Class 14 DESeq2 mini project A16246401

Scott MacLeod

DESeq2 Mini Project

Run a complete RNASeq analysis workflow from counts to enrich genesets.

Data Import

First we have to make sure DESeq2 is running

```
#|message: false
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,

match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

countData = read.csv("GSE37704_featurecounts.csv", row.names=1)
head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

```
colData = read.csv("GSE37704_metadata.csv", row.names=1)
head(colData)
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Now let's get rid of the 0's that we don't need.

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData) != 0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
dds = DESeqDataSetFromMatrix(countData=countData,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
Data Exploration
  res = results(dds, contrast=c("condition", "hoxa1 kd", "control_sirna"))
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                   : 4349, 27%
LFC < 0 (down)
                   : 4396, 28%
outliers [1]
                   : 0, 0%
low counts [2]
                   : 1237, 7.7%
```

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

Now let's make a better looking plot.

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[inds] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log()</pre>
```


Now time for some gene annotation!

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
[11] "GENETYPE"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
[16] "OMIM"
                                                     "PATH"
                                                                     "PFAM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

```
multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                           stat
                                                                     pvalue
                  <numeric>
                                 <numeric> <numeric> <numeric>
ENSG00000279457
                  29.913579
                                 0.1792571 0.3248216
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
ENSG00000188976 1651.188076
```

	padj	symbol	entrez	name
	<numeric></numeric>	<character></character>	<character></character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

##Pathway Analysis

First we downloaded BiocManager in the console!

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
```

data(kegg.sets.hs)

```
data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                            "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                  "1806"
                                            "1807"
                                                               "221223" "2990"
                                                      "1890"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                               "54659"
                                                                         "54963"
                                  "7084"
                                            "7172"
[33] "574537" "64816"
                        "7083"
                                                      "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                "112"
                                                                          "113"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                 "158"
                                                                          "159"
                                   "196883" "203"
                                                       "204"
 [25] "1633"
                "171568" "1716"
                                                                 "205"
                                                                          "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                          "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                       "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                                                                 "318"
                                                                          "3251"
 [49] "2986"
                         "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841"
                                                       "471"
                                                                 "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
                         "51292"
                                   "5136"
                                                                          "5140"
 [73] "51082"
                "51251"
                                             "5137"
                                                       "5138"
                                                                "5139"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                                   "5427"
                                                                 "5432"
                                                                          "5433"
                "5425"
                         "5426"
                                             "5430"
                                                       "5431"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                          "6240"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                          "84172"
                                   "8622"
[145] "84265"
                "84284"
                         "84618"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                          "9060"
                                   "9533"
                                                       "955"
[153] "9061"
                "93034"
                         "953"
                                             "954"
                                                                 "956"
                                                                          "957"
[161] "9583"
                "9615"
```

```
head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                             2034
                                                       2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                         p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312
                                                      121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                      0.121861535
                                                       28 3.066756e-03
                                                      102 3.784520e-03
hsa04114 Oocyte meiosis
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                      53 8.961413e-03
  #|message: false
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
```

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez

Info: Writing image file hsa04110.pathview.png

```
# A different PDF based output of the same data
  pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
```

```
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/scottmacleod/Desktop/BIMM 143/RStudio BIMM 143/class14
Info: Writing image file hsa04330.pathview.png
The images were downloaded to my files.
  data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
```

lapply(gobpres, head)

\$greater

491 04001	
	p.geomean stat.mean p.val
GO:0007156 homophilic cell adhesion	8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium	1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis	1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior	2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis	5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development	5.953254e-04 3.253665 5.953254e-04
	q.val set.size exp1
GO:0007156 homophilic cell adhesion	0.1951953 113 8.519724e-05
GO:0002009 morphogenesis of an epithelium	0.1951953 339 1.396681e-04
GO:0048729 tissue morphogenesis	0.1951953 424 1.432451e-04
GO:0007610 behavior	0.2243795 427 2.195494e-04
GO:0060562 epithelial tube morphogenesis	0.3711390 257 5.932837e-04
GO:0035295 tube development	0.3711390 391 5.953254e-04
\$less	
	p.geomean stat.mean p.val
GO:0048285 organelle fission	1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division	4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis	4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10 -6.695966 1.729553e-10
	q.val set.size exp1
GO:0048285 organelle fission	5.841698e-12 376 1.536227e-15
GO:0000280 nuclear division	5.841698e-12 352 4.286961e-15
GO:0007067 mitosis	5.841698e-12 352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11 362 1.169934e-14
GO:0007059 chromosome segregation	1.658603e-08 142 2.028624e-11
GO:0000236 mitotic prometaphase	1.178402e-07 84 1.729553e-10
\$stats	
	stat.mean exp1
GO:0007156 homophilic cell adhesion	3.824205 3.824205
GO:0002009 morphogenesis of an epithelium	3.653886 3.653886
GO:0048729 tissue morphogenesis	3.643242 3.643242
GD:0007610 behavior	3.530241 3.530241

##Reactome Analysis

GO:0035295 tube development

GO:0060562 epithelial tube morphogenesis

3.261376 3.261376

3.253665 3.253665

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
  print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"
  write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
  sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
Matrix products: default
        /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
BLAS:
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4
              stats
                       graphics grDevices utils
                                                       datasets methods
[8] base
other attached packages:
 [1] gageData_2.36.0
                                 gage_2.48.0
 [3] pathview_1.38.0
                                 org.Hs.eg.db_3.16.0
 [5] AnnotationDbi_1.60.2
                                 DESeq2_1.38.3
 [7] SummarizedExperiment_1.28.0 Biobase_2.58.0
 [9] MatrixGenerics_1.10.0
                                 matrixStats_1.2.0
[11] GenomicRanges_1.50.2
                                 GenomeInfoDb_1.34.9
[13] IRanges_2.32.0
                                 S4Vectors_0.36.2
[15] BiocGenerics_0.44.0
loaded via a namespace (and not attached):
 [1] httr_1.4.7
                            bit64_4.0.5
                                                    jsonlite_1.8.8
                            GenomeInfoDbData_1.2.9 yaml_2.3.8
 [4] blob_1.2.4
 [7] pillar_1.9.0
                            RSQLite_2.3.5
                                                    lattice_0.22-5
[10] glue_1.7.0
                            digest_0.6.34
                                                    RColorBrewer_1.1-3
[13] XVector_0.38.0
                            colorspace_2.1-0
                                                    htmltools_0.5.7
```