Universidade Estadual Paulista-"Júlio de Mesquita Filho" Departamento de Matemática-FEIS-UNESP

1º Trabalho Geometria Analítica e Álgebra Linear 1º Semestre - 2017
Prof. Edson Donizete de Carvalho

Nome: RA:

Neste trabalho, fixaremos o sistema de cordenadas ortonormal $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ no espaço.

1) Sejam r e s retas no espaço e u_r e u_s vetores diretores de r e s, respectivamente. A medida agular entre r e s é dada por $\theta = ang(u_r, u_s)$ onde $\theta \in [0, \pi/2]$. Dadas as retas abaixo no espaço:

$$r: X = (1,0,0) + \lambda(1,2,1) | \lambda \in \mathbb{R},$$

$$s: X = (1,0,0) + \mu(0,1,1) | \mu \in \mathbb{R}.$$

- (i) Calcule o produto escalar entre u_r e u_s . (1,0 ponto)
- (ii) Calcule o produto vetorial entre u_r e u_s . (1,0 ponto)
- (iii) Calcule o ângulo entre as retas $r \in s$. (1,0 ponto)
- (iv) Determine a equação vetorial ou paramétrica do plano π determinado pelas retas r e s.(1,5 pontos)
- (v) Note pela figura acima que $\overrightarrow{OC}//\overrightarrow{u_s}$ e que $\overrightarrow{AC} \perp \overrightarrow{u_s}$. Logo, existe um escalar λ tal que $\overrightarrow{OC} = \lambda \overrightarrow{u_s}$ e $\overrightarrow{AC}.\overrightarrow{u_s} = 0$. Mostre que $\lambda = \frac{\overrightarrow{u_r}.\overrightarrow{u_s}}{\|\overrightarrow{u_s}\|^2}$. Na literatura, o vetor \overrightarrow{OC} é chamado de projeção ortogonal de $\overrightarrow{u_r}$ na direção de $\overrightarrow{u_s}$ e denotado por $proj_{\overrightarrow{u_s}}^{\overrightarrow{u_r}} = (\frac{\overrightarrow{u_r}.\overrightarrow{u_s}}{\|\overrightarrow{u_s}\|^2})\overrightarrow{u_s}$. (1,5 pontos)
- (vi) Nestes termos, determine a projeção ortogonal de $\overrightarrow{u_r}$ na direção de $\overrightarrow{u_s}$. (1,0 ponto)
- 2) Consideremos um plano π no espaço. Chamamos de vetor normal $\overrightarrow{n}=(a,b,c)$ a π a qualquer vetor não nulo ortogonal a π . Dado um ponto $A=(x_0,y_0,z_0)\in\pi$ e um ponto X=(x,y,z) no espaço, temos que $X\in\pi\Leftrightarrow\overrightarrow{AX}\perp\overrightarrow{n}$, ou que equivale a $X\in\pi\Leftrightarrow(x-x_0)a+(y-y_0)b+(z-z_0)c=0$, chamando $d=-ax_0-by_0-cz_0$. Ou seja, $X\in\pi\Leftrightarrow ax+by+cz+d=0$ (Equação geral do plano).

Utilize o fato de que se \overrightarrow{u} e \overrightarrow{v} são vetores diretores do plano π então $\overrightarrow{n}//\overrightarrow{u} \wedge \overrightarrow{v}$ para se obter a equação geral do plano π referente ao Exercício 1.(3,0 pontos)

Bom Trabalho!!