Методы оптимизации. Семинар 5. Выпуклые множества.

Корнилов Никита Максимович

Московский физико-технический институт

2 октября 2025г

Классы множеств

Definition

Множество $S \subset \mathbb{R}^n$ называется *выпуклым*, если для любых двух точек $x_1, x_2 \in S$ и любого числа $\theta \in [0,1]$, точка $\theta x_1 + (1-\theta)x_2$ также принадлежит S.

Если мы берем любые две точки внутри множества и соединяем их отрезком, то весь этот отрезок лежит внутри множества.

Н. М. Корнилов

Примеры выпуклых множеств

Рис.: Пример выпуклого множества.

Рис.: Пример не выпуклого множества.

Афинные множества

Definition

Множество $S \subset \mathbb{R}^n$ называется $a \phi$ инным, если для любых двух точек $x_1, x_2 \in S$ и любого числа $\theta \in \mathbb{R}$, точка $\theta x_1 + (1-\theta)x_2$ также принадлежит S.

Proposition

Любое афинное множество является выпуклым.

В афинном множестве, выбрав две точки, мы ожидаем, что не только отрезок между ними, но и вся прямая, соединяющая эти точки, принадлежит этому множеству, в отличие от определения выпуклости.

Докажем по определению

Example (Полуплоскость)

Пусть $a \in \mathbb{R}^n \setminus \{0\}$, $b \in \mathbb{R}$, тогда полуплоскость $\{x \mid a^T x \geq b\}$ выпукла.

Example (Гиперплоскость)

Пусть $a \in \mathbb{R}^n \setminus \{0\}$, $b \in \mathbb{R}$, тогда гиперплоскость $\{x \mid a^T x = b\}$ афинное множество.

□ > 4률 > 4분 > 4분 > 분 외약

Example (Шар по норме)

Пусть $\|\cdot\|$ — норма в \mathbb{R}^n , r>0 и $c\in\mathbb{R}^n$. Тогда шар $\overline{B}(c,r)=\{x\in\mathbb{R}^n\mid \|x-c\|\leq r\}$ является выпуклым множеством.

В частности, шары в матричных нормах $\|A\|_F = \sqrt{{\rm Tr}(A^TA)}$ (норма Фробениуса) и $\|A\|_2 = {\rm max}_{\|x\|_2=1} \, \|Ax\|_2$ (Спектральная норма) также являются выпуклыми.

Example (Cфepa)

Пусть $\|\cdot\|$ — норма в \mathbb{R}^n , r>0 и $c\in\mathbb{R}^n$. Является ли сфера $S=\{x\in\mathbb{R}^n\mid \|x-c\|=r\}$ выпуклым множеством?

4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q (*)

6 / 27

H. М. Корнилов 2 октября 2025г

Докажем по определению

Example (Множество положительно полуопределенных матриц)

Множество всех положительно полуопределенных матриц размера $n \times n$, определяемое как

$$\mathcal{S}^{n}_{+} = \{X \in \mathbb{R}^{n \times n} \mid X = X^{T}, \, z^{T}Xz \geq 0, \, \forall z \in \mathbb{R}^{n}\},$$

является выпуклым множеством. Аналогично, множество положительно определенный матриц \mathcal{S}^n_{++} тоже выпуклое.

Example

Является ли множество $M = \{x \in \mathbb{R}^2_{++} | x_1 x_2 \geq 1\}$ выпуклым?

4□ > 4□ > 4 = > 4 = > = 90

7 / 27

H. М. Корнилов 2 октября 2025г

Афинная функция

Definition

Функция $f:\mathbb{R}^n \to \mathbb{R}^m$ называется *афинной*, если найдутся $b \in \mathbb{R}^m$ и $A \in \mathbb{R}^{m \times n}$ такие, что f(x) = Ax + b.

<ロト <個ト < 直ト < 重ト < 重 とり < で

Операции, сохраняющие выпуклость

Операции, сохраняющие выпуклость:

- **① Пересечение:** Пусть $\{S_i\}_{i\in I}$ семейство выпуклых множеств, тогда пересечение $\cap_{i\in I}S_i$ также является выпуклым.
- ② Линейная комбинациия: Пусть S_1 , S_2 выпуклые множества и $c_1, c_2 \in \mathbb{R}$, тогда линейная комбинация $c_1S_1+c_2S_2=\{c_1x_1+c_2x_2|x_1\in S_1,x_2\in S_2\}$ также является выпуклым множеством.

Операции, сохраняющие выпуклость

Операции, сохраняющие выпуклость:

- **① Пересечение:** Пусть $\{S_i\}_{i\in I}$ семейство выпуклых множеств, тогда пересечение $\cap_{i\in I}S_i$ также является выпуклым.
- ② Линейная комбинациия: Пусть S_1 , S_2 выпуклые множества и $c_1, c_2 \in \mathbb{R}$, тогда линейная комбинация $c_1S_1+c_2S_2=\{c_1x_1+c_2x_2|x_1\in S_1,x_2\in S_2\}$ также является выпуклым множеством.
- **3** Взятие образа при афинном преобразовании: Пусть S выпуклое множество, f афинная функция, тогда f(S) также является выпуклым множеством.
- **4** Взятие прообраза при афинном преобразовании: Пусть S выпуклое множество, f афинная функция, тогда $f^{-1}(S)$ также является выпуклым множеством.

Операции, сохраняющие выпуклость

Операции, сохраняющие выпуклость:

- **① Пересечение:** Пусть $\{S_i\}_{i\in I}$ семейство выпуклых множеств, тогда пересечение $\cap_{i\in I}S_i$ также является выпуклым.
- ② Линейная комбинациия: Пусть S_1 , S_2 выпуклые множества и $c_1, c_2 \in \mathbb{R}$, тогда линейная комбинация $c_1S_1+c_2S_2=\{c_1x_1+c_2x_2|x_1\in S_1,x_2\in S_2\}$ также является выпуклым множеством.
- **3** Взятие образа при афинном преобразовании: Пусть S выпуклое множество, f афинная функция, тогда f(S) также является выпуклым множеством.
- **3** Взятие прообраза при афинном преобразовании: Пусть S выпуклое множество, f афинная функция, тогда $f^{-1}(S)$ также является выпуклым множеством.
- **5** Декартово произведение: Пусть S_1, S_2, \ldots, S_n выпуклые множества, тогда декартово произведение $S_1 \times S_2 \times \ldots \times S_n$ также выпукло.

H. М. Корнилов 2 октября 2025г

9 / 27

Докажем через сохранение выпуклости

Example (Многогранник)

Многогранником называется множество точек в \mathbb{R}^n , задающееся системой линейных равенств и неравенств: $\{x \in \mathbb{R}^n | Ax \leq b, Cx = d\}$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $C \in \mathbb{R}^{k \times n}$ и $d \in \mathbb{R}^k$.

Example (Ограниченные полиномы)

Докажите, что множество $\{a\in\mathbb{R}^k|p(0)=1,|p(t)|\leq 1 \forall t:\alpha\leq t\leq\beta\}$, где $p(t)=a_1+a_2t+\ldots+a_kt^{k-1}$, является выпуклым.

< ロ ト ∢ @ ト ∢ 重 ト ∢ 重 ト → 重 → か Q (~)

10 / 27

Н. М. Корнилов 2 октября 2025г

Докажем через афинные функции

Example

Докажите, что множество $S = \{x | \|Ax + b\| \le c^T x + d\}$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ и $c, d \in \mathbb{R}^n$, выпукло.

11 / 27

Н. М. Корнилов 2 октября 2025г

Докажем через афинные функции

Example (Гиперболический конус)

Пусть $P \in \mathcal{S}^n_+$ и $c \in \mathbb{R}^n$, тогда множество

$$K = \{x | x^T P x \le (c^T x)^2, c^T x \ge 0\}$$

является выпуклым.

Доказательство.

Как мы уже знаем, множество $L = \{(x,t) | \|x\| \le t\}$ является выпуклым.

Воспользуемся фактом, что $\forall P \in \mathcal{S}^n_+ \ \exists \ Q \in \mathcal{S}^n_+ : P = Q^2$, поэтому наше множество K переписывается следующим образом:

$$K = \{x | \|Qx\| \le c^T x\}$$
. Заметим, что $K = f^{-1}(L)$, где $f(x) = (Qx, c^T x)$

- афинная функция. Поэтому K выпукла как прообраз выпуклого множества при афинном преобразовании.

H. М. Корнилов 2 октября 2025г 12 / 27

Докажем через афинные функции

Example

Рассмотрим множество $C = \{x \in \mathbb{R}^n | x_1A_1 + x_2A_2 + \ldots + x_nA_n \succ B\}$, где $A_1, A_2, \ldots, A_n, B \in \mathbb{R}^{n \times n}$. Докажите, что C выпукло.

Доказательство.

Рассмотрим афинную функцию $f(x) = x_1 A_1 + x_2 A_2 + \ldots + x_n A_n - B$, тогда

 $C = f^{-1}(\mathcal{S}^n_{++})$. Поэтому C выпукла как прообраз выпуклого множества.

13 / 27

 Н. М. Корнилов
 2 октября 2025г

Конусы

Definition

Множество C называется *конусом*, если для любых $c \in C$ и $\theta \ge 0$ точка θc также принадлежит C.

Если взять любую точку из конуса, то отрезок по направлению из 0 до этой точки можно сколь угодно продлить в этом конусе.

Примеры: любое линейное подпространство, прямая через начало координат, луч из начала координат.

Proposition

Условие: для любых $c_1, c_2 \in \mathcal{C}$, $\theta_1, \theta_2 \geq 0$ выполнено

$$\theta_1 c_1 + \theta_2 c_2 \in C$$
,

равносильно тому, что множество является выпуклым конусом.

H. М. Корнилов 2 октября 2025г 14 / 27

Свойства конусов

Любой конус обязательно содержит 0.

Proposition

Пересечение любого семейства (выпуклых) конусов сохраняет свойство быть (выпуклым) конусом.

Примеры конусов

Example

Множество $C = \{(x, t) \in R^{n+1} : \|x\| \le t\}$ является выпуклым конусом.

Example

Множество положительно полуопределенных матриц \mathcal{S}^n_+ является выпуклым конусом

Example

Гиперплоскости $\{x \mid a^T x = 0\}$ и полуплоскости $\{x \mid a^T x \geq 0\}$, проходящие через 0, являются выпуклыми конусами. В частности, их пересечения тоже выпуклые конусы.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Выпуклая комбинация

Definition

Выпуклой комбинацией точек x_1,\dots,x_k называется любая точка вида

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

где $\theta_1 + \ldots + \theta_k = 1$ и $0 \le \theta_i \le 1$ для всех i.

Proposition

Если S является выпуклым множеством и $x_1, \ldots, x_k \in S$, то любая выпуклая комбинация точек x_1, \ldots, x_k также принадлежит S.

□ ト 4 個 ト 4 重 ト 4 重 ト 9 Q C

Доказательство

Доказательство.

Доказательство проведем индукцией по k.

База при k=2 верна. Пусть утверждение верно для k-1.

Переход: рассмотрим $x_1,\dots,x_k\in S$ и пусть θ_1,\dots,θ_k таковы, что $\theta_1+\dots+\theta_k=1$ и $0\leq\theta_i\leq 1$. Если $\theta_k=1$, то утверждение очевидно. В противном случае перепишем комбинацию:

$$\theta_1 x_1 + \ldots + \theta_k x_k = (1 - \theta_k) \left(\frac{\theta_1}{1 - \theta_k} x_1 + \ldots + \frac{\theta_{k-1}}{1 - \theta_k} x_{k-1} \right) + \theta_k x_k,$$

где каждое слагаемое $\frac{\theta_i}{1-\theta_k}$ лежит в интервале [0,1], а их сумма равна 1. По предположению индукции и определению выпуклого множества, утверждение верно для k.

 4 □ > 4 □

Выпуклая оболочка

Definition

Выпуклой оболочкой множества S называется наименьшее по включению выпуклое множество T, содержащее S. То есть, это пересечение всех выпуклых множеств, содержащих S. Обычно выпуклую оболочку обозначают conv S.

Выпуклая оболочка является выпуклым множеством.

Theorem

Выпуклая оболочка множества S равна множеству всех выпуклых комбинаций элементов S, то есть

$$\mathsf{conv}\, S = \cup_{k \in \mathbb{N}} \{\theta_1 x_1 + \ldots + \theta_k x_k | \theta_1 + \ldots + \theta_k = 1, 0 \le \theta_i \le 1, x_i \in S\}.$$

Множество S является выпуклым тогда и только тогда, когда $S = \operatorname{conv} S$.

Доказательство теоремы

Доказательство.

Пусть x — произвольная выпуклая комбинация элементов S. Это значит, что она также является выпуклой комбинацией выпуклого множества conv S, тк $S \subset \text{conv } S$. Поэтому $x \in \text{conv } S$, то есть выполняется вложение справа налево.

Доказательство теоремы

Доказательство.

Пусть x — произвольная выпуклая комбинация элементов S. Это значит, что она также является выпуклой комбинацией выпуклого множества conv S, тк $S \subset \text{conv } S$. Поэтому $x \in \text{conv } S$, то есть выполняется вложение справа налево.

Докажем вложение в обратную сторону. Заметим, что $\cup_{k\in\mathbb{N}}\{\theta_1x_1+\ldots+\theta_kx_k|\theta_1+\ldots+\theta_k=1,0\leq\theta_i\leq1\}\text{ является выпуклым множеством, так как если <math>x$ и y выпуклые комбинации S, то $\theta x+(1-\theta)y$ является выпуклой комбинацией большей размерности для $\theta\in[0,1]$. Поэтому вложение выполняется. Значит эти множества равны.

Пример на выпуклую оболочку

Example

Чему равна $\mathsf{conv}\{xx^T|x\in\mathbb{R}^n,\|x\|_2=1\}$?

Н. М. Корнилов

Пример на выпуклую оболочку

Example

Чему равна conv $\{xx^T|x\in\mathbb{R}^n,\|x\|_2=1\}$?

Для начала докажем вложение слева направо. Рассмотрим $x \in \mathbb{R}^n$: $\|x\|_2 = 1$. Покажем, что след матрицы xx^T равен 1:

$$Tr(xx^T) = Tr(x^Tx) = ||x||_2^2 = 1.$$

Теперь рассмотрим матрицу $A \in \{xx^T|x\in\mathbb{R}^n,\|x\|_2=1\}$. По вышедоказанной теореме мы имеем, что $A=\theta_1x_1x_1^T+\theta_2x_2x_2^T+\ldots+\theta_nx_nx_n^T$, где $\theta_i\geq 0$, $\|x_i\|_2=1$ и $\theta_1+\theta_2+\ldots+\theta_n=1$. Поэтому, используя линейность следа, мы получаем $\mathrm{Tr}(A)=1$.

< ロ > → □ > → □ > → □ > → □ = → へ○ ○

Н. М. Корнилов

Пример на выпуклую оболочку

Далее докажем вложение справа налево. Пусть $A \in \mathcal{S}^n_+$ и $\mathrm{Tr}(A) = 1$. Матрица A симметричная, значит у нее есть базис из собственных векторов. Применяя спектральное разложение мы получаем, что $A = S^T(\lambda_1, \dots, \lambda_n)S$, где S - ортогональная матрица. Заметим, что

$$Tr(S^{T}(\lambda_{1},...,\lambda_{n})S) = Tr(SS^{T}(\lambda_{1},...,\lambda_{n})) =$$

 $Tr((\lambda_{1},...,\lambda_{n})) = \lambda_{1} + \lambda_{2} + ... + \lambda_{n} = 1.$

Из спектрального разложения мы делаем вывод, что $A = \lambda_1 s_1 s_1^T + \lambda_2 s_2 s_2^T + \ldots + \lambda_n s_n s_n^T$, где s_i - соответствующие нормированные собственные вектора. Это завершает доказательство.

H. М. Корнилов 2 октября 2025г 23 / 27

Другие оболочки

Definition

Конической оболочкой множества С называется множество

$$\cup_{k=1}^{\infty} \{\theta_1 c_1 + \ldots + \theta_k c_k | c_i \in C, \theta_i \geq 0, i = 1, \ldots, k\}.$$

Коническая оболочка является выпуклым конусом.

Definition

Аффинной оболочкой aff S множества S называется множество

$$\text{aff } S:=\cup_{k=1}^{\infty}\{\theta_1x_1+\ldots+\theta_kx_k|\theta_1+\ldots\theta_k=1, x_i\in S, i=1,\ldots,k\}.$$

Аффинная оболочка aff S любого мн-ва S может быть представлена как сумма единственного линейного подпространства L_S и представителя $y \in$ aff S, то есть aff $S = L_S + y$.

Теорема Каратеодори

Для любого множества S можно определить его размерность как $\dim S = \dim \mathrm{aff} \ S = \dim L_S.$

Theorem

Пусть дано множество S и $dim\ conv\ S=d$. Тогда любой элемент $conv\ S$ представляется как выпуклая комбинация не более чем d+1 точки множества S.

Н. М. Корнилов

Теоремы отделимости

Theorem (Теорема об отделимости)

Пусть S и T - непересекающиеся непустые выпуклые множества в \mathbb{R}^n . Тогда найдутся $a \in \mathbb{R}^n \setminus \{0\}$ и $b \in \mathbb{R}$ такие, что $\forall x \in S$ $a^Tx - b \leq 0$ и $\forall y \in T$ $a^Ty - b \geq 0$.

То есть любые два непересекающиеся выпуклых множества можно разделить гиперплоскостью.

Theorem (Теорема о строгой отделимости)

Пусть S и T - непересекающиеся непустые выпуклые множества в \mathbb{R}^n , причем S - компакт, а T - замкнуто. Тогда найдутся $a \in \mathbb{R}^n \setminus \{0\}$ и $b \in \mathbb{R}$ такие, что $\sup_{x \in S} a^T x < b < \inf_{y \in T} a^T y$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

Лемма Фаркаша

Theorem

Рассмотрим систему строгих неравенств Ax < b, где $A \in \mathbb{R}^{n \times m}$ и $b \in \mathbb{R}^n$. Она неразрешима тогда и только тогда, когда найдется $\lambda \in \mathbb{R}^n \setminus \{0\}$: $\lambda^T A = 0$, $\lambda \geq 0$ и $\lambda^T b \leq 0$.

Неразрешимость линейного неравенства от x, который лежит в m-мерном пространстве, сводится к разрешимости системы равенств и неравенств от переменной из n-мерного пространства.

< ロ ト ∢ @ ト ∢ 重 ト ∢ 重 ト → 重 → か Q (~)