감성 프로필 기반 멀티모달 제주도 여행지 추천 프레임워크

A Multimodal Persona-Aware Emotional Recommendation System for Jeju Island Tourism

홍서현, 최윤서, 김나영, 이정연, 김현희† 동덕여자대학교 정보통계학과

연구배경

- 관광 분야 -> 비정기적 소비, 희소한 데이터
- 협업 필터링, 잠재요인 기반 추천 시스템 -> cold start problem
- 기존 추천 시스템 -> 사용자의 감성, 취향 세밀한 반영 X

		Items						
		Mile		E O N	AR	PRO PERSON	Residence of the second	
Users –		10	-1	8	10	9	4	User-item Interaction matrix
		8	9	10	-1	-1	8	
		10	5	4	9	-1	-1	
		9	10	-1	-1	-1	3	
	Ť	6	-1	-1	-1	8	10	

추천 프레임워크 시나리오 3단계

원하는 분위기의 이미지를 선택하세요.

원하는 분위기의 텍스트를 선택하세요.

바다를 바라보며 커피 한 잔, 분위기 좋은 카페에서 여유로운 시간 제주의 역사와 문화를 체험하며 맛있는 로컬 음식을 즐길 수 있는 곳 감성적인 인테리어와 아기자기한 소품들이 가득한 공간

전체 파이프라인 개요

1. 임베딩 생성 단계

사용자 감성 프로필 생성 (PCA 적용한 7차원 감성 좌표) 관광지 멀티모달 임베딩 (koCLIP: 이미지+텍스트)

2. 감성 정렬 단계

내/외부 대조학습 -> 감성 차원별 필터 적용 -> 양방향 크로스 어텐션 (감성 분리 강화) (개인화된 특성 반영) (사용자-관광지 정렬)

3. 추천 생성 단계

추천 및 예측 순위화(MSE+BPR loss 통합) -> Top-N 관광지 추천

데이터 수집 및 전처리

- AI HUB | 제주도 여행 로그 데이터, 관광지 이미지
- Google Maps, TripAdvisor | 관광지 리뷰 수집
- **관광지 데이터 품질 강화를 위해 필터링 적용** 리뷰 2개 이상, 이미지 3개 이상 -> 328 곳
- WSI 지표 생성 만족도 지수(W) = 0.4 만족도 + 0.3 재방문의향 + 0.3 추천의향

$$WR = \left(\frac{v}{v+m}\right) \cdot R + \left(\frac{m}{v+m}\right) \cdot C$$

가중 평균 만족도(Weighted Rating, WR): 평가 수에 따른 신뢰도 반영

WSI(Weighted Satisfaction Index) = 0.6 W + 0.4 WR

v	해당 관광지의 평가 개수		
m	최소 평가 개수(상위 90% 기준)		
R	관광지별 평균 만족도		
С	전체 관광지 평균 만족도		

여행객 데이터 EDA

- 여행객 성별, 연령대, 동반인 현황, 여행기간, 계절...
 - => 이산적 클러스터링(GMM)으로 7개의 클러스터 생성 클러스터 간 구분이 되지 않는 문제 발생!

- 여행스타일(자연vs도시), 여행동기(쇼핑), 여행목적(일상 탈출) 등
 - => 여행 감성 관련 39개의 열 필터링 후 연속적인 PCA 기반 좌표계 구성

여행객 감성 프로필 생성

- 감성 관련 열에 PCA를 적용하여, 누적 설명력이 약 29%인 7차원의 감성 좌표계 생성
- 각 주성분의 Top 기여 변수 확인

```
PC1 - Top 5 기여 변수:
MISSION_W_22 (+0.370): SNS 인생샷 여행
MOTIVE_3 (+0.305): 동반자와의 친밀감
MOTIVE_5 (+0.304): SNS 과시
STYLE_AXIS_8 (+0.301): 사진촬영 중요하지 않음 vs 사진촬영 중요
STYLE_AXIS_6 (+0.266): 비주류 장소 선호 vs 유명 관광지 선호
```

• 생성된 감성 프로필 예시

SNS 인생샷 중심형

테마파크•체험•교육 선호형

힐링• 휴식형

유명 관광지 • 도시 중심형

야외활동• 유흥• 오락형

건강 • 운동 • 특수목적형

일상탈출• 신규 여행지 추구형

관광지 멀티모달 임베딩

• 관광지에 대한 새로운 표현 생성

예시) 협재해수욕장

리뷰 텍스트 샘플 1: 서쪽은 일몰을 즐기기에 너무 좋은 곳이 많음. ㅎㅎㅎ 숙소가 애월 근처여서 협재해변 방문했습니다

리뷰 텍스트 샘플 2: 에메랄드 빛 바다를 보면 가슴까지 뻥~ 뚫려 늘 기분 좋아지는 곳입니다

이미지 데이터 샘플 1~3:

관광지 멀티모달 임베딩: koCLIP 기반 😕 Hugging Face

- 각 관광지의 이미지, 리뷰 데이터 추출 후 각각 512차원 벡터 생성
- 텍스트-이미지 Cosine 유사도 계산 -> softmax 가중치 부여
- 텍스트 임베딩과 가중 이미지 임베딩 결합(late fusion)
- 모든 텍스트-이미지 융합 임베딩의 평균값으로 최종 관광지 표현(1024차원 벡터) 생성

```
# 각 텍스트에 대해 이미지 임베딩의 가중치 평균 계산
for i, text_emb in enumerate(text_embeddings):
# 현재 텍스트와 모든 이미지 간의 유사도
weights = similarity[i]

# 소프트맥스로 가중치 정규화
weights = np.exp(weights) / np.sum(np.exp(weights))

# 이미지 임베딩의 가중 평균 계산
weighted_image_emb = np.zeros_like(image_embeddings[0])
for j, img_emb in enumerate(image_embeddings):
    weighted_image_emb += weights[j] * img_emb

# 텍스트 임베딩과 가중 이미지 임베딩을 결합
combined_emb = np.concatenate([text_emb, weighted_image_emb])
```

추천 모델 구조 (1/2)

• 내/외부 대조학습 (Internal & External Contrastive Learning)

내부 대조학습: 같은 감성 축을 공유하는 벡터 간 유사성 강화 (0.3 가중치)

외부 대조학습: 다른 감성 축을 가진 벡터 간 거리 확대 (0.7 가중치)

적응형 임계값: 각 감성 축별 학습된 임계값으로 유사도 판단

온도 조절: 0.3의 낮은 온도 파라미터로 명확한 분리경계 형성

• 감성 차원별 필터링 + Expert Layer

차원별 필터: 7개 감성 축(PC1~PC7)에 특화된 개별 신경망 필터

가중치 증폭: 사용자 감성 점수 기반 제곱 증폭으로 차별화 강화

전문가 조합: 공통 전문가와 7개 감성 특화 전문가 네트워크 조합

게이트 메커니즘: 사용자 감성 프로필 기반 전문가 조합 비율 결정

추천 모델 구조 (2/2)

• 여행객-관광지 양방향 크로스 어텐션

Q = 사용자 감성 벡터, K/V = 관광지 표현 벡터

사용자→관광지, 관광지→사용자 양방향 어텐션으로 상호 정보 교환

다중 헤드 구조: 8개 헤드로 다양한 감성 관점 포착

어텐션 결과는 Expert Layer와 결합되어 최종 추천 점수 생성

• 손실 함수 및 예측 방식

복합 손실 함수: MSE(0.4) + BPR(0.4) + 정규화(0.2) 가중 합산

MSE 손실: 만족도 지수(WSI) 직접 예측 (회귀 문제)

BPR 손실: 추천 순위 최적화 (순위 문제)

정규화 손실: 감성 축 차별화(0.1) 및 필터 활성화 제어(0.1)

예측 방식: 감성 유사도 기반 직접 점수 계산 (코사인 유사도 -> 0~1 스케일링)

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

성능 평가 및 추천 결과

모델	NDCG@5	Precision@5	Hit@5
감성 기반(본 모델)	0.7310	0.5535	1.0

감성 프로필	추천 관광지 Top-3
SNS 인생샷 중심형	가르송티미드 제주점, 마마롱, 카페 라라라
테마파크• 체험• 교육 선호형	파더스 가든, 빛의 벙커, 서귀포 유람선
힐링• 휴식형	엘파소, 수풍석뮤지엄, 노티스 제주
유명 관광지• 도시 중심형	옛날 팥죽, 어린 왕자 감귤밭, 난산리식당
야외활동• 유흥• 오락형	아줄레주, 미르담, 집의 기록 상점
건강• 운동• 특수목적형	쇠소깍 전통 나룻배 카약 체험 지점, 점점, 동백 동산 습지센터
일상탈출• 신규 여행지 추구형	말젯문, 서부농업기술센터, 남원큰엉해변

감성 공간 시각화

결론/의의 및 발전 가능성

- 최근 추천 시스템은 개인정보 추적으로 수익화, 알고리즘 편향, 필터 버블 등의 문제에 직면함 => <mark>사용자 행동 로그, 메타데이터 없이도 작동</mark>
- 감성 중심의 추천으로 사용자의 <mark>감성적 취향을 반영</mark>할 수 있음
- 콜드 스타트 문제를 극복하여 신규 사용자에게도 <mark>즉시 추천 가능</mark>
- 실제 관광 산업에서 경험의 질을 향상시켜 <mark>산업적 가치에 기여</mark> 가능
- 감성 프로필 해석의 정밀도 개선
- WSI 지표의 가중치 최적화 연구
- 관광지 표현의 품질 개선 및 평가
- 타 도메인으로 일반화 가능성

