

# Algoritmos de Ordenación con estructuras jerárquicas

Algorítmica

Lukas Häring García 2ºD

## Tabla de contenidos

| $ m \acute{A}rbol$ | binario   | de búsq                            | ueo | la |    |  |  |  |  |  |  |  |  |  | 2 |
|--------------------|-----------|------------------------------------|-----|----|----|--|--|--|--|--|--|--|--|--|---|
| 0.1                | Código    | )                                  |     |    |    |  |  |  |  |  |  |  |  |  | 2 |
| 0.2                |           | icia                               |     |    |    |  |  |  |  |  |  |  |  |  | 3 |
|                    | 0.2.1     | Teórica .                          |     |    |    |  |  |  |  |  |  |  |  |  | 3 |
|                    | 0.2.2     | Empírica                           |     |    |    |  |  |  |  |  |  |  |  |  | 3 |
| 0.3                | Gráfic    | as                                 |     |    |    |  |  |  |  |  |  |  |  |  | 4 |
|                    | 0.3.1     | $\operatorname{Te\acute{o}rica}$ . |     |    |    |  |  |  |  |  |  |  |  |  | 4 |
|                    | 0.3.2     | Empírica                           |     |    |    |  |  |  |  |  |  |  |  |  | 4 |
| $ m \acute{A}rbol$ | parcial   | mente or                           | dei | na | dc |  |  |  |  |  |  |  |  |  | 5 |
| 1.1                | Código    |                                    |     |    |    |  |  |  |  |  |  |  |  |  | 5 |
| 1.2                | Eficien   | icia                               |     |    |    |  |  |  |  |  |  |  |  |  | 6 |
|                    | 1.2.1     | $\operatorname{Te\acute{o}rica}$ . |     |    |    |  |  |  |  |  |  |  |  |  | 6 |
|                    | 1.2.2     | Empírica                           |     |    |    |  |  |  |  |  |  |  |  |  | 6 |
| 1.3                | Gráfic    | as                                 |     |    |    |  |  |  |  |  |  |  |  |  | 7 |
|                    | 1.3.1     | $\operatorname{Te\acute{o}rica}$ . |     |    |    |  |  |  |  |  |  |  |  |  | 7 |
|                    | 1.3.2     | Empírica                           |     |    |    |  |  |  |  |  |  |  |  |  | 7 |
| Especi             | ificacion | 105                                |     |    |    |  |  |  |  |  |  |  |  |  | 8 |

# Árbol binario de búsqueda

### 0.1 Código

```
1 using namespace std;
  int main(int argc, char * argv[])
3
4
5
     int n = atoi(argv[1]);
6
     int * A = new int[n];
7
     ABB<int> ab_bus;
8
     srand(time(0));
9
     // Introducimos
10
     for (int i = 0; i < n; i++){
        ab_bus.Insertar(rand());
11
12
13
     ABB < int > :: nodo k;
14
     int m = 0;
15
16
     clock_t t_antes = clock();
17
18
        Generar codigo O(1) que el compilador no va a eliminar o
19
20
        desenrrollar.
21
22
     for (k = ab_bus.begin(); k != ab_bus.end(); ++k){
23
24
       A[m++] = *k;
25
26
     clock_t t t_despues = clock();
     cout << n << " " << ((double)(t_despues - t_antes)) /
27
         CLOCKS_PER_SEC << endl;
28
29
     return 0;
30
  };
```

#### 0.2 Eficiencia

#### 0.2.1 Teórica

Para analizar el código, debemos suponer cuál es la forma de dicha estructura tras introducir datos, a simple vista, este parece tener O(n), pero en realidad, hay que observar el operador incremento y el método end(Tras observar el código, vemos que es O(1)):

- 1. El peor caso. La altura del árbol es la misma que el número de elementos: Por tanto, este deberá bajar hasta la última posición, coste O(n) y luego recorrerlo hacia atrás, por lo que también sería O(n).
- 2. **El mejor caso**. Esto ocurre cuando hay números en diferentes alturas, este tendrá que bajar como máximo a una altura  $log_2(d)$  donde d es la altura, pero al tener que recorrer todos los elementos,  $O(log_2(n) + n) \in O(n)$

Concluimos que su eficiencia es  $\Theta(n)$  pues ambos (peor y mejor caso) coinciden.

#### 0.2.2 Empírica

Realizando el algoritmo de ordenación por inserción desde 0 dando pasos de 100 hasta 10000 elementos y realizando un ajuste con gnuplot, calculando las variables ocultas, obtenemos una eficiencias de:

$$f(n) = -1.51427 \cdot 10^{-9} \cdot n + 2.73733 \cdot 10^{-5} \in \Theta(n)$$

### 0.3 Gráficas

### 0.3.1 Teórica



### 0.3.2 Empírica



# Árbol parcialmente ordenado

### 1.1 Código

```
1 int main(int argc, char * argv[])
 2 {
 3
      int n = atoi(argv[1]);
      int * A = new int [n];
 5
      APO<int> apo_tree;
 6
      \operatorname{srand}(\operatorname{time}(0));
 7
      // Introducimos
 8
      for (int i = 0; i < n; i++){
 9
        apo_tree.insertar(rand());
10
11
12
      int m = 0;
13
      clock_t t t_antes = clock();
      while (! apo_tree.vacio()){
14
        apo_tree.borrar_minimo();
15
16
17
      clock_t t_despues = clock();
      cout << n << " " << ((double)(t_despues - t_antes)) /
18
         CLOCKS_PER_SEC << endl;
19
      return 0;
20
   };
21
```

### 1.2 Eficiencia

#### 1.2.1 Teórica

De la misma forma, el recorrer el arbol es O(n), pero quién tiene importancia son los métodos insertar, que son más complejos.

### 1.2.2 Empírica

Realizando el algoritmo de ordenación por selección desde 0 dando pasos de 100 hasta 10000 elementos y realizando un ajuste con gnuplot, calculando las variables ocultas, obtenemos una eficiencias de:

$$f(n) = 1.5138 \cdot 10^{-7} \cdot n + 0.000529994 \in \Theta(n)$$

### 1.3 Gráficas

### 1.3.1 Teórica



### 1.3.2 Empírica



### **Especificaciones**

- 1. Windows 10.0.14393
- 2. Procesador Intel(R) Core(TM) i<br/>7-7800X CPU @  $3.50{\rm GHz},\,3504~{\rm Mhz}$
- 3. 6 procesadores principales.
- 4. 12 procesadores lógicos.
- 5. Memoria física instalada (RAM) 8,00 GB x 2
- 6. Compilador MinGW.