Topic 4: Momentum, Impulse and Collisions Advanced Placement Physics

Dr. Timothy Leung

Olympiads School

Novemver 23, 2019

Linear Momentum

Linear momentum is proportional to the object's **mass** and its **velocity**.

$$\mathbf{p} = m\mathbf{v}$$

Quantity	Symbol	SI Unit
Momentum	p	kg m/s
Mass	m	kg
Velocity	${f v}$	m/s

- Momentum p is a vector in the same direction as velocity
- Like all vectors, p obeys the principle of superposition

Newton's Second Law

Start with the familiar form of Newton's second law of motion with constant m, we can find out how $\Delta \mathbf{p}$ relates to \mathbf{F} :

$$\sum \mathbf{F} = m\mathbf{a} = m\frac{d\mathbf{v}}{dt} = \frac{d(m\mathbf{v})}{dt} = \frac{d\mathbf{p}}{dt}$$

In fact, this is the general form of Newtons second law of motion: **net force on an object is the rate of change of its momentum**

$$\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt}$$

 $\mathbf{F}_{\text{net}} = m\mathbf{a}$ is just a special case

Newton's Second Law

$$\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt}$$

- Momentum is conserved (i.e. $\sum p$ constant) when the net force on an object or a system of objects is zero.
- Internal forces do not contribute to net force, in that case:

$$\sum_{i} \mathbf{p}_i(t_1) = \sum_{i} \mathbf{p}_i(t_2)$$

Impulse

Let's get this by looking at Newton's second law again. If we rearrange the variables:

$$\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt} \rightarrow \mathbf{F}_{\text{net}}dt = d\mathbf{p}$$

We can integrate both sides to get the **impulse-momentum theorem**.

$$\mathbf{J}_{\text{net}} = \int_{t_1}^{t_2} \mathbf{F}_{\text{net}} dt = \int d\mathbf{p} = \Delta \mathbf{p}$$

The quantity J_{net} is called the **net impulse**.

Impulse

 \mathbf{F} , \mathbf{p} and \mathbf{J} are all vectors, so the integral can be evaluated in each of the x, y and z axis, i.e., for the x direction:

$$J_x = \int_{t_1}^{t_2} F_x dt = \int dp_x = \Delta p_x$$

Average force is a "force" that gets the same impulse, i.e.

$$\overline{\mathbf{F}} = \frac{\int_{t_1}^{t_2} \mathbf{F} dt}{t_2 - t_1} = \frac{\mathbf{J}}{\Delta t}$$

Note that impulse from each individual force does not depend on whether the object moves. The change in momentum only depends on *net* impulse

Impulse: An Example

Example 4: Jim pushes a box with mass $1.0 \,\mathrm{kg}$ with a $5.0 \,\mathrm{N}$ force for $10 \,\mathrm{s}$ while the box stays on the same place. Find the impulse of the pushing force, friction force, the gravitational force, and the net force.

Impulse: Another Example

Example 5: Two balls of the same mass are dropped from the same height onto the floor. The first ball bounces upwards from the floor elastically. The second ball sticks to the floor. The first applies an impulse to the floor of I_1 and the second applies an impulse I_2 . The two impulses obey:

- (a) $I_2 = 2I_1$
- (b) $I_2 = I_1/2$
- (c) $I_2 = 4I_1$
- (d) $I_2 = I_1/4$

Conservation of Momentum

- From Newton's third law, we know that the action and reaction forces are always equal in magnitude and in opposite direction. Thus, their total impulse would be zero.
- When there is no external force, the momentum of the total system will always be constant. We saw that a few slides ago:

$$\sum \mathbf{p}(t_1) = \sum \mathbf{p}(t_2)$$

How to Solve Conservation of Momentum Problem

- 1. Check whether the condition for the conservation of momentum is satisfied.
- 2. If so, write out expressions for initial momentum and final momentum, and equate the two. You will get 1 to 3 equations (one for each direction).
- 3. Solve these equations, find the quantity you need to find.

Remember that momentum is a vector. If there is no external force component in some direction, then the momentum component in this direction is still conserved.

Example

Example 6: Two blocks A and B, both have mass $1.0\,\mathrm{kg}$. Block A has velocity $3.0\,\mathrm{m/s}$ and block B is at rest. Their distance is $1.0\,\mathrm{m}$. The surface is has dynamic friction coefficient 0.02. After they collide, they move together, what would be the final velocity of these two blocks? How far can they go after the collision?

Before We Dive Into Some Exercises

- The most typical applications of momentum conservation are collision and explosions
- Collision: object A hits object B. Regardless of whether they move together or not afterwards, momentum is conserved.
 - Head-on collisions are usually 1D
 - Glancing collisions are usually 2D or 3D.
- Explosion: A explodes and becomes B and C (and D and E...). Total momentum of B and C (and D and E...) is the same as A in the beginning.

Collision Problem

Example 7: Two objects with equal mass are heading toward each other with equal speeds, undergo a head-on collision. Which one of the following statement is correct?

- (a) Their final velocities are zero
- (b) Their final velocities may be zero
- (c) Each must have a final velocity equal to the other's initial velocity
- (d) Their velocities must be reduced in magnitude

Conservation of Momentum Example

Example 8: Two astronauts, each of mass $75 \, \mathrm{kg}$, are floating next to each other in space, outside the space shuttle. One of them pushes the other through a distance of $1.0 \, \mathrm{m}$ (about an arm's length) with a force of $300 \, \mathrm{N}$. What is the final relative velocity of the two?

- (a) $2.0 \, \text{m/s}$
- (b) $2.83 \, \text{m/s}$
- (c) $4.0 \, \text{m/s}$
- (d) $16.0 \, \text{m/s}$

Continuous Problems in the Application of Momentum

Example 10: A rocket generates a thrust force by ejecting hot gases from an engine. If it takes 1 ms to combust 1.0 kg of fuel, ejecting it at a speed of 1000 m/s, what thrust is generated?

- (a) 1000 N
- (b) 10 000 N
- (c) 100 000 N
- (d) 1 000 000 N

Another Space Example

Example 11: A rocket for mining the asteroid belt is designed like a large scoop. It is approaching asteroids at a velocity of $10^4\,\mathrm{m/s}$. The asteroids are much smaller than the rocket. If the rocket scoops asteroids at a rate of $100\,\mathrm{kg/s}$, what thrust (force) must the rocket's engine provide in order for the rocket to maintain constant velocity? Ignore any variation in the rocket's mass due to the burning fuel.

- (a) $10^3 \, \text{N}$
- (b) $10^6 \, \text{N}$
- (c) $10^9 \,\mathrm{N}$
- (d) $10^{12} \, \text{N}$

Example

Example 12: A ball is dropped from a height h. It hits the ground and bounces up with a momentum loss of 10% due to the impact. The maximum height it will reach is:

- (a) 0.90h
- (b) 0.81*h*
- (c) 0.949h
- (d) 0.3h

Conservation of Energy Example

Example 13: A simple pendulum has a bob of mass 2 kg hanging on a cord of length 1 m. Suppose the pendulum is raised until it is horizontal (and angular displacement of 90°) and then released. What is the speed of the bob at the bottom of its swing?

- (a) $9.91 \,\mathrm{m/s}$
- (b) $19.6 \, \text{m/s}$
- (c) $3.13 \,\mathrm{m/s}$
- (d) $4.43 \, \text{m/s}$

Conservation of Energy Example

Example 14: A toy firing a ball vertically consists of a vertical spring which is compressed by $0.10 \, \text{m}$. A force of $10.0 \, \text{N}$ is needed to hold the spring at that compression. If a ball of mass $0.050 \, \text{kg}$ is placed on the compressed spring and the spring is released, the ball will reach a height (above its initial position) of:

- (a) $1.0 \, \text{m}$
- (b) 1.2 m
- (c) $1.4 \, \text{m}$
- (d) 1.6 m

Classifications of Collisions

- Elastic Collision:
 - · Total kinetic energy is conserved
 - Momentum is conserved
- Inelastic collision:
 - Kinetic energy is not conserved
 - Momentum is conserved
- Completely inelastic collision:
 - · "Perfectly inelastic collision"
 - The objects move together after the collision
 - · Kinetic energy is **not** conserved
 - Momentum is conserved

Classifications of Collisions

- Elastic Collision:
 - Total kinetic energy is conserved
 - Momentum is conserved
- Inelastic collision:
 - Kinetic energy is not conserved
 - Momentum is conserved
- · Completely inelastic collision:
 - "Perfectly inelastic collision"
 - The objects move together after the collision
 - Kinetic energy is not conserved
 - Momentum is conserved

Elastic Collision

If two objects 1 and 2 of mass m_1 and m_2 and initial velocities $v_{1,i}$ and $v_{2,i}$ collide elastically, their final velocities will be:

$$v_{1,f} = \frac{v_{1,i}(m_1 - m_2) + 2m_2v_{2,i}}{m_1 + m_2}$$
$$v_{2,f} = \frac{v_{2,i}(m_2 - m_1) + 2m_1v_{1,i}}{m_1 + m_2}$$

Elastic Collision Example

Example 15: Blocks A and B have the same mass; A hits B with a speed of $5.0 \, \text{m/s}$ while B is initially at rest. If the collision is elastic, what would be the final speed of these two objects?

Elastic Collision Example

Example 16: Blocks A and B with the same mass; A has a velocity $3.0 \, \text{m/s}$ to the east while B has $2 \, \text{m/s}$ to the west. If the collision is elastic, after the collision, what would the velocity of the two blocks be?

Elastic Collision Example

Example 17: Throw a ball to a really big wall, when the ball reaches the wall, it has a velocity 10 m/s toward the wall. If the collision is elastic, what would the final velocity of the ball be?

Elastic Collision Example

Example 18: Throw a ball with a velocity $4.0 \, \text{m/s}$ toward a train with a velocity $40 \, \text{m/s}$ toward the ball. If the collision is elastic, what would the final velocity of the ball be?

Inelastic Collision: Calculating Energy Loss

Example 19: Two blocks A and B with mass $2.0\,\mathrm{kg}$, block A hits B with velocity $4.0\,\mathrm{m/s}$ while B is at rest.

- (a) Suppose the collision is completely inelastic, what would the final velocity of A and B be?
- (b) What is the loss of energy?