МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе № 7

по дисциплине «Машинное обучение»

Тема: Классификация (Байесовские методы, деревья)

Студенты гр. 6304	Григорьев И.С.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами классификации модуля Sklearn.

Ход работы

Загрузка данных

Датасет загружен в датафрейм. Вид данных представлен на рис. 1.

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Рисунок 1 – Исходные данные

Выделены данные и их метки, тексты меток преобразованы к числам. Выборка разбита на обучающую и тестовую *train_test_split*.

Байесовские методы

1. Проведена классификация наблюдений наивным байесовским методом. Выявлено 4 неправильно классифицированных наблюдения. Атрибуты классификатора представлены в табл. 1.

Таблица 1 – Атрибуты GaussianNB

Атрибут	Описание
class_count_	Количество обучающих выборок, наблюдаемых в каждом
	классе
class_prior_	Вероятность каждого класса
classes_	Метки классов, известные классификатору
epsilon_	Абсолютная аддитивная величина дисперсий
sigma_	Дисперсия каждого признака по классу
theta_	Среднее каждого признака по классу

- 2. Точность классификации получена с помощью функции score() и составляет 97%.
- 3. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 2.

Рисунок 2 – Классификация GaussianNB

4. Классификация проведена с помощью *MultinominalNB*, *ComplementNB*, *BernoulluNB*. Результат представлен на рис. 3-5.

Рисунок 3 – Классификация MultinominalNB

Рисунок 4 – Классификация ComplementNB

Рисунок 5 – Классификация BernoulluNB

MultinominalNB — полиномиальный наивный байесовский классификатор, подходит для классификации с дискретными признаками (например, подсчет слов для классификации текста). MultinominalNB реализует наивный алгоритм Байеса для полиномиально распределенных данных. Распределение для каждого класса параметризируется векторами, содержащими вероятности вхождения признаков в элемент выборки, соответствующий данному классу.

ComplementNB — адаптация MultinominalNB, подходит для несбалансированных наборов данных. В частности, CNB использует статистику из дополнения каждого класса для вычисления весов модели. ComplementNB часто превосходит MultinominalNB в задачах классификации текста.

BernoulluNB — как и MultinominalNB, этот классификатор подходит для дискретных данных. Разница в том, что в то время, как MultinominalNB работает с подсчетом вхождений, BernoulluNB предназначен для двоичных/логических признаков.

Классифицирующие деревья

- 1. Проведена классификация наблюдений с помощью деревьев решений на тех же данных. Выявлено 4 неправильно классифицированных наблюдения.
- 2. Точность классификации получена с помощью функции score() и составляет 100%.
- 3. Получившееся дерево имеет глубину, равную 3, и 4 листа.
- 4. Дерево продемонстрировано на рис. 6.

Рисунок 6 – Дерево решений для классификации

5. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 7.

Рисунок 7 – Классификация DecisionTreeClassifier

6. Исследованы параметры *DecisionTreeClassifier*, результаты представлены в табл. 2. и на рис. 8.

Таблица 2 – Парметры DecisionTreeClassifier

Параметр	Описание			
criterion	Функция измерения качества разбиения.			
	Поддерживается индекс Джини и энтропия.			
splitter	Стратегия, используемая для выбора разбиения на			
	каждом узле. Поддерживается выбор наилучшего			
	разбиения и случайный выбор.			
max_depth	Максимальная глубина дерева. Если None, то узлы			
	расширяются до тех пор, пока все листья не станут			
	чистыми или пока все листья не будут содержать менее			
	min_samples_split выборок.			
min_samples_split	Минимальное количество выборок, необходимых для			
	разделения внутреннего узла.			

min_samples_leaf

Минимальное количество выборок, которое требуется для конечного узла. Точка разделения на любой глубине будет учитываться только в том случае, если она оставляет не менее min_samples_leaf обучающих выборок в каждой из левой и правой ветвей.

Рисунок 8 – Разные функции измерения качества разбиения

Выводы

В ходе лабораторной работы рассмотрены такие методы классификации модуля Sklearn, как GaussianNB, MultinominalNB, ComplementNB, BernoulluNB и DecisionTreeClassifier.

Приложение А

Код программы на python

```
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB, MultinomialNB, ComplementNB, BernoulliNB
from sklearn import tree
# %%
data = pd.read csv('iris.data',header=None)
data
# %%
X = data.iloc[:,:4].to_numpy()
labels = data.iloc[:,4].to_numpy()
# %%
le = preprocessing.LabelEncoder()
Y = le.fit transform(labels)
# %%
Υ
# %%
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5)
# %%
gnb = GaussianNB()
y_pred = gnb.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum()) # количество наблюдений, который были неправильно опр
еделены
# %%
gnb.score(X train, y train)
def plot_clf(clf, title=""):
    test_sizes = np.arange(0.05, 0.95, 0.05)
    wrong_results = []
    scores = []
    for test_size in test_sizes:
        X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
, random_state=630405)
        y_pred = clf.fit(X_train, y_train).predict(X_test)
        wrong_results.append((y_test != y_pred).sum())
        scores.append(clf.score(X_test, y_test))
    fig, axs = plt.subplots(1, 2, figsize=(8, 4))
    axs[0].plot(test_sizes, wrong_results)
    axs[1].plot(test_sizes, scores)
    axs[0].set ylabel('Количество неправильно определенных наблюдений')
    axs[1].set ylabel('Точность классификации')
    axs[0].set_xlabel('Размер выборки')
    axs[1].set_xlabel('Размер выборки')
```

```
fig.suptitle(title)
    plt.tight_layout()
    plt.show()
plot_clf(GaussianNB(), 'GaussianNB')
plot_clf(MultinomialNB(), 'MultinomialNB')
plot_clf(ComplementNB(), 'ComplementNB')
plot_clf(BernoulliNB(), 'BernoulliNB')
clf = tree.DecisionTreeClassifier()
y pred = clf.fit(X train, y train).predict(X test)
print((y_test != y_pred).sum())
# %%
clf.score(X_train, y_train)
# %%
print('leaves: ', clf.get_n_leaves())
print('depth: ', clf.get_depth())
# %%
plt.subplots(1,1,figsize = (10,10))
tree.plot_tree(clf, filled = True)
plt.show()
# %%
plot_clf(tree.DecisionTreeClassifier(), 'DecisionTreeClassifier')
# %%
plot_clf(tree.DecisionTreeClassifier(criterion='entropy'), 'DecisionTreeClassifier')
test_sizes = np.arange(0.05, 0.95, 0.05)
wrong_results_1 = []
scores_1 = []
wrong_results_2 = []
scores_2 = []
for test size in test sizes:
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, ra
ndom_state=630405)
    clf 1 = tree.DecisionTreeClassifier()
    y_pred = clf_1.fit(X_train, y_train).predict(X_test)
    wrong_results_1.append((y_test != y_pred).sum())
    scores_1.append(clf_1.score(X_test, y_test))
    clf 2 = tree.DecisionTreeClassifier(criterion='entropy')
    y_pred = clf_2.fit(X_train, y_train).predict(X_test)
    wrong_results_2.append((y_test != y_pred).sum())
    scores_2.append(clf_2.score(X_test, y_test))
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_1)
axs[1].plot(test_sizes, scores_1)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set_xlabel('Размер выборки')
fig.suptitle('Индекс Джини')
```

```
plt.tight_layout()
plt.show()

fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_2)
axs[1].plot(test_sizes, scores_2)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set_xlabel('Размер выборки')
fig.suptitle('Энтропия')
plt.tight_layout()
plt.show()

# %%
```