DS-UA 112 Introduction to Data Science

Lecture 5

Agenda

- ▶ Review
- ▶ Lesson
- ▶ Demo

Reminders

- Announcement
 - Section
 - ▶ Office Hours
- ► Survey 2
- ► Homework
- ► Lecture
 - ► Links to Agenda
 - ► Forum

$$\frac{P(A|F)}{P(A|\text{not }F)} = \frac{P(F|A)P(A)}{P(F)} \cdot \left[\frac{P(\text{not }F|A)P(A)}{P(\text{not }F)}\right]^{-1}$$

$$= \frac{P(F|A)}{P(\text{not }F|A)} \cdot \frac{P(\text{not }F)}{P(F)}$$

$$= \frac{P(F|A)}{1 - P(F|A)} \cdot \frac{1 - P(F)}{P(F)}$$

$$= \frac{P(F|A)}{1 - P(F|A)} \cdot \left(\frac{1}{P(F)} - 1\right)$$

$$= \frac{P(F|A)}{1 - P(F|A)} \cdot (\lambda - 1)$$
Fertility Rate

```
Landon (Rep) Roosevelt (Dem)
Predicted 57% 43%
Actual 38% 62%
```

	Dewey (Rep)	Truman (Dem)
Predicted	49.5%	44.5%
Actual	45.1%	49.6%

- ► Self-selected sample.
 - ► Sample is whoever chooses to answer.
- ► Convenience sample
 - ► Sample is whomever/whatever is convenient for investigator.
- ▶ Judgment sample
 - Sample is whomever/whatever investigator deliberately selects

- ► Probability sample
 - ▶ Sample is selected based on probabilistic procedure.
 - ► Assigns precise probability to the event that each particular sample is drawn from the population
 - ► This allows to quantify uncertainty/confidence about a prediction

- ► Probability sample
 - ► Simple Random Sample

- ► Probability sample
 - ► Simple Random Sample
 - ► Cluster Sample

- ► Probability sample
 - ► Simple Random Sample
 - ► Cluster Sample
 - ► Stratified Sample

Every analysis starts by drawing a data sample **S** from a population **D**.

Every analysis starts by drawing a data sample **S** from a population **D**.

Each instance is characterized by a set of features (X, Y)

Every analysis starts by drawing a data sample **S** from a population **D**.

Each instance is characterized by a set of features (X, Y)

Every analysis starts by drawing a data sample **S** from a population **D**.

Each instance is characterized by a set of features (X, Y)

If being in the sample **S** is independent of **X** and **Y**, the sample is <u>unbiased</u>:

i.e. P(S|X,Y)=P(S)

Every analysis starts by drawing a data sample **S** from a population **D**.

Each instance is characterized by a set of features (X, Y)

If being in the sample **S** is independent of **X** and **Y**, the sample is <u>unbiased</u>:

i.e.
$$P(S|X,Y)=P(S)$$

Else the sample is <u>biased</u>: i.e. $P(S|X,Y) \neq P(S)$

$$P(S1) = 0.5$$

 $P(S1|R) = 0.75$
 $P(S1|B) = 0.25$

$$P(S2) = 0.5$$

 $P(S2|R) = 0.5$
 $P(S2|B) = 0.5$

$$P(S3) = 0.5$$

 $P(S3|R) = 1$
 $P(S3|B) = 0$

- ▶ What to do about bias?
 - ► Avoid it

- ▶ What to do about bias?
 - ► Avoid it
 - ► Adjust it

- ▶ What to do about bias?
 - ► Avoid it
 - ► Adjust it
 - ► Expect it

- ▶ What to do about bias?
 - ► Avoid it
 - ► Adjust it
 - ► Expect it
 - ▶ Generalizability
 - ► Identifiability

- ► How to Adjust It?
 - ► Can large amounts of data correct for bias?

- ► How to Adjust It?
 - ► Can we "rescale" the probabilities?

- ► How to Adjust It?
 - ► Can we "rescale" the probabilities?

Why would predictions about behavior be more accurate for newer customers?

- ► How to Adjust It?
 - ► Can we "rescale" the probabilities?

Why would predictions about behavior be more accurate for newer customers?

Its pretty clear that $P(S|X)\neq P(S)$, where X is the number of records attached to the user.

- ► ACC PRED
 - ► Accurate Prediction of Customer Behavior
- ► LOG SIZE
 - ► Size of Database Entry
- **▶** QUERY SUC
 - ► Whether Researcher waited for Query Results
- ► IN SYS
 - ► Whether Researcher entered Database Entry into Prediction System

P(ACC PRED | LOG SIZE) =

```
P(ACC PRED | LOG SIZE) =
```

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+

P(ACC PRED | LOG SIZE, NOT QUERY SUC)P(NOT QUERY SUC | LOG SIZE) =

```
P(ACC PRED | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+

P(ACC PRED | LOG SIZE, NOT QUERY SUC)P(NOT QUERY SUC | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+
```

P(ACC PRED | LOG SIZE, NOT IN SYS)P(NOT QUERY SUC | LOG SIZE) =

```
P(ACC PRED | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+

P(ACC PRED | LOG SIZE, NOT QUERY SUC)P(NOT QUERY SUC | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)
```

(0) P(NOT QUERY SUC | LOG SIZE)

```
P(ACC PRED | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+

P(ACC PRED | LOG SIZE, NOT QUERY SUC)P(NOT QUERY SUC | LOG SIZE) =

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

+
```

P(ACC PRED | LOG SIZE)

 \neq

P(ACC PRED | LOG SIZE, QUERY SUC)

P(ACC PRED | LOG SIZE)

P(ACC PRED | LOG SIZE, QUERY SUC)P(QUERY SUC | LOG SIZE)

P(ACC PRED | LOG SIZE)
P(QUERY SUC | LOG SIZE)

P(ACC PRED | LOG SIZE, QUERY SUC)