Correlation

- 0
- · Quantitative measure at the relationship between two
- · If change on one variable abbects a change in the other variable, the variables are said to be correlated.
- encrease in the other variable, the correlation is said to be positive or direct
- decrease in one variable results in the corresponding decrease in the other variable the correlation is said to be positive or direct
- · However it increase in one voriable results in the decrease in other regulable, or decrease in one variable results in the increase in the other regulable, the correlation is said to be diverse or negative.

& Karl Peason's coebbiuent ab Correlation

As a measure of intensity or degree ob linear relationship between two variables, Karl Pearson (1867-1936), a British Biometrician, developed a bromula called Correlation coefficient

Correlation coebbinent between two variables X and Y as ally denoted by r(x, Y) or simply rx, is debined as

$$\gamma(x, \gamma) = \frac{(ov(x, \gamma))}{6x} = \frac{6x\gamma}{6x6\gamma} = 0$$

If (x_i, y_i) , i=1, 2, ... is the bivariate distribution, then $G_{XY} = (ov(X_iY) = E[\{X - E(X)\}\{Y - E(Y)\}]$

$$Following are the scatter diagram to dibbereal or the scatter diagram for diagram for dibbereal or the scatter diagram for d$$

- (8) r(x, y) is a measure of linear relationship between x and y.

 For a non-linear relationship, however it is not very suitable.

 (8) Kiel Pearson's correlation coefficient is also called Product—
- To always hes between -1 and +1. If x=+1, the correlation is perbect and positive and it x=-1, the correlation is perbect and negative.

 [-1 \le x \le 1] (Prove it)
- 6 Correlation coekbicient is independent of change of origin and scale. (Prove it)
- (6) If x and y are rondom variables and a, b, c, d are any numbers provided only $a \neq 0$, $c \neq 0$, then $\delta(ax+b, cy+d) = \frac{ac}{|ac|} \gamma(x,y)$
- Two endependent variables are uncorrelated s but two uncorrelated variables need not necessarily be independent.

 Note: The points above are important but Mia.
- (a) Calculated the correlation webbirent by the bollowing height (in inches) ob bather (x) and their sons (Y):

X: 65 66 67 67 68 69 70 72 Y: 67 68 65 68 72 72 69 71

				(A) (A) (A)			
	Solut	cion					
	X	= Y	x2	72	XY		15, 544-68
	65	67	4225	4489	4355		$\frac{1}{h} \sum x = \frac{544}{8} = 68$
	66	68	4356	4624	4488		$\frac{1}{2} \sum Y = \frac{552}{8} = 69$
	67	65	4489	4225	4355	r(x, Y):	= f Exy-x7
	67	68	4 489	4624	4556	The state of the s	$\frac{\overline{\left(\frac{1}{7} \sum X^2 - \overline{X}^2\right) \left(\frac{1}{7} \sum \overline{Y}^2 - \overline{Y}^2\right)}}{\left(\frac{1}{7} \sum \overline{Y}^2 - \overline{Y}^2\right) \left(\frac{1}{7} \sum \overline{Y}^2 - \overline{Y}^2\right)}$
	68	72	4624	5184	4896		
The same of	69	72	4761	5184	4968	= 18	X37560-68×69
	70	69	4900	4761	4830	N370	28 - 16812 \$ 38132 - 1611
	72	71	5184	5041	5112		$\frac{28}{3} - (68)^{2} \left\{ \frac{38/32}{8} - (63)^{3} \right\}$
Total	544	552	37028	38132	37560	The same of the sa	628.5-4624) (4766.5-4761)
80	tornat	ing evalue	the binal ato well lo	based o	on the ba	-SXS.S =	- correlation
				dene de	charge	at origin	
	Y	U=X-		Y-69 2	9 4		Noke: Here
	67	-3		2	4 1	2	lee notice that
66		-2	-4		1 16		ob deviation
67		-1			1 1	.1	about mean, so
67	68	-1	-1		m 9		It is zero , it
68		0	3		0 9	3	is an impostant
69		2	3		1 0	0	observation to check error cu
70		-	2		6 4		Computation
72		4 Zu=0	ZV=	- 7		-44 ZUV=	24
			-	-	30 2		

A computer while calculating correlation coelebicient between two variables X and y brown 25 pairs ab observations obtained the bollowing results

n=25, $\Sigma x=125$, $\Sigma x^2=650$, $\Sigma \gamma=100$, $\Sigma \gamma^2=460$,

ZXY = 508.

It was, however, later discussed discovered at the time. Ob checking that he had copied down two pairs as

Obtain the correct value ab correlation coebbinent.

Sol: Corrected
$$\sum X = 125 - 6 - 8 + 8 + 6 = 125$$

Corrected $\sum Y = 100 - 14 - 6 + 12 + 8 = 100$
Corrected $\sum X^2 = 650 - 6^2 8^2 + 8^2 + 6^2 = 650$
Corrected $\sum Y^2 = 460 - 14^2 - 6^2 + 12^2 + 8^2 = 436$
Corrected $\sum XY = 508 - 6X14 - 8X6 + 8X12 + 6X8 = 520$
 $\overline{X} = \frac{1}{n} \sum X = \frac{1}{25} \times 125 = 5$, $\overline{Y} = \frac{1}{n} \sum Y = \frac{1}{25} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$
 $\frac{6}{n} \times 100 = \frac{1}{n} \times 100 = 4$

Corrected
$$r(x, \gamma) = \frac{(ov(x, \gamma))}{6x 6\gamma} = \frac{4}{1 \times 6} = \frac{2}{3}$$

$$= 10.67$$

Probable From ob Correlation coebbivent

If r is the correlation coelebiuent in a sample ab n pairs ab observations, then its standard error $(s \cdot E)$ is given by $S \cdot E(r) = 1 - r^2$

Probable error (P.E) of correlation coefficient is given by $P \cdot E(r) = 0.6745 \times S \cdot E(r)$ $= 0.6745 \times \frac{(1-r^2)}{\sqrt{r}}$

If $r , correlation is not at all significant if <math>r > r \in (r)$, it is debinitely significant.

Rank Correlation

Rank correlation coefficient is calculated on the case, when a group of n condividuals are arranged in order of merit or proticiency of two characteristics A and B.

of the condividual ca two characteristics A and B respectively

The rank correlation
$$p=1-\frac{6\sum_{i=1}^{n}d_{i}^{2}}{h(n^{2}-1)}$$

where di= xi-yi

This bromala to calculate the rank correlation is called Spearman's bromala,

0

We always have
$$\sum di = \sum (\pi_i - y_i) = \sum \pi_i - \sum y_i$$
.
 $= \pi(\bar{x} - \bar{y}) = 0$

Ex () The ranks of same 16 Students on Mathematics and Physics are as bollows. Two numbers withen brackets denote the ranks at the students on Mathematics and Physics: (1,1), (2,10), (3,3), (4,4), (5,5), (6,7), (7,2), (8,6), (9,8) (10,11), (11,15), (12,9), (13,14), (14,12), (15,16), (16,13) Calculate the rank correlation coefficient for probiciencies of this group on Mathematics and Physics.

Sol; Marks in in 2 3 4 5 6 7 8 9 10.11 12 13 14 15 16 Total Marks in physics (Y) 1 10 3 4 5 7 2 6 8 11 15 9 14 12 16 13

d=X-T 0 -8 0 0 0 -1 5 2 1 -1 -4 3 -1 2 -1 3 0

d² 10 64 0 0 0 1 25 4 1 1 16 9 1 4 1 9' 136

The rank Correlation coebbicient is given by

$$\int_{-\infty}^{\infty} = 1 - \frac{6 \sum d^{2}}{n(n^{2}-1)} = 1 - \frac{6 \times 136}{16(16^{2}-1)} = 1 - \frac{6 \times 136}{16 \times 25\%}$$

$$= 1 - \frac{1}{5} = \frac{4}{5} = 0.8$$

Remark: d is calculated by taking the debberence in X and Y. Id=0, provides a check to correctness of computation at that stage.

Here in the above problem, there is no tied rank.

```
(3) Ten competitors in a musical trest were ranked by three sadges A, B and C in the bollowing order;

Rank by A: 1 6 5 10 3 2 4 9 7 8

Rank by B: 3 5 8 4 7 10 2 1 6 9

Rank by C: 6 4 9 8 1 2 3 10 5 7

Using rank, wirelation method discuss which pair of sudges has the nearest approach to common likeng in music.

Sol:
```

Using rank correlation method, discuss which pair of judges has the nearest approach to common likings in music.

Solution. Here n = 10

Ranks by A (X)	Ranks by B (Y)	Ranks by C (Z)	$\begin{vmatrix} d_1 \\ = X - Y \end{vmatrix}$	= X - Z	= Y - Z	d ₁ ²	d ₂ ²	d ₃ ²
1	3	6	-2	-5	-3	4	25	9
6	5	4	1	2	1	1	4	1
5	8	9	-3	-4	-1	9	16	1
10	4	8	6	2	-4	36	4	16
3	7	1	-4	2	6	16	4	36
2	10	2	-8	0	8	64	0	64
4	2	3	2	1	-1	4	1	1
9	1	10	8	-1	-9	64	1	81
7	6	5	1	2	1	1	4	1
8	9	7	-1	1	2	1	1	4
Total			$\sum d_1 = 0$	$\sum d_2 = 0$	$\sum d_3 = 0$	$\sum d_1^2 = 200$	$\sum d_2^2 = 60$	$\sum d_3^2 = 2$

$$\rho(X, Y) = 1 - \frac{6\sum d_1^2}{n(n^2 - 1)} = 1 - \frac{6 \times 200}{10 \times 99} = 1 - \frac{40}{33} = -\frac{7}{33}$$

$$\rho(X, Z) = 1 - \frac{6\sum d_2^2}{n(n^2 - 1)} = 1 - \frac{6 \times 60}{10 \times 99} = 1 - \frac{4}{11} = \frac{7}{11}$$

$$\rho(Y, Z) = 1 - \frac{6\sum d_3^2}{n(n^2 - 1)} = 1 - \frac{6 \times 214}{10 \times 99} = 1 - \frac{214}{165} = -\frac{49}{165}.$$

Since $\rho(X, Z)$ is maximum, we conclude that the pair of judges A and C has the nearest approach to common likings in music.

10.7.3. Repeated Pank

```
S Rank Correlation coelebiwent by Repeated rank:

2) Obtain the rank correlation coelebivent by the bollowing data

X: 68 64 75 50 64 80 75 40 55 64

T: 62 58 68 45 81 60 68 48 50 70

Sol [ Bebore the solution, birct point you need to notice that data is not given in the rank born. So all need to assign the ranks birst. But here assigning the rank is not very direct as the values are refeated so see the salution carebully and commice yourself with the process]. Formula to calculate, p= 1-6(Zd+z+1)

P=1-6(Zd+Tx+Ty)

h(n-1)
```

X	Y	Rank X	Rank Y	d = x - y	d2
68	62	4			
64	58	6	5	-1	1
75 .	68	2.5	7	-1	1
50	45	9	3-5	-1	1
64	81		10	-1	1
80	60	6	1	5	25
75		1	6	-5	25
	68	2.5	3-5	-1	1
40	48	10	9	1	1
55	50	8	8	0	0
64	70	6	2	4	16

In the X-series we see that the value 75 occurs 2 times. The common rank given to these values is 2.5 which is the average of 2 and 3, the ranks which these values would have taken if they were different. The next value 68, then gets the next rank which is 4. Again we see that value 64 occurs thrice. The common rank given to it is 6 which is the average of 5, 6 and 7. Similarly in the Y-series, the value 68 occurs twice and its common rank is 3.5 which is the average of 3 and 4. As a result of these common rankings, the formula for 'p' has to be corrected. To $\sum d^2$ we add $\frac{m(m^2-1)}{12}$ for each value repeated, where m is the number of times a value occurs. In the X-series the correction is to be applied twice, once for the value 75 which occurs twice (m = 2) and then for the value 64 which occurs thrice (m = 3). The total correction for the X-series is $\frac{2(4-1)}{12} + \frac{3(9-1)}{12} = \frac{5}{2}$. Similarly, this correction for the Y-series is $\frac{2(4-1)}{12} = \frac{1}{12}$, as the value 68 occurs twice.

$$\rho = 1 - \frac{6\left(\sum d^2 + \frac{5}{2} + \frac{1}{2}\right)}{n(n^2 - 1)} = 1 - \frac{6(72 + 3)}{10 \times 99} = 0.545.$$

- Corrolation Coefficient Spearman's Rank

CORRELATION Calculate the correlation coefficient.

		01111111		TION T				ACTUAL DE		
	11	-1	0	1	2	Total			(0	
Mid- value	Age (X) Marks (Y)	18	19	20	21	g(v)	vg(v)	$v^2g(v)$	Euv flu, v)	
15	10—20	8	0 2	-2	Eligiba	8	-16	32	4	
25	2030	5	0 4	6	4	19	-19	19	-9	
35	30—40	0	0 8	10	0	35	0	0	0	
45	40—50	4	0	6	8 (16)	22	22	22	18	
55	50—60	3341	0	8	4	10	20	40	24	
65	60—70	444	0	9	6	6	18	54	15	
63	Total f(u)	19	22	31	28	100	25	167	5	
	u f(u)	-19	0	31	56	68				
	$u^2f(u)$	19	0	31	112	162	JON S			
		9	0	13	30	52				
et	$\overline{u} = \frac{1}{N} \sum u f(u, v)$	11=	X – 19,	V=	$\{(Y-3)$	5)/10}	5 01	25		

$$\overline{u} = \frac{1}{N} \sum_{v} u f(u) = \frac{68}{100} = 0.68, \quad \overline{v} = \frac{1}{N} \sum_{v} v g(v) = \frac{23}{100} = 0.25$$

$$\overline{u} = \frac{1}{N} \sum_{u} u f(u) = \frac{68}{100} = 0.68, \quad \overline{v} = \frac{1}{N} \sum_{v} v 3000 = 0.35$$

$$\text{Cov}(u, v) = \frac{1}{N} \sum_{u} \sum_{v} u v f(u, v) - \overline{u} \overline{v} = \frac{1}{100} \times 52 - 0.68 \times 0.25 = 0.35$$

$$1 = -3.60 \times 10^{-2} = \frac{162}{100} - (0.68)^2 = 1.1576$$

$$\sigma_{U}^{2} = \frac{1}{N} \sum_{u} \sum_{v} uv f(u, v) - u v^{2} = \frac{1}{100} - (0.68)^{2} = 1.1576$$

$$\sigma_{U}^{2} = \frac{1}{N} \sum_{u} u^{2} f(u) - \overline{u}^{2} = \frac{162}{100} - (0.68)^{2} = 1.6075$$

$$\sigma_{U}^{2} = \frac{1}{N} \sum_{u} u^{2} f(u) - u = 100$$

$$\sigma_{V}^{2} = \frac{1}{N} \sum_{v} v^{2} g(v) - \overline{v}^{2} = \frac{167}{100} - (0.25)^{2} = 1.6075$$

$$\therefore r(U, V) = \frac{\text{Cov}(U, V)}{\sigma_{U} \sigma_{V}} = \frac{0.35}{\sqrt{1.1576 \times 1.6075}} = 0.25$$
Since several times of change of origin and since $\sigma_{V}^{2} = \frac{0.25}{\sqrt{1.2576 \times 1.6075}}$

Since correlation coefficient is independent of change of origin and scale,
$$r(X, Y) = \frac{\text{Cov}(U, V)}{\sigma_U \sigma_V} = \frac{0.3576 \times 1.6075}{\sqrt{1.1576 \times 1.6075}}$$

$$r(X, Y) = r(U, V) = 0.25.$$

$$r(X, Y) = r(U, V) = 0.25.$$

r(X, Y) = r(U, V) = 0.25.

r(X, Y) = r(U, V) = 0.23.

Remark. Figures in circles in the table are the product terms uvf(u, v).