

Report No: CCISE170403503

FCC REPORT

(WIFI)

Applicant: Interglobe Connection Corp

Address of Applicant: 8828 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: 4 inch

Model No.: POP S40

Trade mark: SOLE

FCC ID: 2AC7ISOLEPOPS40

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Apr., 2017

Date of Test: 14 Apr., to 01 Jun., 2017

Date of report issued: 06 Jun., 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Jun., 2017	Original

Tested by: Date: 06 Jun., 2017

Test Engineer

Reviewed by: Date: 06 Jun., 2017

Project Engineer

3 Contents

		Page
1 C	COVER PAGE	1
2 V	/ERSION	2
3 C	CONTENTS	3
4 T	TEST SUMMARY	4
5 6	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T.	
5.3	TEST ENVIRONMENT AND MODE	
5.4	MEASUREMENT UNCERTAINTY	
5.5	LABORATORY FACILITY	
5.6	LABORATORY LOCATION	
5.7	Test Instruments List	
6 T	TEST RESULTS AND MEASUREMENT DATA	10
6.1	Antenna requirement:	10
6.2	CONDUCTED EMISSION	
6.3	CONDUCTED OUTPUT POWER	
6.4	Occupy Bandwidth	
6.5	Power Spectral Density	
6.6	BAND EDGE	
6	S.6.1 Conducted Emission Method	
6	S.6.2 Radiated Emission Method	
6.7		
6	S.7.1 Conducted Emission Method	45
6	S.7.2 Radiated Emission Method	52
7 T	TEST SETUP PHOTO	59
8 E	EUT CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:		Interglobe Connection Corp
Address of Applicant:		8828 NW 30th Terrace. Doral, Miami, FL 33122
Manufacturer/Factory:		Interglobe Connection Limited
Address Manufacturer/Factory:	of	UNIT 1302(A), 13/F, PROSPERITY COMMERCIAL CENTRE, 982 CANTON ROAD, MONGKOK, KOWLOON, HONG KONG

5.2 General Description of E.U.T.

Product Name:	4 inch
Model No.:	POP S40
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1400mAh
AC adapter:	Model: POP S40 Input: AC100-240V 50/60Hz 0.15A Output: DC 5.0V, 0.6A

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20)). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170403503

Report No: CCISE170403503

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -3.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.4: 2014		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Н <i>7</i>	
Limit:	Frequency range	Limit (dBuV)
Limit.	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the loga	arithm of the frequency.	
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. limiterference. In order positions of equipments	lators are connected to the ilization network (L.I.S.N.) ag impedance for the measures are also connected to the a 500hm/50uH coupling is refer to the block diagram are checked for maximum entry to find the maximum emit and all of the interface 263.4: 2014 on conducted	which provides a suring equipment. the main power through mpedance with 50ohm of the test setup and the conducted ission, the relative cables must be changed
Test setup:	AUX Equipment Test table/Insula Remark E.U.T: Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power
Test Instruments:	Refer to section 5.6 for d	etails	
Test mode:	Refer to section 5.3 for d	etails	
Test results:	Passed		

Measurement Data:

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 4 inch : POP S40 : WIFI mode EUT Model Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

lemark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu√	<u>dB</u>	
1	0.162	18.78	0.13	10.77	29.68	55.34	-25.66	Average
2	0.166	32.85	0.13	10.77	43.75	65.16	-21.41	QP
3	0.466	21.30	0.24	10.75	32.29	46.58	-14.29	Average
4	0.471	31.17	0.24	10.75	42.16	56.49	-14.33	QP
5	0.502	24.18	0.24	10.76	35.18	46.00	-10.82	Average
6	0.582	29.66	0.28	10.77	40.71	56.00	-15.29	QP
1 2 3 4 5 6 7 8 9	0.585	17.44	0.28	10.77	28.49	46.00	-17.51	Average
8	1.049	13.31	0.26	10.88	24.45	46.00	-21.55	Average
9	1.060	28.19	0.26	10.88	39.33	56.00	-16.67	QP
10	2.273	23.88	0.27	10.95	35.10	56.00	-20.90	QP
11	2.527	12.91	0.29	10.94	24.14	46.00	-21.86	Average
12	3.140	23.34	0.31	10.91	34.56	56.00	-21.44	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : 4 inch : POP S40 : WIFI mode Model Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

nemark	Frea	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>d</u> B	<u>dB</u>	dBu₹	dBu₹	dB	
1	0.162	16.88	0.14	10.77	27.79	55.34	-27.55	Average
2	0.166	31.31	0.14	10.77	42.22	65.16	-22.94	QP
1 2 3 4 5 6 7 8 9	0.471	31.00	0.24	10.75	41.99	56.49	-14.50	QP
4	0.502	15.46	0.24	10.76	26.46	46.00	-19.54	Average
5	1.054	13.92	0.26	10.88	25.06	46.00	-20.94	Average
6	1.060	29.29	0.26	10.88	40.43	56.00	-15.57	QP
7	2.155	25.42	0.32	10.95	36.69	56.00	-19.31	QP
8	2.622	11.26	0.33	10.93	22.52	46.00	-23.48	Average
9	3.436	9.34	0.34	10.91	20.59	46.00	-25.41	Average
10	3.603	24.65	0.34	10.90	35.89	56.00	-20.11	QP
11	17.568	25.44	0.30	10.90	36.64	60.00	-23.36	QP
12	17.568	11.55	0.30	10.90	22.75	50.00	-27.25	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Maximum	Limit(dBm)	Result			
1631 011	802.11b	802.11b 802.11g 802.11n(H20)		Limit(dDin)	Nesult	
Lowest	15.41	13.58	10.68			
Middle	15.99	14.35	11.52	30.00	Pass	
Highest	15.64	14.88	12.09			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	6dB	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	- Limit(Kriz)	Result Pass Result N/A
Lowest	10.24	16.24	17.52		
Middle	9.76	16.24	17.36	>500	Pass
Highest	10.24	16.24	17.36		
Test CH	99%	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	Ell'III(KI 12)	rtesuit
Lowest	12.64	16.48	17.60		
Middle	12.72	16.56	17.60	N/A	N/A
Highest	12.80	16.64	17.60		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 19.APR.2017 21:57:16

Lowest channel

Date: 19.APR.2017 21:58:12

Middle channel

Date: 19.APR.2017 21:58:47

Highest channel

Date: 19.APR.2017 21:59:48

Lowest channel

Date: 19.APR.2017 22:00:40

Middle channel

Date: 19.APR.2017 22:02:02

Highest channel

Date: 19.APR.2017 22:03:10

Lowest channel

Date: 19.APR.2017 22:04:43

Middle channel

Date: 19.APR.2017 22:07:01

Highest channel

99% OBW

Test mode: 802.11b

Date: 19.APR.2017 22:08:01

Lowest channel

Date: 19.APR.2017 22:08:16

Middle channel

Date: 19.APR.2017 22:08:28

Highest channel

Date: 19.APR.2017 22:08:57

Lowest channel

Date: 19.APR.2017 22:09:13

Middle channel

Date: 19.APR.2017 22:09:26

Highest channel

Date: 19.APR.2017 22:09:53

Lowest channel

Date: 19.APR.2017 22:10:08

Middle channel

Date: 19.APR.2017 22:10:24

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Pow	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	Limit(abin)	Nesult
Lowest	6.15	1.70	-1.53		
Middle	6.43	2.36	-0.67	8.00	Pass
Highest	6.52	2.75	-0.11		

Test plot as follows:

Date: 19.APR.2017 22:11:52

Lowest channel

Date: 19.APR.2017 22:12:24

Middle channel

Date: 19.APR.2017 22:13:03

Highest channel

Date: 19.APR.2017 22:13:44

Lowest channel

Date: 19.APR.2017 22:14:10

Middle channel

Date: 19.APR.2017 22:14:34

Highest channel

Page 27 of 60

Date: 19.APR.2017 22:14:59

Lowest channel

Date: 19.APR.2017 22:15:28

Middle channel

Date: 19.APR.2017 22:15:53

Highest channel

Page 28 of 60

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	Non-Conducted Table				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement: FCC Part 15 C Section 15.209 and 15.205	
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rem. Above 1GHz Peak 1MHz 3MHz Peak NBMS 1MHZ 3MHz Average Limit: Frequency Limit (dBuV/m@3m) Remark 54.00 Average Val 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seemake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a desheet.	
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rem.	
Frequency Detector RBW VBW Rem.	
Above 1GHz Peak IMHz AMHz AMHz Average Limit: Frequency Above 1GHz Frequency Above 1GHz Above 1GHz Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receivin antenna, which was mounted on the top of a variable-height ar tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are se make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a desheet.	ark
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Val 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a dasheet.	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was turned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, peak or average method as specified and then reported in a dasheet.	Value
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receivin antenna, which was mounted on the top of a variable-height ar tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are semake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rotatable was turned from 0 degrees to 360 deto find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be re-tested one by one using peak, on the peak of a variable and then reported in a dasheet.	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters a the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height are tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strengt Both horizontal and vertical polarizations of the antenna are seemake the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to 360 de to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak of the EUT would be re-tested one by one using peak, a peak or average method as specified and then reported in a dasheet.	
Test setup:	bove grees g tenna ove h. to st o 4 grees than values I not quasi-
Horn Antenna Tower Test Receiver Test Receiver Test Receiver	
Test Instruments: Refer to section 5.6 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 4 inch
Model : POP S40
Test mode : 802.11b-L mode
Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: YT

REMARK

			Antenna Factor						Remark	
234	MHz	dBu∜	$\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000									

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 4 inch Model : POP S40
Test mode : 802.11b-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMARK

m_{Ω}	n :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
	2390.000	19.74	23.68	4.69	0.00	48.11	74.00	-25.89	Peak	
2	2390.000	8.33	23.68	4.69	0.00	36.70	54.00	-17.30	Average	

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 4 inch : POP S40 : 802.11b-H mode Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK

IIII									
	Freq		Antenna Factor						
	MHz	−−dBuV	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Hone

A.F	CK:	ъ 1	x .	611				^		
	Freq		Antenna Factor						Remark	
	MHz	dBu₹		āB	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2483.500	22.43	23.70	4.81	0.00	50.94	74.00	-23.06	Peak	
	2483 500	15 48	23 70	4 81	0.00	43 99	54 00	-10 01	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 4 inch Model : POP S40
Test mode : 802.11g-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

uv :								
	Read	ReadAntenna		Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
2390.000		TO THE STORY			58.34			
2390.000	13.66	23.68	4.69	0.00	42.03	54.00	-11.97	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 4 inch Model : POP S40
Test mode : 802.11g-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

EMAR			Antenna Factor					Over	
	rred	rever	ractor	LUSS	ractor	rever	Line	LIMIC	Kemark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000					54.17 39.81			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : 4 inch
Model : POP S40
Test mode : 802.11g-H mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: YT

REMARK

	Read	Antenna	Cable	Preamn		Limit	Over	
Freq		Factor						
MHz	dBu∜	dB/m	dB	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
2483.500	30.88	23.70	4.81	0.00	59.39	74.00	-14.61	Peak
2483, 500	17, 38	23, 70	4.81	0.00	45, 89	54,00	-8.11	Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: FCC PART 15 (PK) 3m BBHA9120(
EUT : 4 inch
Model : POP S40
Test mode : 802.11g-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

nak.	к :									
			Antenna				Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		
1	2483.500	35.38	23.70	4.81	0.00	63.89	74.00	-10.11	Peak	
)	2483 500	17 62	23 70	4 81	0 00	46 13	54 00	-7 87	Amerage	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 4 inch : POP S40 : 802.11n20-L mode EUT Model

Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK

лиш		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2390.000	29.37	23.68	4.69	0.00	57.74	74.00	-16.26	Peak
2	2390,000	11.34	23, 68	4.69	0.00	39.71	54.00	-14.29	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : 4 inch : POP S40 : 802.11n20-L mode Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMA

LAR	К :								
	E		Antenna				Limit		Panaula
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Kemark
	MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBu√/m	d₿	
	2390.000	26.18	23.68	4.69	0.00	54.55	74.00	-19.45	Peak
)	2390,000	11.15	23.68	4.69	0.00	39.52	54.00	-14.48	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : 4 inch Model

: POP S40 : 802.11n20-H mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMARK

	-		Antenna Factor						
	MHz	−−dBuV	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB	
2	2483.575 2483.575								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1704035

Page 43 of 60

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : 4 inch Model

: POP S40 : 802.11n20-H mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

AR	к :								
	Fron		Antenna Factor						
	rreq	rever	ractor	F022	ractor	rever	Line	LIMIT	Kemark
	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	dB	
	2483.500	32.41	23.70	4.81	0.00	60.92	74.00	-13.08	Peak
	2483, 500	17.61	23, 70	4.81	0.00	46, 12	54,00	-7.88	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Date: 18.APR.2017 22:09:43

30MHz~25GHz

Date: 18.APR.2017 22:10:05

30MHz~25GHz

Date: 18.APR.2017 22:10:22

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 18.APR.2017 22:10:54

30MHz~25GHz

Date: 18.APR.2017 22:11:15

30MHz~25GHz

Date: 18.APR.2017 22:11:47

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 18.APR.2017 22:12:37

30MHz~25GHz

Date: 18.APR.2017 22:13:09

30MHz~25GHz

Date: 18.APR.2017 22:13:37

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205												
Test Method:	ANSI C63.10:201	13											
Test Frequency Range:	9kHz to 25GHz												
Test site:	Measurement Dis	stance: 3r	m										
Receiver setup:	Frequency	Detect	tor	RBW	V	BW	Remark						
·	30MHz-1GHz	Quasi-p	oeak	eak 120KHz 300)KHz	Quasi-peak Value						
	/\ho\/\o 1(\displays					ИHz	Peak Value						
		RMS		1MHz		ИHz	Average Value						
Limit:	Frequency		Limit	(dBuV/m @3	m)	_	Remark						
							uasi-peak Value						
	88MHz-216MHz 43.5 Quasi-peak V												
	216MHz-960MHz 46.0 Quasi-peak Value												
	960MHz-1GHz 54.0 Quasi-peak Value												
	Above 1GHz												
Test Procedure:	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and to find the m 5. The test-reconspecified Base 6. If the emission of the EUT was higher to find the meters and the meters and the meters and the find the find the meters and the find t	(above 10 as rotated ation. It is set 3 m ich was not a height is to determinatel and voe asurements and with a rota taximum rever system on level of cified, the would be margin wo	GHz) d 360 neters mount s varie ine the vertical ent. emissi atenna able w readin tem w with M of the en test report ould be	above the gradegrees to degrees to degrees to degrees to degree degrees to degree degr	he into of a meter value s of the was a point of a mode stoppe the ne by	at a 3 aine the erferent variable to four of the fine ante errange phts frodegree tect Fude. Example was 1 oped and emission one us	Above 1GHz 54.0 Average Value 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						

Below 1GHz

Horizontal:

Site Condition EUT : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

EUT : 4 inch

Model : POP S40

Test mode : WIFI mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: YT REMARK :

		1022			_				
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹		<u>d</u> B	dB	dBu√/m	dBuV/m	<u>dB</u>	
1	33.917	33.66	14.20	0.98	29.96	18.88	40.00	-21.12	QP
2	41.713	33.13	17.17	1.24	29.89	21.65	40.00	-18.35	QP
2	185.138	36.91	9.45	2.77	28.93	20.20	43.50	-23.30	QP
4	227.691	45.14	11.58	2.84	28.66	30.90	46.00	-15.10	QP
4	494.199	30.86	16.72	3.57	28.94	22.21	46.00	-23.79	QP
6	821.710	29.21	20.78	4.28	28.11	26.16	46.00	-19.84	QP

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL

EUT : 4 inch Model : POP S40
Test mode : WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMARK

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>	
1	45.535	39.84	17.28	1.29	29.86	28.55	40.00	-11.45	QP
2	86.200	48.47	7.66	1.91	29.59	28.45	40.00	-11.55	QP
3	128.113	42.77	12.21	2.26	29.34	27.90	43.50	-15.60	QP
2 3 4 5	228.490	39.92	11.59	2.84	28.66	25.69	46.00	-20.31	QP
5	323.320	39.09	13.38	3.02	28.50	26.99	46.00	-19.01	QP
6	364.260	36.57	14.66	3.09	28.62	25.70	46.00	-20.30	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	53.07	36.06	6.81	41.82	54.12	74.00	-19.88	Vertical
4824.00	54.82	36.06	6.81	41.82	55.87	74.00	-18.13	Horizontal
						Remark: Average		
Test	: mode: 802.	11b	Te	st channel: L	owest	Rem	ark: Avera	age
Frequency (MHz)	mode: 802. Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	st channel: Le Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	ark: Avera Over Limit (dB)	age Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.58	36.32	6.85	41.84	56.91	74.00	-17.09	Vertical
4874.00	57.67	36.32	6.85	41.84	59.00	74.00	-15.00	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.16	36.32	6.85	41.84	49.49	54.00	-4.51	Vertical
4874.00	52.16	36.32	6.85	41.84	53.49	54.00	-0.51	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	53.65	36.58	6.89	41.86	55.26	74.00	-18.74	Vertical
4924.00	57.05	36.58	6.89	41.86	58.66	74.00	-15.34	Horizontal
Test	mode: 802.	11b	Test channel: Highest			Rem	nark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	51.49	36.58	6.89	41.86	53.10	54.00	-0.90	Vertical
4924.00	51.04	36.58	6.89	41.86	52.65	54.00	-1.35	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	est mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	53.26	36.06	6.81	41.82	54.31	74.00	-19.69	Vertical	
4824.00	54.37	36.06	6.81	41.82	55.42	74.00	-18.58	Horizontal	
Test	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.72	36.06	6.81	41.82	51.77	54.00	-2.23	Vertical	
4824.00	51.22	36.06	6.81	41.82	52.27	54.00	-1.73	Horizontal	

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.57	36.32	6.85	41.84	56.90	74.00	-17.10	Vertical
4874.00	56.32	36.32	6.85	41.84	57.65	74.00	-16.35	Horizontal
Test	t mode: 802.	11g	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.62	36.32	6.85	41.84	50.95	54.00	-3.05	Vertical
4874.00	51.26	36.32	6.85	41.84	52.59	54.00	-1.41	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	54.67	36.58	6.89	41.86	56.28	74.00	-17.72	Vertical
4924.00	56.37	36.58	6.89	41.86	57.98	74.00	-16.02	Horizontal
Tes	t mode: 802.	11g	Tes	t channel: Hig	ghest	Rem	ark: Avera	ige
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	51.26	36.58	6.89	41.86	52.87	54.00	-1.13	Vertical
4924.00	50.23	36.58	6.89	41.86	51.84	54.00	-2.16	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	54.26	36.06	6.81	41.82	55.31	74.00	-18.69	Vertical
4824.00	53.47	36.06	6.81	41.82	54.52	74.00	-19.48	Horizontal
Test m	ode: 802.11	n(H20)	Te	st channel: L	owest	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.24	36.06	6.81	41.82	52.29	54.00	-1.71	Vertical
4824.00	51.70	36.06	6.81	41.82	52.75	54.00	-1.25	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.64	36.32	6.85	41.84	56.97	74.00	-17.03	Vertical
4874.00	54.73	36.32	6.85	41.84	56.06	74.00	-17.94	Horizontal
Test m	ode: 802.11	n(H20)	Te	st channel: M	1iddle	Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.13	36.32	6.85	41.84	51.46	54.00	-2.54	Vertical
4874.00	50.26	36.32	6.85	41.84	51.59	54.00	-2.41	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	54.26	36.58	6.89	41.86	55.87	74.00	-18.13	Vertical
4924.00	53.67	36.58	6.89	41.86	55.28	74.00	-18.72	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	51.20	36.58	6.89	41.86	52.81	54.00	-1.19	Vertical
4924.00	51.34	36.58	6.89	41.86	52.95	54.00	-1.05	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.