	数 计 供 中 正 声 Ø 暗
姓名	
	組
李号	¥
竹除	H
	本 下
班	+
级	₹4
	† †
亚辛	
ME	例:

四川理工学院试卷(2016至2017学年第二学期)

课程名称: 概率论与数理统计(A券)

命题教师: 赵蒙川

复习资料免费领取qq群: 297042775

适用班级: 本科 48 学时

考试

A	卷

考试时间 120 分钟

共 6 页

•			ت ،			٠, ٠	- 41.313		,, , , , , , , , , , , , , , , , , , , ,	, ,	- •
	题 号	_	<u> </u>	11	四	五.	六	七	总分	评阅(教	统分) 师
	得 分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同 交回,否则不给分。

题 试

得分	评阅教师

- 一、单选题(请将正确的答案填在对应括号内,每题4分,共24分)
- 1.设事件 A 与 B 互不相容,且 P(A) ≠ 0 ,P(B) ≠ 0 ,则下面结论正确的是
- (A) \bar{A} 与 \bar{B} 互不相容;

- (B) P(B|A) > 0;
- (C) P(AB) = P(A)P(B);
- (D) $P(A\overline{B}) = P(A)$.
- 2.己知随机变量 X 服从区间[5,10]上的均匀分布,则______
- (A) $P(X^2 < 9) = 0.3$;

(B) $P(X^2 < 9) = 0.15$;

(C) $P(X^2 \le 9) = 0$;

- (D)"X=7"是不可能事件;
- 3. 己知二维随机向量(X,Y)具有分布函数F(X,Y),则
- (A) P(X < x) = F(x,0); (B) $F(+\infty, y) = 1;$

(C) $F(-\infty, y) = 0$;

- (D) $F(-\infty, +\infty) = 1$;
- 4. 己知随机变量 X,Y 相互独立且都服从正态分布 N(2,4),则
- (A) X+Y N(4,8) ; (B) X+Y N(4,4) ;

 - (C) X Y N(0,4);
- (D) X-Y 不服从正态分布;

	A A A A A A A A A B B B B B B B B B B B
姓名	
	盟
李号	≱
作	Ħ
	新卜
班	4
級	1 7
	7
	Ą
	砂
ME	

```
5. 己知随机变量 X 的期望 E(X)=10,方差 D(X)=4,则______.

(A) P(|X-10|<6) \ge 8/9;

(B) P(|X-10|<6) \le 8/9;
```

(C) $P(|X-10| \ge 6) \ge 8/9$; (D) $P(|X-10| \ge 6) \le 8/9$;

得分	评阅教师

- 二、填空题(请将正确的结果填在横线上,每空3分,共18分)
- 1. P(A) = 0.4, P(B) = 0.3, $P(A \cup B) = 0.4$, \mathbb{M} $P(A\overline{B}) =$ _______.
- 2、己知随机变量 X 服从泊松分布 $P(\lambda)$,则 $D(X)/E(X) = _____.$
- 3、设X的分布函数为F(x) = $\begin{cases} A(2-e^{-3x}), & x \ge 0, \\ 0, & x < 0, \end{cases}$ 则常数A =______.
- 4、 随机变量 X 和 Y 的方差分别为 D(X) = 9 和 D(Y) = 4 ,相关系数 $\rho_{XY} = 0.5$,则 D(X Y) = .
- 5、 若 $X \sim N(0,1), Y \sim N(0,1)$ 且 X 与 Y 相互独立,则 $\frac{X}{\sqrt{(X^2 + Y^2)/2}} \sim \underline{\hspace{1cm}}.$
- 6、设 $X_1,X_2,...,X_n$ 是来自总体 $N(\mu,\sigma^2)$ 的简单随机样本, σ^2 未知, \overline{X} 是样本均值, S^2 是修正样本方差,则 μ 的置信度为 α 的置信区间为

得分	评阅教师

三、(本小题 12 分) 某电子设备制造厂所用的元件是由三家元件制造厂提供的。根据以往的记录有以下的数据:

元件厂	次品率	市场份额
1	0.02	0.15
2	0.01	0.80
3	0.03	0.05

设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志。

- (1)在仓库中随机地取一只元件,求它是次品的概率;
- (2)在仓库中随机地取一只元件,若已知取到的是次品,试分析此次品出自何厂的概率最大。

得分	评阅教师

四、(本小题 12 分) 随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax + 1, & 0 \le x \le 2, \\ 0, & \text{其它.} \end{cases}$$
(2) X 的分布函数 $F(x)$; (3) $P(1 < X < 3)$

求(1)常数a;

得分	评阅教师

五、(本小题 12 分)设二维随机变量具有联合概率密度 $f(x,y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 \le 1, \\ 0, \text{ 其他.} \end{cases}$ 求:

(1) 边缘概率密度 $f_X(x)$ 、 $f_Y(y)$; (2) 条件概率密度 $f_{X|Y}(x|y)$; (3) X、 Y 是否相互独立?

得分	评阅教师

密

在名

六、(10 分) 二维随机变量(X,Y)的具有联合概率密度函数

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, & \sharp \dot{\Xi}. \end{cases}, \quad \dot{\Re} E(X), E(Y), Cov(X,Y).$$

得分	评阅教师

七、(本小题 12 分)设随机变量 X 具有概率密度函数 $f(x;\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x \geq 1, \\ 0, & x < 1. \end{cases}$

其中, $\theta>1$ 为未知参数, X_1,X_2,\cdots,X_n 为来自总体的样本。求 θ 的矩估计量和极大似然估计量。

性名	线	
型型		题
		效
李伯		蚕
	本	\forall
班		内
談		线
		卦
小		例
- 小	例	

四川理工学院试卷(2017至2018学年第一学期)

课程名称: 概率论与数理统计 (A卷)

命题教师: 赵蒙川

适用班级: 本科 32 学时

考试: 闭卷, 120 分钟 考试时间: 2018 年 月 日 共 6 页

題	<u> </u>	号	_	11	三	四	五.	六	七	总分	评阅(统分) 教 师
徱	事 :	分									

注意事项:

- 5、满分100分。要求卷面整洁、字迹工整、无错别字。
- 6、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废
- 7、考生必须在签到单上签到, 若出现遗漏, 后果自负。
- 8、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同 交回, 否则不给分。

试

得分	评阅教师

- 一、单选题(请将正确的答案填在对应括号内,每题4分,共24分)
- 1、设事件 A 、 B 互不相容, P(A) = p , P(B) = q , 则 P(A B) =
- (A) (1-p)q; (B) pq; (C) p-q; (D) p;

- 2、己知二维随机向量(X,Y)具有分布函数F(X,Y),则_____。
 - (A) P(X < x) = F(x,0); (B) $F(+\infty, y) = 1$;
 - (C) $F(-\infty, y) = 0$;
 - (D) $F(-\infty, +\infty) = 1$;
- 3、随机变量 X,Y 相互独立, 其分布律分别为

则 P(X+Y=1)=_____。

- (A)7/24;
- (B) 6/24; (C) 1/12; (D)1/2;

4、设随机变量 X、Y 相互独立,且 $X \sim N(-1,4), Y \sim N(1,9)$,则 2X - Y 服从_____。

- (A) N(-3,17); (B) N(-3,-1); (C) N(-3,25); (D) N(-1,1);

5、下列不是评价估计量三个常用标准的是______(A) 无偏性; (B) 有效性;

(C) 相合性;

(D) 正态性;

6、设总体X服从正态分布 $N(\mu,\sigma^2)$,其中 μ 是未知的,而 σ^2 已知, X_1,X_2,X_3 是 从总体中抽取的随机样本,则下列表达式中不是统计量的是____。

(A) $X_1 + X_2 + X_3$;

(B) $X_1 + E(X_2)$;

$$(C) \sum_{i=1}^{3} \frac{X_i^2}{\sigma^2} ;$$

(D) $\min(X_1, X_2, X_3)$;

得分	评阅教师

- 二、填空题(请将正确的结果填在横线上,每空3分,共18分)
- 2、设随机变量 X、Y 相互独立,他们分别在区间[-1,3],[3,5]上服从均匀分布则 $E(XY) = \underline{\hspace{1cm}}_{\circ}$
- 3、设随机变量 X 的期望与方差分别为 E(X) = 0, D(X) = 1,则用切比雪夫不等式 估计下面概率值 $P\{|X| < 2\} \ge$ ______
- 5、若 $X \sim N(0,1), Y \sim \chi^2(n)$ 且X与Y相互独立,则 $\frac{X}{\sqrt[4]{V/n}} \sim$ _____。

6、某种试验,甲成功的概率为 0.5, 乙成功的概率为 0.7, 若让他们各自做一次,则这两次试验至少有一次成功的概率为。

得分	评阅教师

三、(本题 12 分)子曰:"有朋自远方来,不亦说乎!",男朋友坐火车、坐船、坐汽车和坐飞机的概率分别为 0.3, 0.2, 0.1, 0.4。若坐火车来,他迟到的概率是 0.25,若坐船来,他迟到的概率是 0.3,若坐汽车来,他迟到的概率是 0.1,若坐飞机来,他不会迟到。

- (1) 求他迟到的概率;
- (2) 如果他迟到了,那么他坐什么交通工具来的概率最大?

得分	评阅教师

四、(本小题 12 分) 设随机变量 X 具有概率密度 $f(x) = \begin{cases} \frac{x}{2} & kx, & 0 \le x < 3, \\ 2 - \frac{x}{2}, & 3 \# x = 4, \\ 0, & 其它. \end{cases}$

(1)确定常数 k; (2) 求 X 的数学期望 E(X); (3) 求 $P\left(1 < X \le \frac{7}{2}\right)$ 。

得分	评阅教师

五、(本小题 10 分) 若 X,Y 相互独立, X 服从 [0,1] 上的均匀分布, Y 的概率密度为 $f_Y(y) = \begin{cases} 2y, & 0 \le y \le 1, \\ 0, & \text{其他.} \end{cases}$ 求 Z = X + Y 的概率密度。

得分	评阅教师

六、(本小题 12分)设随机变量 X 具有分布律

X	1	2	3
$p_{\scriptscriptstyle k}$	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ ($0<\theta<1$)为未知参数。已知取得了样本值 $x_1=1,x_2=1,x_3=2$,求 θ 的矩估计量和极大似然估计量。

得分	评阅教师

七、(本小题 12 分) 二维随机变量(X,Y)的具有联合概率密度函数

$$f(x,y) = \begin{cases} 2, & 0 < y < x, 0 < x < 1 \\ 0, & \not\exists : \dot{\Xi}. \end{cases}$$

(1) 求E(X)、D(X); (2) 求Cov(X,Y); (3) 判断 X、Y的独立性。

李

四川理工学院试卷(2018至2019学年第1学期)

课程名称: 概率论与数理与统计(概率与统计)(A卷)

命题教师: 谢巍

适用班级: 本科 32 学时

考试

				201 8	年 1	1月	H		共 6	· 负
题号	_	=	三	四	五	六	七	八	总分	评阅(统分)教师
得分										

注意事项:

- 9、满分100分。要求卷面整洁、字迹工整、无错别字。
- 10、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为 废卷。
- 11、考生必须在签到单上签到, 若出现遗漏, 后果自负。
- 12、 如有答题纸,答案请全部写在答题纸上,否则不给分,考完请将试卷和答题卷分别一 同交回,否则不给分。

试 题

得分	评阅教师

- 一、填空题(本题 20 分,每小题 4 分)
- 1. 设事件 A, B 相互独立, P(A) = 0.4, P(B) = 0.3 ,则 $P(A \cup \overline{B}) =$ ______;
- 2. 设随机变量 X 的分布律为

$$\begin{array}{c|ccc}
X & 0 & 1 \\
\hline
p & 9c^2-c & 3-8c
\end{array}$$

- 3.设随机变量 X 的概率密度为, $\varphi(x) = \frac{1}{\sqrt{8\pi}} e^{\frac{(x-5)^2}{8}}$,则 $P(X > 5) = \underline{\qquad}$
- 4.一射手向指定目标射击 4 枪,各枪射中与否相互独立,且每枪射中的概率为 0.2,则 4 枪中恰好射中 1 枪的概率为_____.
- 5.设总体 X N(0,1) , X_1 , X_2 , X_3 , X_4 是来自总体 X 的一个简单随机样本,则 $\left(\frac{X_1-X_2}{X_3+X_4}\right)^2$ 服从分布.

得分	评阅教师

- 二、选择题(本题20分,每小题4分)
- 1.扔两颗骰子,点数之和为3的概率为().

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{1}{18}$ (D) $\frac{1}{36}$
- 2.设A,B是两个互斥事件,P(A) > 0, P(B) > 0,则()一定成立.
- (A) P(A) = 1 P(B) (B) P(A|B) = 0 (C) $P(A|\overline{B}) = 1$ (D) $P(\overline{AB}) = 0$
- 3. 设二维随机变量(X,Y)在区域 D上服从均匀分布,其中 D是由x轴、y轴及直线 $x+\frac{y}{2}=1$ 所围成的三角形区域,则关于X的边缘分布密度为().
- (A) $f_X(x) = \begin{cases} 1, 0 < x < 1 \\ 0, \text{ #F} \end{cases}$ (B) $f_X(x) = \begin{cases} 2(1-x), 0 < x < 2 \\ 0, \text{ #F} \end{cases}$
- (C) $f_X(x) = \begin{cases} 1 \frac{x}{2}, 0 < x < 2 \\ 0 \text{ if } \end{cases}$ (D) $f_X(x) = \begin{cases} 2(1-x), 0 < x < 1 \\ 0, \text{ if } \end{cases}$
- 4. 设随机变量 X 与 Y 相互独立,且 D(X) = 4, D(Y) = 2 ,则 D(3X 2Y) 为 (
- (A) 8
- (B) 35
- (C) 28 (D) 44
- 5.设随机变量 X 与 Y 相互独立且同分布:

$$P(X=-1)=P(Y=-1)=\frac{1}{2}, P(X=1)=P(Y=1)=\frac{1}{2}$$
, 则下列各式中成立的是 ()

(A)
$$P(X = Y) = \frac{1}{2}$$

(B)
$$P(X = Y) = 13$$

(C)
$$P(X+Y=0)=\frac{1}{4}$$
 (D) $P(X-Y=0)=\frac{1}{4}$

(D)
$$P(X-Y=0) = \frac{1}{4}$$

得分	评阅教师

数师 三 三、(本题 10 分) 车间里有甲、乙、丙 3 台机床生产同一种产品,已知 公品率依次为 0.2, 0.3, 0.1, 而产品数量比为甲: 乙: 丙=2: 3:

5,现从产品中任取1个发现它是次品,求次品来自机床乙的概率.

	袋		
姓名			
		题	
H.		袮	
李		展	
	本	\forall	
出		乜	
级		缓	
		本	
小		例	
næ	密		

得分	评阅教师

四、(本题 10 分)设随机变量 X 的分布 律为

X	-1	2	3
p	1/4	1/2	1/4

(1) 求X的分布函数;

得分	评阅教师

五、(本题 10 分) 对圆的直径作近似测量,设其值在[a,b]上服从均匀

分布,求圆面积的数学期望.

姓名	封	
		窟
din		紅
- 本		冲
	本	K
雅		七
談		郑
		華
小 争		彤
ME	铋	

得分 评阅教师	$f_X(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, x > 0 \\ 0, x \le 0 \end{cases}$,求 $Y = \ln X$ 的概率密度

得分	评阅教师	七、(本题 12 分) 设总体 X 的概率密度函数为
		$\int_{C(x)} \int \lambda x^{-\lambda}, x > 0$
		$f(x) = \begin{cases} \lambda x^{-\lambda}, x > 0 \\ 0, x \le 0 \end{cases},$

其中 $\lambda>0$ 是未知参数, $X_1,X_2,...,X_n$ 是来自总体 X 的简单随机样本,用最大似然估计法求 λ 的估计量.

得分	评阅教师	

八、(本题 8 分) 设总体 X $N(\mu, 2.5^2)$,从中取出容量为 9 的样本,

测得样本均值为 $\bar{x}=11$,求总体均值 μ 的 95%的置信区间.

注: $\Phi(1.96) = 0.975$

在名	线
	盟
巾	*
全体	ŧ
	本 上
出	4
談	47
	1
	ł
M	杨丑

四川理工学院试卷 B 卷(2017 至 2018 学年第 1 学期)

课程名称: 概率论与数理统计

命题教师: 李柳芬

适用班级: 40 学时所有班级

考试 (考查): 考试

题号

得分

			2017年 11	月 日共6页
四	五	六	总分	评阅(统分)教 师

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方, 否则视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答 题卷分别一同交回, 否则不给分。

试 颞

得分	评阅教师

- 一、选择题(每小题 4 分, 共 28 分)
- 1. 设 A,B,C 是某一随机试验的 3 个事件,则 "A,B,C 中至少有一个事件发生" 可表示为()
- A. $\overline{A}BC$ B. ABC C. $A \cup B \cup C$ D. $\overline{A}\overline{B}\overline{C}$
- 2. 设 A, B 为随机事件,且 P(A) = 1/4, P(B|A) = 1/3,则 $P(\overline{A} \cup \overline{B}) = ($)
- A. 7/12 B. 1/12 C. 11/12 D. 5/12
- 3. 两个电子元件正常工作的概率分别为 0.8 和 0.6, 它们组成并联电路, 且相互 独立,则电路发生故障的概率为()
 - A. 0.92
- B. 0.08
- C. 0.48
- 4. 设随机变量 X 的分布律为 $P(X = k) = \frac{ak}{15}(k = 1, 2, 3, 4, 5)$,则 a = ()
 - A. 1 B. 2
- C. -1 D. -2

- 5. 设随机变量 X 服从区间[2,4]上的均匀分布,则 P(1 < X < 3) = (
- A. $\frac{1}{2}$ B. 1 C. $\frac{2}{3}$ D. $\frac{1}{2}$
- 6. 设 X_1, \dots, X_6 是来自总体X的样本,且 $X \sim N(\mu, 9)$,其中 μ 未知,则下列不是 统计量的是()

- A. \overline{X} B. S^2 C. $X_1 D(X_1)$ D. $\frac{X_i E(X_i)}{\sqrt{D(X_i)}}, (i = 1, \dots, 6)$
- 7. 设 X_1, \dots, X_n 是来自总体X的样本,且 $X \sim N\left(\mu, \sigma^2\right)$, $\sigma > 0$ 未知,则 μ 的置 信水平为 $1-\alpha$ 的置信区间为(

A.
$$\left[\overline{X} - t_{1-\frac{\alpha}{2}}(n-1) \frac{S^*}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}}(n-1) \frac{S^*}{\sqrt{n}} \right]$$

B.
$$\left[\overline{X} - t_{\alpha}(n-1) \frac{S^*}{\sqrt{n}}, \overline{X} + t_{\alpha}(n-1) \frac{S^*}{\sqrt{n}} \right]$$

C.
$$\left[\overline{X} - t_{1-\alpha}(n-1) \frac{S^*}{\sqrt{n}}, \overline{X} + t_{1-\alpha}(n-1) \frac{S^*}{\sqrt{n}} \right]$$

D.
$$\left[\overline{X} - t_{1-\frac{\alpha}{2}}(n-1) \frac{S^*}{\sqrt{n-1}}, \overline{X} + t_{1-\frac{\alpha}{2}}(n-1) \frac{S^*}{\sqrt{n-1}} \right]$$

得分 评阅教师

- 二、填空题 (每小题 4 分, 共 20 分)
- 1. 一个盒子中装有8只晶体管,其中2只不合格,现作有放回抽样,连续取两次,
- 2. 设随机事件 A = B 相互独立, $P(\overline{AB}) = \frac{1}{4}, P(A|B) = \frac{1}{2}$,则 $P(B) = \underline{\hspace{1cm}}$
- 3. 设二维随机变量 $(X,Y) \sim N(1,1,1,1,0)$,则E(X-Y) =_______,D(X-Y) =______
- 5. 设 X_1, \cdots, X_n 是来自标准正态总体 X 的样本,已知 $a(X_1 + X_2)^2 \sim \chi^2(1)$,则

姓名	- 数	
女		
		题
李号		紅
小 		赿
	掚	К
班		口
談		緩
		華
₩争		例
INE	码	

得分	评阅教师

- 三、(本题共 10 分)设随机变量 X 的分布律为 $\begin{pmatrix} 0 & 1 & 2 \\ 0.2 & a & b \end{pmatrix}$,已知 E(X)=1

 - (1) 求常数 a 和 b 的值; (5 分) (2) 求 X 的分布函数 F(x). (5 分)

得分	评阅教师

四、(本题共 10 分) 设随机变量 X 服从参数为 λ 的指数分布,且 $P(X>0.5)=e^{-1}$.

(1) 求出参数 λ ; (4分) (2) 求 $Y = e^X$ 的概率密度函数. (6分)

	- 教	
姓名		
		顧
ri-		紅
小		圉
ا	本	K
界		K
级		线
		幹
		砂
PAK.	例	

得分	评阅教师

五、(本题共 20 分)设二维随机变量(X,Y)的联合分布律为

X	1	2	3
0	1/4 1/8 1/8	1/4	1/8
1 2	1/8	0	0
2	1/8	1/8	0

(1)求关于 X 和 Y 的边缘分布律; (4 分) (2)求 Z = XY 的分布律; (6 分)

(3)求X与Y的相关系数 $\rho_{X,Y}$. (10分)

得分	评阅教师

六、(本题 12 分) 设 X_1, \dots, X_n 是取自总体X的一个样本,且X的概率分布为

$$f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & others \end{cases},$$

其中 θ 是未知参数,求参数 θ 的矩估计量和极大似然估计量.

仅作期末复习参考资料,请勿将资料带进考场,小包子希望各位同学诚信应考!

课程名称: 概率与统计 40 学时

命题教师: 李柳芬 适用班级: 所有 40 学时本科学生 考试 2017 年 11 月 日

一、选择题(本题28分,每小题4分)

1.C 2.C 3.B 4.A 5.D 6.D 7.A

二、填空题(本题28分,每小题4分,)

- 1. 0.25 2. 0.5 3. 0, 2 4. 10 5. 0.5
- 三、(本题共 10 分)设随机变量 X 的分布律为 $\begin{pmatrix} 0 & 1 & 2 \\ 0.2 & a & b \end{pmatrix}$,已知 E(X)=1
- (1) 求常数 a 和 b 的值; (5 分) (2) 求 X 的分布函数 F(x). (5 分)

解: (1) 由归一性得 a+b+0.2=1 -----2 分

又
$$E(X) = a + 2b = 1$$
 -----2 分

解得 a = 0.6, b = 0.2 ------1 分

(2) 由 (1) 得X的分布律为 $\begin{pmatrix} 0 & 1 & 2 \\ 0.2 & 0.6 & 0.2 \end{pmatrix}$

当x < 0时, $F(x) = P(X \le x) = 0$ ------1分

当
$$1 < x \le 2$$
时, $F(x) = P(X \le x) = 0.2 + 0.6 = 0.8$ ------1 分

当 $x \ge 2$ 时, $F(x) = P(X \le x) = 1$ ------1分

所以
$$F(x) = \begin{cases} 0, & x < 0 \\ 0.2, & 0 \le x < 1 \\ 0.8, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$
 ------1 分

四、(本题共 10 分) 设随机变量 X 服从参数为 λ 的指数分布,且 $P(X>0.5)=e^{-1}$.

(1) 求出参数 λ ; (4分) (2) 求 $Y = e^X$ 的概率密度函数. (6分)

解 (1) X的概率密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 -----1 \(\frac{\frac{1}{2}}{2}\)

则

$$P(X > 0.5) = \int_{0.5}^{+\infty} f(x) dx = \int_{0.5}^{+\infty} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{0.5}^{+\infty} = e^{-\lambda/2} \qquad -----2 \text{ f}$$

所以由 $e^{-\lambda/2} = e^{-1}$ 解得

$$\lambda = 2$$
 -----1 分

从而

$$f(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

(2) (解法一) 因为 $y = e^x$ 单调递增,故存在反函数 $x = \ln y (y > 0)$ -----1 分 所以 $Y = e^X$ 的概率密度函数为

$$f(y) = \begin{cases} f_X(\ln y) \left| (\ln y)' \right| = 2e^{-2\ln y} \cdot \frac{1}{y}, & \ln y > 0 \\ 0, & others \end{cases}$$

也即

$$f(y) = \begin{cases} 2y^{-3}, & y > 1 \\ 0, & y \le 1 \end{cases}$$

五、(本题共20分)设二维随机变量(X,Y)的联合分布律为

(1)求关于 X 和 Y 的边缘分布律; (4 分) (2)求 Z = XY 的分布律; (6 分)

(3)求X与Y的相关系数 ρ_{xy} . (10 分)

解: (1) (X,Y) 关于 X 的边缘分布律为

(X,Y)关于 Y的边缘分布律为

(2) 由(X,Y)的联合分布律可得

-----4 分

所以Z = XY的分布律为

$$\frac{Z}{\mathbb{R}^{2}} \frac{0}{8} \frac{1}{8} \frac{2}{8} \frac{3}{8} \frac{1}{8} 0 \frac{1}{8} 0$$

$$\frac{5}{8} \frac{1}{8} \frac{1}{8} 0 \frac{1}{8} 0$$

$$= (3) E(X) = 0 \times \frac{5}{8} + 1 \times \frac{1}{8} + 2 \times \frac{1}{4} = \frac{5}{8} - \dots - 1 \text{ fr}$$

$$E(Y) = 1 \times \frac{1}{2} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = \frac{13}{8} - \dots - 1 \text{ fr}$$

$$E(X^{2}) = 0^{2} \times \frac{5}{8} + 1^{2} \times \frac{1}{8} + 2^{2} \times \frac{1}{4} = \frac{9}{8} - \dots - 1 \text{ fr}$$

$$E(Y^{2}) = 1^{2} \times \frac{1}{2} + 2^{2} \times \frac{3}{8} + 3^{2} \times \frac{1}{8} = \frac{25}{8} - \dots - 1 \text{ fr}$$

$$E(XY) = E(Z) = 0 \times \frac{5}{8} + 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + 3 \times 0 + 4 \times \frac{1}{8} + 6 \times 0 = \frac{7}{8} - \dots - 1 \text{ fr}$$

$$D(X) = E(X^{2}) - E^{2}(X) = \frac{9}{8} - \frac{25}{64} = \frac{47}{64} - \dots - 1 \text{ fr}$$

$$D(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{25}{8} - \frac{169}{64} = \frac{31}{64} - \dots - 1 \text{ fr}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{7}{8} - \frac{5}{8} \times \frac{13}{8} = -\frac{9}{64} - \dots - 1 \text{ fr}$$

$$\rho_{X, Y} = \frac{Cov(X, Y)}{\sqrt{D(X)}\sqrt{D(X)}} = -\frac{9}{64} \times \frac{8}{\sqrt{47}} \times \frac{8}{\sqrt{31}} = -\frac{9}{\sqrt{47} \times \sqrt{31}} - \dots - 2 \text{ fr}$$

六、(本题 12 分) 设 X_1, \dots, X_n 是取自总体X 的一个样本,且X 的概率分布为

$$f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & others \end{cases},$$

其中 θ 是未知参数,求参数 θ 的矩估计量和极大似然估计量.

解: (1)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} (\theta + 1) x^{\theta + 1} dx = \frac{\theta + 1}{\theta + 2}$$
 ------2 分 令 $E(X) = \overline{X}$,解得

$$\theta = \frac{2\bar{X} - 1}{1 - \bar{X}}$$

所以
$$\theta$$
的矩估计量为 $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}$ -----2 分

(2) 似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = (\theta + 1)^n (x_1 \cdots x_n)^{\theta}$$
 ------2 分

取自然对数
$$\ln L(\theta) = n \ln(\theta+1) + \theta \ln(x_1 \cdots x_n)$$
 -----2 分

对
$$\theta$$
 求导数
$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta + 1} + \ln (x_1 \cdots x_n) \qquad -----2 分$$

令
$$\frac{n}{\theta+1}$$
+ $\ln(x_1\cdots x_n)$ = 0 , 解得

$$\theta = -\frac{n}{\sum_{i=1}^{n} \ln x_i} - 1$$

所以
$$\theta$$
的极大似然估计量为
$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i} - 1 \quad -----2$$
分

鈛 阵允 中 對下 出 级 半 倒

四川理工学院试卷 A 卷(2017 至 2018 学年第 1 学期)

五

课程名称: 概率论与数理统计

命题教师: 李柳芬

题号

得分

适用班级: 40 学时所有班级

考试 (考查): 考试

	2017年 11月	日 共 6 页
六	总分	评阅(统分)教 师

注 意 事 项:

5、满分100分。要求卷面整洁、字迹工整、无错别字。

兀

- 6、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方, 否则视为废卷。
- 7、考生必须在签到单上签到,若出现遗漏,后果自负。
- 8、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答 题卷分别一同交回, 否则不给分。

试 题

得分	评阅教师

- 一、选择题(每小题 4 分, 共 28 分)
- 1. 甲、乙两人同时向同一目标射击,设 A={甲命中目标}, B={乙命中目标},则 甲、乙至少有一人命中目标可表示为()

A. $A \cup B$

B. AB C. $\overline{A}B$ D. B-A

2. 设 A, B 为随机事件,且 $P(A) = 0.3, P(B) = 0.4, P(A \cup B) = 0.5$,则 $P(\overline{A} \cup \overline{B}) = 0.4$ ()

A. 0.5 B. 0.8 C. 0.2

D. 0.88

3. 两个电子元件正常工作的概率分别为 0.8 和 0.6,它们组成串联电路,且相互 独立,则电路正常工作的概率为()

A. 0.48

B. 0.08

C. 0.52

4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} ae^{-x}, & x > 0 \end{cases}$

A. 1

B. 2

C. -1

D. -2

川理小包子打印室(宜宾校区) 黑白打印 复印 配送到寝室! 川理小包子打印室总群: 462088180 配送时间段: 13: 00、18: 00、21: 00

- 5. 设随机变量 X P(1), 则 $P(X \ge 2) = ($)
- A. e^{-1} B. $1-e^{-1}$ C. $1-2e^{-1}$ D. $2e^{-1}$
- 6. 设 X_1, \dots, X_n 是来自正态总体X的样本,且 $X \sim N(\mu, \sigma^2)$,则下列关于 μ 的无 偏估计中最有效的是(
 - A. $\hat{\mu}_1 = \frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$ B. $\hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3$
 - C. $\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3$ D. $\hat{\mu}_4 = \frac{1}{3}X_1 + \frac{1}{2}X_2 + \frac{1}{6}X_3$
- 7. 某车间生产滚珠,由经验可知,滚珠直径 $X \sim N(\mu, 0.2^2)$,现从一批产品中随
- 机抽取 36 个,测得直径的平均值为 \bar{x} ,则 μ 的双侧 α 置信区间为(
 - A. $\left[\overline{x} \frac{1}{30}t_{\alpha}(35), \overline{x} + \frac{1}{30}t_{\alpha}(35)\right]$ B. $\left[\overline{x} \frac{1}{30}\mu_{\alpha}, \overline{x} + \frac{1}{30}\mu_{\alpha}\right]$
 - C. $\left[\overline{x} \frac{1}{30} t_{1-\frac{\alpha}{2}}(35), \overline{x} + \frac{1}{30} t_{1-\frac{\alpha}{2}}(35) \right]$ D. $\left[\overline{x} \frac{1}{30} \mu_{1-\frac{\alpha}{2}}, \overline{x} + \frac{1}{30} \mu_{1-\frac{\alpha}{2}} \right]$

得分	评阅教师

- 二、填空题 (每小题 4 分, 共 20 分)
- 1. 一个盒子中装有6只晶体管,其中2只不合格,现作不放回抽样,连续取两次, 每次取1只,则2次取出的都是合格品的概率为 .
- 2. 设随机事件 A 与 B 相互独立, P(A)=0.4, P(B)=0.5,则 P(A-B)=_____.
- 3. 设随机变量 $X \sim B(n, p)$,且 E(X) = 4, D(X) = 2,则参数 $n = _____$, $p = _____$.
- 4. 设 D(X) = 25, D(Y) = 36, $\rho_{XY} = 0.5$, 则 $D(X+Y) = _____$, $D(X-Y) = _____$

姓名	封	
		题
		答
一条		埘
	本	K
描		长
級		緓
		華
不争—		砂
m£	觬	

侍分	评阅教则

- 三、(本题共 10 分)设随机变量 X 的概率密度为 $f(x) = \begin{cases} ax, & 0 < x < 1 \\ 0, & others \end{cases}$

 - (1) 求常数 a; (4分) (2) 求 X 的分布函数 F(x). (6分)

得分	评阅教师

四、(本题共 10 分) 设离散型随机变量 X 的分布律为 $P(X=k)=\frac{1}{2^k}, k=1,2,\cdots$,

试 (1) 求
$$P(X > 10)$$
; (4分)

试 (1) 求
$$P(X > 10)$$
; (4分) (2) 求 $Y = \sin\left(\frac{\pi}{2}X\right)$ 的分布律. (6分)

得分	评阅教师

五、(本题共20分)设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其 中D是由x轴,y轴和直线x+y=1所围成的平面区域.

- (1) 写出联合概率密度 f(x,y),并求边缘概率密度 $f_x(x)$ 和 $f_y(y)$;(6 分)
- (2)求P(X < Y); (4分) (3)求Cov(X,Y). (10分)

得分	评阅教师

一 六、(本题 12 分) 设总体 X 的概率分布为 $\begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$,其中 $\theta \in (0,1)$ 是未知参数,利用总体 X 的样本观察值 $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 2$,求参数 θ 的矩估计值和极大似然估计值.

四川理工学院试卷 A 卷答案(2017 至 2018 学年第 1 学期)

课程名称: 概率与统计 40 学时

命题教师: 李柳芬 适用班级: 所有 40 学时本科学生

考试 2017年11月

一、选择题(本题28分,每小题4分)

二、填空题(本题28分,每小题4分,)

1. 0.4 2. 0.2 3. 8, 0.5 4. 91, 31 5.
$$\chi^2(n)$$

三、(本题共 10 分)设随机变量 X 的概率密度为 $f(x) = \begin{cases} ax, & 0 < x < 1 \\ 0, & others \end{cases}$

(1) 求常数
$$a$$
; (4分) (2) 求 X 的分布函数 $F(x)$. (6分)

解: (1) 由概率密度函数的归一性得

$$1 = \int_{-\infty}^{+\infty} f(x)dx = \int_{0}^{1} axdx \qquad -----2$$
$$\Rightarrow a = 2 \qquad -----2$$

(2) 当
$$x < 0$$
时, $F(x) = \int_{-\infty}^{x} f(t)dt = 0$ ------2 分

当
$$0 < x \le 1$$
 时, $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{x} 2tdt = x^{2}$ ------2 分

当
$$x \ge 1$$
时, $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{1} 2tdt + \int_{1}^{x} 0dt = 1$ ------2 分

所以
$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

四、(本题共 10 分) 设离散型随机变量 X 的分布律为 $P(X = k) = \frac{1}{2^k}, k = 1, 2, \cdots$

试 (1) 求
$$P(X > 10)$$
; (4分) (2) 求 $Y = \sin\left(\frac{\pi}{2}X\right)$ 的分布律. (6分)

解 (1) 由 X 的分布律 $P(X = k) = \frac{1}{2^k}, k = 1, 2, \dots$ 得,

方法 1
$$P(X > 10) = 1 - P(X \le 10) = 1 - \sum_{k=1}^{10} \frac{1}{2^k}$$
 ------3 分

五、(本题共20分)设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其 中D是由x轴,y轴和直线x+y=1所围成的平面区域.

(1) 写出联合概率密度 f(x,y), 并求边缘概率密度 $f_X(x)$ 和 $f_Y(y)$; (6分)

$$(2)$$
求 $P(X < Y)$; $(4 分)$

所以

(3) 求 Cov(X,Y). (10分)

解: (1) 如图区域 D 的面积为 $\frac{1}{2} \times 1 \times 1 = \frac{1}{2}$

$$(X,Y)$$
的联合概率密度为 $f(x,y) = \begin{cases} 2, & (x,y) \in D \\ 0, & others \end{cases}$ ------2 分

所以(X,Y)关于X的边缘概率密度为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{0}^{1-x} 2 dy = 2(1-x), & 0 \le x \le 1 \\ 0, & others \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{0}^{1-y} 2 dx = 2(1-y), & 0 \le y \le 1 \\ 0, & others \end{cases}$$

$$0, & others$$

(2) 如图

方法1

$$P(X < Y) = \iint_{D_1} f(x, y) dx dy = 2 \iint_{D_1} dx dy = 2 \int_0^{1/2} dx \int_x^{1-x} dy - ----3$$

方法 2

$$P(X < Y) = \iint_{D_1} f(x, y) dx dy = 2 \iint_{D_1} dx dy -----3$$

$$= 2S_{D_1} = 2 \times \frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{2} -----1$$

(3)
$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = 2 \int_0^1 x (1-x) dx = \left[x^2 - \frac{2}{3} x^3 \right]_0^1 = \frac{1}{3}$$
 ------2 $\frac{1}{2}$

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dx = 2 \int_0^1 y (1-y) dy = \left[y^2 - \frac{2}{3} y^3 \right]_0^1 = \frac{1}{3}$$
 -------2 $\frac{1}{2}$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) dx dy = 2 \iint_{\mathbb{R}} x y dx dy = 2 \int_0^1 x dx \int_0^{1-x} y dy$$
 ------3 $\frac{1}{2}$

$$= \int_0^1 x(1-x)^2 dx = \int_0^1 (x-2x^2+x^3) dx = \left[\frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{1}{4}x^4\right]_0^1 = \frac{1}{12} \quad -----1 \implies$$

$$\text{所以} \quad Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{12} - \frac{1}{9} = -\frac{1}{36} \quad ------2 \implies$$

六、 $(12 \, f)$ 设总体 X 的概率分布为 $\begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$,其中 $\theta \in (0,1)$ 是未知参数,利用总体 X 的样本观察值 $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 2$,求参数 θ 的矩估计值和极大似然估计值.

解: (1)
$$E(X) = \theta^2 + 4\theta(1-\theta) + 3(1-\theta)^2 = 3-2\theta$$
 ------2 分 令 $E(X) = 3-2\theta = \overline{X}$, 解得 $\theta = \frac{3-\overline{X}}{2}$ ------1 分

由样本观察值计算得样本均值为 $\bar{x} = \frac{1+2+3+2}{4} = 2$ ------1 分

所以 θ 的矩估计值为 $\hat{\theta} = \frac{3-\overline{x}}{2} = \frac{1}{2}$ ------1 分

(2)方法 1 似然函数

$$L(\theta) = P(X_1 = 1)P(X_2 = 2)P(X_3 = 3)P(X_4 = 2)$$

$$= \theta^2 \cdot 2\theta(1-\theta) \cdot (1-\theta)^2 \cdot 2\theta(1-\theta) = 4\theta^4(1-\theta)^4 \qquad -----3$$

取自然对数

$$\ln L(\theta) = \ln 4 + 4 \ln \theta + 4 \ln(1 - \theta) \qquad -----1 \, \text{ }$$

对 θ 求导数

$$\frac{d \ln L(\theta)}{d \theta} = \frac{4}{\theta} - \frac{4}{1 - \theta} = \frac{4(1 - 2\theta)}{\theta(1 - \theta)} \qquad ----2 \ \text{f}$$

令
$$\frac{d \ln L(\theta)}{d \theta} = \frac{4(1-2\theta)}{\theta(1-\theta)} = 0$$
 解得 $\theta = \frac{1}{2}$ ------1 分

所以 θ 的极大似然估计值为 $\hat{\theta} = \frac{1}{2}$

(2) 方法 2 似然函数

$$L(\theta) = P(X_1 = 1)P(X_2 = 2)P(X_3 = 3)P(X_4 = 2)$$

$$= \theta^2 \cdot 2\theta(1-\theta) \cdot (1-\theta)^2 \cdot 2\theta(1-\theta) = 4\theta^4(1-\theta)^4 \qquad ------3$$

直接用 $L(\theta)$ 对 θ 求导数

$$\frac{dL(\theta)}{d\theta} = 4 \left[4\theta^{3} (1-\theta)^{4} - 4\theta^{4} (1-\theta)^{3} \right] = 16\theta^{3} (1-\theta)^{3} (1-2\theta) \qquad -----2 \text{ fr}$$

令
$$\frac{dL(\theta)}{d\theta} = 16\theta^3 (1-\theta)^3 (1-2\theta) = 0$$
 解得

$$\theta = \frac{1}{2}$$
或 $\theta = 1$ (舍去) 或 $\theta = 0$ (舍去) ------2 分

所以 θ 的极大似然估计值为 $\hat{\theta} = \frac{1}{2}$

	线	
姓名		
		脳
山		紋
李		由
	돆	К
岩		七
級		徐
		#
		孙
₩.	密	

四川理工学院试卷(2017至2018学年第2学期)

课程名称: 概率论与数理统计(A卷)

命题教师: 李柳芬

适用班级:

考试 (考查): 考试

2018年	6 月	日	共	6页
_010	0 / 1		/ \	0),

题号	1	2	3	4	5	6	7	总分	评阅(统分) 教师
得分									

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方, 否则视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题

得分	评阅教师

- 1. (本题共 15 分) 已知 P(A) = 0.3, P(B) = 0.4,
- (1) 当A与B互斥时,求 $P(\overline{AB})$; (5分)
- (2) 当A与B独立时,求 $P(A\overline{B})$; (5分)
- (3) 当P(AB) = 0.2时,求 $P(\overline{AB})$. (5分)

得分	评阅教师

2.(本题共15分)设随机变量 X的分布律为

X	-1	0	1	
P	0.1	а	0.3	

- (1) 求 a 的值; (5 分) (2) 求 X 的分布函数 F(x); (5 分)
- (3) 求 $P(X \le 0)$. (5分)

	得分	评阅	教师
3	. (本题 1	0分)	已知
7	密密度函	数.	

 封
 线

 线
 内
 不
 要
 答
 题

姓名

李

坩

级

88 年

WK

3. (本题 10 分) 已知随机变量 X 服从闭区间[0,1]上的均匀分布,求 $Y = e^{x}$ 的概率密度函数.

得分	评阅教师

4. (本题共 21 分)设二维连续型随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 2e^{-(x+2y)}, & 0 \le x, 0 \le y \\ 0, & others \end{cases}.$$

- (1) 求X的边缘密度函数 $f_X(x)$;(7分)
- (2) 求 Y 的边缘密度函数 $f_Y(y)$; (7分)
- (3) $\Re P(0 < X < 1, 0 < Y < 1)$. (7 \Re)

得分	评阅教师
1424	11 1 4 4/2/1

5. (本题共24分) 设二维随机变量(X,Y)的联合分布律为

XY	-1 0	1
0	0.1 0.2	0.1
1	0.2 0.3	0.1

- (1) 求关于 X和 Y的边缘分布律; (6分)
- (2) 求E(X),E(Y), $E(X^2)$, $E(Y^2)$,D(X),D(Y),E(XY),Cov(X,Y), $\rho_{X,Y}$. (18 分)

得分	评阅教师

6. (本题 15 分) 设 $X_1, X_2, ..., X_n$ 为取自总体X的一个样本,且总体X服从二项分布 B(n,p),试求参数p 的矩估计和极大似然估计.