This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

not found yet The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2871>: m935.seq ATGTTGTATT TCAGATACGG CTTTTTGGTT GTTTGGTGTG CGGCAGGTGT TTCTGCCGCC TATGGGGCGG ATGCGCCCGC GATTTTGGAT GACAAGGCAT TGTTGCAGGT GCAGCGGTCG GTGTCGGATA AGTGGGCGGA ATCAGATTGG 101 AAAGTTGAAA ATGATGCCCC GCGCGTGGTT GACGGGGATT TTTTGTTGGC 201 GCATCCGAAA ATGTTGGAAC ATAGTTTGCG CGACGCGCTC AACGGCAATC 251 AGGCGGATTT AATCGCTTCG TTGGCGGATT TGTATGCCAA GCTGCCGGAT 301 TATGACGCGG TTTTGTACGG CAGGGCGCGG GCTTTGCTGG CGAAATTGGC 351 GGGAAGGCCG GCGGAGGCGG TGGCGCGGTA TCGGGAACTG CACGGGGAAA 401 ATGCGGCAGA CGAGCGGATT TTGCTGGATT TGGCGGCGGC GGAGTTTGAC 451 GATTTCCGGC TGAAGTCGGC AGAAAGGCAT TTTGCGGAGG CGGCAAAATT 501 GGATTTGCCG GCACCGGTTT TGGAAAATGT GGGGCGTTTT CGGAAAAAAA 551 CGGAGGGCT GACGGCTGG CGTTTTTCGG GCGGCATCAG TCCGGCGGTC 601 AATAGAAATG CCAATAATGC CGCGCCGCAA TATTGCCGGC AAAACGGAGG 651 CCGGCAGATA TGCAGTGTCA GCCGGGCGGA GCGGGCGGCA GGGTTGAATT 701 ATGAAATCGA GGCGGAAAAG CTGACGCCGT TGGCAGATAA TCATTATTTG 751 TTGTTCCGTT CCAATATCGG CGGCACGAGC TATTATTTCA GTAAAAAATC 801 AGCTTATGAT GACGGGTTCG GCAGGGCGTA TTTGGGTTGG CAGTATAAAA TTGTTCCGTT CCAATATCGG CGGCACGAGC TATTATTTCA GTAAAAAATC 851 ATGCACGGCA GACGGCGGGG ATTTTGCCGT TTTATCAGGT GCAGTTGTCG 901 GGCAGCGACG GCTTTGATGC GAAAACAAAA CGGGTAAACA ACCGCCGCCT 951 GCCGCCGTAT ATGCTGGCGC ACGGAGTCGG CGTGCAGCTG TCCCATACTT 1001 ACCGCCCAAA CCCGGGATGG CAATTTCGG TCGCGCTGGA ACATTACCGC 1051 CAACGCTACC GCGAACAGGA TAGGGCGGAA TACAATAACG GCAGGCAGGA 1101 CGGGTTTTAT GTTTCGTCGG CAAAACGTTT GGGCGAATCG GCAACTGTGT 1151 TCGGCGGCTG GCAGTTTGTG CGGTTTGTGC CGAAACGCGA AACGGTGGGC 1201 GGCGCGGTCA ATAATGCCGC CTACCGGCGC AACGGTGTTT ATGCCGGTTG 1251 GGCGCAGGAG TGGCGGCAGT TGGGCGGTTT GAACAGTCGG GTTTCCGCGT 1301 CTTATGCCCG CCGCAACTAT AAGGGCATTG CGGCTTTCTC GACAGAGGCG 1351 CAACGCAACC GCGAATGGAA TGTCTCGCTG GCTTTGAGCC ACGACAAGTT 1401 GTCGTACAAA GGTATCGTGC CGGCGTTGAA TTATCGTTTC GGCAGGACGG 1451 AAAGTAATGT GCCGTATGCG AAACGCCGCA ACAGCGAGGT GTTTGTGTCG 1501 GCGGATTGGC GGTTTTGA This corresponds to the amino acid sequence <SEQ ID 2872; ORF 935>: m935.pep MLYFRYGFLV VWCAAGVSAA YGADAPAILD DKALLQVQRS VSDKWAESDW 51 KVENDAPRVV DGDFLLAHPK MLEHSLRDAL NGNQADLIAS LADLYAKLPD 101 YDAVLYGRAR ALLAKLAGRP AEAVARYREL HGENAADERI LLDLAAAEFD 151 DFRLKSAERH FAEAAKLDLP APVLENVGRF RKKTEGLTGW RFSGGISPAV 201 NRNANNAAPQ YCRQNGGRQI CSVSRAERAA GLNYEIEAEK LTPLADNHYL 251 LFRSNIGGTS YYFSKKSAYD DGFGRAYLGW QYKNARQTAG ILPFYQVQLS 301 GSDGFDAKTK RVNNRRLPPY MLAHGVGVQL SHTYRPNPGW QFSVALEHYR 351 QRYREQDRAE YNNGRQDGFY VSSAKRLGES ATVFGGWQFV RFVPKRETVG 401 GAVNNAAYRR NGVYAGWAQE WRQLGGLNSR VSASYARRNY KGIAAFSTEA 451 ORNREWNVSL ALSHDKLSYK GIVPALNYRF GRTESNVPYA KRRNSEVFVS 501 ADWRF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2873>:

```
a935.seq

1 ATGTTGTATT TCAGATACGG TTTTTTGGTT GTTTGGTGT CGGCAGGTGT

51 TTCTGCCGCC TATGGGGCGG ATGCGCCCGC GATTTTGAT GACAAGGCAT

101 TGTTGCAGGT GCAGCGGTCG GTGTCGGATA AGTGGGCGGA ATCGGATTGG

151 AAAGTTGACA ATGATGCCCC GCGCGTGGTT GACGGGGATT TTTTGTTGGC

201 GCATCCGAAA ATGTTGGAAC ATAGTTTGCG CGACGTGCTC AACGGCAATC

251 AGGCGGATTT GATCGCTTCG TTGGCGGATT TGTATGCCAA GCTGCCGGAT

301 TATGACGCGG TTTTGTACGG CAGGGCGCG GCTTTGCTGG CGAAATTGGC

351 GGGAAGGCCG GCGGAGGCGG TGGCGCGGTA TCGGGAACTC CACGGGGAAA

401 ATGCGGCAGA CGAGCGGATT TTGCTGGATT TGGCGGCGGC GGAGTTTGAC

451 GATTTCCGGC TGAAGTCGGC AGAAAGGCAT TTTGCCGAGG CGGAAAAAATT

501 GGATTTGCCC GCGCCGGTTT TGGAAAATGT GGGGCGTTT CGGAAAAAAG

551 CGGAGGGGCT GACGGCTGG CGTTTTTCGG GCGGCATCAG TCCGGCGGTC
```

	310	320	330	340	350	360
m935.pep	GSDGFDAKTKRVNN	RRLPPYMLAH	GVGVOLSHT	YRPNPGWOFSV	ALEHVEORY	DECUDAG.
	11111111111111	111111111		1111111111	TITITION T	REQUERE
a935	GSDGFDAKTKRVNN	RRT.PPYMT.AH	GVGVOLSHT	TITITITE TO THE TERMINATION OF T	ALERANDORY	
	310	320	330	340		
	010	320	330	340	350	360
	370	380	390	400	410	420
m935.pep	YNNGRQDGFYVSSA				410 410	U24 70 (W2) (W
1 1						
a935					1111111	111111
4300	YNNGRQDGFYVSSA 370	VVTGTOWIAL	GGMÖT AKT A			
	370	380	390	400	410	420
	420					
	430	440	450	460	470	480
m935.pep	WRQLGGLNSRVSAS	YARRNYKGIA	AFSTEAQRN:	REWNVSLALSH	OKLSYKGIV:	PALNYRF
		11111111:1				111111
a935	WRQLGGLNSRVSAS	YARRNYKGVA	AFSTEAORN	REWNVSLALSHI	OKT.SYKGTVI	DALNVDE
	430	440	450	460	470	480
				100	470	400
	490	500				
m935.pep	GRTESNVPYAKRRN:	SEVFVSADWRI	FX			
	1111111111111		1 1			
a935	GRTESNVPYAKRRN		rv			
	490		· ^			
	490	50 0				

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2875>: g936.seq

```
ATGAAACCCA AACCACACA CGTCCGCACC CTGATTGCCG CCGTCCTCAG
    CCTTGCCCTC GGCGGCTGCT TCAGCGCAGT CGTCGGCGGG GCCGCCGTCG
 51
101 GCGCAAAATC CGTCATCGAC CGccgAACCA CCGgcgcgca AACCGATGac
151 AACGTTATGG CGTTGCGTAT CGAAACCACC GCCCGTTCCT ACCTGCGCCA
201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTC GTCGGCTACA
    ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAAAAACAG
301 TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTATACAA
351 CTACATTACC GTCGCCTCCC TGCCGCGCAC TGCGGGCGAC ATCGCCGGCG
401 ACACTTGGAA CACGTCCAAA GTCCGCGCca cgCTGCTGGG CATCAGCCCC
451 GCTACACAGG CGCGCGTCAA AATCATTACC TACGGCAATG TAACCTACGT
501 TATGGGCATC CTCACCCCCG AAGAACAGGC GCAGATTACC CAAAAAGTCA
551 GCACCACCGT CGGCGTACAA AAAGTCATTA CCCTCTACCA AAACTACGTC
    CAACGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 2876; ORF 936.ng>: g936.pep

- MKPKPHTVRT LIAAVLSLAL GGCFSAVVGG AAVGAKSVID RRTTGAQTDD 1
- 51 NVMALRIETT ARSYLRONNO TKGYTPQISV VGYNRHLLLL GQVATEGEKQ
- 101 FVGQIARSEQ AAEGVYNYIT VASLPRTAGD IAGDTWNTSK VRATLLGISP 151 ATQARVKIIT YGNVTYVMGI LTPEEQAQIT QKVSTTVGVQ KVITLYQNYV
- 201

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2877>: m936.seq (partial)

- ATGAAACCCA AACCGCACAC CGTCCGCACC CTGATTGCCG CCATTTTCAG 1 CCTTGCCCTT AGCGGCTGCG TCAGCGCAGT AATCGGAAGC GCCGCCGTCG 101 GCGCGAAATC CGCCGTCGAC CGCCGAACCA CCGGCGCGCA AACCGACGAC 151 AACGTTATGG CGTTGCGTAT CGAAACCACC GCCCGTTCCT ATCTGCGCCA 201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTC GTCGGCTACA
- 251 ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAAAAACAG
- 301 TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTGTACAA

CTATATTACC GTCGCCTCCC TGCCGCGCAC TGCC...

This corresponds to the amino acid sequence <SEQ ID 2878; ORF 936>: m936.pep (partial)

- MKPKPHTVRT LIAAIFSLAL SGCVSAVIGS AAVGAKSAVD RRTTGAQTDD
- NVMALRIETT ARSYLRONNO TKGYTPQISV VGYNRHLLLL GQVATEGEKO
- 101 FVGQIARSEQ AAEGVYNYIT VASLPRTA...

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N.gonorrhoeae

ORF 936 shows 93.8% identity over a 128 aa overlap with a predicted ORF (ORF 936.ng) from N. gonorrhoeae:

	10	20	30	40	50	60
m936.pep	MKPKPHTVRTLIAA	FSLALSGCV			GAQTDDNVM	ALRIETT
g936	MKPKPHTVRTLIAA	:: : /LSLALGGCF	: : SAVVGGAAVG	:: AKSVIDDOTT		
•	10	20	30	40	50	4DKIEII
			- •	10	50	60
	70	80	90	100	110	120
m936.pep	ARSYLRONNOTKGYT	PQISVVGYN	RHLLLLGQVA	TEGEKQFVGQ	IARSEOAAEC	TIYNYVE
		111111111		111111111	111111111	111111
g936	ARSYLRONNOTKGYT	PQISVVGYN	RHLLLLGQVA	TEGEKOFVGO	IARSEQAAEC	TIYNYV
	70	80	90	100	110	120
	130					
m936.pep	VASLPRTAXXX					
m330.pep	IIIIIIII					
q93 6		がおかがら かったい かっか	TTGTGDAMOA			
9,50	VASLPRTAGDIAGDI	WINISKVRAT			TYVMĢILTPE	EQAQIT:
	130	140	150	160	170	180

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2879>:

```
a936.seq

1 ATGAAACCCA AACCGCACAC CGTCCGCACC CTGACTGCCG CCGTCCTCAG
51 CCTTGCCTCC GGCGGCTGCG TCAGCGCAGT CGTCGGCGGC GCGGCGGTCG
101 GCGCGAAATC CGCCGTCGAC CGCCGAACCA CCGGCGCGCA AACCGACGAC
151 AACGTAATGG CGCTGCGTAT CGAAACCACC GCCCGCTCCT ATCTGCGCCA
201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTT GTCGGCTACA
251 ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAGAAACAG
301 TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTGTACAA
351 CTACATTACC GTCGCCTCCC TGCCGCGCAC TGCCGGCGAC ATCGCCGGCG
401 ACACTTGGAA CACATCCAAA GTCCGCGCCA CGCTGTTGGG CATCAGCCCC
451 GCCACACAGG CGCGCTCAA AATCGTTACC TACGGCAACG TAACCTACGT
501 TATGGGCATC CTCACCCCCG AAGAACAGC GCAGATTACC CAAAAAAGTCA
551 GCACCACCGT CGGCGTACAA AAAGTCATCA CCCTCTACCA AAACTACGTC
```

This corresponds to the amino acid sequence <SEQ ID 2880; ORF 936.a>:

1930.pep					
1	MKPKPHTVRT	LTAAVLSLAL	GGCVSAVVGG	AAVGAKSAVD	RRTTGAOTDD
51	NVMALRIETT	ARSYLRONNO	TKGYTPQISV	VGYNRHLLLL	GOVATEGERO
101	FVGQIARSEQ	AAEGVYNYIT	VASLPRTAGD	IAGDTWNTSK	VRATLIGISP
151	ATQARVKIVT	YGNVTYVMGI	LTPEEQAOIT	OKVSTTVGVO	KVITLYONYV
201	QR*				

m936/a936 95.3% identity in 128 aa overlap

006	10	20	30	40	50	60
m936.pep	MKPKPHTVRTLIAA	IFSLALSGCV	SAVIGSAAVO	AKSAVDRRTT	GAQTDDNVM	ALRIETT
	*	::	111:1:111	111111111	11111111111	
a936	MKPKPHTVRTLTAA	VLSLALGGCV	SAVVGGAAVG	AKSAVDRRTT	GAOTDDNVMA	LRIETT
	10	20	30	40	50	60
	70	80	90	100	110	120
m936.pep	ARSYLRONNOTKGY	TPQISVVGYN:	RHLLLLGQVA	TEGEKQFVGO	IARSEOAAEG	VYNYTT
		11111111		111111111	111111111	11111
a936	ARSYLRONNOTKGY	TPQISVVGYN:	RHLLLLGQVA	TEGEKQFVGO	IARSEOAAEC	VYNYTT
	70	80	90	100	110	120

m936.pep VASLPRTA

1352

```
VASLPRTAGDIAGDTWNTSKVRATLLGISPATQARVKIVTYGNVTYVMGILTPEEQAQIT
     a936
                                    140
                                              150
                                                                              180
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2881>:
g936-1.seq
```

```
1 ATGAAACCCA AACCACACAC CGTCCGCACC CTGATTGCCG CCGTCCTCAG
51 CCTTGCCCTC GGCGGCTGCT TCAGCGCAGT CGTCGGCGGG GCCGCCGTCG
101 GCGCAAAATC CGTCATCGAC CGccgAACCA CCGgcgcgca AACCGATGac
151 AACGTTATGG CGTTGCGTAT CGAAACCACC GCCCGTTCCT ACCTGCGCCA
201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTC GTCGGCTACA
      ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAAAAACAG
251
     TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTATACAA
     CTACATTACC GTCGCCTCCC TGCCGCGCAC TGCGGGCGAC ATCGCCGGCG
351
     ACACTTGGAA CACGTCCAAA GTCCGCGCCa CGCTGCTGGG CATCAGCCCC
GCTACACAGG CGCGGCTCAA AATCATTACC TACGGCAATG TAACCTACGT
401
451
     TATGGGCATC CTCACCCCCG AAGAACAGGC GCAGATTACC CAAAAAGTCA
     GCACCACCGT CGGCGTACAA AAAGTCATTA CCCTCTACCA AAACTACGTC
551
```

This corresponds to the amino acid sequence <SEQ ID 2882; ORF 936-1.ng>: g936-1.pep

```
MKPKPHTVRT LIAAVLSLAL GGCFSAVVGG AAVGAKSVID RRTTGAQTDD
 1
    NVMALRIETT ARSYLRONNO TKGYTPQISV VGYNRHLLLL GQVATEGEKQ
 51
    FVGQIARSEQ AAEGVYNYIT VASLPRTAGD IAGDTWNTSK VRATLLGISP
151 ATQARVKIIT YGNVTYVMGI LTPEEQAQIT QKVSTTVGVQ KVITLYQNYV
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2883>: m936-1.seq

```
1 ATGAAACCCA AACCGCACAC CGTCCGCACC CTGATTGCCG CCATTTTCAG
     CCTTGCCCTT AGCGGCTGCG TCAGCGCAGT AATCGGAAGC GCCGCCGTCG
101 GCGCGAAATC CGCCGTCGAC CGCCGAACCA CCGGCGCGCA AACCGACGAC
151 AACGTTATGG CGTTGCGTAT CGAAACCACC GCCCGTTCCT ATCTGCGCCA
201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTC GTCGGCTACA
     ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAAAAACAG
251
301 TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTGTACAA
    CTATATTACC GTCGCCTCCC TGCCGCGCAC TGCCGGCGAC ATCGCCGGCG
351
401 ACACTTGGAA CACATCCAAA GTCCGCGCCA CGCTGTTGGG CATCAGCCCC
    GCCACACAGG CGCGCGTCAA AATCGTTACC TACGGCAACG TAACCTACGT
451
    TATGGGCATC CTCACCCCG AAGAACAGGC GCAGATTACC CAAAAAGTCA
551 GCACCACCGT CGGCGTACAA AAAGTCATCA CCCTCTACCA AAACTACGTC
601 CAACGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 2884; ORF 936-1>: m936-1.pep

```
1 MKPKPHTVRT LIAAIFSLAL SGCVSAVIGS AAVGAKSAVD RRTTGAQTDD
    NVMALRIETT ARSYLRONNO TKGYTPQISV VGYNRHLLLL GQVATEGEKQ
    FVGQIARSEQ AAEGVYNYIT VASLPRTAGD IAGDTWNTSK VRATLLGISP
101
    ATQARVKIVT YGNVTYVMGI LTPEEQAQIT QKVSTTVGVQ KVITLYQNYV
151
201
```

m936-1/g936-1 95.5% identity in 202 aa overlap

601 CAACGCTGA

201

```
30
         MKPKPHTVRTLIAAIFSLALSGCVSAVIGSAAVGAKSAVDRRTTGAQTDDNVMALRIETT
m936-1.pep
         g936-1
         MKPKPHTVRTLIAAVLSLALGGCFSAVVGGAAVGAKSVIDRRTTGAQTDDNVMALRIETT
               10
                            30
                                          50
               70
                     80
                                   100
         ARSYLRONNQTKGYTPQISVVGYNRHLLLLGQVATEGEKQFVGQIARSEQAAEGVYNYIT
m936-1.pep
         ARSYLRONNOTKGYTPOISVVGYNRHLLLLGOVATEGEKQFVGQIARSEQAAEGVYNYIT
a936-1
                     80
                            90
                                  100
              130
                    140
                            150
         VASLPRTAGDIAGDTWNTSKVRATLLGISPATQARVKIVTYGNVTYVMGILTPEEQAQIT
m936-1.pep
```

```
VASLPRTAGDIAGDTWNTSKVRATLLGISPATQARVKIITYGNVTYVMGILTPEEQAQIT
 g936-1
                    130
                             140
                                      150
                                              160
                                                       170
                    190
                             200
             QKVSTTVGVQKVITLYQNYVQRX
 m936-1.pep
             1711111111111111111111111111
 \alpha 936 - 1
             QKVSTTVGVQKVITLYQNYVQRX
                   190
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2885>:
 a936-1.seq
       1 ATGAAACCCA AACCGCACAC CGTCCGCACC CTGACTGCCG CCGTCCTCAG
          CCTTGCCCTC GGCGGCTGCG TCAGCGCAGT CGTCGGCGGC GCGGCGGTCG
      51
          GCGCGAAATC CGCCGTCGAC CGCCGAACCA CCGGCGCGCA AACCGACGAC
     101
     151 AACGTAATGG CGCTGCGTAT CGAAACCACC GCCCGCTCCT ATCTGCGCCA
     201 AAACAACCAA ACCAAAGGCT ACACGCCCCA AATCTCCGTT GTCGGCTACA
     251 ACCGCCACCT GCTGCTGCTC GGACAAGTCG CCACCGAAGG CGAGAAACAG
     301 TTCGTCGGTC AGATTGCACG TTCCGAACAG GCCGCCGAAG GCGTGTACAA
351 CTACATTACC GTCGCCTCCC TGCCGCGCAC TGCCGGCGAC ATCGCCGGCG
     401
         ACACTTGGAA CACATCCAAA GTCCGCGCCA CGCTGTTGGG CATCAGCCCC
         GCCACACAGG CGCGCGTCAA AATCGTTACC TACGGCAACG TAACCTACGT
     451
         TATGGGCATC CTCACCCCCG AAGAACAGGC GCAGATTACC CAAAAAGTCA
     501
         GCACCACCGT CGGCGTACAA AAAGTCATCA CCCTCTACCA AAACTACGTC
     551
     601
         CAACGCTGA
This corresponds to the amino acid sequence <SEQ ID 2886; ORF 936-1.a>:
a936-1.pep
         MKPKPHTVRT LTAAVLSLAL GGCVSAVVGG AAVGAKSAVD RRTTGAQTDD
         NVMALRIETT ARSYLRONNO TKGYTPQISV VGYNRHLLLL GQVATEGEKQ
      51
         FVGQIARSEQ AAEGVYNYIT VASLPRTAGD IAGDTWNTSK VRATLLGISP
     101
         ATQARVKIVT YGNVTYVMGI LTPEEQAQIT QKVSTTVGVQ KVITLYQNYV
     151
     201
a936-1/m936-1
                97.0% identity in 202 aa overlap
                    10
                             20
                                       30
                                                40
            MKPKPHTVRTLIAAIFSLALSGCVSAVIGSAAVGAKSAVDRRTTGAQTDDNVMALRIETT
m936-1.pep
            a936-1
            MKPKPHTVRTLTAAVLSLALGGCVSAVVGGAAVGAKSAVDRRTTGAQTDDNVMALRIETT
                             20
                                      30
                                                40
                             80
                                       90
                                               100
                                                        110
            ARSYLRQNNQTKGYTPQISVVGYNRHLLLLGQVATEGEKQFVGQIARSEQAAEGVYNYIT
m936-1.pep
            a936-1
            ARSYLRONNOTKGYTPQISVVGYNRHLLLLGQVATEGEKQFVGQIARSEQAAEGVYNYIT
                    70
                             80
                                               100
                                                        110
                            140
                                     150
                                               160
                                                        170
            VASLPRTAGDIAGDTWNTSKVRATLLGISPATQARVKIVTYGNVTYVMGILTPEEQAQIT
m936-1.pep
            a936-1
            VASLPRTAGDIAGDTWNTSKVRATLLGISPATQARVKIVTYGNVTYVMGILTPEEQAQIT
                   130
                            140
                                     150
                                               160
                                                        170
                   190
                            200
m936-1.pep
            QKVSTTVGVQKVITLYQNYVQRX
            a936-1
            QKVSTTVGVQKVITLYQNYVQRX
                  190
                            200
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2887>:

```
1 atGAAAAATA TTCTCTTAGE ATTTGTTAGC TTTGTGCCAT TATGTGTCCG
51 CACTGATCTG CCGCTGAAtA tCGAAGACAT AATGACCGAC AAGGGAAAAT
101 GGAAACtGGA AACTTCCCLL ACCLACCGTTA CATTCAGACC GGCTCCGCTT CCTTTATCCC
201 CGTCCCGACC GAAATTCAGG AAAACGGCAG CAATACCGAT ATGCTCGCCG
251 GCACGCTCGG TTTGCGCTAC GGACTGACCG GCAACACCGA CATTTACGGC
301 AGCGGCAGCT ATCTGTGGCA CGAAGAACGC AAACTCGACG GCAACGGCAA
```



```
351 AACCCGCAAC AAACGGATGT CCGACATATC CGCCGGCATC AGCCACACCT
401 TCCttaAAGa cgGCAAAAAT CCCGCACTCA TCGCTTTCCT CGAAAGCACG
451 GTTTACGAAA AATCGCGCAA CAAAGCCTCG TCGGGAAAAT CGTGGCTCAT
501 CGGCGCCACC ACCTACAAAG CCATAGATCC GATTGTCCTT TCCCTCACCG
551 CCGCCTACCG CATCAACGGC AGCAAAACCC TTTCAGACGA CGTCAAATAC
601 AAAGCAGGCA ATTACTGGAT GCTGAATCCC AACATCTCAT TTGCCGCCAA
651 CGACAGAATC AGCCTGACCG GAGGCATCCA ATGGCTGGGC AAACAGCCCG
701 ACCGCATAGA CGGCAAAAAA GAATCCGCAA GAAACACATC CACCTACGCC
751 CATTTCGGCG CAGGTTTCGG TTTCACCAAA ACCGCGGCTT TAAACGCATC
    CGCACGTTTC AACGTTTCAG GGCAAAGCAG TTCCGAACTG AAATTGGGCG
    TACAGCATAC ATTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 2888; ORF 937.ng>: g937.pep

```
MKNILLVFVS FVPLCVRTDL PLNIEDIMTD KGKWKLETSL TYLNSENSRA
 1
    ALASPVYIQT GSASFIPVPT EIQENGSNTD MLAGTLGLRY GLTGNTDIYG
51
    SGSYLWHEER KLDGNGKTRN KRMSDISAGI SHTFLKDGKN PALIAFLEST
    VYEKSRNKAS SGKSWLIGAT TYKAIDPIVL SLTAAYRING SKTLSDDVKY
201 KAGNYWMLNP NISFAANDRI SLTGGIQWLG KQPDRIDGKK ESARNTSTYA
```

251 HFGAGFGFTK TAALNASARF NVSGQSSSEL KLGVQHTF* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2889>:

```
m937.seq
          ATGAAGCGCA TCTTTTTGCC CGCCTTGCCC GCCATCCTGC CTTTATCCAC
       3
     51 TTATGCCGAC CTGCCCTTGA CGATTGAAGA CATAATGACC GACAAGGGAA
101 AATGGAAACT GGAAACTTCC CTTACCTACC TGAACAGCGA AAACAACCGC
     151 GCCGAACTTG CCGCACCGGT TTACATTCAA ACCGGCGCAA CCTCGTTTAT
    201 CCCCATTCCG ACCGAAATCC AAGAAAACGG CAGCAATACC GATATGCTCG
    251 TCGGCACGCT CGGTTTGCGC TACGGACTGA CCGGGAATAC CGACATTTAC
    301 GGCAGCGGCA GCTATCTGTG GCACGAAGAA CGCAAACTCG ACGGCAACAG
    351 CAAAACCCGC AACAAACGGA TGTCCGACGT ATCCCTCGGC ATCAGCCACA
    401 CTTTCCTTAA AGACGACAAA AACCCCGCCC TAATCAGCTT TCTTGAAAGC
    451 ACGGTTTACG AAAAATCGCG CAACAAAGCC TCGTCGGGAA AATCCTGGCT
    501 CATCGGCGCC ACCACCTACA AAGCCATAGA TCCGATTGTC CTTTCCCTCA
    551 CCGCCGCCTA CCGCATCAAC GGCAGCAAAA CCCTTTCAGA CGGCATCCGC
    601 TACAAATCGG GCAACTACCT GCTGCTCAAC CCCAACATCT CATTTGCTGC
    651 CAACGACAGA ATCAGCCTGA CCGGAGGCAT CCAATGGCTG GGCAGGCAGC
         CCGACCGGAC GGACGGCAAA CGGGAATCCT CCAGAAACAC ATCCACCTAC
    751 GCCCATTTCG GCGCAGGTTT CGGTTTCACC AAAACCACGG CTTTAAACGC
```

This corresponds to the amino acid sequence <SEQ ID 2890; ORF 937>: m937.pep..

```
1 MKRIFLPALP AILPLSTYAD LPLTIEDIMT DKGKWKLETS LTYLNSENNR
     AELAAPVYIQ TGATSFIPIP TEIQENGSNT DMLVGTLGLR YGLTGNTDIY
 51
101 GSGSYLWHEE RKLDGNSKTR NKRMSDVSLG ISHTFLKDDK NPALISFLES
151 TVYEKSRNKA SSGKSWLIGA TTYKAIDPIV LSLTAAYRIN GSKTLSDGIR
201 YKSGNYLLLN PNISFAANDR ISLTGGIQWL GROPDRTDGK RESSRNTSTY
```

801 ATCCGCACGT TTCAACGTTT CAGGGCAAAG CAGTTCCGAA CTGAAATTTG

251 AHFGAGFGFT KTTALNASAR FNVSGQSSSE LKFGVQHTF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

GCGTACAGCA TACATTTTAA

ORF 937 shows 86.9% identity over a 289 aa overlap with a predicted ORF (ORF 937.ng) from N. gonorrhoeae: g937/m937

```
10
                            20
                                    30
                                             40
           {\tt MKNILL-VFVSFVPLCVRTDLPLNIEDIMTDKGKWKLETSLTYLNSENSRAALASPVYIQ}
g937.pep
           MKRIFLPALPAILPLSTYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ
m937
                  10
                           20
                                   30
                                            40
                                                     5.0
          60
                           80
                                    90
                                            100
                                                     110
           {\tt TGSASFIPVPTEIQENGSNTDMLAGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNGKTR}
g937.pep
```

m937	:: : TGATSFIPIPTE 70	 QENGSNTDML 80	:		 LWHEERKLDGN	: SKTR 120
	0 130 NKRMSDISAGIS : NKRMSDVSLGIS 130	!		1111111111		1111
	0 190 LSLTAAYRINGSI LSLTAAYRINGSI 190		1	111111111	1111111111	111
	0 250 KESARNTSTYAHI : : RESSRNTSTYAHI 250			111111111111	11111	
The following						D 2891>:
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 This correspond a 937 . pep 1 51 101 151 201 251	TTATGCCGAC AATGGAAACT GCCGAACTTG CCCCATTCCG TTGGCACGCT GGCAGCGCAC CCTTCCTTAA ACGGTTTACG CATCGGCGCC CCGCTGCCTA TACAAAGCAGA CCGACCGTCT GCCCATTTCG ATCCGCACGT GCCATTTCG ATCCGCACGT GCCATTTCG ATCCGCACGT GCGTACAGCA Is to the amine MKRIFLPALP AELAAPVYIQ GSGSYLWHEE TVYEKSRNKA	CTGCCCTTGA GGAAACTTCC CCGCACCGGT ACCGAAATCC CGGTTTGCGC GCTATCTTGTG AACAAACGGA AAAAATCGCG ACCACCTACA CCGTATCAAC GCAATTACTG ATCAGCCTCA GGACGGCAAA GCGCAGGTTT TTCAACGTTT TACGTTTTAA O acid seque AILPLSAYAD TGATSFIPIP RKLDGNGKTR SSGKSWLIGA PNISFAANDR	CGATTGAAGA CTTACCTACC TTACATCCAA AAGAAAACGG TACGGACTGA GCACGAAGAA TGTCCGACGT AACCCCGCCC CAACAAAGCC AAGCCATCGA GGCAGCAAAA GATGCTGAAT CGGGCGGCAT AAAGAATCCG CGGTTTCACC CAGGGCAAAA nce <seq ii="" isltggiowl<="" lpltiedimt="" nkrmsdvslg="" td="" teiqengsnt="" ttykaidpvv=""><td>TGAACAGCGA ACCGGCGCAA CAGCAATACC CCGGGAATACC CGCAAACTCG ATCCCTCGGC TAATCAGCTT TCGTCGGGAA CCCCGTCGTC CCCTTTCAAG CCCAATATAT CCAATGGCTG CAAGAAACAC AAAACCACGG CAGTTCCGAA DKGKWKLETS DMLVGTLGLR ISHTFLKDDK LSLTAAYRIN GKOPDRLDGK</td><td>GACAAGGCA AAACAACCGC CCTCGTTTAT GATATGCTCG CGACATTTAC ACGGCAACG ATCAGCCACA TCTTGAAAGC AATCCTGGCT CTCTCATTGA CCACCCACA CCTTCGCCGC GGCAAGCAGC ATCCACCTAT CTTTAAACGC CTGAAATTTG F 937.a>: LTYLNSENNR YGLTGNTDLY NPALISFLES</td><td></td></seq>	TGAACAGCGA ACCGGCGCAA CAGCAATACC CCGGGAATACC CGCAAACTCG ATCCCTCGGC TAATCAGCTT TCGTCGGGAA CCCCGTCGTC CCCTTTCAAG CCCAATATAT CCAATGGCTG CAAGAAACAC AAAACCACGG CAGTTCCGAA DKGKWKLETS DMLVGTLGLR ISHTFLKDDK LSLTAAYRIN GKOPDRLDGK	GACAAGGCA AAACAACCGC CCTCGTTTAT GATATGCTCG CGACATTTAC ACGGCAACG ATCAGCCACA TCTTGAAAGC AATCCTGGCT CTCTCATTGA CCACCCACA CCTTCGCCGC GGCAAGCAGC ATCCACCTAT CTTTAAACGC CTGAAATTTG F 937.a>: LTYLNSENNR YGLTGNTDLY NPALISFLES	
m937/a937 95 m937.pep a937	MKRIFLPA MKRIFLPA	10 2 LPAILPLSTYA : LPAILPLSAYA	0 30 DLPLTIEDIMT	DKGKWKLETSI DKGKWKLETSI	50 TYLNSENNRAE TYLNSENNRAE	11111111
m937.pep a937	TGATSFIP TGATSFIP	70 8 IPTEIQENGSN PTEIQENGSN	1111111111	100 YGLTGNTDIYG !YGLTGNTDIYG	50 110 SGSYLWHEERK SGSYLWHEERK 110	1111.11.

1356

m937.pep	130 NKRMSDVSLGISHT !!!!!!!!!!!! NKRMSDVSLGISHT 130	1111111	1 1 1 1 1 1 1 1 1	1111111111	111111111	
m937.pep	190 LSLTAAYRINGSKT LSLTAAYRINGSKT					
m937.pep	250 RESSRNTSTYAHFGA : : KESARNTSTYAHFGA 250			1131111111		

```
g939.seq
           not found yet
g939.pep
           not found yet
```

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2893>: m939.seq (partial)

- 1 ATGAAACGAT TGACTTTATT GGCCTTTGTT TTGGCTGCCG GTGCGGTTTC
- 51 CGCCTCTCCC AAAGCAGACG TGGAAAAAGG CAAACAGGTT GCCGCAACGG 101 TTTGTGCGGC TTGCCATGCA GCAGACGGTA ACAGCGGCAT TGCGATGTAT
- 151 CCGCGTTTGG CGGCACAGCA TACTGCTTAC ATCTATCATC AAACTATCGG
- 201 CATCCGCGAC GTAAACGCAC CC...

This corresponds to the amino acid sequence <SEQ ID 2894; ORF 939>: m939.pep (partial)

- MKRLTLLAFV LAAGAVSASP KADVEKGKOV AATVCAACHA ADGNSGIAMY
- 51 PRLAAQHTAY IYHQTIGIRD VNAP...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2895>: a939.seg

```
ATGAAACGAT TGACTTTATT GGCCTTTGTT TTGGCTGCCG GTGCGGTTTC
51 CGCATCTCCC AAAGCAGACG TGGAAAAAGG CAAACAGGTT GCCGCAACGG
101 TTTGTGCGGC TTGCCATGCA GCAGACGGTA ACAGCGGCAT TGCGATGTAT
151 CCGCGTTTGG CGGCACAGCA TACTGCTTAC ATCTATCATC AAACCATCGG
201 CATCCGCGAC GGTAAACGCA CCCACGGTTC GGCAGCTGTG ATGAAACCGG
251 TGGTAATGAA TTTGAGCGAT CAGGATATTT TGAACGTATC CGCATTCTAT
301 GCCAAACAGC AGCCCAAATC CGGTGAAGCC AATCCTAAGG AAAATCCCGA
351 ATTGGGTGCG AAAATCTATC GCGGCGGTTT GAGCGATAAA AAAGTGCCGG
451 AGCGAAATTC AGGCTTATCC GCGTTTGGGC GGTCAGCATC AGGCATATAT
501 TGTTGAACAG ATGAATGCCT ACAAGTCCGG TCAGCGTAAA AATACCATCA
551 TGGAAGATAT TGCAAACCGT ATGTCTGAAG AAGATTTGAA AGCGGTCGCC
601 AACTTTATCC AAGGTTTGCG TTAA
```

This corresponds to the amino acid sequence <SEQ ID 2896; ORF 939.a>: a939.pep

- MKRLTLLAFV LAAGAVSASP KADVEKGKQV AATVCAACHA ADGNSGIAMY ī 51 PRLAAQHTAY IYHQTIGIRD GKRTHGSAAV MKPVVMNLSD QDILNVSAFY 101 AKQQPKSGEA NPKENPELGA KIYRGGLSDK KVPACMSCHG PSGAGMPGGG
- 151 SEIQAYPRLG GQHQAYIVEQ MNAYKSGQRK NTIMEDIANR MSEEDLKAVA
- 201 NFIQGLR*

m939/a939 100.0% identity in 70 aa overlap

m939.pep	10 MKRLTLLAFVLAAG	20 3AVSASPKADW	30	40	50	60
		A V DADERADY	PROKOVAATV	CAACHAADGN.	SGIAMYPRLAZ	YATHOA
a939						

1357

10 20 30 40 50 60

70
m939.pep IYHQTIGIRDVNAP
|||||||||
a939 IYHQTIGIRDGKRTHGSAAVMKPVVMNLSDQDILNVSAFYAKQQPKSGEANPKENPELGA
70 80 90 100 110 120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2897>:

ATGAACAAAA ATATTGCTGC CGCACTGGCC GGTGCTTTAT CCCTGTCTCT
GGCCGCGGC GCCGTTGCCG CCCACAACC GGCAAGCAAC GCAACAGGCG
TTCAAAAAATC CGCCCAAAGC TCTTGCGGCG CATCCAAATC TGCCGAAGGT
TCGTGCGGCG CATCCAAATC TGCCGAAGGT TCGTGCGGCG CGGCTGCTTC
TAAAGCAGGC GAAGGCAAAT GCGGCGAGGG CAAATGCCGT GCAACTGTAA
AAAAAGCCCA CAAACACCC AAAGCATCTA AAGCCAAAGC CAAATCTGCC
AAAAGCACAA GCGGCGAAGG CAAATGCGGT TCTAAATAA

This corresponds to the amino acid sequence <SEQ ID 2898; ORF 950.ng>: g950.pep

- 1 MNKNIAAALA GALSLSLAAG AVAAHKPASN ATGVQKSAQG SCGASKSAEG 51 SCGASKSAEG SCGAAASKAG EGKCGEGKCG ATVKKAHKHT KASKAKAKSA
- 101 EGKCGEGKCG SK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2899>: m950.seq

- ATGAACAAAA ACATTGCTGC CGCTCTCGCC GGTGCTTTAT CCCTGTCTTT
 51 GGCCGCCGGT GCAGTTGCTG CCAACAAACC GGCAAGCAAC GCAACAGGCG
 101 TTCATAAATC CGCCCATGGC TCTTGCGGCG CGTCCAAATC TGCCGAAGGT
 151 TCGTGCGGCG CGGCTGGTTC TAAAGCAGGC GAAGGCAAAT GCGGCGAGGG
 201 CAAATGCGGT GCGACCGTAA AAAAAACCCA CAAACACACC AAAGCATCTA
 251 AAGCCAAGGC CAAATCTGCC GAAGGCAAAT GCGGCGAAGG CAAATGCGGT
 301 TCTAAATAA
- This corresponds to the amino acid sequence <SEQ ID 2900; ORF 950>: m950.pep
 - 1 MNKNIAAALA GALSLSLAAG AVAANKPASN ATGVHKSAHG SCGASKSAEG 51 SCGAAGSKAG EGKCGEGKCG ATVKKTHKHT KASKAKAKSA EGKCGEGKCG

101 SK

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 950 shows 86.6% identity over a 112 aa overlap with a predicted ORF (ORF 950) from N. gonorrhoeae

```
86.6% identity in 112 aa overlap
m950/g950
                                        40
          MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGA-----
m950.pep
          g950
          MNKNIAAALAGALSLSLAAGAVAAHKPASNATGVQKSAQGSCGASKSAEGSCGASKSAEG
                10
                        20
                                        40
                                                50
                        70
                                80
           ---agskagegkcgegkcgatvkkthkhtkaskakaksaegkcgegkcgsk
m950.pep
             SCGAAASKAGEGKCGEGKCGATVKKAHKHTKASKAKAKSAEGKCGEGKCGSKX
g950
                70
                        80
                                90
                                       100
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2901>:

1 ATGAACAAAA ACATTGCTGC CGCACTCGCC GGTGCTTTAT CCCTGTCTTT
51 GGCCGCCGGT GCAGTTGCTG CCAACAAACC GGCAAGCAAC GCAACAGGCG
101 TTCATAAATC CGCCCATGGC TCTTGCGGCG CGTCCAAATC TGCCGAAGGT
151 TCGTGCGGCG CGGCTGGTTC TAAAGCAGGC GAAGGCAAAT GCGGCGAGGG
201 CAAATGCGGT GCGACCGTAA AAAAAACCCA CAAACACACC AAAGCATCTA
251 AAGCCAAGGC CAAATCTGCC GAAGGCAAAT GCGGCGAAGG CAAATGCGGT
301 TCTAAATAA

This corresponds to the amino acid sequence <SEQ ID 2902; ORF 950.a>: a950.pep

- MNKNIAAALA GALSLSLAAG AVAANKPASN ATGVHKSAHG SCGASKSAEG SCGAAGSKAG EGKCGEGKCG ATVKKTHKHT KASKAKAKSA EGKCGEGKCG 51
- 101

WO 99/57280

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 950 shows 100.0% identity over a 102 aa overlap with a predicted ORF (ORF 950) from N. meningitidis

```
a950/m950
         100.0% identity in 102 aa overlap
                                       40
          MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGAAGSKAG
a950.pep
          m950
          MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGAAGSKAG
                10
                        20
                                30
                                       40
                70
                        80
                               90
          EGKCGEGKCGATVKKTHKHTKASKAKAKSAEGKCGEGKCGSKX
a950.pep
          m950
          EGKCGEGKCGATVKKTHKHTKASKAKAKSAEGKCGEGKCGSK
                70
                       80
                               90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2903>: g951 . seq

```
ATGATTATGT TACCCGCCCG TTTCACTATT TTATCTGTCC TCGCAGCAGC
    1
   51
       CCTGCTTGCC GGACAGGCGT ATGCTGCCGG CGCGGCGGAT GTGGAGCTGC
       CGAAGGAAGT CGGAAAGGTT TTAAGGAAAC ATCGGCGTTA CAGCGAGGAA
  101
       GAAATCAAAA ACGAACGCGC ACGGCTTGCG GCAGTGGGCG AACGGGTCAA
       CAGGGTGTTT ACGCTGTTGG GCGGTGAAAC GGCTTTGCAG AAAGGGCAGG
  251
       CGGGAACGGC TCTGGCAACC TATATGCTGA TGTTGGAACG CACAAAATCC
       CCCGAAGTCG CCGAACGCGC CTTGGAAATG GCCGTGTCGC TGAACGCGTT
  301
      TGAACAGGCG GAAATGATTT ATCAGAAATG GCGGCAGATC GAGCCTATAC
  401
      CGGGTGAGGC GCAAAAACGG GCGGGGTGGC TGCGGAACGT ATTGAGGGAA
  451 GGGGGAAATC AGCATCTGGA CGGGTTGGAA GAGGTGCTGG CGCAATCGGA
      CGATGTGCAA AAACGCAGGA TATTTTTGCT GCTGGTGCAA GCCGCCGTGC
  501
      AGCAGGGTGG GGTGGCTCAA AAAGCATCGA AAGCGGTTCG CCGTGCGGCG
  551
      TTGAAGTATG AACATCTGCC CGAAGCGGCG GTTGCCGATG CGGTGTTCGG
  601
      CGTACAGGGA CGCGAAAAGG AAAAGGCAAT CGAAGCTTTG CAGCGTTTGG
  651
 701 CGAAGCTCGA TACGGAAATA TTGCCCCCCA CTTTAATGAC GTTGCGTCTG
      ACTGCACGCA AATATCCCGA AATACTCGAC GGCTTTTTCG AGCAGACAGA
 751
      CACCCAAAAC CTTTCGGCCG TCTGGCAGGA AATGGAAATT ATGAATCTGG
 801
 851 TTTCCCTGCG TAAGCCGGAT GATGCCTATG CGCGTTTGAA CGTGCTGTTG
 901 GAACACAACC CGAATGCAAA CCTGTATATT CAGGCGGCGA TATTGGCGGC
 951 AAACCGAAAA GAAGGTGCGT CCGTTATCGA CGGCTACGCC GAAAAGGCAT
1001 ACGGCAGGGG GACGGGGGAA CAGCGGGGGCA GGGCGGCAAT GACGGCGGCG
      ATGATATATG CCGACCGCAG GGATTACGCC AAAGTCAGGC AGTGGTTGAA
1051
1101 AAAAGTGTCC GCGCCGGAAT ACCTGTTCGA CAAAGGCGTG CTGGCGGCTG
1151 CGGCGGCTGC CGAATTGGAC GGAGGCCGGG CGGCTTTGCG GCAGATCGGC
      AGGGTGCGGA AACTTCCCGA ACAGCAGGGG CGGTATTTTA CGGCAGACAA
1201
      TTTGTCCAAA ATACAGATGC TCGCCCTGTC GAAGCTGCCC GACAAACGGG
1251
1301 AAGCCCTGAT CGGGCTGAAC AACATCATCG CCAAACTTTC GGCGGCGGGA
1351 AGCACGGAAC CTTTGGCGGA AGCATTGGCA CAGCGTTCCA TTATTTACGA
1401 ACAGTTCGGC AAACGGGGAA AAATGATTGC CGACCTTGAA ACCGCGCTCA
     AACTTACGCC CGATAATGCA CAAATTATGA ATAATCTGGG CTACAGCCTG
1451
1501 CTTTCCGATT CCAAACGTTT GGACGAGGGT TTCGCCCTGC TTCAGACGGC
     ATACCAAATC AACCCGGACG ATACCGCCGT TAACGACAGC ATAGGCTGGG
1551
     CGTATTACCT GAAAGGCGAC GCGGAAAGCG CGCTGCCGTA TCTGCGGTAT
1601
1651 TCGTTTGAAA ACGACCCCGA GCCCGAAGTT GCCGCCCATT TGGGCGAAGT
1701 GTTGTGGGCA TTGGGCGAAC GCGATCAGGC GGTTGACGTA TGGACGCAGG
1751 CGGCACACCT TAGGGGAGAC AAGAAAATAT GGCGGGAGAC GCTCAAACGC
1801 TACGGAATCG CCTTGCCCGA GCCTTCCCGA AAACCCCGGA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 2904; ORF 951.ng>: g951.pep

MIMLPARFTI LSVLAAALLA GQAYAAGAAD VELPKEVGKV LRKHRRYSEE

```
51 EIKNERARLA AVGERVNRVF TLLGGETALQ KGQAGTALAT YMLMLERTKS
101 PEVAERALEM AVSLNAFEQA EMIYQKWRQI EPIPGEAQKR AGWLRNVLRE
151 GGNQHLDGLE EVLAQSDDVQ KRRIFLLLVQ AAVQQGGVAQ KASKAVRRAA
201 LKYEHLPEAA VADAVFGVQG REKEKAIEAL QRLAKLDTEI LPPTLMTLRL
251 TARKYPEILD GFFEQTDTQN LSAVWQEMEI MNLVSLRKPD DAYARLNVLL
301 EHNPNANLYI QAAILAANRK EGASVIDGYA EKAYGRGTGE QRGRAAMTAA
351 MIYADRRDYA KVRQWLKKVS APEYLFDKGV LAAAAAAELD GGRAALRQIG
401 RVRKLPEQQG RYFTADNLSK IQMLALSKLP DKREALIGLN NIIAKLSAAG
451 STEPLAEALA QRSIIYEQFG KRGKMIADLE TALKLTPDNA QIMNNLGYSL
501 LSDSKRLDEG FALLQTAYQI NPDDTAVNDS IGWAYYLKGD AESALPYLRY
551 SFENDPEPEV AAHLGEVLWA LGERDQAVDV WTQAAHLRGD KKIWRETLKR
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2905>: m951.seq

```
ATGATTATGT TACCTAACCG TTTCAAAATG TTAACTGTGT TGACGGCAAC
   1
       CTTGATTGCC GGACAGGTAT CTGCCGCCGG AGGCGGTGCG GGGGATATGA
  51
 101 AACAGCCGAA GGAAGTCGGA AAGGTTTTCA GAAAGCAGCA GCGTTACAGC
       GAGGAAGAAA TCAAAAACGA ACGCGCACGG CTTGCGGCAG TGGGCGAGCG
 201 GGTTAATCAG ATATTTACGT TGCTGGGAGG GGAAACCGCC TTGCAAAAGG
      GGCAGGCGGG AACGGCTCTG GCAACCTATA TGCTGATGTT GGAACGCACA
 301 AAATCCCCCG AAGTCGCCGA ACGCGCCTTG GAAATGGCCG TGTCGCTGAA
 351 CGCGTTTGAA CAGGCGGAAA TGATTTATCA GAAATGGCGG CAGATTGAGC
 401 CTATACCGGG TAAGGCGCAA AAACGGGCGG GGTGGCTGCG GAACGTGCTG
451 AGGGAAAGAG GAAATCAGCA TCTGGACGGA CTGGAAGAAG TGCTGGCTCA
 501 GGCGGACGAA GGACAGAACC GCAGGGTGTT TTTATTGTTG GCACAAGCCG
      CCGTGCAACA GGACGGGTTG GCGCAAAAAG CATCGAAAGC GGTTCGCCGC
 551
 601 GCGGCGTTGA AATATGAACA TCTGCCCGAA GCGGCGGTTG CCGATGTGGT
 651 GTTCAGCGTA CAGGGACGCG AAAAGGAAAA GGCAATCGGA GCTTTGCAGC
       GTTTGGCGAA GCTCGATACG GAAATATTGC CCCCCACTTT AATGACGTTG
 751 CGTCTGACTG CACGCAAATA TCCCGAAATA CTCGACGGCT TTTTCGAGCA
 801 GACAGACACC CAAAACCTTT CGGCCGTCTG GCAGGAAATG GAAATTATGA
851 ATCTGGTTTC CCTGCACAGG CTGGATGATG CCTATGCGCG TTTGAACGTG
 901 CTGTTGGAAC GCAATCCGAA TGCAGACCTG TATATTCAGG CAGCGATATT
951 GGCGCAAAC CGAAAAGAAG GTGCTTCCGT TATCGACGGC TACGCCGAAA
1001 AGGCATACGG CAGGGGGACG GAGGAACAGC GGAGCAGGGC GGCGCTAACG
1051 GCGGCGATGA TGTATGCCGA CCGCAGGGAT TACGCCAAAG TCAGGCAGTG
1101 GCTGAAAAAA GTATCCGCGC CGGAATACCT GTTCGACAAA GGTGTGCTGG
1151 CGGCTGCGGC GGCTGTCGAG TTGGACGGCG GCAGGGCGGC TTTGCGGCAG
1201 ATCGGCAGGG TGCGGAAACT TCCCGAACAG CAGGGGCGGT ATTTTACGGC
1251 AGACAATTTG TCCAAAATAC AGATGCTCGC CCTGTCGAAG CTGCCCGATA
1301 AACGGGAGGC TTTGAGGGGG TTGGACAAGA TTATCGAAAA ACCGCCTGCC
1351 GGCAGTAATA CAGAGTTACA GGCAGAGGCA TTGGTACAGC GGTCAGTTGT
1401 TTACGATCGG CTTGGCAAGC GGAAAAAAAT GATTTCAGAT CTTGAAAGGG
1451 CGTTCAGGCT TGCACCCGAT AACGCTCAGA TTATGAATAA TCTGGGCTAC
1501 AGCCTGCTGA CCGATTCCAA ACGTTTGGAC GAAGGTTTCG CCCTGCTTCA
1551 GACGGCATAC CAAATCAACC CGGACGATAC CGCTGTCAAC GACAGCATAG
1601 GCTGGGCGTA TTACCTGAAA GGCGACGCGG AAAGCGCGCT GCCGTATCTG
1651 CGGTATTCGT TTGAAAACGA CCCCGAGCCC GAAGTTGCCG CCCATTTGGG
1701 CGAAGTGTTG TGGGCATTGG GCGAACGCGA TCAGGCGGTT GACGTATGGA
       CGCAGGCGGC ACACCTTACG GGAGACAAGA AAATATGGCG GGAAACGCTC
1801 AAACGTCACG GCATCGCATT GCCCCAACCT TCCCGAAAAC CTCGGAAATA
1851
```

This corresponds to the amino acid sequence <SEQ ID 2906; ORF 791>: m951.pep

```
MIMLPNRFKM LTVLTATLIA GQVSAAGGGA GDMKQPKEVG KVFRKQQRYS
EEEIKNERAR LAAVGERVNQ IFTLLGGETA LQKGQAGTAL ATYMLMLERT
LOI KSPEVAERAL EMAVSLNAFE QAEMIYQKWR QIEPIPGKAQ KRAGWLRNVL
LEVLAQADE GQNRRVFLLL AQAAVQQDGL AQKASKAVRR
AALKYEHLPE AAVADVVFSV QGREKEKAIG ALQRLAKLDT EILPPTLMTL
RITARKYPEI LDGFFEQTDT ONLSAVWQEM EIMNLVSLHR LDDAYARLNV
LLERNPNADL YIQAAILAAN RKEGASVIDG YAEKAYGRGT EEQRSRAALT
LLERNPADL YAKVRQWLKK VSAPEYLFDK GVLAAAAAVE LDGGRAALRQ
GIRVRKLPEQ QGRYFTADNL SKIQMLALSK LPDKREALRG LDKIIEKPPA
GSNTELQAEA LVQRSVVYDR LGKRKKMISD LERAFRLAPD NAQIMNNLGY
SILTDSKRLD EGFALLQTAY QINPDDTAVN DSIGWAYYLK GDAESALPYL
RYSFENDPEP EVAALLGEVL WALGERDQAV DVWTQAAHLT GDKKIWRETL
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 951 shows 88.6% identity over a 616 aa overlap with a predicted ORF (ORF 951) from N. gonorrhoeae

m951/g95	1 88.6% identity in 616 aa overlap
m951.pep	10 20 30 40 50 60 MIMLPNRFKMLTVLTATLIAGQVSAAGGGAGDMKQPKEVGKVFRKQQRYSEEEIKNERAR
9001	10 20 30 40 50 70 80 90 100 100
m951.pep g951	LAAVGERVNQIFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFE ::
m951.pep	130 140 150 160 170 180 QAEMIYQKWRQIEPIPGKAOKRAGWLRNVLRFRCNOPI DCI DDW 100 180
g951	QAEMIYQKWRQIEPIPGEAQKRAGWLRNVLREGGNQHLDGLEEVLAQSDDVQKRRIFLLL 120 130 140 150 160 170
m951.pep g951	190 200 210 220 230 240 AQAAVQQDGLAQKASKAVRRAALKYEHLPEAAVADVVFSVQGREKEKAIGALQRLAKLDT :
m951.pep	250 260 270 280 280
g951	EILPPTLMTLRLTARKYPEILDGFFEQTDTQNLSAVWQEMEIMNLVSLHRLDDAYARLNV
m951.pep	310 320 330 340 350 360 LLERNPNADLYIQAAILAANRKEGASVIDGYAEKAYGRGTEEQRSRAALTAAMMYADRRD
g951	300 310 320 330 340 350 370 380 390 400
m951.pep	YAKVRQWLKKVSAPEYLFDKGVLAAAAAVELDGGRAALRQIGRVRKLPEQQGRYFTADNL
m951.pep	430 440 450 460 470 480 SKIQMLALSKLPDKREALRGLDKIIEKPPAGSNTELQAEALVORSVVYDRLGKRKKMISD
g951	420 430 440 450 460 470 490 500 510 520 520
m951.pep g951	LERAFRLAPDNAQIMNNLGYSLLTDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLK :: :
m951.pep	550 560 570 580 590 600 GDAESALPYLRYSFENDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLTGDKKIWRETL
-	540 550 560 570 580 590 610
m951.pep	KRHGIALPOPSRKPRK : : KRYGIALPEPSRKPRKX 600 610

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2907>:

```
ATGTTACCCG CCCGTTTCAC CATTTTATCT GTGCTCGCGG CAGCCCTGCT
      TGCCGGGCAG GCGTATGCCG CCGGCGGGGC GGATGCGAAG CCGCCGAAGG
   51
  101
      AAGTCGGAAA GGTTTTCAGA AAGCAGCAGC GTTACAGCGA GGAAGAAATC
      AAAAACGAAC GCGCACGGCT TGCGGCAGTG GGCGAGCGGG TTAATCAGAT
  151
      ATTTACGTTG CTGGGAGGGG AAACCGCCTT GCAAAAGGGG CAGGCGGGAA
 201
      CGGCTCTGGC AACCTATATG CTGATGTTGG AACGCACAAA ATCCCCCGAA
 301
      GTCGCCGAAC GCGCCTTGGA AATGGCCGTG TCGCTGAACG CGTTTGAACA
      GGCGGAAATG ATTTATCAGA AATGGCGGCA GATTGAGCCT ATACCGGGTA
 351
 401 AGGCGCAAAA ACGGGCGGGG TGGCTGCGGA ACGTGCTGAG GGAAAGAGGA
      AATCAGCATC TAGACGGACT GGAAGAAGTG CTGGCTCAGG CGGACGAAGG
  451
 501 ACAGAACCGC AGGGTGTTTT TATTGTTGGC ACAAGCCGCC GTGCAACAGG
 551 ACGGGTTGGC GCAAAAAGCA TCGAAAGCGG TTCGCCGCGC GGCGTTGAGA
      TATGAACATC TGCCCGAAGC GGCGGTTGCC GATGTGGTGT TCAGCGTACA
 601
      GGGACGCGAA AAGGAAAAGG CAATCGGAGC TTTGCAGCGT TTGGCGAAGC
 651
      TCGATACGGA AATATTGCCC CCCACTTTAA TGACGTTGCG TCTGACTGCA
 701
      CGCAAATATC CCGAAATACT CGACGCTTT TTCGAGCAGA CAGACACCCA
 751
      AAACCTTTCG GCCGTCTGGC AGGAAATGGA AATTATGAAT CTGGTTTCCC
 801
      TGCACAGGCT GGATGATGCC TATGCGCGTT TGAACGTGCT GTTGGAACGC
 851
 901 AATCCGAATG CAGACCTGTA TATTCAGGCA GCGATATTGG CGGCAAACCG
      AAAAGAAGGT GCTTCCGTTA TCGACGGCTA CGCCGAAAAG GCATACGGCA
 951
      GGGGGACGGG GGAACAGCGG GGCAGGGCGG CAATGACGGC GGCGATGATA
1001
1051 TATGCCGACC GAAGGGATTA CACCAAAGTC AGGCAGTGGT TGAAAAAAGT
      GTCCGCGCCG GAATACCTGT TCGACAAAGG TGTGCTGGCG GCTGCGGCGG
1101
1151 CTGTCGAGTT GGACGCCGC AGGGCGGCTT TGCGGCAGAT CGGCAGGGTG
1201 CGGAAACTTC CCGAACAGCA GGGGCGGTAT TTTACGGCAG ACAATTTGTC
      CAAAATACAG ATGTTCGCCC TGTCGAAGCT GCCCGACAAA CGGGAGGCTT
1251
     TGAGGGGGTT GGACAAGATT ATCGAAAAAC CGCCTGCCGG CAGTAATACA
     GAGTTACAGG CAGAGGCATT GGTACAGCGG TCAGTTGTTT ACGATCGGCT
1351
     TGGCAAGCGG AAAAAAATGA TTTCAGATCT TGAAAGGGCG TTCAGGCTTG
1401
1451 CACCCGATAA CGCTCAGATT ATGAATAATC TGGGCTACAG CCTGCTTTCC
1501
     GATTCCAAAC GTTTGGACGA AGGCTTCGCC CTGCTTCAGA CGGCATACCA
1551 AATCAACCCG GACGATACCG CTGTCAACGA CAGCATAGGC TGGGCGTATT
1601 ACCTGAAAGG CGACGCGGAA AGCGCGCTGC CGTATCTGCG GTATTCGTTT
     GAAAACGACC CCGAGCCCGA AGTTGCCGCC CATTTGGGCG AAGTGTTGTG
1651
     GGCATTGGGC GAACGCGATC AGGCGGTTGA CGTATGGACG CAGGCGGCAC
     ACCTTACGGG AGACAAGAAA ATATGGCGGG AAACGCTCAA ACGTCACGGC
1751
1801 ATCGCATTGC CCCAACCTTC CCGAAAACCT CGGAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2908; ORF 951.a>:

```
MLPARFTILS VLAAALLAGO AYAAGAADAK PPKEVGKVFR KQQRYSEEEI
51 KNERARLAAV GERVNQIFTL LGGETALQKG QAGTALATYM LMLERTKSPE
101 VAERALEMAV SLNAFEQAEM IYQKWRQIEP IPGKAQKRAG WLRNVLRERG
151 NQHLDGLEEV LAQADEGQNR RVFLLLAQAA VQQDGLAQKA SKAVRRAALR
    YEHLPEAAVA DVVFSVQGRE KEKAIGALQR LAKLDTEILP PTLMTLRLTA
    RKYPEILDGF FEQTDTQNLS AVWQEMEIMN LVSLHRLDDA YARLNVLLER
251
    NPNADLYIQA AILAANRKEG ASVIDGYAEK AYGRGTGEQR GRAAMTAAMI
301
    YADRRDYTKV ROWLKKVSAP EYLFDKGVLA AAAAVELDGG RAALRQIGRV
351
    RKLPEQQGRY FTADNLSKIQ MFALSKLPDK REALRGLDKI IEKPPAGSNT
401
451 ELQAEALVQR SVVYDRLGKR KKMISDLERA FRLAPDNAQI MNNLGYSLLS
    DSKRLDEGFA LLQTAYQINP DDTAVNDSIG WAYYLKGDAE SALPYLRYSF
    ENDPEPEVAA HLGEVLWALG ERDQAVDVWT QAAHLTGDKK IWRETLKRHG
551
600
    IALPOPSRKP RK*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 951 shows 96.4% identity over a 614 aa overlap with a predicted ORF (ORF 951) from N. meningitidis

```
a951/m951
           96.4% identity in 614 aa overlap
                                      30
                                              40
            MLPARFTILSVLAAALLAGQAYAAG--AADAKPPKEVGKVFRKQQRYSEEEIKNERAR
a951.pep
            MIMLPNRFKMLTVLTATLIAGQVSAAGGGAGDMKQPKEVGKVFRKQQRYSEEEIKNERAR
m951
                 10
                          20
                                  30
                                           40
                                                   50
                     70
                             80
                                      90
                                             100
                                                      110
          LAAVGERVNQIFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFE
a951.pep
```


m951	
a951.pep	120 130 140 150 160 170 QAEMIYQKWRQIEPIPGKAQKRAGWLRNVLRERGNQHLDGLEEVLAQADEGQNRRVFLLL
a951.pep	180 190 200 210 220 230 AQAAVQQDGLAQKASKAVRRAALRYEHLPEAAVADVVFSVQGREKEKAIGALQRLAKLDT
a951.pep	240 250 260 270 280 290 EILPPTLMTLRLTARKYPEILDGFFEOTDTQNLSAVWQEMEIMNLVSLHRLDDAYARLNV
a951.pep m951	300 310 320 330 340 350 LLERNPNADLYIQAAILAANRKEGASVIDGYAEKAYGRGTGEQRGRAAMTAAMIYADRRD
a951.pep	360 370 380 390 400 410 YTKVRQWLKKVSAPEYLFDKGVLAAAAAVELDGGRAALRQIGRVRKLPEQQGRYFTADNL :
a951.pep	420 430 440 450 460 470 SKIQMFALSKLPDKREALRGLDKIIEKPPAGSNTELQAEALVQRSVVYDRLGKRKKMISD :
a951.pep	480 490 500 510 520 530 LERAFRLAPDNAQIMNNLGYSLLSDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLK
a951.pep	540 550 560 570 580 590 GDAESALPYLRYSFENDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLTGDKKIWRETL
a951.pep	600 610 KRHGIALPQPSRKPRK

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2909>:

1	TTGTCTTATC	GTTTGAATGC	TGCACCGATG	TTTAACGATA	ATCCTGTTGT
51	TTACGGAAAA	ATCAAATTGC	AGAGTTGGAA	AGCGCGGCGG	CATTTCAATA
101	TTGTAAAGCA	GGATTTGGAT	TTTTCCTGCG	GGGCGGCTTC	CCTCCCCACC
151	CTTTTGAACA	ATTTTTACGG	GCAAAAGCTG	ACCCARCARC	2 CECERCO
201	AAAACTGGGT	AAGGAACAGA	TGCGCGCGTC	CTTTCACCAT	AAGTGTTGGA
251	TTATGCCCGA	TTTCCCTTTT	GAGGCGAAAG	CCENTRACCAT	ATGUGGCGCA
301	CAGCTCGCGC	ACTTCANANT	CCCCGTCATC	GCTATGCCCT	GTCTTTCGAA
351	AGACGACCAT	TTTTCCCTAT			
401	TTGCCGACCC		TGCGCGGAGT		ACGGTTTTGC
451			CATGTTTCGA	TGAGCAGGGC	GCAGTTTTTG
501		AAACCCGTGA		GCAGGCAAAA	TTTTGGCGGT
551	CGTGCCGAAA	AAAGCGGAGG	CGATTTCAAA	TAAATTGTTT	TTCACACATC
221	ATCCCAAGCG	GCAGACGGAG	TTTGCAGTCG	GACAGGTAAA	ATGGTGGCGT

601 **GCTTATTGA**

This corresponds to the amino acid sequence <SEQ ID 2910; ORF 952.ng>: g952.pep (partial)

- ..LSYRLNAAPM FNDNPVVYGK IKLQSWKARR DFNIVKQDLD FSCGAASVAT LLNNFYGQKL TEEEVLEKLG KEQMRASFED MRRIMPDLGF EAKGYALSFE 51 101 QLAQLKIPVI VYLKYRKDDH FSVLRGVDGN TVLLADPSPG HVSMSRAQFL EAWQTREGNL AGKILAVVPK KAEAISNKLF FTHHPKRQTE FAVGQVKWWR 151 201
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2911>:
 - ATGATGAAGT TCAAATATGT TTTTCTGTTG GCGTGTGTTG TCGTTTCTTT 1 ATCTTATCGT TTGAATGCTG CACCGATGTT TAACGATAAT CCTGTTGTTT 51 ACGGAAAAAT CAAAGTGCAG AGTTGGAAAG CGCGGCGGGA TTTCAATATT 101 151 GTAAAGCAGG ATTTGGATTT TTCCTGTGGG GCGGCTTCGG TGGCGACGCT 201 TTTGAACAAT TTTTACGGGC AAACGCTGAC GGAAGAAGAA GTGTTGAAAA 251 AGCTGGATAA GGAGCAGATG CGCGCGTCGT TTGAGGATAT GCGGCGCATT
 301 ATGCCTGATT TGGGTTTTGA GGCGAAGGGC TATGCCCTGT CTTTCGAGCA GCTCGCGCAG TTGAAAATCC CCGTCATCGT GTATCTGAAA TACCGCAAAG 351 401 ACGACCATTT TTCGGTATTG CGCGGTATAG ACGGCAATAC GGTTTTGCTT GCCGACCCGT CGCTGGGGCA TGTTTCAATG AGCAGGGCGC AGTTTTTGGA 451 TGCTTGGCAA ACCCGTGAGG GAAATTTGGC AGGTAAGATT TTGGCTGTCA 501 TACCGAAAAA AGCCGAGACA ATTTCAAATA AATTGTTTTT CACACAACAC 551 601 CCAAAACGGC AGACGGAGTT TACAGTCGGA CAAATCAGGC AAGCACGTGC 651 AGAGTAA

This corresponds to the amino acid sequence <SEQ ID 2912; ORF 952>: m952.pep

- MMKFKYVFLL ACVVVSLSYR LNAAPMFNDN PVVYGKIKVQ SWKARRDFNI 1
- 51 VKQDLDFSCG AASVATLLNN FYGQTLTEEE VLKKLDKEQM RASFEDMRRI
- 101 MPDLGFEAKG YALSFEQLAQ LKIPVIVYLK YRKDDHFSVL RGIDGNTVLL
- 151 ADPSLGHVSM SRAQFLDAWQ TREGNLAGKI LAVIPKKAET ISNKLFFTQH
- 201 PKRQTEFTVG QIRQARAE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 952 shows 92.5% identity over a 201 aa overlap with a predicted ORF (ORF 952) from N. gonorrhoeae

92.5% identity in 201 aa overlap g952/m952; 20 g952.pep LSYRLNAAPMFNDNPVVYGKIKLQSWKARRDFNIVKQDLDFSCG MMKFKYVFLLACVVVSLSYRLNAAPMFNDNPVVYGKIKVQSWKARRDFNIVKQDLDFSCG m952 30 40 50 60 70 80 ${\tt AASVATLLNNFYGQKLTEEEVLEKLGKEQMRASFEDMRRIMPDLGFEAKGYALSFEQLAQ}$ q952.pep AASVATLLNNFYGQTLTEEEVLKKLDKEQMRASFEDMRRIMPDLGFEAKGYALSFEQLAQ m952 90 100 110 120 130 140 150 $\verb|LKIPVIVYLKYRKDDHFSVLRGVDGNTVLLADPSPGHVSMSRAQFLEAWQTREGNLAGKI|$ g952.pep LKIPVIVYLKYRKDDHFSVLRGIDGNTVLLADPSLGHVSMSRAQFLDAWQTREGNLAGKI 130 140 160 180 190 200 g952.pep LAVVPKKAEAISNKLFFTHHPKRQTEFAVGQVKWWRAYX m952 LAVIPKKAETISNKLFFTQHPKRQTEFTVGQIRQARAE 200

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2913>: a952 . seq

ATGATGAAGT TCAAATATGT TTTTCTGTTG GCGTGTGTTG TCGTTTCTTT

51	ATCTTATCGT	TTGAATGCTG	CACCGATGTT	TAACGATAAT	CCTCTTCTT
101	ACGGAAAAAT	CAAAGTGCAG	AGTTGGAAAG	AAAGGCGGGA	ጥጥጥሮአአጭአጭመ
151	GTAAAGCAGG	ATTTGGATTT	TTCCTGCGGG	GCGGCTTCGG	TCCCCACCCT
201	TTTGAACAAT	TTTTACGGGC	AAACGCTGAC	GGAAGAAGAA	CTCTTCAAAA
251	AGCTGGATAA	GGAGCAGATG	CGCGCGTCGT	TTGAGGATAT	CCCCCCARR
301	ATGCCAGATT	TGGGTTTTGA	AGCGAAAGGC	TATGCCCTGT	CTTTCCACCA
351	GCTCGCACAG	TTGAAAATCC	CCGTCATCGT	GTATCTCAAA	TACCCCAACC
401	ATGATCATTT	CTCGGTATTG	CGCGGGATAG	ACGGCAATAC	CCTTTTTCCCTT
451	GCCGACCCGT	CGCTGGGTCA	TGTTTCAATG	AGCAGGGGGG	A COMMONICO
501	TGCTTGGCAA	ACCCGTGAGG	GAAATTTGGC	AGGTAAGATT	TTCCCCCTCC
551	TGCCGAAAAA	AGCCGAGACA	ATTTCAAATA	AATTCTTTTT	CACACAMCAM
601	CCCAAGCGGC	AGACGGAGTT	TGCAGTCGGA	CAAATCAGGC	AAGCACGTGC
651	AGAGTAA				

This corresponds to the amino acid sequence <SEQ ID 2914; ORF 952.a>: a952.pep

- MMKFKYVFLL ACVVVSLSYR LNAAPMFNDN PVVYGKIKVQ SWKERRDFNI 51 VKQDLDFSCG AASVATLLNN FYGQTLTEEE VLKKLDKEQM RASFEDMRRI 101 MPDLGFEAKG YALSFEQLAQ LKIPVIVYLK YRKDDHFSVL RGIDGNTVLL
- ADPSLGHVSM SRAQFXDAWQ TREGNLAGKI LAVVPKKAET ISNKLFFTHH 151
- 201 PKRQTEFAVG QIRQARAE*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 952 shows 97.7% identity over a 218 aa overlap with a predicted ORF (ORF 952) from N. meningitidis

```
a952/m952
           97.7% identity in 218 aa overlap
                         20
                                 30
                                         40
          MMKFKYVFLLACVVVSLSYRLNAAPMFNDNPVVYGKIKVQSWKERRDFNIVKQDLDFSCG
a952.pep
           MMKFKYVFLLACVVVSLSYRLNAAPMFNDNPVVYGKIKVQSWKARRDFNIVKQDLDFSCG
m952
                         20
                                         40
                 70
                                 90
                                        100
                                                110
          AASVATLLNNFYGQTLTEEEVLKKLDKEQMRASFEDMRRIMPDLGFEAKGYALSFEQLAQ
a952.pep
          AASVATLLNNFYGQTLTEEEVLKKLDKEQMRASFEDMRRIMPDLGFEAKGYALSFEQLAQ
m952
                 70
                         80
                                 90
                                        100
                                                110
                130
                        140
                                150
                                        160
          LKIPVIVYLKYRKDDHFSVLRGIDGNTVLLADPSLGHVSMSRAOFXDAWQTREGNLAGKI
a952.pep
          m952
          LKIPVIVYLKYRKDDHFSVLRGIDGNTVLLADPSLGHVSMSRAQFLDAWQTREGNLAGKI
                130
                        140
                                150
                                        160
                                                170
                190
                        200
                                210
          LAVVPKKAETISNKLFFTHHPKRQTEFAVGQIRQARAEX
a952.pep
          111:14111414141414:111411:4411411
m952
          LAVIPKKAETISNKLFFTQHPKRQTEFTVGQIRQARAE
               190
                        200
                                210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2915>: g953.seq

1	ATGAAAAAA	TCATCTTCGC	CGCGCTCCCA	CCCCC33555	
51	CTCCCCCACC	Macaaa	CGCGCTCGCA	GCGGCAGCCG	TCGGCACTGC
	CICCGCCACC	TACAAAGTGG	ACGAATATCA	CGCCAACGTC	CGTTTCGCCA
101	TCGACCACTT	CAACACCAGC	ACCAACGTCG	GCGGTTTTTA	CCCTCTCTCT
151	GGTTCCGTCG	AGTTCGATCA	ACCANANCCO	CROCCITIIN	CGGTCTGACC
201	CATTCCCCTC	CCCTTCOATCA	MUCHANACUC	GACGGCAAAA	TCGACATCAC
	CHITCCCGTC	GCCAACCTGC	AAAGCGGTTC	GCAACCCTTC	ACCGGCCACC
251	TGAAATCCGC	CGACATCTTC	GATGCCGCTC	AATATCCCCX	CAMCCCCCCC
301	GTTTCCACCA	AATTCAACTT	CAACCCCAAA	AMINICCOUR	CATCCGCTTC
351	CAACCECACA	AMERICANCII	CAACGGCAAA	AAACTTGTTT	CCGTTGACGG
	CAMCCIGACC	ATGCGCGGCA	AAACCGCCCC	CGTCAAACTC	AAAGCCGAAA
401	AATTCAACTG	CTACCAAAGC	CCGATGGCGG	AAACCCAACC	MMCCCCCCC.
451	GACTTCAGCA	CCACCATCGA	0000000000	AMACCGAAGI	TTGCGGCGGC
501	marcoccocca	CCACCATCGA	CCGCACCAAA	TGGGGCGTGG	ACTACCTCGT
	TAACGCCGGT	ATGACCAAAA	ACGTCCGCAT	CGACATCCAA	ATCGAAGCTC
551	CAAAACAATA	A			compacto

This corresponds to the amino acid sequence <SEQ ID 2916; ORF 953.ng>: g953.pep

```
1 MKKIIFAALA AAAVGTASAT YKVDEYHANV RFAIDHFNTS TNVGGFYGLT
51 GSVEFDQAKR DGKIDITIPV ANLQSGSQPF TGHLKSADIF DAAQYPDIRF
101 VSTKFNFNGK KLVSVDGNLT MRGKTAPVKL KAEKFNCYQS PMAETEVCGG
151 DFSTTIDRTK WGVDYLVNAG MTKNVRIDIQ IEAAKQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2917>:

```
ATGAAAAAA TCATCTTCGC CGCACTCGCA GCCGCCGCCA TCAGTACTGC
51 CTCCGCCGCC ACCTACAAAG TGGACGAATA TCACGCCAAC GCCCGTTTCG
101 CCATCGACCA TTTCAACACC AGCACCAACG TCGGCGGTT TTACGGTCTG
151 ACCGGTTCCG TCGAGTTCGA CCAAGCCAAAA CGCGACGGTA AAATCGACAT
201 CACCATCCCC ATTGCCAACC TGCAAAGCGG TTCGCAACAC TTTACCGACCA
251 ACCTGAAATC AGCCGACATC TTCGAATGCCG CCCAATATCC GGACATCCGC
301 TTTGTTTCCA CCAAATTCAA CTTCAACGGC AAAAAACTGG TTTCCGTTGA
351 CGGCAACCTG ACCATGCACA AGCCCGATGG AGAAAACCGA AGTTTGTGGC
401 AAAAATTCAA CTGCTACCAA AGCCCGATGG AGAAAACCGA AGTTTGTGGC
451 GGCGACTTCA GCACCACCAT CGACCGCACC AAATGGGGCA TGGACTACCT
501 CGTTAACGTT GGTATGACCA AAAGCGTCCG CATCGACATC CAAATCGAGG
```

This corresponds to the amino acid sequence <SEQ ID 2918; ORF 953>: m953.pep

- 1 MKKIIFAALA AAAISTASAA TYKVDEYHAN ARFAIDHFNT STNVGGFYGL 51 TGSVEFDQAK RDGKIDITIP IANLQSGSQH FTDHLKSADI FDAAQYPDIR 101 FVSTKFNFNG KKLVSVDGNL TMHGKTAPVK LKAEKFNCYQ SPMEKTEVCG
- 151 GDFSTTIDRT KWGMDYLVNV GMTKSVRIDI QIEAAKQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 953 shows 93.0% identity over a 187 aa overlap with a predicted ORF (ORF 953) from N. gonorrhoeae

```
m953/g953
          93.0% identity in 187 aa overlap
                        20
                                        40
                                                50
          MKKIIFAALAAAAISTASAATYKVDEYHANARFAIDHFNTSTNVGGFYGLTGSVEFDQAK
m953.pep
          q953
          MKKIIFAALAAAAVGTASA-TYKVDEYHANVRFAIDHFNTSTNVGGFYGLTGSVEFDQAK
                10
                         20
                                 30
                                                 50
                                90
                                       100
                                               110
          {\tt RDGKIDITIPIANLQSGSQHFTDHLKSADIFDAAQYPDIRFVSTKFNFNGKKLVSVDGNL}
m953.pep
          {\tt RDGKIDITIPVANLQSGSQPFTGHLKSADIFDAAQYPDIRFVSTKFNFNGKKLVSVDGNL}
a953
                         80
                                 90
                                        100
               130
                       140
                               150
                                       160
          TMHGKTAPVKLKAEKFNCYQSPMEKTEVCGGDFSTTIDRTKWGMDYLVNVGMTKSVRIDI
m953.pep
          TMRGKTAPVKLKAEKFNCYQSPMAETEVCGGDFSTTIDRTKWGVDYLVNAGMTKNVRIDI
a953
                        140
                                150
                                                170
m953.pep
          QIEAAKQX
          1111111
          OIEAAKOX
        180
```

The following partial DNA sequence was identified in N. . meningitidis <SEQ ID 2919>:

```
1 ATGAAAAAA TCATCATCGC CGCGCTCGCA GCAGCCGCCA TCGGCACTGC
51 CTCCGCCGCC ACCTACAAAG TGGACGAATA TCACGCCAAC GCCCGTTTCT
101 CTATCGACCA TTTCAACACC AGCACCAACG TCGGCGGTTT TTACGGTCTG
151 ACCGGTTCG TTGAGTTCGA CCAAGCAAAA CGCGACGGTA AAATCGACAT
201 CACCATCCC GTTGCCAACC TGCAAAGCGG TTCGCAACAC TTTACCGACC
251 ACCTGAAATC AGCCGACATC TTCGATGCCG CCCAATATCC GGACATCCGC
301 TTTGTTTCCA CCAAATTCAA CTTCAACGGC AAAAAACTGG TTTCCGTTGA
```

1366

This corresponds to the amino acid sequence <SEQ ID 2920; ORF 953.a>: a953.pep

- MKKIIIAALA AAAIGTASAA TYKVDEYHAN ARFSIDHFNT STNVGGFYGL TGSVEFDQAK RDGKIDITIP VANLQSGSQH FTDHLKSADI FDAAQYPDIR 51 101
 - FVSTKFNFNG KKLVSVDGNL TMHGKTAPVK LKAEKFNCYQ SPMLKTEVCG 151 GDFSTTIDRT KWGMDYLVNV GMTKSVRIDI QIEAAKQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 953 shows 97.3% identity over a 187 aa overlap with a predicted ORF (ORF 953) from N. meningitidis

```
a953/m953
           97.3% identity in 187 aa overlap
                 10
                         20
                                         40
          {\tt MKKIIIAALAAAAIGTASAATYKVDEYHANARFSIDHFNTSTNVGGFYGLTGSVEFDQAK}
a953.pep
           MKKIIFAALAAAAISTASAATYKVDEYHANARFAIDHFNTSTNVGGFYGLTGSVEFDQAK
m953
                 10
                         20
                                 30
                                        40
                                                50
                         80
                                 90
                                        100
          RDGKIDITIPVANLQSGSQHFTDHLKSADIFDAAQYPDIRFVSTKFNFNGKKLVSVDGNL
a953.pep
          m953
          {	t RDGKIDITIPIANLQSGSQHFTDHLKSADIFDAAQYPDIRFVSTKFNFNGKKLVSVDGNL}
                 70
                                90
                                       100
                130
                        140
                                        160
                                                170
          TMHGKTAPVKLKAEKFNCYQSPMLKTEVCGGDFSTTIDRTKWGMDYLVNVGMTKSVRIDI
a953.pep
          TMHGKTAPVKLKAEKFNCYQSPMEKTEVCGGDFSTTIDRTKWGMDYLVNVGMTKSVRIDI
m953
                        140
                               150
                                       160
                                               170
a953.pep
          QIEAAKQX
          11111111
m953
          QIEAAKOX
```

g954.seq not found yet g954.pep not found yet

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2921>: m954.seq

```
ATGAAAAAGT TTTATTTTGT GCTGCTGGCG TTGGGTTTGG CAGCGTGTGG
 51
     GCAAGAACAA TCGCAGAAAG CTGATGCGGA GCAGTATTTT TTTGCCAATA
101 AATATCAATT TGCAGATGAG AAACAGGCTT TTTATTTTGA ACGCGCCGCC
151 CGTTTCCGTG TATTGCAACA AGGCCTTGGC GGGGATTTTG AGAGGTTTTT
201 AAAAGGAGAA ATACCTAATC AAGAAAATCT TGCAAAGTAT CGTGAAAATA
    TTACTCAAGC AGTCGCTTAT TATGCGGACA CGAATGGAGA TGATGACCCA
    TACCGCGTCT GCAAACAGGC TGCGCAAGAT GCAGAAATCC TGATGAAGAG
301
351 TATGGTAACA AGCGGTGGAG GCGGTACAAC TGATTTAGAT AAGGAAAGTT
401 ATCAAAATTA CCGAAAATCA ATGCAAGAAT GCCGTAAAAC AATAACGGAA
    GCTGAAGCCA ATTTGCCGAA AAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2922; ORF 954>: m954.pep

- MKKFYFVLLA LGLAACGQEQ SQKADAEQYF FANKYQFADE KQAFYFERAA
- 51 RFRVLQQGLG GDFERFLKGE IPNQENLAKY RENITQAVAY YADTNGDDDP
- YRVCKQAAQD AEILMKSMVT SGGGGTTDLD KESYQNYRKS MQECRKTITE
- 151 AEANLPKK*

```
a954.seq not found yet
a954.pep not found yet
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2923>: g957.seq (partial)

```
ATGTTTAAAA AATTCAAACC GGTACTGTTG TCATTTTTTG CACTTGTATT
 51
     TGCCTTTTGG CTGGGAACAG GTATTGCCTA TGAGATTAAT CCGCGTTGGT
101 TTTTGAGCGA TACGGCAACT GAAGTACCTG AAAATCCGAA TGCTTTTGTG
151 GCGAAACTTG CCCGCCTGTT CCGAAATGCC GACAGGGCGG TTGTCATCGT
201 GAAGGAATCG ATGAGGACGG AGGAAAGCCT TGCCGGAGCT GTGGATGACG
251 GTCCGTTGCA GTCGGAGAAG GATTATCTCG CGCTCGCTAT CCGGCTCAGT
301 CGTTTGAAAG AAAAGGCGAA ATGGTTTCAC GTAACGGAGC AGGAACATGG
351 GGAAGAGGTT TGGCTGGATT ACTATATCGG CGAGGGCGGT TTGGTTGCGG
401 TTTCGCTTTC GCAACGCTCG CCGGAAGCGT TTGTTAATGC CGAATATCTG
451
     TATCGGAACG ATCGTCCGTT TTCTGTAAAT GTGTACGGCG GAACGGCTCA
501 CGGGGAAAAT TATGAAACGA CAGGAGAATA TCGGGTTGTT TGGCAACCGG
551 ACGGTTCGGT ATTTGATGCG GCGGGGCGCG GGAAAATCGG GGAAGATGTT
     TATGAGCATT GCCTCGGGTG TTATCAGATG GCCCAGGTAT ATTTGGCGAA
601
651 ATACCGGGAT GTCGCGAATG ACGAGCAGAA GGTTTGGGAC TTCCGCGAAG
701 AGAGCAACCG GATTGCATCG GACTCGCGCG ATTATGTGTT TTATCAGAAT
751 ATGCGGGAAT TGATGCCCCG GGGGatgaaG gcgaacagtc ttgtggtcgg
801 ctatgatgcg gacggtCtgc CgcaAAAagt ctattggagt gtcgacaatg
851 gaaaaaaacc ccaaagtgtc gaatattatt tgaaaaacgg aaatcttttt
901 attgcccaat cttcgacggt aaccttgaaa acggatggcg taacggcgga
951 tatgcaaacc tatcatgcgc aacaaacgtt gtatttggat ggg...
```

This corresponds to the amino acid sequence <SEQ ID 2924; ORF 957.ng>: g957.pep (partial)

```
MFKKFKPVLL SFFALVFAFW LGTGIAYEIN PRWFLSDTAT EVPENPNAFV
```

- 51 AKLARLFRNA DRAVVIVKES MRTEESLAGA VDDGPLQSEK DYLALAIRLS 101 RLKEKAKWFH VTEQEHGEEV WLDYYIGEGG LVAVSLSQRS PEAFVNAEYL
- 151 YRNDRPFSVN VYGGTAHGEN YETTGEYRVV WQPDGSVFDA AGRGKIGEDV
- YEHCLGCYQM AQVYLAKYRD VANDEQKVWD FREESNRIAS DSRDYVFYQN 251 MRELMPRGMK ANSLVVGYDA DGLPQKVYWS VDNGKKPQSV EYYLKNGNLF
- 301 IAQSSTVTLK TDGVTADMQT YHAQQTLYLD G...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2925>: m957.seg

```
ATGTTTAAAA AATTCAAACC GGTACTGTTG TCATTTTTTG CACTTGTATT
   1
  51
       TGCCTTTTGG CTGGGAACGG GTATTGCCTA TGAGATTAAT CCGCGTTGGT
 TTTTGAGCGA TACGGCAACT GAAGTACUTA AAAATCCCT.

151 GCGAAACTTG CCCGCCTGTT CCGAAATGCC GACAGGGCGG TTGTCATCGT
ATTAGGACGG AGGAAAATCT TGCCGGAACT GTGGATGACG
       TTTTGAGCGA TACGGCAACT GAAGTACCTA AAAATCCGAA TGCTTTTGTG
201 GAAGGAATCG ATAAGGACGG AGGAAAATCT TGCCGGAACT GTGGATGACG
251 GTCCGTTGCA GTCGGAGAAG GATTATCTCG CGCTCGCTAT CCGGCTCAGT
301 CGTTTGAAAG AAAAGGCGAA ATGGTTTCAC GTAACGGAGC AGGAACATGG
 351 GAAAGAGGTT TGGCTGGATT ACCATATCGG CGAGGGCGGT TTGGTTGCGG
401 TTTCGCTTTC GCAACGCTCG CCGGAAGCAT TTGTTAATGC CGAATATCTG
 451 TATCGGAACG ATCGTCCGTT TTCTGTAAAT GTGTACGGCG GAACGGTTCA
 501 CGGGGAAAAT TATGAAACGA CAGGAGAATA TCGGGTTGTT TGGCAACCAG
 551 ACGGTTCGGT ATTTGATGCG GCGGGGCGCG GGAAAATCGG GGAAGATGTT
 601 TATGAGCATT GCCTCGGGTG TTATCAGATG GCCCAGGTAT ATTTGGCGAA
 651 ATACCGGGAT GTCGCGAATG ACGAGCAGAA GGTTTGGGAC TTCCGCAAAG
 701 AGAGCAACCG AATTGCGTCG GACTCGCGCA ATTCTGTGTT TTATCAGAAT
751 ATGCGGGAAT TGATGCCCCG AGGGATGAAG GCGAACAGTC TTGTGGTCGG
801 CTATGATGCG GACGGTCTGC CGCAAAAAGT CTATTGGAGT TTCGACAATG
 851 GAAAAAACG CCAGAGTTTC GAATATTATT TGAAAAACGG AAATCTTTTT
901 ATTGCACAAT CTTCGACGGT AGCATTGAAA GCGGATGGCG TAACGGCGGA
951 TATGCAGACC TATCATGCGC AACAGACGTG GTATTTGGAT GGCGGGCGGA
       TTGTCCGCGA AGAGAAACAG GGAGACAGAC TGCCTGATTT TCCTTTGAAC
      TTGGAAAATT TGGAAAAAGA GGTGCGCCGT TATGCAGAGG CTGCGGCGAG
1101 ACGTTCGGGC GGCAGGCGCG ACCTTTCTCA CTGA
```

This corresponds to the amino acid sequence <SEQ ID 2926; ORF 957>: m957.pep

- MFKKFKPVLL SFFALVFAFW LGTGIAYEIN PRWFLSDTAT EVPKNPNAFV
- AKLARLFRNA DRAVVIVKES IRTEENLAGT VDDGPLQSEK DYLALAIRLS 51
- 101 RLKEKAKWFH VTEQEHGKEV WLDYHIGEGG LVAVSLSQRS PEAFVNAEYL YRNDRPFSVN VYGGTVHGEN YETTGEYRVV WQPDGSVFDA AGRGKIGEDV 151
- YEHCLGCYQM AQVYLAKYRD VANDEQKVWD FRKESNRIAS DSRNSVFYQN

- 251 MRELMPRGMK ANSLVVGYDA DGLPQKVYWS FDNGKKRQSF EYYLKNGNLF
- 301 IAQSSTVALK ADGVTADMQT YHAQQTWYLD GGRIVREEKQ GDRLPDFPLN
- 351 LENLEKEVRR YAEAAARRSG GRRDLSH*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 957 shows 95.2% identity over a 331 aa overlap with a predicted ORF (ORF 957) from N. gonorrhoeae

```
95.2% identity in 331 aa overlap
 g957/m957
                  10
                          20
                                  30
                                          40
           MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATEVPENPNAFVAKLARLFRNA
 g957.pep
           m957
           MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATEVPKNPNAFVAKLARLFRNA
                 10
                          20
                                  30
                                          40
                          80
                                  90
                                         100
                                                 110
           DRAVVIVKESMRTEESLAGAVDDGPLQSEKDYLALAIRLSRLKEKAKWFHVTEQEHGEEV
g957.pep
           DRAVVIVKESIRTEENLAGTVDDGPLQSEKDYLALAIRLSRLKEKAKWFHVTEQEHGKEV
m957
                         80
                                 90
                                         100
                                                 110
                130
                         140
                                         160
                                                 170
                                                         180
           WLDYYIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTAHGENYETTGEYRVV
g957.pep
           WLDYHIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTVHGENYETTGEYRVV
m957
                130
                        140
                                150
                                         160
                                                 170
                                                         180
                        200
                                210
                                         220
           WQPDGSVFDAAGRGKIGEDVYEHCLGCYQMAQVYLAKYRDVANDEQKVWDFREESNRIAS
g957.pep
           m957
           WQPDGSVFDAAGRGKIGEDVYEHCLGCYQMAQVYLAKYRDVANDEQKVWDFRKESNRIAS
                190
                        200
                                210
                                        220
                250
                        260
                                270
                                        280
                                                290
g957.pep
           DSRDYVFYQNMRELMPRGMKANSLVVGYDADGLPQKVYWSVDNGKKPQSVEYYLKNGNLF
           \overline{m}\colon \overline{m}
           DSRNSVFYQNMRELMPRGMKANSLVVGYDADGLPQKVYWSFDNGKKRQSFEYYLKNGNLF
m957
                250
                        260
                                270
                                        280
                                                290
                310
                        320
                                330
           IAQSSTVTLKTDGVTADMQTYHAQQTLYLDG
g957.pep
           IAQSSTVALKADGVTADMQTYHAQQTWYLDGGRIVREEKQGDRLPDFPLNLENLEKEVRR
                310
                        320
                                330
                                        340
                                                        360
m957
          YAEAAARRSGGRRDLSHX
                370
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2927>:

1	atgtttaaaa	AATTCAAACC	GGTACTGTTG	TCATTTTTTG	CACTTGTATT
51	TGCCTTTTGG	CTGGGAACGG	GTATTGCCTA		CCGCGTTGGT
101	TTTTGAGCGA	TACGGCAACT	GAAAATCCGA		GGCGAAACTT
151	GCCCGCCTGT	TCCGAAATGC	CGACAGGGCG	****************	TGAAGGAATC
201	GATGAGGACG	GAGGAAAGTC	TTGCCGGAGC		_
251	AGTCGGAGAA		GCACTCGCTG		GGTCCGTTGC
301	GAAAAGGCGA		CGTAACGGAG		TCGTTTGAAA
351	TTGGCTGGAT	TACTATATCG	GCGAGGGCGG		GGGAAGAGGT
401	CGCAACGCTC	GCCGGAAGCG		TTTGGTTGCG	GTTTCGCTTT
451	GATCGTCCGT		TTTGTTAATG	CCGAATATCT	GTATCGGAAC
501	TTATGAAACG	TTTCTGTAAA	TGTGTACGGC	GGAACGGTTC	ACGGGGAAAA
551		ACAGGAGAAT	ATCGGGTTGT	TTGGCAACCG	GACGGTTCGG
	TATTTGATGC	GTCGGGGCGC	GGGAAAATCG	GGGAAGATGT	TTATGAGCAT
601	TGCCTCGGGT	GTTATCAGAT	GGCCCAGGTA	TATTTGGCGA	AATATCGGGA
651	TGTCGCGAAT	GATGAGCAGA	AGGTTTGGGA	CTTCCGCGAA	GAGAGTAACC
701	GGATTGCGTC	GGACTCGCGC	GATTCTGTGT	TTTATCAGAA	TATGCGGGAA
751	TTGATGCCCC	GAGGGATGAA	GGCAAACAGT	CTTGTGGTCG	GCTATGATGC
801	GGACGGTCTG	CCGCAGAAAG	TCTATTGGAG	TTTCGACAAT	GGGAAAAAAC
851	GCCAGAGTTT	CGAATATTAT	TTGAAAAACG	GAAATCTTTT	TATTGCACAA
901	TCTTCGACGG	TAGCATTGAA	AGCGGATGGC	GTAACGGCGG	ATATGCAGAC
				91.11.00000	ATAT GCAGAC

951	CTATCATGCG	CAACAGACGT	GGTATTTAGA	TGGCGGGCGG	ATTGTCCGCG
1001	AAGAGAAACA	GGGGGACAGA	CTGCCTGATT	TTCCTTTGAA	CTTGGAAGAT
1051	TTGGAAAAAG	AGGTGAGCCG	TTATGCAGAG	GCTGCGGCGA	GACGTTCGGG
	CGGCAGGCGC				

This corresponds to the amino acid sequence <SEQ ID 2928; ORF 957.a>: a957.pep

1 MFKKFKPVLL SFFALVFAFW LGTGIAYEIN PRWFLSDTAT ENPNAFVAKL
51 ARLFRNADRA VVIVKESMRT EESLAGAVDD GPLQSEKDYL ALAVRLSRLK
101 EKAKWFHVTE QEHGEEVWLD YYIGEGGLVA VSLSQRSPEA FVNAEYLYRN
151 DRPFSVNVYG GTVHGENYET TGEYRVVWQP DGSVFDASGR GKIGEDVYEH
201 CLGCYQMAQV YLAKYRDVAN DEQKVWDFRE ESNRIASDSR DSVFYQNMRE
251 LMPRGMKANS LVVGYDADGL PQKVYWSFDN GKKRQSFEYY LKNGNLFIAQ
301 SSTVALKADG VTADMQTHA QQTWYLDGGR IVREEKQGDR LPDFPLNLED
351 LEKEVSRYAE AAARRSGGRR DLSH*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 957 shows 96.3% identity over a 377 aa overlap with a predicted ORF (ORF 957) from N. meningitidis

a957/m957	96.3% identity in 377 aa overlap	
a957.pep	10 20 30 40 50 MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATENPNAFVAKLARI	
m95/	MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATEVPKNPNAFVAKLARL 10 20 30 40 50 60 70 80 90 100 110	FRNA 60
a957.pep	60 70 80 90 100 110 DRAVVIVKESMRTEESLAGAVDDGPLQSEKDYLALAVRLSRLKEKAKWFHVTEQEH	IGEEV
m957	DRAVVIVKESIRTEENLAGTVDDGPLQSEKDYLALAIRLSRLKEKAKWFHVTEQEH 70 80 90 100 110	1: IGKEV 120
a957.pep	120 130 140 150 160 170 WLDYYIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTVHGENYETTGE	YRVV
m957	WLDYHIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTVHGENYETTGE 130 140 150 160 170	1111 YRVV 180
a957.pep	180 190 200 210 220 230 WQPDGSVFDASGRGKIGEDVYEHCLGCYQMAQVYLAKYRDVANDEQKVWDFREESN	RIAS
m957	WQPDGSVFDAAGRGKIGEDVYEHCLGCYQMAQVYLAKYRDVANDEQKVWDFRKESN 190 200 210 220 230	1111
a957.pep	240 250 260 270 280 290 DSRDSVFYQNMRELMPRGMKANSLVVGYDADGLPQKVYWSFDNGKKRQSFEYYLKNO	GNLF
m957	DSRNSVFYQNMRELMPRGMKANSLVVGYDADGLPQKVYWSFDNGKKRQSFEYYLKNG 250 260 270 280 290	 GNLF 300
a957.pep	300 310 320 330 340 350 IAQSSTVALKADGVTADMQTYHAQQTWYLDGGRIVREEKQGDRLPDFPLNLEDLEK	EVSR
m957	IAQSSTVALKADGVTADMOTYHAQQTWYLDGGRIVREEKQGDRLPDFPLNLENLEKI 310 320 330 340 350	II EVRR 360
a957.pep	360 370 YAEAAARRSGGRRDLSHX	
m957	YAEAAARRSGGRRDLSHX 370	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2929>:

- 1 TTGGCTCGTT TATTTTCACT CAAACCACTG GTGCTGGCAT TGGGCTTCTG
 - 51 TTTCGGCACG CATTGCGCCG CCGATACCGT TGCGGCGGAA GAGGCGGACG

```
GGCGTGTCGC AGAAGGCGGT GCGCAGGGCG CGTCCGAATC CGCACAAGCT
  101
        TCCGATTTGA CCCTCGGTTC GACCTGCCTG TTTTGCAGTA ACGAAAGCGG
  151
        CAGCCCCGAG AGAACCGAAG CCGCCGTCCA AGGCAGCGGC GAAGCATCCG
  201
  251
        TCCCCGAAGA CTATACGCGC ATTGTTGCCG ACAGGATGGA AGGACAGTCG
        AAGGTTAAGG TGCGCGCGGA AGGAAGCGTT ATCATCGAAC GGGACGGCGC
  301
        AGTCCTCAAT ACCGATTGGG CGGATTACGA CCAGTCGGGC GACACCGTTA
  351
        CCGTAGGCGA CCGGTTCGCC CTCCAACAGG ACGGTACGCT GATTCGGGGC
  401
        GAAACCCTGA CCTACAATCT CGATCAGCAG ACCGGCGAAG CGCACAACGT
  451
        CCGTATGGAA ACCGAACAAG GCGGACGGCG GCTGCAAAGC GTCAGCCGCA
  501
        CCGCCGAAAT GTTGGGCGAA GGGCGTTACA AACTGACGGA AACCCAATTC
  551
        AACACCTGTT CCGCCGGAGA TGCCGGCTGG TATGTCAAGG CCGCCTCTGT
CGAAGCCGAT CGGGGAAAAG GCATAGGCGT TGCCAAACAC GCCGCCTTCG
  601
       TGTTCGGCGG CGTTCCCCTT TTCTATACGC CTTGGGCGGA CTTCCCGCTT
GACGGCAACC GCAAAAGCGG ACTGCTCGTC CCGTCCGTAT CTGCCGGTTC
  701
  751
       GGACGGCGTT TCCCTTTCCG TCCCCTATTA TTTCAACCTT GCCCCCAACT
  801
       TCGATGCCAC TTTCGCCCCC GGCATTATCG GCGAACGCGG CGCGACGTTT
  851
       GACGGACAAA TCCGTTACCT GCGTCCCGAT TACAGCGGAC AGACCGACCT
  901
       GACCTGGTTG CCGCACGATA AGAAAAGCGG CAGGAACAAC CGCTATCAGG
 951
1001 CAAAATGGCA GCACCGGCAC GACATTTCCG ACACGCTTCA GGCGGGTGTC
1051 GATTTCAACC AAGTCTCCGA CAGCGGCTAC TACCGCGACT TTTACGGCGG
       CGAAGAAATC GCCGGCAACG TCAACCTCAA CCGCCGCGTA TGGCTGGATT
 1101
1151 ATGGCGGCAG GGCGGCGGA GGCAGCCTGA ATGCCGGCCT TTCGGTTCAG
1201 AAATACCAGA CGCTGGCAAA CCAAAGCGGC TACAAAGACG AACCTTACGC
1251 CATCATGCCC CGCCTTTCTG CCGATTGGCA TAAAAACGCA GGCAGGGCGC
1301 AAATCGGCGT GTCCGCACAA TTTACCCGCT TCAGCCACGA CGGCCGCCAA
1351 GACGGCAGCC GACTGGTCGT GTATCCCGGT ATCAAATGGG ATTTCAGCAA
1401 CAGCTGGGGC TACGTCCGCC CCAAACTCGG GCTGCACGCC ACTTATTACA
1451 GCCTCGACAG TTTCGGCGGC AAAGCATCCC GCAGCGTCGG GCGCGTTTTG
1501 CCCGTTGTCA ATATCGACGG CGGCACAACC TTCGAACGCA ATACGCGCCT
1551 GTTCGGCGGC GGAGTCGTGC AAACCATCGA GCCGCGCCTG TTCTACAACT
1601 ATATTCCTGC CAAATCTCAA AACGACCTGC CCAATTTCGA TTCGTCGGAA
1651 AGCAGCTTCG GCTACGGGCA GCTTTTCCGC GAAAACCTCT ATTACGGCAA
1701 CGACCGCATC AACGCCGCCA ACAGCCTTTC CACCGCCGTG CAGAGCCGTA
1751 TTTTGGACGG CGCGACGGGG GAGGAGCGTT TCCGCGCCGG TATCGGTCAG
1801 AAATTCTATT TCAAGGATGA TGCGGTGATG CTTGACGGCA GCGTCGGCAA
1851 AAATCCGCGC AGCCGTTCCG ACTGGGTGGC ATTCGCCTCC GGCGGCATAG
1901 GCGGGCGTTT CACCCTCGAC AGCAGCATCC ACTACAACCA AAACGACAAA
1951 CGCGCCGAAC ATTACGCCGT CGGCGCAGGC TACCGCCCCG CCCCCGGAAA
2001 AGTGTTGAAC GCCCGCTACA AATACGGCG CAACGAAAAA ATCTACCTGC
2051 AGGCGGACGG TTCCTATTTT TACGACAAAC TCAGCCAGCT CGACCTGTCC
2101 GCACAATGGC CGCTGACGCG CAACCTGTCT GCCGTCGTCC GCTACAACTA
2151 CGGTTTTGAA GCCAAAAAAC CGATAGAAAT GCTTGCCGGT GCAGAATACA
2201 AAAGCAGTTG CGGCTGCTGG GGCGCGGGCG TGTACGCCCA ACGCTACGTT
2251 ACCGGCGAAA ACACCTACAA AAACGCCGTC TTTTTTTCAC TTCAGTTGAA
      AGACCTCAGC AGCGTCGGCA GAAACCCCGC AGGCAGGATG GATGTCGCCG
2301
      TTCCCGGCTA CATCCCCGCC CACTCTTTT CCGCCGGACG CAACAAACGG
```

This corresponds to the amino acid sequence <SEQ ID 2930; ORF 958.ng>:

```
LARLFSLKPL VLALGFCFGT HCAADTVAAE EADGRVAEGG AQGASESAQA
     SDLTLGSTCL FCSNESGSPE RTEAAVQGSG EASVPEDYTR IVADRMEGQS
101 KVKVRAEGSV IIERDGAVLN TDWADYDQSG DTVTVGDRFA LQQDGTLIRG
151 ETLTYNLDQQ TGEAHNVRME TEQGGRRLQS VSRTAEMLGE GRYKLTETQF
201 NTCSAGDAGW YVKAASVEAD RGKGIGVAKH AAFVFGGVPL FYTPWADFPL
251 DGNRKSGLLV PSVSAGSDGV SLSVPYYFNL APNFDATFAP GIIGERGATF
     DGQIRYLRPD YSGQTDLTWL PHDKKSGRNN RYQAKWQHRH DISDTLQAGV
351 DFNQVSDSGY YRDFYGGEEI AGNVNLNRRV WLDYGGRAAG GSLNAGLSVQ
401 KYQTLANQSG YKDEPYAIMP RLSADWHKNA GRAQIGVSAQ FTRFSHDGRO
DGSRLVVYPG IKWDFSNSWG YVRPKLGLHA TYYSLDSFGG KASRSVGRVL
501 PVVNIDGGTT FERNTRLFGG GVVQTIEPRL FYNYIPAKSQ NDLPNFDSSE
     SSFGYGQLFR ENLYYGNDRI NAANSLSTAV QSRILDGATG EERFRAGIGQ
551
     KFYFKDDAVM LDGSVGKNPR SRSDWVAFAS GGIGGRFTLD SSIHYNONDK
     RAEHYAVGAG YRPAPGKVLN ARYKYGRNEK IYLQADGSYF YDKLSQLDLS
651
     AQWPLTRNLS AVVRYNYGFE AKKPIEMLAG AEYKSSCGCW GAGVYAQRYV
701
     TGENTYKNAV FFSLQLKDLS SVGRNPAGRM DVAVPGYIPA HSLSAGRNKR
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2931>:

1 TTGGCTCGTT TATTTTCACT CAAACCACTG GTGCTGGCAT TGGGCCTCTG
51 CTTCGGCACG CATTGCGCCG CCGCCGATGC CGTTGCGGCG GAGGAAACGG
101 ACAATCCGAC CGCCGGAGAA AGCGTTCGGA GCGTGTCCGA ACCCATACAG

```
151 CCTACCAGCC TGAGCCTCGG TTCGACCTGC CTGTTTTGCA GTAACGAAAG
      CGGCAGCCCC GAGAGAACCG AAGCCGCCGT CCAAGGCAGC GGCGAAGCAT
 251
      CCATCCCCGA AGACTATACG CGCATTGTTG CCGACAGGAT GGAAGGACAG
      TCGCAGGTGC AGGTGCGTGC CGAAGGCAAC GTCGTCGTCG AACGCAACCG
 301
      GACGACCCTC AATACCGATT GGGCGGATTA CGACCAGTCG GGCGACACCG
 351
      TTACCGCAGG CGACCGGTTC GCCCTCCAAC AGGACGGTAC GCTGATTCGG
 401
      GGCGAAACCC TGACCTACAA TCTCGAGCAG CAGACCGGGG AAGCGCACAA
 451
      CGTCCGCATG GAAATCGAAC AAGGCGGACG GCGGCTGCAA AGCGTCAGCC
 501
      GCACCGCCGA AATGTTGGGC GAAGGGCATT ACAAACTGAC GGAAACCCAA
 551
 601
      TTCAACACCT GTTCCGCCGG CGATGCCGGC TGGTATGTCA AGGCAGCCTC
      TGTCGAAGCC GATCGGGAAA AAGGCATAGG CGTTGCCAAA CACGCCGCCT
 651
      TCGTGTTCGG CGGCGTTCCC ATTTTCTACA CCCCTTGGGC GGACTTCCCG
 701
 751
      CTTGACGGCA ACCGCAAAAG CGGCCTGCTT GTTCCCTCAC TGTCCGCCGG
      TTCGGACGGC GTTTCCCTTT CCGTTCCCTA TTATTTCAAC CTTGCCCCCA
 801
      ATCTCGATGC CACGTTCGCG CCCAGCGTGA TCGGCGAACG CGGCGCGGTC
 851
      TTTGACGGGC AGGTACGCTA CCTGCGGCCG GATTATGCCG GCCAGTCCGA
 901
 951
      CCTGACCTGG CTGCCGCACG ACAAGAAAAG CGGCAGGAAT AACCGCTATC
1001
      AGGCGAAATG GCAGCATCGG CACGACATTT CCGACACGCT TCAGGCGGGT
      GTCGATTTCA ACCAAGTCTC CGACAGCGGC TACTACCGCG ACTTTTACGG
1101
      CAACAAAGAA ATCGCCGGCA ACGTCAACCT CAACCGCCGT GTATGGCTGG
     ATTATGGCGG CAGGGCGGCG GGCGGCAGCC TGAATGCCGG CCTTTCGGTT
1151
      CTGAAATACC AGACGCTGGC AAACCAAAGC GGCTACAAAG ACAAACCGTA
1201
      TGCCCTCATG CCGCGCCTTT CGGTCGAGTG GCGTAAAAAC ACCGGCAGGG
1251
1301
      CGCAAATCGG CGTGTCCGCA CAATTTACCC GATTCAGCCA CGACAGCCGC
1351 CAAGACGGCA GCCGCCTGGT CGTCTATCCC GACATCAAAT GGGATTTCAG
1401 CAACAGCTGG GGCTATGTCC GTCCCAAACT CGGACTGCAC GCCACCTATT
     ACAGCCTCAA CCGCTTCGGC AGCCAAGAAG CCCGACGCGT CAGCCGCACT
1451
1501 CTGCCCATTG TCAACATCGA CAGCGGCGCA ACTTTTGAGC GGAATACGCG
1551
     GATGTTCGGC GGAGAAGTCC TGCAAACCCT CGAGCCGCGC CTGTTCTACA
1601 ACTATATTCC TGCCAAATCC CAAAACGACC TGCCCAATTT CGATTCGTCG
1651 GAAAGCAGCT TCGGCTACGG GCAGCTCTTT CGCGAAAACC TCTATTACGG
1701 CAACGACAGG ATTAACACCG CAAACAGCCT TTCCGCCGCC GTGCAAAGCC
1751 GTATTTGGA CGGCGCGACG GGGGAAGAGC GTTTCCGCGC CGGCATCGGT
     CAGAAATTCT ATTTCAAGGA TGATGCGGTG ATGCTTGACG GCAGCGTCGG
1801
     CAAAAAACCG CGCAACCGTT CCGACTGGGT GGCATTTGCC TCCGGCAGCA
     TCGGCAGCCG CTTCATCCTC GACAGCAGCA TCCACTACAA CCAAAACGAC
1951
     AAACGCGCCG AGAACTACGC CGTCGGTGCA AGCTACCGTC CCGCACAGGG
2001
     CAAAGTGCTG AACGCCCGCT ACAAATACGG GCGCAACGAA AAAATCTACC
     TGAAGTCCGA CGGTTCCTAT TTTTACGACA AACTCAGCCA GCTCGACCTG
     TCCGCACAAT GGCCGCTGAC GCGCAACCTG TCGGCCGTCG TCCGTTACAA
2101
2151
     CTACGGTTTT GAAGCCAAAA AACCGATAGA GGTGCTGGCG GGTGCGGAAT
     ACAAAAGCAG TTGCGGCTGC TGGGGCGCGG GCGTGTACGC CCAACGCTAC
2201
     GTTACCGGCG AAAACACCTA CAAAAACGCT GTCTTTTTCT CACTTCAGTT
     GAAAGACCTC AGCAGTGTCG GCAGAAACCC CGCAGACAGG ATGGATGTCG
2351
     CCGTTCCCGG CTATATCACC GCCCACTCTC TTTCCGCCGG ACGCAACAAA
2401 CGACCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 2932; ORF 958>: m958.pep

```
LARLFSLKPL VLALGLCFGT HCAAADAVAA EETDNPTAGE SVRSVSEPIQ
 51 PTSLSLGSTC LFCSNESGSP ERTEAAVQGS GEASIPEDYT RIVADRMEGO
101 SQVQVRAEGN VVVERNRTTL NTDWADYDQS GDTVTAGDRF ALQQDGTLIR
     GETLTYNLEQ QTGEAHNVRM EIEQGGRRLQ SVSRTAEMLG EGHYKLTETQ
201 FNTCSAGDAG WYVKAASVEA DREKGIGVAK HAAFVFGGVP IFYTPWADFP
    LDGNRKSGLL VPSLSAGSDG VSLSVPYYFN LAPNLDATFA PSVIGERGAV
    FDGQVRYLRP DYAGQSDLTW LPHDKKSGRN NRYQAKWQHR HDISDTLQAG
301
351 VDFNQVSDSG YYRDFYGNKE IAGNVNLNRR VWLDYGGRAA GGSLNAGLSV
    LKYQTLANQS GYKDKPYALM PRLSVEWRKN TGRAQIGVSA QFTRFSHDSR
    QDGSRLVVYP DIKWDFSNSW GYVRPKLGLH ATYYSLNRFG SQEARRVSRT
451
501
    LPIVNIDSGA TFERNTRMFG GEVLQTLEPR LFYNYIPAKS ONDLPNFDSS
    ESSFGYGQLF RENLYYGNDR INTANSLSAA VQSRILDGAT GEERFRAGIG
551
    QKFYFKDDAV MLDGSVGKKP RNRSDWVAFA SGSIGSRFIL DSSIHYNQND
651
     KRAENYAVGA SYRPAQGKVL NARYKYGRNE KIYLKSDGSY FYDKLSQLDL
701
     SAQWPLTRNL SAVVRYNYGF EAKKPIEVLA GAEYKSSCGC WGAGVYAQRY
     VTGENTYKNA VFFSLQLKDL SSVGRNPADR MDVAVPGYIT AHSLSAGRNK
751
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 958 shows 89.3% identity over a 802 aa overlap with a predicted ORF (ORF 958) from N. gonorrhoeae

m958/g958	89.3% identity in 802 aa overlap
m958.pep	10 20 30 40 50 60 LARLFSLKPLVLALGLCFGTHCAAADAVAAEETDNPTAGESVRSVSEPIQPTSLSLGSTC
m958.pep g958	70 80 90 100 110 120 LFCSNESGSPERTEAAVQGSGEASIPEDYTRIVADRMEGQSQVQVRAEGNVVVERNRTTL
m958.pep g958	130 140 150 160 170 180 NTDWADYDQSGDTVTAGDRFALQQDGTLIRGETLTYNLEQQTGEAHNVRMEIEQGGRRLQ
m958.pep	190 200 210 220 230 240 SVSRTAEMLGEGHYKLTETQFNTCSAGDAGWYVKAASVEADREKGIGVAKHAAFVFGGVP
m958.pep g958	250 260 270 280 290 300 IFYTFWADFPLDGNRKSGLLVPSLSAGSDGVSLSVPYYFNLAPNLDATFAPSVIGERGAV :
m958.pep	310 320 330 340 350 360 FDGQVRYLRPDYAGQSDLTWLPHDKKSGRNNRYQAKWQHRHDISDTLQAGVDFNQVSDSG :
m958.pep g958	370 380 390 400 410 420 YYRDFYGNKEIAGNVNLNRRVWLDYGGRAAGGSLNAGLSVLKYQTLANQSGYKDKPYALM ::
m958.pep g958	430 440 450 460 470 480 PRLSVEWRKNTGRAQIGVSAQFTRFSHDSRQDGSRLVVYPDIKWDFSNSWGYVRPKLGLH :: : :
m958.pep g958	490 500 510 520 530 540 ATYYSLNRFGSQEARRVSRTLPIVNIDSGATFERNTRMFGGEVLQTLEPRLFYNYIPAKS : : : : : : : : :
m958.pep g958	550 560 570 580 590 600 QNDLPNFDSSESSFGYGQLFRENLYYGNDRINTANSLSAAVQSRILDGATGEERFRAGIG
m958.pep g958	610 620 630 640 650 660 QKFYFKDDAVMLDGSVGKKPRNRSDWVAFASGSIGSRFILDSSIHYNQNDKRAENYAVGA
m958.pep	670 680 690 700 710 720 SYRPAQGKVLNARYKYGRNEKIYLKSDGSYFYDKLSQLDLSAQWPLTRNLSAVVRYNYGF :

```
730
                         740
                                  750
                                          760
                                                   770
           EAKKPIEVLAGAEYKSSCGCWGAGVYAQRYVTGENTYKNAVFFSLQLKDLSSVGRNPADR
m958.pep
           a958
           EAKKPIEMLAGAEYKSSCGCWGAGVYAQRYVTGENTYKNAVFFSLQLKDLSSVGRNPAGR
                  730
                          740
                                   750
                                           760
          MDVAVPGYITAHSLSAGRNKRP
m958.pep
           1111111111 | 11111111111111
a958
          MDVAVPGYIPAHSLSAGRNKRPX
                 790
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2933>:

```
TTGGCTCGTT TATTTTCACT CAAACCACTG GTGCTGGCAT TGGGCTTCTG
      TTTCGGCACG CATTGCGCCG CCGCCGATGC CGTTGCGGCG GAGGAAACGG
 101 ACAATCCGAC CGCCGGAGGA AGCGTTCGGA GCGTGTCCGA ACCCATACAG
 151
      CCTACCAGCC TGAGCCTCGG TTCGACCTGC CTGTTTTGCA GTAACGAAAG
 201
      CGGCAGCCCC GAGAGAACCG AAGCCGCCGT CCAAGGCAGC GGCGAAGCAT
      CCATCCCCGA AGACTATACG CGCATTGTTG CCGACAGGAT GGAAGGACAG
 251
      TCGCAGGTGC AGGTGCGTGC CGAAGGCAAC GTCGTCGTCG AACGCAATCG
 301
 351
      GACGACCCTC AATGCCGATT GGGCGGATTA CGACCAGTCG GGCGACACCG
      TTACCGCAGG CGACCGGTTC GCCCTCCAAC AGGACGGTAC GCTGATTCGG
 401
      GGCGAAACCC TGACCTACAA TCTCGAGCAG CAGACCGGGG AAGCGCACAA
 451
      CGTCCGTATG GAAACCGAAC ACGGCGGACG GCGGCTGCAA AGCGTCAGCC
 501
 551
      GCACCGCCGA AATGTTGGGC GAAGGGCATT ACAAACTGAC GGAAACCCAA
      TTCAACACCT GTTCCGCCGG CGATGCCGGC TGGTATGTCA AGGCCGCTTC
 601
      CGTCGAAGCC GATCGGGAAA AAGGCATAGG CGTTGCCAAA CACGCCGCCT
 651
      TCGTGTTCGG CGGCGTTCCC ATTTTCTACA CCCCTTGGGC GGACTTCCCG
 701
      CTTGACGGCA ACCGCAAAAG CGGCCTGCTC GTTCCCTCAC TGTCCGCCGG
 751
      TTCGGACGGC GTTTCCCTTT CCGTTCCCTA TTATTTCAAC CTTGCCCCCA
 801
      ATCTCGATGC CACGTTCGCG CCCGGCGTGA TCGGCGAACG CGGCGCGGTC
      TTTGACGGGC AGGTACGCTA CCTGCGGCCG GATTATGCCG GCCAGTCCGA
 901
      CCTGACCTGG CTGCCGCACG ACAAGAAAAG CGGCAGGAAT AACCGCTATC
 951
      AGGCGAAATG GCAGCACCGG CACGACATTT CCGACACGCT TCAGGCGGGT
1001
      GTCGATTTCA ACCAAGTCTC CGACAGCGGC TACTACCGCG ACTTTTACGG
      CAACAAAGAA ATCGCCGGCA ACGTCAACCT CAACCGCCGT GTATGGCTGG
1151 ATTATGGCGG CAGGGCGGCG GGCGGCAGCC TGAATGCCGG CCTTTCGGTT
      CTGAAATACC AGACGCTGGC AAACCAAAGC GGCTACAAAG ACAAACCGTA
1201
      TGCCCTGATG CCGCGCCTTT CCGCCGATTG GCGCAAAAAC ACCGGCAGGG
CGCAAATCGG CGTGTCCGCC CAATTTACCC GCTTCAGCCA CGACAGCCGC
1351
      CAAGACGGCA GCCGCCTCGT CGTCTATCCC GACATCAAAT GGGATTTCAG
1401
      CAACAGCTGG GGTTACGTCC GTCCCAAACT CGGACTGCAC GCCACCTATT
1451 ACAGCCTCAA CCGCTTCGGC AGCCAAGAAG CCCGACGCGT CAGCCGCACT
      CTGCCCATCG TCAACATCGA CAGCGGCATG ACCTTCGAAC GCAATACGCG
1551 GATGTTCGGC GGCGGAGTCC TGCAAACCCT CGAGCCGCGC CTGTTCTACA
1601 ACTATATTCC TGCCAAATCC CAAAACGACC TGCCCAATTT CGATTCGTCG
1651 GAAAGCAGCT TCGGCTACGG GCAGCTTTTT CGTGAAAACC TCTATTACGG
1701 CAACGACAGG ATTAACACCG CAAACAGCCT TTCCGCCGCC GTGCAAAGCC
     GTATTTTGGA CGGCGCGACG GGGGAAGAGC GTTTCCGCGC CGGCATCGGG
1751
1801 CAGAAATTCT ACTTCAAAAA CGACGCAGTC ATGCTTGACG GCAGTGTCGG
1851
     CAAAAAACCG CGCAGCCGTT CCGACTGGGT GGCATTCGCC TCCAGCGGCA
      TCGGCAGCCG CTTCATCCTC GACAGCAGCA TCCACTACAA CCAAAACGAC
1951 AAACGCGCCG AGAACTACGC CGTCGGTGCA AGCTACCGTC CCGCACAGGG
2001
      CAAAGTGCTG AACGCCCGCT ACAAATACGG GCGCAACGAA AAAATCTACC
      TGAAGTCCGA CGGTTCCTAT TTTTACGACA AACTCAGCCA GCTCGACCTG
2051
2101 TCCGCACAAT GGCCGCTGAC GCGCAACCTG TCGGCCGTCG TCCGTTACAA
      CTACGGTTTT GAAGCCAAAA AACCGATAGA GGTGCTGGCG GGTGCGGAAT
2201 ACAAAAGCAG TTGCGGCTGC TGGGGCGCGG GCGTGTACGC CCAACGCTAC
2251 GTTACCGGCG AAAACACCTA CAAAAACGCT GTCTTTTTCT CACTTCAGTT
      GAAAGACCTC AGCAGTGTCG GCAGAAACCC CGCAGACAGG ATGGATGTCG
2301
2351 CCGTTCCCGG CTATATCCCC GCCCACTCTC TTTCCGCCGG ACGCAACAAA
2401 CGGCCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 2934; ORF 958.a>: a958.pep

1 LARLFSLKPL VLALGFCFGT HCAAADAVAA EETDNPTAGG SVRSVSEPIQ
51 PTSLSLGSTC LFCSNESGSP ERTEAAVQGS GEASIPEDYT RIVADRMEGQ
101 SQVQVRAEGN VVVERNRTTL NADWADYDQS GDTVTAGDRF ALQQDGTLIR
151 GETLTYNLEQ QTGEAHNVRM ETEHGGRRLQ SVSRTAEMLG EGHYKLTETQ
201 FNTCSAGDAG WYVKAASVEA DREKGIGVAK HAAFVFGGVP IFYTPWADFP

251	LDGNRKSGLL	VPSLSAGSDG	VSLSVPYYFN	LAPNLDATFA	PGVIGERGAV
301				NRYQAKWQHR	
351	VDFNQVSDSG	YYRDFYGNKE		VWLDYGGRAA	
401	LKYQTLANQS	GYKDKPYALM		TGRAQIGVSA	
451	QDGSRLVVYP	DIKWDFSNSW		ATYYSLNRFG	
501	LPIVNIDSGM	TFERNTRMFG	GGVLQTLEPR	LFYNYIPAKS	QNDLPNFDSS
551	ESSFGYGQLF	RENLYYGNDR	INTANSLSAA	VQSRILDGAT	GEERFRAGIG
601	QKFYFKNDAV	MLDGSVGKKP	RSRSDWVAFA	SSGIGSRFIL	DSSIHYNOND
651				KIYLKSDGSY	
701				GAEYKSSCGC	
751	VTGENTYKNA	VFFSLQLKDL	SSVGRNPADR	MDVAVPGYIP	AHSLSAGRNK
801	RP*				

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 957 shows 96.3% identity over a 377 aa overlap with a predicted ORF (ORF 957) from

N. meningitidis

a958/m958	98.1% identity :	in 802 aa	overlap			
	10	20	30	40	50	60
a958.pep	LARLFSLKPLVLALG	FCFGTHCAAA	DAVAAEETDN	PTAGGSVRSV	SEPIQPTSLS	LGSTC
m958		:		1	111111111	
111950	10	20	JAVAALETON 30	PTAGESVRSV:	SEPIQPTSLS 50	
			50	40	50	60
	70	80	90	100	110	120
a958.pep	LFCSNESGSPERTEA?	AVQGSGEASI	PEDYTRIVADI	RMEGQSQVQVI	RAEGNVVVEF	NRTT.
		:	111111111	!		11111
m958	LFCSNESGSPERTEAR 70	AVQGSGEASI 80	PEDYTRIVADI 90	RMEGQSQVQVI		
	70	80	90	100	110	120
	130	140	150	160	170	180
a958.pep	NADWADYDQSGDTVTA	AGDRFALQQD	GTLIRGETLTY	INLEGOTGEA	INVENETER	GRRIA
					111111 1-1	11111
m958	NTDWADYDQSGDTVTA	AGDRFALQQD	GTLIRGETLTY	INLEQOTGEA		
	130	140	150	160	170	180
	190	200	210	220	230	240
a958.pep	SVSRTAEMLGEGHYKI	TETQFNTCS	AGDAGWYVKAZ	ASVEADREKGI	GVAKHAAFV	FGGVP
						TITLE
m958	SVSRTAEMLGEGHYKL	TETQFNTCS	AGDAGWYVKAA	SVEADREKGI	GVAKHAAFV	FGGVP
	190	200	210	220	230	240
	250	260	270	280	290	200
a958.pep	IFYTPWADFPLDGNRK	SGLLVPSLSA	AGSDGVSLSVE	YYFNLAPNL	DATFAPGUTG	300
_	_ [[]]]			11111111111	111111111	11111
m958	IFYTPWADFPLDGNRK	SGLLVPSLS	AGSDGVSLSVF	YYFNLAPNLE	PATFAPSVIG	ERGAV
	250	260	270	280	290	300
	310	320	330	340	350	260
a958.pep	FDGQVRYLRPDYAGQS			WOHRHOTSOT	T.OAGVDENO	09E
		111111111		1111111111	11111111	LILI
m958	FDGQVRYLRPDYAGQS	DLTWLPHDKE	KSGRNNRYQAK	WOHRHDISDT	LQAGVDFNQ	VSDSG
	310	320	330	340	350	3,60
	370	380	390	400	41.0	
a958.pep	YYRDFYGNKEIAGNVN		GRAAGGSI.NA	.CI.SVI.KVOTI	ANOSCYPDY	420
			111111111	1111111111	11111111	LILLI
m958	YYRDFYGNKEIAGNVN	LNRRVWLDYG	GRAAGGSLNA	GLSVLKYQTL	ANOSGYKDK	PYALM
	370	380	390	400	410	420
	430	440	450	460	450	
a958.pep	PRLSADWRKNTGRAQI		450 HDSRODGSRI	460	470	480
1	1111::11111111			IIIIIIIIII	ILLELLEL	KTGTH
m958	PRLSVEWRKNTGRAQI	GVSAQFTRFS	HDSRODGSRL	VVYPDIKWDF	SNSWGYVRP	KLGLH
	430	440	450	460	470	480
	490	500	E 1 0			
a958.pep	ATYYSLNRFGSQEARR	500 VSRTLPIVNI	510	520	530	540
P			111 HILLI	THE GGGV LQT	PERKTEANA.	LPAKS
m958	ATYYSLNRFGSQEARRY	VSRTLPIVNI	DSGATFERNT	RMFGGEVLOT	LEPRLFYNY:	IPAKS

1375

	490	500	510	520	530	540
a958.pep	550 QNDLPNFDSSESS QNDLPNFDSSESS 550		 YYGNDRINT	 ANSLSAAVQSI	RILDGATGEE	TILLETI
	610	560 620	570 630	580 640	59 0 65 0	600 660
a958.pep m958	QKFYFKNDAVMLD QKFYFKDDAVMLD	1111111:11		HILLIIII	3 1 1 1 1 1 1 1 1 1	111111
	610 670	620 680	630 690	640 700	650	6 60
a958.pep	SYRPAQGKVLNAR	YKYGRNEKIYLI	(SDGSYFYD	KLSQLDLSAQW	1111111111	111111
шээв	SYRPAQGKVLNAR 670	680	690 ·	KLSQLDLSAQW 700	PLTRNLSAV 710	VRYNYGF 720
a958.pep	730 EAKKPIEVLAGAE	740 YKSSCGCWGAGV	750 YAQRYVTGI }		770 LQLKDLSSV(
m958	EAKKPIEVLAGAE				LQLKDLSSVO	GRNPADR 780
a958.pep	790 MDVAVPGYIPAHSI	800 LSAGRNKRPX				
m958	MDVAVPGYITAHS					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2935>: g959.seq

ATGAACATCA AACACCTTCT CTTGACCGCC GCCGCAACCG CACTGTTGGG 1 51 CATTTCCGCC CCCGCACTCG CCCACCACGA CGGACACGGC GATGACGACC 101 ACGGACACGC CGCACACCAA CACGGCAAAC AAGACAAAAT CATCAGCCGC 151 GCCCAAGCCG AAAAAGCGGC TTGGGCGCGT GTCGGCGGCA AAATCACCGA 201 CATCGATCTC GAACACGACG ACGGCCGTCC GCACTATGAT GTCGAAATCG
251 TCAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC GTGATTTCCT CCCGCCGCGA CGACTGA

This corresponds to the amino acid sequence <SEQ ID 2936; ORF 959.ng>: q959.pep

- 1 MNIKHLLLTA AATALLGISA PALAHHDGHG DDDHGHAAHO HGKODKIISR 51 AQAEKAAWAR VGGKITDIDL EHDDGRPHYD VEIVKNGQEY KVVVDARTGR
- 101 VISSRRDD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2937>: m959.seg

- ATGAACATCA AACACCTTCT CTTGACCTCC GCCGCAACCG CACTGCTGAG CATTTCCGCC CCCGCGCTCG CCCACCACGA CGGACACGGC GATGACGACC 51 101 ACGGACACGC CGCACACCAA CACAACAAAC AAGACAAAAT CATCAGCCGC 151 GCCCAAGCCG AAAAAGCAGC GTTGGCGCGT GTCGGCGGCA AAATCACCGA 201 CATCGATCTC GAACACGACA ACGGCCGTCC GCACTATGAT GTCGAAATCG
- 251 TCAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC
- GTGATTTCCT CCCGCCGCGA CGACTGA

This corresponds to the amino acid sequence <SEQ ID 2938; ORF 959>: m959.pep

- MNIKHLLLTS AATALLSISA PALAHHDGHG DDDHGHAAHQ HNKQDKIISR 1 AQAEKAALAR VGGKITDIDL EHDNGRPHYD VEIVKNGQEY KVVVDARTGR 51

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 959 shows 95.4% identity over a 108 aa overlap with a predicted ORF (ORF 959) from N. gonorrhoeae

```
95.4% identity in 108 aa overlap
m959/g959
                10
                        20
                               30
                                       40
          MNIKHLLLTSAATALLSISAPALAHHDGHGDDDHGHAAHQHNKQDKIISRAQAEKAALAR
m959.pep
          MNIKHLLLTAAATALLGISAPALAHHDGHGDDDHGHAAHQHGKQDKIISRAQAEKAAWAR
g959
                10
                        20
                               30
                                       40
                        80
                               90
          VGGKITDIDLEHDNGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
m959.pep
          VGGKITDIDLEHDDGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
a959
                       80
                               90
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2939>:

```
1 ATGAACTTCA AACGCCTTCT CTTGACCGCC GCCGCAACCG CACTGATGGG
51 CATTTCCGCC CCCGCACCAC CGGACACGG CGTGACGACCG
101 ACGGACACGC CGCACACCAA CACAGCAAAC AAGACAAAAT CATCAGCCGC
151 GCCCAAGCCG AAAAAGCAGC GTTGGCGCGT GTCGGCGGCA AAATCACCGA
201 CATCGATCTC GAACACGACA ACGCCCGTCC GCACTATGAT GTCGAAATCG
251 TCAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC
301 GTGATTTCCT CCCGCCGCGA CGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 2940; ORF 959.a>: a959.pep

- 1 MNFKRLLITA AATALMGISA PALAHHDGHG DDDHGHAAHQ HSKQDKIISR
- 51 AQAEKAALAR VGGKITDIDL EHDNGRPHYD VEIVKNGQEY KVVVDARTGR
- 101 VISSRRDD*

WO 99/57280

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 959 shows 94.4% identity over a 108 aa overlap with a predicted ORF (ORF 959) from N. meningitidis

```
a959/m959
          94.4% identity in 108 aa overlap
                        20
                               30
                                               50
          MNFKRLLLTAAATALMGISAPALAHHDGHGDDDHGHAAHQHSKQDKIISRAQAEKAALAR
a959.pep
          MNIKHLLLTSAATALLSISAPALAHHDGHGDDDHGHAAHQHNKQDKIISRAQAEKAALAR
m959
                10
                        20
                               30
                        80
                               90
                                      100
          VGGKITDIDLEHDNGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
a959.pep
          m959
          VGGKITDIDLEHDNGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
                70
                       80
                               90
                                      100
```

g960.seq not found yet g960.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2941>:

```
ATGCAAGTAA ATATTCAGAT TCCCTGTATG CTGTACAGAC GCGGGAGTGT
     TAAGCCCCCC TTGTTTGAAG CTCCGCGGCT CCTGCCGAGC TTCACCGACC
 51
     CCGTTGTGCC CAAGCTCTCT GCTCCCGGCG GCTACATTGT CGACATCCCC
101
151 AAAGGCAATC TGAAAACCGA AATCGAAAAG CTGGCCAAAC AGCCCGAGTA
201
     TGCCTATCTG AAACAGCTCC AAGTAGCGAA AAACGTCAAC TGGAACCAGG
251 TGCAACTGGC TTACGATAAA TGGGACTATA AGCAGGAAGG CTTAACCAGA
301 GCCGGTGCAG CGATTATCGC GCTGGCTGTT ACCGTGGTTA CTGCGGGCGC
351
     GGGAGTCGGA GCCGCACTAG GCTTAAACGG CGCAGCCGCA GCAGCGGCCG
401 ATGCCGCCTT TGCCTCACTC GCTTCTCAGG CTTCCGTATC GCTCATCAAC
    AATAAAGGCG ATGTCGGCAA AACCCTGAAG GAACTGGGCA GAAGCCGCAC
451
501 GGTAAAAAT CTGGTTGTAG CGGCGGCAAC GGCAGGCGTA TCCAACAAAC
```

```
551 TCGGTGCCTC TTCCCTTGCC ACTTGGAGCG AAACCCCTTG GGTAAACAAC
 601 CTCAACGTTA ACCTGGCCAA TGCGGGCAGT GCCGCGCTGA TCAACACCGC
      TGTTAACGGC GGCAGCCTGA AAGACAATCT GGAGGCAAAT ATCCTGGCGG
 651
 701 CATTGGTGAA TACCGCGCAT GGGGAGGCGG CGAGTAAGAT CAAAGGACTG
 751 GATCAGCACT ATGTCGCCCA CAAAATCGCT CATGCCGTAG CGGGCTGTGC
 801 GGCTGCAGCG GCGAATAAGG GCAAATGTCA GGACGGCGCG ATCGGTGCGG
     CTGTGGGTGA GATTGTCGGG GAGGCTTTGG TTAAAAATAC CGATTTTAGC
 851
      GATATGACCC CGGAACAATT AGATCTGGAA GTTAAGAAAA TTACCGCCTA
 901
      TGCCAAACTT GCGGCAGGTA CAGTTGCAGG CGTAACGGGA GGAGATGTCA
 951
1001
     ATACTGCTGC ACAAACCGCA CAAAACGCGG TAGAAAATAA TGCGGTTAAA
      GCTGTTGTAA CTGCTGCAAA AGTGGTTTAT AAGGTAGCCA GAAAAGGATT
1051
1101 AAAAAACGGG AAAATCAACG TTAGAGATTT AAAACAGACG TTGAAAGACG
1151 AAGGTTATAA TTTAGCCGAC AACCTGACCA CCTTATTCGA CGAAACATTG
1201 GATTGGAACG ATGCCAAAGC CGTTATTGAT ATTGTCGTCG GAACAGAGCT
1251 GAATCGCGCT AATAAAGGGG AAGCGGCACA AAAGGTCAAG GAAGTTTTAG
     AAAAAAATCG TCCTTATATC CCTAATAAAG GTGCTGTACC GAATATGAGT
1301
1351 ACATACATGA AAAATAATCC TTTTGGAAAA CAGCTGGCTC AAATTTCAGA
1401 AAAGACAACG CTTCCGACGC AGCAAGGGCA GTCTGTCTTC TTGGTAAAAA
1451 GAAACCAAGG GTTATTAAAA ACCGGTGATA GGTTTTATTT AGATGGCCAA
1501 CATAAAAATC ATTTAGAGGT TTTTGATAAA AATGGGAACT TTAAGTTTGT
      TCTAAATATG GATGGTTCGC TTAACCAAAT GAAAACTGGG GCAGCAAAAG
1551
1601
      GTCGTAAATT AAACTTAAAA TAG
```

This corresponds to the amino acid sequence <SEQ ID 2942; ORF 960>: m960.pep

```
MQVNIQIPCM LYRRGSVKPP LFEAPRLLPS FTDPVVPKLS APGGYIVDIP
 51
    KGNLKTEIEK LAKQPEYAYL KQLQVAKNVN WNQVQLAYDK WDYKQEGLTR
    AGAAIIALAV TVVTAGAGVG AALGLNGAAA AAADAAFASL ASQASVSLIN
101
    NKGDVGKTLK ELGRSRTVKN LVVAAATAGV SNKLGASSLA TWSETPWVNN
201 LNVNLANAGS AALINTAVNG GSLKDNLEAN ILAALVNTAH GEAASKIKGL
251
    DQHYVAHKIA HAVAGCAAAA ANKGKCQDGA IGAAVGEIVG EALVKNTDFS
    DMTPEQLDLE VKKITAYAKL AAGTVAGVTG GDVNTAAQTA QNAVENNAVK
301
351 AVVTAAKVVY KVARKGLKNG KINVRDLKQT LKDEGYNLAD NLTTLFDETL
    DWNDAKAVID IVVGTELNRA NKGEAAQKVK EVLEKNRPYI PNKGAVPNMS
401
    TYMKNNPFGK QLAQISEKTT LPTQQGQSVF LVKRNQGLLK TGDRFYLDGQ
451
501 HKNHLEVFDK NGNFKFVLNM DGSLNQMKTG AAKGRKLNLK
```

a960.seq not found yet a960.pep not found yet g961.seq not found yet g961.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2943>: m961.seq

```
ATGAGCATGA AACACTTTCC AGCCAAAGTA CTGACCACAG CCATCCTTGC
  51
      CACTTTCTGT AGCGGCGCAC TGGCAGCCAC AAGCGACGAC GATGTTAAAA
 101 AAGCTGCCAC TGTGGCCATT GTTGCTGCCT ACAACAATGG CCAAGAAATC
 151 AACGGTTTCA AAGCTGGAGA GACCATCTAC GACATTGGTG AAGACGGCAC
 201 AATTACCCAA AAAGACGCAA CTGCAGCCGA TGTTGAAGCC GACGACTTTA
 251 AAGGTCTGGG TCTGAAAAAA GTCGTGACTA ACCTGACCAA AACCGTCAAT
 301 GAAAACAAAC AAAACGTCGA TGCCAAAGTA AAAGCTGCAG AATCTGAAAT
 351 AGAAAAGTTA ACAACCAAGT TAGCAGACAC TGATGCCGCT TTAGCAGATA
401 CTGATGCCGC TCTGGATGAA ACCACCAACG CCTTGAATAA ATTGGGAGAA
 451 AATATAACGA CATTTGCTGA AGAGACTAAG ACAAATATCG TAAAAATTGA
      TGAAAAATTA GAAGCCGTGG CTGATACCGT CGACAAGCAT GCCGAAGCAT
 501
 551 TCAACGATAT CGCCGATTCA TTGGATGAAA CCAACACTAA GGCAGACGAA
     GCCGTCAAAA CCGCCAATGA AGCCAAACAG ACGGCCGAAG AAACCAAACA
 601
 651 AAACGTCGAT GCCAAAGTAA AAGCTGCAGA AACTGCAGCA GGCAAAGCCG
 701 AAGCTGCCGC TGGCACAGCT AATACTGCAG CCGACAAGGC CGAAGCTGTC
     GCTGCAAAAG TTACCGACAT CAAAGCTGAT ATCGCTACGA ACAAAGCTGA
 751
     TATTGCTAAA AACTCAGCAC GCATCGACAG CTTGGACAAA AACGTAGCTA
 801
      ATCTGCGCAA AGAAACCCGC CAAGGCCTTG CAGAACAAGC CGCGCTCTCC
 851
 901
      GGCCTGTTCC AACCTTACAA CGTGGGTCGG TTCAATGTAA CGGCTGCAGT
      CGGCGGCTAC AAATCCGAAT CGGCAGTCGC CATCGGTACC GGCTTCCGCT
951
      TTACCGAAAA CTTTGCCGCC AAAGCAGGCG TGGCAGTCGG CACTTCGTCC
1001
      GGTTCTTCCG CAGCCTACCA TGTCGGCGTC AATTACGAGT GGTAA
```

This corresponds to the amino acid sequence <SEQ ID 940; ORF 2944>: m961.pep

¹ MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAI VAAYNNGQEI

WO 99/57280 PCT/US99/09346

```
51 NGFKAGETIY DIGEDGTITQ KDATAADVEA DDFKGLGLKK VVTNLTKTVN
101 ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDE TTNALNKLGE
151 NITTFAEETK TNIVKIDEKL EAVADTVDKH AEAFNDIADS LDETNTKADE
201 AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKAEAAAGTA NTAADKAEAV
251 AAKVTDIKAD IATNKADIAK NSARIDSLDK NVANLRKETR QGLAEQAALS
301 GLFQPYNVGR FNVTAAVGGY KSESAVAIGT GFRFTENFAA KAGVAVGTSS
351 GSSAAYHVGV NYEW*
```

a961.seq not found yet a961.pep not found yet

g972.seq not found yet g972.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2945>:

```
TTGACTAACA GGGGGGGGC GAAATTAAAA ACCArTTCCA AGAGTAGTGA
  51 ACGAATGAGT GAAGTTGAAT ATTTCTCACA CTTTATATCG GACGGAAAAG
 101 GGAAGCTTTT AGAAATTCCG CAGCGAAGAG GTAAGCAAGA CGGGGTTTTT
 151 GTTGATTGGA TTTCATTCAC ATTCCATGAA GATACTTTAC TGAAAGTTTC
 201 CGGTTGCCCT TTATTTTCTG ATGCTGAATA CATGTATGTA TTAAGCAGAA
 251 AGCTGGAAGA AATTCTAGGT TTTGGCATAA CGCGCAAATG CAAATCAAGG
 301 GGCAACAAAT TCTATGAATC CATGTATAGG TTAGGTTCGG ATGATGTTGA
 351 TTATGGAGAG GTGCATTTCG GArGTCAGCG CAATACTGTT TTAGTTGAGT
      TGAAAGGTAC TGGTTGCAGC GTTGCAAGTC CGGGTTGGGA GTTGAGGCTA
 401 TGAAAGGTAC TGGTTGCAGC GTTGCAAGTC CGGGTTGGGA GTTGAGGCTA
451 AAGCAGTTTC TCGATGATTC GATAAGGACA AGAATAACGC GAATTGACCT
 501 AGCACTTGAT TTTTTTGATG GAGAGTACAC GCCGGATCAG GCGTTGTTAG
 551 ATCACGATAA TGGTTTTTTT GATAACAGCA ATCAAAGGCC GAAATCTGAA
 601 ACGATCGGTA CGGCTTGGCG GAATGAGGAC GGGAGCGGCA AGACATTTTA
 651 TGTAGGTCGC AAGAAAAATT CTCGTTTTTGT TCGTGTTTAT GAGAAAGGCA
 701 GGCAGCTTGG AGATAAAGAA AGCAAATGGG TAAGGTTCGA GATCCAGTTT
 751 AATTATGGAG ATATAGAAAT ACCCTTGGAT ATTTTAATAA ATCAGGGTTC
 801 GTATTTCTGT GGAGCTTTTC CAATTTGTAG AAAATTTAAA AATATGCCGG
 851 TTCCCGAAAG GTTTGATCAG AGAAAGAAAA AGCTTAATTT AACTTTCGAG
 901 CATAAATTGC ATTACGCGAA AAACGCGGTT GGAAAACTGG TCAATTTCAT
 951 GATTGAAATG GGTTTTGATA ATAGCGAAAT TGTGGAATCT TTAAAGGCAG
1001 ATTCGGGATT TCCCAAAGGA TTAGAACCTG AAAAATATGC TCTGGAAATG
     TTAAGGGACG GTTTGAAACA CGGTTTTATT CATGAACAGC CGGATATTGA
     TTTGGAAATT GAACTTGATG AATTGGGGGT TATTGCTTTT AAAAATTCTG
     ACAAATTCGA TAGGGAAAAA AGGCTTTTTA GTCCTGATTA TGATGTCGAG
1201 AAAGAAAGGA AATATCAGGA ATATTTAAGT AAAGTTTATC ATCAAAATGT
1251 AGATTATGAT TATTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 2946; ORF 972>: m972.pep

```
1 LTNRGGAKLK TXSKSSERMS EVEYFSHFIS DGKGKLLEIP QRRGKQDGVF
51 VDWISFTFHE DTLLKVSGCP LFSDAEYMYV LSRKLEEILG FGITRKCKSR
101 GNKFYESMYR LGSDDVDYGE VHFGXQRNTV LVELKGTGCS VASPGWELRL
151 KQFLDDSIRT RITRIDLALD FFDGEYTPDQ ALLDHDNGFF DNSNQRPKSE
201 TIGTAWRNED GSGKTFYVGR KKNSRFVRVY EKGRQLGDKE SKWVRFEIQF
251 NYGDIEIPLD ILINQGSYFC GAFPICRKFK NMPVPERFDQ RKKKLNLTFE
301 HKLHYAKNAV GKLVNFMIEM GFDNSEIVES LKADSGFPKG LEPEKYALEM
351 LRDGLKHGFI HEQPDIDLEI ELDELGVIAF KNSDKFDREK RLFSPDYDVE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2947>:

```
1 TTGACTAACA GGGGGGGAGC GAAATTAAAA ACCAATTCCA AGAGTAGTGA
51 ACGAATGAGT GAAGTTGAAT ATTTCTCACA CTTTATATCG GACGGAAAAG
101 GGAAGCTTTT AGAAATTCCG CAGCGAAGAG GTAAGCAAGA CGGGGTTTTT
151 GTTGATTGGA TTTCATTCAC ATTCCATGAA GATACTTTAC TGAAAGTTTC
201 CGGTTGCCCT TTATTTTCTG ATGCTGAATA CATGTATGTA TTAAGCAGAA
```

251	AGCTGGAAGA	AATTCTAGGT	TTTGGCATAA	CGCGCAAATG	CAAATCAAGG
301	GGCAACAAAT	TCTATGAATC	CATGTATAGG	TTAGGTTCGG	ATGATGTTGA
351	TTATGGAGAG	GTGCATTTCG	GAGGTCAGCG	CAATACTGTT	TTAGTTGAGT
401	TGAAAGGTAC	TGGTTGCAGC	GTTGCAAGTC	CGGGTTGGGA	GTTGAGGCTA
451	AAGCAGTTTC	TCGATGATTC	GATAAGGACA	AGAATAACGC	GAATTGACCT
501	AGCACTTGAT	TTTTTTGATG	GAGAGTACAC	GCCGGATCAG	GCGTTGTTAG
551	ATCACGATAA	TGGTTTTTTT	GATAACAGCA	ATCAAAGGCC	GAAATCTGAA
601	ACGATCGGTA	CGGCTTGGCG	GAATGAGGAC	GGGAGCGGCA	AGACATTTTA
651	TGTAGGTCGC	AAGAAAAATT	CTCGTTTTGT	TCGTGTTTAT	GAGAAAGGCA
701	GGCAGCTTGG	AGATAAAGAA	AGCAAATGGG	TAAGGTTCGA	GATCCAGTTT
751	AATTATGGAG	ATATAGAAAT	ACCCTTGGAT	ATTTTAATAA	ATCAGGGTTC
801	GTATTTCTGT	GGAGCTTTTC	CAATTTGTAG	AAAATTTAAA	AATATGCCGG
851	TTCCCGAAAG	GTTTGATCAG	AGAAAGAAAA	CGCTTAATTT	AACTTTCGAG
901	CATAAATTGC	ATTACGCGAA	AAACGCGGTT	GGAAAACTGG	TCAATTTCAT
951	GATTGAAATG	GGTTTTGATA	ATAGCGAAAT	TGTGGAATCT	TTAAAGGCAG
1001	ATTCGGGATT	TCCCAAAGGA	TTAGAACCTG	AAAAATATGC	TCTGGAAATG
1051	TTAAGGGACG	GTTTGAAACA	CGGTTTTATT	CATGAACAGC	CGGATATTGA
1101	TTTGGAAATT	GAACTTGATG	AATTGGGGGT	TATTGCTTTT	AAAAATTCTG
1151	ACAAATTCGA	TAGGGAAAAA	AGGCTTTTTA	GTCCTGATTA	TGATGTCGAG
1201	AAAGAAAGGA	AATATCAGGA	ATATTTAAGT	AAAGTTTATC	ATCAAAATGT
1251	AGATTATGAT	TATTTTTAA			
_		_			
spond	s to the amin	o acid seque	nce <seo ii<="" td=""><td>D 2948; ORF</td><td>7 972.a>:</td></seo>	D 2948; ORF	7 972.a>:
.pep		-		,	•

This corres

a9/2.pep					
1	LTNRGGAKLK	TNSKSSERMS	EVEYFSHFIS	DGKGKLLEIP	ORRGKODGVF
51	VDWISFTFHE	DTLLKVSGCP	LFSDAEYMYV	LSRKLEEILG	FGITRKCKSR
101	GNKFYESMYR	LGSDDVDYGE	VHFGGQRNTV	LVELKGTGCS	VASPGWELRI.
151	KQFLDDSIRT	RITRIDLALD	FFDGEYTPDQ	ALLDHDNGFF	DNSNORPKSE
201	TIGTAWRNED	GSGKTFYVGR	KKNSRFVRVY	EKGROLGDKE	SKWVRFETOF
251	NYGDIEIPLD	ILINQGSYFC	GAFPICRKFK	NMPVPERFDO	RKKTLNLTFE
301	HKLHYAKNAV	GKLVNFMIEM	GFDNSEIVES	LKADSGFPKG	LEPEKYALEM
351	LRDGLKHGFI	HEQPDIDLEI	ELDELGVIAF	KNSDKFDREK	RLESPDYDVE
401	KERKYOEYLS	KVYHONVDYD	YF*		

m972/a972 99.3% identity in 422 aa overlap

	10	20	30	40	50	60
m972.pep	LTNRGGAKLKTXSK	SSERMSEVE	YFSHFISDGKO	SKLLEIPORRO	SKODGVFVDW	ISETEHE
		11111111				1 1 1 1 1 1 1
a972	LTNRGGAKLKTNSK	SSERMSEVE	YFSHFISDGKO	KLLETPORRO	ZKUDGAŁADM	
	10	20	30	40	50	60
			30	30	30	60
	70	80	90	100	110	120
m972.pep	DTLLKVSGCPLFSD	AEYMYVLSR	KLEEILGFGTT		TVFSMVDICS	DDUDVCE
	11111111111111	1111111			IIIIIIIIII	
a972	DTLLKVSGCPLFSD	AFYMYVI.SRI	KLEETLGEGTT		THE CMADE CO	
	70	80	90	100		
	, ,	00	90	100	110	120
	130	140	150	1.50		
m972.pep				160	170	180
my/z.pep	VHFGXQRNTVLVEL	KGIGCSVAS.	PGWELRLKOFI	DDSIRTRITE	RIDLALDFFD	GEYTPDQ
a972		[111111111111			
a912	VHFGGQRNTVLVEL	KGTGCSVAS	PGWELRLKQFI	DDSIRTRITE	RIDLALDFFD	GEYTPDQ
	130	140	150	160	170	180
	190	200	210	220	230	240
m972.pep	ALLDHDNGFFDNSN	QRPKSETIG:	FAWRNEDGSGK	TFYVGRKKNS	REVRVYEKG	ROLGDKE
		1111111	11111111111	11111111		
a972	ALLDHDNGFFDNSN	ORPKSETIG	PAWRNEDGSGK	TFYVCDKKNS	C EMPMONVERCE	
	190	200	210	220	230	
				220	230	240
	250	260	270	280	0.00	
m972.pep				280	290	300
, L . pcp	SKWVRFEIQFNYGD	**************************************	NUGSTECGAEP	TCKKFKNMPV	PERFDORKKI	KLNLTFE
a972	· · · · · · · · · · · · · · · · · · ·			111111111	1111111	111111
Q 3 1 L	SKWVRFEIQFNYGD	TEILTDIFI	NUGSYFCGAFP		PERFDQRKK1	LNLTFE
	250	260	270	280	290	300

1380

```
320
                               330
                                       340
                                              350
          HKLHYAKNAVGKLVNFMIEMGFDNSEIVESLKADSGFPKGLEPEKYALEMLRDGLKHGFI
m972.pep
          HKLHYAKNAVGKLVNFMIEMGFDNSEIVESLKADSGFPKGLEPEKYALEMLRDGLKHGFI
a972
               310
                       320
                               330
                                       340
               370
                       380
                               390
                                       400
                                              410
          HEQPDIDLEIELDELGVIAFKNSDKFDREKRLFSPDYDVEKERKYQEYLSKVYHQNVDYD
m972.pep
          HEQPDIDLEIELDELGVIAFKNSDKFDREKRLFSPDYDVEKERKYQEYLSKVYHQNVDYD
a972
                       380
                               390
                                      400
m972.pep
          YFX
          111
a972
          YFX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2949>:

```
ATGGACGGCG CACAACCGAA AACAAATTTT TTTGAACGCC TGATTGCCCG
     actCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTAAAC CTGCTTCGGC
 51
     AGGCGCACGA ACAGGAAGTT TTTGATGCCG ACACACTGAC CCGGCTGGAA
101
     AAAGTATTGG ACTTTGCCGA GCTGGAAGTG CGCGATGCGA TGATTACGCG
151
     CAGCCGCATG AACGTATTGA AAGAAAACGA CAGCATCGAA CGCATCACCG
     CCTACGTCAT CGATACCGCC CATTCGCGCT TCCCCGTCAT CGGCGAAGAC
251
     AAAGACGAAG TTTTGGGCAT TTTGCACGCC AAAGACCTGC TCAAATATAT
301
    GTTCAACCCC GAGCAGTTCC ACCTGAAATC CGTCTTGCGC CCTGCCGTTT
351
401 TCGTGCCCGA AGGCAAATCT TTGACCGCCC TTTTAAAAGA GTTCCGCGAA
451 CAGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG GCACGTCGGG
501 TTTGGTCACC TTTGAAGACA TCATCGAGCa aatcgtcggt gacaTCGAAG
551 ACGAGTTTGA CGAAGACGAA AGCGccgacg acatCCACTC cgTTTccgCC
601 GAACGCTGGC GCATCCacgc ggctaCCGAA ATCGAAGaca TCAACGCCTT
651 TTTCGGTACG GAatacggca gcgaagaagc cgacaccatc ggcggctTGG
701 TCATTCAGGA ATTGGGACAC CTGCCCGTGC GCGGCGAAAA AGTCCTTAtc
     ggcgGTTTGC agttcaccgt CGCCCGCGCC GACAACCGCC GCCTGCACAC
    GCTGATGGCG ACCCGCGTGA AGTAAGCAGA GCCTGCCcgc accgccgttT
    CTGCacAGTT TAG
```

This corresponds to the amino acid sequence <SEQ ID 2950; ORF 973.ng>:

- 1 MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV FDADTLTRLE 51 KVLDFAELEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
- 101 KDEVLGILHA KDLLKYMFNP EQFHLKSVLR PAVFVPEGKS LTALLKEFRE
- 151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE SADDIHSVSA
- 201 ERWRIHAATE IEDINAFFGT EYGSEEADTI GGLVIQELGH LPVRGEKVLI
- 251 GGLQFTVARA DNRRLHTLMA TRVK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2951>: m973.seq

1	ATGGACGGCG	CACAACCGAA	AACGAATTTT	TTTGAACGCC	ТСАТТССССС
51	ACTCGCCCGC	GAACCCGATT	CCGCCGAAGA	CGTATTAAAC	CTGCTTCGGC
101	AGGCGCACGA	GCAGGAAGTT	TTTGATGCGG	ATACGCTTTT	AAGATTGGAA
151	AAAGTCCTCG	ATTTTTCCGA	TTTGGAAGTG	CGCGACGCGA	TGATTACCCC
201	CAGCCGTATG	AACGTTTTAA	AAGAAAACGA	CAGCATCGAG	CGCATCACCG
251	CCTACGTTAT	CGATACCGCC	CATTCGCGCT	TCCCCGTCAT	CGGCGAAGAC
301	AAAGACGAAG	TTTTGGGCAT	TTTGCACGCC	AAAGACCTGC	ΤΓΔΔΔΤΑΤΑΤ
351	GTTTAACCCC	GAGCAGTTCC	ACCTCAAATC	CATTCTCCGC	CCCCCCCTCT
401	TCGTCCCCGA	AGGCAAATCG	CTGACCGCCC	TTTTAAAAGA	CTTCCCCCAA
451	CAGCGCAACC	ATATGGCGAT	TGTCATCGAC	GAATACGGCG	GCACATCCCC
501	CTTGGTCACC	TTTGAAGACA	TCATCGAGCA	AATCGTCGGC	CAAATCCAAC
551	ACGAGTTTGA	CGAAGACGAT	AGCGCCGACA	ATATCCATGC	CCTTTCTTCTTC
601	Gaacgctggc	GCATCCATGC	AGCTACCGAA	ATCGAAGACA	TCAACACCTT

```
651 CTTCGGCACG GAATACAGCA kCGAAGAAGC CGACACCATT GGCGGCCTGG
         TCATTCAAGA GTTGGGACAT CTGCCCGTGC GCGGCGAAAA AGTCCTTATC
     751 GGCGGTTTGC AGTTCACCGT CGCACGCGCC GACAACCGCC GCCTGCATAC
         GCTGATGGCG ACCCGCGTGA AGTAA
This corresponds to the amino acid sequence <SEQ ID 2952; ORF 973>:
m973.pep
      1
         MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV FDADTLLRLE
         KVLDFSDLEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
     51
    101 KDEVLGILHA KDLLKYMFNP EQFHLKSILR PAVFVPEGKS LTALLKEFRE
    151 QRNHMAIVID EYGGTSGLVT FEDIIEQĮVG EIEDEFDEDD SADNIHAVSS
    201 ERWRIHAATE IEDINTFFGT EYSXEEADTI GGLVIQELGH LPVRGEKVLI
    251 GGLQFTVARA DNRRLHTLMA TRVK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 973 shows 95.6% identity over a 274 aa overlap with a predicted ORF (ORF 973.ng)
from N. gonorrhoeae:
m973/g973
                   10
                            20
                                                       50
                                     3.0
                                              40
m973.pep
            {\tt MDGAQPKTNFFERLIARLAREPDSAEDVLNLLRQAHEQEVFDADTLLRLEKVLDFSDLEV}
            MDGAQPKTNFFERLIARLAREPDSAEDVLNLLRQAHEQEVFDADTLTRLEKVLDFAELEV
q973
                            20
                                     30
                                              40
                                                       50
                   70
                            80
                                     90
                                                      110
                                                               120
            {\tt RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYMFNP}
m973.pep
            RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYMFNP
q973
                                     90
                                             100
                                                      110
                  130
                           140
                                    150
                                             160
                                                      170
            EQFHLKSILRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIVG
m973.pep
            EQFHLKSVLRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIVG
a973
                  130
                           140
                                    150
                                             160
                                                      170
                                                               180
                  190
                           200
                                    210
                                             220
                                                      230
                                                               240
m973.pep
            EIEDEFDEDDSADNIHAVSSERWRIHAATEIEDINTFFGTEYSXEEADTIGGLVIOELGH
            DIEDEFDEDESADDIHSVSAERWRIHAATEIEDINAFFGTEYGSEEADTIGGLVIQELGH
g973
                  190
                           200
                                    210
                                             220
                                                      230
                  250
                           260
m973.pep
           LPVRGEKVLIGGLQFTVARADNRRLHTLMATRVKX
            g973
           LPVRGEKVLIGGLQFTVARADNRRLHTLMATRVKX
                  250
                           260
                                    270
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2953>:
    a973.seg
           1
             ATGGACGGCG CACAACCGAA AACAAATTTT TTTGAACGCC TGATTGCCCG
             ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTGACC CTGTTGCGCC
          51
         101
             AAGCGCACGA ACAGGAAGTA TTTGATGCGG ATACGCTTTT AAGATTGGAA
             151
             CAGCCGTATG AACGTTTTAA AAGAAAACGA CAGCATCGAA CGCATCACCG
             CCTACGTTAT CGATACCGCC CATTCGCGCT TCCCCGTCAT CGGTGAAGAC
         251
         301
             AAAGACGAAG TTTTGGGTAT TTTGCACGCC AAAGACCTGC TCAAATATAT
             GTTCAACCCC GAGCAGTTCC ACCTCAAATC GATATTGCGC CCTGCCGTCT
         351
             TCGTCCCCGA AGGCAAATCG CTGACCGCCC TTTTAAAAGA GTTCCGCGAA
         401
         451
             CAGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG GCACGTCGGG
             TTTGGTAACT TTTGAAGACA TCATCGAGCA AATCGTCGGC GACATCGAAG
         551 ATGAGTTTGA CGAAGACGAA AGCGCGGACA ACATCCACGC CGTTTCCGCC
```


601 651 701 751 801	TTTCGGCACG TCATTCAGGA GGCGGTTTGC	GCATCCACGC GAATACAGCA ATTGGGACAC AGTTCACCGT ACCCGCGTGA	GCGAAGAAGC CTGCCCGTGC CGCCCGCGCC	CGACACCATC GCGGCGAAAA	GGCGGCCTGG AGTCCTTATC	
sponds to the amino acid sequence <seo 2954;="" 973.a="" id="" orf="">:</seo>						

This corresponds to the amino acid sequence <SEQ ID 2954; ORF 973.a>:

```
1 MDGAQPKTNF FERLIARLAR EPDSAEDVLT LLRQAHEQEV FDADTLLRLE
51 KVLDFSDLEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
101 KDEVLGILHA KDLLKYMFNP EQFHLKSILR PAVFVPEGKS LTALLKEFRE
151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE SADNIHAVSA
201 ERWRIHAATE IEDINAFFGT EYSSEEADTI GGLVIQELGH LPVRGEKVLI
251 GGLQFTVARA DNRRLHTLMA TRVK*
```

m973/a973 97.8% identity in 274 aa overlap

WO 99/57280

	•	F				
	10	20	30	40	50	60
m973.pep	MDGAQPKTNFFER	LIARLAREPDS	SAEDVLNLLR	OAHEOEVFDA	DTLLRLEKVI	VE INSEN.
		11111111111	11111:111		LILILILI	
a973	MDGAQPKTNFFER	LIARLAREPDS	SAEDVI.TI.I.R	OPHEOEVEDS	ן כוונוווו דגזשים זכו זייירו	
	10	20	30	40	50	
		20	30	40	50	60
	70	80	90	100	110	
m973.pep				100	110	120
pcp	RDAMITRSRMNVLI	KENDSTEKTIN	IVIDIAHSK.			
a973						111111
4973	RDAMITRSRMNVLI	KENDSIERITA	YVIDTAHSR		JLGILHAKDL:	LKYMFNP
	70	80	90	100	110	120
					•	
	130	140	150	160	170	180
m973.pep	EQFHLKSILRPAVI	FVPEGKSLTAL	LKEFREQRNI	HMAIVIDEYG	STSGLVTFED:	TTEOTVG
	1		1111111	1		111111
a973	EQFHLKSILRPAVI	VPEGKSLTAL	LKEFREORNI	MAIVIDEYGO	TSGLVTFED	TTEOTVG
	130	140	150	160	170	180
				_ • •	270	100
	190	200	210	220	230	240
m973.pep	EIEDEFDEDDSADN	IHAVSSERWR		NTEFCTEVOV	230 /FFXDMTCCT1	740 740
	:	11111:111	1	HILLIGIEISA		
a973	DIEDEFDEDESADN	THAVSAFRWD	יין ויין ויין ויי דרום דים ייית מעוד	NA PECHEVOC		
	190	200	210			
	130	200	210	220	230	240
	250	260	070			
m973.pep			270			
mo / o . pep	LPVRGEKVLIGGLQ	I TVARADNER	LHTLMATRVK	X		
a973			11111111111	1		
ασιο	LPVRGEKVLIGGLQ			X		
	250	260	270			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2955>:

1	ATGAAAAAAT	GGATTGCCGC	CGCCCTTGCC	TGTTCCGCAC	TCGCGCTGTC
51	TGCCTGCGGC		AAGATGCCGC		
101	GCAAAGTGTA	CCGCGTGGCT	TCCAACGCCG	AGTTTGCCCC	CTTTGAATCT
151	TTAGACTCGA	AAGGCAATGT	CGAAGGTTTC	GACGTGGATT	
201	GATGGCGAAG	GCGGGCAATT	TTAAAATCGA		
251	ACAGCCTTTT	CCCCGCCTTG	AACAACGGCG		
301	GGCGTAACCA		CCGCAAACAG		TCAGCGACCC
351			TCGTCCTCGT		TATOLAGAAA
401	CTTCTTCCGA	AGATTTGAAA	AAGATGAACA	AAGTCGGCGT	GGTTACCCCC
451	CACACGGGCG	ATTTCTCCGT	TTCCAAACTC	TTGGGCAACG	ACARTCCCAA
501	AATCGCGCGC	TTCGAAAACG	TCCCCCTGAT	TATCAAACAA	CTCCAAAACC
551	GCGGCTTGGA		AGCGACAGCG		
601	AAAAACAACC			GTTACCCTGC	
651	CACCGAACAC				
701	AAATGCTGAA			AGGCGACGAA	
751	AAGATCTACG			GCGAAAGCGG	
801	A	COMMINITI	IGCCAMAGAG	GGCGGACAGG	CTGCGAAATA

```
1383
 This corresponds to the amino acid sequence <SEQ ID 2956; ORF 981.ng>:
g981.pep
          MKKWIAAALA CSALALSACG GQGKDAAAPA ANPGKVYRVA SNAEFAPFES
      51
          LDSKGNVEGF DVDLMNAMAK AGNFKIEFKH QPWDSLFPAL NNGDADVVMS
          GVTITDDRKQ SMDFSDPYFE ITQVVLVPKG KKVSSSEDLK KMNKVGVVTG
     101
     151 HTGDFSVSKL LGNDNPKIAR FENVPLIIKE LENGGLDSVV SDSAVIANYV
     201 KNNPAKGMDF VTLPDFTTEH YGIAVRKGDE ATVKMLNDAL EKVRESGEYD
         KIYAKYFAKE GGQAAK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2957>:
m981.seg
          ATGAAAAAAT GGATTGCCGC CGCCCTTGCC TGTTCCGCGC TCGCGCTGTC
       1
      51
         TGCCTGCGGC GGTCAGGGCA AAGATACCGC CGCGCCTGCC GCCAACCCCG
         ACAAAGTGTA CCGCGTGGCT TCCAACGCCG AGTTTGCCCC CTTTGAATCT
     101
         TTAGACTCGA AAGGCAATGT CGAAGGTTTC GATGTGGATT TGATGAACGC
         GATGGCGAAG GCGGGCAATT TTAAAATCGA ATTCAAACAC CAGCCGTGGG
     251
         ACAGCCTTTT CCCCGCCTTA AACAACGGCG ATGCGGACGT TGTGATGTCG
         GGCGTAACCA TTACCGACGA CCGCAAACAG TCTATGGACT TCAGCGACCC
     301
     351
         GTATTTTGAA ATCACCCAAG TCGTCCTCGT TCCGAAAGGC AAAAAAGTAT
     401
         CTTCTTCCGA AGATTTGAAA AACATGAACA AAGTCGGCGT GGTAACCGGC
         TACACGGGCG ATTTCTCCGT ATCCAAACTC TTGGGCAACG ACAATCCGAA
     451
     501 AATCGCGCGC TTTGAAAACG TTCCCCTGAT TATCAAAGAA CTGGAAAACG
     551 GCGGCTTGGA TTCCGTGGTC AGCGACAGCG CGGTCATCGC CAATTATGTG
     601 AAAAACAATC CGGCCAAAGG GATGGACTTC GTTACCCTGC CCGACTTCAC
     651 CACCGAACAC TACGGCATCG CGGTACGCAA AGGCGACGAA GCAACCGTCA
     701 AAATGCTGAA CGATGCGTTG GAAAAAGTAC GCGAAAGCGG CGAATACGAC
     751 AAGATTTACG CCAAATATTT TGCAAAAGAA GACGGACAGG CCGCAAAATA
     801 A
This corresponds to the amino acid sequence <SEQ ID 2958; ORF 981>:
m981.pep
         MKKWIAAALA CSALALSACG GQGKDTAAPA ANPDKVYRVA SNAEFAPFES
      51
         LDSKGNVEGF DVDLMNAMAK AGNFKIEFKH QPWDSLFPAL NNGDADVVMS
     101
         GVTITDDRKQ SMDFSDPYFE ITQVVLVPKG KKVSSSEDLK NMNKVGVVTG
     151 YTGDFSVSKL LGNDNPKIAR FENVPLIIKE LENGGLDSVV SDSAVIANYV
    201 KNNPAKGMDF VTLPDFTTEH YGIAVRKGDE ATVKMLNDAL EKVRESGEYD
    251 KIYAKYFAKE DGQAAK*
m981/g981
            98.1% identity in 266 aa overlap
                             20
                                      30
                                                40
981.pep
            MKKWIAAALACSALALSACGGQGKDTAAPAANPDKVYRVASNAEFAPFESLDSKGNVEGF
            9981
            MKKWIAAALACSALALSACGGQGKDAAAPAANPGKVYRVASNAEFAPFESLDSKGNVEGF
                             20
                                      30
                                               40
                                                         50
                   70
                             80
                                              100
                                                        110
                                                                 120
            {\tt DVDLMNAMAKAGNFKIEFKHQPWDSLFPALNNGDADVVMSGVTITDDRKQSMDFSDPYFE}
981.pep
            DVDLMNAMAKAGNFKIEFKHQPWDSLFPALNNGDADVVMSGVTITDDRKQSMDFSDPYFE
981
                   70
                             80
                                      90
                                              100
                                                        110
                            140
                                     150
                                              160
981.pep
            ITQVVLVPKGKKVSSSEDLKNMNKVGVVTGYTGDFSVSKLLGNDNPKIARFENVPLIIKE
            q981
            ITQVVLVPKGKKVSSSEDLKKMNKVGVVTGHTGDFSVSKLLGNDNPKIARFENVPLIIKE
                  130
                            140
                                     150
                                              160
                                                        170
                                                                 180
                  190
                            200
                                     210
                                              220
                                                        230
            LENGGLDSVVSDSAVIANYVKNNPAKGMDFVTLPDFTTEHYGIAVRKGDEATVKMLNDAL
981.pep
```

220

230

210

190

200

a981

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2959>:
```

```
a981.seq
         ATGAAAAAT GGATTGCCGC CGCCCTTGCC TGTTCCGCGC TCGCGCTGTC
      1
     51
         TGCCTGCGGC GGTCAGGGTA AAGATGCCGC CGCGCCCGCC GCAAATCCCG
         ACAAAGTGTA CCGCGTGGCT TCCAACGCCG AGTTTGCCCC CTTTGAATCT
         TTAGACTCGA AAGGCAATGT CGAAGGTTTC GATGTGGATT TGATGAACGC
    151
    201 GATGGCGAAG GCGGGCAATT TTAAAATCGA ATTCAAACAC CAGCCGTGGG
    251 ACAGCCTTTT CCCCGCCTTG AACAACGGCG ATGCGGACGT TGTGATGTCG
    301 GGCGTAACCA TTACCGACGA CCGCAAACAG TCTATGGACT TCAGCGACCC
    351 GTATTTGAA ATCACCCAAG TCGTCCTCGT TCCGAAAGGC AAAAAAATAT
         CTTCTTCCGA AGATTTGAAA AACATGAACA AAGTCGGCGT GGTAACCGGC
    401
    451 TACACGGGCG ATTTCTCCGT ATCCAAACTC TTGGGCAACG ACAACCCGAA
    501 AATCGCGCGC TTTGAAAACG TTCCCCTGAT TATCAAAGAA CTGGAAAACG
    551 GCGGCTTGGA TTCCGTGGTC AGCGACAGCG CAGTCATCGC CAATTATGTG
    601 AAAAACAATC CGACCAAAGG GATGGACTTC GTTACCCTGC CCGACTTCAC
        CACCGAACAC TACGGCATCG CGGTACGCAA AGGCGACGAA GCAACCGTCA
    701 AAATGCTGAA CGATGCGTTG AAAAAAGTAC GCGAAAGCGG CGAATACGAC
    751 AAAATCTACG CCAAATATTT TGCAAAAGAA GACGGACAGG CCGCAAAATA
    801 A
```

This corresponds to the amino acid sequence <SEQ ID 2960; ORF 981.a>:

a981.pep

1 MKKWIAAALA CSALALSACG GOGKDAAAPA ANPDKVYRVA SNAEFAPFES
51 LDSKGNVEGF DVDLMNAMAK AGNFKIEFKH QPWDSLFPAL NNGDADVVMS
101 GVTITDDRKQ SMDFSDPYFE ITQVVLVPKG KKISSSEDLK NMNKVGVVTG
151 YTGDFSVSKL LGNDNPKIAR FENVPLIIKE LENGGLDSVV SDSAVIANYV
201 KNNPTKGMDF VTLPDFTTEH YGIAVRKGDE ATVKMLNDAL KKVRESGEYD
251 KIYAKYFAKE DGOAAK*

m981/a981 98.5% identity in 266 aa overlap

,	0 100mmiy 111 200 u	a Overrap				
	10	20	30	40	50	60
m981.pep	MKKWIAAALACSALA	LSACGGQGKD:	raa paan pokt	YRVASNAEFA	APFESLDSKG	WEGE
	_	1111111	:	1111111111		11111
a981	MKKWIAAALACSALA	LSACGGQGKD <i>I</i>	AAAPAANPDKV	YRVASNAEFA	APFESLDSKG	VEGE
	10	20	30	40	50	60
001	70	80	90	100	110	120
m981.pep	DVDLMNAMAKAGNFK	IEFKHQPWDSI	LFPALNNGDAD	VVMSGVTITE	DRKQSMDFST	PYFE
a981]		1111111111	111111111	1111
a981	DVDLMNAMAKAGNFK	IEFKHQPWDSI	LFPALNNGDAD	VVMSGVTITE	DRKQSMDFSI	PYFE
	70	80	90	100	110	120
	130	1.40				
m981.pep		140	150	160	170	180
Joz.pep	ITQVVLVPKGKKVSS:	PEDTKUMUKAG	VVTGYTGDFS	VSKLLGNDNP	KIARFENVPL	IIKE
a981				11111111	111111111	1111
	ITQVVLVPKGKKISS	140				
	130	140	150	160	170	180
	190	200	210	220	000	
m981.pep	LENGGLDSVVSDSAVI			ととひ ででにひとてもなわ	230	240
• •	11111111111111	1111111111	IIIIIIIIIII	TIENIGIAVR	KGDEATVKML	NDAL
a981	LENGGLDSVVSDSAV	ANYVKNNPTK	GMDFVTI.PDF	ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	IIIIIIIIIIII	1111
	190	200	210	220	230	240
				220	230	240
	250	260				
m981.pep	EKVRESGEYDKIYAKY	FAKEDGQAAK	х			
	: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	1			
a981	KKVRESGEYDKIYAKY	FAKEDGQAAK	X			
	250	260				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2961>: 9982.seq

```
1
      atcgcatcgc aaaaccttcg attcgacaat cgattcctcc aaaaaatggt
      \verb|caacggcgTg| aatattttgc| \verb|cggccgcCga| ttgggtagcC| ttgGGcgcCA|
  51
 101
      AAGGCCGCAA CGTGGTGGTT GACCGCGCTT TCGGCGGCCC GCACATCACC
 151 AAAGACGGCG TAACCGTCGC CAAAGAAATC GAACTGAAAG ACAAGTTTGA
 201 AAATATGGGC GCGCAAATGG TAAAAGAAGT CGCGTCCAAA ACCAAcgaCg
     tagCCGgcga cggtacgact accgCCACCG TATTGGCACA ATCCATCGTT
      GCCGAAggcA TGAAATACGT TACCGCCGGC ATGAACCCGA CCGATCTGAA
      ACGCGGCATC GACAAAGCC ttgCCGCTtt ggttgAAGAg cTGAAAAACA
TCGCCAAACC TTGCGATACT TCCAAAGAAA TCGCCCAAGT CGGCTCGATT
 351
      TCCGCCAACT CCGACGAACA AGtcgGCGCG ATTATCGCCG AAGCGATGGA
 501
      AAAAGTCGGC AAAGAAGgcg tgattacCGT TGAAGACGGC AAATCTTTGG
      AAAACGAGCT GGACGTGGTT GAAGGTATGC AGTTCGACCG CGGCTACCTG
 551
      TCCCCTTACT TTATCAACGA CGCGGAAAAA CAAATCGCCG GTCTGGACAA
 601
      TCCGTTTGTT TTGCTGTTCG ACAAAAAAT CAGCAACATC CGCGACCTGC
 651
      TGCCCGTGTT GGAACAAGTG GCGAAAGCCA GCCGCCCGCT GTTGATTATC
 751 GCTGAAGACG TAGAAGGCGA AGCCTTGGCG ACTTTGGTCG TGAACAACAT
     CCGCGGCATC CTGAAAACCG TTGCCGTCAA AGCCcccggc tTCGGcGACC
 801
      GCCGCAAAGC GATgctgcaa gaCATCGCCA TCCTGACcgg cggcgTagtG
 901
     ATTtccGAAG Aagtcggcct GTCTTTGGAA AAAgcgactT TGgacgaCTT
 951
     Gggtcaaacc aaACGcatCG AAATCGGtga agaaaacact ACCGTCATcg
1001 acgGCTTCGG CGACGcagcC CAAAtcgaag cgCGTGTTGC CGAAATCCGC
1051 CAACAAATCG AAACCGCGAC CAGCGATTAC GACAAAGAAA AACTGCAAGA
1101 GCGCGTTGCC AAACTGGCAG GAGGCGTGGC AGTGATCAAA GTCGGCGCGG
     CGACCGAAGT CGAAATGAAA GAGAAAAAAG ACCGCGTGGA AGACGCGCTG
1151
1201 CACGCTACCC GCGCAGCCGT TGAAGAAGGC GTGGTTGCAG GCGGCGGCGT
1251 AGCCCTGTTG CGCGCCCGTG CCGCTTTGGA AAACCTGCAC ACCGGCAATG
1301 CCGACCAAGA CGCAGGCGTA CAAATCGTAT TGCGCGCCGT TGAGTCTCCG
1351 CTGCGCCAAA TCGTTGCCAA CGCAGGCGGA GAACCCAGCG TGGTGGTGAA
     CAAAGTGTTG GAAGGCAAAG GCAactacgG TTACAACGCa ggctcCGGCG
      AATACGGCGA CATGATCGGA ATGGGCGTAC TCGACCCTGC CAAAGTAACC
1501
     CGTTCCGCGC TGCAACACGC CGCGTCTAtC GCCGGTCTGA TGCTGACGAC
     CGACTGCATG ATTGCCGAAA TCCCTGAAGA AAAACCGGCT GTGCCCGATA
1551
1601 TGGGGGGAAT GGGCGGTATG GGCGGCATGA TGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2962; ORF 982.ng>:

```
g982.pep
          IASQNLRFDN RFLQKMVNGV NILPAADWVA LGAKGRNVVV DRAFGGPHIT
      51
         KDGVTVAKEI ELKDKFENMG AQMVKEVASK TNDVAGDGTT TATVLAOSIV
         AEGMKYVTAG MNPTDLKRGI DKAVAALVEE LKNIAKPCDT SKEIAOVGSI
         SANSDEQVGA IIAEAMEKVG KEGVITVEDG KSLENELDVV EGMQFDRGYL
     151
         SPYFINDAEK QIAGLDNPFV LLFDKKISNI RDLLPVLEQV AKASRPLLII
        AEDVEGEALA TLVVNNIRGI LKTVAVKAPG FGDRRKAMLQ DIAILTGGVV
         ISEEVGLSLE KATLDDLGQT KRIEIGEENT TVIDGFGDAA QIEARVAEIR
     351
         QQIETATSDY DKEKLQERVA KLAGGVAVIK VGAATEVEMK EKKDRVEDAL
         HATRAAVEEG VVAGGGVALL RARAALENLH TGNADQDAGV QIVLRAVESP
     401
         LRQIVANAGG EPSVVVNKVL EGKGNYGYNA GSGEYGDMIG MGVLDPAKVT
     451
        RSALQHAASI AGLMLTTDCM IAEIPEEKPA VPDMGGMGGM GGMM*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2963>: m982.seq

```
ATGGCAGCAA AAGACGTACA GTTCGGCAAT GAAGTCCGTC AAAAAATGGT
    AAACGGCGTG AACATTCTGG CAAACGCCGT CCGCGTAACC TTGGGCCCCA
    AAGGTCGCAA CGTAGTCGTT GACCGCGCAT TCGGCGGCCC GCACATCACC
    AAAGACGGCG TAACCGTCGC CAAAGAAATC GAACTGAAAG ACAAGTTTGA
201 AAATATGGGC GCGCAAATGG TGAAAGAAGT TGCGTCCAAA ACCAACGACG
     TGGCAGGCGA CGGTACGACT ACCGCCACCG TACTGGCGCA ATCCATCGTT
    GCCGAAGGTA TGAAATATGT TACCGCAGGT ATGAATCCGA CCGACCTGAA
301
351
    ACGCGGTATC GATAAAGCCG TCGCCGCTTT GGTTGACGAA CTGAAAAACA
     TCGCCAAACC TTGCGACACT TCTAAAGAAA TCGCCCAAGT CGGCTCTATT
    TCCGCCAACT CCGACGAACA AGTCGGCGCG ATTATCGCCG AAGCGATGGA
4.51
501 AAAAGTCGGC AAAGAAGGCG TGATTACCGT TGAAGACGGC AAGTCTTTGG
551 AAAACGAGCT GGACGTAGTT GAAGGTATGC AGTTCGACCG CGGCTACCTG
601 TCTCCTTACT TCATCAACGA TGCGGAAAAA CAAATCGCTG CTTTGGACAA
```



```
651 TCCGTTTGTA TTGTTGTTCG ACAAAAAAT CAGCAACATC CGCGACCTGC
      TGCCTGTTTT GGAACAAGTG GCAAAAGCCA GCCGTCCGCT GTTGATTATC
 701
      GCTGAAGACG TAGAAGGCGA AGCCTTGGCG ACTTTGGTCG TGAACAACAT
      CCGAGGCATC CTGAAAACCG TTGCCGTCAA AGCCCCTGGC TTCGGCGACC
      GCCGCAAAGC GATGTTGCAA GACATCGCCA TCCTGACCGG CGGCGTGGTG
      ATTTCCGAAG AAGTCGGTCT GTCTTTGGAA AAAGCGACTT TGGACGACTT
     GGGTCAAGCC AAACGCATCG AAATCGGTAA AGAAAACACC ACCATCATCG
 951
1001 ACGGCTTTGG CGACGCAGCC CAAATCGAAG CGCGTGTTGC CGAAATCCGC
1051 CAACAAATCG AAACCGCAAC CAGCGATTAC GACAAAGAAA AACTGCAAGA
1101 GCGCGTGGCT AAATTGGCAG GCGGCGTGGC AGTCATCAAA GTCGGTGCCG
1151 CGACCGAAGT CGAAATGAAA GAGAAAAAAG ACCGCGTGGA AGACGCGCTG
     CACGCTACCC GCGCAGCCGT TGAAGAAGGC GTGGTTGCAG GCGGCGGCGT
1201
1251 AGCCCTGTTG CGTGCCCGTG CTGCTTTGGA AAACCTGCAC ACCGGCAATG
1301 CCGACCAAGA CGCAGGCGTA CAAATCGTCT TGCGCGCCGT TGAGTCTCCG
1351 CTGCGCCAAA TCGTTGCCAA CGCAGGCGGC GAACCCAGCG TGGTTGTGAA
     CAAAGTATTG GAAGGCAAAG GCAACTACGG TTACAACGCT GGCAGCGGCG
     AATACGGCGA TATGATCGAA ATGGGCGTAC TCGACCCCGC CAAAGTAACC
     CGTTCTGCGC TGCAACACGC CGCATCTATC GCCGGCTTGA TGCTGACCAC
1501
1551
     TGATTGCATG ATCGCTGAAA TCCCCGAAGA CAAACCGGCT GTGCCTGATA
1601 TGGGCGGCAT GGGTGGTATG GGCGGCATGA TGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2964; ORF 982>: m982.seq

```
ATGGCAGCAA AAGACGTACA GTTCGGCAAT GAAGTCCGTC AAAAAATGGT
  51
      AAACGCCGTG AACATTCTGG CAAACGCCGT CCGCGTAACC TTGGGCCCCA
      AAGGTCGCAA CGTAGTCGTT GACCGCGCAT TCGGCGGCCC GCACATCACC
 101
 151 AAAGACGGCG TAACCGTCGC CAAAGAAATC GAACTGAAAG ACAAGTTTGA
 201 AAATATGGGC GCGCAAATGG TGAAAGAAGT TGCGTCCAAA ACCAACGACG
 251 TGGCAGGCGA CGGTACGACT ACCGCCACCG TACTGGCGCA ATCCATCGTT
 301 GCCGAAGGTA TGAAATATGT TACCGCAGGT ATGAATCCGA CCGACCTGAA
     ACGCGGTATC GATAAAGCCG TCGCCGCTTT GGTTGACGAA CTGAAAAACA
 351
      TCGCCAAACC TTGCGACACT TCTAAAGAAA TCGCCCAAGT CGGCTCTATT
 401
      TCCGCCAACT CCGACGAACA AGTCGGCGCG ATTATCGCCG AAGCGATGGA
 451
 501 AAAAGTCGGC AAAGAAGGCG TGATTACCGT TGAAGACGGC AAGTCTTTGG
     AAAACGAGCT GGACGTAGTT GAAGGTATGC AGTTCGACCG CGGCTACCTG
 551
      TCTCCTTACT TCATCAACGA TGCGGAAAAA CAAATCGCTG CTTTGGACAA
      TCCGTTTGTA TTGTTGTTCG ACAAAAAAT CAGCAACATC CGCGACCTGC
      TGCCTGTTTT GGAACAAGTG GCAAAAGCCA GCCGTCCGCT GTTGATTATC
 701
     GCTGAAGACG TAGAAGGCGA AGCCTTGGCG ACTTTGGTCG TGAACAACAT
 751
     CCGAGGCATC CTGAAAACCG TTGCCGTCAA AGCCCCTGGC TTCGGCGACC
 801
     GCCGCAAAGC GATGTTGCAA GACATCGCCA TCCTGACCGG CGGCGTGGTG
 851
     ATTTCCGAAG AAGTCGGTCT GTCTTTGGAA AAAGCGACTT TGGACGACTT
      GGGTCAAGCC AAACGCATCG AAATCGGTAA AGAAAACACC ACCATCATCG
 951
1001 ACGGCTTTGG CGACGCAGCC CAAATCGAAG CGCGTGTTGC CGAAATCCGC
1051 CAACAAATCG AAACCGCAAC CAGCGATTAC GACAAAGAAA AACTGCAAGA
1101 GCGCGTGGCT AAATTGGCAG GCGGCGTGGC AGTCATCAAA GTCGGTGCCG
1151
     CGACCGAAGT CGAAATGAAA GAGAAAAAAG ACCGCGTGGA AGACGCGCTG
     CACGCTACCC GCGCAGCCGT TGAAGAAGGC GTGGTTGCAG GCGGCGGCGT
1201
1251 AGCCCTGTTG CGTGCCCGTG CTGCTTTGGA AAACCTGCAC ACCGGCAATG
     CCGACCAAGA CGCAGGCGTA CAAATCGTCT TGCGCGCCGT TGAGTCTCCG
1301
     CTGCGCCAAA TCGTTGCCAA CGCAGGCGGC GAACCCAGCG TGGTTGTGAA
     CAAAGTATTG GAAGGCAAAG GCAACTACGG TTACAACGCT GGCAGCGGCG
     AATACGGCGA TATGATCGAA ATGGGCGTAC TCGACCCCGC CAAAGTAACC
1451
     CGTTCTGCGC TGCAACACGC CGCATCTATC GCCGGCTTGA TGCTGACCAC
1501
     TGATTGCATG ATCGCTGAAA TCCCCGAAGA CAAACCGGCT GTGCCTGATA
     TGGGCGGCAT GGGTGGTATG GGCGGCATGA TGTAA
1601
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

		*				
g982	IASQNLRFDNRE 10	TLQKMVNGVNILI 20	PAADWVALGAI 30	KGRNVVVDRAE 40	FGGPHITKDGV 50	TVAKEI 60
m982.pep		80 MVKEVASKTNDV	90 AGDGTTTATV	100 /LAQSIVAEGM	110 KYVTAGMNPT	120 DLKRGI
g982	 ELKDKFENMGAQ 70				 KYVTAGMNPT 110	IIIIIII DLKRGI 120
	130	140	150	160	170	100
m982.pep	1111111:11	11111111111		1111111111	111111111	11111
g982	DKAVAALVEELK 130	NIAKPCDTSKEI 140	AQVGSISANS 150	SDEQVGAIIAE 160	AMEKVGKEGV 170	ITVEDG 180
m982.pep	190 KSLENELDVVEG	200 MOFDRGYLSPYF	210 INDAEKOTAA	220	230	240
g982	KSLENELDVVEG	1111111	1111111:	11111111	111111111	11111
-	190	200	210	220	230	240
m982.pep	250 AKASRPLLIIAE	260 DVEGEALATLVV	270 NNIRGILKTV	280 AVKAPGFGDR	290 RKAMLODIAI	300 LTGGVV
g982	 AKASRPLLIIAE	1	1111111111	111111111	1111111111	LITTI
	250	260	270	280	290	300
m982.pep	310 ISEEVGLSLEKA	320 TLDDLGQAKRIE	330 I GKENT TIID	340 GFGDAAQIEA	350 . RVAEIRQQIE:	360 TATSDY
g982	 ISEEVGLSLEKA	1 1 1 1 1 1 1 1	11:1111:11	111111111	111111111	111111
	310	320	330	340	350	360
m982.pep	370 DKEKLQERVAKLA	380 AGGVAVIKVGAA	390 PEVEMKEKKD	400 RVEDALHATRA	410 AAVEEGVVAGO	420 GGVALL
g982	DKEKLQERVAKLA	AGGVAVIKVGAA:	LEAEWKEKKD:	 RVEDALHATRA		 GGVALL
	370	380	390	400	410	420
m982.pep	430 RARAALENLHTGI	440 NADQDAGVQIVLI	450 RAVESPLRQI	460 VANAGGEPSVV	470 VVNKVLEGKGN	480 VYGYNA
g982		NADQDAGVQIVL	 RAVESPLRQI	VANAGGEPSV\		 NYGYNA
	430	440	450	460	470	480
m982.pep	490 GSGEYGDMIEMGV	500 LDPAKVTRSAL(510 CHAASIAGLM	520 LTTDCMIAEI	530 PEDKPAVPDMO	540 SGMGGM
g982		/LDPAKVTRSAL(QHAASIAGLM1		: PEEKPAVPDMG	IIIIII GMGGM
	490	500	510	520	530	540
m982.pep	GGMMX					
g982	 GGMMX					
The following p	artial DNA sequen	ce was identi	fied in N. m	ieningitidis	<seq 2<="" id="" td=""><td>965>:</td></seq>	965>:
í	ATGGCAGCAA AAGAC	GTACA ATTCGG	CAAT GAAGT	rccgcc aaaa	AATGGT	
51 101	AAACGGCGTG AACAT AAGGCCGCAA CGTGG	TGGTT GACCGC	GCTT TCGGC	CGGCCC GCAC	ATCACC	
15 1 201	AAAGACGGCG TAACC	GTCGC CAAAGA	AATC GAACT	TGAAAG ACAA	CTTTCA	
251	TGGCGGGCGA CGGTA	CGACT ACCGCC	ACCG TATTO	GCGCA ATCC	'ATCCTT	
301 351	GCCGAAGGTA TGAAA ACGCGGTATC GACAA	TACGT TACCGO	CGGT ATGAA	ACCCGA CCGA	ССТСАА	

351 ACGCGGTATC GACAAAGCCG TCGCCGCTTT GGTTGAAGAG CTGAAAAACA

401	TCGCCAAACC	TTGCGACACT	TCTAAAGAAA	TCGCCCAAGT	CGGCTCTATT
451	TCCGCCAACT	CTGACGAACA	AGTCGGCGCG	ATTATTGCCG	AAGCGATGGA
501	AAAAGTCGGC	AAAGAAGGCG	TGATTACCGT	TGAAGACGGC	AAATCTTTGG
551	AAAACGAGCT	GGACGTGGTT	GAAGGTATGC	AATTCGACCG	CGGCTACCTG
601	TCTCCTTACT	TCATCAACGA	TGCGGAAAAA	CAAATCGCCG	GCTTGGACAA
651	TCCGTTTGTA	TTGCTGTTCG	ACAAAAAAAT	CAGCAATATC	CGCGACCTGC
701	TGCCTGTTTT	GGAACAAGTG	GCCAAAGCCA	GCCGTCCGCT	GTTGATTATC
751	GCTGAAGACG	TAGAAGGCGA	AGCCTTGGCG	ACTTTGGTCG	TGAACAACAT
801	CCGCGGCATT	CTGAAAACCG	TTGCCGTTAA	AGCTCCGGGC	TTCGGCGACC
851	GCCGCAAAGC	GATGCTGCAA	GACATCGCTA	TCCTGACCGG	CGGCACAGTG
901	ATTTCCGAAG	AAGTCGGCCT	GTCTTTGGAA	AAAGCGACTT	TGGACGACTT
951	GGGTCAGGCC	AAACGCATCG	AAATCGGTAA	AGAAAACACC	ACCATCATCG
1001	ACGGCTTCGG	CGACGCAGCC	CAAATCGAAG	CGCGTGTTGC	CGAAATCCGC
1051	CAACAAATCG	AAACCGCAAC	CAGCGATTAC	GACAAAGAAA	AACTGCAAGA
1101	GCGCGTTGCC	AAACTGGCAG	GCGGCGTGGC	AGTAATCAAA	GTCGGTGCCG
1151	CGACCGAAGT	GGAAATGAAA	GAGAAAAAAG	ACCGCGTGGA	AGACGCGCTG
1201	CACGCTACCC	GCGCAGCCGT	TGAAGAAGGC	GTGGTTGCAG	GCGGCGGCGT
1251	AGCCCTGTTG	CGCGCCCGTG	CCGCTCTGGA	AAACCTGCAC	ACCGGCAATG
1301	CAGACCAAGA	CGCAGGCGTA	CAAATCGTCT	TGCGCGCCGT	TGAGTCTCCG
1351	CTGCGCCAAA	TCGTTGCCAA	CGCAGGCGGC	GAACCCAGCG	TGGTTGTGAA
1401	CAAAGTGTTG	GAAGGCAAAG	GCAACTATGG	TTACAACGCT	GGCAGCGGCG
1451	AATACGGCGA	CATGATCGAA	ATGGGCGTAC	TCGACCCCGC	CAAAGTAACC
1501	CGTTCCGCGC	TGCAACACGC	CGCGTCTATC	GCCGGCCTGA	TGCTGACCAC
1551	AGACTGCATG	ATTGCTGAAA	TCCCTGAAGA	CAAACCGGCT	ATGCCTGATA
1601	TGGGCGGCAT	GGGTGGTATG	GGCGGCATGA	TGTAA	

This corresponds to the amino acid sequence <SEQ ID 2966; ORF 982.a>:

1982.pep					
1	MAAKDVQFGN	EVRQKMVNGV	NILANAVRVT	LGPKGRNVVV	DRAFGGPHIT
51	KDGVTVAKEI	ELKDKFENMG	AQMVKEVASK	TNDVAGDGTT	TATVLAOSTV
101	AEGMKYVTAG	MNPTDLKRGI	DKAVAALVEE	LKNIAKPCDT	SKEIAOVGST
151	SANSDEQVGA	IIAEAMEKVG	KEGVITVEDG	KSLENELDVV	EGMOFDRGYI.
201	SPYFINDAEK	QIAGLDNPFV	LLFDKKISNI	RDLLPVLEOV	AKASRPLLIT
251	AEDVEGEALA	TLVVNNIRGI	LKTVAVKAPG	FGDRRKAMLO	DIAILTGGTV
301	ISEEVGLSLE	KATLDDLGQA	KRIEIGKENT	TIIDGFGDAA	OIEARVAEIR
351	QQIETATSDY	DKEKLQERVA	KLAGGVAVIK	VGAATEVEMK	EKKDRVEDAT.
401	HATRAAVEEG	VVAGGGVALL	RARAALENLH	TGNADODAGV	OIVLRAVESP
451	LRQIVANAGG	EPSVVVNKVL	EGKGNYGYNA	GSGEYGDMIE	MGVLDPAKVT
501	RSALQHAASI	AGLMLTTDCM	IAEIPEDKPA	MPDMGGMGGM	GGMM*

99.3% identity in 544 aa overlap m982/a982

	10	20	30	40	50	60
m982.pep	MAAKDVQFGNEVRQK	MVNGVNILAN	AVRVTLGPKGF	NVVVDRAFGG	PHITKDGVTV	AKEI
V.		11111111	11111111111	111111111	1111111111	1111
a982	MAAKDVQFGNEVRQKI	MVNGVNILAN	AVRVTLGPKGR	NVVVDRAFGG	PHITKDGVTV	AKEI
	10	20	30	40	50	60
	70	80	90	100	110	120
m982.pep	ELKDKFENMGAQMVK	EVASKTNDVA	GDGTTTATVLA	QSIVAEGMKY	VTAGMNPTDL	KRGI
		11111111	1111111111	1111111111	1111111111	1111
a982	ELKDKFENMGAQMVKI	EVASKTNDVA	GDGTTTATVLA	.QSIVAEGMKY	VTAGMNPTDL	KRGI
	70	80	90	100	110	120
000	130	140	150	160	170	180
m982.pep	DKAVAALVDELKNIA	KPCDTSKEIA	QVGSISANSDE	QVGAIIAEAM	EKVGKEGVIT	VEDG
- 000				1111111111	111111111	1111
a982	DKAVAALVEELKNIA	KPCDTSKEIA	QVGSISANSDE	QVGAIIAEAM	EKVGKEGVIT	VEDG
	130	140	150	160	170	180
-000	190	200	210	220	230	240
m982.pep	KSLENELDVVEGMQF	DRGYLSPYFI	NDAEKQIAALD	NPFVLLFDKK	ISNIRDLLPV:	LEQV
-003			1111111:11	11111111	HILLIAM	
a982	KSLENELDVVEGMQFD	DRGYLSPYFI	NDAEKQIAGLD:	NPFVLLFDKK:	ISNIRDLLPV	LEQV
	190	200	210	220	230	240

m982.pep	250 AKASRPLLIIAEDVEG AKASRPLLIIAEDVEG 250	1111111111	111111111	1111111111	HILLIAM	11:1
m982.pep	310 ISEEVGLSLEKATLDD !!!!!!!!!!!!!!! ISEEVGLSLEKATLDD 310	111111111	111111111		111111111	1111
m982.pep	370 DKEKLQERVAKLAGGV DKEKLQERVAKLAGGV 370	11111111	111111111			1111
m982.pep	430 RARAALENLHTGNADQ		11111111		111111111	1111
m982.pep a982	490 GSGEYGDMIEMGVLDP: GSGEYGDMIEMGVLDP: 490		111111111		1111:41111	1111
m982.pep	GGMMX GGMMX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2967>: g986.seq

86.seq					
1	GTGTTCAAAA	AATACCAATA	CTTCGCTTTG	GCGGCACTGT	GTGCCGCCTT
51	GCTGGCAGGC	TGCGAAAAGG			GACAAAAAAG
101	AAGCATCCTT	CGTAGAACGC	ATCGAACACA		CGGCAGTGTC
151	AGTATGCTGC	TGCCCGACTT	TGCCCAACTG		AAGGCCCGGC
201	AGTCGTCAAT	ATTCAGGCAG	CCCCGCCCC		AACGGCAGCG
251	GCAATGCCGA	AACCGATTCC	GACCCGCTTG		CCCGTTCTAC
301	GAATTTTTCA	AACGCCTCGT	CCCGAACATG		CCCAAGAAGA
351	AGCAGATGAC	GGCGGATTGA	ACTTCGGTTC		
401	ACGGCTACAT	CCTGACCAAT	ACCCACGTCG	TTGCCGGTAT	GGGCAGTATC
451		TCAACGACAA		ACCGCCAAAC	TCATCGGTTC
501	GGATGTCCAA	TCCGATGTCG	CCCTTCTGAA	AATCGACGCA	ACGGAAGAGC
551	TACCCGTCGT	CAAAATCGGC	AATCCCAAAA	ATTTGAAACC	GGGCGAATGG
601	GTCGCTGCCA	TCGGCGCGCC	CTTCGGCTTT	GACAACAGCG	TGACCGCCGG
651	CATCGTGTCC	GCCAAAGGCA	GAAGCCTGCC	CAACGAAAgc	tACACACCCT
701		CGACGTTGCC		GCAATTCCGG	CGGCCCGCTG
751	TTCAACTTAA	AAGGACAGGt	CGTCGGCATC	AATTCGCAAA	TATACAGCCG
801	CAGCGgcgga	ttCATGGGCA	TCTCCTTTGC	CATCCCGATT	GACGTTGCCA
851	TGAATGTCGC	CGAACAGCTG	AAAAACACCG	GCAAAGTCCA	ACGCGGACAA
901	CTGGGCGTGA	TTATTCAGGA	AGTATCCTAC	GGTTTGGCAC	AGTCGTTCGG
951	TCTGGATAAA	GCCAGCGGCG	CATTGATTGC	CAAAATCCTT	CCCGGCAGCC
1001	CCGCAGAACG	TGCCGGCCTG	CAGGCGGGCG	ACATCGTCCT	CAGCCTCGAC
1051	GGCGGAGAAA	TACGTTCTTC	CGGCGACCTT	CCCGTCATGG	TCGGCGCCAT
1101		AAAGAAGTCA		ATGGCGCAAA	GGCGAAGAAA
1151	TCACAATCAA	AGCCAAGCTG	GGCAACGCCg	ccgagcATAC	CGGCgcatCA
1201	TCCAAAACAG	ATGAAgcccc	ctacaccgAA	CAGCAATCCG	GTACGTTCTC
1251	GGTCGAATCC	GCAGGCATTA	CCCTTCAGAC	ACATACCGAC	AGCAGCGGca
1301	aacacctcgt	cgtcgtacgg	gtttccgacg	cggcagaacq	CGCAGGCTTA


```
1351 AGgcgcggcg acgaaatcct cgcggtcggg caagtccccg tcaatgacga
               agccgGTTTC cgcaaaGCTA TGGACAAGGC AGGCAAAAAC GTCCCCCTGC
         1451 TGGTCAtgcg ccgTGGCAAC ACGCTGTTCA TCGCATTAAA CCTGCAATAA
This corresponds to the amino acid sequence <SEQ ID 2968; ORF 986.ng>:
               VFKKYQYFAL AALCAALLAG CEKAGSFFGA DKKEASFVER IEHTKDDGSV
               SMLLPDFAQL VQSEGPAVVN IQAAPAPRTQ NGSGNAETDS DPLADSDPFY
           51
               EFFKRLVPNM PEIPQEEADD GGLNFGSGFI ISKNGYILTN THVVAGMGSI
          101
               KVLLNDKREY TAKLIGSDVQ SDVALLKIDA TEELPVVKIG NPKNLKPGEW
               VAAIGAPFGF DNSVTAGIVS AKGRSLPNES YTPFIQTDVA INPGNSGGPL
          251 FNLKGQVVGI NSQIYSRSGG FMGISFAIPI <u>DVAMNVAEQL KNTGKVQ</u>RGQ
          301 LGVIIQEVSY GLAQSFGLDK ASGALIAKIL PGSPAERAGL QAGDIVLSLD
               GGEIRSSGDL PVMVGAITPG KEVSLGVWRK GEEITIKAKL GNAAEHTGAS
          351
               SKTDEAPYTE QQSGTFSVES AGITLQTHTD SSGKHLVVVR VSDAAERAGL
          401
          451 RRGDEILAVG QVPVNDEAGF RKAMDKAGKN VPLLVMRRGN TLFIALNLQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2969>:
     m986.seg
               GTGTTCAAAA AATACCAATA CCTCGCTTTG GCAGCACTGT GTGCAGCCTC
            1
               GCTGGCAGGC TGCGACAAGG CAGGCAGCTT CTTCGTGGCG GACAAAAAG
           51
          101
              AAGCATCCTT CGTAGAACGC ATCGAACACA CCAAAGACGA CGGCAGCGTC
               AGTATGCTGC TGCCCGACTT TGCCCAACTG GTTCAAAGTG AAGGTCCGGC
          151
              AGTCGTCAAT ATTCAGGCAG CCCCCGCCCC GCGCACCCAA AACGGCAGCG
          201
          251 GCAATGCCGA AAACGATTCC GACCCGATTG CCGACAACGA CCCGTTCTAC
              GAATTTTTCA AACGCCTCGT CCCGAATATG CCCGAAATCC CCCAAGAAGA
          351 AGCAGATGAC GGCGGATTGA ACTTCGGTTC GGGCTTCATC ATCAGCAAAG
          401 ACGGCTACAT CCTGACCAAT ACCCACGTCG TTACCGGCAT GGGCAGTATC
              AAAGTCCTGC TCAACGACAA GCGCGAATAT ACCGCCAAAC TCATCGGTTC
          451
          501
               GGATGTCCAA TCCGATGTCG CCCTTCTGAA AATCGACGCA ACGGAAGAGC
              TGCCCGTCGT CAAAATCGGC AATCCCAAAG ATTTGAAACC GGGCGAATGG
          551
              GTCGCCGCCA TCGGCGCCC CTTCGGCTTC GACAACAGCG TGACCGCCGG
          601
          651
              CATCGTGTCC GCCAAAGGCA GAAGCCTGCC CAACGAAAGC TACACCCCT
          701
              TCATCCAAAC CGACGTTGCC ATCAATCCGG GCAACTCCGG CGGCCCGCTG
              TTCAACTTAA AAGGACAGGT CGTCGGCATC AACTCGCAAA TATACAGCCG
         751
         801
              CAGCGGCGGA TTCATGGGCA TTTCCTTCGC CATCCCGATT GACGTTGCCA
              TGAATGTCGC CGAACAGCTG AAAAACACCG GCAAAGTCCA ACGCGGACAA
              CTGGGCGTGA TTATTCAAGA AGTATCCTAC GGTTTGGCAC AATCGTTCGG
         901
         951
              TTTGGACAAA GCCGGCGGCG CACTGATTGC CAAAATCCTG CCCGGCAGCC
              CCGCAGAACG TGCCGGCCTG CAGGCGGGCG ACATCGTCCT CAGCCTCGAC
        1001
        1051
              GGCGGAGAAA TACGTTCTTC CGGCGACCTT CCCGTTATGG TCGGCGCCAT
        1101
              TACGCCGGGA AAAGAAGTCA GCCTCGGCGT ATGGCGCAAA GGCGAAGAAA
              TCACAATCAA AGTCAAGCTG GGCAACGCCG CCGAGCATAT CGGCGCATCA
        1151
              TCCAAAACAG ATGAAGCCCC CTACACCGAA CAGCAATCCG GTACGTTCTC
        1201
              GGTCGAATCC GCAGGCATTA CCCTTCAGAC ACATACCGAC AGCAGCGGCG
        1251
              GACACCTCGT CGTCGTACGG GTTTCCGACG CGGCAGAACG CGCAGGCTTG
        1301
              AGGCGCGGCG ACGAAATTCT TGCCGTCGGG CAAGTCCCCG TCAATGACGA
        1351
```

This corresponds to the amino acid sequence <SEQ ID 2970; ORF 986>:

· pep.	•				
1	VFKKYQYLAL	AALCAASLAG	CDKAGSFFVA	DKKEASFVER	IEHTKDDGSV
51	SMLLPDFAQL	VQSEGPAVVN	IQAAPAPRTQ	NGSGNAENDS	DPIADNDPFY
101	EFFKRLVPNM	PEIPQEEADD	GGLNFGSGFI	ISKDGYILTN	THVVTGMGSI
151	KVLLNDKREY	TAKLIGSDVQ	SDVALLKIDA	TEELPVVKIG	NPKDLKPGEW
201	VAAIGAPFGF	DNSVTAGIVS	AKGRSLPNES	YTPFIQTDVA	INPGNSGGPL
251	FNLKGQVVGI	NSQIYSRSGG	FMGISFAIPI	DVAMNVAEQL	KNTGKVORGO
301	LGVIIQEVSY	GLAQSFGLDK	AGGALIAKIL	PGSPAERAGL	OAGDIVLSLD
351	GGEIRSSGDL	PVMVGAITPG	KEVSLGVWRK	GEEITIKVKL	GNAAEHIGAS
401	SKTDEAPYTE	QQSGTFSVES	AGITLQTHTD	SSGGHLVVVR	VSDAAFRAGI.
451	RRGDEILAVG	QVPVNDEAGF	RKAMDKAGKN	VPLLIMRRGN	TLFIALNLQ*

AGCCGGTTTC CGCAAAGCTA TGGACAAGGC AGGCAAAAAC GTCCCCCTGC

TGATCATGCG CCGTGGCAAC ACGCTGTTTA TCGCATTAAA CCTGCAATAA

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

m986/g986	97.0% identity in 499 aa overlap
m986.pep	10 20 30 40 50 60 VFKKYQYLALAALCAASLAGCDKAGSFFVADKKEASFVERIEHTKDDGSVSMLLPDFAQL
	10 20 30 40 50 60
m986.pep	70 80 90 100 110 120 VQSEGPAVVNIQAAPAPRTQNGSGNAENDSDPIADNDPFYEFFKRLVPNMPEIPQEEADD
m986.pep	130 140 150 160 170 180 GGLNFGSGFIISKDGYILTNTHVVTGMGSIKVLLNDKREYTAKLIGSDVQSDVALLKIDA
g986	
m986.pep	190 200 210 220 230 240 TEELPVVKIGNPKDLKPGEWVAAIGAPFGFDNSVTAGIVSAKGRSLPNESYTPFIQTDVA TEELPVVKIGNPKNLKPGEWVAAIGAPFGFDNSVTAGIVSAKGRSLPNESYTPFIQTDVA 190 200 210 220 230 240
m986.pep	250 260 270 280 290 300 INPGNSGGPLFNLKGQVVGINSQIYSRSGGFMGISFAIPIDVAMNVAEQLKNTGKVQRGQ 11111111111111111111111111111111111

m986.pep	310 LGVIIQEVSYGLAQS LGVIIQEVSYGLAQS	: FGLDKASGAL		 RAGLQAGDIV		11111
	310	320	330	340	350	360
m986.pep	370 PVMVGAITPGKEVSLO	380 GVWRKGEEIT:	390 IKVKLGNAAEH	400 IGASSKTDEA	410 PYTEOOSGT	420 FSVES
g986		 GVWRKGEEIT:	11:11111111	111111111	11111111	
	370	380	390	400	410	420
m986.pep	430 AGITLQTHTDSSGGHI			1111111111	111111111	
g986	AGITLQTHTDSSGKHI 430	JVVVRVSDAAF 440				
	490	500	450	460	470	480
m986.pep	VPLLIMRRGNTLFIAL	NLQX				
g986	:	NLQX 500				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2971>: a986.seq

```
GTGTTCAAAA AATACCAATA CCTCGCTTTG GCAGCACTGT GTGCCGCCTC
   1
      GCTGGCAGGC TGCGACAAAG CCGGCAGCTT TTTCGGTGCG GACAAAAAG
  51
 101 AAGCATCCTT TGTAGAACGC ATCAAACACA CCAAAGACGA CGGCAGCGTC
 151
     AGTATGCTGC TGCCCGACTT TGTCCAACTG GTTCAAAGCG AAGGCCCGGC
      AGTCGTCAAT ATTCAGGCAG CCCCCGCCCC GCGCACCCAA AACGGCAGCA
      GCAATGCCGA AACCGATTCC GACCCGCTTG CCGACAGCGA CCCGTTCTAC
 251
 301 GAATTTTCA AACGCCTCGT CCCGAACATG CCCGAAATCC CCCAAGAAGA
     AGCAGATGAC GGNGGATTGA ACTTCGGTTC GGGCTTCATC ATCAGCAAAG
 401 ACGGCTATAT TCTGACCAAT ACGCACGTCG TTACCGGCAT GGGCAGTATC
 451
     AAAGTCCTGC TCAACGACAA GCGCGAATAT ACCGCCAAAC TCATCGGTTC
      GGATGTCCAA TCCGATGTCG CCCTTCTGAA AATCGACGCA ACGGAAGAGC
 551
     TGCCCGTCGT CAAAATCGGC AATCCCAAAG ATTTGAAACC GGGCGAATGG
     GTCGCCGCCA TCGGCGCCC CTTCGGCTTC GACAACAGCG TGACCGCCGG
 601
 651
     CNTCGTGTCC GCCAAAGGCA GAAGCCTGCC CAACGAAAGC TACACACCCT
 701
     TCATCCAAAC CGACGTTGCC ATCAATCCGG GCAACTCCGG CGGCCCGCTG
      TTCAACTTAA AAGGACAGGT CGTCGGCATC AACTCGCAAA TATACAGCCG
     CAGCGGCGGA TTCATGGGCA TTTCCTTCGC CATCCCGATT GACGTTGCCA
 801.
 851
     TGAATGTCGC CGAACAGCTG AAAAACACCG GCAAAGTCCA ACGCGGACAA
     CTGGGCGTGA TTATTCAAGA AGTATCCTAC GGTTTGGCAC AATCGTTCGG
     TTTGGACAAA GCCGGCGGCG CACTGATTGC CAAAATCCTG CCCGGCAGCC
 951
     CCGCAGAACG TGCCGGCCTG CGGGCGGGCG ACATCGTCCT CAGCCTCGAC
1001
1051
     GGCGGAGAAA TACGTTCTTC CGGCGACCTT CCCGTTATGG TCGGCGCCAT
     TACGCCGGGA AAAGAAGTCA GCCTCGGCGT ATGGCGCAAA GGCGAAGAAA
1101
     TCACAATCAA AGTCAAGCTG GGCAACGCCG CCGAGCATAT CGGCGCATCA
1151
     TCCAAAACAG ATGAAGCCCC CTACACCGAA CAGCAATCCG GTACGTTCTC
1201
1251
     GGTCGAATCC GCAGGCATTA CCCTTCAGAC ACATACCGAC AGCAGCGGCG
     GACACCTCGT CGTCGTACGG GTTTCCGACG CGGCAGAACG CGCAGGCTTG
     AGGCGCGGCG ACGAAATTCT TGCCGTCGGG CAAGTCCCCG TCAATGACGA
1351
     AGCCGGTTTC CGCAAAGCTA TGGACAAGGC AGGCAAAAAC GTCCCCCTGC
     TGATCATGCG CCGTGGCAAC ACGCTGTTTA TCGCATTAAA CCTGCAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2972; ORF 986.a>:

· F - F					
1	VFKKYQYLAL	AALCAASLAG	CDKAGSFFGA	DKKEASFVER	IKHTKDDGSV
51	SMLLPDFVQL	VQSEGPAVVN	IQAAPAPRTQ	NGSSNAETDS	DPLADSDPFY
101	EFFKRLVPNM	PEIPQEEADD	GGLNFGSGFI	ISKDGYILTN	THVVTGMGSI
151	KVLLNDKREY	TAKLIGSDVQ	SDVALLKIDA	TEELPVVKIG	NPKDLKPGEW
201	VAAIGAPFGF	DNSVTAGXVS	AKGRSLPNES	YTPFIOTDVA	INPGNSGGPL
251	FNLKGQVVGI	NSQIYSRSGG	FMGISFAIPI	DVAMNVAEOL	KNTGKVORGO

301 351 401 451	LGVIIQEVSY GGEIRSSGDL SKTDEAPYTE RRGDEILAVG	PVMVGAITPO QQSGTFSVE	G KEVSLGV S AGITLOT	WRK GEEITI HTD SSGGHL	KVKL GNAAE	EHIGAS AERAGI	
m986/a986	98.2% id	dentity in	499 aa o	verlap			
m986.pep a986	i 				11111:111	50 DGSVSMLLPE DGSVSMLLPE 50	1 - 11
m986.pep	1111111	1111111111		1:1111:11:	111111111	110 VPNMPEIPQE VPNMPEIPQE	1111
	. 200011	70	80	90	100	110	120
m986.pep	GGLNFGSG	FIISKDGYII	1111111			170 SDVQSDVALL	1111
2300	1	30 1	.40	150	KREYTAKLIG 160	SDVQSDVALL 170	KIDA 180
m986.pep	TEELPVVK	IGNPKDLKPG			1 1111111	230 PNESYTPFIQ	1111
a986	TEELPVVK 1	IGNPKDLKPG 90 2	EWVAAIGAE :00	PFGFDNSVTA 210	GXVSAKGRSL 220	PNESYTPFIQ	TDVA 240
m986.pep	INPGNSGG INPGNSGG	PLFNLKGQVV PLFNLKGQVV	111111111	111111111		290 AEQLKNTGKV AEQLKNTGKV 290	1111
m986.pep	LGVIIQEV LGVIIQEV	SYGLAQSFGL SYGLAQSFGL			111:1111	350 LSLDGGEIRS: LSLDGGEIRS: 350	1111
m986.pep	PVMVGAIT	PGKEVSLGVW PGKEVSLGVW	1111111		111111111	410 PYTEQQSGTFS PYTEQQSGTFS 410	1111
m986.pep	AGITLOTH AGITLOTH	FDSSGGHLVV FDSSGGHLVV	 VRVSDAAER		4111111111	470 EAGFRKAMDKÆ !!!!!!!!! EAGFRKAMDKÆ 470	111
m986.pep	VPLLIMRRO	GNTLFIALNLO GNTLFIALNLO	_ 				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2973>: g987.seq

¹ ATGAAAACAC GCAGCCTCAT TTCCCTTTTA TGCCTCCTTC TCTGTTCATG

WO 99/57280

51	TTCTTCATGG	TTGCCCCCAC	TGGAAGAACG	GACGGAAAGC	CGTCATTTTA
101	ATACTTCCAA	ACCTGTCCTC	CTGGACAACA	TCCTGCAAAT	CCGGCACACC
151	CCTCATAACA	ACGGGCTATC	CGACATCTAC	CTGCTCGACG	ACCCCCACGA
201	AGCCTTTGCC	GCCCGCGCCG	CCCTTATCGA	ATCTGCCGAA	CACAGCCTCG
251	ATTTGCAATA	CTACATTTGG	CGCAACGaCA	TTTCCGGCAG	GCTGCTGTTC
301	AACCTCATGT	ACCTTGCCGC	agaacgcGGC	GTGCGCGTAC	GCCTGCTGTt
351	ggacgacaAC	AACAcgcgcg	gcttggacga	tctcctGCTC	GCCCTCGACA
401	GCCATCCCAA	TAtctaagtG	CGCCTGTTCA	ACCCCTtcgt	CCTACGCAAA
451	TGGCGCGCAC	TCGGCTACCT	GACCGACTTC	CCCCGCCTCA	ACCGCCGCAT
501			CCGACAACCG		
551			TTCAAAGTCG		
601					TATCGCACGA
651			GCCATTCCGC		
701			AAGGGTCTTC		
751			CCTGCGCTAC		
801			AGACGGGACG		
851			AGCCCTGCAA		
901			GAGGCTGCAA		
951			CACCCTATTT		
1001			GTGCAGGACG		
1051			CGACGTTGCC		
1101			TCAAAGCCGG		
1151			GCCACAAAAG		
1201			CAAAACCTTC		
1251			TCGACCCCCG		
1301			AGCCCCAAAA		
1351			CGAATACGCC		
1401			ACGATCCCGC		
1451			TGGAAACGCA	TCGCCGCAAA	AATCCTATCC
1501	CTGCTGCCCA	TCGAAGGTTT	ATTATAG		

This corresponds to the amino acid sequence <SEQ ID 2974; ORF 987.ng>:

```
g987.pep
         MKTRSLISLL CLLLCSCSSW LPPLEERTES RHFNTSKPVL LDNILQIRHT
     51
         PHNNGLSDIY LLDDPHEAFA ARAALIESAE HSLDLQYYIW RNDISGRLLF
    101
         NLMYLAAERG VRVRLLLDDN NTRGLDDLLL ALDSHPNI*V RLFNPFVLRK
         WRALGYLTDF PRLNRRMHNK SFTADNRATI LGGRNIGDEY FKVGEDTVFA
    201 DLDILATGSV VGEVSHDFDR YWASHSAHNA TRIIRSGNIG KGLQALGYND
    251 ETSRHALLRY RETVEQSPLY QKIQTGRIDW QSVQTRLISD SPAKGLDRDR
    301 RKPPIAGRLQ DALKQPEKSV YLVSPYFVPT KSGTDALAKL VQDGIDVTVL
    351 TNSLQATDVA AVHSGYVKYR KPLLKAGIKL YELQPNHAVP ATKDKGLTGS
         SVTSLHAKTF IVDGKRIFIG SFNLDPRSAR LNTEMGVVIE SPKIAEQMER
    401
    451
         TLADTTPEYA YRVTLDKHNR LQWHDPATRK TYPNEPEAKL WKRIAAKILS
    501 LLPIEGLL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2975>:

7.seq					
1	ATGAAAACAC	GCAGCCTAAT	TTCCCTTTTA	TGCCTCCTTC	TCTGTTCATG
51	TTCTTCATGG	TTGCCCCCAC	TGGAAGAACG	GACGGAAAGC	CGTCATTTCA
101	ATACTTCCAA	ACCCGTCCGC	CTGGACAACA	TCCTGCAAAT	CCGGCACACC
151	CCTCATACCA	ACGGGCTATC	CGATATCTAT	CTGTTGAACG	ACCCCCACGA
201	AGCCTTTGCC	GCCCGCGCCG	CCCTTATCGA	ATCTGCCGAA	CACAGCCTCG
251	ATTTGCAATA	CTACATCTGG	CGCAACGACA	TTTCCGGCAG	GCTGCTGTTC
301	AACCTCGTGT	ACCTTGCCGC	AGAACGCGGT	GTGCGCGTAC	GCCTGCTGTT
351·	GGACGACAAC	AACACGCGCG	GATTGGACGA	CCTCCTGCTT	GCCCTCGACA
401	GCCATCCCAA	TATCGAAGTG	CGCCTGTTCA	ACCCCTTCGT	CTTACGAAAA
451	TGGCGCGCAC	TCGGCTACCT	GACCGACTTC	CCCCGCCTCA	ACCGCCGCAT
501	GCACAACAAA	TCCTTTACCG	CCGACAACCG	CGCCACCATA	CTCGGCGGAC
551		CGACGAATAC			
601			CGGCAGCGTC		
651			GCCATTCCGC		
701			AAGGGTCTTC		
751			CCTGCGCTAC		
801	GCCCCTCTAC	CAAAAAATAC	AGACAGGATG	CATCGACTGG	CAGAGCGTCC
851	GAACCCGCCT	CATCAGCGAC	GACCCTGCAA	AAGGACTCGA	CCGCGACCGC

901	CGCAAACCGC	CGATTGCCGG	GCGGCTGCAA	GACGCGCTCA	AACAGCCCGA
951	AAAAAGCGTC	TATCTGGTTT	CACCCTATTT	CGTTCCCACA	AAATCCGGCA
1001	CAGACGCACT				TACCGTTCTG
1051	ACCAACTCGC	TGCAGGCGAC	CGACGTTGCC	GCCGTCCATT	CCGGCTATGT
1101	CAAATACCGA	AAACCGCTGC	TCAAAGCCGG	CATCAAACTC	TACGAGCTGC
1151	AACCCAACCA	TGCCGTCCCC	GCCACAAAAG	ACAAAGGCCT	GACCGGCAGC
1201	TCCGTAACCA	GCCTGCACGC	CAAAACCTTC	ATTGTGGACG	GCAAACGCAT
1251		TCGTTCAACC			
1301	AAATGGGCGT	TGTTATCGAA	AGCCCCAAAA	TCGCAGAACA	GATGGAGCGC
1351	ACCCTTGCCG	ATACCACACC	CGCCTACGCC	TACCGCGTTA	CCCTCGACAG
1401	GCACAACCGC	CTGCAATGGC	ACGATCCCGC	CACCCGAAAA	ACCTACCCGA
1451		AGCCAAACTT		TCGCCGCAAA	AATCCTATCC
1501	CTGCTGCCCA	TAGAAGGTTT	ATTATAG		

This corresponds to the amino acid sequence <SEQ ID 2976; ORF 987>: m987.pep

/.pep			•		
1	MKTRSLISLL	CLLLCSCSSW	LPPLEERTES	RHFNTSKPVR	LDNILQIRHT
51	PHTNGLSDIY	LLNDPHEAFA	ARAALIESAE	HSLDLQYYIW	RNDISGRLLF
101	NLVYLAAERG	VRVRLLLDDN	NTRGLDDLLL	ALDSHPNIEV	RLFNPFVLRK
151	WRALGYLTDF	PRLNRRMHNK	SFTADNRATI	LGGRNIGDEY	FKVGEDTVFA
201	DLDILATGSV	VGEVSHDFDR	YWASHSAHNA	TRIIRSGDIG	KGLOALGYND
251	ETSRHALLRY	RETVEQSPLY	QKIQTGCIDW	QSVRTRLISD	DPAKGLDRDR
301	RKPPIAGRLQ	DALKQPEKSV	YLVSPYFVPT	KSGTDALAKL	VQDGIDVTVL
351	TNSLQATDVA	AVHSGYVKYR	KPLLKAGIKL	YELQPNHAVP	ATKDKGLTGS
401	SVTSLHAKTF	IVDGKRIFIG	SFNLDPRSAR	LNTEMGVVIE	SPKIAEOMER
451	TLADTTPAYA	YRVTLDRHNR	LQWHDPATRK	TYPNEPEAKL	WKRIAAKILS
501	LLPIEGLL*				

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m987/g987	97.8% identity in 508 aa overlap
m987.pep	10 20 30 40 50 60 MKTRSLISLLCLLLCSCSSWLPPLEERTESRHFNTSKPVRLDNILQIRHTPHTNGLSDIY
g987	MKTRSLISLLCLLLCSCSSWLPPLEERTESRHFNTSKPVLLDNILQIRHTPHNNGLSDIY
	55 45 50
m987.pep	70 80 90 100 110 120 LLNDPHEAFAARAALIESAEHSLDLQYYIWRNDISGRLLFNLVYLAAERGVRVRLLLDDN
g987	:
	70 80 90 100 110 120
m987.pep	130 140 150 160 170 180 NTRGLDDLLLALDSHPNIEVRLFNPFVLRKWRALGYLTDFPRLNRRMHNKSFTADNRATI
g987	
	130 140 150 160 170 180
m987.pep	190 200 210 220 230 240 LGGRNIGDEYFKVGEDTVFADLDILATGSVVGEVSHDFDRYWASHSAHNATRIIRSGDIG
g987	
	190 200 210 220 230 240
m987.pep	250 260 270 280 290 300 KGLQALGYNDETSRHALLRYRETVEQSPLYQKIQTGCIDWQSVRTRLISDDPAKGLDRDR
q987	
goor	KGLQALGYNDETSRHALLRYRETVEQSPLYQKIQTGRIDWQSVQTRLISDSPAKGLDRDR 250 260 270 280 290 300
007	310 320 330 340 350 360
m987.pep	RKPPIAGRLQDALKQPEKSVYLVSPYFVPTKSGTDALAKLVQDGIDVTVLTNSLQATDVA

g987				 'DALAKLVQDo 340	 GIDVTVLTNS 350	 LQATDVA 360
m987.pep	370 AVHSGYVKYRKPLL	380 KAGIKLYEL	390 QPNHAVPATKD	400 KGLTGSSVTS	410 SLHAKTFIVD	420 GKRIFIG
g987		 KAGIKLYEL 380				IIIIIII GKRIFIG 420
m987.pep	430 SFNLDPRSARLNTE	440 MGVVIESPK	450 IAEOMERTIAD	460 TTPAYAYRUT	470	480
g987				 TTPEYAYRVT	: LDKHNRLQWI	 HDPATRK
	490	500	450 509	460	470	480
m987.pep	TYPNEPEAKLWKRI	AAKILSLLP:	IEGLLX			
g987	TYPNEPEAKLWKRIA	AAKILSLLP: 500	IEGLLX			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2977>:

```
ATGAAAACAC GCAGCCTAAT TTCCCTTTTA TGCCTCCTTC TCTGTTCATG
   1
      TTCTTCATGG TTGCCCCCAC TGGAAGAACG GACGGAAAGC CGTCATTTCA
  51
 101 ATACTTCCAA ACCCGTCCGC CTGGACAACA TCCTGCAAAT CCGGCACACC
 151 CCTCATACCA ACGGGCTATC CGATATCTAT CTGTTGAACG ACCCCCACGA
 201 AGCCTTTGCC GCCCGCGCC CCCTTATCGA ATCTGCCGAA CACAGCCTCG
 251
     ATTTGCAATA CTACATCTGG CGCAACGACA TTTCCGGCCG ACTGCTGTTC
      AACCTCGTGT ACCTTGCCGC AGAACGCGGT GTGCGCGTAC GCCTGCTGTT
 301
 351
      GGACGACAAC AACACGCGCG GATTGGACGA CCTCCTGCTC GCCCTCGACA
     GCCATCCCAA TATCGAAGTG CGCCTGTTCA ACCCCTTCGT CTTACGAAAA
     TGGCGCGCAC TCGGCTACCT GACCGACTTC CCCCGCCTCA ACCGCCGCAT
 451
 501
     GCACAACAAA TCCTTTACCG CCGACAACCG CGCCACCATA CTCGGCGGAC
     GCAATATCGG CGACGAATAC TTCAAAGTCG GTGAGGACAC CGTTTTCGCC
 551
      GACCTGGACA TCCTCGCCAC CGGCAGCGTC GTCGGCGAAG TATCGCACGA
 601
     CTTCGACCGC TACTGGGCAA GCCATTCCGC CCACAACGCC ACGCGCATCA
 651
      TCCGCAGCGG CAACATCGGC AAGGGTCTTC AAGCACTCGG ATACAACGAC
 701
     GAAACGTCCA GACACGCGCT CCTGCGCTAC CGCGAAACCG TCGAACAGTC
 751
 801
      GCCCCTCTAC CAAAAAATAC AGACAGGACG CATCGACTGG CAGAGCGTCC
      AAACCCGCCT CATCAGCGAC GACCCTGCAA AAGGACTCGA CCGCGACCGC
 851
 901
     CGCAAACCGC CGATTGCCGG GCGGCTGCAA GACGCGCTCA AACAGCCCGA
 951 AAAAAGCGTC TATCTGGTTT CACCCTATTT CGTCCCCACA AAATCCGGCA
     CAGACGCACT GGCAAAACTG GTGCAGGACG GCATAGACGT TACCGTCCTG
1001
1051
     ACCAACTCGC TACAGGCGAC CGACGTTGCC GCCGTCCATT CCGGCTATGT
      CAAATACCGA AAACCGCTGC TCAAAGCCGG CATCAAACTC TACGAGCTGC
1101
     AACCCAACCA TGCCGTCCCT GCCACAAAAG ACAAAGGCCT GACCGGCAGC
1151
     TCCGTAACCA GCCTGCATGC CAAAACCTTC ATTGTGGACG GCAAACGCAT
1201
     CTTCATCGGC TCATTCAACC TCGACCCCCG TTCCGCACGG CTCAATACTG
1251
1301
     AAATGGGCGT TGTTATCGAA AGCCCCAAAA TCGCAGAACA GATGGAGCGC
     ACCCTTGCCG ATACCTCACC CGAATACGCC TACCGCGTTA CCCTCGACAG
      GCACAACCGC CTGCAATGGC ACGATCCCGC CACCCGAAAA ACCTACCCGA
1401
1451
     ACGAACCCGA AGCCAAACTT TGGAAACGCA TCGCCGCAAA AATCCTATCC
     CTGCTGCCCA TAGAAAGTTT ATTATAG
```

This corresponds to the amino acid sequence <SEQ ID 550; ORF 2978.a>:

1	MKTRSLISLL	CLLLCSCSSW	LPPLEERTES	RHFNTSKPVR	LONTLOTRHT
51	PHTNGLSDIY	LLNDPHEAFA	ARAALIESAE	HSLDLOYYIW	RNDISGRILLE
101	NLVYLAAERG	VRVRLLLDDN	NTRGLDDLLL	ALDSHPNIEV	RI.FNPFVI.PK
151	WRALGYLTDF	PRLNRRMHNK	SFTADNRATI	LGGRNIGDEY	FKVGEDTVFA
201	DLDILATGSV	VGEVSHDFDR	YWASHSAHNA	TRIIRSGNIG	KGLOALGYND
251	ETSRHALLRY	RETVEQSPLY	QKIOTGRIDW	OSVOTRIJED	DPAKCI DDDD
301	RKPPIAGRLQ	DALKQPEKSV	YLVSPYFVPT	KSGTDALAKI.	VODGIDUTUI
					ADOTOATAN

351 401 451 501	TNSLQATDVA AVHSGYVKYR KPLLKAGIKL YELQPNHAVP ATKDKGLTGS SVTSLHAKTF IVDGKRIFIG SFNLDPRSAR LNTEMGVVIE SPKIAEQMER TLADTSPEYA YRVTLDRHNR LQWHDPATRK TYPNEPEAKL WKRIAAKILS LLPIESLL*
m987/a987	98.8% identity in 508 aa overlap
m987.pep	10 20 30 40 50 60 MKTRSLISLLCLLLCSCSSWLPPLEERTESRHFNTSKPVRLDNILQIRHTPHTNGLSDIY
	10 20 30 40 50 60
m987.pep	70 80 90 100 110 120 LLNDPHEAFAARAALIESAEHSLDLQYYIWRNDISGRLLFNLVYLAAERGVRVRLLLDDN
a987	LLNDPHEAFAARAALIESAEHSLDLQYYIWRNDISGRLLFNLVYLAAERGVRVRLLLDDN 70 80 90 100 110 120
m987.pep	130 140 150 160 170 180 NTRGLDDLLLALDSHPNIEVRLFNPFVLRKWRALGYLTDFPRLNRRMHNKSFTADNRATI
a987	NTRGLDDLLLALDSHPNIEVRLFNPFVLRKWRALGYLTDFPRLNRRMHNKSFTADNRATI 130 140 150 160 170 180
m987.pep	190 200 210 220 230 240 LGGRNIGDEYFKVGEDTVFADLDILATGSVVGEVSHDFDRYWASHSAHNATRIIRSGDIG
a987	LGGRNIGDEYFKVGEDTVFADLDILATGSVVGEVSHDFDRYWASHSAHNATRIIRSGNIG 190 200 210 220 230 240
m987.pep	250 260 270 280 290 300 KGLQALGYNDETSRHALLRYRETVEQSPLYQKIQTGCIDWQSVRTRLISDDPAKGLDRDR
a987	
m987.pep	310 320 330 340 350 360 RKPPIAGRLQDALKQPEKSVYLVSPYFVPTKSGTDALAKLVQDGIDVTVLTNSLQATDVA
a987	
m987.pep	370 380 390 400 410 420 AVHSGYVKYRKPLLKAGIKLYELQPNHAVPATKDKGLTGSSVTSLHAKTFIVDGKRIFIG
a987	
m987.pep	430 440 450 460 470 480 SFNLDPRSARLNTEMGVVIESPKIAEQMERTLADTTPAYAYRVTLDRHNRLQWHDPATRK
a987	
m987.pep	490 500 509 TYPNEPEAKLWKRIAAKILSLLPIEGLLX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2979>: 9988.seq

^{&#}x27;4 1 ATGAATAAAA ATATTAAATC TTTAAATTTA CGGGAAAAAG ACCCGTTTTT

WO 99/57280

This corresponds to the amino acid sequence <SEQ ID 2980; ORF 988.ng>:

3	.pep					
	1	MNKNIKSLNL	REKDPFLSRE	KQRYEHPLPS	REWIIELLER	KGVPSKIESL
	51	ARELSITEDE	YVFFERRLKA	MARDGQVLIN		LDLVKCRVEA
	101	HKDGFGFAVP	LMPMDEGDFV	LYEROMRGVM	HGDTVTVRPA	
	151	TFLDIVERAQ	SKVVGRFYMD	RGVAILEPED	KRLNQSIVLE	
	201	SGQVIVGKIE	VYPEQNRPAV	AKIIEVLGDY		
	251	SEACAKSAKK	IPDHVRKSDL	KGRVDLCDLP	LVTIDGETAR	DFDDAVFAEK
	301	VGRNYRLVVA	IADVSHYVRP	DDAIDADAOE	RSTSVYFPRR	
	351	NGICSLNPDV	ERLCMVCDMV	VTYAGNIKEY		ARLTYNOVWK
	401	WLSDGIGNPH	KAQIDTLYKL	FKILQKKRLA	RGAVEFESVE	TOMIFDDNGK
	451	IEKIVPVVRN	DAHKLIEECM	LAANVCAADF	LLKNKHTALF	RNHLGPTPEK
	501	LATLREQLGL	LGLQLGGGDN	PSPKDYAALA	EQFKGRPDAE	LLOVMMLRSM
	551	QQAVYEPHCE	GHFGLAYEAY	AHFTSPIRRY		
	601	NKSWQALGVH	TSFCERRADD	AGRDVENWLK	TYYMRDKVGE	IFEGKISRGV
	651	ANFGIFVTLD	DIHIDGLVHI	SDLGEDYFNF	RPEIMAIEGE	RSGIRFNMGD
	701	RVAVRVARAD	LDDGKIDFVL	IAGESGRRRK		GAAGKGKSKT
	751	TAEKKTARCG	KVRGRGVPAV	AESGKKAKKP	VPIKVKKRKG	
						Vo.

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2981>:

<u> </u>					
n988.seq	(partial)				
1	ACAGTTCTGG	ATATTGTCGA	ACGCGCGCAA	AGCAAAGTGG	TCGGCCGTTT
51	CTATATGGAT	AGGGGCGTGG	CGATTTTGGA	GCCGGAAGAC	AAGCGTCTGA
101	ACCAAAGCAT	CGTATTGGAA	CCGGACGGCG	TGGCGCGTTT	CAAACCTGAA
151	TCCGGTCAGG	TCATCGTCGG	CGAAATTGAG	GTTTATCCTG	AGCAAAACCG
201	GCCGGCAGTG		TCGAAGTTTT	GGGCGATTAT	GCCGACAGCG
251	GCATGGAGAT	TGAAATTGCC	GTGCGCAAGC	ATCATTTGCC	GCACCAATTC
301	AGTGAAGCGT		TGCGAAAAAA		ATGTACGCAA
351	AAGCGATTTG		TCGATTTGCG		TTGGTAACGA
401	TAGACGGCGA		GATTTCGACG	ACGCGGTGTT	TGCCGAAAAA
451	GTCGGACGCA		GGTCGTGGCG	ATTGCGGATG	TCAGCCATTA
501	TGTCCGCCCT		TTGATGCAGA	TGCTCAAGAA	CGCAGTACCA
551	GCGTATATTT		GTGATTCCGA	TGCTGCCGGA	AAACCTGTCT
601	AACGGCATTT		TCCCGATGTC	GAGCGTTTGT	GTATGGTGTG
651	CGATATGGTC		CGGGCAATAT	CAAAGAATAC	CGCTTCTACC
701	CCGCCGTAAT		GCCCGCCTGA	CCTACAACCA	AGTTTGGAAA
751		ACGGCATCGA		AAAGCCCAAA	TCGACACCCT
801	TTACAAACTC	TTCAAAATCC		GCGTTTCGAA	CGCGGCGCGG
851	•	AAGCGTCGAA	ACCCAGATGA	TTTTCGATGA	CAACGGCAAA
901	ATCGAAAAAA		TGTCCGCAAC	GATGCCCACA	AGCTGATTGA
951	AGAATGTATG	CTGGCGGCGA		AGCGGATTTC	CTGTTGAAAA
1001	ACAAGCATAC			TGGGCCCCAC	GCCCGAAAAA
1051	CTCGCCACCC			TTGGGGCTTC	AACTTGGCGG
1101		CCGTCGCCGA		CGCGCTTGTC	GAACAATTCA
1151	AAGGCAGACC			TCATGATGTT	GCGCTCCATG
1201	CAGCAGGCGG			GGACACTTTG	GTCTTGCCTA
1251		GCCCACTTCA		CCGCCGCTAT	CCCGACCTGA
1301		CGCCATCAAA		ATCAGCAAAC	CTACACGCCA
1351		GGCAGGCTTT		ACCTCGTTCT	GTGAGCGCCG
1401		GCCAGCCGCG	· · ·	CTGGCTGAAA	ACCTATTATA
1451		GGTCGGCGAA		GTAAAATCTC	CGGCATGACC
1501		TCTTTGTAAC		ATCCACATTG	ACGGCTTGGT
1551		GATTTGGGCG		CAACTTCCGC	CCCGAAATCA
1601	TGGCAATCGA			GTTTCAACAT	GGGGGACAGG
1651	GTTGCCGTCC			GATGACGGAA	AAATCGATTT
1701	TGTCCTGATT			GCGGAAAGTT	AAATCATCCG
1751	CGTCTGCCAA	ACCGGCAGGG	ACGGCGGGGA	AAGGGAAGCC	GAAAACCGCC

1801	GCCGAGAAAA	AAACAGCCCG	AGGCGGCAAA	GTAAGGGGAA	GGGGCGCGTC
1851	TGCCGCCGCA	GAATCGAGGA	AAAAGGCAAA	GAAACCGGTT	CCGATTAAGG
	TAAAAAAACG				300.11111100

This corresponds to the amino acid sequence <SEQ ID 2982; ORF 988>:

88.pep	(partial)	•	-	·	
1	TVLDIVERAQ	SKVVGRFYMD	RGVAILEPED	KRLNOSTVLE	PDGVARFKPF
51	SGQVIVGEIE	VYPEQNRPAV	AKIIEVLGDY	ADSGMEIEIA	VRKHHLPHQF
101	SEACAKAAKK	IPVHVRKSDL	KGRVDLRDLP	LVTIDGETAR	DFDDAVFAEK
151	VGRNYRLVVA	IADVSHYVRP	DDVIDADAOE	RSTSVYFPRR	VIPMLPENIS
201	NGICSLNPDV	ERLCMVCDMV	VTYAGNIKEY	RFYPAVMRSH	ARLTYNOVWK
251	WISDGIDHPY	KAQIDTLYKL	FKILQKKRFE	RGAVEFESVE	TOMIFDDNCK
301	IEKIVPVVRN	DAHKLIEECM	LAANVCAADF	LLKNKHTALF	RNHLGPTPEK
351	LATLREQLGL	LGLQLGGGDN	PSPKDYAALV	EOFKGRPDAE	LLOVMMLRSM
401	QQAVYEPHCD	GHFGLAYEAY	AHFTSPIRRY	PDLTVHRAIK	AVLNOOTYTP
451	KKSWQALGVH	TSFCERRADD	ASRDVENWLK	TYYMRDKVGE	VEEGKISGMT
501	SFGIFVTLDG	IHIDGLVHIS	DLGEDYFNFR	PEIMAIEGER	SGIRFNMGDR
551	VAVRVARADL	DDGKIDFVLI	AGGSGRGRKV	KSSASAKPAG	TACKCKPKTA
601	AEKKTARGGK	VRGRGASAAA	ESRKKAKKPV	PIKVKKRKGK	S*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m988/g988 94.2% identity in 642 aa overlap

000				10	20	30
m988.pep			TVL	DIVERAQSKVV	GRFYMDRGV	AILEPED
q988	TVEDOVDOMNOD			1111111111	11111111	ПНП
y 300	LYEROMRGVMHGD	TVTVRPAGMD	RRGRREGTFL	DIVERAQSKVV	GRFYMDRGV?	AILEPED
	130	140	150	160	170	180
	40	50	60			
m988.pep			60	70	80	90
c c . p c p	KRLNQSIVLEPDG	VAKEKEESG <u>O</u>	ATAGETEAISI	SONRPAVAKII	LVLGDYADSO	SMEIEIA
q988	KRLNQSIVLEPDG	VARFKPESCO	//////////////////////////////////////			
-	190	200	210	220	EVEGDIADSO 230	
			210	220	230	240
	100	110	120	130	140	150
m988.pep	VRKHHLPHQFSEAG	CAKAAKKIPVI	HVRKSDLKGR	DLRDLPI.VTT	DGETARDEDE	ששאשטאני
	1111111111111	:			1111111111	11111
g988	VRKHHLPHRFSEAG	CAKSAKKIPDI	IVRKSDLKGRV	DLCDLPLVTI	DGETARDEDE	AVFAEK
	250	260	270	280	290	300
						300
200	160	170	180	190	200	210
m988.pep	VGRNYRLVVAIADV	/SHYVRPDDV1	DADAQERSTS	VYFPRRVIPM:	LPENLSNGIC	SLNPDV
g988			.	111111:111	1111111111	11111
9900	VGRNIKLVVALADV	SHYVRPDDAI	DADAQERSTS	VYFPRRMIPM:	LPENLSNGIC	SLNPDV
	310	320	330	340	350	360
	220	230	240			
m988.pep	ERLCMVCDMVVTYA		240	250	260	270
		IIIIIIIIIII	AVMRSHARLT	INOVWKWISD	JIDHPYKAQI	DTLYKL
g988	ERLCMVCDMVVTYA	GNTKEYREYP	1	VNOVEWER CD	: :	
•	370	380	390	400	JIGNPHKAQI 410	
			550	400	410	420
	280	290	300	310	320	330
m988.pep	FKILOKKRFERGAV	EFESVETOMI	FDDNGKIEKI	VPVVRNDAHKI	TEECMI AAN	מת א א שב
	1111111 111	11: [] [] [] [111111111	3 1 1 1 1 1 1 1 1 1 1		11111
g988	FKILQKKRLARGAV	EFESVETOMI	FDDNGKIEKI	VPVVRNDAHKI	TEECMI.AAN	111111 111111
	430	440	450	460	470	480
					1,0	400
	340	350	360	370	380	390
m988.pep	LLKNKHTALFRNHL	GPTPEKLATL:	REQLGLLGLQ:	LGGGDNPSPKD	VAAT UEADE	200000
~000		111111111		1 1 1 1 1 1 1 1	3 tilleritt.	
g988	LLKNKHTALFRNHL	GPTPEKLATL	REQLGLLGLQ:	LGGGDNPSPKD	YAALAEOFK	GRPDAE

		490	500	510	520	530	540
		400	410	420	430	440	450
m988.pep	LLQVMM	ILRSMQQAV	YEPHCDGHFG	LAYEAYAHF'	TSPIRRYPDLT	VHRAIKAVLN	OOTYTP
	11111		11111:111		11111111111		::!!!!
g 98 8	LLQV M M	ILRSMQQAV	YEPHCEGHFO	LAYEAYAHF'	SPIRRYPDLT	VHRAIKAVLN	RKTYTP
		550	560	570	580	590	600
		460	470	480	490	500	509
m988.pep	KKSWQA	LGVHTSFC	ERRADDASRD	VENWLKTYY	MRDKVGEVFEG	KIS-GMTSFG	IFVTLD
			1111111:11			111 1:::11	111111
g988	NKSWQA	LGVHTSFC	ERRADDAGRD	VENWLKTYYN	MRDKVGEIFEG	KISRGVANFG	IFVTLD
		610	620	630	640	650	660
	510	500	5.5.0				
	510	520	530	540	550	560	569
m988.pep		LVHISDLG	EDYFNFRPEI	MAIEGERSG	RFNMGDRVAV	RVARADLDDG	KIDFVL
g988	11111			1111111111			11111
g 900	DINIDG	670	680 680		RFNMGDRVAV		
		670	680	690	700	710	720
	570	580	590	600	610		
m988.pep					KTARGGKVRG	620	629
ms co. pop	111 11	1 1111 1	IIIIIIIIII	III II:III	NIARGGRVRG		KKAKKP
g988		RRRKVKLS	ASAKPAGAAG		(KTARCGKVRG		
,		730	740	750	760	770	780
				, 50	700	770	780
	630	640					
m988.pep	VPIKVKI	KRKGKSX					
_ •	111111	111111					
g988	VPIKVKI	KRKGKSX					
		790					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2983>: a988.seq

```
ATGAATAAAA ATATTAAATC TTTAAATTTA CGGGAAAAAG ACCCGTTTTT
  51
      AAGTCGTGAA AAACAGCGTT ATGAACATCC TTTGCCCAGT CGGGAATGGA
 101
      TAATCGAGCT GCTTGAACGT AAAGGCGTAC CATCCAAGAT TGAAGCTTTG
      GTACGCGAAT TGTCGATTAA GGAAGAAGAG TACGAATTTT TCGAACGTCG
 201
      TCTGAAGGCG ATGGCGCGGG ACGGTCAGGT TTTAATCAAC CGTCGGGGCG
 251
      CGGTTTGCGC GGCGGACAAA TTGGATTTGG TCAAATGCCG TGTCAAGGCG
      CACAAAGACC GCTTCGGTTT CGCCGTGCCG CTCACGCCCG CCAAAGACGG
 301
      TGATTTTGTC TTGTACGAAC GCCAGATGCG CGGCATTATG CACGGCGATA
 351
      TTGTCACTGT TCGTCCTGCC GGCATGGACG GTAGGGGCCG CCGCGAAGGG
      ACGGTTCTGG ATATTGTCGA ACGCGCGCAA AGCAAAGTGG TCGGCCGTTT
 451
 501
      CTANATGGAT AGGGGCGTGG CGATTTTGGA GCCGGAAGAC AAGCGTCTGA
      ACCAAAGCAT CGTATTGGAA CCGGACGGCG TGGCGCGTTT CAAACCTGAA
 551
      TCCGGTCAGG TCATCGTCGG CGAAATTGAG GTTTATCCTG AGCAAAACCG
 601
      GCCGGCAGTG GCAAAAATCA TCGAAGTTTT GGGCGATTAT GCCGACAGCG
 651
      GCATGGAGAT TGAAATTGCC GTGCGCAAGC ATCATTTGCC GCACCAATTC
 701
 751
      AGTGAAGCGT GTGCCAAAGC CGCGAAAAAA ATTCCCGACC ATGTACGCAA
      AAGCGATTTG AAAGGCCGCG TCGATTTGCG CGACCTGCCT TTGGTAACGA
 801
      TAGACGGCGA AACGGCTCGA GATTTTGACG ATGCGGTGTT TGCCGAGAAA
 851
 901
      ATCGGACGCA ATTACCGTCT GGTCGTGGCG ATTGCCGATG TCAGCCATTA
 951
      TGTCCGCCCC GATGACGCTA TCGACACGGA CGCTCAGGAA CGCAGCACCA
      GTGTTTACTT CCCGCGCCGC GTGATTCCCA TGTTGCCGGA AAACCTGTCC
1001
1051
      CGATATGGTT ATCACTTACG CGGGCAATAT CAAAGAATAC CGCTTCTACC
1101
1151
      CCGCCGTGAT GCGCTCTCAT GCCCGCCTGA CCTACAACCA AGTTTGGAAA
      TGGCTTTCAG GCGGCATCGA GCATCCGTTC AAAACCCAAA TCGACACGCT
1201
      TTACAAACTC TTCAAAATCC TTCAGAAAAA GCGTTTCGAA CGCGGGGCGG
1251
     TGGAGTTTGA CAGCATCGAA ACCCAAATGC TTTTCGACGA CAACGGTAAA
1301
      ATTGAAAAAA TCGTCCCCGT TGTCCGCAAC GATGCCCACA AGCTGATTGA
1351
1401
     AGAATGTATG TTGGCGGCAA ACGTTTGCGC AGCGGATTTT CTGTTGAAAA
     ACAAGCATAC CGCATTGTTC CGCAACCATT TGGGGCCCCAC GCCCGAAAAA
1451
1501
     CTCGCCGCCT TGCGCGAGCA GCTCGGTCTG TTGGGGGCTTC AACTTGGCGG
     CGGCGACAAC CCGTCGCCGA AAGACTATGC CGCGCTTGCC GGACAGTTCA
1551
```

WO 99/57280

1601	AAGGCAGGCC	GGATGCCGAA	TTGCTGCAAG	TCATGATGTT	GCGCTCCATG
1651	CAACAGGCGG	TTTACGAACC	GCATTGCGAC	GGACACTTTG	GTCTTGCCTA
1701	CGAAGCATAC				CCCGACCTGA
1751	CCGTACACCG	CGCCATCAAA	GCCGTGTTGA	ATCAGCAAAC	CTACACGCCA
1801	AAAAAAAGCT	GGCAGGCTTT	GGGCGTGCAT	ACCTCGTTCT	GTGAGCGCCG
1851	TGCCGACGAC	GCCAGCCGCG	ACGTGGAAAA	CTGGCTGAAA	ACCTATTATA
1901	TGCGCGATAA	GGTCGGCGAA	GTATTCGAAG	GTAAAATCTC	CGGCATGACC
1951	AGTTTTGGTA	TCTTTGTAAC	ACTGGACGGC	ATCCACATTG	ACGGCTTGGT
2001	GCATATCAGC	GATTTGGGCG	AAGACTATTT	CAACTTCCGC	CCCGAAATCA
2051	TGGCAATCGA	AGGCGAACGC	AGCGGCATCC	GTTTCAACAT	GGGGGACAGG
2101	GTTGCCGTCC	GGGTCGCCCG	TGCCGATTTG	GATGACGGAA	AAATCGATTT
2151	TGTCCTGATT	GCCGGGGGGA	GCGGCAGGGG	GCGGAAAGTT	AAATCATCCG
2201	CGTCTGCCAA	ACCGGCAGGG	ACGGCGGGGA	AAGGGAAGCC	GAAAACCGCC
2251	GCCGAGAAAA	AAACAGCCCG	AGGCGGCAAA	GTAAGGGGAA	GGGGCGCGTC
2301	TGCCGCCGCA	GAATCGAGGA	AAAAGGCAAA	GAAACCGGTT	CCGATTAAGG
2351	TAAAAAAACG	GAAAGGCAAA	TCATAA		

This corresponds to the amino acid sequence <SEQ ID 2984; ORF 988.a>:

```
a988.pep
         MNKNIKSLNL REKDPFLSRE KQRYEHPLPS REWIIELLER KGVPSKIEAL
      51
          VRELSIKEEE YEFFERRLKA MARDGQVLIN RRGAVCAADK LDLVKCRVKA
     101 HKDRFGFAVP LTPAKDGDFV LYERQMRGIM HGDIVTVRPA GMDGRGRREG
     151 TVLDIVERAQ SKVVGRFXMD RGVAILEPED KRLNQSIVLE PDGVARFKPE
     201 SGQVIVGEIE VYPEQNRPAV AKIIEVLGDY ADSGMEIEIA VRKHHLPHQF
     251 SEACAKAAKK IPDHVRKSDL KGRVDLRDLP LVTIDGETAR DFDDAVFAEK
301 IGRNYRLVVA IADVSHYVRP DDAIDTDAOE BYTSVYFPPP VIPMI PENIS
         IGRNYRLVVA IADVSHYVRP DDAIDTDAQE RSTSVYFPRR VIPMLPENLS
    351 NGICSLNPHV ERLCVVCDMV ITYAGNIKEY RFYPAVMRSH ARLTYNOVWK
     401 WLSGGIEHPF KTQIDTLYKL FKILQKKRFE RGAVEFDSIE TQMLFDDNGK
     451 IEKIVPVVRN DAHKLIEECM LAANVCAADF LLKNKHTALF RNHLGPTPEK
    501 LAALREQLGL LGLQLGGGDN PSPKDYAALA GQFKGRPDAE LLQVMMLRSM
    551
         QQAVYEPHCD GHFGLAYEAY AHFTSPIRRY PDLTVHRAIK AVLNQQTYTP
    601 KKSWQALGVH TSFCERRADD ASRDVENWLK TYYMRDKVGE VFEGKISGMT
    651 SFGIFVTLDG IHIDGLVHIS DLGEDYFNFR PEIMAIEGER SGIRFNMGDR
    701 VAVRVARADL DDGKIDFVLI AGGSGRGRKV KSSASAKPAG TAGKGKPKTA
    751 AEKKTARGGK VRGRGASAAA ESRKKAKKPV PIKVKKRKGK S*
```

m988/a988 97.0% identity in 641 aa overlap

0.00				10	20	30
m988.pep			TVLD	IVERAQSKVV	GRFYMDRGVA	AILEPED
a988	Turboumorius		1111	111111111	111 11111	11111
a 200	LYERQMRGIMHGDIV	TVRPAGMDG	RGRREGTVLD	IVERAQSKVV		AILEPED
	130	140	150	160	170	180
	40	50	60	70	20	
m988.pep	KRLNQSIVLEPDGVA			/ U ONID D 3 3 3 2 2 2 7	80	90
• •		11111111	IIIIIIIII	TIIIIIIII Muutuvautti	EVEGUIADSG	MELEIA
a988	KRLNQSIVLEPDGVA				TITTED TO THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT	
	190	200	210	220	230	240
				220	230	240
	100	110	120	130	140	150
m988.pep	VRKHHLPHQFSEACAI	KAAKKIPVH	VRKSDLKGRVI	DLRDLPLVTI	DGETARDFDD	AVFAEK
			111111111		111111111	11111
a988	VRKHHLPHQFSEACA	KAAKKIPDH	VRKSDLKGRVI	DLRDLPLVTI	DGETARDFDD	AVFAEK
	250	260	270	280	290	300
	* * * *					
m988.pep	160	170	180	190	200	210
m300.pep	VGRNYRLVVAIADVS	YVRPDDVI	DADAQERSTS	/YFPRRVIPM	LPENLSNGIC	SLNPDV
a988			1:1111111			1111
4500	IGRNYRLVVAIADVSF 310	320 320	DIDAQERSTS			SLNPHV
	310	320	330	340	350	360
	220	230	240	250	260	
m988.pep	ERLCMVCDMVVTYAGN		VMRSHARITY	ZOU MOUWWITCH	260	270
_	1111:1111:11:11					
a988	ERLCVVCDMVITYAGN	IKEYRFYPA	VMRSHARI.TY	NOWKWISC	: : :	11111
					1TEULLYIÖTI	DITAKE

	272					
	370	380	390	400	410	420
m988.pep	280 FKILQKKRFERGAVE FKILQKKRFERGAVE 430	1:1:1111:	1111111111	11111111		111111
m988.pep	340 LLKNKHTALFRNHLG LLKNKHTALFRNHLG 490	111111:1	111111111	1111111111	111111: 11	111111
m988.pep	400 LLQVMMLRSMQQAVY LLQVMMLRSMQQAVY 550	111111111		1111111111	111111111	
m988.pep	460 KKSWQALGVHTSFCE KKSWQALGVHTSFCE 610	11111111	111111111	11111111	111111111	111111
m988.pep	520 IHIDGLVHISDLGED IHIDGLVHISDLGED 670	11111111			11111111111	
m988.pep	580 AGGSGRGRKVKSSAS. AGGSGRGRKVKSSAS. 730	11111111		111111111	1111111111	
m988.pep	640 PIKVKKRKGKSX PIKVKKRKGKSX 790					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2985>: g989.seq

gy.seq					
1	ATGACCCCTT	TCACACTGAA	AAAAACCGTC	CTGCTGCTCG	GCACTGCCTT
51	TGCCGCCGCA	TCTGTCCACG	CATCCGGCTA	CCACTTCGGC	ACACAGTCGG
101	TCAACGCGCA	AAGCACGGCA	AATGCCGCCG	ACGCGTCGAC	CATCTTCTAC
151	AATCCCGCCG	GCCTGACCAA	ACTCGACAGC	AGCCAGATTT	CCGTCAACGC
201	CAACATCGTG	CTGCCCAGCA	TTCATTATGA	AGCAGATTCC	GCCACCGACT
251	TTACCGGGCT	TCCCGTCCAA	GGTTCTAAAA	ACGGCAAAAT	CACCAAAACC
301	ACGGTCGCAC	CCCACATTTA	CGGCGCATAC	AAAGTCAACG	ACAATCTGAC
351	CGTGGGCTTG	GGCGTGTACG	TCCCCTTCGG		
401	AAGATTCCGT		AACATCAACA		GACCAGCATC
451	GCCGTCGAAC	CTGTCGCCGC	GTGGAAACTC	AACGAACGCC	ATTCCTTCGG
501	CGCAGGCATC	ATCGCCCAAC	ATAATTCCGC	CGAACTGCGC	AAATATGCCG
551	ACTGAGGAAT	CCCAAAAAAA	GCGCAAATGC	TGCAAGCAAC	
601	CCTACTGCCG	CTGCTCAAAT	CAAGGCCGAC	GGACACGCCG	ATGTCAAAGG
651	CAGCGATTGG	GGCGTCGGCT	ACCAACTGGC	GTGGATGTGG	GACATCAACG
701	ACCGCGCGCG	CGTGGGCGTG	AACTACCGTT	CCAAAGTTTC	ACACACGCTC
751	AAAGGCGATG	CCGAATGGGC	GGCAGACGGC	GCGGCGGCGA	AACAACAGTG
801	GAATGACAAT	ATGCTCACAC	CGCTCGGTTA		GAAAAAGCCA
851	GTGTCAAAAT	CGTAACGCCT	GAGTCTTTGT	CCGTACACGG	CATGTACAAA


```
901 GTGTCCGACA AAGCCGACT GTTCGGCGAC GTAACTTGGA CGCGCCACAG
951 CCGCTTCAAT AAGGCGGAC TGTTTTTTGA AAAAGAAAA AATATTGCTA
1001 ATGGCAAAAA ATCCGACCG ACCACCATCA CCCCCAACTG GCGCAACACC
1051 TACAAAGTCG GCTTGGGCGG TTCTTATCAA ATCAGCGAAC CGCTGCAACT
1101 GCGCGTCGGC ATCGCTTTTG ACAAACCGCC TGTCCGCAAC GCCGACTACC
1151 GCATGAACAG CCTGCCCGAC GGCAACCGCA TCTGGTTCTC CGCCGGCATG
1201 AAATACCATA TCGGCAAAAA CCACGTCGTC GATGCCGCT ACACCCACAT
1251 CCACATCAAC GACACCAGCT ACCGCACGGC GAAGGCAAGC GGCAACGATG
1301 TGGACAGCAA AGGTGCGTCT TGCGCACGTT TCAAAAACCA CGCCGACATC
1351 ATCGGCCTGC AATACACCTA CAAATTCAAA TAA
```

This corresponds to the amino acid sequence <SEQ ID 2986; ORF 989.ng>:

g989.pep

T T.					
1	MTPFTLKKTV	LLLGTAFAAA	SVHASGYHFG	TQSVNAQSTA	NAADASTIFY
51	NPAGLTKLDS	SQISVNANIV	LPSIHYEADS	ATDFTGLPVQ	GSKNGKITKT
101	TVAPHIYGAY	KVNDNLTVGL	GVYVPFGSAT	EYEKDSVLRH	NINKLGLTSI
151	AVEPVAAWKL	NERHSFGAGI	IAQHNSAELR	KYAD*GIPKK	AQMLQATPSN
201	PTAAAQIKAD	GHADVKGSDW	GVGYQLAWMW	DINDRARVGV	NYRSKVSHTL
251	KGDAEWAADG	AAAKQQWNDN	MLTPLGYTAN	EKASVKIVTP	ESLSVHGMYK
301	VSDKADLFGD	VTWTRHSRFN	KAELFFEKEK	NIANGKKSDR	TTITPNWRNT
351	YKVGLGGSYQ	ISEPLQLRVG	IAFDKPPVRN	ADYRMNSLPD	GNRIWFSAGM
401	KYHIGKNHVV	DAAYTHIHIN	DTSYRTAKAS	GNDVDSKGAS	CARFKNHADI
451	IGLQYTYKFK	*			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2987>:

```
m989.seq
          ATGACCCCTT CCGCACTGAA AAAAACCGTC CTGCTGCTCG GCACTGCCTT
          TGCCGCCGCA TCCGTCCACG CATCCGGCTA CCACTTCGGC ACACAGTCGG
     101 TCAACGCGCA AAGCACGGCA AATGCCGCCG CCGCAGAAGC CGCCGACGCA
     151 TCGACCATCT TCTACAACCC TGCCGGCCTG ACCAAACTCG ACAGCAGCCA
201 GATTTCCGTC AACGCCAACA TCGTGCTGCC CAGCATTCAT TATGAGGCGG
          TCGACCATCT TCTACAACCC TGCCGGCCTG ACCAAACTCG ACAGCAGCCA
     251 ATTCCGCCAC CGACTTTACC GGGCTTCCCG TCCAAGGTTC GAAAAGCGGC
     301 AAAATCACCA AAACCACGGT CGCGCCCCAC ATCTACGGCG CATACAAAGT
     351 CAACGACAAT CTGACCGTGG GCTTGGGCGT GTACGTCCCC TTCGGCTCTG
         CCACCGAATA CGAAAAAGAT TCCGTGTTGC GCCACAACAT CAACAAACTC
          GGTCTGACCA GCATCGCCGT CGAACCTGTC GCCGCGTGGA AACTCAACGA
     501 CCGCCATTCC TTCGGCGCAG GCATCATCGC CCAACATACT TCCGCCGAAC
     551 TGCGCAAATA TGCCGACTGG GGGATTAAGA GTAAAGCAGA GATATTGACG
     601 GCAAAACCGC CCAAACCTAA CGGTGTAGCC GAAGCTGCAA AAATTCAGGC
     651
         CGACGGACAC GCCGATGTCA AAGGCAGCGA TTGGGGCTTC GGCTACCAAC
          TGGCGTGGAT GTGGGACATC AACGACCGTG CGCGCGTGGG CGTGAACTAC
         CGTTCCAAAG TCTCGCACAC GCTCAAAGGC GATGCCGAAT GGGCGGCAGA
     751
     801 CGGCGCGGCG GCGAAAGCAA TGTGGAGTAC GATGCTTGCA GCAAACGGCT
     851 ACACGGCGAA TGAAAAAGCC CGCGTTAAAA TCGTTACGCC TGAGTCTTTG
     901
          TCCGTACACG GTATGTACAA AGTGTCCGAT AAAGCCGACC TGTTCGGCGA
          CGTAACTTGG ACGCGCCACA GCCGCTTCGA TAAGGCGGAA CTGGTTTTTG
         AAAAAGAAAA AACCGTCGTC AAAGGCAAAT CCGACCGCAC CACCATCACC
    1001
    1051 CCCAACTGGC GCAACACCTA CAAAGTCGGC TTCGGCGGTT CTTATCAAAT
          CAGCGAACCG CTGCAACTGC GCGCCGGCAT CGCTTTTGAC AAATCGCCCG
    1151 TCCGCAACGC CGACTACCGC ATGAACAGCC TACCCGACGG CAACCGCATC
          TGGTTCTCCG CCGGTATGAA ATACCATATC GGTAAAAACC ACGTCGTCGA
    1201
          TGCCGCCTAC ACCCACATCC ACATCAACGA CACCAGCTAC CGCACGGCGA
   1301 AGGCAAGCGG CAACGATGTG GACAGCAAAG GCGCGTCTTC CGCACGTTTC
         AAAAACCACG CCGACATCAT CGGTCTGCAA TACACCTACA AATTCAAATA
    1401
```

This corresponds to the amino acid sequence <SEQ ID 2988; ORF 989>:

m989.pep

1	MTPSALKKTV	LLLGTAFAAA	SVHASGYHFG	TQSVNAQSTA	NAAAAEAADA
51	STIFYNPAGL	TKLDSSQISV	NANIVLPSIH	YEADSATDFT	GLPVQGSKSG
101	KITKTTVAPH	IYGAYKVNDN	LTVGLGVYVP	FGSATEYEKD	SVLRHNINKL
151			FGAGIIAQHT		
201			ADVKGSDWGF		
251	RSKVSHTLKG	DAEWAADGAA	AKAMWSTMLA	ANGYTANEKA	RVKIVTPESL
301			TRHSRFDKAE		

- 351 PNWRNTYKVG FGGSYQISEP LQLRAGIAFD KSPVRNADYR MNSLPDGNRI 401 WFSAGMKYHI GKNHVVDAAY THIHINDTSY RTAKASGNDV DSKGASSARF
- 451 KNHADIIGLQ YTYKFK*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

g989/m989	90.0% identity in 468 aa overlap
g989.pep	10 20 30 40 50 MTPFTLKKTVLLLGTAFAAASVHASGYHFGTQSVNAQSTANAADASTIFYNPAGL :
g989.pep m989	60 70 80 90 100 110 TKLDSSQISVNANIVLPSIHYEADSATDFTGLPVQGSKNGKITKTTVAPHIYGAYKVNDN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
g989.pep m989	120 130 140 150 160 170 LTVGLGVYVPFGSATEYEKDSVLRHNINKLGLTSIAVEPVAAWKLNERHSFGAGIIAQHN
g989.pep	180 190 200 210 220 230 SAELRKYADXGIPKKAQMLQATPSNPTAAAQIKADGHADVKGSDWGVGYQLAWMWDI
g989.pep m989	240 250 260 270 280 290 NDRARVGVNYRSKVSHTLKGDAEWAADGAAAKQQWNDNMLTPLGYTANEKASVKIVTPES
g989.pep	300 310 320 330 340 350 LSVHGMYKVSDKADLFGDVTWTRHSRFNKAELFFEKEKNIANGKKSDRTTITPNWRNTYK
g989.pep	360 370 380 390 400 410 VGLGGSYQISEPLQLRVGIAFDKPPVRNADYRMNSLPDGNRIWFSAGMKYHIGKNHVVDA :
g989.pep m989	420 430 440 450 460 AYTHIHINDTSYRTAKASGNDVDSKGASCARFKNHADIIGLQYTYKFKX

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2989>: a989.seq

- ATGACCCCTT CCGCACTGAA AAAAACCGTC CTACTGCTCG GCACTGCCTT 1 51 TGCCGCCGCA TCCGCACAAG CCTCCGGCTA CCACTTCGGC ACACAGTCGG
- 101 TCAACGCGCA AAGCACGGCA AATGCCGCCG CCGCAGAAGC CGCCGACGCA
- 151 TCGACCATCT TCTACAACCC TGCCGGCCTG ACCAAACTCG ACAGCAGCCA
- GATTTCCGTC AACGCCAACA TCGTGCTGCC CAGCATTCAT TATGAGGCGG
- 251 ATTCCGCCAC CGACTTTACC GGGCTTCCCG TCCAAGGTTC GAAAAGCGGC

a989.pep

m989.pep

a989

1406

301	AAAATCACCA	AAACCACGGT	CGCGCCCCAC	ATCTACGGCG	CATACAAAGT
351	CAACGACAAT	CTGACCGTAG	GCTTGGGCGT	GTACGTCCCC	TTCGGTTCTG
401	CCACCGAATA	CGAAAAAGAT	TCCGTGTTGC	GCCACAACAT	CAACAAACTC
451	GGTCTGACCA	GCATCGCCGT	CGAACCTGTC	GCCGCGTGGA	AACTCAACGA
501	ACGCCATTCC	TTCGGCGCAG	GCATCATCGC	CCAACATACT	TCCGCCGAGC
551	TGCGCAAATA	TGCCGACTGG	GGGATTATGG	AAAAAGCGAA	AGCACTAAAA
601	GAAACACCCC	CCAATCCAAC	TAAAGCCGCC	CAAATCAAAG	CCGACGGACA
651	CGCCGATGTC	AAAGGCAGCG	ATTGGGGCTT	CGGCTACCAA	CTGGCGTGGA
701	TGTGGGACAT	CAACGACCGT	GCGCGCGTGG		CCGTTCCAAA
751	GTCTCACACA	CGCTCAAAGG	CGATGCCGAA		ACGACGCAAT
801	GGCGAAACAG	TTATGGGATG	CAAACAAACT	CGCACTGCTC	GGCTACACGC
851	CAAGCGAAAA	AGCCCGCGTT	AAAATCGTTA		TTTGTCCGTA
901	CACGGTATGT	ACAAAGTGTC	CGACAAAGCC	GACCTGTTCG	GCGACGTAAC
951	TTGGACGCGC	CACAGCCGCT	TCGATAAGGC	GGAACTGGTT	TTTGAAAAAG
1001			AAATCCGACC		
1051		CCTACAAAGT		GGTTCTTATC	
1101		CTGCGCGCCG		TGACAAATCG	CCCGTCCGCA
1151		CCGCATGAAC		ACGGCAACCG	CATCTGGTTC
1201		TGAAATACCA			TCGATGCCGC
1251		ATCCACATCA		CTACCGCACG	
1301		TGTGGACAGC			GCGAAGGCAA
1351				CTTCCGCACG	TTTCAAAAAC
1331	CACGCCGACA	TCATCGGCCT	GCAATACACC	TACAAATTCA	AATAA

This corresponds to the amino acid sequence <SEQ ID 2990; ORF 989.a>:

```
MTPSALKKTV LLLGTAFAAA SAQASGYHFG TQSVNAQSTA NAAAAEAADA
         STIFYNPAGL TKLDSSQISV NANIVLPSIH YEADSATDFT GLPVQGSKSG
     51
        KITKTTVAPH IYGAYKVNDN LTVGLGVYVP FGSATEYEKD SVLRHNINKL
    101
        GLTSIAVEPV AAWKLNERHS FGAGIIAQHT SAELRKYADW GIMEKAKALK
    201 ETPPNPTKAA QIKADGHADV KGSDWGFGYQ LAWMWDINDR ARVGVNYRSK
        VSHTLKGDAE WAADDAMAKQ LWDANKLALL GYTPSEKARV KIVTPESLSV
    251
         HGMYKVSDKA DLFGDVTWTR HSRFDKAELV FEKEKTIVNG KSDRTTITPN
    301
    351
         WRNTYKVGFG GSYQISEPLQ LRAGIAFDKS PVRNADYRMN SLPDGNRIWF
         SAGMKYHIGK NHVVDAAYTH IHINDTSYRT AKASGNDVDS KGASSARFKN
    401
         HADIIGLOYT YKFK*
    451
m989/a989
           93.1% identity in 467 aa overlap
                            20
                                             40
                                                      50
                                                               60
           {\tt MTPSALKKTVLLLGTAFAAASVHASGYHFGTQSVNAQSTANAAAAEAADASTIFYNPAGL}
m989.pep
            a989
           MTPSALKKTVLLLGTAFAAASAQASGYHFGTQSVNAQSTANAAAAEAADASTIFYNPAGL
                           20
                                    30
                                             40
                                                      50
                  70
                           80
                                    90
                                            100
                                                     110
                                                              120
           TKLDSSQISVNANIVLPSIHYEADSATDFTGLPVQGSKSGKITKTTVAPHIYGAYKVNDN
m989.pep
           TKLDSSQISVNANIVLPSIHYEADSATDFTGLPVQGSKSGKITKTTVAPHIYGAYKVNDN
a989
                  70
                           80
                                    90
                                            100
                                                     110
                                                              120
                          140
                                   150
                                            160
                                                     170
                                                              180
m989.pep
           LTVGLGVYVPFGSATEYEKDSVLRHNINKLGLTSIAVEPVAAWKLNDRHSFGAGIIAQHT
           LTVGLGVYVPFGSATEYEKDSVLRHNINKLGLTSIAVEPVAAWKLNERHSFGAGIIAQHT
a989
                 130
                           140
                                   150
                                            160
                                                     170
                                                              180
```

11:1:

210

SAELRKYADWGIKSKAEILTAKPPKPNGVAEAAKIQADGHADVKGSDWGFGYQLAWMWDI

SAELRKYADWGIMEKAKALKETPPNPT---KAAQIKADGHADVKGSDWGFGYQLAWMWDI

210

220

230

230

220

200

200

190

190

	240	250	260	270	280	290	
	300	310	320	330	340	350	359
m989.pep	LSVHGM	YKVSDKADLF	GDVTWTRHSR	FDKAELVFE	(EKTVVKGKSD)	RTTITPNWR	NTYKV
a989	LSVHGM	YKVSDKADLF	GDVTWTRHSR	FDKAELVFEK	(EKTIVNGKSD	RTTITPNWR	NTYKV
	300	310	320	330	340	350	
	360	370	380	390	400	410	419
m989.pep	GFGGSY	QISEPLQLRA	GIAFDKSPVR	NADYRMNSLE	DGNRIWFSAG	MKYHIGKNH	VVDAA
a989	GFGGSY	! OISEPLOLRA		IIIIIIIIII NADYRMNSLE		IIIIIIIII MKYHIGKNH	VVDAA
	360	370	380	390	400	410	
	420	430	440	450	460		
m989.pep					IIGLQYTYKF:	KX	
a989	 	 	SCHDADSKCD			KX 	
a 30 3	420	430	440	450	460	MA.	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2991>:

```
m990.seq
         ATGTTCAGAG CTCAGCTTGG TTCAAATACT CGTTCTACCA AAATCGGCGA
      1
     51
         CGATGCCGAT TTTTCATTTT CAGACAAGCC GAAACCCGGC ACTTCCCATT
    101
         ATTTTTCCAG CGGTAAAACC GATCAAAATT CATCCGAATA TGGGTATGAC
         GAAATCAATA TCCAAGGTAA AAATTACAAT AGCGGCATCC TCGCCGTCGA
    151
         TAATATGCCC GTTGTCAAAA AATATATTAC AGAGAAGTAT GGGGCTGATT
    201
         TAAAGCAGGC GGTTAAAAGT CAATTACAGG ATTTATACAA AACAAGACCG
    251
         GAAGCTTGGG CAGAAAATAA AAAACGGACT GAGGAGGCGT ATATAGCACA
    351 GTTTGGAACA AAATTTAGTA CGCTCAAACA GACGATGCCC GATTTAATTA
    401
         ATAAATTGGT AGAAGATTCC GTACTCACTC CTCATAGTAA TACATCACAG
         ACTAGTCTCA ACAACATCTT CAATAAAAA TTACACGTCA AAATCGAAAA
         CAAATCCCAC GTCGCCGGAC AGGTGTTGGA ACTGACCAAG ATGACGCTGA
    501
    551 AAGATTCCCT TTGGGAACCG CGCCGCCATT CCGACATCCA TACGCTGGAA
    601 ACTTCCGATA ATGCCCGCAT CCGCCTGAAC ACGAAAGATG AAAAACTGAC
         CGTCCATAAG GATTATGCGG GCGGCGCGGA TTTCCTGTTC GGCTACGACG
    651
         TGCGGGAGTC GGACGAACCC GCCCTGACCT TTGAAGACAA AGTCAGCGGA
    701
         CAATCCGGCG TGGTTTTGGA ACGCCGGCCG GAAAATCTGA AAACGCTCGA
    751
         CGGGCGCAAA CTGATTGCGG CAAAAACGGC GGATTCCGGT TCGTTTGCGT
    801
         TTAAACAAAA TTACCGGCAG GGACTGTACG AATTATTGCT CAAGCAATGC
         GAAGGCGGAT TTTGCTTGGG CGTGCAGCGT TTGGCTATCC CCGAGGCGGA
    901
    951
         AGCGGTTTTA TATGCCCAAC AGGCTTATGC GGCAAATACT TTGTTTGGGC
    1001
         TGCGTGCCGC CGACAGGGC GACGACGTGT ATGCCGCCGA TCCGTCCCGT
         CAAAAATTGT GGCTGCGCTT CATCGGCGGC CGGTCGCATC AAAATATACG
    1051
   1101
         GGGCGCGCG GCTGCGGACG GGTGGCGCAA AGGCGTGCAA ATCGGCGGCG
    1151 AGGTGTTTGT ACGGCAAAAT GAAGGCAGCC GACTGGCAAT CGGCGTGATG
         GGCGGCAGGG CCGGCCAGCA CGCATCAGTC AACGGCAAAG GCGGTGCGGC
    1201
    1251
         AGGCAGTGAT TTGTATGGTT ATGGCGGGGG TGTTTATGCT GCGTGGCATC
         AGTTGCGCGA TAAACAAACG GGTGCGTATT TGGACGGCTG GTTGCAATAC
   1301
         CAACGTTTCA AACACCGCAT CAATGATGAA AACCGTGCGG AACGCTACAA
   1351
    1401
         AACCAAAGGT TGGACGGCTT CTGTCGAAGG CGGCTACAAC GCGCTTGTGG
         CGGAAGGCAT TGTCGGAAAA GGCAATAATG TGCGGTTTTA CCTACAACCG
    1451
         CAGGCGCAGT TTACCTACTT GGGCGTAAAC GGCGGCTTTA CCGACAGCGA
    1501
         GGGGACGGCG GTCGGACTGC TCGGCAGCGG TCAGTGGCAA AGCCGCGCCG
    1551
         GCATTCGGGC AAAAACCCGT TTTGCTTTGC GTAACGGTGT CAATCTTCAG
    1601
         CCTTTTGCCG CTTTTAATGT TTTGCACAGG TCAAAATCTT TCGGCGTGGA
    1701
         AATGGACGC GAAAAACAGA CGCTGGCAGG CAGGACGGCA CTCGAAGGGC
         GGTTCGGTAT TGAAGCCGGT TGGAAAGGCC ATATGTCCGC ACGCATCGGA
    1751
    1801
          TATGGCAAAA GGACGGACGG CGACAAAGAA GCCGCATTGT CGCTCAAATG
    1851
         GCTGTTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2992; ORF 990>: m990.pep


```
1 MFRAQLGSNT RSTKIGDDAD FSFSDKPKPG TSHYFSSGKT DQNSSEYGYD
51 EINIQGKNYN SGILAVDNMP VVKKYITEKY GADLKQAVKS QLQDLYKTRP
    EAWAENKKRT EEAYIAQFGT KFSTLKQTMP DLINKLVEDS VLTPHSNTSQ
    TSLNNIFNKK LHVKIENKSH VAGQVLELTK MTLKDSLWEP RRHSDIHTLE
    TSDNARIRLN TKDEKLTVHK DYAGGADFLF GYDVRESDEP ALTFEDKVSG
201
    QSGVVLERRP ENLKTLDGRK LIAAKTADSG SFAFKQNYRQ GLYELLLKQC
301 EGGFCLGVQR LAIPEAEAVL YAQQAYAANT LFGLRAADRG DDVYAADPSR
    QKLWLRFIGG RSHQNIRGGA AADGWRKGVQ IGGEVFVRQN EGSRLAIGVM
351
    GGRAGOHASV NGKGGAAGSD LYGYGGGVYA AWHQLRDKQT GAYLDGWLQY
    ORFKHRINDE NRAERYKTKG WTASVEGGYN ALVAEGIVGK GNNVRFYLQP
451
    QAQFTYLGVN GGFTDSEGTA VGLLGSGQWQ SRAGIRAKTR FALRNGVNLQ
551 PFAAFNVLHR SKSFGVEMDG EKQTLAGRTA LEGRFGIEAG WKGHMSARIG
601 YGKRTDGDKE AALSLKWLF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2993>:

```
a990.seq
          ATGTTCAGAG CTCAGCTTGG TTCAAATACT CGTTCTACCA AAATCGGCGA
          CGATGCCGAT TTTTCATTTT CAGACAAGCC GAAACCCGGC ACTTCCCATT
      51
     101 ATTTTTCCAG CGGTAAAACC GATCAAAATT CATCCGAATA TGGGTATGAC
     151 GAAATCAATA TCCAAGGTAA AAACTACAAT AGCGGCATAC TCGCCGTCGA
     201 TAATATGCCC GTTGTTAAGA AATATATTAC AGATACTTAC GGGGATAATT
     251 TAAAGGATGC GGTTAAGAAG CAATTACAGG ATTTATACAA AACAAGACCC
     301
          GAAGCTTGGG AAGAAAATAA AAAACGGACT GAGGAGGCGT ATATAGAACA
          GCTTGGACCA AAATTTAGTA TACTCAAACA GAAAAACCCC GATTTAATTA
     351
     401 ATAAATTGGT AGAAGATTCC GTACTCACTC CTCATAGTAA TACATCACAG
     451 ACTAGTCTCA ACAACATCTT CAATAAAAA TTACACGTCA AAATCGAAAA
     501 CAAATCCCAC GTCGCCGGAC AGGTGTTGGA ACTGACCAAG ATGACGCTGA
     551 AAGATTCCCT TTGGGAACCG CGCCGCCATT CCGACATCCA TATGCTGGAA
          ACTTCCGATA ATGCCCGCAT CCGCCTGAAC ACGAAAGATG AAAAACTGAC
     651 CGTCCATAAA GCGTATCAGG GCGGTGCGGA TTTCCTGTTC GGCTACGACG
     701 TGCGGGAGTC GGACAAACCC GCCTGACCT TTGAAGAAAA AGTCAGCGGA
     751 CAATCCGGCG TGGTTTTGGA ACGCCGGCCG GAAAATCTGA AAACGCTCGA
     801 CGGGCGCAAA CTGATTGCGG CGGAAAAGGC AGACTCTAAT TCGTTTGCGT
     851
          TTAAACAAAA TTACCGGCAG GGACTGTACG AATTATTGCT CAAGCAATGC
          GAAGGCGGAT TTTGCTTGGG CGTGCAGCGT TTGGCTATCC CCGAGGCGGA
     901
     951 AGCGGTTTTA TATGCCCAAC AGGCTTATGC GGCAAATACT TTGTTCGGGC
    1001 TGCGTGCCGC CGACAGGGGC GACGACGTGT ATGCCGCCGA TCCGTCCCGT
    1051 CAAAAATTGT GGCTGCGCTT CATCGGCGGC CGGTCGCATC AAAATATACG
   1101 GGGCGCGCG GCTGCGGACG GGCGGCGCAA AGGCGTGCAA ATCGGCGGCG
1151 AGGTGTTTGT ACGGCAAAAT GAAGGCAGCC GGCTGGCAAT CGGCGTGATG
1201 GGCGGCAGGG CTGGCCAGCA CGCATCAGTC AACGGCAAAG GCGGTGCGGC
    1251 AGGCAGTTAT TTGCATGGTT ATGGCGGGGG TGTTTATGCT GCGTGGCATC
    1301 AGTTGCGCGA TAAACAAACG GGTGCGTATT TGGACGGCTG GTTGCAATAC
    1351 CAACGTTTCA AACACCGCAT CAATGATGAA AACCGTGCGG AACGCTACAA
1401 AACCAAAGGT TGGACGGCTT CTGTCGAAGG CGGCTACAAC GCGCTTGTGG
    1451 CGGAAGGCGT TGTCGGAAAA GGCAATAATG TGCGGTTTTA CCTGCAACCG
    1501 CAGGCGCAGT TTACCTACTT GGGCGTAAAC GGCGGCTTTA CCGACAGCGA
    1551 GGGGACGGCG GTCGGACTGC TCGGCAGCGG TCAGTGGCAA AGCCGCGCCG
    1601 GCATTCGGGC AAAAACCCGT TTTGCTTTGC GTAACGGTGT CAATCTTCAG
    1651 CCTTTTGCCG CTTTTAATGT TTTGCACAGG TCAAAATCTT TCGGCGTGGA
1701 AATGGACGGC GAAAAACAGA CGCTGGCAGG CAGGACGGCG CTCGAAGGGC
    1751 GGTTCGGCAT TGAAGCCGGT TGGAAAGGCC ATATGTCCGC ACGCATCGGA
          TACGGCAAAA GGACGGACGG CGACAAAGAA GCCGCATTGT CGCTCAAATG
    1851 GCTGTTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2994; ORF 990.a>:

```
a990.pep

1 MFRAQLGSNT RSTKIGDDAD FSFSDKPKPG TSHYFSSGKT DQNSSEYGYD
51 EINIQGKNYN SGILAVDNMP VVKKYITDTY GDNLKDAVKK QLQDLYKTRP
101 EAWEENKKRT EEAYIEQLGP KFSILKQKNP DLINKLVEDS VLTPHSNTSQ
151 TSLNNIFNKK LHVKIENKSH VAGQVLELTK MTLKDSLWEP RRHSDIHMLE
201 TSDNARIRLN TKDEKLTVHK AYQGGADFLF GYDVRESDKP ALTFEEKVSG
251 QSGVVLERRP ENLKTLDGRK LIAAEKADSN SFAFKQNYRQ GLYELLLKQC
301 EGGFCLGVQR LAIPEAEAVL YAQQAYAANT LFGLRAADRG DDVYAADPSR
351 QKLWLRFIGG RSHQNIRGGA AADGRRKGVQ IGGEVFVRQN EGSRLAIGVM
```

401 451 501 551 601	GGRAGQHASV NGKGGAAGSY LHGYGGGVYA AWHQLRDKQT GAYLDGWLQY QRFKHRINDE NRAERYKTKG WTASVEGGYN ALVAEGVVGK GNNVRFYLQP QAQFTYLGVN GGFTDSEGTA VGLLGSGQWQ SRAGIRAKTR FALRNGVNLQ PFAAFNVLHR SKSFGVEMDG EKQTLAGRTA LEGRFGIEAG WKGHMSARIG YGKRTDGDKE AALSLKWLF*
m990/a990	96.0% identity in 619 aa overlap
m990.pep	10 20 30 40 50 60 MFRAQLGSNTRSTKIGDDADFSFSDKPKPGTSHYFSSGKTDQNSSEYGYDEINIQGKNYN
m990.pep	70 80 90 100 110 120
m990.pep	130 140 150 160 170 180 KFSTLKQTMPDLINKLVEDSVLTPHSNTSQTSLNNIFNKKLHVKIENKSHVAGQVLELTK
m990.pep	190 200 210 220 230 240 MTLKDSLWEPRRHSDIHTLETSDNARIRLNTKDEKLTVHKDYAGGADFLFGYDVRESDEP
m990.pep	250 260 270 280 290 300 ALTFEDKVSGQSGVVLERRPENLKTLDGRKLIAAKTADSGSFAFKQNYRQGLYELLLKQC :
m990.pep	310 320 330 340 350 360 EGGFCLGVQRLAIPEAEAVLYAQQAYAANTLFGLRAADRGDDVYAADPSRQKLWLRFIGG [
m990.pep	370 380 390 400 410 420 RSHQNIRGGAAADGWRKGVQIGGEVFVRQNEGSRLAIGVMGGRAGQHASVNGKGGAAGSD
m990.pep	430 440 450 460 470 480 LYGYGGGVYAAWHQLRDKQTGAYLDGWLQYQRFKHRINDENRAERYKTKGWTASVEGGYN :
m990.pep a990	490 500 510 520 530 540 ALVAEGIVGKGNNVRFYLQPQAQFTYLGVNGGFTDSEGTAVGLLGSGQWQSRAGIRAKTR :
m990.pep	550 560 570 580 590 600 FALRNGVNLQPFAAFNVLHRSKSFGVEMDGEKQTLAGRTALEGRFGIEAGWKGHMSARIG

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2995>:

```
ATGTTCAGAC GGCATCGGCA TTTGAAAAAT ATGCAGATTA AAAAAATCAT
     GAAATGGCTT CCCGTCGCCC TGTCGCTTTT GGGCGCGTTG GGTTATACGG
 51
101 GATATGACAG TGAGGCGGTG CGGACGGCGG TTGCCGTACT CGACGTACTC
     GGCACTGCAG GGGACGTGGG TTTCGACGCG CCCGTTCGCC GACGGGCATC
151
201 GGCGAAATCC GGCCACAGCT ACACAGGCAC GGTGTCCAAA GTCTATGACG
251 GCGATACCCT TCACGTCATC GACGGCGACG GCGCGAAACA TAAAATTCGG
301 ATGGCGTATA TCGACGCACC GGAGATGAAA CAGGCTTACG GTACACGTTC
351 GCGCGACAAC CTGCGCGCGG CGGCGGAGGG TAGGAAAGTC AGTGTACGTG
401 TGTTTGAAAC CGACCGCTAT CAGCGCGAAG TGGCGCAGGT ATCCGCCGGC
451 AAAACCGATT TGAACCTGAT GCAGGTGCAG GACGGGGCGG CGTGGCATTA
     TAAAAGTTAT GCTAAAGAAC AGCAGGATAA GGCGGATTTT GCCGACTATG
501
     CCGACGCTCA AATTCAGGCG GAAAGGGAAC GCAAAGGATT GTGGAAAGCT
551
     AAAAATCCGC AAGCGCCGTG GGCGTACCGC CGGGCAGGCA GGAGCGGCGG
     GGGCAATAAG GATTGGATGG ATTCCGTGGG CGAATGGTTG GGCATTTGGT
651
701
```

This corresponds to the amino acid sequence <SEQ ID 2996 ORF 992.ng>: g992.pep

- 1 MFRRHRHLKN MOIKKIMKWL PVALSLLGAL GYTGYDSEAV RTAVAVLDVL 51 GTAGDVGFDA PVRRASAKS GHSYTGTVSK VYDGDTLHVI DGDGAKHKIR
- 101 MAYIDAPEMK QAYGTRSRDN LRAAAEGRKV SVRVFETDRY QREVAQVSAG
- 151 KTDLNLMOVO DGAAWHYKSY AKEQQDKADF ADYADAQIQA ERERKGLWKA
- 201 KNPQAPWAYR RAGRSGGGNK DWMDSVGEWL GIW*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2997>: m992.seq

```
ATGTTCAGAC GGCATCGGCA TTTGAAAAAT ATGCAGATTA AAAAAATCAT
     GAAATGGCTT CCCGTCGCCC TGTCGCTTTT GGGTGCGTTG GGTTATACGG
 51
     GGTACGGCAG CGAGGCGGTG CGGACGGCGG TTGCCGTACT CGACGTACTC
101
151 GGCGCGGCAG GGGACGCGGG TTCCGACGCG CCCGCCCGCC GCCGAGCATC
    GGCGAAATCC GGCCACCGCT ACACAGGCAC GGTGTCCAAA GTCTATGACG
201
    GCGACACCCT TCACGTTATC GACGGCGACG GCGCGAAACA CAAAATCCGG
251
301 ATGGCGTATA TCGACGCGCC GGAGATGAAA CAGGCTTACG GCACGCGTTC
     GCGCGACAAC CTGCGCGCGG CGGCGGAAGG CAGGAAAGTC AGCGTGCGCG
351
401 TGTTCGATAC CGACCGCTAC CAGCGCGAAG TGGCGCAGGT TTCTGTCGGC
451 AAAACCGATT TGAACCTGAT GCAGGTGCAG GACGGGGCGG CGTGGCATTA
     TAAAAGTTAT GCTAAAGAAC AGCAGGATAA GGCGGATTTT GCCGATTATG
501
     CCGACGCTCA AATTCAGGCG GAAAGGAAC GCAAAGGATT GTGGAAAGCT
     AAAAATCCGC AAGCGCCGTG GGCGTACCGC CGAGCAGGCA GGAGCGGCGG
     GGGCAATAAG GATTGGATGG ATGCCGTGGG CGAATGGTTG GGCATTTGGT
651
```

This corresponds to the amino acid sequence <SEQ ID 2998; ORF 992>: m992.pep

- 1 MFRRHRHLKN MQIKKIMKWL PVALSLLGAL GYTGYGSEAV RTAVAVLDVL
 51 GAAGDAGSDA PARRRASAKS GHRYTGTVSK VYDGDTLHVI DGDGAKHKIR
- 101 MAYIDAPEMK QAYGTRSRDN LRAAAEGRKV SVRVFDTDRY QREVAQVSVG 151 KTDLNLMQVQ DGAAWHYKSY AKEQQDKADF ADYADAQIQA ERERKGLWKA
- 201 KNPQAPWAYR RAGRSGGGNK DWMDAVGEWL GIW*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 992 shows 96.1% identity over a 233 aa overlap with a predicted ORF (ORF 992) from N. gonorrhoeae

m992/g992 96.1% identity in 233 aa overlap

	10	20	30	40	50	60
m992.pep	MFRRHRHLKNMQI	KKIMKWLPVAL	SLLGALGYTO	SYGSEAVRTAV.	AVEDVEGAA	II:! !!
g992	MFRRHRHLKNMQI	KKIMKWLPVAL	SLLGALGYTO	SYDSEAVRTAV.	AVLDVLGTA	
9,5,2	10	20	30	40	50	60
	70	80	90	100	110	120
m992.pep	PARRASAKSGHR	YTGTVSKVYDG	DTLHVIDGD(SAKHKIRMAYI	DAPEMKQAY	
_	1:111111111	1111111111	111111111		1 1 1 1 1 1	1311111
g992	PVRRRASAKSGHS					
	70	80	90	100	110	120
	130	140	150	160	170	180
m992.pep	LRAAAEGRKVSVR'	VFDTDRYQREV	AQVSVGKTDI	LNLMQVQDGAA	WHYKSYAKE	QQDKADF
• •	11111111111111	, , , , , , , , , , , ,	1111:1111		111111111	111111
g992	LRAAAEGRKVSVR'	VFETDRYQREV		LNLMQVQDGAA		
-	130	140	150	160	170	180
	190	200	210	220	230	
m992.pep	ADYADAQIQAERE	RKGLWKAKNPQ	APWAYRRAGI	RSGGGNKDWMD	AVGEWLGIW	X
			THEFT	[[]]]	:	1
g992	ADYADAQIQAERE	RKGLWKAKNPQ	APWAYRRAGI			x
-	190	200	210	220	230	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2999>: a992.seq

1	ATGTTCAGAC	GGCATCGGCA	TTTGAAAAAT	ATGCAGATTA	AAAAAATCAT
51	GAAATGGCTT	CCCGTCGCCT	TGTCGCTTTT	GGGTGCGTTG	GGTTATACGG
101	GGTACGGCAG	CGAGGCGGTG	CGGACGGCGG	TTGCCGTACT	CGACGTACTC
151	GGCGCGGCAG	GGGACGCGGG	TTCCGACGCG	CCCGCCCGCC	GCCGAGCATC
201	GGCGAAATCC	GGCCACCGCT	ACACAGGCAC	GGTGTCCAAA	GTCTATGACG
251	GCGACACCCT	TCACGTTATC	GACGGCGACG	GCGCGAAACA	CAAAATCCGG
301	ATGGCGTATA	TCGACGCGCC	GGAGATGAAA	CAGGCTTACG	GCACGCGTTC
351	GCGCGACAAC	CTGCGCGCGG	CGGCGGAAGG	CAGGAAAGTC	AGCGTCCGCG
401	TGTTCGACAC	CGACCGCTAC	CAGCGCGAAG	TGGCGCAGGT	TTCTGTCGGC
451	AAAACCGATT	TGAACCTGAT	GCAGGTGCAG	GACGGGGCGG	CGTGGCATTA
501	TAAAAGTTAT	GCTAAAGAAC	AGCAGGATAA	GGCGGATTTT	GCCGATTATG
551	CCGACGCTCA	AATTCAGGCG	GAAAGGGAAC	GCAAAGGATT	GTGGAAAGCT
601	AAAAATCCGC	AAGCGCCGTG	GGCGTACCGC	CGGGCAGGCA	GGAGCGGCGG
651	GGGCAATAAG	GATTGGATGG	ATGCCGTGGG	CGAATGGTTG	GGCATTTGGT
701	AA				

This corresponds to the amino acid sequence <SEQ ID 3000; ORF 992.a>: a992.pep

- 1 MFRRHRHLKN MQIKKIMKWL PVALSLLGAL GYTGYGSEAV RTAVAVLDVL
- 51 GAAGDAGSDA PARRASAKS GHRYTGTVSK VYDGDTLHVI DGDGAKHKIR 101 MAYIDAPEMK QAYGTRSRDN LRAAAEGRKV SVRVFDTDRY QREVAQVSVG
- 151 KTDLNLMQVQ DGAAWHYKSY AKEQQDKADF ADYADAQIQA ERERKGLWKA
- 201 KNPQAPWAYR RAGRSGGGNK DWMDAVGEWL GIW*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 992 shows 100.0% identity over a 233 aa overlap with a predicted ORF (ORF 992) from N. meningitidis

a992/m992	100.0% identity	111 233 46	Overlap			
	10	20	30	40	50	60
a992.pep	MFRRHRHLKNMQIKE	KIMKWLPVAI	SLLGALGYTG	GSEAVRTA	/AVLDVLGAAG	DAGSDA
- •	1111111111111111	111111111		11111111	111111111	111111
m992	MFRRHRHLKNMQIKE	KIMKWLPVAI	LSLLGALGYTG	GSEAVRTA'	VAVLDVLGAAG	DAGSDA
	10	20	30	40	50	60
	70	80	90	100	110	120
a992.pep	PARRRASAKSGHRYT	rGTVSKVYD0	SDTLHVIDGDG/	AKHKIRMAY:	IDAPEMKQAYG	TRSRDN
m992	PARRRASAKSGHRYT	TGTVSKVYD (SDTLHVIDGDG/	AKHKIRMAY	-	TRSRDN
	70	80	90	100	110	120
	130	140	150	160	170	180


```
\verb|LRAAAEGRKVSVRVFDTDRYQREVAQVSVGKTDLNLMQVQDGAAWHYKSYAKEQQDKADF|
a992.pep
          m992
          \verb|LRAAA| EGRKVSVRVFDTDRYQREVAQVSVGKTDLNLMQVQDGAAWHYKSYAKEQQDKADF|
               130
                       140
                               150
                                       160
                                               170
               190
                       200
                               210
                                       220
                                               230
a992.pep
          ADYADAQIQAERERKGLWKAKNPQAPWAYRRAGRSGGGNKDWMDAVGEWLGIWX
          m992
          ADYADAQIQAERERKGLWKAKNPQAPWAYRRAGRSGGGNKDWMDAVGEWLGIWX
               190
                       200
                               210
                                       220
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3001>: g993.seq

```
CTGAAAGTCG TATTGGGCAG TTTTCAAGGC CCTTTGGATC TGCTGCTCTA
     CCTTATCCGC AAGCAGAACA TCGATGTTCT CGATATTCCG ATGGTGGAAA
TTACCGGGCA GTATCTGCAC TATATTGCCC AAATGGAAGC CTATCAGTTT
 51
101
151
     GATTTGGCGG CGGAATATCT TTTGATGGCG GCAATGCTGA TTGAAATCAA
     ATCGCGCCTG CTGCTGCCGC GTACCGAAGC CGTCGAAGAC GAAGAGGCCG
251 ACCCGCGTGC CGAGTTGGTG CGCCGTCTGC TTGCCTACGA GCAAATGAAA
301
     CTGGCGGCGC AGGGTTTGGA CGCGCTGCCG CGTGCGGGAC GGGATTTCGC
     GTGGGCTTAC CTGCCGCTGG AAATTGCAGC CGAGACGAAG CTGCCCGAGG
351
401
     TTTACATCGC CGATTTGATG CAGGCATGGT TGGGCATTCT TTCTCGGGCA
     AAACATACGC GCAGCCACGA AGTAATCCAA GAAACCCTTT CCGTGCGCGC
451
501 GCAAATGACG GCAATCCTGC GCCGTTTGAA CGAACACGGG ATATGCAGGT
551
601
     TTCACGCCCT GTTCAATCCC GAACAGGGCG CGGCTTACGT GATCGTCAAC
     TTCATCGCCC TGTTGGAGCT TGCCAAAGAA GGATTGGTCG GAATCGTACA
     GGAAGACGGT TTCGGAGAAA TCCGAATCAG CCTCAATCAT GAGGGGGCGC
701 ATTCAGACGG CATTTTCGGC ACACGGGGCG GGCGCGATGT GTTCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3002 ORF 993.ng>: g993.pep

```
1 LKVVLGSFQG PLDLLLYLIR KQNIDVLDIP MVEITGQYLH YIAQMEAYQF
51 DLAAEYLLMA AMLIEIKSRL LLPRTEAVED EEADPRAELV RRLLAYEQMK
101 LAAQGLDALP RAGRDFAWAY LPLEIAAETK LPEVYIADLM QAWLGILSRA
151 KHTRSHEVIQ ETLSVRAQMT AILRRLNEHG ICRFHALFNP EQGAAYVIVN
201 FIALLELAKE GLVGIVQEDG FGEIRISLNH EGAHSDGIFG TRGGRDVF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3003>: m993.seq

```
TTGAAAGTCG TATTGGGCAG CTTCCAAGGC CCTTTGGATC TACTGCTGTA
     TCTGATCCGC AAACAGAATA TCGACGTACT GGATATTCCG ATGGTGAAGA
 51
101 TTACCGAGCA GTATCTGCAC TACATCGCCC AAATAGAAAC CTATCAGTTT
151 GATTTGGCGG CGGAATATCT TTTGATGGCA GCAATGCTGA TTGAAATCAA
.201 ATCGCGCCTG CTGCTGCCGC GTACCGAAAC CGTCGAAGAC GAAGAAGCCG
251 ACCCGCGTGC CGAGTTGGTG CGCCGCCTGC TGGCTTACGA ACAGATGAAG
301 CTGGCGGCGC AGGGTTTGGA CGCGCTGCCC CGAGCCGGAC GGGATTTCGC
351 GTGGGCTTAC CTGCCGCTGG AAATTGCCGT CGAAGCCAAG CTGCCCGAAG
401
     TCTATATTAC CGACTTGACG CAAGCGTGGC TGGGTATTTT GTCTCGGGCA
451 AAACACACGC GCAGCCACGA AGTAATCAAA GAAACCATCT CCGTGCGCGC
501 GCAAATGACG GCAATCCTGC GCCGTTTGAA CGGACACGGA ATATGCAGGT
551
     TTCACGACCT GTTCAATCCC AAACAGGGCG CGGCTTACGT GGTCGTCAAC
     TTCATCGCAC TGTTGGAGCT TGCCAAAGAA GGATTGGTCA GAATCGTGCA
601
651 GGAAGACGGT TTCGGAGAAA TCCGAATCAG CCTCAATCAT GAGGGGGCGC
701 ATTCAGACGG CATTTCCGGC ACACGAGGCG GGCGCGATGT GTTCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3004; ORF 993>: m993.pep

```
1 LKVVLGSFQG PLDLLLYLIR KQNIDVLDIP MVKITEQYLH YIAQIETYQF
51 DLAAEYLLMA AMLIEIKSRL LLPRTETVED EEADPRAELV RRLLAYEQMK
101 LAAQGLDALP RAGRDFAWAY LPLEIAVEAK LPEVYITDLT QAWLGILSRA
151 KHTRSHEVIK ETISVRAQMT AILRRLNGHG ICRFHDLFNP KQGAAYVVVN
201 FIALLELAKE GLVRIVQEDG FGEIRISLNH EGAHSDGISG TRGGRDVF*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 993 shows 93.1% identity over a 248 aa overlap with a predicted ORF (ORF 993) from N. gonorrhoeae

```
m993/g993
          93.1% identity in 248 aa overlap
                10
                        20
                                30
                                        40
                                               50
m993.pep
          LKVVLGSFQGPLDLLLYLIRKQNIDVLDIPMVKITEQYLHYIAQIETYQFDLAAEYLLMA
          g993
          LKVVLGSFQGPLDLLLYLIRKQNIDVLDIPMVEITGQYLHYIAQMEAYQFDLAAEYLLMA
                10
                        20
                                30
                                        40
                        80
                                       100
                                              110
          AMLIEIKSRLLLPRTETVEDEEADPRAELVRRLLAYEQMKLAAQGLDALPRAGRDFAWAY
m993.pep
          a993
          AMLIEIKSRLLLPRTEAVEDEEADPRAELVRRLLAYEQMKLAAQGLDALPRAGRDFAWAY
                70
                        80
                                90
               130
                       140
                               150
                                       160
                                              170
          LPLEIAVEAKLPEVYITDLTQAWLGILSRAKHTRSHEVIKETISVRAQMTAILRRLNGHG
m993.pep
          LPLEIAAETKLPEVYIADLMQAWLGILSRAKHTRSHEVIQETLSVRAQMTAILRRLNEHG
q993
               130
                       140
                               150
                                       160
                                              170
               190
                       200
                               210
m993.pep
          ICRFHDLFNPKQGAAYVVVNFIALLELAKEGLVRIVQEDGFGEIRISLNHEGAHSDGISG
          g993
          ICRFHALFNPEQGAAYVIVNFIALLELAKEGLVGIVQEDGFGEIRISLNHEGAHSDGIFG
               190
                       200
                               210
              249
          TRGGRDVFX
m993.pep
          111111111
a993
          TRGGRDVFX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3005>: a993.seq

```
CTGAAAGTCG TATTGAGCAG TTTTCAAGGC CCTTTGGATC TGCTGCTCTA
 51
     CCTTATCCGC AAGCAGAACA TCGATGTTCT CGATATTCCG ATGGTGAAGA
101
    TTACCGAACA GTATCTGCAC TACATCGCCC AAATAGAAAC CTATCAGTTT
    GATTTGGCGG CGGAATATCT TTTGATGGCA GCAATGCTGA TTGAAATCAA
151
201
    ATCGCGCCTG CTGCTGCCGC GTACCGAAAC CGTCGAAGAC GAAGAAGCCG
251
    ACCCGCGTGC CGAGTTGGTG CGCCGCCTGC TGGCTTACGA GCAGATGAAG
301
    CTGGCGGCAC AAGGGTTGGA TGCGCTTCCT CGTGCGGGCC GGGATTTCGC
    ATGGGCATAC CTGCCACTGG AAATTGCCGT CGAAGCCAAG CTGCCCGAAG
351
401
    TCTATATTAC CGACTTGACG CAGGCGTGGC TGAGTATTTT GTCTCGGGCA
451
    AAACATACGC GCAGCCACGA AGTTATCAAA GAAACCATCT CCGTGCGCGC
501
    GCAAATGACG GCAATCCTGC GCCGTTTGAA CAAACACGGG ATATGCAGGT
    TTCACGACCT GTTCAATCCC GAACAGGGCG CGGCTTACGT GGTCGTCAAC
551
601
    TTCATCGCAC TGTTGGAGCT TGCCAAAGAA GGTTTGGTCG GAATCGTACA
651
    GGAAGTCGGT TTCGGAGAAA TCCGAATCAG CCTCAATCAT GAGGGGGCGC
    ATTCAGACGG CATTTCCGGC ACACGGGGCG GGCGCGATGT GTTCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3006; ORF 993.a>: a993.pep

- 1 LKVVLSSFQG PLDLLLYLIR KQNIDVLDIP MVKITEQYLH YIAQIETYQF
 51 DLAAEYLLMA AMLIEIKSRL LLPRTETVED EEADPRAELV RRLLAYEQMK
 101 LAAQGLDALP RAGRDFAWAY LPLEIAVEAK LPEVYITDLT QAWLSILSRA
 151 KHTRSHEVIK ETISVRAQMT AILRRLNKHG ICRFHDLFNP EQGAAYVVVN
 201 FIALLELAKE GLVGIVQEVG FGEIRISLNH EGAHSDGISG TRGGRDVF*
- Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 993 shows 97.6% identity over a 248 aa overlap with a predicted ORF (ORF 993) from N. meningitidis

	10	20	30	40	50	60
a993.pep	70 AMLIEIKSRLLLP	80 RTETVEDEEAD	90 PRAELVRRLI	100 LAYEQMKLAAQ	110 GLD AL PRAGI	120 RDFAWAY
m993	AMLIEIKSRLLLP		PRAELVRRLI 90			IIIIIII RDFAWAY 120
a993.pep	130 LPLEIAVEAKLPE			160 RSHEVIKETIS		
m993	LPLEIAVEAKLPE 130	, , , , , , , , , , ,				
a993.pep	190 ICRFHDLFNPEQG CRFHDLFNPKQG		 LELAKEGLVR	1111 11111	111111111	THILL
a993.pep	249 TRGGRDVFX	200	210	220	230	240
m993	TRGGRDVFX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3007>:

```
ATGAACAGAA GAACCTTCCT CCTCGGCGCA GGCGCGTTGC TTCTTACCGC
     CTGCGGCAGA AAATCCGCCC GAACCCACGC CAAAATTCCC GAAGGAAGCA
 51
101 CCGTGCTTGC CTTGGGCGAT TCGCTCACCT TCGGCTACGG AGCAAACCCC
151 GGCGAATCCT ACCCCGCGCA ACTGCAAAAA CTGACGGGTT GGAATATTGT
     CAACGGCGGC GTATCGGGCG ATACGTCCGC GCAAGCCCTA TCGCGCCTGC
201
251 CCGCGCTGTT GGCACGCAAA CCCAAGCTTG TGATTGTCGG CATAGGCGGC
301 AACGACTTC TGCGCAAAGT TCCCGAGGAG CAGACCCGCG CCAATATCGC
351
     GAAAATCATC GAAACCGTGC AAAAGGAAAA CATTCCCGCC GTCCTCGTCG
401
     GCGTGCCGCA CATCACACTG GGCGCGTTGT TCGGGCATTT GAGCGACCAT
     CCGCTGTATG AGGATTTGTC CGAGGAATAC GGCATTCCGT TGTTCGGCGG
501
     CGCGTGGGCG GAAATTTTGG GCAATAATAA TCTGAAATCC GACCAAATCC
     ACGCCAACGG CAAAGGCTAT CGGAAATTCG CCGAAAATTT GAATCAATTT
551
601 TTGAGAAAAC ATGGGTTTAG ATAA
```

This corresponds to the amino acid sequence <SEQ ID 3008 ORF 996.ng>:

- 1 MNRRTFLLGA GALLLTACGR KSARTHAKIP EGSTVLALGD SLTFGYGANP
 51 GESYPAQLQK LTGWNIVNGG VSGDTSAQAL SRLPALLARK PKLVIVGIGG
 101 NDFLRKVPEC QTRANIAKII ETVQKENIPA VLVGVPHITL GALFGHLSDH
 151 PLYEDLSEEY GIPLFGGAWA EILGNNNLKS DQIHANGKGY RKFAENLNQF
 201 LRKHGFR*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3009>: m996.seq

```
ATGAACAGAA GAACCTTCCT CCTCGGCGCA GGCGCGTTGC TGCTTACCGC
     CTGCGGCAGA AAATCCGCCC GAACCCACGC CAAAATTCCC GAAGGAAGCA
101 CCGTACTTGC CTTGGGCGAT TCGCTTACCT TCGGCTACGG CGCAAACCCT
151
    GGCGAATCCT ACCCCGCGCA ACTGCAAAAA CTGACGGGTT GGAATATTGT
201 CAACGGCGGC GTATCGGGCG ATACATCTGC CCAAGCCCTG TCGCGCCTGC
251 CCGCGCTGTT GGCACGCAAA CCCAAGCTTG TGATTGTCGG CATAGGCGGC
301 AACGACTTTC TGCGCAAAGT TCCCAAGGAG CAGACCCGCG CCAATATCGC
351
    GAAAATCATC GAAACCGTGC AGAAGGAAAA CATCCCCGCC GTCCTCGTCG
401
    GCGTGCCGCA CATCACACTG GGTGCGTTGT TCGGGCATTT GAGCGATCAT
    CCGCTGTATG AGGATTTGTC CGAGGAATAC GGCATTCCGC TGTTCGGCGG
451
    CGCGTGGGCG GAAATTTTGG GCGATAATAA TCTGAAATCC GACCAAATCC
    ACGCCAACGG CAAAGGCTAT CGGAAATTTG CCGAAGATTT GAATCAATTT
    TTGAGAAAAC AGGGGTTTAG ATAA
```

This corresponds to the amino acid sequence <SEQ ID 3010; ORF 996>: m996.pep

1 MNRRTFLLGA GALLLTACGR KSARTHAKIP EGSTVLALGD SLTFGYGANP 51 GESYPAQLQK LTGWNIVNGG VSGDTSAQAL SRLPALLARK PKLVIVGIGG

- 101 NDFLRKVPKE QTRANIAKII ETVQKENIPA VLVGVPHITL GALFGHLSDH
- 151 PLYEDLSEEY GIPLFGGAWA EILGDNNLKS DQIHANGKGY RKFAEDLNOF
- 201 LRKQGFR

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 996 shows 98.1% identity over a 207 aa overlap with a predicted ORF (ORF 996) from N. gonorrhoeae

m996/g996	98.1% identity in 207 aa overlap
	10 20 30 40 50 60
m996.pep	MNRRTFLLGAGALLLTACGRKSARTHAKIPEGSTVLALGDSLTFGYGANPGESYPAQLQK
g996	MNRRTFLLGAGALLLTACGRKSARTHAKIPEGSTVLALGDSLTFGYGANPGESYPAQLQK
	10 20 30 40 50 60
	70 80 90 100 110 120
m996.pep	LTGWNIVNGGVSGDTSAQALSRLPALLARKPKLVIVGIGGNDFLRKVPKEOTRANIAKII
g996	LTGWNIVNGGVSGDTSAQALSRLPALLARKPKLVIVGIGGNDFLRKVPEEQTRANIAKII
	70 80 90 100 110 120
	130 140 150 160 170 180
m996.pep	ETVQKENI PAVLVGVPHITLGALFGHLSDHPLYEDLSEEYGI PLFGGAWAEILGDNNLKS
g996	ETVOKENIPAVLVGVPHITLGALFGHLSDHPLYEDLSEEYGIPLFGGAWAEILGNNNLKS
	130 140 150 160 170 180
	190 200
m996.pep	DQIHANGKGYRKFAEDLNOFLRKOGFR
g996	DQIHANGKGYRKFAENLNQFLRKHGFRX
-	190 200

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3011>: a996.seq

```
ATGAACAGAA GAACCTTCCT CCTCGGCGCA GGCGCGTTGC TCCTTACCGC
51 CTGCGGCAGA AAATCCGCCC GAACCCACGC CAAAATTCCC GAAGGAAGCA
101 CCGTACTTGC CTTGGGCGAT TCGCTTACCT TCGGCTACGG CGCAAACCCC
151 GGCGAATCCT ACCCCGCCA ACTGCAAAAA CTGACGGGTT GGAATATTGT
201 CAACGGCGGC GTATCGGGCG ATACATCCGC CCAAGCCCTG TCGCGCCTGC
251 CCGCGCTGTT GGCACAGAAG CCCAAGCCTTG TGATGGCGGC
301 AACGACTTTC TGCGCAAAGT TCCCAAGGAG CAGACCCGCG CCAATATCGC
351 GAAAATCATC GAAACCGTGC AGAAGGAAAA CATCCCCGCC GTCCTCGTCG
401 GCGTGCCGCA CATTACCTTG GGCGGTTGT TCGGGCATTT GAGCGATCAT
451 CCGCTGTATG AGGATTTGTC CGAGGAATAC GGCATTCCGC TGTTCGGCGG
501 CGCGTGGGCG GAAATTTTGG GCGATAATAA TCTGAAATCC GACCAAATCC
551 ACGCCAACGG CAAAGGGTAT CGGAAATTTT GAAATCC GAACCAATTT
601 TTGAGAAAAC AGGGGTTTAG ATAA
```

This corresponds to the amino acid sequence <SEQ ID 3012; ORF 996.a>: a996.pep

- 1 MNRRTFLLGA GALLLTACGR KSARTHAKIP EGSTVLALGD SLTFGYGANP
- 51 GESYPAQLOK LTGWNIVNGG VSGDTSAQAL SRLPALLARK PKLVIVGIGG
- 101 NDFLRKVPKE QTRANIAKII ETVQKENIPA VLVGVPHITL GALFGHLSDH
- 151 PLYEDLSEEY GIPLFGGAWA EILGDNNLKS DQIHANGKGY RKFAEDLNQF
- 201 LRKQGFR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 996 shows 100.0% identity over a 207 aa overlap with a predicted ORF (ORF 996) from N. meningitidis

a996/m996 100.0% identity in 207 aa overlap

10 20 30 40 50 60 a996.pep MNRRTFLLGAGALLLTACGRKSARTHAKIPEGSTVLALGDSLTFGYGANPGESYPAQLQK

```
m996
          MNRRTFLLGAGALLLTACGRKSARTHAKIPEGSTVLALGDSLTFGYGANPGESYPAQLQK
                        20
                                30
                                        40
                                                50
                 70
                        80
                                90
                                       100
a996.pep
          LTGWNIVNGGVSGDTSAQALSRLPALLARKPKLVIVGIGGNDFLRKVPKEQTRANIAKII
          LTGWNIVNGGVSGDTSAQALSRLPALLARKPKLVIVGIGGNDFLRKVPKEQTRANIAKII
m996
                70
                        80
                                90
                                       100
                130
                       140
                               150
                                       160
                                               170
          ETVQKENIPAVLVGVPHITLGALFGHLSDHPLYEDLSEEYGIPLFGGAWAEILGDNNLKS
a996.pep
          m996
          ETVQKENIPAVLVGVPHITLGALFGHLSDHPLYEDLSEEYGIPLFGGAWAEILGDNNLKS
                130
                       140
                               150
                                       160
                                              170
                190
                       200
          DOIHANGKGYRKFAEDLNQFLRKQGFRX
a996.pep
          11111111111111111111111111111111
m996

    DQIHANGKGYRKFAEDLNQFLRKQGFR

               190
                       200
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3013>: g997.seq (partial)

```
ATGATGAACA CGCCGCATCC GCGCCCGAAA ATCGCCGTCA TCGGCGCAGG
  51
      CTGGGCCGGC TTGTCCGCCG CCGTCACCTT GGCGCGGCAC GCCGACGTTA
      CCCTGTTTGA AGCCGGCCGG CAGGCGGGCG GAAGGGCGCG CACACTGGCC
 101
      GGAAATACCG ACGGTTTCGG TTTTTTGGAC AACGGGCAGC ACATTTTGCT
 151
      CGGCGCATAC CGGGGCGTGT TGCGCCTGAT GAAAACCATC GGTTCAGACC
 201
      CCCGTGCCGC CTTTTTGCGC GTACCGCTGC ACTGGCATAT GCACGGCGGT
 251
 301
      TTGCAGTTCC GCGCCCTCCC CCTGCCCGCG CCGCTGCATA TTTTGGGCGG
 351
      CGTGCTGCTT GCCCGGCGCG TACCGTCCGC ATTCAAAGCC AAACTGCTTG
      CCGATATGTC CGATTTGCAG AAGTCCGCAC GCCTCGGACA GCCCGACACG
 401
      ACAGTTGCAC AATGGCTGAA ACAGCGGAAC GTGCCGCGTG CCGCCGTAAT
 451
 501
      GCAGTTTTGG CAGCCCTTGG TCTGGGGCGC GCTCAACACG CCTTTGGAAA
 551
      CCGCAAGCCT GCGCGTGTTG TGCAACGTTT TGTCCGACGG CGTGCTGACG
      AAAAAATCCG GCAGCGACTA TCTCCTACCC AAACAGGATT TGGGCGCAAT
 601
      CGTCGCCGAA CCCGCCTTGG CGGAGCTTCA ACGGCTCGGC GCGGACATCC
 651
 701
      GCCTCGAAAC GCGCGTATGC CGTCTGAACA CCCTCCCGGA CGGAAAAGTC
 751
      CTCGTCAACG GCGAAGCCTT CGATGCCGCC ATACTTGCCA CCGCGCCCTA
     CCACGCCGCC GCGCTCCTGC CCGAAGGCAC GCCCGAACAC GTTCAGACGG
 801
      CATATCAAAA CCTTCGCTAC CACGCCATCA CCACCGTCTA TCTGCGCTAC
851
      GCCGAACCCG TCCGcCTGCc CGCCCCGCTG ACcGGCATtg CCGAcggcAC
 901
 951
      ggcaCaatgG CTGCTTTgcc cgGGGCAGGC tccggactgc CcccaaAacg
1001
      aagTCTCCGC cGTCAttagc GTTTCCGAcc GCGtcggcgC Gtttgcaaac
1051
```

This corresponds to the amino acid sequence <SEQ ID 3014 ORF 997.ng>: g997.pep (partial)

```
1 MMNTPHPRPK IAVIGAGWAG LSAAVTLARH ADVTLFEAGR QAGGRARTLA
51 GNTDGFGFLD NGQHILLGAY RGVLRLMKTI GSDPRAAFLR VPLHWHMHGG
101 LQFRALPLPA PLHILGGVLL ARRVPSAFKA KLLADMSDLQ KSARLGQPDT
151 TVAQWLKQRN VPRAAVMQFW QPLVWGALNT PLETASLRVL CNVLSDGVLT
201 KKSGSDYLLP KQDLGAIVAE PALAELQRLG ADIRLETRVC RLNTLPDGKV
251 LVNGEAFDAA ILATAPYHAA ALLPEGTPEH VQTAYQNLRY HAITTVYLRY
301 AEPVRLPAPL TGIADGTAQW LLCPGQAPDC PQNEVSAVIS VSDRVGAFAN
351 R....
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3015>: m997.seq

1	ATGATGAACA	CGCCGCATCC	GCGCCCGAAA	ATCGCCGTCA	TCGGCGCAGG
51	CTGGGCAGGA	CTGTCCGCCG	CCGTCACCTT	GGCGCGGCAC	GCCGACGTTA
101	CCCTGTTTGA	AGCCGGCCGG	CAGGCGGGCG	GCAGGGCGCG	CACACTGGCC
151	GGAAATACCG	ACGGTTTCGG	TTTTTTGGAC	AACGGGCAGC	ACATTTTCCT
201	CGGCGCATAC	CGGGGCGTGT	TGCGCCTGAT	GAAAACCATC	GGTTCGGATC
251	CCCGTGCCGC	CTTTTTGCGC	GTACCGCTGC	ACTGGCATAT	GCACGGCGGT
301	TTGCAGTTCC	GCGCCCTCCC	CCTGCCCGCG	CCGCTGCATA	TTTTGGGGGG
351	CGTGCTGCTT	GCCCGGCGTG	CACCGACTGC	ATTCAAAGCC	AAACTGCTTC
401	CCGATATGTC	CGATTTGCAG	AAGTCCGCAC	GCCTCGGACA	GCCCGACACG
451	ACAGTGGCGC	AATGGCTGAA	ACAGCGGAAC	GTGCCGCGTG	CCCCCCCCTCNT
501	GCAGTTTTGG	CAGCCCTTGG	TTTGGGGCGC	GCTCAACACG	CCTTTCCAAA
				COLUMN	CCITIGGAAA

551	CCGCAAGCCT	GCGCGTGTTG	TGCAACGTTT	TGTCCGACGG	CGTGCTGACG
601	AAAAAATCCG	GCAGCGACTA	TCTCCTACCC	AAGCAGGATT	TGGGCGCAAT
651	CGTCGCCGAA	CCCGCCTTGG	CGGATCTTCA	ACGGCTCGGC	GCGGACATCC
701	GCCTCGAAAC	GCGCGTATGC	CGTCTGAACA	CCCTCCCGGA	CGGGAAAGTG
751	CTCGTCAACG	GCGAAGCTTT	CGATGCCGCC	GTCCCCGCCA	CCGCGCCCTA
801	CCACGCCGCC	GCGCTCCTGC	CCGAAGGCAC	GCCCGAACAC	GTTCAGACGG
851	CATATCAAAA	CCTTCGCTAC	CACGCCATCA	CCACCGTCTA	TCTGCGCTAC
901	GCCGAACCCG	TCCGCCTGCC	CGCCCCGCTG	ACCGGCCTTG	CCGACGGCAC
951	GGTGCAATGG	CTGCTTTGCC	GGGGCAGGCT	CGGACTGCCT	GAAAACGAAG
1001	TGTCCGCCGT	CATCAGCGTT	TCCGACCGCG	TCGGCGCGTT	TGCAAACCGG
1051	GCGTGGGCGG	ACAAAGCCCA	CGCCGACCTC	AAACGCATCC	TTCCGCATTT
1101	GGGCGAACCC	GAAGCCGTGC	GCGTCATCAC	CGAAAAACGC	GCCACAACCG
1151	CAGCCGATGC	CCCGCCGCCG	GACTTGTCGT	GGTTGCACCG	GCACCGCATC
1201	TTCCCCGCCG	GCGACTACCT	CCACCCGGAC	TACCCCGCCA	CGCTCGAAGC
1251	CGCCGTACAA	TCAGGTTTCG	CGTCGGCGGA	AGCCTGCCTG	CAAAGCCTGA
1301	GCGATGCCGT	CTGA			

This corresponds to the amino acid sequence <SEQ ID 3016; ORF 997>: m997.pep

1 MMNTPHPRPK IAVIGAGWAG LSAAVTLARH ADVTLFEAGR QAGGRARTLA
51 GNTDGFGFLD NGQHILLGAY RGVLRLMKTI GSDPRAAFLR VPLHWHMHGG
101 LQFRALPLPA PLHILGGVLL ARRAPTAFKA KLLADMSDLQ KSARLGQPDT
151 TVAQWLKQRN VPRAAVMQFW QPLVWGALNT PLETASLRVL CNVLSDGVLT
201 KKSGSDYLLP KQDLGAIVAE PALADLQRLG ADIRLETRVC RLNTLPDGKV
251 LVNGEAFDAA VPATAPYHAA ALLPEGTPEH VQTAYQNLRY HAITTVYLRY
301 AEPVRLPAPL TGLADGTVQW LLCRGRLGLP ENEVSAVISV SDRVGAFANR
351 AWADKAHADL KRILPHLGEP EAVRVITEKR ATTAADAPPP DLSWLHRHRI
401 FPAGDYLHPD YPATLEAAVQ SGFASAEACL QSLSDAV*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 997 shows 96.0% identity over a 351 aa overlap with a predicted ORF (ORF 997) from N. gonorrhoeae

g997/m997	96.0% identity in 351 aa overlap	
g997.pep m997	10 20 30 40 50 MMNTPHPRPKIAVIGAGWAGLSAAVTLARHADVTLFEAGRQAGGRARTLAGNTDGFGF	LD
	10 20 30 40 50	60
g997.pep m997	NGQHILLGAYRGVLRLMKTIGSDPRAAFLRVPLHWHMHGGLQFRALPLPAPLHILGGV 	13
g997.pep m997	ARRVPSAFKAKLLADMSDLQKSARLGQPDTTVAQWLKQRNVPRAAVMQFWQPLVWGAL	 TN,
g997.pep m997	190 200 210 220 230 2 PLETASLRVLCNVLSDGVLTKKSGSDYLLPKQDLGAIVAEPALAELQRLGADIRLETR	11
g997.pep m997	250 260 270 280 290 3 RLNTLPDGKVLVNGEAFDAAILATAPYHAAALLPEGTPEHVQTAYQNLRYHAITTVYL	00 RY
g997.pep m997	310 320 330 340 350 AEPVRLPAPLTGIADGTAQWLLCFGQAPDCPQNEVSAVISVSDRVGAFANR	ΑD

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3017>: a997.seq

```
ATGATGAACA CGCCGCATCC GCGCCCGAAA ATCGCCGTCA TCGGCGCAGG
  51
       CTGGGCCGGC TTGTCCGCCG CCGTTACCTT GGCGCGGCAC GCCGACGTTA
 101 CCCTGTTTGA AGCCGGCCGG CAGGCGGGG GCAGGGCGCG CGCACTGGCC
 151 GGAAATACCG ACGGTTTCGG TTTTTTGGAC AACGGGCAGC ATATTTTACT
201 CGGCGCATAC CGGGGCGTGT TGCGCCCTGAT GAAAACCATC GGTTCAGACC
 251
      CCCATGCCGC CTTTTTGCGC GTACCGCTGC ACTGGCATAT GCACGGCGGT
 301 TTGCAGTTCC GCGCCCTCCC CCTGCCCGCG CCCCTGCATA TTTTGGGCGG
 351 CGTGCTGCTT GCCCGGCGCG TACCGTCCGC ATTCAAAGCC AAACTGCTTG
      CCGATATGTC CGATTTGCAG AAGTCCGCAC GCCTCGGACA GCCCGACACG
 401
 451 ACAGTGGCGC AATGGCTGAA ACAGCGGAAC GTGCCGCGTG CCGCCGTAAT
 501
      GCAGTTTTGG CAGCCCTTGG TTTGGGGCGC GCTCAACACG CCTTTGGAAA
      CCGCAAGCCT GCGCGTGTTG TGCAACGTTT TGTCCGACGG CGTGCTGACG
 551
      AAAAAATCCG GCAGCGACTA TCTCCTACCC AAACAGGATT TGGGCGCAAT
 651
      CGTCGCCGAA CCCGCCTTGG CGGAGCTTCA ACGGCTCGGC GCGGACATCC
 701 GCCTCGAAAC GCGCATATGC CGTCTGAACA CCCTCCCGGA CGGGAAAGTG
 751 CTCGTCAACG GCGAACCTTT CGATGCCGCC GTCCCCGCCA CCGCGCCCTA
      CCACGCCGCC GCGCTCCTGC CCGAAGGCAC GCCCGAACAC GTTCAGACGG
 801
 851 CATATCAAAA CCTTCGCTAT CACGCCATCA CCACCGTCTA TCTGCGCTAT
 901
      GCCGAACCCG TCCGCTTGCC TGCCCCGCTG ACCGGACTTG CCGACGGCAC
 951 GGTGCAATGG CTGCTTTGCC GGGGCAGGCT CGGACTGCCT GAAAACGAAG
1001 TGTCCGCCGT CATCAGCGTT TCCGACCGCG TCGGCGCGTT TGCAAACCGG
1051 GCGTGGGCGG ACAAAGTTCA CGCCGACCTC AAACGCATCC TTCCGCATTT
1101 GGGCGAACCC GAAGCCGTGC GCGTCATCAC CGAAAAACGC GCCACAACCG
1151 CAGCCGATGC CCCGCCGCG GATTTGTCGT GGTTGCACCG GCACCGCATC
1201 TTCCCCGCCG GCGACTACCT CCACCCAGAC TACCCCGCCA CGCTCGAAGC
1251 CGCCGTACAA TCAGGTTTCG CGTCGGCGGA AGCCTGCCTG CAAAGCCTGA
1301 GCGATGCCGT CTGA
```

This corresponds to the amino acid sequence <SEQ ID 3018; ORF 997.a>: a997.pep

```
MMNTPHPRPK IAVIGAGWAG LSAAVTLARH ADVTLFEAGR QAGGRARALA
 51
     GNTDGFGFLD NGQHILLGAY RGVLRLMKTI GSDPHAAFLR VPLHWHMHGG
101 LQFRALPLPA PLHILGGVLL ARRVPSAFKA KLLADMSDLQ KSARLGQPDT
151
    TVAQWLKQRN VPRAAVMQFW QPLVWGALNT PLETASLRVL CNVLSDGVLT
201 KKSGSDYLLP KQDLGAIVAE PALAELQRLG ADIRLETRIC RLNTLPDGKV
251 LVNGEPFDAA VPATAPYHAA ALLPEGTPEH VQTAYQNLRY HAITTVYLRY
301 AEPVRLPAPL TGLADGTVQW LLCRGRLGLP ENEVSAVISV SDRVGAFANR
    AWADKVHADL KRILPHLGEP EAVRVITEKR ATTAADAPPP DLSWLHRHRI
351
401
          FPAGDYLHPD YPATLEAAVQ SGFASAEACL QSLSDAV*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 997 shows 98.2% identity over a 437 aa overlap with a predicted ORF (ORF 997) from N. meningitidis

a997/m997	98.2% identity in 437 aa overlap
a997.pep	10 20 30 40 50 60
assi.pep	MMNTPHPRPKIAVIGAGWAGLSAAVTLARHADVTLFEAGRQAGGRARALAGNTDGFGFLI
m997	MANUTOUR DE DATA DE CARROL CARROL CARROLL CONTRACTOR CO
111.557	MMNTPHPRPKIAVIGAGWAGLSAAVTLARHADVTLFEAGRQAGGRARTLAGNTDGFGFLI
	10 20 30 40 50 60
	70
-007	70 80 90 100 110 120
a997.pep	NGQHILLGAYRGVLRLMKTIGSDPHAAFLRVPLHWHMHGGLQFRALPLPAPLHILGGVLI
m997	NGQHILLGAYRGVLRLMKTIGSDPRAAFLRVPLHWHMHGGLQFRALPLPAPLHILGGVLI
	70 80 90 100 110 120
	130 140 150 160 170 180
a997 .pe p	ARRVPSAFKAKLLADMSDLQKSARLGQPDTTVAQWLKQRNVPRAAVMQFWQPLVWGALNT
	-
m997	ARRAPTAFKAKLLADMSDLQKSARLGQPDTTVAQWLKQRNVPRAAVMQFWQPLVWGALNT
	130 140 150 160 170 180
	170 180
	190 200 210 220 230 240
a997.pep	PLETASLRVLCNVLSDGVLTKKSGSDYLLPKQDLGAIVAEPALAELQRLGADIRLETRIC
• •	
	_ , , , , , , , , , , , , , , , , , , ,

1419

m997	PLETASLRVLCNVLSD	GVLTKKSGSD	YLLPKQDLGA	IVAEPALADL	QRLGADIRLE	TRVC
	190	200	210	220	230	240
	250	260	270	280	290	300
a997.pep	RLNTLPDGKVLVNGEF					
assi.pep		EDAAVPAIAP	IRAAALLEEG	TPEHVQTAYQ	NERTHALTTV	ATKA
-007		1111111111	111111111	111111111		1111
m997	RLNTLPDGKVLVNGEA					
	250	260	270	280	290	300
	310	320	330	340	350	360
a997.pep	AEPVRLPAPLTGLADG	TVQWLLCRGR	LGLPENEVSA	VISVSDRVGA	FANRAWADKV)	HADL
					111111111:	
m997	AEPVRLPAPLTGLADG	TVQWLLCRGR	LGLPENEVSA	VISVSDRVGA	FANRAWADKA	HADL
	310	320	330	340	350	360
	370	380	390	400	410	420
a997. pe p	KRILPHLGEPEAVRVI	TEKRATTAAD	APPPDLSWLH	RHRIFPAGDY	LHPDYPATLE	OVAA
	31111111111111111	1111111111		111111111	111111111	-
m997	KRILPHLGEPEAVRVI	TEKRATTAAD	APPPDLSWLH	RHRIFPAGDY		
	370	380	390	400	410	420
	430					
a997.pep	SGFASAEACLQSLSDA	vx				
m997	SGFASAEACLOSLSDA	• •				
	430	* * * *				
	430					

g999.seq Not found yet

g999.pep Not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3019>: m999.seq

```
ATGAATATGA AAAAATTGAT TTCCGCAATT TGTGTTTCAA TTGTTTTATC
AGCCTGCAAC CAACAATCAA AAACGGCACA AGCCGAAGAA CCTGTCCAAA
ATCCAGGC TGCTGATTGT ACCGCCCCAA TGGACATCAC AGTTGAACAA
ATTCCATCA ATTTGGAGCA AGCATTAAA ACTCAGAACG TCTCAACAAA
AAACATATTG TCAAGACCGA TTGTGGTTAT GACCTTACTT
TGGTAATGGA TTTTGGGGCG ATTGCGCTCA AACTGGACGA GCAGCAAAAA
ATTAGAGCTA TCTCAGTAGG CTACATTTTA AAAACCGACG GAGAGAAAGG
ACAAAATCTA GTCAATAATG CCATAAATGG ATTACACAGT ATTCAGGCAG
ACAACATCTT AACTACCACA GACAAATTGG GCGAATCGGA AGCAGGAAAA
ASI CAACTTTTA CAGCTTTAAC CGAAGTCGTC AAAGAATCCA ATCAGACAGG
CAACAACGCG CAAAAAGACC TTCCGGCAGA TGGTATTTTA TATAGCGTTG
TTTTTGAAAA AGAAACAACC ACCATTGCAA TAATCGGCAG AAAACAACCC
TTAA
```

This corresponds to the amino acid sequence <SEQ ID 3020; ORF 999>: m999.pep

```
1 MNMKKLISAI CVSIVLSACN QQSKTAQAEE PVQSIQAADC TAPMDITVEQ
51 YLINLEQAFK TQNVSTKIHN KNIVKTDCGY DLTLVMDFGA IALKLDEQQK
101 IRAISVGYIL KTDGEKGQNL VNNAINGLHS IQAVLSLTTT DKLGESEAGK
151 QLFTALTEVV KESNQTGATA QKDVPADGIL YSVVFEKETN TIAIIGRKQP
```

a999.seq Not found yet

a999.pep Not found yet

The foregoing examples are intended to illustrate but not to limit the invention.

CLAIMS

- 1. A protein comprising a fragment of an amino acid sequence from SEQ ID 2790 wherein said fragment comprises at least 7 amino acids from said sequence.
- 2. A protein comprising an amino acid sequence selected from the group consisting of even numbered SEQ IDs from SEQ ID number 2 through SEQ ID number 3020.
 - 3. A protein having 50% or greater homology to a protein according to claim 1.
- 4. A protein comprising a fragment of an amino acid sequence selected from the group consisting of even numbered SEQ IDs from SEQ ID number 2 through SEQ ID number 3020, wherein said fragment comprises 7 or more consecutive amino acids from said sequence.
 - 5. An antibody which binds to a protein according to any one of claims 1 to 3.
- 6. A nucleic acid molecule which encodes a protein according to any one of claims 1 to 3.
- 7. A nucleic acid molecule according to claim 5, comprising a nucleotide sequence selected from the group consisting of odd numbered SEQ IDs from SEQ ID number 1 through SEQ ID number 3019.
- 8. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of odd numbered SEQ IDs from SEQ ID number 1 through SEQ ID number 3019, wherein said fragment comprises 10 or more consecutive nucleotides from said sequence.
- 9. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to claim 5.
- 10. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to claim 6.
- 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to claim 7.
- 12. A composition comprising a protein, a nucleic acid molecule, or an antibody according to any preceding claim.
- 13. A composition according to claim 11 being a vaccine composition or a diagnostic composition.
 - 14. A composition according to claim 11 for use as a pharmaceutical.
- 15. The use of a composition according to claim 11 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial bacteria.

- 16. A composition comprising a protein of claim 1 wherein said composition is immunogenic.
- 17. A composition comprising a protein of claim 2 wherein said composition is immunogenic.
- 18. A composition comprising a protein of claim 3 wherein said composition is immunogenic.

279 (10.5 kDa)

Fig. 2

A) PURIFICATION

B)WESTERN BLOT

C) FACS

D) BACTERICIDAL ASSAY

E) ELISA assay: positive

279

The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that protein 279 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

576 (27.8 kDa)

Fig. 3

A) PURIFICATION

C) FACS

E) ELISA assay: positive

B) WESTERN BLOT

TP OMV

D) BACTERICIDAL ASSAY

576

The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 576 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

Fig. 4

519 (33 kDa)

A) PURIFICATION

M1 519

B) WESTERN BLOT

TP OMV

C) FACS

D) BACTERICIDAL ASSAY

E) ELISA assay: positive

519

The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 519 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

121 (40 kDa)

A) PURIFICATION

C) FACS

E) ELISA assay: positive

B) WESTERN BLOT

D) BACTERICIDAL ASSAY

121

The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

Fig. 5

128 (101 kDa)

Fig. 6

A) PURIFICATION
M1 128

B) WESTERN BLOT

C) FACS

D) BACTERICIDAL ASSAY

E) ELISA assay: positive

128

The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

A) PURIFICATION

Fig. 7

C) FACS

D) BACTERICIDAL ASSAY

E) ELISA assay: positive

206

The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a recative band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

287 (78 kDa)

Fig. 8

A) PURIFICATION

B) FACS

C) BACTERICIDAL ASSAY

D) ELISA assay: positive

287

The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A).

406 (33 kDa)

Fig. 9

A) PURIFICATION

C) FACS

E) ELISA assay: positive

B) WESTERN BLOT

D) BACTERICIDAL ASSAY

406

The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).

Fig. 10

Fig. 11

Fig. 12

12/30 **519-1**

Fig. 13

Fig. 14

14/30 **128-1**

Fig. 15

Fig. 16

287

Fig. 17

Fig. 18

Fig. 19A

 J_{j}

Fig. 19B

Fig. 19C

,

Fig. 20A

海、光、でなる海水はます。

一方 学 日本

Fig. 20B

FIG. 21A

287_14	468	GKYSYRPTDAEKGGFGVFAGKKEOD*
287_2	468	GKYSYRPTDAEKGGFGVFAGKKEOD*
287_21	464	GKYSYRPTDAEKGGFGVFAGKKEOD*
z2491	464	GKYSYRPTDAEKGGFGVFAGKKEOD*
287_9	473	GKYSYRPTDAEKGGFGVFAGKKEQD*
fa1090	405	GKYSYRPTDAEKGGFGVFAGKKILD.

FIG. 21B

FIG. 22A

Fig. 22B

Fig. 23A

- 一本の日本の日本

7

なり村本をなるない

1. 1. 1.

Fig. 23B

Fig. 23C

Fig. 23D

•

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/22, 16/12, C12Q 1/68, A61K 39/095, G01N 33/50

A3

(11) International Publication Number:

WO 99/57280

(43) International Publication Date: 11 November 1999 (11.11.99)

(21) International Application Number:

PCT/US99/09346

(22) International Filing Date:

30 April 1999 (30.04.99)

(30) Priority Data:

iority Data.		
60/083,758	1 May 1998 (01.05.98)	US
60/094,869	31 July 1998 (31.07.98)	US
60/098,994	2 September 1998 (02.09.98)	US
60/099,062	2 September 1998 (02.09.98)	US
60/103,749	9 October 1998 (09.10.98)	US
60/103,794	9 October 1998 (09.10.98)	US
60/103,796	9 October 1998 (09.10.98)	US
60/121,528	25 February 1999 (25.02.99)	US

(71) Applicants (for all designated States except US): CHIRON CORPORATION [US/US]; 4560 Honon Street, Emeryville, CA 94608 (US). THE INSTITUTE FOR GENOMIC RE-SEARCH [US/US]; 9212 Medical Center Drive, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; Rockville, MD (US). GALEOTTI, Cesira [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). HICKEY, Erin [US/US]; Gaithersburg, MD

(US). MASIGNANI, Vega [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, 1-53100 Siena (IT). MORA, Marirosa [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). PETERSEN, Jeremy [US/US]; Arlington, VA (US). PIZZA, Mariagratia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RAPPUOLI, Rino [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RATTI, Giulio [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCALATO, Enzo [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCARSELLI, Maria [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). TETTELIN, Herve [US/US]; Gaithersburg, MD (US). VENTER, J., Craig [US/US]; Rockville, MD (US).

- (74) Agent: HARBIN, Alisa, A.; Chiron Corporation, Intellectual Property - R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR. BY, CA, CH. CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 24 August 2000 (24.08.00)

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

(57) Abstract

The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.

919 (46 kDa)

PURIFICATION

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaíjan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NAL SEARCH REPORT INTERNA

Application No PC 17 es 99/09346

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/31 C07K14/22 C07K16/12 C12Q1/68 A61K39/095 G01N33/50 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K C12Q A61K G01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' DATABASE TREMBL [Online] 1,4-6,9, Χ **EMBL** ID Q55666, AC Q55666, 1 November 1996 (1996-11-01) TABATA S: "Membrane-bound lytic transglycosylase A MltA Synechocystis sp. strain PCC 6803" XP002130156 Note: 100% aa seq identity of aa 342-350 with aa 392-400 of SEQ ID NOs 2790 and 2792, 27.6% (26.9%) aa seq identity with SEQ ID NO:2790 (2792) in 370 (387) aa overlap. the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Х X Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) " document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or nents, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **13 5.06**.00 26 May 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

van de Kamp, M

11

PL./US 99/09346

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category & Category of document with indication where appropriate of the relevant passages. Refevant to claim No.				
X	EP 0 818 465 A (BIOLOG MOLECULAIRE DES PLANTES; INST OF MOLECULAR BIOTECHNOLOG (DE) 14 January 1998 (1998-01-14) Note: 100% nt seq identity of nt 367951-367961 of SEQ ID NO:1 with nt 163-173 of SEQ ID NO:2789. page 108	8,11,12		
A	LOMMATZSCH J ET AL.: "Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli" JOURNAL OF BACTERIOLOGY, vol. 179, no. 17, September 1997 (1997-09), pages 5465-5470, XP002130154 Note: 33.7% (35.7%) aa seq identity with SEQ ID NO:2790 (2792) in 273 (207) aa overlap. abstract	1-12		
A	DILLARD J P ET AL.: "A peptidoglcan hydrolase similar to bacteriophage endolysins acts as an autolysin in Neisseria gonorrhoeae" MOLECULAR MICROBIOLOGY, vol. 25, no. 5, September 1997 (1997-09), pages 893-901, XP000878964 abstract	1-12		
A	WO 96 29412 A (IAF BIO VAC INC; BRODEUR BERNARD R (CA); MARTIN DENIS (CA); HAMEL) 26 September 1996 (1996-09-26) cited in the application the whole document examples 1-12	1-18		
A	WO 94 08013 A (OREGON STATE) 14 April 1994 (1994-04-14) the whole document examples 1-7	1-18		
A	WO 92 13871 A (UNIV WASHINGTON) 20 August 1992 (1992-08-20) the whole document examples 1-10	1-18		
A	BLAKE M S ET AL.: "Vaccines for gonorrhoea: where are we on the curve?" TRENDS IN MICROBIOLOGY, vol. 3, no. 12, December 1995 (1995-12), pages 469-474, XP000876514 the whole document	1-18		

والمناف والمرابي والمناف والمن	<u> </u>
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
POOLMAN J T: "Development of a meningococcal vaccine" INFECTIOUS AGENTS AND DISEASE, vol. 4, no. 1, March 1995 (1995-03), pages 13-28, XP000876540 the whole document	1-18
WO 96 01901 A (RHONE POULENC RORER SA; BLANC VERONIQUE (FR); THIBAUT DENIS (FR);) 25 January 1996 (1996-01-25) Note: 100% nt seq ident of bp 170-156 of SEQ ID NO:1 (rev DNA) with bp 202-216 of SEQ ID NO:1 (61.2% in 348 bp overlap), 40.7% seq ident of trans? SEQ ID NO:1 with SEQ ID NO:2 in 118 aa overlap. page 102-104 example 1	8,11,12
WO 97 37044 A (ASTRA AB ;ALM RICHARD A (US); SMITH DOUGLAS (US)) 9 October 1997 (1997-10-09) Note: 100% aa seq identity of aa 204-211, 186-193 & 352-359 of transl SEQ ID NOs 227, 345 & 1003, resp., with aa 59-66 of SEQ ID NO:2, 37.4% aa seq identity with SEQ ID NO:2 in 115 aa overlap. page 268-269 page 344 page 909-910 page 23, paragraph B.4	4,12-14
DATABASE SWISSPROT [Online] ID YPCP_YEREN, AC P31485, 1 July 1993 (1993-07-01) BAEUMLER A J ET AL.: "Hypothetical 29.6 kD protein in PCP 5' region (ORF1)" XP002138650 Note: 100% aa seq identity of aa 148-159 with aa 140-151 of SEQ ID NO:442, 43.4% aa seq identity with SEQ ID NO:442 in 256 aa overlap.	4,12
the whole document -& BAUMLER A J ET AL.: "A lipoprotein of Yersinia enterocolitica facilitates ferrioxamine uptake in Escherichia coli" JOURNAL OF BACTERIOLOGY, vol. 174, no. 3, February 1992 (1992-02), pages 1029-1035, XP000907295 page 1031, left-hand column, line 11 -right-hand column, line 15	4,12
	POOLMAN J T: "Development of a meningococcal vaccine" INFECTIOUS AGENTS AND DISEASE, vol. 4, no. 1, March 1995 (1995-03), pages 13-28, XP000876540 the whole document WO 96 01901 A (RHONE POULENC RORER SA; BLANC VERONIQUE (FR); THIBAUT DENIS (FR);) 25 January 1996 (1996-01-25) Note: 100% nt seq ident of bp 170-156 of SEQ ID NO:1 (rev DNA) with bp 202-216 of SEQ ID NO:1 (fl.2% in 348 bp overlap), 40.7% seq ident of transl SEQ ID NO:1 with SEQ ID NO:1 with SEQ ID NO:1 with SEQ ID NO:2 in 118 aa overlap. page 102-104 example 1 WO 97 37044 A (ASTRA AB; ALM RICHARD A (US); SMITH DOUGLAS (US)) 9 October 1997 (1997-10-09) Note: 100% aa seq identity of aa 204-211, 186-193 & 352-359 of transl SEQ ID NOs 227, 345 & 1003, resp., with aa 59-66 of SEQ ID NO:2 in 115 aa overlap. page 268-269 page 344 page 909-910 page 27, 345 & 3485 paragraph 8.4 DATABASE SWISSPROT [Online] ID YPCP YEREN, AC P31485, 1 July 1993 (1993-07-01) BAEUMLER A J ET AL.: "Hypothetical 29.6 kD protein in PCP 5' region (ORF1)" XP002138650 Note: 100% aa seq identity of aa 148-159 with aa 140-151 of SEQ ID NO:442, 43.4% aa seq identity with SEQ ID NO:442, 43.4% aa seq identity with SEQ ID NO:442 in 256 aa overlap. the whole document -& BAUMLER A J ET AL.: "A lipoprotein of Yersinia enterocolitica facilitates ferrioxamine uptake in Escherichia coli" JOURNAL OF BACTERIOLOGY, Vol. 174, no. 3, February 1992 (1992-02), pages 1029-1035, XP000907295 page 1031, left-hand column, line 11 -right-hand column, line 15

á

()

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °						
X	DATABASE SWISSPROT [Online] ID YDHH HAEIN, AC P44861, 1 November 1995 (1995-11-01) FLEISCHMANN R D ET AL.: "Hypothetical protein HI0753" XP002138651 Note: 100% aa seq identity of aa 143-156 with aa 140-153 of SEQ ID NO:442, 41.6% aa seq identity with SEQ ID NO:442 in 377 aa overlap. the whole document	4,12				
X	WO 96 33276 A (HUMAN GENOME SCIENCES INC; UNIV JOHNS HOPKINS (US)) 24 October 1996 (1996-10-24) Note: 100% nt seq identity of bp 816794-816807 with bp 289-302 of SEQ ID NO:441 (54.3% in 484 bp overlap), 100% aa seq identity of translated sequence with SEQ ID NO:442 in 14 aa overlap. page 77.488 Note: 100% nt seq identity of bp 230516-230526 with bp 1501-1511 of SEQ ID NO:489 (57.4% in 1292 bp overlap), 100% aa seq identity of translated sequence with SEQ ID NO:490 in 13 aa overlap. page 77.139 page 77.139 page 76.37, line HI0215 Note: 100% nt seq identity of bp 1025409-1025418 with bp 1339-1330 (rev strand) of SEQ ID NO:1201 (72.0% in 50 bp overlap). page 77.612	4,8, 11-14				
X	CONLIN C A ET AL.: "Escherichia coli prlC encodes an endopeptidase and is homologous to the Salmonella typhimurium opdA gene" JOURNAL OF BACTERIOLOGY, vol. 174, no. 18, September 1992 (1992-09), pages 5881-5997, XP000907300 Note: 100% nt seq ident of bp 1824-1837 with bp 1480-1493 of SEQ ID NO:489 (59.7% in 1282 bp overlap), 100% aa seq ident of aa 495-507 with aa 492-504 of SEQ ID NO:490 (49.5% in 679 aa overlap). abstract figure 2	4,8,11,				

11

PL 5 99/09346

		PU1705 99/09340				
C.(Continu	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
X	DATABASE SWISSPROT [Online] ID OPDA_HAEIN, AC P44573, 1 November 1995 (1995-11-01) FLEISCHMANN R D ET AL.: "Oligopeptidase A (EC 3.4.24.70)" XP002138652 Note: 100% aa seq identity of aa 496-508 with aa 492-504 of SEQ ID NO:490, 49.0% aa seq identity in 677 aa overlap. the whole document	4,12				
X	ROKBI B ET AL.: "Evaluation of recombinant transferrin - binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains." INFECTION AND IMMUNITY, vol. 65, no. 1, January 1997 (1997-01), pages 55-63, XP002138643 abstract					
P,A	DATABASE TREMBL [Online] EMBL ID 069750, AC 069750, 1 August 1998 (1998-08-01) ROKBI B ET AL.: "Transferrin binding protein B, TbpB, Neisseria meningitidis" XP002138653 Note: 22.3% aa seq identity with SEQ ID NO:1202 in 488 aa overlap. the whole document	4,8, 12-15,17				
A	-& ROKBI B ET AL.: "Heterogeneity of tbpB, the transferrin-binding protein B gene, among serogroup B Neisseria meningitidis strains of the ET-5 complex" CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 4, no. 5, September 1997 (1997-09), pages 522-529, XP002138644 abstract	5,8, 12-15,17				

Pti/US 99/09346

PL:/US 99/09346						
ategory ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
	4,8,					
ID W14640, AC W14640, 5 March 1998 (1998-03-05) QUENTIN-MILLET M J ET AL.: "N. meningitidis HTR Tbp2 (del3777-385, del407-465, del488-508)" XP002138654 Note: 23.5% aa seq identity with SEQ ID	12-15,17					
NO:1202 in 571 aa overlap. the whole document -& WO 97 13860 A (PASTEUR MERIEUX SERUMS VACC; QUENTIN MILLET MARIE JOSE (FR); ROKBI)) 17 April 1997 (1997-04-17)	4,8, 12-15,17					
DATABASE EMPRO1 [Online]	4,8,11,					
ID AF034831, AC AF034831, 4 December 1997 (1997-12-04) YOU Z ET AL.: "Rhizobium etli stomatin like protein (slp) gene, complete cds." XP002138655 Note: 100% nt seq ident of bp 4384-4395 with bp 529-540 of SEQ ID NO:1455 (54.4% in 638 bp overlap), 100% aa seq ident of aa 1394-1403 with aa 109-118 of SEQ ID NO:1456 (41.2% in 182 aa overlap). the whole document						
-& YOU Z ET AL.: "A stomatin-like protein encoded by the slp gene of Rhizobium etli is required for nodulation competitiveness on the common bean" MICROBIOLOGY, vol. 144, no. 9, September 1998 (1998-09), pages 2619-2627, XP000907294 abstract figure 2	4,8,11,					
HUANG M ET AL.: "A stomatin-like protein necessary for mechanosensation in C. elegans" NATURE, vol. 378, no. 6554, 16 November 1995 (1995-11-16), pages 292-295, XP002138646 Note: 100% aa seq identity of aa 233-239 with aa 110-117 of SEQ ID NO:1456, 29.9% aa seq identity in 234 aa overlap. abstract figure 1	4,12					
	DATABASE GCG_GENESEQ [Online] ID W14640, AC W14640, 5 March 1998 (1998-03-05) QUENTIN-MILLET M J ET AL.: "N. meningitidis HTR Tbp2 (del3777-385, del407-465, del488-508)" XP002138654 Note: 23.5% aa seq identity with SEQ ID NO:1202 in 571 aa overlap. the whole document -& W0 97 13860 A (PASTEUR MERIEUX SERUMS VACC; QUENTIN MILLET MARIE JOSE (FR); ROKBI)) 17 April 1997 (1997-04-17) claim 11 DATABASE EMPRO1 [Online] EMBL ID AF034831, AC AF034831, 4 December 1997 (1997-12-04) YOU Z ET AL.: "Rhizobium etli stomatin like protein (slp) gene, complete cds." XP002138655 Note: 100% nt seq ident of bp 4384-4395 with bp 529-540 of SEQ ID NO:1455 (54.4% in 638 bp overlap), 100% aa seq ident of aa 1394-1403 with aa 109-118 of SEQ ID NO:1456 (41.2% in 182 aa overlap). the whole document -& YOU Z ET AL.: "A stomatin-like protein encoded by the slp gene of Rhizobium etli is required for nodulation competitiveness on the common bean" MICROBIOLOGY, vol. 144, no. 9, September 1998 (1998-09), pages 2619-2627, XP000907294 abstract figure 2 HUANG M ET AL.: "A stomatin-like protein necessary for mechanosensation in C. elegans" NATURE, vol. 378, no. 6554, 16 November 1995 (1995-11-16), pages 292-295, XP002138646 Note: 100% aa seq identity of aa 233-239 with aa 110-117 of SEQ ID NO:1456, 29.9% aa seq identity in 234 aa overlap. abstract figure 1					

11

PC i Application No

	***	PC 1765 99/09346				
C.(Continue	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
X	WONG C Y ET AL.: "Cloning and characterization of two immunophilin-like genes, ilpA and fkpA, on a single 3.9-kilobase fragment of Aeromonas hydrophila genomic DNA" JOURNAL OF BACTERIOLOGY, vol. 179, no. 11, June 1997 (1997-06), pages 3397-3403, XP002138647 Note: 100% nt seq ident of bp 2659-2672 with bp 613-626 of SEQ ID NO:1745 (59.2% in 655 bp overlap), 100% aa seq ident of aa 205-216 with aa 200-211 of SEQ ID NO:1746 (44.9% in 265 aa overlap). abstract figure 2	4,8,				
x	DATABASE EMPRO2 [Online] EMBL ID NE01198, AC U001198, 23 November 1993 (1993-11-23) MCALLISTER C F ET AL.: "Neisseria elongata NRL FKBP immunophilin homolog gene" XP002138656 Note: 100% nt seq identity of bp 125-138 with bp 635-648 of SEQ ID NO:1745 (65.8% nt seq identity in 237 bp overlap).	8,11,12				
X	the whole document -& MCALLISTER C F ET AL.: "Analysis in Neisseria meningitidis and other Neisseria species homologous to the FKBP immunophilin family" MOLECULAR MICROBIOLOGY, vol. 10, no. 1, October 1993 (1993-10), pages 13-23, XP000907304 abstract figure 3	8,11,12				
X	SAMPSON B A ET AL.: "Neisseria meningitidis encodes an FK506-inhibitable rotamase" PROC. NAT'L. ACAD. SCI. USA, vol. 89, no. 4, 15 February 1992 (1992-02-15), pages 1164-1168, XP002138648 Note: 100% nt seq identity of bp 278-288 (284-294) with bp 719-729 of SEQ ID NO:1745 (60.5% nt seq identity in 281 bp overlap). abstract figure 2	8,11,12				

11

. 0

Pt./US 99/09346

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
`	HACKER J ET AL.: "Immunophilins: structure-function relationship and possible role in microbial pathogenicity." MOLECULAR MICROBIOLOGY, vol. 10, no. 3, November 1993 (1993-11), pages 445-456, XP000907321 abstract	13,14,17			
<	DATABASE EMPRO1 [Online] EMBL ID ECUW93, AC U14003 (partial), 30 November 1994 (1994-11-30) BURLAND V ET AL.: "Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes" XP002138657 Note: 100% nt seq identity of bp 37827-37839 with bp 1186-1174 of SEQ ID NO:2791. page 4	8,11,12			
-					

11

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Box I C	bservations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Intern	ational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🗌 🖁	claims Nos.: ecause they relate to subject matter not required to be searched by this Authority, namely:
- L b	claims Nos.: ecause they relate to parts of the International Application that do not comply with the prescribed requirements to such n extent that no meaningful International Search can be carried out, specifically:
з. 🔲 с	Claims Nos.: ecause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Interr	national Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. 🔲 🕯	as all required additional search fees were timely paid by the applicant, this International Search Report covers all earchable claims.
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X	As only some of the required additional search fees were timely paid by the applicant, this International Search Report overs only those claims for which fees were paid, specifically claims Nos.:
	1,3,16,18 (all completely); 2,4-15,17 (all partially). Inventions searched: #1 (SEQ ID NOs 2789/2790), #2 (1/2), #222 (441/442), #246 (489/490), #602 (1201/1202), #729 (1455/1456), #874 (1745/1746), #1397 (2791/2792)
4	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Ð

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1. Claims: 1,3,16,18 (all completely); 2,4-15,17 (all partially)

A protein comprising the amino sequence of SEQ ID NO:2790 or comprising a fragment of at least 7 (preferably consecutive) amino acids of said SEQ ID NO; a protein with 50% or greater homology to said protein(s); an antibody binding to said protein(s); a nucleic acid encoding said protein(s), preferably comprising the nucleotide sequence of SEQ ID NO:2789 or a fragment comprising 10 or more consecutive nucleotides thereof; complementary nucleic acid molecules; compositions comprising said protein(s), nucleic acid(s) or antibody for vaccination, diagnosis or pharmaceutical use, preferably immunogenic compositions comprising said protein(s), and the use of said composition(s).

Invention 2. Claims: 2,4-15,17 (all partially)

A protein comprising an amino sequence according to SEQ ID NO:2 or comprising a fragment of at least 7 consecutive amino acids of said SEQ ID NO; an antibody binding to said protein(s); a nucleic acid encoding said protein(s), preferably comprising a nucleotide sequence according to SEQ ID NO:1 or a fragment comprising 10 or more consecutive nucleotides thereof; complementary nucleic acid molecules; compositions comprising said protein(s), nucleic acid(s) or antibody for vaccination, diagnosis or pharmaceutical use, preferably immunogenic compositions comprising said protein(s), and the use of said composition(s).

Inventions 3-1510. Claims: 2,4,-15,17 (all partially)

Same as invention 2 but for proteins limited to the even-numbered SEQ ID NOs:4-3020 except 2790, and for nucleic acids limited to the corresponding odd-numbered SEQ ID NOs:3-3019 except 2789. E.g., invention 3: limited to SEQ ID NO:4 and SEQ ID NO:3, invention 4: limited to SEQ ID NO:6 and SEQ ID NO:5, ..., invention 1509: limited to SEQ ID NO:3018 and SEQ ID NO:3017, and invention 1510: limited to SEQ ID NO:3020 and SEQ ID NO:3019.

patent family members

PL: Application No PL: 99/09346

					Puly	99/09346
Patent de		Publication date		Patent family member(s)	,	Publication date
EP 081	8465 A	14-01-199	8 EP WO		582 A 560 A	26-05-1999 22-01-1998
WO 962	9412 A	26-09-199	6 AU	7162	225 B	24-02-2000
110 302		20 03 133	AU		396 A	08-10-1996
			BR		551 A	17-11-1998
			CA	2215		26-09-1996
			CZ	97029		14-01-1998
			EP	08152		07-01-1998
			HU	97023		28-05-1998
			JP	115006	524 T	19-01-1999
			NO	9742	264 A	13-11-1997
			PL	3223	363 A	19-01-1998
			SI	96200		31-12-1998
			SK	1255	597 A	03-06-1998
WO 940	8013 A	14-04-199	4 AU	54035	594 A	26-04-1994
WO 921	3871 A	20-08-199	2 AU	14114	192 A	07-09-1992
Jes	A	20 00 133	US	58345		10-11-1998
WO 960	1901 A	25-01-199	6 FR	27222		12-01-1996
			AP		562 A	20-11-1996
			AU		397 B	04-11-1999
			AU	28912		09-02-1996
			BR	95087		02-06-1998
			CA	21931		25-01-1996
			CN	11523		18-06-1997
			CZ	97000		14-05-1997
			EP	07701		02-05-1997 30-03-1998
			HU	105025	341 A	10-03-1998
			JP NO		532 T 947 A	07-01-1997
			NZ	2891		25-02-1999
			PL		193 A	26-05-1997
			SK		597 A	06-08-1997
			TR		940 A	21-06-1996
			ŽA			26-02-1996
WO 973	7044 A	09-10-199	7 AU	25984	107 A	22-10-1997
MU 3/3	, 077 N	03-10-133	, AU BR			03-08-1999
		1	CA	22489		09-10-1997
			CN	12207		23-06-1999
			CZ	98029		17-02-1999
			EP	09015		17-03-1999
			JP			15-02-2000
			NO	9845	517 A	25-11-1998
			PL		945 A	01-03-1999
			SK	1305	598 A	11-06-1999
WO 963	3276 A	24-10-199				07-11-1996
			CA			24-10-1996
			EP			04-02-1998
			JP	115015	20 T	09-02-1999
WO 971	3860 A	17-04-199	7 FR			11-04-1997
			AU	72213	396 A	30-04-1997
			CA	22073		17-04-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

ination on patent family members

Patent document cited in search report		Patent document Publication Patent family		Publication date	
WO 9713860	A		EP 0796332 A HU 9801714 A JP 11500630 T NO 972314 A	24-09-1997 28-10-1998 19-01-1999 18-07-1997	

Form PCT/ISA/210 (patent family annex) (July 1992)