图算法小结与课程总结

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

图的背景

• 一笔画问题: 手机解锁图案需一笔画出

图的背景

柯尼斯堡七桥问题: 七座桥连接河岸和两个小岛,步行者怎样才能不重复、不遗漏地一次走完七座桥?

瑞士数学家 欧拉

图的背景

柯尼斯堡七桥问题: 七座桥连接河岸和两个小岛,步行者怎样才能不重复、不遗漏地一次走完七座桥?

瑞士数学家 欧拉

经过抽象之后,仅保留点和边的结构称为图

图的定义

- 图可以表示为一个二元组 $G = \langle V, E \rangle$,其中
 - V表示非空顶点集,其元素称为顶点(Vertex)
 - E表示边集,其元素称为边(Edge)
- e = (u, v)表示一条边,其中 $u \in V, v \in V, e \in E$

• 无向图与有向图

图的概念与表示

• 图的概念

- 图的定义、相邻与关联
- 顶点的度与图的度、握手定理
- 路径与环路
- 连通、连通分量
- 子图、生成子图、树
- 图的表示
 - 邻接链表与邻接矩阵

		а	b	c	d	f
		1	2	3	4	5
	1	0	1	0	1	0
	2	1	0	1	1	1
	3	0		0	0	1
!	4	1	1	0	0	1
· <	5	0	1	1	1,	0

- 数组结构
 - 查询最大值:简单循环搜索所有元素,记录最大值

- 图结构
 - 查询相邻顶点: 简单循环搜索各顶点关联的边
 - 查询可达顶点: 简单循环搜索,不能找到全部可达顶点! 是否存在有效算法?

按照什么次序搜索顶点?

广度优先搜索

深度优先搜索

• 算法思想

广度优先搜索: 步步为营

深度优先搜索: 勇往直前

• 算法应用

无权图的最短路径

广度优先搜索

• 算法应用

无权图的最短路径

强连通分量

环路的存在性判断

广度优先搜索

深度优先搜索

贪心策略的算法

• 最小生成树

$$A \leftarrow \emptyset$$
 while 没有形成最小生成树 do | 寻找 A 的安全边 (u,v) | $A \leftarrow A \cup (u,v)$ end return A

通用框架	Prim算法	Kruskal算法
成环判断	始终保持一棵树,不断扩展	森林合成一棵树,不相交集合
轻边发现	优先队列	全部边排序
求解视角	微观视角,基于当前点选边	宏观视角,基于全局顺序选边
算法思想	都是采用贪	心策略的图算法

贪心策略的算法

• 单源最短路径

	广度优先搜索	Dijkstra算法	Bellman-Ford算法
适用范围	无权图	带权图 (所有边权为正)	带权图
松弛次数		<i>E</i> 次	V · E 次
数据结构	队列	优先队列	
运行时间	O(V + E)	$O(E \cdot \log V)$	$O(E \cdot V)$

动态规划的算法

• 所有点对最短路径(Floyd算法)

问题结构分析

递推关系建立

自底向上计算

最优方案追踪

网络流问题

• 最大二分匹配问题(Hungarian算法)

• 最大流问题(Ford-Fulkerson算法)

网络流问题

	Hungarian算法	Ford-Fulkerson算法
核心思想	寻找交替路径,增加匹配数	寻找增广路径,扩充流量
图的结构	二分图	流网络
边的性质	匹配边、非匹配边	流量、容量、残存容量
增益过程	找到一条交替路径, 匹配数增加一	找到一条增广路径, 流量增加路径的最小剩余容量

课程总结

动态规划

问题结构 递推关系 自底向上 最优方案 分析 建立 计算 追踪

贪心策略

课程总结

分而治之

分解原 问题 解决子 问题 合并问 题解

动态规划

问题结构 分析 递推关系 建立 自底向上 计算

最优方案 追踪 图算法

图搜索 生成树 最短路 网络流

贪心策略

提出贪心 策略 证明策略 正确

算法设计与分析

分而治之篇

归并排序

递归式求解

最大子数组

逆序对计数

快速排序

次序选择

动态规划篇

0-1背包

最长公共子序列

最长公共子串

编辑距离

钢条切割

矩阵链乘法

全点对最短路径

贪心策略篇

部分背包

霍夫曼编码

活动选择

最小生成树

单源最短路径

图算法篇

广度优先搜索

深度优先搜索

环路存在性判断

拓扑排序

强连通分量

最大二分匹配

最大流算法