Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

6 Graph Theory Basics

- Homework assignment published on Monday, 2018-04-02.
- Submit first solutions and questions by Sunday, 2018-04-08, 12:00, by email to dominik.scheder@gmail.com and to the TAs.
- You will receive feedback by Wednesday, 2018-04-11.
- Submit final solution by Sunday, 2018-04-15 to me and the TAs.

Let G = (V, E) and H = (V', E') be two graphs. A graph isomorphism from G to H is a bijective function $f: V \to V'$ such that for all $u, v \in V$ it holds that $\{u, v\} \in E$ if and only if $\{f(u), f(v)\} \in E'$. If such a function exists, we write $G \cong H$ and say that G and H are isomorphic. In other words, G and H being isomorphic means that they are identical up to the names of its vertices.

Obviously, every graph G is isomorphic to itself, because the identity function f(u) = u is an isomorphism. However, there might be several isomorphisms f from G to G itself. We call such an isomorphism from G to itself an automorphism of G.

Exercise 6.1. For each of the graphs below, compute the number of automorphisms it has.

Justify your answer!

Consider the *n*-dimensional Hamming cube H_n . This is the graph with vertex set $\{0,1\}^n$, and two vertices $x,y \in \{0,1\}^n$ are connected by an edge if they differ in exactly one edge. For example, the right-most graph in the figure above is H_3 .

Exercise 6.2. Show that H_n has exactly $2^n \cdot n!$ automorphisms. Be careful: it is easy to construct $2^n \cdot n!$ different automorphisms. It is more difficult to show that there are no automorphisms other than those.

A graph G is called *asymmetric* if the identity function f(u) = u is the only automorphism of G. That is, if G has exactly one automorphism.

Exercise 6.3. Give an example of an asymmetric graph on six vertices.

Exercise 6.4. Find an asymmetric tree.

For a graph G=(V,E), let $\bar{G}:=\left(V,\binom{V}{2}\setminus E\right)$ denote its *complement graph*.

We call a graph self-complementary if $G \cong \bar{G}$. The above graph is not self-complementary. Here is an example of a self-complementary graph:

The pentagon G. \bar{G} , the pentagram.

Exercise 6.5. Show that there is no self-complementary graph on 999 vertices.

Exercise 6.6. Characterize the natural numbers n for which there is a self-complementary graph G on n vertices. That is, state and prove a theorem of the form "There is a self-complementary graph on n vertices if and only if n <put some simple criterion here>."