Introduction to Computer Graphics

– Image Processing (1) –

July 4, 2019 Kenshi Takayama

Today's topics

• Edge-aware image processing

• Gradient-domain image processing

Image smoothing using Gaussian Filter

• Smoothness parameter σ

Equation of Gaussian Filter

- $I_{\mathbf{p}}$ represents pixel value of image I at position $\mathbf{p}=\left(p_{\mathbf{x}},p_{\mathbf{y}}\right)\in\Omega$
 - For given resolution e.g. 640×480 , $\Omega \coloneqq \{1, \dots, 640\} \times \{1, \dots, 480\}$
- $GF_{\sigma}[I]$ represents filtered image with Gaussian parameter σ :

$$GF_{\sigma}[I]_{\mathbf{p}} \coloneqq \frac{\sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}}{\sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|)}$$

$$W_{\mathbf{p}}$$

• $G_{\sigma}(x) \coloneqq \exp\left(-\frac{x^2}{2\sigma^2}\right)$ Gaussian Kernel of radius σ

 $G_{\sigma}(x)$

Equation of Gaussian Filter

- $I_{\mathbf{p}}$ represents pixel value of image I at position $\mathbf{p}=\left(p_{\mathbf{x}},p_{\mathbf{y}}\right)\in\Omega$
 - For given resolution e.g. 640×480 , $\Omega \coloneqq \{1, \dots, 640\} \times \{1, \dots, 480\}$
- $GF_{\sigma}[I]$ represents filtered image with Gaussian parameter σ :

$$GF_{\sigma}[I]_{\mathbf{p}} := \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

• $G_{\sigma}(x) \coloneqq \exp\left(-\frac{x^2}{2\sigma^2}\right) \leftarrow$ Gaussian Kernel of radius σ

Implementing Gaussian Filter

• $G_{\sigma}(3\sigma) \approx 0$ \rightarrow Distant pixels can be ignored

• For fixed size $r \coloneqq \text{ceil}(3\sigma)$, precompute weights on a $(2r+1) \times (2r+1)$ stencil

Stencil

When kernel radius σ is very large

- Direct computation takes a lot of time
- Alternative: downsample \rightarrow smooth with small $\sigma \rightarrow$ upsample

Detail Extraction & Enhancement

When using edge-aware smoothing, ...

Edge-aware smoothing using Bilateral Filter

- Two parameters
 - σ_s : Range of smoothing w.r.t. pixel's location
 - σ_r : Range of smoothing w.r.t. pixel's color

$$\mathrm{BF}_{\sigma_{\mathrm{S}},\,\sigma_{\mathrm{r}}}[I]_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma_{\mathrm{S}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(\|I_{\mathbf{p}} - I_{\mathbf{q}}\|) I_{\mathbf{q}}$$

In all cases, $\sigma_{\rm S} = 10$

Original

 $\sigma_{\rm r} = 32$

 $\sigma_{\rm r} = 128$

 $\sigma_{\rm r} = 512_{10}$

Application of Bilateral Filter: Stylization

Application of Bilateral Filter: Tone Mapping

- Range of each channel (24bit color image): 1~255
- Range of light intensity in the real world: 1~10⁵
 - High Dynamic Range image
 - Can be obtained by photographing with different exposure times

Short exposure

Long exposure

Application of Bilateral Filter: Tone Mapping

https://en.wikipedia.org/wiki/Tone mapping

details preserved

Naïve implementation of Bilateral Filter

$$\frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(\|I_{\mathbf{p}} - I_{\mathbf{q}}\|) I_{\mathbf{q}}$$

• Recompute stencil for every pixel location $\mathbf{p} \in \Omega$

→ slow

(Basic Assignment)

Another view toward Bilateral Filter

• Define feature vector $\mathbf{f_p} \coloneqq \left(\frac{\mathbf{p}}{\sigma_{\rm s}}, \frac{l_{\rm p}}{\sigma_{\rm r}}\right)$ for pixel location \mathbf{p} and intensity $l_{\rm p}$

 Weight of Bilateral Filter is equivalent to Gaussian kernel applied to Euclidean distance in the feature space

$$G_{\sigma_{S}}(\|\mathbf{p} - \mathbf{q}\|)G_{\sigma_{r}}(\|I_{\mathbf{p}} - I_{\mathbf{q}}\|)$$

$$= \exp\left(-\frac{\|\mathbf{p} - \mathbf{q}\|^{2}}{2\sigma_{S}^{2}}\right) \exp\left(-\frac{\|I_{\mathbf{p}} - I_{\mathbf{q}}\|^{2}}{2\sigma_{r}^{2}}\right)$$

$$= \exp\left(-\frac{\|\mathbf{f}_{\mathbf{p}} - \mathbf{f}_{\mathbf{q}}\|^{2}}{2}\right)$$

$$= G_{1}(\|\mathbf{f}_{\mathbf{p}} - \mathbf{f}_{\mathbf{q}}\|)$$

- Bilateral Filter is equivalent to applying Gaussian Filter of radius 1 to sample points $\{f_p\}$ in the feature space
 - → Simpler computation

Bilateral Grid [Paris06; Chen07]

• Define 3D feature space as (X-coord, Y-coord, intensity), map sample points $\{f_p\}$ to 3D grid

• The larger $\sigma_{\rm s}$ & $\sigma_{\rm r}$, the coarser the grid \rightarrow lower comput. cost

Weight map generation using feature space

White scribble → constraint of weight=1
Black scribble → constraint of weight=0

Weight map

Application: color adjustment

- Various names: Edit Propagation, Matting, Segmentation
- Solve Laplace equation on Bilateral Grid

Weight map generation using feature space

Interpolation using RBF [Li10] (Purpose: edit propagation for images/videos)

Interpolation using Hermite RBF [ljiri13] (Purpose: segmentation of CT volume)

https://www.youtube.com/watch?v=mL6ig OaQAA

Extension of Bilateral Filter: Joint (Cross) Bilateral Filter

Photo A: without flash

- © Correct color
- ⊗ Noisy, blurred

Photo F: with flash

- ⊗ Incorrect color
- © Less noisy, sharp

 $JBF_{\sigma_{S}, \sigma_{r}}(A, F)_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma_{S}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(\|F_{\mathbf{p}} - F_{\mathbf{q}}\|) A_{\mathbf{q}}$

After applying JBF

Digital Photography with Flash and No-Flash Image Pairs [Petschnigg SIGGRAPH04] Flash Photography Enhancement via Intrinsic Relighting [Eisemann SIGGRAPH04]

Extension of Bilateral Filter: Non-Local Means Filter

• Define feature space by neighborhood vector $\mathbf{n_p}$ representing 7×7 sub-image centered at \mathbf{p}

$$NLMF_{\sigma}(I)_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{n}_{\mathbf{p}} - \mathbf{n}_{\mathbf{q}}\|) I_{\mathbf{q}}$$

Noisy input

Bilateral

NL Means

Today's topics

• Edge-aware image processing

• Gradient-domain image processing

Scenario: insert source img. into destination img.

Source

Dest.

Simple copying

Boundary blurred

Gradient-domain processing

Scenario: generating panorama from several shots

Simple case of 1D grayscale image

2D case: offset by Laplace Membrane

- Solve Laplace equation under Dirichlet boundary condition
- Fast approximation using Mean Value Coordinates

https://www.youtube.com/watch?v=AXvPeuc-wRw

Gradient-domain processing in general form (not just simple cloning)

Gradient-domain processing in general form (not just simple cloning)

Modify gradients arbitrarily!

Gradient-domain processing in general form (not just simple cloning)

1D case

Find $\{f_i\}$ that minimize

$$\sum_{i} (f_i - f_{i-1} - g_i)^2$$

subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

2D case

Find f(x, y) that minimizes

$$\int_{(x,y)\in\Omega} \|\nabla f(x,y) - \mathbf{g}(x,y)\|^2$$

subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

Basics of Gradient-domain image processing:

Find image f whose gradient best matches user-specified target gradient field g by solving Poisson equation

Solve Poisson equation:

$$\Delta f = \mathbf{\nabla} \cdot \mathbf{g}$$

subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

How to give target gradients: mixing

- Copy source's gradient only when its magnitude is larger
 - → smooth part of source won't be copied

How to give target gradient: Edge Brush

 Copy gradients along object silhouette, paste along brush stroke

Real-time Poisson solver implemented on GPU

https://www.youtube.com/watch?v=9MGjrsPzFc4

How to give target gradient: modify original

Amplify/suppress within selected region

→ Local Tone Mapping

Set to zero except where detected as edges

→ Stylization

Extra: Gradient-domain geometry processing

Gradient-domain geometry processing

Find $\{v_i\}$ that minimize

$$\sum_{(i,j)\in E} w_{ij} \|\mathbf{v}_i - \mathbf{v}_j - \overline{\mathbf{e}_{ij}}\|^2$$
 Edge vector of original shape target gradient

subject to: $\mathbf{v}_c = \mathbf{v}_c^*, c \in I_C$

Poisson equation

A few constraints of vertex positions

→ boundary condition

Mesh editing with poisson-based gradient field manipulation [Yu SIGGRAPH04]

Laplacian surface editing [Sorkine SGP04]

Interfaces and algorithms for the creation, modification, and optimization of surface meshes [Nealen PhD07]

Rotation of local region due to large deformation

- Target gradient needs to be rotated as well
 - Non-linear relation
 - Optimal rotation difficult to find

- Local-global optimization [Sorkine07]
 - Local step:

 Fix vertex positions,
 compute local rotation using SVD

Fix local rotations, compute vertex positions via Poisson equation

https://www.youtube.com/watch?v=ltX-qUjbkdc

GeoBrush: Cloning brush for surface meshes

https://www.youtube.com/watch?v=FPsccn_gG8E

- Split deformation into two steps:
 - 1. Rotation of local region
 - → Fast & approx. computation using cage-based method
 - 2. Accurate offset
 - → Adapt GPU-based Poisson solver (originally for image processing)

