1 Crescimento e decrescimento de funções

Definição 1.1. Dizemos que uma função f, definida em um intervalo I, é crescente neste intervalo se para quaisquer $x_1, x_2 \in I$, tal que $x_1 < x_2$ então temos que $f(x_1) \le f(x_2)$.

Definição 1.2. Dizemos que uma função f, definida em um intervalo I, é decrescente neste intervalo se para quaisquer $x_1, x_2 \in I$, tal que $x_1 < x_2$ então temos que $f(x_1) \ge f(x_2)$.

Definição 1.3. Seja f uma função. O ponto $c \in D(f)$ tal que f'(c) = 0 ou f'(c) não existe \acute{e} chamado de ponto crítico.

Proposição 1.4. Seja f uma função contínua no intervalo [a,b] e derivável no intervalo (a,b).

- i) Se f'(x) > 0 para todo $x \in (a,b)$ então f é crescente em [a,b];
- ii) Se f'(x) < 0 para todo $x \in (a,b)$ então $f \notin decrescente$ em [a,b];

Exemplo 1.5. Consiedere a função $f(x) = -4x^3 + 3x^2 + 18x$. Determine os pontos críticos de f e os intervalos onde f é crescente e decrescente.

2 Máximos e mínimos (relativos) de funções

Definição 2.1. Uma função f tem um máximo relativo em um ponto $c \in D(f)$, se existir um intervalo aberto I dentro do domínio de f, contendo c, tal que $f(c) \ge f(x)$ para todo $x \in I$.

Definição 2.2. Uma função f tem um mínimo relativo em um ponto $c \in D(f)$, se existir um intervalo aberto I dentro do domínio de f, contendo c, tal que $f(c) \leq f(x)$ para todo $x \in I$.

Observe que no gráfico acima, a função tem um máximo relativo nos pontos x_1 e x_3 e mínimo relativo em x_2 e x_4 .

Proposição 2.3. Os candidatos a máximo e mínimo relativos de uma função f são os pontos críticos.

Proposição 2.4 (Critério da primeira derivada para determinar extremos de uma função). Seja f uma função derivável em um intervalo [a,b] e $c \in [a,b]$ um ponto crítico de f. Então:

- i) Se f'(x) > 0 para todo x < c e f'(x) < 0 para todo x > c. Então f tem um máximo relativo em c.
- ii) Se f'(x) < 0 para todo x < c e f'(x) > 0 para todo x > c. Então f tem um mínimo relativo em c.

Exemplo 2.5. Consiedere a função $f(x) = -4x^3 + 3x^2 + 18x$. Determine os pontos de máximo e mínimo relativos de f (caso existam).

3 Máximos e mínimos (absolutos) de funções

Seja f uma função definida em um intervalo fechado [a,b] e $c \in [a,b]$.

Definição 3.1. Dizemos que a função f tem um ponto de máximo absoluto em c se $f(c) \ge f(x)$ para todo $x \in [a, b]$.

Definição 3.2. Dizemos que a função f tem um ponto de mínimo absoluto em c se $f(c) \leq f(x)$ para todo $x \in [a, b]$.

Proposição 3.3. Toda função contínua f definida em um intervalo fechado [a, b] possui, pelo menos um, ponto de máximo absoluto e, pelo menos um, ponto de mínimo absoluto em [a,b].

Observação 3.4. Os candidatos a máximo e mínimo absoluto de f no intervalo [a, b] são: i) Os pontos críticos de f que estão em [a,b]; e ii) Os extremos do intervalo.

Exemplo 3.5. Determine os pontos de máximo e mínimo absolutos de f nos respectivos intervalos.

$$a)f(x) = 3x^2 - 3x + 4; [0,3]$$
 $b)f(x) = \cos(3x); [0,2\pi]$ $c)f(x) = \sin^3 x + 1; [0,\frac{\pi}{2}]$

$$b)f(x) = \cos(3x); [0, 2\pi]$$

$$c)f(x) = \sin^3 x + 1; [0, \frac{\pi}{2}]$$

Concavidade de funções 4

Proposição 4.1. Seja f uma função contínua no intervalo [a, b] e possui derivada de segunda ordem no intervalo (a,b). Então:

- i) Se f''(x) > 0 para todo $x \in (a,b)$ então $f \notin c\hat{o}ncava$ para cima em (a,b);
- ii) Se f''(x) < 0 para todo $x \in (a,b)$ então $f \notin c\hat{o}ncava$ para baixo em (a,b);

5 Regra de L'Hospital

Sejam $f \in q$ funções deriváveis num intervalo I, exceto possivelmente em um ponto $a \in I$. Suponhamos que $g'(x) \neq 0$ para todo $x \neq a$ em I.

a) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Então $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$.
b) Se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Então $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$.

b) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$
 e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Então $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$

Observação 5.1. A Regra de L'Hospital também é válida para os limites laterais e para os limites no infinito.

6 Assíntotas de funções

Definição 6.1. (Assíntota vertical) A reta x = a é uma assíntota vertical do gráfico de uma função f(x) se, pelo menos uma das seguintes afirmações for verdadeira: $\lim_{x\to a^+} f(x) = \pm \infty$ ou $\lim_{x\to a^-} f(x) = \pm \infty$.

Definição 6.2. (Assíntota horizontal) A reta y = b é uma assíntota horizontal do gráfico de uma função f(x) se, pelo menos uma das seguintes afirmações for verdadeira: $\lim_{x \to +\infty} f(x) = b$ ou $\lim_{x \to -\infty} f(x) = b$.

Exemplo 6.3. Determine as assíntotas verticais e horizontais (caso existam) de cada uma das funções:

$$a)f(x) = \frac{x^2}{x^2 - 4}$$
 $b)f(x) = \frac{1}{\sqrt{x + 4}}$ $c)f(x) = tg(x)$

7 Exercícios

1) Para cada uma das funções h(x) abaixo. a) Encontre o domínio de h; b) Encontre os pontos críticos de h; c) Determine os intervalos de crescimento e decrescimento de h; d) Encontrar os máximos e mínimos relativos de h; e) Determinar a concavidade e os pontos de inflexão de h; f) Encontrar as assíntotas horizontais e verticais (se existirem); g) Faça um esboço do gráfico de h.

$$a)h(x) = \frac{x^2}{x-3} \qquad b)h(x) = x^4 - 32x + 48 \qquad c)h(x) = \frac{1}{4}x^4 - 2x^3 - \frac{1}{2}x^2 + 30x + 10$$

$$(d)h(x) = e^{x-x^2}$$
 $(e)h(x) = \ln(x^2 + 1)$ $(f)h(x) = \frac{x}{x^2 - 9}$ $(e)h(x) = \frac{1}{x^2 - 9}$