Statistical Computing HW1

106033233 資工 21 周聖諺

3/21/2021

Problem 1:

(a) Generate standard normal distribution by using Box-Muller approach with 10000 samples. Display the result by the histogram and the boxplot.

Pseudo Code:

```
Step 1. Generate U_1,\,U_2 from uniform U(0,1) independently
```

Step 2. Let variable

$$X = \sqrt{-2ln~U_1}\cos(2\pi U_2)$$

$$Y = \sqrt{-2ln~U_1}\sin(2\pi U_2)$$

Step 3. Return X or Y, since $X, Y \stackrel{i.i.d}{\sim} N(0,1)$

library(compositions)

```
## Welcome to compositions, a package for compositional data analysis.
## Find an intro with "? compositions"
##
## Attaching package: 'compositions'
## The following objects are masked from 'package:stats':
##
##
       cor, cov, dist, var
## The following objects are masked from 'package:base':
##
##
       %*%, norm, scale, scale.default
normal_box_muller <- function(n){</pre>
  res <- vector("numeric", length=n)</pre>
  for (i in 0:n) {
    u1 <- runif(1, 0, 1)
    u2 <- runif(1, 0, 1)
```

```
radius <- sqrt(-2 * log(u1))
angle <- 2 * pi * u2

x <- radius * cos(angle)
y <- radius * sin(angle)

#print(x)
#print(y)

res[i] <- x
}

return(res)
}
n <- 10000
res <- normal_box_muller(n)

hist(res, main="Standard Normal with Box-Muller Approach", xlab="Values", breaks=50, freq = FALSE)</pre>
```

Standard Normal with Box-Muller Approach

boxplot(res, main="Standard Normal with Box-Muller Approach", ylab="Values", freq = FALSE)

Standard Normal with Box-Muller Approach


```
r_dist <- rnorm(n, 0, 1)
hist(r_dist, main="Standard Normal with rnorm()", xlab="Values", breaks=50, freq = FALSE)</pre>
```

Standard Normal with rnorm()

boxplot(r_dist, main="Standard Normal with rnorm()", ylab="Values", freq = FALSE)

Standard Normal with rnorm()

(b) Generate standard normal distribution by using Acceptance and Rejection approach with 10000 samples. Display the result by the histogram and the boxplot.

Pseudo Code Of Generating Exponential Distribution

For $X \sim Exp(\lambda)$

Step 1. Generate $U \sim U(0,1)$

Step 2. Return $-\frac{1}{\lambda}logU$

Pseudo Code Of Generating Normal Distribution with Acceptance-Rejection Method:

For $X \sim N(0,1)$

Step 1. Generate $Y \sim Exp(1), U_1 \sim U(0,1)$

Step 2. If $U_1 \leq \frac{f_{|X|}(Y)}{cg(X)} = e^{-(Y-1)^2},$ set X = Y. Otherwise, go back to Step 1.

Step 3. Generate $U_2 \sim U(0,1).$ If $U_2 \leq 0.5,$ set X = |X|. Otherwise, X = -|X|.

Step 4. Return X

```
exponential <- function(n, lambda){
  res <- vector("numeric", length=n)

for (i in 1:n) {
    u <- runif(1, 0, 1)</pre>
```

```
res[i] \leftarrow -(1/lambda) * log(u)
  }
 return(res)
}
normal_acc_rej <- function(n){</pre>
 res <- vector("numeric", length=n)</pre>
  total_num <- 0
  acc_num <- 0</pre>
  for (i in 1:n) {
    y <- exponential(1, 1)
    u1 <- runif(1, 0, 1)
    u2 <- runif(1, 0, 1)
    x <- 0
    total_num <- total_num + 1</pre>
    while (!(u1 \le exp(-((y - 1)**2) / 2))) {
      y <- exponential(1, 1)
      u1 <- runif(1, 0, 1)
      u2 <- runif(1, 0, 1)
      total_num <- total_num + 1</pre>
    }
    # Accept
    x <- y
    acc_num <- acc_num + 1</pre>
    if(u2 \le 0.5){
      x = abs(x)
    }else{
      x = -abs(x)
    res[i] \leftarrow x
  print("Acceptance Rate(%)")
  print(100*acc_num/total_num)
  return(res)
}
#n <- 10000
res <- normal_acc_rej(n)
## [1] "Acceptance Rate(%)"
```

hist(res, main="Standard Normal with Accept-Rejection Approach", xlab="Values", breaks=50, freq = FALSE

[1] 75.88981

Standard Normal with Accept-Rejection Approach

boxplot(res, main="Standard Normal with Accept-Rejection Approach", ylab="Values", freq = FALSE)

Standard Normal with Accept-Rejection Approach


```
r_dist <- rnorm(n, 0, 1)
hist(r_dist, main="Standard Normal with rnorm()", xlab="Values", breaks=50, freq = FALSE)</pre>
```

Standard Normal with rnorm()

boxplot(r_dist, main="Standard Normal with rnorm()", ylab="Values", freq = FALSE)

Standard Normal with rnorm()

Problem 2:

(a) Generate Poisson distribution with 10000 samples. Display the result by the histogram and the boxplot.

$$X \sim Poisson(\mu = 10)$$

where λ the happening rate of the event during T time and the μ means the average occurrence of the event during T time.

$$\lambda \cdot T = \mu$$

Pseudo Code

For $Poisson(\mu)$

Step 1. Let t = 0, X = 0

Step 2. If $t \leq \mu$, generate $U \sim U(0,1)$. Otherwise, go to Step 5.

Step 3. t = t - log(U)

Step 4. if $t \le \mu$, X = X + 1. Otherwise, go back to Step 2.

Step 5. Return X

```
poisson <- function(n, mu){</pre>
  res <- vector("numeric", length=n)</pre>
 for (i in 1:n) {
    T <- mu
   t <- 0
   x <- 0
   while (t <= T) {</pre>
     u <- runif(1, 0, 1)
      \# lambda = 1
      t <- t - log(u)
     if(t <= as.numeric(T)){</pre>
       x < -x + 1
    }
    res[i] <- x
 return(res)
#n <- 10000
mu <- 10
res <- poisson(n, mu)
hist(res, main="Poisson Distribution Manual", xlab="Values", freq = FALSE, breaks=25)
```

Poisson Distribution Manual

boxplot(res, main="Poisson Distribution Manual", ylab="Values", freq = FALSE)

Poisson Distribution Manual


```
r_dist <- rpois(n, mu)
hist(r_dist, main="Poisson Distribution with rpois()", xlab="Values", breaks=25, freq = FALSE)</pre>
```

Poisson Distribution with rpois()

boxplot(r_dist, main="Poisson Distribution with rpois()", ylab="Values", freq = FALSE)

Poisson Distribution with rpois()

(b) Generate Gamma distribution with 10000 samples. Display the result by the histogram and the boxplot.

```
X \sim Gamma(\alpha = 5, \beta = 3)
```

Pseudo Code

For $Gamma(\alpha, \beta)$

Step 1. Generate $X_1, X_2, ..., X_{\alpha} \overset{i.i.d}{\sim} Exp(\beta)$

Step 2. Return $\sum_{i=1}^{\alpha} X_i$

```
gamma <- function(n, alpha, beta) {
  res <- vector("numeric", length=n)

for (i in 0:n) {
    # u <- runif(alpha, 0, 1)
    # y <- vector("numeric", length=alpha)

# for (i in 0:alpha) {
    #y[i] <- -1 / beta * log(u[i])
    #}

#res[i] <- sum(y)

res[i] = sum(exponential(alpha, beta))
}</pre>
```

```
return(res)
}
#n <- 10000
alpha <- 5
beta <- 3
res <- gamma(n, alpha, beta)
hist(res, main="Gamma Distribution Manual", xlab="Values", freq = FALSE, breaks=50)</pre>
```

Gamma Distribution Manual

boxplot(res, main="Gamma Distribution Manual", ylab="Values", freq = FALSE)

Gamma Distribution Manual


```
r_dist <- rgamma(n, shape=alpha, rate=beta)
hist(r_dist, main="Gamma Distribution with rgamma()", xlab="Values", breaks=50, freq = FALSE)</pre>
```

Gamma Distribution with rgamma()

boxplot(r_dist, main="Gamma Distribution with rgamma()", ylab="Values", freq = FALSE)

Gamma Distribution with rgamma()

Problem 3

(a)

Suppose

$$X|\mu \sim Poisson(\mu) = \frac{\mu^x e^{-\mu}}{x!}$$

$$\mu \sim Gamma(\alpha, \beta) = \frac{\mu^{\alpha - 1} e^{-\frac{\mu}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}$$

The marginal distribution $f_X(x)$ of X is

$$\begin{split} f_X(x) &= \int_{\mu} p(X,\mu) \ d\mu = \int_{\mu} p(X|\mu) p(\mu) \ d\mu \\ &= \int_{\mu} \frac{\mu^x e^{-\mu}}{x!} \cdot \frac{\mu^{\alpha-1} e^{-\frac{\mu}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \ d\mu \\ &= \frac{1}{x! \Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \mu^x e^{-\mu} \mu^{\alpha-1} e^{-\frac{\mu}{\beta}} \ d\mu \end{split}$$

$$\begin{split} &= \frac{1}{x!\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} \mu^{\alpha+x-1} e^{-\mu(1+\frac{1}{\beta})} \ d\mu \\ &= \frac{1}{\Gamma(x+1)\Gamma(\alpha)\beta^{\alpha}} \Gamma(\alpha+x) \frac{\beta}{1+\beta} \\ &= \binom{\alpha-1+x}{x} \left(\frac{1}{1+\beta}\right)^{\alpha} \left(1-\frac{1}{1+\beta}\right)^{x} \end{split}$$

Let $n = \alpha, p = \frac{1}{1+\beta}$

$$= \binom{n-1+x}{x} p^n (1-p)^x$$

It is a Negative Binomial distribution $\mathcal{NB}(n,p)$

Pseudo Code Of Geometric

For Geo(p)

Step 1. Generate $U \sim U(0,1)$

Step Return $\lfloor \frac{\log U}{\log (1-p)} \rfloor$

Pseudo Code Of Negative Binomial

For NB(n, p)

Step 1. Generate $X_1, X_2, ..., X_n \overset{i.i.d}{\sim} Geo(p)$

Step 2. Return $\sum_{i=1}^n X_i$

(b)

```
geo <- function(n, p){
    res <- vector("numeric", length=n)

for (i in 1:n) {
    u <- runif(1, 0, 1)
    #print(u)
    #print(log(u))
    #print(log(1 - p))
    res[i] <- floor(log(u) / log(1 - p))
}

return(res)
}

nb <- function(n, m, p){
    res <- vector("numeric", length=n)

for (i in 1:n) {
        geo_res <- vector("numeric", length=m)</pre>
```

```
geo_res <- geo(m, p)

#print(geo_res)

res[i] <- sum(geo_res)
}

return(res)
}

#n <- 10000
alpha <- 5
beta <- 3
res <- nb(n, alpha, 1/(1 + beta))

#print(res)

hist(res, main="Negative Binomial Distribution Manual", xlab="Values", freq = FALSE, breaks=50)</pre>
```

Negative Binomial Distribution Manual

boxplot(res, main="Negative Binomial Distribution Manual", ylab="Values", freq = FALSE)

Negative Binomial Distribution Manual


```
r_dist <- rnbinom(n, alpha, 1/(1 + beta))
hist(r_dist, main="Negative Binomial Distribution with rnbinom()", xlab="Values", breaks=50, freq = FAL</pre>
```

Negative Binomial Distribution with rnbinom()

boxplot(r_dist, main="Negative Binomial Distribution with rnbinom()", ylab="Values", freq = FALSE)

Negative Binomial Distribution with rnbinom()

(c) What are the mean and variance of X?

Mean

$$\frac{pr}{1-p} = \frac{\frac{1}{1+\beta}\alpha}{1-\frac{1}{1+\beta}} = \frac{\alpha}{\beta} = \frac{5}{3}$$

Variance

$$\frac{pr}{(1-p)^2} = \frac{\frac{1}{1+\beta}\alpha}{(1-\frac{1}{1+\beta})^2} = \frac{\alpha(1+\beta)}{\beta^2} = \frac{20}{9}$$

Problem 4

(a)

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \ X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

A mixture model of X_1, X_2

$$f_{X_1,X_2}(x) = p_1 \cdot p_{X_1}(x) + p_2 \cdot p_{X_2}(x)$$

$$=p_1\cdot\frac{1}{\sigma_1\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu_1}{\sigma_1})^2}+p_2\cdot\frac{1}{\sigma_2\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu_2}{\sigma_2})^2}$$

Let $\mu_1=0, \mu_2=3$ and $\sigma_1^2=\sigma_2^2=1$

$$= p_1 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} + (1-p_1) \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-3)^2}$$

(b)

Let $p_1 = 0.75$ and generate 10000 samples from the mixture model.

```
mix_acc_rej <- function(n, p_1, mu_1, mu_2, sigma_1, sigma_2){</pre>
  res <- vector("numeric", length=n)</pre>
  for (i in 0:n) {
    p <- runif(1, 0, 1)</pre>
    shift <- 0
    scale <- 0
    if(p \le p_1){
      shift <- mu_1
      scale <- sigma_1</pre>
    }else{
      shift <- mu_2
      scale <- sigma_2</pre>
    y <- exponential(1, 1)
    u1 <- runif(1, 0, 1)
    u2 <- runif(1, 0, 1)
    x <- 0
    while (!(u1 \le exp(-((y - 1)**2) / 2)))  {
      y \leftarrow rexp(1, 1)
      u1 <- runif(1, 0, 1)
      u2 <- runif(1, 0, 1)
    }
    # Accept
    х <- у
    if(u2 \le 0.5){
      x = abs(x)
    }else{
      x = -abs(x)
    x \leftarrow x * scale + shift
    res[i] <- x
  return(res)
```

```
#n <- 10000
res <- mix_acc_rej(n, 0.75, 0, 3, 1, 1)
hist(res, main="Mixed Gaussian with Accept-Rejection Approach", xlab="Values", breaks=100, freq = FALSE</pre>
```

Mixed Gaussian with Accept-Rejection Approach

The distribution seems bimodal.