Задачи по Теории вероятностей и математической статистике

Артамонов Н.В.

7 декабря 2024 г.

Содержание

1	Дискретные случайные величины							
	1.1	Одномерные распределен	ия		1			
	1.2	Двумерные распределения	·		2			
2	Непрерывные распределения							
	2.1	Плотность, функция расп	ределения, мате	ематическое ожи-				
		дание, дисперсия			2			
					4			
	2.3	Критические значения .			5			
1. ∾		Одномерные распред		а. Случайным образо	NA I			
№	1 . B	урне содержится 3 белых и	и 3 черных шар					
		аются 2 шара. Пусть случаї выбранных.	іная величина ∕	х – число оелых шарс	JΒ			
1. Найдите таблицу распределения X								
2. Вычислите $E(X), \mathrm{Var}(X), \sigma(X)$ и моду распределения								
	3. B	вычислите вероятности						
		P(X < 2)	$(X \ge 1)$	P(0 < X < 3)				

4. Нарисуйте график функции распределения *F*.

Замечание: $X \sim Hypergeom(6,3,2)$

- №2. В урне содержится 4 белых и 2 черных шара. Случайным образом извлекаются 3 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X)$, $\mathrm{Var}(X)$, $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$P(X < 3)$$
 $P(X > 1)$ $P(1 < X < 3)$

4. Нарисуйте график функции распределения F.

Замечание: $X \sim Hypergeom(6,4,2)$

- **№**3. В урне содержится 3 белых и 4 черных шара. Случайным образом извлекаются 4 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X)$, $\mathrm{Var}(X)$, $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$\mathsf{P}(X < 3) \qquad \qquad \mathsf{P}(X > 0) \qquad \qquad \mathsf{P}(0 < X < 3)$$

4. Нарисуйте график функции распределения F.

 $Замечание: X \sim Hypergeom(7, 2, 4)$

1.2 Двумерные распределения

2 Непрерывные распределения

- 2.1 Плотность, функция распределения, математическое ожидание, дисперсия
- №1. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

N = 2. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^{\lambda - 1}, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

 $(\lambda > 0 -$ параметр распределения)

- 1. Найдите нормировочный множитель c и нарисуйте график плотности f
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F и нарисуйте её график 3амечание: графики f и F нарисуйте при $0 < \lambda < 1$ и при $\lambda \ge 1$

№3. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx(1-x), & x \in [0,1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-5 < X < 0.25)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

2.2 Стандартные распределения

№1. Для распределения $\mathcal{N}(0,1)$ вычислите

$$\phi(1)$$
 $\phi(2)$ $\phi(-0.5)$ $\phi(-1.5)$ $\Phi(1)$ $\Phi(2)$ $\Phi(-1)$ $\Phi(-2)$

№2. Для распределения $\mathcal{N}(1,0.5^2)$ вычислите значение функции распределения и плотности в точках

$$x \in \{-3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3\}$$

№3. Пусть $X \sim \mathcal{N}(0,1)$. Вычислите следующие вероятности

$$P(X \le 1)$$
 $P(X > -0.5)$ $P(-1 \le X \le 0.5)$ $P(0 < X < 2)$

№4. Пусть $X \sim \mathcal{N}(1, 1.5^2)$. Вычислите следующие вероятности

$$P(X \le 2)$$
 $P(X > 0.5)$ $P(-0.5 \le X \le 1.5)$ $P(0 < X < 3)$

№5. Для распределения U[1,4] вычислите значение функции распределения и плотности в точках

$$x \in \{0, 1.5, 2, 2.5, 3, 3.5, 4, 5\}$$

№6. Пусть $X \sim U[-1, 5]$. Вычислите следующие вероятности

$$\mathsf{P}(X \leq 0) \qquad \mathsf{P}(X > 2) \qquad \mathsf{P}(-0.5 \leq X \leq 3.5) \qquad \mathsf{P}(0 < X < 4)$$

№7. Для распределения Exp(2) вычислите значение функции распределения и плотности в точках

$$x \in \{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\}$$

№8. Пусть $X \sim Exp(0.5)$. Вычислите следующие вероятности

$$P(X \le 3)$$
 $P(X > 1)$ $P(0.5 \le X \le 2.5)$ $P(1 < X < 3)$

2.3 Критические значения

_	1								
Замеча	ание: все вы	числения необхо	одимо сделать н	з MS Excel/Pytho	n				
№1. Для уровней значимости: $1\%, 5\%, 10\%$ вычислите (двусторонние) критические значения распределения $\mathcal{N}(0,1)$									
№2. Для уровней значимости: 1%, 5%, 10% вычислите (двусторонние) критические значения следующих распределений									
	t_{10}	t_{100}	t_{250}	t_{500}					
№3. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений									
	χ^2_2	χ^2_5	χ^2_{10}	χ^2_{20}					
№4. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений									
	$F_{2,100}$	$F_{5,300}$	$F_{10,1000}$	$F_{20,1500}$					