

by Ron Zoscak

Recently, the local computer club held a "mini-show" to attract new members. The meeting room, at the shopping mall where we meet, was packed with people and machines. You couldn't move without bumping a return key. There were dozens of expensive machines playing Star Trek, Chess, and Star Wars. Printers spat out posters and calendars. Lights blinked, disc drives clicked, and cassette tapes turned. And there I sat with my 256 byte Elf II, suffering the snide REM statements of the TRS-80 and the LSI-11 on either side of me. Talk about frustration! You and I know that the 1802 is the best eight bit microprocessor around, and that an Elf II or Super Elf can do things in a quarter of a kilobyte that other machines need LK or more to do. But how do you explain that to someone who owns a 32K system with dual floppy drives and a line printer? By demonstrating an interesting . program, of course. Unfortunately, at that time my software library and my own programming abilities were rather limited. Now, although my software skills aren't up to writing neat display routines like those of Paul C. Moews in his graphics booklet, I have managed to write an interesting (in my opinion) alternate main program that runs concurrently with a relocated version of his 64 byte display routine.

This program displays a die on the video screen. Rolling of the die is accomplished by pressing and releasing the input button. Upon release of the input button, the low byte of register 9 is copied into the low half of register 6. Since register 9 is incremented once every interrupt while the screen is being refreshed, or approximately 61 times a second, it provides a pseudo random number in the range of 0 to 255 to determine when the die will stop. Because the screen is still being refreshed while the program waits for you to press the input button, the resulting roll will be a random one.

Before loading the program, it is necessary to clear memory. The high bytes of all registers in the program are set to 00 for expanded memory. Punch in the opcodes using the hex keypad. Be sure to load in the codes that occupy locations AO through DF, as these form the parts of the display that will not be changed by rolling.

Registers 0,1,2,5,C, and F are used by the display routine. Registers 3 and 4 are the program counters for the routines that cycle through the different die patterns and determine when to stop. Registers B,D, and E are used as pointers to the locations on the die face to be changed, and registers 8 and A, hold the patterns that will be written there. Registers 6 and 7 are used by the routine to determine when the die stops.

Page 2		ADDR CODE	COMMENT
Elf Dle Source List	-i n g	0078 D4	Go to subroutine
Registers Used: X=2 P=3 O≕DMA I=Interrupt	ŭ	0070 BA 5B 5E 007C D4 007D BA 1D 5D 2D 2D 5D	write pattern for four dots on die face Go to subroutine Write pattern for
2=Stack Pointer 3=Program counter 4=Subroutine 5.0=Used 6.0=Counter		0083 D4 0084 30 4C 0086 D3	six dots on die face Go to subroutine Go back, not time to stop yet Return from sub-
7.0≔Delay Counter 8.0≔Patterns		0007 14 04 30 00	routine
9.0=Keyboard Storage		0087 16 86 32 92	If time to stop, go to location 92
A.O=Patterns B=Pointer		008B A7 27 87 3A 8C	Not done: short delay
C.1=Used D=Pointer	*	0090 30 86	Go to 86 to return from subroutine
E=Pointer F≃Counter		0092 F8 43 A3 D3	Go to 43, hold present pattern, wait for next roll after resetting R4
ADDR CODE	COMMENT		to subroutine
0000 F8 12 A1 F8 3A A2 F8 3B 0008 A3 F8 04 BC F8 A0 A5 D3 0010 72 70 C4 22 78 22 52 9C 0018 AF 85 BF 91 B0 9F A0 19	This is a re- located version of the 64 byte dis- play routine by	ADDR CODE 00A0 E4 38 OF FF FF FF 00 00 00A8 84 20 OF FF FF FF 00 00	start
0020 30 25 9F A0 2F A0 8F 32 0028 2D 9F A0 30 22 9F A0 A0	Paul C. Moews, in his booklet "Pro-	00B0 E4 38 OF FF FF FF 00 00	
0030 9C 34 10 AF 80 BF 30 25	grams For The	00B8 84 20 0F FF FF FF 18 E7 00C0 E7 20 0F FF FF FF 14 44	
	Cosmac Elf Graphics". This routine is Copyright and re- printed with	OOC8 00 00 OF FF FF FF 14 47 OOD0 00 00 OF FF FF FF 14 44 OOD8 00 00 00 00 00 00 18 E7	
0039 through 34 pro word on the sta	permission.	Note from Editions	
0038 through 3A are used as the sta- interrupt routine	ck for the	Note from Editor:	
003B E2 69	SET X=2, Turn on TV	Register initialization	
003D F8 OF AA	Store Patterns that will be written	expanded systems. Super Monitouse the Execute option (00) at CADDR CODE ADDR	
0040 F8 FF A8	onto die face in registers 8 and A	00E0 93 00EB	B9
0043 F8 87 A4	Point register 4	00E1 B0 00EC 00E2 A0 00ED	
0046 3F 46 37 48	to subroutine Wait here till input button pressed and	00E3 B1 00EE 00E4 B2 00EF 00E5 B3 00F0 00E6 B4 00F1	BC 3D 3E
004A 89 A6	released Get byte from R9 to determine when	00E7 B5 00F2 00F3 00E9 B7 00F4 00F4	E3 70
004C F8 AB AB	to stop Point registers	00EA B8	
004F F8 BB AD	B,D, and E to first place on		
0052 F8 CB AE	lines on die face where patterns	0000 F812 A1F8 3AA2 F83B A3F8 04	BC F8AO A5D3
0055 88 5B 1B 1B	will be written Write pattern for one dot on die	0010 7270 C422 7822 529C AF85 BF 0020 3025 9FA0 2FA0 8F32 2D9F A0 0030 9C34 10AF 80BF 3025 8723 FF	30 229F A0A0
0050 50 50 10 10 50 55 45 45 55 55 55	face	0040 F8FF A8F8 87A4 3F46 3748 89 0050 BBAD F8CB AE88 5B1B 1B5B 5D	
0059 58 50 1D 1D 5D 5E 1E 1E 5E 2D 8 0065 D4	Go to subroutine	0060 1E5E 2D8A 5DD4 8A5B 2E2E 5E	D4 2828 8A5B
0066 8A 5B 2E 2E 5E	Write pattern for three dots on dle	0070 1E1E 5ED4 885D 5B5E D48A 58 0080 2D2D 5DD4 304C D316 8632 92	A7 2787 3A8C
006B D4	face Go to subroutine	0090 3086 F843 A3D3 0000 0000 00 00A0 E438 OFFF FFFF 0000 8420 OF	FF FFFF 0000
006C 2B 2B 8A 5B 1E 1E 5E	Write pattern for	00B0 E438 0FFF FFFF 0000 8420 0F 00C0 E720 0FFF FFFF 1444 0000 0F	
0073 D4 0074 88 5D 5B 5E	five dots on die face Go to subroutine Write pattern for	0000 0000 0FFF FFFF 1444 0000 00 00E0 93B0 A0B1 B2B3 B4B5 B6B7 B8 00F0 BEBF E370	00 0000 18E7
	two dots on die		

face

NIM

by Richard Moffie

This is one version of an ancient game where play begins with a pile of objects (21 or 15 hex in this listing — it can be changed by putting the desired starting number in byte 05), and two players alternate removing 1, 2 or 3 from the pile. The object is to defeat your opponent, the computer, by removing the last object from the pile. The game is played in hex, and is one way to learn hex codes.

Play begins with the computer displaying the starting number and you get the first move. If you make an illegal move, anything besides l, 2 or 3, the computer will display EE- for Error and loop back for you to make a valid move. When you do, it is subtracted from the pile and checked to see if you won the game (0 left). If so, the Q light is turned on and the computer stops. To play again, press Reset and Go. If you haven't won, there is a delay loop for you to see the result of your move and to give the impression the computer is trying to "think" of its next move. The computer then makes its move, and checks to see if it won. If so, FF is displayed and you lose the game. If not, the program loops back for your next move.

It's really best not to know how the computer makes its moves, since once you know how to win, there isn't much fun to the game, unless you wish to see friends beaten by your computer. However, if you really want to know, here are the details:

If the computer (or you) move so that after your move, there is a multiple of 4 left in the pile, you can continue reducing the pile by a multiple of 4 on each successive move until there are only 4 left in the pile. Then if your opponent removes 1, you take 3 and win. If he takes 2, you take 2 and win, and if he takes 3, you take I and win. The computer moves by anding the pile with FC hex so that the last two bits are 00 (for example if pile = 09=00001001, 00001001 and 11111100 = 00001000 =8) This will always be a multiple of 4, however if the pile was already a multiple of 4, the computer hasn't subtracted anything, so it will make a move of subtracting 1 (on the basis that the less it removes from the pile, the more turns it will have to try and win later). If there were less than 4 left, when the computer gets to move, the game is over with the computer winning, and if not the game continues.

It is really amazing to me that all this logic by the machine can be a part of a program which in its entirety needs only 66 bytes.

JINGLE BELLS????

We at Questdata realize it's a little early to be thinking about Christmas, but it does seem to "pop up" before you know it. Therefore, this is a little reminder, to all you creative geniuses, that we need "holiday type" programs. We need them in the near future in order that we may review them for publication.

Many thanks,

QUESTDATA STAFF

```
Registers Used:
     X=3
     P=0
     0=PC
     1=Delay Counter
     3=SP
     4.0=Computer's move
```

Nim Game Listing

ADDR CODE	COMMENTS
0000 30 42 A3 E3	Stack pointer
0004 F8 15	Change byte 05 for diff. number
0006 53 64	Display number
0008 3F 08 37 0A 6C	Get move
000D 32 3A	OGT MOTE
000F FF 0A 33 3A	Check for valid input
0013 F0 23 F5 53	Subtract move
0017 64 32 38	Sub it det move
001A F8 B0 B1	Dolay - change buts 18 for diff
001D 21 91 3A 1D	Delay - change byte 1B for diff.
0021 23 FO FA FC	delay
0025 A4 F5 3A 35	Computer makes its move
0029 FO FF 01	
0020 53 3B 31	Chook for and at annual
002F 3A 06	Check for end of game
0031 F8 FF 30 06	Display FF
0035 84 30 2C	Display FF - you lose
0038 78 00	Display 00 t top 0
003A E0 64 EE E3	Display 00 & turn Q on - you win
	Display EE - invalid move
003E 30 08 0040 00 00	01. (
0040 00 00	Stack area
0042 F8 00	Get 00 for high bytes of:
0044 83	R3 and
0045 B4	R4
0046 F8 41	Get 41 for stack pointer
0048 30 02	Branch
0000 7040 4757 5015 (77/4 7500 7761 7070 7455
	5364 3F08 370A 6C32 3AFF
	5364 3238 F880 B121 913A
0020 1D23 FOFA FCA4 F	53A 35F0 FF01 533B 313A

0020 1D23 F0FA FCA4 F53A 35F0 FF01 533B 313A 0030 06F8 FF30 0684 302C 7B00 E064 EEE3 3008 0040 0000 F800 B3B4 F841 3002

> QUESTDATA P.O. Box 4430 Santa Clara, CA 95054

PublisherQuest Electronics EditorPaul Messinger Assistant to Editor ...Jeanette Johnson Associate EditorAllan Armstrong Contributing Editors Ron Cenker Van Baker Art and GraphicsHolly Olson Proof ReadingJudy Pitkin ProductionJohn Larimer

CirculationSue Orr

The contents of this publication are copyright and shall not be reproduced without permission of QUESTDATA. Permission is granted to quote short sections of articles when used in reviews of this publication. QUESTDATA welcomes contributions from its readers. Manuscripts will be returned only when accompanied by a self addressed stamped envelope. Articles or programs submitted will appear with the authors name unless the contributor wishes otherwise. Payment is at the rate of \$15 per published page. QUESTDATA exists for the purpose of exchanging information about the RCA 1802 microcomputer.

MODS FOR VIO TEXT COITOR RELEMBSSEND OND

by Ivan Dzombak

For only twenty dollars, you can have a text editor and disassembler running on your very own SUPER ELF. Of course, your first reaction is "But Stiv, you williild and craaaaaaazzy programmer! How is this possible?!" Well, I'll tell you. A man named Tom Swan has written a 160 page booklet called Pips for Vips. This booklet contains programs written for the VIP. Among these programs are a text editor and a disassembler, both of which can be easily modified to run on the SUPER ELF (or ELF II, for that matter). No video board is necessary, because both programs contain a high-resolution character generator with full ASCII character set. A minimum of 3K of RAM is necessary, and an ASCII keyboard makes the text editor much more practical (routines for both ASCII and hex are included).

To use these great programs, they must first be handloaded (boo, hiss!); a tape is provided with the book, but this tape is in the VIP format. Next, load the character set and lookup tables (disassembler only). The format of these tables is discussed at length in the manual; the mnemonic lookup table is very flexible, in that the user can specify his own mnemonics (the table in this article conforms to RCA convention). The ASCII character set is also user definable. The manual contains excellent documentation for these programs, and it shows how and where to place the various tables. The text editor has 21 functions available to the user; they are:

KEI	FUNCTION
8	Cursor left
9	Cursor right
A	Scroll up
В	Scroll down
С	Control select
D	Carriage return
E	Cursor up
F	Oursor down

NOTE:

The booklet and tape (PIPS FOR VIPS) cost \$19.95 together, or only \$14.95 for the book alone. Send your order to:

ARESCO
P.O. Box 1142
Columbia, MD
21044

I	ŒYS	FUNCTION
	C/0	Escape
	Ċ/1	Page back
	C/2	Page forward
	C/3	Show page "N"
	C/4	Cursor on/off
	C/5	Reverse video
	-,-	(black on white, wh on bl)
	C/6	Insert line
	C/7	Delete line
	c/8	Available for expansion
	c/9	Available for expansion
	C/A	Erase text buffer
	C/B	·
	C/C	Tape read (see note)
	C/D	Home cursor
	•	Erase to end of line
	KEY	FUNCTION
	C/E	Erase to end of page
	C/F	Tape write (see note)
The	-, -	has seven functions; they are:
	answerent CT	the seven runctions, they are:

FUNCTION
Page forward
Show from
"Start from" address
Write byte
Tape read/write (see note)
Add table entry

Note that the tape read/write routines will not work; this is because there are too many different monitors in use, and it would be almost impossible to include all of them here. The best way to effect cassette read/write is to reset and jump to the monitor.

These two programs are very useful (this article was composed with the text editor), and they are definitely worth the relatively small investment. Also included in the book are a few good CHIP-8 programs; note, however, that these will not run without modification to the Moews CHIP-8 interpreter (but it is possible). These other programs are:

CHIP-8 Program Editor Character Designer Messenger (display ASCII text in CHIP-8 programs) Space Wars (high resolution) Surround (high resolution game)

Text Editor and Disassembler Listing

		•		
		DITOR MODIFICATIONS	. DDD	DISASSEMBLER MODIFICATIONS
ADDR	CODE	COMMENT	ADDR 0000	CODE COMMENT F8 OC Initialize display pointer
0000	F8 0C	Load display page into	0000	F8 OC Initialize display pointer BB to top 4 pages
0000	10 00	RB.1	0036	00 New address for keyboard input
	88			routine
0029	00 (03)	Change location of input	0039	44 New address for keyboard
		routine		input routine
		(00 for ASCII kbd, 03 for		
0000	E1 (E1)	hex input)	****	***** HEX INDIT BOILINE *********
002C	51 (E1)	Change location of input routine	ADDR	***** HEX INPUT ROUTINE ************************************
		(51 for ASCII kbd, E1 for	0043	D3 Return
		hex input)	0044	E2 Set X to 2
0030	FD 07	Change subtract instruction	0045	3F 45 Wait for INPUT
		so iť doesn't reference	0047	37 47 Wait for INPUT release
		R(X)	0049	6C Get hex Input
	C4	NOP to use space	004A	FA OF AND with OF hex to strip
		,	004C	off high order nybble AF Put into RF.0
*****	ASC11 INPUT	. DULINE ******	004D	30 43 Branch back to return
ADDR	CODE	COMMENT		
0050	D3	Return		
0051	F8 00	Initialize input pointer	****	******** FNO INPIT BOILTINE ***********
0053	BF		ADDR	******* END INPUT ROUTINE ************************************
0054	F8 7A		01EC	00 New address for keyboard
0056 0057	AF EF	Set X to F	0.60	input routine
0057	31 6F	If Q on, branch to get	01EF	44 New address for keyboard
0000	31 01	second half of ASCII input		input routine
		from keyboard	O1FA	3F 3F 3F 00 ASC11 data for error
005A	36 60	Branch if EF3 active	0240	message "???" O1 New address for error
0050	37 6A	Branch if EF4 active	024D	01 New address for error message
005E	30 5A CODE	If not, do it again	ADDR	CODE COMMENT
ADDR	CODE	COMMENT		
0060	7B	It's ASCII, so set Q	0250	FA New address for error
0061	6F	Get input		message
0062	F6 F6 F6 F6	Shift right to get high	0207	01 New address for keyboard
		order nybble	02CA	input routine 44 New address for keyboard
0066	FA OF	And with OF	V2011	input routine
0068 006A	30 50 37 6A	Branch to return Wait for "input" release		
006C	6C	Get hex input		MNEMONIC LOOKUP TABLE
006D	30 66	Go and strip off high order	ADDR	CODE ADDR CODE
		nybble	0000	. 05 10 11 15 15 0001 55 55 11 15
006F	OF	Since Q was already set,	0800	OF 4C 44 4E 00 0891 F5 53 44 00 4F 4C 44 41 00 FD 53 44 49 00
		just get low order nybble		F0 4C 44 58 00 75 53 44 42 00
0070	E4 0E	of ASCII byte in M(R(F)) Strip off high order nybble	080F	72 4C 44 58 41 00 089F 7D 53 44 42 49 00
0070 0072	FA OF 7A	Reset Q		F8 4C 44 49 00 F7 53 4D 00
0073	30 50	Branch to return		5F 53 54 52 00 FF 53 4D 49 00
			081F	73 53 54 58 44 00
				1F 49 4E 43 00 08B3 7F 53 4D 42 49 00 2F 44 45 43 00 30 42 52 00
******	HEX INPUT		082F	2F 44 45 43 00 30 42 52 00 60 49 52 58 00 32 42 5A 00
ADDR 03E0	CODE D3	COMMENT Return		8F 47 4C 4F 00 08C1 3A 42 4E 5A 00
03E1	F8 03	initialize input pointer		AF 50 4C 4F 00 33 42 44 46 00
00E 3	BF	THIT ISTIZES THE POTTIVE		9F 47 48 49 00 3B 42 4E 46 00
00E4	F8 FF		0843	BF 50 48 49 00 08D0 31 42 51 00
00E6	ĄF			F1 4F 52 00 39 42 4E 51 00
00E7	EF	Set X to F	0851	F9 4F 52 49 00 34 42 31 00 F3 58 4F 52 00 3C 42 4E 31 00
00E8 00EA	3F E8 37 EA	Wait for INPUT Wait for INPUT release	0021	FB 58 4F 52 49 00 08E2 35 42 32 00
00EC	6C	Get hex input		F2 41 4E 44 00 3D 42 4E 00
OOED	FA OF	Strip off high order nybble	0861	FA 41 4E 49 00 36 42 33 00
. 00EF	5F	Put low order nybble into		F6 53 48 52 00
		M(R(F))	0071	76 53 48 52 43 00 55 53 48 40 00
00F0	30 E0	Branch to return	0871	FE 53 48 4C 00 7E 53 48 4C 43 00
				F4 41 44 44 00
			0881	FC 41 44 49 00
•				74 41 44 43 00
				7C 41 44 43 49 00

#.

_			·
ADDR	CODE		
08EF	3E 42 4E 33 00 37 42 34 00	0940	C7 4C 53 4E 46 00 CD 4C 53 51 00
0902	CO 4C 42 52 00 C2 4C 42 5A 00 CA 4C 42 4E 5A 00	0951	C5 4C 53 4E 51 00 CC 4C 53 49 45 00 00 48 41 4C 54 00 C4 4E 4F 50 00
091E	C3 4C 42 44 46 00 CB 4C 42 4E 46 00 C1 4C 42 51 00 C9 4C 42 4E 51 00	0962	DF 53 45 50 00 EF 53 45 58 00 78 53 45 51 00 7A 52 45 51 00
092F	38 53 4B 50 00 C8 4C 53 4B 50 00 CE 4C 53 5A 00 C6 4C 53 4E 5A 00	0981	78 53 41 56 00 79 4D 41 52 4B 00 70 52 45 54 00 71 44 49 53 00
	CF 4C 53 44 46 00		61 49 4E 50 00 6F 4F 55 54 00
	ARGUMEN	IT ŁOOKUP	
ADDR COI 09C0 F8 09D0 36 09E0 C9	F9 FA FB FC FD FF 70 37 39 3A 3B 3C 3D 3E		
ADDR	ASC11 CHARACTE	R SET (at	OAOO for 4K) CODE
0A00	All O's	0B38	57 77 50 00 N 75 55 70 00 0
	00 00 00 00		75 74 40 00 P
0880	00 00 00 00 sp 11 11 01 00 !		25 55 21 00 0 65 65 50 00 R
	55 00 00 00 " 5F 5F 50 00 #	0850	74 71 70 00 S 72 22 70 00 T
	23 63 62 00 \$ 51 24 50 00 \$		55 55 70 00 U 55 55 20 00 V
0A9C	24 25 70 00 & 44 00 00 00 '		55 77 20 00 W 55 25 50 00 X
3,150	24 44 20 00 (00.00	55 22 20 00 Y
- 8AA0	42 22 40 00) 52 50 00 00 *	0B68	71 24 70 00 Z 64 44 46 00 [
	02 72 00 00 + 00 00 44 80 ,		44 21 10 00 \ 62 22 26 00 1
	00 70 00 00 - 00 00 44 00 •	aussas	25 22 20 00 A 00 00 00 F0
0.400	11 24 40 00 /	cursor 0B80	42 00 00 00 T
0AC0	25 55 20 00 0 26 22 70 00 1		61 35 30 00 a 44 75 70 00 b
	71 74 70 00 2 71 71 70 00 3		00 74 70 00 c 11 75 70 00 d
	55 71 10 00 4		25 64 30 00 e
0908	74 71 70 00 5 74 75 70 00 6	0898	25 46 40 00 f 00 25 31 60 g
	71 24 40 00 7 75 75 70 00 8		44 75 50 00 h 20 22 20 00 i
	75 71 60 00 9		10 11 15 20 j
	44 04 40 00 : 44 04 48 00 ;	08B0	44 56 50 00 k 62 22 70 00 l
09F0	12 42 10 00 < 07 07 00 00 =	-	05 77 50 00 m
	42 12 40 00 >		00 75 70 00 a
	25 12 20 20 ? 35 25 30 00 @		00 75 74 40 p 00 75 71 10 g

HEX TO DECIMAL

by Paul J. Grech

A recent program I wrote involved converting Hexadecimal numbers to decimal. I would enter the data and convert to decimal as part of the main program. This, of course, slowed down the main program and occupied a lot of memory space.

I have thought of another way to convert Hex to Decimal and I would like to share it with you and perhaps your Questdata subscribers.

The following program will convert up to FF. It can also be modified slightly to do opposite

conversions.

Registers Used:

X=2 P=0

0≠rogram Counter 1≃Hex Number 2=Decimal Output

ADDR 10 11 13 14 16 17 19 1A 1B 1D 1E 1F 21 22 24 26	DATA 90 81 B2 E2 F8 OF A1 F8 30 A2 81 32 29 21 02 FC 01 52 FD OA 3A 17 73	COMMENT Get RO.O. Set up R1 & R2. Sox. LD1 OF - Hex #. Put R1.O. LD1 - 25 - Decimal Put R2.O. Get R1.O. BZ Dec R1. LDN. AD1 - 01. STR. SD1 - OA. BNZ. STRX.
		•

0010 90B1 B2E2 F8FF A1F8 30A2 8132 2921 02FC 0020 0152 FD0A 3A17 7330 1E7B 00

NOTE:

00 75 71 10 q

00 74 40 00 r

00 32 60 00 s

22 72 30 00 t 00 55 70 00 u

00 55 20 00 v

00 57 70 00 w

00 52 50 00 x 00 55 71 70 y

00 72 70 00 z

24 22 10

00 00 4F 40 de1

22 20 22 20

00 42 21 22 40 00 63 00

DATA

12

0BC8

OBCC

ADDR

0BE0

0BF8

Locations 002E-0030 must be set to 00! The program receives hex input at location 0015 and outputs decimal at 002E-0030. (Use 30 10 at 0000 to run it).

35 25 30 00 @

25 75 50 00 A

65 65 60 00 B

74 44 70 00 C

65 55 60 00 D

74 64 70 00 E

74 64 40 00 F

55 75 50 00 H 72 22 70 00 H

11 15 20 00 J

55 65 50 00 K

44 44 70 00 L

57 75 50 00 M

75 50 00 H

70 00 G

74 45

0808

0B20

ELF 10 BASSETTE

by Van C. Baker

The routine whose hex listing appears below can be used by non-Elf II users to read cassette tapes generated by the Elf-II cassette driver. To use the routine, load the program into memory, noting that it may be located beginning on any page boundary. Also note that location XXOI (where "XX" represents the page number) must contain the byte defining the page in which the routine is located. The program listed below, for example, runs in page zero, hence, byte OOOI is "OO".

The program assumes flag line EF3 is used for the cassette serial input; if your system differs from this convention, patch in the appropriate EFn conditional branch instructions at XX45,XX4C,XX5C,XX95,XX9C,XXA9,XXBA and XXBC.

To use the program, proceed as follows:

- Execute the program using your monitor or other means. It does not matter what register is the program counter when the program is entered.
- Note that "AA" will be displayed on the hex display. Enter the high byte of the starting address into which the tape contents are to be loaded. Press the "I" key on the hex keypad.
- 3. Enter the low byte of the starting address. Press the "I" key.
- 4. Enter the high byte of the end address. Press the "T" key.
- Enter the low byte of the end address.
 Press the "I" key.
- 6. Enter file number to be read (01-FF). Press the "I" key.
- 7. Start the recorder (on playback).

As the tape advances, the current file number being skipped (if the file entered in 6 was greater than 1) will be displayed until the requested file is reached. As the contents of the tape are being loaded into the requested memory locations, the hex display will rapidly flicker. When the tape has been read, "AA" will appear on the hex display. At this point, you may load another tape by proceeding with step 2 above. Use caution not to load tape data over the cassette read program itself!

TAPE BEADER

If "EE" should appear on the display while the tape is being read, it indicates that a read error (e.g., a parity error) occured. The address of the byte at which the error occured can be determined by examining locations XXFE and XXFF (High and low address bytes, respectively). To recover from a read error, press the "I" key and proceed from step 2 above.

ELF II CASSETTE LOAD ROUTINE

BY V C BAKER

* THIS ROUTINE READS A STANDARD "ELF II * MONITOR" CASSETTE, LOADING THE DATA * INTO USER-DESIGNATED MEMORY AREA.

TO USE:

0000

0000;

0000;

0000;

0000 ;

0000

0000

0000

0000;

0000;

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

റററവ

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000;

0000;

(1) LOAD THE FOLLOWING ROUTINE INTO MEMORY. ALTHOUGH THE ROUTINE LISTED HERE STARTS AT 0000 (HEX), IT MAY BE LOCATED ANYWHERE AS LONG AS IT BEGINS ON A PAGE BOUNDARY, I.E., AT XX00. PATCH IN THE ACTUAL PAGE NUMBER AT BYTE XX01.

- (2) EXECUTE THE PROGRAM USING ANY REGISTER FOR THE PROGRAM COUNTER.
- (3) WHEN "AA" IS DISPLAYED ON THE HEX DISPLAY, ENTER THE FOLLOWING, USING THE HEX KEYPAD:
 - (A) HIGH BYTE (MSH) OF STARTING ADDRESS INTO WHICH TAPE CONTENTS IS TO BE LOADED.
 - (B) PRESS THE "I" KEY.
 - (C) LOW BYTE (LSH) OF STARTING ADDRESS.
 - (D) PRESS THE "I" KEY.
 - (E) HIGH BYTE OF END ADDRESS
 - (F) PRESS THE "I" KEY.
 - (G) LOW BYTE OF END, ADDRESS
 - (J) PRESS THE "I" KEY.
 - (K) FILE NUMBER
 - (L) PRESS THE "I" KEY.

QUESTDATA COSMAC CLUB

P.O. Box 4430, Santa Clara, CA 95054

```
START THE RECORDER ON PLAYBACK.
0000;
                 (4)
                                                                ADDR CODE
                                                                              LABEL
                                                                                       OPCODE OPERAND COMMENT
0000;
                                                                001D F8 AA
                                                                              BEGIN:
                                                                                       LDf
                                                                                                        ; Load "AA"
                                                                                               #AA
0000
                  (5) AS THE TAPE IS READ, ITS CONTENTS
                                                                                               R2
                                                                001F
                                                                     52
                                                                                       STR
                                                                                                          Store it
0000
                 WILL BE LOADED INTO THE DESIGNATED
                                                                0020 64
                                                                                       OUT
                                                                                               Δ
                                                                                                          Output it.
0000
                 MEMORY LOCATIONS.
                                                                0021
                                                                                               R2
                                                                                       DEC
                                                                                                        ; Reposition SP.
                 NOTE THAT CAUTION MUST BE USED
0000
                                                                0022
0000
                 TO ASSURE THAT THE CASSETTE ROUTINE
                                                                0022
                                                                                       * GET STARTING ADDRESS FROM
                  ITSELF IS NOT WRITTEN OVER AS THE
0000
                                                                0022
                                                                                       * KEYPAD
0000
                 TAPE IS LOADED!
                                                                0022
                       IF FILE 2 OR GREATER WAS
                                                                0022 D5
0000
                                                                                       SEP
                                                                                               R5
                                                                                                        ; Get MSH of
0000
                 IN STEP 3-K. THE CURRENT FILE NUMBER
                                                                0022
                                                                                                        : address
                 BEING SKIPPED WILL BE DISPLAYED UNTIL
                                                                0023 BE
0000
                                                                                       PHI
                                                                                               RE
0000
                 THE REQUESTED FILE IS REACHED.
                                                                0024 D5
                                                                                       SEP
                                                                                               R5
                                                                                                        ; Get LSH
                                                                0025 AE
                                                                                       PLO
                 DISPLAY WILL FLICKER AS THE TAPE IS
0000
                                                                                               RΕ
                                                                                                          Start address in
0000
                 BEING READ.
                                                                0025
                                                                                                        ; RE.
0000
                                                                0026
                  (6) WHEN THE TAPE HAS BEEN SUCCESS-
0000
                                                                0026
                                                                                       * GET ENDING ADDRESS FROM KEYPAD
                                                                              ;
                 FULLY READ, "AA" WILL APPEAR ON THE
                                                                0026
0000
                 HEX DISPLAY. IF "EE" APPEARS, A READ ERROR OCCURED (E.G., A PARITY ERROR). TO RECOVER FROM THE ERROR, REWIND THE
                                                                0026 D5
                                                                                       SEP
                                                                                               R5
                                                                                                        ; Get MSH of end
0000
                                                                0026
                                                                                                          address.
0000
                                                                0027 73
                                                                                       STXD
0000
                                                                                                          Save it.
                 TAPE, PRESS THE "1" KEY, AND START
                                                                0028 D5
                                                                                       SEP R5
                                                                                                          Get LSH of end
0000
                                                                0028
0000
                 OVER FROM STEP 3.
                                                                                                          address.
                                                                0029
                                                                     52
                                                                                       STR
                                                                                              R2
0000
                       THE ADDRESS OF THE BYTE BEING
                                                                                                          Save it,
                                                                                                                   too.
                                                                002A
                                                                                       * CALCULATE NUMBER OF BYTES
0000
                 READ WHEN THE ERROR OCCURRED CAN BE
                                                                002A 8E
                                                                                       GLO
                                                                                              RE
0000
                 DETERMINED BY INSPECTING MEMORY
                                                                002B F5
                                                                                       SD
0000
                 LOCATIONS XXFE (FOR THE HIGH BYTE OF
0000
                 ADDRESS) AND XXFF (FOR THE LOW BYTE).
                                                                002C A6
                                                                                       PŁ0
                                                                                               R6
                                                                                                         Low half of
                                                                002C
0000
                                                                                                          number of bytes
                                                                002D 9E
                                                                                       GHI
                                                                                              RÉ
0000
                                                                002E 60
                                                                                       1RX
                                                                002F
                                                                     75
                                                                                       SDB
                                                                                                         High half of
ADDR CODE
              LABEL
                       OPCODE OPERAND COMMENT
                                                                002F
                                                                                                        ; number of bytes
                               #0000
                                        ; Start of program
0000
                       ORG
                                                                0030 B6
                                                                                       PH
                                                                                               R6
              START:
                               #0000
0000
                       EQL
                                                                0031 3B 81
                                                                                       ВМ
                                                                                               ERR
                                                                                                        ; Error if
              ONECT:
                       EQL
0000
                               #0000
                                        ; One-bit timing
                                                                0031
                                                                                                        ; negative address
0000
                                          value
                                                                0033
              LDRCT:
                                         Leader one's
0000
                       EQL
                               #000A
                                                                0033
                                                                                       * GET FILE NUMBER FROM KEYPAD
0000
                                        ; timing
                                                                0033
0000
                                                                                                        ; Get file number
                                                                0033 D5
                                                                                       SEP
                                                                                               R5
0000
                                                                0033
                                                                                                          (1-FF).
0000 F8 00
              GO:
                       LDI
                               START
                                        ; Load page number
                                                                0034 A4
                                                                                       PL<sub>0</sub>
                                                                                               R4
                                                                                                        ; Save in R4.
0002 B3
                                         for this routine
                       PH:
                               R3
                                                                0035
0003 F8 07
                       LDI
                               INIT
                                          Initialization
                                                                0035
                                                                                       * SET TIMING VALUE FOR A ONE BIT
                                        ; address
0003
                                                                0035
                       PLO
                               R3
0005 A3
                                                                0035 F8 0D
                                                                                       LDI
                                                                                               ONECT
                                          SEP to PC = R3
0006 D3
                       SEP
                               R3
                                                                                                        ; "1" timing value
                                                                0037 B9
                                                                                       PHI
                                                                                              R9
0007 93
                                          Initialize
              INIT:
                       GHI
                               R3
                                                                0037
                                                                                                         in R9.1
0007
                                          registers.
                                                                0038
0008 BB
                       PHI
                               RB
                                          RB = BOTM2 PC
                                                                0038
0009 B8
                       PH1
                               R8
                                          R8 = DI PC_{\bullet}
                                                                0038 F8 00
                                                                                       LDI
                                                                                               #00
                                                                                                        ; Initialize
                                         R6 = ERR PC.
000A B6
                       PHI
                               R6
                                                                8800
                                                                                                        ; current file no.
000B B5
                       PHI
                               R5
                                         R5 = HEXIN PC.
                                                               003A
000C B2
                       PHI
                               R2
                                          R2
                                             = STACK
                                                                003A
                                         POINTER
000C
                                                               003A 52
                                                                              FTST:
                                                                                       STR
                                                                                              R2
                                                                                                        ; Save current
000D
                                                                003A
                                                                                                          file number
0000
                                                                0038 64
                                                                                       OUT
                                                                                               4
                                                                                                         Display it.
000D
                                                                003C 22
                                                                                       DEC
                                                                                              R2
000D F8 71
                       LDI
                               BOTM2
                                        : BOTM2 address
                                                                003D 84
                                                                                       GLO
                                                                                              R4
                                                                                                          Get requested
000F AB
                       PLO
                               RB
                                                                003D
                                                                                                          file number
0010 F8 91
                       LDI
                               D1
                                        ; DI address
                                                                003E F3
                                                                                       XOR
                                                                                                          Check if equal
0012 A8
                       PLO
                               R8
                                                                003E
                                                                                                          to current.
0013 F8 81
                       LD1
                               ERR
                                        ; ERR address
                                                                003F 32 5C
                                                                                       ₿Z
                                                                                               RDF
                                                                                                          Branch if so.
0015 A6
                       P!0
                               R6
                                                                0041
0016 F8 FF
                       LD1
                               #FF
                                        ; Stack at XXFF
                                                                                       * CHECK FOR LEADER
                                                                0041
0018 A2
                       210
                               R2
                                                                0041
                                        ; SP = R2
0019 E2
                       SEX
                               R2
                                                                0041 F8 0A
                                                                                       LDI
                                                                              LDFND:
                                                                                               LDRCT
                                                                                                          Load test value
                                        ; HEXIN address
001A F8 78
                       LDI
                               HEX IN
                                                                                                          for leader.
                                                                0041
001C A5
                       PLO
                               R5
                                                                0043 B7
                                                                                       PHI
                                                                                               R7
                                                                                                          Save in R7.1
001D
                                                                0044 DB
                                                                              OZTST:
                                                                                       SEP
                                                                                               RB
                                                                                                          Check for abort
0010
                       * BEGIN MAIN PROGRAM
                                                                0044
                                                                                                          (BOTM2)
001D
                                                                0045 36 44
                                                                                       В3
                                                                                              OZTST
                                                                                                          Find data pulst
001D
                                                                0045
                                                                                                          transition
                       * DISPLAY "AA" ON LED'S
001D
```

001D

ADDR	CO	DE	LABEL	OPCODE	OPERAND	COMMENT	ADDR	CODE	LABEL	OPCODE	OPERAND	COMMENT	
0047	99			GHI	R9	; Test pulse		3F 70	BOTM2:	BN4	BTMRET	; Return if I-key	
0047 0048	FF	01	PTIM:	SMI	#01	; width	0071	37 73	WAIT:	B4	WAIT	; is not in ; Software "De-	<u> </u>
0048	'	01	1 1 1 1114	SM I	#UI	; is it too long ; for a one?	0073		MAIL;	₽₩	MALL	; Bounce" step.	
004A				BNF	ZER	; JMP if so.		30 00	1	BR	GO	; Abort. Start	
004C 004C	3E	48		BN3	PTIM	; Else loop till	0075 0077					; ali over	
004E	97			GH I	R7	; pulse is over. ; This bit is a	0077		,*****	****	******	**********	
004E						; "I". Count the	0077		,*****	******	*****	*************	
004F 004F	32	44		BZ	OZTST	; Ones fill LDRCT	0077 0077		*****	HEXIN	ROUT INF	HEX KEYPAD INPUT	
0051			;			; of them are ; found. (Verify	0077		į			HEX NETT HE INTO	
0051			•			; leader located.)	0077		HEXRET: HEXIN:		R3	; Return	
0051 0052		44		DEC BR	R7 OZTST		0078	3F 78	HEV IN:	BN4	HEXIN	; wait for l-key ; in,	
0054			ZER:	GHI	R7	; The received bit	007A			INP	4	; Get input byte	
0054						; must be a "O".	0078 ADDR	CODE	LABEL	OUT	4 OPERAND	; display it COMMENT	
0055 0055	3A	41		BNZ	LDFND	; is leader done ; vet?		37 7C		B4	WAIT2	; Wait till key	
0057	02			LDN	R2	; Yes. Increment	007C 007E	22		DEC	00	; released	
0057	F.C.	Λ1		ADI	#01	; file counter and		30 77		DEC BR	R2 HEXRET	; return	
0058 0058	FU	UI		ADI	#01	; then go check : file number to	0081		*****	*****	******	*******	
0058						; see	0081 0081		*****	*****	******	************	
005A 005A	30	3A		BR	FTST	; it is the one	0081		*****	ERR ROI	UTINE I	ERROR "PROCESSOR"	
005C			;			; requested.	0081		;			2111011	
005C			;	* REQUE	STED FIL	E FOUND	0081 0083	F8 EE	ERR:	LD! STR	#EE R2	; Load "EE"	
005C 005C	35	50	; RDF:	DNIX	RDF	. Wait for and of	0084			OUT	4	; Display "EE"	
005C	JE	X	RUF:	BN3	RUF	; Wait for end of : leader bit.	0085			DEC	R2	, ,	
005E			;			•	0086 0086			GLO	RE	; Get low address	
005E 005E			;	* CET I	IP FOR DA	TA READ	0087			STXD		; byte	
005E			;	JET C	, i ÇIK DA	IIN NEAD	0088	9E		GHT	RE	; Get high address	
005E	26		CNTSET;	DEC	R6	; Set up byte	0088 0089	52		STR	R2	; byte ; Save error	_
005E 005F (96			GH I	R6	; counter ; so that when	0089			37.1	\\ L	; address on stack	_
005F				OIII	110	; R6.1 = 0,		3F 8A	LOOP:	BN4	LOOP	; Loop "Till I-key	
0060 1	FC	01		ADI	#01	; all bytes have	008A 008C	37 8C	L00P2:	B 4	LOOP2	; is pressed.	
0060 0062 (36			PHI	R6	; been read.	008E	3000		BR	GO	; Start all over	
0063			;				008E 0090		. *****	******	******	; again	
0063 (0064 :			RDOPT:		R8 RE	; read a data byte : store it in	0090		****	****	******	*****	
0064				J11X	174	; memory	0090		;* *** *	DI ROUT	INE REA	AD A BYTE FROM TAPE	
0065	1 E			INC	RE	; increment memory	0090 0090	DB	; DIRECT:	SEP	RB	; Test for abort	
0065 0066 8	RF			GLO	RE	; address	0090			JL1	110	; and return	
0067					R2		0091 0093	F8 08	DI:	LDI	#08	; Set up counters	
0068 6 0068	54			OUT		; Display low-	0093			PLO PLO	R7 R9		
0069 2	22			DEC		; order address. ; Reposition SP		36 95	LHTRAN;		LHTRAN	; Wait for end of	
006A			;			,	0095 0097		_			; current ; High input level	
006A 006A			;	* CHECK	IF FINI	SHED	0097	99	;	GHI	R9	: Test for bit	
006A	26		,	DEC	R 6	; Decrement byte	0097	cc 01			# D.4	; value.	
006A						; counter		FF 01 3B A1	BTST:	SM I BNF	#01 AHZER		
0068 9 0060 3		63			R6 RDOPT	; Loop back if not	0090	3E 98		BN3	BTST		
006C				DIVE		; done	009E 009E	27	;	050	0.7		
006E 3	30	1D		BR		; Else, go display		30 AB		DEC BR	R 7 DNCHK	: Got a "1" bit.	
006E 0070						; "AA".	00A 1	F8 00		LDI	#00	; Got a zero bit.	
0070			;				00A1	FC 01	TLTST:	AD!	#01	; Test	
0070			**************************************	******	#### ###	*****	00A3	, 0 01	16131;	UDI	#U I	; For excessive ; pulse width.	
0070 0070			,			*********	00A5	38 A9		BNF	HLTRAN	, ,	
0070			.					30 81 3E A3	HLTRAN:	BR BN3	ERR TLTST	; Error	
0070 0070			*****	BOTM2 R	OUTINE -	- ABORT THE READ	00AB		j			_	
0070 0070 E)3		BTMRET:	SEP	R3	; Return	00AB 00AC 00AC	89 32 B4	DNCHK:	GLO BZ	R9 PARCHK	; Got a byte? ; Check parity	,~·
							Jone					; if so.	

ADDR	CODE	LABEL	OPCODE	OPERAND	COMMENT	$A = A \cdot A$	
00AE	02	;	LDN	R2	; Not full byte	90 2 1	
00AE 00AF	7E		RSHL		; yet. ; Insert bit Into ; buffer	Note from the Editor:	
0080 00B1			STR DEC BR	R2 R9 LHTRAN	,	The preceeding assembly output of the Quest Editor Assa	listing is the mbler.
00B4 00B4 00B4		PARCHK:	GLO	R7	; Check for odd ; parity.		
00B5 00B6	-		SHR LDN	R2	; Put data value	0000 F800 B3F8 07A3 D393 BBB8 B 0010 F891 A8F8 81A6 F8FF A2E2 F	685 B2F8 71AB
00 8 6					; Into D-Reg.	0020 6422 D58E D5AE D573 D552 8	EF5 A69E 6075
00B7 00B7	CF		LSDF		; Okay if parity ; odd (Netronics)	0030 B63B 81D5 A4F8 0DB9 F800 5 0040 5CF8 0AB7 DB36 4499 FF01 3	264 2284 F332 B54 3E48 9732
00B8 00B8	3081		BR	ERR	; Call error ; routine	0050 4427 3044 973A 4102 FC01 3 0060 FC01 B6D8 5E1E 8E52 6422 2	03A 3E5C 2696
	36 BA 1	FNLB IT:	83	FNLBIT	; Wait for next ; Netronics	0070 D33F 7037 7330 00D3 3F78 6 0080 77F8 EE52 6422 8E73 9E52 3	C64 377C 2230
00BC 00BC	3E BC	FBIT:	BN3	FBIT	; Start bit ; transition.	0090 DBF8 08A7 A936 9599 FF01 3 00A0 ABF8 00FC 013B A930 813E A	BA1 3E98 2730 389 32B4 027E
00BE	30 90		BR	DIRET	; Now return.	0080 5229 3095 87F6 02CF 3081 3	6BA 3EBC 3090

ALBERT BIEHL SONATINA

by Ian Beer

This program uses the music algorithm printed in issue #13 of Questdata. The piece I chose was a sonatina by Albert Biehl, a piece I am very attached to and play often on the piano. The translation in the computer is very good. This program will run in an unexpanded Elf memory. The music can be heard by tuning an AM radio in between 13 and 14 kHz and placing it next to the Q light.

ADDR	COD	DE									
005C	05	02	A800	57	24	00B8	49	2D	00E6	24	ŻГ
005E	31	1F	008C	52	27	OOBA	24	2D		26	
0060	26	27	008E	52	27	00BC	26	27	OOEA		
0062	31	1F	0090	49	2D	OOBE	24	2 D	OOEC		
0064	26	27	0092	49	2D	0000	26	27		26	
0066	41	33	0094	41	33	00C2	57	24	00F0	57	
0068			0096	41	33	0004	49	2 D	00F2		20
006A		-	0098	3E	37	0006	52	27	00F4	52	
006C		33	009A	3E	37	00C8	20	33	00F6	41	33
006E			009C	37	3F	00CA	62	2D	00F8	93	1F
0070			009E			00CC	15	47	OOFA	00	00
0072			0A00	53	37	00CE	18	3F			
0074			00A2			0000	15				
0076			00A4		3F	0002	18	_			
0078		_		15		00D4		37			
007A			8A00	18		00D6					
007C			AA00			00D8		37			
007E		33	00AC		-	OODA		33			
0800		2D			37	OODC					
0082		27	00B0	20		OODE	18	37			
0084			00B2		37	00E0	20	33			
0086		1F	00B4	20		00E2	24	2D			
8800	57	24	00B6	49	2D	00E4	26	27			

Signature	CÌTY	STATE	ZIP
Expiration Date:			_
□ Visa Card No	ADDNESS		
Bank Americard No.		:	
Made payable to Quest Electronics Master Charge No.	1474141	<u> </u>	<u>.</u>
☐ Check or Money Order Enclosed	•	•	
Payment:	Your comments are alway be your	s welcome and appr r 1802's best frie	eciated. We want to
P.O. Box 4430 Santa Clara, CA 95054	(Add \$6.00 for airmai)	o the COSMAC 1802 o l postage to all Canada and Mexico	foreign countries
QUESTDATA	A 12 issue subscription entirely to	to QUESTDATA, the	publication devoted

TINY BASIC MUSIC

by Richard Warner

Many of Questdata's readers are interested in playing music on their computers and enjoy using TINY BASIC language. Here is a program that will give them the best of both. With a slight charge in register assignments of the Moews Music Algorithm published in Questdata Vol. 1 Issue 10 page 6, one can play music with Quest Tiny Basic.

I used R(F).0 in place of R(7).0 and R(1) in place of R(C). After these changes I assigned the starting address of the Music Algorithm at OFOO hex (3840 decimal). Then using the Tiny Basic USR Function, Tiny Basic will play the music piece selected.

The first argument of the USR function is the starting address of the machine language program. The second argument is stored in R(8) and the third argument is stored in R(A). I used Moews "Mystery Tune" as an example, starting at OF26 hex. The USR function arguments have been assigned as follows.

1st argument; Starting address of algorithm: 3840 decimal = OFOO hex

2nd argument; Number of notes: 48 decimal = 30 hex

3rd argument; Starting Address of notes: 3878 decimal = 0F26 hex

A simple tiny basic program that will play the tune once is as follows:

10 LET P=USR(3840,48,3878)

20 END

Other programs can be written to repeat the tune. Other tunes can be added by changing the second argument to the number of notes and the third argument for its starting address.

Registers Used:
P=3
X=2
I=Duration counter
2=Stack Pointer
3=Program Counter
4=Call
5=Return
6=Linkage
8.0=Number of Notes
E=Delay counter
f.0=Pitch

ADDR CODE LABEL OPCODE OPERAND COMMENT OFOO EA SEX A OF01 F8 01 BE LOOP5: LDI 01 PHI E DEC E GHI E 0F04 2E_9E LOOP1: DEC E 0F06 3A 04 BNZ LOOP1 0F08 F0 AF LDX PLO F OFOA 64 28 OUT 4 DEC 8 0F0C 72 B1 LDX A PHI 1 OF0E 72 A1 LDX A PLO 1 LOOP4: 0F10 8F GLO F OF11 32 18 ΒZ L00P6 0F13 78 SEO 0F14 FF 01 L00P2: SMI Of BNZ OF16 3A 14 L00P2 OF18 7A L00P6 REQ 0F19 8F GLÔ F OF1A FF 01 L00P3: SMI OT OF1C 3A 1A BNZ L00P3 0F1E 21 91 DEC GHI 1 OF20 3A 10 BNZ L00P4 0F22 88 GLO 8 OF23 3A 01 BNZ LOOP 5 SEP 5

OFOO EAF8 01BE 2E9E 3A04 FOAF 6428 72B1 72A1 0F10 8F32 187B FF01 3A14 7A8F FF01 3A1A 2191 0F20 3A10 883A 01D5

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC

15 QUESTDATA P.O. Box 4430 Santa Clara, CA 95054

ADDRESS CORRECTION REQUESTED

BULK RATE U.S. Postage Paid QUEST Electronics

Permit No. 549 Santa Clara, CA

VEN

.жт R. MI 48063