re¹ Notas de Álgebra Moderna IV. Módulos ∠aniel Alvarado 7 de noviembre de 2024 aniel Alvarado ESFM

Cristo Daniel Alvarado ES

Índice general

Índ	lice general	
	Cin Diej Willen	
1. Mó	dulos, Homomorfismos y Secuencias exactas	2
1.1.		<u>-</u> 2
1.2.		
1.3.	Ejercicios Capítulo 1	15
2. Mó	dulos Libres y Espacios Vectoriales	20
2.1.	Conceptos Fundamentales	20
2.2.	Referencias	

Capítulo 1

Módulos, Homomorfismos y Secuencias exactas

1.1. Módulos y homomorfismos

Los módulos son una generalización de los grupos abelianos y lo enteros (los cuales son módulos sobre \mathbb{Z}).

Definición 1.1.1

Sea R un anillo no trivial. Decimos que R es un **anillo de división**, si R es unitario y para cada $a \in A$ existe $a^{-1} \in A$.

Si R es conmutativo, entonces R es un campo.

Definición 1.1.2

Sea R un anillo, un R-módulo (izquierdo) es un grupo abeilano A junto con una función $\cdot : R \times A \to A$ (denotada simplemente por $(r, a) \mapsto ra$) tal que para todo $r, s \in R$ y para todo $a \in A$:

- (1) r(a+b) = ra + rb.
- (2) (r+s)a = ra + sa.
- (3) r(sa) = (rs)a.

si R además tiene elemento identidad 1_R y se cumple que

(4) $1_R a = a$, para todo $a \in A$.

entonces decimos que A es un R-módulo unitario (izquierdo). En caso de que R sea un anillo de división, el módulo unitario A será llamado espacio vectorial (izquierdo).

De forma análoga podemos definir los R-módulos derechos, cambiando el orden en el que se hacen las operaciones. Sin embargo, a lo largo del texto solo trabajaremos con módulos izquierdos y todos los resultados que se prueben para esto, también se cumplirán para los derechos.

Ejercicio 1.1.1

Sea A un R-módulo izquierdo. Si R es conmutativo, podemos hacer de A un R-módulo derecho

definiendo:

$$ar = ra, \quad \forall a \in A \ y \ \forall r \in R$$

Demostración:

Considere la función de $\cdot : A \times R \to A$ dada por:

$$(a,r) \mapsto ar = ra, \quad \forall (a,r) \in A \times R$$

Afirmamos que esta función hace de A un R-módulo derecho. En efecto, debemos verificar tres condiciones, sean $r, s \in R$ y $a, b \in A$:

(1) Se tiene que:

$$(a+b)r = r(a+b)$$
$$= ra + rb$$
$$= ar + br$$

(2) Se tiene que:

$$a(r+s) = (r+s)a$$
$$= ra + sa$$
$$= ar + as$$

(3) Se tiene que:

$$(as)r = r(as)$$

= $r(sa)$
= $(rs)a$, como R es conmutativo:
= $(sr)a$
= $a(sr)$

por los tres incisos anteriores se sigue que A es un R-módulo derecho.

Observación 1.1.1

A menos que se especifique lo contrario, todo R-módulo A sobre un anillo conmutativo R será izquierdo y derecho haciendo:

$$ra = ar, \quad \forall a \in A \ y \ \forall r \in R$$

Observación 1.1.2

Denotaremos al elemento identidad de un R-módulo A por 0_A , y al elemento neutro de R por 0_R .

Proposición 1.1.1

Sea A un R-módulo, entonces:

$$r0_A = 0_A \quad \text{y} \quad 0_R a = 0_A$$

para todo $r \in R$ y para todo $a \in A$.

Demostración:

Sea $r \in R$, se tiene que:

$$r0_A = r(0_A + 0_A) = r0_A + r0_A \Rightarrow r0_A = 0_A$$

y, para todo $a \in A$:

$$0_R a = (0_R + 0_R)a = 0_R a + 0_R a \Rightarrow 0_R a = 0_A$$

Por lo que, en lo que sigue del texto se denotará por 0 a $0_A, 0_R, 0 \in \mathbb{Z}$ y al módulo trivial $\{0\}$.

Ejemplo 1.1.1

Todo grupo abeliano G es un \mathbb{Z} módulo unitario izquierdo (en particular, puede ser derecho por ser abeliano), bajo la operación $(n, a) \mapsto na$, siendo na la suma de a consigo mismo n-veces.

Ejemplo 1.1.2

Si S es un anillo y R es un subanillo, entonces S es un R-módulo (pero no al revés, ya que puede que la operación se salga de S) con ra siendo $r \in R$ y $a \in S$. En particular, los anillos:

$$R[x_1, ..., x_n]$$
 y $R[[x]]$

son R-módulos, los cuáles son unitarios si R posee identidad.

Ejemplo 1.1.3

Sean R, S anillos y $\varphi: R \to S$ un homomorfismo de anillos. Entonces todo S-módulo puede hacerse un R-módulo definiendo rx (con $x \in A$) por $\varphi(r)x$, esto es:

$$rx = \varphi(r)x$$

donde la operación de la derecha se toma en el S-módulo, A. En este caso se dice que la estructura de R-módulo de A está dada por el **pullback a lo largo de** φ .

Definición 1.1.3

Sean A y B módulos sobre un anillo R. Una función $f:A \to B$ es un **homomorfismo de** R-módulos, si para todo $a,b \in A$ y para todo $r \in R$ se tiene que:

$$f(a+b) = f(a) + f(b) \quad y \quad f(ra) = rf(a)$$

si R es un anillo de división, entonces f es llamada transformación lineal.

En el contexto actual, los homomorfismos de R-módulos serán simplemente llamados homomorfismos. Se adopta la misma terminología de monomorfismo, epimorfismo e isomorfismo. Se define también de forma análoga el **núcleo** o **kernel** de f por:

$$\ker(f) = \left\{ a \in A \middle| f(a) = 0 \right\}$$

con lo que se tienen los siguientes resultados (que provienen directamente de lo probado en anillos):

Teorema 1.1.1

Sean A y B dos R-módulos y $f: A \to B$ un homomorfismo.

(a) f es monomorfismo si y sólo si $ker(f) = \{0\}$.

(b) f es isomorfismo si y sólo si existe un homomorfismo de R-módulos $g: B \to A$ tal que $g \circ f = \mathbbm{1}_A$ y $f \circ g = \mathbbm{1}_B$.

Ejemplo 1.1.4

Todo homomorifsmo entre grupos abelianos es un homomorfismo de Z-módulos.

Ejemplo 1.1.5

Si R es un anillo, la función de R[x] en R[x] dada por: $f(x) \mapsto xf(x)$ es un homomorfismo de R-módulos, pero no es un homomorfismo de anillos (no separa productos).

Observación 1.1.3

Para un anillo R dado, la clase de todos los R-módulos forma una categoría concreta, denotada por \mathcal{M}_R para los módulos derechos y $_R\mathcal{M}$ para los izquierdos.

Definición 1.1.4

Sea R un anillo, A un R-módulo y $B \subseteq A$ un subconjunto no vacío. Se dice que B es un submódulo de A si B es un subgrupo aditivo de A y, para todo $r \in R$ se tiene que:

$$rb \in B, \quad \forall b \in B$$

un submódulo de un espacio vectorial es llamado subespacio vectorial.

Observación 1.1.4

Todo submódulo es en sí mismo un módulo. Todo submódulo de un módulo unitario es también untario.

Ejemplo 1.1.6

Si $\{B_i | i \in I\}$ es una familia de submódulos de un módulo A, entonces $\bigcap_{i \in I} B_i$ es un submódulo de A.

Definición 1.1.5

Sea A un R-módulo y $X \subseteq A$, entonces la intersección de todos los submódulos que contienen a X es llamado el **submódulo generado por** X.

- Si X es finito y X genera al módulo B, se dice que B es **finitamente generado**. Si X tiene un solo elemento, se dice que B es un **módulo cíclico**.
- Si $\{B_i\}_{i\in I}$ es una familia de submódulos de A, entonces el submódulo generado por $\bigcup_{i\in I} B_i$ es llamado la **suma de los módulos** B_i . Si el conjunto I es finito, esto se denota por:

$$B_1 + \cdots + B_n$$

Teorema 1.1.2

Sea R un anillo, A un R-módulo, $X \subseteq X$, $\{B_i\}_{i \in I}$ una familia de submódulos de A y $a \in A$. Tomemos $Ra = \{ra | r \in R\}$.

(a) Ra es un submódulo de A y la función de R en Ra dada por $r\mapsto ra$ es un epimorfismo de R-módulos.

(b) El submódulo cíclico C generado por a es

$$\left\{ ra + na \middle| r \in R, n \in \mathbb{Z} \right\}$$

si R tiene identidad y C es unitario, entonces C = Ra.

(c) El submódulo D generado por X es:

$$\left\{ \sum_{i=1}^{s} r_i a_i + \sum_{j=1}^{t} n_j b_j \middle| s, t \in \mathbb{N}^*; a_i, b_j \in X; r_i \in R; n_j \in \mathbb{Z} \right\}$$

si R tiene identidad y A es unitario, entonces:

$$D = RX = \left\{ \sum_{i=1}^{s} r_i a_r \middle| i \in \mathbb{N}^*; r_i \in R; a_i \in X \right\}$$

(d) La suma de la familia $\{B_i | i \in I\}$ consiste de todas las sumas finitas $b_1 + \cdots + b_{i_n}$ con $b_{i_k} \in B_{i_k}$ para todo k = 1, ..., n.

Demostración:

De (a): Veamos que Ra es un R-módulo. Claramente s(ra) está bien definida (sigue en Ra ya que A es un R-módulo). Veamos que:

• Sean $ra, sa \in Ra$, entonces:

$$t(ra + sa) = t(ra) + t(sa)$$

• Sean $r, s \in R$ y $ta \in Ra$, entonces:

$$(r+s)(ta) = ((r+s)t)a$$
$$= (rt+st)a$$
$$= (rt)a + (st)a$$
$$= r(ta) + s(ta)$$

• Sean $r, s \in R$ y $ta \in Ra$, entonces:

$$r(s(ta)) = r((st)a)$$

$$= (r(st))a$$

$$= ((rs)t)a$$

$$= (rs)(ta)$$

por tanto, Ra es un R-módulo. Claramente la función $r\mapsto ra$ es un epimorfismo de módulos.

De (b): Sea C el submódulo cíclico generado por a, esto es, es la intersección de todos los submódulos que contienen a a.

Teorema 1.1.3

Sea B un submódulo de un módulo A sobre un anillo R. Entonces, el grupo cociente A/B es un R-módulo con la acción de R en A/B dada por:

$$r(a+B) = ra + B, \quad \forall r \in R \ y \ \forall a \in A$$

Demostración:

Como B es submódulo de A, en particular es subgrupo del grupo abeliano A, por lo que el grupo cociente A/B está bien definido. Consideremos ahora la operación

$$(r, a + B) \mapsto r(a + B) = ra + B$$

de $R \times A/B$ en A/B. Afirmmaos que esta función está bien definida. En efecto, si $a, a' \in A$ son tales que $a - a' \in B$, entonces al ser B submódulo de A, se sigue que $r(a - a') = ra - ra' \in B$, lo cual implica que:

$$ra + B = ra' + B$$

así, la acción está bien definida. Veamos ahora que A/B es un R-módulo. En efecto, hay que verificar tres condiciones:

(a) Sean $r \in R$ y $a, c \in A$. Entonces:

$$r[(a+B) + (c+B)] = r[a+c+B]$$

= $r(a+c) + B$
= $ra + rc + B$
= $(ra+B) + (rc+B)$
= $r(a+B) + r(c+B)$

(b) Sean $r, s \in R$ y $a \in A$. Entonces:

$$(r+s)(a+B) = (r+s)a + B$$
$$= ra + sa + B$$
$$= (ra+B) + (sa+B)$$
$$= r(a+B) + s(a+B)$$

(c) Sean $s, t \in R$ y $a \in A$. Entonces:

$$r(s(a+B)) = r(sa+B)$$
$$= r(sa) + B$$
$$= (rs)a + B$$
$$= (rs)(a+B)$$

por los incisos anteriores se sigue que A/B es un R-módulo. Ya se sabe que $\pi:A\to A/B$ es un epimomorfismo de grupos, para ver que lo es de R-módulos, veamos que:

$$\pi (r (a + B)) = \pi (ra + B)$$
$$= ra$$
$$= r\pi (a + B)$$

para todo $a \in A$ y para todo $r \in R$. Por ende, π es un epimofrismo de R-módulos.

También se cumplen los teoremas de isomorfismos, que solo se van a enlistar (después se van a probar, solo falta con ver que es homomorfismo de R-módulos dependiendo del caso).

Teorema 1.1.4 (Primer Teorema de Isomorfismo)

Sea R un anillo, $f:A\to B$ un homomorfismo de R-módulos y C un submódulo de ker f. Entonces, existe un único homomorfismo de R-módulos $\overline{f}:A/C\to B$ tal que

$$\overline{f}(a+C) = f(a), \quad \forall a \in A$$

además, $\operatorname{Im} \overline{f} = \operatorname{Im} f$ y $\ker \overline{f} = \ker f/C$. Además, \overline{f} es un isomorfismo de R-módulos si y sólo si f es un epimorfismo de R-módulos tal que $C = \ker f$. En particular,

$$A/\ker f \cong \operatorname{Im} f$$

Corolario 1.1.1

Sea R un anillo, A' un submódulo del R-módulo, A y B' submódulo del R-módulo, B y $f:A\to B$ un homomorfismo de R-módulos tal que $f(A')\subseteq B'$. Entonces, f induce un homomorfismo de R-módulos $\overline{f}:A/A'\to B/B'$ dado por:

$$a + A' \mapsto f(a) + B'$$

 \overline{f} es un isomorfismo de R-módulos si y sólo si $\operatorname{Im} f + B' = B$ y $f^{-1}(B') \subseteq A'$. En particular, si f es un epimorfismo tal que f(A') = B' y ker $f \subseteq A'$ entonces \overline{f} es un isomorfismo de R-módulos.

Teorema 1.1.5 (Segundo y Tercer Teorema de isomorfismos)

Sean B y C submódulos de un R-módulo A.

- (a) Existe un isomorfismo de R-módulos, $B/(B \cap C) \cong (B+C)/C$.
- (b) Si $C \subseteq B$, entonces B/C es un submódulo de A/C, y existe un isomorfismo de R-módulos, $(A/C)/(B/C) \cong A/B$.

Teorema 1.1.6

Si R es un anillo y B es un submódulo de un R-módulo A, entonces existe una correspondencia uno a uno en el conjunto de todos los submódulos de A que contienen a B y el conjunto de todos los submódulos de A/B, dada por $C \mapsto C/B$. Por tanto, todo submódulo de A/B es de la forma C/B donde C es un submódulo de A que contiene a B.

Ahora daremos la existencia de los productos y coproductos en la categoría $_{R}\mathcal{M}$.

Teorema 1.1.7

Sea R un anillo y $\{A_i\}_{i\in I}$ una familia no vacía de R-módulos, $\prod_{i\in I} A_i$ el producto directo de los grupos abelianos A_i , y $\sum_{i\in I} A_i$ la suma directa de los grupos abelianos.

- (a) $\prod_{i \in I} A_i$ es un R-módulo con la acción de R dada por: (rf)(i) = rf(i), para todo $f \in \prod_{i \in I} A_i$ y para todo $i \in I$. En otras palabras, si $\{a_i\}_{i \in I} \in \prod_{i \in I} A_i$, entonces $r\{a_i\}_{i \in I} = \{ra_i\}_{i \in I}$.
- (b) $\sum_{i \in I} A_i$ es un submódulo de $\prod_{i \in I} A_i$.
- (c) Para cada $k \in I$, la proyección canónica $\pi_k: \prod_{i \in I} A_i \to A_k$ es un epimorfismo de R-módulos.
- (d) Para cada $k \in I$, la inyección canónica $\iota_k : A_k \to \prod_{i \in I} A_i$ es un monomorfismo de R-módulos.

Demostración:

De (a): Ya se sabe que $\prod_{i \in I} A_i$ es un grupo abeliano, veamos que con la acción

$$(r, \{a_i\}_{i \in I}) \mapsto r \{a_i\}_{i \in I} = \{ra_i\}_{i \in I}$$

es un R-módulo. En efecto, verifiquemos las tres condiciones:

(1) Sean $\{a_i\}_{i\in I}$, $\{b_i\}_{i\in I}\in\prod_{i\in I}A_i$ y $r\in R$, se tiene que:

$$r(\{a_i\}_{i \in I} + \{b_i\}_{i \in I}) = r\{a_i + b_i\}_{i \in I}$$

$$= \{r(a_i + b_i)\}_{i \in I}$$

$$= \{ra_i + rb_i\}_{i \in I}$$

$$= \{ra_i\}_{i \in I} + \{rb_i\}_{i \in I}$$

$$= r\{a_i\}_{i \in I} + r\{a_i\}_{i \in I}$$

(2) Sean $r, s \in R$ y $\{a_i\}_{i \in I} \in \prod_{i \in I} A_i$, se tiene que:

$$\begin{split} (r+s) \left\{ a_i \right\}_{i \in I} &= \left\{ (r+s) a_i \right\}_{i \in I} \\ &= \left\{ r a_i + s a_i \right\}_{i \in I} \\ &= \left\{ r a_i \right\}_{i \in I} + \left\{ s a_i \right\}_{i \in I} \\ &= r \left\{ a_i \right\}_{i \in I} + s \left\{ a_i \right\}_{i \in I} \end{split}$$

(3) Sean $r, s \in R$ y $\{a_i\}_{i \in I} \in \prod_{i \in I} A_i$, se tiene que:

$$r(s \{a_i\}_{i \in I}) = r \{sa_i\}_{i \in I}$$

$$= \{r(sa_i)\}_{i \in I}$$

$$= \{(rs)a_i\}_{i \in I}$$

$$= (rs) \{a_i\}_{i \in I}$$

por los incisos anteriores, se sigue que $\prod_{i \in I} A_i$ es un R-módulo.

De (b): Se sigue del hecho de que para todo $r \in R$, $r0_{A_i} = 0_{A_i}$, para todo $i \in I$.

De (c) y (d): Son inmediatos por la definición de la acción de R sobre $\prod_{i \in I} A_i$.

Definición 1.1.6

En el contexto del teorema anterior, $\prod_{i \in I} A_i$ es llamado el **producto directo (externo)** de la familia de R-módulos, $\{A_i\}_{i \in I}$ y $\sum_{i \in I} A_i$ es llamado la **suma directo (externo)** de la familia de R-módulos, $\{A_i\}_{i \in I}$.

En el caso en que I sea finito, digamos $I = \{1, ..., n\}$, el producto directo y la suma directa coincidirán y se denotarán simplemente por:

$$A_1 \oplus A_2 \oplus \cdots \oplus A_n$$

Las funciones π_k (respectivamente, ι_k) son llamadas **proyecciones canónicas** (respectivamente, **inyecciones**).

Teorema 1.1.8

Sea R un anillo, $\{A_i\}_{i\in I}$ una familia de R-módulos, C un R-módulo, y $\{\varphi_i:C\to A_i\}_{i\in I}$ una familia de homomorfismos de R-módulos. Entonces, existe un único homomorfismo de R-módulos $\varphi:C\to\prod_{i\in I}A_i$ tal que

$$\pi_i \circ \varphi = \varphi_i, \quad \forall i \in I$$

Esto es, que $\prod_{i \in I} A_i$ está únicamente determinado hasta isomorfismos por esta propiedad, lo que quiere decir que $\prod_{i \in I} A_i$ es un producto en la categoría de R-módulos.

Demostración:

Como el producto de los grupos abelianos

$$\prod_{i \in I} A_i$$

está unicamente determinado por un único homomorfismo de grupos $\varphi: C \to \prod_{i \in I} A_i$, dado por:

$$\varphi(x) = \{\varphi_i(x)\}_{i \in I}$$

en particular, se cumple que:

$$\varphi(rc) = \{\varphi_i(rc)\}_{i \in I}$$

$$= \{r\varphi_i(c)\}_{i \in I}$$

$$= r\{\varphi_i(c)\}_{i \in I}$$

$$= r\varphi(c)$$

por lo que φ es el homomorfismo de R-módulos deseado.

Teorema 1.1.9

Sea R un anillo, $\{A_i\}_{i\in I}$ una familia de R-módulos, C un R-módulo, y $\{\psi_i:A_i\to C\}_{i\in I}$ una familia de homomorfismos de R-módulos. Entonces, existe un único homomorfismo de R-módulos $\psi:\sum_{i\in I}A_i\to C$ tal que

$$\psi \circ \iota_i = \psi, \quad \forall i \in I$$

Esto es, que $\sum_{i \in I} A_i$ está únicamente determinado hasta isomorfismos por esta propiedad, lo que quiere decir que $\sum_{i \in I} A_i$ es un coproducto en la categoría de R-módulos.

Demostración:

Es análogo a lo hecho en el teorema anterior.

1.2. Secuencias Exactas

Definición 1.2.1

Un par de homomorfismos de módulos

$$A \xrightarrow{f} B \xrightarrow{g} C$$

se dice **exacta en** B, si $\text{Im} f = \ker g$.

Una secuencia finita de homomorfismos de módulos

$$A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} A_{n-1} \xrightarrow{f_n} A_n$$

se dice exacta, si

$$\operatorname{Im} f_i = \ker f_{i+1}, \quad \forall i = 0, 1, ..., n-1$$

Una secuencia infinita de homomorfismos de módulos

$$\cdots \xrightarrow{f_{i-1}} A_{i-1} \xrightarrow{f_i} A_i \xrightarrow{f_{i+1}} A_{i+1} \xrightarrow{f_{i+2}} \cdots$$

es **exacta**, si $\operatorname{Im} f_i = \ker f_{i+1}$, para todo $i \in \mathbb{Z}$.

Siempre que sea conveniente, nos referiremos a la secuencia exacta de homomorfismos módulos como la secuencia de módulos.

Ejemplo 1.2.1

Sea A un R-módulo. Existen únicos homomorfismos de módulos $0 \to A$ y $A \to 0$. Por lo que, podemos considerar a la secuencia:

$$0 \to A \to 0$$

pero esta no es exacta, ya que la imagen del primer homomorfismo es 0 y el kernel del segundo es A.

Ejemplo 1.2.2

Si A y B son módulos sobre un anillo R, entonces las secuencias:

$$0 \to A \stackrel{\iota_1}{\to} A \oplus B \stackrel{\pi_2}{\to} B \to 0 \text{ y } 0 \to B \stackrel{\iota_2}{\to} A \oplus B \stackrel{\pi_1}{\to} A \to 0$$

son exactas, donde π 's y ι 's son las proyecciones e inveccoines canónicas, respectivamente.

Ejemplo 1.2.3

Si C es submódulo de un módulo D, entonces la secuencia

$$0 \to C \xrightarrow{i} D \xrightarrow{\pi} D/C \to 0$$

es exacta, siendo $i:C\to D$ el mapeo inclusión, y $\pi:D\to D/C$ el epimorfismo canónico.

Definición 1.2.2

Si $f: A \to B$ es un homomorifsmo de módulos, entonces $A/\ker f$ (respectivamente, $B/\operatorname{Im} f$) es llamada la **coimagen de** f (respectivamente, **cokernel de** f) y es denotado por Coimf (respectivamente, Cokerf).

Ejemplo 1.2.4

Sea $f:A\to B$ es un homomorifsmo de módulos. Entonces, cada una de las siguientes secuencias es exacta:

(a)
$$0 \to \ker f \to A \to \operatorname{Coim} f \to 0$$
.

(b)
$$0 \to \operatorname{Im} f \to B \to \operatorname{Coker} f \to 0$$
.

(c)
$$0 \to \ker f \to A \xrightarrow{f} B \to \operatorname{Coker} f \to 0$$
.

Observación 1.2.1

Se tiene que $0 \to A \xrightarrow{f} B$ es una secuencia exacta si y sólo si f es monomorfismo. Similarmente, $B \xrightarrow{g} C \to C$ es exacta si y sólo si g es epimorfismo de módulos.

Si
$$A \xrightarrow{f} B \xrightarrow{g} C$$
 es exacta, entonces: $g \circ f = 0$, pues $\operatorname{Im} f = \ker g$.

Finalmente, si $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ es exacta, entonces: Coker $f = B/\mathrm{Im} f = B/\ker g = \mathrm{Coim} g \cong C$.

Definición 1.2.3

Una secuencia exacta de la forma:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

es llamada una **secuencia exacta corta**. Observe que en particular, f es monomorfismo y g es epimorfismo.

Con la observación y definición anterior, una secuencia exacta es sólo una forma de presentar un submódulo $(A \cong \operatorname{Im} f)$ y su módulo cociente $(B/\operatorname{Im} f = B/\ker g \cong C)$.

Lema 1.2.1 (El Lema de los cinco cortos)

Sea R un anillo, y

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Figura 1. Diagrama del Lema de los cinco cortos.

un diagrama conmutativo de R-módulos y homomorfismos de R-módulos tal que cada fila es una secuencia exacta. Entonces:

- (a) α, γ monomorfismos implica que β es monomorfismo.
- (b) α, γ epimorfismos implica que β es epimorfismo.
- (c) α, γ isomorfismos implica que β es isomorfismo.

Demostración:

De (a): Sea $b \in B$ tal que $\beta(b) = 0$. Por conmutatividad, tenemos que:

$$\gamma \circ g(b) = g' \circ \beta(b) = g'(0) = 0$$

por lo cual, como γ es monomorfismo, debe suceder que g(b) = 0. Como la fila de arriba es exacta, entonces $b \in \ker g = \operatorname{Im} f$, digamos que b = f(a) para algún $a \in A$. Por conmutatividad:

$$f' \circ \alpha(a) = \beta \circ f(a) = \beta(b) = 0$$

por tanto, al ser exacta la fila de abajo se tiene que f es monomorfismo, por lo que $\alpha(a) = 0$. Pero, α también es monomorfismo, luego a = 0. Así que b = f(a) = f(0) = 0.

Así que $\ker \beta = 0$, esto es que β es monomorfismo.

De (b): Sea $b' \in B'$. Entonces, $g'(b') \in C'$. Al ser γ un epimorfismo, existe $c \in C$ tal que $\gamma(c) = g'(b')$. Por ser la fila superior una secuencia exacta, se sigue que g es epimorfismo; por ende c = g(b) para algún $b \in B$. Se tiene por conmutatividad que:

$$g' \circ \beta(b) = \gamma \circ g(b) = \gamma(c) = g'(b')$$

por lo que,

$$g'(\beta(b) - b') = 0$$

luego $\beta(b) - b' \in \ker g' = \operatorname{Im} f'$. Por ser la fila de abajo exacta, existe $a \in A'$ tal que:

$$f'(a') = \beta(b) - b'$$

y, como α es epimorfismo, existe $a \in A$ tal que $\alpha(a) = \alpha'$. Considere el elemento $b - f(a) \in B$. Se tiene que:

$$\beta [b - f(a)] = \beta(b) - \beta(f(a))$$
$$= \beta(b) - f'(\alpha(a))$$
$$= b'$$

por la ecuación anterior y por conmutatividad. Por tanto, β es epimorfismo.

De (3): Es inmediata de (1) y (2).

Definición 1.2.4

Dos secuencias cortas exactas se dicen **isomorfas** si existe un diagrama conmutativo de homomorfismos módulos:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

Figura 2. Isomorfismo entre dos secuencias exactas.

tal que f, g y h son isomorfismos.

Observación 1.2.2

En el caso de la definición anterior, se verifica rápidamente que el diagrama:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$f^{-1} \uparrow \qquad g^{-1} \uparrow \qquad h^{-1} \uparrow$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

Figura 3. Isomorfismo inverso entre dos secuencias exactas.

es también conmutativo.

Más adelante se probará que los isomorfismos de secuencias cortas exactas es una relación de equivalencia.

Teorema 1.2.1

Sea R un anillo y $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ una secuencia corta exacta. Entonces, las siguientes condiciones son equivalentes:

- (1) Existe un homomorfismo de R-módulos $h: A_2 \to B$ tal que $g \circ h = \mathbb{1}_{A_2}$.
- (2) Existe un homomorfismo de R-módulos $k: B \to A_1$ tal que $k \circ f = \mathbbm{1}_{A_1}$.
- (3) La secuencia dada es isomorfa (con los mapeos identidad de A_1 y A_2) a la secuencia corta exacta con la suma exacta, esto es a $0 \to A_1 \stackrel{\iota_1}{\to} A_1 \oplus A_2 \stackrel{\pi_2}{\to} A_2 \to 0$; en particular, $B \cong A_1 \oplus A_2$.

Demostración:

 $(1)\Rightarrow(3)$: Por el Teorema 1.1.9, los homomorfismos f y h inducen un único homomorfismo φ : $A_1\oplus A_2\to B$ dado por: $f(a_1,a_2)\mapsto f(a_1)+h(a_2)$. Con esto se verifica rápidamente que el diagrama:

$$0 \longrightarrow A_1 \xrightarrow{\iota_1} B \xrightarrow{\pi_2} A_2 \longrightarrow 0$$

$$\downarrow^{\mathbb{1}_{A_1}} \qquad \downarrow^{\varphi} \qquad \downarrow^{\mathbb{1}_{A_2}}$$

$$0 \longrightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \longrightarrow 0$$

Figura 4. Isomorfismo que relaciona a B con $A_1 \oplus A_2$.

es conmutativo. Por el Lema de los 5 cortos se sigue que φ es isomorifismo, por lo que ambas secuencias exactas son isomorfas.

- $(2)\Rightarrow(3)$: Análogo a lo hecho anteriormente.
- $(3)\Rightarrow (1), (2)$: Dado el diagrama conmutativo con filas exactas y φ un isomorfismo:

$$0 \longrightarrow A_1 \xrightarrow{\iota_1} B \xrightarrow{\pi_2} A_2 \longrightarrow 0$$

$$\downarrow^{\mathbb{1}_{A_1}} \qquad \downarrow^{\varphi} \qquad \downarrow^{\mathbb{1}_{A_2}}$$

$$0 \longrightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \longrightarrow 0$$

Figura 5. Isomorfismo entre secuencias exactas.

defina $h = \varphi \circ \iota_2$ y k por $\pi_1 \circ \varphi^{-1}$. Se tiene de la conmutatividad del diagrama que h y k cumplen las condiciones de (1) y (2).

Definición 1.2.5

Una secuencia corta exacta que satisfaga alguna de las condiciones del teorema anterior se dirá que es una secuencia exacta dividida.

1.3. Ejercicios Capítulo 1

Observación 1.3.1

R es un anillo.

Ejercicio 1.3.1

Si A es un grupo abeliano y n > 0 es natural tal que na = 0 para todo $a \in A$, entonces A es un $\mathbb{Z}/\mathbb{Z}n$ -módulo untario con la acción dada por:

$$[k]a = ka, \quad \forall k \in \mathbb{Z}$$

Demostración:

Primero, veremos que la acción está bien definida. En efecto, sean $k, l \in \mathbb{Z}$ tales que [k] = [l], entonces $k - l \in \mathbb{Z}n$, es decir que existe $q \in \mathbb{Z}$ tal que:

$$k - l = qn$$

Por tanto:

$$[k]a = ka$$

$$= (qn + l)a$$

$$= (qn)a + la$$

$$= 0 + la$$

$$= la$$

$$= [l]a$$

por lo cual, la acción está bien definida. Veamos ahora que en efecto, A es un $\mathbb{Z}/\mathbb{Z}n$ -módulo:

(a)

Ejercicio 1.3.2

Sea $f: A \to B$ un homomorfismo de R-módulos.

- (a) f es monomorfismo si y sólo si para todo par de homomorfismos de R-módulos, $g, h: D \to A$ tales que $f \circ g = f \circ h$, tenemos que g = h.
- (b)

Demostración:

Ejercicio 1.3.3

Sea I un ideal izquierdo de un anillo R y sea A un R-módulo.

(a) Si S es un subconjunto no vacío de A, entonces

$$IS = \left\{ \sum_{i=1}^{n} r_i a_i \middle| n \in \mathbb{N}^*; r_i \in I; a_i \in S \right\}$$

es un submódulo de A. Note que si $S=\{a\},$ entonces $IS=Ia=\Big\{ra\Big|r\in I\Big\}.$

(b) Si I es un ideal por ambos lados, entonces A/IA es un R/I módulo con la acción de R/I dada por:

$$(r+I)(a+I) = ra + IA$$

Demostración:

Ejercicio 1.3.4

Si R tiene identidad, entonces todo R-módulo unitario cíclico es isomorfo a un R-módulo de la forma R/J, donde J es un ideal izquierdo de R.

Demostración:

Sea C el R-módulo unitario cíclico generado por a, esto es:

$$C = \left\{ ra \middle| r \in R \right\}$$

definimos el conjunto J dado por:

$$J = \left\{ r \in R \middle| ra = 0 \right\}$$

Afirmamos que J es ideal izquierdo de R. En efecto, veamos que:

(1) Sean $s, t \in J$, se tiene que:

$$(s-t)a = sa - ta$$
$$= 0$$

por ende, $s - t \in J$.

(2) Sea $s \in J$ y $r \in R$, se tiene que:

$$(rs)a = r(sa)$$
$$= r \cdot 0$$
$$= 0$$

por ende, $rs \in J$.

por los dos incisos anteriores se sigue que J es un ideal izquierdo de R. Por ejemplos anteriores se tiene que R/J es un R-módulo. Considere la función $f:C\to R/J$ dado por:

$$f(ra) = r + J, \quad \forall ra \in C$$

afirmamos que f es un homomorfismo de R-módulos. En efecto:

• f es homomorfismo de R-módulos. Sean $r_1a_1, r_2a_2 \in C$. Se tiene:

$$f(r_1a_1 + r_2a_2) = r_1 + r_2 + J$$

= $(r_1 + J) + (r_2 + J)$
= $f(r_1a_1) + f(r_2a_2)$

y, si $ra \in C$, entonces para $t \in R$ se tiene que:

$$f(t(ra)) = f((tr)a)$$

$$= tr + J$$

$$= t(r + J)$$

$$= tf(ra)$$

• f es monomorfismo: Sea $ra \in C$. Veamos que:

$$f(ra) = J \iff r + J = J$$
$$\iff r \in J$$
$$\iff ra = 0$$

por lo que, $\ker f = \{0\}.$

■ Para cada $r + J \in R/J$ existe $ar \in C$ tal que f(ra) = r + J.

por los tres incisos anteriores, se tiene que f es isomorfismo de R-módulos.

Definición 1.3.1

Si R tiene identidad, entonces un R-módulo unitario A no cero es **simple** si sus únicos submódulos son 0 y A.

Ejercicio 1.3.5

Pruebe lo siguiente:

- (1) Todo R-módulo simple es cíclico.
- (2) Si A es simple, entonces todo R-módulo endomorfismo es la función cero o es un isomorifsmo.

Demostración:

De (1): Sea A un R-módulo simple. Si A no es el módulo 0, entonces existe $c \in A$ no cero. Considere el R-módulo generado por c, digamos:

$$C = \left\{ rc + nc \middle| r \in R; n \in \mathbb{Z} \right\}$$

como A es simple, debe suceder que C = A ya que $c \neq 0$ y $c \in C$. Por tanto, A es cíclico.

De (2): Sea $f:A\to A$ un R-módulo endomorfismo. Por un teorema anterior se tiene que ker f es un submódulo de A, el cual debe ser 0, lo cual implicaría que f es isomorfismo, o es A, lo cual implicaría que f es la función cero.

Ejercicio 1.3.6

Pruebe que un R-módulo finitamente generado no necesariamente es un grupo abeliano finitamente generado.

Demostración:

Considere el grupo $(\mathbb{Q}, +)$, se tiene que este grupo no es finitamente generado. En efecto, si lo fuese sería de la forma:

$$\mathbb{Q} = \langle a_1, \dots, a_n \rangle$$

con $a_1, ..., a_n \in \mathbb{Q} \setminus \{0\}$. Podemos asumir sin pérdida de generalidad que $a_i \geq 0$ para todo i = 1, ..., n. También, estos elementos son de la forma:

$$a_i = \frac{p_i}{q_i}, \quad \forall i = 1, ..., n$$

donde $p_i, q_i \in \mathbb{N}$ son primos relativos. Sea

$$q = q_1 \cdots q_n$$

Considere ahora el conjunto:

$$A = \left\{ qa \middle| a \in \langle a_1, \dots, a_n \rangle; a > 0 \right\}$$

al ser todos los elementos de $\langle a_1, \ldots, a_n \rangle$ sumas finitas de a_i , entonces se tiene que los elementos de A son números naturales. Así que A es un subconjunto de los naturales no vacío, en particular tiene primer elemento, digamos p. Se tiene que $\frac{p}{q}$ es el mínimo elemento positivo de $\langle a_1, \ldots, a_n \rangle$. Ahora, sabemos que:

$$\frac{p}{q+1} \in \mathbb{Q}$$

pero, $\frac{p}{q+1} \notin \langle a_1, \ldots, a_n \rangle$, pues este elemento es menor que el mínimo elemento positivo de este conjunto $\#_c$. Por ende, $\mathbb Q$ no es finitamente generado como grupo abeliano.

Pero, \mathbb{Q} es un \mathbb{Q} -módulo, el cual es finitamente generado por 1 (se verifica rápidamente).

Ejercicio 1.3.7

Demostración:

Ejercicio 1.3.8

Sea $f: A \to A$ un homomorfismo de R-módulos tal que $f \circ f = f$, entonces:

$$A = \ker f \oplus \operatorname{Im} f$$

Demostración:

Veamos primero que $A = \ker f + \operatorname{Im} f$. Sea $a \in A$, si $a \notin \operatorname{Im} f$, entonces veamos que:

$$f(a) = f(f(a)) \Rightarrow f(a - f(a)) = 0$$

por lo que, $a - f(a) \in \ker f$, luego $a \in \ker f + \operatorname{Im} f$ (pues, $f(a) \in \operatorname{Im} f$).

Veamos ahora que es suma directa interna. En efecto, sea $a \in \ker f \cap \operatorname{Im} f$, entonces existe $b \in A$ tal que:

$$f(b) = a$$

como $a \in \ker f$ se sigue que f(a) = 0. Observemos que:

$$f(b) = f(f(b)) = f(a) = 0$$

por lo que, $b \in \ker f$, así que a = f(b) = 0, esto es que a = 0. Por tanto, se tiene que la suma es directa, esto es:

$$A = \ker f \oplus \operatorname{Im} f$$

Ejercicio 1.3.9 (Nombre)

Demostración:

Ejercicio 1.3.10

Haga lo siguiente:

(a) Si A es un módulo sobre un anillo conmutativo R y $a \in A$, entonces $\mathcal{O}_a = \left\{ r \in R \middle| ra = 0 \right\}$

- es un ideal de R. Si $\mathcal{O}_a \neq 0$, se dice que a es un **elemento de torsión de** A.
- (b) Si R es un dominio entero, entonces el conjunto T(A) de todos los elementos de torsión de A es un submódulo de A (T(A) es llamado el **submódulo de torsión**).
- (c) Muestre que el inciso anterior puede ser falso para un anillo conmutativo R que no sea dominio entero.

en lo que sigue, R es un dominio entero.

- (d) Si $f: A \to B$ es un homomorfismo de R-módulos, entonces $f(T(A)) \subseteq T(B)$; por ende, la reestricción f_T de f a T(A) es un homomorfismo de R-módulos.
- (e) Si $0 \to A \xrightarrow{f} B \xrightarrow{g} C$ es una secuencia exacta de R-módulos, entonces también lo es $0 \to T(A) \xrightarrow{f_T} T(B) \xrightarrow{g_T} T(C)$.

(f)

Capítulo 2

Módulos Libres y Espacios Vectoriales

2.1. Conceptos Fundamentales

En esta sección se estudiarán los objetos libres sobre la categoría $_{R}\mathcal{M}$.

Definición 2.1.1

Sea A un R-módulo. Un subconjunto $X \subseteq A$ se dice **linealmente independiente**, si para todos $x_1, ..., x_n \in X$ elementos distintos y para $r_1, ..., r_n \in R$ se tiene que:

$$r_1 x_1 + \dots + r_n x_n = 0 \Rightarrow r_i = 0, \quad \forall i = 1, \dots, n$$

Un conjunto que no es linealmente independiente se dice **linealmente dependiente**. Si A es generado como R-módulo por un conjunto Y, diremos que Y genera a A.

Observación 2.1.1

Si R tiene identidad y A es unitario, entonces Y genera a A si y sólo si todo elemento de A se escribe como combinación lineal $r_1y_1 + \cdots + r_ny_n$.

Definición 2.1.2

En el contexto de la observación anterior, un conjunto linealmente independiente de A que genera a A es llamado una base de A.

No queda de otra más que asumir este resultado de categorías (ver las notas de categorías para una explicación más detallada):

Teorema 2.1.1 (Hungerford, Theorem I.7.8)

Si \mathcal{C} es una categoría concreta, F y F' son objetos en C tales que F es libre en el conjunto X y F' lo es en X' siendo estos conjuntos tales que |X| = |X'|, entonces F es equivalente a F'.

En particular, la categoría de R-módulos unitarios es una categoría concreta, donde la equivalencia entre dos objetos de la categoría es un isomorfismo entre ambos R-módulos.

Teorema 2.1.2

Sea R un anillo conmutativo con identidad. Las siguientes condiciones son equivalentes en un R-módulo unitario F:

- I. F tiene base no vacía.
- II. F es la suma interna directa de una familia cíclica de R-módulos, cada uno de los cuales

es isomorfo a R como un R-módulo.

- III. F es un R-módulo isomorfo a la suma directa de copias del R-módulo izquierdo R.
- IV. Existe un conjunto no vacío X y una función $i:X\to F$ con la siguiente propiedad: dado un R-módulo, A y una función $f:X\to A$ existe un único homomorfismo de R-módulos $\overline{f}:F\to A$ tal que

$$\overline{f} \circ i = f$$

En otras palabras, F es un objeto libre en la categoría de R-módulos uniatrios.

Demostración:

 $(i)\Rightarrow (iv)$: Sea X una base no vacía de F y sea $i:X\to F$ el mapeo inclusión. Sea A un R-módulo y $f:X\to A$ una función.

Si $u \in F$, entonces existen $n \in \mathbb{N} \cup \{0\}$, $r_i \in R$ y $x_i \in X$, para todo $i \in \{1, ..., n\}$ tales que

$$u = \sum_{i=1}^{n} r_i x_i$$

Definimos la función $\overline{f}: F \to A$ dada por:

$$\overline{f}(u) = \sum_{i=1}^{n} r_i f(x_i)$$

Esta función está bien definida, pues F tiene como base a X (por ende, todo elemento se representa de forma única como combinación lineal finita de elementos de X). Además,

$$\overline{f} \circ i(x_i) = \overline{f}(x_i)$$

$$= 1_R \cdot f(x_i)$$

$$= f(x_i), \quad \forall x_i \in X$$

por ende, $\overline{f} \circ i = f$.

Veamos que es homomorfismo de R-módulos (no sé como se verifica eso, chécalo porfa Roque).

Ahora, si $g: F \to A$ es otro homomorfismo de R-módulos tal que

$$q \circ i = f$$

se tiene que

$$\overline{f} \circ i = g \circ i \Rightarrow \overline{f}|_{X} = g|_{X}$$

Como X genera F y todo homomorfismo de R-módulos que vaya de F en algún R-módulo, B queda únicamente determinado por X, basta ver que $\overline{f} = g$ en X, lo cual sucede por la igualdad anterior. Por tanto, \overline{f} es único.

 $(iv)\Rightarrow (iii)$: Asumiendo (iv), sean $X\subseteq F$ no vacío y una función $i:X\to F$ que cumplan esta propiedad. Considere el R-módulo

$$A = \sum_{x \in X} R$$

(es decir, es la suma directa de |X|-veces el R-módulo izquierdo R). Sea

$$Y = \left\{ \theta_x \middle| x \in X \right\}$$

donde

$$\theta_x(y) = \begin{cases} 1_R & \text{si} \quad y = x \\ 0_R & \text{si} \quad y \neq x \end{cases}, \quad \forall y \in Y$$

Como X es no vacío, entonces Y es no vacío. Por la parte $(iii) \Rightarrow (i)$, se sabe que Y es una base del R-módulo unitario A. En particular, como $(iii) \Rightarrow (iv)$, se tiene que A es un R-módulo libre en la categoría de R-módulos unitarios.

En particular, F y A son R-módulos libres en la categoría de R-módulos unitarios y son tales que |X| = |Y| (por la forma en que se construyó Y), luego por el Teorema anterior son equivalentes en esta categoría, es decir que existe un isomorfismo $f: F \to A$. Así que

$$F\cong \sum_{x\in X}R$$

lo que prueba el resultado.

2.2. Referencias

• Algebra de Thomas Hungerford, ed. Springer.