How to Speak a Language without Knowing It

Xing Shi, Kevin Knight ¹ Heng Ji ²

¹Information Sciences Institute Computer Science Department University of Southern California {xingshi, knight}@isi.edu

²Computer Science Department Rensselaer Polytechnic Institute Troy, NY 12180, USA jih@rpi.edu

May 23, 2014

Overview

- Introduction
- 2 Evaluation
- Operation of the control of the c
- Model
- Training
 - Phoneme-based model
 - Phoneme-phrase-based model
 - Word-based model
 - Hybrid training/decoding
- 6 Experiments
- Conclusion & Future work

Introduction

Can people speak a language they don't know ?

What if we want to say something beyond the phrasebook?

Or, a speech-to-speech translator

from: proto-knowledge.blogspot.com

However, direct Human interactivity is much more fun!

Our solution

- Easily pronounceable
 - Both input T(S) and output T'(S) are in speaker's language.
- Understandable by listener
 - T'(S) sounds like T(F).
 - T(F) and T(S) has the same meaning.

Our solution

For this work:

- Input T(S): Chinese sentence.
 e.g: 谢谢你. (which means thank you.)
- Input F: English.
- Output T'(S): a string of Chinese characters that approximate English sounds, which we call Chinglish.
 - e.g: 三可 由. (which pronounces as san ke you.)

Evaluation

Data

- A collection of 1312 < Chinese, English, Chinglish > phrasebook tuples.
- 1182 for training, 65 for development and 65 for test.

Chinese	已经八点了
English	It's eight o'clock now
Chinglish	意思埃特额克劳克闹 (yi si ai te e ke lao ke nao)
Chinese	这件衬衫又时髦又便宜
English	this shirt is very stylish and not very expensive
Chinglish	迪思舍特意思危锐思掉利失安的闹特危锐伊克思班西五

Data

Frequency Rank	Chinese	Chinglish
1	de	si
2	shi	te
3	yi	de
4	ji	yi
5	zhi	fu

Table: Top 5 frequent syllables in Chinese and Chinglish

Model: Cascade FSTs

Model: Cascade FSTs

Model: Cascade FSTs

Phoneme-based model

- Construct <Epron, Pinyin-split> training pairs.
- Mapping schema: 1-to-1, 1-to-2 and 2-to-1.

- EM to learn parameters in wFST B, e.g. P(g e|g).
- Viterbi alignments:

Phoneme-based model

labeled Epron	Pinyin-split	P(p e)
d	d	0.46
	d e	0.40
	d i	0.06
	S	0.01
ao r	u	0.26
	0	0.13
	ao	0.06
	ou	0.01

Table: Learned translation tables for the phoneme based model

Phoneme-based model

- Alignment using phoneme-based model is fine.
- When decoding test data, choices of target phonemes are context sensitive.

Decoding "grandmother":

reference Pinyin-split sequence:

Phoneme-phrase-based model

• Intuition: model the substitution of longer sequences ².

Viterbi alignment using Phoneme-based model:

Extract phoneme phrase pairs:

$$\begin{split} \mathbf{g} &\to \mathbf{g} \ \mathbf{e} \\ \mathbf{g} \ \mathbf{r} &\to \mathbf{g} \ \mathbf{e} \ \mathbf{r} \\ \dots \\ \mathbf{r} &\to \mathbf{r} \\ \mathbf{r} \ \mathbf{ae} \ \mathbf{n} &\to \mathbf{r} \ \mathbf{uan} \end{split}$$

²(Koehn et al., 2003)

Word-based Model

- Construct < Eword, Pinyin > training pairs.
- Mapping schema: 1-to-[1,7].
- EM to learn parameters in wFST E, i.e.
 P(nai te|night).
- Viterbi alignments:

 Error happen due to sparsity: "tips" and "ti pu si" only appear once.

Hybrid training

- Intuition: Combine two models during training phrase.
- Use phoneme-based model to help word-based model:

• Errors are fixed:

accept tips a ke sha pu te ti pu s

Hybrid decoding

• Intuition: Combine two models during decoding phrase.

Experiments: Sample system output

Chinese	等等我
Reference English	wait for me
Reference Chinglish	唯特 佛 密 (wei te fo mi)
Hybrid Chinglish	位忒 佛 密 (wei te fo mi)
Human-dictated English	wait for me
ASR English	wait for me
Chinese	年夜饭都要吃些什么
Reference English	what do you have for the Reunion dinner
Reference Chinglish	沃特 杜 又 海夫 佛 则 锐又尼恩 低呢
Hybrid Chinglish	我忒 度 优 嗨佛 佛 得 瑞优你恩 低呢
Human-dictated English	what do you have for the reunion dinner
ASR English	what do you high for 43 Union Cena

Experiments: English-to-Pinyin decoding accuracy

Model	Coverage	Edit Distance on covered text	Edit Distance
Word based	29/65	0.042	0.664
Word-based hybrid training	29/65	0.029	0.659
Phoneme based	63/65	0.583	0.611
Phoneme-phrase based	63/65	0.136	0.194
Hybrid training/decoding	63/65	0.115	0.175

Experiments: Human Dictation Accuracy

Model	Edit Distance
	vs. reference English
Dictation from Reference Chinglish	0.477
Phoneme based	0.696
Hybrid training and decoding	0.496

Experiments: No Human in the Loop

Model	Valid Average
Model	Edit Distance
Word based	0.925
Word-based hybrid training	0.925
Phoneme based	0.937
Phoneme-phrase based	0.896
Hybrid training and decoding	0.898

Conclusion & Future work

Conclusion

- Goal: Help people speak foreign languages
 - Provide native phonetic spellings that approximate the sounds of foreign phrases
 - Use a cascade of FSTs
 - Improve the model by adding phrases and combining models in both training and decoding phase

For future:

- More Language Pairs
- An app!

Thank you! & QA