Suffix Automaton

Andrés Valencia Oliveros^{1,2}

Facultad de Ingeniería, Diseño e Innovación Institución Universitaria Politécnico Grancolombiano Bogotá, Colombia

Resumen		
Keywords:		

1. Introducción

2. Grafo dirigido

2.1. Grafo dirigido o digrafo

Un grafo G(V, E) es una colección de puntos, llamados vértices o nodos $V = \{v_1, v_2, \dots\}$, y segmentos de línea que conectan esos puntos, llamados aristas o arcos (en inglés edges) $E = \{e_1, e_2, \dots\}$; cada arista e tiene dos puntos finales, que son vértices.

Un digrafo o grafo dirigido G(V, E) se define de manera similar a un grafo, excepto que el par de *puntos* finales (u, v) de cada arista ahora está ordenado. Se escribe $u \stackrel{\mathrm{e}}{\to} v$, dónde u es el vértice inicial de e; y v es el vértice final de e. Se dice que la arista e está dirigida de u a v [1].

 $^{^{1}}$ $\operatorname{GitHub:}$ anvalenciao

 $^{^2}$ Email: anvalenciao@poligran.edu.co

Figura 1. Tipos de grafos. (a) No dirigido. (b) Dirigido o digrafo.

3. Autómata finito determinista

Formalmente, un autómata finito es una 5-tupla $(Q, \Sigma, q_0, \delta, F)$ donde:

- \blacksquare Q, es un conjunto finito de estados;
- \bullet Σ , es un conjunto finito de símbolos llamado alfabeto;
- $q_0 \in Q$ es el estado inicial;
- $\delta \colon Q \times \Sigma \to Q$ es una función de transición;
- $F \subseteq Q$ es un conjunto de estados finales o de aceptación.

Un autómata finito determinista (AFD), es un autómata/máquina que tiene un número finito de estados y además es un sistema determinista, es decir, para cada símbolo de entrada, se puede determinar el estado al que se moverá el autómata [2].

Un AFD está representado por un grafo dirigido llamado diagrama de estado.

- Los estados son representados por vértices o nodos $Q = \{S_1, S_2, S_3, \dots\}$.
- Las aristas o arcos etiquetados con un alfabeto $\Sigma = \{0, 1\}$, representan las transiciones, $\delta(S_1, 0) = S_3, \delta(S_1, 1) = S_2, \delta \dots$
- lacktriangle El estado inicial q_0 se denota por una sola arista entrante vacía.
- \blacksquare El o los estados finales F están indicados por círculos dobles.

3.1. Ejemplo

El siguiente ejemplo es de un AFD L, con un alfabeto binario, que reconoce el lenguaje regular conformado exclusivamente por las cadenas con un número par de ceros y un número par de unos.

 $M = (Q, \Sigma, q_0, \delta, F)$ donde:

- $Q = \{S_1, S_2, S_3, S_4\}$
- $\Sigma = \{0, 1\}$
- $q_0 = S_1$
- $F = \{S1\}$
- $\bullet \delta : \delta(S_1,0) = S_3, \delta(S_1,1) = S_2, \delta(S_2,0) = S_4, \delta(S_2,1) = S_1, \delta(S_3,0) = S_1, \delta(S_3,1) = S_4, \delta(S_4,0) = S_2, \delta(S_4,1) = S_3$

Figura 2. El diagrama de estado de ${\cal L}$

El lenguaje reconocido por L es el lenguaje regular dado por la expresión regular:

$$\wedge (00|11|(01|10)(00|11)*(01|10))*$$

Cadena de prueba:

1001101011001010010001

4. Autómata de sufijo

En el contexto de la teoría de autómatas, un autómata de sufijo es el autómata finito determinista

4.1. Propiedades

5. Algoritmo

Glosario de términos

alfabeto Conjunto finito de símbolos. Un alfabeto se indica normalmente con Σ , que es el conjunto de letras en un alfabeto. 2

puntos finales Dos vértices conectados por una arista. 1

símbolo Un dato arbitrario que tiene algún significado o efecto en la máquina. A estos símbolos también se les llama "letras" o "átomos". 2

Referencias

- [1] S. Even, Graph algorithms. Cambridge University Press, 2011.
- [2] Wikipedia, "Autómata finito wikipedia, la enciclopedia libre," 2020.