New kinematic weighting algorithm for CP asymmetries in charm decays

Georgios Christou Supervisors: Dr. Federico Betti and Prof. Angelo Carbone

LHCb Collaboration

August 29, 2023

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

We study CP asymmetries in the following charm decays

$$\begin{array}{c} D^{\star+} \to D^0 \pi^+ \text{ and } D^{\star-} \to \bar{D}^0 \pi^-, \\ D^0 \to K^- K^+ \text{ and } D^0 \to \pi^- \pi^+ \end{array}$$

At LHCb we observe:

- ullet CP asymmetry A_{CP} oDifferences in matter and anti-matter decays
- Production asymmetry $A_P o$ Differences in $D^{\star\pm}$ production
- Detection asymmetry $A_D o$ Differences in π_s^\pm detection

 $\rightarrow\!\mbox{We mainly focus on CP}$ and detection asymmetries throughout this project

→At an experiment our physical observable is the total asymmetry

$$A_{\text{total}} = \frac{A_{CP} + A_D}{1 + A_{CP}A_D} \approx A_{CP} + A_D + \mathcal{O}(10^{-6})$$

where the asymmetries are $\mathcal{O}(10^{-3})$

- ullet $N(ec{p})$ ightarrowMomentum dependent number of π_s
- $A(\vec{p}) \rightarrow Momentum$ dependent detection asymmetry
- \rightarrow The total asymmetry is

$$A_{\mathsf{total}} = \frac{N_+ - N_-}{N_+ + N_-}$$

→We define the total asymmetry difference

$$\Delta A_{\mathsf{total}} = A_{\mathsf{total}}^{KK} - A_{\mathsf{total}}^{\pi\pi} = \Delta A_{CP} + \Delta A_D$$

 $\rightarrow \Delta A_D = 0$ if $N(\vec{p})$ is equal between the two decay modes How can we obtain ΔA_{CP} ?

- We need to equalize D^0 kinematic distributions for $D^0\to K^-K^+$ and $D^0\to \pi^-\pi^+$ decay modes
- The following weighting function allows us to do that

$$Q(\vec{p}_{D^{\star}}, \vec{p}_{\pi_s}) \simeq \frac{\Gamma_{D^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}{\Gamma_{D^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}, \text{ Ref: [1, 2]}$$

 \rightarrow This weighting function works if $A_D(\vec{p}) < 0.2$, thus we apply fiducial cuts to regions associated with larger detection asymmetries ($\sim 30\%$ of data sample) for analysis performed on real data

 \rightarrow We introduce a new weighting technique Ref: [1, 2]

$$Q(\vec{p}_{D^0}) \simeq \frac{\Gamma_{D^0}^{\pi\pi}(\vec{p}_{D^0}) + \Gamma_{\bar{D}^0}^{\pi\pi}(\vec{p}_{D^0})}{\Gamma_{D^0}^{KK}(\vec{p}_{D^0}) + \Gamma_{\bar{D}^0}^{KK}(\vec{p}_{D^0})} \to \text{Not affected by } A_D$$

- $ightarrow \Gamma^{\pi\pi/KK}_{D^0/\bar{D}^0}(\vec{p}_{D^0/\bar{D}^0})$ for untagged D^0 candidates
- \rightarrow Even if high $A_D(\vec{p})$ regions are present $\Delta A_D=0$
- \rightarrow Now we can use the sample that was previously removed by fiducial cuts \Rightarrow More statistics!

$$\Delta A_{\mathsf{total}} = \Delta A_{\mathit{CP}}$$

However:

- ullet The untagged D^0 candidates were not kept in Run-2
- The untagged D^0 candidates are kept in Run-3, but we do not have enough statistics
- \rightarrow We use MC samples to test the new weighting technique

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

RapidSim

- \rightarrow We generate data using RapidSim and introduce:
 - Different CP asymmetries for $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decay modes $\left(A^{KK}_{CP}=0.1,\ A^{\pi\pi}_{CP}=0.2,\ \to \Delta A_{\rm total}=-0.1\right)$
 - The same $A_D(\vec{p}) = 100\%$ in specific regions* \rightarrow The integrated detection asymmetries are different for the two samples because the kinematic distributions differ
- \rightarrow We have around 4.8 (K^-K^+ mode) and 4.2 ($\pi^-\pi^+$ mode) million events

This is an extreme case which is different from what we observe with real data

RapidSim

ightarrowWe calculate the weighting function before and after the introduction of the detection asymmetry

- Before: Emulates D^0 not associated with $\pi_s \Rightarrow \text{New weighting}$ technique
- After: Emulates D^0 associated with $\pi_s \Rightarrow \mathsf{Standard}$ technique

Technique		Weighted	Unweighted
Not associated	ΔA_{total} Deviation (σ)	-0.09845 ± 0.00073 2.12	-0.08303 ± 0.00072
Associated with π_s	$\Delta A_{ m total}$ Deviation (σ)	-0.09578 ± 0.00073 5.78	23.6

- The unweighted calculation is biased as expected $\rightarrow \Delta A_D \neq 0$
- ullet The weighting function with π_s association yields a biased result
- The new weighting technique (not affected by large $A_D(\vec{p})$) allows us to keep events associated with large $A_D(\vec{p}) \Rightarrow$ More statistics!

Particle Gun

- →We use Particle Gun data for a more realistic scenario.
 - ullet We do not introduce CP asymmetry $\Delta A_{CP}=0$
 - The detection asymmetry is the one expected in data

ightarrowThe new weighting technique should yield $\Delta A_{\mathrm{total}} = 0$

Particle Gun

Technique		Weighted	Unweighted
Not associated	$\Delta A_{ ext{total}}$ Deviation (σ)	$-0.000084 \pm 0.000262 \\ 0.32$	-0.000015 ± 0.000262
Associated with π_s	ΔA_{total} Deviation (σ)	-0.000036 ± 0.000262 0.14	0.057

- The effect of A_D is small
- With these statistics we do not see any improvement
- The measurements seems unbiased even without any weighting applied

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

RapidSim:

- ullet The old weighting function reduces the deviation of $\Delta A_{\rm total}$, however it still introduces bias to our results
- The new weighting technique reduces the deviation of ΔA_{total} and allows us to keep all events, thus using higher statistics \Rightarrow **More** effective

Particle Gun:

- ullet The effect of ΔA_D is small
- With this statistics, we do not see any significant improvement

Next steps:

Look at Run-3 data

Thank you for your attention! Questions?

