ADVANCED LEVEL CHEMISTRY PROBLEMS

ORGANIC SYNTHESIS

- 1. Write equations to show how the following compounds can be synthesised from
 - (a). Chlorocyclohexane to
 - (i). Cyclohexanol
 - (ii). 1,2-dibromocyclohexane
 - (iii). 2-bromocyclohexanol
 - (iv). Cyclohexene-1,2-diol
 - (v). $OHC(CH_2)_4CHO$
 - (vi). Cyclohexane

- (b). Propan-2-ol to
 - (i). Propane
 - (ii). Propane-1,2-diol
 - (iii). 1,2-dibromopropane
 - (iv). 1-bromopropan-2-ol
 - (v). 2-chloropropane
 - (vii). 1-bromopropane.
 - (viii). Hexane
- 2. Write equations to show how ethanol can be converted to the following compounds.

 Include the conditions for the reactions in each case
 - (a). Ethane-1,2-diol
 - (c). Ethanedioic acid
 - (e). Polyethene
 - (g). 1,2-dibromoethane
 - (i). 2-bromoethanol

- (b). 1,2-dichloroethane
- (d). methanal
- (f). Chloroethane
- (h). Butane
- (j). Ethane
- 3. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). Ethane from ethanol
 - (b). 2-phenylethanol to 1-phenylethane-1,2-diol
 - (c). Ethanal from butan-1-ol
 - (d). Ethyne to ethanedioic acid

(e).	Propan-1-ol	to	propane
(f).	But-2-yne	to	butane-2,3-diol
(g).	Cyclohexenol	to	cyclohexene-1,2-diol
(h).	1,2-dichloroethane	to	ethanol
(i).	Iodocyclohexane	to	1,2-diiodocyclohexane
(j).	2-bromopropane	to	propane-1,2-diol
(k).	Phenylethene	to	1-phenylethanol

4. Write equations to show how the following compounds can be synthesised from each of the following substances and in each case, indicate the conditions for the reactions.

(a).	Ethar	Ethanol to		1,2-	dichloroethane to
	(i).	Benzene		(i).	Ethanol
	(ii).	Propyne		(ii).	Bromoethanol
	(iii).	Propanone		(iii).	Benzene
	(iv).	But-2-yne		(iv).	Butane
	(v).	Butanone		(v).	Ethanal
	(vi).	1,1,2,2-tetrachloropropane		(vi).	2,2-dibromopropane

5. Write equations to show how the following compounds can be synthesised from each of the following substances and in each case, indicate the conditions for the reactions.

(a).	1,2-dichloropropane to		(b).	1-bromo	o-1-phenylethane to
	(i).	Propanone		(i).	Phenylethyne
	(ii).	2,2-dichloropropane		(ii).	Pheylpropyne
	(iii).	Propan-2-ol		(iii).	Phenylethanone
	(iv).	Butanone		(iv).	1,1-dibromo-1-phenylethane

6. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.

(a).	Ethene	to	benzene
(b).	1,2-dichloroethane	to	methylbenzene
(c).	Ethyne	to	benzaldehyde
(d).	1,2-dibromoethane	to	benzaldehyde
(e).	Ethyne	to	benzenesulphonic acid
(f).	Benzene	to	benzaldehyde
(g).	Nitrobenzene	from	benzoic acid
(h).	Phenylethanone	from	ethene
(i).	Ethyne	to	ethylbenzene (phenylethane)
(j).	Chlorobenzene	from	ethanol
(k).	Bromobenzene	from	methylbenzene
(1).	Propan-2-ol	to	2-phenylpropane
(m).	Ethene	to	benzylcloride
(n).	Ethyne	to	methylcyclohexane
(o).	Chlorocyclohexane	from	1,2-dichloroethane
(p).	Benzoic acid	from	ethanol.

7. Write equations to show how the following compounds can be synthesised from each of the following substances and in each case, indicate the conditions for the reactions.

(a).	Ethanoic to		(b).	Chloroet	thane to
	(i).	Ethane-1,2-diol		(i).	Ethanoic acid
	(ii).	Bromoethane		(ii).	Ethyne
	(iii).	Ethyne		(iii).	Ethanedioic acid
	(iv).	Methanal		(iv).	Ethyl ethanoate
	(v).	Methanol		(v).	Ethanal

		(vi).	Chloromethane				(v	ri).	Ethane-1,2-diol	
		(vii).	Propene				(vi	i).	Chloropropane	
8.	Write	equation	ns to show how th	ne follow	ing co	mpoun	ds can	be sy	onthesised from each of the	
	followi	ng subs	stances and in eac	ch case,	indica	te the	conditio	ns fo	or the reactions.	
	(a).	Ethan	ol to propanenitril	le						
	(b).	Ethyne	e to 2-methylprop	anenitri	crile					
	(c).	. Cyclohexanol to								
	(d). 2-chloro-2-methylpropane to 3-methylbutanenitrile									
9.	9. Write equations to show how the following compounds can be synthesised from each of the									
	following substances and in each case, indicate the conditions for the reactions.									
	(a).	2-chlo	ropropane to			(b).	Ethyn	ne to		
		(i).	Propanone				(i).	Phe	enylethanoic acid	
		(ii).	Propyne				(ii).	Etł	nyl benzoate	
		(iii).	1-bromopropane				(iii).	Cyc	clohexanol	
		(iv).	But-2-yne				(iv).	Pro	pan-2-ol	
							(v).	Pro	pan-1-ol	
							(vi).	Pro	pane1,2-diol	
10). Write	equatio	ns to show how	the follo	owing	convers	sions ca	an be	e made, and in each case,	
	state t	he cond	litions for the read	ctions.						
	(a).	Propa	an-2-ol	to	propa	nal				
	(b).	Cyclo	hexene	to	cyloha	axanon	.e			
	(c).	1-bro	omopropane	to	propa	none				
	(d).	2-chl	oropropane	to	propa	nal				
	(e).	Ethe	ne	to	hexar	ne-1,6-0	dioic ac	id		
	(f).	Benz	ene	to	cyclol	nexene				

(g).	Benzene	to	methoxycyclohexane	(cvclohexvl	methyl ether)

- (h). Ethanal to propanone
- (i). Chloromethane to propanal
- (j). Methanol to 1-bromopropan-2-ol
- (k). 1-phenylethanol to 2-phenylethanol
- (l). Methanol to 2-methylpropan-2-ol
- (m). Methanol to 2-methylpropene
- (n). Benzene to phenol
- (o). Ethyne to methoxybenzene (methyl phenyl ether)
- (p). Phenol to benzenesulphonic acid
- (q). Benzene to 2,4,6-tribromophenol
- (r). 1,2-dibromoethane to cyclohexylmethanol
- (s). Benzene to phenyl ethanoate
- (t). Cyclohexanol to cyclohexylmethanol
- (u). Ethene to butanedioic acid
- 11. Write equations to show how the following compounds can be synthesised from benzene and in each case, indicate the conditions for the reactions.
 - (a). 2-hydroxy-2-phenylpropanenitrile
 - (b). 1-bromo-1-phenylethane
 - (c). Phenylethene
 - (d). 1-phenylethane-1,2-diol
 - (e). 1-bromo-2-phenylethane
 - (f). Phenylethyne
 - (g). Poly(phenylethene)

(h).
$$SO_3^-Na^-$$

$$C - CH_3$$

- 12. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). Ethene to C = NOH
 - (b). But-2-ene to ethene
 - (c). 2-bromopropane to $CH_3CH_2C = NNHCONH_2$
 - (d). Propanone to 2-methylpropanenitrile
 - (e). Ethanal to methanal
 - (f). Benzene to NN = N
 - (g). 2-chloropropane to 2,2-dichloropropane
 - (h). 2,2-dibromopropane to $(CH_3)_2C = NNHCONH_2$
 - (i). Ethanol to butane-1,3-diol
 - (j). Ethene to 1,3-dichlorobutane

- 13. Write equations to show how the following compounds can be synthesised from each of the following substances and in each case, indicate the conditions for the reactions.
 - (a). Ethene to
 - (i). Ethanoyl chloride
 - (ii). Ethanoic acid
 - (iii). Ethyl ethanoate
 - (iv). Benzoic acid
 - (v). Propanoic acid
 - (vi). Methanoic acid
 - (vii). Ethanamide
 - (viii). Ethanamine
 - (ix). Propanamine

- (b). Nitrobenzene to
 - (i). Phenylmethanamine
 - (ii). Benzoic acid
 - (iii). Cyclohexanamine
 - (iv). Methylbenzene
 - (v). 3-phenylpropanoic acid
 - (vi). 1,3,5-tribromophenol
 - (vii). 4-hydroxyazobenzene

(viii).
$$OH = N$$

- 14. Write equations to show how the following compounds can be synthesised from each of the following substances and in each case, indicate the conditions for the reactions.
 - (a). Propene to
 - (i). 2,2-dimethylpropanedioic acid
 - (ii). Propan-2-amine
 - (iii). Ethanamine
 - (iv). 2-methylpropanoic acid
 - (v). 2-methylpropan-1-amine
 - (vi). 2-methylbutan1,4-diol
 - (vii). 2-chlorobutanamine

- (b). Methylbenzene to
 - (i). Iodobenzene
 - (ii). 2-phenylethanol
 - (iii). Phenol
 - (iv). Phenylethanoic acid
 - (v). Phenylmethanamine
 - (vi). Cyclohexanamine
 - (vii). Phenylamine

15. Write equations to show how the following conversions can be made,

(a).	Benzene	to	N-methyl-N-phenylamime
(b).	Methyl benzoate	from	phenylmethanol
(c).	Benzene	to	1-phenylpropane
(d).	Aniline (Phenylamine)	to	4-bromoaniline
(e).	Cyclohexene	from	nitrobenzene
(f).	Benzene	to	2-phenylpropanoic acid
(g).	Phenylethene	to	2-phenylpropan-1-amine
(h).	Propene	to	2-methylpropene
(i).	Benzene	to	cyclohexylmethanamine
(j).	Nitrobenzene	to	methoxybenzene
(k).	1-phenylethanol	to	2-phenylethanamine
(1).	Benzoic acid	to	2-phenylethanamine

16. Write equations to show how the following conversions can be made

(a).	Propanone	from	methanol
(b).	Ethene	to	propane-1,2-diol
(c).	Chlorobenzene	to	(chloromethyl)benzene [Benzyl chloride]
(d).	(Bromomethyl)benzene	to	2-phenylethanol
(e).	Phenol	to	cyclohexylmethanol
(f).	Cyclohexane-1,2-diol	from	aniline
(g).	Phenylamine	to	2-hydroxy-2-phenylpropan-1-amine
(h).	Benzene	to	2-phenylpropanedioic acid
(i).	Chloroethane	to	1,1-dicloroethane
(j).	Phenol	to	phenylethene
(k).	Ethene	to	2-hydroxypropanoic acid
(1).	Benzene diazonium chloride	to	2-phenylpropan-1,2-diol
(m).	1,2-dibromoethane	to	1,1-dichloro-1-phenylethane

- 17. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). 1-chloropropane to ethanamine
 - (b). N-methylethanamine from ethanol
 - (c). 1,2-dibromoethane to ethanamide
 - (d). Ethyne to cyclohexanecarboxylic acid
 - (e). Methylbenzene to cyclohexylmethanamine
 - (f). Methylbenzene to cylohexanamine
 - (g). Methanol to 2-methylpropene
 - (h). Benzene to 2-phenylpropan-2-ol
 - (i). Methanol to propyne
 - (j). Ethanol to cyclohexene
- 18. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). Propan-2-ol to ethanol
 - (b). But-2-ene to nitrobenzene
 - (c). Ethanol to methylcyclohexane
 - (d). Ethanol to 1,4-dichlorobutane
 - (e). Benzene to 2-phenylpropan-1-ol
 - (f). 1-phenylethanol to 2phenylpropan-1-amine
 - (g). Methylbenzene to phenylmethanamine
 - (h). Methanol to butane
 - (i). Ethene to $\left\langle \begin{array}{c} H & H \\ C = NN \end{array} \right\rangle$

- 19. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). 2,2-dimethylpropanediol from propan-2-ol
 - (b). Chlorocyclohexane to 1,6-dicbromohexane
 - (c). Phenylmethanol to phenylethene
 - (d). Ethene to phenyl ethanoate
 - (e). Methanol to 1,1-dibromoethane
 - (f). Ethanol to but-2-ene
 - (g). Ethanol to $(CH_3)_2CH$ — $SO_3^-Na^+$
 - (h). $CH_3(CH_2)_4CH_3$ from 2-chloropropane
 - (i). 1,3,5-tribromobenzene from benzene
- 20. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.
 - (a). Propenoic acid from 1,2-dibromoethane
 - (b). $CO_{-}H$ from bromobenzene
 - (c). Ethene to $\left\langle \begin{array}{c} C_{l} \\ C_{l} \end{array} \right\rangle$
 - (d). Ethanoic acid to butanedioic acid
 - (e). Nitrobenzene to $SO_3^-Na^+$
 - (f). Propan-2-ol to 2-hydroxy-2-methylpropanoic acid
 - (g). Propanoic acid to 2-hydroxybutanoic acid

21. Write equations to show how the following conversions can be made, and in each case, state the conditions for the reactions.

(a)	Benzene	to	biphenyl
141.	DCIIZCIIC	10	DIDITCITYI

(b). Ethene from ethylmagnesium chloride

(c). Ethanamide to propanoic acid

(d). Propanal to 1,2-dibromopropane

(e). Propanal to 2,2-dichloropropane

(f). Propanone to propanal

(g). Propanal to propanone

(h). Propanone to 1,1-dichloropropane

(i). Propanone to $CH_3CH_2CH = NOH$

(j). Propanone to propan-1-ol

(k). Benzene to phenylhydrazine

(l). Cyclohexanol to

22. Write equations to show how the following compounds can be synthesised. [UNEB 2019]

(a).
$$SO_3H$$
 from CH_2OH (4½ marks)

(b).
$$C \equiv CH$$
 from
$$OH$$
 (3½ marks)

(c).
$$CH_3CHCH_3$$
 from CH_3CH_2COOH (3½ marks)

(e).
$$NHCH_3$$
 from $HC \equiv CH$ (5½ marks)

23. Write equations to show how the following compounds can be synthesised. [UNEB 2018]

- (a). Benzene from chlorobenzene (04 marks)
- (b). But-2-yne from but-2-ol. (4½ marks)
- (c). CH_3COCH_3 from $CH_3CH_2CH_2OH$. (05 marks)
- (d). CH_3 H $CH = CH_2$ $CH = CH_2$ $CH = CH_2$
- (e). $CH_3CH_2CH_3$ from CH_3CH_2OH . (02 marks)

24. Write equations to show how the following compounds can be synthesised. [UNEB 2016]

- (b). CH_2Cl to CH_2COOH (03 marks)
- (c). $CH_3CH = CHCH_3$ to $CH_3COCHCH_3$. (03 marks)
- (d). NH_2 (04 marks)
- (e). $CH_3CH = CH_2$ to $CH_3C \equiv CH$ (revised) (03 marks)
- (f). Br (02 marks)

25. Write equations to show how the following compounds can be synthesised. [UNEB 2014]

- (b). O_2N — $NHN = CHCH_2CH_3$ from $CH_3CH_2CH_2Br$ (04 marks)

(c).
$$\langle N \rangle = N - \langle N \rangle = OH$$
 from (06 marks)

- (d). $CH_3CH_2C \equiv CCH_3$ from CaC_2 (05 marks)
- 26. Write equations to show how the following compounds can be synthesised. [UNEB 2012]

(a). Benzene to
$$CH_3CH$$
— $SO_3^-Na^+$ (04 marks)

(b). Propan-2-ol to
$$CH_3 = NNHCONH_2$$
 (03 marks)

(c). Nitrobenzene to
$$N = N - OH$$
 (5½ marks)

(d). 2-chloropropane to
$$CH_3CH_2CH_2NH_2$$
 (4½ marks)

(e). Ethene to
$$CH_3COOCH_2CH_3$$
 (03 marks)

27. Write equations to show how the following compounds can be synthesised. [UNEB 2008]

(b).
$$CH_3C \equiv CH$$
 from ethene (5½ marks)

(c).
$$CH_3C = NH_2$$
 from ethanol (05 marks)

(d).
$$\langle \rangle = 0$$
 from cyclohexene (04 marks)

28. Write equations to show how the following compounds can be synthesised. [UNEB 2007]

(a). $CH_3C \equiv CH$

- from
- propan-2-ol

(5½ marks)

(b). *OH*

from

benzene

(3½ marks)

(c). CH_3COCl

from

ethene

(04 marks)

(d). $NHCH_3$

from

benzene

(04 marks)

(e). $CH_3CO_2CH_3$

from

bromoethane

(04 marks)

29. Write equations to show how the following compounds can be synthesised. [UNEB 2006]

(a).
$$CH_3 C = NNH$$

from

propene

(05 marks)

(b). *CHO*

from

benzene

(02 marks)

(c). $CH_3CH_2C \equiv CH$

from

ethanol

(7½ marks)

(d). $CH_3CH_2NH_2$

from

ethanal

(03 marks)

(f). $CH_3CO_2CH_3$

from

ethene

(2½ marks)

30. Write equations to show how the following compounds can be synthesised. [UNEB 2004]

(a). $CH_3CH_2OCH_2CH_3$

from

ethene

(04 marks)

(b).
$$\langle D \rangle - CO_2CH_3$$

from

benzene

(05 marks)

(c). $CH_2CH_2CH CH_2$ | $HNCH_2CH_3$

from

but-2-ene

(02 marks)

(d).
$$N = N - N - NHCH_3$$
 from benzene (06 marks)

31. Write equations to show how the following compounds can be synthesised. [UNEB 2002]

(a).
$$CH_3CH_2CO_2H$$
 from propan-2-ol. (04 marks)

(b).
$$CH_3CH_2CH_3$$
 from 1-bromobutane (04 marks)

(c).
$$C \equiv CCH_3$$
 from CH_2CH_2OH (06 marks)

(d).
$$CH_3$$
 CH_3 NO_2 from propene. (3½ marks)

(e).
$$CH_2OH$$
 From benzene. (2½ marks)

32. Write equations to show how the following compounds can be synthesised. [UNEB 2001]

(a).	Benzoic acid	from	benzene	(2½ marks)
(b).	Hexane	from	1-bromopropane	(01 mark)
(c).	Ethyne	from	ethanol	(4½ marks)
(d).	Propanoic acid	from	bromoethane	(02 marks)
(e).	Aminomethane	from	ethene	(5½ marks)
(f).	Methylethanoate	from	bromoethane	(4½ marks)

33. Write equations to show how the following compounds can be synthesised. [UNEB 2000]

- (a). CH_3CH_2I
- to
- CH_3CH_2COOH .

(03 marks)

(b). $CH_3CH_2CH_2OH$

to

 $\begin{matrix} 0 \\ \parallel \\ CH_3CCH_3 \end{matrix}$

(05 marks)

(c). $C_6H_5CH_2OH$

to

 C_cH_c

(03 marks)

(d). $\langle NO_2 \rangle$

to

N = N

(5½ marks)

(e). CH_3CHCH_3

to

(3½ marks)

34. Write equations to show how the following compounds can be synthesised. [UNEB 1998]

- (a). $CH_3CH_2CH_2Cl$
- to
- $CH_3CH_2CH_2CH_2NH_2$
- (04 marks)

- (b). $CH_3CH_2CH_2OH$
- to
- $CH_3CH_2CH_2COOH$
- (06 marks)

- (c). CH_3CH_2COOH
- to
- $CH_3CH_2NH_2$

(04 marks)

- (d). $CH_3CH = CH_2$
- to
- $CH_3CH_2CH_3CH_2Br$

(06 marks)

35. Write equations to show how the following compounds can be synthesised. [UNEB 1998]

- (a). $\langle D \rangle CO_2H$
- from

benzene

(05 marks)

- (b). $CH_3CH_2NH_2$
- from
- $CH_3CH_2CONH_2$

(01 mark)

- (c). $CH_3C \equiv CH$
- from
- propene

(05 marks)

- (d). $CH_3CH_2COCH_3$
- from
- $CH_3CH = CHCH_3$

(04 marks)

- (e). **(–)**
- from
- benzene

(05 marks)

36. Write equations to show how the following compounds can be synthesised. [UNEB 1997]

(a). $NHCH_3$

- from benzene
- (04 marks)

(b). $CH_3C \equiv CCH_3$

- from $CH_3CHBrCH_2CH_3$
- (05 marks)

(c). CH_3CONH_2

from ethene

(04 marks)

- (d). $\langle N \rangle = N \langle N \rangle N(CH_3)_2$ f
 - from nitrobenzene
- (4½ marks)

(e). $\langle D \rangle - CO_2H$

- from bromobenzene
- (2½ marks)

37. Write equations to show how the following compounds can be synthesised. [UNEB 1987]

- (a). $C \equiv CH$
- to CH_2CH_2OH
- (05 marks)

- (b). CH_3CHCH_3
- to
- 0 || CH₃CH₂CCH₃

(05 marks)

- (c). $CH_3CH_2CH_2CH_2I$
- to
- $CH_3CH_2CH_3$

(05 marks)

- (d). CH_3CHO
- to
- $CH_3CH_2NH_2$

(05 marks)

BEFORE YOU START, ASK YOURSELF "IS IT WORTH IT?" NOT "WILL IT BE EASY?"