

# CZ3005 Artificial Intelligence

#### **Propositional Logic**

Asst/P Mahardhika Pratama

Email: mpratama@ntu.edu.sg

Office: N4-02a-08



#### Illustration



□ Anil is Intelligent
□ Anil is hardworking
□ If Anil is Intelligent and Anil is Hardworking, then Anil scores a high mark

🥳 NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

# **Elements of Propositional Logic**

#### □ Symbols

Logical constants: TRUE, FALSE

Propositional symbols:
P, Q, etc.

■ Logical connectives:  $\Lambda, \vee, \Leftrightarrow, \Rightarrow, \neg$ 

Parentheses: ( )

#### Sentences

- Atomic sentences: constants, propositional symbols
- Combined with connectives, e.g.  $P \land Q \lor R$  also wrapped in parentheses, e.g.  $(P \land Q) \lor R$



# **Elements of Propositional Logic**

- □ Sentences
  - Atomic sentences: the indivisible syntactic elements
    - constants, propositional symbols
  - Complex Sentences: constructed from simpler sentences using logical connectives.
    - Combined with connectives, e.g. P  $\Lambda$  Q  $\vee$  R
- Wrapped in parentheses, e.g. (P  $\Lambda$  Q)  $\vee$  R True is the always-true proposition and False is the alwaysfalse proposition.



- ☐P is "It rains on Tuesday"
- □Q is "John likes chocolate"

P and Q are either TRUE or FALSE.

### **Logical Connective**

- $\Box$  Conjunction  $\Lambda$ 
  - Binary op., e.g. P  $\Lambda$  Q, "P and Q", where P, Q are the *conjuncts*
- ☐ Disjunction ∨
  - Binary op., e.g. P v Q, "P or Q", where P, Q are the disjuncts
- ☐ Implication ⇒
  - Binary op., e.g. P ⇒ Q, "P implies Q", where P is the premise
     (antecedent) and Q the conclusion (consequent)
  - Conditionals, "if-then" statements, or rules
- □ Equivalence ⇔
  - Binary op., e.g. P ⇔ Q, "P equivalent to Q"
     Biconditionals.
- Negation ¬
  - Unary op., e.g. ¬ P, "not P"



# Syntax of Propositional Logic

```
Sentence
                                AtomicSentence | ComplexSentence
AtomicSentence
                                LogicalConstant | PropositionalSymbol
ComplexSentence
                                (Sentence)
                                 Sentence LogicalConnective Sentence
                                 ¬Sentence
LogicalConstant
                                        TRUE | FALSE
PropositionalSymbol
                                \rightarrow P|Q|R|...
LogicalConnective
                                \rightarrow \Lambda \mid \vee \mid \Leftrightarrow \mid \Rightarrow \mid \neg
```

Precedence (from highest to lowest):  $\neg$ ,  $\Lambda$ ,  $\vee$ ,  $\Rightarrow$ ,  $\Leftrightarrow$ 

e.g.:  $\neg P \land Q \lor R \Rightarrow S$  (not ambiguous), eq. to:  $(((\neg P) \land Q) \lor R) \Rightarrow S$ 



- □Let P stands for Intelligent(Anil)
- □ Let Q stands for Hardworking(Anil)
- $\square$ What does P  $\wedge$  Q mean ?
- □What does P ∨ Q mean?
- $P \wedge Q$ ,  $P \vee Q$  are compound proposition



Use parenthesis to ensure that the syntax is completely unambiguous:

- $(A \land B) => C \text{ and } A \land (B => C)$
- ☐ A: John likes Kate.
- □ B: John likes Chocolate.
- ☐ C: John buys Chocolate

If John likes Chocolate, then John buys Chocolate:

$$B = > C$$



# **Semantic of Propositional Logic**

- □ Interpretation of symbols
  - Logical constants have fixed meaning
    - True: always means the fact is the case; valid
    - False: always means the fact is not the case; unsatisfiable
  - Propositional symbols mean "whatever they mean"
    - e.g.: **P** "we are in a pit", etc.
    - Satisfiable, but not valid (true only when the fact is the case)
- □ Interpretation of sentences
  - Meaning derived from the meaning of its parts
    - Sentence as a combination of sentences using connectives
  - Logical connectives as (boolean) functions:

TruthValue f (TruthValue, TruthValue)











P: likes(Joyce,Richard)

Q: Know(Budi, Andi)

World: Joyce likes Richard and Budi knows Andi

$$P\Lambda Q=?$$

$$P\Lambda \neg Q = ?$$



# **Validity**

- A sentence is valid if it is true in all models.
- Valid sentences are known as tautologies
  - necessarily true or vacuously true.
- Every valid sentence is logically equivalent to True.



### Satisfiability

- ☐ A sentence is **satisfiable** if it is true in **some** models.
- ☐ Satisfiability can be checked by enumerating the possible models until one is found that satisfies the sentence.
- ☐ Most problems in computer sciences are satisfiability problems.
  - E.g., Constraint satisfaction problem,
     Search problems.





- ☐ Interpretation of symbols
  - Logical constants have fixed meaning
    - True: always means the fact is the case; valid
    - False: always means the fact is not the case; unsatisfiable
  - Propositional symbols mean "whatever they mean"
    - e.g.: P: "we are in a pit", etc.
    - Satisfiable, but not valid (true only when the fact is the case)

#### **Truth Table**



| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |

Truth tables for the five logical connectives



# **Testing for Validity and Satisfiability**

- ☐ Testing for validity
  - Using truth-tables, checking all possible configurations
    - e.g.:  $((P \lor Q) \land \neg Q) \Rightarrow P$

| Р     | Q     | $P \lor Q$ | ¬ Q   | (P∨Q) Λ ¬Q | $((P \lor Q) \land \neg Q) \Rightarrow P$ |
|-------|-------|------------|-------|------------|-------------------------------------------|
| False | False | False      | True  | False      | True                                      |
| False | True  | True       | False | False      | True                                      |
| True  | False | True       | True  | True       | True                                      |
| True  | True  | True       | False | False      | True                                      |



Show whether  $(A \land B) => C$  and  $A \land (B => C)$  is valid, unsatisfiable, or neither.

| Α | В | С | A∧B | B => C | (A ∧B) => C | A ∧ (B => C) |
|---|---|---|-----|--------|-------------|--------------|
| 1 | 1 | 1 | 1   | 1      |             |              |
| 1 | 1 | 0 | 1   | 0      |             |              |
| 1 | 0 | 1 | 0   | 1      |             |              |
| 1 | 0 | 0 | 0   | 1      |             |              |
| 0 | 1 | 1 | 0   | 1      |             |              |
| 0 | 1 | 0 | 0   | 0      |             |              |
| 0 | 0 | 1 | 0   | 1      |             |              |
| 0 | 0 | 0 | 0   | 1      |             |              |

#### Quiz



#### Go to Kahoot.it