

CLAIMS:

1. A thin profile battery bonding method comprising:
 - 2 providing a curable adhesive composition comprising an epoxy
 - 3 terminated silane;
 - 4
 - 5 providing a thin profile battery and a substrate to which the thin
 - 6 profile battery is to be conductively connected;
 - 7
 - 8 interposing the curable adhesive composition between the thin
 - 9 profile battery and the substrate; and
 - 10
 - curing the adhesive into an electrically conductive bond electrically
 - interconnecting the battery and the substrate.

12 2. The method of claim 1 wherein the epoxy terminated silane
13 comprises a glycidoxymethoxy silane.

15 3. The method of claim 1 wherein the epoxy terminated silane
16 comprises a glycidoxypolytrimethoxysilane.

18 4. The method of claim 1 wherein the epoxy terminated silane
19 is present in the curable adhesive composition at less than or equal to
20 about 2% by weight.

22 5. The method of claim 1 wherein the epoxy terminated silane
23 is present in the curable adhesive composition at less than or equal to
24 about 1% by weight.

1
2
3
4
5
6. The method of claim 1 wherein the thin profile battery
comprises an outer nickel clad stainless steel surface over which the
curable adhesive composition is received.

7. The method of claim 1 wherein the thin profile battery is
a button type battery having a terminal housing member comprising an
outer nickel clad stainless steel surface over which the curable adhesive
composition is received.

8. The method of claim 1 wherein the thin profile battery is
a button type battery having a terminal housing member comprising an
outer nickel clad stainless steel surface over which the curable adhesive
composition is received, and the substrate comprises conductive printed
thick film ink over which the curable adhesive composition is received.

*150, Sub
B1*
527

9. A method of conductively interconnecting electronic components:

3 providing a curable adhesive composition comprising an epoxy terminated silane;

5 providing first and second electronic components to be conductively connected with one another;

7 interposing the curable adhesive composition between the first and second electronic components; and

9 curing the adhesive into an electrically conductive bond electrically connecting the first and second components.

11

12 10. The method of claim 9 wherein at least one of the components comprises a nickel containing metal surface over which the curable adhesive composition is received.

15

16 11. The method of claim 9 wherein the epoxy terminated silane comprises a glycidoxymethoxy silane.

18

19 12. The method of claim 9 wherein the epoxy terminated silane comprises a glycidoxymethyltrimethoxysilane.

21

22 13. The method of claim 9 wherein the epoxy terminated silane is present in the curable adhesive composition at less than or equal to about 2% by weight.

Sub
B

1 14. The method of claim 9 wherein the epoxy terminated silane
2 is present in the curable adhesive composition at less than or equal to
3 about 1% by weight.

4
5 15. A thin profile battery bonding method comprising:
6 interposing a curable epoxy composition between a thin profile
7 battery and a substrate to which the thin profile battery is to be
8 conductively connected, at least one of the battery and substrate
9 comprising a metal surface with which the curable epoxy is to
10 electrically connect; and

11 curing the epoxy into an electrically conductive bond electrically
12 interconnecting the battery and the substrate, the epoxy having an
13 effective metal surface wetting concentration of silane to form a cured
14 electrical interconnection having a contact resistance through said metal
15 surface of less than or equal to about 0.3 ohm-cm².

16
17 16. The method of claim 15 wherein the epoxy has an effective
18 metal surface wetting concentration of silane to form a cured electrical
19 interconnection having a resistance through said metal surface of less
20 than or equal to about 0.16 ohm-cm².

21

22

23

24

1 17. The method of claim 15 wherein the epoxy has an effective
2 metal surface wetting concentration of silane to form a cured electrical
3 interconnection having a resistance through said metal surface of less
4 than or equal to about 0.032 ohm-cm².

5
6 18. The method of claim 15 wherein the metal surface wetting
7 concentration of silane in the curable adhesive composition is less than
8 or equal to about 2% by weight.

9
10 19. The method of claim 15 wherein the metal surface wetting
11 concentration of silane in the curable adhesive composition is less than
12 or equal to about 1% by weight.

13
14 20. The method of claim 15 wherein the thin profile battery has
15 the metal surface and which comprises nickel clad stainless steel over
16 which the curable adhesive composition is received.

17
18 21. The method of claim 15 wherein the thin profile battery has
19 the metal surface and is a button type battery having a terminal
20 housing member comprising nickel clad stainless steel over which the
21 curable adhesive composition is received.

22
23 22. The method of claim 15 wherein the epoxy terminated silane
24 comprises a glycidoxyl methoxy silane.

*SB
B21*

1 23. A method of conductively interconnecting electronic
2 components comprising:

3 interposing a curable epoxy composition between first and second
4 electrically conductive components to be electrically interconnected, at
5 least one of the components comprising a metal surface with which the
6 curable epoxy is to electrically connect; and

7 curing the epoxy into an electrically conductive bond electrically
8 interconnecting the first and second components, the epoxy having an
9 effective metal surface wetting concentration of silane to form a cured
10 electrical interconnection having a contact resistance through said metal
11 surface of less than or equal to about 0.3 ohm-cm².

12 24. The method of claim 23 wherein the epoxy has an effective
13 metal surface wetting concentration of silane to form a cured electrical
14 interconnection having a resistance through said metal surface of less
15 than or equal to about 0.16 ohm-cm².

16 25. The method of claim 23 wherein the epoxy has an effective
17 metal surface wetting concentration of silane to form a cured electrical
18 interconnection having a resistance through said metal surface of less
19 than or equal to about 0.032 ohm-cm².

*Sub
B2*

- 1 26. The method of claim 23 wherein the metal surface wetting
2 concentration of silane in the curable adhesive composition is less than
3 or equal to about 2% by weight.
- 4
- 5 27. The method of claim 23 wherein the metal surface wetting
6 concentration of silane in the curable adhesive composition is less than
7 or equal to about 1% by weight.
- 8
- 9 28. The method of claim 23 wherein the metal surface
10 comprises nickel over which the curable adhesive composition is
11 received.
- 12
- 13 29. A battery powerable apparatus comprising:
14 a substrate having a surface comprising at least one node location;
15 a thin profile battery mounted over the substrate and node
16 location; and
17 a conductive adhesive mass electrically interconnecting the thin
18 profile battery with the node location, the conductive adhesive mass
19 comprising an epoxy terminated silane.
- 20
- 21 30. The apparatus of claim 29 wherein the epoxy terminated
22 silane comprises a glycidoxyl methoxy silane.
- 23
- 24

1 31. The apparatus of claim 29 wherein the epoxy terminated
2 silane comprises a glycidoxypyrolytrimethoxysilane.

3
4 32. The apparatus of claim 29 wherein the epoxy terminated
5 silane is present in the adhesive mass at less than or equal to about
6 2% by weight.

7
8 33. The apparatus of claim 29 wherein the epoxy terminated
9 silane is present in the adhesive mass at less than or equal to about
10 1% by weight.

11
12 34. The apparatus of claim 29 wherein the thin profile battery
13 comprises an outer nickel clad stainless steel surface over which the
14 conductive adhesive mass is received.

15
16 35. The apparatus of claim 29 wherein the thin profile battery
17 is a button type battery having a terminal housing member comprising
18 an outer nickel clad stainless steel surface over which the conductive
19 adhesive mass is received.

1 36. The apparatus of claim 29 wherein the thin profile battery
2 is a button type battery having a terminal housing member comprising
3 an outer nickel clad stainless steel surface over which the conductive
4 adhesive mass is received, and the substrate comprises conductive
5 printed thick film ink over which the conductive adhesive mass is
6 received.

7 37. A radio frequency communication device comprising:
8 a substrate having conductive paths including an antenna;
9 at least one integrated circuit chip mounted to the substrate and
10 in electrical connection with a first portion of the substrate conductive
11 paths; and
12 a thin profile battery conductively bonded with a second portion
13 of the substrate conductive paths by a conductive adhesive mass, the
14 conductive adhesive mass comprising an epoxy terminated silane.
15

16
17 38. The device of claim 37 wherein the epoxy terminated silane
18 comprises a glycidoxymethoxy silane.

19
20 39. The device of claim 37 wherein the epoxy terminated silane
21 comprises a glycidoxypolytrimethoxysilane.
22
23
24

1 40. The device of claim 37 wherein the epoxy terminated silane
2 is present in the adhesive mass at less than or equal to about 2% by
3 weight.

4
5 41. The device of claim 37 wherein the epoxy terminated silane
6 is present in the adhesive mass at less than or equal to about 1% by
7 weight.

8
9 42. The device of claim 37 wherein the thin profile battery
10 comprises an outer nickel clad stainless steel surface over which the
11 conductive adhesive mass is received.

12
13 43. The device of claim 37 wherein the thin profile battery is
14 a button type battery having a terminal housing member comprising an
15 outer nickel clad stainless steel surface over which the conductive
16 adhesive mass is received.

17
18 44. The device of claim 37 wherein the thin profile battery is
19 a button type battery having a terminal housing member comprising an
20 outer nickel clad stainless steel surface over which the conductive
21 adhesive mass is received, and the conductive paths comprise conductive
22 printed thick film ink over the second portion of which the conductive
23 adhesive mass is received.

1 45. An electric circuit comprising first and second electric
2 components electrically connected with one another through a conductive
3 adhesive mass comprising an epoxy terminated silane.

4
5 46. The electric circuitry of claim 45 wherein the epoxy
6 terminated silane comprises a glycidoxymethoxy silane.

7
8 47. The apparatus of claim 45 wherein the epoxy terminated
9 silane comprises a glycidoxypolytrimethoxysilane.

10
11 48. The apparatus of claim 45 wherein the epoxy terminated
12 silane is present in the adhesive mass at less than or equal to about
13 2% by weight.

14
15 49. The apparatus of claim 45 wherein the epoxy terminated
16 silane is present in the adhesive mass at less than or equal to about
17 1% by weight.

18
19 50. The apparatus of claim 45 wherein at least one of the first
20 and second electric components comprises a nickel containing metal
21 surface over which the conductive adhesive mass is received.

22
23 add D¹
24 add E²