None

Null

24 avril 2024

1 Exercice 1

L'évaluation de circuits booléens est P-complète. On considère la réduction à la logique de Horn. On considère $H \leftarrow$ et $H \leftarrow$ et $H \leftarrow$ B₁ \wedge B₂. On considère la DB qui pour chaque $H \leftarrow$ a un tuple Fact(H) et pour chaque $H \leftarrow$ B₁ \wedge B₂ on a un tuple $Rule(H, B_1, B_2)$. On prend comme programme Datalog le suivant $True(x) \leftarrow Fact(x)$ et $True(x) \leftarrow Rule(x, y, z) \wedge True(y) \wedge True(z)$. On vérifie trivialement qu'on a True(A) si et seulement si A est une conséquence du programme originel. On encode bien en log space.

2 Exercice 2

Datalog ne peut pas vérifier le nombre pair d'éléments d'un ensemble (FO ne peut pas mdr)

3 Exercice 3

Même argument que pour Datalog normal.

4 Exercice 4

```
initial_k(y) \leftarrow \neg \exists x, succ_k(x,y) \; ; \; final_k(y) \leftarrow \neg \exists x, (succ_k(y,x) \land \neg succ_k(x,y)) \; ; \; succ_k(x,y) \leftarrow \neg \exists z, (succ_k(x,z) \land succ_k(z,y) \land \neg succ_k(y,z)) \; ;
```