

Group 31: An interactive, 3D visual reconstruction of a whole *E. coli* cell

Rohan Grover, Winnie Shi, Yuxuan Richard Xie

Whole Cell Models

- Help us understand:
 - Metabolic networks and expression networks
 - Relative concentrations and interactions of proteins
- Build more complex models in the future
- They are cool

Design Objectives

- Standardized pipelines for 3D reconstructions of *E. coli* and more
- Integrate high quality structural data along with:
 - Genomics
 - Proteomics
 - Metabolomics
- Interactive platform that enables easy search and manipulation

= <u>visual reconstruction</u> of an E. coli cell

How do you curate and build a whole cell model of *E. coli*?

Prototype 1

Testing the feasibility of building a whole cell model for *E. coli*

Proteins and Structures

- ssbio (Python framework for structural systems biology): calculate and map structural information at genome scale
- Experimental protein concentrations from literature
- Building a repository of high quality protein structures with extensive annotations

What's in prototype 1?

Not protein complexes, just the protein components themselves (D, E in the figure, randomly distributed throughout the cell)

Gene	UniProt	NAME	Description	PDB	Structure_source	MOLARITY	Copy number	LOCALIZATION	INCLUDE
b0001	P0AD86	thrL	thr operon leader peptide					Cytosol	
b0002	P00561	thrA	Bifunctional aspartokinase	b0002_1_462_3c20-A_clean	SWISS-MODEL	2.59E-06	4375	Cytosol	×

Integration Using cellPACK

Membranes

- Built a rough object of the E. coli inner and outer membranes from tomograms using IMOD
- Is not a whole cell
- Volume of cell in tomograms small compared to average sizes from literature
 - Dimensions: ~1μm x ~0.4 μm

Prototype 2

A more complete representation of *E. coli* and final model for this senior design project

Addition of Complexes

- Macromolecule Expression model (ME-model) determines stoichiometry of complex structures
- Formation rate (flux) of these complexes are obtained by ME-model simulations
- Homology models used for unknown structures

Computation of Complex Copy Numbers

- Complex copy numbers were estimated using ME-model mass fraction ratios
- Copy Numbers were determined using these assumptions:
 - 1. Proteins want to be in complexes
 - 2. There is a "limiting" protein
- The "limiting protein" is arbitrarily chosen to best maximize total number of complexes made

Membrane Proteins and Complexes

- cellPACK can pack membrane proteins by locking parameters
- Orientations of Proteins in Membranes (OPM) contains high-quality annotations for proteins
 - Alternatives: Transmembrane Helix Prediction using Hidden Markov Models (TMHMM), UniProt
- Lab member developed algorithm to confirm quality

Membrane Improvements

- Made "pill" from dimensions in literature
- Total Volume: 2.2µm³
- Drawbacks:
 - Periplasm Volume to whole cell volume: 19%
 (compared to 8% from experimental data)

Addition of Chromosome

- 500 base pairs per bead (bpb) model of an *E. coli* chromosome
- Mid-cell origin of replication
- Shared with us by William Hacker and Professor Adrian Elcock

Final "Menu" and Recipe

	В		С		D	E		F	G	Н	1	J	к	L	M	N		0		
1	UniProt	Ŧ	NAME	Ŧ	Description		_ID =	PDB	= Structure_sc =	MW =	MOLARITY =	Copy_numb∈=	Localization =	Localization =	INCLUDE	= COLOR	=	NOTES	· 王 1	model
2	P0AD86		thrL		thr operon lea	der REP-E000	001	E00001_clean	-X metaTASSER	2138.4426			Cytosol	EchoLOCATION	predicted				1	iML151
3	P00561		thrA		Bifunctional a	spa REP-E000	002	E00002_clean	-X metaTASSER	89119.2202	4.11E-06	4375	Cytosol	iJL1678	x				1	iML151
4	P00547		thrB		Homoserine k	ina REP-1_30	08_4rpf	b0003_1_308	4r SWISS-MODEL	33623.2905	0	844	Cytosol	iJL1678					1	iML151
5	P00934		thrC		Threonine syr	ntha REP-1vb3	1	1vb3-A_clean.	pd Protein Data Ba	n 47113.2536	1.28E-05	13676	Cytosol	iJL1678	X				1	iML151
6	P75616		yaaX		Uncharacteriz	ed REP-E000	005	E00005_clean	-X metaTASSER	11354.7994			Periplasm	EchoLOCATION	predicted				1	iML151
7	P0A8I3		yaaA		UPF0246 prof	tein REP-5caj		5caj-A_clean.p	dt Protein Data Ba	n 29585.4538	5.75E-07	613	Cytosol	EchoLOCATION	l x				1	iML151
8	P30143		yaaJ		Uncharacteriz	ed REP-E000	007	E00007_clean	-X metaTASSER	51662.291			Inner_Membrane	e iJL1678					j	iML151
9	P0A870		talB		Transaldolase	B REP-4s2b)	4s2b-A_clean.	pd Protein Data Ba	n 35218.8107	8.68E-06	9247	Cytosol	iJL1678	X				1	iML151
10	P0AF03		mog		Molybdopterin	ac REP-1di6		1di6-A_clean.	odk Protein Data Ba	n 21222.105	1.45E-07	155	Cytosol	iJL1678	X				- 1	iML151
11	P0AC98		satP		Succinate-ace	etat REP-E000	010	E00010_clean	-X metaTASSER	20070.6303			Cytosol	Arbitrary assigni	ment				1	iML151
12	P75617		yaaW		UPF0174 prof	tein REP-E000	011	E00011_clean	-X_metaTASSER	26664.5763	-		Cytosol	EchoLOCATION	predicted				1	iML151
13	P28697		mbiA		Uncharacteriz	ed protein Mb	iΑ			17637.1282			Cytosol	Arbitrary assigni	ment				1	iML151
14	P28696		yaal		UPF0412 prof	tein REP-E000	012	E00012_clean	-X metaTASSER	14481.418			Periplasm	EchoLOCATION	predicted				1	iML151
15	P0A6Y8		dnaK		Chaperone pr	ote REP-4jne		4jne-A_clean.	odk Protein Data Ba	n 69114.1284	1.70E-05	18133	Cytosol	iJL1678	X				1	iML151
16	P08622		dnaJ		Chaperone pr	ote REP-4_34	18_4j80	b0015_4_348	4j SWISS-MODEL	41099.8758	7.02E-07	748	Cytosol	iJL1678	X				1	iML151
17	P0CF91		insL1		Putative trans	pos REP-INSL	2_EC	INSL2_ECOLI	_m I-TASSER	40908.3273			Cytosol	Arbitrary assigni	ment				1	iML151
18	P33236		mokC		Regulatory pr	ote REP-E000	016	E00016_clean	-X metaTASSER	7742.206			Periplasm	EchoLOCATION	predicted				- 17	iML151
19	P13738		nhaA		Na(+)/H(+) an	tipe REP-1zcd		1zcd-A_clean.	pd Protein Data Ba	n 41355.1815			Inner_Membrane	e iJL1678					1	iML151
20	P0A9G2		nhaR		Transcriptiona	al ai REP-6_29	8_3k1	b0020_6_298	31 SWISS-MODEL	34284.0399			Cytosol	EchoLOCATION	predicted				1	iML151
21	P0CF25		insB1		Insertion elem	ent IS1 1 prot	tein Ins	В		19564.3535			Cytosol	Arbitrary assigni	ment				1	iML151
22	P0CF07		insA1		Insertion elem	ent IS1 1 prot	ein Ins	A		9868.2797			Cytosol	Arbitrary assigni	ment				1	iML151
23	P0A7U7		rpsT		30S ribosoma	l pr REP-5afi		5afi-t_clean.pd	lb Protein Data Ba	n 9684.2814	2.19E-05	31222	Cytosol	iJL1678	Х				1	iML151
24	P75620		yaaY		Uncharacteriz	ed REP-E000	023	E00023_clean	-X metaTASSER	7890.2841			Inner_Membrane	e EchoLOCATION	predicted				1	iML151

cellPACK

How do we display the pipeline and model?

Integration of the components

Building an interactive platform

Conclusions and Future Goals

- Created pipeline to link structural and spatial info with "omics" data
- Able to generate appropriate complexes and membrane structures
- Still in progress of packing final model
- Working on finding an efficient way of displaying the model using NGL
- Improve the detail of visualization (i.e. interactions between components, more constraints for localizations, thermodynamics, kinetics, etc.)
- Update model to include more experimentally determined components
- Apply the pipeline and create reconstructions to other organisms
- Integrate metabolic networks to simulate directly on the 3D model with the aid of molecular dynamics (MD)

Acknowledgements

- Dr. Nathan Mih
- Edward Catoiu
- Ruoqing Cheng
- Liangyu Zhao
- Kritin Karkare
- Dr. Brett Barbaro
- Dr. Alex Rose
- Dr. Bernhard Ø. Palsson

- Dr. Bruce Wheeler
- Gladys Ornelas
- Anjulie Agrusa
- Marissa Keller

Questions? (we are Group 31)

((for those who are wondering))

References

- ssbio: a Python framework for structural systems biology 2018, Nathan Mih, Elizabeth Brunk, Ke Chen, Edward Catoiu, Anand Sastry, Erol Kavvas, Jonathan M Monk, Zhen Zhang, Bernhard O Palsson
- The quantitative and condition-dependent Escherichia coli proteome 2016, Alexander Schmidt, Karl Kochanowski, Silke Vedelaar, Erik Ahrné, Benjamin Volkmer, Luciano Callipo, Kèvin Knoops, Manuel Bauer, Ruedi Aebersold & Matthias Heinemann
- cellPACK: a virtual mesoscope to model and visualize structural systems biology 2015, Graham T Johnson,
 Ludovic Autin, Mostafa Al-Alusi, David S Goodsell, Michel F Sanner& Arthur J Olson