Algoritmos y Estructuras de Datos I

Segundo Cuatrimestre 2021

Guía Práctica 5

Demostración de corrección de ciclos en SmallLang

Teorema del invariante: corrección de ciclos

Ejercicio 9. ★ Sea el siguiente ciclo con su correspondiente precondición y postcondición:

while (i >=
$$|s| / 2$$
) do
S1: suma := suma + $s[|s|-1-i]$;
S2: i := i - 1;
endwhile

$$P_c: \{|s| \ mod \ 2 = 0 \land i = |s| - 1 \land suma = 0\}$$

$$Q_c: \{|s| \ mod \ 2 = 0 \land i = |s|/2 - 1 \ \land_L \ suma = \sum_{j=0}^{|s|/2 - 1} s[j]\}$$

- a) Especificar un invariante de ciclo que permita demostrar que el ciclo cumple la postcondición.
- b) Especificar una función variante que permita demostrar que el ciclo termina.
- c) Demostrar formalmente la corrección y terminación del ciclo usando el Teorema del invariante.

Solución

$$I: \{|s| \ mod \ 2 = 0 \land |s| > i \ge |s|/2 - 1 \ \land_L suma = \sum_{j=0}^{|s|-2-i} s[j]\}$$

Justificación:

- a) $|s| \mod 2 = 0$: porque tengo que garantizar que no cambia en todo el ciclo.
- b) $|s| > i \ge |s|/2 1$: porque es la condición que valdrá justo al finalizar el ciclo y antes.
- c) $suma = \sum_{j=0}^{|s|-2-i} s[j]$: porque la sumatoria va "atrasada".

Veamos ahora que se cumplen las condiciones para probar que correctitud parcial:

$$P_c \Longrightarrow I$$
: Obviamente $|s| \mod 2 = 0$. Como $i = |s| - 1$ claramente $|s| > i \ge |s|/2 - 1$ porque $|s| \ge |s|/2$. Finalmente, $suma = \sum_{j=0}^{|s|-2-(|s|-1)} s[j] = \sum_{j=0}^{-1} s[j] = 0$.

$$\{I \land B\} S_c\{I\} \text{: Para comprobar esto hay que calcular } I \land B \longrightarrow wp(S1, wp(S2, I)).$$
 Aplicando el axioma 1 tenemos que:
$$wp(S2, I) = def(i-1) \land_L I_{i-1}^i =$$

$$True \land_L |s| \ mod \ 2 = 0 \land |s| > i-1 \ge |s|/2 - 1 \land_L suma = \sum_{j=0}^{|s|-2-(i-1)} s[j] =$$

$$|s| \ mod \ 2 = 0 \land |s| \ge i \ge |s|/2 \land_L suma = \sum_{j=0}^{|s|-i-1} s[j] \equiv E2$$

$$wp(S1, E2) = def(suma + s[|s| - 1 - i]) \land_L$$

$$|s| \ mod \ 2 = 0 \land |s| \ge i \ge |s|/2 \land_L suma + s[|s| - 1 - i] = \sum_{j=0}^{|s|-i-1} s[j] =$$

$$0 \le i < |s| \land_L |s| \ mod \ 2 = 0 \land |s| \ge i \ge |s|/2 \land_L suma + s[|s| - 1 - i] = \sum_{j=0}^{|s|-i-2} s[j] + s[|s| - 1 - i] =$$

$$|s| \ mod \ 2 = 0 \land |s| > i \ge |s|/2 \land_L suma = \sum_{j=0}^{|s|-i-2} s[j]$$

$$|s| \ mod \ 2 = 0 \land |s| > i \ge |s|/2 \land_L suma = \sum_{j=0}^{|s|-i-2} s[j]$$

$$|s| \ mod \ 2 = 0 \land |s| > i \ge |s|/2 \land_L suma = \sum_{j=0}^{|s|-i-2} s[j]$$

 $I \wedge \neg B \Longrightarrow Q_c$: Claramente cuando termina el ciclo $|s| > i \ge |s|/2 - 1$ y i < |s|/2. Entonces i = |s|/2 - 1. Por lo tanto las dos primeras condiciones del Q_c se cumplen. De acuerdo al invariante la sumatoria valdrá:

$$suma = \sum_{j=0}^{|s|-2-(|s|/2-1)} s[j] = \sum_{j=0}^{|s|-|s|/2-1)} s[j] =$$

Puesto que sabemos que $|s| \mod 2 = 0$ entonces |s| - |s|/2 = |s|/2 y reemplazando en la ecuación anterior encontramos lo buscado.

Ahora para demostrar terminación debemos proponer una función variante. Tomemos $f_v = (i - |s|/2) + 1$. Veamos que las dos condiciones de terminación se cumplen:

$$\{I \wedge B \wedge f_v = V_0\} S_c \{f_v < V_0\} \text{: Para comprobar esto hay que calcular: } I \wedge B \wedge f_v = V_0 \longrightarrow wp(S1, wp(S2, \{(i-|s|/2)+1 < V_0\})).$$
 Aplicando el axioma 1 tenemos que:
$$wp(S2, (i-|s|/2)+1 < V_0) = def(i-1) \wedge_L \{(i-|s|/2)+1 < V_0\}_{i-1}^i = True \wedge_L (i-1-|s|/2)+1) < V_0 = (i-|s|/2) < V_0 \equiv E2$$

$$wp(S1, E2) = def(suma+s[|s|-1-i]) \wedge_L (i-|s|/2) < V_0$$

$$0 \leq i < |s| \wedge_L (i-|s|/2) < V_0$$
 Claramente $f_v = V_0 = (i-|s|/2)+1$ implican esta última expresión.

Claramente $I \wedge B$ implican esta última expresión.

 $I \wedge f_v \leq 0 \Longrightarrow \neg B$: Si $(i-|s|/2)+1 \leq 0$ y que $i \geq |s|/2-1$ resulta que i=|s|/2-1. Esto implica que i < |s|/2.