(Important) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, I - P projects onto the _____.

2.

- (a) If P is the 2 by 2 projection matrix onto the line through (1, 1), then I P is the projection matrix onto _____.
- (b) If P is the 3 by 3 projection matrix onto the line through (1, 1, 1), then I P is the projection matrix onto _____.

3.

True or false, with a reason if true or a counterexample if false:

- (a) The determinant of I + A is $1 + \det A$.
- (b) The determinant of ABC is |A| |B| |C|.
- (c) The determinant of 4A is 4|A|.
- (d) The determinant of AB BA is zero. Try an example with $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

4.

The inverse of a 2 by 2 matrix seems to have determinant = 1:

$$\det A^{-1} = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{ad - bc}{ad - bc} = 1.$$

What is wrong with this calculation? What is the correct det A^{-1} ?

5.

True or false (give a reason if true or a 2 by 2 example if false):

- (a) If A is not invertible then AB is not invertible.
- (b) The determinant of A is always the product of its pivots.
- (c) The determinant of A B equals $\det A \det B$.
- (d) AB and BA have the same determinant.

The n by n determinant C_n has 1's above and below the main diagonal:

$$C_1 = |0|$$
 $C_2 = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ $C_3 = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$ $C_4 = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$.

- (a) What are these determinants C_1, C_2, C_3, C_4 ?
- (b) By cofactors find the relation between C_n and C_{n-1} and C_{n-2} . Find C_{10} .

7.

Explain why the 4 by 4 Vandermonde determinant contains x^3 but not x^4 or x^5 :

$$V_4 = \det \begin{bmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & x & x^2 & x^3 \end{bmatrix}.$$

The determinant is zero at $x = \underline{\hspace{1cm}}$, and $\underline{\hspace{1cm}}$. The cofactor of x^3 is $V_3 = (b-a)(c-a)(c-b)$. Then $V_4 = (b-a)(c-a)(c-b)(x-a)(x-b)(x-c)$.

8.

Suppose det A = 1 and you know all the cofactors in C. How can you find A?

9.

L is lower triangular and S is symmetric. Assume they are invertible:

To invert triangular
$$L$$
 $L = \begin{bmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{bmatrix}$ $S = \begin{bmatrix} a & b & d \\ b & c & e \\ d & e & f \end{bmatrix}$.

- (a) Which three cofactors of L are zero? Then L^{-1} is also lower triangular.
- (b) Which three pairs of cofactors of S are equal? Then S^{-1} is also symmetric.
- (c) The cofactor matrix C of an orthogonal Q will be _____. Why?

- (a) Find the area of the parallelogram with edges v = (3, 2) and w = (1, 4).
- (b) Find the area of the triangle with sides v, w, and v + w. Draw it.
- (c) Find the area of the triangle with sides v, w, and w v. Draw it.