

NATIONAL SENIOR CERTIFICATE

GRADE 12

TECHNICAL SCIENCES P2

NOVEMBER 2022

MARKS: 75

TIME: 11/2 hours

This question paper consists of 9 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 D.

- 1.1 Which ONE of the compounds below represents a saturated hydrocarbon?
 - Α C_3H_6
 - C_4H_8 В
 - C C_5H_{12}
 - D C₆H₁₀ (2)
- 1.2 Consider the structural formulae of the alcohols below.

Which ONE of the following combinations represents a secondary alcohol?

- Α (ii), (iii) and (iv)
- В (i) and (iv)
- C (ii) and (iv)
- D (i) only (2)

1.3 are examples of PURE SEMICONDU	JUCTURS.
------------------------------------	----------

- A Diamonds, silicon and germanium
- B Germanium, copper and lead
- C Silicon, germanium and lead
- D Diamonds, silicon and krypton (2)
- 1.4 Electroplating is a common application of electrolysis. Which ONE of the following is NOT used for electroplating metals?
 - A To enhance the appearance
 - B To make it stronger
 - C To increase the value
 - D To prevent rusting (2)
- 1.5 The net cell reaction taking place in a fuel cell is

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell) + energy$$

This is a/an ...

- A electrolytic cell and the reaction is endothermic.
- B electrolytic cell and the reaction is exothermic.
- C galvanic cell and the reaction is endothermic.
- D galvanic cell and the reaction is exothermic. (2) [10]

Technical Sciences/P2 DBE/November 2022

QUESTION 2 (Start on a new page.)

The table below represents organic molecules with different functional groups.

Α	H H Br H	В	H H O H C O H H H
С	Methyl ethanoate	D	H—C—H H—C—H H—C—H
E	H H H H H—C—C—C—C—H H H H H	F	Prop-1-ene

2.1 Define the term *homologous series*. (2)

2.2 Write down the letter (A–F) that represents the following:

2.4 Draw the structural formula of the following:

Technical Sciences/P2

QUESTION 3 (Start on a new page.)

The graph below shows the boiling points of three different compounds represented by the letters **A**, **B** and **C**. These compounds are from different homologous series.

3.1 Define the term *boiling point*.

(2)

3.2 Which ONE of the compounds above contains the weakest type of intermolecular force?

(1)

In no specific order, the above compounds are identified as propan-1-ol, propanal and propanoic acid.

3.3 Write down the NAMES of the compounds above represented by the following letters:

3.3.1 \mathbf{A} (1)

3.3.2 **B** (1)

3.3.3 **C** (1)

3.4 Explain the difference in the vapour pressure of propanoic acid and propan-1-ol. Refer to the TYPE OF INTERMOLECULAR FORCES, STRENGTH OF THE INTERMOLECULAR FORCES and the ENERGY NEEDED.

(4)

3.5 Which compound has the highest melting point? Write down only **A**, **B** or **C**.

(1) **[11]**

QUESTION 4 (Start on a new page.)

Consider the flow diagram below that shows different organic reactions.

4.1 Write down the TYPE of reaction represented by the following:

- 4.2 Using molecular formulae, write down a balanced chemical equation for reaction 1. (3)
- 4.3 Excess oxygen is the other reactant in reaction 2.
 - 4.3.1 Identify the type of reaction. (1)
 - 4.3.2 Write down the NAME or FORMULA of compound **X**. (2)
- 4.4 Chloroethane reacts with water to form compound **Y**.

Write down the following for this reaction:

4.4.3 The NAME of compound
$$\mathbf{Y}$$
 (2)

- 4.5 Materials consisting of certain elements in group IV have electrical conductivity between conductors and insulators.
 - 4.5.1 Write down the NAME of the materials referred to in the above statement.

4.5.2 Define the term *doping*.

(2)

(1)

4.5.3 A diode is constructed by connecting the positive terminal of the battery to a p-type material and the negative terminal to an n-type material. What type of a diode is this? Write down only FORWARD BIAS or REVERSE BIAS.

(1) **[17]**

QUESTION 5 (Start on a new page.)

The diagram below represents the electrochemical cell used in the electrolysis of molten $CuC\ell_2$. **P** and **Q** are carbon electrodes.

- 5.1 Write down the magnitude of the copper charge in $CuCl_2$. (1)
- 5.2 Define the term *electrolysis*. (2)
- 5.3 Is the reaction ENDOTHERMIC or EXOTHERMIC? (1)
- 5.4 Which electrode is the cathode? Write down only **P** or **Q**. (1)
- 5.5 Write down the observations made at the following electrodes:
 - 5.5.1 **P** (1)
 - $5.5.2 \qquad \mathbf{Q} \tag{1}$
- 5.6 Write down a balanced chemical equation for the net cell reaction of the above cell. (3)
- Give a reason why $CuCl_2$ is used in its molten form instead of its solid state. (2)

[12]

QUESTION 6 (Start on a new page.)

The cell notation of a standard galvanic (voltaic) cell containing an unknown metal **Y** is shown below.

$$Y (s) | Y^{2+} (aq) || Cu^{2+} (aq) | Cu(s)$$

- 6.1 What do the single vertical lines (|) in the cell notation represent? (1)
- 6.2 State TWO standard conditions for the cell. (2)
- 6.3 Write down the NAME or FORMULA of the oxidising agent. (2)
- 6.4 Identify the polarity of the:
 - 6.4.1 Anode (1)
 - 6.4.2 Cathode (1)
- The initial reading on a voltmeter connected across the electrodes is 1,10 V. Use a calculation to identify metal **Y**.

TOTAL: 75

(5) **[12]**

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^Θ	1,01 x 10 ⁵ Pa
Standard temperature Standaardtemperatuur	T ⁰	273 K/0 °C

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/ <i>Emk</i>	E^{θ} cell = E^{θ} cathode - E^{θ} anode / E^{θ} sel = E^{θ} katode - E^{θ} anode
	or/of
	E^{θ} cell = E^{θ} reduction - E^{θ} oxidation / E^{θ} sel = E^{θ} reduksie - E^{θ} oksidasie
	or/of
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent / E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel

Technical Sciences/P2 DBE/November 2022

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1							KEY/S	LEUTEL	Α	Atomic n										He 4
1,0	3 Li 7	1,5	4 Be						ronegati onegativ		29 © Cu 63,5	Sii	mbol mbool			5 0'7 B 11	6 5, C 12	7 0; N 14	8 9 16	0, F 9	10 Ne 20
6'0	11 Na 23	1,2	12 Mg 24									e atomic				13 - Al 27	14 ∞ Si - 28	15 7 P	16 5, S 32	17 C C l 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	23 9. V 51	24 • Cr 52	25 <mark>بن</mark> Mn 55	26 ∞ Fe 56	27 ∞ Co 59	28 ∞ Ni 59	29 C Cu 63,5	30 2 Zn 65	31 9 Ga 70	32 ∞ Ge 73	33	34 % Se 79	35 ∞ Br 80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	4,1	40 Zr 91	41 Nb 92	42 & Mo 96	43 ლ Tc	44 % Ru 101	45 % Rh 103	46 7 Pd 106	47 Ag 108	48 - Cd 112	49 	50 [∞] Sn 119	51 Sb 122	52 ₹ Te 128	53 S, I 127	54 Xe 131
2'0	55 Cs 133	6'0	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181		75 Re 186	76 Os 190	77 r 192	78 Pt 195	79 Au 197	80 Hg 201	81 ∞ T ℓ 204	82 ∞ Pb 207	83 © Bi 209	84 % Po	85 5, At	86 Rn
2'0	87 Fr	6'0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 L u
								140 90 Th	141 91 Pa	144 92 U	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr
								232		238	•										

TABLE 4A: STANDARD REDUCTION POTENTIALS

Half-rea	ctio	ns	Ε ^θ (V)
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87
Co ³⁺ + e ⁻	<u>,</u>	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77
_	+	$Mn^{2+} + 4H_2O$	+ 1,51
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$ $Cl_{2}(g) + 2e^{-}$	-	2Cl ⁻	+ 1,36
$Cr_2(g) + 2e$ $Cr_2O_7^2 + 14H^+ 6e^-$	←	2Cr ³⁺ + 7H ₂ O	+ 1,33
$O_2(g) + 4H^+ + 4e^-$	←	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	←	$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻		Pt	+ 1,20
Pt + 2e	=		+ 1,20
$Br_2(\ell) + 2e^-$	<u>`</u>	2Br ⁻	+ 0,96
NO ₃ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85
Ag ⁺ + e ⁻	=	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54
Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+ 0,52
$SO_2 + 4H^+ + 4e^-$	<u>`</u>		+ 0,45
$2H_2O + O_2 + 4e^-$	` ≓	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	-	Cu	+ 0,34
			+ 0,34
$SO_4^{2-} + 4H^+ + 2e^-$	≓	$SO_2(g) + 2H_2O$	
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
2H ⁺ + 2e ⁻	=	$H_2(g)$	0,00
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e ⁻	<u>`</u>	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	, 	Cr	- 0,91
Mn ²⁺ + 2e ⁻	+	Mn	- 1,18
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,16 - 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 1,00 - 2,36
Na ⁺ + e ⁻	7	Na	- 2,30 - 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,71 - 2,87
Sr ²⁺ + 2e ⁻	+	Sr	- 2,87 - 2,89
Ba ²⁺ + 2e ⁻		Ba	
Cs ⁺ + e ⁻	=		- 2,90
	=	Cs	- 2,92
K ⁺ + e ⁻	<i>–</i>	K	- 2,93
Li ⁺ + e ⁻	=	Li	- 3,05

Increasing reducing ability

Increasing oxidising ability

Increasing oxidising ability

TABLE 4B: STANDARD REDUCTION POTENTIALS

Half-read	ction	าร	Ε ^θ (V)						
Li ⁺ + e⁻	\rightleftharpoons	Li	- 3,05						
K ⁺ + e ⁻	\rightleftharpoons	K	- 2,93						
Cs ⁺ ₂ + e ⁻	\rightleftharpoons	Cs	- 2,92						
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	- 2,90						
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89						
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87						
Na ⁺ + e ⁻	=	Na	- 2,71						
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36						
$Al^{3+} + 3e^{-}$	=	Al Nace	- 1,66						
Mn ²⁺ + 2e ⁻	,	Mn	- 1,18						
Cr ²⁺ + 2e ⁻	<i>,</i>	Cr	- 0,91						
2H ₂ O + 2e ⁻ Zn ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH⁻	- 0,83						
Cr ³⁺ + 3e ⁻	=	Zn Cr	- 0,76						
Fe ²⁺ + 2e ⁻	 	Fe	- 0,74 - 0,44						
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,44 - 0,41						
Cr + e Cd ²⁺ + 2e ⁻	+	Cd	- 0,41 - 0,40						
Co ²⁺ + 2e ⁻	+	Co	- 0,40 - 0,28						
Ni ²⁺ + 2e ⁻	=	Ni	- 0,20 - 0,27						
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14						
Pb ²⁺ + 2e ⁻	<u>`</u>	Pb	- 0,13						
Fe ³⁺ + 3e ⁻	` ≓	Fe	- 0,06						
2H ⁺ + 2e ⁻	<u>,</u>	H ₂ (g)	0,00						
S + 2H ⁺ + 2e ⁻	≓	H ₂ S(g)	+ 0,14						
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15						
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+ 0,16						
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34						
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+ 0,40						
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+ 0,45						
Cu ⁺ + e ⁻	\rightleftharpoons	Cu	+ 0,52						
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54						
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H ₂ O ₂	+ 0,68						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
NO ₃ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80						
Ag ⁺ + e ⁻	<i>,</i>	Ag	+ 0,80						
Hg ²⁺ + 2e ⁻	-	$Hg(\ell)$	+ 0,85						
$NO_3 + 4H^+ + 3e^-$, =	$NO(g) + 2H_2O$	+ 0,96						
$Br_2(\ell) + 2e^-$ $Pt^{2+} + 2e^-$	→	2Br ⁻	+ 1,07						
	=	Pt Mn ²⁺ + 2H ₂ O	+ 1,20 + 1,23						
$MnO_2 + 4H^+ + 2e^-$	=	2H ₂ O							
$O_2(g) + 4H^+ + 4e^-$	 	2Cr ³⁺ + 7H ₂ O	+ 1,23 + 1,33						
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	 	_							
$C\ell_2(g) + 2e^-$	 1	2Cℓ [−] Mn ²⁺ + 4H ₂ O	+ 1,36 + 1,51						
MnO ₄ + 8H ⁺ + 5e ⁻	 1	2H ₂ O							
$H_2O_2 + 2H^+ + 2 e^-$ $Co^{3+} + e^-$	1	Co ²⁺	+1,77 + 1,81						
F ₂ (g) + 2e ⁻	+	2F ⁻	+ 2,87						

Increasing reducing ability

Copyright reserved