RICERCA OPERATIVA

prova scritta del 22 gennaio 2008

GRUPPO B

FOGLIO 1

Nome:

Matricola: | | | |

Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate).

Ogni risposta esatta vale 2 punti, ogni risposta sbagliata vale -1 punto.

- 1. Sia U un insieme finito di \mathbb{R}^n e \mathfrak{I} la famiglia di tutti i sottoinsiemi X di U linearmente dipendenti. Dire se la coppia (U, \mathfrak{I}) :
 - [A] è un matroide
 - [B] gode della proprietà di scambio: infatti se X e Y sono due insieme di vettori linearmente dipendenti con |X| < |Y|, $X \cup \{y\}$ rimane linearmente dipendente qualsiasi sia $y \in Y$. Viceversa, se X è linearmente dipendente non è detto che lo sia anche un suo sottoinsieme (in particolare, l'insieme vuoto è per definizione linearmente indipendente).
 - [C] è subclusiva
- 2. Il vettore $(\frac{1}{4}, 0, \frac{3}{2})$ è combinazione
 - [A] affine
 - [B] convessa
 - [C] conica

dei vettori (2, 0, -1), $(\frac{1}{2}, \frac{1}{2}, 1)$ e $(0, -\frac{1}{2}, 2)$.

3. Scrivere il duale del problema:

min
$$-5x_1 + 2x_2 + 3x_3$$
 max $5y_1 + 2y_2 + 7y_3 - 5y_4$
 $-\frac{1}{2}x_1 + x_2 + 3x_3 \ge 5$ $-\frac{1}{2}y_1 + 2y_3 = -5$
 $x_2 + 2x_3 \ge 2$ $y_1 + y_2 + y_3 \le 2$
 $2x_1 + x_2 + \frac{1}{2}x_3 = 7$ $3y_1 + 2y_2 + \frac{1}{2}y_3 - y_4 \le 3$
 $x_3 \le 5$ $y_1, y_2, y_4 \ge 0$
 $x_2, x_3 \ge 0$

Risolvere il seguente problema. La soluzione viene valutata fino a 4 punti.

4. Applicando il metodo di Fourier-Motzkin, risolvere il seguente problema di Programmazione Lineare, esibendo il valore della soluzione ottima (e delle variabili) qualora esista, ovvero classificando il problema come inammissibile o illimitato.

$$\max 2x_1 + x_2 + 3x_3 x_1 - x_2 + x_3 \le 1 2x_1 + x_2 + 4x_3 \le 3 x_i \ge 0, i = 1, 2, 3$$

\boldsymbol{z}	x_1	$\boldsymbol{x_2}$	x_3	<u><</u>
1	-2	-1	-3	0
0	1	-1	1	1
0	2	1	4	3
0	-1	0	0	0
0	0	-1	0	0
0	0	0	-1	0

z	x_1	x_2	x_3	<u><</u>
1	0	0	1	3
0	3	0	5	4
0	-1	0	0	0
0	2	0	4	3
0	0	0	-1	0

z	x_1	x_2	x_3	<u><</u>
1	0	0	1	3
0	0	0	-1	0
0	0	0	5	4
0	0	0	4	3

1 0	0	0	2
	•	U	3
0 0	0	0	4
0 0	0	0	3

Il valore massimo di z è 3. Le variabili assumono i seguenti valori: $x_1 = 1$, $x_2 = 1$ e $x_3 = 0$.

Risolvere i seguenti problemi. La soluzione viene valutata fino a 6 punti.

5. È geniale, dovreste provarla

Com'è da attendersi, il prezzo di acquisto di un'auto cresce al crescere delle sue prestazioni, in particolare cresce al diminuire del consumo medio dell'auto. D'altra parte il costo di esercizio dell'auto diminuisce evidentemente con il suo consumo medio. Supponiamo che il compratore medio percorra 20.000 km all'anno e acquisti l'automobile pensando di ammortizzarne i costi in 5 anni. La tabella e il grafico seguenti riportano i dati in prezzo $(p, k \in)$ e consumo $(w, lt \times 100 \text{km})$ di alcuni modelli di una stessa fascia.

modello	1	2	3	4	5	6
р	12,4	9,8	8,5	10,4	10,6	8,9
W	4,8	5,2	5,6	5,0	5,1	5,4

costi vs. consumi

Ipotizzando che il carburante oscilli nei prossimi 5 anni intorno a 1,3€/litro, costruire un modello che leghi il prezzo p dell'auto al suo consumo w con una legge del tipo

$$p(w) = a/w + bw + c$$

Formulare come programmazione lineare il problema di determinare a, b e c in modo che la curva p(w) si posizioni a distanza minima dalla nuvola di punti rappresentata in figura, assumendo come distanza del punto (w_k, p_k) dalla curva C il modulo della differenza tra l'ordinata p_k del punto e l'ordinata $a/w_k + bw_k + c$ della curva C nell'ascissa w_k .

Le variabili di decisione principali del problema sono i tre coefficienti a_0 , a_1 , a_2 della parabola cercata C. La distanza da C del punto (p_k, q_k) è data da

$$d_k = |p_k - a/w_k - bw_k - c|$$

Il problema consiste nel calcolare

$$\begin{array}{lll} \min & d_1+d_2+\ldots+d_6 \\ & d_1\geq p_1-a/w_1-bw_1-c & d_1+(1/w_1)a+w_1b+c\geq p_1\\ & d_1\geq a/w_1+bw_1+c-p_1 & d_1-(1/w_1)a-w_1b-c\geq -p_1\\ & \ldots & \mathrm{cio\grave{e}} & \ldots\\ & d_6\geq p_6-a/w_6-bw_6-c\\ & d_6\geq a/w_6+bw_6+c-p_6 & d_6-(1/w_6)a+w_6b+c\geq -p_6\\ & d_6-(1/w_6)a-w_6b-c\geq -p_6 \end{array}$$

Per curiosità, una soluzione ottima del problema fornisce a = 75.65, b = 0.35, c = 0. La curva di regressione ha quindi la forma p = 75.67/w + 0.35w.

Per i primi quattro punti il problema si scrive

```
\begin{array}{lll} \min & d_1+d_2+d_3+d_4 \\ & d_1+14400a_2+120a_1+a_0 & \geq & 116 \\ & d_1-14400a_2-120a_1-a_0 & \geq & -116 \\ & d_2+9604a_2+98a_1+a_0 & \geq & 95 \\ & d_2-9604a_2-98a_1-a_0 & \geq & -95 \\ & d_3+7225a_2+85a_1+a_0 & \geq & 93 \\ & d_3-7225a_2-85a_1-a_0 & \geq & -93 \\ & d_4+10816a_2+104a_1+a_0 & \geq & 98 \\ & d_4-10816a_2-104a_1-a_0 & > & -98 \end{array}
```

Per applicare il metodo di Fourier-Motzkin al sistema di disequazioni riportiamone i coefficienti nella seguente tabella:

<u>z</u>	d_1	d_2	d_3	d_4	a_2	a_1	a_0	<u>></u>
-1	1	1	1	1				0
	1				14.400	120	1	116
	1				-14.400	-120	-1	-116
		1			9.604	98	1	95
		1			-9.604	-98	-1	-95
			1		7.225	85	1	93
			1		-7.225	-85	-1	-93
				1	1.081	104	1	98
				1	-1.081	-104	-1	-98

Eliminando a0 si ottiene

<i>z</i>	d_1	d_2	d_3	d_4	a_2	a_1	a_0	<u>></u>
-1	1	1	1	1				0
					4796	22	0	
	1				14.400	120	1	116
	1				-14.400	-120	-1	-116
		1			9.604	98	1	95
		1			-9.604	-98	-1	-95
			1		7.225	85	1	93
			1		-7.225	-85	-1	-93
				1	1.081	104	1	98
				1	-1.081	-104	-1	-98

6. La classe non è acqua

Per il marketing di un prodotto è spesso indispensabile classificare l'offerta esistente dividendola in gruppi relativamente omogenei. Considerate il seguente listino:

	modello	velocità (km/h)	bagagliaio (lt)
1.	Alfa 145	195	320
2.	Citroen Xsara 1.6	180	408
3.	Fiat Bravo 100	184	280
4.	Hyundai Lantra 1.6	193	324
5.	Lancia Lybra	185	420
6.	Mercedes A160	182	350
7.	Mitsubishi Colt 1.6	185	240
8.	Nissan Almera 1.5	173	355
9.	Opel Astra 1.6	188	370
10.	Peugeot 306 1.6	178	338
11.	Seat Leon 1.6	192	340

Formulate come programmazione lineare 0-1 il problema di suddividere l'insieme dei prodotti del listino nel minimo numero possibile di classi in modo da rispettare i seguenti requisiti:

- a) ogni coppia di elementi della medesima classe non si domina reciprocamente
- b) la differenza di velocità di due qualsiasi elementi di una medesima classe non supera i 5km/h
- c) la differenza tra le capacità dei bagagliai di due qualsiasi elementi di una medesima classe non supera 80 lt.

Suggerimento: utilizzate un opportuno grafo simmetrico.

La soluzione è del tutto simile a quella dell'esercizio corrispondente del gruppo A. Ovviamente cambia il grafo.