

SESIÓN 06:

Gestionar Sistemas de Información para satisfacer necesidades organizacionales de forma innovadora, respondiendo a estándares de calidad

Siguiendo los pasos

Diseño lógico

El diseño lógico depende del **modelo de BD** que soporta el SGBD.

Construir y validar los esquemas lógicos locales para cada vista de usuario

- Convertir los esquemas conceptuales locales en esquemas lógicos locales.
- Derivar un conjunto de relaciones (tablas) para cada esquema lógico local.
- 3. Validar cada esquema mediante la normalización.
- Validar cada esquema frente a las transacciones del usuario.
- 5. Dibujar el diagrama entidad relación.
- Definir las restricciones de integridad.
- 7. Revisar cada esquema lógico local con el usuario correspondiente.

Convertir esquemas conceptual a esquema lógico

Convertir la relación de "uno a varios"

Para toda relación de uno a varios la clave principal de la entidad de uno debe propagarse el atributo clave de la entidad varios

• Ejemplo

Convertir la relación de "Varios a Varios"

La relaciones de "Varios a Varios" o "Muchos a Muchos" se transforma en una nueva entidad que tendrá como clave primaria COMPUESTA las claves primarias de los tipos de entidades que asocia.

Ejemplo

• Caso 1:

Si las entidades que se asocian posee cardinalidades Cero a 1, suele ser conveniente transformar la relación en una nueva entidad.

Caso 2 :

Si las entidades que se asocian posee cardinalidades 0,1 y 1,1 suele ser conveniente propagar la clave de 1,1 a 0,1.

• Caso 3 : En caso que ambas entidades presenten cardinalidades 1:1 se puede propagar la clave de cualquiera de ellas de la tabla resultante de la otra, teniendo en cuenta el acceso mas frecuente y prioritario de los datos.

• Convertir la relación de generalización

Las relaciones de generalización con cada entidad especializada forman una relación de "uno a uno" como sigue:

La cardinalidad 0:1 significa que una persona es o profesor o alumno pero no los dos.

Las relaciones recursivas

- Las relaciones recursivas o reflexivas son caso especial pero tienen el mismo tratamiento según su cardinalidad.
- En esta caso como es la misma entidad, la clave propaga con otro nombre de atributo, ya que en la misma entidad no pueden existir dos atributos del mismo nombre

Convirtiendo una relación de grado 3 o más

La relaciones para ser del modelo lógico y físico debe ser de grado dos como máximo. Si existe una relación de grado tres o más debe convertirse en grado dos, para esto la relación debe ser una entidad.

En Erwin

Usando Erwin seleccionaremos el tipo de gestor de base de datos donde pasaremos el modelo físico. Seleccionar SQL Server:

Create Model - Select 7	[emplate		×
New Model Type	C Physical		ОК
Create Using Templat	e:		Cancel
Blank Logical/Physi Remove Creates a new model and default settings.	Browse File System	Browse ERwin MM al levels (CA ERwin DM classic)	
Target Database Database: SQ	L Server ▼ Vers	sion: 2005/2008 🔻	

Entidades Atributos y tipos de Datos Pregrado

Los tipos de atributos - Atributo Clave o identificador

- Al idEmpleado le colocaremos números enteros
- Si es número entero (Integer) podemos hacer que se autogenere usando la opción IDENTITY.

Los tipos de atributos - Atributo Obligatorio

- Los Apellidos y Nombres son datos obligatorios y como cadenas de texto le colocamos el tipo de dato varchar y una longitud.
- Por ser obligatorio debemos marcar la opción "NOT NULL"

Los tipos de atributos - Atributo opcional

- El fono puede ser opcional y como cadenas de texto le colocamos el tipo de dato varchar y una longitud.
- · Por ser opcional debemos marcar la opción "NULL"

Pasando a ERWIN

Modelo lógico de pedidos en Erwin

Pregrado

Modelo lógico de pedidos en Erwin

Activar ERWIN y graficar el modelo biblioteca.

Universidad **César Vallejo**

Licenciada por Sunedu

para que puedas salir adelante