Problem Set 1

Natasha Watkins

Exercise 1.3

 \mathcal{G}_1 is not an algebra.

• Take $B \in \mathcal{G}_1$. Its complement, B^c , is closed, and therefore not in \mathcal{G}_1 . Hence, \mathcal{G}_1 is not closed under complements.

 \mathcal{G}_2 is an algebra.

 \mathcal{G}_3 is a σ -algebra.

Exercise 1.7

 \mathcal{A} is a σ -algebra of X. $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$.

Part 1:

- By definition, $\emptyset \in \mathcal{A}$.
- $\emptyset \in \mathcal{A}$ implies $\emptyset^c = X \in \mathcal{A}$.
- So $\{\emptyset, X\}$ is the smallest σ -algebra of X.

Part 2:

- Suppose $\mathcal{P}(X)$ is not the largest σ -algebra on X.
- Then there is $B \in X$ such that $\mathcal{P}(X) \cup B$ is a σ -algebra of X, where $B \notin \mathcal{P}(X)$.
- But $B \in X$, so $B \in \mathcal{P}(X)$. This is a contradiction, so $\mathcal{P}(X)$ must be the largest σ -algebra.

Exercise 1.10

 $\{S_{\alpha}\}\$ is a family of σ -algebras on X.

- As $\emptyset \in \mathcal{S}_{\alpha}$ for all $\alpha, \emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha}$.
- Given $A \in \cap_{\alpha} \mathcal{S}_{\alpha}$, $A \in \mathcal{S}_{\alpha}$ for all α and $A^c \in \mathcal{S}_{\alpha}$ for all α . So $A^c \in \cap_{\alpha} \mathcal{S}_{\alpha}$.
- Given $A_1, A_2, \dots \in \cap_{\alpha} \mathcal{S}_{\alpha}$, $A_1, A_2, \dots \in \mathcal{S}_{\alpha}$ for all α . So $\bigcup_{n=1}^{\infty} A_n \in \mathcal{S}_{\alpha}$ for all α . Hence, $\bigcup_{n=1}^{\infty} A_n \in \cap_{\alpha} \mathcal{S}_{\alpha}$.

Therefore, $\cap_{\alpha} S_{\alpha}$ is a σ -algebra.

Exercise 1.17

• $A, B \in \mathcal{S}, A \subset B$. $A \cup (B \cap A^c) = B$. As A and $B \cap A^c$ are disjoint, $\mu(A) + \mu(B \cap A^c) = \mu(B)$. This implies $\mu(A) \leq \mu(B)$.

Exercise 1.18

• $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0.$

Exercise 1.20

- $\bullet \cap_{i=1}^n A_i = A_n$
- $\mu(\cap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(\cap_{i=1}^n A_i) = \lim_{n \to \infty} \mu(A_n)$