Uncertainty quantification in Medical image analysis

Nataliia Molchanova

Sources of uncertainty

Noise in the input data

Limitations of the measurement systems (MRI, CT, PET, etc.)

Inter-rater variability

Example of white matter lesions annotations from 7 raters

Noise in the labels

Expertise

Visual perception

Low quality

Artefacts

Guidelines ambiguities

Annotation tools

Rear pathologies

Demographic differences

Low data regimes

Challenge Name	Task	Medical Imaging Modality	Number of Patients	Countries	Patients Worldwide
KiTS21 Challenge	Kidney Tumor Segmentation	СТ	300	USA	400k / Year
MSSEG-1	Multiple Sclerosis Lesion Segmentation	MR	53	France	2.9M
LiTS	Liver Tumor Segmentation	СТ	130	Germany	800k / Year
PROMISE12	Prostate MR Image Segmentation	MR	50	United States, Canada, Germany, France, UK	1.4M / Year

Low data regimes

Worldwide prevalence
60M patients

Subtypes of cortical brain lesions

Hidden data biases

Domain shifts

- Covariate (input data)
- Label
- Concept drift (reality)

Siemens 3.0T scanner

UQ methods in MIA

Bayesian framework

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega}) p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y}) d\boldsymbol{\omega}$$

Deep ensemble

Train N identical neural networks with different random seeds

Monte Carlo dropout

Dropout during the inference time induces a distribution over the weights and biases of the network

Test time augmentation

Perform several inferences with the same input, but transformed using an invertible transformation

... and many more

Uncertainty measures

Regression

Classification

Uncertainty measures

Reconstruction and segmentation have structured outputs

Applications and UQ evaluation

Quality assessment ¹

Trustworthiness ²

Boosting performance $^{\rm 3}$

Domain adaptation ⁴

OOD detection ^{5,6}

Active learning ^{7,8}

- ¹Roy et al., Neurolmage, 2019
- ² Evans et al., FGCS, 2022
- ³ Nair et al., Med. Image Anal., 2020
- ⁴ Xia et al., Med. Image Anal., 2020
- ⁵ Linmans et al., Med. Image Anal., 2023
- ⁶ Hong et al., Arxiv, 2024
- ⁷ Budd et al., Med. Image Anal., 2021
- ⁸ Wang et al., Med. Image Anal., 2023

Q&A

UQ in MIA cookbook:

Presentation and hands-on:

