Máquina de Turing 1. Reconocer cadenas palíndromas

 $M = (\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}\}, \{a, b, c\}, \{a, b, c, B\}, \delta, q_{0}, B, \{q_{10}\})$

Estados	а	b	С	В
90	q1, B, R	q2, B, R	q3, B, R	-
q_1	q1, a, R	q1, b, R	q1, c, R	q4, B, L
q_2	q2, a, R	q2, b, R	q2, c, R	q5, B, L
q ₃	q3, a, R	q3, b, R	q3, c, R	q6, B, L
94	q7, B, L	-	-	q7, B, R
q 5	-	q8, B, L	-	q8, B, R
96	-	-	q9, B, L	q9, B, R
97	q7, a, L	q7, b, L	q7, c, L	q0, B, R
q_8	q8, a, L	q8, b, L	q8, c, L	q0, B, R
q ₉	q9, a, L	q9, b, L	q9, c, L	q0, B, R
9 10	-	-	-	-

Máquina de Turing 2. Copia de patrones

 $M = (\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}\}, \{a, b, c\}, \{a, b, c, A, O, C, X, Y, Z, B\}, \delta, q_{0}, B, \{q_{9}\})$

Estados	а	b	С	Α	0	С	X	Υ	Z	В
90	q1,A,R	q2,O,R	q3,C,R	-	-	-	q7,X,L	q7,Y,L	q7,Z,L	-
q_1	q1,a,R	q1,b,R	q1,c,R	-	-	-	q1,X,R	q1,Y,R	q1,Z,R	q4,X,L
q_2	q2,a,R	q2,b,R	q2,c,R	-	-	-	q2,X,R	q2,Y,R	q2,Z,R	q5,Y,L
q_3	q3,a,R	q2,b,R	q2,c,R	-	-	-	q2,X,R	q2,Y,R	q2,Z,R	q6,Z,R
q_4	q4,a,L	q4,b,L	q4,c,L	q0,A,R	-	-	q4,X,L	q4,Y,L	q4,Z,L	-
q 5	q5,a,L	q5,b,L	q5,c,L	-	q0,O,R	-	q5,X,L	q5,Y,L	q5,Z,L	-
96	q6,a,L	q6,b,L	q6,c,L	-	-	q0,C,R	q6,X,L	q6,Y,L	q6,Z,L	-
97	-	-	-	q7,A,L	q7,0,L	q7,C,L	-	-	-	q8,B,R
q_8	-	-	-	q8,a,R	q8,b,R	q8,c,R	q8,a,R	q8,b,R	q8,c,R	q9,B,L
q ₉	-	_	-	_	_	-	-	-	-	-

Máquina de Turing 3. Multiplicación en código unario.

$$M = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}\}, \{I, \ ^*, =\}, \{I, \ ^*, =, C, X, B\}, \ \delta \ , \ q_0, B, \{\ q_{11}\ \})$$

Estados	I	*	=	С	X	В
90	q0, I, R	q1, *, R	-	-	-	-
q_1	q2, C, L	-	q10, =, L	q1, C, R	-	-
q_2	q2, I, L	q2, *, L	_	q2, C, L	q3, X, R	q3, B, R
<i>q</i> ₃	q4, X, R	-	_	_	-	-
q_4	q4, I, R	q4, *, R	q4, =, R	q4, C, R	-	q5, I, L
q 5	q5, I, R	q5, *, R	q5, =, R	q5, C, R	q6, X R	-
96	q7, X, R	q9, *, L	-	-	-	-
97	q7, I, R	q7, *, R	q7, =, R	q7, C, R	-	q8, I, L
q 8	q8, I, R	q8, *, R	q8, =, R	q8, C, R	q6, X R	-
q ₉	-	-	_	_	q9, I, L	q0, B, R
q ₁₀	_	q11, *, R	-	q10, I, L	-	-
911	_	-	-	-	-	-

Máquina de Turing 4. Suma en código unario

$$M = (\{q_{0,}\,q_{1,}\,q_{2,}\,q_{3}\},\,\{I,\,+,\,=\},\,\{I,\,+,\,=,\,B\},\,\delta\;,\,q_{0,}\,B,\,\{\,\,q_{3}\,\})$$

Estados	I	+	=	В
q_0	q1, B, R	q0, B, R	q3, B, R	-
q_1	q1, I, R	q1, +, R	q1, =, R	q2, I, L
q_2	q2, I, L	q2, +, L	q2, =, L	q0, B, L
q 3	-	-	-	-

Máquina de Turing 5. Resta en código unario.

$$M = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \{I, -, =\}, \{I, -, =, B\}, \, \delta \;, \, q_0, B, \, \{\; q_8 \; \})$$

Estados	I	-	=	В
q_0	q1, B, R	q4, B, R	-	-
q_1	q1, I, R	q1, -, R	q1, =, R	q2, I, L
q_2	q2, I, L	q2, -, L	q2, =, L	q0, B, R
94	q5, B, R	-	q5, B, R	-
q 5	q5, I, R	-	q5, =, R	q6, B, L
q_6	q7, B, L	-	-	-
97	q7, I, L	-	q7, =, L	q4, B, R
q_8	-	-	-	-