CS7.301 (Machine Data and Learning)

Vikrant Dewangan Roll Number - 2018111024 28th April,2020 Assignment - 5, part A

Parameters Involved

• x = 1 - (((2018111024) % 40 + 1) / 100) = 0.75

Thus the agent moves to the state in the direction of the intended action with probability **0.75** and to the state in opposite to the action with probability **0.25** (or to the same state if at extreme states).

• y = (24)%3 = 0

Thus the following observation table is chosen as reference -

P (observation = Red State = Red)	0.9
P (observation = Green State = Red)	0.1
P (observation = Green State = Green)	0.85
P (observation = Red State = Green)	0.15

Table 0

1. Formulating the POMDP problem

We would need to formally define the problem as a POMDP problem. Accordingly, each PoMDP can be defined as -

POMDP:
$$<$$
 S, A, P, R, Ω , O $>$

- **S (set of states)**: { S1, S2, S3, S4, S5 }

- A (set of actions): { Left, Right }
- **P (transition probabilities table)**: Given below is the transition table. Each cell (i,j) under action a represents transition probability P(Sj|Si,a) -

Left	S1	S2	S3	S4	S5
S1	0.75	0.25	0.0	0.0	0.0
S2	0.75	0.0	0.25	0.0	0.0
S3	0.0	0.75	0.0	0.25	0.0
S4	0.0	0.0	0.75	0.0	0.25
S5	0.0	0.0	0.0	0.75	0.25

Right	S1	S2	S3	S4	S5
S1	0.25	0.75	0.0	0.0	0.0
S2	0.25	0.0	0.75	0.0	0.0
S3	0.0	0.25	0.0	0.75	0.0
S4	0.0	0.0	0.25	0.0	0.75
S5	0.0	0.0	0.0	0.25	0.75

- R (set of rewards): Information not provided here.
- Ω (set of observations): { red, green }
- O (table of observation probabilities): Given below is the observation table. Each cell (i,o) under action a represents observation probability O(o|Si,a)

<!--- IGNORE THIS RA NOT SURE

Left	Red	Green
S1	0.9	0.1
S2	0.75 × 0.9 + 0.25 × 0.15 = 0.7125	0.75 × 0.1 + 0.25 × 0.85 = 0.2875
S3	0.75 × 0.9 + 0.25 × 0.15 = 0.7125	0.75 × 0.1 + 0.25 × 0.85 = 0.2875
S4	0.75 × 0.15 + 0.25 × 0.9 = 0.3375	0.75 × 0.85 + 0.25 × 0.1 =0.6625
S5	0.75 × 0.15 + 0.25 × 0.9 = 0.3375	0.75 × 0.85 + 0.25 × 0.1 =0.6625

Right	Red	Green
S1	0.9	0.1
S2	0.75 × 0.1 + 0.25 × 0.85 = 0.2875	0.0
S3	0.75 × 0.1 + 0.25 × 0.85 = 0.2875	0.25
S4	0.75 × 0.9 + 0.25 × 0.15 = 0.3	0.75 × 0.1 + 0.25 × 0.85 = 0.7
S5	0.9	0.1

---->

Action 1

Initial belief state $B = \{0.33333, 0.33333, 0.0, 0.0, 0.33333\}$. Agent took the action **Right** and observed **Red**.

We have the formula,

$$b(s') = \alpha P(e \mid s') \sum P(s' \mid s, a) b(s)$$

 α is the normalizing constant and e is the evidence we have. We shall compute the numerator for each one of the states -

1. S1

```
b(S1) = \alpha \ P(Red \mid S1) \ (0.333 \times P(S1 \mid S1, right) + 0.333 \times P(S1 \mid S2, right) + 0.0 \times P(S1 \mid S3, right) + 0.0 \times P(S1 \mid S4, right) + 0.333 \times P(S1 \mid S5, right))
= \alpha \ (0.9) \ (0.16665)
= \alpha \times 0.14999
```

2. S2

b(S2) =
$$\alpha$$
 P(Red | S2) (0.333 x P(S2|S1,right) + 0.333 x P(S2|S2,right) + 0.0 x P(S2|S3,right) + 0.0x P(S2|S4,right) + 0.333 x P(S2|S5,right)) = α (0.9) (0.24999) = α x 0.22499

3. S3

$$b(S3) = \alpha \ P(Red \mid S3) \ (0.333 \times P(S3 \mid S1, right) + 0.333 \times P(S3 \mid S2, right) + 0.0 \times P(S3 \mid S3, right) + 0.0 \times P(S3 \mid S4, right) + 0.333 \times P(S3 \mid S5, right))$$

$$= \alpha \ (0.15) \ (0.24999)$$

$$= \alpha \times 0.03749$$

4. S4

$$b(S4) = \alpha P(Red \mid S4) (0.333 \times P(S4 \mid S1, right) + 0.333 \times P(S4 \mid S2, right) + 0.0 \times P(S4 \mid S3, right) + 0.0 \times P(S4 \mid S4, right) + 0.333 \times P(S4 \mid S5, right))$$

$$= \alpha (0.15) (0.08333)$$

$$= \alpha \times 0.01249$$

5. S5

b(S5) =
$$\alpha$$
 P(Red | S5) (0.333 x P(S5|S1,right) + 0.333 x P(S5|S2,right) + 0.0 x P(S5|S3,right) + 0.0x P(S5|S4,right) + 0.333 x P(S5|S5,right)) = α (0.9) (0.24999) = α x 0.22499

From this we get

$$\alpha = 1 / (0.64935)$$

= 1.53857

Thus we get beliefs states as

```
b(s) = { 0.23077,0.34616,0.05768,0.01923,0.34616 }
```

Action 2

Agent took the action left and observed Green.

1. S1

```
b(S1) = \alpha \ P(Green \mid S1) \ (0.23076 \times P(S1 \mid S1, left) + 0.34615 \times P(S1 \mid S2, left) + 0.0577 \times P(S1 \mid S3, left) + 0.01923 \times P(S1 \mid S4, left) + 0.34615 \times P(S1 \mid S5, left)) \\ = \alpha \ (0.1) \ (0.43269) \\ = \alpha \times 0.04327
```

```
2. S2
                                                                                                                                                                                   b(S2) = \alpha P(Green \mid S2) (0.333 \times P(S2|S1,left) + 0.333 \times P(S2|S2,left) + 0.0 \times P(S2|S2
                                                                                           P(S2|S3,left) + 0.0x P(S2|S4,left) + 0.333 x P(S2|S5,left))
                                                                                                                                                                                                                                                                       = \alpha (0.1) (0.10095)
                                                                                                                                                                                                                                                                       = \alpha \times 0.01009
                                                                                                                                     3. S3
                                                                                                                                                                                   b(S3) = \alpha P(Green \mid S3) (0.333 \times P(S3|S1,left) + 0.333 \times P(S3|S2,left) + 0.0 \times P(S3|S2
                                                                                           P(S3|S3,left) + 0.0x P(S3|S4,left) + 0.333 \times P(S3|S5,left)
                                                                                                                                                                                                                                                                       = \alpha (0.85) (0.10096)
                                                                                                                                                                                                                                                                       = \alpha \times 0.08581
                                                                                                                                     4. S4
                                                                                                                                                                                   b(S4) = \alpha P(Green \mid S4) (0.333 \times P(S4|S1,left) + 0.333 \times P(S4|S2,left) + 0.0 \times P(S4|S2
                                                                                         P(S4|S3,left) + 0.0x P(S4|S4,left) + 0.333 x P(S4|S5,left))
                                                                                                                                                                                                                                                                       = \alpha (0.85) (0.27404)
                                                                                                                                                                                                                                                                       = \alpha \times 0.23293
                                                                                                                                     5. S5
                                                                                                                                                                                   b(S5) = \alpha P(Green \mid S5) (0.333 \times P(S5|S1,left) + 0.333 \times P(S5|S2,left) + 0.0 \times P(S5|S2
                                                                                         P(S5|S3,left) + 0.0x P(S5|S4,left) + 0.333 x P(S5|S5,left))
                                                                                                                                                                                                                                                                       = \alpha (0.1) (0.091347)
                                                                                                                                                                                                                                                                       = \alpha \times 0.00913
                                                                                         From this we get
                                                                                                                                                                                                                                        \alpha = 1 / (0.38123)
                                                                                                                                                                                                                                                                       = 2.62309
                                                                                         The new belief states as
                                                                                                                                                                                   b(s) = \{0.11350, 0.02646, 0.22508, 0.61099, 0.02394\}
Action 3
 Agent took the action Left and observed Green.
                                                                                                                                     1. S1
                                                                                                                                                                                   b(S1) = \alpha P(Green \mid S1) (0.23076 \times P(S1|S1,left) + 0.34615 \times P(S1|S2,left) + 0.0577 \times P(S1|S2,
                                                                                         P(S1|S3,left) + 0.01923 \times P(S1|S4,left) + 0.34615 \times P(S1|S5,left)
                                                                                                                                                                                                                                                                       = \alpha (0.1) (0.10497)
                                                                                                                                                                                                                                                                       = \alpha \times 0.01049
                                                                                                                                     2. S2
                                                                                                                                                                                   b(S2) = \alpha P(Green \mid S2) (0.333 \times P(S2|S1,left) + 0.333 \times P(S2|S2,left) + 0.0 \times P(S2|S2
                                                                                         P(S2|S3,left) + 0.0x P(S2|S4,left) + 0.333 x P(S2|S5,left))
                                                                                                                                                                                                                                                                       = \alpha (0.1) (0.19718)
                                                                                                                                                                                                                                                                       = \alpha \times 0.01971
```

3. S3

```
b(S3) = \alpha \ P(Green \mid S3) \ (0.333 \times P(S3 \mid S1, left) + 0.333 \times P(S3 \mid S2, left) + 0.0 \times P(S3 \mid S3, left) + 0.0 \times P(S3 \mid S4, left) + 0.333 \times P(S3 \mid S5, left))
= \alpha \ (0.85) \ (0.46485)
= \alpha \times 0.39512
```

4. S4

$$b(S4) = \alpha \ P(Green \mid S4) \ (0.333 \times P(S4 \mid S1, left) + 0.333 \times P(S4 \mid S2, left) + 0.0 \times P(S4 \mid S3, left) + 0.0 \times P(S4 \mid S4, left) + 0.333 \times P(S4 \mid S5, left))$$

$$= \alpha \ (0.85) \ (0.07422)$$

$$= \alpha \times 0.06309$$

5. S5

$$b(S5) = \alpha \ P(Green \mid S5) \ (0.333 \times P(S5 \mid S1, left) + 0.333 \times P(S5 \mid S2, left) + 0.0 \times P(S5 \mid S3, left) + 0.0 \times P(S5 \mid S4, left) + 0.333 \times P(S5 \mid S5, left))$$

$$= \alpha \ (0.1) \ (0.15873)$$

$$= \alpha \times 0.01587$$

Thus, we get

$$\alpha = 1 / (0.50428)$$

= 1.98302

Thus the new belief state is

b(s) = { 0.020801, 0.03908, 0.78353, 0.12510, 0.03147 }