Next we show that weak uniform stability implies uniform stability provided that E is weakly sequentially complete (see C-I,Sec.5) and (im A) $_+:=A(D(A))\cap E_+$ is a total subset of E . The left translations on $L^2(\mathbb{R}_+)$ are stable. Hence, by A-IV,Rem.1.17(a), im A = {f $\in L^2(\mathbb{R}_+): \int_0^\infty f(x) \; dx \; exists}$ and we see that (im A) $_+$ is a total subset of $L^2(\mathbb{R}_+)$. On the other hand, (im A) $_+=\{0\}$ for the generator of the non stable, but weakly stable semigroup of left translations on $L^2(\mathbb{R})$.

<u>Proposition</u> 1.7. Let A be the generator of a positive semigroup $(T(t))_{t\geq 0}$ on a weakly sequentially complete Banach lattice E, such that $(\operatorname{im} A)_+$ is total in E. Then $(T(t))_{t\geq 0}$ is uniformly stable if and only if it is weakly uniformly stable.

<u>Proof.</u> If $(T(t))_{t\geq 0}$ is weakly uniformly stable, then (T(t)) is bounded by the Uniform Boundedness Principle. Using the weak version of A-IV,Thm.1.14 , $\int_0^\infty \langle T(t)f,\phi\rangle$ dt exists for every $f\in (\text{im A})_+$ and $\phi\in E_+^*$. It follows that the net $(\int_0^r T(t)f \,dt)_{r\geq 0}$ is weakly Cauchy. Hence $\sigma(E',E)-\lim_{r\to\infty}\int_0^r T(t)f \,dt$ exists for every $f\in (\text{im A})_+$. Since the net is monotone one obtains convergence in norm by Dini's Theorem [Schaefer (1974), II.Thm.5.9]. Now uniform stability follows from A-IV,Thm.1.16.

In A-IV,Thm.1.13 we have seen that a generator A of a stable semigroup satisfies necessarily s(A) \leq 0 , Re λ < 0 for all $\lambda \in P_{\sigma}(A) \cup R_{\sigma}(A)$ and, by $\lambda R(\lambda,A)f = R(\lambda,A)Af + f$, that $\lim_{\lambda \to 0+} R(\lambda,A)g$ exists for all $g \in Im \ A$. For positive semigroups similar properties are even sufficient for stability.

<u>Lemma</u> 1.8. Let A be the generator of a positive semigroup $(T(t))_{t\geq 0}$ on a Banach lattice E with $s(A) \leq 0$. Given $f \in E_+$ then $\lim_{\lambda \to 0+} R(\lambda,A)f$ exists if and only if $\lim_{t\to \infty} \int_0^t T(s)f$ ds exists.