

# Winning Space Race with Data Science

Vallabhapurapu L Sai Ruthwik

09-02-2022



### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- Summary of methodologies
  - Data collection
  - Data visualization
  - Interactive visualizations
  - Predictive analysis using 4 models
- Summary of all results
  - EDA outcomes
  - Prediction accuracy

### Introduction

Project background and context

We can now predict if a falcon rocket first stage land back successfully or not. This information helps a lot when it comes to building new rocket.

Problems you want to find answers

Parameters that are affecting the landing of first stage of rocket.

Suitable conditions that a rocket needs to meet to have a successful landing.



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - SpaceX Rest API
  - Web scraping on Wikipedia (<u>link</u>)
- Perform data wrangling
  - Based on the mission outcomes a new column is created and labeled as 1 for successful outcome and 0 for an unsuccessful outcome.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

## Data Collection – SpaceX API

https://github.com/vlsruthwik/Data
 -Science-Capstone Project/blob/master/Data collectio
 n using API.ipynb





## **Data Collection - Scraping**

 https://github.com/vlsruthwik /Data-Science-Capstone-Project/blob/master/Data col lection using webscraping.ip

<u>ynb</u>

static\_url=https://en.wikipedia.org/w/index.php?title=List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches&oldid=1027686922
source=requests.get(static\_url)
soup=BeautifulSoup(source.text)

| <pre>df=pd.DataFrame(launch_dict) df.head()</pre> |
|---------------------------------------------------|
|                                                   |

| : | Flight<br>No. | Launch<br>site | Payload                                 | Payload mass                            | Orbit | Customer | Launch outcome | NaN  | Versio<br>Booste |
|---|---------------|----------------|-----------------------------------------|-----------------------------------------|-------|----------|----------------|------|------------------|
| 0 | 1 None        | CCAFS          | Dragon Spacecraft<br>Qualification Unit | Dragon Spacecraft<br>Qualification Unit | LEO   | SpaceX   | Success\n      | None | F9 v1.0B0003.    |
| 1 | 2 None        | CCAFS          | Dragon                                  | Dragon                                  | LEO   | NASA     | Success        | None | F9 v1.0B0004.    |
| 2 | 3 None        | CCAFS          | Dragon                                  | Dragon                                  | LEO   | NASA     | Success        | None | F9 v1.0B0005.    |
| 3 | 4 None        | CCAFS          | SpaceX CRS-1                            | SpaceX CRS-1                            | LEO   | NASA     | Success\n      | None | F9 v1.0B0006.    |
| 4 | 5 None        | CCAFS          | SpaceX CRS-2                            | SpaceX CRS-2                            | LEO   | NASA     | Success\n      | None | F9 v1.0B0007.    |





## **Data Wrangling**

- There are many outcomes of landing. Each case is mapped as 1 for successful landings and 0 for failed landings
  - True Ocean means the mission outcome was successfully landed to a specific region of the ocean while False Ocean means the mission outcome was unsuccessfully landed to a specific region of the ocean.
  - True RTLS means the mission outcome was successfully landed to a ground pad False RTLS means the mission outcome was unsuccessfully landed to a ground pad.
  - True ASDS means the mission outcome was successfully landed on a drone ship False ASDS means the mission outcome was unsuccessfully landed on a drone ship.
- <a href="https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/EDA.ipynb">https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/EDA.ipynb</a>

```
# landing_outcomes = values on Outcome column
landing_outcomes = df['Outcome'].value_counts()
landing_outcomes
```

```
True ASDS 41
None None 19
True RTLS 14
False ASDS 6
True Ocean 5
None ASDS 2
False Ocean 2
False RTLS 1
Name: Outcome, dtype: int64
```



```
df['Class']=landing_class
df[['Class']].head(8)

Class
0    0
1    0
2    0
3    0
4    0
5    0
6    1
7    1
```

### **EDA** with Data Visualization

#### Scatter plots

- Flight Number vs Payload Mass
- Flight Number vs Launch Site
- Payload Mass vs Launch Site
- Flight Number vs Orbit
- Payload Mass vs Orbit
- Bar graph
  - Orbit
- Line plot
  - Year vs Success rate
- https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/EDA\_using\_visualization.ipynb



### **EDA** with SQL

- Using bullet point format, summarize the SQL queries you performed
  - Display the names of the unique launch sites in the space mission
  - Display 5 records where launch sites begin with the string 'CCA'
  - Display the total payload mass carried by boosters launched by NASA (CRS)
  - Display average payload mass carried by booster version F9 v1.1
  - List the date when the first successful landing outcome in ground pad was acheived.
  - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
  - List the total number of successful and failure mission outcomes
  - List the names of the booster versions which have carried the maximum payload mass. Use a subquery
  - List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
  - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- <a href="https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/EDA">https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/EDA</a> using SQL.ipynb

### Build an Interactive Map with Folium

#### Objects

- Circles are created to mark launch sites using their coordinates.
- No of successful and unsuccessful launches are marked for each launch site.
- Lines are draw from launch sites to nearby railway, highway, coastline and city
- Using those objects, we found that
  - launch sites are not in close proximity to railways
  - launch sites are not in close proximity to highways
  - launch sites are in close proximity to coastline
  - launch sites keep certain distance away from cities
- https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/Interactive visual analysis using folium.ipynb

### Build a Dashboard with Plotly Dash

#### Graphs

- Pie chart which shows success rate between launch sites and for individual launch site as well.
- Scatter plot between success lands and Payload Mass.
- Pie chart useful to get relative proportions of multiple classes.
- Scatter plot is useful to show relation between two variables.
- https://github.com/vlsruthwik/Data-Science-Capstone-Project/blob/master/Interactive visualization.py

# Predictive Analysis (Classification)

#### Model Building

- Loading dataset as Pandas DataFrame
- Transforming data
- Splitting dataset into train set and test set
- Training as model using GridSearchCV based on logistic regression, SVM and classification trees on train set.
- Find the best parameters based on evaluation.

#### Evaluating Model

- Checking accuracy of each model
- Plotting confusion matrix
- <a href="https://github.com/vlsruthwik/Data-Science-">https://github.com/vlsruthwik/Data-Science-</a>
  <a href="Capstone-Project/blob/master/Predictions.ipynb">Capstone-Project/blob/master/Predictions.ipynb</a>



```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.b
bestalgorithm = max(algorithms, key=algorithms.get)
print('Best Algorithm is',bestalgorithm,'with a score o
if bestalgorithm == 'Tree':
    print('Best Params is :',tree_cv.best_params_)
if bestalgorithm == 'KNN':
    print('Best Params is :',knn_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg_cv.best_params_)
```

Best Algorithm is Tree with a score of 0.875
Best Params is : {'criterion': 'gini', 'max\_depth': 4,

### Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results



## Flight Number vs. Launch Site

 You can observe that more the Flight number, the success rate is increasing for each site.



### Payload vs. Launch Site

 the VAFB-SLC launch site there are no rockets launched for heavy payload mass(greater than 10000).



# Success Rate vs. Orbit Type

 Orbit GEO,HEO,SSO,ES-L1 has the best and equal Success rate



# Flight Number vs. Orbit Type

 You should see that in the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.



## Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However, for GTO we cannot distinguish this well as both positive landing rate and unsuccessful landings both are there here.



## Launch Success Yearly Trend

 You can observe that the success rate since 2013 kept increasing till 2020



### All Launch Site Names

**SELECT DISTINCT**(LAUNCH\_SITE) **FROM** SPACEXDATASET;

: launch\_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

• Unique values of LAUNCH\_SITE column from SPACEXDATASET table

# Launch Site Names Begin with 'CCA'

| DATE           | Time<br>(UTC) | booster_version | launch_site     | payload                                                          | payload_masskg_ | orbit        | customer           | mission_outcome | Landing<br>_Outcome    |
|----------------|---------------|-----------------|-----------------|------------------------------------------------------------------|-----------------|--------------|--------------------|-----------------|------------------------|
| 2010-06-<br>04 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon Spacecraft Qualification Unit                             | 0               | LEO          | SpaceX             | Success         | Failure<br>(parachute) |
| 2010-12-<br>08 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo flight C1, two CubeSats, barrel of<br>Brouere cheese | 0               | LEO<br>(ISS) | NASA (COTS)<br>NRO | Success         | Failure<br>(parachute) |
| 2012-05-<br>22 | 07:44:00      | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo flight C2                                            | 525             | LEO<br>(ISS) | NASA (COTS)        | Success         | No attempt             |
| 2012-10-<br>08 | 00:35:00      | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                     | 500             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |
| 2013-03-<br>01 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                     | 677             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |

SELECT \* FROM SPACEXDATASET WHERE LAUNCH\_SITE LIKE 'CCA%' LIMIT 5;

• 5 of all columns where launch site starts with CCA in SPACEXDATASET table

### **Total Payload Mass**

SELECT SUM(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXDATASET WHERE CUSTOMER='NASA (CRS)';

1

45596

 Sum of Payload Mass where the customer is NASA (CRS) of SPACEXDATASET table

### Average Payload Mass by F9 v1.1

SELECT AVG(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXDATASET WHERE BOOSTER\_VERSION LIKE '%F9 v1.1%';

1

2534

 Average of Payload Mass where the booster version is F9 v1.1 of SPACEXDATASET table

### First Successful Ground Landing Date

SELECT MIN(DATE) FROM SPACEXDATASET

WHERE LANDING\_OUTCOME='Success (ground pad)';

: **1** 2015-12-22

- MIN(DATE) give the first date of a set
- Minimum of date where landing outcome is successful on a ground pad of SPACEXDATASET table

#### Successful Drone Ship Landing with Payload between 4000 and 6000

| booster_version | landing_outcome      | payload_masskg_ |
|-----------------|----------------------|-----------------|
| F9 FT B1022     | Success (drone ship) | 4696            |
| F9 FT B1026     | Success (drone ship) | 4600            |
| F9 FT B1021.2   | Success (drone ship) | 5300            |
| F9 FT B1031.2   | Success (drone ship) | 5200            |

SELECT BOOSTER\_VERSION,LANDING\_OUTCOME, PAYLOAD\_MASS\_\_KG\_ FROM SPACEXDATASET

WHERE LANDING\_OUTCOME='Success (drone ship)' AND (PAYLOAD\_MASS\_\_KG\_>4000 AND PAYLOAD\_MASS\_\_KG\_<6000);

 Booster version, landing outcome, payload mass where landing outcome is a success drone ship and payload mass is between 4000 and 6000 of SPACEXDATASET table

#### Total Number of Successful and Failure Mission Outcomes

| mission_outcome                  | COUNT |
|----------------------------------|-------|
| Failure (in flight)              | 1     |
| Success                          | 99    |
| Success (payload status unclear) | 1     |

SELECT MISSION\_OUTCOME, COUNT(MISSION\_OUTCOME) AS COUNT FROM SPACEXDATASET

GROUP BY MISSION\_OUTCOME;

- Here we use AS to name new value( COUNT(MISSION\_OUTCOME) named as COUNT)
- GROUP BY groups the columns based in MISSION\_OUTCOME value

### **Boosters Carried Maximum Payload**

SELECT DISTINCT(BOOSTER\_VERSION) FROM SPACEXDATASET

WHERE PAYLOAD\_MASS\_\_KG\_ = (SELECT MAX(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXDATASET);

- Here we use sub query to find maximum payload mass
- Unique values of booster version where the Payload mass is the highest(maximum of Payload mass of SPACEXDATASET table)

#### booster\_version

F9 B5 B1048.4

F9 B5 B1048.5

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1049.7

F9 B5 B1051.3

F9 B5 B1051.4

F9 B5 B1051.6

F9 B5 B1056.4

F9 B5 B1058.3

F9 B5 B1060.2

F9 B5 B1060.3

### 2015 Launch Records

| landing_outcome      | booster_version | launch_site |
|----------------------|-----------------|-------------|
| Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

SELECT LANDING\_OUTCOME, BOOSTER\_VERSION, LAUNCH\_SITE FROM SPACEXDATASET

WHERE YEAR(DATE)='2015' AND LANDING\_OUTCOME='Failure (drone ship)';

- YEAR(DATE) gives only the year of date object
- Landing outcome, booster version, launch site columns of SPACEXDATASET table where the year is 2015 and landing outcome is a failure of droneship

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

SELECT LANDING\_OUTCOME,COUNT(LANDING\_OUTCOME) AS COUNT FROM SPACEXDATASET

WHERE DATE>='2010-06-04' AND DATE<='2017-03-20'

GROUP BY LANDING\_OUTCOME

ORDER BY COUNT DESC;

| landing_outcome        | COUNT |
|------------------------|-------|
| No attempt             | 10    |
| Failure (drone ship)   | 5     |
| Success (drone ship)   | 5     |
| Controlled (ocean)     | 3     |
| Success (ground pad)   | 3     |
| Failure (parachute)    | 2     |
| Uncontrolled (ocean)   | 2     |
| Precluded (drone ship) | 1     |

Landing outcome, COUNT of landing outcome of SPACEXDATASET table
where the date range is 2010-06-04 to 2017-03-20 and the output is
grouped by landing outcome and ordered in descending order of COUNT



### Launch Sites on Global Map



# Markers of landings for each launch site



# <Folium Map Screenshot 3>





# Success rate of landing by launch site proprtions



• We can see that KSC LC-39A launch site has highest success landing rate

## Success vs Failed landings for each site

Total Success Launches for site KSC LC-39A



• For KSC LC-39A we can see that Success rate is 76.9%

### Scatter plot between Payload Mass and Success rate



We can get plot for any Payload mass range



## Classification Accuracy

```
sns.barplot(data = bar_data,x='Model',y='Accuracy')
   Best Algorithm is Tree with a score of 0.8892857142857142
                                                                       plt.show()
   Best Params is : {'criterion': 'gini', 'max depth': 14, 'max
                                                                           0.8
for i in algorithms:
    print(f'{i} : {algorithms[i]}')
                                                                           0.6
   KNN: 0.8482142857142858
                                                                           0.4
   Tree: 0.8892857142857142
   LogisticRegression: 0.8464285714285713
                                                                           0.2
                                                                           0.0
                                                                                  KNN
                                                                                              Tree
                                                                                                      LogisticRegression
```

 After selecting the best hyperparameters for the decision tree classifier using the validation data, we achieved 88.93% accuracy on the test data.

### **Confusion Matrix**

#### We see that

- 3 labels are as false positives.
- The y axis labels are true labels and x axis labels are predicted outcomes.
- Those labels which match on both side are correct predications and rest are not



### Conclusions

- Low Payload Mass rockets have high success rate than high Payload Mass.
- As the time goes SpaceX success rate is increasing.
- KSC LC-39A had the most successful launches from all the sites
- GEO,HEO,SSO,ES-L1 has the best success rate
- Tree classification is best fit for this data with an accuracy of 88.93%

# **Appendix**

- <a href="https://github.com/vlsruthwik/Data-Science-Capstone-Project">https://github.com/vlsruthwik/Data-Science-Capstone-Project</a>
- The following repository have all the files and codes that are used in this project.

