Chapter 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers!
- computer nets: laptops, palmtops, PDAs, Internetenabled phone promise anytime untethered Internet access
- two important (but different) challenges
 - *wireless:* communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 6 outline

6.1 Introduction

Mobility

Wireless

 6.5 Principles: addressing and routing to mobile users

- · 6.2 Wireless links, characteristics Mobile IP
 - CDMA

- 6.7 Handling mobility in
- 6.3 IEEE 802.11 wireless LANse(Ilwiafi") etworks
- 6.4 Cellular Internet Access

 - architecture
 - standards (e.g., GSM)

6.8 Mobility and higherlayer protocols

6.9 Summary

Characteristics of selected wireless link standards

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Wireless Link Characteristics (1)

Differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times
 6: Wireless and Mobile

6 - 10

Wireless Link Characteristics (2)

- · SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation)

 **The change with mobile physical layer (modulation)

 **The change with mobile

6-11

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Code Division Multiple Access (CDMA)

- · used in several wireless broadcast channels (cellular, satellite, etc) standards
- · unique "code" assigned to each user; i.e., code set partitioning
- · all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- *encoded signal* = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference, if codes are orthogonal (linearly independent)

CDMA Encode/Decode

CDMA: two-sender interference

Chapter 6 outline

6.1 Introduction

Mobility

Wireless

 6.5 Principles: addressing and routing to mobile users

- · 6.2 Wireless links, characteristics Mobile IP
 - CDMA

- 6.7 Handling mobility in
- 6.3 IEEE 802.11 wireless LANse(Ilwiafi") etworks
- · 6.4 cellular Internet access ·
 - architecture
 - standards (e.g., GSM)

6.8 Mobility and higherlayer protocols

6.9 Summary

6: Wireless and Mobile

6-16

IEEE 802.11 Wireless LAN

- 802.11b
 - 2.4-5 GHz unlicensed spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- · 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- 802.11n: multiple antennae
 - 2.4-5 GHz range
- □ all use CSMA/CA for multiple access to 200 Mbps
- all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]

802.11: passive/active scanning

Passive Scanning:

- beacon frames sent from APs
- association Request frame sent:
 H1 to selected AP
- association Response frame sent:H1 to selected AP

Active Scanning

- Probe Request frame broadcast from H1
- Probes response frame sent from APs
- Association Request frame sent: H1 to selected AP
- Association Response frame sent: H1 to selected AP

6: Wireless and Mobile

6-20

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading

6: Wireless and Mobile Natworks

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other**avaiichslataeframenជនៅច្រាំ១**ns completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing

802.**11** frame

6: Wireless and Mobile Natworks

6-26

802.11 frame: more

Natworks

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5):
 switch will see frame
 from H1 and
 "remember" which
 switch port can be used
 to reach H1

802.11: advanced capabilities

Rate Adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.15: personal area network

- · less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- · ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)

- 2.4-2.5 GHz radio bandless and Mobile

- master grants requests
- 802.15: evolved from Bluetooth specification

6-31

802.16: WiMAX

- · like 802.11 & cellular: base station model
 - transmissions
 to/from base station
 by hosts with
 omnidirectional
 antenna
 - base station-to-base station backhaul with point-to-point antenna

• unlike 802.11: Networks

802.16: WiMAX: downlink, uplink scheduling

- transmission frame
 - down-link subframe: base station to node

WiMAX standard provide mechanism for scheduling, but not scheduling algorithm