Конспект по теме: Нелинейный резонанс

Основные понятия

1. **Линейный резонанс**: - Характерен для линейного осциллятора. - Амплитуда колебаний увеличивается, когда частота воздействия ω близка к собственной частоте ω_0 . - Уравнение вынужденных колебаний:

$$\ddot{x} + \omega_0^2 x = f \cos \omega t$$

- Амплитуда А определяется как:

$$|A| = \frac{f}{|\omega^2 - \omega_0^2|}$$

2. **Нелинейный резонанс**: - Частота свободных колебаний зависит от амплитуды (неизохронность). - Пример: кубический осциллятор

$$\ddot{x} + \omega_0^2 x + \beta x^3 = 0$$

- Частота сдвигается на $\Delta\omega(A) \approx \frac{3\beta A^2}{8\omega_0}$. - Амплитуда вынужденных колебаний:

$$|A| \approx \frac{f}{|\omega^2 - \omega_0^2 - \frac{3\beta A^2 \omega_0^2}{4}|}$$

Графики и их интерпретация

- Рис. 14.4 демонстрирует резонансные кривые: (а) Линейный осциллятор.
- (б) Нелинейный осциллятор с β < 0. (в) Нелинейный осциллятор с β > 0.
- Различия в наклоне кривых зависят от знака β .

Особенности нелинейного резонанса

- Амплитуда вынужденных колебаний остается конечной даже при совпадении ω и ω_0 . - Нелинейный сдвиг частоты нарушает резонансные условия.
- Зависимость амплитуды от частоты может быть неоднозначной.

Консервативные и диссипативные осцилляторы

- Консервативный осциллятор сохраняет «память» о начальном состоянии.
- Движение может быть периодическим или квазипериодическим в зависимости от соотношения частот. В диссипативных системах, при малой диссипации, устанавливается режим вынужденных колебаний, не зависящий от начальных условий.