Algebraic Theory I: Homework II

Thomas Fleming

Sun 26 Sep 2021 22:11

Problem (1). Let G_1 , G_2 be finite groups with $\gcd(|G_1|, |G_2|) = 1$. Show that $\operatorname{Aut}(G_1 \times G_2) \simeq \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$.

Problem (2). Let $n \geq 1$ be an integer. For $x \in \mathbb{Z}$, denote $\overline{x} = x + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$ and let $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{x} : x \in \mathbb{Z}, \gcd(x, n) = 1\}.$

- 1. Show that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is an abelian multiplicative group.
- 2. Show that Aut $(\mathbb{Z}/n\mathbb{Z}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Problem (3). Let $H=\langle x\rangle\simeq C_2$ and $N=\langle y\rangle\simeq C_{15}$ be cyclic groups generated by $x\in H$ and $y\in N$ respectively.

- 1. Show that Aut $(C_{15}) \simeq C_2 \times C_4$.
- 2. Let $\alpha: H \to \operatorname{Aut}(N)$ be a homomorphism and let $\alpha(x)(y) = y^r$ with $r \in \{0, 1, \dots, 14\}$. What possible values can r take?
- 3. For each possible value of α from item 2 determine which of the following four groups is isomorphic to $N \rtimes_{\alpha} H$: $C_{30}, D_{15}, C_3 \times D_5, C_5 \times S_3$.

Problem (4). Show there is no simple group of order 5103.

Solution. First, note that $5103 = 3^6 \cdot 7$ and denote n_3, n_7 to be the number of sylow 3-groups and 7-groups respectively. Then, we note by sylows theorms that $n_7 \mid 3^6$ and $n_7 \equiv 1 \pmod{7}$. Note that the only numbers dividing 3^6 are $1, 3, 3^2, 3^3, 3^4, 3^5$, and 3^6 , with

```
1 \equiv 1 \, (\mod 7) \quad 3 \quad \equiv 3 \, (\mod 7) \quad 3^2 \equiv 2 \, (\mod 7) \quad 3^3 \quad \equiv 6 \, (\mod 7) 3^4 \equiv 4 \, (\mod 7) \quad 3^5 \quad \equiv 5 \, (\mod 7) \quad 3^6 \equiv 1 \, (\mod 7)
```

If $n_7 = 1$, then there is a unique normal sylow 7-group, so let us assume $n_7 = 3^6$. Similairly, $n_3 \mid 7$ and $n_3 \equiv 1 \pmod 3$, hence $n_3 = 1$ or 7. If $n_3 = 1$ then there is a unique normal sylow 3-group, hence let us assume $n_3 = 7$. Then, we have 3^6

Problem (5). Show there is no simple group of order 4851.