OPAL (Observational PFAS Access paneL)

Initial Data File Processing Documentation

Ir	nitial Data File Processing, aka Data Munging	2
	AHHS Dust	2
	AHHS Water	
	AHHS Nontargeted Water	
	NCS Dust	
	NCS Serum	

OPAL (Observational PFAS Access paneL)

Initial Data File Processing Documentation

Initial Data File Processing, aka Data Munging

The data processing detailed in this document describes the steps taken to process the original input data files, the initial data files received from EPA, to prepare them for ingest into the PFAS Observations Data Model.

The basic set of steps includes:

- 1. Transposing the data, i.e. columns to rows
- 2. Update the attribute names, i.e. column headers, to pre-pend the relevant compound abbreviation. Ex. Update from "Flag" to "PFNA_Flags".

AHHS Dust

Orig file from EPA: AHHS_Dust_DataCleaned_231020.nmd.csv

R code (PFAS_Data_Processing.R) to process the original file: 1) Transposed data 2) For each compound abbreviation, add concentration, MRL, DL, and Flag as suffix

```
###AHHS_Dust_Cleaned_Data###
data <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/AHHS_Dust_DataCleaned_231020_nmd.csv", header = TRUE) #head(data)
length(unique(data$Sample))
length(unique(data$Sample))

Tdata <- matrix(data = NA, nrow = length(unique(data$Sample)), ncol = 1+4*length(unique(data$Compound)), byrow =FALSE, dimnames =NULL) #head(Tdata)
for (i in 1:length(unique(data$Sample))) { # i=2
    datasub <- data[data$Sample] == unique(data$Sample)[i], ]
    for (j in 1:length(unique(data$Sample))] { #j=2
        Tdata[i,1] <- unique(data$Sample)[i]
        Tdata[i,4*]-2] <- datasub[datasub$Compound == unique(data$Compound)[j], 5]
        Tdata[i,4*j-1] <- datasub[datasub$Compound == unique(data$Compound)[j], 4]
        Tdata[i,4*j+1] <- datasub[datasub$Compound == unique(data$Compound)[j], 7]
    }
}
colnames(Tdata) <- c("Sample","PFNA_Concentration(ng/g)","PFNA_MRL","PFNA_DL","PFNA_Flags","PFBA_Concentration(ng/g)","PFDS_MRL","PFDDA_Concentration(ng/g)","PFDS_MRL","PFDDA_CONCENTRATION(ng/g)","PFDS_MRL","PFDDA_CONCENTRATION(ng/g)","PFDS_MRL","PFDDA_CONCENTRATION(ng/g)","PFNS_MRL","PFDDA_CONCENTRATION(ng/g)","PFNS_MRL","PFDDA_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFDDA_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFNDA_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFNDA_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFNDA_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFNDA_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNDA_DL","PFNDA_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_MRL","PFNS_DL","PFNS_Flags","PFNS_CONCENTRATION(ng/g)","PFNS_M
```

Bin processed file (16 PFAS compounds):

AHHS_Dust_DataCleaned_231020_nmd_Column.csv

AHHS Water

Orig file from EPA: AHHS_Water_DataCleaned_231020_nmd.csv

R code (PFAS_Data_Processing.R) to process the original file: 1) Removed all the NA rows 2) Transposed data 3) For each compound abbreviation, add concentration, MRL, DL, and Flag as suffix

```
###AHHS_water_Cleaned_Data###

data <- read.csv("C:/Publications/PFAS database/Data Files working Copies/AHHS_water_DataCleaned_231020_nmd.csv", header = TRUE) #head(data)
data <- na.omit(data)
length(unique(data$Sample))
length(unique(data$Sample))
#data <- as.data.frame(data)
#write.csv(data,"C:/Publications/PFAS database/Data Files Working Copies/AHHS_water_DataCleaned_231020_nmd_NO_NA.csv", row.names=FALSE)

Tdata <- matrix(data = NA, nrow = length(unique(data$Sample)), ncol = 1+4*length(unique(data$Compound)), byrow =FALSE, dimnames =NULL) #head(Tdata)
for (i in 1:length(unique(data$Sample))) { # i=2
    datasub <- data[data$Sample] == unique(data$Sample)[i], ]
    for (j in 1:length(unique(data$Sample))] { #j=2
        Tdata[i,i] <- unique(data$Sample)[i]
        Tdata[i,i] <- unique(data$Sample)[i]
        Tdata[i,i] <- datasub[datasub$Compound == unique(data$Compound)[j],i]
        Tdata[i,i] <- datasub[datasub$Compound] <- datasub[datasub$Compound] <- datasub[datasub$Compound] <- datasub[datasub$Compound] <-
```

Bin processed file (13 PFAS compounds):

AHHS_Water_DataCleaned_231020_nmd_Column.csv

AHHS Nontargeted Water

Orig file from EPA: AHHSNontargetedDatasetWater.xlsx

R code (PFAS_Data_Processing.R) to process the original file: 1) For each compound, separated measurements values with flag and make measurements values and flag as two separate columns

Bin processed file (75 PFAS compounds): AHHSNontargetedDatasetWater_Column.csv

NCS Dust

Orig file from EPA: NCSDust_output.csv

R code (PFAS_Data_Processing.R) to process the original file: 1) Transposed data 2) For each compound abbreviation, add concentration, MRL, DL, and Flag as suffix

```
###NCSDust###
data <- read.csv("C:/Publications/PFAS database/Data Files Working Copies/NCSDust_output.csv", header = TRUE) #head(data)
length(unique(data$Sample))
length(unique(data$Sample))

Tdata <- matrix(data = NA, nrow = length(unique(data$Sample)), ncol = 1+4*length(unique(data$Cmp)), byrow =FALSE, dimnames =NULL) #head(Tdata)
for (i in 1:length(unique(data$Sample))) { # i=46
    datasub <- data[data$Sample == unique(data$Sample)]; }
    for (j in 1:length(unique(data$Sample)) { # j=1
        Tdata[i,1] <- unique(data$Sample)]; }
    Tdata[i,4*j-2] <- mean(datasub[datasub$Cmp == unique(data$Cmp)[j],3])
    Tdata[i,4*j-2] <- mean(datasub[datasub$Cmp == unique(data$Cmp)[j],4])
    Tdata[i,4*j] <- mean(datasub[datasub$Cmp == unique(data$Cmp)[j],7][1]
}

colnames(Tdata) <- c("Sample","PFBA_Concentration(ng/g)","PFBA_MRL","PFBA_DL","PFBA_Flags","PFBA_Concentration(ng/g)","PFBB_MRL","PFBB_DL","PFBA_Flags","PFBA_Concentration(ng/g)","PFBA_MRL","PFHBA_DL","PFBA_Flags","PFBA_Concentration(ng/g)","PFBA_DL","PFHBA_DL","PFBA_Flags","PFBA_COncentration(ng/g)","PFBA_DL","PFBA_Flags","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PFBA_DL","PF
```

Bin processed file (16 PFAS compounds): NCSDust_output_Column.csv

NCS Serum

Orig file from EPA: NCSSerum output.csv + NCS Serum Dust crosswalk share.csv

R code (PFAS_Data_Processing.R) to process the original file: 1) Transposed data 2) Corrected the sample ID 3) For each compound abbreviation, add concentration, MRL, DL, and Flag as suffix

```
###NCSSerum###

data <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/NCSSerum_output.csv", header = TRUE) #head(data)
length(unique(dataSsample))
length(unique(dataSsample))

Tdata <- matrix(data = NA, nrow = length(unique(dataSsample)), ncol = 1+4*length(unique(dataScmp)), byrow =FALSE, dimnames =NULL) #head(Tdata)
for (j in 1:length(unique(dataSsample)) { # j=2
    datasub <- data[dataSsample == unique(dataSsample)] { j=1
    Tdata[i, 12 - unique(dataSsample)] { j=1
    Tdata[i, 12 - unique(dataSsample)] { j=1
    Tdata[i, 2] <- datasub[datasubScmp == unique(dataScmp)[j], 3]
    Tdata[i, 4*j-2] <- datasub[datasubScmp == unique(dataScmp)[j], 5]
    Tdata[i, 4*j-1] <- datasub[datasubScmp == unique(dataScmp)[j], 7]
}
}
colnames(Tdata) <- c("Sample", "PFBA_Concentration(ng/mL)", "PFBA_MRL", "PFBA_DL", "PFBA_Flags", "PFBS_Concentration(ng/mL)", "PFBS_MRL", "PFBS_DL", "PFBS_Flags", "PFPBA_Concentration(ng/mL)", "PFHPA_DL", "PFPBA_Flags", "PFPBA_Concentration(ng/mL)", "PFPBA_MRL", "PFPBA_DL", "PFPBA_Flags", "PFPBA_Concentration(ng/mL)", "PFPBA_MRL", "PFPBA_DL", "PFPBA_Flags", "PFPBA_Concentration(ng/mL)", "PFPBA_MRL", "PFPBA_DL", "PFPBA_Flags", "PFPBA_Concentration(ng/mL)", "PFPBA_Flags", "PFPBA_COncentr
```

```
###Correct NCS transposed Serum data Sample ID###

NCSSerum <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/Processed_data/NCSSerum_output_Column.csv", header = TRUE) #head(NCSSerum)

NCSDust <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/Processed_data/NCSDust_output_Column.csv", header = TRUE) #head(NCSDust)

Cross <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/Replies from Jason Boettger/NCS_Serum_Dust_crosswalk_share.csv", header = TRUE) #head(NCSDust)

Cross <- read.csv("c:/Publications/PFAS database/Data Files Working Copies/Replies from Jason Boettger/NCS_Serum_Dust_crosswalk_share.csv", header = TRUE) #head(Cross)

NCSSerumScorrectSampleID[i] <- Cross[CrossSerum.sampleid == NCSSerumSample[i],2]

Write.csv(NCSSerum, "C:/Publications/PFAS database/Data Files Working Copies/Processed_data/NCSSerum_output_column_Corrected_SampleID.csv", row.names=FALSE)
```

Bin processed file (16 PFAS compounds):

NCSSerum_output_Column_Corrected_SampleID.csv

