Lecture 10 Random Variables, PMF, Expectation & Variance

BIO210 Biostatistics

Xi Chen

Fall, 2023

School of Life Sciences
Southern University of Science and Technology

Random Variable

What is a random variable (r.v.) ?

- An assignment of a value (a real number) to every possible outcome in the sample space.
- Mathematically: A real-valued function defined on a sample space Ω . In a particular experiment, a random variable (r.v.) would be some function that assigns a real number to each possible outcome.

Random Variable

More about random variables

- Discrete or continuous.
- Can have several random variables defined on the same sample space.
- Notation
 - random variable X: function $\Omega \mapsto \mathbb{R}$
 - numerical value: x : value $\in \mathbb{R}$

Different random variables on the same sample space

Function of a random variable is an r.v.

Probability Mass Function (PMF)

Probability Mass Function (PMF)

The PMF of X = number of tails after three flips

x	$ \mid \mathbb{P}\left(\left\{ \boldsymbol{X} = \boldsymbol{x} \right\} \right) $
0	1/8
1	3/8
2	3/8
3	1/8
otherwise	0

$$\mathbb{P}\left(\{\boldsymbol{X}=x\}\right) = \begin{cases} \frac{1}{8}\,, & x=0,3\\ \\ \frac{3}{8}\,, & x=1,2\\ \\ 0\,, & \text{otherwise} \end{cases}$$

PMF Notation

Probability Mass Function

Notation

$$\begin{split} \mathbb{P}_{\boldsymbol{X}}(x) &= \mathbb{P}\left(\{\boldsymbol{X} = x\}\right) \\ &= \mathbb{P}\left(\{\omega \in \Omega \mid \boldsymbol{X}(\omega) = x\}\right) \end{split}$$

Properties

$$\mathbb{P}_{\boldsymbol{X}}(x) \geqslant 0$$
$$\sum_{x} \mathbb{P}_{\boldsymbol{X}}(x) = 1$$

ω	$\boldsymbol{X}(\omega) = x$	
ннн	0	$\frac{1}{8}$
THH,		
HTH,	1	$\frac{3}{8}$
HHT		
TTH,		
THT,	2	$\frac{3}{8}$
THH		
TTT	3	$\frac{1}{8}$

Geometric PMF

Experiment: keep flipping a coin $(\mathbb{P}(H) = p)$ until a head comes up for the first time. Let the random variable X be the number of flips.

ω	$oldsymbol{X}(\omega)$	$\mathbb{P}_{\boldsymbol{X}}(x)$
Н	1	p
TH	2	(1-p)p
TTH	3	$(1-p)^2p$
:	:	:
$\underbrace{TTTTTT}_{n-1}H$	n	$(1-p)^{n-1}p$

Geometric PMF. X: geometric random variable.

How to compute a PMF $\mathbb{P}_{\boldsymbol{X}}(x)$

To compute a PMF $\mathbb{P}_{X}(x)$:

- 1. Collect all possible outcomes for which $\boldsymbol{X}=\boldsymbol{x}$;
- 2. add their probabilities;
- 3. repeat for all x.

Compute PMF

Experiment: two independent rolls of a fair tetrahedral die.

 $m{F}$: outcome of the first roll $m{S}$: outcome of the second roll $m{X} = min(m{F}, m{S})$

 $\mathbb{P}_{\boldsymbol{X}}(x) = ?$

Expected value of a random variable (Expectation)

Experiment: archery

Let X be the score you get for each shot. What is the expected value of X ?

Think: What is the average score you will get after a large number of trials?

\boldsymbol{x}	$\mathbb{P}_{\boldsymbol{X}}(x)$
1	0.19
2	0.17
3	0.15
4	0.13
5	0.11
6	0.09
7	0.07
8	0.05
9	0.03
10	0.01
	_

Expected value (Expectation)

Definition

$$\mathbb{E}\left[\boldsymbol{X}\right] = \sum_{x} x \mathbb{P}_{\boldsymbol{X}}(x)$$

- Interpretation
 - 1. Centre of gravity of the PMF
 - 2. Average in large number of repetitions of the experiment

PMF of X from the archery experiment

Expectation of a Uniform Distribution

Example: a uniform discrete random variable \boldsymbol{X} on 0,1,2,3,...,n

What is $\mathbb{E}\left[X
ight]$?

Properties of expectations

Let X be a random variable, and let Y = g(X), what is $\mathbb{E}[Y]$?

• The hard way:

• The easy way:

$$\mathbb{E}\left[\boldsymbol{Y}\right] = \sum_{y} y \mathbb{P}_{\boldsymbol{Y}}(y)$$

$$\mathbb{E}\left[\boldsymbol{Y}\right] = \sum_{y} y \mathbb{P}_{\boldsymbol{Y}}(y) \qquad \quad \mathbb{E}\left[\boldsymbol{Y}\right] = \sum_{x} g(x) \mathbb{P}_{\boldsymbol{X}}(x)$$

y	$\mathbb{P}_{\boldsymbol{Y}}(y)$
0	3/8
1	4/8
4	1/8

-	<u> </u>	
\overline{x}	g(x)	$\mathbb{P}_X(x)$
0	1	1/8
1	0	3/8
2	1	3/8
3	4	1/8

Expectation of a linear function of r.v.

- \bullet Caution: in general $\mathbb{E}\left[g(X)\right] \neq g(\mathbb{E}\left[X\right])$
- ullet Exception: if α, β are constants, then we have:

-
$$\mathbb{E}[\alpha] = \alpha$$

-
$$\mathbb{E}\left[\alpha X\right] = \alpha \mathbb{E}\left[X\right]$$

-
$$\mathbb{E}\left[\alpha X + \beta\right] = \alpha \mathbb{E}\left[X\right] + \beta$$

Variance and standard deviation of a random variable

Definition of Variance

$$\mathbb{V}$$
ar $(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$

Properties of Variance

- \mathbb{V} ar $(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- If α, β are constants, then $\mathbb{V}\mathrm{ar}\left(\alpha X + \beta\right) = \alpha^2 \mathbb{V}\mathrm{ar}\left(X\right)$

Definition of Standard Deviation

$$\sigma_X = \sqrt{\mathbb{V}\mathrm{ar}\left(X\right)}$$

Random Variables (Summary slide)

