Supplementary Material for "LinguaPhylo: a probabilistic model specification language for reproducible phylogenetic analyses"

Alexei J. Drummond^{1,2,3}*, Kylie Chen^{1,2,3}, Fábio K. Mendes^{1,4}, Dong Xie^{1,2,3}

- 1 Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- 2 School of Biological Sciences, University of Auckland, Auckland, New Zealand
- 3 School of Computer Science, University of Auckland, Auckland, New Zealand
- 4 Department of Biology, Washington University in St. Louis, St. Louis, United States

^{*}Corresponding author: a.drummond@auckland.ac.nz

List of Tables

\mathbf{A}	Substitution models and rate matrix functions	3
В	Coalescent tree generative distributions	3
\mathbf{C}	Birth-death tree generative distributions	4
D	Phylogenetic likelihood distributions	4
\mathbf{E}	Parametric distributions	5
\mathbf{F}	Alignment data types.	6
\mathbf{G}	Bayesian phylogenetic site model averaging.	6

Function	Description	Examples	
binaryRateMatrix	Binary trait rate matrix	errorModel1.lphy, errorModel2.lphy	
f81	F81 model[1]	f81Coalescent.lphy	
${\it general Time Reversible}$	General time reversible rate matrix	h5n1.lphy	
gtr	GTR model[2]	gtrCoalescent.lphy	
hky	HKY model[3]	hkyCoalescent.lphy	
jukesCantor	Jukes-Cantor model[4]	jcCoalescent.lphy	
k80	K80 model[5]		
lewisMK	LewisMK model[6]	lewisMKCoalescent.lphy	
${\it migration} \\ {\it Matrix}$	Population process rate matrix	simpleStructuredCoalescent.lphy	
wag	WAG model[7]	wagCoalescent.lphy	

Table A: Substitution models and rate matrix functions.

Generative distribution	Description	Examples	
MultispeciesCoalescent	Multispecies coalescent	simpleMultispeciesCoalescent.lphy,	
		simpleMultispeciesCoalescentTaxa.lphy,	
		twoGeneMultispeciesCoalescent.lphy	
Coalescent	Kingman's coalescent [8]	RSV2.lphy	
SkylineCoalescent	Skyline coalescent [9]	hcv_col.lphy	
${\bf Structured Coalescent}$	Structured coalescent[10]	simpleStructuredCoalescent.lphy	

 Table B: Coalescent tree generative distributions.

Generative distribution	Description	Examples
BirthDeathSampling	Birth-death-sampling tree[11, 12]	birthDeathRhoSampling.lphy
BirthDeathSerialSampling	Birth-death serial sampling tree[13]	simpleBirthDeathSerial.lphy
BirthDeath	Calibrated birth-death[14]	simpleCalibratedBirthDeath.lph
		simpleExtantBirthDeath.lphy
Fossil Birth Death Tree	Fossilized birth-death process[15]	simFossilsCompact.lphy
FullBirthDeath	Birth-death tree[16]	simpleFullBirthDeath.lphy
${\bf RhoSampleTree}$	Birth-death tree sampled from a larger	
	tree	
SimBDReverse	Birth-death tree with extant and ex-	simFossils.lphy
	tinct species	
SimFBDAge	Birth-death tree with extant and ex-	${ m simFBDAge.lphy}$
	tinct species sampled through time	
SimFossilsPoisson	Tree with fossils added to given tree at	simFossils.lphy
	rate psi	
Yule	Yule tree[17]	simpleYule.lphy,
		yuleRelaxed.lphy

 ${\bf Table} \ {\bf C} \hbox{: Birth-death tree generative distributions}.$

Generative distribution	Description	Examples
PhyloBrownian	Brownian motion process[18]	simplePhyloOU.lphy
PhyloCTMC	Continuous time Markov process[1]	simpleBModelTest.lphy
${\bf PhyloMultivariate Brownian}$	Multivariate Brownian motion	simplePhyloMultivariateBrownian.lphy
PhyloOU	Ornstein-Ulhenbeck process[18]	simplePhyloBrownian.lphy

 ${\bf Table\ D:\ Phylogenetic\ likelihood\ distributions.}$

Generative distribution	Description	Examples
Bernoulli	Bernoulli distribution	simpleRandomLocalClock.lphy,
		simpleBModelTest.lphy
Beta	Beta distribution	birthDeathRhoSampling.lphy,
		simpleBModelTest.lphy
Cauchy	Cauchy distribution	
Dirichlet	Dirichlet distribution	birthDeathRhoSampling.lphy,
		dirichlet.lphy
${\bf Discrete Uniform}$	Discrete-uniform distribution	simpleBModelTest.lphy,
		simpleBModelTest2.lphy
DiscretizeGamma	Discretize-gamma distribution	gtrGammaCoalescent.lphy,
		simpleBModelTest.lphy
Exp	Exponential distribution	birthDeathRhoSampling.lphy,
		yuleRelaxed.lphy
ExpMarkovChain	Smoothing distribution [9]	skylineCoalescent.lphy
Gamma	Gamma distribution	covidDPG.lphy
Geometric	Geometric distribution	
InverseGamma	Inverse-gamma distribution	totalEvidence.lphy
LogNormal	Log-normal distribution	hkyCoalescent.lphy,
		errorModel1.lphy
Normal	Normal distribution	simplePhyloBrownian.lphy,
		simplePhyloOU.lphy
NormalGamma	Normal-gamma distribution	simplePhyloBrownian.lphy,
		simplePhyloOU.lphy
Poisson	Poisson distribution	expression4.lphy,
		simple Random Local Clock 2. lphy
RandomBooleanArray	Samples a random boolean array	simple Random Local Clock 2. lphy
RandomComposition	Samples a random k-tuple of positive in-	skylineCoalescent.lphy
	tegers that sum to n	
Uniform	Uniform distribution	simFossilsCompact.lphy
Weibull	Weibull distribution	
WeightedDirichlet	Weighted dirichlet distribution	totalEvidence.lphy,
		weightedDirichlet.lphy

 Table E: Parametric distributions.

Function	Description	Examples
aminoAcids	Amino acid data type	wagCoalescent.lphy
${\it binary} {\it DataType}$	Binary data type	
nucleotides	Nucleotide data type	primates2.lphy
standard	Standard data type	totalEvidence.lphy

 ${\bf Table}\ {\bf F}\hbox{: Alignment data types}.$

Function	Description	Examples
nucleotideModel	bModelTest[19] rate matrix	simpleBModelTest.lphy,
		simpleBModelTest2.lphy
${\bf bModelSet}$	bModelTest model set	simpleBModelTest.lphy
bSiteRates	Site rates for the given bModelTest parameters	simpleBModelTest2.lphy
${\bf bSiteModel}$	bModelTest site model	simpleBModelTest.lphy

 ${\bf Table}\ {\bf G}\hbox{: Bayesian phylogenetic site model averaging}.$

References

- [1] Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–76. doi:10.1007/BF01734359.
- [2] Tarvaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Some mathematical question in biology-DNA sequence analysis. 1986;.
- [3] Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of molecular evolution. 1985;22(2):160–174.
- [4] Jukes TH, Cantor CR, et al. Evolution of protein molecules. Mammalian protein metabolism. 1969;3:21–132.
- [5] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution. 1980;16(2):111–120.
- [6] Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic biology. 2001;50(6):913–925.
- [7] Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular biology and evolution. 2001;18(5):691–699.
- [8] Rodrigo AG, Felsenstein J. Coalescent Approaches to HIV Population Genetics. In: K C, editor. The Evolution of HIV. Baltimore: Johns Hopkins Univ. Press; 1999.
- [9] Drummond A, Rambaut A, Shapiro B, Pybus O. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular biology and evolution. 2005;22:1185–1192. doi:10.1093/molbev/msi103.
- [10] Müller NF, Rasmussen DA, Stadler T. The structured coalescent and its approximations. Molecular biology and evolution. 2017;34(11):2970–2981.
- [11] Stadler T. Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences. 2011;108(15):6187–6192.
- [12] Stadler T, Kouyos R, von Wyl V, Yerly S, Böni J, Bürgisser P, et al. Estimating the Basic Reproductive Number from Viral Sequence Data. Molecular biology and evolution. 2012;29:347–357. doi:10.1093/molbev/msr217.

- [13] Stadler T, Yang Z. Dating phylogenies with sequentially sampled tips. Syst Biol. 2013;62(5):674–88. doi:10.1093/sysbio/syt030.
- [14] Heled J, Drummond AJ. Calibrated birth-death phylogenetic time-tree priors for Bayesian inference. Systematic Biology. 2015;64(3):369–383.
- [15] Heath TA, Huelsenbeck JP, Stadler T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences. 2014;111(29):E2957–E2966.
- [16] Kendall DG. On the generalized" birth-and-death" process. The annals of mathematical statistics. 1948;19(1):1–15.
- [17] Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philosophical Transactions of the Royal Society of London Series B. 1925;213:21– 87.
- [18] Felsenstein J. Maximum-likelihood estimation of evolutionary trees from continuous characters. American journal of human genetics. 1973;25(5):471.
- [19] Bouckaert R, Drummond A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology. 2017;17(42). doi:10.1186/s12862-017-0890-6.