A Systematic Study of Elastic Objects in Kernel Exploitation

Yueqi Chen, **Zhenpeng Lin**, Xinyu Xing The Pennsylvania State University

> ACM CCS 2020 Nov 9th

Kernel Wars

- A lot of exploit mitigations (e.g. KASLR, stack canary, heap cookies...)
- A lot of exploitation methods to circumvent kernel mitigations
- One of commonly known methods is to utilize elastic kernel objects to bypass mitigations

Elastic Objects

- Contain a length field
- The length field indicates the size of an elastic kernel buffer

CVE-2017-7184 & Exploit

xfrm_replay_state_esn

f_op ext4_file_operations

CVE-2017-7184 & Exploit

Conditions of Elastic Object Attack

The same cache

- The length field can be enlarged by the vulnerability

Existing a channel to leak the elastic buffer to the userland

Severity and Generality of Elastic Object Attack

- Severity is obvious
 - Leaking kernel information from an overwrite primitive
- Generality is unknown
 - Pervasive object
 - Exploiting different vulnerabilities

Do we have the need to build defense?

Static Analysis

Static Analysis

Static Analysis

Experiment Setup and Results

- Select 3 commonly used open-sourced OSes
- Identify 38 structures in Linux, 16 structures in XNU, and 20 structures in

FreeBSD

Experiment Setup and Results

- Select 3 commonly used open-sourced OSes
- Identify 38 structures in Linux, 16 structures in XNU, and 20 structures in FreeBSD
- Cover most of general caches/zones
- 18/74 structures are general cache/zone-flexible kernel structures

Effectiveness in Bypassing Mitigation

- 27/40 vulnerabilities are able to bypass not only KASLR but also heap cookies
- 12/40 vulnerabilities are able to uncover stack canary
- 8/40 vulnerabilities are able to exhibit the capability of performing arbitrary kernel read.

Elastic objects could nearly always facilitate a kernel vulnerability to bypass exploitation mitigation

Defense

Key idea: Isolating elastic objects into individual shadow caches/zones

kmalloc-256

Vuln Obj

Elsatic Obj

Victim Obj

Before isolating

Defense

Key idea: Isolating elastic objects into individual shadow caches/zones

Defense Evaluation

- Performance overhead
 - The average performance drop is 0.19% on LMBench, Phoronix and our customized benchmark
- Security improvement
 - 29/31 vulnerabilities find no suitable elastic object
 - CVE-2017-7184, CVE-2017-17053: vulnerable objects are also elastic objects

Summary

- A systematic approach to finding out the elastic kernel objects
- An evaluation of the effectiveness of utilizing elastic kernel objects on 40 kernel vulnerabilities across three OSes
- A new defense mechanism to mitigate the threat of elastic kernel objects
- An evaluation of the defense mechanism in terms of performance overhead and security improvement

Thank You!

Code & Data

https://github.com/chenyuegi/w2l

Contact

Twitter: @Markakkkk

Email: zplin@psu.edu

Personal Page: https://zplin.me

