Inferencia de Redes ARACNE

Alejandra Yamamoto

Outline

- 1. Introducción
 - Motivación
 - Objetivo
 - Métodos
- 2. RN & ARACNE
 - Fundamentos
 - Hipótesis
 - Estimaciones
 - Filtrados
- 3. Resumen
- 4. Práctica

Motivación

Motivación

- Proceso de regulación
- Influencias de genes
- Construcción de modelos
- Redes de regulación génica (GRN)

¿Por qué redes?

- Interacción
- Tasa de producción de proteínas
- Estudio de factores de transcripción
- Nodos Genes
- Enlaces Relación entre TF y genes
 - Activación
 - Inhibición
- Medidas de centralidad

Objetivo

¿Cuál es la forma de la red de regulación transcripcional?

¿Tipos de datos a estudiar?

¿Qué métodos existen para la inferencia de redes?

¿Características?

Métodos Disponibles

Supervisado

- Conocimiento a priori
- Datos conocidos
- Función capaz de predecir resultados.
- SIRENE (Supervised Inference of Regulatory Networks)

No supervisado

- Parte de propiedades de los datos
- Búsqueda de la caracterización de datos
- Datos de entrada se consideran variables aleatorias

Métodos No Supervisados

Ejemplos

Basado en MI

- RN (Relevance Networks)
- ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks)
- MRNET (Minimum
 Redundancy/Maximum
 Relevance Networks)
- CLR (Context Likelihood Relatedness)

Basado en correlación de Pearson

- CORRELATIONS
- PCIT (Partial Correlation and Information Theory)
- WGCNA (Weighted Gene Coexpression Network Analysis)
- GENIE3 (Gene Network Inference with Ensemble of Trees)

RN & ARACNE Fundamentos

Reconstrucción de redes de co-expresión génica

Basado en teoría de la información

Datos de microarrays / RNA-Seq

Relaciones derivadas por dependencias estadísticas

Datos de entrada

- Microarreglos o RNA-Seq
- Matrices

Dependencia estadística

72 genes 69 validation samples

Nivel de expresión de genes

Información mutua

Dependientes

Conceptos

Procesos estadísticos

Proceso determinista

Bajo mismas condiciones, mismos resultados.

Proceso aleatorio

Bajo mismas condiciones, resultados distintos.

Conceptos

Variable aleatoria

Función definida en el espacio de probabilidad asociado a un experimento aleatorio.

$$X:\Omega\longrightarrow {\rm I\!R}$$

Espacio probabilístico

Espacio muestral ____ 0 1

Probabilidad IP

Conceptos

Espacio probabilístico

	0	1
0	$(\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$	$(\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$
1	$(\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$	$(\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$

Hipótesis

Nivel de expresión — Variable aleatoria (g)

Hipótesis Nula

Genes estadísticamente independientes

$${
m I\!P}(g_i,g_j)={
m I\!P}(g_i){
m I\!P}(g_j)$$

Interacción entre pares de genes

Información Mutua $I(g_i, g_j) \equiv I_{ij}$

$$I(g_i,g_j) = \sum_{g_i,g_j} p(g_i,g_j) \ln \frac{p(g_i,g_j)}{p(g_i)p(g_j)}$$

- Nivel de dependencia estadística entre 2 v.a.
- Basado en entropía de Shannon
- Genes independientes:

$$I_{ij}=0$$

Estimaciones (MI y JPD)

Distribución de Probabilidad Conjunta $\mathbb{P}(\vec{g})$

- Aproximaciones de máxima entropía
- Factorización en potenciales

Información Mutua

$$I(g_i,g_j)\equiv I_{ij}$$

- Discretización
- Transformación cópula
- Rank-order
- Estimador Kernel-Gaussiano
 - F. P. Marginales
 - F. P. Conjuntas
 - Ancho de kernel (h)

Estimación MI

$$I(g_i, g_j) = \sum_{g_i, g_j} p^*(g_i, g_j) \ln \frac{p^*(g_i, g_j)}{p^*(g_i) p^*(g_j)}$$

I. Filtro Modelo Nulo

I. Filtro Umbral por Información Mutua

- Falsos positivos
 - Genes intermediarios

ARACNE Margolin et al. (2006)

Interacciones indirectas

II. Filtro Data Processing Inequality (DPI)

Práctica

Reconstruyamos una red de co-expresión

L Red de levadura

Nodos - genes (50) Enlaces - regulación

3. Apéndice

Cálculos

Ecuaciones

Distribución de probabilidad conjunta (JPD)

$$\mathbb{P}(\{g_i\}) = \frac{1}{Z} exp[-\sum_{i}^{N} \phi_i(g_i) - \sum_{i,j}^{N} \phi_{ij}(g_i,g_j) - \sum_{i,j,k}^{N} \phi_{ijk}(g_i,g_j,g_k)] - \dots$$

Condición de interacción entre genes

$$\phi_i \neq 0$$

Interacción entre pares de genes

$$H(\lbrace g_i \rbrace) = \sum_{i}^{N} \phi_i(g_i) + \sum_{i,j}^{N} \phi_{ij}(g_i,g_j)$$

Ecuaciones

Condición de independencia entre genes (MI)

$$I_{ij} = 0 \Longleftrightarrow \mathbb{P}(g_i, g_j) = \mathbb{P}(g_i)\mathbb{P}(g_j)$$

Información mutua en términos de la entropía

$$I(X,Y) = S(X) + S(Y) - S(X,Y)$$

Entropía en términos de funciones de probabilidad

$$S(X) = -\sum_{x \in X} \mathbb{P}(X = x) \ln \mathbb{P}(X = x)$$

Ecuaciones

Relación entre MI y entropía en términos de función de probabilidad

$$I(X,Y) = \sum_{x,y} p(x,y) \ln \frac{p(x,y)}{p(x)p(y)}$$

Notación:

$$p(x_i) = \mathbb{P}(X = x_i)$$

Ecuaciones del estimador

Estimador Kernel-Gaussiano

$$f(z) = \frac{1}{M} \sum_{i} \frac{G|z - z_{i}|}{h^{3}}$$

Información mutua dado el estimador

$$I(x_i, y_i) = \frac{1}{M} \sum_{i} log \frac{f(x_i, y_i)}{f(x_i)f(y_i)}$$

Gracias por su atención

¿Preguntas?

