

Darshan Institute of Engineering & Technology B.Tech. | Sem-3 | Winter-2023

Course Code: 2101HS302Date: 07-11-2023Course Name: Discrete MathematicsDuration: 150 Minutes

Total Marks : 70

3

Instructions:

1. Attempt all the questions.

2. Figures to the right indicates maximum marks.

3. Make suitable assumptions wherever necessary.

- **Q.1** (A) For $A = \{x : x \text{ is a divisor of } 42\}$, $B = \{x : x \text{ is a divisor of } 21\}$ and $C = \{x : x \text{ is a divisor of } 7\}$, Verify the following identities.
 - (1) $A (B \cap C) = (A B) \cup (A C)$
 - (2) $A (B \cup C) = (A B) \cap (A C)$
 - **(B)** Draw Venn Diagram for identity: $B A = B \cap A'$.

OR

State and prove De Morgan's law without using Venn diagram.

- (c) (i). In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
 - (ii). Find gcd (2260, 816) by using Euclidean Algorithm.

OR

- (i) Let $f: \mathbb{R} \to \mathbb{R}$ defiend as $f(x) = \frac{x+2}{4}$ for all $x \in \mathbb{R}$. State whether the function f is bijective or not. If yes, then find f^{-1} .
- (ii) Using mathematical induction, prove that the sum of the squares of the first n positive integers is $\frac{n(n+1)(2n+1)}{6}$.
- **Q.2** (A) Define complemented lattice. Is $\langle S_{30}, D \rangle$ complemented lattice?
 - (B) Solve the recurrence relation: $a_n = 3a_{n-1} + 2$; $n \ge 1$ with $a_0 = 1$ using method of generating function.

OR

Solve the recurrence relation: $a_n=3a_{n-1}-2a_{n-2}$; $a_1=-2$, $a_2=4$ using undetermined coefficient method.

(C) Let $X = \{1,2,3,4,5,6\}$ and $R = \{(x,y): x-y \text{ is divisible by 2}\}$. Show that R is an equivalence relation. Also draw the graph of R.

OR

Prove that $\langle A = \{ 1, 2, 3, 6, 12, 18 \}, D \rangle$ is a poset, Where D is relation of division and draw Hasse Diagram.

- **Q.3** (A) Construct the truth table for the compound proposition $(p \to q) \rightleftarrows (\sim p \lor \sim q)$. 4
 - **(B)** Define simple graph, directed graph and mixed graph.

OR

3

7

Define compound proposition, biconditional and predicate formula.

- (c) (i) Check whether $(p \rightarrow q) \equiv (\sim p \lor q)$ or not?
 - (ii) Find DNF for the compound proposition $\sim (p \rightarrow (\sim p \land q))$.

ΩR

Check whether the compound propositions $(p \to q) \land (q \to r)$ and $(p \to r)$ are tautologically imply or not?

Q.4 (A) Find the (i) an adjacency matrix (ii) path matrix (iii) geodesic and distance of from v_1 to v_5 .

(B) A graph G has 13 edges, 2 vertices of degree 4 and other vertices of degree 3 then find the number of vertices in graph G.

OR

Draw the graph with 6 vertices which is bipartite graph but not complete graph.

(C) (i) Check whether the following graphs G & H are isomorphic or not? Justify 7

(ii) Find the node base of the following diagraph.

(i) Apply Warshall's algorithm to produce a path matrix for given digraph.

Q.5 (A) Write the composition table for binary operation (i) additive modulo 5 and (ii) 4 multiplicative modulo 5 for the set { 0, 1, 2, 3, 4 }.

(B) Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 1 & 6 & 2 \end{pmatrix} \in S_6 \&$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 4 & 6 & 2 \end{pmatrix} \in S_6, \text{ then find } \sigma^{-1}, \ \sigma\tau, \ o(\tau).$$
OR

Find all subgroups of $(\mathbb{Z}_{12}, +_{12})$.

- (C) (i) Show that fourth root of unity with multiplication is group.
 - (ii) if the binary operation * is defined on $R \times R$ by (a, b) * (c, d) = (ad + bc, bd) & * is associative then find the value of (1, 2) * (3, 5) * (3, 4).

OR

7

(i) Consider the binary operation * on the set $G = \{a, b, c, d\}$ defined by following composition table

ronownig composition table					
	*	a	В	С	d
	а	а	С	b	d
	b	d	A	b	С
	С	С	D	a	b
	d	d	В	a	С

Is it commutative? justify

Is it associative? justify

(ii) Show that cube root of unity with multiplication is group.