# BLAST: Basic Local Alignment Search Tool

1705066 - Ataf Fazledin Ahamed 1705067 - Nishat Farhana Purbasha

Department of CSE
Bangladesh University of Engineering & Technology

July 13, 2021

#### Introduction

- Basic Local Alignment Search Tool
- Heuristic Algorithm
- Faster
  - FASTA
- Five Types

- Basic Local Alignment Search Tool
- Heuristic Algorithm
- Faster
  - FASTA
- Five Types

- Basic Local Alignment Search Tool
- Heuristic Algorithm
- Faster
  - FASTA
- Five Types

- Basic Local Alignment Search Tool
- Heuristic Algorithm
- Faster
  - FASTA
- Five Types

| Nature           | Program | Query                    | Database                 |
|------------------|---------|--------------------------|--------------------------|
| Nucleotide BLAST | blastn  | Nucleotide<br>(DNA, RNA) | Nucleotide<br>(DNA, RNA) |
| Protein BLAST    | blastp  | Protein                  | Protein                  |
| Mixed BLAST      | blastx  | Translated<br>Nucleotide | Protein                  |
|                  | tblastn | Protein                  | Translated<br>Nucleotide |
|                  | tblastx | Translated<br>Nucleotide | Translated<br>Nucleotide |

Table: Different types of BLAST



#### **Database Selection:**

nt (nucleotide)

#### **Query Sequence:**

ACTGAATCGCTA



- Query & Database Sequence
- High-scoring Segment Pair (HSP)
- Extension of Local Alignment



- Query & Database Sequence
- High-scoring Segment Pair (HSP)
- Extension of Local Alignment



- Query & Database Sequence
- High-scoring Segment Pair (HSP)
- Extension of Local Alignment



```
Query: unknown_yakuba_sequence
   Hit: gi|1976360323|ref|XM_015191338.2| PREDICTED: Drosophila yakuba p...
Query range: [1014:2552] (1)
   Hit range: [3198:4736] (-1)
Quick stats: evalue 0; bitscore 2774.87
Fragments: 1 (1538 columns)
   Query - TTATTTGTTGACAAAGAACGCTGGATTCGGGGGATAAATTCGGCGGCATTGTTATCATGT~~~ACGCT
```



#### **Color Key for Alignment Score**



#### **Basic Terminologies**

#### **Numeric Representation**

| Letter | Number |
|--------|--------|
| Α      | 0      |
| С      | 1      |
| G      | 2      |
| Т      | 3      |

Table: Base 4 Representation

#### **CTAG** is represented as:

$$\begin{array}{l} 1 \times 4^3 + 3 \times 4^2 + 0 \times 4^1 + \\ 2 \times 4^0 = 114 \end{array}$$

#### **Basic Terminologies**

#### K-mer

A C T G A A T C G C T A — Query Sequence

```
ACT
 CTG
   TGA
     G A A
      A A T
                      3-mers
        A T C
          TCG
            CGC
             GCT
```

# Example

# **BLAST Algorithm**

Let us take an example!

# Example: Pre-processing the database

Database Sequence: GGACGGATTCC

| 3-mers | Position | Key |
|--------|----------|-----|
| GGA    | 1,5      | 40  |
| GAC    | 2        | 33  |
| ACG    | 3        | 6   |
| CGG    | 4        | 26  |
| GAT    | 6        | 35  |
| ATT    | 7        | 15  |
| TTC    | 8        | 61  |
| TCC    | 9        | 53  |

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |

Table: Generated 3-mers from DB sequence

Table: Sorted 3-mers with respect to key

#### Example: Pre-processing the database



Figure: Constructed binary search tree

## Example: Make k-mer of query sequence

Query Sequence: ATCG

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| TCG    | 54  |

| Scoring Scheme |    |  |
|----------------|----|--|
| Match          | 1  |  |
| Mismatch       | -1 |  |
| Gap Insertion  | -1 |  |
| HSP Threshold  | 1  |  |

#### Example: Make k-mer of query sequence

Query Sequence: ATCG

# Selected K-mers with minimum HSP threshold

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

| 3-mers | Key |
|--------|-----|
| TCG    | 54  |
| ACG    | 6   |
| CCG    | 24  |
| GCG    | 38  |
| TAG    | 50  |
| TGG    | 58  |
| TTG    | 62  |
| TCA    | 52  |
| TCC    | 53  |
| TCT    | 59  |

| Scoring Scheme |    |  |
|----------------|----|--|
| Match          | 1  |  |
| Mismatch       | -1 |  |
| Gap Insertion  | -1 |  |
| HSP Threshold  | 1  |  |

# Selected K-mers with minimum HSP threshold

# Sorted k-mer of the database sequence

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

| 3-mers | Key |
|--------|-----|
| TCG    | 54  |
| ACG    | 6   |
| CCG    | 24  |
| GCG    | 38  |
| TAG    | 50  |
| TGG    | 58  |
| TTG    | 62  |
| TCA    | 52  |
| TCC    | 53  |
| TCT    | 59  |

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |



Figure: Constructed binary search tree

#### Selected k-mers:



# Selected K-mers with minimum HSP threshold

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

| 3-mers | Key |
|--------|-----|
| TCG    | 54  |
| ACG    | 6   |
| CCG    | 24  |
| GCG    | 38  |
| TAG    | 50  |
| TGG    | 58  |
| TTG    | 62  |
| TCA    | 52  |
| TCC    | 53  |
| TCT    | 59  |

# Sorted k-mer of the database sequence

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |



Figure: Constructed binary search tree

Selected k-mers: (61:8)

# Selected K-mers with minimum HSP threshold

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

| 3-mers | Key                             |
|--------|---------------------------------|
| TCG    | 54                              |
| ACG    | 6                               |
| CCG    | 24                              |
| GCG    | 38                              |
| TAG    | 50                              |
| TGG    | 58                              |
| TTG    | 62                              |
| TCA    | 52                              |
| TCC    | 53                              |
| TCT    | 59                              |
|        | TCG ACG CCG GCG TAG TGG TTG TCA |

# Sorted k-mer of the database sequence

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
|        | -        |     |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |



Figure: Constructed binary search tree

**Selected k-mers:** (61:8), (15:7)

# Selected K-mers with minimum HSP threshold

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

|   | 3-mers | Key |
|---|--------|-----|
|   | TCG    | 54  |
|   | ACG    | 6   |
|   | CCG    | 24  |
| ] | GCG    | 38  |
| 1 | TAG    | 50  |
|   | TGG    | 58  |
|   | TTG    | 62  |
| ] | TCA    | 52  |
| ] | TCC    | 53  |
|   | TCT    | 59  |

# Sorted k-mer of the database sequence

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |



Figure: Constructed binary search tree

**Selected k-mers:** (61:8), (15:7), (6:3)

# Selected K-mers with minimum HSP threshold

| 3-mers | Key |
|--------|-----|
| ATC    | 13  |
| CTC    | 45  |
| GTC    | 49  |
| TTC    | 61  |
| AAC    | 1   |
| ACC    | 5   |
| AGC    | 9   |
| ATA    | 12  |
| ATG    | 14  |
| ATT    | 15  |

| 3-mers | Key |
|--------|-----|
| TCG    | 54  |
| ACG    | 6   |
| CCG    | 24  |
| GCG    | 38  |
| TAG    | 50  |
| TGG    | 58  |
| TTG    | 62  |
| TCA    | 52  |
| TCC    | 53  |
| TCT    | 59  |

# Sorted k-mer of the database sequence

| 3-mers | Position | Key |
|--------|----------|-----|
| ACG    | 3        | 6   |
| ATT    | 7        | 15  |
| CGG    | 4        | 26  |
| GAC    | 2        | 33  |
| GAT    | 6        | 35  |
| GGA    | 1,5      | 40  |
| TCC    | 9        | 53  |
| TTC    | 8        | 61  |



Figure: Constructed binary search tree

**Selected k-mers:** (61:8), (15:7), (6:3), (53:9)

|   | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Α |   |   |   |   |   |   | Χ | Χ |   |   |   |
| Т |   |   | Х |   |   |   |   | Χ | Χ |   |   |
| С |   |   |   | Х |   |   |   |   | Χ | Х |   |
| G |   |   |   |   | Χ |   |   |   |   |   | Χ |

Table: Seeding

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

#### Alignment Extension

Smith-Waterman algorithm is performed on selected cells for determining similar regions between two sequences.

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

#### Alignment Extension

CGG

CG-

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

#### **Alignment Extension**

AT-

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

### Alignment Extension

ATT

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

### Alignment Extension

ATTCC

AT-CG

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

### Alignment Extension

ATTCC

AT-C-

|   | - | G | G | Α | С | G | G | Α | Т | Т | С | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   | 1 |   |   |   |   |
| Т |   |   |   |   |   |   |   |   | 2 | 1 |   |   |
| С |   |   |   |   | 1 |   |   |   | 1 | 1 | 2 | 1 |
| G |   |   |   |   |   | 2 | 1 |   |   |   | 1 | 1 |

Table: Extension of alignment

### Alignment Extension

A T T C – A T – C G

| CGG   | ATTCC     |
|-------|-----------|
| CG-   | AT-CG     |
| A T T | A T T C C |
| A T C | A T – C – |
| A T – | A T T C - |
| A T C | A T - C G |

### **Alignments**

$$n_{k-mer}$$

in X length string = X - K + 1

M length Database,

$$n_{k-mer} = M - K + 1$$

L length Query,

$$n_{k-mer} = L - K + 1$$

$$n_{k-mer}$$

in X length string = X - K + 1

M length Database,

$$n_{k-mer} = M - K + 1$$

L length Query,

$$n_{k-mer} = L - K + 1$$

$$n_{k-mer}$$

in X length string = X - K + 1

M length Database,

$$n_{k-mer} = M - K + 1$$

L length Query,

$$n_{k-mer} = L - K + 1$$

$$O(\{L-K+1\} \times \log_2\{M-K+1\})$$

K = k-mer length  $L = Length \ of \ query \ sequence$   $M = Total \ length \ of \ database \ sequences$ 

Since 
$$K = constant$$
,  $O(L \times log_2 M)$ 

L = Length of query sequence M = Total length of database sequences

#### Resources

- https://doi.org/10.1016/S0022-2836(05)80360-2
- https://doi.org/10.1016/0022-2836(81)90087-5
- https://blast.ncbi.nlm.nih.gov/Blast.cgi
- https://www.youtube.com/channel/UC8kHK9I5NxHmW0j-RcWQ8cg

#### End of Slide

# **Thank You**