Big picture

- O What are the inputs and outputs? Single or multiple?
- O What's the business objective?
- Algo selection Supervised-Unsupervised-RL, Regression-Classification, Continuous learning-periodic updates, Batch-Online
- Select performance measure Regression (MSE-MAE), Classification (Precision-Recall-F1-Score-Accuracy)
- What is the current solution? Provides for a useful baseline

Get the data

- o Spread about multiple tables, files, documents available locally, or on the web.
- Structured-Unstructured data.
- Understand the data and its statistics info() and describe()
- o Distribution of examples by features/label. Use a histogram.
- Sample data is divided into training and test data for ensuring that the model has low variance and generalizes better on test/unseen data.
- Create test set using train_test_split() in order to avoid data snooping bias. Used to select k% data for test-set
- Data snooping leads to biased estimation on test sets and increases the risk of false positives.
- train_test_split() may be used to process multiple datasets with an identical number of rows and select the same indices from these datasets. Useful when labels are in different dataframes.
- Alternatively, use stratified sampling to divide the population into homogeneous groups called strata and sample data from each strata representative of overall distribution. Use StrafifiedShuffleSplit.split() to divide data between train and test.

```
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(data, data["quality"]):
    strat_train_set = data.loc[train_index]
    strat_test_set = data.loc[test_index]
```

Visualize the data.

- Enables to understand features and their relationship among themselves and with the output label.
- Commonly used metric is standard correlation coefficient {-1, 1} to measure linear correlation among features. Correlation coefficient of -1 indicates strong negative correlation, +1 indicates strong positive correlation and 0 indicates no correlation.

```
1 corr_matrix = exploration_set.corr()
```

- Correlation coefficient can capture only linear relationship; use rank correlation, for nonlinear relationship.
- Use heatmap to visualize correlation matrix.

- Note that correlation coefficient on the diagonal is 1.
- O Darker colors (black) are used to represent negative correlations, while fainter colors are used to denote positive correlations.
- o Alternatively use a scatter matrix to visualize correlation.

Pre-processing data

- Problems with data includes outliers, missing values, different scales, non-numeric attributes, non-amenable distribution of data.
- Use isna().sum() to find out if there are missing values. In case there are missing values, use SimpleImputer (with appropriate strategy like mean-median) or KNNImputer to fill them up. However, make sure that non-numerical values are dropped before applying imputing step.

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
imputer.fit(wine_features)
tr features = imputer.transform(wine features)
```

- Alternatively, you can drop the corresponding row using dropna() or drop()
- Convert categories to numbers using OrdinalEncoder or OneHotEncoder
- Use MinMaxScaler or StandardScaler for feature scaling.
- Scaling techniques should be *learnt* on the training data, and can be used to transform the training and test data.
- Pipelines are typically used to perform operations sequentially. The pipeline exposes the same method as the final estimator.

 Here, the pipeline first performs imputation of missing values using SimpleImputer (with a 'median' strategy) and its result is passed for standardization. Pipelines only work with one type of data. Use ColumnTransformer to work with columns of different types.

Select and train ML model

- Build a quick base-line model. Evaluate the performance on training as well as test sets,
 using mean_squared_error(), mean_absolute_error(), r2_score() etc.
- We can use a cross-validation for robust performance of model performance, where multiple validation sets are created from the training set. This process generates a separate MSE for each validation set. We can use the mean/std.deviation of all such MSEs to evaluate the performance.
- It's a good practice to build a few quick models without tuning hyperparameters and shortlist a few promising models among them, and work on them further.
- In case of underfitting, use model with more capacity and use less constraints/regularization.
- In case of overfitting, use more data, a simpler model, and use more constraints/regularization.
- In order to find the best combination of hyper-parameters, use GridSearchCV or RandomizedSearchCV, both of which build multiple models with different sets of hyper-parameters.
- Utilize the param_grid to work with all combinations of these parameter values. For example, in order to select the best combination for a RandomForest regressor, you may use the following param grid.

```
1 param_grid = [
2 {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
3 {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
4 ]
```

In the above case, the first dictionary yields 12 combinations and second dictionary yields 6 combinations, thus resulting in 18 total combinations.

- The models could be built in parallel, by setting parameter *n* jobs to -1.
- Set parameter *error_score* to 0, if you do not want the process to stop when one of the models fails to build for any reason.
- Find the best parameter set and the best model resulting from the process using best_params_ and best_estimator_ attributes respectively.
- Setting parameter refit to True, retrains the best estimator (found using best_estimator_ property) on the full training set, so as to improve upon the model again. Note that the original test set is not used in the process.
- GridSearchCV can prove costly when the hyperparameter space is quite large. In such cases, use RandomizedSearchCV.
- RandomizedSearchCV selects a random value for each hyperparameter at the start of each iteration and repeats the process for n_iter random combinations.
- In the case of GridSearchCV/RandomizedSearchCV,
 best_estimator_.feature_importances_property (not available with all estimators)
 allows to selectively drop features based on their importances.
- Apart from the above two generic cross-validation methods, certain models have more specialized methods for cross-validation. Examples include LassoCV, RidgeCV, ElasticNetCV

 Once the predictions are made on the test set, it's a good idea to get 95% confidence interval of the evaluation metric.

```
1 from scipy import stats
2 \text{ confidence} = 0.95
3 squared_errors = (quality_test_predictions - wine_labels_test) ** 2
4 stats.t.interval(confidence, len(squared errors) - 1,
                   loc=squared errors.mean(),
                   scale=stats.sem(squared errors))
(0.29159276569581916, 0.4153100120819586)
```

- Present your solution
 - Document everything
 - Create clear visualizations.
- Launch, monitor and maintain your system
 - System outages
 - Degradation of model performance.
 - Manual evaluations
 - Regular assessments on data quality

Data loading mechanisms

- The dataset loaders (load *) are used to load toy datasets bundled with sklearn.
- The dataset fetchers (fetch *) are used to download and load datasets from the internet.
- The dataset generators (make_*) are used to generate controlled synthetic datasets.
- Both loaders and fetchers return a Bunch object, which is a dictionary with two keys data and target. There could be additional keys like feature names, target names, DESCR and filename
- Generators return a tuple containing the data and target.
- Loaders and fetchers can also return tuple (like in the case of generators), if return X y is set to
- make regression() produces regression datasets.

```
X, y = make_regression(n_samples=100, n_features=5, n_targets=1, shuffle=True, random_state=42) #
generates single label regression data.
X, y = make_regression(n_samples=100, n_features=5, n_targets=5, shuffle=True, random_state=42) #
generates multiple label regression data
```

make blobs() and make classification() creates a specified number of normallydistributed clusters of points and then assign one or more clusters to each class thereby creating multi-class datasets.

```
x, y = make_blobs(n_samples=10, centers=3, n_features=2, random_state=42) # Generates 3 clusters.
Used in unsupervised ML
x, y = make_classification(n_samples=100, n_features=10, n_classes=2, n_clusters_per_class=1, random_state=42)
Generates multiple classes. Also generates clusters per classes.
```

- In the case of make_classification(), n_features = n_informative + n_redundant + n_repeated.
- make multilabel classification() generates multi-label datasets. X, y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2)

• Note that n labels represents the average number of labels in each example.

Week2

- Typically pre-processing includes dealing with
 - missing values in features, (sklearn.impute)
 - scaling features (sklearn.preprocessing)
 - o converting categorial features to numerical representation (sklearn.preprocessing)
 - extracting features from non-numeric data (sklearn.feature_extraction)
 - reducing too many features (sklearn.decomposition.pca)
 - expanding the features (sklearn.kernel_approximation)
- It's important to apply the same pre-processing method to the train, test and eval sets. Hence, it's best to use pipelines with appropriate transformations.

Feature extraction

- APIs typically used for feature extraction from data are
 - o DictVectorizer # Converts original data in dictionary format to a matrix.

Example: DictVectorizer transforms ('age': 2, 'height':81.6) into

- FeatureHasher # Outputs a sparse matrix, by applying a hash function to the features to determine the column index in the resultant matrix. FeatureHasher is a high-speed and low-memory vectorizer
- In addition, features can also be extracted from images and text using APIs built into the same module.

Imputing data

• SimpleImputer – uses one of the strategies *mean, median, most_frequent, constant* to impute

 $\begin{bmatrix} 7 & 1 \\ nan & 8 \\ 2 & nan \\ 9 & 6 \end{bmatrix} \text{ into } \begin{bmatrix} 7 & 1 \\ 6 & 8 \\ 2 & 5 \\ 9 / 6 \end{bmatrix}$

Example: SimpleImputer with a mean strategy transforms $\lfloor 9 \rfloor$

• KNNImputer – Find n_neighbors nearest neighbors based on Euclidean distance and uses mean on these datapoints to impute.

In the presence of missing coordinates, the Euclidean distance is calculated by ignoring the missing values and scaling up the weight of the non-missing coordinates.

$$d_{xy} = \sqrt{weight * squared distance from present coordinates}$$

where,

$$weight = \frac{Total\ number\ of\ coordinates}{Number\ of\ present\ coordinates}$$

For example, the Euclidean distances between two points (3, NA, 5) and (1, 0, 0) is:

$$\sqrt{\frac{3}{2}}\{(3-1)^2+(5-0)^2\}=6.595453$$

Example: KNNImputer with 2 neighbors transforms
$$\begin{bmatrix} 1. & 2. & nan. \\ 3. & 4. & 3. \\ nan & 6. & 5. \\ 8. & 8. & 7. \end{bmatrix}$$
 into
$$\begin{bmatrix} 1. & 2. & 4. \\ 3. & 4. & 3. \\ 5.5 & 6. & 5. \\ 8. & 8. & 7. \end{bmatrix}$$

While imputing, presence of missing values can be indicated by using the MissingIndicator API

Feature scaling

APIs used are

StandardScaler # $\mathbf{x}' = \frac{\mathbf{x} - \mu}{\sigma}$. Example: StandardScaler Transforms $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$

2 5 $\frac{\mathbf{x} - \mathbf{x}.min}{\mathbf{x}.max - \mathbf{x}.min}$. Example: MinMaxScaler Transforms into 0.35 0.50.6

Note that the resultant values fall within range [-1,1]

Example: MaxAbsScaler transforms [-100] into

MinMaxScaler fits every feature into a range [0, 1]

StandardScaler is less affected by outliers than MinMaxScaler.

NOTE: Tree based algorithms are not affected by feature-scaling.

Other transformers

FunctionTransformer applies user defined function on dataset in order to transform.

Example:
$$\log 2$$
 transforms $\begin{bmatrix} 128 & 2 \\ 2 & 256 \\ 4 & 1 \\ 512 & 64 \end{bmatrix}$ into $\begin{bmatrix} 7 & 1 \\ 1 & 8 \\ 2 & 0 \\ 9 & 6 \end{bmatrix}$

PolynomialFeatures are used to add complex features to the dataset.

Example: PolynomialFeatures with degree-3 transforms $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2]$ into $\mathbf{X'} = [\mathbf{x}_1, \mathbf{x}_2, \ \mathbf{x}_1 \mathbf{x}_2, \ \mathbf{x}_1^2, \ \mathbf{x}_2^2, \ \mathbf{x}_1^2 \mathbf{x}_2, \ \mathbf{x}_1 \mathbf{x}_2^2, \ \mathbf{x}_1^3, \ \mathbf{x}_2^3]$

KBinsDiscretizer divides a continuous variables into bins, and applies one-hot/ordinal encoding to the bin labels.

Example: KBinsDiscretizer using 5 bins transforms [1.0] into [4.

OneHotEncoder creates columns equal to the unique number of inputs in the column. Each column has a 1 in it and rest have 0.

Example: OneHotEncoder transforms $\begin{bmatrix} 1\\2\\3\\1 \end{bmatrix} \text{ into } \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\1&0&0 \end{bmatrix}$

LabelEncoder encodes target labels with value from 0 and K-1, where K is the number of unique values.

Example: LabelEncoder transforms $\begin{bmatrix} 1 \\ 2 \\ 6 \\ 1 \\ 8 \\ 6 \end{bmatrix}$ into $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \\ 3 \\ 2 \end{bmatrix}$ OrdinalEncoder encodes catal OrdinalEncoder encodes categorical features with value from 0 and K-1, where K is the number of unique values. Note that OrdinalEncoder can operate multi dimensional data, while LabelEncoder can transform only 1D data.

female'2 0 `female'0 1 `male'3 1 `male'

Example: OrdinalEncoder transforms 6 'female' into 2 0

LabelBinarizer creates columns equal to the unique number of inputs in the column. Each column has a 1 in it and rest have 0. Functionally, it's similar to OneHotEncoder, but LabelBinarizer is preferred on labels, while OneHotEncoder is preferred on features.

> 2 6 $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ 1 0 0 0 0 0 0 $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$

Example: LabelBinarizer transforms [6] into

MultiLabelBinarizer creates columns equal to the unique number of inputs in the column. It's similar to LabelBinarizer, but for multiple labels. Thus, multiple columns can have 1 in the output.

> movie_genres = [{'action', 'comedy' }, 0 1 0 0 {'comedy'}, 1 0 0 1 {'action', 'thriller'},

Example: MultiLabelBinarizer transforms (science-fiction', 'action', 'thriller') to

add_dummy_feature is not a transformer as such; augments the dataset with a column vector, each of whose value is 1.

2 0 Example: Using this function on [9 6] results in

Feature Selection

- Helps at removing features that do not contribute significantly towards the model, thus leading to a
 decrease in dataset size and hence the computation cost.
- Filter methods:
 - VarianceThreshold removes all features with variance below a certain threshold. By default, the threshold is 0.
 - SelectKBest removes all, but the k highest-scoring features
 - SelectPercentile removes all, but the highest-scoring k% of features
 - GenericUnivariateSelect offers a generic approach for the above features, by setting mode to one of 'percentile', 'k best', 'fpr', 'fdr', 'fwe'
 - SelectFpr selects features based on a false positive test rate.
 - SelectFdr selects features based on an estimated false discovery rate
 - SelectFwe selects features based on family-wise error rate
- Wrapper methods:
 - RFE starts with all features in the training dataset and removes features recursively until the desired number of features are reached.
 - o RFECV uses cross-validation to achieve the same output as RFE
 - SelectFromModel selects features based on coef_ and feature_importances_ from the trained estimator
 - SequentialFeatureSelector selects by either forward selection or backward selection. Note that changing the direction could typically yield different results.
- Each of the above APIs can use one of the scoring functions from
 - Mutual Information: mutual_info_regression, mutual_info_classif
 NOTE: Non-negative. Higher value indicates higher dependency. 0 indicates independence.
 - Chi-square: chi2 (can be used only for classification problems)
 NOTE: Calculate between frequency of occurrence (of a feature) and label. Higher value indicates higher dependency.
 - F-statistics: f_regression, f_classif.
 NOTE: F-statistics can be used in both classification and regression problems.

NOTE: Mutual Information and Chi-square are recommended for sparse data.

 ColumnTransformer helps transform heterogenous data by applying different transformers to separate subsets of features.

applies CountVectorizer on

column0 and OneHotEncoder to column1 of the dataset.

NOTE: ColumnTransformer class belongs to sklearn.compose submodule.

- TransformedTargetRegression helps regress on some complicated function y, and return its inverse during predict.
- sklearn.decomposition.PCA is used to project the feature matrix or data to a lower dimensional space, by capturing bulk of the variance in as few directions as possible. PCA uses SVD.

• It is important to apply exactly same transformation on training, evaluation and test set in the same order.

```
si = SimpleImputer()
    X_imputed = si.fit_transform(X)
    ss = StandardScaler()
    X_scaled = ss.fit_transform(X_imputed)
Example:
```

- Alternatively, use Pipeline and FeatureUnion.
 - Pipeline constructs a chain of multiple transformers to execute a fixed sequence of steps in data preprocessing and modelling. It must consist a list of tuples of the form

(<step_name>, <sklearn_api/ColumnTransformer >, <list of the column numbers>).

```
estimators = [
    ('simpleImputer', SimpleImputer()),
    ('standardScaler', StandardScaler()),
]
pipe = Pipeline(steps=estimators)
Example:
```

 FeatureUnion combines output from several Pipeline/ColumnTransformer objects by creating a new combined transformer from them. Each of its components works in parallel, unlike Pipeline.

- Note that the intermediate steps of a Pipeline must implement fit and transform, whereas the final estimator only needs to implement fit.
- Each step in the pipeline can be accessed using a 0-based index. Thus in the above example, num_pipeline[-1] refers to the StandardScaler()
- In order to access the parameters for each step, use the format <step_name>__<parameter name>

```
estimators = [
    ('simpleImputer', SimpleImputer()),
    ('pca', PCA()),
    ('regressor', LinearRegression())
]
pipe = Pipeline(steps=estimators)

Example:

Example:
```

- Transformers can be cached by setting memory parameter in the Pipeline object.
- GridSearchCV may be applied on the pipeline in order to cross-validate with specific hyperparameters for each step. It can be used without a pipeline too, directly on the model.

 Use DummyRegressor with an appropriate strategy (mean, median, quantile, constant) to develop a baseline regressor model. Note that the strategy is based on some statistical property of the training set or a user-specified value.

SGDRegressor

- Typically used in a large training setup with greater than 10K samples. For smaller training sets, use Ridge or Lasso. The advantage of regularized models is its efficiency, which is basically linear in the number of training examples.
- Provides greater control on the optimization process through its hyperparameters
 - loss (squared error, huber)
 - o *penalty* (l1, l2, elasticnet)
 - o *learning_rate* (constant, optimal, invscaling, adaptive). Default is *invscaling*.
 - early stopping (True, False)

- If $learning_rate$ is set to invscaling, it reduces after every iteration as $\eta^{(t)}=rac{\eta_0}{t^{power_t}}$ Note that eta0 and power_t are both hyperparameters.
- If learning_rate is set to adaptive, it is kept to the initial value as long as the training loss reduces, and gets divided by an arbitrary number (5) when the stopping criterion is reached. The algorithm stops when the learning rate goes below 10⁻⁶
- Stopping criterion occurs when the training loss doesn't improve (loss > best_loss tol) for n iter no change consecutive epochs. Alternatively, the algorithm stops when the validation score (as suggested by the parameter scoring) doesn't improve by at least tol for n_iter_no_change consecutive epochs, as far as early stopping is set to True and validation fraction is set. By default, the algorithm stops after reaching max_iter in both cases.
- It's not necessary that the loss decreases from one epoch to the next, sometimes it can shoot up before reducing.
- SGDRegressor is very sensitive to feature scaling, so it highly recommended to scale the input feature matrix, before its's fit to the data.
- Training data can be shuffled after each epoch by setting parameter shuffle to True, during initialization.
- Converges after 10⁶ training examples, so typically max iter is set to np.ceil(10⁶/n)
- When parameter average is set to True, the weight vector is updated to the average of weights from previous epochs. When set to an integer, the averaging starts after the set #samples.
- Setting warm start to True, carries forward the weight vector from the previous run, into the current run too.

```
1 sgd_reg = SGDRegressor(max_iter=1, tol=-np.infty, warm_start=True,
                             penalty=None, learning_rate="constant", eta0=0.0005)
4 for epoch in range(1000):
       sgd_reg.fit(X_train, y_train) # continues where it left off
       y_val_predict = sgd_reg.predict(X_val)
val_error = mean_squared_error(y_val, y_val_predict)
```

All regression estimators (including SGDRegressor and LinearRegression) exposes the final set of weights learnt by the model, through attributes coef_ and intercept_

- Finding weight vector can either use normal equation $(\mathbf{w} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y})$, or gradient-descent technique.
- Normal equation method has a complexity of O(m²) where m is the number of features. This implies that when #features doubles, the calculation could be 4 times as slow.
- Evaluation of all models (including LinearRegression) is done using the score (or r2score) method on a object. It returns the *r2-score*, also called coefficient of determination.

- The best possible *r2-score* is 1.0, when the residual sum of squares is 0
- r2-score is 0 for a model that always predicts the same value of y, disregarding the inputs.
- The r2-score can be negative, because the model can be arbitrary worse, and the residual sum can be more than the total sum. Range of r2-score is (-inf, 1]
- Following is a list all possible scoring functions used during regression. Note that the scoring function are typically negative value of the errors.

Tunction are typically negative value of the errors.		
Error type	Scoring	Usage
mean_absolute_error	neg_mean_absolute_error	Common
mean_squared_error	neg_mean_squared_error	Common
mean_squared_log_error	neg_mean_squared_log_error	Used when the target has exponential growths like population
root_mean_squared_error	neg_root_mean_squared_error	Common
median_absolute_error	neg_median_absolute_error	Used when outliers are present
r2	r2	-
max_error	max_error	-

- max_error returns maximum error due to training a model.
- In order to avoid any chances of having the **easiest** test-set that yields the least error, always perform cross-validation for robust performance evaluation.
- sklearn implements four cross-validation iterators:
 - KFold divides training data into 5 folds, and uses 4 as training and 1 for evaluation.

```
1 from sklearn.model_selection import cross_val_score
2 from sklearn.model_selection import KFold
3 from sklearn.linear_model import linear_regression
4
5 lin_reg = linear_regression()
6 kfold_cv = KFold(n_splits=5, random_state=42)
7 score = cross_val_score(lin_reg, X, y, cv=kfold_cv)
```

 StratifiedKFold works similar to KFold, with the exception that the folds are made preserving the percentage of samples for each class.

- RepeatedKFold repeats K-Fold n times with different randomization in each repetition.
- LeaveOneOut

```
1 from sklearn.model_selection import cross_val_score
2 from sklearn.model_selection import LeaveOneOut
3 from sklearn.linear_model import linear_regression
4
5 lin_reg = linear_regression()
6 loocv = LeaveOneOut()
7 score = cross_val_score(lin_reg, X, y, cv=loocv)
```

 ShuffleSplit shuffles the order of data samples in each iteration and then splits it into train and test, and hence robust to class distribution.

```
1 from sklearn.linear_model import linear_regression
2 from sklearn.model_selection import cross_val_score
3 from sklearn.model_selection import ShuffleSplit
4
5 lin_reg = linear_regression()
6 shuffle_split = ShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
7 score = cross_val_score(lin_reg, X, y, cv=shuffle_split)
```

- o In addition to the existing parameters, cross_val_score also accepts *scoring* parameter and can take any of the value in the table discussed under r2-score.
- To obtain test scores for each fold, use cross_validate. The results contain *fit_time*, *score_time*, *test_score*, *estimator*, and *train_score*

NOTE: By default *estimator* and *train_score* are not returned as part of the cross_validate output, but only when appropriate parameters are set to True.

cross_validate allows to specify multiple scoring mechanisms unlike cross_val_score.

Week4

• In order to use only interaction features in a polynomial transformation, set the parameter interaction_only to True like this. This will include only [1,x1, x2, x1x2]. x1² and x2² are excluded.

```
1 from sklearn.preprocessing import PolynomialFeatures
2 poly_transform = PolynomialFeatures(degree=2, interaction_only=True)
```

- Ridge Loss = Sum of squared error + regularization_rate * penalty
- Ridge regularization can be performed in two ways. Either using a Ridge object, or using SGDRegressorobject with parameter *penalty* set to 'l2'
- Perform cross-validation on ridge, either using RidgeCV object or GridSearchCV on SGDRegressor object with parameter penalty set to '12'
- Lasso regularization can be performed in two ways. Either using a Lasso object, or using SGDRegressorobject with parameter *penalty* set to 'l1'
- Perform cross-validation on lasso, either using LassoCV object or GridSearchCV on SGDRegressor object with parameter penalty set to 'l1'
- Elasticnet regularization can be performed by using SGDRegressorobject with parameter *penalty* set to 'elasticnet' and *I1_ratio* to an appropriate value (<1)

- When *penalty* is set to '11' (lasso), it leads to sparse solutions.
- Penalty α is a non-negative float value. Larger values indicate stronger regularization. It defaults to 0.0001.
- In the case of 'elasticnet', effective regularization rate is (1 l1_ratio) * 12 + l1_ratio * l1

- Classification can be done using either the generic SGDClassifier, or one of the following specialized models LogisticRegression, Perceptron, RidgeClassifier, LinearSVC, any of the sklearn.neighbors classifiers, or any of the sklearn.naive_bayes classifiers.
- The following methods remain same across all classifiers.
 - Model training
 - fit(X, y[, coef_init, intercept_init, ...])
 - o Prediction
 - predict(X) predicts class label for samples
 - decision_function(X) predicts confidence score for samples
 - o Evaluation
 - score(X, y[, sample_weight]) returns the mean accuracy on the given test data and labels.

RidgeClassifier

- In the case of binary classification, it predicts the class based on the sign of the output, and in the case of multi-class classification, predicts class based on the highest output value. In the former
 - case, it works by minimizing a penalized residual sum of squares

$$\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \alpha ||\mathbf{w}||_2^2$$

- Regularization rate is specified by using a positive α value during initializing RidgeClassifier. Larger values of α imply stronger regularization.
- There exists multiple solver methods for RidgeClassifier.
 - Use sparse_cg solver for large-scale data.
 - Use *sag/saga* solver if the number of features or samples is large.
 - Use *lsqr* for achieving the fastest solution.
 - Use auto to let RidgeClassifier automatically select the solver. This is the default.

NOTE: Faster convergence occurs only when the features are scaled, under all solvers

- If the data is already centered, set parameter fit_intercept to False
- RidgeClassifierCV implements RidgeClassifier with built-in cross validation
- Both RidgeClassifierCV and RidgeClassifier can be used with binary/multinomial or even multi-label problems.

Perceptron

- It uses the same underlying implementation as SGDClassifier and is typically used for large-scale learning.
- Can be trained in an iterative manner with partial_fit method.
- Perceptron classifier can be initialized to the weights of the previous run by setting parameter warm start to True.
- Can be used with binary/multinomial classification. It supports multinomial classification by combining multiple binary classifiers using one-vs-all scheme, and devising a suitable scoring metric.

LogisticRegression

- Works by minimizing (regularization penalty + loss)
 - $\operatorname{arg\,min}_{\mathbf{w},C}$ regularization penalty +C cross entropy loss

NOTE: C is the inverse of the regularization rate λ , and must be positive; larger C implies weaker regularization, and smaller C implies stronger regularization.

- Can be used with binary/ multinomial classification, and one-vs-rest (OVR).
- There exists multiple solver methods for LogisticRegression
 - Use liblinear for smaller datasets.
 - Use sag/saga for larger datasets.
 - Use liblinear, lbfgs, newton-cg for unscaled datasets.
 - o *liblinear* can handle only OVR, and not multinomial problems.
 - o *lbfgs* is the default solver.
- By default, uses '12' penalty, but can be changed to one of '11', '12', 'elasticnet' or 'none'
- Following table shows support for penalties by different solvers.

Solver	Penalty	
'newton-cg '	['l2', 'none']	
'lbfgs '	['12', 'none']	
'liblinear'	['11', '12']	
'sag'	['I2', 'none']	
'saga '	['elasticnet', 'I1', 'I2', 'none']	

- Use parameter *class_weight* to handle class-imbalance in the dataset, where mistakes in a class can be penalized. Higher values of *class_weight* will put more emphasis on the corresponding class.
- LogisticRegressionCV implements logistic regression with in-built cross validation support to find the best values of parameters *C* and *l1_ratio* according to the specified *scoring* attribute.
- LogisticRegressionCV can also be used with binary/ multinomial classification (set *multi_class* parameter to *multinomial*) and one-vs-rest (OVR).

SGDClassifier

- Uses gradient descent for optimization, where gradient loss is estimated for each sample at a time, and weights updated with a decreasing learning schedule.
- Provides greater control on the optimization process through its hyperparameters
 - loss (see below)
 - o penalty (I1, I2, elasticnet). Default is elasticnet.
 - o learning rate (constant, optimal, invscaling, adaptive). Default is invscaling.
 - early_stopping (True, False)
- Parameter loss can be one of

- By default, SGDClassifier uses hinge loss and hence trains linear SVM classifier.
- For most part, SGDClassifier works very similar to SGDRegressor, including the use of parameters and their default values.
- Used with binary/multinomial classification, and one-vs-rest (OVR). It supports multinomial classification by combining multiple binary classifiers using one-vs-all scheme.
- Supports large datasets, more than 10⁵ examples and 10⁵ features.
- Widely used in text classification and natural language processing.
- Advantages include efficiency and ease of implementation, but disadvantageous because it requires
 a lot of hyperparameters, is highly sensitive to feature scaling. It also requires shuffling of data
 before fitting the model in each iteration.
- SGDClassifier(loss='log') is equivalent to LogisticRegression(solver='sgd')
- SGDClassifier(loss='perceptron') is equivalent to Perceptron()
- SGDClassifier(loss='hinge') is equivalent to LinearSVC()

- SGDClassifier(loss='squared_error') is equivalent to a least-square classifier.
- Use type_of_target to check if the label input is binary, multi-class, continuous, multilabel-indicator or multiclass-multioutput.
- If the labels are represented in a matrix form,
 - o If the number of classes are two, it's multilabel-indicator (Ex. [[-1,1],[1,-1]])
 - o If there are more than two classes, it's multiclass-multioutput. (Ex. [[0,1,2],[0,1,2]])
- If the labels are represented in a vector form,
 - o if the number of classes are two, it's binary (Ex. [0,1])
 - o If there are more than two classes, it's multi-class. (Ex. [0,1,2])
 - o If the values belong to a continuous range (like a decimal), it's continuous. (Ex. [1, 2.1, 3.4])
- All sklearn classifiers can be used with multiclass classification by default, Use sklearn.multiclass module only when you want to experiment with different multiclass strategies.
- sklearn implements the following multiclass strategies
 - OneVsRestClassifier (OVR/OVA) fits one classifier per class, is computationally very efficient and requires only k classifiers, one for each class.
 - OneVsOneClassifier (0V0) fits one classifier per pairs of classes, where it predicts the class with maximum votes. Requires kC₂ classifiers. A tie among classes is broken by selecting the class with the highest aggregate classification confidence.
 - Both strategies above support multilabel classification, if you provide labels as (n, k) indicator matrix.
- sklearn implements the following multilabel/multioutput strategies
 - MultiOutputClassifier fits one classifier per target.
 - Classifier fits binary classifiers in a chain, so that output of one classifier can be combined with other such classifiers in the chain, to make a multilabel model.
- Following is a list all possible scoring functions used during classification accuracy_score, balanced_accuracy_score, top_k_accuracy_score, roc_auc_score, precision_score, recall_score, f1_score
- In the case of multilabel classification, confusion_matrix returns a matrix and is interpreted differently than in the case of regression. Entry (i, j) is the number of observations in class i, but predicted to be in class j
- Confusion matrix can be displayed with ConfusionMatrixDisplay API in sklearn.metrics, from any of
 - Confusion matrix

```
1 ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)
Estimator
1 ConfusionMatrixDisplay.from_estimator(clf, X_test, y_test)
```

Predictions

1 ConfusionMatrixDisplay.from_predictions(y_test, y_pred)

• In order to use binary metrics in multi-class/multi-label problems, use one the following average parameters - macro, weighted, micro, samples or None.

- Naive Bayes classifier applies Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the value of the class variable. This can be mathematically represented as $\frac{P(x_i|y,x_1,...,x_{i-1},x_{i+1},...,x_m)=P(x_i|y)}{P(x_i|y,x_1,...,x_{i-1},x_{i+1},...,x_m)}$
- Algos implemented in the sklearn.naive_bayes models are GaussianNB, BernoulliNB, MultinomialNB, CategoricalNB, ComplementNB
- Use MultinomialNB when data is multinomially distributed, like in the case of text classification. However, note that ComplementNB often outperforms MultinomialNB in text classification tasks, by a large margin. This is largely due to data imbalance some classes are represented more than others, in the data.
- Use CategoricalNB, when data has many categorically distributed features.
- GuassianNB is best suited, when data does not have categorical features.
- In the case of a MultinomialNB, attribute *class_count_* represents the number of samples encountered for each class.
- Building an SGDClassifier
 - Training data: (features, label) or (X, y), where label y is a discrete number from a finite set. Features in this case are pixel values of an image.
 - 2. Model: *

$$z = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m$$

= $\mathbf{w}^T \mathbf{x}$

and passing it through the sigmoid non-linear function (or Logistic function)

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + exp(-z)}$$

3. Loss function:

$$J(\mathbf{w}) = -\frac{1}{n} \sum \left[y^{(i)} log(h_{\mathbf{w}}(\mathbf{x}^{(i)})) + (1 - y^{(i)})(1 - log(h_{\mathbf{w}}(\mathbf{x}^{(i)}))) \right]$$

4. Optimization:

Gradient Descent

- In the case of Perceptron and RidgeClassifier, while dealing with binary classification problems, the classes should be -1 and 1. However, in the case of DummyClassifier or SGDClassifier, the classes should 0 and 1.
- Use CountVectorizer to convert text input into a vector of numerical values. It's referred to as a bag of words.
- Use TfidfVectorizer, if feature (words) importance also need to be computed. It's basically equivalent to CountVectorizer, followed by TfidTransformer.

Week7

- Softmax regression algorithm is used for solving multi-class classification.
 Softmax function normalizes an input vector into a probability distribution.
- KNN is an instance based learning, where classification is computed from a simple majority vote of nearest neighbors of each point. No model is constructed, but uses the training data as is.
- KNeighborsClassifier and RadiusNeighborsClassifier are the two different implementations of KNN in sklearn
- In the case of KNeighborsClassifier, n_neighbors is a hyper-parameter that decides the number of neighbors to consider. It has a default value of 5.
- Neighbors can be weighted *uniformly*, or based on the *distance* from the training point.

Custom weights can be used like this...based on the distances.

```
def user_weights(distances_array):
    return weights_array
kneighbor_classifier = KNeighborsClassifier(weights=user_weights)
```

They represent the relative weights assigned to all neighboring point as a function of their distance from the test point, which are to be considered during the majority vote.

- Possible algorithms to compute the nearest neighbors include ball_tree, kd_tree, brute, and auto.
- Hyper-parameters (in the case of ball tree and kd tree) are
 - leaf_size: affects speed and memory usage of tree construction (default 30),
 - metric: Distance metric. Possible values are 'euclidean', 'manhattan', 'chebyshev', 'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis' (default 'minkowski')
 - o p: Power for minkowski metric. (default 2).
- In the case of RadiusNeighborsClassifier, #neighbors is not constant, but uses the #neighbors available within radius r of each training point. r has a default value of 1.0.
- Before fitting the KNN model, data must be scaled, else it can give unexpected results.
- Performance of a KNN model can be measured using one of accuracy score, misclassification error,
 R2 score or RMSE.
- Accuracy of KNN model increases when the model involves more neighbors.
- KNN models with low values of k tend to overfit producing complex decision boundaries (high variance), and those with high values of k tend to underfit producing simple decision boundaries (low variance).
- KNN models are highly sensitive to noise and outliers for low values of k.

If
$$x_1, x_2, \cdots, x_k$$
 are the k nearest data points of x , then $\hat{y}(x) = \frac{1}{k} \cdot \sum_{i=1}^k y(x_i)$.

- KNN models suffer from the curse of dimensionality.
- The performance of a brute force K-Nearest Neighbors algorithm critically depends upon the chosen distance metric and the number of training points.
- To do text-based ML, use HashingVectorizer if we're short on memory and resources, in which
 case we'll not have access to the tokens. Use CountVectorizer, if we need access to actual
 tokens.

Week8

- SVM constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which can be used for classification, regression or other tasks.
- SVM is preferred when n_features > n_samples. However, if it's too large a difference, the model tends to overfit.
- SVM conserves memory, since it works only with a subset of training samples (called support vectors)
- SVC and NuSVC are SVM implementations based on libsvm. LinearSVC is a faster implementation based on liblinear. It uses only linear kernel.
- SVC
 - uses rbf kernel by default.

- o To perform regularization (I2 by default) in SVC classifier, use *C* (0 by default). Strength of regularization in inversely proportional to *C*. Note that *C* is a strictly positive number.
- o kernel can be one of *linear*, *poly*, *rbf*, *sigmoid or precomputed*. If kernel = 'poly', need to set degree
- o gamma is the kernel coefficient, if kernel is set to rbf, poly or sigmoid. If gamma is set to 'scale' (default), it uses $\frac{1}{\text{number of features}^* \text{X.Var}()}$; if gamma is set to 'auto' it uses $\frac{1}{\text{number of features}}$

Uses OVO and OVR for multi-class classification.

NuSVC

- o v is used instead of C. Value of v is in the range (0, 1]. Default value is 0.5.
- Uses OVO and OVR for multi-class classification.

• LinearSVC

- o scales better, and hence preferred when the number of samples are larger.
- o more flexibility in the choice of penalties (I1 and I2) and loss functions (hinge, squared hinge), since it is implemented using liblinear.
- parameter dual that decides whether to solve the primal or the dual optimization problem.
 Prefer dual=False when n_samples > n_features
- parameter fit_intercept decides whether to calculate the intercept for the model or not. If set to False, no intercept will be used in calculations (i.e. data is expected to be already centered).
- Uses OVR and crammer_singer for multi-class classification.

Week9

- Decision trees are non-parametric, supervised models that works with both classification and regression.
- Predicts label based on rules inferred from the features in the training set.
- sklearn uses CART algorithm. Other algorithms are ID3, C4.5, C5.0.
- Parameters used:
 - o splitter strategy used to split node. Can be 'best' or 'random'
 - max_depth maximum depth of tree. When None, the tree is expanded until all leaves are
 pure, or they contain less than min_samples_leaf samples. When very high, tree tends to
 overfit. When very low, tends to underfit.
 - o *min_samples_split* Minimum #samples required to split the node. When very small, tree tends to overfit. When very high, tends to underfit.
 - o min_samples_leaf Minimum #samples required to be at leaf node. When very small, tree tends to overfit. When very high, tends to underfit.
 - o *criterion* measures quality of split. Gini/entropy in case of Classification, and squared_error/friendman_mse/absolute_error/poisson in case of Regression.

NOTE: gini has a range of [0, 0.5]

- When the depth of the decision tree is very high, it tends to overfit. In order to avoid over-fitting, use pre-pruning (using GridSearchCV) or post-pruning (using cost complexity pruning).
- Decision trees tend to overfit when the #features is very high. Use dimensionality reduction (PCA) to reduce the #features.
- In order to avoid imbalance of classes, perform balancing before constructing the tree.

- In a decision tree, same feature variable may appear multiple times in different nodes, only if continuous. If the variable is discrete, it can appear only once in the tree.
- We may chose to ignore scaling as Decision Trees do not require feature scaling.
- Small variations in data will not impact the formation of the trees.

- Both in Boosting and Bagging techniques, a set of weak learners whose predictive power is slightly more than guessing is used for training.
- Bagging increases bias, and reduces variance.
- RandomForestClassifier and BaggingClassifier uses DecisionTreeClassifier as base estimators, by default.
- RandomForestRegressor and BaggingRegressor uses DecisionTreeRegressor as base estimators, by default.
- BaggingClassifier and BaggingRegressor allows use of any model as base estimator, but uses Decision Trees if none specified.
- RandomForestClassifier and RandomForestRegressor do not allow to specify base estimators, but uses Decision Trees.
- Bagging can make unstable classifiers like Decision Trees more robust.
- In a BaggingClassifier, when the parameter *max_samples* is a float value, it's treated as the fraction to draw samples from the dataset for training the base estimators.
- In a VotingClassifier, when *voting* parameter is set to hard, sklearn uses predicted class labels based on the argmax of the sums of the predicted probabilities. Similarly, when voting is set to soft, sklearn uses predicted class labels by majority rule voting. This parameter isn't available in the case of a VotingRegressor.
- In a VotingRegressor, invoking the fit method will fit clones of the original estimators passed as input parameter *estimators*.
- Random forests differ from bagging by forcing the tree to use a subset of its available features, while constructing each tree.
- In GradientBoostingClassifier and GradientBoostingRegressor, when parameter *subsample* has a value lesser than 1.0, it results in Stochastic Gradient Boosting.
- In GradientBoostingClassifier and GradientBoostingRegressor are fairly robust to over-fitting so a large number usually results in better performance
- Bagging is essentially a parallel process, and boosting a sequential one.
- In AdaBoostClassifier and AdaBoostRegressor, as the <code>learning_rate</code> increases, contribution of each estimator increases. However, <code>learning_rate</code> and <code>n_estimators</code> move in opposite directions and have a trade-off. Similar is the case with <code>GradientBoostingClassifier</code> and <code>GradientBoostingRegressor</code>.

Week11

- Clustering methods in general are divided into Connectivity-based clustering (Hierarchical),
 Centroid-based clustering and Density-based clustering.
- KMeans is an example of centroid-based clustering. It is a linear algorithm that aims to choose centroids that minimize the inertia.
- KMeans, SpectralClustering, DBSCAN, AgglomerativeClustering are some of the clustering mechanisms available in sklearn.

- In KMeans clustering, some samples can be assigned with more weights, when computing cluster centers and values of inertia.
- KMeans is sensitive to outliers
- KMeans terminates at a local optimum when SSE is used as the loss metric.
- Quality of the clustering results depends on the algorithm and the distance function used .
- Divisive approach of hierarchical clustering follows a top-down approach, in which we consider that
 all the data points belong to one large cluster and try to divide the data into smaller groups based
 on a termination logic.
- Hierarchical Agglomerative Clustering uses a bottom-up approach, and employs either of the following strategies *Single linkage, Complete linkage, Average linkage*.
- In *single linkage* method, distance between two clusters is measured as distance of two nearest data points in the two clusters one data point from each cluster.
- In *complete linkage* method, distance between two clusters is measured as distance of two farthest data points in the two clusters one data point from each cluster.
- In *average linkage* method, distance between two clusters is measured as the average distance of every pair of data points in the two clusters.
- A *dendrogram* is a diagram that shows the hierarchical relationship between objects. It is most commonly created as an output from hierarchical clustering. Vertical lines in the dendrogram represents the distance between those clusters

- MLPClassifier supports multi-class classification by applying *Softmax* as the output function. It also supports multi-label classification.
- In MLPClassifier, the parameter *hidden_layer_sizes* takes a tuple, which represents the number of neurons per hidden layer. Thus, to create a 3 hidden layer neural network with 15 neurons in first layer, 10 neurons in second layer and 5 neurons in third layer, use the following code.

MLPClassifier(hidden layer sizes=(15,10,5))

- MLPRegressor also supports multi-output regression, in which a sample can have more than one target.
- In MLPClassifier and MLPRegressor, hidden layers support the following activation functions
 - o Identity ==> f(x) = x
 - $\circ \quad logistic ==> f(x) = 1/(1 + \exp(-x))$
 - \circ tanh ==> f(x) = tanh(x)
 - \circ relu ==> f(x) = max(0, x)

NOTE: relu is the default activation function for the hidden layers.

- MLPClassifier optimizes the log-loss (cross-entropy) function using lbfqs or sqd
- Weights learned by MLPClassifier is stored in attribute *coef_*. Thus, *clf.coefs_[0]* represents the weights (for each feature) between input and first hidden layer and, *clf.coefs_[-1]* represents the weights (for each feature) between output and last hidden layer.