Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный технический университет имени Гагарина Ю. А.

Институт прикладных информационных технологий и коммуникаций

Отчет по практической работе №5 «Решение системы дифференциальных уравнений»

по курсу «Организация, управление, планирование и прогнозирование научных исследований»

Выполнили студенты группы мИФСТ-11: Селютин А.Д, Большелапов М.А, Зайцев Е.П.

Проверил: Кушников В.А.

Моделируемые переменные и возмущения

Исследуемые показатели

На основе выбранных ранее 15 параметрах из ГОСТ Р ИСО/МЭК 9126-2001, таких как:

- L₁(t) надежность (reliability);
- L₂(t) практичность (usability);
- L₃(t) эффективность (efficiency);
- L₄(t) сопровождаемость (faintainability);
- L₅(t) защищенность (security);
- $L_6(t)$ согласованность системы в целом (cofpliance);
- $L_7(t)$ завершенность (faturity);
- L₈(t) анализируемость (analysability);
- L₉(t) изменяемость (changeability);
- L₁₀(t) стабильность (stability);
- L₁₁(t) тестируемость (testability);
- L₁₂(t) простота установки (installability);
- L₁₃(t) устойчивость к ошибкам (faulttolerance);
- L₁₄(t) восстанавливаемость (recoverability);
- $L_{15}(t)$ понятность (understandability).

Будет производиться построение системы зависимостей.

Возмущения

Результаты комплекса мероприятий, необходимых для подержания требуемого уровня качества у программного обеспечения интеллектуальных систем, показывают, что в качестве возмущений (внешних факторов) в модели целесообразно использовать следующие показатели:

- q₁(t) опыт разработчиков программного комплекса;
- q₂(t) опыт работы эксплуатационного персонала;
- q₃(t) трудоемкость разработки программного обеспечения;
- q₄(t) курс рубля по отношению к доллару и евро, соответственно;

• q₅(t) - деловая репутация организации, в которой осуществляется эксплуатация программного комплекса.

Решение системы дифференциальных уравнений

Дифференциальное уравнение, характеризующее изменение уровня исследуемых показателей как строки матрицы графа причинно-следственных связей A(|L+q|) в общем виде будет иметь форму:

$$\frac{dL_i(t)}{dt} = \frac{1}{L_i^*} (B_i(t) - D_i(t)),$$

где $B_i(t)$ — результат произведения факторов, влияющих на темп увеличения исследуемой переменной, а $D_i(t)$ — результат произведения факторов, влияющих на темп уменьшения исследуемой переменной.

Нормировка выполняется с помощью множителя $^1/_{L_i}$ *, где L_i *- максимальное значение уровня функциональных возможностей рассматриваемого программного обеспечения в выбранной числовой шкале измерений.

Для системы дифференциальных уравнений (см. отчет №4) был реализован функционал:

- Решения системы дифференциальных уравнений;
- Построения графика зависимости переменных L от времени t;
- Построения нескольких лепестковых диаграмм со значениями параметров качества в разные промежутки времени t.

Функции возмущения представляют из себя ступенчатые и периодические функции. Далее представлено описание функций возмущения:

$$\begin{cases} q_1(t) = \begin{cases} 0, \text{при } t \leq 0.2 \\ 0.3, \text{при } t > 0.2 \\ 0.4, \text{при } t > 0.5 \end{cases} \\ q_2(t) = 0.15 * \cos(t) \\ q_3(t) = 0.15 * \sin(t) \\ q_4(t) = \begin{cases} 0, \text{при } t \leq 0.6 \\ 0.3, \text{при } t > 0.6 \\ 0.4, \text{при } t > 0.8 \end{cases} \\ q_5(t) = 0.25 * \sin(t) \end{cases}$$

При начальных значениях $L_i = [0.7; 0.4; 0.7; 0.7; 0.9; 0.9; 0.8; 0.6; 0.6; 0.9; 0.4; 0.9; 0.7; 0.8; 0.3], где каждый элемент массива представляет из себя показатель качества, описываемый выше, получим график зависимости значений <math>L$ от t на русунке 1:

Рисунок 1 – График зависимости переменных L_i от t, первая ситуация

Ниже в таблице 1 представлены лепестковые диаграммы, которые показывают значения всех показателей качества в разные промежутки времени t.

Таблица 1 – Значения показателей качества в разное время t для первой ситуации

Момент	Лепестковая диаграмма
времени t	
0	t=0
	Надежность Понятность 1 Практичность Восстанавливаемость 9ффективность Устойчивость 0 Защищенность Простота установки Тестируемость Согласованность Стабильность Завершенность Изменяемость Анализируемость

Ниже приведен случай, когда для входного вектора значений не находится оптимального решения системы дифференциальных уравнений, то есть показатели качества выходят за рамки диапазона [0, 1] и большинство показателей стремится к 0.

В данном случае начальными параметрами будет вектор $L_i = [0.2; 0.1; 0.4; 0.5; 0.4; 0.35; 0.45; 0.25; 0.32; 0.21; 0.1; 0.2; 0.3; 0.1; 0.1]. График зависимостей приведен на рисунке 2.$

Рисунок 2 — График зависимости переменных L_i от t, вторая ситуация (неоптимальная)

Ниже в таблице 2 представлены лепестковые диаграммы, которые показывают значения всех показателей качества в разные промежутки времени t для заданного неоптимального вектора начальных значений.

Таблица 2 – Значения показателей качества в разное время t для второй неоптимальной ситуации

Момент	Лепестковая диаграмма
времени t	

Заключение

В работе была произведена оценка показателей качества разработки интеллектуальных систем по ГОСТ Р ИСО/МЭК 9126-2001 на основе 15-элементного сечения для стратегии повышения качества создания интеллектуальных систем.

Анализ проводился с помощью графа состояний, на основе которого была получена и решена система дифференциальных уравнений. В результате решения системы было исследовано влияние интенсивностей показателей качества на эффективность всей проектируемой системы.