Lab #1 (Boolean Logic)

HINT:	Don't	THINK	like a	a hu	man,	THINK
like a	chip!	Simply	"run"	the	expre	ssion!

Name:	
Section/Time:	
Date:	

KEY:

Symbol	•	+	\overline{n}
Meaning	AND	OR	NOT (n)

Complete the following table:

	х	0	0	1	1
	у	0	1	0	1
Function	Expression	Result			
CONSTANT 0	0	0	0	0	\bigcirc
x AND y	<i>x</i> · <i>y</i>	0	0	0	
x AND (NOT y)	$x \cdot \overline{y}$	0	0		0
х	x	0	0)	l
(NOT x) AND y	$\bar{x} \cdot y$	0		0	0
у	у	0		0	
x XOR y	$x \cdot \overline{y} + \overline{x} \cdot y$	0			0
x OR y	x + y	0	1	1	
x NOR y	$\overline{x+y}$	l	6	6	8
Equivalence (x == y)	$x \cdot y + \overline{x} \cdot \overline{y}$	l	0	0	ĺ
NOT y	\overline{y}	}	6	1	B
IF y THEN x	$x + \overline{y}$	0	D	1	0
NOT x	\overline{x}	1	l	0	Ò
IF x THEN y	$\overline{x} + y$	0	l	0	9
x NAND y	$\overline{x \cdot y}$	1	1	l	0
CONSTANT 1	1	1	(1	1