Chimney Swift Classification

Overview of Problem and Dataset

Task Description

- Detect, localize, and track
 "Chimney Swift" birds in videos
- Desirable to classify different object types before/during tracking
 - Keep "Chimney Swift" objects only (shown in green)
 - Reject other kinds of moving objects
 (e.g. seagulls, shown in red)

Existing Approach (Flawed)

 Background subtraction used to segment moving objects from static background scene

- Naive assumption: All segments treated as 1 Chimney Swift bird
 - Non-Chimney Swift segments (e.g. seagulls) cause false positives
 - 2+ Chimney Swift segments (overlapping) cause missed detections

Why is this a problem?

- Example: Non-swift birds (e.g. seagulls) tend to stand and walk along edge of chimney
- This results in instances of small motion (parts of seagull captured by background subtraction)
- Without filtering, these are mistaken as Chimney Swifts

Proposed Approach

- Extract segment images from frames using background subtraction
- 2. Build dataset representative of Swifts and Non-Swifts
- 3. Train classifier using training subset of data
 - o CNN?
 - SVM with HOG/SIFT features?
 - AdaBoost with Haar-like features?
- 4. Evaluate classifier on testing subset data

Extract data from which videos?

1. Sault Ste. Marie, Ontario videos

- 1 video from 2016, 20+ videos from 2017,
 2 videos from 2018
- o 18-30FPS, 30-90 minutes each
- Two different cameras, differing weather conditions

2. Chalk River, Ontario videos

- 65 videos from 2019
- o 60FPS, 20-60 minutes each

3. <u>User-uploaded videos on YouTube</u>

5 videos (potentially more) from varying sources

Extract data from which videos?

- Each video represents 10,000+ segment images.
 - Can contain 100s of swifts per video
 - Each swift appears for 10s of frames
 - Flying = rapid non-rigid deformation = many examples
- Pipeline already in place for extracting segments
 - Currently to image files
 - Considering serializing to .HDF5 due to I/O strain
- Workload primarily choosing sequences
 (to balance dataset) + labeling + augmentation if needed
 - Have Jupyter notebook with "Pigeon" library for labeling

🦜 pigeon - Quickly annotate data on Jupyter

Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort of your Jupyter notebook.

Pigeon currently supports annotation for classification tasks (set of labels), regression tasks (int/float range), or captioning tasks (variable-length text). Anything that can be displayed on Jupyter (text, images, audio, graphs, etc.) can be displayed by piecen by providing the appropriate displayer for argument.

Installation

pip install pigeon-jupyter

Challenges

- Objects are small and lack detail
- Varying video scale + video quality
 - Motion blur, residual "motion trail" artifacts, haloing, etc.
- "Non-Swift" class is broad and sometimes difficult to define
 - Seagulls, crows, other species of birds
 - Rapid changes in illumination causing reflections, wind causing chimney to sway
- Potentially unbalanced classes
 - "Non-swift" subjects (seagulls, crows) are unpredictable, hard to reliably locate examples within video datasets

Gallery of Sample Images (L: Non-swift, R: Swift)

Chalk River, July 21st, 2019	
Sault Ste. Marie, May 2016	\ \ \ \ \ \
Sault Ste. Marie, May 2018	
Sault Ste. Marie, May 2017	✓ · · · · · · · · · · · · · · · · · · ·

Next Steps

- 1. Choose portions of videos representative of swifts and non-swifts
- 2. Extract segment images from videos
 - Processing: Crop? Center? Resize?
- 3. Label images and serialize
 - O HDF5? Structure of dataset?
- 4. Clean/prune/prepare dataset
 - Outliers? Class balance?
 - Data augmentation?

Aside: Wild Birds in Wind Farm Dataset

- Similar problem with bird detection in wind farms
 - o Bird motion vs. non-bird motion
 - Small, low-detail objects
- Researches in Tokyo publicly released dataset
 - 32,973 bird images (hawks and crows)
 - 4,911 non-birds (airplane, helicopter, part of turbine, tree)
 - 1,907 unclear flying objects (blurred)
- Not "Chimney Swift" birds but could be useful
 - 7 different classification publications use this dataset

Non Birds

Aside: Solving the Wrong Problem?

- Current: segmentation, classification, tracking treated as separate problems.
- Alternative: Combine some/all stages into joint approach?
- "Joint Detection and Tracking of Small Flying Objects" Yoshihashi et al. 2018
 - Novel CNN + LSTM detection and tracking architecture.

Aside: Solving the Wrong Problem?

- Concern: Only January-April 2020 left for Undergraduate Honours Thesis
- Graduating soon after April 2020
- "Bird/Non-bird classifier" may be easier to produce meaningful work considering tight timeline
- Joint approaches may be better suited for "future work" recommendations