Shri G.S. Institute of Technology and Science, Indore Department of Applied Mathematics and Computational Science B.Tech. II Year:Computer Science Engineering (July.-Dec 2023), <u>ASSIGNMENT-I</u>, MA-24003; MATHEMATICS-III

Last Date of Submission: 22/09/2023

1	(i) Find the Laplace Transform of $t^2e^{-2t}cost$	CO3
	(ii) Find the Laplace Transform of the square wave function of period 2a defined as	
	$f(t) = \begin{cases} K, & 0 \le t < a \\ -K, & a < t < 2a \end{cases}$	
2	(i) State and prove convolution theorem and evaluate $L^{-1}\left\{\frac{p}{(p^2+a^2)^2}\right\}$	CO3
	(ii) Find the Laplace Transform of $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ t - 1, & 2 < t < 3 \\ 7, & t > 3 \end{cases}$	
3	Find the Laplace Transform of (i) $sin\sqrt{t}$ (ii) $\frac{cos\sqrt{t}}{\sqrt{t}}$	CO3
	Find z transform of $\left[\frac{a^n}{n!}\right]$	
4	(i) Find $L^{-1}\left\{\frac{p^2+2p-3}{p(p-3)(p+2)}\right\}$	CO3
	(ii) Find the inverse Laplace Transform of $\frac{1}{p^3(p^2+a^2)}$	
5	(i) Using Laplace Transform, solve the differential equation	CO3
	$\frac{d^2x}{dt^2} + 9x = \cos 2t, giventhat x(0) = 1,$	
	(ii) Using Laplace Transform, solve (i) $(D + 5)x - 2y = t$, $(D + 1)y + 2x = 0$, being	
	given $x = y = 0$ when $t = 0$.(ii) $4\frac{dy}{dt} + \frac{dx}{dt} + 3y = 0$, $3\frac{dx}{dt} + 2x + \frac{dy}{dt} = 1$, being given	
	x = y = 0 whent = 0.	
6	Form the partial differential equation by eliminating the arbitrary functions from :	CO3
	(i) $f(x + y + z, x^2 + y^2 + z^2) = 0$	
	$(ii) z = y^2 + 2f(\frac{1}{x} + \log y)$	
7	Solve the differential equation :	CO3
	$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$	
8	Solve (i) $r + 2s + t = 2(y - x) + \sin(x - y)$	CO3
	(ii) $(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$	
9	Use the method of separation of variables to solve the equation	CO3

	$\frac{\partial^2 v}{\partial x^2} = \frac{\partial v}{\partial t} \text{ given that } v = 0 \text{ when } t \to \infty \text{as well as } v = 0 \text{ at } x = 0 \text{ and } x = l$	
10	Show how the wave equation $c^2 \frac{d^2y}{\partial x^2} = \frac{\partial^2y}{\partial t^2}$ can be solved by the method of separation of	CO3
	variables. If the initial displacement and velocity of a string stretched between	
	x = 0 and $x = l$ are given by $y = f(x)$ and	
	$\frac{\partial y}{\partial t} = g(x)$, determine the constants in the series solution.	
