Семинар 13 (5.12.2022)

Краткое содержание

Сначала разобрали следующую типовую задачу: дана линейно независимая система векторов $v_1, \ldots, v_m \in F^n$, требуется дополнить её до базиса всего пространства F^n .

ВНИМАНИЕ, 2212 ГРУППА, Я ЭТОТ МЕТОД НА СЕМИНАРЕ ОБЬЯСНИЛА НЕПРАВИЛЬНО, ЧИТАЕМ КОНСПЕКТ И ПОНИМАЕМ!!!

Первый способ (не оптимальный):

- 1. приписать к векторам-столбцам v_1,\ldots,v_m векторы стандартного базиса e_1,\ldots,e_n
- 2. привести матрицу к ступенчатому виду элементарными преобразованиями строк
- 3. Если теперь рассмотреть столбцы, содержащие ведущие элементы строк, то соответствующие им векторы исходной системы $v_1, \ldots, v_m, e_1, \ldots, e_n$ и будут образовывать искомый базис

Последнее утверждение справедливо по мотивам предыдущего семинара, где мы с вами повторили, что при элементарных преобразованиях строк линейные зависимости между столбцами сохраняются.

ИТОГО. ГДЕ Я ВАС ОБМАНУЛА: над получившейся матрицей, где по столбцам записаны $v_1, \ldots, v_m, e_1, \ldots, e_n$, надо делать преобразования НЕ ПО СТОЛБЦАМ, а по СТРОЧКАМ.

В качестве примера рассмотрим, как данный алгоритм работает на векторах $v_1=(1,2,3,4)$ и $v_2=(2,4,5,6)$:

1. приписываю векторы e_1, \ldots, e_4 :

$$\begin{pmatrix}
1 & 2 & 1 & 0 & 0 & 0 \\
2 & 4 & 0 & 1 & 0 & 0 \\
3 & 5 & 0 & 0 & 1 & 0 \\
4 & 6 & 0 & 0 & 0 & 1
\end{pmatrix}$$

2. элементарными преобразованиями строк привожу к ступенчатому виду:

$$\begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 1 & 0 & 0 \\ 3 & 5 & 0 & 0 & 1 & 0 \\ 4 & 6 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 & 1 \end{pmatrix}$$

3. столбцы, содержащие ведущие элементы строк, — это 1, 2, 3, 4. на 1 и 2 столбцах и так стояли мои линейно независимые v_1, v_2 . а вот их дополнением стали векторы на столбцах 3 и 4, то есть $e_1 = (1,0,0,0)$ и $e_2 = (0,1,0,0)$.

Второй способ (быстрый): Более быстрый алгоритм использует следующее ключевое соображение, уже обсуждавшееся нами ранее: при элементарных преобразованиях системы векторов сохраняется её линейная оболочка. Алгоритм будет следующим:

- 1. записать векторы в столбцы матрицы
- 2. элементарными преобразованиями **столбцов** привести матрицу к транспонированному ступенчатому виду
- 3. дополнить полученную систему до базиса F^n векторами стандартного базиса, номера которых не являются номерами ведущих элементов столбцов полученного транспонированного ступенчатого вида. другими словами, дополнить теми векторами из стандартного базиса, которые «заполняют недостающие ступеньки вашей матрицы»

В результате применения данного алгоритма для тех же векторов $v_1 = (1,2,3,4)$ и $v_2 = (2,4,5,6)$ дополняющими до базиса всего F^4 получаются векторы $e_2 = (0,1,0,0)$ и $e_4 = (0,0,0,1)$. (Обратите внимание, что дополнение до базиса не единственно!)

Дальше перешли к понятию ранга системы векторов и ранга матрицы. Разобрали базовые свойства ранга матрицы и алгоритм его вычисления для заданной матрицы:

- 1. привести матрицу к ступенчатому виду элементарными преобразованиями строк
- 2. ранг равен числу ненулевых строк в ступенчатом виде

Доказали соотношение $\operatorname{rk}(A+B) \leqslant \operatorname{rk} A + \operatorname{rk} B$ и вывели из него соотношение $\operatorname{rk}(A-B) \geqslant$ $\operatorname{rk} A - \operatorname{rk} B$. Обсудили, что нулевая матрица является единственной матрицей ранга 0 и что матрицы ранга 1 — это в точности матрицы, представимые в виде произведения ненулевого столбца на ненулевую строку.

Обсудили, что всякая матрица ранга r представима в виде суммы r матриц ранга 1 и не представима в виде суммы меньшего числа таких матриц. Алгоритм нахождения такого представления для конкретной матрицы A:

- 1. найти максимальную линейно независимую систему столбцов $A^{(i_1)}, \dots, A^{(i_r)}$
- 2. выразить через неё все остальные столбцы из A
- 3. записать в j-й столбец k-го слагаемого ту компоненту разложения столбца $A^{(j)}$, которая пропорциональна столбцу $A^{(i_k)}$.

Применили этот алгоритм для матрицы $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 3 & -3 & 2 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix}$, нашли ее ранг и разложили её в сумму двух матриц ранга 1.

 \Diamond

Домашнее задание к семинару 14. Дедлайн 12.12.2022

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

- 1. K34.14(a,6)
- 2. K7.2(б,в).
- 3. $\Pi 624$
- 4. Π628
- 5. Докажите, что $\operatorname{rk}(AB) \leqslant \min(\operatorname{rk}(A),\operatorname{rk}(B))$ для любых матриц $A \in \operatorname{Mat}_{m \times n}(F), B \in \operatorname{Mat}_{n \times p}(F)$.
- 6. Найдите ранг r матрицы из номера $\Pi 608$ и представьте её в виде суммы r матриц ранга 1.
- 7. Дана матрица $A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ -1 & 1 & 0 & 3 \\ 1 & 1 & 2 & 1 \end{pmatrix}$. Найдите все возможные значения величины $\operatorname{rk}(A+B)$,

где B — матрица того же размера и rk B = 1. Ответ обоснуйте.

8. Про матрицу A размера 5×5 известно, что её ранг равен 3. Какие значения может принимать ранг матрицы A + E?