Chapter 2 - Operations

December 1, 2020

From "Book of Abstract Algebra" by Charles C. Pinter

A. Examples of Operations

Which of the following rules are operations on the indicated set? (\mathbb{Z} designates the set of integers, \mathbb{Q} the rational numbers, and \mathbb{R} the real numbers.) For each rule which is not an operation, explain why it is not.

- 1 $a * b = \sqrt{|ab|}$, on the set \mathbb{Q} .
- $2 \ a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$.
- 3 a * b is a root of the equation $x^2 a^2b^2 = 0$, on the set \mathbb{R} .
- 4 Subtraction, on the set \mathbb{Z} .
- 5 Subtraction, on the set $\{n \in \mathbb{Z} : n \geq 0\}$.
- 6 a * b = |a b|, on the set $\{n \in \mathbb{Z} : n \ge 0\}$.

Solution

1 This is not an operation on \mathbb{Q} because a*b is not uniquely defined and \mathbb{Q} is not closed under *. If a and b are rational numbers they can be written as $a=\frac{c}{d}$ and $b=\frac{e}{f}$ where c,d,e, and f are integers, $d\neq 0$, and $f\neq 0$. If we let c=2, d=1, e=2, and f=1 then

$$\sqrt{\frac{2}{1} \cdot \frac{2}{1}} = \sqrt{2 \cdot 2} = \sqrt{4}$$

and since $\sqrt{4} = \pm 2$ we see that a*b is not uniquely defined. Now let c=3, d=1, e=2, and f=1 then

$$\sqrt{\frac{3}{1} \cdot \frac{2}{1}} = \sqrt{6}$$

and we see that there is no rational number f such that $f \cdot f = 6$, therefore $\sqrt{6}$ is not a rational number. Thus, \mathbb{Q} is not closed under *.

1

2 This is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$ because the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under *. For example, if we let a = 2 and b = 1 then

$$a \ln b = 2 \ln 1 = 0$$

and $0 \notin \{x \in \mathbb{R} : x > 0\}$. Therefore the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under * and * is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$.

3 This is not an operation on \mathbb{R} because a * b is not uniquely defined. If we solve for x we see

$$x^2 - a^2b^2 = 0$$
$$x^2 = a^2b^2$$

since a^2 and b^2 will always be positive numbers, then a^2b^2 will be positive as well. Then solving for x we have

$$x = (ab, -ab)$$

and we see that a * b is not uniquely defined and therefore * is not an operation on \mathbb{R} .

- 4 This is an operation on \mathbb{Z} .
- 5 This is not an operation on \mathbb{Z} because the set $\{n \in \mathbb{Z} : n \ge 0\}$ is not closed under *. For example, if we let a = 10 and b = 5 then 5 10 = -5 and $-5 \notin \{n \in \mathbb{Z} : n \ge 0\}$. Therefore the set $\{n \in \mathbb{Z} : n \ge 0\}$ is not closed under *.
- 6 This is an operation on the set $\{n \in \mathbb{Z} : n \geq 0\}$.

B. Properties of Operations

Each of the following is an operation * on \mathbb{R} . Indicate whether or not

- (i) it is commutative,
- (ii) it is associative,
- (iii) \mathbb{R} has and identity element with respect to *,
- (iv) every $x \in \mathbb{R}$ has an inverse with respect to *.

Instructions For (i), compute x * y and y * x, and verify whether or not they are equal. For (ii), compute x * (y * z) and (x * y) * z, and verify whether or not they are equal. For (iii), first solve the equation x * e = x for e; if the equation cannot be solved, there is identity element. If it can be solved, it is still necessary to check that e * x = x * e = x for any $x \in \mathbb{R}$. If it checks, then e is an identity element. For (iv), first not that it there is no identity element, there can be no inverses. If there is an identity element e, first solve the equation x * x' = e for x'; if the equation cannot be solved, x does not have an inverse. If it can be solved, check to make sure that x * x' = x' * x = e. If this checks, x' is the inverse of x.

1)
$$x * y = \sqrt{x^2 + y^2}$$

Solution

Although the instructions for this section state that $x*y=\sqrt{x^2+y^2}$ is an operation on \mathbb{R} , I don't think it is an operation on \mathbb{R} because $\sqrt{x^2+y^2}$ is not uniquely defined on \mathbb{R} . For example, if we let x=1 and y=0, then $x*y=\sqrt{1^2+0^2}=\sqrt{1}=(-1,1)$ and we see that $\sqrt{x^2+y^2}$ is not uniquely defined on \mathbb{R} . Therefore, $x*y=\sqrt{x^2+y^2}$ is not an operation on \mathbb{R} .

2)
$$x * y = |x + y|$$

Solution

Commutative Associative Identity Inverses Yes
$$\square$$
 No \square Yes \square No \square Yes \square No \square Yes \square No \square Yes \square No \square

- (a) x * y = |x + y| y * x = |y + x| = |x + y| because + is a commutative operation on \mathbb{R} Therefore * is commutative on \mathbb{R} .
- (b) x*(y*z) = x*|y+z| = |x+|y+z||Let x = -5, y = 10, and z = -20, then |-5+|10-20|| = |-5+|-10|| = |-5+10| = |5| = 5 (x*y)*z = |x+y|*z = ||x+y|+z|Again, let x = -5, y = 10, and z = -20, then ||-5+10|-20| = ||5|-20| = |5-20| = |-15| = 15Since $5 \neq 15$ then * is not associative on \mathbb{R}
- (c) There is no identity element with respect to * on $\mathbb R$ because there is no $e \in \mathbb R$ such that e*a=a and a*e=a for every element a in $\mathbb R$. For example, if a=-1 there is no $e \in \mathbb R$ such that |e+(-1)|=-1.
- (d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .

$$3) \ x * y = |xy|$$

Solution

Commutative Associative Identity Inverses Yes
$$\boxtimes$$
 No \square Yes \square No \boxtimes Yes \boxtimes No \square Yes \boxtimes No \square

4)
$$x * y = x - y$$

5)
$$x * y = xy + 1$$

$$6) x * y = \max\{x, y\}$$

7)
$$x * y = \frac{xy}{x+y+1}$$