# Изкуствен интелект / интелигентни системи

гл. асистент д-р Венета Табакова-Комсалова ФМИ, ПУ "П. Хилендарски", Пловдив

#### Рекурсия

Пролог поддържа дескрептивен стил на програмиране, при който проблемите се задават като спецификация на обекти и релации между тях. При един такъв подход особено значение придобива способността на програмистите да конструират достатъчно общовалидни дефиниции. Едно мощно средство за създаване на общовалидни описания на обектите и релациите е рекурсията.

Силата на рекурсията е в създаване на кратки програми.

Недостатък на рекурсията е, че тя не е естествен начин за мислене и разсъждения при хората, както и факта, че изисква повече изчислителни ресурси.

#### Същност на рекурсивните дефиниции

Най-общо, една рекурсивна дефиниция включва в лявата страна понятието, което искаме да дефинираме (дадено в дясната страна). Смисълът на един рекурсивен проблем е в това, дали можем циклично да го опростяваме и да прилагаме същия начин за търсене на решение както за оригиналния. Освен това е необходимо да специфицираме "дъното " на рекурсията, т.е. проблемът е решим с "единична" (позната) операция.

Една рекурсивна дефиниция в Пролог, обикновено се задава с две клаузи - рекурсивна клауза и клауза за единичната операция (стоп клауза).

Рекурсивните дефиниции могат да бъдат:

Ляворекурсивни

Дяснорекурсивни.

### Пример за рекурсивен проблем: "Ханойски кули"

Ханойските кули (от името на град Ханой) е математическа игра, измислена от френския математик Едуард Люка през 1883 година.

Играта се играе с няколко диска, различни по размер един от друг, и три стълба. В началото дисковете са подредени по големина на левия стълб, като най-големият е най-отдолу, а най-малкият е най-отгоре. Целта е кулата да бъде преместена от левия на десния стълб като се използва един помощен стълб по средата като се спазват следните правила:

- може да се мести само по един диск на ход и
- не може по-голям диск да бъде поставен върху по-малък.

Всеки ход е съставен от взимането на горния диск от даден стълб и в поставянето му най-отгоре на друг стълб.

Любопитно. Съществува вариант на играта със 64 диска, наречен Кулата на Брахма. Легендата разказва, че когато монасите от Брахма приключат играта ще настъпи краят на света.

### Пример за рекурсивен проблем: "Ханойски кули"



```
% "Дъно" на рекурсията move(1, X, Y, _):- write('Премести пул от'), write(X), write('върху '), write(Y), nl.
```

### 

Нека зададем следния въпрос към БД: ?- move(3, a, c, b).

Премести пул от а върху с Премести пул от а върху b Премести пул от а върху с Премести пул от а върху а Премести пул от b върху а Премести пул от b върху с Премести пул от a върху с **true**  Съществуват различни разновидности на рекурсията. Различаваме:

Рекурсивни програми - в програмирането с рекурсия се обозначава случай, когато подпрограма вика предходна своя функция. Рекурсията условно се разделя в две категории: директна (пряка) и индиректна (косвена). Рекурсията е пряка, когато в тялото на подпрограмата има референция към нея. Косвена е тази рекурсия, при която една подпрограма вика друга, а тя вика предходната. Съществуват и случаи на косвена рекурсия, при които подпрограмата извиква себе си, след поредица от обръщения към други подпрограми.

**Рекурсивни структури** – типичен пример за рекурсивни структури са списъците

**Рекурсивни проблеми** – проблемът, който искаме да решаваме, естествено, се представя рекурсивно.

**Рекурсивен предикат** – в дясната част на някое негово правило се среща същият предикат.

p(X):-a(X,Y), p(Y).

Използване:

Задачата се формулира рекурсивно (отношението се описва чрез себе си);

Обработва се рекурсивна структура от данни.

Рекурсията – единствен начин за реализиране на итерация (цикли). Рекурсивната дефиниция включва:

Стоп-клауза (една или повече) за завършване на рекурсията Рекурсивна клауза (една или повече)

Пример:

Дефиниране на потомък (наследник) чрез предикатите син и дъщеря.

потомък (Х,иван):-син(Х,иван). % стоп клауза потомък(Х,иван):-дъщеря(Х,иван). % стоп клауза потомък(Х,иван):-син(Y,иван), потомък(X,Y). % рекурсивна клауза потомък(X,иван):- потомък(Y,иван), потомък(X,Y). % рекурсивна клауза

потомство(X,Y):- родител(X,Y). потомство(X,Y):- родител (X,Z),потомство(Z,Y).

потомство(X,Y):- родител (X,Z), потомство(Z,Y). потомство(X,Y):- родител(X,Y).

потомство(X,Y):- родител(X,Y). потомство(X,Y):- потомство(X,Z), родител(Z,Y).

потомство(X,Y):- потомство(X,Z), родител(Z,Y). потомство(X,Y):- родител (X,Y).

- Задача 1. В програма на Пролог са дефинирани предикатите **person, famale, likes, loves** и **has** (човек, приятел, харесва, обича и има), (виж по-доли в коментарите на програмата кой предикат какво отношение представя).
- 1.Дефинирайте предикати, описващи следните твърдения/отношения
- А) Щастлив е този, който има компютър и някой го обича.
- Б) Мария би харесала мъж, който я обича и има кола.
- В) Предикат, който определя дали двама души харесват тенис.
- Г) Предикат, който определя кой човек не харесва тенис.
- Д) Предикат, който определя кой човек не харесва нищо.
- Е) Предикат, който определя кога (дали) нещо се харесва поне от двама души.
- Ж) Мъж и жена могат да образуват двойка, ако се обичат и има поне едно нещо, което и двамата харесват.
- 3) Мъж и жена могат да образуват двойка, ако се обичат и харесват еднакви неща. (всичко, което се харесва от единия се харесва и от другия).
- 2. Напишете вътрешни цели, които извеждат всички отговори на Д) и Ж).

## Факти

```
person(ivan).
person(petar).
person(maria).
person(anna).
person(elena).
person(dimitar).
person(tanya).
person(veselin).
% male(X)
male(ivan).
male(petar).
male(dimitar).
% female(X)
female(X):-person(X), \ + \ male(X).
```

```
% likes(X,Y)
likes(ivan,football).
likes(ivan,computer games).
likes(ivan,books).
likes(maria,tennis).
likes(maria,flowers).
likes(anna,football).
likes(anna,books).
likes(anna,computer games).
likes(petar,tennis).
likes(tanya,tennis).
likes(maria,football).
likes(maria,books).
likes(dimitar,X):-likes(petar,X).
```

# Факти

% loves(X,Y)
loves(ivan,maria).
loves(ivan,anna).
loves(ivan,elena).
loves(petar,maria).
loves(elena,ivan).
loves(maria,petar).

loves(tanya,X):-male(X).

loves(dimitar,tanya). loves(maria,ivan).

has(ivan,computer). has(petar,car). has(petar,computer).

- А) Щастлив е този, който има компютър и някой го обича.
- Б) Мария би харесала мъж, който я обича и има кола.
- В) Предикат, който определя дали двама души харесват тенис.
- Г) Предикат, който определя кой човек не харесва тенис.
- Д) Предикат, който определя кой човек не харесва нищо.
- E) Предикат, който определя кога (дали) нещо се харесва поне от двама души.
- Ж) Мъж и жена могат да образуват двойка, ако се обичат и има поне едно нещо, което и двамата харесват.
- 3) Мъж и жена могат да образуват двойка, ако се обичат и харесват еднакви неща. (всичко, което се харесва от единия се харесва и от другия).

- A) Щастлив е този, който има компютър и някой го обича. happy(X):- has(X,computer), loves(\_,X).
- Б) Мария би харесала мъж, който я обича и има кола. could\_be\_like(maria,X):- male(X), loves(X, maria), has(X,car).
- В) Предикат, който определя дали двама души харесват тенис. like2tennis(X,Y):-likes(X,tennis), likes(Y, tennis), X\=Y.
- Г) Предикат, който определя кой човек не харесва тенис. don't\_like\_tennis(Z):-person(Z), not like(Z,tennis).
- Д) Предикат, който определя кой човек не харесва нищо.
- likes\_nothing(X):-person(X), \+likes(X,\_).

Е) Предикат, който определя кога (дали) нещо се харесва поне от двама души.

likes2(X):-likes(A,X), likes(B,X), A = B.

Ж) Мъж и жена могат да образуват двойка, ако се обичат и има поне едно нещо, което и двамата харесват.

like2exactly(X):-likes(A,X), likes(B,X), A\=B,  $+(likes(Z,X),Z\=A, Z\=B)$ .

3) Мъж и жена могат да образуват двойка, ако се обичат и харесват еднакви неща. (всичко, което се харесва от единия се харесва и от другия).

couple(X,Y):-male(X), famale(Y), loves(X,Y), \+(likes(X,S), not likes(Y,S); likes(Y,S), not likes(X,S)).

- 2. Напишете вътрешни цели, които извеждат всички отговори на Д) и Ж).
- ?- write(`Кой не харесва нищо:`), nl, likes\_nothing(X), write(X), nl, fail.
- ?- write(`Възможни двойки:`), nl, pair(X,Y), pair(X,Y), write(X),write(`--`), write(Y), nl, fail.

# Пресмятане на аритметични изрази

$$?- Y=5, X is Y+1.$$

true

true

# Задача

1. Дефинирайте предикат за пресмятане по зададено X на стойността на функцията:

$$g(x) = \begin{cases} \ln(x+3), & 0.5 < x \le 5 \\ -3, & -0.5 \le x \le 0.5 \end{cases}$$
$$\sqrt{|12-x| + x^2}, & x < -0.5 \text{ unu } x > 5 \end{cases}$$

- 2. Пресмятане на факториел
- А) Рекурсивен вариант съответства на написване на рекурсивна програма на процедурен език. Това е естественият начин за дефиниране на отношения.

```
% 0!=1 (стоп-клауза) fact(0,1).
%n!=n*(n-1)! (рекурсивна-клауза) fact(N,F):- N>0, N1 is N-1, fact(N1,F1), F is F1*N.
```

Б) Интерактивен вариант – съответства на написване на цикъл процедурен език. Предикатът е пак рекурсивен, но рекурсивното извикване е последно в последната клауза (дясна рекурсия), което позволява по-голяма ефективност.

```
 \begin{array}{ll} \text{fact}(N,F)\text{:-} \ f(0,N,1,F). \\ f(N,N,F,F). \\ f(X,N,Y,F)\text{:-} X<N, \ X1 \ is \ X+1, \ Y1 \ is \ Y*X1, \ f(X1,N,Y1,F). \end{array} \\ & \left\{ \begin{array}{ll} x=0; \ f=1; \\ \text{While } (x<n) \\ \{x++; \ f=f^*x\} \end{array} \right.
```

Внимание! Ако един предикат се извика с аргумент свързана променлива, не може тази променлива да приеме друга стойност в процеса на търсене на решение.

Не може да присвоявате стойност така X is X+1, защото от двете страни на is трябва да има еднакви стойности, а никое число не е равно на себе си плюс 1. Т.е. щом променливата е свързана с една стойност, тя не може да се свърже чрез присвояване is с друга стойност.

- 3. Пресмятане на степен: x<sup>n</sup> n>0
  - 4. Отпечатване на екрана на числата от 1 до зададено число.
  - 5. Пресмятане на сумата  $(x+2)^2+(x+4)^2+(x+6)^2+...+(x+a)^2$  където  $\boldsymbol{a}$  е най-голямото четно число, ненадхвърлящо  $\boldsymbol{n}$
  - 6. Пресмятане на НОД на две числа
  - 7. Пресмятане на n-ти елемент на редицата на Фибоначи  $f_0=1$ ;  $f_1=1$ ;  $f_n=f_{n-1}+f_{n-2}$ , n>1.

#### Задачи за упражнение:

1. Дефинирайте предикати за намиране на стойността на функциите:

$$f(x,y) = \begin{cases} \sqrt{|y^2 - 3x^2|}, & y > x \\ x.\sin x, & x = y, \\ e^x + \ln(x - y), & x > y \end{cases} \qquad h(y) = \begin{cases} \frac{2.y^2}{y + 4}, & y < -4 \\ 0, & y \in [-4,4] \\ \frac{\ln(y - 4).e^y}{y^3 + \sqrt{y}}, & y > 4 \end{cases}$$

- 2. Дефинирайте предикат за пресмятане на сумата:  $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$  по дадено n.
- 3. Дефинирайте предикат за пресмятане на сумата:  $1 + \frac{1}{2} x^2 + \frac{1.3}{2.4} x^4 + \frac{1.3.5}{2.4.6} x^6 + \dots$  за |x| < 1 със зададена точност много малко  $\varepsilon$  (абсолютна грешка).
- 4. Дефинирайте предикат за пресмятане на произведението  $n.(n-k).(n-2k)...(n-k^2)$  при дадени n и k.
- 5. Дефинирайте предикат за пресмятане на произведението  $\frac{1}{2^2-1} \cdot \frac{1}{3^2-2} \cdot \cdot \cdot \frac{1}{n^2-n+1}$  по дадено n.
- 6. Дефинирайте предикат, който намира n-тия член на рекурентната редица  $T_0(x)=1$ ,  $T_1(x)=x$ ,  $T_k(x)=2.x$ ,  $T_{k-1}(x)$ - $T_{k-2}(x)$ ,  $k=2,3,\ldots$  при зададени x и n.
- 7. Дадена е редицата  $a_n = \frac{n!}{5^n}$ , n = 1, 2, ... Дефинирайте предикат, който намира първото  $a_n$ , което е поголямо от дадено х (т.е.  $a_n > x$  и n минимално).