Homework Week #5

Ho Chi Vuong AI Math Foundations: Abstract Vector Spaces CENTER OF TALENT IN AI

April 26, 2020

Section P

P4.1

Consider linear operator $f: \mathbb{R}^2 \to \mathbb{R}^2$ with $f(v_1) = v_1 + 2v_2$ and $f(v_2) = 2v_1 + v_2$ (1). Verify that $f(v_1 + v_2) = 3(v_1 + v_2)$ and $f(v_1 - v_2) = -(v_1 - v_2)$ (2)

- 1. f stretches vectors in the $v_1 + v_2$ direction by a factor of 3.
- 2. f negates vectors in the $v_1 v_2$ direction.

Express f using basis $B_v = \{v_1, v_2\}$, then $B_e = \{e_1 = v_1 + v_2, e_2 = v_1 - v_2\}$:

- 1. $f(av_1 + bv_2) = (a+2b)v_1 + (2a+b)v_2$: coefficients a & b are "mixed up".
- 2. $f(ae_1 + be_2) = 3ae_1 be_2$: coefficients a and b are simply scaled.

Clearly, Eq (2) is a better representation than Eq (1) to understand the geometry of f. What is the matrix representation of f in B_v ? in B_e ?

1. Verify that $f(v_1 + v_2) = 3(v_1 + v_2)$ and $f(v_1 - v_2) = -(v_1 - v_2)$ Using the linearity of the operator, we have the following:

$$f(v_1 + v_2) = f(v_1) + f(v_2) = v_1 + 2v_2 + 2v_1 + v_2 = 3(v_1 + v_2)$$

and

$$f(v_1 - v_2) = f(v_1) - f(v - 2) = v_1 + 2v_2 - 2v_1 - v_2 = -(v_1 - v_2)$$

P4.2

A is a Markov matrix, i.e., each column \mathbf{a}_i is a probability vector. Show that if p_0 is a probability n-vector then Ap_0 is also a probability vector.

Suppose that A is a $m \times n$ matrix. We have that:

$$Ap_0 = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \\ A_{m1} & ldots & A_{mn} \end{bmatrix} \begin{bmatrix} p_1 \\ \vdots \\ p_n \end{bmatrix} = \begin{bmatrix} p_1 a_{11} + \dots + p_n a_{1n} \\ \vdots \\ p_1 a_{m1} + \dots + p_n a_{mn} \end{bmatrix}$$

Taking the sum of the resulting matrix, we have:

$$p_1 a_{11} + \ldots + p_n a_{1n} + \ldots + p_1 a_{m1} + \ldots + p_n a_{mn}$$

= $p_1 (a_{11} + \ldots + a_{m1}) + \ldots + p_n (a_{11} + \ldots + a_{mn})$

As each column \mathbf{a}_n is a probability vector $\Leftrightarrow a_{1n} + \ldots + a_{mn} = 1$ and p_0 is a probability matrix, we then continue the above equation:

$$=p_1+\ldots+p_n$$
$$=1$$

Thus making Ap_0 also a probability matrix.

P4.4

Prove again if $\beta = \{v_1, \dots, v_n\}$ is an eigenbasis of $A_{n \times n}$ with eigenvalues λ_i 's, then A is diagonalizable: $A = QDQ^{-1}$ with $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ and Q a square matrix composed of v_i 's as columns.

As β is an eigenbasis of A, then we have:

$$Av_j = \lambda_j v_j$$

which means:

$$A \begin{bmatrix} v_1 & \dots & v_j \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{bmatrix}$$

$$= diag(\lambda_1, \dots, \lambda_n) \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$

$$= \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} diag(\lambda_1, \dots, \lambda_n)$$

$$\Leftrightarrow A = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} diag(\lambda_1, \dots, \lambda_n) \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^{-1}$$

Replacing $\begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} = Q$ and $D = diag(\lambda_1, \dots, \lambda_n)$, we have:

$$A = QDQ^{-1}$$

as desired.

P3.4

Polarization identity: $\langle v, w \rangle = \frac{1}{2} (\|v + w\|^2 - \|v\|^2 - \|w\|^2)$ We have the right-hand side of the equation:

$$\frac{1}{2}(\|v+w\|^2 - \|v\|^2 - \|w\|^2) = \frac{1}{2}(\langle v+w, v+w \rangle - \langle v, v \rangle - \langle w, w \rangle)
= \frac{1}{2}(\langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle - \langle v, v \rangle - \langle w, w \rangle)
= \frac{1}{2}(\langle v, w \rangle + \langle w, v \rangle)
= \frac{1}{2}(\|v\| \|w\| \cos(v, w) + \|w\| \|v\| \cos(w, v))
= \frac{1}{2}(2\|w\| \|v\| \cos(v, w))
= \langle v, w \rangle$$

which is equal to the left-hand side. We thus prove the Polarization identity.

P4.5

Summarize the *problem description* and *solution* to find F_n in Fibonacci's rabbits $F_0=0, F_1=1,\ldots,F_n=F_{n-1}+F_{n-2}$.

Distance from the point w to the plane H_n is:

$$D(w, H_n) = \frac{aw_x + bw_y + cw_z - (ax_0 + by_0 + cz_0)}{\sqrt{a^2 + b^2 + c^2}}$$

Assume for contradiction that there exists a point $w_{p1} \in H_n$ beside w_p (the orthogonal projection of w on H_n) whose length $ww_{p1} < ww_p$. According to the Pythagorean theorem, we have:

$$ww_{p1}^2 = ww_p^2 + w_{p1}w_p^2$$
$$\Rightarrow ww_{p1} > ww_p$$

which contradicts the previous statement. Thus, ww_p is the smallest distance to any point in H_n .

P4.6

Show that λ is an eigenvalue of a square $n \times n$ matrix A iff $det(A - \lambda I_n) = 0$.

We have λ is an eigenvalue of a $A_{n\times n}$ when, for any eigenvector v:

$$Av = \lambda v$$

$$\Leftrightarrow Av - \lambda Iv = 0$$

$$\Leftrightarrow (A - \lambda I)v = 0$$

Geometrically, this transformation transforms v into a 0 vector, and this is only possible when $det(A - \lambda I) = 0$. We thus have as desired.

P4.7-4.9

Given a *symmetric* positive definite matrix A > 0, i.e., $x^{\top}Ax > 0$ $\forall x \neq 0_n$.

P4.7

Show that all its eigenvalues are positive, $\lambda_i > 0 \ \forall i$.

Suppose that v is an eigenvector of $A_{n\times n}$ with eigenvalue λ , then we have:

$$Av = \lambda v$$

$$\Leftrightarrow v^{\mathsf{T}} A v = v^{\mathsf{T}} \lambda v$$

$$\Rightarrow v^{\mathsf{T}} \lambda v > 0$$

$$\Rightarrow \lambda (v_1^2 + \ldots + v_n^2) > 0, \forall v_j \in \mathbb{R}^n,$$

$$\Rightarrow \lambda > 0$$

P3.8

Show that the generalized dot product $\langle \mathbf{x}, \mathbf{y} \rangle_M = \mathbf{x}^\top M \mathbf{y}$ with $M \in \mathbb{R}^{n \times n}$ a symmetric positive definite matrix satisfies all 3 requirements of a proper inner product.

Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ and $M = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \vdots \\ \mathbf{m}_n \end{bmatrix}$ with \mathbf{m}_i , $i = 1, 2, \dots, n$, having n

elements. For any \mathbf{x}, \mathbf{x}' in the same inner product space, $c \in R$, we have the following 3 requirements of an inner product:

1. $\langle \mathbf{x} + \mathbf{x}', y \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}', \mathbf{y} \rangle$ and $\langle c\mathbf{x}, \mathbf{y} \rangle = c \langle \mathbf{x}, \mathbf{y} \rangle$ We have the following:

$$\langle \mathbf{x} + \mathbf{x}', \mathbf{y} \rangle = \begin{bmatrix} x_1 + x_1' & x_2 + x_2' & \dots & x_n + x_n' \end{bmatrix} M \mathbf{y}$$

$$= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} M \mathbf{y} + \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix} M \mathbf{y}$$

$$= \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}', \mathbf{y} \rangle$$

and

$$\langle c\mathbf{x}, y \rangle = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix} My$$
$$= c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} My$$
$$= c \langle \mathbf{x}, \mathbf{v} \rangle$$

2.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} \mathbf{y}$$

$$= x_1 \mathbf{m}_1 \mathbf{y} + x_2 \mathbf{m}_2 \mathbf{y} + \dots + x_n \mathbf{m}_n \mathbf{y}$$

$$= y_1 \mathbf{m}_1 \mathbf{x} + y_2 \mathbf{m}_2 \mathbf{x} + \dots + y_n \mathbf{m}_n \mathbf{x}$$

$$= \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} \mathbf{x}$$

$$= \langle \mathbf{y}, \mathbf{x} \rangle$$

3. $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ Since M is a positive definite matrix, it is obvious that:

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^\mathsf{T} M \mathbf{x} > 0$$

With the 3 requirements proved, we have the above.

P3.9

Prove that the null space and the row space of a matrix are orthogonal, i.e. every vector in null space is orthogonal to every vector in row space (zero dot product).

Assume we have a matrix $A = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, its null space N(A) which contains

vectors x satisfying Ax = 0, and its row space $R = span(v_1, \ldots, v_n)$. We have $Ax = 0 \Leftrightarrow v_1x = 0, \ldots, v_nx = 0$. Therfore, for $r \in R$, we have the following:

$$rx = span(v_1, \dots, v_n)x = a_1v_1x + \dots + a_nv_nx = 0$$

From here we have proven that $rx = 0 \forall r \in R$, which means every r is ortogonal with x, which proves what we have to prove.

Assume we have a matrix $A = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, its null space N(A) which contains

vectors x satisfying Ax = 0, and its row space $R = span(v_1, \ldots, v_n)$. We have $Ax = 0 \Leftrightarrow v_1x = 0, \ldots, v_nx = 0$. Therfore, for $r \in R$, we have the following:

$$rx = span(v_1, \dots, v_n)x = a_1v_1x + \dots + a_nv_nx = 0$$

From here we have proven that rx = 0, $\forall r \in R$, which means every r is ortogonal with x, which proves what we have to prove.

P3.10

Section E

E4.1

Show that $\forall i : |\lambda_i| \leq 1 \& A$ always has an eigenvalue $\lambda_1 = 1$ (single one if A is positive definite

Suppose that A is a $n \times n$ matrix, then we have that:

$$Av = \lambda v$$

$$\Rightarrow A \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} a_{11} + \dots + a_{1n} \\ \dots \\ a_{n1} + \dots + a_{nn} \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Then $\exists \lambda = 1$.

E4.3

Prove again the **spectral theorem** for matrix representation of linear operator T in basis β : $[T]_{\beta}^{\beta} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \Leftrightarrow \beta$ is an eigenbasis of T with eigenvalues λ_i 's.

We first prove that β is an eigenbasis of T with eigenvalues λ_i 's $\Rightarrow \beta$: $[T]_{\beta}^{\beta} = \mathsf{diag}(\lambda_1, \ldots, \lambda_n)$. Suppose that $\beta = \{v_1, \ldots, v_n\}$ with eigenvalues

 $\lambda_1, \ldots, \lambda_n$. We have that $Tv_j = \lambda_j v_j$, so the coordinate matrix $[Tv_j]^{\beta}$ is $\begin{bmatrix} \vdots \\ \lambda_j \\ \vdots \\ 0 \end{bmatrix}$

with λ_j at the jth-index. Putting all the $[Tv_j]^{\beta}$ together, we have $[Tv_j]^{\beta}_{\beta}$ is

with
$$\lambda_j$$
 at the j th-index. Putting
$$\begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

We now prove that β : $[T]_{\beta}^{\beta} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \Rightarrow \beta$ is an eigenbasis of T with eigenvalues λ_i 's. Similarly, for each jth column in $[T]_{\beta}^{\beta} = [Tv_j]_{\beta}^{\beta}$, we have

the coordinate matrix $\begin{bmatrix} 0\\ \vdots\\ \lambda_j\\ 0 \end{bmatrix}$, which corresponds to the vector $\lambda_j v_j$. We thus

have $[Tv_j]^{\beta} = [\lambda_j v_j]^{\beta} \Leftrightarrow Tv_j = \lambda_j v_j$, making each v_j an eigenvector, and $\beta = \{v_1, \ldots, v_n\}$ an eigenbasis.

P4.4

Show that if $A_{n\times n}$ has n distinct eigenvalues $\Rightarrow A$ is diagonalizable. Suppose that A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ which corresponds to the eigenvectors v_1, \ldots, v_n . As $lambda_1, \ldots, \lambda_n$ are all distinct, v_1, \ldots, v_n are linearly independent (as proven in Terence Tao's note), and they thus form an eigenbasis of A. We can thus express A as a diagonal matrix $diag(\lambda_1, \ldots, \lambda_n)$ corresponding to $\{v_1, \ldots, v_n\} \Rightarrow A$ is diagonalizable.

P4.7

Prove that translation does not change volume.

Suppose that we have a translation matrix T in 3D $\begin{vmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$. Then the

determinant of this matrix is

$$\det(\mathsf{T}) = 1 \det(\begin{bmatrix} 1 & 0 & t_y \\ 0 & 1 & t_z \\ 0 & 0 & 1 \end{bmatrix}) + t_x \det(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}) = 1.1 + 0 = 1$$

Using the induction hypothesis, for a translation matrix T in n-dimension,

$$\begin{bmatrix} 1 & 0 & \dots & t_1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_n \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ its determinant is}$$

$$\det(T) = 1(1(\dots(1\det\begin{bmatrix}1 & 0 & t_y\\0 & 1 & t_z\\0 & 0 & 1\end{bmatrix} + t_{n-2}\det(\begin{bmatrix}0 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0\end{bmatrix})) + t_{n-3}(0 + t_{n-2}\det(\begin{bmatrix}0 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0\end{bmatrix})\dots)\dots)$$

$$+t_1(0+t_2(\dots(0+t_{n-2}\detegin{bmatrix}0&0&t_{n-1}\0&0&t_n\0&0&1\end{bmatrix})))$$

$$= 1 \times 1 \times \ldots \times (((1+0)+0)+0)\ldots) + t_1 \times t_2 \times \ldots t_{n-2} \times 0 = 1$$

With the determinant = 1, by definition the volume does not change after the translation.