TRAINING PROJECT IN DATA SCIENCE

PROJECT_NAME - VISUALIZATION THE DATA

CSV_FILE - AIR POLLUTION IN THE WORLD

SUBMITTED BY- KRISHNA KUMAR SINGH

SUBMITTED TO - GURPREET MA'AM

REGISTRATION NO - 11701744

In [22]:

import numpy as np
import pandas as pd

In [73]:

df = pd.read_csv(r"C:\Users\Krishna Singh\Desktop\training materials\PROJECT\Air.csv")
df.head(15)

Out[73]:

	Measureld	Measureld.1	MeasureType	StratificationLevel	StateFips	StateName	CountyFips	CountyName	ReportYear	Value
0	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1027	Clay	1999	33.0
1	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1051	Elmore	1999	5.0
2	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1073	Jefferson	1999	39.0
3	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1079	Lawrence	1999	28.0
4	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1089	Madison	1999	31.0
5	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1097	Mobile	1999	32.0
6	83	Number of days with maximum 8- hour	Counts	State x County	1	Alabama	1101	Montgomery	1999	15.0

	Measureld	Measureid. i ozo	MeasureType	StratificationLevel	StateFips	StateName	CountyFips	CountyName	ReportYear	Value
7	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1117	Shelby	1999	45.0
8	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1119	Sumter	1999	3.0
9	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1027	Clay	1999	467742.0
10	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1051	Elmore	1999	323340.0
11	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1073	Jefferson	1999	25850955.0
12	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1079	Lawrence	1999	967036.0
13	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1089	Madison	1999	8515483.0
14	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1097	Mobile	1999	12778336.0
4										Þ

In [74]:

df.tail(15)

Out[74]:

	Measureld	Measureld.1	MeasureType	StratificationLevel	StateFips	StateName	CountyFips	CountyName	ReportYear	,
218620	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9013	Tolland	2008	10.53
218621	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9013	Tolland	2009	9.01
218622	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9013	Tolland	2010	8.42
218623	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9013	Tolland	2011	9.61
218624	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2001	12.88

Annual

218625	Measureld 296	Measureid.i ambient	MeasureType Average	StratificationLevel State x County	StateFips Q	StateName Connecticut	CountyFips	CountyName Windham	ReportYear	11.98
		concentrations of PM 2								
218626	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2003	11.80
218627	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2004	11.18
218628	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2005	11.62
218629	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2006	10.49
218630	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2007	10.79
218631	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2008	10.08
218632	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2009	8.73
218633	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2010	8.08
218634	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2011	8.91
4										Þ

In [24]:

```
print("Information of total number of non-empty columns")
print("-----")
print(df.info(null_counts=True))
```

Information of total number of non-empty columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 218635 entries, 0 to 218634

Data columns (total 14 columns):

 MeasureId
 218635 non-null int64

 MeasureId.1
 218635 non-null object

 MeasureType
 218635 non-null object

 StratificationLevel
 218635 non-null object

 StateFips
 218635 non-null int64

 StateName
 218635 non-null object

 CountyFips
 218635 non-null int64

 CountyName
 218635 non-null int64

 Value
 218635 non-null float64

 Unit
 218635 non-null object

 UnitName
 218635 non-null object

 DataOrigin
 218635 non-null int64

 MonitorOnly
 218635 non-null int64

dtypes: float64(1), int64(5), object(8)

memory usage: 23.4+ MB

None

```
In [25]:
```

df.tail()

Out[25]:

	Measureld	Measureld.1	MeasureType	StratificationLevel	StateFips	StateName	CountyFips	CountyName	ReportYear	1
218630	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2007	10.79
218631	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2008	10.08
218632	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2009	8.73
218633	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2010	8.08
218634	296	Annual average ambient concentrations of PM 2	Average	State x County	9	Connecticut	9015	Windham	2011	8.91
4										Þ

In [26]:

```
print("Information of total number of non-empty columns")
print("-----")
print(df.info(null_counts=True))
```

Information of total number of non-empty columns

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 218635 entries, 0 to 218634

Data columns (total 14 columns):

 MeasureId
 218635 non-null int64

 MeasureId.1
 218635 non-null object

 MeasureType
 218635 non-null object

 StratificationLevel
 218635 non-null object

 StateFips
 218635 non-null int64

 StateName
 218635 non-null int64

 CountyFips
 218635 non-null int64

 CountyName
 218635 non-null int64

 Value
 218635 non-null float64

 Unit
 218635 non-null object

 UnitName
 218635 non-null object

 DataOrigin
 218635 non-null object

 MonitorOnly
 218635 non-null int64

 dtypes: float64(1), int64(5), object(8)

memory usage: 23.4+ MB

None

In [27]:

```
print("Columns and their datatypes")
df.dtypes
# cleaning data
```

Columns and their datatypes

Out[27]:

MeasureId int64
MeasureId.1 object
MeasureType object
StratificationLevel object
StateFips int64

```
StateName
CountyFips
CountyName
                     object
                       int64
                      object
ReportYear
                        int64
Value
                    float64
Unit
                     object
UnitName
                     object
                     object
DataOrigin
MonitorOnly
                       int64
dtype: object
In [28]:
print("Columns and their datatypes")
df.dtypes
Columns and their datatypes
Out[28]:
MeasureId
                       int64
                     object
MeasureId.1
MeasureType object
StratificationLevel object StateFips int64
StateName
                     object
CountyFips
                        int64
                     object
CountyName
ReportYear
                       int64
Value
                    float64
Unit
                     object
                     object
object
UnitName
DataOrigin
                       int64
MonitorOnly
dtype: object
In [29]:
print("Frequency count of missing values")
df.apply(lambda X:sum(X.isnull()))
Frequency count of missing values
Out[29]:
MeasureId
                      0
MeasureId.1
                      0
MeasureType
StratificationLevel 0
                    0
StateFips
{\tt StateName}
                      0
CountyFips
CountyName
ReportYear
                    0
                     0
Value
Unit
UnitName
DataOrigin
MonitorOnly
                    0
dtype: int64
In [30]:
%matplotlib inline
import matplotlib.pyplot as plt
from pandas import DataFrame as show
import seaborn as sns
plt.figure(figsize=(10,5)) #plt is the object of matplot lib and .figure() is used to show or change pr
operties of graphs sns.heatmap(df.isnull(),cmap='brg',yticklabels=False,cbar=False)#heatmaps are matrix
plots which can visualize data in 2D plt.show()
Out[31]:
```

<Figure size 720x360 with 0 Axes>
<Figure size 720x360 with 0 Axes>

```
In [32]:

df['MeasureType'].head(5)

Out[32]:

0     Counts
1     Counts
```

3 Counts 4 Counts

Name: MeasureType, dtype: object

In [33]:

Counts

2

df['MeasureId'].head(4)

Out[33]:

0 83 1 83 2 83

83

Name: MeasureId, dtype: int64

In [48]:

```
plt.figure(figsize=(10,5))
sns.heatmap(df.isnull(),cmap='brg',yticklabels=False,cbar=False)
plt.show()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [35]:

df.head(10)

Out[35]:

	Measureld	Measureld.1	MeasureType	StratificationLevel	StateFips	StateName	CountyFips	CountyName	ReportYear	Value	ι
0	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1027	Clay	1999	33.0	Ur
1	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1051	Elmore	1999	5.0	Ur
		Number of days with									

2	Measureใช้	maximum o- Measureխի	Measuretype	StratificationLevel	StateFips 1	statename	County Pips	CountyName	Report Year	välue	Uķ
		average ozo									
3	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1079	Lawrence	1999	28.0	Ur
4	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1089	Madison	1999	31.0	Ur
5	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1097	Mobile	1999	32.0	Ur
6	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1101	Montgomery	1999	15.0	Ur
7	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1117	Shelby	1999	45.0	Ur
8	83	Number of days with maximum 8- hour average ozo	Counts	State x County	1	Alabama	1119	Sumter	1999	3.0	Ur
9	84	Number of person-days with maximum 8- hour aver	Counts	State x County	1	Alabama	1027	Clay	1999	467742.0	Ur
4											F

In [36]:

import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
from pandas import DataFrame as show
import seaborn as sns

In [47]:

df = pd.read_csv(r"C:\Users\Krishna Singh\Desktop\training materials\PROJECT\Air.csv")
df['Value'].plot.hist()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])

In [38]:

```
df['CountyFips'].plot.box()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [39]:

```
df.plot.scatter('CountyFips','Value')
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [40]:

```
%matplotlib inline import matplotlib.pyplot as plt
```

```
III [TO].
```

```
# In this we have to take some sample value of the that file And then perform it here for finding how i t is increasing

CountyFips = [1027, 1030, 1050, 1070, 1080, 1090, 1100, 1110, 1120, 1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220]

ReportYear = [1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017]

plt.plot(CountyFips, ReportYear)

plt.ylabel('Increasing the CountyFips')

plt.ylabel('ReportYear is also Increasing')

import matplotlib

matplotlib.rc('figure', figsize=[20,10])
```


In [42]:

```
import matplotlib.pyplot as plt
import numpy as np

StateName = [" Alabama", " Alaska", " Arizona", " California", "Delaware", " Hawaii", " Indiana", " Iow
a", "New York", "New Mexico"]
Unit=[1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
plt.bar(StateName, Unit, color='red')
plt.title("Bar Graph")
plt.xlabel("StateName")
plt.ylabel("Unit")
plt.show()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [56]:

```
import matplotlib.pyplot as plt
import numpy as np
divisions = [" Alabama", " Alaska", " Arizona", " California", "Delaware", "Indiana"]
u=[70, 82, 73, 56, 65, 50]
uu=[68, 67, 77, 61, 70, 43]
index= np.arange(6)
width=0.30
plt.bar(index, u, width, color='green', label="VALUE DIGIT")
plt.bar(index+width, uu, width, color='blue', label="UNIT DIGIT")
plt.title("Comparision Between the State using its Unit and using Bar Graph")
plt.xlabel("STATE")
plt.ylabel("UNIT")
plt.xticks(index+width/2, divisions)
plt.legend(loc='best') # for upper right corner label of div and boys marks
plt.show()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [58]:

Alaska

In [59]:

```
import matplotlib.pyplot as plotter
Values = 'Below 5', '5-10', '10-15', '15-20', '20-30', '30-40', '40-50', '50-60', '60-80', '80-100', 'A
bove 100'
guestNumbers = [5, 10, 10, 15, 10, 30, 25, 25, 20, 15, 10]
figureObject, axesObject = plotter.subplots()
colors = ("red", "green", "orange", "cyan", "brown", "grey", "blue", "indigo", "beige", "yellow")
axesObject.pie(guestNumbers,
            explode
                       = explode,
            colors
                        = colors,
            labels
                        = ageGroupLabel,
                        = '%1.2f',
            autopct
            startangle = 90)
axesObject.axis('equal')
plotter.show()
import matplotlib
matplotlib.rc('figure', figsize=[20,10])
```


In [67]:

from IPython.display import Image
Image(filename='C:/Users/Krishna Singh/Desktop/training materials/PROJECT/img/sec.jpg', width=800, heigh t=400)

- # According to the Data In World 90% diseases comes from Air Pollution
- # So please aware
- # We don't want this types of world

Out[67]:

In [68]:

from IPython.display import Image Image(filename='C:/Users/Krishna Singh/Desktop/training materials/PROJECT/img/fifth.jpg', width=800, hei ght=400) #TOp Air Polluted Cities In The World

According to the data we analysis the whole data the we find the real solution,,,,,,,,,,,

Out[68]:

In [69]:

from IPython.display import Image Image(filename='C:/Users/Krishna Singh/Desktop/training materials/PROJECT/img/three.jpg', width=800, hei ght=400)

Out[69]:

In [70]:

```
from IPython.display import Image
Image(filename='C:/Users/Krishna Singh/Desktop/training materials/PROJECT/img/six.jpg',width=800, heigh
t=400)

# WE NEED THIS TYPE OF WORLD
#FOR THIS WE NEED STOP DOING THESE KIND OF THINGS
....
#Stop eating meat (or at least reduce it)....
#Stop eating dairy....
#Change your car driving habits....
#Notice how you use water....
#Reduce the amount of paper in your life....
#Use a refillable water bottle and reusable lunch containers....
#Be mindful of what you throw in the trash....
#Bag it yourself.
```

Out[70]:

