Автоматическая детекция фокально кортикальной дисплазии на разреженных данных

О. С. Гребенькова

Московский физико-технический институт Физтех школа прикладной математики и информатики Кафедра интеллектуальных систем Научный руководителы д. ф. -м. н. Бурнаев Евгений Владимирович

21 июня 2023 г.

Задача сегментации фокально-кортикальной дисплазии

Цель

Решается задача построения системы детекции и сегментации фокально кортикально дисплазии на трехмерных MPT изображениях головы.

Исследуемая проблема

Обработка и анализ полных MPT снимков требует огромных вычислительных ресурсов. Поэтому оптимизация модели для детекции Φ КД является вычислительно сложной задачей.

Метод решения

Предлагаемый метод заключается в представлении МРТ данных в виде разреженного облака точек.

Постановка задачи

 \bullet Дана выборка k объектов

$$\mathfrak{D} = \{\mathbf{x}_i, \mathbf{y}_i\}, \quad i = 1, \dots, k, \quad \mathbf{x}_i \in \mathbb{R}^{3 \times m}, \quad \mathbf{y}_i \in \mathbb{R}^{3 \times 1},$$

где \mathbf{x}_i — множество массивов, представляющих собой разные модальности трехмерных MPT снимков, \mathbf{y}_i — трехмерная разметка снимков.

2 Модель выбирается из класса нейронных сетей

$$\{\mathbf{f}_t: (\mathbf{X}, \mathbf{w}) \longrightarrow \hat{\mathbf{y}} | t \in \mathcal{T}\},$$

где $\mathbf{w} \in \mathbb{W}$ — пространство параметров модели, $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{X}, \mathbf{w}) \in \mathbb{R}^{k \times 3 \times 1}$ — вероятность данного вокселя принадлежать классу ФКД, $\mathbf{X} = \bigcup_{i=1}^k \mathbf{x}_i$;

В базовом подходе используется следующая функция ошибки

$$\mathcal{L}_{BCE} = -\frac{1}{k} \sum_{i=1}^{k} (\mathbf{y}_i \log(p(\mathbf{y}_i)) + (1 - \mathbf{y}_i) \log(1 - p(\mathbf{y}_i))).$$

Решается задача оптимизации

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{W}} (\mathcal{L}(\mathbf{X}, (w))).$$

Разреженное представление для заданной выборки

Облако точек

$$\mathbf{P}_i = \{(u_j, v_j, w_j, \mathbf{c}_j) | j \in [1, n]\} \in \mathbb{R}^{3 \times m}, \quad \mathbf{P} = \bigcup_{i=1}^k \mathbf{P}_i,$$

где u_j, v_j, w_j — трёхмерные координаты точки в оригинальном пространстве, $\mathbf{c}_j \in \mathbb{R}^m$ — вектор признаков.

Рассмотрим два преобразования

$$\mathcal{G}_{\text{in}}: \mathbb{R}^{3 \times m} \longrightarrow \mathbb{R}^{3 \times m} \quad \mathcal{G}_{\text{out}}: \mathbb{R}^{3 \times 1} \longrightarrow \mathbb{R}^{3 \times 1},$$

переводящих \mathbf{X} в \mathbf{P} и $\hat{\mathbf{P}}$ в $\hat{\mathbf{y}}$ соответствено. Тогда итоговое преобразование \mathbf{f}_t можно представить в следующем виде

$$\mathbf{f}_t(\mathbf{X}, \mathbf{w}) = \mathcal{G}_{\mathrm{out}}(\mathbf{f}_s(\mathcal{G}_{\mathrm{in}}(\mathbf{X}), \mathbf{w})),$$

где $\{\mathbf{f}_s: (\mathbf{P}, \mathbf{w}) \longrightarrow \hat{\mathbf{P}} | s \in \mathcal{S}; \mathcal{S} \subset \mathcal{T} \}.$

Построение \mathbf{f}_s : обобщенная свёртка

Пусть $\mathbf{c}_{\mathbf{u}}^{\mathrm{in}} \in \mathbb{R}^{K_{\mathrm{in}}}$ — вектор параметров размерности K_{in} поставленный в соответствии трехмерной координате $\mathbf{u} \in \mathbb{R}^3$. В этом случае ядро свертки:

$$\mathbf{W} \in \mathbb{R}^{9 \times K_{\text{out}} \times K_{\text{in}}}$$
.

Предлагается разбить это ядро на 9 матриц размерностей $K_{\rm out} \times K_{\rm in}$. Тогда классическая свертка может быть представлена следующей формулой

$$\mathbf{c}_{\mathbf{u}}^{\mathrm{out}} = \sum_{\mathbf{i} \in \mathcal{V}^3} \mathbf{W}_{\mathbf{i}} \mathbf{c}_{\mathbf{u}+\mathbf{i}}^{\mathrm{in}}; \quad \mathbf{u} \in \mathbb{R}^3,$$

где \mathcal{V}^3 смещения трехмерного куба (к примеру $\mathcal{V}^1=\{-1,0,+1\}$) . Тогда обобщенная свертка может быть записана как

$$\mathbf{c}_{\mathbf{u}}^{\mathrm{out}} = \sum_{\mathbf{i} \in \mathcal{N}^{D}(\mathbf{u}, \mathcal{C}^{\mathrm{in}})} \mathbf{W}_{\mathbf{i}} \mathbf{c}_{\mathbf{u}+\mathbf{i}}^{\mathrm{in}}; \quad \mathbf{u} \in \mathcal{C}^{\mathrm{out}},$$

где $\mathcal{N}^D(\mathbf{u}, \mathcal{C}^{\text{in}}) = \{\mathbf{i} | \mathbf{u} + \mathbf{i} \in \mathcal{C}^{\text{in}}, \mathbf{i} \in \mathcal{N}^D\}$ множество смещений, определяющих форму ядра, \mathcal{C}^{in} и \mathcal{C}^{out} определенные заранее входные и выходные координаты разреженных тензоров соответственно.

Вычислительный эксперимент:модель и метрики

Вид используемой нейросети для эксперимента на MinkUNet14C:

Критерий качества модели

$$Dice = \frac{2TP}{2TP + FP + FN} \qquad Recall = \frac{TP}{TP + FN}$$

Вычислительный эксперимент: метрика

Prediction is divided into intersecting crops of defined size **C**. The average confidence is calculated for each such crop.

Crops are sorted with respect to the average confidence.

Intersection with FCD area is calculated for top **N** crops with respect to the average confidence.

Вычислительный эксперимент на датасете

- 183 последовательности модальностей T1, T2, FLAIR и разметка.
- \bullet 10 статистических признаков по снимкам MPT (размытие, утолщение, кривизна и т.д.) и мозжечковые маски.
- В связи с малостью выборки, была проведена стратификация выборки. Для каждого эксперимента проводилась девяти фолдовая валидация.

Сравнение моделей для выборки из одной больницы

Данные	Функция потерь	Маска	Количество детектирований
T1w, T2w, FLAIR	BCE	нет	27
T1w, T2w, FLAIR + 10 стат. признаков	Focal	да	29
T1w, T2w, FLAIR + 10 стат. признаков	BCE	да	28
T1w, T2w, FLAIR	BCE	да	37

Сравнение моделей для всей выборки

- Mask of FCD
- Prediction of MinkUNet14C
- Prediction of SOTA model

Выносится на защиту

- Исследовано использование разреженного представления для МРТ данных.
- Впервые предложен метод позволяющий использовать одновременно все модальности MPT совместно со статистическими признаками.
- ❸ Проведены эксперименты для различных моделей и выборок, подтверждающие работоспособность предложенного метода. Полученный подход позволяет добиться результатов сравнимых с state-of-the-art подходами.

Опубликованные работы

- Grebenkova O., Bakhteev O., Strijov V. Deep Learning Model Selection With Parametric Complexity Control, Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, 2023
- Yakovlev K., Grebenkova O., Bakhteev O., Strijov V. Neural Architecture Search with Structure Complexity Control, Recent Trends in Analysis of Images, Social Networks and Texts, 2022