Harnessing Transformers for Fraud Detection

 Tackling Imbalanced Data and Outperforming Baselines

Fengyuan Shen Jinhu Sun

DS542 Deep Learning December 6, 2024

Table of contents

01 Introduction

- 02 Methodology
- **03** Experiments and Results
- 04 Discussion and Conclusion

01 Introduction

Introduction

01. Overview

- **Financial fraud**: A growing threat to global economic stability.
- Challenges:
 - Highly imbalanced data: Fraudulent transactions make up only 0.172%.
 - Complex, non-linear patterns in transaction data.

02. Dataset Summary

- Dataset: Credit Card Fraud Detection dataset (Kaggle).
- **Size**: 284,807 transactions, 492 fraudulent.
- Features:
 - PCA-transformed variables (V1–V28).
 - Time and Amount are raw features.

03. Objectives

- Build an effective fraud detection model.
- Improve recall for minority (fraudulent) class.
- Balance minority class detection without sacrificing majority class performance.

02

Methodology

01. Data Preprocessing

- Training Set Splitting: 70:30, sorted by Time to mimic real-world fraud detection.
- Standardization:
 - Both Time and Amount were standardized separately for training and testing datasets to prevent data leakage.
- SMOTE for Imbalance Handling:
 - Balanced classes in training set (1:1 ratio).
 - Generate synthetic samples for the minority class by interpolating between existing samples.
 - Result: Improved minority class representation.

02. Correlation Analysis

- **Purpose**: To investigate the relationships between features and the target variable.
- **Challenge**: In imbalanced datasets, correlation coefficients can be misleading due to the scarcity of minority class samples.
- Impact of SMOTE:
 - SMOTE increases the proportion and diversity of minority class samples.
 - Enhanced correlations reveal more distinctive patterns between features and the target variable.
 - Results help models better discern key relationships for fraud detection.

03. Model Comparison

- Baseline Models:
 - Logistic Regression
 - Random Forest
- Deep Learning Models:
 - Multi-Layer Perceptron (MLP).
 - LSTM for sequence modeling.
 - Transformer leveraging self-attention.

Model	Architecture	Key Layers	Loss	Optimizer	Learning Rate	Epochs
Logistic Regression	Single linear layer + sigmoid	Input dim -> 1	BCE	Adam	0.001	30
Random Forest	Ensemble of 100 trees	n_estimators = 100	N/A	N/A	N/A	N/A
MLP	Fully connected network	fc1: 128; fc2: 64	BCE	Adam	0.001	30
LSTM	2-layer LSTM + linear output	hidden_dim: 64; num_layers: 2	BCE or Focal	Adam	0.001	30
Transformer	2-layer encoder; multi-head attention	d_model: 256; heads: 4	BCE or Focal	AdamW	0.001	30

04. Loss Functions

- Binary Cross-Entropy (BCE) Loss:
 - Standard loss for binary classification:

$$L_{BCE}(p, y) = -[y \log(p) + (1 - y) \log(1 - p)]$$

- Limitations:
 - Treats all classes equally, ignoring class imbalance.
 - Leads to bias toward the majority class, as misclassifying rare cases has minimal impact on overall loss.
- Focal Loss:
 - Designed to address class imbalance by extending BCE loss:

$$L_{focal}(p, y) = -[\alpha y (1-p)^{\gamma} log(p) + (1-\alpha) (1-y) p^{\gamma} log(1-p)]$$

- Key Parameters:
 - α : Adjusts the weight between positive and negative classes (e.g., α =0.5 for balance).
 - γ: Focuses on hard-to-classify examples, with larger values emphasizing more difficult samples.
- Special Case:
 - When α =0.5 and γ =0, Focal Loss simplifies to BCE Loss.

05. Innovation: Transformer with Focal Loss

- Why Transformer:
 - Captures both local and global patterns efficiently.
- Why Focal Loss:
 - Focuses on hard-to-classify fraud cases.
 - Reduces the dominance of majority class.
 - Result: Enhanced recall for fraudulent transactions.

06. Evaluation Metrics

- Recall:
 - **Definition**: Measures the proportion of actual fraud cases correctly identified.
 - **Importance**: Prioritizes identifying rare fraudulent transactions over overall accuracy.
- ROC AUC Score:
 - **Definition**: Evaluates the model's ability to rank positive instances (fraud) higher than negative ones (non-fraud) across varying classification thresholds.
 - Benefits: Provides a holistic view of the model's discriminative power.

03

Experimentsand Results

01. Effect of SMOTE on Logistic Regression

- Goal: Highlight the impact of addressing class imbalance.
- Findings:
 - Without SMOTE: High accuracy but poor fraud detection (Recall = 0.60, ROC AUC = 0.80).
 - With SMOTE: Significant improvement in fraud recall (Recall = 0.90, ROC AUC = 0.93).
- Trade-off: Increased false positives for non-fraud cases.

Logistic Regression With SMOTE

02. Model Performance Comparison

- Models Evaluated: Logistic Regression, Random Forest, MLP, LSTM, Transformer.
- Key Results:
 - Logistic Regression (after SMOTE): High fraud recall (0.90).
 - Transformer: Achieved balance with fraud recall (0.89) and overall performance (ROC AUC = 0.91).
- Insight: Transformer effectively captures nuanced patterns but trades off some non-fraud accuracy.

Model	Recall (Fraud)	Recall (Non-Fraud)	ROC AUC Score
Logistic Regression	0.90	0.97	0.93
Random Forest	0.76	1.00	0.88
MLP	0.79	1.00	0.89
LSTM	0.77	1.00	0.88
Transformer	0.89	0.94	0.91

Performance of Various Models (Trained with BCELoss and SMOTE)

03. Impact of Focal Loss on Transformer

- **Experiment**: Tuning γ (Focal Loss) to improve fraud detection.
- Key Findings:
 - γ =2: Optimal trade-off between fraud recall (0.917) and non-fraud performance (0.931).
 - Lower γ (e.g., 0.5): Focuses aggressively on hard samples but sacrifices non-fraud accuracy.
- **Comparison**: Achieved similar ROC AUC to Logistic Regression while exceeding its fraud recall.

04. Transformer vs. LSTM (γ =2)

- Transformer: Fraud Recall = 0.917, ROC AUC = 0.92.
- **LSTM**: Fraud Recall = 0.75, ROC AUC = 0.875.
- Insight:
 - Transformer's attention mechanism better captures complex patterns and reweights features effectively, outperforming LSTM in both recall and overall performance.

LSTM With γ =2

04

Discussion and Conclusion

Discussion and Conclusion

01. Discussion: Transformer vs. Logistic Regression

- Logistic Regression:
 - Surprising effectiveness after SMOTE.
 - Fraud Recall = 0.90, ROC AUC = 0.93.
- Transformer:
 - Fraud Recall = 0.917, ROC AUC = 0.92 (with γ =2).
 - More powerful at capturing nuanced patterns but requires careful tuning.

Transformer With $\gamma=2$

Logistic Regression With SMOTE

Discussion and Conclusion

02. Conclusion and Insights

Key Achievements:

- Demonstrated the potential of Transformer with Focal Loss to surpass Logistic Regression for fraud detection.
- Balanced improvements in minority-class recall and overall performance.

■ Takeaways:

- Complex models require thoughtful parameter tuning and preprocessing.
- Simpler models like Logistic Regression can still be competitive when data is properly balanced.

03. Limitations and Future Work

Limitations:

- Validation Strategy: The absence of a separate validation set may risk overfitting.
- **Feature Scope**: Analysis limited to PCA-transformed and basic transaction-level features, without incorporating additional behavioral information.

Future Directions:

- Employ time series cross-validation to better evaluate model generalization.
- Investigate model interpretability tools (e.g., SHAP) to assist fraud analysts in understanding predictions.

Thanks!