પ્રશ્ન 1(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો: (1) બીટ રેટ, (2) બાઉન્ડ રેટ અને (3) બેન્ડવિડ્થ

જવાબ:

શહ€	વ્યાખ્યા
બીટ રેટ	દર સેકન્ડે ટ્રાન્સમિટ થતા બિટ્સની સંખ્યા (bps)
બાઉન્ડ રેટ	દર સેકન્ડે ટ્રાન્સમિટ થતા સિગ્નલ એલિમેન્ટ્સ અથવા સિમ્બોલ્સની સંખ્યા
બેન્કવિડ્થ	સિગ્નલ ટ્રાન્સમિટ કરવા માટે જરૂરી ફ્રીક્વન્સીઓની રેન્જ, હર્ટ્ઝ (Hz)માં માપવામાં આવે છે

મેમરી ટ્રીક: "BBB - બિટ્સ મૂવ બાય બેન્ડ્સ"

પ્રશ્ન 1(બ) [4 ગુણ]

સિગ્નલનો બીટ રેટ 8000bps અને બાઉન્ડ રેટ 1000 બાઉન્ડ છે. દરેક સિગ્નલ દ્વારા કેટલા ડેટા એલિમેન્ટ વહન કરવામાં આવે છે? આપણને કેટલા સિગ્નલ તત્વોની જરૂર છે?

જવાબ:

કોષ્ટક: સિગ્નલ ગણતરી

પેરામીટર	મૂલ્ય	ગણતરી
બીટ રેટ	8000 bps	આપેલ છે
બાઉન્ડ રેટ	1000 બાઉન્ડ	આપેલ છે
દરેક સિગ્નલમાં ડેટા એલિમેન્ટ્સ	8 બિટ્સ	બીટ રેટ ÷ બાઉન્ડ રેટ = 8000 ÷ 1000 = 8
જરૂરી સિગ્નલ એલિમેન્ટ્સ	2^8 = 256	2^(દરેક સિગ્નલના બિટ્સ)

આકૃતિ: સિગ્નલ એલિમેન્ટ રેપ્રેઝન્ટેશન

મેમરી ટ્રીક: "ડિવાઇડ ટુ ડિસાઇડ" - દરેક સિગ્નલમાં કેટલા બિર્સ છે તે નક્કી કરવા માટે બીટ રેટને બાઉન્ડ રેટથી ભાગો.

પ્રશ્ન 1(ક) [7 ગુણ]

ડિજીટલ કોમ્યુનિકેશન સિસ્ટમના તત્વોનું તેના બ્લોક ડાયાગ્રામ સાથે વર્ણન કરો

જવાબ:

આકૃતિ: ડિજિટલ કોમ્યુનિકેશન સિસ્ટમ

મુખ્ય તત્વો:

તત્વ	รเน้		
સોર્સ	ટ્રાન્સમિટ કરવા માટેના મેસેજ જનરેટ કરે છે		
સોર્સ એન્કોડર	મેસેજને ડિજિટલ ફોર્મેટમાં કન્વર્ટ કરે છે, રિડન્ડન્સી દૂર કરે છે		
ચેનલ એન્કોડર	એરર ડિટેક્શન/કરેક્શન માટે રિડન્ડન્સી ઉમેરે છે		
ડિજિટલ મોક્યુલેટર	ડિજિટલ ડેટાને ચેનલ માટે યોગ્ય સિગ્નલમાં રૂપાંતરિત કરે છે		
ચેનલ	ભૌતિક માધ્યમ જે સિગ્નલને વહન કરે છે		
ડિજિટલ ડિમોક્યુલેટર	પ્રાપ્ત સિગ્નલમાંથી ડિજિટલ માહિતી અલગ કરે છે		
યેનલ ડિકોડર ઉમેરેલી રિડન્ડન્સીનો ઉપયોગ કરીને ભૂલો શોધે/સુધારે છે			
સોર્સ ડિકોડર	ડિજિટલ ડેટામાંથી ઓરિજિનલ મેસેજને ફરીથી બનાવે છે		
ડેસ્ટિનેશન	અંતિમ મેસેજ પ્રાપ્ત કરે છે		

મેમરી ટ્રીક: "સેન્ડ મેસેજિસ કેરફુલી; ડેસ્ટિનેશન મસ્ટ કોમ્પ્રિહેન્ડ સિગ્નલ્સ ડીપલી"

પ્રશ્ન 1(ક OR) [7 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમની મૂળભૂત મર્યાદા શું છે? ડિજિટલ કોમ્યુનિકેશન સિસ્ટમના ફાયદા અને ગેરફાયદા શું છે? જવાબ:

મૂળભૂત મર્યાદાઓ:

મર્યાદા	વર્ણન
બેન્કવિડ્થ	ડિજિટલ સિગ્નલને એનાલોગ કરતાં વધુ બેન્ડવિડ્થની જરૂર પડે છે
નોઇઝ	મહત્તમ પ્રાપ્ય ડેટા રેટને મર્યાદિત કરે છે
ઇક્લિપમેન્ટ	ડિજિટલ સિસ્ટમને જટિલ હાર્ડવેર અને પ્રોસેસિંગની જરૂર પડે છે

ફાયદા vs ગેરફાયદા:

ફાયદા	ગેરફાયદા	
નોઇઝ ઇમ્યુનિટી	ઊંચી બેન્ડવિડ્થની જરૂરિયાતો	
સરળ મલ્ટિપ્લેક્સિંગ	જટિલ ઉપકરણો	
એરર ડિટેક્શન & કરેક્શન	ક્વોન્ટાઇઝેશન એરર	
વધુ સુરક્ષા	સિંક્રોનાઇઝેશન સમસ્યાઓ	
સિગ્નલ રિજનરેશન	ઊંચી પ્રારંભિક કિંમત	
કોમ્પ્યુટર સાથે ઇન્ટિગ્રેશન	સેમ્પલિંગ રેટની મર્યાદાઓ	

મેમરી ટ્રીક: "NEEDS" - નોઇઝ, ઇક્વિપમેન્ટ, એન્ડ એન્વાયરન્મેન્ટ ડિટરમાઇન સક્સેસ

પ્રશ્ન 2(અ) [3 ગુણ]

બ્લોક ડાયાગ્રામ સાથે QPSK મોક્યુલેટરનું વર્ણન કરો

જવાબ:

આકૃતિ: QPSK મોક્યુલેટર

મુખ્ય ઘટકો:

- **સીરિયલ-ટુ-પેરેલલ કન્વર્ટર**: ડેટાને 2-બિટ ગ્રુપ્સમાં વિભાજિત કરે છે
- **કોસાઇન કેરિયર**: પ્રથમ બિટને મોડ્યુલેટ કરે છે (I-ચેનલ)
- **સાઇન કેરિયર**: બીજા બિટને મોક્યુલેટ કરે છે (Q-ચેનલ)

મેમરી ટ્રીક: "સ્પ્લિટ પેર, કેરિયર સ્ક્વેર" - ડેટા જોડી (પેર)માં વહેંચાય છે, ચોરસ સિગ્નલ્સ દ્વારા વહન થાય છે

પ્રશ્ન 2(બ) [4 ગુણ]

બ્લોક ડાયાગ્રામ સાથે ASK મોક્યુલેટરનું વર્ણન કરો

જવાબ:

આકૃતિ: ASK મોક્યુલેટર

ASK મોક્યુલેશન પ્રક્રિયા:

ยรร	รเช้
ડિજિટલ ઇનપુટ	ટ્રાન્સમિટ કરવાના બાઇનરી ડેટા (0 અને 1)
કેરિયર ઓસિલેટર	ઉચ્ચ ફ્રીક્વન્સી સાઇન વેવ જનરેટ કરે છે
પ્રોડક્ટ મોક્યુલેટર	ઇનપુટને કેરિયર સાથે ગુણે છે (ON/OFF)
ફિલ્ટર	અનિચ્છનીય ફ્રીક્વન્સી ઘટકોને દૂર કરે છે

મેમરી ટ્રીક: "એમ્પ્લિફાય સિગ્નલ વેન કીન" - સિગ્નલ હાઈ હોય ત્યારે કેરિયર એમ્પ્લિટ્યુડ બદલાય છે

પ્રશ્ન 2(ક) [7 ગુણ]

ASK, FSK અને PSK ની સરખામણી કરો અને ઇનપુટ ડિજિટલ સિગ્નલ 100101000101 માટે ASK, FSK અને PSK ના વેવ ફોર્મ દોરો જવાબ:

તુલનાત્મક કોષ્ટક:

પેરામીટર	ASK	FSK	PSK
મોક્યુલેશન પેરામીટર	એમ્પ્લિટ્યુડ	ફ્રીક્વન્સી	ફેઝ
નોઇઝ ઇમ્યુનિટી	ખરાબ	મધ્યમ	સારું
બેન્કવિડ્થ	સાંકડું	વિશાળ	મધ્યમ
પાવર એફિશિયન્સી	ખરાબ	મધ્યમ	સારું
ઇમ્પ્લિમેન્ટેશન	સરળ	મધ્યમ	જટિલ
BER પરફોર્મન્સ	ખરાબ	મધ્યમ	સારું

ઇનપુટ 100101000101 માટે વેવફોર્મ્સ:

```
Digital: ______ (1 0 0 1 0 1 0 0 0 1 0 1)

ASK: ///__/_/ ///
high low high low high low low high low high

FSK: ///~~~///~~~///
f1 f2 f2 f1 f2 f1 f2 f2 f2 f1 f2 f1

PSK: ///~~///~~///
0° 180° 180° 0° 180° 0° 180° 180° 0° 180° 0°
```

મેમરી ટ્રીક: "AFP - ઓલ્ટર ફ્રીક્વન્સીઝ ઓર ફેઝિસ" - મોડ્યુલેશન પ્રકારો યાદ રાખવા માટે

પ્રશ્ન 2(અ OR) [3 ગુણ]

બ્લોક ડાયાગ્રામ સાથે QPSK ડિમોક્યુલેટરનું વર્ણન કરો

જવાબ:

આકૃતિ: QPSK ડિમોક્યુલેટર

```
+----+
          Cos
          | Carrier | --+
          +----+ |
OPSK
              +----+
Signal---> | BPF |----> | Product |----> | LPF | ----> Bit 1
      +----+ Detect
                         +----+
                      +----+ +----+
                  +----> | Product |---> | LPF | ----> Bit 2
                      Detect
                              +----+
               Sin
               Carrier
               +----+
```

મુખ્ય ઘટકો:

- BPF (બેન્ડપાસ ફિલ્ટર): સિગ્નલ બેન્ડવિડ્થ બહારના નોઇઝને દૂર કરે છે
- **પ્રોડક્ટ ડિટેક્ટર્સ**: કેરિયર સિગ્નલ્સ (cos & sin) સાથે ગુણાકાર કરે છે
- LPF (લોપાસ ફિલ્ટર્સ): મૂળ ડેટા બિટ્સને અલગ કરે છે

મેમરી ટ્રીક: "ફિલ્ટર્ડ પેર્સ ડિલિવર ડેટા" - ફિલ્ટર્સ અને જોડી કેરિયર્સ ડેટા પુનઃપ્રાપ્ત કરે છે

પ્રશ્ન 2(બ) [4 ગુણ]

ASK, BPSK અને QPSK ના નક્ષત્ર રેખાકૃતિ દોરો

જવાબ:

નક્ષત્ર આકૃતિઓ:

કોષ્ટક: નક્ષત્ર આકૃતિઓની લક્ષણો

મોક્યુલેશન	પોઇન્ટ્સ	ફ્રેઝ સ્ટેટ્સ	એમ્પ્લિટ્યુડ સ્ટેટ્સ
ASK	2	1 (0°)	2 (0, A)
BPSK	2	2 (0°, 180°)	1 (A)
QPSK	4	4 (45°, 135°, 225°, 315°)	1 (A)

મેમરી ટ્રીક: "પોઇન્ટ્સ ડબલ વેન ફેઝિસ ડબલ" - BPSK માં 2 પોઇન્ટ્સ છે, QPSK માં 4 પોઇન્ટ્સ છે

પ્રશ્ન 2(ક) [7 ગુણ]

બ્લોક ડાયાગ્રામ અને આઉટપુટ વેવ ફોર્મ સાથે FSK મોક્યુલેટર અને ડિમોક્યુલેટરનું વર્ણન કરો

જવાબ:

FSK મોક્યુલેટર આકૃતિ:

FSK ડિમોક્યુલેટર આકૃતિ:

FSK વેવફોર્મ:

મુખ્ય ઘટકો:

ยรร	รเช่
ઓસિલેટર્સ	0 અને 1 માટે અલગ ફ્રીક્વન્સી જનરેટ કરે છે
બેન્ડપાસ ફિલ્ટર્સ	બે ફ્રીક્વન્સીઓને અલગ કરે છે
એન્વેલોપ ડિટેક્ટર્સ	એમ્પ્લિટ્યુડ વેરિએશન્સ અલગ કરે છે
થ્રેશોલ્ક ડિટેક્ટર્સ	એનાલોગને ડિજિટલમાં કન્વર્ટ કરે છે

મેમરી ટ્રીક: "ફ્રીક્વન્સી શિફ્ટ કી - ટુ ટોન્સ ટેલ ટ્રુથ"

પ્રશ્ન 3(અ) [3 ગુણ]

સંચારમાં સંભાવનાનું મહત્વ જણાવો

જવાબ:

મહત્વ વર્ણન	
ઇન્ફોર્મેશન મેઝરમેન્ટ	મેસેજમાં અનિશ્ચિતતા/આશ્ચર્યને ક્વાન્ટિફાય કરે છે
યેનલ કેપેસિટી	શક્ય મહત્તમ ડેટા રેટ નિર્ધારિત કરે છે
એરર એનાલિસિસ	કોમ્યુનિકેશન એરર્સની આગાહી કરે છે અને ન્યૂનતમ કરે છે

મેમરી ટ્રીક: "ICE - ઇન્ફોર્મેશન, કેપેસિટી, એરર્સ" ને સંભાવનાની જરૂર પડે છે

પ્રશ્ન 3(બ) [4 ગુણ]

SNR ના સંદર્ભમાં રાજ્ય ચેનલ ક્ષમતા અને તેનું મહત્વ સમજાવો

જવાબ:

શેનન ચેનલ કેપેસિટી ફોર્મ્યુલા:

$$C = B \times log_2(1 + SNR)$$

જ્યાં:

- C = ચેનલ કેપેસિટી (બિટ્સ/સેકન્ડ)
- B = બેન્ડવિડ્થ (Hz)
- SNR = સિગ્નલ-ટુ-નોઇઝ રેશિયો

મહત્વ:

પાસું	મહત્વ
થિયોરેટિકલ લિમિટ	એરર-ફ્રી ડેટા રેટની મહત્તમ શક્ય સીમા નિર્ધારિત કરે છે
સિસ્ટમ ડિઝાઇન	બેન્ડવિડ્થ અને પાવર જરૂરિયાતોનું માર્ગદર્શન આપે છે
પરફોર્મન્સ ઇવેલ્યુએશન	વાસ્તવિક સિસ્ટમ પરફોર્મન્સ માટે બેન્ચમાર્ક
કોડિંગ એફિશિયન્સી	દર્શાવે છે કે સિસ્ટમ ઓપ્ટિમલ પરફોર્મન્સથી કેટલી નજીક છે

મેમરી ટ્રીક: "BEST" - બેન્ડવિડ્થ એન્ડ એરર-ફ્રી સિગ્નલ ટ્રાન્સિમિશન

પ્રશ્ન 3(ક) [7 ગુણ]

યોગ્ય ઉદાહરણ સાથે લાઇન કોડના વર્ગીકરણની ચર્ચા કરો

જવાબ:

આકૃતિ: લાઇન કોડ વર્ગીકરણ

લાઇન કોડ ઉદાહરણો:

વેવફોર્મ વિઝ્યુલાઇઝેશન:

તુલનાત્મક કોષ્ટક:

લાઇન કોડ પ્રકાર	સિગ્નલ લેવલ્સ	DC કોમ્પોનેન્ટ	ક્લોક રિકવરી	બેન્કવિડ્થ
યુનિપોલર NRZ	0, +A	હા	ખરાબ	સાંકડું
પોલર NRZ	-A, +A	કદાચ	ખરાબ	મધ્યમ
બાયપોલર AMI	-A, 0, +A	н	સાટું	વિશાળ

મેમરી ટ્રીક: "UPB - યુઝ પ્રોપર બિટ્સ" - યુનિપોલર, પોલર, બાયપોલર માટે

પ્રશ્ન 3(અ OR) [3 ગુણ]

શરતી સંભાવનાની ચર્ચા કરો

જવાબ:

શરતી સંભાવના વ્યાખ્યા:

 $P(A|B) = P(A\cap B) / P(B)$

કોષ્ટક: કોમ્યુનિકેશનમાં શરતી સંભાવના

એપ્લિકેશન	વર્ણન
ચેનલ મોડેલિંગ	X મોકલવામાં આવ્યું હોય તો Y પ્રાપ્ત થવાની સંભાવના
એરર ડિટેક્શન	યોક્કસ પેટર્ન આપેલી હોય તે સંજોગોમાં એરર થવાની સંભાવના
નિર્ણય લેવો	અવલોકનોના આદ્યારે રિસીવર નિર્ણયને ઓપ્ટિમાઇઝ કરવું

મેમરી ટ્રીક: "CEaD" - કેલ્ક્યુલેટ ઇવેન્ટ્સ આફ્ટર ડેટા

પ્રશ્ન 3(બ) [4 ગુણ]

એન્ટ્રોપી અને માહિતી વ્યાખ્યાયિત કરો. તેના ભૌતિક મહત્વની ચર્ચા કરો

જવાબ:

વ્યાખ્યાઓ:

910€	વ્યાખ્યા	ફોર્મ્યુલા
એન્ટ્રોપી	સોર્સમાં સરેરાશ માહિતી સામગ્રી	$H(X) = -\sum P(x) \log_2 P(x)$
માહિતી	અનિશ્ચિતતા ઘટાડાનું માપ	$I(x) = \log_2(1/P(x))$

ભૌતિક મહત્વ:

પાસું	મહત્વ
અનપ્રેડિક્ટેબિલિટી	ઊંચી એન્ટ્રોપીનો અર્થ છે ઓછો પ્રેડિક્ટેબલ સોર્સ
કોમ્પ્રેશન લિમિટ	સોર્સને રજૂ કરવા માટે જરૂરી ન્યૂનતમ બિટ્સ
ઓપ્ટિમલ કોડિંગ	કાર્યક્ષમ સોર્સ કોડિંગ ડિઝાઇનનું માર્ગદર્શન આપે છે
રિસોર્સ એલોકેશન	બેન્ડવિડ્થ/પાવર જરૂરિયાતો નક્કી કરે છે

મેમરી ટ્રીક: "UCOR" - અનસર્ટેનીટી કોરિલેટ્સ વિથ ઓપ્ટિમલ રિસોર્સિસ

પ્રશ્ન 3(ક) [7 ગુણ]

યોગ્ય ઉદાહરણ સાથે હફમેન કોડનું વર્ણન કરો

જવાબ:

હફમેન કોડિંગ: લોસલેસ ડેટા કોમ્પ્રેશન માટે વેરિએબલ-લેન્થ પ્રીફિક્સ કોડ

ઉદાહરણ: સિમ્બોલ્સ {A, B, C, D, E} એન્કોડિંગ

સ્ટેપ 1: સંભાવના ગણતરી

સિમ્બોલ	સંભાવના
A	0.4
В	0.2
С	0.2
D	0.1
E	0.1

સ્ટેપ 2: હફમેન ટ્રી બનાવો

સ્ટેપ 3: કોડ્સ અસાઇન કરો

સિમ્બોલ	સંભાવના	હફમેન કોડ
А	0.4	0
В	0.2	10
С	0.2	11
D	0.1	100
Е	0.1	101

સરેરાશ ક્રોડ લંબાઈ: (0.4×1) + (0.2×2) + (0.2×2) + (0.1×3) + (0.1×3) = 1.8 બિટ્સ/સિમ્બોલ

મેમરી ટ્રીક: "હાઈ પ્રોબ, લો બિટ્સ" - ઊંચી સંભાવના ધરાવતા સિમ્બોલ્સને ટૂંકા કોડ મળે છે

પ્રશ્ન 4(અ) [3 ગુણ]

ડેટા ટ્રાન્સમિશન તકનીકોની સૂચિ બનાવો

જવાબ:

કોષ્ટક: ડેટા ટ્રાન્સમિશન તકનીકો

તકનીક	વર્ણન	
સીરિયલ ટ્રાન્સમિશન	સિંગલ યેનલ પર એક પછી એક બિટ્સ મોકલવામાં આવે છે	
પેરેલલ ટ્રાન્સમિશન	મલ્ટિપલ ચેનલ્સ પર એકસાથે મલ્ટિપલ બિટ્સ મોકલવામાં આવે છે	
સિંક્રોનસ ટ્રાન્સમિશન	ક્લોક દ્વારા નિયંત્રિત ટાઈમિંગ સાથે ડેટા બ્લોક્સમાં મોકલવામાં આવે છે	
એસિંક્રોનસ ટ્રાન્સમિશન	સ્ટાર્ટ/સ્ટોપ બિટ્સ સાથે ડેટા મોકલવામાં આવે છે, કોમન ક્લોક નથી	
હાફ-ડુપ્લેક્સ	ડેટા બંને દિશામાં વહે છે, પરંતુ એક સાથે નહીં	
કુલ-ડુપ્લેક્સ	ડેટા બંને દિશામાં એક સાથે વહે છે	

મેમરી ટ્રીક: "SPASH-F" - સીરિયલ, પેરેલલ, એસિંક્રોનસ, સિંક્રોનસ, હાફ/ફુલ

પ્રશ્ન 4(બ) [4 ગુણ]

સંચાર માટે મલ્ટીમીડિયા પ્રોસેસિંગની જરૂરિયાતો સમજાવો

જવાબ:

મલ્ટીમીડિયા પ્રોસેસિંગ જરૂરિયાતો:

જરૂરિયાત	વર્ણન
કોમ્પ્રેશન	મોટી મીડિયા ફાઇલો માટે બેન્ડવિડ્થ જરૂરિયાતો ઘટાડે છે
ફોર્મેટ સ્ટાન્ડર્ડાઇઝેશન	જુદા જુદા સિસ્ટમો વચ્ચે સુસંગતતા સુનિશ્ચિત કરે છે
ક્વોલિટી કંટ્રોલ	સ્વીકાર્ય ઓડિયો/વિડિયો ક્વોલિટી સ્તર જાળવે છે
સિંકોનાઇઝેશન	જુદા જુદા મીડિયા પ્રકારો (ઓડિયો, વિડિયો, ટેક્સ્ટ) સંકલિત કરે છે
એરર રેસિસ્ટન્સ	ટ્રાન્સમિશન દરમિયાન ડેટા લોસથી રક્ષણ કરે છે

આકૃતિ: મલ્ટીમીડિયા પ્રોસેસિંગ ફ્લો

મેમરી ટ્રીક: "CQSEF" - કોમ્પ્રેસ ક્વોલિટી, સ્ટાન્ડર્ડાઇઝ એન્ડ એન્શ્યોર ફિડિલિટી

પ્રશ્ન 4(ક) [7 ગુણ]

ડેટા ટ્રાન્સમિશન મોડ સમજાવો

જવાબ:

કોષ્ટક: ડેટા ટ્રાન્સમિશન મોડ

મોડ	દિશા	ઓપરેશન	ઉદાહરણ
સિમ્પ્લેક્સ	ફક્ત એક દિશામાં	સેન્ડર રિસીવ કરી શકતો નથી	રેડિયો બ્રોડકાસ્ટ
હાફ-ડુપ્લેક્સ	બે-દિશામાં, વારાફરતી	એક સમયે ફક્ત એક ડિવાઇસ ટ્રાન્સમિટ કરે છે	વોકી-ટોકી
કુલ-ડુપ્લેક્સ	બે-દિશામાં, એકસાથે	બંને ડિવાઇસિસ એક સાથે ટ્રાન્સમિટ કરે છે	ટેલિફોન કોલ

આકૃતિ: ડેટા ટ્રાન્સમિશન મોડ

तुसना:

પેરામીટર	સિમ્પ્લેક્સ	હાફ-ડુપ્લેક્સ	કુલ-ડુપ્લેક્સ
ચેનલ ઉપયોગ	100% એક દિશામાં	100% વારાફરતી	100% બંને દિશામાં
કાર્યક્ષમતા	નીચી	મધ્યમ	ઊંચી
ઇમ્પ્લિમેન્ટેશન	સરળ	મધ્યમ	જટિલ
ખર્ચ	ઓછો	મધ્યમ	ઊંચો

મેમરી ટ્રીક: "SHF - સ્પીડ એન્ડ હેન્ડલિંગ ફેક્ટર્સ" - સિમ્પ્લેક્સ, હાફ-ડુપ્લેક્સ, ફુલ-ડુપ્લેક્સ માટે

પ્રશ્ન 4(અ OR) [3 ગુણ]

ડેટા કમ્યુનિકેશનની મહત્વપૂર્ણ લાક્ષણિકતાઓની સૂચિ બનાવો

જવાબ:

ડેટા કોમ્યુનિકેશનની મુખ્ય લાક્ષણિકતાઓ:

લાક્ષણિકતા	વર્ણન	
ડિલિવરી	સિસ્ટમે ડેટાને યોગ્ય ડેસ્ટિનેશન પર પહોંચાડવો જોઈએ	
એક્યુરસી	ડેટા ફેરફાર વિના પહોંચવો જોઈએ	
ટાઇમલીનેસ	ડેટા ઉપયોગી સમય ફ્રેમની અંદર પહોંચવો જોઈએ	
જિટર	પેકેટ આગમન સમયમાં વેરિએશન	
સિક્યોરિટી	અનધિકૃત એક્સેસથી સુરક્ષા	
રિલાયબિલિટી	નિષ્ફળતાઓ સામે સિસ્ટમ રેસિલિયન્સ	

મેમરી ટ્રીક: "DATJSR" - ડિલિવરી, એક્યુરસી, ટાઇમલીનેસ, જિટર, સિક્યોરિટી, રિલાયબિલિટી

પ્રશ્ન 4(બ) [4 ગુણ]

ડેટા કમ્યુનિકેશન માટેના ધોરણોની ચર્ચા કરો

જવાબ:

કોષ્ટક: ડેટા કોમ્યુનિકેશનના મુખ્ય ધોરણો

દ્યોરણ	સંસ્થા	હેતુ
IEEE 802.x	IEEE	LAN/MAN નેટવર્કિંગ પ્રોટોકોલ્સ
X.25, X.400	ITU-T	પેકેટ સ્વિચિંગ, મેસેજિંગ
TCP/IP	IETF	ઇન્ટરનેટ પ્રોટોકોલ્સ
RS-232/422/485	EIA/TIA	ફિઝિકલ ઇન્ટરફેસિસ
USB, HDMI	USB-IF, HDMI Forum	ડિવાઇસ કનેક્શન્સ

સ્ટાન્ડર્ડ્સ ઓર્ગેનાઇઝેશન્સ:

સંસ્થા	ભૂમિકા	
IEEE	નેટવર્ક્સ માટે ટેક્નિકલ સ્ટાન્ડર્ર્સ	
ITU-T	ટેલિકોમ્યુનિકેશન સ્ટાન્ડર્ર્સ	
IETF	ઇન્ટરનેટ પ્રોટોકોલ્સ	
ISO	સમગ્ર સ્ટાન્ડર્ડાઇઝેશન	

મેમરી ટ્રીક: "PITS" - પ્રોટોકોલ્સ, ઇન્ટરફેસિસ, ટ્રાન્સમિશન એન્ડ સ્ટાન્ડર્ડ્સ

પ્રશ્ન 4(ક) [7 ગુણ]

મલ્ટીમીડિયા કોમ્યુનિકેશન્સનું મોડેલ અને મલ્ટીમીડિયા સિસ્ટમના તત્વો સમજાવો

જવાબ:

મલ્ટીમીડિયા કોમ્યુનિકેશન મોડેલ:

મલ્ટીમીડિયા સિસ્ટમ તત્વો:

તત્વ	รเน้
ઇનપુટ ડિવાઇસિસ	મલ્ટીમીડિયા કન્ટેન્ટ કેપ્યર કરે છે (કેમેરા, માઇક્રોફ્રોન)
પ્રોસેસિંગ હાર્ડવેર	મલ્ટીમીડિયા ડેટા હેન્ડલિંગ માટે CPU, GPU
સ્ટોરેજ	હાર્ડ ડ્રાઇવ, SSD, ક્લાઉડ સ્ટોરેજ
કોમ્યુનિકેશન નેટવર્ક	સિસ્ટમો વચ્ચે મલ્ટીમીડિયા ડેટા ટ્રાન્સમિટ કરે છે
આઉટપુટ ડિવાઇસિસ	કન્ટેન્ટ પ્રેઝન્ટેશન માટે ડિસ્પ્લે, સ્પીકર્સ
સોફ્ટવેર	કન્ટેન્ટ મેનિપ્યુલેશન માટે કોડેક્સ, પ્લેયર્સ, એડિટર્સ

મીડિયા ટાઇપ્સ:

મીડિયા ટાઇપ	લક્ષણો	સામાન્ય ફોર્મેટ્સ
ઓડિયો	ટેમ્પોરલ, સ્ટ્રીમિંગ	MP3, WAV, AAC
વિડિયો	ટેમ્પોરલ, સ્પેશિયલ, હાઈ બેન્ડવિડ્થ	MP4, AVI, HEVC
ઇમેજ	સ્પેશિયલ, સ્ટેટિક	JPEG, PNG, GIF
ટેક્સ્ટ	સ્ટ્રકચર્ડ, લો બેન્ડવિડ્થ	TXT, HTML, XML

મેમરી ટ્રીક: "CNIS-OS" - કેપ્ચર, નેટવર્ક, ઇનપુટ-આઉટપુટ, સ્ટોરેજ, આઉટપુટ, સોફ્ટવેર

પ્રશ્ન 5(અ) [3 ગુણ]

5G ટેક્નોલોજીના મહત્વના ઘટકો સમજાવો

જવાબ:

5G ના મુખ્ય ઘટકો:

ยวร	વર્ણન
મિલિમીટર વેવ્સ	વધુ બેન્ડવિડ્થ માટે ઊંચી ફ્રીક્વન્સી (24-100 GHz)
મેસિવ MIMO	સુધારેલી ક્ષમતા માટે મલ્ટિપલ-ઇનપુટ મલ્ટિપલ-આઉટપુટ એન્ટેનાઓ
બીમફોર્મિંગ	વધુ કાર્યક્ષમતા માટે કેન્દ્રિત સિગ્નલ ટ્રાન્સમિશન
નેટવર્ક સ્લાઇસિંગ	શેર્ડ ઇન્ફ્રાસ્ટ્રક્ચર પર વર્ચ્યુઅલ નેટવર્ક્સ
એજ કમ્પ્યુટિંગ	ઓછા લેટન્સી માટે ડેટા સોર્સની નજીક પ્રોસેસિંગ

મેમરી ટ્રીક: "MMBN-E" - મિલિમીટર, MIMO, બીમફોર્મિંગ, નેટવર્ક, એજ

પ્રશ્ન 5(બ) [4 ગુણ]

સ્પ્રેડ સ્પેક્ટ્રમ કમ્યુનિકેશનનું વર્ણન કરો

જવાબ:

સ્મેડ સ્પેક્ટ્રમ વ્યાખ્યા: એવી તકનીક જેમાં સિગ્નલને પહોળા ફ્રીક્વન્સી બેન્ડ પર ફેલાવવામાં આવે છે, જે જરૂરી મિનિમમ બેન્ડવિડ્થ કરતાં ઘણું વધારે છે.

સ્પ્રેડ સ્પેક્ટ્રમના પ્રકારો:

увіз	પદ્ધતિ	ફાયદા
DSSS (ડાયરેક્ટ સિક્વન્સ)	ઊંચા-રેટવાળા સ્યુડોરેન્ડમ કોડ સાથે ડેટાને XOR	સારી નોઇઝ ઇમ્યુનિટી
FHSS (ફ્રીક્વન્સી હોપિંગ)	કેરિયરને ઝડપથી ઘણી ફ્રીક્વન્સીઓ પર બદલાય છે	જેમિંગનો પ્રતિકાર કરે છે
THSS (ટાઇમ હોપિંગ)	અલગ-અલગ ટાઇમ સ્લોટ્સમાં ટૂંકા બર્સ્ટ ટ્રાન્સમિટ કરે છે	ઇન્ટરસેપ્ટની ઓછી સંભાવના

આકૃતિ: DSSS પ્રક્રિયા

Data:	
PN Code:	_ - _ - _ -
Spread Signal:	_ - - _ - _ -

મેમરી ટ્રીક: "DFT - ડિફિકલ્ટ ફોર ટ્રેકર્સ" - ડાયરેક્ટ, ફ્રીક્વન્સી, ટાઇમ હોપિંગ

પ્રશ્ન 5(ક) [7 ગુણ]

સેટેલાઇટ કોમ્યુનિકેશનના બ્લોક ડાયાગ્રામને સમજાવો

જવાબ:

સેટેલાઇટ કોમ્યુનિકેશન બ્લોક ડાયાગ્રામ:

મુખ્ય ઘટકો:

ยรร	รเช็
અર્થ સ્ટેશન (Tx)	સિગ્નત્સનો સ્ત્રોત, અપલિંક ફંક્શન્સ કરે છે
અપલિંક	પૃથ્વીથી સેટેલાઇટ સુધીનું ટ્રાન્સમિશન (ઊંચી ફ્રીક્વન્સી)
સેટેલાઇટ ટ્રાન્સપોન્ડર	સિગ્નત્સ પ્રાપ્ત કરે છે, એમ્પ્લિફાય કરે છે, અને ફરીથી ટ્રાન્સમિટ કરે છે
ડાઉનલિંક	સેટેલાઇટથી પૃથ્વી સુધીનું ટ્રાન્સમિશન (નીચી ફ્રીક્વન્સી)
અર્થ સ્ટેશન (Rx)	ડાઉનલિંક સિગ્નલ્સ પ્રાપ્ત કરે છે અને પ્રોસેસ કરે છે

ફ્રીક્વન્સી બેન્ડ્સ:

બેન્ડ	ફ્રીકવન્સી રેન્જ	એપ્લિકેશન્સ
C-બેન્ડ	4-8 GHz	ટેલિવિઝન, વોઇસ, ડેટા
Ku-બેન્ડ	12-18 GHz	ડાયરેક્ટ બ્રોડકાસ્ટ, VSAT
Ка-બેન્ડ	26-40 GHz	હાઈ-સ્પીડ ડેટા, ઇન્ટરનેટ

મેમરી ટ્રીક: "STUDER" - સ્ટેશન ટ્રાન્સમિટ્સ અપલિંક, ડાઉનલિંક ટુ અર્થ રિસીવર

પ્રશ્ન 5(અ OR) [3 ગુણ]

5G ટેકનોલોજીની વિશેષતાઓ અને ફાયદાઓ સમજાવો

જવાબ:

5G વિશેષતાઓ અને ફાયદાઓ:

વિશેષતા	ફાયદો
હાઈ સ્પીડ	ઝડપી ડાઉનલોડ્સ માટે 10 Gbps સુધીના ડેટા રેટ્સ
અલ્ટ્રા-લો લેટન્સી	રિયલ-ટાઇમ એપ્લિકેશન્સ માટે <1ms રિસ્પોન્સ ટાઇમ
મેસિવ કનેક્ટિવિટી	દર ચોરસ કિમી દીઠ 1 મિલિયન ઉપકરણો સુધી
નેટવર્ક સ્લાઇસિંગ	યોક્કસ એપ્લિકેશન્સ માટે કસ્ટમાઇઝ્ડ વર્ચ્યુઅલ નેટવર્ક્સ
સુધારેલી વિશ્વસનીયતા	ક્રિટિકલ સર્વિસિસ માટે 99.999% ઉપલબ્ધતા
એનર્જી એફિશિયન્સી	ડેટાના દરેક બિટ દીઠ ઓછી પાવર વપરાશ

મેમરી ટ્રીક: "HUMNER" - હાઈ-સ્પીડ, અલ્ટ્રા-લો લેટન્સી, મેસિવ કનેક્ટિવિટી, નેટવર્ક સ્લાઇસિંગ, એન્હાન્સ્ક રિલાયબિલિટી

પ્રશ્ન 5(બ) [4 ગુણ]

એજ કમ્પ્યુટિંગનું વર્ણન કરો

જવાબ:

એજ કમ્પ્યુટિંગ વ્યાખ્યા: કમ્પ્યુટિંગ પેરાડાઇમ જે ડેટા પ્રોસેસિંગને ડેટા જનરેશનના સ્ત્રોતની નજીક લાવે છે.

આકૃતિ: એજ કમ્પ્યુટિંગ આર્કિટેક્ચર

મુખ્ય લક્ષણો:

લક્ષણ	นญ์ฯ
પ્રોક્સિમિટી	ડેટા સોર્સની નજીક પ્રોસેસિંગ લેટન્સી ઘટાડે છે
ડિસ્ટ્રિબ્યુટેડ	નેટવર્ક એજ પર ફેલાયેલા કમ્પ્યુટિંગ રિસોર્સિસ
રિયલ-ટાઇમ પ્રોસેસિંગ	સમય-મહત્વપૂર્ણ એપ્લિકેશન્સ માટે ઝડપી પ્રતિસાદ
બેન્કવિડ્થ ઓપ્ટિમાઇઝેશન	સેન્ટ્રલ ક્લાઉડને મોકલવામાં આવતો ડેટા ઘટાડે છે
ડેટા પ્રાઇવસી	સંવેદનશીલ ડેટા સ્થાનિક રીતે પ્રોસેસ થાય છે

મેમરી ટ્રીક: "PDRBD" - પ્રોસેસ ડેટા રેપિડલી બાય ડિસ્ટ્રિબ્યુટિંગ

પ્રશ્ન 5(ક) [7 ગુણ]

કોમ્યુનિકેશન સિક્યોરિટીમાં બ્લોક ચેઈનનું મહત્વ સમજાવો

જવાબ:

કોમ્યુનિકેશન સિક્યોરિટીમાં બ્લોકચેઇન:

સિક્યોરિટી બેનિફિટ્સ:

બેનિફિટ	นย์า
ઇમ્યુટેબિલિટી	એકવાર રેકોર્ડ થયેલો ડેટા બદલી શકાતો નથી
ડિસેન્ટ્ર લાઇ ઝેશન	નિયંત્રણ કે નિષ્ફળતાનો કોઈ એકલ પોઇન્ટ નથી
ટ્રાન્સપેરન્સી	બધા ટ્રાન્ઝેક્શન્સ નેટવર્ક પાર્ટિસિપન્ટ્સને દેખાય છે
ક્રિપ્ટોગ્રાફિક સિક્યોરિટી	મજબૂત એન્ક્રિપ્શન ડેટા ઇન્ટેગ્રિટીનું રક્ષણ કરે છે
સ્માર્ટ કોન્ટ્રાક્ટ્સ	બિલ્ટ-ઇન સિક્યોરિટી સાથે સેલ્ફ-એક્ઝિક્યુટિંગ એગ્રીમેન્ટ્સ
કન્સેન્સસ મેકેનિઝમ્સ	મલ્ટિપલ વેલિડેટર્સ ટ્રાન્ઝેક્શન લેજિટિમસી સુનિશ્ચિત કરે છે

કોમ્યુનિકેશન એપ્લિકેશન્સ:

એપ્લિકેશન	સિક્યોરિટી બેનિફિટ
સિક્યોર મેસેજિંગ	ટેમ્પર-પ્રૂફ રેકોર્ડ્સ સાથે એન્ડ-ટુ-એન્ડ એન્ક્રિપ્શન
આઇડેન્ટિટી મેનેજમેન્ટ	સેલ્ફ-સોવરેન આઇડેન્ટિટી વેરિફિકેશન
IoT સિક્યોરિટી	સિક્યોર ડિવાઇસ ઓથેન્ટિકેશન અને ડેટા ઇન્ટેગ્રિટી
નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચર	સિક્યોર રાઉટિંગ અને DNS સિસ્ટમ્સ

મેમરી ટ્રીક: "DTCSCI" - ડિસેન્ટ્રલાઇઝ્ડ ટ્રાન્સપેરન્ટ ક્રિપ્ટોગ્રાફિક સિસ્ટમ ક્રિએટ્સ ઇમ્યુટેબિલિટી