HYDRAULIC MOTORS MV

APPLICATION

- » Conveyors
- » Metal working machines
- » Agricultural machines
- » Road building machines
- » Mining machinery
- » Food industries
- » Special vehicles
- » Plastic and rubber machinery etc.

CONTENTS

Specification data	39
Function diagrams	41÷43
Permissible shaft loads	43
Dimensions and mounting	44÷46
Dimensions and mounting - MVS	47
Dimensions and mounting - MVV	48
Internal Spline data	49
Tacho connection	49
Shaft extensions	50
Order code	50

OPTIONS

- » Model Disc valve, roll-gerotor
- » Flange and wheel mount
- » Short motor
- » Tacho connection
- » Speed sensoring
- » Side ports
- » Shafts straight, splined and tapered
- » BSPP ports
- » Other special features

GENERAL

Max. Displacement, cr	m³/rev [in³/rev]	801,8 [48.91]		
Max. Speed,	[RPM]	630	0	
Max. Torque,	daNm [lb-in]	cont.: 188 [16650]	int.: 211 [18650]	
Max. Output,	kW [HP]	64 [8	5,8]	
Max. Pressure Drop,	bar [PSI]	cont.: 200 [2900]	int.: 240 [3480]	
Max. Oil Flow,	lpm [GPM]	240 [6	3.4]	
Min. Speed,	[RPM]	5		
Permissible Shaft Loads	daN [lbs]	P _a =1500	[3300]	
Pressure fluid		Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)		
Temperature range,	°C [°F]	-40÷140 [-40÷284]		
Optimal Viscosity range	, mm²/s [SUS]	20÷75 [98÷347]		
Filtration		ISO code 20/16 (Min. recommended fluid filtration of 25 microns		

Oil flow in drain line

Pressure drop bar [PSI]	Viscosity mm²/s [SUS]	Oil flow in drain line lpm [GPM]
140 [2030]	20 [98]	3 [.793]
	35 [164]	2 [.528]
210 [3045]	20 [98]	6 [1.585]
	35 [164]	4 [1.057]

SPECIFICATION DATA

Т	уре	MV 315	MV 400	MV 500	MV 630	MV 800
Displacement,		314,5	400,9	499,6	629,1	801,8
cm³/rev [ln³/rev]		[19.18]	[24.45]	[30.48]	[38.38]	[48.91]
Max. Speed,	Cont.	510	500	400	320	250
[RPM]	Int.*	630	600	480	380	300
Max. Torque	Cont.	92 [8150]	118 [10450]	146 [12950]	166 [14700]	188 [16650]
daNm [lb-in]	Int.*	111 [9800]	141 [12500]	176 [15550]	194 [17150]	211 [18650]
	Peak**	129 [11400]	164 [14500]	205 [18150]	221 [19550]	247 [21850]
Max. Output	Cont.	42,5 [57]	53,5 [71.7]	53,5 [71.7]	48 [64.4]	42,5 [57]
kW [HP]	Int.*	51 [68.4]	64 [85.8]	64 [85.8]	56 [75]	48 [64.4]
Max. Pressure Drop	Cont.	200 [2900]	200 [2900]	200 [2900]	180 [2610]	160 [2320]
bar [PSI]	Int.*	240 [3480]	240 [3480]	240 [3480]	210 [3050]	180 [2610]
Peak**		280 [4060]	280 [4060]	280 [4060]	240 [3480]	210 [3050]
Max. Oil Flow	lax. Oil Flow Cont.		200 [52.8]	200 [52.8]	200 [52.8]	200 [52.8]
Ipm [GPM]	Int.*	200 [52.8]	240 [63.4]	240 [63.4]	240 [63.4	240 [63.4]
Max. Inlet Pressure	Cont.	210 [3050]	210 [3050]	210 [3050]	210 [3050]	210 [3050]
bar [PSI]	Int.*	250 [3620]	250 [3620]	250 [3620]	250 [3620]	250 [3620]
	Peak**	300 [4350]	300 [4350]	300 [4350]	300 [4350]	300 [4350]
Max. Return Pressure	Cont.	140 [2040]	140 [2040]	140 [2040]	140 [2040]	140 [2040]
with Drain Line	Int.*	175 [2540]	175 [2540]	175 [2540]	175 [2540]	175 [2540]
bar [PSI]	Peak**	210 [3050]	210 [3050]	210 [3050]	210 [3050]	210 [3050]
Max. Starting Pressure w	rith					
Unloaded Shaft, bar [PS	1]	8 [120]	8 [120]	8 [120]	8 [120]	8 [120]
Min. Starting Torque	At max. press. drop Cont.	71 [6300]	91 [8100]	113 [10000]	133 [11800]	151 [13400]
daNm [lb-in]	At max. press. drop Int.*	85 [7500]	109 [9600]	136 [12000]	155 [13700]	170 [15000]
Min. Speed***, [RPM]		10	9	8	6	5
Weight, kg [lb]	MV	31,8 [70.1]	32,6 [71.9]	33,5 [73.8]	34,9 [76.9]	36,5 [80.5]
	MVW	32,4 [71.4]	33,2 [73.2]	34,1 [75.2]	35,5 [78.3]	37,1 [81.8]
	MVS	22,7 [50]	23,5 [51.8]	24,4 [53.8]	25,6 [56.4]	27,7 [61.1]

^{*} Intermittent operation: the permissible values may occur for max. 10% of every minute.

^{**} Peak load: the permissible values may occur for max. 1% of every minute.

^{***} For speeds lower than given, consult factory or your regional manager.

^{1.} Intermittent speed and intermittent pressure must not occur simultaneously.

^{2.} Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.

^{3.} Recommend using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials.

^{4.} Recommended minimum oil viscosity 13 mm²/s [70 SUS] at 50°C [122°F].

^{5.} Recommended maximum system operating temperature is 82°C [180°F].

^{6.} To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

FUNCTION DIAGRAMS

MV 315

The function diagrams data is for average performance of randomly selected motors at back pressure 5÷10 bar [72.5÷145 PSI] and oil with viscosity of 32 mm²/s [150 SUS] at 50°C [122°F].

FUNCTION DIAGRAMS

The function diagrams data is for average performance of randomly selected motors at back pressure 5÷10 bar [72.5÷145 PSI] and oil with viscosity of 32 mm²/s [150 SUS] at 50°C [122°F].

The function diagrams data is for average performance of randomly selected motors at back pressure 5÷10 bar [72.5÷145 PSI] and oil with viscosity of 32 mm²/s [150 SUS] at 50°C [122°F].

PERMISSIBLE SHAFT LOADS

The output shaft runs in tapered bearings that permit high axial and radial forces. The permissible radial load on the shaft is shown for an axial load of 0 N as function of the distance from the mounting flange to the point of load application. The curves apply to a B10 bearing life of 2000 hours at 100 RPM.

Curve "1" shows max. radial shaft load. Any shaft load exceeding the values shown by the curve will seriously reduce motor life.

& M+S HYDRAULIC

DIMENSIONS AND MOUNTING DATA - MV and MVC

C: 4xM12 - 12 mm [.47 in] depth P_(A,B): 2xG1 - 20 mm [.79 in] depth T: G 1/4 - 12 mm [.47 in] depth

Standard Rotation

Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

Reverse Rotation

Viewed from Shaft End Port A Pressurized - CCW Port B Pressurized - CW

Туре	L, mm [in]	L ₂ , mm [in]	Туре	L, mm [in]	L ₂ , mm [in]	*L1, mm [in]
MV 315	214,5 [8.45]	160 [6.30]	MVC 315	238,25 [9.38]	184,26 [7.25]	22,0 [.87]
MV 400	221,5 [8.72]	167 [6.58]	MVC 400	245,25 [9.66]	191,26 [7.53]	29,0 [1.14]
MV 500	229,5 [9.04]	175 [6.89]	MVC 500	253,25 [9.97]	199,26 [7.85]	37,0 [1.46]
MV 630	240,0 [9.45]	186 [7.32]	MVC 630	263,75 [10.38]	209,76 [8.25]	47,5 [1.87]
MV 800	254,0 [10.0]	200 [7.87]	MVC 800	277,75 [10.94]	223,76 [8.81]	61,5 [2.42]

^{*} The width of the roll-gerotor is 4 mm [.157 in.] greater than L₁.

DIMENSIONS AND MOUNTING DATA - MVW

 $\begin{array}{lll} \textbf{C}: & 4xM12 - 12 \text{ mm } [.47 \text{ in}] \text{ depth} \\ \textbf{P}_{\text{(A,B)}}: & 2xG1 - 20 \text{ mm } [.79 \text{ in}] \text{ depth} \\ \textbf{T}: & G \ 1/4 - 12 \text{ mm } [.47 \text{ in}] \text{ depth} \\ \end{array}$

Standard Rotation

Viewed from Shaft End Port **A** Pressurized - **CW** Port **B** Pressurized - **CCW**

Reverse Rotation

Viewed from Shaft End Port **A** Pressurized - **CCW** Port **B** Pressurized - **CW**

Туре	L, mm [in]	L ₂ , mm [in]	*L1, mm [in]
MVW 315	146 [5.75]	92 [3.62]	22,0 [.87]
MVW 400	153 [6.02]	99 [3.90]	29,0 [1.14]
MVW 500	161 [6.34]	107 [4.21]	37,0 [1.46]
MVW 630	172 [6.77]	118 [4.65]	47,5 [1.87]
MVW 800	185 [7.28]	132 [5.20]	61,5 [2.42]

^{*} The width of the roll-gerotor is 4 mm [.157 in.] greater than L₁.

MOUNTING

Square Mount (4 Holes)

C SAE C Mount

W Wheel Mount

PORTS

Side Ports

C: 4xM12 - 12 mm [.47 in] depth **P**_(A,B): 2xG1 - 20 mm [.79 in] depth **T**: G 1/4 - 12 mm [.47 in] depth

G 1/4 - 12 mm [.47 in] depth

Standard Rotation

Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

Reverse Rotation

Viewed from Shaft End Port A Pressurized - CCW Port B Pressurized - CW

DIMENSIONS AND MOUNTING

C: 4xM12 - 12 mm [.47 in] depth P_(A,B): 2xG1 - 20 mm [.79 in] depth G 1/4 - 12 mm [.47 in] depth

mm [in]

Standard Rotation

Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

Reverse Rotation

Viewed from Shaft End Port A Pressurized - CCW Port B Pressurized - CW

Type	L, mm [in]	L ₂ , mm [in]	*L ₁ , mm [in]
MVS 315	171[6.73]	117[4.61]	22,0 [.87]
MVS 400	179[7.05]	124[4.88]	29,0 [1.14]
MVS 500	186[7.32]	132[5.20]	37,0 [1.46]
MVS 630	197[7.76]	143[5.63]	47,5 [1.87]
MVS 800	211[8.31]	157[6.18]	61,5 [2.42]

^{*} The width of the roll-gerotor is 4 mm [.157 in] greater than L₁.

DIMENSIONS OF THE ATTACHED COMPONENT

H: Hardened stop plate I: O-Ring 140x3mm [5.512x.118in] K: Conical seal ring T: Drain connection G1/4 - 12 mm [.47 in] depth

🕰 M+S HYDRAULIC

DIMENSIONS AND MOUNTING

V Very Short Mount

Standard Rotation Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

Reverse Rotation Viewed from Shaft End

Port **A** Pressurized - **CCW** Port **B** Pressurized - **CW**

C:	4xM12	-	12	mm	[.47	in]	depth
P _{(A,I}	3): 2xG1	-	20	mm	[.79	in]	depth

Type	L, mm[in.]	L ₂ , mm [in]	L3, mm [in]	*L1, mm [in]
MVV 315	121,5[4.78]	68[2.68]	29,5[1.16]	22,0 [.87]
MVV 400	128,5[5.06]	75[2.95]	32,5[1.28]	29,0 [1.14]
MVV 500	136,5[5.37]	83[3.27]	34,5[1.36]	37,0 [1.46]
MVV 630	147,0[5.79]	93[3.66]	34,0[1.34]	47,5 [1.87]
MVV 800	161,0[6.34]	107,5[4.23]	30,0[1.18]	61,5 [2.42]

 $^{^{\}star}$ The width of the roll-gerotor is 4 mm [.157 in] greater than $\,$ L1.

DIMENSIONS OF THE ATTACHED COMPONENT

DRAIN CONNECTION

A drain line has to be used when pressure in the return line can exceed the permissible pressure. It can be connected:

- For MVS to the drain port of the motor;
- For MVV to the drain connection of the attached component. The maximum pressure in the drain line is limited by the attached component and its shaft seal.

The drain line must be possible for oil to flow freely between motor and attached component and must be led to the tank. The maximum pressure in the drain line is limited by the attached component and its seal.

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANS B92.1-1976, class 5 [m=2.54; corrected x.m=+1,0]

Fillet Root Side Fit		mm	inch
Number of Teeth	Z	16	16
Diametral Pitch	DP	10/20	10/20
Pressure Angle		30°	30°
Pitch Dia.	D	40,640	1.6
Major Dia.	Dri	45,2 ^{+0,4}	1.796÷1.780
Minor Dia.	Di	38,5 ^{+0,039}	1.5175÷1.516
Space Width [Circular]	Lo	5,18±0,037	.2055÷.2025
Fillet Radius	R	0,4	.015
Max. Measurement	L	32,47 +0,15	1.284÷1.278
between Pins			
Pin Dia.	d	5,6±0,001	.22051÷.22043

Hardening Specification:
HV=750±50 on the surface.
HV=560 at 0,7±0,2 mm [.035±.019in] case depth
Material: 20 MoCr4 EN 10084 or better.

MOTOR WITH TACHO CONNECTION

MAX. PERMISSIBLE SHAFT SEAL PRESSURE for MV motors

SHAFT EXTENSIONS

C - ø50 straight, Parallel key A14x9x70 DIN 6885

-ø21/8"splined, 16 DP 8/16 ANS B92.1-1976

-tapered 1:10, Parallel key B16x10x32 DIN 6885

ORDER CODE

C

	1	2	3	4	5	6
MV						

	1	2	3	4	5	6
MV						

Pos.1 - Mounting Flange

omit - Square mount, four holes

C - SAE C mount

W - Wheel mount

- Short mount S

- Very short mount

Pos.2 - Displacement code

315 - 314,5 cm³/rev [19.18 in³/rev]

400 - 400,9 cm³/rev [24.45 in³/rev]

500 - 499,6 cm³/rev [30.48 in³/rev]

630 - 629,1 cm³/rev [38.38 in³/rev]

800 - 801,8 cm³/rev [48.91 in³/rev]

Pos. 3 - Shaft extensions*

- for S and V mounting flange

- ø50 straight, Parallel key A14x9x70 DIN6885

CO - ø21/4" straight, Parallel key 1/2 "x1/2" x 21/4" BS46

SH - ø2¹/₈" splined, ANS B92.1-1976

- ø60 tapered 1:10, Parallel key B16x10x32 DIN6885

Pos. 4 - Shaft Seal Version (see page 49)

- Low pressure shaft seal omit

- High pressure shaft seal

Pos. 5 - Special Features (see page 51)

Pos. 6 - Design Series

- Factory specified omit

NOTES:

The permissible output torque for shafts must not be exceeded!

The hydraulic motors are mangano- phosphatized as standard.

MOTOR SPECIAL FEATURES -

Special		Motor type		
Feature Description	Order Code	S	ΗW	AV.
Speed Sensor*	RS	0	0	0
Tacho Connection**	т	0	0	0
Reinforced motor	HD	-	0	0
Low Leakage	LL	0	0	0
Low Speed Valving	LSV	0	0	0
Reverse Rotation	R	0	0	0
Paint***	P	0	0	0
Corrosion Protected Paint***	PC	0	0	0
Special Paint****	PS	- 0	0	0
	PCS			
Check Valves		S	S****	S****

0	Optional	
-	Not applicable	
S	Standard	

- For sensor ordering see pages 52÷53. For side ports only!
- Colour at customer's request.
- Non painted feeding surfaces, colour at customer's request.
- ***** Without check valves for "HD" option.

⚠ For more information about HD option please contact with "M+S Hydraulic".

MOTORS WITH SPEED SENSOR -

MS...RS M12x1 [1.97] M2x1 [1.97]

TECHNICAL DATA OF THE SPEED SENSOR

Technical data

Frequency range 0...15 000 Hz
Output PNP, NPN
Power supply 10...36 VDC
Current input 20 mA (@24 VDC)

Ambient Temperature -40...+125°C [-40...+257°F]

Protection IP 67
Plug connector M12-Series
Mounting principle ISO 6149

Output signal

Load max.:I_{high}=I_{low}<50mA

Motor type	MS	MT	MV
Pulses per revolution	54	84	102

Wiring diagrams

 $R_{Load}[k\Omega]=U_{d.c.}[V]/I_{max}[mA]$

Stick type

Order Code for Speed Sensor

Terminal No.	Connection	Cable Output
1	U _{d.c.}	Brown
2	No connection	White
3	0V	Blue
4	Output signal	Black

Sensor Code	Output type	Electric connection
RSN	NPN	Connector BINDER 713 series
RSP	PNP	Connector BINDER 713 series
RSNL5	NPN	Cable output 3x0,25; 5 m [196 in] long
RSPL5	PNP	Cable output 3x0,25; 5 m [196 in] long

NOTE: *- The speed sensor is not fitted at the factory, but is supplied in a plastic bag with the motor. For installation see enclosed instructions.

APPLICATION CALCULATION

VEHICLE DRIVE CALCULATIONS

1.Motor speed: n, RPM

$$n = \frac{2,65 \times v_{km} \times i}{R_m}$$

$$n = \frac{168 \times V_{ml} \times i}{R_{in}}$$

v_{km}-vehicle speed, km/h;

v_{ml}-vehicle speed, mil/h;

R_m-wheel rolling radius, m;

R_{in}- wheel rolling radius, in;

i-gear ratio between motor and wheels.

If no gearbox, use i=1.

2.Rolling resistance: RR, daN [lbs]

The resistance force resulted in wheels contact with 5.Tractive effort: DP,daN [lbs] different surfaces:

$$RR = G \times \rho$$

G- total weight loaded on vehicle, daN [lbs]; ρ-rolling resistance coefficient (Table 1).

Table 1

Rolling resistance coefficient In case of rubber tire rolling on different surfaces		
Surface	ρ	
Concrete- faultless	0.010	
Concrete- good	0.015	
Concrete- bad	0.020	
Asphalt- faultless	0.012	
Asphalt- good	0.017	
Asphalt- bad	0.022	
Macadam- faultless	0.015	
Macadam- good	0.022	
Macadam- bad	0.037	
Snow- 5 cm	0.025	
Snow- 10 cm	0.037	
Polluted covering- smooth	0.025	
Polluted covering- sandy	0.040	
Mud	0.037÷0.150	
Sand- Gravel	0.060÷0.150	
Sand- loose	0.160÷0.300	

3. Grade resistance: GR, daN [lbs]

$$GR=G \times (\sin\alpha + \rho \times \cos\alpha)$$

α-gradient negotiation angle (Table 2)

Table 2

Grade %	lpha Degrees	Grade %	α Degrees
1%	0° 35'	12%	6° 5'
2%	1º 9'	15%	8° 31'
5%	2° 51'	20%	11° 19'
6%	3° 26'	25%	14° 3'
8%	4° 35'	32%	18°
10%	5° 43'	60%	31°

4. Acceleration force: FA, daN [lbs]

Force FA necessary for acceleration from 0 to maximum speed v and time t can be calculated with a formula:

$$FA = \frac{V_{km} \times G}{3.6 \times t}, [daN] \qquad FA = \frac{V_{ml} \times G}{22 \times t}, [lbs];$$

$$FA = \frac{V_{ml} \times G}{22 \times t}, [lbs]$$

FA-acceleration force, daN[lbs]; t-time, [s].

Tractive effort DP is the additional force of trailer. This value will be established as follows:

- -acc.to constructor's assessment:
- -as calculating forces in items 2, 3 and 4 of trailer; the calculated sum corresponds to the tractive effort requested.

6.Total tractive effort: TE, daN [lbs]

Total tractive effort **TE** is total effort necessary for vehicle motion; that the sum of forces calculated in items from 2 to 5 and increased with 10 % because of air resistance.

$$TE=1,1x(RR + GR + FA + DP)$$

RR - force acquired to overcome the rolling resistance;

GR- force acquired to slope upwards;

FA- force acquired to accelerate (acceleration force);

DP- additional tractive effort (trailer).

7.Motor Torque moment: M, daNm [lb-in]

Necessary torque moment for every hydraulic motor:

$$M = \frac{TE \times R_{in}[R_{m}]}{N \times i \times n_{M}}$$

N- motor numbers;

η_м-mechanical gear efficiency (if it is available).

$\textbf{8.Cohesion between tire and road covering:} \, \textbf{M}_{\textbf{w}}, \texttt{daNm} \, [\texttt{lb-in}]$

$$M_{w} = \frac{G_{w} \times f \times R_{in}[R_{m}]}{i \times n_{w}}$$

To avoid wheel slipping, the following condition should be observed Mw>M

f -frictional factor;

G_w-total weight over the wheels, daN [lbs].

Tahla 3

Surface	Frictional factor f
Steel on steel	0.15 ÷ 0.20
Rubber tire on polluted surface	0.5 ÷ 0.7
Rubber tire on asphalt	0.8 ÷ 1.0
Rubber tire on concrete	0.8 ÷ 1.0
Rubber tire on grass	0.4

9.Radial motor loading: Prad, daN [lbs]

When motor is used for vehicle motion with wheels mounted directly on motor shaft, the total radial loading of motor shaft \mathbf{P}_{rad} is a sum of motion force and weight force acting on one wheel.

 \mathbf{P}_{rad} - Total radial loading of motor shaft;

M/R- Motion force.

In accordance with calculated loadings the suitable motor from the catalogue is selected.

DRAINAGE SPACE AND DRAINAGE PRESSURE

Advantages in oil drainage from drain space: Cleaning; Cooling and Seal lifetime prolonging.

