## Notes mirror symmetry

### Fredrik Meyer

### October 12, 2014

## 1 The quintic

We want to completely understand the quintic in  $\mathbb{P} = \mathbb{P}^4$  and its mirror. The quintic Calabi-Yau is defined to be the zero set of a general quintic in  $H^0(\mathbb{P}, \mathscr{O}_X(5))$ . Note that since  $\omega_{\mathbb{P}} \simeq \mathscr{O}_{\mathbb{P}}(-5)$ , this is also just a general section of the anticanonical bundle on  $\mathbb{P}$ .

Recall the defintion of Calabi-Yau:

**Definition 1.1.** An algebraic variety X is Calabi-Yau if  $H^i(X, \mathscr{O}_X) = 0$  for  $i \neq 0, n$  (where  $n = \dim X$ ) and  $\omega_X = \wedge^n \Omega_{X/k}$  is trivial, that is,  $\omega_X \simeq \mathscr{O}_X$ .

Denote the quintic by  $Y \subset \mathbb{P}$ . We want to show that Y is Calabi-Yau.

**Proposition 1.2.** A general section of  $H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(5))$  is Calabi-Yau. In addition  $h^{11} = 1$  and  $h^{12} = 101$ .

*Proof.* We have the ideal sheaf sequence

$$0 \to \mathscr{I} \to \mathscr{O}_{\mathbb{P}} \to i^* \mathscr{O}_Y \to 0,$$

where  $i: Y \to \mathbb{P}^4$  is the inclusion. Note that  $\mathscr{I} = \mathscr{O}_{\mathbb{P}}(-5)$ . Thus we have from the long exact sequence of cohomology that

$$\cdots \to H^i(\mathbb{P}, \mathscr{I}) \to H^i(\mathbb{P}, \mathscr{O}_{\mathbb{P}}) \to H^i(Y, \mathscr{O}_Y) \to H^{i+1}(\mathbb{P}, \mathscr{I}) \to \cdots$$

Note that  $H^{i+1}(\mathbb{P}, \mathscr{I}) = 0$  for  $i \neq 3$  and 1 for i = 3. Also  $H^i(\mathbb{P}, \mathscr{O}_{\mathbb{P}}) = 0$  unless i = 0 in which case it is 1. Thus we get that  $H^i(Y, \mathscr{O}, Y)$  is k for i = 0, for i = 1, 2 it is 0, and for i = 3 it is k. For higher i it is zero by Grothendieck vanishing.

The adjunction formula relates the canonical bundles as follows: if  $\omega_{\mathbb{P}}$  is the canonical bundle on  $\mathbb{P}$ , then  $\omega_Y = i^* \omega_{\mathbb{P}} \otimes_{\mathscr{O}_{\mathbb{P}}} \det(\mathscr{I}/\mathscr{I}^2)^{\vee}$ . The ideal sheaf is already a line bundle, so taking the determinant does not change anything. Now

$$(\mathscr{I}/\mathscr{I}^2)^{\vee} = \operatorname{Hom}_Y(\mathscr{I}/\mathscr{I}^2, \mathscr{O}_Y)$$
  
=  $\operatorname{Hom}_X(\mathscr{I}, \mathscr{O}_Y) = \operatorname{Hom}_X(\mathscr{O}_Y(-5), \mathscr{O}_Y) = \mathscr{O}_Y(5).$ 

It follows that  $\omega_Y = \mathscr{O}_Y(-5) \otimes \mathscr{O}_Y(5) = \mathscr{O}_Y$ . Thus the canonical bundle is trivial and we conclude that Y is Calabi-Yau.

It remain to compute the Hodge numbers. We start with  $h^{11} = \dim_k H^1(Y, \Omega_Y)$ . We have the conormal sequence of sheaves on Y:

$$0 \to \mathscr{I}/\mathscr{I}^2 \to \Omega_{\mathbb{P}} \otimes \mathscr{O}_Y \to \Omega_Y \to 0,$$

which gives us the long exact sequence:

$$\cdots \to H^i(\mathscr{I}/\mathscr{I}^2) \to H^i(\Omega_{\mathbb{P}} \otimes \mathscr{O}_Y) \to H^i(\Omega_Y) \to H^{i+1}(\mathscr{I}/\mathscr{I}^2) \to \cdots$$

We first compute the cohomology of  $\mathscr{I}/\mathscr{I}^2$ . We use the short exact sequence

$$0 \to \mathscr{O}_{\mathbb{P}}(-10) \to \mathscr{O}_{\mathbb{P}}(-5) \to \mathscr{I}/\mathscr{I}^2 \to 0. \tag{1}$$

we have  $H^i(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-10)) = 0$  for i = 0, 1, 2, 3, and for i = 4 we have  $H^4(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-10)) = H^0(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(5)) = k^{126}$ . Similarly  $H^i(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-5)) = 0$  for i = 0, 1, 2, 3 and  $H^4(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(-5)) = H^0(\mathbb{P}, \mathscr{O}_{\mathbb{P}}) = k$ . We conclude that  $h^i(Y, \mathscr{I}/\mathscr{I}^2) = 0$  for i = 0, 1, 2 and 125 for i = 3.

In particular  $H^1(\Omega_Y) \simeq H^1(\Omega_{\mathbb{P}} \otimes \mathscr{O}_Y)$ . We have the Euler sequence:

$$0 \to \Omega_{\mathbb{P}} \to \mathscr{O}_{\mathbb{P}}(-1)^{\oplus 5} \to \mathscr{O}_{\mathbb{P}} \to 0$$

Now  $\mathscr{O}_Y = \mathscr{O}_{\mathbb{P}}/\mathscr{I}$  is a flat  $\mathscr{O}_P P$ -module since  $\mathscr{I}$  is principal and generated by a non-zero divisor. Thus we can tensor the Euler sequence with  $\mathscr{O}_Y$  and get

$$0 \to \Omega_{\mathbb{P}} \otimes \mathscr{O}_Y \to \mathscr{O}_Y(-1)^5 \to \mathscr{O}_Y \to 0,$$

from which it easily follows that  $H^1(Y,\Omega_{\mathbb{P}}\otimes\mathscr{O}_Y)\simeq H^0(\mathscr{O}_Y)=k$ . We conclude that  $h^{11}=1$ .

Now we compute  $h^{12} = \dim_k H^1(Y,\Omega^2)$ . This is equal to  $H^2(Y,Y)$  by Serre duality. Again we use the conormal sequence. From the Euler sequence we get that  $H^2(Y,\Omega_{\mathbb{P}}\otimes \mathscr{O}_Y)=0$ . We also get that  $h^3(Y,\Omega_{\mathbb{P}}\otimes \mathscr{O}_Y)=24$ . NOW  $H^3(\Omega_Y)=0$  (WHY??), and it follows from the above computations that  $h^{12}=125-24=101$ .

## TODO:

- Complete computation of the quintic and its mirror.  $h^{11}, h^{12}$ .
- Toric construction
- Picard Fuchs etc?

# 2 Batyrev-Borisov

...