Leistungsnachweis

CAS Datenanalyse 20.11 Modul A2

Stefan Schmidt

03.05.2020

1. COVID-19 Pandemie in der Schweiz

Datenbasis

Es werden COVID-19 Infektionsdaten von Wikipedia vom 14.04. und 16.04.2020 verwendet. Ausserdem enthält das verwendete Data Frame Angaben zur Einwohnerzahl der Kantone (Quelle: A.Ruckstuhl COVID-19 Arbeitsblatt $CAS-DA_ModulA2-HT3_Coronavirus.R$).

Spalten des Data Frames df:

- kanton: Kürzel des Kantons
- inf 1404: Anzahl COVID-19 infizierter Personen am 14.04.2020
- inf_1604: Anzahl COVID-19 infizierter Personen am 16.04.2020
- einw10k: Einwohnerzahl (in 10'000)

Infektionen per 10'000 Einwohner

Die Kantone haben unterschiedliche Einwohnerzahlen, daher wird im Folgenden für jeden Kanton die Anzahl der COVID-19 Infektionen per 10'000 Einwohner graphisch dargestellt, die Vertrauensintervalle berechnet und eingezeichnet (lila).

COVID-19 Infektionen am 14.04.2020

Schätzen des Parameters λ

Der Mittelwert schätzt den Parameter λ .

```
mu <- mean(i1404_10k) # lambda: mittlere Anzahl per 10'000
```

Es ergibt sich für λ also ein Wert von 27.99.

Ein mit dem geschätzten Wert für λ angepasstes Modell wird in die tatsächliche Häufigkeit der Infektionsrate eingezeichnet (rot).

COVID-19 Infektionen in den Kantonen

Infektionen pro 10'000 Einwohner

Testen des Modells

[1] 59.3259

Mit dem geschätzten Wert für λ prüfen wir nun die Plausibilität der Infektionsraten für den Kanton Waadt.

```
# Infektionen / 10'000 Einwohnern
# Waadt am 14.04.2020:
as.character(df$kanton[23])
## [1] "VD"
i1404_10k[23]
```

Frage: Ist diese Infektionsrate bei angenommener Poisson-Verteilung und Signifikanzniveau von 95% plausibel?

```
poisson.test(x = round(i1404_10k[23]), r = mu, conf.level = 0.95)
```

```
##
## Exact Poisson test
##
## data: round(i1404_10k[23]) time base: 1
## number of events = 59, time base = 1, p-value = 3.414e-07
## alternative hypothesis: true event rate is not equal to 27.99269
## 95 percent confidence interval:
## 44.91353 76.10570
## sample estimates:
## event rate
## 59
```

Antwort: Nein, aufgrund des niedrigen p-Werts (3.414e-07) muss die Nullhypothese verworfen werden, dass die Infektionsrate Poisson-verteilt ist.

Bootstrap-Verteilung der Dispersion

Prüfen wir das Modell durch Bootstrap-Simulation der Dispersion:

```
library(boot)
## Bootstrap-Vertrauensintervall für die Dispersion
f.disp <- function(x, ind){</pre>
  ## x = ursprünglicher Beobachtungsvektor
  ## ind = Beobachtungsnummer für die Bootstrap-Stichprobe
 xx < -x[ind]
                   # erzeugen der Bootstrap-Stichprobe
  var(xx) / mean(xx) # Berechnet die Dispersion für die Bootstrap-Stichprobe
}
set.seed(seed=123)
inf.boot2 <- boot(i1404_10k, f.disp, R=999, stype="i")
boot.ci(inf.boot2, conf=0.95, type="perc")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 999 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = inf.boot2, conf = 0.95, type = "perc")
## Intervals :
## Level
            Percentile
         (5.83, 22.56)
## 95%
```

Da die Nullhypothese $\sigma^2/xq=1$ NICHT im 95%-Vertrauensintervall liegt kann die Nullhypothese auf dem 2.5% Niveau verworfen werden.

Folgerung: Die Poisson-Verteilung ist nicht geeignet um die COVID-19 Infektionen in der Schweiz zu beschreiben.

χ^2 -Test

Zuletzt prüfen wir das Modell noch mit dem χ^2 -Test:

Calculations and Intervals on Original Scale

```
chisq.test(i1404_10k)
```

```
##
## Chi-squared test for given probabilities
##
## data: i1404_10k
## X-squared = 399.61, df = 25, p-value < 2.2e-16</pre>
```

Auch aufgrund des P-Werts des χ^2 -Tests wird die Null-Hypothese "Daten können durch eine Poisson-Verteilung beschrieben werden" verworfen.

2. Internetnutzung in der Schweiz

Datenbasis

Der bereitgestellten Datei *Internetnutzung_korr.xlsx* wurde für das Jahr 2019 folgende Kontingenztabelle für Ausbildungsstufe und Internetnutzung von Männer zwischen 30 und 59 Jahren entnommen:

Diese lässt sich im Mosaicplot darstellen.

```
mosaicplot(kt, main = "Internetnutzung und Bildungsstand", sub = "2019: nur Männer 30 - 59 J.")
```

Internetnutzung und Bildungsstand

2019: nur Männer 30 - 59 J.

Schätzung von Erfolgswahrscheinlichkeit π

Die Erfolgswahrscheinlichkeit π wird durch pi = X / m geschätzt.

Dafür, dass ein Mann (30 bis 59 J.) mit hohem Bildungsstand (Tertiärstufe) mehr als 20h das Internet nutzt ist die Erfolgswahrscheinlichkeit π hier:

```
X <- kt[2, 3]
m <- sum(kt)
X / m</pre>
```

```
## [1] 0.1507538
```

Testen von π

Frage: Ist $\pi = 0.15$ plausibel, wenn man von einer Erfolgswahrscheinlichkeit von 11% (3 Bildungsstufen und 3 Stufen der Internetnutzung: 1/3 * 1/3) ausgeht?

```
binom.test(x = X, n=m, p=1/3 * 1/3)

##
## Exact binomial test
##
## data: X and m
## number of successes = 150, number of trials = 995, p-value = 0.0001484
## alternative hypothesis: true probability of success is not equal to 0.1111111
## 95 percent confidence interval:
## 0.1290780 0.1745185
## sample estimates:
```

Antwort: Nein, aufgrund des P-Wertes von 0.0001484 wird die Nullhypothese verworfen.

Vertrauensintervall für π

probability of success

Bestimmen wir das Vertrauensintervall für π :

0.1507538

```
binom.test(x = X, n = m, conf.level = 0.95)

##

## Exact binomial test

##

## data: X and m

## number of successes = 150, number of trials = 995, p-value < 2.2e-16

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.1290780 0.1745185

## sample estimates:

## probability of success

## probability of success

## 0.1507538</pre>
```

Für π sind also Werte zwischen 0.129 und 0.174 plausibel.

Test auf Homogenität

```
chisq.test(kt)

##
## Pearson's Chi-squared test
##
## data: kt
## X-squared = 32.352, df = 2, p-value = 9.437e-08
```

Da der P-Wert von 9.437e-08 kleiner als das Niveau von 5% ist, wird die Nullhypothese "die Verteilung der Internetnutzung ist gleich für jeden Bildungsstand" auf dem 5% Niveau verworfen.

3. Wasserverbrauch Zürich

Datenbasis

Die bereitgestellte Datei WasserverbrauchKtZH.csv wird geladen, in Tabellenform gebracht (jedes Jahr eine Spalte) und die Spaltennamen bereinigt. Für weitere Berechnungen wird eine Spalte der Verbrauchsdifferenz 2018 - 2017 angehängt.

```
library(reshape2)
library(janitor)
path <- "/Users/schmis12/wrk/studio/ZHAW_CAS_Data_Analysis/Leistungsnachweis_A2/data/"</pre>
wv <- read.csv(paste0(path, "WasserverbrauchKtZH.csv"), na.strings = c("null"))</pre>
wv <- dcast(wv, BFS_NR + GEBIET ~ JAHR, value.var = "WvpTE")</pre>
wv <- clean_names(wv)</pre>
wv$d2018_2017 <- wv$x2018 - wv$x2017
head(wv)
##
     bfs nr
                          gebiet x2006 x2007 x2008 x2009 x2010 x2011 x2012 x2013
## 1
                                           252
                                                        233
                                                              232
                                                                     233
                                                                            237
          0
               Bezirk Affoltern
                                    276
                                                 244
                                                                                  237
## 2
          O Bezirk Andelfingen
                                    334
                                           317
                                                 303
                                                        282
                                                              281
                                                                     276
                                                                            248
                                                                                  282
                                    288
                                                 268
                                                        260
                                                              254
## 3
          0
                  Bezirk Bülach
                                           277
                                                                     247
                                                                            249
                                                                                  250
## 4
           0
               Bezirk Dielsdorf
                                    311
                                           282
                                                 278
                                                        283
                                                              262
                                                                     266
                                                                            256
                                                                                  262
                                    319
                                           303
                                                 296
                                                        291
                                                              289
                                                                                  289
## 5
           0
                Bezirk Dietikon
                                                                     281
                                                                            278
                  Bezirk Hinwil
                                    290
                                           273
                                                 264
                                                        261
                                                              241
                                                                     245
                                                                                  233
## 6
           0
                                                                            236
##
     x2014 x2015 x2016 x2017 x2018 d2018 2017
              234
                     223
                                  236
## 1
       228
                           226
                                               10
              300
                           298
                                  297
                                               -1
## 2
       282
                     286
## 3
       237
              257
                     245
                           259
                                  256
                                               -3
## 4
       249
              265
                     245
                                  261
                                               14
                           247
## 5
       273
              272
                     266
                           266
                                  264
                                               -2
                           219
## 6
       224
              233
                     227
                                  234
                                               15
```

Wasserverbrauch Zürich 2018

Betrachten wir zunächst die vollständigen Daten (ohne NA) für das Jahr 2018.

```
wv.cc2018 <- wv$x2018[complete.cases(wv$x2018)]</pre>
```

Die Verteilung des durchschnittlichen Jahres-pro-Kopf-Verbrauchs 2018 aus 186 Zürcher Gebieten stellt sich in Boxplot und Histogramm unimodal rechtsschief dar:

```
par(mfrow = c(1, 2))
boxplot(wv.cc2018, horizontal = TRUE, xlab = "in Liter")
hist(wv.cc2018, ylab = "Häufigkeit", xlab = "in Liter", main = "")
box()
```


Schätzung der Parameter μ und σ

Schätzwerte für μ und σ erhalten wir folgendermassen:

```
(xq <- mean(wv$x2018, na.rm = T))

## [1] 255.172
(s <- sd(wv$x2018, na.rm = T))

## [1] 53.95997
```

Überprüfung des Modells

Frage: Kann für den Wasserverbrauch 2018 eine Standardnormalverteilung angenommen werden? Wir prüfen dies mit mit dem QQ-Plot (links mit, rechts ohne Aussreisser).

```
par(mfrow = c(1, 2))
source(paste0(path, "RFn-qqnormSim.R"))
qqnormSim(wv.cc2018, SEED = 123); qqline(wv.cc2018)
qqnormSim(wv.cc2018, rob = TRUE, SEED = 123); qqline(wv.cc2018)
```


Antwort: Nein. Beide Simulationen zeigen, dass die Verteilung an beiden Enden etwas langschwänziger als die Gauss'sche Normalverteilungs-Kurve ist.

Frage: Kann für den Wasserverbrauch 2018 eine Lognormalverteilung angenommen werden?

Wir prüfen erneut mit dem QQ-Plot (links mit, rechts ohne Aussreisser).

Antwort: Ja, vom Ausreisser abgesehen passen die Daten zu einem lognormal verteilten Modell.

Vertrauensintervalle

Frage: Wo lag 2018 der reale durchschnittliche Wasserverbrauch μ für die gesamte Region Zürich?

```
t.test(wv$x2018, alternative = "two.sided", conf.level = 0.95)
##
## One Sample t-test
```

```
## One Sample t-test
##
## data: wv$x2018
## t = 64.494, df = 185, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 247.3663 262.9778
## sample estimates:
## mean of x
## 255.172</pre>
```

Beruecksichtigt man **alle Daten**, kommt man bei einem Signifikanz-Niveau von 95% zu einem Mittelwert μ von 255.17 Litern pro Kopf und Jahr.

Wobei das Vertrauensintervall für μ von 247.37 bis 262.98 Litern reicht.

```
t.test(wv$x2018[wv$x2018 < 500], alternative="two.sided", conf.level=0.95)</pre>
```

```
##
## One Sample t-test
##
## data: wv$x2018[wv$x2018 < 500]
## t = 69.173, df = 184, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 246.4036 260.8721
## sample estimates:
## mean of x
## 253.6378</pre>
```

Lässt man den **Aussreisser unberücksichtigt** (539 l für Berg a.I.), kommt man zu einem Mittelwert μ von 253.64 l und einem Vertrauensintervall zwischen 246.40 und 260.87 l.

Vorzeichentests: Binomial- und Wilcoxon-Test

Im Vergleich zu 2017 hat der Wasserverbrauch 2018 etwas abgenommen.

```
sum(wv$d2018_2017, na.rm = T)
## [1] 1244
```

Frage: Ist diese Abnahme signifikant oder rein zufaellig?

Hierzu untersuchen wir alle für 2017 und 2018 vollständigen Datensätze.

Zunächst mit dem Binomial-Test:

```
wv.cc.d2018_2017 <- wv$d2018_2017[complete.cases(wv$d2018_2017)]
binom.test(
   sum(wv.cc.d2018_2017 > 0),
   n = length(wv.cc.d2018_2017),
   p = 0.5,
   alternative = "two.sided",
```

```
conf.level = 0.95
)
##
##
   Exact binomial test
##
## data: sum(wv.cc.d2018_2017 > 0) and length(wv.cc.d2018_2017)
## number of successes = 119, number of trials = 184, p-value = 8.381e-05
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.5730232 0.7156417
## sample estimates:
## probability of success
##
                0.6467391
Dann mit dem Wilcoxon-Test:
wilcox.test(wv$d2018_2017, alternative="two.sided", mu=0, conf.level=0.95)
##
   Wilcoxon signed rank test with continuity correction
##
##
## data: wv$d2018_2017
## V = 11692, p-value = 9.73e-07
\#\# alternative hypothesis: true location is not equal to 0
```

Antwort: Da der P-Wert beider Tests kleiner dem Signifikanz-Niveau von 0.05 ist, kann die Nullhypothese (Differenz = 0) verworfen werden. Die Verbrauchsabnahme ist also nicht rein zufällig.