第22届全国青少年信息学奥林匹克联赛

CCF-NOIP-2016

提高组(复赛) 第二试

样例后面的数字表示题目对应的那挡数据

题目名称	组合数问题	蚯蚓	愤怒的小鸟
题目类型	传统型	传统型	传统型
目录	problem	earthworm	angrybirds
可执行文件名	problem	earthworm	angrybirds
输入文件名	problem.in	earthworm.in	angrybirds.in
输出文件名	problem.out	earthworm.out	angrybirds.out
每个测试点时限	1.0 秒	1.0 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	20	20
每个测试点分值	5	5	5

提交源程序文件名

对于 C++ 语言	problem.cpp	earthworm.cpp	angrybirds.cpp
对于 C 语言	problem.c	earthworm.c	angrybirds.c
对于 Pascal 语言	problem.pas	earthworm.pas	angrybirds.pas

编译选项

对于 C++ 语言	-lm	-lm	-lm
对于 C 语言	-lm	-lm	-lm
对于 Pascal 语言			

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2.除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 4. 全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) II x2 240 processor, 2.8GHz, 内存 4G, 上述时限以此配置为准。
- 5. 只提供 Linux 格式附加样例文件。
- 6. 评测在 NOI Linux 下进行。
- 7. 编译时不打开任何优化选项。

组合数问题(problem)

【问题描述】

组合数 C_n^m 表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 C_n^m 的一般公式:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

其中 $n! = 1 \times 2 \times \cdots \times n$ 。

小葱想知道如果给定 n, m 和 k ,对于所有的 $0 \le i \le n, 0 \le j \le \min(i, m)$ 有多少对 (i, j) 满足 C_i^j 是 k 的倍数。

【输入格式】

从文件 problem.in 中读入数据。

第一行有两个整数 t,k,其中 t 代表该测试点总共有多少组测试数据,k 的意义见【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

【输出格式】

输出到文件 problem.out 中。

t 行,每行一个整数代表所有的 $0 \le i \le n, 0 \le j \le \min(i, m)$ 中有多少对 (i, j) 满足 $C_i^j \neq k$ 的倍数。

【样例1输入】

12

3 3

【样例1输出】

1

【样例1说明】

在所有可能的情况中,只有 $C_2^1 = 2$ 是2的倍数。

【样例2输入】

2 5

4 5

6 7

【样例 2 输出】 7

【子任务】

测试点	n	m	k	t
1	≤ 3	≤ 3	= 2 = 1	
2	= 3		= 3	≤ 10 ⁴
3	≤ 7	≤ 7	= 4	= 1
4	_ ,	_ ,	= 5	≤ 10 ⁴
5	≤ 10	≤ 10	= 6	= 1
6	_ 10	_ 10	= 7	≤ 10 ⁴
7	≤ 20	≤ 100	= 8	= 1
8	_ 20	_ 100	= 9	≤ 10 ⁴
9	≤ 25	≤ 2000	= 10	= 1
10		_ 2000	= 11	≤ 10 ⁴
11	≤ 60	≤ 20	= 12	= 1
12	_ 50	_ 20	= 13	≤ 10 ⁴
13		≤ 25	= 14	= 1
14	≤ 100	_ 23	= 15	≤ 10 ⁴
15	_ 100	≤ 60	= 16	= 1
16		_ 50	= 17	≤ 10 ⁴
17		≤ 100	= 18	= 1
18	≤ 2000	_ 100	= 19	≤ 10 ⁴
19		≤ 2000	= 20	= 1
20		_ 2000	= 21	≤ 10 ⁴

四点旅行(four)

时间限制: 1.000 Sec 内存限制: 128 MB

题目描述

给定 一个n个点,m条边的有向图,边的长度都是1. 设dis(x,y)为x到y的最短路径。 求四个不同的点a,b,c,d,满足dis(a,b)+dis(b,c)+dis(c,d)最大。输出最大距离。

输入

第一行两个整数n和m接下来m行,每行两个整数a和b,表示一条边a到b的边。

输出

输出一个整数表示最大距离。

样例输入

 8 9

 1 2

 2 3

 3 4

 4 1

 4 5

 5 6

 6 7

 7 8

 8 5

样例输出

13

提示

dis(2, 1) = 3, dis(1, 8) = 7, dis(8, 7) = 3. 最大长度为 13.可以重复经过一个点。数据保证有解。

对于30%的数据, n的范围[10,50],m的范围[10,200];

对于60%的数据, n的范围[10,200],m的范围[10,2000];

对于100%的数据, n的范围[10,2000],m的范围[10,5000];

蚯蚓 (earthworm)

【问题描述】

本题中,我们将用符号LcJ表示对c向下取整,例如:L3.0J=L3.1J=L3.9J=3。

蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓。

蛐蛐国里现在共有n只蚯蚓(n为正整数)。每只蚯蚓拥有长度,我们设第i只匠 蚓的长度为 a_i (i=1,2,...,n),并保证所有的长度都是<u>非负</u>整数(即:可能存在长度为0的蚯蚓)。

每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 p (是满足 0 的有理数)决定,设这只蚯蚓长度为<math>x,神刀手会将其切成两只长度分别为 LpxJ 和x-LpxJ 的匠蚓。特殊地,如果这两个数的其中一个等于0,则这个长度为0的蚯蚓也会被保留。此外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 q (是一个非负整常数)。

蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要m秒才能到来……(m为非负整数)

蛐蛐国王希望知道这m秒内的战况。具体来说,他希望知道:

- · m 秒内,每一秒被切断的蚯蚓被切断前的长度(有m 个数):
- · m 秒后,所有蚯蚓的长度(有 n+m 个数)。

蛐蛐国王当然知道怎么做啦! 但是他想考考你.....

【输入格式】

从文件 earthworm.in 中读入数据。

第一行包含六个整数 n,m,q,u,v,t, 其中: n,m,q 的意义见【问题描述】; u,v,t 均为正整数; 你需要自己计算 p=u/v (保证 0 < u < v); t 是输出参数,其含义将会在【输出格式】中解释。

第二行包含n个非负整数,为 a_1,a_2,\ldots,a_n ,即初始时n只蚯蚓的长度。

同一行中相邻的两个数之间,恰好用一个空格隔开。

保证 $1 \le n \le 10^5$, $0 \le m \le 7 \times 10^6$, $0 < u < v \le 10^9$, $0 \le q \le 200$, $1 \le t \le 71$, $0 \le a_i \le 10^8$ 。

【输出格式】

输出到文件 earthworm.out

第一行输出 $\binom{m}{t}$ 个整数,按时间页序,依次输出第t秒,第2t秒,第3t秒,……被切断蚯蚓(在被切断前)的长度。

第二行输出 $\begin{bmatrix} n+m \\ t \end{bmatrix}$ 个整数,输出 m 秒后蚯蚓的长度:需要按从大到小的页序,依次输出排名第 t ,第 2t ,第 3t , … … 的长度。

同一行中相邻的两个数之间,恰好用一个空格隔开。即使某一行没有任何数需要输出,你也应输出一个空行。

请阅读样例来更好地理解这个格式。

【样例1输入】 371131 332

【样例1输出】 344456 6665544322

【样例1说明】

在神刀手到来前: 3 只蚯蚓的长度为 3,3,2。

1 秒后: 一只长度为 3 的蚯蚓被切成了两只长度分别为 1 和 2 的蚯蚓,其余蚯蚓的长度增加了 1。最终 4 只蚯蚓的长度分别为(1,2),4,3。 括号表示这个位置刚刚有一只蚯蚓被切断。

2 秒后: 一只长度为 4 的蚯蚓被切成了 1 和 3。5 只蚯蚓的长度分别为: 2.3.(1.3).4。

3 秒后: 一只长度为 4 的蚯蚓被切断。6 只蚯蚓的长度分别为: 3,4,2,4,(1,3)。

4 秒后: 一只长度为 4 的蚯蚓被切断。7 只蚯蚓的长度分别为: 4.(1.3).3.5.2.4。

5 秒后: 一只长度为 5 的蚯蚓被切断。8 只蚯蚓的长度分别为: 5,2,4,4,(1,4),3,5。

6秒后: 一只长度为 5 的蚯蚓被切断。 9 只蚯蚓的长度分别为: (1,4),3,5,5,2,5,4,6。

7秒后: 一只长度为 6 的蚯蚓被切断。10 只蚯蚓的长度分别为: 2,5,4,6,6,3,6,5,(2,4)。

所以,7秒内被切断的蚯蚓的长度依次为3,4,4,4,5,5,6。7秒后,所有蚯蚓长度从大到小排序为6,6,6,5,5,4,4,3,2,2。

【样例 2 输入】 3 7 1 1 3 2 3 3 2

【样例2输出】

445

65432

【样例2说明】

这个数据中只有t=2与上个数据不同。只需在每行都改为每两个数输出一个数即可。

虽然第一行最后有一个 6 没有被输出,但是第二行仍然要重新从第二个数再开始输出。

【样例3输入】 371139 332

【样例3输出】

2

【样例3说明】

这个数据中只有 t=9 与上个数据不同。 注意第一行没有数要输出,但也要输出一个空行。

【子任务】

- · 测试点 $1 \sim 3$ 满足 m = 0。
- . 测试点 $4 \sim 7$ 满足 $n.m \leq 1.000$ 。
- . 测试点 8~14 满足 q = 0, 其中测试点 8~9 还满足 $m \le 10^5$ 。
- . 测试点 15~18 满足 *m* ≤ 3×10⁵。
- . 测试点 19~20 没有特殊的约定,参见原始的数据范围。
- ・测试点 $1 \sim 12$, $15 \sim 16$ 还满足 $v \leq 2$,这意味着 u,v 的唯一可能的取值是 u = 1, v = 2 ,即 p = 0.5 。这可能会对解决问题有特殊的帮助。 每个测试点的详细数据范围见下表。

测试点	n	m	t	a_i	v	q
1	= 1					
2	$= 10^3$	= 0				
3	$= 10^5$					= 0
4	= 1		= 1			
5	$= 10^3$	$= 10^3$	– 1		≤ 2	
6	= 1	= 10	$\leq 10^6$	$\leq 10^6$		≤ 200
7	$= 10^3$				_	
8	$= 5 \times 10^4$	$= 5 \times 10^4$				
9		$= 10^5$	= 2			
10		$= 2 \times 10^6$	= 21	≤ 10 ⁷ ≤ 10 ⁹		1
11	$= 10^5$	$= 2.5 \times 10^6$	= 26		= 0	
12		$= 3.5 \times 10^6$	= 36			
13		$= 5 \times 10^6$	= 51			
14		$= 7 \times 10^6$	= 71		_ 10	
15	$= 5 \times 10^4$	$= 5 \times 10^4$	= 1		≤ 2	
16	- 5 10	$= 1.5 \times 10^5$	= 2		_ _	
17		$= 10^5$	= 3	≤ 10 ⁸	≤ 10 ⁹	≤ 200
18	= 10 ⁵	$= 3 \times 10^5$	= 4			- 200
19		$= 3.5 \times 10^6$	= 36			
20		$= 7 \times 10^6$	= 71			

愤怒的小鸟 (angrybirds)

【问题描述】

Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y = ax2 + bx 的曲线,其中 a,b 是 Kiana 指定的参数,且必须满足 a < 0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi, yi)。

如果某只小鸟的飞行轨迹经过了 (xi, yi), 那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 (xi, yi) , 那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。

例如,若两只小猪分别位于 (1, 3) 和 (3, 3), Kiana 可以选择发射一只飞行轨迹为 y = -x2 + 4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。 而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。 这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。 这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

【输入格式】

从文件 angrybirds.in 中读入数据。

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这 T 个关卡的信息。每个关卡第一行包含两个非负整数 n, m, 分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。 接下来的 n 行中,第 i 行包含 两个正实数 x_i , y_i , 表示第 i 只小猪坐标为 (x_i, y_i) 。 数据保证同一个关卡中不存在两只 坐标完全相同的小猪。

如果m=0,表示 Kiana 输入了一个没有任何作用的指令。

如果m=1,则这个关卡将会满足: 至多用「n/3+1¬只小鸟即可消灭所有小猪。

如果 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 Ln/3J 只小猪。

保证 $1 \le n \le 18$, $0 \le m \le 2$, $0 < x_i, y_i < 10$,输入中的实数均保留到小数点后两位。

上文中,符号 $\lceil c \rceil$ 和 $\lfloor c \rfloor$ 分别表示对 c 向上取整和向下取整,例如: $\lceil 2.1 \rceil = \lceil 2.9 \rceil$ $= [3.0 \neg = L3.0J = L3.1J = L3.9J = 3]$

【输出格式】

输出到文件 angrybirds.out 中。

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

【样例1输入】

2

20

1.00 3.00

3.00 3.00

5 2

1.00 5.00

2.00 8.00

3.00 9.00

4.00 8.00

5.00 5.00

【样例1输出】

1

1

【样例1说明】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00, 3.00) ,只需发射一只飞行轨迹为 y = -x2 + 4x 的小鸟即可消灭它们。 第二个关卡中有 5 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x2 + 6x 上, 故 Kiana 只需要发射一只小鸟即可消灭所有小猪。

【样例2输入】

3

20

1.41 2.00

1.73 3.00

3 0

1.11 1.41

2.34 1.79

2.98 1.49

5 0

2.72 2.72

2.72 3.14

3.14 2.72

3.14 3.14

5.00 5.00

【样例2输出】

2

2

3

【样例3输入】

1

100

7.16 6.28

2.02 0.38

8.33 7.78

7.68 2.09

7.46 7.86

5.77 7.44

8.24 6.72

4.42 5.11

5.42 7.79

8.15 4.99

【样例 3 输出】

【子任务】

数据的一些特殊规定如下表:

测试点编号	n	m	T	
1	≤ 2		≤ 10	
2			≤ 30	
3	≤ 3		≤ 10	
4			≤ 30	
5	≤ 4		≤ 10	
6		= 0	≤ 30	
7	≤ 5	= 0		
8	≤ 6		≤ 10	
9	≤ 7			
10	≤ 8			
11	≤ 9		≤ 30	
12	≤ 10			
13	≤ 12	= 1	_ 50	
14	- 12	= 2		
15	≤ 15	= 0	≤ 15	
16		= 1		
17		= 2		
18	≤ 18	= 0		
19		= 1	≤ 5	
20		= 2		