# SMT and Its Application in **Software Verification (Part II)**

Yu-Fang Chen
IIS, Academia Sinica

Based on the slides of Barrett, Sanjit, Kroening, Rummer, Sinha, Jhala, and Majumdar, McMillan

#### Lazy abstraction -- an example

```
do{
   lock();
   old = new;
   if(*){
      unlock();
      new++;
   }
} while (new != old);
```

program fragment









control-flow graph



Replace all free occurrences of L in the formula with L'



Compute Post (T, L=0)= T[L/L']  $\land$ L=0[L/L'] = (L=0)

Make Abstraction (L=0)  $\rightarrow$  **T** Pas





Compute Post (T, [L!=0])=  $T \land (L!=0)$ = (L!=0)

**ERROR state reached!** 













```
Compute Post (L=0, L=1)
= (L=0)[L/L'] \land L=1[L/L']
= (L'=0 \land L=1)
Compute Post (L'=0 \land L=1, old=new)
= (L'=0 \land L=1)[old/old'] \land old=new[old/old']
= L'=0 \land L=1 \land old=new
Make Abstraction
(L'=0 \land L=1 \land old=new) \rightarrow (L!=0) \quad Pass
(L'=0 \land L=1 \land old=new) \rightarrow (L=0) \quad Not Passed
```





```
Compute Post (L=0, [new!=old])
= (L=0 \land new!=old)
Make Abstraction
(L=0 \land new!=old) \rightarrow (L!=0) Not Passed
(L=0 \land new!=old) \rightarrow (L=0) Pass
```



 $F \qquad [L!=0] \qquad L=0$   $L=0; \qquad \text{old=new}$   $L=0; \qquad \text{new++}$  L=0 L=0 L=0 L=0

control-flow graph

Covering: state 5 is subsumed by state 1.

 $L=1 \rightarrow L=1$  Pass





Compute Post (
$$L=0$$
, [new==old])  
= (L=0  $\land$  new==old)  
Make Abstraction  
(L=0  $\land$  new!=old)  $\rightarrow$  (L!=0) Not Passed  
(L=0  $\land$  new!=old)  $\rightarrow$  (L=0) Pass





control-flow graph

No Actions





control-flow graph

Compute Post (L!=0, [new==old]) = ( $L!=0 \land new==old$ ) Make Abstraction ( $L!=0 \land new==old$ )  $\rightarrow$  (L!=0) Pass ( $L!=0 \land new==old$ )  $\rightarrow$  (L=0) Not Passed





control-flow graph

Compute Post (L!=0, [new!=old]) = ( $L!=0 \land new!=old$ ) Make Abstraction ( $L!=0 \land new!=old$ )  $\rightarrow$  (L!=0) Pass ( $L!=0 \land new!=old$ )  $\rightarrow$  (L=0) Not Passed





control-flow graph

Compute Post (L!=0, [L!=0]) = (L!=0  $\land$  L!0)

**ERROR** state reached!

























```
Compute Post (L=0 \land old!=new, [new!=old])
= (L=0 \land new!=old)
Make Abstraction
(L=0 \land new!=old) \rightarrow (L!=0) Not Passed
(L=0 \land new!=old) \rightarrow (L=0) Pass
(L=0 \land new!=old) \rightarrow (old=new) Not Passed
(L=0 \land new!=old) \rightarrow (old!=new) Pass
```



control-flow graph



Covering: state 5 is subsumed by state 1.

L=1  $\wedge$  old!=new $\rightarrow$  L=1 Pass



control-flow graph



Compute Post (*L=0*, [new==old]) = (L=0 ∧ new=old) Make Abstraction

 $(L=0 \land new=old) \rightarrow (L!=0)$  Not Passed

 $(L=0 \land new=old) \rightarrow (L=0)$  Pass

 $(L=0 \land new=old) \rightarrow (new!=old)$  Not Passed

 $(L=0 \land new=old) \rightarrow (new=old)$  Pass





control-flow graph



**Pass** 

Compute Post ( $L!=0 \land new=old$ , [new==old]) = (L!=0  $\wedge$  new=old) Make Abstraction  $(L!=0 \land new=old) \rightarrow (L!=0)$ **Pass**  $(L!=0 \land new=old) \rightarrow (L=0)$ **Not Passed** 

(L!=0  $\land$  new=old)  $\rightarrow$  (old=new) (L!=0  $\land$  new=old)  $\rightarrow$  (old!=new) **Not Passed** 



control-flow graph



Compute Post (*L!=0*\new=old, [new!=old])

= (L!=0  $\wedge$  new=old  $\wedge$  new!=old )

= false

#### Another Approach: The IMPACT method

Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

# Interpolation Lemma

(Craig, 57)

(Craig, 57)

#### Interpolation Lemma

• Notation:  $\mathcal{L}(\varphi)$  is the set of FO formulas over the symbols of  $\varphi$ 

(Craig, 57)

#### Interpolation Lemma

- Notation:  $\mathcal{L}(\phi)$  is the set of FO formulas over the symbols of  $\phi$
- If A ∧ B = false, there exists an interpolant A' for (A,B) such that:

$$A \Rightarrow A'$$
 $A' \wedge B = false$ 
 $A' \in \mathcal{L}(A) \cap \mathcal{L}(B)$ 

(Craig, 57)

### Interpolation Lemma

- Notation:  $\mathcal{L}(\phi)$  is the set of FO formulas over the symbols of  $\phi$
- If A ∧ B = false, there exists an interpolant A' for (A,B) such that:

$$A \Rightarrow A'$$
 $A' \wedge B = false$ 
 $A' \in \mathcal{L}(A) \cap \mathcal{L}(B)$ 

Example:

$$-A = p \wedge q$$
,  $B = \neg q \wedge r$ ,  $A' = q$ 

(Craig, 57)

### Interpolation Lemma

- Notation:  $\mathcal{L}(\phi)$  is the set of FO formulas over the symbols of  $\phi$
- If A ∧ B = false, there exists an interpolant A' for (A,B) such that:

$$A \Rightarrow A'$$
 $A' \wedge B = false$ 
 $A' \in \mathcal{L}(A) \cap \mathcal{L}(B)$ 

Example:

$$-A = p \wedge q$$
,  $B = \neg q \wedge r$ ,  $A' = q$ 

- Interpolants from proofs
  - in certain quantifier-free theories, we can obtain an interpolant for a pair A,B from a refutation in linear time. [McMillan 05]
  - in particular, we can have linear arithmetic, uninterpreted functions, and restricted use of arrays

• Let  $A_1...A_n$  be a sequence of formulas

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$

- Let A<sub>1</sub>...A<sub>n</sub> be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_{i}$ , for i = 1...n

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_{i}$ , for i = 1...n
  - $-A_n = False$

- Let A<sub>1</sub>...A<sub>n</sub> be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_i$ , for i = 1..n
  - $-A_n = False$
  - and finally,  $A'_{i} \in \mathcal{L} (A_{1}...A_{i}) \cap \mathcal{L}(A_{i+1}...A_{n})$

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence A'<sub>0</sub>...A'<sub>n</sub> is an interpolant for A<sub>1</sub>...A<sub>n</sub> when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_i$ , for i = 1..n
  - $-A_n = False$
  - and finally,  $A'_{i} \in \mathcal{L} (A_{1}...A_{i}) \cap \mathcal{L}(A_{i+1}...A_{n})$

$$A_1$$
  $A_2$   $A_3$   $\cdots$   $A_k$ 

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_{i}$ , for i = 1...n
  - $-A_n = False$
  - and finally,  $A'_{i} \in \mathcal{L} (A_{1}...A_{i}) \cap \mathcal{L}(A_{i+1}...A_{n})$

- Let  $A_1...A_n$  be a sequence of formulas
- A sequence  $A'_0...A'_n$  is an interpolant for  $A_1...A_n$  when
  - $-A'_0 = True$
  - $-A'_{i-1} \wedge A_i \Rightarrow A'_i$ , for i = 1..n
  - $-A_n = False$
  - − and finally,  $A'_{i} \in \mathcal{L} (A_{1}...A_{i}) \cap \mathcal{L}(A_{i+1}...A_{n})$

In other words, the interpolant is a structured refutation of  $A_1...A_n$ 









1. Each formula implies the next



- 1. Each formula implies the next
- 2. Each is over common symbols of prefix and suffix



- 1. Each formula implies the next
- 2. Each is over common symbols of prefix and suffix
- 3. Begins with true, ends with false



- 1. Each formula implies the next
- 2. Each is over common symbols of prefix and suffix
- 3. Begins with true, ends with false

#### Path refinement procedure



Interpolation

# Lazy abstraction -- an example

```
do{
   lock();
   old = new;
   if(*){
      unlock;
      new++;
   }
} while (new != old);
```

## Lazy abstraction -- an example

```
do{
  lock();
  old = new;
  if(*){
    unlock;
    new++;
  }
} while (new != old);
```



program fragment

















control-flow graph



Label error state with false, by refining labels on path

Interpolant for 
$$(L_0 = 0) \land (L_0! = 0) = ?$$

$$L_0 = 0$$



















control-flow graph

Interpolant for  $(L_0 = 0) \land (L_1 = 1 \land old_0 = new_0) \land (L_2 = 0 \land new_1 = new_0 + 1) \land (new_1! = old_0) \land (L_2! = 0) = ?$ 



control-flow graph

 $\text{Interpolant for } (\mathsf{L}_0 = 0) \bigwedge_{T} (\mathsf{L}_1 = 1 \land \mathsf{old}_0 = \mathsf{new}_0) \bigwedge_{T} (\mathsf{L}_2 = 0 \land \mathsf{new}_1 = \mathsf{new}_0 + 1) \bigwedge_{L_2 = 0} (\mathsf{new}_1! = \mathsf{old}_0) \bigwedge_{L_2 = 0} (\mathsf{L}_2! = 0) = ? \\ F$ 



control-flow graph

 $\text{Interpolant for } (\mathsf{L}_0 = 0) \bigwedge_{T} (\mathsf{L}_1 = 1 \land \mathsf{old}_0 = \mathsf{new}_0) \bigwedge_{T} (\mathsf{L}_2 = 0 \land \mathsf{new}_1 = \mathsf{new}_0 + 1) \bigwedge_{L_2 = 0} (\mathsf{new}_1! = \mathsf{old}_0) \bigwedge_{L_2 = 0} (\mathsf{L}_2! = 0) = ? \\ F$ 



control-flow graph

Covering: state 5 is subsumed by state 1.

















control-flow graph



Another cover. Unwinding is now complete.

- If  $\psi(x) \Rightarrow \psi(y)...$ 
  - add covering arc  $x \triangleright y$
  - remove all z > w for w descendant of y

- If  $\psi(x) \Rightarrow \psi(y)...$ 
  - add covering arc  $x \triangleright y$
  - remove all z > w for w descendant of y



- If  $\psi(y) \Rightarrow \psi(x)...$ 
  - add covering arc  $x \triangleright y$
  - remove all w > z for w descendant of y



- If  $\psi(y) \Rightarrow \psi(x)...$ 
  - add covering arc  $x \triangleright y$
  - remove all w > z for w descendant of y



We restrict covers to be descending in a suitable total order on vertices. This prevents covering from diverging.

## Refinement step

- Label an error vertex False by refining the path to that vertex with an interpolant for that path.
- By refining with interpolants, we avoid predicate image computation.



## Refinement step

- Label an error vertex False by refining the path to that vertex with an interpolant for that path.
- By refining with interpolants, we avoid predicate image computation.



## Refinement step

- Label an error vertex False by refining the path to that vertex with an interpolant for that path.
- By refining with interpolants, we avoid predicate image computation.



Refinement may remove covers

#### Forced cover

- Try to refine a sub-path to force a cover
  - show that path from nearest common ancestor of x,y proves  $\psi(x)$  at y



Forced cover allow us to efficiently handle nested control structure

#### Forced cover

- Try to refine a sub-path to force a cover
  - show that path from nearest common ancestor of x,y proves  $\psi(x)$  at y



Forced cover allow us to efficiently handle nested control structure

## Safe and complete

- An unwinding is
  - safe if every error vertex is labeled False
  - complete if every nonterminal leaf is covered



Theorem: A CFG with a safe complete unwinding is safe.

## Unwinding steps

- Three basic operations:
  - Expand a nonterminal leaf
  - Cover: add a covering arc
  - Refine: strengthen labels along a path so error vertex labeled False

#### Overall algorithm

- 1. Do as much covering as possible
- 2. If a leaf can't be covered, try forced covering
- 3. If the leaf still can't be covered, expand it
- 4. Label all error states False by refining with an interpolant
- 5. Continue until unwinding is safe and complete

## Interpolant Sequence in Princess

```
\functions {
 int L0, L1, old0, new0, L2, new1;
\problem {
 \part[p1] (L0 = 0) &
 \part[p2] (L1 = 1 \& old0 = new0) \&
 \part[p3] (L2=0 \& new1 = new0+1) \& 
 \part[p4]
              (new1 != old0) &
 \part[p5]
               (L2!=0)
false
\interpolant {p1; p2, p3, p4, p5}
\left( p1, p2; p3, p4, p5 \right)
\interpolant {p1, p2, p3; p4, p5}
\interpolant {p1, p2, p3, p4; p5}
```

```
Interpolant for  \begin{array}{l} (\mathsf{L}_0 = \!\! 0) \land (\mathsf{L}_1 = \!\! 1 \land \mathsf{old}_0 = \!\! \mathsf{new}_0) \\ \land (\mathsf{L}_2 = \!\! 0 \land \mathsf{new}_1 = \!\! \mathsf{new}_0 + \!\! 1) \land (\mathsf{new}_1 ! = \!\! \mathsf{old}_0) \\ \land (\mathsf{L}_2 ! = \!\! 0) \end{array}
```

#### Homework

 Run the two versions of verification algorithms on the following control flow graph, using Princess for computing interpolants

