A domain theory for statistical probabilistic programming

Matthijs Vákár, Ohad Kammar, and Sam Staton

Logic and Semantics Seminar Department of Computer Science and Technology The Computer Laboratory 22 February 2019

Statistical probabilistic programming

- $\llbracket \rrbracket : programs \rightarrow unnormalised distributions$
- Bayesian inference: compiler computes normalisation
- ▶ Continuous types: $\mathbb{R}, [0, \infty]$

Statistical probabilistic programming

Commutativity/exchangability/Fubini-

$$\begin{bmatrix} \mathbf{let} \ x = K \mathbf{in} \\ \mathbf{let} \ y = L \mathbf{in} \end{bmatrix} = \begin{bmatrix} \mathbf{let} \ y = L \mathbf{in} \\ \mathbf{let} \ x = K \mathbf{in} \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{let} \ x = K \ \mathbf{in} \\ \mathbf{let} \ y = L \ \mathbf{in} \\ f(x,y) \end{bmatrix} = \begin{bmatrix} \mathbf{let} \ y = L \ \mathbf{in} \\ \mathbf{let} \ x = K \ \mathbf{in} \\ f(x,y) \end{bmatrix} \quad \int \begin{bmatrix} K \end{bmatrix} (\mathrm{d}x) \int \begin{bmatrix} L \end{bmatrix} (\mathrm{d}y) f(x,y) \\ = \int \begin{bmatrix} L \end{bmatrix} (\mathrm{d}y) \int \begin{bmatrix} K \end{bmatrix} (\mathrm{d}x) f(x,y)$

arbitrary

Exact Bayesian inference using disintegration [Shan-Ramsey'17]

distributions s-finite distributions full definability [Staton'17]

Statistical probabilistic programming

Express continuous distributions using:

► Higher-order functions:

(e.g. generative random function models)

► Term recursion:

$$\begin{split} rw(x,\sigma) &= \lambda(). \qquad \text{// thunk} \\ &\mathbf{let} \ y = \mathbf{sample}(x,\sigma) \\ &\mathbf{in} \ (x,rw \ (y,\sigma)) \end{split}$$

Type recursion (à la FPC)

 $Dynamic = \mu\alpha.\{Val(\mathbb{R}) \mid Fun(\alpha \to \alpha)\}$

(e.g. dynamic types, IRs)

Application: modular Bayesian inference

Resample-Move Sequential Monte Carlo [Scibior et al.'18a+b] resamples particles moves recursion rmsmc k marginal . finish . compose k (advance . hoistS (compose t mhStep . hoistT resample inference representation . hoistST (spawn n >>) higher order inference transformer Sam Sam Sam Sam Sam Sam $_{\text{Sam}}$ resample Pop Pop Pop Sam Pop Pop Sam spawn n hoistT mhStep Tr Tr Tr TrPop Pop Sam Seq hoistST hoistS advance Seq finish Tr margina Pop inference recursive (invariant types preserving)

ProbProg: Important Language Features

Church RebPPL Venture	sampl	e ℝ	score	higher		٠.	
Church Venture				order	rec	rec	(commute)
sets + probability	✓	X	X	✓	X	X	✓
meas space + subprobability	✓	✓	X	X	1^{st}	X	✓
CPO + subprobability	✓	1	Х	✓	√	√	?
cont domain + subprobability	✓	✓	X	X	1^{st}	X	✓
[Jones-Plotkin'89]							
: [Jung-Tix'98]	:	:	:	÷	:	:	:
meas + s-finite distributions	✓	√	√	X	1 st	X	✓
[Staton'17]							
qbs + s-finite distributions	✓	√	√	√	1 st	X	✓
[Heunen et al'17, Ścibior et al'18]							
coh/meas cone + probability		,				2	2
[Ehrhard-Pagani-Tasson'18,	✓	V	X	✓	✓	!	!
Ehrhard-Tasson'15-'19]		^				•	•
ω qbs + s-finite distributions	✓	✓	✓	✓	✓	✓	✓
. [This work]							

Summary

Contribution

- $lackbox{f }\omega {f Qbs}$: a category of pre-domain quasi-Borel spaces
- ightharpoonup M: commutative probabilistic powerdomain over $\omega \mathbf{Qbs}$
- lacktriangle Axiomatic treatment of measure and domain theory in $\omega \mathbf{Qbs}$
- Adequacy: $(\omega \mathbf{Qbs}, M)$ adequately interprets:
 - Statistical FPC
 - Untyped Statistical λ -calculus

This talk

- $ightharpoonup \omega \mathbf{Qbs}$
- A probabilistic powerdomain
- Axiomatic treatment
- ightharpoonup Characterising $\omega \mathbf{Qbs}$

Iso-recursive types: FPC

$$\frac{\Gamma \vdash t : \sigma[\alpha \mapsto \overleftarrow{\tau}]}{\Gamma \vdash \tau . \mathbf{roll} \ (t) : \tau} \underbrace{\frac{\Gamma \vdash t : \overleftarrow{\tau} \qquad \Gamma, x : \sigma[\alpha \mapsto \overleftarrow{\tau}] \vdash s : \rho}{\Gamma \vdash \mathbf{match} \ t \ \mathbf{with} \ \mathbf{roll} \ x \Rightarrow s : \rho}$$

Iso-recursive types: FPC

[Fiore-Plotkin'94]

Challenge

- probabilistic powerdomain
- commutativity/Fubini
- continuous domains [Jones-Plotkin'89]

open problem [Jung-Tix'98]

- domain theory
- ▶ higher-order functions

traditional approach:

 $\mathsf{domain} \mapsto \mathsf{Scott}\text{-}\mathsf{open} \ \mathsf{sets} \mapsto \mathsf{Borel} \ \mathsf{sets} \mapsto \mathsf{distributions}/\mathsf{valuations}$

our approach:

as in [Ehrhard-Pagani-Tasson'18]

 $(domain, quasi-Borel \ space) \mapsto distributions$ separatebut compatible

Rudimentary measure theory

Borel sets

- ightharpoonup [a,b] Borel
- ightharpoonup A Borel $\implies A^{\complement}$ Borel
- $(A_n)_{n \in \mathbb{N}} \text{ Borel } \Longrightarrow$ $\bigcup_{n \in \mathbb{N}} A_n \text{ Borel }$

Measurable functions $f: \mathbb{R} \to \mathbb{R}$

$$f^{-1}[A]$$
 Borel $\iff A$ Borel

Measures $\mu : \mathsf{Borel} \to [0, \infty]$

monotone:

$$A \subseteq B \implies \mu(A) \le \mu(B)$$

Scott-continuous:

$$A_0 \subseteq A_1 \subseteq \ldots \implies \mu(\bigcup_n A_n) = \bigvee_n \mu(A_n)$$

▶ strict $(\mu\emptyset = 0)$ and additive $(\mu(A \uplus B) = \mu A + \mu B)$

Rudimentary measure theory

1 dimensional

Borel sets

- ightharpoonup [a,b] Borel
- ightharpoonup A Borel $\implies A^{\complement}$ Borel
- $\begin{array}{c} \blacktriangleright \ (A_n)_{n\in \mathbb{N}} \ \mathrm{Borel} \implies \\ \bigcup_{n\in \mathbb{N}} A_n \ \mathrm{Borel} \end{array}$

Measurable functions $f:\mathbb{R} \to \mathbb{R}$

$$f^{-1}[A]$$
 Borel $\iff A$ Borel

Measures $\mu : \mathsf{Borel} \to [0, \infty]$

- monotone: $A \subseteq B \implies \mu(A) < \mu(B)$
- Scott-continuous: $A_0 \subseteq A_1 \subseteq \ldots \implies \mu(\bigcup_n A_n) = \bigvee_n \mu(A_n)$
- strict $(\mu \emptyset = 0)$ and additive $(\mu(A \uplus B) = \mu A + \mu B)$

Example (Lebesgue measures)

$$\lambda[a,b] = b-a \text{ on } \mathbb{R}$$
 $(\lambda \otimes \lambda) ([a,b] \times [c,d]) = (b-a)(d-c) \text{ on } \mathbb{R}^2$

2 dimensional

Example (Push-forward measure)

$$f_*\mu(A) := \mu\left(f^{-1}[A]\right)$$
Borel set
measure
$$f: \mathbb{R} \to \mathbb{R}$$

 $x_0 \le x_1 \le x_2 \le \dots$

 $\exists \bigvee_{n} x_{n}$

 $\lambda_x : X \in M_X$

countable partition $\mathbb{R} = \left\{ + \right\}_{n \in \mathbb{N}} S_n$

Morphisms $f: X \to Y$: Scott continuous qbs maps monotone and $f \bigvee_n x_n = \bigvee_n f x_n$

 $\forall \alpha \in M_X$. $f \circ \alpha \in M_Y$

Example

$$S=(\underline{S},\Sigma_S)$$
 measurable space

$$\omega \mathbf{Qbs}$$
 \top \mathbf{Qbs}

$$(\underline{S},=,\{\alpha:\mathbb{R}\to\underline{S}|\alpha \text{ Borel measurable}\})$$

so $\mathbb{R} \in \omega \mathbf{Qbs}$

Reminder

wqbs:
$$X = (X, \leq_X, M_X)$$

- $\lambda_x : \lambda = M_X$
- $\alpha \in M_X \implies \alpha \circ \varphi \in M_X$
- $(\alpha_n \in M_X)_{n \in \mathbb{N}} \implies [r \in S_n.\alpha(r)] \in M_X$

s.t.:

$$(\alpha_n) \in M_X^{\omega} \Longrightarrow \bigvee_n \alpha_n \in M_X$$

Example step functions
$$\omega \mathbf{Qbs}$$
 \top $\omega \mathbf{Cpo}$
$$P = (\underline{P}, \leq_P) \ \omega \text{-cpo}$$

$$\left(\underline{P}, \leq_P, \left\{\bigvee_k [\underline{\ } \in S_n^k.a_n^k] \middle| \forall k.\mathbb{R} = \biguplus_n S_n^k \right\}\right)$$

so $\mathbb{L}=([0,\infty],\leq,\{\alpha:\mathbb{R}\to[0,\infty]|\alpha \text{ Borel measurable}\})\in\omega\mathbf{Qbs}$

Reminder

wqbs:
$$X = (\underline{X}, \leq_X, M_X)$$

- $\lambda . x \in M_X$
- $\bullet \ \alpha \in M_X \implies \alpha \circ \varphi \in M_X$
- $(\alpha_n \in M_X)_{n \in \mathbb{N}} \stackrel{\cdot}{\Longrightarrow} [r \in S_n.\alpha(r)] \in M_X$

s.t.:

$$(\alpha_n) \in M_X^{\omega} \Longrightarrow \bigvee_n \alpha_n \in M_X$$

Example

X ω -qbs

$$\omega \mathbf{Qbs}$$

$$X_{\perp} := \Big(\{\bot\} + \underline{X}, \bot \leq \underline{X}, \Big\{[S.\bot, S^{\complement}.\alpha] \Big| \alpha \in M_X, S \text{ Borel} \Big\}\Big)$$

Reminder

wqbs:
$$X = (\underline{X}, \leq_X, M_X)$$

- $\lambda_x : X \in M_X$
- $\alpha \in M_X \implies \alpha \circ \varphi \in M_X$
- $(\alpha_n \in M_X)_{n \in \mathbb{N}} \implies [r \in S_n.\alpha(r)] \in M_X$

s.t.:

$$(\alpha_n) \in M_X^{\omega} \Longrightarrow \bigvee_n \alpha_n \in M_X$$

Products

$$\underline{X_1 \times X_2} = \underline{X_1} \times \underline{X_2} \qquad \qquad x \leq y \iff \forall i.x_i \leq y_i$$

$$M_{X_1 \times X_2} = \{(\alpha_1, \alpha_2) : \mathbb{R} \to \underline{X_1} \times \underline{X_2} | \forall i.\alpha_i \in M_{X_i} \}$$
 correlated random elements

Products

$$\underline{X_1 \times X_2} = \underline{X_1} \times \underline{X_2} \qquad \qquad x \leq y \iff \forall i.x_i \leq y_i$$

$$M_{X_1 \times X_2} = \{(\alpha_1, \alpha_2) : \mathbb{R} \to \underline{X_1} \times \underline{X_2} | \forall i.\alpha_i \in M_{X_i} \}$$
 Theorem

random elements

 $\omega \mathbf{Qbs} \rightarrow \omega \mathbf{Cpo} \times \mathbf{Qbs}$ creates limits

Products

$$\underline{X_1 \times X_2} = \underline{X_1} \times \underline{X_2} \qquad \qquad x \leq y \iff \forall i.x_i \leq y_i$$

$$M_{X_1 \times X_2} = \{(\alpha_1, \alpha_2) : \mathbb{R} \to \underline{X_1} \times \underline{X_2} | \forall i.\alpha_i \in M_{X_i} \}$$
 correlated random elements

Exponentials

- $\underline{Y}^X = \{f: \underline{X} \to \underline{Y} | f \text{ Scott continuous qbs morphism} \}$ $= \mathbf{Qbs}(X,Y)$
- $f \le g \iff \forall x \in \underline{X}.f(x) \le g(x)$

Fundamentals of measure theory

s-finite measures

 $\blacktriangleright \mu_n$ bounded:

 $\mu_n(\mathbb{R}) < \infty$

 \blacktriangleright μ s-finite:

 $\mu = \sum_n \mu_n$, μ_n bounded

Randomisation Theorem

Every s-finite measure is a push-forward of Lebesgue:

$$\mu$$
 s-finite $\implies \mu = f_* \lambda$ for some $f: \mathbb{R} \to \mathbb{R}_\perp$

Transfer principle

$$au_*\lambda=\lambda\otimes\lambda$$
 for some measurable $au:\mathbb{R} o(\mathbb{R} imes\mathbb{R})_\perp$

Randomisation monad structure

- $(X_{\perp})^{\mathbb{R}}$
- ightharpoonup return $_X(x): r \in [0,1] \mapsto x$

$$(\alpha \gg f) : \mathbb{R} \xrightarrow{\tau} \mathbb{R} \times \mathbb{R} \xrightarrow{\mathbb{R} \times \alpha} \mathbb{R} \times X \xrightarrow{\mathbb{R} \times f} \mathbb{R} \times (Y_{\perp})^{\mathbb{R}} \xrightarrow{\text{eval}} Y$$

$$X \to (Y_{\perp})^{\mathbb{R}}$$

- ▶ sample from randomisation of normal distribution
- $ightharpoonup \operatorname{score}(r): r' \in [0, |r|] \mapsto ()$

monad laws fail (associativity)

Lebesgue integration

$$(X_{\perp})^{\mathbb{R}} \xrightarrow{\int \int \mathbb{L}^{\mathbb{L}^X}} MX$$

MX: randomisable integration operators

 $(\mathcal{E},\mathcal{M}) := (\mathsf{densely} \ \mathsf{strong} \ \mathsf{epi}, \mathsf{full} \ \mathsf{mono}) \ \mathsf{factorisation} \ \mathsf{system}$

 $\mathcal{E} =$ densely strong epis closed under:

products:

$$e_1, e_2 \in \mathcal{E} \implies e_1 \times e_2 \in \mathcal{E}$$

► lifting:

$$e \in \mathcal{E} \implies e_{\perp} \in \mathcal{E}$$

random elements:

$$e \in \mathcal{E} \implies e^{\mathbb{R}} \in \mathcal{E}$$

 \Longrightarrow M strong monad for sampling + conditioning

[Kammar-McDermott'18]

$$(X_{\perp})^{\mathbb{R}} \xrightarrow{\qquad} \mathbb{L}^{\mathbb{L}^X}$$

$$MX$$

- lacktriangledown M locally continuous \implies may appear in domain equations
- ▶ *M* commutative
- $\begin{array}{c} \blacktriangleright \ \, M \ \, \text{models synthetic measure theory} \\ M \sum_{n \in \mathbb{N}} X_n \cong \prod_{n \in \mathbb{N}} MX_n \end{array}$

₩ [Kock'12, Ścibior et al.'18]

Valuations

Proposition

For standard Borel X:

$$MX \cong \left\{ \mu \big|_{\mathit{Scott opens}} \middle| \mu \text{ is s-finite} \right\}$$

Theorem (joint with Alex Simpson)

Quasi-Borel domains freely extend continuous domains:

Axiomatic domain theory

[Fiore-Plotkin'94, Fiore'96]

Structure

- ▶ Total map category: $\omega \mathbf{Qbs}$
- Admissible monos: **Borel-open** map $m: X \xrightarrow{\checkmark} Y$:

$$\forall \beta \in M_Y. \qquad \beta^{-1}[m[X]] \in \mathcal{B}(\mathbb{R})$$

take Borel-Scott open maps as admissible monos

- ▶ Pos-enrichment: pointwise order
- Pointed monad on total maps: the powerdomain
- → model axiomatic domain theory
- ⇒ solve recursive domain equations

Axiomatic domain theory

Structure

- D total map category $\omega \mathbf{Qbs}$
- $f \leq q$ **Pos**-enrichment pointwise order
- $\mathcal{M}_{\mathfrak{D}}$ admissible monos Borel-Scott opens
- monad for effects power-domain
- partiality encoding m $m: -\bot \to T, \bot \mapsto 0$

Derived axioms/structure

- partial map category partiality monad
- $(\dashv_{\mathcal{M}})$ the adjunction $J \dashv L$ is locally continuous
- $(\mathbb{1}_{<})$ $\mathbf{p}\mathfrak{D}$ has a partial terminal

- every object has a partial $(\rightarrow_{<}) \mathfrak{D}$ has locally monotone map classifier $\downarrow_X: X \to X_\perp$
- (fup) every admissible mono is full (+) and upper-closed
- $(\dashv_{<})$ |-| is locally monotone
- \mathfrak{D} is $\omega \mathbf{Cpo}$ -enriched
- ω -colimits behave uniformly
- D has a terminal object (1)

- exponentials locally continuous total
- coproducts $\mathbb{O} \to \mathbb{1}$ is admissible
- $(\times_{\mathcal{M}})$ \mathfrak{D} has a locally
 - continuous products
- (CL) \mathfrak{D} is cocomplete
- T is locally continuous
- (\otimes) pD has partial products (\otimes_V) (\otimes) is locally continuous
- D has locally continuous exponentials
- (\mathbf{p}_V) $\mathbf{p}\mathfrak{D}$ is $\omega \mathbf{Cpo}$ -enriched (\Longrightarrow_V) $\mathbf{p}\mathfrak{D}$ has locally continuous partial exponentials
- $(\mathbf{p}CL)$ $\mathbf{p}\mathfrak{D}$ is cocomplete
- $(\mathbf{p}+_{V})$ $\mathbf{p}\mathfrak{D}$ has locally continuous partial coproducts
- (BC) $J:\mathfrak{D}\hookrightarrow\mathbf{p}\mathfrak{D}$ is a bilimit compact expansion

Characterising $\omega \mathbf{Q} \mathbf{b} \mathbf{s}$

$$\mathbf{Sbs} \overset{\mathsf{Yoneda}}{\longrightarrow} [\mathbf{Sbs^{op}}, \mathbf{Set}]_{\mathrm{cpp}} \overset{\mathsf{countable}}{\longrightarrow} \\ \mathbf{SepSh} & \mathbf{Set}_{\mathrm{countable}} \\ \mathbf{F} : \mathbf{Sbs^{op}} \to \mathbf{Set}_{\mathrm{separated}} : F\mathbb{R} & \frac{\left(F(\mathbb{R}^{r} \mathbb{1})\right)_{r \in \mathbb{R}}}{(F\mathbb{1})^{\mathbb{R}}} \text{ injective} \\ \mathbf{Thm: Qbs} \simeq \mathbf{SepSh} & \mathbf{Set}_{\mathrm{leunen et al.'17]}} \\ \mathbf{Sbs} & \overset{\mathsf{Yoneda}}{\longrightarrow} [\mathbf{Sbs^{op}}, \omega \mathbf{Cpo}]_{\mathrm{cpp}} \\ &$$

Characterising $\omega \mathbf{Qbs}$

Grothendieck quasi-topos **Qbs** strong subobject classifier:

+ internal quasi-topos logic ω -cpo axioms

Theorem

$$\omega \mathbf{Qbs} \simeq \omega \mathbf{Cpo}(\mathbf{Qbs})$$

Characterising $\omega \mathbf{Qbs}$

By local presentability:

Theorem

$$\omega \mathbf{Qbs} \simeq \mathrm{Mod}(\boldsymbol{\omega} \mathbf{qbs}, \mathbf{Set})$$

so $\omega \mathbf{Qbs}$ locally presentable, hence cocomplete

Summary

Contribution

- lacktriangle $\omega \mathbf{Qbs}$: a category of pre-domain quasi-Borel spaces
- ightharpoonup M: commutative probabilistic powerdomain over $\omega \mathbf{Qbs}$
- ightharpoonup Axiomatic treatment of measure and domain theory in $\omega \mathbf{Qbs}$
- Adequacy: $(\omega \mathbf{Qbs}, M)$ adequately interprets:
 - Statistical FPC
 - Untyped Statistical λ -calculus

[Fiore-Plotkin'94, Fiore'96]

This talk

- $ightharpoonup \omega \mathbf{Qbs}$
- A probabilistic powerdomain
- Axiomatic treatment
- ightharpoonup Characterising $\omega \mathbf{Qbs}$

Also in the paper

- Axiomatic domain theory
- Operational semantics
 à la [Borgström et al.'16]

ProbProg: Important Language Features

Church RebPPL Venture	sampl	e ℝ	score	higher		٠.	
Church Venture				order	rec	rec	(commute)
sets + probability	✓	X	X	✓	X	X	✓
meas space + subprobability	✓	✓	X	X	1^{st}	X	✓
CPO + subprobability	✓	1	Х	✓	√	√	?
cont domain + subprobability	✓	✓	X	X	1^{st}	X	✓
[Jones-Plotkin'89]							
: [Jung-Tix'98]	:	:	:	÷	:	:	:
meas + s-finite distributions	✓	√	√	X	1 st	X	✓
[Staton'17]							
qbs + s-finite distributions	✓	√	√	√	1 st	X	✓
[Heunen et al'17, Ścibior et al'18]							
coh/meas cone + probability		,				2	2
[Ehrhard-Pagani-Tasson'18,	✓	V	X	✓	✓	!	!
Ehrhard-Tasson'15-'19]		^				•	•
ω qbs + s-finite distributions	✓	✓	✓	✓	✓	✓	✓
. [This work]							

Sorts/arities

elem ineq

Operations

```
\begin{array}{lll} \operatorname{lower}: \operatorname{ineq} \to \operatorname{elem} & \operatorname{upper}: \operatorname{ineq} \to \operatorname{elem} & \operatorname{refl}: \operatorname{elem} \to \operatorname{ineq} \\ \operatorname{irrel}: \operatorname{ineq} \times \operatorname{ineq} & \operatorname{Def}(\operatorname{irrel}(e_1, e_2)): \\ \operatorname{lower}(e_1) = \operatorname{lower}(e_2) \\ \operatorname{upper}(e_1) = \operatorname{upper}(e_2) \\ \operatorname{antisym}: \operatorname{ineq} \times \operatorname{ineq} \to \operatorname{elem} & \operatorname{Def}(\operatorname{antisym}(e, e^{\operatorname{op}})): \\ \operatorname{lower}(e) = \operatorname{upper}(e^{\operatorname{op}}) \\ \operatorname{upper}(e) = \operatorname{lower}(e^{\operatorname{op}}) \\ \operatorname{trans}: \operatorname{ineq} \times \operatorname{ineq} \to \operatorname{ineq} & \operatorname{Def}(\operatorname{trans}(e_1, e_2)): \\ \operatorname{upper}(e_1) = \operatorname{lower}(e_2) \\ \end{array}
```

$$e_1 = \operatorname{irrel}(e_1, e_2) = e_2$$
 $\operatorname{lower}(\operatorname{refl}(x)) = x = \operatorname{upper}(\operatorname{refl}(x))$
 $\operatorname{lower}(e_1) = \operatorname{antisym}(e_1, e_2) = \operatorname{lower}(e_2)$
 $\operatorname{lower}(\operatorname{trans}(e_1, e_2)) = \operatorname{lower}(e_1)$ $\operatorname{upper}(\operatorname{trans}(e_1, e_2)) = \operatorname{upper}(e_2)$

Presenting $\omega \mathbf{Cpo}$

Add to **pos**:

Operations

$$\bigvee: \prod_{n\in\mathbb{N}} \operatorname{ineq} \rightharpoonup \operatorname{elem}$$

$$\mathbf{ub}_k : \prod_{n \in \mathbb{N}} \mathbf{ineq} \rightharpoonup \mathbf{ineq}$$

$$lst : elem \times \prod_{n \in \mathbb{N}} ineq \times \prod_{n \in \mathbb{N}} ineq \longrightarrow ineq$$

$$lower(ub_k(e_n)) = lower(e_k)$$

 $upper(ub_k(e_n)) = \bigvee (e_n)$

$$lower(lst(x, (e_n), (b_n))) = \bigvee (e_n) \quad upper(lst(x, (e_n), (b_n)_n)) = x$$

$$\operatorname{Def}(\bigvee_{n\in\mathbb{N}}e_n)$$
:
 $\operatorname{upper}(e_n) = \operatorname{lower}(e_{n+1})$
for each $n\in\mathbb{N}$

Def(
$$\operatorname{ub}_k(e_n)_{n\in\mathbb{N}}$$
):
 $\operatorname{upper}(e_n) = \operatorname{lower}(e_{n+1})$
for each $n \in \mathbb{N}$

$$\begin{aligned} & \operatorname{Def}(\operatorname{lst}(x,\left(e_{n}\right),\left(b_{n}\right))) \colon \\ & \operatorname{upper}(e_{n}) = \operatorname{lower}(e_{n+1}) \\ & \operatorname{upper}(b_{n}) = x \\ & \operatorname{lower}\left(e_{n}\right) = \operatorname{lower}(b_{n}) \\ & \text{for each } n \in \mathbb{N} \end{aligned}$$

Presenting Qbs

Sorts/arities

elem rand

Operations

```
\begin{array}{ll} \operatorname{ev}_r: \operatorname{rand} \to \operatorname{elem} & \operatorname{const}: \operatorname{elem} \to \operatorname{rand} \\ \operatorname{rearrange}_\varphi: \operatorname{rand} \to \operatorname{rand} & \operatorname{match}_{(S_i)_{i \in I}}: \prod_{i \in I} \operatorname{rand} \to \operatorname{rand} \\ \operatorname{ext}: \operatorname{rand} \times \operatorname{rand} \to \operatorname{rand} & \operatorname{Def}(\operatorname{ext}(\alpha,\beta)): \\ \operatorname{ev}_r(\alpha) = \operatorname{ev}_r(\beta) \\ \operatorname{for \ each} \ r \in \mathbb{R} \end{array}
```

$$\alpha = \operatorname{ext}(\alpha, \beta) = \beta \qquad \operatorname{ev}_r(\operatorname{const}(x)) = x$$

$$\operatorname{ev}_r(\operatorname{rearrange}_{\varphi} \alpha) = \operatorname{ev}_{\varphi(r)} \alpha$$

$$\operatorname{ev}_r\left(\operatorname{match}_{(S_i)_{i \in I}}(\alpha_i)_{i \in I}\right) = \operatorname{ev}_r(\alpha_i)$$

Presenting $\omega \mathbf{Qbs}$

Sorts/arities

elem

ineq

rand

Operations

Add to ωcpo and qbs:

$$lower(e_n^r) = ev_r(\alpha_n) \quad upper(e_n^r) = ev_r(\alpha_{n+1})$$

for each $n \in \mathbb{N}$, $r \in \mathbb{R}$

Axioms

Add:

$$\operatorname{ev}_r\left(\bigsqcup\left(\left(\alpha_n\right)_{n\in\mathbb{N}},\left(e_n^r\right)_{n\in\mathbb{N},r\in\mathbb{R}}\right)\right) = \bigvee\left(e_n^r\right)_{n\in\mathbb{N}}$$