

DEMO Guide and comments

- QUADCOPTER balancing a PENDULUM

Brad Horton Engineer MathWorks

Context

The context of the demo:

- Used for Edu engagements
 - Professors teach machine dynamics
 - Professors teaching Control
- Emphasise COMPUTATIONAL Thinking
 - symbolic toolbox usage for equation derivation
 - Simulink for simulating models containing the derived equations of motion
- Emphasize modelling choices
 - Hand derivations
 - Simscape models
 - Easy
 - Machine visualization/animations straight out of the box

Launch the demo:

Run the start-up function

>> bh startup quad and pendulum

After running the start-up function the DEMO navigator APP will appear:

The Pendulum.

▲ MathWorks[®]

Pendulum demo: overview

- Derive equations of motion of a 3D pendulum
 - The pivot point base can move in X,Y,Z
- Use Symbolic toolbox to
 - Derive equations of motion
 - Create a matlabFunction block
- Design a control Law
- Simulate controlled system
 - Using hand derived model
 - Using a Simscape multibody model

Comments on the PENDULUM demo: Part 1 of 6

- Opens the implay() video viewer (Image Proc tbox).
- Click the PLAY button in the video player and watch a short video on the finale model of the system

Comments on the PENDULUM demo: Part 2 of 6

- Opens a Live script.
- YOU manually run this script, to derive the Equations of motion for the pendulum.
- The Lagrangian technique is used.
- The output is a "yellow" MATLAB function block for Simulink – this contains the equations of motion

Comments on the PENDULUM demo: Part 3 of 6

- Opens a Simulink component model that contains our derived equations of motion.
- You **Do NOT run** this model.
- This model is referenced by other models
- So what do you do with it?
 - Just have a look inside it.
 - Note the YELLOW block that contains our derived equations of motion.

Comments on the PENDULUM demo: Part 4 of 6

- Opens a Live script for doing a control design task.
- YOU manually run this script.
- The output of this script is a Control LAW "K"

Comments on the PENDULUM demo: Part 5 of 6

- Opens the Simulink model that was used for the linearization task of our Control design.
- So what do you do with it?
 - You do NOT run this model
 - Just have a look inside it.

Comments on the PENDULUM demo: Part 6 of 6

- Opens a Simulink model that contains
 - Our hand derived model
 - A corresponding Simscape model
 - Our designed Control LAw
- So what do you do with it?
 - You Run it.
 - Observe that the hand derived model produces the same outputs as the Simscape model.

The Quadcopter.

Quadcopter demo: overview

- Derive equations of motion of a 6-dof quadcopter
 - Include spinning propellers
- Use Symbolic toolbox to
 - Derive equations of motion
- Create a model using Simscape
- Compare Hand derived model against Simscape model
 - Both models use the exact same multi cascade control law
- Design an alternate control law using the LQI technique
 - Simulate controlled quadcopter using the LQI controller

Comments on the Quadcopter demo: Part 1 of 7

- Opens a Live script.
- YOU manually run this script, to derive the Equations of motion for the QUADCOPTER.
- The Lagrangian technique is used.
- The output is a "yellow" MATLAB function block for Simulink – this contains the equations of motion

Comments on the Quadcopter demo: Part 2 of 7

- Opens a Simulink component model that contains our derived equations of motion.
- You **Do NOT run** this model.
- This model is referenced by other models
- So what do you do with it?
 - Just have a look inside it.
 - Note the YELLOW block that contains our derived equations of motion.

Comments on the Quadcopter demo: Part 3 of 7

- Opens a Simulink model that contains
 - Our hand derived model (Lagrange)
 - A corresponding model derived using NEWTON's laws
- So what do you do with it?
 - You Run it.
 - Observe that the Lagrangian model output is very similar to the NEWTON derived model

Comments on the Quadcopter demo: Part 4 of 7

- Opens a Simulink model that contains
 - A Simscape multibody version of the Quadcopter
- So what do you do with it?
 - You Run it.

Comments on the Quadcopter demo: Part 5 of 7

- Opens a Simulink model that contains
 - Our Lagrangian derived model
 - Our Simscape multibody version of the Quadcopter
- So what do you do with it?
 - You Run it.
 - Observe that the Lagrangian model output is very similar to the Simscape model

Comments on the Quadcopter demo: Part 6 of 7

- Opens a Live script for doing a control design task.
 - Uses the LQI technique
 - Uses our hand derived plant model
- YOU manually run this script.
- The output of this script is a Control LAW "K"

Comments on the Quadcopter demo: Part 7 of 7

- Opens a Simulink model that contains
 - Our hand derived model
 - Our designed LQI Control LAw
- So what do you do with it?
 - You Run it.

The Quadcopter Balancing The pendulum

Quadcopter balancing pendulum demo: overview

- Derive equations of motion of a 6-dof quadcopter with a pendulum
 - Include spinning propellers
- Use Symbolic toolbox to
 - Derive equations of motion
- Use derived plant model to design control law using the LQI technique
 - Simulate controlled quadcopter using the LQI controller
- Create a model using Simscape
- Compare Hand derived model against Simscape model
 - Both models use the exact same LQI control law

Comments on the Quadcopter balancing a pendulum demo: Part 1 of 7

- Opens the implay() video viewer (Image Proc tbox).
- Click the PLAY button in the video player and watch a short video on the finale model of the system

Comments on the Quadcopter balancing a pendulum demo: Part 2 of 7

- Opens a Live script.
- YOU manually run this script, to derive the Equations of motion for the QUADCOPTER.
- The Lagrangian technique is used.
- The output is a "yellow" MATLAB function block for Simulink – this contains the equations of motion

ATTENTION:

- The live script tales 10 minutes to run on a Lenovo P50 laptop
- So it's probably not sensible to try and run it in front of a professor.
- The outputs of this script (ie: a yellow Simulink block) are already to go in a model on the next slide!

Comments on the Quadcopter balancing a pendulum demo: Part 3 of 7

- Opens a Simulink component model that contains our derived equations of motion.
- You Do NOT run this model.
- This model is referenced by other models
- So what do you do with it?
 - Just have a look inside it.
 - It contains the YELLOW block that would have been created had you allowed the script on the previous slide to run (for 10 minutes)
 - The yellow MATLAB Function block contains our derived equations of motion

Comments on the Quadcopter balancing a pendulum demo: Part 4 of 7

- Opens a Live script for doing a control design task.
 - Uses the LQI technique
 - Uses our hand derived plant model
- YOU manually run this script.
- The output of this script is a Control LAW "K"

Comments on the Quadcopter balancing a pendulum demo: Part 5 of 7

- Opens a Simulink model that contains
 - Our hand derived model
 - Our designed LQI Control LAw
- So what do you do with it?
 - You Run it.

Comments on the Quadcopter balancing a pendulum demo: Part 6 of 7

- Opens a Simulink model that contains
 - A Simscape multibody version of the Quadcopter balancing the pendulum
 - Uses the identical LQI control law used on the previous slide.
- So what do you do with it?
 - You Run it.

Comments on the Quadcopter balancing a pendulum demo: Part 7 of 7

- Opens a Simulink model that contains
 - Our hand derived model
 - The corresponding Simscape model
 - Our designed LQI Control aw
- So what do you do with it?
 - You Run it.
 - Observe that the hand derived model produces very similar outputs as the Simscape model.

END