Project1 Codebook

Yingxi Kong

2024-10-01

Table 1: Summary of Marathon Performance by Age Group and Sex

Age Group	Sex	N	Min Performance	Mean Performance	Median Performance	Max Performance
Younger	Female	500	2.039	51.777	47.583	211.095
Younger	Male	547	-1.074	46.954	39.385	159.535
Lower Age	Female	960	-1.816	15.933	14.164	53.263
Lower Age	Male	959	-2.251	10.112	7.518	62.806
Lower-Mid Age	Female	1536	-1.419	22.329	22.548	60.830
Lower-Mid Age	Male	1536	-0.499	18.943	19.010	89.271
Upper-Mid Age	Female	1435	8.873	52.005	49.190	157.858
Upper-Mid Age	Male	1439	7.880	41.257	39.577	96.567
Highest Age	Female	1021	36.187	113.259	104.046	336.347
Highest Age	Male	1631	27.918	107.439	90.900	419.958

Marathon Performance by WBGT Categories and Sex

Table 1: Summary Statistics by Race

	Race							
Characteristic	$\begin{array}{c} \textbf{Boston} \\ \textbf{Marathon}, \ N = \\ 2{,}088^{f} \end{array}$	$\begin{array}{c} \textbf{Chicago} \\ \textbf{Marathon}, \mathbf{N} = \\ 2,553^{I} \end{array}$	Grandma's Marathon, $N = 2,000^{I}$	New York City Marathon, N = 2,930 ¹	Twin Cities Marathon, N = 1,993 ¹			
Gender								
Female	984~(47%)	1,210 (47%)	934~(47%)	1,402 (48%)	922 (46%)			
Male	1,104 (53%)	1,343 (53%)	1,066 (53%)	1,528 (52%)	1,071 (54%)			
flag								
Missing	0 (0%)	126 (4.9%)	116 (5.8%)	131 (4.5%)	118 (5.9%)			
WBGT < 10C	1,040 (50%)	732 (29%)	0 (0%)	1,394~(48%)	587 (29%)			
WBGT >	115 (5.5%)	120 (4.7%)	945 (47%)	504 (17%)	338 (17%)			
18-23C	=== (0.0,0)	(,)	0 = 0 (= 1, 7, 0)	00-(-170)	333 (-1,70)			
WBGT >	123 (5.9%)	116 (4.5%)	237 (12%)	0 (0%)	116 (5.8%)			
23-28C	120 (0.070)	110 (1.070)	201 (1270)	0 (070)	110 (0.070)			
WBGT	810 (39%)	1,459 (57%)	702 (35%)	901 (31%)	834 (42%)			
10-18C	010 (0070)	1,100 (0170)	102 (0070)	001 (01/0)	001 (1270)			
\mathbf{Age}	47 (17)	46 (18)	44 (18)	50 (19)	45 (17)			
Percent off	41 (34)	52 (47)	48 (40)	55 (56)	46 (37)			
current course	41 (34)	52 (41)	40 (40)	55 (50)	40 (31)			
record	11 6 (7 0)	19.4 (6.1)	10.0 (2.2)	11 7 (47)	19.1 (5.5)			
Dry bulb	11.6 (5.9)	12.4 (6.1)	18.9(3.3)	11.7 (4.7)	13.1 (5.5)			
temperature	0	100	116	191	110			
Missing	0	126	116	131	118			
Wet bulb	7.6 (3.8)	8.5 (5.7)	14.9(2.5)	7.6 (5.0)	9.9 (5.4)			
temperature		100	44.0	4.04	440			
Missing	0	126	116	131	118			
Percent	36 (34)	60 (10)	49(34)	27(30)	42 (34)			
relative								
humidity								
Missing	0	126	116	131	118			
Black globe	24 (8)	25 (6)	32 (8)	21 (6)	25 (7)			
temperature								
Missing	0	126	116	131	118			
Solar radiation	650 (187)	460 (95)	677 (191)	401 (131)	436 (139)			
in Watts								
Missing	0	126	116	131	118			
Dew Point	3(4)	5 (7)	12(3)	3(7)	6 (7)			
Missing	0	126	116	131	118			
\mathbf{Wind}	12.0(4.5)	8.2(3.2)	9.2(2.9)	11.2(4.6)	8.8(3.2)			
Missing	0	$1\overline{26}$	116	131	118			
$\mathbf{W}\mathbf{B}\mathbf{G}\mathbf{T}^{''}$	11.3(4.5)	12.1(5.8)	18.6(3.2)	10.7(4.9)	13.2(5.4)			
Missing	0 ′	126	116	131	118			
Air Quality	3.8(2.3)	4.5(3.4)	2.9 (1.9)	4.0(5.3)	5.8(3.5)			
Index	(-)	- (-)	- (-)	- ()	()			

 $^{^{1}\}mathrm{Mean}$ (SD) for continuous; n (%) for categorical

Overall Performance vs. Temperature Conditions

SRWm2


```
## data$sex: Female
##
     Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           Max.
    15.00 30.00 45.00
                           44.99
##
## data$sex: Male
##
     Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           {\tt Max.}
    14.00 32.00 48.00
                           47.81 64.00
                                          91.00
```



```
##
## Call:
## lm(formula = CR_pct ~ Tdc * age + Tdc * sex, data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -58.016 -19.486 -9.797
                            7.496 259.571
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -43.950367
                           2.195273 -20.020 < 2e-16 ***
## Tdc
                1.012743
                           0.150244
                                      6.741 1.66e-11 ***
## age
                1.915486
                           0.042287
                                     45.297 < 2e-16 ***
               -4.441930
                           1.515898 -2.930 0.00339 **
## sexMale
               -0.011736
                           0.002924 -4.013 6.02e-05 ***
## Tdc:age
## Tdc:sexMale -0.026900
                           0.104369 -0.258 0.79662
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.71 on 11067 degrees of freedom
    (491 observations deleted due to missingness)
## Multiple R-squared: 0.4977, Adjusted R-squared: 0.4975
## F-statistic: 2193 on 5 and 11067 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = CR_pct ~ Tdc * age + Tdc * sex + Twc * age + Twc *
```

```
##
      sex, data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -58.786 -19.519 -9.780
                           7.571 256.137
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -38.406082
                           2.455643 -15.640 < 2e-16 ***
## Tdc
               -1.115830
                           0.456556 -2.444 0.01454 *
## age
                1.791633
                           0.047543 37.684 < 2e-16 ***
                           1.691066
                                    -2.650 0.00805 **
## sexMale
               -4.481959
## Twc
                2.423433
                           0.491634
                                     4.929 8.37e-07 ***
## Tdc:age
                0.035342
                           0.008818
                                     4.008 6.16e-05 ***
## Tdc:sexMale -0.008124
                           0.315035 -0.026 0.97943
## age:Twc
               -0.053581
                           0.009470 -5.658 1.57e-08 ***
## sexMale:Twc -0.022967
                           0.340276 -0.067 0.94619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 31.66 on 11064 degrees of freedom
    (491 observations deleted due to missingness)
## Multiple R-squared: 0.4992, Adjusted R-squared: 0.4988
## F-statistic: 1378 on 8 and 11064 DF, p-value: < 2.2e-16
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: CR_pct ~ sex + rh + age + SRWm2 + Wind + WBGT + (1 | age)
##
     Data: data
## REML criterion at convergence: 96017.1
## Scaled residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -5.8872 -0.4724 -0.0250 0.3994 9.6217
##
## Random effects:
## Groups
           Name
                        Variance Std.Dev.
            (Intercept) 1953.6
                                 44.20
## age
## Residual
                         325.8
                                 18.05
## Number of obs: 11073, groups: age, 78
##
## Fixed effects:
                Estimate Std. Error
                                            df t value Pr(>|t|)
## (Intercept) -5.875e+01 1.277e+01 7.547e+01 -4.600 1.67e-05 ***
## sexMale
              -9.901e+00 3.472e-01 1.099e+04 -28.513 < 2e-16 ***
## rh
              -1.212e-02 6.379e-03
                                    1.099e+04
                                               -1.900
                                                       0.05748 .
               2.668e+00 2.234e-01 7.529e+01
                                               11.939 < 2e-16 ***
## age
## SRWm2
              -3.085e-03 1.135e-03 1.099e+04
                                               -2.719 0.00655 **
## Wind
              -3.952e-02 4.516e-02 1.099e+04 -0.875
                                                       0.38146
## WBGT
              4.755e-01 3.444e-02 1.099e+04 13.807 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Correlation of Fixed Effects:

## (Intr) sexMal rh age SRWm2 Wind

## sexMale -0.010

## rh -0.051 -0.003

## age -0.917 -0.006 0.007

## SRWm2 -0.046 -0.012 0.491 0.006

## Wind -0.044 0.002 0.202 -0.003 -0.044

## WBGT -0.025 -0.001 -0.121 0.001 -0.378 0.257
```

Appendix

```
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(tidyverse)
library(ggplot2)
library(visdat)
library(gtsummary)
library(kableExtra)
library(ggpubr)
library(gt)
library(car)
library(lme4)
library(lmerTest)
library(corrplot)
data <- read.csv("project1.csv")</pre>
course_record <- read.csv("course_record.csv")</pre>
aqi_values <- read.csv("aqi_values.csv")</pre>
marathon_dates <- read.csv("marathon_dates.csv")</pre>
colnames(data) <- c("race", "year", "sex", "flag", "age", "CR_pct", "Tdc", "Twc", "rh", "Tgc", "SRWm2",</pre>
data$flag <- case_when(data$flag == "" ~ NA, TRUE ~ data$flag)</pre>
data$flag <- as.factor(data$flag)</pre>
course_record$Race <- case_when(course_record$Race == "B" ~ 0,</pre>
                                  course_record$Race == "C" ~ 1,
                                  course_record$Race == "NY" ~ 2,
                                  course_record$Race == "TC" ~ 3,
                                  course_record$Race == "D" ~ 4,
                                  TRUE ~ NA)
course_record$Gender <- case_when(course_record$Gender == "M" ~ 1,</pre>
                                    course_record$Gender == "F" ~ 0,
                                    TRUE ~ NA)
data <- data %>%
  left_join(course_record, join_by("sex" == "Gender", "race" == "Race", "year" == "Year"))
data$sex <- as.factor(data$sex)</pre>
data$race <- case_when(data$race == 0 ~ "Boston",</pre>
                        data$race == 1 ~ "Chicago",
                        data$race == 2 ~ "NYC",
                        data$race == 3 ~ "Twin Cities",
                        data$race == 4 ~ "Grandmas")
```

```
data <- data %>% left_join(marathon_dates, by = c("race" = "marathon", "year" = "year"))
aqi_values_sum <- aqi_values %>%
 group by (marathon, date local) %>%
  summarize(ave_arithmetic_mean = mean(arithmetic_mean, na.rm = TRUE), .groups = "drop")
data <- data %>%
 mutate(date = as.Date(date))
aqi_values_sum <- aqi_values_sum %>%
 mutate(date_local = as.Date(date_local))
# Joining with the main dataset
data <- data %>%
 left_join(aqi_values_sum, by = c("race" = "marathon", "date" = "date_local"))
colnames(data)[17] <- "aqi"</pre>
# Missing Pattern
# vis_dat(data)
# Classify each observation to age groups by gender's quantile value
# data <- data %>%
   group_by(sex, .groups = "drop") %>%
   mutate(age\_group = cut(age, breaks = quantile(age, probs = seq(0, 1, 0.25), na.rm = TRUE),
                                    include.lowest = TRUE,
#
                                     labels = c("Lower Age", "Lower-Mid Age",
#
                                                "Upper-Mid Age", "Highest Age")))
data <- data %>%
  group_by(sex) %>%
  mutate(age_group = cut(age,
                         breaks = c(0, 21, 31, 47, 62, Inf),
                         include.lowest = TRUE,
                         labels = c("Younger", "Lower Age", "Lower-Mid Age",
                                    "Upper-Mid Age", "Highest Age"))) %>%
  ungroup()
# Summary Table by Age group and Sex
summary table <- data %>%
  group_by(age_group, sex) %>%
  summarize(N = n(),
            min_performance = round(min(CR_pct, na.rm = TRUE), 3),
            mean_performance = round(mean(CR_pct, na.rm = TRUE), 3),
            median_performance = round(median(CR_pct, na.rm = TRUE), 3),
            max_performance = round(max(CR_pct, na.rm = TRUE), 3))
summary_table$sex <- ifelse(summary_table$sex == 1, "Male", "Female")</pre>
knitr::kable(summary_table,
             col.names = c("Age Group", "Sex", "N", "Min Performance",
                           "Mean Performance", "Median Performance", "Max Performance"),
             caption = "Summary of Marathon Performance by Age Group and Sex") %>%
  kable_styling(latex_options = "HOLD_position",
```

```
font_size = 8)
# male summary
male_summary <- data %>%
  filter(sex == 1) %>%
  group_by(age) %>%
  summarise(mean_CR = mean(CR_pct, na.rm = TRUE),
            se CR = sd(CR pct, na.rm = TRUE))
# create the plot
ageplot_male <- ggplot(male_summary, aes(x = age, y = mean_CR)) +
  geom_point(color = "grey", size = 1) +
  geom_errorbar(aes(ymin = mean_CR - se_CR, ymax = mean_CR + se_CR), width = 1, color = "grey") +
  geom_smooth(se = FALSE, color = "black", size = 1, method = "loess", linetype = 2) +
 labs(title = "Men", x = "Age (yrs)", y = "Best Time (%CR)") +
  ylim(0, 400) +
  theme_minimal(base_size = 15) +
  theme(plot.title = element_text(hjust = 0.5))
# women summary
women_summary <- data %>%
  filter(sex == 0) %>%
  group_by(age) %>%
  summarise(mean_CR = mean(CR_pct, na.rm = TRUE),
            se CR = sd(CR pct, na.rm = TRUE))
# create the plot
ageplot_female <- ggplot(women_summary, aes(x = age, y = mean_CR)) +
  geom_point(color = "grey", size = 1) +
  geom_errorbar(aes(ymin = mean_CR - se_CR, ymax = mean_CR + se_CR), width = 1, color = "grey") +
  geom_smooth(se = FALSE, color = "black", size = 1, method = "loess", linetype = 2) +
  labs(title = "Women", x = "Age (yrs)", y = "Best Time (%CR)") +
  ylim(0, 400) +
  theme_minimal(base_size = 15) +
  theme(plot.title = element_text(hjust = 0.5))
# merge the two plots together
ggarrange(ageplot_male, ageplot_female)
data$flag <- factor(data$flag, levels = c("White", "Green", "Yellow", "Red", "Black", NA))</pre>
data$sex <- ifelse(data$sex == 0, "Female", "Male")</pre>
ggplot(data, aes(x = sex, y = CR_pct, fill = flag)) +
  geom_boxplot() +
  ggtitle("Marathon Performance by WBGT Categories and Sex") +
 theme minimal() +
 labs(x = "Sex", y = "Marathon Performance (CR_pct)", fill = "Risk of Heat Illness") +
  theme(legend.position = "bottom")
tbl_summary <- data %>%
  select(-c("year", "CR", "age_group", "date")) %>%
  mutate(
   race = case_when(race == "Boston" ~ "Boston Marathon",
                     race == "Chicago" ~ "Chicago Marathon",
                     race == "NYC" ~ "New York City Marathon",
                     race == "Twin Cities" ~ "Twin Cities Marathon",
```

```
race == "Grandmas" ~ "Grandma's Marathon",
                     TRUE ~ "Missing"),
    flag = case_when(flag == 'White' ~ "WBGT < 10C",</pre>
                     flag == 'Green' ~ "WBGT 10-18C",
                     flag == 'Yellow' ~ "WBGT > 18-23C",
                     flag == 'Red' ~ "WBGT > 23-28C",
                     TRUE ~ "Missing")) %>%
  tbl_summary(by = race,
              label = list(age ~ "Age",
                           sex ~ "Gender",
                           CR_pct ~ "Percent off current course record ",
                           Tdc ~ "Dry bulb temperature",
                           Twc ~ "Wet bulb temperature",
                           rh ~ "Percent relative humidity",
                           Tgc ~ "Black globe temperature",
                           SRWm2 ~ "Solar radiation in Watts",
                           DP ~ "Dew Point",
                           aqi ~ "Air Quality Index"),
              statistic = all_continuous() ~ "{mean} ({sd})",
              missing = "ifany",
              missing_text = "Missing") %>%
  modify_spanning_header(update = all_stat_cols() ~ "**Race**") %>%
  modify_footnote(update = all_stat_cols() ~ "Mean (SD) for continuous; n (%) for categorical") %>%
  bold_labels()
tbl_summary %>%
  as_gt() %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(
   table.width = pct(100),
   table.align = "center"
  ) %>%
  cols_width(
   everything() ~ px(75)
  ) %>%
  tab_header(
   title = md("Table 1: Summary Statistics by Race")
  ) %>%
  tab style(
   style = cell_text(size = px(8)),
   locations = cells_title(groups = "title")
  ) %>%
  tab_style(
   style = cell_text(size = px(7)),
   locations = cells_body()
  ) %>%
 tab_style(
   style = cell_text(size = px(7)),
   locations = cells_column_labels()
# tbl_summary_female <- data %>%
# filter(sex == "Female") %>%
# select(-c(year, sex, CR, age_group, date)) %>%
```

```
#
   mutate(
#
      race = case_when(race == "Boston" ~ "Boston Marathon",
#
                       race == "Chicago" ~ "Chicago Marathon",
#
                       race == "NYC" ~ "New York City Marathon",
#
                       race == "Twin Cities" ~ "Twin Cities Marathon",
#
                       race == "Grandmas" ~ "Grandma's Marathon",
#
                       TRUE ~ "Missing"),
#
      flag = case when(flag == 'White' ~ "WBGT < 10C",
                       flag == 'Green' ~ "WBGT 10-18C",
#
                       flag == 'Yellow' \sim "WBGT > 18-23C",
#
#
                       flag == 'Red' ~ "WBGT > 23-28C",
#
                       TRUE ~ "Missing")) %>%
#
    tbl\_summary(by = race,
                label = list(age ~ "Age",
#
#
                             CR_pct ~ "Percent off current course record ",
#
                             Tdc ~ "Dry bulb temperature",
#
                             Twc ~ "Wet bulb temperature",
#
                             rh ~ "Percent relative humidity",
#
                             Tqc ~ "Black qlobe temperature",
                             SRWm2 ~ "Solar radiation in Watts",
#
                             DP ~ "Dew Point"),
#
#
                statistic = all_continuous() ~ "{mean} ({sd})",
#
                missing = "ifany",
#
                missing_text = "Missing") %>%
#
   modify_spanning_header(update = all_stat_cols() ~ "**Race**") %>%
#
   modify_footnote(update = all_stat_cols() ~ "Mean (SD) for continuous; n (%) for categorical") %>%
#
   bold labels()
#
# tbl_summary_female %>%
#
  as_gt() %>%
  cols_align(align = "center", columns = everything()) %>%
#
#
   tab\_options(
#
     table.width = pct(100),
#
     table.aliqn = "center"
#
   ) %>%
#
   cols_width(
#
    everything() \sim px(75)
#
   ) %>%
   tab_header(
#
#
     title = md("Table 1: Summary Statistics by Race")
#
   ) %>%
#
   tab_style(
#
     style = cell_text(size = px(8)),
#
      locations = cells title(groups = "title")
#
    ) %>%
#
   tab_style(
#
     style = cell_text(size = px(7)),
#
     locations = cells_body()
#
   ) %>%
#
   tab\_style(
#
     style = cell_text(size = px(7)),
#
      locations = cells_column_labels()
```

```
# tbl_summary_male <- data %>%
   filter(sex == "Male") %>%
#
   select(-c(year, sex, CR, age_group, date)) %>%
#
#
      race = case_when(race == "Boston" ~ "Boston Marathon",
                       race == "Chicago" ~ "Chicago Marathon",
#
#
                       race == "NYC" ~ "New York City Marathon",
#
                       race == "Twin Cities" ~ "Twin Cities Marathon",
#
                       race == "Grandmas" ~ "Grandma's Marathon",
#
                       TRUE ~ "Missing"),
#
      flag = case_when(flag == 'White' ~ "WBGT < 10C",
#
                       flag == 'Green' ~ "WBGT 10-18C",
                       flag == 'Yellow' ~ "WBGT > 18-23C",
#
#
                       flag == 'Red' ~ "WBGT > 23-28C",
#
                       TRUE ~ "Missing")) %>%
#
    tbl\_summary(by = race,
#
                label = list(age ~ "Age",
#
                             CR_pct ~ "Percent off current course record ",
#
                             Tdc ~ "Dry bulb temperature",
#
                             Twc ~ "Wet bulb temperature",
#
                             rh ~ "Percent relative humidity",
#
                             Tgc ~ "Black globe temperature",
#
                             SRWm2 ~ "Solar radiation in Watts",
#
                             DP ~ "Dew Point"),
#
                statistic = all continuous() ~ "{mean} ({sd})",
#
                missing = "ifany",
#
                missing_text = "Missing") %>%
  modify_spanning_header(update = all_stat_cols() ~ "**Race**") %>%
#
#
   modify\_footnote(update = all\_stat\_cols() \sim "Mean (SD) for continuous; n (%) for categorical") %>%
#
  bold_labels()
# tbl_summary_male %>%
  as_qt() %>%
   cols_align(align = "center", columns = everything()) %>%
#
#
   tab_options(
#
      table.width = pct(100),
#
      table.aliqn = "center"
#
   ) %>%
#
   cols_width(
#
     everything() \sim px(75)
#
   ) %>%
#
   tab_header(
#
     title = md("Table 1: Summary Statistics by Race")
#
    ) %>%
#
   tab_style(
#
     style = cell_text(size = px(8)),
      locations = cells_title(groups = "title")
#
#
    ) %>%
#
   tab\_style(
#
     style = cell_text(size = px(7)),
#
      locations = cells_body()
#
    ) %>%
   tab_style(
```

```
style = cell_text(size = px(7)),
     locations = cells_column_labels()
# Correlation Plot
cor_matrix \leftarrow cor(data[,-c(1, 2, 3, 4, 5, 15, 16, 18)], use = "complete.obs")
corrplot(cor matrix, method = "color", type = "lower",
         tl.col = "black", tl.cex = 0.8, addCoef.col = "black",
         number.cex = 0.7, col = colorRampPalette(c("steelblue", "white", "steelblue"))(200))
fig_Tdc <- ggplot(data, aes(x = Tdc, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  labs(title = "Tdc", x = "Temperature (Tdc)", y = "Percent Off Course Record",
       color = "Age Group", linetype = "Gender") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title = element_text(size = 8),
        plot.title = element_text(size = 10, face = "plain"),
        legend.text = element_text(size = 6),
        legend.title = element_text(size = 7),
        legend.key.width = unit(0.5, "cm"),
        legend.spacing.x = unit(0.2, "cm")) +
  guides(color = guide_legend(nrow = 1),
         linetype = guide_legend(nrow = 1))
# Repeat the same for Twc, Tgc, and DP plots
fig_Twc <- ggplot(data, aes(x = Twc, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  labs(title = "Twc", x = "Temperature (Twc)", y = "Percent Off Course Record",
       color = "Age Group", linetype = "Gender") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title = element_text(size = 8),
        plot.title = element_text(size = 10, face = "plain"),
        legend.text = element_text(size = 6),
        legend.title = element_text(size = 7),
        legend.key.width = unit(0.5, "cm"),
        legend.spacing.x = unit(0.2, "cm")) +
  guides(color = guide_legend(nrow = 1),
         linetype = guide_legend(nrow = 1))
fig_Tgc <- ggplot(data, aes(x = Tgc, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  labs(title = "Tgc", x = "Temperature (Tgc)", y = "Percent Off Course Record",
       color = "Age Group", linetype = "Gender") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title = element_text(size = 8),
        plot.title = element_text(size = 10, face = "plain"),
       legend.text = element_text(size = 6),
        legend.title = element_text(size = 7),
        legend.key.width = unit(0.5, "cm"),
        legend.spacing.x = unit(0.2, "cm")) +
```

```
guides(color = guide_legend(nrow = 1),
         linetype = guide_legend(nrow = 1))
fig_DP <- ggplot(data, aes(x = DP, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  labs(title = "DP", x = "Dew Point (DP)", y = "Percent Off Course Record",
       color = "Age Group", linetype = "Gender") +
  theme minimal() +
  theme(axis.text = element text(size = 8),
        axis.title = element_text(size = 8),
        plot.title = element_text(size = 10, face = "plain"),
       legend.text = element_text(size = 6),
        legend.title = element_text(size = 7),
        legend.key.width = unit(0.5, "cm"),
        legend.spacing.x = unit(0.2, "cm")) +
  guides(color = guide_legend(nrow = 1),
         linetype = guide_legend(nrow = 1))
# Arrange the plots with a more compact legend
temp_figs <- ggarrange(fig_Tdc, fig_Twc, fig_Tgc, fig_DP,</pre>
                       ncol = 2, nrow = 2,
                       common.legend = TRUE, legend = "bottom")
annotate_figure(temp_figs, top = text_grob("Overall Performance vs. Temperature Conditions",
                                           face = "bold", size = 12))
fig_WBGT <- ggplot(data, aes(x = WBGT, y = CR_pct, color = age_group, linetype = sex)) +</pre>
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  facet_wrap(~race) +
  labs(title = "WBGT",
       x = "WBGT", y = "Percent Off Course Record") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title=element_text(size = 8),
        legend.text=element_text(size = 6),
        legend.title=element_text(size = 7),
        plot.title = element_text(size = 10),
        legend.position = "bottom") +
  guides(color = guide_legend(nrow = 1), linetype = guide_legend(nrow = 1))
fig_SRWm2 <- ggplot(data, aes(x = SRWm2, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  facet wrap(~race) +
  labs(title = "SRWm2",
       x = "Solar Radiation (SRWm2)", y = "Percent Off Course Record") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title=element_text(size = 8),
        legend.text=element_text(size = 6),
        legend.title=element_text(size = 7),
        plot.title = element_text(size = 10),
        legend.position = "bottom") +
  guides(color = guide_legend(nrow = 1), linetype = guide_legend(nrow = 1))
```

```
fig_rh <- ggplot(data, aes(x = rh, y = CR_pct, color = age_group, linetype = sex)) +
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  facet_wrap(~race) +
  labs(title = "rh",
       x = "Humidity (rh)", y = "Percent Off Course Record") +
  theme minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title=element text(size = 8),
        legend.text=element text(size = 6),
        legend.title=element_text(size = 7),
        plot.title = element_text(size = 10),
        legend.position = "bottom") +
  guides(color = guide_legend(nrow = 1), linetype = guide_legend(nrow = 1))
fig_wind <- ggplot(data, aes(x = Wind, y = CR_pct, color = age_group, linetype = sex)) +</pre>
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  facet_wrap(~race) +
  labs(title = "Wind",
       x = "Wind", y = "Percent Off Course Record") +
  theme minimal() +
  theme(axis.text = element text(size = 8),
        axis.title=element_text(size = 8),
        legend.text=element text(size = 6),
        legend.title=element_text(size = 7),
        plot.title = element_text(size = 10),
        legend.position = "bottom") +
  guides(color = guide_legend(nrow = 1), linetype = guide_legend(nrow = 1))
fig_aqi <- ggplot(data, aes(x = aqi, y = CR_pct, color = age_group, linetype = sex)) +</pre>
  geom_smooth(method = "loess", se = FALSE, size = 0.5) +
  facet_wrap(~race) +
  labs(title = "aqi",
       x = "Air Quality Index (aqi)", y = "Percent Off Course Record") +
  theme_minimal() +
  theme(axis.text = element_text(size = 8),
        axis.title=element_text(size = 8),
        legend.text=element text(size = 6),
        legend.title=element text(size = 7),
        plot.title = element_text(size = 10),
        legend.position = "bottom") +
  guides(color = guide_legend(nrow = 1), linetype = guide_legend(nrow = 1))
fig_WBGT
fig_SRWm2
fig_rh
fig_wind
fig_aqi
female_Tdc <- data %>%
 filter(sex == "Female") %>%
  group_by(age_group, Tdc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
female_Tdc_fig <- ggplot(female_Tdc, aes(x = Tdc, y = mean_CR_pct, color = age_group)) +</pre>
```

```
geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_Tdc <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, Tdc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
male_Tdc_fig <- ggplot(male_Tdc, aes(x = Tdc, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female_Tdc_fig, male_Tdc_fig, common.legend = TRUE)
female_Twc <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, Twc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
female_Twc_fig <- ggplot(female_Twc, aes(x = Twc, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_Twc <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, Twc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
male_Twc_fig <- ggplot(male_Twc, aes(x = Twc, y = mean_CR_pct, color = age_group)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female_Twc_fig, male_Twc_fig, common.legend = TRUE)
female_Tgc <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, Tgc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_Tgc_fig <- ggplot(female_Tgc, aes(x = Tgc, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_Tgc <- data %>%
```

```
filter(sex == "Male") %>%
  group_by(age_group, Tgc) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
male_Tgc_fig <- ggplot(male_Tgc, aes(x = Tgc, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme minimal()
ggarrange(female_Tgc_fig, male_Tgc_fig, common.legend = TRUE)
low humidity df <- data %>%
  filter(rh < 5)
high_humidity_df <- data %>%
  filter(rh > 5)
female_low_rh <- low_humidity_df %>%
  filter(sex == "Female") %>%
  group_by(age_group, rh) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_low_rh_fig <- ggplot(female_low_rh, aes(x = rh, y = mean_CR_pct, color = age_group)) +
  geom point() +
  geom smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female (Low Humidity)") +
  theme_minimal()
male_low_rh <- low_humidity_df %>%
  filter(sex == "Male") %>%
  group_by(age_group, rh) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
male_low_rh_fig <- ggplot(male_low_rh, aes(x = rh, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male (Low Humidity)") +
  theme_minimal()
female_high_rh <- high_humidity_df %>%
  filter(sex == "Female") %>%
  group_by(age_group, rh) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_high_rh_fig <- ggplot(female_high_rh, aes(x = rh, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female (High Humidity)") +
  theme_minimal()
```

```
male_high_rh <- high_humidity_df %>%
  filter(sex == "Male") %>%
  group_by(age_group, rh) %>%
  mutate(mean CR pct = mean(CR pct, na.rm = TRUE)) %>%
  ungroup()
male_high_rh_fig <- ggplot(male_high_rh, aes(x = rh, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male (High Humidity)") +
  theme_minimal()
ggarrange(female_low_rh_fig, male_low_rh_fig, female_high_rh_fig, male_high_rh_fig, common.legend = TRU
female_SRWm2 <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, SRWm2) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_SRWm2_fig <- ggplot(female_SRWm2, aes(x = SRWm2, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "loess", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_SRWm2 <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, SRWm2) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
male_SRWm2_fig <- ggplot(male_SRWm2, aes(x = SRWm2, y = mean_CR_pct, color = age_group)) +
  geom_point() +
  geom_smooth(method = "loess", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female SRWm2 fig, male SRWm2 fig, common.legend = TRUE)
female DP <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, DP) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_DP_fig <- ggplot(female_DP, aes(x = DP, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "loess", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_DP <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, DP) %>%
```

```
mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
male_DP_fig <- ggplot(male_DP, aes(x = DP, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom smooth(method = "loess", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme minimal()
ggarrange(female_DP_fig, male_DP_fig, common.legend = TRUE)
female agi <- data %>%
  filter(sex == "Female") %>%
  group by (age group, aqi) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_aqi_fig <- ggplot(female_aqi, aes(x = aqi, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male agi <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, aqi) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
male_aqi_fig <- ggplot(male_aqi, aes(x = aqi, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female_aqi_fig, male_aqi_fig, common.legend = TRUE)
female_WBGT <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, WBGT) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
female_WBGT_fig <- ggplot(female_WBGT, aes(x = WBGT, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_WBGT <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, WBGT) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE)) %>%
  ungroup()
```

```
male_WBGT_fig <- ggplot(male_WBGT, aes(x = WBGT, y = mean_CR_pct, color = age_group)) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female_WBGT_fig, male_WBGT_fig, common.legend = TRUE)
ggplot(data, aes(x = rh)) +
  geom_histogram(binwidth = 5, fill = "steelblue", color = "black") +
  ggtitle("Distribution of Humidity Values") +
  theme minimal() +
  labs(x = "Relative Humidity (%)", y = "Frequency")
low_humidity_df <- data %>%
  filter(rh < 5)
high_humidity_df <- data %>%
  filter(rh > 5)
by(data$age, data$sex, summary)
female_wind <- data %>%
  filter(sex == "Female") %>%
  group_by(age_group, Wind) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
female_wind_fig <- ggplot(female_wind, aes(x = Wind, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Female") +
  theme_minimal()
male_wind <- data %>%
  filter(sex == "Male") %>%
  group_by(age_group, Wind) %>%
  mutate(mean_CR_pct = mean(CR_pct, na.rm = TRUE))
male_wind_fig <- ggplot(male_wind, aes(x = Wind, y = mean_CR_pct, color = age_group)) +</pre>
  geom point() +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  ggtitle("Male") +
  theme_minimal()
ggarrange(female_wind_fig, male_wind_fig, common.legend = TRUE)
# Fit the linear model with interactions
model_Tdc <- lm(CR_pct ~ Tdc*age + Tdc*sex, data = data)</pre>
summary(model_Tdc)
model_Twc <- lm(CR_pct ~ Tdc*age + Tdc*sex + Twc*age + Twc*sex, data = data)</pre>
summary(model_Twc)
model1 <- lmerTest::lmer(CR_pct ~ sex + rh + age + SRWm2 + Wind + WBGT + (1 | age), data = data)
summary(model1)
```