Національний технічний університет України «Київський політехнічний інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Об'єктно-орієнтовне програмування Лабораторна робота №2

> Виконала: студентка групи IO-25 Антоненко В.С. Залікова книжка №2501

> > Перевірив Алещенко О.В.

Лабораторна робота №2

Тема: Масиви в мові програмування Java.

Мета: Ознайомлення з масивами та використання основних методів їх обробки в мові

програмування Java. Здобуття навичок у використанні масивів в мові

програмування Java.

Завдання

1. Визначити C_5 як остачу від ділення номера залікової книжки студента на 5, C_7 як остачу від ділення номера залікової книжки студента на 7, C_{11} як остачу від ділення номера залікової книжки студента на 11.

2. В залежності від С₅ визначити дію, що виконується з матрицею(ями):

C_5	Дія з матрицею(ями)
0	$C = a \cdot B$, $a - const$
1	$C = B^T$
2	C = A + B
3	$C = A \oplus B$
4	$C = A \times B$

3. В залежності від С₇ визначити тип елементів матриці:

\mathbf{C}_7	Тип елементів матриці
0	double
1	byte
2	short
3	int
4	long
5	char
6	float

4. В залежності від C_{11} визначити дію з матрицею C:

C ₁₁	Дія з матрицею C	
0	Обчислити суму найменших елементів кожного стовпця матриці	
1	Обчислити суму найменших елементів кожного рядка матриці	
2	Обчислити суму найбільших елементів кожного стовпця матриці	
3	Обчислити суму найбільших елементів кожного рядка матриці	
4	Обчислити суму найбільших елементів в рядках матриці з парними	
	номерами та найменших елементів в рядках матриці з непарними номерами	
5	Обчислити суму найбільших елементів в рядках матриці з непарними	
	номерами та найменших елементів в рядках матриці з парними номерами	
6	Обчислити суму найбільших елементів в стовпцях матриці з парними	
	номерами та найменших елементів в стовпцях матриці з непарними	
	номерами	
7	Обчислити суму найбільших елементів в стовпцях матриці з непарними	
	номерами та найменших елементів в стовпцях матриці з парними номерами	
8	Знайти середнє значення елементів кожного рядка матриці	
9	Знайти середнє значення елементів кожного стовпчика матриця	
10	Знайти середнє значення елементів матриці	

5. Створити клас, який складається з виконавчого методу, що виконує дію з матрицею(ями) (п.2) із зазначеним типом елементів (п.3) та дію із результуючою матрицею C (п.4). Вивести на екран результати першої та другої дій. Необхідно обробити всі виключні ситуації, що можуть виникнути під час виконання програмного коду. Всі змінні повинні бути описані та значення їх задані у виконавчому методі.

```
Роздруківка коду:
import java.util.Arrays;
public class Main {
    public static void main(String[] args) {
        byte[][] matrix = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\};
        //C5 = 2501 \mod 5 = 1, тому C = B^T (транспонування матриці)
        //C7 = 2501 mod 7 = 1, тому тип елементів матриці має бути byte
        //C11 = 2501 \; \text{mod} \; 11 = 10, тому треба знайти середн\varepsilon значення
елементів матриці
        // Виконуємо дію з матрицею: транспонування матриці В
        byte[][] transposedMatrix = transposeMatrix(matrix);
        System.out.println("Transposed matrix: ");
        printMatrix(transposedMatrix);
        // Виконуємо дію з матрицею С: знаходимо середнє значення елементів
матриці
        double average = calculateAverage(transposedMatrix);
        System.out.println("Середнє значення елементів матриці: " + average);
    // Метод для транспонування матриці
    private static byte[][] transposeMatrix(byte[][] matrix) {
        int rows = matrix.length;
        int columns = matrix[0].length;
        byte[][] transposedMatrix = new byte[columns][rows];
        for (int i = 0; i < rows; i++) {</pre>
            for (int j = 0; j < columns; j++) {
                transposedMatrix[j][i] = matrix[i][j];
        }
        return transposedMatrix;
    // Метод для знаходження середнього значення елементів матриці
    private static double calculateAverage(byte[][] matrix) {
        int rows = matrix.length;
        int columns = matrix[0].length;
        int sum = 0;
        for (int i = 0; i < rows; i++) {</pre>
            for (int j = 0; j < columns; j++) {
                sum += matrix[i][j];
            }
        }
        return (double) sum / (rows * columns);
    }
    // Метод для виведення матриці на екран
    private static void printMatrix(byte[][] matrix) {
        for (byte[] row : matrix) {
            System.out.println(Arrays.toString(row));
```

}

}

Приклади роботи програми:

```
public static void main(String[] args) {
                byte[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
 5
  Transposed matrix:
   [1, 4, 7]
  [2, 5, 8]
  [3, 6, 9]
  Середнє значення елементів матриці: 5.0
            public static void main(String[] args) {
 5
                byte[][] matrix = {{4, 7, 3}, {4, 7, 6}, {7, 10, 9}};
L c. (naci.a /www.noc/. lawa /nheiilaw. ta.n.s /ntii/lana.eve lanac
   Transposed matrix:
   [4, 4, 7]
5
   [7, 7, 10]
  [3, 6, 9]
   Середнє значення елементів матриці: 6.333333333333333
```

Алгоритм роботи програми:

Створюється матриця В розміром 3x3 з елементами типу byte. Після відбувається транспонування матриці В, що здійснюється в методі transposeMatrix. Далі виводиться на екран транспонована матриця.

В методі calculate Average здійснюється очислення середнього значення елементів транспонованої матриці С. Виводиться на екран середне значення елементів матриці С. Таким чином, програма здійснює декілька операцій з матрицями, включаючи транспонування та обчислення середнього значення елементів, що дозволяє досліджувати інформацію, яку можна використовувати в різних областях.

Висновок: під час виконання даної лабораторної роботи я ознайомилась з масивами та використання основних методів їх обробки в мові програмування Java. Здобула навичок у використанні масивів в мові програмування Java.