

EIVIA 2025: Deep Learning for Time Series and Applications to Healthcare

Gonzalo Uribarri KTH Royal Institute of Technology & SciLifeLab

digital futures

State-of-the-art (SOTA)

Models for time series classification are tested on the **UEA** archive and the **UCR** archive (benchmarks for multivariate and univariate TSC).

Models for time series classification are tested on the **UEA** archive and the **UCR** archive (benchmarks for multivariate and univariate TSC).

UEA UCR

SPRINGER NATURE Link
Find a journal Publish with us Track your research Q Search
Home > Data Mining and Knowledge Discovery > Article The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances Open access Published: 18 December 2020 Volume 35, pages 401–449, (2021) Cite this article

Models for time series classification are tested on the **UEA** archive and the **UCR** archive (benchmarks for multivariate and univariate TSC).

Alejandro Pasos Ruiz et al. [2021]

Models for time series classification are tested on the **UEA** archive and the **UCR** archive (benchmarks for multivariate and univariate TSC).

Alejandro Pasos Ruiz et al. [2021]

The position of each model represents its mean rank (lower is better)

Models for time series classification are tested on the **UEA** archive and the **UCR** archive (benchmarks for multivariate and univariate TSC).

Alejandro Pasos Ruiz et al. [2021]

InceptionTime and ROCKET are two different models that performs very well.

But accuracy is not all, efficiency also matters.

But accuracy is not all, efficiency also matters.

ImageNet is an **HUGE** image dataset released in 2009, containing 12 million images in 22,000 categories.

(a) ImageNet Synset: One sample image from each category

The **ImageNet Challenge** was a competition to use 1.2 million images to classify 1000 different classes of images.

The **ImageNet Challenge** was a competition to use 1.2 million images to classify 1000 different classes of images.

The **ImageNet Challenge** was a competition to use 1.2 million images to classify 1000 different classes of images.

The **ImageNet Challenge** was a competition to use 1.2 million images to classify 1000 different classes of images.

-

Imagenet classification with deep convolutional neural networks

A Krizhevsky, I Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc

... We trained a large, **deep** convolutional neural network to **classify** the 1.2 million high-resolution images in the **ImageNet** LSVRC-2010 contest into the 1000 different classes. On the test ...

☆ Save ® Cite Cited by 138321 Related articles All 98 versions >>>

ImageNet classification with deep convolutional neural networks

A Krizhevsky, I Sutskever, GE Hinton - Communications of the ACM, 2017 - dl.acm.org

... We trained a large, **deep** convolutional neural network to **classify** the 1.2 million high-resolution images in the **ImageNet** LSVRC-2010 contest into the 1000 different classes. On the test ...

☆ Save 55 Cite Cited by 36022 Related articles All 7 versions

#1 result / year

It is a **Deep 1-D Convolutional Neural Network** model inspired by the **Inception-v4** architecture.

It is a **Deep 1-D Convolutional Neural Network** model inspired by the **Inception-v4** architecture.

InceptionTime Module

InceptionTime Module

Key elements:

- Multi-Scale Feature Extraction: Filter of different sizes.
- Large Kernels: Larger than ones used for images
- Bottlenecks: 1x1 Convolutions (mixing channels)

InceptionTime Architecture

InceptionTime
Architecture

Key elements:

- Residual Connections: Improve training stability.
- Global Average Pooling: Time pooling operation before the fully connected layer.

InceptionTime: Finding AlexNet for Time Series Classification

Fig. 5: Critical difference diagram showing the performance of InceptionTime compared to the current state-of-the-art classifiers of time series data.

Performance on UCR

25

9

InceptionTime: Finding AlexNet for Time Series Classification

Fig. 5: Critical difference diagram showing the performance of InceptionTime compared to the current state-of-the-art classifiers of time series data.

Performance on UCR

9

Fig. 7: Training time as a function of the series length for the InlineSkate dataset. Fig. 8: Training time as a function of the training set size for the SITS dataset.

InceptionTime Strengths and Weaknesses

State-of-the-art performance for TSC

Fast inference

Good Scaling

Truly Multivariate

InceptionTime Strengths and Weaknesses

State-of-the-art performance for TSC

Fast inference

Good Scaling

Truly Multivariate

Complex Training

High Variance (Counter using an ensemble)

Difficult to interpret

ROCKET

SPRINGER NATURE Link

Find a journal

Publish with us

Track your research

Search

Home > Data Mining and Knowledge Discovery > Article

ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels

Published: 13 July 2020

Volume 34, pages 1454–1495, (2020) Cite this article

Download PDF 👱

✓ Access provided by KTH Royal Institute of Technology

Angus Dempster M, François Petitjean & Geoffrey I. Webb

SPRINGER NATURE Link

ROCKET models

Random Convolutional Kernel Transform (ROCKET)* is a transformation stage which can be applied to time-series data.

ROCKET models

Random Convolutional Kernel Transform (ROCKET)* is a transformation stage which can be applied to time-series data.

ROCKET models

Random Convolutional Kernel Transform (ROCKET)* is a **transformation stage** which can be applied to **time-series data**.

This is KEY!

This is KEY!

Random Convolutional Kernel Transform (ROCKET)* is a transformation stage which can be applied to time-series data.

ROCKET

Kernels: Random Pooling: MAX + PPV # Features: 20000

This is KEY!

Random Convolutional Kernel Transform (ROCKET)* is a transformation stage which can be applied to time-series data.

ROCKET

Kernels: Random Pooling: MAX + PPV # Features: 20000

MiniRocket

Kernels: Dictionary Pooling: PPV # Features: 10000

This is KEY!

Random Convolutional Kernel Transform (ROCKET)* is a transformation stage which can be applied to time-series data.

ROCKET

Kernels: Random Pooling: MAX + PPV # Features: 20000

MiniRocket

Kernels: Dictionary Pooling: PPV # Features: 10000

MultiRocket

Kernels: Dictionary
Pooling:
PPV+MPV+MIPV+LSPV
Features: 50000

ROCKET Strengths and Weaknesses

State-of-the-art performance for TSC

Fast and simple training

Less prone to overfitting (less parameters)

ROCKET Strengths and Weaknesses

State-of-the-art performance for TSC

Fast and simple training

Less prone to overfitting (less parameters)

It produces many features (many useless)

Scales poorly with the number of channels

Difficult to interpret

Detach-ROCKET

SPRINGER NATURE Link

Find a journal

Publish with us

Track your research

Q Search

Home > Data Mining and Knowledge Discovery > Article

Detach-ROCKET: sequential feature selection for time series classification with random convolutional kernels

Open access | Published: 20 August 2024

Volume 38, pages 3922–3947, (2024) Cite this article

Pruning ROCKET with SFD

We propose an algorithm to select the most relevant features called Sequential Feature Detachment (SFD)*.

Sequential Feature Detachment (SFD) algorithm

Algorithm 1 Sequential Feature Detachment

Parameters:

M: Number of steps

N: Number of initial features

K: Number of kernels

p: Proportion of eliminated features at each step

initialize: ROCKET model with K kernels

initialize: Active feature set $\mathbb S$ with F=2K features Train ridge classifier with LOOCV to find λ value

for t = 1 to M do

Train ridge classifier on $\mathbb S$ and obtain optimal coefficient $\hat{\theta}_k$ for each active feature

Rank features based on $|\hat{\theta}_k|$

Discard lowest p fraction of ranked features

Update active feature set $\mathbb S$ with retained features

return Selected features at each step \mathbb{S}_t

Detach-ROCKET: Pruned is better

Testing on the **UCR** archive shows that our pruning can **improve model generalization** while drastically reducing model size.

Detach-ROCKET: Pruned is better

Testing on the **UCR** archive shows that our pruning can **improve model generalization** while drastically reducing model size.

Detach-ROCKET: Pruned is better

Testing on the **UCR** archive shows that our pruning can **improve model generalization** while drastically reducing model size.

We also propose a methodology to automatically select the optimal percentage of pruning.

Original ROCKET (Dempster et al. <u>2020</u>)	D-ROCKET (fixed 10%)		D-ROCKET (c=1)	
Test Acc.(%)	Features (%)	Test Acc.(%)	Features (%)	Test Acc.(%)
84.74 ± 0.62	10	85.15 ± 0.78	2.06	82.90 ± 2.74

Selected features reveal the **relevant kernels** for classification.

Selected features reveal the **relevant kernels** for classification.

A weighted sum on all selected kernels is the estimation of **channel relevance**.

$$\frac{\theta_{1}}{\text{No. ch.}} \cdot [1, 0, 1, 0, 1] = \left[\frac{0.6}{3}, 0, \frac{0.6}{3}, 0, \frac{0.6}{3}\right] + \frac{\theta_{3}}{\text{No. ch.}} \cdot [0, 0, 0, 1, 1] = \left[0, 0, 0, \frac{0.8}{2}, \frac{0.8}{2}\right]$$

5

Selected features reveal the **relevant kernels** for classification.

A weighted sum on all selected kernels is the estimation of **channel relevance**.

Channel weighting Relevance histogram $\frac{\theta_1}{\text{No. ch.}} \cdot [1, 0, 1, 0, 1] = \left[\frac{0.6}{3}, 0, \frac{0.6}{3}, 0, \frac{0.6}{3} \right] + \frac{\theta_3}{\text{No. ch.}} \cdot [0, 0, 0, 1, 1] = \left[0, 0, 0, \frac{0.8}{2}, \frac{0.8}{2} \right] + \frac{\theta_3}{\text{Channels}}$

We add **post-hoc interpretability** to the model
"for free".

ROCKET Strengths and Weaknesses

State-of-the-art performance for TSC

Fast and simple training

Less prone to overfitting (less parameters)

It produces many features (many useless)

Scales poorly with the number of channels

Difficult to interpret

Hands-on Time: Notebook 4