MBA 753 : Causal Inference Methods for Business Analytics

Dr. Nivedita Bhaktha

12.08.2024

Agenda

- Interaction effects
- Types of experiments
- Potential outcomes framework

Interaction Effect and its Interpretation

Interaction Effects

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- In a regression with interaction terms, the main terms should always be included
- Interaction tells us about regression slope differences
- An interaction regression weight tells the direction and extent of change in the slope of one Y- X_1 regression line for each 1-unit increase in the X_2 , holding all the other variables in the model constant at 0.

Interpretation

```
Call:
lm(formula = sales ~ youtube * facebook, data = train.data)
Residuals:
  Min
          10 Median
                      3Q
                            Max
-7.438 -0.482 0.231 0.748 1.860
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
           7.90e+00 3.28e-01 24.06 <2e-16 ***
(Intercept)
voutube
          1.95e-02 1.64e-03 11.90 <2e-16 ***
              2.96e-02 9.83e-03 3.01 0.003 **
facebook
youtube:facebook 9.12e-04 4.84e-05 18.86 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.18 on 158 degrees of freedom
Multiple R-squared: 0.966, Adjusted R-squared: 0.966
F-statistic: 1.51e+03 on 3 and 158 DF, p-value: <2e-16
```

Causality and Empirical Research

Experiments and Causation

- Cause, Effect, and Causal Relationship
 - Causal relationship exists if
 - Cause preceded the effect
 - Cause was related to the effect variation in cause related to variation in effect
 - No other plausible alternative explanation
- Experiments can help study causal descriptions and explanations
 - Experiments: a study in which an intervention is deliberately introduced to observe its effects

Types of Experiments

- Randomized experiment: Units are assigned to receive treatment or an alternative condition through a random process
- Quasi experiment: Units are not assigned to conditions randomly
 - Cause is manipulable and occurs before the effect
- Natural experiment: Cause cannot be manipulated
 - Naturally occurring contrasts between treatment and a comparison condition
- Correlational study: Observational study that records size and direction of relationships among variables
 - Structural features of experiments are missing

Regression to Causality

- Regression helps in understanding associations among variables of interest
 - Conditional Expectation Function: $E(Y|X=x)=\beta_0+\beta_1X_1+...+\beta_pX_p$
 - Regression is causal if CEF is causal
 - CEF is causal when it describes the differences in average potential outcomes for a population

We think of a cause as something that makes a difference, and the difference it makes must be a difference from what would have happened without it.

- David Lewis, Causation, 1973

Potential Outcomes Model

Counterfactuals

- X, is understood to cause Y, if the value for Y would have been different for a different value of X
- Example: Imagine we knew the grade a particular individual would receive for different amounts of study time:
 - Each point on the line represents a potential outcome (the hypothetical outcome associated with each value of our causal factor)
 - Causal effects are defined in terms of potential outcomes

Source: Mix Tape by Scott Cunningham

Potential Outcome

- Potential outcome: difference in the outcomes between the two states of the world
 - Actual state where the person did something
 - Counterfactual state where the person did something else
- Causal inference: The process of drawing conclusions about features/properties of the full set of potential outcomes on the basis of some observed outcomes.

Notation and Terminology

- Treatment: Causal variable of interest
 - Defined for binary case, but we can (and will) generalize to continuous treatments

$$D_i$$
: indicator of treatment
$$D_i = \begin{cases} 1 \text{ if unit i received the treatment} \\ 0 & \text{otherwise} \end{cases}$$

• Outcome: Y_i : Observed outcome variable of interest for unit i

Notation and Terminology

- Potential Outcomes
 - potential outcomes are fixed attributes for each i and represent the outcome that would be observed hypothetically if i were treated/untreated

$$Y_i = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{01} & \text{if } D_i = 0 \end{cases}$$

$$Y_i = D_i Y_{1i} + (1 - D_i) Y_{0i}$$

- Y_{0i} and Y_{1i} are potential outcomes (counterfactuals)
- Only one outcome is observed, the other is counterfactual

Notation and Terminology

- Causal Effect
 - For each unit i, the causal effect of the treatment on the outcome is defined as the difference between its two potential outcomes:
 - τ_i is the difference between two hypothetical states of the world
 - One where i receives the treatment
 - One where i does not receive the treatment
 - Fundamental problem of Causal Inference: We cannot observe both potential outcomes (Y_{1i}, Y_{0i}) for the same unit i
 - How do we calculate τ_i ?

Characteristics

- Stable Unit Treatment Value Assumption (SUTVA): Conditional independence assumption
 - Causal variable of interest has to be independent of potential outcomes so that groups are truly comparable
 - Potential outcomes for unit i are unaffected by treatment assignment for unit j
- Average Treatment Effect (ATE): $E(\tau) = E(Y_{1i} Y_{0i}) = E(Y_{1i}) E(Y_{0i})$
 - Both potential outcomes are required to calculate ATE
 - ATE is only estimable

ATE Illustration

Imagine a population with 4 units, where we observe both potential outcomes for each unit:

i	Y_{i}	D_{i}	Y_{1i}	Y_{0i}	$\mid au_i angle$
1	5	1	5	2	3
2	2	1	2	1	1
3	0	0	1	0	1
4	1	0	1	1	0

$$\begin{array}{lcl} \tau_{\mathsf{ATE}} & \equiv & E[Y_{1i} - Y_{0i}] \\ \\ & = & \frac{1}{N} \sum_{i=1}^{N} (Y_{1i} - Y_{0i}) \\ \\ & = & E[Y_{1i}] - E[Y_{0i}] \end{array}$$

$$\mathbf{ATE} = \frac{3+1+1+0}{4} = \frac{5+2+1+1}{4} - \frac{2+1+0+1}{4} = 1.25$$

ATE Estimation

- Intuition: Make comparison across units using Y_i
 - Compare the average observed outcome under treatment to the average observed outcome under control
 - True ATE = 1.25
 - Difference in means =
 - In this example at least, difference in means ≠ ATE

i	Y_{i}	D_{i}	Y_{1i}	Y_{0i}	$\mid au_i \mid$
1	5	1	5	?	?
2	2	1	2	?	?
3	0	0	?	0	?
4	1	0	?	1	?

Terminologies

Average treatment effect on the treated (ATT)

$$E(\tau_i|D_i=1) = E(Y_{1i} - Y_{0i}|D_i=1)$$

Average treatment effect on the untreated (ATU)

$$E(\tau_i|D_i=0) = E(Y_{1i} - Y_{0i}|D_i=0)$$

 For a given sample, one obvious estimator of the ATE is the difference in group means (DIGM)

Let
$$D_i = 1 \ \forall \ i \in \{1, ..., m\} \ \& \ D_i = 0 \ \forall \ i \in \{m+1, ..., n\}$$

$$DIGM = \frac{1}{m} \sum_{i=1}^{m} Y_i - \frac{1}{n-m} \sum_{i=m+1}^{n} Y_i$$

Is DIGM an unbiased estimator of ATE?

DIGM =
$$\frac{1}{m}\sum_{i=1}^{m}Y_{i} - \frac{1}{n-m}\sum_{i=m+1}^{n}Y_{i}$$

We know
$$Y_i = D_i Y_{1i} + (1-D_i)Y_{0i}$$
 & $Z_i = Y_{1i} - Y_{0i}$

$$= \frac{1}{m} \sum_{i=1}^{m} (z_i + Y_{0i}) - \frac{1}{n-m} \sum_{i=m+1}^{m} Y_{0i}$$

$$= \frac{1}{m} \sum_{i=1}^{m} z_i + \frac{1}{m} \sum_{i=1}^{m} Y_{0i} - \frac{1}{n-m} \sum_{i=m+1}^{m} Y_{0i}$$

$$= E(z_i | D_i = 1) + [E(Y_{0i} | D_i = 1) - E(Y_{0i} | D_i = 0)]$$

DIGM = ATT + Selection Bias

i	Y_{i}	D_{i}	Y_{1i}	Y_{0i}	$\mid au_i angle$
1	5	1	5	2	3
2	2	1	2	1	1
3	0	0	1	0	1
4	1	0	1	1	0

$$\tau_{\text{ATE}} = \frac{3+1+1+0}{4} = 1.25$$

$$\tau_{\text{ATT}} = \frac{3+1}{2} = 2$$

Selection bias
$$=$$
 $\frac{2+1}{2}$ $-\frac{0+1}{2}$ $=1$

$$\tau_{\text{ATT}} + \text{Bias} = 2 + 1 = 3 = \text{DIGM}$$

- DIGM is the unbiased estimator of ATE if
 - $\tau_{ATT} = \tau_{ATE}$
 - There is no selection bias i.e. $E(Y_{0i}|D_i=1)=E(Y_{0i}|D_i=0)$
- Selection Bias
 - Selection into treatment is often associated with potential outcomes
 - Selection bias can be positive or negative
 - (In general) Do not believe causal arguments based on simple differences between groups!

Solution for Selection Bias

- We need to know more about counterfactuals that we do not observe
 - Make assumptions about how certain units come to be "selected" for treatment

- Treatment Assignment: mechanism that determines which units are selected for treatment
 - Random assignment
 - Selection on observable characteristics matching
 - Selection on unobservable characteristics DID, RDD, IV

Recap

Summary

- If interaction effects are significant, the partials effects are not interpreted.
- Causality is defined by potential outcomes, not by observed outcomes
- The difference in means is only an unbiased estimator for the ATE when there is no selection bias
- Objectives achieved:
 - Can interpret dummy regressors and interaction effects
 - Can understand potential outcomes framework and define causal effect
 - Can estimate ATE

References

- Scott Cunningham, Causal Inference: The Mix Tape, Yale University Press.
- Angrist, J. D., & Pischke, J. S. (2009). *Mostly harmless econometrics: An empiricist's companion*. Princeton university press.
- Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.

Thank You ©

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.