I hereby certify that this correspondence is being deposited with the US Postal Service with sufficient postage as first class mail in an envelope addressed to Box Sequence, P.O. Box 2327, the Commissioner for Patents, Arlington, Virginia 22202 on the date shown below.

Date: April 25, 2002

y: Carol A. Se

Docket No. GC696

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application: *

Dunn-Coleman et al.

Serial No.: 10/027,000

Filed: DECEMBER 18, 2001

For: BGL 4 BETA-GLUCOSIDASE AND NUCLEIC ACIDS

ENCODING THE SAME

Group Art Unit: 1645

Examiner: Unassigned

STATEMENT OF SAMENESS

Box Sequence Commissioner for Patents Washington, D.C. 20231

Sir:

In accordance with 37 CFR 1.821(e) or 1.821(f) or 1.821(g) or 1.825(d), the computer readable copy of the sequence listing, and the paper copy submitted herewith in the above application are believed to be the same. The present submission contains no new matter relative to the application as originally filed.

Respectfully submitted,

Date: 4/25/02

Victoria C. Boyd

Registration No. 43,510

Genencor International, Inc.

925 Page Mill Road

Palo Alto, CA 94304-1013

Tel: 650-846-7615 Fax: 650-845-6504

SEQUENCE LISTING

<110> Dunn-Coleman, Nigel
 Goedegebuur, Frits
 Ward, Michael
 Yao, Jian

<120> BGL4 Beta-Glucosidase and Nucleic Acids Encoding the Same

<130> GC696

<140> US 10/027,000 <141> 2001-12-18

<160×(3)

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2976

<212> DNA

<213> Trichoderma reesei

<400> 1

ttatagtcgc tttgttaaat tggcctcgag gtcgacccac gcgtccggct gcttgtcccg 60 ttcctgtgcc tgatgtctat ctgccgttgg cctcctcatc ctcatctccc tgttqtctqt 120 ctcctcttag tgcttcagtg acgctaggtt cggtcacttt gtcccccctt cgttgctctg 180 gtgtgtccaa ggtctaccct gcagtggttt tgaacccttg atatcctgct tgagcatccg 240 cgtcgccata tagagcagca tattcttcta tctccaaaga tcccctcacc gagagttcta 300 ttcacccgac ccttgccttg tcatccagtc cttccatcat ggctgatatt gatgttgagg 360 ccatcttgaa gaagctcacc ctggccgaga aggtcgatct gctggctggt atcgacttct 420 480 qqcacacaaa qqctctcccc aaqcatqqaq tcccctctct ccqctttaca gatqqcccca 540 acggcgtaag agggaccaag ttcttcaatg gcgtccctgc ggcctgcttc ccttgcggca 600 cgtcgctcgg ttccacattc aaccaaactc tgctcgaaga ggcaggtaag atgatgggca aagaggccat cgctaagagt gcgcatgtga tcctcggccc gactatcaac atgcaacgct 660 cccctctcgg tggacgtggc ttcgagtcga ttggtgagga tccgttcctg gcgggcttgg 720 gagctgcggc tctcatccgc ggcattcaga gcactggagt gcaggctacg atcaagcact 780 ttttgtgcaa tgatcaggag gacaggcgca tgatggtgca gagcatcgtc acggagcggg 840 ctctccgtga aatctacgca ctcccgttcc agattgctgt gcgagactcc cagccgggtg 900 960 cgttcatgac ggcgtacaat ggcatcaatg gcgtgtcgtg cagcgagaac cctaaatatc 1020 ttgatgggat gcttcgaaag gaatggggtt gggatggcct aatcatgagc gactggtacg 1080 gcacatacag taccacagaa gccgttgtgg caggcctcga cctcgagatg cccggacctc 1140 cacgetteeg aggagaaaca eteaagttea aegteteeaa eggaaageee tttateeaeg 1200 tcattgacca gagggctagg gaagttcttc agttcgtcaa gaagtgtgct gcctccggag 1260 tgacggagaa cggccccgag acgactgtca acaacacccc cgaaacggca gctctcctcc 1320 ggaaggttgg caacgagggc atcgtgctgc tgaagaacga gaacaacgtt ctgcccttga 1380 gcaagaagaa gaagacgctg attgtcggcc ccaacgccaa gcaggccaca taccacggcg 1440 gaggetetge egeacteagg geetactacg cagteactee etttgaegge etcageaage 1500 agetegagae geogecateg tacacegteg gegeetacae cacegtteet eccattetag gcgagcagtg cctcacgccc gacggcgctc cgggcatgcg ctggagggtc ttcaacgagc 1560 cccctggtac ccctaaccgc cagcacattg acgagctctt cttcaccaag acggacatgc 1620 acctggtgga ctactaccac cccaaggcgg cagacacgtg gtacgccgac atggagggca 1680 cgtacaccgc cgacgaggac tgcacctacg agctcggcct cgtcgtctgc ggcacggcaa 1740 aggogtacgt agacgaccag ctcgtcgtcg acaacgccac caagcaggtc cccggcgatg 1800 1860 cettettegg etcegecace egegaggaga egggeegeat caatetegte aagggeaaca cgtacaagtt caagatcgag ttcggctccg cacccaccta caccctcaag ggcgacacca 1920 tegteeeegg ceaeggetee eteegegteg geggetgeaa ggteattgae gaeeaggeeg 1980 aaatcgaaaa gtccgtcgcc ctcgccaagg_agcacgacca ggtcatcatc tgcgcgggcc _ _ 2040_

```
ttaacqccga ctgggagacc gagggcgccg accgcgcgag catgaagctc cccggcgtgc
tggaccaget cattgccgac gtggccgccg cgaacccaaa caccgtcgtc gtcatgcaga
acqqcqqcaa cqaqacqgqc aactccattg ccgacqtcgt ctttggcgac tacaacccct
cgggcaagct gtccctcagc ttccccaagc gcctgcagga caaccccgcg tttctcaact
tecgcacega ggeegggege acgetgtacg gegaggaegt etacgteggg tacaggtact
acqagtttqc cgacaaggac gtcaatttcc cctttggcca cggcctgtcc tacaccactt
ttgccttttc caatctctcc gtgtctcaca aggacggcaa gctgagcgtg tccctctccg
tgaagaacac cggctccgtg cccggcgcac aggtggccca gctctacgtc aagcccctcc
aagcggccaa gattaaccgc cccgtcaagg agctcaaggg cttcgcaaag gtcgaactgc
agcccggcga gacgaaggcg gtgacaatcg aggagcagga gaagtacgtc gctgcgtatt
ttgatgagga gcgggatcag tggtgtgtcg aaaagggtga ctatgaggtt atcgtgagcg
acagcagcgc agcgaaggat ggggttgcgc tcaggggtaa gtttacggtg ggagagacgt
attggtggtc tggcgtgtaa agtcgtgcat catctttggc agattgaatc cagtcacttt
aaaaaaaaaa aaaaaaaaaa aaaaaaaa aaaaaa - -
<210> 2
<211> 833
<212> PRT
<213> Trichoderma reesei
<400> 2
Met Ala Asp Ile Asp Val Glu Ala Ile Leu Lys Lys Leu Thr Leu Ala
Glu Lys Val Asp Leu Leu Ala Gly Ile Asp Phe Trp His Thr Lys Ala
                              2.5
Leu Pro Lys His Gly Val Pro Ser Leu Arg Phe Thr Asp Gly Pro Asn
                          40
Gly Val Arg Gly Thr Lys Phe Phe Asn Gly Val Pro Ala Ala Cys Phe
Pro Cys Gly Thr Ser Leu Gly Ser Thr Phe Asn Gln Thr Leu Leu Glu
                   70
                                      75
Glu Ala Gly Lys Met Met Gly Lys Glu Ala Ile Ala Lys Ser Ala His
                                  90
Val Ile Leu Gly Pro Thr Ile Asn Met Gln Arg Ser Pro Leu Gly Gly
           100
                              105
Arg Gly Phe Glu Ser Ile Gly Glu Asp Pro Phe Leu Ala Gly Leu Gly
                          120
Ala Ala Leu Ile Arg Gly Ile Gln Ser Thr Gly Val Gln Ala Thr
                                          140
                      135
Ile Lys His Phe Leu Cys Asn Asp Gln Glu Asp Arg Arg Met Met Val
                   150
                                      155
Gln Ser Ile Val Thr Glu Arg Ala Leu Arg Glu Ile Tyr Ala Leu Pro
                                                     175
               165
                                  170
Phe Gln Ile Ala Val Arg Asp Ser Gln Pro Gly Ala Phe Met Thr Ala
                              185
                                                  190
Tyr Asn Gly Ile Asn Gly Val Ser Cys Ser Glu Asn Pro Lys Tyr Leu
                          200
                                              205
       195
Asp Gly Met Leu Arg Lys Glu Trp Gly Trp Asp Gly Leu Ile Met Ser
                                          220
                       215
Asp Trp Tyr Gly Thr Tyr Ser Thr Thr Glu Ala Val Val Ala Gly Leu
                   230
                                      235
Asp Leu Glu Met Pro Gly Pro Pro Arg Phe Arg Gly Glu Thr Leu Lys
                                  250
               245
Phe Asn Val Ser Asn Gly Lys Pro Phe Ile His Val Ile Asp Gln Arg
                              265
           260
Ala Arg Glu Val Leu Gln Phe Val Lys Lys Cys Ala Ala Ser Gly Val
                          280
       275
```

Thr -Glu Asn- Gly -Pro Glu -Thr - Thr -Val Asn -Asn -Thr -Pro - Glu -Thr -Ala -

2100

2160

2220

2280 2340

2400

2460

2520 2580

2640

2700

2760

2820

2880

2940 2976

	290					295					300				
Ala 305		Leu	Arg	Lys	Val 310		Asn	Glu	Gly	Ile 315		Leu	Leu	Lys	Asn 320
	Asn	Asn	Val	Leu 325	Pro	Leu	Ser	Lys	Lys 330	Lys	Lys	Thr	Leu	Ile 335	Val
Gly	Pro	Asn	Ala 340	Lys	Gln	Ala	Thr	Tyr 345	His	Gly	Gly	Gly	Ser 350	Ala	Ala
Leu	Arg	Ala 355	Tyr	Tyr	Ala	Val	Thr 360	Pro	Phe	Asp	Gly	Leu 365	Ser	Lys	Gln
Leu	Glu 370	Thr	Pro	Pro	Ser	Tyr 375	Thr	Val	Gly	Ala	Tyr 380	Thr	Thr	Val	Pro
Pro 385	Ile	Leu	Gly	Glu	Gln 390	Cys	Leu	Thr	Pro	Asp 395	Gly	Ala	Pro	Gly	Met 400
Arg	Trp	Arg	Val	Phe 405	Asn	Glu	Pro	Pro	Gly 410	Thr	Pro	Asn	Arg	Gln 415	His
Ile	Asp	Glu	Leu 420	Phe	Phe	Thr	Lys	Thr 425	Asp	Met	His	Leu	Val 430	Asp	Tyr
Tyr	His	Pro 435	Lys	Ala	Ala	Asp	Thr 440	Trp	Tyr	Ala	Asp	Met 445	Glu	Gly	Thr
Tyr	Thr 450	Ala	Asp	Glu	Asp	Cys 455	Thr	Tyr	Glu	Leu	Gly 460	Leu	Val	Val	Суѕ
Gly 465	Thr	Ala	Lys	Ala	Tyr 470	Val	Asp	Asp	Gln	Leu 475	Val	Val	Asp	Asn	Ala 480
Thr	Lys	Gln	Val	Pro 485	Gly	Asp	Ala	Phe	Phe 490	Gly	Ser	Ala	Thr	Arg 495	Glu
Glu	Thr	Gly	Arg 500	Ile	Asn	Leu	Val	Lys 505	Gly	Asn	Thr	Tyr	Lys 510	Phe	Lys
Ile	Glu	Phe 515	Gly	Ser	Ala	Pro	Thr 520	Tyr	Thr	Leu	Lys	Gly 525	Asp	Thr	Ile
Val	Pro 530	Gly	His	Gly	Ser	Leu 535	Arg	Val	Gly	Gly	Cys 540	Lys	Val	Ile	Asp
Asp 545	Gln	Ala	Glu	Ile	Glu 550	Lys	Ser	Val	Ala	Leu 555	Ala	Lys	Glu	His	Asp 560
Gln	Val	Ile	Ile	Cys 565	Ala	Gly	Leu	Asn	Ala 570	Asp	Trp	Glu	Thr	Glu 575	Gly
Ala	Asp	Arg	Ala 580	Ser	Met	Lys	Leu	Pro 585	Gly	Val	Leu	Asp	Gln 590	Leu	Ile
Ala	Asp	Val 595	Ala	Ala	Ala	Asn	Pro 600	Asn	Thr	Val	Val	Val 605	Met	Gln	Thr
Gly	Thr 610	Pro	Glu	Glu		Pro 615	Trp	Leu	Asp	Ala	Thr 620	Pro	Ala	Val	Ile
Gln 625	Ala	Trp	Tyr	Gly	Gly 630	Asn	Glu	Thr	Gly	Asn 635	Ser	Ile	Ala	Asp	Val 640
Val	Phe	Gly	Asp	Tyr 645	Asn	Pro	Ser	Gly	Lys 650	Leu	Ser	Leu	Ser	Phe 655	Pro
Lys	Arg	Leu	Gln 660	Asp	Asn	Pro	Ala	Phe 665	Leu	Asn	Phe	Arg	Thr 670	Glu	Ala
Gly	Arg	Thr 675	Leu	Tyr	Gly	Glu	Asp 680	Val	Tyr	Val	Gly	Tyr 685	Arg	Tyr	Tyr
Glu	Phe 690	Ala	Asp	Lys	Asp	Val 695	Asn	Phe	Pro	Phe	Gly 700	His	Gly	Leu	Ser
Tyr 705	Thr	Thr	Phe	Ala	Phe 710	Ser	Asn	Leu	Ser	Val 715	Ser	His	Lys	Asp	Gly 720
Lys	Leu	Ser	Val	Ser 725	Leu	Ser	Val	Lys	Asn 730	Thr	Gly	Ser	Val	Pro 735	Gly
Ala	Gln	Val	Ala 740	Gln	Leu	Tyr	Val	Lys 745	Pro	Leu	Gln	Ala	Ala 750	Lys	Ile
Asn	Arg	Pro 755	Val	Lys	Glu	Leu	Lys 760	Gly	Phe	Ala	Lys	Val 765	Glu	Leu	Gln
_ P_ro	Gly	Gl.u.	.Thr.	_Lys.	Ala	.Val.	Thr	_I.l.e	Glu	Glu	_Gln	_Glu	_Lys_	.T.yr.	Val

```
770
                        775
                                            780
Ala Ala Tyr Phe Asp Glu Glu Arg Asp Gln Trp Cys Val Glu Lys Gly
                    790
                                        795
Asp Tyr Glu Val Ile Val Ser Asp Ser Ser Ala Ala Lys Asp Gly Val
                805
                                    810
Ala Leu Arg Gly Lys Phe Thr Val Gly Glu Thr Tyr Trp Trp Ser Gly
                                825
Val
<210> 3
<211> 2502
<212> DNA
<213> Trichoderma reesei
<400> 3
                                                                        60
atggctgata ttgatgttga ggccatcttg aagaagctca ccctggccga gaaggtcgat
ctgctggctg gtatcgactt ctggcacaca aaggctctcc ccaagcatgg agtcccctct
                                                                       120
ctccgcttta cagatggccc caacggcgta agagggacca agttcttcaa tggcgtccct
                                                                       180
gcggcctgct tcccttgcgg cacgtcgctc ggttccacat tcaaccaaac tctgctcgaa
                                                                       240
gaggcaggta agatgatggg caaagaggcc atcgctaaga gtgcgcatgt gatcctcggc
                                                                       300
                                                                       360
ccgactatca acatgcaacg ctcccctctc ggtggacgtg gcttcgagtc gattggtgag
gatccgttcc tggcgggctt gggagctgcg gctctcatcc gcggcattca gagcactgga
                                                                       420
gtgcaggcta cgatcaagca ctttttgtgc aatgatcagg aggacaggcg catgatggtg
                                                                       480
cagagcatcg tcacggagcg ggctctccgt gaaatctacg cactcccgtt ccagattgct
                                                                       540
                                                                       600
gtgcgagact cccagccggg tgcgttcatg acggcgtaca atggcatcaa tggcgtgtcg
                                                                       660
tgcagcgaga accctaaata tcttgatggg atgcttcgaa aggaatgggg ttgggatggc
ctaatcatga gcgactggta cggcacatac agtaccacag aagccgttgt ggcaggcctc
                                                                       720
                                                                       780
gacctegaga tgcccggacc tccacgcttc cgaggagaaa cactcaagtt caacgtctcc
                                                                       840
aacggaaagc cctttatcca cgtcattgac cagagggcta gggaagttct tcagttcgtc
                                                                       900
aagaagtgtg ctgcctccgg agtgacggag aacggccccg agacgactgt caacaacacc
                                                                       960
cccqaaacqq cagctctcct ccqqaaqqtt qqcaacqaqq qcatcqtqct qctqaaqaac
gagaacaacg ttctgccctt gagcaagaag aagaagacgc tgattgtcgg ccccaacgcc
                                                                      1020
aagcaqqcca cataccacqq cqqaqqctct qccqcactca qqqcctacta cqcaqtcact
                                                                      1080
                                                                      1140
ccctttgacg qcctcagcaa qcagctcgag acgccqccat cgtacaccgt cggcgcctac
accaccottc ctcccattct aggcgagcag tgcctcacgc ccgacggcgc tccgggcatg
                                                                      1200
cgctggaggg tcttcaacga gcccctggt acccctaacc gccagcacat tgacgagctc
                                                                      1260
                                                                      1320
ttcttcacca agacggacat gcacctggtg gactactacc accccaaggc ggcagacacg
                                                                      1380
tggtacgccg acatggaggg cacgtacacc gccgacgagg actgcaccta cgagctcggc
                                                                      1440
ctcgtcgtct gcggcacggc aaaggcgtac gtagacgacc agctcgtcgt cgacaacgcc
accaagcagg teceeggega tgeettette ggeteegeea eeeggagga gaegggeege
                                                                      1500
atcaatctcg tcaagggcaa cacgtacaag ttcaagatcg agttcggctc cgcacccacc
                                                                      1560
tacaccetca agggegacae categteece ggecaegget eceteegegt eggeggetge
                                                                      1620
aaggtcattg acgaccaggc cgaaatcgaa aagtccgtcg ccctcgccaa ggagcacgac
                                                                      1680
                                                                      1740
caggicatca tetgegeggg cettaacgee gaetgggaga eegagggege egaeegegeg
                                                                      1800
agcatgaagc tccccggcgt gctggaccag ctcattgccg acgtggccgc cgcgaaccca
                                                                      1860
aacaccgtcg tcgtcatgca gacgggcacc cccgaggaga tgccctggct cgacgccacg
                                                                      1920
cccgccgtca tccaggcctg gtacggcggc aacgagacgg gcaactccat tgccgacgtc
                                                                      1980
qtctttgqcq actacaaccc ctcqqqcaaq ctqtccctca gcttccccaa qcgcctqcaq
gacaaccccg cgtttctcaa cttccgcacc gaggccgggc gcacgctgta cggcgaggac
                                                                      2040
gtctacgtcg ggtacaggta ctacgagttt gccgacaagg acgtcaattt cccctttggc
                                                                      2100
cacggcctgt cctacaccac ttttgccttt tccaatctct ccgtgtctca caaggacggc
                                                                      2160
aagctgagcg tgtccctctc cgtgaagaac accggctccg tgcccggcgc acaggtggcc
                                                                      2220
cagctctacg tcaagcccct ccaagcggcc aagattaacc gccccgtcaa ggagctcaag
                                                                      2280
ggcttcgcaa aggtcgaact gcagcccggc gagacgaagg cggtgacaat cgaggagcag
                                                                      2340
                                                                      2400
gagaagtacg tcgctgcgta ttttgatgag gagcgggatc agtggtgtgt cgaaaagggt
                                                                      2460
gactatgagg ttatcgtgag cgacagcagc gcagcgaagg atggggttgc gctcaggggt
```

aagtttacgg tgggagagac gtattggtgg tctggcgtgt aa

2502