Introduction to Genomics

Libor Mořkovský, Václav Janoušek

https://ngs-course.readthedocs.io/en/praha-february-2019/

Genome

The genome is the genetic material of an organism including both the genes and the non-coding sequences.

- sequence
- physical map
- annotations
- versioned reference

sequence

AGTGGGCGAGGCGCGAGGTCTGGCCTATAAAGTAGTCGCGGAGACGGGG TGCTGGTTTGCGTCGTAGTCTCCTGCAGCGTCTGGGGGTTTCCGTTGCAGT CCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGACGAAGGC CGTGTGCGTGCTGAAGGGCGACGGCCCAGTGCAGGGCATCATCAATTTCG AGCAGAAGGCAAGGGCTGGGACGGAGGCTTGTTTGCGAGGCCGCTCCCAC TCGGGGCCGCCTGGTCCAGCGCCCGGTCCCGGCCCGTGCCGCCCGGTCG GTGCCTTCGCCCCCAGCGGTGCCGGTGCCCAAGTGCTGAGTCACCGGGCGG GCCCGGGCGCGGGCGTGGGACCGAGGCCGCCGCGGGGCTGGGCCTGCGC GTGGCGGGAGCGCGGGAGGGATTGCCGCGGGCCGGGGAGGGGCGGGGC GGGCGTGCTGCCCTCTGTGGTCCTTGGGCCGCCGCCGCGGGTCTGTCGTG GTGCCTGGAGCGGCTGTGCTCGTCCCTTGCTTGGCCGTGTTCTCGTTCCT GAGGGTCCCGCGGACACCGAGTGCCCAGTGCCAGGCCCAGCCCGGGGAT GGCGACTGCGCCTGGGCCCGCCTGGTGTCTTCGCATCCCTCTCCCGCTTTC CGGCTTCAGCGCTCTAGGTCAGGGAGTCTTCGCTTTTGTACAGCTCTAAG GCTAGGAATGGTTTTTATATTTTTAAAAGGCTTTTGGAAAACAAAAATACG CAACAGAGACCGTTTGTGTGACACTTTGCAGGGAAGTTTGCTGGCCTCTG TTCTAGGTCATGATTGGGCTGCAAGGGCAGAGAAGGTAGCCTTGAACAGA GGTCCTTTTCCTCCTCCTAAGCTCCGGGAGCCAGAGGTTTAACTGACCCT

physical map

annotations

versioned reference

How to get a genome?

- get a sequence
- map the sequence
- annotate the sequence
- refine the sequence

Get a sequence

 Old ways (Sanger) or new ways (NGS)... ... all produce "reads" or "paired-end reads" ...

CGTGGGACCGAGGCCGCCGCGGGGCTGGGCCT GGCGACGGCCCAGTGCAGGGCATCATC

GGCGACGGCCCAGTGCAGGGCATCATC

CTGGTGTCTTCGCATCCCTCTCCGCTTTC

TGCAAGGCAGAGAAGGTAGCCTTGAACAGA

 ${\tt TGCAAGGGCAGAGAAGGTAGCCTTGAACAGA}$

GCTGTGCTCGTCCCTTGCTTGGCCGTGTTCTCGT

Get/Map the sequence

- <u>Reads</u> are <u>assembled</u> into continuous <u>contigs</u>
- Paired-end reads help to create a <u>scaffold</u> of contings
- Scaffolds are then mapped to <u>chromosomes</u>

- Annotation approaches
 - sequence similarity
 - to known features
 - to homologous features in other organisms
 - feature prediction using models

- Gene prediction
 - sequence similarity to ESTs, RNA-seq
 - homology gene/protein families
 - using Hidden Markov Models to predict gene structure

- Other non-coding functional elements
 - TF binding sites, etc.
 - interspecies sequence conservation
 - ChIP-seq, DNAsel Hypersensitive Sites, etc.

Other features

- Variation data (SNPs, INDELS)
- Structural variation data (CNVs)
- Repeat data (RepeatMasker)
- Epigenomic data (methylation, histone acetylation)
- Functional data (Gene Ontology, KEGG, ...)
- Gene Expression

Where to find genomic data?

UCSC Genome Bioinformatics

Where to find genomic data?

UCSC Genome Bioinformatics

The way the genomic data are stored

Regular text files of a specific format

- easy to open and explore
- easy to work with
- .fasta, .fastq, .bed, .gff, .gtf, .vcf, ...

Binaries

- more efficient for large datasets
- fast retrieval by specific tools
- .2bit, .gz, .bcf

Storing sequences: FASTA

>ID_seq|specific_info

Storing reads: FASTQ

```
@ID_seq1
AGTGGCGAGGCGCGGAGGTCTGGCCTATAAAGTAGTCGCGGAGACGGGG
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>
@ID_seq2
CCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGACGAAGGC
+
')%'* (***+)*''))*%%++5C)(%%%(!((%).1***-+*5CF>>>>
```

Storing reads: FASTQ

```
@ID_seq1
AGTGGGCGAGGCGCGGAGGTCTGGCCTATAAAGTAGTCGCGGAGACGGGG
+ ASCII
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>
@ID_seq2
CCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGACGAAGGC
+
')%'* (***+)*''))*%%++5C)(%%%(!((%).1***-+*5CF>>>>
```

FASTQ: ASCII to PHRED

```
.....
  .....
  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                  104
                                            126
    0.....9......40
                 Phred+33, raw reads typically (0, 40)
S - Sanger
        Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

PHRED: quality scores

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%

Storing annotations: GFF/GTF

- GFF
 - General Feature Format (any kind of annotation/feature)
- GTF
 - Gene Transfer Format (specific form of GFF used to store gene annotation)
- 9 TAB separated fields
- actual content of individual fields depends on the database and type of data

```
feature
                                                                               attribute
segname
          source
                                    start
                                              end
                                                      score
                                                             strand
                                                                      frame
2
          protein coding
                                              2419128 .
                                                                               gene id "ENSG00000223972";
                           CDS
                                    2419108
                                                                               gene id "ENSG00000123546";
          protein coding
                                             1440976 .
X
                           CDS
                                    1186934
```

```
gene_id "ENSG00000223972"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "protein_coding";

tag "value";
```

Storing annotations: BED

- 3/4/6/12 columns
- used by UCSC Genome Browser to visualize various features

chrom	chromStart	chromEnd	name	score	strand
2	2419108	2419128	ENSG00000223972	•	+
X	1186934	1440976	ENSG00000123546	•	_

Storing annotations: BED

0-based vs. 1-based coordinate system

chr1		Т		Α		C		G		Т		С		Α	
	Ĭ	I	ľ	1	1	1	1	1	Î	I	1	1	1	1	Ī
1-based		1		2		3		4		5		6		7	
0-based	0		1		2		3		4		5		6		7

	1-based	0-based
Indicate a single nucleotide	chr1:4-4 G	chr1:3-4 G
Indicate a range of nucleotides	chr1:2-4 ACG	chr1:1-4 ACG
Indicate a single nucleotide variant	chr1:5-5 T/A	chr1:4-5 T/A

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                        REF ALT
                                      OUAL FILTER INFO
                                                                                     FORMAT
                                                                                                  Sample1
                                                                                     GT:GO:DP:HO 0|0:48:1:52,51
       4370
              rs6057
                             A
                                      29
                                                  NS=2;DP=13;AF=0.5;DB;H2
       7330
                             A
                                           q10
                                                  NS=5;DP=12;AF=0.017
                                                                                     GT:GQ:DP:HQ 0|0:46:3:58,50
       110696 rs6055
                             G,T
                                      67 PASS
                                                  NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
       130237 .
                                      47
                                                  NS=2:DP=16:AA=T
                                                                                     GT:GQ:DP:HQ 0|0:54:7:56,60
       134567 microsat1 GTCT G,GTACT 50
                                                                                                  0/1:35:4
                                           PASS
                                                  NS=2;DP=9;AA=G
                                                                                     GT:GO:DP
```

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
                                                                                       Header part
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
                                                                                       (description of
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                       abbreviations used in
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
                                                                                       the data part)
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                        REF ALT
                                      OUAL FILTER INFO
                                                                                      FORMAT
                                                                                                  Sample1
                                                                                      GT:GQ:DP:HQ 0|0:48:1:52,51
       4370
              rs6057
                             A
                                      29
                                                  NS=2;DP=13;AF=0.5;DB;H2
       7330
                             A
                                           q10
                                                  NS=5;DP=12;AF=0.017
                                                                                      GT:GQ:DP:HQ 0|0:46:3:58,50
       110696 rs6055
                             G,T
                                         PASS
                                                  NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
       130237 .
                                      47
                                                  NS=2:DP=16:AA=T
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60
                                                                                                  0/1:35:4
       134567 microsat1 GTCT G,GTACT 50
                                           PASS
                                                  NS=2;DP=9;AA=G
                                                                                      GT:GQ:DP
```

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Nu
                      Table: Variants (rows) vs. Samples (columns)
##INFO=<ID=DP, Nu
##INFO=<ID=AF, Nu
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                         abbreviations used in
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
                                                                                         the data Samples +
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10 Variation details (location, quality, type, etc.)
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
                                                                                                  Genotypes
 #FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS
                                                                                                    Sample1
                         REF
                              ALT
                                       OUAL FILTER INFO
                                                                                        FORMAT
                                                                                        GT:GQ:DP:HQ 0|0:48:1:52,51
       4370
              rs6057
                                                    NS=2;DP=13;AF=0.5;DB;H2
       7330
                                                    NS=5; DP=12; AF=0.017
                                                                                        GT:GQ:DP:HQ 0|0:46:3:58,50
                                            q10
                                                   NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
       110696 rs6055
                              G,T
                                            PASS
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60
       130237 .
                                       47
                                                    NS=2:DP=16:AA=T
       134567 microsat1 GTCT G,GTACT 50
                                                                                                    0/1:35:4
                                            PASS
                                                    NS=2;DP=9;AA=G
                                                                                        GT:GQ:DP
```

Storing annotations: VCF

Explore VCF file

```
< /data-shared/vcf_examples/luscinia_vars_flags.vcf.gz
zcat | less -S</pre>
```