

MACHINE LEARNING WORKFLOWS FOR APPLICATION DEVELOPERS

Sophie Watson • @sophwats • sophie@redhat.com

William Benton • @willb • willb@redhat.com

Michael McCune • @FOSSJunkie • elmiko@redhat.com

What you'll learn today

Processes and principles to solve problems with ML

Some tricks to visualize complex data

How to train, evaluate, and deploy ML models

How OpenShift makes it all easier

Legal disclaimer

The content set forth herein does not constitute in any way a binding or legal agreement or impose any legal obligation or duty on Red Hat. This information is provided for discussion purposes only and is subject to change for any or no reason.

Forecast

What is machine learning?

What workflow do machine learning practitioners use?

How can we incorporate machine learning into apps?

What do we have to look forward to?

What is machine learning?

Machine learning is a family of techniques to automatically derive executable functions from example inputs and outputs.

• • •

• • •

0.84

0.08

0.42 0.01

Machine learning workflows

Machine learning checklist

Example data

A training objective and a business metric

A concrete learning technique

A way to encode data

codifying problem and metrics

data collection and cleaning

data collection and cleaning

feature engineering

model training and tuning

Machine learning, apps, and OpenShift

Immutable images

user application code

configuration and installation recipes

base image

a6afd91e 6b8cad3e

33721112

e8cae4f6

2bb6ab16

a8296f7e

979229b9

Declarative app configuration

Declarative app configuration

Integration and deployment

application code

configuration and installation recipes

base image

configuration and installation recipes

base image

Data drift

Data drift

Looking forward

Other frameworks

radanalytics.io

Open Data Hub

Kubeflow

$$\mathbf{x} \cdot \mathbf{y} = x_1 \cdot y_1 + \dots + x_n \cdot y_n$$

```
\mathbf{x} \cdot \mathbf{y} = x_1 \cdot y_1 + \dots + x_n \cdot y_n

def dot(xs, ys):
  return sum([x * y for x, y in zip(xs, ys)])
```

```
\mathbf{x} \cdot \mathbf{y} = x_1 \cdot y_1 + \dots + x_n \cdot y_n

def dot(xs, ys):
  return sum([x * y for x, y in zip(xs, ys)])

dot([0.1, 0.2, 0.3], [1.0, 2.0, 3.0])
```

def dot(xs, ys):
 return sum([x * y for x, y in zip(xs, ys)])

0000

def dot(xs, ys): return sum([x * y for x, y in zip(xs, ys)])

0000

Conclusions

THANKS!

@sophwats • @willb • @FOSSJunkie