Definition 0.0.1. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a deterministic parity automaton. For $w \in \Sigma^* \cup \Sigma^\omega$ and $q \in Q$, we define $\lambda_{\mathcal{A}}(q, w) \in \mathbb{N}^{1+|w|}$ as follows: Let $q_0q_1 \cdots \in Q^{1+|w|}$ be the unique run of \mathcal{A} on w. Then $\lambda_{\mathcal{A}}(q, w)(n) = c(q_n)$.

Two DPAs \mathcal{A} and \mathcal{B} are **priority almost-equivalent**, if for all words $\alpha \in \Sigma^{\omega}$, $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{B}}(q_0^{\mathcal{B}}, \alpha)$ differ in only finitely many positions. We call two states $p, q \in Q$ of \mathcal{A} priority almost-equivalent, \mathcal{A}_q and \mathcal{A}_p are priority almost-equivalent, where \mathcal{A}_q behaves like \mathcal{A} with initial state q.

We define the **reachability order** $\preceq_{\text{reach}}^{\mathcal{A}} \subseteq Q \times Q$ as $p \preceq_{\text{reach}}^{\mathcal{A}} q$ iff q is reachable from p. ("p is closer to q_0 than q"). Note that $p \preceq_{\text{reach}}^{\mathcal{A}} q$ and $q \preceq_{\text{reach}}^{\mathcal{A}} p$ together mean that p and q reside in the same SCC.

Lemma 0.0.1. Priority almost-equivalence is a congruence relation.

Definition 0.0.2. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA and let $\sim \subseteq Q \times Q$ be a congruence relation on \mathcal{A} . We define the **Schewe** automaton \mathcal{S} as follows:

For each state q, let $[q]_{\sim} = \{p \in Q \mid q \sim p\}$ be its equivalence class of \sim and let $Q /_{\sim} = \{[q]_{\sim} \mid q \in Q\}$ be the set of equivalence classes. For each such class \mathfrak{c} we fix a representative $r_{\mathfrak{c}} \in \mathfrak{c}$ which is $\preceq_{\mathrm{reach}}^{\mathcal{A}}$ -maximal in its class, meaning that all states in \mathfrak{c} that are reachable from $r_{\mathfrak{c}}$ are also in its SCC.

The automaton is then almost the same as the original DPA, with only a few modifications. Namely, $S = (Q, \Sigma, r_{[q_0]_{\sim}}, \delta_{\mathcal{S}}, c)$.

For each transition $\delta_{\mathcal{S}}(q, a)$, let $\delta(q, a) = p$. If $q \prec_{\text{reach}}^{\mathcal{A}} r_{[p]_{\sim}}$ (i.e. q is not reachable from the representative of $[p]_{\sim}$), then $\delta_{\mathcal{S}}(q, a) = r_{[p]_{\sim}}$. Otherwise, we keep $\delta_{\mathcal{S}}(q, a) = p$. In other words, every time a transition moves to a different quotient class, it skips to the representative which lies as "deep" inside the automaton as possible.

Lemma 0.0.2. For a given A and \sim , the Schewe automaton S can be computed in O(|A|).

Proof. Using e.g. Kosaraju's algorithm ??, the SCCs of \mathcal{A} can be computed in $\mathcal{O}(|\mathcal{A}|)$.

We focus on a specialized version of the Schewe automaton. Let \sim be the priority equivalence and let \mathcal{S} be the according automaton. We define \mathcal{S}_m as the Moore-minimization of \mathcal{S} .

Lemma 0.0.3. Priority almost-equivalence implies language equivalence.

Proof. Let $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, q_0^{\mathcal{A}}, \delta_{\mathcal{A}}, c_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, q_0^{\mathcal{B}}, \delta_{\mathcal{B}}, c_{\mathcal{B}})$ be two DPA that are priority almost-equivalent and assume towards a contradiction that they are not language equivalent. Due to symmetry we can assume that there is a $w \in L(\mathcal{A}) \setminus L(\mathcal{B})$.

Consider $\alpha = \lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, w)$ and $\beta = \lambda_{\mathcal{B}}(q_0^{\mathcal{B}}, w)$, the priority outputs of the automata on w. By choice of w, we know that $a := \max \operatorname{Inf}(\alpha)$ is even and $b := \max \operatorname{Inf}(\beta)$ is odd. Without loss of generality, assume a > b. That means a is seen only finitely often in β but infinitely often in a. Hence, α and β differ at infinitely many positions where a occurs in α . That would mean w is a witness that the two automata are not priority almost-equivalent, contradicting our assumption. \square

Lemma 0.0.4. Let A a DPA, \sim the relation of priority almost-equivalence, and S be the Schewe automaton. Then A and S are priority almost-equivalent.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0^{\mathcal{A}}, \delta_{\mathcal{A}}, c)$ and $\mathcal{S} = (Q, \Sigma, q_0^{\mathcal{S}}, \delta_{\mathcal{S}}, c)$. Let $\alpha \in \Sigma^{\omega}$. We have to show that $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ differ in only finitely many positions. For that, let $a_0a_1 \cdots \in Q^{\omega}$ and $s_0s_1 \cdots \in Q^{\omega}$ be the respective runs of the automata on α .

Claim 1 For all i, \mathcal{A}_{a_i} and \mathcal{A}_{s_i} are priority almost-equivalent. $(a_i \sim s_i)$ For i = 0, we have $a_i = q_0^{\mathcal{A}}$ and $s_i = q_0^{\mathcal{S}} = r_{[q_0^{\mathcal{A}}]_{\sim}}$. By definition, $s_i = r_{[q_0^{\mathcal{A}}]_{\sim}} \in [q_0^{\mathcal{A}}]_{\sim}$, so $s_i \sim a_i$. Using induction, assume $a_i \sim s_i$ and consider i+1. We separate two cases: If $\delta_{\mathcal{S}}(s_i,\alpha(i)) =$ $\delta_{\mathcal{A}}(s_i,\alpha(i))$, then $a_{i+1} \sim s_{i+1}$ follows from \sim being a congruence relation.

For the second case, consider $\delta_{\mathcal{S}}(s_i,\alpha(i)) = r_{[p]_{\sim}}$, where $\delta_{\mathcal{A}}(s_i,\alpha(i)) = p$. Again we have $s_{i+1} =$ $r_{[p]_{\sim}} \in [p]_{\sim}$, so $s_{i+1} \sim p$. Since \sim is a congruence relation, we have $\delta_{\mathcal{A}}(a_i, \alpha(i)) \sim \delta_{\mathcal{A}}(s_i, \alpha(i))$, which is $a_{i+1} \sim p$ and therefore $a_{i+1} \sim s_{i+1}$ by transitivity.

Claim 2 $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ differ in only finitely many positions.

We can see from the definition of S that the "new type of transition" is taken only when the target state of $\delta_{\mathcal{A}}$ is strictly bigger w.r.t. $\preceq_{\text{reach}}^{\mathcal{A}}$. Since this is a partial order on Q, this means in particular that from some point k onwards, only the transition type $\delta_{\mathcal{S}}(q,a) = \delta_{\mathcal{A}}(q,a)$ is taken. Hence, $s_k s_{k+1} \cdots$ is the valid run of \mathcal{A}_{s_k} on some suffix β of α . If now $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ would differ at infinitely many positions, then also $\lambda_{\mathcal{A}}(a_k,\beta)$ and $\lambda_{\mathcal{A}}(s_k,\beta)$ would (as these are suffixes of the former). However, we have shown in claim 1 that A_{a_k} and A_{s_k} are priority almostequivalent.

Lemma 0.0.5. Let A a DPA and $S_m = (Q, \Sigma, q_0, \delta, c)$ be the specialized Schewe automaton. If $p,q \in Q$ are almost priority-equivalent, then they lie in the same SCC.

Lemma 0.0.6. There is no DPA almost priority-equivalent to A that is smaller than S_m .

Theorem 0.0.7. For a given DPA A, a minimal almost priority-equivalent automaton can be computed in \mathcal{O} .