Introduction to statistics

Pirommas Techitnutsarut, Ph.D. Data Scientist

12 July 2023

Agenda

- **01** Overview
- 02 Illusions in statistics
- **03** Descriptive Statistics
- **04** Inferential Statistics

Overview

What is STATISTICS?

STATISTICS is the science of collecting, organizing, and interpreting numerical facts, which we call data.

Type of Statistics

Descriptive statistics

Collecting, Summarizing, and Presenting data

i.e. 90% satisfaction of all customers

Inferential statistics

Drawing conclusions about a population based only on sample data

i.e. 90% satisfaction of a sample of 6 customers -> 90% satisfaction of all customers

Data analysis process

Data collection and preparation

Collect data

Prepare codebook

Set up structure of data

Enter data

Screen data for errors

Exploration of data

Descriptive Statistics

Graphs

Analysis

Explore relationship between variables

Compare groups

Data matrix

- Data matrix
 - Case/Observation (แถว, กรณี, บุคคล) Variable (คอลัมน์, ตัวแปร)
- Case/Observation คือบุคคล,สัตว์หรือสิ่งของใน การศึกษา
- Variable คือลักษณะที่น่าสนใจ เช่น น้ำหนัก ส่วนสูง
- ข้อมูลดิบที่เป็นลักษณะนี้สามารถนำมาวิเคราะห์ได้ง่าย

→	variable			
ก้	รายได๋	จังหวัด	ลำดับ	
00	1200	กรุงเทพมหานคร	1	
00	2400	กรุงเทพมหานคร	2	
00	2800	กรุงเทพมหานคร	3	
00	4200	นนทบุรี	4	
00	3200	นนทบุรี	5	
00	1900	สมุทรปราการ	6	
00	1750	สมุทรปราการ	7	
00	2000	สมุทรปราการ	8	
00	3500	นนทบุรี	9	
00	5000	กรุงเทพมหานคร	10	
	4200 3200 1900 1750 2000 3500	นนทบุรี นนทบุรี สมุทรปราการ สมุทรปราการ สมุทรปราการ นนทบุรี	4 5 6 7 8 9	

Example

Name	Dept	Project	1/7/2013	1/14/2013	1/21/2013	1/28/2013	2/4/2013	02/11/201
Tom	IT	Budget	10	15	17	35	27	18
Dick	IT	Budget	15	18	21	18	28	13
Harry	Acct	Budget	7	12	5	33	14	9

	Name	Dept	Project	Date	Hours
	Tom	IT	Budget	02/11/13	18
	Tom	IT	Budget	1/7/2013	10
	Tom	IT	Budget	1/14/2013	15
	Tom	IT	Budget	1/21/2013	17
	Tom	IT	Budget	1/28/2013	35
	Tom	IT	Budget	2/4/2013	27
	Dick	IT	Budget	02/11/13	13
	Dick	IT	Budget	1/7/2013	15
2	Dick	IT	Budget	1/14/2013	18
	Dick	IT	Budget	1/21/2013	21
	Dick	IT	Budget	1/28/2013	18
	Dick	IT	Budget	2/4/2013	28
	Harry	Acct	Budget	02/11/13	9
	Harry	Acct	Budget	1/7/2013	7
	Harry	Acct	Budget	1/14/2013	12
	Harry	Acct	Budget	1/21/2013	5
	Harry	Acct	Budget	1/28/2013	33
	Harry	Acct	Budget	2/4/2013	14

Types of Variables/Data

Qualitative

Quantitative

Nominal

- Counts by category
- Binary (Yes/No)
- No meaning between categories

Marital status, Type of car owned

Ordinal

- Rank
- Scales
- Space between ranks is subjective

Service quality rating, Student letter grades

Interval

- Zero is just another value - doesn't mean "absence of"

Temperature in Fahrenheit, Standardized exam score

Ratio

Zero means absence of"

Height, Age, Weekly Food Spending

Meaningful Zero

ข้อมูลที่เป็น Ratio คือ ข้อมูลที่มีค่าเท่ากับศูนย์จะมีความหมายเท่ากับศูนย์จริงหรือไม่มีปริมาณจริง (Meaningful Zero)

- ส่วนสูง เท่ากับศูนย์ คือ ไม่มีความสูงเลย
- น้าหนัก เท่ากับศูนย์ คือ ไม่มีน้ำหนักเลย
- ยอดขายเท่ากับศูนย์ คือ ไม่มียอดขายเลย

แต่ข้อมูลประเภทอื่น ๆเช่น Nominal Ordinal หรือ Interval ข้อมูลที่มีค่าเท่ากับศูนย์จะมิได้หมายความว่าสิ่งนั้นจะเป็นศูนย์หรือไม่มี ค่าจริง

- Nominal Data: การกรอกข้อมูลกำหนดให้เพศชายแทนด้วย O ดังนั้น ศูนย์ ในที่นี้มิได้หมายความว่าไม่มีเพศ
- Ordinal Data: การมีขนาดไข่ไก่เบอร์ 0 นั้นไม่ได้มีความหมายว่าไม่มีขนาด
- Interval Data: อุณหภูมิ เท่ากับ ศูนย์ มิได้หมายความว่า ไม่มีอุณหภูมิ

Time out to think

- แบบสำรวจความพึงพอใจสอบถามว่า "คุณชอบทานไอศกรีมรสอะไร"
- รสชาติของไอศกรีมเป็น nominal
- แต่สมมุติว่านักวิจัยนำข้อมูลเข้าระบบแล้วใช้ตัวเลขแทนรสชาติของไอศกรีม เช่น 1 =
 vanilla, 2 = chocolate, 3 = strawberry
- ข้อมูลรสชาติไอศกรีมจะเปลี่ยนจาก nominal เป็น ordinal หรือไม่?

02

Illusions in statistics

BAYESIAN TRAP

Bayesian Trap - เป็นการตั้งข้อสรุปผิดพลาดที่เกิดจากการที่ไม่ได้คำนึงถึงจำนวนประชากร

SIMPSON'S PARADOX

Simpson's paradox is a phenomenon in probability and statistics, in which a trend appears in several different groups of data but disappears or reverses when these groups are combined.

LABELS ON Y-AXIS

ไม่ควรเลื่อนแกนในกรณีข้อมูลเป็นแบบที่มี Meaningful Zero

Same Data, Different Y-Axis

CORRELATION & CAUSATION

REGRESSION TO THE MEAN

A statistical phenomenon that can make natural variation in repeated data look like real change

Example: Israeli Air Force Cadet

Conclusion: Criticism is best for improvement.

This is wrong because having a good flight may also depends on luck and the pilot simply are not lucky on the second flight

Descriptive Statistics

Methods in Descriptive Statistics

Tabular Method

Graphical Method

Raw Data

Pivoted	
Table	

	Meal	Price		
\$10-19	\$20-29	\$30-39	\$40-49	Total
42	40	2	0	84
34	64	46	6	150
2	14	28	22	66
78	118	76	28	300
	42 34 2	\$10-19 \$20-29 42 40 34 64 2 14	42 40 2 34 64 46 2 14 28	\$10-19 \$20-29 \$30-39 \$40-49 42 40 2 0 34 64 46 6 2 14 28 22

Why Statistics? Part I - Descriptive

ตารางด้านล่างเหมาะกับใช้ตอบคำถามใดมากกว่ากัน

Emp_ld	satisfaction_level	last_evaluation	Department	salary
IND02438	38%	53%	sales	low
IND28133	80%	86%	sales	medium
IND07164	11%	88%	sales	medium
IND30478	72%	87%	sales	low
IND24003	37%	52%	sales	low
IND08609	41%	50%	sales	low
IND14345	10%	77%	sales	low
IND16300	92%	85%	sales	low
IND27336	89%	100%	sales	low
IND41409	42%	53%	sales	low
IND01460	45%	54%	sales	low
IND07665	11%	81%	sales	low
IND13556	84%	92%	sales	low
IND20559	41%	55%	sales	low

1. พนักงานแต่ละคนได้รับเงินเดือนเหมาะสมกับการประเมิน หรือไม่

คำถามรายคน

2. แผนกไหนที่มีผลการประเมินต่ำสุด

คำถามรายกลุ่ม

Why Statistics? Part I - Descriptive

สามารถทำการจัดระเบียบข้อมูลเพื่อการวิเคราะห์ภาพรวมได้ดีขึ้น

Row Labels 🔻	Average of satisfaction_level	Average of last_evaluation
accounting	49%	72%
hr	49%	69%
IT	50%	73%
management	49%	75%
marketing	52%	71%
product_mng	53%	72%
RandD	51%	73%
sales	51%	71%
support	51%	73%
technical	50%	73%
Grand Total	51%	72%

มีสอง concept ใหญ่ๆในการสรุปข้อมูลในลักษณะนี้

- 1. Group By แบ่งกลุ่มข้อมูลแยกโดยอะไร
- 2. Aggregate ใช้วิธีไหนในการสรุปตัวเลข

GROUP BY - Department Aggregate Function - Average

Quantitative

ข้อมูลเชิงปริมาณ

Quantitative

ลำ ดับ	จังหวัด	รายได้
1	กรุงเทพมหานคร	12000
2	กรุงเทพมหานคร	24000
3	กรุงเทพมหานคร	28000
4	นนทบุรี	42000
5	นนทบุรี	32000
6	สมุทรปราการ	19000
7	สมุทรปราการ	17500
8	สมุทรปราการ	20000
9	นนทบุรี	35000
10	กรุงเทพมหานคร	50000

ค่ากลาง
ค่าสูงสุด - ต่ำสุด
การกระจายตัว
เปรียบเทียบตำแหน่ง

Measures of Central Tendency

การวัดแนวโน้มเข้าสู่ส่วนกลาง (Measures of central tendency)

เป็นระเบียบวิธีทางสถิติในการหาค่าเพียงค่าเดียวที่จะใช้เป็นตัวแทนของข้อมูลทั้งชุด ค่าที่หาได้นี้จะทำให้สามารถ ทราบถึงลักษณะของข้อมูลทั้งหมดที่เก็บรวบรวมมาได้ ค่าที่หาได้นี้จะเป็นค่ากลาง ๆ เรียกว่า ค่ากลาง

การวัดแนวโน้มเข้าสู่ส่วนกลางมีอยู่หลายวิธีด้วยกัน ที่นิยมกันมาก ได้แก่

- **1** ค่าเฉลี่ยเลขคณิต (Mean)
- 2 มัธยฐาน (Median)
- **3** ฐานนิยม (Mode)

Mean

ค่าเฉลี่ยเลขคณิต หาได้จากนำข้อมูลมารวมกัน แล้วหารด้วยจำนวนข้อมูลทั้งหมด

Median

ค่ามัธยฐานคือค่าในตำแหน่งที่แบ่งข้อมูลออกเป็นสองส่วนเท่า ๆกัน คือ มากกว่ามัธยฐาน 50% น้อยกว่ามัธยฐาน 50% หรือคือค่า ในตำแหน่งกึ่งกลางของการแจกแจง ดังนั้นค่ามัธยฐานก็คือ ค่าของข้อมูล ณ ตำแหน่งที่ (n+1)/2 เมื่อเรียงล้าดับข้อมูลแล้ว

Example

Mode

ฐานนิยมคือ ข้อมูลที่มีการซ้ำซ้อนกันมากที่สุดในชุดข้อมูลนั้น ๆ

Example

Mean vs Median

Q: When to use Mean & Median?

A: Depends on your application. Simple rule of thumb

- 1. If the distribution is mostly symmetrical and there are **no outliers**, use mean.
- 2. If the distribution is either skewed or there are **outliers present**, use median.

Measure of Dispersion/variability

การพิจารณาหรือสรุปลักษณะของข้อมูลโดยใช้ค่ากลางหรือค่าเฉลี่ยเพียงอย่างเดียว อาจทำให้ไม่ทราบถึงลักษณะ ของข้อมูลได้ชัดเจนเนื่องจากข้อมูลที่มีค่ากลางเท่ากันแต่ลักษณะของข้อมูลอาจจะต่างกันนั่นคือมีการกระจายของข้อมูลไม่ เหมือนกัน

ดังนั้นในการเปรียบเทียบข้อมูลหลายๆชุด ควรจะพิจารณา ค่ากลาง และ การกระจาย ของข้อมูลควบคู่กันไป การวัดการกระจายที่นิยมใช้ในการศึกษา ได้แก่

- **1** พิสัย (Range)
- 2 ส่วนเบี่ยงเบนมาตรฐาน

- 3 สัมประสิทธิ์ความแปรผัน
- 4 ส่วนเบี่ยงเบนควอไทล์

Example

ข้อมูลใดมีการกระจายมากกว่ากัน ?

Mode = 14.1, Median = 15 และ Mean = 15

Range

การหาค่าพิสัย (Range) ของข้อมูลหาได้โดยนำ **ข้อมูลที่มีค่าสูงที่สุด** ลบกับ **ข้อมูลที่มีค่าต่ำที่สุด** เพื่อให้ได้ค่าที่เป็นช่วง ของการกระจาย ซึ่งสามารถบอกถึงความกว้างของข้อมูลชุดนั้น ๆ

Standard Deviation: SD

ค่าส่วนเบี่ยงเบนมาตรฐานเป็นค่าที่ใช้วัดการกระจายของข้อมูลได้ดีกว่า เพราะไม่ได้ขึ้นอยู่กับ **ค่าสูงสุดและต่ำสุด** ของ ข้อมูลในกลุ่มเท่านั้น

- ถ้าข้อมูลมีค่าใกล้เคียงกับค่าเฉลี่ย ค่าเบี่ยงเบนมาตรฐานจะน้อย
- ถ้าข้อมูลมีค่าแตกต่างไปจากค่าเฉลี่ยมาก ค่าเบี่ยงเบนมาตรฐานจะมีค่ามาก

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

Population

$$S.D. = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Sample

Variance: Var

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$S.D.^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Population

Sample

Example

หาค่าการกระจายของข้อมูลกลุ่มตัวอย่างต่อไปนี้

 χ 0 24.1 5.6 14.1 17.2 8.7 19.2 14.1 27.7 15 19.3 ดังนั้น จำนวนข้อมูล n = 11 n-1=10 **ค่าเฉลี่ย Mean = 15** ผลรวมของ $(x - \bar{x})^2$ = 639.74

ส่วนเบี่ยงเบนมาตรฐาน **S.D.** = $\sqrt{639.74/10}$ = 8.00

Example

S.D. = 7.25 cm mean = 163 cm

สัมประสิทธิ์ความแปรผัน

x	$x-\bar{x}$	$(x-\bar{x})^2$
0	-15	225
24.1	9.1	82.81
5.6	-9.4	88.36
14.1	-0.9	0.81
17.2	2.2	4.84
8.7	-6.3	39.69
19.2	4.2	17.64
14.1	-0.9	0.81
27.7	12.7	161.29
15	0	0
19.3	4.3	18.49

สัมประสิทธิ์ความแปรผัน
$$=rac{S.D.}{\overline{x}}$$

ค่าเฉลี่ย Mean = 15

ส่วนเบี่ยงเบนมาตรฐาน S.D. =
$$\sqrt{639.74/10}$$
 = 8.00

สัมประสิทธิ์ความแปรผัน = 8/15 = 0.53

ใช้เปรียบเทียบระหว่างแต่ละกลุ่มตัวอย่างได้ เช่น น้ำหนัก vs ส่วนสูง

การวัดตำแหน่งการเปรียบเทียบ

- เป็นการบอกให้ทราบว่า ค่าที่ได้มานั้นมีตำแหน่งอยู่ที่ใดหรือส่วนใดของค่าทั้งหมด
- เป็นการแสดงให้เห็น ความสัมพันธ์ระหว่างค่าที่ได้กับข้อมูลทั้งหมด

เช่น ครูผู้สอนต้องการแสดงให้เห็นว่าส่วนสูงของนักเรียน ก. มีความสัมพันธ์กับส่วนสูงของเพื่อนในชั้นอย่างไร จึงต้องใช้การวัด ตำแหน่งการเปรียบเทียบ ได้แก่

- **1** ควอไทล์ (Quartiles)
- 2 เดไซล์ (Deciles)
- **3** เปอร์เซ็นต์ไทล์ (Percentile)

การวัดตำแหน่งการเปรียบเทียบ

Quartiles

ควอไทล์เป็นการแบ่งข้อมูลออกเป็น 4 ส่วนเท่าๆ กันส่วนละ 25% โดยเรียงลำดับข้อมูลจากน้อยไปมาก ดังนั้น

- ค่าควอไทล์ 1 (Q1 หมายถึงค่าของข้อมูลที่มีจำนวนข้อมูลที่มีค่าต่ำกว่า Q1 อยู่ 25%
- ค่าควอไทล์ 2 (Q2 หมายถึงค่าของข้อมูลที่มีจำนวนข้อมูลที่มีค่าต่ำกว่า Q2 อยู่ 50% และมีจำนวน ข้อมูลที่มีค่ามากกว่า Q2 อยู่ 50%
- ค่าควอไทล์ 3 (Q3 หมายถึงค่าของข้อมูลที่มีจำนวนข้อมูลที่มีค่าต่ำกว่า Q3 อยู่ 75% และมีจำนวน
 ข้อมูลที่มีค่ามากกว่า Q3 อยู่ 25%

Quartiles & Box plot

Interquartile Range (IQR)

Definition - Sample interquartile range. The sample interquartile range of a variable X is the difference between the third and the first sample quartiles.

$$IQR = Q_3 - Q_1$$

Summary of Quantitative Data

Graphical Approach

What do you want to tell from your data?

Comparison

Relationship

Composition

Distribution

1. Bar Chart / Column Chart

• เปรียบเทียบข้อมูลในแต่ละหมวดหมู่

2. Stacked Column Chart

• เปรียบเทียบข้อมูลในแต่ละหมวดหมู่ รวมถึงองค์ประกอบ

https://eazybi.com/blog/data-visualization-and-chart-types#:~:text=Bar%20charts%20are%20good%20for,never%20for%20comparisons%20or%20distributions.

Distribution

4. Line Chart

• เปรียบเทียบแนวโน้มตามช่วงเวลา

US music sales by format (inflation-adjusted)
IN BILLIONS (USD)

SOURCE: Recording Industry Association of America

http://www.storytellingwithdata.com/blog/2020/4/9/what-is-an-area-graph

1. Scatter Chart

• ความสัมพันธ์ระหว่างตัวแปร

EU referendum results by demographics

Remain vote % by counting area

Economist.com

2. Bubble Chart

• ความสัมพันธ์ระหว่างตัวแปร >2 ตัวแปร

https://www.helicalinsight.com/bubble-chart/

3. Heatmap Chart

• หารูปแบบความสัมพันธ์ของข้อมูล การกระจุกหรือการกระจายตัว

Distribution

4. Crosstab Chart

• ตารางเพื่อแสดงความสัมพันธ์ระหว่างตัวแปร

Column % Column Comparisons	Under 25	25 to 39	40 or more	Male		Female	
				Under \$45,000	\$45,000 or more	Under \$45,000	\$45,000 or more
Coca-Cola	53% c	55% c	35%	45%	46%	55%	38%
Diet Coke	6%	13%	13%	9%	7%	11%	15%
Coke Zero	16%	19%	20%	21%	15%	18%	23%
Pepsi	6%	7%	10%	15%	10%	0%	8%
Diet Pepsi	1%	0%	5%	3%	0%	3%	5%
Pepsi Max	17% b	6%	15%	6%	20%	13%	10%
Dislike all cola	1%	0%	1%	0%	1%	0%	1%
Don't care	0%	0%	2%	0%	1%	0%	1%
NET	100%	100%	100%	100%	100%	100%	100%
Column n	83	69	175	33	114	38	105
Column Names	Α	В	С	Α	В	Α	В

https://www.displayr.com/what-is-a-crosstab/

1. Pie Chart

- แสดงองค์ประกอบของทั้งหมด
- รวมเป็น 1 หรือ 100%

The four major OTT streaming services account for nearly 80% of viewing time for OTT households

2. Tree Map Chart

• แสดงองค์ประกอบและลำดับขั้นของข้อมูล

Florida Counties

United States presidential election, 2016

98% 88% 70% 60% 50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 60% 90%

Trump

Clinton

Percent difference:

Mixed Chart

Treemap + Bar

World GDP Through Time

3. 100% Stacked Bar Chart

1. Histogram Chart

• แสดงการกระจายตัวของข้อมูล

1. Histogram Chart

2. Box Chart

แสดงการกระจายตัวของข้อมูล

https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xMDEzNjA1NC03MWEyNzRiNGYwNDM1NzA3LmpwZz9pbWFnZU1vZ3lyL2F1dG8tb3JpZW50L3N0cmlwfGltYWdlVmlldzlvMi93LzUyNC9mb3JtYXQvd2VicA?x-oss-process=image/format,png

Excel Workshop

Statistics

EXCEL for Statistics

- เปิดไฟล์ Excel "workshopexcel.xlsx"
- คำนวนค่าสถิติของคอลัมน์ Income:

```
Mean:
Standard Deviation (SD):
Q1:
Median:
Q3:
IQR:
Minimum:
Maximum:
Count:
```


Qualitative

ข้อมูลเชิงคุณภาพ

Qualitative

ลำ ดับ	จังหวัด	รายได้		
1	กรุงเทพมหานคร	12000		
2	กรุงเทพมหานคร	24000		
3	กรุงเทพมหานคร	28000		
4	นนทบุรี	42000		
5	นนทบุรี	32000		
6	สมุทรปราการ	19000		
7	สมุทรปราการ	17500		
8	สมุทรปราการ	20000		
9	นนทบุรี	35000		
10	กรุงเทพมหานคร	50000		

แต่ละจังหวัดมีกี่คน

จังหวัดไหนมีประชากร มากที่สุด / น้อยที่สุด

Analysis relationship of data variables

Relationship

- หมวดหมู่ vs ตัวเลข
 - Correlation Analysis
- หมวดหมู่ vs หมวดหมู่
 - Crosstab / Contingency Table
- ตัวเลข vs ตัวเลข
 - Correlation Analysis

Group and Aggregate

- Group ตัวแปรประเภทหมวดหมู่
- Aggregate ตัวแปรประเภทตัวเลข โดยใช้ ค่ากลาง เช่น ค่าเฉลี่ย มัธยฐาน หรือ การกระจายตัว เช่น S.D.

ลำ ดับ	จังหวัด	รายได้
1	กรุงเทพมหานคร	12000
2	กรุงเทพมหานคร	24000
3	กรุงเทพมหานคร	28000
4	นนทบุรี	42000
5	นนทบุรี	32000
6	สมุทรปราการ	19000
7	สมุทรปราการ	17500
8	สมุทรปราการ	20000
9	นนทบุรี	35000
10	กรุงเทพมหานคร	50000

จังหวัด	รายได้เฉลี่ย	S.D.
กรุงเทพมหานคร	28500	15864.0 1
นนทบุรี	36333.33	5131.60
สมุทรปราการ	18833.33	1258.30
Grand Total	27950	11889.42

Excel Workshop

Pivot Table

- 1. ทำ sheet1 ให้เป็น Table
- 2. คลิก Insert -> Pivot Table
- 3. เลือกว่า New Worksheet หรือ
 Existed Worksheet คลิก OK

- 4. ลากตัวแปรหมวดหมู่ไปใส่ Rows
- 5. ลากตัวแปรตัวเลขไปใส่ Values
- 6. ตรง Values จะแสดงเป็น Sum of ถ้าต้องการเปลี่ยน

ให้คลิกขวา Value Field Settings แล้วเปลี่ยนได้

Excel Workshop

Correlation Analysis

- เลือกคอลัมน์ที่เป็นข้อมูลเชิงปริมาณ
 คอลัมน์
- 2. คลิก Insert -> Insert Scatter Chart

3. เลือกกราฟที่โผล่มา คลิก + เลือก

Trendline -> Linear

- 4. จะมีเส้นตรงปรากฏขึ้นมา คลิกขวาที่ เส้นเลือก Format Trendline
- เลือก Display R-squared value on chart จะได้ค่า R-sqaured

04

Inferential Statistics

Why Statistics? Part II - Inferential

It's not always possible to have all the data. Hence, we may try infer something about data we don't have using the data we have.

Inferential statistics

Drawing conclusions about a population based only on sample data

i.e. 90% satisfaction of a sample of 6 customers -> 90% satisfaction of all customers

PROBLEMS WITH POINT ESTIMATION

Different sampling results in different estimation – The smaller the sample size, the less reliable it is

INFERENTIAL STATISTICS

Description	Population Parameter
Mean	μ
Variance	σ^2
Standard Deviation	σ
Size	N
Correlation	ρ
Proportion	p

Description	Sample statistic
Mean	\bar{x}
Variance	s^2
Standard Deviation	S
Size	n
Correlation	r
Proportion	\widehat{p}

Inferential Statistical

Parameter estimation

Using sample data to estimate the parameters of a distribution

How to reliably estimate the population mean or proportion?

e.g., Estimate the population mean weight using the sample mean weight

Hypothesis testing

How to use a random sample to judge if it is evidence that supports or not the hypothesis

Is the population mean or proportion equal to what we believe it is?

e.g., Test the claim that the population mean weight is 120 lbs.

PARAMETER ESTIMATION

Point Estimation

PARAMETER	STATISTIC		
Population Mean : μ	Sample Mean : \bar{x}		
Population Variance : σ^2	Sample Variance : s^2		Quantitative Data
Population Standard Deviation : σ	Sample Standard Deviation : s		(numerical)
Population Correlation : $ ho$	Sample Correlation : r		Categorical Data
Population Proportion : p	Sample Proportion : \widehat{p}		(Yes/No)

CONFIDENCE INTERVALS

Gives the range of "what the reasonable results could be?"
This is very helpful in the area of Risk Management so the organization can be prepared for the worse (yet probable) case possible.

Example:

- รัฐบาลขายล๊อตเตอรี่จะต้องเตรียมเงินไว้ให้ผู้ซื้อขึ้นรางวัลเท่าไหร่
- นักลงทุนต้องการประเมินว่าการลงทุนครั้งนี้จะมีความเสี่ยงที่จะเสียเงินไปเท่าไหร่
- บริษัทประกันคำนวณงบประมาณสำรอง

SAMPLING FOR PROPORTION

Suppose we take repeated random <u>sample of size n</u> where each observation can be one of the only two possible outcomes

The two outcomes is often regarded "success" and "failure". For example, in a poll the "success" could be the "yes" vote and a "failure" a "no" vote.

We have the estimate for the proportion,

$$\hat{p} = \frac{X}{n}$$

 \hat{p} – Estimated proportion

X — Number of "success"

n – Sample size

SAMPLING FOR PROPORTION

The sample proportion \hat{p} can be <u>approximated by a normal distribution</u> and the confidence interval is given by

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$$

$$\hat{p} = \text{Estimated proportion}$$
 $\hat{q} = 1 - \hat{p}$

Confidence	$oldsymbol{z}^*$		
0.90	1.64		
0.95	1.96	←	Sometimes replaced with 2
0.99	2.58		

- o The term $2\sqrt{\frac{\widehat{p}\cdot\widehat{q}}{n}}$ is called the <u>margin of error</u> which indicates how far of our estimate can be from the truth (within 95% chance). The bigger the sample size, the lower this margin will be
- This formula works well when $n \times \hat{p} > 10$ and $n \times \hat{q} > 10$

Example: Laptop Case

A campus of 1,000 students. A survey sample 50 students and ask whether they have a personal laptop. Suppose 15 people answered with "yes".

What would be the confident interval of the proportion of the 1,000 students that have a computer?

Point Estimate: $\hat{p} = \frac{15}{50}$

$$\hat{p} = \frac{15}{50}$$

Assumption check:

- ✓ The population size (1,000) > 10 times sample size (50)
- \checkmark The terms $n \times \hat{p} = 50 \times 0.3 = 15 > 10$ and $n \times \hat{q} = 50 \times 0.7 > 10$

Example: Laptop Case

95% Confidence Interval:

$$\hat{p} \pm 2\sqrt{\frac{\hat{p} \cdot \hat{q}}{n}} = 0.3 \pm 2 \times \sqrt{\frac{0.3 \times 0.7}{50}}$$
$$= 0.3 \pm 0.13$$

Conclusion:

With 95% probability, we may estimate $1,000 \times (0.3 \pm 0.13) = 300 \pm 130$ students to have a laptop.

SAMPLING FOR MEAN

The sample mean μ follows t-distribution with degree of freedom n and the 95% confidence interval is given by

$$\bar{x} \pm t_{n-1}^* \frac{s}{\sqrt{n}}$$

 $\bar{x} =$ Sample average

s = Sample standard deviation

Critical Values of *t**for 95% Confidence

n	t_{n-1}^*
20	2.09
100	1.98
500	1.96

Sample python command for n = 500

```
from scipy.stats import t
t.interval(0.95, 500-1, loc=0, scale=1)[1]
```

Example: Pricing a Buffet

Suppose a restaurant owner wants to start a buffet service. He wishes to estimate the average price per customer. He does a survey with 10,000 customers and it turns out the sample's average cost is \$500 and the Sample's standard deviation is \$100.

What would be the 95% confidence interval for the average cost for the whole population?

For large sample size, we can use the normal distribution to estimate as

$$\mu = \bar{x} \pm 2 \cdot \frac{s}{\sqrt{n}} = 500 \pm 2 \times \frac{100}{\sqrt{10,000}} = 500 \pm 200$$

This would be a decent estimate but not exactly, to get the right kind of estimation, we need to use t-distribution.

Example: Pricing a Buffet

Using t-distribution,

$$\mu = \bar{x} \pm t_{n-1}^* \cdot \frac{s}{\sqrt{n}} = 500 \pm 1.96 \times \frac{100}{\sqrt{10,000}}$$
$$= 500 \pm 196$$

```
from scipy.stats import t
t.interval(0.95, 1000-1, loc=0, scale=1)[1]
1.9623414611334487
```

The difference between t-distribution's and the z-distribution's estimate are very significant. So, in many cases, using the number 2 instead of 1.96 would give us a good enough answer.

Thank you

