Alineación con aligned y gathered

\begin{equation*}
\left\{
\begin{aligned}
x_1+x_2+\lambda x_3&=\beta\\
\lambda x_1+x_2+x_3&=1-\beta\\
x_1+\lambda x_2+x_3&=2\beta
\end{aligned}
\right.
\end{equation*}

$$\begin{cases} x_1 + x_2 + \lambda x_3 = \beta \\ \lambda x_1 + x_2 + x_3 = 1 - \beta \\ x_1 + \lambda x_2 + x_3 = 2\beta \end{cases}$$

\begin{equation*}

\left.

\begin{aligned}

 $x_1+x_2+\lambda x_3&=\beta x_3$

 $\label{lambda x_1+x_2+x_3&=1-\beta} $$ \sum_{x_1+x_2+x_3&=1-\beta} \$

 $x_1+\lambda x_2+x_3&=2\beta$

\end{aligned}

\right\}

\end{equation*}

$$x_1 + x_2 + \lambda x_3 = \beta \lambda x_1 + x_2 + x_3 = 1 - \beta x_1 + \lambda x_2 + x_3 = 2\beta$$

```
\begin{equation*}
\left\{
\begin{aligned}
x_1+x_2+\lambda x_3&=\beta\\
\lambda x_1+x_2+x_3&=1-\beta\\
x_1+\lambda x_2+x_3&=2\beta
\end{aligned}
\right\}
\end{equation*}
```

$$\begin{cases} x_1 + x_2 + \lambda x_3 = \beta \\ \lambda x_1 + x_2 + x_3 = 1 - \beta \\ x_1 + \lambda x_2 + x_3 = 2\beta \end{cases}$$

```
\begin{equation*}
\begin{aligned}
\frac{dx}{dt}+3\frac{dy}{dy}&=1\\
\frac{dx}{dt}-\frac{dy}{dy}&=2\\
\end{aligned}
\qquad
\begin{aligned}
x(0)&=1\\
y(0)&=2
\end{aligned}
\end{equation*}
```

$$\frac{dx}{dt} + 3\frac{dy}{dy} = 1 \qquad x(0) = 1$$
$$\frac{dx}{dt} - \frac{dy}{dy} = 2 \qquad y(0) = 2$$

\begin{equation*}

 $\left\{ \right.$

\begin{gathered}

 $\lambda x_1+x_2+x_3=1-\beta \$

 $x_1+\lambda x_2+x_3=2\beta$

\end{gathered}

\right.

\end{equation*}

$$\begin{cases} x_1 + x_2 + \lambda x_3 = \beta \\ \lambda x_1 + x_2 + x_3 = 1 - \beta \\ x_1 + \lambda x_2 + x_3 = 2\beta \end{cases}$$

\begin{equation*}

 $\left| \right|$

\begin{gahered}

 $x_1+x_2+\lambda x_3=\beta x_3$

 $\lambda x_1+x_2+x_3=1-\beta \lambda$

 $x_1+\lambda x_2+x_3=2\beta$

\end{gathered}

\right\}

\end{equation*}

$$x_1 + x_2 + \lambda x_3 = \beta \lambda x_1 + x_2 + x_3 = 1 - \beta x_1 + \lambda x_2 + x_3 = 2\beta$$

\begin{equation*}
\left\{
\begin{gathered}

x_1+x_2+\lambda x_3=\beta\\
\lambda x_1+x_2+x_3=1-\beta\\
x_1+\lambda x_2+x_3=2\beta
\end{gathered}
\right\}
\end{equation*}

$$\begin{cases} x_1 + x_2 + \lambda x_3 = \beta \\ \lambda x_1 + x_2 + x_3 = 1 - \beta \\ x_1 + \lambda x_2 + x_3 = 2\beta \end{cases}$$

\begin{equation*}
\begin{gathered}
\frac{dx}{dt}+3\frac{dy}{dy}=1\\
\frac{dx}{dt}-\frac{dy}{dy}=2\\
\end{gathered}
\quad
\begin{gathered}
x(0)=1\\
y(0)=2

\end{gathered}

\end{equation*}

$$\frac{dx}{dt} + 3\frac{dy}{dy} = 1 \qquad x(0) = 1$$
$$\frac{dx}{dt} - \frac{dy}{dy} = 2$$

Alineaciones con flalign

$$x = ay + b$$

$$y = 2x + 1$$

$$x = cy + d$$

$$y = 3x - 1$$

$$x = 5x - 6$$

\begin{flalign}

x&=ay+b & y&=2x+1 & x=3x-1\\

x&=cy+d & y&=3x-1 & x=5x-6

\end{flalign}

$$x = ay + b$$
 $y = 2x + 1$ $x = 3x - 1$ (0.0.1)
 $x = cy + d$ $y = 3x - 1$ $x = 5x - 6$ (0.0.2)

Alineación con el entorno eqnarray de LATEX

Se deja como ejercicio para el estudiante leer este entorno propio de L^AT_EXpara realizar alineaciones.

espaciamiento vertical en alineaciones

$$\begin{equation*} \begin{aligned} $x_1+x_2+\lambda x_3&=\lambda \aligned} $x_1+x_2+x_3&=1-\beta \aligned \a$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

 $\lambda x_1 + x_2 + x_3 = 1 - \beta$ $\lambda x_1 + x_2 + x_3 = 1 - \beta$
 $x_1 + \lambda x_2 + x_3 = 2\beta$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$
 $x_1 + x_2 + \lambda x_3 = \beta$
 $\lambda x_1 + x_2 + x_3 = 1 - \beta$ $\lambda x_1 + x_2 + x_3 = 1 - \beta$
 $x_1 + \lambda x_2 + x_3 = 2\beta$ $x_1 + \lambda x_2 + x_3 = 2\beta$

Control sobre cambios de página en alineaciones

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + \lambda x_{2} + x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = 2\beta$$

$$x_{1} + x_{2} + \lambda x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = 1 - \beta$$

$$x_{1} + \lambda x_{2} + x_{3} = \beta$$

$$\lambda x_{1} + x_{2} + x_{3} = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta$$

$$x_1 + \lambda x_2 + x_3 = 2\beta$$

$$x_1 + x_2 + \lambda x_3 = \beta$$

$$\lambda x_1 + x_2 + x_3 = \beta$$

Capítulo 1

Opciones para la enumeración de fórmulas

1.1. Colocación y enumeración de fórmulas

$$x_1 + x_2 + \lambda x_3 = \beta {(1.1.1)}$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta \tag{1.1.2}$$

$$x_1 + \lambda x_2 + x_3 = 2\beta \tag{1.1.3}$$

1.2. Jerarquía de la enumeración

1.2.1. Prueba de enumeración

$$x_1 + x_2 + \lambda x_3 = \beta \tag{1.2.1}$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta \tag{1.2.2}$$

$$x_1 + \lambda x_2 + x_3 = 2\beta \tag{1.2.3}$$

1.3. Numeración forzada

$$x_1 + x_2 + \lambda x_3 = \beta \tag{*}$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta \tag{**}$$

$$x_1 + \lambda x_2 + x_3 = 2\beta \tag{***}$$

$$x_1 + x_2 + \lambda x_3 = \beta \tag{*}$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta \tag{**}$$

$$x_1 + \lambda x_2 + x_3 = 2\beta \tag{***}$$

$$x_1 + x_2 + \lambda x_3 = \beta \tag{1.3.1}$$

$$\lambda x_1 + x_2 + x_3 = 1 - \beta \tag{1.3.2}$$

$$x_1 + \lambda x_2 + x_3 = 2\beta \tag{1.3.3}$$

1.4. Numeración subordinada

$$A + B := \{x + y \mid x \in A, \ y \in B\}$$
 (1.4.1a)

$$AB := \{ xy \mid x \in A, \ y \in B \}$$
 (1.4.1b)

$$-A := \{-x \mid x \in A\} \tag{1.4.1c}$$

$$A - 1 := \{ a - 1 \mid a \in A, \ a \neq O \}$$
 (1.4.1d)

En (1.4.1) aparecen las definiciones de nuevos conjuntos de números reales: (1.4.1a) define la suma de subconjuntos, (1.4.1b) el producto, (1.4.1c) el opuesto y (1.4.1d) el inverso.

1.5. Referencias cruzadas

\begin{subequations}\label{operaciones1}

\begin{align}

 $A+B_{\sqcup}\&:=_{\sqcup}\{x+y_{\sqcup}\setminus mid_{\sqcup}x\setminus in_{\sqcup}A,\setminus_{\sqcup}y\setminus in_{\sqcup}B\setminus \{suma1\}\setminus \{suma$

 $-A_{\sqcup}\&:=_{\sqcup}\backslash\{-x_{\sqcup}\backslash\min_{\sqcup}x\backslash in_{\sqcup}A\backslash\}_{\sqcup}\backslash label\{opuesto1\}\backslash \{-x_{\sqcup}\backslash\min_{\sqcup}x\backslash in_{\sqcup}A\backslash\}_{\sqcup}\}$

 $A^{-1}_{\sqcup}\&:=_{\sqcup}\{a^{-1}_{\sqcup}\setminus (a^{-1}_{\sqcup}\setminus a^{-1}_{\sqcup}A, \cup a^{-1}_{\sqcup}A)\}_{\sqcup}$

\end{align}

\end{subequations}

$$A + B := \{x + y \mid x \in A, \ y \in B\}$$
 (1.5.1a)

$$AB := \{ xy \mid x \in A, \ y \in B \}$$
 (1.5.1b)

$$-A := \{-x \mid x \in A\} \tag{1.5.1c}$$

$$A -1 := \{ a -1 \mid a \in A, \ a \neq O \}$$
 (1.5.1d)

En (1.5.1) aparecen las definiciones de nuevos conjuntos de números reales: (1.5.1a) define la suma de subconjuntos, (1.4.1b) el producto, (1.5.1c) el opuesto y (1.5.1d) el inverso.

1.6. Ajustes en la posición de los números

\begin{align}

\begin{align}

$$\frac{\partial f}{\partial u}(\overrightarrow{x}) = \nabla f(\overrightarrow{x}) \cdot u \qquad (1.6.1)$$

$$= \frac{\partial f}{\partial x_1}(x_1, \dots, x_n)u_1 + \frac{\partial f}{\partial x_2}(x_1, \dots, x_n)u_2 + \dots + \frac{\partial f}{\partial x_n}(x_1, \dots, x_n)u_n \qquad (1.6.2)$$

$$\frac{\partial f}{\partial u}(\overrightarrow{x}) = \nabla f(\overrightarrow{x}) \cdot u \qquad (1.6.3)$$

$$= \frac{\partial f}{\partial x_1}(x_1, \dots, x_n)u_1 + \frac{\partial f}{\partial x_2}(x_1, \dots, x_n)u_2 + \dots + \frac{\partial f}{\partial x_n}(x_1, \dots, x_n)u_n \qquad (1.6.4)$$

Capítulo 2

Teoremas y estructuras relacionadas

\newtheorem{thm}{Teorema}

\newtheorem{Def}{Definición}

\newtheorem{notacion}{Notación}

Definición 2.1. Una función f definida y acotada en un intervalo cerrado [a,b] se dice Riemann integrable en [a,b], si el límite de la sumas de Riemann

$$\lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_i^*) \Delta x \tag{2.0.1}$$

existe y su valor es independiente tanto de las particiones del intervalo como de la selección de los valores x_i^* .

Notación 2.2. El límite de las sumas de Riemann de una función f(x)Riemanna integrable en [a,b] se llama la integral de Riemann de la función y se denota

$$\int_a^b f(x) \, dx,$$

es decir,

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_{i}^{*}) \Delta x$$

Teorema 2.0.1. Si f(x) es una función continua en el intervalo cerrado [a,b], entonces la función definida por

$$F(x) = \int_{a}^{x} f(t) dt$$

es deribable para todo $x \in (a, b), y$

$$\frac{dF}{dx}(x) = f(x)$$

para cada $x \in (a, b)$.

Por el teorema (2.0.1)...

2.1. Enlazar numeración de estructuras definidas con el comando \newtheorem

\newtheorem{thm}{Teorema}[chapter]

\newtheorem{Corol}[thm]{Colorario}

\newtheorem{Prop}[thm]{Proposición}

Teorema 2.1.1. Teorema

Colorario 2.1.2. Colorario

Proposición 2.1.3. Proposición

Definición 2.3. Definición

Nota 2.4. Nota

2.2. El entorno \proof del paquete \amsthm

\begin{proof}	
Sea _□	
\end{proof}	
Demostración. Sea	\Diamond
\begin{proof}[Prueba.]	
Sea	
\end{proof}	
Prueba. Sea	igorpoonup