UNIT 2 CONVOLUTIONAL NEURAL NETWORK

Introduction

- A convolutional neural network (CNN) -class of artificial neural network applied to analyze visual imagery.
- CNNs use a mathematical operation, <u>convolution</u> in place of general matrix multiplication at least one of their layers.
- CNNs specifically designed to process pixel data and used in image recognition and processing.
- A convolutional neural network is a <u>feed-forward</u> neural network, often with up to 20 or 30 layers.

Introduction

- CNN,s contain many convolutional layers stacked on top of each other.
- Each one capable of recognizing more sophisticated shapes.
- Three or four convolutional layers possible to recognize handwritten digits.
- With 25 layers it is possible to distinguish human faces.

CNN Applications:

- □ Image & Video Recognition.
- Recommender Systems.
- Image Classification, Image Segmentation.
- Medical Image Analysis.
- Natural Language Processing.
- Brain-Computer Interfaces.
- Financial Time Series.

Convolution Neural Network (CNN)

Convolution Operation Works

Input Data:

The input data can be a single-channel image
(grayscale) or multi-channel image (color), where each
channel corresponds to a different feature (e.g., Red,
Green, and Blue channels in a color image).

□ Filters (Kernels):

- Filters are small matrices of learnable weights.
- For example, a common size for a filter might be 3x3, 5x5, or 7x7.
- Each filter is designed to detect a specific feature, such as edges, textures, or more complex patterns.

Convolution Operation Works

The number of filters used in a convolutional layer determines the number of output channels, also known as feature maps.

Convolution Process:

- The convolution operation involves sliding (or convolving) the filter across the input data.
- At each position, a dot product is computed between the filter's weights and the corresponding values in the input data.
- This process produces a single output value for each position, resulting in a feature map.

Convolution Operation Works

The mathematical expression for the convolution operation at a specific location (i,j) can be written as: $(F*I)(i,j) = \sum_{m=1}^{M} \sum_{n=1}^{N} F(m,n) \cdot I(i+m,j+n)$

- I is the input data.
- (i,j)represents the top-left corner of the region of the input where the filter is applied.

Convolution Operation - Example

- As convolution is a mathematical operation on two functions that produces a third function that expresses how the shape of one function is modified by another.
- Suppose a tour operator and offering a tour that takes3 days.
- Guests can start the tour on any day.
- On day 1 of their tour, people take two meals at their hotel, and operator need to provide them with one meal for the trip.
- On day 2, it is 2 meals.
- On day 3 they take a full day trip, so operator need to get them 3 meals.

- Let's say you have 10 people start on day one, 8
 people on day 2, and 5 people on day 3, 4 people
 on day 4.
- How to keep track of the number of meals need to prepare each day?

Day 1:
$$10 \times 1 = 10$$

Day 2: $10x2 + 8x1 = 28$

Day 3: $10x3 + 8x2 + 5x1 = 51$

Day 4: $8x3 + 5x2 + 4x1 = 38$

Calculate the Convolution

Represent the number of people arriving per day in a grid and the number of meals per day in another grid.

1D Convolution

- Move the first position in the green grid over the last position in the blue grid.
- Multiply the blue entry by the green entry right below.

Mathematical Definition of the Convolution

- Need to translate the grids into mathematical functions.
- □ Tour plan has three days which denote as **d**.
- The function that calculates the number of meals for a given day <u>f</u>.
- Number of meals is a function f of d.
- Function is equivalent to the green grid or the kernel.

f(d)

- Define another function g that tracks the number of people participating in the tour that day.
- Function is equivalent to the blue grid.

- □ To calculate the convolution, reversed the blue grid.
- Means need to define g as a function of negative d.

$$g(-d)$$

- □ Introduce variable <u>t</u>,
- A running count of the days ,how many people arrive each day.
- To find the correct number of people arriving that day?
- \square Input the current day \underline{t} into \underline{g} of $\underline{negative\ d}$.

$$g(-d+t)$$

Multiplying the two functions gives total number of meals for one day <u>d</u> of the tour.

$$\sum_d^D f(d)g(-d+t)$$

In mathematical notation, write the convolution of two functions or signals..

Parameter Sharing

- In CNNs, parameter sharing refers to the practice of using the same set of weights (filters or kernels) across different parts of the input data.
- This is a fundamental characteristic of the convolutional layers within CNNs.
- The primary purpose is to detect specific features, such as edges or textures, consistently across different regions of an input image or data.

Parameter Sharing Work

Convolutional Layer:

- A convolutional layer consists of several filters (also known as kernels).
- Each filter is a small matrix, such as 3x3 or 5x5, with a set of learnable weights.
- The filter slides (or convolves) over the input data, computing the dot product between the weights of the filter and the values of the input at each spatial location.
- As the same filter is applied to all parts of the input, the parameters (weights) of the filter are shared across different spatial locations.

Parameter Sharing Work

□ Feature Maps:

- The output of the convolutional operation is a feature map, which highlights the presence of specific features detected by the filter in different regions of the input.
- Since the same filter is used across the entire input,
 the feature map reflects the activation of that
 particular feature at every spatial location.

Benefits of Parameter Sharing

Reduced Number of Parameters:

- Convolutional layers with shared weights significantly reduce the number of parameters, making the network more efficient and less prone to overfitting.
- For example, a 3x3 filter applied to a 256x256 image with 3 channels has only 27 parameters, regardless of the image size.

Benefits of Parameter Sharing

□ Translation Invariance:

- Parameter sharing allows the network to detect features, such as edges or textures, regardless of their position in the image.
- This translation invariance is crucial for image recognition tasks, where the same object can appear in different parts of an image.

Efficient Training:

 Fewer parameters lead to faster training and reduced computational requirements.

Benefits of Parameter Sharing

Improved Generalization:

- By limiting the number of parameters, parameter sharing acts as a form of regularization.
- Helping prevent the model from overfitting to the training data.
- This improves the model's ability to generalize to new, unseen data.

Pooling

- Pooling layer is added after convolutional layers.
- Used to reduce the dimensions (width and height) of the feature maps.
- Preserving the depth (number of channels).
- □ Pooling operation involves :
- Sliding a two-dimensional filter over each channel of feature map and summarizing the features lying within the region covered by the filter.
- \square Feature map having dimensions $n_h \times n_w \times n_c$

Convolutional Neural Networks

Types of Pooling Layers

Max Pooling

 Pooling operation that selects the maximum element from the region.

_	_	0	
2	7	3	
4	6	1	
T.	Ň	'	
5	2	4	
1	2	6	
	2451	4652	

Average Pooling

 Computes the average of the elements present in the region of feature map.

2	2	7	3		
9	4	6	1	Average Pool	4.25
8	5	2	4	Filter - (2 x 2) Stride - (2, 2)	4.25
3	1	2	6		

CNN Architecture

- □ Three major groups:
- □ 1. Input layer
- 2. Feature-extraction (learning)layers
- □ 3. Classification layers

Input layer

- Accepts three-dimensional input.
- Generally in the form spatially of the size (width × height) of the image and has a depth representing the color channels (RGB color channels).

Feature-extraction layers

- General repeating pattern of the sequence:
- Convolution layer
- Rectified Linear Unit (ReLU) activation function as a layer
- Pooling layer
- Layers find a number of features in the images.

Classification layers

- One or more fully connected layers to take the higher-order features.
- Output of the layers produces a two dimensional
- \Box [$b \times N$]
- b is the number of examples in the mini-batch
- N is the number of classes interested in scoring.

Padding and Stride

Step 1 Step 2 Step 3 Step 4

25 1	250	251	0	0	0
251	250	251	0	0	0
251	250	25-1	0	0	0
255	255	255	0	0	0
255	255	255	0	0	0
255	255	255	0	0	0

Step 1

Step2

Step 3

Step 4

Padding and Stride

- Padding describes the addition of empty pixels around the edges of an image.
- Proper use of padding ensures that important features are captured and the network can learn effectively from the input data.
- Need of Padding:
- □ In standard convolution operation, the image shrinks by a factor equivalent to the filter size plus one.
- Take an image of width and height 6, and a filter of width and height 3, the image shrinks by

$$6-3+1=4$$

- □ Resulting image will be 4×4 dimensions instead of 6×6 .
- General formula for calculating the shrinkage of the image dimensions m x m based on the kernel size f x f
- \square $(m \times m)*(f \times f) = (m-f+1)*(m-f+1)$

□ Two problems:

- Perform multiple convolution operations, the final image might become vanishingly small.
- Cannot slide the full filter over the edge pixels.Result lose some information at the edges.

□ Padding Work

Pad the images with additional empty pixels around the edges.

25 5	25 5	25 5	О	0	0	
25 5	25 5	25 5	О	0	0	
25 5	25 5	25 5	О	0	О	
25 5	25 5	25 5	О	0	0	
25 5	25 5	25 5	0	0	0	
25 5	25 5	25 5	0	0	0	
4						

Padding

Consider an input feature map of size 5x5 and a
 3x3 convolutional filter:

Input:
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{bmatrix}$$

 Output after applying 3x3 filter with valid padding: 3x3

Padding

	Го	0	0	0	0	0	$\lceil 0 \rceil$
	0	1	2	3	4	5	0
	0	6	7	8	9	10	0
Padded Input:	0	11	12	13	14	15	0
	0	16	17	18	19	20	0
	0	21	22	23	24	25	0
	0	0	0	0	0	0	0

 Output after applying 3x3 filter with same padding: 5x5

Stride

- Stride describes the process of increasing the step size by which filter slide over an input image.
- □ Stride of 1:
- The filter moves one pixel at a time.
- Produces the highest possible resolution output, as the filter covers every possible position.
- Stride Greater than 1:
- The filter moves more than one pixel at a time (e.g., 2, 3).
- Reduces the spatial dimensions of the output feature map more significantly, leading to a coarser feature map.

Step 1 Step 2 Step 3

2515	2506	1	0 0	□-1	0.0	0-1
2515	250	1	0 0	-1	00	0-1
2515	250	1	0 0	-1	00	0-1
255	255	255	0	0	0	0
255	255	255	0	0	0	0
255	255	255	0	0	0	0

Example

- Consider a 32x32 image that goes through several layers in a CNN:
- □ Initial Image (32x32):

```
\begin{bmatrix} 1 & 2 & 3 & \dots & 32 \\ 33 & 34 & 35 & \dots & 64 \\ 65 & 66 & 67 & \dots & 96 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 961 & 962 & 963 & \dots & 1024 \end{bmatrix}
```

Example

- After Convolution (3x3 filter, stride 2, no padding):
- □ **Output**: 15x15 feature map (coarser than the original).

1	3	5		29
65	67	69		93
129	131	133		157
				.
:	:	:	٠.	:
961	963	965		989

Example

- □ After Pooling (2x2, stride 2):
- Output: 7x7 feature map (even coarser).

1	5	9		29
129	133	137		157
257	261	265		285
				.
:	:	:	٠.	:
961	965	969		989

AlexNet

- Designed by Alex Krizhevsky.
- □ Expensive in computation.
- Made feasible GPUs or Graphical Processing Units, during training.
- □ First <u>convolutional network</u> which used GPU to boost performance.

□ AlexNet architecture consists of

- 5 convolutional layers.
- □ 3 max-pooling layers.
- □ 2 normalization layers.
- □ 2 fully connected layers,
- □ and 1 SoftMax layer.
- Convolutional layer consists: Convolutional filters and a nonlinear activation function ReLU.

- Pooling layers are used to perform max pooling.
- □ Input size is 224x224x3.
- \square Some padding as 227x227x3.
- □ Overall 60 million parameters.
- Model Details
- □ ReLU is an activation function.
- □ Batch size of 128.
- Used Normalization layers.
- □ SGD Momentum as learning algorithm.

Input Layer

- **Input**: The input to the network is an RGB image of size 227x227x3.
- Typically, the images are resized to this dimension before being fed into the network.
- Preprocessing: Each image is mean-subtracted (the mean image is computed from the training set) to normalize the input.

First Convolutional Layer (Conv1)

- Operation: 96 Filters Of Size 11x11 With A Stride Of 4 And Padding Of 0 Are Applied.
- Output Size Calculation:
- Output Size=(227-11)/4+1=55
- Output Is 55x55x96.
- Activation Function: ReLU is applied after convolution to introduce non-linearity.

First Max-Pooling Layer (Pool1)

- Operation: Max-pooling with a 3x3 filter and a stride of 2.
- Output Size Calculation:
- Output size=(55-3)/2+1=27
- Thus, the output is 27x27x96.
- Local Response Normalization (LRN)
- Applied to the output of the first pooling layer to normalize the activations.

Second Convolutional Layer (Conv2)

- Operation: 256 filters of size 5x5 with a stride of 1 and padding of 2 are applied.
- Output Size Calculation:
- Output size=27
- Thus, the output is 27x27x256.
- Activation Function: ReLU is applied after convolution.

Second Max-Pooling Layer (Pool2)

- Operation: Max-pooling with a 3x3 filter and a stride of 2.
- Output Size Calculation:
 Output size=(27-3)/2+1=13
- Thus, the output is 13x13x256.
- Local Response Normalization (LRN)
- Applied again to the output of the second pooling layer.

Third Convolutional Layer (Conv3)

- Operation: 384 filters of size 3x3 with a stride of 1 and padding of 1 are applied.
- Output Size Calculation:
- Output size=13
- Thus, the output is 13x13x384.
- Activation Function: ReLU is applied after convolution.

Fourth Convolutional Layer (Conv4)

- Operation: 384 filters of size 3x3 with a stride of 1 and padding of 1 are applied.
- Output Size Calculation:
- Output size=13
- Thus, the output is 13x13x384.
- Activation Function: ReLU is applied after convolution.

Fifth Convolutional Layer (Conv5)

- Operation: 256 filters of size 3x3 with a stride of 1 and padding of 1 are applied.
- Output Size Calculation:
- Output size=13
- Thus, the output is 13x13x256.
- Activation Function: ReLU is applied after convolution

Third Max-Pooling Layer (Pool3)

- Operation: Max-pooling with a 3x3 filter and a stride of 2.
- Output Size Calculation:
 Output size=(13-3)/2+1=6
- Thus, the output is 6x6x256.
- Flattening
- The 3D tensor is flattened into a 1D vector.
- The size of the vector is: $6 \times 6 \times 256 = 9216$.

Fully Connected Layer

- First Fully Connected Layer (FC1)
- Operation: Fully connected layer with 4096 neurons.
- Activation Function: ReLU.
- Dropout: 50% dropout is applied to prevent overfitting.
- Second Fully Connected Layer (FC2)
- Operation: Fully connected layer with 4096 neurons.
- Activation Function: ReLU.
- Dropout: 50% dropout is applied to prevent overfitting.

Fully Connected Layer

- Third Fully Connected Layer (FC3)
- Operation: Fully connected layer with 1000 neurons (one for each class in ImageNet).
- Activation Function: Softmax, providing the class probabilities.