

d) (aibil) where b=a+c (a, a+c,c) > (a, b,c) = (a, a+c,c) = a(1,1,0)+c(0,1,1) Basis: v. = (1,1,0) Dimension of subspace = 2 V2 + (0,1,1) (29 a) Diagonal nun matrices. [mo o] -> n, [om o] + n, [m, o o] + n, [n, o o] Boois A1 - An Dimension: 1. 6) Symmetric non matrices Using part a) solution and adding all combinations of matrices where i =] Basis A. An Dimension : n + n(n-1) c) Upper triangle of nxn matrices Using part a) solution and adding all combinations that salinfy upper triangle - Basis : A. An Dimension n+n(n-1) Q11 a) Let W=> a 1+ a 2+ a 2x2 where a + a + q = 0 : a0 = - a1 - 42 u= (-9,-02+0,2+02222) v= (-6,-62+6,2+6222) U+V= (-a,-a,-6,-62+a,2+6,24+6,24+6,242). : (-a, -a2+b, -b2)+ (a,+b)+(a2+b2) = 0 Ku= k(-9,-02+9,2+0,2)= (-9, k-02k+0, kx +02kx) : (-a, k -a2k +a, k +a2k) . 0' Since bolk condition is satisfied :. Wis subspace of B b) Since to is subspace of P. : dim(w) & dim(Ps) c) -a,-az+a,(21)+az(u2) = a,(-1+21) + az(-1+21) Basin = V, = (-1+2) V2 = (-1 + 22) Dimension = 2

Date20
Q5 0 21=3 0 12=0, 22=1, 24=5
a) $Az=0 \rightarrow \begin{bmatrix} 2i \\ 3i \\ 2i \end{bmatrix} = x \begin{bmatrix} 5 \\ 0 \end{bmatrix} + x \begin{bmatrix} -2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
b) Ax=b $\rightarrow \begin{bmatrix} \frac{M_1}{M_2} \\ \frac{M_2}{M_3} \end{bmatrix} = \delta \begin{bmatrix} \frac{5}{3} \end{bmatrix} + 5 \begin{bmatrix} \frac{2}{3} \end{bmatrix} + 5 \begin{bmatrix} \frac{2}{3} \end{bmatrix} + 5 \begin{bmatrix} \frac{2}{3} \end{bmatrix}$
$\begin{bmatrix} 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$
S = (2, 2) = (1+3t, f) = (1, 0) + f(3, 1)
General Sol of An= D -> t(3,1)
b) $\begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & 5 \end{bmatrix} \rightarrow R_1 - R_1 \begin{bmatrix} 1 & 1 & 2 & 5 \\ 0 & -1 & -1 & -7 \end{bmatrix} \rightarrow R_1 - R_2 \begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 7 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} 23 - 2R_1 & 0 & -1 & -1 & -7 \\ 0 & -1 & -1 & -7 \end{bmatrix} \begin{bmatrix} 23 + R_2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -7 \end{bmatrix} \begin{bmatrix} 23 + R_2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -7 \end{bmatrix}$
[3 3 3] B-E [0 =1-17] 13+82[0 000]
- 1ct U3=t; 7/2=7-t, u,=-2-t
$(S-Set=)(u, x_1, x_3)=(-2-t, 7-t, +t)=(-2, 7, 0)+t(-1, -1, 1)$
General sol of $Ax = 0 \Rightarrow t(-1,-1,1)$
$\begin{array}{c} \boxed{Q9 \ a)} \ A : \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \end{bmatrix} \ \rightarrow \begin{array}{c} R_2 - SR_1 & \begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & -19 \end{bmatrix} \ \rightarrow \begin{array}{c} R_3 - R_2 & \begin{bmatrix} 1 & 0 & -16 \\ 0 & 1 & -19 \end{bmatrix} \\ \boxed{7 - 6 \ a} \end{array} \begin{array}{c} R_3 - R_2 & \begin{bmatrix} 1 & 0 & -16 \\ 0 & 1 & -19 \end{bmatrix} \end{array}$
let 23=t; 22=19t, 21=16t
213 = 1 19 Basis for Basis of -> [10 -16] 213 19 null space row space [01 -19]
b) A = \[\frac{2}{40-2} \rightarrow \frac{1}{2} \ \Rightarrow 1
[000] RI-MRI [000]
1ct 23=t, 22=5; 21= 1/at
$\begin{bmatrix} 21 \\ 21 \\ 21 \end{bmatrix} = S \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $Tow space \Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2}$
O II A WILL A
Basis for null space
Reputers

let 23=t, 22=4/3t, 21=-8/3t: 2= t(-8/3, 4/3, 1)

b)
$$b = (1,3)$$

$$\begin{bmatrix}
1 & 2 & 0 & 1 \\
1 & 1 & 4 & 3
\end{bmatrix}
\rightarrow R_2 - R_1 \begin{bmatrix}
1 & 2 & 0 & 1 \\
0 & -3 & 4 & 2
\end{bmatrix}
\rightarrow R_1 - 2R_2 \begin{bmatrix}
1 & 0 & 8/3 & 7/3 \\
0 & 1 & -4/3 & -2/3
\end{bmatrix}$$

let 23=t, 22=-2/3+4/3t, 21=7/3-8/3t : 2= (7/3,-2/3,0)+t(-2/3,4/3,1)

c)
$$b = (-1, 1)$$

 $\begin{bmatrix} 1 & 2 & 0 & -1 \end{bmatrix} \rightarrow R_2 - R_1 \begin{bmatrix} 1 & 2 & 0 & -1 \end{bmatrix} \rightarrow -\frac{1}{3} R_2 \begin{bmatrix} 1 & 0 & 8/3 & \frac{1}{3} \end{bmatrix}$
 $\begin{bmatrix} 1 & 2 & 0 & -1 \end{bmatrix} \rightarrow R_2 - R_1 \begin{bmatrix} 1 & 2 & 0 & -1 \end{bmatrix} \rightarrow \frac{-1}{3} R_2 \begin{bmatrix} 1 & 0 & 8/3 & \frac{1}{3} \end{bmatrix}$

let 43=t, 42=+2/3+4/3t, 21= 1/3-8/3+ 1. 2= (1/3,-2/3,0)+t(-8/3,4/3,1)

let y=s, Z=t :, 2=1-5-t; (2,4,2)= (1,0,0)+s(-1,1,0)+t(-1,0,1)

b) It represents a plane passing through (1,0,0) parallel to vectors (-1,1,0) & (-1,0,1)

let 21 = 5, 23 = t :. 24 = 1/3t - 2/35

5. Set = (2,122,23) = (1/3t-2/35,5/t)

	Exercise # 49:				Date		20		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000			(A) =				
	Let $2=9$, $2=5$, $24=0$ (b) $\begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ -3 & 5 & 8 & -4 \end{bmatrix}$ $\begin{bmatrix} 2+3R_1 \\ R_2+3R_1 \end{bmatrix}$	0 0 5	3 - 1 10 - 10 2 - 2	-> R3	0	1 -2 0	221	rouldy (A)=	2 3
	(3 a) rank (A) = 3, nullity (A) = 0 b) rank (A) + nullity (A) = 1 -> 3+ c) 3 be pivots and no parameter is 5 a) rank (A) = 1, nullity (A) = 2.			ued					
3	b) roule (A) + nullity (A) = n -> 1+2=3 proved								
a a a	$(3 + a) 4x4 \rightarrow 8ank(A) = 4, number (A) = 2. f max rows?$ $(3 + a) 4x4 \rightarrow 8ank(A) = 3 involving (A) = 2. f max rows?$ $(3 + a) 4x4 \rightarrow 8ank(A) = 3 involving (A) = 2. f max rows?$								
-	q (i) dimension of row space (A) dimension of col. space (A)	3	2 2	1	2 2	2	2	2 2	
3	dimension of null space (AT)	0	1	2	7	7	9	9	
3_3_3	(ii) Ax = b consistency (iii) No of parameters	Yes	No -	Yes 2	707	No -	Yes	10	
$\begin{array}{c} \mathbf{A} \mathbf{A} = \begin{bmatrix} 1 & 3 \\ -9 & 3 \end{bmatrix} \rightarrow \mathbf{R}_{3} + 9 \mathbf{R}_{1} \begin{bmatrix} 1 & 3 \\ -3 & 3 \end{bmatrix} \rightarrow 1 3 \mathbf{R}_{2} \\ \mathbf{A} \mathbf{R}_{2} = 1 0 0 0 0 0 0 0 0$									
3	5000 OS(N) - [[-4],[-3](Ба		1		- 0	QUALITY PAPER RODUCTS		The state of the s

Date20						
Q13 A [0 -1 -4] -> R3 4-> R1 [0 -3/2-2] -> -2/3 R2 [0 0 4] [-2 3 4] -> R3 4-> R1 [0 -3/2-6] -> R1+3/2 R2 [0 0 0]						
AT= [0 -1 -2] -> R3+R1 [0 1 2] - R3+R2 [10 -3] - R3+R1 [0 -1 -2] - R3+R2 [0 0 0] - R2+R1 [0 -1 -2] - R1-R2 [0 0 0]						
dim [rowsen] = them Frontan 7 = 2 dim [null(a)(= 1, dim) null(a)]-1						
Basis com(A) = {[104], [014]} Basis null(A) = [-4] Basis com(A) = {[-1], [-2]} - Basis null(AT) = [-2]						
Q19 [028-7100] [1060'5/14 19/17 7/17] Augmented [-34-25001] [000] -1/17 3/17 3/17 matrize						
$Row(A) = \{[1060], [0140], [0001]\}$ $Col(A) = \{[2], [-2], [-2], [-2]\}$						
Nullspace (A) = S[-6] Basis for nullspace (AT) = 8						
1691						
G21a) mility (A) - mility (AT) = 1 6) mility (A) - mility (AT) = n-m.						
@ 23 a) rank(T) = 3 b) rullity (T) = 2.						
G25 Rank 1 not possible						
Rank 2 possible if r=2 and S=1						
@27 No, both row and column spaces of A must be plane because nullity (A) = 1						
c) 3 > max rows d) 3 > max cols.						
5) 3 7 Hax 1005 5) 5						
(31 a) 3 b) No because there is one free vector outside column space						

	Date20
Q33 [2 4 2]	
[24 y] -> 22-y=0 2	2 -> 2y-Z=0
:, y=212 and 7	
:, y=212 and 7 If 21=t then y=t2 and	2=t3.
(a34 a) Over determined bec	course $m > \eta$. 1 0 61+63 System is inconsistent 3 0 361+62+263 if 361+62+263 $\neq 0$
1 -1 61 -> 70W	System is inconsistent
20105)	361+62+263] 1 + 361+62+263 7 0
b) Under determined because	0 0 1/261-1/462) system is consistent
$\begin{bmatrix} 1 & -3 & 4 & 61 \\ -2 & -6 & 9 & 62 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 62 \\ 0 & 62 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 62 \\ 0 & 62 \end{bmatrix}$	1 - 1/3 - 1/6 b1 - 1/12 be due to infinite solutions
	200
c) Underdeter mined because	5 MA / M
C1 -3 0 617 - 5	1 0 - 3/2 -1/261-3/262 System is consistent 0 1 -1/2 -1/261-1/262 due to infinite solution
[1 1 62] [0 1 -1/2 -1/2 61 -1/2 62 due to infinite solution
	12 1201 1202]
Note: Skipped outragonal que	otieno
3	
3	
2	
2	
3	
3	
3	