باسمه تعالى

نام و نام خانوادگی: پیام دلگشا شماره دانشجویی: ۸۶۱۰۳۶۷۳ رشته: مهندسی برق گروه: ۲۹ زیر گروه: A تاریخ انجام آزمایش: ۲۱ آذر ۱۳۸۶ ساعت: ۸ صبح دستیار آموزشی: خانم علیپور

آزمایش شماره: ۹

عنوان آزمایش: اندازه گیری لختی دورانی

هدف: اندازه گیری لختی دورانی

وسایل مورد نیاز: ۱- چرخ متصل به بلبرینگ و پایه ۲ - اجسام با لختی دورانی مختلف شامل میله، دیسک، کره و پوسته ی کروی و استوانه ی توپر و پوسته ای Υ - دستگاه ثبت کننده ی زمان (شمارنده) Υ - کفه Λ - وزنه Λ - متر Λ - ترازو Λ - مقداری نخ محکم Λ - حسگر نوری

نظريه

در این آزمایش نوع خاصی از حرکت دورانی را بررسی می کنیم که محور دوران خود حرکت نمی کند و جسم دوران کننده، یک جسم صلب است. در این حالت می توان برای سادگی کار از مختصات قطبی استفاده کرد که در آن به جای مولفه های x و y برای توصیف مکان یک ذره، از x (فاصله ی ذره تا محور دوران) و y (زاویه ای که جسم با محور می سازد) کمک می گیرند.

در این مختصات سرعت و شتاب و دیگر کمیت های فیزیکی معادلهایی پیدا می کنند که در زیر آورده شده است:

مختصات دکارتی	مختصات قطبى
(x,y)	(r,θ)
Δx	Δθ
V	$\omega = \frac{d\theta}{dt}$
a	$\alpha = \frac{d\omega}{dt}$
M	I (لختی دورانی) ۲ (گشتاور)
F	τ (گشتاور)

همان طور که در جدول دیده می شود، معادل جرم (لختی انتقالی) لختی دورانی تعریف می شود. لختی دورانی یک ذره با جرم mr^2 تعریف می شود. بنابراین برای یک جسم گسترده با جرم mr^2 تعریف می شود. بنابراین برای یک جسم گسترده که از بیشمار ذره تشکیل شده است، می توان لختی دورانی را به صورت مجموع لختی دورانی ذرات یا $\int r^2 dm$ در نظر گرفت.

اگر لختی دورانی جسمی به جرم M حول محوری که از مرکز جرم آن می گذرد I باشد، لختی دورانی آن حول محوری موازی با آن و به فاصله ی h از آن برابر $I+Mh^2$ خواهد بود:

در ادامه لختی دورانی چند جسم خاص آورده شده است:

میله (یا دیسک) صلب حول محور اصلی $I=rac{1}{2}Mr^2$

کره تو پر $I = \frac{2}{5}MR^2$

میله (یا دیسک) صلب حول قطر مرکزی $I = \frac{1}{4}Mr^2 + \frac{1}{12}Ml^2$

سیلندر حول محور مرکزی $I = \frac{1}{2}M(R_1^2 + R_2^2)$

کره تو خالی (پوسته ی کروی) $I = \frac{2}{3}MR^2$

مراحل انجام آزمایش

الف) اندازه گیری لختی دورانی

اجسام مختلفی را که می خواهیم لختی دورانی آنها را اندازه بگیریم، روی بلبرینگ قرار می دهیم و نخی را به بلبرینگ وصل می کنیم و سر دیگر نخ را به وزنه ای می بندیم که بین دو حسگر سقوط می کند، به طوری که لحظه ی قبل از سقوط، بلافاصله قبل از حسگر اول قرار داشته باشد. در این حالت زمان سقوط وزنه، فاصله ی بین دو حسگر و جرم وزنه ها را اندازه می گیریم. می دانیم لختی دورانی جسمی که دوران می کند، از رابطه ی زیر بدست می آید:

$$I = mr^2(\frac{gt^2}{2l} - 1)$$

مشخصات ظاهری جسمی که لختی آن را اندازه می گیریم را نیز یادداشت می کنیم تا بتوانیم از روی آن لختی را بنابر فرمولهایی که در بخش نظریه گفته شد، اندازه گیری نماییم.

ب) بررسی قضیه ی محورهای موازی

دیسک پلکسی را ابتدا از مرکز و سپس از فاصله ی ۳، ۶ و ۹ سانتیمتری از مرکز جرم دیسک دوران می دهیم و سپس با روشی مشابه روش قسمت الف، لختی دورانی را اندازه می گیریم تا قضیه ی محورهای موازی که در بخش نظریه توضیح داده شد، بررسی نماییم.

جدول ها

جدول ۱ - اندازه گیری لختی دورانی میله ی فلزی

	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
ردیف	(سانتيمتر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.5	5.539	149.7
2	70	5.639	149.7
3	70.5	5.492	149.7

جرم میله ی فلزی: 308.8 گرم قطر میله ی فلزی: 1.06 سانتیمتر طول میله ی فلزی: 51 سانتیمتر

جدول ۲ - اندازه گیری لختی دورانی پوسته ی کروی

ردیف	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
رديف	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.4	3.282	149.9
2	70.4	3.314	149.8
3	70.5	3.272	149.9

جرم پوسته ی کروی: 607.7 گرم شعاع پوسته ی کروی: 10.0 سانتیمتر

جدول ۳ - اندازه گیری لختی دورانی کره

ردیف	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
ردیت	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.5	4.177	149.8
2	70.4	4.813	149.9
3	70.5	4.69	149.8

جرم كره: 1735.5 گرم شعاع كره: 7.6 سانتيمتر

جدول ۴ - الف اندازه گیری لختی دورانی مجموعه ی پوسته ی استوانه ای و دیسک

ردیف	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
رديت	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.4	3.388	149.8
2	70.4	3.337	149.7
3	70.5	3.352	149.8

جرم پوسته ی استوانه ای: 782.2 گرم قطر متوسط پوسته ی استوانه ای: 11.5 سانتیمتر طول پوسته ی استوانه ای: 10.9 سانتیمتر

جدول ۴ - ب اندازه گیری لختی دورانی دیسک

	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
ردیف	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.6	1.535	169.8
2	70.6	1.71	169.7
3	70.5	1.475	169.8

جرم دیسک: 190.1 گرم

شعاع دیسک: 7.2 سانتیمتر

ضخامت دیسک: 1.9 سانتیمتر

جدول ۵ - الف اندازه گیری لختی دورانی مجموعه ی استوانه و دیسک

ردیف	فاصله ی دو حسگر (سانتیمر)	زمان عبور کفه و وزنه ها بین دو حسگر (ثانیه)	جرم کفه و وزنه های روی آن (گرم)
1	70.5	4.168	149.8
2	70.5	4.063	149.8
3	70.6	4.058	149.7

جرم استوانه: 1645.8 گرم

شعاع استوانه: 6.5 سانتيمتر

طول استوانه: 11.9 سانتيمتر

جدول ۵ - ب اندازه گیری لختی دورانی دیسک

فیی	فاصله ی دو حسگر (سانتیمر)	زمان عبور کفه و وزنه ها بین دو حسگر (ثانیه)	جرم کفه و وزنه های روی آن (گرم)
1	70.5	1.545	149.8
2	70.5	1.51	149.8
3	70.6	1.504	149.9

جرم دیسک: 145.1 گرم

شعاع دیسک: 7 سامتیمتر

ضخامت دیسک: 2.9 سانتیمتر

جدول 9 - قضیه ی محورهای موازی با دیسک پلکسی برای فاصله ی $^{\circ}$ سامتیمتر

: .	فاصله ی دو حسگر	زمان عبور کفه و وزنه	جرم کفه و وزنه های
رديف	(سانتيمر)	ها بین دو حسگر (ثانیه)	روی آن (گرم)
1	71	4.407	149.7
2	71	4.439	149.7
3	71.1	4.419	149.8

جرم دیسک: 557.9 گرم

قطر دیسک: 25.1 سانتیمتر

ضخامت دیسک: 0.9 سانتیمتر

جدول ۷ - قضیه ی محورهای موازی با دیسک پلکسی برای فاصله ی ۳ سانتیمتر

ردیف	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
رديف	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	71	4.825	149.7
2	71.1	4.591	149.8
3	70.9	4.91	149.7

جدول ۸ - قضیه ی محورهای موازی با دیسک پلکسی برای فاصله ی 9 سانتیمتر

ردیف	فاصله ی دو حسگر (سانتیمر)	زمان عبور کفه و وزنه ها بین دو حسگر (ثانیه)	جرم کفه و وزنه های روی آن (گرم)
1	70.9	5.482	149.7
2	70.9	5.46	149.8
3	70.8	5.586	149.7

جدول ۹ - قضیه ی محورهای موازی با دیسک پلکسی برای فاصله ی ۹ سانتیمتر

	فاصله ی دو حسگر	زمان عبور کفه و وزنه ها	جرم کفه و وزنه های
رديف	(سانتيمر)	بین دو حسگر (ثانیه)	روی آن (گرم)
1	70.9	7.945	149.9
2	71	7.755	149.8
3	70.9	7.826	149.9

خواسته ها

خواسته ی ۱

 $I=mr^2(rac{9.78t^2}{2l}-1)$ همان طور که در قسمت مراحل انجام آزمایش مشاهده کردیم، لختی دورانی از رابطه ی m راحل انجام آزمایش مشاهده کردیم، لختی دورانه از بین دو حسگر، m فاصله ی بین دو حسگر و m بدست می آید که در آن m جرم کفه و وزنه های متصل به آن، m زمان عبور وزنه از بین دو حسگر، m فاصله ی بین دو حسگر و m شعاع بلبرینگ است که m که m در نظر گرفته می شود.

با توجه به فرمولهایی که در قسمت نظریه مطرح شد، می توان لختی دورانی این اجسام را با توجه به مشخصات آنها که اندازه گیری شده و (ستاع و) محاسبه کرد. در جداول زیر این مقادیر (مقادیر اندازه گیری شده و محاسبه شده و درصد خطای نسبی) برای جداول ۱ تا ۵ آورده شده است: (همه ی لختی های دورانی بر حسب (هستند.)

جدول ۱۰ - لختی دورانی مربوط به جدول ۱

ردیف	لختى	درصد خطای نسبی		
1	0.020	196.0		
2	0.021	209.0		
3	0.019	191.0		
میانگین	0.020	198.6		

 $0.0066 \; kg.m^2$ لختى دورانى محاسبه شده:

جدول ۱۱ - لختی دورانی مربوط به جدول ۲

ردیف	لختي	درصد خطای نسبی
1	0.0069	69.7
2	0.0070	72.9
3	0.0069	68.4
میانگین	0.0069	70.3

 $0.004 \; kg.m^2$ لختى دورانى محاسبه شده:

جدول ۱۲ - لختی دورانی مربوط به جدول ۳

	,, ,, .	,, ,
ردیف	لختى	درصد خطای نسبی
1	0.011	180.2
2	0.015	273.6
3	0.014	253.9
میانگین	0.013	235.9

 $0.004 \; kg.m^2$ لختی دورانی محاسبه شده:

جدول ۱۳ - لختی دورانی مربوط به جدول ۴ (الف و ب)

رديف	لختی مجموع پوسته و کفه	لختی دیسک	لختى پوسته	درصد خطای نسبی (لختی استوانه)
1	0.0074	0.0016	0.0057	138.6
2	0.0071	0.0020	0.0051	111.9
3	0.0072	0.0015	0.0057	137.1
میانگین	0.0072	0.0017	0.0055	129.2

 $0.0024\,kg.m^2$ استوانه: پوسته ی استوانه: محاسبه شده برای پوسته ی استوانی محاسبه شده برای دیسک: $0.0004\,kg.m^2$

جدول ۱۴ - لختی دورانی مربوط به جدول ۵

ردیف	لختی مجموع دیسک و استوانه	لختی دیسک	لختى استوانه	خطای نسبی
1	0.011	0.001	0.010	179.9
2	0.011	0.001	0.009	165.8
3	0.011	0.001	0.009	164.7
میانگین	0.011	0.001	0.009	170.1

 $0.0035 \, kg.m^2$ لختی دورانی محاسبه شده برای استوانه: محاسبه شده برای دیسک: $0.0004 \, kg.m^2$

علل خطا در زیر شرح داده شده است:

- علت اصلی خطا وجود اصطکاک و گشتاور ناشی از آن است که در محاسبات ما وارد نشده است.
 - جرم داشتن نخ
 - لغزیدن اندک نخ بر روی قرقره و جرم داشتن قرقره
 - متقارن نبودن اشكال (مثلا كره كاملا كره نيست)
 - رها نكردن وزنه دقيقا پيش از حسگر (كه البته فاصله ى آنها بسيار كم است)
 - خطای وسایل آزمایش در اندازه گیری طول و زمان
 - لغزیدن اندک میله در جایگاه خود یا افقی نبودن کامل سطح دوران (لق بودن محور)

خواسته ی ۲

محاسبه ی لختی دورانی از راه آزمایش مانند قسمت قبل است، برای محاسبه ی لختی دورانی از نظر تئوری هم می توان از قضیه ی محورهای موازی که در بخش نظری توضیح داده شد، استفاده کرد. نتایج محاسبات در زیر آورده شده است: (همه ی لختی ها بر حسب $kg.m^2$ هستند.)

جدول ۱۵ - لختی دورانی مربوط به جدول ۶

ردیف	لختی دورانی	درصد خطای نسبی
1	0.012	182.7
2	0.013	186.9
3	0.012	184.1
میانگین	0.013	184.6

 $0.0044 \; kg.m^2$ مقدار محاسبه شده:

جدول ۱۶ - لختی دورانی مربوط به جدول ۷

ردیف	لختى دورانى	درصد خطای نسبی
1	0.015	204.5
2	0.013	175.3
3	0.015	215.9
میانگین	0.015	198.6

 $0.0049 \; kg.m^2$ مقدار محاسبه شده:

جدول ۱۷ - لختی دورانی مربوط به جدول ۸

ردیف	لختی دورانی	درصد خطای نسبی
1	0.019	201.5
2	0.019	199.2
3	0.020	213.5
میانگین	0.020	204.7

 $0.0064 \; kg.m^2$ مقدار محاسبه شده:

جدول ۱۸ - لختی دورانی مربوط به جدول ۹

ردیف	لختی دورانی	درصد خطای نسبی
1	0.041	356.6
2	0.039	334.1
3 0.039		343.0
	0.040	344.6

 $0.0089 \; kg.m^2$ مقدار محاسبه شده:

خواسته ی ۳

با فرض وجود اصطكاك روابط مربوط را مي نويسيم:

محاسبه ی لختی دورانی در حالت وجود اصطکاک

روابط نیرو و گشتاور:

$$Mg - T = Ma$$

$$Tr - \tau_f = I \frac{a}{r}$$

که می خواهیم از این رابطه لختی I را محاسبه کنیم، پس از رابطه ی اول T را جاگذاری می کنیم:

$$M(g-a) - F_s r = I \frac{a}{r}$$

$$\Rightarrow I = \frac{M(g-a)r^2 - F_s r^2}{a} = Mr^2 (\frac{g}{a} - 1) - F_s \frac{r^2 l}{2t^2}$$

همان طور که دیده می شود، چون ما نیروی اصطکاک را در نظر نمی گیریم، مقداری که به دست می آوریم، با مقدار واقعی به اندازه ی $\frac{r^2l}{2t^2}$ است، با دور کردن مرکز جرم از مرکز دوران، همان طور که از جداول بر می آید، t کاهش می یابد و چون در فرمول t در مخرج است، ضریب نیروی اصطکاک و در نتیجه تاثیر آن افزایش پیدا می کند و خطای نسبی زیاد می شود، که این موضوع از جداول هم قابل مشاهده است.

خواسته ی ۳

نحوه ی بدست آوردن لختی دورانی در حالتی که نیروی اصطکاک وجود داشته باشد، در خواسته ی قبل (خواسته ی ۲) محاسبه شد و فقط نتیجه در اینجا آورده می شود:

$$I = Mr^2(\frac{g}{a} - 1) - \tau_f \frac{r}{a}$$

و با توجه به روابط سينماتيكي:

$$\frac{1}{2}at^2 = l$$

$$\Rightarrow a = \frac{2l}{t^2}$$

چون t و t را داریم، می توانیم a را بدست آوریم و گشتاور نیروی اصطکاک از رابطه ی زیر بدست می آید:

$$\tau_f = \frac{a}{r} \left(Mr^2 (\frac{g}{a} - 1) - I \right)$$

که در آن رابطه I لختی دورانی محاسبه شده از طریف اندازه گیری جرم و شعاع و ... است. (دقت کنید نمی توانیم در این رابطه I بدست آمده از آزمایش را قرار دهیم، چون آن وقت گشتاور اصطکاک را صفر بدست می آوریم!) برای جداول f و G نیز لختی مجموع لختی دورانی محاسبه شده استوانه یا پوسته ی استوانه ای و دیسک را قرار می دهیم. در جداول زیر گشتاور اصطکاک برای جداول G تا G آورده شده است:

جدول ۱۹ - گشتاور نیروی اصطکاک برای جدول ۱

	لختی دورانی محاسبه شده	جرم وزنه ی اضافه	شتاب سقوط (متر بر	گشتاور نیروی اصطکاک	
ردیف	$(kg.m^2)$	شده (گرم)	مجذور ثانیه)	(نيوتون متر)	
1	0.0067	149.7	0.046	0.024	
2	0.0067	149.7	0.044	0.025	
3	0.0067	149.7	0.047	0.024	
	میانگین				

جدول ۲۰ - گشتاور نیروی اصطکاک برای جدول ۲

	لختی دورانی محاسبه شده	جرم وزنه ی اضافه	شتاب سقوط (متر بر	گشتاور نیروی اصطکاک
ردیف	$(kg.m^2)$	شده (گرم)	مجذور ثانیه)	(نيوتون متر)
1	0.004	149.9	0.13	0.015
2	0.004	149.8	0.13	0.016
3	0.004	149.9	0.13	0.015
		0.015		

جدول ۲۱ - گشتاور نیروی اصطکاک برای جدول ۳

ردیف	لختی دورانی محاسبه شده $(kg.m^2)$	جرم وزنه ی اضافه شده (گرم)	شتاب سقوط (متر بر مجذور ثانیه)	گشتاور نیروی اصطکاک (نیوتون متر)
1	0.004	149.8	0.081	0.024
2	0.004	149.9	0.061	0.027
3	0.004	149.8	0.064	0.026
		0.026		

جدول ۲۲ - گشتاور نیروی اصطکاک برای جدول ۴

ردیف	لختی دورانی محاسبه شده	جرم وزنه ی اضافه شده	شتاب سقوط (متر	گشتاور نیروی اصطکاک
	$(kg.m^2)$	(گرم)	بر مجذور ثانیه)	(نيوتون متر)
1	0.002	149.8	0.12	0.025
2	0.002	149.7	0.13	0.024
3	0.002	149.8	0.13	0.025
میانگین				0.025

جدول ۲۳ - گشتاور نیروی اصطکاک برای جدول ۵

	لختی دورانی محاسبه شده	جرم وزنه ی اضافه شده	شتاب سقوط (متر	گشتاور نیروی اصطکاک	
ردیف	$(kg.m^2)$	(گرم)	بر مجذور ثانیه)	(نيوتون متر)	
1	0.004	149.8	0.081	0.025	
2	0.004	149.8	0.085	0.025	
3	0.004	149.7	0.086	0.025	
میانگین				0.025	

جدول ۲۴ - گشتاور نیروی اصطکاک برای جدول ۶

· · · · · · · · · · · · · · · · · · ·				
ردیف	لختی دورانی محاسبه شده $(kg.m^2)$	جرم وزنه ی اضافه شده (گرم)	شتاب سقوط (متر بر مجذور ثانیه)	گشتاور نیروی اصطکاک (نیوتون متر)
1	0.0044	149.7	0.073	0.024
2	0.0044	149.7	0.072	0.024
3	0.0044	149.8	0.073	0.024
میانگین				0.024

جدول ۲۵ - گشتاور نیروی اصطکاک برای جدول ۷

ردیف	لختی دورانی محاسبه شده	جرم وزنه ی اضافه شده	شتاب سقوط (متر	گشتاور نیروی اصطکاک
	$(kg.m^2)$	(گرم)	بر مجذور ثانیه)	(نيوتون متر)
1	0.0049	149.7	0.061	0.025
2	0.0049	149.8	0.067	0.023
3	0.0049	149.7	0.059	0.025
میانگین				0.024

جدول ۲۶ - گشتاور نیروی اصطکاک برای جدول ۸

رديف	لختی دورانی محاسبه شده $(kg.m^2)$	جرم وزنه ی اضافه شده (گرم)	شتاب سقوط (متر بر مجذور ثانیه)	گشتاور نیروی اصطکاک (نیوتون متر)
1	0.0064	149.7	0.047	0.025
2	0.0064	149.8	0.048	0.025
3	0.0064	149.7	0.045	0.025
میانگین				0.025

جدول ۲۷ - گشتاور نیروی اصطکاک برای جدول ۹

ردیف	لختی دورانی محاسبه شده	جرم وزنه ی اضافه شده	شتاب سقوط (متر	گشتاور نیروی اصطکاک
	$(kg.m^2)$	(گرم)	بر مجذور ثانیه)	(نيوتون متر)
1	0.0089	149.9	0.022	0.029
2	0.0089	149.8	0.024	0.028
3	0.0089	149.9	0.023	0.029
میانگین				0.029

خواسته ی ۴

برای محاسبه ی گشتاور اصطکاک، ساختار درونی بلبرینگ را بررسی می کنیم. در شکل زیر شمای کلی بلبرینگ کشیده شده است:

فرض کنید این بلبرینگ n مهره ی کوچک دارد که هرکدام بین دو سطح غلتش می کنند که سطح بیرونی ثابت است و سطح درونی توسط نیروی T نخ کشیده می شود. در ضمن نیروهای اصطکاک T_{s2} و T_{s1} به هر مهره وارد می شود و گشتاور اصطکاکی که ما در این مساله آن را بررسی می کنیم، عکس العمل T_{s2} است که به حلقه ی درونی وارد می شود و گشتاوری در خلاف جهت نیروی T وارد می کند. همچنین فرض کنید لختی دورانی هر مهره ی کوچک برابر T_{s2} و جرم T_{s3} است. همچنین فرض کنید لختی حلقه ی بلبرینگ همراه چیزی که روی آن می چرخد (کره یا میله یا ...) برابر T_{s3} باشد. T_{s4} را شتاب خطی حرکت حلقه ی بلبرینگ و اجسام روی آن (و همچنین شتاب وزنه ی به جرم T_{s4} که در انتهای نخ قرار دارد) در نظر بگیرید. در این صورت شتاب مرکز جرم هر مهره، برابر T_{s4} خواهد بود. (چون مهره روی حلقه ی بیرونی که ساکن است می غلتد و بنابراین سرعت نقطه ی بیرونی آن که با حلقه ی درونی بلبرینگ تماس دارد، دو برابر سرعت مرکز جرم است و این سرعت هم به خاطر فرض غلتش کامل روی حلقه ی درونی برابر سرعت حلقه است که با مشتق گیری از طرفین رابطه ی گفته شده برای شتاب نتیجه می شود.) با این فرض ها می توان چهار رابطه ی زیر را نوشت

$$F_{s2} - F_{s1} = m_s \frac{a}{2}$$

$$(F_{s2} + F_{s1}) \cdot r = I_s \cdot \frac{a}{2r}$$

$$T \cdot R - F_{s2} \cdot R \cdot n = I_B \cdot \frac{a}{R}$$

$$Mg - T = Ma$$

که رابطه ی اول قانون دوم نیوتن برای هر مهره است، رابطه ی دوم و سوم $au=I\alpha$ برای مهره و حلقه هستند (n تعداد مهره هاست) و رابطه ی چهارم قانون دوم نیوتن برای جسم در حال سقوط است.

در این چهار معادله چهار مجهول مجهول F_{s1} F_{s1} و F_{s1} مجهول هستند و چون چهار معادله داریم، می توانیم همه را حساب کنیم ولی ما نیروی اصطکاک F_{s2} که گشتاور اصطکاک را ایجاد می کند نیاز داریم. به دلیل طولانی بودن محاسبات برای بدست آوردن F_{s2} از آوردن آن در اینجا اجتناب می کنیم و یکراست جواب را می نویسم:

$$F_{s2} = \frac{\frac{1}{2} MgR \left(\frac{m_s}{2} + \frac{I_s}{2r^2} \right)}{1 + \frac{1}{2} \frac{R.n}{R} + Mr}$$

از آنجایی که شعاع اثر گشتاور اصطکاک R است برای پیدا کردن حالتهایی که در آن گشتاور اصطکاک بیشتر است. کافی است حالاتی را پیدا کنیم که خود نیروی اصطکاک بیشتر است.

همان طور که از معادله پیداست، با زیاد شدن I_B یعنی لختی دورانی جسمی که دوران می کند (استوانه یا کره یا ...) گشتاور اصطکاک نیز افزایش می یابد (نتایج آزمایش نیز کمابیش این موضوع را تایید می کنند). برای فهمیدن تاثیر M بر روی اصطکاک، ابتدا فرمول را بازنویسی می کنیم و سپس از آن مشتق می گیریم:

$$F_{s2} = \frac{\frac{1}{2} MgR \left(\frac{m_s}{2} + \frac{I_s}{2r^2}\right) \left(\frac{I_B}{R} + MR\right)}{2 \left(\frac{I_B}{R} + MR\right)}$$

$$\frac{d}{dM}F_{s2} = \frac{Rg}{2} \left(\frac{m_s}{2} + \frac{I_s}{2r^2} \right) \frac{\left[2R^2M^2 - 2I_BM + \frac{I_B}{2R^2} \right]}{\left[2\left(\frac{I_B}{R} + MR \right) \right]^2}$$

همان طور که دیده می شود، Δ صورت صفر است و به دلیل مثبت بودن ضریب M^2 مشتق همیشه مثبت است و به ازای افزایش جرم M (کفه و وزنه های روی آن) گشتاور اصطکاک افزایش می یابد.

خواسته ی ۵

می توان به یک جسم که لختی آن را با توجه به مشخصات ظاهری آن محاسبه می کنیم، یک سرعت اولیه بدهیم و اندازه بگیریم که پس از چه مدتی ساکن می شود و با توجه به آن گشتاور نیروی اصطکاک را محاسبه کنیم. روابط در زیر آمده است:

$$\tau_{f} = I\alpha$$

$$\alpha t = \frac{V}{R}$$

$$\Rightarrow \tau_{f} = I.\frac{V}{Rt}$$