Atiyah-MacDonald: Rings and Ideals

James Pagan

January 2024

Contents

1	Rings			
	1.1	Ring Axioms	3	
	1.2	Subrings and Ideals	4	
	1.3	Ring Homomorphisms	5	
	1.4	Isomorphism Theorems	7	
	1.5	Assorted Rings	8	
2	Typ	pes of Ideals	9	
	2.1	Principal Ideals	6	
	2.2	Prime Ideals	6	
	2.3	Maximal Ideals	10	
3	Spe	cial Rings and Ideals	11	
	3.1	Local Rings	11	
	3.2	Principal Ideal Domain	12	
	3.3	The Nilradical	12	
	3.4	The Jacobson Radical	14	
4	Ope	erations on Rings and Ideals	14	
	4.1	Sum, Intersection, Product	14	
	4.2	Relatively Prime Ideals	14	

	5.1	Definition	22
5	The	Zariski Topology	22
	4.7	Extension and Contraction	21
	4.6	Radicals of Ideals	19
	4.5	The Ideal Quotient	17
	4.4	Inclusion and Prime Ideals	16
	4.3	Direct Product of Rings	15

1 Rings

1.1 Ring Axioms

A **ring** R is a set endowed with two binary operations, here denoted "+" and "×", such that if $a, b, c \in R$, the following ten axioms are satisfied:

• Additive Axioms

- 1. Closure: $a + b \in R$.
- 2. Associativity: a + (b + c) = (a + b) + c.
- 3. **Identity**: There is $0 \in R$ such that a + 0 = 0 + a = a.
- 4. **Invertability**: There is $-a \in R$ such that a + (-a) = (-a) + a = 0.
- 5. Commutativity: a + b = b + a.

• Multiplicative Axioms

- 6. Closure: $ab \in R$.
- 7. Associativity: a(bc) = (ab)c.
- 8. **Identity**: There is $1 \in R$ such that a1 = 1a = a.

• Distributive Axioms

- 9. Left Distributivity: a(b+c) = ab + ac.
- 10. Right Distributivity: (a + b)c = ac + bc.

Since (R, +) is an Abelian group, the following properties hold for $a, b \in R$: the additive identity 0 is unique, the additive inverse -a is unique, -(-a) = a, and -(a + b) = -a - b.

Theorem 1. The following properties hold for any ring R and $a, b \in R$:

- 1. 1 is the unique multiplicative inverse of R.
- 2. If a has a multiplicative inverse a^{-1} , it is unique.
- 3. a0 = 0a = a.
- 4. -a = (-1)a.
- 5. a(-b) = (-a)b = -ab.
- 6. (-a)(-b) = ab.

Proof. (1) and (2) follow from the monoid/group axioms. For the rest:

- 3. As 0 + 0 = 0, we have that a0 = a(0 + 0) = a0 + a0; subtracting by a0 yields a0 = 0. Similarly, 0a = 0.
- 4. We have that

$$(-1)a + a = (-1)a + 1a = (-1+1)a = 0a = 0,$$

so
$$(-1)a = -a$$
.

5. See that

$$a(-b) + ab = a(-b+b) = a0 = 0,$$

so
$$a(-b) = -ab$$
. Similarly, $(-a)b = -ab$.

6. Using (5), we find that

$$(-a)(-b) = -(a)(-b) = -(-ab) = ab,$$

as desired.

This yields the desired six properties.

1.2 Subrings and Ideals

A subring R' of R is a subset of R that is also a ring. This relation is denoted $R' \subseteq R$.

Theorem 2. A subset R' of R is a subring if it is nonempty, closed under addition and multiplication, contains additive inverses, and contains the multiplicative identity.

Proof. The conditions that (R', +) is nonempty, closed, and contains inverses ensures that it is a group. Note that (R', \times) is closed and contains the multiplicative identity.

The final properties are implied by the fact R' is a subset of R; all the elements of R' satisfy both associative and distributive laws, plus additive commutativity. We deduce that R' is a subring.

All rings contain at least two subrings: the 0 ring and R itself.

A **ideal** \mathfrak{a} of R is a subset of R that satisfies the following twokproperties:

- 1. Additive: \mathfrak{a} is an additive subgroup of R.
- 2. Multiplicative: For all $a \in \mathfrak{a}$ and $x \in R$, we have $ax, xa \in \mathfrak{a}$.

All rings contain at least two ideals: one is R itself, one is a maximal ideal (Section 2.3).

Theorem 3. If R' is both a subring and an ideal of R if and only if R' is R or 0.

Proof. Suppose that $R' \neq 0$ is both a subring and an ideal of R. As R' is a subring, $1 \in R'$; as R' is an ideal, $a = a1 \in R'$ for all $a \in R$. Then R' = R. Clearly, R itself and 0 are both ideals and subrings — which yields the desired result.

1.3 Ring Homomorphisms

A **ring homomorphism** between two rings R and R' is a mapping $\phi: R \to R'$ such that for all $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$
$$\phi(ab) = \phi(a)\phi(b)$$
$$\phi(1) = 1.$$

By the group axioms, $\phi(-a) = -\phi(a)$ and $\phi(0) = 0$ for all $a \in R$. If a has a multiplicative inverse a^{-1} , then $\phi(a^{-1}) = \phi(a)^{-1}$.

The **image** of R under ϕ is the set $\{\phi(a) \mid a \in R\}$, and is denoted $\phi(R)$.

Theorem 4. The image of any ring homomorphism $\phi: R \to R'$ is a subring of R'.

Proof. Realize that $\phi(R)$ is nonempty, and for all $\phi(a), \phi(b) \in \phi(R)$, we have that

- 1. $\phi(a) + \phi(b) = \phi(ab) \in \phi(R)$.
- 2. $\phi(a)\phi(b) = \phi(ab) \in \phi(R)$.
- 3. $-\phi(a) = \phi(-a) \in \phi(R)$.
- 4. $\phi(1) \in R$.

Hence, $\phi(R)$ is a subring of R'.

The **kernel** of R under ϕ is the set $\{a \in R \mid \phi(r) = 0\}$ and is denoted Ker ϕ .

Theorem 5. Ker ϕ is an ideal of R.

Proof. Since ϕ is a homomorphism of the Abelian groups (R, +) and (R', +), the kernel of ϕ is an Abelian group with respect to addition. We need only verify the multiplicative condition; for all $a \in R$ and $k \in \text{Ker } \phi$,

$$\phi(ak) = \phi(a)\phi(k) = 0\phi(a) = 0 = \phi(a)0 = \phi(a)\phi(k) = \phi(ak).$$

Then $ak \in \text{Ker } \phi$. Thus, $\text{Ker } \phi$ is an ideal.

Categories of group homomorphisms — like monomorphisms, epimorphisms, isomorphisms, endomorphisms, automorphisms — have equivalent formulations for ring homomorphisms. An isomorphism between R and R' is denoted the same as groups:

$$R\cong R'$$
.

We can extend the notion of a quotient group to a ring R with an ideal \mathfrak{a} as follows, yielding a **quotient ideal**:

Theorem 6. The quotient group R / \mathfrak{a} is a ring under the product $(a + \mathfrak{a})(b + \mathfrak{a}) = ab + \mathfrak{a}$ for $a, b \in R$.

Proof. The quotient group R/\mathfrak{a} exists, since \mathfrak{a} is an additive subgroup of R and all subgroups of Abelian groups are normal. We must demonstrate that the product is well-defined.

Suppose $a + \mathfrak{a} = a' + \mathfrak{a}$ and $b + \mathfrak{a} = b' + \mathfrak{a}$. Then since $a - a' \in \mathfrak{a}$ and $b - b' \in \mathfrak{a}$,

$$ab - a'b \in \mathfrak{a}$$
 and $a'b - a'b' \in \mathfrak{a}$.

Thus, $ab - a'b' \in \mathfrak{a}$ and $ab + \mathfrak{a} = a'b' + \mathfrak{a}$. Then the product is well-defined. Proving that the product is closed and associative is trivial; the multiplicative identity of R / \mathfrak{a} is $1 + \mathfrak{a}$, and the distributivity with addition is trivial — so R / \mathfrak{a} is a ring.

The canonical mapping $\phi: R \to R / \mathfrak{a}$ is thus a surjective homomomorphism with kernel \mathfrak{a} . A similar definition exists for the quotient of two ideals — say, $\mathfrak{a} / \mathfrak{b}$ for $\mathfrak{a} \supseteq \mathfrak{b}$.

1.4 Isomorphism Theorems

All three Isomorphism Theorems and the Correspondence Theorem have their equivalencies for rings.

Theorem 7 (First Isomorphism Theorem). For all homomorphisms $\phi: R \to R'$ with kernel \mathfrak{t} .

$$R/\mathfrak{k} \cong \phi(R)$$

by the mapping $\psi(a + \mathfrak{k}) = \phi(a)$.

Proof. We must first demonstrate that ψ is a homomorphism. If $a, b \in R$, then the following three identities hold:

- 1. $\psi(a+b+\mathfrak{k}) = \phi(a+b) = \phi(a) + \phi(b) = \psi(a+\mathfrak{k}) + \psi(b+\mathfrak{k}).$
- 2. $\psi(ab + \mathfrak{k}) = \phi(ab) = \phi(a)\phi(b) = \psi(a + \mathfrak{k})\psi(b + \mathfrak{k}).$
- 3. $\psi(1+\mathfrak{k}) = \phi(1)$.

Thus, ψ is a homomorphism. For all $\phi(a) \in \phi(R)$, realize that $\psi(a + \mathfrak{k}) = \phi(a)$; thus ψ is surjective. Finally, let $\psi(a + \mathfrak{k}) = \psi(b + \mathfrak{k})$; then $\phi(a) = \phi(b)$, so

$$\phi(a-b) = \phi(a) - \phi(b) = 0.$$

Hence, $a - b \in \mathfrak{k}$ and $a + \mathfrak{k} = b + \mathfrak{k}$. We conclude that ψ is injective, implying the desired isomorphism.

The Correspondence Theorem expands upon the result of the First Isomorphism Theorem.

Theorem 8 (Correspondence Theorem). There is a one-to-one correspondence between ideals of $\phi(R)$ and ideals of R that contain \mathfrak{k} .

Proof. For an ideal \mathfrak{a}' of $\phi(R)$, define $\mathfrak{a} = \{a \in R \mid \phi(a) \in \mathfrak{a}'\}$. By the Correspondence Theorem for groups, \mathfrak{a} is an additive subgroup of R. For all $a \in \mathfrak{a}$ and $b \in R$, we have $\phi(a) \in \mathfrak{a}'$; thus

$$\phi(ab) = \phi(a)\phi(b) \in \mathfrak{a}'$$

since \mathfrak{a}' is an ideal. Thus $ab \in \mathfrak{a}$, so \mathfrak{a} is an ideal of R. Since $0 \in R'$, we have that \mathfrak{k} is a subideal of \mathfrak{a} . It is now relatively trivial to establish a one-to-one correspondence.

Corollary 1. There is a one-to-one correspondence between ideals of R / \mathfrak{a} and ideals of R that contain \mathfrak{a} .

The two remaining Isomorphism Theorems will be proven at another time.

1.5 Assorted Rings

We will consider the following three types of rings in this section:

- 1. A **commutative ring** is a ring R such that ab = ba for all $a, b \in R$.
- 2. An **integral domain** is a nonzero commutative ring R such that ab = 0 implies a = 0 or b = 0 for all $a, b \in R$.
- 3. A **field** is a commutative division ring.

Note that integral domains and fields must be nonzero. Henceforth, all rings we shall define are commutative unless stated otherwise.

Theorem 9. All finite domains are fields.

Proof. Let R be a finite domain. Then for nonzero $a \in R$, consider the set

$${a, a^2, \dots, a^{|R|+1}}.$$

By the Pigeonhole Principle, two elements of this set must be equal: $a^i = a^j$ for $i, j \in \{1, \ldots, n\}$ with i < j. Thus $a^j(a^{i-j} - 1) = 0$, so $a^{i-j} = 1$ and $a^{i-j-1} = a^{-1}$. Since all nonzero elements of R are invertible, we conclude that R is a field.

Theorem 10. R is a field if and only if the only ideals of R are 0 and R itself.

Proof. Let R be a field and let \mathfrak{a} be nonzero ideal of R. Then for $a \in \mathfrak{a}$,

$$R = (a) \subseteq \mathfrak{a} \subseteq R$$
.

Thus, $\mathfrak{a} = R$. Now, suppose that the only ideals of R are 0 and R itself; then for all nonzero $a \in R$,

$$(a) = R,$$

where (a) denotes the principal ideal (Section 2.1). Thus, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$, so R is a field.

An element $a \in R$ is a **unit** if it is invertible. It is trivial to verify that all the units of R constitute a multiplicative Abelian group (non-units form a commutative semigroup!)

2 Types of Ideals

2.1 Principal Ideals

For an $x \in R$, the **principal ideal** of x is the ideal given by $(x) = \{ax \mid a \in R\}$. We may alternatively denote (x) by Rx.

Theorem 11. Principal ideals are ideals.

Proof. Let x be an element of R. We must perform two rather routine calculations:

- 1. Additivity: For all $ax, bx \in (x)$, we have that $ax + bx = (a + b)x \in (x)$.
- 2. Multiplicativity: For all $ax \in (x)$ and $b \in R$ we have $b(ax) = (ba)x \in (x)$.

We conclude that (x) is an ideal.

The principal ideal is the smallest ideal that contains (x), in the following sense: if $x \in \mathfrak{a}$ for an ideal \mathfrak{a} of R, then $rx \in \mathfrak{a}$ for all $a \in R$, so $(x) \subseteq \mathfrak{a}$.

Theorem 12. (x) = R for $x \in R$ if and only if x is a unit.

Proof. Suppose that (x) = R. Then $1 \in (x)$, so there exists $x^{-1} \in R$ such that $xx^{-1} = x^{-1}x = 1$; x is a unit. If we suppose that x is a unit, then $x \in (x)$ implies $1 = x^{-1}x \in (x)$ implies $a = a1 \in (x)$ for all $a \in R$; thus (x) = R.

2.2 Prime Ideals

A **prime ideal** \mathfrak{p} of R is a principal ideal such that $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. This condition generalizes to a finite amount of elements; $a_1 \cdots a_n \in \mathfrak{p}$ if and only if $a_i \in \mathfrak{p}$ for some i.

Theorem 13. An ideal \mathfrak{p} of R is prime if and only if R/\mathfrak{p} is an integral domain.

Proof. Suppose that \mathfrak{p} is prime, and define $\phi: R \to R/\mathfrak{p}$ by $\phi(a) = a + \mathfrak{p}$. Since the kernel of ϕ is \mathfrak{p} , we have that

$$\phi(ab) = 0 \implies ab \in \mathfrak{p} \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p} \implies \phi(a) = 0 \text{ or } \phi(b) = 0.$$

Conversely, suppose that R/\mathfrak{p} is an integral domain. Then

$$ab \in \mathfrak{p} \implies \phi(ab) = 0 \implies \phi(a) = 0 \text{ or } \phi(b) = 0 \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p}.$$

This completes the proof.

2.3 Maximal Ideals

A maximal ideal \mathfrak{m} of R is a proper ideal such that the only ideals of R that contain \mathfrak{m} are itself and R. Maximal ideals (along with prime and proper ideals) need not be mutually exclusive; they do not partition the non-units of R.

Theorem 14. An ideal \mathfrak{m} of R is maximal if and only if R/\mathfrak{m} is a field.

Proof. By the Correspondence Theorem, there is a one-to-one correspondence between ideals of R that contain \mathfrak{m} and ideals of R/\mathfrak{m} . Then using Theorem 10,

 \mathfrak{m} is maximal \iff The only ideals of R/\mathfrak{m} are (0) and R/\mathfrak{m} itself. $\iff R/\mathfrak{m}$ is a field,

yielding the desired result

All maximal ideals are prime. The following theorem ensures a wealth of maximal ideals:

Theorem 15 (Krull's Theorem). Every nonzero ring has a maximal ideal.

Proof. The set of all proper ideals under \subseteq forms a partially ordered set — it is nonempty, as (0) is an ideal. To construct upper bounds, define (\mathfrak{a}_n) as a chain of ideals such that for indicies α and β , we have $\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\alpha} \supseteq \mathfrak{a}_{\beta}$.

Claim 1. $\bigcup \mathfrak{a}_n$ is an ideal.

Proof. We must perform two rather routine calculations:

- 1. Additivity: If $x, y \in \bigcup \mathfrak{a}_n$, let $x \in \mathfrak{a}_\alpha$ and $y \in \mathfrak{a}_\beta$ for indicies α and β . Without loss of generality, let $\mathfrak{a}_\alpha \subseteq \mathfrak{a}_\beta$; then $x \in \mathfrak{a}_\beta$. Thus $x + y \in \mathfrak{a}_\beta \subseteq \bigcup \mathfrak{a}_n$.
- 2. **Multiplicativity**: Suppose $x \in \bigcup \mathfrak{a}_n$ and $a \in R$. Then $x \in \mathfrak{a}_\alpha$ for some index; we have $ax \in \mathfrak{a}_\alpha \subseteq \bigcup \mathfrak{a}_n$.

We deduce that $\bigcup \mathfrak{a}_n$ is an ideal.

Zorn's Lemma thus applies. The set of all proper ideals contains a maximal element with respect to inclusion — namely, a maximal ideal. \Box

Two corollaries follow from Krull's Theorem:

Corollary 2. All proper ideals a are contained within some maximal ideal m.

Proof. If \mathfrak{a} is a proper ideal, then the quotient ring R/\mathfrak{a} is nonzero — hence it contains a maximal ideal \mathfrak{a}' . By the Correspondence Theorem, there exists a corresponding ideal \mathfrak{a} in R that contains \mathfrak{a} . The maximality of \mathfrak{m} is ensured by the maximality of \mathfrak{m}' (say, via a contradiction argument).

Corollary 3. Each non-unit $a \in R$ lies within some maximal ideal of R.

3 Special Rings and Ideals

3.1 Local Rings

A **local ring** is a ring with exactly one maximal ideal. They may have an arbitrary number of prime ideals. The following two theorems test whether R is local with maximal ideal \mathfrak{m} :

Theorem 16. R is a local ring if and only if $R - \mathfrak{m}$ consists of units.

Proof. Suppose that $R - \mathfrak{m}$ consists of units. Then \mathfrak{m} constitues all units of R; as all ideals are composed of non-units, ideals of R must lie within \mathfrak{m} . Then \mathfrak{m} is the sole maximal ideal of the local ring R.

Suppose that $R - \mathfrak{m}$ contains a non-unit $a \in R$. Then (a) is a proper ideal, and lies within some maximal ideal \mathfrak{n} . As $a \in \mathfrak{n}$ and $a \notin \mathfrak{m}$, the ring R has two maximal ideals and is not local.

Theorem 17. R is a local ring if and only if $\mathfrak{m} + 1$ consists of units for maximal \mathfrak{m} .

Proof. Suppose that R is a local ring. Then if $m \in \mathfrak{m}$, we must have $m+1 \notin \mathfrak{m}$; otherwise, $1 \in \mathfrak{m}$ implies that \mathfrak{m} is not a proper ideal. Hence, $\mathfrak{m}+1 \subseteq R-\mathfrak{m}$, so $\mathfrak{m}+1$ consists of units.

Suppose that $\mathfrak{m}+1$ consists of units for maximal \mathfrak{m} . Let $a \notin \mathfrak{m}$; then $(a)+\mathfrak{m}=R$, so there exists $ab \in (a)$ and $m \in \mathfrak{m}$ such that ab+m=1. Then 1-m is a unit, so

$$R = (1 - m) = (ab) \subseteq (a) \subseteq R$$

We deduce that (a) = R, so a is a unit. As $R - \mathfrak{m}$ consists of non-units, Theorem 16 implies that R is a local ring with maximal ideal \mathfrak{m} .

A **semilocal ring** is a ring with a finite number of maximal ideals.

3.2 Principal Ideal Domain

A principal ideal domain is an integral domain in which all ideals are principal.

Theorem 18. Let R be a principal ideal domain. Then all nonzero prime ideals of R are maximal.

Proof. Let $(a) \neq 0$ be prime and define (b) as the maximal ideal that contains (a). Then $a \in (b)$, so there exists $x \in R$ such that a = bx. We have $bx \in (a)$; then either $b \in (a)$ or $x \in (a)$.

Suppose for contradiction that $x \in (a)$. Then there exists $y \in R$ such that x = ay; substituting this into our earlier equation,

$$a = b(ay) \implies a(1 - by) = 0.$$

Since R is an integral domain — and since $a \neq 0$ — we must have 1 = by. Then b is a unit, so (b) = R; this contradicts the fact that the maximal ideal (b) is proper.

Thus,
$$b \in (a)$$
 and $(a) = (b)$. We conclude that (a) is maximal.

These domains are unique factorization domains, and thus the techniques discussed in AbstractAlgebra/artin12.tex apply.

3.3 The Nilradical

An element $a \in R$ is a **zero divisor** if there exists nonzero $b \in R$ such that ab = 0. A zero divisor a is **nilpotent** if $a^n = 0$ for some positive integer n. the set of all nonzero nilpotent elements of R is called the **nilradical** of R, often denoted by \Re .

Theorem 19. The nilradical \Re of R is ideal of R.

Proof. First, we must verify that \mathfrak{R} is an additive subgroup of \mathfrak{R} . Since $0 \in \mathfrak{R}$, we need only verify two conditions:

1. Closure: For $a, b \in \mathfrak{R}$, let $n, m \in \mathbb{Z}$ such that $a^n = b^m = 0$. Then

$$(ab)^{nm} = a^{nm}b^{nm} = (a^n)^m(b^m)^n = 0^m0^n = 0,$$

so $ab \in \mathfrak{R}$.

2. Inverses: If $a^n = 0$, then $(-a)^n = 0$ as well; thus $-a \in \Re$.

Now, we need only verify the multiplicative condition. For $a \in \mathfrak{R}$, define $n \in \mathbb{Z}$ such that $a^n = 0$; then for all $b \in R$,

$$(ab)^n = a^n b^n = 0b^n = 0,$$

so $ab \in \mathfrak{R}$. We deduce that \mathfrak{R} is an ideal.

The following proof is my favorite in this document:

Theorem 20. The nilradical \mathfrak{R} of a commutative ring R is the intersection of all the prime ideals of R.

Proof. Suppose $a^n = 0$ and \mathfrak{p} is a prime ideal of R. Then $a^n \in \mathfrak{p}$, so one of $aa \cdots a$ must be in \mathfrak{p} (the prime condition inducts!).

Now, suppose that $a^n \neq 0$ for all $n \in \mathbb{Z}_{>0}$. Let S be the set of all ideals \mathfrak{a} such that $a^n \notin \mathfrak{a}$ for all $n \in \mathbb{Z}_{>0}$. This set is nonempty, since $0 \in S$; then S is a partialy ordered set under inclusion.

Using identical logic as in Theorem 15, we deduce that this set must have a maximal element \mathfrak{p} — however, \mathfrak{p} may not be maximal in the scale of *all* ideals of R.

Claim 2. \mathfrak{p} is a prime ideal of R.

Proof. Suppose $b, c \notin \mathfrak{p}$. Then $(b) + \mathfrak{p}$ and $(c) + \mathfrak{p}$ are ideals that contain \mathfrak{p} , so they do not lie within S. Then they contain a power of a; for some $m, n \in \mathbb{Z}_{>0}$, for some $x, y \in R$, and for some p_1, p_2 in \mathfrak{p} ,

$$a^m = bx + p_1$$
 and $a^n = cy + p_2$.

Then $a^{mn} = bcxy + bxp_2 + cyp_1 + p_1p_2$. As \mathfrak{p} is an ideal, the entire expression $bxp_2 + cyp_1 + p_1p_2$ lies within \mathfrak{p} ; thus $a^{mn} \in (bc) + \mathfrak{p}$. Then $(bc) + \mathfrak{p}$ cannot lie within S; thus $bc \notin \mathfrak{p}$.

Taking the contrapositive yields that $bc \in \mathfrak{p}$ implies $b \in \mathfrak{p}$ or $c \in \mathfrak{p}$.

Then as a is absent from the prime ideal \mathfrak{p} , it cannot lie within the intersection of all the prime ideals of R.

If R is an integral domain, then \mathfrak{N} is the zero ideal.

3.4 The Jacobson Radical

The **Jacobson radical** \mathfrak{J} is the intersection of all the maximal ideals of R. As an intersection of ideals, \mathfrak{J} is an ideal (Section 4.1) — so it is a subideal of the nilradical.

Theorem 21. j lies in the Jacobson radical \mathfrak{J} if and only if 1 - ja is a unit across all $a \in R$.

Proof. Suppose that there $b \in R$ such that 1-jb is not a unit. Then there is a maximal ideal \mathfrak{m} that contains (1-jb); such an ideal cannot contain b, or else it contains jb and thus 1. Hence $b \notin \mathfrak{J}$.

Suppose that j is not in the Jacobson radical. Then $j \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R; thus $(j) + \mathfrak{m} = R$, so there exists $b \in R$ such that jb + m = 1 for an arbitrary nonzero $m \in M$. Then $1 - jb \in \mathfrak{m}$, so it cannot be a unit.

Taking the contrapositive yields the desired result.

4 Operations on Rings and Ideals

4.1 Sum, Intersection, Product

If \mathfrak{a} and \mathfrak{b} are ideals of a ring R, we may perform the following operations upon them to yield three new ideals.

- 1. Sum: $\mathfrak{a} + \mathfrak{b} = \{a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}$, the smallest ideal of R that contains \mathfrak{a} and \mathfrak{b} .
- 2. **Intersection**: $\mathfrak{a} \cap \mathfrak{b}$, the largest ideal of R contained within both \mathfrak{a} and \mathfrak{b} . In fact an infinite intersection of ideals is an ideal.
- 3. **Product**: $\mathfrak{ab} = \{ \sum a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \}$. We denote $\mathfrak{aa} \cdots \mathfrak{a}$ as \mathfrak{a}^n and set $\mathfrak{a}^0 = R$.

Ideals under sums and intersections form a complete lattice. Sums may be infinite; products must be finite. All of the above are commutative and associative; products and sums of ideals satisfy the distributive law. $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, with equality if $\mathfrak{a} + \mathfrak{b} = R$ (Theorem 22).

4.2 Relatively Prime Ideals

Two ideals \mathfrak{a} and \mathfrak{b} are **relatively prime** if $\mathfrak{a} + \mathfrak{b} = R$. Clearly, this holds if and only if there exists $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ such that a + b = 1.

We have invoke facts about relatively prime ideals several times thus far throughout this document — notably that if \mathfrak{m} is maximal and $a \notin \mathfrak{m}$, then $\mathfrak{m} + (a) = R$.

Theorem 22. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals of R. If \mathfrak{a}_i and \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \cap \mathfrak{a}_i$

Proof. Base case: Consider ideals \mathfrak{a} and \mathfrak{b} of R. and let $ab \in \mathfrak{ab}$. Then as \mathfrak{a} is an ideal, $ab \in \mathfrak{a}$; likewise, $ab \in \mathfrak{b}$. Them $ab \in \mathfrak{a} \cap \mathfrak{b}$. Now if $x \in \mathfrak{a} \cap \mathfrak{b}$, then $x \in \mathfrak{a}$ and $x \in \mathfrak{b}$. Let a+b=1; then $xa \in \mathfrak{ba}$ and $xb \in \mathfrak{ab}$, so $x=xa+xb \in \mathfrak{ab}$. We conclude that $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$ (this proof is wrong, \mathfrak{ab} is consists of sums).

Inductive step: Let the theorem be true for n; we wish to prove that if $\mathfrak{a}_1, \ldots, \mathfrak{a}_n, \mathfrak{b}$ are all pairwise coprime, then

$$\left(igcup_{i=1}^n \mathfrak{a}_i
ight)\mathfrak{b} = \left(igcup_{i=1}^n \mathfrak{a}_i
ight)\cap \mathfrak{b}$$

We have a sequence of equations from $a_1 + b_1 = 1$ to $a_n + b_n = 1$, where $a_i \in \mathfrak{a}_i$ and $b_i \in \mathfrak{b}$ $(i \in \{1, ..., n\})$. We argue by cosets:

$$\left(\prod_{x=1}^n a_i\right) + \mathfrak{b} = \left(\prod_{x=1}^n (1 - b_i)\right) + \mathfrak{b} = 1 + \mathfrak{b}.$$

Thus there exists $b \in \mathfrak{b}$ such that $a_1 \cdots a_n + b = 1$; thus \mathfrak{b} is coprime to $\prod \mathfrak{a}_i$, which implies the given result by the base case.

A rather trivial result is that if $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are principal ideals, then their product is the ideal of all products $a_1 \cdots a_n$ — no summations required.

4.3 Direct Product of Rings

For rings R_1, \ldots, R_n , their **direct product**

$$R = \prod_{i=1}^{n} R_i$$

is the set of all sequences $a=(a_1,\ldots,a_n)$ with $a_i\in R_i$ for $i\in\{1,\ldots,n\}$, endowed with componentwise addition and multiplication. It is a commutative ring; the mappings $\phi:R\to R_i$ defined by $\phi(a_1,\ldots,a_n)$ are homomorphisms.

In the following theorem, let R be a ring with ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$; define a homomorphism

$$\phi: R \to \prod_{i=1}^n R / \mathfrak{a}_i$$

by $\phi(a) = (a + \mathfrak{a}_1, \dots, a + \mathfrak{a}_n).$

Theorem 23. The following two properties of ϕ hold:

- 1. ϕ is injective if and only if $\cap \mathfrak{a}_i = 0$.
- 2. ϕ is surjective if and only if \mathfrak{a}_i and \mathfrak{a}_i are relatively prime whenever $i \neq j$.

Proof. For (1), the following sequence of claims is easy to verify:

$$k \in \operatorname{Ker} \phi \iff \phi(k) = 0$$

 $\iff k \in \mathfrak{a}_i \text{ for each } i \in \{1, \dots, n\}$
 $\iff k \in \mathfrak{a}_1 \cap \dots \cap \mathfrak{a}_n.$

Thus, Ker f = 0 if and only if $\cup \mathfrak{a}_i = 0$. Now for (2): suppose that ϕ is surjective. For \mathfrak{a}_i and \mathfrak{a}_j , there exists $a \in R$ such that $\phi(a)$ returns $(\ldots, 0, 1, 0, \ldots)$, where 1 is in the *i*-th place. Then $a - 1 \in \mathfrak{a}_i$ and $a \in \mathfrak{a}_j$, so

$$1 = (1 - a) + a \in (\mathfrak{a}_i + \mathfrak{a}_j),$$

so \mathfrak{a}_i and \mathfrak{a}_j are relatively prime. Now, suppose that \mathfrak{a}_i and \mathfrak{a}_j are relatively prime for each $i \neq j$. We need only show that the element $(\ldots, 0, 1, 0, \ldots)$ lies in the image of ϕ ; the 1 may be anywhere by similarity, so we can generate all elements of $\prod R/\mathfrak{a}_i$.

For each $i \in \{1, ..., n\}$, we have \mathfrak{a}_i and $\prod_{j \neq i} \mathfrak{a}_j$ are coprime; thus there exists a_i in the former and a in the latter such that

$$a_i + a = 1$$
.

Thus, $a \in (1 + \mathfrak{a}_i)$. We conclude that $\phi(a) = (\dots, 0, 1, 0, \dots,)$, from which we construct as aforementioned and demonstrate the surjectivity of ϕ .

4.4 Inclusion and Prime Ideals

In general, the union of ideals is rarely an ideal — yet there is much to be said about them:

Theorem 24. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals in R and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some $i \in \{1, \ldots, n\}$.

Proof. We prove the contrapositive — that if $\mathfrak{a} \nsubseteq \mathfrak{p}_i$ for each i, then $\mathfrak{a} \nsubseteq \bigcup \mathfrak{p}_i$. The result is clearly true for n = 1, so we utilize induction: let the result be true for n - 1, and consider the prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$.

We have that $\mathfrak{a} \nsubseteq \bigcup_{i=1}^{n-1} \mathfrak{p}_i$ by our inductive hypothesis, and $\mathfrak{a} \nsubseteq \mathfrak{p}_n$. Suppose for contradiction that $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_n$; then there exists $a_1, a_2 \in \mathfrak{a}$ such that

$$a_1 \in \bigcup_{i=1}^{n-1} \mathfrak{p}_i \text{ but } a_1 \notin \mathfrak{p}_n,$$

$$a_2 \in \mathfrak{p}_n \text{ but } a_2 \notin \bigcup_{i=1}^{n-1} \mathfrak{p}_i.$$

Their sum lies in neither; thus $a_1 + a_2 \notin \bigcup_{i=1}^n \mathfrak{p}_i$, which yields the desired contradiction. We conclude that $\mathfrak{a} \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$; taking the contrapositive yields the required result. \square

The following theorem does not concern unions, but it recasts the formulation of the above:

Theorem 25. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i.

Proof. Suppose $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ for all $i \in \{1, \ldots, n\}$. Then there exist $a_i \in \mathfrak{a}_i$ for each i that all do not belong to \mathfrak{p} ; the product

$$a = \prod_{i=1}^{n} a_i$$

lies inside every \mathfrak{a}_i , so $a \in \bigcap \mathfrak{a}_i$; the primality of \mathfrak{p} yields $a \notin \mathfrak{p}$, so $\mathfrak{p} \not\supseteq \bigcap \mathfrak{a}_i$.

Corollary 4. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals. If $\bigcap \mathfrak{a}_i$ is prime, then $\bigcap \mathfrak{a}_i = \mathfrak{a}_j$ for some j.

4.5 The Ideal Quotient

For ideals $\mathfrak{a}, \mathfrak{b}$ of R, their ideal quotient (which is trivially an ideal) is

$$(\mathfrak{a} : \mathfrak{b}) = \{x \mid x \in R, x\mathfrak{b} \subseteq \mathfrak{a}\},\$$

The most important ideal quotient is the **annihalator**, defined as $(0:\mathfrak{b})$ — the set of all $x \in R$ such that $x(\mathfrak{b}) = 0$ — and denoted as Ann \mathfrak{b} . In this notation, the set D of all zero-divisors of R is

$$D = \bigcup_{a \neq 0} \operatorname{Ann}(a).$$

If (b) is a principal ideal, we write (a:b) in place of (a:(b)).

Theorem 26. For all ideals \mathfrak{a}_i , \mathfrak{b}_i and \mathfrak{c} of R for indicies $i \in I$, the following five properties hold:

- 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.
- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.
- 3. $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc})=((\mathfrak{a}:\mathfrak{c}):\mathfrak{b}).$
- 4. $(\bigcap_i \mathfrak{a}_i : \mathfrak{b}) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b}).$
- 5. $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap_{i} (\mathfrak{a}: \mathfrak{b}_{i}).$

Proof. The proofs are as follows:

- 1. Let $a \in \mathfrak{a}$. Then $ab \in \mathfrak{a}$ for all $b \in \mathfrak{b}$, so $a(\mathfrak{b}) \subseteq \mathfrak{a}$; hence $a \in (\mathfrak{a} : \mathfrak{b})$. We conclude that $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.
- 2. Let $x \in (\mathfrak{a} : \mathfrak{b})$. By definition, $x\mathfrak{b} \subseteq \mathfrak{a}$; thus $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.
- 3. The two sets are equivalent, since

$$x \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) \iff x\mathfrak{c} \subseteq (\mathfrak{a} : \mathfrak{b})$$
$$\iff x\mathfrak{b}\mathfrak{c} \subseteq \mathfrak{a}$$
$$\iff x \in (\mathfrak{a} : \mathfrak{b}\mathfrak{c}).$$

Using this very identity yields (a : bc) = (a : cb) = ((a : c) : b).

4. The two sets are equivalent, since

$$x \in \left(\bigcap_{i} \mathfrak{a}_{i} : \mathfrak{b}\right) \iff x\mathfrak{b} \subseteq \bigcap_{i} \mathfrak{a}_{i}$$

$$\iff x\mathfrak{b} \subseteq \mathfrak{a}_{i} \text{ for each } i$$

$$\iff x \in (\mathfrak{a}_{i} : \mathfrak{b}) \text{ for each } i$$

$$\iff x \in \bigcap_{i} (\mathfrak{a}_{i} : \mathfrak{b}).$$

5. The two sets are equivalent, since

$$x \in \left(\mathfrak{a} : \sum_{i} \mathfrak{b}_{i}\right) \iff x\left(\sum_{i} \mathfrak{b}_{i}\right) \subseteq \mathfrak{a}$$

$$\iff x\mathfrak{b}_{i} \subseteq \mathfrak{a} \text{ for each } i$$

$$\iff x \in (\mathfrak{a} : \mathfrak{b}_{i}) \text{ for each } i$$

$$\iff x \in \bigcap_{i} (\mathfrak{a} : \mathfrak{b}_{i}).$$

This concludes the proof of all five properties.

4.6 Radicals of Ideals

The **radical** of an ideal \mathfrak{a} of R

$$r(\mathfrak{a}) = \{ x \in R \mid x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{Z}_{>0} \}.$$

If $\phi: R \to R/\mathfrak{a}$ is the canonical surjection, then $\phi(r(\mathfrak{a})) = \mathfrak{R}_{R/\mathfrak{a}}$, the nilradical of R/\mathfrak{a} ; the Correspondence Theorem thus ensures that $r(\mathfrak{a})$ is an ideal.

Theorem 27. For all ideals \mathfrak{a} and \mathfrak{b} of R, the following six properties hold:

- 1. $\mathfrak{a} \subseteq r(\mathfrak{a})$.
- 2. $r(r(\mathfrak{a})) = r(\mathfrak{a})$.
- 3. $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$.
- 4. $r(\mathfrak{a}) = R$ if and only if $\mathfrak{a} = R$.
- 5. $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$
- 6. If \mathfrak{p} is prime, then $r(\mathfrak{p}^n) = \mathfrak{p}$ for all $n \in \mathbb{Z}_{>0}$.

Proof. Since (1) is trivial, the proofs are as follows:

- 2. Observe that $x \in r(r(\mathfrak{a})) \implies x^n \in r(\mathfrak{a})$ for some $n \implies x^{mn} \in \mathfrak{a}$ for some m; thus $x \in r(\mathfrak{a})$. If we suppose $x \in r(\mathfrak{a})$ and $r(r(\mathfrak{a})) \subseteq r(\mathfrak{a})$, then a usage of (1) yields $r(r(\mathfrak{a})) = \mathfrak{a}$.
- 3. First Equality: Since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, we have $r(\mathfrak{ab}) \subseteq r(\mathfrak{a} \cap \mathfrak{b})$. If $x \in r(\mathfrak{a} \cap \mathfrak{b})$, then $x^n \in \mathfrak{a} \cap \mathfrak{b}$ for some n; then $x^{n+1} \in \mathfrak{ab}$, so $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b})$.

Second Equality: Clearly $x \in r(\mathfrak{a} \cap \mathfrak{b})$ implies $x \in r(\mathfrak{a})$ and $x \in r(\mathfrak{b})$, so $x \in r(\mathfrak{a}) \cap r(\mathfrak{b})$. If we assume the latter, then let $x^n \in \mathfrak{a}$ and $x^m \in \mathfrak{b}$; then $x^{nm} \in \mathfrak{a} \cap \mathfrak{b}$, so $x \in r(\mathfrak{a} \cap \mathfrak{b})$. Hence, $r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$.

4. Realize that

$$r(\mathfrak{a}) = R \iff 1 \in r(\mathfrak{a})$$
 $\iff 1^n \in \mathfrak{a} \text{ for some } n$
 $\iff 1 \in \mathfrak{a}$
 $\iff \mathfrak{a} = R.$

- 5. We have $r(\mathfrak{a} + \mathfrak{b}) \subseteq r(r(\mathfrak{a}) + r(\mathfrak{b}))$ by (1); the other direction is simple.
- 6. Realize that since

$$x \in r(\mathfrak{p}) \iff x^n \in \mathfrak{p} \text{ for some } n \iff x \in \mathfrak{p},$$

we have $r(\mathfrak{p}) = \mathfrak{p}$. The powers come from repeated application of (3).

More generally, we can define the radical r(E) for any subset $E \subseteq R$. It is not an ideal in general; it satisfies $r(\bigcup_i E) = \bigcup_i r(E)$.

Theorem 28. The radical of an ideal \mathfrak{a} is the intersection of the prime ideals that contain \mathfrak{a} .

Proof. Using the canonical surjection $\phi: R \to R/\mathfrak{a}$, we have for prime \mathfrak{p} that

 \mathfrak{p} contains the radical of \mathfrak{a} in $R \iff \phi(\mathfrak{p})$ contains the nilradical in R/\mathfrak{a} .

The latter is guaranteed by Theorem 20. It is easy to verify that $\phi(\mathfrak{p})$ is prime.

Theorem 29. The set D of zero-divisors of R is equal to $\bigcup_{a\neq 0} r(\operatorname{Ann}(a))$.

Proof. The key is to realize that D = r(D). This is because Theorem 27 ensures $D \subseteq r(D)$; now if if $x \in r(D)$, then $x^n \in D$, so $x^n y = x(x^{n-1}y) = 0$ for some $n \in \mathbb{Z}_{>0}$, and $x \in D$. Hence D = r(D).

Now, we simply utilize the properties discussed in Section 4.5 and this page:

$$D = r(D) = r\left(\bigcup_{a \neq 0} \operatorname{Ann}(a)\right) = \bigcup_{a \neq 0} r(\operatorname{Ann}(a)).$$

Theorem 30. If \mathfrak{a} and \mathfrak{b} are ideals of R, then \mathfrak{a} and \mathfrak{b} are relatively prime if and only if $r(\mathfrak{a})$ and $r(\mathfrak{b})$ are relatively prime.

Proof. Using (4) and (5) from Theorem 27, we have that

$$\begin{split} \mathfrak{a} + \mathfrak{b} &= R \iff r(\mathfrak{a} + \mathfrak{b}) = R \\ &\iff r(r(\mathfrak{a}) + r(\mathfrak{b})) = R \\ &\iff r(\mathfrak{a}) + r(\mathfrak{b}) = R, \end{split}$$

as required. \Box

4.7 Extension and Contraction

For a ring homomorphism $\phi: R \to S$ and an ideal \mathfrak{a} of R, the image $\phi(\mathfrak{a})$ need not be an ideal of S. We define the **extension** \mathfrak{a}^e as the principal ideal generated by A: namely, $\sum_{a \in R} (f(a))$. If \mathfrak{b} is an ideal of S, then the Correspondence Theorem ensures that $\{a \in R \mid \phi(a) \in \mathfrak{b}\}$ is an ideal, called the **contraction** of \mathfrak{b} and denoted by \mathfrak{b}^c .

To motivate these definitions, factorize ϕ as follows:

$$R \xrightarrow{p} \phi(R) \xrightarrow{j} S$$

The behavior of ideals under p is very simple: ideals of $\phi(R)$ correspond precisely with ideals of R that contain the kernel of ϕ . The situation with ideals under j is very complicated — in fact, it is among the central problems of Algebraic Number Theory.

Example: Consider the embedding $\mathbb{Z} \to \mathbb{Z}[i]$. For a prime ideal (p) of \mathbb{Z} , what is the extension of (p) in $\mathbb{Z}[i]$? Well, $\mathbb{Z}[i]$ is a principal ideal domain, and the situation is:

- 1. $(2)^e$ is the principal ideal $((1+i)^2)$, the square of the principal ideal (1+i)
- 2. If $p \equiv 1 \pmod{4}$, then $(p)^e$ is the product of two distinct prime ideals.
- 3. If $p \equiv 3 \pmod{4}$, then $(p)^e$ is prime in $\mathbb{Z}[i]$.

Observe the similarity between (2) and Fermat's theorem on sums of two squares.

Theorem 31. For a homomorphism $\phi: R \to S$ and ideals \mathfrak{a} and \mathfrak{b} like before:

- 1. $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$ and $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$.
- 2. $\mathfrak{a}^e = \mathfrak{a}^{ece}$ and $\mathfrak{b}^c = \mathfrak{b}^{cec}$.
- 3. If C is the set of contracted ideals in R and E is the set of extended ideals in S, then $C = \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}$ and $E = \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\}$. Furthermore, $\mathfrak{a} \to \mathfrak{a}^e$ is a bijection from C to E with inverse $\mathfrak{b} \to \mathfrak{b}^c$.

Proof. These proofs are ommitted, in the interest of remaining productive. I will comment: (1) is quite trivial, and (2) follows directly afterward.

In the interest of remaining productive, we will not prove the following fomulas:

$$(\mathfrak{a}_{1} + \mathfrak{a}_{2})^{e} = \mathfrak{a}_{1}^{e} + \mathfrak{a}_{2}^{e} \quad \text{and} \quad (\mathfrak{b}_{1} + \mathfrak{b}_{2})^{c} \supseteq \mathfrak{b}_{1}^{c} + \mathfrak{b}_{2}^{c}$$

$$(\mathfrak{a}_{1} \cap \mathfrak{a}_{2})^{e} \subseteq \mathfrak{a}_{1}^{e} \cap \mathfrak{a}_{2}^{e} \quad \text{and} \quad (\mathfrak{b}_{1} \cap \mathfrak{b}_{2})^{c} = \mathfrak{b}_{1}^{c} \cap \mathfrak{b}_{2}^{c}$$

$$(\mathfrak{a}_{1}\mathfrak{a}_{2})^{e} = \mathfrak{a}_{1}^{e}\mathfrak{a}_{2}^{e} \quad \text{and} \quad (\mathfrak{b}_{1}\mathfrak{b}_{2})^{c} \supseteq \mathfrak{b}_{1}^{c}\mathfrak{b}_{2}^{c}$$

$$(\mathfrak{a}_{1} : \mathfrak{a}_{2})^{e} \subseteq (\mathfrak{a}_{1}^{e} : \mathfrak{a}_{2}^{e}) \quad \text{and} \quad (\mathfrak{b}_{1} : \mathfrak{b}_{2})^{c} \subseteq (\mathfrak{b}_{1}^{c} : \mathfrak{b}_{2}^{c})$$

$$r(\mathfrak{a})^{e} \subseteq r(\mathfrak{a}^{e}) \quad \text{and} \quad r(\mathfrak{b})^{c} = r(\mathfrak{b})^{c}.$$

The set of ideals E is thus closed under sum and product, while C is closed under ideal quotients, radicals, and intersections.

5 The Zariski Topology

5.1 Definition

Let R be a ring and let X denote the set of prime ideals of R. For each subset $E \subseteq R$, let V(E) denote the set of prime ideals which contain E.

Theorem 32. Let $(E_{\alpha}) \subseteq R$, let $E_1, E_2 \subseteq R$. Define \mathfrak{a}_{α} , \mathfrak{a}_1 , and \mathfrak{a}_2 as the ideals generated by these sets. Then the following holds:

1.
$$V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$$
.

2.
$$\bigcap_{\alpha} V(\mathfrak{a}_{\alpha}) = V(\bigcup_{\alpha} \mathfrak{a}_{\alpha}).$$

3.
$$V(\mathfrak{a}_1) \cup V(\mathfrak{a}_2) = V(\mathfrak{a}_1\mathfrak{a}_2) = V(\mathfrak{a}_1 \cap \mathfrak{a}_2)$$
.

Proof. For (1), it is clear that

$$\mathfrak{p} \in V(E) \iff E \subseteq \mathfrak{p} \iff \mathfrak{a} \subseteq \mathfrak{p} \iff \mathfrak{p} \in V(\mathfrak{a}).$$

For (2), we similarly utilize such convenient chains of equivalencies:

$$\mathfrak{p} \in \bigcap_{\alpha} V(\mathfrak{a}_{\alpha}) \iff \mathfrak{a}_{\alpha} \subseteq \mathfrak{p} \text{ for each } \alpha.$$

$$\iff \bigcup_{\alpha} \mathfrak{a}_{\alpha} \subseteq \mathfrak{p}$$

$$\iff \mathfrak{p} \in V\left(\bigcup_{\alpha} \mathfrak{a}_{\alpha}\right).$$

The story for (3) is again quite similar: we have that

$$\mathfrak{p} \in V(\mathfrak{a}_1) \cup V(\mathfrak{a}_2) \iff \mathfrak{a}_1 \subseteq \mathfrak{p} \text{ or } \mathfrak{a}_2 \subseteq \mathfrak{p}$$
$$\iff \mathfrak{a}_1 \cap \mathfrak{a}_2 \subseteq \mathfrak{p} \iff \mathfrak{p} \in V(\mathfrak{a}_1 \cap \mathfrak{a}_2)$$
$$\iff \mathfrak{a}_1 \mathfrak{a}_2 A \subseteq \mathfrak{p} \iff \mathfrak{p} \in V(\mathfrak{a}_1 \mathfrak{a}_2).$$

This last step follows from the fact $r(\mathfrak{a}_1 \cap \mathfrak{a}_2) = r(\mathfrak{a}_1 \mathfrak{a}_2)$. This completes the proof. \square

Further observe that V(0) = X and $V(1) = \emptyset$. Thus the sets $V(\mathfrak{a})$ across all $\mathfrak{a} \in X$ satisfy the closed set axioms of a toplogical space. The resulting topology is called the **Zariski** topology, and the set X is called the **prime spectrum** of R, denoted Spec R.