Paper Number(s): **E1.6**

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2002**

EEE/ISE PART I: M.Eng., B.Eng. and ACGI

COMMUNICATIONS I

Wednesday, 22 May 10:00 am

There are FIVE questions on this paper.

Answer THREE questions.

Corrected Copy

Time allowed: 2:00 hours

Examiners responsible:

First Marker(s):

Gurcan, M.K.

Second Marker(s): Yeatman, E.M.

Useful equations

If the signal g(t) is periodic with period $T_0 = \frac{2\pi}{\omega_0}$. The trigonometric Fourier series is

$$g(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t \qquad \text{where } a_0 = \frac{1}{T_0} \int_0^{T_0} g(t) dt \text{, and}$$

$$a_n = \frac{2}{T_0} \int_0^{T_0} g(t) \cos(n\omega_0 t) dt \text{ for } n \ge 1 \qquad b_n = \frac{2}{T_0} \int_0^{T_0} g(t) \sin(n\omega_0 t) dt \text{ for } n \ge 1$$

The compact Fourier series is given by

$$g(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n), \ C_n = \sqrt{a_n^2 + b_n^2} \ , \qquad C_0 = a_0 \text{ and } \theta_n = \tan^{-1} \frac{-b_n}{a_n}$$

The exponential Fourier series is given by

$$g(t) = \sum_{n=-\infty}^{\infty} D_n \exp(jn\omega_0 t)$$
 where

$$D_n = \frac{1}{T_0} \int_{T_0}^{\infty} g(t) \exp(-jn\omega_0 t) dt \quad \text{or} \quad D_n = \frac{C_n}{2} \exp(j\theta_n) \text{ and } D_{-n} = \frac{C_n}{2} \exp(-j\theta_n).$$

Useful Fourier Transformations

Useful Fourier Transformations		
$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) \exp(j\omega t) d\omega$	⇔	$G(\omega) = \int_{-\infty}^{\infty} g(t) \exp(-j\omega t) dt$
g(-t)	⇔	$G(-\omega)$
$\exp(-at)u(t)$	\Leftrightarrow	1
		$a+j\omega$
$\cos \omega_0 t$	\$	$\pi \big[\delta \big(\omega + \omega_0 \big) + \delta \big(\omega - \omega_0 \big) \big]$
$\sin \omega_0 t$	⇔	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
$\operatorname{rect}\left(\frac{t}{\tau}\right)$	⇔	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$
$\frac{W}{\pi}$ sinc $(W t)$	⇔	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$
$g(t) = \Delta\left(\frac{t}{\tau}\right)$	⇔	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$
$g(t\pm T)$	⇔	$G(\omega)\exp(\pm j\omega T)$
$\frac{1}{2j}[g(t+T)-g(t-T)]$	⇔	$G(\omega)\sin(\omega T)$
$g(t)\cos\omega_c t$	⇔	$\frac{1}{2} [G(\omega - \omega_c) + G(\omega + \omega_c)]$

Two useful integrals:
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \text{ and}$$

$$\int \frac{x^2}{x^2 + a^2} dx = x - a \tan^{-1} \frac{x}{a}$$

1 a) Find E_x and E_y , the energies of the signals x(t) and y(t) shown in Fig. 1.1. Sketch the signals x(t) + y(t) and x(t) - y(t) and calculate the energies of either of these two signals.

Figure 1.1.

b) A periodic signal g(t) is expressed by the following Fourier series:

$$g(t) = 3\cos(t) + \sin\left(5t - \frac{\pi}{6}\right) - 2\cos\left(8t - \frac{\pi}{3}\right).$$

- i) Sketch the amplitude and phase spectra for the compact Fourier series. [2]
- ii) By inspection of spectrum in part (i), write the exponential Fourier series for g(t).
- iii) By inspection of spectra in part (ii), sketch the double-sided magnitude spectrum for g(t). [2]
- iv) By inspection of coefficients in part (iii), plot the double-sided power spectral density for g(t). Using the power spectral density coefficients calculate the signal power.
- c) Consider the time waveform, $g(t) = e^{-at} u(t)$ where a > 0, given in Figure 1.2.

Figure 1.2.

- i) Find the Fourier transform of g(t). [2]
- ii) Using $g(-t) \Leftrightarrow G(-\omega)$ and the result of part (i), find the Fourier transform [2] of $e^{at} u(-t)$ and $e^{-|at|}$.
- iii) Verify Parseval's theorem for the signal $g(t) = e^{-at} u(t)$. [2]
- iv) Estimate the essential bandwidth W rad/s of the signal $g(t) = e^{-at} u(t)$ if the essential band is required to contain 95% of the signal energy.

The signal in Figure 2.1 is modulated with carrier $\cos(10t)$. Find the Fourier transform of this signal using the appropriate properties of the Fourier transform given in the Fourier transformation table on page 1. Sketch the magnitude spectrum for the signal given in Figure 2.1. *Hint*: This function can be expressed in the form $g(t)\cos\omega_0 t$.

Figure 2.1.

b) A certain channel has ideal amplitude, but non-ideal phase response (Figure 2.2) [7] given by

$$|H(\omega)| = 1$$

 $\theta_h(\omega) = -\omega t_0 - k \sin \omega T \qquad k << 1$

Figure 2.2.

Show that y(t), the channel response to an input pulse g(t) band-limited to B Hz, is

$$y(t) = g(t - t_0) + \frac{k}{2} [g(t - t_0 - T) - g(t - t_0 + T)]$$

Hint: use $\exp(-jk\sin\omega T) \approx 1 - jk\sin\omega T$

c) Find the mean square value (or power) of the output voltage y(t) of the system [7] shown in Figure 2.3 if the input voltage power spectral density is $S_x(\omega) = \text{rect}\left(\frac{\omega}{2}\right)$. Calculate the power (mean square value) of the input signal x(t).

Figure 2.3.

[6]

3 a) Two signals $m_1(t)$ and $m_2(t)$, both band-limited to 5000 rad/s, are to be transmitted simultaneously over a channel by the multiplexing scheme shown in Figure 3.1. The signal at point b is the multiplexed signal, which now modulates a carrier of frequency 20,000 rad/s. The modulated signal at point c is transmitted over a channel.

Figure 3.1.

- i) Sketch the amplitude spectra at points a, b, and c. [3]
- ii) Design a receiver to recover signals $m_1(t)$ and $m_2(t)$ from the modulated [4] signal at point c.
- b) For each of the following baseband signals: (I) $m_1(t) = \cos 1000t$; (II) $m_2(t) = 2\cos 1000t \cos 2000t$; (III) $m_3(t) = \cos(1000t)\cos(3000t)$:
 - i) sketch the amplitude spectra of $m_i(t)$, i = 1,2,3. [2]
 - ii) sketch the amplitude spectrum of the DSB-SC signals $m_i(t)\cos(10000t)$, i = 1,2,3.
 - iii) identify the upper sideband (USB) and the lower sideband (LSB) of the [2] spectra.
 - iv) identify the frequencies in the baseband, and the corresponding frequencies in the DSB-SC USB, and LSB spectra.
- Figure 3.2 shows a scheme for coherent (synchronous) demodulation. Show that this scheme can demodulate the full AM signal $[A + m(t)]\cos \omega_c t$ regardless of the value of A. Show that a scheme that can demodulate DSB-SC can also demodulate full AM. Is the converse true? Explain.

Figure 3.2.

- 4 a) A frequency-modulated signal with carrier frequency $\omega_c = 2 \pi 10^5$ rad/s is described by the equation $S_{FM} = 10 \cos(\omega_c t + 5 \sin 3000 t + 10 \sin 2000 \pi t)$
 - i) Find the power of the modulated signal. [1]
 - ii) Find the frequency deviation Δf and the modulation index β . [2]
 - iii) Estimate the bandwidth of S_{FM} . [2]

[5]

[5]

Consider the signal m(t), given in Figure 4.1. A modulating signal is generated by passing the signal m(t) through a filter, which lets through the first 3 harmonics of the fundamental frequency and maintains the maximum and minimum signal amplitudes. Estimate the bandwidth for a frequency modulated signal when the filtered modulating signal is used to modulate a carrier of $f_c = 100$ MHz. Assume that the angular frequency deviation constant is $k_f = 2\pi \times 10^5$ rad/Vs.

Figure 4.1.

c) A signal g(t) band-limited to B Hz is sampled by a periodic pulse train $P_{T_s}(t)$ made up of a unity amplitude rectangular pulse of width 1/8B seconds (centered at the origin) repeating at the Nyquist rate (2B pulses per second). Show that the sampled signal $\overline{g}(t)$ is given by

$$\overline{g}(t) = \frac{1}{4}g(t) + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin\left(\frac{n\pi}{4}\right)g(t)\cos(n\omega_s t), \qquad \omega_s = 4\pi B.$$

- A compact disc (CD) records each audio channel signals digitally by using PCM.
 Assume the audio signal bandwidth to be 15 kHz.
 - i) What is the Nyquist rate? [1]
 - ii) If the Nyquist samples are quantised into L = 65,536 levels and then binary [2] coded, determine the number of binary digits required to encode a sample.
 - iii) Determine the number of binary digits per second (bit/s) required to encode [1] the audio signal.
 - iv) For practical reasons, signals are sampled at a rate well above the Nyquist [1] rate. Practical CDs use 44,100 samples per second. If L = 65,536, determine the number of bits per second required to encode the signal, and the minimum bandwidth required to transmit the encoded signal.

In Figure 5.1, the input signal is $\phi(t) = m(t)$ and the amplitude satisfies the relationship $A >> |\phi(t)|$. The two diodes are identical with a resistance r ohms in the conducting mode and infinite resistance in the cut-off mode. Figure 5.2 shows the diode current versus voltage characteristics.

Slope $\frac{1}{r}$ $v_d \rightarrow$

Figure 5.1

Figure 5.2

i) Show that the output $e_o(t)$ is given by

$$e_o(t) = \frac{2R}{R+r} w(t) m(t)$$

where w(t) is the switching periodic signal shown in Figure 5.3 with amplitude spectrum given in Figure 5.4.

Figure 5.3

Figure 5.4.

ii) Show that this circuit can be used as a DSB-SC modulator.

[3]

[4]

iii) How would you use this circuit as a synchronous demodulator for DSB-SC signals.

[2]

b) A frequency-modulated signal is given as $u(t) = 100 \cos[2000 \pi t + \phi(t)]$ where $\phi(t) = 5 \sin(20 \pi t)$.

Question continued over

Using the values of $J_n(5)$ for n=0,1,....5 given in the following table,

n	0	1	2	3	4	5
$J_n(5)$	-0.178	-0.328	0.047	0.365	0.391	0.261

i) determine and sketch the amplitude spectrum

- [4]
- ii) determine the percentage of the modulated signal power carried by these harmonics
- [1]
- iii) From Carlson's rule, determine the approximate bandwidth for the FM signal.
- [2]

[5]

c) An analogue signal, whose amplitude is uniformly distributed between -A and +A V, is to be quantized using a uniform quantizer, which has the transfer function shown in Figure 5.5.

Figure 5.5

Find the quantization noise power in terms of the maximum signal amplitude.

MODEL ANSWER and MARKING SCHEME Second Examiner: Dr. Mustafa Gurean Paper Code: E1.6 Second Examiner: Dr. E. M. Veatman Question 1-a h Page Second Examiner: Dr. E. M. Veatman Question 1-a h Page Second Examiner: Dr. E. M. Veatman Question 1-a h Page Ty = $\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases}$ $\begin{cases} x_1 \\ x_4 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_4 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_4 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_4 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_5 \\ x_5 \\ x_5 \end{cases}$ $\begin{cases} x_1 \\ x_1 \\ x_2 \end{cases}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$ $\begin{cases} x_1 \\ x_1 \\ x_2 \end{cases}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$ $\begin{cases} x_1 \\ x_1 \\ x_2 \end{cases}$ $\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$ $\begin{cases} x_1 \\ x_1 \\ x_2 \end{cases}$		Examinations : EEE/ISE P	Examinations : EEE/ISE Part I, Communications I, 2002
Paper C Question Question Question Question Question Question $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{$		MODEL ANSWER a	BE MARKING SCHEME
Question Question Question $ \begin{array}{cccccccccccccccccccccccccccccccccc$	First	Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6
$ \frac{1}{3} d_{k} = 2 \qquad \frac{6}{6\pi y} = \frac{1}{3} (2)^{\frac{1}{3}} d_{k} d_$	Secon	d Examiner Dr. E. M. Yeatman	Question 1-a /b Page 1 out of 15
$E_{x} = \int_{1}^{\infty} (1)^{4} dt = 2$ $E_{y} = \int_{1}^{\infty} (1)^{4} dt + \int_{1}^{\infty} (-1)^{4} dt = 2$ $E_{x} \neq 2$ $E_{x} \neq 3 \text{ for } E_{x} \neq 3$ $E_{x} \neq 3 \text{ for } E_{x} \neq 4$ $E_{x} \neq 3 \text{ for } E_{x} \neq 6$ $E_{x} \neq 3 \text{ for } E_{x} \neq 6$ $E_{x} \neq 3 \text{ for } E_{x} \neq 6$ $E_{x} \neq 3 \text{ for } E_{x} \neq 6$ $E_{x} \neq 3 \text{ for } E_{x} \neq 6$ $E_{x} \neq 4 \text{ for } E_{x} \neq 6$ $E_{x} = 2 for$	Ones	ion labels in left margin	Marks allocations in right margin
$\hat{E}_{y} = \hat{f}(k)^{1} A L + \hat{f}(-i)^{2} A L = \sum_{k \neq i} \hat{E}_{k + y} = \hat{E}_{k + y} = \hat{E}_{k + i} \hat{f}$ $\hat{E}_{k + y} = \hat{E}_{k - y} = \hat{E}_{k + i} \hat{f}$ $\hat{E}_{k + y} = \hat{E}_{k - y} = \hat{E}_{k + i} \hat{f}$ $\hat{E}_{k + y} = \hat{E}_{k - y} = \hat{E}_{k + i} \hat{f}$ $\hat{E}_{i} = \sum_{m \neq i} \hat{E}_{i} \hat{E}_{i} \hat{E}_{i} \hat{f}$ $\hat{E}_{i} = \sum_{m \neq i} \hat{E}_{i} \hat{E}_{i} \hat{E}_{i} \hat{E}_{i} \hat{f}$ $\hat{E}_{i} = \sum_{m \neq i} \hat{E}_{i} E$	1-a		
$E_{KY} = E_{X-Y} = E_{X+E_{Y}}$ $B(4) = 3 acc + 5 cn (3E - \frac{\pi}{6}) - 2 aci (E_{L-\frac{\pi}{2}})$ $E_{F} = cmpact + tigans metric form all term must have cosine form and amplitudes must have cosine form and amplitudes we re-unit = 9H3. cos B(E) = 3 acc + cos (54 - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-1}) + 2 cos (8E - E_{L-1}) = 3 cos + cos (54 - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-1}) = 3 cos + cos (54 - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-1}) = 3 cos + cos (54 - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-1}) = 3 cos + cos (54 - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-\frac{\pi}{4}}) + 2 cos (8E - E_{L-1}) + 2 cos (8E - E_{L-1}) + 2 cos (8E - E_{L-1}) + 2 cos (9E - E_{L-1}) + 2 cos $		Ey = \$ (1) 124 + \$ (-1) 24c2 = 6	x-y= 1 (1) (1+-4
B(t) 23 cac t + Sin (3t - \bar{B}) - 2 \text{ Lais (te - \bar{A})} \\ \text{ For compact higonometric form all Herri must have issinc form and amplitudes must be positive. We re-write 9(1). as 9(t) = 3 cas t + cas (4t - \bar{B} - \bar{A}) + 2 cas (8t - \bar{A} - \bar{A}) \\ \tau \text{ Las (8t - \bar{A} - \bar{A} - \bar{A})} + 2 cas (8t - \bar{A} - \bar{A} - \bar{A}) + 2 cas (8t - \bar{A} - \bar{A} - \bar{A}) \\ \tau \text{ Las (8t - \bar{A} - \bar{A} - \bar{A} - \bar{A})} \\ \tau \text{ Las (8t - \bar{A} - \		Exty = 6x-y = 6x+6y	
For compact hisponometric form all term must have testine form and amplitudes must be preshive. We re-write 9(1). as 9(4)= 3 aset + as (54 - \bar{E} - \bar{E}) + 2 as (84 - \bar{E} - \bar{E}) + 2 as (84 - \bar{E} - \bar{E}) + 2 as (84 - \bar{E} - \bar{E}) = 3 aset + as (54 - \bar{E} - \bar{E}) = 3 aset + as (54 - \bar{E} - \bar{E}) \[\begin{array}{c} 2 \\	1-p	8(t) 23 cos t + Sin (5t - 15) - 24	is (# 는 - 과)
$3(k) = 3 asc + cus(sc - \frac{c}{k} - \frac{c}{k})$ $+ 2 as(sc - \frac{c}{k} - \frac{c}{k})$ $+ 2 as(sc - \frac{c}{k} - \frac{c}{k})$ $= 3 asc + cus(sc - \frac{c}{k})$ $+ 2 as(sc - \frac{c}{k})$ $R_{3} = R_{2} = R_{3} = R_{3} = R_{3} = R_{4} = 0, R_{4} = 0, R_{5} = 0$ $R_{3} = \frac{c}{c} cso(sc - \frac{c}{k})$ $R_{3} = \frac{c}{c} cso(sc - \frac{c}{k})$ $R_{3} = \frac{c}{c} cso(sc - \frac{c}{k})$ $R_{4} = \frac{c}{c} cso(sc - \frac{c}{k})$ $R_{5} $		compact trigonometric form have costne form and ampli the positive.	all Herms bake s
25 H = 0 S Cast + 45 (Sec - 3) + 2 Cast 8 S Cast + 45 (Sec - 3) + 2 Cast 8 S Cast + 45 (Sec - 3) + 2 Cast 8 S Ca	<u> </u>	ラ(t)= 3 cast + cus(st-丘-貞) + 2cas(8t-耳-爪)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	3 (m)
9(t) = E b, exp(j kt) (1)	(ii	B. S. L. B. B. B. B. B. B. B. B. C. B. B. C. B. B. C. B. B. C. B.	$b_1 = b_1 = 3/a$, $b_2 = \frac{3}{2} \exp(-3\frac{a}{3})$, $D_2 = \exp(-3\frac{a}{3})$
10 (12 0 52.7 0 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9(t) = & pk exp (j kt) k=-0	
-5 -1 5 1.25 01.5 4 1 9 P.	(iii		3
	iv)	27.25	P= 1 (2.25 + 0554) = 2x3.5 = 7

	Examinations: EEE/ISE Part 1, Communications 1, 2002	Communications	1, 2002			
	MODEL ANSWER and MARKING SCHEME	ARKING SCHEN	1E			
First	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6	9'			
Secon	Second Examiner Dr. E. M. Yeatman	Question 1-c	Page	7	out of 15	
Onest	Question labels in left margin	Marks	allocation	ıs in	Marks allocations in right margin	
	870 (-a+). u(t)					
í	A+3W					
î	9(-t) ←> G(-w)					
	(c) (c) (c) (c) (c)					
	W(-1) (-1) (-1) (-1)					
	(-4) (-a t)= exp(-at) ultitexyat) u(-t)	P-)₩				
	111-	<u>`</u>				
Œ	9(4) = exp(-at) ((4)					
	2					
	Es = [3 (4) 36 = [exp(-2at) dt= 1	1;				
	G(w)= 1	{				
	35+8					
	E3 = In [G(w) 2 w = In [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	8 m 1 m 1 m					
	0					
<u>(ž</u>	20.96 = 1 0 d W = 1 ton 1 W W	310				
	7	3				
	To tay a					
	2 = far W => W = 12.706 a rad/s	2.706 a rad	Ŋ			
				-		

|--|

J (we	Marks allocations in right margin
Section labels in left margin Y(w) = G (w) rect (WB) exp (- j (wt) C G(w).rect (WB) [1-j ksinut]e	Marks allocations in right margin
χ(κ)	
~ 6[m).reck (m) [1-jksj.m]	
~ GIW).rect (W/) [1-jksinuT]4	
•	40(-jw Eo)
This follows from the fact that	
CAP(X) = 1+X when x << 1.	
Noie over, 6(w) rect(1/4)= 6(w)	
Becomse G(W) is board familied to	
B Hz.	
Hence	
7(w) = G(w) exp(-jwts)-j kG(w)sint exp(-jwts)	exp(-iwta)
ten Forett trustam table	
1 (19(4+1) - S(4-1) (4) S(W) SINWT	
Hea	
3(+)= 9(t-to)+\$(3(t-to-1)-9(t-to+T)]	(t-to+T)

Examinations: EEE/ISE Part I, Communications I, 2002
MODEL ANSWER and MARKING SCHEME

	Examinations : EEE/ISE Part I, Communications I, 2002	rt I, Communications I,	2002		
	MODEL ANSWER and MARKING SCHEME	MARKING SCHEME			
First	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6			
Secon	Second Examiner Dr. E. M. Yeatman	Question 2-c	Page 5	out of 15	
Onest	Question labels in left margin	Marks all	Marks allocations in right margin	ght margin	
2-c	The iseal differentiation than	sher function is			
	ju that the transfer procher of the	return of the			
	Offite eyghum is				
	HCW) = 1 3W = 3W	AM WE			
	17.39	_			-
	××(も)= 上 (型) dw= 十 (dw: 上	Fine I Fuel			
	~ (4)> = 1 = 1 = 1 = 1 = 1 = 1	~*(<u>+</u>			
	= 1 5 W2 DW = 1 (1-4)	(Let -) H			
	- 0.0683 - 0.0683				
				*	

Examinations: EEE/ISE Part I, Communications I, 2002 MODEL ANSWER and MARKING SCHEME	Paper Code: E1.6 Question 3-a Page 6 out of 15	Marks allocations in right margin	of G of G of G of G fyice share the synals at points iver to recover milt and matt) received signal is share above	
Examinations: EEE/ISE MODEL ANSWER 8	First Examiner: Dr. Mustafa Gurcan Second Examiner Dr. E. M. Yeatman	Question labels in left margin	3-8 -10K -35K -35K -35K The about Right Shous the A, b and c. Costoport The receiver to recover The receiver to recover From the received signs	·

	MODEL ANSWER	MODEL ANSWER and MARKING SCHEME			
First	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6			
Seco	Second Examiner Dr. E. M. Yeatman	Question 3-c Pag	Page	œ	out of 15
One	Question labels in left margin	Marks allocations in right margin	ons in	righ	t margin
3.5	Bit) = [A+m(4)] G5 Wet. HORE,	lace,			
	The signal at the output of multiplica is	multiplier is			
	9 41 = [A+m(4)] cos 2 met	,			
	= 1 [A+a(4) + 1 [A+a(4)] 412mt	4)] 6,24(+			
	The first form is a baseboard signal because	signal because			
	its speckum is contered at was . The low-pmi	= 0. The law-pm			
	filter allows this dern to pass but supresses	s but supresses			
	at 12 mc. Hence the cotput of the low pass filter is	of the low pass			
	41th= # +m(t)				
	when this signal is partied through a de	المرابع ما ما ما			
	diciding the output m(+). This shows	This shows			
	that the sustain can demodulate Am spra	dulate Am spra			
	a synchronous or cohorent compodulator.	t new alkulator.			
	W.M. an input to DSB-SC geocrater is mkl.) the conseponding output 13 mkl. Class. Class. And the conseponding	afor is mill, the concepending			
	corresponding author will be Extensible subject this is precisely strength or signal. Thus we make Extensible subject this is precisely strength.	ne input is manico, sur net)] count. This is precisely . *f value A to the baseles.			
	governing), we can generate Am signal resing a DSB-SC but as the converse is governed as the three thousand the three thre	orally not frue However TAN BREAK			
	m(t)	tantill count The 2 mit column			
	- W- W W W W W W W-	ישושונים ד			

Examinations : EEE/ISE Part I, Communications I, 2002

			Page 9 out of 15	Marks allocations in right margin						_								· · · · · · · · ·
ommunications I, 2002	KING SCHEME	e: E1.6	Question 4-a Pa	Marks allocati	3 0													
Examinations : EEE/ISE Part I, Communications I, 2002	NSWER and MAI		Second Examiner Dr. E. M. Yeatman	Question labels in left margin	The signal bandwidth is the highest frequings milt. & 2 1205 K. 1000 HZ	The control ambifula is 10,000 the proof is $\frac{1}{2} > \frac{10^2}{2} = 50$	To first the fremung deviation by we find the instantanceus frequency wis given by	w; = 4+ 0(t) = 4/2 + 1/5,000 60, 2000t + 20,000T CO: 2000TE The courier doublishon 15 19,000 custonot	+ 20,000 IT 605 2800 A.C. The two strucoids will add phase at some point, and the Modern value of this economics in	15,000 +20,000 A. This is the obsainant owild deliate Dw. Hence	Af = 4 = 12,387.32 #2	P= H= 12,38732 = 12,387	-10	W; = w < + kg m(t)	Author throughout by "11, we make the aquation in terms of the controlle for The Roston tendency is	fir fr + kg mit!	1 10 4 10 A(t)	(f.) moy= 10 (m(t)) my = 100 ! MITS
		First	Seco	Ones	4- g-									4				

	Examinations : EEE/ISE Par	Examinations: EEE/ISE Part I, Communications I, 2002	
	MODEL ANSWER and MARKING SCHEME	MARKING SCHEME	
First E	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6	
Second	Second Examiner Dr. E. M. Yeatman	Question 4-b/c Page 10 out of 15	15
Questi	Question labels in left margin	Marks allocations in right margin	E
4	$\Delta f = 10^{5} \text{ kHz}$ $L_{0} = 2.10^{4} \text{ s.} f_{0} = \frac{1}{12} = 5.10^{3}$ $Signal baniwidth = 8 = 3.6 = 15.10 \text{ Hz}$ $= 2(1004.15) \cdot 10^{3} = 230 \text{ kHz}$ $= 230 \text{ kHz}.$ $= 230 \text{ kHz}.$ The pute train is a periodic signal with fundamontal frequency 2 BHz. Hence $L_{0} = 2.1(28) = 4 \text{ fHz}.$ If is an easy function of the Hence that fourier series for the pute train can be expressed as $L_{0} = 1/20 = 4 \text{ fHz}.$ Solice series for the pute train can be expressed as $L_{0} = 1/20 = 4 \text{ fHz}.$ $L_{0} = \frac{1}{12} \int_{0} 9(1) = L_{0} = 1 \text{ min} \int_{0} 1 \text{ min}$	5.18 #\$ +8] = 2(1845.13) 2x 113 #2 thance 5 62 1/28 e the an be n=(2, n=(2,	

	Examinations: EEE/ASE Part I, Communications I, 2002 MODEL ANSWER and MARKING SCHEME	, Communications I, 2002 IARKING SCHEME
First	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6
Seco	Second Examiner Dr. E. M. Yeatman	Question 4d Page 11 out of 15
Ones	Question labels in left margin	Marks allocations in right margin
p 4	The boundwister is 18 KHZ, The Myquist rate is 30 KHZ,	guit at
	65536= 2, so that 16 bilany digits	عنوالم الاء
	300 00 x 16 18 48 4 60 bits/c	ianak,
	44,100 ×16=705 600 bits	×25
	R= 26	
	8= n = 705600 = 352800	# 2

	MODEL ANSWER and MARKING SCHEME	RKING SCHI	EME				
First	First Examiner: Dr. Mustafa Gurcan	Paper Code: E1.6	E1.6				
Seco	Second Examiner Dr. E. M. Yeatman	Question 5 a	æ	Page 12	12	out of 15	
Ones	Question labels in left margin	Mark	es alloc	ations	n righ	Marks allocations in right margin	
a v	The resistance of each diade is a ohms while conducting, and so wan off. When the carried history, and so wan off. When his carried history the estine passive half eyeld) and when the carrier is negative the diades are apen (during the passive half eyeld). They during during the passive half eyeld), the vellage R. All appears accras each of the resistans R. During the negative half eyeld, the orthoge authorized, the orthoge to the circuit that is basically a veltage divide out of the passive diades act as a gate in the circuit that is basically a veltage divide with a gain 2R. The orthoge divide with a gain 2R. The orthoge divide with a gain 2R. The orthoge is the favior sense. The poind of with is to 2R. The orthoge divide with = 2R. with is to 3 met + 5 cas we the case the - 3 cas 3 met + 5 cas we the case the - 3 the allow the case t	when the positive to the					
							7

Examinations : EEE/ISE Part I, Communications I, 2002

	Examinations : EEE/ISE Part I, Communications I, 2002	art I, Communications L	2002		
	MODEL ANSWER an	MODEL ANSWER and MARKING SCHEME	(w)		
First	First Examiner; Dr. Mustafa Gurcan	Paper Code: E1.6			
Secon	Second Examiner Dr. E. M. Yeatman	Question 5 a	Page 13	13	out of 15
Ones	Question labels in left margin	Marks al	locations	in rig	Marks allocations in right margin
5-a	St we pass the output coits through a boundpass	1 a beat pass			
	filter contored at me, the filter suppresses	- Suppresses			
	the signal mit) and miti-customet for all	spruct for all			
	nat, leaving only the medulated term	tem			
	4R mitt. Custuct intact. Honce the sydem	once the sydem			
	acts as a modulator				
	rehalvenade on the test and reading the served and	- demadulater			
	if we use a tempeton pass pilter at the output,	at the output			
	En duis case, the input is 2A math	12 2A 24			
	g(+)= [A+m(4)] GSWEE. HORE				
	The signal at the output of multiplier 1s	tiplic is			
	2 41 - [4+m(4) Costuct				
	= 1 [A+m(+) +] [A+m(+)] 4124ct	(+)] G12Wt.			
	The first term is a baseboard signal because	nal because			
	18 spectrum is contend at we o. The low-pays	The low-pays			
	filter allows this term to pass, but supresses	F Supresses			
	the second term, whose spectrum is contered	n is contered			
	94 12 W. Hoke the cutput of 1 filler is	the low pass			
	17 14 = H + W(+)				
	when this signal is passed through a de	, A & .			
	wieter, the at term it is suppressed the state of the suppressed	rupp resse of			
	that the system can demodely to AM Spring	Duds wy			
	of synchronous or coherent exmediator	hrs is medicialor			
	•				_

Seco	Second Examiner Dr. E. M. Yeatman	Question 5 b Page 14 ou	out of 15
Ones	Question labels in left margin	Marks allocations in right margin	argin
S.	The Fourtor series expansion of CXP(jps sin(28(nt))	in of CAP(je sin(zu(mt))	
	()	z r fnt))exp (-jzn,fnt) dt	
	**************************************	+fm = 1	
	= 4p(1 2h) Jn(B)	9	
	Herce U. 161: A. Re [2 C.	LIEIZ RE E S CN exp(jungel)	
	= A, Re \ S = 8	= 4, ke [& exo(328 (f.+nfm)t+nm]	
	the magnitude and primate spectra of with for 18=5 and frequenties in the internal E950, 1000 of an	inection of Wilth for pass	
	PHICH STORY AND ASSOCIATION AS	1050 F 12 12	
	1 03.50	1 T T + H3.	

Examinations: EEE/ISE Part I, Communications I, 2002 MODEL ANSWER and MARKING SCHEME

