Galois Theory - 5122GALO6Y

Yoav Eshel

February 17, 2021

Contents

1	Introduction	2
2	Symmetric Polynomials	2
3	Field Extensions	4
	Prime Fields	4
	Algebraic and Transcendental Extensions	4
4	Exercises	5
	Symmetric Polynomial	5
	Field Extensions	
	Finite Fields	11
	Separable and Normal Extensions	11

1 Introduction

Galois theory is about studying Polynomials with coefficients in a field $(\mathbb{Q}, \mathbb{R}, \mathbb{C}$ etc.). Let

$$f(T) = T^n + \dots + a_1 T + a_0 \in \mathbb{Q}[T].$$

Then f(T) splits completely in $\mathbb{C}[T]$ as

$$f(T) = (T - \alpha_1) \cdots (T - \alpha_n)$$

with $\alpha_1, \ldots \alpha_n \in \mathbb{C}$ are the roots of f. Galois theory studies permutation of the the roots that preserve algebraic relations between these roots. The allowed permutation of the roots give rise to a group denoted $\operatorname{Gal}(f)$. The following definition of a Galois group does not require any background knowledge but is not very useful in practice.

Definition. Let $\sigma : \mathbb{C} \to \mathbb{C}$ be a field automorphism and $\alpha \in \mathbb{C}$ a root of $F(T) \in \mathbb{Q}[T]$. Since $\sigma(1) = 1$ it follows that $\sigma(n) = n$ for all integers and so $\sigma(a/b) = \sigma(a)/\sigma(b) = a/b$ is the identity on \mathbb{Q} . Then

$$f(\sigma(\alpha)) = \sigma(\alpha)^n + \dots + a_1 \sigma(\alpha) + a_0$$

= $\sigma(f(\alpha))$
= 0.

Then each automorphism σ is a permutation of the roots which is precisely the Galois group of the polynomial $Gal(f) \subset S_n$. In other words we have a group action

$$Aut(\mathbb{C}) \times \{\alpha_1, \dots, \alpha_n\} \to \{\alpha_1, \dots, \alpha_n\}$$

Then $Gal(f) := Im(\phi)$ where $\phi : Aut(\mathbb{C}) \to S_n$ mapping $\sigma \mapsto (\alpha_i \mapsto \sigma(\alpha_i))$

 $\operatorname{Gal}(f) \subset S_n$ is transitive subgroup (i.e. if its action on the set of roots is transitive) if and only if f is irreducible.

2 Symmetric Polynomials

A symmetric polynomial is a polynomial $F(X_1, X_2, ..., X_n)$ the is invariant under permutations of its variables. In other words

$$P(X_1, X_2, \dots, X_n) = P(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(n)})$$

for all $\sigma \in S_n$. Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. Let $f \in K(T)$ be a monic polynomial of degree n that splits completely in K. Then

$$f(T) = (T - X_1)(T - X_2) \cdots (T - X_n)$$

where X_i are the roots of f. Then

$$f(T) = T^n + s_1 T^{n-1} + \dots + (-1)^n s_n$$

where

$$s_1 = X_1 + X_2 + \dots + X_n$$

 $s_2 = X_1 X_2 + X_1 X_3 + \dots + X_{n-1} X_n$
 \vdots
 $s_n = X_1 X_2 \dots X_n$

are called the elementary symmetric polynomials in X_1, X_2, X_n . Then the fundamental theorem of symmetric polynomials states that every symmetric polynomial can be written as a polynomial expression in the elementary symmetric polynomials.

To actually write a symmetric polynomial in terms of elementary symmetric polynomials we introduce some useful notation. We say a polynomial is ordered lexicographically if the monomial $T_1^{e_1}T_2^{e_2}\cdots T_n^{e_n}$ with the highest e_1 is in front. If two monomials have the same e_1 , then we compare their e_2 and so on. Like a dictionary. If P is a symmetric polynomial in n variables, choose a single representative proceeded by the symbol \sum_n to denote the sum over the monomials in the S_n orbit of the representative. Then for example

$$s_1 = \sum_n T_1$$

$$s_2 = \sum_n T_1 T_2$$

$$\vdots$$

$$s_n = \sum_n T_1 T_2 \cdots T_n = T_1 T_2 \cdots T_n.$$

Now suppose P is a symmetric polynomial. To find its representation in terms of symmetric polynomials:

- 1. Let $a \cdot T_1^{e_1} T_2^{e_2} \cdots T_n^{e_n}$ be the first term in P, lexicographically.
- 2. Form the monomial

$$M = s_1^{e_1 - e_2} s_2^{e_2 - e_1} \cdots s_{n-1}^{e_{n-1} - e_n} s_n^{e_n}$$

- 3. Let $P_i = P cM$.
- 4. Repeat steps (1)-(3) until deg $P_i = 0$.
- 5. The we can solve for P and write it as a polynomial in the elementary symmetric polynomials.

The representation obtained through the algorithm above is unique.

When expanding The following theorem is useful when applying the algorithm above.

Theorem 2.1 (Orbit Stabilizer Theorem). Let G be a group acting on set S. For any $x \in S$ let $G_x = \{g \in G \mid g \cdot x = x\}$ denote the stabilizer of x, and let $G \cdot x = \{g \cdot x \mid g \in G\}$ denote the orbit of x. Then

$$|G| = |G \cdot x||G_x|$$

Since S_n is acting on the set $\{T_1, \ldots, T_2\}$ we can find the number of elements in a given sum. Since $|S_n| = n!$ the orbit of an elementary is given by

$$\frac{n!}{\text{size of stabilizer}}$$

3 Field Extensions

Prime Fields

Definition. Let k be a field. Then the **prime field** in K is the intersection over all subfields of K

Lemma 3.1. Let K be a field of characteristic k. Then the prime field of K is \mathbb{F}_p if k = p and \mathbb{Q} if k = 0.

Algebraic and Transcendental Extensions

Let L/K be a field extensions. Then we say that $\alpha \in L$ is algebraic over K if there exists an $f \in K[x], f \neq 0$, such that $f(\alpha) = 0$. We say that α is transcendental over K if there exists no such f. The number of algebraic elements over \mathbb{Q} in \mathbb{C} is countable, so in fact \mathbb{C} is mostly transcendental elements.

Theorem 3.2. Let L/K be a field extension and take $\alpha \in L$. Then

- 1. If α is transcendental over k, then $K[\alpha] \simeq K[X]$
- 2. If α is algebraic over K then there exists $f \in K[X]$ monic and irreducible and

$$K[X]/f \simeq K[\alpha] = K(\alpha)$$

and the degree of L over K is the degree of f.

Definition. We say that an extension L/K is **algebraic** if $\forall \alpha \in L$, α is algebraic over K.

Lemma 3.3. If a field extension is finite then it is algebraic.

The converse of this lemma does not hold.

4 Exercises

Symmetric Polynomial

Exercise 14.10

Express the symmetric polynomials $\sum_n T_1^2 T_2$ and $\sum_n T_1^3 T_2$ in the elementary symmetric polynomials.

Solution. To get the polynomial $\sum_n T_1^2 T_2$ we start with

$$s_1 s_2 = \sum_n T_1 \sum_n T_1 T_2 = \sum_n T_1^2 T_2 + 3 \sum_n T_1 T_2 T_3 = \sum_n T_1^2 T_2 + 3 s_3$$

Thus

$$\sum_{n} T_1^2 T_2 = s_1 s_2 - 3s_3$$

Similarly, to transform the polynomial $\sum_n T_1^3 T_2$ we start with

$$s_1^2 s_2 = \left(\sum_n T_1\right)^2 \sum_n T_1 T_2$$

$$= \left(\sum_n T_1^2 + 2\sum_n T_1 T_2\right) \sum_n T_1 T_2$$

$$= \sum_n T_1^2 \sum_n T_1 T_2 + 2s_2^2$$

$$= \sum_n T_1^3 T_2 + \sum_n T_1^2 T_2 T_3 + 2s_2^2.$$

And since

$$s_1 s_3 = \sum_n T_1 \sum_n T_1 T_2 T_3 = \sum_n T_1^2 T_2 T_3 + 4 \sum_n T_1 T_2 T_3 T_4$$

it follows that $\sum_n T_1^2 T_2 T_3 = s_1 s_3 - 4 s_4$ and so

$$\sum_{r} T_1^3 T_2 = s_1^2 s_2 - s_1 s_3 + 4s_4 - 2s_2^2$$

Exercise 14.14

Prove: For $n \in \mathbb{Z}_{>0}$, we have $\Delta(X^n + a) = (-1)^{\frac{1}{2}n(n-1)}n^na^{n-1}$.

Proof. Let $f(X) = X^n + a$ and let α_i be its roots. Then $f'(X) = nX^{n-1}$ and

$$\Delta(f) = (-1)^{n(n-1)/2} R(f, f').$$

Let $f_1(X) = a$ and then $f \equiv f_1 \mod (f')$ since $f = f_1 + f' \cdot (\frac{1}{n}X)$. Simplifying the resultant we get

$$R(f, f') = R(f', f)$$
 (Property 1)

$$= n^{n} R(f', f_{1})$$
 (Property 3)

$$= n^{n} \cdot \left(n^{0} \prod_{i=1}^{n-1} f_{1}(\alpha_{i}) \right)$$
 (Property 2)

$$= n^{n} a^{n-1}$$

and the result follows.

Exercise 14.15

Calculate the discriminant of the polynomial $f(X) = X^4 + pX + q \in \mathbb{Q}(p,q)[X]$.

Solution. Then $f'(X) = 4X^3 + p$ and so

$$f_1(X) = f - f' \cdot h = X^4 + pX + q + (4X^3 + p)(\frac{1}{4}X) = \frac{3p}{4}X + q.$$

Then the resultant is

$$R(f, f') = R(f', f)$$
 (Property 1)

$$= 4^{4-1}R(f', f_1)$$
 (Property 3)

$$= 4^3 \left((-1)^{3 \cdot 1}R(f_1, f') \right)$$
 (Property 1)

$$= -4^3 \left(\left(\frac{3p}{4} \right)^3 \prod_{i=1}^1 f' \left(\frac{-4q}{3p} \right) \right)$$
 (Property 2)

$$= -3^3 p^3 \left(4 \left(\frac{-4q}{3p} \right)^3 + p \right)$$

$$= 4^4 q^3 - 3^3 p^4.$$

Therefore the discriminant of f is

$$\Delta(f) = (-1)^{4 \cdot 3/2} R(f, f') = R(f, f') = 4^4 q^3 - 3^3 p^4.$$

Exercise 14.16

For every n > 1, determine an expression for the discriminant of the polynomial $f(X) = X^n + pX + q \in \mathbb{Q}(p,q)[X]$.

Solution. Let $f(X)=X^n+pX+q\in \mathbb{Q}(p,q)[X]$ for n>1. Then $f'(X)=nX^{n-1}+p$ and $f\equiv f_1 \mod (f')$ where

$$f_1 = f - f' \cdot h = X^n + pX + q - (nX^{n-1} + p)\left(\frac{1}{n}X\right) = \frac{p(n-1)}{n}X + q.$$

The resultant of f and f' is given by

$$\begin{split} R(f,f') &= R(f',f) &= n^{n-1}R(f',f_1) & \text{(Property 1)} \\ &= n^{n-1}R(f',f_1) & \text{(Property 3)} \\ &= n^{n-1}\left((-1)^{n-1}R(f_1,f')\right) & \text{(Property 1)} \\ &= (-n)^{n-1}\left(\frac{p(n-1)}{n}\right)^{n-1}\prod_{i=1}^{1}f'\left(-\frac{nq}{(n-1)p}\right) & \text{(Property 2)} \\ &= (-1)^{n-1}p^{n-1}(n-1)^{n-1}\left(\frac{(-1)^{n-1}n^nq^{n-1}}{(n-1)^{n-1}p^{n-1}} + p\right) \\ &= n^nq^{n-1} + (-1)^{n-1}p^n(n-1)^{n-1}. \end{split}$$

Hence the discriminant of f is

$$\Delta(f) = (-1)^{n(n-1)/2} R(f,f') = (-1)^{n(n-1)/2} \left(n^n q^{n-1} + (-1)^{n-1} p^n (n-1)^{n-1} \right)$$

Exercise 14.17

Let $f \in \mathbb{Z}[X]$ be a monic polynomial. Prove that the following are equivalent

- 1. $\Delta(f) \neq 0$.
- 2. The polynomial f has no double zeroes in \mathbb{C} .
- 3. The decomposition of f in $\mathbb{Q}[X]$ has no multiple prime factors.
- 4. The polynomial f and its derivative f' are relatively prime in $\mathbb{Q}[X]$.
- 5. The polynomial $f \mod p$ and $f' \mod p$ are relatively prime in $\mathbb{F}_p[X]$ for almost all prime numbers p.

Proof. Let $f \in \mathbb{Z}[X]$ be monic and $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ it roots in \mathbb{C} .

 $(1) \Rightarrow (2)$. Suppose that $\alpha_i = \alpha_j$ for some $i \neq j$. Then

$$\Delta(f) = \prod_{1 \le i \le j \le n} (\alpha_i - \alpha_j) = 0,$$

which is a contradiction. Therefore if f has non-zero discriminant it has no double zeroes in \mathbb{C} .

- $(2) \Rightarrow (3).$
- $(3) \Rightarrow (4).$
- $(4) \Rightarrow (5)$. If f and f' are relatively prime in $\mathbb{Q}[X]$ then

$$(1) \Rightarrow (1).$$

Exercise 14.19

Let $f \in \mathbb{Q}[X]$ be a monic polynomial with $n = \deg(f)$ distinct complex roots. Prove: the sign of $\Delta(f)$ is equal to $(-1)^s$ where 2s is the number of non-real zeroes of f. *Proof.* Let $\{\alpha_1, \ldots, \alpha_n\}$ be all the roots of f. Then each term $(\alpha_i - \alpha_j)^2$ in the discriminant falls into one of 3 cases

- 1. Both α_i and α_j are non-real. Then
 - (a) If $\alpha_j = \overline{\alpha_i}$ then $\alpha_i \alpha_j$ is purely complex and $(\alpha_i \alpha_j)^2$ is negative.
 - (b) If $\alpha_i \neq \overline{\alpha_i}$ then $\overline{\alpha_i}$ and $\overline{\alpha_j}$ are also roots of f and the term

$$(\alpha_i - \alpha_j)^2 (\overline{\alpha_i} - \overline{\alpha_j})^2 = ((\overline{\alpha_i - \alpha_j})(\alpha_i - \alpha_j))^2 = |\alpha_i - \alpha_j|^2$$

is positive.

2. α_i is non-real and α_j is real. Then $\overline{\alpha_i}$ is a root of f and the term

$$(\alpha_i - \alpha_i)^2 (\overline{\alpha_i} - \alpha_i)^2 = |\alpha_i - \alpha_i|^2$$

is positive.

3. Both α_i and α_j are real. Then $(\alpha_i - \alpha_j)^2$ is positive.

Since the only negative terms are of the form $(\alpha_i - \overline{\alpha_i})^2$ and there are 2s non-real roots the sign of the determinant is $(-1)^s$.

Exercise 14.20

Prove: $f(X) = X^3 + pX + q \in \mathbb{R}[X]$ has three (counted with multiplicity) real zeroes $\iff 4p^3 + 27q^{\leq}0$.

Proof. By Ex. 16 we know that $\Delta(f) = (-1)^3 (3^3 q^2 + 2^2 p^3) = -27q^2 - 4p^3$. Let a, b and c be the roots of f. If $a, b, c \in \mathbb{R}$ then

$$-27q^2 - 4p^3 = \Delta(f) = (a-b)^2(a-c)^2(b-c)^2 \ge 0$$

and so $4p^3 + 27q^{\leq}0$.

Now suppose that a=x+yi and b=x-yi are complex conjugates and c is real. Then

$$-27q^{2} - 4p^{3} = \Delta(f)$$

$$= (a - b)^{2}(a - c)^{2}(b - c)^{2}$$

$$= -4y^{2}((a - c)(\overline{a - c}))^{2}$$

$$= -4y^{2}|a - c|^{2}$$

$$< 0.$$

Hence $4p^3 + 27q^{\geq}0$ and the result follows by contraposition.

Exercise 14.21

Express $p_4 = \sum_n T_1^4$ in elementary symmetric polynomials

Solution. Let $n \geq 4$. Starting with

$$s_1^4 = \left(\sum_n T_1\right)^4$$

$$= \sum_n T_1^4 + 4 \sum_n T_1^3 T_2 + 12 \sum_n T_1^2 T_2 T_3 + 6 \sum_n T_1^2 T_2^2 + 24 \sum_n T_1 T_2 T_3 T_4.$$

To understand how to coefficients of the sum are obtained, consider the number of ways the T_i can be arranged. For example, $T_1^4 = T_1T_1T_1T_1$ can only be arranged in 1 way but $T_1^2T_2T_3 = T_1T_1T_2T_3$ can be arrange in $\frac{4!}{2} = 12$ ways (where we divided by 2 since the two T_1 can be swapped in any given arrangement). Then

$$s_1^2 s_2 = \left(\sum_n T_1\right)^2 s_2 = \left(\sum_n T_1^2 + 2\sum_n T_1 T_2\right) s_2 = \sum_n T_1^3 T_2 + \sum_n T_1^2 T_2 T_3 + 2s_2^2.$$

So far we have

$$p_4 = s_1^4 - 4\left(s_1^2 s_2 - 2s_2^2 - \sum_n T_1^2 T_2 T_3\right) - 12\sum_n T_1^2 T_2 T_3 - 6\sum_n T_1^2 T_2^2 - 24\sum_n T_1 T_2 T_3 T_4$$

$$= s_1^4 - 4s_1^2 s_2 + 8s_2^2 - 24s_4 - 6\sum_n T_1^2 T_2^2 - 8\sum_n T_1^2 T_2 T_3.$$

So continuing with $\sum_n T_1^2 T_2^2$ we get

$$s_2^2 = \left(\sum_n T_1 T_2\right)^2 = \sum_n T_1^2 T_2^2 + 2\sum_n T_1^2 T_2 T_3 + 6\sum_n T_1 T_2 T_3 T_4.$$

Finding the coefficients here is slightly trickier since s_2 contains pairs not all arrangements are allowed. For example, $T_1^2T_2^2$ can only come from the pair T_1T_2 . On the other hand $T_1T_2T_3T_4$ can come from T_1T_2 and T_3T_4 or T_1T_4 and T_2T_3 and so on. We choose the first pair $\binom{4}{2} = 6$ ways) which also fixes the second pair and so there are 6 ways to get $T_1T_2T_3T_4$. Hence

$$p_4 = s_1^4 - 4s_1^2 s_2 + 8s_2^2 - 24s_4 - 6\left(s_2^2 - 2\sum_n T_1^2 T_2 T_3 - 6s_4\right) - 8\sum_n T_1^2 T_2 T_3$$
$$= s_1^4 - 4s_1^2 s_2 + 2s_2^2 + 12s_4 + 4\sum_n T_1^2 T_2 T_3.$$

Using Exercise 14.10 we get

$$p_4 = s_1^4 - 4s_1^2 s_2 + 2s_2^2 + 12s_4 + 4(s_1 s_3 - 4s_4)$$

= $s_1^4 - 4s_1^2 s_2 + 2s_2^2 - 4s_4 + 4s_1 s_3$

Exercise 14.22

A rational function $f \in \mathbb{Q}[T_1, \dots, T_n]$ is called symmetric if it is invariant under all permutations of the variables T_i . Prove that every symmetric rational function is a rational function in the elementary symmetric functions.

Proof. Let $f \in \mathbb{Q}[T_1, \ldots, T_n]$ be a symmetric rational function. Then f = g/h for g, h polynomials. If h is a symmetric polynomial then g = fh is symmetric as well. By the fundamental theorem of symmetric polynomial both g and h can be written in terms of elementary symmetric polynomials and we're done. If h is not symmetric, then let

$$\tilde{h} = \prod_{\sigma \in S_n \setminus \{e\}} \sigma(h)$$

and then $h\tilde{h}$ is symmetric so $f = \frac{g\tilde{h}}{h\tilde{h}}$ which is again the case above.

Exercise 14.23

Write $\sum_n T_1^{-1}$ and $\sum_n T_1^{-2}$ as rational functions in $\mathbb{Q}[s_1,\ldots,s_n]$

Solution. Starting with

$$\sum_{n} T_1^{-1} = \frac{1}{T_1} + \dots + \frac{1}{T_n}.$$

We multiply by $1 = \frac{s_n}{s_n}$ and simplify

$$\frac{s_n}{s_n} \sum_{n} T_1^{-1} = \frac{T_1 T_2 \cdots T_n}{T_1 T_2 \cdots T_n} \left(\frac{1}{T_1} + \dots + \frac{1}{T_n} \right)$$
$$= \frac{s_{n-1}}{s_n}$$

For the second expression we present to approaches.

1. Observing that

$$\left(\sum_{n} T_1^{-1}\right)^2 = \sum_{n} T_1^{-2} + 2\sum_{n} T_1^{-1} T_2^{-1}$$

we can write using the previous part

$$\sum_{n} T_1^{-2} = \frac{s_{n-1}^2}{s_n^2} - 2\sum_{n} T_1^{-1} T_2^{-1}$$

and multiplying by the second term by $\frac{s_n}{s_n}$ we get

$$\sum_{n} T_{1}^{-2} = \frac{s_{n-1}^{2}}{s_{n}^{2}} - 2\left(\frac{1}{T_{1}T_{2}} + \dots + \frac{1}{T_{n-1}T_{n}}\right) \frac{T_{1} \dots T_{n}}{T_{1} \dots T_{n}} = \frac{s_{n-1}^{2}}{s_{n}^{2}} - 2\frac{s_{n-2}}{s_{n}}.$$

Hence
$$\sum_{n} T_1^{-2} = \frac{s_{n-1}^2 - 2s_{n-2}s_n}{s_n^2}$$
.

2. The second approach is slightly more involved. We start by multiplying by 1 in a clever (but different) way

$$\left(\sum_n T_1^{-2}\right) \frac{s_n^2}{s_n^2} = \left(\frac{1}{T_1^2} + \dots + \frac{1}{T_n^2}\right) \frac{T_1^2 \cdots T_n^2}{T_1^2 \cdots T_n^2} = \frac{\sum_n T_1^2 \cdots T_{n-1}^2}{s_n^2}.$$

Then $\sum_n T_1^2 \cdots T_{n-1}^2$ is obviously (condescending much?) a symmetric polynomial and so we can use our trusty algorithm. Starting with

$$\begin{split} s_1^{2-2} s_2^{2-2} \cdots s_{n-1}^{2-0} &= s_{n-1}^2 \\ &= \left(\sum_n T_1 \cdots T_{n-1} \right)^2 \\ &= \sum_n T_1^2 \cdots T_{n-1}^2 + 2 \sum_n T_1^2 \cdots T_{n-2}^2 T_{n-1} T_n. \end{split}$$

Moving to the second term

$$s_1^{2-2} \cdots s_{n-2}^{2-1} s_{n-1}^{1-1} s_n^1 = s_{n-2} s_n$$

$$= \left(\sum_n T_1 \cdots T_{n-2} \right) T_1 \cdots T_n$$

$$= \sum_n T_1^2 \cdots T_{n-2}^2 T_{n-1} T_n$$

and it follows that

$$\sum_{n} T_1^2 \cdots T_{n-1}^2 = s_{n-1}^2 - 2s_{n-2}s_n.$$

So we conclude that

$$\sum_{n} T_1^{-2} = \frac{s_{n-1}^2 - 2s_{n-2}s_n}{s_n^2}$$

which is reassuring.

Note that in the first approach we stumbled upon something rather interesting:

$$\sum_{n} T_1^{-1} \cdots T_k^{-1} = \frac{s_{n-k}}{s_n}$$

the proof of which is left as an exercise to the reader.

Exercise 14.24

Field Extensions

Finite Fields

Separable and Normal Extensions