

Categorical Data Analysis for Survey Data

Professor Ron Fricker
Naval Postgraduate School
Monterey, California

Goals for this Lecture

- Under SRS, be able to conduct tests for discrete contingency table data
 - One-way chi-squared goodness-of-fit tests
 - Two-way chi-squared tests of independence
- Understand how complex survey designs affect chi-squared tests
 - Discuss some ways to correct

Classical Statistical Assumptions...

- …apply for SRS with large population:
 - Very large (infinite) population
 - Sample is small fraction of population
 - Sample is drawn from population via SRS
- ...but not with complex sampling
- Hence, standard statistical software generally works for SRS survey designs, but not for complex designs

One-Way Classifications

- Each respondent gives one of k responses (or put in one of k categories)
 - Denote counts as $x_1, x_2, ..., x_k$ with $x_1 + x_2 + ... + x_k = n$

Response 1 Cell frequency x_1

Response 2 Cell frequency x_2

Cell frequency x_k

One-Way Goodness-of-Fit Test

- Have counts for k categories, $x_1, x_2, ..., x_k$, with $x_1 + x_2 + ... + x_k = n$
- (Unknown) population cell probabilities denoted $p_1, p_2, ..., p_k$ with $p_1 + p_2 + ... + p_k = 1$
- Estimate each cell probability from the observed counts: $\hat{p}_i = x_i / n, \ i = 1, 2, ..., k$
- The hypotheses to be tested are

$$H_0: p_1 = p_1^*, p_2 = p_2^*, ..., p_k = p_k^*$$

 H_a : at least one $p_i \neq p_i^*$

One-Way Goodness-of-Fit Test for Homogeneity

- Null hypothesis is the probability of each category is equally likely: $p_i^* = 1/k, i = 1, 2, ..., k$
 - I.e., the distribution of category characteristics is homogeneous in the population
- If the null is true, in each cell (in a perfect world) we would expect to observe $e_i = np_i^*$ counts
- To do a statistical test, must assess how "far away" the e_i expected counts are from the x_i observed counts

Chi-squared Test

- Idea: Look at how far off table counts are from what is expected under the null
- Pearson chi-square test statistic.

$$X^{2} = \sum_{i=1}^{k} \frac{(\text{observed - expected})^{2}}{\text{expected}}$$
$$= \sum_{i=1}^{k} \frac{(x_{i} - n/k)^{2}}{n/k}$$

Alternate Test Statistics

Likelihood ratio test statistic:

$$G^{2} = 2\sum_{i=1}^{k} \text{observed} \times \ln\left(\frac{\text{observed}}{\text{expected}}\right)$$
$$= 2\sum_{i=1}^{k} x_{i} \times \ln\left(\frac{x_{i}}{n/k}\right)$$

- Pearson and likelihood ratio test statistics asymptotically equivalent
- For either statistic, reject if too large
 - Assess "too large" using chi-squared dist'n

Conducting the Statistical Test

- First calculate X² or G² statistic
- Then calculate the *p*-value; e.g., p-value = $\Pr(\chi_{k-1}^2 \ge X^2)$
- χ^2_{k-1} is the chi-squared distribution with k-1 degrees of freedom
- Reject null if p-value < α , for some predetermined significance level α

p-value Calculation forChi-square Goodness-of-Fit Tests

 X^2 or G^2

Simple Example

 Respondents were equally likely to choose any answer on a 5-point Likert scale question

Survey results: L

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
21	15	19	20	17

n=92

– Expected under the null:

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
18.4	18.4	18.4	18.4	18.4

Pearson test statistic:

$$X^{2} = \sum_{i=1}^{5} \frac{(x_{i} - 18.4)^{2}}{18.4} = 1.26$$

- *p*-value:
$$Pr(\chi_{\nu=4}^2 \ge 1.26) = 0.87$$

Goodness-of-Fit Tests for Other Distributions

- Homogeneity is just a special case
- Can test whether the p_i^* s are anything so long as $\sum_{k=1}^{k} p_k^* = 1$
- Might have some theory that says what the distribution should be, for example
- Remember, don't look at that data first and then specify the probabilities...

Simple Example

Theoretical response distribution for question:

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
0.05	0.2	0.5	0.2	0.05

Survey results:

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
20	60	132	47	17

$$n=276$$

Expected under the null:

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
13.8	55.2	138	55.2	13.8

Pearson

test statistic:
$$X^2 = \sum_{i=1}^{5} \frac{(x_i - e_i)^2}{e_i} = 5.42$$

- *p*-value:
$$Pr(\chi_{\nu=4}^2 \ge 5.42) = 0.25$$

Doing the Test in JMP and Excel

- Analyze > Distribution
 - Put <u>nominal</u> variable in "Y, Columns" > OK
 - Red triangle > "Test Probabilities" > fill in probabilities to test
- Note that if you look in the JMP help, you will find "goodness of fit" tests
 - Different test for regression don't use
- Chi-square tests also easy to do in Excel
 - CHIDIST function useful for calculating p-values

A Couple of Notes

- Likelihood ratio and Pearson test statistics usually very close
 - I tend to focus on Pearson
 - JMP gives both as output
- Note that Pearson test depends on all cells having sufficiently large expected counts: $e_i = np_i^* \ge 5$
 - If not, collapse across some categories

Chi-square Test of Independence

- Survey of 500 households
 - Two of the questions:
 - Do you own at least one personal computer?
 - Do you subscribe to cable television

		Comp		
_		Yes	No	
Cable?	Yes	119	188	307
	No	88	105	193
		207	293	500

Some Notation for Two-Way Contingency Tables

- Table has r rows and c columns
- Observed cell counts are x_{ij} , with

$$\sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} = n$$

- Denote row sums: $x_{i+} = \sum_{j=1}^{c} x_{ij}, i = 1,...,r$
- Denote column sums: $x_{+j} = \sum_{i=1}^{r} x_{ij}, j = 1,...,c$

The Hypotheses

- Independence means, for all cells in the table, $p_{ij} = p_{i+}p_{+j}$ where
 - $-p_{i+}$ is the probability of having row i characteristic
 - $-p_{+j}$ is the probability of having column j characteristic
- The hypotheses to be tested are

$$H_0: p_{ij} = p_{i+}p_{+j}, i = 1, 2, ..., r; j = 1, 2, ..., c$$

 $H_a: p_{ij} \neq p_{i+}p_{+j}, \text{ for some } i \text{ and } j$

Pearson Chi-square Test Statistic

Test statistic:

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(x_{ij} - e_{ij})^{2}}{e_{ij}}$$

Under the null, the expected count is calculated as

$$e_{ij} = n\hat{p}_{ij} = n\hat{p}_{i+}\hat{p}_{+j} = n\frac{x_{i+}}{n}\frac{x_{+j}}{n}$$

$$= \frac{x_{i+} \times x_{+j}}{n}$$

Back to the Example

Assuming independence, we have

Observed	Comp	outer?		
counts:		Yes	No	
Cable?	Yes	119	188	307
	No	88	105	193
		207	293	500

Example

$$\hat{p}_{\text{Yes},+} = \frac{x_{\text{Yes},+}}{n} = \frac{307}{500} = 0.614$$

$$\hat{p}_{+,\text{No}} = \frac{x_{+,\text{No}}}{n} = \frac{293}{500} = 0.586$$

$$e_{i=\text{Yes}, j=\text{No}} = n\hat{p}_{\text{Yes},+} \hat{p}_{+,\text{No}}$$

= 500×0.614×0.586
= 179.9

Doing the Calculations

- Proceed as with the goodness-of-fit test
 - Except degrees of freedom are v = (r-1)(c-1)
- Large values of the chi-squared statistic are evidence that the null is false
- JMP does the p-value calculation (as do all stat software packages
 - Reject null if p-value < α , for some predetermined significance level α

Conducting the Test in JMP

- Ensure variables coded as nominal
- JMP > Analyze > Fit Y by X, put:
 - One variable in as X
 - Other variable in as Y

Complex Surveys: What's the Problem?

- Chi-square distribution of test statistic results from SRS assumption
- Complex survey designs result in incorrect p-values
 - E.g., Clustered sample designs can result in incorrectly low p-values
 - With high intra-class correlation (ICC) it's as if the sample size has been artificially inflated

Revisiting Computer/Cable Example

 What if interviewed two individuals in each house and got same answers?

New data:		Comp	outer?	
i vovi data:		Yes	No	
Cable?	Yes	238	376	614
	No	176	210	386
		414	586	1000

$$X^2 = 4.562$$

p-value = 0.03

Original data:		Comp	outer?	
		Yes	No	
Cable?	Yes	119	188	307
	No	88	105	193
		207	293	500

$$X^2 = 2.281$$

p-value = 0.13

The Issue

- In complex surveys table counts unlikely to reflect relative frequencies of the categories in the population
 - Unless sample is self-weighting
- I.e., can't just plug counts into X^2 or G^2 calculations:

$$X^{2} = \sum_{\text{All expected}} \frac{\text{(observed - expected)}^{2}}{\text{expected}}$$

Effects of Stratified Sampling Design on Hypothesis Tests and Cls (1)

- If rows in contingency table correspond to strata, usual chi-square test of homogeneity fine
 - But may want to test association between other (non-strata) factors
- In general, stratification increases precision of estimates
 - E.g., stratified sample of size n gives same precision for estimating p_{ii} as a SRS of size n / d_{ij} , where d_{ij} is the design effect

Effects of Stratified Sampling Design on Hypothesis Tests and Cls (2)

- Thus p-values for chi-square tests with stratification are conservative
 - E.g., actual p-value will be smaller than calculated p-value
 - Means if null rejected, it is appropriate
 - However, if don't reject but close, how to tell if null should be rejected?

Effects of Clustered Sampling Design on Hypothesis Tests and Cls

- Opposite effect from stratification: pvalues artificially low
 - Means if fail to reject null, it is appropriate
 - However, if do reject null, how to tell if null really should be rejected?
- Clustering unaccounted for (in surveys or other data collection) can result in spurious "significant" results

Corrections to Chi-square Tests

- There are a number of ways to fix:
 - Wald tests
 - Bonferroni tests
 - Matching moments
 - Model-based methods
- See Lohr for the last two we won't cover here

Think of Problem in Terms of Cell Probabilities (1)

• Use sampling weights to estimate population quantity $\sum_{w_k y_{kij}} w_{kij}$

$$\hat{p}_{ij} = \frac{\sum_{k \in S} w_k y_{kij}}{\sum_{k \in S} w_k}$$

where

$$y_{kij} = \begin{cases} 1 & \text{if observation unit } k \text{ is in cell } (i, j) \\ 0 & \text{otherwise} \end{cases}$$

Thus

$$\hat{p}_{ij} = \frac{\text{sum of weights for observation units in cell } (i, j)}{\text{sum of weights for all observation units in sample}}$$

Think of Problem in Terms of Cell Probabilities (2)

- So, using the \hat{p}_{ij} , construct the table
- Can express the test statistics as

		C				
		1	2		c	
	1	\hat{p}_{11}	<i>p</i> ₁₂		\hat{p}_{1c}	\hat{p}_{1+}
	2	\hat{p}_{21}	\hat{p}_{22}		\hat{p}_{2c}	$\hat{p}_{1+} \\ \hat{p}_{2+}$
R	;	;				:
	r	\hat{p}_{r1}	\hat{p}_{r2}		\hat{p}_{rc}	\hat{p}_{r+}
		\hat{p}_{+1}	\hat{p}_{+2}		\hat{p}_{+c}	1

$$X^{2} = \sum_{\substack{\text{All cells}}} \frac{(\text{observed - expected})^{2}}{\text{expected}} = \sum_{\substack{\text{All cells}}} \frac{(n\hat{p}_{ij} - np_{ij})^{2}}{np_{ij}} = n\sum_{\substack{\text{All cells}}} \frac{(\hat{p}_{ij} - p_{ij})^{2}}{p_{ij}}$$

$$G^{2} = 2\sum_{\substack{\text{All} \\ \text{cells}}} \text{observed} \times \ln \left(\frac{\text{observed}}{\text{expected}} \right) = 2n\sum_{\substack{\text{All} \\ \text{cells}}} \hat{p}_{ij} \ln \left(\frac{\hat{p}_{ij}}{p_{ij}} \right)$$

Wald Tests (1)

- For a 2x2 table, null hypothesis of independence is $p_{ij} = p_{i+}p_{+j}$, $1 \le i, j \le 2$
- This is equivalent to testing

$$H_0: p_{11}p_{22} - p_{12}p_{21} = 0$$

$$H_a: p_{11}p_{22} - p_{12}p_{21} \neq 0$$

• Let
$$\hat{\theta} = \hat{p}_{11}\hat{p}_{22} - \hat{p}_{12}\hat{p}_{21}$$

Wald Tests (2)

Then for large samples, under the null

$$\left|\hat{\theta}\right/\sqrt{\hat{V}\left(\hat{\theta}\right)}$$

follows an approximately standard normal distribution

- Equivalently, $\hat{\theta}^2/\hat{V}(\hat{\theta})$ follows a chi-square distribution with 1 degree of freedom
- Must estimate the variance $V(\hat{\theta})$ appropriately

Example: Survey of Youth in Custody (1)

- Is there an association between:
 - "Was anyone in your family ever incarcerated?"
 - "Have you ever been put on probation or sent to a correctional institution for a violent offense?"
- Sample size: *n*=2,588 youths
- Table with sum of weights:

	7	Ever V	Violent?	
		No	Yes	
Family Member	No	4,761	7,154	11,915
Incarcerated?	Yes	4,838	7,946	12,784
		9,599	15,100	24,699

Example: Survey of Youth in Custody (2)

Results in the following estimated

proportions: | Ever Violent? |

oroportions.		Ever Violent?		
		No	Yes	
Family Member	No	.1928	.2896	.4824
Incarcerated?	Yes	.1959	.3217	.5176
		.3887	.6113	1.0000

- Test statistic: $\hat{\theta} = \hat{p}_{11}\hat{p}_{22} \hat{p}_{12}\hat{p}_{21} = 0.0053$
- How to estimate the variance?

Example: Survey of Youth in Custody (3)

- Use resampling method:
- Thus, the standard error of $\hat{\theta}$ is $0.0158/\sqrt{7} = 0.006$
- So the test statistic is

$$t = \frac{\hat{\theta}}{\sqrt{\hat{V}(\hat{\theta})}} = \frac{0.0053}{0.0060} = 0.89$$

$\hat{ heta}$
0.0132
0.0147
0.0252
-0.0224
0.0073
-0.0057
0.0135
0.0065 0.0158

- *p*-value: $Pr(|T| > t) = 2 \times Pr(T_{v=6} > 0.89) = 0.41$
- Result: No evidence of association

Wald Tests for Larger Tables

• Let
$$\boldsymbol{\theta} = \left[\theta_{11}, \theta_{12}, ..., \theta_{(r-1)(c-1)}\right]^T$$

Hypotheses are

$$H_0: \mathbf{\theta} = \mathbf{0}$$

 $H_a: \mathbf{\theta} \neq \mathbf{0}$ for one or more cells

- Wald test statistic is $X_W^2 = \hat{\theta}^T \hat{V}(\hat{\theta})^{-1} \hat{\theta}$ where $\hat{V}(\hat{\theta})$ is the estimated covariance matrix
- Problem is, need a large number of PSUs to estimate covariance matrix
 - E.g., 4x4 table results in 9x9 covariance matrix that requires estimation of 45 variance/covariances

Bonferroni Tests (1)

- Alternative to Wald test
- Idea is to separately (and conservatively) test each θ_{ij} , $1 \le i \le r-1$, $1 \le j \le c-1$
- Test each of m=(r-1)(c-1) tests separately at α/m significance level
- Reject null that variables are independent if any of the m separate tests reject

Bonferroni Tests (2)

• Specifically, reject $H_0: \theta = 0$ if

$$\left|\hat{\theta}_{ij}\right| / \sqrt{\hat{V}\left(\hat{\theta}_{ij}\right)} > t_{\alpha/2m,\kappa}$$

for any i and j, where κ is the appropriate degrees of freedom

- Resampling: #resample groups 1
- Another method: #PSUs #strata
- Lohr says method works well in practice

Example: Survey of Youth in Custody (1)

 Is there a relationship between age and whether a youth was sent to an institution for a violent offense?

			Age Class		
		≤15	16 or 17	≥18	
Violent Offense?	No	.1698	.2616	.1275	.5589
	Yes	.1107	.1851	.1453	.4411
		.2805	.4467	.2728	1.0000

Example: Survey of Youth in Custody (2)

- Hypotheses are $H_0: \theta_{11} = p_{11} p_{1+}p_{+1} = 0$ $\theta_{12} = p_{12} - p_{1+}p_{+2} = 0$
- What happens if clustering ignored?
 - With n=2,621, we have

$$X^{2} = n \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(\hat{p}_{ij} - \hat{p}_{i+} \hat{p}_{+j})^{2}}{\hat{p}_{i+} \hat{p}_{+j}} = 34$$

which gives an (incorrect) p-value of ~ 0

• Compare to a Bonferroni test...

Example: Survey of Youth in Custody (3)

- For these data, $\hat{\theta}_{11} = 0.013$ and $\hat{\theta}_{12} = 0.0119$
- Using resampling, Random Group $\hat{\theta}_{11}$ we get the table:

s.e. $(\hat{\theta}_{11}) = 0.0074$,

And from this,

Kandom Group	θ_{11}	θ_{12}
1	-0.0195	0.0140
2	0.0266	-0.0002
3	0.0052	0.0159
4	0.0340	0.0096
5	0.0197	0.0212
6	0.0025	0.0298
7	-0.0103	0.0143

s.e. $(\hat{\theta}_{12}) = 0.0035$

$$\frac{\left|\hat{\theta}_{11}\right|}{\text{s.e.}\left(\hat{\theta}_{11}\right)} = 1.8, \quad \frac{\left|\hat{\theta}_{12}\right|}{\text{s.e.}\left(\hat{\theta}_{12}\right)} = 3.4 \quad \text{and} \quad t_{0.05/2 \times 2, \nu = 6} = 2.97$$
Reject null (more appropriately) 42

Using SAS to Conduct the Tests

- SAS v8 has some procedures for complex survey analysis (PROC SURVEYMEANS PROC SURVEYREG), but no PROCs for categorical data analysis
 - PROC FREQ and PROC CATMOD would incorrectly estimate standard errors
- SAS v9.1 has PROC SURVEYFREQ for categorical data analysis
 - Can specify various Wald and Rao-Scott tests
- See http://support.sas.com/onlinedoc/913/docMainpage.jsp

Using Stata to Conduct the Tests

- Stata 9: SVY procedures support both one-way and two-way tables
 - svy:tabulate oneway
 - svy:tabulate twoway
- Need to order manuals to see which methods used
- See www.stata.com/stata9/svy.html for more detail

Other Software...

- ...designed for complex survey analysis include SUDAAN and WestVar
 - Don't know if they can do these calculations or not
 - See their documentation
- JMP: Cannot do appropriate calculations

What We Have Just Learned

- Tests for contingency table data
 - For one variable, goodness-of-fit tests
 - For two variables, tests of independence
- Gained some insight into
 - What to do about categorical data analysis for complex designs
 - How complex designs affect chi-square hypothesis tests
- Learned about some methods to correct for the sampling design in chi-square tests