kd education academy (9582701166

Time : 5 Hour STD 11 Science NEET Total Marks : 800 kd 700+ neet ch-2 structure of atom

* SECTION - A [800]

1. Match List *I* with List *II*

List <i>I</i> (Quantum Number)	List <i>II</i> (Information provided)
A. mı	I. Shape of orbital
$B. \ m_s$	II. Size of orbital
C. 1	III. Orientation of orbital
<i>D</i> . n	IV. Orientation of spin of electron

Choose the correct answer from the options given below:

(A)
$$A-III, B-IV, C-I, D-II$$

(B)
$$A - III, B - IV, C - II, D - I$$

(C)
$$A-II, B-I, C-IV, D-III$$

(D)
$$A-I, B-III, C-II, D-IV$$

- 2. If radius of second Bohr orbit of the He^+ ion is $105.8\,pm$, what is the radius of third Bohr orbit of Li^{2+} ion?
 - (A) 15.87 pm
- (B) 1.587 pm
- (C) $158.7\,\mathring{A}$
- (D) 158.7 pm
- 3. A particular station of All India Radio, New Delhi, broadcasts on a frequency of $1,368\,\mathrm{kHz}$ (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is : [speed of light $c=3.0\times10^8~\mathrm{ms}^{-1}$]
 - (A) 219.3 m
- (B) 219.2 m
- (C) 2192 m
- (D) 21.92 cm
- 4. From the following pairs of ions which one is not an iso-electronic pair?
 - (A) ${
 m O}^{2-}, {
 m F}^-$
 - (B) Na^{+}, Mg^{2+}
 - (C) ${
 m Mn}^{2+}, {
 m Fe}^{3+}$
 - (D) ${
 m Fe}^{2+}, {
 m Mn}^{2+}$
- 5. The number of angular nodes and radial nodes in 3s orbital are
 - (A) 0 and 1, respectively
 - (B) 0 and 2, respectively
 - (C) 1 and 0, respectively
 - (D) 3 and 0, respectively
- 6. The number of protons, neutrons and electrons in $^{175}_{71}Lu$, respectively, are :

	(A) 175,104 and 71	(B) 71,104 and 71	(C) 104,71 and 71	(D) 71,71 and 104
7.	Orbital having 3 angu	llar nodes and 3 total	nodes is	
	(A) 5p		(B) 3d	
	(C) 4f		(D) 6d	
8.	$4d,5\mathrm{p},5\mathrm{f}$ and $6\mathrm{p}$ orbit correct option is	tals are arranged in t	the order of decreasin	g energy. The
	(A) $5f>6p>5p>4d$		(B) $6p > 5f > 5p > 4d$	
	(C) $6p > 5f > 4d > 5p$		(D) $5f > 6p > 4d > 5p$	
9.	Which of the following falls in visible region	_	s in the spectrum of h	ydrogen atom
	(A) Lyman series	(B) Balmer series	(C) Paschen series	(D) Brackett series
10.	Which one is a wrong	statement ?		
	(A) Total orbital angu	lar momentum of elec	etron in ${}^{{}^{{}}}\!\!{}^{{}^{{}}}\!\!{}^{{}^{{}}}\!\!{}^{{}^{$	ual to zero
	_	•	um numbers while an e	lectron in an atom is
	designated by four q			
		nfiguration of N atom	is	
	$ \begin{array}{c ccc} 1s^2 & 2s^2 & 2p_x^1 \\ \hline \uparrow \downarrow & \hline \end{array} $	$\begin{array}{c c} 2p_y^1 & 2p_z^1 \\ \hline \uparrow & \downarrow \end{array}$		
	(D) The value of m fo	r d_z^2 is zero		
11.	The total number of o	orbitals present for pr	inciple quantum numbe	er, $n=4$ is
	(A) 12	(B) 15	(C) 16	(D) 30
12.	How many electrons	can fit in the orbital fo	or which $n=3$ and $l=1$?
	(A) 6		(B) 2	
	(C) 10		(D) 14	
13.	Which of the following axes ?	ng pairs of $d-$ orbitals	s will have electron der	nsity along the
	(A) d_{z^2}, d_{xz}	(B) d_{xz}, d_{yz}	(C) $d_{z^2}, d_{x^2-y^2}$	(D) $d_{xy}, d_{x^2-y^2}$
14.			ding to light of wave	
		$=6.63 imes10^{-34}~J~s,~{\sf spee}$	ed of light, $c = 3 \times 10^8 \ m$	s^{-1})
	(A) 6.67×10^{15}		(B) 6.67×10^{11}	
	(C) 4.42×10^{-15}		(D) 4.42×10^{-18}	
15.	Be^{2+} is isoelectronic v	with which of the follo	wing ions?	
	(A) H^+	(B) Li^+	(C) Na^+	(D) Mg^{2+}

16.	According to la	aw of photochemical	equivalence the	energy	absorbed	(in
	ergs/mole)	is	given	1		as
	$(h = 6.62 \times 10^{-27} e$	$crgs,\ c=3 imes cms^{-1},\ N_A=0$	$=6.02 imes10^{-23}\ mol^{-1})$			
	(A) $\frac{1.196\times10^8}{\lambda}$		(B) $\frac{2.859 \times 10^5}{\lambda}$			
	(C) $\frac{2.859\times10^{16}}{\lambda}$		(D) $\frac{1.196 \times 10^{16}}{\lambda}$			
17.		onic configuration of $\it G$				
	(A) $4f^5$ $5d^4$ $6s^1$	(B) $4f^7 \ 5d^1 \ 6s^2$	(C) $4f^3 \ 5d^5 \ 6s$,2	(D) $4f^4 5a$	$l^5 \; 6s^1$
18.	Based on equati	ion $E = -2.178 imes 10^{-18} \; { m J}$				
	Which of themis	not correct?				
	(A) Equation can orbit.	be used to calculate th	ne change in energ	y when t	the electror	າ changes
		e electron has a more r electron is more loosely				which
	_	sign in equation simply wer than it would be if				
	(D) Larger the va	alue of $n,$ the larger is t	he orbit radius.			
19.		nucleons and has ator $=2$, $m=0$ in it is	nic number equal	to 17 . T	he numbe	r of
	(A) 2	(B) 4	(C) 6		(D) 3	
20.	If there is 2 no	odal surfaces in third	excited state. Fin	d the o	orbital ang	ular
	(A) $\sqrt{3}\hbar$	(B) $\sqrt{2}\hbar$	(C) 4ħ		(D) $\frac{1}{\sqrt{2}\hbar}$	
21.	Match the colum	ns and choose correct	option			
	Column $-I$	Column – <i>II</i>				
	(a) 4s	(p) Circular orbit arour	nd nucleus			
	(b) 4p	$\overline{(q)}$ Non directional orb	pital			
	(c) 1s	(r) Angular momentun	$\overline{n=2h/\pi}$			
	(d) 3d	(s) Radial node is zero				
	(A) $a - p, b - q, c - q$	-r, d-s	(B) $a-q, b-r$	$\overline{,c-p,d}$	-s	
	(C) $a-s,b-r,c$	-q,d-p	(D) $a-p, b-r$	c, c-s, d	-q	

22. In H atom, an orbit has diameter of about $16.92 \stackrel{o}{A}$. What is the maximum number of electrons that can be accommodated?

(A) 16 (B) 32

23.	If the aufbau principl placed in the	e had not been foll	owed. $Ca(Z=20)$ w	ould have been		
	(A) $s-block$	(B) $p-block$	(C) $d-block$	(D) $f-block$		
24.	In Niobium $(Z=41)$ th	e number of electrons	with $m=-1$ will be			
	(A) 7 or 8	(B) 8 or 9	(C) 1 or 2	(D) 3 or 4		
25.	If the n^{th} specific periodical value of azimuthal qua		_			
	(A) $\frac{(n-1)}{2}$					
	(B) $\frac{n}{2}$					
	(C) $\frac{n+1}{2}$					
	(D) $\frac{n+2}{2}$		20V			
26.	For $3d_{z^2}$ calculate the v	value of $n.\ell.m$ and s				
	(A) $n o 5, l o 2, m o -$					
	(B) $n o 3, l o 2, m o 0$	2 2				
	(C) $n ightarrow3,l ightarrow1,m ightarrow+1,s ightarrow+rac{1}{2}or-rac{1}{2}$					
	(D) None of these		-/			
27.	The orbital angular mo	omentum of $3p$ electro	n is			
	(A) $\sqrt{3}h$					
	(B) $\sqrt{6}h$					
	(C) zero					
	(D) $\sqrt{3} \frac{h}{2\pi}$					
28.	If the sum of $(n+l)$ is with this energy leval			e spin associated		
	(A) 18	(B) 9	(C) 6	(D) 32		
29.	Arrange in decreasin H, Li, Na, K (A) $E_{2s(H)} < E_{2s(Li)} < E_{2s(Li)}$ (B) $E_{2s(H)} = E_{2s(Li)} = E_{2s(Li)}$ (C) $E_{2s(H)} > E_{2s(Li)} > E_{2s(Li)}$ (D) $E_{2s(H)} > E_{2s(Li)} > E_{2s(Li)}$	$egin{aligned} E_{2s(Na)} &< E_{2s(K)} \ E_{2s(Na)} &= E_{2s(K)} \ E_{2s(Na)} &> E_{2s(K)} \end{aligned}$	of $2s-$ orbital in $rac{1}{2}$	following atoms		
30.	Which statement is no	t true, regarding $2s$ o	rbital.			
	(A) Number of radial r	nodes is greater than a	ero			

(D) 8

(C) 64

- (B) Angular nodes is equal to zero
- (C) $\Psi(\theta,\phi) = \text{constant}$
- (D) Probability density is zero at nucleus
- 31. In following two plots, ψ^2 is plotted against the distance 'r' from nucleus select the correct statement

- (A) 'a' is for 1s and 'b' for 2s
- (B) $^{\prime}a^{\prime}$ is for 2s and $^{\prime}b^{\prime}$ for 1s
- (C) a' is for a and b' for a
- (D) a' is for 2p and b' for 2s
- 32. Choose the correct altenatives. The number of unpaired electrons in an atom of
 - (A) $_{14}Si$ is 2

(B) $_{14}Si$ is 0

(C) $_{15}P$ is 3

- (D) $_{15}P$ is 1
- 33. The electronic configurations of Cr^{24} and Cu^{29} are abnormal
 - (A) Due to extra stability of exactly half filled and exactly fully filled sub shells
 - (B) Because they belong to d- block
 - (C) Both the above
 - (D) None of the above
- 34. The electrons, identified by quantum by numbers n and l, $(i) \, n = 4, l = 1$ $(ii) \, n = 4, l = 0 \, (iii) \, n = 3, l = 2 \, (iv) \, n = 3, l = 1$ can be placed in order of increasing energy, from the lowest to highest, as
 - (A) (iv) < (ii) < (iii) < (i)

(B) (ii) < (iv) < (i) < (iii)

(C) (i) < (iii) < (ii) < (iv)

- (D) (iii) < (i) < (iv) < (ii)
- 35. The set of quantum number for the 19^{th} electrons in chromium is
 - (A) n=4, l=0, s=+1/2 or -1/2
 - (B) n=3, l=2, m=1, s=+1/2 or -1/2

	(C) $n = 3, l = 2, m = -1$,s=+1/2 or $-1/2$		
	(D) $n = 4, l = 1, m = 0, s$	s=+1/2 or $-1/2$		
36.	The quantum number	rs $+1/2$ and $-1/2$ for th	e electron spin repres	ent
	(A) rotation of the ele	ectron in clockwise and	anticlockwise derection	n respectively
	(B) rotation of the ele	ectron in anticlockwise	and clockwise direction	n respectively
	(C) magnetic moment	t of the electron pointi	ng up and down respe	ctively
	(D) two quantum med	chanical spin states wh	ich have no classical ar	nalogue
37.	The spin of the electro	on		5
	(A) increases the ang	ular momentum		
	(B) can be backward	(anti-clockwise) relative	e to the direction of the	e path of the electron
	(C) can be forward (c	lockwise) relative to th	e direction of the path	of the electron.
	(D) Both (b) and (c)			
38.	Quantum No. $l=2$ an	d $m=0$ represent which	ch orbital :	
	(A) d_{xy}	(B) $d_x^2-y^2$	(C) d_z^2	(D) d_{zx}
39.	The maximum numbe	r of electrons in subsh	ell is given by the expr	ession :
	(A) $4l+2$	(B) $4l-2$	(C) $2l + 1$	(D) $2n^2$
40.	The atomic orbital is:		4	
	(A) the circular path o	of the electron		
	(B) elliptical shaped o	rbit		
	(C) three-dimensional	field around nucleus		
	(D) the region in which	th there is maximum p	robability of finding an	electron
41.	For a d electron, the ${\bf c}$	orbital angular moment	tum is	
	(A) $\sqrt{6\hbar}$	(B) $\sqrt{2\hbar}$	(C) ħ	(D) 2ħ
42.	The orbital angular m	omentum of an electro	on in an s orbital is	
	(A) 1	(B) 0	(C) $\frac{\sqrt{2h}}{2 \Pi}$	(D) all of these
43.	What is the value of a	zimuthal quantum nur	- 11	
	(A) 3	(B) 4	(C) 6	(D) 5
44.		n=3 has only one	radial node. The o	
	momentum of the ele			
	(A) 0	(B) $\sqrt{6} rac{h}{2\pi}$	(C) $\sqrt{2} rac{h}{2\pi}$	(D) $3(\frac{h}{2\pi})$
45.	For an electron, wit		e radial node. The o	rbital angular
	(A) 0		(B) $\sqrt{6} \frac{h}{2\pi}$	
	(C) $\sqrt{2} \frac{h}{2\pi}$		(D) $3\left(\frac{h}{2\pi}\right)$	
	$\mathbf{v} = 2\pi$		(2π)	

46. Which of the following plots of radial probability function $4\pi r^2\Psi_r^2$ is incorrectly labelled

(A)

(B)

(C)

(D)

- 47. Pauli's exclusion principle states that
 - (A) Nucleus of an atom contains no negative charge
 - (B) Electrons move in circular orbits around the nucleus
 - (C) Electrons occupy orbitals of lowest energy
 - (D) All the four quantum numbers of two electrons in an atom cannot be equal

48. A filled or half-filled set of p or d-orbitals is spherically symmetric. Point out the species which has spherical symmetry

(A) Na

(B) C

(C) Cl^-

(D) Fe

49. For sodium atom the number of electrons with $m=0\,$ will be

(A) 2

(B) 7

(C) 9

(D) 8

	(A) 2	(B) 8	(C) 32	(D) 14
51.	Number of orbitats in	h sub-shell is		
	(A) 11	(B) 15	(C) 17	(D) 19
52.		n number of electrons hest principal quantum	which can be accomm number value is 4	nodated in an
	(A) 10	(B) 18	(C) 32	(D) 54
53.	In a potassium atom,	electronic energy levels	s are in the following o	rder
	(A) $4s>3d$	(B) $4s>4p$	(C) $4s < 3d$	(D) $4s < 3p$
54.	Which electronic confi	guration is not observ	ing the $(n+l)$ rule	
	(A) $1s^2$, $2s^22p^6$, $3s^23p^63e^2$	$d^1,4s^2$		
	(B) $1s^2$, $2s^2sp^6$, $3s^23p^63e^2$	$d^7,4s^2$		
	(C) $1s^2$, $2s^22p^6$, $3s^23p^63e^6$	$d^5,4s^1$	20	
	(D) $1s^2, 2s^22p^6, 3s^23p^63$	$d^8,4s^2$	(0)	
55.	The maximum numbe	r of electrons that can	be accommodated in	the M^{th} shell
	is			
	(A) 2	(B) 8	(C) 18	(D) 32
56.	The maximum energy	is present in any election	ron at	
	(A) Nucleus			
	(B) Ground state	K		
	(C) First excited state			
	(D) Infinite distance fr	om the nucleus		
57.	sodium $(Z=11)$ is		e shell electron or las	t electron of
	(A) $n=2, l=1, m=-1$	$s=-rac{1}{2}$		
	(B) $n = 3, l = 0, m = 0,$			
	(C) $n=3,l=2,m=-2$	$s=-rac{1}{2}$		
	(D) $n = 3, l = 2, m = 2,$	$s=+rac{1}{2}$		
58.			sible from the following]
	(A) $n=3, l=2, m=0,$	$s=-rac{1}{2}$		
	(B) $n=3, l=2, m=-2$	$s,s=-rac{1}{2}$		
	(C) $n = 3, l = 3, m = -3$	$s,s=-rac{1}{2}$		
	(D) $n = 3, l = 0, m = 0,$	-		
59.	The number of orbital	s in the fourth principa	al guantum number wil	l be

50. The maximum number of electrons that can be accommodated in f' sub shell is

,		`	
(А)	4

(B) 8

(C) 12

(D) 16

60. Chromium has the electronic configuration $4s^13d^5$ rather than $4s^23d^4$ because

- (A) 4s and 3d have the same energy
- (B) 4s has a higher energy than 3d
- (C) $4s^1$ is more stable than $4s^2$
- (D) $4s^13d^5$ half-filled is more stable than $4s^23d^4$

61. Electronic configuration of H^- is

(A)
$$1s^0$$

(B)
$$1s^{1}$$

(C)
$$1s^2$$

62. The electronic configuration of silver atom in ground state is

(A)
$$[Kr]3d^{10} 4s^1$$

(B)
$$[Xe] 4f^{14} 5d^{10} 6s^1$$
 (C) $[Kr] 4d^{10} 5s^1$

(C)
$$[Kr] 4d^{10} 5s$$

(D)
$$[Kr] 4d^9 5s^2$$

63. Orbital is

(A) Circular path around the nucleus in which the electron revolves

(B) Space around the nucleus where the probability of finding the electron is maximum

- (C) Amplitude of electrons wave
- (D) None of these

64. Which quantum number is not related with Schrodinger equation

- (A) Principal
- (B) Azimuthal
- (C) Magnetic
- (D) Spin

Angular wave function $A(\theta,\phi)$ for any atomic orbital is " $\frac{1}{2}\sqrt{\frac{3}{\pi}\cos\theta}$ " in polar coordinate system

(A) 2s

(C) $2P_u$

(D) $2P_Z$

Angular part of wave function for an orbital is = $\left(\frac{15}{4\pi}\right)^{\frac{1}{2}}\sin\theta\cos\theta\sin\phi$ where θ = angle from z- axis Angular node (s) are

(A) XY plane only

(B) YZ plane only

(C) XY & XZ plane only

(D) XY, YZ & ZX plane

67. The uncertainty in the position of a moving bullet of mass $10 \ gm$ is $10^{-5} \ m$. Calculate the uncertainty in its velocity

(A)
$$5.2 imes 10^{-28} \, m/sec$$

(B)
$$3.0 imes10^{-28}\,m/sec$$

(A)
$$5.2 \times 10^{-28} \, m/sec$$
 (B) $3.0 \times 10^{-28} \, m/sec$ (C) $5.2 \times 10^{-22} \, m/sec$ (D) $3 \times 10^{-22} \, m/sec$

(D)
$$3 imes 10^{-22}\,m/sec$$

68.	(A) Possible	mation of exact positio	n and momentum of a	n electron is
	(B) Impossible			
	(C) Sometimes possib	le sometimes impossib	le	
	(D) None of the above	e		
69.	·	and B have de $\sf Br$ of A is four times the vould be	-	
	(A) 5:1	(B) 25:4	(C) 20:1	(D) 5:4
70.	Number of waves prorbit is	oduced by an electror	n in one complete rev	volution in n^{th}
	(A) n	(B) n^2	(C) $(n+1)$	(D) $(2n+1)$
71.	The momentum (in kg	$\sigma-m/s$) of photon hav	ing $6~MeV$ energy is	
	(A) $3.2 imes 10^{-21}$	(B) 2.0	(C) 1.6×10^{-21}	(D) $3.2 imes 10^{-18}$
72.	The radius of second 4^{th} orbit is nearly	Bohr orbit is x . The	de-Broglie wavelength	of electron in
	(A) 2πx	(B) $6\pi x$	(C) 9x	(D) $x/3$
73.	Calculate the λ of CO_2	molecule moving with	a velocity $440m/s$.	
	(A) $\lambda=1.03 imes10^{-11}$	(B) $\lambda=2.06 imes10^{-10}$	(C) $\lambda=4.12 imes10^{-11}$	(D) $\lambda=2.06 imes10^{-11}$
74.	The $K.E.$ of an electro	on is $4.55 imes 10^{-25}J$ Calcı	ulate its λ .	
	(A) $1.944 imes 10^{-7} m$	(B) $19.44 \times 10^{-7} m$	(C) $97.2 imes 10^{-8} m$	(D) $97.2 imes 10^{-7} m$
75.	How fast is an electr travels in one second	on moving if it has a ?	wavelength equal to t	he distance it
	(A) $\sqrt{\frac{h}{m}}$	(B) $\sqrt{rac{m}{h}}$	(C) $\sqrt{\frac{h}{p}}$	(D) $\sqrt{\frac{h}{2(KE)}}$
76.		rgy of the electrons in	n ground state of hyd	drogen to the
	electrons in first excite (A) 1:4	(B) $1:8$	(C) 1:16	(D) 16:1
77				
//.		us, then de-Broglie's wate of $H-$ atom will be	avelength of all electro	in revolving in
	(A) $6\pi a_0$	(B) $4\pi a_0$	(C) $2\pi a_0$	(D) πa_0
78.	, ,		•	•
	(= , =	, g		

	(C) Electron < hydrog	en < helium < neon		
	(D) Neon < hydrogen	< helium < electron		
79.	A cricket ball of $0.5k_{\rm s}$ associated with its mo	_	elocity of $100m/\sec$. Th	e wavelength
	(A) $1/100cm$	(B) $6.6 imes10^{-34}m$	(C) $1.32 imes 10^{-35}m$	(D) $6.6 imes 10^{-28}m$
80.	A $200g$ golf ball is mo	oving with a speed of	5m per hour. The ass	sociated wave
	length is $(h=6.625 imes 1$	•		
	(A) $10^{-10} m$	(B) $10^{-20} m$	(C) $10^{-30} m$	(D) $10^{-40}m$
81.		ergy of hydrogen then t excited state to 5^{th} ex	the energy required fo cited state is	r excitation of
	(A) $\frac{3X}{4}$	(B) $\frac{4}{3X}$	(C) $\frac{X}{12}$	(D) $\frac{12}{X}$
82.	value for Li^{2+} for the	same transition is	transition is ycm^{-1} for	
	(A) $4y cm^{-1}$	(B) $y cm^{-1}$	(C) $\frac{3y}{4}$ cm^{-1}	(D) $\frac{9y}{4}$ cm^{-1}
83.		ectron in the 3^{rd} orbit in the first orbit will be	of a hydrogenic atol	m is $-E$. The
	(A) $-3E$	(B) $-E/3$	(C) $-E/9$	(D) $-9E$
84.	The wavelngth of radi in H atom is \mathbf{r}		ectron falls from 4^{th} Bo	hr orbit to 2^{nd}
	(A) 972	(B) 486	(C) 243	(D) 182
85.		n jumps in such a way potential energy will b	that its kinetic energy be	changes from
	(A) $+\frac{3}{2}x$	(B) $-\frac{3}{8}x$	(C) $+\frac{3}{4}x$	(D) $-\frac{3}{4}x$
	(A) $n_2=7 ightarrow n_1=2$ (B) $n_2=10 ightarrow n_1=6$ (C) $n_2=5 ightarrow n_1=1$		rey lines of hydrogen s	pectrum?
87.		vavelength for Pascher		
	(A) $\frac{R}{9}$	(B) $\frac{9}{R}$	(C) $\frac{1}{R}$	(D) $\frac{9R}{4}$
88.		where n represents :	om, time period of shell no. and Z repre	
	(A) 8:1	(B) 1:8	(C) 1:1	(D) 1:32

	(B) $(E_2-E_1)<(E_3-E_3)$ (C) $(E_2-E_1)=(E_3-E_3)$	-, (,		
	(D) $(E_2-E_1)=rac{1}{4}(E_3-E_3)$			
90.	Ratio of velocities of e	$^{\Theta}$ of hydrogen atom in	$1^{st},2^{nd},3^{rd}$ orbit is	
	(A) 1:2:3	(B) 1:1:1	(C) 1:1/2:1/3	(D) 3:2:1
91.	If ratio of Area of two in these two orbits is	o orbits of H atom is 4	:1 then the ratio of fr	equency of e^-
	(A) $\frac{8}{1}$	(B) $\frac{2\sqrt{2}}{1}$	(C) $\frac{1}{2\sqrt{2}}$	(D) $\frac{1}{8}$
92.	The shortest wavele wavelength in the pas	chen series of Li^{2+} is	Balmer series is x ,	then longest
	(A) $\frac{36x}{5}$	(B) $\frac{16x}{7}$	(C) $\frac{9x}{5}$	(D) $\frac{5x}{9}$
93.	The angular momentube		given orbit is J its kine	tic energy will
	(A) $\frac{1}{2} \frac{J^2}{mr^2}$	(B) $\frac{JV}{r}$	(C) $\frac{J^2}{2m}$	(D) $\frac{J^2}{2\pi}$
94.	The frequency of first	line of paschen series	in spectrum of Be^{+3} io	n is
	(A) $\frac{7RC}{9}$	(B) $\frac{7RC}{144}$	(C) $\frac{9RC}{25}$	(D) $\frac{20RC}{9}$
95.	The potential energy	of electron in third exci	ited state of He^+ ion is	eV
	(A) -12.08	(B) -3.4	(C) -6.8	(D) -1.7
96.			om in the second qua e third quantum state i	
	(A) $-\frac{3}{2}E_2$	(B) $-rac{2}{3}E_2$	(C) $-\frac{16}{9}E_2$	(D) $-\frac{4}{9}E_2$
97.	What is the ratio of third orbit of He^+ ion		n second orbit of hydr	ogen atom to
	(A) 8/27	(B) 32/27	(C) 27/32	(D) 16/18
98.		` '	terms of Rydberg's cowo levels of He^+ ion w	
	(A) $\frac{8R}{9}$	(B) $\frac{32R}{9}$	(C) $\frac{3R}{4}$	(D) None of these
99.	What is the maximum	wavelength line in the	Lyman series of He^+ is	on ?
	(A) 3R	(B) $1/3R$	(C) $4/4R$	(D) None of these
100.	The ratio of difference 2^{nd} and 3^{rd} orbits energy		Bohr orbits energy to	that between
				D 12

89. Which is correct for any $\it H-$ like species

(A) $(E_2-E_1)>(E_3-E_2)>(E_4-E_3)$

	wavelength in Pasche	n series of Li^{+2} ion is		
	(A) $\frac{36}{5}$ X	(B) $\frac{16}{7} X$	(C) $\frac{9}{5}$ X	(D) $\frac{5}{9}X$
102.	A photon of $300 nm$ is re-emitted photon has photon is	s absorbed by a gas as wavelength $496nm$, $^{\circ}$		
	(A) 759	(B) 857	(C) 957	(D) 657
103.	The ratio of the radius	s of the first three Boh	r orbits is	
	(A) $1:\frac{1}{2}:\frac{1}{3}$	(B) 1:2:3	(C) 1:4:9	(D) 1:8:27
104.	In the transition of electron The change in $P.E$ wi		kinetic energy changes	from y to $y/4$.
	(A) $\frac{-3}{4}y$	(B) $\frac{3}{4}y$	(C) $\frac{-3}{8}y$	(D) $\frac{3}{2}y$
105.	If the shortest wave wavelength in Balmer		n Lyman series is x ,	then longest
	(A) $\frac{9x}{5}$	(B) $\frac{36x}{5}$	(C) $\frac{x}{4}$	(D) $\frac{5x}{9}$
	(B) Number of lines in	n ultraviolet region is e n visible region is equa n infrared region is equ	qual to 3 l to 2 ual to 3	
	(A) Energy of a state i	is doubled		
	(B) Radius of an orbit			
		n in an orbit is doubled	d	
	(D) Energy of a state			
108.	(A) Either $12.09~eV$	difference between the (B) Either $2.55\ eV$ or	em may be (C) Either $13.6~eV$ or	(D) Either $3.4eV$ or
	or 10.2 <i>eV</i>	10.2~eV	3.4~eV	0.85~eV
109.	The masses of photo series of the spectrun	ons corresponding to a n of hydrogen atom ar	-	in and Balmer
	(A) 27:5	(B) 3:2	(C) 2:3	(D) 4:9
				Page 13

(C) 5.4

101. If shortest wavelength of He^+ ion in Balmer series is $X\,metres$ then longest

(D) $\frac{5}{27}$

(A) 0.5

(B) $\frac{1}{3}$

110.	0. The wave number of the first Lyman transition in H atom spectrum is equal to the wave number of second balmer transition in the spectrum of					
	(A) Li^{2+}	(B) Be^{3+}	(C) He^+		(D) B^{4+}
111.	Total number of spec	tral lines when	-	umps fron	n 8^{th} orbit t	to 2^{nd} orbit :
112	The ionization potent			· -	notassium	
•	(A) Equal to that of sodium	(B) 5.68		C) 4.68		(D) 10.88
113.	In Bohr's model of at energy will be absorb		•	•		3, how much
	(A) $2.15 \times 10^{-10} ergs$			B) 0.1911 ×		
	(C) $2.389 \times 10^{-10} ergs$		(1	D) 0.239×1	$10^{-10}ergs$	
114.	In an atom two elect $4R$. The ratio of the t					
	(A) 1:4	(B) 4:1	(C) 1:8		(D) 8:7
115.	Supposing the energy (in arbitrary units) of the energy levels in the hydrogen atom is given as under:					
	Energy level	K		M	N	
		n = 1	n=2	n=3	n=4n=	= ∞
	Energy	-864a.u.	9		Zero	
	the excitation energy	needed to rais	e the elec	tron from	\overline{M} level to	$n=\infty$ would
	be:					
	(A) 192	(B) 96	(C) 188		(D) 384
116.	If the ionization pote V	ntial of Li^{+2} is 1	122.4 eV. W	/hat is the	$5^{th}~I.P.~{\sf of}$	carbon
	(A) 979.2	(B) 97.92	(C) 48.96		(D) 489.6
117.	Radius of the nuclei $10^{-8}cm$. What is the f					
	(A) 10^{12}	(B) 10^{-12}	(C) 10^{-20}		(D) 10^{-4}
118.	The wave no. of the wave number of the					
	(A) 456200	(B) 136800	(C) 738720		(D) 152000
119.	In Bohr's model, ator	nic radius of th	e first orb	it is γ , the	radius of t	he 3^{rd} orbit, is
	(A) $\gamma/3$	(B) γ		C) 3γ	-	(D) 9γ

120.	Time taken for an e hydrogen atom is	lectron to complete c	one revolution in the	Bohr orbit of
	(A) $\frac{4\pi^2mr^2}{nh}$	(B) $\frac{nh}{4\pi^2mr}$	(C) $\frac{nh}{4\pi^2mr^2}$	(D) $\frac{h}{2\pi mr}$
121.	The ratio of area cove	red by second orbital t	to the first orbital is	
	(A) 1:2	(B) 1:16	(C) 8:1	(D) 16:1
122.	Energy of electron of	hydrogen atom in seco	and Bohr orbit is	
	(A) $-5.44 imes10^{-19}J$	(B) $-5.44 imes 10^{-19} kJ$	(C) $-5.44 \times 10^{-19} cal$	(D) $-5.44 imes 10^{-19} eV$
123.	If electron falls from n	n=3 to $n=2$, then em	itted energy isev	<i>I</i>
	(A) 10.2	(B) 12.09	(C) 1.9	(D) 0.65
124.	expression		ohr's orbit of an atom is	
	(A) $E_n = -rac{2\pi^2 m^4 e^2 z^2}{n^2 h^2}$	(B) $E_n=-rac{2\pi^2me^2z^2}{n^2h^2}$	(C) $E_n=-rac{2\pi^2me^4z^2}{n^2h^2}$	(D) $E_n=-rac{2\pi m^2e^2z^4}{n^2h^2}$
125.	The expression for Bo	hr's radius of an atom	is	
	(A) $r=rac{n^2h^2}{4\pi^2me^4z^2}$	(B) $r=rac{n^2h^2}{4\pi^2me^2z}$	is (C) $r=rac{n^2h^2}{4\pi^2me^2z^2}$	(D) $r=rac{n^2h^2}{4\pi^2m^2e^2z^2}$
126.	The energy of an elec	tron in n^{th} orbit of hyd	rogen atom is	
	(A) $rac{13.6}{n^4}~eV$	(B) $\frac{13.6}{n^3} eV$	(C) $\frac{13.6}{n^2}$ eV	(D) $\frac{13.6}{n}$ eV
127.	_	E_2 of two radiations at wavelengths i.e., λ_1 ar	are $25eV$ and $50eV$ resnd λ_2 will be	pectively. The
	(A) $\lambda_1=\lambda_2$	(B) $\lambda_1=2\lambda_2$	(C) $\lambda_1=4\lambda_2$	(D) $\lambda_1=1/2\lambda_2$
128.		g energies E_1 and E_2 a ween λ_1 and λ_2 will be	as $15eV$ and $45eV$ resp	ectively then
	(A) $\lambda_1=\lambda_2$	(B) $\lambda_1=3\lambda_2$	(C) $\lambda_1=\lambda_2/3$	(D) $\lambda_1=9\lambda_2$
129.	A 150 Watt bulb emit	s light of wavelength	$6600\overset{o}{A}$ and only 8% of e emitted by the bulb p	the energy is
	(A) $4 imes 10^{19}$	(B) $3.24 imes 10^{19}$	(C) $4.23 imes 10^{20}$	(D) $3 imes 10^{20}$
130.	then the number of	of photons emitted	length $620\ nm$ with 80% by the bulb in 20	-
	$(1eV = 1.6 imes 10^{-19} \ J, hc$	$=12400~eV\stackrel{o}{A})$		
	(A) $2 imes 10^{18}$	(B) 10^{18}	(C) 10^{21}	(D) $2 imes 10^{21}$
131.			nit a photo electron of ength of incident light	
	Å			
	(A) 2700	(B) 1700	(C) 5900	(D) 3100

132.	An atom emits energy spectrum it belongs:	gy equal to $4 imes 10^{-12}er_{ m S}$	g. To which part of elements	ectromagnetic
	(A) UV region		(B) Visible region	
	(C) IR region		(D) Microwave region	
133.		-	rgy supplied to it into re emitted by the ligh	_
	(A) $4 imes 10^{19}$	(B) $6 imes 10^{19}$	(C) 8×10^{18}	(D) $3 imes 10^{19}$ photon
134.	Which of the following proton + neutron? (A) P (B) D (C) T (D) All has same value.		n has maximum sum	of electron +
135.	The expression Ze given (A) The charge of $\alpha-$ (B) The charge on an (C) The charge on the (D) The kinetic energy	particle atom nucleus of atomic nui	mber Z	
136.	The number of electron (A) 2.1 (B) 2.1×18 (C) $2.1 \times 18 \times 6.023 \times 10$ (D) $2.1 \times 18 \times 6.023 \times 10$		Cl^- is	
137.	_	umber of protons. Th	number of neutrons in e number of protons, (C) 20,19,19	
138.	The electronic config	, ,	metal M^{2+} is $2,8,14$ a	, ,
139.	The compound in whi	ch cation is isoelectror	nic with anion is	
	(A) NaCl	(B) CsF	(C) NaI	(D) K_2S
140.	Iso-electronic species	is		
	(A) $F^-,\ O^{-2}$	(B) $F^-,~O$	(C) $F^-,\ O^+$	(D) $F^-,\ O^{+2}$

141.	An isc	ste	re is					
	(A) NO_2^- and O_3		(B) NO_2^- ar	(B) NO_2^- and PO_4^{3-}				
	(C) C	O_2 , .	N_2O,NO_3^-		(D) ClO_4^- ai	nd OCN^-		
142.	Numb	oer (of protons, ne	eutrons and electro	ons in the elem	ent $^{231}_{89}Y$ is	5	
	(A) 89			(B) 89,89,242	(C) 89,142,		(D) 89,71,89	
143.	In neu	utra	l atom, which	particles are equi	valent			
	(A) p^+	e^+	((B) e^-, e^+	(C) e^-,p^+		(D) p^+, n^o	
144.	Numb	er (of unpaired el	ectrons in inert ga	as is) '	
	(A) 0			(B) 8	(C) 4		(D) 18	
145.			mic number ation $4s^24p^6$ is	of an element	having the	valency s	shell electronic	
	(A) 35		_	(B) 36	(C) 37	V	(D) 38	
146.	•			m of atomic weigl tomic number 6	nt 12 and atom	ic number	6, the atom of	
	(A) C	onta	ins more neu	trons	(B) Contain	s more el	ectrons	
	(C) C	onta	ins more prot	tons	(D) Is a diff	erent eler	nent	
147.	atomi	ic w		ctronic configurat Its atomic numb				
	(A) 35	and	d 45	(B) 45 and 35	(C) 40 and	l 40	(D) 30 and 50	
148.	Which	n of	_	are isoelectronic	with one anoth	er		
	(A) N	a^+ ϵ	and Ne	(B) K^+ and ${\it O}$	(C) Ne and	0	(D) Na^+ and K^+	
149.				ving pairs is not c	-			
			erford-Proton	V		(B) J.J. Thomsom-Electron		
	-		nadwick-Neutr		(D) Bohr-Is	•		
150.				arge of a proton a	•	e is	(D) 1 1	
	(A) 2:			(B) 1:2	(C) 1:4		(D) 1:1	
151.		n Lis	t I with List I.	<u>I</u>				
	$\left\ List \right\ _{-I}$		List –	$_{II} \ $				
	(Ele		(Electronic					
	men		Configuration	n)				
	t)							
	A.	$ _N$	<i>I</i> .	[Ar				
				$]3 ext{ d}^{10}4 ext{ s}^24 ext{p}^5$				
	-							

B. S $II.$ S S $II.$ S							
Choose the correct answer from the options given below: (A) $A = IV$, $B = IIII$, $B = III$, $C = II$, $D = II$ (B) $A = IIII$, $B = III$, $C = III$, $D = II$ (B) $A = IIII$, $B = III$, $C = III$, $D = III$ (C) $A = I$, $B = III$, $C = III$, $D = III$ (D) $A = III$, $B = II$, $C = III$, $D = III$ (D) $A = III$, $B = II$, $C = III$, $D = III$ (D) $A = III$, $B = II$, $C = III$, $D = III$ (D) $A = III$, $B = II$, $C = III$, $D = III$ (D) $A = III$, $B = II$, $C = III$, $D = III$ (D) $A = III$, $B = I$, $C = III$, $D = III$ (Eiven: $R_H = I_H $		B.	S	II.	'		
Choose the correct answer from the options given below: (A) $A - IV, B - III, C - II, D - I$ (B) $A - III, B - II, C - II, D - IV$ (C) $A - I, B - IV, C - III, D - III$ (D) $A - II, B - I, C - IV, D - IIII$ (Eiven: R_{II} (Rydberg constant) = 2.18×10^{-18} J. h (Plank's constant) = 6.6×10^{-34} J.s.] (A) 600 (B) 657 (C) 658 (D) 660 (B) 659 (C) 658 (D) 659 (C) 658 (D) 659 (D) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (E) 659 (E) 659 (E) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (E) 659 (D) 659 (E) 659 (D) 659 (E) 659 (D) 659 (E) 659 (E) 659 (D) 660 (E) 659 (D) 660 (E) 659 (D) 660 (E) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (D) 659 (E) 659 (D) 659 (E) 659 (D) 659 (D)		C.	Br	III.			
(A) $A = IV, B = III, C = II, D = I$ (B) $A = III, B = III, C = I, D = IV$ (C) $A = I, B = IV, C = III, D = II$ (D) $A = II, B = I, C = IV, D = III$ (D) $A = II, B = I, C = IV, D = III$ (Eiven: R_H (Rydberg constant) = 2.18×10^{-18} J. h (Plank's constant) = 6.6×10^{-34} J.s.] (A) 600 (B) 657 (C) 658 (D) 660 (B) 657 (C) 658 (D) 660 (C) 660 (D) 660 (E) 660 (D) 660 (E)		D.	Kr	IV.			
(B) $A-III,B-II,C-I,D-IV$ (C) $A-I,B-IV,C-III,D-III$ (D) $A-II,B-I,C-IV,D-IIII$ (D) $A-II,B-I,C-IV,D-IIII$ (D) $A-II,B-I,C-IV,D-IIII$ (Eiven: $R_{\rm H}$ (Rydberg constant) = 2.18×10^{-18} J. h (Plank's constant) = 6.6×10^{-34} J.s.] (A) 600 (B) 657 (C) 658 (D) 660 (S3. The de-Broglie's wavelength of an electron in the $4^{\rm th}$ orbit is πa_0 . ($a_0 = 80$ hr's radius) (A) 5 (B) 4 (C) 7 (D) 8 (S4. The value of Rydberg constant (R_H) is 2.18×10^{-18} J. The velocity of electron having mass 9.1×10^{-31} kg in Bohr's first orbit of hydrogen atom = $\times 10^5$ ms ⁻¹ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (D) 35 (D) 35 (E) 35 (D) 35 (E) 35 (D) 35 (D) 35 (E) 35 (D) 35 (D) 35 (E) 35 (E) 35 (D) 35 (E) 35 (D) 35 (E) 35 (D) 35 (E) 35 (E) 35 (D) 35 (E) 35 (D) 35 (Choo	se tl	he corre	ct answer from the opt	ions given below:	
(C) $A-I,B-IV,C-III,D-III$ (D) $A-II,B-I,C-IV,D-IIII$ (152. Frequency of the de-Broglie wave of election in Bohr's first orbit of hydrogen atom is		(A) A	-I	V, B-II	I,C-II,D-I		.6
 (D) A – II, B – I, C – IV, D – III 152. Frequency of the de-Broglie wave of election in Bohr's first orbit of hydrogen atom is		(B) A	-II	II, B-II	C,C-I,D-IV		
Frequency of the de-Broglie wave of election in Bohr's first orbit of hydrogen atom is $\times 10^{13}$ Hz (nearest integer). [Given: $R_{\rm H}$ (Rydberg constant) = 2.18×10^{-18} J h (Plank's constant) = 6.6×10^{-34} J.s.] (A) 600 (B) 657 (C) 658 (D) 660 [S3. The de-Broglie's wavelength of an electron in the $4^{\rm th}$ orbit is πa_0 . ($a_0 = {\rm Bohr's \ radius}$) (A) 5 (B) 4 (C) 7 (D) 8 [S4. The value of Rydberg constant (R_H) is 2.18×10^{-18} J. The velocity of electron having mass 9.1×10^{-31} kg in Bohr's first orbit of hydrogen atom = $\times 10^5$ ms $^{-1}$ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 [S5. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (C) 4724 (B) 1724 (B) 1725 (C) 1727 (D) 1730 [S57. A hypothetical electromagnetic wave is show below.		(C) A	-I,	B-IV, C	C-III,D-II		,
atom is		(D) A	-II	I,B-I,C	C-IV,D-III		
atom is	152.	Frequ	ıenc	y of the	de-Broglie wave of el	ection in Bohr's firs	t orbit of hydrogen
$h(\ Plank's\ constant\)=6.6\times 10^{-34}\ J.s.\]$ $(A)\ 600$ $(B)\ 657$ $(C)\ 658$ $(D)\ 660$ 153. The de-Broglie's wavelength of an electron in the 4^{th} orbit is $\dots \pi a_0$. $(a_0=Bohr's\ radius)$ $(A)\ 5$ $(B)\ 4$ $(C)\ 7$ $(D)\ 8$ 154. The value of Rydberg constant (R_H) is $2.18\times 10^{-18}\ J$. The velocity of electron having mass $9.1\times 10^{-31}\ kg$ in Bohr's first orbit of hydrogen atom $=\dots\dots\times 10^5\ ms^{-1}$ (nearest integer) $(A)\ 22$ $(B)\ 25$ $(C)\ 30$ $(D)\ 35$ 155. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. $\frac{1}{7}$ and $\frac{1}{683}$ are respectively $(A)\ 540\ and\ \frac{1}{683}$ $(B)\ 540\ and\ 683$ $(C)\ 450\ and\ \frac{1}{683}$ $(D)\ 450\ and\ 683$ 156. Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x\times 10\ cm^{-1}$. The value of x is		-		-	_	Ch	, J
(A) 600 (B) 657 (C) 658 (D) 660 153. The de-Broglie's wavelength of an electron in the 4^{th} orbit is πa_0 . ($a_0 = \text{Bohr's radius}$) (A) 5 (B) 4 (C) 7 (D) 8 154. The value of Rydberg constant (R_H) is $2.18 \times 10^{-18} \text{J}$. The velocity of electron having mass $9.1 \times 10^{-31} \text{kg}$ in Bohr's first orbit of hydrogen atom $= \dots \times 10^5 \text{ms}^{-1}$ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 155. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 156. Wavenumber for a radiation having $5800 \mathring{A}$ wavelength is $x \times 10 \text{cm}^{-1}$. The value of x is		[Give	n : <i>I</i>	$R_{ m H}($ Rydb	perg constant) $= 2.18 imes 1$	$10^{-18} \mathrm{J}.$	
153. The de-Broglie's wavelength of an electron in the 4^{th} orbit is $\dots \pi a_0$. $(a_0 = \text{Bohr's radius})$ (A) 5 (B) 4 (C) 7 (D) 8 154. The value of Rydberg constant (R_H) is 2.18×10^{-18} J. The velocity of electron having mass 9.1×10^{-31} kg in Bohr's first orbit of hydrogen atom $= \dots \times 10^5$ ms ⁻¹ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 155. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (S) 450 wavelength is $x \times 10$ cm ⁻¹ . The value of x is		h(Pla	ank's	s consta	nt $)=6.6 imes10^{-34}$ J.s. $]$		
Bohr's radius) (A) 5 (B) 4 (C) 7 (D) 8 154. The value of Rydberg constant (R_H) is 2.18×10^{-18} J. The velocity of electron having mass 9.1×10^{-31} kg in Bohr's first orbit of hydrogen atom $= \dots \times 10^5$ ms ⁻¹ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 155. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 156. Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x \times 10$ cm ⁻¹ . The value of x is		(A) 60	00		(B) 657	(C) 658	(D) 660
 (A) 5 (B) 4 (C) 7 (D) 8 The value of Rydberg constant (R_H) is 2.18 × 10⁻¹⁸ J. The velocity of electron having mass 9.1 × 10⁻³¹ kg in Bohr's first orbit of hydrogen atom = × 10⁵ ms⁻¹ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' × 10¹² hertz and that has a radiant intensity in that direction of ½ watt per steradian. 'A' and 'B' are respectively (A) 540 and ½ (B) 540 and 683 (C) 450 and ½ are respectively (A) 540 and ½ (B) 540 and 683 (C) 450 and ½ (D) 450 and 683 Wavenumber for a radiation having 5800Å wavelength is x × 10 cm⁻¹. The value of x is	153.				wavelength of an electr	on in the $4^{ m th}$ orbit is	$\delta \ldots \ldots \pi a_0. (a_0 =$
having mass $9.1 \times 10^{-31} \mathrm{kg}$ in Bohr's first orbit of hydrogen atom $= \dots \times 10^5 \mathrm{ms^{-1}}$ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 Wavenumber for a radiation having $5800 \mathring{A}$ wavelength is $x \times 10 \mathrm{cm^{-1}}$. The value of x is (A) 1724 (B) 1725 (C) 1727 (D) 1730				,	(B) 4	(C) 7	(D) 8
= × $10^5 \mathrm{ms^{-1}}$ (nearest integer) (A) 22 (B) 25 (C) 30 (D) 35 The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' × 10^{12} hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 Wavenumber for a radiation having $5800 \mathrm{\mathring{A}}$ wavelength is $x \times 10 \mathrm{cm^{-1}}$. The value of x is	154.	The v	/alu	e of Ryo	dberg constant (R_H) is	$5~2.18 imes10^{-18}~\mathrm{J}.$ The	velocity of electron
(A) 22 (B) 25 (C) 30 (D) 35 155. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 156. Wavenumber for a radiation having $5800 \mathring{A}$ wavelength is $x \times 10 \text{ cm}^{-1}$. The value of x is		havin	g	mass 9	$0.1 imes10^{-31}~{ m kg}$ in Bohr	r's first orbit of	hydrogen atom
The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (D) 4		$=\dots$		$. imes 10^5~\mathrm{m}$	$ m s^{-1}$ (nearest integer)		
monochromatic radiation of frequency 'A' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x \times 10$ cm $^{-1}$. The value of x is		(A) 22	2		(B) 25	(C) 30	(D) 35
intensity in that direction of $\frac{1}{7}$ watt per steradian. 'A' and 'B' are respectively (A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (S) Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x \times 10~\mathrm{cm}^{-1}$. The value of x is (A) 1724 (B) 1725 (C) 1727 (D) 1730 (S) A hypothetical electromagnetic wave is show below.	155.	The c	and	ela is the	e luminous intensity, in	a given direction, of	a source that emits
(A) 540 and $\frac{1}{683}$ (B) 540 and 683 (C) 450 and $\frac{1}{683}$ (D) 450 and 683 (S) Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x \times 10~\mathrm{cm}^{-1}$. The value of x is (A) 1724 (B) 1725 (C) 1727 (D) 1730 (E) 157 . A hypothetical electromagnetic wave is show below.		mond	ochr	omatic r	adiation of frequency	' $ m A$ ' $ imes 10^{12}$ hertz and	d that has a radiant
Wavenumber for a radiation having $5800\mathring{A}$ wavelength is $x \times 10~\mathrm{cm}^{-1}$. The value of x is (A) 1724 (B) 1725 (C) 1727 (D) 1730 157. A hypothetical electromagnetic wave is show below.		inten	sity	in that d	irection of $\frac{1}{7}$ watt per s	teradian. $^{\prime}A^{\prime}$ and $^{\prime}B^{\prime}$	are respectively
of x is		(A) 54	10 ar	nd $rac{1}{683}$	(B) 540 and 683	(C) 450 and $\frac{1}{683}$	(D) 450 and 683
(A) 1724 (B) 1725 (C) 1727 (D) 1730 157. A hypothetical electromagnetic wave is show below.	156.					$0\mathring{A}$ wavelength is x	$ imes 10~{ m cm}^{-1}.$ The value
						(C) 1727	(D) 1730
	157.			etical ele	ectromagnetic wave is s	how below.	

	$(C) \ n = 3, l = 1, m = 0$ $(D) \ n = 3, l = 2, m = 1$			
	The correct option for	r the order is :		
	(A) $B > D > C > A$	(B) $D > B > C > A$	(C) $A > C > B > D$	(D) $D > B > A > C$
164.	The wave function (Ψ)) of $2s$ is given by		
	$\Psi_{2s}=rac{1}{2\sqrt{2\pi}}\Big(rac{1}{a_0}\Big)^{1/2}\Big(2-$	$-rac{r}{a_0}\Big)e^{-r/2a_0}$		
	At $r=r_0$, radial node	is formed. Thus, r_0 in to	erms of a_0	
	(A) $r_0=a_0$	(B) $r_0=4a_0$	(C) $r_0=rac{a_0}{2}$	(D) $r_0=2a_0$
165.		n electron of kinetic e		
	(Nearest integer)Give	n : mass of electron is	$9 \times 10^{-31} kg, h = 6.6 \times 10^{-31} kg$	^{-34}Js
	(A) 6	(B) 5	(C) 4	(D) 7
166.		electron in the first		gen atom is
		ergy in the third Bohr o		
	(A) $\frac{1}{27}$ of this value	(B) One third of this value	(C) Three times of this value	(D) $\frac{1}{9}$ th of this value
167.	The electron in the $n^{ m t}$	$^{ m h}$ orbit of Li^{2+} is excite	ed to $(n+1)$ orbit using	the radiation
		J (as shown in the ${\sf d}$		
	$R_H = 2.18 imes 10^{-18} J$			
	1.4710-17.1	_n+1		
	1.47×10 ⁻¹⁷ J			
	Lee			
		-n		
	(A) 2	(B) 3	(C) 1	(D) 4
168.		ne hydrogen spectrum		wavelength as
		sition from $n=4$ to $n=$	•	
	(A) $n=2$ to $n=1$	(B) $n=1$ to $n=3$	(C) $n=1$ to $n=2$	(D) $n=3$ to $n=4$
169.	Assume that the rad	ius of the first Bohr o	orbit of hydrogen ator	n is $0.6 \mathring{A}$. The
	radius of the third	Bohr orbit of He^+ is	picome	eter. (Nearest
	Integer)			
	(A) 170	(B) 180	(C) 270	(D) 250
170.	Given below are two labelled as Reason R :	statements : one is lab	elled as Assertion \emph{A} an	d the other is
		notoelectric effect, the	electrons are eiected fr	rom the metal
	·	the beam of light of		
	frequency strikes the	_		

Reason R: When the photon of any energy strikes an electron in the atom, transfer of energy from the photon to the electron takes place. In the light of the above statements, choose the most appropriate answer from the options given below:

(A) Both A and R are correct but R is NOT the correct explanation of A

- (B) A is correct but R is not correct
- (C) Both A and R are correct and R is the correct explanation of A
- (D) A is not correct but R is correct
- 171. The total number of isoelectronic species from the given set is

 $O^{2-}, F^-, Al, Mg^{2+}, Na^+, O^+, Mg, Al^{3+}, F$

(A) 5

(B) 4

(C) 3

(D) 2

172. The orbital angular momentum of an electron in 3s orbital is $\frac{xh}{2\pi}$. The value of x is

(A) 1

(B) 2

(C) 3

(D) 0

173. The shortest wavelength of hydrogen atom in Lyman series is λ . The longest wavelength in Balmer series of He^+ is

(A) $\frac{5}{9\lambda}$

(B) $\frac{9\lambda}{5}$

(C) $\frac{36\lambda}{5}$

(D) $\frac{5\lambda}{9}$

174. Which of the following is the correct plot for the probability density $\psi^2(r)$ as a function of distance ' r ' of the electron form the nucleus for 2s orbital?

(A)

(B)

(C)

(D)

175. The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is (Nearest Integer)(Mass of electron is $9.1 \times 10^{-31} kg$ and mass of neutron is $1.6 \times 10^{-27} \, kg$)

- (A) 1757
- (B) 1758
- (C) 1756
- (D) 1755

	Bohr's orbit is r_4 . The	n		
	(A) $r_4=rac{9}{16}r_3$	(B) $r_4=rac{16}{9}r_3$	(C) $r_4=rac{3}{4}r_3$	(D) $r_4=rac{4}{3}r_3$
177.	Consider an imaginary	y ion $rac{48}{22}X^{3-}$. The nucleuns in the ion. The value		
	(A) 4	(B) 3	(C) 8	(D) 5
178.	The number of radial	and angular nodes in 4	4d orbital are, respective	vely
	(A) 1 and 2	(B) 3 and 2	(C) 1 and 0	(D) 2 and 1
179.	-	ct with platinum metal	is $ imes 10^{-19} J$	•
	$h = 6.6 \times 10^{-34} J s$.]	nold frequency of		
	(A) 32.1	(B) 0.624	(C) 8.58	(D) 976
180.	The pair, in which ions			
	(A) Br^- and Be^{2+}		(C) S^{2-} and K^+	
181.	If the uncertainty in $2.4 \times 10^{-26} \left(ms^{-1}\right)$ and (Nearest integer) (Given : $h=6.626 \times 10^{-1}$ (A) 22	H $10^{-7} \left(m ight)$ respectively.		
182.	energy required for it	an electron emitted the electron in its great secape from the ator ^{34}Js ,Mass of electron (B) 3	ound state compared n, is times. (Near	d to minimum
183.	Which of the foll $Sm,62;Er,68:Yb,70:L$ (A) Sm^{2+} and Er^{3+} (B) Yb^{2+} and Lu^{3+} (C) Tb^{2+} and Tm^{4+} (D) both (A) and (C) a	$u,71;Eu,63:Tb$, $65;~{ m Tn}$	•	es? (At. no.
184.		mitted per second by	the bulb is ${ m x} imes 10^{20}$. Th	
	$[Given: n = 0.03 \times 10]$	$^{34}\mathrm{Js}$ and $\mathrm{c}=3.0 imes10^8\mathrm{m}$	is]	

176. If the radius of the $3^{
m rd}$ Bohr's orbit of hydrogen atom is r_3 and the radius of $4^{
m th}$

	(A) 1	(B) 4	(C) 2	(D) 3	
185.	Radius of $1^{ m st}$ orbit of Be^{3+} is eV	H and some orbit of E	e^{3+} is same . Energy	of their orbit of	
	(A) -54.4	(B) -13.6	(C) -108.8	(D) -27.2	
186.	How many spectral lin	e of Balmer series pre	sent in visible region	:	
	(A) 5	(B) 4	(C) 2	(D) 3	
187.	Which of the following quantum number $m=1$	0 ?			
	(A) <i>Na</i>	(B) O	(C) Cl	(D) <i>N</i>	
188.	If $n=2$ for He^+ ion th (A) 3.33	an $\overset{o}{A}$ out the way	ve length (C) 1.47	(D) 2.37	
189.	In which one of to the phenomenon does phenomenon (A) X -ray spectraChar (B) α -particle scattering (C) Emission spectraT	he following pairs of the experimental of ge on the nucleus ngQuantized electron of he quantization of ene	of experimental ob bservation correctly orbit	servations and	
100	(D) The photoelectric effectThe nuclear atom Which one is the correct outer configuration of chromium				
190.		ect outer configuration	i of chromium		
	(A)				
	$\begin{array}{c} (C) \\ \uparrow $				
	$\begin{array}{c c} (D) \\ \hline \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \\ \hline \end{array}$	1			
191.	(iii)n=3,l=2	$(ii)\; n=4, l=0$		s in an atom	

(B) (iv) < (ii) < (iii) < (i)

(A) (iii) < (i) < (iv) < (ii)

	(C) $(i) < (iii) < (ii) < ($	iv)	(D) $(ii) < (iv) < (i) < (i)$	ii)
192.	The electrons identifie	ed by quantum numbe	rs n and l :	
	(A)n=4,l=1	$\left(B\right) n=4,l=0$		
	(C)n=3,l=2	(D)n=3,l=1		
	can be placed in orde	r of increasing energy	as:	
	(A) $(C) < (D) < (B) < (B)$	(A)	(B) $(D) < (B) < (C) < (A)$	4)
	(C) $(B) < (D) < (A) < (A)$	(C)	(D) $(A) < (C) < (B) < (A)$	D)
193.	If the radius of first electron in the third of		a_0 , the de-Broglie wave	elength of an
	(A) $4\pi a_0$	(B) $8\pi a_0$	(C) $6\pi a_0$	(D) $2\pi a_0$
194.	the de-Broglie wave a	ssociated with it would		_
	(A) one fourth	(B) half	(C) four times	(D) two times
195.	The longest waveleng	gth of light capable o	$Cl-Cl$ bonds in Cl_2 if breaking a single Cl	
	$(C=3 imes 10^8~ms^{-1}~{ m and}$	/2		
	(A) 594	(B) 640	(C) 700	(D) 494
196.			ssociated with a prot	on moving at
	$1.0 \times 10^3 \ ms^{-1}$ r			
	(Mass of proton $= 1.6$	$7 imes 10^{-27}kg$ and $h=6.6$	$3 imes 10^{-34}Js$)	
	(A) 0.40	(B) 2.5	(C) 14	(D) 0.32
197.	0.005%. Certainity wit		peed of $600m/s$ with a of the electron can $a=9.1 imes 10^{-31}ka$:	
			(C) $3.84 \times 10^{-3} m$	(D) $1.52 \times 10^{-4} m$
198			oup of the isoelectronic	
150.	(A) C_2^{2-}, O_2^-, CO, NO		(B) $NO^+, C_2^{2-}, CN^-, N_2$	species.
	(C) $CN^-, N_2, O_2^{2-}, C_2^{2-}$	4	(D) N_2, O_2^-, NO^+, CO	
			2	
199.		I state of $(Z=24)$. Tumbers, $l=1$ and 2 are	he numbers of electr e, respectively	ons with the
	(A) 16 and 4	(B) 12 and 5	(C) 12 and 4	(D) 16 and 5
200.	Which one of the followspecies (A) K^+,Cl^-,Mg^{2+},Sc^{3-}		esents the collection o	f isoelectronic

(C)
$$K^+, Ca^{2+}, Sc^{3+}, Cl^-$$

(D)
$$Na^+, Mg^{2+}, Al^{3+}, Cl$$

----- "Success is not the result of spontaneous combustion. You must set yourself on fire." — Arnold H. Glasow -----

