Math 3137 - Homework 1

- 1. Rudin, Ch 1, # 1, 4, and 5.
- 2. Let \mathbb{F} be a field and x, y and elements of \mathbb{F} . Prove the following using only the field axioms and the property of cancellation.
 - (i) If x + y = x then y = 0 (The additive identity is unique)
 - (ii) If x + y = 0 then y = -x (The additive inverse is unique)
 - (iii) If $x \neq 0$ and xy = x then y = 1 (The multiplicative identity is unique)
 - (iv) If $x \neq 0$ and xy = 1 then y = 1/x (The multiplicative inverse is unique)
- 3. Let \mathbb{F} be an ordered field and $x, y, z \in \mathbb{F}$ arbitrary. Prove the following cancellation laws
 - (a) If x + y < x + z then y < z.
 - (b) If xy < xz and x > 0, then y < z.