Отчёт по лабораторной работе №5 по дисциплине Моделирование сетей передачи данных

Эмуляция и измерение потерь пакетов в глобальных сетях

Шаповалова Диана Дмитриевна, НПИбд-02-21, 1032211220

Содержание

1	Цел	ıь работы	5					
2	Выполнение работы							
	2.1	Запуск лабораторной топологии						
	2.2 2.3	Интерактивные эксперименты	6					
		руемой глобальной сети	6					
	2.4	Добавление значения корреляции для потери пакетов в эмулируемой глобальной сети	8					
	2.5 2.6	Добавление повреждения пакетов в эмулируемой глобальной сети Добавление переупорядочивания пакетов в интерфейс подключе-	10					
	2.7	ния к эмулируемой глобальной сети	11					
	۷.7	лируемой глобальной сети	12					
3	Вос	произведение экспериментов	14					
	3.1	Предварительная подготовка	14					
	3.2	Задание для самостоятельной работы	16					
4 Выводы								
5 Список литературы								

Список иллюстраций

2.1	Добавление потери пакетов на интерфейс	8
2.2	Добавление значения корреляции для потери пакетов	9
2.3	Добавление повреждения пакетов	10
2.4	Добавление переупорядочивания пакетов	12
2.5	Добавление дублирования пакетов	13
3.1	Создаем каталоги	14
3.2	Создаем скрипт	15
3.3	Выполняем эксперимент	16
3.4	Выполняем эксперимент	17
3.5	Выполняем эксперимент	18
3.6	Выполняем эксперимент	19
3.7	Выполняем эксперимент	20

Список таблиц

1 Цель работы

Основной целью работы является получение навыков проведения интерактивных экспериментов в среде Mininet по исследованию параметров сети, связанных с потерей, дублированием, изменением порядка и повреждением пакетов при передаче данных. Эти параметры влияют на производительность протоколов и сетей.

2 Выполнение работы

2.1 Запуск лабораторной топологии

Запустите виртуальную среду с mininet.

Из основной ОС подключитесь к виртуальной машине:

ssh -Y mininet@192.168.x.y

В виртуальной машине mininet при необходимости исправьте права запуска Xсоединения. Скопируйте значение куки (MIT magic cookie)1 своего пользователя mininet в файл для пользователя root

После выполнения этих действий графические приложения должны запускаться под пользователем mininet.

Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8

2.2 Интерактивные эксперименты

2.3 Добавление потери пакетов на интерфейс, подключённый к эмулируемой глобальной сети

Пакеты могут быть потеряны в процессе передачи из-за таких факторов, как битовые ошибки и перегрузка сети. Скорость потери данных часто измеряется как процентная доля потерянных пакетов по отношению к количеству отправленных

пакетов.

- 1. На хосте h1 добавьте 10% потерь пакетов к интерфейсу h1-eth0:
- sudo tc qdisc add dev h1-eth0 root netem loss 10%

Здесь:

- sudo: выполнить команду с более высокими привилегиями;
- tc: вызвать управление трафиком Linux;
- qdisc: изменить дисциплину очередей сетевого планировщика;
- add: создать новое правило;
- dev h1-eth0: указать интерфейс, на котором будет применяться правило;
- netem: использовать эмулятор сети;
- loss 10%: 10% потерь пакетов
- 2. Проверьте, что на соединении от хоста h1 к хосту h2 имеются потери пакетов, используя команду ping с параметром -с 100 с хоста h1. Параметр -с указывает общее количество пакетов для отправки. Обратите внимание на значения icmp_seq. Некоторые номера последовательности отсутствуют изза потери пакетов. В сводном отчёте ping сообщает о проценте потерянных пакетов после завершения передачи.
- 3. Для эмуляции глобальной сети с потерей пакетов в обоих направлениях необходимо к соответствующему интерфейсу на хосте h2 также добавить 10% потерь пакетов:

sudo tc qdisc add dev h2-eth0 root netem loss 10%

4. Проверьте, что соединение между хостом h1 и хостом h2 имеет больший процент потерянных данных (10% от хоста h1 к хосту h2 и 10% от хоста h2 к хосту h1), повторив команду ping с параметром -с 100 на терминале хоста h1. Укажите в отчёте отсутствующие из-за потери пакетов номера последовательности (значения icmp_seq), процент потерянных пакетов после завершения передачи.

Рис. 2.1: Добавление потери пакетов на интерфейс

5. Восстановите конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса. Для отправителя h1:

sudo tc qdisc del dev h1-eth0 root netem Для получателя h2: sudo tc qdisc del dev h2-eth0 root netem

6. Убедитесь, что соединение от хоста h1 к хосту h2 не имеет явной потери пакетов, запустив команду ping с терминала хоста h1 и затем нажав Ctrl + c , чтобы остановить тест.

2.4 Добавление значения корреляции для потери пакетов в эмулируемой глобальной сети

1. Добавьте на интерфейсе узла h1 коэффициент потери пакетов 50% (такой высокий уровень потери пакетов маловероятен), и каждая последующая вероятность зависит на 50% от последней:

sudo tc qdisc add dev h1-eth0 root netem loss 50% 50%

- 2. Проверьте, что на соединении от хоста h1 к хосту h2 имеются потери пакетов, используя команду ping с параметром -с 50 с хоста h1. Укажите в отчёте отсутствующие из-за потери пакетов номера последовательности (значения icmp_seq), процент потерянных пакетов после завершения передачи.
- 3. Восстановите для узла h1 конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса:

sudo tc qdisc del dev h1-eth0 root netem

```
Thost: h1"@mininet-vm
                                                       X
64 bytes from 10.0.0.2: icmp seg=15 ttl=64 time=0.047 ms
64 bytes from 10.0.0.2: icmp seq=16 ttl=64 time=0.063 ms
64 bytes from 10.0.0.2: icmp seq=19 ttl=64 time=0.048 ms
64 bytes from 10.0.0.2: icmp seq=27 ttl=64 time=0.052 ms
64 bytes from 10.0.0.2: icmp seg=29 ttl=64 time=0.050 ms
64 bytes from 10.0.0.2: icmp seq=30 ttl=64 time=0.052 ms
64 bytes from 10.0.0.2: icmp seq=33 ttl=64 time=0.072 ms
64 bytes from 10.0.0.2: icmp seq=35 ttl=64 time=0.050 ms
64 bytes from 10.0.0.2: icmp seq=36 ttl=64 time=0.049 ms
64 bytes from 10.0.0.2: icmp seq=38 ttl=64 time=0.057 ms
64 bytes from 10.0.0.2: icmp seg=41 ttl=64 time=0.066 ms
64 bytes from 10.0.0.2: icmp seq=42 ttl=64 time=0.056 ms
64 bytes from 10.0.0.2: icmp seg=43 ttl=64 time=0.070 ms
64 bytes from 10.0.0.2: icmp seq=44 ttl=64 time=0.056 ms
64 bytes from 10.0.0.2: icmp seq=45 ttl=64 time=0.050 ms
--- 10.0.0.2 ping statistics ---
50 packets transmitted, 27 received, 46% packet loss, time 501
79ms
rtt min/avg/max/mdev = 0.047/0.097/0.557/0.130 ms
root@mininet-vm:/home/mininet#
```

Рис. 2.2: Добавление значения корреляции для потери пакетов

2.5 Добавление повреждения пакетов в эмулируемой глобальной сети

- 1. При необходимости восстановите конфигурацию интерфейсов по умолчанию на узлах h1 и h2.
- 2. Добавьте на интерфейсе узла h1 0,01% повреждения пакетов:

sudo tc qdisc add dev h1-eth0 root netem corrupt 0.01%

- 3. Проверьте конфигурацию с помощью инструмента iPerf3 для проверки повторных передач. Для этого:
- запустите iPerf3 в режиме сервера в терминале хоста h2: iperf3 -s
- запустите iPerf3 в клиентском режиме в терминале хоста h1: iperf3 -c 10.0.0.2
- В отчёте отразите значения повторной передачи на каждом временном интервале и общее количество повторно переданных пакетов.
 - Для остановки сервера iPerf3 нажмите Ctrl + с в терминале хоста h2.
 - 4. Восстановите для узла h1 конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса.

X "host: h1"@mininet-vm			-		×	🏋 "host	: h2"@mininet-vm			_		\times
[7] 4.00-5.00 12 KBytes	sec	1.35 GBytes	11.6 Gbits/sec	3	6 [7]	5.00-6.00	sec	1.93 GBytes	16.5 Gbits/sec		
[7] 5.00-6.00 50 KBytes	sec	1.93 GBytes	16.6 Gbits/sec	1	6 [7]	6.00-7.00	sec	2.18 GBytes	18.8 Gbits/sec		
[7] 6.00-7.00 02 KBytes	sec	2.18 GBytes	18.8 Gbits/sec	2	6 [7]	7.00-8.00	sec	2.18 GBytes	18.7 Gbits/sec		
[7] 7.00-8.00	sec	2.18 GBytes	18.7 Gbits/sec	1	6 [7]	8.00-9.00	sec	2.22 GBytes	19.1 Gbits/sec		
15 KBytes [7] 8.00-9.00	sec	2.22 GBytes	19.1 Gbits/sec	3	6 [7]	9.00-10.00	sec	1.97 GBytes	16.9 Gbits/sec		
01 KBytes [7] 9.00-10.00	sec	1.97 GBytes	16.9 Gbits/sec	7	6 [7]	10.00-10.00	sec	1.38 MBytes	6.07 Gbits/sec		
08 KBytes	_											
[ID] Interval [7] 0.00-10.00 sender	sec	Transfer 20.0 GBytes	Bitrate 17.2 Gbits/sec	Retr 38	1		Interval 0.00-10.00 receiver	sec	Transfer 20.0 GBytes	Bitrate 17.1 Gbits/sec		
[7] 0.00-10.00 receiver	sec	20.0 GBytes	17.1 Gbits/sec		s	erve	r listening on	5201				
<pre>iperf Done. root@mininet-vm:/home/mininet# []</pre>						^Ciperf3: interrupt - the server has terminated root@mininet-vm:/home/mininet#!						

Рис. 2.3: Добавление повреждения пакетов

2.6 Добавление переупорядочивания пакетов в интерфейс подключения к эмулируемой глобальной сети

- 1. При необходимости восстановите конфигурацию интерфейсов по умолчанию на узлах h1 и h2.
- 2. Добавьте на интерфейсе узла h1 следующее правило:

sudo tc qdisc add dev h1-eth0 root netem delay 10ms reorder 25% 50% Здесь 25% пакетов (со значением корреляции 50%) будут отправлены немедленно, а остальные 75% будут задержаны на 10 мс.

- 3. Проверьте, что на соединении от хоста h1 к хосту h2 имеются потери пакетов, используя команду ping с параметром -с 20 с хоста h1. Убедитесь, что часть пакетов не будут иметь задержки (один из четырех, или 25%), а последующие несколько пакетов будут иметь задержку около 10 миллисекунд (три из четырех, или 75%). При необходимости повторите тест. Укажите в отчёте отсутствующие из-за потери пакетов номера последовательности (значения icmp_seq), процент потерянных пакетов после завершения передачи.
- 4. Восстановите конфигурацию интерфейса по умолчанию на узле h1.

```
Thost: h1"@mininet-vm
          bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=10.1 ms bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.051 ms bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.049 ms bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.049 ms bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=10.7 ms bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=10.7 ms bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=10.7 ms bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=10.7 ms bytes from 10.0.0.2: icmp_seq=12 ttl=64 time=10.8 ms bytes from 10.0.0.2: icmp_seq=12 ttl=64 time=10.4 ms bytes from 10.0.0.2: icmp_seq=12 ttl=64 time=0.075 ms bytes from 10.0.0.2: icmp_seq=12 ttl=64 time=0.075 ms
                                                                                                                                                                                                                        X
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.051 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.049 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=10.7 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=10.7 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=10.7 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=10.7 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=13 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=16 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=15 ttl=64 time=10.3 ms
64 bytes from 10.0.0.2: icmp_seq=17 ttl=64 time=10.8 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=10.7 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=10.7 ms
                                                                                                                                                                                                                              7]
                                                                                                                                                                                                                                                 5.00-6.00
                                                                                                                                                                                                                                                                                        sec 1.93 GBytes 16.5 Gbits/sec
                                                                                                                                                                                                                      r 71
                                                                                                                                                                                                                                                 6.00-7.00
                                                                                                                                                                                                                                                                                         sec 2.18 GBvtes 18.8 Gbits/sec
                                                                                                                                                                                                                                                                                        sec 2.18 GBytes 18.7 Gbits/sec
                                                                                                                                                                                                                                                                                                          2.22 GBvtes 19.1 Gbits/sec
                                                                                                                                                                                                                                                 9.00-10.00 sec
                                                                                                                                                                                                                                                                                                           1.97 GBytes 16.9 Gbits/sec
                                                                                                                                                                                                                             7] 10.00-10.00 sec 1.38 MBytes 6.07 Gbits/sec
                                                                                                                                                                                                                                                 0.00-10.00 sec 20.0 GBytes 17.1 Gbits/sec
                                                                                                                                                                                                                                              receiver
                                                                                                                                                                                                                     Server listening on 5201
               10.0.0.2 ping statistics -
  --- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 1909

**Ciperf3: interrupt - the server has terminated
 rtt min/avg/max/mdev = 0.049/9.108/11.720/3.816 ms
|root@mininet-vm:/home/mininet# ■
                                                                                                                                                                                                                     root@mininet-vm:/home/mininet#
```

Рис. 2.4: Добавление переупорядочивания пакетов

2.7 Добавление дублирования пакетов в интерфейс подключения к эмулируемой глобальной сети

- 1. При необходимости восстановите конфигурацию интерфейсов по умолчанию на узлах h1 и h2.
- 2. Для интерфейса узла h1 задайте правило с дублированием 50% пакетов (т.е. 50% пакетов должны быть получены дважды):

sudo tc qdisc add dev h1-eth0 root netem duplicate 50%

- 3. Проверьте, что на соединении от хоста h1 к хосту h2 имеются дублированные пакеты, используя команду ping с параметром -с 20 с хоста h1. Дубликаты пакетов помечаются как DUP!. Измеренная скорость дублирования пакетов будет приближаться к настроенной скорости по мере выполнения большего количества попыток.
- 4. Восстановите конфигурацию интерфейса по умолчанию на узле h1.

```
Thost: h1"@mininet-vm
                                                            X
64 bytes from 10.0.0.2: icmp seq=10 ttl=64 time=0.048 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=0.271 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=0.271 ms (DUP!
64 bytes from 10.0.0.2: icmp seq=12 ttl=64 time=0.055 ms
64 bytes from 10.0.0.2: icmp seq=12 ttl=64 time=0.056 ms (DUP!
64 bytes from 10.0.0.2: icmp seq=13 ttl=64 time=0.063 ms
64 bytes from 10.0.0.2: icmp seq=14 ttl=64 time=0.050 ms
64 bytes from 10.0.0.2: icmp seq=15 ttl=64 time=0.050 ms
64 bytes from 10.0.0.2: icmp seq=16 ttl=64 time=0.045 ms
64 bytes from 10.0.0.2: icmp seq=17 ttl=64 time=0.050 ms
64 bytes from 10.0.0.2: icmp seq=18 ttl=64 time=0.069 ms
64 bytes from 10.0.0.2: icmp seq=19 ttl=64 time=0.057 ms
64 bytes from 10.0.0.2: icmp seq=19 ttl=64 time=0.057 ms (DUP!
64 bytes from 10.0.0.2: icmp_seq=20 ttl=64 time=0.054 ms
--- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, +8 duplicates, 0% packet
loss, time 19425ms
rtt min/avg/max/mdev = 0.045/0.212/1.278/0.335 ms
root@mininet-vm:/home/mininet# ping 10.0.0.2 -c 20
```

Рис. 2.5: Добавление дублирования пакетов

3 Воспроизведение экспериментов

3.1 Предварительная подготовка

1. Для каждого воспроизводимого эксперимента expname создайте свой каталог, в котором будут размещаться файлы эксперимента:

```
mkdir -p ~/work/lab_netem_ii/expname
Здесь expname может принимать значения simple-drop, correlationdrop и т.п.
```

```
[2]+ Stopped sudo mn --topo=single,2 -x
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_ii/simple-drop
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_ii/correlation-drop
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_ii/package-damage
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_ii/reordering-packages
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_ii/duplicating-packages
mininet@mininet-vm:~$ ls
```

Рис. 3.1: Создаем каталоги

2. Для каждого случая создайте скрипт для проведения эксперимента lab_netem_ii.py.

```
mininet@mininet-vm: ~/work/lab_netem_ii/simple-drop
                                                                               ×
home/mi~em_ii.py [-M--] 61 L:[
info('*** Adding switch\n')
   s1 = net.addSwitch('s1')
   net.addLink( h1, s1 )
net.addLink( h2, s1 )
   info( '*** Starting network\n' )
   net.start()
   info('*** Set delay\n')
   h1.cmdPrint('tc gdisc add dev h1-eth0 root netem loss 10%')
   h2.cmdPrint('tc gdisc add dev h2-eth0 root netem loss 10%')
   time.sleep(10)
   info('*** Ping\n')
   hl.cmdPrint('ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\'
   info('*** Stopping network')
   net.stop()
1Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete
```

Рис. 3.2: Создаем скрипт

Выполните эксперимент:

make

```
** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem loss 10%',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem loss 10%',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab netem ii/correlation-drop$ make stats
python stats.py
Total packets: 100
Lost packets: 20
Lost packet numbers: [3, 17, 19, 24, 27, 32, 35, 36, 49, 59, 62, 69, 75, 76, 77
 92, 93, 94, 96, 100]
Loss percentage: 20.00%
```

Рис. 3.3: Выполняем эксперимент

3.2 Задание для самостоятельной работы

Самостоятельно реализуйте воспроизводимые эксперименты по исследованию параметров сети, связанных с потерей, изменением порядка и повреждением пакетов при передаче данных.

```
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem loss 10%',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem loss 10%',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\'
sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab netem ii/correlation-drop$ make stats
python stats.py
Total packets: 100
Lost packets: 20
Lost packet numbers: [3, 17, 19, 24, 27, 32, 35, 36, 49, 59, 62, 69, 75, 76, 77
 92, 93, 94, 96, 100]
Loss percentage: 20.00%
```

Рис. 3.4: Выполняем эксперимент

Добавление значения корреляции для потери пакетов в эмулируемой глобальной сети

```
mininet@mininet-vm: ~/work/lab_netem_ii/correlation-drop
                                                                                           Х
    h1 : ('tc qdisc add dev h1-eth0 root netem loss 50% 50%',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem loss 10%',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\'
sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab netem ii/correlation-drop$ make stats
python stats.py
Total packets: 100
Lost packets: 53
Lost packet numbers: [2, 3, 4, 11, 12, 13, 14, 15, 17, 20, 21, 22, 26, 27, 28, 29, 30, 35, 36, 37, 38, 42, 44, 46, 54, 55, 60, 62, 63, 64, 65, 68, 69, 70, 73,
77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 95, 98, 99, 100]
Loss percentage: 53.00%
mininet@mininet-vm:~/work/lab netem ii/correlation-drop$
```

Рис. 3.5: Выполняем эксперимент

Добавление повреждения пакетов в эмулируемой глобальной сети

```
mininet@mininet-vm: ~/work/lab_netem_ii/package-damage
                                                                               X
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem corrupt 0.01%',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem loss 10%',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab netem ii/package-damage$ make stats
python stats.py
Total packets: 100
Lost packets: 13
Lost packet numbers: [13, 41, 56, 66, 67, 70, 80, 81, 83, 93, 96, 98, 99]
Loss percentage: 13.00%
mininet@mininet-vm:~/work/lab_netem_ii/package-damage$
```

Рис. 3.6: Выполняем эксперимент

Добавление переупорядочивания пакетов в интерфейс подключения к эмулируемой глобальной сети

```
mininet@mininet-vm: ~/work/lab_netem_ii/reordering-packages
                                                                              X
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 10ms reorder 25% 50%',)
*** h2 : ('tc gdisc add dev h2-eth0 root netem loss 10%',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
sudo chown mininet:mininet ping.dat
mininet@mininet-vm:~/work/lab netem ii/reordering-packages$ make stats
python stats.py
Total packets: 100
Lost packets: 8
Lost packet numbers: [11, 58, 65, 66, 67, 72, 73, 95]
Loss percentage: 8.00%
mininet@mininet-vm:~/work/lab netem ii/reordering-packages$
```

Рис. 3.7: Выполняем эксперимент

4 Выводы

Мы получили навыки проведения интерактивных экспериментов в среде Mininet по исследованию параметров сети, связанных с потерей, дублированием, изменением порядка и повреждением пакетов при передаче данных.

5 Список литературы

[1] Mininet: https://mininet.org/