

# HIGH PRESSURE FIELD ENGINEERING HANDBOOK

Version 2.0



#### STONEAGE TRAINING For Industrial Cleaning Professionals

# CONTENTS

| 2     | Waterjet Cut Prevention Checklist         |
|-------|-------------------------------------------|
| 3     | Back Thrust                               |
| 4     | Hydraulic Horsepower Required for Jetting |
| 4     | BHP/HHP                                   |
| 5     | Maximum Efficient Flow                    |
| 6-10  | Hose Pressure Drop, 3-25 mm               |
| 11    | Nozzle Flow: Attack Tips                  |
| 12    | Nozzle Flow: Carbide Attack Tips          |
| 13    | Nozzle Flow: OC8 Carbide Nozzles          |
| 14    | Nozzle Flow: OCV & OCIH Carbide Nozzles   |
| 15    | Nozzle Flow: Sapphire Nozzles             |
| 16-18 | Fitting Size Reference                    |
| 19    | Thread Engagement                         |
| 20    | Tube ID Specifications                    |
| 20    | Torque Recommendations                    |
| 21    | Standard Unit Abbreviations               |
| 21    | Thread Abbreviations                      |
| 22    | Measurement Conversions                   |
| 22    | Pressure & Flow Equations                 |

**23-26** Notes





# WATERJET CUT PREVENTION CHECKLIST

- ✓ All operators are wearing proper Personal Protective Equipment (PPE)
- Person doing the work understands the procedure and is physically capable of performing the work
- ✓ All systems include a dump valve/relief system controlled by operator closest to nozzle and are guarded against accidental activation
- ✓ All shotguns have minimum 66 in./168 cm overall length, with a 6 ft./1.8 m safety shroud
- ✓ All line mole and flex lance jobs require backout preventer and (if conditions exist) a stinger to guard against reversal
- ✓ All safety devices have been tested before energizing the system

### **BACK THRUST**

The following chart presents estimations of back thrust force during high pressure hydrobrasting.

|        | Flo   | W    | GPM | LPM |    |     |     |     |     |     |     |     |     |     |     |      |     |      |
|--------|-------|------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|
|        | Pres  | sure | 5   | 9   | 10 | 38  | 15  | 57  | 20  | 76  | 25  | 95  | 30  | 114 | 35  | 132  | 40  | 151  |
| Ì      | 1000  | 70   | 8   | 36  | 16 | 71  | 25  | 111 | 33  | 147 | 41  | 182 | 49  | 218 | 58  | 258  | 66  | 294  |
|        | 2000  | 140  | 12  | 53  | 23 | 102 | 35  | 156 | 47  | 209 | 58  | 258 | 70  | 311 | 81  | 360  | 93  | 414  |
|        | 3000  | 210  | 14  | 62  | 29 | 129 | 43  | 191 | 57  | 254 | 71  | 316 | 85  | 378 | 100 | 445  | 114 | 507  |
|        | 4000  | 275  | 16  | 71  | 33 | 147 | 49  | 218 | 66  | 294 | 82  | 365 | 99  | 440 | 115 | 512  | 132 | 587  |
|        | 5000  | 340  | 18  | 80  | 37 | 165 | 55  | 245 | 74  | 329 | 92  | 409 | 110 | 489 | 129 | 574  | 147 | 654  |
|        | 6000  | 410  | 20  | 89  | 40 | 178 | 60  | 267 | 81  | 360 | 101 | 449 | 121 | 538 | 141 | 627  | 161 | 716  |
| 2      | 7000  | 480  | 22  | 98  | 44 | 196 | 65  | 289 | 87  | 387 | 109 | 485 | 131 | 583 | 152 | 676  | 174 | 774  |
| B<br>& | 8000  | 550  | 23  | 102 | 47 | 209 | 70  | 311 | 93  | 414 | 116 | 516 | 140 | 623 | 162 | 721  | 186 | 827  |
| T (LB  | 9000  | 620  | 25  | 111 | 49 | 218 | 74  | 329 | 99  | 440 | 123 | 547 | 148 | 658 | 172 | 765  | 197 | 876  |
| THRUST | 10000 | 690  | 26  | 116 | 52 | 231 | 78  | 347 | 104 | 463 | 130 | 578 | 156 | 694 | 182 | 810  | 208 | 925  |
| 置      | 11000 | 760  | 27  | 120 | 55 | 245 | 82  | 365 | 110 | 489 | 136 | 605 | 164 | 730 | 191 | 850  | 218 | 970  |
| BACK   | 12000 | 830  | 29  | 129 | 57 | 254 | 85  | 378 | 114 | 507 | 142 | 632 | 171 | 761 | 199 | 885  | 228 | 1014 |
| BA     | 13000 | 900  | 30  | 133 | 59 | 262 | 89  | 396 | 119 | 529 | 148 | 658 | 178 | 792 | 207 | 921  | 237 | 1054 |
|        | 14000 | 970  | 31  | 138 | 62 | 276 | 92  | 409 | 123 | 547 | 154 | 685 | 185 | 823 | 215 | 956  | 246 | 1094 |
|        | 15000 | 1030 | 32  | 142 | 64 | 285 | 96  | 427 | 127 | 565 | 159 | 707 | 191 | 850 | 223 | 992  | 255 | 1134 |
|        | 16000 | 1100 | 33  | 147 | 66 | 294 | 99  | 440 | 132 | 587 | 164 | 730 | 197 | 876 | 230 | 1023 | 263 | 1170 |
|        | 17000 | 1170 | 34  | 151 | 68 | 302 | 102 | 454 | 136 | 605 | 170 | 756 | 203 | 903 | 237 | 1054 | 271 | 1205 |
|        | 18000 | 1240 | 35  | 156 | 70 | 311 | 104 | 463 | 140 | 623 | 174 | 774 | 209 | 930 | 244 | 1085 | 279 | 1241 |
|        | 19000 | 1300 | 36  | 160 | 72 | 320 | 108 | 480 | 143 | 636 | 179 | 796 | 215 | 956 | 251 | 1117 | 287 | 1277 |
|        | 20000 | 1380 | 37  | 165 | 74 | 329 | 110 | 489 | 147 | 654 | 184 | 818 | 221 | 983 | 257 | 1143 | 294 | 1307 |
|        | psi   | bar  |     |     |    |     |     |     |     |     |     |     |     |     |     |      |     |      |

# HYDRAULIC HORSEPOWER REQUIRED FOR JETTING

| Flo   | w    | 10  | 20  | 30  | 40  | 50  | 60  | 70  | 80  | 90   | 100  | 110  | 120  | 130  | 140  | 150  | 160  | 170  | 180  |
|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|
| Press | ure  | 38  | 76  | 114 | 151 | 189 | 227 | 265 | 303 | 341  | 379  | 416  | 454  | 492  | 530  | 568  | 606  | 644  | 681  |
| 1000  | 70   | 6   | 12  | 17  | 23  | 29  | 35  | 41  | 47  | 52   | 58   | 64   | 70   | 76   | 82   | 87   | 93   | 99   | 105  |
| 2000  | 140  | 12  | 23  | 35  | 47  | 58  | 70  | 82  | 93  | 105  | 117  | 128  | 140  | 152  | 163  | 175  | 187  | 198  | 210  |
| 3000  | 210  | 17  | 35  | 52  | 70  | 87  | 105 | 122 | 140 | 157  | 175  | 192  | 210  | 227  | 245  | 262  | 280  | 297  | 315  |
| 4000  | 275  | 23  | 47  | 70  | 93  | 117 | 140 | 163 | 187 | 210  | 233  | 257  | 280  | 303  | 327  | 350  | 373  | 397  | 420  |
| 5000  | 340  | 29  | 58  | 87  | 117 | 146 | 175 | 204 | 233 | 262  | 292  | 321  | 350  | 379  | 408  | 437  | 466  | 496  | 525  |
| 6000  | 410  | 35  | 70  | 105 | 140 | 175 | 210 | 245 | 280 | 315  | 350  | 385  | 420  | 455  | 490  | 525  | 560  | 595  | 630  |
| 7000  | 480  | 41  | 82  | 122 | 163 | 204 | 245 | 286 | 327 | 367  | 408  | 449  | 490  | 531  | 571  | 612  | 653  | 694  | 735  |
| 8000  | 550  | 47  | 93  | 140 | 187 | 233 | 280 | 327 | 373 | 420  | 466  | 513  | 560  | 606  | 653  | 700  | 746  | 793  | 840  |
| 9000  | 620  | 52  | 105 | 157 | 210 | 262 | 315 | 367 | 420 | 472  | 525  | 577  | 630  | 682  | 735  | 787  | 840  | 892  | 945  |
| 10000 | 690  | 58  | 117 | 175 | 233 | 292 | 350 | 408 | 466 | 525  | 583  | 641  | 700  | 758  | 816  | 875  | 933  | 991  | 1050 |
| 11000 | 760  | 64  | 128 | 192 | 257 | 321 | 385 | 449 | 513 | 577  | 641  | 706  | 770  | 834  | 898  | 962  | 1026 | 1090 | 1155 |
| 12000 | 830  | 70  | 140 | 210 | 280 | 350 | 420 | 490 | 560 | 630  | 700  | 770  | 840  | 910  | 980  | 1050 | 1120 | 1190 | 1259 |
| 13000 | 900  | 76  | 152 | 227 | 303 | 379 | 455 | 531 | 606 | 682  | 758  | 834  | 910  | 985  | 1061 | 1137 | 1213 | 1289 | 1364 |
| 14000 | 970  | 82  | 163 | 245 | 327 | 408 | 490 | 571 | 653 | 735  | 816  | 898  | 980  | 1061 | 1143 | 1224 | 1306 | 1388 | 1469 |
| 15000 | 1030 | 87  | 175 | 262 | 350 | 437 | 525 | 612 | 700 | 787  | 875  | 962  | 1050 | 1137 | 1224 | 1312 | 1399 | 1487 | 1574 |
| 16000 | 1100 | 93  | 187 | 280 | 373 | 466 | 560 | 653 | 746 | 840  | 933  | 1026 | 1120 | 1213 | 1306 | 1399 | 1493 | 1586 | 1679 |
| 17000 | 1170 | 99  | 198 | 297 | 397 | 496 | 595 | 694 | 793 | 892  | 991  | 1090 | 1190 | 1289 | 1388 | 1487 | 1586 | 1685 | 1784 |
| 18000 | 1240 | 105 | 210 | 315 | 420 | 525 | 630 | 735 | 840 | 945  | 1050 | 1155 | 1259 | 1364 | 1469 | 1574 | 1679 | 1784 | 1889 |
| 19000 | 1300 | 111 | 222 | 332 | 443 | 554 | 665 | 776 | 886 | 997  | 1108 | 1219 | 1329 | 1440 | 1551 | 1662 | 1773 | 1883 | 1994 |
| 20000 | 1380 | 117 | 233 | 350 | 466 | 583 | 700 | 816 | 933 | 1050 | 1166 | 1283 | 1399 | 1516 | 1633 | 1749 | 1866 | 1983 | 2099 |
| psi   | bar  |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |

HHP = pressure (psi) \* volume (gpm) / 1714 HHP = pressure (bar) \* volume (lpm) / 447

| BRAKE<br>Horsepower<br>Applied | HYDRAYLIC<br>HORSEPOWER<br>REALIZED |
|--------------------------------|-------------------------------------|
| 100                            | 85                                  |
| 150                            | 127.5                               |
| 200                            | 170                                 |
| 250                            | 212.5                               |
| 300                            | 255                                 |
| 350                            | 297.5                               |
| 400                            | 340                                 |
| 450                            | 382.5                               |
| 500                            | 425                                 |
| 600                            | 510                                 |

Due to mechanical loss, the actual hydraulic horsepower realized is slightly less than brake horsepower generated:

BHP = HHP / 0.85 HHP = BHP x 0.85

#### MAXIMUM EFFICIENT FLOW

The following chart presents specifications for thermoplastic hose, highlighting maximum efficient flow.

| HOS   | E ID  | CRIM | IP OD | BN/BT FITTING |     | IMUM<br>NT FLOW |       | WEIGHT<br>FOOT |
|-------|-------|------|-------|---------------|-----|-----------------|-------|----------------|
| in.   | mm    | in.  | mm    |               | GPM | LPM             | lb    | kg             |
| 0.12  | 3     |      |       |               |     |                 |       |                |
|       | 3/2   | 0.35 | 9     | P1            |     |                 | 0.048 | 0.021          |
|       | 3/4   | 0.48 | 12    | MP4 L/R       | 4-5 | 15-19           | 0.091 | 0.041          |
|       | 3/6   | 0.60 | 15    | H4L or H6L    |     |                 |       |                |
| 0.16  | 4     |      |       |               |     |                 |       |                |
|       | 4/2   | 0.40 | 10    | P1            |     |                 | 0.075 | 0.034          |
|       | 4/4   | 0.58 | 16    | MP4 L/R       | 6-7 | 23-26           | 0.157 | 0.071          |
|       | 4/6   | 0.67 | 17    | H4 or H6      |     |                 |       |                |
| 0.20  | 5     |      |       |               |     |                 |       |                |
|       | 5/2   | 0.51 | 13    | P2            |     |                 | 0.084 | 0.038          |
|       | 5/4   | 0.59 | 15    | MP6 L/R       | 11  | 42              | 0.175 | 0.079          |
|       | 5 UHP | 0.81 | 21    | H6L           |     |                 |       |                |
| 0.25  | 6     |      |       |               |     |                 |       |                |
| 133   | 6/2   | 0.55 | 14    | P4            | 14  | 53              | 0.118 | 0.054          |
| 138   | 6/4   | 0.65 | 17    | MP 6 L/R      | 14  | 55              | 0.198 | 0.090          |
| 0.375 | 8     |      |       |               |     |                 |       |                |
| 147   | 8/2   | 0.69 | 19    | P6            |     |                 | 0.134 | 0.061          |
| 151   | 8/4   | 0.80 | 20    | MP9 L/R       | 20  | 76              | 0.262 | 0.119          |
| 156   | 8 UHP | 0.91 | 23    | H9L           |     |                 |       |                |
| 0.393 | 10    |      |       |               |     |                 |       |                |
|       | 10/4  | 0.83 | 21    | MP9           | 25  | 95              | 0.464 | 0.210          |
| 0.50  | 13    |      |       |               |     |                 |       |                |
|       | 13/2  | 1.08 | 27    | P 8           | 40  | 151             | 0.396 | 0.180          |
|       | 13/4  | 1.16 | 29    | TM 16         | 40  | 131             | 0.591 | 0.268          |

P 15k psi/1034 bar
 MP 20k psi/1379 bar
 H Above 20k psi/1379 bar

Number denotes X/16 in.

Example: MP9 = 9/16 Medium Pressure

PULLING DISTANCE = TOOL PULL - TOOL WEIGHT
HOSE WEIGHT PER FT X 1.2

#### HOSE PRESSURE DROP









#### HOSE PRESSURE DROP











### HOSE PRESSURE DROP





WWW.STONEAGETRAINING.COM

#### ATTACK TIPS

StoneAge Attack Tips are the highest quality, longest lasting nozzles available for low and medium pressure applications (up to 22k psi/1500 bar). Flow straighteners correct turbulence, ensuring excellent jetting results.



**AP2** 1/8 NPT

**APF4** 1/4 NPT Flush mount

**AP4** 1/4 NPT

#### **NOZZLE FLOW CHART**

|          |             |            |           |     |     |                  |          |            |           |          | PRE | SSU        | RE (     | PSI 8            | & BA | R)               |     |     |           |           |          |     |          |     |          |            |          |
|----------|-------------|------------|-----------|-----|-----|------------------|----------|------------|-----------|----------|-----|------------|----------|------------------|------|------------------|-----|-----|-----------|-----------|----------|-----|----------|-----|----------|------------|----------|
|          | Nozzl       |            | 2,0<br>14 |     |     | <b>000</b><br>80 | 6,0<br>4 | <b>000</b> | 8,0<br>55 |          | ,   | <b>000</b> |          | <b>000</b><br>30 | ,    | <b>000</b><br>70 | ,   | 000 | 16,<br>11 | 000<br>00 | ,        | 000 |          | 000 |          | <b>000</b> | #        |
|          | in.<br>.018 | mm<br>0.46 | 0.4       | 2   | 0.6 | 2                | 0.7      | 3          | 0.8       | 3        | 0.9 | 3          | 1.0      | 4                | 1.0  | 4                | 1.1 | 4   | 1.1       | 4         | 1.2      | 5   | 1.2      | 5   | 1.3      | 5          | 0.6      |
|          | .020        | 0.51       | 0.5       | 2   | 0.7 | 3                | 0.8      | 3          | 1.0       | 4        | 1.1 | 4          | 1.2      | 5                | 1.3  | 5                | 1.3 | 5   | 1.5       | 6         | 1.5      | 6   | 1.5      | 6   | 1.6      | 6          | 0.7      |
|          | .022        | 0.56       | 0.6       | 2   | 0.8 | 3                | 1.0      | 4          | 1.2       | 5        | 1.3 | 5          | 1.4      | 5                | 1.5  | 6                | 1.6 | 6   | 1.6       | 6         | 1.7      | 6   | 1.8      | 7   | 1.9      | 7          | 0.8      |
|          | .024        | 0.61       | 0.7       | 3   | 1.0 | 4                | 1.2      | 5          | 1.4       | 5        | 1.6 | 6          | 1.7      | 6                | 1.8  | 7                | 1.9 | 7   | 2.0       | 8         | 2.1      | 8   | 2.2      | 8   | 2.3      | 9          | 1.0      |
|          | .026        | 0.66       | 0.8       | 3   | 1.2 | 5                | 1.4      | 5          | 1.6       | 6        | 1.8 | 7          | 2.0      | 8                | 2.1  | 8                | 2.2 | 8   | 2.3       | 9         | 2.4      | 9   | 2.6      | 10  | 2.7      | 10         | 1.1      |
|          | .029        | 0.74       | 1.0       | 4   | 1.4 | 5                | 1.7      | 6          | 2.0       | 8        | 2.3 | 9          | 2.5      | 10               | 2.7  | 10               | 2.8 | 11  | 2.9       | 11        | 3.0      | 11  | 3.2      | 12  | 3.4      | 13         | 1.4      |
|          | .032        | 0.81       | 1.2       | 5   | 1.7 | 6                | 2.1      | 8          | 2.5       | 10       | 2.8 | 11         | 3.0      | 11               | 3.3  | 13               | 3.4 | 13  | 3.5       | 13        | 3.7      | 14  | 3.9      | 15  | 4.1      | 16         | 1.7      |
|          | .035        | 0.89       | 1.5       | 6   | 2.1 | 8                | 2.6      | 10         | 3.0       | 11       | 3.3 | 13         | 3.6      | 14               | 3.9  | 15               | 4.0 | 15  | 4.2       | 16        | 4.4      | 17  | 4.7      | 18  | 4.9      | 19         | 2.1      |
| 2        | .038        | 0.97       | 1.7       | 6   | 2.5 | 10               | 3.0      | 11         | 3.5       | 13       | 3.9 | 15         | 4.3      | 16               | 4.6  | 18               | 4.8 | 18  | 4.9       | 19        | 5.2      | 20  | 5.5      | 21  | 5.7      | 22         | 2.5      |
| & L/MIN) | .042        | 1.07       | 2.1       | 8   | 3.0 | 11               | 3.7      | 14         | 4.2       | 16       | 4.7 | 18         | 5.2      | 20               | 5.6  | 21               | 5.8 | 22  | 6.0       | 23        | 6.4      | 24  | 6.7      | 26  | 7.0      | 27         | 3.0      |
|          | .047        | 1.19       | 2.7       | 10  | 3.8 | 14               | 4.6      | 18         | 5.3       | 20       | 5.9 | 22         | 6.5      | 25               | 7.0  | 27               | 7.3 | 28  | 7.5       | 29        | 8.0      | 30  | 8.4      | 32  | 8.8      | 34         | 3.8      |
| (GPM     | .052        | 1.32       | 3.3       | 13  | 4.6 | 18               | 5.6      | 21         | 6.5       | 25       | 7.3 | 28         | 8.0      | 30               | 8.6  | 33               | 8.9 | 34  | 9.2       | 35        | 9.8      | 37  | 10       | 38  | 11       | 42         | 4.6      |
| 9) >     | .057        | 1.45       | 3.9       | 15  | 5.5 | 21               | 6.8      | 26         | 7.8       | 30       | 8.7 | 33         | 9.6      | 37               | 10   | 38               | 11  | 42  | 11        | 42        | 12       | 46  | 12       | 46  | 13       | 50         | 5.5      |
| FLOW     | .063        | 1.60       | 4.8       | 18  | 6.8 | 26               | 8.3      | 32         | 9.6       | 37       | 11  | 42         | 12       | 46               | 13   | 50               | 13  | 50  | 14        | 53        | 14       | 53  | 15       | 57  | 16       | 61         | 6.8      |
| -        | .069        | 1.78       | 5.7       | 22  | 8.1 | 31               | 9.9      | 38         | 12        | 46       | 13  | 50         | 14       | 53               | 15   | 57               | 16  | 61  | 16        | 61        | 17       | 65  | 18       | 69  | 19       | 72         | 8.1      |
|          | .075        | 1.91       | 6.8       | 26  | 9.6 | 37               | 12       | 46         | 13        | 50       | 15  | 57         | 17       | 65               | 18   | 69               | 19  | 72  | 19        | 72        | 20       | 76  | 21       | 80  | 23       | 88         | 9.6      |
|          | .082        | 2.08       | 7.2       | 27  | 10  | 38               | 13       | 50         | 14        | 53       | 16  | 61         | 18       | 69               | 19   | 72               | 20  | 76  | 20        | 76        | 22       | 83  | 23       | 88  | 24       | 91         | 10       |
|          | .090        | 2.29       | 8.7       | 33  | 12  | 46<br>57         | 15<br>18 | 57<br>69   | 17<br>21  | 65<br>80 | 19  | 72<br>88   | 21<br>25 | 95               | 23   | 102              | 24  | 91  | 25<br>29  | 95        | 26<br>31 | 98  | 27<br>33 | 102 | 29<br>34 | 110        | 12<br>15 |
|          | .106        | 2.49       | 12        | 46  | 17  | 65               | 21       | 80         | 24        | 91       | 27  | 102        | 29       | 110              | 32   | 121              | 33  | 125 | 34        | 129       | 36       | 136 | 38       | 144 | 40       | 151        | 17       |
|          | .115        | 2.92       | 14        | 53  | 20  | 76               | 25       | 95         | 28        | 106      | 32  | 121        | 35       | 132              | 37   | 140              | 39  | 148 | 40        | 151       | 42       | 159 | 45       | 170 | 47       | 178        | 20       |
|          | .125        | 3.18       | 17        | 65  | 24  | 91               | 29       | 110        | 33        | 125      | 37  | 140        | 41       | 155              | 44   | 167              | 46  | 174 | 47        | 178       | 50       | 189 | 53       | 201 | 55       | 208        | 24       |
|          | .135        | 3.43       | 20        | 76  | 28  | 106              | 34       | 129        | 39        | 148      | 44  | 167        | 48       | 182              | 52   | 197              | 53  | 201 | 55        | 208       | 58       | 220 | 62       | 235 | 65       | 246        | 28       |
|          | .145        | 3.68       | 23        | 88  | 32  | 121              | 39       | 148        | 45        | 170      | 50  | 189        | 55       | 208              | 60   | 227              | 62  | 235 | 64        | 242       | 68       | 257 | 71       | 269 | 75       | 284        | 32       |
|          | .155        | 3.94       | 26        | 98  | 36  | 136              | 45       | 170        | 51        | 193      | 57  | 216        | 63       | 238              | 68   | 257              | 70  | 265 | 73        | 276       | 77       | 291 | 81       | 307 | 85       | 322        | 36       |
|          | .165        | 4.19       | 29        | 110 | 41  | 155              | 50       | 189        | 58        | 220      | 65  | 246        | 71       | 269              | 77   | 291              | 80  | 303 | 82        | 310       | 87       | 329 | 92       | 348 | 97       | 367        | 41       |

For the most accurate nozzle selection, use the StoneAge Jetting App:

#### CARBIDE ATTACK TIPS

Carbide nozzles are a good selection for lower quality water or dirty water applications. They offer a high quality jet and great erosion resistance.

CNP2 1/8 NPT

#### **NOZZLE FLOW CHART**

|        |             |            |           |     |     |                  |     |            |           |     | PRE | SSU | RE (I | PSI 8            | & BA | R)               |     |            |           |     |     |     |               |     |     |            |     |
|--------|-------------|------------|-----------|-----|-----|------------------|-----|------------|-----------|-----|-----|-----|-------|------------------|------|------------------|-----|------------|-----------|-----|-----|-----|---------------|-----|-----|------------|-----|
|        | Nozzl       |            | 2,0<br>14 |     | 4,0 | <b>000</b><br>30 | 6,0 | <b>100</b> | 8,0<br>5! |     | 10, |     | 12,   | <b>000</b><br>30 | 14,  | <b>000</b><br>70 | ,   | <b>000</b> | 16,<br>11 |     | 18, | 000 | <b>20,</b> 14 |     | 22, | <b>000</b> | Cd  |
|        | in.<br>.018 | mm<br>0.46 | 0.4       | 2   | 0.6 | 2                | 0.7 | 3          | 0.8       | 3   | 0.9 | 3   | 1.0   | 4                | 1.0  | 4                | 1.1 | 4          | 1.1       | 4   | 1.2 | 5   | 1.2           | 5   | 1.3 | 5          | 0.6 |
|        | .020        | 0.40       | 0.4       | 2   | 0.0 | 3                | 0.7 | 3          | 1.0       | 4   | 1.1 | 4   | 1.2   | 5                | 1.3  | 5                | 1.3 | 5          | 1.5       | 6   | 1.5 | 6   | 1.5           | 6   | 1.6 | 6          | 0.0 |
|        | .020        | 0.56       | 0.6       | 2   | 0.7 | 3                | 1.0 | 4          | 1.2       | 5   | 1.3 | 5   | 1.4   | 5                | 1.5  | 6                | 1.6 | 6          | 1.6       | 6   | 1.7 | 6   | 1.8           | 7   | 1.9 | 7          | 0.7 |
|        | .024        | 0.61       | 0.7       | 3   | 1.0 | 4                | 1.2 | 5          | 1.4       | 5   | 1.6 | 6   | 1.7   | 6                | 1.8  | 7                | 1.9 | 7          | 2.0       | 8   | 2.1 | 8   | 2.2           | 8   | 2.3 | 9          | 1.0 |
|        | .026        | 0.66       | 0.8       | 3   | 1.2 | 5                | 1.4 | 5          | 1.6       | 6   | 1.8 | 7   | 2.0   | 8                | 2.1  | 8                | 2.2 | 8          | 2.3       | 9   | 2.4 | 9   | 2.6           | 10  | 2.7 | 10         | 1.1 |
|        | .029        | 0.74       | 1.0       | 4   | 1.4 | 5                | 1.7 | 6          | 2.0       | 8   | 2.3 | 9   | 2.5   | 10               | 2.7  | 10               | 2.8 | 11         | 2.9       | 11  | 3.0 | 11  | 3.2           | 12  | 3.4 | 13         | 1.4 |
|        | .032        | 0.81       | 1.2       | 5   | 1.7 | 6                | 2.1 | 8          | 2.5       | 10  | 2.8 | 11  | 3.0   | 11               | 3.3  | 13               | 3.4 | 13         | 3.5       | 13  | 3.7 | 14  | 3.9           | 15  | 4.1 | 16         | 1.7 |
|        | .035        | 0.89       | 1.5       | 6   | 2.1 | 8                | 2.6 | 10         | 3.0       | 11  | 3.3 | 13  | 3.6   | 14               | 3.9  | 15               | 4.0 | 15         | 4.2       | 16  | 4.4 | 17  | 4.7           | 18  | 4.9 | 19         | 2.1 |
| Ê      | .038        | 0.97       | 1.7       | 6   | 2.5 | 10               | 3.0 | 11         | 3.5       | 13  | 3.9 | 15  | 4.3   | 16               | 4.6  | 18               | 4.8 | 18         | 4.9       | 19  | 5.2 | 20  | 5.5           | 21  | 5.7 | 22         | 2.5 |
|        | .042        | 1.07       | 2.1       | 8   | 3.0 | 11               | 3.7 | 14         | 4.2       | 16  | 4.7 | 18  | 5.2   | 20               | 5.6  | 21               | 5.8 | 22         | 6.0       | 23  | 6.4 | 24  | 6.7           | 26  | 7.0 | 27         | 3.0 |
| Z<br>S | .047        | 1.19       | 2.7       | 10  | 3.8 | 14               | 4.6 | 18         | 5.3       | 20  | 5.9 | 22  | 6.5   | 25               | 7.0  | 27               | 7.3 | 28         | 7.5       | 29  | 8.0 | 30  | 8.4           | 32  | 8.8 | 34         | 3.8 |
| (GPM   | .052        | 1.32       | 3.3       | 13  | 4.6 | 18               | 5.6 | 21         | 6.5       | 25  | 7.3 | 28  | 8.0   | 30               | 8.6  | 33               | 8.9 | 34         | 9.2       | 35  | 9.8 | 37  | 10            | 38  | 11  | 42         | 4.6 |
|        | .057        | 1.45       | 3.9       | 15  | 5.5 | 21               | 6.8 | 26         | 7.8       | 30  | 8.7 | 33  | 9.6   | 37               | 10   | 38               | 11  | 42         | 11        | 42  | 12  | 46  | 12            | 46  | 13  | 50         | 5.5 |
| FLOW   | .063        | 1.60       | 4.8       | 18  | 6.8 | 26               | 8.3 | 32         | 9.6       | 37  | 11  | 42  | 12    | 46               | 13   | 50               | 13  | 50         | 14        | 53  | 14  | 53  | 15            | 57  | 16  | 61         | 6.8 |
| ᄪ      | .069        | 1.78       | 5.7       | 22  | 8.1 | 31               | 9.9 | 38         | 12        | 46  | 13  | 50  | 14    | 53               | 15   | 57               | 16  | 61         | 16        | 61  | 17  | 65  | 18            | 69  | 19  | 72         | 8.1 |
|        | .075        | 1.91       | 6.8       | 26  | 9.6 | 37               | 12  | 46         | 13        | 50  | 15  | 57  | 17    | 65               | 18   | 69               | 19  | 72         | 19        | 72  | 20  | 76  | 21            | 80  | 23  | 88         | 9.6 |
|        | .082        | 2.08       | 8.1       | 31  | 12  | 46               | 14  | 53         | 16        | 61  | 18  | 69  | 20    | 76               | 21   | 80               | 22  | 84         | 23        | 88  | 24  | 91  | 26            | 99  | 27  | 103        | 12  |
|        | .090        | 2.29       | 9.8       | 37  | 14  | 53               | 17  | 65         | 20        | 76  | 22  | 84  | 24    | 91               | 26   | 99               | 27  | 103        | 28        | 107 | 29  | 111 | 31            | 118 | 32  | 122        | 14  |
|        | .098        | 2.49       | 12        | 46  | 16  | 61               | 20  | 76         | 23        | 88  | 26  | 99  | 28    | 107              | 31   | 118              | 32  | 122        | 33        | 126 | 35  | 133 | 37            | 141 | 38  | 145        | 16  |
|        | .106        | 2.69       | 14        | 53  | 19  | 72               | 23  | 88         | 27        | 103 | 30  | 114 | 33    | 126              | 36   | 137              | 37  | 141        | 38        | 145 | 41  | 156 | 43            | 164 | 45  | 171        | 19  |
|        | .115        | 2.92       | 16        | 61  | 23  | 88               | 28  | 107        | 32        | 122 | 36  | 137 | 39    | 149              | 42   | 160              | 44  | 168        | 45        | 171 | 48  | 183 | 50            | 191 | 53  | 202        | 23  |
|        | .125        | 3.18       | 17        | 65  | 27  | 103              | 33  | 126        | 38        | 145 | 42  | 160 | 46    | 175              | 50   | 191              | 52  | 198        | 53        | 202 | 56  | 213 | 60            | 229 | 62  | 236        | 27  |
|        | .135        | 3.43       | 22        | 84  | 31  | 118              | 38  | 145        | 44        | 168 | 49  | 187 | 54    | 206              | 58   | 221              | 60  | 229        | 62        | 236 | 66  | 252 | 69            | 263 | 73  | 278        | 31  |
|        | .145        | 3.68       | 25        | 95  | 36  | 137              | 44  | 168        | 51        | 194 | 57  | 217 | 62    | 236              | 67   | 255              | 69  | 263        | 72        | 274 | 76  | 290 | 80            | 305 | 84  | 320        | 36  |
|        | .155        | 3.94       | 29        | 111 | 41  | 156              | 50  | 191        | 58        | 221 | 65  | 248 | 71    | 271              | 77   | 293<br>332       | 79  | 301        | 82        | 313 | 87  | 332 | 92            | 351 | 96  | 366        | 41  |
|        | .165        | 4.19       | 33        | 126 | 46  | 175              | 57  | 217        | 66        | 252 | 73  | 278 | 80    | 305              | 87   | 332              | 90  | 343        | 93        | 354 | 98  | 373 | 104           | 396 | 109 | 415        | 46  |

For the most accurate nozzle selection, use the StoneAge Jetting App:

#### OC8 CARBIDE NOZZLES

We recommend using our OC8 Holders and OC8 Carbide Inserts where filtration is poor, abrasive solids are present or for very high flow applications. Replaceable carbide inserts are available in large orifice diameters to handle high flows and contain a long taper to provide excellent jet quality.



The **OC8 P8** Holder and OC Carbide Inserts for 15K psi, 1/2 NPT female connection.



The **OC8 P12** Holder and OC Carbide Inserts for 15K psi, 3/4 NPT female connection.



The **OC8 G12** Holder and OC Carbide Inserts for 22K psi, G12 female connection.

#### **NOZZLE FLOW CHART**

|          |        |              |     |                  |     |                  |     |                  |     |                  | PRE | SSU              | RE (                        | PSI 8            | & BA | R)               |     |            |    |           |    |            |     |                  |     |                   |    |
|----------|--------|--------------|-----|------------------|-----|------------------|-----|------------------|-----|------------------|-----|------------------|-----------------------------|------------------|------|------------------|-----|------------|----|-----------|----|------------|-----|------------------|-----|-------------------|----|
|          | Nozzlo | e Size<br>mm | ,   | <b>100</b><br>40 | ,   | <b>000</b><br>80 | ,   | <b>000</b><br>10 | ,   | <b>000</b><br>50 | ,   | <b>000</b><br>00 | ,                           | <b>000</b><br>30 | ,    | <b>000</b><br>70 | ,   | <b>000</b> | ,  | 000<br>00 | •  | 000<br>200 | ,   | <b>000</b><br>00 | ,   | 0 <b>00</b><br>00 | Cd |
|          | .063   | 1.60         | 4.8 | 18               | 6.7 | 26               | 8.2 | 31               | 9.5 | 36               | 11  | 42               | 12                          | 46               | 13   | 50               | 13  | 50         | 14 | 53        | 14 | 53         | 15  | 57               | 16  | 61                | 7  |
|          | .075   | 1.91         | 6.8 | 26               | 9.6 | 37               | 12  | 46               | 14  | 53               | 15  | 57               | 17                          | 65               | 18   | 69               | 19  | 72         | 19 | 72        | 20 | 76         | 21  | 80               | 22  | 84                | 10 |
| 2        | .085   | 2.16         | 8.7 | 33               | 12  | 46               | 15  | 57               | 17  | 65               | 19  | 72               | 21                          | 80               | 23   | 88               | 24  | 91         | 25 | 95        | 26 | 99         | 28  | 107              | 129 | 492               | 12 |
| & L/MIN) | .095   | 2.41         | 11  | 42               | 15  | 57               | 19  | 72               | 22  | 84               | 24  | 91               | 27                          | 103              | 29   | 111              | 30  | 114        | 31 | 118       | 33 | 126        | 33  | 126              | 36  | 137               | 15 |
|          | .105   | 2.67         | 13  | 50               | 19  | 72               | 23  | 88               | 27  | 103              | 30  | 114              | 33                          | 126              | 35   | 133              | 36  | 137        | 38 | 145       | 40 | 152        | 42  | 160              | 44  | 168               | 19 |
| (GPM     | .125   | 3.18         | 19  | 72               | 27  | 103              | 33  | 126              | 38  | 145              | 42  | 160              | 46                          | 175              | 50   | 191              | 52  | 198        | 53 | 202       | 56 | 213        | 60  | 229              | 62  | 236               | 27 |
|          | .145   | 3.68         | 25  | 95               | 36  | 137              | 44  | 168              | 50  | 191              | 57  | 217              | 62                          | 236              | 67   | 255              | 69  | 263        | 72 | 274       | 76 | 290        | 80  | 305              | 84  | 320               | 36 |
| FLOW     | .165   | 4.19         | 33  | 126              | 46  | 175              | 56  | 213              | 66  | 252              | 73  | 278              | 80                          | 305              | 87   | 332              | 90  | 343        | 93 | 354       | 98 | 373        | 104 | 396              | 109 | 415               | 46 |
| Ξ        | .175   | 4.45         | 37  | 141              | 52  | 198              | 64  | 244              | 74  | 282              | 82  | 313              | 90                          | 343              | 98   | 373              | 101 | 385        |    |           |    |            |     |                  |     |                   | 52 |
|          | .190   | 4.83         | 43  | 164              | 61  | 232              | 75  | 286              | 87  | 332              | 97  | 370              | 70 106 404 115 438 119 454  |                  |      |                  |     |            |    |           |    |            |     | 61               |     |                   |    |
|          | .200   | 5.08         | 48  | 183              | 68  | 259              | 83  | 316              | 96  | 366              | 108 | 412              | 112 118 450 127 484 132 503 |                  |      |                  |     |            |    |           |    |            |     | 68               |     |                   |    |
|          | .215   | 5.46         | 56  | 213              | 79  | 301              | 96  | 366              | 111 | 423              | 124 | 473              | 73                          |                  |      |                  |     |            |    |           |    |            |     | 78               |     |                   |    |
|          | .235   | 5.97         | 66  | 252              | 94  | 358              | 115 | 438              | 133 | 507              | 149 | 568              | 568                         |                  |      |                  |     |            |    |           |    |            |     |                  |     | 94                |    |
|          | .250   | 6.35         | 75  | 286              | 106 | 404              | 130 | 495              | 150 | 572              | 168 | 8 640            |                             |                  |      |                  |     |            |    |           |    |            |     |                  | 106 |                   |    |

For the most accurate nozzle selection, use the StoneAge Jetting App:

#### OCV & OCIH CARBIDE NOZZLES

We recommend using carbide nozzle tips where filtration is poor, abrasive solids are present, or for very high flow.

# OCV & OCIH 1/4 NPT

#### **NOZZLE FLOW CHART**

|           |             |            |     |            |     |                  |     |           | PR  | ESSU              | RE (F | PSI &      | BAR | )                |     |                  |     |            |     |     |             |     |     |
|-----------|-------------|------------|-----|------------|-----|------------------|-----|-----------|-----|-------------------|-------|------------|-----|------------------|-----|------------------|-----|------------|-----|-----|-------------|-----|-----|
|           |             | e Size     | , , | <b>100</b> | , - | <b>000</b><br>BO | 6,0 | <b>10</b> | -,  | 0 <b>00</b><br>50 | -,    | <b>000</b> | ,   | <b>000</b><br>30 | ,   | <b>000</b><br>70 | -,  | <b>000</b> | -,  | 000 | <b>20</b> , | 000 | #   |
|           | in.<br>.024 | mm<br>0.61 | 0.7 | 3          | 1.0 | 4                | 1.2 | 4.5       | 1.4 | 5<br>5            | 1.6   | 6          | 1.7 | 6                | 1.8 | 7                | 2.0 | 8          | 2.1 | 8   | 2.2         | 8   | 1.0 |
|           |             |            | 0.7 | 3          | 1.0 |                  | 1.6 |           |     |                   |       |            |     |                  |     | ,                |     |            |     | 11  |             | _   |     |
|           | .028        | 0.71       |     | -          |     | 5                |     | 5         | 1.9 | 7                 | 2.1   | 8          | 2.3 | 9                | 2.5 | 10               | 2.7 | 10         | 2.8 |     | 3.0         | 11  | 0.7 |
|           | .031        | 0.79       | 1.2 | 5          | 1.6 | 6                | 2.0 | 8         | 2.3 | 9                 | 2.6   | 10         | 2.8 | 11               | 3.1 | 12               | 3.3 | 13         | 3.5 | 13  | 3.7         | 14  | 1.6 |
|           | .036        | 0.91       | 1.7 | 6          | 2.4 | 9                | 3.0 | 11        | 3.4 | 13                | 3.8   | 14         | 4.2 | 16               | 4.5 | 17               | 4.8 | 18         | 5.1 | 19  | 5.4         | 20  | 2.4 |
| 2         | .039        | 0.99       | 1.8 | 7          | 2.6 | 10               | 3.2 | 12        | 3.7 | 14                | 4.1   | 16         | 4.5 | 17               | 4.9 | 19               | 5.2 | 20         | 5.5 | 21  | 5.8         | 22  | 2.6 |
| L/MIN)    | .043        | 1.09       | 2.2 | 8          | 3.2 | 12               | 3.9 | 15        | 4.5 | 17                | 5.0   | 19         | 5.5 | 21               | 5.9 | 22               | 6.3 | 24         | 6.7 | 25  | 7.0         | 26  | 3.2 |
| ∞ర        | .047        | 1.19       | 2.7 | 10         | 3.8 | 14               | 4.6 | 18        | 5.3 | 20                | 6.0   | 23         | 6.5 | 25               | 7.0 | 26               | 7.5 | 28         | 8.0 | 30  | 8.4         | 32  | 3.8 |
| (GPM      | .055        | 1.40       | 3.6 | 14         | 5.2 | 20               | 6.3 | 24        | 7.3 | 28                | 8.1   | 31         | 8.9 | 34               | 9.6 | 36               | 10  | 38         | 11  | 42  | 12          | 45  | 5.2 |
| <b>(G</b> | .062        | 1.57       | 4.6 | 18         | 6.5 | 25               | 8.0 | 30        | 9.3 | 35                | 10    | 38         | 11  | 42               | 12  | 45               | 13  | 49         | 14  | 53  | 15          | 57  | 6.5 |
| FLOW      | .067        | 1.70       | 5.4 | 20         | 7.6 | 29               | 9.4 | 36        | 11  | 42                | 12    | 45         | 13  | 19               | 14  | 53               | 15  | 57         | 16  | 61  | 17          | 64  | 7.6 |
| 료         | .073        | 1.85       | 6.4 | 24         | 9.1 | 34               | 11  | 42        | 13  | 49                | 14    | 53         | 16  | 61               | 17  | 64               | 18  | 68         | 19  | 72  | 20          | 76  | 9.1 |
|           | .078        | 1.98       | 7.3 | 28         | 10  | 38               | 13  | 49        | 15  | 57                | 16    | 61         | 18  | 68               | 19  | 72               | 21  | 79         | 22  | 83  | 23          | 87  | 10  |
|           | .089        | 2.26       | 9.5 | 36         | 14  | 53               | 16  | 61        | 19  | 72                | 21    | 79         | 23  | 87               | 25  | 95               | 27  | 102        | 29  | 110 | 30          | 114 | 14  |
|           | .093        | 2.36       | 10  | 38         | 15  | 57               | 18  | 68        | 21  | 79                | 23    | 87         | 26  | 98               | 28  | 106              | 30  | 114        | 31  | 117 | 33          | 125 | 15  |
|           | .106        | 2.69       | 14  | 53         | 19  | 72               | 23  | 87        | 27  | 102               | 30    | 114        | 33  | 125              | 36  | 136              | 38  | 144        | 41  | 155 | 43          | 163 | 19  |
|           | .125        | 3.18       | 19  | 72         | 27  | 102              | 33  | 125       | 38  | 144               | 42    | 159        | 46  | 174              | 50  | 189              | 53  | 201        | 56  | 212 | 60          | 227 | 27  |
|           | .140        | 3.56       | 24  | 91         | 33  | 125              | 41  | 155       | 47  | 178               | 53    | 201        | 58  | 220              | 62  | 235              | 67  | 254        | 71  | 269 | 75          | 284 | 33  |
|           | .155        | 3.94       | 29  | 110        | 40  | 151              | 49  | 185       | 57  | 216               | 64    | 242        | 70  | 265              | 76  | 288              | 83  | 314        | 88  | 333 | 93          | 352 | 41  |

For the most accurate nozzle selection, use the StoneAge Jetting App:

# SAPPHIRE NOZZLES







**OS4** 1/4-28 NF

**OS6** 3/8-24 NF

**OS7** 7/16-20 NF

#### **NOZZLE FLOW CHART**

|                    |       |        |      |     |     |     |      |     |      |     | D          | DEC | CHDI | /D0 | SI & I     | DΛD |      |     |      |     |      |     |      |     |    |        |      |
|--------------------|-------|--------|------|-----|-----|-----|------|-----|------|-----|------------|-----|------|-----|------------|-----|------|-----|------|-----|------|-----|------|-----|----|--------|------|
|                    | Nozzi | e Size | 20.0 | 000 | 22, | 000 | 24.0 | 000 | 26,0 | 000 | 28.0       |     | 30.0 | •   | 32,0       |     | 34,0 | 000 | 36,0 | 000 | 38.0 | 000 | 40.0 | 000 | Δν | ailabi | litv |
|                    | in.   | mm     | 14   |     | 15  |     | 17   |     | 18   |     | 20,0<br>19 |     | 21   |     | 32,t<br>22 |     | 23   |     | 25   |     | 26   |     | 28   |     |    | 0S6    |      |
|                    | .009  | 0.23   | 0.2  | 1   | 0.2 | 1   | 0.2  | 1   | 0.3  | 1   | 0.3        | 1   | 0.3  | 1   | 0.3        | 1   | 0.3  | 1   | 0.3  | 1   | 0.3  | 1   | 0.3  | 1   |    | •      |      |
|                    | .010  | 0.25   | 0.3  | 1   | 0.3 | 1   | 0.3  | 1   | 0.3  | 1   | 0.3        | 1   | 0.3  | 1   | 0.4        | 2   | 0.4  | 2   | 0.4  | 2   | 0.3  | 1   | 0.4  | 2   |    | •      |      |
|                    | .011  | 0.28   | 0.3  | 1   | 0.4 | 2   | 0.4  | 2   | 0.4  | 2   | 0.4        | 2   | 0.4  | 2   | 0.4        | 2   | 0.4  | 2   | 0.5  | 2   | 0.5  | 2   | 0.5  | 2   |    | •      | •    |
|                    | .012  | 0.30   | 0.4  | 2   | 0.4 | 2   | 0.4  | 2   | 0.4  | 2   | 0.5        | 2   | 0.5  | 2   | 0.5        | 2   | 0.5  | 2   | 0.5  | 2   | 0.6  | 2   | 0.6  | 2   | •  | •      | •    |
|                    | .013  | 0.33   | 0.5  | 2   | 0.5 | 2   | 0.5  | 2   | 0.5  | 2   | 0.6        | 2   | 0.6  | 2   | 0.6        | 2   | 0.6  | 2   | 0.6  | 2   | 0.6  | 2   | 0.7  | 3   | •  | •      | •    |
|                    | .014  | 0.36   | 0.5  | 2   | 0.6 | 2   | 0.6  | 2   | 0.6  | 2   | 0.6        | 2   | 0.7  | 3   | 0.7        | 3   | 0.7  | 3   | 0.7  | 3   | 0.7  | 3   | 0.8  | 3   | •  | •      | •    |
|                    | .015  | 0.38   | 0.6  | 2   | 0.7 | 3   | 0.7  | 3   | 0.7  | 3   | 0.7        | 3   | 0.8  | 3   | 0.9        | 3   | 0.8  | 3   | 0.8  | 3   | 0.9  | 3   | 0.9  | 3   | •  | •      | •    |
| 2                  | .016  | 0.41   | 0.7  | 3   | 0.7 | 3   | 0.8  | 3   | 0.8  | 3   | 0.8        | 3   | 0.9  | 3   | 0.9        | 3   | 0.9  | 3   | 1.0  | 4   | 1.0  | 4   | 1.0  | 4   | •  | •      | •    |
| FLOW (GPM & L/MIN) | .017  | 0.43   | 0.8  | 3   | 0.8 | 3   | 0.9  | 3   | 0.9  | 3   | 0.9        | 3   | 1.0  | 4   | 1.0        | 4   | 1.0  | 4   | 1.1  | 4   | 1.1  | 4   | 1.1  | 4   | •  | •      | •    |
| ~<br>%             | .018  | 0.46   | 0.9  | 3   | 0.9 | 3   | 1.0  | 4   | 1.0  | 4   | 1.1        | 4   | 1.1  | 4   | 1.1        | 4   | 1.2  | 5   | 1.2  | 5   | 1.2  | 5   | 1.3  | 5   | •  | •      | •    |
| P                  | .019  | 0.48   | 1.0  | 4   | 1.0 | 4   | 1.1  | 4   | 1.1  | 4   | 1.2        | 5   | 1.2  | 5   | 1.3        | 5   | 1.3  | 5   | 1.3  | 5   | 1.4  | 5   | 1.4  | 5   | •  | •      | •    |
| 9)                 | .020  | 0.51   | 1.1  | 4   | 1.2 | 5   | 1.2  | 5   | 1.3  | 5   | 1.3        | 5   | 1.4  | 5   | 1.4        | 5   | 1.4  | 5   | 1.5  | 6   | 1.5  | 6   | 1.6  | 6   | •  | •      | •    |
| 6                  | .021  | 0.53   | 1.2  | 5   | 1.3 | 5   | 1.3  | 5   | 1.4  | 5   | 1.4        | 5   | 1.5  | 6   | 1.5        | 6   | 1.6  | 6   | 1.6  | 6   | 1.7  | 6   | 1.7  | 6   | •  | •      | •    |
| ш                  | .022  | 0.56   | 1.3  | 5   | 1.4 | 5   | 1.5  | 6   | 1.5  | 6   | 1.6        | 6   | 1.6  | 6   | 1.7        | 6   | 1.7  | 6   | 1.8  | 7   | 1.8  | 7   | 1.9  | 7   | •  | •      | •    |
|                    | .023  | 0.58   | 1.5  | 6   | 1.5 | 6   | 1.6  | 6   | 1.7  | 6   | 1.7        | 6   | 1.7  | 6   | 1.8        | 7   | 1.9  | 7   | 1.9  | 7   | 2.0  | 8   | 2.0  | 8   | •  | •      | •    |
|                    | .024  | 0.61   | 1.6  | 6   | 1.7 | 6   | 1.7  | 6   | 1.8  | 7   | 1.9        | 7   | 1.9  | 7   | 2.0        | 8   | 2.1  | 8   | 2.1  | 8   | 2.2  | 8   | 2.2  | 8   | •  | •      | •    |
|                    | .025  | 0.64   | 1.7  | 6   | 1.8 | 7   | 1.9  | 7   | 2.0  | 8   | 2.0        | 8   | 2.1  | 8   | 2.2        | 8   | 2.2  | 8   | 2.3  | 9   | 2.4  | 9   | 2.4  | 9   | •  | •      | •    |
|                    | .026  | 0.66   | 1.9  | 7   | 1.9 | 7   | 2.0  | 8   | 2.1  | 8   | 2.2        | 8   | 2.3  | 9   | 2.3        | 9   | 2.4  | 9   | 2.5  | 10  | 2.6  | 10  | 2.6  | 10  | •  | •      |      |
|                    | .027  | 0.69   | 2.0  | 8   | 2.1 | 8   | 2.2  | 8   | 2.3  | 9   | 2.4        | 9   | 2.5  | 10  | 2.5        | 10  | 2.6  | 10  | 2.7  | 10  | 2.8  | 11  | 2.8  | 11  | •  | •      |      |
|                    | .028  | 0.71   | 2.2  | 8   | 2.3 | 9   | 2.4  | 9   | 2.5  | 10  | 2.6        | 10  | 2.5  | 10  | 2.7        | 10  | 2.8  | 11  | 2.9  | 11  | 3.0  | 11  | 3.1  | 12  | •  | •      | •    |
|                    | .031  | 0.79   | 2.6  | 10  | 2.8 | 11  | 2.9  | 11  | 3.0  | 11  | 3.1        | 12  | 3.2  | 12  | 3.3        | 13  | 3.4  | 13  | 3.5  | 13  | 3.6  | 14  | 3.7  | 14  | •  | •      | •    |
|                    | .033  | 0.84   | 3.0  | 11  | 3.1 | 12  | 3.3  | 13  | 3.4  | 13  | 3.5        | 13  | 3.7  | 14  | 3.8        | 14  | 3.9  | 15  | 4.0  | 15  | 4.1  | 16  | 4.2  | 16  |    |        | •    |
|                    | .034  | 0.86   | 3.2  | 12  | 3.3 | 13  | 3.5  | 13  | 3.6  | 14  | 3.8        | 14  | 3.9  | 15  | 4.0        | 15  | 4.2  | 16  | 4.3  | 16  | 4.4  | 17  | 4.5  | 17  | •  | •      |      |
|                    | .035  | 0.89   | 3.4  | 13  | 3.5 | 13  | 3.7  | 14  | 3.8  | 14  | 4.0        | 15  | 4.1  | 16  | 4.3        | 16  | 4.4  | 17  | 4.5  | 17  | 4.6  | 18  | 4.8  | 18  | •  |        | •    |

For the most accurate nozzle selection, use the StoneAge Jetting App:

#### FITTING SIZE REFERENCE

#### **NATIONAL PIPE TAPER (NPT)**

ACTUAL SIZE



#### TYPE M



### FITTING SIZE REFERENCE

#### **MEDIUM PRESSURE (MP) ACTUAL SIZE** SINGLE PIECE MALE • ACTUAL SIZE 3/4" 9/16" 3/8" 1/4" **GLANDS& COLLARS •** ACTUAL SIZE 3/4" 9/16" 3/8" 1/4" LANCES • ACTUAL SIZE 3/4" 9/16" 3/8" 1/4" 3/4" 9/16" 3/8" 1/4"

### FITTING SIZE REFERENCE

# **HIGH PRESSURE (HP) ACTUAL SIZE** SINGLE PIECE MALE • ACTUAL SIZE 9/16" 3/8" 1/4" **GLANDS& COLLARS •** ACTUAL SIZE 3/8" 1/4" 9/16" **LANCES** • ACTUAL SIZE 9/16" 3/8" 1/4" 9/16" 3/8" 1/4" **RIGHT-HAND THREADS LEFT-HAND THREADS**

#### THREAD ENGAGEMENT



#### TUBE ID SPECIFICATIONS

|      |        | Gauge   |      | 1     | 0    | 1     | 1    | 1     | 2    | 1     | 3    | 1-    | 4    | 1     | 5    | 1     | 6    |
|------|--------|---------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
|      |        | Wall    |      | 0.134 | 3.4  | 0.120 | 3.1  | 0.109 | 2.8  | 0.095 | 2.4  | 0.083 | 2.1  | 0.072 | 1.8  | 0.065 | 1.7  |
|      |        | Tube OD |      | in.   | mm   |       |      |       |      |       |      |       |      |       |      |       |      |
|      | 5/8"   | 0.625   | 19.1 | 0.357 | 9.1  | 0.385 | 9.8  | 0.407 | 10.3 | 0.435 | 11.0 | 0.459 | 11.7 | 0.481 | 12.2 | 0.495 | 12.6 |
|      | 3/4"   | 0.750   | 21.2 | 0.482 | 12.2 | 0.510 | 12.6 | 0.532 | 13.5 | 0.560 | 14.2 | 0.584 | 14.8 | 0.606 | 15.4 | 0.620 | 15.7 |
|      | 7/8"   | 0.875   | 22.2 | 0.607 | 15.4 | 0.635 | 16.1 | 0.657 | 16.7 | 0.685 | 17.4 | 0.709 | 18.0 | 0.731 | 18.6 | 0.745 | 18.9 |
| TUBE | 1"     | 1.000   | 25.4 | 0.732 | 18.6 | 0.760 | 19.3 | 0.782 | 19.9 | 0.810 | 20.6 | 0.834 | 21.2 | 0.856 | 21.7 | 0.870 | 22.1 |
| -    | 1 1/8" | 1.125   | 28.6 | 0.857 | 21.8 | 0.885 | 22.5 | 0.907 | 23.0 | 0.935 | 23.7 | 0.959 | 24.4 | 0.981 | 24.9 | 0.995 | 25.3 |
|      | 1 1/4" | 1.250   | 37.6 | 0.982 | 24.9 | 1.010 | 25.7 | 1.032 | 26.2 | 1.060 | 26.9 | 1.084 | 27.5 | 1.106 | 28.1 | 1.120 | 28.4 |
|      | 1 1/2" | 1.500   | 38.1 | 1.232 | 31.3 | 1.260 | 32.0 | 1.282 | 32.6 | 1.310 | 33.3 | 1.334 | 33.9 | 1.356 | 34.4 | 1.370 | 34.8 |
|      | 1 3/4" | 1.750   | 44.5 | 1.482 | 37.6 | 1.510 | 38.4 | 1.532 | 38.9 | 1.560 | 39.6 | 1.584 | 40.2 | 1.606 | 40.8 | 1.620 | 41.1 |
|      | 2"     | 2.000   | 50.8 | 1.732 | 44.0 | 1.760 | 44.7 | 1.782 | 45.3 | 1.810 | 46.0 | 1.834 | 46.6 | 1.856 | 47.1 | 1.870 | 47.5 |
|      | in. mm |         |      |       |      |       |      |       |      |       | •    |       |      |       |      |       |      |

TUBE ID = OD - (WALL THICKNESS X 2)

#### TORQUE RECOMMENDATIONS

| CONNECTION      | THREAD SIZE     |         | MENDED<br>Que |
|-----------------|-----------------|---------|---------------|
| High Pressure   |                 | ft-lb   | Nm            |
| 1/4"            | 9/16" - 18thd   | 25      | 34            |
| 3/8"            | 3/4" - 16thd    | 50      | 68            |
| 9/16"           | 1 1/8" - 12thd  | 75      | 102           |
| Medium Pressure |                 | ft-lb   | Nm            |
| 1/4"            | 7/16" - 20thd   | 20      | 27            |
| 3/8"            | 9/16" - 18thd   | 30      | 41            |
| 9/16"           | 13/16" - 16thd  | 85      | 115           |
| 3/4"            | 3/4" NPSM       | 90      | 122           |
| 1"              | 1 3/8" - 12thd  | 125     | 169           |
| Type "M" Swivel |                 | ft-lb   | Nm            |
| A9              | 9/16" - 18thd   | 25-30   | 34-41         |
| A12             | 3/4" - 16thd    | 40-50   | 54-68         |
| A14             | 7/8" - 14thd    | 50-60   | 68-81         |
| A16             | 1" - 12thd      | 75-85   | 102-115       |
| A21             | 1 5/16" - 12thd | 100-120 | 136-163       |

#### STANDARD UNIT ABBREVIATIONS

| PRESSURE                     | FLOW                       | DISTANCE         | WEIGHT         | TEMPERATURE            |
|------------------------------|----------------------------|------------------|----------------|------------------------|
| psi = pounds per square inch | gpm = gallons per minute   | in. = inches     | lb = pounds    | °F = degree Fahrenheit |
| b = bar                      | I/min = liters per minute  | ft = feet        | kg = kilograms | °C = degree Celsius    |
|                              | Cv = flow coefficient      | mm = millimeters |                |                        |
|                              | Cd = discharge coefficient | cm = centimeters |                |                        |
|                              |                            | m = meters       |                |                        |

#### THREAD ABBREVIATIONS

| <b>NPT</b> = National Pipe Thread     | MP = Medium Pressure Cone & Thread Connection           | <b>G9</b> = 9/16 Thread w/ O-ring Groove Face Seal |  |  |
|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|--|--|
| NPTM = National Pipe Thread Male      | <b>HP</b> = High Pressure Cone & Thread Connection      | G12 = 3/4 Thread w/ O-ring Groove Face Seal        |  |  |
| NPTF = National Pipe Thread Female    | <b>LH</b> = Left-hand Direct Tube-end Thread Connection | G16 = 1-12 UNF Thread w/ O-Ring Groove Face Seal   |  |  |
| BSPP = British Standard Parallel Pipe | RH = Right-hand Direct Tube-end Thread Connection       | K = 1-1/8 Thread w/ O-ring Groove Face Seal        |  |  |

#### MEASUREMENT CONVERSIONS

| FROM                | то                  | MULTIPLY BY |
|---------------------|---------------------|-------------|
| meters (m)          | feet (ft)           | 3.281       |
| feet (ft)           | meters (m)          | 0.3048      |
| millimeters (mm)    | inches (in.)        | 0.0394      |
| inches (in.)        | millimeters (mm)    | 25.4        |
| l/min               | gpm (US)            | 0.2642      |
| I/min               | gpm (Brit)          | 0.2200      |
| gpm (US)            | I/min               | 3.785       |
| gpm (Brit)          | I/min               | 4.546       |
| gpm (US)            | gpm (Brit)          | 0.8327      |
| gpm (Brit)          | gpm (US)            | 1.201       |
| bar                 | psi                 | 14.5        |
| psi                 | bar                 | 0.0689      |
| kilograms (kg)      | pounds (mass) (lb)  | 2.205       |
| pounds (mass) (lb)  | kilograms (kg)      | 0.4536      |
| newtons (N)         | pounds (force) (lb) | 0.2248      |
| pounds (force) (lb) | newtons (N)         | 4.448       |
| kilowatts (kW)      | horsepower (hp)     | 1.341       |
| horsepower (hp)     | kilowatts (kW)      | 0.7457      |

### PRESSURE & FLOW EQUATIONS

| Q = Flow in gpm        | $Q = 29.92 \times d^2 \times P^{1/2} \times Cd$                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------|
| V = Velocity in ft/sec | $V = 12.186 \text{ x P}^{1/2} = \text{Cd x .4085 x Q/d}^2$                                                     |
| P = Pressure in psi    | $P = .00112 \times Q^2/(d^4 \times Cd^2)$                                                                      |
| Hp = Horsepower        | $Hp = .0174 \times d^2 \times P^{3/2} \times Cd$ , $\approx P \times Q/1714$                                   |
| Cv = Flow Coefficient  | $Cv = Q/\Delta P^{1/2}$ , = 53 x (D2.5/L <sup>1/2</sup> )                                                      |
| ΔP = Pressure Drop     | $\Delta P = (Q/Cv)^2$                                                                                          |
| F = Thrust in lb       | $F = TT/2 \times d^2 \times P \times Cd$ , = .052 x $P^{1/2} \times Q$ , $\approx$ .0018 x $(Q/D)^2 \times Cd$ |
| ΔT = Temp Change °F    | ΔT =ΔP/337.6                                                                                                   |

#### For all equations:

- L = Tube length in feet
- D = Tube ID in inches
- d = Orifice diameter in inches
- Cd = Discharge Coefficient
  - Cd = 0.90 for long cone orifice
  - Cd = 0.70 for drilled steel orifice
  - Cd = 0.65 for sapphire orifice









