

RIP & OSPF Multi-Area with Redistribution

1. Objective

- Configure a multi-area OSPF network with different area types (standard, stub, totally stub, NSSA).
- · Connect the OSPF AS to RIP v2 domains.
- · Configure redistribution between RIP and OSPF.
- · Configure ISP connectivity with NAT.
- Verify full end-to-end communication (internal \leftrightarrow external).

2. Topology Overview

- Routing Protocols: RIP v2 and OSPF.
- Routers: R1-R10 + ISP router.
- Special Areas:
 - Area 0: Backbone.
 - Area 20: Standard OSPF.
 - Area 30: Totally Stubby Area.
 - o Area 40: NSSA.
 - Area 80: Standard OSPF Area.
- Redistribution Routers: R1, R4, R8, R9.
- ISP Connectivity: R1 ↔ ISP router.
- NAT Gateway: R1.

3. Step-by-Step Configuration

Step 1 - Basic Device Setup

- Assign hostnames to all routers (R1-R10).
- Configure IP addresses on all interfaces as shown in the topology.
- make this configuration on each router:

• verify ip address on each router:

R1#show ip interfa	ace brief			
Interface	IP-Address	OK? Method S	Status F	Protocol
FastEthernet0/0	10.1.1.1	YES NVRAM	up up	0
FastEthernet0/1	50.0.0.1	YES manual	up up	o
Serial1/0	unassigned	YES NVRAM	administratively	down down
Serial1/1	192.168.1.1	YES NVRAM up	ир	
Serial1/2	unassigned	YES NVRAM	administratively	down down
Serial1/3	unassigned	YES NVRAM	administratively	down down
FastEthernet2/0	unassigr	ned YES NVR	AM administrativ	vely down down

R2#show ip interf	ace brief		
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	10.1.1.2	YES NVRAM up	up
FastEthernet0/1	unassigne	ed YES NVRAM admin	istratively down down
Serial1/0	unassigned	YES NVRAM administr	atively down down
Serial1/1	10.1.20.1 YI	ES NVRAM up	up
Serial1/2	unassigned	YES NVRAM administr	atively down down
Serial1/3	unassigned	YES NVRAM administr	atively down down
FastEthernet2/0	unassigne	ed YES NVRAM admir	nistratively down down

R3#show ip interfa		OLCO Martina al Otarta	Ductoral
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	10.1.1.3	YES NVRAM up	up
FastEthernet0/1	unassigne	ed YES NVRAM admir	nistratively down down
Serial1/0	unassigned	YES NVRAM administr	ratively down down
Serial1/1	10.1.30.1 Y	ES NVRAM up	up
Serial1/2	unassigned	YES NVRAM administr	ratively down down
Serial1/3	unassigned	YES NVRAM administr	ratively down down
FastEthernet2/0	unassigne	ed YES NVRAM admi	nistratively down down

in R4 & R5 & R7 & R9 & R10 we we add loopback

#int loopback no.

ip address ip-value subnet value

Interface FastEthernet0/0 FastEthernet0/1	IP-Address unassig unassigr	ned		VRAM	administrat	Protocol ively down down vely down down
Serial1/0	80.0.0.1	YES N	IVRAM	up	up	
Serial1/1	10.1.20.2	YES N	IVRAM	up	up	
Serial1/2	unassigned	YE	S NVRA	M adr	ministratively	y down down
Serial1/3	unassigned	YE	S NVRA	M adr	ministratively	y down down
FastEthernet2/0	unassig	ned	YES N	VRAM	administrat	ively down down
Loopback0	20.1.1.1	YES	NVRAN	1 up	uţ	o
Loopback1	20.1.2.1	YES	NVRAN	/l up	u _l	p
Loopback2	20.1.3.1	YES	NVRA	√l up	u	р

R5#sh ip int br Interface FastEthernet0/0 FastEthernet0/1	IP-Address OK? Method Status Protocol unassigned YES NVRAM administratively down down unassigned YES NVRAM administratively down down
Serial1/0	unassigned YES NVRAM administratively down down
Serial1/1	10.1.30.2 YES NVRAM up up
Serial1/2	unassigned YES NVRAM administratively down down
Serial1/3	unassigned YES NVRAM administratively down down
FastEthernet2/0	unassigned YES NVRAM administratively down down
Loopback0	30.1.1.1 YES NVRAM up up
Loopback1	30.1.2.1 YES NVRAM up up
Loopback2	30.1.3.1 YES NVRAM up up

and so on for all routers

• Verify connectivity with **ping** between directly connected routers.

R1 ping R6

R1#ping 192.168.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds: !!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/32 ms

R2 ping R4

R2#ping 10.1.20.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.20.2, timeout is 2 seconds: !!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 72/76/80 ms

Observation: All IP addresses were configured successfully, and direct connectivity was verified using ping.

Step 2 - RIP v2 Configuration

- Enable RIP v2 on routers in the RIP AS (R1, R6, R9, R10, and ISP router).
- Advertise directly connected networks.
- Use version 2 and no auto-summary.

R1#conf t

R1(config)#router rip

R1(config-router)#v 2

R1(config-router)#no auto

R1(config-router)#no auto-summary

R1(config-router)#network 192.168.1.0

R6#conf t

R6(config)#router rip

R6(config-router)#v 2

R6(config-router)#no auto-summary

R6(config-router)#network 192.168.1.0

R6(config-router)#network 70.0.0.0

R9#conf t

R9(config)#router rip

R9(config-router)#v 2

R9(config-router)#no auto-summary

R9(config-router)#network 60.0.0.0

R10#conf t

R10(config)#router rip

R10(config-router)#v 2

R10(config-router)#no auto-summary

R10(config-router)#network 60.0.0.0

R10(config-router)#network 60.1.0.0

Observation: RIP neighbors formed correctly. Internal subnets were exchanged, and show ip route confirmed RIP routes installed.

Step 3 - OSPF Area 0 Configuration

- Configure OSPF process ID (e.g., 1).
- Place routers R1,R2, R3, and R8 into Area 0.
- Verify adjacency using show ip ospf neighbor.

R1#CONF T

R1(config)#router ospf 1

R1(config-router)#router-id 1.1.1.1

R1(config-router)#network 10.1.1.1 0.0.0.0 area 0

R2#conf t

R2(config)#router ospf 1

R2(config-router)#router-id 2.2.2.2

R2(config-router)#network 10.1.1.2 0.0.0.0 area 0

R3#conf t

R3(config)#router ospf 1

R3(config-router)#router-id 3.3.3.3

R3(config-router)#network 10.1.1.3 0.0.0.0 area 0

R8#conf t

R8(config)#router ospf 1 R8(config-router)#router-id 8.8.8.8 R8(config-router)#network 10.1.1.4 0.0.0.0 area 0

Step 4 - Other OSPF Areas

Area 20 : Configure R2

R4 link and Lo interfaces on R4.

R2#conf t

R2(config)#router ospf 1

R2(config-router)#router-id 2.2.2.2

R2(config-router)#network 10.1.20.1 0.0.0.0 area 20

R2(config-router)#network 20.1.0.0 0.0.0.0 area 20

R4#conf t

R4(config)#router ospf 1

R4(config-router)#router-id 4.4.4.4

R4(config-router)#network 10.1.20.2 0.0.0.0 area 20

R4(config-router)#network 20.1.0.0 0.0.0.0 area 20

Area 30 : Configure R3 ↔ R5 link and Lo interfaces on R5

R3#conf t

R3(config)#router ospf 1

R3(config-router)#network 10.1.30.1 0.0.0.0 area 30

R3(config-router)#network 30.1.0.0 0.0.0.0 area 30

R5#conf t

R5(config)#router ospf 1

R5(config-router)#router-id 5.5.5.5

R5(config-router)#network 10.1.30.2 0.0.0.0 area 30

R5(config-router)#network 30.1.0.0 0.0.0.0 area 30

Area 40 : Configure R8 ↔ R9 link and Lo interfaces on R9

R8#conf t

R8(config)#router ospf 1 R8(config-router)#router-id 8.8.8.8 R8(config-router)#network 40.0.0.1 0.0.0.0 area 40

R9#conf t

R9(config)#router ospf 1

R9(config-router)#router-id 9.9.9.9

R9(config-router)#network 40.0.0.2 0.0.0.0 area 40

R9(config-router)#network 40.1.0.0 0.0.0.0 area 40

Area 80: Connect R4 ↔ R7. Configure R7 Lo interfaces under OSPF.

R4(config)#router ospf 1

R4(config-router)#network 80.0.0.1 0.0.0.0 area 80

R7#conf t

R7(config)#router ospf 1

R7(config-router)#router-id 7.7.7.7

R7(config-router)#network 80.0.0.2 0.0.0.0 area 80

R7(config-router)#network 80.1.0.0 0.0.0.0 area 80

Verify OSPF

Verify with show ip ospf neighbor.

R1#show ip ospf neighbor

Dead Time Address Neighbor ID Pri State Interface 2.2.2.2 1 FULL/DR 3.3.3.3 1 FULL/DROTHER 00:00:32 10.1.1.3 FastEthernet0/0 8.8.8.8 1 FULL/DROTHER 00:00:31 10.1.1.4 FastEthernet0/0

R

R2#show ip ospf neighbor

Neighbor ID Dead Time Address Interface Pri State 1.1.1.1 1 FULL/BDR 00:00:39 10.1.1.1 FastEthernet0/0 3.3.3.3 1 FULL/DROTHER 00:00:39 10.1.1.3 FastEthernet0/0 8.8.8.8 1 FULL/DROTHER 00:00:39 10.1.1.4 FastEthernet0/0 4.4.4.4 0 FULL/ -00:00:39 10.1.20.2

R3#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 1.1.1.1 1 FULL/BDR 00:00:36 10.1.1.1 FastEthernet0/0 2.2.2.2 1 FULL/DR 00:00:35 10.1.1.2 FastEthernet0/0 8.8.8.8 1 2WAY/DROTHER 00:00:31 10.1.1.4 FastEthernet0/0 5.5.5.5 0 FULL/ -00:00:38 10.1.30.2

R4#sh ip ospf nei

 Neighbor ID
 Pri
 State
 Dead Time
 Address
 Interface

 2.2.2.2
 0
 FULL/ 00:00:39
 10.1.20.1
 Serial1/1

 7.7.7.7
 0
 FULL/ 00:00:31
 80.0.0.2

R5#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 3.3.3.3 0 FULL/ - 00:00:34 10.1.30.1

R7#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 4.4.4.4 0 FULL/ - 00:00:34 80.0.0.1

R8#sh ip ospf nei

Dead Time Address Neighbor ID Pri State Interface 1.1.1.1 1 FULL/BDR 00:00:38 10.1.1.1 FastEthernet0/0 2.2.2.2 1 FULL/DR 00:00:37 10.1.1.2 FastEthernet0/0 3.3.3.3 1 2WAY/DROTHER 00:00:34 10.1.1.3 FastEthernet0/0 0 FULL/ -9.9.9.9 00:00:38 40.0.0.2 Serial1/1

R9#sh ip ospf nei

Interface Neighbor ID Pri State Dead Time Address 8.8.8.8 0 FULL/ -00:00:32 40.0.0.1

Area 30 (Totally Stub): Configure R3

R5 link. Mark it as area 30 stub no-summary.

R3#conf t

R3(config)#router ospf 1

R3(config-router)#area 30 stub no-summary → totally stub

R5#conf t

R5(config)#router ospf 1 R5(config-router)#area 30 stub no-summary

Area 40 (NSSA): Configure R8

R9 link as NSSA using area 40 nssa.

R8(config)#router ospf 1

R8(config-router)#area 40 nssa no-summary → prevent type-3 and convert type-5 to type-7

R9(config)#router ospf 1

R9(config-router)#area 40 nssa

Observation:

- · OSPF adjacencies came up successfully. Backbone and non-backbone areas were connected, and routing tables were updated with OSPF intra-area and inter-area routes.
- In Area 30 (Totally Stub), only a default route was learned as expected.
- In Area 40 (NSSA), redistributed routes appeared as Type 7 LSAs, which were later translated into Type 5 LSAs by the ABR.

Step 5 - OSPF Database Verification, Virtual Link, and RIP Redistribution

- Used the command show ip ospf database on multiple routers to verify OSPF operation.
- Confirmed that OSPF areas were exchanging LSAs as expected.
- Observed missing routes in some areas, which indicated the need for additional configuration.
- Identified two required actions based on the database output:

- \circ Configure a Virtual Link \rightarrow to connect isolated areas back to Area 0.
- \circ **Redistribute RIP into OSPF** \to to advertise RIP-learned routes (Area 60) into the OSPF domain.
- Collected screenshots of OSPF database outputs (R2, R4, R7, and R9) to show:
 - Correct Router-ID assignments.
 - LSAs in Backbone Area 0.
 - LSAs in Stub, Totally Stub, and NSSA areas (Type-3, Type-5, Type-7).
- Verification step confirmed that OSPF was functioning correctly after applying the fixes.

R1-	#sh ip os	pf database				
	OSP	F Router with	n ID (1.1.1	.1) (Process II	O 1)	
	Ro	outer Link Sta	ates (Are	a 0)		
1.1 2.2 3.3	2.2.2 3.3.3		5 0x 1220	0x8000000 0x8000000	Checksum Link coui x003FC5 1 04 0x0002F7 1 4 0x00C32D 1 5 0x00586C 1	nt
	Ne	et Link States	s (Area 0))		
		ADV Router 2.2.2.2	Age 466	Seq# 0x8000000		
	Sı	ummary Net I	Link Stat	es (Area 0)		
10 10		ADV Router 2.2.2.2 3.3.3.3 8.8.8.8	Age 1220 491 581	0x8000000	Checksum 02 0x006272 02 0x00D5F0 01 0x0011A3	

R2#sh ip ospf database

OSPF Router with ID (2.2.2.2) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Rout	er Age	Seq#	Checksum Link count
1.1.1.1	1.1.1.1 16	641 Ox	80000003 0	x003FC5 1
2.2.2.2	2.2.2.2	1255	0x800000	004 0x0002F7 1
3.3.3.3	3.3.3.3	526	0x800000	04 0x00C32D 1
8.8.8.8	8.8.8.8	134	0x8000000	05 0x00586C 1

Net Link States (Area 0)

Link ID	ADV Rout	er	Age	Seq#	Checksum
10.1.1.2	2.2.2.2	50	0	0x8000000	4 0x008F51

Summary Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum
10.1.20.0	2.2.2.2	1255	0x800000	002 0x006272
10.1.30.0	3.3.3.3	526	0x800000	02 0x00D5F0
40.0.0.0	8.8.8.8	616	0x800000	01 0x0011A3

Router Link States (Area 20)

Link ID	ADV Router	Age	Seq#	Checksum Link count
2.2.2.2	2.2.2.2	753	0x8000000	3 0x003B07 2
4.4.4.4	4.4.4.4	753	0x8000000	2 0x006BCF 2

Summary Net Link States (Area 20)

Link ID	ADV Route	er Age	Seq#	Checksum
10.1.1.0	2.2.2.2	1259	0x800000	02 0x001608
10.1.30.0	2.2.2.2	506	0x800000	002 0x005868
40.0.0.0	2.2.2.2	620	0x80000	001 0x002A98

Summary ASB Link States (Area 20)

Link ID	ADV Router	Age	Seq#	Checksum
8.8.8.8	2.2.2.2	134	0x8000000	1 0x0032D7

R3#sh ip ospf database

OSPF Router with ID (3.3.3.3) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Rou	ter Age	e Seq#	Checksum Link count
1.1.1.1	1.1.1.1 1	679 0	x80000003	0x003FC5 1
2.2.2.2	2.2.2.2	1294	0x80000	004 0x0002F7 1
3.3.3.3	3.3.3.3	564	0x800000	004 0x00C32D 1
8.8.8.8	8.8.8.8	173	0x800000	05 0x00586C 1

Net Link States (Area 0)

Link ID	ADV Route	er	Age	Seq#	Checksum
10.1.1.2	2.2.2.2	53	39	0x8000000	4 0x008F51

Summary Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum
10.1.20.0	2.2.2.2	1294	0x800000	002 0x006272
10.1.30.0	3.3.3.3	564	0x800000	02 0x00D5F0
40.0.0.0	8.8.8.8	655	0x800000	001 0x0011A3

Router Link States (Area 30)

Link ID	ADV Router	Age	Seq#	Checksum Link count
3.3.3.3	3.3.3.3	321	0x80000000	6 0x007EA2 2
5.5.5.5	5.5.5.5	326	0x8000000	4 0x00B06A 2

Summary Net Link States (Area 30)

Link ID	ADV Router	Age	Seq#	Checksum
0.0.0.0	3.3.3.3	373	0x8000000	1 0x0057DA

R4#sh ip ospf database

OSPF Router with ID (4.4.4.4) (Process ID 1)

Router Link States (Area 20)

Link ID ADV Router Age Seq# Checksum Link count

2.2.2.2 2.2.2.2 832 0x80000003 0x003B07 2 4.4.4.4 4.4.4.4 825 0x80000002 0x006BCF 2

Summary Net Link States (Area 20)

ADV Router Link ID Age Seq# Checksum 10.1.1.0 2.2.2.2 1333 0x80000002 0x001608 10.1.30.0 2.2.2.2 579 0x80000002 0x005868 40.0.0.0 693 2.2.2.2 0x80000001 0x002A98

Summary ASB Link States (Area 20)

Link ID ADV Router Age Seq# Checksum 8.8.8.8 2.2.2.2 207 0x80000001 0x0032D7

Router Link States (Area 80)

Link ID ADV Router Age Seq# Checksum Link count

4.4.4.4 4.4.4.4 1656 0x80000002 0x00794C 2 7.7.7.7 7.7.7.7 1660 0x80000001 0x003E7B 2

R5#sh ip ospf database

OSPF Router with ID (5.5.5.5) (Process ID 1)

Router Link States (Area 30)

Link ID ADV Router Age Seq# Checksum Link count

3.3.3.3 3.3.3.3 413 0x80000006 0x007EA2 2 5.5.5.5 5.5.5.5 412 0x80000004 0x00B06A 2

Summary Net Link States (Area 30)

Link ID ADV Router Age Seq# Checksum 0.0.0.0 3.3.3.3 460 0x80000001 0x0057DA

R7#sh ip ospf database

OSPF Router with ID (7.7.7.7) (Process ID 1)

Router Link States (Area 80)

Link ID ADV Router Age Seq# Checksum Link count 4.4.4.4 4.4.4.4 1774 0x80000002 0x00794C 2 7.7.7.7 1773 0x80000001 0x003E7B 2 7.7.7.7

since R7 and R4 don't see other OSPF routers so we need to make virtual link

Step 6 - Virtual Link:

R2#conf t

R2(config)#router ospf 1 R2(config-router)#area 20 virtual-link 4.4.4.4

R4#conf t

R4(config)#router ospf 1 R4(config-router)#area 20 virtual-link 2.2.2.2

so Recheck R4 & R7

R4#sh ip ospf database

OSPF Router with ID (4.4.4.4) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Route	r Age	Seq#	Checksum Link count
1.1.1.1	1.1.1.1 10	52 (DNA) ()x8000000	3 0x0059A7 1
2.2.2.2	2.2.2.2	1 (DNA) 0x80000	004 0x000571 2
3.3.3.3	3.3.3.3	1052 (DN	IA) 0x8000	00003 0x00D916 1
4.4.4.4	4.4.4.4	448	0x800000	005 0x00267D 1
8.8.8.8	8.8.8.8	1052 (DN	IA) 0x8000	00003 0x007054 1

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.1.1.4 8.8.8.8 1052 (DNA) 0x80000001 0x00BB0E

Summary Net Link States (Area 0)

Link ID	ADV Router	Ag	e Seq#	Checksum
10.1.20.0	2.2.2.2	1087	(DNA) 0x800	000001 0x006471
10.1.20.0	4.4.4.4	448	0x80000	004 0x0022A8
10.1.30.0	3.3.3.3	1088	(DNA) 0x800	00001 0x00D7EF
40.0.0.0	8.8.8.8	1087	(DNA) 0x800	000001 0x0011A3
0.0.08	4.4.4.4	450	0x80000	0004 0x007920

Router Link States (Area 20)

Link ID	ADV Router	Age	Seq#	Checksum Link count
2.2.2.2	2.2.2.2	501	0x8000000	5 0x0043F8 2
4.4.4.4	4.4.4.4	452	0x8000000	07 0x0070C0 2

Summary Net Link States (Area 20)

Link ID	ADV Route	r Age	Seq#	Checksum
10.1.1.0	2.2.2.2	1496	0x800000	05 0x00100B
10.1.30.0	2.2.2.2	1498	0x80000	004 0x00546A
40.0.0.0	2.2.2.2	1498	0x80000	004 0x00249B
80.0.0.0	4.4.4.4	454	0x80000	004 0x007920

Summary ASB Link States (Area 20)

Link ID	ADV Ro	uter	Age	Seq#	Checksum
1.1.1.1	2.2.2.2	149	8	0x80000004	0x006FB3
1.1.1.1	4.4.4.4	455)	0x80000004	0x00B525

8.8.8.8	2.2.2.2	1500	0x80000004 0x002CDA
8.8.8.8	4.4.4.4	456	0x80000004 0x00724C

Router Link States (Area 80)

Link ID	ADV Rout	er Age	Seq#	Checksum Link count
4.4.4.4	4.4.4.4	456	0x80000	006 0x00744C 2
7.7.7.7	7.7.7.7	1550	0x8000000	5 0x00367F 2

Summary Net Link States (Area 80)

Link ID	ADV Route	r Age	Seq#	Checksum
10.1.1.0	4.4.4.4	457	0x8000000	04 0x00587B
10.1.20.0	4.4.4.4	458	0x800000	004 0x0022A8
10.1.30.0	4.4.4.4	458	0x800000	004 0x009ADB
40.0.0.0	4.4.4.4	459	0x80000	004 0x006A0D

Summary ASB Link States (Area 80)

Link ID	ADV Rou	ter Age	e Seq#	Checksum
1.1.1.1	4.4.4.4	459	0x8000000	4 0x00B525
8.8.8.8	4.4.4.4	460	0x800000	04 0x00724C

Type-5 AS External Link States

Link ID	ADV Rou	iter Ag	e Seq#	Checksum Tag
0.0.0.0	1.1.1.1	1510	0x80000004	1 0x001794 1
60.0.0.0	8.8.8.8	534	0x80000	003 0x00B95E 0
60.1.1.0	8.8.8.8	534	0x800000	03 0x00A273 0
60.1.2.0	8.8.8.8	535	0x800000	03 0x00977D 0
60.1.3.0	8.8.8.8	535	0x800000	03 0x008C87 0
70.1.1.0	1.1.1.1	1512	0x80000004	0x001B36 0
70.1.2.0	1.1.1.1	1513	0x80000004	1 0x001040 0
70.1.3.0	1.1.1.1	1513	0x80000004	1 0x00054A 0
192.168.1.0	1.1.1.1	1513	0x8000000	04 0x000728 0

R7#sh ip ospf database

OSPF Router with ID (7.7.7.7) (Process ID 1)

Router Link States (Area 80)

Link ID	ADV Rout	er Age	Seq#	Checksum Link count
4.4.4.4	4.4.4.4	376	0x80000	006 0x00744C 2
7.7.7.7	7.7.7.7	1467	0x8000000	5 0x00367F 2

Summary Net Link States (Area 80)

Link ID	ADV Route	r Age	Seq#	Checksum
10.1.1.0	4.4.4.4	376	0x8000000	04 0x00587B
10.1.20.0	4.4.4.4	376	0x800000	004 0x0022A8
10.1.30.0	4.4.4.4	376	0x800000	004 0x009ADB
40.0.0.0	4.4.4.4	376	0x80000	004 0x006A0D

Summary ASB Link States (Area 80)

Link ID	ADV Rou	ter A	.ge Seq#	Checksum
1.1.1.1	4.4.4.4	376	0x8000000	04 0x00B525
8.8.8.8	4.4.4.4	376	0x80000	004 0x00724C

Type-5 AS External Link States

Link ID	ADV Rou	iter Age	e Seq#	Checksum Tag
0.0.0.0	1.1.1.1	1426	0x8000000	4 0x001794 1
60.0.0.0	8.8.8.8	454	0x800000	003 0x00B95E 0
60.1.1.0	8.8.8.8	454	0x800000	03 0x00A273 0
60.1.2.0	8.8.8.8	454	0x800000	03 0x00977D 0
60.1.3.0	8.8.8.8	454	0x800000	03 0x008C87 0
70.1.1.0	1.1.1.1	1432	0x80000004	0x001B36 0
70.1.2.0	1.1.1.1	1432	0x8000000	4 0x001040 0
70.1.3.0	1.1.1.1	1432	0x8000000	4 0x00054A 0
192.168.1.0	1.1.1.1	1433	0x800000	04 0x000728 0

R8#sh ip ospf database

OSPF Router with ID (8.8.8.8) (Process ID 1)

Router Link States (Area 0)

Link II	IA C	DV Ro	uter A	ge	Seq#	Checksum	າ Link count
1.1.1.1	1.1.1.	1	1300	0x	80000002	0x005BA6 1	
2.2.2.	2 2.	2.2.2	1311		0x800000	04 0x0080F	5 2
3.3.3.	3 3.	3.3.3	1311		0x800000	03 0x00D916	3 1
4.4.4.	4 4.	4.4.4	2	(DI	0008x0 (AV	0002 0x002	C7A 1
8.8.8.	8.	8.8.8	1310		0x800000	003 0x00705	4 1

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.1.1.4 8.8.8.8 1300 0x80000002 0x00B90F

Summary Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum
10.1.20.0	2.2.2.2	1347	0x800000	001 0x006471
10.1.20.0	4.4.4.4	11 (D	NA) 0x80000	0001 0x0028A5
10.1.30.0	3.3.3.3	1347	0x800000	01 0x00D7EF
40.0.0.0	8.8.8.8	1345	0x800000	001 0x0011A3
0.0.0.08	4.4.4.4	11 (D	NA) 0x8000	0001 0x007F1D

Router Link States (Area 40)

Link ID	ADV Router	Age	Seq#	Checksum Link count
8.8.8.8	8.8.8.8	1353	0x8000000	2 0x00865E 2
9.9.9.9	9.9.9.9	1355	0x8000000)2 0x0023BD 2

Summary Net Link States (Area 40)

Link ID	ADV Router	Age	Seq#	Checksum
0.0.0.0	8.8.8.8	105	0x80000001	0x0048CD

Type-7 AS External Link States (Area 40)

Link ID	ADV Router	Age	Seq#	Checksum Tag
60.0.0.0	9.9.9.9	1362	0x800000	001 0x000B01 0
60.1.1.0	9.9.9.9	1361	0x8000000	1 0x00F316 0
60.1.2.0	9.9.9.9	1361	0x800000	01 0x00E820 0
60.1.3.0	9.9.9.9	1363	0x800000	01 0x00DD2A 0

Т	ype-5 AS	External Li	ink States	
Link ID 0.0.0.0	ADV Rou	iter Age	•	Checksum Ta 01 0x001D91 1
60.0.0.0	8.8.8.8	1348		0001 0x00BD5C
60.1.1.0 60.1.2.0	8.8.8.8 8.8.8.8	1348 1348		001 0x00A671 0 0001 0x009B7B (
60.1.3.0	8.8.8.8	1349		0001 0x009085 0
70.1.1.0 70.1.2.0	1.1.1.1 1.1.1.1	1350 1350		01 0x002133 0 01 0x00163D 0
70.1.3.0 192.168.1.0	1.1.1.1	1350 1352		01 0x000B47 0 001 0x000D25 0

R9#sh ip o	spf database	е						
OSPF Router with ID (9.9.9.9) (Process ID 1)								
R	outer Link St	tates (Are	a 40)					
Link ID 8.8.8.8 9.9.9.9	ADV Route 8.8.8.8 9.9.9.9	r Age 442 438		Checksum Link count 03 0x00845F 2 05 0x0017C8 2				
S	ummary Net	Link Stat	es (Area 40)					
Link ID 10.1.1.0 10.1.20.0	ADV Route 8.8.8.8 8.8.8.8	r Age 470 470		Checksum 2 0x0007F8 02 0x00B7F4				

0x80000002 0x004959

since R9 & R1 didn't see RIP so we need to make redistribution

8.8.8.8

470

Step 7 – Redistribution

10.1.30.0

- Configure redistribution points:
 - R1: Redistribute between RIP and OSPF Area 0.
 - R4: Redistribute between OSPF Area 20 and RIP.
 - R8/R9: Redistribute between OSPF NSSA and RIP.
- Use route filtering if needed to prevent routing loops.

R1#conf t

R1(config)#router ospf 1

R1(config-router)#redistribute rip subnets

R1(config-router)#default-information originate \rightarrow by5ly al defult route global l kol al routers y3ni ay 7aga m7taga to5rg bt5rog mn R1

R1#sh ip ospf database

OSPF Router with ID (1.1.1.1) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Route	er Age	Seq#	Checksum Link count
1.1.1.1	1.1.1.1 16	71 0x8	30000006 0	x0053AA 1
2.2.2.2	2.2.2.2	674	0x800000	07 0x00FE74 2
3.3.3.3	3.3.3.3	1660	0x800000	06 0x00D319 1
4.4.4.4	4.4.4.4	3 (DI	00008x0 (AV	0002 0x002C7A 1
8.8.8.8	8.8.8.8	1701	0x8000000	06 0x006A57 1

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.1.1.4 8.8.8.8 1701 0x80000004 0x00B511

Summary Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum
10.1.20.0	2.2.2.2	1668	0x800000	004 0x005E74
10.1.20.0	4.4.4.4	37 (D	NA) 0x8000	0001 0x0028A5
10.1.30.0	3.3.3.3	1660	0x800000	04 0x00D1F2
40.0.0.0	8.8.8.8	1701	0x800000	04 0x000BA6
0.0.0.08	4.4.4.4	37 (0	0008x0 (AM	0001 0x007F1D

Type-5 AS External Link States

Link ID	ADV Rou	ter Age	e Seq#	Checksum Tag
0.0.0.0	1.1.1.1	1675	0x80000004	0x001794 1
60.0.0.0	8.8.8.8	701	0x800000	03 0x00B95E 0
60.1.1.0	8.8.8.8	701	0x8000000	3 0x00A273 0
60.1.2.0	8.8.8.8	701	0x800000	3 0x00977D 0
60.1.3.0	8.8.8.8	701	0x8000000	3 0x008C87 0
70.1.1.0	1.1.1.1	1677	0x80000004	0x001B36 0
70.1.2.0	1.1.1.1	1677	0x80000004	0x001040 0
70.1.3.0	1.1.1.1	1677	0x80000004	0x00054A 0
192.168.1.0	1.1.1.1	1678	0x8000000	4 0x000728 0

Since R9 is NSSA so the external networks appears as Type-7 Not Type-5

Step 8 - Default Route Configuration

- Configure a default route on the ISP router (ip route 0.0.0.0 0.0.0.0 ...).
- Redistribute into RIP → OSPF → other areas.
- · Verify propagation into stub areas.

defult route 3la R1, R6 & R10

R1(config)#ip route 0.0.0.0 0.0.0.0 50.0.0.2

R6(config)#ip route 0.0.0.0 0.0.0.0 192.168.1.1

R10(config)#ip route 0.0.0.0 0.0.0.0 60.0.0.1

Step 9 - ISP Configuration

ISP#CONF T

ISP(config)#int f0/1

ISP(config-if)#ip add

ISP(config-if)#ip address 50.0.0.2 255.255.255.0

ISP(config-if)#exit

ISP(config)#int f0/1

ISP(config-if)#no sh

ISP(config-if)#exit

ISP(config)#int loop

ISP(config)#int loopback 1

ISP(config-if)#ip address 90.0.0.1 255.255.255.0

Step 10 - NATING

R1#conf t

R1(config)#int f0/1

R1(config-if)#ip nat outside

R1(config-if)#int f0/0

R1(config-if)#ip nat inside

R1(config-if)#int s1/1

R1(config-if)#ip nat inside

R1(config-if)#exit

R1(config)#access-list 1 permit 20.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 30.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 40.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 60.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 70.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 80.1.0.0 0.0.255.255

R1(config)#access-list 1 permit 90.0.0.0 0.0.255.255

R1(config)#ip nat inside source list 1 interface f0/1 overload

Step 1 – Verification

· Use these commands:

show ip route - verify route entries.

R1#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 50.0.0.2 to network 0.0.0.0

50.0.0.0/24 is subnetted, 1 subnets

C 50.0.0.0 is directly connected, FastEthernet0/1

70.0.0.0/24 is subnetted, 3 subnets

R 70.1.3.0 [120/1] via 192.168.1.2, 00:00:21, Serial1/1

R 70.1.2.0 [120/1] via 192.168.1.2, 00:00:21, Serial1/1

R 70.1.1.0 [120/1] via 192.168.1.2, 00:00:21, Serial1/1

40.0.0.0/24 is subnetted, 1 subnets

O IA 40.0.0.0 [110/74] via 10.1.1.4, 00:10:34, FastEthernet0/0 10.0.0.0/24 is subnetted, 3 subnets

C 10.1.1.0 is directly connected, FastEthernet0/0

O IA 10.1.30.0 [110/74] via 10.1.1.3, 00:10:36, FastEthernet0/0

O IA 10.1.20.0 [110/74] via 10.1.1.2, 00:10:36, FastEthernet0/0

C 192.168.1.0/24 is directly connected, Serial1/1

S* 0.0.0.0/0 [1/0] via 50.0.0.2

R2#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.1.1 to network 0.0.0.0

70.0.0.0/24 is subnetted, 3 subnets

O E2 70.1.3.0 [110/20] via 10.1.1.1, 00:22:09, FastEthernet0/0

O E2 70.1.2.0 [110/20] via 10.1.1.1, 00:22:09, FastEthernet0/0

O E2 70.1.1.0 [110/20] via 10.1.1.1, 00:22:09, FastEthernet0/0

80.0.0.0/24 is subnetted, 1 subnets

O IA 80.0.0.0 [110/128] via 10.1.20.2, 00:04:48, Serial1/1

40.0.0.0/24 is subnetted, 1 subnets

O IA 40.0.0.0 [110/74] via 10.1.1.4, 00:22:19, FastEthernet0/0 10.0.0.0/24 is subnetted, 3 subnets

C 10.1.1.0 is directly connected, FastEthernet0/0

O IA 10.1.30.0 [110/74] via 10.1.1.3, 00:22:21, FastEthernet0/0

C 10.1.20.0 is directly connected, Serial1/1

O E2 192.168.1.0/24 [110/20] via 10.1.1.1, 00:22:11, FastEthernet0/0

O*E2 0.0.0.0/0 [110/1] via 10.1.1.1, 00:22:12, FastEthernet0/0

R3#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.1.1 to network 0.0.0.0

70.0.0.0/24 is subnetted, 3 subnets

O E2 70.1.3.0 [110/20] via 10.1.1.1, 00:11:47, FastEthernet0/0

O E2 70.1.2.0 [110/20] via 10.1.1.1, 00:11:47, FastEthernet0/0

O E2 70.1.1.0 [110/20] via 10.1.1.1, 00:11:47, FastEthernet0/0

40.0.0.0/24 is subnetted, 1 subnets

O IA 40.0.0.0 [110/74] via 10.1.1.4, 00:11:47, FastEthernet0/0 10.0.0.0/24 is subnetted, 3 subnets

C 10.1.1.0 is directly connected, FastEthernet0/0

C 10.1.30.0 is directly connected, Serial1/1

O IA 10.1.20.0 [110/74] via 10.1.1.2, 00:11:49, FastEthernet0/0

O E2 192.168.1.0/24 [110/20] via 10.1.1.1, 00:11:49, FastEthernet0/0

O*E2 0.0.0.0/0 [110/1] via 10.1.1.1, 00:11:49, FastEthernet0/0

R4#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.20.1 to network 0.0.0.0

70.0.0.0/24 is subnetted, 3 subnets

O E2 70.1.3.0 [110/20] via 10.1.20.1, 00:06:20, Serial1/1

O E2 70.1.2.0 [110/20] via 10.1.20.1, 00:06:20, Serial1/1

O E2 70.1.1.0 [110/20] via 10.1.20.1, 00:06:20, Serial1/1

80.0.0.0/24 is subnetted, 1 subnets

C 80.0.0.0 is directly connected, Serial1/0

20.0.0.0/24 is subnetted, 3 subnets

C 20.1.1.0 is directly connected, Loopback0

C 20.1.3.0 is directly connected, Loopback2

C 20.1.2.0 is directly connected, Loopback1

40.0.0.0/24 is subnetted, 1 subnets

O IA 40.0.0.0 [110/138] via 10.1.20.1, 00:05:43, Serial1/1

10.0.0.0/24 is subnetted, 3 subnets

O 10.1.1.0 [110/74] via 10.1.20.1, 00:05:44, Serial1/1

O IA 10.1.30.0 [110/138] via 10.1.20.1, 00:05:45, Serial1/1

C 10.1.20.0 is directly connected, Serial1/1

O E2 192.168.1.0/24 [110/20] via 10.1.20.1, 00:06:25, Serial1/1

O*E2 0.0.0.0/0 [110/1] via 10.1.20.1, 00:06:26, Serial1/1

R5#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.30.1 to network 0.0.0.0

10.0.0.0/24 is subnetted, 1 subnets

C 10.1.30.0 is directly connected, Serial1/1

30.0.0.0/24 is subnetted, 3 subnets

C 30.1.3.0 is directly connected, Loopback2

C 30.1.2.0 is directly connected, Loopback1

C 30.1.1.0 is directly connected, Loopback0

O*IA 0.0.0.0/0 [110/65] via 10.1.30.1, 00:13:19, Serial1/1

R7#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 80.0.0.1 to network 0.0.0.0

70.0.0.0/24 is subnetted, 3 subnets

O E2 70.1.3.0 [110/20] via 80.0.0.1, 00:03:59, Serial1/0

O E2 70.1.2.0 [110/20] via 80.0.0.1, 00:03:59, Serial1/0

O E2 70.1.1.0 [110/20] via 80.0.0.1, 00:03:59, Serial1/0

80.0.0.0/24 is subnetted, 4 subnets

C 80.1.1.0 is directly connected, Loopback0

C 80.0.0.0 is directly connected, Serial1/0

C 80.1.3.0 is directly connected, Loopback2

C 80.1.2.0 is directly connected, Loopback1

40.0.0.0/24 is subnetted, 1 subnets

O IA 40.0.0.0 [110/202] via 80.0.0.1, 00:04:06, Serial1/0

10.0.0.0/24 is subnetted, 3 subnets

O IA 10.1.1.0 [110/138] via 80.0.0.1, 00:04:06, Serial1/0

O IA 10.1.30.0 [110/202] via 80.0.0.1, 00:04:07, Serial1/0

O IA 10.1.20.0 [110/128] via 80.0.0.1, 00:04:41, Serial1/0

O E2 192.168.1.0/24 [110/20] via 80.0.0.1, 00:04:03, Serial1/0

O*E2 0.0.0.0/0 [110/1] via 80.0.0.1, 00:04:03, Serial1/0

R8#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.1.1 to network 0.0.0.0

70.0.0.0/24 is subnetted, 3 subnets

O E2 70.1.3.0 [110/20] via 10.1.1.1, 00:24:02, FastEthernet0/0

O E2 70.1.2.0 [110/20] via 10.1.1.1, 00:24:02, FastEthernet0/0

O E2 70.1.1.0 [110/20] via 10.1.1.1, 00:24:02, FastEthernet0/0

80.0.0.0/24 is subnetted, 1 subnets

O IA 80.0.0.0 [110/138] via 10.1.1.2, 00:06:21, FastEthernet0/0 40.0.0.0/24 is subnetted, 1 subnets

C 40.0.0.0 is directly connected, Serial1/1 10.0.0.0/24 is subnetted, 3 subnets

C 10.1.1.0 is directly connected, FastEthernet0/0

O IA 10.1.30.0 [110/74] via 10.1.1.3, 00:24:04, FastEthernet0/0

O IA 10.1.20.0 [110/74] via 10.1.1.2, 00:24:04, FastEthernet0/0

O E2 192.168.1.0/24 [110/20] via 10.1.1.1, 00:24:04, FastEthernet0/0

O*E2 0.0.0.0/0 [110/1] via 10.1.1.1, 00:24:06, FastEthernet0/0

R9#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is 40.0.0.1 to network 0.0.0.0

80.0.0.0/24 is subnetted, 1 subnets

O IA 80.0.0.0 [110/202] via 40.0.0.1, 00:48:28, Serial1/1

40.0.0.0/24 is subnetted, 4 subnets

C 40.1.1.0 is directly connected, Loopback0

C 40.0.0.0 is directly connected, Serial1/1

C 40.1.3.0 is directly connected, Loopback2

C 40.1.2.0 is directly connected, Loopback1

10.0.0.0/24 is subnetted, 3 subnets

O IA 10.1.1.0 [110/74] via 40.0.0.1, 01:06:39, Serial1/1

O IA 10.1.30.0 [110/138] via 40.0.0.1, 01:06:10, Serial1/1

O IA 10.1.20.0 [110/138] via 40.0.0.1, 01:06:10, Serial1/1

60.0.0/24 is subnetted, 4 subnets

R 60.1.1.0 [120/1] via 60.0.0.2, 00:00:10, Serial1/0

C 60.0.0.0 is directly connected, Serial1/0

R 60.1.3.0 [120/1] via 60.0.0.2, 00:00:12, Serial1/0

R 60.1.2.0 [120/1] via 60.0.0.2, 00:00:12, Serial1/0

S* 0.0.0.0/0 [1/0] via 40.0.0.1

R10#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U

- per-user static route
- o ODR, P periodic downloaded static route

Gateway of last resort is 60.0.0.1 to network 0.0.0.0

60.0.0.0/24 is subnetted, 4 subnets

- C 60.1.1.0 is directly connected, Loopback0
- C 60.0.0.0 is directly connected, Serial1/0
- C 60.1.3.0 is directly connected, Loopback2
- C 60.1.2.0 is directly connected, Loopback1
- S* 0.0.0.0/0 [1/0] via 60.0.0.1

show ip ospf neighbor - check OSPF adjacencies.

R1#sh ip ospf nei

Neighbor ID		Pri Sta	ite	Dead Tin	ne Ad	ddress	Interf	ace
2.2.2.2	1	2WAY,	/DROTHE	R 00:0	0:30	10.1.1.	2 Fast	Ethernet0/0
3.3.3.3	1	FULL/E	3DR (00:00:30	10.1	.1.3	FastEthe	rnet0/0
8.8.8.8	1	FULL/	DR 0	0:00:30	10.1.	1.4	FastEther	net0/0

R2#sh ip ospf nei

Neighbor ID	Pri State	Dead Time	Address	Interface
4.4.4.4	0 FULL/ -	- 10.1.20	.2 OSPF	_VL0
1.1.1.1 1	2WAY/DROTHER	R 00:00:37	10.1.1.1	FastEthernet0/0
3.3.3.3	1 FULL/BDR	00:00:37 10	0.1.1.3 F	astEthernet0/0
8.8.8.8	1 FULL/DR	00:00:37 10	.1.1.4 Fa	stEthernet0/0
4.4.4.4	0 FULL/ -	00:00:37 10.	1.20.2 S	erial1/1

R3#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 1 FULL/DROTHER 00:00:33 10.1.1.1 1.1.1.1 FastEthernet0/0 2.2.2.2 1 FULL/DROTHER 00:00:33 10.1.1.2 FastEthernet0/0 00:00:33 10.1.1.4 8.8.8.8 1 FULL/DR FastEthernet0/0 5.5.5.5 0 FULL/ -00:00:33 10.1.30.2 Serial1/1

R4#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 2.2.2.2 0 FULL/ - 10.1.20.1 OSPF_VL0 2.2.2.2 0 FULL/ - 00:00:36 10.1.20.1 Serial1/1 7.7.7.7 0 FULL/ - 00:00:36 80.0.0.2 Serial1/0

R5#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 3.3.3.3 0 FULL/ - 00:00:30 10.1.30.1 Serial1/1

R7#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 4.4.4.4 0 FULL/ - 00:00:35 80.0.0.1 Serial1/0

R8#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 1 FULL/DROTHER 00:00:34 10.1.1.1 1.1.1.1 FastEthernet0/0 2.2.2.2 1 FULL/DROTHER 00:00:34 10.1.1.2 FastEthernet0/0 00:00:34 10.1.1.3 3.3.3.3 1 FULL/BDR FastEthernet0/0 0 FULL/ -00:00:34 40.0.0.2 9.9.9.9 Serial1/1

R9#sh ip ospf nei

Neighbor ID Pri State Dead Time Address Interface 8.8.8.8 0 FULL/ - 00:00:35 40.0.0.1 Serial1/1

ping and traceroute end-to-end between loopbacks.

R10#ping 70.1.1.1 source 60.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 70.1.1.1, timeout is 2 seconds:

Packet sent with a source address of 60.1.1.1

Ш

Success rate is 100 percent (5/5), round-trip min/avg/max = 100/122/140 ms

R6#ping 90.0.0.1 source 70.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 90.0.0.1, timeout is 2 seconds:

Packet sent with a source address of 70.1.1.1

Ш

Success rate is 100 percent (5/5), round-trip min/avg/max = 36/58/64 ms

R10#ping 90.0.0.1 source 60.1.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 90.0.0.1, timeout is 2 seconds:

Packet sent with a source address of 60.1.2.1

!!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 144/171/192 ms

R5#ping 90.0.0.1 source 30.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 90.0.0.1, timeout is 2 seconds:

Packet sent with a source address of 30.1.1.1

....

Success rate is 0 percent (0/5)

R5#ping 80.0.0.1 source 30.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 80.0.0.1, timeout is 2 seconds:

Packet sent with a source address of 30.1.1.1

....

Success rate is 0 percent (0/5)

R5 couldn't ping to the other areas or on internet as it is totally stub

R9#ping 30.1.1.1 source 60.0.0.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 30.1.1.1, timeout is 2 seconds:

Packet sent with a source address of 60.0.0.1

....

Success rate is 0 percent (0/5)

R9#ping 70.1.1.1 source 60.0.0.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 70.1.1.1, timeout is 2 seconds:

Packet sent with a source address of 60.0.0.1

ШШ

Success rate is 100 percent (5/5), round-trip min/avg/max = 64/88/108 ms

R9 couldn't ping to other areas but ping to the external network

R4#ping 60.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 60.1.1.1, timeout is 2 seconds:

!!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 104/120/132 ms

R4#ping 70.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 70.1.1.1, timeout is 2 seconds:

!!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 64/96/112 ms

R4#ping 30.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 30.1.1.1, timeout is 2 seconds:

.

Success rate is 0 percent (0/5)

R4 ping to any network expect totally stub and nssa

R7#ping 60.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 60.1.1.1, timeout is 2 seconds: !!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 132/158/176 ms

R7#ping 70.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 70.1.1.1, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 96/119/148 ms

Key Summary

- **Network Configuration:** Successfully configured a multi-area OSPF network with various area types (standard, totally stub, NSSA) interconnected with RIP domains.
- **Protocol Redistribution:** Established bidirectional communication between OSPF and RIP through proper route redistribution.
- External Connectivity: Implemented NAT for internet access via the ISP router.
- Area Restrictions: Confirmed that totally stub areas (Area 30) cannot reach external networks, while NSSA areas have limited connectivity based on configuration.
- **Virtual Links:** Successfully implemented virtual links to maintain OSPF backbone connectivity requirements.
- **End-to-End Testing:** Verified connectivity through ping and traceroute tests between internal networks and to external destinations.

Lessons Learned

- **Verification is essential:** Commands like show ip route and show ip ospf database are critical to confirm routing operations and quickly identify issues such as missing LSAs or unreachable networks.
- **Backbone connectivity matters:** OSPF requires all areas to connect to Area 0. When this is not possible, a **Virtual Link** is needed to maintain proper OSPF functionality.
- Redistribution must be planned carefully: Injecting RIP routes into OSPF (and vice versa) ensures connectivity but must be controlled to avoid routing loops or inconsistencies.
- **Default routes are key for external reachability:** Configuring static default routes or redistributing them ensures that traffic destined for unknown networks can still be forwarded.
- **NAT testing is a critical step:** Even when routing is correct, NAT must be verified using source-based pings to confirm real-world communication across domains.
- **Step-by-step troubleshooting is effective:** Dividing the lab into phases (OSPF configuration, redistribution, NAT, verification) made it easier to isolate and solve problems.