Network Performance Evaluation with EdgeCloudSim

18.05.2021 Çağatay Sönmez

Agenda

- Introduction to Edge Computing
- Challenges in Edge Computing Systems
- EdgeCloudSim
- Example Performance Evaluation Studies with EdgeCloudSim
 - Fuzzy Logic Based Workload Orchestrator
 - Machine Learning Based Workload Orchestrator
- A Network Performance Evaluation Case Study on EdgeCloudSim

What is Edge Computing

- Makes it possible to get services from nearby (edge) micro cloud server
- Data processing and storage are moved from the mobile device
- Complex operations can be executed on the edge server instead of local execution on the mobile devices

Benefits of Edge Computing

The Evaluation of Edge Computing

Emerging Technologies Driving Edge Computing

Challenges of Edge Computing Systems

Experimenting on These Systems Resource Orchestration High User Mobility **Network Slicing Techniques** Security & Privacy Issues Interoperability & Portability Issues

Challenges of Edge Computing Systems cont.

Experimenting on These Systems

- Development & deployment difficulty of a real solution
- Setting up & maintaining testbeds are expensive
- Having a small number of edge simulators
- The difficulty of developing an edge simulator

Challenges of Edge Computing Systems cont.

Resource Orchestration

- How to offload problem: a mechanism for task offloading
- When to offload problem: the granularity of task offloading
- Where to offload problem: workload orchestration
- The difficulty of scaling cloud resources horizontally or vertically

EdgeCloudSim

C. Sonmez, A. Ozgovde and C. Ersoy, "EdgeCloudSim: An environment for performance evaluation of edge computing systems," *Transactions on Emerging Telecommunications Technologies*, Vol. 29, No. 11, p. e3493, 2018

What is EdgeCloudSim

- EdgeCloudSim is a new simulator
- Provides a simulation environment specific to edge computing scenarios
- EdgeCloudSim is based on CloudSim but adds some additional functionalities
- Extensible and easy-to-use
- Publicly available on GitHub [5]
- Has high reputation
 - 221 citations based on Google Scholar [6] data as of May 2021
 - A discussion forum [7] with 120 active members as of May 2021
 - More than 6500 views on YouTube channel [8]

What is EdgeCloudSim

- EdgeCloudSim
- Provides a simu
- EdgeCloudSim
- Extensible and
- Publicly availab
- Has high reputa
 - 221 citations
 - A discussion
 - More than 6

TOP DOWNLOADED PAPER 2018-2019

CONGRATULATIONS TO

Cagatay Sonmez

whose paper has been recognized as one of the most read in

Transactions on Emerging Telecommunications Technologies

WILEY

Motivation of Developing a Simulator

Real-word Deployments

Design and development

Deployment of the datacenters

Managing mobile clients

Testbeds

Repeatable and scalable experiments

Setting up and maintaining testbeds

Cost

Simulators

Realistic modeling of the components

Scenario development

Configuration

Mobility Module Networking Module Load Generator Module **Edge Orchestrator Module**

cont.

Mobility Module

Manages the location of edge devices and clients

cont.

Networking Module

Adds link delays between the network components

cont.

Load Generator Module

• Generates tasks based on the simulated scenario

cont.

Edge Orchestrator Module

- The edge orchestrator can be considered as the central nervous system
- It makes critical decisions, such as:
 - Resource provisioning
 - Scales up/down the servers
 - Generates/terminates VMs
 - Migrates tasks
 - Coordinates services

Extensibility

Ease of Use

Problems

- Too many parameters are used in the simulations
- Managing parameters programmatically is difficult

Solution

- EdgeCloudSim reads parameters dynamically
 - ✓ Simulation settings are managed in configuration file
 - ✓ Application properties are stored in xml file
 - ✓ Edge devices (datacenters, hosts, VMs etc.) are defined in xml file

Publications using EdgeCloudSim

- ✓ C. Sonmez, A. Ozgovde and C. Ersoy, "EdgeCloudSim: An environment for performance evaluation of Edge Computing systems", *Second International Conference on Fog and Mobile Edge Computing (FMEC)*, pp. 39-44, May 2017
- ✓ C. Sonmez., A. Ozgovde and C. Ersoy, "Performance evaluation of single-tier and two-tier cloudlet assisted applications", IEEE International Conference on Communications Workshops (ICC Workshops), pp. 302-307, May 2017.
- ✓ C. Sonmez, A. Ozgovde and C. Ersoy, "EdgeCloudSim: An environment for performance evaluation of edge computing systems", *Transactions on Emerging Telecommunications Technologies*, Vol. 29, No. 11, p. e3493, 2018.
- ✓ C. Sonmez, A. Ozgovde and C. Ersoy, "Fuzzy Workload Orchestration for Edge Computing", *IEEE Transactions on Network and Service Management*, Vol. 16, No. 2, pp. 769-782, 2019.
- ✓ C. Sonmez, C. Tunca, A. Ozgovde and C. Ersoy, "Machine Learning Based Workload Orchestrator for Vehicular Edge Computing", *IEEE Transactions on Intelligent Transportation Systems*, vol. 22, no. 4, pp. 2239-2251, April 2021, doi: 10.1109/TITS.2020.3024233.

Fuzzy Logic Based Workload Orchestrator

C. Sonmez, A. Ozgovde and C. Ersoy, "Fuzzy Workload Orchestration for Edge Computing," in *IEEE Transactions on Network and Service Management*, vol. 16, no. 2, pp. 769-782, June 2019.

Multi-tier Edge Computing Architecture

Machine Learning Based Workload Orchestrator

C. Sonmez, A. Ozgovde and C. Ersoy, "Machine Learning Based Workload Orchestrator for Vehicular Edge Computing," *IEEE Transactions on Intelligent Transportation Systems*, 2020 (revised & resubmitted)

Vehicular Edge Computing Architecture

Offloading Options

Offloading Options

Offloading Options

Case Study with EdgeCloudSim

Network Performance Evaluation of Different Scenarios

Which One Provides the Best Network Delay?

Which One Provides the Best Network Delay?

Case 1: M/M/1 Queue

- Arrivals occur at rate λ according to a Poisson process
- Service times have an exponential distribution with rate parameter μ
- A **single** server serving with first-come first-served discipline

$$\lambda$$
 μ

• Response time $E(T) = \frac{1}{\mu - \lambda}$, $\mu > \lambda$

se time
$$E(T) = \frac{1}{\mu - \lambda}$$
, $\mu > \lambda$ capacity/packet length (p/s) rate of the traffic (p/s)

Case 2: M/M/2 Queue

- Arrivals occur at rate λ according to a Poisson process
- Service times have an exponential distribution with rate parameter μ
- A single queue with **multiple** servers

Response time can be calculated with birth-death process model

Case 2: M/M/2 Queue

cont.

$$P_0 \lambda = P_1 \mu$$

$$P_1 (\lambda + \mu) = P_0 \lambda + P_2 2\mu \qquad \text{After some math...}$$

$$P_n (\lambda + 2\mu) = P_{n-1} \lambda + P_{n+1} 2\mu$$

$$\Sigma P_n = 1$$

Case 3: Two Parallel M/M/1 Queue

$$E(T) = \frac{1}{\mu - \lambda/2} \times 2$$

$$E(T) = \frac{4}{2\mu - \lambda}$$

Expected Network Delay for All Cases

Simulation Study on EdgeCloudSim

- Three cases are implemented on EdgeCloduSim
- An environment with 1000 to 2000 mobile clients is simulated
- Clients are utilizing an application that generates task according to a Poisson process
- Important simulation parameters are provided in the following slides
- You can find the source code of this simulation on GitHub
 - https://github.com/CagataySonmez/NetworkPerformanceEvaluation-EdgeCloudSim

Implementation of Case1

Parameter	Value
WLAN Bandwidth	100 Mbps
Number of Core Edge Server	4
Capacity of Edge Server	20 GIPS

Implementation of Case2

Parameter	Value
WLAN Bandwidth	50 Mbps
Number of Core Edge Server	2
Capacity of Edge Server	10 GIPS

Implementation of Case3

Parameter	Value
WLAN Bandwidth	50 Mbps
Number of Core Edge Server	2
Capacity of Edge Server	10 GIPS

Application Used in Simulations

Parameter	Sample App
Task Interarrival (sec)	5
Active/Idle Period (sec)	30/1
VM Utilization on Edge/Cloud (%)	3
Task Length (GI)	500
Upload Data Size (KB)	30
Download Data Size (KB)	30

Simulation Parameters

Parameter	Value
Simulation Time	30 minutes
Warm-up Period	5 minutes
Number of repetition	25
Mobility Model	Nomadic Mobility
Number of Mobile Clients	1000 to 2000
Length of the Simulated Area	6 KM

Average WLAN Delay

Server Side Statistics

Proportion of Service Time Values

Average Failed Tasks

Task Failure Reasons

Average Number of Clients on the Places

Questions

References

- [1] Satyanarayanan, M., P. Bahl, R. Caceres and N. Davies, "The Case for VM-Based Cloudlets in Mobile Computing", *Pervasive* Computing, IEEE, Vol. 8, No. 4, pp. 14-23, Oct 2009.
- [2] "Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are", Cisco White Paper, 2015.
- [3] "Mobile Edge Computing: A key technology towards 5G", ETSI White Paper, Sep. 2015.
- [4] "Multi-access Edge Computing", http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing, accessed in June 2020.
- [5] "Citations of EdgeCloudSim", https://scholar.google.com/citations?user=6kYqJsIAAAAJ&hl=tr&authuser=1&oi=ao, accessed in May 2021.
- [6] "EdgeCloudSim GitHub Page", https://github.com/CagataySonmez/EdgeCloudSim, accessed in May 2021.
- [7] "EdgeCloudSim Google Discussion Forum", https://groups.google.com/forum/#!forum/edgecloudsim, accessed in May 2021.
- [8] "EdgeCloudSim YouTube Channel", https://www.youtube.com/channel/UC2gnXTWHHN6h4bk1D5gpcIA, accessed in May 2021.