Introduction

Consider the equations

$$y''(x) + y(x) = e^x \tag{1}$$

$$y^{(17)}(x) + \sin(y(x)) = (x^x)^x$$
 (2)

Before we want to solve these equations, we need to understand what these equations are.

- (1) This is a second order, inhomogeneous, linear ordinary differential equation.
- (2) This is a 17th order, inhomogeneous, nonlinear ordinary differential equation.

Generally, when we have a nonlinear equation, we convert it (using the Jacobian) to the "nearest" corresponding linear equation using Taylor approximations. In this case, converting equation (2), we have

$$y^{(17)}(x) + y(x) = (x^{x})^{x}.$$
 (2')

Now, equation (2') is linear, so it is able to be solved. It may not be pretty, but it can be solved, using Laplace Transforms or other methods.

Ordinary Differential Equations

Returning to our equation (1),

$$y''(x) + y(x) = e^x, \tag{1}$$

there is one more fact that we can see — this is an equation with constant coefficients. The most general form of a nth order linear ordinary differential equation is of the form

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = g(x). \tag{\dagger}$$

Specifically, we also require $a_k(x) \in C(I)$, where I is some interval (specifics will be detailed later).

Theorem (Existence and Uniqueness Theorem): Any ordinary differential equation of the form (†) has unique solutions in I.

There are n linearly independent solutions for g(x) = 0.

The corresponding homogeneous equation for (1) is

$$y''(x) + y(x) = 0. \tag{1'}$$

The equations (1) and (1') are related by the linearity principle. In particular, if $y_0(x)$ is a solution to (1'), then we can add $\alpha y_0(x)$ to any solution $y_p(x)$ of (1), then we have all the solutions for (1). In particular, the solutions to (1') are

$$y_1(x) = \sin(x)$$

$$y_2(x) = \cos(x)$$
.

To evaluate that these solutions are linearly independent, we consider the differential operator L from (†) defined by

$$L[y] = \sum_{k=0}^{n} a_k(x)y^{(k)}(x).$$

We rewrite (†) as

$$L[y] = g(x)$$
.

The operator L is linear, so L has the following properties:

^ICitation needed.

- $L[y_1 + y_2];$
- L[cy] = cL[y].

Now, in (1) and (1'), if we set L[y] = y''(x) + y(x), then evaluating our solutions y_1 and y_2 to (1'), we get

$$L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2]$$

= 0.

Now, we get

$$y_0(x) = c_1 \sin(x) + c_2 \sin(x)$$

as our general solution to (1'). By the linearity principle, all we need is one solution to $L[y] = e^x$ to find all solutions to (1).