Robotics, Vision & Control notation in LaTex

Peter Corke

Pose	
<pre>\$\pose\$ \$\pose[A]_B\$ \\ \$\pose[A]_B \oplus \pose[B]_C \ominus \pose[C]_D\$ \\ \$\pose \sbullet \vec{v}\$</pre>	$egin{array}{cccc} \xi & ^A\!\xi_B \ ^A\!\xi_B \oplus ^B\!\xi_C \ominus & ^C\!\xi_D \ & \xi \cdot oldsymbol{v} \end{array}$
Coordinate frame	
<pre>\$\cframe{A}\$</pre>	$\{A\}$
Point	
<pre>\$\point{P}\$</pre>	P
Matrices	
<pre>\$\mat{R}\$ \$\mat[A]R\$ \$\mat[A]{R}_B\$</pre>	$egin{aligned} oldsymbol{R}^Aoldsymbol{R}^Aoldsymbol{R}_B\ \hat{oldsymbol{R}}\ oldsymbol{J}\left(oldsymbol{q} ight){}^ooldsymbol{J}\left(oldsymbol{q} ight)\ oldsymbol{0}_{2 imes3} \ oldsymbol{1}_{3 imes3} \end{aligned}$
Vectors	
<pre>\$\vec{v}\$ \$\vec[A]{v}\$ \\ \$\dvec{v}\$ \$\dvec[A]{v}\$ \\ \$\ddvec{v}\$ \$\ddvec[A]{v}\$ \\ \$\evec{v}\$ \$\evec[A]{v}\$ \\ \$\bvec{v}\$ \$\evec[A]{v}\$ \\ \$\hvec{v}\$ \$\hvec[A]{v}\$ \\</pre>	$egin{array}{cccc} oldsymbol{v} & ^A oldsymbol{v} \ oldsymbol{\dot{v}} & ^A oldsymbol{\dot{v}} \ oldsymbol{\dot{v}} & ^A oldsymbol{\dot{v}} \ oldsymbol{ar{v}} & ^A oldsymbol{ar{v}} \ \end{array}$

Quaternions

\$\quat{q} \circ \quat{p}\$

 $\breve{q}\circ \breve{p}$

Unit quaternions

 $\[A]_{q}_B \subset \mathbb{B}_{q}_C$

 ${}^{^{A}}\!\mathring{q}_{B}\circ {}^{^{B}}\!\mathring{q}_{C}$

Skew-symmetric matrices

\$\skx{v}\$ \$\iskx{\mat{A}}\$ \\
\$\sk{v}\$ \$\isk{\mat{A}}\$

 $\begin{matrix} [v]_\times \vee_\times (\boldsymbol{A}) \\ [v] \vee (\boldsymbol{A}) \end{matrix}$

Groups and spaces

```
$\SO{3}, \SE{3}$ \\
$\so{3}, \se{3}$ \\
text mode \SO{3} \\
$\R$ \\
$\cspace$
```

 $\mathbf{SO}(3), \mathbf{SE}(3)$ $\mathbf{so}(3), \mathbf{se}(3)$ text mode $\mathbf{SO}(3)$

 \mathbb{R} \mathcal{C}

Code

```
\begin{Code}
[x,e] = eig(A);
\end{Code}

\begin{CodeNum}
[x,e] = eig(A);
z = x(:,2);
\end{CodeNum}
```

[x,e] = eig(A);

1 [x,e] = eig(A);
2 z = x(:,2);

Other operators

 $\theta_1 \simeq 1 \subset 1 \subset 1$

 $\theta_1 \odot \theta_2$

Units

The object was 12\mm\ across, accelerated at 2.3\unit{m s^{-2}}, the servo interval was 12\ms, and the angle spanned 30\deg.

The object was $12 \,\mathrm{mm}$ across, accelerated at $2.3 \,\mathrm{ms}^{-2}$, the servo interval was $12 \,\mathrm{ms}$, and the angle spanned 30° .

###