Cluster Setup Documentation

Team: 122AD0045, 122AD0043, 122AD0018

1. Technologies Used

- Apache Spark: Distributed processing engine for large-scale data analytics.
- **Hadoop HDFS**: Distributed storage system for handling tweet datasets.
- **Python/PySpark**: For implementing NLP, ML models, and Spark jobs.
- Jupyter Notebook: Interactive environment for prototyping and analysis.
- OpenCage Geocoding API: For converting text locations to coordinates.
- Folium/Plotly: Visualization libraries for spatial and sentiment analysis.

.....

2. Cluster Configuration

Hardware Setup:

Master Node: 1 PC (4 CPU cores, 4GB RAM, 25GB SSD).

Slave Nodes: 2 PCs (each with 4 CPU cores, 4GB RAM, 25GB SSD).

Software Stack:

• **OS**: Ubuntu 20.04 LTS.

• Java: OpenJDK 8 (required for Spark/Hadoop).

• **Spark**: v3.2.1 (configured in standalone mode).

Hadoop: v3.3.1 (for HDFS storage).

Network:

Static IPs assigned to all nodes.

• Password-less SSH configured between master and slaves.

3. Steps to Set Up the Cluster

A. Prerequisites

1. Install Java:

sudo apt update && sudo apt install openjdk-8-jdk

2. Configure SSH:

ssh-keygen -t rsa # Generate keys on master ssh-copy-id slave1 # Copy keys to slaves ssh-copy-id slave2

B. Install Hadoop & Spark

1. Download and Extract:

wget https://downloads.apache.org/hadoop/common/hadoop-3.3.1/hadoop-3.3.1.tar.gz tar -xvzf hadoop-3.3.1.tar.gz wget https://downloads.apache.org/spark/spark-3.2.1/spark-3.2.1-bin-hadoop3.2.tgz

tar -xvzf spark-3.2.1-bin-hadoop3.2.tgz

2. Configure Environment Variables:

Add to ~/.bashrc:

```
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export HADOOP_HOME=/path/to/hadoop-3.3.1
export SPARK_HOME=/path/to/spark-3.2.1-bin-hadoop3.2
export PATH=$PATH:$HADOOP_HOME/bin:$SPARK_HOME/bin
```

C. Configure Spark & Hadoop

1. Spark Config:

o Edit \$SPARK_HOME/conf/spark-env.sh:

export SPARK_MASTER_HOST=<master-node-IP>
export SPARK_WORKER_CORES=4
export SPARK_WORKER_MEMORY=8g

Update \$SPARK_HOME/conf/slaves:

slave1

slave2

2. Hadoop Config:

o Core-site.xml: Set HDFS URI.

Hdfs-site.xml: Configure replication factor (2)

D. Start the Cluster

1. Launch Hadoop HDFS:

hdfs namenode -format # First-time setup

start-dfs.sh

2. Start Spark Cluster:

\$SPARK_HOME/sbin/start-master.sh

\$SPARK_HOME/sbin/start-workers.sh

E. Verify Setup

- **Spark UI**: Access http://<master-IP>:8080 to view active workers.
- HDFS UI: Check http://<master-IP>:9870.

4. Issues Encountered & Resolutions

Issue	Resolution
Slave nodes not connecting	Ensured SSH keys were copied correctly and firewall rules allowed port 8080/7077.
Out-of-memory errors	Reduced SPARK_WORKER_MEMORY to 6g and optimized partition sizes.
HDFS permission errors	Ran hdfs dfs -chmod -R 777 / for development (not recommended for production).
Geocoding API rate limits	Implemented caching for repeated location queries.
Jupyter-Spark integration fails	Used findspark.init() and set PYSPARK_PYTHON explicitly.