Parallel Support Vector Machine

Wesley Osogo, Tianfan Xu, Connor Buchheit, Peter Chen

Problem – SVM

- SVM: Finding the optimal hyperplane that separates a set of points belonging to two classes.
- Training an SVM model is computationally expensive, and scales poorly with dataset size, so training is slow on large datasets.
- Traditionally, coding SVM relies on Quadratic Programming (QP) for optimization, which is the main bottleneck. We aim to use existing techniques to reframe this problem as a parallel one, thus allowing for usage of MPI so that the model can accommodate larger datasets.

Data Generation

- Data Fetching: dataset from the UCI repository, which includes features stored in X and targets stored in y.

 Standardization: The features X are standardized using StandardScaler from sklearn.preprocessing. This normalization ensures that each feature contributes equally to the analysis by giving them mean of zero and a standard deviation of one.

- Transformation of Targets: The target variable y is transformed based on a midpoint value calculated as the average of the maximum and minimum values of y. Each value in y is mapped to -1 if it is below this midpoint, otherwise to 1.

Math Model

Solve Quadratic Programming(QP)

min
$$\mathcal{P}(\mathbf{w}, b, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i}$$

s.t. $1 - y_{i}(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{i}) + b) \leq \xi_{i}, \quad \xi_{i} > 0,$
min $\mathcal{D}(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Q} \boldsymbol{\alpha} - \boldsymbol{\alpha}^{T} \mathbf{1}$
s.t. $\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C}, \quad \mathbf{y}^{T} \boldsymbol{\alpha} = 0,$

Parallel Incomplete Cholesky Factorization(ICF)

ICF: approximate a positive definite matrix (kernel matrix) with a lower triangular matrix Parallel Factorization: Each machine performs ICF on its subset of the data independently

Interior Point Methods(IPM)

IPM: Solve QP with IPM, with computation bottleneck on matrix inverse in SVM

Parallel Interior Point Methods(IPM)

PIPM: Sherman-Morrison-Woodbury formula

$$\begin{split} \Sigma^{-1}z &=& (D+Q)^{-1}z \approx (D+HH^T)^{-1}z \\ &=& D^{-1}z - D^{-1}H(I+H^TD^{-1}H)^{-1}H^TD^{-1}z \\ &=& D^{-1}z - D^{-1}H(GG^T)^{-1}H^TD^{-1}z. \end{split}$$

Parallel Support Vector Machine **Implementation**

of solving inverse

system

Stages: Kernel Computation, Parallel ICF, Parallel IPM, Prediction Scientific Library: Eigen(with row based memory layout)

Parallel IPM: Kernel Compute: Parallel ICF: Use SMW formula to Each machine A single process Distribute different compute necessary read input data rows of computed parts locally and MPI with the local and computes kernel to distributed to communicate, kernel matrix machines. Use OpenMp alleviating the to parallelize local locally through heaviest updates and MPI to OpenMP computational task decide pivot

value/index and

stopping condition

Prediction: computes

weights and gathers result through MPI

Strong Speed up (10k and 50k)

Performance – Weak Scaling Analysis

Performance – Roofline Model

Compute Bound

8 cores

* 3.0 GHz

* 16 Flops/Cycle/Core

Memory Bandwidth

50 Gb/s

Next Steps

- Performance We saw a test accuracy of ~80% for most applications. Although we are very pleased with this performance as an initial result, experimenting with different SVM kernels and parameters could lead to even better performance.
- 2) Extreme scalability Taking measures such as dimensionality reduction for our features to reduce problem complexity would likely yield even better results than we achieved. We would also have worked on calculating kernel matrix Q distributedly as it limits scaling beyond memory capacity of one machine.
- 3) CUDA Our code relies heavily on matrix multiplication. Given more time and access to GPUs, applying what we learned about CUDA and running our code on a GPU would result in even greater speedups than observed.

Given more time, we would have experimented with such techniques to make a much more fine-tuned model.

Appendix

Strong Scaling

# Machines	Train time Avg(s)	
6	15724.86	
12	7908.88	
18	2646.64	
24	1257.97	
30	723.533	
36	469.573	
42	339.994	
48	250.062	
Train Size	50k	
Iters	50	
Accuracy	84%	

# Machines	Train time Avg(s)	Train time Avg(s)	
6	687.485	687.485	
12	142.406	142.406	
18	63.2843	63.2843	
24	38.0546	38.0546	
30	27.8197	27.8197	
36	20.6108	20.6108	
42	16.8879	16.8879	
48	14.1087	14.1087	
Train Size	10k	10k	
Iters	50	50	
Accuracy	71%	71%	

Weak Scaling

Machines	Work Size	Time_1(s)	Time_2(s)	Time_3(s)	Avg Time(s)
1	1600	462.292	460.79	443.29	455.4573
2	3200	494.647	490.527	493.555	492.9097
4	6400	515.204	514.625	513.368	514.399
8	12800	660.103	662.108	661.896	661.369
16	25600	649.446	648.785	647.518	648.583
32	51200	904.972	904.657	903.967	904.532