Operations Research I: Models & Applications Using Excel to Solve Nonlinear Programs

Michelle Chang

Department of Information Management National Taiwan University

Complete formulation

▶ According to the previous videos, the parameter is

R = minimum expected revenue.

▶ And the decision variables are

$$x_i = \text{shares of stock } i.$$

▶ The variance of the total revenue is

$$100x_1^2 + 1600x_2^2 + 100x_3^2.$$

Complete formulation

➤ To minimize the risk while ensuring a certain amount of expected revenue, the formulation of this example is

with all variables nonnegative.

Let's use the Solver add-in to find an optimal solution!

Solve by the Solver add-in

▶ An optimal solution of this NLP is (1333.3, 833.3, 0). $z^* = 1288888889$.

Stock	Price	Expected price	Bull market	Bear market	Variance of the price	Shares
1	50	55	65	45	100	1333.3
2	40	50	90	10	1600	833.3
3	25	20	30	10	100	0.0
			0.5	0.5		
	Minimum expected profit		115000			
	Budget		100000			
	Total spending Expected profit		Sum of variance			
	100000	115000	1288888889			