.1

א. בעמודים 47, 46 בכרך ייתורת הקבוצותיי מוסבר שמספר האיברים השונים בסדרה א. בעמודים 47, 46 בכרך א. בעמודים 7, א. בעמודים 8, R כאשר R כאשר R כאשר

כלומר, קיימות שתי רלציות בסדרה זו שיקיימו $R^i=R^j, i\neq j$ כלומר, קיימים שני מספרים שונים שלא יקיימו את השוויון. בכך, הוכחנו את הטענה.

ב. נוכיח את הטענה באינדוקציה.

בסיס האינדוקציה : נראה את נכונות הטענה עבור k=1 . אכן, $R^1=R$, ומתקיים . $R^1=\{(n,n+1)\,|\,n\in N\}$

k=1 נניח שהטענה נכונה עבור k=m כלשהו, ונוכיח את נכונות הטענה עבור

. $R^{m+1} = \{(n, n+m+1) \mid n \in N\}$ - עלינו להוכיח ש

$$(a,b) \in R^{m+1} \Leftrightarrow$$

$$\exists c((a,c) \in R^m \land (c,b) \in R) \Leftrightarrow$$

$$\exists c(b=c+1 \land c=a+m) \Leftrightarrow$$

$$b=a+m+1 \Leftrightarrow$$

$$(a,b)=(a,a+m+1)$$

ובכד הוכחנו את הטענה.

 $T = R \cup R^2 \cup R^3 \cup ...$ 2.35. על פי שאלה

$$(n,m)\in T\Leftrightarrow$$

$$(n,m)\in R\vee (n,m)\in R^2\vee (n,m)\in R^3\vee...\Leftrightarrow \pi$$
 כעת,
$$\exists k\in N(k\geq 1\land m=n+k)$$

m=n+k המקיים $k\in N, k\geq 1$ כלומר, אם ורק אם ורק אם $(n,m)\in T$

- z = -1 (רק סעיפים אי, בי לא הוכחות) .2
- $A \oplus B = N$. היא קבוצת הטבעיים האי-זוגיים, B היא היא קבוצת הטבעיים האי-זוגיים. A היא קבוצת הטבעיים הזוגיים,
 - $A \oplus B = 1 \cdot A = N, B = N \{0\}$

.3

- א. זהו מספר התמורות עם חזרות של 10 איברים, כשיש שתי חזרות, שלוש חזרות, א. א. זהו מספר התמורות עם חזרות של 10. $P(10;2,3,4,1) = \frac{10!}{12!3!} = 12,600$ וארבע חזרות. כלומר, $P(10;2,3,4,1) = \frac{10!}{12!3!}$
- . $P(8;2,4,1,1) = \frac{8!}{2!4!} = 840$: ב. נתייחס אל 333 כאל תו בודד, ובדומה לסעיף אי, נקבל
 - ג. נשתמש בעיקרון ההכלה וההפרדה.

 $|U|\!=\!12,\!600$ קבוצת על פי סעיף א', טעיף טל חמחרוזת ללא הגבלות. על פי סעיף א', U קבוצת הסידורים של המחרוזת כאשר כל המופעים של החברוזת ברצף. נחשב הואר ה A_i ים את ברומה את ברומה את ברומה את היארו

$$|A_2| = P(9;3,4,1,1) = 2520$$

 $|A_3| = 840$
 $|A_4| = P(7;2,3,1,1) = 420$

נחשב חיתוכים בזוגות:

$$|A_2 \cap A_3| = P(7;4;1;1;1) = 210$$

 $|A_2 \cap A_4| = P(6;3,1,1,1) = 120$
 $|A_3 \cap A_4| = P(5;2,1,1,1) = 60$

 $|A_1 \cap A_2 \cap A_3| = 4! = 24$ בדומה,

: 87 נחשב את , S_i כפי שהוא מוגדר בעמוד

$$S_1 = |A_2| + |A_3| + |A_4| = 3780$$

 $S_2 = |A_2 \cap A_3| + |A_2 \cap A_4| + |A_3 \cap A_4| = 390$
 $S_3 = 24$

אנו מחפשים את

. |
$$A_1$$
' $\cap A_2$ ' $\cap A_3$ '|=| U | $-S_1 + S_2 - S_3 = 12,600 - 3780 + 390 - 24 = 9186$ כלומר, התשובה לסעיף היא 9186.

.4

א. בעצם, עלינו לחלק את תשעת התלמידים הנתורים לקבוצות, ללא הגבלות (פרט ל-3 תלמידים בקבוצה). נבחר תלמיד אחד באופן אקראי. לציוות עוד זוג תלמידים אליו,

יש 28 אפשרויות. נבחר תלמיד נוסף (מתוך השישה הנותרים). לציוות עוד זוג יש א

תלמידים אליו יש 10 אפשרויות. הקבוצה השלישית נקבעת בעקבות תלמידים אליו יש 10 החלוקות שכאן, באופן מוחלט.

 $.28 \cdot 10 = 280$ כלומר, סך כל האפשרויות לחלוקה הוא

 $\binom{9}{2}$ = 36 שי יש עם אי יחד מהם בקבוצה משלו. לבחירת עוד אוג שיהיו יחד עם אי יש בקבוצה ב.

אפשרויות. לבחירת אפשרויות. לבחירת בי יש 21 אפשרויות. לבחירת הזוג הנוסף שיהיה יחד עם א

הזוג הנוסף שיהיה יחד עם גי יש $\binom{5}{2}$ = 10 אפשרויות. הקבוצה השלישית נקבעת בעקבות הבחירות שעשינו עד כה. לכן, סך כל האפשרויות הוא $36\cdot21\cdot10$ = 7560 אפשרויות.

- ד. בחלוקת הקבוצות עבור העבודה הראשונה, יש, על פי עקרון שובך היונים, לפחות קבוצה אחת שיש בה לפחות $9 = \left\lceil \frac{50}{6} \right\rceil$ תלמידים. בחלוקת הקבוצות לעבודה השנייה, כל אחד מהם חייב להיות בקבוצה שונה. אך שוב על פי עיקרון שובך היונים, מכיוון שיש רק 8 קבוצות, יש לפחות קבוצה אחת בה יהיה שני תלמידים שהיו ביחד בקבוצה של לפחות 9 התלמידים. לכן, לא ניתן לקיים את הדרישות של המדריך.