Homework 3 Solution

Problem 1. Given two vectors of real numbers $X = \{x_1, \ldots, x_n\} \in \mathbb{R}^n$ and $Y = \{y_1, \ldots, y_n\} \in \mathbb{R}^n$, the covariance between X and Y is defined as

$$cov_n(X, Y) = E_n(XY) - E_n(X)E_n(Y)$$

where $E_n(U) = (\sum_{i=1}^n u_i)/n$. The covariance is useful to detect linear relationships between X and Y. In order to extend this measure to potential nonlinear relationships between X and Y, we consider the following criterion:

$$C_n^K(X,Y) = \max_{f,g \in \mathcal{B}_K} cov_n(f(X), g(Y))$$

where K is a positive definite kernel on \mathbb{R} , \mathcal{B}_K is the unit ball of the RKHS of K, and $f(U) = (f(u_1), \ldots, f(u_n))$ for a vector $U = (u_1, \ldots, u_n)$.

- 1. Express simply $C_n^K(X,Y)$ for the linear kernel K(a,b)=ab.
- 2. For a general kernel K, express $C_n^K(X,Y)$ in terms of the Gram matrices of X and Y.

Let's begin with the general case and then check for the linear kernel. Assuming that our data is centered, we can write $C_n^K(X,Y)$ as

$$\min_{f,g\in\mathcal{B}_K} -\sum_{i=1}^n f(x_i)g(y_i)$$

note that the sum can be written in the matrix form $\alpha^{\top} K_x K_y \beta$, thus the Lagrangian can be written as:

$$\mathcal{L}(\alpha, \beta, \lambda_x, \lambda_y) = -\alpha^\top K_x K_y \beta + \lambda_x (\alpha^\top K_x \alpha - 1) + \lambda_y (\beta^\top K_y \beta - 1)$$

setting the partial derivatives with respect to α and β equal to zero yields:

$$2\lambda_x \alpha - K_y \beta = 0$$

$$2\lambda_y \beta - K_x \alpha = 0$$
 (1)

multiply the first equation by $\alpha^{\top} K_x$ and the second one by $\beta^{\top} K_y$

$$2\lambda_x \alpha^\top K_x \alpha - \alpha^\top K_x K_y \beta = 0$$

$$2\lambda_y \beta^\top K_y \beta - \beta^\top K_y K_x \alpha = 0$$

subtracting the two, we get:

$$\lambda_x \alpha^\top K_x \alpha = \lambda_y \beta^\top K_y \beta = \lambda_x = \lambda_y = \lambda$$

we can thus rewrite (1) in matrix from:

$$M \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda' \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

where $\lambda' = 2\lambda$ and $M = \begin{bmatrix} 0 & K_y \\ K_x & 0 \end{bmatrix}$. Therefore, the answer would be given by the eigen pairs of M.

$$det(M - \lambda' I) = 0 \Rightarrow det(\lambda'^2 I - K_y K_x) = 0$$

so $\lambda' = \sqrt{\lambda''}$ where λ'' is an eigenvalue of $K_y K_x$. note that λ'' is non-negative since the matrix is positive semi-definite. this means that the answer is given by the eigenvectors of M with eigenvalue $\sqrt{\lambda''}$.

Now we return to the first question. Note that $K_x = XX^{\top}$ for the linear kernel. so λ'' is the eigenvalue of $YY^{\top}XX^{\top}$.

note that $Y^{\top}X$ is a scaler, denoting it with r, the matrix can be written as rYX^{\top} .

note that YX^{\top} is a rank-one matrix, which means that it has at most one non-zero eigenvalue, which is given by the trace. Further, the trace of YX^{\top} is r, which implies that $\lambda''=r^2$

This means that the answer is given by the eigenvectors of M with eigenvalue r.