Die Elemente der IV. Hauptgruppe

- 1. Die Elemente der IV. Hauptgruppe (C, Si, Ge, Sn, Pb) haben die Valenzelektronen-Konfiguration n s²p².
- 2. Sie stehen von beiden Seiten des Periodensystems gleichweit entfernt und können daher je nach Reaktionspartner bis zu vier Elektronen abgeben oder aufnehmen. Die Abgabe bzw. Aufnahme von vier Elektronen sollte zu den Kationen E⁴⁺ bzw. den Anionen E⁴⁻ führen.
- 3. Der Energieaufwand für beide Vorgänge ist jedoch sehr hoch, so dass sowohl in den "salzartigen" Carbiden und Siliciden (Al₄C₃, Mg₂Si) als auch in Blei(IV)-Verbindungen (PbF₄, PbO₂) beträchtliche kovalente Bindungsanteile vorliegen.

- 4. C, Si, Ge und Sn zeigen in ihren natürlich vorkommenden Verbindungen die Oxidationsstufe +4, Pb die Oxidationsstufe +2.
- 5. Kohlenstoff ist ein typisches Nichtmetall und Blei ein typisches Metall. Unterschiede in der chemischen Bindung bedingen die unterschiedlichen Eigenschaften wie Härte und Sprödigkeit bei C, Si und Ge, Duktilität beim Sn und die metallischen Eigenschaften beim Pb.
- 6. Die Hydroxyverbindungen von C, Si und Ge besitzen sauren Charakter, $Sn(OH)_2$ ist amphoter und $Pb(OH)_2$ überwiegend basisch. Während die Polarisierung von C-H-Bindungen mit $C^{\delta-}H^{\delta+}$ zu beschreiben ist, sind die übrigen Element-Wasserstoff-Verbindungen als Hydride $E^{\delta+}H^{\delta-}$ zu betrachten.

C(Graphit) $\Delta_r H^\circ = -1.89 \text{ kJ/mol}$

Fulleren C₆₀

Kohlendioxid und Kohlensäure

CaCO₃
$$\xrightarrow{\Delta}$$
 CaO + CO₂

CaCO₃ + H₂SO₄ \longrightarrow CaSO₄ + CO₂ + H₂O

C + O₂ \longrightarrow CO₂ \triangle H° = -393.9 kJ/mol

Kritische Temperatur des CO₂

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=36

$$C + 0.5 O_2 \longrightarrow C = O$$
: $\Delta_r H^\circ = -110.6 \text{ kJ/mol}$

Kohlenmonoxid

$$C + H_2O$$
 $\xrightarrow{\Delta}$ $CO + H_2$ $\Delta_r H^\circ = +138.3 \text{ kJ/mol}$

"Wassergas"

$$2 C + \underbrace{O_2 + 4 N_2}_{\text{Luft}} \longrightarrow 2 CO + 4 N_2$$

"Generatorgas"

$$CO_2 + C$$
 $> 800^{\circ}C$ $> CO_2 + C$ $> 800^{\circ}C$ 2 CO $\Delta_r H^{\circ} = +173.0 \text{ kJ/mol}$ "Boudouard-Gleichgewicht"

CO + 2 H₂O
$$\xrightarrow{\text{Cr}_2\text{O}_3/\text{ZnO}}$$
 CH₃OH Δ H° = -128.2 kJ/mol

Treibhauseffekt

"Atmosphärisches Fenster" für die direkte Wärmeabstrahlung von der Erdoberfläche: 8-13 μm.

Ozon, Methan, Distickstoffmonoxid und Chlorfluorkohlenwasserstoffe absorbieren hier und gelten als "Treibhausgase".

Modellversuch zum Treibhauseffekt

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=201

Kohlenstoffkreislauf

Stoff-Fluss in Mrd. Tonnen Kohlenstoff

Silicium

$$SiO_2 + C$$
 \longrightarrow $SiO + CO$

$$2 \text{ SiC} + \text{SiO}_2 \longrightarrow 3 \text{ Si} + 2 \text{ CO}$$

$$SiO_2 + 2C \xrightarrow{2000^{\circ}C}$$
 Si + 2 CO $\Delta H^{\circ} = +690.4 \text{ kJ/mol}$

$$\Delta H^{\circ} = +690.4 \text{ kJ/mol}$$

$$3 \text{ SiO}_2 + 4 \text{ Al} \longrightarrow 3 \text{ Si} + 2 \text{ Al}_2 \text{O}_3 \qquad \Delta \text{H}^\circ = -618.8 \text{ kJ/mol}$$

α -Silicium

Diamantstruktur Sesselkonformation

Silane

$$δ+ δ-$$
Mg₂Si + 4 H⁺ \longrightarrow 2 Mg²⁺ + SiH₄ (+ Si₂H₆, Si₃H₈ usw.)

Cyclopentasilan Si₅H₁₀

Disilan Si₂H₆

Cyclohexasilan Si₆H₁₂

Trisilan Si₃H₈

$$SiH_4 + 2 O_2$$
 \longrightarrow $SiO_2 + 2 H_2O$ $\Delta H^\circ = -1518 \text{ kJ/mol}$

$$CH_4 + 2 O_2$$
 \longrightarrow $CO_2 + 2 H_2O$ $\Delta H^\circ = -890 \text{ kJ/mol}$

$$\delta + \delta -$$

Si H₄ + 2 H₂O \longrightarrow SiO₂ + 4 H₂ Δ H° = -374 kJ/mol

Chlorsilane

Si + 3 HCl
$$\xrightarrow{350^{\circ}\text{C}}$$
 HSiCl₃ + H₂ Kp: 32°C
HSiCl₃ + H₂ $\xrightarrow{500^{\circ}\text{C}}$ Si + 3 HCl

$$\mathsf{HSiCl}_3 + \mathsf{NEt}_3 \xrightarrow{500^\circ\mathsf{C}} \mathsf{HNEt}_3^\oplus + \mathsf{SiCl}_3^\ominus \mathsf{HSiCl}_3 \text{ ist eine Säure!}$$

$$Si + 2 Cl_2$$
 $\xrightarrow{\Delta}$ $SiCl_4$

$$SiCl_4 + 4 H_2O$$
 \longrightarrow $Si(OH)_4 + 4 HCI$

$$CCI_4 + 4 H_2O$$

Kieselsäuren und Silikate

Silikatstrukturen

$$SiO_{2} + 2 \text{ NaOH} \xrightarrow{\text{Schmelze}} \text{Na}_{2}SiO_{3} + \text{H}_{2}O \quad \text{"Wasserglas"}$$

$$SiO_{2} + \text{Na}_{2}CO_{3} \xrightarrow{\text{Schmelze}} \text{Na}_{2}SiO_{3} + \text{CO}_{2}$$

$$SiO_{2} + \text{CaO} \xrightarrow{\text{Schmelze}} \text{CaSiO}_{3}$$
Fensterglas
$$CaSiO_{3} \xrightarrow{\text{Si}} \bigcirc \bigcirc \bigcirc \bigcirc$$

Der Si-O-Si-Bindungswinkel beträgt 145-150° (nicht 109.5°)!

Strukturvergleich CO₂ / SiO₂

 p_{π} - p_{π} -Doppelbindungen

$$o=c=c$$

gasförmig

kristallin

Zeolithe

Zeolith A

Zeolith X (Faujasit)

 $Na_2Ca[Al_2Si_4O_{12}]_2 \cdot 16 H_2O$

Müller-Rochow-Synthese

Gruppe

Gruppe

"Silicone"

Strukturvergleich Ketone / Silicone

$$H_3C$$
 $C \longrightarrow O$
 H_3C

$$\begin{bmatrix} H_3C \\ S_i = O \end{bmatrix} \longrightarrow \begin{bmatrix} CH_3 \\ S_i = O \end{bmatrix}$$
instabil

Siliciumorganische Polymere

Polysilylenarene

Polysilylenheteroarene

Herstellung von Bor

$$Na_2B_4O_7 \cdot 10 H_2O + 2 HCI \longrightarrow 4 H_3BO_3 + 2 NaCI + 5 H_2O$$

$$2 H_3BO_3 \xrightarrow{500^{\circ}C} B_2O_3 + 3 H_2O$$

$$B_2O_3 + 3 Mg$$
 \longrightarrow 2 B + 3 MgO

Ikosaeder

Strukturvergleich B₂H₆ / C₂H₆

Borsäure

$$B(OH)_3 + 2 H_2O$$
 \longrightarrow $H_3O^+ + [B(OH_4)]^-$

Lewis-Säure keine Brönsted-Säure

Metaborsäure

"Boroxin"-Struktur

(Die freien Elektronenpaare am Sauerstoff wurden in beiden Formeln weggelassen.)

Bornitrid und Borazin

Bindungslängenvergleich: B-N (im Borazin): 143.6 pm; C-C (im Benzen): 140 pm