

Labeling Dataset

Via Adobe Photoshop CC 2015

Wheat dataset 62 images

Division of dataset into training and testing parts:

training - 50 images

testing - 12 images

Preprocessing functions

Rotation

Rotated all original images by -90° so they are displayed vertically

Isolating part of the picture. It is observed only the arena within the given white frame

Frame

Resize

function which is applied only on original images

Normalization

Resized all images (original and masks) from 3024x4032 to size 756x756

Normalize

Type of histogram equalization used to amplify the contrast between pixels

- 1) Original
- 2) Rotated
- 3) Resized
- 4) Normalized
- 5) Clahe equalization

Convolutional Neural Network

Keras Functional Model

```
input_size=(756, 756, 3)
inputs = Input(input size)
conv1 = Conv2D(128, 3, activation='relu', padding='same', kernel initializer='he normal')(inputs)
conv1 = Conv2D(128, 3, activation='relu', padding='same', kernel initializer='he normal')(conv1)
pool1 = MaxPool2D(pool size=(2, 2))(conv1)
conv2 = Conv2D(256, 3, activation='relu', padding='same', kernel initializer='he normal')(pool1)
conv2 = Conv2D(256, 3, activation='relu', padding='same', kernel initializer='he normal')(conv2)
pool2 = MaxPool2D(pool size=(2, 2))(conv2)
...
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel initializer='he normal')(up7)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel initializer='he normal')(conv8)
conv9 = Conv2D(1, 1, activation='sigmoid')(conv8)
model = Model(inputs=inputs, outputs=conv9)
model.compile(loss='binary_crossentropy', optimizer=Adam(learning rate=0.0001),metrics=['accuracy'])
model.summary()
model.fit(tr data, tr mask, batch size=1,
                    epochs=30,
                    shuffle=True,
                    verbose=1)
```


Define input

Connecting layers

Creating the Model

Model compile

Model fit

Horizontal Line Scan

Absolute error on Masks

Min 1
Max 44
Average 12


```
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```


→ 20 epochs

Loss: 0.1

Accuracy: 0.94

Metrics:

Precision score: 0.64

Recall score: 0.59

F1 score: 0.61

Modules overview

- tensorflow.keras.layers Conv2D, MaxPool2D, Dropout
- Pillow Image, Interpolation
- Matplotlib.pyplot
- Cv2 inRange, createCLAHE
- Numpy

THANK YOU FOR YOUR ATTENTION