협력개발 실행계획서

무인기 자율임무를 위한 상황추론 기반의 프레임워크 및 응용 모델 개발 지능형 컴퓨터 하드웨어 1종

문서번호: DM-01-0140-AP-001-00

작성자 : 디지트론 윤 인 상 일자 : 2021.06.16 서명 : 📿

검토자 : 디지트론 황 현 주 일자 : 2021.06.16 서명 :

검토자: LIG넥스원 개 발 팀 일자: 2021.06.16 담당자: 엄 태 원

검토자: LIG넥스원 개 발 팀 일자: 2021.06.16 담당자: 김성우

승인자: LIG넥스원 개 발 팀 일자: 2021.06.16 담당자: 이성우

※ LIG넥스원 검토자/승인자 서명은 nPASS 전자결재로 대체

(주)디지트론

경 고 문

본 협력개발 실행계획서를 취급함에 있어 다음 사항을 유의하시기 바랍니다.

- ◎ 목적 이외의 불필요한 제공을 금함
- ◎ 발행권자의 승인 없이 복제, 복사 및 인용을 금 함

재·개정 이력

순번	개정 번호	개정 내용	작성자	개정 일자
1	v1.0	최초 작성	윤인상	2021.06.16
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

<제목 차례>

1. 개요	1
1.1. 적용 범위	1
1.2. 우선 순위	
1.3. 관련 문서	
1.4. 납품 목록	
1.5. 추진 조직도	
1.6. 인원 구성	
1.7. 추진 일정	3
2. 개발 계획	
2.1. 설계검토회의 계획	
2.2. 업무보고 계획	
2.3. Action Item 관리 계획·····	
2.4. 시제별 개발 방안	
2.5. 시제별 시험 계획	5
3. 품질보증 계획	
3.1. 품질보증조직도	
3.2. 작업자/검사자 인증	
3.3. 제작전 품질점검	
3.4. 입고품 품질보증	
3.5. 사내개발품 품질보증 활동	
3.6. Return 품질보증 활동······	8
4. 형상관리계획	
4.1. 자체 형상통제심의회 운영 방안	
4.2. 2차 협력업체 형상관리 방안····································	
4.4. 하드웨어 형상품목(HWCI) 및 소프트웨어 형상품목(CSCI)***********************************	
4.5. 영상산물물 영상기순선 4.6. 식별자 부여 규칙····································	
4.6. 식별자 부여 규칙····································	
4.7. 먼정관리 규칙····································	
4.8. 사료관리 계획 4.9. 형상상태목록 작성, 전파 및 유지···································	
4.9. 영상상태목목 작성, 선과 및 유시	
4.10. 눌디식 영상확인(SPCA) 4.11. 형상관리 프로세스 점검····································	
4.11. ㅎㅎ한터 구추에는 열업	14

L객지원 활동······	12
제작평가회	··· 12
체계통합 및 시험평가	··· 12
형상확인(FCA/PCA)·····	··· 13
제조성숙도평가(MRA)	··· 13
기타	··· 13
· 7] ······	··· 14
약어 목록	··· 14

1. 개요

지능형 컴퓨터 하드웨어는 GPU를 기반으로 고속 병렬 처리가 가능한 소형, 경량의 하드웨어이다. 본 장치는 시험용 무인기 운용 환경에서의 내환경성을 검증하기 위한 목적으로 개조 개발된다.

본 문서는 시제 제작업체의 자원 및 일정계획, 조직구성, 품질보증, 기술관리 방법, 형상관리방안 등 프로젝트 전반에 걸친 사업 관리 방안 및 하드웨어/소프트웨어 형상품목의 제작방안을 기술한다. 지능형 컴퓨터 하드웨어의 구성 개념도는 다음 그림과 같다.

그림 1 지능형 컴퓨터 하드웨어 블럭도

1.1. 적용 범위

본 문서는 지능형 컴퓨터 하드웨어의 하드웨어/소프트웨어 형상품목 및 기타품목의 개발수명주기 동안 사용된다. 협력개발 실행계획서(PDP, Product Development Plan)는 사업(프로젝트)이 진행되면서 프로젝트의 성공을 위해 수정되고 개정될 수 있다. 본 문서의 목표는 지능형 컴퓨터 하드웨어 개발 사업에서 채택하여 사용하는 사업전반에 걸친 사업관리, 기술/형상/품질관리 및 하드웨어/소프트웨어 형상품목의 개발(제작) 방안 등에 대해 정의하는 것이다.

1.2. 우선 순위

본 문서의 내용과 인용한 참고문서 사이에 일관성이 없거나 차이가 있는 경우에는 본 문서의 내용이 우선한다. 그러나 특별한 면제가 부여되지 않는 한, 본 문서의 어떤 항목도 관련 법률이나 규정에 우선할 수 없다.

1.3. 관련 문서

지능형 컴퓨터 하드웨어 제작시의 LIG넥스원 관련 문서는 다음 표와 같다.

구분	문서번호	문 서 명	버전	개정일자	발행처
계약	넥스원항연21-039	요구사양서 무인기 자율임무를 위한 상황추론 기반의 지능형 프레임워크 및 응용 모델 개발 지능형 컴퓨터 하드웨어 1종	Ver 1.0	2021.04.15	LIG넥스원
문서	넥스원항공연21-040	업무기술서 무인기 자율임무를 위한 상황추론 기반의 지능형 프레임워크 및 응용 모델 개발 지능형 컴퓨터 하드웨어 1종	Ver 1.0	2021.04.15	LIG넥스원

1.4. 납품 목록

인공지능 컴퓨터 하드웨어의 설계/제작 및 시험 후 납품하여야 할 품목은 아래와 같다.

번호	품 명	품번	비고	수량	납품일정
1	지능형 컴퓨터 하드웨어	907-A46801-00		1조	21.12.11

1.5. 추진 조직도

1.6. 인원 구성

성 명	전 공	학위	참여기간	근무경력	담당업무	주요개발경험
황현주	전자	석사	8개월	19년	PM	현궁 모의 장입 유도탄 TMMR조정기, 원격 조정기
윤인상	전자	석사	8개월	6년	회로 및 펌웨어 설계	모듈형 소형 수신장치 EA사업 유도조종장치
이병모	전자	학사	8개월	32년	CM, 품질보증	차기대포병탐지레이더 구성품
전상민	전자	전문학사	8개월	17년	생산	차기대포병탐지레이더 구성품

1.7. 추진 일정

		계획수립	요구분석/설계	제작준비/ 부품발주	제작 및	! 구현	시	혐	납품
개빌	Ì일정				202	1년			
		5월	6월	7월	8월	9월	10월	11월	12월
개발	Event		▲ CDR						
품질	점검 & 검사	Q2						Q7	Q8
관리	설계 검토	계획 숭인	요구사항 확정 및 설계검토						
	기준선		기준선	기준선				기준선	
형상 관리	형상 산출물		요구사항서	Q-BOM				시험절차서	기타
	형상 확인								

주) ■ 음영표기는 수요자 개발품질부서 주관 점검 활동임. (업무기술서 부록3. 협력개발 품질등급 부여 기준 참조)

2. 개발 계획

2.1. 설계검토회의 계획

설계검토회의는 아래의 일정으로 LIG넥스원 개발담당자와 함께 실시한다.

구 분	회의 시기	검토 사항	관련 자료
상세설계 검토(CDR)	2021년 06월	- 상세설계 타당성 검토 - 요소기술 확보 진행현황 - 유사장비 실패사례 설계단계 적용검토	DR 회의자료

2.2. 업무보고 계획

LIG넥스원의 관리시스템인 nISP를 통해, 매월 초 마일스톤에 대한 진척율, 완료여부 및 이슈사항, 개발 지연사유 등 관련 입증 자료를 등록하여 LIG넥스원 개발담당자의 승인을 득한다.

구 분	시기	보고 내용	관련 자료
월간 보고	매월 초	개발 마일스톤별 진행 현황 및 이슈 현황	nISP 마일스톤

2.3. Action Item 관리 계획

사업 진행 중 식별된 시정조치 활동에 대해 조치 담당자를 선정하고, 시정조치가 이루어 질 수 있도록 주기적으로 모니터링을 수행한다.

2.3.1. 관리 대상

사업 진행 중 다음과 같은 사항에 대해서는 조치이력을 Action-Item 관리대장에 기록 및 유지한다.

- •설계 검토회의 등 고객과의 회의 등에 의해 식별된 Action-Item
- 요소기술 선정 항목 중 확보일정 계획 대비 지연된 업무
- •설계 진행 및 사업 관리 중 식별된 위험 및 이슈사항
- •계획된 업무 중, 30M/D 이상 지연된 업무
- •비 계획된 업무 중, 15M/D 이상 추가투입 필요 업무

2.3.2. 관리 절차

사업 진행 중 식별된 Action-Item에 대한 세부절차를 수립하고, 담당자를 지정하여 관리한다.

- 식별된 Action-Item에 대한 관리대장 등록
- 조치 담당자 선정 및 조치 활동 지원
- 주기적인 조치 현황 모니터링 및 조치기한 초과건에 대한 후속 처리
- 양식 : n-ISP 협력개발품 관리 > 협력개발 Q-게시판 > Action Item 관리대장 활용

2.4. 시제별 개발 방안

2.4.1. 요소 기술(종합)

지능형 컴퓨터 하드웨어 개발에 소요되는 요소기술 및 확보방안에 대한 일정계획은 다음과 같다.

요소기술명	적용대상 품목	확보 방안	구분	일정 계획
NVIDA Jetson TX2i 개발	지능형 컴퓨터 하드웨어	기 확보된 설계기술 활용 (개발 완료된 인공지능 하드웨어 동일기술 적용)	기 확보기술 활용	1
인터페이스 회로설계	지능형 컴퓨터 하드웨어	기 확보된 설계기술 활용 (개발 완료된 인공지능 하드웨어 동일기술 적용)	기 확보기술 활용	-

2.4.2. 인공지능 컴퓨터 하드웨어 개발방안

2.4.2.1. 인공지능 컴퓨터 하드웨어 장치 개요

본 장치는 제어보드, 인터페이스보드, 하우징으로 구성된다. LIG넥스원과의 인터페이스 요구조건을 고려하여 설계 및 제작한다.

2.4.2.2. 요구성능 충족 개발 방안

주요 항목	요구 성능	충족 개발 방안	비고
크기 및 무게	■ 길이: 80.0mm ■ 폭: 120.0mm ■ 높이: 60.0mm ■ 무게: 500g	■ 요구 성능에 맞게 설계	
제어보드	■ NVIDA Jetson TX2i 구성	■ 해당 제어보드 사용	
인터페이스	■ UART(TTL 3.3V) 3채널 ■ Gigabit Ethernet 1채널 ■ USB(Master)	■ 기 확보된 설계 기술 사용하여 개발	
전원보호	■ 입력전압: 11.0V ~ 12.6V ■ 최대 소모 전류의 120% 초과시 차단	■ 전원 보호회로 적용	
하드웨어 관리기능	 Bypass 경로에 대한 상태 지시자 보유 SW의 주기적 동작 감시 수단 제공 감시 결과에 따른 bypass 경로 제어 	■ 외부에 제어용 FPGA 추가	

2.4.2.3. 인공지능 컴퓨터 하드웨어 세부기능 및 사양

시험장치	세부 장치 구성품	구성품 사양	비고
인공지능 컴퓨터 하드웨어	■ NVIDA Jetson TX2i	 NVIDIA PascalTM architecture with 256 NVIDIA CUDA cores, 1.3 TFLOPS (FP16) Dual-core Denver 2 64-bit CPU and quad-core ARM A57 Complex 8GB 128-bit LPDDR4 (ECC support), 1600MHz - 51.2 GB/s 32GB eMMC 5.1 	
	■ 인터페이스 보드	■ 전원보호 회로 ■ FPGA(XC7S50-2CSA324I)	

2.4.2.4. 표준품 적절성 검토

해당사항 없음.

2.4.2.5. 인쇄회로기판 설계

해당사항 없음.

2.5. 시제별 시험 계획

2.5.1. 부품/구성품 시험

인공지능 컴퓨터 하드웨어의 구성품별 시험은 아래와 같이 수행되며, LIG넥스원 요구시 추가적인 시험항목 및 일정은 협의에 의하여 변경 가능하다.

부품(구성품)명	시험 방법	시험 장소
인공지능 컴퓨터 하드웨어	수락 시험	디지트론

2.5.2. 소프트웨어 신뢰성/보안성 검사

해당사항 없음.

2.5.3. 장치 통합시험

해당사항 없음.

2.5.4. 수락시험(FAT)

수락시험은 기본적으로 LIG넥스원 개발담당자의 입회 하에 실시한다. 단, LIG넥스원에서 정의한 품목별 품질등급에 따라 개발품질담당자의 입회하에 실시할 수 있다. 수락시험시 시험절차는 사전에 승인된 시험절차서에 의하여 실시하며, LIG넥스원 개발담당자의 요구 시 추가적인 시험항목 및 일정은 협의에 의하여 변경 가능하다.

장치명	시험 방법	비고
인공지능 컴퓨터 하드웨어	수락시험	LIG넥스원 참관

3. 품질보증 계획

당사는 LIG넥스원의 계약이행을 수행하는 주계약 업체로서 납품하는 장비의 품질과 신뢰성을 보증하는 데 필요한 모든 품질보증활동을 포함한 제품, 프로세스, 절차 및 자원구성 등의 품질보증 계획을 수립하고 이행 한다.

3.1. 품질보증조직도

3.2. 작업자/검사자 인증

당사는 본 개발 프로젝트에 LIG넥스원으로부터 인증 받은 전문 강사(작업 부문/검사 부문)로부터 전파 교육을 이수 받은 인원을 투입하다.

• 작업 부문 : PBA 조립, Cable 및 W/H 조립

• 검사 부문 : PBA 검사, Cable 및 W/H 검사, 기구물 검사

3.2.1. 전문 강사 현황

LIG넥스원으로부터 인증 받은 전문 강사 현황은 다음과 같다.

		범위					
구분	이름	PBA	Cable & W/H	기구물	인증 기간	업무 내용	
					'20.06~'22.06	LIG넥스원 강사교육 이수	
거기버ㅁ		o) Hi u				20.00~ 22.00	(인증번호 : NCIT20-003)
검사부문 이병모				'20.11~'22.11	LIG넥스원 강사교육 이수		
					ZU.11~ ZZ.11	(인증번호 : NCIT20-071)	

3.2.2. 작업자/검사자 현황

전문 강사로부터 전파 교육을 이수한 인증 작업자/검사자 현황은 다음과 같다. 인증 받은 작업자/검사자는 본 프로젝트의 작업(조립, 재작업, 수리) 및 검사활동을 수행한다.

		범위				
구분	이름	PBA	Cable & W/H	기구물	인증 기간	업무 내용
ストロイフ	강태원	•			'21.3~'23.3	• PBA 작업
작업자	이상준	•			'21.2~'23.2	• PBA 작업
검사자	어요나	•			'21.2~'23.2	• 입고검사

3.3. 제작전 품질점검

3.3.1. [Q3] 설계단계 품질점검

해당사항 없음.

3.3.2. [Q4] 제작 전 단계 품질점검 (MRR: Manufacturing Readiness Review, 제작준비상태점검) 해당사항 없음.

3.4. 입고품 품질보증

당사는 발주 유형별 다음의 입고 품목에 대해 품질 산출물을 협력사에 요구하고, 입고검사시 발주 유형별 품질 산출물을 검사한다.

발주 유형	요구산출물
협력개발	업무기술서 내 CDRL 참조
외주제작 (PCB, PBA, Cable & W/H)	제작사양서 내 요구산출물 참조
외주제작 (임가공)	치수검사성적서, 원자재성적서, 특수공정성적서
표준품	СоС

3.4.1. 표준품 품질보증

납품품목의 시제품 제작에 사용되는 표준품에 대한 품질보증절차는 아래와 같다.

업무 Flow	활동 내용	주관 부서
발주서 작성 및 발주	발주서 작성시 요구 산출물 작성 및 발주	구매 부서
입고검사	서류검사, 육안검사, 부품 위조품 검사 (필요시)	품질 부서
보관	입고검사 완료 후 자재창고에 보관 - MSD 부품 : 항온항습챔버 활용	구매 부서

3.4.2. 외주제작품 품질보증

납품품목의 시제품 제작에 사용되는 외주제작품은 PCB, PBA, Cable & W/H(이하 C&W/H), 기구물(임 가공품)로 구성되며, 외주제작품에 대한 품질보증 절차는 아래와 같다.

업무 Flow	활동 내용	주관 부서
제작사양서 작성	• 대상 : PCB, PBA, C & W/H, 기구물	개발 부서
세식사장시 식성	• 제작사양 및 산출물 정의	개발 구시
발주	_	구매 부서
전진검사	Cable & W/H : 클램핑, 납땜	품질 부서
(a) -1 2-1 (b)	• 일솜씨검사 : PBA	품질 부서
입고검사	• 서류검사 : 발주서 또는 제작사양서에 명시된 납품목록 확인	품실 구시
ਮ ਹੀ	입고검사 완료 후 자재창고에 보관	그레 ㅂ 1
보관	- MSD 부품 : 항온항습챔버 활용	구매 부서

3.4.2.1. 품목별 품질보증 활동 내용

업체명	품명	활동 내용	기준 자료
㈜이오에스	인쇄회로기판 (PCB)	•수입검사 ※LIG넥스원 PCB 품질요구 조건 적용	• PCB제작의뢰서 • 검사기준서
(주)아원	회로카드 조립체(PBA)	• 일솜씨검사• 수입검사※LIG넥스원 PBA 품질요구 조건적용(LIG넥스원 승인업체 활용)	• PBA제작의뢰서 • 검사기준서

3.4.3. 협력개발품 품질보증

납품품목의 시제품 제작에 사용되는 협력개발품에 대한 품질보증 절차는 아래와 같다.

업무 Flow	활동 내용	주관 부서
업무기술서, 요구사양서 작성	요구사양 및 산출물 정의	개발 부서
업무기술서, 요구사양서 검토	고객 요구사항 반영 여부 확인	품질 부서
발주	발주서에 업무기술서, 요구사양서 첨부 후 발주	구매 부서
일솜씨검사	대상 : PBA, C & W/H	품질 부서
수락검사	기능/성능 검사	개발 부서 품질 부서
입고검사	• 서류검사 : 발주서 및 업무기술서에 명시된 납품목록 확인 • 육안검사	품질 부서
보관	입고검사 완료 후 자재창고에 보관	구매 부서

3.5. 사내개발품 품질보증 활동

3.5.1. 사내개발품 품질보증(H/W)

자체 개발품(H/W) 품질보증 활동은 다음과 같이. 단계별로 품질보증 활동을 수행한다.

3.5.1.1. 품목별 품질보증 활동 내용

구 분	활동 내용	기준 자료
구성품 시험	수락검사구성품 조립 및 육안검사기능/성능 검사	• 도면 • 시험절차서

3.5.2. 사내개발품 품질보증(S/W)

해당사항 없음.

3.6. Return 품질보증 활동

당사는 납품 이후 LIG넥스원의 후속공정(체계통합, 개발시험평가, 운용시험평가 등)에서 계약품목의 고 장(장애, 불량, 결함 등) 발생 시, 해당 품목에 대한 회수처리 지원, 원인분석 및 후속조치(수리(Repair), 재작업(Rework) 등)을 수행한다. Return 진행 중 발생된 재작업 공정, 수리공정은 인증받은 작업자/검사자가 수행하며, 품질 산출물로 협의된 공정에 따른 재작업 성적서, 공정확인표를 발행한다.

Return되어 후속조치 완료된 계약품목은 반드시 LIG넥스원과 협의하여 품질검사활동(일솜씨검사, 수락 검사)을 재실시하고 납품한다.

4. 형상관리계획

4.1. 자체 형상통제심의회 운영 방안

당사는 계약된 품목에 대한 자체 형상통제위원심의회(CCB)를 운영한다. 자체 형상통제심의회는 형상기 준선(Baseline) 설정 이후에 발생하는 형상품목 및 형상산출물에 대한 변경심의 및 승인 등에 대한 공식적인 협의체를 말한다. 당사는 개발 진행 간에 발생하는 형상변경 건에 대하여 기술변경, 규격완화/면제 등급 판단 기준에 따라 자체 형상통제심의를 진행하고, 그 결과에 따라 LIG넥스원으로 기술변경, 규격완화/면제 요청을 진행한다.

4.1.1. 기술변경 등급 기준

변경 등급	등급 판단 기준	심의 내용
Ι급	 작전운용성능에 영향을 미치는 사항 전력화 일정에 지장을 초래하거나, 비용변동 등이 예상되어 수정계약 대상이 되는 사항 	• 변경 요청 사유 및 변경 대상 범위의 타당성 • 타 시스템 및 구성 요소에 미치는 영향 • 프로젝트 추진 일정에 미치는 영향 및 추가 예산
Ⅱ급	• I 급에서 명시하지 않은 사항	필요성 • 변경에 따른 양산성에 미치는 영향 • 고객의 형상변경 심의 필요성 등 • 소요 비용(M/M, 자재비) 및 일정

※ 등급 외 : 기초 자료의 단순 주기 또는 도면의 단순 오기 수정(협력업체 개발자 자체 심의)

4.1.2. 규격완화/면제 등급 기준

구분	치명	중	경
규격완화	 규격완화 사항이 규격 상에 치명결점으로 분류된 경우 규격완화 사항이 "안전"과 관련되는 경우 	1. 규격완화 사항이 규격 상에 중결점으로 분류된 경우 2. 규격완화를 구성하는 규격 이탈 사항이 다음 항목에 영향을 미치는 경우 - 건강/성능/운용편의성 - 해당 품목 또는 이의 수리부품의 호환성, 신뢰성, 생존성, 정비성, 내구성	1. 규격완화 사항이 규격 상에 경결점으로 분류된 경우 2. 규격완화 사항이 치명 또는 중 규격완화에 해당되지 않는 경우
면제	 면제 사항이 규격 상에 치명 결점으로 분류된 경우 면제 사항이 "안전"과 관련되는 경우 	1. 면제 사항이 규격 상에 중결점으로 분류된 경우 2. 면제를 구성하는 결함사항이 아래 사항에 영향을 미치는 경우 - 건강/성능/운용편의성 - 해당 품목 또는 이의 수리부품의 호환성, 신뢰성, 생존성, 정비성, 내구성	1. 면제 사항이 규격 상에 경결점으로 분류된 경우 2. 면제 사항이 치명 또는 중면제에 해당되지 않는 경우

4.2. 2차 협력업체 형상관리 방안

당사는 2차 협력업체에서 작성되는 형상산출물에 대하여 형상관리를 수행한다. 인공지능 컴퓨터 하드웨어의 형상산출물에 대한 2차 협력업체 형상관리 방안은 아래와 같다.

4.3. 형상관리 절차

형상관리는 시제품(HW, SW)의 개발 전 공정에서 생성되는 형상산출물을 식별하고, 설정된 형상기준선을 통과한 형상산출물에 대한 변경 통제 및 체계적인 이력관리를 통하여 시제품과 형상산출물간의 추적성 및 일치성을 확보하는 모든 활동 및 절차를 말한다.

당사의 형상관리는 다음과 같은 프로세스로 진행된다.

4.4. 하드웨어 형상품목(HWCI) 및 소프트웨어 형상품목(CSCI)

• 인공지능 컴퓨터 하드웨어의 하드웨어 형상품목(HWCI)은 다음과 같다.

순 번	명 칭	약어	비고
1	인공지능 컴퓨터 하드웨어	HW	

4.5. 형상산출물 형상기준

개발 품목의 형상산출물은 아래와 같이 정의하고, 형상기준선 설정 및 변경 시에는 LIG넥스원의 nISP 시스템을 통해 산출물의 제/개정 활동을 수행한다.

형상기준선 설정 이후 변경사항은 별도의 "형상변경관리대장"에 변경이력을 기록/유지한다.

[형상산출물 별 형상기준선 : 품질등급 B등급]

형상기준선	설정 시점	형상산출물	약어	비고
요구사항 기준선	Q1(계약이후)	요구사양서	CDRS	LIG넥스원(주) 주관 형상산출물
납품 기준선	Q8(입고검사) 전	도면, 시험절차서, 소스코드 및 기타 형상산출물	-	• Q8(입고검사) 이전 변경 시, 자체 형상기준선 설정 및 형상변경 통제 절차 수행 • 형상변경 근거문서(형상변경심의서 등) 및 형상변경관리대장은 납품 시 제출

4.6. 식별자 부여 규칙

4.6.1. 문서번호 및 문서파일명 부여 규칙

형상산출물에 대한 문서번호 및 문서파일명 부여 규칙은 아래와 같다.

문서번호 규칙 문서파일명 규칙	[사업명 약어]-[형상품목 약어]-[형상산출물 약어] [사업명 약어]-[형상품목 약어]-[형상산출물 약어]-[Ver.X.X]	
사업명 약어	L-SAM Long Surface-to-Air Missile	
형상품목 약어	-	하드웨어: HWCI 약어 소프트웨어: HWCI 약어_CSCI 약어 "4.4.항 하드웨어/소프트웨어 형상품목"참조
형상산출물 약어	_	'4.5.항 형상산출물별 형상기준선'참조
Ver.X.X	-	문서 및 도번 버전 : '4.7.1. 문서 및 도면의 버전관리 규칙' 참조

4.6.2. 도면번호 및 도면파일명 부여 규칙

• 구성품별 도면번호 부여 현황은 다음과 같다.

구 분	시작 도번	끝 도번	매수
인공지능 컴퓨터 하드웨어	907-A46801-00	907-A46801-00	-

4.7. 변경관리 규칙

본 프로젝트의 변경관리 항목은 문서(시험절차서 등의 형상 산출물), 도면 및 SW 소스코드이다.

4.7.1. 문서/도면의 리비전 및 버전관리 규칙

본 프로젝트 문서 및 도면의 버전관리 규칙은 아래와 같다.

구분	ון דו	리비전 및 버전관리 규칙		
十七	시기	문서(Version)	도면(수정부호)	
형상기준선	형상기준선 설정 시	1.0	미부여(공란)	
통과 이후	개정 시	0.1 단위로 부여	RA, RB ~ RZ 순으로 부여	

4.8. 자료관리 계획

형상관리를 효과적으로 수행하는 데에 필요한 아래와 같은 사항 등이 기록될 수 있도록, 형상산출물의 개정이력, 형상변경관리대장 및 형상기준선 라이브러리를 유지한다.

- 설정된 형상기준선 내역/목록
- 형상 변경과 관련된 요청 내용, 심의 결과, 변경 조치 진행 상태 및 변경 결과
- 각 형상산출물들에 대한 변경 이력
- 설정된 형상기준선의 최신 상태

4.9. 형상상태목록 작성, 전파 및 유지

형상기준선 설정(신규 등록) 및 형상변경 완료(변경 등록) 시점 주기로 형상품목에 대한 최신 상태를 형상상태목록 양식에 작성하고, 프로젝트 구성원 및 조직 구성원에게 전파한다. 또한 프로젝트 구성원 및 조직 구성원이 필요한 시점에 형상품목에 대한 최신 상태를 열람할 수 있도록 형상상태목록을 유지 한다.

4.10. 물리적 형상확인(sPCA)

해당사항 없음.

4.11. 형상관리 프로세스 점검

- 1) 당사는 LIG넥스원에서 배포한 "개발단계 협력개발 및 외주제작 형상관리기준(NEX1(C)-291-01)"에 따라 계약된 모든 품목을 대상으로 형상관리 프로세스를 적용한다.
- 2) 당사는 계약품목을 대상으로 LIG넥스원의 협력업체 품질경영시스템 요구사항(이하 "LSQR"이라 함) 에 기반한 협력회사 품질평가 계획에 따라 형상관리 분야를 평가받는다.
- 3) 평가시 점검 내용은 다음과 같다.
 - 요구사양서/Q-BOM/시험절차서/기타 형상산출물
 - 문서의 제/개정 현황 및 형상변경심의서와의 정합성
 - 형상관리대장 작성 상태
 - 자체 형상통제심의회 회의록 작성 상태 등
 - 도면 : 도면 배포 및 폐기절차 준수상태 (도면 배포 관리대장, 도면 폐기 관리상태 등)

5. 고객지원 활동

5.1. 제작평가회

체계단위 조립성/양산성/제작성 관점의 점검활동인 제작평가회 수행 시, 계약된 품목에 대한 분해/조립 인원을 지원하고, 이를 통해 식별된 수정/보완 사항에 대하여 제품 및 설계자료(도면 등)에 반영한다.

5.2. 체계통합 및 시험평가

체계통합 및 시험평가 수행 시, 납품된 제품과 관련된 업무에 대하여 지원한다. '공급자'는 체계통합 및 시험평가 시 발견된 제품 불량에 대해 '수요자'와 합의하여 보완한다. '공급자'는 소프트웨어 신뢰성 검사 대상 제품인 경우, '수요자' 요청에 따라 시험평가 시 소프트웨어 신뢰성 검사 준비 및 현장 검사를 지원한다.

5.3. 형상확인(FCA/PCA)

체계단위 기능적/물리적 형상확인(FCA/PCA) 수행 시, 계약된 품목에 대한 분해/조립 인원을 지원하고, 이를 통해 식별된 수정/보완 사항에 대하여 제품 및 설계자료(도면 등)에 반영한다.

5.4. 제조성숙도평가(MRA)

체계단위 양산을 위한 준비상태 점검인 제조성숙도평가(MRA) 수행 시, 계약된 품목에 대한 산출물 작성을 지원하고, 이를 통해 식별된 수정/보완 사항에 대하여 제품 및 설계자료(도면 등)에 반영한다. 제조성숙도평가는 양산 계약을 위한 필수 단계로 계약 기간이 종료된 이후에도 이를 지원한다.

5.5. 기타

그 외 LIG넥스원의 고객(국방과학연구소, 기품원 등)으로부터 요구되는 각종 개발 및 품질 Event가 발생시, LIG넥스원과 협의를 통해 지원을 수행한다.

6. 주기

6.1. 약어 목록

	약어	설명
A/C	AirCraft	항공기
A/W	ArtWork	아트워크 : 회로기판조립체의 제조 공정(PCB Layout)
BIT	Built In Test	자체점검
ССВ	Configuration/Change Control Board	형상통제위원심의회 / 변경통제위원회
CDR	Critical Design Review	상세설계검토
CDRL	Contact Data Requirement List	계약자료 요구목록
СоС	Certification of Conformity	제품보증서
CSC	Computer Software Component	컴퓨터 소프트웨어 구성요소
CSCI	Computer Software Configuration Item	컴퓨터 소프트웨어형상품목
CSU	Computer Software Unit	컴퓨터 소프트웨어 단위
DR	Design Review	설계검토
DVR	Design Verification Review	시제작제작준비점검
EMC	Electro Magnetic Compatibility	전자기파 적합성
ESS	Environmental Stress Screening	초기고장배제시험
FAI	First Article Inspection	초도품검사
FCA	Functional Configuration Audit	기능적형상확인
HWCI	HardWare Configuration Item	하드웨어형상품목
KS	Korean Standards	한국 공업 규격
MIL	MILitary Standards	군사 표준 규격
MSD	Moisture-Sensitive Devices	습도관리부품
M/D	Ma/Day	하루에 투입되는 공수의 단위
M/M	Man/Month	한 달에 투입되는 공수의 단위
M&S	Modeling & Simulation	모델링 및 시뮬레이션
MRA	Manufacturing Readiness Assessment	제조성숙도평가
MRR	Manufacturing Readiness Review	제작전 단계 품질점검
PBA	Printed Board Assembly	인쇄회로기판 조립체
PCA	Physical Configuration Audit	물리적형상확인
PCB	Printed Circuit Board	인쇄회로기판
PDP	Product Development Plan	협력개발 실행계획서
PDR	Preliminary Design Review	기본설계검토
PVR	Product Verification Review	제품실사점검 / 제품검증회의
QT	Qualification Test	품질인증시험
Q-BOM	Quality-Bill Of Material	품질-자재명세서 : 상위부터 하위 품목까지의 품질 활동이
		정의된 목록
SIL	System Integration Laboratory	시스템 통합 시험실
TRR	Test Readiness Review	시험준비상태검토
TBC	To Be Confirmed	규격 또는 기능내용이 정의되어 있으나 확정이 안된 경우
TBD	To Be Determined	규격 또는 기능내용이 정의되지 않은 경우
W/H	Wire Harness	배선 장치