3. Bivariate Random Variables

Dave Goldsman

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

1/15/20

ISYE 6739 — Goldsman 1/15/20 1

- Introduction
- Marginal Distributions
- Conditional Distributions
- Independent Random Variables
- 5 Consequences of Independence
- Random Samples
- Conditional Expectation
- 8 Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- (12) Covariance and Correlation
- Correlation and Causation
- A Couple of Worked Correlation Examples
- 5 Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.1 — Introduction

In this introductory lesson, we'll cover ...

- What we mean by bivariate (or joint) random variables.
- The discrete case.
- The continuous case.
- Bivariate cdf's.

In this module, we'll look at what happens when you consider two random variables *simultaneously*.

Example: Choose a person at random. Look at their height and weight (X, Y). Obviously, X and Y will be related somehow.

Discrete Case

Definition: If X and Y are discrete random variables, then (X,Y) is called a **jointly discrete bivariate random variable**.

The joint (or bivariate) pmf is

$$f(x,y) = P(X = x, Y = y), \quad \forall x, y.$$

Properties:

- $0 \le f(x,y) \le 1$.
- $\bullet \sum_{x} \sum_{y} f(x,y) = 1.$
- $A \subseteq \mathbb{R}^2 \Rightarrow P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f(x,y)$.

Example: 3 sox in a box (numbered 1,2,3). Draw 2 sox at random without replacement. X = # of the first sock; Y = # of the second sock. The joint pmf f(x, y) is

f(x, y)	X = 1	X = 2	X = 3	P(Y=y)
Y = 1	0	1/6	1/6	1/3
Y = 2	1/6	0	1/6	1/3
Y = 3	1/6	1/6	0	1/3
P(X=x)	1/3	1/3	1/3	1

$$f_X(x) \equiv P(X = x)$$
 is the "marginal" pmf of X.

$$f_Y(y) \equiv P(Y = y)$$
 is the "marginal" pmf of Y.

By the Law of Total Probability,

$$P(X = 1) = \sum_{y=1}^{3} P(X = 1, Y = y) = 1/3.$$

In addition,

$$\begin{split} &P(X \geq 2, Y \geq 2) \\ &= \sum_{x \geq 2} \sum_{y \geq 2} f(x, y) \\ &= f(2, 2) + f(2, 3) + f(3, 2) + f(3, 3) \\ &= 0 + 1/6 + 1/6 + 0 = 1/3. \quad \Box \end{split}$$

Continuous Case

Definition: If X and Y are continuous RVs, then (X,Y) is a **jointly** continuous bivariate RV if there exists a magic function f(x,y) such that

- $f(x,y) \ge 0, \forall x, y$.
- $P(A) = P((X,Y) \in A) = \int \int_A f(x,y) dx dy$.

In this case, f(x, y) is called the joint pdf.

If $A \subseteq \mathbb{R}^2$, then P(A) is the volume between f(x, y) and A.

Think of

$$f(x,y) dx dy \approx P(x < X < x + dx, y < Y < y + dy).$$

It's easy to see how this generalizes the 1-dimensional pdf, f(x).

Example: Choose a point (X,Y) at random in the interior of the circle inscribed in the unit square, e.g., $C \equiv (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \le \frac{1}{4}$.

Find the pdf of (X, Y).

Since the area of the circle is $\pi/4$,

$$f(x,y) = \begin{cases} 4/\pi & \text{if } (x,y) \in C \\ 0 & \text{otherwise.} \end{cases}$$

Application: Toss n darts randomly into the unit square. The probability that any individual dart will land in the circle is $\pi/4$. It stands to reason that the proportion of darts, \hat{p}_n , that land in the circle will be approximately $\pi/4$. So you can use $4\hat{p}_n$ to estimate π !

Example: Suppose that

$$f(x,y) = \begin{cases} 4xy & \text{if } 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Find the probability (volume) of the region $0 \le y \le 1 - x^2$.

$$V = \int_0^1 \int_0^{1-x^2} 4xy \, dy \, dx$$
$$= \int_0^1 \int_0^{\sqrt{1-y}} 4xy \, dx \, dy$$
$$= 1/3.$$

Moral: Be careful with limits! □

Bivariate cdf's

Definition: The joint (bivariate) cdf of X and Y is

$$F(x,y) \equiv P(X \le x, Y \le y)$$
, for all x, y .

$$F(x,y) \; = \; \left\{ \begin{array}{ll} \sum \sum_{s \leq x,t \leq y} f(s,t) & \text{discrete} \\ \\ \int_{-\infty}^y \int_{-\infty}^x f(s,t) \, ds \, dt & \text{continuous.} \end{array} \right.$$

Going from cdf's to pdf's (continuous case):

1-dimension:
$$f(x) = F'(x) = \frac{d}{dx} \int_{-\infty}^{x} f(t) dt$$
.

2-dimensions:
$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = \frac{\partial^2}{\partial x \partial y} \int_{-\infty}^x \int_{-\infty}^y f(s,t) \, dt \, ds$$
.

Properties:

F(x, y) is non-decreasing in both x and y.

$$\lim_{x \to -\infty} F(x, y) = \lim_{y \to -\infty} F(x, y) = 0.$$

$$\lim_{x\to\infty} F(x,y) = F_Y(y) = P(Y \le y)$$
 ("marginal" cdf of Y).

$$\lim_{y\to\infty} F(x,y) = F_X(x) = P(X \le x)$$
 ("marginal" cdf of X).

$$\lim_{x \to \infty} \lim_{y \to \infty} F(x, y) = 1.$$

F(x, y) is continuous from the right in both x and y.

ISYE 6739 — Goldsman 1/15/20

Example: Suppose

$$F(x,y) \; = \; \left\{ \begin{array}{ll} 1 - e^{-x} - e^{-y} + e^{-(x+y)} & \text{if } x \geq 0, \, y \geq 0 \\ 0 & \text{if } x < 0 \, \text{or} \, y < 0. \end{array} \right.$$

The marginal cdf of X is

$$F_X(x) = \lim_{y \to \infty} F(x, y) = \begin{cases} 1 - e^{-x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The joint pdf is

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

$$= \frac{\partial}{\partial y} (e^{-x} - e^{-y} e^{-x})$$

$$= e^{-(x+y)} \text{ if } x > 0, y > 0. \quad \Box$$

Marginal Distributions

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- Random Samples
- Conditional Expectation
- Ouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- 13 Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - 7 Honors Bivariate Functions of Random Variables

Lesson 3.2 — Marginal Distributions

We're also interested in the individual (marginal) distributions of X and Y.

Definition: If X and Y are jointly *discrete*, then the **marginal pmf's** of X and Y are, respectively,

$$f_X(x) = P(X = x) = \sum_y f(x, y)$$

and

$$f_Y(y) = P(Y = y) = \sum_x f(x, y).$$

Example (discrete case): f(x, y) = P(X = x, Y = y).

f(x,y)	X = 1	X = 2	X = 3	P(Y=y)
Y = 40	0.01	0.07	0.12	0.2
Y = 60	0.29	0.03	0.48	0.8
P(X=x)	0.3	0.1	0.6	1

By total probability,

$$P(X = 1) = P(X = 1, Y = \text{ any } \#) = 0.3.$$

Example (discrete case): f(x, y) = P(X = x, Y = y).

f(x,y)	X = 1	X = 2	X = 3	P(Y=y)
Y = 40	0.06	0.02	0.12	0.2
Y = 60	0.24	0.08	0.48	0.8
P(X=x)	0.3	0.1	0.6	1

Remark: Hmmm.... Compared to the last example, this has the *same* marginals but different joint distribution! That's because the joint distribution contains much more information than just the marginals.

Definition: If X and Y are jointly *continuous*, then the **marginal pdf's** of X and Y are, respectively,

$$f_X(x) = \int_{\mathbb{R}} f(x,y) \, dy$$
 and $f_Y(y) = \int_{\mathbb{R}} f(x,y) \, dx$.

Example:

$$f(x,y) \ = \ \left\{ \begin{array}{ll} e^{-(x+y)} & \text{if } x \geq 0, y \geq 0 \\ 0 & \text{otherwise.} \end{array} \right.$$

Then the marginal pdf of X is

$$f_X(x) = \int_{\mathbb{D}} f(x,y) \, dy = \int_{0}^{\infty} e^{-(x+y)} \, dy = e^{-x}, \text{ if } x \ge 0.$$

Example:

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y & \text{if } x^2 \le y \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Note **funny limits** where the pdf is positive, i.e., $x^2 \le y \le 1$.

$$f_X(x) = \int_{\mathbb{R}} f(x,y) \, dy = \int_{x^2}^{1} \frac{21}{4} x^2 y \, dy = \frac{21}{8} x^2 (1 - x^4), -1 \le x \le 1.$$

$$f_Y(y) = \int_{\mathbb{R}} f(x,y) dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{21}{4} x^2 y dx = \frac{7}{2} y^{5/2}, \ 0 \le y \le 1.$$

Conditional Distributions

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- Ouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.3 — Conditional Distributions

Recall conditional probability: $P(A|B) = P(A \cap B)/P(B)$ if P(B) > 0.

Suppose that X and Y are jointly discrete RVs. Then if P(X = x) > 0,

$$P(Y = y | X = x) = \frac{P(X = x \cap Y = y)}{P(X = x)} = \frac{f(x, y)}{f_X(x)}.$$

P(Y = y | X = 2) defines the probabilities on Y given that X = 2.

Definition: If $f_X(x) > 0$, then the **conditional pmf/pdf of Y given** X = x is

$$\left| f_{Y|X}(y|x) \right| \equiv \left| \frac{f(x,y)}{f_X(x)} \right|.$$

Remark: We usually just write f(y|x) instead of $f_{Y|X}(y|x)$.

Remark: Of course, $f_{X|Y}(x|y) = f(x|y) = \frac{f(x,y)}{f_{V}(n)}$.

Discrete Example: f(x,y) = P(X = x, Y = y).

$$f(x,y)$$
 $X = 1$
 $X = 2$
 $X = 3$
 $f_Y(y)$
 $Y = 40$
 0.01
 0.07
 0.12
 0.2

 $Y = 60$
 0.29
 0.03
 0.48
 0.8

 $f_X(x)$
 0.3
 0.1
 0.6
 1

Then, for example,

$$f(x|y=60) = \frac{f(x,60)}{f_Y(60)} = \frac{f(x,60)}{0.8} = \begin{cases} \frac{29}{80} & \text{if } x=1\\ \frac{3}{80} & \text{if } x=2\\ \frac{48}{80} & \text{if } x=3. \end{cases}$$

Old Continuous Example:

$$f(x,y) = \frac{21}{4}x^2y, \text{ if } x^2 \le y \le 1.$$

$$f_X(x) = \frac{21}{8}x^2(1-x^4), \text{ if } -1 \le x \le 1.$$

$$f_Y(y) = \frac{7}{2}y^{5/2}, \text{ if } 0 \le y \le 1.$$

Then the conditional pdf of Y given X = x is

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{21}{4}x^2y}{\frac{21}{8}x^2(1-x^4)} = \frac{2y}{1-x^4}, \text{ if } x^2 \le y \le 1.$$

So, for example,

$$f\big(y|1/2\big) \; = \; \frac{f(\frac{1}{2},y)}{f_X(\frac{1}{2})} \; = \; \frac{\frac{21}{4} \cdot \frac{1}{4}y}{\frac{21}{8} \cdot \frac{1}{4} \cdot (1-\frac{1}{16})} \; = \; \frac{32}{15}y, \quad \text{ if } \frac{1}{4} \leq y \leq 1. \quad \Box$$

Note that $2/(1-x^4)$ is a *constant* with respect to y, and we can check to see that f(y|x) is a legit conditional pdf:

$$\int_{\mathbb{R}} f(y|x) \, dy = \int_{x^2}^1 \frac{2y}{1 - x^4} \, dy = 1. \quad \Box$$

Typical Problem: Given $f_X(x)$ and f(y|x), find $f_Y(y)$.

Game Plan: Find $f(x,y) = f_X(x)f(y|x)$ and then $f_Y(y) = \int_{\mathbb{R}} f(x,y) dx$.

Example: Suppose $f_X(x) = 2x$, for 0 < x < 1. Given X = x, suppose that $Y|x \sim \mathrm{Unif}(0,x)$. Now find $f_Y(y)$.

Solution: $Y|x \sim \text{Unif}(0, x)$ implies that f(y|x) = 1/x, for 0 < y < x. So,

$$f(x,y) = f_X(x)f(y|x)$$

$$= 2x \cdot \frac{1}{x} \text{ for } 0 < x < 1 \text{ and } 0 < y < x$$

$$= 2 \quad 0 < y < x < 1 \text{ (still have funny limits)}.$$

Thus,

$$f_Y(y) = \int_{\mathbb{R}} f(x,y) \, dx = \int_y^1 2 \, dx = 2(1-y), \ 0 < y < 1.$$

Independent Random Variables

- 1 Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- Random Samples
- Conditional Expectation
- B Double Expectation
- 9 Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- Correlation and Causation
- A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.4 — Independent Random Variables

Recall that two events are independent if $P(A \cap B) = P(A)P(B)$.

Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

And similarly, P(B|A) = P(B).

Now we want to define independence for random variables, i.e., the outcome of X doesn't influence the outcome of Y (and vice versa).

Definition: X and Y are independent RVs if, for all x and y,

$$|f(x,y)| = |f_X(x)f_Y(y).|$$

Equivalent definitions:

$$F(x,y) = F_X(x)F_Y(y), \ \forall x,y$$

or

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y), \ \forall x, y.$$

If X and Y aren't independent, then they're dependent.

Nice, Intuitive Theorem: X and Y are independent if and only if $f(y|x) = f_Y(y) \ \forall x, y$.

Proof:

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y).$$

Similarly, X and Y independent implies $f(x|y) = f_X(x)$.

Example (discrete): f(x,y) = P(X = x, Y = y).

f(x,y)	X = 1	X = 2	$f_Y(y)$
Y = 2	0.12	0.28	0.4
Y = 3	0.18	0.42	0.6
$f_X(x)$	0.3	0.7	1

X and Y are independent since $f(x,y) = f_X(x)f_Y(y), \forall x,y.$

Example (continuous): Suppose $f(x,y) = 6xy^2$, $0 \le x \le 1$, $0 \le y \le 1$. After some work (which can be avoided by the next theorem), we can derive

$$f_X(x) = 2x$$
, if $0 \le x \le 1$ and $f_Y(y) = 3y^2$, if $0 \le y \le 1$.

X and Y are independent since $f(x,y) = f_X(x)f_Y(y), \forall x, y$.

Easy way to tell if X and Y are independent....

Theorem: X and Y are independent iff f(x,y) = a(x)b(y), $\forall x,y$, for some functions a(x) and b(y) (not necessarily pdf's).

So if f(x,y) factors into separate functions of x and y, then X and Y are independent.

But if there are $funny\ limits$, this messes up the factorization, so in that case, X and Y will be dependent — watch out!

Example:
$$f(x,y) = 6xy^2, 0 \le x \le 1, 0 \le y \le 1$$
. Take

$$a(x) = 6x, \ 0 \le x \le 1, \text{ and } b(y) = y^2, \ 0 \le y \le 1.$$

Thus, X and Y are independent (as above). \square

Example:
$$f(x, y) = \frac{21}{4}x^2y, \ x^2 \le y \le 1.$$

Funny (non-rectangular) limits make factoring into marginals impossible. Thus, X and Y are *not* independent. \Box

Example:
$$f(x,y) = \frac{c}{x+y}, 1 \le x \le 2, 1 \le y \le 3.$$

Can't factor f(x,y) into functions of x and y separately. Thus, X and Y are not independent. \Box

Now that we can figure out if X and Y are independent, what can we do with that knowledge?

Consequences of Independence

- 1 Introduction
- 2 Marginal Distributions
- Conditional Distributions
- independent Kandoni variables
- 5 Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- B Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.5 — Consequences of Independence

Definition/Theorem (two-dimensional Unconscious Statistician):

Let h(X, Y) be a function of the RVs X and Y. Then

$$\mathrm{E}[h(X,Y)] \ = \ \left\{ \begin{array}{ll} \sum_x \sum_y h(x,y) f(x,y) & \text{discrete} \\ \int_{\mathbb{R}} \int_{\mathbb{R}} h(x,y) f(x,y) \, dx \, dy & \text{continuous.} \end{array} \right.$$

Theorem: Whether or not X and Y are independent,

$$E[X+Y] = E[X] + E[Y].$$

Proof (continuous case):

$$E[X + Y] = \int_{\mathbb{R}} \int_{\mathbb{R}} (x + y) f(x, y) dx dy \quad (2-D \text{ LOTUS})$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} x f(x, y) dx dy + \int_{\mathbb{R}} \int_{\mathbb{R}} y f(x, y) dx dy$$

$$= \int_{\mathbb{R}} x \int_{\mathbb{R}} f(x, y) dy dx + \int_{\mathbb{R}} y \int_{\mathbb{R}} f(x, y) dx dy$$

$$= \int_{\mathbb{R}} x f_X(x) dx + \int_{\mathbb{R}} y f_Y(y) dy$$

$$= E[X] + E[Y]. \quad \Box$$

One can generalize this result to more than two random variables.

Corollary: If X_1, X_2, \dots, X_n are RVs, then

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].$$

Proof: Induction.

Theorem: If X and Y are *independent*, then E[XY] = E[X]E[Y].

Proof (continuous case):

$$\begin{split} \mathrm{E}[XY] &= \int_{\mathbb{R}} \int_{\mathbb{R}} xy f(x,y) \, dx \, dy \quad \text{(2-D LOTUS)} \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} xy f_X(x) f_Y(y) \, dx \, dy \quad (X \text{ and } Y \text{ are indep)} \\ &= \left(\int_{\mathbb{R}} x f_X(x) \, dx \right) \left(\int_{\mathbb{R}} y f_Y(y) \, dy \right) \\ &= \mathrm{E}[X] \mathrm{E}[Y]. \quad \Box \end{split}$$

Remark: The above theorem is *not* necessarily true if X and Y are *dependent*. See the upcoming discussion on covariance.

Theorem: If *X* and *Y* are *independent*, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

$$Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - \{(E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2}\}$$

$$= E[X^{2}] + 2E[X]E[Y] + E[Y^{2}] - (E[X])^{2} - 2E[X]E[Y] - (E[Y])^{2}$$
(since X and Y are independent)
$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2}. \quad \Box$$

Remark: The assumption of independence really is important here. If X and Y aren't independent, then the result might not hold!

Can generalize...

Corollary: If X_1, X_2, \dots, X_n are *independent* RVs, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Proof: Induction.

Corollary: If X_1, X_2, \dots, X_n are *independent* RVs, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i + b\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i).$$

Random Samples

- 1 Introduction
- 2 Marginal Distributions
- 3 Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- Random Samples
- Conditional Expectation
- Ouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
- 7 Honors Bivariate Functions of Random Variables

Lesson 3.6 — Random Samples

Definition: X_1, X_2, \dots, X_n form a random sample if

- X_i 's are all independent.
- Each X_i has the same pmf/pdf f(x).

Notation: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x)$ ("independent and identically distributed").

Example/Theorem: Suppose $X_1, \ldots, X_n \overset{\text{iid}}{\sim} f(x)$, with $\mathrm{E}[X_i] = \mu$, and $\mathrm{Var}(X_i) = \sigma^2$. Define the **sample mean** as $\bar{X} \equiv \sum_{i=1}^n X_i/n$. Then

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu.$$

So the mean of \bar{X} is the same as the mean of X_i .

Meanwhile, how about the *variance* of the sample mean?

$$\operatorname{Var}(\bar{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) \quad (X_{i}\text{'s indep})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \sigma^{2}/n.$$

So the mean of \bar{X} is the same as the mean of X_i , but the *variance decreases*! This makes \bar{X} a great *estimator* for μ (which is usually unknown in practice); the result is referred to as the **Law of Large Numbers**. Stay tuned.

Conditional Expectation

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- Random Samples
- Conditional Expectation
- 3 Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - 7 Honors Bivariate Functions of Random Variables

Lesson 3.7 — Conditional Expectation

The Next Few Lessons:

- Conditional expectation definition and examples.
- "Double" expectation a very cool theorem.
- Honors Class: First-step analysis.
- Honors Class: Random sums of random variables.
- Honors Class: The standard conditioning argument and its applications.

ISYE 6739 — Goldsman 1/15/20 43 / 110

Consider the usual definition of expectation. (E.g., what's the average weight of a male?)

$$\mathrm{E}[Y] = \left\{ egin{array}{ll} \sum_y y f(y) & \mathrm{discrete} \\ \int_{\mathbb{R}} y f(y) \, dy & \mathrm{continuous.} \end{array} \right.$$

Now suppose we're interested in the average weight of a 6' tall male.

f(y|x) is the conditional pmf/pdf of Y given X = x.

Definition: The **conditional expectation** of Y given X = x is

$$\mathrm{E}[Y|X=x] \equiv \left\{ egin{array}{ll} \sum_y y f(y|x) & \mathrm{discrete} \\ \int_{\mathbb{R}} y f(y|x) \, dy & \mathrm{continuous.} \end{array}
ight.$$

Note that E[Y|X=x] is a function of x.

Discrete Example:

f(x, y)	X = 0	X = 3	$f_Y(y)$
Y=2	0.11	0.34	0.45
Y = 5	0.00	0.05	0.05
Y = 10	0.29	0.21	0.50
$f_X(x)$	0.40	0.60	1

The unconditional expectation is

$$E[Y] = \sum_{y} y f_Y(y) = 2(0.45) + 5(0.05) + 10(0.50) = 6.15.$$

ISYE 6739 — Goldsman 1/15/20 45 / 110

But conditional on X = 3, we have

$$f(y|x=3) = \frac{f(3,y)}{f_X(3)} = \frac{f(3,y)}{0.60} = \begin{cases} \frac{34}{60} & \text{if } y=2\\ \frac{5}{60} & \text{if } y=5\\ \frac{21}{60} & \text{if } y=10. \end{cases}$$

So the expectation conditional on X=3 is

$$\begin{split} \mathrm{E}[Y|X=3] &=& \sum_{y} y f(y|3) \\ &=& 2(34/60) + 5(5/60) + 10(21/60) \\ &=& 5.05. \end{split}$$

This compares to the unconditional expectation E[Y] = 6.15. So information that X = 3 pushes the conditional expected value of Y down to 5.05. \Box

Old Continuous Example:

$$f(x,y) = \frac{21}{4}x^2y$$
, if $x^2 \le y \le 1$.

Recall that

$$f(y|x) = \frac{2y}{1-x^4}$$
 if $x^2 \le y \le 1$.

Thus,

$$E[Y|x] = \int_{\mathbb{R}} y f(y|x) \, dy = \frac{2}{1 - x^4} \int_{x^2}^1 y^2 \, dy = \frac{2}{3} \cdot \frac{1 - x^6}{1 - x^4}.$$

So, e.g.,
$$E[Y|X=0.5] = \frac{2}{3} \cdot \frac{63}{64} / \frac{15}{16} = 0.70.$$

Double Expectation

- 1 Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- Random Samples
- Conditional Expectation
- 8 Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
- Honors Bivariate Functions of Random Variables

Lesson 3.8 — Double Expectation

Theorem (double expectation):

$$\boxed{\mathrm{E}[\mathrm{E}(Y|X)] \ = \ \mathrm{E}[Y].}$$

Remarks: Yikes, what the heck is this!?

The expected value (averaged over all X's) of the conditional expected value (of Y|X) is the plain old expected value (of Y).

Think of the outside expected value as the expected value of h(X) = E(Y|X). Then LOTUS miraculously gives us E[Y].

Believe it or not, sometimes it's easier to calculate $\mathrm{E}[Y]$ indirectly by using our double expectation trick.

ISYE 6739 — Goldsman 1/15/20 49 / 110

Proof (continuous case): By the Unconscious Statistician,

$$E[E(Y|X)] = \int_{\mathbb{R}} E(Y|x) f_X(x) dx$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} y f(y|x) dy \right) f_X(x) dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} y f(y|x) f_X(x) dx dy$$

$$= \int_{\mathbb{R}} y \int_{\mathbb{R}} f(x, y) dx dy$$

$$= \int_{\mathbb{R}} y f_Y(y) dy$$

$$= E[Y]. \square$$

Old Example: Suppose $f(x,y) = \frac{21}{4}x^2y$, if $x^2 \le y \le 1$.

Find E[Y] two ways.

By previous examples, we know that

$$f_X(x) = \frac{21}{8}x^2(1-x^4), \quad \text{if } -1 \le x \le 1$$

$$f_Y(y) = \frac{7}{2}y^{5/2}, \quad \text{if } 0 \le y \le 1$$

$$E[Y|x] = \frac{2}{3} \cdot \frac{1-x^6}{1-x^4}.$$

Solution #1 (old, boring way):

$$\mathrm{E}[Y] \ = \ \int_{\mathbb{R}} y f_Y(y) \, dy \ = \ \int_0^1 \frac{7}{2} y^{7/2} \, dy \ = \ \frac{7}{9}.$$

Solution #2 (new, exciting way):

$$E[Y] = E[E(Y|X)]$$

$$= \int_{\mathbb{R}} E(Y|x) f_X(x) dx$$

$$= \int_{-1}^{1} \left(\frac{2}{3} \cdot \frac{1 - x^6}{1 - x^4}\right) \left(\frac{21}{8} x^2 (1 - x^4)\right) dx$$

$$= 7/9.$$

Notice that both answers are the same (good)! \Box

Honors Class: First-Step Analysis

- 1 Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- Random Samples
- Conditional Expectation
- B Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
- 17 Honors Bivariate Functions of Random Variables

Lesson 3.9 — Honors Class: First-Step Analysis

Example: "First-step" method to find the mean of $Y \sim \text{Geom}(p)$. Think of Y as the number of coin flips before H appears, where P(H) = p.

Furthermore, consider the first step of the coin flip process, and let X = H or T denote the outcome of the first toss. Based on the result X of this first step, we have

$$\begin{split} \mathbf{E}[Y] &= \mathbf{E}[\mathbf{E}(Y|X)] \\ &= \sum_{x} \mathbf{E}[Y|x] f_X(x) \\ &= \mathbf{E}[Y|X=\mathbf{T}] P(X=\mathbf{T}) + \mathbf{E}[Y|X=\mathbf{H}] P(X=\mathbf{H}) \\ &= (1+\mathbf{E}[Y]) (1-p) + (1)(p) \quad \text{(start from scratch if } X=\mathbf{T}). \end{split}$$

Solving, we get E[Y] = 1/p (which is the correct answer)!

ISYE 6739 — Goldsman

Example: Consider a sequence of coin flips. What is the expected number of flips Y until "HT" appears for the first time?

Clearly, Y = A + B, where A is the number of flips until the first "H" appears, and B is the number of subsequent flips until "T" appears for the first time after the sequence of H's begins.

For instance, the sequence TTTHHT corresponds to Y = A + B = 4 + 2 = 6.

In any case, it's obvious that A and B are iid $\operatorname{Geom}(p=1/2)$, so by the previous example, $\operatorname{E}[Y] = \operatorname{E}[A] + \operatorname{E}[B] = (1/p) + (1/p) = 4$. \square

This example didn't involve first-step analysis (besides using the expected value of a geometric RV). But the next related example will....

Example: Again consider a sequence of coin flips. What is the expected number of flips Y until "HH" appears for the first time?

For instance, the sequence TTHTTHH corresponds to Y=7 tries.

Using an enhanced first-step analysis, we see that

$$\begin{split} \mathbf{E}[Y] &= \mathbf{E}[Y|\mathbf{T}]P(\mathbf{T}) + \mathbf{E}[Y|\mathbf{H}]P(\mathbf{H}) \\ &= \mathbf{E}[Y|\mathbf{T}]P(\mathbf{T}) \\ &\quad + \big\{\mathbf{E}[Y|\mathbf{HH}]P(\mathbf{HH}|\mathbf{H}) + \mathbf{E}[Y|\mathbf{HT}]P(\mathbf{HT}|\mathbf{H})\big\}P(\mathbf{H}) \\ &= \big(1 + \mathbf{E}[Y]\big)(0.5) + \big\{(2)(0.5) + \big(2 + \mathbf{E}[Y]\big)(0.5)\big\}(0.5) \\ &\quad \text{(since we have to start over once we see a T)} \\ &= 1.5 + 0.75 \, \mathbf{E}[Y]. \end{split}$$

Solving, we obtain E[Y] = 6, which is perhaps surprising given the result from the previous example. \Box

Honors Class: Random Sums of Random Variables

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- Random Samples
- Conditional Expectation
- 8 Double Expectation
- 9 Honors Class: First-Step Analysis
- Monors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- 13 Correlation and Causation
- 4 A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
 - 7 Honors Bivariate Functions of Random Variables

Lesson 3.10 — Honors Class: Random Sums of Random Variables

Bonus Theorem (expectation of sum of a random number of RVs):

Suppose that X_1, X_2, \ldots are independent RVs, all with the same mean.

Also suppose that N is a nonnegative, integer-valued RV that's independent of the X_i 's. Then

$$E\left[\sum_{i=1}^{N} X_i\right] = E[N]E[X_1].$$

Remark: You have to be very careful here. In particular, note that $\mathrm{E}\big[\sum_{i=1}^N X_i\big] \neq N\mathrm{E}[X_1]$, since the LHS is a number and the RHS is random.

ISYE 6739 — Goldsman 1/15/20 58 / 110

Proof (cf. Ross): By double expectation,

$$E\left(\sum_{i=1}^{N} X_{i}\right) = E\left[E\left(\sum_{i=1}^{N} X_{i} \middle| N\right)\right]$$

$$= \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{N} X_{i} \middle| N=n\right) P(N=n)$$

$$= \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} X_{i} \middle| N=n\right) P(N=n)$$

$$= \sum_{n=1}^{\infty} E\left(\sum_{i=1}^{n} X_{i}\right) P(N=n) \quad (N \text{ and } X_{i}\text{'s indep})$$

$$= \sum_{n=1}^{\infty} n E[X_{1}] P(N=n)$$

$$= E[X_{1}] \sum_{n=1}^{\infty} n P(N=n). \quad \square$$

Georgia Tech **Example**: Suppose the number of times we roll a die is $N \sim \text{Pois}(10)$. If X_i denotes the value of the *i*th toss, then the expected total of all of the rolls is

$$E\left(\sum_{i=1}^{N} X_i\right) = E[N]E[X_1] = 10(3.5) = 35. \quad \Box$$

Theorem: Under the same conditions as before,

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_i\right) = \operatorname{E}[N]\operatorname{Var}(X_1) + (\operatorname{E}[X_1])^2\operatorname{Var}(N).$$

Proof: See, for instance, Ross.

Honors Class: Standard Conditioning Argument

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- (5) Consequences of Independence
- Random Samples
- Conditional Expectation
- 8 Double Expectation
- Honors Class: First-Step Analysis
- Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- 13 Correlation and Causation
- A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
- 17 Honors Bivariate Functions of Random Variables

Lesson 3.11 — Honors Class: Standard Conditioning Argument

Bonus Theorem/Proof (computing probabilities by conditioning):

Let A be some event, and define the RV Y as the following indicator function:

$$Y = 1_A \equiv \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$E[Y] = \sum_{y} y f_Y(y) = P(Y=1) = P(A).$$

Similarly, for any RV X, we have

$$E[Y|X = x] = \sum_{y} yf(y|x) = P(Y = 1|X = x) = P(A|X = x).$$

These results suggest an alternative way of calculating P(A)....

Georgia Tech

ISYE 6739 — Goldsman 1/15/20 62 / 110

Theorem: If X is a continuous RV (similar result if X is discrete), then

$$P(A) = \int_{\mathbb{R}} P(A|X=x) f_X(x) dx.$$

Proof:

$$\begin{split} P(A) &=& \mathrm{E}[Y] \quad \text{(where we take } Y = 1_A) \\ &=& \mathrm{E}[\mathrm{E}(Y|X)] \quad \text{(double expectation)} \\ &=& \int_{\mathbb{R}} \mathrm{E}[Y|x] f_X(x) \, dx \quad \text{(LOTUS)} \\ &=& \int_{\mathbb{R}} P(A|X=x) f_X(x) \, dx \quad \text{(since } Y=1_A). \quad \Box \end{split}$$

Remark: We call this the "standard conditioning argument." Yes, it looks complicated. But sometimes you need to take a step backward to go two steps forward!

Example/Theorem: If X and Y are independent continuous RVs, with pdf $f_X(\cdot)$ and cdf $F_Y(\cdot)$, respectively. Then

$$P(Y \le X) = \int_{\mathbb{R}} F_Y(x) f_X(x) dx.$$

Proof: (Actually, there are many proofs.) Let the event $A = \{Y \leq X\}$. Then

$$\begin{split} P(Y \leq X) &= \int_{\mathbb{R}} P(Y \leq X | X = x) f_X(x) \, dx \\ &= \int_{\mathbb{R}} P(Y \leq x | X = x) f_X(x) \, dx \\ &= \int_{\mathbb{R}} P(Y \leq x) f_X(x) \, dx \quad (X, Y \text{ are independent).} \quad \Box \end{split}$$

ISYE 6739 — Goldsman

Example: If $X \sim \operatorname{Exp}(\alpha)$ and $Y \sim \operatorname{Exp}(\beta)$ are independent RVs, then

$$P(Y \le X) = \int_{\mathbb{R}} F_Y(x) f_X(x) dx$$
$$= \int_0^{\infty} (1 - e^{-\beta x}) \alpha e^{-\alpha x} dx$$
$$= \frac{\beta}{\alpha + \beta}. \quad \Box$$

Remark: Think of X as the time until the next male driver shows up at a parking lot (at rate α / hour) and Y as the time for the next female driver (at rate β / hour). Then $P(Y \le X) = \beta/(\alpha + \beta)$ is the intuitively reasonable probability that the next driver to arrive will be female. \Box

Example/Theorem: Suppose X and Y are independent continuous RVs, with pdf $f_X(\cdot)$ and cdf $F_Y(\cdot)$, respectively. Define the sum Z = X + Y. Then

$$P(Z \le z) = \int_{\mathbb{R}} F_Y(z - x) f_X(x) \, dx.$$

As expression such as the above for $P(Z \le z)$ is often called a *convolution*.

Proof:

$$P(Z \le z) = \int_{\mathbb{R}} P(X + Y \le z | X = x) f_X(x) dx$$

$$= \int_{\mathbb{R}} P(Y \le z - x | X = x) f_X(x) dx$$

$$= \int_{\mathbb{R}} P(Y \le z - x) f_X(x) dx \quad (X, Y \text{ are indep}). \quad \Box$$

ISYE 6739 — Goldsman

Example: Suppose $X, Y \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda)$, and let Z = X + Y. Then

$$P(Z \le z) = \int_{\mathbb{R}} F_Y(z - x) f_X(x) dx$$

$$= \int_0^{\mathbf{z}} (1 - e^{-\lambda(z - x)}) \lambda e^{-\lambda x} dx$$
(must have $x \ge 0$ and $z - x \ge 0$)
$$= 1 - e^{-\lambda z} - \lambda z e^{-\lambda z}, \quad \text{if } z \ge 0.$$

Thus, the pdf of Z is

$$\frac{d}{dz}P(Z \le z) = \lambda^2 z e^{-\lambda z}, \quad z \ge 0.$$

This turns out to mean that $Z \sim \text{Gamma}(2, \lambda)$, aka $\text{Erlang}_2(\lambda)$.

ISYE 6739 — Goldsman

You can do the similar kinds of convolutions with discrete RVs. We state the following result without proof (which is straightforward).

Example/Theorem: Suppose X and Y are two independent integer-valued RVs with pmf's $f_X(x)$ and $f_Y(y)$. Then the pmf of Z = X + Y is

$$f_Z(z) = P(Z=z) = \sum_{x=-\infty}^{\infty} f_X(x) f_Y(z-x).$$

Example Suppose X and Y are iid Bern(p). Then the pmf of Z = X + Y is

$$\begin{split} f_Z(z) &= \sum_{x=-\infty}^\infty f_X(x) f_Y(z-x) \\ &= f_X(0) f_Y(z) + f_X(1) f_Y(z-1) \quad (X \text{ can only } = 0 \text{ or } 1) \\ &= f_X(0) f_Y(z) \mathbf{1}_{\{0,1\}}(z) + f_X(1) f_Y(z-1) \mathbf{1}_{\{1,2\}}(z) \\ &\qquad \qquad (\mathbf{1}_{\{\cdot\}}(z) \text{ functions indicate nonzero } f_Y(\cdot) \text{'s}) \\ &= p^0 q^{1-0} p^z q^{1-z} \mathbf{1}_{\{0,1\}}(z) + p^1 q^{1-1} p^{z-1} q^{2-z} \mathbf{1}_{\{1,2\}}(z) \\ &= p^z q^{2-z} \left[\mathbf{1}_{\{0,1\}}(z) + \mathbf{1}_{\{1,2\}}(z) \right] \\ &= \binom{2}{z} p^z q^{2-z}, \quad z = 0, 1, 2. \end{split}$$

Thus, $Z \sim \text{Bin}(2, p)$, a fond blast from the past! \Box

ISYE 6739 — Goldsman

Covariance and Correlation

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- Ouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- 13 Correlation and Causation
- A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
- 17 Honors Bivariate Functions of Random Variables

Lesson 3.12 — Covariance and Correlation

In the next few lessons we'll cover:

- Basic Concepts of Covariance and Correlation
- Causation
- A Couple of Worked Examples
- Some Useful Theorems

Covariance and correlation are measures used to define the degree of association between X and Y if they don't happen to be independent.

Definition: The **covariance** between X and Y is

$$Cov(X,Y) \equiv \sigma_{XY} \equiv E[(X - E[X])(Y - E[Y])].$$

Remark:
$$Cov(X, X) = E[(X - E[X])^2] = Var(X)$$
.

ISYE 6739 — Goldsman

Remark: If X and Y have positive covariance, then X and Y move "in the same direction." Think height and weight.

If X and Y have negative covariance, then X and Y move "in opposite directions." Think snowfall and temperature.

If X and Y are *independent*, then of course they have no association with each other. In fact, we'll prove below that independence implies that the covariance is 0 (but not the other way around).

Example: IBM stock price vs. temperature on Mars are independent — at least that's what they want you to believe!

Theorem (easier way to calculate covariance):

$$Cov(X,Y) = E[XY] - E[X]E[Y].$$

Proof:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - YE[X] + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y]. \square$$

Theorem: X and Y independent implies Cov(X, Y) = 0.

Proof: By a previous theorem, X and Y independent implies $\mathrm{E}[XY] = \mathrm{E}[X]\mathrm{E}[Y]$. Then

$$Cov(X,Y) = E[XY] - E[X]E[Y] = E[X]E[Y] - E[X]E[Y].$$

Georgia Tech

Danger Will Robinson! Cov(X, Y) = 0 **does not imply** that X and Y are independent!!

Example: Suppose $X \sim \text{Unif}(-1,1)$ and $Y = X^2$ (so X and Y are clearly *dependent*).

But

$$\mathrm{E}[X] = \int_{-1}^{1} x \cdot \frac{1}{2} dx = 0$$
 and

$$E[XY] = E[X^3] = \int_{-1}^{1} x^3 \cdot \frac{1}{2} dx = 0,$$

SO

$$Cov(X, Y) = E[XY] - E[X]E[Y] = 0.$$
 \otimes

In fact, here's a graphical illustration of this zero-correlation dependence phenomenon, where we've actually added some normal noise to Y to make it look prettier.

Definition: The correlation between X and Y is

$$\rho = \operatorname{Corr}(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Remark: Covariance has "square" units; correlation is unitless.

Corollary: X, Y independent implies $\rho = 0$.

Theorem: It can be shown that $-1 \le \rho \le 1$.

 $\rho \approx 1$ is "high" correlation.

 $\rho \approx 0$ is "low" correlation.

 $\rho \approx -1$ is "high" negative correlation.

Example: Height is *highly* correlated with weight.

Temperature on Mars has low correlation with IBM stock price.

Correlation and Causation

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- (5) Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- Ouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- (13) Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.13 — Correlation and Causation

NOTE! Correlation does not necessarily imply causality! This is a very common pitfall in many areas of data analysis and public discourse.

Example in which correlation does imply causality: Height and weight are positively correlated, and larger height does indeed tend to cause greater weight.

Example in which correlation does not imply causality: Temperature and lemonade sales have positive corr, and temp has causal influence on lemonade sales. Similarly, temp and overheating cars are positively correlated with a causal relationship. It's also likely that lemonade sales and overheating cars are positively correlated, but there's no causal relationship there.

Example of a zero correlation relationship with causality! We've

seen that it's possible for two dependent RVs to be uncorrelated.

To prove that X causes Y, one must establish that:

- X occurred before Y;
- The relationship between X and Y is not completely due to random chance; and
- Nothing else accounts for the relationship (which is violated in the lemonade sales / overheating cars example above).

These items can be often be established via mathematical analysis, statistical analysis of appropriate data, or consultation with appropriate experts.

ISYE 6739 — Goldsman 1/15/20 81

The three examples above seem to give conflicting guidance with respect to the relationship between correlation and causality. How can we interpret these findings in a meaningful way? Here are the takeaways:

- If the correlation between X and Y is (significantly) nonzero, there is some type of relationship between the two items, which may or may not be causal; but this should raise our curiosity.
- If the correlation between X and Y is 0, we are not quite out of the woods with respect to dependence and causality. In order to definitively rule out a relationship between X and Y, it is always highly recommended protocol to, at the very least,
 - Plot data from X and Y against each other to see if there is a nonlinear relationship, as in the uncorrelated-yet-dependent example.
 - Consult with appropriate experts.

A Couple of Worked Correlation Examples

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- Random Samples
- Conditional Expectation
- Oouble Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- Correlation and Causation
- 4 A Couple of Worked Correlation Examples
- 15 Some Useful Covariance / Correlation Theorems
- Moment Generating Functions, Revisited
 - 7 Honors Bivariate Functions of Random Variables

Lesson 3.14 — A Couple of Worked Correlation Examples

Discrete Example: Suppose X is the GPA of a UGA student, and Y is their IQ. Here's the joint pmf.

f(x, y)	X=2	X = 3	X = 4	$f_Y(y)$
Y = 40	0.0	0.2	0.2	0.4
Y = 50	0.1	0.1	0.0	0.2
Y = 60	0.4	0.0	0.0	0.4
$f_X(x)$	0.5	0.3	0.2	1

We'll spare the details, but here are the relevant calculations...

$$\begin{split} & \mathrm{E}[X] &= \sum_{x} x f_X(x) \, = \, 2.7, \\ & \mathrm{E}[X^2] &= \sum_{x} x^2 f_X(x) \, = \, 7.9, \quad \text{and} \\ & \mathrm{Var}(X) &= \mathrm{E}[X^2] - (\mathrm{E}[X])^2 \, = \, 0.61. \end{split}$$

Similarly, E[Y] = 50, $E[Y^2] = 2580$, and Var(Y) = 80. Finally,

$$\begin{split} \mathrm{E}[XY] &= \sum_{x} \sum_{y} xy f(x,y) \\ &= 2(40)(0.0) + 3(40)(0.2) + \dots + 4(60)(0.0) \, = \, 129, \\ \mathrm{Cov}(X,Y) &= \mathrm{E}[XY] - \mathrm{E}[X]\mathrm{E}[Y] \, = \, -6.0, \quad \text{and} \\ \rho &= \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}} \, = \, -0.859. \quad \Box \end{split}$$

Georgia Tech <u></u>

Continuous Example: Suppose $f(x,y) = 10x^2y$, $0 \le y \le x \le 1$.

$$f_X(x) = \int_0^x 10x^2y \, dy = 5x^4, \quad 0 \le x \le 1,$$

$$E[X] = \int_0^1 5x^5 \, dx = 5/6,$$

$$E[X^2] = \int_0^1 5x^6 \, dx = 5/7,$$

$$Var(X) = E[X^2] - (E[X])^2 = 0.01984.$$

Similarly,

$$f_Y(y) = \int_y^1 10x^2 y \, dx = \frac{10}{3}y(1-y^3), \quad 0 \le y \le 1,$$

$$E[Y] = 5/9, \quad Var(Y) = 0.04850,$$

$$E[XY] = \int_0^1 \int_0^x 10x^3 y^2 \, dy \, dx = 10/21,$$

$$Cov(X,Y) = E[XY] - E[X]E[Y] = 0.01323,$$

$$\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = 0.4265. \quad \Box$$

Some Useful Covariance / Correlation Theorems

- 1 Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- B Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- 11 Honors Class: Standard Conditioning Argument
- Covariance and Correlation
- Correlation and Causation
- A Couple of Worked Correlation Examples
- **15** Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
 - Honors Bivariate Functions of Random Variables

Lesson 3.15 — Some Useful Covariance / Correlation Theorems

Theorem: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y), whether or not X and Y are independent.

Remark: If X, Y are independent, the covariance term goes away.

Proof: By the work we did on a previous proof,

$$Var(X + Y) = E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$$

$$= Var(X) + Var(Y) + 2Cov(X, Y). \square$$

Theorem:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}).$$

Proof: Induction.

Corollary: If all X_i 's are *independent*, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Theorem: Cov(aX, bY + c) = ab Cov(X, Y).

Proof:

$$\begin{aligned} \operatorname{Cov}(aX, bY + c) &= \operatorname{E}[aX \cdot (bY + c)] - \operatorname{E}[aX] \operatorname{E}[bY + c] \\ &= \operatorname{E}[abXY] + \operatorname{E}[acX] - \operatorname{E}[aX] \operatorname{E}[bY] - \operatorname{E}[aX] \operatorname{E}[c] \\ &= ab \operatorname{E}[XY] - ab \operatorname{E}[X] \operatorname{E}[Y] + ac \operatorname{E}[X] - ac \operatorname{E}[X] \\ &= ab \operatorname{Cov}(X, Y). \quad \Box \end{aligned}$$

Theorem:

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i + c\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j).$$

Proof: Put the above two results together.

Example:
$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$
.

Example: Suppose
$$Var(X) = Var(Y) = Var(Z) = 10$$
, $Cov(X, Y) = 3$, $Cov(X, Z) = -2$, and $Cov(Y, Z) = 0$. Then

$$Var(X - 2Y + 3Z)$$
= $Var(X) + 4Var(Y) + 9Var(Z)$
 $-4Cov(X, Y) + 6Cov(X, Z) - 12Cov(Y, Z)$
= $14(10) - 4(3) + 6(-2) - 12(0) = 116$. \square

Moment Generating Functions, Revisited

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- Random Samples
- Conditional Expectation
- 8 Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- Correlation and Causation
- 14 A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- 6 Moment Generating Functions, Revisited
- 17 Honors Bivariate Functions of Random Variables

Lesson 3.16 — Moment Generating Functions, Revisited

Old Definition: $M_X(t) \equiv \mathrm{E}[e^{tX}]$ is the moment generating function (mgf) of the RV X.

Old Example: If $X \sim \text{Bern}(p)$, then

$$M_X(t) = E[e^{tX}] = \sum e^{tx} f(x) = e^{t \cdot 1} p + e^{t \cdot 0} q = p e^t + q.$$

Old Example: If $X \sim \text{Exp}(\lambda)$, then

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_{\mathbb{R}} e^{tx} f(x) dx = \frac{\lambda}{\lambda - t} \text{ if } \lambda > t. \quad \Box$$

Old Theorem (why it's called the mgf): Under certain technical conditions,

$$E[X^k] = \frac{d^k}{dt^k} M_X(t) \Big|_{t=0}, \quad k = 1, 2, \dots$$

New Theorem (mgf of the sum of independent RVs): Suppose X_1, \ldots, X_n are *independent*. Let $Y = \sum_{i=1}^n X_i$. Then

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t).$$

Proof:

$$M_Y(t) = \mathbb{E}[e^{tY}]$$

$$= \mathbb{E}[e^{t\sum X_i}]$$

$$= \mathbb{E}\left[\prod_{i=1}^n e^{tX_i}\right]$$

$$= \prod_{i=1}^n \mathbb{E}[e^{tX_i}] \quad (X_i\text{'s independent})$$

$$= \prod_{i=1}^n M_{X_i}(t). \quad \Box$$

Georgia Tech<u></u> **Corollary**: If X_1, \ldots, X_n are iid and $Y = \sum_{i=1}^n X_i$, then

$$M_Y(t) = [M_{X_1}(t)]^n.$$

Example: Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bern}(p)$. Then by a previous example,

$$M_Y(t) = [M_{X_1}(t)]^n = (pe^t + q)^n.$$

So what use is a result like this? We can use results such as this with our old friend....

Old Theorem (identifying distributions): *In this class*, each distribution has a unique mgf.

Example/Theorem: The sum Y of n iid Bern(p) RVs is the same as a Bin(n, p) RV.

By the previous example and uniqueness, all we need to show is that the mgf of $Z \sim \text{Bin}(n, p)$ matches $M_Y(t) = (pe^t + q)^n$. To this end, we have

$$M_Z(t) = \mathrm{E}[e^{tZ}]$$

$$= \sum_z e^{tz} P(Z=z)$$

$$= \sum_{z=0}^n e^{tz} \binom{n}{z} p^z q^{n-z}$$

$$= \sum_{z=0}^n \binom{n}{z} (pe^t)^z q^{n-z}$$

$$= (pe^t + q)^n \quad \text{(by the Binomial Theorem).} \quad \Box$$

Example: You can identify a distribution by its mgf.

$$M_X(t) = \left(\frac{3}{4}e^t + \frac{1}{4}\right)^{15}$$

implies that $X \sim \text{Bin}(15, 0.75)$.

Old Theorem (mgf of a linear function of X): Suppose X has mgf $M_X(t)$ and let Y = aX + b. Then $M_Y(t) = e^{tb}M_X(at)$.

Example:

$$M_Y(t) = e^{-2t} \left(\frac{3}{4} e^{3t} + \frac{1}{4} \right)^{15} = e^{bt} (pe^{at} + q)^n = e^{bt} M_X(at),$$

which implies that Y has the same distribution as 3X - 2, where $X \sim \text{Bin}(15, 0.75).$

Theorem (Additive property of Binomials): If X_1, \ldots, X_k are independent, with $X_i \sim \text{Bin}(n_i, p)$ (where p is the same for all X_i 's), then

$$Y \equiv \sum_{i=1}^{k} X_i \sim \text{Bin}\left(\sum_{i=1}^{k} n_i, p\right).$$

Proof:

$$M_Y(t) = \prod_{i=1}^k M_{X_i}(t)$$
 (mgf of independent sum)
$$= \prod_{i=1}^k (pe^t + q)^{n_i}$$
 (Binomial (n_i, p) mgf)
$$= (pe^t + q)^{\sum_{i=1}^k n_i}.$$

This is the mgf of the Bin $(\sum_{i=1}^k n_i, p)$, so we're done. \Box

Honors Bivariate Functions of Random Variables

- Introduction
- 2 Marginal Distributions
- Conditional Distributions
- 4 Independent Random Variables
- 5 Consequences of Independence
- 6 Random Samples
- Conditional Expectation
- 8 Double Expectation
- Honors Class: First-Step Analysis
- 10 Honors Class: Random Sums of Random Variables
- Honors Class: Standard Conditioning Argument
- 12 Covariance and Correlation
- 13 Correlation and Causation
- A Couple of Worked Correlation Examples
- Some Useful Covariance / Correlation Theorems
- 16 Moment Generating Functions, Revisited
- Honors Bivariate Functions of Random Variables

Lesson 3.17 — Honors Bivariate Functions of Random Variables

In earlier work, we looked at...

- Functions of a single variable, e.g., what is the expected value of h(X)? (LOTUS, from Module 2)
- What is the distribution of h(X)? (functions of RVs, from Module 2)
- And sometimes even functions of two (or more) variables. For example, if the X_i 's are independent, what's $Var(\sum_{i=1}^n X_i)$? (earlier in Module 3)
- Use a standard conditioning argument to get the distribution of X + Y. (earlier in Module 3)

Goal: Now let's give a *general result* on the distribution of functions of *two* random variables, the proof of which is beyond the scope of our class.

ISYE 6739 — Goldsman 1/15/20

Honors Theorem: Suppose X and Y are continuous RVs with joint pdf f(x,y), and $V=h_1(X,Y)$ and $W=h_2(X,Y)$ are functions of X and Y, and

$$X = k_1(V, W)$$
 and $Y = k_2(V, W)$,

for suitably chosen inverse functions k_1 and k_2 .

Then the joint pdf of V and W is

$$g(v,w) = f(k_1(v,w), k_2(v,w)) |J(v,w)|,$$

where |J| is the absolute value of the *Jacobian* (determinant) of the transformation, i.e.,

$$J(v,w) = \begin{vmatrix} \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix} = \frac{\partial x}{\partial v} \frac{\partial y}{\partial w} - \frac{\partial y}{\partial v} \frac{\partial x}{\partial w}.$$

Corollary: If X and Y are *independent*, then the joint pdf of V and W is

$$g(v,w) = f_X(k_1(v,w))f_Y(k_2(v,w))|J(v,w)|.$$

Remark: These results generalize the 1-D method from Module 2.

You can use this method to find all sorts of cool stuff, e.g., the distribution of X + Y, X/Y, etc., as well as the joint pdf of any functions of X and Y.

Remark: Although the notation is nasty, the application isn't really so bad.

ISYE 6739 — Goldsman 1/15/20

Example: Suppose X and Y are iid $Exp(\lambda)$. Find the pdf of X + Y.

We'll set V = X + Y along with the dummy RV W = X.

This yields

$$X = W = k_1(V, W)$$
 and $Y = V - W = k_2(V, W)$.

To get the Jacobian term, we calculate

$$\frac{\partial x}{\partial v} = 0$$
, $\frac{\partial x}{\partial w} = 1$, $\frac{\partial y}{\partial v} = 1$, and $\frac{\partial y}{\partial w} = -1$,

so that

$$|J| = \left| \frac{\partial x}{\partial v} \frac{\partial y}{\partial w} - \frac{\partial y}{\partial v} \frac{\partial x}{\partial w} \right| = |0(-1) - 1(1)| = 1.$$

This implies that the joint pdf of V and W is

$$\begin{split} g(v,w) &= f\left(k_1(v,w),\,k_2(v,w)\right)|J(v,w)| \\ &= f(w,v-w)\cdot 1 \\ &= f_X(w)f_Y(v-w) \quad (X \text{ and } Y \text{ independent}) \\ &= \lambda e^{-\lambda w} \cdot \lambda e^{-\lambda(v-w)}, \quad \text{for } w>0 \text{ and } v-w>0 \\ &= \lambda^2 e^{-\lambda v}, \quad \text{for } 0< w< v. \end{split}$$

And, finally, we obtain the desired pdf of the sum V (after carefully noting the region of integration),

$$g_V(v) = \int_{\mathbb{R}} g(v, w) dw = \int_0^v \lambda^2 e^{-\lambda v} dw = \lambda^2 v e^{-\lambda v}, \text{ for } v > 0.$$

This is the Gamma(2, λ) pdf, which matches our answer from earlier in the current module. \qed

Georgia Tech **Honors Example:** Suppose X and Y are iid Unif(0,1). Find the joint pdf of V = X + Y and W = X/Y.

After some algebra, we obtain

$$X = \frac{VW}{W+1} = k_1(V, W)$$
 and $Y = \frac{V}{W+1} = k_2(V, W)$.

After more algebra, we calculate

$$\frac{\partial x}{\partial v} = \frac{w}{w+1}, \quad \frac{\partial x}{\partial w} = \frac{v}{(w+1)^2}, \quad \frac{\partial y}{\partial v} = \frac{1}{w+1}, \quad \frac{\partial y}{\partial w} = \frac{-v}{(w+1)^2},$$

so that after still more algebra,

$$|J| = \left| \frac{\partial x}{\partial v} \frac{\partial y}{\partial w} - \frac{\partial y}{\partial v} \frac{\partial x}{\partial w} \right| = \frac{v}{(w+1)^2}.$$

This implies that the joint pdf of V and W is

$$\begin{split} g(v,w) &= f\left(k_1(v,w),\,k_2(v,w)\right) \,|J(v,w)| \\ &= f\left(\frac{vw}{w+1},\,\frac{v}{w+1}\right) \cdot \frac{v}{(w+1)^2} \\ &= f_X\!\left(\frac{vw}{w+1}\right) f_Y\!\left(\frac{v}{w+1}\right) \frac{v}{(w+1)^2} \quad (X \text{ and } Y \text{ indep}) \\ &= 1 \cdot 1 \cdot \frac{v}{(w+1)^2}, \text{ for } 0 < x, y < 1 \text{ (since } X, Y \sim \text{Unif}(0,1)) \\ &= \frac{v}{(w+1)^2}, \text{ for } 0 < x = \frac{vw}{w+1} < 1 \text{ and } 0 < y = \frac{v}{w+1} < 1. \\ &= \frac{v}{(w+1)^2}, \ 0 < v < 1 + \min\{\frac{1}{w}, w\} \text{ and } w > 0 \text{ (after algebra)}. \end{split}$$

Note that you have to be careful about the limits of v and w, but this thing really does double integrate to 1!

We can also get the marginal pdf's. First of all, for the ratio of the uniforms, we get

$$g_W(w) = \int_{\mathbb{R}} g(v, w) dv$$

$$= \int_{0}^{1+\min\{1/w, w\}} \frac{v}{(w+1)^2} dv$$

$$= \frac{\left(1+\min\{1/w, w\}\right)^2}{2(w+1)^2}$$

$$= \begin{cases} \frac{1}{2}, & \text{if } w \leq 1\\ \frac{1}{2w^2}, & \text{if } w > 1, \end{cases}$$

which is a little weird-looking and unexpected to me (it's flat for $w \le 1$, and then decreases to 0 pretty quickly for w > 1). \Box

For the pdf of the sum of the uniforms, we have to calculate $g_V(v) = \int_{\mathbb{R}} g(v, w) \, dw$. But first we need to deal with some inequality constraints so that we can integrate over the proper region, namely,

$$0 \le v \le 1 + \min\{1/w, w\}, \quad 0 \le v \le 2, \quad \text{and} \quad w \ge 0.$$

With a little thought, we see that if $0 \le v \le 1$, then there is no constraint on w except for it being positive. On the other hand, if $1 < v \le 2$, then you can show (it takes a little work) that $v - 1 \le w \le \frac{1}{v-1}$. Thus, we have

$$g_{V}(v) = \begin{cases} \int_{0}^{\infty} g(v, w) \, dw, & \text{if } 0 \le v \le 1 \\ \int_{v-1}^{1/(v-1)} g(v, w) \, dw, & \text{if } 1 < v \le 2 \end{cases}$$

$$= \begin{cases} v, & \text{if } 0 \le v \le 1 \\ 2 - v, & \text{if } 1 < v \le 2 \end{cases}$$
 (after algebra).

This is a $\overline{\text{Triangle}(0,1,2)}$ pdf. Can you see why? Is there an intuitive explanation for this pdf? \Box

And Now a Word From Our Sponsor...

We are finally done with the most-difficult module of the course. Congratulations and Felicitations!!!

Things will get easier from now on! Happy days are here again!

