Solved problems – probability

1. The following table classifies 400 people according to their smoking habits and whether or not they have cancer.

	Smoker (A)	Non-Smoker (\overline{A})
Has cancer (C)	200	50
Does not have cancer (\bar{C})	50	100

If an individual is selected at random from this group, find the probability that he/she is

- (a) a smoker and has cancer,
- (b) a smoker or has cancer
- (c) a non-smoker or has cancer

Q1 solution . A = Smoker ;
$$\overline{A}$$
 = Non-Smoker
 C = Has Cancer ; \overline{C} = Does not have Cancer

$$n(\Omega) = N = 400$$
; $n(A) = 250$; $n(\overline{A}) = 150$; $n(C) = 250$; $n(\overline{C}) = 150$

(a)
$$P(A \cap C) = \frac{\mathbf{n}(A \cap C)}{\mathbf{n}(\Omega)} = \frac{200}{400} = 0.5$$

(b)
$$P(A \cup C) = P(A) + P(C) - P(A \cap C)$$

= $\frac{\mathbf{n}(A)}{\mathbf{n}(\Omega)} + \frac{\mathbf{n}(C)}{\mathbf{n}(\Omega)} - \frac{\mathbf{n}(A \cap C)}{\mathbf{n}(\Omega)} = \frac{250}{400} + \frac{250}{400} - \frac{200}{400} = \frac{300}{400} = 0.75$

$$(c) \ P(\overline{\mathbf{A}} \cup C) = P(\overline{\mathbf{A}}) + P(C) - P(\overline{\mathbf{A}} \cap C)$$

$$= \frac{\mathbf{n}(\overline{\mathbf{A}})}{\mathbf{n}(\Omega)} + \frac{\mathbf{n}(C)}{\mathbf{n}(\Omega)} - \frac{\mathbf{n}(\overline{\mathbf{A}} \cap C)}{\mathbf{n}(\Omega)} = \frac{150}{400} + \frac{250}{400} - \frac{50}{400} = \frac{350}{400} = 0.875$$

2 A and B are events defined on the same sample space.

(a) If
$$P(\overline{A}) = 0.6$$
, $P(B) = 0.5$ and $P(A \cap B) = 0.1$,
Find: (i) $P(A \cup B)$, (ii) $P(A \cap \overline{B})$, (iii) $P(\overline{A} \cap B)$, (iv) $P(\overline{A} \cap \overline{B})$

(b) If
$$P(A \cap \overline{B}) = 0.3$$
, $P(A \cap B) = 0.2$ and $P(\overline{A} \cap \overline{B}) = 0.1$,

Find: (i)
$$P(A)$$
, (ii) $P(\overline{A} \cap B)$, (iii) $P(A \cup B)$

Q2 solution (a)
$$P(\overline{A}) = 0.6$$
; $P(B) = 0.5$; $P(A \cap B) = 0.1$; where $P(\overline{A}) = 1 - P(A)$
 $\therefore P(A) = 1 - P(\overline{A}) = 1 - 0.6 = 0.4$; $P(\overline{B}) = 1 - P(B) = 1 - 0.5 = 0.5$

	В	$\overline{\mathbf{B}}$	Total
A	0.1	0.3	0.4
$\overline{\mathbf{A}}$	0.4	0.2	0.6
Total	0.5	0.5	1.0

(i)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.4 + 0.5 - 0.1 = 0.8

(ii)
$$P(A \cap \overline{\mathbf{B}}) = 0.3$$

(iii)
$$P(\overline{\mathbf{A}} \cap B) = 0.4$$
; (iv) $P(\overline{\mathbf{A}} \cap \overline{\mathbf{B}}) = 0.2$

(i)
$$P(A) = P(A \cap \overline{B}) + P(A \cap B) = 0.3 + 0.2 = 0.5$$

(ii)
$$P(\overline{\mathbf{A}} \cap B) = 0.4$$

(iii)
$$P(A \cup B) = P(A \cap \overline{B}) + P(A \cap B) + P(\overline{A} \cap B)$$

= $0.3 + 0.2 + 0.4 = 0.9$

- 3 Refer to the data in question 1,
 - (a) If an individual is selected at random from the group, find the probability that the person selected:
 - (i) has cancer given that he/she is a smoker.
 - (ii) is not a smoker given that he/she does not have cancer.
 - (b) determine whether smoking and having cancer are independent.

Q3 solution Refer to the data in Q1.

A = Smoker; \overline{A} =Non-Smoker; \overline{C} =Has Cancer; \overline{C} =Does not have Cancer $n(\Omega) = N = 400$; n(A) = 250; $n(\overline{A}) = 150$; n(C) = 250; $n(\overline{C}) = 150$

(a) (i)
$$P(C \mid A) = \frac{P(C \cap A)}{P(A)} = \frac{n(C \cap A)/n(\Omega)}{n(A)/n(\Omega)} = \frac{n(C \cap A)}{n(A)} = \frac{200}{250} = 0.80$$

(ii) $P(\overline{A} \mid \overline{C}) = \frac{P(\overline{A} \cap \overline{C})}{P(\overline{C})} = \frac{n(\overline{A} \cap \overline{C})/n(\Omega)}{n(\overline{C})/n(\Omega)} = \frac{n(\overline{A} \cap \overline{C})}{n(\overline{C})} = \frac{100}{150} = 0.67$

(b) By definition: if events A, C are independent, then: $P(A \cap C) = P(A) \times P(C)$ (1)

$$\therefore P(A \cap C) = \frac{n(A \cap C)}{n(\Omega)} = \frac{200}{400} = 0.50 ; and$$

$$P(A) \times P(C) = \frac{250}{400} \times \frac{250}{400} = 0.625 \times 0.625 = 0.390625 = 0.39$$

Since $0.50 \neq 0.39$ (different probabilities on both sides of eq.(1))

$$\therefore P(A \cap C) \neq P(A) \times P(C)$$

The events A and C are not-independent.

i.e., Smoking and having cancer are not-independent.

Note on Independence

Events A and B are Independent, if

- (1) $P(A \cap B) = P(A) \times P(B)$
- $(2) \quad P(A \mid B) = P(A)$
- $(3) \quad P(B \mid A) = P(B)$