平成 29 年度 中間試験問題・解答

試験実施日 平成 29 年 6 月 15 日 6 時限

出題者記入欄

試 験 科 目 名 <u>応用数学 I-J</u>	出題者名佐藤弘康				
試 験 時 間 <u>60</u> 分	平常授業	日_月 _曜日 <u>1</u> 時限			
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・コピーも可) ・電卓 ・辞書			
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採点欄	評価

 $(2) f(x,y) = \sin(xy)$

佐藤 弘康

1 以下の文を読んで、(1)~(5) に当てはまるもっとも適当 なものを下の選択肢から選び、丸で囲みなさい.

平面内の領域 D の点 (x,y) に対し, 実数 z = f(x,y)が対応するとき, f を D 上の 2 変数関数といい, D を fの $\mid (1) \mid$ という. 点 (x,y) が D の範囲を動くとき, zが取り得る範囲を f の (2) という. (1) が明示的 に与えられていない場合はf が定義可能な点 (x,y) の 全体の集合を | (1) | と考えることとする.

2変数関数

$$f(x,y) = \frac{1}{\sqrt{4 - x^2 - y^2}}$$

0 (1)は原点を中心とする半径 (3) の円の (2) は (5) である. であり,

(選択肢)

- (1) 関数 ・ 定義域 ・ 区間 ・ 終域
- (2) 始域 · 值 · 值域 · 全量
- $(3) 1 \cdot 2 \cdot 3 \cdot 4$
- (4) 内部 ・ 外部 ・ 円周
- (5) 実数全体 · 正の実数全体 · 0 < z < 1 の範囲
- 2 次の関数 f(x,y) について, 2次までの偏導関数をすべて 求めなさい.
 - (1) $f(x,y) = x^3 2x^2y + 3y$

以下は $2.01^4 \times 2.99^3$ の近似値を計算する方法について 述べた文章である. 空欄に当てはまる最も適切な式また は数を解答欄に書きなさい.

$$f(x,y) = x^4y^3$$
 とおくと,

$$2.01^4 \times 2.99^3 = f(2 + \boxed{1}, 3 + \boxed{2})$$

である. ここで, z = f(x, y) の全微分は

$$dz = \boxed{(3)}$$

であり、これは独立変数 x,y の増分が dx,dy のときの z の増分を表している. x = 2, y = 3, dx = 1 (1)

$$dz = \boxed{(4)}$$

となるので、次の近似式

$$2.01^4 \times 2.99^3 = (5) + (4)$$

が得られる.

(解答欄)

(3) $(z = x^4y^3$ の全微分)

(5)

- 4 $x^2 + 2xy y^2 = -2$ の陰関数を y = f(x) とする. このとき, 以下の間に答えなさい.
 - (1) f(x) の導関数 f'(x) を求めなさい.

(2) f'(a) = 0 を満たす x = a と, b = f(a) の組 (a,b) をすべて求めなさい.

(3) f'(a) = 0 を満たす x = a に対し, f''(a) の符号を調べ, b = f(a) が極大値か極小値か, またはそのどちらでもないか判定しなさい. ただし, F(x,y) = 0 の陰関数の 2 階導関数が

$$y'' = -\frac{F_{xx} + 2F_{xy}y' + F_{yy}(y')^2}{F_y}$$

となることを用いてよい.

5 関数

$$f(x,y) = x^3 - 3xy + y^3 + 3$$

の極値をすべて求めなさい.