$$(2+n)^{-1} \mod n^2; n = 17$$

 $19^{-1} \mod 289$

Need to calculate modular multiplicative inverse

$$x \equiv 19^{-1} \mod 289$$
$$19x - 289y = 1$$

Using extended Euclidean algorithm. Let's set: $x_0 = 1, x_1 = 0$

$q = \left\lceil \frac{r_{i-1} - r_{i-1}}{r_i} \right\rceil$	$r_i = r_{i-2} - q r_{i-1}$	$t_{i+1} = t_{i-1} - q_i t_i$
	19	0
	289	1
15	4	-15
4	3	61
1	1	-76
3	0	289

Solution is -76; 19 * (-76) = 1 - 289 * 5.

1

$$Y^2 = X^3 + 2X + 4 \mod 11; P : (10, 10); \text{find } 3P$$