Theoretical Quantum Optics

Theoretische Quantenoptik

Lecture

Tuesday 8h00 c.t.

Thursday 8h00 c.t

Start: 17.10.2023

Venue: D8H33

Tutorials

Monday 12h00 c.t. in D8H33

Tuesday 10h00 c.t. in C5S06

Optical Schrödinger's Cat © Wikipedia

Prof. Dr. Igor Lesanovsky Institut für Theoretische Physik igor.lesanovsky@uni-tuebingen.de

Lecture – Table of contents

Week	Contents	Pages in
(approx.)		script
1	1. Quantisation of the electromagnetic field	1 – 11
	Quantisation of a single mode	
	Quantum fluctuations of a single mode	
2	Quadrature operators of a single-mode field	12 – 21
	Multi-mode fields	
3	Thermal fields	22 – 31
	Coherent states	
4	2. Quasi-probability distributions in phase space	32 – 42
	Wigner-function (Coherent states)	
5	Complex Fourier Transform in 2D	43 – 52
	Characteristic function	
	Wigner-function (thermal states, Fock states)	
	P – function	
6	Q – representation	53 – 66
	Relationship between Wigner, P and Q functions	
	Equation of motion for quasi-probabilities	
7	Non-classicality of radiation fields	67 – 76
	Mandel parameter	

Lecture – Table of contents

Beam splitter physics

Hong-Ou-Mandel effect

Measurement of the Wigner function

Open system dynamics and decoherence

Micromaser theory

3. Quantum measurements of the electromagnetic field

8

13

14

	Measurement of the Wigher Tunction	
	Homodyne detection	
9	Theory of photo-detection	89 – 102
	Theory of optical coherence	
	Michelson star interferometer	
	Hanbury-Brown-Twiss effect	
10	Noise in quantum-optical measurements	103 – 113
	Introduction to quantum parameter estimation theory	
	Classical parameter estimation theory	
11	Quantum parameter estimation theory	114 – 134
	4. Light-matter interaction	
	Interaction between an atom and an electromagnetic field	
12	Atom driven my classical light field (Rabi model)	125 – 137
	Atom interacting with a quantised light field (Jaynes-Cummings model)	

77 - 88

138 - 148

149 - 156

Literature

C. Gerry and P. Knight

Introductory Quantum Optics Cambridge University Press

D. Braun

Quantum Optics Script

I. Lesanovsky

Theoretical Quantum Optics Script (Download through Ilias)

Berthold-Georg Englert

Elements of Micromaser Physics arXiv:quant-ph/0203052

...and any other quantum optics book/script

Lecture plan

Date	
17.10.	Lecture 1
19.10.	Lecture 2
24.10.	Lecture 3
26.10.	Lecture 4
31.10.	Lecture 5
2.11.	Bad Honnef
7.11.	Lecture 6
9.11.	Lecture 7
14.11.	Lecture 8
16.11.	Lecture 9
21.11.	Lecture 10
23.11.	Lecture 11
28.11.	Lecture 12
30.11.	Lecture 13
5.12.	Lecture 14
7.12.	Dresden
12.12.	Lecture 15
14.12.	Lecture 16
19.12.	Lecture 17

Date	
21.12.	School holiday
26.12.	
28.12.	Christmas
2.1.	
4.1.	
9.1.	Lecture 18
11.1.	Lecture 19
16.1.	Lecture 20
18.1.	Munich
23.1.	Lecture 21
25.1.	Lecture 22
30.1.	Lecture 23
1.2.	Lecture 24
6.2.	Lecture 25
8.2.	Lecture 26

Tutorials

- Venue

- Monday 12h00 14h00 c.t. D8H33
- Tuesday 10h00 12h00 c.t. C5S06

Weekly problem sheet

- Hand out online on Thursday
- Hand in before Thursday lecture

Pass criteria

- Meaningful attempt to solve of at least 70% of all questions
- Presentation of solution at least three times during tutorials
- Attendance of all but one tutorial