Comparing Time Complexities

Linear search

$$f(n) = O(n) = \{t(n) | t(n) \le c \text{ n for all } n \ge n_0, n_0, c \text{ constants} \}$$

Binary search

 $f(n) = O(\log n) = \{t(n) \mid t(n) \le c \log n \text{ for all } n \ge n_0, n_0, c \text{ const}\}$

running time of EVERY implementation of binary search

Comparing Time Complexities

Linear search

 $f(n) = O(n) = \{t(n) | t(n) \le c \text{ n for all } n \ge n_0, n_0, c \text{ constants} \}$ Binary search

 $f(n) = O(\log n) = \{t(n) \mid t(n) \le c \log n \text{ for all } n \ge n_0, n_0, c \text{ const}\}$

Algorithm A has complexity O(f(n))
Algorithm B has complexity O(g(n))

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

• f(n) is O(g(n)) and g(n) is O(f(n))

Both algorithms have the same set of possible running times

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

f(n) is O(g(n)) and g(n) is not O(f(n))

Algorithm A has complexity O(f(n))
Algorithm B has complexity O(g(n))
Two cases:

• f(n) is O(g(n)) and g(n) is **not** O(f(n))

Algorithm A has complexity O(f(n))

Algorithm B has complexity O(g(n))

Two cases:

 f(n) is O(g(n)) and g(n) is not O(f(n)): B is slower than A in ALL running **implementations** times of B g(n)g(n) > c f(n) for $n \ge n_0$ for all c, n_0 , i.e. all • f(n) implementations O(g(n))O(f(n))

Complexity Classes

$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n)$$
 constant logarithmic linear

$$\subset$$
 O(n²) \subset O(n^a) \subset quadratic polynomial (constant a > 2)

O(bⁿ)
exponential
(b constant)

$$\subset$$
 O(n!) \subset O(nⁿ) ... factorial

Efficient algorithms