Attention Mechanism Sunkyung Park

Contents

- Paper Review (Neural Machine Translation by Jointly Learning to Align and Translate)
 - Introduction
 - Standard RNN Encoder-Decoder Framework
 - Proposed Model
 - Experimental Settings
 - Results
 - Quantitative
 - Qualitative
- Blog Post Overview (**Augmented RNNs**)
 - Neural Turing Machines
 - Attentional Interfaces
 - Adaptive Computation Time
 - Neural Programmer

- Neural Machine Translation by Jointly Learning to Align and Translate
 - Existing researches
 - Encoder-decoders in NMT
 - Encoder reads and encodes a source sentence into a fixed-length vector
 - **Decoder** outputs a translation from the encoded vector.
 - Limitation of existing research
 - It requires a neural network to be able to **compress** all the information of a source sentence into a fixed-length vector.
 - It makes it **difficult** for NN to cope with **long sentences**.
 - Proposed model
 - Introduce an extension to the encoder-decoder model which learns to align and translate jointly to overcome the limitation.

• RNN Encoder-Decoder Framework

Encoder

• It reads the input sequence $(X = (x_1, x_2, ..., x_{T_x}))$ into a vector c.

• Expression

• non-linear function (e.g. LSTM)

$$h_t = f\left(x_t, h_{t-1}\right)$$

- $h_t \subseteq R^n$
- Hidden state at time t

- non-linear function
- $q(\lbrace h_1, \dots, h_T \rbrace) = h_T$

$$c = q\left(\{h_1, \cdots, h_{T_x}\}\right)$$

• c: context vector generated from hidden states

RNN Encoder-Decoder Framework

- Decoder
 - It is trained to predict the next word $y_{t'}$ given the context vector c and all the previously predicted words $\{y_1, \dots, y_{t'-1}\}$.
 - It defines a prob over the translation y by decomposing the joint prob into the ordered conditionals.

Decomposing

$$p(\mathbf{y}) = \prod_{t=1}^{T} p(y_t \mid \{y_1, \cdots, y_{t-1}\}, c)$$

$$p(y_1, c) p(y_2 \mid \{y_1\}, c) p(y_3 \mid \{y_1, y_2\}, c) \cdots p(y_t \mid \{y_1, y_2, \dots, y_{t-1}\}, c)$$

$$p(y_t \mid \{y_1, \cdots, y_{t-1}\}, c) = g(y_{t-1}, s_t, c)$$

- Each conditional prob modeled
- c: context vector
- g: non-linear, multi-layered, function that outputs the prob of y_t
- s_t : hidden state of the RNN.

- Proposed Model
 - Decoder

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

An RNN hidden state for time i

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x}) = g(y_{i-1},s_i,\frac{c_i}{c_i})$$

- Conditioned on a distinct context vector c_i for each target word y_i
- c_i depends on a sequence of $(h_1, ..., h_{T_x})$ to which an encoder maps the input sentence.
- h_i
 - Contains information about the **whole** input sequence
 - Be with focus on the parts surrounding the i^{th} word of the input sequence.

• Proposed Model

- Decoder
 - How to compute context vector c_i ?

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$

• Weighted sum of h_1 , ..., h_{T_x}

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},$$

$$e_{ij} = a(s_{i-1}, h_j)$$

Alignment model

- Scores how well the inputs around position j and the output at position i match.
- Score is based on the s_{i-1} (hidden state) and h_j of the input sequence.
- *a* : parametrized feedforward neural network

- Proposed Model
 - Decoder
 - How to compute context vector c_i (intuitively)?

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$
 $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})},$ $e_{ij} = a(s_{i-1}, h_j)$

• Prob (a_{ij}) , Energy (e_{ij}) : importance of h_i w.r.t previous hidden state s_{i-1} in deciding the next state s_i and generating y_i

Attention Mechanism!

- Relieve encoder from encoding all information in the source sentence into a fixed-length vector.
- Information can be spread out the sequence and it can be selectively retrieved by decoder.

- Proposed Model
 - Encoder
 - BiRNN(bidirectional RNN)
 - Summarize not only the preceding words but also the following words.
 - Expression
 - \vec{f} (forward RNN): calculates a sequence of forward hidden states $(\vec{h}_1, ..., \vec{h}_{T_x})$.
 - \overleftarrow{f} (backward RNN): result in a sequence of backward hidden states $(\overleftarrow{h}_1, ..., \overleftarrow{h}_{T_\chi})$.
 - For each word x_j by concatenating \vec{h}_j and \overleftarrow{h}_j
 - $h_j = [\overrightarrow{h}_j^T; \overleftarrow{h}_j^T]$ focuses on the words **around** x_j .

• Experimental Settings				
	Task	English to French translation		
	Dataset	(Train) Bilingual, parallel corpora by ACL Association for computational linguistics WMT Workshop on Statistical Machine Translation '14 • European Parliament(61M words) • News commentary(5.5 M) • UN (421M) • two crawled corpora(90M, 272.5M) • 850M words >>> Select 348M (Validation) news-test-2012 + news-test-2013 (Test) news-test-2014 from WMT '14 with 3003 sentences not present in the training data.		
	Preprocessing	 Use a shortlist of 30,000 most frequent words in each language(en, fr) to train models. Any word not included in the shortlist is mapped to [UNK]. 		
	Baseline	RNN Encoder-Decoder		

Experimental Settings Train 1 Train 2 Hyperparameters (w/ sentences of length up to 30 words) (w/ sentences of length up to 50 words) (enc, dec) 1000 hidden units **RNN Encoder-Decoder** RNNencdec-30 RNNencdec-50 A single Maxout Goodfellow et al., 2013 hidden layer to compute the conditional prob of each target word. Mini-batch(80 sentences) Stochastic gradient descent(SGD) + Adadelta Train for approximately 5 days **Beam search** to find a translation that maximizes the RNNsearch(Proposed) RNNsearch-30 RNNsearch-50

conditional prob.

• Beam Search

- (Background) What if only 1st survives where there is little difference between 1st and 2nd?
- Method of selecting the num of promised beams ($\leq K$) at a given point in time.

1. Select **K** highest prob among prob distribution of the predicted values.

2. Select **the K highest** of the next prediction value in **each of the K beams.**

3. Select **top K** in the order of **cumulative prob** among K^2 childe nodes.

4. **Set** the top K child nodes as **new beams** and **Create** the top K child nodes until the num of beams w/ <eos> becomes **K**.

• Results : Quantitative Results

		> Scores on
Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63
*		Ÿ

Trained much longer **until**the performance on
validation set stopped
improving

Scores on the sentences without any unknown word

all sentences

- BLEU Bilingual Evaluation Understudy Score on test set
- Proposed RNNsearch > RNNencdec
- () Better performance w/ fewer resources!
 - RNNsearch > Moses
 - Moses uses monolingual corpus(418M) + parallel corpora in RNNsearch.

• Results : Quantitative Results

- Proposed RNNsearch > RNNencdec
 - RNNsearch does not require encoding a long sentence into a fixed-length vector perfectly.
 - RNNsearch encodes the parts of the input sequence surrounding a particular word.

- (•) Enc-dec **drops dramatically** as the length of sentences increases.
- RNNsearch-30, RNNsearch-50 are **more robust** on value of x-axis.
- (\bullet) RNNsearch-50 no performance deterioration w/ length \geq 50

Results : Qualitative Results Words in source sentence (English) Generated Translation européenne (French) signé août 1992 Än arbitrary sentence Weight a_{ij} of the j^{th} source word for i^{th} target word. équipement (0: black, 1: white) signifie Syrie peut plus produire Same as (b)

without any unknown words

without any unknown words

light with the family with the series of the s

(d) Same as (b)

- Soft-alignment (\neq hard-alignment(1:1))
 - (Fig) specific positions in the source sentence considered more important in generating the target word.
 - (Fig) [the man] : [l'homme]

 Following word → le, la, les, l'
- Understanding of alignment between English and French
 - Monotonic
 - (Fig) Strong weights along the diagonal of matrix.
 - Non-monotonic: Adjectives and nouns differently ordered
 - (Fig) RNNsearch correctly aligns [zone] with [Area]

• Hypothesis Verification Structure

Quantitative result

Qualitative result

Hypothesis

The proposed model, the RNNsearch enables far more reliable translation of long sentences than the RNNencdec.

• Augmented RNNs : Neural Turing Machines

- What is Turing Machine?
 - Virtual Machine, the foundation of modern computer architecture.
 - Functions of numerical operation, memory reading, and memory writing.
 - Modern computer architecture consists two parts:
 - **CPU** that performs the operation
 - **Memory** that stores the values
- Neural Turing Machine
 - Standard Neural networks have no memory.
 - Architecture
 - Neural Network
 - Memory Matrix
 - External Memory(explicit memory structure) outside of neural networks.

Architecture of Neural Turing Machine

• Neural Turing Machines

- How Does Reading and Writing Work?
 - Attention Distribution
 - How we spread out the amount we care about **different memory positions.**
 - The result of the read operation is a **weighted sum**.

Reading

At time step t...

• a_i : Normalized weight vector indicating the importance of each location.

(Attention)

- M_i : The value of **memory matrix** corresponding to each location.
- r: The actual value we read from memory (**read vector**).

• Neural Turing Machines

- How Does Reading and Writing Work?
 - Writing
 - Erase Operation

•
$$\widetilde{M}_t(i) \leftarrow M_{t-1}(i)[1-w_t(i)e_t]$$

- e_t : Erase vector
- w_t : How much to erase

Add Operation

•
$$M_t(i) \leftarrow \widetilde{M}_t(i) + w_t(i)a_t$$

• a_t : Add vector

• w_t : How much to add

Simplified

• Neural Turing Machines

 How do NTMs decide which positions in memory to focus their attention on?

(= How to compute weight vector w_t ?)

- A combination of two different methods
 - Content-based attention
 - Search through their memory
 - Focus on places that match they're looking for.
 - Location-based attention
 - Relative movement in memory, enabling the NTM to loop.
 - Weight obtained using content similarity is now modified based on location.

First, the controller gives a query vector and each memory entry is scored for similarity with the query.

The scores are then converted into a distribution using softmax

Content-based

Next, we interpolate the attention from the previous time step.

Location-based

We convolve the attention with a shift filter—this allows the controller to move its focus.

Finally, we sharpen the attention distribution. This final attention distribution is fed to the read or write operation.

• Augmented RNNs : Attentional Interfaces

Human

Pay attention to the word we are presently translating

Attention in Neural Net

- Make attention **differentiable** → **Learn** where to focus
- Focus everywhere, just to different extents.
- Attention distribution is generated with content-based attention.

• Attentional Interfaces

• Use of Attentional Interfaces: Translation

- Seq-to-Seq Models
 - Boil **the entire input** down into a single vector
 - Expand it back out
 - → As for long sentences, all necessary information **cannot be included** in the vector.
- **Attention** (same as 5 page)
 - Avoids seq2seq's unreasonable mechanism

Decoder focuses on words relevant

Encoder passes along information about each word

• Use of Attentional Interfaces : Image Captioning

• Attention can be used on the interface between a CNN and an RNN.

- CNN processes the image, **extracting** high-level features
- RNN focuses on the CNN's interpretation of relevant parts and generalizes a description of the image.

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

CNN captures noticeable features (frisbee in red etc.)

RNN focuses on that interpretation

Augmented RNNs : Adaptive Computation Time			
	Standard RNNs		
	• Do the same amount of computation for each time step		
	• $O(n)$ operations for n length list.		
	Adantive Computation Time:		

- Adaptive Computation Time.
 - (Goal) A way for RNNs to do different amounts of computation each step
 - (How) Allow the RNN to do multiple steps of computation for each time step

Num of Steps to be **Differentiable Attention Distribution** over Num of Steps **Learn** How many steps to do

• Adaptive Computation Time

• Different amounts of computation each step

• Augmented RNNs : Neural Programmer

Neural Net

- Struggle to do some basic things like 'arithmetic'.
- Neural net + normal programming **→** Get the best of both worlds

• Neural Programmer:

- Learns to create programs in order to solve a task.
- No need for examples of correct programs.
- Discover how to produce programs to accomplish some task.
- Like Unix-Pipe → Why?
 - A mechanism for inter-process communication using message passing.

• Neural Programmer

- The generated program is a sequence of operations.
- Operation:
 - $Output_{op\ 2\ steps\ ago} + Output_{op\ 1\ step\ ago} \rightarrow Unix-pipe$
- The program is generated one op at a time by a controller RNN.
- Prob distribution for what the next operation should be.

- Run **all of ops** and **Average** the outputs together.
- Outputs **weighted by prob** of running that op.
- The Program's output is **differentiable** w.r.t. the prob.
- Define a Loss.
- **Train** a neural net to produce programs to give the correct answer.

• Neural Programmer

• A Few Additional Things

- Multiple Types
 - Some operations outputs selections of table columns, selection of cells.
 - Note that only outputs of **the same type** get merged.

• Referencing Inputs

- Given a table of cities with a population column, Answer...
 - "How many cities have a population greater than 1,000,000?"
- Some op allow the network to reference constants or the names of columns by Attention

References

- Lecture Material
 - Neural Machine Translation by Jointly Learning to Align and Translate
 - Blog Post Overview (Augmented RNNs)
- Neural Turing Machines
 - http://solarisailab.com/archives/2162
- Beam Search
 - https://blog.naver.com/sooftware/221809101199