* Maximum Likelinud Estimators of normal Extor regression model

Recall: Likelihad function:

Likelinud function is the joint pdf, when we consider it as a function of parameters.

Eg: Let X1, X2, ..., Xn 22 N(U, 62), then the likelihood function is

$$L(M,6^{2}) = \frac{n}{11} \int_{x} (x_{i}) = \frac{n}{11} \frac{1}{\sqrt{2\pi}} \int_{x} \frac{-(x_{i}-M)^{2}}{\sqrt{2\pi}}$$

$$= \left(\frac{1}{2\pi} \int_{x}^{\infty} \right)^{n/2} \int_{x}^{\infty} \frac{-\sum_{i=1}^{\infty} (x_{i}-M)^{2}}{\sqrt{2\pi}}$$

(Deln) MLE

Values of the parameters which maximize the likelihud function (ie L (M, 52)) are called maximum likelihud estimators (à MLEs).

The likelihud function and it's log function have their maximums at same value of the parameters.

Since
$$\gamma_i \stackrel{inde}{\sim} N(\beta_0 + \beta_1 X_i^2, \overline{b}^2), i=1,2,...h.$$

L(
$$\beta_0, \beta_1, \delta^2$$
) = $\frac{n}{i=1}$ $\frac{1}{\sqrt{2\pi \delta^2}}$ ("Yis are independent).

$$= \frac{1}{(2\pi 5^{2})^{n/2}} E \times P \left[-\frac{1}{25^{2}} S (Y_{i} - \beta_{0} - \beta_{1}X_{i})^{2} \right]$$

$$\Rightarrow \left\{ \ln \left[L\left(\beta^{0}, \beta^{1}, \delta^{2}\right) \right] = -\frac{1}{2} \ln \left(2 \pi \delta^{2}\right) - \frac{1}{2 \delta^{2}} \left\{ \left(\gamma_{i} - \beta^{0} - \beta_{1} \chi_{i}\right)^{2} \right\} \right\}$$

$$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \left[\mathcal{L}(\beta_0, \beta_1, \beta_1) \right] = -\frac{1}{2\beta_1} 2 \mathcal{L}(A_1 - \beta_0 - \beta_1 X_1) (-X_1) = 0 \longrightarrow 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \left[\mathcal{L}(\beta_0, \beta_1, \beta_1) \right] = -\frac{1}{2\beta_1} 2 \mathcal{L}(A_1 - \beta_0 - \beta_1 X_1) (-X_1) = 0 \longrightarrow 0$$

$$\frac{\partial}{\partial \beta_{i}} \left[\lim_{\lambda \in \mathbb{R}^{n}, \beta_{i}, \delta_{i}} \right] = \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \left(-x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i} - \beta_{i} x_{i} \right) \stackrel{\text{Set}}{=} \frac{1}{2\delta_{i}^{2}} 2Z \left(y_{i} - \beta_{i$$

$$\frac{\partial}{\partial \beta_{1}} \left[\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \beta_{1}, \beta_{1}^{2} \right) \right] = -\frac{n}{2} \cdot \frac{\left(\sum_{i=1}^{n} \beta_{i}^{2} \right)}{2\pi \beta_{1}^{2}} + \frac{\sum_{i=1}^{n} \left(y_{i} - y_{i} - y_{i} \right)^{2}}{2\left(y_{i}^{2} - y_{i} - y_{i} \right)^{2}} \stackrel{\text{Set}}{=} 0 \longrightarrow 3$$

Here note that 1 and 1 are Same as the normal equations of the least square method. So maximum likelihad estimators for po and pr one same as the least square estimators.

$$\hat{\beta}_{MLE} = b_1 = \frac{\sum (x_i - \overline{x})(Y_i - \overline{Y})}{\sum (x_i - \overline{x})^2}$$

$$\leq (x_i - \overline{x})^2$$

$$\hat{\beta}_{omle} = b_o = \overline{\gamma} - b_i \overline{\chi}$$
.

By (3),

$$mlE ext{ of } ext{ } ext$$

of 5' (ie \(\frac{\gamma \ell'_1}{h-2} \).

chapter-2: Interences in Regression Analysis

Point estimator of
$$\beta_1 = b_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_{1} = \sum KiY_{i}, \text{ where } K_{i} = \frac{X_{i} - \overline{X}}{\sum (X_{i} - \overline{X})^{2}}$$

$$\sum X_{i} - N\overline{X} = N\overline{X} - N\overline{X} = 0$$

$$b_{1} = \sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$b_{1} = \sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$\sum (X_{i} - \overline{X})^{2}$$

$$\sum (X_{i} - \overline{X})^{2}$$

$$= \sum (X_{i} - \overline{X})^{2}$$

=
$$\sum KiYi$$
, where $Ki = \frac{(xi-\bar{x})}{\sum (xi-\bar{x})^2}$.

* Properties of Ki

) 5 Ki = 0

Prat:

$$\sum K_i = \sum \left(\frac{(x_i - \overline{x})}{\sum (x_i - \overline{x})^i} \right) = \frac{m\overline{x} - n\overline{x}}{\sum (x_i - \overline{x})^i} = 0.$$

2) $\stackrel{\sim}{\underset{\sim}{\sum}} K_i X_i = 1$ Prot - HW.

3)
$$\leq K_i^2 = \frac{1}{\leq (\chi_i - \overline{\chi})^2}$$

Praf - HW

*
$$E(b_i) = E(\Sigma KiYi)$$

= $\Sigma Ki E(Yi)$
= $\Sigma Ki (\beta^0 + \beta_1Xi)$
= $\beta^0 \Sigma Ki + \beta_1 \Sigma KiXi$
= β_1

le bi is unbiased estimator for BI

$$Var(b_1) = \overline{b}^2 \{b_1\} = Var(\underline{\Sigma}KiYi)$$

$$= \underline{\Sigma}Ki \quad Var(Yi) \quad (: Y_i \text{ s are independent})$$

$$= \underline{\Sigma}Ki \quad Var(Yi) \quad (: Y_i \text{ s are independent})$$

$$= \underline{\Sigma}Ki \quad (\overline{b}^2)$$

$$= \underline{T}^2 \underline{\Sigma}Ki$$

$$= : \underline{T}^2 : \underline{T}^2$$

$$E\left(\frac{S}{i=1}aiX_{i}\right) = Za_{i}E(X_{i})$$

$$E(aX+b) = aE(X) + b$$

$$E(ax+b) = aE(x) + b$$

$$V_{\alpha \gamma} \left(\sum_{i=1}^{n} a_i X_i \right) = \sum_{i=1}^{n} a_i^2 V_{\alpha \gamma} (X_i)^2$$

2 t $X_{1,1} X_{2,1} ... X_n$ are indepen-

$$Var(a \times tb) = a^{2} var(x)$$

k when 52 is unknown, the estimated variance of bi is

$$V_{\text{an}}(b_1) = \frac{1}{5} \{b_1\} = \frac{1}{5} \{b_1\} = \frac{mSE}{5(x_1 - \overline{x})^2}$$

Sumpling distribution

Since by is a linear combination of independent Yi und

Yi ~ N (β + β , K; , 62),

$$p^{1} \sim N\left(\beta_{1}, \frac{\sum(x^{2}-\underline{x})}{\underline{t}_{1}},\right)$$

When be is known. pivot

Standardize Statistic

Studentized Statistic

where $S\{b\} = \frac{MSE}{\sum (X; -\overline{X})^2}$.

In a long run, the interval contains the parameter of interest at least 95% of the fines.

$$t_{n-2}$$

$$t_{n-2}$$

$$t_{n-2}$$

$$t_{n-2}$$

$$t_{n-2}$$

So
$$p\left(t_{\kappa/21N-2} \leq \frac{b_1-\beta_1}{S\{b_1\}} \leq t_{1-\kappa/21N-2}\right) = 1-\alpha$$

)// considence interval sor []
$$b_1 \pm t \quad S\{b_1\}, \quad \text{where} \quad S\{b_1\} = \underbrace{\frac{mSE}{E(x_1 - \bar{x})^2}}_{h-2}, \quad md$$

$$mSE = \underbrace{\frac{(Y_1 - Y_1)^2}{h-2}}_{h-2}.$$

Test concerning PI

Ho: M < 5.5 HI: M>5.5

Steps:

1) Statement of hypotheses:

Null hypothesis

Alternative hypothesis

 $H_0: \beta_1 = \beta_{10}$ Ho: PI & PIO

HI: BI + BID (two Sided) H1: B1 > B10 (one sidely

H. : B1 ≥ B10

H1: B1 < B10 (one sited)

2) Test Statistic under to:
$$\beta_1 = \beta_10$$

$$T = \frac{b_1 - \beta_10}{550} \sim t_{n-2}$$

Suppose the observed value of
$$f$$
 is C .

Critical value:

 $t(1-\alpha/2:n-2)$ if $H_1: \beta_1 \neq \beta_1$ (f_{WO} Sided)

 $t(1-\alpha:n-2)$ if $H_1: \beta_1 > \beta_1$ or $H_1: \beta_1 < \beta_1$ (one side

OR

$$P-value = P(T>t^*)$$
 if $H_1: \beta_1 > \beta_{10}$,
 $= P(T < t^*)$ if $H_1: \beta_1 < \beta_{10}$,
 $= 2 P(T>1t^{1})$ if $H_1: \beta_1 \neq \beta_{10}$.

the critical value.

$$t^{+} > t(1-\kappa, n-2) \Rightarrow reject H_{o} ; H_{1} : \beta_{1} > \beta_{10}$$

Idea about the conclusion:

Note!

The hypothesis

Ho: B1=0 (le there is no relationship between X and 4)

HI: BI to (ie there is a relationship)

is tested frequently.

Inference on
$$\frac{\beta}{n}$$
 = $\frac{\sum y_i}{n} - \sum k_i y_i \hat{x}$
Point estimator: $b_0 = \overline{y} - b_1 \hat{x}$

E(bo) = Bo (proof Hw)

$$Van(bo) = \underbrace{5}^{2} \left[\frac{1}{h} + \frac{\overline{X}^{2}}{2(X_{i} - \overline{X})^{2}} \right] \quad (Prwf Hw)$$

: Estimated variance = $Vnr(b_0) = S^2 \{b_0\} = MSE \left[\frac{1}{n} + \frac{\overline{X}^2}{\overline{X}(X_1 - \overline{X})^2}\right]$

Further Since bo is a linear combination of independent Yis,

Standardize Statistic

when 52 is unknown,

Studentize Statistic

By following a Similar argument as for B, (1-a) 100% confidence interval for Po:

where
$$S\{b_0\} = \int mSE\left\{\frac{1}{n} + \frac{\bar{x}^2}{\sum(X_i - \bar{x})^2}\right\}$$
.

Note:

When the normality assumption is violated, distribution of be and by are not normal. But be and by are approximately normal for large samples (central limit theorem).

Inference on the mean response

Consider the mean response at X=Xn,

$$\hat{Y}_{n} = b_{0} + b_{1} \times n$$
 — point estimator.

$$E(\hat{Y_n}) = E(b_0 + b_1 \times n) = E(b_0) + x_n E(b_1) = \beta_0 + \beta_1 \times n = E(Y_n)$$

$$\xi^{2} \{ \hat{\gamma_{n}} \} = von(\hat{y_{n}}) = \xi^{2} \left[\frac{1}{n} + \frac{(x_{n} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} \right] \left(p_{rn} f - H \omega \right)$$

Further Since In is linear combination of Yis

$$\hat{Y}_{n} \sim N \left(E(Y_{n}) , \overline{b}^{2} \left[\frac{1}{N} + \frac{(X_{n} - \overline{X})^{2}}{\sum (X_{i}^{2} - \overline{X})^{2}} \right] \right).$$

* when Tis Known,

* When 52 is unknown

$$\frac{\hat{y}_{n}-E(y_{n})}{\hat{s}^{2}\hat{y}_{n}\hat{s}}\sim \pm_{n-2}.$$

 $k(1-\alpha)1\omega$ // confidence interval for the mean response E(Yn) at X=Xn is

$$(\hat{\gamma}_{n} - t_{1-\kappa/2:n-2}, \hat{\gamma}_{n} + t_{1-\kappa/2:n-2}, \hat{\gamma}_{n} + t_{1-\kappa/2:n-2}, \hat{\gamma}_{n}),$$

where
$$S\{\hat{y}_n\} = \int_{\mathbf{M}} \int_{\mathbf{X}} \frac{(\mathbf{X}_n - \bar{\mathbf{X}})^2}{\sum (\mathbf{X}_i - \bar{\mathbf{X}})^2}$$