ARE213 Problem Set #1A

Peter Alstone & Frank Proulx September 23, 2013

1 Problem #1

1.1 Part A

Data records are excluded from the dataset based whether the following variables take the noted values as found in the data manual:

1.2 Part B

We dropped all rows where any data were missing in that row. One way that the data cleaning process could be improved would be to only remove records based on the variables of interest (as are determined in subsequent analysis) since missing values in fields that are not eventually used in the analysis do not pose a problem.. This would result in a more iterative approach, however, and increase workload on the researcher.

We used some exploratory analysis to understand if the records that were dropped due to missing data *somewhere* in the record were representative. First we compared a few simple summary statistics between the "full record" and "partial record" data on variables of interest for this analysis. These are summarized in Table 1. Better APGAR scores and lower incidence of smoking may be correlated with having full datasets, which indicates the people who have missing data may bias the sample. We also used agnostic linear regression to understand the relationship between the presence of full records and three key variables: one-minute apgar (omaps), five-minute apgar (fmaps), and number of cigarettes smoked each day (cigar). The results summarized in Table 2 indicate there is statistical significance in each of the factors (i.e. all three are useful predictors for whether a person has a full data record) but also that the influence of the factors is small. Figure 1 shows the distribution in the number of cigarettes smoked by those with and without

full records. The distribution of values is basically the same (clusters around multiples of five up to 20, or, a "pack a day") between the two datasets.

Overall, in spite of the bias from removing heavier smokers with lower apgar scores from the data, the overall number removed is relatively small and the size of the bias (indicated by the coefficients in the linear model) is relatively small.

Table 1: Comparison of data with full records to those with missing data across key variables

full.record	mean.omaps	sd.omaps	mean.fmaps	sd.fmaps	mean.cigar	sd.cigar
FALSE	7.905	1.572	8.880	1.030	3.945	7.422
TRUE	8.117	1.260	9.009	0.707	1.907	5.297

Figure 1: Cigarette use rate by presence of full data record.

1.3 Part C

The summary table for the remaining data after cleaning is below.

Table 2: Linear model results for predicting whether full records are present based on selected variable of interest in the dataset

	Dependent variable:
	full.record
omaps	0.002***
-	(0.001)
fmaps	0.007***
_	(0.001)
cigar	-0.003^{***}
	(0.0001)
Constant	0.882***
	(0.007)
Observations	119,384
\mathbb{R}^2	0.007
Adjusted R ²	0.007
Residual Std. Error	0.195
F Statistic	276.305
Note:	*p<0.1; **p<0.05; ***p<0.

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 3: Summary of clean Data

variable	var.labels	var	n	mean	sd	se
rectype	record type	1	114610	1.26	0.44	0.00
pldel3	facility of birth recode	2	114610	1.02	0.13	0.00
birattnd	attendant at birth		114610	1.20	0.56	0.00
cntocpop	county of occurence		114610	1.44	1.14	0.00
stresfip	state of residence		114610	41.74	2.17	0.01
dmage	age of mother	6	114610	27.76	5.70	0.02
ormoth	hispanic origin of mother	7	114610	0.09	0.52	0.00
mrace3	race of mother recode	8	114610	1.26	0.66	0.00
dmeduc	detailed educ of mother	9	114610	13.21	2.27	0.01
dmar	marital status of mother	10	114610	1.25	0.43	0.00
adequacy	adequacy of care recode	11	114610	1.30	0.55	0.00
nlbnl	number of live births, now living	12	114610	0.97	1.15	0.00
dlivord	number of live births, now dead	13	114610	1.99	1.17	0.00
dtotord	detail total birth order	14	114610	2.42	1.52	0.00
totord9	total birth order recode	15	114610	2.41	1.46	0.00
monpre	month pregnancy prenatal care began	16	114610	2.50	1.33	0.00
nprevist	total number of prenatal visits	17	114610	11.15	3.52	0.00
disllb	interval since last live birth	18	114610	350.41	362.33	1.07
isllb10	interval since last live birth recode	19	114610	3.32	3.19	0.01
dfage	age of father	20	114610	30.06	6.41	0.01
orfath	hispanic origin of father	21	114610	0.09	$0.41 \\ 0.53$	0.02
dfeduc	educ of father detail	22	114610	13.28	2.33	0.00
birmon	month of birth	23	114610	6.47	3.39	0.01
		$\frac{23}{24}$	114610			0.01
weekday	day of week child born	$\frac{24}{25}$		4.05	1.88	
dgestat	gestation – detail in weeks sex of child	26	114610	39.15	$\begin{array}{c c} 2.44 \\ 0.50 \end{array}$	$0.01 \\ 0.00$
csex dbrwt		$\frac{20}{27}$	114610	1.49 3373.29	585.17	1.73
	birthweight in grams	28	114610 114610			0.00
dplural	plurality	29	114610	1.03 8.12	0.17 1.26	0.00
omaps	one minute agpar score	I				0.00
fmaps	five minute agpar score	30	114610	9.01	0.71	
clingest	clinical estimate of gestation	31	114610	39.11	2.06	0.01
delmeth5	method of delivery	32	114610	1.55	1.01	0.00
anemia	anemia mother	33	114610	1.99	0.10	0.00
cardiac	cardiac disease mother	34	114610	1.99	0.08	0.00
lung	acute or chronic lung disease mother	35	114610	1.99	0.08	0.00
diabetes	diabetes mother	36	114610	1.97	0.16	0.00
herpes	genital herpes mother	37	114610	1.99	0.08	0.00
chyper	chronic hypertension	38	114610	1.99	0.09	0.00
phyper	pregnancy related hypertension	39	114610	1.97	0.17	0.00
pre4000	previous infant 4000 or more grams	40	114610	1.99	0.12	0.00
preterm	previous preterm infant	41	114610	1.99	0.12	0.00
tobacco	tobacco use during pregnancy	42	114610	1.84	0.37	0.00
cigar	average number of cigarettes per day	43	114610	1.91	5.30	0.02
cigar6	average number of cigarettes per day recode	44	114610	0.35	0.86	0.00
alcohol	alcohol use during pregnancy	45	114610	1.99	0.10	0.00
drink	average number of drinks per week	46	114610	0.03	0.62	0.00
drink5	average number of drinks recepte	47	114610	0.02	0.23	0.00
wgain	weight gain	48	114610	30.36	11.88	0.04
full.record*	full record present	49	114610	1.00	0.00	0.00

2 Problem #2

2.1 Part A

The table below shows the mean differences between smoking and non-smoking mothers for one-minute APGAR scores (ompas), five-minute (fmaps), and birth weight in grams (dbrwt). Unconditioned on the other variables, there is no statistically significant difference in APGAR score but a significant difference is present in birth weight¹.

Table 4: Comparison of key birthing infant health indicators for different maternal smoking status

tobacco	moon omong	mean.fmaps	mean.dbrwt
TODACCO	mean.omaps	mean.maps	mean.ubiwt
smoker	8.10	9.01	3171
nonsmoker	8.12	9.01	3412
difference	0.017	0.0001	240.5

2.2 Part B

The average treatment effect (ATE) of maternal smoking can only be determined by comparing the unadjusted difference in mean birth weight of infants if their mothers were randomly assigned into treatment (a smoking habit during pregnancy) or the assignment / selection to treatment is as good as random. This is obviously not possible or even palatable for a variety of practical and ethical reasons to verify with RCT so an alternative approach to identifying the ATE that controls for observables is the next-best option. If we assume that smoking habits are randomly assigned among pregnant mothers, it can be "safe" to use the unadjusted difference in weight as a predictor of ATE without conditioning on observables as long as there are not any significant differences in the smoking and non-smoking groups that also influence birth weight. In the next set of steps we explore other factors that may influence birth weight and if they are also related to smoking status.

 $^{^1\}mathrm{Welch}$ Two Sample t-test, alternative hypothesis: true difference in means is not equal to 0; p-value less than 2.2e-16, 95 percent confidence interval: -249.5463 to -231.4093

ATE using unadjusted differences: If we were to assume that smoking is in fact randomly assigned, the mean difference in birth weight caused by smoking between infants whose mothers smoke and those who do not is 240 grams (with a 95% confidence interval of 230 - 250 grams). Infants whose mother smoked have about 7% lower birth weight than those who did not.

Identifying potential confounding factors: We used deductive logic and graphical exploration to understand factors that may influence birth weight and should be controlled for if the tobacco users / non-users have distributions that are not identical (or very similar) between them. Several (bot not all) of the factors that we identified as potential candidates are summarized in the Table ??. We omitted many that did not show a relationship between the factor and birth weight for brevity. The results show that most of the potential factors related to birth weight do not appear likely to be also related to smoking status.

The factors we identify as having an impact on birth weight AND being related to smoking status are:

- Maternal Age is different between the smoking / non-smoking group and is related to birth weight. The median pregnant smoker is two years younger than the median non-smoker. There is also a relationship between age and birth weight (where older mothers up to age 31-32 or so tend to have heavier babies). The relationship between maternal age and birth weight along with the distributions in age for smokers and non-smokers is shown in Figure 2
- Marital Status is also different between the smoking and non-smoking groups: single mothers are more likely to smoke in pregnancy. In the whole sample the fraction of women who are married is 75% but in the "smoker" subsample it is only 52%. There is also a relationship between marital status and birth weight whereby married mothers tend to have slightly heavier babies. These relationships are shown in Figure 3. If one believes that being married leads to less stress for mothers and/or better resources and support it is possible that marital status is a proxy for other determinants of infant weight. However, as is also shown in the Figure (bottom panel) there are different distributions in maternal age between married and unmarried women, with a relationship that suggests age may be a stronger determining factor since single mothers are typically younger than married mothers.

Table 5: Contingency table for a range of factors by tobacco use status

	smoker	nonsmoker	Combined
	N = 18266	N = 96344	N = 114610
race of mother recode: White	87% (15876)	86% (82748)	$\frac{N = 114610}{86\% (98624)}$
Other	0% (13870)	2% (2202)	2% (2271)
Black			12% (13715)
sex of child : Male	~ ` ` ′	` ′	51% (58967)
Female	,		49% (55643)
	, , ,	` ′	, ,
marital status of mother: Married	52% (9459)	79% (76368)	75% (85827)
Unmarried	48% (8807)	21% (19976)	25% (28783)
plurality : Singleton	98% (17860)	97% (93694)	97% (111554)
Twin	2% (400)	3% (2503)	3% (2903)
Triplet	0% (6)	0% (135)	0% (141)
Quadruplet	0% (0)	0% (12)	0% (12)
alcohol use during pregnancy: Drinker	3% (639)	0% (472)	1% (1111)
Nondrinker	97% (17627)	100% (95872)	99% (113499)
pregnancy related hypertension: 1	2% (369)	3% (3149)	3% (3518)
2	98% (17897)	97% (93195)	97% (111092)
chronic hypertension: 1	1% (120)	1% (764)	1% (884)
2	99% (18146)	99% (95580)	99% (113726)
cardiac disease mother: 1	1% (111)	1% (677)	1% (788)
2	99% (18155)	99% (95667)	99% (113822)
diabetes mother: 1	3% (490)	3% (2587)	3% (3077)
2	97% (17776)	97% (93757)	97% (111533)
previous infant 4000 or more grams: 1	1% (154)	2% (1506)	1% (1660)
2	99% (18112)	98% (94838)	99% (112950)
detailed educ of mother	12 12 12	12 13 16	12 12 16
month pregnancy prenatal care began	$_2$ $_2$ $_3$	$_2$ $_2$ $_3$	223
age of mother	22 26 30	24 28 32	24 28 32
clinical estimate of gestation	38 40 40	38 40 40	38 40 40
weight gain	20 29 37	24 30 37	23 30 37

 $_a\,b_c\,$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

Numbers after percents are frequencies.

• Maternal weight gain (less certain) is related to infant weight at birth but as we note is not as certain in terms of being related strongly with smoking status. The median weight gain is quite similar between the two smoking status groups (29 lbs for smokers vs. 30 lbs for non-smokers) but there is a larger difference in the 25th percentile weight (20 vs. 24 lbs.). The relationship between maternal weight gain and infant weight gain along with the distribution in maternal gain by smoking status is summarized in Figure 4

Because of the factors we identified the assumption that smoking is randomly assigned in the population (and using unadjusted mean differences) is not tenable for obtaining an accurate prediction of ATE.

2.3 Part C

The position that smoking status is randomly assigned may have some rational basis, but it is not possible to rationalize complete randomness. Consider the following:

- This study was conducted in 1993, decades after the link between smoking and poor infant health was established and widely publicized in both the scientific literature and (more importantly) the popular media. While there is a link between maternal educational attainment (smokers tend to have less education, slightly), this can largely be explained by the age of the mothers (many of whom are simply too young to have graduated college, etc.). This education gap could potentially explain a difference in awareness but we posit it is probably a poor proxy. It is reasonable to expect that the vast majority of mothers in the sample know about the link between smoking during pregnancy and poor infant health outcomes, and that the smoking and non-smoking mothers both have the same maternal drive to protect their unborn infants.
- Furthermore, even if the popular exposure were different between smokers and non-smokers, it is standard practice during neonatal care to receive messages about the value of not smoking. Both smokers and non-smokers received basically the same level of neonatal care (as measured by the month at which care began).
- If one accepts that awareness about smoking risk and the level of maternal protection drive is the same in both groups, perhaps the only

Figure 2: (Top) The relationship between Maternal Age and Birth Weight with a GAM fit to the data and 95% confidence interval estimate in grey. Actual data are omitted to show the average trend more clearly. (Bottom panels) A comparison in the distribution of Maternal Age for smokers and non-smokers shows how smokers tend to be younger mothers.

Figure 3: (Top) Boxplots for birth weight by marital status of the mother. (Bottom) Distribution in maternal age between married and unmarried women.

Figure 4: (Top) The relationship between Maternal Weight Gain and Birth Weight with a GAM fit to the data and 95% confidence interval estimate in grey. Actual data are omitted to show the average trend more clearly. (Bottom panels) A comparison in the distribution of Maternal Weight Gain for smokers and non-smokers shows how smokers tend to have (slightly) less weight gain.

remaining factors are those that underly addiction: genetic predisposition and environmental factors. It is possible, but by no means certain, that the genetic factors (at least) are essentially randomly distributed between people. However, the underlying environmental factors that lead to addiction are not likely randomly distributed and may be correlated with both smoking and other maternal behavior that could lead to lower birth weight.

• Base on the above we posit that there is an element of randomness (genetic factors) associated with smoking but that environmental factors (education, upbringing, social pressures) also contribute strongly to both smoking status and other factors that could cause low birth weight (like pregnancies earlier in life).

Based on our analysis and reasoning, there are two key factors that are predetermined, contribute to birth weight, and also are biased by the "smoking" treatment: Maternal Age and Marital Status. Other factors that are predetermined but do not meet the other two criteria (contributing to weight AND biased by smoking treatment comported to the larger sample) include the sex of the baby, level of prenatal care, age of the father (to the extent that there are genetic causes), gestational time, state of residence, infant plurality, etc. There are also factors that are not predetermined and seem to be (potentially) closely linked with treatment status, such as alcohol use in utero (which was a small fraction of the whole population), maternal weight gain, pregnancy related hypertension, and incidences of lung disease.

In general the predetermined factors are those that can be completely extricated from the treatment, i.e., those that could be changed for a particular individual without changing the treatment category. Factors that are not predetermined, and therefore cannot be pulled apart from treatment effects, are those that derive at least partly from the smoking status of the mother or underlying factors of smoking status. The ultimate goal is to identify predetermined factors so they can be controlled in the regression to capture only factors that can be effected by the treatment.

The policy relevance of the analysis is identifying what the potential positive outcomes can be from targeted smoking cessation programs on pregnant (or soon to be pregnant) mothers, so one must assume that we cannot change other parts of her life leading up to the pregnancy.

2.4 Part D

Selection on observables strategies for teasing out causality guide us to identify all the observable factors (except for the treatment—smoking in this case) that could lead to the outcome (birth weight) and to "correct" for these using statistical techniques before the test for smoking. We identified three additional key factors above that we will use in a set of simple linear models to understand how different factors influence birth weight: Maternal Age, Marital Status, and Maternal Weight Gain. We include maternal weight gain with prejudice on how to interpret it because it too could be linked with smoking status (anecdotal evidence indicates that smoking tends to suppress weight gain and that smoking cessation could lead to temporary weight gain). Table ?? and ?? below summarize the suite of linear models we used to explore the relationships between various potential causal factors and birth weight

The outcome of the models indicates that each of the three additional factors (in addition to tobacco use) is statistically significant in terms of predicting birth weight. However, because maternal weight gain is not a clearly predetermined factor we choose to ignore models that include it (although it is interesting to examine them). The "best" model that only includes Maternal Age and Marital Status as conditioning variables along with tobacco use.

By introducing conditioning variables in a linear regression we downgrade the estimate for average treatment effect from 240 grams to about 200 grams because smokers tended to be younger and unmarried (both significantly decrease birth weight).

14

Table 6: Birth weight linear models without including Tobacco factors

	Birth Weight			
	(1)	(2)	(3)	
Maternal Age	9.536***	2.888***	4.246***	
-	(0.302)	(0.341)	(0.334)	
Marital Status (unmarried)		-183.626***	-175.893***	
` ,		(4.479)	(4.384)	
Weight Gain			10.042***	
			(0.141)	
Constant	3, 108.613***	3, 339.251***	2,994.784***	
	(8.558)	(10.190)	(11.081)	
N	114,610	114,610	114,610	
\mathbb{R}^2	0.009	0.023	0.064	
Adjusted R^2	0.009	0.023	0.064	
Residual Std. Error	582.649 (df = 114608)	578.426 (df = 114607)	566.024 (df = 114606)	
F Statistic	$996.918^{***} (df = 1; 114608)$	$1,346.077^{***}$ (df = 2; 114607)	$2,629.910^{***} (df = 3; 114606)$	

Notes:

^{***}Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

15

Table 7: Birth weight linear models including Tobacco factors

		Birth Weight	
	(1)	(2)	(3)
Maternal Age	4.058***	2.716***	7.781***
	(0.332)	(0.338)	(0.301)
Marital Status (unmarried)	-141.095^{***}	-146.507^{***}	
,	(4.444)	(4.538)	
Weight Gain	9.850***		
O	(0.140)		
Tobacco (nonsmoker)	183.678***	195.101***	225.823***
,	(4.668)	(4.764)	(4.690)
Constant	2,842.679***	3,170.698***	2,967.483***
	(11.666)	(10.921)	(8.965)
N	114,610	114,610	114,610
\mathbb{R}^2	0.077	0.037	0.028
Adjusted R^2	0.077	0.037	0.028
Residual Std. Error	562.240 (df = 114605)	574.242 (df = 114606)	576.845 (df = 114607)
F Statistic	$2,386.185^{***}$ (df = 4; 114605)	$1,469.452^{***}$ (df = 3; 114606)	$1,667.935^{***} (df = 2; 114607)$

Notes:

^{***}Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

3 Appendix

```
R code for problem #1:
### This is Frank Proulx's solution to ARE213 PS1a, problem 1
## Data is in the file "ps1.dta"
library(foreign) #this is to read in Stata data
library(Hmisc)
library(psych)
data <- read.dta("ps1.dta")</pre>
print(nrow(data))
## Problem 1a: Fix missing values
## The following are the error codes for each of the 15 variables that need fixi
# cardiac: 9
# lung: 9
# diabetes: 9
# herpes: 9
# chyper: 9
# phyper: 9
# pre4000: 9
# preterm: 9
# tobacco: 9
# cigar: 99
# cigar6: 6
# alcohol: 9
# drink: 99
# drink5: 5
# wgain: 99
data <- subset (data, (cardiac != 9) & (lung != 9) & (diabetes !=9) & (herpes !=
print(nrow(data)) #number of records remaining after cleaning
print(describe(data, skew=FALSE, ranges=FALSE))
write.csv(data, file = "ps1dataclean.csv")
#'omaps' and 'fmaps' are the APGAR scores
```

```
#'dbrwt' is the birth weight in grams
# 'tobacco' is smoker status (1=yes, 2=no)

smokers <- subset(data, tobacco==1)
nonsmokers <- subset(data, tobacco==2)

smokerstats <- c(mean(smokers$omaps), mean(smokers$fmaps), mean(smokers$dbrwt))
nonsmokerstats <- c(mean(nonsmokers$omaps), mean(nonsmokers$fmaps), mean(nonsmokersdbrwt))
meandif <- nonsmokerstats - smokerstats

print(smokerstats)
print(nonsmokerstats)
print(nonsmokerstats)
print(t.test(data$omaps~data$tobacco))
print(t.test(data$fmaps~data$tobacco))
print(t.test(data$fmaps~data$tobacco))</pre>
```