Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)»

Кафедра «Материаловедение и технологии материалов»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА по направлению подготовки «Материаловедение и технологии материалов»

«Влияние типа упрочнения на структуру и свойства двухфазных титановых сплавов»

Студент:

Камалова Даяна Юлаевна

Группа:

Т10-406Б-16

Дипломный руководитель: Шалин Алексей Владимирович

Цель и задачи выпускной квалификационной работы

Цель

Оценить изменение структуры и свойств титановых сплавов после различных типов упрочнения

Задачи

- 1. Оценить влияние дополнительного легирования железом на прочность сплава BT3-1;
- 2. Оценить влияние различных степеней деформации на прочность сплава BT6 при различных степенях деформации;
- 3. Оценить влияние режимов упрочняющей термической обработки 4.на прочность сплава BT35.

Объекты и методы исследования

Сплав	Легирующие элементы, масс. %							
	Al	V	Мо	Zr	Sn	Nb	Cr	Fe
BT3-1	6,0	-	2,5	0,5	-	-	1,5	≤0,35
BT6	5,9	4,1	-	-	-	-	-	≤0,35
BT35	3,5	15	1,5	-	-	-	3	≤0,35

Исходные прутки из BT3-1

Исходные прутки из ВТ6

Исходные прутки из ВТ35

Использованные методы исследования

- Металлографические исследования (микроскоп Axio Observer)
- Измерение твердости по методу Роквелла (твердомер Buehler MacroMet)
- Статические механические испытания для определения уровня механических свойств (разрывная машина TIRATEST)

Упрочнение титанового (α+β)-сплава ВТ3-1 за счёт легирования железом

Структура прутков в исходном состоянии и с добавлением 2,5% и 5% железа

Механические свойства сплава ВТ3-1 дополнительно легированного железом в отожженном состоянии (620°С, 1ч, охлаждение на воздухе)

Состав	σ _{в,} МПа	σ _{0,2,} ΜΠα	δ, %	ψ, %
Исходный	1019	993	21	49
Исходный + 2,5% Fe	1041	996	18	39
Исходный + 5% Fe	1077	1024	15	39

Упрочнение титанового (α+β)-сплава ВТ6 при прессовании

Микроструктуры исходной заготовки и деформированных (прессованных) прутков ВТ6

Ø 90 мм

Ø 45 MM $(\epsilon = 50\%)$

Ø 35 мм (ε=60%)

Ø 25 MM $(\epsilon = 70\%)$

Механические свойства прутков ВТ6 с различной степенью деформации

Диаметр	Механические свойства				
прутка, мм	σ _B , ΜΠα	σ _{0,2,} ΜΠα	δ, %	ψ, %	
90 (исходный)	890	860	20	40	
45	930	900	16,5	37	
35	970	940	15	34,5	
25	995	925	14,5	36,8	

Влияние термической обработки на механические свойства титанового псевдо-β-сплава BT35

Структура исходных прутков BT35 различного диаметра

Структуры прутков ВТ35 различного диаметра после упрочняющей термической обработки (закалка + старение) (800°C, 2 часа, воздух + 475°C, 25 часов, воздух)

Ø 22 MM

Ø 16 mm

Ø8 мм

Ø 22 MM

Ø 16 мм

Ø 8 mm

Механические свойства исходных прутков BT35

Механические свойства прутков ВТ35 после закалки и старения

п	Испытания на растяжение			
Диаметр прутка, мм	σ _в , МПа	δ, %		
22	775	26		
16	780	25		
8	810	25		

	Испытания на растяжение			
Диаметр прутка, мм	σ _в , МПа	δ, %		
22	1289	6		
16	1282	8		
8	1275	8		

Влияние параметров старения на свойства сплава ВТ35

Микроструктура прутка ВТ35 (Ø 16 мм) после различных режимов упрочняющей термической обработки

800°, 2 часа, воздух +475°, 25 часов, воздух

800°, 2 часа, воздух +475°, 50 часов, воздух

800°, 2 часа, воздух +500°, 25 часов, воздух

Свойства прутков BT35 (Ø 16мм) после различных режимов упрочняющей термической обработки

Режим	Твёрдость ед. HRC	Испытания на растяжение			
		σ _в , МПа	δ, %	ψ, %	
800°С, 2 часа, воздух 475°С, 25 часов	42,5	1282	8	13	
800°С, 2 часа, воздух 475°С, 50 часов	43,5	1410	5	13	
800°C, 2 часа, воздух 500°C, 25 часов	42,0	1210	9	18	

Выводы по работе

- 1. Установлено, что при введении 2,5% железа в титановый (α + β)-сплава ВТЗ-1 предел прочности увеличился на 22 МПа, а при введении 5% на 58 МПа.
- 2. Изучено, что с увеличением степени деформации путем прессования прутков из титанового $(\alpha+\beta)$ -сплава ВТ6 предел прочности прутков увеличился на 10,5% до 995 МПа.
- 3. Показано, что при упрочняющей термической обработке титанового псевдо-β-сплава ВТ35, включающей закалку с 800°С на воздухе и последующее старение при 475°С со временем выдержки 25 часов и последующим охлаждением на воздухе наблюдался эффект дисперсионного упрочнения, выраженный в повышении предела прочности почти в 1,5 раза.
- 4. Установлено, что увеличение времени выдержки при старении с 25 до 50 часов приводит к повышению прочности на 128 МПа за счёт наиболее полного протекания процессов распада метастабильной фазы. Повышение же температуры до 500°С при одинаковом времени выдержки приводит даже к некоторому разупрочнению сплава до 1210 МПа за счёт роста выделившихся структурных составляющих.