Relatório de Análise Preditiva e Exploratória em Dados Cinematográficos

Análise Exploratória de Dados (EDA)

A questão central foi:

"Quais são os principais fatores que estão relacionados com alta expectativa de faturamento de um filme?"

Para responder essa questão segui o passo a passo abaixo:

1. Limpeza de Dados

Após utilizar o comandos df.head() e df.info() para ter uma noção melhor das características do meu dataframe, notei a necessidade de:

- Remoção da coluna **Unnamed: 0** que não continha nenhum dado a ser usado na análise
- Conversão dos dados das colunas Gross, Runtime e
 Released_Year para valores numéricos dos tipos float e int

A coluna **Released_Year** tinha um único dado do tipo *str* com valor **PG**, que foi substituído pelo dado real **1995** após uma busca rápida no próprio site do IMDB

- Tratamento de valores ausentes:
 - Uso de mediana para variáveis numéricas (colunas Meta_score e Gross)
 - Criação da categoria "Not Rated" para valores ausentes na coluna Certificate

2. Distribuição de Faturamento

Alguns insights foram descobertos ao investigar mais a fundo a correlação da coluna de faturamento com as demais variáveis dos filmes. São eles:

- A maioria dos filmes tem faturamento modesto
- Blockbusters criam uma **cauda longa** que distorce a média, mas são cruciais para o lucro do estúdio
- IMDB Rating vs. Faturamento: uma boa nota não garante sucesso financeiro
- Número de Votos vs. Faturamento: forte correlação positiva → filmes populares tendem a arrecadar mais
- Gêneros mais lucrativos: Ação, Animação e Aventura
- **Diretores e atores renomados**: Estão associados a filmes de maior faturamento

Recomendação de Filme

Uma outra questão proposta foi "Qual filme você recomendaria para uma pessoa que você não conhece?"

Para responder essa pergunta, utilizei os insights já mencionados e me vali da seguinte linha de raciocínio:

1. Aplicação de filtros:

- Popularidade alta (top 25% em votos)
- Qualidade elevada (IMDb > 8.5)
- Gêneros mais lucrativos
- Diretores e atores renomados
- Bons números de bilheteria

Recomendação principal: *The Departed (2006, Dir. Martin Scorsese)*, que atualmente está na posição 38 do top 250 do IMDB e foi vencedor do Oscar de Melhor Filme.

Análise de Texto

Uma outra questão proposta foi "Quais insights podem ser tirados com a coluna Overview? É possível inferir o gênero do filme a partir dessa coluna?"

A coluna Overview contém texto não estruturado, o que exige uma abordagem diferente da análise de números. O objetivo é extrair significado de todas as sinopses. A técnica mais comum para começar é a Análise de Frequência, que dirá quais são os temas mais recorrentes nos filmes.

Para isso, é necessário seguir três etapas de pré-processamento de texto:

Etapa 1: Preparação do Ambiente e Limpeza de Texto

Instalar os pacotes necessários e preparar o texto de forma a manter apenas caracteres e palavras que contêm significado

Etapa 2: Análise de Frequência e Visualização

Determinar quantas e quais palavras observar

Etapa 3: Inferir o Gênero a partir da Sinopse

É possível, mas com limitações. A tarefa de prever uma categoria (como

o gênero) a partir de texto é um problema de **classificação** em Machine Learning. Para construir um modelo capaz de fazer essa previsão, precisaria de técnicas mais avançadas, como Vectorização de Texto e a construção de um Modelo de Classificação com um algoritmo apropriado para essa tarefa.

Na prática, a precisão do modelo dependeria de quão "únicos" os vocabulários de cada gênero são. Por exemplo, filmes de "guerra" provavelmente teriam palavras como "soldier" e "battle" em suas sinopses, enquanto filmes de "terror" teriam "fear" e "ghost". No entanto, muitos gêneros, como Drama e Romance, podem compartilhar um vocabulário similar, o que tornaria a inferência mais difícil.

De modo geral, embora o problema seja complexo, as ferramentas e a lógica para resolvê-lo estão disponíveis e provavelmente seriam a próxima fase do projeto.

Modelagem Preditiva

Metodologia e resultados

Objetivo: prever a nota do IMDB de um filme (regressão). Foram escolhidas como variáveis preditoras No_of_Votes, Gross, Meta_score, Genre, Director e Star1, sendo IMDB_Rating a variável alvo.

O pré-processamento agrupa as transformações em um pipeline: as variáveis categóricas (Genre, Director, Star1) são codificadas por One-Hot Encoding (com handle_unknown='ignore') via ColumnTransformer, enquanto as variáveis numéricas (No_of_Votes, Gross, Meta_score) são mantidas inalteradas. Como modelo, utilizou-se um Random Forest Regressor (100 árvores, random_state=42) por sua robustez a outliers e habilidade de capturar relações não lineares.

Os dados foram divididos em treino e teste (80/20, random_state=42) e o pipeline completo foi treinado e serializado em imdb_rating_predictor.pkl para uso em inferência. Ao carregar o pipeline e aplicar ao registro de The Shawshank Redemption (com conversão de Gross de string para float), a previsão gerada foi 8.77.

Observações e recomendações: validar o modelo com k-fold cross-validation, avaliar métricas (RMSE, MAE, R²), inspecionar importâncias de variáveis (e/ou usar SHAP) e investigar possíveis problemas de target leakage (por exemplo, quando features como No_of_Votes só existem ou mudam após o lançamento).

Para produção, manter a serialização do pipeline evita divergências de pré-processamento entre treino e previsão.