LinML

Ada Vienot

1 Typing

The types in LinML have the following syntax:

Figure 1: LinML types

1.1 Typing rules

We define the inductive predicate exp over types as follows:

$$\exp(\tau) = \begin{cases} \text{true} & \text{if } \tau = * \text{ or } \tau = !\sigma \\ \text{false} & \text{elsewise} \end{cases}$$

In all the following, typing contexts Γ ; Δ are to be seen as a pair with:

- Γ a multiset of pairs $(x:\tau)$, with x a variable and τ a type such that $\exp(\tau) = \text{false}$
- Δ a set of pairs $(x:\tau)$, with x a variable and τ a type such that $\exp(\tau)$ = true

Intuitively, Γ contains the linear bindings, and Δ contains the exponential bindings.

Since $\forall \tau, \exp(\tau) = true$ implies the existence of context weakening and contraction rules for τ , we treat the context Δ as the kind of contexts we manipulate in intuitionistic sequent calculus, that is: they can be duplicated, erased, and one binding is allowed to erase another. This is not the case of the context Γ containing linear bindings.

1.1.1 Terms

Let t, u be terms, τ, σ types, and $(\Gamma; \Delta), (\Gamma'; \Delta')$ typing contexts. The typing judgements for terms have the following shape:

$$\Gamma; \Delta \vdash t : \tau \Rightarrow \Gamma'; \Delta'$$

 $\Gamma'; \Delta'$ is the typing context after consuming the necessary bindings to type $t : \tau$.

The typing rules are the following:

Figure 2: LinML terms typing rules

1.1.2 Patterns