Exercise (5.1.3). Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Suppose that there exists a sequence of partitions $\{P_k\}$ of [a,b] such that

$$\lim_{k \to \infty} (U(P_k, f) - L(P_k, f)) = 0.$$

Show that f is Riemann integrable and that

$$\int_{a}^{b} f = \lim_{k \to \infty} U(P_k, f) = \lim_{k \to \infty} L(P_k, f).$$

Proof. Given $\varepsilon > 0$, by assumption there exists a $N \in \mathbb{N}$ such that when $k \geq N$, $U(P_k,f) - L(P_k,f) < \varepsilon$. Specifically, $U(P_N,f) - L(P_N,f) < \varepsilon$. Then,

$$0 \le \overline{\int_a^b} f - \underline{\int_a^b} f \le U(P_N, f) - L(P_N, f) < \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, we must have

$$\overline{\int_a^b} f - \underline{\int_a^b} f = 0$$
 or $\overline{\int_a^b} f = \underline{\int_a^b} f$.

Therefore, f is Riemann integrable.

Next, we show that $\int_a^b f = \lim_{k \to \infty} U(P_k, f)$. Let $\varepsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that when $k \ge N$, $U(P_k, f) - L(P_k, f) < \varepsilon$. Then, when $k \ge N$

$$\left| U(P_k, f) - \int_a^b f \right| = U(P_k, f) - \int_a^b f$$

$$= U(P_k, f) - \underbrace{\int_a^b f}_{\leq U(P_k, f) - L(P_k, f)} < \epsilon.$$

Hence, we have that $\int_a^b f = \lim_{k \to \infty} U(P_k, f)$.

Finally, since $\lim_{k\to\infty} (U(P_k, f) - L(P_k, f)) = 0$ and $\lim_{k\to\infty} U(P_k, f) = \int_a^b f$,

$$\lim_{k \to \infty} L(P_k, f) = \lim_{k \to \infty} \left[U(P, k) - \left(U(P_k, f) - L(P_k, f) \right) \right]$$

$$= \lim_{k \to \infty} U(P, k) - \lim_{k \to \infty} \left(U(P_k, f) - L(P_k, f) \right)$$

$$= \int_a^b f - 0$$

$$= \int_a^b f.$$

Exercise (5.1.6). Let $c \in (a,b)$ and let $d \in \mathbb{R}$. Define $f:[a,b] \to \mathbb{R}$ as

$$f(x) := \begin{cases} d & \text{if } x = c, \\ 0 & \text{if } x \neq c. \end{cases}$$

Prove that $f \in \mathcal{R}[a,b]$ and compute $\int_a^b f$ using the definition of the integral (and propositions of the section).

Proof. Without loss of generality, assume that d > 0.

Let $\varepsilon > 0$ be given. Let $0 < \beta < \min\{c - a, b - c, \varepsilon/2d\}$.

Let $P := \{a, c - \beta, c + \beta, b\}$. Then,

$$U(P, f) - L(P, f) = \sum_{j=1}^{3} (M_j - m_j) \Delta x_j$$

= $(0 - 0) \Delta x_1 + (d - 0) \Delta x_2 + (0 - 0) \Delta x_3$
= $d(2\beta)$
= $2d\beta$
 $< \varepsilon$.

Therefore, by the Cauchy criterion, f is integrable.

Next, for any $\varepsilon > 0$, if we define P as above, we have

$$0 = L(P, f) \le \int_a^b f \le U(P, f) < \varepsilon.$$

Since ε was arbitrary, this gives that $\int_a^b f = 0$.

Exercise (5.2.1). Let f be in $\mathcal{R}[a,b]$. Prove that -f is in $\mathcal{R}[a,b]$ and

$$\int_a^b -f(x) \, dx = -\int_a^b f(x) \, dx.$$

Proof. Note that for any set $A \subseteq \mathbb{R}$, $\sup(-A) = -\inf A$ and $\inf(-A) = -\sup A$, where $-A = \{-a : a \in A\}$.

Let $P = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\}$ be any partition of [a, b], and let $I_k = [x_{k-1}, x_k]$ denote the kth subinterval created by the partition. Then, using the above fact, we have that for $k = 1, \dots, n$,

$$U(P, -f) = \sum_{k=1}^{n} \sup_{I_k} (-f(x)) \Delta x_k$$
$$= \sum_{k=1}^{n} -\inf_{I_k} f(x) \Delta x_k$$
$$= -\sum_{k=1}^{n} \inf_{I_k} f(x) \Delta x_k$$
$$= -L(P, f)$$

Similarly, L(P, -f) = -U(P, f).

Hence,

$$U(P, -f) - L(P, -f) = -L(P, f) - (-U(P, f))$$

= $U(P, f) - L(P, f)$

Since f is integrable, from problem 5.1.3, there is a sequence of partitions $(P_k)_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(U(P_k,f)-L(P_k,f))=0$. Then, for the same sequence,

$$\lim_{k \to \infty} (U(P_k, -f) - L(P_k, -f)) = \lim_{k \to \infty} (U(P_k, f) - L(P_k, f)) = 0$$

and so -f is integrable if and only if f is integrable.

Finally, since f and -f are both integrable we have that

$$\int_{a}^{b} -f(x) dx = \underbrace{\int_{a}^{b}} -f(x) dx$$

$$= \sup\{L(P, -f) : P \text{ is a partition of } [a, b]\}$$

$$= \sup\{-U(P, f) : P \text{ is a partition of } [a, b]\}$$

$$= -\inf\{U(P, f) : P \text{ is a partition of } [a, b]\}$$

$$= - \underbrace{\int_{a}^{b}} f(x) dx$$

$$= - \underbrace{\int_{a}^{b}} f(x) dx.$$

Exercise (5.2.4). Prove the mean value theorem for integrals. That is, prove that if $f:[a,b]\to\mathbb{R}$ is continuous, then there exists $a\ c\in[a,b]$ such that $\int_a^b f=f(c)(b-a)$.

Proof. By the Min-Max Theorem, f achieves both an absolute maximum M and an absolute minimum m in [a,b], say at points c_1 and c_2 . Without loss of generality, $c_1 < c_2$. Then we have that

$$m(b-a) \le \int_a^b f \le M(b-a).$$

or

$$m \le \frac{1}{(b-a)} \, \int_a^b f \le M.$$

By the Intermediate Value Theorem, there must be a point $c \in (c_1, c_2) \subset [a, b]$ such that

$$f(c) = \frac{1}{(b-a)} \int_{a}^{b} f.$$

Therefore, for this c,

$$\int_{a}^{b} f = f(c)(b - a).$$

Exercise (5.2.6). Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function and $\int_a^b f=0$. Prove that there exists a $c\in[a,b]$ such that f(c)=0.

Proof. Apply Exercise 5.2.4 with $\int_a^b f = 0$ to obtain the conclusion.