# $S5_mC$ : полнота и корректность

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

## Эпистемическая логика + общее знание

### Исчисление $S5_mC$

#### Аксиомные схемы:

- Тавтологии КЛВ
- Аксиомные схемы S5 для каждого оператора  $K_i$
- $(K_C)$   $C_G(\varphi \to \psi) \to (C_G\varphi \to C_G\psi)$
- (fix)  $C_G \varphi \to E_G(\varphi \wedge C_G \varphi)$
- (ind)  $C_G(\varphi \to E_G \varphi) \to (\varphi \to C_G \varphi)$

Правила вывода: MP,  $G_K$ ,  $G_C$ 

## Эпистемическая логика + общее знание

### Исчисление $S5_mC'$

#### Аксиомные схемы:

- Тавтологии КЛВ
- Аксиомные схемы S5 для каждого оператора  $K_i$

• 
$$(K_C)$$
  $C_G(\varphi \to \psi) \to (\mathcal{E}_G \varphi \to C_G \psi)$ 

• (fix) 
$$\widetilde{C_G\varphi} \to E_G(\varphi \land C_G\varphi)$$

Правила вывода: MP,  $G_K$ 

$$\frac{\varphi \to E_G(\psi \land \varphi)}{\varphi \to C_G \psi} \ ind_R$$

## Исчисления $S5_mC$ и $S5_mC'$

Теорема о корректности исчисления  $S5_mC$  (Упражнение)

$$\vdash_{S5_mC} \varphi \Rightarrow \models_{S5_mC} \varphi$$

Теорема о корректности исчисления  $S5_mC'$  (Упражнение)

$$\vdash_{S5_mC} \varphi \Rightarrow \models_{S5_mC} \varphi$$

Теорема о дедуктивной эквивалентности  $S5_mC$  и  $S5_mC'$  (Упражнение)

$$\vdash_{S5_mC} \varphi \iff \vdash_{S5_mC'} \varphi$$

### Компактность логики

#### Обозначение

$$\Gamma \models_{L} \varphi := \forall F(F \models L \Rightarrow (F \models \Gamma \Rightarrow F \models \varphi))$$

### Определение. Компактность логики.

Логика L называется компактной е.т.е.  $\Gamma \models_L \bot \Rightarrow \exists \Gamma' \subseteq \Gamma$  т.ч.  $\Gamma'$  – конечно и  $\Gamma' \models_L \bot$ . Альтернативное определение: ?

### Компактность и сильная полнота

### Теорема

Логика является сильно полной е.т.е. она полна и компактна.

### Некомпактность $S5_mC$

### Теорема.

Логика  $S5_mC$  не является компактной.

### Доказательство.

$$X = \{\neg C_{ab}p\} \cup \{E_{ab}^n p \mid n \in \mathbb{N}\}$$

- 1.  $X \models_{S5_mC} \bot$ , т.е. X невыполнимо
- 2.  $X' \not\models_{S5_mC} \bot$ , где  $X' \subseteq X$  и X' конечно

### Следствие

Логика  $S5_mC$  не является сильно полной.

## Полнота (по Крипке) $S5_mC$

### Теорема

Логика  $S5_mC$  является полной (по Крипке), т.е.  $\models_{S5_mC} \varphi \iff \vdash_{S5_mC} \varphi$ 

## Замыкание Фишера-Ладнера

Идея: множество формул, которые могут понадобиться при работе с к.к.м.

#### Замыкание

Пусть  $cl(\varphi)$  наименьшее множество формул, замкнутое по следующим правилам:

- 1.  $\varphi \in cl(\varphi)$
- 2. если  $\psi \in cl(\varphi)$ , то  $Sub(\psi) \subseteq cl(\varphi)$
- 3. если  $\psi \in \mathit{cl}(\varphi)$  и  $\psi$  не начинается с отрицания, то  $\neg \psi \in \mathit{cl}(\varphi)$
- 4. если  $C_G\psi\in cl(\varphi)$ , то  $\{K_iC_G\psi\mid i\in G\}\subseteq cl(\varphi)$

### Утверждение

Для любого  $\varphi \in \mathcal{EL}\text{-}\mathcal{C}$ :  $\mathit{cl}(\varphi)$  — конечно

Доказательство.

Упражнение.

## Максимальность и непротиворечивость

### Определение

Множество формул  $X \in \mathcal{EL}$ - $\mathcal{C}$  называется  $S5_m\mathcal{C}$ - непротиворечивым е.т.е.

- (a)  $X \not\vdash_{S5_mC} \bot$
- (b) не существует  $\varphi_1, \dots \varphi_n \in X$  т. ч.  $\vdash_{S5_mC} \neg (\varphi_1 \wedge \dots \wedge \varphi_n)$

Упражнение: докажите, что условия (a) и (b) эквивалентны

Обозначение:  $\Phi = cl(arphi)$  для  $arphi \in \mathcal{EL} ext{-}\mathcal{C}$ 

### Определение.

Будем говорить, что множество  $X\subset \Phi$  является  $\Phi$ -максимальным  $S5_mC$ -непротиворечивым е.т.е.

- $X S5_mC$ -непротиворечиво и
- $\forall Y \in \Phi(X \subset Y \Rightarrow Y \vdash_{S5_mC} \bot)$ .

## Конечная каноническая модель (к.к.м.)

Определение. Обозначим  $\Phi = cl(\varphi)$  для формулы  $\varphi \in \mathcal{EL}$ - $\mathcal{C}$ .  $M^{\Phi} = (W^{\Phi}, (\sim_{i}^{\Phi})_{i \in A_{\mathcal{G}}}, V^{\Phi})$  – конечная каноническая модель, где

- $W^{\Phi} = \{X \subset \Phi \mid X \Phi\text{-м}.S5_mC\text{-н.м.}$  формул $\}$
- $X\sim_i^\Phi Y:=K_i\psi\in X\Leftrightarrow K_i\psi\in Y$  для  $K_i\psi\in\Phi$
- $X \models p \iff p \in X$

#### Обозначение

$$K_iX := \{K_i\varphi \mid K_i\varphi \in X\}$$

# Каноническая модель $(M^c)$ vs. к.к.м. $(M^{\phi})$

- модели или модели
  - к.м одна «конкретная» модель
  - к.к.м. модель строится по конкретной формуле
- язык
- к.м модель задействует весь модальный язык
- к.к.м. модель задействует только формулы из замыкания Ф
- миры = м.н.м.
  - к.м бесконечные множества формул
  - к.к.м. конечные множества формул
- достижимость
  - к.м определяется универсальным образом для каждой логики
  - к.к.м. для каждой логики определяется отдельно
- что можно доказать
  - к.м сильная полнота
  - к.к.м. слабая полнота + финитная аппроксимируемость

### К.м., к.к.м., теория

### Определение

Пусть 
$$X\subseteq\mathcal{EL}$$
- $\mathcal{C},L\in\{\mathcal{K}_{m}^{\mathcal{C}},S4_{m}^{\mathcal{C}},S5_{m}^{\mathcal{C}},\dots\}$ , определим множество следствий  $[X]_{L}:=\{arphi\in\mathcal{EL}$ - $\mathcal{C}\mid X\vdash_{L}arphi\}$ 

Утверждение. $[X]_L$  в к.м.  $(M^c)$ 

Если  $X \in W^c$ , то  $[X]_L \subseteq X$ . Более того:  $[X]_L = X$ 

Утверждение.  $[X]_L$  в к.к.м.  $(M^{\Phi})$ 

Если  $X\in W^\Phi$ , то не гарантируется, что  $[X]_L\subseteq X$ , но верно, что  $[X]_L\cap\Phi\subseteq X$ . Более того:  $[X]_L\cap\Phi=X$ .

## Схема доказательства

### Теорема о корректности и полноте исчисления $S5_mC$

$$\forall \varphi \in \mathcal{EL}\text{-}\mathcal{C} \models_{S5} \varphi \iff \vdash_{S5_m\mathcal{C}} \varphi$$

### Доказательство.

 $(\Leftarrow)$  Корректность. Проверка общезначимости аксиом и правил вывода исчисления  $S5_m C$  (Упражнение)  $(\Rightarrow)$  Полнота.

$$\forall_{S5_mC} \varphi \Rightarrow \neg \varphi \forall_{S5_mC} \perp \Rightarrow \{\neg \varphi\} \subset X \in W^{\Phi} \Rightarrow M^{\Phi}, X \models \neg \varphi \Rightarrow (M^{\Phi} \in S5 \Rightarrow \not\models_{S5} \varphi)$$

#### Нужно доказать:

- Каноничность  $M^{\Phi} \in S5$
- Лемма об истинности



### Каноничность к.к.м.

### Определение

Класс моделей S5.

### Лемма

 $M^\Phi \in S$ 5, то есть,  $\sim_i^\Phi$  – рефлексивно, симметрично и транзитивно.

### Лемма об истинности

#### Лемма

Пусть  $\Phi$  замыкание некоторой формулы  $M^{\Phi}$  – к.к.м.,  $X \in W^{\Phi}$ 

$$\forall \varphi' \in \Phi : \varphi' \in X \iff M^{\Phi}, X \models \varphi'$$

Докажем индукцией по построению  $\varphi'$ .

БИ 
$$\varphi' = p$$
  
ШИ Сл.1  $\varphi' = \neg \varphi$   
Сл.2  $\varphi' = \varphi_1 \wedge \varphi_2$   
Сл.3  $\varphi' = K_i \varphi$   
Сл.4  $\varphi' = C_G \varphi$ 

## БИ, Сл.1, Сл.2

Повторяем доказательства из теоремы о полноте S5

#### Обозначения:

- $K_iX := \{K_i\psi \mid K_i\psi \in X\}$
- $\neg K_i X := \{ \neg K_i \psi \mid \neg K_i \psi \in X \}$

#### Утверждение.

$$(K_iX \cup \neg K_iX) \subseteq Y \Leftrightarrow X \sim_i^{\Phi} Y$$

# Сл.2 $\varphi' = K_i \varphi \ (\Rightarrow)$

# Сл.2 $\varphi' = K_i \varphi$ ( $\Leftarrow$ )

| 1  | $K_i \varphi  otin X$                                                                                                                                                    | $\triangleright M^{\Phi}, X \not\models K_i \varphi \Leftrightarrow$        |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
|    |                                                                                                                                                                          | $\rhd \exists Y(X \sim^{\Phi}_{i} Y \land M^{\Phi}, Y \not\models \varphi)$ |  |  |
| 2  | $ eg K_i \varphi \in X$                                                                                                                                                  |                                                                             |  |  |
| 3  | $\vdash \underline{X} \to \neg K_i \varphi$                                                                                                                              |                                                                             |  |  |
| 4  | $y_0 = K_i X \cup \neg K_i X \cup \{\neg \varphi\} \vdash \bot$                                                                                                          | ⊳ «⊥»                                                                       |  |  |
| 5  | $K_iX, eg K_iX \vdash \varphi$                                                                                                                                           |                                                                             |  |  |
| 6  | $\vdash ((\mathcal{K}_i\psi_1 \land \cdots \land \mathcal{K}_i\psi_n) \land (\neg \mathcal{K}_i\chi_1 \land \cdots \land \neg \mathcal{K}_i\chi_m)) \rightarrow \varphi$ |                                                                             |  |  |
| 7  | $\vdash K_{i}((K_{i}\psi_{1}\wedge\cdots\wedgeK_{i}\psi_{n})\wedge(\negK_{i}\chi_{1}\wedge\cdots\wedge\negK_{i}\chi_{m}))\rightarrowK_{i}\varphi$                        |                                                                             |  |  |
| 8  | $\vdash ((K_i K_i \psi_1 \land \dots \land K_i K_i \psi_n) \land (K_i \neg K_i \chi_1 \land \dots \land K_i \neg K_i \chi_m)) \rightarrow K_i \varphi$                   |                                                                             |  |  |
| 9  | $\vdash ((K_i\psi_1 \land \cdots \land K_i\psi_n) \land (\neg K_i\chi_1 \land \cdots \land \neg K_i\chi_m)) \rightarrow K_i\varphi$                                      |                                                                             |  |  |
| 10 | $\vdash \underline{X} \to ((K_i \psi_1 \wedge \cdots \wedge K_i \psi_n) \wedge (\neg K_i \chi_1 \wedge \cdots \wedge \neg K_i \chi_m))$                                  |                                                                             |  |  |

11 
$$| \vdash X \rightarrow K_i \varphi |$$
12  $| \checkmark \bot \rangle$ 
13  $y_0 = K_i X \cup \neg K_i X \cup \{\neg \varphi\} \not\vdash \bot$ 
14  $y_0 \subset Y \in W^{\Phi}$ 
15  $X \sim_i^{\Phi} Y$ 
16  $\neg \varphi \in Y$ 
17  $\varphi \notin Y$ 
18  $M^{\Phi}, Y \not\models \varphi$   $\sqcap M$ 
19  $\exists Y(X \sim_i^{\Phi} Y \land M^{\Phi}, Y \not\models \varphi)$ 
20  $M^{\Phi}, X \not\models K_i \varphi$ 

## Сл.3 $\varphi' = C_G \varphi$

### Обозначения

- ullet  $\underline{X}:=arphi_1\wedge\cdots\wedgearphi_n$ , где  $X=\{arphi_1,\ldots,arphi_n\}$ ,
- $S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G \varphi\}, \overline{S} := W^{\Phi} \setminus S$
- $\chi := \bigvee \{\underline{X} \mid X \in S\}$

# Сл.3 ( $\Leftarrow$ ) $C_G \varphi \in X \Leftarrow M^{\Phi}, X \models C_G \varphi$

 $C_G \varphi \in X$ 

$$S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \quad \chi := \bigvee \{\underline{X'} \mid X' \in S\} \quad \overline{S} := W^c \setminus S$$

$$\vdash \chi \to E_G(\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'}) \quad \xrightarrow{Y' \in \overline{S}} \quad \vdash (\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'}) \leftrightarrow \chi$$

$$\vdash \chi \to E_G \chi$$

$$\vdash \chi \to E_G \chi$$

$$\vdash C_G(\chi \to E_G \chi) \quad \vdash C_G(\chi \to E_G \chi) \to (\chi \to C_G \chi)$$

$$\vdash \chi \to C_G \chi$$

$$\vdash \chi \to C_G \varphi$$

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \} \qquad \chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

Лемма 
$$1 \vdash \underline{X} \to \chi$$

▶ Доказательство: по построению  $\chi$  (по КЛВ). ◀

$$\boxed{S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \quad | \chi := \bigvee \{\underline{X'} \mid X' \in S\} \quad \boxed{K_i X := \{K_i \psi \mid K_i \psi \in X\}} \quad \boxed{\neg K_i X := \{\neg K_i \psi \mid \neg K_i \psi \in X\}}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

$$K_iX := \{K_i\psi \mid K_i\psi \in X\}$$

$$\neg K_i X := \{ \neg K_i \psi \mid \neg K_i \psi \in X \}$$

Утверждение:  $\vdash \chi \rightarrow \varphi$ 

Достаточно доказать, что для любого  $X \in S \vdash X \to \varphi$ .

### **Утверждение**. Пусть $X,Y\in W^\Phi$ , тогда $X\not\sim_i^\Phi Y\Rightarrow \vdash \underline{X}\to K_i\neg\underline{Y}$

| 1  | $X \not\sim_i^{\Phi} Y$                                                                         | $ ho \vdash \underline{X} \to K_i \neg \underline{Y}$     |    |                                                                          |
|----|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----|--------------------------------------------------------------------------|
| 2  | $\exists 	heta \in \Phi: K_i 	heta \in X, 	heta  ot\in Y$ или $K_i 	heta \in Y, 	heta  ot\in X$ |                                                           | 13 | $\vdash \underline{X} \to \neg \theta$                                   |
| 3  | $K_i\theta\in X, \theta ot\in Y$                                                                | $\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$ | 14 | $\vdash \theta  ightarrow \neg \underline{X}$                            |
| 4  | $\neg \theta \in Y$                                                                             |                                                           | 15 | $\vdash \mathcal{K}_i 	heta 	o \mathcal{K}_i \neg \underline{X}$         |
| 5  | $Y \vdash \neg \theta$                                                                          |                                                           | 16 | $dash \underline{Y} 	o \mathcal{K}_i 	heta$                              |
| 6  | $\vdash \underline{Y} \rightarrow \neg \theta$                                                  |                                                           | 17 | $\vdash \underline{Y} 	o K_i \neg \underline{X}$                         |
| 7  | $\vdash 	heta  ightarrow \neg \underline{Y}$                                                    |                                                           | 18 | $\vdash \hat{\mathcal{K}}_i \underline{X}  ightarrow \neg \underline{Y}$ |
| 8  | $\vdash K_i 	heta 	o K_i  eg \underline{Y}$                                                     |                                                           | 19 | $\vdash K_i \hat{K}_i \underline{X} \to K_i \neg \underline{Y}$          |
| 9  | $dash \underline{X} 	o \mathcal{K}_i 	heta$                                                     |                                                           | 20 | $dash \underline{X} 	o \mathcal{K}_i \hat{\mathcal{K}}_i \underline{X}$  |
| 10 | $\vdash \underline{X} 	o K_i \neg \underline{Y}$                                                |                                                           | 21 | $\vdash \underline{X} 	o K_i \neg \underline{Y}$                         |
| 11 | $K_i\theta\in Y, \theta ot\in X$                                                                | $\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$ | 22 | $\vdash \underline{X} \to K_i \neg \underline{Y}$                        |
| 12 | $\neg \theta \in X$                                                                             |                                                           |    |                                                                          |

Следствие. Пусть  $X,Y\in W^\Phi$ , тогда  $\underline{X},\hat{K_i}\underline{Y}\not\vdash\bot\Rightarrow X\sim^\Phi_i Y$ 

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \} \qquad \chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

Лемма: 
$$\vdash \chi \to E_G(\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'})$$

Достаточно доказать, что  $\forall i \in G \ \forall X \in S \ \forall Y \in \overline{S} \ \vdash X \to K_i \neg Y$ 

1 
$$| i | i \in C$$

2 
$$X X \in S$$

$$Y \in W^{\Phi} \setminus S$$

$$4 \qquad M^c, X \models C_G \varphi \qquad 2$$

5 
$$M^c, Y \not\models C_G \varphi$$
 3

$$\delta \mid X \not\sim_i^c Y$$
 из 2,3

$$M^{c}, X \models C_{G}\varphi$$
 2

 $M^{c}, Y \not\models C_{G}\varphi$  3

 $X \not\sim_{i}^{c} Y$  из 2,3

 $Y \mapsto X \rightarrow K_{i} \neg Y$  по лемме

### Лемма: $\forall S \subseteq W^c \vdash \bigwedge \{Y \mid Y \in \overline{S}\} \leftrightarrow \bigvee \{X \mid X \in S\}$ , где $\overline{S} := W^c \setminus S$

- ▶ Доказательство собирается из следующих утверждений:
  - 1.  $\forall X,Y \in W^c$  т.ч.  $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$
  - 2.  $\vdash \bigvee \{\underline{X} \mid X \in W^c\}$

<

#### **Упражнение**

Собрать доказательство леммы из утверждений. Подсказка: понадобится только КЛВ.

### Утверждение: $\forall X, Y \in W^{\Phi}$ т.ч. $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$

# Утверждение $\vdash \bigvee \{X \mid X \in W^{\Phi}\}$

$$\begin{array}{c|c}
2 & \not\vdash \underline{X_1} \lor \cdots \lor \underline{X_n}, X_i \in W^{\Phi} \\
3 & \forall X_i \in W^{\Phi} \not\vdash \underline{X_i}
\end{array}$$

 $\forall \{X \mid X \in W^{\Phi}\}$ 

$$\forall X_i \in W^{\Phi} \exists \varphi \in X_i \not\vdash \varphi$$

$$\forall h(X_1) \lor \cdots \lor h(X_n)$$

$$\neg h(X_1), \ldots, \neg h(X_n) \not\vdash \bot$$

$$\{ \lnot h(X_1), \ldots, \lnot h(X_n) \} \subseteq X_j \in W^\Phi$$
 по л. Линд.

$$h(X_j) \in X_j$$

$$(X_i) \in A_i$$
  
 $(X_i) \in X_i$ 

$$\begin{array}{c|c}
8 & h(X_j) \in X_j \\
9 & \neg h(X_i) \in X_i
\end{array}$$

« | »

4

5

6

10

32 / 32

$$\{x_1,\ldots,\neg h(X_n)\}\subseteq X_n$$

 $h(X_i) := \varphi$  т.ч.  $\varphi \in X_i$  и  $\forall \varphi$ 

> «⊥»