Chapter 10 Review Exercises, pp. 704-707

- 1. a. False b. False c. True d. False e. True f. False **g.** False **h.** True **3.** Approx. 1.25; approx. 0.05 **5.** $\lim a_k = 0$,
- $\lim_{n \to \infty} S_n = 8 \quad \textbf{7.} \ a_k = \frac{1}{k} \quad \textbf{9.} \ \textbf{a.} \ 0 \quad \textbf{b.} \ \frac{5}{9} \quad \textbf{11.} \ \textbf{a.} \ \text{Yes; } \lim_{k \to \infty} a_k = 1$
- **b.** No; $\lim a_k \neq 0$ **13.** Diverges **15.** 5 **17.** 0 **19.** 0 **21.** 1/e
- **23.** Diverges **25. a.** 80, 48, 32, 24, 20 **b.** 16 **27.** Diverges
- **29.** Diverges **31.** Diverges **33.** $\frac{3\pi}{4}$ **35.** 3 **37.** 2/9
- **39.** $\frac{311}{990}$ **41.** 200 mg **43.** Diverges **45.** Diverges **47.** Converges
- 49. Converges 51. Converges 53. Converges 55. Converges
- **57.** Diverges **59.** Converges **61.** Converges **63.** Converges
- 65. Converges 67. Converges 69. Converges 71. Converges
- 73. Diverges 75. Diverges 77. Converges conditionally
- **79.** Converges absolutely **81.** Diverges **83.** Converges absolutely
- 85. Converges absolutely 87. Diverges 89. a. Approx. 1.03666
- **b.** 0.0004 **c.** $L_5 = 1.03685$; $U_5 = 1.03706$ **91.** 0.0067
- **93.** 100 **95. a.** 803 m, 1283 m, 2000 $(1 0.95^N)$ m **b.** 2000 m

97. a.
$$\frac{\pi}{2^{n-1}}$$
 b. 2π **99.** a. $T_1 = \frac{\sqrt{3}}{16}, T_2 = \frac{7\sqrt{3}}{64}$

b.
$$T_n = \frac{\sqrt{3}}{4} \left(1 - \left(\frac{3}{4} \right)^n \right)$$
 c. $\lim_{n \to \infty} T_n = \frac{\sqrt{3}}{4}$ **d.** 0

$$101. \ \sqrt{\frac{20}{g}} \left(\frac{1 + \sqrt{p}}{1 - \sqrt{p}} \right) s$$

CHAPTER 11

Section 11.1 Exercises, pp. 718-721

- **1.** $f(0) = p_2(0), f'(0) = p_2'(0), \text{ and } f''(0) = p_2''(0)$
- **3.** 1, 1.05, 1.04875 **5.** $p_3(x) = 1 + x^2 + x^3$; 1.048
- 7. $p_3(x) = 1 + (x 2) + 2(x 2)^3$; 0.898
- **9. a.** $p_1(x) = 8 + 12(x 1)$
- **b.** $p_2(x) = 8 + 12(x 1) + 3(x 1)^2$ **c.** 9.2; 9.23
- **11. a.** $p_1(x) = 1 2x$ **b.** $p_2(x) = 1 2x + 2x^2$ **c.** 0.8, 0.82
- **13.** a. $p_1(x) = 1 x$ b. $p_2(x) = 1 x + x^2$ c. 0.95, 0.9525
- **15.** a. $p_1(x) = 2 + \frac{1}{12}(x 8)$
- **b.** $p_2(x) = 2 + \frac{1}{12}(x 8) \frac{1}{288}(x 8)^2$ **c.** $1.958\overline{3}$, 1.95747
- **17.** $p_1(x) = 1, p_2(x) = p_3(x) = 1 18x^2, p_4(x) = 1 18x^2 + 54x^4$
- **19.** $p_3(x) = 1 3x + 6x^2 10x^3$,
- $p_4(x) = 1 3x + 6x^2 10x^3 + 15x^2$
- **21.** $p_1(x) = 1 + 3(x 1), p_2(x) = 1 + 3(x 1) + 3(x 1)^2,$
- $p_3(x) = 1 + 3(x 1) + 3(x 1)^2 + (x 1)^3$
- **23.** $p_3(x) = 1 + \frac{1}{e}(x e) \frac{1}{2e^2}(x e)^2 + \frac{1}{3e^3}(x e)^3$
- **25.** a. $p_1(x) = -x$, $p_2(x) = -x \frac{x^2}{2}$

27. a.
$$p_1(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right),$$

$$p_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2$$

- **29. a.** 1.0247 **b.** 7.6×10^{-6} **31. a.** 0.8613 **b.** 5.4×10^{-4} **33. a.** 1.1274988 **b.** Approx. 8.85×10^{-6} (Answers may vary if intermediate calculations are rounded.) **35. a.** Approx. -0.10033333**b.** Approx. 1.34×10^{-6} (Answers may vary if intermediate calculations are rounded.) **37. a.** 1.0295635 **b.** Approx. 4.86×10^{-7} (Answers may vary if intermediate calculations are rounded.) **39. a.** Approx. 0.52083333 **b.** Approx. 2.62×10^{-4} (Answers may vary if intermediate calculations are rounded.)
- **41.** $R_n(x) = \frac{\sin^{(n+1)}(c)}{(n+1)!} x^{n+1}$, for c between x and 0
- **43.** $R_n(x) = \frac{(-1)^{n+1}e^{-c}}{(n+1)!}x^{n+1}$, for c between x and 0
- **45.** $R_n(x) = \frac{\sin^{(n+1)}(c)}{(n+1)!} \left(x \frac{\pi}{2}\right)^{n+1}$, for c between x and $\frac{\pi}{2}$
- **47.** 2.0×10^{-5} **49.** 1.6×10^{-5} ($e^{0.25} < 2$) **51.** 2.6×10^{-4}
- **53.** With n = 4, $|\text{error}| \le 2.5 \times 10^{-3}$
- **55.** With n = 2, $|\text{error}| \le 4.2 \times 10^{-2} \, (e^{0.5} < 2)$
- **57.** With n = 2, $|error| \le 5.4 \times 10^{-3}$ **59.** 4 **61.** 3 **63.** 1
- 65. a. False b. True c. True d. True 67. a. C b. E
- **c.** A **d.** D **e.** B **f.** F **69. a.** 0.1; 1.7×10^{-4} **b.** 0.2; 1.3×10^{-3} **71. a.** 0.995; 4.2×10^{-6} **b.** 0.98; 6.7×10^{-5}
- **73. a.** 1.05; 1.3×10^{-3} **b.** 1.1; 5×10^{-3} **75. a.** 1.1; 10^{-2} **b.** 1.2; 4×10^{-2}
- 77. a.

-0.1	2.09×10^{-5}	8.51×10^{-8}		
0.0	0	0		
0.1	2.09×10^{-5}	8.51×10^{-8}		
0.2	3.39×10^{-4}	5.51×10^{-6}		

- **b.** The errors decrease as |x| decreases.
- $|e^{-x}-p_1(x)|$ $|e^{-x}-p_2(x)|$ 2.14×10^{-2} 1.40×10^{-3} -0.2-0.1 5.17×10^{-3} 1.71×10^{-4} 0.0 0 0.1 4.84×10^{-3} 1.63×10^{-4} 1.87×10^{-2} 1.27×10^{-3} 0.2
 - **b.** The errors decrease as |x| decreases.
- **81.** Centered at x = 0, for all n

83. a.
$$y = f(a) + f'(a)(x - a)$$
 85. a. $p_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$; $q_5(x) = -(x - \pi) + \frac{1}{6}(x - \pi)^3 - \frac{1}{120}(x - \pi)^5$

 $\begin{vmatrix} p_5 \text{ is a better approximation on} \\ [-\pi, \pi/2); q_5 \text{ is a better approximation on } (\pi/2, 2\pi]. \end{vmatrix}$

,	1	1
x	$ \sin x - p_5(x) $	$ \sin x - q_5(x) $
$\pi/4$	3.6×10^{-5}	7.4×10^{-2}
$\pi/2$	4.5×10^{-3}	4.5×10^{-3}
$3\pi/4$	7.4×10^{-2}	3.6×10^{-5}
$5\pi/4$	2.3	3.6×10^{-5}
$7\pi/4$	20	7.4×10^{-2}
	$\pi/4$ $\pi/2$ $3\pi/4$ $5\pi/4$	$\pi/4$ 3.6 × 10 ⁻⁵ $\pi/2$ 4.5 × 10 ⁻³ $3\pi/4$ 7.4 × 10 ⁻² $5\pi/4$ 2.3

d. p_5 is a better approximation at $x = \pi/4$; at $x = \pi/2$ the errors

87. a.
$$p_1(x) = 6 + \frac{1}{12}(x - 36); q_1(x) = 7 + \frac{1}{14}(x - 49)$$

		12	-
).	x	$ \sqrt{x} - p_1(x) $	$ \sqrt{x} - q_1(x) $
	37	5.7×10^{-4}	6.0×10^{-2}
	39	5.0×10^{-3}	4.1×10^{-2}
	41	1.4×10^{-2}	2.5×10^{-2}
	43	2.6×10^{-2}	1.4×10^{-2}
	45	4.2×10^{-2}	6.1×10^{-3}
	47	6.1×10^{-2}	1.5×10^{-3}

c. p_1 is a better approximation at x = 37, 39, and 41.

Section 11.2 Exercises, pp. 729-730

1. $c_0 + c_1 x + c_2 x^2 + c_3 x^3$ 3. Ratio and Root Tests 5. The radius of convergence does not change. The interval of convergence may change. 7. R = 10; [-8, 12] 9. $R = \frac{1}{2}; (-\frac{1}{2}, \frac{1}{2})$

11.
$$R = 0$$
; $\{x: x = 0\}$ **13.** $R = \infty$; $(-\infty, \infty)$ **15.** $R = 3$; $(-3, 3)$

17.
$$R = \infty$$
; $(-\infty, \infty)$ **19.** $R = 2$; $(-2, 2)$ **21.** $R = \infty$; $(-\infty, \infty)$

23.
$$R = 1$$
; $(0, 2]$ **25.** $R = \frac{1}{4}$; $\left[0, \frac{1}{2}\right]$ **27.** $R = 5$; $(-3, 7)$

29.
$$R = \infty; (-\infty, \infty)$$
 31. $R = \sqrt{3}; (-\sqrt{3}, \sqrt{3})$ **33.** $R = 1; (0, 2)$

35.
$$R = \infty; (-\infty, \infty)$$
 37. $R = e$ **39.** $R = e^4$

41.
$$\sum_{k=0}^{\infty} (3x)^k$$
; $\left(-\frac{1}{3}, \frac{1}{3}\right)$ **43.** $2\sum_{k=0}^{\infty} x^{k+3}$; $(-1, 1)$

45.
$$4\sum_{k=0}^{\infty} x^{k+12}$$
; $(-1,1)$ **47.** $-\sum_{k=1}^{\infty} \frac{(3x)^k}{k}$; $\left[-\frac{1}{3},\frac{1}{3}\right)$

49.
$$-2\sum_{k=1}^{\infty} \frac{x^{k+6}}{k}$$
; $[-1,1)$ **51.** $g(x) = 2\sum_{k=1}^{\infty} k(2x)^{k-1}$; $\left(-\frac{1}{2},\frac{1}{2}\right)$

53.
$$g(x) = \sum_{k=1}^{\infty} (-1)^k k x^{k-1}; (-1, 1)$$

55.
$$g(x) = -\sum_{k=1}^{\infty} \frac{3^k x^k}{k}; \left[-\frac{1}{3}, \frac{1}{3} \right)$$

57.
$$\sum_{k=1}^{\infty} (-1)^{k+1} 2kx^{2k-1}$$
; $(-1,1)$ **59.** $\sum_{k=0}^{\infty} \left(-\frac{x}{3}\right)^k$; $(-3,3)$

61.
$$\ln 2 - \frac{1}{2} \sum_{k=1}^{\infty} \frac{x^{2k}}{k}$$
; $(-2, 2)$ **63. a.** True **b.** True **c.** True

d. True **65.**
$$|x - a| < R$$
 67. $f(x) = \frac{1}{3 - \sqrt{x}}$; $1 < x < 9$

69.
$$f(x) = \frac{e^x}{e^x - 1}$$
; $0 < x < \infty$ **71.** $f(x) = \frac{3}{4 - x^2}$; $-2 < x < 2$

73.
$$\sum_{k=0}^{\infty} \frac{(-3x)^k}{k!}$$
; $-\infty < x < \infty$

75.
$$\lim_{k \to \infty} \left| \frac{c_{k+1} x^{k+1}}{c_k x^k} \right| = \lim_{k \to \infty} \left| \frac{c_{k+1} x^{k+m+1}}{c_k x^{k+m}} \right|$$
, so by the Ratio Test,

77. a.
$$f(x) g(x) = c_0 d_0 + (c_0 d_1 + c_1 d_0) x + c_0 d_0 + c_0 d_0$$

$$(c_0d_2 + c_1d_1 + c_2d_0)x^2$$
 b. $\sum_{k=0}^{n} c_k d_{n-k}$

Section 11.3 Exercises, pp. 740-742

1. The *n*th Taylor polynomial is the *n*th partial sum of the corresponding Taylor series. **3.**
$$\sum_{k=0}^{\infty} \frac{(x-2)^k}{k!}$$
 5. Replace *x* with x^2 in the

Taylor series for f(x); |x| < 1. 7. The Taylor series for a function f(x)converges to f on an interval if, for all x in the interval, $\lim R_n(x) = 0$, where $R_n(x)$ is the remainder at x.

9. a.
$$1-2(x-1)+3(x-1)^2-4(x-1)^2$$

b.
$$\sum_{k=0}^{\infty} (-1)^k (k+1)(x-1)^k$$
 c. $(0,2)$ **11. a.** $1-x+\frac{x^2}{2!}-\frac{x^3}{3!}$

b.
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!}$$
 c. $(-\infty, \infty)$ **13. a.** $2 + 6x + 12x^2 + 20x^3$

b.
$$\sum_{k=0}^{\infty} (k+1)(k+2)x^k$$
 c. $(-1,1)$ **15. a.** $1-x^2+x^4-x^6$

b.
$$\sum_{k=0}^{n} (-1)^k x^{2k}$$
 c. $(-1,1)$ **17. a.** $1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!}$

b.
$$\sum_{k=0}^{\infty} \frac{(2x)^k}{k!}$$
 c. $(-\infty, \infty)$ **19. a.** $\frac{x}{2} - \frac{x^3}{3 \cdot 2^3} + \frac{x^5}{5 \cdot 2^5} - \frac{x^7}{7 \cdot 2^7}$

b.
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)2^{2k+1}} \quad c. [-2,2]$$

21. a.
$$1 + (\ln 3)x + \frac{\ln^2 3}{2}x^2 + \frac{\ln^3 3}{6}x^3$$
 b. $\sum_{k=0}^{\infty} \frac{\ln^k 3}{k!} x^k$ **c.** $(-\infty, \infty)$

23. a.
$$1 + \frac{(3x)^2}{2} + \frac{(3x)^4}{24} + \frac{(3x)^6}{720}$$
 b. $\sum_{k=0}^{\infty} \frac{(3x)^{2k}}{(2k)!}$ **c.** $(-\infty, \infty)$

25. a.
$$(x-3) - \frac{1}{2}(x-3)^2 + \frac{1}{3}(x-3)^3 - \frac{1}{4}(x-3)^4$$

b.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(x-3)^k}{k}$$
 c. (2, 4]

27. a.
$$1 - \frac{(x - \pi/2)^2}{2!} + \frac{(x - \pi/2)^4}{4!} - \frac{(x - \pi/2)^6}{6!}$$

b.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (x - \pi/2)^{2k}$$

29. a.
$$1 - (x - 1) + (x - 1)^2 - (x - 1)^3$$
 b. $\sum_{k=0}^{\infty} (-1)^k (x - 1)^k$

31. a.
$$\ln 3 + \frac{(x-3)}{3} - \frac{(x-3)^2}{3^2 \cdot 2} + \frac{(x-3)^3}{3^3 \cdot 3}$$

b.
$$\ln 3 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(x-3)^k}{k3^k}$$

33. a.
$$2 + 2(\ln 2)(x - 1) + (\ln^2 2)(x - 1)^2 + \frac{\ln^3 2}{3}(x - 1)^3$$

b.
$$\sum_{k=0}^{\infty} \frac{2(x-1)^k \ln^k 2}{k!}$$
 35. $x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4}$

37.
$$1 + 2x + 4x^2 + 8x^3$$
 39. $1 + \frac{x}{2} + \frac{x^2}{6} + \frac{x^3}{24}$

41.
$$1 - x^4 + x^8 - x^{12}$$
 43. $x^2 + \frac{x^6}{6} + \frac{x^{10}}{120} + \frac{x^{14}}{5040}$

45. a.
$$1 - 2x + 3x^2 - 4x^3$$
 b. 0.826

45. a.
$$1 - 2x + 3x^2 - 4x^3$$
 b. 0.826
47. a. $1 + \frac{1}{4}x - \frac{3}{32}x^2 + \frac{7}{128}x^3$ **b.** 1.029

49. a.
$$1 - \frac{2}{3}x + \frac{5}{9}x^2 - \frac{40}{81}x^3$$
 b. 0.895 **51.** $1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16}$;

[-1,1] **53.**
$$3 - \frac{3x}{2} - \frac{3x^2}{8} - \frac{3x^3}{16}$$
; [-1,1]

55.
$$a + \frac{x^2}{2a} - \frac{x^4}{8a^3} + \frac{x^6}{16a^5}$$
; $|x| \le a$

57.
$$1 - 8x + 48x^2 - 256x^3$$
 59. $\frac{1}{16} - \frac{x^2}{32} + \frac{3x^4}{256} - \frac{x^6}{256}$

61.
$$\frac{1}{9} - \frac{2}{9} \left(\frac{4x}{3} \right) + \frac{3}{9} \left(\frac{4x}{3} \right)^2 - \frac{4}{9} \left(\frac{4x}{3} \right)^3$$

63.
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$
, where c is between 0 and x and

$$f^{(n+1)}(c) = \pm \sin c \text{ or } \pm \cos c. \text{ Therefore, } |R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!} \to 0$$

as
$$n \to \infty$$
, for $-\infty < x < \infty$. **65.** $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$,

where c is between 0 and x and $f^{(n+1)}(c) = (-1)^n e^{-c}$. Therefore,

$$|R_n(x)| \le \frac{|x|^{n+1}}{e^c(n+1)!} \to 0 \text{ as } n \to \infty, \text{ for } -\infty < x < \infty.$$

67. a. False b. True c. False d. False e. True

69. a.
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!}$$
 b. $R = \infty$

71. a.
$$1 - \frac{2}{3}x^2 + \frac{5}{9}x^4 - \frac{40}{81}x^6$$
 b. $R = 1$

73. a.
$$1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 - \frac{1}{16}x^6$$
 b. $R = 1$

75. a.
$$1 - 2x^2 + 3x^4 - 4x^6$$
 b. $R = 1$ **77.** Approx. 3.9149

79. Approx. 1.8989 **85.**
$$\sum_{k=0}^{\infty} \left(\frac{x-4}{2}\right)^k$$
 87. Use three terms of the

Taylor series for cos x centered at $a = \pi/4$; 0.766 **89. a.** Use three terms of the Taylor series for $\sqrt[3]{125} + x$ centered at a = 0; 5.03968 **b.** Use three terms of the Taylor series for $\sqrt[3]{x}$ centered at a = 125; 5.03968 **c.** Yes

Section 11.4 Exercises, pp. 748-750

1. Replace f and g with their Taylor series centered at a and evaluate the limit. 3. Substitute x = -0.6 into the Taylor series for e^x centered at 0. Because the resulting series is an alternating series, the error can be estimated easily. **7.** 1 **9.** $\frac{1}{2}$ **11.** 2 **13.** $\frac{2}{3}$ **15.** $\frac{1}{3}$

17.
$$\frac{3}{5}$$
 19. $-\frac{8}{5}$ 21. 1 23. $\frac{3}{4}$ 25. a. $1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$

b.
$$e^x$$
 c. $-\infty < x < \infty$

27. a.
$$1 - x + x^2 - \cdots (-1)^{n-1}x^{n-1} + \cdots$$
 b. $\frac{1}{1+x}$ **c.** $|x| < 1$ **21.** $R = 9, (-9, 9)$ **23.** $R = 2, [-4, 0)$ **25.** $R = \frac{3}{2}, [-2, 1]$

29. a.
$$-2 + 4x - 8 \cdot \frac{x^2}{2!} + \cdots + (-2)^n \frac{x^{n-1}}{(n-1)!} + \cdots$$

b.
$$-2e^{-2x}$$
 c. $-\infty < x < \infty$ **31. a.** $1 - x^2 + x^4 - \cdots$

b.
$$\frac{1}{1+x^2}$$
 c. $-1 < x < 1$

33. a.
$$2 + 2t + \frac{2t^2}{2!} + \dots + \frac{2t^n}{n!} + \dots$$
 b. $y(t) = 2e^t$

35. a.
$$2 + 16t + 24t^2 + 24t^3 + \cdots + \frac{3^{n-1} \cdot 16}{n!}t^n + \cdots$$

b.
$$y(t) = \frac{16}{3}e^{3t} - \frac{10}{3}$$
 37. 0.2448 **39.** 0.6958

41. 0.0600 **43.** 0.4994 **45.**
$$1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!}$$

47.
$$1-2+\frac{2}{3}-\frac{4}{45}$$
 49. $\frac{1}{2}-\frac{1}{8}+\frac{1}{24}-\frac{1}{64}$ **51.** $e-1$

53.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}$$
, for $-1 < x \le 1$; $\ln 2$ **55.** $\frac{2}{2-x}$ **57.** $\frac{4}{4+x^2}$

59.
$$-\ln(1-x)$$
 61. $-\frac{3x^2}{(3+x)^2}$ **63.** $\frac{6x^2}{(3-x)^3}$

65. a. False b. False c. True **67.**
$$\frac{a}{b}$$
 69. $e^{-1/6}$

71.
$$f^{(3)}(0) = 0$$
; $f^{(4)}(0) = 4e$ **73.** $f^{(3)}(0) = 2$; $f^{(4)}(0) = 0$

75. 2 **77.** 1.575 using four terms **79.** a.
$$S'(x) = \sin x^2$$
;

$$C'(x) = \cos x^2$$
 b. $\frac{x^3}{3} - \frac{x^7}{7 \cdot 3!} + \frac{x^{11}}{11 \cdot 5!} - \frac{x^{15}}{15 \cdot 7!};$

$$x - \frac{x^5}{5 \cdot 2!} + \frac{x^9}{9 \cdot 4!} - \frac{x^{13}}{13 \cdot 6!}$$
 c. $S(0.05) \approx 0.00004166664807$;

$$C(-0.25) \approx -0.2499023614$$
 d. 1 **e.** 2

81. a.
$$1 - \frac{x^2}{4} + \frac{x^4}{64} - \frac{x^6}{2304}$$
 b. $R = \infty, -\infty < x < \infty$

Chapter 11 Review Exercises, pp. 750-752

1. a. True b. False c. True d. True e. True

3.
$$p_2(x) = 1 - \frac{3}{2}x^2$$
 5. $p_2(x) = 1 - (x - 1) + \frac{3}{2}(x - 1)^2$

7.
$$p_2(x) = 1 - \frac{1}{2}(x-1)^2$$

9.
$$p_3(x) = \frac{5}{4} + \frac{3}{4}(x - \ln 2) + \frac{5}{8}(x - \ln 2)^2 + \frac{1}{8}(x - \ln 2)^3$$

11. a.
$$p_1(x) = 1 + x$$
; $p_2(x) = 1 + x + \frac{x^2}{2}$

b		$p_n(x)$	Error	
	1	0.92	3.1×10^{-3}	
	2	0.9232	8.4×10^{-5}	

13. a.
$$p_1(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right);$$

$$p_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2$$

b.	n	$p_n(x)$	Error	
	1	0.5960	8.2×10^{-3}	
	2	0.5873	4.7×10^{-4}	

15.
$$|R_3| < \frac{\pi^4}{4!}$$
 17. $R = \infty, (-\infty, \infty)$ **19.** $R = \infty, (-\infty, \infty)$

21.
$$R = 9, (-9, 9)$$
 23. $R = 2, [-4, 0)$ **25.** $R = \frac{3}{2}, [-2, 1]$

27.
$$R = \frac{1}{27}$$
 29. $\sum_{k=0}^{\infty} x^{2k}$; $(-1, 1)$ **31.** $\sum_{k=0}^{\infty} (-5x)^k$; $\left(-\frac{1}{5}, \frac{1}{5}\right)$

33.
$$\sum_{k=1}^{\infty} k(10x)^{k-1}$$
; $\left(-\frac{1}{10}, \frac{1}{10}\right)$ **35.** $1 + 3x + \frac{9x^2}{2!}$; $\sum_{k=0}^{\infty} \frac{(3x)^k}{k!}$

$$\frac{1}{\sqrt{37.}} - (x - \pi/2) + \frac{(x - \pi/2)^3}{3!} - \frac{(x - \pi/2)^5}{5!};$$

$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{(x - \pi/2)^{2k+1}}{(2k+1)!} \frac{(4x)^3}{(4x)^{2k+1}} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^3}{(4x)^5} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^3}{(4x)^5} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^5}{(4x)^5} = \frac{(4x$$

$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{(x-\pi/2)^{2k+1}}{(2k+1)!}$$

39.
$$4x - \frac{(4x)^3}{3} + \frac{(4x)^5}{5}$$
; $\sum_{k=0}^{\infty} \frac{(-1)^k (4x)^{2k+1}}{2k+1}$

41.
$$1 + 2(x-1)^2 + \frac{2}{3}(x-1)^4$$
; $\sum_{k=0}^{\infty} \frac{4^k(x-1)^{2k}}{(2k)!}$

43.
$$1 + \frac{x}{3} - \frac{x^2}{9} + \cdots$$
 45. $1 - \frac{3}{2}x + \frac{3}{2}x^2 - \cdots$

47.
$$R_n(x) = \frac{\left(\sinh c + \cosh c\right) x^{n+1}}{(n+1)!}$$
, where c is between 0 and x;

$$\lim_{n \to \infty} |R_n(x)| = |\sinh c + \cosh c| \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0 \text{ because}$$

 $|x|^{n+1} \ll (n+1)!$ for any fixed value of x.

49.
$$\frac{1}{24}$$
 51. $\frac{1}{8}$ **53.** $\frac{1}{6}$ **55.** Approx. 0.4615 **57.** Approx. 0.3819

49.
$$\frac{1}{24}$$
 51. $\frac{1}{8}$ **53.** $\frac{1}{6}$ **55.** Approx. 0.4615 **57.** Approx. 0.3819 **59.** $11 - \frac{1}{11} - \frac{1}{2 \cdot 11^3} - \frac{1}{2 \cdot 11^5}$ **61.** $-\frac{1}{3} + \frac{1}{3 \cdot 3^3} - \frac{1}{5 \cdot 3^5} + \frac{1}{7 \cdot 3^7}$

63.
$$y = 4 + 4x + \frac{4^2}{2!}x^2 + \frac{4^3}{3!}x^3 + \dots + \frac{4^n}{n!}x^n + \dots = 3 + e^{4x}$$

65. a.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$
 b. $\sum_{k=1}^{\infty} \frac{1}{k2^k}$ c. $2\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$

d.
$$x = \frac{1}{3}$$
; $2\sum_{k=0}^{\infty} \frac{1}{3^{2k+1}(2k+1)}$ **e.** Series in part (d)

CHAPTER 12

Section 12.1 Exercises, pp. 763-767

1. Plotting $\{(f(t), g(t)): a \le t \le b\}$ generates a curve in the xy-plane. 3. $x = R \cos(\pi t/5), y = -R \sin(\pi t/5)$ 5. $x = t^2, y = t$ $-\infty < t < \infty$ 7. $-\frac{1}{2}$ 9. $x = t, y = t, 0 \le t \le 6; x = 2t, y = 2t, 0 \le t \le 3; x = 3t, y = 3t, 0 \le t \le 2$ (answers will vary)

	2,	0.,	,	., .		- (
11. a.	t	-10	-4	0	4	10
	x	-20	-8	0	8	20
	v	-34	-16	-4	8	26

c.
$$y = \frac{3}{2}x - 4$$

d. A line segment risin

d. A line segment rising to the right as t increases

c.
$$y = -3x + 15$$

d. A line segment rising to the left as t increases

15. a. y = -x + 4 **b.** A line segment starting at (3, 1) and ending at (4,0) 17. **a.** y = 3x - 12 **b.** A line segment starting at (4,0)and ending at (8, 12) **19. a.** $x^2 + y^2 = 9$ **b.** Lower half of a circle of radius 3 centered at (0,0); starts at (-3,0) and ends at (3,0)**21.** a. $y = 1 - x^2, -1 \le x \le 1$ b. A parabola opening downward

with a vertex at (0, 1) starting at (1, 0) and ending at (-1, 0)

23. a. $x^2 + (y - 1)^2 = 1$ **b.** A circle of radius 1 centered at (0, 1); generated counterclockwise, starting and ending at (1, 1)

25. a. $y = (x + 1)^3$ b. A cubic curve rising to the right as rincreases 27. a. $x^2 + y^2 = 49$ b. A circle of radius 7 centered at (0,0); generated counterclockwise, starting and ending at (-7,0)

29. a. $y = 1, -\infty < x < \infty$ **b.** A horizontal line with y-intercept 1, generated from left to right 31. $x^2 + y^2 = 4$ 33. $y = \sqrt{4 - x^2}$

35. $y = x^2$ **37.** $x = 4 \cos t, y = 4 \sin t, 0 \le t \le 2\pi$

39. $x = \cos t + 2, y = \sin t + 3, 0 \le t \le 2\pi$

41. $x = 2t, y = 8t; 0 \le t \le 1$ **43.** $x = t, y = 2t^2 - 4; -1 \le t \le 5$ **45.** $x = 2, y = t; 3 \le t \le 9$ **47.** $x = 4t - 2, y = -6t + 3; 0 \le t \le 1$ and

 $x = t + 1, y = 8t - 11; 1 \le t \le 2$

49. $x = 1 + 2t, y = 1 + 4t; -\infty < t < \infty$

51. $x = t^2, y = t; t \ge 0$

53. $x = 400 \cos\left(\frac{4\pi t}{3}\right), y = 400 \sin\left(\frac{4\pi t}{3}\right); 0 \le t \le 1.5$

55. $x = 50 \cos\left(\frac{\pi t}{12}\right), y(t) = 50 \sin\left(\frac{\pi t}{12}\right); 0 \le t \le 24$

57.

63. Plot $x = 1 + \cos^2 t - \sin^2 t$, y = t.

