Empirical Bayes Matrix Factorization Matthew Stephens, Wei Wang

March 9, 2018

Buzz words

- Principal Components Analysis
- Clustering
- Factor Analysis
- Dimension Reduction
- ► Latent Dirichlet Allocation / Admixture / Mixed Membership
- Non-negative Matrix Factorization

Matrix Factorization

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

Example: Genotype effects across tissues

$$Y_{i\cdot} = I_{i1} + I_{i2} + I_{i3} + I_{i3} + I_{i3}$$

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

PCA: I_1, \ldots, I_K are orthogonal; as are f_1, \ldots, f_K .

NMF: elements of I_k and f_k are non-negative.

LDA, topic models, admixture: $\sum_{k} I_{ki} = 1$

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

PCA: I_1, \ldots, I_K are orthogonal; as are f_1, \ldots, f_K .

NMF: elements of I_k and f_k are non-negative.

LDA, topic models, admixture: $\sum_{k} l_{ki} = 1$

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

PCA: l_1, \ldots, l_K are orthogonal; as are f_1, \ldots, f_K .

NMF: elements of I_k and f_k are non-negative.

LDA, topic models, admixture: $\sum_{k} l_{ki} = 1$

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

PCA: I_1, \ldots, I_K are orthogonal; as are f_1, \ldots, f_K .

NMF: elements of I_k and f_k are non-negative.

LDA, topic models, admixture: $\sum_k I_{ki} = 1$

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

PCA: I_1, \ldots, I_K are orthogonal; as are f_1, \ldots, f_K .

NMF: elements of I_k and f_k are non-negative.

LDA, topic models, admixture: $\sum_k I_{ki} = 1$

A simpler problem: the normal means problem

Observe X_1, \ldots, X_n with

$$X_j \sim N(\theta_j, s_j^2).$$

Challenge: Estimate $\theta_1, \ldots, \theta_n$.

Key idea: Shrinkage.

A simpler problem: the normal means problem

Observe X_1, \ldots, X_n with

$$X_j \sim N(\theta_j, s_j^2).$$

Challenge: Estimate $\theta_1, \ldots, \theta_n$.

Key idea: Shrinkage.

Empirical Bayes: learn how much to shrink from the data

$$X_j \sim N(\theta_j, s_j^2)$$

 $\theta_j \sim g(\cdot) \in \mathcal{G}$

Fit in two steps:

- 1. Estimate g by maximimum likelihood: $\hat{g} = \arg \max_{g} L(g)$
- 2. Estimate θ_j using posterior distribution $\theta_j|X_j,\hat{g}$.

...tractable for very flexible \mathcal{G} (e.g. $\mathcal{G}=$ distributions that are unimodal; S., 2016).

Empirical Bayes: learn how much to shrink from the data

$$X_j \sim N(\theta_j, s_j^2)$$

 $\theta_j \sim g(\cdot) \in \mathcal{G}$

Fit in two steps:

- 1. Estimate g by maximimum likelihood: $\hat{g} = \arg \max_{g} L(g)$
- 2. Estimate θ_j using posterior distribution $\theta_j|X_j, \hat{g}$.

...tractable for very flexible \mathcal{G} (e.g. $\mathcal{G}=$ distributions that are unimodal; S., 2016).

Empirical Bayes Factor Analysis

$$Y = \sum_{k=1}^{K} I_k f_k^{\mathsf{T}} + E$$

$$I_{k1}, \dots, I_{kn} \sim g_k^{\mathsf{I}}(\cdot) \in \mathcal{G}$$

$$f_{k1}, \dots, f_{kp} \sim g_k^{\mathsf{f}}(\cdot) \in \mathcal{G}$$

Harder than normal means problem...
but approximate iterative solution based on norm

...but approximate iterative solution based on normal means.

Empirical Bayes Factor Analysis

$$Y = \sum_{k=1}^{K} I_k f_k^T + E$$

$$I_{k1}, \dots, I_{kn} \sim g_k^I(\cdot) \in \mathcal{G}$$

$$f_{k1}, \dots, f_{kp} \sim g_k^f(\cdot) \in \mathcal{G}$$

Harder than normal means problem...

...but approximate iterative solution based on normal means.

GTEx data: first 6 factors

GTEx data: next 6 factors

Comparison: softImpute (nuclear norm penalty)

What next?

- Faster
- Bigger
- Visualizing Results
- ► Non-negative Constraint

Acknowledgements

- ▶ Wei Wang
- ▶ Funding: GTEX, Moore Foundation

flashr: https://www.github.com/stephenslab/flashr

workflowr: https://github.com/jdblischak/workflowr

Rank 3 simulations

