Workshop Lecture

for

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Yang Jiayu

Xi'an Jiaotong University

March 14, 2024

Contents

1	Inner Product and Hilbert spaces			2
	1.1	1 Inner-Product Space		
	1.2	2 Hilbert Space		
		1.2.1	Orthogonality	5
		1.2.2	Isometrically Isomorphi	6
		1.2.3	Example: \mathbb{L}^2 Space	7
2 The projection theorem and orthogonal decomposition			8	
	2.1 Projection theorem			8
	2.2	2.2 Orthogonal decomposition		

1 Inner Product and Hilbert spaces

1.1 Inner-Product Space

Definition 1 (inner product) A function (\cdot, \cdot) on a vertor space $\mathbb V$ is called an inner product if

- 1. (positive) $(v, v) \ge 0$
- 2. (definite) $(v, v) = 0 \iff v = 0$
- 3. (symmetry) $(v_1, v_2) = (v_2, v_1)$
- 4. (bilinear) $(a_1v_1 + a_2v_2, v) = a_1(v_1, v) + a_2(v_2, v)$

for all $v, v_1, v_2 \in \mathbb{V}$, $a_2, a_2 \in \mathbb{R}$.

A vector space with an associated inner product is called an inner-product space.

Theorem 2 (Cauchy-Schwarz inequality) Let $\mathbb V$ be a inner space. Then for all $u,v\in\mathbb V$, we have

$$|(u,v)| \le (u,u)^{1/2} (v,v)^{1/2}.$$

The equality holds if and only if $a_1u + a_2v = 0$ for some $a_1, a_2 \in \mathbb{R}$.

<u>Proof.</u> If v = 0, then it is obvious that the inequality holds.

If $v \neq 0$, let $w = u - ((u, v)/(v, v)^2)v$, then (w, u) = 0. Denote $((u, v)/(v, v)^2)v = v'$, then

$$(u,u) = (w+v', w+v') = (w,w) + (v'v')$$

 $\geq (v',v') = (u,v)^2/(v,v)$

The equality holds if and onlf if (w, w) = 0.

Definition 3 (norm induced by inner product) It follows that

$$|u| = (u, u)^{1/2}$$

is a norm. Indeed, we have

$$|u+v|^2 = (u+v, u+v) = |u|^2 + 2(u,v) + |v|^2 \le |u|^2 + 2|u||v| + |v|^2.$$

Proposition 4 (parallelogram rule)

$$\left|\frac{a+b}{2}\right|^2 + \left|\frac{a-b}{2}\right|^2 = \frac{1}{2}\left(|a|^2 + |b|^2\right), \quad \forall a, b \in \mathbb{V}.$$

Proof. The proof form that

$$\left| \frac{a+b}{2} \right|^2 + \left| \frac{a-b}{2} \right|^2 = \frac{1}{4} \left((a+b, a+b) + (a-b, a-b) \right)$$
$$= \frac{1}{4} (2(a, a) + 2(b, b)).$$

Remark 5 Although any inner product naturally define a metric, not every metric space exhibits the structure that is necessary to also be an inner-produce space. Shown as following.

Example 6 The norm

$$||f|| = \sup_{x \in [0,1]} |f(x)|$$

on C[0,1] is not induced by an inner product.

Proof. Let

$$f(x) = 1,$$
 $g(x) = x,$ $\forall x \in [0,1].$

Then $f, g \in \mathcal{C}[0,1]$. But

$$||f||^2 + ||g||^2 = 2$$
$$||f + g||^2 + ||f - g||^2 = 4 + 1 = 5$$

the parallelogram rule fails.

Theorem 7 (continuity of inner product) Let \mathbb{V} be a inner product space with inner product (\cdot,\cdot) , $\{v_n\}$, $\{u_n\}$ be sequences and $v,u\in\mathbb{V}$. Then that $|v-v_n|\to 0$, $|u-u_n|\to 0$ implies

$$(u_n,v_n)\to (u,v).$$

Proof. Since

$$|(u_n, v_n) - (u, v)| \le |(u_n, v_n) - (u_n, v)| + |(u_n, v) - (u, v)|$$

$$\le |u_n||v_n - v| + |v||u_n - u|$$

and $\{u_n\}$ is bounded since

$$|u_n| \leq |u_n - u| + |u|.$$

1.2 Hilbert Space

Definition 8 (Hilbert space) Hilbert space is a complete inner-product space.

Example 9 Any finnite-dimensional inner-product space is Hilbert space.

Example 10 The ℓ^2 space is a Hilbert space. The inner product is

$$(u,v) = \sum_{i=1}^{\infty} u_i v_i,$$

for any

$$u = (u_1, \cdots), v = (v_1, \cdots) \in \ell^2.$$

Definition 11 Element u, v of an inner-product space \mathbb{X} are said to be orthogonal if (u, v) = 0.

A countable collection of element
$$\{e_j\}_{j=1}^{\infty}$$
 is said to be an orthonormal sequence if

$$(e_i, e_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad \forall i, j \in \mathbb{Z}_{>0}$$

Theorem 12 (Pythagoras) If (f,g) = 0, then

$$|f+g|^2 = |f|^2 + |g|^2$$
.

Morever, if $\{e_j\}$ is an orthonormal sequence

$$\left|\sum_{i=1}^n a_i e_i\right| = \sum_{i=1}^n a_i^2.$$

Theorem 13 (Bessel inequality) Let $\{e_j\}_{j=1}^{\infty}$ be an orthonormal sequence in an inner-product space \mathbb{X} . For any $x \in \mathbb{X}$,

$$\sum_{i=1}^{\infty} (x, e_i)^2 \le |x|^2,$$

and $\sum_{i=1}^{\infty} (x, e_i)e_i$ converges if X is a Hilbert space.

Proof. Bessel inequality holds since

$$0 \le \left| x - \sum_{i=1}^{n} (x, e_i) e_i \right|^2 = |x|^2 - \sum_{i=1}^{n} (x, e_i)^2.$$

This implies that $\sum_{i=1}^{\infty} (x, e_i)^2 < \infty$. It follows that $\{S_n = \sum_{i=1}^n (x, e_i)e_i\}$ is Cauchy since

$$|S_n| = \sum_{i=1}^n (x, e_i)^2.$$

Theorem 14 Let $\{x_n\}_{n=1}^{\infty}$ be a countable collection of a Hilbert space \mathbb{H} such that every finite subcollection of $\{x_n\}$ is linearly independent. Define $e_1 = x_1/|x_1|$, $e_n = v_n/|v_n|$ for

$$v_n = x_n - \sum_{j=1}^{n-1} (x_j, e_j) e_j.$$

Then, $\{e_n\}$ is an orthonormal sequence and $\overline{\operatorname{span}\{x_n\}} = \overline{\operatorname{span}\{e_n\}}$.

1.2.1 Orthogonality

Definition 15 An orthonormal sequence $\{e_n\}$ in a Hilbert space \mathbb{H} is called an orthonormal basis or a complete orthogonal system (CONS) if $\overline{\text{span}\{e_n\}} = \mathbb{H}$.

Theorem 16 The following properties of an orthonormal sequence $\{e_n\}$ in Hilbert space \mathbb{H} are equivalent.

- 1. (sparable) $\{e_n\}$ is a CONS
- 2. (complete)

$$(f, e_n) = 0$$
 for all $n \implies f = 0$.

3. (Fourier expandansion) If $f \in \mathbb{H}$, then

$$\sum_{j=1}^{N} (f, e_j) e_j \to f \quad \text{in norm.}$$

4. (Parseval's identity) If $a_k = (f, e_k)$, then

$$|f| = \sum_{k=1}^{\infty} |a_k|^2.$$

Proof.

1 ⇒ 2. Given $f \in \mathbb{H}$ with $(f, e_n) = 0$ for all n. By assumption, there exists a sequence $\{g_n\}$ of elements in \mathbb{H} that are linear combinations of elements in $\{e_n\}$, and such that $|f - g_n| \to 0$ as $n \to \infty$. Thus

$$|f|^2 = (f, f) = (f, f - g_n) \le |f||f - g_n| \to 0,$$
 as $n \to \infty$

Thus f = 0.

 $2 \Longrightarrow 3$. By theorem 13, $\exists g \in \mathbb{H}$ such that

$$S_N = \sum_{j=1}^N (f, e_j) e_j \to g, \quad \text{as } N \to \infty.$$

It suffices to prove that g = f.

Given n, let N > n, then

$$(f-S_N,e_n)=0.$$

Letting $N \to \infty$, we have

$$(f-g,e_n)=0, \forall n$$

which implies that f = g.

 $3 \Longrightarrow 1$ is obvious.

 $3 \Longleftrightarrow 4$. Since

$$\left| f - \sum_{k=1}^{N} a_k e_k \right| = |f| - \sum_{k=1}^{N} a_k^2$$

1.2.2 Isometrically Isomorphi

Definition 17 Two metric spaces (\mathbb{M}_1, d_1) and (\mathbb{M}_2, d_2) are said to be isometrically isomorphi or congruent if there exists a bijective function $T : \mathbb{M}_2 \longrightarrow \mathbb{M}_1$ such that

$$d_2(x_1, x_2) = d_1(Tx_1, Tx_2), \quad \forall x_1, x_2 \in \mathbb{M}_2.$$

Theorem 18 Let \mathbb{H}_1 , \mathbb{H}_2 be Hilbert spaces with inner products $(\cdot, \cdot)_i$, i = 1, 2. Suppose for some index set E there are collections of vectors $\mathbb{U}_i = \{u_t^{(i)}\}_{t \in E}$ such that $\overline{\text{span}(\mathbb{U}_i)} = \mathbb{H}_i$. If for every $i, j \in E$

$$(u_i^{(1)}, u_j^{(1)})_1 = (u_i^{(2)}, u_j^{(2)})_2,$$

 \mathbb{H}_1 , \mathbb{H}_2 congruent.

<u>Proof.</u> Let $\mathbb{U}_1 = \{u_\alpha\}_{\alpha \in E}$ $\mathbb{U}_2 = \{v_\alpha\}_{\alpha \in E}$. Given $f \in \mathbb{H}_1$, there exists a sequence $\{g_n\}$ of elements in \mathbb{H} that are linear combinations of elements in $\{u_n\}$, such that $|f - g_n| \to 0$.

For all $g \in \text{span}(\mathbb{U}_1)$,

$$g = \sum_{i=1}^{n} a_i u_i,$$

define $Tg = \sum_{i=1}^{n} a_i v_i \in \text{span}(\mathbb{U}_2)$. Since g_n converges to f, thus Cauchy, which implies $\{Tg_n\}$ is also Cauchy since $(g_n, g_n)_1 = (Tg_n, Tg_n)_2$. Thus there exists an element of \mathbb{H}_2 , to which $\{Tg_n\}$ converges, denoted by Tf. Thus $(f, f)_1 = (Tf, Tf)_2$. And it is obvious that T is bijective.

Theorem 19 Any infinite-dimensional separable Hilbert space is congruent to $\ell^2(\mathbb{Z}_{>0})$.

<u>Proof.</u> Any infinite-dimensional separable Hilbert space \mathbb{H} has a CONS. Let $\mathbb{U} = \{e_j\}_{j=1}^n$ be the CONS of \mathbb{H} . Let $\mathbb{V} = \{\varepsilon_j\}_{j=1}^\infty$, where ε_j is a sequence of all zeros except for a 1 as its jth entry. Then it is obvious that

$$(e_i, e_j) = (\varepsilon_i, \varepsilon_j).$$

1.2.3 Example: \mathbb{L}^2 Space

Example 20 $\mathbb{L}^2(E, \mathcal{B}, \mu)$ is a Hilbert space with the inner product

$$(f,g) = \int_{E} fg \, d\mu, \quad \forall f,g \in \mathbb{L}^{2}(E,\mathscr{B},\mu).$$

Here, we focuse on $\mathbb{L}^2[0,1]$, E=[0,1], \mathscr{B} the Borel σ -field of [0,1] and μ Lebesgue measure.

Theorem 21 The following sets of functions

$$B_1 = \{ f_0(x) = 1, f_n(x) = \sqrt{2}\cos(n\pi x), n \ge 1 \},$$

$$B_2 = \{ g_n(x) = \sqrt{2}\sin(n\pi x), n \ge 1 \}$$

and

$$B_3 = \{h_0(x) = 1, h_{2n-1} = \sqrt{2}\sin(2n\pi x), h_{2n}(x) = \sqrt{2}\cos(2n\pi x), n \ge 1\}$$

are all orthonormal bases for $\mathbb{L}^2[0,1]$.

<u>Proof.</u> It is clear that B_1 , B_2 , B_3 are orthonormal. Hence, we need only show that they are bases.

 B_1 : $\forall f \in \mathbb{L}^2[0,1]$ and $\varepsilon > 0$, there exists $g \in \mathcal{C}[0,1]$, such that

$$||f-g|| < \varepsilon/2.$$

Set

$$h(s) = g\left(\frac{\arccos s}{\pi}\right)$$
 $s \in [-1, 1].$

By Weierstrass Theorem, there exists a polynomial p such that

$$|h(s) - p(s)| < \varepsilon/2 \quad \forall s \in [-1, 1].$$

Let $k(x) = p(\cos \pi x)$, then

$$||g-k|| = \left(\int_{[0,1]} |g-k|^2\right)^{1/2} \le \varepsilon/2.$$

Thus $||f - p(\cos \pi x)|| < \varepsilon$.

 B_2 : $\forall f \in \mathbb{L}^2[0,1]$ and $\varepsilon > 0$, let $f_{\delta} = f\chi_{[\delta,1-\delta]}$. There is $\delta > 0$ such that

$$||f - f_{\delta}|| < \varepsilon/2.$$

Now $h(x) = f_{\delta}(x)/\sin(\pi x) \in \mathbb{L}^2[0,1]$ and so there is a function $k(x) = \sum_{i=0}^m a_i \cos(i\pi x)$ such that $||k-h|| < \varepsilon/2$. But

$$||h - k||^{2} = \int_{0}^{\delta} k^{2}(x) dx + \int_{\delta}^{1 - \delta} |k(x) - f_{\delta}(x) / \sin(\pi x)|^{2} dx + \int_{1 - \delta}^{1} k^{2}(x) dx$$

$$\geq \int_{0}^{\delta} k^{2}(x) \sin^{2}(\pi x) dx + \int_{\delta}^{1 - \delta} |k \sin(\pi x) - f_{\delta}|^{2}(x) dx + \int_{1 - \delta}^{1} k^{2}(x) \sin^{2}(\pi x) dx$$

$$= \int_{0}^{1} |k \sin(\pi x) - f_{\delta}(x)|^{2} dx = ||k(x) \sin(\pi x) - f_{\delta}(x)||^{2}.$$

 B_3 : Suppose, by contradiction, that B_3 is not a basis. Thus there exists a nonzero function $f \in \mathbb{L}^2[0,1]$ such that

$$(f,h_0)=(f,h_n)=0 \qquad \forall \ n.$$

i.e.

$$0 = \int_0^1 f(x) \, dx = \frac{1}{2} \int_0^1 f\left(\frac{x+1}{2}\right) + f\left(\frac{-x+1}{2}\right) \, dx$$
$$0 = \frac{1}{2} \cdot (-1)^n \int_0^1 \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{-x+1}{2}\right)\right) \cos(n\pi x) \, dx.$$

$$0 = \frac{1}{2} \cdot (-1)^n \int_0^1 \left(f\left(\frac{x+1}{2}\right) - f\left(\frac{-x+1}{2}\right) \right) \sin(n\pi x) \, \mathrm{d}x$$

Since B_1 , B_2 are basis in $\mathbb{L}^2[0,1]$, we conclude that

$$f\left(\frac{x+1}{2}\right) - f\left(\frac{-x+1}{2}\right) = f\left(\frac{x+1}{2}\right) + f\left(\frac{-x+1}{2}\right) = 0.$$

Since $x \in [0,1]$ is arbitrary, f = 0 in [0,1].

2 The projection theorem and orthogonal decomposition

2.1 Projection theorem

Theorem 22 Let $\mathbb{M} \subset \mathbb{H}$ be a noempty closed convex set. Then for every $f \in \mathbb{H}$, there exists a unique element $u \in \mathbb{M}$ such that

$$|f - u| = \min_{v \in \mathbb{M}} |f - v| = \operatorname{dist}(f, \mathbb{M}). \tag{1}$$

Morever, *u* is characterized by the property

$$u \in \mathbb{M}$$
, and $(f - u, v - u) \le 0$, $\forall v \in \mathbb{M}$. (2)

Remark 23 The element u is called the projection of f in \mathbb{M} , denoted by

$$\mathcal{P}_{\mathbb{M}}f = u$$
.

Proof.

1. Existence. Let $(v_n) \in \mathbb{M}$ such that

$$d_n = |f - v_n| \to d = \inf_{v \in \mathbb{M}} |f - v|.$$

By parallelogram rule, we have

$$\left| f - \frac{v_n + v_m}{2} \right| + \left| \frac{v_n - v_m}{2} \right| = \frac{1}{2} \left(d_n^2 + d_m^2 \right), \quad \forall m, n \in \mathbb{Z}_{>0}$$

But $(v_n + v_m)/2 \in \mathbb{M}$ since \mathbb{M} is convex and thus $|f - \frac{v_n + v_m}{2}| \geq d$. It follows that

$$\left|\frac{v_n-v_m}{2}\right| \leq \frac{1}{2}(d_m^2+d_n^2)-d^2.$$

i.e. $\{v_n\}$ Cauchy.

2. Equivalence of 1 and 2. Assume that $u \in \mathbb{M}$ satisfies 2 and let $v \in \mathbb{M}$. We have

$$w = (1-t)u + tv \in \mathbb{M}, \quad \forall t \in [0,1].$$

Then

$$|f - u| \le |f - w| = |(f - u) - t(u - v)|$$

Therefore

$$|f - u|^2 \le |f - u|^2 - 2t(f - u, u - v) + t^2|u - v|^2$$

which implies $2(f - u, u - v) \le t^2 |u - v|^2$. Letting $t \to 0$, we obtain 2.

Conversely, assume that u satisfies 2, then

$$|f - u|^2 - |f - v|^2 = |f - u|^2 - |(f - u) - (v - u)|^2$$
$$= 2(f - u, v - u) - |v - u|^2 \le 0.$$

3. *Uniqueness*. If u_1 , u_2 satisfy 2. Then

$$(f - u_1, v - u_1) \le 0 \qquad \forall \ v \in \mathbb{M}$$

$$(f - u_2, v - u_2) \le 0 \qquad \forall \ v \in \mathbb{M}$$

Choose $v = u_2, v = u_1$ represently.

Corollary 24 Let $\mathbb{M} \subset \mathbb{H}$ be a noempty closed linear subspace. Then for every $f \in \mathbb{H}$, there exists a unique element $u \in \mathbb{M}$ such that

$$|f - u| = \min_{v \in \mathbb{M}} |f - v| = \operatorname{dist}(f, \mathbb{M}). \tag{3}$$

Morever, *u* is characterized by the property

$$u \in \mathbb{M}$$
, and $(f - u, v - u) = 0$, $\forall v \in \mathbb{M}$. (4)

Proof. Let $v = u \pm u$ in 2,

$$(f - u, u) = 0$$

It follows that

$$(f-u,v) \le 0 \quad \forall v \in \mathbb{M}.$$

Replace v by -v.

2.2 Orthogonal decomposition

Definition 25 Let \mathbb{X} be a inner-product space with $\mathbb{M} \subset \mathbb{X}$. The orthogonal complement of \mathbb{M} is

$$\mathbb{M}^{\perp} = \{ x \in \mathbb{X} : (x, y) = 0 \text{ for all } x \in \mathbb{M} \}.$$

Remark 26 If M is closed subspace, every $x \in \mathbb{H}$ can be uniquely expressed as

$$x = \mathcal{P}_{\mathbb{M}}x + (x - \mathcal{P}_{\mathbb{M}}x) \in \mathbb{M} + \mathbb{M}^{\perp}.$$

And it is clear that

$$\mathbb{M} \cap \mathbb{M}^{\perp} = \{0\}.$$

Definition 27 Let \mathbb{M}_1 , \mathbb{M}_2 be orthogonal subspace of \mathbb{X} ; i.e.

$$x_1 \perp x_2$$
, $\forall x_1 \in \mathbb{M}_1, x_2 \in \mathbb{M}_2$.

Then the collection

$${x_1 + x_2 : x_i \in \mathbb{M}_i, i = 1, 2}$$

is denoted by $\mathbb{M}_1 \oplus \mathbb{M}_2$ and is referred to as the orthogonal direct sum of \mathbb{M}_1 and \mathbb{M}_2 .

Theorem 28 Let M be the closed subspace of Hilbert space H. Then

$$\mathbb{M} \oplus \mathbb{M}^{\perp} = \mathbb{H}$$
.

Theorem 29 Let \mathbb{H} be a Hilbert space with \mathbb{M} a subset of \mathbb{H} . Then

- 1. \mathbb{M}^{\perp} is a closed subspace;
- 2. $\mathbb{M} \subset (\mathbb{M}^{\perp})^{\perp}$;
- 3. $(\mathbb{M}^{\perp})^{\perp} = \overline{\mathbb{M}}$ if \mathbb{M} is a subspace.

Proof.

1. It suffices to prove that the limit points of \mathbb{M}^{\perp} are in \mathbb{M}^{\perp} . Let $(x_n) \subset \mathbb{M}^{\perp}$ and $x_n \to x$. Then

$$(x_n,y)=0, \forall y \in \mathbb{H}.$$

Thus by continuity of (\cdot, \cdot) ,

$$(x,y) = (\lim x_n, y) = \lim (x_n, y) = 0, \quad \forall y \in \mathbb{M}.$$

which implies that $x \in \mathbb{M}^{\perp}$.

2. It is clear that $\forall x \in \mathbb{M}$

$$x \in \left(\mathbb{M}^{\perp}\right)^{\perp} = \{x \in \mathbb{H} : (x, y) = 0 \ \forall \ y \in \mathbb{M}^{\perp}\}.$$

3. Since $(\mathbb{M}^{\perp})^{\perp}$ is closed, we have $\overline{M} \subseteq (\mathbb{M}^{\perp})^{\perp}$ by the definition of closure. By theorem 28, we have

$$\left(\mathbb{M}^{\perp}\right)^{\perp}=\overline{\mathbb{M}}\oplus\left(\mathbb{M}^{\perp}\right)^{\perp}\cap\overline{\mathbb{M}}^{\perp}.$$

But

$$\left(\mathbb{M}^{\perp}\right)^{\perp}\cap\overline{\mathbb{M}}^{\perp}\subset\left(\mathbb{M}^{\perp}\right)^{\perp}\cap\mathbb{M}^{\perp}=\{0\}.$$

References

- [1] Hsing, T., & Eubank, R. (2015). *Theoretical foundations of functional data analysis, with an introduction to linear operators (Vol. 997)*. John Wiley & Sons.
- [2] Brezis, H. (2011). Functional Analysis, Sobolev Spaces, and Partial Differential Equations. New York: Springer.
- [3] Stein, E. M. (2005). Real Analysis. Princeton, NJ: Princeton University Press.