Estudos TCC

November 20, 2022

1 Anéis

Definição 1.1 (Anel). Um anel R é um conjunto com duas operações + e * tal que $dados \ x, y, z \in R$ temos:

1.
$$x + (y + z) = (x + y) + z$$

$$2. x + y \in R$$

3.
$$\exists 0 \ tal \ que \ \forall x, x+0=x$$

4.
$$x + y = y + x$$

5.
$$\exists -x \ tal \ que \ x, x + (-x) = x$$

6.
$$a*b \in R$$

7.
$$(a*b)*c = a*(b*c)$$

8.
$$a*(b+c) = a*b + a*c$$

9.
$$\exists 1 \ tal \ que \ a * 1 = 1 * a = a$$

Observação 1.2. A definição de anel varia de autor para autor, alguns consideram anéis comutativos com unidade, outro já não consideram a existência do neutro multiplicativo. Também existem anéis sem associatividade, então podemos ter um anel sem nenhuma propriedade sobre a multiplicação

 $\label{eq:quando a multiplica} Quando\ a\ multiplicação\ tamb\'em\ \'e\ comutativa,\ isto\ \'e\ a*b=b*a\ chamamos\ de\ anel\ comutativo.$

Exemplo 1.3. Temos que $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ com as operações usuais de soma e produto são anéis.

Proposição 1.4. Seja R um anel não trivial, se $x \in R$ então x * 0 = 0

Proof. Temos que

$$x*0 = x*(0+0) = x*0 + x*0$$

mas como existe o oposto de x * 0 podemos somar

$$x * 0 - x * 0 = x * 0 + x * 0 - x * 0$$

logo

$$0 = x * 0$$

Temos que caso 1 = 0 o anel é trivial. Já que x = x * 1 = x * 0 = 0.

Definição 1.5 (Subaneis). Seja $S \subseteq R$, onde R é um anel, dizemos que S é um subanel de R se dados $x, y \in S$ temos:

- 1. $x + y \in S$
- 2. Se $x \in S$ então $-x \in S$
- $3. \ 0 \in S$
- 4. $xy \in S$

Definição 1.6 (Homomorfismo). $Uma\ função\ f:A\to B\ \'e\ dita\ homomorfismo\ de\ an\'eis\ se:$

- 1. f(x+y) = f(x) + f(y)
- 2. f(xy) = f(x)f(y)

Definição 1.7. Seja R um anel. $I \subseteq R$ com $I \neq \emptyset$ dizemos que I é um ideal de R se:

- 1. $0_R \in I$
- 2. $x, y \in I$ então $x + y \in I$
- 3. $a \in R$ $e \ x \in I$ $ent\~ao$ $ax \in I$

Definição 1.8 (Ideais(maximal e primo)). Colocar a definição de ideal, ideal maximal, ideal primo

Proposição 1.10. Seja R um anel e $S \subseteq R$ então $\langle S \rangle$ é um ideal de R.

Proof. 1. $0_R \in \langle S \rangle$.

Temos que $S \neq \emptyset$, tome $x \in S$ temos que $0_R x = 0_R \in S >$.

2. $x, y \in \langle S \rangle$ então $x + y \in \langle S \rangle$.

Temos então que $x=\sum_{i=1}^k a_i x_i$ e $y=\sum_{j=1}^m b_j y_j$ onde $a_i,b_j\in R$ e $x_i,y_j\in S$.

Temos então $x+y=\sum_{i=1}^k a_ix_i+\sum_{j=1}^m b_jy_j=\sum_{l=1}^{k+m} c_lz_l$ onde $c_l=a_i,$ $z_l=x_i$ quando $1\leq l\leq k$ e $c_l=b_i,$ $z_l=y_i$ quando $k+1\leq l\leq k+m$ portanto $x+y\in < S>$

3. $a \in R$ e $x \in \langle S \rangle$ então $x + y \in \langle S \rangle$.

Temos então que $x = \sum_{i=1}^k a_i x_i$, logo $ax = a \sum_{i=1}^k a_i x_i = \sum_{i=1}^k a a_i x_i \in S$

Portanto <S> é um ideal de R.

Proposição 1.11. Seja $f: A \to B$ um homomorfismo de anéis e J um ideal de B então $f^{-1}(J)$ é um ideal de A. Ou seja, a pré-imagem de um ideal é um ideal.

Proof. Primeiro vamos a definição da pré-imagem de J.

$$f^{-1}(J) = \{ x \in A | f(x) \in J \}$$

1. $0_A \in f^{-1}(J)$

Temos que J é um ideal de B, então é claro que $0_B \in J$. Mas como f é um homomorfismo então temos que $f(0_A) = 0_B$, logo $0_A \in f^{-1}(J)$.

- 2. $x, y \in f^{-1}(J)$ então $x + y \in f^{-1}(J)$ Como $x, y \in f^{-1}(J)$ então temos que $f(x), f(y) \in J$. Como J é um ideal então $f(x) + f(y) \in J$. Temos também que f é um homomorfismo de anéis então $f(x) + f(y) = f(x + y) \in J$, logo $x + y \in f^{-1}(J)$.
- 3. $a \in A$ e $x \in f^{-1}(J)$ então $ax \in f^{-1}(J)$ Como $x \in f^{-1}(J)$ então temos que $f(x) \in J$, como J é ideal então $f(a) \in B$ e logo $f(a)f(x) \in J$ e f(a)f(x) = f(ax) pois f é um homomorfismo portanto $ax \in f^{-1}(J)$.

Portanto a pré imagem de um ideal é um ideal no anel do domínio do homomorfismo. \Box

Seja $f:A\to B$ um homomorfismo de anéis e I um ideal de A, não podemos garantir que f(I) é um ideal de B.

Tome $i: \mathbb{Z} \to \mathbb{Q}$ sendo i(x) = x. Temos que \mathbb{Q} é um corpo, portanto seus únicos ideias são $\{0\}$ e \mathbb{Q} . Tome $2\mathbb{Z}$ ideal de \mathbb{Z} temos que $i(2\mathbb{Z}) \neq \{0\}$ e $i(2\mathbb{Z}) \neq \mathbb{Q}$ portanto não é um ideal de \mathbb{Q} .

Definição 1.12. Seja $f: A \to B$ um homomorfismo de anéis e I um ideal de A. Dizemos que a extensão de I, denotada por I^e é o ideal gerado por f(I) > 0. Ou seja, é um ideal em B.

Definição 1.13. Seja $f: A \to B$ um homomorfismo de anéis e J um ideal de B. Dizemos que a contração de J, denotada por J^c é $< f^{-1}(J) >$. Ou seja, é um ideal em A.

Definição 1.14 (Divisores de zero). Colocar a definição de divisores de zero

Definição 1.15 (Anéis quociente). Fazer a construção de quociente de anéis

1.1 Corpo de fração

1.2 Localização em anéis comutativos

Vamos seguir a demonstração a partir de um anel A sem unidade, na referência [1] temos a demonstração feita em anel com unidade.

Definição 1.16. Um subconjunto S de um anel A é dito um conjunto multiplicativo se $1 \in S$ e $x \cdot y \in S$ para todo $x, y \in S$.

Mas como estamos partindo de um anel sem unidade, não faz sentido querer que $1 \in S$, então para o nosso caso vamos considerar que exista $a_s \neq 0$ tal que $a \in S$.

Agora que já temos todas as definições necessárias para iniciar a construção, vamos começar.

Definição 1.17. Seja A um anel e S um conjunto multiplicativo de A. Vamos definir uma relação em $A \times S$ como

$$(a,s) \equiv (b,t) \Leftrightarrow (at - sb)u = 0$$

para algum $u \in S$.

Esta relação, é uma relação de equivalência.

Proof. Vamos mostrar que é uma relação reflexiva, simétrica e transitiva.

Reflexiva $(a, s) \equiv (a, s)$, de fato, pois as = sa, já que estamos trabalhando com um anel comutativo, portanto as - sa = 0 e assim $(as - sa)a_s = 0$.

Simétrica Temos que $(a,s) \equiv (b,t)$ nos leva a (at-sb)u = 0. Note que podemos somar o inverso aditivo do elemento (at-sb)u em ambos lados da igualdade que nos leva a

$$(at - sb)u - ((at - sb)u) = -(at - sb)u$$
$$0 = -(at - sb)u$$
$$0 = (-at + sb)u$$

Como o anel A é comutativo

$$0 = (sb - at)u$$

Usando a comutatividade novamente para reorganizar os produtos

$$0 = (bs - ta)u$$

que é equivalente a

$$(b,t) \equiv (a,s)$$

Transitividade Seja $(a, s) \equiv (b, t)$ e $(b, t) \equiv (c, r)$, devemos chegar em $(a, s) \equiv (c, r)$.

De $(a, s) \equiv (b, t)$ temos $(at - sb)u_1 = 0$ para algum $u_1 \in S$.

De $(b,t) \equiv (c,r)$ temos $(br-tc)u_2 = 0$ para algum $u_2 \in S$.

Multiplicando a primeira equação por ru_2 e a segunda por su_1 chegamos a

$$ru_2(at - sb)u_1 = 0$$

$$su_1(br - tc)u_2 = 0$$

Utilizando a comutatividade para agrupar os termos em u.

$$r(at - sb)u_1u_2 = 0$$
$$s(br - tc)u_1u_2 = 0$$

Aplicando a propriedade distributiva

$$(rat - rsb)u_1u_2 = 0$$
$$(sbr - stc)u_1u_2 = 0$$

Novamente utilizando a comutatividade para ajustar os termos

$$(art - sbr)u_1u_2 = 0(*)$$
$$(sbr - sct)u_1u_2 = 0(**)$$

Em (**) temos que ao aplicar a distributiva

$$sbru_1u_2 = sctu_1u_2$$

Mas note que temos em (*) ao aplicar a distributiva

$$artu_1u_2 = sbru_1u_2(*)$$

Então temos que

$$artu_1u_2 = sctu_1u_2$$

$$artu_1u_2 - sctu_1u_2 =$$

$$(art - sct)u_1u_2$$

$$(ar - sc)tu_1u_2$$

Mas como $t, u_1, u_2 \in S$ e S é um conjunto fechado para a multiplicação, logo $tu_1u_2 \in S$ e portanto $(a, s) \equiv (c, r)$.

Portanto, a relação definida em $A \times S$ é de equivalência.

Notação 1.18. Denotamos por $S^{-1}A$ o conjunto das classes de equivalência. Denotamos por $\frac{a}{s}$ a classe de equivalência de (a, s).

 $Vamos\ agora\ definir\ as\ operações\ de\ soma\ e\ multiplicação\ em\ S^{-1}A.$

Definição 1.19. A soma em $S^{-1}A$ é definida por (a,s)+(b,t)=(at+sb,st)

Definição 1.20. A multiplicação em $S^{-1}A$ é definida por (a, s)*(b, t) = (ab, st)

Vamos verificar se as operações estão bem definidas, ou seja, se as operações acima não dependem do representante da classe.

Proposição 1.21. As operações de soma e multiplicação em $S^{-1}A$ não dependem dos representantes da classe.

Proof. Seja (a,s)=(a',s'), vamos fazer as operações com esses dois representantes e ver que a operação não depende da escolha. Sabemos que (as'-sa')u=0 para algum u.

Soma Vamos tomar as somas de (a, s) e (a', s') com (b, t).

$$(a,s) + (b,t) = (at + sb, st)$$

$$(a', s') + (b, t) = (a't + s'b, s't)$$

Quero mostrar que (a, s) + (b, t) = (a', s') + (b, t), para isso vamos fazer

$$(at + sb, st) = (a't + s'b, s't)$$

$$(at + sb)s't - st(a't + s'b)$$

$$ats't + sbs't - sta't - sts'b$$

Usando a comutatividade

$$atts' + bsts' - stta' - bsts' = atts' - stta' = (as' - sa')tt$$

Multiplicando por u

$$(as'-sa')ttu$$

Mas como

$$(as' - sa')u = 0$$

Logo

$$(as' - sa')ttu = 0$$

Portanto

$$(a,s) + (b,t) = (a',s') + (b,t)$$

Produto Vamos tomar os produtos de (a,s) e (a',s') com (b,t).

$$(a,s)*(b,t) = (ab,st)$$

$$(a', s') * (b, t) = (a'b, s't)$$

Quero mostrar que

$$(ab,st)=(a^{\prime}b,s^{\prime}t)$$

Então tome

$$abs't - sta'b$$

Utilizando a comutatividade para reorganizar

$$as'bt - sa'bt$$

Colocando em evidência

$$(as' - sa')bt$$

Multiplicando por u temos

$$(as' - sa')ubt$$

Mas sabemos que

$$(as' - sa')u = 0$$

Portanto

$$(as' - sa')ubt = 0$$

Logo

$$(ab, st) = (a'b, s't)$$

 $S^{-1}A$ com a soma e a multiplicação definidas acima é um anel.

Agora vamos ver alguns exemplos de anéis que podemos fazer essa construção. Mas antes vamos o que é um domínio de integridade, que é um tipo especial de anel.

Definição 1.22. Um domínio de integridade (ou simplesmente domínio) é um anel comutativo unitário A tal que se $a, b \in A$ e $a \cdot b = 0$ então a = 0 ou b = 0.

Exemplo 1.23. O caso quando A é um domínio de integridade é um caso particular do anel de frações, isso acontece pois $S = A - \{0\}$ é um conjunto multiplicativo.

Para provar o exemplo acima, basta provar a seguinte proposição.

Proposição 1.24. Seja A um domínio de integridade, então o conjunto $C = A - \{0\}$ é um conjunto multiplicativo.

Proof. Como $1 \in A$, logo $1 \in C$. Temos também que para xy com $x, y \in C$ $xy \neq 0$, pois A é um domínio de integridade e x e y não podem ser nulos. Portanto C é fechado na multiplicação, logo é um conjunto multiplicativo.

Exemplo 1.25. Tomando como nosso anel os inteiros (\mathbb{Z}) e o nosso conjunto multiplicativo como $S = \mathbb{Z} - 0$, teremos $\frac{a}{b}$, onde $a \in \mathbb{Z}$ e $b \in S$, ou seja, b deve ser inteiro não nulo e isso é exatamente a definição dos números racionais, que sabemos que é um corpo.

Exemplo 1.26. Podemos tomar como $A = \mathbb{Z}$ e S sendo as potências de 2, ou seja, $S = \{2^n\}$ com $n \geq 0$, dessa forma $S^{-1}A = \{\frac{a}{b} \text{ tal que } a \in A \text{ e } b = 2^n\}$ com $n \geq 0$.

Exemplo 1.27. Temos que $S^{-1}A$ será o anel zero se tivemos que $0 \in S$. De fato, pois se $0 \in S$ podemos tomar u da relação de equivalência como 0, dessa forma (ad - bc)0 = 0 para todo $\frac{a}{b}$ e $\frac{c}{d}$, dessa forma todos os elementos são equivalentes entre si, em particular serão equivalente ao elemento $\frac{0}{0}$, ou seja, $S^{-1}A$ pode ser representado por um único elemento, o $\frac{0}{0}$

Observação 1.28. Um importante homomorfismo é f(a) = (a, 1) para $f: A \rightarrow s^{-1}A$. Mas vamos definir esse homomorfismo para um anel A sem unidade, então queremos algo como f(a) = (as, s) onde $s \in S$ com $s \neq 0$. Na referência [1] temos o resultado para um anel com unidade.

Definição 1.29. Seja A um anel associativo, comutativo mas não necessariamente com unidade e S um conjunto multiplicativo não vazio, então definimos o seguinte homomorfismo $f: A \to S^{-1}A$ como f(a) = (as, s) onde $s \in S$ com $s \neq 0$.

Proposição 1.30. $f: A \to S^{-1}A$ como f(a) = (as, s) onde $s \in S$ com $s \neq 0$ é um homomorfismo.

Proof. Soma Queremos mostrar que f(a + b) = f(a) + f(b)

$$f(a + b) = ((a + b)s, s) = (as + bs, s)$$

$$f(a) + f(b) = (as, s) + (bs, s) = (ass + bss, ss)$$

Como estamos trabalhando com classes de equivalência, devo mostrar que as classes (as+bs,s) e (ass+bss,ss) são equivalentes. Note que

$$(as + bs, s) = (ass + bss, ss)$$

Se e somente se

$$[(as+bs)ss-(ass+bss)s]u$$
 para algum $u \in S$

Mas note que

$$[(as+bs)ss - (ass+bss)s] = asss+bsss-asss-bsss = 0$$

Portanto, podemos escolher qualquer $u \in S$, em particular vamos tomar s

$$[(as+bs)ss - (ass+bss)s]s = 0$$

Portanto

$$(as + bs, s) = (ass + bss, ss)$$

Produto Queremos mostrar que f(ab) = f(a)f(b)

$$f(ab) = ((ab)s, s) = (abs, s)$$

$$f(a)f(b) = (as, s)(bs, s) = (asbs, ss)$$

Aplicando uma estratégia semelhante ao que fizemos para a soma, queremos mostrar que (abs, s) = (asbs, ss). Para isto ocorrer, devemos ter

$$(absss - asbss)u$$
 para algum $u \in S$

Mas note que pela comutatividade temos que

$$absss - asbss = absss - absss = 0$$

Logo podemos tomar u = s e assim (abs, s) = (asbs, ss). Portanto f é um homomorfismo.

Proposição 1.31. Seja $f: A \to S^{-1}A$ como f(a) = (as, s) onde $s \in S$ com $s \neq 0$ um homomorfismo de anéis. f é um homomorfismo injetor se e somente se S não possui divisores de zero e $0 \notin S$.

Proof. \Leftarrow Temos que f é injetora se f(a) = f(b) então a = b.

$$f(a) = f(b) = (as, s) = (bs, s)$$

Logo temos que

$$(ass - sbs)u = 0$$
 para algum $u \in S$

Utilizando a comutatividade de A e colocando s em evidência temos que

$$(a-b)ssu = 0$$
 para algum $u \in S$

Note que como S não possui divisores de zero e nem o elemento nulo, logo $ssu\neq 0$ e assim (a-b)=0 logo (a=b), portanto f é injetora. \Box

Proposição 1.32. Seja $g: A \to B$ um homomorfismo de anéis tal que g(s) é invertível em B para todo $s \in S$. Então existe um único homomorfismo de anel $h: S^{-1}A \to B$ tal que $g = h \circ f$

Proof. Vamos definir $h(a,s) = g(a)g(s)^{-1}$

Primeiro, vamos verificar que h está bem definida, ou seja, não depende do representante da classe escolhido.

$$(a,s) = (b,t)$$

Que significa

$$(at - sb)u = 0$$
 para algum $u \in S$

Mas como sabemos g é um homomorfismo de A para B e todos elementos estão em A, logo podemos aplicar g na igualdade.

$$g((at - sb)u) = g(0)$$

$$g(at - sb)g(u) = 0$$

$$g(at - sb)g(u)g(u)^{-1} = 0g(u)^{-1}$$

$$g(at - sb) = 0$$

$$g(a)g(t) - g(s)g(b) = 0$$

$$g(a)g(t) = g(s)g(b)$$

$$g(s)^{-1}g(a)g(t)g(t)^{-1} = g(s)^{-1}g(s)g(b)g(t)^{-1}$$

$$g(s)^{-1}g(a) = g(b)g(t)^{-1}$$

Como estamos trabalhando com anéis comutativos

$$h(a,s) = g(a)g(s)^{-1} = g(b)g(t)^{-1} = h(b,t)$$

Ou seja, h não depende dos representantes escolhidos. Agora vamos mostrar que h é um homomorfismo.

soma Queremos mostrar que h((a, s) + (b, t)) = h(a, s) + h(b, t) Sabemos que

$$h((a,s) + (b,t)) = h(at + sb, st) = g(at + sb)g(st)^{-1}$$
$$g(at + sb)g(st)^{-1} = [g(a)g(t) + g(s)g(b)][g(s)g(t)]^{-1}$$
$$[g(a)g(t) + g(s)g(b)]g(s)^{-1}g(t)^{-1}$$
$$g(a)g(t)g(s)^{-1}g(t)^{-1} + g(s)g(b)g(s)^{-1}g(t)^{-1}$$

Utilizando a comutatividade do anel B

$$g(a)g(t)g(t)^{-1}g(s)^{-1} + g(b)g(s)g(s)^{-1}g(t)^{-1}$$
$$g(a)g(s)^{-1} + g(b)g(t)^{-1} = h(a,s) + h(b,t)$$

produto Queremos mostrar que h((a, s)(b, t)) = h(a, s)h(b, t) Sabemos que

$$h((a,s)(b,t)) = h(ab,st)$$

$$h(ab,st) = g(ab)g(st)^{-1}$$

$$g(ab)g(st)^{-1} = g(ab)[g(st)]^{-1}$$

$$g(a)g(b)g(s)^{-1}g(t)^{-1}$$

Como o anel B é comutativo, temos que

$$g(a)g(s)^{-1}g(b)g(t)^{-1} = h(a,s)h(b,t)$$

Portanto, temos que h é homomorfismo.

Agora, basta mostrar que $g = h \circ f$.

Temos que

$$h \circ f = h(f(a)) = h(as, s)$$
$$h(as, s) = g(as)g(s)^{-1} = g(a)g(s)g(s)^{-1} = g(a)$$

Portanto a composição se verifica.

2 Módulo

Definição 2.1. Seja A um anel associativo, comutativo e não necessariamente com unidade. Chamamos um conjunto M não vazio de A-Modulo á esquerda se M é um grupo abeliano com uma operação que vamos denotar por + e se está definida uma lei de composição externa que a cada par $(\alpha,m) \in A \times M$ associa a um elemento $\alpha m \in M$ e tal que para todos $\alpha_1, \alpha_2 \in A$ e $m_1, m_2 \in M$, verifica que:

- 1. $\alpha_1(\alpha_2 m_1) = (\alpha_1 \alpha_2) m_1$
- 2. $\alpha_1(m_1 + m_2) = \alpha_1 m_1 + \alpha_1 m_2$
- 3. $(\alpha_1 + \alpha_2)m_1 = \alpha_1 m_1 + \alpha_2 m_1$

Observação 2.2. Os módulos podem ser definidos para anéis com unidades, mas para isso precisamos adicionar a condição $1m_1 = m_1$ para $m_1 \in M$. Um módulo com essa propriedade é chamado de módulo unital.

Exemplo 2.3. Todo espaço vetorial sobre um corpo K é um K-Módulo.

Exemplo 2.4. Se tomarmos um ideal I de um anel A, I é um A-Modulo

Exemplo 2.5. Se tomarmos um grupo abeliano g, com a seguinte operação nx = x + x + ... + x onde $n \in \mathbb{Z}$ e $x \in g$, temos que g é um \mathbb{Z} -Modulo.

Definição 2.6. Seja M um A-modulo. Um subconjunto $N \subseteq M$ é dito um A-submódulo de M se:

- 1. N é um subgrupo aditivo de M
- 2. Para todo $\alpha \in A$ e $n \in N$, temos que $an \in N$

Proposição 2.7. Seja M, um A-módulo, então vale as seguintes propriedades:

- 1. 0m = 0 para $todo m \in M$
- 2. (-a)m = a(-m) = -(am) para todo $a \in A$ e $m \in M$

Proof. 1. 0m = 0, de fato, pois $0m_1 = (0+0)m_1 = 0m_1 + 0m_1$ adicionando $-0m_1$ em ambos lados ficamos com $0m_1 = 0$

2. (-a)m = a(-m) = -(am) para $m \in M$ e $a \in A$, de fato, pois (-a)m = (-a)m + am - (am) = (-a + a)m - (am) = -(am) e de forma análoga a(-m) = a(-m) + am - (am) = a(-m + m) - (am) = -(am)

Proposição 2.8. Um subconjunto n não vazio de m é um submódulo se e somente se

- 1. Para todo $n_1, n_2 \in n$ temos que $n_1 + n_2 \in n$
- 2. Para todo $a \in A$ e $n \in N$ temos que $an \in N$

Proof. Para a ida, temos que se N é um submódulo, então n é um subgrupo aditivo de M, logo para $n_1, n_2 \in n$ temos que $n_1 + n_2$. A segunda condição da proposição é exatamente igual a segunda condição de submódulo. Para a volta, temos que $n_1, n_2 \in n$ temos que $n_1 + n_2 \in n$, isto é, n é fechado na soma. Sabemos pelo segundo item que a multiplicação de um elemento do subconjunto com um elemento do anel deve estar no subconjunto, em particular $0n_1 = 0 \in n$ (pelo item i da proposição anterior), então o elemento neutro está em n. Finalmente, sabemos que para todo n_1 implica em $-n_1 \in n$, pois $(-1)(n_1) = -n_1$, então $-n_1 \in n$ (pelo item ii da proposição anterior). Logo n é subgrupo aditivo. E a segunda condição é idêntica.

Definição 2.9. Sejam M e N dois A-Módulos. Uma função $f: M \to N$ diz-se um homomorfismo de A-módulos se para todo $m_1, m_2 \in M$ e todo $a \in A$

1.
$$f(m_1 + m_2) = f(m_1) + f(m_2)$$

2.
$$f(am_1) = af(m_1)$$

Definição 2.10. Sejam F,G,H três A-módulos e $f:F\to G, g:G\to H$ A-morfismos. Diz-se que o diagrama:

$$F \xrightarrow{f} G \xrightarrow{g} H$$

é uma sequência de ordem 2 em G se im(f)subsetker(g). Em particular, se im(f) = ker(g) o diagrama diz-se uma sequência exata em G.

Proposição 2.11. Seja $f: F \to G$ e $g: G \to H$ A-morfismos então $im(f) \subset ker(g)$ se e somente se $g \circ f = 0$

Proof. \Rightarrow Temos que se $im(f) \subset ker(g)$, então g(f(a)) = 0 para todo $a \in F$, mas $g(f(a)) = g \circ f(a) = 0$

$$\Leftarrow g \circ f = 0$$
, então $f(a) \in ker(g)$ para todo $a \in F$, logo $im(f) \subset ker(g)$. \square

2.1 Localização em módulos

Para fazer localização em módulos sobre anéis comutativos vamos seguir um caminho parecido.

Definição 2.12. Seja A um anel associativo e comutativo, S um conjunto multiplicativo de A e M é um módulo sobre A. Vamos definir uma relação em $M \times S$ como

$$(m_1, s_1) \equiv (m_2, s_2) \Leftrightarrow s(s_1 m_2 - s_2 m_1) = 0$$

para algum $s \in S$.

Proposição 2.13. A relação definida anteriormente é uma relação de equivalência em $M \times S$.

Proof. Vamos mostrar que é um relação reflexiva, simétrica e transitiva

Reflexiva $(m_1, s_1) \equiv (m_1, s_1)$, temos que $s_1 m_1 - s_1 m_1 = 0$, logo s pode ser qualquer elemento de S.

Simétrica Temos que $(m_1, s_1) \equiv (m_2, s_2)$ nos leva a $t(s_1m_2 - s_2m_1) = 0$ onde $s_im_j \in M$, como M é um grupo abeliano com a soma, temos que podemos os termos de lugar e pela propriedade que vimos na proposição anterior -s(m) = s(-m), logo ao somar os opostos temos

$$-t(s_1m_2 - s_2m_1) + t(s_1m_2 - s_2m_1) = -t(s_1m_2 - s_2m_1)$$

$$t(-s_1m_2 + s_2m_1) = t(s_2m_1 - s_1m_2) = 0$$

logo temos que $(m_2, s_2) \equiv (m_1, s_1)$.

Transitividade Seja $(m_1, s_1) \equiv (m_2, s_2)$ e $(m_2, s_2) \equiv (m_3, s_3)$, devemos chegar em $(m_1, s_1) \equiv (m_3, s_3)$. De $(m_1, s_1) \equiv (m_2, s_2)$ temos $t_1(s_1m_2 - s_2m_1) = 0$ para algum $t_1 \in S$.

De $(m_2, s_2) \equiv (m_3, s_3)$ temos $t_2(s_2m_3 - s_3m_2) = 0$ para algum $t_2 \in S$.

Multiplicando a primeira equação por t_2s_3 e a segunda por t_1s_1 chegamos a

$$t_2 t_1 s_3 (s_1 m_2 - s_2 m_1) = 0 \ (*)$$

$$t_1 t_2 s_1 (s_2 m_3 - s_3 m_2) = 0 \ (**)$$

Lembrando que os únicos elementos de M são os m_i , o resto pertence a $S \subseteq A$, que é comutativo, logo podemos trocar a ordem dos elementos.

Somando as equações (*) e (**) e realizando as distributivas temos

$$t_2t_1s_3s_1m_2 - t_2t_1s_3s_2m_1 + t_1t_2s_1s_2m_3 - t_1t_2s_1s_3m_2 = 0$$

Reorganizando os termos com a comutatividade temos

$$t_1t_2s_1s_3m_2 - t_1t_2s_2s_3m_1 + t_1t_2s_1s_2m_3 - t_1t_2s_1s_3m_2 = 0$$

O primeiro e o último termo são idênticos a menos de um sinal, logo ficamos com

$$-t_1t_2s_2s_3m_1 + t_1t_2s_1s_2m_3 = 0$$

Como M é um grupo abeliano, podemos trocar os termos de lugar e usando a distributiva do módulo temos

$$t_1t_2s_2(s_3m_1-s_1m_3)$$

Como S é multiplicativo e $t_1, t_2 \in S$, logo $t_1t_2s_2 \in S$ e portanto $(m_1, s_1) \equiv (m_3, s_3)$.

Portanto, a relação definida em $M \times S$ é de equivalência.

Notação 2.14. Denotamos por $S^{-1}M$ o conjunto das classes de equivalência da relação acima.

Agora vamos mostrar que $S^{-1}M$ é um $S^{-1}A$ -Módulo.

Proposição 2.15. $S^{-1}M$ é um $S^{-1}A$ -Módulo com as operações

$$(m_1, s_1) + (m_2, s_2) = (s_1 m_2 + s_2 m_1, s_1 s_2)$$

e

$$(a_1, s_3) * (m_1, s_1) = (a_1 m_1, s_3 s_1)$$

.

Proof. Devo mostrar que $S^{-1}M$ é um grupo abeliano com a soma e temos a operação de compatibilidade entre $S^{-1}A$ e $S^{-1}M$ bem definida. Mas antes disso precisamos mostrar que a soma está bem definida, ou seja, não depende dos representantes de classe.

1. A operação de soma está bem definida. Seja $(m_1, s_1) = (m_2, s_2)$ e tome (m, s), queremos mostrar que $(m_1, s_1) + (m_s) = (m_2, s_2) + (m, s)$. Temos que $(m_1, s_1) + (m, s) = (s_1m + sm_1, s_1s)$ e $(m_2, s_2) + (m, s) = (s_2m + sm_2, s_2s)$. Da hipótese da igualdade das classes temos que $u(s_1m_2 - s_2m_1) = 0$ para algum $u \in S$. Queremos mostrar que

$$(s_1m + sm_1, s_1s) = (s_2m + sm_2, s_2s)$$

Sabemos que

$$(s_2m + sm_2)s_1s - (s_1m + sm_1)s_2s$$

Mas como estamos trabalhando com comutatividade podemos reorganizar e aplicando a distributiva, temos

$$ss_1s_2m + sss_1m_2 - ss_1s_2m - sss_2m_1 = ss(s_1m_2 - s_2m_1)$$

Podemos multiplicar por u

$$ssu(s_1m2 - s_2m1) = ss0 = 0$$

Portanto
$$(s_1m + sm_1, s_1s) = (s_2m + sm_2, s_2s)$$

2. $S^{-1}M$ é um grupo abeliano com a operação $(m_1, s_1) + (m_2, s_2) = (s_1m_2 + s_2m_1, s_1s_2)$, onde no primeiro termo temos a soma no módulo e no segundo temos o produto do anel.

Comutativa

$$(m_1, s_1) + (m_2, s_2) = (s_1 m_2 + s_2 m_1, s_1 s_2)$$

$$(m_2, s_2) + (m_1, s_1) = (s_2 m_1 + s_1 m_2, s_2 s_1)$$

Como a primeira coordenada é um elemento de M, onde M é um grupo abeliano, logo temos a comutatividade na primeira coordenada e na segunda coordenada temos elementos de um anel comutativo, logo a segunda coordenada também comuta e portanto as duas equações são iguais.

Associativa

$$((m_1, s_1) + (m_2, s_2)) + (m_3, s_3) = (s_1 m_2 + s_2 m_1, s_1 s_2) + (m_3, s_3)$$
$$(s_3(s_1 m_2 + s_2 m_1) + s_1 s_2 m_3, s_1 s_2 s_3) = (s_3 s_1 m_2 + s_3 s_2 m_1 + s_1 s_2 m_3, s_1 s_2 s_3)$$

Agora desenvolvendo por outra ordem

$$(m_1, s_1) + ((m_2, s_2) + (m_3, s_3)) = (m_1, s_1) + (s_3 m_2 + s_2 m_3, s_3 s_2)$$
$$= (s_1(s_3 m_2 + s_2 m_3) + s_3 s_2 m_1, s_1 s_3 s_2) = (s_1 s_3 m_2 + s_1 s_2 m_3 + s_3 a_2 m_1, s_1 s_3 s_2)$$

Pela comutatividade de cada coordenada temos que as duas equações são iguais.

Elemento neutro (0, s), temos que $(m_1, s_1) + (0, s) = (s_10 + m_1s, s_1s) = (m_1s, s_1s)$ Mas note que $(m_1s, s_1s) = (m_1, s_1)$, ou seja, são classes equivalentes. De fato, pois

$$m_1 s s_1 - m_1 s_1 s = 0$$

Pela comutatividade, logo podemos tomar qualquer $u \in S$ de tal forma que $u(m_1ss_1-m_1s_1s)=0$

Portanto, $(m_1, s_1) + (0, s) = (m_1 s, s_1 s) = (m_1, s_1).$

Elemento inverso Para (m_1, s_1) o elemento neutro seria $(-m_1, s_1)$ $(m_1, s_1) + (-m_1, s_1)$ tem que ser igual a alguém da classe de (0, s).

$$(m_1, s_1) + (-m_1, s_1) = (s_1 m_1 - s_1 m_1, s_1 s_1) = (0, s_1 s_1)$$

Então temos que mostrar que $(0, s_1s_1)$ é da mesma classe que (0, s). $(0, s_1s_1) = (0, s)$ se e somente se existe $u \in S$ tal que $u(0s - 0s_1s_2) = 0$, mas como $(0s - 0s_1s_2) = 0$, logo u pode ser qualquer elemento de S, portanto $(m_1, s_1) + (-m_1, s_1) = (0, s_1s_1) = (0, s)$

Logo $S^{-1}M$ é um grupo abeliano.

3. Operação compatibilidade entre $S^{-1}A$ e $S^{-1}M$ $(a_1, s_3)*(m_1, s_1) = (a_1m_1, s_3s_1)$, onde $a_1 \in A, m_1 \in M$ e $s_1, s_3 \in S$.

Como $a_1m_1 \in M$, por M ser um A-modulo. Como $s_3 \in S \subseteq A$, logo $s_3s_1 \in A$, portanto está bem definida a operação.

Proposição 2.16. Seja $u: M \to N$ um A-homomorfismo. Então nós temos que $S^{-1}A$ -modulo homomorfismo $S^{-1}u: S^{-1}M \to S^{-1}N$ que toma (m,s) para (u(m),s).

Proof. Para mostrar que $S^{-1}u$ é um homomorfismo, devemos mostrar que

- 1. $S^{-1}u(m,s) + S^{-1}u(n,t) = S^{-1}u((m,s) + (n,t))$ $S^{-1}u(m,s) + S^{-1}u(n,t) = (u(m),s) + (u(n),t) = (tu(m) + su(n),st) = (u(tm)+u(sn),st) = (u(tm+sn),st) = S^{-1}u(tm+sn,st) = S^{-1}u((m,s)+(n,t))$
- 2. $S^{-1}u((a,r)*(m,s)) = (a,r)*S^{-1}u(m,s)$, onde $(a,r) \in S^{-1}A$ $S^{-1}u((a,r)*(m,s)) = S^{-1}u(am,rs) = (u(am),rs) = (au(m),rs) = (a,r)*(u(m),s) = (a,r)*S^{-1}u((m,s))$

Proposição 2.17. A operação S^{-1} é exata, isto é, se $M' \xrightarrow{f} M \xrightarrow{g} M''$ é exata em M, então $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ é exata em $S^{-1}M$.

Proof. Sabemos que a sequência $M' \xrightarrow{f} M \xrightarrow{g} M''$ é exata, portanto temos que ker(q) = im(f), ou seja, todo mundo na imagem de f pertence ao núcleo de g, assim temos que g(f(x)) = 0 para todo x, portanto $g \circ f = 0$.

Lembrando que se tivermos o homomorfismo $f: A \to B$, então o homomorfismo $S^{-1}f:S^{-1}A\to S^{-1}B$ é dado por $S^{-1}f(a,s)=(f(a),s)$. Para mostrar que a sequência $S^{-1}M'\xrightarrow{S^{-1}f}S^{-1}M\xrightarrow{S^{-1}g}S^{-1}M''$ é exata,

devemos mostrar que $ker(S^{-1}g) = im(S^{-1}f)$.

Primeiro vamos mostrar que $im(S^{-1}f) \subset ker(S^{-1}g)$.

Tome (a, s) na imagem de $S^{-1}f$ Temos que $S^{-1}g \circ S^{-1}f(a, s) = S^{-1}g(f(a), s) =$ (g(f(a)), s), mas como a sequência é exata, logo g(f(x)) = 0 e portanto (g(f(x)), s) = 0(0, s).

Agora vamos mostrar que

Itens a resolver nesse texto

- 1. Arrumar a demonstração da proposição 2.17
- 2. Mostrar que a função da proposição 2.16 está bem definida(classes de equivalência)
- 3. Arrumar a demonstração da proposição 2.15, para 4 termos e não 3
- 4. Proposição 1.25
- 5. Proposição 1.15

References

- [1] Atiyah M. F.; MacDonald M. G., Introduction to Commutative Algebra . Addison-wesley publishing company, 1969.
- [2] Fraleigh, J. B., A first course in abstract algebra. Person , 2003.
- [3] Herstein I. N., Topics in algebra. University of Chicago, 1975.