ESCUELA DE FÍSICA (UNAH-CU)

GUÍA DE LABORATORIO

FÍSICA GENERAL I (FS-100)

AUTOR: H. LAÍNEZ & K. RAUDALES

# Práctica

# Conservación de Momentum Lineal

# I. Referencias

# II. Objetivos

Al finalizar esta práctica el estudiante será capaz de:

- 1. Verificar la conservación de momento lineal para diferentes tipos de colisiones.
- 2. Analizar las perdidas de momentum lineal en un sistema físico real.
- 3. Interpretar la transferencia de momento en diferentes configuraciones de colisiones.

#### III. Problema

Dos deslizadores de masa  $m_A$  y  $m_B$  son colocados en un riel de aire (ver figura  $^{\square}$ ). Cuando el compresor se enciende se puede despreciar la fricción en su movimiento a través del riel.

Se deja que los deslizadores colisionen entre sí para producir diferentes configuraciones de colisiones elásticas e inelásticas.

Un par de foto-puertas en el riel registran las rapideces de entrada y salida de los deslizadores en sus distintas configuraciones producidas en el laboratorio.



Adaptación: Dr. Carlos Gabarrete (2023)

# IV. REVISIÓN DEL MARCO TEÓRICO

 $De\ acuerdo\ a\ la\ bibliografía\ consultada.$ 

- 1. ¿Qué es momento lineal?
- 2. Enuncie el principio de conservación de momento lineal. ¿Cómo se justifica matemáticamente? ¿Bajo que condiciones sucede?
- 3. ¿Qué es una colisión inelástica?
- 4. Realice un diagrama para una colisión inelástica entre dos cuerpos que se mueven en la misma dirección.
- 5. Deduzca una expresión matemática para la conservación del momento considerando el caso de la pregunta anterior.
- 6. ¿Qué es una colisión elástica?
- 7. Realice un diagrama para una colisión elástica entre dos cuerpos que se mueven en la misma dirección.
- 8. Deduzca una expresión matemática para la conservación del momento considerando el caso de la pregunta anterior.

# V. Montaje Experimental

# Materiales y Equipo

- Riel de aire PASCO y accesorios.
- Fotopuertas.
- Balanza.
- Smart Timer.
- Compresor de aire y accesorios.



### Preparación

- 1. Nivelar el riel de aire PASCO y preparar todos sus accesorios con las instrucciones dadas por el instructor.
- 2. Calibrar la altura de las fotopuertas del SMART TIMER usando la función test a la altura de las banderas de cada deslizador.
- 3. Colocar las fotopuertas a 40 cm (aproximadamente) una de la otra.

# VI. Procedimiento Experimental

#### Colisión Inelástica

- 1. Colocar en los deslizadores pesas en ambos lados, los arcos de rebote, la aguja en la masa  $m_A$  y el receptor con plastilina en la masa  $m_B$ .
- 2. Configurar el SMART TIMER en modo SPEED con función COLLISION, apretar el boton START, deberá notar un asterisco en la pantalla.
- 3. Encender el compresor de aire calibrando su potencia al máximo.
- 4. Lanzar  $m_B$  al lado de la fotopuerta 1 con una velocidad baja.
- 5. Lanzar  $m_A$  con una velocidad un poco mayor luego que la masa  $m_B$  haya cruzado por completo la fotopuerta 1. La colisión debe suceder entre las 2 fotopuertas.
- 6. Esperar a que ambas masas crucen la fotopuerta 2 y tomar datos de las velocidades de entrada y salida de ambos deslizadores. Anotar los resultados en la tabla (1).
- 7. Notar que, los datos que registra la fotopuerta 1 son las velocidades iniciales de los deslizadores, así mismo, los datos registrados por la fotopuerta 2 son las velocidades finales de ambos deslizadores. En este caso, se espera que ambas velocidades finales sean iguales.
- 8. Repetir los pasos anteriores 5 veces y anotar los datos en la tabla (1).
- 9. Medir las masas de ambos deslizadores utilizando la balanza y anotar los datos en la tabla (1).

# Colisión Elástica

- 1. Colocar en los deslizadores pesas en ambos lados, los arcos de rebote, las cuchillas en ambas masas.
- 2. Orientar los deslizadores de forma que colisionen utilizando la cuchilla en la masa  $m_A$  y el arco en la masa  $m_B$ .
- 3. Configurar el SMART TIMER en modo SPEED con función COLLISION, apretar el boton START, deberá notar un asterisco en la pantalla.
- 4. Encender el compresor de aire calibrando su potencia al máximo.
- 5. Lanzar  $m_B$  al lado de la fotopuerta 1 con una velocidad baja.
- 6. Lanzar  $m_A$  con una velocidad un poco mayor luego que la masa  $m_B$  haya cruzado por completo la fotopuerta 1. La colisión debe suceder entre las 2 fotopuertas.
- 7. Esperar a que ambas masas crucen la fotopuerta 2 y tomar datos de las velocidades de entrada y salida de ambos deslizadores. Anotar los resultados en la tabla (2).
- 8. Los datos que registra la fotopuerta 1 son las velocidades iniciales de los deslizadores, así mismo, los datos registrados por la fotopuerta 2 son las velocidades finales de ambos deslizadores.
- 9. Repetir los pasos anteriores 5 veces y anotar los datos en la tabla (2).
- 10. Medir las masas de ambos deslizadores utilizando la balanza y anotar los datos en la tabla (2).

# VII. TABLA DE DATOS EXPERIMENTALES

Registre en las siguientes tablas los datos experimentales recolectados en el laboratorio.

| N | $m_A$ (g) | $m_B$ (g) | $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} \text{ (cm/s)}$ | $v_f \text{ (cm/s)}$ |
|---|-----------|-----------|-------------------------|-------------------------|----------------------|
| 1 |           |           |                         |                         |                      |
| 2 |           |           |                         |                         |                      |
| 3 |           |           |                         |                         |                      |
| 4 |           |           |                         |                         |                      |
| 5 |           |           |                         |                         |                      |

Tabla 1: Registro de los datos experimentales para colisión inelástica.

| N | $m_A$ (g) | $m_B$ (g) | $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} ({\rm cm/s})$ | $v_{Af} \text{ (cm/s)}$ | $v_{Bf}$ (cm/s) |
|---|-----------|-----------|-------------------------|-----------------------|-------------------------|-----------------|
| 1 |           |           |                         |                       |                         |                 |
| 2 |           |           |                         |                       |                         |                 |
| 3 |           |           |                         |                       |                         |                 |
| 4 |           |           |                         |                       |                         |                 |
| 5 |           |           |                         |                       |                         |                 |

Tabla 2: Registro de los datos experimentales para colisión elástica.

# VIII. Procedimiento Demostrativo

En esta sección demostrativa considere cada una de las siguientes configuraciones y anote sus resultados de las velocidades iniciales y finales de cada deslizador en su tabla correspondiente (tablas 3-7). Los resultados serán analizados en la sección X.

Colisión Inelástica: coloque en el riel un par de deslizadores con la siguiente configuración;  $m_A \approx m_B$  y  $\vec{v}_{Ai} \approx -\vec{v}_{Bi}$ .

| $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} \text{ (cm/s)}$ | $v_{Af}$ (cm/s) | $v_{Bf}$ (cm/s) |
|-------------------------|-------------------------|-----------------|-----------------|
|                         |                         |                 |                 |

Tabla 3: Registro de los datos demostrativos para colisión inelástica

#### Colisión Elástica

1. Configuración #1: coloque en el riel un par de deslizadores con la siguiente configuración;  $m_A \approx m_B$  y  $\vec{v}_{Ai} \approx -\vec{v}_{Bi}$ .

| $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} \text{ (cm/s)}$ | $v_{Af}$ (cm/s) | $v_{Bf}$ (cm/s) |
|-------------------------|-------------------------|-----------------|-----------------|
|                         |                         |                 |                 |

Tabla 4: Registro de los datos demostrativos para colisión elástica en la configiración #1

2. Configuración #2: coloque en el riel un par de deslizadores con la siguiente configuración;  $m_A \approx m_B$  y  $v_{Bi} = 0$ .

| $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} \text{ (cm/s)}$ | $v_{Af}$ (cm/s) | $v_{Bf}$ (cm/s) |
|-------------------------|-------------------------|-----------------|-----------------|
|                         |                         |                 |                 |

Tabla 5: Registro de los datos demostrativos para colisión elástica en la configiración #2

3. Configuración #3: coloque en el riel un par de deslizadores con la siguiente configuración;  $m_B > m_A$  y  $v_{Bi} = 0$ .

| $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} \text{ (cm/s)}$ | $v_{Af}$ (cm/s) | $v_{Bf}$ (cm/s) |
|-------------------------|-------------------------|-----------------|-----------------|
|                         |                         |                 |                 |

Tabla 6: Registro de los datos demostrativos para colisión elástica en la configiración #3

Física General I FS-100

4. Configuración #4: coloque en el riel un par de deslizadores con la siguiente configuración;  $m_A > m_B$  y  $v_{Bi} = 0$ .

| $v_{Ai} \text{ (cm/s)}$ | $v_{Bi} ({\rm cm/s})$ | $v_{Af}$ (cm/s) | $v_{Bf}$ (cm/s) |
|-------------------------|-----------------------|-----------------|-----------------|
|                         |                       |                 |                 |

Tabla 7: Registro de los datos demostrativos para colisión elástica en la configiración #4

# IX. Tratamiento de los datos experimentales

- 1. Pare el choque inelástico:
  - 1. Determine el momento inicial  $p_i$  y final  $p_f$  para cada conjunto de mediciones.
  - 2. Determine el porcentaje de perdida de momento  $\Delta P_{\text{pérdida}}$ .
  - 3. Presente sus resultados para cada conjunto de mediciones en la forma:

$$p = (\bar{p} \pm \Delta p)$$
 unidades. (1)

- 4. Elabore en papel milimetrado un gráfico de discrepancia de ambos resultados.
- 5. Resuma sus cálculos en un cuadro que muestre los resultados de  $p_i$ ,  $p_f$ ,  $\Delta p_i$  y  $\Delta p_f$  para cada lanzamiento.
- 2. Pare el choque elástico:
  - 1. Determine el momento inicial  $p_i$  y final  $p_f$  para cada conjunto de mediciones.
  - 2. Determine el porcentaje de perdida de momento  $\Delta P_{\text{p\'erdida}}$ .
  - 3. Presente sus resultados para cada conjunto de mediciones en la forma:

$$p = (\bar{p} \pm \Delta p)$$
 unidades. (2)

- 4. Elabore en papel milimetrado un gráfico de discrepancia de ambos resultados.
- 5. Resuma sus cálculos en un cuadro que muestre los resultados de  $p_i$ ,  $p_f$ ,  $\Delta p_i$  y  $\Delta p_f$  para cada lanzamiento.

# X. Análisis de Resultados

#### 1. Procedimiento Experimental

A partir de los resultados obtenidos en el procedimiento experimental (registrados en las tablas 1 y 2) responda y justifique lo siguiente:

- a) ¿Con los resultados de  $\Delta p$  obtenidos, podría decir que el momento lineal se conserva en las colisiones inelásticas?
- b) ¿Con los resultados de  $\Delta p$  obtenidos podría decir que el momento se conserva en el caso de las colisiones elásticas?
- c) ¿A que factores se debe la perdida en el momento en ambos tipos de colisiones?
- d) Analizando el gráfico elaborado explique, ¿Qué tan significante puede llegar a ser la discrepancia entre los momentos iniciales y finales en ambos tipos de colisión?

#### 2. Procedimiento Demostrativo

A partir de los resultados obtenidos en el procedimiento demostrativo (registrados en las tablas 3, 4, 5, 6 y 7) responda y lo siguiente:

- a) Colisión Inelástica:  $m_A \approx m_B$  y  $\vec{v}_{Ai} \approx -\vec{v}_{Bi}$ . Tabla 3.
  - 1) Realice un diagrama del sistema antes y después de la colisión.
  - 2) Determine teóricamente la velocidad final de los deslizadores.
  - 3) ¿Es consistente este resultado con lo observado en el laboratorio?
- b) Colisión Elástica
  - 1) Configuración #1:  $m_A \approx m_B$  y  $\vec{v}_{Ai} \approx -\vec{v}_{Bi}$ . Tabla 4.
    - 1.1 Realice un diagrama del sistema antes y después de la colisión.
    - 1.2 ¿Cómo se relacionan las velocidades iniciales y finales de ambos deslizadores?
    - 1.3 ¿Qué implica esto en cuanto a la transferencia de los momentos entre los deslizadores?
  - 2) Configuración #2:  $m_A \approx m_B$  y  $v_{Bi} = 0$ . Tabla 5.
    - 2.1 Realice un diagrama del sistema antes y después de la colisión.
    - 2.2 ¿Qué sucede con la velocidad de la masa A después del choque? ¿A qué se debe que se obtenga este valor?
    - 2.3 Demuestre este resultado de forma teórica con los datos de la Tabla 4.
  - 3) Configuración #3:  $m_B > m_A$  y  $v_{Bi} = 0$ . Tabla 6.
    - 3.1 Realice un diagrama del sistema antes y después de la colisión.
    - 3.2 Anote sus observaciones después de la colisión y expliquelas.
    - 3.3 Deduzca matemáticamente, ¿Qué pasaría con la velocidad final de A si la masa B es tan pesada que no se mueve después de la colisión?
  - 4) Configuración #4:  $m_A > m_B$  y  $v_{Bi} = 0$ . Tabla 7.
    - 4.1 Realice un diagrama del sistema antes y después de la colisión.
    - 4.2 Anote sus observaciones después de la colisión y expliquelas.
    - 4.3 Explique, ¿Por qué la masa B sale disparada y la masa A casi no pierde velocidad?

# XI. CONCLUSIONES

Redacte tres conclusiones basadas en las preguntas que aparecen en su guía del laboratorio. Sus conclusiones deben hacer referencia al problema planteado y estar fundamentadas en sus resultados experimentales.

i)

ii)

iii)