Point Pattern Distance Based Methods

SERGIO REY

Geographic Information Analysis

School of Geographical Sciences and Urban Planning Arizona State University

Geographic Information Analysis by Sergio Rey is licensed under a Creative Commons Attribution 4.0 International License.

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- 4 Nearest Point-Event Neighbor Distances
 - F Function
 - J Function

Nearest Neighbors

Concept

- Spatial neighbor(s) for each point
- Distance between a point and its nearest neighbor(s)

Applications

- Statistics: clustering of points
- Statistics: specification of spatial weights
- Networks: nearest neighbor graphs
- Computer Science: nearest neighbor problems

Nearest Neighbor Definition

Nearest neighbor problem

Given a set S of n points in a plane, the nearest neighbor problem for a point u is to find the nearest neighbor N(u) such that $d_{u,N(u)} \leq d_{u,j} \ \forall \ j \in S \setminus u$.

All nearest neighbors problem

Given a set S of n points in a plane, the all nearest neighbors problem is to find a nearest neighbor N(u) of every $u \in S$.

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

Nearest Neighbor Concepts

Types of Nearest Neighbors

- Nearest neighbors
- Mutual nearest neighbors
- k-nearest neighbors

Nearest Neighbors

Mutual Nearest Neighbors

Figure 3.2 Network of first nearest neighbours for an artificial example of point pattern (NN). Mutual nearest neighbour pairs have bold lines, and form a subgraph (MNN) of the example.

Source: Dale and Fortin, R. (2014) "Spatial Analysis"

k-Nearest Neighbors

Figure 3: (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

Source: Bivand, R. (2015) "Creating neighbors."

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

Mean Nearest Neighbor Statistic

$d_{min}(s_i)$

$$d_{min}(s_i) = min(d_{i,1}, d_{i,2}, \dots, d_{i,n})$$
 (1)

 $d_{min}(s_i)$ is the distance between i and its nearest neighbor event.

Test Statistic

$$\bar{d}_{min} = \frac{1}{n} \sum_{i=1}^{n} d_{min}(s_i)$$
 (2)

Originally suggested by Clark and Evans (1954)

Mean Nearest Neighbor Statistic

$d_{min}(s_i)$

$$d_{min}(s_i) = min(d_{i,1}, d_{i,2}, \dots, d_{i,n})$$
 (1)

 $d_{min}(s_i)$ is the distance between i and its nearest neighbor event.

Test Statistic

$$\bar{d}_{min} = \frac{1}{n} \sum_{i=1}^{n} d_{min}(s_i) \tag{2}$$

Originally suggested by Clark and Evans (1954)

$$ar{ extbf{d}}_{ extit{min}}^{\sim} extbf{N}(\mu,\sigma^2)$$

$$\mu = E[\bar{d}_{min}] = 0.5(n^{-1}|A|)^{1/2} + (0.051 + 0.042n^{-1/2})n^{-1}P$$
 (3)

$$\sigma^2 = V[\bar{d}_{min}] = 0.070n^{-1/2}|A| + 0.037(n^{-5}|A|)^{1/2}P$$
 (4)

where |A| and P are the area and perimeter of the study area, respectively.

- Approximation, not an exact result
- Dependence of nearest neighbor distances is ignored
- Distribution of $d_{min}(s_i)$ ignored (only first moment).

$$ar{ extbf{d}}_{ extit{min}}^{\sim} extbf{N}(\mu,\sigma^2)$$

$$\mu = E[\bar{d}_{min}] = 0.5(n^{-1}|A|)^{1/2} + (0.051 + 0.042n^{-1/2})n^{-1}P$$
 (3)

$$\sigma^2 = V[\bar{d}_{min}] = 0.070n^{-1/2}|A| + 0.037(n^{-5}|A|)^{1/2}P$$
 (4)

where |A| and P are the area and perimeter of the study area, respectively.

- Approximation, not an exact result.
- Dependence of nearest neighbor distances is ignored.
- Distribution of $d_{min}(s_i)$ ignored (only first moment).

$$ar{ extbf{d}}_{ extit{min}}^{\sim} extbf{N}(\mu,\sigma^2)$$

$$\mu = E[\bar{d}_{min}] = 0.5(n^{-1}|A|)^{1/2} + (0.051 + 0.042n^{-1/2})n^{-1}P$$
 (3)

$$\sigma^2 = V[\bar{d}_{min}] = 0.070n^{-1/2}|A| + 0.037(n^{-5}|A|)^{1/2}P$$
 (4)

where |A| and P are the area and perimeter of the study area, respectively.

- Approximation, not an exact result.
- Dependence of nearest neighbor distances is ignored.
- Distribution of $d_{min}(s_i)$ ignored (only first moment).

$$ar{ extbf{d}}_{ extit{min}}^{\sim} extbf{N}(\mu,\sigma^2)$$

$$\mu = E[\bar{d}_{min}] = 0.5(n^{-1}|A|)^{1/2} + (0.051 + 0.042n^{-1/2})n^{-1}P$$
 (3)

$$\sigma^2 = V[\bar{d}_{min}] = 0.070n^{-1/2}|A| + 0.037(n^{-5}|A|)^{1/2}P$$
 (4)

where |A| and P are the area and perimeter of the study area, respectively.

- Approximation, not an exact result.
- Dependence of nearest neighbor distances is ignored.
- Distribution of $d_{min}(s_i)$ ignored (only first moment).

$ar{ extbf{d}}_{ extit{min}}^{\sim} extbf{N}(\mu, \sigma^2)$

$$\mu = E[\bar{d}_{min}] = 0.5(n^{-1}|A|)^{1/2} + (0.051 + 0.042n^{-1/2})n^{-1}P$$
 (3)

$$\sigma^2 = V[\bar{d}_{min}] = 0.070n^{-1/2}|A| + 0.037(n^{-5}|A|)^{1/2}P$$
 (4)

where |A| and P are the area and perimeter of the study area, respectively.

- Approximation, not an exact result.
- Dependence of nearest neighbor distances is ignored.
- Distribution of $d_{min}(s_i)$ ignored (only first moment).

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Problems

- For points close to the boundary intensity is underestimated.
- Neighboring points are outside the study region.

- Buffer the points
- Edge corrections
- Monte Carlo Simulations

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

Nearest Neighbor G Function

G(d)

$$G(d) = \sum_{i=1}^{n} \Phi_i^d / n \tag{5}$$

where

$$\Phi_i^d = \begin{cases} 1 & \text{if } d_{min}(s_i) < d \\ 0 & \text{otherwise} \end{cases}$$
 (6)

G(d) is the proportion of nearest neighbor distances that are less than d.

Uganda Crater Data

Uganda Crater Data

Nearest Neighbor G Function

Shape

- G increasing rapidly at small distances points to *clustering*.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution

Shape

- G increasing rapidly at small distances points to *clustering*.
- G increases slowly points to uniformity
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution

Shape

- G increasing rapidly at small distances points to *clustering*.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution

Shape

- G increasing rapidly at small distances points to *clustering*.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution.

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
 - Homogeneous Poisson process
 - Density equal to density of actual pattern
 - Empirical distribution against theoretical distribution
 Should be a 45 degree line if process in CSP.
 - Should be a 45 degree line if process is CSR
 Above the line = clustering

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution
 - Should be a 45 degree line if process is CSR
 - Above the line = clustering
 - Below the line = dispersion

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution
 - Should be a 45 degree line if process is CSR
 - Above the line = clustering
 - Below the line = dispersion

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution
 - Should be a 45 degree line if process is CSR
 - Above the line = clustering
 - Below the line = dispersion

Shape

- G increasing rapidly at small distances points to clustering.
- G increases slowly points to uniformity.
- Both are deviations from CSR.

- Theoretical G
- Homogeneous Poisson process
- Density equal to density of actual pattern
- Empirical distribution against theoretical distribution
 - Should be a 45 degree line if process is CSR
 - Above the line = clustering
 - Below the line = dispersion

ecdf(nndistG(as.points(uganda))\$dists)

Estimated vs. Theoretical G Function: Code

```
> library(splancs)
> data(uganda)
> plot(Ghat(as.points(uganda), seq(20, 500, 20)),
+ Fzero(pdense(as.points(uganda), uganda$poly),
+ seq(20, 500, 20)), type="l",
+ xlab="Theoretical G",
+ ylab="Estimated G")
> lines(c(0,1),c(0,1),lty=2)
```

Estimated vs. Theoretical G Function

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small *n*
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small n
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small *n*
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small *n*
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small n
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small *n*
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

- G function is sensitive to n
 - Can be rough
 - Takes on stepped appearance for small *n*
- Alternative approach is to generate N random points in the domain
 - Analyze the distribution of nearest event neighbor distances
 - Closest event to each point.
- Can be used for small n data sets

Outline

- Nearest Neighbor Concepts
 - Nearest Neighbors Definitions
 - Types of Nearest Neighbors
- Nearest Neighbor Statistic
 - Mean Nearest Neighbor Statistic: D
 - Edge Effects
- Nearest Event-Event Neighbor Distance Functions
 - G Function
- Mearest Point-Event Neighbor Distances
 - F Function
 - J Function

$$J(d) = (1 - G(d))/(1 - F(d))$$
 (7)

- J(d) < 1 points to spatial clustering
- J(d) > 1 points to spatial regularity

$$J(d) = (1 - G(d))/(1 - F(d))$$
 (7)

- J(d) < 1 points to spatial clustering
- J(d) > 1 points to spatial regularity

Redwood

R code

- km: spatial Kaplan-Meier estimator of G(r)
- rs: the reduced sample edge correction estimator of G(r)
- *theo*: the theoretical value of G(r) for a CSR process

R code: J Function

- km: spatial Kaplan-Meier estimator of G(r)
- rs: the reduced sample edge correction estimator of G(r)
- un: the uncorrected estimate of J(r) computed from the uncorrected estimates of F and G
- *theo*: the theoretical value of J(r) for a CSR process

F function simulation

