Lecture 12 Graphs and graph search

EECS-214

Graphs

 Informally, a graph is a network of objects connected by lines or arrows

 The objects are called nodes or vertices and the lines are called edges

Graphs

Formally, a directed graph (or digraph) is a pair, G = (V, E) where

- V is the set of vertices of the graph
- $E \subseteq V \times V$ is the set of edges of the graph
- $(v_1, v_2) \in E$ iff the graph has an edge (arrow) from v_1 to v_2

Note: you can also think of a digraph as a relation on the vertices

Graphs

An **undirected graph** is the same except that

- E is a set of two-element subsets of V rather than a set of pairs
- $\{v_1, v_2\} \in E$ iff the graph has an edge (line) v_1 between v_2
- Undirected graphs don't distinguish between an edge from v_1 to v_2 and an edge from v_2 to v_1
 - Hence they're drawn with lines rather than arrows

Note: you can also think of an undirected graph as a symmetric relation on the vertices

Connectivity

 Two vertices linked by an edge are said to be adjacent

Paths

- A path is a series of adjacent vertices that doesn't repeat the same vertex
 - For a directed graph, the path has to follow the direction of the edges
- Two vertices are connected, if there is a path between them

Connectivity

A graph is **connected** if every vertex in the graph is connected to every other vertex

Connected components

 Not all graphs are connected

Connected components

 Not all graphs are connected

 The connected components of a graph of the largest subgraphs of the graph you can form that are themselves connected

Cycles

- A cycle is a path that starts and ends with the same vertex
 - (Okay, I know we said paths can't repeat the same vertex, but we'll allow the first and the last to be the same)
- A graph is cyclic if it contains at least one cycle

Cycles

- A cycle is a path that starts and ends with the same vertex
 - (Okay, I know we said paths can't repeat the same vertex, but we'll allow the first and the last to be the same)
- A graph is cyclic if it contains at least one cycle

(This graph has 2 cycles)

Trees

 A tree is a graph in which any pair of nodes has exactly one path between them

General representation of trees

- Each tree node is an object
 - (Red circles)

Child list

Child lists

- Each node object contains
 - Parent
 - (Upward arrows)
 - List of children
 - (Grey boxes)
 - linked list, array, whatever
 - Anything else you want to remember about the node

 Graphs don't have the special properties of trees

Child list

- Graph doesn't have a distinguished root node
 - So there aren't parent/child relationships

Child lists

 Graphs don't have the special properties of trees

Adjacency list

- Graph doesn't have a distinguished root node
 - So there aren't parent/child relationships
 - Just "adjacency" Adjacency relationships, i.e. whether lists two nodes are connected

 Graphs don't have the special properties of trees

Graph doesn't have a distinguished root node

Nodes don't have a distinguished parent node

Adjacency list Adjacency lists

- Graphs don't have the special properties of trees
 - Graph doesn't have a distinguished root node
 - Nodes don't have a distinguished parent node

- Graphs don't have the special properties of trees
 - Graph doesn't have a distinguished root node
 - Nodes don't have a distinguished parent node
 - Can have cycles

- Graphs don't have the special properties of trees
 - Graph doesn't have a distinguished root node
 - Nodes don't have a distinguished parent node
 - Can have cycles
 - Or other complicated topologies

 And we don't think of it as being organized into levels

Same graph

 And we don't think of it as being organized into levels

But we otherwise tend to represent them very similarly to trees

Same graph

Adjacency list representation

- For the most part, graph representations should be pretty obvious
 - Each node lists the nodes its connected to
- This is called an adjacency list representation
 - Linked lists are often used

```
class GraphNode {
   AdjListCell first;
}

class AdjListCell {
   GraphNode node;
   AdjListCell next;
}
```

Adjacency list representation

- For the most part, graph representations should be pretty obvious
 - Each node lists the nodes its connected to
- This is called an adjacency list representation
 - Linked lists are often used
 - But arrays or any other sequence representation can be used for the adjacency lists themselves

```
class GraphNode {
   GraphNode[] adjacent;
}
```

Array of adjacency lists

- The CLR book uses a specific graph representation
 - Number all the nodes
 - Array of adjacency lists,
 indexed by node number
- Adjacency list of node i is stored in adj[i]

```
class Graph {
 AdjListCell[] adj;
class AdjListCell {
 int nodeNumber;
 AdjListCell next;
```

Adjacency matrix representation

- Finally, we can store the edges for a graph in a matrix
 - Again, number the nodes
 - Define the matrix $E = (e_{i,j})$ by the rule:

$$e_{i,j} = \begin{cases} 1, & \text{if edge from i to j} \\ 0, & \text{otherwise} \end{cases}$$

[0	1	0	0	0
0	0	0	1	1
0	1	0	0	0
0	0	1	0	0
\lfloor_0	0	0	0	0

Adjacency matrix representation

- Adjacency matrices are especially good for representing dense graphs
 - Graphs in which most nodes have edges to most other nodes

0	1	0	0	0
0	0	0	1	1
0	1	0	0	0
0	0	1	0	0
L_0	0	0	0	0

Undirected graphs

- Recall that undirected graphs don't distinguish between
 - An edge from a to b, and
 - An edge from b to a

[0	1	0	0	0]
1	0	1	1	1
0	1	0	1	0
0	1	1	0	0
L_0	1	0	0	0]

Undirected graphs

- These are easily handled by both representations
 - Adjacency lists: link a to b
 but also link b to a
 - Adjacency matrix: matrix is just a symmetric matrix

[0	1	0	0	0]
1	0	1	1	1
0	1	0	1	0
0	1	1	0	0
\lfloor_0	1	0	0	0]

Weighted graphs

- Edges are labeled with numerical values (weights)
 - Usually represents some kind of distance or abstract "cost"

[0	1	0	0	0]
1	0	1	1	1
0	1	0	1	0
0	1	1	0	0
L_0	1	0	0	0

Representing weighted graphs

- Adjacency lists
 - Just add another field to the list cells to hold the weight
- Adjacency matrix
 - Use the weight as the matrix entry
 - Or 0 (or ∞) for non-adjacent nodes

Γ0	1	0	0	07
1	0	5	2	7
0	5	0	2	0
0	2	2	0	0
L_0	7	0	0	0]

Breadth-first tree walk

Queue: 1

```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```

Breadth-first tree walk

Queue:

```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```



```
BreadthFirst(root) {
 q = empty queue
 q.Enqueue(root)
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    q.Enqueue(c)
```


Pseudocode:

```
BreadthFirst(root) {
    q = empty queue
    q.Enqueue(root)
    while q not empty {
        node = q.Dequeue()
        for each child c of node
        q.Enqueue(c)
```

Will this code work for a general graph?

Pseudocode:

```
BreadthFirst(start) {
    q = empty queue
    q.Enqueue(start)
    while q not empty {
        node = q.Dequeue()
        for each neighbor c
        q.Enqueue(c)
    }
```

Well, first, there are no children per se

Pseudocode:

```
BreadthFirst(start) {
    q = empty queue
    q.Enqueue(start)
    while q not empty {
        node = q.Dequeue()
        for each neighbor c
        q.Enqueue(c)
```

What happens if we just change it to neighbor?


```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```

uh oh ...


```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```


Queue: 3 4 1 1 5

```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    q.Enqueue(c)
```

this is not going to end well ...

actually, it's not going to end at all ...

Pseudocode:

We need to keep from revisiting nodes

Pseudocode:

```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
    if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```



```
BreadthFirst(start) {
 q = empty queue
 q.Enqueue(start)
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each child c of node
     if c not visited already
      q.Enqueue(c)
      mark c visited
```


 Tracking which nodes have been visited is sufficient to fix the problem

 Great! How do we keep track of which nodes have been visited

Visit information in the nodes

- One solution is to add a field to the node structure
- Advantages
 - Fast and efficient
- Disadvantages
 - You need to know in advance that you'll be walking the graph
 - Doesn't work well if you're using someone else's graph implementation
 - Uses memory even when you aren't walking the graph

```
class GraphNode {
   GraphNode[] adjacent;
   bool visited = false;
}
```

```
node.visited = true;
```

Parallel array structure

- Use a separate array
 - Indexed by node number
- Advantages
 - Fast
 - Can deallocate the array when it's not being used
- Disadvantages
 - Requires nodes to be numbered
 - But you often do that for other reasons anyway.

bool[] visited; visited[node.number] = true;

Hash table (or other dictionary structure)

- If nothing else, you can use a hash table
 - Use nodes as keys
- Advantages
 - Easy
 - Works with any node structure
- Disadvantages
 - Slower than other approaches

Hashtable visited

= new Hashtable();

visited.Store(node, true);

- Breadth-first walks are often called breadth-first searches
- The CLR book defines a fancier version of BFS
- It tracks additional information
 - Distances of nodes from the start node
 - Predecessors of nodes in the walk
 - Which of its neighbors was searched first


```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
     if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
     if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
     if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
     if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```



```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```


Notice

 Every node is labeled with its distance from the start node

Notice

- Every node is labeled with its distance from the start node
- The predecessor subgraph
 (formed using only the edges corresponding to predecessor links) forms a tree
 - Called a breadth-first tree
- The predecessor links give you the shortest path from any node back to the start node
 - Technically, it's a shortest path
 - Since there might be other paths in the original graph of the same length

Foster to Quincy:

Route planning for the El

Foster

Foster to Quincy:

Route planning for the El

Queue: Foster

Foster

Foster Foster to Quincy: Route planning for the El **Queue: Randolf** Merchandise Mart Clark/Lake State/Lake Randolf/Wabash Washington/Wells Madison/Wabash Quincy Adams/Wabash LaSalle Library

Foster to Quincy: Foster Route planning for the El Queue: Madison, State Merchandise Mart Clark/Lake State/Lake Randolf Wabash Washington/Wells Madison Wabash Quincy Adams/Wabash LaSalle Library

Foster Foster to Quincy: Route planning for the El Queue: State, Adams Merchandise Mart Clark/Lake State/Lake Randolf Wabash Washington/Wells Madison Wabash Quincy Adams/Wabash LaSalle Library

Foster Foster to Quincy: Route planning for the El Queue: Adams, Clark Merchandise Mart Clark/Lake State/Lake 3 Randolf Wabash Washington/Wells Madison Wabash Quincy Adams/Wabash LaSalle Library

Foster Foster to Quincy: Route planning for the El **Queue: Clark, Library** Merchandise Mart Clark/Lake State/Lake 3 Randolf Wabash Washington/Wells Madison Wabash Quincy Adams/Wabash LaSalle Library

Foster to Quincy:

Route planning for the El

Queue: Library, Mmart, Washington

Foster

Route planning for the El

Queue: Mmart, Washington, LaSalle

Foster

0

Route planning for the El

Queue: Washington, LaSalle

Foster

Foster Foster to Quincy: Route planning for the El Queue: LaSalle Merchandise Mart Clark/Lake State/Lake 4 Randolf Wabash Washington/Wells 4 Madison Wabash Quincy 5 Adams/Wabash LaSalle Library

5

Route planning for the El

We've found the destination

Foster

Route planning for the El

To find the shortest path,

Foster

Route planning for the El

Just trace the predecessor links

Foster

0

How many times does each line run?


```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```

How many times does each line run?

```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```

How many times does each line run?

One time only

Once per vertex
Once per edge
Once per vertex

```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```

How many times does each line run?

```
O(1)
+ O(V)
+ O(E)
= O(V + E)
```

```
BreadthFirstSearch(start) {
 q = empty queue
 q.Enqueue(start)
 start.distance = 0
 start.predecessor = null
 mark start visited
 while q not empty {
   node = q.Dequeue()
   for each neighbor c
    if c not visited {
      q.Enqueue(c)
      c.distance = node.distance+1
      c.predecessor = node
```

BFS algorithm in the books

- Assumes array-ofadjacency-lists representation
- Extra information stored in arrays, indexed by node number
 - dist[node] = distance
 - d[node] in CLR
 - pred[node] = predecessor
 - π [node] in CLR

- "Colors" the nodes rather than marking them visted
 - Three colors
 - White = unvisited
 - Gray = in the queue or being processed now
 - Black = finshed processing
 - Stored in color[node]

The actual code

```
BFS(start)
 for each vertex v
   pred[v] = -1
   dist[v] = \infty
   color[v] = white
 color[start] = gray
 dist[start] = 0
 Q = empty queue
 enqueue(Q, start)
```

```
while Q not empty
 u = head of Q
 for each neighbor v of u
   if color[v] = white
      dist[v] = dist[u]+1
      pred[v] = u
      color[v] = gray
      Q.Enqueue(v)
 Q.Dequeue()
  color[u] = black
```

Depth-first search of a tree

DepthFirst(node)
for each child c of node
 DepthFirst(c)

- Again, this doesn't quite work
 - No children per se
 - Need to keep from re-visiting nodes

DepthFirst(node)
mark node visited
for each unvisited
neighbor, c, of node
DepthFirst(c)

 We fix it by keeping track of what nodes have already been visited

DepthFirst(node)
mark node visited
for each unvisited
neighbor, c, of node
DepthFirst(c)

 However, in practice, one of the things DFS is most often used for is analyzing the connectivity of a graph

DepthFirst(node)
mark node visited
for each unvisited
neighbor, c, of node
DepthFirst(c)

- So it's often run on an unconnected graph
- Which means that not every node will be visited

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
 mark node visited
 foreach unvisited
 neighbor, c, of node
 DFSVisit(c)

So we modify it to run it on every node

DepthFirst()

for each node in graph

if node not visited

DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor c
DFSVisit(c)

Call Stack:

DepthFirst()

DepthFirst()

for each node in graph

if node not visited

DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor c
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)

DepthFirst()

for each node in graph

if node not visited

DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(3)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(3)
- DFSVisit(9)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(3)
- DFSVisit(9)
- DFSVisit(8)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(3)
- DFSVisit(9)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(3)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)
- DFSVisit(4)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(2)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)
- DFSVisit(4)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(1)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

Call Stack:

DepthFirst()

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)
- DFSVisit(6)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)
- DFSVisit(6)
- DFSVisit(11)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)
- DFSVisit(6)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)
- DFSVisit(7)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(5)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

Call Stack:

DepthFirst()

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

- DepthFirst()
- DFSVisit(12)

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

Call Stack:

DepthFirst()

DepthFirst()

for each node in graph if node not visited DFSVisit(node)

DFSVisit(node)
mark node visited
for each unvisited neighbor, c, of node
DFSVisit(c)

Call Stack:

Done!

Analysis: how many times are these lines run?

```
DepthFirst()
 for each node in graph
    if node not visited
       DFSVisit(node)
DFSVisit(node)
 mark node visited
 for each neighbor, c, of node
   if c not visited
     DFSVisit(c)
```

Analysis

```
DepthFirst()
 for each node in graph
    if node not visited
      DFSVisit(node)
                                               Once per vertex
DFSVisit(node)
 mark node visited
                                               Once per vertex
 for each neighbor, c, of node
                                               Once per edge
   if c not visited
     DFSVisit(c)
                                               Once per vertex
```

Analysis

```
DepthFirst()
 for each node in graph
    if node not visited
      DFSVisit(node)
                                                O(V)
DFSVisit(node)
 mark node visited
                                                O(V)
 for each neighbor, c, of node
   if c not visited
     DFSVisit(c)
```

Analysis: O(V + E) time

```
DepthFirst()
 for each node in graph
    if node not visited
      DFSVisit(node)
                                                O(V)
DFSVisit(node)
 mark node visited
                                                O(V)
 for each neighbor, c, of node
                                                O(E)
   if c not visited
     DFSVisit(c)
```

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

- Given a connected, directed acyclic graph (DAG)
- Find an ordering of the nodes such that for any nodes a, b
 - If there is an edge from a to b
 - b comes after a in the ordering
 - Alternate version: b comes before a in the order
- Useful for problems such as scheduling tasks
 - Make a graph of the dependencies between **subtasks**
 - Topologically sort it

from fridge

- Essentially a fancy post-order traversal
- Used to find total orderings from partial orderings
- If you've used the make program on linux, it's essentially doing a topological sort to decide what order to compile things in

from fridge

TopologicalSort(start)

list = new empty list TopologicalVisit(start)

TopologicalVisit(node)

for each node n with an edge from node to n if n not visited TopologicalVisit(n) mark node visited add node to list

from fridge

TopologicalVist(cook)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Output list: <empty>

TopologicalVist(cook)

TopologicalVist(mix)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Output list: <empty>

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(chop)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients

from fridge

Output list: <empty>

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(chop)

TopologicalVist(get)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Output list: <empty>

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(chop)

TopologicalVist(get)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients

from fridge

Output list: get

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(chop)

Mix ingredients Chop veggies Whip Crack eggs Get ingredients

Cook

from fridge

TopologicalVist(cook)

TopologicalVist(mix)

Mix ingredients Chop veggies Whip Crack eggs Get ingredients

Cook

from fridge

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(whip)

Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Cook

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(whip)

TopologicalVist(crack)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients

from fridge

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(whip)

TopologicalVist(crack)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients

from fridge

Output list: get, chop, crack

TopologicalVist(cook)

TopologicalVist(mix)

TopologicalVist(whip)

Output list: get, chop, crack, whip

Get ingredients from fridge

TopologicalVist(cook)

TopologicalVist(mix)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Output list: get, chop, crack, whip, mix

TopologicalVist(cook)

Cook Mix ingredients Chop veggies Whip Crack eggs Get ingredients from fridge

Output list: get, chop, crack, whip, mix, cook

- It turns out to be useful to keep track of when nodes are accessed
- We keep a counter variable that acts as a kind of clock
 - Increment it every time we call DFSVisit
- Record the value of the counter every time we
 - Start a call to DFSVisit
 - End a call to DFSVisit

- And as long as we're at it, we'll also keep track of predecessor nodes
 - As with the fancy version of breadth-first search

DepthFirst()

time = 0

for each node in graph if node not visited DFSVisit(node)

```
DFSVisit(node) mark node visited
```

```
node.discovered = time++
```

for each unvisited neighbor, c, of node

c.predecessor = node

DFSVisit(c)

node.finished = time++


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```


DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)

What's next?


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

What's next?


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

8 was called from 9


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

9 was called from 3


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

3 was called from 2

(who still has an unvisited neighbor)

DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)

3 was called from 2

(who still has an unvisited neighbor)


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

3 was called from 2

(who still has an unvisited neighbor)

DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)

So now we visit 4


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

So now we visit 4


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

So now we visit 4


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

And now we can finish off 2


```
DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)
```

And 1...

DepthFirst()

time = 0

for each node in graph
 if node not visited
 DFSVisit(node)


```
DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)
```


DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)

DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)


```
DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)
```



```
DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)
```


DepthFirst()

time = 0

for each node in graph
if node not visited
DFSVisit(node)

Depth-first forest

- Once again, the predecessor links form a tree
 - Rooted at the point where the DFSVist was started
 - Called a depth-first tree
- Except, technically there are several trees
 - One for every connected component
- So this is called a depth-first forest

Depth-first forest

- Once again, the predecessor links form a tree
 - Rooted at the point where the DFSVist was started
 - Called a depth-first tree
- Except, technically there are several trees
 - One for every connected component
- So this is called a depth-first forest

Depth-first forest

- Once again, the predecessor links form a tree
 - Rooted at the point where the DFSVist was started
 - Called a depth-first tree
- Except, technically there are several trees
 - One for every connected component
- So this is called a depth-first forest

Properties of depth-first forests

- For any vertex v
 - v.discovered < v.finished</p>

- If c is a child of p
 - p.discovered
 - < c.discovered
 - < c.finished
 - < p.finished

Time intervals

20

Definition:

Let v be a vertex. Its **time interval** is the range of times
v.discovered through
v.finished

- A.k.a.:[v.discovered, v.finished]
- A.k.a.: the set of times during which DFSVisit(v) was running

Parenthesis theorem

20

- For any vertices u and v, one of the following three conditions must hold:
 - Their intervals are disjoint
 - u's interval is a subset of v's
 - And so u is a descendant of v in the depth-first forest
 - v's interval is a subset of u's
 - And so u is a ancestor of v

Reading

- "Elementary graph algorithms" from CLR
 - Fairly theoretical
 - Read the proofs, but don't stress out about them