WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 215/54, A61K 31/47, A61P 43/00, C07D 405/12, 401/12, 417/12, 413/12, 409/12

A1

(11) International Publication Number:

WO 00/68201

(43) International Publication Date: 16 November 2000 (16.11.00)

(21) International Application Number:

PCT/GB00/01697

(22) International Filing Date:

3 May 2000 (03.05.00)

(30) Priority Data:

9910577.7

8 May 1999 (08.05.99)

GB

(71) Applicant (for all designated States except US): TRAZENECA AB [SE/SE]; S-151 85 Södertälje (SE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BOYLE, Francis, Thomas [GB/GB]; Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). GIBSON, Keith, Hopkinson [GB/GB]; Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). POYSER, Jeffrey, Philip [GB/GB]; Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). TURNER, Paul [GB/GB]; Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).
- (74) Agent: GILES, Allen, Frank; AstraZeneca, Global Intellectual Property - Patents, Mereside, Alderley Park, P.O. Box 272, Macclesfield, Cheshire SK10 4TG (GB).

(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: QUINOLINE DERIVATIVES AS INHIBITORS OF MEK ENZYMES

(57) Abstract

A compound of formula (I) or a pharmaceutically acceptable salt thereof wherein: n is 0-1; X and Y are independently selected from NH-, -O-, -S-, or NR⁸- where R⁸ is alkyl of 1-6 carbon atoms and X may additionally comprise a CH₂ group; R⁷ is a group (CH₂)_mR⁹ where m is 0, or an integer of from 1-3 and R⁹ is a substituted aryl group, an optionally substituted cycloalkyl ring of up to 10 carbon atoms, or an optionally substituted heterocyclic ring or an N-oxide of any nitrogen containing ring; R6 is a divalent cycloalkyl of 3 to 7 carbon atoms, which may be optionally further substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a divalent pyridinyl, pyrimidinyl, or phenyl ring; wherein the

$$\begin{array}{c|c}
R1 & (CH_2)nR^6 \\
R2 & CN \\
R3 & R4
\end{array}$$

pyridinyl, pyrimidinyl, or phenyl ring may be optionally further substituted with one or more specified groups; R1, R2, R3 and R4 are each independently selected from hydrogen or various specified organic groups. Compounds are useful as pharmaceuticals for the inhibition of MEK activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	\mathbf{SZ}	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

QUINOLINE DERIVATIVES AS INHIBITORS OF MEK ENZYMES

The present invention relates to certain novel quinoline derivatives as well as to their use as pharmaceuticals, in particular as inhibitors of specific kinase enzymes, such as MEK enzymes. Further aspects of the invention include pharmaceutical compositions and methods of treatment of proliferative disease such as cancer using said compounds.

Cancer is a disease in which cells grow and divide in an uncontrolled fashion. This uncontrolled growth arises from abnormalities in signal transduction pathways that are used by normal cells to regulate cell growth and division in response to various signalling molecules. Normal cells do not proliferate unless stimulated to do so by specific signal molecules located outside the cell derived from nearby cells or tissues. Growth factors bind to the cell membrane via specific receptors which have intrinsic enzyme activity. These receptors relay the growth signal to the cell nucleus via a series of signalling proteins. In cancer, a number of defects in signal pathways are apparent. For example, cancer cells may produce their own growth factors which bind to their cognate receptors, resulting in an autocrine loop, or receptors may be mutated or overexpressed leading to an increased, continuous signal to proliferate. In addition, negative regulators of cell growth may be lost.

Oncogenes are cancer related genes which often encode abnormal versions of signal pathway components, such as receptor tyrosine kinases, serine-threonine kinases, or downstream signaling molecules such as the ras genes, which code for closely related small guanine nucleotide binding proteins which hydrolyse bound guanosine triphosphate (GTP) to guanosine diphosphate (GDP). Ras proteins are active in promoting cell growth and transformation when they are bound to GTP and inactive when they are bound to GDP. Transforming mutants of p21ras are defective in their GTPase activity and hence remain in the active GTP bound state. The ras oncogene is known to play an integral role in certain cancers, and has been found to contribute to the formation of over 20% of all cases of human cancer.

When activated by ligand, cell surface receptors which are coupled to the mitogenic response, such as growth factor receptors, initiate a chain of reactions which leads to the activation of guanine nucleotide exchange activity on ras. When in its active GTP-bound state, a number of proteins interact directly with ras at the plasma membrane

resulting in signal transmission through several distinct pathways. The best characterised effector protein is the product of the raf proto-oncogene. The interaction of raf and ras is a key regulatory step in the control of cell proliferation. Ras-mediated activation of the raf serine-threonine kinase in turn activates the dual-specificity MEK (MEK1 and MEK2), which is the immediate upstream activator of mitogen activated protein kinase (MAPKs known as extracellular signal regulated protein kinases or ERK1 and ERK2). To date, no substrates of MEK other than MAPK have been identified, though recent reports indicate that MEK may also be activated by other upstream signal proteins such as MEK kinase or MEKK1 and PKC. Activated MAPK translocates and accumulates in the nucleus, where it can phosphorylate and activate transcription factors such as Elk-1 and Sap1a, leading to the enhanced expression of genes such as that for c-fos.

5

10

15

20

25

30

The ras-dependent raf-MEK-MAPK cascade is one of the key signalling pathways responsible for transmitting and amplifying mitogenic signals from cell surface to the nucleus resulting in changes in gene expression and cell fate. This ubiquitous pathway appears essential for normal cell proliferation and constitutive activation of this pathway is sufficient to induce cellular transformation. Transforming mutants of p21ras are constitutively active, resulting in raf, MEK and MAPK activity and cell transformation. Inhibition of MEK activity using either antisense raf, a dominant negative MEK mutant or the selective inhibitor PD098059 have been shown to block the growth and morphological transformation of ras-transformed fibroblasts.

The mechanism of activation of raf, MEK and MAPK is through phosphorylation on specific serine, threonine or tyrosine residues. Activated raf and other kinases phosphorylate MEK1 on S218 and S222 and MEK2 on S222 and S226. This results in MEK activation and subsequent phosphorylation and activation of ERK1 on T190 and Y192 and ERK2 on T183 and Y185 by the dual specificity MEKs. Whilst MEK can be activated by a number of protein kinases, and active MAPKs phosphorylate and activate a number of substrate proteins including transcription factors and other protein kinases, MEKs appear specific and sole activators of MAPKs and could act as a focal point for cross-cascade regulation. MEK1 and MEK2 isoforms show unusual specificity and also contain a proline-rich insert between catalytic subdomains IX and X which is not present in any of the other known MEK family members. These differences between MEK and other protein kinases, together with the known role of MEK in proliferative signalling

suggest that it may be possible to discover and employ selective MEK inhibitors as therapeutic agents for use in proliferative disease.

WO 98/43960 discloses a range of 3-cyano quinoline compounds and their use in the treatment of cancer. Certain of the compounds are demonstrated as being inhibitors of Epidermal Growth Factor Receptor Kinase, and to inhibit cancer cell growth. Other quinoline derivatives which inhibit the effect of growth factors such as VEGF are described in WO98/13350.

This invention provides compounds which are inhibitors of the kinase activity of MEK and as a result, can produce therapeutically useful effects in the treatment of proliferative disease and in particular cancer.

According to the present invention there is provided a compound of formula (I)

$$R1$$
 $R2$
 $R3$
 $R4$
 $(CH2)nR6$
 X
 $R7$
 X
 $R7$

15

20

25

5

10

or a pharmaceutically acceptable salt thereof.

wherein:

n is 0-1;

X and Y are independently selected from –NH-, -O-, -S-, or –NR⁸- where R⁸ is alkyl of 1-6 carbon atoms and X may additionally comprise a CH₂ group;

R⁷ is a group (CH₂)_mR⁹ where m is 0,or an integer of from 1-3 and R⁹ is a substituted aryl group, an optionally substituted cycloalkyl ring of up to 10 carbon atoms, or an optionally substituted heterocyclic ring or an N-oxide of any nitrogen containing ring;

R⁶ is a divalent cycloalkyl of 3 to 7 carbon atoms, which may be optionally further substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a divalent pyridinyl, pyimidinyl, or phenyl ring; wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally further substituted with one or more groups selected from halogen,

alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, and benzoylamino;

- 10 R₁, R₂, R₃ and R₄ are each independently selected from hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR¹¹R¹² (wherein R¹¹ and R¹², which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or a group R¹³-X¹-(CH₂)_x wherein x is 0 to 3, X¹ represents -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁴CO-, -CONR¹⁵-, -SO₂NR¹⁶-, -NR¹⁷SO₂- or -NR¹⁸- (wherein R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹³ is
 - selected from one of the following sixteen groups:
 - 1) C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino;
- 2) C₁₋₅alkylX²COR¹⁹ (wherein X² represents -O- or -NR²⁰- (wherein R²⁰ represents
 20 hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹⁹ represents -NR²¹R²²- or -OR²³- (wherein R²¹, R²² and R²³ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
 - 3) C_{1-5} alkyl X^3R^{24} (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²⁵CO-, -CONR²⁶-, -SO₂NR²⁷-, -NR²⁸SO₂- or -NR²⁹- (wherein R²⁵, R²⁶, R²⁷, R²⁸ and R²⁹ each
- independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁴ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear one or two substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear one or two substituents selected from oxo,
- 30 hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} hydroxyalkyl and C_{1-4} alkoxy);
 - 4) C_{1-5} alkyl X^4C_{1-5} alkyl X^5R^{30} (wherein X^4 and X^5 which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR³¹CO-, -CONR³²-, -SO₂NR³³-, -NR³⁴SO₂- or -NR³⁵-

(wherein R^{31} , R^{32} , R^{33} , R^{34} and R^{35} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{30} represents hydrogen or C_{1-3} alkyl);

- 5) C_{1-5} alkyl R^{36} (wherein R^{36} is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} alkoxy);
- 6) $(CH_2)_q X^6 R^{37}$ (wherein q is an integer from 0 to 5, X^6 represents a direct bond, -O-, -S-, -SO-, -SO₂-, -NR³⁸CO-, -CONR³⁹-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²- (wherein R³⁸, R³⁹, R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl)
- and R³⁷ is a phenyl group, a pyridone group or a 5 or 6 membered aromatic heterocyclic group with 1 to 3 heteroatoms selected from O, N and S, which phenyl, pyridone or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄hydroxyalkoxy, C₁₋₄aminoalkyl, C₁₋₄alkylamino, carboxy, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶ (wherein R⁴³,
- R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
 - 7) C₂₋₆alkenylR³⁶ (wherein R³⁶ is as defined hereinbefore);
 - 8) C₂₋₆alkynylR³⁶ (wherein R³⁶ is as defined hereinbefore);
- 9) X⁷R⁴⁷ (wherein X⁷ is -SO₂-, -O- or -CONR⁴⁸R⁴⁹- (wherein R⁴⁸ and R⁴⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁴⁷ represents C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino) with the provisos that when X⁷ is -SO₂-, X¹ is -O-, when X⁷ is -O-, X¹ is carbonyl, when X⁷ is -CONR⁴⁸R⁴⁹-, X¹ is -O- or NR¹⁸ (wherein R⁴⁸, R⁴⁹ and R¹⁸ are as defined hereinbefore);
- 25 10) C₂₋₆alkenylR³⁷ (wherein R³⁷ is as defined hereinbefore);
 - 11) C₂₋₆alkynylR³⁷ (wherein R³⁷ is as defined hereinbefore);
 - 12) C_{2-6} alkenyl X^8R^{37} (wherein X^8 represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁰CO-, -CONR⁵¹-, -SO₂NR⁵²-, -NR⁵³SO₂- or -NR⁵⁴- (wherein R⁵⁰, R⁵¹, R⁵², R⁵³ and R⁵⁴ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{37} is as defined hereinbefore);
- 13) C₂₋₆alkynylX⁹R³⁷ (wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁵CO-, -CONR⁵⁶-, -SO₂NR⁵⁷-, -NR⁵⁸SO₂- or -NR⁵⁹- (wherein R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸ and R⁵⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore);

15

20

25

30

- 14) C_{1-3} alkyl X^{10} C_{1-3} alkyl R^{37} (wherein X^{10} represents -O-, -S-, -SO-, -SO₂-, -NR⁶⁰CO-, -CONR⁶¹-, -SO₂NR⁶²-, -NR⁶³SO₂- or -NR⁶⁴- (wherein R⁶⁰, R⁶¹, R⁶², R⁶³ and R⁶⁴ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{37} is as defined hereinbefore);
- 5 15) R³⁶ (wherein R³⁶ is as defined hereinbefore); and
 - 16) C_{1-3} alkyl $X^{10}C_{1-3}$ alkyl R^{36} (wherein X^{10} and R^{36} are as defined hereinbefore).

Suitable pharmaceutically acceptable salts of compounds of formula (I) include acid addition salts such as methanesulfonate, fumarate, hydrochloride, hydrobromide, citrate, maleate and salts formed with phosphoric and sulphuric acid. A preferred pharmaceutically acceptable salt is a hydrochloride salt.

The alkyl portion of the alkyl, alkoxy, alkanoyloxy, alkoxymethyl, alkanoyloxymethyl, alkylsuphinyl, alkylsulphonyl, alkylsulfonamido, carboalkoxy, carboalkyl, alkanoylamino aminoalkyl, alkylaminoalkyl, N,N-dicycloalkylaminoalkyl, hydroxyalkyl, and alkoxyalkyl substituents include both straight chain as well as branched carbon chains. The cycloalkyl portions of N-cycloalkyl-N-alkylaminoalkyl and N,Ndicycloalkylaminoalkyl substituents include both simple carbocycles as well as carbocycles containing alkyl substituents. The alkenyl portion of the alkenyl, alkenoyloxymethyl, alkenyloxy, alkenylsulfonamido, substituents include both straight chain as well as branched carbon chains and one or more sites of unsaturation. The alkynyl portion of the alkynyl, alkynoyloxymethyl, alkynylsulfonamido, alkynyloxy, substituents include both straight chain as well as branched carbon chains and one or more sites of unsaturation. Carboxy is defined as a -CO₂H radical. Carboalkoxy of 2-7 carbon atoms is defined as a -CO₂R" radical, where R" is an alkyl radical of 1-6 carbon atoms. Carboalkyl is defined as a -COR" radical, where R" is an alkyl radical of 1-6 carbon atoms. Alkanoyloxy is defined as a -OCOR" radical, where R" is an alkyl radical of 1-6 carbon atoms. Alkanoyloxymethyl is defined as R"CO₂CH₂- radical, where R" is an alkyl radical of 1-6 carbon atoms. Alkoxymethyl is defined at R"OCH2- radical, where R" is an alkyl radical of 1-6 carbon atoms. Alkylsulphinyl is defined as R"SO- radical, where R" is an alkyl radical of 1-6 carbon atoms. Alkylsulphonyl is defined as R"SO₂- radical, where R" is alkyl radical of 1-6 carbon atoms. Alkylsulfonamido, alkenylsulfonamido, alkynylsulfonamido are defined as R"SO₂NH- radical, where R" is an alkyl radical of 1-6 carbon atoms, an alkenyl radical of 2-6 carbon atoms, or an alkynyl radical of 2-6 carbon

10

15

20

25

30

atoms, respectively. N-alkylcarbamoyl is defined as R"NHCO- radical, where R" is an alkyl radical of 1-6 carbon atoms. N,N-dialkylcarbamoyl is defined as R" R'NCO- radical, where R" is an alkyl radical of 1-6 carbon atoms, R' is an alkyl radical of 1-6 carbon atoms and R', and R" may be the same or different. When X is substituted, it is preferred that it is mono-, di-, or tri-substituted, with monosubstituted being most preferred. It is preferred that of the substituents, R₁, R₂, R₃ and R₄ at least one is hydrogen and it is most preferred that two or three be hydrogen. An azacycloalkyl-N-alkyl substituent refers to a monocyclic heterocycle that contains a nitrogen atom on which is substituted a straight or branched chain alkyl radical. A morpholino-N-alkyl substituent is a morpholine ring substituted on the nitrogen atom with a straight or branch chain alkyl radical. A pipeazino-N-alkyl substituent is a piperazine ring substituted on one of the nitrogen atoms with a straight or branch chain alkyl radical. A N-alkyl-piperidino-N-alkyl substituent is a piperidine ring substituted on one of the nitrogen atoms with a straight or branched chain alkyl group and on the other nitrogen atom with a straight or branch chain alkyl radical.

When any group contains an alkyl portion, the alkyl portion contains preferably 1-6 carbon atoms, more preferably 1-4 carbon atoms, particularly methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl or tert-butyl. When any group contains an alkenyl or alkynyl portion, the alkenyl or alkynyl portion contains preferably 2-6 carbon atoms, more preferably 2-4 carbon atoms.

The compounds of this invention may contain an asymmetric carbon; in such cases, the compounds of this invention cover the racemate and the individual R and S entantiomers, and in the case were more than one asymmetric carbon exists, the individual diasteromers, their racemates and individual entantiomers.

Examples of substituents for aryl groups R⁹ or optional substituents for carbocyclic or heterocyclic groups R⁹ include one or more groups selected from hydroxy; halo; nitro; cyano; carboxy; C₁₋₆alkoxy; C₁₋₆alkyl; C₂₋₆alkenyl; C₂₋₆alkynyl; C₂₋₆alkenyloxy; C₂₋₆alkynyloxy; C₃₋₆cycloalkyl; amino; mono- or di-C₁₋₆alkyl amino; heterocyclyl optionally substituted with C₁₋₆alkyl or oxo; C(O)R^a, C(O)OR^a, S(O)_dR^a; NR^aC(O)R^b; C(O)NR^aS(O)_dR^b, C(O)NR^aR^b; NR^aC(O)NR^bR^c; NR^aS(O)_dR^b or N(S(O)_dR^b)S(O)_dR^c where d is 0, 1 or 2 and R^a, R^b and R^c are independently selected from hydrogen, C₁₋₆alkyl, aryl, C₃₋₆cycloalkyl or heterocylcyl, and wherein any alkyl, alkenyl or alkynyl group

10

15

20

25

30

or moiety contained within the substituent one R^9 may themselves be optionally substituted with one or more groups selected from hydroxy; cyano; nitro; halo; carboxy; carboalkoxy of 2-7 carbon atoms, C_{3-6} cycloalkyl, heterocyclyl optionally substituted with C_{1-6} alkyl or oxo; $C(O)R^d$, $C(O)OR^d$ NR^dR^e , $S(O)_e$ R^d , $NR^dC(O)R^e$; $C(O)NR^dR^e$;

NR^dC(O)NR^eR^f; NR^dS(O)_eR^e where e is 0, 1 or 2 and R^d, R^e and R^f are independently selected from hydrogen or C₁₋₆alkyl optionally substituted with one or more groups selected from hydroxy; cyano; nitro; halo; carboxy; carboalkoxy of 2-7 carbon atoms, C₃₋₆cycloalkyl, heterocyclyl optionally substituted with C₁₋₆alkyl or oxo; C(O)R^g, C(O)OR^g NR^gR^h, S(O)_e R^g, NR^hC(O)R^g; C(O)NR^gR^h; NR^gC(O)NR^hRⁱ; NR^gS(O)_eR^h where e is as defined above and R^g, R^h and Rⁱ are independently selected from hydrogen or C₁₋₆alkyl. Alternatively, two substituents on adjacent atoms may be joined to form the second ring of a bicyclic ring system wherein the said second ring is optionally substituted with one or more of the groups listed above for R^g and optionally contains one or more heteroatoms.

In some embodiments, the level of substitution on the group R⁹ is a chain substituted with complex. Thus, for example, a substituent may comprise an substituted alkyl chain which is optionally interposed with heteroatoms such as groups of subformula (i)

$$-X^a-R^{70}-(X^b-R^{71})_a-(X^c)_s-R^{72}$$
 (i)

where X^a , X^b and X^c are independently selected from any of the groups listed above for X^t ,

R⁷⁰ and R⁷¹ are independently selected from C₁₋₆alkylene, C₂₋₆alkenylene or C₂₋₆alkynylene groups any of which may be optionally substituted with hydroxy; cyano; nitro; halo; carboxy, carboalkoxy of 2-7 carbon atoms or C₃₋₆cycloalkyl;

R⁷² is hydrogen or an C₁₋₆alkyl, C₂₋₆ alkenyl or C₂₋₆alkynyl group any of which may be optionally substituted with hydroxy; cyano; nitro; halo; carboxy or C₃₋₆cycloalkyl;

and q and s are independently $\ 0$ or $\ 1$.

Preferably R^9 is an optionally substituted alkoxy group and most preferably, R^9 is a substituted alkoxy group.

A particular example of compounds of formula (I) are compounds of formula (IA) which are compounds of formula (I) as defined above provided that R^7 is a group $(CH_2)_m R^9$ where m is 0,or an integer of from 1-3 and R^9 is a substituted aryl or substituted cycloalkyl ring of up to 10 carbon atoms, wherein the substituents comprise at

least one alkoxy group of 1-6 carbon atoms and optionally one or more further substituents, or R^9 is a heterocyclic ring containing 1 or 2 oxygen atoms and optionally one or more substituents, and where R^1 , R^2 , R^3 or R^4 are a group R^{13} - X^1 -(CH₂)_x wherein x is 0 to 3, X^1 represents -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁴CO-, SO₂NR¹⁶-, -NR¹⁷SO₂- or -NR¹⁸- (wherein R^{14} , R^{15} , R^{16} , R^{17} , R^{18} and R^{13} are as defined above).

Suitable examples of groups Y are -NH-. Suitably X is oxygen.

Preferably n is 0.

Particular examples of groups R⁹ include phenyl or cycloalkyl of from 3-8 and preferably of 6 carbon atoms which are substituted at the position alpha with a alkoxy group, in particular methoxy.

When R⁹ is subsituted phenyl or cycloalkyl, m is preferably 0.

Examples of heterocyclic rings R^9 include 3-7 membered rings, up to two of which may be oxygen atoms. Such groups include:

15

20

5

10

where each R^{65} is independently selected from hydrogen or C_{1-6} alkyl and especially methyl. In such compounds, m is suitably 1, 2 or 3.

Other examples of heterocyclic groups R^9 include pyridyl, thiazolyl, pyrazinyl, pyrimidinyl, oxadiazole.

Suitable further substituents for R^7 include those listed above for pyridyl, pyrimidinyl and phenyl groups R^6 .

Thus a preferred sub-group of compounds of formula (I) are compounds of formula (II)

10

15

$$R1$$
 $R2$
 $R3$
 $R4$
 $R4$
 $R1$
 $R4$
 $R67$
 $R66$
 $R66$
 $R67$
 $R67$

where R¹, R², R³ and R⁴ are as defined above and R⁶⁶ is C₁₋₆ alkyl in particular methyl and R⁶⁷ is selected from hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, and benzoylamino.

Suitably R^{66} is C_{1-6} alkyl such as methyl. Preferably however it is a substituted C_{1-6} alkyl group, wherein the substitutents are selected from hydroxy, NR^dR^e , $S(O)_eR^d$, $NR^dC(O)R^e$; $C(O)NR^dR^e$; $NR^dC(O)NR^eR^f$; $NR^dS(O)_eR^e$ where e, R^d , R^e and R^f are as defined above.

Preferably R⁶⁷ is hydrogen.

Examples of preferred groups for R¹, R², R³ and R⁴ are set out in WO 98/43960.

Preferably x is 0. Conveniently R¹³ is selected from one of the following sixteen groups:

1) C₁₋₅alkyl which may be unsubstituted or substituted with one or more fluorine atoms, or

C₂₋₅alkyl which may be unsubstituted or substituted with one or more groups selected from hydroxy and amino;

- 2) C_{2-3} alkyl X^2 COR¹⁹ (wherein X^2 is as defined hereinbefore and R^{19} represents -NR²¹R²²-or -OR²³- (wherein R^{21} , R^{22} and R^{23} which may be the same or different each represents hydrogen, C_{1-2} alkyl or C_{1-2} alkoxyethyl));
- 3) C₂₋₄alkylX³R²⁴ (wherein X³ is as defined hereinbefore and R²⁴ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear one or two substituents selected from oxo, hydroxy, halogeno and C₁₋₃alkoxy and which cyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃hydroxyalkyl and C₁₋₃alkoxy);
- 4) C₂₋₃alkylX⁴C₂₋₃alkylX⁵R³⁰ (wherein X⁴ and X⁵ are as defined hereinbefore and R³⁰ represents hydrogen or C₁₋₃alkyl);
 - 5) C_{1-5} alkyl R^{70} (wherein R^{70} is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C_{1-5} alkyl through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C_{1-3} alkyl, C_{1-3} hydroxyalkyl and C_{1-3} alkoxy) or C_{2-5} alkyl R^{71} (wherein R^{71} is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to C_{2-5} alkyl through a nitrogen atom and which heterocyclic group may bear one or two substituents selected
- 20 from oxo, hydroxy, halogeno, C_{1-3} alkyl, C_{1-3} hydroxyalkyl and C_{1-3} alkoxy);
 - 6) $(CH_2)_q X^6 R^{37}$ (wherein X^6 is as defined hereinbefore; q is an integer from 0 to 4 if X^6 is a direct bond and q is 0, 2 or 3 if X^6 is other than a direct bond; and R^{37} is a phenyl group, a pyridone group or a 5 or 6 membered aromatic heterocyclic group with 1 to 3 heteroatoms selected from O, N and S, of which preferably one is N, which phenyl group, pyridone
- group or aromatic heterocyclic group may be substituted as hereinbefore defined, advantageously substituted with up to 2 substituents as hereinbefore defined, more preferably substituted with one substituent selected from the group of substituents as hereinbefore defined);
 - 7) C₄₋₅alkenylR⁷² (wherein R⁷² represents R⁷⁰ or R⁷¹ as defined hereinbefore);
- 30 8) C₄₋₅alkynylR⁷² (wherein R⁷² represents R⁷⁰ or R⁷¹ as defined hereinbefore);

WO 00/68201 12

9) X⁷R⁴⁷ (wherein X⁷ is as defined hereinbefore and R⁴⁷ represents C₁₋₃alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino);

- 10) C₃₋₅alkenylR³⁷ (wherein R³⁷ is as defined hereinbefore);
- 11) C₃₋₅alkvnvlR³⁷ (wherein R³⁷ is as defined hereinbefore); 5
 - 12) C₄₋₅alkenylX⁸R³⁷ (wherein X⁸ and R³⁷ are as defined hereinbefore);
 - 13) C_{4-s}alkynylX⁹R³⁰ (wherein X⁹ and R³⁰ are as defined hereinbefore);
 - 14) C₁₋₃alkylX¹⁰C₁₋₃alkylR³⁷ (wherein X¹⁰ and R³⁷ are as defined hereinbefore);
 - 15) R³⁶ (wherein R³⁶ is as defined hereinbefore); and

15

- 16) C₁₋₃alkylX¹¹C₁₋₃alkylR³⁶ (wherein X¹¹ and R³⁶ are as defined hereinbefore). 10 Advantageously R¹³ is selected from one of the following eleven groups:
 - 1) C₁₋₄alkyl which may be unsubstituted or substituted with one or more fluorine atoms, or
 - C₂₋₄alkyl which may be unsubstituted or substituted with one or two groups selected from hydroxy and amino;
 - 2) C₂₋₃alkylX²COR¹⁹ (wherein X² is as defined hereinbefore and R¹⁹ represents -NR²¹R²²or -OR²³- (wherein R²¹, R²² and R²³ which may be the same or different each represents hydrogen, C₁₋₂alkyl or C₁₋₂alkoxyethyl));
- 3) C₂₋₃alkylX³R²⁴ (wherein X³ is as defined hereinbefore and R²⁴ is a group selected from C₁₋₃alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X³ 20 through a carbon atom and which C₁₋₃alkyl group may bear one or two substituents selected from oxo, hydroxy, halogeno and C1-2alkoxy and which cyclopentyl, cyclohexyl, pyrrolidinyl or piperidinyl group may carry one substituent selected from oxo, hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂hydroxyalkyl and C₁₋₂alkoxy);
- 4) C_{2-3} alkyl X^4C_{2-3} alkyl X^5R^{30} (wherein X^4 and X^5 are as defined hereinbefore) and R^{30} 25 represents hydrogen or C₁₋₂alkyl);
 - 5) C₁₋₄alkylR⁷⁰ (wherein R⁷⁰ is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to C1-4alkyl through a carbon atom and which group may carry one or two
- substituents selected from oxo, hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂hydroxyalkyl and C₁. 30 2alkoxy) or C2-4alkylR⁷¹ (wherein R⁷¹ is a group selected from morpholino, thiomorpholino, pyrrolidin-1-yl, piperazin-1-yl and piperidino which group may carry one

- or two substituents selected from oxo, hydroxy, halogeno, C_{1-2} alkyl, C_{1-2} hydroxyalkyl and C_{1-2} alkoxy); and
- 6) $(CH_2)_q X^6 R^{37}$ (wherein X^6 is as defined hereinbefore; q is an integer from 1 to 3 if X^6 is a direct bond and q is 2 or 3 if X^6 is other than a direct bond; and R^{37} is a phenyl group, a
- pyridone group or a 5 or 6 membered aromatic heterocyclic group with 1 to 2 heteroatoms selected from O, N and S, of which preferably one is N, which phenyl group, pyridone group or aromatic heterocyclic group may be substituted as hereinbefore defined, preferably substituted with one substituent selected from hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂alkoxy, C₁₋₂hydroxyalkyl, C₁₋₂hydroxyalkoxy, carboxy, cyano, -CONR⁴³R⁴⁴ and -
- NR⁴⁵COR⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen or C₁₋₂alkyl));
 - 7) C₄₋₅alkenylR⁷¹ (wherein R⁷¹ is as defined hereinbefore);
 - 8) C₄₋₅alkynylR⁷¹ (wherein R⁷¹ is as defined hereinbefore);
 - 9) C_{1-3} alkyl X^{10} C_{1-3} alkyl R^{37} (wherein X^{10} and R^{37} are as defined hereinbefore);
- 15 10) R³⁶ (wherein R³⁶ is as defined hereinbefore); and
 - 11) C_{1-3} alkyl $X^{11}C_{1-3}$ alkyl R^{36} (wherein X^{11} and R^{36} are as defined hereinbefore). Preferably R^{13} is selected from one of the following nine groups:
 - 1) C₁₋₃alkyl which may be unsubstituted or substituted with one or more fluorine atoms, or
- 20 C₂₋₃alkyl which may be unsubstituted or substituted with one or two groups selected from hydroxy and amino;
 - 2) 2-(3,3-dimethylureido)ethyl, 3-(3,3-dimethylureido)propyl, 2-(3-methylureido)ethyl, 3-(3-methylureido)propyl, 2-ureidoethyl, 3-ureidopropyl, 2-($\underline{N},\underline{N}$ -dimethylcarbamoyloxy)ethyl, 3-($\underline{N},\underline{N}$ -dimethylcarbamoyloxy)propyl, 2-(\underline{N} -
- 25 methylcarbamoyloxy)ethyl, $3-(\underline{N}$ -methylcarbamoyloxy)propyl, 2-(carbamoyloxy)ethyl, 3-(carbamoyloxy)propyl;
 - 3) C_{2-3} alkyl X^3R^{24} (wherein X^3 is as defined hereinbefore and R^{24} is a group selected from C_{1-2} alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X^3 through a carbon atom and which C_{1-2} alkyl group may bear one or two substituents
- selected from oxo, hydroxy, halogeno and C₁₋₂alkoxy and which cyclopentyl, cyclohexyl, pyrrolidinyl or piperidinyl group may carry one substituent selected from oxo, hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂hydroxyalkyl and C₁₋₂alkoxy);

- 4) C_{2-3} alkyl X^4C_{2-3} alkyl X^5R^{32} (wherein X^4 and X^5 are as defined hereinbefore) and R^{30} represents hydrogen or C_{1-2} alkyl);
- 5) C₁₋₂alkylR⁷⁰ (wherein R⁷⁰ is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to C₁₋₂alkyl through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂hydroxyalkyl and C₁₋₂alkoxy) or C₂₋₃alkylR⁵⁹ (wherein R⁵⁹ is a group selected from morpholino, thiomorpholino, piperidino, piperazin-1-yl and pyrrolidin-1-yl which group may carry one or two substituents selected
- 6) (CH₂)_qX⁶R³⁷ (wherein X⁶ is as defined hereinbefore; q is an integer from 1 to 3 if X⁶ is a direct bond and q is 2 or 3 if X⁶ is other than a direct bond; and R³⁷ is a group selected from phenyl, a pyridone group, pyridyl, imidazolyl, thiazolyl, thiazolyl and pyridazinyl, preferably selected from phenyl, a pyridone group, pyridyl, imidazolyl, thiazolyl and triazolyl which group may be substituted with one substituent selected from hydroxy, halogeno, C₁₋₂alkyl, C₁₋₂alkoxy, C₁₋₂hydroxyalkyl, C₁₋₂hydroxyalkoxy, carboxy, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶ are as defined hereinbefore);

from oxo, hydroxy, halogeno, C_{1-2} alkyl, C_{1-2} hydroxyalkyl and C_{1-2} alkoxy);

- 7) C₁₋₃alkylX¹⁰C₁₋₃alkylR³⁷ (wherein X¹⁰ and R³⁷ are as defined hereinbefore);
- 8) R³⁶ (wherein R³⁶ is as defined hereinbefore); and
- 9) C₁₋₃alkylX¹¹C₁₋₃alkylR³⁶ (wherein X¹¹ and R³⁶ are as defined hereinbefore).

 More preferably R¹³ represents 2-methylthiazol-4-ylmethyl, 2-acetamidothiazol-4-ylmethyl, 1-methylimidazol-2-ylmethyl, 4-pyridylmethyl, 2-(4-pyridyl)ethyl, 3-(4-pyridyl)propyl, 2-((N-(1-methylimidazol-4-ylsulphonyl)-N-methyl)amino)ethyl, 2-((N-(3-morpholinopropylsulphonyl)-N-methyl)amino)ethyl, 2-((N-methyl-N-4-
- pyridyl)amino)ethyl, 2-(4-oxidomorpholino)ethyl, 3-(4-oxidomorpholino)propyl, 2-(4-oxo-1,4-dihydro-1-pyridyl)ethyl, 3-(4-oxo-1,4-dihydro-1-pyridyl)propyl, methyl, ethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-(N,N-dimethylsulphamoyl)ethyl, 2-(N-methylsulphamoyl)ethyl, (1,3-dioxolan-2-yl)methyl, 2-(1,3-dioxolan-2-yl)ethyl, 2-(2-methoxyethylamino)ethyl, 2-(2-hydroxyethylamino)ethyl, 3-
- 30 (2-methoxyethylamino)propyl, 3-(2-hydroxyethylamino)propyl, 2-(1,2,4-triazol-1-yl)ethyl, 2-(1,2,4-triazol-4-yl)ethyl, 3-(1,2,4-triazol-1-yl)propyl, 3-(1,2,4-triazol-4-yl)propyl, 2-(4-pyridyloxy)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridylamino)ethyl, 3-(4-pyridyloxy)propyl, 2-(4-pyridyloxy)propyl, 2-(4-pyridyl

30

pyridylamino)propyl, 2-(2-methylimidazol-1-yl)ethyl, 3-(2-methylimidazol-1-yl)propyl, 2-(5-methyl-1,2,4-triazol-1-yl)ethyl, 3-(5-methyl-1,2,4-triazol-1-yl)propyl, morpholino, \underline{N} methylpiperazinyl, piperazinyl, 2-(N,N-dimethylamino)ethyl, 3-(N,Ndimethylamino)propyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3piperidinopropyl, 2-(piperazin-1-yl)ethyl, 3-(piperazin-1-yl)propyl, 2-(pyrrolidin-1-5 yl)ethyl, 3-(pyrrolidin-1-yl)propyl, 2-methoxyethyl, 3-methoxypropyl, 2-(imidazol-1yl)ethyl, 2-(1,2,3-triazol-1-yl)ethyl, 2-(1,2,3-triazol-2-yl)ethyl, 3-(imidazol-1-yl)propyl, 3-(1,2,3-triazol-1-yl)propyl, 3-(1,2,3-triazol-2-yl)propyl, 2-thiomorpholinoethyl, 3thiomorpholinopropyl, 2-(1,1-dioxothiomorpholino)ethyl, 3-(1,1dioxothiomorpholino)propyl, 2-(2-methoxyethoxy)ethyl, 2-(4-methylpiperazin-1-yl)ethyl, 10

3-(4-methylpiperazin-1-yl)propyl, 3-(methylsulphinyl)propyl, 3-(methylsulphonyl)propyl, 2-(methylsulphinyl)ethyl, benzyl, 2-sulphamoylethyl or 2-(methylsulphonyl)ethyl.

Especially R¹³ represents methyl, ethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 3-methoxypropyl, 2-(methylsulphinyl)ethyl, 2-(methylsulphonyl)ethyl, 2-(N,N-dimethylsulphamoyl)ethyl, 2-(N-methylsulphamoyl)ethyl, 2-sulphamoylethyl, 2-(N,N-dimethylamino)ethyl, 3-(N,N-dimethylamino)ethyl, 3-(N,N-dimet dimethylamino) propyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3piperidinopropyl, 2-(piperazin-1-yl)ethyl, 3-(piperazin-1-yl)propyl, 2-(pyrrolidin-1yl)ethyl, 3-(pyrrolidin-1-yl)propyl, (1,3-dioxolan-2-yl)methyl, 2-(1,3-dioxolan-2-yl)ethyl, 2-(2-methoxyethylamino)ethyl, 2-(2-hydroxyethylamino)ethyl, 3-(2-20 methoxyethylamino)propyl, 3-(2-hydroxyethylamino)propyl, 2-methylthiazol-4-ylmethyl, 2-acetamidothiazol-4-ylmethyl, 1-methylimidazol-2-ylmethyl, 2-(imidazol-1-yl)ethyl, 2-(1,2,3-triazol-1-yl)ethyl, 2-(1,2,3-triazol-2-yl)ethyl, 2-(1,2,4-triazol-1-yl)ethyl, 2-(1,2,4-triazol-1 triazol-4-yl)ethyl, 4-pyridylmethyl, 2-(4-pyridyl)ethyl, 3-(4-pyridyl)propyl, 3-(3pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-pyridylamino)ethyl, or 2-(4-oxo-1,4-25 dihydro-1-pyridyl)ethyl.

More especially R¹³ represents methyl, ethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 3-methoxypropyl, 2- $(methyl sulphinyl) ethyl, 2-(methyl sulphonyl) ethyl, 2-(\underline{N},\underline{N}-dimethyl sulphamoyl) ethyl, 2-(\underline{N}-dimethyl sulphamoyl) ethyl, 2-(\underline{$ methylsulphamoyl)ethyl, 2-sulphamoylethyl, 2-(N,N-dimethylamino)ethyl, 3-(N,Ndimethylamino)propyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3piperidinopropyl, 2-(piperazin-1-yl)ethyl, 3-(piperazin-1-yl)propyl, 2-(pyrrolidin-1-yl)ethyl, 3-(pyrrolidin-1-yl)propyl, (1,3-dioxolan-2-yl)methyl, 2-(1,3-dioxolan-2-yl)ethyl, 2-(2-methoxyethylamino)ethyl, 2-(2-hydroxyethylamino)ethyl, 3-(2-methoxyethylamino)propyl, 3-(2-hydroxyethylamino)propyl, 2-methylthiazol-4-ylmethyl, 2-acetamidothiazol-4-ylmethyl, 1-methylimidazol-2-ylmethyl, 2-(imidazol-1-yl)ethyl, 2-(1,2,3-triazol-1-yl)ethyl, 2-(1,2,3-triazol-2-yl)ethyl, 2-(1,2,4-triazol-1-yl)ethyl, 2-(1,2,4-triazol-4-yl)ethyl, 4-pyridylmethyl, 2-(4-pyridyl)ethyl, 3-(4-pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-pyridyl)propyl, benzyl, 2-(4-pyridyloxy)ethyl, 2-(4-p

In particular R¹ and R⁴ are suitably hydrogen.

Examples of preferred groups for R^2 include C_{1-6} alkoxy such as methoxy.

The group R^3 is suitably selected from hydrogen or C_{1-6} alkoxy.

Preferably both R^2 and R^3 are C_{1-6} alkoxy and are preferably methoxy.

A further preferred group for R^2 or R^3 is 3-morpholinopropyloxy.

Particular examples of compounds of formula (I) are listed in Tables 1, 2 and 3. In these tables "DMMPO" indicates a 1,6-dimethylmorpholinopropoxy group of formula:

15

5

10

"MPO" is morpholinopropoxy group of formula:

20

25

"MEO" is a morpholinoethoxygroup of formula:

and Me is CH₃

			R87	II:	I F			E E	Ξ ;	Ξ[:	H	ΞĮ:	Ξ ;		II.	= :	= :	
		• • •		E	I o	3 5	5 :	F	ΞĮ;	E	H	H	F	F	E	E	E	
			R ⁸⁵	H	H:	E	I)	Ξ :	E :	H	H	H	H	H	H	Ŧ	F	H
			R ⁸⁴	H	ΞĮ;	I :	Ξ	OMe	Me	H	H	H	H	H	H	田	H	H
			R ⁸³	H	H	E ;	F	H	H	H	H	Н	H	OMe	Н	OMe	H	ט
			R ⁸²	田	OMe	F	H	H	H	Н	OMe	Н	H	Н	Н	Н	Н	H
	R81	≫— % % %	R ⁸¹	Н	H	OMe	Н	Н	Н	OMe	Н	Н	ОМе	OMe	Н	Н	Н	ОМе
Table 1	R ⁸⁶	N N N N N N N N N N N N N N N N N N N	-	OMe	Н	Н	OMe	OMe	OMe	H	H	OMe	OMe	H	OCH ₂ (Me) ₂	CO ₂ Me	OMe	Н
	ш.		×	0	HZ.	0	0	0	0	0	0	0	0	0	0	0	0	0
		22 2	R ³ K3	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OCH,C,H,	OMe	OMe	OMe	OMe	OMe	OMe
			D2	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	MPO	OMe
			S.N.	- INO.	1	1 (~	7	- ~	, 9	0 1	\	0		2 =	1.1	12		15

\mathbb{R}^{87}	H	H	I		田	H	H	: =	=	Н	Н	Н	H	I		E	Н	Н	H	=		G	=
\mathbf{R}^{86}	H	=	F	:	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	н	П	=	=	H	Н	н	H		- F	Ľ	H	Н	田	: =	: =	E	E
R85	Н	I	=	;	H	Н	H		=	I	Н	H	F		= :	I	H	Н	H	: =	= =	F _	H
R84	Н	I	H	1	Н	Н	1		-	н	H	H	H	: =	I);	Ξ,	H	Н	Н		11	E	H
R ⁸³	H	=		11	Н	H		= =	E	Н	Н	Н	H		I		H	H	Ξ			I	Н
R ⁸²	I			<u> </u>	H	H			Ľ	Н	H	H	H	1 1	I		E	H		= =	= ;	耳 ———	H
R ⁸¹	H	11		Ľ	H	П	11	= =	I	Н	H	I		11	H	ш					□	I	I
R ⁸⁰	OMG	Olvie	OMe	OMe	OMe	OMo	Olvie	OMe	OMe	ОМе	OMe	OMe	OMG	Oivie	OMe	OMe	OMe	OMe	OIME	Oivie	OMe	ОМе	OMe
>	4			0					0	0	1				0	0				0	0	0	0
n3	N.	MPO	OMe	ОМе	OMo	OMIC	OMe	OMe	ОМе	ОМе	OME	Oivie	OMe	OMe	HO	ОМе	OMO	ONG	UMe	OMe	OMe	O(CH ₂) ₃ —N	ОМе
75	K-	OMe	MPO	O(CH ₂) ₃ —N		MIFU	O(CH2)3N(Me)2	MPO	O(CH ₂) ₂ —N N—CH ₃	O(CH ₂) ₂ -N		MPO	O(CH ₂) ₂ N(Me) ₂	НО	OMe	N H J O	2 .1.2	2-tniazolyloxy	2-pyrimidinyloxy	2-pyridyloxy	OMe	ОМе	0CH ₂ N = 0
-	No.	16	17	18	-	6	20	21	22	23		24	25	56	27	28		67	30	31	32	33	34

R87	Н	<u> </u>	ı l	— H		Н	H	H	田	田田	H	=	H	田	H
R ⁸⁶ R	-		 E	 H	_	 #	H	ш	H	H	Me	I	H	H	H
R85 R	Н	\dashv	H	H		<u> </u>	H	H	H	H		H	Н	H	H
R ⁸⁴ R	-		H	H		 ш	— ————————————————————————————————————	Œ	I	H	H	Ξ	Н	Н	Н
R83	-		H	H		Н	H	Н	H	H	Н	Ξ	Н	OMe	H
R ⁸²	E		H	H		Н	H	H	王	H	H.	Н	Н	H	Н
R ⁸¹	I I		ш	Н		Н	Н	H	Н	H	Н	H	OMe	OMe	H
D80	OMe		ОМе	OMe	-	ОМе	ОМе	ОМе	ОМе	OMe	OMe	ОМе		- T	OCH ₂ Me
>	40		0	0		0	0	0	0			0	c		
	×	O(CH ₂) ₃ —N NH	O(CH ₂) ₃ —N)	O(CH ₂) ₃ —N	O(CH ₂) ₃ —N N(CH ₂) ₂ OH	N N N N N N N N N N N N N N N N N N N			O(CII) OMe	O(CI12)20MC	O(CH ₂) ₂ —N	O/CH.), OMe	O(CH2)20Me	O(CH ₂) ₂ OMe
	R ²	Oivie	ОМе	OMe		ОМе	ОМе	ОМе	ОМе	SWO (110)/O	O(CH ₂) ₂ OIME	OMe	OVOLLY OM6	O(CH2)20IMC	O(CH ₂) ₂ OIMe O(CH ₂) ₂ OMe
	No.		36	37		38	39	40	41		24 5	44	7.6	C4	40

							 1		_						\neg
R ⁸⁷	I	H	푀	H	田	H	H	H	田	H	Н	H	H	Н	H
R ⁸⁶	н	H	Н	Н	Н	H	H	H	Me	H	Н	I	H	Н	H
R85	Ξ	Н	Н	Н	Н	Н	Н	Н	Н	П	I	Ш	H	Н	Н
R ⁸⁴	Н	H	Н	H	H	Н	Н	H	H	H	H	E	H	H	Н
R ⁸³	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	H	H	Н
R ⁸²	H	H	H	Н	Н	H	H	Н	Н	Н	E	E	E	H	H
R81	Н	H	Н	H	H	Н	H	H	H H	Н	H	H	H	Н	Н
R ⁸⁰	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OCH, Me	OMe	OMe	OMe	ОМе	ОМе	OCH ₂ Me
×	0	C				0	 10			0	0	0	0	0	0
D3	O(CH ₂)—(O ₂ (CH ₃),	OMo	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	НО
D.2	OMe	M HO CO HO	OCH2CO2CH2MC	OCH2CF3	OCH2CH=CH2	$0CH_2$ $0CH_2$ $0CH_2$	חט"ט ווטט	OCTIPE ONE	OCH2CH2OINIE	OCH2CO—N	OCH2CO—N NCH3	OCH ₂ C(O)NH CH ₂ CH=CH ₂	OCH ₂ C(O)NH-	OCH ₂ C(O)NH-	(CH ₂) ₂ Uivie OMe
;	No.	5	449	202	12	53	17	+	23	57	58	59	09	19	62

R ⁸⁷	Н	H	Н	田	H	н	Н	Н	H	H	H	Н	H	田	H	H	H	田	H	H	ت ات	H
R ⁸⁶	H	Н	Н	H	田	H	Н	Н	Н	H	H	H	田	되	H	コ	F	D	H	Н	H	H
R85	H	Н	Н	H	H	Ξ	Н	Н	Н	Н	H	Н	H	H	H	H	H	H	Н	Н	D	H
R84	Н	Н	Н	Н	Н	H	Н	H	Н	Н	Н	OMe	Н	Н	Н	Н	Н	Н	Н	H	Н	田
R	H	H	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
R ⁸²	H	H	Н	Н	Н	H	H	H	Н	H	Н	H	CI	NO_2	ഥ	H	C	Me	Н	Н	CI	Н
R ⁸¹	H	Н	H	H	Н	Н	OMe	Н	H	H	H	Н	Н	Н	Н	Н	Н	I	Н	Н	Н	CO ₂ Me
R80	OMe	ОМе	OMe	OMe	OMe	ОМе	H	OCH, Me	OMe	OMe	OMe	[+	H	Н	Į.	Me	Н	H	[II.	Me	Н	Н
×	0	0			0	0	C			C	C	C	0	0	0	S	S	0	C	0	0	∞
D3	OCH ₂ NCH ₃	OCH ₂	OCU.CO.CH.Me	OCH-CO-H	HJ=J*HJJ	OCH2CO-N	y MPO	OdM	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе
D.2	OMe	ОМе	940	OMe	OMe	OMe	OMo	OMO	NITCO CHOME).	NH.	NHSO, Me	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe
	63	64		59	00	89	0.7	90	2 5	1/2	72	C/	75	76	77	78	70	80	00	63	83	84

R87	Н	H	H	H	H	I			= :	F	田	Н	H	Ħ	= =	= ;	I	H	Н	H	H		= =		I		[]:	Ŧ	F	E
R ⁸⁶	Н	E	H	H	I	=			= :		Н	Н	H	I	= =	E	H	H	Н	H	Н	: =	- -	Ξį:	I	1	드 :		H	H
R ⁸⁵	Н	H	H	I	F		= =	= =	I	H	Н	Н	Н	П	= =	F	H	H	Н	H	П	11	<u> </u>	H ;	Me	146	Me	E	E	H
R84	H	H	H		H			ΞĮ;	H	Н	H	H	I			F	H	Н	Н	H	Ξ		ц :	E :	H	1			H	H
R ⁸³	H	I	H	=		= =		H	E	CI	Н	H	H	: :	H :	H	Н	Н	H	H	I		H ;	F	H		I	H	Н	Н
R ⁸²	I		=	= =	= =	= =	= :	F	H	Н	Н	H	H		=	H	Н	Н	H	H	P		Ξ[;	H	Ξ	;	Ŧ	H	Н	H
R ⁸¹			11			DI	.T.	[C]	H	Н	II	NHC(O)Me	H(2)2222		H	H	CF_3	H	NHCH, Me	H	11		N(CH ₂ Me) ₂	CS	NHC(0)	Mic	S	OCF ₂ .CHF ₂	H	Н
В80	CNAs	SIME		II c	br	T.	H	Н		CI	10	5 1	III	UH	C(O),CH,C6Hs	OCF ₃	H	C(0),H	H	OMe	OIMIC	C(U) ₂ Me		Н				H	ОСН,ССН	CN
>	< 0						0	0	0	c					0	0	C	C			7		0	0	0		0	0	0	0
n3	¥	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMO	OIMIC	OMe	OMe	OMe	OMe	OMe	OMe	OMG	Olvie	Oivie	OMe	OMe	OMe	OMe		OMe	OMe	OMe	ОМе
65	× -	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMO	OME	OMe	OMe	OMe	OMe	OMe	OMo	OME	OMe	OMe	C00H	OMe	OMe	OMe	OMe		OMe	HO	HO	HO
	No.	85	98	87	88	68	6	10	3 3	7,6	9.5	\$	95	96	97	00	9	20,	99	[0]	102	103	104	105	106		107	108	100	110

R ⁸⁷	Н	=	= ;	Ξ	H	,	Н	Н	Н	H		Н	Н	Ħ	= =	Ξ	Н	Н	Н	Н	Н		Н	Н	I	= =	Ξ[:	\exists
R ⁸⁶	H			国	田	-	Н	Н	Н	Н		Н	Н		= ;	习	Н	Н	Н	H	Н		Н	H	I	= =	Ξ;	H
R85	Ξ	: =		F	H		H	H	Н	H		Н	Ξ	=	= :		Н	H	Н	Н	Ξ		Н	H		= =	I	H
R84	I	1 1		Н	H		H	Н	Н	Н	ı	Н	I	=		Н	Н	Н	Н	Н	Н		Н	Н		G ;	E	H
R ⁸³	Ξ	- F	I	Н	H		H	H	H	H		Н	I	1 -	F	Н	Н	Н	H	H	Н	•	H	Н	1	= ;	H	H
R ⁸²				H	H	-,* -,-	H		H	Ξ	•	H	I	= =	Ξ	H	H	H	H	H	П	1 .	H	I			$\equiv \mid$	H
R ⁸¹			$N(Me)_2$	OCF2CF2H	Н		OCF, CF, H	H	NH(Me)	OCE, CE, H	177177170	OCF, CF, H	77.55		I	I	H		H	H	П	4	H		II	I.	Н	Н
D80	N N N N N N N N N N N N N N N N N N N	N(Me) ₂	Н	T	OCH2C=CH		П	CONH.	Н	11.	C .	1	11	OH	HO	OCH-CN	OCH, CH, OH	OCH, CN	HU, LH, OH	OCH, CH=CH,		OCH2CH-CH2	OCH, CH=CH,	OCH COMING	OCH2COINTIME	CN	CN	CN
>	<		0	C			-				<u> </u>				0	C)	C			0	0	0
5.5	X	OMe	OMe	HO	OMe	(7.60	OMe	OMe	OIME	OMe	710	Olvie	OMe	OMe	ОМе	OMo	OIME	IO	OII	UII	OMe	OMe	OIMIC	OMe	HO	OMe	OCH ₂ C≡CH
	K ²	OMe	OMo	OME	Olyle CH ₃	z		MPO	OMe	OMe	-z	(O(CH ₂) ₃ N(Me) ₂	MPO	O(CH,),N(Me),	7/2000 100	On	OH	OMe	OMe	OMe	Z Z Z O	(I VIV (IIO) O	O(CH ₂) ₃ N(Me) ₂	НО	OMe	OCH,C=CH	OMe
	No.		112	7117	113	†		115	116	117	118		119	120	121	121	771	123	124	125	126	127		128	129	130	131	132

R87	=	; ;	工	Н		田	Н	Н	H	Н	Н	H		=	: =		= ;	\pm	Н	Н	H	H	: =		1		H	
R ⁸⁶	H	: ;	H	Н		H	H	H	Н	Н	H	三	: =	=		= =		田	H	Н	H					Ę	H	
R85	I	=	田	Н		H	Н	Н	H	H	Ħ	H	: =	= =	= =		티	F	H	田	Ξ	Ξ	: =	E .	-	I	H	
R84	Ξ	=	Н	Н		H	Н	H	H	H	H	I	I		1	I F	F	Ħ	Н	H	H	I	11	E	;	I;	H	
R ⁸³	: =		Н	H		H	Н	Н	Н	H	Н	I			= =	E :	Ξ	Н	H	[T	I		1 1	E 	;	Η	F	
R 82	1 3	I	Н	Ξ		H	H	H	E	H	I		= =		= =	Ξ ;	=	H	H	I	=	= =		I		H	H	
180	M TITTLE	NHCH ₂ Me	NHCH ₂ Me	I	=	I	H		H		I	11		E F	I.	I.	OCF_2CF_2H	Н	H	T	1			I		H		1.1
D80	¥ :	H			Z-Z	S(O)Me	HU-HJ-HJOH	OCU.CH.OH	CN	S(O), We	3(0)21415	L L	OCH2CONHMe	OCH ₂ CONHMe		H	Н	[I.	4			OCH2CO2(CH2)2Me	OCH2CONH(CH2)2CI	OCH ₂ CONH(CH ₂) ₂ -	ЮН	OCH ₂ CONH(CH ₂) ₂ -	OCE.CE.H	UCI2CI211
;	X	0)								0	0	0	0	0	C			٥	0	0	0		0		2
3	2	O(CH,),OMe	OGIVI)	MITO	о Ме	OM	OMe	OMe	MPO	MPO	OMe	MPO	MPO	OMe	OMe	MPO	OMe	OMe	OMC	OIME	Olvle	НО	HO	НО		ОМе	Cert	MPO
	\mathbb{R}^2	O/CH) OMe	O(CFI2)2OINIC	OMe	OMe		OMe	MPO	OMe	OMe	OMe	OMe	OMe	MPO	OMe	OMe	OMe	OIVIC	OIME	OMe	OMe	ОМе	OMe	ОМе		ОМе		OMe
	No.	123	551	134	135		136	137	138	139	140	141	142	143	144	145	116	140	14/	148	149	150	151	152		153		154

																								_	
\mathbb{R}^{87}	Н	H		Н	H	H	Ξ	П		= =	$\pm $	피	田	Η	1		Η		I			= :	工	二	:
R ⁸⁶	H	E		H	H	F	: =	= =	= =	= :	되	E	Н	Н	1		H		I	11	= =	= :	エ	Ξ	
R85	Me	E		田	H	I			= =	= :	丰	F	Me	Н	7		Н		7	= =	E ;	Ξ ;		Н	
R84	Н	I		H	I	: =		<u> </u>			H	Н	Н	П	1		Н		1		۲);	F	H	F	=
R ⁸³	H	Ξ	•	I	I			= =		F	H	Н	Н	I	1		H		11	=	I)	H	H	I	
R ⁸²		=	1	H				I F	I :	F	ĬΤ	ഥ	Н	1	=		Н		-		H	H.		1	-
R ⁸¹	Н	NCONH.	Me	OCE.	П	11	E F		I)	H	Н	Н	Н	11	E		N//	2-Z	-	I	H	H	I	11	Ľ.
R ₈₀	Ĺ	11	Ľ	11	n CO M	CU2IME	ОСН2СН2ОН	1	OCH2CONHMe	OCF_3	H	ĹŢ.	2		Z O U F	Z		<u>-</u>		CH ₂ CONHMe	$CH_2CO_2(CH_2)_2Me$	OCH_2CO_2H	Z J		0-\ _z
>	4		<u> </u>					0	0	0	0	C			0					0	0	0	0		0
n3	N OII	HO	OMe		OMe	OMe	OMe	OMe	OMe	OMe	MPO	MPO	OW	MIFO	ОМе		110	OMe		MPO	MPO	MPO	ОМе		OMe
2.3	K -	OMe	OMe		OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMO	OIMIC	OMe	OMe			OMe		OMe	OMe	OMe	OMe		OMe
	No.	155	156		157	158	159	160	191	163	163	GI	104	165	166			167		168	691	170	171		172

R87	Н	Н	H	=	Н		н	Н	T		Ξ	I	H		正	Н	H	Н	
R ⁸⁶	Н	H	I	1	Н		H	H	Ħ		H	I	H		E	H	H	H	
R ⁸⁵	Н	F	H	11	H		Н	Н	I		H	Ξ	H		Ξ	E	H	王	
R84	Н	H	1	G	Н		田	H	I	1	H	H	H		Н	H		H	
R ⁸³	Н	H	n	Ľ	Н		Н	H		5	Н	田	H		I	H	E	田	
R ⁸²	Н	Ħ	11	I.	H		Н	H	-	Ľ	Н	Η	H		Η .	H	E	H	
R ⁸¹	I	I		I	H		Н	H	11	ij	Н	Н	H		Н	Н	H	H	
R ⁸⁰	CH,CO,H	VIIIOOMA	INHC(O)INIE	OCH ₂ CONH(CH ₂) ₂ - OH	OCU.CONH(CH ₂).		OCH ₂ CONH(CH ₂) ₂ -	OCH2CH2NHS(O)2-	Me	O(CH ₂) ₂ N(Me)CO N(CH ₂ Me) ₂	O(CH ₂) ₃ NHCOMe	O(CH ₂) ₃ NHCOCH-	(IME) ₂	N O O	O	O(CH ₂) ₂ NHCOCH-	Z	OCH, CH, NHSO, Me	001120112110021110
>	4			0	C	>	0	0		0	0	0	C	>	 0	0	0		5
D3	2	MPO	OMe	MPO		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DMMPO	MPO		MPO	MPO	MPO	VADO	O HAI	 MPO	MPO	ОМе	O. O.	OiMe
B 2	X.	OMe	OMe	ОМе	OMO	Olvie	ОМе	ОМе		ОМе	OMe	OMe		Oivie	OMe	ОМе	ОМе		OMe
	No.	173	174	175	72.	1/0	177	178		179	180	181	00,	781	183	184	185	,	186

R87	Н	Ħ	H	H	H	田	田	I	Ш	H	H
R ⁸⁶ R	Н	H		H.	Н	Н	\dashv		Н	H	H
R85 F	Н	Н	Н	I	Н	H	田	H	Ш ""	Н	I
R84	Н	H	Н	Ξ	Н	H	H	Н	I	Н	H
R ⁸³	Н	Н	Н	H	Н	Н	Н	Ħ	Н	Н	н
R ⁸²	Н	Н	Н	Н	H	H	Н	Н	#	H	Н
R ⁸¹	o	Н	Н	Н	H	Н	Н	Н	H	Me	Н
R ₈₀	H		Z	O N	O(CH,),NHS(O),Me	O(CH ₂) ₃ NHCOCH- (Me) ₂	O(CH ₂) ₃ NHS(O) ₂ Me	OCH ₂ CONH(CH ₂) ₂ - OH	O N SO ₂ CH ₃	Н	OMe
>	10	0	0	0	C	0	0		0	C	0
n3	OMe	ОМе	ОМе	ОМе	OMe	OMe	MPO	O N N	ОМе	OMe	N O
5.5	OMe	ОМе	ОМе	ОМе	OMO	OMe	OMo	ОМе	ОМе	OMo	OMe
-	No.	188	189	190	12	191	103	194	195	106	197

																
R ⁸⁷	Ħ	田	H	H	Н	H	H	H	Н	Н	Н	H			E	H
R86	H	H	Н	H	H	H	H	Н	Н	Н	H	H	\mathbb{H}	H		田
R85	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	H	H	Ξ	H	Н
R ⁸⁴	Н	Н	Н	H	H	ш	Н	H_	Н	H	Н	Н	H	H	H	Н
R ⁸³	Н	Н	Н	I	Н	E	H	H	I	Н	Н	H	H	Н	П	Н
R ⁸²	Н	H	H	H	E	Н	H	H	Н	H	Н	Н	Η.	H	H	Н
R ⁸¹	H	H	H	H	H	H	H	Н	H	H	H	H	Н	H	Ħ	H
R ⁸⁰	NHMe	NHCH, Me	N(SO,Me),	OCH ₂ C(O)NHCH ₂ -	OCH ₂ C(O)NHCH-	OCH ₂ C(O)NHCH ₂	OCH ₂ C(O)N(CH ₂ Me) C(O)NH(CH ₂) ₁ N(Me) ₂	Z D	Z Z	O(CH ₂) ₂ N(Me)C(O)N(CH ₂ Me) ₂	O(CH ₂) ₂ NHCOCH- (Me),	O(CH ₂) ₂ NHC(O)Me	(CH ₂) ₂ C(O)NHMe	(CH2)2C(O)NHS(O)2Me		(CH ₂) ₂ C(O)NHCH ₂ CHCH ₂
×	c			0	0	0	0	0	0	0	0	0	0	0	0	0
В3	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	ОМе	MPO	OMe	OMe	OMe	ОМе	ОМе
D ²	OMG	OME	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	ОМе
, N	. P.	86	199	401	402	403	404	405	406	407	408	409	410	411	412	413

											—т		-	—
R87	Н	Н	Н	Н	H	Н	Н	H	H	H	国	H		H
R ⁸⁶	H	Н	Н	H	Н	Н	Н	H	H	H	H	田	田	H
R85	Е	I	H	н	Н	Н	H	I	I	H	田	田	E	H
R ⁸⁴	H	Н	Н	Н	H	H	I	H	H	H	H	H	H	H
R ⁸³	Н	H	Н	Н	Н	H	H	H	I	Н	Н	Н	H	H
R ⁸²	田	Н	H	H	Н	Н	Н	H	E	H	H	Н	Н	H
R ⁸¹	Н	II	Н	H	NHCH ₂ Me	Н	H	H	ОМе	OCF2CF2H	Н	Н	Н	Н
R ⁸⁰	Z-Z	Z	N	Z-Z	H	T.	CN	ОМе	Н	H	OMe	OMe	OCH ₂ CH=CH ₂	OCH ₂ CONHMe
×	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Β3	OMe	ОМе	ОМе	ОМе	N-	N	N-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OMe	OMe	OMe	OMe	НО
n2	OMe	ОМе)Me	ОМе	ОМе	ОМе	ОМе	OMe	HO	OCH,C,H,	COOMe	OH	OMe
7	414	415	416	417	418	419	420	421	422	122	427	301	907	427

			· · · · · · · · · · · · · · · · · · ·					
	H	H	Ħ	H	Н	耳	工	I
\mathbf{R}^{86}	H	Η	H	H	Н	H	I	Ξ
\mathbb{R}^{85}	工	Н	Н	H	I	H	H	Ξ
R ⁸⁴	Н	Н	Н	Н	Н	Н	H	Ξ
R ⁸³	Н	Н	Н	Н	H	H	Н	T
R ⁸²	Н	Н	Н	Н	Н	H	H .	H
R ⁸¹	₹ o	Н	Н	ОМе	Н	Н	Н	_
R ⁸⁰	Н	OMe	NT O	Н	O N N N N N N N N N N N N N N N N N N N	HN CH		HN CH3
×	0	0	0	0	0	0	0	0
D ³	ОМе	OMe	OMe	N O	ОМе	ОМе	OMe	ОМе
D2	Z III	П	OMe	ОМе	OMe	ОМе	ОМе	OMe
	428	000	429	431	432	433	434	435

							,			
R ⁸⁷	Щ	H	Н	Н	Н	田	H	Н	H	H
\mathbf{R}^{86}	H	Н	н	Ħ	Н	Н	H	H	Н	H
R85	Н	Н	н	H	H	Н	Н	H	H	H
R ⁸⁴	Н	H	Н	Н	Н	H	Н	II	н	H
R83	H	H	H	H	H	Н	Н	Н	Н	H
\mathbb{R}^{82}	Н	H	Н	H	H	Н	H	H	H	H
R ⁸¹	H	Н	IZ =0	E C	O CH3	H	H	H	н	Н
R ⁸⁰	O CH	IX O	H	Н	Н	FO O	CH.	LZ CH	TN HO NI	N CH ₃
>	0	0	0	0	0	0	0	0	0	0
D3	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	OMe
5-2	OMe	ОМе	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе
	No. 436	437	438	439	440	441	442	443	444	445

R87	Н	Н	Н	Н	H	H	Ħ	H	H	H
\mathbb{R}^{86}	Н	Н	Н	H	Н	Н	Н	Н	H	田
R ⁸⁵	Н	口	Н	Н	Н	Щ	Н	Н	Н	H
R ⁸⁴	Н	Н	Н	Н	Н	Н	Н	H	Н	H
R ⁸³	H	H	Н	Н	Н	Н	Н	Н	Н	Н
R ⁸²	H	H	Н	Н	Н	Н	I	H	Н	Н
R ⁸¹	Ξ	Н	Н	=0 0	=0 0	=0 0	=0 0	=0 0	=0 0	₹ ¥
R ⁸⁰			N H	H	Н	Н	Н	Н	Н	Н
×	:0	0	0	0	0	0	0	0	0	0
D3	OMe	ОМе	ОМе	DMMPO	DMMPO	O \			DMMPO	DMMPO
D ²	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе
	446	447	448	449	450	451	452	453	454	455

										
R87	II .	Н	H	Н	Н	H	Н	H	H	H
\mathbf{R}^{86}	田	Н	П	H	Н	Н	Н	Н	Н	Ħ
R85	I	Н	H	H	H	H	Н	Н	Н	H
R ⁸⁴	Н	H	Н	Н	H	H	H	I	H	Н
R ⁸³	Н	Н	H	Н	Н	H	H	H	H	Н
R ⁸²	Н	H	П	H	Н	Н	H	田	H	E
R ⁸¹	HÖ HZ	OMe	ZI	ZI —	ZI	ZI 0== IZ	ZI	ZI O==	O= NT CH	LZ CH CH ²
R ⁸⁰	Н	H	Н	Н	Н	Н	Н	H	H	Н
×	0		0	0	0	0	0	0	0	0
D3		ODVAVO	MPO	DMMPO		MPO	DMMPO	O N	MPO	DMMPO
n.2	OMe	016	OMe	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе
	No. 456		458	459	460	461	462	463	464	465

							1 1	
R87	H	H	Н	Н	H	田	田	王
R86	I	Н	Н	Н	H	田	H	H
R85	Щ	Н	Н	H	H	H	Н	H
R ⁸⁴	Н	Н	Н	Н	H	田	H	Н
R ⁸³	Н	Н	Н	H	H	H	田田	Н
R ⁸²	Н	I	H	H	H	H	H	Н
R ⁸¹	H	H	Н	H	H	H	H	Н
R ⁸⁰	NH O	O CH ₃	NI O	O N CH ₃	O CH ₃	O CH ₃	O(CH ₂) ₂ NHCO- (CH ₃) ₅ CN	O CH ₃ CH ₃
×	0	0	0	0	0	0	0	0
R ³	DММРО	MPO	N O	DMMPO		MPO	OMe	ОМе
D 2	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе
N. C.	466	467	468	469	470	471	472	473

L 87		H «	Н	Н	Н	Н	H	Н	H	H
- 98°		Н	H	Н	H .	Н	Н	Н	Н	H
. 85	Т	Ή	Н	Н	H	Н	Н	н	H	H
Г	2	H	I	Н	H	H	Н	Н	Н	Т
83	£	Ш	Н	Н	Н	Н	Н	Н	Н	П
68	R°	Н	Н	Н	Н	H	H	H	H	甲
10	R°I	Н	Н	Н	OCH ₂ - C(O)NH- Me	H	Н	NHCH ₂ -	OCH ₂ C(O) NH- Me	OCH ₂ C(O) NH- CH(Me) ₂
	R ⁸⁰	O CH3	O(CH ₂),NHCOO	CH ₃ CH ₃	Н	[II.	CN	Н	Н	Н
	×	0	0	0	0			0	0	0
	\mathbb{R}^3	ОМе	OMe	ОМе	ОМе	MEO	MEO	MEO	DMMPO	ОМе
	n2	OMe	ОМе	OMe	ОМе	- 014-	OMe	OMe	ОМе	ОМе
	N	474	475	476	477	,	4/8	4/9	481	482

		\mathbf{R}^{86}	H	H	H	H	Ш	Н	Н	Н	Н	Me	Н	Me	H
		\mathbb{R}^{82}	OMe	H	Н	Н	Н	Н	Н	Н	Н	H	H	Н	Н
	R ⁸¹	R ⁸¹	Н	ОМе	Н	Н	H	Н	Н	Н	Н	Н	H	Н	CF ₃
R 80		R ⁸⁰	H	Н	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	Н
Table 2	>=> N	Z	z	z	z	Z	Z	z	z	Z	z	z	Z	СН	Z
	Z Z	\ \	E	HJ	СН	СН	СН	СН	НЭ	CH	НЭ	CH	СН	СН	CH
		*	CH	CH	СН	z	СН	СН	СН	CH	НЭ	HO	z	Z	СН
	ZY C	R ³ K	OMe	OMe	OMe	HO	ОМе	O(CH ₂) ₃ —N	OMe	O(CH ₂) ₃ N(Me) ₂	OMe	MPO	MPO	HO	OMe
		R ²	OMe	OMe	OMe	OMe	O(CH ₂) ₃ —N N—CH ₃	ОМе	O(CH ₂) ₁ N(Me) ₂	OMe	MPO	OMe	OMe	OMe	OMe
		S	200	201	202	203	204	205	906	202	208	209	210	211	212

R ⁸⁶	H	H	H	Н	H	Me	Me	H	H	Me	Ш	Н	Н
\mathbb{R}^{82}	H	H	H	Н	Н	H	H	H	H	H	H	 Н	Н
R ⁸¹	Н	OMe	Н	H	OMe	H	Н	Н	H	Н		0 HA	
\mathbb{R}^{80}	F	Н	OMe	OCH ₂ CONH Me	Н	Ľ.	Ľ.	OMe	OMe	OMe	Н	Н	Н
7	CH	CH	CH	СН	CH	СН	CH	CH	СН	СН	СН	CH	СН
٨.,	CH	CH	z	Z	СН	СН	СН	СН	CH	СН	СН	СН	СН
Y,	z	Z	СН	CH	Z	Z	Z	Z	z	Z	z	 z	z
R ³	MPO	MEO	MPO	MPO	MPO	НО	OCH ₂ C ₆ H ₅	OMe	HO	OCH ₂ C ₆ H ₅	DMMPO	O(CH ₂) ₃ —N	DMMPO
\mathbb{R}^2	OMe	OMe	OMe	OMe	OMe	OMe	OMe	НО	OMe	OMe	OMe	ОМе	ОМе
N	213	214	215	216	217	218	219	220	221	222	223	224	225

$$R^2$$
 CN
 R^3

NO.	\mathbb{R}^2	\mathbb{R}^3	R ⁶	\mathbf{R}^7	X
250	OMe	OMe	p-Ph		О
251	OMe	OMe	p-Ph		0
252	OMe	OMe	p-Ph		0
253	OMe	OMe	p-Ph	ن	0
254	OMe	OMe .	p-Ph		О
255	OMe	OMe	p-Ph	•••	О
256	OMe	OMe	p-Ph		О
257	OMe	OMe	p-Ph	T°	O
258	OMe	OMe	p-Ph	So	O
259	OMe	OMe	p-Ph		0
260	OMe	DMMPO	p-Ph	2-thiazole	О
261	OMe	OMe	p-Ph	I CI	O

NO.	\mathbb{R}^2	R³	R ⁶	\mathbf{R}^7	X
262	OMe	OMe	p-Ph		0
263	OMe	OMe	p-Ph	NC NC	0
264	OMe	OMe	p-Ph	CN	0
. 265	OMe	OMe	p-Ph	X-0	0
266	OMe	OMe		N	O
267	OMe	OMe	p-Ph	NC N	S
268	OMe	OMe	p-Ph	2-thiazole	0
269	OMe	OMe	p-Ph	CI	0
270	OMe	OMe	p-Ph	N N	0
271	OMe	OMe	p-Ph	N SCH ₃	0
272	OCH₂C ₆ H ₅	OMe	p-Ph	2-thiazole	0
273	ОН	OMe	p-Ph	2-thiazole	0
274	MPO	OMe	p-Ph	2-thiazole	0
275	O N N-CH ₃	OMe	p-Ph	2-thiazole	О
276	0 1	OMe	p-Ph	2-thiazole	0
277	MPO	OMe	p-Ph	2-thiazole	О
278	MEO	OMe	p-Ph	2-thiazole	0

NO.	\mathbb{R}^2	R ³	R ⁶	R ⁷	X
279	O N N-CH ₃	OMe	p-Ph	2-thiazole	О
280	0 ^ N	OMe	p-Ph	2-thiazole	O
281	$O(CH_2)_2N(Me)_2$	OMe	p-Ph	2-thiazole	0
282	OMe	ОН	p-Ph	2-thiazole	O
283	OMe	MPO	p-Ph	2-thiazole	O
284	OMe	O ~ N N N-CH ₃	p-Ph	2-thiazole	О
285	OMe		p-Ph	2-thiazole	0
286	OMe	$O(CH_2)_3N(Me)_2$	p-Ph	2-thiazole	0
287	OMe	OMe	F	H ₃ C O	O
288	OMe	OCH ₂ COOCH ₂ Me	p-Ph	2-thiazole	О
289	OMe	OCH₂COOH	p-Ph	2-thiazole	0
290	O(CH ₂) ₂ OMe	O(CH ₂) ₂ OMe	p-Ph	2-thiazole	О
291	OMe	OCH₂CONHMe	p-Ph	2-thiazole	О
292	OMe	OCH ₂ CONHCH ₂	p-Ph	2-thiazole	0
		CHCH ₂		}	
293	NH ₂	OMe	p-Ph	2-thiazole	0
294	OMe	MPO	p-Ph	2-pyridyl	О
295	OMe	OMe	p-Ph	2-thiazole	S
296	OMe	OMe	p-Ph	H ₂ N S	S
297	OMe	OMe	p-Ph	cyclopentyl	О
298	OMe	OMe	p-Ph	cyclohexyl	О
299	OMe	OMe	p-Ph	H ₃ C N N N N N N N N N N N N N N N N N N N	0
300	OMe	OCH ₂ C ₆ H ₅	p-Ph	2-thiazole	O
301	01 NHCO ₂ C OMe		p-Ph	2-thiazole	О
	(Me) ₃				

NO.	R ²	R ³	R ⁶	\mathbb{R}^7	X
302	OMe	N N	p-Ph	2-thiazole	0
303	OMe	OMe	p-Ph	O C(CH ³) ³	О
304	OMe	OMe	p-Ph	S N	CH ₂
305	OMe	OMe	p-Ph	Z_Z	CH_2
306	OMe	OMe	p-Ph		0
307	OMe	OMe	p-Ph	N	O
308	OMe	OMe	p-Ph		O
309	OMe	OMe	p-Ph	N N	S
310	OMe	MEO	p-Ph	CH ₃	O CH ₃

NO.	R ²	R ³	R ⁶	\mathbb{R}^7	X
311	OMe	OMe	p-Ph	CH ₃ O CH	О 3
312	OMe	OMe	p-Ph		O
313	OMe	OMe	p-Ph	N	O
314	OMe	OMe	p-Ph	N=CH ₃	O
315	OMe	OMe	p-Ph		0
316	OMe	OMe	p-Ph	HN	O
317	OMe	OMe	p-Ph	N N	O
318	OMe	_ON	p-Ph	2-thiazole	O

NO.	\mathbb{R}^2	R ³	R ⁶	\mathbb{R}^7	X
319	OMe	,oH	p-Ph	2-thiazole	0
320	OMe	_0	p-Ph	2-thiazole	O

Compounds of formula (I) are suitably prepared by reacting a compound of formula (III)

$$R^{2}$$
 R^{3}
 R^{4}
(III)

where R¹, R², R³, R⁴ represent R¹, R², R³ and R⁴ respectively as defined in relation to

formula (I) or a precursor thereof, and Z' is a leaving group, with a compound of formula

(IV)

H-
$$Y(CH_2)_n R^6 X R^7$$
(IV)

where R⁶, Y, X, and n are as defined in relation to formula (I), and R⁷ is a group R⁷ or a precursor thereof; and thereafter if necessary or desired converting precursor groups R¹, R², R³, R⁴ and R⁷ to groups of formula R¹, R², R³, R⁴ and R⁷ respectively, or converting a group R¹, R², R³, R⁴ and R⁷ to a different such group.

10

15

25

Suitable leaving groups for Z' include halogen such as bromo or chloro, or a mesylate or tosylate group or a substituted phenoxy group.

The reaction is suitably carried out in an organic solvent such as an alcohol for example propanol or cyclohexanol at elevated temperatures, for example of from 50 to 150°C, for example at about 105°C.

Conversion reactions in which precursor groups R¹, R², R³, R⁴ are converted to groups of formula R¹, R², R³ and R⁴ respectively, or groups R¹, R², R³ and R⁴ are converted to different such group can be carried out using conventional chemistry as outlined hereinafter. Particular precursor groups R¹, R², R³, R⁴ are groups of formula R¹³-X¹-(CH₂)_x wherein x and X¹ are as defined hereinafter, and R¹³ is C₁₋₅alkyl which is substituted with halo other than fluoro, and in particular chloro or bromo. The chloro or bromo group may readily be converted into many other groups R¹³ as defined in relation to claim 1. Such compounds are novel and form a further aspect of the invention. They may have activity similar to that of compounds of formula (I) in their own right and therefore may be used in place of a compound of formula (I).

Thus the invention further provides a compound of formula (IB)

20 (IB)

where Y, n, R^6 , X and R^7 are as defined in claim 1 and at least one of $R^{1"}$, $R^{2"}$, $R^{3"}$ or $R^{4"}$ is a group $R^{13"}$ - X^1 -(CH₂)_x wherein X^1 and x are as defined in claim 1 and $R^{13"}$ is alkyl substituted by chloro or bromo; and the remainder are groups R^1 , R^2 , R^3 and R^4 respectively.

Similarly conversion reactions involving groups R^7 may be effected using conventional chemistry. For example substitutent groups on a group R^9 within the group R^7 may be changed, for example by changing acids to esters or amides etc.

15

20

25

Alternatively, compounds of formula (I) are prepared by reacting a compound of formula (V)

$$R^{2'}$$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$
 $R^{2'}$

where R¹, R², R³, R⁴ are as defined in relation to formula (III) R⁶, X, Y and n are as defined in relation to formula (I), with a compound of formula (VI)

$$R^{7}$$
-Z" (VI)

where R⁷ is as defined in relation to formula (IV) and Z" is a leaving group; and thereafter if necessary or desired converting precursor groups R¹, R², R³, R⁴ and R⁷ to groups of formula R¹, R², R³, R⁴ and R⁷ respectively, or converting a group R¹, R², R³, R⁴ and R⁷ to a different such group. Suitable leaving groups for Z" include halogen such a bromo or chloro, or a mesylate or tosylate group. Conversion reactions are as described above.

The reaction is suitably carried out in an organic solvent such as DMF at elevated temperatures, for example of from 40 to 120°C, for example at about 80°C.

Compounds of formula (III) and (V) are either known compounds or they can be prepared from known compounds by conventional methods, for example as described in WO 98/43960, WO 98/13350. Exemplary preparations of compounds of formula (III) are included hereinafter.

Compounds of formula (IV) are also known compounds (see for example Rev. Chim. (Bucharest) (1988), 39(6), 477-82 and DD 110651: 74.01.05) or they can be prepared from known compounds using conventional methods. For example, where Y is NH, compounds of formula (IV) are suitably prepared by reduction of a compound of formula (VII)

10

15

20

25

30

$O_2N(CH_2)_nR^6XR^{7}$

(VII)

where X, R^6 , R^7 and n are as defined above. It may be convenient to convert precursor groups R^7 to groups R^7 or groups R^7 to other such groups at the level of compound of formula (VII) or (IV) using conventional chemistry.

Compounds of formula (VI) are also known compounds or they can be prepared from known compounds by conventional methods.

Compounds of the invention are useful in the inhibition of MEK enzyme activity and can be used in the treatment of proliferative disease. They will suitably be in the form of a pharmaceutical composition, in combination with a pharmaceutically acceptable carrier. Such compositions form a further aspect of the invention.

The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).

The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.

Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient

10

15

20

25

30

within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.

Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxyethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable

10

15

20

25

30

dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavouring and preservative agents.

Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.

The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butanediol.

Suppository formulations may be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Suitable excipients include, for example, cocoa butter and polyethylene glycols.

Topical formulations, such as creams, ointments, gels and aqueous or oily solutions or suspensions, may generally be obtained by formulating an active ingredient with a conventional, topically acceptable, vehicle or diluent using conventional procedure well known in the art.

Compositions for administration by insufflation may be in the form of a finely divided powder containing particles of average diameter of, for example, 30μ or much less, the powder itself comprising either active ingredient alone or diluted with one or

more physiologically acceptable carriers such as lactose. The powder for insufflation is then conveniently retained in a capsule containing, for example, 1 to 50mg of active ingredient for use with a turbo-inhaler device, such as is used for insufflation of the known agent sodium cromoglycate.

5

Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.

10

For further information on Formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

15

The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

20

The size of the dose for therapeutic or prophylactic purposes of a compound of the Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine. As mentioned above, compounds of the Formula I are useful in treating diseases or medical conditions which are due alone or in part to the effects MEK enzymes.

25

In using a compound of the Formula I for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.5 mg to 75 mg per kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for

30

WO 00/68201

5

10

20

intravenous administration, a dose in the range, for example, 0.5 mg to 30 mg per kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.5 mg to 25 mg per kg body weight will be used. Oral administration is however preferred.

In a further aspect, the invention provides a method of treating proliferative disease by administering a compound of formula (I) as described above, or a pharmaceutical composition as described above.

Yet a further aspect of the invention provides the use of a compound of formula (I) as defined above, in the preparation of a medicament for use in the inhibition of MEK enzyme activitiy and in particular for the treatment of proliferative disease such as cancer.

The invention will now be particularly described by way of Example. The preparation of various intermediates used in the Examples is described in the Preparations. <u>Preparation 1</u>

Chloroquinoline intermediates

These can be prepared for example using the following scheme where "Bz" represents benzyl.

A mixture of (1) (10.36g., 45.3 mmole) and diethylethoxymethylene malonate (9mL, 45.3 mmole) was heated at 110 °C for 1 hour and then allowed to cool overnight. The mixture was evaporated and the product (2) used in the next step without further purification.

Mass Spectrum m/e 400 (M⁺+H).

Preparation of (3)

- A mixture of (2) (assumed 45.3 mmole) and phosphoryl chloride (83.3mL, 906 mmole) was heated at 115 °C for 18 hours. After cooling, the solution was evaporated to remove excess phosphoryl chloride. The residue was treated with ice and aqueous ammonia to hydrolyse the remaining phosphoryl chloride. The solid product was filtered off and dried in a vacuum oven to give a cream coloured solid, 9.0g (53% yield).
- 10 Mass Spectrum m/e 372 ($M^{\dagger}+H$).

Preparation of (4)

A mixture of (3) (9.0g, 24.2 mmole) was stirred in ethanol (48.3mL) for 15 minutes at ambient temperature to give a smooth suspension. Aqueous sodium hydroxide solution (2.0M, 48.3mL, 96.7 mmole) was added and the mixture stirred for 18 hours at ambient temperature. The ethanol was removed by rotary evaporation and the resulting solution was acidified to pH 2 with hydrochloric acid while stirring. The precipitate was filtered off and dried in a vacuum oven to give an orange solid, 7.19g (86% yield). Mass Spectrum m/e 344 (M+H).

20

25

15

Preparation of (5)

A mixture of (4) (7.18g, 20.9 mmole) and thionyl chloride (90 mL) was refluxed for 2 hours. After cooling the excess thionyl chloride was removed by rotary evaporation and the residue was suspended in acetone (175mL) and the resulting suspension cooled in an ice-bath. Aqueous ammonia (S.G. 0.880, 20mL) was added gradually, keeping the temperature below 10 °C. The resulting suspension was filtered off, washed with water and air-dried to give a solid, 5.15g (75% yield).

Mass Spectrum m/e 343 (M⁺+H).

30 Preparation of (6)

A mixture of (5) (20.55g, 60 mmole) and phosphoryl chloride (250mL) was heated and stirred at 120 °C for 4 hours when the starting material had dissolved. Heating and stirring

was continued at 110 °C for 18 hours. After cooling, the solution was evaporated to remove excess phosphoryl chloride. Last traces of phosphoryl chloride were removed by azeotroping with toluene. The residue was treated with ice and aqueous ammonia to remove acidity. The solid product was filtered off and dried in a vacuum oven to give a grey solid, 19.23g (99% yield).

(This may also be prepared as described in WO 9843960)

Mass Spectrum m/e 325 (M⁺+H).

Preparation of (7)

A mixture of (6) (19.23g, 60.0 mmole) and trifluoroacetic acid (300 mL) and thioanisole (35mL) was refluxed in a nitrogen atmosphere for 3 hours. After cooling the trifluoroacetic acid was removed by rotary evaporation and the oily residue was stirred with ice and water and basified with aqueous ammonia (S.G. 0.880). The resulting suspension was filtered and the solid was washed successively with water, ethyl acetate and diethyl ether and then dried to give a khaki solid, 13.74g (97% yield).

Mass Spectrum m/e 235 (M+H).

Preparation of (8)

(4-chloro-6-methoxy-7-[3-(1-morpholino)propoxy]-3-quinolinecarbonitrile)

A mixture of (7) (2.34g, 10.0 mmole) and 1-(3-chloropropyl)morpholine (2.45g, 15.0 mmole) and anhydrous potassium carbonate (2.07g, 15.0 mmole) suspended in butanone (150mL) was stirred in a oil-bath at 88 °C for 96 hours. The suspension was filtered hot to remove inorganics and the filtrate was allowed to cool and then evaporated to ca. 100mL. A solid precipitated on standing for 72 hours. The solid was filtered off and washed with a little acetone and then dried to give a white solid, 0.54g (15% yield). Mass Spectrum m/e 362 (M⁺+H).

Preparation 2

By similar processes the following analogues were also prepared:-

Table 4

R ¹	\mathbb{R}^2	Mass Spectrum
OCH ₂ CH ₂ OMe	OCH ₂ CH ₂ OMe	m/e 337 (M ⁺ +H).
OMe	MPE	m/e 348 (M ⁺ +H)
OMe	Cn	m/e 332 (M ⁺ +H).
OCH ₂ C ₆ H ₅	OMe	m/e 324 (M ⁺ +H).
ОН	OMe	m/e 234 (M ⁺ +H).
OCH ₂ C(O) ₂ CH ₂ Me	OMe	m/e 321 (M ⁺ +H).
OMe	OCH ₂ C(O) ₂ CH ₂ Me	m/e 321 (M ⁺ +H).
OCH ₂ C(O) ₂ Me	OMe	
OMe	O(CH ₂)₃Cl	m/e 310 (M ⁺ +H).

Example 1

A mixture of 4-chloro-3-cyano-6,7-dimethoxyquinoline (1.5 g), prepared as described in WO 9843960, and 4-(2-methoxyphenoxy)-aniline (2.58 g), prepared as described in Rev. Chim. (Bucharest) (1988), 39(6),477-82, in 1-propanol (90 ml) was stirred and heated at 105°C for 6 hours. The mixture was cooled to ambient temperature and then filtered. The crystals were washed with a small volume of 1-propanol and then dried to give 4-(2-methoxyphenoxy)-anilino-3-cyano-6,7-dimethoxyquinoline (Compound 1 in Table 1)

10 (2.19 g, 85%).

Mass Spectrum m/e 428 (M⁺+H).

NMR Spectrum (d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 6H), 6.95 (m, 3H), 7.05 (m, 1H), 7.20 (m, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.10 (broad, 1H).

15

20

Example 2

Preparation of Compound 253 in Table 3

Step 1

A mixture of 4-chloro-3-cyano-6,7-dimethoxy-quinoline (2.49 g) and 4-aminophenol (2.4 g) in n-propanol (150 ml) was stirred and heated at 110°C for 4 hours. The mixture was

cooled to ambient temperature and then filtered. The crystals were washed with a small volume of diethyl ether and then dried to give 3-cyano-6,7-dimethoxy-4-(4-hydroxy)-anilino-quinoline (2.68 g, 83%).

Mass Spectrum m/e 322 (M⁺+H).

NMR Spectrum (d-6-DMSO, d values) 3.85 (s, 3H), 3.9 (s, 3H), 6.8 (d, 2H), 7.1 (d, 2H),
 7.25 (s, 1H), 7.8 (s, 1H), 8.3 (s, 1H), 9.3 (broad s, 1H).

Step 2

10

15

3-Cyano-6,7-dimethoxy-4-(4-hydroxy)-anilino-quinoline (160.5 mg) was dissolved in DMF (5 ml) and potassium carbonate (138 mg) was added. The mixture was stirred under an atmosphere of nitrogen for 5 minutes and then 2-bromomethyl-tetrahydrofuran (180 ml) was added. The mixture was stirred and heated at 80°C for 18 hours. The mixture was cooled to ambient temperature and then diluted with ethyl acetate and then extracted with water. The aqueous phase was re-extracted with ethyl acetate and the combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. The residue was then purified by column chromatography using 2-3% methanol/dichloromethane mixtures as eluent. There was thus obtained 3-cyano-6,7-dimethoxy-4-(2-tetrahyrofuranyl-methoxy)-anilino-quinoline (70 mg, 34%). Mass Spectrum m/e 406 (M⁺+H).

NMR Spectrum (CDCl₃, d values) 1.8 (m, 1H), 1.95 (m, 2H), 2.05 (m, 1H), 3.6 (s, 3H), 3.85 (dd, 1H), 3.9 (m, 1H), 3.95 (m, 1H), 4.0 (s, 3H), 4.25 (m, 1H), 6.8 (broad s, 1H), 6.85 (s, 1H), 6.95 (d, 2H), 7.1 (d, 2H), 7.35 (s, 1H), 8.6 (s, 1H).

Example 3

By an analogous procedure to that described for Example 2, step 2, but using an alternative bromide, the compounds listed in Table 5 were prepared:

Table 5

No	bromide	mass	nmr	Notes
-		spec ·		
250	2-bromo-	m/e 420	(d-6-DMSO, d values) 1.2-1.7 (m, 6H),	
	methyltetra-	(M ⁺ +H)	3.40 (m, 1H), 3.60 (m, 1H), 3.90 (s, 3H), 3.90 (s, 3H), 3.9 (m, 3H), 6.95 (d, 2H),	
	hydropyran		7.20 (d, 2H), 7.25 (d, 1H), 7.75 (d, 1H),	
			8.30 (d, 1H), 9.35 (broad s, 1H).	
251	epibromohydri	m/e 378	(d-6-DMSO, d values) 2.70 (dd, 1H),	RT/
}		(M ⁺ +H)	2.83 (dd, 1H), 3.35 (m, 1H), 3.85 (dd,	48hrs/
	n	(M +H)	1H), 3.90 (s, 3H), 3.95 (s, 3H), 4.35 (dd,	DMF/
,			1H), 7.00 (d, 2H), 7.20 (d, 2H), 7.26 (s,	K_2CO_3
			1H), 7.75 (s, 1H), 8.30 (s, 1H), 9.35	
			(broad s, 1H).	
252	2-	m/e 408		
	1	(M^++H)	3H), 4.00 (s, 3H), 4.05 (m, 3H), 5.30 (t,	
	bromomethyl-		1H), 6.80 (broad s, 1H), 6.85 (s, 1H),	
	1,3-dioxolane		6.95 (d, 2H), 7.15 (d, 2H), 7.35 (s, 1H),	
			8.60 (s, 1H).	

Example 4

By an analogous procedure to that described for Example 2, step 2, but using a tosylate instead of a bromide, the following compounds were prepared.

Table 6

No	intermediate	mass	nmr
254	2,2-dimethyl-4-(4-toluenesulphonyloxymethyl)-1,3-dioxolane	m/e 436 (M ⁺ +H)	(CDCl ₃ , d values) 1.4 (s, 3H), 1.45 (s, 3H), 3.65 (s, 3H), 3.90 (dd, 1H), 3.95 (m, 1H), 4.00 (s, 3H), 4.05 (m, 1H), 4.15 (dd, 1H), 4.50 (m, 1H), 6.80 (broad s, 1H), 6.90 (s, 1H), 6.95 (d, 2H), 7.10 (d, 2H), 7.35 (s, 1H), 8.60 (s, 1H).
255	4-(4- toluenesulphonylox ymethyl)-1,3- dioxolane	m/e 408 (M ⁺ +H)	(CDCl ₃ , d values) 3.60 (s, 3H), 3.85 (m, 1H), 3.95 (m, 1H), 4.00 (s, 3H), 4.05 (m, 2H), 4.40 (m, 1H), 4.95 (s, 1H), 5.10 (s, 1H), 6.80 (broad s, 1H), 6.85 (s, 1H), 6.95 (d, 2H), 7.10 (d, 2H), 7.35 (s, 1H), 8.60 (s, 1H).
256	5-bromo-5-(4- toluenesulphonylox ymethyl)-1,3- dioxane	m/e 436 (M ⁺ +H)	(CDCl ₃ , d values) 0.95 (s, 3H), 3.50 (d, 2H), 3.65 (s, 3H), 4.00 (d, 2H), 4.00 (s, 3H), 4.10 (s, 1H), 4.70 (d, 1H), 5.00 (d, 1H), 6.80 (broad s, 1H), 6.85 (s, 1H), 6.95 (d, 2H), 7.15 (d, 2H), 7.35 (s, 1H), 8.60 (s, 1H).

Example 5

Using a method analogous to that described in Example 1 (except that in some instances, intermediates (1) and (2) were modified prior to further reaction as described in Examples 14 and 15 hereinafter) i.e. as set out in the following scheme:

$$O_{2}N$$
 $+$
 $+$
 $(R^{30})_{m}$
 $O_{2}N$
 $(R^{30})_{m}$
 $+$
 R^{2}
 R^{30}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}

5

10

but with the appropriate aniline intermediate (2) (where $(R^{30})_m$ are substitutents R^{20} , R^{21} , R^{22} , R^{23} and R^{24} are as set out in Table 1) and quinoline where R^2 and R^3 are as defined in Table 1, the following compounds set out in Table 7 were prepared.

Sable 7

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass F	Reaction	Mass	Reaction
2	m/e 427	(d-6-DMSO, d values) 3.72 (s, 3H), 3.96 (s, 3H),	165°C/2.5h/				
	(M ⁺ +H)	(M ⁺ +H) 3.98 (s, 3H), 6.87 (d, 2H), 6.98 (d, 2H), 7.10 (d, 2H),	cyclohexanol				
		7.18 (d, 2H), 7.46 (s, 1H), 8.04 (s, 1H), 8.67 (s, 1H),					
, 		2NH assumed under H_2O , (2.5-3.6).					-
3	m/e		160°C/5h/				
	462/		cyclohexanol				
	464		-				
	$\left(\mathrm{M}^{+}\mathrm{+H}\right)$						
4	m/e		160°C/5h/				
	462/		cyclohexanol				
	464						
	$\left (M^+ + H) \right $						
2	m/e	(d-6-DMSO, d values) 3.70 (s, 6H), 3.90 (s, 3H),	110°C/4h/	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	458	3.95 (s, 3H), 6.80 (d, 2H), 6.85 (d, 2H), 7.10 (t, 1H),	1-PrOH	276	МеОН	246	EtOAc
	(M ⁺ +H)	7.25 (d, 1H), 7.40 (s, 1H), 8.05 (s, 1H), 8.85 (s, 1H),		$(M^{+}H)$		(M ⁺ +H)	
		10.80 (broad s, 1H)					

spec m/e 442 (M ⁺ +H) m/e 428 (M ⁺ +H) (M ⁺ +H)	(d-6-DMSO d values) 2.05 (s. 3H), 3.65 (s. 3H),					
m/e 442 (M ⁺ +H) m/e 428 (M ⁺ +H) m/e 428 (M ⁺ +H)	(4-6-DMSO d values) 2.05 (s. 3H), 3.65 (s. 3H),	conditions	Mass	Reaction	Mass	Reaction
442 (M ⁺ +H) m/e 428 (M ⁺ +H) m/e 428 (M ⁺ +H)	(a-0-Divisor) signal (a) and (a) and (a)	110°C/4h/	m/e	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ +H) m/e 428 (M ⁺ +H) m/e 428 (M ⁺ +H)	3.95 (s, 3H), 4.00 (s, 3H), 6.80 (d, 2H), 6.90 (d, 1H),	1-PrOH	230	МеОН	260	EtOAc
m/e 428 (M ⁺ +H) m/e 428 (M ⁺ +H)	7.00 (d, 1H), 7.15 (t,		(M ⁺ +H)		(M ⁺ +H)	
m/e 428 (M ⁺ +H) m/e 428 (M ⁺ +H)	8.05 (s, 1H), 8.80 (s, 1H), 10.90 (broad s, 1H)					-
428 (M ⁺ +H) m/e 428 (M ⁺ +H)	(d-6-DMSO, d values) 3.70 (s, 3H), 4.00 (s, 3H),	110°C/4h/1-	m/e			-
(M ⁺ +H) m/e 428 (M ⁺ +H)	4.00 (s, 3H), 6.55 (s, 1H), 6.60 (m, 1H), 6.65 (dd,	PrOH	216			
m/e 428 (M ⁺ +H)	1H), 7.15 (d, 2H), 7.25 (t, 1H), 7.45 (s, 1H), 7.50 (d,		(M ⁺ H)			
m/e 428 (M ⁺ +H)	2H), 8.05 (s, 1H), 8.85 (s, 1H), 11.10 (broad s, 1H)				×	
428 (M ⁺ +H) m/e 504	(d-6-DMSO, d values) 3.70 (s, 3H), 4.00 (s, 6H),	110°C/4h/1-	m/e	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ +H) m/e 504	6.55 (s, 1H), 6.95 (m, 2H), 7.00 (d, 2H), 7.05 (d,	PrOH	246	МеОН	216	EtOAc
m/e 504	2H), 7.40 (d, 2H), 7.40 (s, 1H), 8.05 (s, 1H), 8.85 (s,		$(M^{+}H)$		(M ⁺ +H)	
m/e 504	1H), 10.90 (broad s, 1H)					
	(d-6-DMSO, d values) 3.73 (s, 3H), 3.97 (s, 3H),	1-PrOH /				
$\left (M^+H) \right $	5.32 (s, 2H), 6.95 (m, 3H), 7.05 (d, 1H), 7.18 (m,	115°/5h				
	2H), 7.38 (m, 5H), 7.51 (d, 2H), 7.58 (s, 1H), 8.17 (s,					
	1H), 8.87 (s, 1H), 11.13 (broad, 1H)					

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
10	m/e	(d-6-DMSO, d values) 3.65 (s, 3H), 3.80 (s, 3H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	458	4.00 (s, 6H), 6.65 (d, 1H), 6.90 (d, 1H), 7.05 (m,	-PrOH	276	DMA	(M ⁺ +H)	EtOAc
	(M ⁺ +H)	(M ⁺ H) 3H), 7.40 (d, 2H), 7.45 (m, 1H), 8.15 (m, 1H), 8.90	*	(M ⁺ +H)			
		(s, 1H)					
=	m/e	(d-6-DMSO, d values) 3.70 (s, 6H), 4.00 (s, 6H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	458	6.20 (d, 2H), 6.25 (t, 1H), 7.20 (d, 2H), 7.45 (s, 1H),	-PrOH	276	DMA	246	EtOAc
	$\left (M^{+}H) \right $	(M ⁺ +H) 7.50 (d, 2H), 8.15 (s, 1H), 8.90 (s, 1H), 11.10 (broad		(M ⁺ +H)		(M ⁺ +H)	
		s, 1H)					
12	m/e	(d-6-DMSO, d values) 1.20 (d, 6H), 4.00 (s, 6H), 4.6	110°C/18h/1	m/e	KOtBu,	m/e	H_2 , Pd/C,
	456	(m, 1H), 6.95 (m, 3H), 7.05 (d, 1H), 7.20 (d, 2H),	-PrOH	274	DMA	244	EtOAc
	(M ⁺ +H)	7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H),		(M ⁺ +H)		$(M^{+}H)$	
		11.10 (broad s, 1H)					
13	m/e	(d-6-DMSO, d values) 3.70 (s, 3H), 3.75 (s, 3H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
·	486	4.05 (s, 6H), 6.55 (d, 1H), 6.85 (dd, 1H), 7.15 (d,	-PrOH	304	DMA	274	EtOAc
· »	$\left (M^+ + H) \right $	(M^++H) 2H), 7.50 (s, 1H), 7.55 (d, 2H), 7.85 (d, 1H), 8.20 (s,		$(M^{+}H)$		H+ ₊ W)	
		1H), 8.95 (s, 1H), 11.20 (broad s, 1H)		n.			

No	mass	n.m.r.	reaction	Intermediate 1	ediate 1	Intern	Intermediate 2
	sbec		conditions	Mass F	Reaction	Mass	Reaction
15	m/e	(d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 6H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .2H ₂
	462	6.55 (t, 1H), 6.60 (t, 1H), 6.80 (t, 1H), 7.20 (d, 2H),	-PrOH		DMA	250	O, HCl,
	(M++M)					(M ⁺ +H)	EtOAc
		11.20 (broad s, 1H)					
32	m/e	(d-6-DMSO, d values) 1.20 (t, 3H), 3.95 (s, 6H),	110°C/4h/1-	m/e	KOtBu,	m/e	H_2 , Pd/C ,
	442	4.00 (q, 2H), 6.95 (m, 3H), 7.05 (m, 1H), 7.15 (m,	PrOH	260	МеОН	230	EtOAc
	(M ⁺ +H)			$(M^{+}H)$		(M ⁺ +H)	
		1H), 10.95 (broad s, 1H)					
42	m/e 516	(d-6-DMSO, d values), 3.35 (s, 6H), 3.74 (s, 3H),	1-PrOH/	m/e	POCl ₃ /		
	(M ⁺ +H)		reflux / 18h	337	120° / 2h		
		1H), 7.07 (m, 2H), 7.39 (d, 2H), 7.47 (s, 1H), 8.14 (s,		(M ⁺ +H)			
		1H), 8.89 (s, 1H), 10.96 (broad, 1H)			!		
43	m/e	(CDCl ₃ , d values) 2.25 (s, 3H), 3.60 (s, 3H), 3.80 (s,	110°C/36h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	442	3H), 4.00 (s, 3H), 6.60 (broad s, 1H), 6.80 (m, 2H),	-PrOH	760	DMA	230	EtOAc
	$ M^{+}H$	7.00 (m, 5H), 7.15 (td, 1H), 7.30 (s, 1H), 8.60 (s,		(M ⁺ +H)		(M ⁺ +H)	
		1H)					

No.	mass	n.m.r.	reaction	Intermediate 1	liate 1	Interm	Intermediate 2
	sbec		conditions	Mass Rea	Reaction	Mass	Reaction
45	m/e 516	(d-6-DMSO, d values), 3.49 (m, 6H), 3.71 (s, 3H),	1-PrOH/				
	(M ⁺ +H)	(M ⁺ H) 3.77 (m, 4H), 4.33 (m, 4H), 6.60 (m, 2H), 6.70 (d,	reflux / 18 h				
		1H), 7.17 (d, 2H), 7.28 (t, 1H), 7.47 (d, 2H), 7.50 (s,		•			
		1H), 8.16 (s, 1H), 8.90 (s, 1H), 11.02 (broad, 1H)					
46	m/e 546	m/e 546 (d-6-DMSO, d values), 3.35 (m, 6H), 3.69 (s, 6H),	1-PrOH /				
	(M ⁺ +H)	(M ⁺ H) 3.77 (m,4H), 4.33 (m,4H),6.19 (d, 2H),6.26 (t	reflux / 18 h				
		1H),7.19 (m,2H), 7.49 (m, 3H), 8.19 (s, 1H), 8.91 (s,					
		1H), 11.12 (broad, 1H)					
47	m/e 530	(d-6-DMSO, d values), 1.21 (t, 3H), 3.35 (m, 6H),	1-PrOH /				
	$(M^+ + H)$	(M ⁺ H) 3.77 (m, 4H), 4.03 (q, 2H), 4.32 (m, 4H), 6.97 (m,	reflux / 18 h				
		3H), 7.05 (d, 1H), 7.18 (m, 2H), 7.39 (d, 2H), 7.47					***************************************
		(s, 1H), 8.14 (s, 1H), 8.89 (s, 1H), 10.95 (broad, 1H)					

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass I	Reaction	Mass	Reaction
49	m/e 500	(d-6-DMSO, d values) 1.21 (t, 3H), 3.72 (s, 3H),	100°C/6h/1-			m/e	RT/30mins
		4.01 (s, 3H), 4.17 (q, 2H), 4.98 (s, 2H), 6.96 (m, 3H),	ProH			321,	/ethylbrom
		7.05 (m, 1H), 7.19 (323	oacetate/K
		1H), 8.89 (s, 1H)				(M+H) ⁺	OtBu/n-
							Bu4NI/DM
							A
56	m/e	(CDCl ₃ , d values) 1.30 (q, 3H), 2.25 (s, 3H), 3.60 (s,	110°C/36h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	456	3H), 4.00 (s, 3H), 4.05 (t, 2H), 6.60 (m, 1H), 6.75	-PrOH	274	DMA	244	EtOAc
	$\left (M^{+}H) \right $			(M ⁺ +H)		$(M^{+}H)$	
		7.30 (s, 1H), 8.55 (s, 1H)					
62	m/e 428	(d-6-DMSO, d values) 1.21 (t, 3H), 3.97 (s, 3H),	100°C/18h/1				
	(M+H) ⁺	4.03 (q, 2H), 6.96 (m, 3H), 7.05 (m, 1H), 7.37 (m,	-PrOH				
		2H), 7.40 (s, 1H), 8.05 (s, 1H), 8.88 (s, 1H)					
65	m/e 500	(d-6-DMSO, d values) 1.24 (t, 3H), 3.72 (s, 3H),	100°C/18h/1	•			
	(M+H)	(M+H) ⁺ 3.97 (s, 3H), 4.20 (q, 2H), 5.05 (s, 2H), 6.95 (m, 3H),	-PrOH				
		7.05 (m, 1H), 7.18 (m, 2H), 7.27 (s, 1H), 7.37 (d,	_				
		2H), 8.07 (s, 1H), 8.84 (s, 1H)					

				1 of of post of 1	Intor	Intermediate?
No.	mass	n.m.r.	reaction	mermediale		ווכחומוכ ד
	sbec		conditions	Mass Reaction	Mass	Reaction
69	m/e 541	(d-6-DMSO, d values) 2.34 (m, 2H), 3.12 (m, 2H),	1-PrOH/			
	(M ⁺ +H)	3.50 (m, 4H), 3.73 (s, 3H), 3.85 (m, 2H), 3.98 (s,	1.0M			
		2H), 4.02 (s, 3H), 4.33 (t, 2H), 6.62 (m, 2H), 6.72	ethereal HCl			
		(m, 1H), 7.20 (d, 2H), 7.30 (t, 1H), 7.49 (d, 2H),	(1 equiv.)/			
		7.54 (s, 1H), 8.21 (s, 1H), 8.89 (s, 1H), 11.08 (broad,	110deg / 3 h			-
		2H)				
74	m/e	(d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 3H),	110°C/18h/1	KOtBu,	, m/e	H ₂ , Pd/C,
	446	4.00 (s, 3H), 6.90 (d, 2H), 7.00 (m, 2H), 7.25 (dd,	-PrOH	DMA	234	EtOAc
<u> </u>	$(M^{+}H)$	(M^++H) 1H), 7.40 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s,			(M^+H)	
		1H), 11.10 (broad s, 1H)				
75	m/e 432	(d-6-DMSO, d values) 3.98 (s, 6H), 7.05 (d, 2H),				
	$(M^{+}H)$	(M ⁺ +H) 7.15 (d, 2H), 7.40 (s, 1H), 7.42 (d, 2H), 7.50 (d, 2H), 8.10 (s, 1H), 8.85 (s, 1H)				
92	m/e 443		165°C/2.5h/			
	(M ⁺ +H)	•	cyclohexanol	·		
		(2) (2)				

No	mass	n.m.r.	reaction	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass Reaction	Mass	Reaction
77	m/e 434	(d-6-DMSO, d values) 3.92 (s, 3H), 3.94 (s, 3H),	150°C/16h/			
	(M ⁺ +H)	6.95 (m, 1H), 7.05 (d, 2H), 7.05 - 7.25 (m,	Dowtherm A			
		obscured), 7.29 (d, 2H), 7.4 - 7.5 (m, 1H), 7.75 (s,		1987		
	-	1H), 8.40 (s, 1H), 9.43 (s, 1H)				
78	m/e		150°C/16h/			-
	462/		Dowtherm A			
	464					- U . · · · ·
	$(M^{+}H)$					
62	m/e	(d-6-DMSO, d values) 3.96 (s, 3H), 3.98 (s, 3H),	160°C/5h/			
	448/	7.30 (d, 2H), 7.37 (d, 4H), 7.45 (m, 3H), 8.04 (s,	cyclohexanol			
	450	1H), 8.7 (s, obscured).				
	(M ⁺ +H)					
08	m/e		160°C/5h/			
	446/		cyclohexanol			
	448					
	(M+H)					

No.	mass	n.m.r.	reaction	Interr	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 7.10 (d, 2H),	110°C/4h/1-		KOtBu,	m/e	H ₂ , Pd/C,
	416	7.15 (m, 1H), 7.20 (m, 2H), 7.40 (m, 1H), 7.45 (m,	PrOH		МеОН	204	EtOAc
	(M ⁺ +H)	3H), 8.20 (S, 1H), 8.90 (S, 1H), 11.12 (010au s, 111)				(M ⁺ +H)	
	m/e	(d-6-DMSO, d values) 2.10 (s, 3H), 4.00 (s, 6H),	110°C/4h/1-		KOtBu,	m/e	H ₂ , Pd/C,
	412	6.95 (m, 3H), 7.10 (t, 1H), 7.20 (t, 1H), 7.40 (d, 2H),	PrOH		МеОН	200	EtOAc
	(M ⁺ +H)					(M ⁺ +H)	
		s, 1H)					
1	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1			,	
	514	5.05 (s, 2H), 7.45 (d, 2H), 7.45 (s, 1H), 7.55 (d, 2H),	-PrOH				
	(M ⁺ +H)	7.60 (s, 2H), 8.05 (s, 1H), 8.95 (s, 1H)					
1	m/e	(d-6-DMSO, d values) 3.80 (s, 3H), 3.95 (s, 3H),	110°C/18h/1				
	486	4.00 (s, 3H), 4.35 (s, 2H), 7.35 (d, 2H), 7.45 (m, 4H),	-PrOH				
	(M ⁺ +H)	7.60 (d, 1H), 7.80 (d, 1H), 8.00 (s, 1H), 8.05 (s, 1H),					
		8.90 (s, 1H), 10.90 (broad s, 1H)		•			

No	mass	n.m.r.	reaction	Interm	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
85	m/e	(d-6-DMSO, d values) 2.4 (s, 3H), 4.00 (s, 6H), 6.90	110°C/5.5h/1		KOtBu,	m/e	H ₂ , Pd/C,
}	444	(dd. 1H), 7.05 (d, 2H), 7.20 (m, 2H), 7.35 (dd, 1H),	-PrOH		МеОН,	232	EtOAc
	(M ⁺ +H)				DMA	(M ⁺ +H)	
		s, 1H)					
98	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H),	110°C/5.5h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	423	7.25 (t, 1H), 7.30 (d, 2H), 7.45 (s, 1H), 7.55 (d, 2H),	-PrOH	239	МеОН,	211	EtOAc
	$(M^{+}H)$			(M-H)	DMA	(M ⁺ +H)	
		1H)					
87	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 7.05 (dd, 1H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .2H ₂ 0
	524	7.15 (m, 3H), 7.35 (t, 1H), 7.40 (s, 1H), 7.45 (m,	-PrOH		DMA	312	, EtOAc
	$ M^{+H}$					(M ⁺ +H)	
88	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 7.10 (m, 4H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .2H ₂ 0
	476	7.40 (td, 1H), 7.45 (s, 1H), 7.45 (d, 2H), 7.75 (dd,	-PrOH		DMA	764	, EtOAc
	(M ⁺ +H)					(M ⁺ +H)	
68	m/e	(d-6-DMSO, d values) 3.95 (s, 3H), 3.95 (s, 3H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .
	476	7.00 (m, 1H), 7.20 (m, 3H), 7.30 (m, 3H), 7.40 (d,	-PrOH		DMA	264	2H ₂ 0,
	(M ⁺ +H)					(M ⁺ +H)	EtOAc

spec 90 m/e (d- 476 7.00 (M ⁺ +H) 2H) 91 m/e (d- 432 7.20 (M ⁺ +H) 1H)						
m/e 476 (M ⁺ +H) 2 m/e 432 (M ⁺ +H)		conditions	Mass	Reaction	Mass	Reaction
476 (M ⁺ +H) % m/e 432 (M ⁺ +H)	(d-6-DMSO, d values) 3.95 (s, 3H), 3.95 (s, 3H),	110°C/18h/1		KOtBu,	m/e	$SnCl_2.2H_20$
(M ⁺ +H) 2 432 (M ⁺ +H)	7.00 (m, 1H), 7.20 (m, 3H), 7.30 (m, 3H), 7.40 (d,	-PrOH		DMA	264	, EtOAc
m/e 432 (M ⁺ +H)	2H), 7.90 (s, 1H), 8.60 (s, 1H)				(M ⁺ +H)	
——————————————————————————————————————	(d-6-DMSO, d values) 4.00 (s, 6H), 7.00 (m, 2H),	110°C/18h/1		KOtBu,	m/e	$SnCl_2.2H_20$
	7.20 (dd, 1H), 7.20 (d, 2H), 7.40 (t, 1H), 7.45 (s,	-PrOH		DMA	220	, EtOAc
(hr.	1H), 7.50 (d, 2H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20				(M ⁺ +H)	
(10) -	(broad s, 1H)					
92 m/e (d-	(d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 2H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .
524 7.03	7.05 (m, 2H), 7.40 (m, 1H), 7.45 (s, 1H), 7.45 (d,	-PrOH		DMA	312	$2H_20$,
$\left (M^+ + H) \right 2H$	2H), 7.90 (d, 1H), 8.15 (s, 1H), 8.90 (s, 1H), 11.05				(M ⁺ +H)	EtOAc
(bro	(broad s, 1H)					
93 m/e (d-	(d-6-DMSO, d values) 4.00 (s, 6H), 7.05 (d, 1H),	110°C/18h/1				
466 7.1	7.15 (m, 3H), 7.45 (s, 1H), 7.55 (d, 2H), 7.60 (d,	-PrOH				
$\left(\mathrm{M}^{+}\mathrm{H}\right) \left \mathrm{1H}\right\rangle$	1H), 8.15 (s, 1H), 8.95 (s, 1H), 11.10 (broad s, 1H)					

N	mase	nmr	reaction	Intermediate 1	diate 1	Interm	Intermediate 2
140.			conditions	Mass R	Reaction	Mass	Reaction
	2/	(4 & DMSO d values) 4 00 (s 6H), 7.10 (t. 3H).	110°C/18h/1	m/e	KOtBu,	m/e	SnCl ₂ .2H ₂ 0
7	433	7.20 (4.1H) 7.35 (4.1H) 7.50 (8.1H), 7.55 (4.2H).	-ProH	243	DMA	220	, HCl,
	(M ⁺ +H)	(3) (3) (4) (4) (11), 8.20 (8, 11), 8.95 (8, 11), 11.20 (broad		(M ⁺ +H)		(M ⁺ +H)	EtOAc
		s, 1H)					
95	m/e	(d-6-DMSO, d values) 2.05 (s, 3H), 4.00 (s, 6H),	110°C/18h/1	m/e	KOtBu,		H ₂ , Pd/C,
,	455	6.65 (m, 1H), 7.15 (d, 2H), 7.30 (d, 2H), 7.45 (m,	-PrOH	273 (M ⁺ +H)	DMA		EtOAc
	(M ⁺ +H)	4H), 8.20 (s, 1H), 8.95 (s, 1H), 10.10 (broad s, 1H),					
		11.20 (broad s, 1H)					
96	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 6.80 (m, 1H),	110°C/18h/1			İ	H ₂ , Pd/C,
	414	6.95 (m, 5H), 7.35 (d, 2H), 7.40 (s, 1H), 8.00 (s, 1H),	-PrOH				EtOAc
	(M ⁺ +H)	8.75 (s, 1H), 9.60 (broad s, 1H), 10.50 (broad s, 1H)					
97	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 5.25 (s, 2H),	110°C/18h/1	m/e	KOtBu,	m/e	SnCl ₂ .2H ₂
	532	7.05 (m, 3H), 7.30 (m, 6H), 7.50 (m, 3H), 7.60 (m,	-PrOH	350	DMA	320	0, HCl,
	(M ⁺ +H)			(M ⁺ +H)		(M ⁺ +H)	EtOAc
		(broad s, 1H)					

spec m/e 466 (d-6-DMSO, d values) 4.00 (s, 6H), 7.00 (d, 1H), 110°C/18h (M ⁺ H) 7.20 (d, 2H), 7.30 (t, 1H), 7.50 (s, 1H), 7.55 (d, 2H), 7.60 (t, 1H), 7.80 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) yes m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 110°C/18h (M ⁺ H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 7.50 (m, 2H), 7.55 (d, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (s, 1H), 11.20 (m ⁺ H) 7.55 (m, 1H), 7.20 (t, 1H), 8.20 (s, 1H), 11.20 (m ⁺ H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.00 (broad s, 1H) 101 m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 110°C/18h 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 11.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,			reaction	Interr	Intermediate 1	Interr	Intermediate 2
m/e 466 (d-6-DMSO, d values) 4.00 (s, 6H), 7.00 (d, 1H), 7.20 (d, 2H), 7.30 (t, 1H), 7.50 (s, 1H), 7.55 (d, 2H), 7.60 (t, 1H), 7.80 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, (M ⁺ +H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ +H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,			conditions	Mass	Reaction	Mass	Reaction
(M ⁺ H) 7.20 (d, 2H), 7.30 (t, 1H), 7.50 (s, 1H), 7.55 (d, 2H), 7.60 (t, 1H), 7.80 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, 1H), 7.50 (m, 2H), 7.55 (d, 1H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, 441 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H)	1.00 (s, 6H), 7.00 (d, 1	H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .2H ₂
7.60 (t, 1H), 7.80 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, (M ⁺ H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), 11H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,), 7.50 (s, 1H), 7.55 (d, 2H),	-PrOH		DMA	254	0, HCl,
11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, (M ⁺ +H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), (M ⁺ +H) 7.55 (m, 1H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,), 8.20 (s, 1H), 8.95 (s	s, 1H),				(M ⁺ +H)	EtOAc
m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, (M ⁺ H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,							
466 7.30 (m, 3H), 7.35 (d, 1H), 7.50 (m, 2H), 7.55 (d, (M ⁺ H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, (M ⁺ H)), 7.50 (s, (M ⁺ H))	1.00 (s, 3H), 4.00 (s, 3	H),	110°C/18h/1		KOtBu,	m/e	SnCl ₂ .
(M ⁺ H) 2H), 7.60 (t, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s, 1H)	H), 7.50 (m, 2H), 7.55	(d,	-PrOH		DMA	254	2H ₂ O,
m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ +H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,	s, 1H), 8.95 (s, 1H), 1	1.20				(M ⁺ +H)	HCI,
m/e (d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H), 442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,							EtOAc
442 7.05 (d, 2H), 7.20 (t, 1H), 7.45 (d, 2H), 7.50 (s, 1H), (M ⁺ +H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,	1.00 (s, 6H), 6.95 (d,	(H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ H) 7.55 (m, 1H), 7.80 (dd, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ H)) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,), 7.45 (d, 2H), 7.50 ((s, 1H),	-PrOH	350	DMA	230	EtOAc
1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,	1H), 8.20 (s, 1H), 8.93	5 (s,		$(M^{+}H$		$(M^{+}H)$	
m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.00 (q, 2H), 441 4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, (M ⁺ +H) 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,							
4.00 (s, 6H), 6.25 (dd, 1H), 6.30 (t, 1H), 6.40 (dd, 1H), 7.10 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.15 (s,	1.15 (t, 3H), 3.00 (q, 2	2H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
1H), 7.10 (m, 3H),	H), 6.30 (t, 1H), 6.40	(dd,	-PrOH	259	DMA	229	EtOAc
	(d, 2H), 7.50 (s, 1H),	8.15 (s,		(M^++H)		(M ⁺ +H)	
1H), 8.85 (s, 1H), 11.00 (broad s, 1H)	(broad s, 1H)						

spec (d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 6H), 456 7.10 (s, 1H), 7.10 (d, 2H), 7.30 (t, 1H), 7.50 (m, 3H), 11.20 (broad s, 1H) m/e (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 469 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ +H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl,, d values) 2.10 (s, 3H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)	No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
m/e (d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 6H), 456 7.10 (s, 1H), 7.10 (d, 2H), 7.30 (t, 1H), 7.50 (m, 3H), 11.20 (broad s, 1H) 11.20 (broad s, 1H) m/e (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 469 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDC!, d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, m/e (CDC!), d values) 2.10 (s, 3H), 2.25 (s, 3H), 7.00 (M ⁺ H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		spec		conditions	Mass F	Reaction	Mass	Reaction
456 7.10 (s, 1H), 7.10 (d, 2H), 7.30 (t, 1H), 7.50 (m, 3H), (M ⁺ H) 7.60 (t, 1H), 7.90 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), (d-6-DMSO, d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, m/e) (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)	1	m/e	(d-6-DMSO, d values) 3.75 (s, 3H), 4.00 (s, 6H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ +H) 7.60 (t, 1H), 7.90 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H), 11.20 (broad s, 1H) (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ +H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 4.23 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)	-	456	(d, 2H), 7.30 (t, 1H), 7.50 (m, 3H),	-PrOH	274	DMA	244	EtOAc
11.20 (broad s, 1H) m/e (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 469 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ +H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		+H)	7.60 (t, 1H), 7.90 (d, 1H), 8.20 (s, 1H), 8.95 (s, 1H),	•	(M ⁺ +H		(M ⁺ +H)	
m/e (d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q, 469 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ +H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H) 8.65 (s, 1H) (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 4.23 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, m/e) (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H)			11.20 (broad s, 1H)					
469 4H), 4.00 (s, 6H), 6.35 (dd, 1H), 6.50 (s, 1H), 6.60 (M ⁺ H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.65 (s, 1H) (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 4.23 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H)	\top	m/e	(d-6-DMSO@373K, d values) 1.10 (t, 6H), 3.30 (q,	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ +H) (dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		469		-PrOH	287	DMA	257	EtOAc
m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		(M ⁺ +H)	(dd, 1H), 7.10 (d, 2H), 7.20 (t, 1H), 7.40 (d, 2H),		(M ⁺ +H		(M ⁺ +H)	
m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, (M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)			7.50 (s, 1H), 8.05 (s, 1H), 8.65 (s, 1H)					
423 7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s, M ⁺ +H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		KOtBu,	m/e	$SnCl_2.2H_2$
(M ⁺ H) 1H), 8.95 (s, 1H), 11.60 (broad s, 1H) m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		423	7.30 (d, 2H), 7.40 (m, 2H), 7.50 (m, 5H), 8.30 (s,	-ProH		DMA	211	0, HCl,
m/e (CDCl ₃ , d values) 2.10 (s, 3H), 2.25 (s, 3H), 3.80 (s, 469 3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (M ⁺ +H) (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)		$(M^+ + H)$	1H), 8.95 (s, 1H),	,			(M ⁺ +H)	EtOAc
3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00 (d, 1H), 7.10 (m, 3H), 7.30 (m, 1H), 7.35 (s, 1H), 7.50 (broad s, 1H), 8.55 (s, 1H)	1	m/e		110°C/36h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
		469	3H), 4.00 (s, 3H), 6.80 (dd, 1H), 6.90 (m, 2H), 7.00	-PrOH	287	DMA	257	EtOAc
7.50 (broad s, 1H), 8.55 (s, 1H)		$(M^{+}H)$			(M ⁺ +H		(M ⁺ +H)	
			7.50 (broad s, 1H), 8.55 (s, 1H)					

No	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
107	m/e	(d-6-DMSO, d values) 2.25 (s, 3H), 4.00 (s, 3H),	110°C/60h/1	m/e	KOtBu,	m/e	SnCl ₂ .2H ₂ 0
	437	4.00 (s, 3H), 7.00 (d, 1H), 7.15 (dd, 1H), 7.25 (m,	-PrOH	255	DMA	225	, HCl,
	(M ⁺ +H)			H+ ₊ W)		(M ⁺ +H)	EtOAc
		(s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H)					
108	m/e 500	(d-6-DMSO, d values) 4.02 (s, 3H), 6.74 (tt, 1H),	100°C/18h/1				
	(M+H)	(M+H) ⁺ 6.89 (m, 1H), 7.03 (m, 2H), 7.22 (d, 2H), 7.46 (m,	-PrOH				
		3H), 7.50 (1H, s), 7.95 (s, 1H), 8.88 (s, 1H)					
109	m/e 438	(d-6-DMSO, d values) 3.54 (m, 1H), 4.01 (s, 3H),	100°C/18h/1		60°C/1h/	m/e 240	90°C/2h/Sn
	(M+H) ⁺	4.80 (m, 2H), 6.99 (m, 4H), 7.18 (m, 1H), 7.25 (m,	-PrOH		K ₂ CO ₃ /	(M+H)	Cl ₂ .2H ₂ O/
		1H), 7.38 (d, 2H), 7.48 (1H, s), 7.94 (s, 1H), 8.88 (s,	*		HCCCH ₂		EtOAc
	-	1H)			Br/aceto		
					ne		
110	m/e 409	(d-6-DMSO, d values) 4.0 (s, 3H), 6.97 (d, 1H),	82°C/20h/iso				
	$\left (M^+ + H) \right $	(M^+H) 7.23-7.35 (m, 3H), 7.47 (s, 1H), 7.51 (d, 2H), 7.63 (t,	-PrOH	,			
		1H), 7.9 (d, 1H), 7.95 (s, 1H), 8.89 (s, 1H), 10.5					
		(br.s, 1H), 10.85 (br.s, 1H)					

mass	n.m.r.	reaction	Interm	Intermediate I	Intern	Intermediate 2
		conditions	Mass F	Reaction	Mass	Reaction
	(d-6-DMSO, d values) 2.80 (s, 6H), 4.00 (s, 6H),	110°C/18h/1	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	6.95 (m, 2H), 7.05 (d, 2H), 7.20 (m, 2H), 7.40 (d,	-PrOH	259	DMA/ HCHO,	229	EtOAc
	2H), 7.40 (s, 1H), 8.10 (s, 1H), 8.85 (s, 1H), 10.90		(M ⁺ +H	AcOH,	(M++H)	2112
	(broad s, 1H)			N, EtOH		
-	(d-6-DMSO, d values) 2.90 (s, 6H), 4.00 (s, 6H),	110°C/18h/1	m/e	Ć,	m/e	H ₂ , Pd/C,
	6.35 (m, 2H), 6.50 (d, 1H), 7.15 (m, 3H), 7.45 (d,	-PrOH	259	AcOH, NaBH3C	229	EtOAc
-vv-	2H), 7.50 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H), 11.10		(M ⁺ +H		(M ⁺ +H)	
	(broad s, 1H)					
m/e 500	(d-6-DMSO, d values) 3.97 (s, 3H), 6.74 (tt, 1H),	100°C/18h/1				···
(M+H)	6.89 (m, 1H), 7.03 (m, 2H), 7.24 (d, 2H), 7.34 (s,	-PrOH				
	1H), 7.45 (d, 1H), 7.51 (d, 2H), 8.04 (s, 1H), 8.87 (s,					
	1H)		•			
	(d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (d, 1H),	110°C/70h/1	m/e	KOtBu,	m/e	$SnCl_2.2H_20$
	7.00 (d, 1H), 7.40 (m, 4H), 7.85 (d, 2H), 7.95 (dd,	-PrOH	257	DMA	229	, HCl,
E	(M ⁺ 1II) 11D, 8.15 (s, 1II), 8.95 (s, 1II), 10.55 (broad s, 1II).		(M·II)	-	(M ⁺ :II)	FIOAc
-	11.10 (broad s, 111), 11.70 (broad s, 111)					

Intermediate 2	Mass Reaction	m/e 215 H ₂ / Pd/C /	(M ⁺ +H) EtOAc /	RT/	ambient	pressure	m/e 241 90°C/2h/Sn	$(M+H)^{+}$ Cl ₂ .2H ₂ O/	EtOAc									·
Intermediate 1	Reaction	/m	<u>(K</u>				60°C/1h/ m/	$ K_2 CO_3/b (N$	romoacet	onitrile/a	cetone							
reaction	conditions	1-PrOH/	110 deg /	18h			100°C/18h/1	-PrOH				100°C/18h/1	-PrOH		100°C/18h/1	-PrOH		
n m t		(d-6-DMSO. d values) 2.63 (s, 3H), 3.97 (d, 6H),	_	3H) 8.19 (s. 1H).			(d-6-DMSO, d values) 4.00 (s, 3H), 5.14 (s, 2H),		1H), 7.40 (d, 2H), 7.45 (s, 1H), 7.94 (s, 1H), 8.87 (s,	. IH)		(d-6-DMSO, d values) 3.60 (t, 2H), 4.00 (m, 5H),	(M+H) ⁺ 6.98 (m, 4H), 7.17 (m, 2II), 7.27 (d, 2H), 7.46 (s,	1H), 7.93 (s, 1H), 8.87 (s, 1H)	(d-6-DMSO, d values) 3.95 (s, 3H), 5.15 (s, 2H),	(M+H) ⁺ 7.03 (d, 2H), 7.10 (m, 2H), 7.24 (m, 1H), 7.31 (m,	1H), 7.41 (m, 2H), 7.45 (m, 1H), 8.08 (s, 1H), 8.83	(S. 1H)
mass	spec	m/e 477					m/e 439	(M+H)	`	•	ALL.	m/e 444	(M+H) ⁺		m/e 439	(M+H)		
N.		117					122					123			124			

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass R	Reaction	Mass	Reaction
125	m/e 444	(d-6-DMSO, d values) 3.60 (t, 2H), 3.96 (s, 3H),	100°C/18h/1				
	(M+H) ⁺	3.98 (t, 2H), 7.00 (m, 4H), 7.16 (m, 2H), 7.37 (s,	-PrOH				
		1H), 7.42 (m, 2H), 8.10 (s, 1H), 8.84 (s, 1H)					
126	m/e 440	(d-6-DMSO, d values) 3.89 (s, 3H), 4.55 (m, 2H),	100°C/18h/1		60°C/11⁄/	m/e 242	90°C/3h/Sn
	(M+H) ⁺	5.17 (dd, 1H), 5.29 (dd, 1H), 5.92 (m, 1H), 6.89 (d,	-PrOH		K ₂ CO ₃ /	(M+H) ⁺	$(M+H)^{+}$ Cl ₂ .2H ₂ O/
		2H), 6.93 (m, 1H), 7.02 (m, 1H), 7.13 (m, 2H), 7.16			allyl		EtOAc
		(s, 1H), 7.21 (d, 2H), 7.72 (s, 1H), 8.29 (s, 1H), 9.34			bromide/		
		(s, 1H)			acetone		
129	m/e 471	(d-6-DMSO, d values) 2.61 (d, 3H), 3.98 (s, 3H),	100°C/18h/1				
	(M+H)	4.46 (s, 2H), 7.00 (m, 4H), 7.04 (m, 1H), 7.12 (m,	-PrOH				
	0	2H), 7.33 (d, 2H), 7.41 (s, 1H), 7.49 (bs, 1H), 7.86					
		(s, 1H), 8.74 (s, 1H)					
130	m/e	(d-6-DMSO, d values) 3.98 (s, 3H), 6.95 (d, 1H),	82°C/20h/iso				
	409.2	7.22-7.4 (m, 3H), 7.42 (s, 1H), 7.5-7.7 (m, 3H), 7.9	-PrOH				
	(M^++H)	(M^+H) (d, 1H), 8.09 (s, 1H), 8.89 (s, 1H), 11.1 (br.s, 1H),				-	
		11.7 (br.s, 1H)					

spec (M ⁺ +H) 3.37 (s, 6H), 3.17 (s, 1H), 8.31 (M ⁺ +H) 3.12 (q, 2H), (M ⁺ +H) 3.12 (q, 2H), 3.12 (q, 2H), 3.12 (q, 1H), 8.90 (s, 1H), 8.90 (broad, 1H) (broad, 1H) (broad, 1H)	(d-6-DMSO, d values) 1.19 (t, 3H), 3.12 (q, 2H),					
m/e 529 M ⁺ H) 3 M ⁺ H) M ⁺ H)	1	conditions	Mass 1	Reaction	Mass	Reaction
m/e 529 (M ⁺ +H) 3 (M						
(M ⁺ +H) 3 m/e 554 (M ⁺ +H) 3 m/e		EtOH /				
3 m/e 554 (M ⁺ +H) 3 (m/e	(M ⁺ H) 3.37 (s, 6H), 3.79 (m, 4H), 4.36 (m, 4H), 6.66 (m,	reflux / 18 h				
(M ⁺ +H) 3 m/e m/e m/e	3H), 7.18 (d, 2H), 7.26 (m, 1H), 7.51 (d, 2H), 7.56				***	
m/e 554 (M ⁺ +H) 3 (M ⁺ +H) m/e	(s, 1H), 8.31 (s, 1H), 8.99 (s, 1H), 11.39 (s, 1H)					
(M ⁺ +H)	m/e 554 (d-6-DMSO, d values) 1.13 (t, 3H), 2.30 (m, 2H),	1-PrOH /				-
m/e	(M ⁺ +H) 3.12 (q, 2H), 3.16 (broad, 2H), 3.49 (broad, 2H),	1.0M				
m/e	(m,	ethereal HCl				
m/e	2H), 6.48 (m, 1H), 7.13 (m, 3H), 7.42 (m, 3H), 8.07	(1 equiv.)/				
m/e	(s, 1H), 8.90 (s, 1H), 10.80 (broad, 1H), 10.95	reflux / 48 h				
m/e	(
_	(CDCl ₃ , d values) 3.80 (s, 3H), 4.05 (s, 3H), 7.00 (m, 110°C/18h/1		m/e	KOtBu,	m/e	H ₂ , Pd/C,
466 5H), 7.15 (d,	5H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (s, 1H), 7.50	-PrOH	284	DMA	254	EtOAc
(td, 1H), 8.0	(td, 1H), 8.05 (dd, 1H), 8.45 (s, 1H), 8.60 (s, 1H)		(M ⁺ +H		(M ⁺ +H)	

					-	1	1000
No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
141	m/e 529	(d-6-DMSO, d values) 2.34 (m, 2H), 3.08 (m, 2H),	1-PrOH/				
	(M ⁺ +H)	(M ⁺ +H) 3.48 (m, 4H), 3.90 (m, 4H), 4.01 (s, 3H), 4.30 (t,	1.0M	,			
		2H), 7.12 (d, 2H), 7.21 (m, 3H), 7.40 (m, 1H), 7.48	ethereal HCI				
		(d, 2H), 7.57 (s, 1H), 8.34 (s, 1H), 8.90 (s, 1H),	(1 equiv.) /				
		11.28 (broad, 2H)	60deg / 72 h				-
144	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 6.95 (m, 1H),	110°C/18h/1		KOtBu,	m/e	H ₂ , Pd/C,
	434	7.20 (m, 4H), 7.50 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 0.05 (c, 1H), 11.25 (broad s, 1H)	-PrOH		DMA	222	EtOAc
	$\left (M^{+}H) \right $	6.53 (5, 111), 11.23 (510dd 5, 111)				(M ⁺ +H)	
145	m/e 529		1-PrOH/				
	$(M^{+}H)$		1.0M				
			ethereal HCl				
			(1 equiv.) /				
			60deg / 72 h				
146	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 6.75 (tt, 1H),	110°C/18h/1				
	514	6.90 (t, 1H), 7.00 (m, 2H), 7.20 (d, 2H), 7.45 (s, 1H),	-PrOH				
	(M ⁺ +H)	7.50 (d, 1H), 7.55 (d, 2H), 8.20 (s, 1H), 8.95 (s, 1H),					
<u>-</u>		11.20 (broad s, 1H)	<u>.</u>				

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
147	m/e	(d-6-DMSO, d values) 4.00 (s, 6H), 7.05 (d, 2H),	110°C/18h/1		KOtBu,	m/e	H ₂ , Pd/C,
	434	7.35 (m, 3H), 7.45 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H),	-PrOH		DMA	222	EtOAc
	(M+H)					(M ⁺ +H)	
148	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		KOtBu,	m/e	H ₂ , Pd/C,
	434	7.00 (m, 2H), 7.20 (d, 2H), 7.45 (m, 1H), 7.50 (s,	-PrOH		DMA	222	EtOAc .
	(M ⁺ +H)					(M ⁺ +H)	
		(broad s, 1H)					
149	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		KOtBu,	m/e	H ₂ , Pd/C,
	434	6.75 (dd, 2H), 6.95 (tt, 1H), 7.30 (d, 2H), 7.50 (s,	-PrOH		DMA	222	EtOAc
	(M ⁺ +H)	(M^+HH) 1H), 7.55 (d, 2H), 8.25 (s, 1H), 8.95 (s, 1H), 11.45				(M ⁺ +H)	
·		(broad s, 1H)					
150	m/e 500	(d-6-DMSO, d values) 0.83 (t, 3H), 1.57 (m, 2H),	100°C/5h/1-	m/e	DMA/	m/e	Hydrogen/
	(M ⁺ +H)	3.9 (s, 3H), 4.05(t, 2H), 4.8 (s, 2H), 6.9-7.04 (m,	PrOH/HCl	333.51	KOtBu,	303.58	5% Pd/C/
		(7H), 7.18 (s, 1H), 7.23 (d, 2H), 7.72 (s, 1H), 8.3 (s,		$(M^{\dagger}+H)$	$(M^{+}+H_{-})/150^{0}C/0$ $(M^{+}+H)$	(M ⁺ +H)	EtOAc
		1H), 9.34 (s, 1H)			.Sh		

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
151	m/e	(d-6-DMSO, d values) 3.43 (q, 2H), 3.6 (t, 2H), 3.9	100°C/5h/1-	m/e	DMA/	m/e	Hydrogen/
	519.52	(s, 3H), 4.5(s, 2H), 6.93-7.15 (m, 6H), 7.16 (s, 1H),	PrOH/HCl	333.51	KOtBu,	303.58	5% Pd/C/
		7.24 (d, 2H), 7.73 (s, 1H), 7.89 (t, 1H), 8.3 (s, 1H),		$(M^{+}H$	$/150^{0}$ C/0 $(M^{+}$ HJ)	(M ⁺ +H)	EtOAc
	(M ⁺ +H)	$(M^++H) \mid 9.35 \text{ (s, 1H)}$.5h		
							-
152	m/e	(d-6-DMSO, d values) 3.16 (q, 2H), 3.4 (t, 2H), 3.9	100°C/5h/1-	m/e	DMA/K- m/e	m/e	Hydrogen/
	500.52	(s, 3H), 4.47(s, 2H), 4.7(t, 1H), 6.94-7.17 (m, 7H),	PrOH/HCI	333.51	butoxide/ 303.58	303.58	2%
	$\left (M^{+}H) \right $	(M ⁺ +H) 7.18 (s, 1H), 7.24 (d, 2H), 7.57 (t, 1H), 7.74 (s, 1H),		$(M^{+}H)$	150°C/0. (M ⁺ +H)	(M ⁺ +H)	Pd/C/EtOA
	,	8.31 (s, 1H), 9.34 (s, 1H)			5h		၁
153	m/e	(d-6-DMSO, d values) 3.16 (q, 2H), 3.39 (t, 2H),	100°C/2h/1-				
	515.44	3.98 (s, 6H), 3.95 (v.br. s, 1H), 4.48(s, 2H), 6.95-	PrOH				
	$\left (M^{+}H) \right $	(M ⁺ H) 7.22 (m, 6H), 7.41 (s, 1H), 7.44 (d, 2H), 7.6 (t, 1H),					
		8.13 (s, 1H), 8.9 (s, 1H), 11.07 (br.s, 1H)					

	mass	n.m.r.	reaction	Intermediate 1	iate 1	Interm	Intermediate 2
	sbec		conditions	Mass Rea	Reaction	Mass	Reaction
156	m/e 470	(d-6-DMSO, d values) 2.60 (s, 3H), 4.00 (s, 6H),	110°C/18h/1			m/e 256	H ₂ , Pd/C,
	(M+H)	_	-PrOH	•		(M-H)	EtOAc
***		(d, 2H), 7.20 (t, 1H), 7.35 (t, 1H), 7.45 (d, 2H), 7.45					
		(s, 1H), 8.15 (s, 1H), 8.80 (broad s, 1H), 8.90 (s, 1H),					
		11.10 (broad s, 1H)					-
157	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1	X	KOtBu,	m/e	H ₂ , Pd/C,
	482	7.00 (broad s, 1H), 7.05 (m, 2H), 7.25 (d, 2H), 7.50	-PrOH		DMA	270	EtOAc
	(M ⁺ +H)	(m, 4H), 8.25 (s, 1H), 8.95 (s, 1H), 11.40 (broad s,				(M ⁺ +H)	
		1H)					
158	m/e	(d-6-DMSO, d values) 3.80 (s, 3H), 4.00 (s, 3H),	110°C/18h/1	不	KOtBu,	m/e	H ₂ , Pd/C,
	474	4.00 (s, 3H), 6.80 (d, 1H), 7.15 (t, 1H), 7.20 (d, 2H),	-PrOH		DMA	262	EtOAc
	$(M^{+}H)$	7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.25 (broad				(M ⁺ +H)	
		s, 1H)					
159	m/e 458	(d-6-DMSO, d values) 3.61 (m, 2H), 4.00 (bs, 8H),	100°C/18h/1				
	(M+H)	6.98 (m, 4H), 7.17 (m, 2H), 7.42 (m, 3H), 8.13 (s,	-PrOH				
		1H), 8.90 (s, 1H)					

spec m/e (CDCl ₃ , d values) 3.80 (s, 3H), 4.00 (s, 3H), 6.75 (s, 110°C/18h/1 452 1H), 6.80 (broad s, 1H), 6.95 (m, 4H), 7.10 (d, 2H), -PrOH (M'+H) 7.35 (s, 1H), 8.60 (s, 1H) 100°C/18h/1 100°C/18h/1 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, -PrOH 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, -PrOH 6.6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 m/e (d-6-DMSO, d values) 4.00 (s, 3H), 7.40 (td, -PrOH 6.7) (m'+H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), 1.0M (M'+H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 1.0M 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, etheraal HCl 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (1 equiv.) / (broad, 2H) h	No.	mass	n.m.r.	reaction	Intermediate 1	ate 1	Intern	Intermediate 2
m/e (CDCl ₃ , d values) 3.80 (s, 3H), 4.00 (s, 3H), 6.75 (s, 47) 452 IH), 6.80 (broad s, 1H), 6.95 (m, 4H), 7.10 (d, 2H), (M ⁺ H) 7.35 (s, 1H), 8.60 (s, 1H) m/e (d-6-DMSO, d values) 2.62 (d, 3H), 3.97 (s, 6H), 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, (M ⁺ H) [†] 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)				conditions		Reaction	Mass	Reaction
452 1H), 6.80 (broad s, 1H), 6.95 (m, 4H), 7.10 (d, 2H), (M ⁺ H) 7.35 (s, 1H), 8.60 (s, 1H) m/e (d-6-DMSO, d values) 2.62 (d, 3H), 3.97 (s, 6H), 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, (M+H) ⁺ 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)	160	m/e	(CDCl ₃ , d values) 3.80 (s, 3H), 4.00 (s, 3H), 6.75 (s,	110°C/18h/1	K	KOtBu,	m/e	H ₂ , Pd/C,
(M ⁺ H) 7.35 (s, 1H), 8.60 (s, 1H) m/e (d-6-DMSO, d values) 2.62 (d, 3H), 3.97 (s, 6H), 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, (M+H) ⁺ 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		452		-PrOH	[Q	DMA	240	EtOAc
m/e (d-6-DMSO, d values) 2.62 (d, 3H), 3.97 (s, 6H), 485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, (M+H) ⁺ 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ +H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		(M+H)					(M ⁺ +H)	
485 4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m, (M+H) [†] 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ +H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)	161	m/e	(d-6-DMSO, d values) 2.62 (d, 3H), 3.97 (s, 6H),	100°C/18h/1				N N
(M+H) ⁺ 1H), 8.13 (s, 1H), 8.92 (s, 1H) m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ +H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		485	4.33 (s, 2H), 7.08 (m, 6H), 7.42 (m, 3H), 7.52 (m,	-PrOH				٠
m/e (d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		(M+H)						-
482 7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td, (M ⁺ H) 1H), 7.50 (m, 4H), 8.20 (s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)	162	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1	K	KOtBu,	m/e	H ₂ , Pd/C,
(broad s, 1H) (broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		482	7.10 (d, 1H), 7.15 (d, 2H), 7.25 (m, 1H), 7.40 (td,	-PrOH	<u> </u>	DMA	270	EtOAc
(broad s, 1H) m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)		(M^++H)	1H), 7.50 (m, 4H),				(M ⁺ +H)	
m/e 529 (d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), (M ⁺ +H) 3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)			(broad s, 1H)					
3.50 (m, 4H), 3.83 (t, 2H), 3.99 (s, 2H), 4.02 (s, 3H), 4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d, 2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92 (broad, 2H)	163	m/e 529		1-PrOH /				
, 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d,		(M^++H)	3.50 (m, 4H), 3.83 (1.0M				
s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92			4.36 (t, 2H), 7.12 (m, 4H), 7.26 (m, 2H), 7.48 (d,	ethereal HCl		- ", 1-		
			2H), 7.52 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H), 10.92	(1 equiv.) /	 :			-
q			(broad, 2H)	110deg / 48				
				4		-		

n.m.r.	reaction	Interm	ediate 1	Intern	Intermediate 2
	conditions	Mass F	leaction	Mass	Reaction
(d-6-DMSO, d values) 2.34 (m, 2H), 3.12 (m, 2H),	1-PrOH/				
3.49 (m, 4H), 3.83 (t, 2H), 4.00 (m, 5H), 4.32 (t,	1.0M				
2H), 7.15 (m, 3H), 7.27 (m, 1H), 7.50 (m, 4H), 8.16	ethereal HCl				
(s, 1H), 8.88 (s, 1H), 10.94 (broad, 2H)	(1 equiv.) /		•		
	110deg / 48h				-
(d-6-DMSO, d values) 2.28 (s, 3H), 2.34 (m, 2H),	1-PrOH/				
3.12 (m, 2H), 3.29 (m, 2H), 3.50 (m, 2H), 3.84 (t,	1.0M				
2H), 4.02 (m, 5H), 4.33 (t, 2H), 7.02 (d, 1H), 7.18	ethereal HCl				
(m, 1H), 7.29 (m, 2H), 7.53 (d, 2H), 7.64 (m, 1H),	(1 equiv.) /				
7.92 (m, 1H), 8.27 (s, 1H), 8.88 (s, 1H), 11.00	110deg / 48h				
(broad, 2H)		-			
(d-6-DMSO@373K, d values) 2.60 (s, 3H), 4.00 (s,	110°C/18h/1		KOtBu,	m/e	Na ₂ S ₂ O ₄ ,
6H), 7.05 (d, 2H), 7.10 (d, 1H), 7.35 (t, 1H), 7.40 (d,	-PrOH		DMF	268	EtOH,
2H), 7.55 (s, 1H), 7.55 (t, 1H), 7.95 (dd, 1H), 8.15				(M ⁺ +H)	H ₂ O
(s, 1H), 8.70 (s, 1H)					
	mass n.m.r. spec m/e 529 (d-6-DMSO, d values) 2.34 (m, 2H), 3.12 (m, 2H), 3.49 (m, 4H), 3.83 (t, 2H), 4.00 (m, 5H), 4.32 (t, 2H), 7.15 (m, 3H), 7.27 (m, 1H), 7.50 (m, 4H), 8.16 (s, 1H), 8.88 (s, 1H), 10.94 (broad, 2H) m/e 550 (d-6-DMSO, d values) 2.28 (s, 3H), 2.34 (m, 2H), 2H), 4.02 (m, 2H), 3.29 (m, 2H), 3.50 (m, 2H), 3.84 (t, 2H), 4.02 (m, 5H), 4.33 (t, 2H), 7.02 (d, 1H), 7.18 (m, 1H), 7.29 (m, 2H), 7.53 (d, 2H), 7.64 (m, 1H), 7.92 (m, 1H), 8.27 (s, 1H), 8.88 (s, 1H), 11.00 (broad, 2H) (d-6-DMSO@373K, d values) 2.60 (s, 3H), 4.00 (s, 480 (eH), 7.05 (d, 2H), 7.10 (d, 1H), 7.35 (t, 1H), 7.40 (d, (s, 1H), 8.70 (s, 1H))	tes) 2.34 (m, 2H), 3.12 (m, 2H), t, 2H), 4.00 (m, 5H), 4.32 (t, 7.27 (m, 1H), 7.50 (m, 4H), 8.16 (m, 2H), 10.94 (broad, 2H) tes) 2.28 (s, 3H), 2.34 (m, 2H), (m, 2H), 3.50 (m, 2H), 3.84 (t, 4.33 (t, 2H), 7.02 (d, 1H), 7.18 (d, 2H), 7.64 (m, 1H), 7.53 (d, 2H), 7.64 (m, 1H), 7.53 (d, 2H), 7.64 (m, 1H), 7.53 (d, 2H), 7.64 (m, 1H), 7.55 (d, 1H), 11.00 (s, 1H), 8.88 (s, 1H), 11.00 (s, 1H), 7.35 (t, 1H), 7.35 (t, 1H), 8.15	reaction Internations (a) 12.34 (m, 2H), 3.12 (m, 2H), 1-PrOH / 1.0M (m, 5H), 4.32 (t, 1.0M (m, 5H), 4.32 (t, 1.0M (m, 1H), 7.50 (m, 4H), 8.16 (1 ethereal HCl 110deg / 48h (m, 2H), 3.50 (m, 2H), 3.84 (t, 1.0M (m, 2H), 3.50 (m, 2H), 7.18 (m, 1H), 7.18 (m, 2H), 7.53 (d, 1H), 7.18 (m, 1H), (1 equiv.) / (m, 2H), 8.88 (s, 1H), 11.00 (m, 110deg / 48h (s, 1H), 7.35 (t, 1H), 7.40 (d, -PrOH (m, 1H), 7.35 (t, 1H), 7.35 (t, 1H), 8.15	reaction Interme conditions Mass R conditions Mass R 1, 2H), 4.00 (m, 5H), 4.32 (t, 1.0M 1.094 (broad, 2H) 1.0M 1.0deg / 48h 1.094 (broad, 2H) 1.0M 1.0deg / 48h 1.095 (s, 3H), 2.34 (m, 2H), 1.0M 1.0M 1.0M 1.0M 1.0M 1.0M 1.0M 1.0M	reaction Intermediate 1 conditions Mass Reaction Mass 2.34 (m, 2H), 3.12 (m, 2H), t, 2H), 4.00 (m, 5H), 4.32 (t, 7.27 (m, 1H), 7.50 (m, 4H), 8.16 ethereal HCl is) 2.28 (s, 3H), 2.34 (m, 2H), ies) 2.28 (s, 3H), 2.34 (m, 2H), ies) 2.28 (s, 3H), 2.34 (m, 2H), ies) 2.28 (s, 3H), 2.34 (m, 1H), ies) 2.28 (s, 3H), 7.02 (d, 1H), 7.18 ies 2.28 (s, 3H), 7.40 (d, 1H), 7.35 (d, 1H), 7.35 (d, 1H), 7.35 (d, 1H), 8.15 ies 2.34 (m, 2H), ies 3.24 (m, 2H), ies 3.25 (d, 1H), 7.35 (d, 1H), 8.15 ies 3.34 (m, 2H), ies 4.48 (m, 2H), ies 3.25 (d, 1H), 7.35 (d, 1H), 8.15 ies 3.34 (m, 2H), ies 4.48 (m, 2H), ies 3.34 (m, 2H), ies 4.48 (m, 2H), ies 4.48 (m, 2H), ies 4.48 (m, 2H), ies 4.48 (m, 2H), ies 6.48 (m, 2H), ies 6.48 (m, 2H), ies 7.48 (m, 2H), ies 7.48 (m, 2H), ies 8.48 (m, 2H), ies 8.48 (m, 2H), ies 8.48 (m, 2H), ies 8.48 (m, 2H), ies 9.48 (m, 2H), ies

No.	mass	n.m.r.	reaction	Intern	Intermediate 1	Interr	Intermediate 2
	sbec		conditions	[Wass	Reaction	Mass	Reaction
167	m/e	(CDCl ₃ , d values) 3.80 (s, 3H), 4.00 (s, 3H), 7.00 (s,	110°C/18h/1		KOtBu,	m/e	H ₂ , Pd/C,
	466	1H), 7.05 (d, 2H), 7.05 (s, 1H), 7.20 (d, 2H), 7.20 (d,	-PrOH		DMA	254	EtOAc
	(M ⁺ +H)	(M ⁺ H) 1H), 7.40 (s, 1H), 7.50 (t, 1H), 7.70 (t, 1H), 7.80 (d,				(M ⁺ +H)	
		1H), 8.45 (s, 1H), 8.60 (s, 1H)					
169	m/e 611	(d-6-DMSO, d values) 0.91 (t, 3H), 1.53 (m, 2H),	100°C/18h/1				•
	(M+H) ⁺	2.33 (m, 2H), 3.08 (m, 2H), 3.26 (m, 2H), 3.35-3.50	-PrOH				·
		(m, 2H (under H ₂ O signal)), 3.68 (s, 2H), 3.81 (m,					
		2H), 3.95 (m, 4H), 3.99 (s, 3H), 4.29 (m, 2H), 6.87					
		(d, 1H), 7.04 (d, 2H), 7.10 (m, 1H), 7.26 (m, 1H),					
		7.37 (d, 1H), 7.46 (d, 2H), 7.54 (s, 1H), 8.20 (s, 1H),					
		8.89 (s, 1H)					
171	m/e	(d-6-DMSO, d values) 2.40 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		KOtBu,	m/e	Na ₂ S ₂ O ₄ ,
	480	4.00 (s, 3H), 7.05 (d, 1H), 7.10 (d, 2H), 7.35 (t, 1H),	-PrOH.		DMF	268	ЕтОН,
,	(M ⁺ H)	7.50 (d, 2H), 7.50 (s, 1H), 7.60 (t, 1H), 8.10 (d, 1H),				(M ⁺ +H)	H ₂ O
****		8.20 (s, 1H), 8.90 (s, 1H), 11.25 (broad s, 1H)					

Intermediate 2	Reaction	H ₂ , Pd/C,	EtOAc					-						H ₂ , Pd/C,	EtOAc			
Intern	Mass	m/e	271	(M ⁺ +H)								1		m/e	243	(M ⁺ +H)		
Intermediate 1	Reaction	KOtBu,	DMA											Ac ₂ O,	DMA		.,	
Interm	Mass	m/e	301	(M ⁺ +H										m/e	273	(M ⁺ +H		
reaction	conditions	110°C/5h/1-	PrOH				100°C/18h/1	-PrOH						110°C/18h/1	-PrOH.			
n.m.r.		(d-6-DMSO, d values) 3.05 (m, 4H), 3.65 (m, 4H),	4.00 (s, 3H), 4.00 (s, 3H), 6.45 (dd, 1H), 6.55 (d,	(M ⁺ +H) 1H), 6.65 (dd, 1H), 7.15 (d, 2H), 7.20 (t, 1H), 7.45	(d, 2H), 7.45 (s, 1H), 8.20 (s, 1H), 8.95 (s, 1H),	11.25 (broad s, 1H)	(d-6-DMSO, d values) 1.18 (t, 3H), 2.31 (m, 2H),	3.05 (m, 4H), 3.29 (m, 2H), 3.35-3.50 (m, 2H (under	H ₂ O signal)), 3.63 (s, 2H), 3.81 (m, 2H), 3.97 (m,	5H), 4.28 (m, 2H), 6.86 (d, 1H), 7.06 (d, 2H), 7.12	(m, 1H), 7.24 (m, 1H), 7.37 (m, 1H), 7.43 (d, 2H),	7.46 (s, 1H), 8.10 (s, 1H), 8.82 (bs, 1H), 10.80 (bs,	1H)	(d-6-DMSO, d values) 2.00 (s, 3H), 4.00 (s, 3H),	4.00 (s, 3H), 6.90 (dd, 1H), 7.05 (m, 2H), 7.10 (d,		1H), 8.90 (s, 1H), 9.40 (broad s, 1H), 11.30 (broad s,	(H)
mass	sbec	m/e	483	(M ⁺ +H)			m/e 569	(M+H) ⁺						m/e	455	(M ⁺ +H)	-	···_
No.		172					173							174				

No	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass]	Reaction	Mass	Reaction
178	m/e	(d-6-DMSO, d values) 2.32 (m, 2H), 2.89 (s, 3H),	100°C/18h/1		RT/18h/	m/e	$RT/18h/H_2$
	648.5	3.09 (m, 2H), 3.28 (m, 4H), 3.50 (m, 2H), 3.82 (m,	-PrOH		MeSO ₂ C	323	/5%
	(M-H ⁺)	(M-H ⁺) 2H), 3.96 (m, 2H), 4.00 (s, 3H), 4.05 (m, 2H), 4.30				(M+H)	Pd/C/EtOA
		(m, 2H), 6.99 (m, 4H), 7.18 (m, 3H), 7.39 (d, 2H),			'Pr2NEt/		ပ
		7.50 (s, 1H), 8.16 (s, 1H), 8.86 (s, 1H)			DCM		-
179	m/e 683	(d-6-DMSO, d values) 0.95 (t, 6H), 2.32 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 358	RT/18h/5
	$(M+H)^{\dagger}$	2.74 (s, 3H), 3.01 (q, 4H), 3.08 (m, 2H), 3.26 (m,	-PrOH	388	DEAD/P	(M+H) ⁺	$\text{%Pd/C/H}_2/$
		2H), 3.33 (t, 2H), 3.47 (m, 2H), 3.79 (m, 2H), 3.95		$M+H)^{\dagger}$	Ph ₃ /		EtOAc
		(m, 2H), 3.99 (s, 3H), 4.10 (t, 2H), 4.29 (m, 2H),			DCM		
		6.95 (m, 3H), 7.03 (m, 1H), 7.18 (m, 2H), 7.39 (d,					
		2H), 7.51 (s, 1H), 8.18 (s, 1H), 8.92 (s, 1H)					
180	m/e 626	(d-6-DMSO, d values) 1.69 (m, 2H), 1.78 (s, 3H),	100°C/18h/1	m/e	RT/2h/	m/e 301	RT/18h/H ₂
	(M+H)	(M+H) ⁺ 2.34 (m, 2H), 3.02 (m, 2H), 3.08 (m, 2H), 3.26 (m,	-PrOH	331	acetyl	(M+H)	/5%Pd/C/E
		2H), 3.47 (m, 2H), 3.79 (m, 2H), 3.95 (m, 2H), 3.97		M+H) ⁺	chloride/		tOAc
		(m, 2H), 4.00 (s, 3H), 4.30 (m, 2H), 6.98 (m, 3H),			iPr ₂ NEt/		
		7.05 (m, 1H), 7.39 (d, 2H), 7.53 (s, 1H), 7.84 (m,			DCM		
		1H), 8.24 (s, 1H), 8.95 (s, 1H)					

spec 181 m/e 654 (d-6-DMSO, (M+H) [†] 2.31 (m, 3H), 2.11 (m, 2H), 6.99 182 m/e 639 (d-6-DMSO, (M+H) [†] 3.12 (m, 2H), 6.97 184 m/e (d-6-DMSO, 184 m/e (d-6-DMSO, 184 m/e) (d-6-DMSO, 640.6 3.11 (m, 2H), 2H), 2H), 2H), 2H), 2H), 2H), 3.97 (m, 3.97		Icacaca	1110111		1111/111	IIIICI IIICAIAIC 7
m/e 654 (M+H) ⁺ (M+H) ⁺ (M+H) ⁺ m/e 640.6 (M+H) ⁺		conditions	Mass	Reaction	Mass	Reaction
(M+H) ⁺ (M+H) ⁺ (M+H) ⁺ m/e 640.6 (M+H) ⁺	(d-6-DMSO, d values) 0.95 (d, 6H), 1.71 (m, 2H),	· 100°C/18h/1	m/e	RT/2h/	m/e 329	RT/18h/H ₂
m/e 639 (M+H) ⁺ m/e 640.6 (M+H) ⁺		-ProH	359	iso-	$(M+H)^{\dagger}$	/5%Pd/C/E
m/e 639 (M+H) ⁺ m/e 640.6 (M+H) ⁺	2H), 3.81 (m, 2H), 3.95 (m, 2H), 3.99 (m, 5H), 4.29		M+H) ⁺	butyryl		tOAc
m/e 639 (M+H) ⁺ m/e 640.6 (M+H) ⁺	(m, 2H), 6.99 (m, 3H), 7.04 (m, 1H), 7.14 (m, 2H),			chloride/i		
m/e 639 (M+H) ⁺ m/e 640.6 (M+H) ⁺	7.40 (d, 2H), 7.53 (s, 1H), 7.71 (m, 1H), 8.26 (s, 1H),			-Pr ₂ NEt		
m/e 639 (M+H) ⁺ m/e 640.6 (M+H) ⁺				DCM		
(M+H) ⁺ m/e 640.6 (M+H) ⁺	(d-6-DMSO, d values) 2.31 (m, 2H), 3.06 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 314	RT/18h/H ₂
m/e 640.6 (M+H) ⁺		-PrOH	344	DEAD/P (M+H) ⁺	(M+H)	/5%Pd/C/E
m/e 640.6 (M+H) ⁺	2H), 3.95 (m, 2H), 3.99 (s, 3H), 4.04 (t, 2H), 4.30		$M+H)^{\dagger}$	Ph ₃ /		tOAc
m/e 640.6 (M+H) ⁺	(m, 2H), 6.97 (m, 3H), 7.08 (m, 1H), 7.18 (d, 2H),		•	DCM		
m/e 640.6 (M+H) ⁺	7.38 (d, 2H), 7.50 (s, 1H), 8.17 (s, 1H), 8.87 (s, 1H)					
+_	(d-6-DMSO, d values) 0.96 (d, 6H), 2.34 (m, 3H),	100°C/18h/1		RT/18h/I m/e	m/e	$RT/18h/H_2$
$(M+H)^+$ 2H), 3.97 (m,	3.11 (m, 2H), 3.29 (m, 4H), 3.50 (m, 2H), 3.80 (m,	-PrOH		os	315.5	/5%
	(M+H) ⁺ 2H), 3.97 (m, 7H), 4.29 (m, 2H), 6.99 (m, 4H), 7.17		·	butryl	(M+H)	Pd/C/EtOA
(m, 2H), 7.59	(m, 2H), 7.59 (d, 2H), 7.49 (s, 1H), 7.79 (s, 1H), 8.13			chloride/i		၁
(s, 1H), 8.86 (s, 1H)	5 (s, 1H)			Pr ₂ NEt/		
				DCM		

									80							
Intermediate 2	Reaction	RT/18h/H ₂	/2%	Pd/C/EtOA	ပ							H_2 , Pd/C,	EtOAc			
Intern	Mass	m/e	357.5	(M-H ₊).							•	m/e	271	$(M^{+}H)$		
Intermediate 1	Reaction	RT/18h/	Methyl	-pimi	azole	$MeSO_2C$	l'Pr2NEt/	DCM				KOtBu,	DMA			
Interm	Mass											m/e	301	$M^{+}H$		
reaction	conditions	100°C/18h/1	-PrOH						100°C/18h/1	-PrOH		110°C/5h/1-	PrOH			
n.m.r.	-	(d-6-DMSO, d values) 3.09 (m, 2H), 3.67 (s, 3H),	4.97 (m, 8H), 7.00 (m, 4H), 7.14 (m, 2H), 7.40 (m,		H)				(d-6-DMSO, d values) 2.89 (s, 3H), 3.26 (m, 2H),	3.97 (m, 6H), 4.05 (m, 2H), 7.00 (m, 4H), 7.17 (m,	3H), 7.41 (m, 3H), 8.09 (s, 1H), 8.89 (s, 1H)	(d-6-DMSO, d values) 3.05 (m, 4H), 3.65 (m, 4H),	4.00 (s, 3H), 4.00 (s, 3H), 6.45 (dd, 1H), 6.55 (t,	(M ⁺ +H) 1H), 6.70 (dd, 1H), 7.15 (d, 2H), 7.20 (t, 1H), 7.45	(d, 2H), 7.45 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H),	11.30 (broad s, 1H)
mass	sbec	m/e	601.5	(M+H) [†]					m/e	535.5	(M+H)	m/e	483	(M ⁺ +H)		
No.		185							186			187				

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
188	m/e	(d-6-DMSO, d values) 1.40 (broad s, 2H), 1.55	110°C/5h/1-	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	481	(broad s, 4H), 3.00 (broad s, 4H), 4.00 (s, 3H), 4.00	PrOH	299	DMA	269	EtOAc
-	(M ⁺ +H)	(M ⁺ +H) (s, 3H), 7.00 (m, 4H), 7.20 (m, 2H), 7.40 (d, 2H),		(M ⁺ +H		(M ⁺ +H)	
		7.45 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.10 (broad					
		s, 1H)					•
189	m/e	(d-6-DMSO, d values) 1.80 (m, 4H), 3.25 (m, 4H),	110°C/5h/1-	m/e	KOtBu,	m/e	H ₂ , Pd/C,
	467	3.95 (s, 6H), 6.75 (t, 1H), 6.90 (m, 4H), 7.05 (t, 1H),	PrOH	285	DMA	255	EtOAc
	(M ⁺ +H)			(M ⁺ +H		(M ⁺ +H)	
		11.15 (broad s, 1H)					
190	m/e 525	(d-6-DMSO, d values) 3.13 (m, 2H), 3.30 (m, 4H),	100°C/18h/1			·	
	$\left \left(M+H\right) \right $	(M+H) ⁺ 3.97 (d, 6H), 4.04 (m, 2H), 6.98 (m, 3H), 7.06 (m,	-PrOH				
		1H), 7.18 (m, 2H), 7.37 (m, 2H), 8.06 (s, 1H), 8.89					
		(s, 1H)					

reaction
conditions
(d-6-DMSO, d values) 1.79 (m, 2H), 2.84 (s, 3H), 100°C/18h/1
2.97 (m, 2H), 3.97 (s, 6H), 4.03 (m, 2H), 6.97 (m, PrOH
4H), 7.05 (m, 1H), 7.18 (m, 2H), 7.42 (m, 3H), 8.13
(s, 1H), 8.91 (s, 1H)
(d-6-DMSO, d values) 0.96 (d, 6H), 1.71 (m, 2H), 100°C/18h/1
(M+H) ⁺ 2.31 (m, 1H), 3.05 (m, 2H), 3.97 (s, 8H), 6.97 (m,
3H), 7.04 (m, 1H), 7.16 (m, 2H), 7.40 (m, 3H), 7.71
(bs, 1H), 8.11 (s, 1H), 8.89 (s, 1H)
(d-6-DMSO, d values) 1.79 (m, 2H), 2.31 (m, 2H), 100°C/18h/1
2.84 (s, 3H), 2.98 (m, 2H), 3.10 (m, 2H), 3.28 (m,
2H), 3.4-3.6 (m, 2H (under H ₂ O peak)), 3.78 (m,
2H), 3.98 (bs, 5H), 4.02 (m, 2H), 4.28 (m, 2H), 6.97
(m, 4H), 7.05 (m, 1H), 7.16 (m, 2H), 7.37 (d, 2H),
7.46 (s, 1H), 8.10 (s, 1H), 8.84 (s, 1H)

spec m/e 630 (d-6-DMSO, d values) 1.75 (t, 2H), 2.27 (s, 3H), 100°C/18h/1 (M+H) [†] 2.53 (s, 3H), 2.87 (m, 2H), 3.98 (m, 8H), 6.95 (m, -PrOH 3H), 7.01 (m, 1H), 7.13 (m, 2H), 7.38 (m, 3H), 7.87 (m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) m/e (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), -PrOH (M ⁺ +H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.10°C/18h/1 m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), -PrOH 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), -PrOH 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 11.15 (broad s, 1H) 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)	No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Interm	Intermediate 2
m/e 630 (d-6-DMSO, d values) 1.75 (t, 2H), 2.27 (s, 3H), 100°C/18h/1 (M+H) ⁺ 2.53 (s, 3H), 2.87 (m, 2H), 3.98 (m, 8H), 6.95 (m, -PrOH 3H), 7.01 (m, 1H), 7.13 (m, 2H), 7.38 (m, 3H), 7.87 (m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) (m, 1H), 7.15 (d, 2H), 110°C/18h/1 (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 (M ⁺ +H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) (d, 2H), 7.00 (m, -PrOH 4.70 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) (d, 2H), 8.90 (s, 1H), 11.20 (broad s, 1H) (d, 2H), 7.05 (d, 2H), 7.40 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 11.00 (m, 1H), 6.00 (t, 1H), 6.80 (m, 2H), -PrOH 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H) (a, 20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		sbec		conditions	Mass	Reaction	Mass	Reaction
(M+H) [†] 2.53 (s, 3H), 2.87 (m, 2H), 3.98 (m, 8H), 6.95 (m, PrOH 3H), 7.01 (m, 1H), 7.13 (m, 2H), 7.38 (m, 3H), 7.87 (m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) (m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) (m, 1H), 8.06 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), 110°C/18h/1 (M ⁺ H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 11.20 (broad s, 1H) (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (d, 2H), 110°C/12h/1 (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (g, 2H), 110°C/12h/1 (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (g, 2H), -PrOH (m/+H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H) (m, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)	195	m/e 630	- 1	100°C/18h/1	m/e	RT/18h/	m/e 418	80°C/18h/
3H), 7.01 (m, 1H), 7.13 (m, 2H), 7.38 (m, 3H), 7.87 (m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) m/e (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), -PrOH (M ⁺ H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ +H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 11.15 (broad s, 1H)		(M+H) ⁺	2.53 (s, 3H), 2.87 (m, 2H), 3.98 (m, 8H), 6.95 (m,	-PrOH	448	DMSO	(M+H) ⁺	SnCl ₂ .2H ₂
(m, 1H), 8.06 (s, 1H), 8.85 (s, 1H) m/e (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), -PrOH (M ⁺ H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), -PrOH 4.10 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 9.20 (s, 1					M+H) ⁺	chloride/		O/EtOAc
m/e (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), -PrOH (M ⁺ H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (d, 2H), 110°C/12h/1 m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (d, 2H), -PrOH 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H) 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)			(m, 1H), 8.06 (s, 1H), 8.85 (s, 1H)			iPr ₂ NEt/		***
m/e (d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H), 110°C/18h/1 412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), -PrOH (M ⁺ H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), -PrOH 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)						DCM		
412 6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H), PrOH (M ⁺ +H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), -PrOH 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ +H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 11.15 (broad s, 1H)	196	m/e	(d-6-DMSO, d values) 2.30 (s, 3H), 4.00 (s, 6H),	110°C/18h/1	m/e	KOtBu,	m/e 200	H ₂ , Pd/C,
(M ⁺ +H) 7.25 (t, 1H), 7.45 (d, 2H), 7.45 (s, 1H), 8.15 (s, 1H), 8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		412	6.80 (d, 1H), 6.80 (s, 1H), 6.95 (d, 1H), 7.15 (d, 2H),	-PrOH	230	DMA	(M^++H)	EtOAc
8.90 (s, 1H) 11.10 (broad s, 1H) m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		$\left (M^{+}H) \right $			(M ⁺ +H			
m/e (d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H), 110°C/18h/1 427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ +H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)			8.90 (s, 1H) 11.10 (broad s, 1H)					
427 4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m, -PrOH 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)	198	m/e	(d-6-DMSO, d values) 2.65 (s, 3H), 4.00 (s, 3H),	110°C/18h/1	m/e	нсно,	m/e 215	H ₂ , Pd/C,
1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad s, 1H) m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ +H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		427	4.00 (s, 3H), 6.60 (t, 1H), 6.75 (m, 2H), 7.00 (m,	-PrOH	243	АсОН,	$(M^{+}H)$	EtOAc
m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ +H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)			1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s,		(M-H)	BH ₃ .SM		
m/e (d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H), 110°C/12h/1 441 4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), -PrOH (M ⁺ H) 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)			1H), 8.90 (s, 1H), 11.20 (broad s, 1H)			e_2 , THF		
4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H), 7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)	199	m/e	(d-6-DMSO, d values) 1.15 (t, 3H), 3.10 (q, 2H),	110°C/12h/1	m/e	BH ₃ .	m/e 229	H ₂ , Pd/C,
7.00 (m, 1H), 7.05 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		441	4.00 (s, 3H), 4.00 (s, 3H), 6.60 (t, 1H), 6.80 (m, 2H),	-PrOH	259	SMe ₂ ,	(M ⁺ +H)	EtOAc
1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)		$\left (M^{+}H) \right $	7.00 (m, 1H), 7.05		H+ ⁺ M)	THF		
			1H), 8.20 (s, 1H), 8.85 (s, 1H), 11.15 (broad s, 1H)					

_	mass	n.m.r.	ובמכווחוו	ШСП	Illerinediate 1		
	sbec		conditions	Mass	Reaction	Mass	Reaction
200	m/e	(d-6-DMSO, 8 values) 3.76 (s, 3H), 3.98 (s, 3H),	95°C/16h/1-	m/e	115°C/	m/e	10% Pd
	429.4	4.00 (s, 3H), 6.94 - 7.00 (m, 2H), 7.03 - 7.09 (m,	PrOH	247.2	2h/	217.2	on
	(M+H) ⁺			M+H) ⁺	K ₂ CO ₃ /	(M+H)	C/EtOAc
		(s, 1H), 8.27 (d, 1H), 8.93 (s, 1H), 11.23 (bs, 1H)			DMA		
201	m/e	(d-6-DMSO, & values) 3.74 (s, 3H), 3.98 (s, 3H),	95°C/16h/	m/e	115°C/	m/e	10% Pd
	429.4	4.00 (s, 3H), 6.66 - 6.72 (m, 2H), 6.77 (dd, 1H), 7.19	1-PrOH	247.2	2h/	217.2	on
	(M+H) ⁺			M+H) ⁺	K ₂ CO ₃ /	(M+H) ⁺ .	C/EtOAc
		8.21 (s, 1H), 8.32 (d, 1H), 8.94 (s, 1H), 11.24 (bs,			DMA		
		(H1)					
202	m/e	(d-6-DMSO, & values) 3.68 (s, 3H), 3.98 (s, 3H),	95°C/16h/ 1-		115°C/		10% Pd
·	429.4	3.99 (s, 3H), 6.98 (m, 1H), 7.09 - 7.16 (m, 3H), 7.21	PrOH		2h/		on
	(M+H)	(M+H) ⁺ (m, 1H), 7.48 (s, 1H), 7.92 (dd, 1H), 8.17 - 8.22 (m,			K ₂ CO ₃ /		C/EtOAc
		2H), 8.94 (s, 1H), 11.14 (bs, 1H)		:	DMA		

No.	mass	n.m.r.	reaction	Interr	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
203		(d-6-DMSO, 8 values) 3.67 (s, 3H), 3.99 (s, 3H),	100°C/16h/	m/e	RT/11h/	m/e	RT/4h/5%
		7.00 (t, 1H), 7.12 - 7.29 (m, 3H), 7.42 (s, 1H), 8.16	1-PrOH	247	KOtBu/	217.9	Pd on
		(s. 1H), 8.77 (s. 2H), 8.95 (s, 1H)		M+H)	MeO-	(M+H) ⁺	C/H ₂ /
					phenol/		EtOAc
					DMA		-
					135°C/		
					5h/		
212	m/e	(d-6-DMSO, & values) 3.99 (s, 3H), 4.00 (s, 3H),	100°C/7h/1-				
	467.4	7.32 (d, 1H), 7.44 - 7.49 (m, 2H), 7.57 (d, 1H), 7.68	PrOH				
	(M+H) ⁺	(M+H) ⁺ (t, 1H), 8.03 (dd, 1H), 8.19 (s, 1H), 8.35 (d, 1H),					
		8.94 (s, 1H)					
217	m/e 542	(d-6-DMSO, d values) 2.34 (m, 2H), 3.14 (m, 2H),	1-PrOH /				
	$(M^{+}H)$	(M^+H) 3.50 (m, 4H), 3.76 (s, 3H), 3.82 (m, 2H), 3.99 (s,	1.0M		-		
	·	2H), 4.02 (s, 3H), 4.32 (t, 2H), 6.71 (m, 2H), 6.80	ethereal HCI			angaga angaga	
	مودرت	(m, 1H), 7.20 (d, 2H), 7.33 (t, 1H), 7.50 (s, 1H), 7.96 (1 equiv.)	(1 equiv.) /				17.1
		(m, 1H), 8.16 (s, 1H), 8.32 (d, 1H), 8.81 (s, 1H),	110deg / 3 h				
		10.86 (broad, 2H)					

No.	mass	n.m.r.	reaction	Intern	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass	Mass Reaction	Mass	Reaction
219	m/e		RT/15min/		100°C/	m/e	RT/5h/10
	507.4	*	NaH/		3h/	219.3	%Pd on
	(M+H) ⁺		DMA		K ₂ CO ₃ /	(M+H)	C/H ₂ /
			RT2h		DMA		EtOAc
220		(d-6-DMSO, 8 values) 3.68 (s, 3H), 4.00 (s, 3H),	100°C/16h/1				
		6.98 (t, 1H), 7.08 - 7.16 (m, 3H), 7.22 (m, 1H), 7.52	-PrOH				
		(s, 1H), 7.88 (dd, 1H), 7.96 (s, 1H), 8.17 (dd, 1H),					
		8.91 (s, 1H), 10.80 (bs, 1H)					
222	m/e		RT/15min/		100°C/	m/e	RT/5h/10
	519.4		NaH//DMA		3h/	230.6	%Pd on
	(M ⁺ +H)		then ii) RT2h		K ₂ CO ₃ /	(M^+H)	$C/H_2/$
					DMA		EtOAc

No	mass	n.m.r.	reaction	Intermediate 1		nterme	Intermediate 2
	snec		conditions	Mass Reaction	n Mass	r 0	Reaction
			1-PrOH /				
226	m/e 528	(d-6-DIMSO, d values) 3.38 (III, 411), 3.70 (III, 211),	1-11011/				
	(M ⁺ +H)	3.76 (s, 3H), 3.86 (m, 2H), 4.00 (m, 2H), 4.03 (s,	1.0M				
		3H), 4.70 (t, 2H), 6.71 (m, 3H), 6.80 (m, 1H), 7.20	ethereal HCl				
		(d, 1H), 7.34 (t, 1H), 7.54 (s, 1H), 7.97 (m, 1H), 8.21	(1 equiv.) /				
		(s, 1H), 8.33 (d, 1H), 8.86 (s, 1H), 10.95 (broad, 1H), 110deg / 6 h	110deg / 6 h		-		-
		11.28 (broad, 1H)					
258	m/e	(CDCl ₃ , d values) 2.10 (m, 2H), 3.65 (s, 3H), 3.95	110°C/5h/1-	KOtBu,		m/e 180	H ₂ , Pd/C,
	392	(m, 4H), 4.00 (s, 3H), 4.95 (m, 1H), 6.90 (d, 2H),	PrOH	DMA	$(M^{+}H)$	(H	EtOAc
	(M ⁺ +H)	6.90 (s, 1H), 7.15 (d, 2H), 7.25 (s, 1H), 7.35 (s, 1H),					
		8.60 (s, 1H)					
259	m/e	(d-6-DMSO, d values) 1.60 (m, 2H), 2.00 (m, 2H),	110°C/3h/1-	KOtBu,		m/e 194	H ₂ , Pd/C,
	406	3.50 (m, 2H), 3.85 (m, 2H), 4.00 (s, 6H), 4.65 (m,	PrOH	DMA	(M ⁺ +H)	(H+	EtOAc
	(M ⁺ +H)	1H), 7.05 (d, 2H), 7.35 (d, 2H), 7.50 (s, 1H), 8.20 (s,			. 4		
1.4.		1H), 8.90 (s, 1H), 11.20 (broad s, 1H)					

No.	mass	n.m.r.	reaction	Intermediate 1	Intern	Intermediate 2
	sbec		conditions	Mass Reaction	Mass	Reaction
261	m/e	(d-6-DMSO, d values) 3.98 (d, 6H), 7.2 (m, 2H),	85°C/18h/		m/e 220	iKF-
	433.	7.28 (m, 2H) 7.42 (m, 3H), 8.10 (m, 3H), 8.95 (s,	DME		$\left \left(\mathrm{M+H} \right)^{\scriptscriptstyle +} \right $	Al ₂ O ₃ , 18-
	435	(HI				C-6,
						DMSO
	(M+H)				•	then TFA,
						Et ₃ SiH
262	m/e 397	(d-6-DMSO, d values) 3.90 (s, 3H), 3.95 (s, 3H),	100°C/24h/1	m/e 187	7 TFA,	
	(M+H) ⁺		-PrOH	(M+H)) [†] Et ₃ SiH	
	-	7.31 (m, 1H), 7.74 (s, 1H), 7.82 (m, 1H), 8.19 (m,				,,,
		1H), 8.41 (s, 1H), 9.42 (s, 1H)				
263	m/e 424	(d-6-DMSO, d values) 3.98 (d, 6H), 7.31 (m, 2H),	100°C/18h/1		m/e	TFA,
	(M+H) ⁺	7.38 (d, 2H) 7.42 (s, 1H), 7.51 (d, 2H), 8.11 (s, 1H),	-PrOH		(M+H)	Et ₃ SiH
		8.4 (m, 2H), 8.95 (1H, s).				
264	m/e 424	(d-6-DMSO, d values) 3.98 (d, 6H), 7.32 (m, 2H),	100°C/18h/1		m/e 212	TFA,
	$\left (M+H)^{+} \right $	(M+H) ⁺ 7.41 (s, 1H) 7.50 (m, 2H), 7.61 (d, 1H), 8.12 (s, 1H),	-PrOH	-	(M+H)	Et ₃ SiH
		8.42 (d, 1H), 8.96 (s, 1H)				

mass n.m.r.	n.m.r.		reaction	Intern	Intermediate 1 ass Reaction	Interm Mass	Intermediate 2
	spec		100 ⁰ C/18h/1	- 1		m/e	TFA,
	m/e 415	(d-6-DMSO, d values) 4.00 (d, 011), 7.18 (III, 211),	100 001011				E+ 0:II
	(M+H)	(M+H) ⁺ 7.22 (m, 2H) 7.36 (m, 1H), 7.46 (d, 2H), 7.50 (s,	-ProH			(M+M)	Etgoln
		1H), 8.10 (s, 1H), 8.38 (dd, 1H), 8.90 (s, 1H)					
266	m/e	(d-6-DMSO, δ values) 3.98 (s, 3H), 4.00 (s, 3H),	100°C/7h/1-				
	400.3	7.34 (d, 1H), 7.50 (s, 1H), 7.54 (dd, 1H), 7.68 (dd,	PrOH				
	(M+H) ⁺	1H), 8.02 (dd, 1H), 8.26 (s, 1H), 8.31 (d, 1H), 8.46					
	•	(d, 1H), 8.50 (d, 1H), 8.92 (s, 1H)					
267	m/e 440	(d-6-DMSO, d values) 3.99 (ap.d, 6H), 7.08 (d, 1H),	100 ^o C/18h/1				
	(M+H) ⁺	7.42 (s, 1H) 7.52 (d, 2H), 7.70 (d, 2H), 8.00 (m, 2H),	-PrOH				
		8.80 (m, 1H), 8.90 (s, 1H)		1 to			
268	m/e 405	(d-6-DMSO, d values) 3.99 (s, 6H), 7.22 (d, 1H),	100°C/18h/1				
·	(M+H) ⁺	7.32 (d, 1H) 7.46 (m, 3H), 7.52 (d, 2H), 8.15 (s, 1H),	-PrOH				
		8.95 (s, 1H)					
269	m/e	(d-6-DMSO, d values) 3.98 (ap.d, 6H), 7.40 (m, 3H),	100°C/18h/1	•	$ K_2CO_3,$		SnCl ₂ .2H ₂
	434,	7.53 (d, 2H) 8.12 (s, 1H), 8.20 (d, 1H), 8.25 (d, 1H),	-PrOH		DMA		O, EtOAc
	436	8.96 (s, 1H)					
	(M+H)						

				·			—-т		96									
Intermediate 2	Reaction	10%Pd/C,	EtOAc		SnCl ₂ .2H ₂	O, EtOAc		120°C/18	h/KOH/D	MA	SnCl ₂ .2H ₂	O, EtOAc						
Interm	Mass							m/e 193	(M+H)		m/e 234	(M ⁺ +H)						
Intermediate 1	Reaction	K ₂ CO ₃ ,	DMA		K_2CO_3 ,	DMA					KOtBu,	DMA						
Interm	Mass	m/e	218	M+H)	m/e	264	M+H)				m/e	264	M ⁺ +H)	*	•			
reaction	conditions	100°C/18h/1	-PrOH		100°C/18h/1	-PrOH		100°C/18h/1	-PrOH		110°C/60h/1	-PrOH				100°C/18h/1	-PrOH	
n.m.r.		(d-6-DMSO, d values) 4.00 (s, 6H), 7.30 (d, 1H),	7.33 (d, 2H), 7.45 (m, 2H), 7.52 (s, 1H), 8.18 (s, 1H),	8.66 (d, 2H), 8.96 (s, 1H)	(d-6-DMSO, d values) 2.40 (s, 3H), 4.00 (s, 6H),		2H), 8.19 (s, 1H), 8.53 (d, 1H), 8.98 (s, 1H)	(d-6-DMSO, d values) 3.97 (s, 3H), 5.29 (s, 2H),		2H), 7.43-7.54 (m, 6H), 8.41 (s, 1H), 8.95 (s, 1H)	(d-6-DMSO, d values) 3.60 (s, 3H), 3.95 (s, 3H),	4.00 (s, 3H), 6.55 (dd, 1H), 6.95 (td, 1H), 7.00 (d,	1H), 7.05 (d, 1H), 7.10 (td, 1H), 7.15 (td, 1H), 7.45	(s, 1H), 7.60 (dd, 1H), 8.00 (s, 1H), 9.00 (s, 1H),	10.90 (broad s, 1H)	(d-6-DMSO, d values) 1.23 (t, 3H), 4.00 (s, 3H),	(M+H) ⁺ 4.20 (q, 2H), 5.06 (s, 2H), 7.26 (d, 1H), 7.33 (m,	3H), 7.50 (m, 4H), 8.16 (s, 1H), 8.89 (s, 1H)
mass	sbec	m/e 400	(M+H)	`	m/e 446	(M+H)		m/e 481	(M+H) ⁺		m/e	446	(M ⁺ +H)		*	m/e 477	(M+H)	
No	,	270			271			272			287					288		

	mass	n.m.r.	reaction	Intermediate 1	Interm	Intermediate 2
spec			conditions	Mass Reaction	Mass	Reaction
m/e 493	1~	(d-6-DMSO, d values), 3.36 (m, 6H), 3.77 (m, 4H),	EtOH/			
M⁺+H)		(M ⁺ +H) 4.33 (m, 4H), 7.27 (d, 1H), 7.33 (d, 1H), 7.48 (m,	reflux / 18 h			
		2H), 7.52 (m, 3H), 8.21 (s, 1H), 8.91 (s, 1H), 11.12			<u>.</u>	
		(broad, 1H)				
m/e 511	1	(d-6-DMSO, d values) 2.33 (m, 2H), 3.08 (m, 2H),	100°C/18h/1			
(M+H) ⁺	+_	3.28 (m, 2H), 3.47 (m, 2H), 3.81 (m, 2H), 3.93 (m,	-PrOH			
		2H), 3.99 (s, 3H), 4.29 (m, 2H), 7.01 (d, 1H), 7.14				
		(m, 1H), 7.26 (d, 2H), 7.34 (d, 2H), 7.54 (s, 1H),				
		7.85 (m, 1H), 8.18 (s, 1H), 8.91 (s, 1H)				
m/e		(d-6-DMSO, d values) 3.90 (s, 3H), 3.95 (s, 3H),	110°C/18h/1	KOtBu,	ı, m/e 209	SnCl ₂ .2H ₂
421		7.25 (d, 2H), 7.40 (s, 1H), 7.65 (m, 4H), 7.75 (d,	-PrOH	DMA	(M++H)	0, HCl,
(M ⁺ +H)	(1H), 8.60 (s, 1H), 9.60 (broad s, 1H)				МеОН,
m/e		(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		m/e 224	SnCl ₂ .2H ₂
434		7.35 (d, 2H), 7.40 (d, 2H), 7.50 (s, 1H), 7.55 (s, 1H),	-PrOH/HCl		(M ⁺ +H)	0HCl,
(M-H)		8.25 (s, 1H), 8.95 (s, 1H), 11.40 (broad s, 1H)				МеОН,

								98								
Intermediate 2	Reaction	H ₂ , Pd/C,	EtOAc			H ₂ , Pd/C,	EtOAc									
Interm	Mass	m/e 178	(M ⁺ +H)			m/e 192	$(M^{+}H)$									
Intermediate 1	Reaction	KOtBu,	DMA			KOtBu,	DMA									
Intern	Mass	m/e	208	H+ ₊ W)	<u>.,.</u>											
reaction	conditions	110°C/5h/1-	PrOH			110°C/3h/1-	PrOH			100°C/18h/1	-PrOH			75°C/2h/TF	A	thioanisole
n.m.r.		(d-6-DMSO, d values) 1.60 (m, 2H), 1.70 (m, 4H),	1.90 (m, 2H), 4.00 (s, 3H), 4.00 (s, 3H), 4.85 (m,	$(M^{+}H)$ 1H), 7.00 (d, 2H), 7.35 (d, 2H), 7.50 (s, 1H), 8.20 (s,	1H), 8.90 (s, 1H), 11.20 (broad s, 1H)	(d-6-DMSO, d values) 1.40 (m, 6H), 1.70 (m, 2H),	1.95 (m, 2H), 4.00 (s, 6H), 4.40 (m, 1H), 7.00 (d,	2H), 7.35 (d, 2H), 7.45 (s, 1H), 8.20 (s, 1H), 8.90 (s,	1H), 11.15 (broad s, 1H)	m/e 500 (d-6-DMSO, d values) 2.83 (s, 3H), 2.99 (s, 3H),	(M+H) ⁺ 3.98 (s, 6H), 4.96 (s, 2H), 7.10 (m, 1H), 7.20 (d, 2H),	7.42 (m, 1H), 7.48 (m, 3H), 7.69 (m, 1H), 8.16 (s,	1H), 8.95 (s, 1H)	(d-6-DMSO, d values) 3.90 (s, 3H), 7.21 (d, 2H),	7.30 (m, 3H), 7.37 (m, 2H), 7.69 (s, 1H), 8.40 (s, 1H)	
mass	sbec	m/e	390	(M ⁺ +H)		m/e	404	(M ⁺ +H)		m/e 500	(M+H)			m/e 391	(M+H)	
No.		297	Ì			298				299				300		

N	mass	n.m.r.	reaction	Intermediate 1	iate 1	Intermediate 2	diate 2
	sbec		conditions	Mass Rea	Reaction	Mass	Reaction
303	m/e 505	(d-6-DMSO, d values) 1.40 (s, 9H), 1.55 (m, 2H),	110°C/18ħ/1				
	(M++H)	(M^++H) 1.90 (m, 2H), 3.2 (m, 2H), 3.65 (m, 2H), 4.00 (s,	-PrOH	<u>,</u>		A, A.	
		3H), 4.00 (s, 3H), 4.60 (m, 1H), 7.05 (d, 2H), 7.35					
		(d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.85 (s, 1H),					
	2.5	11.25 (broad s, 1H)					
304	m/e	(d-6-DMSO, d values) 2.45 (s, 3H), 3.85 (s, 3H),	110°C/18h/1			m/e 220	SnCl ₂ .2H ₂
	432	3.95 (s, 3H), 5.15 (s, 2H), 6.95 (s, 1H), 7.20 (s, 4H),	-PrOH/HCl			(M ⁺ +H)	0 HCl,
	(M ⁺ +H)						МеОН
		9.40 (broad s, 1H)					
305	m/e	(d-6-DMSO, d values) 3.85 (s, 3H), 3.95 (s, 3H),	110°C/18h/1			m/e 174	SnCl ₂ .2H ₂
	386	5.20 (s, 2H), 6.90 (s, 1H), 7.15 (s, 1H), 7.20 (d, 2H),	-PrOH/HCI			(M ⁺ +H)	0HCl,
	$\left(M^{+}H\right)$	7.25 (s, 1H), 7.30 (s, 1H), 7.35 (s, 1H), 7.70 (d, 2H),					МеОН
		8.45 (s, 1H), 9.40 (broad s, 1H)					
306	m/e	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H),	110°C/18h/1		KOtBu,	m/e 242	H ₂ , Pd/C,
	454	5.30 (s, 2H), 7.25 (d, 2H), 7.30 (t, 1H), 7.55 (m, 5H),	-PrOH		DMA	(M ⁺ +H)	EtOAc
	(M^+H)	8.25 (s, 1H), 8.95 (s, 1H), 11.35 (broad s, 1H)	· · · · · ·				

								10	0	1				
Intermediate 2	Reaction	SnCl ₂ .	$2H_2O$	HCI,	МеОН	H ₂ , Pd/C,	EtOAc				SnCl ₂ .	$2H_20$,	HCI,	МеОН,
Interm	Mass					m/e 226	(M ⁺ +H)				m/e 192	(M^+H)		
Intermediate 1	Reaction	KOtBu,	DMA			KOtBu,	DMA			9	KOtBu,	DMA		
Interm	Mass							 			m/e	222	(M ⁺ +H	
reaction	conditions	90°C/18h/1-	PrOH			110°C/18h/1	-PrOH				110°C/18h/1	-PrOH, HCl		
n.m.r.		(d-6-DMSO, d values) 3.95 (s, 3H), 4.00 (s, 3H),	6.35 (d, 1H), 7.40 (d, 2H), 7.50 (s, 1H), 7.55 (d, 2H),		s, 1H)	(d-6-DMSO, d values) 2.00 (m, 2H), 2.75 (t, 2H),	2.90 (t, 2H), 4.00 (s, 3H), 4.00 (s, 3H), 6.80 (d, 1H),	(M^+H) 7.00 (d, 2H), 7.05 (d, 1H), 7.15 (t, 1H), 7.40 (d, 2H),	7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H), 11.20 (broad	s, 1H)	(d-6-DMSO, d values) 3.95 (s, 3H), 4.00 (s, 3H),	7.45 (d, 2H), 7.55 (d, 2H), 7.60 (s, 1H), 7.80 (s, 2H),		
mass	sbec	m/e	389	(M ⁺ +H)		m/e	438	$ M^+H)$			m/e	404	 (M ⁺ +H)	
No.		307				308					309		4.08	

	_							10) i						
Intermediate 2	Reaction					-		H ₂ , Pd/C,	EtOAc			RT/18h/1	0% Pd on	C/EtOAc	
Interm	Mass							m/e 256	(M ⁺ +H)			m/e	207.4	(M+H) ⁺ .	
Intermediate 1	Reaction											RT/18h/	PPh ₃ /DE	AD/THF	
Interm	Mass											m/e	237.1	M+H)	·
reaction	conditions	100°C/18h/1	-PrOH					110 ^o C/18h/1	-PrOH			100°C/3h/1-	PrOH		
n.m.r.		m/e 611 (d-6-DMSO, d values) 2.31 (m, 2H), 2.84 (s, 3H),	(M+H) ⁺ 2.99 (s, 3H), 3.10 (m, 2H), 3.25-3.55 (m, 4H (under	H ₂ O signal)), 3.80 (s, 2H), 3.96 (m, 2H), 3.98 (s, 3H),	4.31 (m, 2H), 4.95 (s, 2H), 7.09 (m, 1H), 7.17 (d,	2H), 7.41 (m, 3H), 7.50 (s, 1H), 7.68 (m, 1H), 8.16	(s, 1H), 8.87 (s, 1H).	(d-6-DMSO, d values) 1.40 (s, 6H), 3.05 (s, 2H),	(M ⁺ H) 3.95 (s, 6H), 6.80 (m, 2H), 7.00 (d, 2H), 7.05 (t, 1H),	7.40 (d, 2H), 7.50 (s, 1H), 8.20 (s, 1H), 8.90 (s, 1H),	11.20 (broad s, 1H)	(d-6-DMSO, δ values) 1.82 - 1.90 (m, 1H), 2.09 -	2.31 (m, 3H), 3.86 - 4.04 (m, 9H), 7.05 (d, 2H), 7.37	(M+H) ⁺ (d, 2H), 7.45 (s, 1H), 7.82 (s, 1H), 8.14 (s, 1H), 8.90	(s, 1H)
mass	sbec	m/e 611	(M+H) ⁺					m/e 468	(M ⁺ +H)	_		m/e	419.4	(M+H)	
No.		310						311				316			

		т													
Intermediate 2	Reaction	RT/4h/10	% Pd on	C/EtOAc		•									
Intern	Mass	m/e	207.4	(M+H)											
Intermediate 1	Reaction	RT/18h/	PPh ₃ /	DEAD/	THF										
Interm	Mass]	m/e	237.1	M+H) ⁺											
reaction	conditions	100°C/3h/	1-PrOH			1-PrOH /	1.0M	ethereal HCl	(1 equiv.) /	105°C/20h	1-PrOH/	1.0M	ethereal HCl	(1 equiv.) /	110°/6h
n.m.r.		(d-6-DMSO, δ values) 1.80 - 1.92 (m, 1H), 2.08 -	2.30 (m, 3H), 3.85 - 4.04 (m, 9H), 7.06 (d, 2H), 7.38	(M+H) ⁺ (d, 2H), 7.46 (s, 1H), 7.84 (s, 1H), 8.14 (s, 1H), 8.90	(s, 1H)	m/e 488 (d-6-DMSO, d values) 1.89 (m, 2H), 2.03 (m, 2H),	(M^+H) 3.14 (m, 2H), 3.61 (m, 2H), 3.71 (m, 2H), 4.03 (s,	3H), 4.62 (t, 2H), 7.27 (d, 1H), 7.33 (d, 1H), 7.47 (d,	1H), 7.55 (d, 1H), 7.60 (s, 1H), 8.34 (s, 1H), 8.93 (s,	1H), 11.29 (broad, 1H), 11.44 (broad, 1H)	(d-6-DMSO, d values) 3.57 (m, 4H), 3.70 (m, 2H),	(M^+H) 3.85 (m, 2H), 4.00 (m, 2H), 4.02 (s, 3H), 4.71 (t,	2H), 7.30 (m, 1H), 7.36 (m, 1H), 7.50 (m, 5H), 8.19	(s, 1H), 8.90 (s, 1H), 10.96 (broad, 1H), 11.38	(broad, 1H)
mass	sbec	m/e	419.4	(M+H) ⁺		m/e 488	(M ⁺ +H)	•			m/e 504	$(M^{+}H)$		-	
No.		317				318					320				

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
400	m/e	(d-6-DMSO, d values) 3.55 (s, 6H), 3.95 (s, 3H),	110°C/3h/1-		MsCl,	m/e 357	H ₂ , Pd/C,
	695	4.00 (s, 3H), 6.90 (d, 1H), 7.10 (t, 1H), 7.15 (d, 2H),	PrOH.		NEt3,	(M ⁺ +H)	EtOAc
	(M ⁺ +H)	7.40 (t, 1H), 7.50 (s, 1H), 7.55 (d, 2H), 7.60 (d, 1H),		111 - 21	CH2Cl2		-
····		8.20 (s, 1H), 8.90 (s, 1H), 11.40 (broad s, 1H)					
401	m/e	(d-6-DMSO, d values) 3.68 (d, 2H), 3.98 (d, 6H),	100°C/2h/1-				-
4	528.32	4.53(s, 2H), 6.94-7.2 (m, 7H), 7.33 (br.s, 1H),7.4 (s,	PrOH				
	$ M^+H)$	1H), 7.42 (d, 2H), 7.95 (br.t, 1H), 8.09 (s, 1H),					
		8.92(s, 1H), 10.99(br.s, 1H)					
405	m/e	(d-6-DMSO, d values) 1.2 (d, 3H), 2.56 (d, 3H),	100°C/2h/1-	m/e	EDC/D	m/e	Hydrogen/
	556.38	3.98 (d, 6H), 4.28(m, 1H), 4.52 (s, 2H), 6.96-7.2 (m,	PrOH	374.15	MAP/H	344.24	5%
	$\left (M^{+}H) \right $	(6H), 7.4 (s, 1H), 7.42 (s, 2H), 7.85 (br.d, 1H), 7.92		$M^{+}H$	OBT/D	(M ⁺ +H)	Pd/C/EtO
		(br.q, 1H), 8.08 (s, 1H), 8.9(s, 1H), 10.98(br.s, 1H)			MA		Ac
403	m/e	(d-6-DMSO, d values) 2.57 (d, 3H), 3.7 (d, 2H), 3.98	100°C/2h/1-		EDC/D	m/e	Hydrogen/
	542.35	(s, 6H), 4.54(s, 2H), 6.94-7.2 (m, 6H), 7.4 (s, 1H),	PrOH		MAP/H	330.22	5% Pd/C
u =	(M ⁺ +H)	7.43 (s, 2H), 7.8 (br.q, 1H), 7.92 (br.t, 1H), 8.09 (s,			OBT/D	$(M^{+}H)$	7
		1H), 8.9(s, 1H), 11.0(br.s, 1H)	×		MA		

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
404	m/e	(d-6-DMSO, d values) 1.06 (t, 3H), 1.7 (t, 2H), 3.0	100°C/2h/1-	m/e	EDC/N-	m/e	Hydrogen/
	627.49	(q, 1H), 3.12 (m, 2H), 3.28 (s, 6H), 3.36 (q, 1H), 3.6	PrOH	445.35	Methyl	415.32	5% Pd/C
	(M ⁺ +H)	(M ⁺ H) (t, 2H), 3.92 (d, 6H), 5.05(s, 2H), 6.85-7.03 (m, 6H),		M ⁺ H)	morpho-	(M ⁺ +H)	
		7.25 (d, 2H), 7.3 (s, 1H), 7.78 (s, 1H), 8.36 (s, 1H),			line/		
		8.72 (br.s, 1H) 9.52 (s, 1H)			DCM		
405	m/e	(d-6-DMSO, d values) 1.25-1.45 (m, 1H), 1.6-1.8	100°C/2h/1-	m/e	EDC/	m/e	Hydrogen/
	582.42	(m, 5H), 2.74-2.94 (m, 2H), 3.0-3.14 (m, 2H), 3.27-	PrOH	400.33	NMM/	370.2	5% Pd/C
	(M ⁺ +H)			$M^{+}H$	DCM	(M ⁺ +H)	
		6H), 7.42 (d, 2H), 7.48 (s, 1H), 8.08 (t, 1H), 8.22 (s,					
	***	1H), 8.95 (s, 1H), 10.13 (br.s, 1H), 11.2 (br.s, 1H)			,		
406	m/e	(d-6-DMSO, d values) 2.96-3.7 (m, 8H), 3.7-3.97	100°C/2h/1-	m/e	EDC/	m/e	Hydrogen/
	584.42	(m, 4H), 3.99 (s, 6H), 4.5(s, 2H), 6.95-7.2 (m, 6H),	PrOH	402.27	NMM/	372.25	5% Pd/C
	(M ⁺ +H)	7.41 (d, 2H), 7.44 (s, 1H), 8.1 (t, 1H), 8.18 (s, 1H),		H+ [†] M)	DCM	(M ⁺ +H)	
		8.89 (s, 1H)		·			

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass]	Reaction	Mass	Reaction
407	m/e 570	(d-6-DMSO, d values) 0.95 (t, 6H), 2.74 (s, 3H),	100°C/18h/1				
	(M+H)	3.03 (q, 4H), 3.96 (m, 6H), 4.11 (t, 2H), 6.98 (m,	-PrOH				
		4H), 7.05 (m, 1H), 7.18 (m, 2H), 7.38 (m, 4H), 8.06					*****
		(bs, 1H), 8.87 (bs, 1H)					
409	m/e 513	(d-6-DMSO, d values) 1.68 (m, 2H), 1.76 (s, 3H),	100°C/18h/1				-
	(M+H) ⁺	3.00 (m, 2H), 3.97 (s, 8H), 6.99 (m, 3H), 7.05 (m,	-PrOH				
		1H), 7.16 (m, 2H), 7.42 (m, 3H), 7.83 (bs, 1H), 8.14					
		(s, 1H), 8.96 (s, 1H)					
410	m/e 483	(d-6-DMSO, d values) 2.34 (t, 2H), 2.53 (m, 3H),	100°C/18h/1	m/e	RT/18h/	m/e 271	RT/18h/5
	$\left(M+H\right) ^{+}$	(M+H) ⁺ 2.80 (t, 2H), 3.96 (m, 6H), 6.85 (d, 1H), 7.05 (m,	-PrOH	301	methyla	(M+H) ⁺	%PdC/H ₂ /
		3H), 7.19 (m, 1H), 7.31 (d, 1H), 7.39 (s, 1H), 7.45		M+H)	mine.HC		EtOAc
	<u>.</u>	(d, 2H), 7.68 (bs, 1H), 8.05 (s, 1H), 8.89 (s, 1H)			VEDC/		
					DMAP/		
				٠	NMM/		
					DCM		

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intermediate 2	diate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
411	m/e 547	m/e 547 (d-6-DMSO, d values) 2.60 (t, 2H), 2.85 (t, 3H),	100°C/18h/1	m/e	RT/18h/	m/e 335	RT/18h/5
	(M+H)	3H),	-PrOH	363	methane	(M+H)	%PdC/H ₂
		7.20 (m, 1H), 7.31 (m, 1H), 7.45 (m, 3H), 8.18 (s,		(M-H ⁺).	-uoqdIns		/EtOAc
		1H), 8. (s, 1H)			amide/		
					EDC/		-
					DMAP/		
					NMM/		
					DCM		
412	m/e 539	(d-6-DMSO, d values) 2.58 (m, 2H), 2.83 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 327	RT/18h/5
	$\left (M+H)^{+} \right $	(M+H) ⁺ 3.47 (m, 4H), 3.95 (m, 6H), 6.88 (d, 1H), 7.08 (d,	-PrOH	357	morpholi (M+H)	(M+H)	%PdC/H2
-u		2H), 7.11 (m, 1H), 7.20 (m, 1H), 7.35 (m, 2H), 7.43		M+H)	ne/EDC/		/EtOAc
		(d, 2H), 8.02 (s, 1H), 8.94 (s, 1H)			DMAP/		
	<i>.</i> .				NMM/D		
					CM		

No.	mass	n.m.r.	reaction	Interm	Intermediate 1	Intermediate 2	diate 2
	sbec		conditions	Mass Reaction	Reaction	Mass	Reaction
413	m/e 509	m/e 509 (d-6-DMSO, d values) 2.43 (t, 2H), 2.81 (t, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 297	80°C/18h
	(M+H)	(M+H) ⁺ 3.66 (m, 4H), 3.99 (s, 6H), 5.00 (m, 2H), 5.74 (m,	-PrOH	327	allyl	(M+H) ⁺	/SnCl ₂ .2
		1H), 6.89 (d, 1H), 7.08 (m, 3H), 7.19 (m, 1H), 7.31		M+H) ⁺	amine		H ₂ O/EtO
		(m, 1H), 7.47 (m, 3H), 7.92 (bs, 1H), 8.13 (s, 1H),			EDC/D		Ac
		8.92 (s, 1H)			MAP/		
					NMM/		
					DCM		
414	m/e 509	m/e 509 (d-6-DMSO, d values) 3.97 (s, 6H), 4.37 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 297	RT/18h/5
	(M+H) ⁺	4.65 (m, 2H), 6.93 (d, 2H), 7.00 (m, 1H), 7.06 (m,	-PrOH	327	DEAD/	(M+H) ⁺	%Pd/C/H
		1H), 7.14 (m, 2H), 7.41 (d, 2H), 7.46 (s, 1H), 7.67 (s,		M+H) ⁺	PPh ₃ /		2/
		1H), 7.87 (s, 1H), 8.17 (bs, 1H), 8.91 (s, 1H)			DCM		EtOAc

No.	mass	n.m.r.	reaction	Intern	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass	Reaction	Mass	Reaction
415	m/e 510	(d-6-DMSO, d values) 1.81 (m, 2H), 1.91 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 299	RT/18h/5
	$(M+H)^{\dagger}$	2.95 (m, 2H), 3.97 (m, 6H), 4.35 (m, 2H), 6.97 (d,	-PrOH	329	-НО-q	(M+H)	%Pd/C/
		2H), 7.05 (m, 1H), 7.10 (m, 1H), 7.24 (m, 2H), 7.40		$M+H)^{+}$	ethylpyrr		$\rm H_2/$
		(d, 2H), 7.47 (s, 1H), 8.24 (s, 1H), 8.87 (s, 1H)			olidine/		EtOAc
					DEAD/		
					PPh ₃ /		<u>.</u>
					DCM		
416	m/e 475		80°C/18h/D				
	(M+H)		ME				
417	m/e 509	(d-6-DMSO, d values) 3.98 (s, 6H), 4.31 (m, 2H),	100°C/18h/1	m/e	RT/18h/	m/e 297	RT/18h/
	(M+H)	(M+H) ⁺ 4.42 (m, 2H), 6.95 (d, 2H), 7.00 (m, 1H), 7.04 (m,	-PrOH	327	DEAD/	(M+H) ⁺	5%Pd/C/
		2H), 7.14 (m, 2H), 7.40 (m, 4H), 7.95 (s, 1H), 8.11		M+H) ⁺	PPh ₃ /		$ H_2 $
		(s, 1H), 8.28 (s, 1H), 8.89 (s, 1H)			DCM		EtOAc

spec (M ⁺ H) 2. (M ⁺ H) 2. (1) 2. (1) 419 m/e 499 (1) 3. (1) 3.						
m/e 524 (M ⁺ +H) m/e 499 (M ⁺ +H)		conditions	Mass	Reaction	Mass	Reaction
(M ⁺ +H) m/e 499 (M ⁺ +H)	(d-6-DMSO, d values) 1.12 (t, 3H), 1.88 (m, 2H),	1-PrOH/				
m/e 499 (M ⁺ +H)	2.04 (m, 2H), 2.97 (q, 2H), 3.16 (m, 2H), 3.68 (m,	1.0M				
m/e 499 (M ⁺ +H)	4H), 3.95 (s, 3H), 4.54 (t, 2H), 5.66 (broad, 1H),	ethereal HCl				
m/e 499 (M ⁺ +H)	6.14 (q, 1H), 6.21 (t, 1H), 6.33 (q, 1H), 7.05 (m, 3H), (1 equiv.)	(1 equiv.) /				
m/e 499 (M ⁺ +H)	7.30 (d, 2H), 7.43 (s, 1H), 7.89 (s, 1H), 8.48 (s, 1H),	105°C/20h		•		٠
m/e 499 (M ⁺ +H)	9.73 (broad, 1H), 10.33 (broad, 1H)					
(M ⁺ +H) 3.	(d-6-DMSO, d values) 1.90 (m, 2H), 2.04 (m, 2H),	1-PrOH/				
<u>8</u> 3	(M ⁺ H) 3.15 (m, 2H), 3.62 (m, 2H), 3.71 (m, 2H), 3.99 (s,	1.0M				
3)	3H), 4.59 (t, 2H), 7.17 (m, 5H), 7.44 (m, 3H), 7.52	ethereal HCl				
	(s, 1H), 8.16 (s, 1H), 8.86 (s, 1H), 10.91 (broad, 2H)	(1 equiv.)		10 mm		
		105°C/20h		p		
420 m/e 506 ((d-6-DMSO, d values) 1.89 (m, 2H), 2.04 (m, 2H),	1-PrOH/				
$\left (\mathrm{M}^+\!\!+\!\mathrm{H}) \right 3$	(M^+H) 3.17 (m, 2H), 3.64 (m, 2H), 3.71 (m, 2H), 4.01 (s,	1.0M			9	
3	3H), 4.59 (t, 2H), 6.96 (d, 2H), 7.31 (m, 3H), 7.52	ethereal HCl				
1)	(m, 3H), 7.64 (m, 1H), 7.91 (m, 1H), 8.13 (s, 1H),	(1 equiv.) /				
∞	8.82 (s, 1H), 10.74 (broad, 2H)	105°C/20h				

No.	mass	n.m.r.	reaction	Intermediate 1	Intermediate 2	ediate 2
	sbec		conditions	Mass Reaction	Mass	Reaction
421	m/e 527	(d-6-DMSO, d values) 3.55 (m, 4H), 3.70 (m, 2H),	1-PrOH/			
	(M ⁺ +H)	(M^+H) 3.76 (s, 3H), 3.85 (m, 2H), 4.00 (m, 2H), 4.01 (s,	1.0M			
		3H), 4.70 (t, 2H), 6.99 (m, 2H), 7.07 (d, 1H), 7.21	ethereal HCl			
		(m, 2H), 7.40 (d, 2H), 7.54 (s, 1H), 8.18 (s, 1H), 8.88	(1 equiv.)/			
		(s, 1H), 10.94 (broad, 1H), 11.41 (broad, 1H)	110deg/3h			-
422	m/e 511	(d-6-DMSO, d values) 1.89 (m, 2H), 2.04 (m, 2H),	1-PrOH/			
	(M ⁺ +H)	3.15 (m, 2H), 3.63 (m, 4H), 3.71 (m, 2H), 3.74 (s,	1.0M			
_		3H), 3.99 (s, 3H), 4.59 (t, 2H), 6.97 (m, 3H), 7.05	ethereal HCl			
		(m, 1H), 7.19 (m, 2H), 7.37 (d, 2H), 7.50 (s, 1H),	(1 equiv.)/	-		
		8.13 (s, 1H), 8.83 (s, 1H), 10.89 (broad, 1H)	105°C/20h			
423	m/e		100°C/18h/			
	568(M ⁺		N-PrOH			
	(H+					
424	m/e 504		100°C/18h/			
	$(M^{+}H)$		1-PrOH			
425	m/e456		100°C/18h/	·	_	
	(M ⁺ +H)		1-PrOH			

Intermediate 2	Reaction	RT/18/	H ₂ /10%	Pd/C/	EtOAc	•					Rev.	Chim.	(1988),	39 (6),	477-82
Intern	Mass	m/e 273	(M+H)												
Intermediate 1	Reaction	150°C/2.	5h/	DMA/	KO'Bu	,									
Interm	Mass	m/e	303	M+H) ⁺											
reaction	conditions	100°C/18h/	1-PrOH			100°C/5h/ 1-	PrOH				100°C/3h/	1-PrOH			
n.m.r.						(d-6-DMSO, & values) 0.47 (m, 2H), 0.61 (m, 2H),	2.69 (m, 1H), 3.98 (s, 3H), 4.40 (s, 2H), 6.59 - 6.65	(M+H) ⁺ (m, 2H), 6.71 (d, 1H), 7.15 (d, 2H), 7.28 (t, 1H), 7.43	(s, 1H), 7.49 (d, 3H), 8.08 (m, 1H), 8.70 (d, 1H),	8.99 (s, 1H)	(d-6-DMSO, \delta values) 3.74 (s, 3H), 3.98 (s, 3H),	6.92 - 6.98 (m, 3H), 7.06 (d, 1H), 7.16 - 7.26 (m,		9.00 (s, 1H), 11.28 (s, 1H)	
mass	sbec	m/e471	(M ⁺ +H)			m/e	481.4	(M+H)			m/e	398.3	(M+H) ⁺		
No.		427				428					429				

No.	mass	n.m.r.	reaction	Intermediate 1	diate 1	Intermediate 2	diate 2
	sbec		conditions	Mass Re	Reaction	Mass	Reaction
431	m/e 512	(d-6-DMSO, d values) 1.89 (m, 2H), 2.03 (m, 2H),	1-PrOH/		-		
	(M^++H)	(M ⁺ +H) 3.13 (m, 2H), 3.63 (m, 2H), 3.71 (m, 2H), 3.73 (s,	1.0M			-	
*		3H), 4.04 (s, 3H), 4.60 (m, 2H), 6.68 (m, 2H), 6.77	ethereal HCl				
		(d, 1H), 7.17 (d, 1H), 7.30 (t, 1H), 7.57 (s, 1H), 7.96	(1 equiv.)/				
		(m, 1H), 8.31 (d, 1H), 8.39 (s, 1H), 8.91 (s, 1H),	105°C/20h				
		11.22 (broad, 1H), 11.47 (broad, 1H)					·
432	m/e	(d-6-DMSO, d values) 2.95 (t, 2H), 3.05 (m, 2H),	110°C/18h/			m/e 342	H ₂ , Pd/C,
	554	3.15 (m, 4H), 3.80 (m, 2H), 3.90 (m, 2H), 3.95 (s,	1-PrOH/			(M ⁺ +H)	EIOAC
	(M ⁺ +H)	3H), 4.00 (s, 3H), 6.80 (m, 1H), 7.10 (d, 4H), 7.45	HCI				
		(d, 2H), 7.50 (s, 1H), 7.85 (m, 1H), 8.30 (s, 1H), 8.90					
		(s, 1H), 9.80 (broad s, 1H), 11.20 (broad s, 1H),		_			
		11.40 (broad s, 1H)	-				
433	m/e	(d-6-DMSO, d values) 1.10 (s, 3H), 1.15 (s, 3H),	110°C/18h/			m/e 370	H ₂ , Pd/C,
·	582	2.60 (m, 2H), 2.95 (t, 2H), 3.35 (m, 4H), 4.00 (s,	1-PrOH/			(M ⁺ +H)	EIOAC
	(M ⁺ +H)	3H), 4.00 (s, 3H), 6.90 (m, 1H), 7.10 (d, 4H), 7.45	HCI				
		(d, 2H), 7.55 (s, 1H), 7.90 (m, 1H), 8.35 (s, 1H), 8.90					
		(s, 1H), 9.80 (broad s, 1H), 11.45 (broad s, 2H)					

No.	mass	n.m.r.	reaction	Intermediate 1	Intermediate 2	diate 2
	sbec		conditions	Mass Reaction	Mass	Reaction
434	m/e	(d-6-DMSO, d values) 1.35 (m, 1H), 1.70 (m, 5H),	110°C/2h/1-		m/e 340	H_2 , Pd/C ,
	552	2.90 (m, 4H), 3.20 (m, 2H), 3.30 (m, 2H), 4.00 (s,	PrOH/HCI			מעסות
	(M ⁺ +H)	3H), 4.00 (s, 3H), 6.90 (m, 1H), 7.10 (m, 4H), 7.45			*	
		(d, 2H), 7.55 (s, 1H), 7.85 (m, 1H), 8.30 (s, 1H), 8.90				
		(s, 1H), 9.80 (broad s, 1H), 10.35 (broad s, 1H),			·	-
		11.40 (broad s, 1H)				
435	m/e	NMR Spectrum (d-6-DMSO@373K, d values) 2.55	110°C/2h/1-		m/e 286	H ₂ , Pd/C,
	498	(s, 3H), 3.10 (m, 2H), 3.70 (m, 2H), 4.00 (s, 3H),	ProH/HCI		$(M^{+}H)$	ElOAC
	(M ⁺ +H)	4.00 (s, 3H), 6.95 (m, 1H), 7.05 (d, 2H), 7.10 (m,				
		2H), 7.40 (d, 2H), 7.55 (s, 1H), 7.85 (m, 1H), 8.25 (s,			<u>.</u>	
		1H), 8.65 (s, 1H), 8.90 (broad s, 1H), 9.45 (broad s,				
		[1H)				
436	m/e	(d-6-DMSO@373K, d values) 2.75 (s, 6H), 2.90 (t,	110°C/2h/1-		m/e 300	H ₂ , Pd/C,
	512	2H), 3.30 (t, 2H), 4.00 (s, 3H), 4.00 (s, 3H), 6.95 (m,	PrOH/HCl	•	(M ⁺ +H)	
·	$ (M^+H)$	(M ⁺ +H) 1H), 7.05 (d, 2H), 7.10 (m, 2H), 7.40 (d, 2H), 7.55	-			
		(s, 1H), 7.85 (m, 1H), 8.20 (s, 1H), 8.65 (s, 1H), 9.50				
		(broad s, 1H)				

437 m/e 497 (d-6-DMSO, d values) 0.69 (m, 2H), 0.87 (m, 2H), 100°C/18h/1 Mass Reaction Mass 437 m/e 497 (d-6-DMSO, d values) 0.69 (m, 2H), 0.87 (m, 2H), 100°C/18h/1 -PrOH -PrOH -PrOH (M+H)* 2.71 (m, 1H), 3.28 (s, 2H), 3.96 (m, 6H), 7.02 (m, 2H), 100°C/18h/1 100°C/18h/1 -PrOH 438 m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), 100°C/18h/1 -PrOH -PrOH 439 m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (m, 3H), 7.95 (m, 1H), 6.33 (m, 1H), 8.08 -PrOH -PrOH 439 m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (m, 3H), 7.95 (m, 1H), 8.08 -PrOH -PrOH 439 m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (m, 3H), 7.95 (m, 1H), 8.08 -PrOH -PrOH (M+H)* 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 8.08 -PrOH -PrOH -PrOH (s, 1H), 8.87 (s, 1H) (s, 1H), 8.87 (s, 1H) -PrOH -PrOH -PrOH	No.	mass	n.m.r.	reaction	Intermediate 1	ate 1	Interme	Intermediate 2
m/e 497 (d-6-DMSO, d values) 0.69 (m, 2H), 0.87 (m, 2H), (M+H) ⁺ 2.71 (m, 1H), 3.28 (s, 2H), 3.96 (m, 6H), 7.02 (m, 4H), 7.21 (m, 2H), 7.40 (d, 2H), 7.47 (s, 1H), 8.21 (s, 1H), 8.87 (s, 1H), 9.35 (bs, 2H) m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), (M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 (m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)		sbec		conditions		ıction	Mass	Reaction
(M+H) ⁺ 2.71 (m, 1H), 3.28 (s, 2H), 3.96 (m, 6H), 7.02 (m, 4H), 7.21 (m, 2H), 7.40 (d, 2H), 7.47 (s, 1H), 8.21 (s, 1H), 8.87 (s, 1H), 9.35 (bs, 2H) m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), (M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 (m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)	437	m/e 497		100°C/18h/1				
4H), 7.21 (m, 2H), 7.40 (d, 2H), 7.47 (s, 1H), 8.21 (s, 1H), 8.87 (s, 1H), 9.35 (bs, 2H) m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), (M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)		(M+H)	2.71 (m, 1H), 3.28 (s, 2H), 3.96 (m, 6H), 7.02 (m,	-PrOH				
m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), (M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 (m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)			4H), 7.21 (m, 2H), 7.40 (d, 2H), 7.47 (s, 1H), 8.21 (s,					
m/e 509 (d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H), (M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 (m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)			1H), 8.87 (s, 1H), 9.35 (bs, 2H)					
(M+H) ⁺ 2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45 (m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)	438	m/e 509	(d-6-DMSO, d values) 0.38 (m, 2H), 0.59 (m, 2H),	100°C/18h/1			*	-
(m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H) m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)		(M+H)	2.53 (m, 1H), 3.54 (s, 2H), 3.97 (s, 6H), 6.18 (m,	-PrOH				·
(M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)			1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.08 (m, 3H), 7.45					
m/e 484 (d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H), (M+H) ⁺ 3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m, 1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)			(m, 3H), 7.95 (m, 1H), 8.18 (s, 1H), 8.95 (s, 1H)		•			
	439	m/e 484	(d-6-DMSO, d values) 2.58 (d, 3H), 3.57 (s, 2H),	100°C/18h/1				
1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08 (s, 1H), 8.87 (s, 1H)		(M+H) ⁺	3.96 (s, 6H), 6.20 (m, 1H), 6.23 (m, 1H), 6.31 (m,	-PrOH				
(s, 1H), 8.87 (s, 1H)			1H), 7.08 (m, 3H), 7.43 (m, 3H), 7.79 (m, 1H), 8.08					
			(s, 1H), 8.87 (s, 1H)					

No.	mass	n.m.r.	reaction	Intermediate 1	Interm	Intermediate 2
	sbec		conditions	Mass Reaction	Mass	Reaction
440	m/e	(d-6-DMSO, d values) 1.56-1.74 (m, 2H), 2.00 (m,	100 ^o C/2.5h/			
	582.54	2H), 2.12(m, 1H), 2.64 (d, 3H), 2.72 (d, 3H), 2.96	1-PrOH/			
	$(M^{+}H)$	(M ⁺ H) (m, 2H), 3.44 (m, 2H), 4.0 (s, 3H), 4.06 (d, 2H),	ethereal HCl			
		4.40(s, 2H), 6.60(m, 2H), 6.73 (d, 1H), 7.15 (d, 2H),		H		
		7.28 (t, 1H), 7.49 (d, 2H), 7.54 (s, 1H), 8.0(br.s, 1H),				
		8.2(s, 1H), 8.89 (s, 1H), 10.17 (br.s, 1H), 11.16 (br.s,				
		1H)				
441	m/e	(d-6-DMSO, d values) 1.99 (m, 1H), 2.01 (m, 1H),	100°C/2h/1-		m/e	Hydroge
	629.52	2.35(t, 2H), 3.54 (s, 3H), 3.6 (s, 3H),3.96 (2s, 6H),	PrOH		417.26	/u
	(M ⁺ +H)	4.35 (m, 1H), 4.55 (m, 2H), 6.95-7.21 (m, 6H), 7.4(s,			$\left (\mathrm{M}^{+} + \mathrm{H}) \right $	5% Pd/C
		1H), 7.42(s, 2H), 8.08 (s, 1H), 8.28 (d, 1H), 8.9 (s,				
		1H), 10.96 (br.s, 1H)				
442	m/e	(d-6-DMSO, d values) 1.13(t, 2H), 2.45 (t, 2H),	100°C/2h/1-		m/e	Hydroge
	571.47	3.32 (t, 2H),3.96 (2s, 6H), 4.0 (q, 2H), 4.46 (s, 2H),	PrOH		359.22(M n/5%	n/5%
	(M ⁺ +H)	6.96-7.20 (m, 6H), 7.4(s, 2H), 7.42(s, 1H), 7.75 (t,			(H+,	Pd/C
		1H), 8.06 (s, 1H), 8.89 (s, 1H)		. p.		

							77							
Intermediate 2	Reaction	Hydroge	n/5%	Pd/C										
Interme	Mass	m/e	331.14(M n/5%	(H+,		0								
Intermediate 1	Reaction													
Intern	Mass													
reaction	conditions	100°C/2h/1-	PrOH			100°C/2h/1-	PrOH				100°C/2h/1-	PrOH		
n.m.r.		(d-6-DMSO, d values) 3.60 (s, 3H), 3.90 (d,	2H),3.96 (2s, 6H), 4.55 (s, 2H), 6.96-7.2 (m, 6H),		(s, 1H), 10.99 (br.s, 1H)	(d-6-DMSO, d values) 1.70 (m, 1H), 1.86 (m, 1H),	2.0(t, 2H), 2.45 (d, 3H), 2.56 (d, 3H),3.96 (2s, 6H),	(M^+H) 4.2 (m, 1H), 4.52 (s, 2H), 6.94-7.21 (m, 6H), 7.39 (s,	1H), 7.41 (s, 2H), 7.7(q, 1H), 7.81(d, 2H), 7.92 (q,	1H), 8.08 (s, 1H), 8.9 (s, 1H), 10.92 (br.s, 1H)	(d-6-DMSO, d values) 2.23 (t, 2H), 2.5 (d, 3H), 3.29	(t, 2H), 3.97 (2s, 6H), 4.45 (s, 2H), 6.96-7.2 (m, 6H),	(M^+H) 7.41(s, 1H), 7.44(s, 2H), 7.62 (t, 1H), 7.8 (q, 1H),	8.13 (s, 1H), 8.9 (s, 1H), 11.03 (br.s, 1H)
mass		m/e	543.42	(M ⁺ +H)		m/e	629.52	(M ⁺ +H)			m/e	556.45	$(M^{+}H)$	
No		443)			444					445			

mass n.m.r.	n.m.r.		reaction	Intermediate 1	iate 1	Interm	Intermediate 2
sbec			conditions	Mass Rea	Reaction	Mass	Reaction
m/e (d-6-DMSO, d values) 0.4 (m, 2H), 0.56 (m, 2H),	(d-6-DMSO, d values) 0.4	(m, 2H), 0.56 (m, 2H),	100°C/2h/1-				
568.45 2.47 (m, 1H), 3.66 (d, 2H), 3.98 (d, 6H), 4.54(s, 2H),	2.47 (m, 1H), 3.66 (d, 2H),	3.98 (d, 6H), 4.54(s, 2H),	PrOH				
(M ⁺ H) 6.94-7.2 (m, 6H), 7.4 (s, 1H), 7.42 (s, 2H), 7.85 (br.t,		I), 7.42 (s, 2H), 7.85 (br.t,					
1H), 7.95 (d, 1H), 8.10 (s, 1H), 8.88 (s, 1H),	1H), 7.95 (d, 1H), 8.10 (s,	1H), 8.88 (s, 1H),					
11.09(br.s, 1H)	11.09(br.s, 1H)						
(d-6-DMSO, d values) 0.4 (m, 2H), 0.56 (m, 2H),	(d-6-DMSO, d values) 0.4 ((m, 2H), 0.56 (m, 2H),	100°C/2h/1-				
1.24 (d, 3H), 2.47 (m, 1H), 3.98 (2s, 6H), 4.23 (m,	1.24 (d, 3H), 2.47 (m, 1H), 3	1.98 (2s, 6H), 4.23 (m,	PrOH				
1H), 4.54(s, 2H), 6.94-7.2 (m, 6H), 7.4 (s, 1H), 7.42	1H), 4.54(s, 2H), 6.94-7.2 (m	, 6H), 7.4 (s, 1H), 7.42					
(s, 2H), 7.90 (d, 1H), 8.03 (d,	(s, 2H), 7.90 (d, 1H), 8.03 (d,	8.03 (d, 1H), 8.10 (s, 1H), 8.88					
(s, 1H), 10.94(br.s, 1H)	(s, 1H), 10.94(br.s, 1H)						
m/e (d-6-DMSO D4 Acetic, δ values) 2.24 - 2.35 (m,	(d-6-DMSO D4 Acetic, δ v	alues) 2.24 - 2.35 (m,	RT/48h/NaI/				
598.5 2H), 2.62 (s, 3H), 3.03 - 3.10 (m, 4H), 3.29 (t, 2H),	2H), 2.62 (s, 3H), 3.03 - 3.1	0 (m, 4H), 3.29 (t, 2H),	Morpholine				
(M+H) ⁺ 3.73 - 3.78 (m, 4H), 3.98 (s, 3H), 4.28 (t, 2H), 4.41		3H), 4.28 (t, 2H), 4.41					
(s, 2H), 6.59 - 6.65 (m, 2H),		im, 2H), 6.73 (dd, 1H), 7.15 (d,	10.00	•			
2H), 7.28 (t, 1H), 7.46 (s, 2H), 7.49 (s, 1H), 8.08 (s,	2H), 7.28 (t, 1H), 7.46 (s, 2H	I), 7.49 (s, 1H), 8.08 (s,			٠		•
1H), 8.84 (s, 1H)	1H), 8.84 (s, 1H)						

								11									
Intermediate 2	Reaction						-										
Intern	Mass																
Intermediate 1	Reaction																
Interm	Mass																
reaction	conditions	10000/101/	100-0/1817	1-PrOH			100°C/18h/1	-PrOH			100°C/18h/1	-PrOH		100°C/18h/1	-PrOH		
	n.m.r.	(IIV) On a second	(d-6-DMSO, d values) 2.42 (m, 2H), 2.58 (m, 2H),	3.34 (m, 2H), 3.97 (m, 8H), 6.99 (m, 4H), 7.17 (m,	2H), 7.38 (m, 2H), 7.41 (s, 1H), 8.08 (s, 1H), 8.11	(m, 1H), 8.87 (s, 1H)	(d-6-DMSO, d values) 0.97 (d, 6H), 2.34 (m, 1H),	3.30 (m, 2H), 3.97 (m, 8H), 7.00 (m, 4H), 7.30 (m,		(s, 1H)	(d-6-DMSO, d values) 1.79 (s, 3H), 3.29 (m, 2H),	3.96 (m, 8H), 6.99 (m, 4H), 7.17 (m, 2H), 7.41 (m,	3H), 7.89 (m, 1H), 8.12 (s, 1H), 8.92 (s, 1H)	(d-6-DMSO, d values) 3.26 (m, 2H), 4.97 (m, 8H),	4.45 (m, 2H), 5.17 (m, 2H), 5.87 (m, 1H), 7.00 (m,	4H), 7.18 (m, 3H), 7.60 (m, 3H), 8.08 (s, 1H), 8.89	(s, 1H)
	mass	abds	m/e	538.5	(M+H)		m/e	527.5	(M+H)		m/e	499.5	$\left (M+H)^{\dagger} \right $	m/e	541.5	$\left (M+H)^{\dagger} \right ^{4}$	
_ t	Š		472				473				474			475			

									19								
Intermediate 2	Reaction						-	5% Pd on	$ C/H_2 $	E+O Ac	20017						
Interme	Mass							m/e	273.2	ATITU+	(IITIMI)						
Intermediate 1	Reaction			·													
Intern	Mass												L. — —				
reaction	conditions	DT/18h/	N1/101/	HNMe2.HCI/	DMAP/EDC	/NMM/DCM		100°C/2h/	1-PrOH	•			1-PrOH/	1.0M	ethereal HCl	(1 equiv.)/	110deg / 6h
1 1111		(IIC -) 50 C (IIC) 50 E	(d-6-DMSO, d values) 2.32 (m, 2H), 2.82 (s, 3H),	2.93 (s, 3H), 3.10 (m, 2H), 3.22-3.53 (m, 4H, under	(M-H ⁺). H ₂ O peak), 3.78 (m, 2H), 3.95 (m, 5H), 4.29 (m, 2H), DMAP/EDC	4.81 (s, 2H), 7.04 (m, 7H), 7.36 (m, 2H), 7.43 (s,	1H), 8.07 (s, 1H), 8.81 (s, 1H)	(d-6-DMSO, 8 values) 2.64 (d, 3H), 3.99 (s, 6H),	717 (H) 674 (H) 674 (H) 7117	4.42 (s, 2H), 6.60 - 6.67 (III, 211), 0.74 (dd, 111), 7.11	(d, 2H), 7.28 (t, 1H), 7.45 - 7.53 (m, 3H), 7.99 (m,	1H), 8.16 (s, 1H), 8.92 (s, 1H), 11.14 (bs, 1H)	m/e 515 (d-6-DMSO, d values) 3.56 (m, 4H), 3.70 (m, 2H),	(M^++H) 3.86 (m, 2H), 4.00 (m, 2H), 4.02 (s, 3H), 4.71 (t,	2H), 7.16 (d, 2H), 7.25 (m, 3H), 7.43 (m, 1H), 7.48	(d, 2H), 7.57 (s, 1H), 8.23 (s, 1H), 8.91 (s, 1H),	11.10 (broad, 1H), 11.52 (broad, 1H)
50000	Saper	shee	m/e	610.7	(M-H ⁺).								m/e 515	$\left(M^{+}H\right)$		-	
, i	0 V		476					477	}				478				

								12	<u> </u>			—т				 -	
diate 2	Reaction												RT/18h/	$ H_2/5\%$	Pd/C/	EtOAc	
Intermediate 2	Mass												m/e	301.5	(M+H)		
Intermediate 1	Reaction															···	
Intern	Mass															-	
reaction	conditions	1 10.011	I-Fron /	1.0M	ethereal HCl	(1 equiv.) /	110deg / 6h	1-PrOH/	1.0M	ethereal HCl	(1 equiv.) /	110deg / 6 h	100°C/18h/1	-PrOH			
	H.H.I.	ATTO THE PROPERTY OF THE PROPE	(d-6-DMSO, d values) 3.57 (m, 4H), 3.71 (m, 2H),	3.85 (m, 2H), 4.00 (m, 2H), 4.04 (s, 3H), 4.71 (t,	2H), 6.99 (d, 2H), 7.32 (m, 3H), 7.57 (m, 3H), 7.67	(m, 1H), 7.93 (m, 1H), 8.23 (s, 1H), 8.91 (s, 1H),	11.11 (broad, 1H), 11.45 (broad, 1H)	(d-6-DMSO, d values) 1.66 (t, 3H), 3.06 (q, 2H),	3.56 (m, 4H), 3.71 (m, 2H), 3.87 (m, 2H), 4.00 (m,	2H), 4.03 (s, 3H), 4.71 (t, 2H), 6.44 (m, 3H), 7.16	(m, 3H), 7.48 (d, 2H), 7.57 (s, 1H), 8.28 (s, 1H), 8.94	(s, 1H), 11.24 (broad, 1H), 11.55 (broad, 1H)	(d-6-DMSO, d values) 1.05 (d, 6H), 3.87 (m, 1H),	3 97 (m, 6H) 4 43 (s, 2H), 7.05 (m, 6H), 7.42 (m,		(111), 0:00 (5, 112); 0:00 (7, 112)	
	mass	abec	m/e 522	(M ⁺ +H)				m/e 540	(M ⁺ +H)				m/e	512 5) 13.3 (M4H) ⁺		
	OZ		479					480					482	2			

In the above and other Examples, the following abbreviations have been been used:

- ¹H NMR data is quoted and is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard;
- nitrogen atoms which are shown as less than trivalent are H substituted to complete the trivalency;
 - the following abbreviations are used:

	DMSO	dimethyl sulphoxide;
	DMF	N,N-dimethylformamide;
	DCM	dichloromethane;
10	EtOAc	ethyl acetate;
	HOBT	N-hydroxybenzotriazole hydrate;
	NMM	N-Methylmorpholine;
	TFA	Trifluoroacetic acid;
	1-Pr-OH	propan-1-ol;
15	MeOH	methanol;
	EtOH	ethanol;
	KOtBu	potassium tert-butoxide;
	RT	room/ambient temperature.

Example 6

Compounds of formula (I) were also converted to different such compounds by reacting appropriate derivatisation reactions, either directly or by way of certain chloro substituted intermediates. These can be summarised in the following Table 8 with the Intermediates listed in the Intermediate Table 9 below.

			0														
Nmr		(d-6-DMSO, d values) 2.30 (m, 2H), 3.18 (m, 2H), 3.40 (m, 4H),	3.75 (s, 3H), 3.81 (m, 2H), 3.95 (m, 2H), 3.98 (s, 3H), 4.30 (m, 2H),	6.94 (m, 3H), 7.08 (m, 1H), 7.19 (m, 2H), 7.38 (d, 2H), 7.47 (s, 1H),	8.25 (s, 1H), 8.86 (s, 1H).	(d-6-DMSO, d values) 2.31 (m, 2H), 2.83 (s, 3H), 3.30 (m, 2H),	3.54 (broad, 8H), 3.73 (s, 3H), 3.99 (s, 3H), 4.31 (m, 2H), 6.95 (m,	3H), 7.04 (d, 1H), 7.17 (m, 2H), 7.39 (d, 2H), 7.48 (s, 1H), 8.15 (s,	1H), 8.88 (s, 1H), 11.12 (broad, 1H).	(d-6-DMSO, d values) 2.25 (m, 2H), 2.80 (m, 3H), 3.38 (m, 2H),	3.60 (m, 8H), 3.78 (s, 3H), 3.99 (s, 3H), 4.35 (m, 2H), 6.96 (m, 3H),		8.91 (s, 1H).	(d-6-DMSO, d values) 1.88 (m, 2H), 2.04 (m, 2H), 2.26 (m, 2H),	3.32 (m, 2H), 3.60 (m, 4H), 3.75 (s, 3H), 4.00 (s, 3H), 4.28 (m, 2H),	6.95 (m, 3H), 7.05 (m, 1H), 7.10 (m, 2H), 7.38 (m, 3H), 8.15 (s, 1H),	8.60 (bs, 1H), 8.93 (s, 1H).
Mass	sbec.	m/e	541	$(M+H)^{+}$		m/e	554	$(M^{+}H)$		m/e	554	(M+H)		m/e	525	(M+H)	
Prod		14				16				17				81			
Conditions		RT/2hrs				EtOH / 80deg /	3.5 hours			RT/18hrs/NaI				RT/18hrs/Nal			
Reagent		morpholine	-			N-methyl	piperazine	•		N-methyl	ninerazine			pyrrolidine	•		
Start	Comp	. 8				118)			10	<u> </u>			61			

spec. m/c (d-6-DMSO, d values) 1.40 (m, 2H), 1.6-1.8 (m, 4H), 2.28 (m, 2H), 539 2.95 (m, 2H), 3.21 (m, 2H), 3.45 (m, 2H), 3.72 (s, 3H), 3.97 (s, 3H), (M+H) ⁺ 4.28 (m, 2H), 6.94 (m, 3H), 7.07 (m, 1H), 7.20 (m, 2H), 7.39 (d, 2H), 7.45 (s, 1H), 8.24 (s, 1H), 8.92 (s, 1H). m/c (d-6-DMSO, d values) 2.23 (m, 2H), 2.81 (d, 6H), 3.24 (m, 2H), (d-6-DMSO, d values) 3.06 (m, 2H), 6.95 (m, 3H), 7.06 (m, 1H), m/c (d-6-DMSO, d values) 3.06 (m, 2H), 3.39 (m, 2H), 3.64 (m, 2H), 527 3.71 (s, 3H), 3.75 (m, 2H), 3.90 (m, 2H), 7.37 (d, 2H), 7.50 (s, 1H), m/c (d-6-DMSO, d values) 2.80 (s, 3H), 7.37 (d, 2H), 7.50 (s, 1H), 8.38 (s, 1H), 8.87 (s, 1H). m/c (d-6-DMSO, d values) 2.80 (s, 3H), 3.24-3.65 (m, 10H), 3.72 (s, (m+H) ⁺ 2H), 7.39 (d, 2H), 7.50 (s, 1H), 8.35 (s, 1H). m/c (d-6-DMSO, d values) 1.84 (m, 2H), 2.04 (m, 2H), 3.05 (m, 2H), m/c (d-6-DMSO, d values) 1.84 (m, 2H), 2.04 (m, 2H), 3.05 (m, 2H),
511 3.65-3.72 (m, 4H), 3.75 (s, 3H), 3.98 (s, 3H), 4.60 (m, 2H), 6.96 (m,
(M+H) ⁺ 3H), 7.07 (m, 1H), 7.18 (m, 2H), 7.39 (d, 2H), 7.47 (s, 1H), 8.32 (s,
. 1H), 8.89 (s, 1H).

								124										
Nmr		(d-6-DMSO, d values) 1.5-1.85 (m, 6H), 3.02 (m, 2H), 3.4-3.6 (m,	4H), 3.73 (s, 3H), 3.99 (s, 3H), 4.63 (m, 2H), 6.95 (m, 3H), 7.06 (m,	1H), 7.18 (m, 2H), 7.37 (d, 2H), 7.44 (s, 1H), 8.29 (s, 1H), 8.88 (s,	1H).	(d-6-DMSO, d values) 2.91 (m, 6H), 3.63 (m, 2H), 3.74 (s, 3H),	3.99 (s, 3H), 4.54 (m, 2H), 6.96 (m, 3H), 7.05 (m, 1H), 7.18 (m, 2H),	7.35 (d, 2H), 7.42 (s, 1H), 8.17 (s, 1H), 8.83 (s, 1H).	(d-6-DMSO, d values) 3.73 (s, 3H), 3.95 (s, 3H), 6.89 (d, 2H), 6.95	(m, 1H), 7.02 (m, 1H), 7.15 (m, 2H), 7.22 (d, 2H), 7.30 (s, 1H), 7.69		(d-6-DMSO, d values) 3.75 (s, 3H), 3.91 (s, 3H), 6.89 (d, 2H), 6.94	(m, 1H), 7.02 (d, 1H), 7.16 (m, 3H), 7.23 (m, 1H), 7.73 (s, 1H), 8.31	(M ⁺ +H) (s, 1H), 9.33 (s, 1H), 10.31 (broad, 1H).		(d-6-DMSO, d values) 3.74 (s, 3H), 4.01 (s, 3H), 5.39 (s, 2H), 6.95	(m, 3H), 7.04 (d, 1H), 7.17 (m, 2H), 7.41 (m, 3H), 7.50 (s, 1H), 7.63	(d, 1H), 7.93 (m, 1H), 8.34 (s, 1H), 8.61 (d, 1H), 8.97 (s, 1H).
Mass	sbec.	m/e	525	(M+H) ⁺		m/e	485	(M+H)	m/e	414	(M+H) ⁺	m/e	414	(M ⁺ +H)		m/e	505	(M ⁺ +H)
Prod		24		·		25			26			27				28		
Conditions		RT/18hrs/Nal				RT/18hrs/NaI/	EtOH		75°C/1hr/thioa	nisole/TFA		TFA/	thioanisole /	90deg / 1.5	hours	RT/96hr/	KOtBu, /DMA	
Reagent		piperidine	-		•	dimethyl										2-	chloromethyl-	pyridine
Start	Comp	110				110) -		424			6				26		_

Nmr		(d-6-DMSO, d values) 3.73 (s, 3H), 3.99 (s, 3H), 6.96 (m, 4H), 7.05	(m, 1H), 7.18 (m, 2H), 7.36 (m, 3H), 7.41 (s, 1H), 7.96 (s, 1H), 8.85	(s, 1H).	(d-6-DMSO, d values) 3.73 (s, 3H), 3.90 (s, 3H), 6.95 (m, 3H), 7.04	(m, 1H), 7.17 (m, 2H), 7.31 (m, 1H), 7.37 (m, 2H), 7.60 (s, 1H), 8.66		(d-6-DMSO, d values) 3.71 (s, 3H), 3.89 (s, 3H), 6.93 (m, 3H), 7.03	(m, 1H), 7.16 (m, 3H), 7.36 (d, 2H), 7.51 (s, 1H), 7.89 (m, 1H), 8.05	(M ⁺ +H) (m, 1H), 8.35 (s, 1H), 8.93 (s, 1H)	(d-6-DMSO, d values) 2.35 (m, 2H), 3.10 (m, 2H), 3.48 (d, 4H), 3.74	(s, 3H), 3.92 (m, 4H), 3.98 (s, 3H), 4.31 (t, 2H), 6.95 (m, 3H), 7.05	(M ⁺ H) (m, 1H), 7.17 (m, 2H), 7.39 (d, 2H), 7.56 (s, 1H), 8.25 (s, 1H), 8.89	(s, 1H), 11.22 (broad, 1H), 11.26 (broad, 1H)	(d-6-DMSO, d values) 1.90 (m, 2H), 2.08-2.40 (m, 3H), 3.73 (s, 3H),	3.98 (s, 3H), 4.15 (m, 2H), 6.98 (m, 3H), 7.08 (m, 1H), 7.18 (m, 3H),	7.39 (d, 2H), 7.58 (s, 1H), 7.78 (s, 1H), 8.18 (s, 1H), 8.92 (s, 1H),	11.0 (bs, 1H).
Mass	spec.	m/e	499	$(M^{+}H)$	m/e	492	(M ⁺ +H)	m/e	491	(M ⁺ +H)	m/e	541	$\left (M^+ + H) \right $		m/e	511	$ M^+H $	
Prod		29	•		30			31			33	·_ =			34			
Conditions		120°C/18hrs/	KOH/DMA		100°C/18hrs/	K ₂ C O ₃ /DMA		120°C/18hrs/	Cs ₂ C O ₃ /DMA		78°C/3hr/ethan	lo			RT/18hr/DMA		KOtBu, /18-	crown-6
Reagent		2-bromo	thiazole		2-chloro	pyrimidine		2-bromo	pyridine		morpholine							
Start	Comp	26			26			26			118				26			

													<u>-</u> -				
Nmr		(d-6-DMSO, d values) 2.33 (m, 2H), 3.32 (m, 2H), 3.48 (s, 8H),	3.73 (s, 3H), 3.97 (s, 3H), 4.31 (t, 2H), 6.96 (m, 3H), 7.04 (d, 1H),	7.18 (m, 2H), 7.37 (d, 2H), 7.48 (s, 1H), 8.13 (s, 1H), 8.87 (s, 1H),	11.04 (broad, 1H).	(d-6-DMSO, d values) 1.95 (broad, 2H), 2.28 (m, 2H), 3.03 (broad,	2H), 3.31 (t, 2H), 3.58 (broad, 2H), 3.73 (s, 3H), 3.97 (s, 3H), 4.29	(t, 2H), 6.96 (m, 3H), 7.05 (d, 1H), 7.18 (m, 2H), 7.39 (d, 2H), 7.47	(s, 1H), 8.14 (s, 1H), 8.86 (s, 1H), 11.06 (broad, 1H).	(d-6-DMSO, d values) 1.74 (m, 4H), 2.30 (m, 2H), 2.44 (m, 2H),	2.90 (m, 2H), 3.20 (t, 2H), 3.47 (m, 2H), 3.72 (s, 3H), 3.95 (s, 3H),	4.28 (t, 2H), 6.94 (m, 3H), 7.04 (d, 1H), 7.17 (m, 2H), 7.38 (d, 2H),	7.49 (s, 1H), 8.11 (s, 1H), 8.84 (s, 1H).	(d-6-DMSO, d values @ 373deg K) 2.27 (m, 2H), 3.18 (m, 4H),	3.43 (s, 4H), 3.53 (s, 4H), 3.77 (s, 3H), 3.82 (t, 2H), 3.98 (s, 3H),	4.33 (t, 2H), 6.97 (m, 3H), 7.04 (d, 1H), 7.16 (m, 2H), 7.35 (d, 2H),	7.56 (s, 1H), 8.09 (s, 1H), 8.67 (s, 1H).
Mass	sbec.	m/e	540	(M^+H)		m/e	525	$(M^{+}H)$		m/e	539	$(M^{+}H)$		m/e	584	(M ⁺ +H)	
Prod		35				36			*	37				38			
Conditions		EtOH / 80deg /	3.5 hours			EtOH / 80deg /	3.5 hours			EtOH / 80deg /	3.5 hours			EtOH / 80deg /	7 hours		
Reagent	<i>n</i> =	piperazine	4			pyrrolidine	·	*		Piperidine	-			N- (2	hydroxyethyl)	piperazine	
Start	Comp	118				118				118				118			

Comp 27 2- chloromethyl- pyridine Chloromethyl- chloromethyl- pyridine XOtBu,(1M in THF) THF) 27 27 27 Chloromethyl- pyridine KOtBu,(1M in THF) THF) 27 An-(2- chloroethyl) powdered KOH/DMSO piperidine KOH/DMSO	Conditions Prod	Mass	Nmr
chloromethyl- pyridine KOtBu,(1 3- Chloromethyl- pyridine KOtBu,(1 THF THF O/ Pyridine KOtBu,(1 THF N-(2- Chloroethyl) powde chloroethyl) powde pineridine KOH/DP		sbec.	
chloromethyl- pyridine KOtBu,(1 3- Chloromethyl- O/ pyridine KOtBu,(1 THF THF O/ RT/96 O/ Chloroethyl) powde chloroethyl) powde	MS 39	m/e	(d-6-DMSO, d values) 3.73 (s, 3H), 4.01 (s, 3H), 5.41 (s, 2H), 6.96
pyridine KOtBu,(1 3- RT/48hr/I chloromethyl- O/ pyridine KOtBu,(1 THF RT/96 OAN N-(2- RT/96 chloroethyl) powde nineridine KOtBu,(1 THF THF		505	(m, 3H), 7.05 (m, 1H), 7.18 (m, 2H), 7.40 (m, 3H), 7.54 (s, 1H), 7.58
3- RT/48hr/I chloromethyl- O/ pyridine KOtBu,(1 THF ON N-(2- RT/96 Chloroethyl) powde	M in	$(M^{+}H)$	(M ⁺ +H) (d, 1H), 7.89 (m, 1H), 8.21 (s, 1H), 8.63 (d, 1H), 8.96 (s, 1H), 11.10
chloromethyl- pyridine KOtBu,(1 THF ON RT/96 ON RT/96 DMS N-(2- RT/96 Chloroethyl) powde pineridine KOH/DP		,, ,	(broad, 1H)
chloromethyl- O/ pyridine KOtBu,(1 THF ON N-(2- RT/96 chloroethyl) powde	MS 40	m/e	(d-6-DMSO, d values) 3.74 (s, 3H), 3.98 (s, 3H), 5.40 (s, 2H), 6.96
pyridine KOtBu,(1 THF ON N-(2- RT/96 Chloroethyl) powde KOH/DP		505	(m, 3H), 7.05 (m, 1H), 7.18 (m, 2H), 7.38 (m, 2H), 7.58 (m, 1H),
ohloroethyl)	M ii	(M ⁺ +H)	7.63 (s, 1H), 8.09 (m, 1H), 8.19 (s, 1H), 8.65 (d, 1H), 8.82 (d, 1H),
o OTS N-(2- chloroethyl)			8.86 (s, 1H), 11.04 (broad, 1H)
N-(2-chloroethyl)	ır/ 41	m/e	(d-6-DMSO, d values) 1.93 (m, 1H), 2.10 (m, 1H), 2.20 (m, 1H),
N-(2- chloroethyl)		511	2.34 (m, 1H), 3.74 (s, 3H), 3.90 (s, 3H), 3.94 (m, 1H), 4.10 (m, 2H),
N-(2- chloroethyl)	M in	(M ⁺ +H)	6.90 (d, 2H), 6.93 (m, 1H), 7.02 (m, 1H), 7.16 (m, 2H), 7.23 (d, 2H),
N-(2- chloroethyl)			7.32 (s, 1H), 7.73 (s, 1H), 7.76 (s, 1H), 8.37 (s, 1H), 9.41 (s, 1H).
	ır/ 44	m/e	(d-6-DMSO, d values) 1.77 (m, 6H), 3.06 (m, 2H), 3.56 (m, 4H),
	pa	525	3.74 (s, 3H), 3.98 (s, 3H), 4.63 (t, 2H), 6.95 (m, 3H), 7.04 (m, 1H),
	(SO	$\left (M^+ + H) \right $	7.18 (m, 2H), 7.36 (d, 2H), 7.50 (s, 1H), 8.11 (s, 1H), 8.81 (s, 1H),
		_	10.47 (broad, 1H), 10.75 (broad, 1H)

Start	Reagent	Conditions	Prod	Mass	Nmr
Comp	·			sbec.	
27	0=	RT/120hr/DM	48	m/e	(d-6-DMSO, d values) 1.23 (m, 2H), 1.40 (s, 9H), 1.78 (m, 2H),
	N. 0.	SO		611	2.02 (broad, 1H), 2.77 (m, 2H), 3.75 (s, 3H), 3.91 (s, 3H), 4.00 (m,
	0%	KOtBu,(1M in		(M ⁺ +H)	4H), 6.91 (m, 3H), 7.02 (m, 1H), 7.15 (m, 2H), 7.23 (d, 2H), 7.30 (s,
	/980966	THF)			1H), 7.75 (s, 1H), 8.36 (s, 1H), 9.38 (s, 1H)
26	F ₃ CCH ₂ O-S	120 ^o C/20hr/	50	m/e	(CDCI3, d values) 3.76 (s, 3H), 3.94 (s, 3H), 4.07 (q, 2H), 6.78 (s,
	(O) ₂ .CH ₃	DMA/ KOtBu,		496.1	1H), 6.84-7.12 (m, 9H), 7.30 (s, 1H), 8.52 (s, 1H).
		/18-crown-6		(M+H)	Intermediate 1. M461666
			-		
26	CH,CHCH,-	23°C/20hr/DM	51	m/e 454	(d-6-DMSO, d values) 3.74 (s, 3H), 3.93 (s, 3H), 4.8 (d, 2H), 5.29
	Ŗ	A/KOtBu,		(M ⁺ +H)	(d, 1H), 5.44 (d, 1H), 6.03-6.2 (m, 1H), 6.86-7.26 (m, 8H), 7.3 (s,
	i -	/18-crown-6		•	1H), 7.77 (s, 1H), 8.37 (s, 1H), 9.36 (s, 1H).
49		RT/18hrs/NaO	52	m/e	(d-6-DMSO, d values) 3.77 (s, 3H), 3.97 (s, 3H), 4.85 (s, 2H), 6.92
		H/MeOH/wate		472	(d, 2H), 6.96 (m, 1H), 7.03 (m, 1H), 7.18 (m, 2H), 7.25 (d, 2H), 7.33
		. —		(M+H)	(s, 1H), 7.77 (s, 1H), 8.39 (s, 1H), 9.44 (s, 1H).
26	í	RT/4hrs/	53	m/e	(d-6-DMSO, d values) 1.91 (m, 2H), 2.11-2.30 (m, 3H), 3.76 (s,
	N Pit	KOtBu/		511	3H), 4.00 (s, 3H), 4.12 (m, 2H), 6.99 (m, 3H), 7.08 (m, 1H), 7.21 (m,
		18-C-6/n-		(M+H) ⁺	3H), 7.40 (d, 2H), 7.80 (s, 1H), 8.20 (s, 1H), 8.92 (s, 1H).
		Bu ₄ NI/DMA			

							12	 										
Nmr		d-6-DMSO, d values) 3.6 (t, 1H), 3.73 (s, 3H), 3.94 (s, 3H), 4.92 (d,	2H), 6.84-7.3 (m, 8H), 7.33 (s, 1H), 7.84 (s, 1H), 8.38 (s, 1H), 9.38	(s, 1H).	(d-6-DMSO, d values) 3.32 (s, 3H), 3.71 (t, 2H), 3.73 (s, 3H), 3.93	(s, 3H), 4.21 (t, 2H), 6.85-7.28 (m, 8H), 7.3 (s, 1H), 7.75 (s, 1H),	8.36 (s, 1H), 9.36 (s, 1H).	(d-6-DMSO, d values) 3.48 (m, 4H), 3.61 (m, 4H), 3.76 (s, 3H),	4.01 (s, 3H), 5.11 (s, 2H), 6.96 (m, 3H), 7.08 (m, 1H), 7.21 (m, 2H),	7.40 (m, 3H), 8.15 (s, 1H), 8.89 (s, 1H).	(d-6-DMSO, d values) 2.80 (bs, 3H), 3.00-3.60 (m, 8H (under H ₂ O	peak)), 3.75 (s, 3H), 4.01 (s, 3H), 5.18 (s, 2H), 6.95 (m, 3H), 7.05	(m, 1H), 7.18 (m, 2H), 7.39 (m, 3H), 7.70 (bs, 1H), 8.33 (bs, 1H),	8.78 (bs, 1H).	(d-6-DMSO, d values) 3.74 (s, 3H), 3.78 (m, 2H), 4.02 (s, 3H), 4.77	(s, 2H), 5.09 (m, 2H), 5.80 (m, 1H), 6.97 (m, 3H), 7.08 (m, 1H), 7.20	(m, 2H), 7.37 (d, 2H), 7.44 (s, 1H), 8.21 (s, 1H), 8.16 (m, 1H), 8.85	(bs, 1H).
Mass	sbec.	m/e	452	$(M^+ + H)$	m/e	472	(M^++H)	m/e	541	(M+H)	m/e	552	(M+H)		m/e	511	(M+H) ⁺	
Prod		54			55			57		-	58				59			
Conditions		23°C/20hr/	DMA/ KOtBu,	/18-crown-6	23°C/20hr/DM	A/ KOtBu,	/18-crown-6	RT/64hrs/	EDC/DMAP/	DCM	RT/18hrs	/EDC/DMAP/	DCM	*	RT/18hrs/EDC	/DMAP/DCM		
Reagent		CH≡CCH ₂ Br			CH3OCH2	CH ₂ Br		morpholine			N-methyl	piperazine			allylamine			
Start	Comp	26		-	26			52			52				52			

							-							<u>,</u>		_	9	
Nmr		(d-6-DMSO, d values) 2.68 (m, 3H), 3.78 (s, 3H), 4.03 (s, 3H), 4.70	(s, 2H), 6.96 (m, 3H), 7.06 (m, 1H), 7.19 (m, 2H), 7.36 (s, 1H), 7.40	(m, 2H), 7.89 (bs, 1H), 8.08 (s, 1H), 8.86 (s, 1H), 10.68 (bs, 1H).	(d-6-DMSO, d values) 3.25 (s, 3H), 3.75 (s, 3H), 4.01 (s, 3H), 4.73	(s, 2H), 6.96 (m, 3H), 7.05 (m, 1H), 7.20 (m, 2H), 7.37 (s, 1H), 7.40	(m, 2H), 7.95 (bs, 1H), 8.07 (s, 1H), 8.86 (s, 1H), 10.70 (bs, 1H).	(d-6-DMSO, d values) 1.73 (m, 2H), 2.04 (m, 2H), 2.20 (m, 1H),	2.78 (s, 3H), 3.06 (m, 2H), 3.44 (m, 2H), 3.77 (s, 3H), 3.96 (s, 3H),	4.14 (d, 2H), 6.96 (m, 3H), 7.03 (m, 1H), 7.16 (m, 2H), 7.29 (m,	2H), 7.44 (s, 1H), 7.89 (s, 1H), 8.58 (s, 1H)	(d-6-DMSO, d values) 1.93 (m, 1H), 2.10 (m, 1H), 2.20 (m, 1H),	2.34 (m, 1H), 3.74 (s, 3H), 3.90 (s, 3H), 3.94 (m, 1H), 4.10 (m, 2H),	6.90 (d, 2H), 6.93 (m, 1H), 7.02 (m, 1H), 7.16 (m, 2H), 7.23 (d, 2H),	7.32 (s, 1H), 7.73 (s, 1H), 7.76 (s, 1H), 8.37 (s, 1H), 9.41 (s, 1H).	(d-6-DMSO, d values) 3.74 (s, 3H), 3.92 (s, 3H), 4.88 (s, 2H), 6.89	(d, 2H), 6.95 (m, 1H), 7.01 (m, 1H), 7.16 (m, 3H), 7.24 (d, 2H), 7.76	(s, 1H), 8.35 (s, 1H), 9.43 (bs, 1H).
Mass	sbec.	m/e	485	(M+H)	m/e 529	(M+H) ⁺	•	m/e	525	(M^+H)		m/e	511	(M ⁺ +H)		m/e	472	(M+H)
Prod		09			61			63				64				99		
Conditions		RT/18hrs/THF/	EDC/DMAP/D	CM	RT/18hrs/EDC	/DMAP/DCM		95°C/18hr/HC	HO(aq.)/HCO	НО		55°C/30hr/DM		in THF)		RT/18hrs/	NaOH/MeOH/	water
Reagent		methylamine	•		methoxy	ethanolamine						1	SIO N					
Start	Comp	52			52			48				27				65		

							131											
Nmr	(d-6-DMSO, d values) 3.63 (t, 1H), 3.75 (s, 3H), 3.9 (s, 3H), 5.0(d,	2H), 6.84-7.04 (m, 4H), 7.1-7.28 (m, 4H), 7.4 (s, 1H), 7.78 (s, 1H),	8.37(s, 1H), 9.42(s, 1H).	(d-6-DMSO, d values) 0.47 (m, 2H), 0.63 (m, 2H), 2.66 (m, 1H),	3.74 (s, 3H), 3.96 (s, 3H), 4.70 (s, 2H), 6.95 (m, 3H), 7.05 (m, 1H),	7.17 (m, 2H), 7.21 (m, 1H), 7.37 (d, 2H), 8.03 (s, 1H), 8.29 (m, 1H),	8.81 (s, 1H).	(d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), 3.29 (m, 2H),	3.49 (m, 2H), 3.83 (m, 2H), 3.83 (m, 2H), 3.95 (m, 2H), 4.00 (s, 3H),	4.03 (m, 2H), 4.30 (m, 2H), 6.96 (m, 3H), 7.05 (m, 1H), 7.17 (m,	2H), 7.38 (m, 2H), 7.54 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H).	(d-6-DMSO, d values) (broadened due to rotamers) 1.48 (bs, 9H),	3.71 (bs, 3H), 3.99 (bs, 3H), 6.92 (bm, 2H), 6.95 (bm, 3H), 7.03 (bm,	1H), 7.15 (bs, 1H), 7.40 (bm, 3H), 8.66 (bs, 1H), 8.80 (bs, 1H), 8.91	(bs, 1H), 10.93 (bs, 1H).	(d-6-DMSO, d values) 3.74 (s, 3H), 3.95 (s, 3H), 5.39 (bs, 2H), 6.85	(d, 2H), 6.91 (m, 1H), 6.96 (m, 1H), 7.10 (m, 3H), 7.20 (s, 1H), 7.29	(s, 1H), 8.24 (s, 1H), 9.06 (s, 1H).
Mass spec.	m/e	452.2	(M^+H)	m/e	511	(M+H)		m/e	553.6	(M-H ⁺)		m/e	513	(M+H)		m/e	413	(M+H) ⁺
Prod	19			89				70				71	. <u>.</u>			72		
Conditions	23°C/20hr/DM	A/KOtBu		RT/18hrs/EDC		DMAP/DCM		60°C/18hrs/	KO'Bu/Bu4NI/	18-C-6/DMA		100°C/18hrs/N	Et3 /t-BuOH			RT/2hrs/Et ₃ Si	H/TFA	
Reagent	CH≡CCH,Br		*	cyclopropyl	amine			Chloropropyl	morpholine			diphenyl	phosphoryl	azide				
Start	27	i		99				62				102				71		

							,	32											
Nmr		(d-6-DMSO, d values) 3.63 (t, 1H), 3.75 (s, 3H), 3.9 (s, 3H), 5.0(d,	2H), 6.84-7.04 (m, 4H), 7.1-7.28 (m, 4H), 7.4 (s, 1H), 7.78 (s, 1H),	8.37(s, 1H), 9.42(s, 1H).	(d-6-DMSO, d values) 0.47 (m, 2H), 0.63 (m, 2H), 2.66 (m, 1H),	3.74 (s, 3H), 3.96 (s, 3H), 4.70 (s, 2H), 6.95 (m, 3H), 7.05 (m, 1H),	7.17 (m, 2H), 7.21 (m, 1H), 7.37 (d, 2H), 8.03 (s, 1H), 8.29 (m, 1H),	8.81 (s, 1H).	(d-6-DMSO, d values) 2.33 (m, 2H), 3.12 (m, 2H), 3.29 (m, 2H),	3.49 (m, 2H), 3.83 (m, 2H), 3.83 (m, 2H), 3.95 (m, 2H), 4.00 (s, 3H),	4.03 (m, 2H), 4.30 (m, 2H), 6.96 (m, 3H), 7.05 (m, 1H), 7.17 (m,	2H), 7.38 (m, 2H), 7.54 (s, 1H), 8.18 (s, 1H), 8.88 (s, 1H).	(d-6-DMSO, d values) (broadened due to rotamers) 1.48 (bs, 9H),	3.71 (bs, 3H), 3.99 (bs, 3H), 6.92 (bm, 2H), 6.95 (bm, 3H), 7.03 (bm,	1H), 7.15 (bs, 1H), 7.40 (bm, 3H), 8.66 (bs, 1H), 8.80 (bs, 1H), 8.91	(bs, 111), 10.93 (bs, 111).	(d-6-DMSO, d values) 3.74 (s, 3H), 3.95 (s, 3H), 5.39 (bs, 2H), 6.85	(d, 2H), 6.91 (m, 1H), 6.96 (m, 1H), 7.10 (m, 3H), 7.20 (s, 1H), 7.29	(s, 1H), 8.24 (s, 1H), 9.06 (s, 1H).
Mass	spec.	m/e	452.2	(M^++H)	m/e	511	(M+H) ⁺		m/e	553.6	(M-H ⁺).		m/e	513	(M+H) ⁺		m/e	413	(M+H) ⁺
Prod		19			89				70				71				72		
Conditions		23°C/20hr/DM	A/KOtBu		RT/18hrs/EDC	_	DMAP/DCM		60°C/18hrs/	KO'Bu/Bu4NI/	18-C-6/DMA		100°C/18hrs/N	Et3 /t-BuOH			RT/2hrs/Et ₃ Si	H/TFA	
Reagent		CH≡CCH2Br			cyclopropyla	mine			Chloropropyl	morpholine	•		diphenylphos	phorylazide	•				
Start	Comp	27			99				62				102	ļ			71		

							13	33											
Nmr		(d-6-DMSO, d values) 3.06 (s, 3H), 3.74 (s, 3H), 3.99 (s, 3H), 6.89	(d, 2H), 6.95 (m, 1H), 7.01 (m, 1H), 7.13 (m, 2H), 7.22 (d, 2H), 7.37	(s, 1H), 8.21 (s, 1H), 8.44 (s, 1H), 9.24 (bs, 1H), 9.65 (bs, 1H).	(d-6-DMSO, d values) 3.74 (s, 3H), 3.95 (s, 3H), 6.89 (d, 2H), 6.95	(m, 1H), 7.01 (m, 1H), 7.14 (m, 2H), 7.25 (d, 2H), 7.37 (s, 1H), 8.49	(s, 1H), 8.78 (s, 1H), 9.89 (bs, 1H).	(d-6-DMSO, 8 values) 2.25 (m, 2H), 2.80 (s, 3H), 3.24 - 3.53 (m	under H2O, 10H), 3.56 (m, 1H), 3.99 (s, 3H), 4.30 (m, 2H), 4.80 (d,	2H), 6.96 - 7.05 (m, 4H), 7.16 - 7.28 (m, 2H), 7.40 (m, 2H), 7.46 (s,	1H), 8.22 (s, 1H), 8.91 (s, 1H).	(d-6-DMSO, 8 values) 2.23 - 2.36 (m, 2H), 3.03 - 3.16 (m, 2H), 3.24	- 3.34 (m, 2H), 3.42 - 3.51 (m, 2H), 3.71 - 3.83 (m, 2H), 3.92 - 4.03	(m, 5H), 4.35 (t, 2H), 6.75 (tt,), 6.90 (s, 1H), 7.00 - 7.06 (m, 2H),	7.21 - 7.28 (d, 2H), 7.46 - 7.56 (m, 4H), 8.31 (s, 1H), 8.92 (s, 1H).	(d-6-DMSO, & values) 2.23 - 2.37 (m, 2H), 2.80 (s, 3H), 3.39 - 3.78	(m underH2O, 10H), 4.00 (s, 3H), 4.35 (t, 2H), 6.76 (tt, 1H), 6.90	(m, 1H), 7.02 (dd, 1H), 7.24 (d, 2H), 7.45 (d, 1H), 7.50 - 7.56 (m,	3H), 8.37 (s, 1H), 8.93 (s, 1H).
Mass	spec.	m/e	490	(M+H) ⁺	m/e	442	$\left(\mathrm{M+H} \right)^{+}$	m/e	625	(M+H) ⁺						m/e	640	(M+H) ⁺	
Prod		73			102			114				115				118			
Conditions		70°C/12hrs/	pyridine	•	RT/3days/NaO	Н/МеОН/	water	60°C/3hr/NaI				RT/15min/KOt	Bu/DMA then	60°C/4hr/nBu ₄	NI/18 crown 6	60°C/3hr/NaI			
Reagent		MeSO ₂ Cl						1-Methyl	piperazine			N-(3chloro-	propyl)	morpholine		1-Methyl-	piperazine		
Start	Comp	72			425							108				112			

Nmr		(d-6-DMSO, & values) 2.20 - 2.30 (m, 2H), 2.81 (s, 6H), 3.25 (m,	2H), 4.00 (s, 3H), 4.32 (t, 2H), 6.74 (tt, 1H), 6.90 (m, 1H), 7.02 (m,	1H), 7.24 (d, 2H), 7.44 - 7.56 (m, 4H), 8.27 (s, 1H), 8.95 (s, 1H).	(d-6-DMSO, & values) 1.87 - 2.00 (m, 2H), 2.32 - 2.40 (m, 2H), 3.50	- 3.59 (m, 4H), 3.77 - 3.88 (m, 4H), 3.94 (s, 3H), 4.13 (t, 2H), 6.78	(m, 1H), 6.87 - 7.02 (m, 5H), 7.22 (m, 2H), 7.30 (s, 1H), 7.75 (s,	1H), 8.36 (s, 1H), 9.39 (s, 1H), 9.49 (s, 1H).	(d-6-DMSO, & values) 2.07 (m, 2H), 2.54 (s, 6H), 2.86 (m, 2H),	3.93 (s, 3H), 4.15 (t, 2H), 6.78 (m, 1H), 6.89 - 7.00 (m, 5H), 7.22 (d,	2H), 7.31 (s, 1H), 7.75 (s, 1H), 8.38 (s, 1H), 9.38 (s, 1H), 9.48 (bs,	1H).	(d-6-DMSO, 8 values) 2.21 - 2.32 (m, 2H), 2.79 (s, 3H), 3.19 - 3.65	(m under H2O, 10H), 4.00 (s, 3H), 4.32 (t, 2H), 4.57 (d, 2H), 5.16	(d, 1H), 5.28 (d, 1H), 5.86 - 6.00 (m, 1H), 6.93 - 7.00 (m, 3H), 7.06	(d, 1H), 7.17 (d, 2H), 7.39 (d, 2H), 7.52 (s, 1H), 8.32 (s, 1H), 8.91	(s, 1H), 9.70 (s, 1H).
Mass	spec.	m/e	585	(M+H) ⁺	m/e	527	(M+H)		m/e	485	(M+H) ⁺		m/e	580	(M+H) ⁺		
Prod		119		ü	120				121				127				
Conditions		60°C/3hr/NaI			60°C/3hr/NaI				60°C/3hr/NaI/	МеОН			80°C/3hr/NaI				
Reagent		1-Methyl-	piperazine		Morpholine				Dimethylamin	ပ			1-Methyl-	piperazine			
Start	Comp	112			E			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111				113				

							1.	35								
Nmr		(d-6-DMSO, δ values) 2.20 - 2.30 (m, 2H), 2.77 (s, 3H), 2.79 (s,	3H), 3.16 - 3.31 (m under H2O, 2H), 3.99 (s, 3H), 4.30 (t, 2H), 4.57	(d, 2H), 5.17 (d, 1H), 5.29 (d, 1H), 5.86 - 6.00 (m, 1H), 6.92 - 7.00	(m, 3H), 7.06 (d, 1H), 7.16 (d, 2H), 7.39 (d, 2H), 7.49 (s, 1H), 8.29	(s, 1H), 8.89 (s, 1H).	(d-6-DMSO, d values) 3.61(t, 1H), 3.94 (s, 3H), 4.93(d, 2H), 6.92 (d,	1H), 7.2-7.3 (m, 3H), 7.35 (s, 1H), 7.38 (d, 2H), 7.62(t, 1H) 7.88(s,	1H), 7.9 (d, 1H), 8.43 (s, 1H), 9.52 (s, 1H),	(d-6-DMSO, d values) 3.64(t, 1H), 3.92 (s, 3H), 5.0(d, 2H), 6.93 (d,	1H), 7.2-7.3 (m, 3H), 7.4 (d, 2H), 7.42 (s, 1H), 7.6(t, 1H) 7.8(s, 1H),	7.89 (d, 1H), 8.42 (s, 1H), 9.6 (s, 1H),	(d-6-DMSO, d values) 2.29 (m, 2H), 3.10 (m, 2H), 3.29 (m, 2H),	3.47 (m, 2H), 3.60 (m, 2H), 3.79 (m, 2H), 4.00 (m, 5H), 4.32 (m,	2H), 6.95 (m, 4H), 7.14 (m, 2H), 7.41 (m, 2H), 7.47 (s, 1H), 8.28 (s,	1H), 8.95 (s, 1H).
Mass	sbec.	m/e	525.4	(M+H)			m/e	447.2	$(M^{+}H)$	m/e	447	(M ⁺ +H)	m/e	570	(M+H)	
Prod		128					131			132			137			
Conditions		80°C/3hr/NaI/	MeOH				23°C/20hr/DM	A/KOtBu		23°C/20hr/DM	A/KOtBu		RT/18hrs/NaI			
Reagent		Dimethyl	amine				CH≡CCH2Br			CH≡CCH ₂ Br			Morpholine			
Start	Comp	113					110			130			114			

								137										
Nmr		(d-6-DMSO, d values) 2.33 (m, 2H), 3.11 (m, 2H), 3.29 (m, 2H),	3.35 (m, 2H), 3.82 (m, 2H), 3.96 (m, 2H), 3.98 (s, 3H), 4.32 (m, 2H),	6.76 (tt, 1H), 7.04 (m, 2H), 7.24 (m, 2H), 7.49 (m, 1H), 7.54 (m,	3H), 8.21 (s, 1H), 8.89 (s, 1H).	(d-6-DMSO, & values) 2.24 (s, 3H), 3.94 (s, 3H), 7.21 - 7.39 (m,	6H), 7.77 (s, 1H), 8.00 (s, 1H), 8.25 (s, 1H), 9.20 (s, 1H), 10.34 (bs,	1H).	(d-6-DMSO, d values) 1.51 (m, 2H), 1.71 (m, 4H), 2.18 (m, 2H),	3.08 (m, 6H), 3.91 (s, 3H), 4.24 (m, 2H), 4.66 (s, 2H), 7.03 (m, 6H),	7.24 (m, 2H), 7.33 (s, 1H), 7.76 (s, 1H), 8.37 (s, 1H), 9.46 (s, 1H).	(d-6-DMSO, d values) 2.32 (m, 2H), 3.0-3.64 (m, 10H), 3.8 (t, 2H),	3.96 (m, 2H), 3.98 (s, 3H), 4.28 (t, 2H), 4.48(s, 2H), 6.94-7.21 (m,	6H), 7.4 (d, 2H), 7.52 (s, 1H), 7.6 (t, 1H), 8.11 (s, 1H), 8.85 (s, 1H).	(d-6-DMSO, d values) 1.89 (m, 2H), 2.0 (m, 2H), 2.28 (m, 2H), 3.02	(m, 2H), 3.15 (q, 2H), 3.2-3.7 (m, 6H), 3.98 (s, 3H), 4.29 (t, 2H),	4.48(s, 2H), 6.95-7.21 (m, 6H), 7.4 (d, 2H), 7.5 (s, 1H), 7.6 (t, 1H),	8.16 (s, 1H), 8.86 (s, 1H).
Mass	spec.	m/e	625.5	(M-H ₊).		m/e	417.4	(M+H)	m/e	581.5	$(M-H^{\dagger})$	m/e	628.58	(M+H)	m/e	612.56	(M ⁺ +H)	•
Prod		154				218			170			175			176			
Conditions		60°C/18hrs/K	O'Bu/Bu4NI/18	-C-6/DMA		75°C/1.5hr/TF	Α/	Thioanisole	RT/18hrs/NaI			23 ^o C/24hr/NaI			23°C/24hr/NaI			- V
Reagent		Chloropropyl	morpholine	•					Piperidine			morpholine	,		pyrollidine	•		
Start	Comp	113				219			17			14	(Ex.	, (C	4		-1	

Nmr	(d-6-DMSO, d values) 1.14 (d, 6H), 2.22-2.74 (m,4H), 3.1-3.62 (m,	8H), 3.9-4.09 (m, 5H), 4.3 (t, 2H), 4.48 (s, 2H), 6.95-7.21 (m, 6H),	7.4 (d, 2H), 7.47 (s, 1H), 7.6 (t, 1H), 8.1 (s, 1H), 8.85 (s, 1H).	(d-6-DMSO, d values) 2.0 (s, 3H), 2.32 (m,2H), 2.84-3.7 (m, 14H),	3.99 (s, 3H), 4.3 (t, 2H), 4.42 (br.d., 1H), 4.48 (s, 2H), 6.95-7.22 (m,	6H), 7.4 (d, 2H), 7.46 (s, 1H), 7.6 (t, 1H), 8.18 (s, 1H), 8.84 (s, 1H),	9.2 (br.s., 1H).	(d-6-DMSO, d values) 3.75 (s, 3H), 4.03 (s, 3H), 5.53 (s, 2H), 6.96	(m, 3H), 7.05 (m, 1H), 7.18 (m, 2H), 7.38 (d, 2H), 7.53 (s, 1H), 7.74	(d, 2H), 8.20 (s, 1H), 8.74 (d, 2H), 8.79 (s, 1H), 10.93 (broad, 1H)		(d-6-DMSO, 8 values) 2.24 - 2.37 (m, 2H), 2.78 (s, 3H), 3.19 - 3.62	(m underH2O, 10H), 3.67 (s, 3H), 3.99 (s, 3H), 4.36 (t, 2H), 6.98 (t,	(M+H) ⁺ 1H), 7.08 - 7.15 (m, 3H), 7.21 (t, 1H), 7.55 (s, 1H), 7.90 (dd, 1H),	8.19 (d, 1H), 8.41 (m, 1H), 8.95 (s, 1H).
Mass spec.	m/e	9:959	(M++H)	m/e	66.699	(M^++H)		m/e	505	(M ⁺ +H)		m/e	555	(M+H) ⁺	
Prod	177			194				197				204			
Conditions	23 ^o C/24hr/NaI		-	23°C/24hr/NaI				RT/48hr/DMS	/0	KOtBu(1M in	THF)	60°C/16hr/NaI			
Reagent	dimethyl-	morpholine		1-acetyl-	piperazine			4-	chloromethyl-	pyridine		1-Methyl-	piperazine		
Start	41 41			14				27				116	-		0

								139										
Nmr		(d-6-DMSO, 8 values) 2.26 - 2.38 (m, 2H), 2.80 (s, 3H), 3.20 - 3.66	(m underH2O, 10H), 3.70 (s, 3H), 4.01 (s, 3H), 4.31 (t, 2H), 6.98 (t,	1H), 7.09 - 7.16 (m, 3H), 7.21 (m, 1H), 7.52 (s, 1H), 7.92 (dd, 1H),	8.19 (d, 1H), 8.25 (s, 1H), 8.92 (s, 1H), 9.62 (bs, 1H).	(d-6-DMSO, δ values) 2.19 - 2.30 (m, 2H), 2.79 (s, 3H), 2.80 (s,	3H), 3.16 - 3.28 (m, 2H), 3.68 (s, 3H), 3.99 (s, 3H), 4.32 (t, 2H),	6.98 (t, 1H), 7.08 - 7.16 (m, 3H), 7.21 (m, 1H), 7.48 (s, 1H), 7.89 (d,	1H), 8.17 (d, 1H), 8.34 (s, 1H), 8.88 (s, 1H).	(d-6-DMSO, 8 values) 2.18 - 2.28 (m, 2H), 2.76 (s, 6H), 3.16 - 3.22	(m, 2H), 3.68 (s, 3H), 3.95 (s, 3H), 4.26 (t, 2H), 6.96 (t, 1H), 7.00	(M+H) ⁺ (d, 1H), 7.11 (d, 2H), 7.19 (m, 1H), 7.32 (s, 1H), 7.76 (dd, 1H), 7.92	(s, 1H), 8.06 (d, 1H), 8.38 (s, 1H), 9.73 (s, 1H).	(d-6-DMSO, & values) 2.24 - 2.35 (m, 2H), 3.04 - 3.16 (m, 2H), 3.24	- 3.33 (m, 2H), 3.43 - 3.51 (m, 2H), 3.68 (s, 3H), 3.72 - 3.83 (m,	2H), 3.91 - 3.98 (m, 2H), 3.99 (s, 3H), 4.34 (t, 2H), 6.98 (t, 1H),	7.08 - 7.14 (m, 3H), 7.21 (m, 1H), 7.47 (s, 1H), 7.90 (dd, 1H), 8.19	(d, 1H), 8.31 (m, 1H), 8.92 (s, 1H).
Mass	sbec.	m/e	555	(M+H) ⁺		m/e	200	(M+H) ⁺		m/e	200	(M+H) ⁺						
Prod		205				206		****		207				208				
Conditions		60°C/16hr/NaI	-			60°C/16hr/NaI/	МеОН			60°C/16hr/NaI/	МеОН			RT/15min/	KOtBu/DMA	then RT/18hr/	nBu ₄ NI/18-	crown-6
Reagent		1-Methyl-	piperazine			Dimethyl	amine			Dimethyl	amine		*	N-(3-chloro-	propyl)	morpholine		
Start	Comp	117				116				117				220				

								140							_	
Nmr		(d-6-DMSO, 8 values) 2.27 - 2.36 (m, 2H), 3.04 - 3.19 (m, 2H), 3.24	- 3.31 (m, 2H), 3.44 - 3.54 (m, 2H), 3.68 (s, 3H), 3.74 - 3.86 (m,	2H), 3.93 - 3.98 (m, 2H), 3.99 (s, 3H), 4.31 (t, 2H), 6.98 (t, 1H),	7.08 - 7.15 (m, 3H), 7.21 (t, 1H), 7.50 (s, 1H), 7.91 (dd, 1H), 8.19	(m, 2H), 8.92 (s, 1H).		(d-6-DMSO D4 Acetic, δ values) 2.23 - 2.37 (m, 2H), 3.04 - 3.17	(m, 2H),3.29 (t, 2H), 3.44 - 3.54 (m, 2H), 3.67 (s, 3H), 3.73 - 3.84		7.11 - 7.28 (m, 3H), 7.49 (s, 1H), 8.18 (s, 1H), 8.75 (s, 2H), 8.90 (s,	1H).		(d-6-DMSO, 8 values) 2.20 (s, 3H), 3.67 (s, 3H), 3.93 (s, 3H), 6.93 -	7.00 (m, 2H), 7.08 - 7.12 (m, 2H), 7.16 - 7.20 (m, 2H), 7.79 (s, 1H),	7.98 (s, 1H), 8.25 (s, 1H), 9.20 (s, 1H), 10.31 (bs, 1H).
Mass	sbec.							m/e	543	(M+H)				m/e	429.4	(M+H) ⁺
Prod		209						210						211		
Conditions		j)	RT/15min/KOt	Bu/DMA then	ii) RT/18hr/(2)/	nBu ₄ NI/18-	crown-6	(1)	RT/15min/KOt	Bu/DMA then	ii) RT/16hr/(2)/	nBu ₄ NI/18-	crown-6	75°C/1.5hr/	TFA/	Thioanisole
Reagent		N-(3-chloro-	propyl)	morpholine				N-(3-	chloropropyl)	morpholine						
Start	Comp	221						203						222	eren.	

Spec. Spec. Spec. Spec. Spec. Spec. Style Spec. Spec	Start	Reagent	Conditions	Prod	Mass	Nmr
Morpholine RT/48hr/NaI 214 m/e 623.5 Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺ (M+H) ⁺	Comp				spec.	
Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 Morpholine RT/48hr/NaI 216 m/e 599.5	120	pyrrolidine	RT/48hr/NaI	214	m/e	(d-6-DMSO d-4-Acetic, δ values) 0.20 (m, 2H), 0.41 (m, 2H), 0.96
Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺						(m, 1H), 1.86 - 2.09 (m, 4H), 2.25 - 2.36 (m, 2H), 3.00 - 3.12 (m,
Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺					(M ⁺ +H)	(M ⁺ H) 4H), 3.34 (t, 2H), 3.61 (m, 2H), 4.04 (s, 3H), 4.34 (t, 2H), 4.48 (s,
Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺						2H), 6.72 - 6.81 (m, 2H), 6.85 (dd, 1H), 7.22 (d, 1H), 7.35 (t, 1H),
Morpholine RT/48hr/NaI 215 m/e 542.5 Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺						7.53 (s, 1H), 7.99 (dd, 1H), 8.24 (s, 1H), 8.35 (d, 1H), 8.95 (s, 1H).
Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺	91	Morpholine	RT/48hr/NaI	215	m/e	(d-6-DMSO, 8 values) 1.99 (t, 2H), 2.34 - 2.45 (m, 4H), 3.52 - 3.61
Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H) ⁺					542.5	(m, 4H), 3.79 (s, 3H), 3.96 (s, 3H), 4.20 (t, 2H), 7.03 (t, 1H), 7.20 -
Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H)					(M+H) ⁺	7.32 (m, 3H), 7.40 (s, 1H), 7.55 (d, 1H), 7.78 (m, 1H), 8.06 (s, 1H),
Morpholine RT/48hr/NaI 216 m/e 599.5 (M+H)						8.61 (d, 1H), 9.38 (s, 1H), 9.47 (bs, 1H).
	133	Morpholine	RT/48hr/NaI	216	m/e	(d-6-DMSO, 8 values) 2.21 (m, 2H), 2.61 (d, 3H), 4.00 (s, 3H), 4.27
					5.665	(t, 2H), 4.52 (s, 2H), 7.09 (t, 1H), 7.18 (d, 1H), 7.27 (t, 2H), 7.49 (s,
1H), 9.49 (s, 1H), 9.70 (bs, 1H). HPLC time 6.99, 93.5%					$(M+H)^{\dagger}$	1H), 7.64 (m, 1H), 7.75 (m, 1H), 7.87 (dd, 1H), 8.15 (s, 1H), 8.77 (d,
HPLC time 6.99, 93.5%						1H), 9.49 (s, 1H), 9.70 (bs, 1H).
						HPLC time 6.99, 93.5%

								142										
Nmr	11 1 (HC m) 15 0 (HC	(d-6-DMSO d-4-Acetic, δ values) 0.48 (m, ∠H), 0.01 (III, ∠II), 1.11	(s, 3H), 1.16 (s, 3H), 2.29 - 2.37 (m, 2H), 2.59 - 2.71 (m, 3H), 3.26	(m, 2H), 3.50 (d, 2H), 3.89 - 3.96 (m, 2H), 4.00 (s, 3H), 4.30 (t, 2H),	4.41 (s, 2H), 6.68 - 6.74 (m, 2H), 6.77 (d, 1H), 7.19 (d, 1H), 7.31 (t,	1H), 7.48 (s, 1H), 7.97 (dd, 1H), 8.19 (s, 1H), 8.31 (d, 1H), 8.93 (s,	1H).	(d-6-DMSO d-4-Acetic, δ values) 0.47 (m, 2H), 0.61 (m, 2H), 1.84 -	2.06 (m, 4H), 2.21 - 2.31 (m, 2H), 2.68 (m, 1H), 2.98 - 3.10 (m, 2H),	3.31 (t, 2H), 3.59 (m, 2H), 4.00 (s, 3H), 4.30 (t, 2H), 4.41 (s, 2H),	6.68 - 6.72 (m, 2H), 6.76 (dd, 1H), 7.18 (d, 1H), 7.31 (t, 1H), 7.48	(s, 1H), 7.95 (dd, 1H), 8.15 (s, 1H), 8.29 (d, 1H), 8.89 (s, 1H).	(d-6-DMSO d-4-Acetic, δ values) 0.20 (m, 2H), 0.31 (m, 2H), 0.96	(m, 1H), 1.15 (s, 3H), 1.19 (s, 3H), 2.36 (m, 2H), 2.70 (m, 2H), 3.04	(d, 2H), 3.20 (t, 2H), 3.55 (d, 2H), 3.94 - 4.02 (m, 2H), 4.04 (s, 3H),	4.34 (m, 2H), 4.50 (s, 2H), 6.73 - 6.80 (m, 2H), 6.85 (dd, 1H), 7.23	(d, 1H), 7.36 (t, 1H), 7.51 (s, 1H), 8.00 (dd, 1H), 8.20 (s, 1H), 8.33	(d, 1H), 8.95 (s, 1H).
Mass	spec.	m/e	653.6	(M^+H)				m/e	609.5	(M ⁺ +H)			m/e	9.77.9	(M ⁺ +H)			1
Prod		223						224					225			<u> </u>		
Conditions		RT/72hr/NaI						RT/48hr/NaI					RT/72hr/NaI					
Reagent		dimethyl	morpholine	•				pyrollidine	2				dimethylmorp	holine				
Start	Comp	124						124	 				120					

								143											
Nmr		(d-6-DMSO, d values) 3.93 (s, 3H), 8.00 (d, 1H), 8.02 (d, 1H), 8.33	(d, 2H), 8.42 (s, 1H), 8.45 (s, 1H), 8.61 (m, 2H), 8.76 (m, 2H).		(d-6-DMSO, d values) 2.31 (m, 2H), 3.28 (m, 2H), 3.4-3.6 (m, 4H	(under H ₂ O peak)), 3.83 (m, 2H), 3.92 (m, 2H), 3.99 (s, 3H), 4.36	(m, 2H), 7.26 (d, 1H), 7.32 (d, 1H), 7.46 (m, 2H), 7.55 (m, 3H), 8.41	(s, 1H), 8.95 (s, 1H).	(d-6-DMSO, d values) 2.25 (m, 2H), 2.83 (s, 3H), 3.2-3.7 (m, 10H	(under H ₂ O peak)), 3.99 (s, 3H), 4.32 (m, 2H), 7.25 (d, 1H), 7.33 (d,	1H), 7.50 (m, 5H), 8.26 (bs, 1H), 8.92 (s, 1H).	(d-6-DMSO, d values) 1.86 (m, 2H), 2.02 (m, 2H), 2.25 (m, 2H),	3.26 (m, 2H), 3.58 (m, 2H), 3.75 (m, 2H), 3.97 (s, 3H), 4.31 (m, 2H),	7.26 (d, 1H), 7.33 (d, 1H), 7.47 (m, 3H), 7.55 (m, 2H), 8.28 (s, 1H),	9.0 (s, 1H).	(d-6-DMSO, d values) 1.53 (m, 1H), 1.61 (m, 4H), 1.80 (m, 1H),	2.23 (m, 2H), 2.97 (m, 4H), 3.21 (m, 2H), 3.99 (s, 3H), 4.28 (m,	2H), 7.28 (d, 1H), 7.33 (d, 1H), 7.40 (s, 1H), 7.47 (m, 4H), 8.11 (s,	1H), 8.88 (s, 1H).
Mass	sbec.	m/e	391	(M+H)	m/e	518	(M+H)		m/e	531	(M ⁺ +H)	m/e	531	(M ⁺ +H)		m/e	516	$\left(M^{+}H\right)$	
Prod		273			274				275			276				277			
Conditions		75°C/2hrs/thio	anisole/TFA		RT/18hrs/NaI				RT/18hrs/NaI			RT/18hrs/NaI				RT/18hrs/NaI			
Reagent			-		Morpholine			÷	Ż	methylpiperid	ine	pyrrolidine	•			piperidine			
Start	Comp	272														=			

									т										$\overline{}$
Nmr		(d-6-DMSO, d values) 3.26 (m, 2H), 3.42-3.7 (m, 4H (under H ₂ O	peak)), 3.83 (m, 2H), 3.95 (m, 2H), 4.01 (s, 3H), 4.73 (m, 2H), 7.28	(d, 1H), 7.33 (d, 1H), 7.47 (m, 2H), 7.54 (m, 3H), 8.47 (s, 1H), 8.97	(s, 1H).	(d-6-DMSO, d values) 3.26 (m, 2H), 3.42-3.7 (m, 4H (under H ₂ O	peak)), 3.83 (m, 2H), 3.95 (m, 2H), 4.01 (s, 3H), 4.73 (m, 2H), 7.28	(d, 1H), 7.33 (d, 1H), 7.47 (m, 2H), 7.54 (m, 3H), 8.47 (s, 1H), 8.97	(s, 1H).	(d-6-DMSO, d values) 1.53 (m, 1H), 1.64 (m, 4H), 1.80 (m, 1H),	3.01 (m, 4H), 3.4-3.6 (m, 2H (under H ₂ O peak)), 4.02 (s, 3H), 4.61	(m, 2H), 7.26 (d, 1H), 7.32 (d, 1H), 7.44 (m, 2H), 7.50 (m, 3H), 8.26	(s, 1H), 8.92 (s, 1H).	(d-6-DMSO, d values) 2.91 (d, 6H), 3.5-3.7 (m, 2H (under H ₂ O	peak)), 4.00 (s, 3H), 4.68 (m, 2H), 7.28 (d, 1H), 7.33 (d, 1H), 7.46	(m, 2H), 7.54 (m, 3H), 8.53 (s, 1H), 8.95 (s, 1H).	(d-6-DMSO, d values) 3.90 (s, 3H), 7.21 (d, 2H), 7.30 (m, 3H), 7.37	(m, 2H), 7.69 (s, 1H), 8.40 (s, 1H).	
Mass	sbec.	m/e	504	$(M^{+}H)$		m/e	531	(M ⁺ +H)		m/e	505	(M^++H)		m/e	462	(M ⁺ +H)	m/e	391	(M ⁺ +H)
Prod		278				279				280				281			282		
Conditions		RT/18hrs/NaI				RT/36hrs/NaI				RT/36hrs/NaI				RT/36hrs/NaI/	ethanol		75°C/2hrs/	thioanisole/	TFA
Reagent		morpholine	÷			N-methyl	nineridine			piperidine				dimethyl	amine				-1
Start	Comp	12				12	3			12	ļ			12			300		

Nmr		(d-6-DMSO, d values) 2.31 (m, 2H), 3.08 (m, 2H), 3.29 (m, 2H),	3.35 (m, 2H), 3.81 (m, 2H), 3.95 (m, 2H), 4.01 (s, 3H), 4.31 (m, 2H),	7.26 (d, 1H), 7.33 (d, 1H), 7.47 (m, 2H), 7.54 (m, 3H), 8.22 (s, 1H),	8.94 (s, 1H).	(d-6-DMSO, d values) 2.34 (m, 2H), 2.84 (bs, 3H), 3.25-3.8 (m, 10H	(under H ₂ O peak)), 4.02 (s, 3H), 4.31 (m, 2H), 7.26 (d, 1H), 7.33 (d,	1H), 7.47 (m, 2H), 7.55 (m, 3H), 8.26 (s, 1H), 8.96 (s, 1H).	(d-6-DMSO, d values) 1.95 (m, 2H), 2.10-2.4 (m, 3H), 3.99 (s, 3H),	4.15 (m, 2H), 7.27 (m, 1H), 7.35 (d, 1H), 7.52 (m, 4H), 7.80 (s, 1H),	8.08 (s, 1H), 8.98 (s, 1H).	(d-6-DMSO, d values) 2.28 (m, 2H), 2.82 (m, 6H), 3.24 (m, 2H),	3.97 (s, 3H), 4.28 (m, 2H), 7.28 (d, 1H), 7.34 (d, 1H), 7.45 (s, 1H),	7.50 (m, 4H), 8.09 (s, 1H), 8.88 (s, 1H), 9.95 (bs, 1H).	(d-6-DMSO, d values) 3.92 (s, 3H), 4.90 (s, 2H), 7.21 (m, 2H), 7.30	(d, 1H), 7.34 (m, 4H), 7.74 (s, 1H), 8.45 (s, 1H), 9.51 (bs, 1H).	
Mass	sbec.	m/e	488	(M^+H)		m/e	531	$(M^{+}H)$	m/e	488	(M ⁺ +H)	m/e	476	(M ⁺ +H)	m/e	449	(M+H)
Prod		283	•		.,	284			285			286			289		
Conditions		RT/18hrs/NaI				RT/18hrs/Nal			RT/18hr/DMA		crown-6	50°C/18hrs/	NaI/	ethanol	RT/18hrs/NaO	H/MeOH/	water
Reagent		morpholine	1			N-methyl	piperazine			N Br		dimethyl	amine				
Start	Comp	13				13			282			13			288		

								40									
Nmr		(d-6-DMSO, d values) 2.66 (d, 3H), 3.99 (s, 3H), 4.74 (s, 2H), 7.26	(m, 2H), 7.31 (d, 1H), 7.45 (m, 4H), 7.97 (s, 1H), 8.06 (bs, 1H), 8.76	(s, 1H).	(d-6-DMSO, d values) 4.03 (s, 3H), 7.26 (m, 2H), 7.32 (d, 1H), 7.45	(m, 4H), 7.50 (m, 1H), 8.81 (s, 1H).		d-6-DMSO, d values) 0.47 (m, 2H), 0.64 (m, 2H), 2.70 (m, 1H), 3.97	(s, 3H), 4.68 (s, 2H), 7.26 (m, 2H), 7.32 (m, 1H), 7.46 (m, 4H), 8.03	(s, 1H), 8.29 (m, 1H), 8.84 (s, 1H).	(d-6-DMSO, d values) 1.13 (d, 6H), 2.34 (m, 2H), 2.56 (d, 3H), 2.61	(m, 2H), 3.24 (m, 2H), 3.50 (m, 2H), 3.58 (s, 2H), 3.98 (m, 5H), 4.29	(2H, m), 6.20 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.05 (m, 3H),	7.45 (d, 2H), 7.54 (s, 1H), 7.81 (m, 1H), 8.26 (s, 1H), 8.93 (s, 1H).	(d-6-DMSO, d values) 1.13 (d, 6H), 2.31 (m, 2H), 2.66 (m, 2H), 3.24	(m, 2H), 3.97 (bs, 5H), 4.28 (m, 2H), 7.26 (d, 1H), 7.32 (d, 1H), 7.49	(m, 5H), 8.13 (s, 1H), 8.89 (s, 1H).
Mass	sbec.	m/e	462	(M+H) ⁺	m/e	476	$(M^{+}H)$	m/e	488	$(M^{+}H)$	m/e	488	(M ⁺ +H)		m/e	546	(M ⁺ +H)
Prod		291			293			302			319				260		
Conditions		RT/18hrs/	THF/EDC/DM	AP/DCM	75°C/2hrs/	Et ₃ SiH/	TFA	RT/1	week/EDC/	DMAP/DMA	RT/18hr/NaI				RT/18hr/NaI		
Reagent		methylamine						cyclopropyl-	amine		cyclopropyl-	amine			dimethyl-	morpholine	
Start	Comp	289			301			289			13				13		

							47								
Nmr		(d-6-DMSO, d values) 1.02 (d, 6H), 1.58 (t, 2H), 1.94 (t, 3H), 2.42(m, 2H), 2.56 (d, 3H), 2.75 (d, 2H), 3.53 (m, 2H), 3.69 (d, 2H),	3.91 (s, 3H), 4.17 (t, 2H), 4.53(s, 2H), 7.0 (m, 4H), 7.11 (m, 2H),	7.22 (s, 1H), 7.28 (d, 2H), 7.74 (m, 2H), 7.88 (t, 1H), 8.35 (s, 1H),	9.4 (s, 1H).	(d-6-DMSO d-4-Acetic, 8 values) 0.20 (m, 2H), 0.43 (m, 2H), 0.96	(m, 1H), 1.17 (s, 3H), 1.19 (s, 3H), 2.32 - 2.42 (m, 2H), 2.60 (m,	2H), 3.04 (d, 2H), 3.20 (t, 2H), 3.55 (d, 2H), 3.93 - 4.15 (m, 5H),	4.34 (t, 2H), 4.48 (s, 2H), 6.62 - 6.70 (m, 2H), 7.19 (d, 2H), 7.32 (t,	1H), 7.47 - 7.53 (m, 3H), 8.14 (s, 1H), 8.88 (s, 1H).	(d-6-DMSO d-4-Acetic, δ values) 1.14 (s, 3H), 1.16 (s, 3H), 1.62 (m,	2H), 1.96 (m, 2H), 2.12 (m, 2H), 2.34 (m, 2H), 2.67 (t, 2H), 3.27 (t,	(M^+H) 2H), 3.50 (d, 2H), 3.89 - 4.01 (m, 5H), 4.18 - 4.26 (m, 1H), 4.30 (t,	2H), 4.39 (s, 2H), 6.59 - 6.65 (m, 2H), 6.72 (dd, 1H), 7.16 (d, 2H),	7.27 (t, 1H), 7.45 - 7.52 (m, 3H), 8.14 (s, 1H), 8.89 (s, 1H).
Mass	sbec.					m/e	9999	$(M^+ + H)$			m/e	9999	$(M^{+}H)$		
Prod		448		-		449					450				
Conditions		5 days				RT/72hr/NaI					RT/72hr/NaI				
Reagent		2,6-	holine			dimethylmorp	holine				dimethylmorp	holine			
Start	Comp	119				122					121				

								48								
Nmr		(d-6-DMSO d-4-Acetic, δ values) 0.19 (m, 2H), 0.41 (m, 2H), 0.95	(m, 1H), 1.88 - 2.10 (m, 2H), 2.15 - 2.36 (m, 2H), 3.02 (d, 2H), 3.07	- 3.14 (m, 2H), 3.34 (t, 2H), 3.61 (m, 2H), 4.02 (s, 3H), 4.33 (t, 2H),	4.47 (s, 2H), 6.62 - 6.70 (dd, 1H), 7.18 (d, 2H), 7.31 (t, 1H), 7.46 -	7.56 (m, 3H), 8.24 (s, 1H), 8.89 (s, 1H).	(d-6-DMSO d-4-Acetic, 8 values) 1.60 (m, 2H), 1.84 - 2.03 (m, 6H),	2.13 (m, 2H), 2.29 (m, 2H), 3.05 (m, 2H), 3.30(t, 2H), 3.56 (m, 2H),	4.00 (s, 3H), 4.19 - 4.26 (m, 1H), 4.30 (t, 2H), 4.39 (s, 2H), 6.59 -	6.63 (m, 2H), 6.71 (d, 1H), 7.14 (d, 2H), 7.28 (t, 1H), 7.46 (d, 2H),	7.52 (s, 1H), 8.18 (s, 1H), 8.81 (s, 1H).	(d-6-DMSO d-4-Acetic, δ values) 0.46 (m, 2H), 0.60 (m, 2H), 1.83 -	2.06 (m, 4H), 2.28 (m, 2H), 2.66 (m, 1H), 2.95 - 3.05 (m, 2H), 3.30	(M ⁺ +H) (t, 2H), 3.56 (m, 2H), 3.99 (s, 3H), 4.28 (t, 2H), 4.39 (s, 2H), 6.58 -	6.62 (m, 2H), 6.68 (dd, 1H), 7.13 (d, 2H), 7.26 (t, 1H), 7.47 (d, 2H),	7.54 (s, 1H), 8.22 (s, 1H), 8.87 (s, 1H).
Mass	sbec.	m/e	622.5	(M ⁺ +H)			m/e	622.5	(M ⁺ +H)			m/e	608.5	$(M^{+}H)$		
Prod		451					452					453				- ···
Conditions		RT/48hr/NaI			-		RT/48hr/NaI					RT/48hr/NaI				
Reagent		pyrrolidine					pyrrolidine	•				pyrrolidine	,		-	
Start	Comp	122			-		121				_	123				···

							ı	49							-				
Nmr		(d-6-DMSO d-4-Acetic, δ values) 0.46 (m, 2H), 0.61 (m, 2H), 1.11	(s, 3H), 1.14 (s, 3H), 2.34 (m, 2H), 2.59 - 2.72 (m, 3H), 3.26 (t, 2H),	3.50 (d, 2H), 3.89 - 4.01 (m, 5H), 4.30 (t, 2H), 4.39 (s, 2H), 6.58 -	6.62 (m, 2H), 6.769(d, 1H), 7.15 (d, 2H), 7.27 (t, 1H), 7.44 - 7.50	(m, 3H), 8.14 (s, 1H), 8.90 (s, 1H).	(d-6-DMSO d-4-Acetic, δ values) 1.13 (s, 3H), 1.15 (s, 3H), 2.32 (m,	2H), 2.65 (t, 2H), 2.75 (s, 3H), 3.26 (m, 2H), 3.50 (d, 2H), 3.89 -	3.95 (m, 2H), 3.96 (s, 3H), 4.28 (t, 2H), 7.15 (d, 3H), 7.40 - 7.49 (m,	5H), 7.59 (d, 1H), 8.08 (s, 1H), 8.80 (s, 1H).	(d-6-DMSO d-4-Acetic, 8 values) 1.81 - 2.05 (m, 4H), 2.28 (m, 2H),	2.76 (s, 3H), 3.04 (m, 2H), 3.31 (t, 2H), 3.57 (m, 2H), 3.99 (s, 3H),	4.30 (t, 2H), 7.12 - 7.20 (m, 3H), 7.42 - 7.52 (m, 5H), 7.59 (d, 1H),	8.16 (s, 1H), 8.94 (s, 1H).	(d-6-DMSO d-4-Acetic, 8 values) 1.12 (s, 3H), 1.15 (s, 3H), 2.34 (m,	2H), 2.66 (t, 2H), 3.25 (t, 2H), 3.51 (d, 2H), 3.72 (s, 3H), 3.91 - 3.99	(M ⁺ H) (m, 2H), 4.00 (s, 3H), 4.30 (t, 2H), 6.69 (m, 2H), 6.77 (dd, 1H), 7.19	(d, 1H), 7.30 (t, 1H), 7.50 (s, 1H), 7.97 (dd, 1H), 8.21 (s, 1H), 8.32	(d, 1H), 8.92 (s, 1H).
Mass	sbec.	m/e	652.5	$(M^{+}H)$			m/e	596.5	(M ⁺ +H)		m/e	552.5	(M ⁺ +H)		m/e	570.5	$ M^+H)$		
Prod		454	-				455				456			··· .e-	457				
Conditions		RT/72hr/NaI	•	•			RT/72hr/NaI				RT/48hr/NaI				RT/72hr/Nal				
Reagent		dimethylmorp	holine				dimethylmorp	holine			pvrrolidine	1			dimethylmorp	holine			
Start	Comp	123					125				125				126				

								150							
Nmr		(d-6-DMSO, d values) 0.39 (m, 2H), 0.59 (m, 2H), 2.33 (m, 2H),	2.63 (m, 1H), 3.28 (m, 2H), 3.49 (m, 2H), 3.56 (s, 2H), 3.82 (2H, m),	3.94 (m, 2H), 3.99 (s, 3H), 4.30 (2H, m), 6.20 (m, 1H), 6.26 (m, 1H),	6.34 (m, 1H), 7.07 (m, 4H), 7.44 (d, 2H), 7.52 (s, 1H), 8.20 (m, 1H),	8.92 (s, 1H).	(d-6-DMSO, d values) 0.39 (m, 2H), 0.59 (m, 2H), 1.13 (d, 6H), 2.36	(m, 2H), 2.65 (m, 3H), 3.26 (m, 2H), 3.53 (m, 4H), 3.99 (5H, m),	4.31 (m, 2H), 6.20 (m, 1H), 6.27 (m, 1H), 6.35 (m, 1H), 7.07 (m,	3H), 7.45 (d, 2H), 7.52 (s, 1H), 8.18 (m, 1H), 8.97 (s, 1H).	(d-6-DMSO, d values) 0.38 (m, 2H), 0.60 (m, 2H), 1.89 (m, 2H),	2.01 (m, 2H), 2.37 (m, 2H), 2.64 (m, 1H), 3.03 (m, 2H), 3.31 (m,	2H), 3.57 (m, 4H), 4.00 (s, 3H), 4.30 (m, 2H), 6.21 (m, 1H), 6.27 (m,	1H), 6.34 (m, 1H), 7.08 (m, 3H), 7.46 (d, 2H), 7.52 (s, 1H), 7.96 (m,	1H), 8.21 (s, 1H), 8.94 (s, 1H).
Mass	sbec.	m/e	623	$(M^{+}H)$			m/e	651	(M^+H)		m/e	209	(M ⁺ +H)		
Prod		458					459				460				
Conditions		RT/18hr/NaI					RT/18hr/NaI		v		RT/18hr/Nal				
Reagent		morpholine					dimethylmorp	holine			pyrrolidine	•			
Start	Comp	127					127				127				

Nmr		(d-6-DMSO, d values) 0.20 (m, 2H), 0.45 (m, 2H), 0.96 (m, 1H),	2.42 (m, 2H), 3.17 (m, 2H), 3.37 (m, 2H), 3.57 (m, 2H), 3.70 (s, 2H),	3.91 (m, 2H), 4.07 (m, 5H), 4.40 (2H, m), 6.30 (m, 1H), 6.38 (m,	1H), 6.46 (m, 1H), 7.14 (m, 3H), 7.53 (d, 2H), 7.61 (s, 1H), 8.01 (m,	1H), 8.30 (s, 1H), 9.01 (s, 1H).	(d-6-DMSO, d values) 0.17 (m, 2H), 0.41 (m, 2H), 0.93 (m, 1H),	1.20 (d, 6H), 2.42 (m, 2H), 2.71 (m, 2H), 3.30 (m, 2H), 3.56 (m,	2H), 3.66 (s, 2H), 3.80 (m, 2H), 4.05 (m, 5H), 4.37 (2H, m), 6.27 (m,	1H), 6.34 (m, 1H), 6.42 (m, 1H), 7.15 (m, 3H), 7.51 (d, 2H), 7.58 (s,	1H), 7.97 (m, 1H), 8.27 (s, 1H), 8.98 (s, 1H).	(d-6-DMSO, d values) 0.11 (m, 2H), 0.36 (m, 2H), 0.87 (m, 1H),	1.87 (m, 2H), 2.00 (m, 2H), 2.29 (m, 2H), 2.96 (m, 2H), 3.02 (m,	2H), 3.31 (m, 2H), 3.56 (m, 2H), 3.61 (s, 2H), 4.00 (s, 3H), 4.29	(2H, m), 6.23 (m, 1H), 6.30 (m, 1H), 6.38 (m, 1H), 7.11 (m, 3H),	7.45 (d, 2H), 7.56 (s, 1H), 7.95 (m, 1H), 8.28 (s, 1H), 8.96 (s, 1H).
Mass	sbec.	m/e	637	(M^++H)			m/e	999	(M ⁺ +H)			m/e	621	(M++H)	,	
Prod		461					462			i.		463				
Conditions		RT/18hr/NaI					RT/18hr/Nal					RT/18hr/Nal				
Reagent		morpholine					dimethylmorp	holine				pyrrolidine				
Start	Comp	128					128					128				

								152								
Nmr		(d-6-DMSO, d values) 2.31 (m, 2H), 3.26 (m, 2H), 3.46 (m, 2H),	3.58 (s, 2H), 3.85 (m, 2H), 3.95 (m, 2H), 4.00 (s, 3H), 4.26 (2H, m),	6.21 (m, 1H), 6.26 (m, 1H), 6.34 (m, 1H), 7.08 (m, 3H), 7.45 (d,	2H), 7.58 (s, 1H), 7.81 (m, 1H), 8.30 (s, 1H), 8.93 (s, 1H).	(d-6-DMSO, d values) 1.13 (d, 6H), 2.34 (m, 2H), 2.56 (d, 3H), 2.61	(m, 2H), 3.24 (m, 2H), 3.50 (m, 2H), 3.58 (s, 2H), 3.98 (m, 5H), 4.29	(2H, m), 6.20 (m, 1H), 6.26 (m, 1H), 6.33 (m, 1H), 7.05 (m, 3H),	7.45 (d, 2H), 7.54 (s, 1H), 7.81 (m, 1H), 8.26 (s, 1H), 8.93 (s, 1H).	(d-6-DMSO, (d-4Acetic) d values) 0.45 (m, 2H), 0.64 (m, 2H), 1.17	(d, 6H), 2.37 (m, 2H), 2.68 (m, 3H), 3.29 (t, 2H), 3.54 (d, 2H), 4.01	(M ⁺ +H) (m, 5H), 4.33 (t, 3H), 4.46 (s, 2H), 7.05 (m, 5H), 7.18 (m, 1H), 7.45	(d, 2H), 7.51 (s, 1H), 8.17 (m, 1H), 8.95 (s, 1H).	(d-6-DMSO, d values) 1.05 (d, 6H), 2.33 (m, 2H), 3.09 (m, 2H), 3.29	(m, 2H), 3.47 (m, 2H), 3.84 (m, 3H), 3.97 (m, 5H), 4.28 (t, 2H), 4.42	(M ⁺ +II) (s, 211), 7.07 (m, 6H), 7.42 (m, 4H), 8.10 (s, 1H), 8.84 (s, 1H).
Mass	sbec.	m/e	597	(M^++H)		m/e	625	(M^++H)		m/e	651.6	$(M^{+}H)$		m/e	626.4	(M ⁺ +H)
Prod		464				465				466				467		
Conditions		RT/18hr/Nal				RT/18hr/NaI				RT/4 days/NaI				RT/18hr/Nal		
Reagent		morpholine				dimethylmorp	holine			dimethylmorp	holine			morpholine		
Start	Comp	129				129				130				131		

						·		153						ı					
Nmr		(d-6-DMSO, d values) 0.47 (m, 2H), 0.67 (m, 2H), 1.92 (m, 2H),	2.05 (m, 2H), 2.30 (m, 2H), 2.67 (m, 1H), 3.06 (m, 2H), 3.34 (m,	2H), 3.59 (m, 2H), 4.03 (s, 3H), 4.32 (t, 2H), 4.47 (s, 2H), 7.06 (m,	5H), 7.19 (m, 1H), 7.46 (d, 2H), 7.55 (s, 1H), 7.83 (m, 1H), 8.19 (s,	1H), 8.92 (s, 1H).	(d-6-DMSO(d4-Acetic), d values) 1.16 (d, 6H), 2.37 (m, 2H), 2.63	(s, 3H), 2.70 (m, 2H), 3.29 (m, 2H), 3.56 (d, 2H), 3.99 (m, 5H), 4.30	(t, 2H), 4.47 (s, 2H), 7.09 (m, 6H), 7.44 (m, 3H), 8.16 (s, 1H), 8.98	(s, 1H).	(d-6-DMSO(d4-Acetic), d values) 1.16 (d, 6H), 2.37 (m, 2H), 2.63	(s, 3H), 2.70 (m, 2H), 3.29 (m, 2H), 3.56 (d, 2H), 3.99 (m, 5H), 4.30	(t, 2H), 4.47 (s, 2H), 7.09 (m, 6H), 7.44 (m, 3H), 8.16 (s, 1H), 8.98	(s, 1H).	(d-6-DMSO, 8 values) 1.00 (s, 3H), 1.04 (s, 3H), 1.56 (t, 2H), 1.95	(m, 2H), 2.42 (t, 2H), 2.64 (d, 3H), 2.76 (d, 2H), 3.55 (m, 2H), 3.90	(s, 3H), 4.19 (t, 2H), 4.41 (s, 2H), 6.56 - 6.62 (m, 2H), 6.70 (d, 1H),	7.09 (d, 2H), 7.22 - 7.37 (m, 4H), 7.28 (s, 1H), 8.00 (bs, 1H), 8.40 (s,	1H), 9.50 (s, 1H).
Mass	sbec.	m/e	9.809	(M^++H)			m/e	626.5	(M^++H)		m/e	582.5	(M^++H)		m/e	97929	(M+H)		
Prod		468					469				470				481				
Conditions		RT/18hr/Nal					RT/96hr/NaI		÷		RT/96hr/NaI				RT/48hr/Nal		.a		
Reagent		pyrrolidine					dimethylmorp	holine			pyrrolidine	3			Dimethyl	morpholine			
Start	Comp	130					132				132				134				

154

<u>Intermediate Table 9</u>

		-		diate rable 3	
Start	Reagent	Conditions	Int.	Mass spec	structure
No.		-			
273	dichloro	70°C/2hr//KOt	<u>I1</u>	m/e 467,	OVN
	propane	Bu/DMA		469	HN S
	propane	Du/DIVIA		(M+H) ⁺ .	CI
				(17111).	O
273	dichloro	70°C/2hr//KOt	I2	m/e	ON
	-ethane	Bu/DMA		453,455	HN
				(M ⁺ +H)	CI
		*			0 N
					O N
282	bromo	RT/18hrs/	13	m/e 467,	
	chloro	/KOtBu/18-C-		469	N N
i i	propane	6/DMA		$(M+H)^{+}$.	
					Ci - Ci - N
26	3-	RT/18hr/	18	m/e	9
	bromo-	PPh ₃ /		533,535	
	1-	DEAD/THF		(M+H) ⁺ .	N N
		DEAD/ III		(111 11)	Br
	propanol				0 N
			1.70	/. 400	
26	1,3-	70°C/4hr/	19	m/e 490,	
	dichloro	KOtBu/DMA		492	
	-			$(M+H)^+$.	CI
	propane				O
26	dichloro	85°C/4hr/	I10	m/e	
	-ethane	KOtBu/DMA		476,478	
				$(M+H)^+$.	N N N
					CI
					0 N

Start	Reagent	Conditions	Int.	Mass spec	structure
No.					
109	1-	RT/ nBu ₄ NI/	I11	nmr	
	Bromo-	18crown6		obtained	N
	3-				CI
	chloro-				~0.~~N
	propane			i	
108	1-	RT/ nBu ₄ NI/	I12	nmr	F F H
	Bromo-	18crown6		obtained	N N
	3-		'		a o
	chloro-				0 × N
	propane				
126	1-	RT/ nBu ₄ NI/	I13	nmr	
	Bromo-	18crown6		obtained	
	3-				CI
	chloro-				ONN
	propane				
123	1-	RT/ nBu ₄ NI/	I14	m/e 520	ОООО
	Bromo-	DMA	7.	$(M+H)^+$	N N
	3-chloro	18crown6/18h			CI O N
	propane				O N
125	1-	RT/ nBu ₄ NI/	I15	m/e 520	0 OH
	Bromo-	DMA		(M+H) ⁺	N N
	3-	18crown6/			, o. , , , , , , , , , , , , , , , , , ,
	chloro-	8hr		,	CI O N
	propane				
220	1-	RT/15min/	I16	nmr	
	Bromo-	KOtBu/DMA		available	
	3-	then RT/16hr/			CI
	chloro-	/nBu ₄ NI/18-			ON
	propane	Crown-6			

Start	Reagent	Conditions	Int.	Mass spec	structure
No.					
221	1-	RT/15min/	I17	nmr	0
	Bromo-	KOtBu/DMA		available	
	3-	then RT/16hr			N N
	chloro-	/nBu₄NI			ci~o
	propane	18-Crown-6			
27	1-	RT/18hr/	I18	m/e 490	
	chloro-	KO ^t Bu(1.0M		(M ⁺ +H)	
	3-	in THF)/			O N N
	bromo-	DMSO			CI O N
	propane				

Example 7

10

15

In the above Table I4 is a compound of structure

which had been prepared by a method analogous to that described in Example 1, but using reaction conditions of 100°C/2hr/1-PrOH.

Mass Spectrum m/e 577.45,579.46 (M⁺+H).

NMR Spectrum (d-6-DMSO, d values) 2.28 (m, 2H), 3.16 (q, 2H), 3.4 (t, 2H), 3.82 (t, 2H), 3.98 (s, 3H), 4.3 (t, 2H), 4.48(s, 2H), 6.95-7.22 (m, 6H), 7.4 (d, 2H), 7.46 (s, 1H), 7.6 (t, 1H), 8.09 (s, 1H), 8.9 (s, 1H), 11.07 (br.s, 1H).

The chloropropoxyquinoline intermediate (Mass Spectrum m/e 311.2 (M+H)⁺) was prepared by reacting the corresponding hydroxy quinoline with 1-bromo-3-chloropropane at room temperature for 16hr in the presence of nBu4NI/18-crown-6

The following haloalkoxy quinolines were prepared by analogous routes:

Table 10

T 3 T	[atmostrano
I No.	reaction	mass	structure
!	conditions	spec.	
I5	100°C/18hr	m/e	
	s/n-PrOH	548.5	
		$(M+H)^{+}$	
			HŅ .
			N
	!		
			CI O N
I6			o
		ļ	
			HN N
			CI O N
I19	100°C/2hr/1	m/e	"
-	-PrOH	604.44	
		(M ⁺ +H).	
			HN
			CI O N
I20	100°C/3.5hr	m/e	
	/1-PrOH	604.44	
		(M^++H)	HN VN
			CI O N

I No.	reaction	mass	structure
	conditions	spec.	
I21	100°C/3.5hr	m/e	
	/1-PrOH	587.5	
		(M^++H)	HN N
			CI O N
I22	100°C/2hr/1	m/e	0
ļ	-PrOH	587.5	N O N N
		(M ⁺ +H)	HN
			CION
102	100°C/2hr/1	m/e	Q
I23		573.4	No N
	-PrOH	(M^++H)	HN
		(M +H)	O
			CI
I24	100°C/3.5hr		NH NH
	/1-PrOH	574.4	
		(M^++H)	HN
			CI
I25	100°C/3.5hr	m/e	O CH
	/1-PrOH	517.3	N CH ₃
		(M++H)	HN
			CI O N

I No.	reaction	mass	structure
	conditions	spec.	
I26	100°C/2hr/1	m/e	O CH ₃
	-PrOH	570.5	HN
		(M^++H)	O N
			CI
I27	100°C/4hr/1	m/e	
	-PrOH	572, 574	TTT H
		(M ⁺ +H)	HN
			CI
I28	100°C/4hr/1	m/e	
	-PrOH	586, 588	
		(M ⁺ +H)	HN
			CI
129	100°C/4hr/1	m/e	
	-PrOH	546, 548	N-CH ₃
+		(M ⁺ +H)	HN N
			CI O N
130	100°C/18hr/	m/e	
	1-PrOH	573.5	
		(M ⁺ +H)	HN
			N N
			CI O N
I31	100°C/18hr/	m/e	
	1-PrOH	575.5	O CH ₃
		(M^++H)	HN
			N N
			CI O N

T NT.			structure
I No.	reaction	mass	Structure
	conditions	spec.	
I32	100°C/18hr/	m/e	Q CH₃
	1-PrOH	547.5	
		(M ⁺ +H)	HN
			N N
			CI O N
I33	RT/15min/		0 1
	NaH/DMA		
	then		
	RT/2hr/(2)		HNNN
			CI
I34	100°C/2hr/		O CH
	n-PrOH		HN 0
			O
			CI

In addition I5 was converted to I7

5

(17)

using the following reaction conditions: RT/3hrs/LiOH.H₂O/MeOH/H₂O Mass Spectrum m/e 534.5 (M+H)⁺

NMR Spectrum (d-6-DMSO, d values) 2.26 (m, 2H), 3.82 (m, 2H), 3.93 (s, 3H), 4.26 (t, 2H), 4.68 (s, 2H), 7.04 (m, 6H), 7.29 (m, 2H), 7.39 (s, 1H), 7.93 (s, 1H), 8.55 (s, 1H).

Example 8

Preparation of Compound No. 312

In this example, an intermediate nitro compound of formula (2) was reacted in situ with a chloroquinoline intermediate to produce compound 312, (a compound of formula (I)) directly in accordance with the following scheme:

10 The reaction conditions were: Cyclohexene, 1-propanol, Pd/C, filter then add quinoline to obtain the desired product

Mass Spectrum m/e 452 (M⁺+H)

NMR Spectrum (CDCl₃, d values) 2.70 (m 2H), 3.15 (m 2H), 3.75 (s, 3H), 4.00 (s, 3H), 6.70 (d, 1H), 6.80 (broad s, 1H), 6.95 (s, 1H), 7.05 (d, 2H), 7.15 (d, 2H), 7.15 (m, 1H),

15 7.35 (s, 1H), 7.45 (t, 1H), 8.60 (s, 1H).

Quinoline SM: WO 9843960

The reaction conditions used to obtain Intermediate labelled (2) was KOtBu, DMA.

Mass Spectrum m/e 270 (M⁺+H)

20

Using an analogous method, the following compounds were also produced

162

Table 11

No.	Mass spec	N.M.R
313	m/e 429	(CDCl ₃ , d values) 3.70 (s, 3H), 4.00 (s, 3H), 6.85
	(M ⁺ +H)	(broad s, 1H), 6.90 (m, 2H), 7.10 (d, 2H), 7.15 (d, 2H),
		7.35 (m, 3H), 8.00 (s, 1H), 8.60 (s, 1H).
314	m/e 453	(d-6-DMSO@373K, d values) 3.60 (s, 3H), 3.95 (s,
	(M ⁺ +H)	3H), 4.00 (s, 3H), 6.90 (d, 1H), 7.15 (d, 2H), 7.25 (t,
		1H), 7.40 (m, 3H), 7.45 (s, 1H), 8.00 (s, 1H), 8.70 (s,
		1H).
315	m/e 438	(d-6-DMSO, d values) 4.00 (s, 3H), 4.00 (s, 3H), 6.75
	(M ⁺ +H)	(d, 1H), 6.85 (d, 1H), 7.20 (d, 2H), 7.30 (t, 1H), 7.40
		(d, 1H), 7.50 (d, 2H), 7.50 (s, 1H), 7.95 (d, 1H), 8.20
		(s, 1H), 8.95 (s, 1H), 11.30 (broad s, 1H).

Example 9

Preparation of Compounds 136 and 140 in Table 1

5 Compound 85 prepared as described above, was dissolved in trichloromethane and reacted with oxone in the presence of wet alumina to yield the title compounds.

Compound 136

Mass Spectrum m/e 460 (M⁺+H)

NMR Spectrum (d-6-DMSO, d values) 2.80 (s, 3H), 3.90 (s, 3H), 3.95 (s, 3H), 6.85 (d,

10 1H), 7.20 (d, 2H), 7.35 (m, 4H), 7.45 (m, 1H), 7.75 (m, 2H), 8.40 (s, 1H), 9.55 (broad s, 1H).

Compound 140

Mass spec m/e 476 (M⁺+H)

15 NMR Spectrum (d-6-DMSO, d values) 3.40 (s, 3H), 3.95 (s, 3H), 4.00 (s, 3H), 6.95 (d, 1H), 7.20 (d, 2H), 7.35 (m, 2H), 7.40 (d, 2H), 7.65 (m, 1H), 7.80 (s, 1H), 7.90 (dd, 1H), 8.45 (s, 1H), 9.65 (broad s, 1H).

Example 10

PCT/GB00/01697 WO 00/68201

163

Preparation of Compound 168 in Table 1

Compound 173 in Table 1 was reacted with methylamine for 18 hours at room temperature in the presence of HCl, EDC, NMM and DCM to yield the desired amide. Mass spec. m/e 582 $(M+H)^{+}$.

NMR Spectrum (d-6-DMSO, d values) 2.33 (m, 2H), 2.55 (d, 3H), 3.12 (m, 2H), 3.22-5 3.45 (m, 4H (under H₂O signal)), 3.43 (s, 2H), 3.78 (m, 2H), 3.97 (m, 5H), 4.28 (m, 2H), 6.83 (d, 1H), 7.05 (d, 2H), 7.10 (m, 1H), 7.21 (m, 1H), 7.33 (m, 1H), 7.41 (d, 2H), 7.47 (s, 1H), 7.75 (m, 1H), 8.12 (s, 1H), 8.81 (s, 1H).

Example 11 10

Preparation of Compound 301 in Table 3

This compound was prepared using the following scheme:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$$

Reaction conditions: 100°C/4hrs/NEt₃/Diphenylphosphorylazide/t-BuOH 15

Chromatography: yes

Mass Spectrum m/e 490 (M+H)⁺.

NMR Spectrum (d-6-DMSO, d values) 1.48 (s, 9H), 4.01 (s, 3H), 7.26 (d, 1H), 7.33 (d, 1H), 7.45 (m, 1H), 7.49 (m, 2H), 7.53 (d, 2H), 8.70 (s, 1H), 8.82 (s, 1H), 8.97 (s, 1H).

20 Intermediate (3)

Reaction conditions: 100°C/18hrs/n-PrOH

Mass Spectrum m/e 433 (M+H)⁺.

Intermediate (4)

Reaction conditions: RT/36hrs/LiOH/MeOH/water

Mass Spectrum m/e 418 (M+H)⁺.

5

15

Example 12

Preparation of Compound 183 in Table 1

Intermediate I7 in Table 1 was reacted with cyclopropylamine and N-methylmorpholine at room temperature for 48hours in the presence of DMAP, EDC and DCM to yield the

10 desired product.

Mass Spectrum m/e 624.5 (M+H)⁺

NMR Spectrum (d-6-DMSO, d values) 0.42 (m, 2H), 0.61 (m, 2H), 2.30 (m, 2H), 2.63 (m, 1H), 3.11 (m, 2H), 3.35 (2H under H_2O peak), 3.49 (m, 2H), 3.79 (m, 2H), 3.97 (m, 5H), 4.30 (m, 2H), 7.08 (m, 7H), 7.40 (d, 2H), 7.45 (s, 1H), 7.78 (s, 1H), 8.08 (s, 1H), 8.84 (s, 1H).

Example 13

Preparation of Compound No 430 in Table 1

This compound was prepared using the following scheme:

100°C/18hrs/n-PrOH

Chromatography: yes

Mass Spectrum m/e 525 (M+H)+

5 NMR Spectrum (d-6-DMSO, d values) 0.182 (m, 2H), 0.41 (m, 2H), 0.94 (m, 1H), 3.02 (t, 2H), 4.00 (m, 6H), 4.52 (s, 2H), 7.14 (m, 6H), 7.47 (m, 3H), 7.70 (t, 1H), 8.16 (s, 1H), 8.94 (s, 1H).

The aniline starting material (1) was prepared as described above in relation to

10 Intermediate I5.

This was converted to Intermediate (2) above by reaction with cyclopropanemethylamine in methanol at room temperature for 18hrs.

Mass Spectrum m/e 313.5 (M+H)+

15 <u>Example 14</u>

Using a method analogous to that of Example 13, the R^{τ} group was modified to form a different group R^{τ} in the anilines used as starting materials in accordance with the following general scheme:

$$R^{90}$$
 R^{91}
 R^{91}
 R^{92}
 R^{93}

20

prior to conversion to the corresponding compound of formula (I) as summarised in the following Table 12.

	Final	Product	437	438	439	444	445
		R ⁹³			NH NCH ₃		
	illine		H	H	Ĭ—	田	Ξ .
radic 12	Final aniline	$ m R^{92}$	HZ O	HZ NH	Н	N CH ₃	N CH ₃
I au	Reagent/conditions		RT/5days/cyclopropyl amine/NaI/MeOH	RT/5days/cyclopropyl amine/NaI/MeOH	лен RT/5days/Me- amine/Nal/MeOH	methylamine/ethanol	methylamine/ethanol
	iline	R ⁹¹	工	H	HN O O CH ₃	Н	Н
	Starting aniline	R ⁹⁰	O(CH ₂) ₂ Br	HN O CH ₃	Н	N O CH ₃	N O CH ₃

able 12

1	L III III	Product	447
		\mathbb{R}^{93}	
	Final aniline	$ m R^{92}$	Q K CH ₃ H
	Reagent/conditions		cyclopropylamine/ ethanol
	Starting aniline	R ⁹⁰ R ⁹¹	H H

Example 15

In the preparation of other compounds of formula (I) the R' group was modified to form a different group R' in the nitrobenzyl' compounds of formula (VII) used as starting materials in accordance with the following general scheme:

Final	Product	433	434	435	435
enzene	\mathbb{R}^{97}				
nitrob		H F	Ξ	工	H
Final 4-phenoxynitrobenzene		CH ₃	Z	N CH3	CH ₃
	\mathbb{R}^{96}	o={ Z-	<u>₹</u> —	 	O=
Reagent/conditions		3-bromopropionyl chloride, triethylamine, DMA; then dimethyl morpholine	3-bromopropionyl chloride, triethylamine, DMA; then piperidine	3-bromopropionyl chloride, triethylamine, DMA; then methylamine in methanol	3-bromopropionyl chloride, triethylamine, DMA; then dimethylamine in methanol
xynitrobenzene	$ m R^{95}$	H	Н	Ħ	Н
Starting 4-phenoxynitrobenzene	R ⁹⁴	NH ₂	NH ₂	NH ₂	NH ₂

Table 1

				109					1
Final	Product	439	441			442		443	
openzene	\mathbb{R}^{97}	HN O CH ₃	Н			Н		Н	
Final 4-phenoxynitrobenzene	$ m R^{96}$	Н	N CH ₃	=0 -		N O CH ₃		N CH,) > >=0
Reagent/conditions		80°C/6hrs/ethylbromoacet ate/NaOAc/EtOH	EDC/DMAP/HOBT/DMA	H ₂ N CH ₃	O CH3	EDC/DMAP/HOBT/DMA)=o	EDC/DMAP/HOBT/DMA	H ₂ N CH ₃
xynitrobenzene	$ m R^{95}$	$ m NH_2$	H			Н		Н	
Starting 4-phenoxynitrobenzene	R ⁹⁴	Н	ОСН,СООН			0СН2СООН		ОСН2СООН	

							170												
Final	Product	447*	intermediat	e(see also	Ex 15)	472						474			475			477	
robenzene	R ⁹⁷	Н				H						Н			H			OCH2C(0)NH-	CH,
Final 4-phenoxynitrobenzene	R^{96}	0=	O CH3	Ю		O(CH ₂) ₂ NHC(O)(CH ₂) ₂ -	CN					O(CH ₂) ₂ NHC(O)CH ₃			O(CH ₂) ₂ NHC(O)OCH ₂ -	CH=CH2		工	
Reagent/conditions		EDC/DMAP/HOBT/DMA	0=	H ₂ N CH ₃	ČH ₃	RT/48hrs/Succinamic	acid/EDC/DEAD/NMM/	DCM	0=	H ₂ N N ₂ H	0	RT/18hrs/acetylchloride/	DCM	iPr ₂ N(CH ₂ CH ₃) ₂	RT/18hrs/	iPr ₂ N(CH ₂ CH ₃) ₂ /DCM	allylchloroformate	RT/2hrs/ methylamine/	МеОН
xynitrobenzene	R ⁹⁵	Н				Н	20					Н			H			OCH2C(O)OCH2C	H ₃
Starting 4-phenoxynitrobenzene	R ⁹⁴	ОСН,СООН				O(CH ₂) ₂ NH ₂						O(CH ₂) ₂ NH ₂			O(CH ₂) ₂ NH ₂			Н	

Final	Product	477		477	482	-	
robenzene	\mathbb{R}^{97}	OCH,C(0)0-	CH ₂ CH ₃	НО	Н		
Final 4-phenoxynitrobenzene	R ⁹⁶	H		Н	OCH,C(O)NHCH(CH,),		
Reagent/conditions		65°C/1.5hr/K ₂ CO ₃ /Ethylbr	omoacetate/Acetone	195°C/2hr/Pyridine.HCl	RT/18hrs/isopropylamine/ OCH,C(O)NHCH(CH,),	EDC/DEAD/NMM/DCM	
xynitrobenzene	$ m R^{95}$	НО		OCH,	H		
Starting 4-phenoxynitrobenzene	R ⁹⁴	I		Н	0СН,С(0)ОН		

WO 00/68201 PCT/GB00/01697

172

Biological Data

5

10

15

20

25

30

Assay for inhibitors of the MAP kinase pathway

To evaluate inhibitors of the MAPK pathway a coupled assay was carried out which measures phosphorylation of serine/threonine residues present in the substrate in the presence or absence of inhibitor. Recombinant glutathione S-transferase fusion protein containing human p45MEK1 (GST-MEK) was activated by c-raf (Sf9 insect cell lysate from triple baculoviral infection with c-raf/ras/lck) and used for the assay. Active GST-MEK was first used to activate a recombinant glutathione S-transferase fusion protein containing p44MAP kinase (GST-MAPK) in the presence of ATP and Mg²⁺ for 60min at room temperature in the presence or absence of potential inhibitors. The activated GST-MAPK was then incubated with myelin basic protein (MBP) as substrate for 10min at room temperature in the presence of ATP, Mg²⁺ and ³³P-ATP. The reaction was stopped by addition of 20% v/v phosphoric acid. Incorporation of ³³P into the myelin basic protein was determined by capture of the substrate on a filter mat, washing and counting using scintillation methods. The extent of inhibition was determined by comparison with untreated controls.

The final assay solution contained 10mM Tris, pH 7.5, 0.05mM EGTA, 8.33 μ M [γ^{33} P]ATP, 8.33mM Mg(OAc)₂, 0.5mM sodium orthovanadate, 0.05%w/v BSA, 6.5ng GST-MEK, 1 μ g GST-MAPK and 16.5 μ g MBP in a reaction volume of 60 μ l.

Compounds tested of the present invention had IC50 results typically less than 0.5 μ M. For example, Compound No 252 gave an IC50 of 0.15 μ M.

In vitro MAP kinase assay

To determine whether compounds were inhibiting GST-MEK or GST-MAPK, a direct assay of MAPK activity was employed. GST-MAPK was activated by a constitutively active GST-MEK fusion protein containing two point mutations (S217E, S221E) and used for the assay in the presence and absence of potential inhibitors. The activated GST-MAPK was incubated with substrate (MBP) for 60min at room temperature in the presence of ATP, Mg²⁺ and ³³P-ATP. The reaction was stopped by addition of 20% v/v phosphoric acid. Incorporation of ³³P into the myelin basic protein was determined by capture of the substrate on a filter mat, washing and counting using scintillation methods.

The final assay solution contained 12mM Tris, pH 7.5, 0.06mM EGTA, 30μ M [γ^{33} P]ATP, 10mM Mg(OAc)₂, 0.6mM sodium orthovanadate, 0.06%w/v BSA, 28ng GST-MAPK and 16.5 μ g MBP in a reaction volume of 60 μ l.

Compounds of the invention showed activity in this screen.

5 <u>Cell proliferation assays</u>

10

15

Cells were seeded into multi-well plates at 20 000 - 40 000 cells/ml in growth medium containing 5% FCS and incubated overnight at 37°C. The compounds were prepared in fresh medium at an appropriate concentration and added to the wells containing the cells. These were then incubated for a further 72 hours. Cells were then either removed from the wells by incubating with trypsin/EDTA and counted using a Coulter counter, or treated with XTT/PMS in PBSA and optical densities read at 450nm. Compounds tested of the present invention had IC₅₀ results typically less than 30μM. For example, Compound No 250 gave an IC50 of 7.76 mM in HT29 human colon tumour cells; Compound No 32 gave an IC50 of 1.5μM in HT29 cells and an IC50 of 0.6μM in MC26 mouse colon tumour cells.

Claims

1. A compound of formula (I)

5

$$R1$$
 $R2$
 $R3$
 $R4$
 $(CH2)n R6$
 X
 $R7$
 X
 $R7$

10

15

20

25

or a pharmaceutically acceptable salt thereof. wherein:

n is 0-1;

X and Y are independently selected from –NH-, -O-, -S-, or –NR⁸- where R⁸ is alkyl of 1-6 carbon atoms and X may additionally comprise a CH₂ group;

R⁷ is a group (CH₂)_mR⁹ where m is 0,or an integer of from 1-3 and R⁹ is a substituted aryl group, an optionally substituted cycloalkyl ring of up to 10 carbon atoms, or an optionally substituted heterocyclic ring or an N-oxide of any nitrogen containing ring;

R⁶ is a divalent cycloalkyl of 3 to 7 carbon atoms, which may be optionally further substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a divalent pyridinyl, pyimidinyl, or phenyl ring; wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally further substituted with one or more groups selected from halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl,

amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, and benzoylamino;

- R₁, R₂, R₃ and R₄ are each independently selected from hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR¹¹R¹² (wherein R¹¹ and R¹², which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or a group R¹³-X¹-(CH₂)_x wherein x is 0 to 3, X¹ represents -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁴CO-, -CONR¹⁵-, -SO₂NR¹⁶-, -NR¹⁷SO₂- or -NR¹⁸- (wherein R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ each independently represents hydrogen. C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹³ is
- 10 R¹⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹³ is selected from one of the following sixteen groups:
 - 1) C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino;
- 2) C₁₋₅alkylX²COR¹⁹ (wherein X² represents -O- or -NR²⁰- (wherein R²⁰ represents
 15 hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹⁹ represents -NR²¹R²²- or -OR²³- (wherein R²¹, R²² and R²³ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl);
 - 3) C_{1-5} alkyl X^3R^{24} (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²⁵CO-, -CONR²⁶-, -SO₂NR²⁷-, -NR²⁸SO₂- or -NR²⁹- (wherein R²⁵, R²⁶, R²⁷, R²⁸ and R²⁹ each
- independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁴ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear one or two substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear one or two substituents selected from oxo,
- hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);
 C₁₋₅alkylX⁴C₁₋₅alkylX⁵R³⁰ (wherein X⁴ and X⁵ which may be the same or different are
 - each -O-, -S-, -SO-, -SO₂-, -NR³¹CO-, -CONR³²-, -SO₂NR³³-, -NR³⁴SO₂- or -NR³⁵- (wherein R³¹, R³², R³³, R³⁴ and R³⁵ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkyv) and R³⁰ represents hydrogen or C₁₋₃alkyl);
- 5) C₁₋₅alkylR³⁶ (wherein R³⁶ is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group

may bear one or two substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);

- 6) $(CH_2)_q X^6 R^{37}$ (wherein q is an integer from 0 to 5, X^6 represents a direct bond, -O-, -S-, -SO-, -SO₂-, -NR³⁸CO-, -CONR³⁹-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²- (wherein R³⁸, R³⁹,
- R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is a phenyl group, a pyridone group or a 5 or 6 membered aromatic heterocyclic group with 1 to 3 heteroatoms selected from O, N and S, which phenyl, pyridone or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄hydroxyalkoxy, C₁.
- 4aminoalkyl, C₁₋₄alkylamino, carboxy, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
 - 7) C₂₋₆alkenylR³⁶ (wherein R³⁶ is as defined hereinbefore);
 - 8) C₂₋₆alkynylR³⁶ (wherein R³⁶ is as defined hereinbefore);
- 9) X⁷R⁴⁷ (wherein X⁷ is -SO₂-, -O- or -CONR⁴⁸R⁴⁹- (wherein R⁴⁸ and R⁴⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁴⁷ represents C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino) with the provisos that when X⁷ is -SO₂-, X¹ is -O-, when X⁷ is -O-, X¹ is carbonyl, when X⁷ is -CONR⁴⁸R⁴⁹-, X¹ is -O- or
- 20 NR¹⁸ (wherein R⁴⁸, R⁴⁹ and R¹⁸ are as defined hereinbefore);
 - 10) C₂₋₆alkenylR³⁷ (wherein R³⁷ is as defined hereinbefore);
 - 11) C₂₋₆alkynylR³⁷ (wherein R³⁷ is as defined hereinbefore);
 - 12) C_{2-6} alkenyl X^8R^{37} (wherein X^8 represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁰CO-, -CONR⁵¹-, -SO₂NR⁵²-, -NR⁵³SO₂- or -NR⁵⁴- (wherein R⁵⁰, R⁵¹, R⁵², R⁵³ and R⁵⁴ each independently
 - represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore);
 - 13) C_{2-6} alkynyl X^9R^{37} (wherein X^9 represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁵CO-, -CONR⁵⁶-,
 - $-SO_2NR^{57}$ -, $-NR^{58}SO_2$ or $-NR^{59}$ (wherein R^{55} , R^{56} , R^{57} , R^{58} and R^{59} each independently
 - represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore);
 - 14) C_{1-3} alkyl $X^{10}C_{1-3}$ alkyl R^{37} (wherein X^{10} represents -O-, -S-, -SO-, -SO₂-, -NR⁶⁰CO-, -
- CONR⁶¹-, -SO₂NR⁶²-, -NR⁶³SO₂- or -NR⁶⁴- (wherein R⁶⁰, R⁶¹, R⁶², R⁶³ and R⁶⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore);

- 15) R^{36} (wherein R^{36} is as defined hereinbefore); and 16) C_{1-3} alkyl X^{10} C_{1-3} alkyl R^{36} (wherein X^{10} and R^{36} are as defined hereinbefore).
- A compound according to claim 1 wherein R9 is substituted by one or 2. more groups selected from hydroxy; halo; nitro; cyano; carboxy; C₁₋₆alkoxy; C₁₋₆alkyl; C₂₋ 5 6alkenyl; C2-6alkynyl; C2-6alkenyloxy; C2-6alkynyloxy; C3-6cycloalkyl; amino; mono- or di-C₁₋₆alkyl amino; heterocyclyl optionally substituted with C₁₋₆alkyl or oxo; C(O)R^a, $C(O)OR^a, S(O)_dR^{a;} NR^aC(O)R^b; C(O)NR^aS(O)_dR^b, C(O)NR^aR^{b;}; NR^aC(O)NR^bR^c;$ $NR^aS(O)_dR^b$ or $N(S(O)_dR^b)S(O)_dR^c$ where d is 0, 1 or 2 and R^a , R^b and R^c are independently selected from hydrogen, C₁₋₆alkyl, aryl, C₃₋₆cycloalkyl or heterocylcyl, and 10 wherein any alkyl, alkenyl or alkynyl group or moiety contained within the substituent one R⁹ may themselves be optionally substituted with one or more groups selected from hydroxy; cyano; nitro; halo; carboxy; carboalkoxy of 2-7 carbon atoms, C3-6cycloalkyl, heterocyclyl optionally substituted with C₁₋₆alkyl or oxo; C(O)R^d, C(O)OR^d NR^dR^e, S(O)_e R^d, NR^dC(O)R^e; C(O)NR^dR^e; NR^dC(O)NR^eR^f; NR^dS(O)_eR^e where e is 0, 1 or 2 and R^d, 15 Re and Rf are independently selected from hydrogen or C1-6alkyl optionally substituted with one or more groups selected from hydroxy; cyano; nitro; halo; carboxy; carboalkoxy of 2-7 carbon atoms, C₃₋₆cycloalkyl, heterocyclyl optionally substituted with C₁₋₆alkyl or oxo; $C(O)R^g$, $C(O)OR^gNR^gR^h$, $S(O)_eR^g$, $NR^hC(O)R^g$; $C(O)NR^gR^h$; $NR^gC(O)NR^hR^i$; NR^gS(O)_eR^h where e is as defined above and R^g, R^h and Rⁱ are independently selected 20 from hydrogen or C₁₋₆alkyl: or two substituents on adjacent atoms may be joined to form the second ring of a bicyclic ring system wherein the said second ring is optionally substituted with one or more of the groups listed above for R9 and optionally contains one or more heteroatoms.
- 25
- 3. A compound according to claim 1 where R⁹ is phenyl substituted with an optionally substituted alkoxy group.
- 4. A compound according to claim 1 which is a compound of formula (IA)

WO 00/68201 PCT/GB00/01697

$$R^{2}$$
 R^{3}
 R^{4}
(IA)

or a pharmaceutically acceptable salt thereof. wherein:

5 n is 0-1;

10

15

20

25

X and Y are independently selected from -NH-, -O-, -S-, or -NR⁸- where R⁸ is alkyl of 1-6 carbon atoms and X may additionally comprise a CH₂ group;

R⁷ is a group (CH₂)_mR⁹ where m is 0,or an integer of from 1-3 and R⁹ is a substituted aryl or substituted cycloalkyl ring of up to 10 carbon atoms, wherein the substituents comprise at least one alkoxy group of 1-6 carbon atoms and optionally one or more further substitutents, or R⁹ is a heterocyclic ring containing 1 or 2 oxygen atoms and optionally one or more substitutents;

R⁶ is a divalent cycloalkyl of 3 to 7 carbon atoms, which may be optionally further substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a divalent pyridinyl, pyimidinyl, or phenyl ring; wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally further substituted with one or more groups selected from halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, and benzoylamino;

 R_1 , R_2 , R_3 and R_4 are each independently selected from hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C_{1-3} alkyl, -NR¹¹R¹² (wherein R¹¹ and R¹², which may be the

same or different, each represents hydrogen or C_{1-3} alkyl), or a group R^{13} - X^1 - $(CH_2)_x$ wherein x is 0 to 3, X^1 represents -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁴CO-, -SO₂NR¹⁶-, -NR¹⁷SO₂- or -NR¹⁸- (wherein R^{14} , R^{15} , R^{16} , R^{17} and R^{18} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{13} is selected from one of the following sixteen groups:

- 1) C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino;
- 2) C_{1-5} alkyl X^2COR^{19} (wherein X^2 represents -O- or -N R^{20} (wherein R^{20} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{19} represents -N $R^{21}R^{22}$ or -O R^{23} -
- 10 (wherein R²¹, R²² and R²³ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
 - 3) C_{1-5} alkyl X^3R^{24} (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²⁵CO-, -CONR²⁶-, -SO₂NR²⁷-, -NR²⁸SO₂- or -NR²⁹- (wherein R²⁵, R²⁶, R²⁷, R²⁸ and R²⁹ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{24} represents
- hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear one or two substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);
- 4) C₁₋₅alkylX⁴C₁₋₅alkylX⁵R³⁰ (wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR³¹CO-, -CONR³²-, -SO₂NR³³-, -NR³⁴SO₂- or -NR³⁵- (wherein R³¹, R³², R³³, R³⁴ and R³⁵ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁰ represents hydrogen or C₁₋₃alkyl);
- 5) C₁₋₅alkylR³⁶ (wherein R³⁶ is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);
 - 6) $(CH_2)_q X^6 R^{37}$ (wherein q is an integer from 0 to 5, X^6 represents a direct bond, -O-, -S-, -SO-, -SO₂-, -NR³⁸CO-, -CONR³⁹-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²- (wherein R³⁸, R³⁹,
- R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is a phenyl group, a pyridone group or a 5 or 6 membered aromatic heterocyclic group with 1 to 3 heteroatoms selected from O, N and S, which phenyl, pyridone or

10

20

aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄hydroxyalkoxy, C₁₋₄aminoalkyl, C₁₋₄alkylamino, carboxy, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

- 7) C₂₋₆alkenylR³⁶ (wherein R³⁶ is as defined hereinbefore);
- 8) C₂₋₆alkynylR³⁶ (wherein R³⁶ is as defined hereinbefore);
- 9) X^7R^{47} (wherein X^7 is -SO₂-, -O- or -CONR⁴⁸R⁴⁹- (wherein R⁴⁸ and R⁴⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁴⁷ represents C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro and amino) with the provisos that when X^7 is -SO₂-, X^1 is -O-, when X^7 is -O-, X^1 is carbonyl, when X^7 is -CONR⁴⁸R⁴⁹-, X^1 is -O- or NR¹⁸ (wherein R⁴⁸, R⁴⁹ and R¹⁸ are as defined hereinbefore);
- 10) C₂₋₆alkenylR³⁷ (wherein R³⁷ is as defined hereinbefore);
- 15 11) C₂₋₆alkynylR³⁷ (wherein R³⁷ is as defined hereinbefore);
 - 12) C₂₋₆alkenylX⁸R³⁷ (wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁰CO-, -CONR⁵¹-, -SO₂NR⁵²-, -NR⁵³SO₂- or -NR⁵⁴- (wherein R⁵⁰, R⁵¹, R⁵², R⁵³ and R⁵⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore);
 - 13) C_{2-6} alkynyl X^9R^{37} (wherein X^9 represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁵CO-, -CONR⁵⁶-,
 - -SO₂NR⁵⁷-, -NR⁵⁸SO₂- or -NR⁵⁹- (wherein R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸ and R⁵⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³⁷ is as defined hereinbefore); 14) C₁₋₃alkylX¹⁰C₁₋₃alkylR³⁷ (wherein X¹⁰ represents -O-, -S-, -SO-, -SO₂-, -NR⁶⁰CO-, -
 - $CONR^{61}$ -, $-SO_2NR^{62}$ -, $-NR^{63}SO_2$ or $-NR^{64}$ (wherein R^{60} , R^{61} , R^{62} , R^{63} and R^{64} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{37} is as defined
- 25 hereinbefore);
 - 15) R^{36} (wherein R^{36} is as defined hereinbefore); and
 - 16) C_{1-3} alkyl $X^{10}C_{1-3}$ alkyl R^{36} (wherein X^{10} and R^{36} are as defined hereinbefore).

5. A compound according to claim 1 of formula (II)

$$R1$$
 $R2$
 $R3$
 $R4$
 $R4$
 $R1$
 $R4$
 $R66$
 $R66$
 $R67$
 $R67$

5

10

15

where R¹, R², R³ and R⁴ are as defined in claim 1, R⁶⁶ is an optionally substituted C₁₋₆ alkyl and R⁶⁷ is selected from hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, and benzoylamino.

6. A compound of formula (IB)

R1"
$$(CH_2)nR^6$$
 X R^7 $R3$ " $R4$ " (IB)

- where Y, n, R⁶, X and R⁷ are as defined in claim 1 and at least one of R¹, R², R³ or R⁴ is a group R¹³-X¹-(CH₂)_x wherein X¹ and x are as defined in claim 1 and R¹³ is alkyl substituted by chloro or bromo; and the remainder are groups R¹, R², R³ and R⁴ respectively.
- 7. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 in combination with a pharmaceutically acceptable carrier or excipient.
 - 8. A method of preparing a compound of formula (I) as defined in claim 1 which method comprises either (a) reacting a compound of formula (III)

15

20

(III)

where R¹, R², R³, R⁴ represent R¹, R², R³ and R⁴ respectively as defined in relation to formula (I) or a precursor thereof, and Z' is a leaving group, with a compound of formula (IV)

WO 00/68201 PCT/GB00/01697

183

(IV)

where R^6 , Y, X, and n are as defined in relation to formula (I), and R^7 is a group R^7 or a precursor thereof; or

(b) reacting a compound of formula (V)

$$R^{2}$$
 R^{2}
 where $R^{1'}$, $R^{2'}$, $R^{3'}$, $R^{4'}$ are as defined in relation to formula (III) R^6 , X, Y and n are as defined in relation to formula (I), with a compound of formula (VI)

 $R^{7'}-Z^{"} \qquad (VI)$

where R^7 is as defined in relation to formula (IV) and Z" is a leaving group; and thereafter if necessary or desired converting precursor groups $R^{1'}$, $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{7'}$ to groups of formula R^1 , R^2 , R^3 , R^4 and R^7 respectively, or converting a group R^1 , R^2 , R^3 , R^4 and R^7 to a different such group.

15

- 9. A compound for use in therapy comprising a compound of formula (I) as defined in claim 1.
- The use of a compound of formula (I) as defined in claim 1 in thepreparation of a medicament for use in the inhibition of MEK enzymes.

INTERNATIONAL SEARCH REPORT

Inte. onal Application No PCT/GB 00/01697

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D215/54 A61K C07D405/12 C07D401/12 A61K31/47 A61P43/00 C07D413/12 C07D409/12 C07D417/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D A61K A61P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category Citation of document, with indication, where appropriate, of the relevant passages 1,7,10 WO 98 43960 A (AMERICAN CYANAMID COMPANY) Α 8 October 1998 (1998-10-08) cited in the application page 2, line 23 - line 26; claim 1 1,7,10 WO 99 01426 A (WARNER-LAMBERT COMPANY) Α 14 January 1999 (1999-01-14) page 3, line 10 - line 15; claim 1 1,7,10 WO OO 18761 A (AMERICAN CYANAMID COMPANY) Ρ, Χ 6 April 2000 (2000-04-06) page 3, line 2 - line 5; claim 1 page 139 -page 142 Further documents are listed in the continuation of box C. lx Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 19/09/2000 7 September 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Van Bijlen, H

INTERNATIONAL SEARCH REPORT

Aformation on patent family members

Intex onal Application No
PCT/GB 00/01697

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 9843960	A	08-10-1998	AU EP NO PL	6877798 A 0973746 A 994798 A 335999 A	22-10-1998 26-01-2000 24-11-1999 05-06-2000	
WO 9901426	Α	14-01-1999	AU EP HR NO ZA	8262798 A 0993439 A 980368 A 996491 A 9805728 A	25-01-1999 19-04-2000 30-04-1999 29-12-1999 27-01-1999	
WO 0018761	Α	06-04-2000	AU	6159399 A	17-04-2000	