Randomness in Logic

Jan Reimann

Course Info

Course Website: math.berkeley.edu/~reimann/ESSLLI_2008

- Slides
- Lecture Notes
- Links

Course Info

Books

- Li and Vitanyi (Springer) standard reference.
- Downey and Hirschfeldt (Springer) to appear, more focus on interactions with computability theory.
- Nies (Oxford UP) to appear, also focus on computability

Prerequisites

- Basic computability theory Turing machines, computable sets, halting problem, Turing jump, r.e. sets
- Basic mathemtical logic
- Basic measure theory (optional)

Logic

- We are particularly concerned with definability, i.e. the relation between a language and mathematical objects we can describe.
- Our language will mostly be that of (second order) arithmetic, +, ·, =, ∈.
- By the well-known correspondence between definability in arithmetic and (relative) computability, our study of randomness is also referred to as algorithmic randomness.

Randomness

Our goal: define what an individual random object is. Think of an outcome of an infinite sequence of coin tosses.

Three Paradigms

- Typicalness: A random object is the typical outcome of a random variable.
- Unpredictability: A random object should be impossible to predict.
- Incompressibility: A random object should not have a shorter description than itself.

In the following, we want to give a sound meaning to these paradigms.

If we do not restrict the methods allowed for betting, compressing, etc., we easily end up in paradox:

- A typical outcome should satisfy all probabilistic laws, such as the Law of Large Numbers.
- A probabilistic law is essentially a set of measure 1.
- However, the intersection of all sets of measure 1 is empty!

A different example:

- A random sequence X of coin tosses should be unpredictable there should be no prediction function that, given as input a finite sequence $X(1) \dots X(n)$ of outcomes so far, it predicts the next bit of X correctly.
- However, there clearly is such a prediction function one that, on any input of length n, simply outputs the n + 1-st bit of X.

Remedy:

Admit only definable laws, betting strategies, compression methods.

Outline of the Course

- Lecture 1: Martin-Löf tests and martingales.
- Lecture 2: Kolmogorov complexity.
- Lecture 3: The computational power of randomness.
- Lecture 4: Randomness for non-uniform distributions.
- Lecture 5: The Metamathematics of randomness.

Outline of Lecture 1

Martin-Löf tests and martingales

- The Cantor space.
- Lebesgue measure on Cantor space.
- Martin-Löf tests.
- Basic properties of random sequences.
- Betting games and martingales.
- Equivalence of Martin-Löf tests and effective martingales.
- Alternative randomness concepts.

Cantor Space

We will study randomness for infinite binary sequences.

Cantor space: set of all such sequences, denoted by $2^{\mathbb{N}}$.

Ways to interpret sequences $X \in 2^{\mathbb{N}}$:

- sets of natural numbers, $S_X = \{n \in \mathbb{N} : X(n) = 1\}$,
- real numbers in [0, 1], $\alpha_X = \sum_n X(n) 2^{-n}$.

Metric

$$d(X,Y) = \begin{cases} 2^{-N(X,Y)} & \text{if } X \neq Y \\ 0, & \text{if } X = Y. \end{cases}$$

where $N(X,Y) = \min\{n \colon X(n) \neq Y(n)\}.$

Cantor Space

Topological properties of $2^{\mathbb{N}}$

- compact
- perfect
- totally disconnected

 $2^{\mathbb{N}}$ has a countable basis of clopen sets, the so-called cylinder sets

$$[\sigma] = \{X : X \upharpoonright_n = \sigma\},\$$

where σ is a finite binary sequence (string) and $X \upharpoonright_n$ denotes the first n bits of X.

The open subsets of $2^{\mathbb{N}}$ are unions of cylinder sets.

Cantor Space

Topological properties of $2^{\mathbb{N}}$

- compact
- perfect
- totally disconnected

 $2^{\mathbb{N}}$ has a countable basis of clopen sets, the so-called cylinder sets

$$[\sigma] = \{X : X \upharpoonright_n = \sigma\},\$$

where σ is a finite binary sequence (string) and $X \upharpoonright_n$ denotes the first n bits of X.

The open subsets of $2^{\mathbb{N}}$ are unions of cylinder sets. They can be represented by a set $W \subseteq 2^{<\mathbb{N}}$. We write [W] to denote the open set induced by W.

Lebesgue Measure on Cantor Space

Over \mathbb{R} : Lebesgue measure λ unique Borel measure that is translation invariant and assigns every interval (a, b) measure |b - a|.

Over $2^{\mathbb{N}}$:

• Diameter of a basic open cylinder $[\sigma]$ is $2^{-|\sigma|}$.

Hence we will set $\lambda[\sigma] = 2^{-|\sigma|}$.

Some basic results of measure theory ensure that λ can be uniquely extended to all Borel sets.

We will return to this in more detail in Lecture 4.

Lebesgue Measure on Cantor Space

Alternative view of Lebesgue measure:

- $X \mapsto \alpha_X = \sum_n X(n) 2^{-n}$ yields a surjection of $2^{\mathbb{N}}$ onto [0, 1].
- The image of $[\sigma]$ is the dyadic interval

$$\left[\sum_{k=0}^{n-1} \sigma(k)/2^{k+1}, 2^n + \sum_{k=0}^{n-1} \sigma(k)/2^{k+1}\right].$$

• The Lebesgue measure (in \mathbb{R}) of this interval is 2^{-n} .

Lebesgue Measure on Cantor Space

Yet another view:

- $X \in 2^{\mathbb{N}}$ represents outcome of an infinite sequence of coin tosses 0 is Heads, 1 is Tails.
- If the coin is fair, each outcome has probability 1/2.
- A finite string σ represents the outcome of a finite number of independent coin tosses.
- The probability of outcome σ is $(1/2)^{|\sigma|}$.

Nullsets

Nullsets are sets that are measure theoretically small, just as countable sets are small with respect to cardinality.

Intuitively, a nullset is a set that can be covered by open sets of arbitrary small measure.

Definition

A subset $A\subseteq 2^{\mathbb{N}}$ is a nullset for Lebesgue measure (or has Lebesgue measure zero) if for every $\varepsilon>0$ there exists an open set $U=\bigcup_{\sigma\in W}[\sigma]$ such that

$$A\subseteq U \quad \text{ and } \quad \sum_{\sigma\in W} \lambda[\sigma] = \sum_{\sigma\in W} 2^{-|\sigma|} < \varepsilon.$$

Nullsets

To define Martin-Löf tests, it is convenient to reformulate this a little.

Proposition

A set $A \subseteq 2^{\mathbb{N}}$ is a nullset iff there exists a set $W \subseteq \mathbb{N} \times 2^{<\mathbb{N}}$ such that, if we let $W_n = \{\sigma : (n, \sigma) \in W\}$, for all $n \in \mathbb{N}$,

$$A \subseteq [W_n]$$
 and $\sum_{\sigma \in W_n} 2^{-|\sigma|} < 2^{-n}$.

 $\bigcap_n [W_n]$ is itself a nullset. It is an intersection of a sequence of open sets. Such sets are called G_δ or Π_2^0 -sets.

ightharpoonup Every nullset is contained in a G_{δ} nullset.

Nullsets

Remarks

- We can always assume the sequence (W_n) is nested. (Why?)
- G_{δ} sets can be easily effectivized. What 'codes' a G_{δ} set in Cantor space is a subset of $\mathbb{N} \times 2^{<\mathbb{N}}$.
- On such sets we can easily impose definability/effectivity conditions, e.g. require that they are recursively enumerable.

Martin-Löf Tests and Randomness

Definition

• A Martin-Löf (ML) test (for Lebesgue measure) is a recursively enumerable set $W \subseteq \mathbb{N} \times 2^{<\mathbb{N}}$ such that, if we let $W_n = \{\sigma : (n, \sigma) \in W\}$, for all $n \in \mathbb{N}$,

$$\sum_{\sigma \in W_n} 2^{-|\sigma|} < 2^{-n}.$$

- A set $A \subseteq 2^{\mathbb{N}}$ is Martin-Löf null if it is covered by a Martin-Löf test, i.e. if there exists a Martin-Löf test W such that $A \subseteq \bigcap_n [W_n]$.
- A sequence $X \in 2^{\mathbb{N}}$ is Martin-Löf random if $\{x\}$ is not Martin-Löf null.

Existence of Random Sequences

- Every ML-test W describes a G_{δ} nullset, with the additional requirement that it is effectively presented (W is r.e.).
- There are only countably many r.e. sets, and hence only countably many ML-tests.
- Being random means not being contained in the union of all G_{δ} sets defined by any ML test.
- A basic result of measure theory says that a countable union of nullsets is again a nullset (the standard " $\varepsilon/2^n$ -proof").
- Therefore, the set of all non-random sequences is a nullset, and consequently, λ -almost every sequence is ML random.

Universal Tests

In the last argument, we used that a countable union of nullsets is a nullset.

It turns out that even more is true: The union of all ML-tests is again a ML-test, a universal test.

- There exists a ML-test (U_n) such that X is ML-random iff X is not covered by (U_n) .
- In other words, the ML-random sequences are precisely the ones in the complement of $\bigcap_n [U_n]$.
- The ML-random sequences form the largest effective (in the sense of Martin-Löf) set of measure 1.

Universal Tests

Construction of a universal test

- Start uniformly enumerating all r.e. subsets $W^{(e)}$ of $\mathbb{N} \times 2^{<\mathbb{N}}$.
- Once we see that the measure condition of some $W_n^{(e)}$ is violated, we stop enumerating it.
- Given a uniform enumeration of all tests $(\tilde{W}_n^{(e)})$ (with possible repetitions), we can define a universal test (U_n) by letting

$$U_n = \bigcup_e \tilde{W}_{n+e+1}^{(e)}$$

Note that this test has the nice property that it is nested, i.e. $[U_{n+1}] \subseteq [U_n]$. We will always assume this from now on.

Later we will encounter other ways to define universal tests.

Basic Properties of Random Sequences

- The set of Martin-Löf random reals is invariant under prefix operations (adding, deleting, replacing a finite prefix).
- If $Z \subseteq \mathbb{N}$ is computably enumerable, then the sequence given by the characteristic function of Z is not Martin-Löf random.
- Any finite string appears somewhere in a Martin-Löf random real, in fact it appears infinitely often in a Martin-Löf random real.
- For every Martin-Löf random sequence $X \in 2^{\mathbb{N}}$,

$$\lim_{n} \frac{\sum_{k=0}^{n-1} X(i)}{n} = \frac{1}{2}.$$

These assertions can be proved directly by defining a suitable test. (Exercise!) But we will prove different characterizations of random sequences which may make this easier.

Betting strategies

A betting strategy b is a function $b: 2^{<\mathbb{N}} \to [0,1] \times \{0,1\}$.

Interpretation:

- A string σ represents the outcomes of a 0-1-valued (infinite) process (e.g. a coin toss).
- $b(\sigma) = (i, \alpha)$ then tells the gambler on which outcome to bet next, i, and what percentage of his current capital to bet on this outcome, α .
- When the next bit of the process is revealed and agrees with i, the capital is multiplied by $(1 + \alpha)$. If it is different from i, the gambler loses his bet, i.e. his capital is multiplied by (1α) .

We can keep track of the player's capital through a function $F: 2^{<\mathbb{N}} \to [0, \infty)$.

F satisfies

$$F(\sigma) = \frac{F(\sigma \, 0) + F(\sigma \, 1)}{2} \qquad \text{for all } \sigma. \tag{*}$$

This reflects the property that the game is fair — the expected value of the capital after the next round is the same as the player's capital before he makes his bet.

Any function satisfying (*) is called a martingale.

Given a martingale, we can reconstruct the accordant betting function from it.

Successful martingales

A martingales is successful on an infinite sequence X if

$$\limsup_{n\to\infty} F(X \upharpoonright_n) = \infty,$$

We can actually replace lim sup by lim:

 For every martingale F there exists a martingale G such that for all X,

$$\limsup_n F(X \upharpoonright_n) = \infty \quad \text{implies} \quad \lim_n G(X \upharpoonright_n) = \infty.$$

(Set some money aside regularly.)

A martingale can succeeds only on very few sequences.

Martingale Convergence Theorem [Ville, Doob]

For any martingale F, the set of sequences $X \in 2^{\mathbb{N}}$ such that

$$\limsup_{n \to \infty} F(X \upharpoonright_n) = \infty \tag{1}$$

has λ -measure zero.

We will prove an effective version of this theorem.

From ML-tests to Martingales

Goal: Given a ML-test (U_n) , define a martingale succeeding on the sequences covered by (U_n) .

Basic Idea: Whenever a string appears at level n of the test, F reaches a value of at least n.

• For a single string σ , define the following martingale.

$$F_{\sigma}(au) = egin{cases} 2^{-(|\sigma|-| au|)} & ext{if } au \subseteq \sigma, \ 1 & ext{if } au \supseteq \sigma, \ 0 & ext{otherwise}. \end{cases}$$

- F_{σ} starts out with a capital of $2^{-|\sigma|}$ and doubles its capital every step along σ , then stops betting.
- If an outcome is not compatible with σ , its capital is lost.

From ML-tests to Martingales

- Now, for one level U_n of the ML-test, blend the individual "string"-martingales into one.
- If (F_n) is a sequence of martingales and $\sum_n F(\varnothing) < \infty$, then

$$F = \sum_{n} F_n$$

is a martingale.

Hence define

$$F_n(\tau) = \sum_{\sigma \in U_n} F_{\sigma}(\tau).$$

and check that the sum of the $F_{\sigma}(\emptyset)$ is finite.

- $F_{\sigma}(\varnothing) = 2^{-|\sigma|}$.
- Hence $F_n(\varnothing) = \sum_{\sigma \in U_n} F_{\sigma}(\varnothing) = \sum_{\sigma \in U_n} 2^{-|\sigma|} \le 2^{-n}$.

From ML-tests to Martingales

• The inequality $F_n(\emptyset) \le 2^{-n}$ further lets us combine the martingales for each U_n into one martingale F,

$$F(\sigma) = \sum_{n} F_n(\sigma).$$

- If $X \in \bigcap_n [U_n]$, there exists a sequence (σ_n) such that for all $n, \sigma_n \in U_n$ and $\sigma_n \subset X$.
- It follows that $F_n(\sigma_n) \geq 1$.
- More importantly, by the definition of F_n , $F_n(\tau) \ge 1$ for all $\tau \supseteq \sigma$, hence in particular for all σ_m where $m \ge n$.
- It follows that for all n, $F(\sigma_n) \ge \sum_{k=1}^n F_k(\sigma_n) \ge n$, that is, F is unbounded along X.

Left-enumerable Martingales

What is the computational complexity of F?

- A function $F : 2^{<\mathbb{N}} \to \mathbb{R}$ is enumerable from below or left-enumerable if there exists, uniformly in σ , a recursive nondecreasing sequence $(q_k^{(\sigma)})$ of rational numbers such that $q_k^{(\sigma)} \to F(\sigma)$.
- Equivalently, the left cut of $F(\sigma)$ is uniformly enumerable, i.e. the set

$$\{(q, \sigma): q < F(\sigma)\}$$

is recursively enumerable.

It is not hard to see that F defined above is left-enumerable.

Left-enumerable Martingales

We have proved the following:

For any ML-test (U_n) there exists a left-enumerable martingale F such that if $X \in \bigcap_n [U_n]$, then F succeeds on X.

In other words, if X is not ML-random, we can find a left-enumerable martingale that succeeds on X.

From Martingales to ML-Tests

Does a converse of this hold? Can we transform a left-enumerable martingale F into a ML-test?

Basic idea: Whenever F first reaches a capital of 2^n on some string σ , enumerate σ into U_n .

- Since F is enumerable from below, this is an r.e. event.
- We only have to make sure that there are not too many such σ .
- This is guaranteed by Kolmogorov's inequality (actually due to Ville).
 - Suppose F is a martingale. For any string σ and any prefix-free set W of strings extending σ ,

$$F(\sigma) \ge \sum_{\tau \in W} 2^{|\sigma| - |\tau|} F(\tau)$$

• Prefix-free: No two strings are comparable by ⊆.

From Martingales to ML-Tests

From Kolmogorov's inequality we get the desired result:

Given a martingale
$$F$$
, let $C_k(F) = \{\sigma \colon F(\sigma) \ge k\}$. Then
$$\lambda[C_k(F)] \le F(\emptyset)/k.$$

- Let W be a prefix-free subset of $C_k(F)$ such that $[W] = [C_k(F)]$.
- Then $\lambda[C_k(F)] = \lambda[W] = \sum_{\tau \in W} 2^{-|\tau|}$.
- By Kolmogorov's inequality, $F(\varnothing) \ge \sum_{\tau \in W} 2^{-|\tau|} F(\tau) \ge \sum_{\tau \in W} 2^{-|\tau|} k$.
- Hence $\lambda[C_k(F)] \leq F(\emptyset)/k$, as required.

From Martingales to ML-Tests

We have proved the first main theorem of algorithmic randomness, due to Schnorr and independently Levin.

Theorem

A sequence X is ML-random if and only if no left-enumerable martingale succeeds on it.

Alternative Randomness Concepts

Of course, ML-tests are not the only possible way to effectivize nullsets.

ML-randomness is the most prominent concept because it shows a rather strong robustness with respect to the different approaches.

We will briefly discuss a few other notions – some based on martingales, others based on tests.

Alternative Randomness Concepts

Test-based concepts

- Weak 2-randomness
- Schnorr randomness

Martingale-based concepts

- Computable randomness
- Resource-bounded randomness

Weak 2-Randomness

Martin-Löf test has to fulfill two effectivity requirements.

- uniform recursive enumerability of (W_n) ,
- measure of the W_n converges to 0 effectively, $\lambda[W_n] \leq 2^{-n}$.

For a weak 2-test we only require that (W_n) is uniformly r.e. and that $\lambda \bigcap_n [W_n] = 0$.

One can show that weak 2-randomness is strictly stronger than ML-randomness. There exists an X that is ML-random but not weak 2-random.

We will encounter such an example later.

Schnorr Randomness

On the other hand, one might argue that the effectivity requirement for ML-tests is too weak. Test should be computable in some form, not merely r.e.

Schnorr tests

A ML-test (W_n) is a Schnorr test if the real number

$$\sum_{\sigma \in W_n} 2^{-|\sigma|}$$

is computable uniformly in n.

A real number α is computable if there exists a computable function $g: \mathbb{N} \to \mathbb{Q}$ such that for all n, $|\alpha - g(n)| \leq 2^{-n}$.

Note: If (W_n) is a Schnorr test then the sets W_n are uniformly computable.

Computable Randomness

The same criticism applies to the martingale characterisation of randomness. Betting strategies should be computable [Schnorr].

Definition

A sequence X is computably random if no computable martingale succeeds on it.

A function $F: 2^{<\mathbb{N}} \to \mathbb{R}$ is computable if there exists a computable function $g: 2^{<\mathbb{N}} \times \mathbb{N} \to \mathbb{Q}$ such that for all σ, n , $|F(\sigma) - g(\sigma, n)| \leq 2^{-n}$.

One can refine the computability requirement even further, by imposing a time-bound on F. This leads to the theory of resource-bounded measure, which has successfully been used in computational complexity.

Relations between Randomness Concepts

The following strict implications hold:

X weak 2-random \Downarrow X ML-random \Downarrow X computably random \Downarrow X Schnorr random