Metody głębokiego uczenia, projekt nr 1

Własna implementacja algorytmu wstecznej propagacji błędu w perceptronie wielowarstwowym (MLP)

Tymoteusz Makowski Olaf Skrabacz

19 marca 2019

Opis zadania

Celem projektu była implementacja perceptronu wielowarstwowego (ang. multilayer perceptron) z szeregiem wymaganych funkcjonalności takich jak:

- wybór liczby warstw oraz liczby neuronów ukrytych w każdej warstwie,
- wybór funkcji aktywacji,
- możliwość ustawienia:
 - liczby iteracji,
 - wartości współczynnika nauki (ang. learning rate),
 - wartości współczynnika bezwładności,
- możliwość zastosowania sieci zarówno do klasyfikacji, jak i do regresji.

Implementacja

Do wykonania zadania projektowego wybraliśmy język programowania Python3 i skorzystaliśmy z jego możliwości obiektowych.

Funkcje aktywacji

Zaimplementowaliśmy wiele funkcji aktywacji, które można wybierać dla poszczególnych warstw. Oprócz funkcji liniowej zaimplementowaliśmy:

ReLU (Rectified Linear Unit)

$$relu(x) = \begin{cases} x, & x > 0\\ 0, & x \le 0 \end{cases}$$
 (1)

Funkcja sigmoidalna

$$sigmoid(x) = \frac{e^x}{1 + e^x} \tag{2}$$

Funkcja tanh

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{3}$$

Funkcja wektorowa softmax

softmax
$$((x_i)_{i=1}^n) = \left(\frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}\right)_{i=1}^n$$
 (4)

Funkcje straty

W projekcie są do wyboru dwa sposoby obliczania strat. Jest to błąd średniokwadratowy (ang. *mean squared error*) oraz entropia krzyżowa (ang. *cross entropy*). Pierwsza metoda jest wykorzystywana do regresji, zaś druga do klasyfikacji.

Klasa warstwy Layer

Podczas tworzenia każdej z warstw podajemy następujące parametry:

- liczba neuronów, którą ma zawierać ta warstwa,
- liczba neuronów poprzedniej warstwy albo, w przypadku pierwszej warstwy, wymiar danych wejściowych,
- jedna z funkcji aktywacji wymienionych powyżej.

Przykład tworzenia warstwy o 3 neuronach, gdzie dane wejściowe mają dwa wymiary (albo poprzednia warstwa ma dwa neurony), a funkcją aktywacji jest funkcja sigmoidalna:

```
Layer(3, 2, "sigmoid")
```

Klasa Layer nie zawiera metod, które są wykorzystywane z perspektywy użytkownika.

Klasa sieci NeuralNetwork

Konstruktor klasy NeuralNetwork przyjmuje następujące parametry:

- rodzaj funkcji błędu,
- wartość współczynnika bezwładności.

Klasa ta zawiera dwie główne metody – add oraz train, które służą do, odpowiednio, dodawania warstwy do sieci i ćwiczenia sieci. Funkcja train, oprócz nauki, zwraca na koniec wartości funkcji straty na zbiorze treningowym w kolejnych etapach procesu uczenia.

Przykład budowy i uczenia, sieci dwuwarstwowej o liczbie neuronów, kolejno, 1 i 2, do klasyfikacji zbioru na płaszczyźnie.

```
nn = NeuralNetwork("cross_entropy", momentum=0)
nn.add(Layer(1, 2, "relu"))
nn.add(Layer(2, 2, "softmax"))
nn.train(X=train_set_X, Y=train_set_y, epochs=30, learning_rate=0.01)
```

Gdzie train_set_X i train_set_y to dane treningowe, epochs to liczba iteracji uczenia, a learning_rate to współczynnik nauki.

Regresja

Wczytanie pakietów

```
import numpy as np
import pandas as pd
from NeuralNetwork import NeuralNetwork
from Layer import Layer
import matplotlib.pyplot as plt
```

```
import seaborn as sns
from copy import deepcopy
import numpy as np

from matplotlib import animation, rc
from IPython.display import HTML
sns.set_style("darkgrid")
np.random.seed(1337)
```

Zbiór 1 - Activation

Wczytanie danych

```
df = pd.read_csv("Regression//data.activation.train.100.csv")
df_test = pd.read_csv("Regression//data.activation.test.100.csv")
```

Wizualizacja zbioru treningowego i testowego

Jak widać obserwacje ze zbioru testowego pochodzą z tego samego rozkładu, jedyny problem może być z zakresem x, który dla zbioru testowego jest trochę większy niż dla zbioru treningowego.

Spróbuj
my nauczyć sieć o jednej warstwie i liniowej funkcji aktywacji, by zobaczyć jak spróbuje przybliżyć dane. Ponieważ jest to problem regresji, to na ostatniej warstwie użyjemy liniowej warstwy aktywacji, oraz błędu średniokwadratowego jako funkcji straty. Narazie nie będziemy korzystać z momentum.

```
X = df['x'].values.reshape(-1,1); y = df['y'].values.reshape(-1,1)
X_test = df_test['x'].values.reshape(-1,1)
y_test = df_test['y'].values.reshape(-1,1)
nn = NeuralNetwork(loss="mse", momentum=0)
nn.add(Layer(units=1, input_shape=1, activation_function="linear"))
loss, test_loss, grad_norm = nn.train(
    X, y,
    X_test, y_test,
    epochs=500, learning_rate=1e-2, momentum=0, verbose=False)
```


Jak widać sieć zbiegła już w około 4000 epoku, co widać również po sumie norm Frobeniusa wszystkich gradientów wag w sieci widocznych na drugim wykresie. Sieć ma troche większy błąd na zbiorze testowym co może wynikać z natury danych (inny zakres x). Zobaczmy jak wygląda predkycja sieci na zbiorze testowym.

Sieć poprawnie przybliżyła dane w sposób liniowy. Jednowarstwowa sieć z liniową funkcją aktywacji jest bardzo prosto interpretowalna jako prosta liniowa. Uczenie tej sieci możemy traktować jak szukanie prostej regresji liniowej metodą spadku gradientu. Zobaczmy na wagi w tej wartswie. Jeśli prostą zdefiniujemy jako y = ax + b to waga tej sieci to a, a bias to b.

```
nn.layers[1].W, nn.layers[1].B
(array([[39.75441475]]), array([[-150.39044024]]))
```

Zgadza się to z wartościami widocznymi na wykresie predykcji sieci neuronowej.

Zobaczmy teraz czy dodanie liniowych warstw poprawi wynik działania sieci.

```
nn = NeuralNetwork(loss="mse", momentum=0)
nn.add(Layer(units=5, input_shape=1, activation_function="linear"))
nn.add(Layer(units=5, input_shape=5, activation_function="linear"))
nn.add(Layer(units=1, input_shape=5, activation_function="linear"))
```

```
loss, test_loss, grad_norm = nn.train(
    X, y,
    X_test, y_test,
    epochs=100, learning_rate=1e-3, momentum=0, verbose=False)
```


Pomimo dodania warstw liniowych predykcja sieci się nie bardzo nie zmieniła. Jest to zgodne z teorią, ponieważ sieć z dowolną liczbą warstw tylko liniowych jesteśmy w stanie przedstawic jako sieć jednej warstwie liniowej. Sieć również dużo szybciej zbiegła jednak może to wynikać z losowo dobrze trafionej aktywacji.

Skoro dodanie warstw liniowych nic nie dało dodajmy warstwy nieliniowe. Dostępne funkcje aktywacji to:

- 1) relu,
- 2) sigmoid,
- 3) tanh,
- 4) softmax.

Zróbmy podobną sieć tylko zastąpmy aktywację warstw głębokich na relu.

```
nn = NeuralNetwork(loss="mse", momentum=0)
nn.add(Layer(units=5, input_shape=1, activation_function="relu"))
```

```
nn.add(Layer(units=5, input_shape=5, activation_function="relu"))
    nn.add(Layer(units=1, input_shape=5, activation_function="linear"))
    loss, test_loss, grad_norm = nn.train(
         Х, у,
         X_test, y_test,
         epochs=100, learning_rate=1e-3, momentum=0, verbose=False)
                                                                                         Fro norm of gradient
                                                     2000
14000
                                          test loss
                                                     1750
12000
                                                     1500
10000
8000
                                                     1000
6000
4000
                                                      500
2000
  0
    0
               Y test
               y hat
-100
 -200
 -300
 -400
                                    0
                                               2
              -4
                         -2
                                                          4
                                                                     6
```

Widać już nielinowość w predykcji sieci. Dodatkowo nieliniowość ma podobne złamanie to funckja relu w 0. Widać również że większy błąd sieci pojawia się głównie w części której nie było w zbiorze treningowym. Narazie uczyliśmy naszą sieć na małej liczbie obserwacji. Sprawdźmy jak wygląda predkycja zależnie od liczby obserwacji w zbiorze uczącym, oraz jak szybko sieć zbiega. Wykorzystamy architekturę sieci z poprzedniego przykładu.

```
no_obs = [100,500, 1000, 10000]
trains = []
tests = []
for obs in no_obs:
    trains.append(pd.read_csv(f"Regression//data.activation.train.{obs}.csv"))
    tests.append(pd.read_csv(f"Regression//data.activation.test.{obs}.csv"))
def define_network():
```

```
nn = NeuralNetwork(loss="mse", momentum=0)
nn.add(Layer(units=5, input_shape=1, activation_function="relu"))
nn.add(Layer(units=5, input_shape=5, activation_function="relu"))
nn.add(Layer(units=1, input_shape=5, activation_function="linear"))
return nn
```

Poniższe cztery pary wykresów pokazują błąd na zbiorze traingowym, testowym oraz norme gradientu dla zbiorów o odpowiednio 100, 500, 1000 i 10000 obserwacji. Ważne jest również by każda sieć byłą inicliaziowana z tym samym ziarnem, by wagi startowe były te same.

Na powyższych wykresach widać, że wraz z wzrostem liczby obserwacji w zbiorze testowym zwiększa szybkość uczenia, tzn. w tylu samych epokach sieć jest w stanie osiągnąć niższy błąd. Niestety taka sieć uczy się znacznie dłużej(pod względem czasu obliczeniowego).

Zbiór 2 - Cube

Weźmiemy zbiory z 1000 obserwacjami.

Wczytanie danych

```
df = pd.read_csv("Regression//data.cube.train.10000.csv")
df_test = pd.read_csv("Regression//data.cube.test.10000.csv")

X = df['x'].values.reshape(-1,1); y = df['y'].values.reshape(-1,1)

X_test = df_test['x'].values.reshape(-1,1)

y_test = df_test['y'].values.reshape(-1,1)
```


Patrząc na zbiór od razu widać, że liniowe warstwy tu nie wystarczą, w tym przykładzie chciałbym porównać jak działają różne funkcję aktywacji. Skorzystamy z momentum, jednak szerzej przyjrzymy się temu zagadnieniu w następnych przykładach.

Sigmoid

```
nn = NeuralNetwork("mse", 0.8)
nn.add(Layer(units = 24, input_shape = 1, activation_function="sigmoid"))
nn.add(Layer(units = 24, input_shape = 24, activation_function="sigmoid"))
nn.add(Layer(units=1, input_shape=24, activation_function="linear"))
loss, test_loss, grad_norm = nn.train(
    X, y,
    X_test, y_test,
    epochs=300, learning_rate=1e-1, momentum=0.8, verbose=False)
```


Predykcja:

Sieć bardzo słabo nauczyła się zbioru poza środkową częścią pod względem wartości X. Wynika to z różnicy między zakresem X w zbiorze treningowym i testowym. Jest ona dobrze dopasowana do zbioru treningowego.

Relu

```
nn = NeuralNetwork("mse", 0.6)
    nn.add(Layer(units = 24, input_shape = 1, activation_function="relu"))
    nn.add(Layer(units = 12, input_shape = 24, activation_function="relu"))
    nn.add(Layer(units=1, input_shape=12, activation_function="linear"))
     loss, test_loss, grad_norm = nn.train(
         Х, у,
         X_test, y_test,
         epochs=1000, learning_rate=1e-4, momentum=0.95, verbose=False)
                                                     800
                                                                                     - Fro norm of gradient
                                                     700
40000
                                                     400
30000
                                                     300
20000
                                                     200
10000
  0
            200
                    400
                            600
                                    800
                                            1000
                                                                        400
                                                                                600
                                                                                        800
                                                      50
 250
-250
                                                    -100
-750
                                                    -150
-1250
                                                    -200
```

Sieć z warstw relu ma podobny problem co sieć z sigmoidem, jednak dużo gorzej dopasowuje się do zbioru treningowego. Może wynikać to z natury funkcji aktywacji, która nie jest tak gładka jak funkcja sigmoid. Ucząc te dwie sieci zauważamy, że sieć relu ma znacznie wyższe normy gradientów co wynika z zachowania pochodnej oraz funkcji aktywacji która dla dodatnich x jest liniowa. Dlatego uczać sieć relu korzystamy z znacznie niższego learning_rate. Gdyby zastosować takie jak w uczeniu poprzedniej sieci bardzo możliwe że natkniemy się na wybuch gradientu i problemy numeryczne.

Zbiór 3 - Linear

Wczytanie danych

```
df = pd.read_csv("Regression//data.linear.train.1000.csv")
df_test = pd.read_csv("Regression//data.linear.test.1000.csv")

X = df['x'].values.reshape(-1,1); y = df['y'].values.reshape(-1,1)

X_test = df_test['x'].values.reshape(-1,1)

y_test = df_test['y'].values.reshape(-1,1)
```

Wizualizacja zbioru treningowego i testowego

Jak widać dane generowane są z funkcji liniowej f(x) = ax + b. Chcemy zatem stworzyć sieć, która na podstawie danych nauczy się parametrów a i b. By to zrobić stworzymy sieć jednowarstwową i zobaczymy jak wyglądaja wagi w kolejnych iteracjach uczenia. Dla naszych danych b=-200 i a=50.

```
nn = NeuralNetwork("mse", momentum = 0)
nn.add(Layer(units=1, input_shape=1, activation_function="linear"))
```

Tworzymy siatkę parametrów a i b od -400 do 400, 1000 wartości

```
X_grid = np.linspace(-400, 400, 50)
Y_grid = np.linspace(-400,400,50)

xx,yy = np.meshgrid(X_grid,Y_grid)
flat_x, flat_y = xx.flatten().tolist(), yy.flatten().tolist()
z = np.zeros_like(flat_x)
```

Liczymy błąd mse w zależności od wartości parametrów W i DB.

```
for i in range(len(flat_x)):
    nn.layers[1].W = np.array([[flat_x[i]]])
    nn.layers[1].B = np.array([[flat_y[i]]])
    z[i] = nn.calculate_loss(X,y).mean()
```

Dostajemy wykres konturowy gdzie kolor oznacza wartość funkcji straty dla sieci o danych parametrach. Ciemny niebieski oznacza minimum. Zobaczmy jak metoda spadku gradientu porusza się po tej sieci.

Na wykresie widzimy jak sieć stopniowo zmienia wagi, tak by zbiegać do wag optymalnych. Proces ten jednak znacznie zwalnia wraz z zbliżaniem się do optymalnych wag.

Zobaczmy czy momentum coś zmienia w powyższym wykresie.

```
nn = NeuralNetwork("mse", momentum = 0.95)
nn.add(Layer(units=1, input_shape=1, activation_function="linear"))
W = []
B = []
for i in range(10):
    W.append(nn.layers[1].W[0][0])
    B.append(nn.layers[1].B[0][0])
    nn.train(X, y, epochs=50, momentum=0.95, verbose=0)
```


Momentum za dużo nie zmienia ponieważ problem ten jest wypukły, tzn. mamy pewność że metoda gradientu zbiegnie do optymalnego punktu. Momentum przydaję się gdy istnieją poboczne lokalne minima, w których sieć może stanąć.

Zbiór 4 - multimodal

Wczytanie danych

```
df = pd.read_csv("Regression//data.multimodal.train.1000.csv")
df_test = pd.read_csv("Regression//data.multimodal.test.1000.csv")

X = df['x'].values.reshape(-1,1); y = df['y'].values.reshape(-1,1)

X_test = df_test['x'].values.reshape(-1,1)

y_test = df_test['y'].values.reshape(-1,1)
```


Widać, że jest to najtrudniejszy problem dotychczas. Spróbujemy zbudować dużą sieć, która nauczy się powyższych zależności.

```
nn = NeuralNetwork("mse", momentum = 0.5)
    nn.add(Layer(units=150, input_shape=1, activation_function="sigmoid"))
    nn.add(Layer(units=1, input_shape=150, activation_function="linear"))
     loss, test_loss, grad_norm = nn.train(
         Х, у,
         X_test, y_test,
         epochs=1000, learning_rate=1e-2, momentum=0.5, verbose=False)
7000
                                                                                          Fro norm of gradient
                                                     1750
                                                     1500
                                                     1250
5000
                                                     1000
3000
                                                      500
                                                      250
1000
            200
                                             1000
                                                                                  600
100
                                                      -50
                                                      -100
                                                     -150
                                                      -200
-200
                                                      -250
                                                      -300
                                                      -350
-400
```

Widać, że jest to bardzo trudny problem dla sieci i nie uczy się ona odpowiednio. Być może zwiększenie pojemności modelu pozwoli na lepsze dopasowanie do problemu.

Zbiór 5 - square

Wczytanie danych

```
df = pd.read_csv("Regression//data.square.train.1000.csv")
df_test = pd.read_csv("Regression//data.square.test.1000.csv")

X = df['x'].values.reshape(-1,1); y = df['y'].values.reshape(-1,1)
X_test = df_test['x'].values.reshape(-1,1); y_test = df_test['y'].values.reshape(-1,1)
```

Wizualizacja zbioru treningowego i testowego

Ostatni problem to funkcja kwadratowa z którą sieć o conajmniej jednej warstwie sigmoidalnej nie powinna mieć problemu.

```
nn = NeuralNetwork("mse", momentum = 0.5)
nn.add(Layer(units=50, input_shape=1, activation_function="sigmoid"))
nn.add(Layer(units=50, input_shape=50, activation_function="sigmoid"))
nn.add(Layer(units=1, input_shape=50, activation_function="linear"))
loss, test_loss, grad_norm = nn.train(
    X, y,
    X_test, y_test,
    epochs=300, learning_rate=1e-2, momentum=0.5, verbose=False)
```


Sieć dopasowuje się prawie idealnie do problemu. Jednak na zbiorze testowym, gdzie zakres zmiennej x jest trochę szerszy niż w zbiorze treningowym widać, że sieć słabo generalizuje problem.

Klasyfikacja

Wczytanie pakietów

```
import numpy as np
import pandas as pd
from NeuralNetwork import NeuralNetwork
from Layer import Layer
from utils import plot_decision_surface, one_hot_encode
import matplotlib.pyplot as plt
import seaborn as sns
from copy import deepcopy
import numpy as np
from matplotlib import animation, rc
from IPython.display import HTML
sns.set_style("darkgrid")
np.random.seed(1337)
```

Zbiór nr 1 – XOR

Wczytanie danych

```
df = pd.read_csv("Classification//data.XOR.train.1000.csv")
df_test = pd.read_csv("Classification//data.XOR.test.1000.csv")
```


Jak widać zbiory są dla człowieka łatwo separowalne. Rozkłady na zbiorach testowych i treningowych są takie same, a zatem nie powinno być problemu z rozwiązaniem tego problemu przez sieć.

Analiza

```
X = df[['x','y']].values
X_test = df_test[['x','y']].values
y = df['cls'].values.reshape(-1,1) - 1
y_test = df_test['cls'].values.reshape(-1,1) - 1
```

Trzeba pamiętać by klasy były w zbiorze $\{0,1\}$, ponieważ takie założenie przyjmuje funkcja błedu oraz jej pochodna.

```
nn = NeuralNetwork(loss="cross_entropy", momentum=0.9)
nn.add(Layer(units=30, input_shape=2, activation_function="sigmoid"))
nn.add(Layer(units=15, input_shape=30, activation_function="sigmoid"))
nn.add(Layer(units=1, input_shape=15, activation_function="sigmoid"))
```

Zobaczmy jak zmienia się powierzchnia decyzyjna w zależności od liczby epok (iteracji).

Jak widać sieć z kolejnymi epokami jest coraz bardziej pewna swojej predykcji. Dodatkowo widać, że w miejscu styku obu klas sieć jest dużo mniej pewna niż w obszarze, gdzie występują obiekty tylko jednej klasy.

Zbiór nr 2 – zaszumiony XOR

Wczytanie danych

```
df = pd.read_csv("Classification//data.noisyXOR.train.1000.csv")
df_test = pd.read_csv("Classification/data.noisyXOR.test.1000.csv")
```

Wizualizacja zbioru treningowego i testowego

Mamy do czynienia z zaszumioną wersją poprzedniego zbioru. Zobaczmy jak zmieni to powierzchnie decyzyjną w porównaniu do poprzedniego problemu.

Analiza

```
X = df[['x','y']].values
X_test = df_test[['x','y']].values
y = df['cls'].values.reshape(-1,1) - 1
y_test = df_test['cls'].values.reshape(-1,1) - 1
nn = NeuralNetwork(loss="cross_entropy", momentum=0.9)
nn.add(Layer(units=30, input_shape=2, activation_function="sigmoid"))
nn.add(Layer(units=15, input_shape=30, activation_function="sigmoid"))
nn.add(Layer(units=1, input_shape=15, activation_function="sigmoid"))
plt.figure(figsize=(15,10))
loss, test_loss, grad_norm = nn.train(X, y, X_test, y_test, epochs=900, learning_rate=1e-im = plot_decision_surface(nn, df_test, proba=True, cmap='Dark2', alpha=0.5)
plt.colorbar(im)
plt.scatter(df_test['x'], df_test['y'], c=df_test['cls'])
plt.title(f"Powierzchnia decyzyjna po {900} epokach")
```


Widać, że powierzchnia decyzyjna na tym zbiorze wygląda podobnie do poprzedniej. Jednakże główną różnicą jest szersza przestrzeń, gdzie model nie jest pewny klasy, ponieważ został dodany tam szum.

Zbiór nr 3 - "Three Gaussian"

Wczytanie danych

```
np.random.seed(1234)
df = pd.read_csv("MGU_projekt1/Classification/data.three_gauss.train.1000.csv")
df_test = pd.read_csv("MGU_projekt1/Classification/data.three_gauss.test.1000.csv")
```


Po lewej widzimy zbiór treningowy, a po prawej zbiór testowy. Wszystkie reprezentowane klasy zakrawają o siebie, więc można spodziewać się problemu niedokładnej klasyfikacji przy krawędziach klas.

Analiza

Aby spełnić wcześniej wspomniane założenie o etykietach ze zbioru $\{0,1\}$ zastosujemy funkcję one_hot_encode, która z wektora y tworzy macierz o liczbie kolumn równej liczbie klas w problemie i wstawia jedynkę w i-tej kolumnie, jeśli dany wiersz należy do i-tej klasy.

Sieć, którą zastosowaliśmy składa się z trzech warstw – dwóch sigmoidalnych o kolejno 20 i 30 neuronach oraz warstwy wyjściowej z funkcją aktywacji softmax.

```
X_train = np.array(df.loc[:, ["x", "y"]])
y_train = np.array(df.cls).reshape(-1, 1)
X_test = np.array(df_test.loc[:, ["x", "y"]])
y_test = np.array(df_test.cls).reshape(-1, 1)
nn = NeuralNetwork("cross_entropy", 0)
nn.add(Layer(20, 2, "sigmoid"))
nn.add(Layer(30, 20, "sigmoid"))
nn.add(Layer(3, 30, "softmax"))
```

Aby uniknąć "wybuchania" gradientu, to jest przyjmowania przez niego bardzo dużych wartości, z początku stosujemy dość niski współczynnik uczenia. Następnie ten współczynnik stopniowo zwiększamy, żeby przyspieszyć proces uczenia

```
loss1, test_loss1, grad_norm1 = nn.train(
    X_train, one_hot_encode(y_train, 3),
    X_test, one_hot_encode(y_test, 3),
    epochs=80, learning_rate=1e-4, verbose=False)
loss2, test_loss2, grad_norm2 = nn.train(
    X_train, one_hot_encode(y_train, 3),
    X_test, one_hot_encode(y_test, 3),
    epochs=100, learning_rate=1e-2, verbose=False)
```


Tak jak przewidywaliśmy, sieć najwięcej punktów źle zaklasyfikowała w rejonie nachodzenia na siebie poszczególnych klas.

Zbiór nr 4 – "simple"

Wczytanie danych

```
df = pd.read_csv("MGU_projekt1/Classification/data.simple.train.1000.csv")
df_test = pd.read_csv("MGU_projekt1/Classification/data.simple.test.1000.csv")

X_train = np.array(df.loc[:, ["x", "y"]])
y_train = np.array(df.cls).reshape(-1, 1)

X_test = np.array(df_test.loc[:, ["x", "y"]])
y_test = np.array(df_test.cls).reshape(-1, 1)
```


Widać, że zbiór jest, jak sama nazwa wskazuje, dość prosty, więc sieć, którą tutaj zastosowaliśmy również jest bardzo prosta. Podobnie jak w przypadku poprzedniego zbioru możemy spodziewać się błędów w klasyfikacji na złączeniu obu klas.

Analiza

```
nn = NeuralNetwork("cross_entropy", 0)
nn.add(Layer(2, 2, "sigmoid"))

loss, test_loss, grad_norm = nn.train(
    X_train, one_hot_encode(y_train, 2),
    X_test, one_hot_encode(y_test, 2),
    epochs=50, learning_rate=1)
```


Błąd bardzo szybko zbiega do zera przy dość dużym współczynniku nauki. Dzięki temu już po 50 epokach otrzymujemy bardzo zadowalające wyniki.

Sieć dość dobrze klasyfikuje punkty, choć ponownie, jak można było się spodziewać, klasyfikacja nie jest idealna, jeśli chodzi o punkty leżące na pograniczu obu klas.

Zbiór nr 5 - "circles"

Wczytanie danych

```
df = pd.read_csv("MGU_projekt1/Classification/data.circles.train.1000.csv")
df_test = pd.read_csv("MGU_projekt1/Classification/data.circles.test.1000.csv")

X_train = np.array(df.loc[:, ["x", "y"]])
y_train = np.array(df.cls).reshape(-1, 1)

X_test = np.array(df_test.loc[:, ["x", "y"]])
y_test = np.array(df_test.cls).reshape(-1, 1)
```


Zbiór ten w widoczny sposób ma wiele klas graniczących ze sobą co sprawia, że klasyfikacja na tym zbiorze nie należy do trywialnych.

Analiza

Spośród licznych prób niewiele osiągnęło rozsądne rezultaty, a i najlepszy wynik jaki udało nam się osiągnąć również nie jest zadowalający.

```
nn = NeuralNetwork("cross_entropy", 0)
nn.add(Layer(3, 2, "sigmoid"))
nn.add(Layer(5, 3, "sigmoid"))
nn.add(Layer(4, 5, "sigmoid"))
loss, test_loss, grad_norm = nn.train(
    X_train, one_hot_encode(y_train, 4),
    X_test, one_hot_encode(y_test, 4),
    epochs=300, learning_rate=1e-2)
loss2, test_loss2, grad_norm2 = nn.train(
    X_train, one_hot_encode(y_train, 4),
    X_test, one_hot_encode(y_test, 4),
    epochs=300, learning_rate=1e-1)
```


loss3, test_loss3, grad_norm3 = nn.train(
 X_train, one_hot_encode(y_train, 4),
 X_test, one_hot_encode(y_test, 4),
 epochs=2000, learning_rate=1e-0)

Podział nabiera trochę kształtu przy przebiegnięciu 2600 epok, jednakże daleko mu do ideału.

```
loss4, test_loss4, grad_norm4 = nn.train(
    X_train, one_hot_encode(y_train, 4),
    X_test, one_hot_encode(y_test, 4),
    epochs=1400, learning_rate=1e-0)
```


Wyrównując liczbę epok do 4000 tak naprawdę nie wiele zyskaliśmy. Na pierwszy rzut oka wynik jest tożsamy z tym z poprzedniego kroku, choć w rzeczywistości wyniki te nieznacznie się różnią.

```
loss5, test_loss5, grad_norm5 = nn.train(
    X_train, one_hot_encode(y_train, 4),
    X_test, one_hot_encode(y_test, 4),
    epochs=10000, learning_rate=1e-0)
```


Dodając kolejne 10000 epok nadal nie wiele zyskujemy przy tej strukturze sieci. Dwie klasy są w miarę dobrze dopasowane, lecz dwie pozostałe pozostawiają wiele do życzenia. Nie wpływa to jednak na fakt, że zarówno błąd na zbiorze treningowym (po lewej), jak i błąd na zbiorze testowym (po prawej) powoli zbiegają do zera.

Ten przykład pokazuje nam, że ważną rolę odgrywa struktura sieci oraz że nie każdego zbioru można się nauczyć manipulując jedynie współczynnikiem uczenia i liczbą iteracji.

Podsumowanie

Podczas realizacji tego projektu dotknęliśmy wielu ważnych aspektów sieci neuronowych. Przekonaliśmy się, że wiele zadanych problemów można rozwiązać odpowiednio skonstruowanym i nauczonyn perceptronem wielowarstwowym. Jednakże problem klasyfikacji okazał się istotnie trudniejszy od regresji, a sam proces doboru odpowiednich warstw w sieci oraz uczenia był czasochłonny. Mieliśmy też okazję przekonać się jak duży wpływ na jakość uczenia może mieć początkowa (losowa) inicjalizacja macierzy wag w każdej z warstw.