REPRESENTATIONS OF \$13C

JEFFREY JIANG

The representation theory of $\mathfrak{sl}_3\mathbb{C}$ is more complex than the situation with $\mathfrak{sl}_2\mathbb{C}$, and involves generalizing some of the tools used to analyze the irreducible representations of $\mathfrak{sl}_2\mathbb{C}$. However, this will develop a relatively general framework for understanding the representations of semisimple Lie algebras.

Recall that the key piece for understanding the irreducible representations of $\mathfrak{sl}_2\mathbb{C}$ was the basis H, X, and Y, where H was diagonalizable and satisfied the commutation relations

$$[H, X] = 2X$$
 $[H, Y] = -2Y$ $[X, Y] = H$

for the higher dimensional case, we will not have such a basis anymore. The idea will be to replace the matrix H with an abelian subalgebra $\mathfrak h$. The reasoning here is that commuting matrices preserve each other's eigenspaces, so they are simultaneously diagonalizable.

Definition 1.1. Given a representation V and a subalgebra $\mathfrak{h} \subset \mathfrak{sl}_3\mathbb{C}$, a vector $v \in V$ is an *eigenvector* for \mathfrak{h} if for all $H \in \mathfrak{h}$, v is an eigenvector for H.

Note that the eigenvalues for a eigenvector v need not be the same for different H. Instead, we have that $Hv = \lambda(H)v$ for some $\lambda \in \mathfrak{h}^*$. Therefore, the generalization of the eigenspace decomposition for an representation of $\mathfrak{sl}_2\mathbb{C}$ is a decomposition $V = \bigoplus_{\lambda} V_{\lambda}$ where λ ranges over a finite subset of \mathfrak{h}^* . We also want to generalize the commutation relations from $\mathfrak{sl}_2\mathbb{C}$. We see that from before, X and Y are eigenvectors of $\mathfrak{ad}(H)$, with eigenvalues 2 and -2 repsectively. When we replace H with \mathfrak{h} , we see we want to find a decomposition of $\mathfrak{sl}_3\mathbb{C}$ as

$$\mathfrak{sl}_3\mathbb{C}=\mathfrak{h}\oplus(\bigoplus_{lpha}V_lpha)$$

where each V_{α} is an eigenspace for ad(\mathfrak{h}), and again, the α form a finite subset of \mathfrak{h}^* . This procedure will also be used in the general case as well.

When we specialize to $\mathfrak{sl}_3\mathbb{C}$, it turns out that an ideal choice of \mathfrak{h} is the subalgebra of diagonal matrices in $\mathfrak{sl}_3\mathbb{C}$. Let L_i denote the linear functionals such that $L_i(A)=A_i^i$. Then the condition that the matrices in $\mathfrak{sl}_3\mathbb{C}$ are traceless implies the dual \mathfrak{h}^* is given by linear combinations a^iL_i where we quotient by the relation $L_1+L_2+L_3=0$. We then want to find eigenvectors of $\mathrm{ad}(\mathfrak{h})$. To do this, let D denote an arbitrary diagonal matrix in \mathfrak{h} , and $M\in\mathfrak{sl}_3\mathbb{C}$. Then DM is the matrix where $(DM)_j^i=D_i^iM_j^i$ (i.e. the i^{th} row is multiplied by D_i^i), and MD is the matrix where $(MD)_j^i=D_j^iM_j^i$ (i.e. the j^{th} column of MD is multiplied by D_j^i). Therefore, the $(i,j)^{th}$ component of the commutator $[D,M]_i^i$ is given by

$$[D, M]_{j}^{i} = (DM)_{j}^{i} - (MD)_{j}^{i} = D_{i}^{i} M_{j}^{i} - D_{j}^{j} M_{j}^{i} = (D_{i}^{i} - D_{j}^{j}) M_{j}^{i}$$

Therefore, for a matrix to be and eigenvector of $\operatorname{ad}(D)$ for all $D \in \mathfrak{h}$, we need all but a single entry to be 0. To see this, we note that we can pick a matrix D such that the multipliers $(D_i^i = D_j^i)$ for the M_j^i component are all different, so M can only be an eigenvector for $\operatorname{ad}(D)$ if all but one of the entries is 0. Then the elementary matrices E_{ij} with a 1 in the (i,j) give an eigenspace decomposition for $\mathfrak{sl}_3\mathbb{C}$, and the action of $\operatorname{ad}(D)$ on E_{ij} will have eigenvalue $L_i(D) - L_j(D)$. This gives us that the eigenspace generated by E_{ij} will have "eigenvalue" $L_i - L_j \in \mathfrak{h}^*$.

1