**DERWENT-ACC-NO:** 

1974-86337V

**DERWENT-WEEK:** 

197450

**COPYRIGHT 2007 DERWENT INFORMATION LTD** 

TITLE:

Piezoelectric ceramic compsn. - contg. tungsten, manganese and chromium oxides for increased electromechanical coupling coefft

| <br>KWIC | ` |
|----------|---|
| <br>KWIC | , |

Basic Abstract Text - ABTX (1):

The compsn. consists essentially of a solid soln. expressed by the general formula Pb(TixZr1-x)O3, where x=0.4-0.6 and contg. 0.2-11.0 wt. % of WO3, 0.075-4.0 wt. % of MnO2 and 0.1-1.5 wt. % of Cr2O3, or (2) the compsn. consists essentially of a solid soln. expressed by the general formula xPbTiO3-yPbZrO3-zPbSnO3, wherein x+y+z=1). The compsn. has high stability to resonant frequency, a mechanical quality factor >700 and an electromechanical coupling coefft. >0.30 and is suitable for use as a filter.

Title - TIX (1):

Piezoelectric ceramic compsn. - contg. tungsten, manganese and chromium oxides for increased electromechanical coupling coefft

Standard Title Terms - TTX (1):

PIEZOELECTRIC CERAMIC COMPOSITION CONTAIN TUNGSTEN MANGANESE CHROMIUM INCREASE ELECTROMECHANICAL COUPLE COEFFICIENT

4/27/07, EAST Version: 2.1.0.14

(5) Int · Cl ·

62日本分類

19日本国特許庁

①特許出願公告

昭49-42640

H 01 v 7/02 H 01 b 3/12 62 C 23

昭和 49年(1974) 11月 15日 44公告

発明の数 2

(全4頁)

1

## **函**圧電磁器組成物

20特 昭45-128602 願

昭45(1970)12月29日 22出

72)発 明 者 角岡觔

刈谷市野田町段留25の8

百

酒井将夫

名古屋市緑区鳴海町字宿地92

願 人 日本特殊陶業株式会社 仞出

名古屋市瑞穂区高辻町14の8

### 図面の簡単な説明

図面はPbTiOs - PbZrOs-PbSnOsの3 成分状態図である。

### 発明の詳細な説明

本発明は機械的品質係数Qmの値が高く、しか も共振周波数の経時変化、特に周波数調整のため の研削加工後における共振周波数の経時変化が極 めて小さく、それによつて電気濾波器特に梯子型 電気濾波器用の素子として優れた圧電磁器組成物 20 が高く、しかも周波数調整のため縁辺を研削後に に関するものである。

モル比にて $x = 0.1 \sim 0.6$ ,  $y = 0 \sim 0.9$ , z $= 0 \sim 0.65$ 但しx + y + z = 1.0としたPb (Tix, Zry, Snz) O3 で表わされる固溶体に  $\mathrm{WO}_3$  と  $\mathrm{MnO}_2$ とを同時に含有させた圧電磁器組 25成物が高い電気機械的結合係数Kp および高い機 械的品質係数Qmを示すことは本出願人による特 公昭41-8629号の発明によつて説明した処 であるが、これは分極処理後における共振周波数 の経時変化は極めて小さいが、周波数調整のため 30 雰囲気中で1000~1400℃で焼結して約 縁辺を研削するとそのために共振周波数の経時変 化が著しく大きくなる欠点があつた。従つて多数 の素子を直並列接続して構成する梯子型濾波器の 場合、素子の周波数調整のための縁辺研削加工に 基因する共振周波数の経時変化が大きいから梯子 35 周波数が455 KHz になるよう縁辺を研削し、 型濾波器を構成する各素子の共振周波数のちらば りを小さく揃えることが難かしく、そのため梯子

型濾波器の濾波帯域内にリップル、波形割れ、波 形歪を生じ易くこれが量産上の問題点となりその 解決が要望されていた。

2

本発明は $x = 0.4 \sim 0.6$ とした $Pb(TixZ_i-x)O_s$ 5 で表わされる組成又は x Pb Ti O<sub>3</sub>-y Pb Zr O<sub>3</sub>zPbSnO。 で表わされ、前記3 成分状態図にお いて

 $\dot{z} = 0$ の点A y = 0.6x = 0.4の点B y = 0.4z = 0x = 0.6の点で z = 0.3y = 0.110 x = 0.6z = 0.4の点D y = 0.1x = 0.5の点E x = 0.4y = 0.2z = 0.4

を順次結んだ五角形ABCDEの面積内の組成を 基本組成とし、これにタングステンをWO。 に換 15 算して0.2~1 1.0 重量%、マンガンをMnO₂に 換算して 0.0 7 5~ 4.0 重量%およびクロムを Cr<sub>2</sub>O<sub>3</sub>に換算して0.1~1.5 重量%の割合で全組 成物中に含有させた事を特徴とし、それによつて 電気機械結合係数Kp および機械的品質係数Qm おける共振周波数Fr の経時変化が極めて小さい 圧電磁器組成物に関するものである。

以下実施例について本発明をする。

### 実施例 1

Pb (Ti<sub>065</sub> Zr<sub>045</sub> )O<sub>3</sub> となるよう PbO. TiO2,ZrO2を秤取したものを基本組成とし、 これにWO<sub>3</sub>,MnO<sub>2</sub>およびCr<sub>2</sub>O<sub>5</sub>を第1表に示す 割合に配合摩砕後、磁器素体を塑造して700~ 1000℃で仮焼し、再び摩砕して成形しPbO 4.75 mm× 4.75 mm× 0.45 mm t の角板を得た。 この角板の両面に銀電極を焼付け80℃ において 1.8 KV の直流電界を印加して1時間分極し大気 中に24時間放置後、特性値を測定したのち共振 更に24時間大気中に放置した場合の共振周波数 Frの経時変化および縁辺を研削することなく、

更に100日間大気中に放置した場合の共振周波\* \*数 Fr の経時変化を測定した結果を身 表に示す。

表

| 試 料 番 号 | ļ               | たか物 (重             | 量%)      | 電気機械<br>結合係数<br>Kp | 誘電率   | 機械的<br>品質係数<br>Q mi | 共振周波数FFの経時変化(%)    |                    |  |
|---------|-----------------|--------------------|----------|--------------------|-------|---------------------|--------------------|--------------------|--|
|         | WO <sub>3</sub> | M n O <sub>2</sub> | C r 2 O, |                    | E     |                     | 研削せず100日間          | 研削後24時間            |  |
| 1 💥     | 0               | 0.75               | 0. 5     | 0. 2 5             | 5 3 0 | 1700                | 0.015              | 0.025              |  |
| 2       | 0. 2            | , ,                | "        | 0.34               | 780   | 1600                | 0.013              | 0.023              |  |
| 3 .     | 2.0             | "                  | "        | 0.34               | 860   | 1550                | 0.0 1 2            | 0.024              |  |
| 4       | 5. 0            | ,                  | , ,      | 0.32               | 880   | 1300                | 0.0 1 5            | 0.021              |  |
| 5       | 1 1.0           | <i>p</i> .         | "        | 0.32               | 700   | 830                 | 0.0 2 0            |                    |  |
| 6 💥     | 1 2.0           |                    | "        | 0.28               | 650   | 5 2 0               | 0.0 2 0            | 0.030<br>0.051     |  |
| 7 ※     | 2.0             | 0                  | 0. 5     | 0.37               | 1020  | 3 5 0               | 0.030              |                    |  |
| 8 ↑     | "               | 0.075              | ,,       | 0.35               | 950   | 8 2 0               | 0.030              | 0.053              |  |
| 2       | "               | 0.75               | ,        | 0.34               | 860   | 1550                | 0.012              | 0.027              |  |
| 9       | "               | 2.0                | ,        | 0.34               | 790   | 1300                | 0.012              | 0.021              |  |
| 10      | "               | 4.0                | "        | 0.32               | 750   | 920                 | 0.015              | 0.0 2 5            |  |
| 1 1 ※   | "               | 5. 0               | u l      | 0. 2 9             | 700   | 600                 | 0.020              | 0.0 3 0<br>0.0 7 9 |  |
| 1 2 💥   | 2.0             | 0.75               | 0        | 0.37               | 800   | 1650                | 0.0 3 4            |                    |  |
| 13      | "               | ,                  | 0. 1     | 0.35               | 830   | 1580                | 0.015              | 0.045              |  |
| 2       | "               | ,                  | 0. 5     | 0.34               | 860   | 1550                | 0.013              | 0.025              |  |
| 14      | "               | <i>u</i> ·         | 1.0      | 0.32               | 1080  | 1000                | 0.012              | 0 0 2 1            |  |
| 1 5     | "               | <i>u</i> .         | 1. 5     | 0.32               | 1120  | 790                 |                    | 0.0 2 4            |  |
| 6※      | "               | ,                  | 2. 0     | 0.30               | 1050  | 380                 | 0.0 1 8<br>0.0 2 5 | 0.026<br>0.040     |  |

第1表から明らかな通りWO<sub>3</sub>添加量0.2~11.0 ※ 実施例 2

重量%、MnO2添加量0.075~4.0重量%、 Cr<sub>2</sub>O<sub>3</sub> 添加量 0.1~1.5重量%の範囲内におい て電気機械結合係数Kp は 0.30 以上、機械的品 15  $WO_3$  20 重量%、 $MnO_2$  0.75 重量%および 質係数Qmは700以上の高い値を示すと共に周 波数調整のための縁辺研削加工後における共振周 波数Fr の経時変化は極めて小さく0.0 3 4 %以 下であつた。

基本組成が第2表に示す割合になるようPbO. TiO2,ZrO2 およびSnO2を秤取し、これに更 Cr<sub>2</sub>O<sub>3</sub> 0.5 重量%を同時に添加し実施例1と同 様に角板試料を製作分極後諸特性値を測定した結 果を第2表に示す。

| 試料<br>番号 |        |                    |                    | 添加物(重量%)   |                  |                                | 電気機械       | 誘電率  | 機械的        | 共振周波数Frの経時変化(% |             |
|----------|--------|--------------------|--------------------|------------|------------------|--------------------------------|------------|------|------------|----------------|-------------|
|          | PbTiO. | PbZrO <sub>3</sub> | PbSnO <sub>3</sub> | wo,        | MnO <sub>2</sub> | Or <sub>2</sub> O <sub>3</sub> | 結合係数<br>Kp | ε    | 品質係数<br>Qm | 研削せず<br>100 日間 | 研削後<br>24時間 |
| 1 7      | 0.60   | 0.40               | . <u> </u>         | 20         | 0.75             | 0.5                            | 0.31       | 630  | 1900       | 0.011          | 0.020       |
| 18-      | 0.50   | 0.50               | · -                |            | ,                |                                | 0.52       | 1120 | 900        | 0.013          | 0.0 2 1     |
| 19       | 0.40   | 0.60               | -                  |            | •                |                                | 0.4 2      | 350  | 1330       | 0.020          | 0.0 2 8     |
| 20       | 0.60   | 0.25               | 0.15               | 0          |                  |                                | 0.30       | 650  | 1750       | 0.0 1 1        | 0.0 2 2     |
| 2 1      | 0.50   | 0.35               | 0.15               | ٠          | ,                |                                | 0.46       | 1210 | 950        | 0.0 1 4        | 0.0 2 5     |
| 22       | 0.40   | 0.45               | 0.15               |            | ,                |                                | 0.40       | 365  | 1320       | 0.020          | 0.0 2 9     |
| 23       | 0.50   | 0.25               | 0.25               | <i>u</i> . | ,                | ,                              | 0.45       | 1300 | 900        | 0.018          | 0.0 2 5     |
| 24       | 0.60   | 0.10               | 0.30               |            | . ,              |                                | 0.30       | 620  | 1210       | 0.018          | 0.0 2 3     |
| 25       | 0.40   | 0.30               | 0.30               |            |                  | ,                              | 0.38       | 400  | 890        | 0.012          | 0.0 2 1     |
| 2 6      | 0.50   | 0.10               | 0.40               | ا م        |                  |                                | 0.32       | 830  | 850        | 0.0 2 1        | 0.030       |
| 2 7      | 0.40   | 0.20               | 0.40               | •          | ,                | ,                              | 0.33       | 420  | 830        | 0.015          | 0.023       |

ら明らかな通りx = 0.4 ~ 0.6とした 第 2 ₹ 'r1 -x)O3 で表わされる組成又は Pb (Ti -yPbZrO3-zPbSnO3 で表わさ x PbTi 分状態図において れ前記:  $\dot{z} = 0$ y = 0.6x = 0の点B y = 0.4z = 0 $\mathbf{x} =$ の点C z = 0.3x =y = 0.1の点D y = 0.1z = 0.4 $_{\mathbf{X}} =$ の点E y = 0.2z = 0.4x = を順次 :し、これにWO3,MnO2およびCr2O3 基本組 7有させた組成はいずれも電気機械結合 を同時 )値は0.30以上、機械的品質係数Qm 係数K ) 0 以上を示すと同時に周波数調整のた の値は 研削後における共振周波数Fr の経時変 15 めの縁 化量は めて小さく 0.0 3 4 %以下であつた。 以上 通り本発明で規定した基本組成に対して タン・ステンをWO。 として 0.2~1 1.0 重量%、 マン ンをMnO2として0.075~4.0重量%. ク: 、をCr<sub>2</sub>O<sub>3</sub> として0.1~1.5重量%の割合 20 で、系することによつて電気機械結合係数Kp の 値 上較的高く 0.30以上を示し、機械的品質係 数にnの値は滅衰量の高い濾波器を得るに必要な 70 1以上を示すと共に、周波数調整のため縁辺 を研 ||加工した場合においても共振周波数Fr の 25 経時、化量が極めて小さく、従つて梯子型波器組 立に {して各素子の共振周波数のちらばりが少な くも『型濾波器の濾波帯域内にリップル、波形割 れ、支形歪等を生ずるおそれもなく、その量産性 をすず等の優れた効果がある。 発明において併添するタングステン、マンガ ン よびクロムは金属、金属酸化物又は他の化合 物 形で添加してもよく、その場合タングステン は Os に換算して0.2~11.0重量%、マンガ ン、 $MnO_2$  に換算して  $0.0~7~5\sim4.0$  重量%、 0.35~% およびクロムを $Cr_2O_3~$  に換算して  $0.1\sim1.5$ ロ ヘはCr<sub>2</sub>O<sub>3</sub> に換算して0.1~1.5重量%の範 : に限定される。而して添加量をそれぞれ上記の 5 に限定する理由はタングステン、マンガンお

びクロムの内のいずれか一つでも上限を超すか

質係数Qmの値が極めて小さくなると同時に研削

加工後における共振周波数の経時変化が極めて大

きくなり、又クロムが下限に満たない時はQmは

周波数の経時変化が大きくなり、タングステンが 下限に満たない時は電気機械結合係数を比較的大 きな値030以上に保てなくなるからである。

なおタングステン、マンガンおよびクロムの添 の点A 5 加量によってはそれに平衡する範囲内すなわちそ れぞれPbWO4、PbMnO3 およびPbCr2O4を 生成する範囲内で鉛を増添することが好ましい。

又、基本組成をxPbTiO3-yPbZrO3zPbSnO3 の3成分状態図において z=0の2 」だ五角形ABCDEの面積内の組成を 10 成分系を含む面積ABCDE内の組成に限定する 理由は此の範囲内の組成が比較的高い電気機械結 合係数、高い機械的品質係数を示すと同時に研削 後における共振周波数の経時変化が極めて小さい からである。

> 又、本発明の実施に際しては実施例にも示され る通り通常は各原料を秤量調合するので一般式 Pb (Tix-Zr<sub>1 -x</sub> )O3 およびxPbTiO3 yPbZrOs ーzPbSnOs を理想とするが焼成 時における構成成分のわずかな揮散、原料中に含 まれる微小の不純物等によつて、一般式通り厳格 な原子比を得ることは工業的になかなか困難であ り、しかも原子比の多少のずれが本質的の影響を 与えるものではないから若干の偏差は実用上支障

> なお、以上は周波数調整のため縁辺研削を必要 とする梯子型濾波器素子用組成物として説明した が、研削部位及び用途はこれに限定されるもので はなく、一般の圧電振動子用組成物として利用で きる。

## 30 ③特許請求の範囲

1  $x = 0.4 \sim 0.6$ とした一般式  $Pb(Tix-Z_{1-x})O_{s}$ で表わされる組成を基本組成とし、これにタング ステンをWO<sub>3</sub> に換算して0.2~1 1.0 重量%、 マンガンをMnO2に換算して 0.0 7 5 ~ 4.0 重量 重量%の割合で全組成物に含有させたことを特徴 とする圧電磁器組成物。

### 2 一般式

xPbTiO3-yPbZrO3-zPbSnO3 あるいはマンガンが下限に満たない時は機械的品 40 で表わされ、前記 3成分状態図において z=0 の点 Ax = 0.4 y = 0.6z = 0 .の点B x = 0.6y = 0.4z = 0.3 の点C x = 0.6y = 0.1z = 0.4 の点D x = 0.5y = 0.1

7

8

x = 0.4y = 0.2z = 0.4の点E組別を順次結んだ五角形ABCDEの面積内の組成を基本組成とし、これにタングステンをWOsに換算して0.2~11.0 重量%、マンガンをMnO2に(2)換算して0.2~11.0 重量% およびクロムを 55特Cr2O3・に換算して0.1~1.5 重量%の割合で全特組成物中に含有させたことを特徴とする圧電磁器特

組成物。

# 69引用文献

5 特 公 昭35-15639 特 公 昭41-8629 特 公 昭42-630

