ΤΥΠΟΛΟΓΙΟ ΜΑΣ061

Α. Περιγραφική Στατιστική

Δειγματικής μέσος:
$$\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i,$$
 Δειγματική διασπορά: $S^2=\frac{1}{n-1}\left(\sum_{i=1}^n x_i^2-n\bar{x}^2\right),$ Δειγματική τυπική απόκλιση: $S=\sqrt{S^2}$

Β. Πιθανότητες

- Αθροιστικός Νόμος: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Πολλαπλασιαστικός Νόμος: $P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$
- Θεώρημα Ολικής Πιθανότητας: $P(B) = P(B|A) \cdot P(A) + P(B|A') \cdot P(A')$
- Θεώρημα Bayes: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

Γ. Τυχαίες Μεταβλητές και Κατανομές

- Μέση τιμή τυχαίας μεταβλητής: $\mu = E(X) = \sum x_i f(x_i)$
- Διασπορά τυχαίας μεταβλητής: $\sigma^2 = V(X) = \sum x_i^2 f(x_i) \mu^2$

Στοιχεία γνωστών κατανομών				
Κατανομή		Συνάρτηση πιθανότητας	Μέση τιμή	Διασπορά
Bernoulli	Bern(p)	$p^x(1-p)^{1-x}, \ x=0,1$	p	1-p
Διωνυμική	Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}, \ x=0,1,\dots n$	np	np(1-p)
Γεωμετρική	Geo(p)	$p(1-p)^{x-1}, x=1,2,\dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Αρνητική διωνυμική	NB(r,p)	$\binom{x-1}{r-1} p^r (1-p)^{x-r}, \ x=r,r+1,\dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Υπεργεωμετρική	H(N,r,n)	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}, \ x = 0, 1, \dots r$	$\frac{nr}{N}$	$\frac{nr}{N} \cdot \frac{N-r}{N} \cdot \frac{N-n}{N-1}$
Poisson	$P(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}, \ x \ge 0$	λ	λ
Κανονική	$N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}$	μ	σ^2

Δ. Κανονική κατανομή και Κατανομές Δειγματοληψίας

Έστω ότι η τ.μ. $X \sim N(\mu, \sigma^2)$. Τότε η τυποποιημένη τυχαία μεταβλητή $Z = (X - \mu)/\sigma \sim N(0, 1)$. Επίσης, η τυχαία μεταβλητή \overline{X} που δηλώνει τη μέση τιμή n παρατηρήσεων από το δείγμα, ακολουθεί την κανονική κατανομή $N(\mu, \sigma^2/n)$. Αν το τυχαίο δείγμα προέρχεται από διωνυμική κατανομή Bin(n, p) και το μέγεθος του δείγματος είναι μεγαλύτερο του 30, τότε $X \sim N(np, np(1-p))$.

Ε. Συμπερασματολογία για μικρά δείγματα

Ε1. Έλεγχος υποθέσεων σχετικά με το ποσοστό p διωνυμικής κατανομής με επίπεδο σημαντικότητας α , όταν το μέγεθος του δείγματος είναι μικρότερο του 30.

Υπόθεση	Χωρίο Απόρριψης της H_0
$H_0: p \ge p_0$ με $H_1: p < p_0$	$A = \{0, 1, \ldots, c\}$, όπου c λύση της $P(X \leq c) \leq \alpha$
$H_0: p \leq p_0$ με $H_1: p > p_0$	$A = \{c, c+1, \ldots, n\}$, όπου c λύση της $P(X \leq c-1) \geq 1-lpha$
$H_0: p=p_0$ με $H_1: p \neq p_0$	$A = \{0,1,\ldots,c_1\} \cup \{c_2,\ldots,n\}$, όπου c_1,c_2 λύσεις των $P(X \le c_1) \le \alpha/2$, $P(X \le c_2-1) \ge 1-\alpha/2$

Ε2. Στατιστική συμπερασματολογία σχετικά με τη μέση τιμή μ ενός κανονικού πληθυσμού.

Γνωστή διασπορά σ^2

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης	
	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$K: Z \leq -z_{\alpha}$	
$H_0: μ \le μ_0$ με $H_1: μ > μ_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$K: Z \ge z_{\alpha}$	
$H_0: μ = μ_0$ με $H_1: μ \neq μ_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$K: Z \ge z_{\alpha/2}$	

$$100(1-\alpha)\% \text{ L.E. gia th } \mu$$

$$\left(\overline{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\,\overline{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Άγνωστη διασπορά σ^2

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: μ \ge μ_0$ με $H_1: μ < μ_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$	$K: T \le -t_{n-1,\alpha}$
$H_0: \mu \leq \mu_0$ με $H_1: \mu > \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$	$K: T \ge t_{n-1,\alpha}$
$H_0: \mu = \mu_0$ με $H_1: \mu eq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$	$K: T \ge t_{n-1,\alpha/2}$

$$100(1-\alpha)\% \text{ S.E. gia th } \mu$$

$$\left(\overline{X}-t_{n-1,\alpha/2}\frac{S}{\sqrt{n}},\,\overline{X}+t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right)$$

ΣΤ. Συμπερασματολογία για μεγάλα δείγματα

ΣΤ1. Στατιστική συμπερασματολογία σχετικά με τη μέση τιμή μ (πληθυσμιακή διαπορά σ² άγνωστη) για δείγματα μεγαλύτερα του 30.

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: μ \ge μ_0$ με $H_1: μ < μ_0$	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$	$K: Z \le -z_{\alpha}$
$H_0: μ \le μ_0$ με $H_1: μ > μ_0$	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$	$K: Z \ge z_{\alpha}$
$H_0: \mu = \mu_0$ με $H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$	$K: Z \ge z_{\alpha/2}$

$$100(1-lpha)$$
% Δ.Ε. για τη μ
$$\left(\overline{X}-z_{lpha/2}rac{S}{\sqrt{n}},\ \overline{X}+z_{lpha/2}rac{S}{\sqrt{n}}
ight)$$

Σημείωση: Αν η διασπορά σ^2 του πληθυσμού είναι γνωστή, τότε η ελεγχοσυνάρτηση που πρέπει να χρησιμοποιηθεί είναι η

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

ΣΤ2. Στατιστική συμπερασματολογία σχετικά με το ποσοστό p για δείγματα μεγαλύτερα του 30.

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: p \ge p_0$ με $H_1: p < p_0$	$Z = \frac{X/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$	$K: Z \le -z_{\alpha}$
	$Z = \frac{X/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$	
$H_0: p = p_0$ με $H_1: p \neq p_0$	$Z = \frac{X/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$	$K: Z \ge z_{\alpha/2}$

$$100(1-\alpha)\% \text{ Δ.E. για το } p$$

$$\left(\hat{p}-z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\ \hat{p}+z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

Ζ. Συμπερασματολογία για δύο πληθυσμούς, μεγάλα δείγματα

Ζ1. Στατιστική συμπερασματολογία σχετικά με την παράμετρο $\mu_1 - \mu_2$ δύο πληθυσμών, όταν τα δείγματα που λαμβάνουμε είναι μεγαλύτερα του 30.

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: \mu_1 - \mu_2 \ge \delta_0$ με $H_1: \mu_1 - \mu_2 < \delta_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n}}} \sim N(0, 1)$	$K: Z \le -z_{\alpha}$
$H_0: \mu_1 - \mu_2 \le \delta_0$ με $H_1: \mu_1 - \mu_2 > \delta_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n}}} \sim N(0, 1)$	$K: Z \ge z_{\alpha}$
$H_0: \mu_1 - \mu_2 = \delta_0$ με $H_1: \mu_1 - \mu_2 \neq \delta_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n}}} \sim N(0, 1)$	$K: Z \ge z_{\alpha/2}$

$$100(1-\alpha)\% \text{ L.E. gia thy } \mu_1-\mu_2 \\ \left(\overline{X}-\overline{Y}-z_{\alpha/2}\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}, \, \overline{X}-\overline{Y}+z_{\alpha/2}\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}\right)$$

Σημείωση: Αν η διασπορά σ^2 του πληθυσμού είναι γνωστή, τότε η ελεγχοσυνάρτηση που πρέπει να χρησιμοποιηθεί είναι η

$$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Ζ2. Στατιστική συμπερασματολογία σχετικά με τη διαφορά ποσοστών p_1-p_2 δύο πληθυσμών. Ορίζουμε την ποσότητα

$$\hat{p} = \frac{n_1 \hat{p_1} + n_2 \hat{p_2}}{n_1 + n_2}$$

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: p_1 \geq p_2$ με $H_1: p_1 < p_2$	$Z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$	$K: Z \le -z_{\alpha}$
$H_0: p_1 \leq p_2$ με $H_1: p_1 > p_2$	$Z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$	$K: Z \ge z_{\alpha}$
$H_0: p_1=p_2$ με $H_1: p_1 eq p_2$	$Z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$	$K: Z \ge z_{\alpha/2}$

$$100(1-\alpha)\% \text{ L. Fig. p1} \quad p_2$$

$$\left(\hat{p_1} - \hat{p_2} - z_{\alpha/2}\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}, \ \hat{p_1} - \hat{p_2} + z_{\alpha/2}\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}\right)$$

Η. Συμπερασματολογία για δύο πληθυσμούς, μικρά δείγματα

Στατιστική συμπερασματολογία σχετικά με την παράμετρο $\mu_1 - \mu_2$ δύο πληθυσμών, όταν τα δείγματα που λαμβάνουμε είναι μικρότερα του 30.

Περίπτωση: $\sigma_1^2 = \sigma_2^2$ ή $\sigma_1^2 \neq \sigma_2^2$, με σ_1^2 , σ_2^2 γνωστά.

Tepurition: $\sigma_1 = \sigma_2$ if $\sigma_1 \neq \sigma_2$, $\mu \sigma \sigma_1$, σ_2 prooful		
Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: \mu_1 - \mu_2 \ge \delta_0$ με $H_1: \mu_1 - \mu_2 < \delta_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$K: Z \le -z_{\alpha}$
$H_0: μ_1 - μ_2 \le δ_0$ με $H_1: μ_1 - μ_2 > δ_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$K: Z \ge z_{\alpha}$
$H_0: \mu_1 - \mu_2 = \delta_0$ με $H_1: \mu_1 - \mu_2 \neq \delta_0$	$Z = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$K: Z \ge z_{\alpha/2}$

$$100(1-\alpha)\% \text{ S.E. gia thy } \mu_1-\mu_2 \\ \left(\overline{X}-\overline{Y}-z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}},\ \overline{X}-\overline{Y}+z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}\right)$$

Περίπτωση: $\sigma_1^2 = \sigma_2^2 = \sigma^2$ με σ^2 άγνωστο.

Υπόθεση	Ελεγχοσυνάρτηση	Χωρίο Απόρριψης
$H_0: \mu_1 - \mu_2 \ge \delta_0$ με $H_1: \mu_1 - \mu_2 < \delta_0$	$t = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}$	$K: T \le -t_{n_1+n_2-2,\alpha}$
$H_0: \mu_1 - \mu_2 \le \delta_0$ με $H_1: \mu_1 - \mu_2 > \delta_0$	$t = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}$	$K: T \ge t_{n_1 + n_2 - 2, \alpha}$
$H_0: \mu_1 - \mu_2 = \delta_0$ με $H_1: \mu_1 - \mu_2 \neq \delta_0$	$t = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}$	$K: T \ge t_{n_1 + n_2 - 2, \alpha/2}$

$$\frac{100(1-\alpha)\% \text{ d.E. gia thy } \mu_1 - \mu_2}{\left(\overline{X} - \overline{Y} - t_{n_1 + n_2 - 2, \alpha/2} \sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, \ \overline{X} - \overline{Y} + t_{n_1 + n_2 - 2, \alpha/2} \sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}\right)}$$