Lecture 15: Texture Mapping

Nov 05, 2024
Won-Ki Jeong
(wkjeong@korea.ac.kr)

Outline

- Texture mapping
- Sampling theory
- Anti-aliasing
- Min/Mag filtering

Limitation of Geometric Modeling

- Requires many polygons to represent complex scenes
 - Clouds
 - Grass
 - Terrain
 - Skin
 - Brick walls
 - - ...

Example: Modeling an Orange

- Methon I:An orange-colored sphere
 - Too simple
- Method 2: Replace sphere with a complex shape
 - No surface characteristics (e.g., small dimples)
 - Too many polygons to model all dimples
- Method 3: Use picture of orange to paste onto the object
 - Texture mapping
 - Still surface is smooth
- Method 4: Altering the surface normal
 - Bump mapping

Texture Mapping

- Glue n-dimensional images onto geometrical objects
 - Different coordinate systems involved

Coordinate Systems

- Parametric coordinates
 - Used to model parametric curves and surfaces
- Texture coordinates
 - Used to identify points in the image to be mapped
- Object or World Coordinates
 - Where the mapping takes place
- Window Coordinates
 - Where the final image is really produced

Texture Mapping

Texture Coordinate

Outside Range

- What if (u,v) > 1.0 or < 0.0?
- Repeat
 - Integer part is dropped (e.g., (1.2, 2.3)->(0.2,0.3))
- Mirror
 - Continuity across edges
- Clamp, Border

R R R R R R R R R

Akenine-Möller

Issues in Texture Mapping

- Sampling problems
 - Texture map and rendered image are not 1:1 mapping
 - Aliasing, magnification, minification

Sampling and Reconstruction

- Sampling
 - From continuous to discrete
- Reconstruction
 - From discrete to continuous

Nyquist Rate

- Sampling rate must be greater than 2x max freq.
 - If not, Aliasing!

4x max freq

2x max freq

Nyquist Rate

- Sampling rate must be greater than 2x max freq.
 - If not, Aliasing!

1.25x max freq

What is Frequency in Graphics?

- Frequency implies
 - How fast the signal changes
 - Smoothness
- Sampling in graphics is prone to *aliasing*
 - Artifact due to discrete sampling from continuous function
 - Sharp edges & corners of polygons
 - Shadow boundaries

Aliasing

Point sampling can lead to aliasing errors

Aliasing

GPU Gems

Antialiasing: Area Averaging

Region instead of point

Antialiasing: Supersampling

Use more than one sample per pixel

Different Supersampling

- w are the weights in [0,1]
- c is the color sample inside pixel

Antialiasing

GPU Gems

Antialiasing

Polygon Aliasing

- Aliasing problems can be serious for polygons
 - Jaggedness of edges
 - Small polygons neglected
 - Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color

Reconstruction

Basis Filters

Box Filter

Nearest neighbor

$$f(x) = \sum_{i} s(i)B(x-i)$$

Tent Filter

Linear interpolation

$$f(x) = \sum_{i} s(i)B(x-i)$$

Sinc Filter

Theoretically ideal, but not practical

$$f(x) = \sum_{i} s(i)B(x-i)$$

Cubic Filters

Smooth and compact support

Texture Magnification

- Hardly get I:I mapping
- Reconstruction and resampling

Texture Magnification

- Zoom in
- Linear (Tent filter) is better than nearest neighbor (box filter)

Nearest neighbor

Linear interpolation

Texture Magnification

- Zoom in
- Cubic is better than linear

Magnification using Reconstruction

- Local averaging using filter kernel
 - Nearest neighbor : I sample
 - Linear interpolation : 2 samples
 - Cubic interpolation : 4 samples

$$f(x) = \sum_{i} s(i)B(x-i)$$

Bilinear Interpolation

$$(u',v')=(p_u-\lfloor p_u\rfloor,p_v-\lfloor p_v\rfloor).$$

$$\mathbf{b}(p_u, p_v) = (1 - u')(1 - v')\mathbf{t}(x_l, y_b) + u'(1 - v')\mathbf{t}(x_r, y_b) + (1 - u')v'\mathbf{t}(x_l, y_t) + u'v'\mathbf{t}(x_r, y_t).$$

Bicubic Interpolation

$$CINT_{x}(p_{-1}, p_{0}, p_{1}, p_{2}) = \frac{1}{2} \begin{pmatrix} -x^{3} + 2x^{2} - x \\ 3x^{3} - 5x^{2} + 2 \\ -3x^{3} + 4x^{2} + x \\ x^{3} - x^{2} \end{pmatrix} \cdot \begin{pmatrix} p_{-1} \\ p_{0} \\ p_{1} \\ p_{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x((2-x)x - 1) \\ x^{2}(3x - 5) + 2 \\ x((4-3x)x + 1) \\ (x-1)x^{2} \end{pmatrix} \cdot \begin{pmatrix} p_{-1} \\ p_{0} \\ p_{1} \\ p_{2} \end{pmatrix}$$

Comparison

Texture Minification

- Zoom out
- Need filter to reduce aliasing
- Average of texels inside a pixel
 - Still too expensive to do real-time

Mipmapping

- Pre-filtered image pyramid
- 4-to-I average
- Process

Compute d

Pick two closest images

- Bilinear interpolation

Mipmapping

- Interpolate between bilinear values
 - Trilinear interpolation
- Constant time filtering
 - 8 texels per sampling

How to compute d?

Compute d for Mipmapping

pixel projected to <u>texture space</u>

A = approximative area of quadrilateral

$$b = \sqrt{A}$$

$$d = \log_2 b$$

- Approximate quad with square
- Problem: overblur

Anisotropic Texture Filtering

Questions?

First bump mapping image by Jim Blinn in his paper "Simulation of Wrinkled Surfaces" published in 1978

