Лабораторная работа №6

Задача об эпидемии

Сунгурова Мариян Мухсиновна

Содержание

Сп	Список литературы	
5	Выводы	13
4	Выполнение лабораторной работы 4.1 Программная реализация модели эпидемии	7 7 11
3	Теоретическое введение	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

4.1	График изменения числа особей для случая $I(0) < I^st.$ OpenModelica	11
4.2	График изменения числа особей для случая $I(0) < I^st$. Julia	11
4.3	График изменения числа особей для случая $I(0)>I^st.$ OpenModelica	12
4.4	График изменения числа особей для случая $I(0) > I^*$. Iulia	12

1 Цель работы

Исследовать простейшую математическую модель эпидемии(SIR).

2 Задание

Вариант 23

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=10850) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=209, А число здоровых людей с иммунитетом к болезни R(0)=42. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если $I(0) < I^*$
- 2) если $I(0) > I^*$

3 Теоретическое введение

Задача об эпидемии Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

4 Выполнение лабораторной работы

4.1 Программная реализация модели эпидемии

Зададим функцию для решения модели эпидемии. Возьмем интервал $t\in[0;200]$ с начальными условиями N=10850, , I(0)=209\$, ,R(0)=42, , S(0)=N-I(0)-R(0). Зададим функции для случаев если $I(0)< I^*$ и если $I(0)> I^*$. Рассмотрим сначала реализацию в Julia. Зададим начальные условия и функции для двух случаев:

```
R = 42

I = 209

N = 10850

S = N-R-I

p = [0.1, 0.05]

u0 = [S,I,R]

tspan=(0.0,200.0)
```

Функции для решения случаев $I(0) > I^*$ и $I(0) < I^*$

function sir!(du,u,p,t)

$$b,g = p$$

$$S, I, R = u$$

$$N = S+I+R$$

$$du[1] = -b*u[2]*u[1]/N$$

$$du[2] = b*u[2]*u[1]/N - g*u[2]$$

$$du[3] = g*u[2]$$

end

function sir_0!(du,u,p,t)

$$b,g = p$$

$$du[1] = 0$$

$$du[2] = - g*u[2]$$

$$du[3] = g*u[2]$$

end

Для задания проблемы используется функция ODEProblem, а для решения – численный метод Tsit5():

```
prob = ODEProblem(sir!,u0,tspan,p)
solution = solve(prob, Tsit5())
plot(solution, label=["S", "I", "R"])
problem = ODEProblem(sir_0!,u0,tspan,p)
solution = solve(problem, Tsit5())
plot(solution, label=["S", "I", "R"])
  Также зададим эту модель в OpenModelica. Модель для I(0) > I^*:
model lab6
parameter Real N = 10850;
parameter Real b = 0.1;
parameter Real q = 0.05;
Real S(start = N - 209 - 42);
Real I(start = 209);
Real R(start = 42);
```

```
equation
```

```
der(S) = -b*S*I/N;
der(I) = b*S*I/N - g*I;
der(R) = g*I;
end lab6;
 Модель случая I(0) < I^*:
model lab6_2
  parameter Real I_0 = 209;
 parameter Real R_0 = 42;
  parameter Real S_0 = 10599;
  parameter Real N = 10850;
  parameter Real b = 0.1;
  parameter Real c = 0.05;
  Real S(start=S_0);
  Real I(start=I_0);
  Real R(start=R_0);
equation
  der(S) = 0;
  der(I) = - c*I;
  der(R) = c*I;
end lab6_2;
```

4.2 Графики решений

Посмотрим график изменения числа особей в каждой из трех групп при $I(0) < I^*$ (рис. fig. 4.1, fig. 4.2):

Рис. 4.1: График изменения числа особей для случая $I(0) < I^*$. OpenModelica

Рис. 4.2: График изменения числа особей для случая $I(0) < I^*$. Julia

Графики решений, полученные с помощью OpenModelica и Julia идентичны. Можно увидеть, что число здоровых не изменяется, так как в этом случае все заражённые изолированы. При это заражённые выздоравливают и приобретают иммунитет.

Посмотрим график изменения числа особей в каждой из трех групп при $I(0) < I^*$ (рис. fig. 4.3, fig. 4.4):

Рис. 4.3: График изменения числа особей для случая $I(0)>I^st.$ OpenModelica

Рис. 4.4: График изменения числа особей для случая $I(0)>I^*$. Julia

5 Выводы

Построили математическую модель эпидемии.

Список литературы