L7: Linear Regression

Prof. Xun Jiao

Before class

- HW 1 due
- HW2 will be posted

Linear Regression Review regression supervisedlearning • • • • • • Machine learning classification unsupervised learning

Given labeled training data of the form

$$\{(\text{data}_1, \text{label}_1), \dots, (\text{data}_n, \text{label}_n)\}$$

Infer the function

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

The easiest assumption: linear relationship

 The easiest assumption would be a linear relationship (mapping) from data to label.

Another linear example

Q: Can we find a line that (approximately) fits the data?

What is a linear equation?

Linear regression assumes a predictor of the form

(or
$$Ax = b$$
 if you prefer)

Recap: equation for a line

What is the formula describing the line?

Recap: equation for a line

What about in more dimensions?

Recap: equation for a line as an inner product

What about in more dimensions?

Our goal: find what is m???

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

How to find Θ ?

• In other words, how to find a line that can fit the data?

Cost Function

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)	
X ¹ 2104	460 y ¹	
X ² 1416	232 y ²	
X ³ 1534	315 y ³	
852	178	samples

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$ θ_i 's: Parameters

How to find them???

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

What is this? Idea: Choose $heta_0, heta_1$ so that $(h_{ heta}(x))$ is close to y for our training examples (x,y)

This is equivalent of saying: we want to minimize the difference (error) between predicted value and true value.

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

Squared error function: most-widely used cost function.

Let us use an example with one parameter

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_1)$$

(function of the parameter θ_1)

What is the J() value under different theta?

> Find theta that can minimize J()