Keberadaan Solusi Tunggal Persamaan Gelombang Akustik pada Senar Gitar dan Ukulele

Laporan Tugas Besar Penambangan Data

SIDE - 02

1103134344 Zavli Juwantara 1103130277 Bayu Rizky Ramadhan 1301140000 Imam Rahman

Program Studi Sarjana Teknik Informatikai
Fakultas Informatika
Universitas Telkom
Bandung
2016

Daftar Isi

A۱	bstra	k	i								
Daftar Isi											
Ι	Pen	dahuluan	1								
	1.1	Latar Belakang	1								
	1.2	Perumusan Masalah									
	1.3	Tujuan	1								
	1.4	Hipotesis (opsional)									
	1.5	Rencana Kegiatan	1								
	1.6	Jadwal Kegiatan	2								
II	Kaj	ian Pustaka	3								
	•	Persamaan Air Dangkal	3								
		2.1.1 Cara memanggil pustaka									
II	I Met	todologi dan Desain Sistem	4								
	3.1	Flowchart sistem	4								
	3.2	Algoritma	5								
Da	aftar	Pustaka	6								
La	mpi	ran	6								

Bab I

Pendahuluan

1.1 Latar Belakang

Menulis Latar Belakang

1.2 Perumusan Masalah

Berikut rumusan masalah yang ingin saya angkat adalah

- 1. Mengapa ini terjadi?
- 2. Bagaimana proses kejadiannya?
- 3. Apa saja yang dipengaruhinya?

1.3 Tujuan

Berikut adalah tujuan yang ingin dicapai pada penulisan proposal/TA.

- 1. Untuk mengetahui mengapa ini terjadi;
- 2. Untuk mempelajari proses kejadian masalah;
- 3. Untuk melihat dampak yang dipengaruhi oleh kejadian ini.

1.4 Hipotesis (opsional)

Hipotesis dari tulisan ini adalah

- 1. Masalah timbul karena A;
- 2. Hasil numeriknya menuju $x \to \infty$

1.5 Rencana Kegiatan

Rencana kegitana yang akan saya lakukan adalah sebagia berikut:

- Studi literatur
- Memeriksa hasil

1.6 Jadwal Kegiatan

The table 1.1 is an example of referenced LATEXelements. Laporan proposal ini akan dijadwalkan sesuai dengan tabel yang diberikna berikutnya.

No	Kegiatan	Bulan ke-																							
110		1			2			3				4			5			6							
1	Studi Litera-																								
1	tur																								
2	Pengumpulan																								
	Data																								
	Analisis dan																								
3	Perancangan																								
	Sistem																								
4	Implementasi																								
4	Sistem																								
5	Analisa Hasil																								
0	Implementasi																								
6	Penulisan La-																								
	poran																								

Tabel 1.1: Jadwal kegiatan proposal tugas akhir

Bab II

Kajian Pustaka

2.1 Persamaan Air Dangkal

Berikut diberikan persamaan pengatur dari persamaan gelombang pada gitar

 $\int_0^1 \frac{f(x)}{g(x)} \, \mathrm{dx} = \sin x \tag{2.1}$

Rumus (2.1) merupakan contoh persamaan matematika. persamaan matematika diatas diberi nama \label{nama-rumus}.

Gambar 2.1: Caption

2.1.1 Cara memanggil pustaka

Contoh pustaka prosiding [?], jurnal [?] dan buku [?]. Atau dapat juga mengguanakan dua pustaka atau lebih dalam [?, ?].

Bab III Metodologi dan Desain Sistem

3.1 Flowchart sistem

Gambar 3.1: Caption flowchart

3.2 Algoritma

Atau dalam bentuk algoritma seperti contoh pada Algoritma 1 berikut ini:

Algorithm 1 Prosedur simulasi dinamika lalu lintas menggunakan FVDM.

```
1: procedure FVDM(Tfinal, \Delta t)
 2:
       Start
       For n = 1 : N \text{ do}
                                                          ⊳ Pemberian nilai awal
 3:
           Input nilai x[n]
 4:
           Input nilai v[n]
 5:
       EndFor
 6:
       time=0
 7:
       while time < T final do
 8:
 9:
               time = time + \Delta t
               Hitung jarak bamper menggunakan rumus untuk n = 2, \dots, N
10:
               If (S(n) \leq 0m) then return End If.
11:
               Tentukan \lambda menggunakan.
12:
               Hitung kecepatan optimal v_o(t) menggunakan.
13:
               Hitung percepatan a_n(time) menggunakan .
14:
               Hitung kecepatan baru dengan v_n(time) = v_n(time - \Delta t) +
15:
    a_n(time)\Delta t.
                Hitung posisi baru dengan x_n(time) = x_n(time - \Delta t) +
16:
    v_n(time)\Delta t.
               If (\Delta v \le 10^{-5} \&\& a_n(time) \le 10^{-5}) then
17:
                   OUTPUT Cetak hasil data a_n, v_n, x_n.
18:
                   return.
19:
               End If.
20:
       end while
21:
22:
       End
23: end procedure
```

Lampiran