2025 Spring AMA564 Assignment 1

Department of Applied Mathematics, The Hong Kong Polytechnic University

Due 23:59, Sunday, March 02, 2025

1. (a) **Example:** For ReLU activation function $\sigma(x) = \max\{0, x\}$, its derivative is $\frac{d}{dx}\sigma(x) = I(x>0)$ where I(x>0) = 1 if x>0 and I(x>0) = 0 if $x \le 0$. $\lim_{x \to +\infty} \frac{d}{dx}\sigma(x) = 1$ and $\lim_{x \to -\infty} \frac{d}{dx}\sigma(x) = 0$.

Question: Please calculate the derivative of the following activation functions (ignore the places where the activation function is not differentiable). Please also calculate the function value of the derivatives at infinity.

- (1) (1 mark) Sigmoid activation function $\frac{1}{1+e^{-x}}$.
- (2) (1 mark) Tanh activation function $\frac{e^{2x}-1}{e^{2x}+1}$.
- (3) (1 mark) Leaky ReLU activation function $\max\{ax, x\}$ for some $a \in (0, 1)$.
- (b) Let $f(x;\theta) = W^{(2)}\sigma(W^{(1)}x + b^{(1)}) + b^{(2)}$ be a ReLU activated multi-layer perceptron with one hidden layer where $\theta = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ denotes the parameters of multi-layer perceptron f and $\sigma(a) = \max\{0, a\}$ be the ReLU activation function $(\sigma(a) = (\sigma(a_1), \sigma(a_2), \cdots, \sigma(a_d))^{\top}$ if $a = (a_1, a_2, \cdots, a_d)^{\top}$ is a d-dimensional vector). Figure 1 illustrates the architecture of the multi-layer perceptron f.

Input Layer ∈ R³

Hidden Layer ∈ R²

Output Layer ∈ R¹

Figure 1: Architecture of the multi-layer perceptron f.

Question: (3 marks) Suppose the value of $\theta = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ are

$$W^{(1)} = \begin{bmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{bmatrix} = \begin{bmatrix} -0.8 & 0.5 & -1 \\ 1.2 & -0.7 & 0.2 \end{bmatrix}, \quad b^{(1)} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \end{bmatrix} = \begin{bmatrix} -0.4 \\ 0.9 \end{bmatrix},$$

and

$$W^{(2)} = \left[\begin{array}{cc} w_{11}^{(2)} & w_{12}^{(2)} \end{array} \right] = \left[\begin{array}{cc} 0.6 & 1.1 \end{array} \right], \quad b^{(2)} = \left[\begin{array}{cc} b_1^{(2)} \end{array} \right] = \left[\begin{array}{cc} -0.1 \end{array} \right].$$

Now we have a sample (x,y) with $x=(x_1,x_2,x_3)^{\top}=(1,2,3)^{\top}$ and y=0.33. Define the loss $L=(f(x;\theta)-y)^2/2$. Please calculate the value of the forward pass, i.e. the value of $f(x;\theta)$. Please use back-propagation algorithm to calculate the derivatives of the loss L with respect to each weight and bias, i.e. $dL/dw_{11}^{(1)},\cdots,dL/dw_{23}^{(1)},dL/db_1^{(1)},$ $dL/db_1^{(1)},dL/dw_{12}^{(2)}$ and $dL/db_1^{(2)}$.

2. **Background:** Let $\{(X_i, Y_i)\}_{i=1}^n$ be an independently and identically distributed (i.i.d) sample drawn from the joint distribution of (X, Y). The objective of deep quantile regression is to minimize the empirical risk

$$\mathcal{R}_n(f(\cdot;\theta)) := \frac{1}{n} \sum_{i=1}^n \rho_\tau(Y_i - f(X_i;\theta)),$$

over a class of neural networks $\mathcal{F} = \{f(\cdot; \theta) : \theta \in \mathbb{R}^{\mathcal{S}}\}$ where $f(\cdot; \theta)$ is a neural network parameterized by $\theta \in \mathbb{R}^{\mathcal{S}}$ with size \mathcal{S} and $\rho_{\tau}(a) = (\tau - I(a < 0)) \cdot a$ is the quantile check loss function with some $\tau \in (0, 1)$.

Now we consider the risk minimization problem at the population level and wonder what is the target of the risk minimization problem with quantile loss function. Given a function f, we define the risk of f by

$$\mathcal{R}(f) := \mathbb{E}\{\rho_{\tau}(Y - f(X))\},\$$

where the expectation \mathbb{E} is taken with respect to (X,Y). And we define the minimizer of the risk (target) by

$$f^* = \arg\min_{f} \mathcal{R}(f) = \arg\min_{f} \mathbb{E}\{\rho_{\tau}(Y - f(X))\}.$$

Assumption: Suppose $X \in \mathbb{R}^d$ is a random vector, $Y \in \mathbb{R}$ is a continuous random variable satisfying $\mathbb{E}\{|Y| \mid X = x\} < \infty$ for each $x \in \mathbb{R}^d$.

Question: (2 marks) Please prove that for each $x \in \mathbb{R}^d$, the $f^*(x)$ is the conditional τ -th quantile of the random variable Y given X = x.

Hints: Follow and modify the proof for Least Absolute Deviation loss in Lecture Note 2.

3. Background: Given data $\{(X_i, Y_i)\}_{i=1}^n$, we are interested in minimizing an empirical loss

$$f(\theta) := \frac{1}{n} \sum_{i=1}^{n} \ell(\theta : X_i, Y_i)$$

over $\theta \in \mathbb{R}^{\mathcal{S}}$ where $\ell(\cdot)$ is some loss function. Now we use gradient decent algorithm to optimize the problem. We start from some random initialization $\theta^0 \in \mathbb{R}^{\mathcal{S}}$ and for $k = 0, 1, \ldots, T - 1$, we update as

$$\theta^{k+1} = \theta^k - \frac{1}{L} \nabla f(\theta^k),$$

where in each update we choose the a fixed stepsize 1/L. Then we obtain a sequence $\{\theta^k\}_{k=0}^T$ generated by the gradient descent algorithm.

Assumption: Suppose f has a finite lower bound, i.e., there exists $\bar{f} \in \mathbb{R}$ such that $f(\theta) \geq \bar{f} > -\infty$ for any θ in the domain of f. Also, suppose f is a L-smooth function for some L > 0, i.e., f is continuously differentiable and its gradient ∇f is Lipschitz continuous $(\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|)$.

Question: (2 marks) Please prove that

$$\min_{1\leq k\leq T}\|\nabla f(\theta^k)\|^2\leq \frac{2L\{f(\theta^0)-\bar{f}\}}{T}.$$

Hints: (1) Apply Lemma 3.1 at step k. (2) Sum them up for $k=0,1,\ldots,T$. (3) Note that f is bounded from below by \bar{f} .