1179: Probability Lecture 21 — Bivariate Normal

Ping-Chun Hsieh (謝秉均)

November 26, 2021

Announcements

No class next Wednesday (12/1, Sports Day)

Quick Review

Conditional PMF and PDF?

$$f_{X|Y}(X|Y) = \frac{f_{XY}(X,Y)}{(f_{Y}(Y,Y))}$$

$$f_{X|Y}(X|Y) = \frac{f_{XY}(X,Y)}{(f_{Y}(Y,Y))}$$

LOTUS for two random variables

•
$$X, Y \text{ independent} \Leftrightarrow E[XY] = E[X]E[Y]?$$

This Lecture

1. Bivariate Normal Random Variables

Reading material: Chapter 10.5

More on E[XY]: Cauchy-Schwarz Inequality

Recall: Cauchy inequality in high school

• Cauchy-Schwarz Inequality: Let X, Y be two random variables. Then, we have

$$E[X^2] E[Y^2] \ge (E[XY])^2$$

Question: Under what condition do we have "="?

Proof of Cauchy-Schwarz Inequality

We must have
$$\sum_{E[XY]} V = E[XY] - 4 \cdot E[X^2] \cdot E[Y^2] \le 0$$

$$E[XY] = E[XY] + E[YY] > (E[XY])^2$$

Bivariate Normal Random Variables

Example: 2 Independent Normal Random Variables

Joint PDF of 2 Independent Normal R.V.s (Formally)

- Given: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$
- Suppose X_1, X_2 are independent.

Joint PDF of 2 Independent Normal:

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left[-\frac{1}{2}\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)\right]$$

2 Independent Normal: Matrix Form

Joint PDF of 2 Independent Normal:

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left[-\frac{1}{2}\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)\right]$$

Joint PDF of 2 Independent Normal:

$$f_{X_1 X_2}(x_1, x_2) = \frac{1}{2\pi\sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]$$

One natural question:

Is it possible to construct a "jointly normal r.v." from "2 non-independent normal r.v.s"?

Construction of Bivariate Normal R.V.

Idea: Let Z W be 2 independent standard normal r.v.s and $\rho \in [-1,1]$. Define two random variables

$$= \sigma_1 Z + \mu_1$$

$$= X_1 = \sigma_1 Z + \mu_1$$

$$= X_2 = \sigma_2 \left(\rho Z + \sqrt{1 - \rho^2 W} \right) + \mu_2$$

$$= X_2 \sim \chi_2 \sim \chi_2$$

• Question: Is it possible to find the joint PDF of X_1, X_2 ?

$$\underline{f_{X_1 X_2}(x_1, x_2)} = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)}\right]$$

Bivariate Normal R.V.s (Formally)

• Bivariate Normal: X_1 and X_2 are said to be bivariate normal random variables if the joint PDF of X_1, X_2 is

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2}\right) \cdot 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}$$

The joint PDF can be written in matrix form as

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]$$

where

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Notation for bivariate normal: $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\mu, \Sigma)$

Plotting the Joint PDF Bivariate Normal

Joint PDF of Bivariate Normal:

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

• **Example:** $\sigma_1 = \sigma_2 = 1$, $\mu_1 = \mu_2 = 0$

Linear Transformation of 2 Random Variables

▶ Theorem: Let U_1 , U_2 , V_1 , V_2 be random variables that satisfy

$$V_1 = aU_1 + bU_2$$
 and $V_2 = cU_1 + dU_2$. Define the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \text{ Then, we have}$$

$$f_{V_1 V_2}(v_1, v_2) = \underbrace{\frac{1}{|\det(A)|}} f_{U_1 U_2}(A^{-1}]v_1, v_2]^T)$$
Intuition:

Intuition:

For more details, please check: https://www.stat.berkeley.edu/~aditya/resources/AllLectures2018Fall201A.pdf

Bivariate Normal and Linear Transformation

For simplicity, assume $\mu_1 = \mu_2 = 0$ (can be handled via translation)

$$\begin{split} X_1 &= \sigma_1 Z \\ X_2 &= \sigma_2 \Big(\rho Z + \sqrt{1 - \rho^2} W \Big) \quad f_{X_1 X_2}(x_1, x_2) = \frac{1}{|\det(A)|} f_{ZW}(A^{-1}[x_1, x_2]^T) \end{split}$$

Applications of Bivariate / Multivariate Normal

- Machine learning e.g. Regression / classification / black-box optimization via Gaussian process
 - https://www.youtube.com/watch?v=MfHKW5z-OOA (Nando de Freitas)
- Deep learning e.g. Variational autoencoder
 - https://www.youtube.com/watch?v=uaaqyVS9-rM (Ali Ghodsi)
- ► Control systems e.g. Linear dynamical systems

$$X_{t+1} = A X_t + B u_t + W_k, w_k \sim \mathcal{N}(0, \Sigma)$$

https://www.youtube.com/watch?v=bf1264iFr-w (Stephen Boyd)

There are still a few remaining questions:

(Q1) Is X_2 a normal random variable? What is the PDF? Sum of independent random variables

(Q2) What is " ρ " in the joint PDF of bivariate normal?

Covariance

(Q3) Why is bivariate normal useful? Any nice properties?

Conditional PDF and beyond

(Q1) Sum of Independent Random Variables and Moment Generating Functions (MGF)

Z = X + Y and X, Y Independent — Discrete Case

- Question: X, Y are two independent discrete random variables.
 - ▶ Define Z = X + Y
 - What's the PMF of Z?

Convolution Theorem: Let X, Y be two independent discrete random variables with PMF $p_X(x)$ and $p_Y(y)$. Define Z = X + Y. Then, the PMF of Z is

$$p_Z(z) = P(Z = z) = \sum_{x} p_X(x) p_Y(z - x)$$

- ▶ Recall: $X \sim \text{Poisson}(\lambda_1, T)$ and $Y \sim \text{Poisson}(\lambda_2, T)$
 - What's the PMF of Z?

Z = X + Y and X, Y Independent — Continuous Case

For continuous random variables:

Convolution Theorem: Let X, Y be two continuous independent random variables with PDF f_1 and f_2 . Define Z = X + Y. Then, the PDF of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} f_1(x) f_2(z - x) dx$$

Any Issue With Convolution Theorem?

- Issue: Sometimes it is quite tedious to do convolution
- Question: Any other approach?
- Idea: Borrow ideas from signal processing Laplace transform

Time domain

Frequency domain

In Probability, this is called "Moment Generating Function"

Moment Generating Function (Formally)

Moment Generating Function (MGF): For a random variable X, define $M_X(t) = E[e^{tX}], \ t \in \mathbb{R}$

If there exists $\delta>0$ such that $M_X(t)<\infty$ for all $t\in (-\delta,\delta)$, then $M_X(t)$ is called the moment generating function of X

• Remark: If X is discrete with PMF $p_X(x)$, then

$$M_X(t) =$$

• Remark: If X is continuous with PDF $f_X(x)$, then

$$M_X(t) =$$