#### POTENTIAL OUTCOMES

#### Denis Cohen

Mannheim Centre for European Social Research (MZES)

- ✓ denis.cohen@mzes.uni-mannheim.de
- **②** denis-cohen.github.io
- **y** @denis\_cohen

Social Science Data Lab MZES, University of Mannheim September 10, 2019



#### Logistics

- Workshop materials: github.com/socialsciencedatalab/potential-outcomes
- Live stream: zoom.us/j/386654642

#### General information

- Introduction to Potential Outcomes (60 min)
- Simulation Exercise (30 min)
- Prep course for Florian Foos "Randomized Experiments and Randomization Inference", Sept 16, 15:30-17:00

# Introduction

#### USING CORRELATIONS/ASSOCIATIONS FOR CAUSAL INFERENCE

- we nearly always find notable correlations/associations among variables in (observational) data
- correlation/association indicates that there may be an effect that may have a causal interpretation
- exact identification hinges on the assumption of no unobserved heterogeneity (aka exogeneity, no confounding bias)

### CONFOUNDING BIAS (IMAI 2017, P. 58)

A pretreatment variable that is associated with both the treatment and the outcome variables is called a **confounder** and is a source of **confounding bias** in the estimation of the treatment effect.



#### CAUSAL IDENTIFICATION

- We can try to make this assumption more credible, for instance by
  - subsetting the sample to rather homogeneous subgroups
  - using covariate adjustment to reduce unit heterogeneity
  - matching
  - randomization
- Ultimately, causal identification requires that all observed <u>and</u> unobserved confounders are accounted for – or 'eliminated' by design
- This assumption remains untestable no matter the research design!
- Causal inference thus requires making untestable assumption
- Causal identification: Development and application of an identification strategy that makes these assumptions as plausible and defensible as possible

## **Potential Outcomes**

- "What if?": Potential outcomes is all about hypothetical counterfactuals
- More specifically: Comparing factual and the counterfactual states
- Core assumption: Every unit in the population has a potential outcome  $Y_i$  under each possible treatment condition.
- For a binary treatment *D* (received=1, not received=0), we speak of treatment and control
- Causal effects can only be identified in comparison of different treatment states at the unit level:  $\tau_i = Y_i(D_i = 1) Y_i(D_i = 0)$

- i = 1, ..., N: subscript to denote a unit
- $D_i \in \{0, 1\}$ : hypothetical treatment status (here: binary)
- $d_i \in \{0, 1\}$ : factual treatment status
- $z_i \in \{0, 1\}$ : assignment to treatment/control group (may differ from  $d_i$ !)
- $(Y_i(0), Y_i(1))$ : potential outcomes of unit i in its untreated and treated state (general:  $Y_i(D_i)$ )
- $Y_i(d_i)$ : factual/observed outcome of unit i
- X<sub>i</sub>: covariate(s) (potential confounder(s)) for unit i
- $E[Y_i(1)]$ : expectatation of outcome across all units under treatment
- $E[Y_i(1)|D_i=0]$ : expectatation of outcome across all units under treatment conditional on being in the control group a counterfactual conditional expectation

#### Setup

- We have a sample of N = 1000 students. Our outcome of interest,  $Y_i$ , is knowledge about counterfactual causality measured by test scores in a quiz on causal inference.
- The treatment of interest,  $D_i$ , is attending a 90 minute talk titled "Introduction to the Potential Outcomes Framework".
- Assignment of treatment status equals actual receipt of treatment,  $z_i = d_i$ .
- Students' potential outcomes under the control,  $Y_i(0)$ , range between 20 and 80.
- Individual treatment effects,  $\tau_i$ , range between 0 and 20.
- Potential outcomes under the treatment,  $Y_i(1)$ , range between 20 and 100.

| i      | $Y_i(0)$ | $Y_i(1)$ | $	au_{i}$ |
|--------|----------|----------|-----------|
| 1      | 42.1     | 49.1     | 7         |
| 2      | 33.3     | 46       | 12.7      |
| 3      | 60.7     | 71.4     | 10.8      |
| :      | ÷        | ÷        | ÷         |
| 998    | 61.1     | 73.6     | 12.5      |
| 999    | 54.8     | 61.8     | 7         |
| 1000   | 43.6     | 52.9     | 9.3       |
| (mean) | 50.5     | 60.6     | 10.1      |
|        |          |          |           |

**Table 1:** What if students took the class? What if they didn't? Potential Outcomes under treatment and control plus idiosyncratic treatment effects

### THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE (FPCI)

- we never observe more than one potential outcome for a given unit at a time
- if  $D_i \in \{0, 1\}$ , we observe  $Y_i = d_i Y_i(1) + (1 d_i) Y_i(0)$ 
  - we observe  $Y_i(1)$  if  $d_i = 1$
  - we observe  $Y_i(0)$  if  $d_i = 0$
- if  $D_i \in \{0, 1, ..., K\}$ , we observe  $Y_i = \sum_{k=1}^{K} 1\{d_i = k\}Y_i(k)$  i.e., we observe  $Y_i(k)$  if and only if  $d_i = k$

| i       | $Y_i(0)$ | $Y_i(1)$ | $	au_{i}$ |
|---------|----------|----------|-----------|
| 1       | 42.1     | ?        | ?         |
| 2       | ?        | 46       | ?         |
| 3       | ?        | 71.4     | ?         |
| :       | :        | ÷        | ÷         |
| 998     | 61.1     | ?        | ?         |
| 999     | ?        | 61.8     | ?         |
| 1000    | ?        | 52.9     | ?         |
| (mean*) | 51.2     | 59.7     | 8.5       |
|         |          |          |           |

**Table 2:** The fundamental problem of causal inference illustrated.

\* sample means based on observed values.

Remember: Idiosyncratic causal effects can only be identified in comparison of different treatment states at the unit level:  $\tau_i = Y_i(1) - Y_i(0)$ .

- 1 Assume temporal stability and causal transience
  - expose each unit i to control, measure  $Y_i(0)$ ; then expose to treatment, measure  $Y_i(1)$
  - calculate  $\tau_i = Y_i(1) Y_i(0)$
- 2 Assume unit homogeneity
  - expose one unit to control, measure  $Y_i(0)$ ; expose other unit to treatment, measure  $Y_i(1)$
  - calculate  $\tau_{ij} = Y_i(1) Y_i(0)$
- 3 Statistical Method
  - shift the focus to expected causal effects
  - randomly split many units into control and treatment groups
  - expose one to control, one to treatment
  - estimate  $E[\tau] = E[Y_i(1)] E[Y_i(0)]$  per  $\overline{Y(1)} \overline{Y(0)}$

- Remember:  $Y_i(1)$  and  $Y_i(0)$  are hypothetical random variables defined over all units for different treatment conditions
- ATE is the average in potential outcomes:

$$\begin{split} E[\tau_i] &= E[Y_i(1) - Y_i(0)] \\ &= E[Y_i(1)] - E[Y_i(0)] \\ &= \{ \pi E[Y_i(1)|D_i = 1] + (1 - \pi)E[Y_i(1)|D_i = 0] \} \\ &- \{ \pi E[Y_i(0)|D_i = 1] + (1 - \pi)E[Y_i(0)|D_i = 0] \} \end{split}$$

 Which of these can we estimate from observed data? Which are unobservable counterfactual quantities?

### AVERAGE TREATMENT EFFECT (ATE)

What we want to know: 
$$E[\tau_i] = E[Y_i(1)] - E[Y_i(0)]$$
 
$$\{\pi\underbrace{E[Y_i(1)|D_i=1]}_{\text{factual}} + (1-\pi)\underbrace{E[Y_i(1)|D_i=0]}_{\text{counterfactual}}\}$$
 
$$-\{\pi\underbrace{E[Y_i(0)|D_i=1]}_{\text{counterfactual}} + (1-\pi)\underbrace{E[Y_i(0)|D_i=0]}_{\text{factual}}\}$$

What we do know:

$$\hat{\tau} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0]$$
naive estimator

Cohen (MZES) Potential Outcomes 14 / 27

#### ESTIMATING THE ATE

- The naive estimator: difference-in-means,  $\hat{\tau} = \overline{Y(1)} \overline{Y(0)}$
- When does this estimator yield an unbiased estimate? What assumption do we make?

$$\begin{split} &\{\pi\underbrace{E[Y_i(1)|D_i=1]}_{\text{as observed}} + (1-\pi)\underbrace{E[Y_i(1)|D_i=0]}_{\text{assume} = E[Y_i(1)|D_i=1]}\} \\ &- \{\pi\underbrace{E[Y_i(0)|D_i=1]}_{\text{assume} = E[Y_i(0)|D_i=0]}\} + (1-\pi)\underbrace{E[Y_i(0)|D_i=0]}_{\text{as observed}}\} \end{split}$$

• If these assumptions hold:

$$\underbrace{\frac{\left\{\pi E[Y_{i}(1)|D_{i}=1]+(1-\pi)E[Y_{i}(1)|D_{i}=0]\right\}}_{=E[Y_{i}(1)]}}_{=E[Y_{i}(0)|D_{i}=1]\}+(1-\pi)E[Y_{i}(0)|D_{i}=0]\}}_{=E[Y_{i}(0)]}$$

• But when are these defensible assumptions to make?

Imagine you were randomly split into two groups. What would be your expectation regarding the distribution of...

- observable characteristics?
- unobservable characteristics?
- idiosyncracies that result in random or systematic measurement error?
- possible responses to an experimental treatment?

Thus, under randomization:

- $Y_i(0), Y_i(1) \perp D_i$  for all i = 1, ..., N
- $X_i \perp D_i$  for all i = 1, ..., N

$$\begin{split} E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] &= \underbrace{E[\tau_i]}_{\text{True ATE}} \\ &+ \underbrace{\left\{E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0]\right\}}_{\text{selection bias}} \\ &+ \underbrace{\left(1 - \pi\right)\left\{E[\tau_i|D_i = 1] - E[\tau_i|D_i = 0]\right\}}_{\text{differential treatment effect bias}} \end{split}$$

...so?

#### BIAS IN THE ATE IN THE ABSENCE OF RANDOMIZATION

$$E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] = E[\tau_i]$$

only holds if:

1 no selection bias:

$$E[Y_i(0)|D_i = 1] = E[Y_i(0)|D_i = 0]$$

2 no differential treatment effects

$$\begin{split} E[\tau_i|D_i=1] = & E[\tau_i|D_i=0] \\ E[Y_i(1)|D_i=1] - E[Y_i(0)|D_i=1] = & E[Y_i(1)|D_i=0] - E[Y_i(0)|D_i=0] \\ E[Y_i(1)|D_i=1] - E[Y_i(1)|D_i=0] = & E[Y_i(0)|D_i=1] - E[Y_i(0)|D_i=0] \end{split}$$

#### TWO CORE ASSUMPTIONS ABOUT POTENTIAL OUTCOMES

- 1 Excludability (Exclusion Restriction)
  - Potential outcomes only respond to d, the actual receipt of the treatment
  - Over and beyond d, they are unaffected by assignment to the treatment group, z
- 2 Non-Interference (SUTVA)
  - Potential outcomes are unaffected by the pattern of actual or assigned treatments of other units

# **Summary**

- The Fundamental Problem of Causal Inference does not make causal inference impossible. It makes causal inference without making untested assumptions impossible!
- An identification strategy encompasses the clear statement of these assumptions and a research design that makes them as plausible and defensible as possible.
- The most defensible design is the experimental ideal: Randomized control trials.
- The more your design approximates the experimental ideal, the more defensible it is.

#### WHEN YOU WANT TO MAKE CAUSAL CLAIMS...

- Identify your causal question.
- Think about the ideal experiment to answer your question.
- How does deviation from the ideal affect your results?
- What if you could more strongly resemble an experiment? What could change?
- What assumptions do you have to make in order for your design to approximate the experimental ideal?
- Justify these assumptions!

## Simulation Exercise

#### Setup

- We have a sample of *N* = 1000 students. Our outcome of interest, *Y<sub>i</sub>*, is knowledge about counterfactual causality measured by test scores in a quiz on causal inference.
- The treatment of interest, D<sub>i</sub>, is attending a 90 minute talk titled "Introduction to the Potential Outcomes Framework".
- Assignment of treatment status equals actual receipt of treatment,  $z_i = d_i$ .
- Students' potential outcomes under the control,  $Y_i(0)$ , range between 20 and 80.
- Individual treatment effects,  $\tau_i$ , range between 0 and 20.
- Potential outcomes under the treatment,  $Y_i(1)$ , range between 20 and 100.
- Students' probability of selecting into the class is a direct function of their prior ability, i.e., of their potential outcomes under the control,  $Y_i(0)$ .
- Similarly, prior ability affects how much they learn (i.e., the size of their idiosyncratic treatment effects,  $\tau_i$ ) students with a higher prior ability tend get more out of the class.

#### **Two Scenarios**

- 1 Randomization: Pure chance determines whether students attend the talk or not
- 2 Self-Selection: Students self-select into the class, based on prior ability

We want to quantify the magnitude of selection bias and differential treatment effect bias under randomization and under self-selection.

- 1 Before you start, set a seed for reproducibility of your random variable generation (set.seed()).
- 2 Generate an integer, N <- 1000L, to be used in determining the length of the variables we create below.</p>
- 3 Generate a variable of potential outcomes under the control, Y\_0, containing random draws from a uniform distribution with support [20, 80] (runif()).
- 5 Show a scatter plot with **Y\_0** on the *x*-axis and **tau** on the *y*-axis. Briefly interpret the pattern you observe.

- 6 Generate a variable of potential outcomes under the treatment, Y\_1, using the two variables you previously generated.
- $\footnote{footnote{O}}$  Generate a randomly assigned binary treatment indicator,  $\footnote{D}$ , which takes on values of either 0 or 1 from a Bernoulli distribution, which is a special case of the binomial distribution with n=1, meaning we take n=1 draw for each observation i (rbinom). Suppose everyone has equal probability of being assigned to either treatment or control group.
- 8 Show that the potential outcomes are independent of treatment status. Choose an appropriate test or statistic and give a brief interpretation.
- ⊙ Generate a variable Y\_obs that takes the values of Y\_0 if D==0 and the values of Y\_1 if D==1.
- Run a regression of Y\_obs on D to gauge the average treatment effect. Give a brief interpreation.

- Next, generate a variable D\_sel that indicates receipt of the treatment in a scenario of self selection. For this, generate a variable prob\_sel equal to the potential outcomes under control divided by 100. This gives you each student's probability of selecting into the treatment. Use these probabilities to draw D\_sel from a Bernoulli distribution.
- Using the same test you chose above, test if the potential outcomes are independent of D\_sel and give a brief interpretation.
- Generate a variable Y\_obs\_sel that takes the values of Y\_0 if D\_sel==0 and the values of Y\_1 if D\_sel==1.
- Run a regression of Y\_obs\_sel on D\_sel to gauge the average treatment effect under selection bias.
- (5) Specify the magnitude of both selection bias and differential treatment effect bias. Explain how the two differ conceptually and interpret the estimates.

## References

#### BIBLIOGRAPHY i

- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program." *Journal of the American Statistical Association* 105 (490): 493–505.
- Angrist, Joshua D, and Jörn-Steffen Pischke. 2008. *Mostly Harmless Econometrics: An Empiricist's Companion*. Princeton, NJ: Princeton University Press.
- Gerber, Alan S, and Donald P Green. 2012. Field Experiments. Design, Analysis, and Interpretation. New York, London: W.W. Norton & Company.
- Imai, Kosuke. 2017. Quantitative Social Science. An Introduction. Princeton, NJ: Princeton University Press.
- Morgan, Stephen L, and Christopher Winship. 2015. *Counterfactuals and causal inference*. 2nd. Cambridge: Cambridge University Press.