Sprout 2020 Algorithm - Week 6

Author: 陳楚融

Problem 1

(a)

先考慮時間,第 i 次擴張需複製 2^{i-1} 個元素,令 $2^k=2^{\lceil\log_2 n\rceil}$,即最後陣列大小,最後一次擴張共複製 2^{k-1} 次,共 $S=\sum_{i=1}^k 2^{i-1}=2^k-1$ 次, $n-1\leq S<2n$ 加上插入共 n 個元素,最後時間複雜度為 O(2n+n)=O(n) 。再考慮空間, 第 i 次擴張最多同時存在 2^i+2^{i-1} 個空間,最多 $\frac{3}{2}*2^k<\frac{3}{2}*2n=3n$,得空間複雜度為 O(n)

(b)

先考慮時間,第 i 次擴張需複製 i 個元素,最後一次擴張共複製 n-1 次,共 $S=\sum_{i=1}^{n-1}i=\frac{n^2-n}{2}$ 次,加上插入共 n 個元素,最後時間複雜度為 $O(\frac{n^2+n}{2})=O(n^2)$ 。再考慮空間,第 i 次擴張最多同時存在 i+(i+1) 個空間,最多 (n-1)+n=2n-1 ,得空間複雜度為 O(n)

Problem 2

(a)

抵達環的起點(入口) u 後,剛好走其長度 L 步會回到 u ,其他節點都恰好走過一次,因此可在每個節點裡宣告一變數 t ,紀錄已走步數,如 $start \to t=0$,則第二次走到 u 時的總步數減去 $u\to t$ 即為 L 。除 u 外所有 n-1 個節點恰好走過一次,u 走過兩次,因此時間複雜度為O(n)

(b)

由起點開始走 k 步會進入環,並用變數 p 紀錄位置,再用從 p 開始走 k-1 步,由於已在環內,因此若環長 L < k ,必定會再回到 p ,若回到 p 則 L 為走過步數,否則 $L \ge k$ 。總共使用一個變數 p 與一個變數用來遍歷圖,故空間複雜度為 O(1) 。從起點走 k 步,再從 p 走 k-1 步,得時間複雜度 O(2k-1)=O(k)

(c)

由 $L \leq n$ 可知 $\log_2 n \notin \mathbb{N}$ 時, k 最多為 $2^{\lceil \log_2 n \rceil} > n$, $\log_2 n \in \mathbb{N}$ 時, k 最多為 $2^{1+\log_2 n} > n$,因為由起點走 k 步後會進入環,再走 k-1 步至少會繞環一圈並得到 L 。 每次 判斷皆需 O(k) ,且 $\log_2 n \notin \mathbb{N}$ 時, $\sum_{i=0}^{\lceil \log_2 n \rceil} 2^i = 2^{\lceil \log_2 n \rceil + 1} - 1 < 2 * 2n - 1 < 4n$, $\log_2 n \in \mathbb{N}$ 時, $\sum_{i=0}^{1+\log_2 n} 2^i = 2^{2+\log_2 n} - 1 < 4 * n - 1 < 4n$, 得時間複雜度為 O(n) 。 判斷時使用之變數仍為兩個,加上一個 k ,故空間複雜度為 O(1)

Problem 3

(a)

若 a_i 皆為 1 ,每次最多跳 N-1 次,共 Q 次,得時間複雜度為 O(NQ)

(b)

a[a[i]]

(c)

b[b[i][j-1]][j-1]

(d)

對 k 做二分拆解(轉成二進位),得 $k=2^{p_1}+2^{p_2}+\cdots+2^{p_q}$, $p_q \leq \lfloor \log_2 k \rfloor$,複雜度為 $O(\log k)$,然後從 x 開始依序跳 $p_1,\ p_2,\cdots,\ p_q$ 步,共 k 步,每次可透過陣列 b 使用 O(1) 的 時間完成,最多跳 $\lfloor \log_2 k \rfloor$ 次,又因 k < N ,得包含拆解的總時間複雜度為 $O(\log N)$

(e)

建立陣列 b 時, $0 \le j \le \lfloor \log_2 N \rfloor$,否則會跳超過 N 步,因此陣列 b 元素數 $B \le N(1+\log_2 N)$,每個元素計算時間僅 O(1) ,得建表時間複雜度為 $O(N\log N)$ 。每筆詢問計算時間為 $O(\log N)$, Q 筆詢問共 $O(Q\log N)$,得總時間複雜度為 $O((N+Q)\log N)$