

DEPARTMENT OF DECISION SCIENCE FACULTY OF BUSINESS UNIVERSITY OF MORATUWA

SEMESTER 04

DA2111 - Statistical and Machine Learning

Assignment

Wine Quality Classification Report

Table of Contents

1.	Data Set Selection and Associated Task	1
2.	Problem Definition	1
3.	Data Exploration and Preprocessing	2
4.	Exploratory Data Analysis (EDA)	3
5.	Model Selection	3
6.	Model Training and Evaluation	4
7.	Hyperparameter Tuning	5
8.	Comparison and Conclusion.	5
9.	Challenges and How They Were Addressed	6
10.	Final Thoughts	6

1. Data Set Selection and Associated Task

- Dataset: Wine Quality (from UCI Machine Learning Repository)
- Task: Classification
- **Description**: This project involves predicting wine quality based on various chemical properties.
- **Objective**: Classifying wine quality can help producers maintain consistent quality and support quality control efforts.

2. Problem Definition

- **Target Variable**: quality (predicting high or low quality based on chemical features)
- Predictive Features:
 - o Chemical characteristics (e.g., fixed acidity, volatile acidity, citric acid, density, pH, sulphates, alcohol).
- **Research Question**: "Can wine quality be accurately predicted using chemical properties, and which machine learning model offers the highest accuracy?"

3. Data Exploration and Preprocessing

• Dataset Summary:

- o The red wine dataset has 1,599 entries, and the white wine dataset has 4,898 entries.
- Both datasets contain 13 columns, including 12 features and the target variable (quality).

• Handling Missing Values(Handling NULL Values):

 No missing values were detected, so preprocessing could proceed without imputation.

Outlier Detection and Removal:

 Applied Interquartile Range (IQR) method to remove extreme values in continuous variables. Outliers were identified and removed, improving data quality and model robustness.

• Encoding Target Variable:

o Transformed quality into a binary classification (1 = high quality, 0 = low quality), using a threshold to distinguish between high and low quality wines.

• Scaling:

 Applied StandardScaler to normalize features, enabling better performance in models sensitive to scale differences.

4. Exploratory Data Analysis (EDA)

• Feature Distribution:

 Histograms were used to visualize distributions. Features like residual sugar and citric acid displayed right-skewed distributions, indicating a minority of wines with high values.

• Quality Distribution:

 Observed imbalance between high and low quality, particularly in red wines, where low-quality samples dominate.

• Correlation Analysis:

- o Generated a heatmap to assess feature correlations.
 - Notable correlations:
 - Strong positive correlation between alcohol and quality.
 - Moderate negative correlation between volatile acidity and quality, suggesting lower acidity aligns with higher quality.

5. Model Selection

Chosen Models and Justification:

- Logistic Regression: Provides a simple baseline with linear decision boundaries.
- Decision Tree: Capable of handling non-linear relationships and easily interpretable.
- Random Forest: Ensemble model that aggregates multiple decision trees, enhancing accuracy and robustness.
- Support Vector Machine (SVM): Effective for binary classification, useful for capturing non-linear relationships with kernel functions.

6. Model Training and Evaluation

• Data Splitting:

o Data split into training (80%) and testing (20%) sets for validation.

• Class Imbalance Handling:

- o Given the imbalance between high- and low-quality wines, I applied class balancing techniques to improve model performance:
 - Class Weights: For Logistic Regression, Decision Tree, and SVM, I used class_weight='balanced' to assign higher weights to the minority class, ensuring the model gives equal attention to both classes during training.
 - **Random Forest**: The class_weight='balanced' parameter was also set, which adjusted weights dynamically based on class frequency, reducing bias toward the majority class.

• Evaluation Metrics:

For binary classification of quality, used accuracy, precision, recall,
 F1-score, and confusion matrices.

Performance:

- o **Logistic Regression**: 71% accuracy; served as a strong baseline.
- o **Decision Tree**: Achieved 82% accuracy with good interpretability.
- Random Forest: Reached 88% accuracy, excelling due to ensemble averaging.
- SVM: Performed at 74% accuracy; showed potential with further feature engineering.

• Overfitting Check:

 Compared train and test accuracy; Random Forest showed slight overfitting, whereas other models maintained balanced performance.

7. Hyperparameter Tuning

• Random Forest Tuning:

Parameters tuned using GridSearchCV:

• n_estimators: [50, 100, 200]

max_depth: [None, 10, 20, 30]

o Optimal parameters: n estimators=100, max depth=30

• Results After Tuning:

 Accuracy of Random Forest improved to 88.36% on the test set, indicating enhanced performance and stability.

8. Comparison and Conclusion

• Model Comparison:

- Random Forest (tuned): Best performance (88.36%) with minimal overfitting.
- Decision Tree: Performed well (82% accuracy) but was less robust than Random Forest.
- SVM: Moderate accuracy; potentially useful with refined feature selection.
- Logistic Regression: Effective baseline, though limited by linear assumptions.

• Conclusion:

 Random Forest proved to be the most effective model for predicting wine quality, highlighting the advantage of ensemble learning for complex data.

9. Challenges and How They Were Addressed

Outlier Detection:

- o Challenge: High variability among chemical properties.
- Solution: IQR method effectively removed outliers, stabilizing model performance.

• Class Imbalance:

- o Challenge: More low-quality samples, especially in red wine.
- Solution: Evaluated metrics carefully and could consider resampling if further balancing is needed.

• Hyperparameter Tuning:

- o Challenge: Time-intensive for Random Forest.
- Solution: GridSearchCV enabled efficient tuning, balancing accuracy and training time.

10.Final Thoughts

• Best Model Selection:

 The tuned Random Forest model was the optimal choice, balancing accuracy and generalizability for predicting wine quality.

• Insights Gained:

- Comprehensive preprocessing, scaling, and iterative tuning are essential for enhancing classification model performance.
- Ensemble models like Random Forest significantly improve accuracy in complex datasets.