A review on "A Decision Procedure for (Co)datatypes in SMT Solvers" by Nikolay Amiantov

Alexander Grebenyuk

March 25, 2017

In his project the author provides an implementation of the theory of codatatypes for a satisfiability modulo theory(SMT) solver. To achieve this, the author shows how to define the satisfiability on the theory of codatatypes and proves that his definition is correct, using derivation trees.

The reviewer was able to understand the whole project. The project has a clear structure and is split into several logically independent sections. In each section the author gives an informal definition of the contents of the section at first, and then provides a clear formal definition, which helps the reader to understand the material better. The project sections are ordered in a way to gradually build up formalism to achieve the goal of proving the refutation and the solition soundness of the author's theory of codatatypes in the final section, and avoid unnecessary complex definitions in the preliminary ones.

Some parts of the project were unclear, however. The comments and the suggestions how to improve these parts are listed by page below. The list of English grammar and puctuation errors, typos and word ordering problems is presented in the final section of the review, listed by page in a form of a table, with each row showing an errorneous combination of words in bold, a suggestion to improve it, a reason to consider it an error and a severity of this error to the reviewer's mind.

Logic defects and errors

• Page 1:

- The author does not give a formal definition of "type" in general and rather resorts to a highly philosophical one, e.g. "a meaning of expression". It is advised to give a more formal definition of a type, or to not give any one at all.
- The use of Haskell notation for the definitions of (co)datatypes is understandable, applicable and makes it clear for readers with a programming background. To the reviewer's mind it can be found confusing by other readers, so it is strongly advised to give a proper explaination to this notation, mostly for the "SCons" operation and the symbol "|".
- Peano numbers are mentioned without a reference to a source.

• Page 2:

- A problem with the Haskell notation again: it would be better to explain the meaning of the "_" symbol.
- "Recall that a logic is defined through a signature that lists all non-logic symbols..." it is not clear where to recall from. It is advised to add a reference to a source.
- Definitions of sytactic equality, term equality and α -equality on this page and the following ones are buried in a lot of text. It is hard for a reader to refer to these definitions throughout the course of the paper. Consider highlighting those in some way. The same advise is given for the definition of the set of (co)datatypes.

• Page 3:

- The bracket notation is inclear in the "codata" formal definition. Please, clarify the meaning of $[s_{ij}^k:]$.
- The mathematical notation is incorrect in $\mathscr{F} = \mathscr{F}_{ctr} \uplus \mathscr{F}_{sel} \uplus true, false,$ a correct one is $\mathscr{F} = \mathscr{F}_{ctr} \uplus \mathscr{F}_{sel} \uplus \{true, false\}.$
- $d_{i1}(x) \vee \cdots \vee d_{im_i}(x)$ it is not stated what this disjunction must be equal to, which can be naturally guessed from the infornal explaination to be 1 however. Still, it had better be stated clearly in the formal definition.
- The "induction property" and the "dual property" definitions are buried in a lot of text, but are referenced in several proofs, and thus are considered highly important. Highlighting the properties in a similar to the "shared basic properties" way is advised, as the paper's clarity would benefit from it.
- The formal definition for an "interpretation" of a formula is absent, but is referenced in the defintion of DC-satisfiability: "formula is called DC-satisfiable, if there exists an interpretation . . . that satisfies it".

• Page 4:

- The lemma 1 definition and proof have several defects:
 - * "Corecursive codatatypes" by definition of "codatatypes" from p. 1 they are already corecursive and their corecursivity need not be mentioned again in the lemma.
 - * In the proof of the lemma the author states that "cross product of any domain to a singleton set is the same domain", which is technically incorrect, as a cross product of a domain to a singleton set would produce another domain, consisting of pairs of elements: $A \times S = \{(a,s) \mid a \in A \text{ and } S = \{s\}\}$, but it obviously will not affect the new domain's cardinality. This minor mathematical issue should be fixed, nonetheless.

• Page 5:

 The operation "<<" is not defined formally by the author but is widely used in definitions of rules (e.g. Trans, Cong).

- In the definition of the injection closure, the notation used in the conclusion of the rule is unclear, mainly "E+". Also it is unclear why the syntactic equality operator is used between a closure E and a set of rules on the right side.
- The termin "free variable" occurs first on this page and is widely used by the author thereafter, but the paper lacks its formal definition.
- Highlighting the α -equality is strongly advised, as it is used in the key theorems in the paper.

• Page 6:

- The paper lacks an informal explaination of the reasons why complex rules (e.g. Acyclic, Unique, Single and Split) are constructed the way they are defined formally. The paper's clarity would benefit from providing it.
- In the formal definition of the Split rule, the right part of the sub-conjuction on the right side of the disjuncton, namely " δ is finite" is mathematically incorrect and should be written as " $|\delta|$ is finite" instead
- The renaming part of a rule conclusion " $\mathcal{A} := \mathcal{A}\left[\tilde{u} \to \mu \tilde{u}.\ C(\tilde{t_1}, \dots, \tilde{t_n})\right]$ " makes use of an undefined symbol ":=". It is advised to clarify the renaming notation and make it consistent with a previously given one for terms.
- The figure numbering is incorrect across the whole paper. Figures are numbered subsequently, not depending on the secton number, but are referenced by a combined section and figure number. For example the sentence "Rules for this phase are listed on figure 3.2" refers to the figure with caption "Figure 2: Derivation rules for acyclicity and uniqueness" in section 3.
- "Hence, $\mathcal{A}(t^{\tau})$... can take in models of E" it is unclear what the "model" of E is, as the paper lacks the definition of a model of a closure of rules.
- The termin "derivation trees" had better be defined formally by the section 4, as it is widely used across the paper in the key theorems and is mentioned as "closed" on this page without defining what a closed derivation tree is in either formal or informal way.

• Page 7:

- $S_t^{\infty} = \lim_{t \to \infty} S_t^i$ a formal definition or an informal one for a limit, defined on sets, is needed.
- " S_t^{∞} ... is a finite set because all chains of selectors in input are finite" this part of the proof of the theorem 1 needs clarification.
- The whole proof of the termination theorem (theorem 1) is given in a rather sketchy way, and thus is unclear to the reviewer. The induction process is not shown and is just informally described. If the calculations, needed to formally describe it, are bulky, it should at least be explained to the reader, that they are left outside the scope of the paper due to their cumbersomeness.

- The same problem holds for the proof of refutation soundness (theorem 2).

Firstly, the statement "If Split is applied on some t^{τ} , by the previous step, then $E \cup \{t \approx C_j\left(s_j^1(t), \ldots, s_j^{n_j}(t)\right)\}$ is \mathcal{DC} -unsatisfiable for all $C_j \in \mathscr{F}_{ctr}^{\tau}$, and all possible models require this equality" needs clarification

Secondly, the induction process should be described using a proper mathematical induction algorithm, clearly specifying the base and the step.

– In the definition of the expansion rule, namely the " $\langle x \rangle_{t=\mu y.\ D(\bar{v})}^B$ " case, it is unclear what happens if $x \notin B$ and $x \neq y$ at the same time

• Page 8:

- The author provides a good and clear example of a not normal μ -term. However, it is advised to provide some calculations, showing that μy . C(y) and μx . $C(\mu y)$ are indeed α -equivalent.
- In the point 2 of the definition of a "normal interpretation", namely "... where x is fresh" the termin "fresh" is undefined. The same termin is used in the proof of solution soundness. It is asvised to provide a definition of a "fresh" term.

• Page 9:

- An "assignment" notation is used here again, but is not defined.

• Page 10:

– An undefined equality notation is used in " $t_1 \equiv t_2 \in F$ ". The symbol " \approx " should be used instead.

English errors, typos and readability issues

P.	Context	Suggestion	Reason
1	Introduction And Definitions	and	readability
	and so is expression 42*2	use TeX cdot	readability
2	and we use capitalized names for	We	readability
	constructors starting on data further from a	data from a	readability
	base case	special case	
	for an SMT solver	a	grammar
	We use many-sorted first-order logic, that is, logic with	a logic	grammar
3	A type δ depends on another type ϵ is ϵ is the type of	ϵ is	repetition
	We also need auxilitary functions	auxiliary	typo
	Distinctness: no two	no two	readability
	constructors are equal	constructors of	
		the same type	
	We then define theory of	We then define	readability
	datatypes and codatatypes \mathcal{DC}	\mathcal{DC} – the theory	
	It defines a class of	possibly the	notation
	Σ -interpretations which	symbol for this	
	•	class is missing	
	A formula is called <i>DC-satisfiable</i> if	something is	readability
	there exists an interpretation in	missing	
	that satisfies it		
	An instance of degenerated	a	grammar
	codatatype with an unique		
	value		
4	Lemma 1 a singleton	with cardinality	readability
	(cardinality equals 1)	equal to 1	
	In the latter case, δ necessarily as	has	typo
	a single constructor	at a	CTM O 800 800 O M
	$C(1, C(0, C(0, \dots))),$	etc.	grammar
	$C(0, C(1, C(0, \dots)))$ etc The procedure builts closure of E	builds; a closure;	grammar
	under given rules which are	phase. Rules	grammar
	assigned a phase ; rules belonging	phase. Itules	
	assigned a phase; rules belonging		
	where conclusion either specifies	the conclusion	grammar
	or is \perp (contradiction)	a contradiction	grammar
	and children of a node are	the children; the	grammar
	results of rule application	results	
	one by one in spirit of depth-first search	in a spirit	grammar
	with leaf nodes \perp allowed	need to rephrase "contradiction allowed"	readability
	A note is saturated if no	node;	grammar
	nonredundant rule application	applications	
	can be performed		
			•

	a calculus of equality sets with	of sets	grammar
	applications as operations		, . , .
	Refl, Sym and Trans, Refl are	-	repetition
	encoded properties whereas Inject computes	the unification	gramman
	unification (downward) closure	the unincation	grammar
	,	/+1	
5	We write $\mathcal{A}(x)$ to get a	an/the	grammar
	representative for equivalence	equivalence class	
	class of x Clash represents failure to unify	a/the failure	grammar
	Figure 1. The Clash rule:	-; -; not unified	notation
	$\mathbf{C}(t_1,\ldots,t_n) \approx \mathcal{D}(u_1,\ldots,u_n) \in$	display style for	1100001011
		the same entities	
	$ \begin{array}{ c c } \hline E & \mathbf{C} \neq \mathbf{D} \\ \hline C \in \mathscr{F}F_{ctr} \end{array} $	\mathcal{F}_{ctr}	typo
	All datatypes therefore and all	ones	grammar
	codatatypes – as cyclic		
	α -disequivalent—e.g.	too long dash	typo
6	Hence, $\mathcal{A}(t^{\tau})$ can take in	E by; applying	grammar,
	models of E . by appling		punctua-
			tion
	Because of μ -terms, there is no	Because of	readability,
	infinitely expanding terms so	μ -terms what?;	grammar,
	number of times	not stated where	punctua-
		afterwards;	tion
		terms, so;	
	They contune managers of	the number	0784 O 800 800 O 84
	They capture properties of (co)datatypes described above	the properties	grammar
	Informally first rule of this	Informally, the	grammar
	phase implements search	first rule;	grammar
	phase Implements search	searching	
	The second rule is needed to deal	the described	grammar
	with described degenerate case		
	with root node	the root node	grammar
		(multiple	
		occurences found	
		throughout the	
		paper)	
	If Split is applied on some t^{τ} , by	at	grammar
	the previous step		
7	Now we construct family of sets	a family	grammar
	Consider S_t^{∞} because all chains	its/the input	grammar
	of selectors in input	[[]	
	Depth of a tree branch is therefore	The depth	grammar
	First we define	the expansion;	grammar
	expansion with free variable	a free variable;	
	x is substituted by body of t	unnecessary "is";	
	I .	the body	1
	By definition of μ -terms after	μ -terms, after	punctuation

8	Finally a normal form recursively normalizing	other	grammar
	the other subterms Now that we defined	Having defined/	grammar,
		Now that we	readability
		have defined	
	$\mathcal{J}_{\mathscr{Y}}(\tau)$ denotes domain of type τ	the domain	grammar
	terms that are not equalized	equal/unified	readability
	We will base the process on	the mapping	grammar
	mapping \mathcal{A} from section		
9	The set is constructed by	applying	typo
	exhaustively appling		J 1
	First point can be proven	The first	grammar
	Points 2 and 3 can be proven by	To prove/for	grammar,
	induction. First one needs to	proving the first	readability
	prove that	one, we need to	
	•	prove	
	Next one needs to prove	Next, one	grammar
10	Then because \mathcal{A} is an equivalence	The whole	readability
10	class that implies all	sentence needs to	readability
	equalities are satisfied	be rephrased to	
	equanties are satisfied	mitigate the	
		ambiguity of its	
		interpretation.	
		E.g.: "Then,	
		taking into	
		account, that \mathcal{A}	
		is an equivalence	
		class, all qualities	
	by induction hypothesis then it's	an unnecessary	readability
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	word	· C 1
	by induction hypothesis then it's	it is	informal
	We use the fact that because	A a a gatumated	language readability
		As a saturated node is	readability
	we consider a saturated node		
	If we let u'_i be i th argument	$ \begin{array}{c} \text{considered,} \\ \text{the } i\text{th} \end{array} $	grammar
			grammar
	We can't apply Split	cannot	informal
	If $j \neq j'$ we use that Cong is	not unnecessary	language readability
	$y \neq y$ we use that cong is exhausted	words	TCadability
	Cong is exhausted so for any	exhausted, so	punctuation
	$C_{j'}\left(s_{j'}^1(u),\ldots,s_{j'}^n(u)\right)$ for	for yet unknown	grammar
	$\begin{array}{c c} & (e_j \wedge (a), \dots, e_j \wedge (a)) & \text{is } \\ & \text{unknown yet } j' \end{array}$	J = J = 5	3
	Conflict does not apply so	apply, so	punctuation
	Commet does not appry so	~PP-J, 500	Pariculation
	Because $\mathcal{J}_{\mathscr{F}}(t) =_{\alpha} \mathcal{A}^*(t) \dots$ and	lemma $4(3)$, we	punctuation