Calculus I Homework Review Trigonometry Lecture 2

1. The problem is too easy to appear on a quiz or test. Convert from degrees to radians.

- (a) 15°.
- (b) 30°.
- (c) 36° .
- (d) 45° .
- (e) 60° .
- (f) 75° .
- (g) 90° .

- (h) 120°.
- (i) 135°.
- (j) 150° .
- (k) 180° .
- (1) 225° .
- (m) 270° .
- (n) 305° .

- (o) 360° .
- (p) 405° .
- (q) 1200° .
- $(r) -900^{\circ}$.
- (s) -2014° .
- 2. The problem is too easy to appear on a quiz or test. Convert from radians to degrees. The answer key has not been proofread, use with caution.
 - (a) 4π .
 - (b) $-\frac{7}{6}\pi$. (c) $\frac{7}{12}\pi$.

- (d) $\frac{4}{3}\pi$.
- (e) $-\frac{3}{8}\pi$.
- (f) 2014π .

- (g) 5.

(h) -2014.

- 3. Prove the trigonometry identities.
 - (a) $\sin \theta \cot \theta = \cos \theta$.
 - (b) $(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta).$
 - (c) $\sec \theta \cos \theta = \tan \theta \sin \theta$.
 - (d) $\tan^2 \theta \sin^2 \theta = \tan^2 \theta \sin^2 \theta$.
 - (e) $\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$.
 - (f) $2\csc(2\theta) = \sec\theta \csc\theta$.
 - (g) $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$.
 - (h) $\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2\sec^2\theta.$
 - (i) $\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$.

- (j) $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$
- (k) $\sin(3\theta) + \sin \theta = 2\sin(2\theta)\cos \theta$.
- (1) $cos(3\theta) = 4 cos^3 \theta 3 cos \theta$.
- (m) $1 + \tan^2 \theta = \sec^2 \theta$.
- (n) $1 + \csc^2 \theta = \cot^2 \theta$.
- (o) $2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta \sin^2(2\theta)$.
- (p) $\frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 \tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$
- 4. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.
 - (a) $2\cos x 1 = 0$.
 - (b) $\sin(2x) = \cos x$.
 - (c) $\sqrt{3}\sin x = \sin(2x)$...
 - (d) $2\sin^2 x = 1$.
 - (e) $2 + \cos(2x) = 3\cos x$.

- (f) $2\cos x + \sin(2x) = 0$.
- (g) $2\cos^2 x (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$
- (h) $|\tan x| = 1$.
- (i) $3\cot^2 x = 1$.

(j) $\sin x = \tan x$.