Newton Steffensen

Sebastian Angarita, Hector Rodriguez, Aldemar Ramirez 4/8/2019

Problema

Hallar la raíz de una función a partir de un x_0 a traves del metodo de Newton en combinacion con el metodo de Steffensen.

Solución

Lenguaje de programación: R

Función principal Newton Steffensen

Implementacion

```
newtonsteffensen = function(fun, x0, tol, maxiter){
  # f = string
  numiter = 0
  errorAbsoluto = c()
  errorRelativo = c()
  x = c()

g = parse(text=fun) # parse devuelve tipo "expression"

fx = function(x){eval(g)} # convertir f a función

res <- fx(x0)

correccion = -(res)^2/(fx(x0+res)-res)</pre>
```

```
while (abs(correccion) >= tol && numiter <= maxiter) {
    numiter = numiter + 1
    if ((fx(x0+fx(x0))-fx(x0)) == 0) stop("DivisiÃ3n por cero")
    x1 = x0 + correccion
    x0 = x1
    x \leftarrow c(x,x1)
    errorAbsoluto <- c(errorAbsoluto,abs(correccion))</pre>
    errorRelativo <- c(errorRelativo,abs(correccion)/(abs(x0)))</pre>
    res \leftarrow fx(x1)
    correccion = -(res)^2/(fx(x1+res)-res)
  if (numiter > maxiter) { warning ("Se alcanzó el máximo número de iteraciones.")
 } else {
    my_list <- list("resultado" = x1, "errorAbsoluto" =</pre>
                      errorAbsoluto, "errorRelativo" = errorRelativo, "x" = x)
   return(my_list)
    \#return(list(cero = x0, f.cero = fx(x0), numeroiter=numiter, error.est = correccion))
## SE REALIZA LA COPIA DEL METODO NEWTON RAPHSON CON EL OBJETIVO DE REALIZAR LA COMPARACION
newtonraphson = function(fun, x0, tol, maxiter){
  # f = string
 numiter = 0
  errorAbsoluto = c()
  errorRelativo = c()
 x = c()
  g = parse(text=fun) # parse devuelve tipo "expression"
  g. = D(g, "x")
 fx = function(x){eval(g)} # convertir f a función
  fp = function(x){eval(g.)} # convertir f' a función
  correccion = -fx(x0)/fp(x0)
  while (abs(correccion) >= tol && numiter <= maxiter) {</pre>
    numiter = numiter + 1
    if (fp(x0) == 0) stop("División por cero")
    x1 = x0 + correccion
    x0 = x1
```

La función de newtonsteffensen basicamente realiza las operaciones sin recurrir al uso de derivadas en comparacion con la de newtonraphson, con el valor x_0 realiza iteraciones para encontrar un x^* cercano tal que $f(x^*) = 0$ con una tolerancia minima de tol o hasta completar la cantidad maxima de iteraciones.

En esta ocasion la variable llamada correccion dentro de la implementacion de la función newtonsteffensen en el codigo tendra una variacion con respecto a la función newtonraphson.

De esta manera, una aproximación corregida de x_0 en la función newtonraphson se realiza como

$$x_1 = x_0 - f(x_0)/f'(x_0)$$

Mientras que en la funcion newtonsteffensen se realiza como

$$x_1 = x_0 - [f(x_0)]^2 / [f(x_0 + f(x_0)) - f(x_0)]$$

Resultados

Gráfica de la función

```
f = function(x) exp(x) - pi*x
curve(f, 0,3); abline(h=0, v=0) #gráfico para decidir un intervalo
title(main="y = exp(x) - pi*x")
```

$y = \exp(x) - pi^*x$

Se puede apreciar que una de las raices de la función se encuentra en el intervalo [1.4,2], por esta razón una buena aproximación para un x_0 seria $x_0 = 1.5$

Se muestra una tabla con la cantidad de iteraciones y el resultado de cada una para la función $y = e^x - pi * x$. Se realizan separaciones para diferenciar la implementación de la función newton_steffensen de la newton_raphson.

```
## --- Pruebas
# recibe la función como una tira
## Newton Steffensen
resultados<-newtonsteffensen("exp(x)-pi*x",1.5, 1e-8, 100)

tablaErrores <- data.frame(
   "Iteraciones" = 1:length(resultados$errorAbsoluto),
   "x_n" = resultados$x,
   "Error Absoluto" = resultados$errorAbsoluto,
   "Error Relactivo" = resultados$errorRelativo
)
print(tablaErrores)</pre>
```

```
##
     Iteraciones
                       x_n Error.Absoluto Error.Relactivo
## 1
               1 1.768038
                             2.680384e-01
                                              1.516021e-01
## 2
                                              4.875932e-02
               2 1.685838
                             8.220031e-02
## 3
               3 1.646118
                             3.972022e-02
                                              2.412963e-02
## 4
               4 1.638746
                             7.372151e-03
                                              4.498654e-03
## 5
               5 1.638529
                             2.171210e-04
                                              1.325097e-04
                             1.820057e-07
                                              1.110788e-07
## 6
               6 1.638528
```

```
cat("Resultado: iteraciones",length(resultados$errorAbsoluto),"\n")
## Resultado: iteraciones 6
cat("x = ",resultados$resultado,"\n")
## x = 1.638528
cat("Error estimado <= ", resultados$errorRelativo[length(resultados$errorAbsoluto)],"\n")</pre>
## Error estimado <= 1.110788e-07
##-----
## Newton Raphson
resultado2<-newtonraphson("exp(x)-pi*x",1.5, 1e-8, 100)
tablaErrores2 <- data.frame(</pre>
 "Iteraciones" = 1:length(resultado2$errorAbsoluto),
 "x_n" = resultado2$x,
 "Error Absoluto" = resultado2$errorAbsoluto,
 "Error Relactivo" = resultado2$errorRelativo
)
print(tablaErrores2)
##
    Iteraciones
                    x_n Error.Absoluto Error.Relactivo
             1 1.672152 1.721517e-01 1.029522e-01
## 1
              2 1.639892 3.225952e-02
## 2
                                          1.967173e-02
## 3
              3 1.638531
                          1.361402e-03
                                         8.308674e-04
              4 1.638528 2.380175e-06 1.452630e-06
## 4
cat("Numero de iteraciones",length(resultado2$errorAbsoluto),"\n")
## Numero de iteraciones 4
cat("x = ",resultado2$resultado,"\n")
## x = 1.638528
cat("Error estimado = ", resultado2$errorRelativo[length(resultado2$errorAbsoluto)],"\n")
## Error estimado = 1.45263e-06
```

En un primer analisis observamos que la función newton_Steffensen realiza mas iteraciones, aunque se ahorra la complejidad de realizar la derivada de la función.

Grafica de iteraciones vs error estimado

Las graficas que representan la implementación de la función newton_steffensen se identifican con una (S) en el titulo.

Iteraciones vs Error Estimado (S)

Iteraciones vs Error Estimado

El error absoluto estimado en ambos casos converge a 0, aunque en el método de Newton_Raphson con menos iteraciones.

 $Errorestimado: fx(x_0)/fp(x_0)$ para la función newton raphson.

 $Errorestimado: (res)^2/(fx(x0+res)-res)$ para la función newtonsteffensen donde res=fx(x0).

Grafica de m(i) vs m(i+1)

```
m_i = resultados$x[-length(resultados$x)]
m_i2 = resultados$x
m_i2 = m_i2[-1]

plot(x =m_i, y =m_i2, xlab = "mi", ylab = "m(i+1)", type="b",main = "Convergencia (S)")
```

Convergencia (S)


```
##-----
m_i = resultado2$x[-length(resultado2$x)]
m_i2 = resultado2$x
m_i2 = m_i2[-1]

plot(x =m_i, y =m_i2, xlab = "mi", ylab = "m(i+1)", type="b",main = "Convergencia")
```

Convergencia

De acuerdo con la grafica el metodo tiene una convergencia cuadratica.

Con la función newtonsteffensen se observa mucho mejor la convergencia cuadratica del Método Newton.

Grafica de iteraciones vs x0

```
ls=1.5
vs = c()
iteracioness = c()
while(ls<1.64) {
    vs <- c(vs,ls)
    resultados<-newtonsteffensen("exp(x)-pi*x",ls, 1e-8, 100)

    tablaErrores <- data.frame(
        "iteraciones" = 1:length(resultados$errorAbsoluto),
        "x_n" = resultados$x,
        "errorAbsoluto" = resultados$errorAbsoluto,
        "errorRelactivo" = resultados$errorRelativo
)
    iteracioness <- c(iteracioness,length(resultados$errorAbsoluto))
    ls = ls+0.01
    #print(tablaErrores)
}
plot(x =vs, y =iteracioness, xlab = "x_0", ylab = "Iteraciones", type="b",main = "Iteraciones vs x_0 (content to the print to the print
```

Iteraciones vs x_0 (S)

Iteraciones vs x_0

Mientras mas alejado se encuentre x_0 del x^* son necesarias mas cantidad de iteraciones.

La implementacion de la función newton steffensen a comparacion de la newton raphson es más "sensible" en cuanto a la escogencia el x_0 . Si en Newton_Raphson la diferencia ente escoger un x_0 alejado en 0.5 de la raíz lleva a una iteración de más, en newton_steffensen puede llegar a ganar dos iteraciones de más.