WORKSHEET II_Keys

1. On a 90 MHz spectrometer, calculate the frequency at which a proton absorbs if it appears at 4.20 ppm.

 $\delta(\text{ppm}) = \upsilon_{\text{sample}} / \upsilon_{\text{machine}}, \, \text{meaning that } \upsilon_{\text{sample}} = \delta(\text{ppm}) \, \, \text{x} \, \, \upsilon_{\text{machine}}$

 $= 4.20 \times 10^{-6} \times 90 \times 10^{6} Hz = 378 Hz.$

2. Using a 60 MHz spectrometer, the protons in dichloromethane appear at 5.30 ppm. When the same sample is placed in a 100 MHz instrument, where does the signal appear?

- **A)** 8.33
- B) 5.30
- **C)** 3.18
- **D)** cannot be determined from information given

The δ scale is the same for any instrument

3. State the relationship between the protons indicated in the structure below (as: equivalent, enantiotopic, diastereotopic, or unrelated)

A H_{C,||}H_bO

H_a and H_b = Unrelated

H_a and H_c = Unrelated

H_a and H_d = Enantiotopic

 H_b and H_c = Diastereotopic

H_b and H_d = Unrelated

 H_c and H_d = Unrelated

B Ha Hb Hc Br

H_a and H_b = Diastereotopic

H_a and H_c = Unrelated

 H_b and H_c = Unrelated

C Ha Hb O

H_a and H_b = Enantiotopic

H_a and H_b = Unrelated

H_a and H_c = Diastereotopic

H_a and H_d = Enantiotopic

 H_b and H_c = Unrelated

H_b and H_d = Unrelated

 H_c and H_d = Diastereotopic

 H_a and H_b = Equivalent or Homotopic

H_a and H_b = Unrelated

4. The chair form of cyclohexane has protons in two distinct environments, axial and equatorial. When the proton NMR of cyclohexane is run on a 100-MHz instrument at 23°C, only one signal for the compound is observed. Explain this apparent contradiction.

The two chair conformers of cyclohexane interconvert into each other as faster as the temperature increases. At very low temperature, the interconversion is so slow that axial hydrogens are distinguishable from the equatorial ones, but as it come rises toward room temperature, the interconversion is too fast to observe the equatorial protons from the axial ones. As a result, only one signal is observed for all of them.

5. How might the proton spectrum of ultrapure dimethylamine, $(CH_3)_2NH$, differ from the spectrum of the same compound to which D_2O has been added?

In the absence of D₂O, the NH proton is observed as a broad singlet. However, in the presence of D₂O, NH proton is interconverted with deuterium, which is NMR inactive, and as such, the NH signal disappears.

6. Predict the number of signals expected (disregarding splitting) in the ¹H spectrum of the following compounds:

A *m*-xylene (1,3-dimethylbenzene)

4 signals are observed

C dibutyl ether

4 signals are observed

E *m*-dichlorobenzene (1,3-dichlorobenzene)

3 signals are observed

7. Predict the number of signals expected, their splitting, and their relative area in the ¹H-NMR spectrum of the following compounds

B *o*-chlorophenol (2-chlorophenol)

Technically 5 signals are expected, but only 2 or 3 signals will be observed due to signal overlap.

D 1,1-dimethylcyclobutane

3 signals are observed

Α

δ(ppm): 1.10 (3H, triplet), 3.30 (3H, singlet), 3.50 (2H, quartet)

В

δ(ppm): 1.21 (9H, singlet), 9.52 (1H, singlet)

C

 $\delta(ppm)$: 0.86 (9H, doublet), 2.01 (1H, multiplet)

D

δ(ppm): 3.66 (4H, singlet)

- 8. Deduce the identity of the following compound from the ¹H-NMR data given.
- (a) $C_3H_3Cl_5$: δ 4.5 (1H, triplet), 6.1 (2H, doublet) (ppm)

 $NI = 3 + 1 - \frac{1}{2}8 = 0$

(b) C_4H_7BrO : δ 2.2 (3H, singlet), 3.5 (2H, triplet), 4.5 (2H, triplet) (ppm)

 $NI = 4 + 1 - \frac{1}{2}8 = 1$

(c) C₃H₆Br₂: δ 2.4 (2H, quintet), 3.5 (4H, triplet) (ppm)

$$NI = 3 + 1 - \frac{1}{2} 8 = 0$$

(d) C₅H₁₀O: δ 1.1 (6H, doublet), 2.2 (3H, singlet), 2.5 (1H, septet) (ppm)

 $NI = 5 + 1 - \frac{1}{2} \cdot 10 = 1$

(e) $C_6H_8O_4$: δ 3.9 (6H, singlet), 6.1 (2H, singlet) (ppm)

$$NI = 6 + 1 - \frac{1}{2} 8 = 3$$

(f) $C_7H_{12}O_4$: δ 1.3 (6H, triplet), 3.4 (2H, singlet), 4.2 (4H, quartet) (ppm)

$$NI = 7 + 1 - \frac{1}{2} \cdot 12 = 2$$

(g) $C_5H_{12}O$: δ 1.0 (3H, triplet), 1.2-1.8 (6H, multiplet), 3.0 (1H, broad singlet), 3.8 (2H, triplet) (ppm)

$$NI = 5 + 1 - \frac{1}{2} 12 = 0$$

(h) $C_7H_7NO_3$: δ 3.9 (3H, singlet), 6.9 (2H, doublet), 8.1 (2H, doublet) (ppm)

$$NI = 7 + 1 - \frac{1}{2} + \frac{1}{2} = 5$$

$$O_2N$$
 OCH₃

(i) C₈H₁₈O: δ 0.89 (6H, doublet), 1.87 (1H, multiplet), 3.17 (2H, doublet)(ppm)

 $NI = 8 + 1 - \frac{1}{2} \cdot 18 = 0$

(j) C₆H₁₀O₂: δ 2.19 (3H, singlet), 2.70 (2H, singlet) (ppm)

 $NI = 6 + 1 - \frac{1}{2} \cdot 10 = 2$

(k) $C_4H_{11}N$: δ 0.90 (3H, triplet), 1.07 (3H, doublet), 1.14 (2H, broad singlet), 1.34 (2H, multiplet), 2.79 (1H, multiplet) (ppm)

 $NI = 4 + 1 - \frac{1}{2} 11 + \frac{1}{2} = 0$

9. What is the approximate chemical shift of an alkynyl carbon in ¹³C-NMR spectroscopy?

- A) 10 ppm
- B) 30 ppm
- C) 70 ppm
- D) 120 ppm
- E) 200 ppm

10. Predict the number of signals expected in the proton spin decoupled ¹³C-NMR spectrum of the following compounds:

(a) o-diethylbenzene (1,2-diethylbenzene). 5 signals

(b) *p*-diethylbenzene (1,4-diethylbenzene). **4 signals**

11. Predict the number of signals expected (disregarding splitting) in the ¹H-NMR and in the proton spin decoupled ¹³C NMR spectra of the compound shown below.

12. Deduce the identity of the following compound from the 13 C NMR data given. C_9H_{12} : δ 21.3 (quartet), 127.2 (doublet), 138.0 (singlet) (ppm)

$$NI = 9 + 1 - \frac{1}{2}12 = 4$$

- 13. Deduce the identity of the following compound from the given spectral data.
- (a) $C_7H_{10}O_2$: ¹H-NMR, δ 1.16 (3H, singlet), 2.21 (2H, singlet) ¹³C-NMR: δ 216.25 (singlet), 52.57 (singlet), 34.51 (triplet), 20.22 (quartet) (ppm)

$$NI = 7 + 1 - \frac{1}{2} \cdot 10 = 3$$

(b) $C_3H_4BrN: {}^1H-NMR$, $\delta 2.98$ (2H, triplet), 3.53 (2H, triplet) ${}^{13}C-NMR: \delta 21.05$ (triplet), 23.87 (triplet), 118.08 (singlet) (ppm); IR, 2963, 2254 cm ${}^{-1}$

$$NI = 3 + 1 - \frac{1}{2} + \frac{1}{2} = 2$$

(c) $C_5H_{10}O$: 1H -NMR, δ 1.2 (6H, doublet), 2.1 (3H, singlet), 2.8 (1H, septet) (ppm) IR: 2980, 1710 cm $^{-1}$; MS, m/z 71, 43

$$NI = 5 + 1 - \frac{1}{2} \cdot 10 = 1$$

(d) C_8H_{10} : 1H -NMR, δ 1.20 (3H, triplet), 2.60 (2H, quartet), 7.12 (5H, multiplet) (ppm) IR: 3050, 2970, 1600 cm $^{-1}$; MS, m/z 91

$$NI = 8 + 1 - \frac{1}{2} \cdot 10 = 4$$

(e) $C_4H_8O_2$: ¹H-NMR (δ) 1.23 (3H, triplet), 2.00 (3H, singlet), 4.02 (2H, quartet) (ppm) IR: 2980, 1740 cm⁻¹

 $NI = 4 + 1 - \frac{1}{2}8 = 1$

(f) C_8H_{14} : IR (cm⁻¹): 2950, 2180; ¹H-NMR (δ): 0.9 (3H, t), 1.0 (9H, s), 2.3 (2H, q) (ppm).

 $NI = 8 + 1 - \frac{1}{2} 14 = 2$

$$\rightarrow$$
 $=$

(g) $C_4H_8O_3$: IR (cm⁻¹): 2800-3300 (broad), 2950, 1750; ¹³C-NMR (δ): 17.7 (q), 65.4 (q), 72.3 (d), 210.8 (s) (ppm)

 $NI = 4 + 1 - \frac{1}{2} 8 = 1$

(h) C_6H_{10} : IR (cm⁻¹): 2950, 2230; ¹H-NMR (δ): 2.0 (1H, septet), 1.8 (3H, s), 0.9 (6H, d) ppm ¹³C-NMR (δ): 78, 72, 45, 18, 15 ppm

 $NI = 6 + 1 - \frac{1}{2} \cdot 10 = 2$

(i) $C_5H_8Cl_2$: IR (cm⁻¹): 2950; ¹H-NMR (δ): 1.4 (4H, t), 1.2 (4H, t) ppm; ¹³C-NMR (δ): 62, 26, 23 ppm

 $NI = 5 + 1 - \frac{1}{2} \cdot 10 = 1$

(j) $C_7H_{14}O_2$: IR (cm⁻¹): 2950, 1740; ¹H-NMR (δ): 0.9 (9H, s), 1.0 (3H, t), 2.3 (2H, q) ppm ¹³C-NMR (δ): 185, 78, 29, 14, 12 ppm

 $NI = 7 + 1 - \frac{1}{2} \cdot 14 = 1$

(k) $C_5H_{10}O$: IR (cm⁻¹): 2950, 1720; ¹H-NMR (δ): 2.6 (1H, septet), 2.1 (3H, s), 1.0 (6H, d) ppm ¹³C-NMR (δ): 195, 42, 18, 11 ppm

 $NI = 5 + 1 - \frac{1}{2} \cdot 10 = 1$

(I) C₉H₇CI: IR (cm⁻¹): 3050, 2950, 2220, 1620; ¹H-NMR (d): 7.8 (2H, d), 7.2 (2H, d), 2.1 (3H, s) ppm ¹³C-NMR: 140, 132, 125, 122, 88, 83, 18 ppm

 $NI = 9 + 1 - \frac{1}{2}8 = 6$

(m) $C_7H_{16}O$: IR (cm⁻¹): 3200-3600 (broad), 2950; ¹H-NMR (δ): 2.9 (1H, broad s), 1.2 (6H, q), 0.9 (9H, t) ppm; ¹³C-NMR (δ): 70, 25, 12 ppm

 $NI = 7 + 1 - \frac{1}{2} \cdot 16 = 0$

(n) $C_5H_{10}O$: IR (cm⁻¹): 2950; ¹H-NMR (δ): 3.5 (4H, s), 0.9 (6H, s) ppm; ¹³C-NMR (δ): 64, 41, 12 ppm

$$NI = 5 + 1 - \frac{1}{2} \cdot 10 = 1$$

(o) $C_7H_{16}O$: IR (cm⁻¹): 3200-3600 (broad), 2950; ¹H-NMR (δ): 2.8 (1H, broad s), 1.0 (6H, s), 0.9 (9H, s) ppm; ¹³C-NMR (δ): 68, 39, 16, 13 ppm

$$NI = 7 + 1 - \frac{1}{2} \cdot 16 = 0$$

14. Deduce the identity of the following compound from the ¹H- NMR spectrum and the data given.

A $C_{10}H_{12}O_2$

$$NI = 10 + 1 - \frac{1}{2} 12 = 5$$

B
$$C_{10}H_{12}O$$

NI = 10 + 1 - ½ 12 = 5

\mathbf{C} C_6H_6NCI

$$NI = 6 + 1 - \frac{1}{2}7 + \frac{1}{2} = 4$$

$$CI$$
 NH_2

