PCIE 总线接口芯片 CH368

手册(一) 版本: 1A http://wch.cn

1、概述

CH368 是一个连接 PCI-Express 总线的通用接口芯片,支持 I/O 端口映射、存储器映射、扩展 ROM 以及中断。CH368 将高速 PCIE 总线转换为简便易用的类似于 ISA 总线的 32 位或者 8 位主动并行接口,用于制作低成本的基于 PCIE 总线的计算机板卡,以及将原先基于 ISA 总线或者 PCI 总线的板卡升级到 PCIE 总线上。PCIE 总线与其它主流总线相比,速度更快,实时性更好,可控性更佳,所以 CH368 适用于高速实时的 I/O 控制卡、通讯接口卡、数据采集卡等。下图为其一般应用框图。

2、特点

- 基于 PCIE 总线提供 8 位或者 32 位主动并行总线。
- 提供 32 位被动并行接口,可以挂接到其它 CPU 或者单片机 MCU 总线,支持 BusMaster/DMA。
- 支持 I/0 读写,自动分配 I/0 基址,支持长度达 232 字节的 I/0 端口。
- 支持存储器读写和 Memory 预取,直接映射支持容量为 32KB 的存储器 SRAM。
- 读写脉冲的宽度从 30nS 到 450nS 可选, 32 位存储器突发块存取的速度可达每秒 50MB。
- 支持电平中断或者边沿中断请求输入,支持中断共享。
- 支持闪存扩展 ROM 无硬盘引导,可以提供扩展 ROM 应用的子程序库 BRM。
- 提供高速的 3 线或者 4 线 SPI 串行主机接口。
- 提供两线串行主机接口,可以挂接类似 24COX 的串口 EEPROM 器件用于存储非易失数据。
- 可以在 EEPROM 器件中设定 PCIE 板卡的设备标识(Vendor ID, Device ID, Class Code 等)。
- 内置 2uS 至 8mS 的硬件计时单元,用于软件运行过程中作为延时参考。
- 驱动程序支持 Windows 98/ME/NT4. 0/2000/XP/Vista 以及 Linux, 通过 DLL 提供应用层 API。
- 3.3V 电源电压, I/O 引脚支持 5V 耐压, 支持低功耗睡眠模式。

● LQFP-100 无铅封装, 兼容 RoHS。

3、封装

封装形式	塑体宽度	引脚间距		封装说明	订货型号
LQFP-100	14mm x 14mm	0. 5mm	19.7mil	标准 LQFP100 贴片	CH368L

4、引脚

4.1. 电源线

引脚号	引脚名称	类型	引脚说明
8, 25, 26, 50, 72, 87	VCC33	电源	3.3V I/0 电源
10, 48, 70	VCC18	电源	1. 8V 内核电源
13, 20	VCC18A	电源	1. 8V 传输电源
9, 14, 15, 17, 23, 27, 37, 49, 61, 71, 77, 86, 96	GND	电源	公共接地端
2, 3, 24	NC.	空脚	禁止连接

4. 2. PCIE 总线信号线

引脚号	引脚名称	类型	引脚说明	
6, 7	PERST#	输入	系统复位信号线,低电平有效	
11, 12	PECKP/PECKN	输入	系统参考时钟差分输入	
18, 19	PERP/PERN	PCIE 输入	PCIE 接收器差分信号输入	
22, 21	PETP/PETN	PCIE 输出	PCIE 发送器差分信号输出	
5	WAKE#	开漏输出	总线唤醒输出,低电平有效,未用到则不连接	

4.3. 本地端信号线

引脚号	引脚名称	类型	引脚说明
33-36			
38-47	D31~D0	三态输出	32 位双向数据信号线,内置上拉电阻
51-60	031, 000	及输入	32 位及问数据信与线,内直工位电阻
62-69			
95-88	A15~A0	输出	16 位地址信号线,
85-78	ATS, AO	7 期 山	A15~A8 可以作为通用输出 GPO 独立控制输出
76	I OP_RD	输出	I/0 端口的读选通,低电平脉冲有效
75	IOP_WR	输出	I/0 端口的写选通,低电平脉冲有效
74	MEM_RD	输出	存储器的读选通,低电平脉冲有效
73	MEM_WR	输出	存储器的写选通,低电平脉冲有效
32	INT#	输入	中断请求输入,电平或者边沿有效,内置上拉电阻
99	RD#	输入	被动并行接口的读选通,低电平有效,内置上拉电阻
100	WR#	输入	被动并行接口的写选通,低电平有效,内置上拉电阻
97	CS#	输入	被动并行接口的片选输入,低电平有效,内置上拉电阻
98	ADDR	输入	被动并行接口的地址输入, SPI 数据输入, 内置上拉电阻

4.4. 辅助信号线

引脚号	引脚名称	类型	引脚说明
16	RREF	输入	系统参考电流输入,需要外接 12KΩ电阻到 GND
28	SCL	输出	通用输出,SPI 时钟输出,外部配置芯片的时钟输出,可以外接串行 EEPROM 配置芯片 24CXX 的 SCL 引脚
29	SDA	开漏输出 及输入	通用输出及输入,内置上拉电阻,复位期间必须为高,可以外接串行 EEPROM 配置芯片 24CXX 的 SDA 引脚
30	SDX	三态双向	通用输出及输入,SPI 数据输出及输入,内置上拉电阻
31	SCS	输出	通用输出,SPI 片选输出
1	RST0	输出	低电平有效的复位输出,通用输出
4	RSVD	保留	保留引脚,禁止连接

5、寄存器

5.1. 基本约定

- 5.1.1. 属性简写: R=完全只读, W=可读可写, S=只读但可以事先设定,=省略号。
- 5.1.2. 数据的数制:如果以 H 结尾则为十六进制数,否则为二进制数。
- 5.1.3. 数值的通配符以及属性: r=保留(禁止使用), x=任意值,=省略号。

5.2. PCIE 配置空间

地址	寄存器名称	寄存器属性	系统复位后默认值
01H-00H	VID厂商标识: Vendor ID	SSSS	1C00H
03H-02H	DID 设备标识: Device ID	SSSS	5834H
05H-04H	命令寄存器: Command	RRRRRWRWRWRRRWWW	0000000000000000
07H-06H	状态寄存器: Status	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	00000000001x000
H80	芯片版本: Revision ID	SS	10H
0BH-09H	设备类代码: Class Code	SSSSSS	100000H
OFH-OCH		RRRRRRWW	00000000Н
13H-10H	I/0基址: I/0 Base Address	WWWWWRR	0000001H
17H-14H	存储器基址:	wwwwwwwwwww	0000000000000000
1/П-14П	Memory Base Address	WRRRRRRRRRRRRRRR	000000000001000
2BH-18H		RRRR RRRR	0000 0000Н
2DH-2CH	子系统厂商标识: Subsystem Vendor ID	SSSS	与 VID 相同
2FH-2EH	子系统标识: Subsystem ID	SSSS	与 DID 相同
33H-30H	扩展 ROM 基址:	wwwwwwwwwww	0000000000000000
33N-30N	ROM Base Address	WRRRRRRRRRRRW	0000000000000000
3BH-34H		RRRR RRRR	0000 0060Н
3FH-3CH	中断号和中断引脚等:	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	0000000000000000
31 11 ⁻ 36H	Interrupt Line & Pin	RRRRRRRRWWWWWWW	000000100000000
FFFH-40H	保留	(禁止使用)	(禁止使用)

5.3. 1/0 基址的寄存器

寄存器的实际地址为 I/0 基址加表中的偏移地址。

偏移地址	寄存器名称	简称	寄存器属性	系统复位后默认值
E7H-00H	标准的本地 I/0 端口	I OXR	WW	连接到 1/0 设备
E8H	通用输出寄存器	GPOR	WWWRRWWW	000rr111
E9H	通用变量寄存器	GPVR	wwwwwww	00001010
EAH	通用输入寄存器	GPIR	RRRRRRR	11111rr1
EBH	中断控制寄存器	INTCR	RRRWWWW	rrr00000
EFH-ECH	被动并行接口的数据寄存器	SLVDR	wwwwwww	Hxxxxxxxx
F1H-F0H	A15-A0 地址设定寄存器	ADRSR	wwww	8000H
F2H	保留		(禁止使用)	ххH
F3H	存储器数据存取寄存器	MEMDR	WW	连接到存储器
F7H-F4H	数据总线静态输入寄存器	DBUSR	RRRRRRR	Hxxxxxxxx
F8H	杂项控制和状态寄存器	MICSR	WRRRRWRW	1rrr10r1
F9H	保留		(禁止使用)	ххH
FAH	读写速度控制寄存器	SPDCR	RWWWWWW	r0000111
FBH	被动并行接口的控制寄存器	SLVCR	WRRRWWRR	000r0000
FCH	硬件循环计数寄存器	CNTR	RR	ххH
FDH	SPI 控制寄存器	SPICR	WWWRRRRR	0000xxxx
FEH	SPI 数据寄存器	SPIDR	WW	xxH
FFH	保留		(禁止使用)	ххH

5.4. 寄存器的位

寄存器名称	位址	属性	位的使用说明(默认值)	位值=0	位值=1	
	位 0	W	设定 SDA 引脚的输出值(1)	低电平	高电平	
N7 57 (A.) 1	位 1	W	设定 SCL 引脚的输出值(1)	低电平	高电平	
量用输出寄存器 	位 2	W	设定 SCS 引脚的输出值(1)	低电平	高电平	
GPOR	位 5	W	使能支持被强制唤醒(0)	不支持	支持	
(1/0 基址+0E8H 地址)	位 6	W	设定 SDX 引脚的数据方向(0)	输入	输出	
	位 7	W	设定 SDX 引脚的输出值(0)	低电平	高电平	
	位 0	R	输入 SDA 引脚的状态(1)	低电平	高电平	
77 M + A	位 3	R	输入 INT#引脚的状态(1)	低电平	高电平	
通用输入寄存器	位 4	R	输入 RD#引脚的状态(1)	低电平	高电平	
GPIR	位 5	R	输入 WR#引脚的状态(1)	低电平	高电平	
(I / 0 基址+0EAH 地址)	位 6	R	输入 ADDR 引脚的状态(1)	低电平	高电平	
	位 7	R	输入 SDX 引脚的状态(1)	低电平	高电平	
	位 0	W	MSI 中断模式使能(0)	INTA 中断	MSI中断	
	位 1	W	全局中断使能(0)	禁止中断	使能中断	
中断控制寄存器 INTCR	位 2	W	INT#引脚中断输入的极性(0)	低电平	高电平	
(I/0 基址+0EBH 地址)	位 3	W	 INT#引脚中断输入的类型(0)	上升沿 电平	下降沿 边沿	
	位 4	W	中断请求重试使能(0)	禁止重试	使能重试	
	位 0	W		(成电平)	高电平	
杂项控制和状态寄存器	位 2	W		元中 元中断	有中断	
MICSR	位 3	R	输入 INT#引脚的状态(1)	低电平	高电平	
(I/0 基址+0F8H 地址)	位 7	W	设定 RSTO 引脚的输出值(1)	低电平	高电平	
	位 0	VV	全建立时间和保持时间的读写			
	位 1		步距为 30nS,0000~1111 对应 60nS~510nS,			
 读写速度控制寄存器	位 2	WWWW	该总宽度减去位4的建立时间,减去位5的保持时间,			
医马及及注射引行指 SPDCR	位 3		得到读写脉冲净宽度,最小为 0nS,最大为 480nS			
(I/O 基址+0FAH 地址)	位 4	W	数据和地址输出建立时间(0)	15nS	45nS	
	位 5	W	数据和地址输出保持时间(0)	15nS	45nS	
	位 6	W	本地数据总线宽度(0)	8位	32 位	
	位 0	RR	来自 MCU 的识别数据(00)	自定		
被动并行接口的	位 1					
控制寄存器	位 2 位 3	WW	PC 到 MCU 的识别数据(00)	白白	三义	
SLVCR (I/0 基址+0FBH 地址)	位 4	R	来自 MCU 的总线连接使能(0)	未连接	连接 MCU	
(I/U <u> </u>	位 6	R	来自 MCU 的中断请求(0)	无中断	有中断	
	位 7	W	PC 到 MCU 的中断请求输出(0)	无中断	有中断	
	位 0	RRRR	硬件循环计数的高 4 位	立(XXXX),		
CDI 协制安大型	~位 3	NNKK	与硬件循环计数寄存器 CNTR 合在一起共 12 位			
SPI 控制寄存器 SPICR	位 4	R	SPI 传输正在进行状态(0)	空闲	正在传输	
(1/0 基址+0FDH 地址)	位 5	W	选择 SPI 串行时钟频率(0)	31. 3MHz	15. 6MHz	
(1/0 坐址 '0 011 地址)	位 6	W	选择 SPI 数据输入引脚(0)	SDX	ADDR	
	位 7	W	使能读 SPIDR 后启动新传输(0)	读后空闲	读后启动	

6、功能说明

6.1. 外部配置芯片

CH368 芯片会在每次开机或者 PCIE 总线复位后检查外部的 24CXX 配置芯片中的数据,如果连接了配置芯片并且数据有效则自动加载到 CH368 芯片中替换默认的 PCIE 识别信息。

配置芯片 24CXX 是一种 4 脚或者 8 脚封装的非易失串行 EEPROM 存储器,除了向 CH368 提供配置信息之外,还可以供应用程序自行保存一些其它参数。CH368 支持以下型号的 24CXX 芯片: 24C01(A)、24C02、24C04、24C08、24C16等。

下表是配置芯片	24CXX	中的数据定义。
---------	-------	---------

字节地址	简称	数据用途说明	默认值
00H	SIG	外部配置芯片有效标志,必须是 78H	78H
01H	CFG	配置参数	00H
03H-02H	RSVD	(保留单元)	0000Н
05H-04H	VID	厂商标识: Vendor ID	自定义
07H-06H	DID	设备标识: Device ID	自定义
08H	RID	芯片版本: Revision ID	自定义
0BH-09H	CLS	设备类代码: Class Code	100000H
ODH-OCH	SVID	子系统厂商标识: Subsystem Vendor ID	自定义
OFH-OEH	SID	子系统标识: Subsystem ID	自定义
1FH-10H	RSVD	(保留单元)	00H 或 FFH
其它地址	APP	用户或应用程序自定义单元	

6.2. 空间映射

PC 机中包括三种空间:存储器空间、I/O 空间、配置空间。存储器空间主要包括内存、显存、扩展 ROM、设备缓冲区等,一般用于存放大量数据和进行数据块交换。I/O 空间主要包括设备的控制寄存器和状态寄存器,一般用于控制和查询设备的工作状态以及少量数据的交换。配置空间主要用于向系统提供设备自身的基本信息,并接受系统对设备全局状态的控制和查询。

为了避免地址冲突,PCIE 总线要求各个设备所占用的地址能够重定位。重定位是由设备的配置空间的基址寄存器实现的,通常情况下,各个设备的基址寄存器总是被 BIOS 或者操作系统分配为不同的基址,从而将各个设备分别映射到不同的地址范围。在需要时,应用程序也可以自行修改基址。

CH368 的存储器空间占用 32K 字节,偏移地址是 0000H~7FFFH,可以全部提供给外部设备使用,实际地址是存储器基址加上偏移地址。CH368 的 I/O 空间占用 256 字节,去掉 CH368 自用寄存器,还可以提供 232 字节给外部设备使用,偏移地址是 00H~E7H,实际地址是 I/O 基址加上偏移地址。

6.3. 主动总线内部结构和信号线

下图是 CH368 内部主动并行总线的主要结构。CH368 对 PCIE 总线的各种信号进行译码后,产生内部数据总线 D31~D0、内部地址总线 A31~A0、读 I/O 端口信号、写 I/O 端口信号、读存储器信号、写存储器信号等。图中已经标明了各个信号的传输方向。

结构图右侧的信号是指 CH368 提供给本地端的各个外部引脚。地址线 A15~A0 用于提供相对于基址的偏移地址,数据总线 D31~D0 在读操作时用于输入数据,在写操作时用于输出数据。IOP_RD 用于提供 I/O 读选通脉冲信号,IOP_WR 用于提供 I/O 写选通脉冲信号,MEM_RD 用于提供存储器读选通脉冲信号,MEM_WR 用于提供存储器写选通脉冲信号,上述引脚的读写选通脉冲信号都是低电平有效。CH368 提供的地址线、数据总线、读写选通信号线类似于 ISA 总线的信号线,所以非常适合将 ISA 板卡升级到 PCIE 总线上。并且从图中可以看出,CH368 提供的读写选通信号已经在芯片内部被片选控制,CH368 输出的读写选通信号只是在其基址映射范围内有效,所以外部设备不再需要片选译码。

在 I/0 读写操作期间,CH368 的 A7 \sim A0 输出 I/0 端口的偏移地址,提供给外部设备的有效偏移地址范围是 $OOH\sim E7H$,外部设备可以进一步对 A7 \sim A0 进行译码产生二级片选信号。在 I/0 读写操作期间,CH368 的 A15 \sim A8 保持不变,但可以由内部寄存器事先设定为高电平或者低电平。

在存储器读写操作期间, CH368 的 A14~A0 输出存储器的偏移地址,提供给外部设备的有效偏移地址范围是 0000H~7FFFH。在存储器读写操作期间,CH368 的 A15 保持不变,但可以由内部寄存器事

先设定为高电平或者低电平, 用于存储器地址线扩展或者页面选择。

6.4. 数据宽度

CH368 支持 PC 机程序以单字节为单位对 I/0 端口或者存储器进行读写,当设置本地数据总线宽度(读写速度控制寄存器 SPDCR 的位 6)为 1 时,CH368 支持 PC 机程序以四字节(双字)为单位对 I/0 端口或者存储器进行读写。CH368 的内部寄存器(位于 I/0 基址+0E8H 及以上地址)总是支持 PC 机程序以单字节、双字节(字)、四字节(双字)为单位存取。

执行双字节存取时,起始地址必须是基址范围内的任意字边界的地址(2 的倍数); 执行四字节存取时,起始地址必须是基址范围内的任意双字边界的地址(4 的倍数)。

6.5. 通过 I/0 读写存储器

一般情况下, CH368 的本地存储器被映射到计算机的存储器空间, 读写本地存储器是在存储器空间进行的, 为了便于在 B10S 或者 D0S 下操作寻址, CH368 还提供了一种将存储器空间转向 1/0 空间的方法, 适用于数据存取比较有序的存储器。该方法直接支持 64KB 容量的存储器, 不受存储器 4GB

空间和左俄哭其扯的影响	通过 I/0 读写存储器空间的步骤,	口下表
工问州行旧命至址引彩删。	出以 1/0 沃与什怕命工问的少称 。	ルント マスマ 。

寄存器	寄存器操作	读数据程序(ASM)	读数据程序(C/C++)
A15~A0		mov dx, PORT_ADDR	outport (PORT_ADDR,
地址设定寄存器	写入起始地址	mov ax, START_ADDR	START ADDR);
ADRSR		out dx, ax	START_ADDRY,
存储器数据	顺序读写数据	mov dx, PORT_DATA	int i;
存取寄存器	顺伊医与数据	mov di, BUFFER_ADDR	char buf[LENGTH];
1子以可1子品 MEMDR	地址自动增加	mov cx, LENGTH	for (i=0; i <length; ++i)<="" td=""></length;>
MEMUR	地址日初培加	rep insb	buf[i]=inportb(PORT_DATA);

程序中用到的常量和变量:

PORT_ADDR 代表 A15-A0 地址设定寄存器的端口地址(即: I/O 基址+OFOH);

PORT DATA 代表存储器数据存取寄存器的端口地址(即: I/O 基址+0F3H);

START ADDR 代表要存取的数据在存储器中的起始地址;

LENGTH 代表要存取的数据的长度,也就是字节数;

BUFFER ADDR 代表存放读出数据的缓冲区的起始地址: buf 为数据缓冲区。

6.6. 硬件中断

CH368 支持电平或者边沿中断请求输入,由中断控制寄存器 INTCR 的位 3 选择,其极性由位 2 选择,分别有四种:低电平有效、高电平有效、上升沿有效、下降沿有效。

在边沿中断方式下,当 INT#引脚检测到有效边沿输入后,CH368 的中断激活状态位(杂项控制和状态寄存器 MICSR 的位 2)自动设置为 1,以记忆该边沿,同时向 PCIE 总线申请中断。进入中断服务程序后,软件必须及时清除该中断激活状态位,以取消(结束)本次中断请求。

在电平中断方式下,当 INT#引脚检测到有效电平输入后,CH368 直接向 PCIE 总线申请中断。当输入电平无效后,CH368 会向 PCIE 总线取消(结束)本次中断请求。如果在 CH368 向 PCIE 总线申请中断后很快又取消中断请求,那么本次中断请求有可能会被 PC 机忽略。

如果 PC 机程序以软件方式将 CH368 的中断激活状态位设置为 1,也可以使 CH368 进入中断激活状态,从而向 PCIE 总线申请中断。这样的软件中断与由 INT#引脚外部输入导致的硬件中断具有完全相同的特性,可以用于测试 CH368 的中断功能。

标准的中断过程如下:

- ① 外部电路向 INT#引脚输出有效的中断请求信号。
- ② CH368 通过 PCIE 总线向 PC 机申请中断(对于边沿中断,需要先记忆到中断激活状态位)。
- ③ PC 机进入 CH368 的中断服务程序。
- ④ 中断服务程序进行必要的中断处理,该步骤也可以在退出中断前再执行。
- ⑤ 如果是电平中断,那么中断服务程序应该通知外部电路撤消中断请求。
- ⑥ 如果是边沿中断,那么中断服务程序必须将中断激活状态位清除为0。
- ⑦ CH368 通过 PCIE 总线撤消了对 PC 机的中断请求。
- ⑧ 中断处理完毕, PC 机退出 CH368 的中断服务程序。

6.7. 示例说明

基于 CH368 设计一块类似于打印口的 PCIE 板卡。设计约定板卡的 I/0 偏移地址 00H 是数据端口,偏移地址 01H 是状态端口,偏移地址 02H 是控制端口。当插入 PC 机后,该板卡可能被分配一个 I/0 基址 9500H,则数据端口的实际 I/0 地址是 9500H,状态端口的 I/0 地址是 9501H,控制端口的 I/0 地址是 9502H。区分各个端口是对 CH368 的 A7~A0 进行地址译码实现的,如果不需要其它端口,也可以只对 A1~A0 进行简化译码。

如果将两块完全相同的上述板卡插入 PC 机,则第二块板卡也会被系统自动分配一个 I/0 基址,但一定不会与第一块板卡的 I/0 基址相同。如果第二块板卡的 I/0 基址是 C700H,则第二块板卡的控制端口的实际 I/0 地址是 C702H,从而使得两块完全相同的 PCIE 板卡分别具有不同的 I/0 端口地址,

避免了 I/0 地址冲突。

板卡设计者和相关的应用程序事先知道各个端口的偏移地址,但是无法事先知道板卡的 I/0 基址,所以应用程序在对 PCIE 板卡进行 I/0 操作前,需要通过板卡的配置空间的 I/0 基址寄存器了解当前板卡的 I/0 基址,再由 I/0 基址加上各个端口的偏移地址计算出各个端口的实际 I/0 地址,最后根据实际 I/0 地址对各个端口进行 I/0 操作。

存储器方面与 I/O 端口类似,以 CH368 连接一个 32KB 容量的双口 SRAM 进行高速数据交换为例。如果 CH368 的存储器基址被分配为 E3050000H,则计算机程序读写物理地址范围 E3050000H~ E3057FFFH 就是读写该双口 SRAM。注意,实际的 PC 机程序通常使用转换后的虚拟地址而不是物理地址,另外,如果要在 DOS 下对存储器进行读写,可能要用支持 4GB 地址范围的系统环境。

以下是相应的读写过程示例。

- ① 向控制端口写出数据 5AH,对应 C 语言程序 "outportb(IoBase+2,0x5A)",此处变量 IoBase 等于系统自动分配的实际基地址 0x9500。执行后 CH368 的地址线 A7~A0 输出控制端口的偏移地址 02H(地址 9502 被分解为基址 9500H 和偏移地址 02H, CH368 只输出偏移地址,不输出基址), CH368 的数据线 D7~D0 输出 5AH,同时 IOP_WR 输出一个低电平脉冲,脉冲宽度由 CH368 的读写速度控制寄存器事先设定,默认是 240nS。
- ② 从数据端口和状态端口读入数据,对应 C 语言程序 "inport(IoBase+0)",返回结果的低字节是从数据端口读取的数据,高字节是从状态端口读取的数据。执行后 CH368 的地址线 A7~A0 首先输出数据端口的偏移地址 00H,同时 IOP_RD 输出第一个低电平脉冲,外部设备应该将数据输出到数据总线 D7~D0 上;然后 CH368 的地址线 A7~A0 输出状态端口的偏移地址01H,同时 IOP_RD 输出第二个低电平脉冲,外部设备应该将状态输出到数据总线 D7~D0 上。
- ③ 存储器读写与 I/O 读写类似,但有两点区别:第一是 CH368 的地址线 A14~AO 输出 15 位偏移地址,而 I/O 只有 A7~AO 输出 8 位偏移地址;第二是用 MEM_RD 引脚输出读控制信号代替 IOP_RD 引脚输出读控制信号,用 MEM_WR 引脚输出写控制信号代替 IOP_WR 引脚输出写控制信号,从而能够让外部设备区分出是存储器读写操作,而不是 I/O 端口的读写操作。

CH368 的 I/0 端口具有与存储器相同的数据传输速度,只是 PC 机在 I/0 空间的指令少于在存储器空间的指令。一般情况下,外部设备可以将控制和状态等寄存器单元映射到 I/0 空间,而将数据块交换缓冲区映射到存储器空间。

6.8. 其它应用说明

CH368 芯片的 RSTO 引脚为复位输出,低电平有效。在系统复位期间,RSTO 引脚输出低电平;在完成 SPI 接口 FlashROM 配置信息加载后,RSTO 输出高电平;然后再进行 IIC 接口 EEPROM 配置信息加载;最后 CH368 芯片进入正常工作状态,RSTO 引脚切换为通用输出引脚。

CH368 提供了 32 位数据总线静态输入寄存器 DBUSR,读取该寄存器时 I/0 和存储器的读写选通控制线都不会输出信号,所以能够读取当前本地数据总线 D31~D0 的静态数值,类似于 GPI 通用输入引脚。如果数据总线的 D6 引脚上连接了下拉电阻,则读出的数据的位 6 为 0,否则为 1。

CH368 提供了宽度为 12 位的硬件计时单元(SPICR[3:0]+CNTR),以 PCIE 总线主频的 204.8 分频为计时输入,对于 PCIE 总线的标准 100MHz 主频,硬件循环计数寄存器每隔 2.048uS 增加一个计数,从 000H 计数到 0FFFH 再循环到 000H 共需要 8388.608uS。通过比较前后两次读取的计数的差值,可以计算出实际延时,用来代替误差较大的计算机软件指令循环。

CH368 芯片的输出引脚都是 3. 3V LVCMOS 电平,兼容 5V TTL 电平,输入引脚除 PCIE 信号引脚、RD#引脚、WR#引脚、CS#引脚之外,都能够承受 5V 耐压,兼容 5V CMOS 电平、3. 3V LVCMOS 和 5V TTL及 LVTTL 电平。

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TS	储存时的环境温度	-55	125	Ĉ
VCC33	I/O 电源电压(VCC33 接电源,GND 接地)	-0. 4	4. 2	٧
VCC18	内核电源电压(VCC18 接电源,GND 接地)	-0.4	2.3	V
VCC18A	传输电源电压(VCC18A 接电源,GND 接地)	-0. 4	2. 3	V
V10	PCIE 信号和 RD#/WR#/CS#输入或者输出引脚上的电压	-0. 4	VCC33+0. 4	٧
V105	其它输入或者输出引脚上的电压	-0. 4	5. 4V	٧

7. 2. 电气参数 (测试条件: TA=25°C, VCC33=3. 3V, 不包括连接 PCIE 总线的引脚)

名称	参数说明	最小值	典型值	最大值	单位
VCC33	I/O 电源电压	3. 0	3. 3	3. 6	٧
VCC18	内核电源电压	1. 65	5 1.8	1. 95	V
VCC18A	传输电源电压				
ICC	工作时的总电源电流		230	280	mA
VIL	低电平输入电压	-0. 4		0. 7	V
VIH	高电平输入电压	2. 0		VCC33+0. 4	٧
V0L6	A11~A0 低电平输出电压(6mA 吸入电流)			0.4	٧
VOL8	IOP_RD、IOP_WR、MEM_RD、MEM_WR、RSTO、			0. 4	٧
	A15~A12 低电平输出电压(8mA 吸入电流)				
VOL	其它引脚低电平输出电压(4mA 吸入电流)			0. 4	٧
VOH	高电平输出电压(4mA 输出电流)	VCC33-0. 4			٧
IIN	无上拉的输入端的输入电流			10	uA
IUP	带上拉的输入端的输入电流	20	40	100	uA

7.3. 时序参数 (测试条件: TA=25°C, VCC33=3.3V, 参考附图)

名称	参数说明	最小值	典型值	最大值	单位
FCLK	CLK 输入频率(PCIE 总线的主频)	0	100	105	MHz
FSCL2	两线接口自动加载时 SCL 输出频率		244	260	KHz
FSCL3	三线接口自动加载时 SCL 输出频率		31	35	MHz
TINTEG	有效边沿中断的最小脉冲宽度	5			nS
TEN	IOP_RD、IOP_WR、MEM_RD、MEM_WR 读选通或写选通的低电平脉冲宽度	30	可选择 30~480	480	nS
TENS	IOP_RD、IOP_WR、MEM_RD、MEM_WR 连续选通的高电平间隔宽度	60			nS
TAS	地址 A15~A0 输出建立时间	12	可选择 15 或 45		nS
TAH	地址 A15~A0 输出保持时间	12	可选择 15 或 45		nS
TDS	数据 D31~D0 输出建立时间	12	可选择 15 或 45		nS
TDH	数据 D31~D0 输出保持时间	12	可选择 15 或 45		nS
TIS	数据 D31~D0 输入建立时间	10			nS

TIH	数据 D31~DO 输入保持时间	0			nS
TSS	SCK 上升沿之前 SCS 有效的建立时间	11	16 或 32		nS
TSH	SCK 上升沿之后 SCS 有效的保持时间	11	16 或 32		nS
TNS	SCK 上升沿之前 SCS 无效的建立时间	10			nS
TN	SCS 无效时间(SPI 操作间隔时间)	110			nS
TCH	SCK 时钟的高电平时间	13	16 或 32		nS
TCL	SCK 时钟的低电平时间	13	16 或 32		nS
TDS	SCK 上升沿之前 SDX/SDI 输入的建立时间	5			nS
TDH	SCK 上升沿之后 SDX/SDI 输入的保持时间	0			nS
TOX	SCK 下降沿到 SDX 输出有效或者改变	0	2	5	nS
TSRD	被动并行接口的读选通脉冲宽度	35			nS
TSWR	被动并行接口的写选通脉冲宽度	35			nS
TSSP	被动并行接口的两次操作之间的间隔	45			nS
TSDS	被动并行接口的数据输出有效时间	2	5	12	nS
TSDH	被动并行接口的数据输出保持时间		8	16	nS
TSAS	被动并行接口的地址输入建立时间	5			nS
TSAH	被动并行接口的地址输入保持时间	3			nS
TSIS	被动并行接口的数据输入建立时间	5			nS
TSIH	被动并行接口的数据输入保持时间	3			nS

8、应用

8.1. 连接 PCIE 总线 (下图)

这是 CH368 芯片与 PCIE 总线连接的基本电路。

图中电容用于电源退耦,容量为 10uF 的电容是钽电容,容量为 0.1uF 的电容是独石或者高频瓷片电容,分别就近并联在 CH368 的电源引脚上。

任何未用到的引脚,都可以悬空不接。

CH368 属于高频电路,在设计 PCB 板时请参考 PCIE 总线规范,或者参考 PCIE_PCB. PDF 文档。

8.2. 连接配置芯片(下图左边的电路)

CH368 支持外部 EEPROM 配置芯片 24CXX, 用于提供 VID/DID 等 PCIE 板卡的识别信息。

8.3. 连接单片机

PC 机通过 CH368 与单片机或者 DSP 进行双向数据传输,可以使用四种方式:一是使用双口 SRAM,让 CH368 和单片机能够读写同一块存储器,以大数据块为单位进行双向数据交换;二是使用双向缓冲接口芯片 CH421,分别为 CH368 写单片机和单片机写 CH368 提供 64 字节的缓冲区,以 64 字节的数据块为单位进行双向数据交换;三是使用 CH368 的被动并行接口(D31~D0,RD#,WR#,CS#,ADDR)提供异步数据交换,以一个 32 位数据为单位进行双向数据交换,不需要增加额外的硬件成本,该方式同时支持 BusMaster/DMA;四是使用 CH368 的 SPI 主机接口以字节为单位进行数据交换,不需要增加额外的硬件成本。