Python+OpenCV图像处理

图像梯度

sobel算子的理论基础

水平梯度、边界:

示例图像内,黑色块位置:

A列和B列, 其右侧像素值与左侧像素值的差值不为零, 是边界; 其余列,右侧像素值与左侧像素值的差值均为零,不是边界。

垂直梯度、边界:

示例图像内, 黑色块位置:

A行和B行, 其下一行像素值与上一行侧像素值的差值不为零, 是边界; 其余行, 其下一行像素值与上一行像素值的差值均为零, 不是边界。

	-1	0	1
G _x =	-2	0	2
^	-1	0	1

原始图像

$$G_{X} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

P1	P2	Р3
P4	P5	Р6
P7	P8	P9

$$P5_x = (p3-p1) + 2*(p6-p4) + (p9-p7)$$

P1	P2	P3
P4	P5	P6
P7	P8	P9

$$P5_x = (p3-p1) + 2*(p6-p4) + (p9-p7)$$

右侧像素值减去左侧像素值,中间行参数稍大为2

G _V =	-1	-2	-1
	0	0	0
y	1	2	1

★ 原始图像

P1	P2	Р3
P4	P5	Р6
P7	P8	P9

$$P5_y = (p7-p1)+2*(p8-p2)+(p9-p3)$$

P1	P2	P3
P4	P5	Р6
P7	P8	P9

$$P5_y = (p7-p1) + 2*(p8-p2) + (p9-p3)$$

下一行像素值减去上一行像素值,中间列参数稍大为2

计算近似梯度值:

$$G = \sqrt{G_x^2 + G_y^2}$$

$$G = \sqrt{G_x^2 + G_y^2} \longrightarrow G = |G_x| + |G_y|$$

简化版本

$$G = |G_x| + |G_y|$$

P1	P2	Р3
P4	P5	P6
P7	P8	P9

$$P5_{sobel} = |p5_x| + |p5_y|$$

P1	P2	Р3
P4	P5	Р6
P7	P8	P9

-1	0	1
-2	0	2
-1	0	1

$$P5_x = (p3-p1)+2*(p6-p4)+(p9-p7)$$

$$P5_y = (p7-p1) + 2*(p8-p2) + (p9-p3)$$

$$P5_{sobel} = |p5_x| + |p5_y| = |(p3-p1) + 2*(p6-p4) + (p9-p7)| + |(p7-p1) + 2*(p8-p2) + (p9-p3)|$$

Python+OpenCV图像处理

图像梯度

sobel算子的理论基础

李大羊 lilizong@gmail.com