# Problema 9-E4 - Rețele neurale

O rețea neurală este un clasificator foarte des utilizat în rezolvarea diverselor sarcini din domeniul Inteligenței Artificiale. Cele mai simple rețele neurale au un strat de intrare cu m neuroni, un singur strat "ascuns" (intermediar) cu n neuroni și un strat de ieșire cu p neuroni (ca în figură). În procesul de antrenare se utilizează o bază de date adnotată pentru a determina ponderile  $v_{ij}$  și  $w_{jk}$ , ce interconectează neuronii din stratul de intrare (aceștia nu efectuează nicio prelucrare!), cel ascuns și cel de ieșire ( $v_{ij}$  – ponderea conexiunii  $I_i$  –  $H_j$ , iar  $w_{jk}$  – ponderea conexiunii  $H_j$  –  $O_k$ ). În procesul de clasificare, pentru un vector de parametri de intrare  $X_i$  se obțin valorile  $Y_k$  reprezentând probabilitățile ca vectorul de parametri de intrare să corespundă clasei 1, 2, ..., p.

Procesul de *clasificare* presupune trei etape:



1. Calcularea valorilor pentru ieșirile neuronilor din stratul ascuns, astfel:

$$S_j = \sum_{i=1}^m X_i \cdot v_{ij}$$
, pentru  $j = 1,...,n$ 

2. Calcularea valorilor pentru ieșirile neuronilor din stratul de ieșire, astfel:

$$Y_k = \sum_{j=1}^{n} S_j \cdot w_{jk}$$
, pentru  $k = 1, ..., p$ 

3. Găsirea indexului valorii  $Y_k$  maxime

## Cerință

În condițiile în care rețeaua neurală este deja antrenată (cu alte cuvinte, se cunosc ponderile), stabiliți cărei clase k îi corespunde vectorul de parametri introdus la intrare.

#### Date de intrare

Se vor citi de la tastatură (fluxul *stdin*) următoarele date:

- trei numere întregi m, n, p separate prin spațiu, reprezentând m numărul de neuroni din stratul de intrare, n numărul de neuroni din stratul ascuns, p numărul de neuroni din stratul de ieșire;
- ponderile  $v_{ij}$  sub forma unei matrice de numere întregi cu m linii și n coloane, separate prin spațiu;
- ponderile  $w_{jk}$  sub forma unei matrice de numere întregi cu n linii și p coloane, separate prin spațiu;
- vectorul de parametri de intrare  $X_i$  sub forma unui șir de m numere întregi separate prin spatiu.

Toate liniile conținând date de intrare sunt finalizate cu caracterul newline (tasta Enter).

## Date de iesire

Programul va afișa pe ecran (stream-ul standard de ieșire) un număr întreg reprezentând indexul clasei căreia îi corespunde vectorul de parametri de intrare (clasa pentru care s-a obținut  $Y_k$  maxim). *Atenție*: numerotarea claselor începe de la 1, deci cel mai mic index este 1, nu 0!

ATENȚIE la respectarea cerinței problemei: afișarea rezultatelor trebuie făcută EXACT în modul in care a fost indicat! Cu alte cuvinte, pe stream-ul standard de ieșire nu se va afișa nimic în plus față de cerința problemei; ca urmare a evaluării automate, orice caracter suplimentar afișat, sau o afișare diferită de cea indicată, duc la un rezultat eronat și prin urmare la obținerea calificativului "Respins".

#### Restricții și precizări

- 1. Numerele *m*, *n*, *p* sunt numere întregi în intervalul [2; 10].
- 2. Elementele tablourilor  $v_{ij}$ ,  $w_{jk}$  și  $X_i$  sunt numere întregi în intervalul [-128; +127].
- 3. Atenție: În funcție de limbajul de programare ales, fișierul ce conține codul trebuie să aibă una din extensiile .c, .cpp, .java, sau .m. Editorul web **nu va adăuga automat** aceste extensii și lipsa lor duce la imposibilitatea de compilare a programului!
- 4. Atenție: Fișierul sursă trebuie numit de candidat sub forma: <nume>.<ext> unde nume este numele de familie al candidatului și extensia este cea aleasă conform punctului anterior. Atenție la restricțiile impuse de limbajul Java legate de numele clasei și numele fișierului!

### **Exemplu**

**Intrare** 

```
3 5 2
1 - 2 \ 3 \ 4 \ 5
8 5 -3 1 1
7 6 4 -2 0
4 1
2 9
7 2
1 1
2 8
4 5 6
Ieşire
Explicatie:
Pentru neuronul H<sub>1</sub> (vezi figură), ieșirea este S_1 = 4*1 + 5*8 + 6*7 = 86
Pentru neuronul H<sub>2</sub> (vezi figură), ieșirea este S_2 = 4*(-2) + 5*5 + 6*6 = 53
Pentru neuronul H<sub>3</sub> (vezi figură), ieșirea este S_3 = 4*3 + 5*(-3) + 6*4 = 21
Pentru neuronul H<sub>4</sub> (vezi figură), ieșirea este S_4 = 4*4 + 5*1 + 6*(-2) = 9
Pentru neuronul H<sub>5</sub> (vezi figură), ieșirea este S_5 = 4*5 + 5*1 + 6*0 = 25
Pentru neuronul O<sub>1</sub> (vezi figură), ieșirea este Y_1 = S_1*4 + S_2*2 + S_3*7 + S_4*1 + S_5*2 = 656
Pentru neuronul O<sub>2</sub> (vezi figură), ieșirea este Y_2 = S_1*1 + S_2*9 + S_3*2 + S_4*1 + S_5*8 = 814
```

## Timp de lucru: 120 de minute