REGRESSION ASSIGNMENT-ML

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

Prediction: Insurance charges

- Domain Selection: Machine Learning
- Learning Selection:Supervised Learning (Requirement is clear)
- Regression(label is in numerical values)
- 1338 rows × 6 columns in the given dataset
- ➤ I have done preprocessing method in the columns sex,smokers(converting nominal data to numerical data using (one hot encoding function)

Multiple Linear Algorithm:

Using Multiple linear, I got r2 value=0.7894

Support Vector Machine Algorithm:

Using svm algorithm's hyper tuning parameters: {linear,rbf(nonlinear),poly,sigmoid}

Hyper parameter	Linear R2 value	Rbf R2 value	Poly R2 value	Sigmoid R2 value
C=10	0.462	-0.032	0.038	0.039
C=100	0.628	0.320	0.617	0.527
C=500	0.763	0.664	0.826	0.444
C=1000	0.764	0.810	0.856	0.287
C=1500	0.764	0.842	0.858	-0.067
C=2000	0.744	0.854	0.860	-0.593
C=3000	0.741	0.866	0.859	-2.124

In this algorithm,r2 value is very low

DECISION TREE ALGORITHM:

Hyper tuning parameter:

- criterion={squared_error,absolute_error,poisson,friedman_mse}
- splitter={random,best}
- max_features={none,log2,sqrt}

S.No	Criterion	Splitter	Max features	R2 value
1.	Squared_error	Best	None	0.682
2.	Squared_error	Random	None	0.648
3.	Squared_error	Best	Sqrt	0.680
4.	Squared_error	Best	Log2	0.688
5.	Squared_error	Random	Sqrt	0.700
6.	Squared_error	Random	Log2	0.693
7.	Friedman_mse	Best	None	0.697
8.	Friedman_mse	Random	None	0.706
9.	Friedman_mse	Best	Log2	0.754
10.	Friedman_mse	Random	Log2	0.667
11.	Friedman_mse	Best	Sqrt	0.785
12.	Friedman_mse	Random	Sqrt	0.579
13.	Absolute_error	Best	None	0.684
14.	Absolute_error	Random	None	0.701
15.	Absolute_error	Best	Sqrt	0.764
16.	Absolute_error	Random	Sqrt	0.687
17.	Absolute_error	Best	Log2	0.686
18.	Absolute_error	Random	Log2	0.734
19.	Poisson	Best	None	0.717
20.	Poisson	Best	Log2	0.746
21.	Poisson	Best	Sqrt	0.697

22.	Poisson	Random	None	0.674
23.	Poisson	Random	Log2	0.725
24.	Poisson	Random	Sqrt	0.751

In this algorithm, we didn't get a good model. (r2 value is low)

RANDOM FOREST ALGORITHM

Hyper tuning parameters:

- criterion={squared_error,absolute_error,poisson,friedman_mse}
- n_estimators={50,100}
- max_features={none,log2,sqrt}

S.No	Criterion	n_estimators	max_features	r2 value
1.	Squared_error	50	None	0.852
2	Squared_error	100	Sqrt	0.864
3	Squared_error	100	None	0.856
4	Squared_error	50	Sqrt	0.867
5	Squared_error	50	Log2	0.866
6	Squared_error	100	Log2	0.870
7	Absolute_error	50	None	0.849
8	Absolute_error	50	Sqrt	0.872
9	Absolute_error	50	Log2	0.865
10	Absolute_error	100	None	0.853
11	Absolute_error	100	Sqrt	0.869
12	Absolute_error	<mark>100</mark>	Log2	<mark>0.875</mark>
13	mse	50	None	0.849
14	Mse	50	Sqrt	0.869

15	Mse	50	Log2	0.868
16	Mse	100	None	0.853
17	Mse	100	Sqrt	0.869
18	Mse	100	Log2	0.870
19	poisson	50	None	0.855
20	Poisson	50	Sqrt	0.864
21	poisson	50	Log2	0.869
22	Poisson	100	None	0.857
23	Poisson	100	Sqrt	0.869
24	poisson	100	Log2	0.870

- ➤ In all these above algorithms, r2 value is low compared to random forest algorithm. So I didn't proceed to the next phase.
- Using random forest algorithm's parameter
 (criterion=absolute_error,n_estimators=100,max_features=log2). I got
 r2=0.875 (nearly to 1). This is a better model.so I proceed to the phase
 II (i.e,Deployment phase)