作业 (3):

1. 用两阶段法求解下列线性规划: (119页第2题)

(3)
$$\max 3x_1 - 5x_2$$

 $s.t. -x_1 + 2x_2 + 4x_3 \le 4$
 $x_1 + x_2 + 2x_3 \le 5$
 $-x_1 + 2x_2 + x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

(4)
$$\min x_1 - 3x_2 + x_3$$

s.t. $2x_1 - x_2 + x_3 = 8$
 $2x_1 + x_2 \ge 2$
 $x_1 + 2x_2 \le 10$
 $x_1, x_2, x_3 \ge 0$

2. 用大 M 法求解下列线性规划: (119页第2题)

(5)
$$\max -3x_1 + 2x_2 - x_3$$

 $s.t.$ $2x_1 + x_2 - x_3 \le 5$
 $4x_1 + 3x_2 + x_3 \ge 3$
 $-x_1 + x_2 + x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

(7) min
$$3x_1 - 2x_2 + x_3$$

 $s.t.$ $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 \ge 8$
 $x_1, x_2, x_3 \ge 0$

3. 给定原问题

$$\min 4x_1 + 3x_2 + x_3$$
s.t. $x_1 - x_2 + x_3 \ge 1$

$$x_1 + 2x_2 - 3x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

已知对偶问题的最优解 $(w_1, w_2) = \left(\frac{5}{3}, \frac{7}{3}\right)$,利用对偶性质求原问题的最优解。

4. 给定线性规划问题:

$$\min 5x_1 + 21x_3$$

$$s.t. \quad x_1 - x_2 + 6x_3 \ge b_1$$

$$x_1 + x_2 + 2x_3 \ge 1$$

$$x_1, x_2, x_3 \ge 0$$

其中 b_1 是某一个正数,已知这个问题的一个最优解为 $(x_1, x_2, x_3) = \left(\frac{1}{2}, 0, \frac{1}{4}\right)$ 。

- (1) 写出对偶问题。
- (2) 求对偶问题的最优解。
- 5. 考虑线性规划问题

$$\begin{array}{ll}
\min & cx \\
s.t. & Ax = b \\
& x \ge 0
\end{array}$$

其中 $A \ge m$ 阶对称矩阵, $c^T = b$ 。证明若 $x^{(0)}$ 是上述问题的可行解,则它也是最优解。

Homework (3):

1. Solve the following problems by two-phase method.

(3)
$$\max 3x_1 - 5x_2$$

 $s.t. -x_1 + 2x_2 + 4x_3 \le 4$
 $x_1 + x_2 + 2x_3 \le 5$
 $-x_1 + 2x_2 + x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

(4)
$$\min x_1 - 3x_2 + x_3$$

s.t. $2x_1 - x_2 + x_3 = 8$
 $2x_1 + x_2 \ge 2$
 $x_1 + 2x_2 \le 10$
 $x_1, x_2, x_3 \ge 0$

2. Solve the following problems by big-M method.

(5)
$$\max -3x_1 + 2x_2 - x_3$$

 $s.t.$ $2x_1 + x_2 - x_3 \le 5$
 $4x_1 + 3x_2 + x_3 \ge 3$
 $-x_1 + x_2 + x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

(7) min
$$3x_1 - 2x_2 + x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 \ge 8$
 $x_1, x_2, x_3 \ge 0$

3. Consider the following problem:

$$\min 4x_1 + 3x_2 + x_3$$
s.t. $x_1 - x_2 + x_3 \ge 1$

$$x_1 + 2x_2 - 3x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

Suppose the optimal feasible solution of its dual is $(w_1, w_2) = \left(\frac{5}{3}, \frac{7}{3}\right)$. Give the optimal feasible solution of the problem.

4. Given the problem:

min
$$5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 \ge b_1$
 $x_1 + x_2 + 2x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

Where b_1 is a positive integer. Assume $(x_1, x_2, x_3) = \left(\frac{1}{2}, 0, \frac{1}{4}\right)$ is an optimal solution of the problem.

- (3) Write the dual for the problem.
- (4) Give the optimal solution of the dual.
- 5. Given the problem:

$$\begin{array}{ll}
\min & cx \\
s.t. & Ax = b \\
& x \ge 0
\end{array}$$

Where A is m symmetry matrix, $c^T = b$. Show that if $x^{(0)}$ is a feasible solution of the problem, then it is optimal.