Lecture 4

David Armstrong

STATS 67 - UCI

Discrete Random Variables

- Variable: A quantity that may take different values.
- Random variable: A variable that may assume different values with certain probabilities.
 - One way to think of it as a function that assigns a real number to each outcome in the sample space.
 - A discrete random variable is one who can only be discrete values (integers).
 - A discrete random variable has countably many outcomes.
 - For now, we will focus on bounded discrete random variables.
- Examples of a discrete random variable:
 - Flip a coin 3 times. Then $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$.
 - Let X be a random variable that is equal to the number of heads in 3 flips of a coin.
 - X can be 0,1,2, or 3.

Another example is the number of days you do an activity each week.

-X can be 0,1,2,3,4,5,6 or 7.

Discrete Random Variables

- Denote the support of X as \mathbb{S}_X .
- The *support* of X is the space of values which X has a positive probability of occurring.
 - Notationally, $X: S \to \mathbb{S}_X$
- An example is flipping a coin once.
- $\bullet \ S = \{T, H\}.$
- If we let X be equal to the number of heads (this is the same as setting heads to equal 1 and tails to equal 0).
- Then $S_X = \{0, 1\}.$
- In the example on the previous slide with 3 coin flips, $\mathbb{S}_X = \{0, 1, 2, 3\}.$
- In the example on the previous slide with days per week an activity is done, $\mathbb{S}_X = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

Continuous Random Variables

- If \mathbb{S}_X is continuous, then the random variable X is continuous.
 - -X can be any number in a given range.
 - There are uncountably many possible values of X.
 - Examples include the height of a person, the blood pressure of a subject, or the distance a vehicle travels.
- The concept of the support of a random variable is an important one.
- Once the appropriate random variable is specified, we can focus only on the support of it as opposed to the entire sample space.
- Example: If we flip a coin 100 times and interested in the number of heads seen.
 - What does X represent?
 - How many elements are in the sample space?
 - What is the support of the random variable X?

Discrete Random Variables

- ullet Assume we flip a coin 3 times and let X be the number of heads.
 - What does X = 0 represent?
 - What is the probability all three of the flips land in tails?
 - What is the probability that X = 1
 - What is the probability that X = 2
 - What is the probability that X = 3
 - Is this a valid distribution?

The probability distribution of X assigns a number to all values x in \mathbb{S}_X such that:

- $0 \le P(X = x) \le 1$

Notationally we state f(x) = P(X = x). With discrete random variables, f(x) is termed the probability mass function (p.m.f.).

- \bullet From here on out, we will refer to X as the random variable.
- We will denote x as the values that X can be.
- For example flipping a coin 3 times, and setting X to be the number of heads.
 - -X is the random variable.
 - X can be set equal to x where x = 0, 1, 2, or 3.
- \bullet For example the number of days a week an activity is done, and setting X to be the number of days.
 - -X is the random variable. It can equal to x where x = 0, 1, 2, 3, 4, 5, 6, or 7.

Returning to the example of flipping a coin 3 times. A distribution table for X, the number of heads, can be constructed below.

	x = 0	x = 1	x = 2	x = 3	Total
P(X=x)					

Note that functions of the random variable X are also random variables.

- For example X^2 .
- In the number of heads in 3 coin flips, $\mathbb{S}_X = \{0, 1, 2, 3\}$
- The support of X^2 will be $\mathbb{S}_{X^2} = \{0, 1, 4, 9\}$

- With the p.m.f. of a discrete random variable, we can compute quantities such as P(X < a) or $P(a \le X < b)$ for some set constants of a and b.
- The *cumulative distribution function* (cdf) of a random variable at value X is $P(X \le x)$.
- Notationally this is $F(x) = P(X \le x) = \sum_{\tilde{x} \le x} P(X = \tilde{x})$
 - It is the sum of all probabilities which have $X \leq x$.
- A useful rule to remember when calculating cdf's is the law of the complement, $P(X \le a) = 1 P(X > a)$.

Assume we roll a die once. Let X equal to the number that shown, then we can create the following distribution table.

	x = 0	x = 1	x=2	x = 3	x = 4	x = 5	x = 6
P(X=x)							

• Calculate f(3)

• Calculate F(3).

• What is the probability of rolling a number greater than 1 but less than 5.

• Calculate F(5)

Properties of discrete random variables

- Let a be a value of x. $P(X < a) = P(X \le a 1)$.
- $P(X > a) = P(X \ge a + 1)$
- ullet Let a and b be constants specified by you. Something that looks counter intuitive, but holds true for discrete distributions.

$$- P(a \le X \le b) = P(X \le b) - P(X < a).$$

$$- P(a < X \le b) = P(X \le b) - P(X \le a).$$

The p.m.f. completely determines the probability distribution of a discrete random variable.

- The expectation of X can be viewed as the mean or average of X.
- \bullet Within a frequentist framework, it can be seen as the average of X across many trials of the experiment.
- The expectation of X is denoted as E(X).

•
$$E(X) = \sum_{x \in S_X} x P(X = x) = \sum_{x \in S_X} x f(x).$$

• Can be viewed as averaging over all possible X values while weighting each possible value by its probability.

Discrete Random Variables: Expectation

Returning to the example of flipping a coin 3 times. A distribution table for X, the number of heads, can be constructed as follows.

	x = 0	x = 1	x = 2	x = 3
P(X=x)	$\left(\frac{1}{2}\right)^3$	$3\left(\frac{1}{2}\right)^3$	$3\left(\frac{1}{2}\right)^3$	$\left(\frac{1}{2}\right)^3$

What is the expectation of X?

•
$$E(X) = \sum_{x \in S_X} x f(x)$$

• The expectation of X can be viewed as the average number of heads seen when we repeatedly (a large number of times) flip a coin 3 times.

Discrete Random Variables: Expectation

- \bullet Remember that functions of X are also random variables.
- We can set h(X) and g(X) to be a function of X.
 - Example: $h(X) = X^2$.
 - Example: $g(X) = \frac{1}{X}$.
- We can take expectation of these functions without having to first find the distribution of h(X) first.

$$- E(h(X)) = \sum_{x \in S_X} h(x)P(X = x) = \sum_{x \in S_X} h(x)f(x).$$

• Just like with X, E(h(X)) can be viewed as averaging over all possible h(X) values while weighting each possible value by the probability of X.

Properties of expectations.

- If a and b are constants and X is a random variables, then E(a+bX)=a+bE(X).
- If X and Y are random variables, then E(X + Y) = E(X) + E(Y).
 - As a result if a and b are constants, then E(aX + bY) = aE(X) + bE(Y)
 - As a further result, let X_i be random variables and a_i 's be constants.

$$- \operatorname{E}\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i} \operatorname{E}(X_{i})$$

Discrete Random Variables: Expectation

Example: Say X is the number of days a student is registered to take classes at University of California.

x	1	2	3	4	5
f(x)	0.10	0.30	0.25	0.25	0.10

- What is the expectation of X?

- What is the expectation of 5 + 3X?

– Let $h(X) = X^2$. What is the expectation of h(x)?

- let $g(X) = \frac{1}{X}$. What is the expectation of g(X)