

Natural Language Processing with Small Feed-Forward Networks

Jan A. Botha **Emily Pitler** Ji Ma Anton Bakalov Alex Salcianu David Weiss Ryan McDonald Slav Petrov

Goal: Small and Fast (on CPU/mobile)

Deep recurrent models: can have 100s of millions (or billions) of parameters

Recent work on smaller recurrent models: Kim and Rush, 2016; Sharp Models on Dull Hardware, Devlin, EMNLP 2017 10's to 100 tokens/second

For variety of NLP tasks, can get order of magnitude speedup over LSTMs

Memory	≤ 2 MB
Speed	7k – 46k tokens/second
Trained	in a few hours

...With Near State-of-the-Art Accuracies in 4 Tasks

A Recurrent & Deep Model with Large Vocabulary

A Recurrent & Deep Model with Large Vocabulary

How Best to Allocate a Small Memory Budget?

What's Left? Small Feed-Forward Architecture

softmax

embedding layer

Goals

Model Size

Word Clusters **Pipelines** Selected Features

Hashed Character n-grams Quantization

Input Representation: Hashed Character n-grams

Case Study 1: POS Tagging

Vanilla Model: Less Resources, Little Less Accurate

Accuracy Boost Adding Resource-backed Features

Allows Reducing Embedding Dimensions Further

Case Study 2: Preordering for MT

Transition System for Structured Output

English → Japanese word ordering: I ate pizza → I pizza ate

POS Tags as Intermediate Representation

Or, "End-to-End Style" with Features from Tagger

Pipeline: Higher Accuracy for Smaller Size

Case Study 3: Language Identification

LangID: Post-hoc Quantization to Reduce Space

F1:

(KB)

.873

.880

.880

Baldwin & Lui (2010)

That LangID model is essentially...

Compact Language Detector v3 (CLD3)

- ✓ runs inside all Google Chrome browsers
- ✓ code: github.com/google/CLD3

Actual screenshot from 16 Aug 2017

Conclusion

Small (<= 2 MB) & fast (7k - 46k tokens/second) models with high accuracy in multiple tasks

Explicit intermediate representations & engineered features bring big accuracy gains in low-memory setting

Simple techniques → easy to include in standard practice

