

# State-Feedback Stabiliser

Nicola Mimmo

Department of Electrical, Electronics and Information Engineering University of Bologna

March 25, 2025

# Table of Contents

Motivations and Goals

- Basic Mathematics
- Reachability Kalman Decomposition
- State-Feedback Stabiliser



#### Motivations and Goals

#### Motivation

- On the one hand, we know that the boundedness of signals (goal G1)) is linked to
   A being Hurwitz
- On the other hand, the dynamics of the open-loop plant is described by the eigenvalues of A

Therefore, changing the eigenvalues of **A** we can

- Stabilise a non-BIBS-stable open-loop plant
- Improve/modify the behaviour of a BIBS-stable open-loop plant



#### Motivations and Goals

#### Motivation

- On the one hand, we know that the boundedness of signals (goal G1)) is linked to
   A being Hurwitz
- On the other hand, the dynamics of the open-loop plant is described by the eigenvalues of A

Therefore, changing the eigenvalues of **A** we can

- Stabilise a non-BIBS-stable open-loop plant
- Improve/modify the behaviour of a BIBS-stable open-loop plant

#### Questions

- 1. Which eigenvalues of A can we change?
- 2. How can we change the modifiable eigenvalues of A?



## Motivations and Goals

#### Motivation

- On the one hand, we know that the boundedness of signals (goal G1)) is linked to
   A being Hurwitz
- On the other hand, the dynamics of the open-loop plant is described by the eigenvalues of A

Therefore, changing the eigenvalues of **A** we can

- Stabilise a non-BIBS-stable open-loop plant
- Improve/modify the behaviour of a BIBS-stable open-loop plant

#### Questions

- 1. Which eigenvalues of A can we change?
- 2. How can we change the modifiable eigenvalues of A?

#### Goal

Answer these questions!



#### Where are we?

Regarding the course contents ...





#### Where are we?

Regarding the course contents ...





#### Where are we?

Regarding the course contents ...





# Table of Contents

Motivations and Goals

- Basic Mathematics
- Reachability Kalman Decomposition
- State-Feedback Stabiliser



## Definition - Vector Space

Let  $\mathbb{V}(\mathbb{R}) := \{\mathbf{x} \in \mathbb{R}^n\}$  with  $n \in \mathbb{N}$ . Then  $\mathbb{V}$  is a **vector space** if the following conditions hold true:

- 1. for any  $u_1, u_2, u_3 \in \mathbb{V}$  then  $(u_1 + u_2) + u_3 = u_1 + (u_2 + u_3)$
- 2. for any  $\mathbf{u} \in \mathbb{V}$  the null vector  $\mathbf{0}$  is such that  $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$ ;
- 3. for any  $\mathbf{u}_1 \in \mathbb{V}$  there exists  $\mathbf{u}_2 \in \mathbb{V}$  such that  $\mathbf{u}_1 + \mathbf{u}_2 = \mathbf{0} \implies \mathbf{u}_2 = -\mathbf{u}_1$ ;
- **4**. for any  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{V} \ \mathbf{u}_1 + \mathbf{u}_2 = \mathbf{u}_2 + \mathbf{u}_1$ ;
- 5. for any  $\mathbf{u} \in \mathbb{V}$  and for any  $\alpha, \beta \in \mathbb{R}$   $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$ ;
- 6. there exists a neutral element, namely 1, such that  $1\mathbf{u} = \mathbf{u}$ ;
- 7. for any  $\mathbf{u_1}, \mathbf{u_2} \in \mathbb{V}$  and for any  $\alpha \in \mathbb{R}$   $\alpha(\mathbf{u_1} + \mathbf{u_2}) = \alpha \mathbf{u_1} + \alpha \mathbf{u_2}$ ;
- 8. for any  $\mathbf{u} \in \mathbb{V}$  and any  $\alpha, \beta \in \mathbb{R} \ (\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$ .



#### **Definition - Basis**

Let  $\mathbb{V}(\mathbb{R})$  be an *n*-dimensional vector space with  $n \in \mathbb{N}$ . Then, a **basis** of  $\mathbb{V}(\mathbb{R})$  is a set of linearly independent vectors

$$\{\mathbf{b}_1,\ldots,\mathbf{b}_n\},\quad \mathbf{b}_i\in\mathbb{V}(\mathbb{R}),\quad i=1,\ldots,n$$



#### Definition - Basis

Let  $\mathbb{V}(\mathbb{R})$  be an n-dimensional vector space with  $n \in \mathbb{N}$ . Then, a **basis** of  $\mathbb{V}(\mathbb{R})$  is a set of linearly independent vectors

$$\{\mathbf{b}_1,\ldots,\mathbf{b}_n\},\quad \mathbf{b}_i\in\mathbb{V}(\mathbb{R}),\quad i=1,\ldots,n$$

such that 
$$\forall \, \mathbf{v} \in \mathbb{V}(\mathbb{R}) \; \exists \; eta_i \in \mathbb{R}, \; i=1,\ldots,n \; \colon \, \mathbf{v} = \left[ egin{array}{cccc} \mathbf{b_1} & \cdots & \mathbf{b_n} \end{array} \right] \left[ egin{array}{c} eta_1 \\ \vdots \\ eta_n \end{array} \right]$$

In other words, any vector  $\mathbf{v} \in \mathbb{V}(\mathbb{R})$  can be represented as a linear combination of  $\mathbf{b}_1, \dots, \mathbf{b}_n$ . The term  $\beta_i$  means the *i*-th component of  $\mathbf{v}$  on  $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ .



#### **Definition - Basis**

Let  $\mathbb{V}(\mathbb{R})$  be an n-dimensional vector space with  $n \in \mathbb{N}$ . Then, a **basis** of  $\mathbb{V}(\mathbb{R})$  is a set of linearly independent vectors

$$\{\mathbf{b}_1,\ldots,\mathbf{b}_n\},\quad \mathbf{b}_i\in\mathbb{V}(\mathbb{R}),\quad i=1,\ldots,n$$

such that 
$$\forall \mathbf{v} \in \mathbb{V}(\mathbb{R}) \; \exists \; \beta_i \in \mathbb{R}, \; i=1,\ldots,n : \mathbf{v} = \left[ \begin{array}{ccc} \mathbf{b_1} & \cdots & \mathbf{b_n} \end{array} \right] \left[ \begin{array}{c} \beta_1 \\ \vdots \\ \beta_n \end{array} \right]$$

In other words, any vector  $\mathbf{v} \in \mathbb{V}(\mathbb{R})$  can be represented as a linear combination of  $\mathbf{b}_1, \ldots, \mathbf{b}_n$ . The term  $\beta_i$  means the *i*-th component of  $\mathbf{v}$  on  $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ .

#### The bases are not unique!

Let  $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$  and  $\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$  be two bases of  $\mathbb{V}(\mathbb{R})$ . Then, for any  $\mathbf{v}\in\mathbb{V}(\mathbb{R})$  exist

- $\mathbf{u} := \operatorname{col}(\beta_1, \dots, \beta_n)$  such that  $\mathbf{v} = [\mathbf{b}_1, \dots, \mathbf{b}_n] \mathbf{u}$
- $\mathbf{w} := \operatorname{col}(\gamma_1, \dots, \gamma_n)$  such that  $\mathbf{v} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \mathbf{w}$



## Definition - Change of Coordinates

Let  $\{{f b}_1,\ldots,{f b}_n\}$  and  $\{{f c}_1,\ldots,{f c}_n\}$  be two bases of  ${\Bbb V}({\Bbb R})$  and take  ${f v}$ ,  ${f u}$ , and  ${f w}$  such that

$$\begin{cases} \mathbf{v} = [\mathbf{b}_1, \dots, \mathbf{b}_n] \mathbf{u} \\ \mathbf{v} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \mathbf{w} \end{cases} \iff [\mathbf{b}_1, \dots, \mathbf{b}_n] \mathbf{u} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \mathbf{w}$$

Then,



## Definition - Change of Coordinates

Let  $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$  and  $\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$  be two bases of  $\mathbb{V}(\mathbb{R})$  and take  $\mathbf{v}$ ,  $\mathbf{u}$ , and  $\mathbf{w}$  such that

$$\left\{ \begin{array}{l} \mathbf{v} = [\mathbf{b}_1, \dots, \mathbf{b}_n] \, \mathbf{u} \\ \mathbf{v} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \, \mathbf{w} \end{array} \right. \iff [\mathbf{b}_1, \dots, \mathbf{b}_n] \, \mathbf{u} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \, \mathbf{w}$$

Then,

$$\mathbf{T} := \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \end{bmatrix}$$

is called change of coordinates and it is such that

$$\mathbf{u} = \mathbf{T} \mathbf{w}$$
.

Finally,



## Definition - Change of Coordinates

Let  $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$  and  $\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$  be two bases of  $\mathbb{V}(\mathbb{R})$  and take  $\mathbf{v}$ ,  $\mathbf{u}$ , and  $\mathbf{w}$  such that

$$\left\{ \begin{array}{l} \mathbf{v} = [\mathbf{b}_1, \dots, \mathbf{b}_n] \, \mathbf{u} \\ \mathbf{v} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \, \mathbf{w} \end{array} \right. \iff [\mathbf{b}_1, \dots, \mathbf{b}_n] \, \mathbf{u} = [\mathbf{c}_1, \dots, \mathbf{c}_n] \, \mathbf{w}$$

Then,

$$T := [b_1 \cdots b_n]^{-1} [c_1 \cdots c_n]$$

is called change of coordinates and it is such that

$$\mathbf{u} = \mathbf{T} \mathbf{w}$$
.

Finally, since the bases are made of linearly independent vectors, coordinate changes are invertible such that

$$\mathbf{w} = \mathbf{T}^{-1}\mathbf{u}$$
.



Let  $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^n$ , with  $n \in \mathbb{N}$ , be a linear function with  $\mathbf{A} \in \mathbb{R}^{n \times n}$ . Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  be two vectors, both defined on the basis  $\{\mathbf{c}_1, \dots, \mathbf{c}_n\}$  and such that

$$\mathbf{y} = \mathbf{A} \, \mathbf{x}. \tag{1}$$

Let



Let  $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^n$ , with  $n \in \mathbb{N}$ , be a linear function with  $\mathbf{A} \in \mathbb{R}^{n \times n}$ . Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  be two vectors, both defined on the basis  $\{\mathbf{c}_1, \dots, \mathbf{c}_n\}$  and such that

$$\mathbf{y} = \mathbf{A} \, \mathbf{x}. \tag{1}$$

Let  $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$  be a second basis of  $\mathbb{R}^n$  and define  $\mathbf{T}:=\left[\mathbf{b}_1\cdots\mathbf{b}_n\right]^{-1}\left[\mathbf{c}_1\cdots\mathbf{c}_n\right]$ ,

$$oldsymbol{\chi} := \mathsf{Tx}, \ \mathsf{and} \ oldsymbol{\mu} := \mathsf{Ty}$$

Then,



Let  $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^n$ , with  $n \in \mathbb{N}$ , be a linear function with  $\mathbf{A} \in \mathbb{R}^{n \times n}$ . Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  be two vectors, both defined on the basis  $\{\mathbf{c}_1, \dots, \mathbf{c}_n\}$  and such that

$$\mathbf{y} = \mathbf{A} \, \mathbf{x}. \tag{1}$$

Let  $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$  be a second basis of  $\mathbb{R}^n$  and define  $\mathbf{T}:=[\mathbf{b}_1\cdots\mathbf{b}_n]^{-1}[\mathbf{c}_1\cdots\mathbf{c}_n]$ ,

$$oldsymbol{\chi} := \mathsf{Tx}, \ \mathsf{and} \ oldsymbol{\mu} := \mathsf{Ty}$$

Then,

$$\mathbf{y} = \mathbf{A}\,\mathbf{x}$$
 pre-multiply both sides by  $\mathbf{T} \implies \mathbf{T}\mathbf{y} = \mathbf{T}\,\mathbf{A}\,\mathbf{x}$  exploit  $\mathbf{x} = \mathbf{T}^{-1}\chi \implies \mu = \bar{\mathbf{A}}\chi$ 

where  $\bar{\mathbf{A}} := \mathbf{T} \, \mathbf{A} \, \mathbf{T}^{-1}$  represents  $\mathbf{A}$  described on  $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ . This result was implicitly exploited to build the Jordan canonical form ...

Example (Jordan Canonical Form)

Let  $\mathbf{A} \in \mathbb{R}^{n \times n}$ ,  $n \in \mathbb{N}$ , and  $[\mathbf{c}_1 \cdots \mathbf{c}_n] = \mathbf{I}$ . Then, take  $[\mathbf{b}_1 \cdots \mathbf{b}_n] = \mathbf{V}$ , where  $\mathbf{V}$  is column composition of the generalised eigenvectors of  $\mathbf{A}$ . Therefore  $\mathbf{T} = \mathbf{V}^{-1}$  leads to  $\bar{\mathbf{A}} = \mathbf{T} \mathbf{A} \mathbf{T}^{-1} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V} = \mathbf{J}$ .



## Definition - Orthogonal Complement

Let  $\mathbb{S}(\mathbb{R}) \subseteq \mathbb{V}(\mathbb{R})$  be a p-dimensional subspace of  $\mathbb{V}(\mathbb{R})$ . Then, the **orthogonal complement** of  $\mathbb{S}(\mathbb{R})$ , denoted with  $[\mathbb{S}(\mathbb{R})]^{\perp}$ , is defined as a subspace of  $\mathbb{V}(\mathbb{R})$  such that

$$\mathbb{V}(\mathbb{R}) = \mathbb{S}(\mathbb{R}) \oplus [\mathbb{S}(\mathbb{R})]^{\perp}$$

where the direct sum  $\oplus$  means that  $\mathbb{S}(\mathbb{R}) \cup [\mathbb{S}(\mathbb{R})]^{\perp} = \mathbb{V}(\mathbb{R})$  and  $\mathbb{S}(\mathbb{R}) \cap [\mathbb{S}(\mathbb{R})]^{\perp} = \{0\}$ 

Remark



## Definition - Orthogonal Complement

Let  $\mathbb{S}(\mathbb{R}) \subseteq \mathbb{V}(\mathbb{R})$  be a p-dimensional subspace of  $\mathbb{V}(\mathbb{R})$ . Then, the **orthogonal complement** of  $\mathbb{S}(\mathbb{R})$ , denoted with  $[\mathbb{S}(\mathbb{R})]^{\perp}$ , is defined as a subspace of  $\mathbb{V}(\mathbb{R})$  such that

$$\mathbb{V}(\mathbb{R}) = \mathbb{S}(\mathbb{R}) \oplus [\mathbb{S}(\mathbb{R})]^{\perp}$$

where the direct sum  $\oplus$  means that  $\mathbb{S}(\mathbb{R}) \cup [\mathbb{S}(\mathbb{R})]^{\perp} = \mathbb{V}(\mathbb{R})$  and  $\mathbb{S}(\mathbb{R}) \cap [\mathbb{S}(\mathbb{R})]^{\perp} = \{0\}$ 

#### Remark

Let  $\mathbb{S}(\mathbb{R})\subseteq\mathbb{V}(\mathbb{R})$  be a p-dimensional subspace of  $\mathbb{V}(\mathbb{R})$  and let

- $\{\mathbf s_1,\ldots,\mathbf s_p\}$  be a basis for  $\mathbb S(\mathbb R)$
- $\{\mathbf{s}_1^{\star}, \dots, \mathbf{s}_{n-p}^{\star}\}$  be a basis for  $[\mathbb{S}(\mathbb{R})]^{\perp}$

then, the set  $\{\mathbf s_1,\dots,\mathbf s_p,\mathbf s_1^\star,\dots,\mathbf s_{n-p}^\star\}$  represents a basis for  $\mathbb V(\mathbb R)$ .



Definition - Kernel of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\ker(\mathbf{R}) := \{\mathbf{x} \in \mathbb{R}^m : \mathbf{0} = \mathbf{R} \, \mathbf{x}\}$ The dimension of  $\ker(\mathbf{R})$  is m minus the number of linearly independent rows



Definition - Kernel of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\ker(\mathbf{R}) := \{\mathbf{x} \in \mathbb{R}^m : \mathbf{0} = \mathbf{R} \, \mathbf{x}\}$ The dimension of  $\ker(\mathbf{R})$  is  $\underline{m}$  minus the number of linearly independent rows

Definition - Span of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\mathrm{span}(\mathbf{R}) := \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{R} \, \mathbf{x}, \mathbf{x} \in \mathbb{R}^m \}$ The dimension of  $\mathrm{span}(\mathbf{R})$  is the number of linearly independent columns



#### Definition - Kernel of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\ker(\mathbf{R}) := \{\mathbf{x} \in \mathbb{R}^m : \mathbf{0} = \mathbf{R} \, \mathbf{x} \}$ The dimension of  $\ker(\mathbf{R})$  is  $\underline{m}$  minus the number of linearly independent rows

## Definition - Span of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\mathrm{span}(\mathbf{R}) := \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{R} \, \mathbf{x}, \mathbf{x} \in \mathbb{R}^m \}$ The dimension of  $\mathrm{span}(\mathbf{R})$  is the number of linearly independent columns

# Span/Kernel Property

The kernel and the span are such that  $[span(\mathbf{R})]^{\perp} = \ker(\mathbf{R}^{\top})$ . As a consequence



#### Definition - Kernel of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\ker(\mathbf{R}) := \{\mathbf{x} \in \mathbb{R}^m : \mathbf{0} = \mathbf{R} \, \mathbf{x} \}$ The dimension of  $\ker(\mathbf{R})$  is  $\underline{m}$  minus the number of linearly independent rows

## Definition - Span of a Matrix

Let  $\mathbf{R} \in \mathbb{R}^{n \times m}$ , with  $n, m \in \mathbb{N}$ . Then, we define  $\mathrm{span}(\mathbf{R}) := \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{R} \mathbf{x}, \mathbf{x} \in \mathbb{R}^m \}$ The dimension of  $\mathrm{span}(\mathbf{R})$  is the number of linearly independent columns

# Span/Kernel Property

The kernel and the span are such that  $[span(\mathbf{R})]^{\perp} = \ker(\mathbf{R}^{\top})$ . As a consequence

$$\mathbb{V}(\mathbb{R}) = \mathbb{S}(\mathbb{R}) \oplus [\mathbb{S}(\mathbb{R})]^{\perp} \implies \mathbb{R}^n = \mathsf{span}(\mathsf{R}) \oplus [\mathsf{span}(\mathsf{R})]^{\perp} = \mathsf{span}(\mathsf{R}) \oplus \mathsf{ker}(\mathsf{R}^{\top})$$

Let  $p \le n$  be the dimension of span( $\mathbf{R}$ ),  $\{\mathbf{r}_1, \cdots, \mathbf{r}_p\}$  be a basis for span( $\mathbf{R}$ ), and  $\{\mathbf{r}_1^{\star}, \cdots, \mathbf{r}_{n-p}^{\star}\}$  be a basis for  $\ker(\mathbf{R}^{\top})$ . Then

$$\{\mathbf{r}_1,\cdots,\mathbf{r}_p,\mathbf{r}_1^\star,\cdots,\mathbf{r}_{n-p}^\star\}$$
 is a basis for  $\mathbb{R}^n$ 



# Table of Contents

Motivations and Goals

Basic Mathematics

- Reachability Kalman Decomposition
- State-Feedback Stabiliser



We now answer Question 1: "Which eigenvalues of A can we change?"



We now answer Question 1: "Which eigenvalues of A can we change?"

With 
$$\mathbf{x} \in \mathbb{R}^n$$
,  $\mathbf{u} \in \mathbb{R}^p$ ,  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , and  $\mathbf{B}_1 \in \mathbb{R}^{n \times p}$ , consider

$$\dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B}_1 \, \mathbf{u} \text{ with } \mathbf{x}(0) = \mathbf{0} \implies \dot{\mathbf{x}}(0) = \mathbf{B}_1 \, \mathbf{u}(0)$$



We now answer Question 1: "Which eigenvalues of A can we change?"

With 
$$\mathbf{x} \in \mathbb{R}^n$$
,  $\mathbf{u} \in \mathbb{R}^p$ ,  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , and  $\mathbf{B}_1 \in \mathbb{R}^{n \times p}$ , consider

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\,\boldsymbol{x} + \boldsymbol{B}_1\,\boldsymbol{u} \text{ with } \boldsymbol{x}(0) = \boldsymbol{0} \implies \dot{\boldsymbol{x}}(0) = \boldsymbol{B}_1\,\boldsymbol{u}(0)$$

Therefore,



We now answer Question 1: "Which eigenvalues of A can we change?"

With 
$$\mathbf{x} \in \mathbb{R}^n$$
,  $\mathbf{u} \in \mathbb{R}^p$ ,  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , and  $\mathbf{B}_1 \in \mathbb{R}^{n \times p}$ , consider

$$\dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B}_1 \, \mathbf{u} \text{ with } \mathbf{x}(0) = \mathbf{0} \implies \dot{\mathbf{x}}(0) = \mathbf{B}_1 \, \mathbf{u}(0)$$

Therefore,  $\mathbf{B}_1$  represents a basis for describing  $\dot{\mathbf{x}}(0)$  at  $\mathbf{x}(0) = \mathbf{0}$ .

#### Remark

At  $\mathbf{x}(0) = \mathbf{0}$ , the derivative  $\dot{\mathbf{x}}(0)$  is a linear combination of the columns of  $\mathbf{B}_1$ 



Compute now the second derivative of  $\mathbf{x}$ 

$$\ddot{\mathbf{x}} = \frac{d}{dt}$$



Compute now the second derivative of  $\mathbf{x}$ 

$$\begin{split} \ddot{\mathbf{x}} &= \frac{d}{dt}\dot{\mathbf{x}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \frac{d}{dt}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) \\ \text{distributive law and } \mathbf{A} \text{ and } \mathbf{B}_1 \text{ constant } \implies = \mathbf{A}\,\dot{\mathbf{x}} + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \mathbf{A}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \text{distributive law } \implies = \mathbf{A}^2\,\mathbf{x} + \mathbf{A}\,\mathbf{B}_1\,\mathbf{u} + \mathbf{B}_1\,\dot{\mathbf{u}} \end{split}$$

and use the latter with  $\mathbf{x}(0) = \mathbf{0}$  to evaluate



Compute now the second derivative of  $\mathbf{x}$ 

$$\begin{split} \ddot{\mathbf{x}} &= \frac{d}{dt}\dot{\mathbf{x}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \frac{d}{dt}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) \\ \text{distributive law and } \mathbf{A} \text{ and } \mathbf{B}_1 \text{ constant } \implies = \mathbf{A}\dot{\mathbf{x}} + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \mathbf{A}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \text{distributive law } \implies = \mathbf{A}^2\,\mathbf{x} + \mathbf{A}\,\mathbf{B}_1\,\mathbf{u} + \mathbf{B}_1\,\dot{\mathbf{u}} \end{split}$$

and use the latter with  $\mathbf{x}(0) = \mathbf{0}$  to evaluate

$$\ddot{\boldsymbol{x}}(0) := \boldsymbol{A}\,\boldsymbol{B}_1\,\boldsymbol{u}(0) + \boldsymbol{B}_1\,\dot{\boldsymbol{u}}(0) = \left[\boldsymbol{B}_1\;\;\boldsymbol{A}\;\boldsymbol{B}_1\right] \left[\begin{array}{c} \dot{\boldsymbol{u}}(0) \\ \boldsymbol{u}(0) \end{array}\right]$$

Therefore,



Compute now the second derivative of  $\mathbf{x}$ 

$$\begin{split} \ddot{\mathbf{x}} &= \frac{d}{dt}\dot{\mathbf{x}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \frac{d}{dt}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) \\ \text{distributive law and } \mathbf{A} \text{ and } \mathbf{B}_1 \text{ constant } \implies = \mathbf{A}\dot{\mathbf{x}} + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \dot{\mathbf{x}} &= \mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u} \implies = \mathbf{A}(\mathbf{A}\,\mathbf{x} + \mathbf{B}_1\,\mathbf{u}) + \mathbf{B}_1\,\dot{\mathbf{u}} \\ \text{distributive law } \implies = \mathbf{A}^2\,\mathbf{x} + \mathbf{A}\,\mathbf{B}_1\,\mathbf{u} + \mathbf{B}_1\,\dot{\mathbf{u}} \end{split}$$

and use the latter with  $\mathbf{x}(0) = \mathbf{0}$  to evaluate

$$\ddot{\boldsymbol{x}}(0) := \boldsymbol{A}\,\boldsymbol{B}_1\,\boldsymbol{u}(0) + \boldsymbol{B}_1\,\dot{\boldsymbol{u}}(0) = \left[\boldsymbol{B}_1\;\;\boldsymbol{A}\;\boldsymbol{B}_1\right] \left[\begin{array}{c} \dot{\boldsymbol{u}}(0) \\ \boldsymbol{u}(0) \end{array}\right]$$

Therefore,  $[\mathbf{B}_1 \ \mathbf{A} \ \mathbf{B}_1]$  represents a basis for describing  $\ddot{\mathbf{x}}(0)$  at  $\mathbf{x}(0) = \mathbf{0}$ .



Generically, the kth derivative of  $\mathbf{x}$ , evaluated at t=0 with  $\mathbf{x}(0)=\mathbf{0}$ , is

$$\left. \frac{d^k}{dt^k} \mathbf{x}(t) \right|_{t=0} = \underbrace{\left[ \begin{array}{c} \mathbf{B}_1 & \cdots & \mathbf{A}^{k-1} \mathbf{B}_1 \end{array} \right]}_{\text{basis for } \frac{d^k}{dt^k} \mathbf{x}(t) \bigg|_{t=0}} \left[ \begin{array}{c} \frac{d^{k-1}}{dt^{k-1}} \mathbf{u}(t) \bigg|_{t=0} \\ \vdots \\ \mathbf{u}(0) \end{array} \right]$$

Remark

$$\mathsf{span}\left(\left[\begin{array}{cccc} \mathbf{B}_1 & \cdots & \mathbf{A}^{k-1} \, \mathbf{B}_1 \end{array}\right]\right) \subseteq \mathsf{span}\left(\left[\begin{array}{ccccc} \mathbf{B}_1 & \cdots & \mathbf{A}^k \, \mathbf{B}_1 \end{array}\right]\right) \ \, orall \, k=1,\ldots,n-1$$



Generically, the kth derivative of  $\mathbf{x}$ , evaluated at t=0 with  $\mathbf{x}(0)=\mathbf{0}$ , is

$$\frac{d^{k}}{dt^{k}} \mathbf{x}(t) \Big|_{t=0} = \underbrace{\begin{bmatrix} \mathbf{B}_{1} & \cdots & \mathbf{A}^{k-1} \mathbf{B}_{1} \end{bmatrix}}_{\text{basis for } \frac{d^{k}}{dt^{k}} \mathbf{x}(t) \Big|_{t=0}} \begin{bmatrix} \frac{d^{k-1}}{dt^{k-1}} \mathbf{u}(t) \Big|_{t=0} \\ \vdots \\ \mathbf{u}(0) \end{bmatrix}$$

### Remark

$$\mathsf{span}\left(\left[\begin{array}{ccc} \mathbf{B_1} & \cdots & \mathbf{A}^{k-1} \, \mathbf{B_1} \end{array}\right]\right) \subseteq \mathsf{span}\left(\left[\begin{array}{ccc} \mathbf{B_1} & \cdots & \mathbf{A}^k \, \mathbf{B_1} \end{array}\right]\right) \ \, \forall \, k=1,\ldots,n-1$$

Definition - Reachability Matrix

We define the reachability matrix

$$\mathsf{R} := \left[ egin{array}{cccc} \mathsf{B}_1 & \cdots & \mathsf{A}^{n-1} \, \mathsf{B}_1 \end{array} 
ight]$$

as the basis for 
$$\left. \frac{d^n}{dt^n} \mathbf{x}(t) \right|_{t=0}$$
 (where  $n$  is the system's dimension)



Some thoughts ...

 The span of R represents the set of all possible directions x can take (in terms of its nth time derivative)



Some thoughts ...

- The span of R represents the set of all possible directions x can take (in terms of its nth time derivative)
- Therefore, span( ${f R}$ )  $\subset {\Bbb R}^n$  implies there exists a set of directions along which  $\dfrac{d^n}{dt^n}{f x}$  cannot live



Some thoughts ...

- The span of R represents the set of all possible directions x can take (in terms of its nth time derivative)
- Therefore, span( $\mathbf{R}$ )  $\subset \mathbb{R}^n$  implies there exists a set of directions along which  $\frac{d^n}{dt^n}\mathbf{x}$  cannot live
- But, if  $\frac{d^n}{dt^n}$  **x** cannot evolve along a given direction, then also the remaining  $\frac{d^k}{dt^k}$  **x**, with  $k = 1, \dots, n-1$ , cannot. This is a direct consequence of

$$\mathsf{span}\left(\left[\begin{array}{ccc} \mathbf{B_1} & \cdots & \mathbf{A}^{k-1} \, \mathbf{B_1} \end{array}\right]\right) \subseteq \mathsf{span}\left(\left[\begin{array}{ccc} \mathbf{B_1} & \cdots & \mathbf{A}^k \, \mathbf{B_1} \end{array}\right]\right) \ \, \forall \, k=1,\ldots,n-1$$



Some thoughts ...

- The span of R represents the set of all possible directions x can take (in terms of its nth time derivative)
- Therefore, span( $\mathbf{R}$ )  $\subset \mathbb{R}^n$  implies there exists a set of directions along which  $\frac{d^n}{dt^n}\mathbf{x}$  cannot live
- But, if  $\frac{d^n}{dt^n}$  **x** cannot evolve along a given direction, then also the remaining  $\frac{d^k}{dt^k}$  **x**, with  $k = 1, \dots, n-1$ , cannot. This is a direct consequence of

$$\operatorname{\mathsf{span}}\left(\left[\begin{array}{cccc} \mathbf{B}_1 & \cdots & \mathbf{A}^{k-1} \, \mathbf{B}_1 \end{array}\right]\right) \subseteq \operatorname{\mathsf{span}}\left(\left[\begin{array}{ccccc} \mathbf{B}_1 & \cdots & \mathbf{A}^k \, \mathbf{B}_1 \end{array}\right]\right) \ \ \forall \, k=1,\ldots,n-1$$

### Definition - Reachability Subspace

We define the **reachability subspace** as span(R). (note that it is a vector space)

## Definition - Reachabile Couple

Consider  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $\mathbf{B}_1 \in \mathbb{R}^{n \times m}$  and their associated reachability matrix span( $\mathbf{R}$ ). Then, we say the couple  $(\mathbf{A}, \mathbf{B}_1)$  is **reachable** if span( $\mathbf{R}$ ) =  $\mathbb{R}^n$ , *i.e.*, if rank( $\mathbf{R}$ ) =  $\mathbb{R}^n$ 

Therefore, we use the kernel/span property (hereafter recalled)

$$\mathbb{R}^n = \mathsf{span}(\mathsf{R}) \oplus \mathsf{ker}(\mathsf{R}^\top)$$

to define the change of coordinate  $\mathbf{T}^{-1} := \left[ \begin{array}{cccc} \mathbf{r}_1 & \cdots & \mathbf{r}_p & \mathbf{r}_1^\star & \cdots & \mathbf{r}_{n-p}^\star \end{array} \right]$  where

- $p \le n$  is the dimension of span(**R**)
- $\{\mathbf{r}_1, \dots, \mathbf{r}_p\}$  is a basis for span(**R**)
- $\{\mathbf{r}_1^{\star}, \cdots, \mathbf{r}_{n-p}^{\star}\}$  is a basis for  $\ker(\mathbf{R}^{\top})$



Therefore, we use the kernel/span property (hereafter recalled)

$$\mathbb{R}^n = \mathsf{span}(\mathsf{R}) \oplus \mathsf{ker}(\mathsf{R}^ op)$$

- $p \le n$  is the dimension of span(**R**)
- $\{\mathbf{r}_1, \dots, \mathbf{r}_p\}$  is a basis for span(**R**)
- $\{\mathbf{r}_1^{\star}, \cdots, \mathbf{r}_{n-p}^{\star}\}$  is a basis for  $\ker(\mathbf{R}^{\top})$

Then, define z := Tx and compute

$$\begin{split} \textbf{T} \; \text{constant} \; &\Longrightarrow \; \dot{\textbf{z}} = \textbf{T} \dot{\textbf{x}} \\ \dot{\textbf{x}} = \textbf{A}\,\textbf{x} + \textbf{B}_1\,\textbf{u} + \textbf{B}_2\,\textbf{w} \; &\Longrightarrow \; \dot{\textbf{z}} = \textbf{T}(\textbf{A}\,\textbf{x} + \textbf{B}_1\,\textbf{u} + \textbf{B}_2\,\textbf{w}) \\ \text{distributive law} \; &\Longrightarrow \; \dot{\textbf{z}} = \textbf{T}\,\textbf{A}\,\textbf{x} + \textbf{T}\,\textbf{B}_1\,\textbf{u} + \textbf{T}\,\textbf{B}_2\,\textbf{w} \\ \textbf{x} = \textbf{T}^{-1}\textbf{z} \; &\Longrightarrow \; \dot{\textbf{z}} = \textbf{T}\,\textbf{A}\,\textbf{T}^{-1}\textbf{z} + \textbf{T}\,\textbf{B}_1\,\textbf{u}\,\textbf{T}\,\textbf{B}_2\,\textbf{w} \\ \bar{\textbf{A}} := \textbf{T}\,\textbf{A}\,\textbf{T}^{-1}, \; \bar{\textbf{B}}_1 := \textbf{T}\,\textbf{B}_1, \; \bar{\textbf{B}}_2 := \textbf{T}\,\textbf{B}_2 \; \Longrightarrow \; \dot{\textbf{z}} = \bar{\textbf{A}}\textbf{z} + \bar{\textbf{B}}_1\,\textbf{u} + \bar{\textbf{B}}_2\,\textbf{w} \end{split}$$

Let us investigate  $\dot{\textbf{z}} = \bar{\textbf{A}}\textbf{z} + \bar{\textbf{B}}_1\,\textbf{u} + \bar{\textbf{B}}_2\,\textbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\mathbf{z}} = \bar{\mathbf{A}}\mathbf{z} + \bar{\mathbf{B}}_1\,\mathbf{u} + \bar{\mathbf{B}}_2\,\mathbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\textbf{z}} = \bar{\textbf{A}}\textbf{z} + \bar{\textbf{B}}_1\,\textbf{u} + \bar{\textbf{B}}_2\,\textbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\mathbf{z}} = \bar{\mathbf{A}}\mathbf{z} + \bar{\mathbf{B}}_1\,\mathbf{u} + \bar{\mathbf{B}}_2\,\mathbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\textbf{z}} = \bar{\textbf{A}}\textbf{z} + \bar{\textbf{B}}_1\,\textbf{u} + \bar{\textbf{B}}_2\,\textbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\mathbf{z}} = \bar{\mathbf{A}}\mathbf{z} + \bar{\mathbf{B}}_1\,\mathbf{u} + \bar{\mathbf{B}}_2\,\mathbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 





Let us investigate  $\dot{\textbf{z}} = \bar{\textbf{A}}\textbf{z} + \bar{\textbf{B}}_1\,\textbf{u} + \!\bar{\textbf{B}}_2\,\textbf{w}$ 

• define  $\mathbf{z}_{\mathsf{R}} \in \mathbb{R}^p$  and  $\mathbf{z}_{\mathsf{NR}} \in \mathbb{R}^{n-p}$  such that  $\mathbf{z} = \mathsf{col}(\mathbf{z}_{\mathsf{R}}, \mathbf{z}_{\mathsf{NR}})$ 

Then,



The couple  $(\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_{11})$  is reachable!

$$\begin{split} \dot{\mathbf{z}}_{R} &= \bar{\mathbf{A}}_{11}\mathbf{z}_{R} + \bar{\mathbf{A}}_{12}\mathbf{z}_{NR} + \bar{\mathbf{B}}_{11}\mathbf{u} + \bar{\mathbf{B}}_{21}\mathbf{w} \\ & \uparrow \\ \dot{\mathbf{z}}_{NR} &= \bar{\mathbf{A}}_{22}\mathbf{z}_{NR} + \bar{\mathbf{B}}_{22}\mathbf{w} \end{split}$$



## Table of Contents

Motivations and Goals

Basic Mathematics

- Reachability Kalman Decomposition
- State-Feedback Stabiliser



#### Theorem

Let  $(\mathbf{A},\mathbf{B})$  be a reachable couple with  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times m}$ ,  $n,m \in \mathbb{N}$ . Then, there exists  $\mathbf{K}_{\mathsf{R}} \in \mathbb{R}^{m \times n}$  such that  $\mathbf{A} + \mathbf{B} \, \mathbf{K}_{\mathsf{R}}$  is Hurwitz

Roughly, we can modify all the eigenvalues of  $\boldsymbol{A}$  if  $(\boldsymbol{A},\boldsymbol{B})$  is reachable



#### **Theorem**

Let  $(\mathbf{A},\mathbf{B})$  be a reachable couple with  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times m}$ ,  $n,m \in \mathbb{N}$ . Then, there exists  $\mathbf{K}_{\mathsf{R}} \in \mathbb{R}^{m \times n}$  such that  $\mathbf{A} + \mathbf{B} \, \mathbf{K}_{\mathsf{R}}$  is Hurwitz

Roughly, we can modify all the eigenvalues of  $\boldsymbol{A}$  if  $(\boldsymbol{A},\boldsymbol{B})$  is reachable

Finally, we are ready to answer the question "Which eigenvalues of A can we change?"



#### **Theorem**

Let  $(\mathbf{A},\mathbf{B})$  be a reachable couple with  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times m}$ ,  $n,m \in \mathbb{N}$ . Then, there exists  $\mathbf{K}_{\mathsf{R}} \in \mathbb{R}^{m \times n}$  such that  $\mathbf{A} + \mathbf{B} \, \mathbf{K}_{\mathsf{R}}$  is Hurwitz

Roughly, we can modify all the eigenvalues of  $\bf A$  if  $({\bf A},{\bf B})$  is reachable

Finally, we are ready to answer the question "Which eigenvalues of A can we change?"

### Answer

 $(\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_{11})$  reachable  $\implies$  we can only modify the eigenvalues of the reachable part!



But also, we can answer the question "**How** can we change the **modifiable** eigenvalues of **A**?"



But also, we can answer the question "How can we change the modifiable eigenvalues of  $\mathbf{A}$ ?"

#### **Answer**

Inspired by Theorem, we define  $u_S:=\mathbf{K}_R\mathbf{z}_R+\mathbf{K}_{NR}\mathbf{z}_{NR}$  such that  $\mathbf{\bar{A}}_{11}+\mathbf{\bar{B}}_{11}\mathbf{K}_R$  is Hurwitz. Then,

$$\left. \begin{array}{l} \dot{\textbf{z}}_{\text{NR}} = \boldsymbol{\bar{\textbf{A}}}_{22} \textbf{z}_{\text{NR}} + \boldsymbol{\bar{\textbf{B}}}_{22} \textbf{w} \\ \dot{\textbf{z}}_{\text{R}} = \boldsymbol{\bar{\textbf{A}}}_{11} \textbf{z}_{\text{R}} + \boldsymbol{\bar{\textbf{A}}}_{12} \textbf{z}_{\text{NR}} + \boldsymbol{\bar{\textbf{B}}}_{11} \textbf{u} + \boldsymbol{\bar{\textbf{B}}}_{21} \textbf{w} \\ \textbf{u} = \textbf{u}_{\text{S}} \end{array} \right\} \implies$$



But also, we can answer the question "How can we change the modifiable eigenvalues of  $\mathbf{A}$ ?"

#### Answer

Inspired by Theorem, we define  $u_S:=\mathbf{K}_R\mathbf{z}_R+\mathbf{K}_{NR}\mathbf{z}_{NR}$  such that  $\mathbf{\bar{A}}_{11}+\mathbf{\bar{B}}_{11}\mathbf{K}_R$  is Hurwitz. Then,

$$\begin{array}{l} \dot{\textbf{z}}_{\text{NR}} = \bar{\textbf{A}}_{22}\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{22}\textbf{w} \\ \dot{\textbf{z}}_{\text{R}} = \bar{\textbf{A}}_{11}\textbf{z}_{\text{R}} + \bar{\textbf{A}}_{12}\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{11}\textbf{u} + \bar{\textbf{B}}_{21}\textbf{w} \\ \textbf{u} = \textbf{u}_{\text{S}} \end{array} \right\} \implies \begin{array}{l} \dot{\textbf{z}}_{\text{NR}} = \bar{\textbf{A}}_{22}\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{22}\textbf{w} \\ \dot{\textbf{z}}_{\text{R}} = (\bar{\textbf{A}}_{11} + \bar{\textbf{B}}_{11}\textbf{K}_{\text{R}})\textbf{z}_{\text{R}} \\ + (\bar{\textbf{A}}_{12} + \bar{\textbf{B}}_{1}\textbf{K}_{\text{NR}})\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{21}\textbf{w} \end{array}$$

$$\begin{split} \dot{\textbf{z}}_{\text{R}} &= (\bar{\textbf{A}}_{11} + \bar{\textbf{B}}_{11}\textbf{K}_{\text{R}})\textbf{z}_{\text{R}} + (\bar{\textbf{A}}_{12} + \bar{\textbf{B}}_{1}\textbf{K}_{\text{NR}})\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{21}\textbf{w} \\ & \uparrow \\ \dot{\textbf{z}}_{\text{NR}} &= \bar{\textbf{A}}_{22}\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{22}\textbf{w} \end{split}$$



Is this system BIBS-stable?

$$\begin{split} \dot{\mathbf{z}}_{R} &= (\bar{\mathbf{A}}_{11} + \bar{\mathbf{B}}_{11}\mathbf{K}_{R})\mathbf{z}_{R} + (\bar{\mathbf{A}}_{12} + \bar{\mathbf{B}}_{1}\mathbf{K}_{NR})\mathbf{z}_{NR} + \bar{\mathbf{B}}_{21}\mathbf{w} \\ & \uparrow \\ \dot{\mathbf{z}}_{NR} &= \bar{\mathbf{A}}_{22}\mathbf{z}_{NR} + \bar{\mathbf{B}}_{22}\mathbf{w} \end{split}$$



Is this system BIBS-stable?

$$\begin{split} \dot{\textbf{z}}_{\text{R}} = (\bar{\textbf{A}}_{11} + \bar{\textbf{B}}_{11}\textbf{K}_{\text{R}})\textbf{z}_{\text{R}} + (\bar{\textbf{A}}_{12} + \bar{\textbf{B}}_{1}\textbf{K}_{\text{NR}})\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{21}\textbf{w} \\ & \uparrow \\ \dot{\textbf{z}}_{\text{NR}} = \bar{\textbf{A}}_{22}\textbf{z}_{\text{NR}} + \bar{\textbf{B}}_{22}\textbf{w} \end{split}$$

It depends ... on the eigenvalues of  $\bar{\mathbf{A}}_{22}!$ 



Is this system BIBS-stable?

$$\begin{split} \dot{\mathbf{z}}_{\text{R}} = (\bar{\mathbf{A}}_{11} + \bar{\mathbf{B}}_{11}\mathbf{K}_{\text{R}})\mathbf{z}_{\text{R}} + (\bar{\mathbf{A}}_{12} + \bar{\mathbf{B}}_{1}\mathbf{K}_{\text{NR}})\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{21}\mathbf{w} \\ & \qquad \qquad \uparrow \\ \dot{\mathbf{z}}_{\text{NR}} = \bar{\mathbf{A}}_{22}\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{22}\mathbf{w} \end{split}$$

It depends ... on the eigenvalues of  $\bar{\mathbf{A}}_{22}$ !

Definition - Stabilisability

We say that the couple  $(\mathbf{A}, \mathbf{B})$  is stabilisable if  $\bar{\mathbf{A}}_{22}$  is Hurwitz



Is this system BIBS-stable?

It depends ... on the eigenvalues of  $\bar{\mathbf{A}}_{22}$ !

Definition - Stabilisability

We say that the couple  $(\mathbf{A},\mathbf{B})$  is stabilisable if  $\bar{\mathbf{A}}_{22}$  is Hurwitz

Since there is no way we can change the eigenvalues of  $\bar{\bf A}_{22}$ , from now on, we assume  $({\bf A},{\bf B})$  stabilisable

State-Feedback Stabiliser in the original coordinates

$$\mathbf{u}_S := \mathbf{K}_R \mathbf{z}_R + \mathbf{K}_{NR} \mathbf{z}_{NR} =$$



Is this system BIBS-stable?

$$\begin{split} \dot{\mathbf{z}}_{\text{R}} &= (\bar{\mathbf{A}}_{11} + \bar{\mathbf{B}}_{11}\mathbf{K}_{\text{R}})\mathbf{z}_{\text{R}} + (\bar{\mathbf{A}}_{12} + \bar{\mathbf{B}}_{1}\mathbf{K}_{\text{NR}})\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{21}\mathbf{w} \\ & \uparrow \\ \dot{\mathbf{z}}_{\text{NR}} &= \bar{\mathbf{A}}_{22}\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{22}\mathbf{w} \end{split}$$

It depends ... on the eigenvalues of  $\bar{\mathbf{A}}_{22}$ !

Definition - Stabilisability

We say that the couple  $(\mathbf{A},\mathbf{B})$  is stabilisable if  $\bar{\mathbf{A}}_{22}$  is Hurwitz

Since there is no way we can change the eigenvalues of  $\bar{\bf A}_{22}$ , from now on, we assume  $({\bf A},{\bf B})$  stabilisable

State-Feedback Stabiliser in the original coordinates

$$\mathbf{u}_{S} := \mathbf{K}_{R}\mathbf{z}_{R} + \mathbf{K}_{NR}\mathbf{z}_{NR} = \left[\begin{array}{cc} \mathbf{K}_{R} & \mathbf{K}_{NR} \end{array}\right] \underbrace{\left[\begin{array}{c} \mathbf{z}_{R} \\ \mathbf{z}_{NR} \end{array}\right]}_{=\mathbf{z} = \mathbf{T}\mathbf{x}} = \mathbf{K}_{R}\mathbf{z}_{R}$$



Is this system BIBS-stable?

$$\begin{split} \dot{\mathbf{z}}_{\text{R}} &= (\bar{\mathbf{A}}_{11} + \bar{\mathbf{B}}_{11}\mathbf{K}_{\text{R}})\mathbf{z}_{\text{R}} + (\bar{\mathbf{A}}_{12} + \bar{\mathbf{B}}_{1}\mathbf{K}_{\text{NR}})\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{21}\mathbf{w} \\ & \uparrow \\ \dot{\mathbf{z}}_{\text{NR}} &= \bar{\mathbf{A}}_{22}\mathbf{z}_{\text{NR}} + \bar{\mathbf{B}}_{22}\mathbf{w} \end{split}$$

It depends ... on the eigenvalues of  $\bar{\mathbf{A}}_{22}$ !

Definition - Stabilisability

We say that the couple  $(\mathbf{A}, \mathbf{B})$  is stabilisable if  $\bar{\mathbf{A}}_{22}$  is Hurwitz

Since there is no way we can change the eigenvalues of  $\bar{\bf A}_{22}$ , from now on, we assume  $({\bf A},{\bf B})$  stabilisable

State-Feedback Stabiliser in the original coordinates

$$\mathbf{u}_{S} := \mathbf{K}_{R}\mathbf{z}_{R} + \mathbf{K}_{NR}\mathbf{z}_{NR} = \left[\begin{array}{cc} \mathbf{K}_{R} & \mathbf{K}_{NR} \end{array}\right] \underbrace{\left[\begin{array}{c} \mathbf{z}_{R} \\ \mathbf{z}_{NR} \end{array}\right]}_{=\mathbf{z}_{R} = \mathbf{T}_{X}} = \underbrace{\left[\begin{array}{cc} \mathbf{K}_{R} & \mathbf{K}_{NR} \end{array}\right] \mathbf{T}}_{\mathbf{K}_{S} :=} \mathbf{X} = \mathbf{K}_{S} \mathbf{X}$$



#### Fundamental Result

Consider the LTI system

$$\dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B}_1 \, \mathbf{u} + \mathbf{B}_2 \, \mathbf{w}$$

with the couple  $(A, B_1)$  stabilisable. Then, there exists  $K_S$  such that

$$u_S = K_S\, x$$

makes the closed-loop system

$$\dot{\mathbf{x}} = (\mathbf{A} + \mathbf{B}_1 \, \mathbf{K}_S) \, \mathbf{x} + \mathbf{B}_2 \, \mathbf{w}$$

BIBS-stable





#### Nicola Mimmo

Department of Electrical, Electronics and Information Engineering "G. Marconi" University of Bologna

nicola.mimmo2@unibo.it