EE 2305 – Introduction to C Programming Hardware Project 05

Select one of the following projects and document your work with the following sections. Provide a brief description of the system and how you are designing it to operate.

A. Hardware Diagram:

Provide a hardware diagram of the components.

B. Program Flowchart:

Draw a flowchart of the program.

C. Arduino Source Code

Insert the Arduino Source Code into the document.

D. Demonstration Video

Record and upload a video demonstrating the operation of the circuit.

Save the document as a *PDF* file and submit the *PDF* document to *Blackboard*.

1. Servo Voltmeter

Program an Arduino board to accept an analog input voltage and display the magnitude of the voltage using a Hobby Servo to display the voltage. Use the servo horn to direct an arrow to the appropriate voltage. Provide as much precision in the display as possible.

2. Joystick motor and Servo Control.

Program an Arduino to accept the input of a two-axis joystick. One axis of the joystick shall control the direction and speed of a DC motor. The second axis of the joystick shall control the position of a servo.

3. Stepper Motor clock

Program an Arduino to control a stepper motor to position the second hand of an analog clock.

4. Temperature Controlled Fan

Program an Arduino to accept the input of a temperature sensor. The temperature shall control the speed of a fan motor.

5. Ultrasonic Ruler

Program an Arduino to accept the input from an ultrasonic distance sensor. Display the measured distance of an alphanumeric display.

Ultrasonic Ruler Flowchart:

Hardware Diagram:


```
Code:
#include <LiquidCrystal.h> // Use angle brackets for including libraries
LiquidCrystal lcd(1, 2, 4, 5, 6, 7); // Creates an LCD object. Parameters: (rs, enable, d4, d5, d6,
d7)
const int trigPin = 9;
const int echoPin = 10;
long duration;
int distanceCm, distanceInch;
void setup() {
 lcd.begin(16, 2); // Initializes the interface to the LCD screen, and specifies the dimensions
(width and height) of the display
 pinMode(trigPin, OUTPUT); // Set TRIG pin as output
 pinMode(echoPin, INPUT); // Set ECHO pin as input
void loop() {
 // Send a pulse from the TRIG pin
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 // Read the ECHO pin and calculate the duration
 duration = pulseIn(echoPin, HIGH);
 // Convert duration to distances
 distanceCm = duration * 0.034 / 2; // Convert to centimeters
 distanceInch = duration * 0.0133 / 2; // Convert to inches
 // Display the distance in centimeters on the first row
 lcd.setCursor(0, 0);
 lcd.print("Distance: ");
 lcd.print(distanceCm);
 lcd.print(" cm");
 // Display the distance in inches on the second row
 lcd.setCursor(0, 1);
 lcd.print("Distance: ");
 lcd.print(distanceInch);
 lcd.print(" inch");
 delay(500); // Wait for 0.5 seconds before next measurement
```

}