

FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Yazılım Mühendisliği Bölümü

YMH418 – Yaz. Müh. Güncel Konular Doc.Dr. Fatih ÖZKAYNAK

Veri Bilimi Rapor-4

15542507 - Neslihan KOLUKISA

İçerik:

- 1. Korelasyon Uygulama
- 2. Tatil Olan Bir Günü ve Tatil Olmayan Bir Günün Kıyaslanması

Korelasyon Uygulama

Veri setin de anlamlı özelliklerin seçilmesine yardımcı olmak için araştırılan alanda konu bilgisine sahip olmanın oldukça yararlıdır.

Korelasyon, herhangi iki değer dizisi (seri) arasındaki doğrusal ilişkiyi gösterir. Korelasyon uygulanarak rüzgar hızı ile bağıl nem arasındaki ilişki incelenecektir. Diğer özelliklerde incelenmiş fakat uzun olduğundan dolayı eklenmemiştir.

In [61]:

```
import pandas as pd
df = pd.read_csv("export_dataframe.csv")
df.head(3)
```

Out[61]:

	Tarih	ASPM10	ASSO2	ASNO2	ANOX	ASNO	ASPM25	AKPM10	AKPM10Debi	Α
0	20.12.2019	45.16	1.53	80.76	238.34	167.58	26.65	221.48	0.83	
1	19.12.2019	69.71	1.87	86.35	249.10	172.75	36.56	326.71	0.82	
2	19.12.2019	93.83	2.05	109.12	347.02	247.89	65.05	171.39	0.83	

3 rows × 37 columns

→

In [5]:

```
alanlar = ['AKARuzgarHizi','AKABagilNem'] # mdct is datetime
x = df[alanlar]
x.head(10)
```

Out[5]:

	AKARuzgarHizi	AKABagilNem
0	12.94	58.48
1	37.82	57.62
2	4.55	53.97
3	-48.29	76.88
4	7.76	75.25
5	-25.41	62.63
6	-38.24	77.37
7	25.17	67.02
8	-17.37	65.92
9	1.65	74.99

In [8]:

```
def df_derived_by_shift(df,lag=0,NON_DER=[]):
    df = df.copy()
    if not lag:
        return df
    cols ={}
    for i in range(1,lag+1):
        for x in list(df.columns):
            if x not in NON_DER:
                if not x in cols:
                    cols[x] = ['{}_{}'.format(x, i)]
                else:
                    cols[x].append('{}_{}'.format(x, i))
    for k,v in cols.items():
        columns = v
        dfn = pd.DataFrame(data=None, columns=columns, index=df.index)
        for c in columns:
            dfn[c] = df[k].shift(periods=i)
        df = pd.concat([df, dfn], axis=1, join_axes=[df.index])
    return df
```

In [9]:

```
NON_DER = ['AKARuzgarHizi',]
df_new = df_derived_by_shift(x, 6, NON_DER)
```

C:\Users\neslihan\Anaconda3\lib\site-packages\ipykernel_launcher.py:20: Fu
tureWarning: The join_axes-keyword is deprecated. Use .reindex or .reindex
_like on the result to achieve the same functionality.

In [10]:

```
df_new.head(10)
```

Out[10]:

	AKARuzgarHizi	AKABagilNem	AKABagilNem_1	AKABagilNem_2	AKABagilNem_3	AKABa
0	12.94	58.48	NaN	NaN	NaN	
1	37.82	57.62	58.48	NaN	NaN	
2	4.55	53.97	57.62	58.48	NaN	
3	-48.29	76.88	53.97	57.62	58.48	
4	7.76	75.25	76.88	53.97	57.62	
5	-25.41	62.63	75.25	76.88	53.97	
6	-38.24	77.37	62.63	75.25	76.88	
7	25.17	67.02	77.37	62.63	75.25	
8	-17.37	65.92	67.02	77.37	62.63	
9	1.65	74.99	65.92	67.02	77.37	
4						•

In [11]:

df_new = df_new.dropna()

In [12]:

df_new.head(10)

Out[12]:

	AKARuzgarHizi	AKABagilNem	AKABagilNem_1	AKABagilNem_2	AKABagilNem_3	AKAB
6	-38.24	77.37	62.63	75.25	76.88	
7	25.17	67.02	77.37	62.63	75.25	
8	-17.37	65.92	67.02	77.37	62.63	
9	1.65	74.99	65.92	67.02	77.37	
10	25.67	60.47	74.99	65.92	67.02	
11	40.53	52.65	60.47	74.99	65.92	
12	22.71	69.72	52.65	60.47	74.99	
13	35.12	49.04	69.72	52.65	60.47	
14	40.65	53.39	49.04	69.72	52.65	
15	38.77	65.39	53.39	49.04	69.72	
4						>

In [13]:

df_new.corr()

Out[13]:

	AKARuzgarHizi	AKABagilNem	AKABagilNem_1	AKABagilNem_2	AKABagiIN
AKARuzgarHizi	1.000000	-0.150978	-0.109161	-0.095713	-0.13
AKABagilNem	-0.150978	1.000000	0.799725	0.750099	0.83
AKABagilNem_1	-0.109161	0.799725	1.000000	0.799733	0.75
AKABagilNem_2	-0.095713	0.750099	0.799733	1.000000	0.79
AKABagilNem_3	-0.131556	0.830676	0.750141	0.799917	1.00
AKABagilNem_4	-0.099951	0.727020	0.830676	0.750027	0.79
AKABagilNem_5	-0.087222	0.711187	0.727020	0.830585	0.74
AKABagilNem_6	-0.119887	0.778770	0.711189	0.726986	0.83
1					•

In [27]:

6 saat

Tatil Olan Bir Günü ve Tatil Olmayan Bir Günün Kıyaslanması

Ankara Keçiören istasyonunun 2019 yılında 23 Nisan ve 24 Nisan tarihlerinde ölçülen değerler kıyaslanacaktır.

In [37]:

```
import matplotlib.pyplot as plt
import warnings
```

In [49]:

```
plt.figure(figsize=(18,18))
explode=[0,0]
size=[0,0]
labels=["PM10","S02"]
colors=["green","yellow"]
plt.subplot(2,2,1)
dataTatil = pd.read_csv("dataTatil.csv")
size[0]=dataTatil.PM10.values.sum()
size[1]=dataTatil.SO2.values.sum()
plt.pie(size,explode,labels,colors,autopct="%1.1f%%", textprops={'fontsize': 16})
plt.title("2019 Yılındaki Ankara-Keçiören S. İstasyonun 23 Nisan 2020 Tarihinde Ölçülen
Değerler", color="blue", fontsize=11)
plt.subplot(2,2,2)
dataNormalGun = pd.read_csv("dataNormalGun.csv")
size[0]=dataNormalGun.PM10.values.sum()
size[1]=dataNormalGun.SO2.values.sum()
plt.pie(size,explode,labels,colors,autopct="%1.1f%%", textprops={'fontsize': 16})
plt.title("2019 Yılındaki Ankara-Keçiören S. İstasyonun 24 Nisan 2020 Tarihinde Ölçülen
Değerler", color="blue", fontsize=11)
plt.show()
```

2019 Yılındaki Ankara-Keçiören S. İstasyonun 23 Nisan 2020 Tarihinde Ölçülen Değerler

2019 Yılındaki Ankara-Keçiören S. İstasyonun 24 Nisan 2020 Tarihinde Ölçülen Değerler

In [59]:

Out[59]:

Text(0.5, 0, '')

In [60]:

```
df = pd.read_csv("dataTatil2020.csv")
plt.figure(figsize=(25,6))
plt.subplots_adjust(hspace=.8)
pm10_all = pd.DataFrame(df.groupby(by=df["S02"]).mean())
sns.barplot(df.Tarih.sort_values(ascending=False),pm10_all.index)
titleA = '2019 Yılındaki Ankara-Keçiören S. İstasyonun 23 Nisan 2020 Tarihinde Ölçülen
S02 Değerleri'
plt.title(titleA, fontsize=20)
plt.xticks(rotation=90, fontsize=16)
plt.yticks(fontsize=16)
plt.ylabel("S02", fontsize=20)
plt.xlabel("")
```

Out[60]:

Text(0.5, 0, '')

Kaynakça

[1] https://www.kaggle.com/dedecu/cross-correlation-time-lag-with-pandas (https://www.kaggle.com/dedecu/cross-correlation-time-lag-with-pandas), Erişim tarihi: 21.04.2020.

[2] https://www.kaggle.com/souravrana/indian-air-pollution-analysis/notebook, Erişim tarihi: 22.04.2020.

[3] https://medium.com/@sddkal/python-korelasyon-matrisi-ve-g%C3%B6rselle%C5%9Ftirilmesi-554093ad59 (https://medium.com/@sddkal/python-korelasyon-matrisi-ve-g%C3%B6rselle%C5%9Ftirilmesi-554093ad59), Erişim tarihi: 23.04.2020.