Predict NYC Airbnb rental price

As of August 2019, this data set contains almost 50 thousand airbnb listings in NYC. The purpose of this task is to predict the price of NYC Airbnb rentals based on the data provided and any external dataset(s) with relevant information.

Columns -

```
id - listing ID
Name- name of the listing
host_id - host ID
Host_name - name of the host
Neighbourhood group - location
Neighbourhood - area
Latitude - latitude coordinates
Longitude - longitude coordinates
room_typelisting space type
Price - price in dollars
Minimum_nights - amount of nights minimum
Number_of_reviews - number of reviews
Last_review - latest review
Reviews_per_month - number of reviews per month
Calculated_host_listings_count - amount of listing per host
Availability_365 - number of days when listing is available for booking
```

```
In [206...
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.preprocessing import LabelEncoder, StandardScaler
          from sklearn.model selection import train test split
          from sklearn.metrics import mean squared error, r2 score
          from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoosting
          from sklearn.linear model import LinearRegression
          from sklearn.tree import DecisionTreeRegressor
          from xgboost import XGBRegressor
          import tensorflow as tf
          from scipy.stats import skew
          import warnings
          warnings.filterwarnings('ignore')
```

```
In [207...
    df = pd.read_csv('AB_NYC_2019.csv')
    df.shape
```

localhost:8888/lab 1/37

Out[207... (48895, 16)

```
In [208...
```

In [208	df.head	d()						
Out[208	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitud
	Clean & quiet O 2539 apt home by 2787 the park		John	Brooklyn	Kensington	40.64749	-73.9723	
	1 2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.9837
	THE VILLAGE OF HARLEMNEW YORK!		Elisabeth	Manhattan	Harlem	40.80902	-73.9419	
	3 3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.9597
	4 5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.9439
	4)
n [209	df.isn	ull().sum()						
out[209	neighbo latitud longitu room_ty price minimum number_ last_re reviews calcula	urhood_group urhood e de pe _nights of_reviews view _per_month ted_host_lists ility_365	ings_cou	0 16 0 21 0 0 0 0 10052 10052 nt 0				
In [210	(df.is	null().sum()*1	L00)/len	(df)				
Out[210	id name host_id host_nameighbo neighbo latitud longitum room_ty	urhood_group urhood e de		0.00 0.03 0.00 0.04 0.00 0.00 0.00	2723 0000 2949 0000 0000 0000			

localhost:8888/lab 2/37

```
0.000000
         price
         minimum nights
                                              0.000000
         number of reviews
                                              0.000000
         last review
                                             20.558339
         reviews_per_month
                                             20.558339
         calculated_host_listings_count
                                              0.000000
         availability 365
                                              0.000000
         dtype: float64
In [211...
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 48895 entries, 0 to 48894
         Data columns (total 16 columns):
              Column
                                                Non-Null Count Dtype
           0
              id
                                                48895 non-null int64
           1
                                                48879 non-null object
              name
           2
                                                48895 non-null int64
              host_id
           3
                                                48874 non-null object
              host_name
           4
              neighbourhood group
                                                48895 non-null object
           5
              neighbourhood
                                                48895 non-null object
           6
               latitude
                                                48895 non-null float64
           7
                                                48895 non-null float64
              longitude
           8
                                                48895 non-null object
              room_type
           9
                                                48895 non-null int64
               price
           10
              minimum nights
                                                48895 non-null int64
           11 number_of_reviews
                                                48895 non-null int64
           12 last review
                                                38843 non-null object
           13 reviews per month
                                                38843 non-null float64
              calculated_host_listings_count 48895 non-null int64
           15 availability 365
                                                48895 non-null int64
         dtypes: float64(3), int64(7), object(6)
         memory usage: 6.0+ MB
In [212...
          df.nunique()
         id
                                             48895
Out[212...
                                             47905
         name
         host id
                                             37457
         host name
                                             11452
         neighbourhood_group
                                                 5
         neighbourhood
                                               221
         latitude
                                             19048
         longitude
                                             14718
         room_type
                                                 3
         price
                                               674
         minimum nights
                                               109
         number_of_reviews
                                               394
         last_review
                                              1764
         reviews_per_month
                                               937
         calculated_host_listings_count
                                                47
         availability 365
                                               366
         dtype: int64
In [213...
           (df.nunique()*100)/len(df)
Out[213... id
                                             100.000000
                                              97.975253
         name
                                              76.607015
         host_id
                                              23.421618
```

3/37 localhost:8888/lab

host name

```
neighbourhood group
                                                0.010226
          neighbourhood
                                               0.451989
          latitude
                                               38.956949
          longitude
                                               30.101237
          room_type
                                                0.006136
          price
                                                1.378464
          minimum nights
                                                0.222927
          number of reviews
                                                0.805808
          last review
                                                3.607731
          reviews_per_month
                                                1.916351
          calculated_host_listings_count
                                                0.096124
          availability 365
                                                0.748543
          dtype: float64
In [214...
          df[df['reviews per month'].isnull()]['number of reviews'].unique()
Out[214... array([0], dtype=int64)
In [215...
          df[df['reviews per month'].isnull()]['number of reviews'].unique()
Out[215... array([0], dtype=int64)
```

Findings and Assumptions

First, we will attempt to clean the data. The below steps will be done. Additional steps might be done as we progress

- The columns 'id', 'name', 'host_id' have a lot of unquie values. We can proceed with dropping these columns.
- 'host_name' can also be dropped.
- Wherever there is a NaN value in 'reviews_per_month', the value is '0' for 'number_of_reviews'. We can change all these NaN values to '0'.
- Some hosts seem to have multiple listings. We will check for duplicate data.
- For the catgorical columns, we will perform encoding before building the models.
- For a NN architecture, we would need to standardize on the data.

```
In [216...
           # Replacing NaN values under 'reviews_per_month' with 0.
           df['reviews per month'].fillna(0, inplace=True)
In [217...
           dup host id = df[df.duplicated('host id')]
           dup_host_id.sort_values('host_id')
Out[217...
                                          host_id host_name neighbourhood_group neighbourhood
                                                                                                  latitude
                                 name
                              Torre del
          13583 10160215
                                            2787
                                                                         Brooklyn
                                                                                       Gravesend 40.60755
                                                       John
                            Lago Room.
```

localhost:8888/lab 4/37

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude
13688	10267242	Cinque Terre Room. Clean and Quiet Queen Bedroom	2787	John	Brooklyn	Gravesend	40.60810
10372	7937553	Riomaggiore Room. Queen Bedroom in Bklyn Townh	2787	John	Brooklyn	Bensonhurst	40.60951
21556	17263207	Brooklyn home. Comfort and clean. Liguria room.	2787	John	Brooklyn	Bensonhurst	40.60877
13963	10593675	La Spezia room. Clean, quiet and comfortable bed	2787	John	Brooklyn	Bensonhurst	40.60951
•••							
48633	36351030	Brand New Privated Room for NYC Traveler	273354185	Lee & Luffy	Bronx	Castle Hill	40.81709
48631	36350749	NYC Traveler Get Away Private ROOM #3	273354185	Lee & Luffy	Bronx	Castle Hill	40.81572
48687	36384346	╬ Superior King Room , Manhattan View ╬	273392981	Giorgio Residence	Queens	Long Island City	40.75615
48696	36388492	♣ Premier King Room , City View ♣	273392981	Giorgio Residence	Queens	Long Island City	40.75559
48863	36469741	Comfortable & Big room with 2 beds!	274012871	Stefan	Queens	Long Island City	40.76726
11438 r	ows × 16 c	columns					
4 ■							>

It would seem that some hosts own more than one apartment. We will not drop any row.

In [218... df.head()

localhost:8888/lab 5/37

Out[218	i	id	name h	nost_id	host_n	ame n	eighbou	rhood_gro	up nei	ghbourhood	latitude	longitu	IC
	0 253	9 apt	n & quiet home by the park	2787		John		Brook	lyn	Kensington	40.64749	-73.972	25
	1 259	Skylit I	Midtown Castle	2845	Jen	nifer		Manhatt	an	Midtown	40.75362	-73.983	37
	2 364	17	VILLAGE OF MNEW YORK!	4632	Elisa	beth		Manhatt	can	Harlem	40.80902	-73.941	ĮŞ
	3 383	31	zy Entire Floor of wnstone	4869	LisaRox	anne		Brook	lyn	Clinton Hill	40.68514	-73.959)7
	4 502	22 Studio	ntire Apt: Spacious o/Loft by stral park	7192	L	.aura	Manhattan		an	East Harlem	40.79851	-73.943	35
	4											>	
In [219	<pre>df['calculated_host_listings_count'].unique()</pre>												
Out[219	array	18, 1 121, 3	2, 1, 15, 19, 37, 49, 47, 103,	31,	39, 26 91, 16	5, 87,	12, 33,	28, 11, 21, 96, 23, 50, dtype=ir	14, 20,	9, 52, 34, 43, 25, 232,			
In [220	len(d	df['calcu	ulated_ho	st_lis	tings_c	ount']	.unique	e())					
Out[220	47												
In [221	df[df	f['calcu]	Lated_hos	t_list	ings_co	ount']=	=327]						
Out[221		ic	d nam	e ł	nost_id	host_na	me nei	ghbourho	od_grou	p neighbou	rhood la	titude l	c
	38293	3018169 ⁻	Sonder 18 Water Incredibl 2BR Roofto	:0 	517861	Son (N	der YC)	N	1anhatta	n Financial [District 40	.70637	
	38294	3018194!	Sonder 18 Water Premie 1BR Roofto	00 	517861	Son (N	der YC)	N	/lanhatta	n Financial [District 40	.70771	

localhost:8888/lab 6/37

	id	name	host_id	host_name	$neighbourhood_group$	neighbourhood	latitude	lc
38588	30347708	Sonder 180 Water Charming 1BR + Rooftop	219517861	Sonder (NYC)	Manhattan	Financial District	40.70743	
39769	30937590	Sonder The Nash Artsy 1BR + Rooftop	219517861	Sonder (NYC)	Manhattan	Murray Hill	40.74792	÷
39770	30937591	Sonder The Nash Lovely Studio + Rooftop	219517861	Sonder (NYC)	Manhattan	Murray Hill	40.74771	÷
•••								
47691	35871510	Sonder 116 John Vibrant Studio + Fitness Room	219517861	Sonder (NYC)	Manhattan	Financial District	40.70818	
47692	35871511	Sonder 116 John Vibrant 1BR + Fitness Room	219517861	Sonder (NYC)	Manhattan	Financial District	40.70691	_'
47693	35871515	Sonder 116 John Stunning 1BR + Rooftop	219517861	Sonder (NYC)	Manhattan	Financial District	40.70772	
47814	35936418	Sonder 116 John Polished Studio + Gym	219517861	Sonder (NYC)	Manhattan	Financial District	40.70840	
47821	35937891	Sonder 116 John Simple Studio + Gym	219517861	Sonder (NYC)	Manhattan	Financial District	40.70707	÷

327 rows × 16 columns

```
In [222... df[df['calculated_host_listings_count']==32].head(8)
```

localhost:8888/lab 7/37

it[222 id	name host_id	host_name	neighbourhood_group	neighbourhood	latitude	lo
40966 31874576 Bed in	Chic Private Iroom Upper West Ie 107	Eyal	Manhattan	Upper West Side	40.79884	-7
40967 31875616 Bed in	Cozy Private Iroom Upper West Ie 107	Eyal	Manhattan	Upper West Side	40.79966	-7
40969 31875827 Bed in	Artsy Private Iroom Upper West Ie 107	Eyal	Manhattan	Upper West Side	40.80014	-7
40970 31876014	odern Iroom in the Upper West Ie 107	Eyal	Manhattan	Upper West Side	40.79880	-7
40971 31876398 Bed in	Airy Private Iroom Upper West Ie 107	Eyal	Manhattan	Upper West Side	40.79821	-7
40973 31876645	Artistic Private BR in Upper West le 107	Eyal	Manhattan	Upper West Side	40.79971	-7
Bec 40975 31876724 in	ibrant Iroom Upper 238321374 West Ie 107	Eyal	Manhattan	Upper West Side	40.79887	-7
40976 31877020	Ilming Private BR in Upper 238321374	Eyal	Manhattan	Upper West Side	40.79959	-7
Sic	West le 107					

WOW! Some users do seem to be loaded and own a lot of property.

localhost:8888/lab

Owning a lot of property would not mean that the value could increase/decrease. Ideally, the location would dictate pricing. We can proceeding with dropping this column too.

```
In [223...
            # Dropping columns not required
            df.drop(['id', 'name', 'host_id', 'host_name', 'last_review', 'calculated_host_listings|
In [224...
            df.head(7)
Out[224...
              neighbourhood_group neighbourhood
                                                                                      price minimum_nights num
                                                      latitude longitude room_type
                                                                               Private
           0
                            Brooklyn
                                          Kensington 40.64749
                                                                -73.97237
                                                                                        149
                                                                                                            1
                                                                                room
                                                                                Entire
           1
                          Manhattan
                                            Midtown 40.75362
                                                                -73.98377
                                                                                        225
                                                                            home/apt
                                                                               Private
           2
                          Manhattan
                                             Harlem 40.80902
                                                                -73.94190
                                                                                        150
                                                                                                            3
                                                                                room
                                                                                Entire
           3
                            Brooklyn
                                          Clinton Hill 40.68514
                                                                -73.95976
                                                                                         89
                                                                                                            1
                                                                            home/apt
                                                                                Entire
                          Manhattan
                                         East Harlem 40.79851
                                                                                         80
                                                                                                           10
                                                                -73.94399
                                                                            home/apt
                                                                                Entire
           5
                                                                                        200
                                                                                                            3
                          Manhattan
                                          Murray Hill 40.74767
                                                                -73.97500
                                                                            home/apt
                                            Bedford-
                                                                               Private
           6
                            Brooklyn
                                                      40.68688
                                                                -73.95596
                                                                                         60
                                                                                                           45
                                           Stuyvesant
                                                                                room
```

We will now work with the above Data.

Before proceeding with creating a model, let us perform some analysis to understand the data.

```
# Function to clean the data

def cleaning_data():
    df = pd.read_csv('AB_NYC_2019.csv')
    df['reviews_per_month'].fillna(0, inplace=True)
    df.drop(['id', 'name', 'host_id', 'host_name', 'last_review', 'calculated_host_list
    return df
```

Creating some Visuals for Data Analysis

```
In [226... df["neighbourhood_group"].value_counts()

Out[226... Manhattan 21661
Brooklyn 20104
Queens 5666
```

localhost:8888/lab 9/37

```
Bronx 1091
Staten Island 373
```

Name: neighbourhood_group, dtype: int64

```
plt.figure(figsize=(10,6))
    sns.countplot(data=df, x="neighbourhood_group")
    plt.grid(axis='y')
    plt.title('No. of Listings in each Neighbourhood', fontsize=15)
    plt.xlabel('Neighbourhood', fontsize=14)
    plt.ylabel('Count', fontsize=14)
    plt.show()
```


Most of the listings in the dataset are for Brooklyn and Manhattan.

```
In [228...
          df.groupby(["neighbourhood_group"])["room_type"].value_counts()
Out[228...
         neighbourhood_group
                               room_type
          Bronx
                                                      652
                               Private room
                                                     379
                               Entire home/apt
                                Shared room
                                                      60
          Brooklyn
                               Private room
                                                   10132
                                                    9559
                               Entire home/apt
                               Shared room
                                                     413
         Manhattan
                               Entire home/apt
                                                   13199
                               Private room
                                                    7982
                               Shared room
                                                     480
         Queens
                               Private room
                                                    3372
                                Entire home/apt
                                                    2096
                               Shared room
                                                     198
         Staten Island
                               Private room
                                                     188
                               Entire home/apt
                                                     176
                               Shared room
                                                       9
         Name: room_type, dtype: int64
```

localhost:8888/lab 10/37

```
In [229...
    plt.figure(figsize=(10,6))
    sns.countplot(data=df, x="neighbourhood_group", hue="room_type")
    plt.grid(axis='y')
    plt.title('No. of Room Types in each Neighbourhoow', fontsize=15)
    plt.xlabel('Neighbourhood', fontsize=14)
    plt.ylabel('Count', fontsize=14)
    plt.show()
```


Most of the rooms are available in Brooklyn and Manhattan. And they are mainly 'Private Rooms' and 'Entire home/apt'. Not many for rent are shared, and very few are available in 'Staten Island' and the 'Bronx'.

```
In [230...
          df.groupby(["neighbourhood group"])["price"].mean()
         neighbourhood group
Out[230...
         Bronx
                            87.496792
         Brooklyn
                           124.383207
         Manhattan
                           196.875814
         Oueens
                            99.517649
         Staten Island
                           114.812332
         Name: price, dtype: float64
In [231...
          plt.figure(figsize=(12,5))
          sns.barplot(y=df.groupby(["neighbourhood_group"])["price"].mean().index, x=df.groupby([
          plt.grid(axis='x')
          plt.title('Average Property Price for each Neighbourhood', fontsize=15)
          plt.xlabel('Area', fontsize=14)
          plt.ylabel('Price', fontsize=14)
          plt.show()
```

localhost:8888/lab 11/37

Manhattan is the most expensive area to rent as compared to the other 4 areas.

```
In [232...
           df.groupby("room_type")["price"].mean()
          room_type
Out[232...
          Entire home/apt
                              211.794246
                               89.780973
          Private room
                               70.127586
          Shared room
          Name: price, dtype: float64
In [233...
           plt.figure(figsize=(12,3))
           sns.barplot(y=df.groupby(["room_type"])["price"].mean().index, x=df.groupby(["room_type"])
           plt.grid(axis='x')
           plt.title('Average Property Price', fontsize=15)
           plt.xlabel("Room Type", fontsize=14)
           plt.ylabel('Price', fontsize=14)
           plt.show()
                                                     Average Property Price
            Entire home/apt
              Private room
              Shared room
```

Taking the average room price, renting an Entire Home/Apt would be most expensive.

75

125

Room Type

150

175

50

```
In [234...
    plt.figure(figsize=(10,6))
    sns.countplot(data=df, x="room_type", hue="neighbourhood_group")
    plt.grid(axis='y')
```

localhost:8888/lab 12/37

```
plt.title('No. of Rooms by Neighbourhood', fontsize=15)
plt.xlabel("Room Type", fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.show()
```


Not many hosts offer the option to share an apartment. Most of the available property on rent are either 'Private Rooms' or an 'Entire Home/Apt'

df.groupby(["neighbourhood_group","room_type"])["price"].mean()plt.figure(figsize=(10,6)) sns.barplot(data=df, x="neighbourhood_group", y="price", hue="room_type") plt.grid(axis='y') plt.title('No. of Rooms by Neighbourhood', fontsize=15) plt.xlabel("Area") plt.ylabel("Price") plt.show()

```
plt.figure(figsize=(10,10))
sns.scatterplot(x=df['latitude'], y=df['longitude'], hue=df['neighbourhood_group'])
plt.title('Scatterplot ')
plt.show()
```

localhost:8888/lab 13/37


```
fig, axes = plt.subplots(3, 2, figsize=(25,15))

fig.suptitle("Scatterplot of Price for each Neighbourhood (Longitutde on y-axis / Latit sns.scatterplot(x=df['latitude'], y=df['longitude'], hue=df[df['neighbourhood_group'] = sns.scatterplot(x=df['latitude'], y=df['longitude'], hue=df[df['neighbourhood_group'] = sns.scatterplot(x=df['latitude'], y=df['longitude'], hue=df[df['neighbourhood_group'] = sns.scatterplot(x=df['latitude'], y=df['longitude'], hue=df[df['neighbourhood_group'] = plt.show()
```

localhost:8888/lab

Out[237		neighbourhood_group	neighbourhood	room_type
	0	Brooklyn	Kensington	Private room
	1	Manhattan	Midtown	Entire home/apt
	2	Manhattan	Harlem	Private room
	3	Brooklyn	Clinton Hill	Entire home/apt
	4	Manhattan	East Harlem	Entire home/apt

```
In [238...
    df_num = df.drop(df_cat.columns.tolist() + ['price'], axis=1)
    df_num.head()
```

Out[238		latitude	longitude	minimum_nights	number_of_reviews	reviews_per_month	availability_365
	0	40.64749	-73.97237	1	9	0.21	365
	1	40.75362	-73.98377	1	45	0.38	355
	2	40.80902	-73.94190	3	0	0.00	365
	3	40.68514	-73.95976	1	270	4.64	194
	4	40.79851	-73.94399	10	9	0.10	0

localhost:8888/lab 15/37

Hack-a-thon (Feb 2021) df.corr() In [239... Out[239... latitude longitude price minimum_nights number_of_reviews reviews_per_m latitude 1.000000 0.084788 0.033939 0.024869 -0.015389 -0.01 longitude 0.084788 1.000000 -0.150019 -0.062747 0.059094 0.13 -0.05 price 0.033939 -0.150019 1.000000 0.042799 -0.047954 minimum_nights 0.024869 -0.062747 0.042799 1.000000 -0.080116 -0.12 number_of_reviews -0.015389 0.059094 -0.047954 -0.080116 1.000000 0.58 reviews_per_month -0.018758 0.138516 -0.050564 -0.124905 0.589407 1.00 availability_365 -0.010983 0.082731 0.081829 0.144303 0.172028 0.16 \blacktriangleright In [240... plt.figure(figsize=(8,8)) sns.heatmap(df.corr(), annot=True) plt.show() - 1.0 latitude 1 0.085 0.034 0.025 -0.015 -0.019 -0.011 - 0.8 0.085 1 -0.15 -0.063 0.059 0.14 0.083 longitude -- 0.6 price 0.034 -0.150.043 -0.048 -0.051 0.082 -0.08 -0.12 0.14 0.025 -0.063 0.043 1 minimum_nights - 0.4 0.059 -0.048 0.17 -0.015 -0.081 number_of_reviews - 0.2 -0.12 0.16 -0.019 0.14 -0.051 1 reviews_per_month · - 0.0 -0.011 0.082 0.083 0.14 0.17 0.16 availability_365 1 minimum_nights number_of_reviews reviews_per_month availability 365

localhost:8888/lab 16/37

Creating Models

All the models will be based on Regression Algorithms as price is Continuous.

First Models

```
In [241...
          for cols in df_cat:
               le = LabelEncoder()
               df[cols] = le.fit_transform(df[cols])
In [242...
          df.head()
Out[242...
             neighbourhood_group neighbourhood
                                                 latitude longitude room_type price minimum_nights
          0
                                           108 40.64749
                                                         -73.97237
                                                                               149
          1
                               2
                                           127 40.75362
                                                         -73.98377
                                                                               225
                                                                                                 1
          2
                               2
                                            94 40.80902
                                                         -73.94190
                                                                               150
          3
                                            41 40.68514
                                                                                                 1
                                                         -73.95976
                                                                                89
                                            61 40.79851 -73.94399
                                                                           0
                                                                                80
                                                                                                10
In [243...
          x = df.drop('price', axis=1)
          y = df["price"]
In [244...
          X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1
In [245...
           def ml model(model):
               model.fit(X_train, y_train)
               y_pred = model.predict(X_test)
               print("MSE :", mean_squared_error(y_test, y_pred))
               print("RMSE :", np.sqrt(mean_squared_error(y_test, y_pred)))
               print("R2 Score;", r2 score(y test, y pred))
In [246...
          ml model(RandomForestRegressor())
          MSE: 59121.28162384134
          RMSE: 243.14868213469992
          R2 Score; 0.07830128357551436
In [247...
          ml_model(LinearRegression())
          MSE: 59373.83791464113
          RMSE: 243.66747405971347
          R2 Score; 0.07436393981940026
In [248...
          ml_model(AdaBoostRegressor())
```

localhost:8888/lab 17/37

```
MSE: 273130.9148316313
      RMSE : 522.6192828739017
      R2 Score ; -3.2581014264521837
In [249...
      ml model(GradientBoostingRegressor())
      MSE: 56111.66594842787
      RMSE: 236.87901120282453
      R2 Score; 0.12522108688101263
In [250...
      ml_model(DecisionTreeRegressor())
      MSE: 124694.14643624093
      RMSE: 353.12058342192535
      R2 Score; -0.943977389515573
In [251...
      ml model(XGBRegressor())
      MSE: 57479.32319499006
      RMSE: 239.748458170204
      R2 Score; 0.10389935815589191
In [252...
      ss = StandardScaler()
      X_train_ss = ss.fit_transform(X_train)
      X test ss = ss.transform(X test)
In [253...
      nn model = tf.keras.Sequential([
         tf.keras.layers.Dense(3, activation='relu', input shape=(X train ss.shape[1],)),
         tf.keras.layers.Dense(4, activation='relu'),
         tf.keras.layers.Dense(5, activation='relu'),
         tf.keras.layers.Dense(3, activation='relu'),
         tf.keras.layers.Dense(1)
      1)
In [254...
      nn model.compile(optimizer='adam', loss='mse')
In [255...
      nn_model.fit(X_train_ss, y_train, epochs=50, batch_size=10)
      Epoch 1/50
      Epoch 3/50
      Epoch 4/50
      Epoch 5/50
      Epoch 6/50
      Epoch 7/50
      Epoch 8/50
      Epoch 9/50
```

localhost:8888/lab 18/37

```
Epoch 10/50
Epoch 11/50
Epoch 12/50
3912/3912 [============== ] - 4s 965us/step - loss: 69032.6875
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
Epoch 33/50
Epoch 34/50
3912/3912 [============= ] - 4s 946us/step - loss: 58760.4219
Epoch 35/50
Epoch 36/50
Epoch 37/50
Epoch 38/50
Epoch 39/50
Epoch 40/50
Epoch 41/50
3912/3912 [============= ] - 5s 1ms/step - loss: 57496.2539A: 0s -
```

localhost:8888/lab

19/37

```
Epoch 42/50
   Epoch 43/50
   Epoch 44/50
   Epoch 45/50
   Epoch 46/50
   Epoch 47/50
   Epoch 48/50
   Epoch 49/50
   Epoch 50/50
   Out[255... <tensorflow.python.keras.callbacks.History at 0x25693f44c40>
In [256...
    y pred = nn model.predict(X test ss)
    mean_squared_error(y_test, y_pred)
Out[256... 64681.986188186325
In [257...
    np.sqrt(mean_squared_error(y_test, y_pred))
Out[257... 254.32653457354056
In [258...
    r2 score(y test, y pred)
Out[258... -0.008389906442695771
```

Scores are very high. Let us perform One-Hot-Encoding on the data.

Second Models

```
In [259...
           df = cleaning data()
In [260...
            df.head()
Out[260...
              neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights num
                                                                             Private
           0
                           Brooklyn
                                                                                      149
                                                                                                         1
                                         Kensington 40.64749
                                                              -73.97237
                                                                              room
                                                                             Entire
                         Manhattan
                                                              -73.98377
                                                                                      225
           1
                                           Midtown 40.75362
                                                                          home/apt
                                                                             Private
           2
                         Manhattan
                                            Harlem 40.80902
                                                             -73.94190
                                                                                      150
                                                                                                         3
                                                                              room
```

localhost:8888/lab 20/37

	neighbourhood_group		oup neighb	neighbourhood		longitude	room_type pric		minimum_nights	nun	
	3	3 Brooklyn		klyn C	linton Hill	40.68514	-73.95976	Entire home/apt	89	1	
	4		Manhat	ttan Ea	st Harlem	40.79851	-73.94399	Entire home/apt	80	10	
	4										•
In [261				up = pd.ge t_dummies(od_group'])	1		
In [262	nei	.ghbou	rhood_gro	up.head()							
Out[262	В	Bronx	Brooklyn	Manhattan	Queens	Staten Isla	ınd				
	0	0	1	0	0		0				
	1	0	0	1	0		0				
	2	0	0	1	0		0				
	3	0	1	0	0		0				
	4	0	0	1	0		0				
In [263	roo	om_typ	e.head()								
Out[263	E	ntire h	ome/apt F	Private room	Shared	room					
	0		0	1		0					
	1		1	C)	0					
	2		0	1		0					
	3		1	C)	0					
	4		1	C)	0					
In [264		= pd. head(f, neighbo	ourhood_g	group, ro	om_type],	axis=1)			
Out[264	n	neighb	ourhood_gro	oup neighb	ourhood	latitude	longitude	room_type	price	minimum_nights	nun
	0		Brook	klyn Ke	ensington	40.64749	-73.97237	Private room	149	1	
	1		Manhat	ttan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	
	2		Manhat	ttan	Harlem	40.80902	-73.94190	Private room	150	3	

localhost:8888/lab 21/37

```
neighbourhood_group neighbourhood
                                                  latitude longitude room_type price minimum_nights nun
                                                                          Entire
          3
                          Brooklyn
                                       Clinton Hill 40.68514
                                                                                  89
                                                                                                    1
                                                           -73.95976
                                                                      home/apt
                                                                          Entire
                                                                                                   10
                        Manhattan
                                      East Harlem 40.79851
                                                           -73.94399
                                                                                  80
                                                                      home/apt
In [265...
           df cat.head()
Out[265...
             neighbourhood_group neighbourhood
                                                      room_type
          0
                         Brooklyn
                                       Kensington
                                                    Private room
                        Manhattan
                                         Midtown Entire home/apt
          1
          2
                        Manhattan
                                          Harlem
                                                    Private room
                         Brooklyn
                                       Clinton Hill Entire home/apt
                        Manhattan
                                      East Harlem Entire home/apt
In [266...
           for cols in df cat:
               le = LabelEncoder()
               df[cols] = le.fit_transform(df[cols])
In [267...
           df.drop(['neighbourhood group', 'room type'], axis=1, inplace=True)
In [268...
           x = df.drop('price', axis=1)
           y = df["price"]
In [269...
           X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1
In [270...
           ml model(RandomForestRegressor(n estimators=200))
          MSE: 57757.89047693442
          RMSE: 240.3287133842613
          R2 Score; 0.09955650395595117
In [271...
           ml model(LinearRegression())
          MSE: 58850.47607474975
          RMSE: 242.5911706446666
          R2 Score; 0.08252313263126443
In [272...
           ml_model(AdaBoostRegressor())
          MSE: 104219.00016951977
          RMSE: 322.82967671749105
```

localhost:8888/lab 22/37

R2 Score; -0.6247705740626726

```
In [273...
     ml model(GradientBoostingRegressor())
     MSE: 56268.06976480065
     RMSE: 237.20891586279097
     R2 Score; 0.12278275684426065
In [274...
     ml model(DecisionTreeRegressor())
     MSE: 123745.18969219757
     RMSE: 351.7743448465189
     R2 Score; -0.9291831870067018
In [275...
     ml model(XGBRegressor())
     MSE: 57485.17655094336
     RMSE: 239.76066514535566
     R2 Score; 0.10380810454093703
In [276...
     ss = StandardScaler()
     X train ss = ss.fit transform(X train)
     X test ss = ss.transform(X test)
In [277...
     nn model = tf.keras.Sequential([
        tf.keras.layers.Dense(3, activation='relu', input_shape=(X_train_ss.shape[1],)),
        tf.keras.layers.Dense(4, activation='relu'),
        tf.keras.layers.Dense(5, activation='relu'),
        tf.keras.layers.Dense(3, activation='relu'),
        tf.keras.layers.Dense(1)
      ])
In [278...
     nn model.compile(optimizer='adam', loss='mse')
In [279...
     nn model.fit(X train ss, y train, epochs=50, batch size=10)
     Epoch 1/50
     Epoch 2/50
     Epoch 3/50
     Epoch 4/50
     Epoch 5/50
     Epoch 6/50
     Epoch 7/50
     Epoch 8/50
     Epoch 9/50
     Epoch 10/50
```

localhost:8888/lab 23/37

```
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
3912/3912 [============== ] - 4s 975us/step - loss: 49094.4414
Epoch 36/50
Epoch 37/50
3912/3912 [=============== ] - 4s 961us/step - loss: 49028.1016
Epoch 38/50
Epoch 39/50
Epoch 40/50
Epoch 41/50
Epoch 42/50
3912/3912 [=============== ] - 5s 1ms/step - loss: 49014.0898
Epoch 43/50
```

localhost:8888/lab 24/37

```
Epoch 44/50
    Epoch 45/50
    Epoch 46/50
    Epoch 47/50
    Epoch 48/50
    Epoch 49/50
    Epoch 50/50
    Out[279... <tensorflow.python.keras.callbacks.History at 0x2569558daf0>
In [280...
    y pred = nn model.predict(X test ss)
    mean squared error(y test, y pred)
Out[280... 57552.796025528
In [281...
    np.sqrt(mean squared error(y test, y pred))
   239.90163823018798
Out[281...
In [282...
    r2 score(y test, y pred)
Out[282... 0.10275391929294975
```

Even with one-hot enoding, our scores are not good. Let us look at the data once more.

Third Models

```
In [283...
            df = cleaning_data()
            df.head()
Out[283...
              neighbourhood_group neighbourhood latitude longitude room_type price minimum_nights nun
                                                                              Private
           0
                           Brooklyn
                                          Kensington 40.64749
                                                               -73.97237
                                                                                        149
                                                                                                           1
                                                                               room
                                                                               Entire
           1
                          Manhattan
                                            Midtown 40.75362
                                                               -73.98377
                                                                                        225
                                                                                                           1
                                                                           home/apt
                                                                              Private
                          Manhattan
                                             Harlem 40.80902
           2
                                                               -73.94190
                                                                                        150
                                                                                                           3
                                                                               room
                                                                               Entire
                                          Clinton Hill 40.68514
           3
                           Brooklyn
                                                               -73.95976
                                                                                         89
                                                                                                           1
                                                                            home/apt
                                                                               Entire
                          Manhattan
                                         East Harlem 40.79851
                                                               -73.94399
                                                                                        80
                                                                                                          10
                                                                            home/apt
```

localhost:8888/lab 25/37

In [284... df num latitude longitude minimum_nights number_of_reviews reviews_per_month availability_365 Out[284... **0** 40.64749 1 9 -73.97237 0.21 365 40.75362 -73.98377 1 45 0.38 355 40.80902 -73.94190 3 0 0.00 365 270 194 40.68514 -73.95976 1 4.64 40.79851 9 0.10 0 -73.94399 10 40.67853 48890 -73.94995 2 0 0.00 9 **48891** 40.70184 -73.93317 4 0 0.00 36 **48892** 40.81475 10 0 0.00 27 -73.94867 **48893** 40.75751 -73.99112 0 0.00 2 1 **48894** 40.76404 -73.98933 7 0.00 23 0 48895 rows × 6 columns In [285... plt.figure() sns.boxplot(y=df['minimum_nights']) plt.show() 1200 1000 minimum_nights 800 600 400 200 In [286... min(df['minimum_nights']) Out[286... 1 In [287... max(df['minimum_nights']) 1250 Out[287...

localhost:8888/lab 26/37

The below link is to an article stating short-term AirBnb stays in New York

https://sharedeconomycpa.com/blog/nyc-airbnb-law/#:~:text=Airbnb%20NYC%20Law%3A%20How%20It%20Works&text=Rentals%20can%20exceed%20

The article states that -

- You can't rent out an entire apartment for fewer than 30 days, even if you own or live in the building.
- If you are renting out a portion of your home for less than 30 days, you must be present during your guests' stay.

Let us take a look at 'minimum_nights' for rows with values greater than 30 and less than 31.

```
In [288...
           len(df[df['minimum nights']>30][df['room type'] == 'Private room'])
Out[288... 226
In [289...
           len(df[df['minimum nights']>30][df['room type'] == 'Shared room'])
Out[289... 17
In [290...
           len(df[df['minimum nights']>30][df['room type'] == 'Entire home/apt'])
          504
Out[290...
In [291...
           len(df[df['minimum nights']<31][df['room_type'] == 'Private room'])</pre>
          22100
Out[291...
In [292...
           len(df[df['minimum nights']<31][df['room_type'] == 'Shared room'])</pre>
Out[292... 1143
In [293...
           len(df[df['minimum nights']<31][df['room type'] == 'Entire home/apt'])</pre>
          24905
Out[293...
```

- From the above, we can see that most of the property given on rent have a minimum stay of 30 days or less. We can assume that the owner would be present when leasing out property for less than 30 days.
- Earlier, we saw that some owners had more than one listing. We can assume that they might only rent out one at a time, or that the property might actually be under a company. If under a company, the rules might be different. Meaning that the home owner would not need to be present when leasing out the property.

localhost:8888/lab 27/37

For the above two reasons, we will exclude all rows where the minimum stay is more than 30.

```
In [294...
           to remove = df[df['minimum nights']>30].index.tolist()
           len(to remove)
Out[294... 747
In [295...
           df.drop(to remove, inplace=True)
In [296...
           for cols in df_cat:
               le = LabelEncoder()
               df[cols] = le.fit transform(df[cols])
In [297...
           df.head()
Out[297...
             neighbourhood_group neighbourhood
                                                 latitude longitude room_type price minimum_nights nun
          0
                               1
                                            108 40.64749
                                                         -73.97237
                                                                           1
                                                                               149
                                                                                                 1
                               2
                                            127 40.75362
                                                         -73.98377
                                                                           0
                                                                               225
          1
                                                                                                 1
          2
                               2
                                             94 40.80902
                                                         -73.94190
                                                                                                 3
                                                                           1
                                                                                150
          3
                                             41 40.68514
                                                         -73.95976
                                                                                89
                                                                                                 1
                                             61 40.79851
                                                         -73.94399
                                                                                80
                                                                                                10
In [298...
           x = df.drop('price', axis=1)
           y = df["price"]
In [299...
           X train, X test, y train, y test = train test split(x, y, test size=0.2, random state=1
In [300...
           def ml_model(model):
               model.fit(X train, y train)
               y_pred = model.predict(X_test)
               print("MSE :", mean_squared_error(y_test, y_pred))
               print("RMSE :", np.sqrt(mean squared error(y test, y pred)))
               print("R2 Score;", r2_score(y_test, y_pred))
In [301...
           ml_model(RandomForestRegressor())
          MSE: 46404.175541754936
          RMSE: 215.41628430031685
          R2 Score; 0.011742957106600449
In [302...
           ml_model(LinearRegression())
```

MSE: 41660.21414696948

```
RMSE: 204.10833923916357
        R2 Score; 0.1127738062678485
In [303...
        ml model(AdaBoostRegressor())
        MSE: 89738.13011626135
        RMSE: 299.56323225032367
        R2 Score; -0.9111284290285584
In [304...
        ml model(GradientBoostingRegressor())
        MSE: 39686.78794883877
        RMSE: 199.2154310008107
        R2 Score; 0.15480132461429919
In [305...
        ml_model(DecisionTreeRegressor())
        MSE: 116629.13842159917
        RMSE: 341.51008538782446
        R2 Score; -1.483818882807709
In [306...
        ml model(XGBRegressor())
        MSE: 44983.0180243639
        RMSE: 212.09200367850715
        R2 Score; 0.04200896031053292
In [307...
        ss = StandardScaler()
        X train ss = ss.fit transform(X train)
        X_test_ss = ss.transform(X_test)
In [308...
        nn model = tf.keras.Sequential([
            tf.keras.layers.Dense(3, activation='relu', input_shape=(X_train_ss.shape[1],)),
            tf.keras.layers.Dense(4, activation='relu'),
            tf.keras.layers.Dense(5, activation='relu'),
            tf.keras.layers.Dense(3, activation='relu'),
            tf.keras.layers.Dense(1)
        1)
In [309...
        nn_model.compile(optimizer='adam', loss='mse')
In [310...
        nn model.fit(X train ss, y train, epochs=50, batch size=10)
        Epoch 1/50
        Epoch 2/50
        Epoch 3/50
        3852/3852 [=============== ] - 3s 904us/step - loss: 46299.1719
        Epoch 4/50
        Epoch 5/50
        3852/3852 [=============== ] - 4s 918us/step - loss: 46112.7734
        Epoch 6/50
```

localhost:8888/lab 29/37

```
Epoch 7/50
Epoch 8/50
Epoch 9/50
3852/3852 [=============== ] - 3s 899us/step - loss: 45974.2500
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
3852/3852 [============== ] - 4s 1ms/step - loss: 45451.8477
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 32/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
Epoch 36/50
Epoch 37/50
Epoch 38/50
```

localhost:8888/lab

30/37

```
Epoch 39/50
   Epoch 40/50
   Epoch 41/50
   Epoch 42/50
   Epoch 43/50
   Epoch 44/50
   Epoch 45/50
   Epoch 46/50
   Epoch 47/50
   Epoch 48/50
   Epoch 49/50
   Epoch 50/50
   Out[310... <tensorflow.python.keras.callbacks.History at 0x256938cb4c0>
In [311...
   y_pred = nn_model.predict(X_test_ss)
   mean_squared_error(y_test, y_pred)
Out[311... 39913.05137583964
In [312...
   np.sqrt(mean_squared_error(y_test, y_pred))
Out[312... 199.78251018505009
In [313...
   r2_score(y_test, y_pred)
Out[313... 0.14998265425387858
```

There does seem to be a slight improvement with the scores. We will try to improve them further.

Forth Models

```
for cols in df_num:
    plt.figure()
    print(cols, "-", skew(df[cols]))
    sns.distplot(df[cols])
    plt.show()
    print()
```

latitude - 0.23885551401666058

localhost:8888/lab 31/37

longitude - 1.2821791065131867

minimum_nights - 2.3519440868448553

number_of_reviews - 3.674934014833137

localhost:8888/lab 32/37

reviews_per_month - 3.2850380814956788

 $df['minimum_nights'] = np.log(df['minimum_nights']) \ df['number_of_reviews'] = np.log(df['number_of_reviews']) \ df['reviews_per_month'] = np.log(df['reviews_per_month'])$

The above block of code change some of the values to '-inf'. This is because the log of 0 is -infinity.

Adding a small value, 0.1, would give us a negative value. Our data cannot have any negative value.

localhost:8888/lab 33/37

For this, we will add 1 to each value, so that the log of 1 will give us a 0 value.

```
In [315...
          df['minimum_nights'] = np.log(df['minimum_nights']+1)
          df['number of reviews'] = np.log(df['number of reviews']+1)
          df['reviews per month'] = np.log(df['reviews per month']+1)
In [316...
          x = df.drop('price', axis=1)
          y = df["price"]
In [317...
          X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1
In [318...
          def ml model(model):
              model.fit(X_train, y_train)
              y pred = model.predict(X test)
              print("MSE :", mean_squared_error(y_test, y_pred))
              print("RMSE :", np.sqrt(mean squared error(y test, y pred)))
              print("R2 Score;", r2_score(y_test, y_pred))
In [319...
          ml model(RandomForestRegressor())
         MSE: 48792.606826054005
         RMSE: 220.8904860469414
         R2 Score; -0.03912281112694105
In [320...
          ml model(LinearRegression())
         MSE: 41336.30850373095
         RMSE: 203.31332593740862
         R2 Score; 0.11967193621900707
In [321...
          ml model(AdaBoostRegressor())
         MSE: 398520.98232558486
         RMSE: 631.285183039793
         R2 Score; -7.487192433139407
In [322...
          ml model(GradientBoostingRegressor())
         MSE: 39759.297445517026
         RMSE: 199.3973356028536
         R2 Score; 0.15325710968250994
In [323...
          ml model(DecisionTreeRegressor())
         MSE: 113476.27840083074
         RMSE: 336.86240277126615
         R2 Score; -1.4166732847143266
In [324...
          ml_model(XGBRegressor())
         MSE: 44982.96553520027
```

localhost:8888/lab 34/37

RMSE: 212.09187993697512

R2 Score; 0.04201007815790381

```
In [325...
    ss = StandardScaler()
    X_train_ss = ss.fit_transform(X_train)
    X test ss = ss.transform(X test)
In [332...
    nn model = tf.keras.Sequential([
      tf.keras.layers.Dense(3, activation='relu', input shape=(X train ss.shape[1],)),
      tf.keras.layers.Dense(4, activation='relu'),
      tf.keras.layers.Dense(5, activation='relu'),
      tf.keras.layers.Dense(3, activation='relu'),
      tf.keras.layers.Dense(1)
    ])
In [333...
    nn model.compile(optimizer='adam', loss='mse')
In [338...
    nn model.fit(X train ss, y train, epochs=50, batch size=10)
    Epoch 1/50
    Epoch 2/50
    Epoch 3/50
    Epoch 4/50
    Epoch 5/50
    Epoch 6/50
    3852/3852 [=============== ] - 4s 992us/step - loss: 65200.1797
    Epoch 7/50
    3852/3852 [=============== ] - 4s 946us/step - loss: 64474.9688
    Epoch 8/50
    Epoch 9/50
    Epoch 10/50
    Epoch 11/50
    Epoch 12/50
    Epoch 13/50
    3852/3852 [============== ] - 4s 1ms/step - loss: 60675.9727
    Epoch 14/50
    Epoch 15/50
    Epoch 16/50
    Epoch 17/50
    Epoch 18/50
    Epoch 19/50
    Epoch 20/50
```

localhost:8888/lab 35/37

```
Epoch 21/50
 Epoch 22/50
 Epoch 23/50
 Epoch 24/50
 Epoch 25/50
 Epoch 26/50
 Epoch 27/50
 Epoch 28/50
 Epoch 29/50
 Epoch 30/50
 Epoch 31/50
 Epoch 32/50
 Epoch 33/50
 Epoch 34/50
 Epoch 35/50
 Epoch 36/50
 Epoch 37/50
 Epoch 38/50
 Epoch 39/50
 Epoch 40/50
 Epoch 41/50
 Epoch 42/50
 Epoch 43/50
 Epoch 44/50
 Epoch 45/50
 3852/3852 [=============== ] - 4s 979us/step - loss: 52736.7031
 Epoch 46/50
 Epoch 47/50
 Epoch 48/50
 Epoch 49/50
 Epoch 50/50
 Out[338... <tensorflow.python.keras.callbacks.History at 0x256a160a310>
```

In [339... y_pred = nn_model.predict(X_test_ss)

localhost:8888/lab 36/37

```
mean_squared_error(y_test, y_pred)

Out[339... 47288.25422180912

In [340... np.sqrt(mean_squared_error(y_test, y_pred))

Out[340... 217.45862645986045

In [341... r2_score(y_test, y_pred)

Out[341... -0.007085024897934611
```

Conclusion

The models that produced the best scores were GradientBoosting and NeuralNetwork from the 3rd model set.

localhost:8888/lab 37/37