Part B

In this plot we observe that the diagonal elements (the variances of each pixel) are mostly positive. However, most of the off-diagonal terms (the covariances of pixels with other pixels) are mostly close to zero, or even slightly negative. This means that within a class, our features are not strongly correlated with one another. This is good. If we had too many strong covariances (large off-diagonal) terms, it would either give us a singular matrix (not invertible) or a nearly-singular matrix (inversion is unstable). Either of these would make fitting a Gaussian model more difficult.

APENDIX: Code

fig = pcolor(mle_cov[0]) colorbar() plt.suptitle('Question 6.b - Cov Matrix for Class [0]', fontsize=14, fontweight='bold') plt.savefig('./plot/q6 b.png', bbox inches='tight')

Part C (i)

Question 6 (C) (i) : Prediction Accuracy

# Subset	Training	Validation	
π σαρόει	rraining validation		
size - <u>LDA</u>	Error	Error	
100	0.93	0.85	
200	0.83	0.88	
500	0.94	0.9	
1000	1	0.91	
2000	0.78	0.84	
5000	0.04	0.19	
10000	0.07	0.16	
30000	0.1	0.14	
50000	0.11	0.13	

Part C (ii)

# Subset	Training		Validation	
size - QDA	Error		Error	
100	0	.86	0.9	
200	0	.93	0.93	
500	0	.91	0.91	
1000	0	.92	0.94	
2000	0	.91	0.92	
5000	0	.59	0.82	
10000	0	.16	0.41	
30000	0	.13	0.21	
50000	0	.14	0.2	

Part C (iii)

I achieved about 20% validation error with QDA, and 13% with LDA. LDA worked better for me. I think this is because of the greater stability involved in calculating one common pooled-within-class covariance matrix for LDA, as opposed to 10 different class-specific covariance matrices with QDA. With LDA, you have one data matrix with N rows (observations) and p columns (features). With QDA, on average, each covariance matrix has n = N/10 rows and p columns. As discussed in question 5, having p >= n is one way for a covariance matrix to be non-invertible, requiring some sort of modification to calculate the inverse. This was more likely to happen with QDA, leading to lower-quality estimation of the underlying Gaussian distributions, and lower-accuracy predictions.

Part D

I added one new feature. This feature took a value of 1 if all pre-existing features for that observation were 0. Otherwise it took value 0.

APPENDIX: Kaggle scores

My username on Kaggle is LevGolod1

Submission	Files	Public Score	Selected?
Thu, 23 Feb 2017 06:05:51 Edit description	spampred.csv	0.77220	0
Submission	Files	Public Score	Selected?
Thu, 23 Feb 2017 05:07:03 Edit description	mnistpred.csv	0.88360	