MANIFOLD

用户手册 [٧1.0]

2015.11

○ 快速搜索关键词

PDF 电子文档可以使用查找功能搜索关键词。例如在 Adobe Reader 中, Windows 用户使 用快捷键 Ctrl+F, Mac 用户使用 Command+F 即可搜索关键词。

♥ 点击目录转跳

用户可以通过目录了解文档的内容结构,点击标题即可跳转到相应页面。

阅读提示

符号说明

⊘ 禁止 ⚠ 重要注意事项 ◇ 操作、使用提示 □ 词汇解释、参考信息

免责声明

感谢您购买大疆妙算(以下简称"妙算")。请根据当地无线电管制规定使用妙算。在使用之前, 请仔细阅读本声明。一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守本说明 安装和使用该产品。因用户不当使用、安装、总装、改装(包括使用非指定的 DJI 零配件如: 电机、电调、螺旋桨等)造成的任何结果或损失,深圳市大疆创新科技有限公司及其关联公司 将不承担任何法律责任。

DJI 为深圳市大疆创新科技有限公司所有的注册商标。本文出现的产品名称、品牌等,均为其所 属公司的商标或注册商标。本产品及手册为深圳市大疆创新科技有限公司版权所有。未经许可, 不得以任何形式复制翻印。

关于不同语言版本的免责声明可能存在的语义差异,中国大陆地区以中文版为准,其他地区以 英文版为准。

目 录

阅读提示	2
符号说明	2
免责声明	2
产品概述	4
硬件接口	4
系统设置	8
基本连接	8
root 密码设置	8
网络设置	8
性能最大化	9
安装软件	9
安装 CUDA	9
安装 OpenCV4tegra	9
安装 ROS	10
系统镜像	10
下载安装包	10
解压安装包	10
进入恢复模式	10
制作系统镜像	11
恢复系统镜像	11
编译内核	12
规格参数	12

产品概述

妙算为 DJI 第一代 On-board SDK 开发平台,配备了 NVIDIA 公司的低功耗高性能嵌入式芯片 Tegra K1作为核心处理器,具备最高达到326GFLOPS的计算能力。 妙算与 DJI M100 经纬飞 行平台高度集成,可以为用户提供便捷的开发途径。

硬件接口

接口总览

自定义扩展接口

自定义扩展接口的位置与接口引脚信息如下。

扩展口位置

扩展接口引脚描述

引脚#	信号	电压
1	3.3V_SYS	3.3V-Power
2	SPI4_CS3_L	1.8V
3	3.3V_SYS	3.3V-Power
4	SPI4_SCK	1.8V
5	1.8V_VDDIO	1.8V-Power
6	SPI4_MOSI	1.8V
7	1.8V_VDDIO	1.8V-Power
8	SPI4_MISO	1.8V
9	NULL	-
10	SPI4_CS0_L	1.8V
11	GND	OV
12	GPIO1_IN	3.3V
13	UART1_RXD_CON	3.3V

引脚#		电压
14	GPIO2_OUT	3.3V
15	UART1_TXD_CON	3.3V
16	GND	OV
17	NULL	-
18	PWR_I2C_SCL	1.8V
19	GND	OV
20	PWR_I2C_SDA	1.8V
21	UART4_RXD_CON	3.3V
22	GEN1_I2C_SCL	1.8V
23	UART4_TXD_CON	3.3V
24	GEN1_I2C_SDA	1.8V
25	GND	OV
26	GND	OV

- <u>^</u> •
- •UART1 在系统内核中对应的设备是 /dev/ttyTHS0。UART4 是内核的控制台,对应的设备是 /dev/ttyS0。
 - I2C 的运行最大频率是 100kHz/400kHz(Standard/Fast Mode)。GEN1_I2C 在内核对应的设备为 /dev/i2c-0。PWR_I2C 在内核对应的设备为 /dev/i2c-4。
 - •SPI 运行最大频率是 50MHz。
 - GPIO1_IN 在内核中对应的设备目录为 /sys/class/gpio/gpio157。GPIO2_OUT 在内核中对应的设备目录为 /sys/class/gpio/gpio158。

UART 2/UART 3 串口

使用 UART 2或 UART 3串口以连接经纬 M100飞行平台上的 UART 串口。

UART 2 引脚描述

引脚#	信号	电压	引脚#	信号	电压
1	NULL	-	4	GND	OV
2	NULL	-	5	TXD	3.3V
3	NULL	-	6	RXD	3.3V

⚠ •UART2 在系统内核对应的设备是 /dev/ttyTHS1。

UART 3 引脚描述

引脚#	信号	电压	引脚#	信号	电压
1	NULL	-	3	TXD	3.3V
2	RXD	3.3V	4	GND	OV

▲ •UART3 在内核对应的设备是 /dev/ttyTHS2。

CAM IN/CAM OUT 扩展 USB 口

两个扩展 USB 口主要用于连接经纬 M100 飞行平台上的摄像头,CAM_IN 连接摄像设备,CAM_OUT 连接经纬 M100 飞控。详细的连接方法,请参阅(https://developer.dji.com)。

Recovery USB

Recovery USB 可工作于 Host 或 Slave 模式。当工作在 Slave 模式时,而在操作系统启动之前,可通过此口读写系统镜像,请参阅"系统镜像"P10。

在操作系统启动后,Recovery USB 默认工作在 Host 模式,如需切换至 Slave 模式,请执行以下命令:

- \$ echo 0 > /sys/devices/platform/tegra-otg/enable host
- \$ echo 1 > /sys/devices/platform/tegra-otg/enable_device

如需从 Slave 模式切换回 host 模式,请执行如下命令:

- \$ echo disconnect > /sys/devices/platform/tegra-udc.0/udc/tegraudc.0/soft_connect
- \$ modprobe -r g zero
- \$ echo 0 > /sys/devices/platform/tegra-otg/enable_device
- \$ echo 1 > /sys/devices/platform/tegra-otg/enable host

然后加载所需要的 USB Gadget, 下面的命令以加载 g_zero 为例:

- \$ modprobe g zero
- \$ echo connect > /sys/devices/platform/tegra-udc.0/udc/tegraudc.0/soft_connect
- ⚠ CMA_IN 接口和 Recovery USB 接口共用一个 USB 控制器,故不能同时使用。

系统设置

用户可以在终端界面进行基本的设置,其中包括 root 密码,网络设置等。请根据本章节内容进行基本的系统设置。

基本连接

连接带有 HDMI 接口的显示器,鼠标和键盘。开启电源后,妙算将会自动登录系统, 无须输入用户名密码。预装的操作系统为 Ubuntu 14.04, 默认的登陆信息如下:

用户名: ubuntu 密码: ubuntu

root 密码设置

root 密码默认随机,如需设置固定的 root 密码,请运行下面的命令:

\$ sudo passwd

然后输入登陆密码"ubuntu",再根据提示输入 root 密码。

网络设置

有线网络

请插入网线,如果所在网络带有 DHCP 服务,将会自动获得 IP 地址。如果接入的网络环境无 DHCP 服务,请通过以下命令配置。

- \$ sudo ifconfig eth0 xxx.xxx.xxx
- \$ ifconfig

xxx.xxx.xxx 为所需使用的 IP 地址。通过该命令检查 eth0 是否配置正确。

无线网络

推荐使用 mini-PCle 芯片的 "Intel 7260 HMW"无线网络适配器。该适配器支持 802.11n 与802.11ac 协议,该设备的驱动已预装。

其它网络适配器的设置方法,请参考 http://elinux.org/Jetson/Network_Adapters

无线配置

如果连接的无线网络自带 DHCP 服务,无线网络适配器会自动获取 IP 地址。如需手动设置,请按照以下命令配置:

- \$ ifconfig wlan0 xxx.xxx.xxx
- \$ ifconfig

xxx.xxx.xxx 为所需使用的 IP 地址。通过该命令检查 wlan0 否配置正确。

性能最大化

妙算已经预装了性能最大化的脚本,如果仍需暂时提高性能,请运行以下命令。

\$ sudo /home/ubuntu/max performance

如果需要持续使用最大化性能,请把"/home/ubuntu/max_performance"添加到文件/etc/rc.local中。详细设置请参考如下链接: http://elinux.org/Jetson/Performance

安装软件

安装 CUDA

1. 访问下链接:

http://developer.download.nvidia.com/embedded/L4T/r21_Release_v3.0/cuda-repo-l4t-r21.3-6-5-prod_6.5-42_armhf.deb

- 2. 执行以下命令安装 "cuda-repo-l4t-r21.3-6-5-prod_6.5-42_armhf.deb" 至操作系统。
 - \$ sudo dpkg -i cuda-repo-l4t-r21.3-6-5-prod_6.5-42_armhf.deb
 - \$ sudo apt-get update
 - \$ sudo apt-get install cuda-toolkit-6-5

具体请参考以下链接: https://developer.nvidia.com/embedded/linux-tegra

安装 OpenCV4tegra

1. 访问以下链接以下载安装包 "libopencv4tegra-repo_14t-r21_2.4.10.1_armhf.deb"

http://developer.download.nvidia.com/embedded/OpenCV/L4T_21.2/libopencv4tegra-repo_l4t-r21_2.4.10.1_armhf.deb

- 2. 执行以下命令进行安装
 - \$ sudo dpkg -i libopencv4tegra-repo l4t-r21 2.4.10.1 armhf.deb
 - \$ sudo apt-get update
 - \$ sudo apt-get install libopencv4tegra libopencv4tegra-devlibopencv4tegra-python

具体请参考以下链接:

https://developer.nvidia.com/embedded/linux-tegra

安装 ROS

请参考以下链接: http://wiki.ros.org/indigo/Installation/UbuntuARM

系统镜像

制作系统镜像前,需确保:

- 1. 一台运行 Linux 的计算机 。
- 2. 硬盘剩余空间大于 16 GB。

下载安装包

访问该链接 (https://developer.dji.com/cn/manifold/download) 以下载安装包 "manifold_ image_v1.0.tar.gz"。

解压安装包

- \$ mkdir ~/manifold
- \$ cd ~/manifold

sudo tar -xvpzf <your path>/manifold image v1.0.tar.gz

进入恢复模式

方法 1:

- 1. 使用附件 USB 线连接 PC 与妙算。将 USB 连接线的标准 USB 接口连接 PC,并将 micro-B 口连接至妙算开发板上的 Recovery USB 接口。
- 2. 连接电源线。
- 3. 请按电源键一次,系统启动后,使用针状物按住"Recovery Button"键不要松开,然后按住 "Reset"键,再松开"Reset"键,最后松开"Recovery Button"键。

方法 2:

- 1. 使用 USB 线连接 PC 和妙算,将 USB 信号线的标准口连接至 PC,将 micro-B 口连接至妙算。
- 2. 连接电源线。
- 3. 开启电源前按住" Recovery button"键不要松开,再按下电源键并释放,最后松开"Recovery button"键。

则系统会讲入恢复模式,

可以在计算机的操作系统上输入 Isusb 命令 来检查是否进入成功。则系统会进入恢复模式,可 以在计算机的操作系统上输入 Isusb 命令 来检查是否讲入成功。

```
dji@tegra-ubuntu: $\frac{1}{2}$ lsusb

Bus 001 Device 002: ID 05e3:0608 Genesys Logic, Inc. USB-2.0 4-Port HUB

Bus 001 Device 003: ID 05e3:0608 Genesys Logic, Inc. USB-2.0 4-Port HUB

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 008: ID 0955:7740 NVidia Corp.
```

如果出现上述图中"NVIDIA"的字样,说明进入恢复模式成功,如果没有,请重复步骤 1 到 3。

◆ ・ 讲入恢复模式后, 妙算将不输出任何显示信息。

制作系统镜像

执行如下命令进入 bootloader 文件夹:

\$ cd ~/manifold/manifold images/bootloader

如果文件夹内已经存在 system.img, 请先删除掉该文件。

执行如下命令开始制作讲行系统镜像

\$ sudo ./nvflash --read APP system.img --bl ardbeg/fastboot.bin -go 制作镜像过程需要一定时间,请耐心等待。生成的 system.img 文件即为本系统的镜像。

恢复系统镜像

如果恢复至默认的系统,请运行以下命令将重新制作文件系统制作镜像并烧录:

- \$ cd ~/manifold/manifold images
- \$ sudo ./flash.sh jetson-tk1 mmcblk0p1

如果恢复到之前做过的镜像,请运行以下命令:

- \$ cd ~/manifold/manifold images
- \$ sudo ./flash.sh -r jetson-tk1 mmcblk0p1

https://developer.dji.com/cn/manifold。相关信息,请参考链接(http://elinux.org/Jetson/Cloning)。

编译内核

- 1. 下载源文件包 "Manifold_kernel_source_v1.0.tar.gz" 至妙算。
- 2. 解压
 - \$ mkdir ~/kernel
 - \$ cd ~/kernel
 - \$ tar xvzf <your path> /manifold_kernel_source_v1.0.tar.gz
- 3. 编译
 - \$ cd ~/kernel/Linux_3.10
 - \$ cp arch/arm/configs/manifold config .config
 - \$ make menuconfig
 - \$ make

其中 config_manifold 为板子默认配置文件

- 4. 安装内核及模块
 - \$ make modules_install
 - \$ sudo cp /boot/zImage /boot/zImage.bak //backup the zImage
 - \$ sudo cp arch/arm/boot/zImage /boot/ //cp zImage
 - \$ sudo cp arch/arm/boot/dts/tegra124-jetson_tk1-pm375-000-c00-00.
 - dt* /boot/ //copy device tree

规格参数

总重	197 克
尺寸	110 mm × 110 mm × 26 mm
处理器	NVIDIA 4-Plus-1™ 四核心 ARM® Cortex-A15 CPU
	低功耗 NVIDIA Kepler™ Geforce® 图像处理器
	图像信号处理器
	超低功耗音频处理器
内存	2 GB DDR3L RAM
	16 GB eMMC 4.51 存储空间

网络	10/100/1000BASE-T 局域网端口
音频	麦克风、耳机一体式接口
USB	USB 3.0 Type-A Host 端口 ×2
	USB 2.0 Type-A Host 端口×2
	Micro-B USB 接口 (Host/Slave 模式)
	基于 DJI 经纬 M100 飞行平台的 USB 扩展接口(CAM_IN, CAM_OUT)
1/0	Half mini-PCle 扩展插槽
	Mini Display HDMI 端口
	UART 串口 (3.3 V)×2
	Micro SD 卡插槽
	I/O 扩展接口 (26 pins)
输入电压	14 V ~ 26 V
工作温度	-10 ℃ ~ 45 ℃
功率	5 w ~ 15 w

本手册如有更新,恕不另行通知。

您可以在 DJI 官方网站查询最新版本《用户手册》 https://developer.dji.com/cn/manifold/download

DJI 一直努力为用户提供更好的说明书。如果您对说明书有任何疑问或建议,请通过以下电子邮箱联系我们: DocSupport@dji.com。

