Fundamentals of Data Analytics Exercise Sheet 12: K-means, GMMs and Linear Regression

University of Hamburg

Key Concepts

K-means Clustering

- Algorithm Steps:
 - 1. Initialize K cluster centers (centroids) μ_k
 - 2. E-Step: Assign each point to nearest centroid using Euclidean distance
 - 3. M-Step: Update centroids as mean of assigned points
 - 4. Repeat until convergence
- Distance Calculation: $\|\mathbf{x}_n \boldsymbol{\mu}_k\|^2 = \sum_d (x_{nd} \mu_{kd})^2$
- Objective Function: Minimize sum of squared distances

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Gaussian Mixture Models

• Model Definition:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Gaussian PDF: For 1D case

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Expectation step: Compute the responsibilities given current parameter estimates:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- Maximization step: Update parameter estimates using current responsibilities:
 - Update means: $\boldsymbol{\mu}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$
 - Update covariances: $\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n \boldsymbol{\mu}_k^{\text{new}})^T$
 - Update mixing coefficients: $\pi_k^{\text{new}} = N_k/N$, where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

Linear Regression

• Linear Model:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- Design Matrix: Φ contains basis functions evaluated at all points
- Normal Equations:

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

• Regularized Solution:

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

• Error Function:

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n))^2$$

Exercises

Limit your solutions to 3 decimal places.

1.1 Gaussian Mixture Models

Given a one-dimensional Gaussian mixture model with two components:

$$p(x) = 0.7\mathcal{N}(x|2,1) + 0.3\mathcal{N}(x|5,2)$$

- a) Calculate the responsibilities $\gamma(z_1)$ and $\gamma(z_2)$ for a data point x=3.5 (E-step).
- b) Given the data point from the item above and the following additional data points and their responsibilities:

x	$\gamma(z_1)$	$\gamma(z_2)$
2.0	0.9	0.1
4.0	0.4	0.6
5.5	0.1	0.9

Perform one M-step of the EM algorithm to compute:

- New mixing coefficients π_1^{new} , π_2^{new}
- New means μ_1^{new} , μ_2^{new}
- New variances $(\sigma_1^2)^{\text{new}}$, $(\sigma_2^2)^{\text{new}}$

Give the answer in the form $p(x) = \pi_1 \mathcal{N}(\mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(\mu_2, \sigma_2^2)$.

1.2 Linear Regression

Consider a simple linear regression problem with the following three data points: (1,2), (2,4), and (3,5).

- a) Using the normal equations, find the best-fit line $y = w_0 + w_1 x$.
- b) Calculate the regularized solution with $\lambda=1$ using the formula:

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

c) Draw a plot comparing the regularized and unregularized solutions.

1.3 K-means Clustering (Extra)

Consider a dataset with four 2D points: (1,1), (2,1), (4,3), and (5,4). Perform one complete iteration of the K-means algorithm with K=2, starting with initial centroids $\mu_1=(1,1)$ and $\mu_2=(5,4)$.