[This question paper contains 6 printed pages.]

6463

Your Roll No.

M.Sc. (INFORMATICS)/MIT/I Sem. - 2010

Paper IT14 - MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Time: 3 hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Q.1(a)If A, B and C are any finite set, then draw the Venn diagram for (i) $(A \cup B) \cap C$, (ii) $A \cap (B \oplus C)$ (2)

O (b) Let $A = \{a, b, c, d, e\}$ and R be the relation on A defined by

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Compute A/R.

(4)

(c) Let $A = \{1, 2, 3, 4\}$ and let R and S be the relations on A described by

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, M_S = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Use warshall's algorithm to compute the transitive closure of $R \cup S$. (4) (d) Analyze the operation performed by the given piece of pseudocode and write a function that describes the number of steps required. Give the Θ -class of the function

- 1. A ← 1
- 2. $B \leftarrow 1$
- 3. UNTIL(B > 100)
- a. $B \leftarrow 2A 2$
- b. A ← A+3

(3)

(e)Is the permutation

$$p = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 7 & 6 & 3 & 1 \end{array}\right)$$

even or odd?

(2)

P.T.O.

Q.2(a) Determine the Hasse diagram of the relation on $A = \{1, 2, 3, 4, 5\}$ whose matrix is shown below:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(3) Let $A = \{1, 2, 3, 4, 5, \dots, 11\}$ be the poset whose Hasse diagram is shown in Fig.1. Find the LUB and GLB of $B = \{6, 7, 10\}$, if they exist. (3)

Fig.1

(c) Show that in a Boolean algebra, for any a,b and c

 $(a \wedge b \wedge c) \vee (b \wedge c) = b \wedge c.$

Construct a linear (6,3) code given that

 $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$

Solve the recurrence relation

 $a_n = 4a_{n-1} - 4a_{n-2}, \quad n \ge 2$

with initial conditions $a_0 = 6$, $a_1 = 8$.

(3)

Table:1	0	(8)	(4)	(1)	D	(3)
Character	á	b	c	d	е	f
Frequency	4.	1	2	3	5	2

Q.3 Find all the paths of length 3 in the graph G of Fig.2. Also find the length of the shortest path, if any, that connects the vertex 1 and vertex 4.

Fig.2

125.4

(b) Is the graph with the following adjacency matrix Eulerian?

1	0	0	1	1	1	1
	0	0	1	1	-1	1
1	1	1	0	0	0	1
1	1	1	0	0	0	1
-	1.	1	0	0	0	1

(3)

Describe the Dijkstra's shortest path algorithm. Using it Find the shortest path from a to z in the graph G (Fig.3). (8)

(a) Show that the maximum number of vertices in a binary tree of height $k = 2^{k+1} - 1$. (2)

(b) Construct a Huffman code for each character in the alphabet $\{a, b, c, d, e, f\}$ using Table: 1?

Using the codes , decode the message 001 101010 (

(c) Describe Prim's algorithm to find a minimal spanning tree. Using it find the minimal spanning tree of the graph shown in Fig.3. (8)

-Q.5(a) Consider the finite automaton M_3 (Fig.4). Find the language accepted by this automaton. (2)

P.T.O.

Fig.3

Fig.4

(b) Design an equivalent machine for an FSM M whose state transition is shown in Table: 2. (5)

PS		δ		λ	
	x = 0	x =	$1 \mid x = 0$		x = 1
A_0	A_5	A_3	0	-	1
A_1	A_1	A ₄	. 0		0
A_2	A_1	A_3	0		0
A_3	$A_{\rm I}$	A_2	1		0
A_4	A_5	A_2	- 0		1
A_5	A_4	A_1	0		1

(c) Construct a nondeterministic finite automaton accepting the set of all strings over $\{a,b\}$ ending in aba. Use it to construct a DFA accepting the same set of strings.

(d) Prove that the FA whose transition diagram is given in Fig.5 accepts the set of all strings over the alphabet $\{a,b\}$ with an equal number of a's and b's such that each prefix has at most one more a than b's and at most one more b than a's.

Fig.5

Q.6(a) Construct a right linear grammar for L(001*0). (3)

(b) Show that $L = \{a^n b^n : n \ge 1\}$ is not regular. (3)

(c) Consider CFG, G = (V, T, S, P) with $V = \{E, I\}$ and $T = \{+, *, (,), x, y\}$ and productions P such that $E \to E + E$, $E \to E * E$, $E \to I|(E)$ and $I \to x|y$. Show that the grammar is ambiguous. (4)