2021 Fall MAS 101 Chapter 5: Integrals

Donghwan Kim

KAIST

- 1 5.3 The Definite Integral
- 2 5.4 The Fundamental Theorem of Calculus

- 1 5.3 The Definite Integral
- 2 5.4 The Fundamental Theorem of Calculus

Finite Sums

• Finite sum for f on the interval [a,b], where $\Delta x = \frac{b-a}{n}$:

$$S_n = \sum_{k=1}^n f(a + k \cdot \Delta x) \Delta x$$

You probably have learned the following relationship intuitively.

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S_n$$

• Is this true for any function?

Riemann Sums

• Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b], where $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. This divides [a, b] into n closed subintervals

$$[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n].$$

• Riemann sum for f on the interval [a,b], where $\Delta x = \frac{b-a}{-}$:

$$S_P = \sum_{k=1}^n f(c_k) \Delta x_k,$$

where $c_k \in [x_{k-1}, x_k]$.

Definition of the Definite Integral

ullet Define the size (norm) of the partition P as

$$||P|| = \max_{k=1,\dots,n} \Delta x_k,$$

where $\Delta x_k := (x_k - x_{k-1}).$

• We say that a function f is **integrable** if the limit of S_P exists as $||P|| \to 0$.

Definition of the Definite Integral (cont'd)

Definition 1

Let f(x) be a function defined on a closed interval [a,b]. We say that a number J is the **definite integral of** f **over** [a,b] and that J is the limit of the Riemann sums $\sum_{k=1}^{n} f(c_k) \Delta x_k$ if the following condition is satisfied:

Given any number $\epsilon>0$ there is a corresponding number $\delta>0$ such that for every partition $P=\{x_0,x_1,\ldots,x_n\}$ of [a,b] with $||P||<\delta$ and any choice of c_k in $[x_{k-1},x_k]$, we have

$$\left| \sum_{k=1}^{n} f(c_k) \Delta x_k - J \right| < \epsilon.$$

Integrable and Nonintegrable Functions

ullet Not every function defined over the closed interval [a,b] is integrable there, even if the function is bounded.

Theorem 1 (Integrability of Continuous Functions)

If a function f is continuous over the interval [a,b], of if f has at most finitely many jump discontinuities there, then the definite integral $\int_a^b f(x) dx$ exists and f is integrable over [a,b].

• See Table 5.6 on page 284 for the properties of definite integral, most of which come from the linearity of integration.

Integrable and Nonintegrable Functions

• For integrability to fail, a function needs to be sufficiently discontinuous that the region between its graph and the *x*-axis cannot be approximated well by increasingly thin rectagles.

Ex. Consider the function

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

- 1 5.3 The Definite Integral
- 2 5.4 The Fundamental Theorem of Calculus

Mean Value Theorem for Definite Integrals

Theorem 2 (The mean value theorem for definite integrals)

If f is continuous on [a,b], then at some point c in [a,b],

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Fundamental Theorem, Part 1

Theorem 3 (The fundamental theorem of calculus, part 1)

If f is continuous on [a,b], then $F(x)=\int_a^x f(t)dt$ is continuous on [a,b] and differentiable on (a,b) and its derivative is f(x):

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

Fundamental Theorem, Part 2

Theorem 4 (The fundamental theorem of calculus, part 2)

If f is continuous on [a,b], and F is any antiderivative of f on [a,b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$