Анализ категориальных данных

Занятия 1 – 2. Модели бинарного выбора: спецификация, интерпретация

21 февраля 2020

Вспомните, что такое линейная вероятностная модель (linear probability model)

Вспомните, что такое линейная вероятностная модель (linear probability model)

Ответ

Это результат оценивания классической линейной регрессии применительно к случаю бинарного отклика:

 $y_i = \beta_0 + \beta x_i + e_i$, где y_i принимает только два значения (к примеру, 1 — приняли рукопись к публикации, 0 — в противном случае)

В этом случае предсказанное значение отклика $(\hat{y_i})$ – это вероятность того, что Y принимает значение 1 $E(y_i|x_i) = 1 \times P(y_i = 1|x_i) + 0 \times P(y_i = 0|x_i)$

В чем основные ограничения линейной вероятностной модели?

В чем основные ограничения линейной вероятностной модели?

Ответ

- Предсказанные значения отклика выходят за допустимые границы, может быть меньше 0 или больше 1 (при этом $\hat{y}_i = P(y_i = 1)$)
- Осдержательно не всегда правдоподобной является линейная взаимосвязь вероятности «успеха» и объясняющей переменной

Рассмотрим альтернативу. Объясните суть подхода, основанного на латентной зависимой переменной?

Рассмотрим альтернативу. Объясните суть подхода, основанного на латентной зависимой переменной?

Ответ

Рассмотрим альтернативу. Объясните суть подхода, основанного на латентной зависимой переменной?

Ответ

Мы допускаем, что существует некоторая ненаблюдаемая переменная y_i^* , принимающая любые значения $(-\infty; +\infty)$

Условно ее можно интерпретировать как склонность к «успеху» (склонность к тому, что наблюдаемый $y_i=1$)

На основе значений y_i^* определяются значения исходного y_i . Если $y_i^*>0$, то $y_i=1$

Если $y_i^* \leq 0$, то $y_i = 0$

Запишите спецификацию модели с y_i^* в качестве отклика. Как оценивается такая модель?

Запишите спецификацию модели с y_i^* в качестве отклика. Как оценивается такая модель?

Ответ

Важно, что латентная зависимая переменная линейным образом связана с объясняющими переменными:

$$y_i^* = \beta_0 + \beta x_i + e_i$$

Так как отклик ненаблюдаемый, нам нужны допущения о распределении ошибок:

- $\bullet \sim N(0,1)$ (probit-model)
- $oldsymbol{Q}$ стандартное логистическое распределение $\epsilon \approx N(0,3.29)$ (logit-model). $F(\epsilon) = \frac{exp(\epsilon)}{1+exp(\epsilon)}$

Daria Salnikova AKД 21

Покажите, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$ (F – функция распределения)

Покажите, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$ (F – функция распределения)

Ответ

 $P(y_i = 1) = P(y_i^* > 0) = P(\beta_0 + \beta x_i + e_i > 0) = P(e_i \le \beta_0 + \beta x_i),$ а функция распределения – это и есть вероятность того, что сл. величина не превышает указанное значение.

К примеру, для логит-модели:

$$P(y_i = 1) = F(\beta_0 + \beta x_i) = \frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}$$

←□ ト ←□ ト ← 重 ト → 重 ・ 夕 へ ○

Можно обойтись и без латентного y_i^* :

Можно обойтись и без латентного y_i^* :

Ответ

- Перейдем от $P(y_i = 1)$ к шансам $\frac{P(y_i = 1)}{1 P(u_i = 1)}$
- $oldsymbol{2}$ Запишем $P(y_i=1)$ как функцию распределения:

$$\frac{\frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}}{1 - \frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}} = exp(\beta_0 + \beta x_i)$$

• $\ln\left(\frac{P(y_i=1)}{1-P(y_i=1)}\right) = \beta_0 + \beta x_i$ (логит линейным образом связан с объясняющими переменными)

Зависимость P(Y = 1) от X ...

...в результате той самой ползущей «улитки»

Ответ

• Предельные эффекты (для непрерывных переменных)

Ответ

- Предельные эффекты (для непрерывных переменных)
- 2 Дискретное изменение в вероятности

Ответ

- Предельные эффекты (для непрерывных переменных)
- 2 Дискретное изменение в вероятности
- 3 Отношения шансов (odds ratio)

Задача в преддверии праздников

Задача в преддверии праздников

Ниже представлены оценки логит-модели, предсказывающей вероятность того, что девушка получит подарок на 8 марта от своего молодого человека, на основании следующих предикторов:

- present23Feb девушка поздравила своего МЧ с 23 февраля (дамми-переменная: 1 поздравила, 0 нет)
- alittleforgetful ee MЧ слегка забывчив (1 да, 0 нет)

Оценки модели

 $0.4 + 0.7 \times present23Feb_i - 2.1 \times alittle forgetful_i$

Задача в преддверии праздников

Ниже представлены оценки логит-модели, предсказывающей вероятность того, что девушка получит подарок на 8 марта от своего молодого человека, на основании следующих предикторов:

- present23Feb девушка поздравила своего МЧ с 23 февраля (дамми-переменная: 1 поздравила, 0 нет)
- alittleforgetful ee MЧ слегка забывчив (1 да, 0 нет)

Оценки модели

 $0.4 + 0.7 \times present23Feb_i - 2.1 \times alittle forgetful_i$

Задание

Проинтерпретируйте оценки в терминах отношений шансов