

Baderia Global Institute of Engineering and Management, Jabalpur, Madhya Pradesh 482002

Ereline 10

The Creation of Tomorrow

Brohmox 40

www.codecrax.com

Profile Overview

- •Theme Sustainable Construction Methods for a Greener Future
- Problem Statement Green building and sustainable construction practice
- •<u>Team Name</u> Rising Coders

<u>Sustainable</u> <u>Construction</u> <u>Methods</u> <u>For a</u> <u>Greener</u> <u>Future</u>

- Use of Sustainable Building Materials Incorporate renewable and recyclable material like bamboo, recycled steel .
- •Energy- Efficient Building Designs Implementing passive solar design, green roofs and cool roofs to enhance energy efficiency .
- •Water conservation Techniques Adopting rainwater harvesting and water recycling system to minimize wastes.
- •Modular And prefabricated construction utilize off-site construction methods to reduce waste and construction time .
- •Integration of Renewable Energy Sources Installing solar panels and building-integrated photovoltaic's (BIPV) to harness renewable energy.

Technical Approach

Programming Language

- JavaScript –
 create interactive
 display for smart
 homes
- Python do data analysis, smart system control, energy modeling for smart building
 - •C/C++ power embedded system in smart meter and sensors

Frame Work

- •Energy Plus simple model which help buildings for better energy performance
- •Open Studio tool used for energy modeling

Hardware

•Water Flow Sensor measures the rate of water is moving through a pipe or system

Implementation Steps

Expected Outcomes

Reduced energy level and water consumption real time monitoring alerts user friendly interface for data consumption

Feasibility And Viability

Technical Feasibility

- Advanced Materials: (AACC blocks, fly ash bricks, low-VOC paints)
- Renewable Integration: rooftop solar, BIPV)
- Efficient HVAC (chilled beams geothermal) up to 50% energy saving
- Smart Systems; BMS, energy monitoring

Resource Savings in Green Buildings

Practical Implementation

- Policy Support: ECBC code, LEED/ IGBC/GRIHA certfications
- Case Study: Indira Paravaran Bhawar Delhi – Int's's 1st net-zero energy building
- Adoption: Government + private developers increasingly opting green

▲ Potential Obstacles & Solution

Obstacle	Solution
High Initial Costs	Govt. subsidies, green loans
Lack of Awareness	Educational drives, worksho
Resistance by Builders/Developers	Incentivize grc
Technical Skill Gap	Green building program

Impacts And Benefits

Benefits

- Reduce destruction to ecology
- •Efficient use of resources during construction
- Reduced construction waste
- Reduced energy consumption

Impacts

- Reduce environmental footprint
- Energy efficiency
- Water conservation
- Material efficiency
- Healthier living environments

<u>Reference</u>

Reference

- •United States Green Building Council (USGBC): Develops LEED certification program for sustainable buildings.
- •National Institute of Building Sciences (NIBS): Provides guidelines and standards for sustainable building practices.

Research Areas

- Sustainable materials and technologies
- Energy efficiency and renewable energy systems
- •Water conservation and management
- Indoor air quality and occupant health
- Building information modeling (BIM) for sustainability

