Lab: Scikit-Learn

Topic Covered

Machine Learning

- It is a type of artificial intelligence that allow computers learn from data to make decisions or predictions. It involves training models on data to identify patterns and improve over time.
- 5 points to understand machine learning:
 - Learning from Data: Machines improve their performance by learning patterns from data.
 - **Types:** It includes supervised, unsupervised, and reinforcement learning methods.
 - Training: Models are trained on data to make accurate predictions or decisions.
 - **Prediction**: After training, models predict outcomes for new, unseen data.
 - Adaptation: Models improve over time as they are exposed to more data.

Diagram

Types of Machine Learning

01 Supervised

This is a process of an algorithm learning from the training dataset.

Unsupervised

This is a process where a model is trained using an information which is not labelled.

03 Reinforcement

Reinforcement learning is learning by interacting with a space or an environment.

Introduction to Scikit-learn

Library for Machine Learning: Scikit-learn is a popular Python library for machine learning, offering simple and efficient tools for data analysis.

Algorithms: It provides a wide range of algorithms for classification, regression, clustering, and dimensionality reduction.

Modelling Tools: Scikit-learn includes tools for model selection, evaluation, and data preprocessing.

Integration: It integrates well with other scientific libraries like NumPy, SciPy, and matplotlib.

Installation of Scikit-learn

• Command:

Pip install scikit-learn

• Or

conda install scikit-learn

Installation from web

Import model

• Command:

from sklearn.family import Model

• Or

from sklearn.linear_model import LinearRegression

Regression and Classification

Regression

Regression is the prediction of a numeric value and often takes input as a continuous value.

Example: Salary Prediction, Revenue and House Price Prediction

15-10-10-20 -10 10 20 30 40 50 60

Classification

Classification is problem identifying to which set of categories a new observation belong. **Example:** spam Mail, Election prediction.

Dataset: IRIS

- ➤ The dataset consists of 50 samples from three species of Iris- Setosa, Virginica and versicolor.
- Four features were measured from each sample: Length and the width of the sepals and petals, in centimeters.
- Dataset link:
 https://www.kaggle.com/datasets
 /uciml/iris?select=Iris.csv

