关于在线实验课

- ◆ 助教同理论课
- ◆ 使用腾讯课堂上课,如遇到技术故障将改用腾讯会议
- ◆ 为方便考勤,请同学们将昵称改为"学号-真实姓名"
- ◆ 上课不定时发起签到,请不要迟到早退;
- ◆ 提前下载实验指导书, 地址: https://gitee.com/hitsz-cslab/Al

人工智能

实验1-搜索策略pacman

实验安排

◆ 实验共10学时, 2个实验项目(各4学时), 答辩2学时, 总成绩30分 (30%)

实验内容	分值
答辩	实验1(5分)、实验2(5分)
实验1:搜索	10分(报告、代码、考勤等)
实验2: 深度学习	10分(报告、代码、考勤等)

- ◆ 小组形式完成2个实验,每组3或4人
- ◆ 实验课第7~10周,最后一次课5分钟小组答辩;

实验分组

3或4人并登记在共享文档,没有找到队友的联系助教组队;

课程冲突同学换到其他班级,不影响组队

人工智能上课班	授课教师	主平台: 腾讯课堂,备用平台: 腾讯会议	周次	分组表(按理论课班级安排)
2019级3、4班	房敏、罗文坚	腾讯课堂: https://ke.qq.com/webcourse/ 4533548/104699832#from=800021724&lite=1&live=1 腾讯会议: 454-2613-1303	7,10周 星期1 1-2 节 7周 星期6 5-6节	罗文坚老师班级(3、4班):
2019级1、2班	房敏、徐增林	腾讯课堂: https://ke.qq.com/webcourse/ 4533552/104699836#from=800021724&lite=1&live=1 腾讯会议: 657-3177-4987	7-9周 星期5 3-4节 10周 星期2 11-12节 10周 星期6 7-8节	徐增林老师班级(1、2班): https://docs.qq.com/sheet/DYUZoaVBIbE9XRE5Z? groupUin=eByL8qjcziQdhZhomDqJ3Q%3D%3D&tdsourceta &tab=BB08J2
2019级7、8班	郑海刚、房敏	腾讯课堂: https://ke.qq.com/webcourse/ 4582389/104750156#from=800021724&lite=1&live=1 腾讯会议: 456-5214-3848	7,9周 星期1 9-10 节 9周 星期5 1-2节 10周 星期2 5-6节	
2019级9、10班	郑海刚、汤步洲	腾讯课堂: https://ke.qq.com/webcourse/ 4582421/104750188#from=800021724&lite=1&live=1 腾讯会议: 456-5214-3848	7周 星期1 3-4节 8周 星期3 7-8节 9-10周 星期6 3-4节 10周 星期4 9-10节	汤步洲老师班级(8、9、10班): https://www.kdocs.cn/1/cs20ptGLL13g
2019级5、6班	郑海刚、苏敬勇	腾讯课堂: https://ke.qq.com/webcourse/ 4582407/104750174#from=800021724&lite=1&live=1 腾讯会议: 456-5214-3848	7, 10周 星期1 1-2 节 7周 星期6 5-6节 9周 星期6 1-2节	苏敬勇老师班级(5、6、7班): https://docs.qq.com/sheet/DTXh4UmJGd2FaeHVh

华为云代金券

确认在共享文档填写了华为云账号!!

python环境统计 (通过腾讯课堂答题)

- A 已经安装好python3的环境
- 图 没有安装python3的环境

python学习

◆ python基础自主学习,后续深度学习实验继续使用python 完成,可以参考"廖雪峰python教程"。

◆ 学习重点: python安装、数据类型、函数、模块等基础即可

实验内容

要求采用且不限于课程介绍的各种搜索算法,编写一系列程序解决吃豆人(pacman)游戏中定义的问题1-8。

pacman

pacman是加州大学伯克利分校开源的人工智能实验项目

文件说明

需要阅读代码的文件

文件	主要功能
pacman.py	吃豆人游戏的主程序
game.py	吃豆人游戏的运行逻辑
util.py	搜索策略可以用到的数据结构

需要完善代码的文件

文件	主要功能
search.py	待实现的搜索算法
searchAgents.py	待实现的智能体和相关Problem

Q1: 应用dfs找到一个特定的位置的豆 python pacman.py -I mediumMaze -p SearchAgent python pacman.py -I bigMaze -z .5 -p SearchAgent

Q2: 应用bfs找到一个特定的位置的豆 python pacman.py -I mediumMaze -p SearchAgent -a fn=bfs python pacman.py -I bigMaze -p SearchAgent -a fn=bfs -z .5

Q3:应用代价一致算法找到一个特定的位置的豆 python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs 🚇 ⋤ 🖽

Q4: 应用A* 算法找到一个特定的位置的豆

python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure

closed ← an empty set

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed then

add STATE[node] to closed

for child-node in EXPAND(STATE[node], problem) do

fringe ← INSERT(child-node, fringe)

end

end
```

Q5: 找到所有的角落——基于BFS的角落问题(完成CornersProblem) python pacman.py -I tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem python pacman.py -I mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

Q6: 找到所有的角落——基于A*的角落问题(构建启发函数) python pacman.py -I mediumCorners -p AStarCornersAgent -z 0.5

Number of nodes expanded	Grade
more than 2000	0/3
at most 2000	1/3
at most 1600	2/3
at most 1200	3/3

Q7: 吃掉所有的豆子——食物搜索问题(A*算法,构造启发函数) python pacman.py -l trickySearch -p AStarFoodSearchAgent (会stuck, 什么原因?)

Number of nodes expanded	Grade
more than 15000	1/4
at most 15000	2/4
at most 12000	3/4
at most 9000	4/4 (full credit; medium)
at most 7000	5/4 (optional extra credit; hard)

Q8: 次最优搜索——任意食物搜索问题 (优先吃最近的豆子加快搜索)

python pacman.py -l trickySearch -p ClosestDotSearchAgent (跟Q7同样的地图测试) python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5

python autograder.py测评

```
(venv) D:\HITSZ\github\ai_search\search>python2 autograder.py
Starting on 10-16 at 9:12:01
Ouestion al
*** PASS: test_cases\q1\graph_backtrack.test
                              ['1:A->C', '0:C->G']
       solution:
       expanded_states: ['A', 'D', 'C']
***
*** PASS: test_cases\q1\graph_bfs_vs_dfs.test
       solution:
                   ['2:A->D', '0:D->G']
       expanded_states: ['A', 'D']
***
*** PASS: test_cases\q1\graph_infinite.test
                 ['0:A->B', '1:B->C', '1:C->G']
       solution:
       expanded_states: ['A', 'B', 'C']
***
*** PASS: test_cases\q1\graph_manypaths.test
                              ['2:A->B2', '0:B2->C', '0:C->D', '2:D->E2', '0:E2->F', '0:F->G']
       solution:
       expanded states:
                              ['A' 'B2' 'C' 'D' 'F2' 'F'
```

实验报告

◆ 报告内容及格式要求见指导书。

提交方式

◆ 单独完成实验报告,严禁抄袭,只需写自己完成的部分,代码提交 小组最终完整版本(只需要提交新增和修改的)。

◆ 提交截止时间答辩前一天,具体见作业提交系统 http://grader.tery.top:8000/#/courses

