Natural Science Maths - Michaelmas

Kevalee Shah

$March\ 25,\ 2019$

Contents

1	Vect	tors	3			
	1.1	Scalar Product	3			
	1.2	Vector Product	4			
	1.3	Vector Area	4			
	1.4	Triple Products	5			
		1.4.1 Scalar Triple Product	5			
		1.4.2 Vector Triple Product	5			
	1.5	Lines	5			
	1.6	Planes	5			
	1.7	Orthogonal Bases	6			
		1.7.1 Direction Cosines	7			
	1.8	Using Components	7			
	1.9	Determinants	7			
	1.10	Coordinates	7			
		1.10.1 Plane Polar Coordinates	7			
		1.10.2 Cyclindrical Polar Coordinates	8			
		1.10.3 Spherical Polar Coordinates	8			
	1.11	Other	9			
2	Con	aplex Numbers	10			
_	2.1	Polar Form	10			
	2.2	De Moivre's theorem	10			
	2.3	Exponential Form	10			
	2.4	Roots of Unity	11			
	2.5	Complex Powers and Logarithms	11			
	2.6	Fundamental Theorem of Algebra	11			
	2.7	Hyperbolics and Trig	11			
	2.8	Other	12			
3	Differentiation 13					
•	3.1	Hyperbolics	13			
	3.2	Implicit Differentiation	14			
	3.3	Leibnitz's Formula	14			
4	Cur	ve Sketching	14			

5	Elei	mentary Analysis	15
	5.1	Limits	15
	5.2	L'Hopital's Rule	15
	5.3	Order of Magnitude	15
	5.4	Continuity	15
6	Infi	nite Series	16
	6.1	Absolute Convergence	16
	6.2	Geometric Progression	16
	6.3	Convergence Tests	16
		6.3.1 Comparison	16
		6.3.2 Ratio Test	17
		6.3.3 Alternating Series	17
	6.4	Power Series	17
	6.5	Taylor Series	18
7	$Int \epsilon$	egration	19
	7.1	Trig Substitutions	19
	7.2	Integration by Parts	19
	7.3	Differentiation of Integrals w.r.t. Parameters	19
	7.4	Sums as Integrals	20
	7.5	Schwarz's Inequality	20
	7.6	Multiple Integrals	20
	7.7	Volume Integrals	21
	7.8	Gaussian Integrals	21
		7.8.1 Error Function	21

1 Vectors

1.1 Scalar Product

- $\underline{a} \cdot \underline{b} \equiv |\underline{a}| |\underline{b}| \cos(\theta)$
- The scalar product is commutative
- Note: $\cos(2\pi \theta) = \cos(\theta)$
- $\bullet \ \underline{a} \cdot \underline{a} \equiv \left| \underline{a} \right|^2$
- \bullet Resolving vector $\underline{a},$ with respect to unit vector $\underline{\hat{a}}:$
 - Parallel: $(\underline{a} \cdot \hat{\underline{n}})\hat{\underline{n}}$
 - Perpendicular: $\underline{a} (\underline{a} \cdot \hat{\underline{n}})\hat{\underline{n}}$
- Properties:
 - Commutative
 - Multiplication by scalar can be done at any point
 - Distributive over addition e.g. $\underline{a}\cdot(\underline{b}+\underline{c})=\underline{a}\cdot\underline{b}+\underline{a}\cdot\underline{c}$ can be proved using diagram

1.2 Vector Product

- $\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin(\theta) \hat{\underline{n}} = -\underline{b} \times \underline{a}$ anti-commutative
- \bullet If the vector product equals 0 then either the vectors are parallel or at least one is 0
- $\underline{a} \cdot (\underline{a} \times \underline{b}) = 0$ as $\underline{a} \times \underline{b}$ is perpendicular to \underline{a}
- $|\underline{a} \times \underline{b}|$ is the area of a parallelogram formed by \underline{a} and \underline{b}
- Properties:
 - anti-commutative
 - Multiplication by scalar can be done at any point
 - Distributive over addition can be proved using diagram or using the distributive dot product property

- **Non-associative** - intuitively, $\underline{a} \times (\underline{b} \times \underline{c})$ means that \underline{a} is \bot to the vector that is \bot to \underline{b} and \underline{c} , and therefore that vector is back in the \underline{b} and \underline{c} plane. Whereas for $(\underline{a} \times \underline{b}) \times \underline{c}$ this time \underline{c} is \bot to the vector \bot to \underline{a} and \underline{b} therefore the vector is back in the \underline{a} and \underline{b} plane.

1.3 Vector Area

- The vector area of a finite plane surface has a magnitude equal to the area of the plane, and direction equal to the normal of the plane, denoted by \underline{S}
- Projecting the area onto the x-y plane: $S\cos(\theta) = \underline{S} \cdot \hat{z}$
- For non-planar surfaces:
 - Area projections of the surface only depend on the rim of the surface
 - Total vector surface area is defined as the sum of individual surface areas

- All surfaces spanning a give rim have the same vector area e.g. the size of the dome on a circle doesnt affect the vector surface area
- Closed surface has S=0 as there only exists a vector area if there is a rim, and a closed surface has no rim and therefore no vector area (all the vector directions cancel each other)
- The vector area can be used to prove the distributive vector product law
 shown earlier

1.4 Triple Products

1.4.1 Scalar Triple Product

- $[\underline{a}, \underline{b}, \underline{c}] \equiv \underline{a} \cdot (\underline{b} \times \underline{c})$
- $[\underline{a}, \underline{b}, \underline{c}] = [\underline{b}, \underline{c}, \underline{a}] = [\underline{c}, \underline{a}, \underline{b}]$
- However, $[\underline{a}, \underline{b}, \underline{c}] = -[\underline{b}, \underline{a}, \underline{c}]$
- $[\underline{a}, \underline{b}, \underline{c}]$ defines the area of the parallelepiped formed by $\underline{a}, \underline{b}, \underline{c}$
- If any two vectors are the same, or **coplanar** then the scalar product equals 0 visually there would be no parallelipied and therefore there would be no volume

1.4.2 Vector Triple Product

- $\underline{a} \times (\underline{b} \times \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} (\underline{a} \cdot \underline{b})\underline{c}$
- Remember: BAC-CAB
- Not associative $\underline{a} \times (\underline{b} \times \underline{c}) = -\underline{c} \times (\underline{a} \times \underline{b})$

1.5 Lines

- $\underline{r} = \underline{a} + \lambda \hat{l}$
- Therefore $(r-a) \parallel \hat{l}$
- $\begin{array}{l} \bullet \ \, \underline{r} \times \hat{\underline{l}} = (\underline{a} + \lambda \hat{\underline{l}}) \times \hat{\underline{l}} \\ \underline{r} \times \hat{\underline{l}} = (\underline{a} \times \hat{\underline{l}}) + (\lambda \hat{\underline{l}} \times \hat{\underline{l}}) \\ \underline{r} \times \hat{\underline{l}} = \underline{a} \times \hat{\underline{l}} \end{array}$
- Equation of line connecting two points, \underline{a} amd \underline{b} : $\underline{r} = \underline{a} + \lambda \frac{(\underline{b} \underline{a})}{|\underline{b} \underline{a}|}$ where λ gives the distance between the two points, as diving by the modulus means that the direction vector has magnitude 1

1.6 Planes

- $\bullet \ \underline{r} = \lambda \underline{p} + \mu \underline{q}$
- For plane containing point $\underline{\mathbf{a}} \ \underline{r} = \underline{a} + \lambda \underline{p} + \mu \underline{q}$
- Given three points that lie in a plane, \underline{a} , \underline{b} , \underline{c} : $\underline{r} = \underline{a} + \lambda(\underline{b} \underline{a}) + \mu(\underline{c} \underline{a})$

• Alternate form:

$$\begin{array}{l} \underline{r} \cdot \underline{\hat{n}} = \underline{a} \cdot \underline{\hat{n}} + \lambda \underline{p} \cdot \underline{\hat{n}} + \mu \underline{q} \cdot \underline{\hat{n}} \\ \underline{r} \cdot \underline{\hat{n}} = \underline{a} \cdot \underline{\hat{n}} = \underline{d} \end{array}$$

(as $\underline{\hat{n}}$ is perpendicular to both p and q and therefore dotting gives 0)

$$- \underline{r} \cdot \underline{\hat{n}} = \underline{d}$$

$$|\underline{r}| |\underline{\hat{n}}| \cos(\theta) = \underline{d}$$

As $|\underline{\hat{n}}| = 1$ $|\underline{r}|\cos(\theta) = \underline{d}$

This means that $|\underline{d}|$ is the distance of the plane from the origin as $|\underline{r}|\cos(\theta)$ is the projection of \underline{r} in the normal direction.

1.7 Orthogonal Bases

- \bullet Three non-planar vectors can form a basis
- \bullet They can be used to specify every point in space
- $\underline{r} = \lambda \underline{a} + \mu \underline{b} + \gamma \underline{c}$ for unique (λ, μ, γ)
- To get these component we have to use reciprocal basis

$$\underline{A} \equiv \frac{\underline{b} \times \underline{c}}{[\underline{a}, \underline{b}, \underline{c}]}$$

$$\underline{B} \equiv \frac{\underline{c} \times \underline{a}}{[\underline{a}, \underline{b}, \underline{c}]}$$

$$\underline{C} \equiv \frac{\underline{a} \times \underline{b}}{[\underline{a}, \underline{b}, \underline{c}]}$$

• The reciprocal basis follow the rules:

$$\underline{a} \cdot \underline{A} = \underline{a} \cdot \frac{\underline{b} \times \underline{c}}{[\underline{a}, \underline{b}, \underline{c}]} = \frac{\underline{a} \cdot (\underline{b} \times \underline{c})}{\underline{a} \cdot (\underline{b} \times \underline{c})} = 1$$

$$\underline{a} \cdot \underline{B} = \underline{a} \cdot \frac{\underline{c} \times \underline{a}}{[\underline{a}, \underline{b}, \underline{c}]} = \frac{\underline{a} \cdot (\underline{c} \times \underline{a})}{\underline{a} \cdot (\underline{b} \times \underline{c})} = 0$$

$$\underline{a} \cdot \underline{C} = \underline{a} \cdot \frac{\underline{a} \times \underline{b}}{[\underline{a}, \underline{b}, \underline{c}]} = \frac{\underline{a} \cdot (\underline{a} \times \underline{b})}{\underline{a} \cdot (\underline{b} \times \underline{c})} = 0$$

• Therefore to get each component dot \underline{r} with appropriate reciprocal basis:

$$\underline{A} \cdot \underline{r} = \underline{A} \cdot \lambda \underline{a} + \underline{A} \cdot \mu \underline{b} + \underline{A} \cdot \gamma \underline{c} = \lambda \underline{A} \cdot \underline{a} = \lambda$$

$$\underline{B} \cdot \underline{r} = \underline{B} \cdot \lambda \underline{a} + \underline{B} \cdot \mu \underline{b} + \underline{B} \cdot \gamma \underline{c} = \mu \underline{B} \cdot \underline{b} = \mu$$

$$\underline{C} \cdot \underline{r} = \underline{C} \cdot \lambda \underline{a} + \underline{C} \cdot \mu \underline{b} + \underline{C} \cdot \gamma \underline{c} = \gamma \underline{C} \cdot \underline{c} = \gamma$$

• Orthonormal Basis - when $|\underline{a}| = |\underline{b}| = |\underline{c}| = 1$

Reciprocal basis is the same as normal basis

E.g. Basis vectors $\underline{i}, \underline{j}, \underline{k}$ along the Cartesian axes

Where:

$$\underline{i}\cdot\underline{i}=1,\,\underline{j}\cdot\underline{j}=1\;\underline{k}\cdot\underline{k}=1$$
 and other combinations = 0

$$[\underline{i}, j, \underline{k}] = 1$$

$$\underline{i} \times j = \underline{k}etc.$$

$$j \times \underline{i} = -\underline{k}etc.$$

1.7.1 Direction Cosines

A direction cosine is the cosine of the angle between a vector and the axes.

- For point \underline{a} , we can write this as $\underline{a} = a_x \underline{i} + a_y \underline{j} + a_z \underline{k}$, where \underline{i} , \underline{j} , \underline{k} form a orthonormal basis.
- $a_x = \underline{a} \cdot \underline{i} = |\underline{a}| |\underline{i}| \cos(\theta_x) = |\underline{a}| \cos(\theta_x)$
- $a_y = \underline{a} \cdot j = |\underline{a}| |j| \cos(\theta_y) = |\underline{a}| \cos(\theta_y)$
- $a_z 6 = \underline{a} \cdot \underline{k} = |\underline{a}| |\underline{k}| \cos(\theta_z) = |\underline{a}| \cos(\theta_z)$
- $\cos\left(\alpha\right) = \frac{a_x}{|a|}$
- $\cos(\beta) = \frac{a_y}{|\underline{a}|}$
- $\cos(\gamma) = \frac{a_z}{|\underline{a}|}$
- $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

1.8 Using Components

- $\bullet \ \underline{a} \times \underline{b} = a_x b_x + a_y b_y + a_z b_z$
- $\bullet \ \underline{a}^2 = a_x^2 + a_y^2 + a_z^2$
- $\underline{a} \times \underline{b} = (a_x \underline{i} + a_y \underline{j} + a_z \underline{k}) \times (b_x \underline{i} + b_y \underline{j} + b_z \underline{k})$... $= (a_y b_z - a_z b_y) \underline{i} + (a_z b_x - a_x b_z) \underline{j} + (a_x b_y - a_y b_x) \underline{k}$

1.9 Determinants

• The cross product can also be represented by a determinant:

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

• The scalar triple product can be written as:

$$\underline{a} \cdot (\underline{b} \times \underline{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

• The vector triple product can be written as:

$$\underline{a} \times (\underline{b} \times \underline{c}) = \begin{vmatrix} \underline{i} & \underline{j}\underline{k} \\ a_x & \overline{a_y} \\ (b_y c_z - b_z c_y) & (b_z c_x - b_x c_z) & (b_x c_y - b_y c_x) \end{vmatrix} = (\underline{a} \cdot \underline{c})\underline{b} - (\underline{a} \cdot \underline{b})\underline{c}$$

1.10 Coordinates

1.10.1 Plane Polar Coordinates

Point specified by (r, θ)

• Polar to Cartesian:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

• Cartesian to Polar :

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

• Examples:

$$r = a$$
 is a sphere

Shortest distance from origin to a line angle α to the y-axis is $d = r \cos(\theta - \alpha)$

• Area Element = $rdrd\theta$

1.10.2 Cyclindrical Polar Coordinates

Point is written as (r, ϕ, z) , where r and ϕ are in the x-y plane, like the polar coordinates, but the z component gives height

• Cylindrical to Cartesian:

$$x = r \cos \phi$$
$$y = r \sin \phi$$
$$z = z$$

• Cartesian to Cylindrical:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$
$$z = z$$

- Volume Element = $rdrd\phi dz$
- Examples:

z=a is a plane perpendicular to the z axis and distance a from the origin

r=a is a cylinder radius a, axis through origin and along the z axis r=a and $z=\phi$ specifies a helix about z axis and pitch angle $\tan^{-1}(\frac{1}{a})$

1.10.3 Spherical Polar Coordinates

Point is written as (r, θ, ϕ) , where r is the distance from the origin, $0 \le \theta \le \pi$ specifies angle between z axis and point, $0 \le \phi \le 2\pi$ specifies angle on the x-y plane

• Spherical to Cartesian:

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

• Cartesian to Spherical:

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}\left(\frac{z}{r}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{r}\right)$$

- An orthogonal coordinate system
- Examples:

 $\theta=a$ is a half cone with apex at the origin, opening angle a $\phi=a$ is a vertical half-plane, angle a to the x axis r=a sphere, centre origin, radius a $r=\theta=a$, horizontalal circle on the z axis, height $a\cos(\theta)$, radius $a(\theta)$

• Volume Element = $r^2 \sin \theta dr d\theta d\phi$

1.11 Other

- Distance from point \underline{b} to line, direction $\hat{\underline{l}}$ passing through point \underline{a} : $d = \left| \underline{\hat{l}} \times (\underline{b} \underline{a}) \right|$
- Distance from point to plane: $d = \frac{|\underline{r} \cdot \underline{n}|}{|\underline{n}|}$
- Distance between two skew lines where $l_1=a+\lambda s,\ l_2=b+\gamma t,\ c=a-b$ $d=\frac{\underline{c\cdot(\lambda\times\gamma)}}{|\lambda\times\gamma|}$
- Given $|\underline{a} \cdot \underline{b} \le |a| |b||$, we can deduce $|\underline{a} + \underline{b}| \le |a| + |b|$

$$\begin{split} &(\underline{a}+\underline{b})\cdot(\underline{a}+\underline{b}) = \left|\underline{a}+\underline{b}\right|^2\\ &(\underline{a}+\underline{b})\cdot(\underline{a}+\underline{b}) = \underline{a}\cdot\underline{a} + 2(\underline{a}\cdot\underline{b}) + \underline{b}\cdot\underline{b}\\ &(\underline{a}+\underline{b})\cdot(\underline{a}+\underline{b}) = \left|\underline{a}\right|^2 + 2(\underline{a}\cdot\underline{b}) + \left|\underline{b}\right|^2\\ &(\underline{a}+\underline{b})\cdot(\underline{a}+\underline{b}) \le \left|\underline{a}\right|^2 + 2\left|\underline{a}\right|\left|\underline{b}\right| + \left|\underline{b}\right|^2\\ &(\underline{a}+\underline{b})\cdot(\underline{a}+\underline{b}) \le (|\underline{a}|+|\underline{b}|)^2 \end{split}$$

$$\frac{|\underline{a} + \underline{b}|^2}{|\underline{a} + \underline{b}|} \le (|a| + |b|)^2$$

$$|\underline{a} + \underline{b}| \le (|a| + |b|)$$

• Surfaces:

$$\begin{aligned} |r| &= k \text{ - sphere} \\ \underline{r} \times \underline{u} &= m \, |r| - cone \\ |\underline{r} - (\underline{r} \cdot \underline{u})\underline{u}| &= n \text{ - cylinder} \end{aligned}$$

• Centroid of triangle = $\frac{1}{3}(\underline{a} + \underline{b} + \underline{c})$

2 Complex Numbers

- Number represented by z = a + bi, where $i^2 = -1$
- Complex conjugate: $z^* \equiv a bi$
- $zz^* = (a+bi)(a-bi) = a^2 + b^2 + i(-ab+ab) = a^2 + b^2$
- $|z| = \sqrt{zz^*} = \sqrt{a^2 + b^2}$

2.1 Polar Form

- $z = x + iy = r(\cos\theta + i\sin\theta)$
- $z_1 z_2 = |z_1| |z_2| [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$
- Multiplying by a complex number, z with |z| = 1 is the same as rotation anticlockwise by arg(z)

De Moivre's theorem 2.2

- $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- $\cos n\theta = \Re(\cos\theta + i\sin\theta)^n$

e.g.
$$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$$

e.g.
$$\sin 5\theta = \sin^5 \theta - 10\sin^3 \theta \cos^2 \theta + 5\sin \theta \cos^4 \theta$$

•
$$z + z^{-1} = \cos \theta + i \sin \theta + \cos \theta - i \sin \theta = 2 \cos \theta$$

 $z - z^{-1} = \cos \theta + i \sin \theta - (\cos \theta - i \sin \theta) = 2 \sin \theta$

Therefore it follows:

$$-\cos^n \theta = \frac{1}{2^n} (z + z^{-1})^n$$

$$-\sin^n \theta = \frac{1}{2^n} (z - z^{-1})^n$$

$$-\text{ e.g. }\cos^3\theta = \frac{1}{8}(2\cos 3\theta + 6\cos \theta)$$

Exponential Form

By using the power series, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ by setting $x = i\theta$, we get:

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \frac{\theta^6}{6!} - i\frac{\theta^7}{7!} + \dots$$
 (1)

$$\begin{split} e^{i\theta} &= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \frac{\theta^6}{6!} - i\frac{\theta^7}{7!} + \dots \\ &= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right) \end{split} \tag{2}$$

$$=\cos\theta + i\sin\theta\tag{3}$$

- Euler's formula: $e^{i\theta} = \cos\theta + i\sin\theta$
- $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$
- $(e^{i\theta})^n = e^{in\theta}$

2.4 Roots of Unity

nth roots of unity solve $z^n = 1$

- |z| = 1 therefore $z = e^{i\theta}$
- $e^{in\theta} = \cos n\theta + i\sin n\theta = 1 \implies \theta = \frac{2\pi k}{n}, \qquad k = 0, 1, 2, ... n 1$
- There are n, nth roots of unity
- Roots of unity come in complex-conjugate pairs
- $\omega = e^{\frac{2\pi i}{n}}$, then roots are $1, \omega, \omega^2, ...\omega^{n-1}$
- cube roots of unity are $1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}$

Complex Powers and Logarithms

- The natural logarithm $\omega = \ln z$ are the solutions of $e^{\omega} = z$
- $\ln z$ is multi-valued
- $\ln z = \ln r e^{i\theta} = \ln r + i(\theta + 2n\pi)$ $n = 0, \pm 1, \pm 2, ...$
- Principle value is when $0 \le \theta \le 2\pi$
- $z_1^{z_2} \equiv (e^{\ln z_1})^{z_2} \equiv e^{z_2 \ln z_1}$

Fundamental Theorem of Algebra

 $a_n z^n + a_n - 1 z^{n-1} + \dots + a_1 z + a_0 = 0$ $a_n \neq 0$ has n roots Alternatively, can say that the equation must have at least one root: If z_1 is a root, then the equation can be written as $(z-z_1)Q(z)=0$, where Q(z)is of order n-1. Q(z) must have at least one root etc.

2.7 Hyperbolics and Trig

• Define:

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$
 $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$

• When z is real
$$z=x$$
:
$$\frac{1}{2}(e^{ix}+e^{-ix})=\cos x \quad \text{ and } \quad \frac{1}{2i}(e^{ix}-e^{-ix})=\sin x$$

• When z is imaginary z = iy:

NOT SURE ABOUT SINH

$$\begin{aligned} \cos iy &= \frac{1}{2} (e^{i(iy)} + e^{-i(iy)}) = \frac{1}{2} (e^{-y} + e^y) = \cosh y \\ \sin iy &= \frac{1}{2i} (e^{i(iy)} - e^{-i(iy)}) = \frac{1}{2} (e^{-y} - e^y) = i \sinh y \end{aligned}$$

• Identities:

$$\cosh^2 y - \sinh^2 y = 1$$

 $\cosh(a+b) = \cosh a \cosh b + \sinh a \sinh b$

$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

• Inverse Hyperbolics:

$$\cosh^{-1} x = \pm \ln(x + \sqrt{x^2 - 1})$$

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

$$\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$$

2.8 Other

• Sets of points:

_

$$|z-2| = |z^* + i|$$

$$((x-2)+iy)((x-2)-iy) = (x+i(y-1))(x-i(y-1))$$

$$(x-2)^2 + y^2 = x^2 + (y-1)^2$$

$$-4x + 4 = -2y + 1$$

$$y = 2x - \frac{3}{2}$$

Perpendicular bisector of point z=i and z=2

- $arg(z^*) = \frac{\pi}{4}$ is the line segment y = -x for $x \ge 0$
- -arg(z) = |z|, if we convert it into the polar coordinate system it is the same as $\theta = r$ which is a spiral
- General form for an ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

if a > b then horizontal major axis

if a < b then vertical major axis

• $(x,y) = (a\cos\theta, b\sin\theta)$

$$\cos^2 \theta + \sin^2 \theta = 1$$
$$\cos^2 \theta = \frac{x^2}{a^2}$$
$$\sin^2 \theta = \frac{y^2}{b^2}$$
$$\therefore \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- General form for a hyperbola: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
- $\bullet \ (x,y) = (a\cosh\theta, b\sinh\theta) \implies \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$

• Logarithmic form of $\tanh^{-1} x$

$$tanh^{-1} x = y
tanh y = x
x = \frac{e^y - e^{-y}}{e^y + e^{-y}}
= \frac{e^y - e^{-y}}{e^{-y}(e^{2y} + 1)}
= \frac{e^{2y} - 1}{e^{2y} + 1}
xe^{2y} + x = e^{2y} - 1
(x - 1)e^{2y} = -1 - x
e^{2y} = \frac{-(1 + x)}{-(1 - x)}
y = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right)$$

- $\sin(a+bi) = \sin a \cosh b + i \cos a \sinh b$
- $\cos(a+bi) = \cos a \cosh b i \sin a \sinh b$
- $\sinh(a+bi) = \sinh a \cos b + i \cosh a \sin b$
- $\cosh(a+bi) = \cosh a \cos b + i \sinh a \sin b$

3 Differentiation

- Defined as: $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{y(x+\delta x) y(x)}{\delta x}$
- For a function f(x) to be **differentiable** at x:
 - function must be continuous
 - derivative exists \implies left-handed and right-handed limits must be the same
- Chain rule: $\frac{d}{dx}(y(u(x))) = \frac{dy}{du}\frac{du}{dx}$
- Product rule: $\frac{d}{dx}(fg) = \frac{df}{dx}g + \frac{dg}{dx}f$
- Quotient rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} u \frac{dv}{dx}}{v^2}$
- Reciprocal rule: $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$

3.1 Hyperbolics

- $\frac{d}{dx}\cosh x = \sinh x$
- $\frac{d}{dx}\sinh x = \cosh x$
- $\frac{d}{dx} \tanh x = \frac{1}{\cosh^2 x}$

3.2 Implicit Differentiation

To differentiate with respect to x an equation of the form g(y)=f(x)

$$\frac{dg(y)}{dx} = \frac{dg(y)}{dy} \frac{dy}{dx}$$
$$\therefore \frac{dg(y)}{dy} \frac{dy}{dx} = \frac{df}{dx}$$

3.3 Leibnitz's Formula

This formula gives the nth derivative of y(x) = f(x)g(x)

$$\frac{d^{n}(fg)}{dx^{n}} = \sum_{m=0}^{n} \binom{n}{m} f^{(n-m)} g^{(m)} = f^{(n)} g^{(0)} + n f^{(n-1)} g^{(1)} + \frac{n(n-1)}{2!} f^{(n-2)} g^{(2)} + \dots + f^{(0)} g^{(n)}$$

Note:

$$\binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1}$$

Proof done using induction

4 Curve Sketching

5 Elementary Analysis

5.1 Limits

 $\lim_{x\to x_0} f(x) = K$ means:

for any
$$\epsilon > 0$$
, $\exists \delta > 0$ such that $|f(x) - K| < \epsilon \forall 0 < |x - x_0| < \delta$

Define limit at infinity $\lim_{x\to\infty} f(x) = K$ as:

for any
$$\epsilon > 0$$
, $\exists X > 0$ such that $|f(x) - K| < \epsilon \, \forall x > X$

5.2 L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- \bullet Used for when limits of a quotient are indeterminable e.g. when both 0 or ∞
- e.g. $\lim_{x\to 0} \frac{\sin x}{x}$:

$$\lim_{x \to x_0} \frac{\sin x}{x} = \lim_{x \to x_0} \frac{\cos x}{1} = 1$$

5.3 Order of Magnitude

- \mathcal{O} notation expresses how a function behaves as it approaches a point (or ∞)
- Given two real functions f(x) and g(x), then $f(x) = \mathcal{O}(g(x))$ as $x \to a$ iff: \exists constants ϵ and K > 0 such that $|f(x)| \le K |g(x)| \quad \forall |x a| < \epsilon$
- Given two real functions f(x) and g(x), then $f(x) = \mathcal{O}(g(x))$ as $x \to \infty$ iff:

 \exists constants X and K > 0 such that $|f(x)| \leq K |g(x)| \quad \forall x > X$

• e.g. $x^2 + x = \mathcal{O}(x^2)$ as $x \to \infty$ since:

$$|x^2 + x| \le 2x^2 \quad \forall x > 1$$

 $\therefore \mathcal{O}(x^2)$

5.4 Continuity

• A real function f(x) is continuous at x = a if:

$$f(a)$$
 exists

$$\lim_{x \to a} f(x) = f(a)$$

• In $\epsilon - \delta$ form:

for any
$$\epsilon > 0, \, \exists \delta > 0$$
 such that $|f(x) - K| < \epsilon \quad \forall \, |x - x_0| < \delta$

6 Infinite Series

- $S_n \equiv \sum_{k=0}^n u_k$ is the nth partial sum of an infinite series
- As $n \to \infty$, if $S_n \to a$ finite limit, then we say the sequence converges.

Formally, $\lim_{n\to\infty} S_n = S$ if:

For any $\epsilon > 0$, $\exists N$ such that $|S - S_n| < \epsilon \quad \forall n > N$

- Else if $S_n \to \pm \infty$ the we say it diverges.
- A sequence can also oscillate

6.1 Absolute Convergence

• If $\sum_{k=0}^{\infty} |u_k|$ converges, then the series is absolutely convergent

Order of terms doesnt matter

• If $\sum_{k=0}^{\infty} u_k$ converges, but $\sum_{k=0}^{\infty} |u_k|$ doesnt, then the series is **conditionally convergent**

Order of terms can give different results

e.g.
$$1 - \frac{1}{2} + \frac{1}{3} - \dots$$

$$1 - (\frac{1}{2} - \frac{1}{3}) - (\frac{1}{4} - \frac{1}{5}) - \dots < 1$$

$$(1 + \frac{1}{3} + \frac{1}{5}) - \frac{1}{2} + (\frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}) - \frac{1}{4} + \dots = \frac{3}{2}$$

6.2 Geometric Progression

$$S_n \equiv \sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

 \bullet Series absolutely converges when |r|<1

 $\lim_{n\to\infty} |r|^{n+1} = 0$ as, for any $\epsilon > 0$, $|r|^{n+1} < \epsilon \quad \forall n+1 > \frac{\ln \epsilon}{\ln r}$

•

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \qquad |r| < 1$$

6.3 Convergence Tests

6.3.1 Comparison

- For positive terms
- Compares unknown $\sum_k u_k$ to known $\sum_k v_k$
- If $u_k \leq v_k \quad \forall k \geq K$, then if $\sum_{k=0}^{\infty} v_k$ converges, $\sum_{k=0}^{\infty} u_k$ must converge as well
- If $u_k \geq v_k \quad \forall k \geq K$, then if $\sum_{k=0}^{\infty} v_k$ diverges, $\sum_{k=0}^{\infty} u_k$ must diverge as well
- Examples:

- The Harmonic Series: $\sum_{k=0}^{\infty} \frac{1}{k}$

If we regroup as:

$$1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots$$

we can see that each bracketed term added is greater than $\frac{1}{2}$ and therefore the series is actually diverging as $\sum_{k} \frac{1}{k} > \sum_{k} \frac{1}{2}$

 $-\sum_{k=1}^{\infty} \frac{1}{k} (\frac{1}{2})^k < \sum_{k=1}^{\infty} (\frac{1}{2})^k$ therefore the first series converges

6.3.2 Ratio Test

For a positive series
$$\sum u_k$$
 if:
$$\lim_{k \to \infty} \frac{u_{k+1}}{u_k} < 1, \qquad \sum u_k \text{ converges}$$

$$\lim_{k \to \infty} \frac{u_{k+1}}{u_k} > 1, \qquad \sum u_k \text{ diverges}$$

$$\lim_{k \to \infty} \frac{u_{k+1}}{u_k} = 1, \qquad \sum u_k \text{ may converge}$$

• Examples:

$$\sum_{k} \frac{k}{2^k}$$

$$\frac{u_{k+1}}{u_k} = \frac{k+1}{2^{k+1}} \frac{2^k}{k} = \frac{1}{2} \left(1 + \frac{1}{k} \right)$$

$$\implies \lim_{k \to \infty} = \frac{1}{2}$$

6.3.3 **Alternating Series**

This is also known as Liebniz's criterion:

For an alternating sequence, $\sum_k (-1)^{k+1} a_k$, with $a_k > 0$ converges if a_k monotonically decreases for large enough k, and $\lim_{k \to \infty} a_k = 0$

Power Series 6.4

Infinite series of the form

$$f(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a + 1x + a_2 x^2 + \dots$$

- Converges if x = 0
- \bullet Absolutely converges for finite x
- Absolutely converges for |x| < R, for some R, diverges for |x| > R and might converge for |x| = R
- Ratio test:

$$\left| \frac{a_{k+1}x^{k+1}}{a_kx^k} \right| = |x| \left| \frac{a_{k+1}}{a_k} \right|$$

$$-L \equiv \lim_{k=0\to\infty} \left| \frac{a_{k+1}}{a_k} \right|$$

– Converges if
$$|x| < \frac{1}{L}$$

– Diverges if
$$|x| > \frac{1}{L}$$

– Indeterminent if
$$|x| = \frac{1}{L}$$

6.5 Taylor Series

• Maclaurin Series:

$$f(x) = f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \frac{x^3}{3!}f^{(3)}(0) + \dots$$

Dervied by setting x=0 and repeatedly differentiating to get coefficients: $f(x)=a_0+a_1x+a_2x^2+a_3x^3+\ldots$

• Above is a special case of the Taylor Series:

$$f(x) = f(a) + (x-a)f^{(1)}(a) + \frac{(x-a)^2}{2!}f^{(2)}(a) + \frac{(x-a)^3}{3!}f^{(3)}(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + R_{n+1}$$

where R_{n+1} is the remainder term.

• Alternatively can write the Taylor Series as:

$$f(a+h) = f(a) + hf^{(1)}(a) + \frac{h^2}{2!}f^{(2)}(a) + \frac{h^3}{3!}f^{(3)}(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + R_{n+1}$$

• Taylor's Theorem states that for $x = \zeta$ for $a < \zeta < a + h$:

$$R_{n+1} = \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(\zeta)$$

• Taylor Series to Learn

$$exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$cos(x) = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots$$

$$- \ln(x+1) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

7 Integration

$$\int_{a}^{b} f(x)dx = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(\zeta_{i})(x_{i+1} - x_{i})$$

• Infinite integrals:

$$\int_{a}^{\infty} f(x)dx \equiv \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

• Improper Integrals: If the intrgrand is singular in the range of integration, we exclude a small region around singularity and then take a limit. e.g. To calculate $\int_0^1 \frac{1}{\sqrt{x}} dx$, consider:

$$\int_{\epsilon}^{1} \frac{1}{\sqrt{x}} dx = 2 \left| \sqrt{x} \right|_{\epsilon}^{1} = 2 - 2\sqrt{\epsilon} \qquad \lim_{\epsilon \to 0} 2 - 2\sqrt{\epsilon} = 2$$

7.1 Trig Substitutions

• If integral involves $\sqrt{a^2 - x^2}$ then use $x = a \sin \theta$

as
$$dx = a\cos\theta d\theta = a\sqrt{1 - \sin^2\theta} d\theta = \sqrt{a^2 - x^2} d\theta$$

e.g.

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$$

• If integral involves $x^2 + a^2$ use $x = a \tan \theta$

as
$$dx = a \sec^2 \theta d\theta = \frac{1}{a} (1 + \tan^2 \theta)$$

e.g.

$$\int \frac{1}{a^2 + x^2} = \frac{1}{a} tan^{-1} (\frac{x}{a})$$

• Completing the square is useful when the integrand is of the form $\frac{1}{Q(x)}$, $\frac{1}{\sqrt{Q(x)}}$ where Q(x) is a quadratic, as then a trig substitution can be used.

7.2 Integration by Parts

$$\int fg'dx = fg - \int gf'dx$$

e.g.

$$\int \ln x \, dx = x \ln x - \int (\frac{x}{x}) dx = x \ln x - x + c$$

7.3 Differentiation of Integrals w.r.t. Parameters

$$I(\alpha) \equiv \int_{a(\alpha)}^{b(\alpha)} f(x;\alpha) \, dx \qquad \qquad \frac{dI}{d\alpha} = \int_{a(\alpha)}^{b(\alpha)} \frac{\partial f(x;\alpha a)}{\partial \alpha} \, dx + \frac{db}{d\alpha} f(b;\alpha) - \frac{da}{d\alpha} f(a;\alpha)$$

Note:

$$\int_0^\infty x^n e^{-x} \, dx = n!$$

7.4 Sums as Integrals

• Stirling's Approximation: Starts with noticing: $\ln n! = \ln(1 \times 2 \times 3 \times \cdots \times n) = \ln 1 + \ln 2 + \ln 3 + \ldots \ln n = \sum_{k=1}^{n} \ln k$ If we plot x against $\ln x$ and draw two sets of rectangles to put bounds on the curve, we get:

$$\ln n! \approx n \ln n - n$$

• Better approximation:

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

7.5 Schwarz's Inequality

$$\begin{split} \underline{a} \cdot \underline{b} &= |a| \, |b| \cos \theta \\ |\underline{a} \cdot \underline{b}| &\leq |a| \, |b| \\ (\underline{a} \cdot \underline{b})^2 &\leq |a|^2 \, |b|^2 \\ (a_x b_x + a_y b_y + a_z b_y)^2 &\leq (a_x^2 + a_y^2 + a_z^2)(b_x^2 + b_y^2 + b_z^2) \\ \text{Extending this to N dimensions:} \end{split}$$

$$\left(\sum_{i=1}^{N} a_i b_i\right) \le \left(\sum_{i=1}^{N} a_i^2\right) \left(\sum_{i=1}^{N} b_i^2\right)$$

By realising an integral is the limit of of a sum, as $N \to \infty$, we get Schwarz's Inequality

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \le \left(\int_a^b f(x)^2\,dx\right)\left(\int_a^b g(x)^2\,dx\right)$$

7.6 Multiple Integrals

Extends Riemann's definition for one variable into several variables. E.g.

$$\iint_{S} f(x,y) \, dx dy \equiv \lim_{\substack{\delta x \to \infty \\ \delta y \to \infty}} \sum_{i} \sum_{j} f(x_{i}, y_{i}) \delta x \delta y \lim_{\substack{\delta x \to \infty \\ \delta y \to \infty}}$$

e.g.

$$\int_{x=0}^{2} \int_{y=\frac{x}{5}}^{1} 2xy^{2} dy dx \equiv \int_{y=0}^{1} \int_{x=0}^{2y} 2xy^{2} dx dy \equiv \frac{4}{5}$$

In plane-polar coordinates:

$$\iint_S f(r,\phi)\,rdrd\phi$$

Integrands that are products can be simplified as following

$$\iint_{S} f(x)g(x) dxdy = \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x)g(x) dx \right) dy$$
$$= \int_{y=c}^{y=d} g(y) \left(\int_{x=a}^{x=b} f(x) dx \right) dy$$
$$= \left(\int_{c}^{d} y(x) dy \right) \left(\int_{a}^{b} f(x) dx \right)$$

7.7 Volume Integrals

Cartesian

$$dV = dxdydz$$

Cylindrical Polar

$$dV = r dr d\phi dz$$

Spherical Poalr

$$dV = r^2 \sin\theta \, dr d\theta d\phi$$

7.8 Gaussian Integrals

$$I = \lim_{a \to \infty} I_a$$
 where $I_a \equiv \int_{-a}^a e^{-x^2} dx$

If we consider I_a^2

$$I_a^2 = \left(\int_{-a}^a e^{-x^2} \, dx \right) \left(\int_{-a}^a e^{-y^2} \, dx \right)$$
$$= \iint_S e^{-(x^2 + y^2)} \, dx dy$$

where S is a square of side 2a centred on the origin

Switch to plane-polar coordinates and establish

$$\iint_{S-} e^{-r^2} r dr d\phi < I_a^2 < \iint_{S+} e^{-r^2} r dr d\phi$$

where S_+ is the outcircle of S, with a radius of $\sqrt{2}a$, and S_- is the incircle of S, with a radius a

$$\implies \pi \left(1 - e^{-a^2}\right) < I_a^2 < \pi \left(1 - e^{-2a^2}\right)$$

as $a \to \infty$ both bounds is π , therefore:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

7.8.1 Error Function

• For a Gaussian distribution, the area that lies between $\pm a\sigma$ is given by the integral:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-a\sigma}^{a\sigma} e^{\frac{-x^2}{2\sigma^2} dx} = \frac{2}{\sqrt{\pi}} \int_{0}^{\frac{a}{\sqrt{2}}} e^{-u^2} du$$

• Error function: (shows the standard deviation):

$$erf(x) \equiv \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du$$

• $\operatorname{erf}(\infty) = 1$