PROBLEM SET 5

Reading:

- Kapitulnik notes: pp. 38-44 of the PDF file on Canvas
- Kittel & Kroemer: Ch. 4, pp. 87-98
- 1. $Quadrupole\ trap.$ A dilute, classical gas of N non-interacting atoms is trapped in a magnetic quadrupole field, which forms a potential

$$U(x, y, z) = \alpha \sqrt{x^2 + y^2 + 4z^2}. (1)$$

- a. Calculate the peak density n_0 (i.e., the number of atoms per unit volume at the center of the trap) as a function of temperature τ . Note: you may wish to define a radial coordinate $\rho = \sqrt{x^2 + y^2 + \tilde{z}^2}$, where $\tilde{z} = 2z$.
- b. Calculate the Helmholtz free energy and entropy. Express your results in terms of the peak density n_0 and thermal de Broglie wavelength.
- c. State a condition for the classical treatment to be valid in terms of the peak density n_0 and temperature τ .
- d. By adiabatically reducing the trap gradient α , it is possible to lower the temperature τ .
 - i. How does the temperature τ scale with trap gradient α at constant entropy?
 - ii. Can this method of reducing the temperature bring an initially classical gas into the quantum regime (where the condition in c. is violated)? Why or why not?
- 2. Go through the midterm once again, now without the time pressure:
 - If you received fewer than 60% of the points on a given problem, submit the entire problem again.
 - If you received at least 60% of the points on a given problem, you may correct just the parts that you missed and explain your errors.
- 3. K&K problem 4.5 (Surface temperature of the earth).
- 4. K&K problem 4.6 (Pressure of thermal radiation).
- 5. K&K problem 4.9 (Photon gas in one dimension).