

Su		

II. a.	Pentru:		4p
	reprezentarea corectă a forțelor ce acționează asupra corpului A	1p	
	reprezentarea corectă a forțelor ce acționează asupra corpului B	2p	
	reprezentarea corectă a forțelor ce acționează asupra corpului C	1p	
b.	Pentru:		4p
	$m_{\rm c}g - F_{\rm fB} = 0$	1p	
	$F_{fB} = \mu N_B$	1p	
	$N_{B} = (m_{A} + m_{B}) g$	1p	
	rezultat final: $\mu = 0.2$	1p	
C.	Pentru:		4p
	$\int m_A g - T_1 = m_A a$	1p	
	$\begin{cases} m_A g - T_1 = m_A a \\ T_1 + m_C g - T_2 = m_C a \\ T_2 - \mu m_B g = m_B a \end{cases}$	1p	
	$T_2 - \mu m_B g = m_B a$	1p	
	rezultat final: $a = 2 \text{ m/s}^2$	1p	
d.	Pentru:		3p
	$R = \sqrt{T_2^2 + T_2^2}$	2p	
	rezultat final: $R \cong 4,5 \text{ N}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

A. Subiectul III

III.a.	Pentru:	3р
	$E_A = m_1 g h $ 1p	
	$h = \ell \sin \alpha$	
	rezultat final: $E_A = 1,2 J$	
b.	Pentru:	4p
	$\frac{m_1 v_1^2}{2} = m_1 g h - \mu_1 m_1 g \ell \cos \alpha $	
	$m_1gh\sin\alpha - \mu_1m_1g\ell\cos\alpha = m_1a$	
	$a = \frac{\Delta V}{\Delta t}$	
	rezultat final: $t = 0.8 \text{ s}$	

Ministerul Educaţiei, Cercetării, Tineretului şi Sportului Centrul Naţional de Evaluare şi Examinare

C.	Pentru:	4p
	$\Delta E_C = L_{total}$ $L_{total} = -\mu_2 (m_1 + m_2) g x_2$ 1p	
	$L_{total} = -\mu_2(m_1 + m_2)gx_2 $ 1p	
	$\Delta E_{\rm C} = -\frac{(m_1 + m_2)V^2}{2}$	
	rezultat final: $V = 0.6 \text{ m/s}$	
d.	Pentru:	4p
	$m_1 v_1' = (m_1 + m_2)V$ 2p	
	$m_{1}gh - \mu_{1}m_{1}g\ell\cos\alpha - \mu_{2}m_{1}gx_{1} = \frac{m_{1}v_{1}^{\prime 2}}{2}$	
	rezultat final: $x_1 = 38 \mathrm{cm}$	
TOTAL	pentru Subiectul al III-lea	15p

B. ELEMENTE DE TERMODINAMICĂ

(45 puncte)

Sι	ıb	ie	ct	ul	I
\sim	40		v	u	

Nr.Item	Soluţie, rezolvare	Punctaj
l. 1.	b	3р
2.	a	3р
3.	c	3р
4.	a	3р
5.	c	3р
TOTAL	pentru Subiectul I	15p

B. Subiectul II

II.a.	Pentru:	3р
	$\frac{m}{\mu} = \frac{N}{N_A}$	
	$\frac{m}{\mu} = \frac{N}{N_A}$	
	rezultat final: $N \cong 18 \cdot 10^{23}$ molecule	
b.	Pentru:	4p
	$\rho_1 = \rho_2 $ 2p	
	$\rho_1 = \frac{p_1 \mu}{R T_1}$	
	rezultat final: $\rho_2 \cong 0.16 \mathrm{kg/m^3}$	
C.	Pentru:	4p
	$L_{23} = vRT_2 \ln \frac{p_2}{p_1} $ 2p	
	$L_{23} = vRT_2 \ln \frac{p_2}{p_1}$ $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ 1p	
	rezultat final: $L_{23} \cong 10,5 \text{ kJ}$	
d.	Pentru:	4p
	$\Delta U = \nu C_V (T_2 - T_1) $ 3p	
	rezultat final: $\Delta U \cong 112,2 \text{ kJ}$	
TOTAL	pentru Subjectul al II-lea	15p

B. Subjectul III

D. Suble	otal III	
III.a.	Pentru:	4p
	reprezentare corectă 4p	
b.	Pentru:	4p
	$L = (p_2 - p_1)(V_3 - V_1)$ 2p	
	$L = vRT_1$	
	rezultat final: $L = 2493J$	
C.	Pentru:	4p
	$\eta = \frac{L}{Q_{pr}}$ $Q_{pr} = \nu C_V (T_2 - T_1) + \nu C_P (T_3 - T_2)$ 1p	
	$Q_{pr} = vC_V(T_2 - T_1) + vC_P(T_3 - T_2)$	
	$T_3 = 4T_1$	
	rezultat final: $\eta \cong 10,5\%$	
d.	Pentru:	3р
	$\eta_c = 1 - \frac{T_3}{T_1} $ 2p	
	rezultat final $\eta_{\rm c}=75\%$	
TOTAL	pentru Subiectul al III-lea	15p

C. PROD Subjectu		5 puncte)
	Soluţie, rezolvare	Punctaj
I. 1.	d	2p
2.	b	2p
3.	C	3p
4.	С	5p
5.	b	3p
	pentru Subiectul I	15p
C. Subie		<u>r</u>
II.a.	Pentru:	3р
	$R = (\rho \ell)/S$	
	$\ell = \frac{U_R \cdot S}{\rho \cdot I}$	
	<i>r</i> ·	
	rezultat final: $\ell = 0.75 \text{m}$	
b.	Pentru:	4p
	$R_{12} = R_1 + R_2$ 2p	
	$R_{12} \cdot R_3$	
	$R_{123} = \frac{R_{12} \cdot R_3}{R_{12} + R_3} $ 1p	
	rezultat final: $R_{123} = 2 \Omega$	
C.	Pentru:	4p
0.	$2E = I(R + R_A + R_{123} + 2r)$ 3p	46
	1	
	rezultat final: $r = 0.5 \Omega$	4
d.	Pentru:	4p
	$I = I_1 + I_2$ 1p	
	$I_1 \cdot (R_1 + R_2) = I_2 \cdot R_3$ 1p	
	$U_1 = R_1 \cdot I_1 $	
	rezultat final: $U_1 = 0.5 \text{ V}$	
TOTAL	pentru Subiectul al II-lea	15p
C. Subie	etul III	
III.a.	Pentru:	4p
	$U_{v} = R_{1} \cdot I_{1} $ 1p	
	, Е	
	$I_1 = \frac{E}{r + R_1} $ 2p	
	rezultat final: $U_v = 12 \text{ V}$	
b.	Pentru:	4p
	$D E^2$	٦,٥
	$P = \frac{R_{\rm e}E^2}{(R_{\rm e} + r)^2} = \max \Rightarrow R_{\rm e} = r$	
	$(\kappa_e + r)$	
	$R_{\rm e} = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3} $ 2p	
	$R_1 + R_2 + R_3$	
	rezultat final: $R_3 = 1\Omega$	
C.	Pentru:	3р
	E^2	
	$P_{\text{max}} = \frac{E^2}{4r}$	
	rezultat final: $P_{max} = 32 \text{W}$	
d.	Pentru:	4p
	\cdots E^2	
	$W = \frac{E^2}{r + R_{12}} \Delta t $ 2p	
	$R_{12} = \frac{R_1 R_2}{R_1 + R_2}$ 1p	
	rezultat final: $W \cong 30,7 \text{ kJ}$	1. -
TOTAL	Subiect III	15p

Centrul Naţional de Evaluare şi Examinare				
D. OPTICĂ (45 pur				
Subjectu		Data:		
Nr.Item I. 1.	Soluţie, rezolvare	Punctaj 3p		
2.	d	3p		
3.	b	3p		
4.	C	3p		
5.	a	3p		
	pentru Subiectul Igh	15p		
D. Subie				
II.a.	Pentru:	4p		
	$C_{12} = C_1 + C_2$			
	$C_1 = \frac{1}{f_1}; C_2 = \frac{1}{f_2}$ 2p			
	rezultat final: $C_{12} = 50 \mathrm{m}^{-1}$			
b.	Pentru:	4p		
	pentru sistemul de lentile alipite: $x_1 = -\infty \Rightarrow x_2 = f_{12}$ 1p			
	pentru lentila L_3 : $x'_1 = -8 \text{ cm}$, $x'_2 = 8 \text{ cm}$			
	1 1 1			
	$\frac{1}{t_3} = \frac{1}{x_2'} - \frac{1}{x_1'}$			
	rezultat final: $f_3 = 4$ cm			
C.	Pentru:	4p		
	$d = f_{sistem} + f_3 $ 3p	٦٦		
	rezultat final: $d = 6$ cm			
d.	Pentru:	3р		
<u></u>	reprezentare grafică corectă 3p			
	pentru Subiectul al II-lea	15p		
D. Subie		1		
III.a.	Pentru:	3р		
	$i = \frac{\lambda_1 D}{2\ell}$			
b.	rezultat final: i=1mm 1p	4n		
D.	Pentru: $d = x_{4 \min} - x_0$	4p		
	$x_{k \min} = \frac{(2k+1)\lambda_1 D}{4\ell}$			
	k = 4 1p			
	rezultat final: $d = 4,5 \text{ mm}$ 1p	400		
C.	Pentru:	4p		
	$x'_0 = x_{6 \text{ max}} $ 1p			
	$x'_0 = x_0 + \frac{e(n-1)D}{2\ell}$			
	$x_{6 \text{ max}} = \frac{6\lambda_1 D}{2\ell}$			
	20			
-1	rezultat final: $n = 1,5$	A		
d.	Pentru:	4p		
	$x_{k_1 \text{ max}} = x_{k_2 \text{ max}} \Rightarrow \frac{k_1 \lambda_1 D}{2\ell} = \frac{k_2 \lambda_2 D}{2\ell}$ 1p			
	$\frac{k_1}{k_2} = \frac{6}{5}; \ k_1, k_2 \in Z $			
	$d_{\min} = \frac{6\lambda_1 D}{2\ell}$			
	26			
TOTAL	rezultat final: $d_{\min} = 6 \text{mm}$	45:		
IUIAL	pentru Subiectul al III-lea	15p		