zk-SNARKS Cheatsheet v0.9

Erik Brauer Iomete Labs erik@iometelabs.io

Definitions

General

Properties of ZKPs^[9]

- 1. Completeness: Given a statement and a witness, the prover can convince the verifier.
- 2. Soundness: A malicious prover cannot convince the verifier of a false statement.
- 3. Zero-Knowledge: The proof does not reveal anything but the truth of the statement, i.e. it does not reveal the provers witness. Additional for SNARKS: Succinctness, Non-interactiveness

Set of p-adic integers

$$\mathbb{Z}_p := \{ \sum_{i=0}^{\infty} a_i p^i | a_i \in \{0, 1, ..., p-1\} \}, \ p \in \mathbb{P}$$

\mathbb{Z}_n^* Group^[1]

cyclic $\Leftrightarrow \exists g \in \mathbb{Z}_p^* \text{ s.t. } \mathbb{Z}_p^* = \{g^a | a \in \{0, ..., p-2\}; g^0 = 1\}$ discrete logarithm problem (DLP) believed to be hard in \mathbb{Z}_{p}^{*} group operation: $q^a \cdot q^b = q^{a+b \pmod{p-1}} \ \forall a, b \in \mathbb{Z}_{p-1}$

$$(\mathbb{F}_p,+,\cdot)$$
 Field

$$\mathbb{F}_p = \{0, ..., p-1\}$$

multiplication and addition over the field are also done $mod(p)$

Kleene star

Given a set S:

$$S^* = \bigcup_{i \ge 0} S^i = S^0 \cup S^1 \cup S^2 \cup \dots$$
 e.g.: $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, \dots\}$

Pairings

 G_1, G_2, G_T groups and $|G_T| = p$ $P \in G_1, Q \in G_2$ generators of G_1 and G_2 $e: G_1 \times G_2 \to G_T$ with the following properties:

- 1. Bilinearity: $\forall a, b \in \mathbb{Z} : e(aP, bQ) = e(P, Q)^{ab}$
- 2. Non-Degeneracy: $e(P,Q) \neq 1$
- 3. Efficient Computability

Symmetric iff $G_1 = G_2 = G$

Commutative iff G cyclic: e(P,Q) = e(Q,P)

Elliptic-Curve Cryptography^[1, 4, 6]

Define elliptic curve $\mathcal{C} = \{(x,y)|y^2 = x^3 + ax + b \text{ for some } a,b \in \mathbb{F}_p\}$ Group $\mathcal{C}(\mathbb{F}_p) = \{(x,y) | (x,y) \in \mathbb{F}_p^2 \text{ are on } \mathcal{C}\}$ with $e = \mathcal{O}$ + rule: $P + Q + R = \mathcal{O} \Rightarrow P + Q = -R$ (mirror intersection point of line passed by $(P,Q) \in \mathcal{C}(\mathbb{F}_p)$) $|\mathcal{C}(\mathbb{F}_p)| = r, \ r \neq p \in \mathbb{P}$ embedding degree of C: smallest int k s.t. $(p^k - 1 \mod r) = 0$ DLP for sufficiently large k is "very hard"

Tate Reduced Pairings

Define subgroup G_T of multiplicative group $\mathcal{C}(\mathbb{F}_{n^k})$ with order r $\mathcal{C}(\mathbb{F}_{n^k})$ contains r-1 additional subgroups of order rGenerators $q \in G_1, h \in G_2$ 1. Tate $(q,h) = \mathbf{g}$ for a generator \mathbf{g} of G_T

- 2. Given a pair $(a.b) \in \mathbb{F}_r$, Tate $(a \cdot q, b \cdot h) = q^{a \cdot b}$

Homomorphic Hidings^[1]

E(x) over \mathbb{Z}_p^* with following properties:

- 1. trapdoor function, for given E(x) "hard" to find x
- 2. Collision-resistance: $x \neq y \Rightarrow E(x) \neq E(y) \forall x, y$
- 3. homomorphic, algebraic structure-preserving mapping

Common Reference String Model^[1, 15]

Setup phase: CRS generated according to randomized process ("toxic waste" λ , has to be destroyed after) CRS broadcast to all parties, used to construct and verify proofs divided into "proving key" and "verification key"

Polynomial Interpolation

Lagrange: Given a set of n+1 points $(x_0, f_0), ..., (x_i, f_i), ..., (x_n, f_n)$

$$\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^n = \frac{x - x_j}{x_i - x_j}, \ L(x) = \sum_{i=0}^n f_i \ell_i(x)$$

L(x) is the resulting interpolation polynomial in the Lagrange form

Merkle Trees

expansion and extension of hash lists every leaf node labelled with hash of a data block nodes further up are hashes of their respective children

Pedersen Hash Function^[16, 17]

$$\begin{split} P_0,...,P_k \text{ generators of } \mathbb{G} &= \{P \in E(\mathbb{F}_p) | rP = O\} \\ \text{Hash } M &= M_0 M_1 ... M_k \\ H(M) &= \langle M_0 \rangle \cdot P_0 + ... + \langle M_k \rangle \cdot P_k \end{split}$$

$MiMC-p/p^{[18]}$

Encryption function: $E_k(x) = (F_{r-1} \circ F_{r-2} \circ ... \circ F_0)(x) \oplus k$ $x \in \mathbb{F}_p$ plaintext, $r = \frac{\log(p)}{\log_2(3)}$ number of rounds, $k \in \mathbb{F}_p$ key round functions over \mathbb{F}_n : $F_i(x) = (x \oplus k \oplus c_i)^3$ c_i random round constants in \mathbb{F}_p , $c_0 = 0$

Perpetual Powers of Tau Ceremonv^[14]

Multi-Party Computation for Trusted Setup Phase (Parties jointly compute CRS without leaking inputs) no limit to number of rounds/contributions of participants

Construction from QAP $General^{[8]}$

1. Generation algorithm (trusted setup): $\operatorname{Gen}(1^{\lambda}, \mathbf{C}) \to (\operatorname{crs,vrs})$ (secret parameter λ , circuit \mathbf{C} , proving and verification key (crs,vrs))

2. Prover: Prove(crs, u, w) $\rightarrow \pi$

(some statement u, witness w, proof π)

3. Verifier: $Ver(vrs, u, \pi) \rightarrow 0/1$

QAP Conversion^[1, 3, 12]

Code Flattening

Convert original code to arithmetic circuit:

x = y, (y can be variable or number)

$$x = y(op)z, op \in (+, -, \cdot, /)$$

(y and z can be variables, numbers or sub-expressions)

Rank-1 Constraint System

Convert flattened code to constraint system (R1CS):

$$\langle \underline{l_i}, \underline{s} \rangle \cdot \langle \underline{r_i}, \underline{s} \rangle - \langle \underline{o_i}, \underline{s} \rangle = 0 \, \forall i$$

 $(\underline{x} \text{ denotes a Vector in Tensor notation})$

ensures that prover provides valid values for the circuit

Quadratic Arithmetic Program

Express R1CS as QAP with Polynomial Interpolation:

QAP Q of degree d and size m consists of polynomials

 $L_1,...,L_m,R_1,...,R_m,O_1,...,O_m$ and a target polynomial T.

An assignment $(c_1, ..., c_m)$ satisfies Q if, defining

$$P:=L\cdot R-O$$
 for $L:=\sum c_i\cdot L_i, R:=\sum c_i\cdot R_i, O:=\sum c_i\cdot O_i$

we have that T divides P.

Alice has a satisfying assignment iff $\exists H : P(s) = H(s) \cdot T(s) \ \forall s \in \mathbb{F}_p$

Blind Evaluation of Polynomials^[1]

Alice has polynomial P, Bob has random point $s \in \mathbb{F}_p$:

- 1. Bob sends to Alice the hidings $E(1), E(s), ..., E(s^d)$
- 2. Alice computes E(P(s)) and sends the result to Bob

Conclusion: Neither Alice learned s, nor Bob learned P (Blindness)

Verifier (B) able to check if prover (A) knows the correct polynomial

Verifiable BEP

- 1. B chooses random $\alpha \in \mathbb{F}_p^*$ and sends to A the hidings
- $E(1), E(s), ..., E(s^d)$ and $E(\alpha), E(\alpha s), ..., E(\alpha s^d)$
- 2. A computes a = E(P(s)) and $b = E(\alpha P(s))$, sends both to B
- 3. B accepts iff $b = \alpha \cdot a$

Knowledge of Coefficient Test^[1, 11]

Alternatively Knowledge of Exponent (KEA)

Let $\alpha \in \mathbb{F}_p^*$ and α -pair $\Leftrightarrow a, b \neq 0 \land b = \alpha \cdot a \ \forall (a, b) \in G$

- 1. Bob chooses random $\alpha \in \mathbb{F}_p^*$ and $a \in G$. He computes $b = \alpha \cdot a$.
- 2. He sends to Alice the challenge pair (a, b).
- 3. Alice must now respond with a different α -pair (a', b').
- 4. Bob accepts Alice's response iff (a', b') is an α -pair.

KC Assumption

Alice chooses some $\gamma \in \mathbb{F}_p^*$ and responds with $(a',b')=(\gamma \cdot a, \gamma \cdot b)$ Whenever Alice successfully responds with an α -pair (a',b'), Alice's Extractor outputs γ s.t. $a'=\gamma \cdot a$.

d-KCA

Bob chooses random $\alpha \in \mathbb{F}_p^*$, $s \in \mathbb{F}_p$, sends to Alice the α -pairs $(g, \alpha \cdot g), (s \cdot g, \alpha s \cdot g), ..., (s^d \cdot g, \alpha s^d \cdot g)$. A outputs an α -pair (a', b') \Leftrightarrow A knows $c_1, ..., c_d$ s.t. $\sum_{i=1}^d c_i \cdot a_i$

Pinocchio Protocol (PHGR13)^[1, 13]

- 1. Alice chooses L, R, O, H of degree at most d.
- 2. Bob chooses a random point $s \in \mathbb{F}_p$, computes E(T(s)).
- 3. Alice sends Bob E(L(s)), E(R(s)), E(O(s)), E(H(s)).
- 4. Bob checks whether $E(L(s) \cdot R(s) O(s)) = E(T(s) \cdot H(s))$.

Note: An extended version of KCA is used to make sure Alice chooses the polynomials produced from an assignment.

Alice conceals her assignment by adding a random T-shift to each polynomial. ("free" zero-knowledge)

Non-Interactive Evaluation Protocol^[1]

1. Setup: Random $\alpha \in \mathbb{F}_r^*, s \in \mathbb{F}_r$ are chosen and CRS is published:

$$(E_1(1), E_1(s), ..., E_1(s^d), E_2(\alpha), E_2(\alpha s), ..., E_2(\alpha s^d))$$

- 2. Proof: Alice computes $a = E_1(P(s))$ and $b = E_2(\alpha P(s))$
- 3. Verification: Fix $x, y \in \mathbb{F}_r$ s.t. $a = E_1(x)$ and $b = E_2(y)$

Bob computes $E(\alpha x) = \text{Tate}(E_1(x), E_2(\alpha))$ and

 $E(y) = \text{Tate}(E_1(1), E_2(y))$ and checks if $E(\alpha x) = E(y)$.

Groth16[9]

smaller proofs, faster proving and verification time compared to Pinocchio (PHGR13) $\,$

comparison between Groth16 and PHGR13:

Protocols	CRS size	Proof size	Verification time
PHGR13	linear circuit	$7 G_1, 1 G_2$	12 pairings
Groth16	size	$2 G_1, 1 G_2$	3 pairings

References and further reading

- [1] Gabizon, A.: Explaining Snarks (Parts I-VII) [https://electriccoin.co/blog/snark-explain/]
- [2] Matter Labs: Awesome zero knowledge proofs [https://github.com/matter-labs/awesome-zero-knowledge-proofs]
- [3] Buterin, V.: Quadratic Arithmetic Programs: from Zero to Hero [https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649]
- [4] Buterin, V.: Exploring Elliptic Curve Pairings [https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627]
- [5] Buterin, V.: Zk-SNARKs: Under the Hood [https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6]
- [6] Sullivan, N.: A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography [https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/]
- [7] Petkus, M.: Why and How zk-SNARK Works [https://arxiv.org/abs/1906.07221]
- [8] Nitulescu, A.: zk-SNARKs: A Gentle Introduction [https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf]
- [9] Groth, J.: On the Size of Pairing-based Non-interactive Arguments [https://eprint.iacr.org/2016/260.pdf]
- [10] Ben-Sasson, E. et al.: Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture [https://eprint.iacr.org/2013/879.pdf]
- [11] Groth, J.: Short Pairing-based Non-interactive Zero-Knowledge Arguments [http://www0.cs.ucl.ac.uk/staff/J.Groth/ShortNIZK.pdf]
- [12] Gennaro, R. et al.: Quadratic Span Programs and Succinct NIZKs without PCPs [https://eprint.iacr.org/2012/215.pdf]
- [13] Parno, B. et al.: Pinocchio: Nearly Practical Verifiable Computation [https://eprint.iacr.org/2013/279.pdf]
- [14] Wei Jie, K.: Announcing the Perpetual Powers of Tau Ceremony to benefit all zk-SNARK projects
 [https://medium.com/coinmonks/announcing-the-perpetual-powers-of-tau-ceremony-to-benefit-all-zk-snark-projects-c3da86af8377]
- [15] Bottinelli, P.: Security Considerations of zk-SNARK Parameter Multi-Party Computation
 [https://research.nccgroup.com/2020/06/24/security-considerations-of-zk-snark-parameter-multi-party-computation/]
- [16] Hopwood, D. et al.: Zcash Protocol Specification [https://github.com/zcash/zips/blob/master/protocol/sapling.pdf]
- [17] Baylina, J. et al.: 4-bit Window Pedersen Hash On The Baby Jubjub Elliptic Curve
 [https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html]
- [18] Albrecht, M. et al.: MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity [https://eprint.iacr.org/2016/492.pdf]