CSC 320 Midterm 2 Practice Questions

- 1) Select which of the following languages are context-free:
 - (a) $L = \{w \in \{0,1\}^* \mid w \text{ has exactly twice as many 0's as 1's}\}$
 - (b) $L = \{aaa, bbab, aaabbb, aa, c, ca\}$
 - (c) $L(R)^*$ where R is a regular expression
 - (d) $L = \{a^n b^{2n} c^{2n} \mid n \ge 0\}$
- 2) Select every true statement:
 - (a) If a language is context-free, then it is non-regular.
 - (b) If a language is context-free, then it is regular.
 - (c) If a language is regular, then it is context free.
 - (d) If a language is non-regular, then it is not context-free.
 - (e) If a language is not context free, then it is non-regular.
- 3) Let T_R denote the class of Turing-recognizable languages.
 - (a) For any language $L \in T_R$, there exists a nondeterministic Turing machine M with L(M) = L.
 - (b) For any language $L \in T_R$ there exists a nondeterministic finite automaton N with L(N) = L.
 - (c) Let R be a regular expression. Then $L(R) \in T_R$.
 - (d) Let P be a pushdown automaton. Then $L(P) \in T_R$.
 - (e) $\emptyset \in T_R$.

4)	Consider the	following	CFG G	$= (\{S, A\})$	$\{B\},\$	$\{a,b\},\$	R, S	where	the ru	ıles i	n R	are	given	as follows

$$S \to SS \mid AB$$

$$A \rightarrow Aa \mid a$$

$$B \to Bb \mid b$$

(a) Show that
$$G$$
 is ambiguous by giving two leftmost derivations of a string in $L(G)$.

(b) Convert
$$G$$
 to an equivalent PDA following the steps of the CFG to PDA conversion.

(c) Convert
$$G$$
 into Chomsky Normal Form. Show all your steps.

			1	
5)	Consider the language	$L = \{0^i 1^j 2^j \}$	$k \mid i, j, k \geq 0$	and $i + k = j$.

(a) Give a context free grammar G with L(G) = L.

(b) Give a state diagram for a PDA which recognizes L (without using the CFG to PDA conversion).

6)	Prove that the language $L = \{0^n \mid n \text{ lemma for context free languages.}$	>0, n is a prim	e number} is not conte	xt free using the pumping

7) Give a high-level description of a Turing machine which recognizes the following language:

$$L = \{0^i 1^j 2^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$$