

(ii) Find the direction of greatest devecuse of f at n (1,1). DJf (n, n) = v. Vf(n, n2) = 11 û11 11 \f(n, n2)11 cos & min when vitt \$\forall f(n, n) $\vec{v} = -\vec{\nabla} f(n_1, n_2)$ @ $C_{1,1}$ v = - [3,2] = [-3,-2] $= -3\hat{n}, -2\hat{n}_2$ $= \begin{bmatrix} -\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}} \end{bmatrix} = -\frac{3}{\sqrt{13}} \hat{n}_1 - \frac{2}{\sqrt{13}} \hat{n}_2$ unit vector (2) · dir dis of greatest decuese. (iii) Find the dir in which f does not Instantly change at n= (1,1). A f" f has no change in any dir" that is orthogonal i.e. D\$ \f (\n, \n_1) = || \varphi | || \n, \n_1)|| \cop \text{O} det dis vector: u = <um, uy> $\nabla f = \langle 2n_1 + n_2, n_1 + n_2 \rangle$ √f|2= (1,1) = <3,2>

$$un^2 + uy^2 = 1$$

$$\overline{u} = \pm \left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right)$$

$$-\frac{2}{\sqrt{13}}\hat{n}_1 + \frac{3}{\sqrt{13}}\hat{n}_2$$

Civi

$$\frac{1}{13}$$
 $\frac{2}{13}$ $\frac{2}{13}$ $\frac{2}{13}$

$$\tilde{\pi}: \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$t \longmapsto \tilde{\pi}(t)$$

$$st \mapsto t \in \mathbb{R}$$

$$f(\tilde{\pi}(t)) = f(t, t)$$

$$\frac{\partial f(\widetilde{n}(t))}{\partial t} = \frac{\partial f(\widetilde{n}(t))}{\partial \widetilde{n}} \frac{\partial \widetilde{n}}{\partial t} = 0$$

$$\frac{\partial f(\widetilde{n}(t))}{\partial t} = 0$$

$$\frac$$

Quetion: 2

(a)
$$f,g: R \rightarrow R$$
 (conver functions)

To show: $f + g: R \rightarrow R$ $n \mapsto f(n) + g(n)$ is conver.

if $g: R \rightarrow R$ $n \mapsto f(n) + g(n)$ is conver.

if $g: R \rightarrow R$ $n \mapsto f(n) + g(n)$ is conver.

g(tn + (1-t)y) $\leq t f(n) + (1-t) f(y) = ci$;

g(tn + (1-t)y) $\leq t g(n) + (1-t) g(y) = ci$;

add (i) $f: f(n) + g(n) + f(n) +$

			C	h is	0.	Com U	en 1	_n		
								c n		
			•	718	1%	م در	muem	. 2		
			0.0							
(6)	given:	9 18 0	<i>idditio</i>	nally	no	n de	crea	sing ;	function	U
	,									
			i.e.	a Cu)	> 90	m.)	ia	y > m	حا	
				a -a /	, 0		- 3	9		
		Let h	= 90	s f						
			0							
т_	D	e 1								
10	Prove	n 18	conv	ະທ -						
		h C	t. 21 t	C1-	t) y)	4	the	1.7 +	C1-t) } & R & t	\(u\)
					9,			w	0 0 1	2 17
								P, x	EK 4 E	2 10,11
		8 (4 (tnt	C /~	ե) ֈֈ)) <	t gl	f(n))	+ (1-t)
							O		aſ	gcy))
									90	9 -0 , ,
· · · · · · · · · · · · · · · · · · ·	is a	Conver	n fu	incti	on:					
]							
		\$ C t	n+ (1-4)	8) -	£ t	3 Cm) + (1	-t) sca)
									¥ + 6	E1,03 =
		8 non	4000	L 000	100	64000	10-			
	. 9 ,	× 110.11	de		", g	1 amer	102			
		9/36	+n+	C1-t	1 4 (4	9 (t	1(n)	+ (1-t)	(Cy)
		9 (0			9 /		٦ (A D D J
										,,
		g is	0180	a	Cor	nven	+ tu	nction	: ا ــ	
		U								
			F 1 C	1	CLLY	00	1)			
		18	cju	T (CITT	3(3)	<i>' </i>			
					4	+ a	CRC	n)) +	(1-4)	
) - 0		0. [6	(1)
									g (f	(81)
									e [0,1]	—(B)
								∀ t	6 FO.17	

From (A) d (B):

$$g\left(\beta(t+n+(n-t)y)\right) \leq t g\left(\beta(n)\right) + (n+t)g\left(\beta(y)\right)$$

$$h\left(t+n+(n-t)y\right) \leq t h\left(n\right) + (n-t)h\left(y\right)$$

$$\forall t \in [0,1]$$

$$\vdots h \text{ is a conven } j$$

$$\exists x, y \in [R]$$

$$\vdots gof \text{ is a Conven } j \text{ unction}$$

$$Quation: 3$$

$$j: [R^2 \rightarrow [R]$$

$$(n_1, n_2) \mapsto e^{nn_1} - \sin(nn_2) + nn_1n_2$$

$$(n_1, n_2) \mapsto e^{nn_1} - \sin(nn_2) + nn_1n_2$$

$$\exists j \in [n]$$

$$\exists j \in$$

(b) Heldian of
$$f$$
 for an aubitrary x :

$$H = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial^2 f}{\partial x} \\ \frac{\partial f}{\partial x} & \frac{\partial^2 f}{\partial x} \end{bmatrix}$$

$$\int_{0}^{2} e^{nx} - \sin(nx_{2}) + nx_{1}$$

$$\frac{\partial f}{\partial x_{1}} = n^{2}e^{nx_{1}}$$

$$\frac{\partial f}{\partial x_{2}} = n^{2}e^{nx_{1}}$$

$$\frac{\partial f}{\partial x_{1}} = n^{2}e^{nx_{1}}$$

$$\frac{\partial f}{\partial x_{2}} = n^{2}e^{nx_{1}}$$

$$\frac{\partial f}{\partial x_{1}} = n^{$$

$$f(n) = f(a) + \nabla f(a)^{T}(n-a) + R_{1}(n, a)$$

$$T_{1}(n, a) = \nabla T_{1,a}(n)$$

$$f(a) = f(n, n) = e^{\Pi n_{1}} - \sin(\pi n_{2}) + \pi n_{1}n_{2}$$

$$= 1 - \sin(\pi n_{2}) + \pi n_{1}n_{2}$$

$$\nabla f(n) = 1$$

$$T_{1}(n, a) = \pi n_{1}(n, n)$$

$$= 1 - \sin(\pi n_{2}) + \pi n_{1}$$

$$\nabla f(a) = \nabla f(0, 1) = 2n$$

$$T_{2}(n, a) = \pi n_{2}(n, n)$$

$$\nabla f(a) = \nabla f(0, 1) = 2n$$

$$T_{3}(n, a) = \pi n_{2}(n, n)$$

$$\nabla f(a) = \pi n_{3}(n, n)$$

$$T_{3}(n, a) = \pi n_{3}(n, n)$$

$$T_{4}(n, a) = \pi n_{3}(n, n)$$

$$T_{3}(n, a) = \pi n_{3}(n, n)$$

$$T_{4}(n, a) = \pi n_{4}(n, n)$$

$$T_{5}(n, a) = \pi n$$

= 2111 tn (n2-1)

T₁, a (x) =
$$\int (a) + \nabla f(a)^{T}(x-a)$$

= $1 + 2\pi n$, $+ \pi(x_{2}-1)$

T₁, a (x) = $1 + 2\pi n$, $+ \pi(x_{2}-1)$

(d) Determine decond order taylor polynomial T₂, a (n) expanded around point a= (0,1)

 $\int (x) = \int (a) + \nabla f(a)^{T}(x-a) + \int (x-a)^{T} H(a) (x-a) + R_{2}(x,a)$

T₂, a (x)

T₂, a (x)

$$\int (a) + \int (a) +$$

T₂, a (
$$x$$
) = 1 + (2n n) $\binom{n_1}{n_2-1}$ + $\binom{n_1}{n_2-1}$ $\binom{n_2}{n_1}$ $\binom{n_1}{n_2-1}$ (e) Determine if T₂, a is a conven junction?

T₂, a (x) is a multivatiate quadratic function to check where T₂, a is a conven y^n or not we need to do the eigen analysis of lattessian that y^n and y^n is the same that y^n is the same th

Comparing
$$T_{2,a}(n) d q(n)$$

$$A = \frac{1}{2} \begin{bmatrix} n^{2} & n \\ 1 & 0 \end{bmatrix} \begin{bmatrix} n^{2}n + n(y-1) \end{pmatrix} n$$

$$\frac{1}{2} \begin{bmatrix} n^{2} & n \\ 1 & 0 \end{bmatrix} \begin{bmatrix} n^{2}n + n(y-1) \end{bmatrix} n$$

$$\frac{1}{2} \begin{bmatrix} n^{2} & n \\ 1 & 0 \end{bmatrix} \begin{bmatrix} n^{2}n + n(y-1) \end{bmatrix} n$$

$$\frac{1}{2} \begin{bmatrix} n^{2} & n \\ 1 & 0 \end{bmatrix} \begin{bmatrix} n^{2}n + n(y-1) \end{bmatrix} n$$

$$(\Pi^{2}-1)(-1) - \Pi^{2} = 0$$

$$(\Pi^{2}-1)1 + \Pi^{2} = 0$$

$$\Pi^{2}1 - 1^{2} + \Pi^{2} = 0$$

$$1 = \Pi^{2}1 - 1^{2} + \Pi^{2} = 0$$

$$1 = \Pi^{2} + \sqrt{\Pi^{4}+4\Pi^{2}}$$

$$= \Pi^{2} + \sqrt{\Pi^{4}+4\Pi^{4}}$$

$$= \Pi^{2} + \sqrt{\Pi^{4}+4\Pi^{4$$

$$f: [-1,2] \rightarrow 1R$$

$$n^3 - 2n^2$$

Question: 4

(a) (ompute f'

$$n^3 - 2n^2$$
 $n \mapsto e$

$$f' = d (e^{n^3 - 2n^2})$$

$$= e^{n^3 - 2n^2} (3n^2 - 4n)$$

$$f' = (3n^2 - 4n)e^{n^3 - 2n^2}$$

n = 0 n = 4

end points i.e. n=-1,2 and

(c) Find all possible candidates no jos manima d

where
$$f'(n) = 0$$

$$(3n^{2} - 4n) e^{n^{3} - 2n^{2}} = 0$$

$$\pm 0$$

$$3n^{2} - 4n = 0$$

. Possible candidates are -1, 2,0, 4.

(d) Compute
$$f''$$

$$f' = (3n^{2} - 4n)e^{n^{3} - 2n^{4}}$$

$$f'' = \frac{d}{dn} \left((3n^{2} - 4n)e^{n^{3} - 2n^{4}} \right)$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (3n^{2} - 4n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (3n^{2} - 4n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (3n^{2} - 4n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (3n^{2} - 4n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^{2}} + (6n - 2n)e^{n^{2} - 2n^{2}}$$

$$= (6n - 4)e^{n^{2} - 2n^$$

$$\begin{cases}
y'(n) = 0 \\
f''(n) = (6 \cdot y - y) = (y_3)^3 - 2(y_3)^2 \\
+ (3 \cdot (\frac{y_3}{3})^2 - y \cdot \frac{y_3}{3}) \\
= (y_3)^3 - 2(\frac{y_3}{3})^2$$

>0

 $f(n) = e^{n^2 - 2n^2}$

= e(43)3-2(43)2

= e 23 - 2 · 16

 $= e^{\frac{GY}{2^{3}} - \frac{3^{2}}{9}}$ $= e^{\frac{6Y-96}{2^{9}}} = e^{-\frac{3^{2}}{2^{9}}}$

@ n= 43

of local

O(n = 2) $f(n) = O(n^3 - 2n^2)$ = O(n = 1)

$$= 4 e + (\frac{16}{3})^{2} + (\frac{16}{3})^{2$$

minimum

$$\frac{f'(n)}{n^{2}a} > 0 \quad \therefore \quad f''' \text{ is } f'' \text{ as } n = 2 \text{ is a approached from Left} \\
\therefore \quad b \text{ is a local manima} \\
\text{(f) global manima} \quad \text{and global minima of } f'' \\
\text{global manima} \Rightarrow \text{man } \{f(-1), f(0), f(3), f(3), f(2)\} \\
\Rightarrow 1 \quad \text{at } n = 0 \text{ 2 2} \\
\text{global minima } \text{s min } \{f(-1), f(0), f(3), f(3)\} \\
= e^{-3} = 0.0498 \\
\text{a. } n = -1$$