POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHATRONIKI

PODSTAWY KONSTRUKCJI URZĄDZEŃ PRECYZYJNYCH

Projekt 2

Temat ZNL-20

Zespół napędu liniowego

Wykonała: Michał Staniszewski, gr. IP-132

Prowadzący: dr inż. Zbigniew Kusznierewicz

1. Wprowadzenie

Napęd liniowy jest złożony z silnika elektrycznego i mechanizmu pozwalającego na zmianę prędkości obrotowej, względnie na zamianę ruchu obrotowego na ruch linowy (postępowy).

Dane techniczne:

- Maksymalne robocze obciążenie osiowe popychacza Q_{max} = 85 N,
- Maksymalne liniowe przemieszczenie popychacza L_{max} = 100 mm,
- Maksymalna prędkość przesuwu popychacza v_{max} = 5 mm/s,
- Zapewniono sygnalizowanie położenia popychacza na drodze elektrycznej z rozdzielczością nie gorsza niż $\Delta s = 10 \mu m$,
- Trzykrotne przeciążenie popychacza nie powoduje uszkodzenia zespołu napędu,
- Zastosowano zabezpieczenie elektryczne oraz mechaniczne uniemożliwiające przekroczenie położeń krańcowych popychacza,
- Sposób mocowania zespołu: U uniwersalny,
- Zastosowano silnik (DC) zasilany bezpiecznym napięciem (do 24 V),
- Przewidziano złącze stykowe mocowane do szkieletu,
- Zastosowano sprzęgło przeciążeniowe cierne,
- Spełnia wymagania: odporność na niewłaściwe użytkowanie, mały koszt, niewielkie wymiary i ciężar a także wygoda i bezpieczeństwo obsługi oraz napraw,
- Mechanizm ma pracować w pomieszczeniu zamkniętym w zakresie temperatur: +5° do +40°C, przy średnim zapyleniu,
- Wielkość produkcji urządzenia: S seryjna,

2. Obliczenia konstrukcyjne

- 1. Dobór średnicy popychacza
- a) Przewidywana całkowita długość popychacza L_c

$$L_c = L_d + L_z + L_{max}$$

gdzie:

 L_{max} – zakres ruchu w mm

L_z – długość ześrubowania w mm

 L_d – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty, w projekcie przyjmuję $L_d=20~\rm mm$

d – średnica popychacza w mm

Rysunek 1

b) Minimalna średnica śruby ze względu na wyboczenie

$$d_{rmin} \ge \sqrt[4]{\frac{64 \cdot k \cdot Q_{max} \cdot L^2 \cdot \beta^2}{\pi^3 \cdot E}} = \sqrt[4]{\frac{64 \cdot 3 \cdot 85 \cdot 120^2 \cdot 2^2}{(3,14)^3 \cdot 2,1 \cdot 10^5}} = 3,46 \text{ mm}$$

gdzie:

 d_{rmin} – minimalna średnica rdzenia popychacza w mm

 β – współczynnik zależny od sposobu zamocowania pręta, β = 2

E – moduł sprężystości materiału śruby, dla stali, $E=2.1\cdot10^5$ MPa

 Q_{max} – siła robocza obciążająca popychacz w N

k – współczynnik przeciążenia przyjmowany zależnie od przewidywanych warunków pracy, przyjęto
 k=3

L – długość popychacza pracująca na wyboczenie w mm

$$L = L_{max} + L_d = 100 + 20 = 120 \text{ mm}$$

 $d_r > d_{rmin}$

Z powyższego warunku wynika, że średnica gwintu popychacza ze względu na wyboczenie wynosi M4 o skoku gwintu P=0,8 mm.(**M4-0,8**).

c) Obliczenie śruby na rozciąganie (ściskanie)

$$\begin{split} \sigma_{c,r} &= \frac{F_{max}}{S} = \frac{4 \cdot k \cdot Q_{max}}{\pi \cdot d_r^2} \leq k_{c,r} \\ \sigma_{c,r} &= \frac{4 \cdot k \cdot Q_{max}}{\pi \cdot d_r^2} = \frac{4 \cdot 3 \cdot 85}{3,14 \cdot 4^2} = 20,1 \text{ MPa} \\ \sigma_{c,r} &\leq k_{c,r} \end{split}$$

$$20,1 \text{ MPa} \leq k_{cr}$$

gdzie:

 $\sigma_{c,r}$ – naprężenia ściskające (rozciągające) w MPa

S – powierzchnia przekroju rdzenia śruby w mm²

k – współczynnik przeciążenia przyjmowany zależnie od przewidywanych warunków pracy, przyjęto k=3

 Q_{max} – siła robocza obiążająca popychacz w N

 d_r – średnica rdzenia śruby w mm

 $k_{c,r}$ – dopuszczalne naprężenia ściskające (rozciągające) w MPa, przyjęto $k_{c,r}=$ 0,5 · R_e

Gatunek stali	Granica plastyczności R _e [MPa]		
10S20 (A11) - stal automatowa, po walcowaniu	345		
46S20 (A45) - stal automatowa, po walcowaniu	325		
C45 (45) – stal wyższej jakości, bez obr. cieplnej	360		
C45E (45) – stal wyższej jakości ulepszana cieplnie	430		
50G – stal niskostopowa normalizowana	390		
17Cr3 (15H) - stal stopowa, hartowana	490		
107CrV3 (NW1) - "srebrzanka", ulepszona cieplnie	650		

Tabela 1 Proponowane materiały na popychacz

Zgodnie z powyższą tabelą oraz nierównością przedstawioną powyżej materiał na popychacz to 10S20 (A11) -stal automatowa, po walcowaniu., dla której $k_{c,r} = 0.5 \cdot R_e = 172,5$ MPa.

$$20,1 \text{ MPa} \le 172,5 \text{ MPa}$$

d) Dobór średnicy śruby popychacza ze względów technologicznych
 Całkowita długość popychacza - L_c:

$$L_c = L_d + L_z + L_{max} = 100 + 20 + 25 = 145 \text{ mm}$$

gdzie:

 L_d – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty, w projekcie przyjmuję $L_d=20~\mathrm{mm}$

 L_{max} – zakres ruchu w mm,

d – średnica popychacza w mm

 L_z – długość ześrubowania w mm, $L_z > 6 \cdot d = 24$ mm, przyjmuję $L_z = 25$ mm

Całkowita długość popychacza	Zalecana minimalna średnica gwintu
L _c < 75	≥ M3
75 < <i>L_c</i> < 100	≥ M4
100 < L _c < 150	≥ M5
<i>L_c</i> >150 mm	≥ M6

Tabela 2 Zalecenia przyjmowania średnic popychacza

Zgodnie z powyższą tabelą minimalna średnica gwintu dla całkowitej długości popychacza $L_c = 145 \text{ mm}$ wynosi M5-0,8.

e) Ostateczny dobór średnicy śruby popychacza

Oznaczenie	P [mm]	$D_2 = d_2$	$d_r = d_3$	$D_1 = d_1$
M3	0,5	2,675	2,387	2,459
M3×0,35	0,35	2,773	2,571	2,621
M4	0,7	3,545	3,141	3,242
M4×0,5	0,5	3,675	3,387	3,459
M5	0,8	4,480	4,019	4,134
M5×0,5	0,5	4,675	4,387	4,459
M6	1,0	5,351	4,773	4,917
M6×0,75	0,75	5,513	5,080	5,188
M6×0,5	0,5	5,675	5,387	5,459
M8	1,25	7,188	6,466	6,647
M8×1	1,0	7,350	6,773	6,917
M8×0,75	0,75	7,513	7,080	7,188
M8×0,5	0,5	7,675	7,387	7,459
M10	1,5	9,026	8,160	8,376

Tabela 3 Wybrane wartości średnic gwintów metrycznych (wg PN-83/M-02013)

Uwzględniając poniższe kryteria:

- wytrzymałość na rozciąganie (ściskanie)
- wyboczenie popychacza
- względy technologiczne

Dobrana średnica gwintu to M5-0,8.

- 2. Wstępne obliczenie przełożenia i_c
 - a) Obliczenie prędkości obrotowej nakrętki n_{nut}

$$n_{nut} = \frac{60 \cdot v_{max}}{P} = \frac{60 \cdot 5}{0.8} = 375 \frac{\text{obr}}{\text{min}}$$

gdzie:

 v_{max} – maksymalna prędkość liniowa śruby (popychacza) w mm/s, $v_{max} = 5$ mm/s

P – skok gwintu śruby w mm, P = 0,8 mm

b) Wstępne obliczenie przełożenia całkowitego przekładni – ic

$$i'_p = \frac{n_{siln}}{n_{nut}} = \frac{5500}{375} = 14,67$$

gdzie:

*i'*_p – przełożenie redukcyjne przekładni

 n_{siln} – prędkość robocza silnika w obr/min, według zaleceń prowadzącego n_{siln} = 5550 obr/min

c) Sposób realizacji przełożenia – ip

 $i_p > 8$, więc konieczne jest zastosowanie motoreduktora handlowego oraz jednostopniowej przekładni sprzęgającej.

$$i_p = i_{rh} \cdot i_s$$

gdzie:

 i_{rh} - przełożenie reduktora handlowego

 \boldsymbol{i}_{S} - -przełożenie jednostopniowej przekładni sprzęgającej

- 3. Sprawność przekładni redukcyjnej
- a) reduktor handlowy i stopień sprzęgający

$$\eta_p = \eta_{rh} \cdot \eta_s = 0.8 \cdot 0.9 = 0.72$$

gdzie:

 η_p – sprawność stopnia sprzęgającego

 η_{rh} - sprawność reduktora handlowego, przyjęto $\eta_{rh}=0.8$

 η_s – sprawność stopnia sprzegającego, przyjęto $\eta_s=0.9$

4. Sprawność zespołu śruba – nakrętka – η_{sr-n}

Rysunek 2

$$\gamma = arctg \frac{P}{\pi \cdot d_2} = arctg \frac{0.8}{3.14 \cdot 4.48} = 0.057 \text{ rad} = 3.25^{\circ}$$

$$\rho' = arctg \mu' = arctg \frac{\mu}{cos \frac{\alpha}{2}} = arctg \frac{0.3}{cos \frac{60^{\circ}}{2}} = 0.33 \text{ rad} = 19.11^{\circ}$$

$$\eta_{sr-n} = \frac{tg\gamma}{tg(\gamma + \rho')} = \frac{tg(0.057)}{tg(0.057 + 0.33)} = 0.14$$

Z warunku na samohamowność gwintu:

$$\Upsilon \le \rho'$$
 $3,25 \degree \le 19,11\degree$,

więc warunek samohamowności połączenia gwintowego został spełniony.

gdzie:

 η_{sr-n} – sprawność zespołu śruba-nakrętka,

 γ – kąt pochylenia linii śrubowej gwintu,

P – skok gwintu w mm,

d₂ – średnia średnica gwintu w mm,

 ρ' - pozorny kąt tarcia,

 μ' - pozorny współczynnik tarcia,

 μ – współczynnik tarcia materiałów śruby i nakrętki, wykorzystujemy śrubę stalową oraz nakrętkę z mosiądzu, dla stal-mosiądz (10S20-MO58A) μ = 0,3,

 α – kat zarysu gwintu, dla gwintu metrycznego

5. Sprawność zespołu napędu liniowego - η_{znl}

$$\eta_{znl} = \eta_p \cdot \eta_{sr-n} = 0.72 \cdot 0.14 = 0.099$$

gdzie:

 η_p – sprawność stopnia sprzęgającego

 η_{sr-n} – sprawność zespołu śruba-nakrętka

6. Moc na popychaczu $-N_{sr}$

Rysunek 3

$$N_{sr} = \frac{Q_{max} \cdot v_{max}}{1000} = \frac{85 \cdot 5}{1000} = 0,425 \text{ W}$$

gdzie:

 Q_{max} – maksymalne robocze obciążenie popychacza (śruby) w N

 v_{max} – maksymalna prędkość ruchu popychacza w mm/s

- 7. Moc silnika napędowego: obliczeniowa Nobl i maksymalna P_{2max}
- a) Moc obliczeniowa Nobl

$$N_{obl} = \frac{N_{sr}}{n_{rml}} = \frac{0.425}{0.099} = 4.27 \text{ W}$$

b) Moc maksymalna - P_{2max}

Górna granica $P_{2max} = 1.5 \cdot N_{obl} = 1.5 \cdot 4.27 = 6.41 \text{W}$

Dolna granica
$$P_{2max} = 1.3 \cdot N_{obl} = 1.3 \cdot 4.27 = 5.55 \text{ W}$$

c) Wartość P_{2max} dobrana z katalogu

Dla silnika Maxon DCX 26 L Ø 26mm, $M_h = 45.8$ mNm, $n_0 = 5320$ obr/min

$$P_{2max} = 0.25 \cdot M_h \cdot \omega_0 = 0.25 \cdot 0.0458 \cdot 557,109 = 6.38 W$$

$$(dolna\ granica\ P_{2max}) \le P_{2max} \le (g\'{o}rna\ granica\ P_{2max})$$

$$5,55 \text{ W} \le 6,38 \text{ W} \le 6,41 \text{W}$$

Wartość P_{2max} mieści się w przedziale.

gdzie:

 M_h - moment rozruchowy (startowy)wybranego silnika (stall torque) w mNm

 ω_0 – prędkość kątowa biegu jałowego wybranego silnika w obr/min

$$\omega_0 = \frac{\pi \cdot n_0}{30} = \frac{3,14 \cdot 5320}{30} = 557,109 \frac{\text{rad}}{\text{min}}$$

 n_0 – prędkość obrotowa biegu jałowego silnika w obr/min

8. Moment -M_{nut} niezbędny do zapewnienia ruchu obrotowego nakrętki

$$M_{nut} = 0.5 \cdot Q_{max} \cdot d_2 \cdot tg(\gamma + \rho') = 0.5 \cdot 85 \cdot 4.48 \cdot 0.41135 = 78.32 \text{ mNm}$$

gdzie:

d₂ – średnia średnica gwintu w mm

 γ – kąt pochylenia linii śrubowej gwintu

 ρ' - pozorny kąt tarcia

 M_{nut} – moment niezbędny do zapewnienia ruchu obrotowego nakrętki w mNm

 Q_{max} - maksymalne robocze obciążenie popychacza (śruby) w N

9. Moment obciążenia zredukowany do wałka silnika – M_{zred}

$$M_{zred} = \frac{M_{nut}}{i_p \cdot \eta_p} = \frac{78,32}{14,67 \cdot 0,72} = 7,42 \text{ mNm}$$

gdzie:

 M_{nut} – moment niezbędny do zapewnienia ruchu obrotowego nakrętki w mNm i_p – przełożenie przekładni redukcyjnej znajdującej się między wałkiem silnika a nakrętką

 η_p – sprawność przekładni redukcyjnej znajdującej się między wałkiem silnika a nakrętką

10. Dobór punktu pracy silnika pradu stałego

Silnik	Silnik DCX 26 L Ø 26mm		M _h = 45,8 mNm		in
	n_k	i_p	M_{zred}	n_{k+1}	Δn
1	5550	14,66667	7,4	4458,5	-1091,5
2	4458,5	11,9	9,1	4257,2	-201,3
3	4257,2	11,4	9,6	4207,0	-50,2
4	4207,0	11,2	9,7	4193,7	-13,3

Tabela 4 Wyniki obliczeń punktu pracy silnika

Z tabeli wynika, że n_s =4207,1 obr/min, i_p =11,2

gdzie:

$$i_p = \frac{n_k}{n_{nut}}$$

$$M_{zred} = \frac{M_{nut}}{i_p \cdot \eta_p}$$

$$n_{k+1} = n_0 \cdot \frac{M_h - M_{zred}}{M_h}$$

11. Dobór reduktora handlowego

Dobieram reduktor: Maxon Planetary gearhead GPX 26 LN Ø26 mm

przełożenie reduktora handlowego wynosi $i_{rh}=5,3:1$ maksymalna prędkość wejściowa przy pracy ciągłej $n_s=7000$ obr/min

sprawność reduktora handlowego $\eta_{rh} = 0.9$

12. Ostateczny dobór punktu pracy

Silnik: DCX 26 L Ø 26mm		$M_h = 45.8 \text{ mNm}$		n ₀ = 5320 obr/min	
	n_k	i_p	M_{zred}	n_{k+1}	Δn
1	4207,0	11,2	8,7	4314,8	124,7
2	4318,8	11,5	8,4	4343,9	29,0
3	4344.8	11.6			

Tabela 4 Wyniki obliczeń skorygowanego punktu pracy silnika

Korekta sprawności reduktora handlowego i stopnia sprzegającego:

$$n_p = n_{rh} \cdot n_s = 0.9 \cdot 0.9 = 0.81$$

Korekta sprawności napędu liniowego:

$$n_{znl} = n_p \cdot n_{sr-n} = 0.81 \cdot 0.138 = 0.1119$$

Przy uwzględnieniu $i_{pk} = 11,6$ oraz $\eta_p = 0,81$

$$M_{zred} = \frac{M_{nut}}{i_{pk} \cdot \eta_p} = \frac{78,32}{11,6 \cdot 0,81} = 8,35 \text{ mN}$$

$$n_{sk} = n_0 \cdot \frac{M_h - M_{zred}}{M_h} = 5320 \cdot \frac{45,8 - 8,35}{45,8} = 4343 \frac{obr}{min}$$

gdzie:

n_s – robocza prędkość silnika w obr/min,

 n_0 – prędkość biegu jałowego wybranego silnika w obr/min,

 M_h - moment rozruchowy wybranego silnika w mNm,

M_{zred} – moment obciążenia zredukowany do wałka silnika w mNm,

$$M_{zred}\epsilon < \frac{1}{7}M_h; \frac{1}{2}M_h >$$

8,35 mNm ϵ < 6,54 mNm; 22,9 mNm >

Rysunek 4 Charakterystyka prędkości w funkcji obciążenia, n = f(M)

13. Przełożenie stopnia sprzęgającego - i_s

$$i_s = \frac{i_{pk}}{i_{rh}} = \frac{11.6}{3.9} = 2.97$$

gdzie:

 i_{pk} – ostateczna wartość przełożenia przekładni redukcyjnej w ZNL

i_{rh}- przełożenie dobranego reduktora handlowego

14. Moment sprzegła przeciążeniowego M_{sp}

$$M_{sp} = 1.4 \cdot M_{nut} = 1.4 \cdot 78.32 = 109.65 \text{ mNm}$$

15. Minimalna liczba impulsów n_{imp} tarczy na jeden obrót

$$n_{imp} = \frac{1000 \cdot P}{\Delta s} = \frac{1000 \cdot 0.8}{10} = 80$$

gdzie:

P – skok gwintu w mm, P = 0,8 mm

 Δs – rozdzielczość w μm , Δs = 10 μm

$$n_{CPR} = 0.25 \cdot n_{imp} = 0.25 \cdot 80 = 20$$

Wykaz literatury

- 1. Mościcki W.: Materiały pomocnicze do ćwiczeń projektowych z PKUP część 2. Zespół napędu liniowego. Preskrypt, 2019
- 2. Katalog firmy Maxon: https://www.maxongroup.com/maxon/view/content/index: