2장, 사이킷런으로 시작하는 머신러링

신림프로그래머 최범균

프로세스 기초

- 프로세스
 - 1. 피처 처리
 - 2. 데이터 세트 분리
 - 3. 모델 학습
 - 4. 예측 수행, 평가

단순 예

```
iris = load_iris()
iris_data = iris.data # ndarray: (150, 4)
iris_label = iris.target # ndarray: (150, )
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                                                                          label
                   3.5
                                     1.4
                                                        0.2
5.1
                                                                          0
                                     1.4
4.9
                   3.0
                                                        0.2
4.7
                   3.2
                                     1.3
                                                        0.2
                                                                          0
```

```
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_label, test_size=0.2, random_state=11)
# X_train: ndarray: (120, 4), y_train: ndarray: (120, )
# X_test: ndarray: (30, 4), y_test: ndarray: (30, )

dt_clf = DecisionTreeClassifier(random_state=11)

dt_clf.fit(X_train, y_train) # 학습 수행

pred = dt_clf.predict(X_test) # pred: ndarray: (30, )

print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test, pred)))
```

사이킷 프레임워크

- Estimator
 - o 지도 학습(supervised learning)
 - 분류, 회귀
 - 비지도 학습
 - 차원 축소, 클러스터링, 피처 추출 등
 - 주요 메서드
 - 학습: fit()
 - 예측: predict()
- 하이퍼 파라미터 튜닝
- 데이터 셋

검증

• 과적합 방지 위해 교차 검증 사용

학습 데이터					테스트 데이터
학습	학습	학습	학습	검증	
데이터	데이터	데이터	데이터	데이터	
학습	학습	학습	검증	학습	
데이터	데이터	데이터	데이터	데이터	
학습	학습	검증	학습	학습	
데이터	데이터	데이터	데이터	데이터	
학습	검증	학습	학습	학습	
데이터	데이터	데이터	데이터	데이터	
검증	학습	학습	학습	학습	
데이터	데이터	데이터	데이터	데이터	

K Fold, Stratified Fold

- K Fold : 단순 분할
- Stratified Fold : 레이블(타겟) 분포를 고려한 분할
 - 레이블

cross_val_score()

```
scores = cross_val_score(dt_clf, data, label, scoring='accuracy', cv=5)

print('교차 검증별 정확도:', np.round(scores, 4))
print('평균 검증 정확도:', np.round(np.mean(scores), 4))
```

https://scikit-learn.org/stable/modules/model_evaluation.html

데이터 전처리

- 예측을 계산할 수 있도록 원본 데이터 변경
 - 데이터 인코딩
 - o null 처리 : 피처의 평균 등으로 대체
 - 제거 : 결과에 영향이 없는 피처 삭제
- 문자열 → 숫자
 - 레이블 인코딩 : 문자열 값 → 숫자
 - 원-핫 인코딩 : 문자열 값마다 피처 생성
 - 회귀 등 숫자에 따라 중요도가 결정되는 ML 알고리즘에 사용

분류	가격		분류	가격
TV	500,000		1	500,000
냉장고	3,000,000	,	2	3,000,000
TV	2,500,000		1	2,500,000

TV	냉장고	가격		
1	0	500,000		
0	1	3,000,000		
1	0	2,500,000		

피처 스케일링과 정규화

- 피처마다 값의 범위가 차이나면 ML 알고리즘 성능에 영향
 - $q: y = w0 \cdot x0 + w1 \cdot x1 + w2 \cdot x2 + \cdots + wn \cdot xn$
 - x0은 0~1사이 값, x2는 0~100, x3은 -1000~1000
- 표준화
 - 데이터 피처 각각이 평균이 0이고 분산이 1인 가우시안 정규 분포를 가진 값으로 변환
- 정규화
 - 서로 다른 피처의 크기를 통일하기 위해 크기를 변환
 - 즉, 개별 데이터의 크기를 모두 똑같은 단위로 변경
- 사이키런의 대표적인 피처 스케일링
 - ㅇ StandardScaler : 표준화
 - o MinMaxScaler : 정규화 (0~1)

타이타닉 예

- 데이터 탐색
- 피처 전처리
- 학습
- 평가
- 예측