ideale Gaßgleichung

Historisch

2. Gesetz von Charles (1783) $p = const(Ballon) \\ isobar \\ \frac{V}{T} = const$

2. Gesetz von Gay-Issac (ca. 1800) $v = const \\ isochor \\ \frac{p}{T} = const$

3. T = const isotherm p * V = const

Experiment

Glaszylinder, der zusammengeschoben wird

I (cm)	p (bar)	l * p
25	1	25
21	1.15	24.15
17	1.4	23.8
14	1.7	23.8
10	2.4	24
8	2.9	23.2
6	3.8	22.8

Hier kann l*p als Überprüfung gesehen werden. Das Volumen (V) kann hier durch die Länge (l) ersetzt werden, da das Volumen durch V=l*A berechnet wird und die Fläche (A) konstant bleibt.

Ursprung der Kelvin Skala

Charles hat mit Ballonen experimentiert (p = const).

$$V = V_0 * (1 + \underbrace{\gamma}_{ ext{W\"{a}rmedehnungskoeffizient in 3D}} * \Delta T)$$
 $V_0 = V_M ... Molvolumen$
 $V_M = 1 \text{ Mol Gas}$
 $V_M = 22.4 dm^3$

für verschiedene Gase ist γ gleich.

$$\gamma = 0.0036609921 = rac{1}{273.15} \ V = V_0 * \left(1 + rac{\Delta T}{273.15}
ight) = V_0 rac{273.15 + \Delta T}{273.15} \ \Longrightarrow rac{V}{T} = const \; \; (ext{ Gesetz von Charles} \;)$$

Fig. 1: Gas Volume over Temperature

Beispiel 1:

Ein Heliumballon hat bei 1 bar Luftdruck ein Volumen $V_1=2m^3$. Auf dem Mt. Everest herrschen nur 0.691 bar Luftdruck. Falls sich die Temperatur beim Aufsteigen nicht ändern würde, wie groß wäre nun V am Gipfel?

$$egin{aligned} p*V &= N*k*T \ rac{p_0}{p_e} &= rac{V_e}{V_0} \ V_e &= V_0*rac{p_0}{p_e} \ V_e &= 2m^3*rac{1}{0.691} = 2.894m^3 \end{aligned}$$

bei Temperaturänderung:

$$rac{p_0}{p_e} = rac{V_e*T_0}{V_0*T_e}$$

Beispiel 2

Im Winter werden $p_1=2.2bar$ überdruck bei $-20\degree C$ in den Reifen gefüllt. Wie groß ist p_2 im Sommer bei 40°C?

V, N, k = constant

$$rac{p_1}{p_2} = rac{T_1}{T_0} \ p_2 = p_1 + rac{T_0}{T_1} = 2.2 bar * rac{273.15 + 40}{273.15 - 20} = 2.721 bar$$