IAD (Issuer Application Data) — In-Depth Explanation

Issuer Application Data (IAD) is a tag (9F10) in EMV transactions, especially relevant in EMV contact and contactless cards. It contains issuer-defined data that helps verify transaction authenticity, apply risk management, and control the cryptogram generation and validation process.

High-Level Overview

- **Tag**: 9F10
- Purpose: Contains issuer-specific data used for:
 - Cryptogram generation/validation
 - o Risk management
 - CVR (Card Verification Results)
 - o Issuer action code decision making
- Length: Variable; often 32–36 hex characters (~16–18 bytes)

When and How is IAD Used?

★ During EMV Transaction Flow:

- Generated by the card during first GAC (GENERATE AC Application Cryptogram).
- 2. Returned to the terminal in the GAC response.
- 3. **Sent to issuer** in the authorization request (ARQC).
- 4. **Issuer parses** IAD to:
 - Inspect card behavior (via CVR)
 - Decide online approval or decline
- 5. **Issuer may modify** some fields and send updated IAD in issuer scripts or ARPC.

Typical Format

IAD format is **issuer-specific**, but most follow **Visa**, **Mastercard**, or **Amex** specs. Below is a generic Visa-style IAD structure:

Field	Bytes	Description
Cryptogram Version No.	1	Indicates CVR layout format
CVR (Card Verification Results)	3–6	Bitwise flags that describe card decisions
Unpredictable No.	4	Random used in cryptogram generation
ATC (Application Transaction Counter)	2	Count of EMV transactions
Padding / Proprietary	Varies	Additional fields or padding by issuer/card

CVR (Card Verification Results) — The Heart of IAD

The CVR inside the IAD is what tells the issuer what happened at the card level.

For example (Visa CVR – 3 bytes):

Byte Bit Meaning (example)

- 1 8 Offline PIN tried
- 1 7 Offline PIN successful
- 1 6 CVM unsuccessful
- 1 5 SDA failed
- 2 8 CDA failed
- 2 7 ARQC was generated
- 2 6 Unable to go online
- 3 8 Offline data authentication failed

Each card brand defines its own CVR layout, and it can be 3–6 bytes.

Example Dump

Let's analyze a sample IAD:

ini

CopyEdit

9F10 = 0E060112A00000010A0100000000000

- **0E**: Length = 14 bytes
- 06: Cryptogram version
- 01 12 A0 00 00 01 0A 01 00 00 00 00 00 00 this is the remaining IAD (usually includes CVR and ATC)

You need card brand documentation (like Visa's VCPS or Mastercard's M/Chip spec) to fully decode it.

How IAD is Used in the Flow

During First GAC (ARQC):

- Card creates IAD
- Includes:
 - o Cryptogram Version
 - o CVR (what card experienced)
 - o ATC
 - o Unpredictable number
- This is sent to terminal → then to issuer

Issuer Validation:

- Parses IAD
- Reads CVR:
 - o Was PIN entered? Correct?
 - o Did CDA fail?
 - o Is DDA skipped?
- · Uses this info to determine:
 - o If ARQC is valid
 - o Whether to send ARPC or decline

During GAC2 (TC or AAC):

Issuer may send IAD back (optional) — updated with issuer's decision or additional flags.

Summary

Aspect Details

Tag 9F10

Contains Cryptogram Version, CVR, ATC, randoms

Created By card, during first GAC

Purpose Inform issuer of card decisions

Parsed by Issuer host to approve/decline

Variable? Yes — structure & content vary by brand

If you share your **card scheme (Visa/Mastercard)** and a real IAD dump, I can break it down line-by-line. Would you like that?

You said:

sample IAD value

ChatGPT said:

IAD (Issuer Application Data) - In-depth Explanation

The **Issuer Application Data (IAD)** is a field included in the EMV transaction process that carries issuer-specific data. It's a **proprietary data object** (tag **9F10**) created by the **issuer** and sent to the card during **GAC 1** (Generate AC – First) and/or **GAC 2** (Generate AC – Second) command responses.

Tag Details

• **Tag:** 9F10

• Length: Variable (commonly 32–48 bits, i.e., 4–6 bytes)

• Source: Issuer-defined format

- **Direction:** From card to terminal (usually in response to GAC 1 and GAC 2)
- **Used in:** Host authorization, risk management, cryptogram verification

Purpose of IAD

The IAD contains data used by the issuer's host system to:

- Perform cryptographic validation
- Determine transaction risk
- Decide on further action (approve/decline)
- Identify which functions were supported and executed on the card (e.g., SDA, DDA, CDA)
- Check offline PIN results
- Check CVM results
- Validate ARQC or TC

IAD Format

The structure of the IAD is **issuer-defined**, but most issuers and terminal vendors follow the **Common Core Definition (CCD)** or **Visa/Mastercard-defined formats**. These include fields such as:

Field	Purpose
Cryptogram Information Data (CID)	Type of cryptogram (ARQC, AAC, TC)
Application Transaction Counter (ATC)	Number of transactions completed
CVR (Card Verification Results)	Summary of card-side checks (PIN, risk, etc.)
Issuer Discretionary Data	Issuer-defined fields (custom logic, flags)

Sample IAD Value Breakdown

Let's take a sample IAD value:

CopyEdit

9F10 12 06011203A0B8000000000000000000000

Breakdown:

- 9F10 → Tag
- 12 → Length (18 bytes)
- 06 → Cryptogram Format Version Number
- 01 → Cryptogram Information Data (e.g., ARQC, TC, etc.)
- 12 → Application Transaction Counter (ATC) part 1
- 03A0 → CVR (Card Verification Results)

CVR 03A0 might mean:

- Bit 8: Offline PIN performed
- Bit 6: CDA supported
- Bit 3: No issuer authentication

Note: Exact interpretation of each field requires issuer documentation.

When is IAD Used?

- Card returns IAD in response to:
 - GAC 1 (after Terminal Risk Management)
 - o GAC 2 (after Online Authorization, if performed)
- Issuer reads IAD:
 - o To verify card behavior
 - o To confirm PIN validation result
 - o To verify cryptogram

Real-Life Example Dump

Here's a sample snippet from a GAC response APDU:

yaml

CopyEdit

77 2A

9F27 01 80 ; CID = 80 = ARQC

9F36 02 0012 ; ATC = 0012

9F26 08 2B9E8495A32F3991; Cryptogram

- 9F10 12 06011203A0... → IAD (explained above)
- 9F27 → CID (indicates type of cryptogram)
- 9F36 → ATC
- 9F26 → ARQC cryptogram

Summary

- IAD is a compact, issuer-controlled field sent by the card to the terminal/issuer host.
- It provides internal status and results from card-side checks.
- **Decoding IAD** requires either:
 - o CCD (Common Core Definition) knowledge
 - o Issuer-specific documentation
- It is **crucial** for host-side risk management and decision-making in EMV.