ModStoc. aa1718

Lezione 04 Simulazione Stocastica

Si considerano qui alcuni metodi di simulazione di fenomeni stocastici.

Il metodo Monte Carlo in particolare è utilizzato per stimare l'incertezza di un sistema complesso, quando è nota la sua dinamica.

Il metodo Bootstrap invece è una tecnica di simulazione condizionata che prevede l'uso di osservazioni reale come base delle simulazioni.

Entrambi trovano utilizzo, fra l'altro, nell'analisi di sensitività.

Metodo Monte Carlo

Origine del metodo: calcolo di un integrale

Devo calcolare

$$A = \int_0^1 h(u) du$$

dove h ha una forma complessa per cui non conosco la sua primitiva ma h è computabile per ogni u.

Allora posso usare un campione simulato di m variabili casuali R(0,1):

$$U_1,\ldots,U_m$$
 iid $R(0,1)$

e stimare l'integrale A tramite

$$\bar{h}_m = \frac{1}{m} \sum_{j=1}^m h(U_j)$$

Dalla teoria dell'inferenza statistica abbiamo che lo stimatore è corretto

$$E(\bar{h}_m) = E(h) = A$$

e consistente

$$\bar{h}_m \to A \text{ per } m \to \infty$$

con errore

$$\sigma(\bar{h}) = \frac{\sigma_h}{\sqrt{m}}$$

dove

$$\sigma_h^2 = Var(h(U)).$$

E' il metodo "migliore" ? vedi anche MC modificato.

MC in generale

In numerosi problemi si dispone di un vettore stocastico, y con distribuzione F(y), in cui la funzione di ripartizione F è nota, e di un funzione "complessa"

$$z = h(y)$$

nota solo per via numerica o computabile ma non (facilmente) conoscibile per via analitica (es: computer models).

Obiettivo

Interessa la distribuzione di z, diciamo G(z).

● In linea di principio nel calcolo delle probabilità questo problema è risolto con formule del tipo

$$G(t) = P(h(y) \le t) = P(y \le h^{-1}(t)) = F(h^{-1}(t)),$$

- se la funzione $h(\cdot)$ è complessa questo approccio diventa impercorribile.
- L'idea è allora quella di

simulare un grande numero m di volte

diciamo m=1000, il vettore dei dati y_i e ripetere il calcolo della corrispondente $z_i=h(y_i),\ i=1,\ldots,m$. Si può, poi, studiare la distribuzione (media, variabilità etc.) di questo *grande campione* z_1,\ldots,z_m .

Si può quindi stimare

lacktriangle la funzione di ripartizione G con la distribuzione empirica delle z

$$\hat{G}(t) = \frac{1}{m} \sum_{i=1}^{m} I(z_i \le t)$$

con *I*() funzione indicatrice

- la funzione di densità g (istogramma, Kernell smoothing, etc.)
- La media

$$E(z) \cong \bar{z} = \frac{1}{m} \sum_{i=1}^{m} z_i$$

La varianza

$$Var(z) \cong s_z^2 = \frac{1}{m-1} \sum_{i=1}^m (z_i - \bar{z})^2$$

e così via.

Metodo MC in Statistica

In particolare interessa ora il caso in cui z() è uno stimatore

$$\hat{\theta} = \hat{\theta}(y) = h(y)$$

di cui non si conosce la distribuzione. Consideriamo il caso di

y con distribuzione $F(y;\xi)$

con $\xi = \xi^{\circ}$ prefissato e diciamo

$$y_j^* = (y_{j1}^*, \dots, y_{jN}^*)$$

il campione N-dim **simulato** tramite un generatore di numeri casuali indipendenti con distribuzione $F(y;\xi)$.

Indichiamo con

$$\hat{\theta}_i^* = \hat{\theta}(y_i^*)$$

la stima basata su y_j^* .

NB: θ e ξ possono essere lo stesso parametro oppure possono essere diversi. ξ identifica F, θ invece è solo oggetto di interesse.

Ripetendo le simulazioni per j = 1, ..., m ed ordinando i risultati in senso crescente si ottengono le stime:

$$\hat{\theta}_1^* \leq \ldots \leq \hat{\theta}_m^*$$
.

Da queste si può approssimare l'incognita distribuzione di $\hat{\theta}$ usando l'istogramma delle stime Monte Carlo $\hat{\theta}^*$ (o tecniche più sofisticate tipo Kernel-smoothing) e si può approssimare media e varianza di $\hat{\theta}$ con

$$E_{\xi}(\hat{\theta}) \cong \bar{\theta}^* = \frac{1}{m} \sum_{j=1}^m \hat{\theta}_j^*$$

е

$$Var_{\xi}(\hat{\theta}) \cong s_*^2 = \frac{1}{m} \sum_{j=1}^m (\hat{\theta}_j^* - \bar{\theta}^*)^2.$$

Metodo MC in Risk Analysis Esempio

Si intende stimare il "rischio"

$$\theta = P(y_{\text{max}} > 15)$$

dove

$$y_{\max} = \max(y_1, \dots, y_{25})$$

е

$$y_i = \alpha y_{i-1} + \varepsilon_i$$

$$\varepsilon_i \equiv iid \frac{\sigma}{\sqrt{2}} t_4$$

NB: $\xi = (\alpha, \sigma)$ e $var(t_n) = \frac{n}{n-2} \Rightarrow var(t_4) = 2$.

Soluzione con Matlab

```
nstar=25; alfa = 0.8; sigma=1; m=10000; innovaz=trnd(4,nstar,m)*sigma/2; y=filter(1,[1, -alfa],innovaz); ymax=max(y)'; hist(ymax,30) sum(ymax>15)/m
```

Esercizi su MC con Matlab

- 1. Analisi Montecarlo del Teorema Limite Centrale sulla media
 - a. Media e Varianza finita
 - **b.** Media e/o Varianza infinita.

A tal fine considerare campioni dalla distribuzione t di Student con gradi di libertà g = 1, 2, 5, 10.

Per ciascuna distribuzione valutare il comportamento simulato della media campionaria in termini di:

- a. Valore atteso
- **b.** Varianza

Per ampiezze campionarie N = 10, 100, 1000, 10000 ed un opportuno numero di replicazioni Monte Carlo m.

Giustificare in particolare il comportamento per g = 1 e 2.

2. Distribuzione MC del coeff. di correlazione r_n per piccoli campioni gaussiani.

A tal fine considerare campioni dalla distribuzione normale bivariaiata standardizzata $N_2((0,0),(1,1),\rho)$ con coefficienti di correlazione $\rho=0,0.5,\pm0.95$.

Per ciascuna distribuzione valutare il comportamento simulato della media campionaria in termini di:

- a. Valore atteso
- **b.** Varianza
- **c.** Quando $\rho = 0$ valutare l'approssimazione $Var(r_n) = \frac{1}{n}$

Per ampiezze campionarie N=5,10,100 ed un opportuno numero di replicazioni Monte Carlo m.

3. Metodo MC per misture

Calcolare in via approssimata la varianza delle stime di $\theta = (\mu, \sigma^2, \pi)$ usando i dati di Daphne o altra immagine e k = 4.

A tal fine

- **a.** si usino come valori di θ i valori stimati su Daphne (Bootstrap parametrico) e
- **b.** si usino m = 100 replicazioni casualizzate dei valori iniziali ottenuti da Gaussiane con deviazione standard pari al 3% del valore iniziale stesso.

- **4.** Metodo MC nella sorveglianza (La sorveglianza non è stata fatta nel 2014) Con riferimento alla lezione 08 "Carte di controllo e sorveglianza" si considerino le carte di controllo con bande a 3σ
 - a. i. di Shewhart
 - ii. ed EWMA con $\lambda = 0.01$
 - **b.** Dopo aver calcolato il Tempo Medio fra Falsi Allarmi
 - c. confrontare il Tempo Medio di Ritardo

Si ottengano i risultati a. e b. considerando i seguenti tipi di dati con N=3000 ed un opportuno numero di repicazioni m.

- **a.** $iid: y_t = N(0,1)$
- **b.** AR(1): $y_i = 0.8y_{i-1} + \varepsilon_i$ e $\varepsilon_i \equiv iid \ N(0,1)$

Il Metodo Bootstrap

Spesso la distribuzione di y non è nota o prefissare $\theta = \theta^{\circ}$ può essere limitativo. In questi casi una strada percorribile per capire la variabilità delle stime consiste nel costruire delle simulazioni basate sulla distribuzione empirica **del particolare vettore osservato**

$$y = (y_1, \dots, y_n)$$

qui supposto per semplicità iid.

II Bootstrap Parametrico

Quando la distribuzione delle componenti di y, $F(y_j|\xi)$ è nota nella forma ma ξ è ignoto, si può stimare $\hat{\xi}$ sui dati osservati e applicare poi il metodo Monte Carlo a $\xi = \hat{\xi}$.

II Bootstrap Nonparametrico

Se *F* non è nota, l'idea è allora quella di stimarla tramite la funzione di ripartizione empirica del campione:

$$\hat{F}_n(x) = \frac{\sum I(y_t \le x)}{n}$$

e applicare poi il metodo Monte Carlo a tale distribuzione.

In pratica ciascun elemento del campione simulato y_i^* , diciamo

$$y_{it}^*$$
 $t = 1, \dots, N$

con $N \leq n$, viene estratto a caso (con rimessa) dal campione originario e si ottiene generando un numero casuale equidistribuito sugli interi da 1 ad n. Indicato con r_t tale numero casuale, si pone

$$y_{it}^* = y_{r_t} \qquad t = 1, \dots N.$$

Si ha così una stima $\hat{\theta}_{N,j}^*$. Iterando m volte come nel metodo MC si arriva ad una valutazione della distribuzione e delle proprietà dello stimatore $\hat{\theta}_N$.

Proprietà asintotiche

Ci interessa la distribuzione bootstrap di $\hat{\theta}_N$ al crescere di n ed m, per fissato N. Tale distribuzione è data da

$$\hat{G}_{n,m}^N(t) \cong G^N(t) = P(\hat{\theta}_N \leq t)$$

che calcoliamo come

$$\hat{G}_{n,m}^{N}(t) = \frac{1}{m} \sum_{j=1}^{m} I(\hat{\theta}_{N,j}^{*} \leq t)$$

Poiché le simulazioni sono iid, per la legge forte dei grandi numeri abbiamo che

$$\lim_{m\to\infty} \hat{G}_{n,m}^{N}(t) = G_{n}^{N}(t) = P(\hat{\theta}_{N,j}^{*} \leq t | y \equiv \hat{F}_{n})$$

Inoltre, applicando ancora la legge forte dei grandi numeri ma al campione di partenza, abbiamo che

$$\lim_{n\to\infty} \hat{F}_n(x) = F(x)$$

Perciò si conclude che

$$\lim_{n,m\to\infty}\hat{G}_{n,m}(t)=G^N(t).$$

Esempio con Matlab

```
n=5; m=3;

% dati osservati

y=[3.75 4 -1 7 0.33]';

N=7;

% matrice N × m delle simulazioni:

ystar=y(unidrnd(n,N,m))
```

Uso del Bootstrap

Un semplice intervallo di confidenza bootstrap a livello $1-\alpha$ approssimato per θ si può basare sui percentili di $\hat{\theta}_i^*$ ed avrà la forma:

$$\hat{\theta}_{\left[\frac{\alpha}{2}m\right]}^* \div \hat{\theta}_{\left[\left(1-\frac{\alpha}{2}\right)m\right]}^*$$

dove [x] è la parte intera di x.

Un miglioramento dell'approssimazione si ottiene studentizzando le stime bootstrap. Se $s^2(\hat{\theta})$ è una stima della varianza di $\hat{\theta}$, si costruiscono le replicazioni bootstrap studentizzate

$$t_j^* = \frac{\hat{\theta}_j^* - \hat{\theta}}{s(\hat{\theta}_j^*)}$$

che vengono poi ordinate

$$t_1^* \leq \ldots \leq t_m^*$$

e l'intervallo di confidenza bootstrap studentizzato è dato da

$$\hat{\theta} + t^*_{\left[\frac{\alpha}{2}m\right]} s(\hat{\theta}) \div \hat{\theta} + t^*_{\left[\left(1-\frac{\alpha}{2}\right)m\right]} s(\hat{\theta}).$$

Bootstrap per serie storiche

Premessa

Consideriamo l'esempio della simulazione di un AR(1).

Se ha parametri $\xi = (\alpha, \sigma^2)$ noti allora simuliamo y_t tramite la ricorsione:

$$y_t = \alpha y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \ iid \ N(0, \sigma^2)$$

Bootstrap parametrico

Si stima $\hat{\xi} = (\hat{\alpha}, \hat{\sigma}^2)$ noti allora si simula $y_i^* = (y_{i1}^*, \dots, y_{iN}^*)$ tramite:

$$y_t^* = \hat{\alpha} y_{t-1}^* + \varepsilon_t^*$$
$$\varepsilon_t^* \ iid \ N(0, \hat{\sigma}^2)$$

Bootstrap semi-parametrico lineare

Si rinuncia alla normalità delle innovazioni, perciò stimato ξ e i residui $e = (e_1, ..., e_n)$, si simula $y_i^* = (y_{i1}^*, ..., y_{iN}^*)$ tramite

$$y_t^* = \hat{\alpha} y_{t-1}^* + e_t^*$$

 $e_t^* = \text{bootstrap } IID \text{ da } (e_1, \dots, e_n)$

Bootstrap semi-parametrico nonlineare

Si rinuncia all'ipotesi iid per gli errori, ammettendo che abbiano una struttura di dipendenza nonlineare di carattere generale all'interno della stazionarietà.

Perciò stimato ξ e i residui $e=(e_1,\ldots,e_n)$, si simula $y_j^*=(y_{j1}^*,\ldots,y_{jN}^*)$ tramite

$$y_t^* = \hat{\alpha} y_{t-1}^* + e_t^*$$

 $e_t^* = \text{bootstrap a blocchi da } (e_1, \dots, e_n)$

dove il bootstrap non-parametrico a blocchi è descritto nel lucido successivo.

Bootstrap non-parametrico a blocchi

Nel Block-stationary-bootstrap l'idea è quella di costruire il campione simulato $y_j^* = (y_{j1}^*, \dots, y_{jN}^*)$ come unione di un certo numero k_j di blocchi di lunghezza variabile estratti dai dati osservati $y = (y_1, \dots, y_n)$, con $n \le N$. In pratica si definisce

$$y_j^* = \left(\vec{y}_{j1}^*, \dots, \vec{y}_{jk_j}^* \right)$$

dve ciascun blocco

$$\vec{y}_{ji}^* = (y_{t_i}, \dots, y_{t_i+l_i})$$

è scelto con inizio casuale

$$t_i = Uniforme(1, n)$$

e lunghezza casuale l_i ,

NB: occorre verificare che

$$t_i + l_i \leq n$$

Inoltre k_j è tale che

$$\sum_{i}^{k_{j}-1} (l_{i}+1) = a_{j} < N$$

infine l'ultimo blocco è troncato: $l_{k_j} = N - a_j$ in modo da garantire la dimensione corretta a y_j^* .

ModStoc. aa1718

Esempi:

La lunghezza dei blocchi può essere:

- **1.** $l_i = Poisson(L)$
- **2.** $l_i = geom(1/L)$
- **3.** $l_i = Uniforme(1, 2L) \Rightarrow$ crea anomalie sul correlogramma

Matlab:

la function stationaryBB() esegue il bootstrap a blocchi.

Nell'esempio ese 2018 block bootstrap.m si ricampiona un modello

$$y_{j,t}^* = \hat{m}_t + e_{j,t}^*$$

dove m_t è modellato tramite una spline mentre e_t^* è ottenuto col bootstrap a blocchi applicato ai residui della spline:

$$e_t = y_t - \hat{m}_t.$$

Metodi Monte Carlo modificati

Consideriamo dapprima il campionamento di una vc unidimensionale Y con pdf $f(\)$ e cdf $F(\)$.

Indichiamo con h(x) la risposta del modello di simulazione sottoposto ad input casuali Y, e τ , il suo valore atteso, è la grandezza da stimare mediante simulazione. Cioè

$$\tau = E(h(Y)) = \int_{-\infty}^{+\infty} h(y) f(y) dy$$

е

$$T = \frac{1}{n} \sum h(y_i)$$

Premessa

Ricordiamo che se $R_i \equiv R(0,1)$ e $Y \equiv F$, allora $Y_i = F^{-1}(R_i) \equiv Y$

MC Stratificato

Interessa avere un campione y_1, \ldots, y_n da F in modo che siano rappresentate *tutte le zone* della distribuzione F. In pratica dividiamo l'intervallo (0,1) in n intervalli di pari ampiezza, diciamo $c_i = (\frac{i-1}{n}, \frac{i}{n})$ e

$$C_i = \{Y : F(Y) \in c_i\}$$

è la partizione di Ω con elementi equiprobabili

$$P(C_i) = \frac{1}{n}.$$

Estraiamo a caso un valore da ciascuno di essi usando la distribuzione condizionata $f(y|C_i)$.

Questo equivale a scrivere

$$y_i = F^{-1} \left(\frac{i - 1 + R_i}{n} \right)$$

con
$$R_i \equiv R(0,1)$$
 e $F(x_i) \in (\frac{i-1}{n}, \frac{i}{n}).$

Proprietà di SMC

Indichiamo con $T_S = \frac{1}{n} \sum h(y_i)$ la stima di τ basata sul campionamento stratificato e con T_{MC} la corrispondente stima basato sul metodo Monte Carlo standard.

Nondistorsione

$$ET_S = \tau$$

Dimostrazione

Notiamo innanzitutto che visto il tipo di campionamento, la x_i simulata ha distribuzione $F(y|C_i)$ e

$$E(h(y_i)) = E(h(Y)|C_i)$$

Usando la media a due stadi, segue che

$$ET_S = \frac{1}{n} \sum_{i=1}^n E(h(y_i)) = E_C \{ E(h(Y)|C) \} = E(h) = \tau.$$

Ottimalità

Premessa: ricordiamo che, data una vc casuale doppia (h, C) vale la seg. scomposizione della varianza:

$$Var(h) = E_C(Var(h|C)) + Var_C(E(h|C))$$

Traccia dimostrazione

Ricordando che $Var(h) = E(h-\tau)^2$, aggiungendo $\pm E(h|C)$ ed applicando la media a due stadi, si deduce la scomposizione della varianza.

Ottimalità

Andiamo ora a verificare che il campionamento proporzionale fornisce stime migliori del campionamento casuale semplice nel senso che

$$Var(T_S) \leq Var(T_{MC})$$

Dimostrazione

Ricordiamo innanzitutto che, poichè nel MC le x_i sono iid, si ha:

$$Var(T_{MC}) = \frac{1}{n} Var(h)$$

Poichè le x_i di SMC sono indipendenti, abbiamo che

$$Var(T_S) = \frac{1}{n^2} \sum Var(h(Y)|C_i) = \frac{1}{n} E_C Var(h|C).$$

Usando la scomposizione della varianza di cui sopra abbiamo quindi il risultato.

Esercizio: campionamento proporzionale

Dalla dimostrazione della pagina precedente abbiamo che il guadagno del campionamento stratificato è dato da:

$$Var(T_{MC}) - Var(T_S) = Var_C(E(h|C))$$

Commentare questo risultato

Esercizio: campionamento sistematico

Nell'approccio visto, diviso in modo sitematico il dominio in intervalli equiprobabili, si prende un valore a caso da ciascun intervallo:

$$y_i = F^{-1}\left(\frac{i-1+R_i}{n}\right), R_i \equiv R(0,1).$$

Si consideri ora la strategia per cui invece di y_i si usa la media della classe C_i

$$\hat{y}_i = E(Y|C_i)$$

e poi si stima T di conseguenza:

$$\hat{T} = \frac{1}{n} \sum h(\hat{y}_i)$$

Dire, in particolare, cosa succede alle proprietà di nondistorsione ed efficienza.

Esercizio: campionamento sistematico (segue)

Dire, inoltre, cosa succede alle proprietà di nondistorsione ed efficienza se invece di \hat{y}_i si prende il valore centrale di C_i :

$$\check{y}_i = \frac{F^{-1}(\frac{i-1}{n}) + F^{-1}(\frac{i}{n})}{2}$$

e poi, come sopra,

$$\check{T} = \frac{1}{n} \sum h(\check{y}_i).$$

Importance MC

L'idea del campionamento per importanza è di usare un campione stratificato da una cdf $Q(y) \neq F(y)$ che assegna probabilità più alta a quei valori della y dove |h| è più grande.

Perciò l'iº campione è dato da

$$y_i' = Q^{-1} \left(\frac{i-1+R_i}{n} \right)$$

dove $R_i \equiv R(0,1)$ come sopra.

La stima di τ è ora data dalla media ponderata

$$T_I = \sum h(y_i) \frac{f(y_i)}{q(y_i)}.$$

E' facile vedere che se

$$q(y) = n \frac{h(y)f(y)}{\tau}$$

allora, identicamente,

$$T_I = \tau$$
.

Perciò, se si hanno idee a priori sul modello di simulazione e su h(y) la stima di τ può essere migliorata usando un opportuno campionamento.

Tuttavia si nota come in quest'approccio sia importante la ponderazione per evitare la distorsione che si avrebbe ad usare la media aritmetica semplice \bar{h} .

Ipercubi Latini

Questo metodo, acronimizzato *LHS*, è una generalizzazione multivariata dello *SMC*.

Supponiamo ora che, come accade in pratica, y sia k –dimensionale

$$y=(y_1,\ldots,y_k)$$

con distribuzione mutlipla

$$F = \prod_{j=1}^k F_j$$

e sia

$$y_{1j}^0,\ldots,y_{nj}^0$$

il campione SMC di n termini dalla marginale F_j .

Interessa stimare

$$\tau = E(h(Y)) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} h(y) f(y_1, \dots, y_k) dx_1 \dots dx_k$$

tramite la statistica

$$T = \frac{1}{n} \sum_{i=1}^{n} h(y_{i1}, \dots, y_{ik})$$

L'idea è quella di costruire un campione ad n elementi di $y \in R^k$ che rispetti le condizioni di SMC e di indipendenza delle marginali combinando le diverse componenti in modo casuale.

Per esempio se k=2 in figura si riporta una scelta delle combinazioni degli intervalli equiprobabili per y_1 ed y_2 in corrispondenza ad n=5.

		X		
	X			
			X	
				X
X				

Per garantire l'indipendenza tali abbinamenti sono effettuati casualmente.

A tal fine sia

$$p=(p_1,\ldots,p_n)$$

una permutazione casuale degli interi $1, \ldots, n$.

NB:

l'insieme delle possibili permutazioni p ha n! elementi.

Campione *LHS*

Definiamo campione LHS quel campione con termine generico $y_{i,j}$ dato da

$$y_{i,1} = y_{i,1}^0$$
 $i = 1,...,n$
 $y_{ij} = y_{p(j)_i,j}^0$ $i = 1,...,n, j = 2,...,k$

ModStoc. aa1718

Correlazione

Interessa generare dei campioni con marginali SMC da una F normale multivariata con una matrice di covarianza Σ . A tal fine si usa la trasformazione in ranghi.

Ranghi

Si dice rango dello scalare y_i fra $y = (y_1, ..., y_n)$ la sua posizione nella sequenza ordinata di $y_1, ..., y_n$. Indicheremo tale rango con

$$r(y_i) = r(y_i|y).$$

Tornando al problema di LHS per dati correlati, si generano gli n campioni normali k – variati

$$y_i^0 \equiv NID_k(\mu, \Sigma)$$

che mettiamo nella matrice $n \times k$

$$Y^0 = (y_{i,j}^0)$$

e si generano poi i ranghi delle sue colonne Y_j^0

$$r_{ij} = r(y_{i,j}^0|Y_j^0).$$

Si retrotrasforma poi, ancora con la gaussiana

$$y_{i,j} = \Phi^{-1} \left(\frac{r_{i,j} - R}{n} \right) \sqrt{\sigma_{j,j}} + \mu_j.$$

Note

La matrice Y così ottenuta ha marginali SMC e correlazione $\cong \Sigma$. In particolare il coefficiente di correlazione dei ranghi di Spearman è invariato:

$$corr(r(Y_i), r(Y_j)) = corr(r(Y_i^0), r(Y_j^0))$$

Matlab

Vedi randperm(), lhsdesign(), lhsnorm(), mvnrnd(), ranghi() ed lhsnorm.rank().

Ottimalità *LHS*

Se

$$h(y_1,\ldots,y_k)$$

è monotona in almeno k-1 componenti allora

$$Var(T_{LHS}) \leq Var(T_{MC})$$

Note:

- Se non vale la condizione di monotonicità il guadagno può essere nullo.
- Se si usa *LHS* correlato la nodistorsione è solo asintotica

Esercizi con Matlab

- **1.** Confrontare MC ed LHS per la stima di $\mu = E(Y)$.
- **2.** Confrontare MC ed LHS per la stima di $\rho(X,Y)$ e $\mu_{11}=E(XY)$ nella normale bivariata.

ModStoc. aa1718

Bibliografia

Approfondimenti metodologici:

- 1. Monte Carlo e Bootstrap
- **2.** Davison A.C., Hinkley D.V. (1997) *Bootstrap methods and their application*. Cambridge University Press.
- **3.** Hjorth U. (1994) Computer Intensive Statistical Methods: Validation, Model Selection and Bootstrap. Chapman & Hall
- **4.** Ripley B.D. (1987) *Stochastic Simulation*. Wiley.