No	Peneliti	Tahun	Judul	Masalah	Metode	Hasil
1	Muhamad Ngafifi	2014	Kemajuan Teknologi	1. Mengetahui proses	Analisis Deskriptif	1. Kemajuan teknologi terus
			dan Pola Hidup	perkembangan kemajuan		berkembang sangat pesar dan
			Manusia dallam	teknologi. 2.		melahirkan masyarakat digital.
			Perspektif Sosial	Mengetahui perubahan		2. Terjadi perubahan pola hidup
			Budaya	pola hidup manusia		manusia akibat kemajuan teknologi
				akibat kemajuan		sehingga menjadi lebih pragmatis,
				teknologi. 3.		hedonus, sekuler, dam melahirkan
				Mengetahui pengaruh		generasi instan namun juga
				kemajuan teknologi di		mengedepankan efektifitas dan
				bidang sosial budaya.		efisiensi dalam tingkah laku dan
				4. mendapatkan solusi		tindakannya.
				dalam mengatasi dampak		3. Kemajuan teknologi berwajah
				negatif dari kemajuan		ganda karena menimbulkan
				teknologi.		pengaruh positif dan negatif bagi
						kehidupan manusia.
						4. Upaya untuk menekan dan
						mengatasi dampak negatif dari
						kemajuan teknologi dapat dilakukan
						dengan mensinergiskan peran
						keluarga, pendidikan, masyarakat,
						dan negara.

2	Perani Rosyani	2017	Pengenalan Wajah Menggunakan Metode Principal Component Analysis (PCA) dan Canberra Distance	Membuat sistem pengenalan wajah dengan berdasarkan analogi 'memori otak manusia' yang mampu mengenali seseorang melalui memori gambaran wajah orang yang telah dilihat sebelumnya dan diaplikasikan menggunakan metode Principal Component Analysis (PCA)	1. Metode Principal Component Analysis (PCA). 2. Metode jarak (Canbera Distance)	1. Mengekstrajsi gambar menggunakan PCA cukup rumit karena harus mentraspose matriks ukuran mxm menjadi 1xn. 2.Tingkat kesamaan yang dihasilkan setelah proses reduksi dan ekstraksi menggunakan PCA didapatkan ratarata nilai untuk Canbera distance adalah 77,59

3	1. Dian Esti Pratiwi 2. Agus Harjoko	2016	Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis)	Mengimplementasikan sistem identifikasi wajah yang merupakan salah satu informasi biologis dan memiliki tingkat keakuratan tinggi sehingga dapat dijadikan sebagai sistem pencarian seseorang di dalam sebuah gambar berisi wajah	Principal Component Analysis (PCA)	1. Hasil pengujian menunjukkan dari 16 sampel yang diujikan sebanyak 64 kali pengenalan menghasilkan 53 pengenalan benar dan 11 pengenalan salah. 2. Wajah sejumlah 160 wajah dari delapan orang memerlukan waktu kurang lebih dua menit pada setiap satu kali proses pengenalan. 3. Prosentase keberhasilan pengenalan wajah pada sampel yang dilakukan adalah 82,81%. 4. Faktor yang mempengaruhi keberhasilan pengenalan yaitu kesesuaian ekspresi antara data latih dengan data uji, faktor pencahayaan (semakin terang, semakin baik), dan jarak wajah dengan webcam adalah 25 cm.
4	Dian Parikesit	2012	Face Recognation Menggunakan Metode PCA	Membuat software yang mampu mengidentifikasi wajah seseorang berdasarkan eigendace yang dimiliki suatu image dan dibandingkan dengan image yang menjadi training pada database.	Principal Component Analysis (PCA)	Jumlah feature yang sedikit PCA memberikan hasil yang lebih baik bila dibandingkan dengan penggunaan PCA, bahwa nilai minimal terletak pada data ke 12, data ke 12 merupakan orang ke 6 pose ke 2. Sehingga data yang diuji tersebut dikenali sebagai orang yang ke 6 pose dan jumlah ciri ke 10 adalah yang paling minimal.

5	Derisma	2016	Faktor-Faktor yang Mempengaruhi Sistem Pengenalan Wajah Menggunakan Metode Eigenface pada Perangkat Mobile Berbasis Andorid	Berbagai aplikasi dari alat dengan kemampuan pengenalan wajah terbentang luas dari pencarian penjahat, kriminalitas, sistem akses keruangan, sampai interaksi manusia dengan komputer		1. Menggunakan kamera yanf ada pada smartphone android untuk menangkap wajah seseorang kemudian dibandingkan dengan wajah yang sebelumnya telah disimpan dan dilatih di dalam database. Jika hasil tangkapan kamera cocok dengan identitas wajah pada database, maka identifikasi wajah berhasil, jika tidak cocok makan akan dinyatakan gagal. 2. Hasil pemrosesan pengenalan wajah dengan menggunakan metode tersebut didapatkan sangat sensitif karena bergantung pada pencahayaan, jarak antara subjek dan kamera, sudut pandang wajah, ekspresi/ mimik wajah, pemakaian aksesoris, perubahan latar (background)
6	1. RD. Kusumanto 2. Alan Novi Tompunu	2011	Pengolahan Citra Digital untuk Mendeteksi Obyek Menggunakan Pengolahan Warna Model Normalisasi RGB	Mendeteksi sebuah objek dengan memanfaatkan pengolahan warna gambar serperti salah satunya model RGB atau normalisasi RGB	atau RGB (<i>red,</i> <i>green, blue</i>) 2. Citra digital	1. Model normalisasi RGB ini sangat mudah untuk diaplikasikan khususnya untuk mendeteksi onjek dengan warna-warna tertentu. 2. Berdasarkan persamaan 6 , warna putih dan hitam sulit dibedakan karena memiliki nilai r,g,b yang sama untuk kedua warna 3. Pada saat ini nilai brightness 0 hasil yang dicapai untuk pengenalan objek berupa bola adalah maksimal

7	Nazaruddin Ahmad Arifyanto Hadinegoro	2012	Metode Histogram Equalization untuk Perbaikan Citra Digital	Tidak semua citra digital mempunyai tampilan visual yang memuaskan mata manusia karena adanya noise, kualitas pencahayaan pada citra digital yang terlalu gelap atau terlalu terang sehingga diperlukan metode untuk dapat memperbaiki kualitas citra tersebut	Histogram equalization	Sebuah perangkat lunak pengolah citra digital telah berhasil dikonstruksi. Perangkat tersebut dapat melakukan peningkatan kontras citra dengan metode histogram equalization dan hasil yang diberikan dapat meningkatkan kualitas citra, sehingga informasi yang ada pada citra lebih jelas terlihat.
8	1. Abdu Rakhman Syakhaka 2. Diyah Puspitaningrum 3. Endina Putri Purwandani	2017	Hidden Markov	Mengetahui perbedaan, kekurangan, kelebihan, dan perbandingan dari metode PCA dan metode HMM sebagai pengenalan identitas melalui wajah	1.Principal Component Analysis (PCA) 2. Hidden Markov Model (HMM)	1. Metode Principal Component Analysis (PCA) dan Metode Hidden Markov Model (HMM) berhasil melakukan pengenalan wajah seseorang dengan hasil PCA secara umum lebih baik daripada HMM. 2. Pengenalan wajah terbaik diperoleh dari citra wajah manusia tanpa background dengan tingkat akurasi tertinggi sebesar 86,6% pada PCA sedangkan HMM sebesar 77,7% dengan maksimum iterasinya 2000 dan toleransi 0,1 3. Metode PCA lebih cepat dalam pengenalan wajah dari 1-1,5 detik sedangkan pada metode HMM 2-7,5 detik

9	1. Salamun	2016	Rancang Bangun	1. Bagaimana dapat	Principal	1. Pengenalan pola wajah dapat
	2. Firman Wazir		Sistem Pengenalan	mengenali suatu pola,	Component	dikenali menggunakan nilai <i>pixel</i> dari
			Wajah dengan	khususnya pola wajah	Analysis (PCA)	data wajah
			Metode <i>Principal</i>	2. Mengukur tingkat		2. Proses pengenalan wajah
			Component Analysis	keberhasilan pengenalan		menggunakan pendekatan metode
				wajah dengan		Principal Component Analysis sensitif
				menggunakan algoritma		terhadap perubahan cahaya, jarak,
				Principal Component		ekspresi wajah, sudut pandang wajah
				Analysis (PCA) sesuai		dan perubahan wajah yang terlalu
				dengan batasan yang		ekstrim. Jika citra yang digunakan
				telah ditentukan		sebagai training set maupun sebagai
				3. Menghasilkan aplikasi		citra input memiliki intensitas cahaya
				pengenalan wajah		yang berbeda dan tidak berada pada
				menggunakan metode		posisi yang sama dengan citra
				Principal Component		training set maka proses tersebut
				Analysis		tidak dapat memberikan hasil yang
				4. Apakah pengenalan		akurat. 3.
				wajah dengan PCA dapat		Metodr Principal Component Analysis
				mencapai 50%?		dapat diimplementasikan untuk
				5. Bagaimana melakukan		pengenalan wajah dengan tingkat
				proses pengenalan citra		akurasi 81%.
				wajah menggunakan		4. Wajah dapat dikenali apabila nilai
				metode PCA?		jarak antara <i>image</i> dengan <i>image</i>
						test diatas nilai threshold.

10	1. Dodit Suprianto	2016	Sistem Pengenalan	1.Mengimplementasikan	1. Metode	1. Perancangan dan implementasi
	2. Rini Nur Hasanah		Waja Secara Real-		Adaboost	pengenalan wajah dengan metode
	3. Purnomo Budi		Time dengan	Metode <i>Eigenface</i> PCA ke	2. Eigenface PCA	Adaboost dan Eigenface PCA telah
	Santosa		Adaboost, Eigenfface	dalam sebuah sistem		berhasil dilakukan dalam penelitian.
			PCA & MySQL	pengenalan wajah secara		2. Rata-rata tingkat keberhasilan
				real-time .		pengenalan wajah dengan kedua
				2.Pengenalan wajah yang		metode tersebut mencapai 80% pada
				diintegrasikan dengan		berbagai kondisi berbedda (jarak
				data profil bermanfaat di		objek dengan sensor, pencahayaan,
				berbagai sektor, misalnya		posisi, atribut, dan mimik muka)
				bidang keamanan,		3. <i>Adaboost</i> dan <i>Eigenface</i> PCA
				pengawasan, kontrol		memiliki kelebihan pada proses
				akses, robotika, intelejen,		kecepatan mengambil keputusan
				militer, presensi dan lain-		untuk mengenali wajah di kondisi
				lain		real-time.
11	A. Firmansyah	2007	Dasar-Dasar	Menjelaskan menganai		Menjelaskan semua mengenai dasar-
		2007	Pemrograman Matlab			dasar pemrograman matlab dan
				pemrograman matlab		menjelaskan beberapa fasilitas yang
				secara dtail		dimiliki matlab.
				1		

12	Budi Cahyono	2013	Penggunaan Software	Pembelajaran	1. Matlab adalah suatu paket
			Matrix Laboratory	matematika Aljabar Linier	komputasi numerik sangat kuat dan
			(Matlab) dalam	menggunakan software	memungkinkan untuk digunakan
			Pembelajaran Aljabar	Matlab	sebagai software alternatif dalam
			Linier		pembelajaran matematika. Dengan
					Matlab dihawapkan siswa dapat
					belajar matematika dengan cepat
					dan lebih mudah serta berkualitas.
					2.Dengan adanya aplikasi ini dapat
					mengefisienkan biaya dan juga waktu
					dalan operasional pembelajaran.
					3. Memungkinkan siswa mampu
					menggali lebih banyak tentang
					konsep numerik karena eksperimen
					numerik dapat dengan mudah
					dilakukan serta didukung dengan
					representasi grafik.