Esercizi moto a 203 dimensioni - quantità di moto

- 1) Un corpo di massa $m_1 = 450 \, g$ che si muove senza attrito alla velocità $v_{1i} = 4,0 \, \frac{m}{s}$ urta centralmente un corpo di massa $m_2 = 150 \, g$ inizialmente fermo. Calcolare
 - a) la velocità dei due corpi nel caso che l'urto sia stato anelastico e nel caso che l'urto sia stato elastico;
 - b) la velocità del baricentro prima e dopo l'urto nei due casi.
- 2) Un corpo di massa $m_1 = 450 \, g$ che si muove senza attrito alla velocità $v_{1i} = 4,0 \, \frac{m}{s}$ urta centralmente un corpo di massa $m_2 = 150 \, g$ che si muove a velocità $v_{2i} = 2,0 \, \frac{m}{s}$.
 - a) Calcolare le velocità finali dei due corpi nel caso di urto elastico.
 - b) Calcolare le velocità finali dei due corpi se la velocità iniziale del secondo corpo fosse stata $v_{2i} = -2, 0 \frac{m}{s}$ sempre nel caso di urto elastico.
- 3) Due corpi, il primo di massa $m_1 = 900\,g$, il secondo di massa $m_2 = 100\,g$, sono uniti tramite una molla e si muovono alla velocità iniziale $v_i = 4,0\,\frac{m}{s}$. Quando la molla agisce il primo corpo si ferma e il secondo viene sparato via alla velocità $v_{2\,f}$.
 - a) Calcolare la velocità finale del secondo corpo.
 - b) Determinare l'energia potenziale elastica della molla prima che si sia rilassata e in seguito la sua costante elastica se lo schiacciamento iniziale era di $\Delta l = 10\,cm$.
- 4) Si consideri il seguente urto. L'immagine riporta in alto la situazione prima dell'urto e in basso quella dopo l'urto.

L'intervallo di tempo tra un frame e il successivo è di 1,0s mentre la griglia è di $1,0m \times 1,0m$. Dal disegno ricavare le velocità prima e dopo l'urto, calcolare la massa del corpo più grande sapendo che quella del corpo più piccolo è pari a $m_1=2,0kg$. Si è trattato di un urto completamente elastico?

5) Nel disegno a lato è rappresentato schematicamente l'urto fra due corpi. È nota la massa del corpo grigio scuro pari a $m_1=5,0\,kg$ e la velocità iniziale del corpo grigio chiaro pari a $v_{2i}=0\,\frac{m}{s}$. Le velocità finali dei due corpi sono:

- a) Determinare la massa del corpo grigio chiaro e la velocità iniziale del corpo grigio scuro (3 cifre significative).
- b) Verificare che l'urto è stato completamente elastico (3 cifre significative).