1 随机事件

随机事件

主要内容: 随机事件的关系与运算, 概率的加法公式, 古典概率模型, 条件概率的定义, 乘法公式, 全概率公式, 贝叶斯公式, 随机事件的独立性。

1.1 随机事件的概念

随机事件的关系

关系	记号	概率论含义
包含	$A \subset B$	A 发生则 B 一定发生
相等	A = B	A 与 B 必定同时发生
互斥	$A \cap B = \emptyset$	A 与 B 不会同时发生
对立	$A = \overline{B}$	A 与 B 有且仅有一个发生

随机事件的运算

运算	记号	概率论含义
并	$A \cup B$	A 与 B 至少一个发生
积	AB	A 与 B 都发生
差	A - B	A 发生但 B 不发生
补	Ā	A 不发生

1.2 事件的概率

古典概率模型

定义: 如果一个随机试验具有以下特点:

- 1. 样本空间只含有限多个样本点;
- 2. 各样本点出现的可能性相等,

则称此随机试验是古典型的。此时对每个事件 $A \subset \Omega$,其概率

$$P(A) = \frac{\text{$\frac{1}{4}$ μ A $\text{$0$ μ A $\text{$\lambda$}$ $\text{$\lambda$}$}}{\text{$\frac{1}{4}$ $\text{$\lambda$}$ $\text{$\lambda$}$ $\text{$\lambda$}$}} = \frac{n(A)}{n(\Omega)}$$

称为事件 A 的古典概率。

1.3 概率的加法法则

概率的可加性

概率可加性的常用公式:

- 1. $P(\emptyset) = 0$.
- 2. 若 n 个事件 A_1, A_2, \cdots, A_n 两两互斥,则

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i).$$

特别地, 若两个事件 A, B 互斥, 则

$$P(A \cup B) = P(A) + P(B).$$

概率的可加性

概率可加性的常用公式:

3. 对任意事件 A, 有

$$P(A) = 1 - P(\overline{A}).$$

4. 若事件 **A C B**,则

$$P(B-A) = P(B) - P(A).$$

特别地, $A \subset B \Longrightarrow P(A) \leq P(B)$ 。

5. 对任意两个事件 A, B, 有

$$P(A \cup B) = P(A) + P(B) - P(AB).$$