Camino Hamiltoniano

Un **camino Hamiltoniano** en un grafo G es un camino de expansión de G, es decir, un camino que contiene todos los vértices de G.

Ciclo Hamiltoniano

Un ciclo Hamiltoniano en un grafo G es un ciclo de expansión de G, es decir, un ciclo que contiene todos los vértices de G.

Grafo Hamiltoniano

Un grafo Hamiltoniano es un grafo que contiene un ciclo Hamiltoniano.

Gnoes Hamiltoniano:

Si existe C el ciclo Hamiltoniano,
ac, br, dc y ec E E(C)

Le c sería un vértice de grado

4 en C.

H no es Hamiltoniano:

Si existe C ciclo hamiltoniano

Ob, ag, be,ck & E(C)

bd,df & E(C)

dg, de, ef, fk & E(C)

gh,gm, he,ej,jk & E(C)

h,j & V(C) ----

· Si G es Xiy-bipartito y IXI+ IYI ent G no es Hamiltoniano.

Condiciones necesarias

Proposición

Si G es un X, Y- grafo bipartito Hamiltoniano, entonces |X| = |Y|.

Un ciclo Hamiltoniano en G alterna los vértices de la bipartición.

Ejemplo

El grafo de Herschel no es Hamiltoniano.

G es bipartito
$$|X| = 5 \qquad |Y| = 6$$

Como 1X1 = 1Y1 ent G nu es Hamiltoniano.

Nota

G es un X, Y- grafo bipartito con |X| = |Y|, sin embargo G no es Hamiltoniano. (Pendiente).

La condición es necesaria pero no es suficiente.

$$|\chi| = |\gamma|$$

Proposición

Si G es grafo Hamiltoniano, entonces para cada conjunto no vacío $S \subseteq V(G)$, el grafo G - S tiene a lo sumo |S| componentes, (c(G-S)).

Cuando sale de una componente de G-S, un ciclo Hamiltoniano sólo puede ir a S (usando un vértice distinto cada vez). Luego $|S| \ge c(G - S)$.

Nota

Si existe un conjunto no vacío $S \subseteq V(G)$, tal que |S| < c(G-S) entonces G no es Hamiltoniano.

$$S = \{a,b\}$$
 $|S| = 2$
 $c(G-S) = 3$ $|S| < c(G-S) \rightarrow G$ no es

Hamiltoniano

Condiciones suficientes

Teorema (Ore)

Sea G un grafo simple con |V(G)| = n, $n \ge 3$. Si $d(u) + d(v) \ge n$, para todo par de vértices no adyacentes $u, v \in V(G)$, entonces G es Hamiltoniano.

Ejemplo

 W_4 y W_5 son Hamiltonianos.

$$d(u) + d(v) = 6 \ge 5, \forall u \nsim v \in V(W_4),$$

 $d(u) + d(v) = 6 > 6, \forall u \nsim v \in V(W_5).$

$$d(a) + d(b) = 6 > 5 = n$$

$$d(b) + d(c) = 6 > 5 = n$$

$$d(b) + d(c) = 6 > 5 = n$$

$$d(b) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

$$d(c) + d(c) = 6 > 5 = n$$

Nota

 W_6 es Hamiltoniano, sin embargo existen vértices no adyacentes $u, v \in V(W_6)$, tales que d(u) + d(v) < n.

ND cumple la condición de Ore:

$$d(\sigma) + d(u) = 6 \times 7$$

Teorema (Dirac)

Sea G un grafo simple con $|V(G)|=n,\ n\geq 3.$ Si $\delta(G)\geq \frac{n}{2},$ entonces G es Hamiltoniano.

Ejemplo

 K_n , $n \ge 3$ es Hamiltoniano.

$$\delta(K_n)=n-1\geq \tfrac{n}{2},\ n\geq 3.$$

Ciclos Hamiltonianos

Nota

El grafo de Grötzsch es Hamiltoniano, sin embargo, $3 = \delta(G) < \frac{n}{2} = \frac{11}{2}$,

No cumple la condición de Dirac,

pero es Hamiltoniano

2

Clausura (Hamiltoniana)

La **clausura** de un grafo G es el grafo obtenido a partir de G al unir recursivamente pares de vértices no adyacentes u, v tales que $d(u) + d(v) \ge n(G)$, hasta que no quede ningún par. Se nota C(G).

Lema (Ore)

Sea G un grafo simple y sean u, v vértices no adyacentes tales que $d(u) + d(v) \ge n(G)$. Entonces G es Hamiltoniano sii G + uv es Hamiltoniano.

Teorema (Bondy - Chvátal)

Un grafo simple G es Hamiltoniano sii su clausura es Hamiltoniana.

Caminos Hamiltonianos

Teorema

Sea G un grafo simple con |V(G)|=n, $n\geq 2$. Si $d(u)+d(v)\geq n-1$, para todo par de vértices $u\neq v\in V(G)$, entonces G tiene un camino Hamiltoniano.

Teorema

Sea G un grafo simple con |V(G)|=n, $n\geq 3$. Si $\delta(G)\geq \frac{n-1}{2}$, entonces G tiene un camino Hamiltoniano.

Condiciones suficientes

Problema del agente viajero

Ciclo Hamiltoniano + Menor peso posible

COLUMN TO THE PARTY OF THE PART

¿Es el monor peso?