Inferência Estatística e Teste de Hipóteses

O teste t de Student

Fabio Cop (fabiocopf@gmail.com) Instituto do Mar - UNIFESP Última atualização em 09 de junho de 2022

O teste t de Student

- 1. Teste $oldsymbol{t}$ para uma média amostral
- 2. Teste $oldsymbol{t}$ para duas médias independentes
 - \circ Teste t de Welch variâncias heterogêneas
 - Comparando variâncias
 - \circ Teste t variâncias homogêneas
- 3. Teste $oldsymbol{t}$ pareado para duas médias dependentes

1,000

A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você dispõe de amostras para 10 riachos que obtidas na década de 70. Com estas amostras, deseja testar se houve mudança na diversidade média ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

$$H_a: \mu
eq 2.65$$
 (Hipótese alternativa)

$$lpha=0.05$$
 (nível de significância)

Diversidade nos riachos							
2.92	2.99	2.83	2.53	2.67			
2.69	3.60	2.64	2.99	2.55			

A média amostral nos 10 riachos:

$$\overline{X} = rac{\sum X_i}{n} = 2.84$$

com erro padrão de:

$$s_{\overline{X}} = rac{s}{\sqrt{n}} = rac{0.32}{3.16} = 0.1$$

e um valor de $t_{calculado}$:

$$t_c = rac{\overline{X} - \mu}{s_{\overline{X}}} = rac{2.84 - 2.65}{0.1} = 1.91$$

A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você dispõe de amostras para 10 riachos que obtidas na década de 70. Com estas amostras, deseja testar se houve mudança na diversidade média ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

 $H_a: \mu
eq 2.65$ (Hipótese alternativa)

lpha=0.05 (nível de significância)

Utilizando a Tabela t, encontramos a probabilidade de obtermos valores tão ou mais extremos que $-1.91\,$ e +1.91.

Segundo H_0

A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você dispõe de amostras para 10 riachos que obtidas na década de 70. Com estas amostras, deseja testar se houve mudança na diversidade média ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

$$H_a: \mu
eq 2.65$$
 (Hipótese alternativa)

$$lpha=0.05$$
 (nível de significância)

Média da amostra

$$\overline{X} = 2.84$$

Resultado do teste

$$p = 0.0443 + 0.0443 = 0.0886$$

Como
$$0.0886 > 0.05$$

Aceito H_0 e concluo que:

Não há evidências na amostra que me permita dizer que a diversidade há 50 anos fosse diferente da diversidade atual.

A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você dispõe de amostras para 10 riachos que obtidas na década de 70. Com estas amostras, deseja testar se houve mudança na diversidade média ao longo dos últimos 50 anos.

Os comandos em R

amostra: 2.92, 2.69, 2.99, 3.6, 2.83, 2.64, 2.53, 2.99, 2.67, 2.55

```
t.test(amostra, mu = 2.65, alternative = "two.sided")
```

```
##
## One Sample t-test
##
## data: amostra
## t = 1.9093, df = 9, p-value = 0.08857
## alternative hypothesis: true mean is not equal to 2.65
## 95 percent confidence interval:
## 2.614698 3.067302
## sample estimates:
## mean of x
## 2.841
```

Pressupostos

- 1. Amostras independentes;
- 2. A população de origem tem distribuição Normal;

(TESTE **UNICAUDAL**) A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você supõe que na década de 70 a diversidade fosse **maior** que atualmente devido a fatores como desmatamento e aumento na ocupação urbana ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

$$H_a: \mu > 2.65$$
 (Hipótese alternativa)

$$lpha=0.05$$
 (nível de significância)

Diversidade nos riachos						
2.92	2.99	2.83	2.53	2.67		
2.69	3.60	2.64	2.99	2.55		

A média amostral nos 10 riachos:

$$\overline{X} = rac{\sum X_i}{n} = 2.84$$

com erro padrão de:

$$s_{\overline{X}} = rac{s}{\sqrt{n}} = rac{0.32}{3.16} = 0.1$$

e um valor de $t_{calculado}$:

$$t_c = rac{\overline{X} - \mu}{s_{\overline{X}}} = rac{2.84 - 2.65}{0.1} = 1.91$$

(TESTE **UNICAUDAL**) A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você supõe que na década de 70 a diversidade fosse **maior** que atualmente devido a fatores como desmatamento e aumento na ocupação urbana ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

$$H_a: \mu > 2.65$$
 (Hipótese alternativa)

$$lpha=0.05$$
 (nível de significância)

Utilizando a Tabela t, encontramos a probabilidade de obtermos valores tão ou mais extremos que +1.91.

Segundo H_0

(TESTE **UNICAUDAL**) A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você supõe que na década de 70 a diversidade fosse **maior** que atualmente devido a fatores como desmatamento e aumento na ocupação urbana ao longo dos últimos 50 anos.

Hipóteses estatísticas

$$H_0: \mu = 2.65$$
 (Hipótese nula)

$$H_a: \mu > 2.65$$
 (Hipótese alternativa)

$$lpha=0.05$$
 (nível de significância)

Média da amostra

$$\overline{X} = 2.84$$

Resultado do teste

$$p = 0.0443$$

$$\texttt{Como}~0.0443 \leq 0.05$$

Rejeito H_0 e concluo que:

Há evidências na amostra para dizer que a diversidade há 50 anos era **maior** que diversidade atual.

(TESTE **UNICAUDAL**) A diversidade média de peixes em riachos costeiros de Mata Atlântica tem distribuição normal com $\mu=2.65$. Você supõe que na década de 70 a diversidade fosse **maior** que atualmente devido a fatores como desmatamento e aumento na ocupação urbana ao longo dos últimos 50 anos.

Os comandos em R

amostra: 2.92, 2.69, 2.99, 3.6, 2.83, 2.64, 2.53, 2.99, 2.67, 2.55

```
t.test(amostra, mu = 2.65, alternative = "greater")
```

Pressupostos

- 1. Amostras independentes;
- 2. A população de origem tem distribuição Normal;

Teste t para duas amostras independentes

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

 $H_0: \mu_{macho} = \mu_{f \hat{ ext{e}} mea}$

 $H_a: \mu_{macho}
eq \mu_{f \hat{ ext{e}} mea}$

 $\alpha = 0.05$

ID	1	2	3	4	5	6	7	8	9	10
Femea	110	111	107	108	110	105	107	106	111	111
Macho	120	107	110	116	114	111	113	117	114	112

$$\overline{X}_{f \hat{ ext{e}} mea} = 108.6$$
; $s_{f \hat{ ext{e}} mea} = 2.27$; $n_{f \hat{ ext{e}} mea} = 10$

$$\overline{X}_{macho}=113.4$$
; $s_{macho}=3.72$; $n_{macho}=10$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

$$H_0: \mu_{macho} = \mu_{f \hat{ ext{e}}mea}$$

$$H_a: \mu_{macho}
eq \mu_{f \hat{ ext{e}} mea}$$

$$\alpha = 0.05$$

1. Erro padrão da diferença de médias

$$s_{\overline{X}_f-\overline{X}_m}=\sqrt{rac{s_f^2}{n_f}+rac{s_m^2}{n_m}}$$

2. Graus de liberdade

$$gl=rac{\left(rac{s_f^2}{n_f}+rac{s_m^2}{n_m}
ight)^2}{\left(rac{s_f^2}{n_f}
ight)^2+\left(rac{s_m^2}{n_m}
ight)^2}{n_m-1}}$$
; ou $gl=min(n_f-1,n_m-1)$

3. Estatística t

$$t_c = rac{\overline{X}_f - \overline{X}_m}{s_{\overline{X}_f} - \overline{X}_m}$$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

$$H_0: \mu_{macho} = \mu_{f \hat{ ext{e}} mea}$$

$$H_a: \mu_{macho}
eq \mu_{f
m \^{e}mea}$$

$$\alpha = 0.05$$

$$\overline{X}_{f \hat{ ext{e}} mea} = 108.6$$
; $s_{f \hat{ ext{e}} mea} = 2.27$; $n_{f \hat{ ext{e}} mea} = 10$

$$\overline{X}_{macho}=113.4$$
; $s_{macho}=3.72$; $n_{macho}=10$

1. Erro padrão da diferença de médias

$$s_{\overline{X}_f-\overline{X}_m}=\sqrt{rac{5.15}{10}+rac{13.84}{10}}=1.38$$

2. Graus de liberdade

$$gl=14.89$$
, ou $gl=9$ (método simplificado)

3. Estatística t

$$t_c = \frac{108.6 - 113.4}{1.38} = -3.48$$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

$$\overline{X}_{f \hat{ ext{e}}mea} = 108.6; \, \overline{X}_{macho} = 113.4$$

Resultado do teste

$$p = 0.0017 + 0.0017 = 0.0034$$

Rejeito H_0 e concluo que:

Há evidências na amostra para assumir que existem diferenças no comprimento médio entre machos e fêmeas. O comprimento da mandíbula das fêmeas é, em média, 4.8 mm menor.

Os comandos em R

```
Comprimento Sexo
t.test(Comprimento ~ Sexo, data = jackal,
                                                                                                                 120 Macho
                         alternative = 'two.sided',
                                                                                                                 107 Macho
                         var.equal = FALSE)
                                                                                                                 110 Macho
                                                                                                                 116 Macho
       Welch Two Sample t-test
                                                                                                                 114 Macho
  data: Comprimento by Sexo
                                                                                                                 111 Macho
     = -3.4843, df = 14.894, p-value = 0.00336
                                                                                                                 113 Macho
## alternative hypothesis: true difference in means between group Femea and group Macho is not equal to 0
                                                                                                                 117 Macho
## 95 percent confidence interval:
   -7.738105 -1.861895
                                                                                                                 114 Macho
## sample estimates:
                                                                                                                 112 Macho
## mean in group Femea mean in group Macho
                 108.6
                                       113.4
                                                                                                                 110 Femea
                                                                                                                 111 Femea
                                                                                                                 107 Femea
                                                                                                                 108 Femea
                                                                                                                 110 Femea
                                                                                                                 105 Femea
                                                                                                                 107 Femea
```

Pressupostos

- 1. Amostras independentes;
- 2. A população de origem tem distribuição Normal;

Existe evidência de que a VARIÂNCIA no tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

$$H_0: \sigma^2_{macho} = \sigma^2_{f {
m \^{e}}mea}$$

$$H_a:\sigma^2_{macho}
eq\sigma^2_{f\hat{\mathrm{e}}mea}$$

$$\alpha = 0.05$$

ID	1	2	3	4	5	6	7	8	9	10
Femea	110	111	107	108	110	105	107	106	111	111
Macho	120	107	110	116	114	111	113	117	114	112

$$s^2_{f \hat{ ext{e}}mea} = 5.153$$
; $n_{f \hat{ ext{e}}mea} = 10$

$$s^2_{macho}=13.838$$
; $n_{macho}=10$

Existe evidência de que a VARIÂNCIA no tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

$$H_0: \sigma^2_{macho} = \sigma^2_{f \hat{ ext{e}}mea}$$

$$H_a:\sigma^2_{macho}
eq\sigma^2_{f\hat{\mathrm{e}}mea}$$

$$\alpha = 0.05$$

$$s^2_{f ilde{ ext{e}}mea} = 5.153$$
; $n_{f ilde{ ext{e}}mea} = 10$

$$s_{macho}^2 = 13.838;\, n_{macho} = 10$$

Estatística ${\cal F}$

$$F=rac{s_{maior}^2}{s_{menor}^2}=rac{13.838}{5.153}=2.69$$

Os comandos em R

```
vmaior = jackal$Comprimento[jackal$Sexo = "Macho"]
vmenor = jackal$Comprimento[jackal$Sexo = "Femea"]
var.test(x = vmaior, y = vmenor, data = jackal)
```

```
##
## F test to compare two variances
##
## data: vmaior and vmenor
## F = 2.681, num df = 9, denom df = 9, p-value = 0.1579
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.665931 10.793829
## sample estimates:
## ratio of variances
## 2.681034
```

$$s^2_{f \hat{ ext{e}}mea} = 5.153$$
; $n_{f \hat{ ext{e}}mea} = 10$

$$s_{macho}^2 = 13.838; n_{macho} = 10$$

Estatística F

$$F=rac{s_{maior}^2}{s_{menor}^2}=rac{13.838}{5.153}=2.69$$

Existe evidência de que a VARIÂNCIA no tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

$$H_0: \sigma^2_{macho} = \sigma^2_{f \hat{ ext{e}}mea}$$

$$H_a:\sigma^2_{macho}
eq\sigma^2_{f\hat{\mathrm{e}}mea}$$

$$\alpha = 0.05$$

Aceito H_0 e concluo que:

Ainda que a variância amostral em machos seja 2.69 vezes maior que em fêmeas, a diferença é **não significativa**. Portanto posso assumir variâncias **homogêneas**, isto é, $\sigma_{fêmea}^2 = \sigma_{macho}^2.$

$$s^2_{f \hat{ ext{e}}mea} = 5.153$$
; $n_{f \hat{ ext{e}}mea} = 10$

$$s_{macho}^2 = 13.838; n_{macho} = 10$$

Estatística F

$$F=rac{s_{maior}^2}{s_{menor}^2}=rac{13.838}{5.153}=2.69$$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

 $H_0: \mu_{macho} = \mu_{f \hat{ ext{e}} mea}$

 $H_a: \mu_{macho}
eq \mu_{f ext{\^{e}}mea}$

 $\alpha = 0.05$

		10
图图	F	
Marie Marie Co		

A Water		

ID	1	2	3	4	5	6	7	8	9	10
Femea	110	111	107	108	110	105	107	106	111	111
Macho	120	107	110	116	114	111	113	117	114	112

$$\overline{X}_{f \hat{ ext{e}}mea} = 108.6$$
; $\overline{X}_{macho} = 113.4$

$$s_{f \hat{ ext{e}} mea} = 2.27$$
; $s_{macho} = 3.72$

$$n_{f \hat{ ext{e}} mea} = n_{macho} = 10$$

Teste \overline{t} - Variâncias homogêneas

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

 $H_0: \mu_{macho} = \mu_{f \hat{ ext{e}} mea}$

 $H_a: \mu_{macho}
eq \mu_{f \hat{ ext{e}} mea}$

 $\alpha = 0.05$

1. Variância conjunta

$$s_p^2=rac{\sum{(X_{i,f}-\overline{X}_f)^2}+\sum{(X_{i,m}-\overline{X}_m)^2}}{(n_f-1)+(n_m-1)}$$

2. Erro padrão da diferença de médias

$$s_{\overline{X}_f-\overline{X}_m}=\sqrt{rac{s_p^2}{n_f}+rac{s_p^2}{n_m}}$$

3. Estatística t

$$t_c = rac{\overline{X}_f - \overline{X}_m}{s_{\overline{X}_f - \overline{X}_m}}$$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

Hipóteses estatísticas

 $H_0: \mu_{macho} = \mu_{f \hat{ ext{e}} mea}$

 $H_a: \mu_{macho}
eq \mu_{f
ceimea}$

 $\alpha = 0.05$

1. Variância conjunta

$$s_p^2 = rac{46.4 + 124.4}{9 + 9} = 9.49$$

2. Erro padrão da diferença de médias

$$s_{\overline{X}_f-\overline{X}_m}=\sqrt{rac{9.49}{10}+rac{9.49}{10}}=1.38$$

3. Estatística t

$$t_c = \frac{108.6 - 113.4}{1.38} = -3.48$$

Existe evidência de que o tamanho das mandíbulas de Chacais dourados seja diferente em machos e fêmeas?

$$\overline{X}_{f \hat{ ext{e}}mea} = 108.6$$
; $\overline{X}_{macho} = 113.4$

Resultado do teste

$$p = 0.0013 + 0.0013 = 0.0026$$

Rejeito H_0 e concluo que:

Há evidências na amostra para assumir que existem diferenças no comprimento médio entre machos e fêmeas. O comprimento da mandíbula das fêmeas é, em média, 4.8 mm menor.

Os comandos em R

```
Comprimento Sexo
t.test(Comprimento ~ Sexo, data = jackal,
                                                                                                                 120 Macho
                         alternative = 'two.sided',
                                                                                                                 107 Macho
                         var.equal = TRUE)
                                                                                                                 110 Macho
                                                                                                                 116 Macho
       Two Sample t-test
                                                                                                                 114 Macho
## data: Comprimento by Sexo
                                                                                                                 111 Macho
     = -3.4843, df = 18, p-value = 0.002647
                                                                                                                 113 Macho
## alternative hypothesis: true difference in means between group Femea and group Macho is not equal to 0
                                                                                                                 117 Macho
## 95 percent confidence interval:
   -7.694227 -1.905773
                                                                                                                 114 Macho
## sample estimates:
                                                                                                                 112 Macho
## mean in group Femea mean in group Macho
                 108.6
                                       113.4
                                                                                                                 110 Femea
                                                                                                                 111 Femea
                                                                                                                 107 Femea
                                                                                                                 108 Femea
                                                                                                                 110 Femea
                                                                                                                 105 Femea
                                                                                                                 107 Femea
```

Teste t para duas amostras independentes

Pressupostos

- 1. Amostras independentes;
- 2. A população de origem tem distribuição Normal;
- 3. As variâncias populacionais de fêmeas e machos são **homogêneas**, $\sigma_{f \hat{e}mea}^2 = \sigma_{macho}^2$.

"O fogo é importante na dinâmica das fronteiras cerrado-floresta, geralmente mantendo um equilíbrio entre o avanço e o recuo da floresta." - retirado de Hoffman et. al. (2003)

Hoffmann, William A., Birgit Orthen, and Paula Kielse Vargas do Nascimento. Comparative fire ecology of tropical savanna and forest trees. *Functional Ecology* 17.6 (2003): 720-726.

Gênero	Cerrado	Floresta
Aspidosperma	0.82	1.28
Byrsonima	0.52	1.10
Didymopanax	0.43	1.36
Guapira	0.74	0.65
Hymenaea	1.38	1.30
Miconia	0.49	1.09
Myrsine	0.69	1.97
Ouratea	1.66	1.62
Salacia	0.77	0.47
Vochysia	1.09	1.92

$$\overline{X}_{cerrado} = 0.859$$
; $s_{cerrado} = 0.4$

$$\overline{X}_{floresta} = 1.276$$
; $s_{floresta} = 1.28$

Gênero	Cerrado	Floresta
Aspidosperma	0.82	1.28
Byrsonima	0.52	1.10
Didymopanax	0.43	1.36
Guapira	0.74	0.65
Hymenaea	1.38	1.30
Miconia	0.49	1.09
Myrsine	0.69	1.97
Ouratea	1.66	1.62
Salacia	0.77	0.47
Vochysia	1.09	1.92

Teste \overline{t} pareado para duas médias dependentes

Buscando as diferenças médias entre os pares de unidades amostrais

$$\overline{X}_{dif}=-0.42$$
; $s_{dif}=0.52$; $n=10$

Gênero	Cerrado	Floresta	Dif
Aspidosperma	0.82	1.28	-0.46
Byrsonima	0.52	1.10	-0.58
Didymopanax	0.43	1.36	-0.93
Guapira	0.74	0.65	0.09
Hymenaea	1.38	1.30	0.08
Miconia	0.49	1.09	-0.60
Myrsine	0.69	1.97	-1.28
Ouratea	1.66	1.62	0.04
Salacia	0.77	0.47	0.30
Vochysia	1.09	1.92	-0.83

Buscando as diferenças médias entre os pares de unidades amostrais

$$\overline{X}_{dif}=-0.42$$
; $s_{dif}=0.52$; $n=10$

As Hipóteses estatísticas

$$H_0: \mu_{dif}=0$$

$$H_a:\mu_{dif}
eq 0$$

$$\alpha = 0.05$$

O testes de hipótese

1. Erro padrão da diferença

$$s_{\overline{X}_{dif}} = rac{s_{dif}}{\sqrt{n}}$$

2. Graus de liberdade

$$gl = n - 1$$

3. Estatística t

$$t_c = rac{\overline{X}_{dif}}{s_{\overline{X}_{dif}}}$$

Buscando as diferenças médias entre os pares de unidades amostrais

$$\overline{X}_{dif}=-0.42$$
; $s_{dif}=0.52$; $n=10$

As Hipóteses estatísticas

$$H_0: \mu_{dif} = 0$$

$$H_a:\mu_{dif}
eq 0$$

$$\alpha = 0.05$$

O testes de hipótese

1. Erro padrão da diferença

$$s_{\overline{X}_{dif}} = rac{s_{dif}}{\sqrt{n}} = rac{0.52}{\sqrt{10}} = 0.17$$

2. Graus de liberdade

$$gl = n - 1 = 9$$

3. Estatística t

$$t_c=rac{\overline{X}_{dif}}{s_{\overline{X}_{dif}}}=rac{-0.42}{0.17}=-2.52$$

As Hipóteses estatísticas

 $H_0: \mu_{dif}=0$

 $H_a:\mu_{dif}
eq 0$

 $\alpha = 0.05$

$$\overline{X}_{dif} = -0.42$$
; $s_{dif} = 0.52$; $n = 10$

Resultado do teste

$$p = 0.0164 + 0.0164 = 0.0328$$

Rejeito H_0 e concluo que:

Há evidências na amostra para assumir que existem diferenças na expessura relativa da casca entre áreas de Cerrado e Floresta.

Os comandos em R

Pressupostos

- 1. As unidades amostrais (os pares de observações) são independentes;
- 2. A população de diferença de médias tem distribuição Normal;

Unidade amostral	Gênero	Cerrado	Floresta	Dif
1	Aspidosperma	0.82	1.28	-0.46
2	Byrsonima	0.52	1.10	-0.58
3	Didymopanax	0.43	1.36	-0.93
4	Guapira	0.74	0.65	0.09
5	Hymenaea	1.38	1.30	0.08
6	Miconia	0.49	1.09	-0.60
7	Myrsine	0.69	1.97	-1.28
8	Ouratea	1.66	1.62	0.04
9	Salacia	0.77	0.47	0.30
10	Vochysia	1.09	1.92	-0.83