Binary Search Trees: (Optional) Splay Tree Analysis

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

- Prove the amortized runtime of a splay tree.
- Know other bounds on splay tree runtime.

Last Time

Analyzed splay trees given

Theorem

The amortized cost of doing O(D) work and then splaying a node of depth D is $O(\log(n))$ where n is the total number of nodes.

Last Time

Analyzed splay trees given

Theorem

The amortized cost of doing O(D) work and then splaying a node of depth D is $O(\log(n))$ where n is the total number of nodes.

Today we prove it.

Amortized Analysis

Need to amortize. Pick correct potential function.

Rank

 $R(N) = \log_2(\text{Size of subtree of } N)$. Recall the size of the subtree of N is the total number of descendants of N. Potential function

$$\Phi = \sum_{N} R(N).$$

Zig Analysis

$$\Delta\Phi = R'(N) + R'(P) - R(N) - R(P)$$

= R'(P) - R(N)
\le R'(N) - R(N).

Zig-Zig Analysis

$$\Delta \Phi = R'(N) + R'(P) + R'(Q)$$

$$- R(N) - R(P) - R(Q)$$

$$= (R'(P) - R(P)) + (R'(Q) - R(N))$$

$$\leq 3(R'(N) - R(N)) - 2$$

Why?

- R(Q) = R'(N) bigger than any other term.
- $\operatorname{Size}(N) + \operatorname{Size}'(Q) = \operatorname{Size}(Q) 1$.
- So $R(N) + R'(Q) \le 2R'(N) 2$.

Zig-Zag Analysis

$$\Delta\Phi = R'(N) + R'(P) + R'(Q)$$

$$- R(N) - R(P) - R(Q)$$

$$= (R'(P) - R(P)) + (R'(Q) - R(N))$$

$$\leq 2(R'(N) - R(N)) - 2$$

Total Change

$$egin{aligned} \Delta \Phi & \leq 3(R_k(N) - R_{k-1}(N)) - 2 \\ & + 3(R_{k-1}(N) - R_{k-2}(N)) - 2 + \cdots \\ & = 3(R'(N) - R(N)) - \operatorname{Depth}(N) \\ & = O(\log(n)) - \operatorname{Work} \end{aligned}$$

Other Bounds

Splay trees have many other wonderful properties.

Weighted Nodes

If you assign weights so that

$$\sum_{N} \operatorname{wt}(N) = 1,$$

accessing N costs amortized $O(\log(1/\text{wt}(N)))$ time.

Weighted Nodes

If you assign weights so that

$$\sum_{N} \operatorname{wt}(N) = 1,$$

accessing N costs amortized $O(\log(1/\mathrm{wt}(N)))$ time. So if you only access high weight nodes, it's much quicker.

Dynamic Finger

Amortized cost of accessing node $O(\log(D+1))$ where D is distance (in terms of the ordering) between last access and current access.

Working Set Bound

Amortized cost of accessing N is $O(\log(t+1))$ where t is time since N was last accessed.

Dynamic Optimality Conjecture

It is conjectured that for any sequence of binary search tree operations that a splay tree does at most a constant factor more work than the best dynamic search tree for that sequence.

Conclusion

Splay Trees

- Require $O(\log(n))$ amortized time per operation.
- Can be much better than this if queries have extra structure (call some nodes more frequently, calls nearby nodes, etc.).