Laboratory Practice I

Data Analytics

Shiva Saran BE-B 20 2020-2021

Practical 2

Download Pima Indians Diabetes dataset. Use Naive Bayes" Algorithm for classification

- Load the data from CSV file and split it into training and test datasets.
- Summarize the properties in the training dataset so that we can calculate probabilities and make predictions.
- Classify samples from a test dataset and a summarized training dataset.

Dataset Link - https://www.kaggle.com/uciml/pima-indians-diabetes-database

Installing Libraries and Importing Data Set

```
#Installing necessary Libraries
> install.packages('e1071')
> install.packages('caTools')

#Checking that the libraries are successfully installed
> library(caTools)
> library(e1071)

#Importing The Dataset
> mydata <- read.csv("~/Documents/BE/LP1/diabetes.csv")
> View(mydata)
```

Spiting the Dataset into training and testing Data

```
> temp_field<-sample.split(mydata,SplitRatio=0.7)
> #70% will b in training
> train<-subset(mydata, temp_field==TRUE)
> #30% will be in testing
> test<-subset(mydata, temp_field == FALSE)
#Checking the
> head(train)
```

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age

Ω	utco	me
\sim	aloo	יווי

3	8	183	64	0	0 23.3	0.672 32	1
4	1	89	66	23	94 28.1	0.167 21	0
5	0	137	40	35	168 43.1	2.288 33	1
6	5	116	74	0	0 25.6	0.201 30	0
8	10	115	0	0	0 35.3	0.134 29	0
9	2	197	70	45	543 30.5	0.158 53	1

> head(test)

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age

Outcome

1	6	148	72	35	0 33.6	0.627 50	1
2	1	85	66	29	0 26.6	0.351 31	0
7	3	78	50	32	88 31.0	0.248 26	1
10	8	125	96	0	0.0	0.232 54	1
11	4	110	92	0	0 37.6	0.191 30	0
16	7	100	0	0	0 30.0	0.484 32	1

• > #Using Naive Bayes Algorithm, training the train Data Set

```
> my_model<-naiveBayes(as.factor(train$Outcome)~.,train)
```

> my_model

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Υ

0 1

0.6497065 0.3502935

Conditional probabilities:

Pregnancies

Y [,1] [,2]

0 3.253012 2.975604

1 4.636872 3.662286

Glucose

Y [,1] [,2]

0 109.1928 26.20657

1 142.4916 33.87259

```
BloodPressure
     [,1] [,2]
 0 67.91265 18.21095
 1 70.83799 21.18993
 SkinThickness
    [,1] [,2]
Υ
 0 19.29819 15.03807
 1 22.16201 18.07387
 Insulin
Υ
     [,1] [,2]
 0 65.10542 98.29565
 1 100.30168 142.80693
 BMI
     [,1] [,2]
 0 30.44277 7.229345
 1 34.88994 6.879959
 DiabetesPedigreeFunction
     [,1] [,2]
 0 0.4342139 0.3019496
 1 0.5815140 0.3794261
 Age
    [,1] [,2]
 0 30.96687 11.35298
 1 36.95531 11.01981
```

#Now predicting the data remaining Split data using Trained dataset

• #Creating Confusion Matrix.

> View(output)