Wprowadzenie do Teorii Grafów

prof. dr hab. Michał Morayne

opracował: Mikołaj Pietrek

Spis treści

Wykład	$\mathrm{d}4$	1
4.1	Spójność (cd.)	1
4.2	Kilka definicji związanych ze spójnością	1
4.3	Grafy Eulera (eulerowskie)	2
	4.3.1 Mosty w Królewcu	2

Wykład 4

4.1 Spójność (cd.)

Przypomnijmy sformułowanie twierdzenia 2.

Twierdzenie 2 (przypomnienie). Jeśli $G = (V, \mathcal{E})$ jest grafem prostym o n wierzchołkach i n krawędziach i k składowych, to zachodzą następujące nierówności:

$$n-k \le m \le (n-k)(n-k+1)/2$$

Wniosek 1. Jeśli dla grafu prostego $G = (V, \mathcal{E})$ o n wierzchołkach i m krawędziach zachodzi nierówność n > (n-2)(n-1)/2 to G jest spójny.

Dowód. Teza jest prawdziwa, bo (*) nie zachodzi.

4.2 Kilka definicji związanych ze spójnością

Podzbiór $S \subseteq \mathcal{E}$ zbioru krawędzi grafu spójnego $G = (V, \mathcal{E})$ nazywamy zbiorem rozspajającym w G jeśli graf $G = (V, \mathcal{E} - S)$ nie jest spójny.

$$S = \{\{ v_2, v_4\}, \{ v_3, v_4\}, \{ v_3, v_1\} \}$$

 \mathcal{S} jest tu zbiorem rozspajającym.

Zbiór rozspajający S w grafie $G = (V, \mathcal{E})$ nazywamy <u>rozcięciem</u>, jeśli żaden podzbiór właściwy S tej własności nie ma (nie jest zbiorem rozspajającym). W powyższym przykładzie S nie jest rozcięciem, ale $S' = \{\{v_2, v_4\}, \{v_3, v_4\}\}$ jest już rozcięciem. Jeśli $S = \{\{v, u\}\}$ jest rozcięciem, to krawędź $\{u, v\}$ nazywamy <u>mostem</u>. Przykład:

4.3 Grafy Eulera (eulerowskie)

4.3.1 Mosty w Królewcu

Euler spacerując po Królewcu zastanawiał się, czy można odbyć taki spacer, aby przez każdy most przejść jeden raz i skończyć spacer w tym samym miejscu, gdzie się zaczęło.

W istocie mamy tu do czynienia z następującym grafem:

Euler udowodnił następujące twierdzenie dotyczące takich spacerów. Jeśli ścieżkę w której występują wszystkie krawędzie grafu G i każda krawędź występuje dokładnie raz, w której pierwszy i ostatni wierzchołek są równe, nazwiemy cyklem Eulera (eulerowskim), to:

Twierdzenie 3 (Eulera). W grafie $G = (V, \mathcal{E})$ występuje cykl Eulera wtedy, tylko wtedy, gdy G jest spójny i każdy wierzchołek ma stopień parzysty. Graf w którym jest cykl Eulera nazywamy grafem Eulera (eulerowskim).

Uwaga. Cykl Eulera nie zawsze jest cyklem w sensie używanej przez nas definicji cyklu!

Zanim udowodnimy twierdzenie Eulera, udowodnijmy następujący lemat.

Lemat. Jeśli w grafie $G = (V, \mathcal{E})$ stopień każdego wierzchołka jest większy niż 1, to G zawiera jako podgraf cykl.

Dowód. Jeśli G zawiera pętle lub krawędzie wielokrotne, to teza lematu jest trywialna. Możemy dalej założyć, że G jest grafem prostym.

Niech $v_1 \in V$ Ponieważ $deg(v_2) \geqslant 2$, więc istnieje krawędź $\{v_2, v_3\}, v_3 \neq v_1$ incydentna z v_1 Ponieważ $deg(v_3) \geqslant 2$ to istnieje incydentna z v_3 krawędź $\{v_3, v_4\} \in \mathcal{E}, v_4 \neq v_2$. Jeśli $v_4 \neq v_1$ to dowód jest skończony, bo mamy cykl. Jeśli nie, to kontynujemy powyższą procedurę.

Załóżmy, że w jej trakcie skonstruowaliśmy drogę $\langle v_1, v_2, ..., v_k \rangle\,, k \geqslant 4.$

Ponieważ $deg(v_k) \geqslant 2$ więc istnieje krawędź $\{v_k, v_{k+1}\}$ taka że $v_{k+1} \neq v_{k-1}$. (1) Jeśli $v_{k+1} \in \{v_1, v_2, ..., v_{k-2}\}$ czyli $v_{k+1} = v_i, i \in \{1, ..., k-2\}$ to mamy cykl $\langle v_i, v_{i+1}, ..., v_k, v_i \rangle$. (2) Jeśli nie, to $\{v_1, ..., v_{k+1}\}$ jest drogą i iterujemy naszą procedurę.

Zauważmy, że przypadek (2) nie może zachodzić więcej niż |V|, a więc w którymś kroku istotnie otrzymamy cykl. \square