Exercicis amb Vectors

- 6. Sobre un cos actuen dues forces en el pla xy de mòduls: $F_1 = 5$ N i $F_2 = 7$ N, que formen amb l'eix de les x un angle de 60° i -30° respectivament. Determineu la força resultant (o força neta), el seu mòdul i l'angle que forma amb l'eix x.
- 7. Un cos està sotmès a l'acció de tres forces en el pla xy de mòduls 6 N, 3 N i 4 N, que formen uns angles de 45° , 30° i 60° respecte l'eix de les x. Calculeu el mòdul de la resultant i l'angle que forma respecte l'eix x.
- **8.** En el pla xy el vector **A**, de mòdul 30, forma un angle de 30°, en el sentit positiu de l'eixx. El vector $\mathbf{C} = \mathbf{A} + \mathbf{B}$, de mòdul $30\sqrt{3}$, forma un angle de 60° en el mateix sentit. Trobeu **B**.
- 9. Les coordenades cartesianes de la posició d'un cos són x = 2 m, y = 3 m, z = 1 m.
- a) Escriviu el seu vector posició en les diferents notacions que conegueu.
- b) Quina és la distància a l'origen?
- 10. Sigui el vector $\mathbf{A} = \mathbf{i} + m\mathbf{j} + 2\mathbf{k}$. Calculeu m per tal que el seu mòdul sigui 3.
- 11. Expresseu $\mathbf{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ com una combinació lineal de $\mathbf{B} = \mathbf{i}$, $\mathbf{C} = \mathbf{i} + \mathbf{j}$ i $\mathbf{D} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
- **12**. Calculeu el producte escalar d'una força (5,3,4)N i un desplaçament (6,-1,2)m. Quin angle formen aquests dos vectors?
- 13. Feu el producte escalar de (4,8,-2) i (6,-2,4). Que podeu dir d'aquests dos vectors?
- 14. Feu els productes escalars $i \cdot i$, $i \cdot j$, $i \cdot k$, $j \cdot i$, $j \cdot j$, $j \cdot k$, $k \cdot i$, $k \cdot j$, $k \cdot k$.
- 15. S'anomenen angles directors d'un vector als angles \mathbf{a} , \mathbf{b} , \mathbf{g} que forma amb els eixos x, y i z, respectivament. Quins són el angles directors del vector $\mathbf{A} = -2\mathbf{i} + 8\mathbf{j} + 2\mathbf{k}$? Comproveu que la suma dels quadrats dels 3 cosinus directors és igual a la unitat. Quin és el vector unitari en la direcció i sentit de \mathbf{A} ?
- **16**. La suma dels vectors **A** i **B** és un vector **C** de mòdul 24 i cosinus directors, 1/3, -2/3, i 2/3. A més a més, les components del vector 3**A**-2**B** són (7,9,3). Quines són les components de **A** i **B**?

- 17. Calculeu la projecció de $\mathbf{A} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ en la direcció de $\mathbf{C} = -3\mathbf{i} + 4\mathbf{j}$ i en la de $\mathbf{D} = 2\mathbf{i} 3\mathbf{j}$
- **18**. Descomponeu $\mathbf{A} = 5\mathbf{i} + 10\mathbf{j} + 7\mathbf{k}$ en les direccions paral·lela i perpendicular al vector unitari $\mathbf{u} = 0.8\mathbf{i} + 0.6\mathbf{j}$.
- 19. Determineu x, y i z perquè $\mathbf{A} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$, $\mathbf{B} = x\mathbf{i} + 2\mathbf{j} + z\mathbf{k}$ i $\mathbf{C} = \mathbf{i} + y\mathbf{j} + 2\mathbf{k}$ siguin mútuament perpendiculars.
- **20**. Considereu els vectors $\mathbf{a} = (-4,3,2)$, $\mathbf{b} = (6,2,-3)$ i $\mathbf{c} = (2,-2,0)$, i els escalars $\mathbf{l} = 2$ i $\mathbf{m} = 3$, i comproveu se satisfan les següents propietats distributives
- a) $I(\mathbf{a}+\mathbf{b}) = I\mathbf{a}+I\mathbf{b}$; b) $(I+m)\mathbf{a} = I\mathbf{a}+m\mathbf{a}$; c) $\mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = \mathbf{a}\cdot\mathbf{b} + \mathbf{a}\cdot\mathbf{c}$
- d) Raoneu per què no té cap sentit escriure $\mathbf{a}(\mathbf{b} \cdot \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{a} \cdot \mathbf{c})$
- 21. Demostreu que si $A \perp (B-C)$ i $B \perp (C-A)$ aleshores també $C \perp (A-B)$.
- **22**. La llei de Coulomb estableix que la força elèctrica que fa una càrrega puntula q_1 sobre una càrrega puntual q_2 ve donada per

$$\mathbf{F}_{12} = k_C \, \frac{q_1 q_2}{r_{12}^2} \, \hat{\mathbf{r}}_{12}$$

- on $k_C = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$ és la constant de Coulomb, r_{12} és el mòdul del vector $\mathbf{r}_{12} = \mathbf{r}_2 \mathbf{r}_1$ que va de la posició \mathbf{r}_1 de q_1 a la \mathbf{r}_2 de q_2 , i $\hat{\mathbf{r}}_{12} = \mathbf{r}_{12} / r_{12}$ és el vector unitari en la direcció i sentit de \mathbf{r}_{12} .
- a) Quina força fa una càrrega de 5 nC que està en el punt (3 m, 6 m) sobre una segona càrrega de 6 nC situada en el punt (6 m, 2 m)?
- b) Quina força fa una càrrega de -5 nC que està en el punt (3 m, 6 m, 5 m) sobre una segona càrrega de 6 nC situada en el punt (6 m, 2 m, 1 m)?
- 23. En els vèrtexs d'un quadrat de 10 cm de costat hi ha tres càrregues elèctriques puntuals. Les càrregues situades en els vèrtexs oposats són positives i tenen el mateix valor absolut $q = 5 \mu C$. L'altra és negativa i de valor absolut 2q. Si en el vèrtex restant hi col·loquem una nova càrrega puntual +q, a quina força estarà sotmesa? Apliqueu el principi de superposició: la força \mathbf{F}_i que actua sobre una càrrega q_i és $\mathbf{F}_i = \Sigma \mathbf{F}_{ji}$, on \mathbf{F}_{ji} ve donada per la llei de Coulomb (enunciada en el problema anterior).

- **24**. Calculeu el producte vectorial $\mathbf{A} \times \mathbf{B}$ per als vectors $\mathbf{A} = 5\mathbf{i} + 6\mathbf{j}$ i $\mathbf{B} = 3\mathbf{i} 2\mathbf{j}$? Quin angle formen aquests dos vectors? Quin és el producte vectorial $\mathbf{B} \times \mathbf{A}$?
- **25**. a) Els dos vectors **A** i **B** de la figura de l'esquerra estan en el pla xz. Si el mòdul dels dos és 5 i formen un angle de 30° , quant val $\mathbf{A} \times \mathbf{B}$?
- b) Els dos vectors \mathbf{A} i \mathbf{B} de la figura de la dreta estan en el pla yz. Si el mòdul dels dos és 5 i formen un angle de 60° , quant val $\mathbf{A} \times \mathbf{B}$?

26. Calculeu els productes vectorials $\mathbf{i} \times \mathbf{i}$; $\mathbf{i} \times \mathbf{j}$; $\mathbf{j} \times \mathbf{i}$; $\mathbf{j} \times \mathbf{j}$; $\mathbf{j} \times \mathbf{k}$; $\mathbf{k} \times \mathbf{i}$; $\mathbf{k} \times \mathbf{j}$; $\mathbf{k} \times \mathbf{k}$.

- 27. Quin és el producte vectorial $\mathbf{A} \times \mathbf{B}$ dels vectors $\mathbf{A} = \mathbf{i} + 3\mathbf{j} 2\mathbf{k}$ i $\mathbf{B} = \mathbf{i} \mathbf{j}$? Calculeu els dos vectors de mòdul 6 perpendiculars al pla format per \mathbf{A} i \mathbf{B} .
- 28. Quins són els dos vectors unitaris perpendiculars a $\mathbf{A} = 2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ i $\mathbf{B} = \mathbf{i} 2\mathbf{k}$?
- 29. Comproveu que el producte vectorial satisfà la propietat distributiva, és a dir, que

$$(A+B)\times C = A\times C+B\times C$$
. Considereu $A = 2i + j - 3k$, $B = -i + 2j + k$ i $C = i - j$.

- **30**. Són coplanaris els vectors $\mathbf{A} = (3,4,1)$, $\mathbf{B} = (5,-1,3)$ i $\mathbf{C} = (8,5,7)$?
- **31**. La força magnètica \mathbf{F} que actua sobre una càrrega q que es mou amb una velocitat \mathbf{v} en presència d'un camp magnètic \mathbf{B} és $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$. $(q_p = e \; ; q_e = -e \; ; e = 1.6 \times 10^{-19} \; \mathrm{C})$.
- a) Quina força actua sobre un protó (q_p) amb una velocitat $(2\times10^6 \text{ m/s})\mathbf{i}$ en una regió de l'espai on hi ha un camp magnètic uniforme igual a $\mathbf{B} = (2\mathbf{i} + 3\mathbf{j})10^{-5} \text{ T}$.
- b) Quina seria la força magnètica si en comptes d'un protó és tractés d'un electró (q_e) ?
- c) Quina força actuaria sobre del protó si és mogués en el sentit negatiu de l'eix de les x?
- **32**. Siguin A = 4i + 3j i B = 3j 4k. Calculeu:
- a) el producte escalar,
- b) el producte vectorial,
- c) l'angle que formen,
- d) els vectors de mòdul $\sqrt{34}$ perpendiculars al pla determinat per **A** i **B**,
- e) la descomposició de A en un vector paral·lel i un altre perpendicular a B,
- f) el valor de **a** per tal que el vector $\mathbf{C} = -3\mathbf{i} + a\mathbf{j} + 3\mathbf{k}$ sigui coplanari amb **A** i **B**.
- 33. Demostreu que l'àrea d'un triangle determinat per tres punts O, P i Q és igual a $|\mathbf{A} \times \mathbf{B}|/2$, on \mathbf{A} és el vector que va de O a P i \mathbf{B} el que va de O a B (Recordeu que l'àrea d'un triangle és un mig de la base per l'alçada.)
- **34**. Quin angle formen dues diagonals interiors d'un cub?
- **35**. Es pot demostrar que $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$.
- a) Comproveu-ho amb els vectors $\mathbf{A} = (A_1, A_2, A_3)$, $\mathbf{B} = (B, 0, 0)$ i $\mathbf{C} = (C_1, C_2, 0)$.
- b) A partir de la relació anterior, demostreu que per a qualsevol vector unitari \mathbf{e} se satisfà la relació $\mathbf{A} = (\mathbf{A} \cdot \mathbf{e})\mathbf{e} + \mathbf{e} \times (\mathbf{A} \times \mathbf{e})$. Què signifiquen els dos termes de la dreta?
- **36.** Siguin els vectors $\mathbf{A} = 4t\mathbf{i} + 5t^2\mathbf{j} 6\mathbf{k}$ i $\mathbf{B} = 5t\mathbf{i} + \mathbf{j} t^2\mathbf{k}$.
- a) Calculeu $d\mathbf{A}/dt$ i $d\mathbf{B}/dt$.
- b) Comproveu que $d(\mathbf{A} \cdot \mathbf{B})/dt = (d\mathbf{A}/dt) \cdot \mathbf{B} + \mathbf{A} \cdot (d\mathbf{B}/dt)$.
- c) Comproveu que $d(\mathbf{A} \times \mathbf{B})/dt = (d\mathbf{A}/dt) \times \mathbf{B} + \mathbf{A} \times (d\mathbf{B}/dt)$.
- d) Calculeu $\int_0^t \mathbf{A}(t')dt'$ i $\int_0^t (\mathbf{A} \cdot \mathbf{B})dt'$.

Solucions

b. (8.56**i**+0.83**j**) N, 8.6 N, 0.097 rad

- 7. 12.76 N, 0.805 rad
- 8. 30j
- **9**. a) $\mathbf{r} = (2,3,1) \text{ m} = (2\mathbf{i}+3\mathbf{j}+\mathbf{k}) \text{ m}$; b) $\sqrt{14} \text{ m} = 3.74 \text{ m}$
- **10**. $m = \pm 2$
- 11. A = -B C + 3D
- **12**. $35 \text{ Nm} = 35 \text{ J}, 39.4^{\circ}$
- 13. El producte escalar és 0 i, per tant, els dos vectors són perpendiculars

14.
$$\mathbf{i} \cdot \mathbf{i} = 1$$
, $\mathbf{i} \cdot \mathbf{j} = 0$, $\mathbf{i} \cdot \mathbf{k} = 0$, $\mathbf{j} \cdot \mathbf{i} = 0$, $\mathbf{j} \cdot \mathbf{j} = 1$, $\mathbf{j} \cdot \mathbf{k} = 0$, $\mathbf{k} \cdot \mathbf{i} = 0$, $\mathbf{k} \cdot \mathbf{j} = 0$, $\mathbf{k} \cdot \mathbf{k} = 1$

15.
$$\mathbf{a} = 103.63^{\circ}$$
, $\mathbf{b} = 19.47^{\circ}$ i $\mathbf{g} = 76.37^{\circ}$, -0.236 i $+ 0.943$ j $+ 0.236$ k

16.
$$\mathbf{A} = (23/5, -23/5, 7) \mathbf{i} \mathbf{B} = (17/5, -57/5, 9)$$

- **17**. 7/5 i $-6/\sqrt{13}$
- **18**. $A_{\parallel} = 8i + 6j$, $A_{\perp} = -3i + 4j + 7k$
- **19**. x = 52, y = 8, z = -34
- **20.** a) $I(\mathbf{a}+\mathbf{b}) = I\mathbf{a} + I\mathbf{b} = (4,10,-2)$; b) $(I+m)\mathbf{a} = I\mathbf{a} + m\mathbf{a} = (-20,15,10)$; c) $\mathbf{a} \cdot (\mathbf{b}+\mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} = -38$; d) $\mathbf{a}(\mathbf{b} \cdot \mathbf{c})$ és un vector i $(\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{a} \cdot \mathbf{c})$ és un escalar
- 21. Si $A \cdot (B C) = 0$ i $B \cdot (C A) = 0$, $A \cdot (B C) + B \cdot (C A) = C \cdot (A B) = 0$
- **22**. a) $(6.48 \times 10^{-9} \text{ N})\mathbf{i} (8.64 \times 10^{-9} \text{ N})\mathbf{j}$; b) (-3.085, 4.114, 4.114) nN
- **23**. $6.6 \,\mathrm{N}\,\mathrm{i} + 6.6 \,\mathrm{N}\,\mathrm{j}$
- **24**. –28k, 83.88°, 28k
- **25**. a) -12.5**j**; b) 21.65**i**
- **26.** $i \times i = 0$; $i \times j = k$; $i \times k = -j$; $j \times i = -k$; $j \times j = 0$; $j \times k = i$; $k \times i = j$; $k \times j = -i$; $k \times k = 0$
- 27. -2i-2j-4k, $\pm (2.45i+2.45j+4.9k)$
- **28**. $\pm \frac{1}{\sqrt{6}} (-2i+j-k)$
- **29**. $(A+B)\times C = (i+3j-3k)\times (i-j) = -2i-2j-4k$ $A\times C+B\times C = (-3i-3j-3k)+(i+j-k) = -2i-2j-4k$
- 30. $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \neq \mathbf{0}$, per tant \mathbf{A} , \mathbf{B} i \mathbf{C} no són coplanaris
- **31.** a) $(9.6 \times 10^{-18} \text{ N})\mathbf{k}$; b) $-(9.6 \times 10^{-18} \text{ N})\mathbf{k}$; c) $-(9.6 \times 10^{-18} \text{ N})\mathbf{k}$
- **32**. a) 9 ; b) $-12\mathbf{i} + 16\mathbf{j} + 12\mathbf{k}$; c) $68.9^{\circ} = 1.2 \text{ rad}$; d) $\pm (3\mathbf{i} 4\mathbf{j} 3\mathbf{k})$; e) $\mathbf{A}_{\parallel} = 1.08\mathbf{j} 1.44\mathbf{k}$ i $\mathbf{A}_{\perp} = 4\mathbf{i} + 1.92\mathbf{j} + 1.44\mathbf{k}$; f) $\mathbf{a} = -4.5$
- **33**.
- **34**. $\arccos(1/3) = 70.53^{\circ} = 70^{\circ}32'$
- 35. a) $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (A_2 C_2 B) \mathbf{i} (A_1 B C_2) \mathbf{j} = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$
- **36.** a) $4\mathbf{i}+10t\mathbf{j}$, $5\mathbf{i}-2t\mathbf{k}$; b) 62t; c) $-20t^3\mathbf{i}+(12t^2-30)\mathbf{j}+(4-75t^2)\mathbf{k}$; d) $2t^2\mathbf{i}+(5/3)t^3\mathbf{j}-6t\mathbf{k}$, $(31/3)t^3$