УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Момир Аџемовић

ПРЕДИКЦИЈА ТРАЈЕКТОРИЈА ВИШЕ ОБЈЕКАТА НА СЦЕНИ

мастер рад

Ментор:

др Младен Николић, ванредни професор Универзитет у Београду, Математички факултет

Чланови комисије:

др Јована Ковачевић, доцент Универзитет у Београду, Математички факултет др Александар Картељ, доцент Универзитет у Београду, Математички факултет

Датум одбране: 15. септембар 2022.

Наслов мастер рада: Предикција трајекторија више објеката на сцени

Резиме: У изради...

Кључне речи: машинско учење, аутономна вожња, графовске неуронске мреже

Садржај

1	Увод	1
2	Припрема података	2
	2.1 Претпроцесирање података	2
3	Разрада	
4	Закључак	7

Увод

У изради...

Припрема података

Основни скуп података за тренирање и тестирање техника предикције трајекторија је Argoverse Motion Forecasting скуп података који се састоји од детаљних мапа саобраћаја (eng. "HD maps") које садрже геометријске и семантичке податке сцена. Постоје две HD сцене за градове Питсбург и у Мајами. Коришћењем аутономних возила су генерисани сценарији који представљају неколико узастопних слика сцена (у табеларном формату) на деловима мапа. Сви детаљи о овом скупу података се могу пронаћи на адреси www.argoverse.org [?].

Кључне информације које се издвајају из сваког сценарију су:

- Мапа сценарија (Питсбург или Мајами);
- Трајекторије агената;
- Трајекторије осталих објеката на сцени;
- Возне (централне) линије.

2.1 Претпроцесирање података

Подаци сваког сценарија се векторизују и чувају у полу-структуираном формату. За парсирање и обраду улазних података се користи *arqoverse API* интерфејс.

Трајекторија агента¹ се дели на два дела: историја (својства) и реализација (будуће вредности). Реализација се састоји од N_r опажања x и y релативних координата² тј. облик реализације је $(N_r, 2)$. Историја се аналогно формира да садржи историју N_h опажања x і y релативних координата. Овај део трајекторије иде непосредно пре реализације. Посматрамо следеће случајеве:

 $^{^{1}}$ Низ (x,y) тачака, где је приближна временска разлика између две тачке око 0.1 секунде

 $^{^{2}}$ Све координате се нормализују тако да су релативне у односу на последње опажање у трајекторији историје агента

- Постоји више од $N_h + N_r$ опажања: Одбацује се реп трајекторије (првих неколико вредности хронолошки гледано);
- Постоји мање од $N_{hmin} + N_r$ опажања: Сценарио се одбацује (сматра се да је невалидан);
- Постоји између $N_{hmin} + N_r$ и $N_h + N_r$ опажања: реп трајекторије се допуњава до димензије $N_h + N_r$ посматрано као да објекат мирује у тим тренуцима.

Коначно, облик историје је $(N_h, 3)$, где трећа вредност означава да ли је опажање право (1) или допуњено (0).

Трајекторије суседних објеката се деле на два дела аналогно трајекторији агента. Неопходно је да се синхронизују трајекторије суседних објеката по временским ознакама (eng. timestamp) са трајекторијом агента, јер не постоји у сваком тренутку исти број објеката на сцени. Након синхронизације се трајекторије деле на историју и реализацију и проверава се да ли дужине тих делова задовољавају критеријуме:

- Уколико је дужина трајекторије историје краћа од N_{homin} , онда се објекат одбацује;
- Уколико је дужина трајекторије реализације краћа од N_{romin} , онда се објекат одбацује.

Као додатна провера, за сваки сусед се провера растојање од агента. Уколико је сусед превише далеко, онда се се он одбацује. Критеријум за одбацивање суседа узима у обзир брзину агента (по x и y оси одвоједно) и растојање њихових последњих опажања у трајекторији историје. Уколико неки од следећих услова није испуњен, сусед се игнорише у сценарију: $\frac{O_n^x}{A_s^x} \leq T_{steps}, \frac{O_n^y}{A_s^y} \leq T_{steps}$, где је O_n^x (O_n^y) нормализована x (y) координата суседа, x (x (x) је наивно апроксимирана брзина агента по x (x) оси и x је параметар толеранције. Трајекторије се секу или допуњавају до фиксног облика. Векторизован облик: (x (x) и (x) и (x) где је x број судедних објеката.

На основу локације агента се издвајају сегменти централних линија (возне путање) које нису даље од агента за више од D_{lsinit} . Уколико нема пронађених сегмената централних линија, онда се вредност за D_{lsinit} множи $K_{ls}^{\ 4}$ пута до највише D_{lsmax} (ако и даље нема сегмената, онда се сценарио одбацује). За сваки сегмент се чува низ од $10\ (x,y)$ координата приширених са метаподацима:

- is_intersection да ли се сегмент сече са неким сегментом,
- turn right да ли је у питању скретање у десно,

³Брзина се апроксимира као просек промена координата у трајекторији историје

 $^{^4}D_{lsinit}$ и K_{ls} су фиксне вредности у argoverse интерфејсу

Ознака параметра	Објашњење
N_r	Дужина трајекторије реализације (део који се предвиђа)
N_h	Дужина трајекторија историје
N_{hmin}	Минимална дужина трајекторије историје пре допуњавања
N_{hmin}	Минимална дужина трајекторије историје суседа пре допуњавања
N_{rmin}	Минимална дужина трајекторије реализације суседа пре допуњавања
T_{steps}	Умножак максималног растојања до сегмента централне линије
D_{lsmax}	Максимално растојање до централне линије

Табела 2.1: Преглед параметара припреме података

- turn left да ли је у питању скретање у лево,
- turn_none да ли нема стретања,
- is traffic control да ли постоји контрола саобраћаја.

Коначан облик је $(N_{ls}, 10, 7)$.

Скуп кандидата централних сегмената линија за предикције трајекторија: Постоји коначан број централних сегмената линија по којој објекат може да се креће у скоријој будућности, због чега је корисно да се као улаз у модел користе централне линије као кандидати. Основа алгоритма за проналазак ових кандидата се налази у argoverse интерфејсу [?]. Кандидати се проналазе коришћењем трајекторије историје агента. Коначан векторизован облик је: $(N_c, N_r, 3)$, где је N_c број пронађених кандидата, N_r дужина трајекторије реализације. Пошто се централне линије допуњавају по потреби до димензије N_r , користи се трећа координата за маску. Погледати табелу 2.1 за преглед свих параметара процеса.

На сликама 2.1 и 2.2 се налазе примери два визуализована сценарија након претходне припреме. У овом формату нису прикази делови сцене на којој је могућа вожња, али постоје (централне линије) тј. путање по којима се возила најчњшће крећу. Изузеци су у случају неких скретања, промени линија, ...

Слика 2.1: Визуализација припремљених података - Пример 1

Слика 2.2: Визуализација припремљених података - Пример 2

Разрада

У изради...

Закључак

У изради...

Биографија аутора

Момир Аџемовић У изради...