日本国特許月 JAPAN PATENT OFFICE

10/533691 JP04/12857

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月 3日

REC'D 30 SEP 2004

WIPO

PCT

出 願 番 号 Application Number:

特願2003-311625

[ST. 10/C]:

Applicant(s):

[JP2003-311625]

出 願 人

ソニー株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月 1日

今井康

7

【書類名】 特許願 【整理番号】 0390119702 【提出日】 平成15年 9月 3日 【あて先】 特許庁長官殿 【国際特許分類】 B41J 2/01 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 【氏名】 牛ノ▲濱▼ 五輪男 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 【氏名】 池本, 雄一郎 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 【氏名】 竹中 一康 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 【氏名】 江口 武夫 【特許出願人】 【識別番号】 000002185 【氏名又は名称】 ソニー株式会社 【代理人】 【識別番号】 100067736 【弁理士】 【氏名又は名称】 小池 晃 【選任した代理人】 【識別番号】 100086335 【弁理士】 【氏名又は名称】 田村 築一 【選任した代理人】 【識別番号】 100096677 【弁理士】 【氏名又は名称】 伊賀 誠司 【手数料の表示】 019530 【予納台帳番号】 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【包括委任状番号】

9707387

【書類名】特許請求の範囲

【請求項1】

?

液体を貯留する液室と、上記液室に液体を供給する供給部と、上記液室に2つ以上設けられ、上記液室に貯留された液体を押圧する圧力発生素子と、上記各圧力発生素子により押圧された液体を上記各液室から液滴の状態で対象物の主面に向かって吐出させる吐出口とを有する吐出手段と、

上記各圧力発生素子にエネルギが供給されるタイミング及び供給されている時間を制御 し、上記吐出口より上記液滴を吐出するときの吐出角度を制御する吐出制御手段とを備え

上記吐出制御手段は、上記各圧力発生素子のうちの一つに供給されるエネルギを基準にし、この基準エネルギが供給される圧力発生素子以外の圧力発生素子に、上記基準エネルギと略同じタイミングで上記エネルギを供給、若しくは上記基準エネルギに対して上記基準エネルギが供給されている時間の20%以内の範囲で時間をずらして上記エネルギを供給する液体吐出装置。

【請求項2】

上記吐出制御手段は、上記基準エネルギが供給される圧力発生素子以外の圧力発生素子に、上記基準エネルギと略同じタイミングで上記エネルギを供給、若しくは上記基準エネルギに対し、この基準エネルギが供給されている時間の7.5%以上、20%以下の範囲で時間をずらして上記エネルギを供給する請求項1記載の液体吐出装置。

【請求項3】

上記吐出手段は、上記吐出口が略ライン状に並設されている請求項1記載の液体吐出装置。

【請求項4】

液体を貯留する液室と、上記液室に液体を供給する供給部と、上記液室に2つ以上設けられ、上記液室に貯留された液体を押圧する圧力発生素子と、上記各圧力発生素子により押圧された液体を上記各液室から液滴の状態で対象物の主面に向かって吐出させる吐出口とを有する吐出手段と、上記各圧力発生素子にエネルギが供給されるタイミング及び供給されている時間を制御し、上記吐出口より上記液滴を吐出するときの吐出角度を制御する吐出制御手段とを備える液体吐出装置の液体吐出方法において、

上記各圧力発生素子のうちの一つに供給されるエネルギを基準にし、この基準エネルギが供給される圧力発生素子以外の圧力発生素子に、上記基準エネルギと略同じタイミングで上記エネルギを供給、若しくは上記基準エネルギに対して上記基準エネルギが供給されている時間の20%以内の範囲で時間をずらして上記エネルギを供給することを特徴とする液体吐出方法。

【請求項5】

上記基準電流が供給される圧力発生素子以外の圧力発生素子に、上記基準エネルギと略同じタイミングで上記エネルギを供給、若しくは上記基準エネルギに対し、この基準エネルギが供給されている時間の7.5%以上、20%以下の範囲で時間をずらして上記エネルギを供給することを特徴とする請求項4記載の液体吐出方法。

【請求項6】

上記吐出手段の吐出口を、略ライン状に並設することを特徴とする請求項4記載の液体 吐出方法。

【書類名】明細書

【発明の名称】液体吐出装置及び液体吐出方法

【技術分野】

[0001]

本発明は、圧力発生素子が発生した圧力によって押圧された液体を、吐出口より液滴にして対象物に吐出する液体吐出装置及び液体吐出方法に関する。

【背景技術】

[0002]

液体を吐出する装置としては、対象物となる記録紙に対し、液体吐出部より液体としてのインクを吐出させて、画像や文字を記録するインクジェット方式の液体吐出装置がある。このインクジェット方式を用いた液体吐出装置は、低ランニングコスト、装置の小型化、印刷画像のカラー化が容易という利点がある。インクジェット方式を用いた液体吐出装置では、インクは、複数の色(例えばイエロー、マゼンダ、シアン、ブラック等)のインクがそれぞれ充填されたインクカートリッジから液体吐出部のインク液室等に供給される

[0003]

そして、インク液室等に供給されたインクは、インク液室内に配置された発熱抵抗体等の圧力発生素子で発生する圧力によって押圧される。その結果、インク液室内のインクは、液体吐出部に設けられた微小なインク吐出口、いわゆるノズルより吐出されることになる。具体的には、インク液室内に配置された発熱抵抗体でインク室内のインクを加熱し、発熱抵抗体上のインクに気泡を発生させ、この気泡により発生する圧力でインクをノズルから吐出させ、吐出させたインクを対象物となる記録紙等に着弾させて画像や文字を印刷する。

[0004]

インクジェット方式の液体吐出装置としては、インクカートリッジが液体吐出ヘッドに 装着され、液体吐出ヘッドが記録紙の幅方向、すなわち記録紙の搬送方向と略直交する方 向に移動することによって所定の色のインクを記録紙に着弾させるシリアル型のプリンタ 装置がある。また、記録紙の幅とほぼ同じ範囲をインクの吐出範囲とした、すなわち記録 紙の幅方向に並んだ液体吐出部のノズルよりインクを吐出する、いわゆるラインヘッド型 の液体吐出装置がある。

[0005]

シリアル型の液体吐出装置は、液体吐出ヘッドが記録紙の搬送方向と略直交する方向に 移動するときに記録紙の走行を停止させ、停止している記録紙に液体吐出ヘッドを移動させながらインクを吐出し、これを繰り返すことで印刷を行う。一方、ラインヘッド型の液体吐出装置は、液体吐出ヘッドが固定、若しくは印刷ムラを避けるための僅かな微動できる程度に固定されており、連続的に走行している記録紙に液体吐出ヘッドがインクを吐出、着弾させることで印刷する。

[0006]

このため、このラインヘッド型の液体吐出装置は、シリアル型と異なり液体吐出ヘッドを移動させないものであるから、シリアル型のプリンタ装置に比べて高速印刷を行うことが可能となる。また、ラインヘッド型の液体吐出装置は、液体吐出ヘッドを移動させる必要がないことから、各インクカートリッジを大型化することができ、インクカートリッジのインク容量を増やすことができる。このようなラインヘッド型の液体吐出装置では、液体吐出ヘッドを移動させるものではないため構成の簡素化を図ることができ、各インクカートリッジと液体吐出ヘッドとを一体的に設けることが可能となる。

[0007]

ところで、上述したラインヘッド型の液体吐出装置では、走行している記録紙にインクが着弾するタイミングの精度により画像や文字等の印刷精度が左右されてしまう。具体的に説明すると、例えば記録紙の走行速度が速いときは、記録された画像や文字等が記録紙の搬送方向に伸びて印刷されてしまい、記録紙の走行速度が遅いときは、記録された画像

[0008]

このような問題を解決するために、ラインヘッド型の液体吐出装置では、例えば記録紙を走行させるためのモータ等の制御にサーボモータ等を使用し、記録紙の走行速度にムラが出ないように走行速度を一定にすることで、記録紙にインクが着弾するタイミングを制御している。

[0009]

しかしながら、以上のようなサーボモータ等を用いた場合でも、画像等の伸びや縮みは解消されるものの、記録紙にインクが着弾するタイミングに僅か数ミクロンの誤差があると、記録紙の搬送方向に色調ムラ、すなわち色の濃度にムラが生じることがある。具体的には、サーボモータによる記録紙の走行速度の制御が僅か数ミクロン遅れると、この部分で色調が濃くなってしまう。一方、サーボモータによる記録紙の走行速度の制御が僅か数ミクロン速まると、この部分で色調が薄くなり、さらに記録紙の走行速度の制御が数十ミクロン、数百ミクロンのレベルで速まると、記録紙の搬送方向と略直交方向に亘ってインクが着弾してない部分、いわゆる白スジが生じてしまう。そして、このような記録紙の搬送方向に起きる色調ムラや白スジは、例えば階調が変化しないような印刷を行うときに顕著に現れてしまう。

[0010]

一方、シリアル型の液体吐出装置では、記録紙の走行を停止させて印刷する際に、前回の印刷箇所と今回の印刷箇所との境界を所定の範囲で重なるような、いわゆるオーバーラップ部を設けた印刷を行うことで記録紙の搬送方向に起きる色調ムラや白スジを防止している。しかしながら、シリアル型の液体吐出装置では、色調ムラや白スジ等は抑えることができるが、オーバーラップ部を設けていることにより、印刷に係る時間が長くなったり、印刷に使用するインクの量が多くなったりするといった問題がある。

[0011]

以上のような問題と解決するために、インクを吐出する液体吐出部のノズルと対向する 位置に発熱抵抗体をノズルの中心線を含む面で互いに面対称となるように複数設け、それ ぞれの発熱抵抗体の発熱量を異ならせることによって、インクの吐出方向を制御すること が提案されている(特許文献1を参照。)。

[0012]

しかしながら、上述した複数の発熱抵抗体を設けた液体吐出部では、各発熱抵抗体の発熱量を異ならせることでノズルより吐出されたインクの吐出方向を制御していることから、各発熱抵抗体の発熱量が適切でなく所望の吐出方向にインクを吐出することができないと画質が低下することがある。具体的には、図22に示す液体吐出部201ように、各発熱抵抗体202に供給されるエネルギーが適切でない場合、各発熱抵抗体202がインク203に発生させる気泡204の大きさのバランスが悪くなる。すなわち、この液体吐出部202では、各発熱抵抗体202上のインク203を押圧する圧力のバランスが偏り過ぎて、気泡204によるインク203の押圧状態が不安定になってインクの吐出方向がばらつく虞がある。

[0013]

また、液体吐出部201では、各発熱抵抗体202上のインク203を押圧する圧力のバランスが偏り過ぎてしまった場合、ノズル205からのインク液滴iの吐出角度θが小さくなり過ぎることがある。この場合、液体吐出部201では、インク液滴iの吐出角度θが小さ過ぎることから、インク液滴iがノズル205から吐出されるときにノズル205の縁部205aに触れてしまい、吐出方向がばらついてしまう。

[0014]

以上のことにより、インク吐出ヘッド201では、インク液滴iが記録紙Pの主面に着弾したときに着弾点がずれて色調ムラや白スジ等が生じてしまい画質が低下することがある。このため、液体吐出部201においては、インク液滴iをノズル205より吐出するための各発熱抵抗体202を発熱させるために各

[0015]

【特許文献1】特開2000-185403号公報

【発明の開示】

【発明が解決しようとする課題】

[0016]

本発明は、各圧力発生素子により生じる、液体を押圧する圧力バランスが制御不可能となることを防止することで、画質の低下を防止することが可能な液体吐出装置及び液体吐出方法を提供するものである。

【課題を解決するための手段】

[0017]

上述した目的を達成する本発明に係る液体吐出装置は、液体を貯留する液室と、液室に液体を供給する供給部と、液室に2つ以上設けられ、液室に貯留された液体を押圧する圧力発生素子と、各圧力発生素子により押圧された液体を各液室から液滴の状態で対象物の主面に向かって吐出させる吐出口とを有する吐出手段と、各圧力発生素子にエネルギが供給されるタイミング及び供給されている時間を制御し、吐出口より液滴を吐出するときの吐出角度を制御する吐出制御手段とを備え、吐出制御手段が、各圧力発生素子のうちの一つに供給されるエネルギを基準にし、この基準エネルギが供給される圧力発生素子以外の圧力発生素子に、基準エネルギと略同じタイミングでエネルギを供給、若しくは基準エネルギに対して基準エネルギが供給されている時間の20%以内の範囲で時間をずらしてエネルギを供給する。

[0018]

この液体吐出装置では、吐出制御手段が、基準エネルギが供給される圧力発生素子以外の圧力発生素子に、基準エネルギと略同じタイミングでエネルギを供給、若しくは基準エネルギに対して基準エネルギが供給されている時間の20%以内の範囲で時間をずらしてエネルギを供給することで、各圧力発生素子に適切なタイミングでエネルギが供給され、各圧力発生素子上の液体を押圧する圧力のバランスが偏り過ぎる、すなわち液体を押圧するタイミングがずれ過ぎることを防止でき、液体を吐出口より所望の方向に吐出できる。

[0019]

本発明に係る液低吐出方法は、液体を貯留する液室と、液室に液体を供給する供給部と、液室に2つ以上設けられ、液室に貯留された液体を押圧する圧力発生素子と、各圧力発生素子により押圧された液体を各液室から液滴の状態で対象物の主面に向かって吐出させる吐出口とを有する吐出手段と、各圧力発生素子にエネルギが供給されるタイミング及び供給されている時間を制御し、吐出口より液滴を吐出するときの吐出角度を制御する吐出制御手段とを備える液体吐出装置の液体吐出方法であって、各圧力発生素子のうちの一つに供給されるエネルギを基準にし、この基準エネルギが供給される圧力発生素子以外の圧力発生素子に、基準エネルギと略同じタイミングでエネルギを供給、若しくは基準エネルギに対して基準エネルギが供給されている時間の20%以内の範囲で時間をずらして上記エネルギを供給する。

[0020]

この方法では、基準エネルギが供給される圧力発生素子以外の圧力発生素子に、基準エネルギと略同じタイミングでエネルギを供給、若しくは基準エネルギに対して基準エネルギが供給されている時間の20%以内の範囲で時間をずらしてエネルギを供給することで、各圧力発生素子に適切なタイミングでエネルギが供給されることから、各圧力発生素子にエネルギが供給されることで発生する液体を押圧する圧力のバランスが偏り過ぎる、すなわち液体を押圧するタイミングがずれ過ぎることを防止でき、液体を吐出口より所望の方向に吐出できる。

【発明の効果】

[0021]

【発明を実施するための最良の形態】

[0022]

以下、本発明が適用された液体吐出装置及び液体吐出方法について、図面を参照して説明する。図1に示すインクジェット方式の液体吐出装置(以下、プリンタ装置と記す。)1は、所定の方向に走行する記録紙Pに対してインク等を吐出して画像や文字を印刷するものである。また、このプリンタ装置1は、記録紙Pの印刷幅に合わせて、記録紙Pの幅方向、すなわち図1中矢印W方向にインク吐出口(ノズル)を略ライン状に並設した、いわゆるラインヘッド型のプリンタ装置である。

[0023]

このプリンタ装置1は、インク4を吐出するインクジェットプリントヘッドカートリッジ(以下、ヘッドカートリッジと記す。)2と、このヘッドカートリッジ2を装着するプリンタ本体3とを備える。プリンタ装置1は、ヘッドカートリッジ2がプリンタ本体3に対して着脱可能であり、更に、ヘッドカートリッジ2に対してインク供給源となるインクカートリッジ11y、11m、11c、11kが着脱可能となっている。このプリンタ装置1では、イエローインクが封入されたインクカートリッジ11y、マゼンタインクが封入されたインクカートリッジ11に、ブラックインクが封入されたインクカートリッジ11kが使用可能となっており、また、プリンタ本体3に対して着脱可能なヘッドカートリッジ2と、ヘッドカートリッジ2に対して着脱可能なインクカートリッジ11y、11m、11c、11kとを消耗品として交換可能になっている。

[0024]

このようなプリンタ装置1は、記録紙Pを積層して収納するトレイ55aをプリンタ本体3の前面底面側に設けられたトレイ装着部5に装着することにより、トレイ55aに収納されている記録紙Pをプリンタ本体3内に給紙できる。トレイ55aは、プリンタ本体3の前面のトレイ装着部5に装着されると、給排紙機構54(図13を、参照。)により記録紙Pが給紙口55からプリンタ本体3の背面側に給紙される。プリンタ本体3の背面側に送られた記録紙Pは、反転ローラ83(図13を、参照。)により搬送方向が反転され、往路の上側をプリンタ本体3の背面側から前面側に送られる。プリンタ本体3の背面側から前面側に送られる記録紙Pは、プリンタ本体3の前面に設けられた排紙口56より排紙されるまでに、パーソナルコンピュータ等の情報処理装置69(図14を、参照。)より入力された文字データや画像データに応じた印刷データが文字や画像として印刷される。

[0025]

記録紙Pに印刷を行うヘッドカートリッジ2は、プリンタ本体3の上面側から、すなわち図1中矢印A方向から装着され、給排紙機構54により走行する記録紙Pに対してインク4を吐出して印刷を行う。ここでは、先ず、上述したプリンタ装置1を構成するプリンタ本体2に対して着脱可能なヘッドカートリッジ2と、このヘッドカートリッジ2に着脱可能にされたインクカートリッジ11y,11m,11c,11kについて図面を参照して説明する。

[0026]

ヘッドカートリッジ2は、導電性の液体であるインク4を、例えば電気熱変換式又は電気機械変換式等を用いた圧力発生手段が発生した圧力により微細に粒子化して吐出し、記録紙P等といった対象物の主面にインク4を液滴の状態にして吹き付ける。具体的に、ヘッドカートリッジ2は、図2及び図3に示すように、カートリッジ本体21を有し、このカートリッジ本体21には、インク4が充填された容器であるインクカートリッジ11y

二.万二十

[0027]

ヘッドカートリッジ2に着脱可能なインクカートリッジ11は、図3に示すように、強度や耐インク性を有するポリプロピレン等の樹脂材料等を射出成形することにより成形されるカートリッジ容器12を有している。このカートリッジ容器12は、長手方向を使用する記録紙Pの幅方向の寸法と略同じ寸法となす略矩形状に形成され、内部に貯留するインク容量を最大限に増やす構成となっている。

[0028]

具体的に、インクカートリッジ11を構成するカートリッジ容器12には、インク4を収容するインク収容部13と、インク収容部13からヘッドカートリッジ2のカートリッジ本体21にインク4を供給するインク供給部14と、外部よりインク収容部13内に空気を取り込む外部連通孔15と、外部連通孔15より取り込まれた空気をインク収容部13内に導入する空気導入路16と、外部連通孔15と空気導入路16との間でインク4を一時的に貯留する貯留部17と、インクカートリッジ11をカートリッジ本体21に係止するための係止突部18及び係合段部19とが設けられている。

[0029]

インク収容部13は、気密性の高い材料によりインク4を収容するための空間を形成している。インク収容部13は、略矩形に形成され、長手方向の寸法が使用する記録紙Pの幅方向、すなわち図3中に示す記録紙Pの幅方向Wの寸法と略同じ寸法となるように形成されている。

[0030]

インク供給部14は、インク収容部13の下側略中央部に設けられている。このインク供給部14は、インク収容部13と連通した略突形状のノズルであり、このノズルの先端が後述するヘッドカートリッジ2の接続部26に嵌合されることにより、インクカートリッジ2のカートリッジ容器12とヘッドカートリッジ2のカートリッジ本体21を接続する。

[0031]

インク供給部14は、図4(A)及び図4(B)に示すように、インクカートリッジ11の底面14aにインク4を供給する供給口14bが設けられ、この底面14aに、供給口14bを開閉する弁14cと、弁14cを供給口14bの閉塞する方向に付勢するコイルバネ14dと、弁14cを開閉する開閉ピン14eとを備えている。ヘッドカートリッジ2の接続部26に接続されるインク4を供給する供給口14bは、図4(A)に示すように、インクカートリッジ11がヘッドカートリッジ2のカートリッジ本体21に装着される前の段階において、付勢部材であるコイルバネ14dの付勢力により弁14cが供給口14bを閉じる方向に付勢され閉塞されている。そして、インクカートリッジ11がカートリッジ本体21に装着されると、図4(B)に示すように、開閉ピン14eがヘッドカートリッジを構成するカートリッジ本体21の接続部26の上部によりコイルバネ14dの付勢方向とは反対の方向に押し上げられる。これにより、押し上げられた開閉ピン14eは、コイルバネ14dの付勢力に抗して弁14cを押し上げて供給口14bを開放する。このようにして、インクカートリッジ11のインク供給部14は、ヘッドカートリッジ2の接続部26に接続され、インク収容部13とインク溜め部31へのインク4の供給が可能な状態となる。

[0032]

また、インクカートリッジ11をヘッドカートリッジ2側の接続部26から引き抜くとき、すなわちインクカートリッジ11をヘッドカートリッジ2の装着部22より取り外すときは、弁14cの開閉ピン14eによる押し上げ状態が解除され、弁14cがコイルバネ14dの付勢方向に移動して供給口14bを閉塞する。これにより、インクカートリッジ11をカートリッジ本体21に装着する直前にインク供給部14の先端部が下方を向いている状態であってもインク収容部13内のインク4が漏れることを防止することができ

[0033]

外部連通孔15は、図3に示すように、インクカートリッジ11外部からインク収容部13に空気を取り込む通気口であり、ヘッドカートリッジ2の装着部22に装着されたときも、外部に臨み外気を取り込むことができるように、装着部22への装着時に外部に臨む位置であるカートリッジ容器12の上面、ここでは上面略中央に設けられている。外部連通孔15は、インクカートリッジ11がカートリッジ本体21に装着されてインク収容部13からカートリッジ本体21側にインク4が流下した際に、インク収容部13内のインク4が減少した分に相当する分の空気を外部よりインクカートリッジ11内に取り込む

[0034]

空気導入路16は、インク収容部13と外部連通孔15とを連通し、外部連通孔15より取り込まれた空気をインク収容部13内に導入する。これにより、このインクカートリッジ11がカートリッジ本体21に装着された際に、ヘッドカートリッジ2のカートリッジ本体21にインク4が供給されてインク収容部13内のインク4が減少し内部が減圧状態となっても、インク収容部13には、空気導入路16によりインク収容部13に空気が導入されることから、内部の圧力が平衡状態に保たれてインク4をカートリッジ本体21に適切に供給することができる。

[0035]

貯留部17は、外部連通孔15と空気導入路16との間に設けられ、インク収容部13に連通する空気導入路16よりインク4が漏れ出た際に、いきなり外部に流出することがないようにインク4を一時的に貯留する。この貯留部17は、長い方の対角線をインク収容部13の長手方向とした略菱形に形成され、インク収容部13の最も下側に位置する頂部に、すなわち短い方の対角線上の下側に空気導入路16を設けるようにし、インク収容部13より進入したインク4を再度インク収容部13に戻すことができるようにしている。また、貯留部17は、短い方の対角線上の最も下側の頂部に外部連通孔15を設けるようにし、インク収容部13より進入したインク4が外部連通孔15より外部に漏れにくくする。

[0036]

係止突部18は、インクカートリッジ11の短辺の一方の側面に設けられた突部であり、ヘッドカートリッジ2のカートリッジ本体21のラッチレバー24に形成された係合孔24aと係合する。この係止突部18は、上面がインク収容部13の側面に対して略直交するような平面で形成されると共に、下面は側面から上面に向かって傾斜するように形成されている。

[0037]

係合段部19は、インクカートリッジ11の係止突部18が設けられた側面の反対側の側面の上部に設けられている。係合段部19は、カートリッジ容器12の上面と一端を接する傾斜面19aと、この傾斜面19aの他端と他方の側面と連続し、上面と略平行な平面19bとからなる。インクカートリッジ11は、係合段部19が設けられていることで、平面19bが設けられた側面の高さがカートリッジ容器12の上面より1段低くなるように形成され、この段部でカートリッジ本体21の係合片23と係合する。係合段部19は、ヘッドカートリッジ2の装着部22に挿入されるとき、挿入端側の側面に設けられ、ヘッドカートリッジ2の装着部22側の係合片23に係合することで、インクカートリッジ11を装着部22に装着する際の回動支点部となる。

[0038]

以上のような構成のインクカートリッジ11は、上述した構成の他に、例えばインク収容部13内のインク4の残量を検出するための残量検出部や、インクカートリッジ11y,11m,11c,11kを識別するための識別部等を備えている。

[0039]

次に、以上のように構成されたイエロー、マゼンタ、シアン、ブラックのインク4を収納したインクカートリッジ11y, 11m, 11c, 11kが装着されるヘッドカートリッジ2について説明する。

[0040]

ヘッドカートリッジ2は、図2及び図3に示すように、上述したインクカートリッジ11とカートリッジ本体21とによって構成され、カートリッジ本体21には、インクカートリッジ11が装着される装着部22y,22m,22c,22k(以下、全体を示すときには単に装着部22ともいう。)と、インクカートリッジ11を固定する係合片23及びラッチレバー24と、インクカートリッジ11を取り出し方向に付勢する付勢部材25と、インク供給部14と接続されてインク4が供給される接続部26と、インク4を吐出するインク吐出ヘッド27と、インク吐出ヘッド27を保護するヘッドキャップ28とを有している。

[0041]

インクカートリッジ11が装着される装着部22は、インクカートリッジ11が装着されるように上面をインクカートリッジ11の挿脱口として略凹形状に形成され、ここでは4本のインクカートリッジ11が記録紙Pの幅方向と略直交方向、すなわち記録紙Pの搬送方向に並んで収納される。装着部22は、インクカートリッジ11が収納されることから、インクカートリッジ11と同様に印刷幅の方向に長く設けられている。カートリッジ本体21には、インクカートリッジ11が収納装着される。

[0042]

装着部22は、図2に示すように、インクカートリッジ11が装着される部分であり、イエロー用のインクカートリッジ11yが装着される部分を装着部22yとし、マゼンタ用のインクカートリッジ11mが装着される部分を装着部22mとし、シアン用のインクカートリッジ11cが装着される部分を装着部22cとし、ブラック用のインクカートリッジ11kが装着される部分を装着部22cとし、各装着部22y,22m,22c,2kは、隔壁22aによりそれぞれ区画されている。なお、上述したようにブラックのインクカートリッジ11kは、一般的に使用量が多いことから、インク4の内容量が大きくなるように厚く形成されているため、幅が他のインクカートリッジ11y,11m,11cよりも大きくなっている。このため、装着部22kは、インクカートリッジ11kの厚みに合わせて他の装着部22y,22m,22cよりも広くなっている。

[0043]

また、インクカートリッジ11が装着される装着部22の開口端には、図3に示すように、係合片23が設けられている。この係合片23は、装着部22の長手方向の一端縁に設けられており、インクカートリッジ11の係合段部19と係合する。インクカートリッジ11は、インクカートリッジ11の係合段部19側を挿入端として斜めに装着部22内に挿入し、係合段部19と係合片23との係合位置を回動支点として、インクカートリッジ11の係合段部19が設けられていない側を装着部22側に回動させるようにして装着部22に装着することができる。これによって、インクカートリッジ11は、装着部22に容易に装着することができる。

[0044]

ラッチレバー24は、板バネを折曲して形成されるものであり、装着部22の係合片23に対して反対側の側面、すなわち長手方向の他端の側面に設けられている。ラッチレバー24は、基端部が装着部22を構成する長手方向の他端の側面の底面側に一体的に設けられ、先端側がこの側面に対して近接離間する方向に弾性変位するように形成され、先端側に係合孔24aが形成されている。ラッチレバー24は、インクカートリッジ11が装着部22に装着されると同時に、弾性変位し、係合孔24aがインクカートリッジ11の係止突部18と係合し、装着部22に装着されたインクカートリッジ11が装着部22より脱落しないようにする。

[0045]

付勢部材25は、インクカートリッジ11の係合段部19に対応する側面側の底面上にインクカートリッジ11を取り外す方向に付勢する板バネを折曲して設けられる。付勢部材25は、折曲することにより形成された頂部を有し、底面に対して近接離間する方向に弾性変位し、頂部でインクカートリッジ11の底面を押圧し、装着部22に装着されているインクカートリッジ11を装着部22より取り外す方向に付勢するイジェクト部材である。付勢部材25は、ラッチレバー24の係合孔24aと係止突部18との係合状態が解除されたとき、装着部23よりインクカートリッジ11を排出する。

[0046]

各装着部22 y, 22 m, 22 c, 22 kの長手方向略中央には、インクカートリッジ 11 y, 11 m, 11 c, 11 kが装着部22 y, 22 m, 22 c, 22 kに装着されたとき、インクカートリッジ11 y, 11 m, 11 c, 11 kのインク供給部14が接続される接続部26が設けられている。この接続部26は、装着部22に装着されたインクカートリッジ11のインク供給部14からカートリッジ本体21の底面に設けられたインク4を吐出するインク吐出ヘッド27にインク4を供給するインク供給路となる。

[0047]

具体的に、接続部26は、図5に示すように、インクカートリッジ11から供給されるインク4を溜めるインク溜め部31と、接続部26に連結されるインク供給部14をシールするシール部材32と、インク4内の不純物を除去するフィルタ33と、インク吐出ヘッド27側への供給路を開閉する弁機構34とを有している。

[0048]

インク溜め部31は、インク供給部14と接続されインクカートリッジ11から供給されるインク4を溜める空間部である。シール部材32は、インク溜め部31の上端に設けられた部材であり、インクカートリッジ11のインク供給部14が接続部26のインク溜め部31に接続されるとき、インク4が外部に漏れないようインク溜め部31とインク供給部14との間を密閉する。フィルタ33は、インクカートリッジ11の着脱時等にインク4に混入してしまった塵や埃等のごみを取り除くものであり、インク溜め部31よりも下流に設けられている。

[0049]

[0050]

インク流入路34aは、インク溜め部31を介してインクカートリッジ11のインク収容部13内のインク4をインク吐出ヘッド27に供給可能にインク収容部13と連結する供給路である。インク流入路34aは、インク溜め部31の底面側からインク室34bまで設けられている。インク室34bは、インク流入路34a、インク流出路34c及び開口部34dと一体となって形成された略直方体をなす空間部であり、インク流入路34aからインク4が流入し、開口部34dを介してインク流出路34cからインク4を流出する。インク流出路34cは、インク室34bの底面側からインク吐出ヘッド27まで延在されている。

[0051]

弁34 e は、開口部34 d を閉塞してインク流入路34 a 側とインク流出路34 c 側とを分割する弁であり、インク室34 b 内に配設される。弁34 e は、付勢部材34 f の付勢力と、弁シャフト34 h を介して接続されたダイアフラム34 i の復元力と、インク流

出路34c側のインク4の負圧によって上下に移動する。弁34eは、下端に位置するとき、インク室34bをインク流入路34a側とインク流出路34c側とを分離するように開口部34dを閉塞し、インク流出路34cへのインク4の供給を遮断する。弁34eは、付勢部材34fの付勢力に抗して上端に位置するとき、インク室34bをインク流入路34a側とインク流出路34c側とを遮断せずに、インク吐出ヘッド27へインク4の供給を可能とする。なお、弁34eを構成する材質は、その種類を問わないが、高い閉塞性を確保するため例えばゴム弾性体、いわゆるエラストマー等により形成される。

[0052]

付勢部材34fは、例えば圧縮コイルバネ等であり、弁34eの上面とインク室34bの上面との間で負圧調整ネジ34gと弁34eとを接続し、付勢力により弁34eを開口部34dの閉塞する方向に付勢する。負圧調整ネジ34gは、付勢部材34fの付勢力を調整するネジであり、負圧調整ネジ34gを調整することで付勢部材34fの付勢力を調整することができるようにしている。これにより、負圧調整ネジ34gは、詳細は後述するが開口部34dを開閉する弁34eを動作させるインク4の負圧を調整することができる。

[0053]

弁シャフト34hは、一端に接続された弁34eと、他端に接続されたダイアフラム34iとを連結して運動するように設けられたシャフトである。ダイアフラム34iは、弁シャフト34hの他端に接続された薄い弾性板である。このダイアフラム34iは、インク室34bのインク流出路34c側の一主面と、外気と接する他主面とからなり、大気圧とインク4の負圧により外気側とインク流出路34c側とに弾性変位する。

[0054]

以上のような弁機構34では、図6(A)に示すように、弁34eが付勢部材34fの付勢力とダイアフラム34iの付勢力とによってインク室34bの開口部34dを閉塞するように押圧されている。そして、インク吐出ヘッド27からインク4が吐出された際に、開口部34dで分割されたインク流出路34c側のインク室34bのインク4の負圧が高まると、図6(B)に示すように、インク4の負圧によりダイアフラム34iが大気圧により押し上げられて、弁シャフト34hと共に弁34eを付勢部材34fの付勢力に抗して押し上げる。このとき、インク室34bのインク流入路34a側とインク流出路34c側と間の開口部34dが開放され、インク4がインク流入路34a側からインク流出路34c側に供給される。そして、インク4の負圧が低下してダイアフラム34iが復元力により元の形状に戻り、付勢部材34fの付勢力により弁シャフト34hと共に弁34eをインク室34bが閉塞するように引き下げる。以上のようにして弁機構34では、インク4を吐出する度にインク4の負圧が高まると、上述の動作を繰り返す。

[0055]

また、この接続部26では、インク収容部13内のインク4がインク室34bに供給されると、インク収容部13内のインク4が減少するが、このとき、空気導入路16から外気がインクカートリッジ11内に入り込む。インクカートリッジ11内に入り込んだ空気は、インクカートリッジ11の上方に送られる。これにより、インク液滴iが後述するノズル44aから吐出される前の状態に戻り、平衡状態となる。このとき、空気導入路16内にインク4がほとんどない状態で平衡状態となる。

[0056]

インク吐出ヘッド27は、図5に示すように、カートリッジ本体21の底面に沿って配設されており、接続部26から供給されるインク液滴iを吐出するインク吐出口である後述するノズル44aが各色毎、記録紙Pの幅方向、すなわち図5中矢印W方向に略ライン状をなすようにされている。

[0057]

ヘッドキャップ28は、図2に示すように、インク吐出ヘッド27を保護するために設けられたカバーであり、印刷動作するときにはインク吐出ヘッド27より取り外される。ヘッドキャップ28は、開閉方向に設けられた溝部28aと、長手方向に設けられインク

[0058]

以上のような構成のヘッドカートリッジ2は、上述した構成の他に、例えばインクカートリッジ11内におけるインク残量を検出する残量検出部や、接続部26にインク供給部14が接続されたときにインク4の有無を検出するインク有無検出部等を備えている。

[0059]

上述したインク吐出ヘッド27は、各色のインク4に対応して、図7及び図8に示すように、ベースとなる回路基板41と、記録紙Pの搬送方向と略直交方向、すなわち記録紙Pの幅方向に並設された一対の発熱抵抗体42a,42bと、インク4の漏れを防ぐフィルム43と、インク4が液滴の状態で吐出されるノズル44aが多数設けられたノズルシート44と、これらに囲まれてインク4が供給される空間であるインク液室45にインク4を供給するインク流路46とを有する。

[0060]

回路基板41は、シリコン等の半導体基板であり、その一主面41aに、一対の発熱抵抗体42a,42bが形成されており、一対の発熱抵抗体42a,42bが回路基板41上の後述する吐出制御部63とそれぞれ接続されている。この吐出制御部63は、ロジックIC (Integrated Circuit) やドライバートランジスタ等で構成されている電気回路である。

[0061]

一対の発熱抵抗体42a,42bは、吐出制御部63から供給されるパルス電流で発熱し、インク液室45内のインク4を加熱して内圧を高める、すなわち圧力発生素子である。そして、一対の発熱抵抗体42a,42bにより加熱されたインク4は、後述するノズルシート44に設けられたノズル44aから液滴の状態で吐出する。

[0062]

フィルム43は、回路基板41の一主面41aに積層されている。フィルム43は、例えば露光硬化型の程度のドライフィルムレジストからなり、回路基板41の一主面41aの略全体に積層された後、フォトリソグラフプロセスによって不要部分が除去され、一対の発熱抵抗体42a, 42bを略凹状に囲むように形成されている。フィルム43においては、一対の発熱抵抗体42-a, 42bそれぞれを囲む部分がインク液室45の一部を形成する。

[0063]

ノズルシート44は、インク液滴 i を吐出させるためのノズル44 a が形成された厚みが 10μ m \sim 15μ m程度のシート状部材であり、フィルム43の回路基板41と反対側の面上に積層されている。ノズル44 a は、ノズルシート44に円形状に開口された直径が 15μ m \sim 18μ m程度の微小孔であり、一対の発熱抵抗体42 a ,42 b と対向するように配置されている。なお、ノズルシート44はインク液室45の一部を構成する。

[0064]

インク液室 45 は、回路基板 41、一対の発熱抵抗体 42a, 42b、フィルム 43 及びノズルシート 44 に囲まれた空間部であり、インク流路 46 から供給されたインク 4 を貯留する空間である。インク液室 45 内のインク 4 は、一対の発熱抵抗体 42a, 42b により加熱され、内圧が上昇される。

[0065]

インク流路46は、接続部26のインク流出路34cと接続されており、接続部26に接続されたインクカートリッジ11からインク4が供給され、このインク流路46に連通

する各インク液室45 にインク4を送り込む流路を形成する。すなわち、インク流路46 と接続部26とが連通されている。これにより、インクカートリッジ11から供給される インク4がインク流路46に流れ込み、インク液室45内に充填される。

[0066]

上述した1個のインク吐出ヘッド27には、インク液室45毎に一対の発熱抵抗体42a,42bが設けられ、このような一対の発熱抵抗体42a,42bが設けられたインク液室45を各色インクカートリッジ11毎に100個~5000個程度備えている。そして、インク吐出ヘッド27においては、プリンタ装置1の制御部68からの命令によってこれら一対の発熱抵抗体42a,42bそれぞれを適宜選択して発熱させ、発熱した一対の発熱抵抗体42a,42bに対応するインク液室45内のインク4を、インク液室45に対応するノズル44aから液滴の状態で吐出させる。

[0067]

すなわち、インク吐出ヘッド 27において、インク吐出ヘッド 27と結合されたインク流路 46から供給されたインク 4 がインク液室 45を満たす。そして、一対の発熱抵抗体 42a, 42bに短時間、例えば $1\sim3\mu$ secの間パルス電流を流すことにより、一対の発熱抵抗体 42a, 42b がそれぞれ急速に発熱し、その結果、一対の発熱抵抗体 42a, 42b と接する部分のインク 4 が加熱されて気相のインク気泡が発生し、そのインク気泡の膨張によってある体積のインク 4 が押圧される(インク 4 が沸騰する)。これによって、ノズル 44a に接する部分でインク気泡に押圧されたインク 4と同等の体積のインク 4 がインク液滴 i としてノズル 44a から吐出されて記録紙 P上に着弾される。

[0068]

このインク吐出ヘッド27では、図8に示すように、1つのインク液室45内に、一対の発熱抵抗体42a,42bが互いに略平行に並設されている。すなわち、1つのインク液室45内に、一対の発熱抵抗体42a,42bを備えるものである。そして、インク吐出ヘッド27においては、図11中矢印Cで示す記録紙Pの搬送方向と略直交方向、すなわち図11中矢印Wで示す記録紙Pの幅方向に互いに略平行に並設されている一対の発熱抵抗体42a,42bが複数並ぶようにされている。なお、図11では、ノズル44aの位置を1点鎖線で示している。

[0069]

このように、一対の発熱抵抗体 42a, 42bは、1つの抵抗体を2つに分割したような形状となり長さが同じで幅が半分になることから、それぞれの抵抗体の抵抗値がほぼ倍の値になる。これら一対の発熱抵抗体 42a, 42bにおける抵抗体を直列に接続した場合、2倍程度の抵抗値を有する抵抗体が直列に接続されることとなり、抵抗値は分割する前の 4 倍程度になる。

[0070]

ここで、インク液室 4 5 内のインク 4 を沸騰させるためには、一対の発熱抵抗体 4 2 a , 4 2 b に一定のパルス電流を加えて一対の発熱抵抗体 4 2 a , 4 2 b を発熱させる必要がある。この沸騰時のエネルギーにより、インク液滴 i を吐出させるためである。そして、抵抗値が小さいと、流すパルス電流を大きくする必要があるが、1 つの抵抗体を 2 つに分割したような形状にされた一対の発熱抵抗体 4 2 a , 4 2 b は抵抗値が高くなっていることから、値の小さなパルス電流で沸騰させることが可能となる。

[0071]

これにより、インク吐出ヘッド27では、パルス電流を流すためのトランジスタ等を小さくすることができ、省スペース化を図ることができる。なお、一対の発熱抵抗体42a,42bの厚みを薄く形成すれば抵抗値をさらに高くすることができるが、一対の発熱抵抗体42a,42bとして選定される材料や強度(耐久性)等の観点から、一対の発熱抵抗体42a,42bの厚みを薄くするには一定の限界がある。このため、厚みを薄くすることなく、分割することで、一対の発熱抵抗体42a,42bの抵抗値を高くしている。

[0072]

ところで、インク液室45内のインクをノズル44aより吐出させる際に、一対の発熱

[0073]

具体的には、図9に示すように、インク吐出ヘッド27と結合されたインク流路46によりインク4が供給され、インク液室45内にインク4が満たされる。そして、一対の発熱抵抗体42a,42bに同じ電流値のパルス電流が略同じタイミングで供給されることで、一対の発熱抵抗体42a,42bが略同じに急速に加熱され、その結果、一対の発熱抵抗体42a,42bと接する部分のインク4に略同じ体積のインク気泡B1,B2がそれぞれ発生し、このインク気泡B1,B2の膨張によって所定の体積のインク4が押圧される。これによって、インク吐出ヘッド27においては、図10に示すように、ノズル44aに接する部分でインク気泡B1,B2によって記録紙Pに向かって略垂直に押圧されたインク4と同等の体積のインク4がインク液滴iとしてノズル44aから略真下に吐出され、記録紙P上に着弾される。

[0074]

また、インク吐出ヘッド27においては、図11に示すように、一対の発熱抵抗体42a,42bに異なるタイミングでパルス電流を供給させることで、一対の発熱抵抗体42a,42bと接する部分のインク4に異なるタイミングでインク気泡B3,B4がそれぞれ発生することからインク気泡3B,4Bを異なる体積になり、これらインク気泡B3,B4の膨張によって所定の体積のインク4が押圧される。これによって、インク吐出ヘッド27においては、図12に示すように、ノズル44aに接する部分でインク気泡B3,B4に押圧されたインク4と同等の体積のインク4がインク液滴iとしてノズル44aから図15中矢印Wで示す記録紙Pの幅方向、インク気泡B3,B4のうち小さい体積の方にずれて吐出され、記録紙P上に着弾される。

[0075]

インク吐出ヘッド27において、一対の発熱抵抗体42a,42bに対してタイミングをずらしてパルス電流を供給するときは、一対の発熱抵抗体42a,42bのうちの一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、この基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらして基準となるパルス電流と略同じ電流値のパルス電流を供給する

[0076]

これにより、インク吐出ヘッド27では、一対の発熱抵抗体42a,42bにパルス電流がそれぞれ供給されるタイミングが適切にされ、すなわちインク気泡B3,B4がそれぞれ形成されるタイミングが適切にされ、一対の発熱抵抗体42a,42b上に形成されるインク気泡B3,B4の体積のバランスが偏り過ぎてインク4を押圧する圧力がずれ過ぎることが防止されることから、インク液滴iの吐出方向がばらつくことを抑制できる。

[0077]

また、このインク吐出ヘッド27では、一対の発熱艇庫対42a,42bに適切なタイミングでパルス電流が供給されることから、一対の発熱抵抗体42a,42b上に形成されたインク気泡B3,B4がインク4を押圧するタイミングのずれが大きくなりすぎて起こる吐出面27aと吐出方向とが成す吐出角度が小さくなり過ぎて吐出されたインク液滴iがノズル44aの縁に接触してしまう不具合を防止でき、インク液滴iの吐出方向がばらつくことを抑制できる。

[0078]

次に、以上のように構成されたヘッドカートリッジ2が装着されるプリンタ装置1を構成するプリンタ本体3について図面を参照して説明する。

[0079]

プリンタ本体3は、図1及び図13に示すように、ヘッドカートリッジ2が装着されるヘッドカートリッジ装着部51と、ヘッドカートリッジ2をヘッドカートリッジ装着部51に保持、固定するためのヘッドカートリッジ保持機構52と、ヘッドキャップを開閉するヘッドキャップ開閉機構53と、記録紙Pを給排紙する給排紙機構54と、給排紙機構54に記録紙Pを供給する給紙口55と、給排紙機構54から記録紙Pが出力される排紙口56とを有する。

[0080]

ヘッドカートリッジ装着部51は、ヘッドカートリッジ2が装着される凹部であり、走行する記録紙にデータ通り印刷を行うため、インク吐出ヘッド27の吐出面27aと走行する記録紙Pの紙面とが互いに略平行となるようにヘッドカートリッジ2が装着される。ヘッドカートリッジ2は、インク吐出ヘッド27内のインク詰まり等で交換する必要が生じる場合等があり、インクカートリッジ11程の頻度はないが消耗品であるため、ヘッドカートリッジ装着部51に対して着脱可能にヘッドカートリッジ保持機構52によって保持される。

[0081]

ヘッドカートリッジ保持機構52は、ヘッドカートリッジ装着部51にヘッドカートリッジ2を着脱可能に保持するための機構であり、ヘッドカートリッジ2に設けられたつまみ52aをプリンタ本体3の係止孔52b内に設けられた図示しないバネ等の付勢部材に係止することによってプリンタ本体3に設けられた基準面3aに圧着するようにしてヘッドカートリッジ2を位置決めして保持、固定できるようにする。

[0082]

ヘッドキャップ開閉機構53は、ヘッドカートリッジ2のヘッドキャップ28を開閉する駆動部を有しており、印刷を行うときにヘッドキャップ28を開放してインク吐出ヘッド27が記録紙Pに対して露出するようにし、印刷が終了したときにヘッドキャップ28を閉塞してインク吐出ヘッド27を保護する。

[0083]

給排紙機構54は、記録紙Pを搬送する駆動部を有しており、給紙口55から供給される記録紙Pをヘッドカートリッジ2のインク吐出ヘッド27まで搬送し、ノズル44aより吐出されたインク液滴iが着弾し、印刷された記録紙Pを排紙口56に搬送して装置外部へ排出する。給紙口55は、給排紙機構54に記録紙Pを供給する開口部であり、トレイ55a等に複数枚の記録紙Pを積層してストックすることができる。排紙口56は、インク液滴iが着弾し、印刷された記録紙Pを排出する開口部である。

[0084]

次に、以上のように構成されたプリンタ装置1による印刷を制御する図14に示す制御 回路61について図面を参照して説明する。

[0085]

制御回路61は、上述したプリンタ本体3の各駆動機構53,54の駆動制御するプリンタ駆動部62と、各色のインク4に対応するインク吐出ヘッド27に供給される電流等を制御する吐出制御部63と、各色のインク4の残量を警告する警告部64と、外部装置と信号の入出力を行う入出力端子65と、制御プログラム等が記録されたROM(Read Only Memory)66と、読み出された制御プログラム等を一旦格納し、必要に応じて読み出されるRAM(Random Access Memory)67と、各部の制御を行う制御部68とを有している。

[0086]

プリンタ駆動部62は、制御部68からの制御信号に基づき、ヘッドキャップ開閉機構53を構成する駆動モータを駆動させてヘッドキャップ28を開閉するように、ヘッドキャップ開閉機構を制御する。また、プリンタ駆動部62は、制御部68からの制御信号に基づき、給排紙機構54を構成する駆動モータを駆動させてプリンタ本体3の給紙口55から記録紙Pを給紙し、印刷後に排紙口56から記録紙Pを排出するように、給排紙機構

を制御する。

[0087]

吐出制御部63は、図15に示すように、それぞれが抵抗体である一対の発熱抵抗体42a,42bにパルス電流を流すための電源71と、一対の発熱抵抗体42a,42bと電源71との電気的な接続をそれぞれオン/オフさせるスイッチング素子72a,72bと、スイッチング素子72a,72bの切り換えを制御する切換制御回路73とを備える電気回路である。

[0088]

電源71は、発熱抵抗体42a, 42bに接続され、それぞれにパルス電流を供給する。なお、電気回路に供給されるパルス電流は、電源71を電力源としてもよいが、例えば制御部68等から直接供給されるようにすることも可能である。

[0089]

スイッチング素子72aは、発熱抵抗体42aとグランドとの間に配置され、発熱抵抗体42aに流れるパルス電流のオン/オフを制御する。スイッチング素子72bは、発熱抵抗体42bとグランドとの間に配置され、発熱抵抗体42bに流れるパルス電流のオン/オフを制御する。そして、これらスイッチング素子72a,72bは、それぞれオン/オフが切り換えられることで一対の発熱抵抗体42a,42bに電電71よりパルス電流を略同じタイミング若しくは異なるタイミングで供給することになる。

[0090]

切換制御回路 7 3 は、例えばロジック I C やドライバートランジスタ等で構成された電気回路等であり、スイッチング素子 7 2 a, 7 2 b のオン/オフを切り換えて、電源 7 1 と一対の発熱抵抗体 4 2 a, 4 2 b とを接続してオン状態するか、若しくはグランドと一対の発熱抵抗体 4 2 a, 4 2 b と接続してオフ状態にする。そして、切り換え制御回路 7 3 は、スイッチング素子 7 2 a, 7 2 b のオン/オフをそれぞれ切り換えることで、一対の発熱抵抗体 4 2 a, 4 2 b にパルス電流がそれぞれ供給されるタイミングやパルス電流が供給されている時間等を制御する。

[0091]

以上のような構成の吐出制御部63では、切換制御回路73が、スイッチング素子72a,72bを略同じにオンにすると、電源71からパルス電流が並列に接続された一対の発熱抵抗体42a,42bに供給される。このとき、一対の発熱抵抗体42a,42bの抵抗値が略同一である場合には、パルス電流が供給されたときに一対の発熱抵抗体42a,42bが発生する熱量が略同じになる。

[0092]

この場合、インク吐出ヘッド 27 は、図16 (A) に示すように、一対の発熱抵抗体 42 a, 42 b で発生する熱量が略同じとなることから、気泡発生時間が略同じになって略同じ体積のインク気泡 B1, B2 が一対の発熱抵抗体 42 a, 42 b 上に形成され、これらインク気泡 B1, B2 によって押し出されたインク液滴 i をノズル 44 a より略真下に吐出する。

[0093]

吐出制御部63では、切換制御回路73が、スイッチング素子72aをオンにし、スイッチング素子72bをスイッチング素子72aより遅らせてオンにしたときに、図16(B)に示すように、インク吐出ヘッド27より吐出されるインク液滴iを、吐出方向が図16(B)に示す記録紙Pの幅方向Wの発熱抵抗体42b側に可変された状態で吐出させる。すなわち、スイッチング素子72aが先にオン状態にされることで、パルス電流が発熱抵抗体42bより先に発熱抵抗体42aに供給され、発熱抵抗体42a上に形成されるインク気泡B3が発熱抵抗体42b上に形成されるインク気泡B3が発熱抵抗体42b上に形成されるインク気泡B3が発熱抵抗体42b側に押圧され、ノズル44aよりインク液滴iを記録紙Pの幅方向Wの発熱抵抗体42b側に向かって吐出させる。このとき、インク吐出ヘッド27では、切換制御回路73がスイッチング素子72a,72bをオンにするタイミングのずれを小さくするほど、一対の発熱抵抗体42a,42bのそれ

ぞれの気泡発生時間の差が小さくなり、吐出面27aを基準にしてノズル44aより吐出されたインク液滴iの吐出角度は大きくなる。すなわち、一対の発熱抵抗体42a,42b上に形成されるインク気泡B3,B4の体積差が小さくなり、ノズル44aより略真下にインク液滴iを吐出したときの着弾点Dに対し、発熱抵抗体42b側でより近い位置に着弾するようにインク液滴iを吐出する。一方、切換制御回路73がスイッチング素子72a,72bをオンにするタイミングのずれを大きくするほど、一対の発熱抵抗体42a,42bのそれぞれの気泡発生時間の差が大きくなり、吐出面27aを基準にしてノズル44aより吐出されたインク液滴iの吐出角度は小さくなる。すなわち、一対の発熱抵抗体42a,42b世に形成されるインク気泡B3,B4の体積差が大きくなり、ノズル44aより略真下にインク液滴iを吐出したときの着弾点Dに対し、発熱抵抗体42b側でより遠い位置に着弾するようにインク液滴iを吐出する。

[0094]

そして、吐出制御部63においては、発熱抵抗体42aに供給されるパルス電流を基準にし、発熱抵抗体42bには、発熱抵抗体42aにパルス電流が供給されるタイミングに対し、発熱抵抗体42aにパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流が供給されるように、切換制御回路73でスイッチング素子72a,72bを制御する。

[0095]

吐出制御部63では、切換制御回路73が、スイッチング素子72bをオンにし、スイ ッチング素子72aをスイッチング素子72bより遅らせてオンにしたときに、図16(C) に示すように、インク吐出ヘッド27より吐出されるインク液滴 i を、吐出方向が記 録紙Pの幅方向Wの発熱抵抗体42a側に可変された状態で吐出させる。すなわち、スイ ッチング素子72bが先にオン状態にされることで、パルス電流が発熱抵抗体42aより 先に発熱抵抗体42bに供給され、発熱抵抗体42b上に形成されるインク気泡B4が発 熱抵抗体42a上に形成されるインク気泡B3より大きくなり、体積の大きなインク気泡 B4にインク4が発熱抵抗体42a側に押圧され、ノズル44aよりインク液滴iを記録 紙Pの幅方向Wの発熱抵抗体42a側に向かって吐出させる。このとき、インク吐出ヘッ ド27では、切換制御回路73がスイッチング素子72a,72bをオンにするタイミン グのずれを小さくするほど、一対の発熱抵抗体42a,42bそれぞれの気泡発生時間の 差が小さくなり、吐出面27aを基準にしてノズル44aより吐出されたインク液滴iの 吐出角度は大きくなる。すなわち、一対の発熱抵抗体42a,42b上に形成されるイン ク気泡B3, B4の体積差が小さくなり、ノズル44aより略真下にインク液滴iを吐出 したときの着弾点Dに対し、発熱抵抗体42a側でより近い位置に着弾するようにインク 液滴iを吐出する。一方、切換制御回路73がスイッチング素子72a,72bをオンに するタイミングのずれを大きくするほど、一対の発熱抵抗体42a,42bそれぞれの気 泡発生時間の差が大きくなり、吐出面27aを基準にしてノズル44aより吐出されたイ ンク液滴iの吐出角度は小さくなる。すなわち、一対の発熱抵抗体42a.42b上に形 成されるインク気泡B3、B4の体積差が大きくなり、ノズル44aより略真下にインク 液滴iを吐出したときの着弾点Dに対し、発熱抵抗体42a側でより遠い位置に着弾する ようにインク液滴iを吐出する。

[0096]

そして、吐出制御部63においては、発熱抵抗体42bに供給されるパルス電流を基準にし、発熱抵抗体42aには、発熱抵抗体42bにパルス電流が供給されるタイミングに対し、発熱抵抗体42bにパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流が供給されるように、切換制御回路73でスイッチング素子72a,72bを制御する。

[0097]

このように、吐出制御部63では、切換制御回路73でスイッチング素子72a,72 bのオン/オフのタイミングを制御することで、インク液滴iのノズル44aからの吐出 方向を、一対の発熱抵抗体42a,42bが並設されている方向、すなわち記録紙Pの幅

ページ: 16/

方向Wに変化させることができる。

[0098]

ここで、インク液滴 i をノズル 4 4 a より略真下に吐出したときを基準に、発熱抵抗体 4 2 a に対して発熱抵抗体 4 2 b にパルス電流が供給されるタイミングをずらした(遅らせた)ときの吐出角度を測定した測定結果を図17に示す。なお、図17においては、横軸に発熱抵抗体 4 2 b にパルス電流が供給されるタイミングをずらした量を示している。 具体的には、発熱抵抗体 4 2 b にパルス電流が供給されるタイミングが、発熱抵抗体 4 2 a に供給されるタイミングに対してどれだけ時間がずれているかを、発熱抵抗体 4 2 a にパルス電流が供給されている時間を基準にして何パーセントずれているかで示している。また、図17においては、縦軸にノズル 4 4 a より略真下にインク液滴 i を吐出したときを生に吐出方筒を変えて吐出したときの吐出角度を示しており、ノズル 4 4 a の略真下にインク液滴 i が吐出されるほど吐出角度が大きくなることを示している。この吐出角度の測定には、ノズルシートの厚みを13μm程度にし、ノズル 4 a の直径を17μm程度にしたインク吐出ヘッド 27を用いた。

[0099]

図17に示す測定結果より、一対の発熱抵抗体42a, 42bにパルス電流が供給されるタイミングをずらすことでノズル44aから吐出されたインク液滴iの吐出方向が変化することがわかる。具体的には、発熱抵抗体42aより遅いタイミングで発熱抵抗体42bにパルス電流が供給されるとインク液滴iが発熱抵抗体42b側に向かって吐出されることがわかる。

[0100]

そして、このインク液滴iの吐出角度を測定したときに、電流供給タイミングのずらし量が0%、7.5%、13%、20%、21%、23%のときにノズル44aより吐出されたインク液滴iが記録紙Pに着弾した着弾点Dをサンプル1~サンプル6とし、これらサンプル1~サンプル6の着弾点Dの状態を測定した評価結果を図18(A)~図18(F)に示す。なお、サンプル1~サンプル6では、記録紙Pの幅方向に並設されたノズル44aのうちに一つより吐出されたインク液滴iの着弾位置について評価した。

[0101]

図18に示す評価結果から、電流供給タイミングのずらし量が20%以内、すなわち発熱抵抗体42aにパルス電流が供給されるタイミングに対し、発熱抵抗体42aにパルス電流が供給されている時間の20%以内の範囲でタイミングを遅らせて発熱抵抗体42bにパルス電流を供給したサンプル1~サンプル4では、吐出方向を変化させた後もインク液滴iの着弾点Dにばらつきがなく、一定の吐出角度でノズル44aよりインク液滴iが吐出していることがわかる。

[0102]

特に、発熱抵抗体42aにパルス電流が供給されるタイミングに対し、発熱抵抗体42aにパルス電流が供給されている時間の7.5%以上、20%以下の範囲でタイミングを遅らせて発熱抵抗体42bにパルス電流を供給したサンプル2~サンプル4では、電流供給タイミングのずらし量に対する吐出角度の変化量が大きいことから、電流供給タイミングのずらし量の7.5%以上、20%以下の範囲とすることで、吐出方向の制御を安定して行うことができる。

[0103]

これらのサンプルに対し、電流供給タイミングのずらし量が20%を越える、すなわち発熱抵抗体42aにパルス電流が供給されるタイミングに対し、発熱抵抗体42aにパルス電流が供給されている時間の20%を越えるタイミングで発熱抵抗体42bにパルス電流を供給したサンプル5及びサンプル6では、インク液滴iの着弾点Dにばらつきが生じていることがわかる。

[0104]

これは、電流供給タイミングのずらし量が20%を越えると、一対の発熱抵抗体42a

, 42 b上に形成されるインク気泡の大きさのバランスが偏りすぎて、すなわち先に形成される発熱抵抗体42 a上のインク気泡が発熱抵抗体42 b上に形成されたインク気泡より大きくなり過ぎて、インク気泡によるインク4の押圧状態が不安定になり、ノズル44 aより吐出されたインク液滴iの吐出方向にばらつきが生じてしまう虞あがる。また、電流供給タイミングのずらし量が20%を越えると、ノズル44 aより吐出されるインク液滴iの吐出方向が斜めになりすぎて、ノズル44 aよりインク液滴iが吐出されるときにノズル44 aの縁に接触し、吐出方向にばらつきが生じる虞がある。したがって、サンプル5、サンプル6では、インク液滴iの着弾点Dがばらつくことから、印刷した画質に低下する。

[0105]

以上のことにより、ノズル44 aからの吐出されたインク液滴iの吐出方向を変化させる際に、電流供給タイミングのずらし量を20%以内に制御して発熱抵抗体42bにパルス電流を供給、すなわち発熱抵抗体42aにパルス電流が供給されるタイミングより発熱抵抗体42aにパルス電流が供給されている時間の20%以内の範囲でタイミングをずらしてパルス電流を発熱抵抗体42bに供給することは、インク液滴iの吐出方向のばらつきがなく、インク液滴iの着弾位置のばらつきを抑える上で大変重要であることがわかる

[0106]

したがって、上述した吐出制御部63では、吐出方向を変えてノズル44aよりインク液滴iを吐出させるときに、一対の発熱抵抗体42a,42bのうちの一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、この基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流を供給するように切換制御回路73がスイッチング素子72a,72bのオン/オフを制御する。これにより、プリンタ装置1では、ノズル44aより吐出方向を変化させて吐出されたインク液滴iの着弾位置のばらつきを抑制でき、色調ムラや白スジが防止され、優れた画質で印刷できる。

[0107]

なお、図17及び図18に示した評価では、発熱抵抗体42aにパルス電流が供給されるタイミング及びパルス電流が供給されている時間を基準にして評価したが、このことに限定されることはなく、例えば発熱抵抗体42bに供給されるパルス電流を基準にすることも可能である。この場合、吐出制御部63では、発熱抵抗体42bにパルス電流が供給されるタイミングより発熱抵抗体42bにパルス電流が供給されている時間の20%以内の範囲でタイミングをずらしてパルス電流を発熱抵抗体42aに供給されるように切換制御回路73でスイッチング素子72a,72bのオン/オフを制御する。

[0108]

図14に示す警告部64は、例えばLCD (Liquid Crystal Display)等の表示手段であり、印刷条件、印刷状態、インク残量等の情報を表示する。また、警告部64は、例えばスピーカ等の音声出力手段であってもよく、この場合は、印刷条件、印刷状態、インク残量等の情報を音声で出力する。なお、警告部64は、表示手段及び音声出力手段をともに有するように構成してもよい。また、この警告は、情報処理装置69のモニタやスピーカ等で行うようにしてもよい。

[0109]

入出力端子65は、上述した印刷条件、印刷状態、インク残量等の情報をインタフェースを介して外部の情報処理装置69等に送信する。また、入出力端子65は、外部の情報処理装置69等から、上述した印刷条件、印刷状態、インク残量等の情報を出力する制御信号や、印刷データ等が入力される。ここで、上述した情報処理装置69は、例えば、パーソナルコンピュータやPDA (Personal Digital Assistant)等の電子機器である。

[0110]

情報処理装置69等と接続される入出力端子65は、インタフェースとして例えばシリアルインタフェースやパラレルインタフェース等を用いることができ、具体的にUSB(

Universal Serial Bus)、RS(Recommended Standard)232C、IEEE (Institut e of Electrical and Electronic Engineers) 1394等の規格に準拠したものである。また、入出力端子65は、情報処理装置69との間で有線通信又は無線通信の何れ形式でデータ通信を行うようにしてもよい。なお、この無線通信規格としては、IEEE802.11a,802.11b,802.11g等がある。

[0111]

入出力端子 6 5 と情報処理装置 6 9 との間には、例えばインターネット等のネットワークが介在していてもよく、この場合、入出力端子 6 5 は、例えばLAN(Local Area Net work)、ISDN(Integrated Services Digital Network)、xDSL(Digital Subscriber Line)、FTHP(Fiber To The Home)、CATV(Community Antenna TeleVision)、BS(Broadcasting Satellite)等のネットワーク網に接続され、データ通信は、TCP/IP(Transmission Control Protocol/Internet Protocol)等の各種プロトコルにより行われる。

[0112]

ROM66は、例えばEP-ROM (Erasable Programmable Read-Only Memory) 等のメモリであり、制御部68が行う各処理のプログラムが格納されている。この格納されているプログラムは、制御部68によりRAM67にロードされる。RAM67は、制御部68によりROM66から読み出されたプログラムや、プリンタ装置1の各種状態を記憶する。

[0113]

制御部68は、入出力端子65から入力された印刷データ、ヘッドカートリッジ2から入力されがインク4の残量データ等に基づき、各部を制御する。制御部68は、入力された制御信号等に基づいて各部を制御する処理プログラムをROM66から読み出してRAM67に記憶し、この処理プログラムに基づき各部の制御や処理を行う。

[0114]

すなわち、制御部68は、例えば一対の発熱抵抗体42a,42bのうちの一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、この基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流が供給されるように、ROM66等に格納された処理プログラム等に基づき吐出制御部63を制御し、ノズル44aより吐出されるインク液滴iの吐出方向がばらつかないようにする。

[0115]

なお、以上のように構成された制御回路61においては、ROM66に処理プログラムを格納するようにしたが、処理プログラムを格納する媒体としては、ROM66に限定されるものでなく、例えば処理プログラムが記録された光ディスクや、磁気ディスク、光磁気ディスク、ICカード等の各種記録媒体を用いることができる。この場合に制御回路61は、各種記録媒体を駆動するドライブと直接又は情報処理装置69を介して接続されてこれら記録媒体から処理プログラムを読み出すように構成する。

[0116]

ここで、以上のように構成されるプリンタ装置1の印刷動作について図19に示すフローチャートを参照にして説明する。なお、本動作はROM66等の記憶手段に格納された処理プログラムに基づいて制御部68内の図示しないCPU (Central Processing Unit)の演算処理等により実行されるものである。

[0117]

先ず、ユーザが、印刷動作をプリンタ装置1が実行するように、プリンタ本体3に設けられている操作パネル等を操作して命令する。次に、制御部68は、ステップS1において、各装着部22に所定の色のインクカートリッジ11が装着されているかどうかを判断する。そして、制御部68は、全ての装着部22に所定の色のインクカートリッジ11が適切に装着されているときはステップS2に進み、装着部22においてインクカートリッジ11が適切に装着されていないときはステップS4に進み、印刷動作を禁止する。

[0118]

制御部68は、ステップS2において、接続部26内のインク4が所定量以下、すなわちインク無し状態であるか否かを判断し、インク無し状態であると判断されたときは、警告部64でその旨を警告し、ステップS4において、印刷動作を禁止する。一方、制御部68は、接続部26内のインク4が所定量以上であるとき、すなわちインク4が満たされているとき、ステップS3において、印刷動作を許可する。

[0119]

印刷動作を行う際は、制御部68がプリンタ制御部62によって各駆動機構53,54を駆動制御して記録紙Pを印刷可能な位置まで移動させる。具体的に、制御部68は、図20に示すように、ヘッドキャップ開閉機構53を構成する駆動モータを駆動させてヘッドキャップ28をヘッドカートリッジ2に対してトレイ55a側に移動させ、インク吐出ヘッド27のノズル44aを露出させる。そして、制御部68は、給排紙機構54を構成する駆動モータを駆動させて記録紙Pを走行させる。具体的に、制御部68は、トレイ55aから給紙ローラ81によって記録紙Pを引き出し、互いに反対方向に回転する一対の分離ローラ82a,82bによって引き出された記録紙Pの一枚を反転ローラ83に搬送して搬送方向を反転させた後に搬送ベルト84に記録紙Pを搬送し、搬送ベルト84に搬送された記録紙Pを押さえ手段85が所定の位置で保持させることでインク4が着弾される位置が決定されるように給排紙機構54を制御する。

[0120]

そして、制御部68は、記録紙Pが印刷位置に保持されたことを確認すると、インク吐出へッド27のノズル44aより記録紙Pに向かってインク液滴iを吐出するように吐出制御部63を制御する。具体的には、図16(A)に示すように、ノズル44aより略真下にインク液滴iを吐出する場合、一対の発熱抵抗体42a,42bに略同じ電流値のパルス電流が略同じタイミングで供給されるように吐出制御部63を制御する。また、制御部68は、図16(B)に示すように、ノズル44aより発熱抵抗体42b側に吐出方向を変えて吐出する場合、発熱抵抗体42aにパルス電流が供給されるタイミングよりも遅いタイミングで発熱抵抗体42bに、発熱抵抗体42aに供給されるパルス電流を略同じ電流値のパルス電流が供給されるように吐出制御部63を制御する。さらに、制御部68は、図16(C)に示すように、ノズル44aより発熱抵抗体42a側に吐出方向を変えて吐出する場合、発熱抵抗体42aにパルス電流が供給されるタイミングよりも早いタイミングで発熱抵抗体42aにパルス電流が供給されるタイミングよりも早いタイミングで発熱抵抗体42bに、発熱抵抗体42aに供給されるパルス電流を略同じ電流値のパルス電流が供給されるように吐出制御部63を制御する。

[0121]

そして、制御部68は、吐出方向を変えてノズル44aよりインク液滴iを吐出させるときは、一対の発熱抵抗体42a,42bのうちの一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、この基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流を供給するように吐出制御部63を制御する。これにより、インク吐出ヘッド27では、ノズル44aより吐出方向を変化させて吐出されたインク液滴iの着弾位置のばらつきを抑制でき、色調ムラや白スジを防止できる。

[0122]

以上ように、インク液滴 i がノズル44 a 吐出されると、インク液滴 i を吐出した量と同量のインク4がインク流路46から直ちにインク液室45内に補充され、図6(B)に示すように、元の状態に戻る。インク吐出ヘッド27からインク液滴 i が吐出されると、付勢部材34fの付勢力とダイアフラム34iの付勢力とによってインク室34bの開口部34dを閉塞している弁34eは、図6(A)に示すように、インク吐出ヘッド27からインク液滴 i が吐出された際に、開口部34dに分割されたインク流出路34c側のインク室34b内のインク4の負圧が高まると、インク4の負圧によりダイアフラム34iが大気圧により押し上げられて、弁シャフト34hと共に弁34eを付勢部材34fの付勢力に抗して押し上げる。このとき、インク室34bのインク流入路34a側とインク流

[0123]

このようにして、給排紙機構54によって走行している記録紙Pには、順に印刷データに応じた文字や画像が印刷されることになる。そして、印刷が終了した記録紙Pは、給排紙機構54によって排紙口56より排出される。

[0124]

以上で説明したプリンタ装置1では、吐出方向を変えてノズル44aよりインク液滴iを吐出させる際に、一対の発熱抵抗体42a,42bのうちの一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、この基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流が供給されるように制御部68が吐出制御部63を制御する。

[0125]

これにより、プリンタ装置1では、吐出方向を変えてノズル44aよりインク液滴iを吐出させる際に、一対の発熱抵抗体42a,42b上に形成されるインク気泡の大きさのバランスが偏り過ぎてインク液滴iの吐出方向がばらつくといった不具合や、ノズル44aの縁にインク液滴iが接触して吐出方向がばらつくといった不具合を防止でき、ノズル44aより吐出方向を変えて吐出されたインク液滴iの着弾位置のばらつきを抑えることができる。したがって、プリンタ装置1では、着弾位置のばらつきが抑制されていることから、色調ムラや白スジ等による画質の劣化が防止されて優れた画質で印刷できる。

[0126]

また、このプリンタ装置1では、従来のような印刷時にオーバーラップ部を設けることなく色の濃度ムラや白スジ等を防止できることから、印刷に係る時間を大幅に短縮して高品質な画像を印刷できる。

[0127]

なお、以上では、一対の発熱抵抗体42a,42bが記録紙Pの幅方向に並設されたイ ンク吐出ヘッド27を例に挙げて説明したが、このような構造に限定されることはなく、 複数の圧力発生素子にパルス電流の供給されるタイミングを制御することでインク液滴i の吐出方向を変化させることが可能なものであれば、例えば図21(A)~図21(C) に示すインク吐出ヘッド91,101,111にも適用可能である。なお、インク吐出ヘ ッド91は記録紙Pの搬送方向に一対の発熱抵抗体92a,92aを並設させたものであ り、インク吐出ヘッド101はインク液室102に3つの発熱抵抗体103a,103b .103cを配設させたものであり、インク吐出ヘッド111はインク液室112に4つ の発熱抵抗体113a,113b,113c,113dを配設させたものである。なお、 図21では、各インク吐出ヘッド91,101,111におけるノズル93,104,1 14の位置を点線で示している。また、インク吐出ヘッド101、111において、イン ク流路側にある発熱抵抗体103c,113cは、インク液室102,112内に発生し たインク気泡が割れたときにインク液滴iをノズル104,114より吐出させるための 圧力が側壁側に比べてインク流路側で低くなり、インク流路よりインク4が供給される方 向、すなわち図21中矢印F方向とは略反対方向にインク液滴iが吐出されることを防ぐ ために設けられている。

[0128]

また、以上では、プリンタ本体3に対してヘッドカートリッジ2が着脱可能であり、更に、ヘッドカートリッジ2に対してインクカートリッジ11が着脱可能なプリンタ装置1を例に取り説明したが、プリンタ本体3とヘッドカートリッジ2とが一体化さえたプリンタ装置にも適用可能である。

さらに、以上では、記録紙Pに文字や画像を印刷するプリンタ装置1を例に取り説明したが、本発明は、微少量の液体を吐出する他の装置に広く適用することができる。例えば、本発明は、液体中のDNAチップ用吐出装置(特開2002-34560号公報)やプリント配線基板の微細な配線パターンを形成するための導電性粒子を含む液体を吐出したりする液体吐出装置に適用することもできる。

[0130]

さらにまた、以上では、一対の発熱抵抗体42a, 42bによってインク4を加熱しながらノズル44aから吐出させる電気熱変換方式を採用しているが、このような方式に限定されず、例えばピエゾ素子といった圧電素子等の電気機械変換素子等によってインクを電気機械的にノズルより吐出させる電気機械変換方式を採用したものであってもよい。

[0131]

さらにまた、以上では、ライン型のプリンタ装置1を例に挙げて説明したが、このことに限定されることはなく、例えばインクヘッドが記録紙の搬送方向と略直交する方向に移動するシリアル型の液体吐出装置にも適用可能である。この場合、シリアル型の液体吐出装置のインク吐出ヘッドには少なくとも複数の圧力発生素子が設けられることになる。

【図面の簡単な説明】

[0132]

- 【図1】本発明が適用された液体吐出装置を示す斜視図である。
- 【図2】同液体吐出装置に備わるインクジェットプリントヘッドカートリッジを示す 斜視図である。
- 【図3】 同インクジェットプリントヘッドカートリッジを示す断面図である。
- 【図4】同インクジェットプリントヘッドカートリッジにインクカートリッジが装着されたときのインク供給部を示しており、同図(A)は供給口が閉塞された状態を示す模式図であり、同図(B)は供給口が開口された状態を示す模式図である。
- 【図5】同インクジェットプリントヘッドカートリッジにおけるインクカートリッジ とインク吐出ヘッドとの関係を示す模式図である。
- 【図6】同インクカートリッジの接続部における弁機構を示しており、同図(A)は 弁が閉じた状態を示す断面図であり、同図(B)は弁が開いた状態を示す断面図であ る。
- 【図7】 同インクジェットプリントヘッドカートリッジのインク吐出ヘッドを示す分解斜視図である。
- 【図8】同インク吐出ヘッドを示す平面図である。
- 【図9】同インク吐出ヘッドがインク液滴を吐出する状態を説明しており、略同じ大きさのインク気泡がインク液室内に形成された状態を示す断面図である。
- 【図10】同インク吐出ヘッドがインク液滴を吐出する状態を説明しており、2つのインク気泡によってノズルからインク液滴が略真下に吐出された状態を示す断面図である。
- 【図11】同インク吐出ヘッドがインク液滴を吐出する状態を説明しており、異なる 大きさのインク気泡がインク液室内に形成された状態を示す断面図である。
- 【図12】同インク吐出ヘッドがインク液滴を吐出する状態を説明しており、2つのインク気泡によってノズルからインク液滴が略斜め方向に吐出された状態を示す断面図である。
- 【図13】同液体吐出装置の一部を透視して示す側面図である。
- 【図14】同液体吐出装置の制御回路を説明するブロック図である。
- 【図15】同制御回路の吐出制御部を示す模式図である。
- 【図16】同吐出制御部がインク液滴の吐出方向を制御することを説明しており、同図(A)はインク液滴が略真下方向に吐出されるときを説明する模式図であり、同図(B)はインク液滴がノズルを中心に記録紙の幅方向の一方略斜め方向に吐出されるときを説明する模式図であり、同図(C)はインク液滴がノズルを中心に記録紙の幅

ページ: 22/E

方向の他方略斜め方向に吐出されるときを説明する模式図である。

【図17】同インク吐出ヘッドにおける一対の発熱抵抗体の電流供給タイミングのずらし量と吐出角度との関係を示す特性図である。

【図18】同インク吐出ヘッドにおける一対の発熱抵抗体にパルス電流がタイミングをずらして供給されたときに、ノズルより吐出されたインク液滴の着弾点を示す模式図であり、同図(A)は電流供給タイミングのずらし量が0.000%のときの着弾点であり、同図(B)は電流供給タイミングのずらし量が0.000%のときの着弾点であり、同図(C)は電流供給タイミングのずらし量が0.000%のときの着弾点であり、同図(D)は電流供給タイミングのずらし量が0.000%のときの着弾点であり、同図(E)は電流供給タイミングのずらし量が0.000%のときの着弾点であり、同図(F)は電流供給タイミングのずらし量が0.000%のときの着弾点である。

【図19】同液体吐出装置の印刷動作を説明するフローチャートである。

【図20】同液体吐出装置において、ヘッドキャップ開閉機構が開いている状態を一部透視して示す側面図である。

【図21】同インク吐出ヘッドの他の例であり、同図(A)は記録紙の搬送方向に発 熱抵抗体が並設された状態を示す平面図であり、同図(B)はインク室内に発熱抵抗 体が3つ設けられた状態を示す平面図であり、同図(C)はインク室内に発熱抵抗体 が4つ設けられた状態を示す平面図である。

【図22】従来の液体吐出部を模式的に示す断面図である。

【符号の説明】

[0133]

1 液体吐出装置、2 インクジェットプリントヘッドカートリッジ、3 プリンタ本体、4 インク、11 インクカートリッジ、21 カートリッジ本体、27,91,101,111 インク吐出ヘッド、27a 吐出面、41 回路基板 42a,42b 発熱抵抗体、43 フィルム、44 ノズルシート、44a ノズル、45 インク液室、46 インク流路、61 制御回路、62 プリンタ駆動部、63 吐出制御部、64 警告部、65 入出力端子、66 ROM、67 RAM、68 制御部、71 電源、72a,72b スイッチング素子、73 切換制御回路

【書類名】図面 【図1】

【図6】

7/

【図9】

27

【図10】

27

【図11】

【図12】

27

【図15】

【図16】

【図19】

【図20】

【図21】

【図22】

1/E

【曹類名】要約書

【要約】

【課題】 優れた画質で印刷する。

【解決手段】 制御部68が、一対の発熱抵抗体42a,42bのうち一方に供給されるパルス電流を基準にし、他方には、基準となるパルス電流が供給されるタイミングに対し、基準となるパルス電流が供給されている時間の20%以内の範囲の時間でタイミングをずらしてパルス電流を供給するように吐出制御部63を制御することで、吐出方向を変えて吐出されたインク液滴iの着弾位置のばらつきを抑えることができ、色調ムラや白スジ等による画質の劣化が防止されて優れた画質で印刷できる。

【選択図】 図14

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名 ソニー株式会社