f(x)与 f'(x)有极限或有界的结论

吴洁

一、f(x)与f'(x)极限为0的结论

- 1. 有关 $\lim_{x \to +\infty} f(x) = 0$ 的结论
- (1) 若 f(x) 在 $[a,+\infty)$ 上一致连续,且 $\int_a^{+\infty} f(x)dx$ 收敛,则 $\lim_{x\to+\infty} f(x)=0$.
- (2) 若 f(x) 在 $[a,+\infty)$ 上有有界的导函数,且 $\int_a^{+\infty} f(x)dx$ 收敛,则 $\lim_{x\to+\infty} f(x)=0$.
- (3) 若 f(x) 在 $[a, +\infty)$ 上有连续导数,且 $\int_a^{+\infty} f(x) dx$ 与 $\int_a^{+\infty} f'(x) dx$ 都收敛,则 $\lim_{x \to +\infty} f(x) = 0$.

提醒: 若
$$\sum_{n=1}^{\infty} a_n$$
 收敛 $\Rightarrow \lim_{n \to \infty} a_n = 0$; 但 $\int_a^{+\infty} f(x) dx$ 收敛 $\not \Rightarrow \lim_{x \to +\infty} f(x) = 0$.

- 2. 有关 $\lim_{x \to +\infty} f'(x) = 0$ 的结论
- (1) 若f(x)在 $[0,+\infty)$ 上单调增加且有界连续,在 $(0,+\infty)$ 内f''(x) < 0,则 $\lim_{x \to +\infty} f'(x) = 0$.

证 由 f(x) 单调增加知 $f'(x) \ge 0$,又 f''(x) < 0 知 f'(x) 单调减少,故 f'(x) 单调减少有下 界 0 ,从而 $\lim_{x \to +\infty} f'(x)$ 存在且非负。

若
$$\lim_{x \to +\infty} f'(x) = l > 0$$
,则存在 $X > 0$,当 $x \ge X$ 时, $f'(x) > \frac{l}{2}$.

而 $\forall x > X$, $f(x) - f(X) = f'(\xi)(x - X) > \frac{l}{2}(x - X)$, 推得 $\lim_{x \to +\infty} f(x) = +\infty$ 与函数有界矛盾。故 $\lim_{x \to +\infty} f'(x) = 0$.

(2) 若f(x)在 $(-\infty, +\infty)$ 内三阶导数,且存在有限极限 $\lim_{x\to\infty} f(x)$ 和 $\lim_{x\to\infty} f'''(x)$,则

证 由泰勒公式,有

$$f(x+1) = f(x) + f'(x) + \frac{1}{2}f''(x) + \frac{1}{3!}f'''(\xi), \quad x < \xi < x+1,$$

$$f(x-1) = f(x) - f'(x) + \frac{1}{2}f''(x) - \frac{1}{3!}f'''(\eta), \quad x - 1 < \eta < x,$$

两式相加得

$$f''(x) = f(x+1) - 2f(x) + f(x-1) - \frac{1}{6} [f'''(\xi) - f'''(\eta)],$$

两式相减得

$$f'(x) = \frac{1}{2} [f(x+1) - f(x-1)] - \frac{1}{12} [f'''(\xi) + f'''(\eta)],$$

由条件可知 $\lim_{x\to\infty} f'(x) = \lim_{x\to\infty} f''(x) = 0$.

二、 $\lim_{x\to\infty} f(x)$ 存在的几个结论

(1) 设
$$f(x)$$
 在 $(0,+\infty)$ 上可导, $a > 0$,若 $\lim_{x \to +\infty} [af(x) + f'(x)] = l$,则 $\lim_{x \to +\infty} f(x) = \frac{l}{a}$.

证 注意到 $(e^{ax} f(x))' = e^{ax} [af(x) + f'(x)]$, 于是

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{ax} f(x)}{e^{ax}} = \lim_{x \to +\infty} \frac{e^{ax} [af(x) + f'(x)]}{ae^{ax}} = \frac{l}{a}.$$

注 对有正实部的复数a,结论也成立。

(2) 设 f(x) 在 $(0,+\infty)$ 上可导, a > 0 ,若 $\lim_{x \to +\infty} [af(x) + 2\sqrt{x}f'(x)] = l$,则 $\lim_{x \to +\infty} f(x) = \frac{l}{a}$.

提示:
$$(e^{a\sqrt{x}}f(x))'=e^{a\sqrt{x}}\left[\frac{af(x)}{2\sqrt{x}}+f'(x)\right].$$

(3) 设f(x)在 $(0,+\infty)$ 上二次可导,若有 $\lim_{x\to +\infty} [f(x)+f'(x)+f''(x)]=l$,则 $\lim_{x\to +\infty} f(x)=l$.

分析: 微分方程 f(x) + f'(x) + f''(x) = 0 的特征方程为 $r^2 + r + 1 = 0$,特征根为

$$r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$
,由此可知 $r_1 \cdot r_2 = 1$, $r_1 + r_2 = -1$.

证 令
$$\alpha = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, $\beta = \frac{1}{2} + \frac{\sqrt{3}}{2}i$,根据上述分析

$$f(x) + f'(x) + f''(x) = \alpha \beta f(x) + (\alpha + \beta) f'(x) + f''(x)$$

$$=\beta\left[\alpha\,f(x)+f'(x)\right]+\left[\alpha\,f(x)+f'(x)\right]'$$

由题设
$$\lim_{x\to +\infty} [\alpha f(x) + f'(x)] = \frac{l}{\beta}$$
, 故利用 (1), 有 $\lim_{x\to +\infty} f(x) = \frac{l}{\alpha\beta} = l$.

(4)设
$$f(x)$$
在 $(0,+\infty)$ 上可导, $a>0$,若 $\lim_{x\to +\infty}[af(x)-f'(x)]=l$, $|f(x)|\leq M(0< x<+\infty)$,

则
$$\lim_{x \to +\infty} f(x) = \frac{l}{a}$$
.

提示:
$$(e^{-ax}f(x))'=e^{ax}[-af(x)+f'(x)]$$
.

注 |f(x)|≤ M 不可缺少。

比如: $f(x) = e^x + l$, 满足 $\lim_{x \to +\infty} [f(x) - f'(x)] = l$, 但 $\lim_{x \to +\infty} f(x) \neq l$.

想想,具体证明时, $|f(x)| \le M$ 用在哪里了?

三、f'(x)有界的有关结论

(1) 若 f(x) 在 $(-\infty, +\infty)$ 内二阶导数,且 f(x) 和 f''(x) 在 $(-\infty, +\infty)$ 内有界,则 f'(x) 在 $(-\infty, +\infty)$ 内有界。

证 依题意,存在正常数 M_0 , M_2 , 使 $\forall x \in (-\infty, +\infty)$, 有 $|f(x)| \leq M_0$, $|f''(x)| \leq M_2$ 。 由泰勒公式,有

$$f(x+1) = f(x) + f'(x) + \frac{1}{2}f''(\xi)$$
, $x < \xi < x+1$,

所以 $|f'(x)| \le |f(x+1)| + |f(x)| + \frac{1}{2}|f''(\xi)| \le 2M_0 + \frac{M_2}{2}$, 故 f'(x) 在 $(-\infty, +\infty)$ 内有界。

(2) 若f(x)和f''(x)在 $(-\infty, +\infty)$ 内有界,则f'(x)和f''(x)在 $(-\infty, +\infty)$ 内有界。

证 依题意,存在正常数 M_0 , M_3 ,使 $\forall x \in (-\infty, +\infty)$,有 $|f(x)| \leq M_0$, $|f'''(x)| \leq M_3$ 。由泰勒公式,有

$$f(x+1) = f(x) + f'(x) + \frac{1}{2}f''(x) + \frac{1}{3!}f'''(\xi) , \quad x < \xi < x+1 ,$$

$$f(x-1) = f(x) - f'(x) + \frac{1}{2}f''(x) - \frac{1}{3!}f'''(\eta) , \quad x-1 < \eta < x ,$$

于是,两式相加得

$$f''(x) = f(x+1) - 2f(x) + f(x-1) - \frac{1}{6} [f'''(\xi) - f'''(\eta)],$$
所以 $|f''(x)| \le |f(x+1)| + |2f(x)| + |f(x-1)| + \frac{1}{6} [|f'''(\xi)| + |f'''(\eta)|] \le 4M_0 + \frac{M_3}{3}$
两式相減得

$$f'(x) = \frac{1}{2} [f(x-1) - f(x+1)] - \frac{1}{12} [f'''(\xi) + f'''(\eta)],$$
所以 $|f'(x)| \le \frac{1}{2} [|f(x+1)| + |f(x-1)| + \frac{1}{12} [|f'''(\xi)| + |f'''(\eta)|] \le M_0 + \frac{M_3}{6},$
综上, $f'(x)$ 和 $f''(x)$ 在 $(-\infty, +\infty)$ 内有界。

(3) 若
$$f(x)$$
 在 $(-\infty, +\infty)$ 上二阶可导,且 $|f(x)| \le M_0$, $|f''(x)| \le M_2$, $-\infty < x < +\infty$,则
$$|f'(x)| \le \sqrt{2M_0M_2} \text{ , } -\infty < x < +\infty \text{ .}$$

证 由泰勒公式 $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$, ξ 介于x与 x_0 之间。

任取 h > 0, \diamondsuit $x = x_0 + h$ 及 $x = x_0 - h$, 则

則
$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(\xi_1)h^2$$
$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(\xi_2)h^2 , x_0 - h < \xi_1 < x_0 < \xi_2 < x_0 + h$$

于是,两式相减得

$$2f'(x_0)h = f(x_0 + h) - f(x_0 - h) + \left\lceil \frac{1}{2}f''(\xi_1) - \frac{1}{2}f''(\xi_2) \right\rceil h^2,$$

从而由题设得

$$|f'(x_0)|h \le M_0 + \frac{M_2}{2}h^2$$
, $|g|f'(x_0)| \le \frac{M_0}{h} + \frac{M_2}{2}h$.

如果
$$M_2 = 0$$
 ,则 $|f'(x_0)| \le \frac{M_0}{h}(h > 0)$,令 $h \to 0$,得 $f'(x_0) = 0$ 。 如果 $M_2 > 0$,由 $|f'(x_0)| \le \frac{M_0}{h} + \frac{M_2}{2}h$ 得二次三项式 $M_2h^2 - 2|f'(x_0)|h + 2M_0 \ge 0(h > 0)$,

加 之 故其判别式
$$4|f'(x_0)|^2 -8M_0M_2 \le 0$$
,于是 $|f'(x)| \le \sqrt{2M_0M_2}$ 。