IA Géosciences -Deep learning: Entraîner un réseau de neurones multi couches

Romain Wenger (Laboratoire Image Ville Environnement)

Table des matières

01

Introduction

Pourquoi plusieurs couches?

02

Rétropropagatio n du gradient

Application du gradient aux couches cachées

03

Classification d'images

Application sur des images

Table des matières

01

Introduction

Pourquoi plusieurs couches?

02

Rétropropagatio n du gradient

Application du gradient aux couches cachées

03

Classification d'images

Application sur des images

Un réseau à une seule couche (régression logistique)

Un réseau à plusieurs couches (une seule couche cachée)

Pourquoi a-t-on besoin d'ajouter des couches cachées ?

Nécessaire pour apprendre des fonctions non-linéaires

 $\hat{y} = h(X) \mid h$ étant une fonction non-linéaire

La régression logistique donne une décision linéaire car il n'y a pas d'interaction non-linéaire entre les termes X_1 et X_2 par exemple

$$\hat{y} = \sigma(W_1 * X_1 + W_2 * X_2 + b)$$

Pour la rendre non-linéaire il faut ajouter des termes d'interaction

$$\hat{y} = \sigma(W_1 * X_1 + W_2 * X_2 + W_2 * X_1 * X_2 + W_4 * X_1^2 + W_5 * X_2^2 + \dots + b)$$

Ceci est difficile à faire pour plusieurs raisons :

- Grand nombre d'attributs X : une image a 128*128 pixels
- On ne connaît pas quelle sorte d'intercation : $X_1^2 * \sqrt{X_2}$ ou $X_1^2 * X_2^3$

Exemple de données séparables linéairement

Une décision linéaire comme celle-ci peut-être apprise par un simple Perceptron (ou un neurone)

Exemple de données non-séparables linéairement

Par contre une décision non-linéaire comme celle-ci ne peut pas être apprise par un neurone ou un Perceptron à une seule couche.

- ⇒ il faut pouvoir entrainer un réseau à plusieurs couches
- ⇒ d'où l'algorithme de Rétropropagation du gradient

Deep learning

Deep learning: a fancy word for deep neural networks

Deep learning ≡ **Réseau de neurones profonds**

Réseau de neurones profonds = Réseau à plusieurs couchces

Le succès du deep learning est dû à l'entrainement des réseaux de neurones à plusieurs couches pour apprendre des décisions nonlinéaires

Pourquoi est-ce difficile d'entraîner des réseaux profonds ?

Pourquoi est-ce difficile d'entraîner des réseaux profonds ?

On connaît uniquement ce que doit-être la sortie d'un neurone qui appartient à la dernière couche (non-cachée)

- ⇒ On peut calculer l'erreur pour ces neurones
- ⇒ On peut appliquer la descente du gradient

On ne connaît par ce que doit-être la sortie d'un neurone appartenant à une couche cachée

- ⇒ On ne peut pas calculer l'erreur pour ces neurones
- ⇒ On ne peut appliquer directement la descente du gradient

Il faut trouver un moyen pour estimer l'erreur pour un tel neurone appartenant à une couche cachée : rétropropagation

Table des matières

01

Introduction

Pourquoi plusieurs couches?

02

Rétropropagation du gradient

Application du gradient aux couches cachées

03

Classification d'images

Application sur des images

La fonction de coût ne dépend pas du modèle

Pour un problème de classification binaire : Binary Cross-Entropy

$$L(w) = -y \, \log(\widehat{y}) - (1-y) \log(1-\widehat{y})$$

Notre but est de minimiser L(w) en variant l'ensemble des w

Propagation (Forward pass)

La sortie du réseau est calculée telle que :

$$\widehat{y} = \sigma(w_1 * A_1 + w_2 * A_2)$$

 A_i les activations des neurones i appartenant à la couche cachée :

$$A_{i} = \sigma(w_{i,1} * X_{1} + w_{i,2} * X_{2})$$

Rétropropagation (Backward pass)

Pour w_1 et w_2 on peut appliquer facilement la descente du gradient

$$w_i = w_i - \alpha \frac{\theta L}{\theta w}$$

On calcule la dérivée par rapport à wi

$$\frac{\theta L}{\theta w_i} = (\widehat{y} - y) * A_i$$

Rétropropagation (Backward pass)

Pour $w_{i,1}$ (ou $w_{i,2}$) on ne peut pas calculer directement la dérivée

Or d'après le théorème de dérivation des fonctions composées

$$\frac{\theta L}{\theta w_{i,1}} = \frac{\theta L}{\theta A_i} * \frac{\theta A_i}{\theta w_{i,1}}$$

Rétropropagation (Backward pass)

$$\frac{\theta L}{\theta w_{i,1}} = \frac{\theta L}{\theta A_i} * \frac{\theta A_i}{\theta w_{i,1}}$$

Cette équation permet de calculer les dérivées pour n'importe quel nombre de couches ⇒ permet d'entraîner un réseau multi-couches

Dérivée pour un poids w d'un neurone caché

Il faut calculer la dérivée par rapport à $w_{i,1}$ par exemple :

$$\frac{\theta L}{\theta w_{i,1}} = \frac{\theta L}{\theta A_i} * \frac{\theta A_i}{\theta w_{i,1}}$$

On commence par le premier terme

$$\frac{\theta L}{\theta A_i} = (\hat{y} - y) * w_i$$

Pour le second terme

Dérivée pour un poids w d'un neurone caché

La descente du gradient peut-être maintenant appliquée

$$w_{i,1} = w_{i,1} - \alpha * w_i * X_1 * A_i (1 - A_i) (y - y)$$

On peut voir comment le terme de l'erreur (y - y) (calculée pour la couche de sortie) a été **propagé** pour effectuer la descente du gradient sur un neurone appartenant à une couche cachée

Propagée ⇒ **Rétropropagation** du gradient (ou de l'erreur)

En répétant ce processus pour chaque couche cachée on entraîne un réseau profond : l'erreur se propage d'une couche à une autre

Pour la première couche en ignorant les b :

On a deux neurones et deux entrées \Rightarrow 2 * 2 = 4 paramètres

Pour la deuxième couche en ignorant les b :

On a un neurone et deux entrées $(A_1 \text{ et } A_2) \Rightarrow 2 * 1 = 2$ paramètres

Pour la deuxième couche en ignorant les b :

On a un neurone et deux entrées $(A_1 \text{ et } A_2) \Rightarrow 2 * 1 = 2$ paramètres

En ajoutant le b:

Chaque neurone a un $b \Rightarrow 2 + 1 = 3$ paramètres

En ajoutant le b:

Chaque neurone a un b \Rightarrow 2 + 1 = 3 paramètres

Au total: 6 paramètres (couche 1) + 3 paramètres (couche 2) = 9

Pour la première couche en ignorant les b :

On a 5 neurones et 2 entrées \Rightarrow 2 * 5 = 10 paramètres

En ajoutant le b:

Chaque neurone a un $b \Rightarrow 10 + 1 + 1 + 1 + 1 + 1 = 15$ paramètres

Pour la deuxième couche en ignorant les b :

On a 3 neurones et 5 entrées \Rightarrow 5 * 3 = 15 paramètres

En ajoutant le b:

Chaque neurone a un $b \Rightarrow 15 + 1 + 1 + 1 = 18$ paramètres

En ajoutant le b:

Chaque neurone a un $b \Rightarrow 15 + 1 + 1 + 1 = 18$ paramètres

Au total: 15 paramètres (couche 1) + 18 paramètres (couche 2) = 33

Fonction d'activation

Un neurone caché reçoit de la couche précédente : z = W * X + b

Ce neurone effectue une interaction non-linéaire entre ses entrées

Pour cela il faut que la sortie (ou activation) du neurone : A = f(z)

Avec f(.) étant une fonction non-linéaire par exemple : $\sigma(.)$, tanh(.)

Si f(.) linéaire, le réseau ne va apprendre que des décisions linéaires

Représentation matricielle

Pour la première couche :

$$W^{(1)} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix}$$

Pour la deuxième couche

$$W^{(2)} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}$$

Hyperparamètres et paramètres

Paramètres d'un réseau de neurones

- Tout ce que le réseau apprend lui-même avec la descente du gradient
- Par exemple : les poids w et les biais b

Hyperparamètres d'un réseau de neurone

- Toute sorte de choix effectué avant l'entraînement
- Par exemple : nombre de neurones, le taux d'apprentissage α , etc.

Train/Validation/Test

Supposons qu'on a un jeu de données contenant 100 images

- Ensemble d'entraînement : train set
 - Il est utilisé pour apprendre les paramètres du réseau
- Ensemble de validation : validation set
 - Il est utilisé pour guider le choix des hyperparamètres du réseau
- Ensemble de test : **test set**
 - Il est utilisé uniquement pour évaluer un modèle
 - L'optimisation des paramètres ne doit pas se baser sur la performance du réseau sur l'ensemble de test
 - Le choix des hyperparamètres ne doit pas se baser sur la performance du réseau sur l'ensemble de test

Sous-apprentissage (underfitting)

Sous-apprentissage (underfitting)

L'erreur est

• Elevée sur le train/validation

On dit que le modèle (réseau) a

- Un « biais » élevé (on est loin du but/la bonne décision)
- ⇒ Le modèle n'arrive pas à apprendre une décision complexe
- Il faut augmenter sa capacité de modélisation (par exemple augmenter le nombre de neurones, ajouter des couchces cachées, etc.)

Sur-apprentissage (overfitting)

Sur-apprentissage (overfitting)

L'erreur est

- Très faible sur le train
- Très élevé sur la validation

On dit que le modèle (réseau) a

- Un « biais » faible (on est proche du but la bonne décision
- Une « variance » élevée (faible performance sur la validation par rapport au train)
- Le modèle apprend une décision qui est trop complexe
- Il faut diminuer sa capacité de modélisation (par exemple diminuer le nombre de neurones, enlever des couches cachées, etc.)

Bonne généralisation : ni overfitting ni underfitting

Bonne généralisation : ni overfitting ni underfitting

L'erreur est

- Très **faible** sur le train
- Très **faible** sur la validation

On dit que le modèle (réseau) a

- Le « biais » est faible (on est proche du but la bonne décision)
- La « variance » est faible (bonne performance sur la validation par rapport au train)
- ⇒ Le modèle apprend une décision qui est ni trop complexe ni trop simple
- Le modèle arrive à ignorer les anomalies lors de l'apprentissage

Bias-variance tradeoff

Table des matières

01

Introduction

Pourquoi plusieurs couches?

02

Rétropropagatio n du gradient

Application du gradient aux couches cachées

03

Classification d'images

Application sur des images

Jeu de données : MNIST

MNIST: Modified National institute of Standards and Technology

Transformation de l'image en vecteur (aplatir)

Perceptron multi-couche/multi-layer perceptron (MLP) pour classifier en 10 chiffres des images de 28 * 28 = 784 pixels (niveau de gris)

C'est un réseau à 2 couches : la sortie qui contient les 10 classes et la couche cachée, qui contient un certain nombre de neurones. Généralement la couche d'entrée (les pixels) n'est pas comptée.

- On a 784 attributs en entrée
- → On a 10 sorties
- Pour n neurones cachés on a :
 - 784 * n + n paramètres pour la première couche (cachée
 - n * 10 + 10 paramètres pour la deuxième couche (sortie)

Pour la première couche avec n neurones cachés

$$W^{(1)} = \begin{bmatrix} w_{1,1} & \cdots & w_{1,784} \\ \vdots & \ddots & \vdots \\ w_{n,1} & \cdots & w_{n,784} \end{bmatrix}$$

Pour la deuxième couche avec n neurones cachés

$$W^{(2)} = \begin{bmatrix} w_{1,1} & \cdots & w_{1,n} \\ \vdots & \ddots & \vdots \\ w_{10,1} & \cdots & w_{10,n} \end{bmatrix}$$

De la théorie vers la pratique

Télécharger le fichier (https://github.com/r-wenger/cours_m1-m2-OTG/blob/main/IA_geosciences_M2/CM/4_DL_Multicouches.ipynb) et l'importer sur Google Colab