Aquaculture 3/01/2022

The contribution of summer heatwaves to 'triploid mortality' in the Pacific oyster

Matthew George, Ph.D.

W

School of Aquatic & Fishery Sciences
University of Washington

Pacific Oysters – tolerance is survival

Introduction

Pacific Oyster

Introduction

Reproductive control in Pacific oysters

- 1. Various methods used to induce triploidy (tetraploid cross, heat-shock, pressure, etc.) starting in the late 1970's.
- 2. Triploid oysters have an extra chromosome set (3n).
- 3. Triploidy significantly reduces energetic investment in gonad production.
- 4. Triploid oysters have superior growth rates.
- 5. Harvesting triploids in the summer avoids the *unpleasant* taste of 'spawny' oysters.

Diploid vs. Triploid mortality in the field

Introduction

Marine Heatwaves

June 2021

Air temp 40-45°

water temp **20-35°**

Partners:

JAMESTOWN STATESTOWN

Point Whitney Shellfish Hatchery

Experimental Design

- (1) Condition
- (2) Respiration rate
- (3) Feeding rate

Experimental Design

Baseline

measurements:

- (1) Condition
- (2) Respiration rate
- (3) Feeding rate

Experimental Design

Methods

Desiccation

Methods

Respirometry

Methods

Clearance Rate

Clearance rate was defined as the amount of algae removed per unit time per oyster, corrected for oyster size

Reproductive Condition

Mortality

Mortality

Mortality

Heated

Heat + Desiccation

Clearance Rate

Summary

Conclusions

- (1) Heat stress **alone** did not result in mortality.
- (2) Multiple stressors (heat + desiccation) resulted in triploid mortality, although not at levels observed in the field.
- (3) Triploids underwent **metabolic depression** after multiple stress exposure
- (4) Triploids exhibit depressed feeding rates immediately after stress exposure.

Partners & Funding Sources

