CS 161 Fundamentals of Artificial Intelligence Lecture 11

Uncertainty Quantification

Quanquan Gu

Department of Computer Science UCLA

March 8th, 2022

Teaching/Course Evaluation

- The online evaluations has opened last week and will close 8:00 AM Saturday, March 12.
- Your feedback is valuable and more than welcome!
- Students who have done the online evaluation will receive 1 extra point in the final grade:)

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time? Hence a purely logical approach:

- " A_{25} will get me there on time", may be wrong!
- $ightharpoonup "A_{25}$ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc.", there exists uncertainty!

How to handle uncertainty?

Methods for handling uncertainty

Making assumptions:

- Assume my car does not have a flat tire
- ightharpoonup Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Probability can help us!

▶ Given the available evidence, A_{25} will get me there on time with probability 0.04

What is probability?

Probability

- Probabilistic assertions summarize effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.
- ullet Subjective or Bayesian probability: Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|{
 m no~reported~accidents})=0.06$
- Probabilities of propositions change with new evidence: e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

• Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|\dots) = 0.04

P(A_{90} \text{ gets me there on time}|\dots) = 0.70

P(A_{120} \text{ gets me there on time}|\dots) = 0.95

P(A_{1440} \text{ gets me there on time}|\dots) = 0.9999
```

Which action to choose?

- Depends on my **preferences** for missing flight vs. airport cuisine, etc.
- **Utility theory** says that every state has a degree of usefulness, or utility, to an agent and that the agent will prefer states with higher utility.
- **Decision theory** = utility theory + probability theory

Probability basics

- Begin with a set Ω —the sample space e.g., 6 possible rolls of a die. $\omega \in \Omega$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$\begin{array}{l} 0 \leq P(\omega) \leq 1 \\ \sum_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6. \end{array}$$

ullet An **event** A is any subset of Ω

$$P(A) = \sum\nolimits_{\{\omega \in A\}} P(\omega)$$

E.g.,
$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

Random variables

• A **random variable** is a function from sample points to some range, e.g., the reals or Booleans

e.g., Odd(1) = true.

• P induces a **probability distribution** for any r.v. X:

$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

e.g.,

$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

- We call events in probability as **propositions** in Al.
 - \triangleright Events: given Boolean random variables A and B:
 - Event $a = \text{set of sample points where } A(\omega) = true$
 - Event $\neg a = \text{set of sample points where } A(\omega) = false$
 - Event $a \wedge b = \text{points}$ where $A(\omega) = true$ and $B(\omega) = true$
- With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \wedge \neg b$.
- Proposition = disjunction of events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Syntax for propositions

- Propositional or Boolean random variables
 e.g., Cavity (do I have a cavity?)
 Cavity = true is a proposition, also written cavity
- Discrete random variables (finite or infinite) e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive
- Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
- Arbitrary Boolean combinations of basic propositions

Prior probability

- Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- **Probability distribution** gives values for all possible assignments:

$$P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$$
 (normalized, i.e., sums to 1)

- ► Tips: we use *P* to denote probability for specific event, **P** to denote the distribution over all events—a vector!
- **Joint probability distribution** for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)

 $P(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rain	cloudy	snow
$\overline{Cavity = true}$	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional probability

- Conditional or posterior probabilities
 - e.g., P(cavity|toothache) = 0.8
 - "if toothache and no further information we have, then 80% chance of cavity"
 - ▶ NOT "if toothache then 80% chance of cavity"!
 - If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g., P(cavity|toothache, LakersWin) = P(cavity|toothache) = 0.8

Conditional probability

• Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

• Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$$

(View as a 4×2 set of equations, **not** matrix mult.)

• Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n-1}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
=
= \prod_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

- A naive way of doing probablistic inference is inference by enumeration.
- Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Here catch: the dentist's nasty steel probe catches in tooth.

ullet For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

• Start with the joint distribution:

	toothache		¬ toothache	
	catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

ullet For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

• Start with the joint distribution:

	toothache		¬ toothache	
	catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

 \bullet For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(cavity \lor toothache) =$$

$$0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

• Start with the joint distribution:

	toothache		¬ toothache	
	catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ too	¬ toothache	
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

ullet Denominator can be viewed as a normalization constant lpha

$$\begin{split} \mathbf{P}(Cavity|toothache) &= \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \alpha \, [\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)] \\ &= \alpha \, [\langle 0.108,0.016 \rangle + \langle 0.012,0.064 \rangle] \\ &= \alpha \, \langle 0.12,0.08 \rangle = \langle 0.6,0.4 \rangle \end{split}$$

• General idea: compute distribution on query variable by fixing **evidence variables** and summing over **hidden variables**

Inference by enumeration, contd.

- Let X be all the variables. Typically, we want
 the posterior joint distribution of the query variables Y
 given specific values e for the evidence variables E
- Let the **hidden variables** be $\mathbf{H} = \mathbf{X} \mathbf{Y} \mathbf{E}$ Then the required summation of joint entries is done by summing out the hidden variables:

$$\mathbf{P}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \sum_{h} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$$

- The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables
- Obvious problems:
- 1) Worst-case time complexity $O(d^n)$ where d is the largest domain size
 - 2) Space complexity $O(d^n)$ to store the joint distribution
 - 3) How to find the numbers for $O(d^n)$ entries???

Independence

• Those problems can be solved by exploring independencies between variables.

A and B are **independent** iff $\mathbf{P}(A|B) = \mathbf{P}(A) \quad \text{or} \quad \mathbf{P}(B|A) = \mathbf{P}(B) \quad \text{or} \quad \mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)$

P(Toothache, Catch, Cavity, Weather)= P(Toothache, Catch, Cavity) P(Weather)

- ullet 32 entries reduced to 12; for n independent biased coins, $2^n o n$
- Absolute independence is powerful but rare e.g., Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- P(Toothache, Cavity, Catch) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) P(catch|toothache, cavity) = P(catch|cavity)
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is **conditionally independent** of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)

• Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)P(Toothache, Catch|Cavity) =P(Toothache|Cavity)P(Catch|Cavity)

Conditional independence contd.

Write out full joint distribution using chain rule:

```
\begin{split} & \textbf{P}(Toothache, Catch, Cavity) \\ & = \textbf{P}(Toothache|Catch, Cavity) \textbf{P}(Catch, Cavity) \\ & = \textbf{P}(Toothache|Catch, Cavity) \textbf{P}(Catch|Cavity) \textbf{P}(Cavity) \\ & = \textbf{P}(Toothache|Cavity) \textbf{P}(Catch|Cavity) \textbf{P}(Cavity) \end{split}
```

i.e., 2 + 2 + 1 = 5 independent numbers

ullet In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- ullet Bayes' Rule can be used in probability inference when we have P(b|a) but not P(a|b).
- Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

• Useful for assessing **diagnostic** probability from **causal** probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

e.g., let C be COVID-19, M be cough:

$$P(c|m) = \frac{P(m|c)P(c)}{P(m)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of COVID-19 still very small!

Bayes' Rule and conditional independence

```
\mathbf{P}(Cavity|toothache \wedge catch) \\
= \alpha \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity) \\
= \alpha \mathbf{P}(toothache|Cavity) \mathbf{P}(catch|Cavity) \mathbf{P}(Cavity)
```

This is an example of a naive Bayes model:

$$P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$$

Total number of parameters is **linear** in n

Example: Wumpus World

• Suppose we have the information of $B_{1,1}, B_{1,2}, B_{2,1}$ and we want to know the probability distributions of the unknown squares.

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B OK	2,2	3,2	4,2
1,1 OK	2,1 B OK	3,1	4,1
UK	UK		

$$\begin{split} P_{ij} = &true \text{ iff square } [i,j] \text{ contains a pit} \\ B_{ij} = &true \text{ iff square } [i,j] \text{ is breezy} \\ \text{Include only } B_{1,1}, B_{1,2}, B_{2,1} \text{ in the probability model} \end{split}$$

Specifying the probability model

- The full joint distribution is $P(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$
- Apply product rule:

$$P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$$
 (Do it this way to get $P(Effect|Cause)$.)

- First term: 1 if pits are adjacent to breezes, 0 otherwise
- Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Observations and query

• We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\ known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$$

- Query is $P(P_{1,3}|known,b)$
- Define $Unknown = P_{ij}$'s other than $P_{1,3}$ and known
- For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$$

Grows exponentially with number of squares!

• How to solve this problem? Use conditional independence relationships between variables.

Using conditional independence

• Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define $Unknown = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Known, Unknown) = \mathbf{P}(b|P_{1,3}, Known, Fringe)$
- Manipulate query into a form where we can use this!

Using conditional independence contd.

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(known)P(fringe)P(other) \\ &= \alpha P(known) \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \sum_{other} P(other) \\ &= \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \end{split}$$

Using conditional independence contd.

$$\mathbf{P}(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \rangle$$

$$\approx \langle 0.31, 0.69 \rangle$$

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size. **Independence** and **conditional independence** provide the tools to achieve this.

Acknowledgment

The slides are adapted from Stuart Russell