Condensed mathematics

何力

目录

1	Condensed Sets	2
2	Condensed abelian groups	7
3	D(R)	12
4	$D(\mathbb{Z})$	21
5	The t-structure on valued sheaves	23
6	Sheaf	26
7	Animation	28
8	Condensed Cohomology	32
9	Locally compact abelian groups	37
10	Solid Abelian Groups	45

1 Condensed Sets

Definition 1.1. Let \mathcal{C} be a category. A Grothendieck topology on \mathcal{C} consists of: for each object X in \mathcal{C} , there is a collection Cov(X) of sets $\{X_i \to X\}_{i \in I}$, satisfying the following three axioms:

- (i) If $V \to X$ is an isomorphism, then $\{V \to X\} \in \text{Cov}(X)$.
- (ii) If $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ and $Y \to X$ is any arrow in \mathcal{C} , then the fiber products $X_i \times_X Y$ exist and $\{X_i \times_X Y \to Y\}_{i \in I} \in \text{Cov}(Y)$.
- (iii) If $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ and for each $i \in I$, $\{V_{ij} \to X_i\}_{j \in I_i} \in \text{Cov}(X_i)$, then $\{V_{ij} \to X\}_{i \in I, j \in I_i} \to \text{Cov}(X)$.

We call elements of Cov(X) coverings.

Definition 1.2. A site is a category \mathcal{C} together with a Grothendieck topology.

Example 1.3. Let C = ProFin, the category of all profinite sets. For $\{X_i \to Y\}_{i \in I}$ be a covering, we mean I is a finite index and $\coprod_{i \in I} X_i \to Y$ is a surjection. We also call maps $\{X_i \to Y\}_{i \in I}$ finite jointly surjective families of maps.

Now, for the category ProFin together its coverings, we call it the proétale site of a point and denote it by $*_{pro\acute{e}t}$.

Definition 1.4. (i) For any site C, we call a functor

$$\mathcal{F}:\mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$$

a presheaf of sets.

(ii) For a presheaf of sets $\mathcal{F}: \mathcal{C}^{\text{op}} \to \text{Set}$, if for any $X \in \mathcal{C}$ and any covering $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$, we have

$$\mathcal{F}(X) \stackrel{\sim}{\longrightarrow} \operatorname{Eq}(\prod_{i \in I} \mathcal{F}(X_i) \rightrightarrows \prod_{i,j \in I} \mathcal{F}(X_i \times_X X_j)).$$

Then we call \mathcal{F} a sheaf of sets.

Definition 1.5. A condensed set T is a sheaf of sets on $*_{\text{pro\acute{e}t}}$, i.e. a functor $T:*_{\text{pro\acute{e}t}}^{\text{op}} \to \text{Set}$ satisfying the sheaf condition.

Remark 1.6. (i) Concretely, a condensed set T is a functor $T : \operatorname{ProFin}^{\operatorname{op}} \to \operatorname{Set}$, satisfying $T(\emptyset) = *$ and

- For any profinite sets S_1, S_2 , the natural map

$$T(S_1 \sqcup S_2) \longrightarrow T(S_1) \times T(S_2)$$

is a bijection.

– For any surjection $S' \twoheadrightarrow S$ of profinite sets with fiber product $S' \times_S S'$ and two projections $p_1, p_2 : S' \times_S S' \to S'$, the map

$$T(S) \xrightarrow{\sim} \{x \in T(S') | p_1^*(x) = p_2^*(x) \in T(S' \times_S S')\}$$

is a bijection. In other words, T maps the pullback diagram

$$S' \times_S S' \xrightarrow{p_2} S'$$

$$\downarrow^{p_1} \qquad \qquad \downarrow$$

$$S' \longrightarrow S$$

to a pullback diagram

$$T(S' \times_S S') \xleftarrow{p_2^*} T(S')$$

$$p_1^* \uparrow \qquad \qquad \uparrow$$

$$T(S') \longleftarrow T(S)$$

(ii) The category ProFin of all profinite sets is a large category.

Definition 1.7. κ is an uncountable strong limit cardinal if κ is uncountable and for any $\lambda < \kappa$, we have $2^{\lambda} < \kappa$.

Example 1.8. For any limit cardinal λ , i.e. if $\kappa < \lambda$, then $\kappa + 1 < \lambda$. We define

$$\Box_0 = \aleph_0, \cdots, \Box_{\alpha+1} = 2^{\Box_{\alpha}},$$

and let

$$\Box_{\lambda} = \bigcup_{\alpha < \lambda} \Box_{\alpha},$$

then we can show that \square_{λ} is an uncountable strong limit cartinal.

Notation. We let κ -ProFin denote the category of all κ -small profinite sets, i.e. profinite sets whose cardinal less equal than κ . Let $\operatorname{Cond}_{\kappa}(\operatorname{Set}) = \operatorname{Sh}(\kappa$ -ProFin, Set).

Remark 1.9. If $\kappa' > \kappa$ are two uncountable strong limit cardinals, and denote the inclusion by $i : \kappa$ -ProFin $\hookrightarrow \kappa'$ -ProFin, then we have a forgetful functor

$$\operatorname{Cond}_{\kappa'}(\operatorname{Set}) \longrightarrow \operatorname{Cond}_{\kappa}(\operatorname{Set}); T \mapsto T \circ i.$$

This forgetful functor admits a left adjoint $F : \operatorname{Cond}_{\kappa}(\operatorname{Set}) \longrightarrow \operatorname{Cond}_{\kappa'}(\operatorname{Set})$. F is fully faithful and F commutes with all colimits and all finite limits.

We define

$$\operatorname{Cond}(\operatorname{Set}) = \bigcup_{\kappa} \operatorname{Cond}_{\kappa}(\operatorname{Set}) = \varinjlim_{\kappa} \operatorname{Cond}_{\kappa}(\operatorname{Set}).$$

Example 1.10. Let Top denote the category of all topological spaces. For each $T \in \text{Top}$, we can define $\underline{T} \in \text{Cond}(\text{Set})$ as follows:

$$\underline{T}: \operatorname{ProFin}^{\operatorname{op}} \longrightarrow \operatorname{Set}; \ S \mapsto \underline{T}(S) = \operatorname{Cont}(S,T) = \{ \operatorname{continuous \ maps \ from} \ S \ \operatorname{to} \ T \}.$$

We need to check that T is a condensed set:

- (i) $\underline{T}(S_1 \sqcup S_2) = \operatorname{Cont}(S_1 \sqcup S_2, T) = \operatorname{Cont}(S_1, T) \times \operatorname{Cont}(S_2, T) = \underline{T}(S_1) \times \underline{T}(S_2)$.
- (ii) For any surjection $g: S' \to S$, let $p_1, p_2: S' \times_S S' \to S'$ be the two projections. We need to show the following map is a bijection:

$$\operatorname{Cont}(S,T) \xrightarrow{\sim} \{h: S' \to T | hp_1 = hp_2: S' \times_S S' \to T\}; f \mapsto f \circ g.$$

Because g is surjective, it is easy to show this map is an injection.

Now, for any $h: S' \to T$ with $hp_1 = hp_2$, from the universal property of pushout(in our situation, the pullback square is also a pushout), we can find a unique f, s.t. the diagram commutes.

Definition 1.11. Let $X \in \text{Top.}$ The following are equivalent definition:

- (i) $X \in \text{Top is compactly generated}$;
- (ii) If for any compact Hausdorff space S with a map $S \to X$, if the composition $S \to X \to Y$ is continuous, then $X \to Y$ is continuous;
- (iii) $A \subset X$ is closed if and only if for any compact space K with a map $f: K \to X$, $f^{-1}(A) \subset K$ is closed.
- **Remark 1.12.** (i) If a topological space X is compact Hausdorff, then X is compactly generated.

(ii) Let CGTop denote the category of all compactly generated spaces and let CHaus denote the category of all compact Hausdorff spaces.

Definition 1.13. For a category C, $P \in C$ is a projective object if for any epimorphism $Y \to X$ and a morphism $P \to X$, there is a lift

$$Y \xrightarrow{\exists} Y$$

Definition 1.14. In the category CHaus, we call its projective objects as extremally disconnected Hausdorff spaces.

Remark 1.15. (i) Equivalently a compact Hausdorff space S is extremally disconnected if any surjection $S' \to S$ from a compact Hausdorff space splits.

(ii) Extremally disconnected Hausdorff spaces are profinite sets, i.e. ExDisc ⊂ ProFin. Here, ExDisc denote the category of all extremally disconnected Hausdorff spaces.

Remark 1.16. We have two adjunctions.

(i) Top
$$\stackrel{\beta}{\underset{i}{\longleftarrow}}$$
 CHaus , i.e. $\beta \dashv i$. Where

$$i: \text{CHaus} \to \text{Top}; \ X \mapsto X$$

and

$$\beta: \text{Top} \to \text{CHaus}$$

is the Stone-Cech compactification of topological spaces.

For any $X \in \text{Top}$, we define $\beta X \in \text{CHaus}$ as follows:

for any $Y \in \text{CHaus}$ with a map $f: X \to Y$, there exists a unique map $\beta X \to Y$ so that the diagram commutes.

$$X \xrightarrow{i_X} \beta X$$

$$f \xrightarrow{X} Y$$

In fact, we can use the ultrafilter to construct βX concretely. And by this construction, we can show that

$$|\beta X| \le 2^{2^{|X|}}.$$

(ii) CGTop $\xrightarrow[c]{i}$ Top , i.e. $i \dashv c$. Where

$$i: \text{CGTop} \to \text{Top}; \ X \mapsto X$$

and

$$c: \text{Top} \to \text{CGTop}; \ X \mapsto X^{\text{cg}}.$$

We define X^{cg} as follows:

- As a set, $X^{\text{cg}} = X$.
- The topology of X^{cg} is given by the quotient topology of

$$\coprod_{S \to X} \underbrace{S \in \text{CHaus}} S \longrightarrow X.$$

Proposition 1.17. (i) The functor Top $\to \text{Cond}_{\kappa}(\text{Set})$; $T \mapsto \underline{T}$ is a faithful functor.

- (ii) When the above functor restricted to the full subcategory κ -CGTop of all κ -compactly generated spaces, functor κ -CGTop \to Cond $_{\kappa}$ (Set); $T \mapsto \underline{T}$ is a fully faithful functor.
- (iii) The functor $\text{Top} \to \text{Cond}_{\kappa}(\text{Set})$; $T \mapsto \underline{T}$ admits a left adjoint $\text{Cond}_{\kappa}(\text{Set}) \to \text{Top}$; $T \mapsto T(*)_{\text{top}}$. Here, $T(*)_{\text{top}}$ means the underlying set T(*) equipped with the quotient topology of $\sqcup_{S \to T} S \to T(*)$, where the disjoint union runs over all κ -small profinite sets S with a map to T, i.e. an element of T(S). Moreover, we have $\underline{T}(*)_{\text{top}} \cong T^{\kappa\text{-cg}}$.

2 Condensed abelian groups

Definition 2.1. A condensed abelian group T is a sheaf of abelian groups on $*_{\text{pro\acute{e}t}}$, i.e. a functor $T: *_{\text{pro\acute{e}t}}^{\text{op}} \to \text{Ab}$ satisfying the sheaf condition. And we denote the category of all condensed abelian groups by Cond(Ab).

Definition 2.2 (Grothendieck's axioms). Let \mathcal{C} be an abelian category.

- (AB3) All colimits exist.
- (AB3*) All limits exist.
- (AB4) Arbitrary direct sums are exact.
- (AB4*) Arbitrary products are exact.
- (AB5) Filtered colimits are exact.
- (AB6) For any index set J and filtered categories I_j , $j \in J$, with functors $I_j \to \text{Cond}(\text{Ab})$; $i \mapsto M_i$, the natural map

$$\varinjlim_{(i_j \in I_j)_j} \prod_{j \in J} M_{i_j} \longrightarrow \prod_{j \in J} \varinjlim_{i_j \in I_j} M_{i_j}$$

is an isomorphism.

Definition 2.3. Let \mathcal{C} be an abelian category. $M \in \mathcal{C}$ is compact if $\operatorname{Hom}(M, -)$ commutes with filtered colimits, i.e. $\operatorname{Hom}(M, \varinjlim_i N_i) \cong \varinjlim_i \operatorname{Hom}(M, N_i)$.

- **Theorem 2.4.** (i) Cond(Ab) is an abelian category which satisfies Grothendieck's axioms (AB3), (AB4), (AB5), (AB6), (AB3*) and (AB4*).
- (ii) Cond(Ab) is generated by compact projective objects.

Corollary 2.5. There is an adjunction:

$$\operatorname{Cond}_{\kappa}(\operatorname{Set}) \Longrightarrow \operatorname{Cond}_{\kappa}(\operatorname{Ab})$$
.

Where $\operatorname{Cond}_{\kappa}(\operatorname{Ab}) \longrightarrow \operatorname{Cond}_{\kappa}(\operatorname{Set})$ is the forgetful functor and

$$\operatorname{Cond}_{\kappa}(\operatorname{Set}) \longrightarrow \operatorname{Cond}_{\kappa}(\operatorname{Ab}); T \mapsto \mathbb{Z}[T].$$

Here, $\mathbb{Z}[T] := (S \mapsto \mathbb{Z}[T(S)])^{\mathrm{sh}}$.

Remark 2.6. (i) For $S \in \text{ExDisc}$ and $M \in \text{Cond}(\text{Ab})$, we have

$$\operatorname{Hom}_{\operatorname{Cond}(\operatorname{Ab})}(\mathbb{Z}[S], M) \cong \operatorname{Hom}_{\operatorname{Cond}(\operatorname{Set})}(\underline{S}, M) \cong M(S).$$

Proof: We define the map:

$$\mu: \operatorname{Hom}_{\operatorname{Cond}(\operatorname{Set})}(\underline{S}, M) \longrightarrow M(S); \ \alpha \mapsto \alpha(S)(1_S),$$

and the map

$$\lambda: M(S) \longrightarrow \operatorname{Hom}_{\operatorname{Cond}(\operatorname{Set})}(\underline{S}, M); \ x \mapsto \lambda(x),$$

where for $\lambda(x): \underline{S} \longrightarrow M$,

$$\lambda(x)(T) : \operatorname{Cont}(T,S) \longrightarrow M(T); \ f \mapsto M(f)(x).$$

One can check that μ and λ are inverse to each other, hence

$$\operatorname{Hom}_{\operatorname{Cond}(\operatorname{Set})}(\underline{S}, M) \cong M(S).$$

(ii) For any $S \in \text{ExDisc}$, $\mathbb{Z}[S] \in \text{Cond}(\text{Ab})$ is a compact and projective object.

Proof:

Compactness.

$$\operatorname{Hom}(\mathbb{Z}[S], \varinjlim M_i) = (\varinjlim M_i)(S) = \varinjlim M_i(S) = \varinjlim \operatorname{Hom}(\mathbb{Z}[S], M_i).$$

Projectiveness. For any exact sequence $M' \to M \to M''$ in Cond(Ab), the sequence

$$M'(S) \to M(S) \to M''(S)$$

is exact, i.e.

$$\operatorname{Hom}(\mathbb{Z}[S], M') \to \operatorname{Hom}(\mathbb{Z}[S], M) \to \operatorname{Hom}(\mathbb{Z}[S], M'')$$

is exact, so $\mathbb{Z}[S]$ is projective.

(iii) Cond(Ab) has enough projectives.

Proposition 2.7. We have two equivalences.

- (i) $\operatorname{Shv}(\kappa\operatorname{-CHaus}) \xrightarrow{\sim} \operatorname{Shv}(\kappa\operatorname{-ProFin}); T \mapsto T|_{\kappa\operatorname{-ProFin}}.$
- (ii) Shv(κ -ProFin) $\stackrel{\sim}{\longrightarrow}$ Shv(κ -ExDisc); $T \mapsto T|_{\kappa$ -ExDisc.

Remark 2.8. In order a presheaf of sets T to be a sheaf of sets, by definition, we need to check the sheaf condition in ProFin. Now, from the equivalence $Shv(\kappa\text{-ProFin}) \xrightarrow{\sim} Shv(\kappa\text{-ExDisc})$,

we only need to check the sheaf condition in ExDisc. In this case, the condition(ii) is automatic: T maps the pullback diagram

$$S' \times_S S' \xrightarrow{p_2} S'$$

$$\downarrow^{p_1} \qquad \qquad \downarrow$$

$$S' \longrightarrow S$$

to a pullback diagram

$$T(S' \times_S S') \xleftarrow{p_2^*} T(S')$$

$$p_1^* \uparrow \qquad \qquad \uparrow$$

$$T(S') \longleftarrow T(S)$$

This is because any cover of extremally disconnected sets splits. Specifically, the diagram

can implies the following diagram:

which means it is a pullback diagram.

Property. There are some properties of the category Cond(Ab) of condensed abelian groups.

- (i) Cond(Ab) has a symmetric monoidal tensor products $-\otimes -$, where for $M, N \in \text{Cond}(Ab)$, $M \otimes N = (S \mapsto M(S) \otimes N(S))^{\text{sh}}$.
- (ii) Functor Cond(Set) \to Cond(Ab); $T \mapsto \mathbb{Z}[T]$ is symmetric monoidal with respect to the product and the tensor product, i.e. $\mathbb{Z}[T_1 \times T_2] = \mathbb{Z}[T_1] \otimes \mathbb{Z}[T_2]$. Proof:
- (iii) For $T \in \text{Cond}(\text{Set})$, $\mathbb{Z}[T] \in \text{Cond}(\text{Ab})$ is flat. Proof: We need to show $-\otimes \mathbb{Z}[T] : \text{Cond}(\text{Ab}) \to \text{Cond}(\text{Ab})$ is an exact functor.

Take an exact sequence in Cond(Ab):

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

For any $S \in \text{ExDisc}$, we have an exact sequence:

$$0 \longrightarrow X(S) \longrightarrow Y(S) \longrightarrow Z(S) \longrightarrow 0.$$

Tensoring with the free abelian group $\mathbb{Z}[T(S)]$, we get an exact sequence:

$$0 \longrightarrow X(S) \otimes \mathbb{Z}[T(S)] \longrightarrow Y(S) \otimes \mathbb{Z}[T(S)] \longrightarrow Z(S) \otimes \mathbb{Z}[T(S)] \longrightarrow 0,$$

i.e.

$$0 \longrightarrow (X \otimes \mathbb{Z}[T])(S) \longrightarrow (Y \otimes \mathbb{Z}[T])(S) \longrightarrow (Z \otimes \mathbb{Z}[T])(S) \longrightarrow 0.$$

Hence the sequence

$$0 \longrightarrow X \otimes \mathbb{Z}[T] \longrightarrow Y \otimes \mathbb{Z}[T] \longrightarrow Z \otimes \mathbb{Z}[T] \longrightarrow 0.$$

exact and $\mathbb{Z}[T]$ is flat.

(iv) Given any $M, N \in \text{Cond}(Ab)$, we can give the group of homomorphisms Hom(M, N) the structure of condensed abelian groups via the following definition, for any $S \in \text{ExDisc}$,

$$\operatorname{Hom}(M, N)(S) := \operatorname{Hom}(\mathbb{Z}[S] \otimes M, N).$$

So we define an internal Hom-functor object.

(v) There is an adjunction. For $P, M, N \in \text{Cond}(Ab)$, we have an isomorphism of abelian groups:

$$\operatorname{Hom}(P, \operatorname{\underline{Hom}}(M, N)) \cong \operatorname{Hom}(P \otimes M, N).$$

Proof: First, if $P = \mathbb{Z}[S]$ for some $S \in \text{ExDisc}$, then

 $\operatorname{Hom}(P, \operatorname{Hom}(M, N)) = \operatorname{Hom}(\mathbb{Z}[S], \operatorname{Hom}(M, N)) = \operatorname{Hom}(M, N)(S) = \operatorname{Hom}(\mathbb{Z}[S] \otimes M, N).$

Now, for general $P \in \text{Cond}(Ab)$, we can write $P = \underset{\longrightarrow}{\lim} \mathbb{Z}[S_i]$, so

$$\operatorname{Hom}(P, \operatorname{\underline{Hom}}(M, N)) = \operatorname{Hom}(\varinjlim \mathbb{Z}[S_i], \operatorname{\underline{Hom}}(M, N))$$

$$= \varprojlim \operatorname{Hom}(\mathbb{Z}[S_i], \operatorname{\underline{Hom}}(M, N))$$

$$= \varprojlim \operatorname{Hom}(\mathbb{Z}[S_i] \otimes M, N)$$

$$= \operatorname{Hom}(\varinjlim \mathbb{Z}[S_i] \otimes M, N)$$

$$= \operatorname{Hom}(P \otimes M, N).$$

- (vi) As Cond(Ab) has enough projectives, one can form the derived category D(Cond(Ab)). If $P \in \text{Cond}(\text{Ab})$ is compact and projective, then $P[0] \in D(\text{Cond}(\text{Ab}))$ is a compact object of the dereived category, i.e. Hom(P,-) commutes with arbitrary direct sums. In particular, D(Cond(Ab)) is compactly generated.
- (vii) Similarly, in the derived category D(Cond(Ab)), we have the adjunction:

$$\operatorname{Hom}(P, R \operatorname{\underline{Hom}}(M, N)) \cong \operatorname{Hom}(P \otimes^L M, N).$$

(viii) Let $\mathcal{D}(\text{Cond}(Ab))$ denote the derived ∞ -category of Cond(Ab) and $\mathcal{D}(Ab)$ denote the derived ∞ -category of Ab, then there is an equivalence

$$\mathcal{D}(Cond(Ab)) \cong Cond(\mathcal{D}(Ab)).$$

$$\mathbf{3}$$
 $D(R)$

Definition 3.1. An ∞ -category is a simplicial set \mathcal{C} which satisfies the following extension condition:

Definition 3.2. Let \mathcal{C} be an ∞ -category. A zero object of \mathcal{C} is an object which is both initial and final. We say that \mathcal{C} is pointed if \mathcal{C} contains a zero object.

Definition 3.3. Let \mathcal{C} be a pointed ∞ -category. A triangle in \mathcal{C} is a diagram $\Delta^1 \times \Delta^1 \to \mathcal{C}$ depicted as

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow^{g} \\
0 & \longrightarrow & Z
\end{array}$$

where 0 is a zero object in \mathcal{C} .

We say a triangle in C is a fiber sequence if it is a pullback and say a triangle in C is a cofiber sequence if it is a pushout.

We generally indicate a triangle by specifying only the pair of maps $X \xrightarrow{f} Y \xrightarrow{g} Z$.

Remark 3.4. Let \mathcal{C} be a pointed ∞ -category. A triangle in \mathcal{C} consists of the following data:

- (i) A pair of morphisms $f: X \to Y$ and $g: Y \to Z$ in \mathcal{C} .
- (ii) A 2-simplex in \mathcal{C} corresponding to a diagram

$$X \xrightarrow{f} X \xrightarrow{h} Z$$

in C, which identifies h with the composition $g \circ f$.

(iii) A 2-simplex

in C, which we view as anullhomotopy of h.

Definition 3.5. Let \mathcal{C} be a pointed ∞ -category containing a morphism $g: X \longrightarrow Y$.

A fiber of g is a fiber sequence

$$\begin{array}{ccc}
W & \longrightarrow X \\
\downarrow & & \downarrow^g \\
0 & \longrightarrow Y
\end{array}$$

and we denote W = fib(g).

Dually, a cofiber of g is a cofiber sequence

$$\begin{array}{ccc} X \stackrel{g}{\longrightarrow} Y \\ \downarrow & \downarrow \\ 0 \longrightarrow Z \end{array}$$

and we denote Z = cofib(g).

Definition 3.6. An ∞ -category \mathcal{C} is stable if it satisfies the following conditions:

- (i) There exists a zero object $0 \in \mathcal{C}$.
- (ii) Every morphism in C admits a fiber and a cofiber.
- (iii) A triangle in C is a fiber sequence if and only if it is a cofiber sequence.

Remark 3.7. (i) For a stable ∞ -category \mathcal{C} , we define the suspension functor $\Sigma : \mathcal{C} \longrightarrow \mathcal{C}$ and the loop functor $\Omega : \mathcal{C} \longrightarrow \mathcal{C}$ as follows:

$$\Sigma(X) := \operatorname{cofib}(X \longrightarrow 0)$$

and

$$\Omega(X) := \mathrm{fib}(0 \longrightarrow X).$$

(ii) For a stable ∞ -category \mathcal{C} , there is a homotopy equivalence:

$$\operatorname{Map}_{\mathcal{C}}(\Sigma X, Y) \xrightarrow{\sim} \operatorname{Map}_{\mathcal{C}}(X, \Omega Y).$$

Besides, the unit $X \longrightarrow \Omega\Sigma(X)$ and $\Sigma\Omega(Y) \longrightarrow Y$ counit are isomorphic.

Definition 3.8. Let R be a commutative ring, the ∞ -category D(R) is a stable ∞ -category with all colimits, generated (as a cocomplete stable ∞ -category) by a distinguished compact object 1, satisfying

$$\pi_0 \text{Map}(1,1) = R^{\text{op}}, \qquad \pi_0 \text{Map}(\Sigma^d 1, 1) = 0, \ \forall d \neq 0.$$

For $X, Y \in D(R)$, we define

$$[X,Y] := \pi_0 \mathrm{Map}(X,Y)$$

and

$$[X,Y]_d := [\Sigma^d X, Y] = [X, \Omega^d Y].$$

Remark 3.9. (i) From the definition of D(R), we have

$$[1,1] = \pi_0 \operatorname{Map}(1,1) = R^{\operatorname{op}}, \qquad [1,1]_d = \pi_0 \operatorname{Map}(\Sigma^d 1,1) = 0, \ \forall d \neq 0.$$

(ii) If $d \ge 0$, we have

$$[X,Y]_d = \pi_d \operatorname{Map}(X,Y).$$

(iii) Claim: In D(R), for any integer d, we have $[X,Y]_d \in Ab$. Proof: First, if $d \geq 2$, $[X,Y]_d = \pi_d \operatorname{Map}(X,Y) \in Ab$. For any $d \in \mathbb{Z}$,

$$[X, Y]_d = [\Sigma^d X, Y] = [\Sigma^{d-2} X, Y]_2 \in Ab.$$

- (iv) For a stable ∞ -category, a fiber sequence $X \to Y \to Z$ is at the same time a cofiber sequence, and vice versa. Hence, we will call it a fiber-cofiber sequence.
- (v) For a fiber-cofiber sequence $X \to Y \to Z$ in D(R), we can induce a new fiber-cofiber sequence $Y \to Z \to \Sigma X$.
- (vi) Given a fiber-cofiber sequence $X \to Y \to Z$ and any $A \in D(R)$, we can induce two long exact sequences:

$$\cdots \longrightarrow [A, X]_d \longrightarrow [A, Y]_d \longrightarrow [A, Z]_d \longrightarrow [A, X]_{d-1} \longrightarrow \cdots$$
$$\cdots \longrightarrow [X, A]_{d+1} \longrightarrow [Z, A]_d \longrightarrow [Y, A]_d \longrightarrow [X, A]_d \longrightarrow \cdots$$

(vii) Assume

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
C & \longrightarrow & D
\end{array}$$

is a pushout-pullback square in D(R), then we can produce a triangle $A \to B \oplus C \to D$. With this, we can induce a long exact sequence.

Definition 3.10. For any integer d, we define a functor $H_d: D(R) \to \operatorname{Mod}_R$; $X \mapsto [1, X]_d$.

Remark 3.11. (i) We already know $[1, X]_d \in Ab$. And we need to show $[1, X]_d$ is an R-module.

In fact, we have

$$\operatorname{Map}(\Sigma^d 1, \Sigma^d 1) \times \operatorname{Map}(\Sigma^d 1, X) \to \operatorname{Map}(\Sigma^d 1, X),$$

applying the functor π_0 , we get:

 $\pi_0\mathrm{Map}(\Sigma^d1,\Sigma^d1)\times\pi_0\mathrm{Map}(\Sigma^d1,X) = \pi_0(\mathrm{Map}(\Sigma^d1,\Sigma^d1)\times\mathrm{Map}(\Sigma^d1,X)) \to \pi_0(\mathrm{Map}(\Sigma^d1,X)),$ i.e.

$$R^{\mathrm{op}} \times [1, X]_d \to [1, X]_d,$$

which implies $[1, X]_d \in \text{Mod}_R$.

(ii) $H_d: D(R) \to \operatorname{Mod}_R$; $X \mapsto [1, X]_d$ is a representable functor and $\Sigma^d 1$ represents H_d .

Lemma 3.12. (i) $H_d(\prod_i X_i) = \prod_i H_d(X_i)$.

- (ii) $H_d(\oplus_i X_i) = \oplus_i H_d(X_i)$.
- (iii) $H_d(\lim X_i) = \lim H_d(X_i)$.
- (iv) For a sequence of maps $\cdots \to X_n \to X_{n-1} \to \cdots$, we have a Milnor sequence:

$$0 \longrightarrow \underset{\longleftarrow}{\lim}^{1} H_{d+1}(X_{n}) \longrightarrow H_{d}(\underset{\longleftarrow}{\lim} X_{n}) \longrightarrow \underset{\longleftarrow}{\lim} H_{d}(X_{n}) \longrightarrow 0.$$

Proposition 3.13. $f: X \to Y$ in D(R) is an isomorphism if and only if $H_d(f): H_d(X) \xrightarrow{\sim} H_d(Y)$, for $\forall d \in \mathbb{Z}$.

Proof. Take $Z = \text{cofib}(X \xrightarrow{f} Y)$, then $X \to Y \to Z$ is a fiber-cofiber sequence, and we can induce a long exact sequence

$$\cdots \to H_d(X) \to H_d(Y) \to H_d(Z) \to H_{d-1}(X) \to \cdots$$

It suffices to show: if $Z \in D(R)$ with $H_d(Z) = 0$, $\forall d \in \mathbb{Z}$, then Z = 0. Consider the full subcategory of D(R):

$$\mathcal{C} = \{ A \in D(R) | [\Sigma^d A, Z] = 0, \ \forall d \in \mathbb{Z} \}.$$

Observe that:

- $1 \in \mathcal{C}$.
- ullet C is stable under colimits. This is because

$$[\Sigma^d \text{colim } A_i, Z] = [\text{colim } \Sigma^d A_i, Z] = \text{lim } [\Sigma^d A_i, Z] = 0.$$

 \bullet $\mathcal C$ is stable under cofibers.

By definition of D(R), we know D(R) is generated as a cocomplete stable ∞ -category by 1. Hence, $D(R) = \mathcal{C}$. Then by Yoneda's lemma, Z = 0.

Proposition 3.14. Let $X \in D(R)$, then there exists $Y \in D(R)$ with a map $f: Y \to X$, s.t.

- (i) $H_d(Y) = 0, \forall d < 0.$
- (ii) $H_d(f): H_d(Y) \xrightarrow{\sim} H_d(X)$ are isomorphisms, $\forall d \geq 0$.

Proof. We first prove: there exists a sequence of maps $Y_0 \to Y_1 \to Y_2 \to \cdots$ in $D(R)_{/X}$, s.t. for any $n \ge 0$, $H_d(Y_n) = 0$, d < 0 and $H_d(Y_n \to X)$ are isomorphisms if $0 \le d < n$ and is a surjection if d = n.

We prove this by induction.

First, n = 0. Let $Y_0 = \bigoplus_I 1$ for $I = \text{cartinal of } H_0(X)$, then the map $Y_0 \to X$ can induce a surjection $H_0(Y_0) = R^{\bigoplus I} \twoheadrightarrow H_0(X)$ and for d < 0, $H_d(Y_0) = 0$.

Now we assume that there exists a sequence

$$Y_0 \rightarrow Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_{n-1}$$

in $D(R)_{/X}$ satisfying the assumption.

Let $F = \text{fib}(Y_{n-1} \to X)$, then $F \to Y_{n-1} \to X$ is a fiber-cofiber sequence. We can find an index I, s.t. $\Sigma^{n-1} \oplus_I 1 \to F$ can induce a surjection $H_{n-1}(\Sigma^{n-1} \oplus_I 1) \twoheadrightarrow H_{n-1}(F)$. Then let $Y_n = \text{cofib}(\Sigma^{n-1} \oplus_I 1 \to F \to Y_{n-1})$, hence $\Sigma^{n-1} \oplus_I 1 \to Y_{n-1} \to Y_n$ is also a fiber-cofiber sequence. Now, we check it satisfies the requirements.

(a) d < 0. The fiber-cofiber sequence $\Sigma^{n-1} \oplus_I 1 \to Y_{n-1} \to Y_n$ can induce a long exact sequence:

$$\cdots \to H_{-1}(\Sigma^{n-1} \oplus_I 1) \to H_{-1}(Y_{n-1}) \to H_{-1}(Y_n) \to H_{-2}(\Sigma^{n-1} \oplus_I 1) \to H_{-2}(Y_{n-1}) \to \cdots$$

Since for k < 0, $H_k(Y_{n-1}) = 0$, we know $H_d(Y_n) = H_{d-1}(\Sigma^{n-1} \oplus_I 1) = 0 (d < 0)$.

(b) First, there exists a map $Y_n \to X$, this is because

and $H_d(\Sigma^{n-1} \oplus_I 1) = 0, \forall d \neq n-1$, then by

$$\cdots \to H_{n-2}(\Sigma^{n-1} \oplus_I 1) \to H_{n-2}(Y_{n-1}) \to H_{n-2}(Y_n) \to H_{n-3}(\Sigma^{n-1} \oplus_I 1) \to \cdots,$$

it implies that $0 \le \forall d \le n-2$, $H_d(Y_n) \cong H_d(Y_{n-1}) \cong H_d(X)$.

We have the following diagram:

By five's lemma, we can show $H_{n-1}(Y_n) \stackrel{\sim}{\to} H_{n-1}(X)$ and $H_n(Y_n) \twoheadrightarrow H_n(X)$.

Now, for $Y_0 \to Y_1 \to Y_2 \to \cdots$, we take $Y = \varinjlim Y_n$, and hence we can get a map $Y \to X$.

By $H_d(\underline{\lim} Y_n) = \underline{\lim} H_d(Y_n)$, for d < 0, $H_d(Y) = 0$, and for $d \ge 0$,

$$H_d(Y) = \varinjlim (H_d(Y_0) \to H_d(Y_1) \cdots \to H_d(Y_{d+1}) \to H_d(Y_{d+2}) \to \cdots) = H_d(X).$$

Proposition 3.15. For $X \in D(R)$, the following are equivalent:

- (i) $H_d(X) = 0, \forall d < 0.$
- (ii) X is generated by 1 under colimits.
- (iii) There exists a sequence of maps $X_0 \to X_1 \to X_2 \to \cdots$ with $X = \varinjlim X_i$, where for each i, the cofiber $\operatorname{cofib}(X_{i-1} \to X_i)$ is of the form $\Sigma^i \oplus_I 1$.

Proof. (i) \Longrightarrow (iii). By previous proposition, for $X \in D(R)$, there exists a map $f: Y \to X$ with $H_d(Y) = 0$ for d < 0 and $H_d(f)$ are isomorphisms for $d \ge 0$. Then, for d < 0,

$$H_d(X) = H_d(Y) = 0.$$

Hence, for any $d \in \mathbb{Z}$, $H_d(f)$ are isomorphisms. Thus, $f: Y \xrightarrow{\sim} X$.

From the construction of Y, we know there is a sequence of maps $X_0 \to X_1 \to X_2 \to \cdots$ with $\lim_{i \to \infty} X_i = Y \cong X$.

By the fiber-cofiber sequence $\Sigma^{n-1} \oplus_I 1 \to X_{n-1} \to X_n$, we can get a new fiber-cofiber sequence $X_{n-1} \to X_n \to \Sigma^n \oplus_I 1$, i.e. $\mathrm{cofib}(X_{n-1} \to X_n) = \Sigma^n \oplus_I 1$.

 $(iii) \Longrightarrow (ii).$

We have $X_{i-1} \to X_i \to \Sigma^i \oplus_I 1$, which gives a new fiber-cofiber sequence: $\Sigma^{i-1} \oplus_I 1 \to X_{i-1} \to X_i$. Then $X_i = \text{cofib}(\Sigma^{i-1} \oplus_I 1 \to X_{i-1}) = \text{colim}(0 \leftarrow \Sigma^{i-1} \oplus_I 1 \to X_{i-1})$.

Now, $X_1 = \text{cofib}(\bigoplus_I 1 \to X_0) = \text{cofib}(\bigoplus_I 1 \to \bigoplus_J 1) = \text{colim}(0 \leftarrow \bigoplus_I 1 \to \bigoplus_J 1)$. Hence, each X_i is generated by 1 under colimits. Finally, $X = \text{colim } X_i$ is also generated by 1 under colimits. (ii) \Longrightarrow (i).

Arbitrary colimits can be written in terms of pushouts and filtered colimits. And H_d commutes with filtered colimits. So it suffices to show that for A, B, C with $H_d(A) = H_d(B) = H_d(C) = 0$, $\forall d < 0$, then for the pushout $D = \text{colim}(C \leftarrow A \rightarrow B)$, $H_d(D) = 0$, $\forall d < 0$.

This is because we can get a null-composite sequence $A \to B \oplus C \to D$, and induce a long exact sequence

$$\cdots \to H_d(A) \to H_d(B) \oplus H_d(C) \to H_d(D) \to \cdots$$

which implies $H_d(D) = 0, \ \forall d < 0.$

Definition 3.16. (i) $D(R)_{>0} := \{X \in D(R) \mid H_d(X) = 0, \forall d < 0\}.$

- (ii) $D(R)_{<0} := \{ X \in D(R) \mid H_d(X) = 0, \ \forall d \ge 0 \}.$
- (iii) $\tau_{\geq 0}: D(R) \to D(R)_{\geq 0}; X \mapsto \tau_{\geq 0}(X) := Y$, which is constructed in Proposition 3.14.

Now, given any map $Z \to X$ in D(R), we can get a commutative diagram:

$$\begin{array}{cccc} \tau_{\geq 0}(Z) & \stackrel{\exists !}{--} & \tau_{\geq 0}(X) \\ \downarrow & & \downarrow \\ Z & \longrightarrow & X \end{array}$$

Hence, $\tau_{\geq 0}: D(R) \to D(R)_{\geq 0}$ is a functor.

Proposition 3.17. $D(R)_{\geq 0} \xrightarrow[\tau_{>0}]{i} D(R) \xrightarrow[i]{\tau_{<0}} D(R)_{<0}$, i.e. $i \dashv \tau_{\geq 0}$ and $\tau_{<0} \dashv i$.

Corollary 3.18. For $X \in D(R)$, we have

$$X \cong \varprojlim \ \tau_{\leq n}(X)$$
 and $X \cong \varinjlim \ \tau_{\geq -n}(X)$.

Proof. We have a Milnor sequence:

$$0 \longrightarrow \lim_{\longleftarrow} {}^{1}H_{d+1}(\tau_{\leq n}X) \longrightarrow H_{d}(\lim_{\longleftarrow} \tau_{\leq n}X) \longrightarrow \lim_{\longleftarrow} H_{d}(\tau_{\leq n}X) \longrightarrow 0.$$

For $n \gg 0$, we have $H_d(\tau_{\leq n}X) = H_d(X)$, hence $\varprojlim H_d(\tau_{\leq n}X) = H_d(X)$. And $\{H_{d+1}(\tau_{\leq n}X)\}_{n \in \mathbb{Z}}$ satisfies the Mittag-Leffler condition, hence $\varprojlim^1 H_{d+1}(\tau_{\leq n}X) = 0$.

Therefore, from the above short exact sequence, we have

$$H_d(\lim_{\longrightarrow} \tau_{\leq n} X) \cong H_d(X), \ \forall d \in \mathbb{Z},$$

which impies $X \cong \lim_{\longleftarrow} \tau_{\leq n} X$.

For another isomorphsim, from

$$H_d(\varinjlim \tau_{\geq -n}X) = \varprojlim H_d(\tau_{\geq -n}X) = H_d(X), \ \forall d \in \mathbb{Z},$$

one can show $X \cong \underset{t \geq -n}{\underline{\lim}} \tau_{\geq -n}(X)$.

Definition 3.19. For any map $f: X \to Y$ in D(R), we define its kernel to be

$$\ker(f) := \tau_{\geq 0} \operatorname{fib}(X \to Y)$$

and its cokernel to be

$$\operatorname{coker}(f) := \tau_{<0} \operatorname{cofib}(X \to Y).$$

Proposition 3.20. Let $D(R)_0 = \{X \in D(R) \mid H_d(X), \ \forall d \neq 0\}.$

- (i) There is an isomorphism $H_0: D(R)_0 \xrightarrow{\sim} \operatorname{Mod}_R$.
- (ii) Any object in $D(R)_0$ can be written as of the form $\operatorname{coker}(\bigoplus_I 1 \to \bigoplus_J 1)$.
- (iii) $H_0: D(R)_0 \longrightarrow \operatorname{Mod}_R$ is an exact functor.
- (iv) $H_0: D(R)_0 \longrightarrow \operatorname{Mod}_R$ commutes with direct sums.

Proof. (ii) For $X \in D(R)_0$, there exists $f: Y \to X$ with $H_d(Y) = 0$, $\forall d < 0$ and $H_d(f)$ are isomorphisms, $\forall d \geq 0$.

By the construction of Y_1 , $Y_1 = \text{cofib}(\bigoplus_I 1 \to \bigoplus_J 1)$.

On the other hand, $X \cong \tau_{\leq 0} Y_1$. Hence,

$$X \cong \tau_{\leq 0} \operatorname{cofib}(\oplus_I 1 \to \oplus_J 1) = \operatorname{coker}(\oplus_I 1 \to \oplus_J 1).$$

(iii) In order to show that H_0 preserves exact sequences, it suffices to show H_0 preserves kernels and cokernels.

For any map $f: X \to Y$ in $D(R)_0$, applying functor $\tau_{\geq 0}$ to sequence fib $(f) \to X \to Y$, we get a fiber-cofiber sequence

$$\ker(f) = \tau_{>0} \operatorname{fib}(f) \to X \to Y.$$

And it induces a long exact sequence

$$0 = H_1(Y) \to H_0(\ker(f)) \to H_0(X) \to H_0(Y) \to \cdots$$

Hence, $H_0(\ker(f)) = \ker(H_0(X) \to H_0(Y)).$

Dually ,we can prove $H_0(\operatorname{coker}(f)) = \operatorname{coker}(H_0(X) \to H_0(Y))$.

Remark 3.21. $1 \in D(R)_0$ is compact and projective.

Proof: Compactness is the definition.

For the projectiveness, we need to show that any epimorphism $X \to 1$ splits.

Let $F = \text{fib}(X \to 1)$. Consider $F \to X \to 1$. Then $H_{-1}(F) = 0$.

By $[M, N]_d = \operatorname{Ext}_R^{-d}(M, N)$, we get $\operatorname{Ext}_R^{-1}(1, F) = [1, F]_{-1} = H_{-1}(F) = 0$. Hence $X \to 1$ splits.

Definition 3.22. (i) A filtered object of D(R) is an object in $\operatorname{Fun}(\mathbb{Z}_{\leq}, D(R))$, i.e.

$$\cdots \longrightarrow F(n-1) \to F(n) \to F(n+1) \to \cdots$$

- (ii) A filtered object F is convergent if $\varprojlim F(n) = 0$.
- (iii) $F(\infty) := \underline{\lim} F(n)$. Call it the underlying object of F.
- (iv) The n-th associated graded $\operatorname{gr}_n(F) := \operatorname{cofib}(F(n-1) \to F(n)) \stackrel{\triangle}{=} F(n)/F(n-1).$

Now, giving a convergent filtered object $F: \mathbb{Z}_{\leq} \to D(R)$, s.t. $\operatorname{gr}_n(F) \in D(R)_n$, $\forall n$, we can define an R-module M_n :

$$H_n: D(R)_n \to \operatorname{Mod}_R; \operatorname{gr}_n(F) \mapsto H_n(\operatorname{gr}_n(F)) \stackrel{\triangle}{=} M_n.$$

From the sequence

$$F(n-1)/F(n-2) \longrightarrow F(n)/F(n-2) \longrightarrow F(n)/F(n-1) \longrightarrow \Sigma(F(n-1)/F(n-2)),$$

we get a map $d: H_n(\operatorname{gr}_n(F)) \longrightarrow H_n(\Sigma \operatorname{gr}_{n-1}(F))$, i.e. $d: M_n \longrightarrow M_{n-1}$.

One can check $d^2 = 0$. Hence, given a convergent filtered object F, s.t. $gr_n(F) \in D(R)_n$, we define a chain complex of R-modules M_* .

We denote $\operatorname{Fun}(\mathbb{Z}_{<}, D(R))_{\operatorname{cx}} = \{ F \in \operatorname{Fun}(\mathbb{Z}_{<}, D(R)) \mid F \text{ convergent} \}.$

Proposition 3.23. (i) Fun(\mathbb{Z}_{\leq} , D(R))_{cx} $\xrightarrow{\sim}$ Ch_R; $F \mapsto M_*$.

(ii)
$$H_n(F(\infty)) = H_n(M_*), \forall n.$$

4
$$D(\mathbb{Z})$$

Definition 4.1. Let $X \in \text{Top.}$ A sieve on X is a set \mathfrak{U} of open subsets of X, s.t. if $V \in \mathfrak{U}$ and $V' \subset V$, then $V' \in \mathfrak{U}$. If $U = \bigcup_{V \in \mathfrak{U}} V$, we say that the sieve \mathfrak{U} covers V.

Definition 4.2. (i) Let $X \in \text{Top.}$ Let $\mathcal{F} \in \text{PSh}(X, D(\mathbb{Z}))$ be a presheaf with values in $D(\mathbb{Z})$, i.e. $\mathcal{F} \in \text{Fun}(\text{Op}(X)^{\text{op}}, D(\mathbb{Z}))$. We say \mathcal{F} is a sheaf if for all sieves \mathfrak{U} on X covering $U \in \text{Op}(X)$, we have

$$\mathcal{F}(U) \xrightarrow{\sim} \varprojlim_{V \in \mathfrak{U}^{\mathrm{op}}} \mathcal{F}(V).$$

(ii) For $U \in \operatorname{Op}(X)$, one define $h_U \in \operatorname{PSh}(X, D(\mathbb{Z}))$ via

$$h_U(V) = \begin{cases} * & V \subset U \\ \emptyset & \text{otherwise} \end{cases}$$

(iii) For a sieve \mathfrak{U} , one define $h_{\mathfrak{U}} \in \mathrm{PSh}(X, D(\mathbb{Z}))$ via

$$h_{\mathfrak{U}}(V) = \begin{cases} * & V \in \mathfrak{U} \\ \emptyset & V \notin \mathfrak{U} \end{cases}$$

Proposition 4.3. Let $\mathcal{F} \in \mathrm{PSh}(X, D(\mathbb{Z}))$, then \mathcal{F} is a sheaf if and only if it satisfies:

- (i) $\mathcal{F}(\emptyset) = *$.
- (ii) For any open subsets $V, V' \in \text{Op}(X)$,

$$\mathcal{F}(V \cup V') \xrightarrow{\sim} \mathcal{F}(V) \times_{\mathcal{F}(V \cap V')} \mathcal{F}(V').$$

(iii) For any sieve \mathfrak{U} , $\mathcal{F}(\varinjlim_{V\in\mathfrak{U}}V)\stackrel{\sim}{\longrightarrow} \varprojlim_{V\in\mathfrak{U}^{\mathrm{op}}}\mathcal{F}(V)$.

Remark 4.4.

$$\mathbb{Z}[h_U](V) := \mathbb{Z}[h_U(V)] = \begin{cases} \mathbb{Z} & V \subseteq U \\ 0 & V \nsubseteq U \end{cases}$$
$$\mathbb{Z}[h_{\mathfrak{U}}](V) := \mathbb{Z}[h_{\mathfrak{U}}(V)] = \begin{cases} \mathbb{Z} & V \in \mathfrak{U} \\ 0 & V \notin \mathfrak{U} \end{cases}$$
$$\operatorname{Map}(\mathbb{Z}[h_U], \mathcal{F}) = \operatorname{Map}(\mathbb{Z}, \mathcal{F}(U)).$$

$$\begin{split} \operatorname{Map}(\mathbb{Z}[h_{\mathfrak{U}}],\mathcal{F}) &= \varprojlim_{V \in \mathfrak{U}^{\operatorname{op}}} \operatorname{Map}(\mathbb{Z}[h_V],\mathcal{F}) \\ &= \varprojlim_{V \in \mathfrak{U}^{\operatorname{op}}} \operatorname{Map}(\mathbb{Z},\mathcal{F}(V)) \\ &= \operatorname{Map}(\mathbb{Z},\varprojlim_{V \in \mathfrak{U}^{\operatorname{op}}} \mathcal{F}(V)) \\ &= \operatorname{Map}(\mathbb{Z},\mathcal{F}(\varinjlim_{V \in \mathfrak{U}} V)). \end{split}$$

Proposition 4.5. $\operatorname{PSh}(X, D(\mathbb{Z})) \xrightarrow{\operatorname{sh}} \operatorname{Sh}(X, D(\mathbb{Z}))$; $\mathcal{F} \mapsto \mathcal{F}^{\operatorname{sh}}$. Moreover, $\mathcal{F}^{\operatorname{sh}} = 0$ iff \mathcal{F} lies in the stable co-complete subcategory generated by $\operatorname{cofib}(\mathbb{Z}[h_{\mathfrak{U}}] \to \mathbb{Z}[h_U])$ for all sieves \mathfrak{U} covering U.

Definition 4.6. For $\mathcal{F} \in \mathrm{PSh}(X, D(\mathbb{Z}))$, define $H_n(\mathcal{F}) \in \mathrm{PSh}(X, \mathrm{Ab})$ by $H_n(\mathcal{F})(U) = H_n(\mathcal{F}(U))$.

With this presheaf $H_n(\mathcal{F}) \in \mathrm{PSh}(X, \mathrm{Ab})$, one can sheafify it to get a sheaf $H_n(\mathcal{F})^{\mathrm{sh}} \in \mathrm{Sh}(X, \mathrm{Ab})$.

Proposition 4.7. Let $\mathcal{F} \in PSh(X, D(\mathbb{Z}))$.

- (i) If $\mathcal{F}^{\mathrm{sh}} = 0$, then $H_n(\mathcal{F})^{\mathrm{sh}} = 0$, $\forall n \in \mathbb{Z}$.
- (ii) If \mathcal{F} is bounded above and $H_n(\mathcal{F})^{\mathrm{sh}} = 0$, $\forall n \in \mathbb{Z}$, then $\mathcal{F}^{\mathrm{sh}} = 0$.

Corollary 4.8. Let $\mathcal{F} \to \mathcal{G}$ be a map in $PSh(X, D(\mathbb{Z}))$.

- (i) If $\mathcal{F}^{\operatorname{sh}} \xrightarrow{\sim} \mathcal{G}^{\operatorname{sh}}$, then $H_n(\mathcal{F})^{\operatorname{sh}} \xrightarrow{\sim} H_n(\mathcal{G})^{\operatorname{sh}}$, $\forall n \in \mathbb{Z}$.
- (ii) If \mathcal{F} and \mathcal{G} are bounded above, and $H_n(\mathcal{F})^{\operatorname{sh}} \xrightarrow{\sim} H_n(\mathcal{G})^{\operatorname{sh}}$, $\forall n \in \mathbb{Z}$, then $\mathcal{F}^{\operatorname{sh}} \xrightarrow{\sim} \mathcal{G}^{\operatorname{sh}}$.

Corollary 4.9. Let $\mathcal{F} \to \mathcal{G}$ be a map in $PSh(X, D(\mathbb{Z}))$ and \mathcal{F}, \mathcal{G} are bounded above, then

$$\mathcal{F}^{\operatorname{sh}} \overset{\sim}{ o} \mathcal{G} \quad \Longleftrightarrow \quad egin{cases} \mathcal{G} & ext{ is a sheaf.} \ H_n(\mathcal{F})^{\operatorname{sh}} \overset{\sim}{ o} H_n(\mathcal{G})^{\operatorname{sh}}, \ \forall n \in \mathbb{Z}. \end{cases}$$

Definition 4.10.

Proposition 4.11.

5 The t-structure on valued sheaves

Definition 5.1. A t-structure on a stable ∞ -category \mathcal{C} is a pair $(\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0})$ of full sub- ∞ -categories of \mathcal{C} that are stable under equivalences and satisfy:

- (T1) The suspension functor Σ and the loop functor Ω restrict to $\mathcal{C}_{\geq 0}$, $\mathcal{C}_{\leq 0}$ resp. are fully faithful functors $\Sigma : \mathcal{C}_{\geq 0} \to \mathcal{C}_{\geq 0}$ and $\Omega : \mathcal{C}_{\leq 0} \to \mathcal{C}_{\leq 0}$.
- (T2) If $X \in \mathcal{C}_{\geq 0}$ and $Y \in \mathcal{C}_{\leq 0}$, then $\operatorname{Map}(X, \Omega Y) \simeq *$.
- (T3) For every $X \in \mathcal{C}$, there exists a fiber sequence

$$X' \longrightarrow X \longrightarrow X''$$

with
$$X' \in \mathcal{C}_{\geq 0}$$
 and $X'' \in \mathcal{C}_{\leq -1} := \Omega \mathcal{C}_{\leq 0}$.

We call $\mathcal{C}_{\geq 0}$ and $\mathcal{C}_{\leq 0}$ the connective and coconnective parts of the t-structure.

Given $n \in \mathbb{Z}$, we define $\mathcal{C}_{\geq n} := \Sigma^n \mathcal{C}_{\geq 0} \subset \mathcal{C}$ and $\mathcal{C}_{\leq n} := \Sigma^n \mathcal{C}_{\leq 0} \subset \mathcal{C}$, where for n < 0, we have $\Sigma^n = \Omega^{-n}$.

The inclusions $i: \mathcal{C}_{\geq m} \to \mathcal{C}$ and $s: \mathcal{C}_{\leq n} \to \mathcal{C}$ admit adjoint functors

$$C_{\geq m} \xrightarrow{i} C \xrightarrow{p} C_{\leq n}$$
.

In particular, the full sub- ∞ -category $\mathcal{C}_{\geq m} \subset \mathcal{C}$ is closed under colimits, and the full sub- ∞ -category $\mathcal{C}_{\leq n} \subset \mathcal{C}$ is closed under limits. From the adjoint pairs, we can form their counit and unit, and we get

$$\tau_{\geq 0}X = (i \circ r)(X) \stackrel{\epsilon}{\longrightarrow} X \stackrel{\eta}{\longrightarrow} \tau_{\leq -1}X = (s \circ p)(X).$$

The composition of the two maps is a point in the anima $\operatorname{Map}(\tau_{\geq 0}X, \tau_{\leq -1}X) \simeq *$. So the composite map automatically admits a null-homotopy, which is unique, up to contractible ambiguity. We have the following commutative diagram:

$$C_{\leq m} \cap C_{\geq n} \xrightarrow{i} C_{\leq m}$$

$$p \downarrow s \qquad p \downarrow s$$

$$C_{\geq n} \xrightarrow{i} C$$

The canonical map

$$p \circ r \stackrel{\eta \circ p \circ r}{\longrightarrow} r \circ i \circ p \circ r \simeq r \circ p \circ i \circ r \stackrel{r \circ p \circ \epsilon}{\longrightarrow} r \circ p$$

is an equivalence.

We say the full sub- ∞ -category

$$\mathcal{C}^{\heartsuit} := \mathcal{C}_{\geq 0} \cap \mathcal{C}_{\leq 0} \subset \mathcal{C}$$

is the heart of the t-structure. For the functor

$$\pi_0 := \tau_{>0} \circ \tau_{<0} \simeq \tau_{<0} \circ \tau_{>0} : \mathcal{C} \to \mathcal{C}^{\heartsuit},$$

we call it the zeroth homotopy functor. The functor π_0 is additive, but is NOT exact. Instead, for all $n \in \mathbb{Z}$, we define

$$\pi_d:\mathcal{C}\longrightarrow\mathcal{C}^{\heartsuit}$$

to be $\pi_d = \pi_0 \circ \Omega^d$, and call it the dth homotopy functor. Now, a fiber sequence

$$Z \stackrel{g}{\longrightarrow} Y \stackrel{f}{\longrightarrow} X$$

in \mathcal{C} gives rise to a long exact sequence

$$\cdots \longrightarrow \pi_{d+1}(X) \longrightarrow \pi_d(Z) \longrightarrow \pi_d(Y) \longrightarrow \pi_d(X) \longrightarrow \cdots$$

in the heart \mathcal{C}^{\heartsuit} .

If $f: Y \to X$ is an equivalence, then $f: \pi_d(Y) \to \pi_d(X)$ is an isomorphism for all $d \in \mathbb{Z}$, but the opposite is generally not the case.

Now, for the stable ∞ -category $D(\mathbb{Z})$, we defined homology functors $H_d: D(\mathbb{Z}) \to \operatorname{Mod}_{\mathbb{Z}}$ for all $d \in \mathbb{Z}$ by

$$H_d(X) \simeq \pi_0 \operatorname{Map}(\Sigma^d 1, X) \simeq \pi_0 \operatorname{Map}(1, \Omega^d X).$$

 $D(\mathbb{Z})$ admits a t-structure $(D(\mathbb{Z})_{\geq 0}, D(\mathbb{Z})_{\leq 0})$, where the connective part $D(\mathbb{Z})_{\geq 0}$ is spanned by those X for which $H_d(X) \simeq 0$, for d < 0, and the coconnective part $D(\mathbb{Z})_{\leq 0}$ is spanned by those X for which $H_d(X) \simeq 0$, for d > 0. The zeroth homology functor

$$H_0: D(\mathbb{Z})^{\heartsuit} \longrightarrow \mathrm{Mod}_{\mathbb{Z}}$$

is an equivalence of (abelian) categories. We have $H_d \simeq H_0 \circ \pi_d$, so the functors H_d and π_d encode the same information.

Proposition 5.2. Let $X \in \text{Top}$, and let \mathcal{C} be a stable ∞ -category. A t-structure on \mathcal{C}

induces a t-structure on the stable ∞ -category $\mathcal{P}(X,\mathcal{C})$ of \mathcal{C} -valued presheaves on X, where the coconnective part $\mathcal{P}(X,\mathcal{C})_{\leq 0} \simeq \mathcal{P}(X,\mathcal{C}_{\leq 0})$, and where the connective part $\mathcal{P}(X,\mathcal{C})_{\geq 0}$ is spanned by those \mathcal{F} such that

$$Map(\mathcal{F}, \Omega\mathcal{G}) \simeq *$$

for all $\mathcal{G} \in \mathcal{P}(X, \mathcal{C}_{<0})$.

A functor $f: \mathcal{D} \to \mathcal{C}$ between stable ∞ -categories is exact iff it is left exact iff it is right exact.

An exact funcor $f: \mathcal{D} \to \mathcal{C}$ between stable ∞ -categories with t-structures is left t-exact if $f(\mathcal{D}_{\leq 0}) \subset \mathcal{D}_{\leq 0}$, and it is right t-exact if $f(\mathcal{D}_{\geq 0}) \subset \mathcal{D}_{\geq 0}$. It is t-exact if it is both left t-exact and right t-exact. If $f: \mathcal{D} \to \mathcal{C}$ admits right adjoint functor $g: \mathcal{C} \to \mathcal{D}$, then f is right t-exact iff g is left t-exact.

Theorem 5.3. Let $X \in \text{Top}$ and \mathcal{C} a presentable stable ∞ -category.

- (1) The sheafification functor $\operatorname{ass}_X : \mathcal{P}(X,\mathcal{C}) \to \operatorname{Sh}(X,\mathcal{C})$ is t-exact, and the inclusion functor $\iota_X : \operatorname{Sh}(X,\mathcal{C}) \to \mathcal{P}(X,\mathcal{C})$ is left t-exact.
- (2) The composite functor

$$\operatorname{Sh}(X,\mathcal{C}^{\heartsuit}) \xrightarrow{\iota_X^{\heartsuit}} \mathcal{P}(X,\mathcal{C}^{\heartsuit}) \simeq \mathcal{P}(X,\mathcal{C})^{\heartsuit} \xrightarrow{\operatorname{ass}_X} \operatorname{Sh}(X,\mathcal{C})^{\heartsuit}$$

is an equivalence of categories.

Write π_0^p and π_0^s for the homotopy functors associated with the t-structure on presheaves and sheaves. Since ass_X is both exact and t-exact, we obtain a commutative square

$$\begin{array}{ccc} \mathcal{P}(X,\mathcal{C}) & \stackrel{\pi_0^p}{\longrightarrow} \mathcal{P}(X,\mathcal{C})^{\heartsuit} \\ & \downarrow_{\mathrm{ass}_X} & \downarrow_{\mathrm{ass}_X} \\ \mathrm{Sh}(X,\mathcal{C}) & \stackrel{\pi_0^s}{\longrightarrow} \mathrm{Sh}(X,\mathcal{C})^{\heartsuit} \end{array}$$

6 Sheaf

Lemma 6.1. If \mathcal{A} is bounded above, i.e. $\exists d \in \mathbb{Z}$, s.t. $H_n(\mathcal{A}) = 0$, for all n > d, then \mathcal{A}^{sh} is also bounded above.

Question. For finite sets X, X' with $X' \to X$ surjective and split, then

$$0 \to \mathbb{Z}[X] \to \mathbb{Z}[X'] \to \mathbb{Z}[X' \times_X X'] \to \mathbb{Z}[X' \times_X X' \times_X X'] \to \cdots$$

is exact.

Lemma 6.2. Arbitrary limits and filtered colimits preserves $D(\mathbb{Z})_{\leq d}$.

Proof. First we show $D(\mathbb{Z})_{\leq d}$ is closed under filtered colimits. Assume $X_i \in D(\mathbb{Z})_{\leq d}, i \in I$, then

$$H_n(\underset{\longrightarrow}{\lim}X_i) = \underset{\longrightarrow}{\lim}H_n(X_i) = 0$$
, for any $n > d$.

Hence $\varinjlim X_i \in D(\mathbb{Z})_{\leq d}$. Then we show $D(\mathbb{Z})_{\leq d}$ is closed under arbitrary limits. Assume $X_i \in D(\mathbb{Z})_{\leq d}$, n > d, then

$$H_n(\lim X_i) = [\Sigma^n 1, \lim X_i]$$

$$= \pi_0 \operatorname{Map}(\Sigma^n 1, \lim X_i)$$

$$= \pi_0 \lim \operatorname{Map}(\Sigma^n 1, X_i)$$

$$= \pi_0 \lim *$$

$$= \pi_0 *$$

$$= 0.$$

Hence, $\lim X_i \in D(\mathbb{Z})_{\leq d}$.

Problem. What is the relation between $\pi_n(\lim X_i)$ and $\lim \pi_n(X_i)$. Similarly, the relation between $\pi_n(\operatorname{colim} X_i)$ and $\operatorname{colim} \pi_n(X_i)$.

Definition 6.3. We define the singular homology functor to be the composite of

$$\text{Top} \to \text{Cond}(\text{Set}) \hookrightarrow \text{Cond}(\text{An}) \to \text{An},$$

and denote it by $h: \text{Top} \to \text{An}$, where $\text{Top} \to \text{Cond}(\text{Set}), X \mapsto \underline{X}; \text{Cond}(\text{An}) \to \text{An}$ is the left adjoint of $\text{An} \hookrightarrow \text{Cond}(\text{An})$.

Definition 6.4. For the forgetful functor $D(\mathbb{Z})_{\geq 0} \simeq \operatorname{Ani}(\operatorname{Ab}) \to \operatorname{Ani}(\operatorname{Set}) \simeq \operatorname{An}$, it has a left

adjoint, and we denote it by

$$\mathbb{Z}[-]: \operatorname{Ani}(\operatorname{Set}) \to \operatorname{Ani}(\operatorname{Ab}); S \mapsto \mathbb{Z}[S].$$

Definition 6.5. For $X \in \text{Top}$, we define its singular homology object to be

$$\mathbb{Z}[h(X)] \in \operatorname{Ani}(\operatorname{Ab}) \simeq D(\mathbb{Z})_{>0} \subset D(\mathbb{Z}).$$

Lemma 6.6. Assume $A \in \text{Sh}(X, D(\mathbb{Z}))$, $H_n(A) = 0, \forall n > d$, and $H_d(A) \neq 0$, then $H_d(A)$ is a sheaf.

Proof. For $H_d(A) \in PSh(X, Ab)$, we need to check $H_d(A) \in Sh(X, Ab)$.

By denition, $H_d(\mathcal{A})(U) = H_d(\mathcal{A}(U)) = H_d(\lim_{\longleftarrow} \mathcal{A}(V))$. By the Milnor's sequence, we have

$$0 \longrightarrow \underset{\longleftarrow}{\lim}^{1} H_{d+1}(\mathcal{A}(V)) \longrightarrow H_{d}(\underset{\longleftarrow}{\lim} \mathcal{A}(V)) \longrightarrow \underset{\longleftarrow}{\lim} H_{d}(\mathcal{A}(V)) \longrightarrow 0.$$

Because $H_{d+1}(A) = 0$, so the left term of this short exact sequence is 0, hence

$$H_d(\mathcal{A})(U) = H_d(\underset{\longleftarrow}{\lim} \mathcal{A}(V)) = \underset{\longleftarrow}{\lim} H_d(\mathcal{A}(V)) = \underset{\longleftarrow}{\lim} H_d(\mathcal{A})(V).$$

Hence, $H_d(\mathcal{A}) \in Sh(X, Ab)$.

Proposition 6.7. Let $C_0 \subset C$ be a full subcategory, then the following full subcategories of C agree:

- the full subcategory generated under (small) colimits by C_0 ;
- the full subcategory generated under filtered colimits and finite colimits by C_0 ;
- the full subcategory generated under sifted colimits and finite products by \mathcal{C}_0 .

7 Animation

Theorem 7.1 (Yoneda). Let \mathcal{C} be an ∞ -category, the functor

$$\mathcal{C} \hookrightarrow \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An}); X \mapsto (Y \mapsto \operatorname{Hom}_{\mathcal{C}}(Y, X))$$

is fully faithful.

Remark 7.2. For S to be an anima, we mean S is an ∞ -category; while S to be a Kan complex, we mean S is a 1-category.

Let \mathcal{C} be a category which admits all small colimits.

Recall an object $X \in \mathcal{C}$ is compact (also called finitely presented) if $\operatorname{Hom}(X, -)$ commutes with filtered colimits.

An object $X \in \mathcal{C}$ is projective if $\operatorname{Hom}(X, -)$ commutes with reflexive coequalizers (coequalizers of parallel arrows $Y \rightrightarrows Z$ with a simultaneous section $Z \to Y$ of both maps).

Taken together, an object $X \in \mathcal{C}$ is compact projective if $\operatorname{Hom}(X, -)$ commutes with filtered colimits and reflexive coequalizers, equivalently, $\operatorname{Hom}(X, -)$ commutes with 1-sifted colimits.

Let $\mathcal{C}^{cp} \subset \mathcal{C}$ be the full subcategory of compact projective objects. There is a fully faithful embedding $\operatorname{sInd}(\mathcal{C}^{cp}) \longrightarrow \mathcal{C}$.

If \mathcal{C} is generated under small colimits by \mathcal{C}^{cp} , then the functor is an equivalence:

$$\operatorname{sInd}(\mathcal{C}^{\operatorname{cp}}) \cong \mathcal{C}.$$

If C^{cp} is small, then

$$\operatorname{sInd}(\mathcal{C}^{\operatorname{cp}}) \subset \operatorname{Fun}((\mathcal{C}^{\operatorname{cp}})^{\operatorname{op}},\operatorname{Set})$$

is exactly the full subcategory of functors that take finite coproducts in C^{cp} to products in Set.

Example 7.3. (i) If C = Set, then $C^{\text{cp}} = \text{FinSet}$, which generates C under small colimits.

- (ii) If C = Ab, then $C^{cp} = FinFreeAb$, which generates C under small colimits.
- (iii) If C = Ring, then $C^{\text{cp}} = \{ \text{retracts of } \mathbb{Z}[X_1, \dots, X_n] \}$, which generates C under small colimits.
- (iv) If $\mathcal{C} = \text{Cond}(\text{Set})$, then $\mathcal{C}^{\text{cp}} = \text{ExDisc}$, which generates \mathcal{C} under small colimits.
- (v) If C = Cond(Ab), then $C^{cp} = \{\text{direct summands of } \mathbb{Z}[S] \mid S \in \text{ExDisc}\}$, which generates C under small colimits.

(vi) C = Cond(Ring), then $C^{\text{cp}} = \{\text{retracts of } \mathbb{Z}[\mathbb{N}[S]] \mid S \in \text{ExDisc}\}$, which generates C under small colimits.

Definition 7.4. Let \mathcal{C} be a category that admits all small colimits and \mathcal{C} is generated under small colimits by \mathcal{C}^{cp} . The animation of \mathcal{C} is the ∞ -category $Ani(\mathcal{C})$ freely generated under sifted colimits by \mathcal{C}^{cp} .

Example 7.5. If C = Set, then $\text{Ani}(C) = \text{Ani}(\text{Set}) \stackrel{\triangle}{=} \text{Ani}$ is the ∞ -category of animated sets, or anima in a short.

Any anima has a set of connected components, giving a functor π_0 : Ani \to Set, which has a fully faithful right adjoint Set \hookrightarrow Ani.

Given an anima A with a point $a \in A$ (meaning a map $a : * \to A$), one can define groups $\pi_i(A, a)$, for $i \ge 1$ and for $i \ge 2$, $\pi_i(A, a) \in Ab$.

An anima A is i-truncated if $\pi_j(A, a) = 0$, $\forall a \in A$ and $\forall j > i$. Then A is 0-truncated if and only if it is in the essential image of Set \hookrightarrow Ani.

The inclusion of *i*-truncated anima into all anima has a left adjoint $\tau_{\leq i}$. For all anima A, the natural map

$$A \xrightarrow{\sim} \lim \tau_{\leq i} A$$

is an equivalence.

Picking any $a \in A$ and $i \geq 1$, the fiber of $\tau_{\leq i}A \to \tau_{\leq i-1}A$ over the image of a is an Eilenberg-Maclane anima $K(\pi_i(A,a),i)$. Here, an Eilenberg-Maclane anima $K(\pi,i)$ with $i \geq 1$ and π a group that is abelian if i > 0, is a pointed connected anima with $\pi_j = 0$ for $j \neq i$ and $\pi_i = \pi$. In fact, the ∞ -category of pointed connected anima (A,a) with $\pi_j(A,a) = 0$ for $j \neq i$ is equivalent to Grp when i = 1, and to Ab when $i \geq 2$.

Remark 7.6. There are several ways to describe $Ani(\mathcal{C})$.

- (i) Ani(\mathcal{C}) is the full sub- ∞ -category of objects in Fun((\mathcal{C}^{cp}) op , Ani) taking finite disjoint unions to finite products.
- (ii) $\operatorname{Ani}(\mathcal{C})$ is the ∞ -category obtained from $\operatorname{Simp}(\mathcal{C})$ by inverting weak equivalences.

Definition 7.7. Let \mathcal{C} be an ∞ -category that admits all small colimits. For any uncountable strong limit cardinal κ , the ∞ -category $\operatorname{Cond}_{\kappa}(\mathcal{C})$ of κ -condensed objects of \mathcal{C} is the category of contravariant functors from κ -ExDisc to \mathcal{C} that take finite coproducts to finite products. And we define

$$\operatorname{Cond}(\mathcal{C}) := \bigcup_{\kappa} \operatorname{Cond}_{\kappa}(\mathcal{C}).$$

Proposition 7.8. Let \mathcal{C} be a category that is generated under small colimits by \mathcal{C}^{cp} . Then $Cond(\mathcal{C})$ is still generated under small colimits by its compact projective objects, and there

is a natural equivalence of ∞ -categories

$$\operatorname{Cond}(\operatorname{Ani}(\mathcal{C})) \cong \operatorname{Ani}(\operatorname{Cond}(\mathcal{C})).$$

Definition 7.9. Let \mathcal{C} be some site.

(i) A presheaf of anima is a functor

$$\mathcal{F}: N(\mathcal{C}^{\mathrm{op}}) \longrightarrow Ani.$$

(ii) A sheaf of anima is a presheaf of anima \mathcal{F} , s.t. for all coverings $\{f_i: X_i \to X\}_{i \in I}$, one has

$$\mathcal{F}(X) \xrightarrow{\sim} \lim (\prod_i \mathcal{F}(X_i) \Longrightarrow \prod_{i,j} \mathcal{F}(X_i \times_X X_j) \Longrightarrow \cdots).$$

(iii) A hypercomplete sheaf of anima is a sheaf of anima \mathcal{F} , s.t. for all hypercovers $X_{\bullet} \to X$, the map

$$\mathcal{F}(X) \xrightarrow{\sim} \lim \mathcal{F}(X_{\bullet}) = \lim \left(\mathcal{F}(X_0) \Longrightarrow \mathcal{F}(X_1) \Longrightarrow \cdots \right)$$

is an equivalence.

Definition 7.10. The ∞ -category of condensed anima is given by

- The ∞-category of hypercomplete sheaves of anima on CHaus.
- The ∞ -category of hypercomplete sheaves of anima on ProFin.
- The ∞-category of hypercomplete sheaves of anima on ExDisc, i.e. of functors

$$\operatorname{ExDisc}^{\operatorname{op}} \longrightarrow \operatorname{Ani}$$

taking finite disjoint unions to finite products.

$$\begin{array}{cccc} \mathrm{CW} & \subset & \mathrm{Cond}(\mathrm{Set}) \\ \cap & \cap & & \cap \\ \mathrm{Ani} & \subset & \mathrm{Cond}(\mathrm{Ani}) \end{array}$$

Definition 7.11. $X \in \text{Cond}(\text{Ani})$ is

- discrete, if X in the essential image of Ani.
- static, if X in the essential image of $\operatorname{Cond}(\operatorname{Set}).$

8 Condensed Cohomology

Definition 8.1. Let $X \in \text{Cond}, M \in \text{Cond}(\text{Ab})$, we define the global section of M on X to be

$$\Gamma_{\text{cond}}(X, M) := \text{Hom}_{\text{Cond}}(X, M) = \text{Hom}_{\text{Cond}(Ab)}(\mathbb{Z}[X], M) \in \text{Ab},$$

and we define the condensed cohomology to be

$$R\Gamma_{\text{cond}}(X, M) := R\text{Hom}_{\text{Cond}(Ab)}(\mathbb{Z}[X], M),$$

i.e.

$$H_{\mathrm{cond}}^{i}(X, M) := \mathrm{Ext}_{\mathrm{Cond(Ab)}}^{i}((\mathbb{Z}[X], M).$$

Lemma 8.2. For $X \in \text{ExDisc}$, the functor $\Gamma_{\text{cond}}(X, -) : \text{Cond}(\text{Ab}) \to \text{Ab}$ is exact, hence, for any $M \in \text{CondAb}$, $H^i_{\text{cond}}(X, M) = 0, \forall i \geq 1$.

Proof. We have $\Gamma_{\text{cond}}(X, -) = \text{Hom}_{\text{Cond}(\text{Ab})}(\mathbb{Z}[X], -)$, and for $X \in \text{ExDisc}, \mathbb{Z}[X]$ is projective, hence $\Gamma_{\text{cond}}(X, -) : \text{Cond}(\text{Ab}) \to \text{Ab}$ is exact.

Question. How to compute $H^i_{\text{cond}}(X, M)$?

From the definition, we need to find a projective resolution of $\mathbb{Z}[X]$.

For $X \in \text{CHaus}$, we pick a hypercover $X_{\bullet} \to X$, where each $X_i \in \text{ExDisc}$, for this hypercover, applying $\mathbb{Z}[-]$, then we get a projective resolution of $\mathbb{Z}[X]$:

$$\cdots \longrightarrow \mathbb{Z}[X_2] \longrightarrow \mathbb{Z}[X_1] \longrightarrow \mathbb{Z}[X_0] \longrightarrow \mathbb{Z}[X] \longrightarrow 0.$$

By definition, we have

$$\begin{split} H^{i}_{\mathrm{cond}}(X, M) &= \mathrm{Ext}_{\mathrm{Cond}(\mathrm{Ab})}^{i}(\mathbb{Z}\left[X\right], M) \\ &= H^{i}(0 \to \mathrm{Hom}_{\mathrm{Cond}(\mathrm{Ab})}(\mathbb{Z}\left[X_{0}\right], M) \to \mathrm{Hom}_{\mathrm{Cond}(\mathrm{Ab})}(\mathbb{Z}\left[X_{1}\right], M) \to \cdots) \\ &= H^{i}(0 \to \Gamma_{\mathrm{cond}}(X_{0}, M) \to \Gamma_{\mathrm{cond}}(X_{1}, M) \to \Gamma_{\mathrm{cond}}(X_{2}, M) \to \cdots). \end{split}$$

Theorem 8.3 (Dyckhoff,1976). For any $X \in \text{CHaus}$, there are natural isomorphisms:

$$H^i_{\text{cond}}(X,\mathbb{Z}) \cong H^i_{\text{sh}}(X,\mathbb{Z}), \ \forall i \geq 0.$$

Proof. 1) Assume $X \in \text{Fin}$, then

$$H^{i}_{\text{cond}}(X,\mathbb{Z}) = \begin{cases} \Gamma_{\text{cond}}(X,\mathbb{Z}) = C(X,\mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

This comes from Lemma 8.2. On the other hand,

$$H^{i}_{\mathrm{sh}}(X,\mathbb{Z}) = \check{H}^{i}(X,\mathbb{Z}) = \begin{cases} C(X,\mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

This comes from by computing Cech cohomology. For a finite set X, take the cover $\mathcal{U} = \{x \to X\}_{x \in X}$, then $\mathcal{C}^0(\mathcal{U}, \mathbb{Z}) = \mathcal{C}^1(\mathcal{U}, \mathbb{Z}) = \cdots = \mathbb{Z}^X$, and because \mathcal{U} is a refinement of any cover, we have

$$\check{H}^{i}(X,\mathbb{Z}) = \check{H}^{i}(\mathcal{U},\mathbb{Z}) = \begin{cases} \mathbb{Z}^{X} = C(X,\mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

Therefore, for a finite set X, $H^i_{\text{cond}}(X,\mathbb{Z}) \cong H^i_{\text{sh}}(X,\mathbb{Z})$, $\forall i \geq 0$.

2) $X \in \text{ProFin}$, hence we can write $X = \underline{\lim}_{j} X^{j}$, $X^{j} \in \text{Fin}$.

$$H_{\mathrm{sh}}^{i}(X,\mathbb{Z}) = \check{H}(X,\mathbb{Z}) = \varinjlim_{j} \check{H}(X_{j},\mathbb{Z}) = \begin{cases} \varinjlim_{j} C(X_{j},\mathbb{Z}) = C(X,\mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

On the other hand, We compute $H^i_{\text{cond}}(X,\mathbb{Z}), i \geq 0$.

For $X \in \text{ProFin}$, pick a hypercover $X_{\bullet} \to X$ with each $X_i \in \text{ExDisc}$, and for each X^j , pick a finite hypercover $X_{\bullet}^j \to X^j$, s.t. $\varprojlim_j X_n^j = X_n$. Since X^j is finite, we have

$$H^{i}_{\mathrm{cond}}(X^{j}, \mathbb{Z}) = \begin{cases} \Gamma(X^{j}, \mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

And we know

$$H^i_{\mathrm{cond}}(X^j,\mathbb{Z}) = H^i(0 \longrightarrow \Gamma(X_0^j,\mathbb{Z}) \longrightarrow \Gamma(X_1^j,\mathbb{Z}) \longrightarrow \Gamma(X_2^j,\mathbb{Z}) \longrightarrow \cdots),$$

hence we have an exact sequence:

$$0 \longrightarrow \Gamma(X^j, \mathbb{Z}) \longrightarrow \Gamma(X_0^j, \mathbb{Z}) \longrightarrow \Gamma(X_1^j, \mathbb{Z}) \longrightarrow \Gamma(X_2^j, \mathbb{Z}) \longrightarrow \cdots$$

Applying the exact functor \varinjlim_{i} to this exact sequence, we get an exact sequence:

$$0 \longrightarrow \varinjlim_{j} \Gamma(X^{j}, \mathbb{Z}) \longrightarrow \varinjlim_{j} \Gamma(X_{0}^{j}, \mathbb{Z}) \longrightarrow \varinjlim_{j} \Gamma(X_{1}^{j}, \mathbb{Z}) \longrightarrow \varinjlim_{j} \Gamma(X_{2}^{j}, \mathbb{Z}) \longrightarrow \cdots,$$

i.e.

$$0 \longrightarrow \Gamma(X, \mathbb{Z}) \longrightarrow \Gamma(X_0, \mathbb{Z}) \longrightarrow \Gamma(X_1, \mathbb{Z}) \longrightarrow \Gamma(X_2, \mathbb{Z}) \longrightarrow \cdots$$

Hence,

$$H^{i}_{\text{cond}}(X,\mathbb{Z}) = \begin{cases} \Gamma(X,\mathbb{Z}) & i = 0\\ 0 & i > 0 \end{cases}$$

3) $X \in \text{CHaus}$.

Consider a morphism of topoi (α^{-1}, α_*) : $\operatorname{Sh}(\operatorname{CHaus}/X) \to \operatorname{Sh}(X)$. For $\mathcal{F} \in \operatorname{Sh}(\operatorname{CHaus}/X)$, $\alpha_*\mathcal{F}$ is given by

$$U \mapsto \varprojlim_{V \subset U,\ V \text{ is closed in } X} \mathcal{F}(V \hookrightarrow S).$$

We have the following diagram:

$$\operatorname{Sh}(\operatorname{CHaus}/X) \xrightarrow{\alpha_*} \operatorname{Sh}(X)$$

$$\Gamma_{\operatorname{cond}}(X,-) \xrightarrow{\Gamma_{\operatorname{sh}}(X,-)} \operatorname{Set}$$

This is because $\forall Y \in Sh(CHaus/X)$,

$$\begin{split} \Gamma_{\operatorname{sh}}(X,\alpha_*Y) &= \alpha_*Y(X) = \varprojlim_{V \subset U,\ V \text{ is closed in } X} Y(V) \\ &= \varprojlim_{V} \operatorname{Hom}_{\operatorname{cond}}(V,Y) = \operatorname{Hom}_{\operatorname{cond}}(\varinjlim_{V} V,Y) \\ &= \operatorname{Hom}_{\operatorname{cond}}(X,Y) = \Gamma_{\operatorname{cond}}(X,Y). \end{split}$$

And this diagram can induce a diagram:

$$D(\operatorname{Ab}(\operatorname{CHaus}/X)) \xrightarrow{R\alpha_*} D(\operatorname{Ab}(X))$$

$$R\Gamma_{\operatorname{cond}}(X,-)$$

$$D(\operatorname{Ab})$$

Claim: $R\alpha_*\mathbb{Z} \cong \mathbb{Z}$ in D(Ab(X)).

With this claim, we can show

$$H^{i}_{\operatorname{cond}}(X,\mathbb{Z}) = H^{i}(R\Gamma_{\operatorname{cond}}(X,\mathbb{Z}))$$

$$= H^{i}(R\Gamma_{\operatorname{sh}}(X,-) \circ R\alpha_{*}\mathbb{Z})$$

$$= H^{i}(R\Gamma_{\operatorname{sh}}(X,\mathbb{Z}))$$

$$= H^{i}_{\operatorname{sh}}(X,\mathbb{Z}).$$

Hence, it suffices to show this claim. We have a map $\mathbb{Z} \to R\alpha_*\mathbb{Z}$ in $D(\mathrm{Ab}(X))$. In order to show this is an isomorphism, it suffices to check on each stacks. Fix $s \in S$,

$$(R\alpha_* \mathbb{Z})_s = \varinjlim_{s \in U \text{ open}} R\Gamma(U, R\alpha_* \mathbb{Z})$$

$$= \varinjlim_{s \in U \text{ open}} R\Gamma_{\text{cond}}(U, \mathbb{Z})$$

$$= \varinjlim_{s \in V \text{ closed}} R\Gamma_{\text{cond}}(V, \mathbb{Z}).$$

Pick a hypercover $S_{\bullet} \to S$ with $S_i \in \text{ExDisc.}$ Then for each closed V, $(S_n \times_X V)_{n \geq 0} \to V$ is a hypercover. Hence,

$$R\Gamma_{\text{cond}}(V, \mathbb{Z}) \cong (0 \longrightarrow \Gamma(S_0 \times_X V, \mathbb{Z}) \longrightarrow \Gamma(S_1 \times_X V, \mathbb{Z}) \longrightarrow \cdots).$$

Thus, we have

$$(R\alpha_*\mathbb{Z})_s = \varinjlim_{s \in V \text{ closed}} R\Gamma_{\text{cond}}(V, \mathbb{Z})$$

$$\cong \varinjlim_{s \in V \text{ closed}} (0 \longrightarrow \Gamma(S_0 \times_X V, \mathbb{Z}) \longrightarrow \Gamma(S_1 \times_X V, \mathbb{Z}) \longrightarrow \cdots)$$

$$\cong (0 \longrightarrow \varinjlim_{s \in V \text{ closed}} \Gamma(S_0 \times_X V, \mathbb{Z}) \longrightarrow \varinjlim_{s \in V \text{ closed}} \Gamma(S_1 \times_X V, \mathbb{Z}) \longrightarrow \cdots)$$

$$\cong (0 \longrightarrow \Gamma(S_0 \times_X \{s\}, \mathbb{Z}) \longrightarrow \Gamma(S_1 \times_X \{s\}, \mathbb{Z}) \longrightarrow \cdots)$$

$$\cong R\Gamma_{\text{cond}}(\{s\}, \mathbb{Z})$$

$$\cong \mathbb{Z},$$

which finishes our proof.

Example 8.4. Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, for $\mathbb{T}^I \in \text{CHaus}$, we have $H^n(\mathbb{T}^I, \mathbb{Z}) = \wedge^n(\mathbb{Z}^{\oplus I})$.

Proof. First, we have

$$H^n(\mathbb{T}, \mathbb{Z}) = \begin{cases} \mathbb{Z} & n = 0, 1 \\ 0 & \text{else} \end{cases}$$

i.e. $H^*(\mathbb{T}, \mathbb{Z}) = \wedge(\mathbb{Z})$.

Claim: $H^*(\mathbb{T}^n, \mathbb{Z}) = \wedge (\mathbb{Z}^{\oplus n}).$

We can prove it by induction on n. n = 1 is proved above.

By Kunneth theorem, we can show that for $H^*(X,\mathbb{Z})$ finitely generated free in each degree, we have $H^*(X \times Y,\mathbb{Z}) \cong H^*(X,\mathbb{Z}) \otimes H^*(Y,\mathbb{Z})$. Hence, we have

$$H^*(\mathbb{T}^n, \mathbb{Z}) = H^*(\mathbb{T}^{n-1}, \mathbb{Z}) \otimes H^*(\mathbb{T}, \mathbb{Z})$$
$$= \wedge (\mathbb{Z}^{\oplus (n-1)}) \otimes \wedge (\mathbb{Z})$$
$$= \wedge (\mathbb{Z}^{\oplus n}).$$

In order to prove the general case, there is a fact that for $S \in \text{CHaus}$, $S = \varprojlim_{j} S_{j}$, then $H^{n}(S,\mathbb{Z}) = \varinjlim_{j} H^{n}(S_{j},\mathbb{Z})$. Hence,

$$H^{n}(\mathbb{T}^{I}, \mathbb{Z}) = H^{n}(\underbrace{\lim_{J \subset I \text{ finite}}}_{\mathbb{Z}^{I}, \mathbb{Z}} \mathbb{T}^{J}, \mathbb{Z})$$

$$= \underbrace{\lim_{J \subset I \text{ finite}}}_{\mathbb{Z}^{I}, \mathbb{Z}} H^{n}(\mathbb{T}^{J}, \mathbb{Z})$$

$$= \underbrace{\lim_{J \subset I \text{ finite}}}_{\mathbb{Z}^{I}, \mathbb{Z}^{I}} \wedge^{n}(\mathbb{Z}^{\oplus J})$$

$$= \wedge^{n}(\mathbb{Z}^{\oplus I}).$$

9 Locally compact abelian groups

Notation. Let TopAb be the category of all Hausdorff topological abelian groups and LCAb be the category of all locally compact abelian groups.

Proposition 9.1. Let $A, B \in \text{TopAb}$ and assume that $A \in \text{CGTop}$. Then there is a natural isomorphism of condensed abelian groups

$$\underline{\operatorname{Hom}}(\underline{A},\underline{B}) \cong \operatorname{Hom}(A,B).$$

Theorem 9.2 (Eilenberg-Maclane, Breen, Deligne resolution). For any abelian group A, there is a functorial resolution

$$\cdots \longrightarrow \bigoplus_{i=1}^{n_i} \mathbb{Z}[A^{r_{i,j}}] \longrightarrow \cdots \longrightarrow \mathbb{Z}[A^3] \oplus \mathbb{Z}[A^2] \longrightarrow \mathbb{Z}[A^2] \longrightarrow \mathbb{Z}[A] \longrightarrow A \to 0.$$

Remark 9.3. Such functorial ensures that it works for abelian group objects in any topos.

Lemma 9.4. Let $A^{\bullet,\bullet}$ be a double complex and $A^{\bullet} = \text{Tot}(A^{\bullet,\bullet})$ be its total complex, then there is a spectral sequence

$$E_1^{p,q} = H^q(A^{\bullet,p}) \Longrightarrow H^{p+q}(A^{\bullet}).$$

Lemma 9.5. For a complex of abelian groups $M^{\bullet} \in D(\mathbb{Z})$, let

$$0 \longrightarrow M^{\bullet} \longrightarrow A^{\bullet,1} \longrightarrow A^{\bullet,2} \longrightarrow A^{\bullet,3} \longrightarrow \cdots$$

be an exact sequence in $D(\mathbb{Z})$, then for the double complex $A^{\bullet,\bullet}$, there is a quasi-isomorphism

$$M^{\bullet} \stackrel{\sim}{\to} \mathrm{Tot}(A^{\bullet,\bullet}).$$

Corollary 9.6. For any condensed abelian groups A, M and an extremally disconnected space S, there is a spectral sequence

$$E_1^{p,q} = \prod_{j=1}^{n_p} H^q(A^{r_{p,j}} \times S, M) \Longrightarrow \underline{\operatorname{Ext}}^{p+q}(A, M)(S),$$

that is functorial in A, M and S.

Proof. For $A \in \text{Cond}(Ab)$, consider its EMBD resolution

$$\cdots \longrightarrow \bigoplus_{j=1}^{n_i} \mathbb{Z}[A^{r_{i,j}}] \longrightarrow \cdots \longrightarrow \mathbb{Z}[A^3] \oplus \mathbb{Z}[A^2] \longrightarrow \mathbb{Z}[A^2] \longrightarrow \mathbb{Z}[A] \longrightarrow A \to 0,$$

then apply $-\otimes \mathbb{Z}[S]$, which is an exact functor since $\mathbb{Z}[S]$ is flat, we get the resolution of $A\otimes \mathbb{Z}[S]$

$$\cdots \longrightarrow \bigoplus_{j=1}^{n_i} \mathbb{Z}[A^{r_{i,j}} \times S] \cdots \longrightarrow \mathbb{Z}[A^3 \times S] \oplus \mathbb{Z}[A^2 \times S] \longrightarrow \mathbb{Z}[A^2 \times S] \longrightarrow \mathbb{Z}[A \times S] \longrightarrow A \otimes \mathbb{Z}[S] \to 0,$$

then apply RHom(-,M), we get

$$0 \longrightarrow R\mathrm{Hom}(A \otimes \mathbb{Z}[S], M) \longrightarrow R\mathrm{Hom}(\mathbb{Z}[A \times S], M) \longrightarrow R\mathrm{Hom}(\mathbb{Z}[A^2 \times S], M) \longrightarrow \cdots,$$

i.e.

$$0 \longrightarrow R\underline{\mathrm{Hom}}(A,M)(S) \longrightarrow R\Gamma(A \times S,M) \longrightarrow R\Gamma(A^2 \times S,M) \longrightarrow \cdots,$$

which is an exact sequence in $D(\mathbb{Z})$. By lemma 9.4 and lemma 9.5, we have

$$E_1^{p,q} = H^q(\bigoplus_{j=1}^{n_p} R\Gamma(A^{r_{p,j}} \times S, M)) \Longrightarrow H^{p+q}(\operatorname{Tot}(\bigoplus_{j=1}^{n_{\bullet}} R\Gamma(A^{r_{\bullet,j}} \times S, M)))$$

and

$$R\underline{\operatorname{Hom}}(A,M)(S) \simeq \operatorname{Tot}(\bigoplus_{j=1}^{n_{\bullet}} R\Gamma(A^{r_{\bullet,j}} \times S, M)),$$

hence

$$E_1^{p,q} = \prod_{j=1}^{n_p} H^q(A^{r_{p,j}} \times S, M) \Longrightarrow \underline{\operatorname{Ext}}^{p+q}(A, M)(S).$$

Lemma 9.7. In the category of abelian groups, if the following diagram is exact for each arrow

$$0 \longrightarrow M^{\bullet} \longrightarrow A^{\bullet,1} \longrightarrow A^{\bullet,2} \longrightarrow \cdots,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N^{\bullet} \longrightarrow B^{\bullet,1} \longrightarrow B^{\bullet,2} \longrightarrow \cdots$$

and if for any $j \geq 1$, we have $A^{\bullet,j} \cong B^{\bullet,j}$, then $\operatorname{Tot}(A^{\bullet,\bullet}) \cong \operatorname{Tot}(B^{\bullet,\bullet})$. Furthermore, by $M^{\bullet} \cong \operatorname{Tot}(A^{\bullet,\bullet})$ and $N^{\bullet} \cong \operatorname{Tot}(B^{\bullet,\bullet})$, we can get $M^{\bullet} \cong N^{\bullet}$.

Theorem 9.8. Assume I is any set, denote the compact condensed abelian group $\prod_I \mathbb{T}$ by \mathbb{T}^I .

(i) For any discrete abelian group M, we have

$$R\underline{\operatorname{Hom}}(\mathbb{T}^I, M) = M^{\oplus I}[-1],$$

where $M^{\oplus I}[-1] \to R\underline{\mathrm{Hom}}(\mathbb{T}^I, M)$ is induced by

$$M[-1] = R\underline{\operatorname{Hom}}(\mathbb{Z}[1],M) \longrightarrow R\underline{\operatorname{Hom}}(\mathbb{T},M) \xrightarrow{p_i^*} R\underline{\operatorname{Hom}}(\mathbb{T}^I,M),$$

where $p_i: \mathbb{T}^I \longrightarrow \mathbb{T}$ is the projection to the *i*-th factor, $i \in I$.

(ii) $R\underline{\operatorname{Hom}}(\mathbb{T}^I, \mathbb{R}) = 0.$

Proof.

(i) We first prove the case I is a one element set, i.e.

$$R\underline{\operatorname{Hom}}(\mathbb{T}, M) = M[-1].$$

From the exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0$, we have $\mathbb{R} \to \mathbb{T} \to \mathbb{Z}[1]$, hence

$$M[-1] = R\underline{\operatorname{Hom}}(\mathbb{Z}[1],M) \longrightarrow R\underline{\operatorname{Hom}}(\mathbb{T},M) \longrightarrow R\underline{\operatorname{Hom}}(\mathbb{R},M).$$

In order to show $R\underline{\mathrm{Hom}}(\mathbb{T},M)=M[-1]$, it suffices to show $R\underline{\mathrm{Hom}}(\mathbb{R},M)=0$.

Claim: $R\underline{\text{Hom}}(\mathbb{R}, M) = 0$.

For 0 and \mathbb{R} , we take its EMBD resolution:

$$\cdots \longrightarrow \bigoplus_{j=1}^{n_i} \mathbb{Z}[\mathbb{R}^{r_{i,j}}] \longrightarrow \cdots \longrightarrow \mathbb{Z}[\mathbb{R}] \longrightarrow \mathbb{R} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \bigoplus_{j=1}^{n_i} \mathbb{Z}[0^{r_{i,j}}] \longrightarrow \cdots \longrightarrow \mathbb{Z}[0] \longrightarrow 0 \longrightarrow 0,$$

apply $R\underline{\mathrm{Hom}}(-,M)(S)$, we get

$$0 \longrightarrow R\underline{\mathrm{Hom}}(0,M)(S) \longrightarrow R\underline{\mathrm{Hom}}(\mathbb{Z}[0],M)(S) \longrightarrow \cdots \longrightarrow R\underline{\mathrm{Hom}}(\bigoplus_{j=1}^{n_i} \mathbb{Z}[0^{r_{i,j}}],M)(S) \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow R\underline{\mathrm{Hom}}(\mathbb{R},M)(S) \longrightarrow R\underline{\mathrm{Hom}}(\mathbb{Z}[\mathbb{R}],M)(S) \longrightarrow \cdots \longrightarrow R\underline{\mathrm{Hom}}(\bigoplus_{j=1}^{n_i} \mathbb{Z}[\mathbb{R}^{r_{i,j}}],M)(S) \cdots,$$

i.e.

Then by lemma 9.7, in order to show $R\underline{\mathrm{Hom}}(\mathbb{R},M)=0$, it suffices to show

$$R\Gamma(S, M) = R\Gamma(S \times \mathbb{R}^r, M).$$

We know $S \times \mathbb{R}^r = \underline{\lim} \ S \times [-N, N]^r$, then

$$\begin{split} R\Gamma(S\times\mathbb{R}^r,M) &= R\Gamma(\varinjlim S\times [-N,N]^r,M) \\ &= \varprojlim R\Gamma(S\times [-N,N]^r,M) \\ &= \varprojlim R\Gamma(S,M) \\ &= R\Gamma(S,M). \end{split}$$

Here, $\varprojlim R\Gamma(S \times [-N, N]^r, M) = \varprojlim R\Gamma(S, M)$ comes from the fact that for constant sheaf, its sheaf cohomology is homotopy-invariant.

Secondly, assume I is a finite set, then

$$R\underline{\operatorname{Hom}}(\mathbb{T}^I,M)=R\underline{\operatorname{Hom}}(\mathbb{T}^{\oplus I},M)=\prod_I R\underline{\operatorname{Hom}}(\mathbb{T},M)=\prod_I M[-1]=M^{\oplus I}[-1].$$

Finally, assume I is any set. Then we can write \mathbb{T}^I as

$$\mathbb{T}^I = \varprojlim_{J \subset I, J \text{ finite}} \mathbb{T}^J.$$

For any finite set J, we have

apply the exact functor $\varinjlim_{J\subset I}$ to the first arrow, we get

$$0 \longrightarrow \varinjlim_{J \subset I} R \operatorname{\underline{Hom}}(\mathbb{T}^J, M)(S) \longrightarrow \varinjlim_{J \subset I} R \Gamma(\mathbb{T}^J \times S, M) \longrightarrow \cdots \longrightarrow \bigoplus_{j=1}^{n_i} \varinjlim_{J \subset I} R \Gamma((\mathbb{T}^J)^{r_{i,j}} \times S, M) \cdots \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ 0 \longrightarrow R \operatorname{\underline{Hom}}(\mathbb{T}^I, M)(S) \longrightarrow R \Gamma(\mathbb{T}^I \times S, M) \longrightarrow \cdots \longrightarrow \bigoplus_{j=1}^{n_i} R \Gamma((\mathbb{T}^I)^{r_{i,j}} \times S, M) \cdots ,$$

In order to show

$$\varinjlim_{J\subset I} R\underline{\operatorname{Hom}}(\mathbb{T}^J,M)(S) \cong R\underline{\operatorname{Hom}}(\mathbb{T}^I,M)(S),$$

it suffices to show

$$\varinjlim_{J \subset I} R\Gamma((\mathbb{T}^J)^{r_{i,j}} \times S, M) \cong R\Gamma((\mathbb{T}^I)^{r_{i,j}} \times S, M).$$

This is true, because $\varprojlim_{J\subset I} (\mathbb{T}^J)^{r_{i,j}}\times S\cong (\mathbb{T}^I)^{r_{i,j}}\times S$. Therefore,

$$\begin{split} R \underline{\operatorname{Hom}}(\mathbb{T}^I, M) &\cong \varinjlim_{J \subset I} R \underline{\operatorname{Hom}}(\mathbb{T}^J, M) \\ &\cong \varinjlim_{J \subset I} M^{\oplus J}[-1] \\ &\cong M^{\oplus I}[-1]. \end{split}$$

Corollary 9.9. $R\text{Hom}(\mathbb{R}, \mathbb{R}) \cong \mathbb{R}$.

Proof. From the exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0$, we have

$$R\underline{\operatorname{Hom}}(\mathbb{T},\mathbb{R}) \to R\underline{\operatorname{Hom}}(\mathbb{R},\mathbb{R}) \to R\underline{\operatorname{Hom}}(\mathbb{Z},\mathbb{R}).$$

By Theorem 9.8, we know $R\underline{\mathrm{Hom}}(\mathbb{T},\mathbb{R})=0$, hence $R\underline{\mathrm{Hom}}(\mathbb{R},\mathbb{R})\cong R\underline{\mathrm{Hom}}(\mathbb{Z},\mathbb{R})\cong \mathbb{R}$.

Corollary 9.10. For any locally compact abelian groups A and B, $R\underline{\text{Hom}}(A,B)$ is centered at 0 and 1, i.e. $\underline{\text{Ext}}^i(A,B)=0, \ \forall i\geq 2.$

Proof. By the structure theorem of locally compact abelian groups, it suffices to prove for A and B being compact groups and discrete groups.

(i) A is a discrete group.

Claim: There is an exact sequence: $0 \to \bigoplus_I \mathbb{Z} \to \bigoplus_J \mathbb{Z} \to A \to 0$.

This is because we can construct a surjective homomorphism $\bigoplus_A \mathbb{Z} \to A$, and take its kernel, and we know the submodule of a free \mathbb{Z} -module is free, hence $\ker(\bigoplus_A \mathbb{Z} \to A) = \bigoplus_I \mathbb{Z}$, for some I. Thereby, $0 \to \bigoplus_I \mathbb{Z} \to \bigoplus_A \mathbb{Z} \to A \to 0$ is exact.

By the short exact sequence $0 \to \oplus_I \mathbb{Z} \to \oplus_J \mathbb{Z} \to A \to 0$, we can get a long exact sequence:

$$0 \longrightarrow \underline{\operatorname{Hom}}(A,B) \longrightarrow \underline{\operatorname{Hom}}(\oplus_{J}\mathbb{Z},B) \longrightarrow \underline{\operatorname{Hom}}(\oplus_{I}\mathbb{Z},B)$$
$$\longrightarrow \underline{\operatorname{Ext}}^{1}(A,B) \longrightarrow \underline{\operatorname{Ext}}^{1}(\oplus_{J}\mathbb{Z},B) \longrightarrow \underline{\operatorname{Ext}}^{1}(\oplus_{I}\mathbb{Z},B)$$
$$\longrightarrow \underline{\operatorname{Ext}}^{2}(A,B) \longrightarrow \cdots.$$

Because $\bigoplus_I \mathbb{Z} \in \text{Cond}(Ab)$ is projective, we have $\underline{\text{Ext}}^i(\bigoplus_I \mathbb{Z}, B) = 0$, $\forall i \geq 1$. Hence $\underline{\text{Ext}}^i(A, B) = 0$, $\forall i \geq 2$.

(ii) A is a compact group.

By Pontrgagin duality, there is a short exact sequence

$$0 \to A \to \mathbb{T}^I \to \mathbb{T}^J \to 0.$$

and it can induce a long exact sequence

$$0 \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^{J}, B) \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^{I}, B) \longrightarrow \underline{\operatorname{Hom}}(A, B)$$

$$\longrightarrow \underline{\operatorname{Ext}}^{1}(\mathbb{T}^{J}, B) \longrightarrow \underline{\operatorname{Ext}}^{1}(\mathbb{T}^{I}, B) \longrightarrow \underline{\operatorname{Ext}}^{1}(A, B)$$

$$\longrightarrow \underline{\operatorname{Ext}}^{2}(\mathbb{T}^{J}, B) \longrightarrow \underline{\operatorname{Ext}}^{2}(\mathbb{T}^{I}, B) \longrightarrow \underline{\operatorname{Ext}}^{2}(A, B)$$

$$\longrightarrow \cdots$$

In order to show $\underline{\mathrm{Ext}}^i(A,B)=0, \ \forall i\geq 2, \ \mathrm{it} \ \mathrm{suffices} \ \mathrm{to} \ \mathrm{show}$

$$\underline{\operatorname{Ext}}^{i}(\mathbb{T}^{I}, B) = 0, \ \forall i \geq 2, \ \forall I.$$

(a) B is a discrete group. In this case, we have $R\underline{\text{Hom}}(\mathbb{T}^I, B) = B^{\oplus I}[-1]$, which is centered at 1, hence $\underline{\text{Ext}}^i(\mathbb{T}^I, B) = 0, \ \forall i \geq 2, \ \forall I.$

(b) B is a compact group.

In this case, we have a short exact sequence $0 \to B \to \mathbb{T}^{I'} \to \mathbb{T}^{J'} \to 0$, and it induces a long exact sequence:

$$0 \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I,B) \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I,\mathbb{T}^{I'}) \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I,\mathbb{T}^{J'})$$

$$\longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I,B) \longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I,\mathbb{T}^{I'}) \longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I,\mathbb{T}^{J'})$$

$$\longrightarrow \underline{\operatorname{Ext}}^2(\mathbb{T}^I,B) \longrightarrow \cdots.$$

Now, we compute $\underline{\operatorname{Ext}}^i(\mathbb{T}^I,\mathbb{T})$. For the short exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0$, we have a long exact sequence:

$$0 \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I, \mathbb{Z}) \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I, \mathbb{R}) \longrightarrow \underline{\operatorname{Hom}}(\mathbb{T}^I, \mathbb{T})$$

$$\longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I, \mathbb{Z}) \longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I, \mathbb{R}) \longrightarrow \underline{\operatorname{Ext}}^1(\mathbb{T}^I, \mathbb{T})$$

$$\longrightarrow \underline{\operatorname{Ext}}^2(\mathbb{T}^I, \mathbb{Z}) \longrightarrow \cdots.$$

Since $R\underline{\mathrm{Hom}}(\mathbb{T}^I,\mathbb{R})=0$ and $R\underline{\mathrm{Hom}}(\mathbb{T}^I,\mathbb{Z})=\mathbb{Z}^{\oplus I}[-1],$ we have $\underline{\mathrm{Ext}}^i(\mathbb{T}^I,\mathbb{T})=0,\ \forall i\geq 1,$ hence $\underline{\mathrm{Ext}}^i(\mathbb{T}^I,\mathbb{T}^J)=0,\ \forall i\geq 1,\ \forall J.$ Thus $\underline{\mathrm{Ext}}^i(\mathbb{T}^I,B)=0,\ \forall i\geq 2.$

Appendix: Resolutions

Definition 9.11. Let \mathcal{A} be a Grothendieck abelian category and $X \in D(\mathcal{A})$ is a complex.

- (i) Let $n \in \mathbb{Z}_{\geq 0}$. X is n-pseudocoherent if
 - (a) X is bounded above, i.e. for $i \gg 0$, $H^i(X) = 0$.
 - (b) For $i = 0, 1, \dots, n-1$, $\operatorname{Ext}^{i}(X, -) : \mathcal{A} \to \operatorname{Ab}$ commutes with filtered colimits.
 - (c) $\operatorname{Ext}^n(X, -) : \mathcal{A} \to \operatorname{Ab}$ commutes with filtered union.
- (ii) X is pseudocoherent if
 - (a) X is bounded above, i.e. for $i \gg 0$, $H^i(X) = 0$.
 - (b) For any $i \geq 0$, $\operatorname{Ext}^{i}(X, -) : \mathcal{A} \to \operatorname{Ab}$ commutes with filtered colimits.

X is pseudocoherent iff $\forall n, X$ is n-pseudocoherent.

- (iii) Let $n \in \mathbb{Z}_{\geq 0}$ and \mathcal{A}_0 is a family of compact projective objects of \mathcal{A} . X is n, \mathcal{A}_0 pseudocoherent if:
 there exists a bounded cochain complex P^{\bullet} , and a map $\varphi : P^{\bullet} \to X$, s.t. each P^i is the
 finite direct sum of elements of \mathcal{A}_0 , and if i > -n, $H^i(\varphi)$ is an isomorphism; if i = -n, $H^i(\varphi)$ is a surjection.
- (iv) Let \mathcal{A}_0 be a family of compact projective objects of \mathcal{A} . X is \mathcal{A}_0 -pseudocoherent if: there exists a bounded cochain complex P^{\bullet} , and a map $\varphi: P^{\bullet} \to X$, which is a quasiisomorphism, s.t. each P^i is the finite direct sum of elements of \mathcal{A}_0 . X is \mathcal{A}_0 -pseudocoherent iff $\forall n, X$ is n, \mathcal{A}_0 -pseudocoherent.

Definition 9.12. Let \mathcal{A} be a Grothendieck abelian category and $A \in \mathcal{A}$. A is finitely generated if A is 0-pseudocoherent.

Lemma 9.13. Let \mathcal{A} be a Grothendieck abelian category and $A \in \mathcal{A}$. Consider:

- (i) A is finitely generated.
- (ii) A is the quotient of a compact object.
- (iii) If there is a surjection $\bigoplus_{i \in I} B_i \twoheadrightarrow A$, then there exists a finite subset $J \subseteq I$, s.t. $\bigoplus_{i \in J} B_i \twoheadrightarrow A$.
- (iv) Let B be the filtered colimit of B_i , then $\lim_{i \to \infty} \operatorname{Hom}(A, B_i) \hookrightarrow \operatorname{Hom}(A, B)$.

Then (i) \iff (ii) \iff (iii) \implies (iv).

Proof. (ii) \Longrightarrow (i). Assume $C \twoheadrightarrow A$ and C is compact. Take any filtered union $B = \bigcup B_i$. Since $B_i \hookrightarrow B$, then $\text{Hom}(A, B_i) \hookrightarrow \text{Hom}(A, B)$, thus $\varinjlim \text{Hom}(A, B_i) \hookrightarrow \varinjlim \text{Hom}(A, B)$. In order to show this is a surjection, we take any map $A \to B$, since C is compact, $C \to A \to B$ factors through some B_i , hence $A \to B$ factors through B_i , which implies

$$\varinjlim \operatorname{Hom}(A, B_i) \twoheadrightarrow \varinjlim \operatorname{Hom}(A, B).$$

Then $\varinjlim \operatorname{Hom}(A, B_i) \cong \varinjlim \operatorname{Hom}(A, B)$, i.e. A is finitely generated. (i) \Longrightarrow (iii). We write

$$A = \operatorname{Im}(\bigoplus_{i \in I} B_i \to A) = \bigcup_{J \subset I, J \text{ finite}} \operatorname{Im}(\bigoplus_{i \in J} B_i \to A),$$

then

$$\operatorname{Hom}(A,A) = \varinjlim \operatorname{Hom}(A,\operatorname{Im}(\bigoplus_{i \in J} B_i \to A)),$$

hence id_A factors through $\mathrm{Im}(\bigoplus_{i\in J}B_i\to A)$ for some J, thus $\bigoplus_{i\in J}B_i\twoheadrightarrow A$.

(iii) \Longrightarrow (ii). We can write A as the quotient of the direct sum of a family of compact objects, i.e $\bigoplus_{i \in I} B_i \twoheadrightarrow A$, B_i are compact. By (iii), \exists finite subset $J \subset I$, s.t. $\bigoplus_{i \in J} B_i \twoheadrightarrow A$. And the finite direct sum of compact objects is still compact, hence A is the quotient of a compact object.

(ii) \Longrightarrow (iv). Assume $C \twoheadrightarrow A$ with C compact and $B = \varinjlim B_i$. Then we have the following diagram

$$\operatorname{Hom}(A,B) \hookrightarrow \operatorname{Hom}(C,B)$$

$$\downarrow \qquad \qquad \parallel$$

$$\varinjlim \operatorname{Hom}(A,B_i) \hookrightarrow \operatorname{Hom}(C,B)$$

which gives $\operatorname{Hom}(A, B) \hookrightarrow \underline{\lim} \operatorname{Hom}(A, B_i)$.

10 Solid Abelian Groups

Definition 10.1. For $S \in \text{ProFin}$, write $S = \varprojlim S_i$, where $S_i \in \text{Fin}$, we define the solid free abelian group

$$\mathbb{Z}[S]^{\blacksquare} := \underline{\lim} \ \mathbb{Z}[S_i].$$

We call $\mathbb{Z}[S]^{\blacksquare}$ the solidification of $\mathbb{Z}[S]$.

Remark 10.2.

$$\mathbb{Z}[S]^{\blacksquare} = \lim \mathbb{Z}[S_i] = \lim \underline{\operatorname{Hom}}(C(S_i, \mathbb{Z}), \mathbb{Z}) = \underline{\operatorname{Hom}}(\lim C(S_i, \mathbb{Z}), \mathbb{Z}) = \underline{\operatorname{Hom}}(C(S, \mathbb{Z}), \mathbb{Z}).$$

Proposition 10.3. (i) For $S \in \text{ProFin}$, there exists some set I, s.t. $C(S, \mathbb{Z}) \cong \mathbb{Z}^{\oplus I}$, i.e. $C(S, \mathbb{Z})$ is a free abelian group.

(ii) We have

$$\mathbb{Z}[S]^{\blacksquare} = \operatorname{Hom}(C(S,\mathbb{Z}),\mathbb{Z}) = \operatorname{Hom}(\mathbb{Z}^{\oplus I},\mathbb{Z}) = \mathbb{Z}^{I}.$$

Definition 10.4. A condensed abelian group $X \in \text{Cond}(Ab)$ is solid, if for any $S \in \text{ProFin}$, one has

$$\operatorname{Hom}(\mathbb{Z}[S], X) \cong \operatorname{Hom}(\mathbb{Z}[S]^{\blacksquare}, X).$$

A complex of condensed abelian groups $C \in D(\text{Cond}(\text{Ab}))$ is solid, if for any $S \in \text{ProFin}$, one has

$$R\text{Hom}(\mathbb{Z}[S], C) \cong R\text{Hom}(\mathbb{Z}[S]^{\blacksquare}, C).$$

Now, we need to check $\mathbb{Z}[S]^{\blacksquare}$ is indeed a solid condensed abelian group.

Proposition 10.5. For $S, T \in \text{ProFin}$, we have

$$R\mathrm{Hom}(\mathbb{Z}[S],\mathbb{Z}[T]^{\blacksquare})\cong R\mathrm{Hom}(\mathbb{Z}[S]^{\blacksquare},\mathbb{Z}[T]^{\blacksquare}).$$

Proof. Assume $\mathbb{Z}[S]^{\blacksquare} = \mathbb{Z}^I$ and $\mathbb{Z}[T]^{\blacksquare} = \mathbb{Z}^J$ for some sets I and J. Since the functors $R\text{Hom}(\mathbb{Z}[S], -)$ and $R\text{Hom}(\mathbb{Z}[S]^{\blacksquare}, -)$ commute with products, it suffices to show

$$R\mathrm{Hom}(\mathbb{Z}[S],\mathbb{Z})\cong R\mathrm{Hom}(\mathbb{Z}[S]^{\blacksquare},\mathbb{Z})$$

The left hand side is $R\text{Hom}(\mathbb{Z}[S],\mathbb{Z}) \cong R\Gamma(S,\mathbb{Z}) = C(S,\mathbb{Z}) = \mathbb{Z}^{\oplus I}$.

Now, consider the short exact sequence $0 \to \mathbb{R}^I \to \mathbb{Z}^I \to \mathbb{T}^I \to 0$. From theorem 9.8, We know

$$R\mathrm{Hom}(\mathbb{T}^I,\mathbb{Z})=\mathbb{Z}^{\oplus I}[-1].$$

And by the adjoint relation, we have

$$R\mathrm{Hom}(\mathbb{R}^I,\mathbb{Z})\cong R\mathrm{Hom}_{\mathbb{R}}(\mathbb{R}^I,R\mathrm{Hom}(\mathbb{R},\mathbb{Z}))=0.$$

Hence, $R\mathrm{Hom}(\mathbb{Z}[S]^{\blacksquare},\mathbb{Z})\cong R\mathrm{Hom}(\mathbb{Z}^I,\mathbb{Z})\cong \mathbb{Z}^{\oplus I}$. And this finishes our proof.

Lemma 10.6. Let \mathcal{A} be a cocomplete abelian category, and $\mathcal{A}_0 \subseteq \mathcal{A}$ be the full subcategory of compact projective generators. Assume $F : \mathcal{A}_0 \to \mathcal{A}$ is an additive functor with a natural transformation $\mathrm{id}_{\mathcal{A}_0} \implies F$, satisfying the following property:

For any $X \in \mathcal{A}_0$, any $Y, Z \in \mathcal{A}$ which can be written as direct sums of objects in the image of F, i.e. $Y = \bigoplus_{i \in I} F(X_i)$ and $Z = \bigoplus_{j \in J} F(X_j)$, and for any map $f: Y \to Z$ with kernel $K \in \mathcal{A}$, the map

$$R\mathrm{Hom}(F(X),K)\to R\mathrm{Hom}(X,K)$$

is an isomorphism.

Let

$$\mathcal{A}_F = \{ Y \in \mathcal{A} \mid \operatorname{Hom}(F(X), Y) \cong \operatorname{Hom}(X, Y), \forall X \in \mathcal{A}_0 \} \subseteq \mathcal{A}$$

and

$$D_F(\mathcal{A}) = \{ C \in D(\mathcal{A}) \mid R\text{Hom}(F(X), C) \cong R\text{Hom}(X, C), \forall X \in \mathcal{A}_0 \} \subseteq D(\mathcal{A})$$

Then:

- (i) $A_F \subseteq A$ is an abelian subcategory stable under limits, colimits and extensions.
 - The objects $F(X), X \in \mathcal{A}_0$ are compact projective generators.
 - The inclusion $\mathcal{A}_F \hookrightarrow \mathcal{A}$ admits a left adjoint $L : \mathcal{A} \to \mathcal{A}_F$, which is the unique colimit-preserving extension of $F : \mathcal{A}_0 \to \mathcal{A}_F$.
- (ii) The functor $D(A_F) \to D(A)$ is fully faithful and $D(A_F) \cong D_F(A)$.
 - $C \in D(\mathcal{A})$ lies in $D_F(\mathcal{A})$ iff $H^i(C) \in \mathcal{A}_F$.
 - The above functor F has a left derived functor, which is the left adjoint of $D_F(\mathcal{A}) \hookrightarrow D(\mathcal{A})$.

Proof. A_F is stable under limits:

 $\operatorname{Hom}(FX, \lim Y_i) \cong \lim \operatorname{Hom}(FX, Y_i) \cong \lim \operatorname{Hom}(X, Y_i) \cong \operatorname{Hom}(X, \lim Y_i).$

 \mathcal{A}_F is stable under colimits:

It suffices to show A_F is stable under cokernels and direct sums.

For any map $f: Y \to Z$ in A_F . We can find a surjection $\bigoplus_{i \in I} P_i \twoheadrightarrow Z$, which factors through $\bigoplus_{i \in I} F(P_i)$, hence $\bigoplus_{i \in I} F(P_i) \twoheadrightarrow Z$. Assume the pullback diagram:

$$\begin{array}{ccc}
X & \xrightarrow{g} & \bigoplus_{i \in I} F(P_i) & \longrightarrow \operatorname{coker}(g) \\
\downarrow & & \downarrow & \\
Y & \xrightarrow{f} & Z & \longrightarrow \operatorname{coker}(f)
\end{array}$$

By the pullback we know X woheadrightarrow Y. With this, one can show $\operatorname{coker}(g) = \operatorname{coker}(f)$. Hence, we may replace Z by $\bigoplus_{i \in I} F(P_i)$. With the same reason, one can also replace Y by the object of the form $\bigoplus_{j \in J} F(Q_j)$. Therefore, we assume $f : \bigoplus_{j \in J} F(Q_j) \to \bigoplus_{i \in I} F(P_i)$. We already know $\ker(f) \in \mathcal{A}_F$. From the following lemma 10.7, $\operatorname{coker}(f) \in \mathcal{A}_F$. Thus, \mathcal{A}_F is stable under $\operatorname{cokernels}$.

Moreover, the objects of \mathcal{A}_F are precisely the cokernels of maps $f: Y \to Z$ between objects $Y, Z \in \mathcal{A}$ that are direct sums of objects in the image of F.

Hence by

$$\bigoplus_{i \in I} \operatorname{coker}(Y_i \to Z_i) \cong \operatorname{coker}(\bigoplus_{i \in I} Y_i \to \bigoplus_{i \in I} Z_i),$$

we know A_F is stable under direct sums.

Thus, A_F is stable under colimits.

Now assume $0 \to X \to Y \to Z \to 0$ is exact with $X, Z \in \mathcal{A}_F$. Then X, Z can be written as $\operatorname{coker}(A_1 \to A_2)$ and $\operatorname{coker}(B_1 \to B_2)$, where A_1, A_2, B_1, B_2 are the direct sums of objects in the image of F. We form the diagram

$$0 \longrightarrow A_1 \longrightarrow A_1 \oplus B_1 \longrightarrow B_1 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A_2 \longrightarrow A_2 \oplus B_2 \longrightarrow B_2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{coker}(A_1 \to A_2) \longrightarrow Y \longrightarrow \operatorname{coker}(B_1 \to B_2) \longrightarrow 0$$

Then the extension $Y = \operatorname{coker}(A_1 \oplus B_1 \to A_2 \oplus B_2) \in \mathcal{A}_F$.

Lemma 10.7. We take the above lemma's notation.

(i) For any C with the form $\bigoplus_{i \in I} F(X_i), X_i \in \mathcal{A}_0$, one has

$$R\text{Hom}(F(X), C) \cong R\text{Hom}(X, C), \ \forall X \in \mathcal{A}_0.$$

(ii) For any C with the form $\ker(\bigoplus_{i\in I} F(X_i) \to \bigoplus_{j\in J} F(Y_j)), X_i, Y_j \in \mathcal{A}_0$, one has

$$R\text{Hom}(F(X), C) \cong R\text{Hom}(X, C), \ \forall X \in \mathcal{A}_0.$$

(iii) For any C with the form $\operatorname{coker}(\bigoplus_{i\in I} F(X_i) \to \bigoplus_{j\in J} F(Y_j)), X_i, Y_j \in \mathcal{A}_0$, one has

$$R\text{Hom}(F(X), C) \cong R\text{Hom}(X, C), \ \forall X \in \mathcal{A}_0.$$

(iv) For any right bounded complex C with each term C_i having the form $\bigoplus_{j \in I_i} F(X_{i_j})$, one has

$$R\text{Hom}(F(X), C) \cong R\text{Hom}(X, C), \ \forall X \in \mathcal{A}_0.$$

$$\text{Then (iv)} \Longrightarrow \text{ (iii)} \iff \text{ (ii)} \implies \text{ (i)}.$$

Proof. (ii) \implies (i). Just take $J = \emptyset$, which is exactly (i).

(ii) \iff (iii). For any $f: Y \to Z$, with $Y = \bigoplus_{i \in I} F(X_i)$ and $Z = \bigoplus_{j \in J} F(Y_j)$, applying functors RHom(X, -) and RHom(F(X), -) to the exact sequence:

$$0 \to \ker(f) \to Y \to Z \to \operatorname{coker}(f) \to 0$$
,

one get

$$R\mathrm{Hom}(F(X),\ker(f)) \longrightarrow R\mathrm{Hom}(F(X),Y) \longrightarrow R\mathrm{Hom}(F(X),Z) \longrightarrow R\mathrm{Hom}(F(X),\operatorname{coker}(f))$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow$$

$$R\mathrm{Hom}(X,\ker(f)) \longrightarrow R\mathrm{Hom}(X,Y) \longrightarrow R\mathrm{Hom}(X,Z) \longrightarrow R\mathrm{Hom}(X,\operatorname{coker}(f))$$

By five lemma, we can show

$$R\mathrm{Hom}(F(X),\ker(f))\cong R\mathrm{Hom}(X,\ker(f))$$

 \iff

$$R\text{Hom}(F(X), \text{coker}(f)) \cong R\text{Hom}(X, \text{coker}(f)).$$

Hence, (ii) \iff (iii).

(iv)
$$\Longrightarrow$$
 (ii). For any $f: Y \to Z$, with $Y = \bigoplus_{i \in I} F(X_i)$ and $Z = \bigoplus_{j \in J} F(Y_j)$. Denote

 $K = \ker(f)$. Take the resolution of K:

$$\cdots \rightarrow B_1 \rightarrow B_0 \rightarrow K \rightarrow 0$$
,

where each $B_i \in \mathcal{A}_0$. Now, take $C = [0 \to Y \to Z \to 0]$, by assumption, we have

$$R\text{Hom}(F(B_{\bullet}), C) \cong R\text{Hom}(B_{\bullet}, C).$$

Hence,

$$B_{\bullet} \longrightarrow F(B_{\bullet})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K$$

That is, $K \cong B_{\bullet}$ is the retract of $F(B_{\bullet})$. Thus,

$$R\mathrm{Hom}(X,K)\cong R\mathrm{Hom}(X,F(B_{\bullet}))\cong R\mathrm{Hom}(F(X),F(B_{\bullet}))\cong R\mathrm{Hom}(F(X),K).$$

Theorem 10.8. (i) - The category Solid \subset Cond(Ab) of solid abelian groups is an abelian subcategory stable under limits, colimits and extensions.

(ii)

Proposition 10.9. For an extremally disconnected space $S \in \text{ExDisc}$ and a chain complex

$$C: \cdots \to C_1 \to C_0 \to 0$$
,

where each $C_i = \bigoplus_{j \in I_i} \mathbb{Z}^{I_{i,j}}$, we have

$$R\underline{\operatorname{Hom}}(\mathbb{Z}[S]^{\blacksquare}, C) \cong R\underline{\operatorname{Hom}}(\mathbb{Z}[S], C).$$

Proof. Case 1. C is concentrated in degree 0, i.e. $C = \bigoplus_{j \in J} \mathbb{Z}^{I_j}$. Since $\mathbb{Z}[S]$ is compact

projective, we have

$$\begin{split} R\underline{\operatorname{Hom}}(\mathbb{Z}[S],C) &= R\underline{\operatorname{Hom}}(\mathbb{Z}[S], \bigoplus_{j \in J} \mathbb{Z}^{I_j}) \\ &= \bigoplus_{j \in J} R\underline{\operatorname{Hom}}(\mathbb{Z}[S], \mathbb{Z}^{I_j}) \\ &= \bigoplus_{j \in J} R\underline{\operatorname{Hom}}(\mathbb{Z}[S], \mathbb{Z})^{I_j} \\ &= \bigoplus_{j \in J} C(S, \mathbb{Z})^{I_j} \\ &= \bigoplus_{j \in J} (\mathbb{Z}^{\oplus K})^{I_j}. \end{split}$$

It suffices to show:

$$R\underline{\operatorname{Hom}}(\mathbb{Z}[S]^{\blacksquare}, C) \cong \bigoplus_{j \in J} (\mathbb{Z}^{\oplus K})^{I_j}.$$

We know $\mathbb{Z}[S]^{\blacksquare} = R\underline{\mathrm{Hom}}(C(S,\mathbb{Z}),\mathbb{Z}) = \mathbb{Z}^K$. Then it suffices to show:

$$R\underline{\operatorname{Hom}}(\mathbb{Z}^K, \bigoplus_{j \in J} \mathbb{Z}^{I_j}) \cong \bigoplus_{j \in J} (\mathbb{Z}^{\oplus K})^{I_j}.$$

Consider the short exact sequence: $0 \to \mathbb{Z}^K \to \mathbb{R}^K \to \mathbb{T}^K \to 0$. Since \mathbb{Z} and \mathbb{T} are pseudocoherent, \mathbb{R} is pseudocoherent. Then

$$R\underline{\mathrm{Hom}}(\mathbb{R},\bigoplus_{j\in J}\mathbb{Z}^{I_j})\cong\bigoplus_{j\in J}R\underline{\mathrm{Hom}}(\mathbb{R},\mathbb{Z}^{I_j})\cong\bigoplus_{j\in J}R\underline{\mathrm{Hom}}(\mathbb{R},\mathbb{Z})^{I_j}\cong 0.$$

From this, we can get:

$$R\underline{\operatorname{Hom}}(\mathbb{R}^K,\bigoplus_{j\in J}\mathbb{Z}^{I_j})\cong R\underline{\operatorname{Hom}}_{\mathbb{R}}(\mathbb{R}^K,R\underline{\operatorname{Hom}}(\mathbb{R},\bigoplus_{j\in J}\mathbb{Z}^{I_j}))\cong 0.$$

And because \mathbb{T}^K is pseudocoherent, we have:

$$R\underline{\operatorname{Hom}}(\mathbb{T}^K,\bigoplus_{j\in J}\mathbb{Z}^{I_j})\cong\bigoplus_{j\in J}R\underline{\operatorname{Hom}}(\mathbb{T}^K,\mathbb{Z})^{I_j}\cong\bigoplus_{j\in J}(\mathbb{Z}^{\oplus K})^{I_j}[-1].$$

Therefore, we have:

$$R\underline{\operatorname{Hom}}(\mathbb{Z}^K,\bigoplus_{j\in J}\mathbb{Z}^{I_j})\cong\bigoplus_{j\in J}(\mathbb{Z}^{\oplus K})^{I_j}.$$

Case 2. C is bounded. It is obvious from case 1.

Case 3. For the general complex $C: \cdots \to C_1 \to C_0 \to 0$. Consider the short exact sequence:

$$0 \to C_{\leq n} \to C \to C_{>n} \to 0.$$

It suffices to show: $R\underline{\text{Hom}}(\mathbb{Z}[S]^{\blacksquare}, C_{>n})$ and $R\underline{\text{Hom}}(\mathbb{Z}[S], C_{>n})$ are concentrated at degree $\geq n$. This is because for any n, the cofiber of

$$R\underline{\operatorname{Hom}}(\mathbb{Z}[S]^{\blacksquare}, C) \to R\underline{\operatorname{Hom}}(\mathbb{Z}[S], C).$$

is concentrated at $\geq n$, hence the cofiber is 0.

For $R\underline{\mathrm{Hom}}(\mathbb{Z}[S], C_{>n})$, since $\mathbb{Z}[S]$ projective, $R\underline{\mathrm{Hom}}(\mathbb{Z}[S], C_{>n})$ is concentrated at $\geq n$.

Hence, we need to prove $R\underline{\mathrm{Hom}}(\mathbb{Z}[S]^{\blacksquare}, C_{>n}) = R\underline{\mathrm{Hom}}(\mathbb{Z}^K, C_{>n})$ is concentrated at $\geq n$, which is equivalent to prove $R\underline{\mathrm{Hom}}(\mathbb{Z}^K, C)$ is concentrated at ≥ -1 .

Claim 1: For any K, $R\text{Hom}(\mathbb{T}^K, C)$ is concentrated at ≥ -2 .

Claim 2: For any K, $R\underline{\text{Hom}}(\mathbb{R}^K, C) = 0$.

This is because we have $R\text{Hom}(\mathbb{R}^K, C) = \text{colim } R\text{Hom}(\mathbb{R}^K, C_{\leq n})$, and

$$R\underline{\mathrm{Hom}}(\mathbb{R}^K, C_{\leq n}) = R\underline{\mathrm{Hom}}_{\mathbb{R}}(\mathbb{R}^K, R\mathrm{Hom}_{\mathbb{R}}(\mathbb{R}, C_{\leq n})) = 0.$$

Now, from these two claims, $R\underline{\operatorname{Hom}}(\mathbb{R}^K,C)=0$ and $R\underline{\operatorname{Hom}}(\mathbb{T}^K,C)$ is concentrated at degree ≥ -2 , we get $R\underline{\operatorname{Hom}}(\mathbb{Z}^K,C)=R\underline{\operatorname{Hom}}(\mathbb{T}^K,C)[1]$ is concentrated at degree ≥ -1 .

Hence, it suffices to prove Claim 1.

We denote $C_{\mathbb{R},i}=\bigoplus_{J_i}\mathbb{R}^{I_{i,j}},\ C_{\mathbb{T},i}=\bigoplus_{J_i}\mathbb{T}^{I_{i,j}},$ and form complexes

$$C_{\mathbb{R}}: \cdots \to C_{\mathbb{R},i} \to \cdots \to C_{\mathbb{R},1} \to C_{\mathbb{R},0} \to 0$$

and

$$C_{\mathbb{T}}: \cdots \to C_{\mathbb{T},i} \to \cdots \to C_{\mathbb{T},1} \to C_{\mathbb{T},0} \to 0.$$

There is an exact sequence $0 \to C \to C_{\mathbb{R}} \to C_{\mathbb{T}} \to 0$.

Therefore, we can reduce to prove the following claim.

Claim: $R\underline{\mathrm{Hom}}(\mathbb{T}^K, C_{\mathbb{R}})$ and $R\underline{\mathrm{Hom}}(\mathbb{T}^K, C_{\mathbb{T}})$ are concentrated at ≥ -1 .

We know $R\underline{\mathrm{Hom}}(\mathbb{T}^K, C_{\mathbb{R}}) = R\mathrm{lim}\ R\underline{\mathrm{Hom}}(\mathbb{T}^K, \tau_{\leq n}C_{\mathbb{R}})$, where $\tau_{\leq n}C_{\mathbb{R}}$ is

$$0 \to \ker(C_{\mathbb{R},n} \to C_{\mathbb{R},n-1}) \to C_{\mathbb{R},n} \to \cdots \to C_{\mathbb{R},0} \to 0,$$

and $R\underline{\mathrm{Hom}}(\mathbb{T}^K, C_{\mathbb{T}}) = R\mathrm{lim}\ R\underline{\mathrm{Hom}}(\mathbb{T}^K, \tau_{\leq n}C_{\mathbb{T}})$, where $\tau_{\leq n}C_{\mathbb{T}}$ is

$$0 \to \ker(C_{\mathbb{T}_n} \to C_{\mathbb{T}_{n-1}}) \to C_{\mathbb{T}_n} \to \cdots \to C_{\mathbb{T}_0} \to 0.$$

Let $M_{\mathbb{R}} = \ker(\bigoplus_{j \in J} \mathbb{R}^{I_j} \to \bigoplus_{j \in J'} \mathbb{R}^{I'_j})$ and $M_{\mathbb{T}} = \ker(\bigoplus_{j \in J} \mathbb{T}^{I_j} \to \bigoplus_{j \in J'} \mathbb{T}^{I'_j})$. Because $C_{\mathbb{R},i} = \ker(C_{\mathbb{R},i} \to 0)$ and $C_{\mathbb{T},i} = \ker(C_{\mathbb{T},i} \to 0)$ also have the form of $M_{\mathbb{R}}$ and $M_{\mathbb{T}}$, it suffices to show $R\underline{\mathrm{Hom}}(\mathbb{T}^K, M_{\mathbb{R}})$ and $R\underline{\mathrm{Hom}}(\mathbb{T}^K, M_{\mathbb{T}})$ are concentrated at degree ≥ -1 .

Since \mathbb{T}^K is pseudocoherent, $R\underline{\mathrm{Hom}}(\mathbb{T}^K,-)$ commutes with filtered colimits, hence we can assume J is finite. Then assume

$$M_{\mathbb{R}} = \ker(\mathbb{R}^I \to \bigoplus_{j \in J'} \mathbb{R}^{I'_j}), \ M_{\mathbb{T}} = \ker(\mathbb{T}^I \to \bigoplus_{j \in J'} \mathbb{T}^{I'_j}).$$

Besides, we can also assume J' is finite. Hence let

$$M_{\mathbb{R}} = \ker(\mathbb{R}^I \to \mathbb{R}^{I'}), \ M_{\mathbb{T}} = \ker(\mathbb{T}^I \to \mathbb{T}^{I'}).$$

Now, as a topological group, $M_{\mathbb{T}} = \ker(\mathbb{T}^I \to \mathbb{T}^{I'})$ is compact, and \mathbb{T}^K is compact, by Corollary 9.10, the cohomology of $R\underline{\mathrm{Hom}}(\mathbb{T}^K, M_{\mathbb{T}})$ is concentrated at 0 and 1, hence its homology is concentrated at ≥ -1 .

Claim: $M_{\mathbb{R}}$ is a direct summand of \mathbb{R}^I .

From this claim, by $R\underline{\mathrm{Hom}}(\mathbb{T}^K,\mathbb{R}^I)=R\underline{\mathrm{Hom}}(\mathbb{T}^K,\mathbb{R})^I=0$, we have $R\underline{\mathrm{Hom}}(\mathbb{T}^K,M_{\mathbb{R}})=0$. Then, it suffices to prove the above claim. This is because, for \mathbb{R} -linear map $\mathbb{R}^{\oplus I'}\to\mathbb{R}^{\oplus I}$ is the composition of a split surjection and a split injection. Then by taking the duality $\underline{\mathrm{Hom}}(-,\mathbb{R})$, the dual map $\mathbb{R}^I\to\mathbb{R}^{I'}$ is split. **Definition 10.10.** (i) For $M, N \in \text{Solid}$, define $M \otimes^{\blacksquare} N := (M \otimes N)^{\blacksquare}$.

(ii) For $C, D \in D(Solid)$, define $C \otimes^{L} D := (C \otimes^{L} D)^{L}$.

Theorem 10.11. (i) The solidification functor Cond(Ab) \rightarrow Solid; $M \mapsto M^{\blacksquare}$ is symmetric monoidal, i.e.

$$(M \otimes N)^{\blacksquare} \cong M^{\blacksquare} \otimes^{\blacksquare} N^{\blacksquare}.$$

(ii) The solidification functor $D(\text{Cond}(\text{Ab})) \to D(\text{Solid}); \ C \mapsto C^{L\blacksquare}$ is symmetric monoidal, i.e.

$$(C \otimes^L D)^{L \blacksquare} \cong C^{L \blacksquare} \otimes^{L \blacksquare} D^{L \blacksquare}.$$

(iii) \otimes^{L} is the left derived functor of \otimes .

Proof. (i) By definition, we need to show:

$$(M \otimes N)^{\blacksquare} \xrightarrow{\sim} (M^{\blacksquare} \otimes N^{\blacksquare})^{\blacksquare}.$$

This can be written as the composition:

$$(M \otimes N)^{\blacksquare} \longrightarrow (M^{\blacksquare} \otimes N)^{\blacksquare} \longrightarrow (M^{\blacksquare} \otimes N^{\blacksquare})^{\blacksquare}.$$

Hence, it is enough to prove

$$(M \otimes N)^{\blacksquare} \xrightarrow{\sim} (M^{\blacksquare} \otimes N)^{\blacksquare}.$$

(With this isomorphism, we can also show that the second map is an isomorphism). Since the tensor functor and the solidification functor commute with colimits, then we can assume $M = \mathbb{Z}[S]$ and $N = \mathbb{Z}[T]$.

It reduces to show:

$$\mathbb{Z}[S \times T]^{\blacksquare} \xrightarrow{\sim} (\mathbb{Z}[S]^{\blacksquare} \otimes \mathbb{Z}[T])^{\blacksquare}.$$

Equivalently, for any $A \in Solid$,

$$\underline{\operatorname{Hom}}((\mathbb{Z}[S]^{\blacksquare}\otimes\mathbb{Z}[T])^{\blacksquare},A)\cong\underline{\operatorname{Hom}}(\mathbb{Z}[S\times T]^{\blacksquare},A).$$

Since A is solid, we have:

$$\underline{\mathrm{Hom}}((\mathbb{Z}[S]^{\blacksquare} \otimes \mathbb{Z}[T])^{\blacksquare}, A) \cong \underline{\mathrm{Hom}}(\mathbb{Z}[S]^{\blacksquare} \otimes \mathbb{Z}[T], A)$$

and

$$\underline{\mathrm{Hom}}(\mathbb{Z}[S\times T]^{\blacksquare},A)\cong\underline{\mathrm{Hom}}(\mathbb{Z}[S\times T],A).$$

By computation:

$$\underline{\operatorname{Hom}}(\mathbb{Z}[S]^{\blacksquare} \otimes \mathbb{Z}[T], A) \cong \underline{\operatorname{Hom}}(\mathbb{Z}[S]^{\blacksquare}, \underline{\operatorname{Hom}}(\mathbb{Z}[T], A))$$

$$\cong \underline{\operatorname{Hom}}(\mathbb{Z}[S], \underline{\operatorname{Hom}}(\mathbb{Z}[T], A))$$

$$\cong \underline{\operatorname{Hom}}(\mathbb{Z}[S] \otimes \mathbb{Z}[T], A)$$

$$\cong \underline{\operatorname{Hom}}(\mathbb{Z}[S \times T], A).$$

Thus, $\underline{\operatorname{Hom}}((\mathbb{Z}[S]^{\blacksquare} \otimes \mathbb{Z}[T])^{\blacksquare}, A) \cong \underline{\operatorname{Hom}}(\mathbb{Z}[S \times T]^{\blacksquare}, A).$

(ii) Similar to the proof of (i).

(iii)

Remark 10.12. In Solid, \otimes^{\blacksquare} is the left adjoint of <u>Hom</u>:

$$\operatorname{Hom}(M \otimes^{\blacksquare} N, P) \cong \operatorname{Hom}((M \otimes N)^{\blacksquare}, P) \cong \operatorname{Hom}(M \otimes N, P) \cong \operatorname{Hom}(M, \underline{\operatorname{Hom}}(N, P)).$$

Proposition 10.13. (i) If $X \in \text{CHaus}$, then $\mathbb{Z}[X]^{L^{\blacksquare}} = R\underline{\text{Hom}}(R\Gamma(X,\mathbb{Z}),\mathbb{Z})$. In particular, if $X \in \text{ProFin} \subseteq \text{CHaus}$, then $\mathbb{Z}[X]^{L^{\blacksquare}} = \mathbb{Z}[X]^{\blacksquare}$.

(ii) If X is a CW space, then $\mathbb{Z}[X]^{L^{\blacksquare}} = C_{\bullet}(X)$. This shows that the derived solidification of a condensed abelian group can sit in all nonnegative homological degrees.

Proposition 10.14. (i) $\mathbb{R}^{L^{\blacksquare}} = 0$.

- (ii) $\mathbb{Z}^I \otimes^{L \blacksquare} \mathbb{Z}^J = \mathbb{Z}^{I \times J}$.
- (iii) $\mathbb{Z}_p \otimes^{L \blacksquare} \mathbb{Z}_p = \mathbb{Z}_p$.
- (iv) $\mathbb{Z}_p \otimes^{L^{\blacksquare}} \mathbb{Z}_{\ell} = 0. \ (p \neq \ell)$

Proof. (i) By Yoneda's lemma, it suffices to show: for any $C \in D(Solid)$, one has

$$R\text{Hom}(\mathbb{R}^{L\blacksquare}, C) = R\text{Hom}(\mathbb{R}, C) = 0.$$

Since $C = \varprojlim C_{\geq n}$, and $R\text{Hom}(\mathbb{R}, -)$ commutes with limits, it reduces to the case C is a right bounded complex. And for a right bounded complex C, one has $C = \varprojlim C_{\leq n}$, it reduces to the case C is a bounded complex.

Hence it suffices to show: for any $X \in \text{Solid}$, one has $R\text{Hom}(\mathbb{R}, X) = 0$.

We know for any object $X \in \text{Solid}$, we can write X as the colimit of objects of the form $\bigoplus_{j \in J} \mathbb{Z}^{I_j}$. And we know taking all colimits is equivalent to taking all cokernels and all

filtered colimits.

Since \mathbb{R} is pseudo-coherent, we get

$$R\mathrm{Hom}(\mathbb{R}, \varinjlim_{i \in J_j} \mathbb{Z}^{I_{i,j}}) = \varinjlim_{i \in J_j} R\mathrm{Hom}(\mathbb{R}, \bigoplus_{i \in J_j} \mathbb{Z}^{I_{i,j}}) = \varinjlim_{i \in J_j} R\mathrm{Hom}(\mathbb{R}, \mathbb{Z}^{I_{i,j}}) = 0.$$

Let $f: X \to Y$, $X = \bigoplus_{i \in I} \mathbb{Z}^{I_i}$ and $Y = \bigoplus_{j \in J} \mathbb{Z}^{I_j}$, then from $R\text{Hom}(\mathbb{R}, X) = 0$ and $R\text{Hom}(\mathbb{R}, Y) = 0$, we know $R\text{Hom}(\mathbb{R}, \text{coker}(f)) = 0$.

Thus, we finish our proof.

(ii) Assume $\mathbb{Z}^I = \mathbb{Z}[S]^{\blacksquare} = \underline{\operatorname{Hom}}(C(S,\mathbb{Z}),\mathbb{Z}), \ \mathbb{Z}^J = \mathbb{Z}[T]^{\blacksquare} = \underline{\operatorname{Hom}}(C(T,\mathbb{Z}),\mathbb{Z}), \text{ for some } S, \ T \in \operatorname{ProFin. Then}$

$$\begin{split} \mathbb{Z}[S \times T]^{\blacksquare} &= \underline{\operatorname{Hom}}(C(S \times T, \mathbb{Z}), \mathbb{Z}) \\ &= \underline{\operatorname{Hom}}(C(S, \mathbb{Z}) \otimes C(T, \mathbb{Z}), \mathbb{Z}) \\ &= \underline{\operatorname{Hom}}(C(S, \mathbb{Z}), \underline{\operatorname{Hom}}(C(T, \mathbb{Z}), \mathbb{Z})) \\ &= \underline{\operatorname{Hom}}(C(S, \mathbb{Z}), \mathbb{Z}^J) \\ &= \underline{\operatorname{Hom}}(C(S, \mathbb{Z}), \mathbb{Z})^J \\ &= \mathbb{Z}^{I \times J}. \end{split}$$

Thus, we have

$$\mathbb{Z}^I \otimes^{L\blacksquare} \mathbb{Z}^J = \mathbb{Z}[S]^{\blacksquare} \otimes^{L\blacksquare} \mathbb{Z}[T]^{\blacksquare} = (\mathbb{Z}[S] \otimes^L \mathbb{Z}[T])^{L\blacksquare} = \mathbb{Z}[S \times T]^{L\blacksquare} = \mathbb{Z}^{I \times J}.$$

(iii) We write $\mathbb{Z}_p = \mathbb{Z}[[x]]/(x-p)$, then

$$\mathbb{Z}_p \otimes^{L \blacksquare} \mathbb{Z}_p = \mathbb{Z}[[x]]/(x-p) \otimes^{L \blacksquare} \mathbb{Z}[[y]]/(y-p)$$

$$= \mathbb{Z}[[x,y]]/(x-p,y-p)$$

$$= \mathbb{Z}[[x,y]]/(x-p,x-y)$$

$$= \mathbb{Z}_p.$$

(iv) We write $\mathbb{Z}_p = \mathbb{Z}[[x]]/(x-p)$ and $\mathbb{Z}_\ell = \mathbb{Z}[[y]]/(y-\ell)$, then

$$\begin{split} \mathbb{Z}_p \otimes^{L \blacksquare} \mathbb{Z}_\ell &= \mathbb{Z}[[x]] / (x - p) \otimes^{L \blacksquare} \mathbb{Z}[[y]] / (y - \ell) \\ &= \mathbb{Z}[[x, y]] / (x - p, y - \ell). \end{split}$$

Since p and ℓ are coprime, pick $a, b \in \mathbb{Z}$, s.t. $ap + b\ell = 1$, then $a(p - x) + b(\ell - y) = 1 - ax - by$ is invertible in $\mathbb{Z}[[x, y]]$. Hence $(x - p, y - \ell) = \mathbb{Z}[[x, y]]$, i.e. $\mathbb{Z}_p \otimes^{L^{\blacksquare}} \mathbb{Z}_{\ell} = 0$.