TITRAGES

Cours ET3 - J. Joubert et Z.Chen

- ▶ Plan du cours
- 1. Principe d'un titrage
 - 1.1. Objectif
 - 1.2. Réaction de titrage
 - 1.3. Équivalence
- 2. Différents types de titrage
 - 2.1. Titrages acido-basique
 - 2.2. Titrages par oxydoréduction
 - 2.3. Titrages par précipitation
 - 2.4. Titrages par complexation

- ► Compétences spécifiques
 - Écrire l'expression d'une constante d'acidité K_a ou de basicité K_b en fonction de concentrations à l'équilibre chimique.
 - Tracer le diagramme de prédominance des espèces AH et A- en fonction du pH.
 Généraliser ce type de tracé aux cas des polyacides et des polybases.
 - ▶ Déterminer l'état final d'équilibre de systèmes simples.
 - Ecrire une réaction de titrage et la relation à l'équivalence du titrage.
 - ► Exprimer le pH d'une solution titrée au cours du titrage.
 - Exprimer la conductivité d'une solution titrée au cours du titrage (cas simple).

J. JOUBERT/Z. CHEN - COURS ET3 - PLAN DU COURS

1.3. Équivalence 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _(aq) Théorie acide-base de Brønsted-Lowry et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _(aq) Théorie acide-base de Brønsted-Lowry 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _(aq) Théorie acide-base de Brønsted-Lowry 2. Différents types de titrage	1.1. Objectif On cherche la composition d'un système. On fait réagir le système inconnu avec un autre système connu par une réaction connue. 1.2. Réaction de titrage	B _(aq) ajoute petit à petit avec un volume mesuré précisément : avec une burette en prélevé
On cherche la camposition d'un système. On fait réagit le système inconnu avec un autre système connu par une réaction connue. 1.2. Réaction de titrage 1.2. Réaction de titrage A (système inconnu) réagit avec B (système connu) Réaction (connu): ### Connumber of the control of the contr	On cherche la composition d'un système. On fait réagir le système inconnu avec un autre système connu par une réaction connue. 1.2. Réaction de titrage	B _(aq) ajoute petit à petit avec un volume mesuré précisément : avec une burette en prélevé
For un titrage: 1.2. Réaction de titrage A (système inconnu) réagit avec β (système connu) Réaction (connu): Par un titrage: Par un titrage	réagir le système inconnu avec un autre système connu par une réaction connue. 1.2. Réaction de titrage	B _(aq) ajoute petit à petit avec un volume mesuré précisément : avec une burette en prélevé
1.2. Réaction de titrage A (système inconnu) réagit avec B (système connu) Réaction (connu): J. JOUBERT/Z. CHEN - COURS ET3 - 1. PRINCIPE D'UN TITRAGE 1.3. Équivalence 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Proportions steachiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Proportions steachiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Professional en proportions steachiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Professional en proportions steachiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Professional en proportions steachiométriques. 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Thorite acide-base de Bransted-Lowry Professional en proportions steachiométriques Professional en proportions Professional en proportional en propo	-	B _(aq) ajoute petit à petit avec un volume mesuré précisément : avec une burette en prélevé
A (système inconnu) réagit avec B (système connu) Réaction (connu): J. JOUBERT/Z. CHEN – COURS ET3 – 1. PRINCIPE D'UN TITRAGE 1.3. Équivalence 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* particular proportions strechiométriques. Théorie acide-base de Brønsted-Lowry 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* particular proportions strechiométriques. Pour A : concentration C _A inconnu, on cherche C _A 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* particular proportions strechiométriques. Poficialism: l'acide: espèce chimique susceptible céder un ou plusieurs protons (ion H*1); Pour A : concentration C _A inconnu, on cherche C _A Exemple:	-	précisément : avec une burette en prélevé
1.3. Équivalence 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _{Iaql} Théorie acide-base de Brønsted-Lowry 2. He réactif titrant B (concentration connue) sont en proportions stœchiométriques. Pour A : concentration C _A inconnu, on cherche C _A Pour A : concentration C _A inconnu, on cherche C _A Exemple:		précisément un volume $V_{ m p}$ de la solution de $A_{ m (aq)}$
1.3. Équivalence 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Théorie acide-base de Brønsted-Lowry et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. Pour A : concentration C _A inconnu, on cherche C _A Pour A : concentration C _A inconnu, on cherche C _A Exemple:	Réaction (connu) :	
1.3. Équivalence 2. Différents types de titrage 2.1. Titrages acido-basique échange de H* _[aq] Théorie acide-base de Brønsted-Lowry et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. Pour A : concentration C _A inconnu, on cherche C _A Pour A : concentration C _A inconnu, on cherche C _A Exemple:	I IOUREPT/7 CHEN - COURS ET3 - 1 PRINCIPE D'	LIN TITPACE
Définition : l'équivalence correspond au point du dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2.1. Titrages acido-basique échange de H+ (aq) Théorie acide-base de Brønsted-Lowry Définition : l'acide : espèce chimique susceptible acéder un ou plusieurs protons (ion H+); Pour A : concentration CA inconnu, on cherche CA Définition : la base : espèce chimique susceptible capter un ou plusieurs protons. Exemple :	J. JOOBERT/2. CHEN - COOKS 275 - 1.1 KINCH E D	3
Définition : l'équivalence correspond au point du dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2.1. Titrages acido-basique échange de H+ (aq) Théorie acide-base de Brønsted-Lowry Définition : l'acide : espèce chimique susceptible acéder un ou plusieurs protons (ion H+); Pour A : concentration CA inconnu, on cherche CA Définition : la base : espèce chimique susceptible capter un ou plusieurs protons. Exemple :		
Définition : l'équivalence correspond au point du dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2.1. Titrages acido-basique échange de H+ (aq) Théorie acide-base de Brønsted-Lowry Définition : l'acide : espèce chimique susceptible acéder un ou plusieurs protons (ion H+); Pour A : concentration CA inconnu, on cherche CA Définition : la base : espèce chimique susceptible capter un ou plusieurs protons. Exemple :		
Définition : l'équivalence correspond au point du dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2.1. Titrages acido-basique échange de H+ (aq) Théorie acide-base de Brønsted-Lowry Définition : l'acide : espèce chimique susceptible acéder un ou plusieurs protons (ion H+); Pour A : concentration CA inconnu, on cherche CA Définition : la base : espèce chimique susceptible capter un ou plusieurs protons. Exemple :		
Définition : l'équivalence correspond au point du dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. 2.1. Titrages acido-basique échange de H+ (aq) Théorie acide-base de Brønsted-Lowry Définition : l'acide : espèce chimique susceptible acéder un ou plusieurs protons (ion H+); Pour A : concentration CA inconnu, on cherche CA Définition : la base : espèce chimique susceptible capter un ou plusieurs protons. Exemple :		
dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. Pour A : concentration C_A inconnu, on cherche C_A Théorie acide-base de Brønsted-Lowry Définition: l'acide: espèce chimique susceptible céder un ou plusieurs protons (ion H+); Définition: la base: espèce chimique susceptible capter un ou plusieurs protons.	1.3. Équivalence	2. Différents types de titrage
dosage où le réactif titré A (concentration inconnue) et le réactif titrant B (concentration connue) sont en proportions stœchiométriques. Pour A : concentration C_A inconnu, on cherche C_A Théorie acide-base de Brønsted-Lowry **Définition*: l'acide*: espèce chimique susceptible céder un ou plusieurs protons (ion H+); **Définition*: la base*: espèce chimique susceptible capter un ou plusieurs protons. **Exemple*:	Définition: l'équivalence correspond au point du	2.1. Titrages acido-basique échange de H ⁺ (aq)
proportions stœchiométriques.	dosage où le réactif titré A (concentration inconnue)	Théorie acide-base de Brønsted-Lowry
Capter un ou plusieurs protons. Sxemple:		$\underline{\textit{Définition}}$: l' acide : espèce chimique susceptible de céder un ou plusieurs protons (ion H+) ;
	Pour A : concentration C_A inconnu, on cherche C_A	<u>Définition</u> : la base : espèce chimique susceptible de capter un ou plusieurs protons.
Remarque : l'ajout d'eau ne modifie pas V _e		<u>Exemple</u> :
Remarque : l'ajout d'eau ne modifie pas V _e		
Remarque : l'ajout d'eau ne modifie pas V _e		
	$\underline{\mathcal{R}_{emarque}}$: l'ajout d'eau ne modifie pas V_{e}	
J. JOUBERT/Z. CHEN – COURS <i>ET3</i> – 2. DIFFÉRENTS TYPES DE TITRAGE		

2.1. Titrages acido-basique échange de H⁺(aq)

<u>Définition</u>: La réaction $Acide_{(aq)} = Base_{(aq)} + H^+_{(aq)}$, la constante d'équilibre notée K_a (La constante d'acidité) et $-log_{10}(K_a) = pK_a$.

$$K_{ci} = \frac{[A^{-}]_{\acute{e}q}[H^{+}]_{\acute{e}q}}{[AH]_{\acute{e}q}C^{\circ}} = \frac{[A^{-}]_{\acute{e}q}[H_{3}O^{+}]_{\acute{e}q}}{[AH]_{\acute{e}q}C^{\circ}}$$

 \mathcal{D} éfinition : $\mathsf{Base}_{(\mathsf{aq})} + \mathsf{H}_2\mathsf{O}_{(1)} = \mathsf{Acide}_{(\mathsf{aq})} + \mathit{OH}^-_{(\mathsf{aq})}$, la constante d'équilibre notée K_{b} (La constante de basicité) et $-\log_{10}(K_{\mathsf{b}}) = pK_{\mathsf{b}}$.

$$K_{b} = \frac{[AH]_{\acute{e}q}[OH^{-}]_{\acute{e}q}}{[A^{-}]_{\acute{e}q}C^{\circ}}$$

K_a tabulé dans le livre (Handbook)

Exemple:

- (1) H_2O/HO^- (pK_a = 15,74 à 25 °C)
- (2) H_3O^+/H_2O (p $K_a = -1.74 \text{ à } 25 \text{ °C}$)

 $\underline{\textit{Remarque}}$: La constante de dissociation, notée $K_{\rm d}$; La constante de dissociation de l'eau, notée $K_{\rm e}$.

$$\label{eq:Kephi} \mathcal{K}_{\mathrm{e}} = \frac{[\mathrm{H}^+][\mathrm{OH}^-]}{\mathrm{C}^{\circ 2}} = \mathcal{K}_{\mathrm{b}} \mathcal{K}_{\mathrm{a}}$$

J. JOUBERT/Z. CHEN – COURS ET3 – 2. DIFFÉRENTS TYPES DE TITRAGE

5

2.1. Titrages acido-basique échange de H⁺(aq)

<u>Définition</u>: Une **réaction acide-base** est une transformation chimique entre l'acide d'un couple et la base d'un autre couple acide/base, par l'intermédiaire d'un échange d'ions H⁺.

le couple Acide₁/Base₁ et le couple Acide₂/Base₂.

(1)
$$Acide_1 = Base_1 + H^+$$

$$^{\wedge_1}$$

Réaction de bilan :

(R) Acide₁ + Base₂ = Base₁ + Acide₂
$$K_{\mathbf{R}}^{\circ}$$

<u>Exemple</u>:

(1)
$$H_2O_{(I)} = HO^-_{(aq)} + H^+_{(aq)}$$
 $pK_{a(1)} = 15.74$ à t.a.

(2)
$$NH_{4}^{+}_{(aq)} = NH_{3(aq)} + H_{(aq)}^{+} pK_{a(2)} = 9,25 \text{ à t.a.}$$

La réaction acide-base :

(R)
$$NH_4^+_{(aq)} + HO^-_{(aq)} = NH_{3(g)} + H_2O_{(I)}$$
 $K_R^{\circ} =$

J. JOUBERT/Z. CHEN - COURS ET3 - 2. DIFFÉRENTS TYPES DE TITRAGE

 2.1. Titrages acido-basique échange de H+_(aq) Différents acides Si pK_a < -1.74, l'acide se dissocie dans l'eau quantitativement (c'est un acide fort) Exemple: 	• Si -1.74 < pK _a < 15.74, ce sont un acide faible et une base faible. Il existe dans l'eau. <u>Exemple</u> :
• Si pK _a >15.74, la base n'existe pas dans l'eau (c'est une base forte) <u>Exemple</u> :	<u>Remarque</u> : Pour une solution aqueuse, il existe toujours une réaction acide-base entre l'eau et la soluté.
J. JOUBERT/Z. CHEN – COURS <i>ET3</i> – 2. DIFFÉRENTS T	TYPES DE TITRAGE 7
 2.1. Titrages acido-basique échange de H+_(aq) Détection de l'équivalence lère méthode par pH-métrie : pH = f(V) <u>Démonstration</u> : Travaux Pratiques 2 	Titrage d'un acide fort par une base forte (Titrage alcalimétrique) <u>Exemple</u> :
 2ème méthode avec un indicateur coloré : on ajoute un composé qui change de couleur quand V ≈ V_e Il faut bien choir l'indicateur coloré Il faut que la zone de changement de couleur soit deux 	Titrage d'une base forte par un acide fort (Titrage acidimétrique) Exemple:
 3ème méthode par conductimétrie : σ = f(V) <u>Définition</u>, <u>Démonstration et Exemple</u>: Travaux Pratiques J. JOUBERT/7. CHEN – COURS FT3 – 2. DIFFÉRENTS T 	TYPES DE TITDA CE

2.1. Titrages acido-basique échange de H⁺(aq)

Titrage d'un acide faible par une base forte (Titrage alcalimétrique)

Exemple:

Titrage d'une base faible par un acide fort (Titrage acidimétrique)

<u>Exemple</u>:

Titrage de polyacide AH_n (polybase) ou de mélanges d'acides (de bases)

 $\underline{\textit{Exemple}}$: pour un diacide (n = 2):

$$AH_2 \rightarrow AH^- \rightarrow A^{2-}$$

 $\underline{\mathcal{R}_{emarque}}$: Si pK_{a2} - pK_{a1} < 4, deux réactions en même temps

Exemple:

J. JOUBERT/Z. CHEN – COURS ET3 – 2. DIFFÉRENTS TYPES DE TITRAGE

9

2.1. Titrages acido-basique échange de $H^+_{\text{(aq)}}$

Titrage de polyacide $\mathbf{AH_n}$ (polybase) ou de mélanges d'acides (de bases)

 $\underline{\mathcal{R}_{emarque}}$: Si pK_{a2} - pK_{a1} > 4, deux réactions séparées

<u>Exemple</u>:

2.2. Titrages rédox échange d'e-

Exemple: L'iodométrie

(R)
$$I_3^- + 2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 3 I^- (E_r = +0.4555 \text{ V})$$

(1)
$$I_3^- + 2 e^- \rightleftharpoons 3 I^ (E^{\circ}_{(1)} = +0.5355 \text{ V})$$

(2)
$$S_4O_6^{2-} + 2 e^- \rightleftharpoons 2 S_2O_3^{2-}$$
 $(E^{\circ}_{(2)} = +0.08 \text{ V})$

(R) = (1)-(2);
$$E_r = E^{\circ}_{(1)} - E^{\circ}_{(2)}$$

Un titrage en retour (type indirect) pour la dosage d'oxydant comme MnO_4 -, H_2O_2 .

J. JOUBERT/Z. CHEN – COURS ET3 – 2. DIFFÉRENTS TYPES DE TITRAGE

2.3. Titrages par précipitation

<u>Exemple</u>: L'argentimétrie - Méthode de Mohr

Pour la dosage de Cl⁻ en utilisant l'anion ${\rm CrO_4^{2^-}}$ comme une indicateur.

1e phase:

$$Ag^{+}_{(aq)} + Cl^{-} = AgCl_{(s)}$$
 (blanche/jaune)
 $K_{sp} = 1.70.10^{-10}$; $K^{\circ} = K_{sp}^{-1} = 5.88.10^{9}$

2e phase: quand Cl-tout précipité

$$2Ag^{+}_{(aq)} + CrO_{4}^{2-}_{(aq)} = Ag_{2}CrO_{4(s)}$$
 (rouge)
 $K_{sp} = 1.1.10^{-12}$; $K^{\circ} = K_{sp}^{-1} = 9.1.10^{11}$

2.4. Titrages par complexation

La complexométrie

<u>Exemple</u>: La chélation des cations métalliques par l'EDTA

$$M^{2+} + H_4Y \rightarrow MH_2Y + 2H^+$$

$$H_4EDTA = H_4Y$$

[Fe(H₂O)₆]³⁺ + H₄EDTA
$$\rightleftharpoons$$
 [Fe(EDTA)]⁻ + 6 H₂O + 4 H⁺

$$K_{eq} = 10^{25.1}$$

J. JOUBERT/Z. CHEN – COURS ET3 – 2. DIFFÉRENTS TYPES DE TITRAGE

l'EDTA un ligand hexadentate

J. JOUBERT/Z. CHEN – COURS ET3 – 2. DIFFÉRENTS TYPES DE TITRAGE

11