Chapitre 3 : Systèmes d'équations linéaires

Université Ibn Tofail, Faculté des Sciences, Section MIP, Kenitra, 2023-2024

Définitions et exemples de système linéaire

Définitions

On appelle système linéaire à m équations et n inconnues $x_1, x_2, ..., x_n$ un système de la forme

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \cdot \\ & \cdot \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

les a_{ij} sont donnés dans le corps \mathbb{K} , qui est soit \mathbb{R} soit \mathbb{C} . On peut écrire matriciellement ce système par

$$AX = B$$
, où, $A = (a_{ij})_{1 \le i \le m, 1 \le j \le m}$,

Définitions et exemples de Systèmes linéaires

Définitions

$$X = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \cdot \\ \cdot \\ b_n \end{pmatrix}.$$

On va montrer que l'ensemble des solutions du système est soit vide, ou admet une unique solution ou admet une infinté de solutions.

Définitions

On appelle système homogène associé à (S) le système

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Un système est dit compatible s'il admet au moins une solution.

Exemple 1.

On cherche à résoudre dans \mathbb{R} , le système suivant.

$$\begin{cases} x + 4y - z = 0 & (L_1) \\ 2x + 6y - 4z = 2 & (L_2) \\ 2x - 4y + 5z = 3 & (L_3) \end{cases}$$

- Les transformations de Gauss consistent à effectuer des opérations élémentaires sur les ligne du système.
- On obtient des systèmes équivalents et qui sont plus simples à résoudre.
- Remplaçons L_2 par $L'_2 = L_2 2L_1$, puis
- L_3 par $L_3' = L_3 2L_1$.

Alors, on obtient le système suivant:

Exemple 1.

$$\begin{cases} x + 2y - z = 0 & (L_1) \\ -2y - 2z = 2 & (L'_2) \\ -12y + 7z = 3 & (L'_3) \end{cases}$$

Remplaçons L_3' par $L_3'' = L_3' - 6L_2'$, ce qui donne

$$\begin{cases} x + 2y - z = 0 & (L_1) \\ -2y - 2z = 2 & (L'_2) \\ 19z = -3 & (L''_3) \end{cases}$$

Exemple 1.

Par suite,

$$\begin{cases} x = \frac{3}{19} + \frac{88}{19} = \frac{91}{19} \\ y = -1 - \frac{3}{19} = -\frac{22}{19} \end{cases}$$
$$z = \frac{-3}{19}$$

Exemple 2.

On cherche à résoudre dans \mathbb{R} , le système suivant.

$$\begin{cases} 2x - y + z = 4 & (L_1) \\ 3x + 2y - 2z = 5 & (L_2) \\ -x + y - z = 2 & (L_3) \end{cases}$$

Tout d'abord, on permute les lignes L_1 et L_3 , Le système devient

$$\begin{cases} x - y + z = -2 & (L_1) \\ 3x + 2y - 2z = 5 & (L_2) \\ 2x - y + z = 4 & (L_3) \end{cases}$$

Exemple 2.

Effectuons les transformations suivantes $L_2' = L_2 - 3L_1$, puis $L_3' = L_3 - 2L_1$, on obtient le système suivant

$$\begin{cases} x - y + z = -2 & (L_1) \\ 5y - 5z = 11 & (L'_2) \\ y - z = 8 & (L'_3) \end{cases}$$

 $L''_3 = L'_3 - \frac{1}{5}L'_2$, ce qui donne

$$\begin{cases} x - y + z = -2 \\ 5y - 5z = 11 \\ 0 = \frac{29}{5} \end{cases}$$

Ce qui est impossible. Le système n'a pas de solution.

Exemple 3.

Déterminons toutes les solutions du système à quatre inconnues et à trois équations suivant.

$$\begin{cases} x - y + z + t = 2 \ (L_1) \\ 2x - y + 2z - t = 3 \ (L_2) \\ 3x + y + z - 2t = 5 \ (L_3) \end{cases}$$

En procédant de façon analogue aux exemples 1 et 2, nous pouvons éliminer les coefficients de la variable x des lignes L_2 et L_3 , ce qui donne

$$\begin{cases} x - y + z + t = 2 & (L_1) \\ y - 3t = -1 & (L'_2) \\ 2y - 2z - 5t = -1 & (L'_3) \end{cases}$$

Exemple 3.

Ensuite, nous remplaçons la ligne L'_3 par $L''_3 = L'_3 - 4L'_2$, on obtient

$$\begin{cases} x - y + z + t = 2 & (L_1) \\ y - 3t = -1 & (L'_2) \\ -2z + 7t = 3 & (L''_3) \end{cases}$$

Ainsi le système admet une infinité de solutions qui s'écrivent sous forme paramétrique, le paramétre étant la variable t:

$$\left\{ \begin{array}{l} x = -\frac{3}{2}t + \frac{5}{2} \\ y = 3t - 1 \\ z = \frac{7}{2}t + \frac{5}{2} \end{array} \right.$$

D'où,
$$S = \{(-\frac{3}{2}t + \frac{5}{2}, 3t - 1, \frac{7}{2}t + \frac{5}{2}), t \in \mathbb{R}\}.$$

Opérations élémentaires dans la méthode de pivot de Gauss

Remarques

- L'ensembles des solutions d'un système lynéaire reste inchangé si on procède aux opérations suivantes.
- La modification de l'ordre des opérations.
- La multiplication d'une ligne par une constante non nulle du corps \mathbb{K} .
- L'addition à une ligne donnée d'une combinaison linéaire des autre lignes.

Définition d'un système de Cramer

Un système de Cramer est un système linéaire dont la matrice associée est carrée et inversible.

Exemple.

$$\begin{cases} x + y - z = 1 \\ x - 3y + 3z = -2 \\ -x + 3y + z = 3 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 1 & -3 & 3 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}.$$

La matrice A associée au système est carrée et elle est inversible (det $A = \neq 0$) donc le systèe est de Cramer.

Théorème

Tout système de Cramer admet une solution unique.

Preuve.

On a AX = B, la matrice A étant inversible donc $A^{-1}.AX = A^{-1}B$, or $A^{-1}A = I_n$ ce qui donne $X = A^{-1}B$ qui est une solution unique.

Maintenant, on va voir comment résoudre un système de Cramer. Soit (S) le système AX = B, $A \in \mathcal{M}_n(K)$ et det $A \neq 0$.

- Soit $\Delta = \det A$.
- Pour toute inconnue x_i , pour $1 \le i \le n$, on note par Δ_{x_i} le déterminant d'ordre n obtenu, en remplaçant dans Δ la colonne des coefficients de x_i par B.

La solution unique su système est donnée par

$$x_i = \frac{\Delta_{x_i}}{\Delta}.$$

Exemple.

$$\begin{cases} 2x - 5y + 4z = -3\\ x - 2y + +z = 5\\ x - 4y + 6z = 10 \end{cases}$$

On a

$$\Delta = \det A = \begin{vmatrix} 2 & -5 & 4 \\ 1 & -2 & 1 \\ 3 & -4 & 6 \end{vmatrix} = 1, \quad \Delta_x = \begin{vmatrix} -3 & -5 & 4 \\ 5 & -2 & 1 \\ 10 & -4 & 6 \end{vmatrix} = 124.$$

$$\Delta_y = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 5 & 1 \\ 3 & 10 & 6 \end{vmatrix} = 75, \quad \Delta_z = \begin{vmatrix} 2 & -5 & -3 \\ 1 & -2 & 5 \\ 3 & -4 & 10 \end{vmatrix} = 31.$$

Exemple.

$$\begin{cases} x = \frac{\Delta_x}{\Delta} = \frac{124}{1} = 124 \\ y = \frac{\Delta_y}{\Delta} = \frac{75}{1} = 75 \\ z = \frac{\Delta_z}{\Delta} = \frac{31}{1} = 31. \end{cases}$$

On considère le système (S) AX = B et on suppose que (S) n'est pas de Cramer, alors deux cas se présentent:

(A est une matrice n'est pas carrée) ou (A est une matrice carrée et $\det A=0).$

Dans ces deux cas, on extrait du système (S) le plus grand système de Cramer (S_0) qui admettra une solution unique sur laquelle on se basera pour trouver une solution finale.

Exemple 1 (A est non carrée).

$$(S) \left\{ \begin{array}{l} 2x - 5y + 4z + t = -3 \\ x - 2y + z - t = 5 \\ x - 4y + 6z + 2t = 10 \end{array} \right. \Leftrightarrow \left(\begin{array}{l} 2 & 5 & 4 & 1 \\ 1 & -21 & 1 \\ 1 & -4 & 6 & 2 \end{array} \right) \left(\begin{array}{l} x \\ y \\ z \end{array} \right) = \left(\begin{array}{l} 3 \\ 5 \\ 10 \end{array} \right)$$

Exemple 1 (A est non carrée).

On cherche le plus grand déterminant non nul inclus dans A. On peut avoir plusieurs choix. Ainsi le

déterminant,
$$\Delta = \begin{vmatrix} 2 & -5 & 4 \\ 1 & -2 & 1 \\ 1 & -4 & 6 \end{vmatrix} = 1 \neq 0$$
, donc le système (S_0)

suivant

$$(S_0) \begin{cases} 2x - 5y + 4z = -3 - t \\ x - 2y + z = 5 + t \\ x - 4y + 6z = 10 - 2t \end{cases}$$

est de Cramer.

Exemple 1 (A est non carrée).

Les solutions de (S_0) sont alors $(\Delta = 1)$

$$\begin{cases} x = \frac{\Delta_x}{\Delta} = \begin{vmatrix} -3 - t & -5 & 4\\ 5 + t & -2 & 1\\ 10 - 2t & -4 & 6 \end{vmatrix} = 16t + 124\\ y = \frac{\Delta_y}{\Delta} = \begin{vmatrix} 2 & -3 - t & 4\\ 1 & 5 + t & 1\\ 1 & 10 - 2t & 6 \end{vmatrix} = 9t + 75\\ z = \frac{\Delta_z}{\Delta} = \begin{vmatrix} 2 & -5 & -3 - t\\ 1 & -2 & 5 + t\\ 1 & -4 & 10 - 2t \end{vmatrix} = 3t + 31. \end{cases}$$

D'où, $S = \{(16t + 124, 9t + 75, 3t + 31, t), t \in \mathbb{R}\}.$

Exemple 2 (A est non carrée).

$$(S) \begin{cases} x - 3y - 2z = -1(E_1) \\ 2x + y - 4z = 3(E_2) \\ x + 4y - 2z = 4(E_3) \\ x + y - z = 1(E_4) \end{cases} \Leftrightarrow \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & -4 \\ 1 & 4 & -2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 4 \\ 1 \end{pmatrix}$$

En prenant le déterminant $\begin{vmatrix} 1 & -3 & -2 \\ 2 & 1 & -4 \\ 1 & 4 & -2 \end{vmatrix} = 0$, ce choix n'est

pas convenable car il correspond à a un système qui n'est pas de Cramer.

Exemple 2 (A est non carrée).

Faisons un autre choix de déterminant. Soit

$$\Delta = \begin{vmatrix} 1 & -3 & -2 \\ 2 & 1 & -4 \\ 1 & 1 & -1 \end{vmatrix} = 7 \neq 0$$
. Alors le système

$$(S_0) \begin{cases} x - 3y - 2z = -1 \\ 2x + y - 4z = 3 \\ x + y - z = 1 \end{cases}$$

est de Cramer. Ainsi (S_0) admet pour solution

$$S_0 = \{(\frac{\Delta_x}{\Delta}, \frac{\Delta_y}{\Delta}, \frac{\Delta_z}{\Delta})\} = \{(-\frac{4}{7}, \frac{5}{7}, -\frac{6}{7})\}.$$

Exemple 2 (A est non carrée).

Ensuite, On vérifie si cette solution partielle satisfait l'équation (E_3) ou non.

Dans (E_3) , on obtient $-\frac{4}{7} + 4.\frac{5}{7} - 2.(-\frac{6}{7}) = 4$. Ce qui implique que (E_3) est vérifiée, d'où

$$S=\{(-\frac{4}{7},\frac{5}{7},-\frac{6}{7})\}.$$

Exemple 3 (A est non carrée).

On reprend l'exemple 2 qu'on vient de voir en changeant la ligne (E_3) en (E_3')

$$(S) \begin{cases} x - 3y - 2z = -1 & (E_1) \\ 2x + y - 4z = 3 & (E_2) \\ x + y - z = 1 & (E_4) \\ x + 4y - 2z = 15 & (E'_3) \end{cases}$$

On remarque que lors qu'on remplaçe la solution (S_0) dans (E'3), on obtient 15=4 ce qui est impossible. Par conséquent, $S=\emptyset$.

Exemple 4 (A est carrée et $\det A = 0$)

$$(S) \left\{ \begin{array}{l} 2x - 5y + 4z = -3 \\ x - 2y + z = 5 \\ x - 4y + 5z = m \end{array} \right. \Leftrightarrow \left(\begin{array}{l} 2 & -5 & 4 \\ 1 & -2 & 1 \\ 1 & -4 & 5 \end{array} \right) \left(\begin{array}{l} x \\ y \\ z \end{array} \right) = \left(\begin{array}{l} -3 \\ 5 \\ m \end{array} \right).$$

avec $m \in \mathbb{R}$.

On a $\det A = 0$ donc (S) n'est pas de Cramer.

Exemple 4 (A est carrée et $\det A = 0$)

Cherchons le plus grand déterminant non nul qu'on peut extraire de la matrice A. En prenant $\Delta = \begin{vmatrix} 2 & -5 \\ 1 & -2 \end{vmatrix} = 1 \neq 0$, alors le système (S_0) suivant est de Cramer.

$$(S_0) \begin{cases} 2x - 5y = -3 - 4z \\ x - 2y = 5 - z \end{cases}$$

Les solutions de (S_0) sont $\begin{cases} x = 2z + 31 \\ y = 2z + 13 \end{cases}$ On remplace cette solutions dans l'équation (E), on trouve -21 = m.

Exemple 4 (A est carrée et $\det A = 0$)

Conclusion:

- Si $m \neq 21$, l'équation (E) n'est pas vérifiée et S = ...
- Si m = 21, d'où $S = \{(2z + 31, 2z + 13, z), z \in \mathbb{R}\}.$