PYTHON FOR DATA ANALYSIS

Obesity Data Set

SOMMAIRE

- I. PROBLEM DEFINITION
 - A. Problem
 - B. Data Set

II. DATA DISTRIBUTION AND EXCEPTIONS

- A. Synthetic Data
- B. Missing Values/Duplicates
- C. Linear Combinations

III. MACHINE LEARNING

- A. Best Algorithms
- B. Results

PROBLEM DEFINITION

Problem

Data coming from a survey of 3 differents countries

Based on their eating habits and physical condition.

Problem

The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III.

Data Set

17 x 21111

Category	Feature Name	Description	Variable Type
Target Variables	Nobesity	Based on BMI	Categorical
Eating Habits	FAVC	Frequent consumption of high caloric food	Categorical
Eating Habits	FCVC	Frequency of consumption of vegetables	Ordinal
Eating Habits	NC"P	Number of main meals	Ordinal
Eating Habits	CAEC	Consumption of food between meals	Ordinal
Eating Habits	CH20	Consumption of water daily	Ordinal
Eating Habits	CALC	Consumption of alcohol	Ordinal
Physical Condition	SCC	Calories consumption monitoring	Categorical
Physical Condition	FAF	Physical activity frequency	Ordinal
Physical Condition	TUE	Time using technology devices	Ordinal
Physical Condition	MTRANS	Transportation used	Categorical
Physical Condition	SMOKE	Smokes Yes or No	Categorical
Responder Characteristics	Family History with Overweight	Yes or No	Categorical
Responder Characteristics	Gender	Gender Male or Female	Categorical
Responder Characteristics	Age	Age in years	Integer
Responder Characteristics	Height	Height in meters	Float
Responder Characteristics	Weight	Weight in kilograms	Float

DATA DISTRIBUTION AND EXCEPTIONS

Synthetic Data

77% of the data was generated synthetically with WEKA, 23% of the data was collected directly from users through a web platform.

In order to avoid imballenced data. In fact, th population's BMI is not equally distributed. So is the data collected. Thus they might end up with more people with a normal weight and very few people with Obesity Type III.

Computing a model out of this kind of data creates biais where the model is very precise but with a bad recall (it is mostly trained to recognize people with normal weight).

Synthetic Data

Different ways to generate sythetic data:

- Taking random observations for each dimensions within a target and mix them up to create a new data point.
- For continuous variable, taking random a number between the minimum and the maximum observation within a target.
- Creating it manually by field knowledge.

Missing Values/Duplicates

No missing values to handle here

Only 4 duplicates rows which is a few and possible in real world, we keep them.

Linear Combinations

Height and Weight are strongly correlated (Pearson correlation)

However our target is based on BMI calculation

BMI = Weight/Height²

So our target is a linear combination of age and weight, thus we delete those 2 dimensions.

MACHINE LEARNING

Best Algorithms

There are 17 features, no need to reduce the dimensionality.

There are a lot of categorical features, thus our first thought was to apply SVM since the data point should have good defined distance within each features.

We don't have a lot of features, so decision trees and random forest should also do great.

Random forest

```
Random Forest:
Accuracy: 0.82177
Accuracy w/Scaled Data (ss): 0.82177
Accuracy w/Scaled Data (mm): 0.82177
Classification Report (mm):
                     precision
                                  recall f1-score support
Insufficient_Weight
                                   0.87
                                            0.86
                         0.85
                                                        92
     Normal_Weight
                         0.60
                                   0.69
                                            0.64
                                                        77
    Obesity_Type_I
                         0.85
                                   0.80
                                            0.82
                                                       114
   Obesity_Type_II
                                            0.92
                                                        85
                         0.90
                                   0.94
  Obesity_Type_III
                         0.99
                                   0.99
                                            0.99
                                                        92
 Overweight_Level_I
                         0.79
                                            0.75
                                                        89
                                   0.71
Overweight_Level_II
                                   0.74
                                            0.75
                                                        85
                         0.76
                                            0.82
                                                       634
          accuracy
                                            0.82
                                                       634
         macro avg
                         0.82
                                   0.82
      weighted avg
                         0.83
                                   0.82
                                            0.82
                                                       634
```


Decision tree

Decision Tree:									
Accuracy: 0.76183 Accuracy w/Scaled Data (ss): 0.76025 Accuracy w/Scaled Data (mm): 0.75394									
Classification Report:									
	precision	recall	f1-score	support					
Togufficient Unioht	0.00	0.00	0.00	02					
Insufficient_Weight	0.82	0.82		92					
Normal_Weight	0.53	0.52		77					
Obesity_Type_I				114					
Obesity_Type_II	0.86	0.87	0.87	85					
Obesity_Type_III	0.98	0.99	0.98	92					
Overweight_Level_I	0.72	0.67	0.70	89					
Overweight_Level_II	0.60	0.72	0.65	85					
accuracy			0.76	634					
macro avg	0.76	0.76	0.76	634					
weighted avg	0.77	0.76	0.76	634					

Support Vector Machin

SVM:				
Accuracy: 0.47319				
Accuracy w/Scaled Date	ta (ss): 0.71	.609		
Accuracy w/Scaled Date	ta (mm): 0.71	.609		
Classification Report				
	precision	recall	f1-score	suppor
Insufficient_Weight	0.79	0.80	0.80	92
Normal Weight	0.54	0.66	0.60	77
Obesity_Type_I	0.65	0.58	0.61	114
Obesity_Type_II	0.70	0.98	0.82	85
Obesity_Type_III	0.98	0.98	0.98	92
Overweight_Level_I	0.64	0.49	0.56	89
Overweight_Level_II	0.70	0.54	0.61	85
accuracy			0.72	634
macro avg	0.71	0.72	0.71	634
weighted avg	0.72	0.72	0.71	634

Top features by contribution

```
Top 10 Features:
Variable: Age
                               Importance: 0.22
Variable: FCVC
                               Importance: 0.07
Variable: NCP
                               Importance: 0.06
Variable: FAF
                               Importance: 0.06
Variable: Gender Female
                               Importance: 0.06
Variable: Gender Male
                               Importance: 0.06
Variable: CH20
                               Importance: 0.05
Variable: TUE
                              Importance: 0.05
Variable: family history with overweight no Importance: 0.04
Variable: family history with overweight yes Importance: 0.04
Bottom 10 Features:
Variable: CAEC Always
                               Importance: 0.0
Variable: SMOKE no
                               Importance: 0.0
Variable: SMOKE yes
                               Importance: 0.0
Variable: CALC Always
                               Importance: 0.0
Variable: MTRANS Bike
                               Importance: 0.0
Variable: MTRANS Motorbike
                               Importance: 0.0
Variable: CAEC no
                               Importance: 0.01
Variable: SCC no
                               Importance: 0.01
Variable: SCC yes
                               Importance: 0.01
Variable: CALC Frequently
                               Importance: 0.01
```


BIBLIOGRAPHY

Bibliography

F. Mendoza Palechor, A. de la Hoz Manotas, "Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico", https://www.sciencedirect.com/science/article/pii/S2352340919306985?via%3Dihub

F. Mendoza Palechor, A. de la Hoz Manotas, "Estimation of obesity levels based on eating habits and physical condition Data Set",

https://archive.ics.uci.edu/ml/datasets/Estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition+