ASSIGNMENT

- 1. $\int_C \text{Im } z^2 dz$, C is the path around the triangle with vertices 0, 2i, 1+2i (counter clockwise).
- 2. . $\int_C f(z)dz$, where f(z) = 2x + y 2xi along C
 - (a) C is shortest path from z = 0 to z = i + 1.
 - (b) consists of two line segments, one from z = 0 to z = i and other from z = i to z = i + 1.
- 3. $\int_C \operatorname{Re} z^2 dz$, C is the boundary of the square with vertices 0, i, 1 + i, 1 clockwise.
- 4. Sketch the path C, where C consists of two line segments, one from z = 0 to z = 3 and other from z = 3 to z = 3 + i and hence evaluate $\int \overline{z} dz$.
- 5. 13. $\int_C \left(\frac{1}{z+i} \frac{2}{(z+i)^2}\right) dz$, C is the circle |z+i| = 2, clockwise.
- 6. Evaluate $\oint_C \frac{e^{2\pi z}}{(z+i)^2} dz$, C: |z+i| = 2 using Cauchy residue theorem.
- 7. Expand $f(z) = \frac{z}{(z-3)(4-z)}$ in a Laurent series valid for 3 < |z| < 4. Also sketch the ROC.
- 8. Determine inverse Z-transform of $X(z) = \frac{2}{(1-z^{-1})(1-0.5z^{-1})}$, |z| > 1.