

概述

TP8005 是一款工作在电感电流连续模式下的降压型 LED 恒流驱动器。用于高效地驱动一颗或者多颗串联 LED。芯片的输入电压范围为 5V~36V,输出电流外部可调,最大可达 1.2A。

TP8005 内部集成功率管,并采用高端电流检测方式。通过外部电阻可以设定 LED 输出的平均电流,并可以通过 DIM 引脚接收模拟调光和很宽范围的 PWM 调光信号。当 DIM 的电压低于 0.3V,芯片内部的功率管关断,TP8005 进入低功耗的待机模式。

TP8005 内部集成了自动温度补偿控制电路,当芯片内部的温度超过 130℃时,LED 输出电流会随着温度的上升而逐渐减小,并最终稳定在某一电流值。这就避免了传统过温保护所引起的 LED 低频闪烁问题。当芯片内部的温度上升到 150℃时,LED 输出电流减小至零。

特点

- 高达 95%的效率
- 自动温度补偿控制
- 宽输入电压范围: 5V~36V
- 最大 1.2A 输出电流
- DIM 脚可进行 PWM 和模拟调光
- ±3%输出电流精度
- 内置 LED 开路保护
- 软启动时间可调
- 采用 SOT89-5L 封装

应用

- 低压 LED 射灯替代卤素灯
- 低压工业 LED 照明
- LED 装饰照明
- 其它 LED 照明

典型应用电路

管脚

管脚描述

管脚编号	管脚名称	描述
1	SW	内部功率管漏极
2	GND	芯片地
3	DIM	芯片使能端脚,模拟调光和 PWM 调光的输入端
4	CS	输出电流采样脚,采样电阻连接在 VIN 与 CS 之间
5	VIN	电源输入脚,必须紧靠引脚连接电容到地
-	Exposed PAD	散热片,与芯片地连接

极限参数(注1)

参数	额定值	单位
VIN 到 GND 电压	-0.3~+40	V
SW 到 GND 电压	-0.3~+40	V
CS 到 VIN 电压	-1.0~+1.0	V
DIM 到 GND 电压	-0.3~+6	V
功率管输出电流	1.2	Α
功率损耗(注2)	1.5	W
工作结温范围	-40~150	$^{\circ}\mathbb{C}$
储存温度范围	-50~150	$^{\circ}\mathbb{C}$
ESD 水平(HBM)	2000	V
ESD 水平(MM)	200	V

推荐工作范围

参数	符号	工作条件	推荐值	单位
电源电压	VIN	正常工作	0~36	V
工作温度	T _{OP}	正常工作	-40~85	$^{\circ}$

- 注 1: 最大极限值是指超出该工作范围芯片可能会损坏。推荐工作范围是指在该范围内芯片工作正常,但不完全保证满足个别性能指标。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电气参数规范。对于未给定的上下限参数,该规范不予保证其精度,但其典型值合理反映了器件性能。
- 注 2: 环境温度升高最大功耗会减小,这是由 T_{JMAX} , Θ_{JA} 和环境温度 T_A 所决定的。最大允许功耗为 $P_{DMAX}=(T_{JMAX}-T_A)/\Theta_{JA}$ 或是极限参数范围给出的数字中比较低的那个值。

电气参数(注3)

(无特殊说明, Ta=25℃, VIN=12V)

符号	参数	测试条件	最小值	典型值	最大值	单位
输入电压				•	•	
V _{IN}	输入电压		5		36	V
I _{OP}	工作电流	V _{IN} =V _{CS} =12V	100	150	250	uA
V_{UVLO}	欠压保护	V _{IN} 上升		4.2		V
$V_{\text{UVLO,HYS}}$	欠压保护滞回	V _{IN} 下降		4.0		V
电流采样						
V _{CS}	平均采样电压	V _{IN} -V _{CS}	97	100	103	mV
V _{CS,HYS}	采样电压迟滞			±15		%
I _{CS}	CS 引脚输入电流	V _{IN} -V _{CS} =50mV		8		μA
工作频率			-	•	•	·
F _{SW}	最大工作频率				1	MHz
DIM 输入						
V_{DIM}	DIM 浮空电压	DIM 浮空		5		V
R _{DIM}	DIM 上拉电阻			200		ΚΩ
I _{DIM_L}	DIM 接地漏电流	V _{DIM} =0		25		μA
V_{DIM_H}	DIM 输入高电平		2.5			V
V_{DIM_L}	DIM 输入低电平				0.3	V
DIM 调光						
V_{DIM_DC}	模拟调光电压范围		0.5		2.5	V
f_{DIM}	最大 PWM 调光频率	f _{osc} =500KHz			50	KHz
D _{PWM_LF}	低频 PWM 调光占空比	f _{DIM} =100Hz	0.05%		100%	
D_{PWM_HF}	高频 PWM 调光占空比	f _{DIM} =20kHz	10%		100%	
功率管						
RS_W	SW 导通电阻			0.35		Ω
I _{SW_MEAN}	SW 连续电流				1.2	Α
I _{LEAK}	SW 漏电流			0.5	5	μΑ
温度控制						
T _{ST}	温度补偿起始温度			130		$^{\circ}\mathbb{C}$

注 3: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部框图

应用说明

TP8005 和电感 L1, 电流采样电阻 R_{CS}共同组成一个自振荡的电感电流连续模式的的降压型 LED 恒流驱动器。

工作原理

VIN 上电时,电感 L1 和电阻 R_{CS} 的初始电流为零,此时 VIN 与 CS 之间没有电压差,CS 比较器输出为高电平,这个信号传递到 PWM 比较器的负输入端,PWM 比较器的输出为高电平,芯片内部功率管导通,SW 引脚下拉为低电平,此时电流从 VIN 输入,经过电阻采样电阻 R_{CS} 、LED、电感 L1 和内部功率管流到 GND,电流上升斜率由 VIN、L1 和 LED 压降共同决定,在 R_{CS} 上产生一个压降 V_{RCS} ,当 V_{RCS} >115mV,CS 比较器的输出转变为低电平,芯片内部功率管关断,电流经过电感 L1、肖特基二极管 D5、 R_{CS} 和 LED 再到回到电感 L1,电流在 R_{CS} 上产生下降电压斜坡,当 V_{RCS} <85mV,CS 比较器的输出转换为高电平,芯片内部功率管重新导通。TP8005 会周期性地重复这一过程。所以 LED 上的平均电流为

$$I_{OUT} = \frac{85\text{mV} + 115\text{mV}}{2 \times R_{CS}} = \frac{100\text{mV}}{R_{CS}}$$

高端电流采样结构使得外部元器件数量很少,采用 1%精度的采样电阻, LED 输出电流精度可以控制在±3%以内。 TP8005 可以在 DIM 管脚输入 PWM 信号进行 PWM 调 光, DIM 管脚电压低于 0.3V 关断 LED 电流, 高于 2.5V 全部打开 LED 电流, PWM 调光的频率范围从 100Hz 到 20KHz 以上。当 PWM 信号的高电平在 0.5V 到 2.5V 之间,可以进行 PWM 调光,具体的应用细节详见后面说明。

DIM 脚也可以通过外加直流电压来实现模拟调光。最大的LED电流由采样电阻R_{CS}决定。直流电压(V_{DIM})的有效的调光范围是0.5V到2.5V。当直流电压(V_{DIM})高于2.5V,输出LED电流保持恒定,并由采样电阻R_{CS}设定。LED电流还可以通过DIM到地之间接一个电阻到进行调节,内部有一个上拉电阻(典型200K欧姆)接在内部稳压电压5V上,DIM脚的电压由内部和外部的电阻分压决定。

DIM脚在正常工作时可以浮空。当加在DIM上的电压低于0.3V时,芯片内部的功率管关断,LED电流也降为零。

LED 平均电流设定

LED的平均电流由连接在VIN和CS两端的电阻R_{CS}决定:

$$I_{OUT} = \frac{100mV}{R_{CS}} (R_{CS} \ge 0.082\Omega)$$

上述等式成立的前提是DIM端浮空或外加DIM端电压大于2.5V并且小于5V。实际上,R_{CS}是设定了LED的最大输出电流,通过设定DIM的电压,LED的实际输出电流能够调小到任意值。

模拟调光

DIM脚可以外加一个直流电压(V_{DIM})来进行模拟调光,以调整LED的输出电流,如下图所示:

此时输出电流可以由以下两式表示:

$$I_{OUT} = \frac{100 \text{mV}}{R_{CS}} \times \frac{V_{DIM}}{2.5 \text{V}} \quad (0.5 \text{V} \le V_{DIM} \le 2.5 \text{V})$$

$$I_{OUT} = \frac{100 \text{mV}}{R_{CS}}$$
 (2.5V \le V_DIM \le 5.0V)

PWM 调光

TP8005 可以在 DIM 脚输入 PWM 信号来进行 PWM 调光,以调整 LED 的输出电流,如下图所示:

输出电流与 PWM 信号占空比成正比,输出平均电流可以由以下两式表示:

$$I_{OUT} = \frac{100mV}{R_{CS}} \times D \text{ (0\leqD\leq100$\%, 2.5V$\leqV_{PULSE}\leq5V$)}$$

$$I_{OUT} = \frac{{}_{100MV}}{{}_{R_{CS}}} \times D \times \frac{{}_{VPULSE}}{{}_{2.5V}} (0 \le D \le 100\%, \, 0.5 \le V_{PULSE} \le 2.5V)$$

其中, V_{PULSE} 为 PWM 信号的高电平幅值。

通过PWM调光 LED的输出电流可以从0%到100%变化。LED的亮度是由PWM信号的占空比所决定。例如PWM信号的占空比为25%,则LED的输出平均电流为所设定电流的25%。建议设置PWM调光频率在100Hz以上,以避免人的眼睛可以看到LED的闪烁。PWM调光比模拟调光的优势在于不改变LED的色温。TP8005调光频率最高可达到20kHz以上。

自动温度补偿控制

TP8005 内部集成了自动温度补偿控制电路,当芯片内部的温度超过 130℃时,LED 输出电流会随着温度的上升而逐渐减小,并最终稳定在某一电流值。这就避免了传统过温保护所引起的 LED 低频闪烁问题。当芯片内部的温度上升到 150℃时,LED 输出电流减小至零。

关断模式

通过在DIM端接入0.3V以下的电压,实现系统关断,此时芯片处于待机模式。通常情况下,芯片的待机电流典型值为80µA左右。

软启动模式

通过在DIM脚外接入一个电容,使得系统启动时DIM脚的电压缓慢上升,这样LED的输出电流也缓慢上升,从而实现软启动。通常情况下,软启动时间和外接电容的大小关系大约150us/nF。

LED 开路保护

TP8005 具有输出开路保护功能,负载一旦开路,芯片将被设置于安全的低功耗模式,负载重新连接后则进入正常的工作状态。

电感选择

TP8005 的 LED 输出电流在 0~1.2A 的范围内, 推荐使用的电感参数范围为 47uH~100uH。电感的饱和电流必须要比 LED 输出电流高 30%到 50%。

二极管选择

为了保证最大的效率以及性能 二极管(D5)应选择快速恢复、低正向压降、低寄生电容、低漏电的肖特基二极管。电流能力以及耐压视具体的应用而定,但应保持 30%的余量,有助于稳定可靠的工作。另外值得注意的一点是应考虑温度高于 85℃时肖特基的反向漏电流。过高的漏电会导致系统功耗的增加。AC12V 输入整流二极管(D1~D4)一定要选用低压降的肖特基二极管,以降低自身功率损耗

降低输出纹波

如果需要减少 LED 输出电流纹波, 可以在 LED 输出的两

端并联一个电容来实现。1uF 的输出电容可以使 LED 输出电流纹波减少大约 1/3。适当的增大输出电容可以抑制更多的纹波。需要注意的是输出电容不会影响系统的工作频率和效率。但是会影响系统启动延时以及 PWM 调光频率。

散热考虑

当系统工作的环境温度较高时,以及驱动大电流负载时,必须要注意避免系统达到功率极限。加大芯片引脚焊接处的敷铜面积有利于芯片散热。在实际应用中,要求达到每 25mm²的 PCB 大约需要 1oz 敷铜的电流密度以有利于散热。需要注意的是选择了不恰当的电感,以及开关切换点存在过大的寄生电容会导致系统效率的降低。

负载电流的热补偿

高亮度 LED 有时需要提供输出电流温度补偿以保证可靠稳定的工作,TP8005 可以通过 DIM 脚外接热敏电阻 (NTC)或者负温度系数的二极管到 LED 附近,检测 LED

灯的温度从而调整 LED 负载的输出电流。

PCB 布局

合理的 PCB 布局 对于最大程度保证系统稳定性以及低噪声来说很重要。使用多层 PCB 板是避免噪声干扰的一种很有效的办法。为了有效减小电流回路的噪声,输入旁路电容应当另行接地。

SW脚

SW 脚处在快速开关的节点,所以 PCB 走线应当尽可能的短,另外芯片的 GND 脚应保持尽量良好的接地。

旁路电容、电感、电流采样电阻

PCB 布局中,电感尽量远离芯片,以减小电感对芯片的干扰。如果 PCB 大小允许,尽量多铺铜,并连接到电源的 GND 或 VIN 脚,以吸收电感产生的干扰。电流采样电阻 R_{CS} 两端走线越短越好,以减少走线的寄生电感,保证电流采样的精度。旁路电容尽可能靠近芯片的 VIN 脚,并做到走线短而粗。

封装形式 <u>SOT89-5L</u>

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Syllibol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500TYP		0.060TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	

注明:本公司对本文档有修改的权利,本公司对本文档的修改恕不另行通知。