## Исследование логистической регрессии

Петров Егор

МФТИ

2 ноября 2024 г.

#### План

- 🚺 Постановка задачи
  - LogLoss
  - Выпуклость
  - Оптимизация
- Реализация и исследование
  - Распределение Бернулли
  - Сравнение методов оптимизации
  - Зависимость от гиперпараметров
- Визуализация предсказаний
  - Визуализация
- 4 Итог

#### Постановка задачи

• Постановка задачи логистической регрессии Итак, ставим задачу бинарной классификации  $\{x_i,y_i\}_{i=1}^n$ ,  $x_i \in \mathbb{R}^d, y_i \in \{0,1\}$ 

Сама модель логистической регрессии имеет вид:

$$\hat{y}_i = \begin{cases} 0, \text{если } \sigma(\theta^T x) < threshold \\ 1, \text{иначе} \end{cases}$$
 (1)

В таком случае, мы пользуемся предположением, о том, что сигмоиду  $\sigma(\theta^T x) = \frac{1}{1-\exp(-\theta^T x)}$  можно интерпретировать как вероятность

# LogLoss

Теперь займемся выводом оптимизируемого функционала ошибки Поскольку  $y_i \in \{0,1\}$ , то будем интерпретировать задачу как поиск оптимального параметра для распределения Bern(p), то есть  $y_i \sim Bern(p)$ 

Теперь перепишем условную вероятноть в виде:

$$\mathbb{P}_p(y_i) = p^{y_i} \cdot (1-p)^{1-y_i} \tag{2}$$

Тогда правдоподобие примет вид:

$$\mathbb{L}_{y_i}(p) = p^{\sum_{i=1}^n y_i} \cdot (1-p)^{n-\sum_{i=1}^n y_i}$$
 (3)

# LogLoss

Рассмотрим логарифм правдоподобия (здесь стоит заметить, что логарифм монотонная возрастающая функция, а значит с точки зрения оптимизации данный переход корректен)

$$l_{y_i}(p) = (\sum_{i=1}^n y_i) \log(p) + (n - \sum_{i=1}^n y_i) \log(1 - p)$$
 (4)

Теперь заменим р на нашу оценку истинной вероятности  $\sigma(\theta^T x_i)$  и и записываем под одной суммой

$$l_{y_i}(\theta) = \sum_{i=1}^n y_i \log(\sigma(\theta^T x_i)) + (1 - y_i) \log(1 - \sigma(\theta^T x_i)) \to \max_{\theta}$$
 (5)

# LogLoss

Тогда сама функция  $LogLoss(\theta)$  приме вид (заменяем для минимизациии знак в предыдущем выражении)

$$LogLoss(\theta) = -\left(\sum_{i=1}^{n} y_i \log(\sigma(\theta^T x_i)) + (1 - y_i) \log(1 - \sigma(\theta^T x_i))\right) \to \min_{\theta}$$
(6)

Таким образом, получили оптимизируемый функционал Теперь убедимся, что для нахождения оптимума полученного выражения можно пользоваться итерационными методами, основанными на градиентном спуске, то есть докажем выпуклость полученного функционала

## Выпуклость

Для доказательства этого факта воспользуемся критерием выпуклости второго порядка, который гласит

$$f(x)$$
 – выпукла  $\Leftrightarrow dom(f)$  – выпуклое и  $\nabla^2 f \succcurlyeq 0$  (7)

В данном случае, выпуклость множества dom(f) очевидна, поскольку следует из вида нашей функции, так как здесь  $dom(f)=R^d$ , что по определению является выпуклым множеством (посольку значения LogLoss по модулю близкие к  $\pm\infty$  достигаются при аналогичных значениях  $\theta \to \pm\infty$ , которые входят только в расширенное пространство  $\overline{\mathbb{R}}$ ) Теперь остановимся на положительной полуопределенности

гессиана, для начала найдем его

## Выпуклость

Градиент:

$$\nabla_{\theta} Log Loss(\theta) = -\nabla_{\theta} \left( \sum_{i=1}^{n} y_{i} \log(\sigma(\theta^{T} x_{i})) + (1 - y_{i}) \log(1 - \sigma(\theta^{T} x_{i})) \right) =$$

$$= -\sum_{i=1}^{n} \left( y_{i} \nabla_{\theta} \log(\sigma(\theta^{T} x_{i})) + (1 - y_{i}) \nabla_{\theta} \log(1 - \sigma(\theta^{T} x_{i})) \right) (8)$$
Далее следует заметить, что  $\sigma'(x) = \sigma(x) (1 - \sigma(x)) \nabla_{\theta} Log Loss(\theta) =$ 

$$-\sum_{i=1}^{n} \left( y_{i} \frac{\sigma(\theta^{T} x_{i}) (1 - \sigma(\theta^{T} x_{i})) \cdot x_{i}}{\sigma(\theta^{T} x_{i})} - (1 - y_{i}) \frac{\sigma(\theta^{T} x_{i}) (1 - \sigma(\theta^{T} x_{i})) \cdot x_{i}}{1 - \sigma(\theta^{T} x_{i})} \right) =$$

$$= -\sum_{i=1}^{n} \left( y_{i} (1 - \sigma(\theta^{T} x_{i})) x_{i} - (1 - y_{i}) \sigma(\theta^{T} x_{i}) \cdot x_{i} \right) =$$

$$= -\sum_{i=1}^{n} \left( y_{i} - \sigma(\theta^{T} x_{i}) \right) x_{i} = \sum_{i=1}^{n} \left( \sigma(\theta^{T} x_{i}) - y_{i} \right) x_{i}$$

Что можно несложно переписать в матричном виде:

$$\nabla_{\theta} Log Loss(\theta) = X^{T}(S(\theta) - Y) \tag{9}$$

где  $X_i = x_i, S(\theta)_i = \sigma(\theta^T x_i), Y_i = y_i$ 

## Выпуклость

Теперь вычислим непосредственно гессиан:

$$\nabla_{\theta}^{2} LogLoss(\theta) = \sum_{i=1}^{n} \left( \sigma(\theta^{T} x_{i}) (1 - \sigma(\theta^{T} x_{i})) x_{i} x_{i}^{T} \right)$$
 (10)

Что также несложно переписывается в матричном виде:

$$\nabla_{\theta}^{2} Log Loss(\theta) = X^{T} V(\theta) X \tag{11}$$

где  $V(\theta) = diag(\sigma(\theta^T x_i)(1 - \sigma(\theta^T x_i)))$ 

Заметим, что  $V(\theta) \succcurlyeq 0$ , поскольку матрица диагональна и при этом на самой диагонали стоят положительные элементы, а поскольку эта матрица умножается на  $X^T$  и X, то и в произведении получим положительно полуопределенную матрицу Таким образом, доказали, что

$$\nabla_{\theta}^{2} Log Loss(\theta) \succcurlyeq 0 \tag{12}$$

А значит, сама функция  $LogLoss(\theta)$  - выпуклая

#### Оптимизация, поиск оптимума

Теперь выпишем итеративные способы нахождения оптимального параметра θ (нетрудно показать, что при добавлении регуляриззации формулы примут следующий вид): Итеративная формула для GD:

$$\theta_{k+1} = \theta_k - \eta \cdot (-X^T(Y - S(\theta_k))) + 2\eta \lambda \theta_k \tag{13}$$

Итеративная формула для SGD:

$$\theta_{k+1} = \theta_k - \eta \frac{n}{|I|} \sum_{i \in I} (-X_i (Y_i - S_i(\theta_k))) + 2\eta \lambda \theta_k \tag{14}$$

#### Оптимизация, поиск оптимума

Согласно формулам полученным ранее матрица Гессе имеет вид:

$$\nabla^2 F(\theta) = X^T V(\theta) X + 2\lambda E$$
, где (15)

 $V(\theta) = diag(\sigma(X_i^T\theta)(1 - \sigma(X_i^T\theta))), E$ —единичная матрица Тогда итеративная формула для IRLS:

$$\theta_{k+1} = \theta_k - (X^T V(\theta_k) X + 2\lambda E)^{-1} \cdot (-X^T (Y - S(\theta_k)) + 2\lambda \theta_k),$$
 где (16)

$$V(\theta) = diag(\sigma(X_i^T \theta)(1 - \sigma(X_i^T \theta))), E$$
-единичная матрица

#### Распределение Бернулли

Для начала изобразим выборку из распределения Бернулли (Данные), которые по оси X распределены нормально, а также отрисуем вероятности принадлежности классам 0 и 1, которые мы получим при аппроксимации вероятности сигмоидой



#### Сравнение методов оптимизации

Реализацию логистической регрессии можно посмотреть в прикрепленном файле. В ней для оптимизации функционала ошибки дано на выбор три фукнции, описанные выше. Сравним их



#### Сравнение методов оптимизации

Теперь посмотрим на затраченное время для каждого из методов



#### Зависимость от гиперпараметров

В данной секции исследуем зависимость качества логистической регресии (по метрике Accuracy и методу оптимизации gd) от learning rate и коэффициента регуляризации Начнем с learning rate



## Зависимость от гиперпараметров

В данном случае важно отразить и различия в обучении для перебираемых значений lr



#### Зависимость от гиперпараметров

Теперь изучим модель при изменении параметра регуляризации



#### Визуализация предсказаний

Теперь непосредственно изобразим предсказания нашей модели, визуализировав как непосредственно предсказания, так и распределения вероятностей





#### Итог

#### Особенности логистической регрессии

- Логистическая регрессия может отлично справляться с задачей бинарной классификации, когда классы хорошо разделимы при помощи гиперплоскости, поскольку в её основе лежит линейная модель
- Важное предположение, которые мы делаем вероятность хорошо аппроксимируется сигмоидой (само это утверждение конечно требует доказательство, которое строится, основываясь на Байесовском подходе)
- Нами были выведен функционал ошибки для решения задачи бинарной классификации, а также доказана его выпуклость, позволяющая решать задачу градиентными методами