Maclaurin's Series

Derek, Vignesh

2020

MACLAURIN'S SERIES [TBC Marks]

- 1 Find the first three non-zero terms in the expansion of $f(x) = -\frac{x}{\sqrt{4-x^2}}$. [3]
- **2** Sector AOB of a circle centred at O with radius 4 cm is such that $\triangleleft AOB = \frac{2\pi}{3} + \theta$ as shown in the diagram below:

Given that θ is sufficiently small for θ^4 and higher powers of θ to be neglected, find the approximate area of the shaded region in terms of powers of θ . [5]

- 3 It is given that $y = \sqrt[3]{(1+x^2)(1+4x^2)}$.
 - (a) State the Maclaurin's expansion of y in ascending powers of x up to and including the x^4 term. [4]
 - (b) Hence, show that $\frac{91487}{90000}$ is an accurate estimate for $\sqrt[3]{1.0504}$ up to 4 d.p.. [2]
- **4** Given that $y = 2^{\sin^{-1} x}$, where $\sin^{-1} x$ denotes the principal value;

(a) Show that:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + \frac{x}{1 - x^2} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}.$$

[4]

- (b) Hence, obtain the first three terms in the Maclaurin's series for y. [3]
- **5** The graph of y = f(x) is given by:

$$f(x) = \begin{cases} e^{1/x^2}, & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

- (a) Show that f(x) is not equal to the Maclaurin Series of e^{1/x^2} . [3]
- (b) Graph the function in (a), labelling clearly the points at/around the origin. [3]
- 6 Given that $\tan 2x = a_0 + a_1x + a_2x^2 + a_3x^3 \cdots$, by using the fact that $\sin 2x = \cos 2x \cdot \tan 2x$, obtain the expansion of $\tan 2x$ in ascending powers of x, up to and including the term in x^3 .
- 7 It is given that $f(x) = \frac{a-b}{(1-ax)(1-bx)}$, where a, b > 0.
 - (a) By expressing f(x) in terms of partial fractions and considering their Maclaurin expansions, show that:

$$\sum_{r=0}^{\infty} (a^{r+1} - b^{r+1}) x^r$$

[4]

- (b) Hence or otherwise, prove that, if x^3 and higher powers of x may be neglected, then $\frac{2}{(1-5x)(1-3x)} \approx 2 + 16x + 98x^2.$ [2]
- 8 Find the Maclaurin's Series for e^{ix} up to and including the coefficient of x^7 . [3]
 - (a) Hence, prove that $e^{ix} = \cos x + i \sin x$. [3]