ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 5

Esercizio 1. Provare, usando il principio di induzione, le seguenti affermazioni:

- (1) $1+3+5+\cdots+(2n-1)=n^2 \quad \forall n \in \mathbb{N}^*;$
- (2) $1+2^2+3^2+\cdots+n^2 = \frac{n(n+1)(2n+1)}{6} \quad \forall n \in \mathbb{N}^*;$ (3) $1+4+7+\cdots+(1+3n) = \frac{3n^2+5n+2}{2} \quad \forall n \in \mathbb{N}^*;$
- (4) Se $x \in \mathbb{R}$, $x \neq 1$ per ogni n > 0 si ha $1 + x^2 + \dots + x^n = \frac{1 x^{n+1}}{1 x}$;
- (5) Un insieme finito che ha n elementi ha 2^n sottoinsiemi;
- (6) $n^3 n + 6$ è divisibile per 3 per ogni $n \in \mathbb{N}^*$;
- (7) $8^n + 6$ è divisibile per 14 per ogni $n \in \mathbb{N}^*$;
- (8) $n! > 2^n$ per ogni $n \ge 4$.

Esercizio 2. Siano A e B due insiemi non vuoti e $f: A \rightarrow B$ una funzione. Consideriamo il grafico di f, cioè $\Gamma_f = \{(x, y) \in A \times B : y = f(x)\}$. Provare che A e Γ_f sono equipotenti.

Esercizio 3. Provare che l'insieme $\mathbb{Z} \setminus (5\mathbb{Z})$ è numerabile, dove $5\mathbb{Z} = \{5k : k \in \mathbb{Z}\}$.

Esercizio 4. Siano $A = \{a, e, i, o, u\}, B = \{1, 2, 3, 4\}, C = \{x \in \mathbb{Z} : |x| < 2\}.$ Determinare la cardinalità degli insiemi seguenti:

$$\mathscr{P}(A)$$
, $B \cap C$, $B \cup C$, $A \cup (B \cap C)$, $A \times B$, $B \times A$, $\mathscr{P}(A \times B)$, $\mathscr{P}(A) \times \mathscr{P}(B)$, $A^A = \{f : A \to A \text{ funzione}\}$, $D = \{f : A \to A \text{ funzione bigettiva}\}$
 $\mathscr{P}(A)^B = \{f : B \to \mathscr{P}(A) \text{ funzione}\}$, $B^{\mathscr{P}(A)} = \{f : \mathscr{P}(A) \to B \text{ funzione}\}$.

Esercizio 5. Stabilire se l'insieme $\{n^2 : n \in \mathbb{Z}\}$ è numerabile oppure no.

Esercizio 6. Siano A e B due insiemi numerabili. E' vero che $A \times B$ è numerabile?

Esercizio 7. Si considerino gli insiemi $A = \{f : \{1,2,3,4\} \rightarrow \{a,b,c\} \}$ funzione tale che $f(1) = a\}$ e $B = \{f : \{1,2,3,4\} \rightarrow \{a,b,c\} \text{ funzione tale che } f(3) = f(4) = b\}$. Determinare la cardinalità degli insiemi $A \cap B$, $A \cup B$, A^B , B^A .

Esercizio 8. Determinare, se possibile, un'applicazione bigettiva $f: A \to B$ tra le seguenti coppie di insiemi:

- (1) $A = \{1, 2, 3, 4\}, B = \{\text{nord, sud, ovest, est}\};$
- (2) $A = 2\mathbb{Z}, B = 9\mathbb{Z}$;

```
(3) A = \{1\}, B = \{\{42\}\};
```

(4)
$$A = \{a, b, c\}, B = \mathcal{P}(\{1, 2\});$$

(5)
$$A = \mathbb{C}, B = \mathbb{R}^2$$
;

(6)
$$A = \mathbb{N} \times \mathbb{N} \times \mathbb{N}, B = \mathbb{R}$$
;

(7)
$$A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + 2y = 3\}, B = \{n^3 : n \in \mathbb{Z}\};$$

(7)
$$A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x + 2y = 3\}, B = \{n^3 : n \in \mathbb{Z}\};$$

(8) $A = \mathcal{P}(C), B = D^3$, dove $C = \{\text{Ronaldo, Morata, Dybala}\} \in D = \{\triangle, \nabla\}$

Esercizio 9. Determinare la cardinalità dell'insieme quoziente A/\sim per gli insiemi e le relazioni di equivalenza seguenti:

(1)
$$A = \mathbb{Z} \operatorname{con} x \sim y \iff |x| = |y|;$$

(2)
$$A = \mathbb{Z} \operatorname{con} x \sim y \iff x - y = 12k, \ k \in \mathbb{Z};$$

(3)
$$A = \mathbb{Z} \operatorname{con} x \sim y \iff x - y = k, \ k \in \mathbb{Z};$$

(4)
$$A = \{1, 2, 3, 4, 5, 6\}$$
 con la relazione d'equivalenza diagonale, cioè $x \sim y \iff x = y$;

(5)
$$A = \{1, 2, 3, 4, 5, 6\} \text{ con } x \sim y \iff x - y = 3k, k \in \mathbb{Z};$$

(6)
$$A = \mathbb{Z} \operatorname{con} x \sim y \iff x - y = 3k, \ k \in \mathbb{Z};$$

(7)
$$A = \mathbb{N} \operatorname{con} x \sim y \iff x - y = 3k, \ k \in \mathbb{Z}.$$