丹琦女神新作:对比学习,简单到只需要Dropout两下

原创 花小花Posy 夕小瑶的卖萌屋 2021-04-26 12:46

对比学习? Dropout轻松解决[^]

文│花小花Posy

上周把 <u>《对比学习有多火?文本聚类都被刷爆了…》</u>分享到卖萌屋的群里后,遭到了群友们一波嫌弃安利。

小伙伴们表示,插入替换的数据增强方式已经Out了,SimCSE才是现在的靓仔。

snowfloating说:看完Danqi Chen组里的SimCSE,再看这篇感觉就没什么惊喜了。

苏神: 直接用dropout, 居然work了。真见鬼了……

奥多多奥多多: 这篇有说法的。

抱着一颗好奇的心,想看看这篇SimCSE到底有什么说法,又哪里见鬼了?小花认认真真拜读了原文,今天跟大家分享分享SimCSE用的什么神奇招数。

看完你可能不信,但它真的很神奇!

SimCSE的全称是 Simple Contrastive Learning of Sentence Embeddings, **S代表Simple**。文中的方法完全对得起题目,它是真的**简单**! 简单在哪儿呢?

- 1. 它简单地**用dropout替换了传统的数据增强方法**,将同一个输入dropout两次作为对比学习的正例, 而且效果甚好。
- 2. 它简单地将NLI的数据用于监督对比学习,效果也甚好。

这么简单的方法,真的work!? WHY?

下面我们一起领略一下这篇文章的风骚吧!

论文题目:

SimCSE: Simple Contrastive Learning of Sentence Embeddings

论文链接:

https://arxiv.org/pdf/2104.08821.pdf

SimCSE开篇讨论的问题是:对比学习为何work?写上一篇文的时候,我就在想对比学习为什么work呢?今天看到本文给出了很好的解释。

🥏 对比学习为何work? 🥠

原来 ICML2020 专门有一篇文章[1]研究了对比学习为什么work。[1]中指出,对比表示学习有用,主要是因为它优化了两个目标:

- 1. 正例之间表示保持较近距离
- 2. 随机样例的表示应分散在超球面上。

并提出这两个目标分别可以用指标alignment和uniformity来衡量。

下图可以直观理解这两个目标:

Alignment: Similar samples have similar features.

Uniformity: Preserve maximal information.

alignment计算正例对之间的向量距离的期望 $\colon \ell_{ ext{align}} riangleq \mathop{\mathbb{E}}_{(x,x^+) \sim p_{ ext{pos}}} \left\| f(x) - f(x^+)
ight\|^2$

越相似的样例之间的alignment程度越高。因为alignment使用距离来衡量,所以距离越小,表示alignment的程度越高。

uniformity 评估所有数据的向量均匀分布的程度, 越均匀, 保留的信息越多。 $\ell_{\rm uniform} \triangleq \log \quad \mathop{\mathbb{E}}_{x,y} e^{-2\|f(x)-f(y)\|^2}$

可以想象任意从表示空间中采样两个数据x和y,希望他们的距离比较远。他们的距离越远,证明空间分布越uniform。所以uniformity的值也是越低越好。

SimCSE也采用这两个指标来衡量生成的句子向量,并证明了文本的语义空间也满足: <u>alignment值越低且uniformity值越低,向量表示的质量越高,在STS任务上的Spearman相关系数越高</u>。

∮ SimCSE ∮

SimCSE有两个变体: Unsupervised SimCSE和Supervised SimCSE, 主要不同在于对比学习的正负例的构造。下面详细介绍下他们的构造方式。

无监督SimCSE

Unsupervised SimCSE 引入dropout给输入加噪声,假设加噪后的输入仍与原始输入在语义空间距离相近。其正负例的构造方式如下:

正例:给定输入 x_i ,用预训练语言模型 $f_ heta$ 编码 x_i 两次得到的两个向量 $\mathbf{h}_i^{z_i}$ 和 $\mathbf{h}_i^{z_i}$ 作为正例对。

负例:使用in-batch negatives的方式,即随机采样一个batch中另一个输入 x_i 作为 x_i 的负例。

训练目标函数:
$$\ell_i = -\lograc{e^{\sin\left(\mathbf{h}_i^{z_i},\mathbf{h}_i^{z_i'}
ight)/ au}}{\sum_{j=1}^N e^{\sin\left(\mathbf{h}_i^{z_i},\mathbf{h}_j'
ight)/ au}}$$

下图展示了Unsupervised SimCSE的样例:

如何生成dropout mask?

对于**Unsupervised SimCSE**,核心在于如何生成dropout mask。刚开始读完一遍的时候,惊叹原来dropout可以这么用,效果提升还挺大。后来细想,仍旧有些困惑<u>两次dropout mask的生成过程是怎样的呢</u>?仔细读了下,原文说:

In other words, we pass the same input sentence to the pre-trained encoder twice and obtain two embeddings as "positive pairs", by applying independently sampled dropout masks.

还是不太清楚。后来看了作者在GitHub的issue里面的回复才懂了。因为BERT内部每次dropout都随机会生成一个不同的dropout mask。所以SimCSL不需要改变原始BERT,只需要将同一个句子喂给模型两次,得到的两个向量就是应用两次不同dropout mask的结果。然后将两个向量作为正例对。(真的simple)

有监督SimCSE

(b) Supervised SimCSE

本文还提出**Supervised SimCSE**,<u>利用标注数据来构造对比学习的正负例子</u>。为探究哪种标注数据更有利于句子向量的学习,文中在多种数据集上做了实验,最后发现<u>NLI数据最有利于学习句子表示</u>。下面以NLI数据为例介绍Supervised SimCSE的流程。

Supervised SimCSE 引入了NLI任务来监督对比学习过程。该模型假设如果两个句子存在蕴含关系,那么它们之间的句子向量距离应该较近;如果两个句子存在矛盾关系,那么它们的距离应该较远。因此NLI中的蕴含句对和矛盾句对分别对应对比学习中的正例对和负例对。所以在Supervised SimCSE中,正负例的构造方式如下:

正例: NLI中entailment关系样例对。负例: a) in-batch negatives b)NLI中关系为contradiction 的样例对。

训练目标:

$$\ell_i = -\lograc{e^{ ext{sim}\left(\mathbf{h}_i,\mathbf{h}_i^+
ight)/ au}}{\sum_{j=1}^N\!\left(e^{ ext{sim}\left(\mathbf{h}_i,\mathbf{h}_j^+
ight)/ au} + e^{ ext{sim}\left(\mathbf{h}_i,\mathbf{h}_j^-
ight)/ au}
ight)}$$

ቃ 实验结果 ቃ

Dropout优于传统数据增强?

下图中对比了使用Unsupervised SimCSE (第一行None)和常见的数据增强方法在STS-B验证集上的Spearman's Correlation。

Data augmentation			STS-B
None			79.1
Crop	10% 75.4	20% 70.1	30% 63.7
Word deletion	10% 74.7	20% 71.2	30% 70.2
Delete one word w/o dropout MLM 15% Crop 10% + MLM 15	1%		74.8 71.4 66.8 70.8

其中crop k%表示随机减掉k%长度的span,word deletion表示随机删除k%的词,delete one word只删除一个词,MLM 15%表示用BERT $_{base}$ 随机替换掉15%的词。上表中所有dropout的方法的dropout的比例都是0.1。(因为文中对比了不同比例的dropout,p=0.1效果最好。)

实验结果很明显的可以看出,SimCSE是远超其余数据增强方法的。小花的理解是传统数据增强的方法是对原始输入直接进行改变,在编码后,增强的数据与原始数据在语义空间的距离是不是要比直接用dropout的方式要远。

Dropout与对比学习的关系

为了理解dropout为什么work,作者可视化了不同方法下alignment和uniformity在训练过程中的变化趋势。

上图中对比了在不同数据增强/dropout方式下, $\ell_{uniform}$ 和 ℓ_{align} 在训练过程中的变化方向(每训练10步采样一次)。Fix 0.1表示p=0.1时,两次使用相同dropout mask。对于Fixed 0.1和No dropout来讲,正例对的句子表示是完全相同的,

可以看到随着训练步数增加,Unsup. SimCSE的 $\ell_{uniform}$ 平稳地递减。虽然 ℓ_{align} 降低的趋势却不明显,但其初始化的值就相对较低。上图进一步验证了 \underline{SimCSE} 有效的原因是,它可以让alingnment和 $\underline{uniformity}$ 的值逐渐降低。

小花在这里有一个问题请教:使用Fixed 0.1和No dropout与另外两种方式相比较,是不是不太公平?因为当正例对两个向量完全相同时,其实是缺失了一些变体的对比信息在里面的。还有既然两个向量完全相同, $\ell_{\rm align}$ 为什么会上升呢?还望理解的小伙伴留言讨论下呀!($^{\parallel}$ ∇^{\parallel})

语义文本相似效果如何?

SimCSE在STS(语义文本相似)任务上进行了评估。评价指标是 Spearman's correlation。

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
Unsupervised models								
GloVe embeddings (avg.)♣	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
$BERT_{base}$ -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
$IS ext{-}BERT_{\mathtt{base}}^{igtriangledown}$	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
* SimCSE-BERT _{base}	66.68	81.43	71.38	78.43	78.47	75.49	69.92	74.54
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
* SimCSE-RoBERTabase	68.68	82.62	73.56	81.49	80.82	80.48	67.87	76.50
* SimCSE-RoBERTa _{large}	69.87	82.97	74.25	83.01	79.52	81.23	71.47	77.47
Supervised models								
InferSent-GloVe*	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder♣	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} ♣	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} *	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTa _{base}	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
* SimCSE-RoBERTa _{large}	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76

表格中对比了各种建模句子向量的方法,包括简单的对Glove向量取平均,到前不久的SOTA:BERT-Flow和BERT-Whitening。可以看到,在各种编码器和有无监督模式下,SimCSE都取得了显著的提升。比如无监督时,BERT $_{base}$ 和RoBERT $_{base}$ 与BERT-Whitening相比,Avg. 分别提升了7.96%和14.77%。

此外,作者还对比了不同句子表示模型下 $\ell_{ ext{uniform}}$ 和 $\ell_{ ext{align}}$ 与他们在STS任务上的结果:

可以看出:

• Avg.BERT模型的 ℓ_{align} 较低,但 $\ell_{uniform}$ 较高;

- 相反,对BERT表示进行后处理的BERT-flow和BERT-whitening的 ℓ_{uniform} 较低,但是 ℓ_{align} 却很高;
- Unsup.SimCSE和SimCSE的两个值都是较低的,他们的STS的结果也更好。

说明 $\ell_{
m uniform}$ 和 $\ell_{
m align}$ 需要结合使用,只有当二者的值都比较低时,模型学习到的句子向量表示才最适合 STS任务。

迁移学习效果

除了STS任务上的评估外,本文还将训练好的句子向量迁移到7个任务上。

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
Unsupervised models								
GloVe embeddings (avg.)♣	77.25	78.30	91.17	87.85	80.18	83.00	72.87	81.52
Skip-thought $^{\circ}$	76.50	80.10	93.60	87.10	82.00	92.20	73.00	83.50
Avg. BERT embeddings.	78.66	86.25	94.37	88.66	84.40	92.80	69.54	84.94
BERT-[CLS]embedding*	78.68	84.85	94.21	88.23	84.13	91.40	71.13	84.66
IS-BERT _{base} ♡	81.09	87.18	94.96	88.75	85.96	88.64	74.24	85.83
* SimCSE-BERT _{base}	80.41	85.30	94.46	88.43	85.39	87.60	71.13	84.67
w/ MLM	80.74	85.67	94.68	87.21	84.95	89.40	74.38	85.29
* SimCSE-RoBERTa _{base}	79.67	84.61	91.68	85.96	84.73	84.20	64.93	82.25
w/ MLM	82.02	87.52	94.13	86.24	88.58	90.20	74.55	86.18
* SimCSE-RoBERTa _{large}	80.83	85.30	91.68	86.10	85.06	89.20	75.65	84.83
w/ MLM	83.30	87.50	95.27	86.82	87.86	94.00	75.36	87.16
Supervised models								
InferSent-GloVe*	81.57	86.54	92.50	90.38	84.18	88.20	75.77	85.59
Universal Sentence Encoder.	80.09	85.19	93.98	86.70	86.38	93.20	70.14	85.10
SBERT _{base} *	83.64	89.43	94.39	89.86	88.96	89.60	76.00	87.41
* SimCSE-BERT _{base}	82.69	89.25	94.81	89.59	87.31	88.40	73.51	86.51
w/ MLM	82.68	88.88	94.52	89.82	88.41	87.60	76.12	86.86
SRoBERTa _{base}	84.91	90.83	92.56	88.75	90.50	88.60	78.14	87.76
* SimCSE-RoBERTa _{base}	84.92	92.00	94.11	89.82	91.27	88.80	75.65	88.08
w/ MLM	85.08	91.76	94.02	89.72	92.31	91.20	76.52	88.66
* SimCSE-RoBERTa _{large}	88.12	92.37	95.11	90.49	92.75	91.80	76.64	89.61
w/ MLM	88.45	92.53	95.19	90.58	93.30	93.80	77.74	90.23

迁移学习上的SimCSE并没有展现出明显的优势。作者的解释是句子级别的训练目标并不能直接有利于 迁移学习。为了让迁移学习效果更好,文中还是尝试将MLM损失和对比学习损失一起训练,取得了少量 的提升(上表中标有w/MLM的行)。

有的! 4月23号刚开源的代码。

GitHub链接:

https://github.com/princeton-nlp/SimCSE

文中的预训练语言模型已经整合到了HuggingFace中,可以像BERT模型那样,直接通过API调用模型。

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased"
model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")

想动手试试的小伙伴们赶紧GitHub看看吧...

ቃ 小结 ቃ

本文提出了一个简单的对比学习的框架,SimCSE,用于学习句子表示。文中提出dropout+对比学习和NLI+对比学习,都非常有利于句子表示的学习。SimCSE大幅刷新STS任务榜单,取得了新一轮的SOTA。

这篇文章让小花很爱的一点是,明明是我们习以为常的dropuout和早就熟悉透了的的NLI数据,但是本文的作者们却能从一个全新的角度看待它们,将它们与比学习建立联系,取得非常显著的提升,并合理地解释为什么work。

寻求报道、约稿、文案投放: 添加微信xixiaoyao-1,备注"商务合作"

后台回复关键词【入群】
加入卖萌屋NLP/IR/Rec与求职讨论群
后台回复关键词【顶会】
获取ACL、CIKM等各大顶会论文集!

■参考文献

[1] Wang, T., & Isola, P. (2020). Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere. ICML. https://arxiv.org/pdf/2005.10242.pdf

喜欢此内容的人还喜欢

我不看好data2vec这类多模态融合的研究

夕小瑶的卖萌屋