Halloween Candy Mini-Project

Yujia Liu (PID: A16967405)

1. Importing candy data

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nouga	t crispedı	ricewafer
100 Grand		1	0	1		0	()	1
3 Musketeers		1	0	0		0		1	0
One dime		0	0	0		0	()	0
One quarter		0	0	0		0	()	0
Air Heads		0	1	0		0	()	0
Almond Joy		1	0	0		1	(0	0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent w	inpercent	
100 Grand	0	1	0		0.732	0	.860	66.97173	
3 Musketeers	0	1	0		0.604	0	.511	67.60294	
One dime	0	0	0		0.011	0	.116	32.26109	
One quarter	0	0	0		0.011	0	.511	46.11650	
Air Heads	0	0	0		0.906	0	.511	52.34146	
Almond Joy	0	1	0		0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity) [1] 38 ###2. What is your favorate candy? Q3. What is your favorite candy in the dataset and what is it's winpercent value? My favourite candy: One dime candy["One dime",]\$winpercent [1] 32.26109 Q4. What is the winpercent value for "Kit Kat"? candy["Kit Kat",]\$winpercent [1] 76.7686 Q5. What is the winpercent value for "Tootsie Roll Snack Bars"? candy["Tootsie Roll Snack Bars",]\$winpercent [1] 49.6535 ###Using the skim() function: library("skimr")

Table 1: Data summary

candy
85
12

Column type frequency:

skim(candy)

numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	nplete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Variable winpercent, it is on 0-100 scale while other variables are all between 0-1.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

Zero for candy\$chocolate column means the candy does not contain chocolate, while one means the candy contain chocolate.

Q8. Plot a histogram of winpercent values

Warning: Use of `candy\$winpercent` is discouraged. i Use `winpercent` instead.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Q9. Is the distribution of winpercent values symmetrical?

Not symmetrical, the distribution is skewed to the right.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution is below 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
choc_candy <- candy$winpercent[as.logical(candy$chocolate)]
fruit_candy <- candy$winpercent[as.logical(candy$fruity)]

mean_winpercent_chocolate <- mean(choc_candy)
mean_winpercent_fruity <- mean(fruit_candy)

mean_winpercent_chocolate</pre>
```

[1] 60.92153

```
mean_winpercent_fruity
[1] 44.11974
mean_winpercent_chocolate > mean_winpercent_fruity
[1] TRUE
On average chololate containing candy is higher ranked than fruity candy.
     Q12. Is this difference statistically significant?
t.test(choc_candy, fruit_candy)
    Welch Two Sample t-test
data: choc_candy and fruit_candy
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
###3. Overall Candy Rankings
     Q13. What are the five least liked candy types in this set?
library("dplyr")
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
candy %>%
  arrange(winpercent) %>%
  head(n = 5)
```

		${\tt chocolate}$	fruity	cara	nel j	peanutyalm	nondy r	ougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	hard	bar	pluribus	sugarp	ercent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	<u> </u>						
Boston Baked	Beans	23.41782	2						
Chiclets		24.52499)						
Super Bubble		27.30386	3						
Jawbusters		28.12744	<u> </u>						

Q14. What are the top 5 all time favorite candy types out of this set?

```
candy %>%
  arrange(desc(winpercent)) %>%
  head(n = 5)
```

	${\tt chocolate}$	fruity	caram	el j	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	hard	bar	pluribus	sugar	percent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034

Twix		1	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
	pricepercent	winpe	rcent			
Reese's Peanut Butter cup	0.651	84.	18029)		
Reese's Miniatures	0.279	81.	86626	;		
Twix	0.906	81.	64291			
Kit Kat	0.511	76.	76860)		
Snickers	0.651	76.	67378	}		

Q15. Make a first barplot of candy ranking based on winpercent values.

Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy,
    aes(x = winpercent, y = reorder(rownames(candy), winpercent))) +
    geom_col() +
    theme(axis.text.y = element_text(size = 3))
```


Let's setup a color vector (that signifies candy type) that we can then use for some future plots. We start by making a vector of all black values (one for each candy). Then we overwrite chocolate (for chocolate candy), brown (for candy bars) and red (for fruity candy) values.

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
```

Now let's try our barplot with these colors. Note that we use fill=my_cols for geom_col(). Experiment to see what happens if you use col=mycols.

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy),winpercent)) +
  geom_col(fill=my_cols) +
  theme(axis.text.y = element_text(size = 3))
```


Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

4. Taking a look at pricepercent

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 100)
```


Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head(candy[ord,c(11,12)], n=5)</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

The least popular from the most expensive is Nik L Nip.

Optional Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

5. Exploring the correlation structure

```
library(corrplot)

corrplot 0.95 loaded

cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Variables fruity and chocolate are strongly anti-correlated. Variables pluribus and bar are the next most anti-correlated. There are others also have minus values, but are not strongly correlated.

Q23. Similarly, what two variables are most positively correlated?

Variables winpercent and chocolate, and bar and chocolate are most positively correlated.

6. Principal Component Analysis

```
pca <- prcomp(candy, scale = T )
summary(pca)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                         PC3
                                                 PC4
                                                        PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                    PC9
                                           PC10
                                                   PC11
                                                            PC12
```

Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

Plot main PCA score plot of PC1 vs PC2.

plot(pca\$x[,1:2])

plot(pca\$x[,1:2], col=my_cols, pch=16)

Make a new data-frame with our PCA results and candy data
my_data <- cbind(candy, pca\$x[,1:3])</pre>

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

Interactive plot to see the labels:

```
#library(plotly)
#ggplotly(p)
```

Let's finish by taking a quick look at PCA our loadings. Do these make sense to you? Notice the opposite effects of chocolate and fruity and the similar effects of chocolate and bar (i.e. we already know they are correlated).

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Variables chocolate, fruity, and bar are picked up strongly by PC1. This plot is consistent with the correlation, as chocolate and bar are strongly positively correlated and chocolate and fruity are strongly negatively correlated.