

Embedded Software Engineering 1
HS 2024 – Prof. Reto Bonderer
Autoren: Laurin Heitzer, Simone Stitz https://github.com/P4ntomime/EmbSW1

•		14				•
In	ทล	Its	vei	*7. e	ıct	mis

1.1	Dedinition	2		1.8	Verfügbarkeit	
1.3	Deeply Embedded System	2	2	Rea	l-Time System (Echtzeitsystem)	2
1.4	Betriebssysteme bei Embedded Systems	2		2.1	Definitionen	2
1.5	Bare Metal Embedded System	2		2.2	Fehlverhalten eines Systems (failed system)	2
1.6	Zuverlässigkeit	2		2.3	Echtzeitdefinition – Verschiedene Echtzeitsysteme	3

1 Embedded Systems - Allgemein

1.1 Definition

Ein Embedded System...

- ist ein System, das einen Computer beinhaltet, selbst aber kein Computer ist
- besteht üblicherweise aus Hardware (Mechanik, Elektronik) und Software
- ist sehr häufig ein Control System (Steuerung, Regelung)

Ein Embedded System beinhaltet typischerweise folgende Komponenten:

- Sensoren
- Mikrocomputer
- Hardware (Mechanik, Elektronik)
- Aktoren Software (Firmware)

1.1.1 Charakterisierung von Embedded Systems

Embedded Systems können (müssen aber nicht) folgende Eigenschaften haben:

- reactive systems: Reaktive Systeme interagieren mit ihrer Umgebung
- real-time systems: Echtzeitsysteme haben nebst funktionale Anforderungen auch de finierbaren zeilichen Anforderungen zu genügen
- dependable systems: Verlässliche Systeme sind Systeme, welche (sehr) hohe Zuverlässigkeitsanderungen erfüllen müssen
- Weitere (häufige) Anforderungen:
 - kleiner Energieverbrauch
 - kleine physikalische Abmessungen
- Lärm, Vibration, etc.

1.1.2 Typischer Aufbau

Ein gutes Design beinhaltet unterschiedliche Abstraktionsschichten → Layer → Siehe Abschnitt 1.8

Auto

· Sicherheitsrelevante Aufgaben

Autonom fahrende Autos

- ABS, ASR

- Motorenregelung

- Drive-by-wire

• Unterhaltung / Komfort

- Radio / CD / etc.

Mehrere Netzwerke

CAN, LIN, Ethernet

Von einfachsten μ Cs bis DSPs und

→ Auto ist ein riesiges Embedded System

Echtzeitteile und andere

Navigation

- Klima

GPUs

1.2 Beispiele

Fahrrad-Computer

- GPS-Navigation
- Geschwindigkeits- und Trittfrequenzmessung
- Pulsmesser
- Drahtlosübertragung (ANT+)
- Interface zu elektronischer Gangschaltung
- Barometer, Thermometer
- Trainingsassistent
- Display

Weitere Beispiele

- Smartphone
- Mobile Base Station
- CNC-Bearbeitungszentdrum
- Hörgerät

1.3 Deeply Embedded System

- 'Einfaches' Embedded System, mit minimaler Benutzerschnittstelle, üblicherweise mit keinerlei GUI und ohne Betriebssystem
- Beschränkt auf eine Aufgabe (z.B. Regelung eines physikalischen Prozesses)
- Muss oft zeitliche Bedingungen erfüllen → Echtzeitsystem

1.3.1 Beispiele – Deeply Embedded System

- Hörgerät
- ABS-Controller
- etc...

- Motorenregelung
- 'Sensor' im IoT

1.4 Betriebssysteme bei Embedded Systems

- Es kommen Betriebssysteme wie (Embedded) Linux oder Android zum Einsatz
- → Achtung: Linux und Android sind nicht echtzeitfähig!
- Wenn Echtzeit verlangt wird: real-time operating systems (RTOS)
 - Beispiele: Zephyr, Free RTOS (Amazon), TI-RTOS (Texas Instuments), etc.

1.5 Bare Metal Embedded System

- Es kommt keinerlei Betriebssystem zum Einsatz
- Bare Metal Embedded Systems sind recht häufig, insbesondere bei Deeply Embedded Systems
- Bare Metal Embedded Systems stellen besondere Ansprüche an Programmierung

1.6 Zuverlässigkeit

- · Je länger das System läuft, desto weniger zuverlässig ist es
- Die Wahrscheinlichkeit für einen Ausfall steigt stetig

Achtung: Hier ist nur die Alterung der Hardware berücksichtigt

1.7 Verfügbarkeit

Die Verfügbarkeit A (Availability) ist der Anteil der Betriebsdauer innerhalb dessen das System seine Funktion erfüllt.

$$Verfügbarkeit = \frac{Gesamtzeit - Ausfallzeit}{Gesamtzeit}$$

1.8 Abstraktionsschichten

- Bei µC-Programmierung (Firmware) müssen oft Bitmuster in Register geschrieben werden
- Solche Register-Zugriffe dürfen nicht 'willkürlich' überall im Code erfolgen → schlecht lesbar, schlecht portiertbar, fehleranfällig
- · Damit Code lesbarer und besser auf andere Platform portierbar wird, beinhaltet jeder professionelle Code einen Hardware Abstraction Layer (HAL)
- HAL führt nicht zum Verlust bei Laufzeit, wenn korrekt implementiert

1.8.1 Hardware-abstraction-layer (HAL)

- Trennt HW-Implementierung von SW-Logik
- Gleiche SW kann auf verschiedene HW verwendet werden → Portabilität
- HW-Komponenten können einfach ausgetauscht werden → Flexibilität

2 Real-Time System (Echtzeitsystem)

2.1 Definitionen

2.1.1 Real-Time System (Echtzeitsystem)

- Ein Echtzeitsystem ist ein System, das Informationen innerhalb einer definierten Zeit (deadline) bearbeiten muss.
 - ➤ Explizite Anforderungen an turnaround-time (Antwortzeit) müssen erfüllt sein
- Wenn diese Zeit nicht eingehalten werden kann, ist mit einer Fehlfunktion zu rechnen.

Typisches Echtzeitsystem

Camera Input Sensor 2 ntrol Signal 2

Repräsentation RT-System

Sequenz von Aufgaben (Jobs) müssen zeitlich geplant (scheduled) werden

2.1.2 Zeitdefinitionen (Task)

- turnaround time: (response time, Antwortzeit)
 - Startet, wenn der Task bereit zur Ausführung ist und endet, wenn der Task fertig
 - Zeit zwischen dem Vorhandensein von Eingangswerten an das System (Stimulus) bis zum Erscheinen der gewünschten Ausgangswerte.
- waiting time: (Wartezeit)
- Zeit zwischen Anliegen der Eingangswert und Beginn der Abarbeitung des Tasks service time: (Bearbeitungszeit)
- Zeit für Abarbeitung des Tasks → Unterbrechungen bzw. (preemptions) möglich

2.2 Fehlverhalten eines Systems (failed system)

- Ein fehlerhaftes System (failed system = missglücktes System) ist ein System, das nicht alle formal definierten Systemspezifikationen erfüllt.
- Die Korrektheit eines RT Systems bedingt sowohl die Korrektheit der Outputs als auch die Einhaltung der zeitlichen Anforderungen.

2.3 Echtzeitdefinition – Verschiedene Echtzeitsysteme

- soft real-time system (weiches Echtzeitsystem)
 - Durch Verletzung der Antwortzeiten wird das System nicht ernsthaft beeinflusst
 - Es kommt zu Komforteinbussen
- hard real-time system (hartes Echtzeitsystem)

 - Durch Verletzung der Antwortzeiten wird das System ernsthaft beeinflusst
 Es kann zu einem kompletten Ausfall oder katastrophalem Fehlverhalten kommen
- firm real-time system (festes Echtzeitsystem)

 - Kombination aus soft real-time system und hard real-time system
 Durch Verletzung einiger weniger Antwortzeiten wird das System nicht ernsthaft beeinflusst
 - Bei vielen Verletzungen der Antwortzeiten kann es zu einem kompletten Ausfall oder katastrophalem Fehlverhalten kommen

2.3.1 Beispiele verscheidener Echtzeitsysteme

System	Klassifizierung	Erlärung				
Geldautomat	soft	Auch wenn mehrere Deadlines nicht eingehalten werden können, entsteht dadurch keine Katastrophe. Im schlimmsten Fall erhält ein Kunde sein Geld nicht.				
GPS-gesteuerter firm Rasenmäher		Wenn die Positionsbestimmung versagt, könnte das Blumenbeet der Nachbarn platt gemäht werden.				
Regelung eines hard Quadrocopters		Das Versagen der Regelung kann dazu führen, dass der Quadrocopter ausser Kontrolle gerät und abstürzt.				