

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA ELÉTRICA

OSÉIAS DIAS DE FARIAS

TÍTULO DO TRABALHO

OSÉIAS DIAS DE FARIAS

TÍTULO DO TRABALHO

Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção de grau de Bacharel em Engenharia Elétrica, pela Universidade Federal do Pará.

Orientador: Prof. Dr. Raphael Barros Teixeira

Universidade Federal do Pará

OSÉIAS DIAS DE FARIAS

TÍTULO DO TRABALHO

Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção de grau de Bacharel em Engenharia Elétrica, pela Universidade Federal do Pará.

DATA DE APROVAÇÃO: XX/XX/2023

CONCEITO:

Prof. Dr. Raphael Barros Teixeira Orientador - FEM/ITEC/UFPA

> TUCURUÍ/PA 2023

AGRADECIMENTOS

Agradeço a Deus...

RESUMO

Escreva seu resumo aqui!!!

Palavra-chave 1. Palavra-chave 2. Palavra-chave 3. Palavra-chave 4.

ABSTRACT

Write your abstract here!!!

 $\mathbf{Keywords}$: Keywords 1. Keywords 2. Keywords 3. Keywords 4.

LISTA DE FIGURAS

Figura 1.1 – Consumo mundial de energia por fonte de energia em quatrilhões de BTU.	14
Figura 2.1 – Turbinas hidrocinéticas de eixo vertical	16
Figura 3.1 – Esquema do escoamento e forças na pá	19
Figura 5.1 – Modos de vibração do sistema com eixo e braço maciços	22
Figura 5.2 – Coeficiente de torque para uma pá	23

LISTA DE TABELAS

Tabela 5.1 – Frequências naturais obtidas	[Hz]	1

LISTA DE SIGLAS

BET Teoria do Elemento de Pá (Blade Element Theory)

THEV Turbina Hidrocinética de Eixo Vertical

THEH Turbina Hidrocinética de Eixo Horizontal \dots

LISTA DE SÍMBOLOS

- Γ Letra grega Gama
- λ Comprimento de onda
- $\in \qquad \qquad \text{Pertence} \ \dots$

SUMÁRIO

1	INTRODUÇÃO	13
1.1	Objetivos	
1.1.1	Objetivo geral	
1.1.2	Objetivos específicos	
1.2	Estrutura do trabalho	15
2	REVISÃO BIBLIOGRÁFICA	16
2.1	Turbinas hidrocinéticas	16
2.1.1	Princípios de funcionamento, classificação e principais componentes	16
2.1.2	Modelos de predição de performance hidrodinâmica	17
3	FUNDAMENTAÇÃO TEÓRICA	18
3.1	Double-multiple streamtube model - DMST	18
3.2	Modelagem dinâmica	18
4	METODOLOGIA	20
4.1	Análise modal numérica	20
4.2	Double-multiple streamtube model	20
5	RESULTADOS	21
5.1	Análise modal numérica	21
5.2	Double-multiple streamtube model	21
5.3	Próximas etapas	21
6	CONCLUSÃO	24
6.1	Trabalhos Futuros	24
	REFERÊNCIAS	25
	APÊNDICES	26
	APÊNDICE A – NOME DO APÊNDICE	27
	APÊNDICE B – NOME DO OUTRO APÊNDICE	28
	ANEXOS	29
	ANEXO A – NOME DO ANEXO	30
	ANEXO B - NOME DO OUTRO ANEXO	31

1 INTRODUÇÃO

Alguns programas podem ser utilizados para auxílio da escrita do TCC entre eles o *MathType* (com relação a equações), *Inkscape* (com relação a imagens).

PRIMEIRAS ORIENTAÇÕES

- 1) O comando "\autoref{label}" auto referencia o respectivo "label". Exemplo 1: De acordo com o exposto no Capítulo 1... Pode-se verificar na Figura 1.1...
- 2) O comando "\citeonline{bibid}" é utilizado para citações diretas. Ele cita o respectivo "bibid".

Exemplo 2: Conforme Mesquita et al. (2014) cita em seu artigo, turbinas hidrocinéticas atualmente têm... Vaz et al. (2018) também ressalta que turbinas de eixo horizontal possuem maiores...

O comando "\cite{bibid}" é utilizado para citações indiretas. Ele cita o respectivo "bibid".

Exemplo 3: A máxima eficiência que uma turbina hidrocinética ideal pode alcançar é dada pelo Limite de Betz-Joukowski que corresponde a 59,3%, o equivalente a um C_P de 0,593 (VALLVERDÚ, 2014; SHINOMIYA, 2015).

3) Um ponto final é representado por um espaço entre os parágrafos.

Exemplo 1. Exemplo 2.

Exemplo 3.

Exemplo 4.

4) Figuras

Figuras com extensão .jpg, .pdf, .eps, .ps, .png

As figuras devem ser adicionadas a pasta "\figuras" no diretório deste template.

Figura 1.1 – Consumo mundial de energia por fonte de energia em quatrilhões de BTU.

Fonte: Harris e Kotzalas (2006).

5) Referências

As referências devem ser adicionadas no arquivo "base-referencias.bib" no diretório deste template.

Modelos podem ser editados na página "https://truben.no/latex/bibtex/". A partir do DOI pode-se encontrar o arquivo .bib em "https://www.doi2bib.org/". No Google Acadêmico também se encontram bastantes referências no formato .bib.

Tome cuidado com autores com nomes que termiam em Júnior, Filho, Neto e etc. Forma correta: "Fulano Deltrano Siclano{ }Neto".

As referências não reconhecem legal os pacotes de acentos. Então deve-se utilizar comandos de acentos. "http://latexbr.blogspot.com/2011/02/acentos-e-caracteres-especiais.html".

*Ao ser executado pela primeira vez, possa ser que você precise está conectado a internet para o programa instalar os *packages* necessários para compilar o arquivo PDF.

Utilize esse *template* sempre verificando as normas da Biblioteca Central da UFPA segundo o Guia para Elaboração de Trabalhos Acadêmicos disponível em http://bc.ufpa.br/além das normas da ABNT.

Outras orientações podem ser encontradas na internet.

Boa escrita!

1.1 Objetivos

1.1.1 Objetivo geral

Escreva seu objetivo geral aqui.

1.1.2 Objetivos específicos

- Escreva seu objetivo específico 1 aqui;
- Escreva seu objetivo específico 2 aqui;
- ...

1.2 Estrutura do trabalho

Este trabalho está dividido em cinco seções, referências, anexos e apêndices.

Na seção 1 é apresentado o contexto no qual o trabalho está inserido, a justificativa e os objetivos almejados...

A revisão bibliográfica sobre as temáticas relacionadas com essa pesquisa é apresentada na seção 2...

A seção 3 mostra conceitos teóricos relacionados às ferramentas utilizadas no estudo tal como...

Na seção 4, os resultados são apresentados juntamente com suas devidas discussões, verificando...

Finalizando, a seção 5 faz as devidas conclusões e apresenta sugestões para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

2.1 Turbinas hidrocinéticas

A potencia gerada por uma turbina pode ser expressa pela Equação (2.1).

$$P = \frac{1}{2}A\rho V^3 C_P \tag{2.1}$$

Sendo A a área do rotor da turbina (m^2) , ρ a massa específica do fluido (kg/m^3) , V é a velocidade de corrente (m/s) e C_P o coeficiente de potência (adimensional). O coeficiente de potência de uma turbina hidrocinética indica a quantidade de energia mecânica extraída a partir da energia disponível no fluido. A máxima eficiência que uma turbina hidrocinética ideal pode alcançar é dada pelo Limite de Betz-Joukowski que corresponde a 59,3%, o equivalente a um C_P de 0,593 (VALLVERDÚ, 2014; SHINOMIYA, 2015).

2.1.1 Princípios de funcionamento, classificação e principais componentes

A Figura 2.1 apresenta algumas configurações possíveis.

Figura 2.1 – Turbinas hidrocinéticas de eixo vertical.

Fonte: Harris e Kotzalas (2006).

2.1.2 Modelos de predição de performance hidrodinâmica

Uma revisão sobre modelos de predição de performance para turbinas eólicas de eixo vertical incluem os trabalhos de Brahimi, Allet e Paraschivoiu (1995), Paraschivoiu, Saeed e Desobry (2002), Paraschivoiu (2002) e Islam, Ting e Fartaj (2008), que serviram como ponto de partida para os modelos hidrodinâmicos (DAI et al., 2011).

3 FUNDAMENTAÇÃO TEÓRICA

3.1 Double-multiple streamtube model - DMST

Considerando a Figura 3.1 que apresenta o comportamento das velocidades envolvidas em uma pá, a velocidade relativa (u_r) pode ser calculada pela Equação (3.1), o ângulo de trajetória (β) pela Equação (3.2) e o ângulo de ataque (α) pela Equação (3.3), todos em função do ângulo azimute (θ) da turbina.

$$u_r = \sqrt{u^2 + (\dot{\theta}R)^2 + 2u(\dot{\theta}R)\cos\theta} \tag{3.1}$$

$$\beta = \arctan\left(\frac{\dot{\theta}Rsen\theta}{u + \dot{\theta}R\cos\theta}\right) \tag{3.2}$$

$$\alpha = \left| \frac{\pi + \beta - \theta}{2\pi} \right| - \pi \tag{3.3}$$

Uma vez que o angulo de ataque é conhecido os coeficiente de sustentação (C_L) e arrasto (C_D) podem ser obtidos. Assim as forças de sustentação (L) e arrasto (D) podem ser calculadas conforme Equação (3.4) e Equação (3.5), respectivamente. Sendo ρ a massa específica do fluido, c a corda,

$$L = \frac{1}{2}\rho c u_r^2 C_L \tag{3.4}$$

$$D = \frac{1}{2}\rho c u_r^2 C_D \tag{3.5}$$

3.2 Modelagem dinâmica

Figura 3.1 – Esquema do escoamento e forças na pá.

Fonte: Vallverdú (2014)

4 METODOLOGIA

Este trabalho ...

4.1 Análise modal numérica

A análise modal numérica...

4.2 Double-multiple streamtube model

 ${\cal O}$ código computacional responsável por fornecer os dados de forças e torque atuantes na turbina utiliza ...

5 RESULTADOS

5.1 Análise modal numérica

Na análise modal, as frequências naturais obtidas para os dois casos mantiveram-se afastadas da faixa de operação da turbina. Considerando uma TSR entre 2 e 3,5 e uma faixa de velocidade comumente encontrada entre 1 e 2 m/s tem-se uma faixa de frequências de operação variando entre 0,62 e 2,16 Hz que se encontra distante das frequências naturais encontradas para os casos analisados conforme apresentado na Tabela 5.1. Tal verificação vem confirmar a possibilidade de utilização da consideração de 1 GDL.

Tabela 5.1 – Frequências	naturais	obtidas	[Hz]	
--------------------------	----------	---------	------	--

Modo		
	Maciço	Tubo
1	9,04	$7,\!54$
2	9,08	$7,\!55$
3	13,40	9,80
4	28,68	20,19
5	28,74	20,21
6	30,32	$24,\!56$

Fonte: Autoria própria.

As Figura 5.1 e ?? apresentam algumas respostas esperadas para o primeiro e sexto modo de vibração. Nelas é possível verificar a importância da verificação das frequências de operação da turbina, que caso negligenciado pode levar a sérios danos. Também pode-se verificar que a utilização do tubo em comparação aos eixos maciços levaram a maiores deformações.

5.2 Double-multiple streamtube model

Em termos de torque, a Figura 5.2 apresenta o gráfico da coeficiente de torque para uma pá, onde é possível verificar que uma maior quantidade de torque é extraído no primeiro meio ciclo (0 - 180 graus) quando comparado com o segundo (180 - 360 graus).

5.3 Próximas etapas

Os próximos passos a serem feitos estão sintetizados na Tabela 5.2.

1,000 (m) 1,000 (m) 0,250 0,750 0,250 0,750 (a) Primeiro modo.

Figura 5.1 – Modos de vibração do sistema com eixo e braço maciços.

(b) Sexto modo.

Fonte: Autoria própria.

 ${\bf Tabela~5.2-Cronograma.}$

TAREFA	SEM 1	SEM 2	SEM 3	SEM 4	SEM 5	SEM 6
Verificação da influencia da água	X					
Acoplamento trem de potência	X	X	X			
Elaboração e submissão de artigo			X	X	X	
Redação final	X	X	X	X	X	X
Submissão de versão final						X

Fonte: Autoria Própria.

Figura 5.2 – Coeficiente de torque para uma pá.

Fonte: Autoria própria.

Quadro 1 – Exemplo de Quadro.

BD Relacionais	BD Orientados a Objetos
Os dados são passivos, ou seja, certas	Os processos que usam dados mudam
operações limitadas podem ser automa-	constantemente.
ticamente acionadas quando os dados	
são usados. Os dados são ativos, ou seja,	
as solicitações fazem com que os objetos	
executem seus métodos.	

Fonte: XXXXXXXXXXXXX.

6 CONCLUSÃO

Escreva sua conclusão aqui!!!

6.1 Trabalhos Futuros

- Sugestão 1;
- Sugestão 2;
- ...;

REFERÊNCIAS

- BRAHIMI, M. T.; ALLET, A.; PARASCHIVOIU, I. Aerodynamic analysis models for vertical-axis wind turbines. **International Journal of Rotating Machinery**, Hindawi Limited, v. 2, n. 1, p. 15–21, 1995. Disponível em: https://doi.org/10.1155/s1023621x95000169. Citado na página 17.
- DAI, Y. M.; GARDINER, N.; SUTTON, R.; DYSON, P. K. Hydrodynamic analysis models for the design of darrieus-type vertical-axis marine current turbines. **Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment**, SAGE Publications, v. 225, n. 3, p. 295–307, jun 2011. Disponível em: https://doi.org/10.1177/1475090211400684. Citado na página 17.
- HARRIS, T.; KOTZALAS, M. Essential Concepts of Bearing Technology. [S.l.]: CRC Press, 2006. (Rolling Bearing Analysis, Fifth Edition). ISBN 9781420006599. Citado 2 vezes nas páginas 14 e 16.
- ISLAM, M.; TING, D. S.-K.; FARTAJ, A. Aerodynamic models for darrieus-type straight-bladed vertical axis wind turbines. **Renewable and Sustainable Energy Reviews**, v. 12, n. 4, p. 1087 1109, 2008. ISSN 1364-0321. Disponível em: http://www.sciencedirect.com/science/article/pii/S136403210600164X. Citado na página 17.
- MESQUITA, A. L. A.; MESQUITA, A. L. A.; PALHETA, F. C.; VAZ, J. R. P.; MORAIS, M. V. G. de; GONçALVES, C. A methodology for the transient behavior of horizontal axis hydrokinetic turbines. **Energy Conversion and Management**, v. 87, p. 1261 1268, 2014. ISSN 0196-8904. Disponível em: http://www.sciencedirect.com/science/article/pii/S0196890414005433. Citado na página 13.
- PARASCHIVOIU, I. Wind turbine design: with emphasis on Darrieus concept. [S.l.]: Presses inter Polytechnique, 2002. Citado na página 17.
- PARASCHIVOIU, I.; SAEED, F.; DESOBRY, V. Prediction capabilities in vertical-axis wind turbine aerodynamics. In: **The World Wind Energy Conference and Exhibition, Berlin, Germany**. [S.l.: s.n.], 2002. p. 2–6. Citado na página 17.
- SHINOMIYA, L. D. **Projeto de rotores hidrocinéticos de eixo horizontal considerando o efeito da cavitação**. 2015. 96 f. Dissertação (Mestrado em Engenharia Mecânica) Universidade Federal do Pará. Programa de Pós-Graduação em Engenharia Mecânica, Belém, PA, Brasil, 2015. Disponível em: . Citado 2 vezes nas páginas 13 e 16.
- VALLVERDÚ, D. Study on vertical-axis wind turbines using streamtube and dynamic stall models. 2014. Citado 3 vezes nas páginas 13, 16 e 19.
- VAZ, J. R.; WOOD, D. H.; BHATTACHARJEE, D.; LINS, E. F. Drivetrain resistance and starting performance of a small wind turbine. **Renewable Energy**, v. 117, p. 509 519, 2018. ISSN 0960-1481. Disponível em: http://www.sciencedirect.com/science/article/pii/S0960148117310339. Citado na página 13.

APÊNDICE A - Nome do apêndice

Lembre-se que a diferença entre apêndice e anexo diz respeito à autoria do texto e/ou material ali colocado.

Caso o material ou texto suplementar ou complementar seja de sua autoria, então ele deverá ser colocado como um apêndice. Porém, caso a autoria seja de terceiros, então o material ou texto deverá ser colocado como anexo.

Caso seja conveniente, podem ser criados outros apêndices para o seu trabalho acadêmico. Basta recortar e colar este trecho neste mesmo documento. Lembre-se de alterar o "label" do apêndice.

Não é aconselhável colocar tudo que é complementar em um único apêndice. Organize os apêndices de modo que, em cada um deles, haja um único tipo de conteúdo. Isso facilita a leitura e compreensão para o leitor do trabalho.

$\mathbf{AP\hat{E}NDICE} \;\; \mathbf{B} \;\; - \;\; \mathbf{Nome} \;\; \mathbf{do} \;\; \mathbf{outro} \;\; \mathbf{ap\hat{e}ndice}$

conteúdo do novo apêndice

ANEXO A - Nome do anexo

Lembre-se que a diferença entre apêndice e anexo diz respeito à autoria do texto e/ou material ali colocado.

Caso o material ou texto suplementar ou complementar seja de sua autoria, então ele deverá ser colocado como um apêndice. Porém, caso a autoria seja de terceiros, então o material ou texto deverá ser colocado como anexo.

Caso seja conveniente, podem ser criados outros anexos para o seu trabalho acadêmico. Basta recortar e colar este trecho neste mesmo documento. Lembre-se de alterar o "label" do anexo.

Organize seus anexos de modo a que, em cada um deles, haja um único tipo de conteúdo. Isso facilita a leitura e compreensão para o leitor do trabalho. É para ele que você escreve.

ANEXO B - Nome do outro anexo

conteúdo do outro anexo