Université Badji Mokhtar Annaba ($\mathbf{F}^{t\acute{e}}$ des sciences \mathbf{D}^{pt} de Maths.) Master1:Actuariat-P.S année 2019-2020

Solution de la Série 2: Processus ARCH

Ex1:

I) Soit le processus suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = 0.1 + 0.5 X_{t-1}^2$ 1. Calcul de $E(X_t)$, $E(X_t/I_{t-1})$, $V(X_t)$ et $V(X_t/I_{t-1})$.

-Remarquez que u_t et h_t sont non corrélés:

$$E(X_t) = E\left(u_t\sqrt{h_t}\right)$$
$$= E\left(u_t\right)E\left(\sqrt{h_t}\right)$$
$$= 0$$

-Sachant que h_t est I_{t-1} mesurable:

$$E(X_t/I_{t-1}) = \sqrt{h_t}E(u_t/I_{t-1})$$

= 0

_

$$V(X_t) = E(X_t^2)$$

$$= E(u_t^2 h_t)$$

$$= E(0.1 + 0.5X_{t-1}^2)$$

$$= 0.1 + 0.5E(X_{t-1}^2)$$

par stationnarité on a $E(X_t^2) = E(X_{t-1}^2)$ d'où $\overline{V(X_t) = 0.2}$

_

$$V(X_t/I_{t-1}) = h_t V(u_t/I_{t-1})$$
$$= h_t.$$

2. Ecrire X_t^2 sous forme AR.

On a $h_t = 0.1 + 0.5X_{t-1}^2$, on ajoute X_t^2 des deux cotés:

$$X_t^2 = 0.1 + 0.5X_{t-1}^2 + X_t^2 - h_t$$

On pose $v_t = X_t^2 - h_t$ et on montre que v_t est un BB faible:

$$E\left(v_t/I_{t-1}\right) = h_t - h_t = 0$$

d'où $E(v_t) = 0$. Soit $k \neq 0$:

$$cov (v_{t}, v_{t-k}) = E ((X_{t}^{2} - h_{t}) (X_{t-k}^{2} - h_{t-k}))$$

$$= E ((u_{t}^{2} h_{t} - h_{t}) (u_{t-k}^{2} h_{t-k} - h_{t-k}))$$

$$= E (u_{t}^{2} - 1) E (h_{t} (u_{t-k}^{2} h_{t-k} - h_{t-k}))$$

$$= 0.$$

Finalement $X_{t}^{2}=0.1+0.5X_{t-1}^{2}+v_{t}\sim AR\left(1\right)$.

3. Calculer la Kurtosis de ce processus. Conclure.

On rappelle que la kurtosis $K = \frac{E(X_t^4)}{E(X_t^2)^2}$, on commence par calculer le moment d'ordre 4:

$$E(X_t^4) = E(u_t^4 h_t^2)$$

$$= 3E((0.1 + 0.5X_{t-1}^2)^2)$$

$$= 3E(0.01 + 0.1X_{t-1}^2 + 0.25X_{t-1}^4)$$

$$= 3(0.01 + 0.1E(X_{t-1}^2) + 0.25E(X_{t-1}^4))$$

Par stationnarité on a $E(X_{t-1}^4) = E(X_t^4)$ et $E(X_{t-1}^2) = V(X_t) = 0.2$, alors

$$E(X_t^4) = \frac{0.03 + 0.3 \times 0.2}{1 - 3 \times 0.25}$$

= 0.36.

d'où K=9.

On conclut que la distribution est leptokurtique. (Les queues de distribution sont plus épaisses que celle de la loi normale).

II) Même questions avec $h_t = 2 + 0.3X_{t-1}^2$ et $h_t = 3 + 0.2X_{t-2}^2$.

C'est votre tour, à faire exactement comme dans I.

III) Soit le processus suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = 1 + 0.1X_{t-1}^2 + 0.2X_{t-2}^2$.

1. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$. Ecrire X_t^2 sous forme AR, en déduire $V(X_t)$.

 $-E(X_t) = 0$ et $E(X_t/I_{t-1}) = 0$ (Même démonstration que **I**).

 $-h_t = 1 + 0.1X_{t-1}^2 + 0.2X_{t-2}^2$, on ajoute X_t^2 des deux cotés:

$$X_t^2 = 1 + 0.1X_{t-1}^2 + 0.2X_{t-2}^2 + v_t$$

où v_t est un BB, d'où $X_t^2 \sim AR(2)$. Donc $V(X_t) = E(X_t^2) = \frac{1}{1-0.1-0.2} = 1.4286$.

2. Calculer la Kurtosis de ce processus.

$$E(X_{t}^{4}) = E(u_{t}^{4}h_{t}^{2})$$

$$= 3E((1+0.1X_{t-1}^{2}+0.2X_{t-2}^{2})^{2})$$

$$= 3E(1+0.2X_{t-1}^{2}+0.01X_{t-1}^{4}+0.4X_{t-2}^{2}+0.04X_{t-1}^{2}X_{t-2}^{2}+0.04X_{t-2}^{4})$$

$$= 3(1+0.2E(X_{t-1}^{2})+0.01E(X_{t-1}^{4})+0.4E(X_{t-2}^{2})+0.04E(X_{t-1}^{2}X_{t-2}^{2})+0.04E(X_{t-2}^{4}))$$
(1)

Par stationnarité on a: $E\left(X_{t-1}^2\right) = E\left(X_{t-2}^2\right) = V(X_t)$ et $E\left(X_{t-1}^4\right) = E\left(X_{t-2}^4\right) = E\left(X_t^4\right)$, il nous reste à calculer $E\left(X_{t-1}^2X_{t-2}^2\right)$!

$$E\left(X_{t-1}^2 X_{t-2}^2\right) = E\left(u_{t-1}^2 \left(1 + 0.1 X_{t-2}^2 + 0.2 X_{t-3}^2\right) X_{t-2}^2\right)$$

= 1 + 0.1E\left(X_{t-2}^4\right) + 0.2E\left(X_{t-2}^2 X_{t-3}^2\right).

Encore une fois par stationnarité on a: $E\left(X_{t-2}^2X_{t-3}^2\right)=E\left(X_{t-1}^2X_{t-2}^2\right)$, d'où $E\left(X_{t-1}^2X_{t-2}^2\right)=\frac{1}{0.8}\left(1+0.1E\left(X_{t-2}^4\right)\right)$, on remplace dans (1)

$$\left(1 - 0.03 - 0.12 - \frac{0.012}{0.8}\right) E\left(X_t^4\right) = 3 + 1.8 \times 1.4286 + \frac{0.12}{0.8}$$

d'où $E(X_t^4) = \frac{5.7215}{0.835} = 6.8521$. Et la kurtosis $K = \frac{6.8521}{(1.4286)^2} = 3.3574$.

Ex2:

I) Soit le processus ARCH(1) suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = \alpha + 0.4X_{t-1}^2$. 1.Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$.

$$E(X_t) = 0, E(X_t/I_{t-1}) = 0$$
 et $V(X_t/I_{t-1}) = h_t$.

2. Sachant que $V(X_t) = 5$, calculer α .

$$V(X_t) = E(X_t^2)$$

= $\alpha + 0.4E(X_{t-1}^2)$

Donc $V(X_t) = \frac{\alpha}{0.6} \Longrightarrow \overline{\alpha} = 3$

3. En prenant la valeur de α trouver en 2, calculer la Kurtosis. (Même calcul que I 3.)

4. Montrer que:

i)
$$E(X_t/I_{t-10}) = 0$$
, ii) $V(X_t/I_{t-10}) = 0.4^{10}X_{t-10}^2 + 3\frac{1 - 0.4^{10}}{0.6}$.

-i) En utilisant la propriété des esperances itérées:

$$E(X_t/I_{t-10}) = E(E(X_t/I_{t-1})/I_{t-10})$$

= $E(0/I_{t-10})$
= 0.

-ii)

$$V(X_t/I_{t-10}) = E(X_t^2/I_{t-10}) - E(X_t/I_{t-10})^2$$

= $E(X_t^2/I_{t-10})$.

On sait que $X_t^2 \sim AR(1)$, donc

$$X_{t}^{2} = 3 + 0.4X_{t-1}^{2} + v_{t}$$

$$= 3 + 0.4 (3 + 0.4X_{t-2}^{2} + v_{t-1}) + v_{t}$$

$$= 3 (1 + 0.4) + 0.4^{2}X_{t-2}^{2} + 0.4v_{t-1} + v_{t}$$

$$\vdots$$

$$= 3 (1 + 0.4 + \dots + 0.4^{9}) + 0.4^{10}X_{t-10}^{2} + 0.4^{9}v_{t-9} + \dots + v_{t}$$

$$= 3\frac{1 - 0.4^{10}}{0.6} + 0.4^{10}X_{t-10}^{2} + \sum_{i=0}^{9} 0.4^{i}v_{t-i}$$

d'où le résultat.

II) Soit le modèle $X_t = 0.8X_{t-1} + \varepsilon_t$ où $\varepsilon_t = u_t \sqrt{1.5 + 0.4\varepsilon_{t-1}^2}$ et $u_t \to N(0, 1)$. 1. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$, $V(X_t)$ et $V(X_t/I_{t-1})$.

$$E(X_t) = 0.8E(X_{t-1}) + E(\varepsilon_t),$$

sachant que $E(\varepsilon_t) = 0 \Longrightarrow E(X_t) = 0$.

 $E(X_t/I_{t-1}) = 0.8X_{t-1} + E(\varepsilon_t/I_{t-1}),$

puisque $E(\varepsilon_t/I_{t-1}) = 0$ donc $E(X_t/I_{t-1}) = 0.8X_{t-1}$.

$$V(X_t) = V(0.8X_{t-1} + \varepsilon_t)$$

= 0.64V(X_{t-1}) + V(\varepsilon_t).

Calculons la variance de ε_t :

$$V(\varepsilon_t) = E\left(1.5 + 0.4\varepsilon_{t-1}^2\right) \Longrightarrow V(\varepsilon_t) = \frac{1.5}{0.6} = 2.5$$

d'où $V(X_t)=\frac{2.5}{1-0.64}=6.9444$ 2. Donner l'intervalle de confiance à 95% de X_{t+1} .

On rappelle que: $IC\left(X_{t+1}\right) = \left[\widehat{X}_{t}\left(1\right) \pm 1.96\sqrt{V\left(e_{t}\left(1\right)\right)}\right]$.

$$\widehat{X}_t(1) = E(X_{t+1}/I_t)$$

$$= 0.8X_t.$$

et

$$e_t(1) = X_{t+1} - \widehat{X}_t(1)$$
$$= \varepsilon_{t+1}$$

 $\varepsilon_{t+1}/I_t \sim N\left(0, 1.5 + 0.4\varepsilon_t^2\right)$ d'où

$$IC(X_{t+1}) = \left[0.8X_t \pm 1.96\sqrt{1.5 + 0.4\varepsilon_t^2}\right]$$

Ex3:

I) Calculer les moments conditionnels et non conditionnels et la Kurtosis du processus GARCH(1,1) stationnaire.

Soit $X_t \sim GARCH(1,1) \Longrightarrow X_t = u_t \sqrt{h_t}$ où $u_t \to iidN(0,1)$ et $h_t = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 h_{t-1}$. -Moment d'ordre 1 non conditionnel

$$E(X_t) = E\left(u_t\sqrt{h_t}\right)$$
$$= E\left(u_t\right)E\left(\sqrt{h_t}\right)$$
$$= 0$$

-Moment d'ordre 1 conditionnel

$$E(X_t/I_{t-1}) = \sqrt{h_t}E(u_t/I_{t-1})$$

= 0

-Moment d'ordre 2 non conditionnel

$$V(X_t) = E(X_t^2)$$

$$= E(h_t)$$

$$= E(\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 h_{t-1})$$

$$= \alpha_0 + \alpha_1 E(X_{t-1}^2) + \beta_1 E(h_{t-1})$$

En remarquant que $E(h_{t-1}) = E(h_t) = V(X_t)$, on aura

$$V(X_t) = \frac{\alpha_0}{1 - \alpha_1 - \beta_1}.$$

-Moment d'ordre 2 conditionnel

$$V(X_t/I_{t-1}) = h_t V(u_t/I_{t-1})$$

= h_t .

-La kurtosis:

$$E(X_t^4) = E(u_t^4 h_t^2)$$

$$= 3E(h_t^2)$$

$$= 3E((\alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 h_{t-1})^2)$$

$$= 3E((\alpha_0^2 + 2\alpha_0 \alpha_1 X_{t-1}^2 + \alpha_1^2 X_{t-1}^4 + 2\alpha_0 \beta_1 h_{t-1} + 2\alpha_1 \beta_1 X_{t-1}^2 h_{t-1} + \beta_1^2 h_{t-1}^2)$$

$$= 3(\alpha_0^2 + 2\alpha_0 \alpha_1 E(X_{t-1}^2) + \alpha_1^2 E(X_{t-1}^4) + 2\alpha_0 \beta_1 E(h_{t-1}) + 2\alpha_1 \beta_1 E(X_{t-1}^2 h_{t-1}) + \beta_1^2 E(h_{t-1}^2))$$

On a: $E(X_{t-1}^2) = E(h_{t-1}) = V(X_t), E(h_{t-1}^2) = \frac{1}{3}E(X_t^4)$ et $E(X_{t-1}^2h_{t-1}) = E(h_{t-1}^2)$. Donc:

$$(1 - 3\alpha_1^2 - \beta_1^2 - 2\alpha_1\beta_1) E(X_t^4) = 3\alpha_0^2 + 6\alpha_0\alpha_1 V(X_t) + 6\alpha_0\beta_1 V(X_t)$$

d'où

$$E(X_t^4) = 3\alpha_0^2 \frac{1 + \alpha_1 + \beta_1}{(1 - \alpha_1 - \beta_1)(1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2)}$$

Enfin,

$$K = 3 \frac{\left(1 - (\alpha_1 + \beta_1)^2\right)}{\left(1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2\right)}.$$

II) 1. Ecrire le modèle GARCH(1,1) avec les coefficients: $\alpha_0 = 1$, $\alpha_1 = 0.1$, $\beta_1 = 0.8$

$$X_t = u_t \sqrt{h_t}$$
 où $u_t \to iidN(0,1)$ et $h_t = 1 + 0.1X_{t-1}^2 + 0.8h_{t-1}$.

2. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$.

D'aprés I:

$$E(X_t) = 0, E(X_t/I_{t-1}) = 0 \text{ et } V(X_t/I_{t-1}) = h_t$$

3. Ecrire X_t^2 sous forme ARMA, en déduire $V(X_t)$. $h_t = 1 + 0.1X_{t-1}^2 + 0.8h_{t-1}$, on ajoute X_t^2 des deux cotés:

$$X_t^2 = 1 + 0.1X_{t-1}^2 + 0.8h_{t-1} + X_t^2 - h_t$$

On pose $v_t = X_t^2 - h_t$, qui est un BB faible donc $h_t = X_t^2 - v_t$, d'où

$$X_t^2 = 1 + 0.9X_{t-1}^2 - 0.8v_{t-1} + v_t \sim ARMA(1, 1)$$

On déduit $V(X_t) = \frac{1}{1 - 0.9} = 10$.

4. Calculer la Kurtosis de ce processus.

On trouve K = 3.3529.

III)- Soit le processus suivant: $Y_t = 3 + 0.7Y_{t-1} + \varepsilon_t$ où ε_t est le modèle GARCH(1,1) défini en II.

1. Déduire de II: $E(Y_t)$, $E(Y_t/I_{t-1})$, $V(Y_t)$ et $V(Y_t/I_{t-1})$.

$$E(Y_t) = \frac{3}{0.3} = 10, \quad E(Y_t/I_{t-1}) = 3 + 0.7Y_{t-1},$$

$$V(Y_t) = \frac{10}{1 - 0.49} = 19.608 \quad \text{et} \quad V(Y_t/I_{t-1}) = V(\varepsilon_t/I_{t-1}) = h_t.$$

2. Donner l'intervalle de confiance prévisionnelle de Y_{t+1} au seuil 5%. Conclure.

$$IC(Y_{t+1}) = \left[3 + 0.7Y_t \pm 1.96\sqrt{1 + 0.1\varepsilon_t^2 + 0.8h_t}\right].$$