CISC 203 Problem Set 1

Cain J. B. Susko

November 22, 2021

1. (a) using euclids algorithm:

$$(a \mod b) = c$$

if c = 0 then the answer is b

else, the answer is gcd(b,c)

we are given a = 34, b = 55, therefore:

34	$4 \mod 55$	= 34
55	$5 \mod 34$	= 21
34	4 mod 21	= 13
21	$1 \mod 13$	= 8
13	3 mod 8	=5
8	$\mod 5$	=3
5	$\mod 3$	=2
3	$\mod 2$	=1
2	mod 1	= 0

thus the gcd(34, 55) = 1

to then find the numbers m, n in the equation:

$$\gcd(34,55) = 34m + 55n$$

we would first rearrange for m:

$$m = \frac{1}{34}(1 - 55n)$$

and then substitute it in the equation:

$$1 = 34\left(\frac{1}{34}(1 - 55n)\right) \Rightarrow \qquad n = 0$$

$$1 = 34m + (55 \times 0) \Rightarrow \qquad m = \frac{1}{34}$$

therefore: $1 = 34 * \frac{1}{34} + 55 * 0$

(b) there are no integer solutions because in $6x \equiv 2 \mod 12$, 6x can only be multiples of 6 (and 12) and because of this:

$$6x \mod 12 = \{6, 0\}$$

therefore it is not possible for 6x to be congruent with 2 in mod 12

(c) if gcd(a, b) = 1 then a and b are relatively prime. this means that a and b's only divisor in common are 1. because we know that a|bc, we can definitively say that c is a denominator of a as we know for sure that any divisor save 1 is not shared between a and b. therefore, for the conditions to be satisfied (a|bc) it must be true that a|c.

1

(d) presume it is possible for $n^2 + 1 \not\equiv 0 \mod 6$. the answers for this equation are as follows:

$$n=0 \rightarrow 1$$
 $n=1 \rightarrow 2$ $n=3 \rightarrow 4$ $n=4 \rightarrow 5$ $n=5 \rightarrow 2$

this pattern repeats forever, as is the nature of modular arithmetic. thus, we have reached a contradiction as no number n within mod 6 can evaluate to 0 therefore, we have shown that $n^2 + 1 \not\equiv 0 \mod 6$.

2. (a) the problem can be refactored into a system of congruences like so:

$$x \equiv 1 \mod 5 \tag{1}$$

$$x \equiv 3 \mod 7 \tag{2}$$

$$x \equiv 7 \mod 8 \tag{3}$$

(b) we start with finding an x that satisfies (1) and (2) by substituting one equation in the other:

$$(1) x = 1 + 5k (2) x = 3 + 5l$$

$$x \equiv 31 \mod 35 \tag{4}$$

now, buy substituting (4) into (3)

$$(4) x = 31 + 35s (3) x = 7 + 8p$$

$$x \equiv 31 \mod 280 \tag{5}$$

$$x = 31 + 280n \tag{6}$$

and thus we have found (5), the solution to the congruence system using the Chinese remainder theorem. using (6) we can find the greatest number of groups n mod 280 where x < 1000, which is n = 3 where x = 871

- 3. (a) we know that any combination of integers in addition and subtraction result in an integer. therefore it must be true that $x+xy\in\mathbb{Z}$ for all $x,y\in\mathbb{Z}$
 - (b) show that: (x * y) * z = x * (y * z)

$$(x * y) * z = x * (y * z)$$

 $(x + xy) + (x + xy) \times z = x + x \times (y + yz)$
 $x + xy + xz + xyz = x + xy + xyz$

as you can see we cannot alter the LHS or RHS to equal the other as the terms on each side are unequal. thus showing that $(\mathbb{Z},*)$ is not associative.

(c) if the operation were: x * y = xy then the identity element would be $1 :: 1 \times z = z$ for any integer if we assume that xy = y then x * y = x + y

$$x + y \neq x \lor y$$

therefore there is no identity element

$$x * y \neq x \lor y$$

- (d) we know that there is an inverse $\forall_x \forall_y (x, y \in \mathbb{Z})$ as the inverse of any integer a is $\frac{1}{a}$ or a^{-1}
- (e) given:

$$x * y = y * x$$
$$x + xy = y + xy$$
$$x + xy \neq y + xy$$

thus showing * is not communative

4. (a) the multiplication table would be:

•	I	A_1	A_2	A_3	A_4	A_5
\overline{I}	$I \cdot I$	$I \cdot A_1$	$I \cdot A_2$	$I \cdot A_3$	$I \cdot A_4$	$I \cdot A_5$
A_1	$A_1 \cdot I$	$A_1 \cdot A_1$	$A_1 \cdot A_2$ $A_2 \cdot A_2$ $A_3 \cdot A_2$ $A_4 \cdot A_2$ $A_5 \cdot A_2$	$A_1 \cdot A_3$	$A_1 \cdot A_4$	$A_1 \cdot A_5$
A_2	$A_2 \cdot I$	$A_2 \cdot A_1$	$A_2 \cdot A_2$	$A_2 \cdot A_3$	$A_2 \cdot A_4$	$A_2 \cdot A_5$
A_3	$A_3 \cdot I$	$A_3 \cdot A_1$	$A_3 \cdot A_2$	$A_3 \cdot A_3$	$A_3 \cdot A_4$	$A_3 \cdot A_5$
A_4	$A_4 \cdot I$	$A_4 \cdot A_1$	$A_4 \cdot A_2$	$A_4 \cdot A_3$	$A_4 \cdot A_4$	$A_4 \cdot A_5$
A_5	$A_5 \cdot I$	$A_5 \cdot A_1$	$A_5 \cdot A_2$	$A_5 \cdot A_3$	$A_5 \cdot A_4$	$A_5 \cdot A_5$

(b) G must satisfy 3 properties:

Closure we can see that (G, \cdot) is closed because:

$$\begin{array}{lll} x \cdot I = x & x \cdot x = x \\ A_1 \cdot A_2 = A_3 & A_1 \cdot A_3 = A_2 \\ A_1 \cdot A_4 = A_5 & A_1 \cdot A_5 = A_4 \\ A_2 \cdot A_3 = A_4 & A_2 \cdot A_4 = A_3 \\ A_2 \cdot A_5 = A_1 & A_3 \cdot A_4 = A_2 \\ A_3 \cdot A_5 = A_4 & A_4 \cdot A_5 = A_2 \end{array}$$

thus $G_x \cdot G_x \in G$

Identity Element G has an identity element I where $x \times I = I \times x = I$. for example:

$$A_2 \times I = I \times A_2 = I$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse one can determine if a 3×3 matrix has an inverse by finding the determinant of said matrix. if the determinant is 0 there is no inverse. and because we know G has closure, we only need to test the matrices in G:

$$det(I) = 1$$
 $det(A_1) = -1$ $det(A_3) = 1$ $det(A_4) = -1$ $det(A_5) = 1$

thus showing all matrices in G have an inverse thus (G, \times) satisfies the requirements to be a group

5. (a) the table would be:

(b) G must satisfy 4 properties to be an Abelian group: Communative G is communative if for all elements, a * b = b * a:

$$1 \times 1 = 1 = 1 \times 1$$
$$i \times i = i = i \times i$$
$$-1 \times -1 = 1 = -1 \times -1$$

$$\begin{aligned} -i \times -i &= -1 = -i \times -i \\ 1 \times i &= i = i \times 1 \\ 1 \times -1 &= -1 = -1 \times 1 \\ 1 \times -i &= -i = -i \times 1 \\ i \times -1 &= -i = -1 \times i \\ i \times -i &= -i = -i \times i \\ -1 \times -i &= i = -i \times -1 \end{aligned}$$

therefore showing that $x \times y = y \times x$

Closure if one were to look at the table, can see that each element in the table is also in

$$G = \{1, i, -1, -i\}$$

therefore showing (G, \times) is closed

Identity Element the identity element of (G, \times) is:

$$1 \times 1 = 1$$
$$1 \times i = i$$
$$1 \times -1 = -1$$
$$1 \times -i = -i$$

therefore showing 1 is the identity element in (G, \times)

Inverse all numbers $G \in \mathbb{C}$ can be found using the formula: $\frac{1}{g}$ where $g \in G$

thus showing that (G, \times) is an Abelian Group.

(c) to determine if G is cyclic we must find the generator element. this is an element where it, its inverse, and the group operation, can generate any number in (G, \times) :

$$i = i \\ i \times i = -1 \\ i^{-1} = -i \\ i^{-1} \times i^{-1} = 1$$

therefore the generator element in (G, \times) is i

(d) first, the group $(\mathbb{Z}_4, +)$ is:

we can see that there are specific elements in $(\mathbb{Z}_4, +)$ map to specific elements in (G, \times) such that:

$$f:G\to\mathbb{Z}_4$$

$$\begin{array}{ccc}
1 \to 0 & i \to 1 \\
-1 \to 2 & -i \to 3
\end{array}$$

to show f is an isomorphism we must also show that it is injective and surjective:

Surjective we can see that each element in (G, \times) is mapped to an element in $(\mathbb{Z}_4, +)$. therefore f is onto

Injective we can see that each element in (G, \times) is mapped to a unique element in $(\mathbb{Z}_4, +)$. therefore f is one-to-one

thus we have shown that $f: G \to \mathbb{Z}_4$ is an isomorphism