

Find the Box

Problem Name	Find the Box			
Time Limit	1 seconds			
Memory Limit	1 gigabyte			

Սա ինտերակտիվ խնդիր է։

Մայան ռոբոտաշինության ոլորտի հետազոտող է LTHում։ Նա գիտի, որ համալսարանի նկուղային հարկում գանձ կա։ Գանձը դրված է արկղի մեջ, որը գտնվում է մի սենյակում։ Ցավոք, Մայան չի կարող ուղղակի գնալ ու վերցնել այդ արկղը։ Այնտեղ շատ մութ է, իսկ լույս տալով գնալը կասկածանք կհարուցի։ Միակ ելքը նա տեսնում է արկղը հեռավար ղեկավարվող ռոբոտի միջոցով գտնելը։

Սենյակը կարելի է ներկայացնել $H \times W$ չափի աղյուսակի մեջոցով, որտեղ տողերը համարակալված են 0ից H-1 թվերով (վերևից ներքև), իսկ սյուները համարակալված են 0ից W-1 թվերով (ձախից աջ), ինչը նշանակում է, որ ձախ վերևի վանդակը (0,0)ն է, իսկ աջ ներքևի վանդակը (H-1,W-1)ն է։ Արկղը գտնվում է վանդակներից մեկում (մնացած վանդակները դատարկ են)։ Ամեն գիշեր ռոբոտը սկսում է շարժվել ձախ վերևի վանդակից։

Ամեն գիշեր, Մայան ռոբոտին տալիս է հրահանգների տող, այն բաղկացած է 4 տեսակի սիմվոլներից` "<", ">", "^" և " $_{\triangledown}$ ". Սլաքի ուղղությունը համապատասխանում է շարժման ուղղությանը` եթե ռոբոտը գտնվում է (r,c) վանդակում որի հարևան վանդակները ազատ են, "<" տեղափոխում է դեպի ձախ` (r,c-1), ">" տեղափոխում է դեպի աջ` (r,c+1), "^" տեղափոխում է դեպի վերև` (r-1,c), և " $_{\triangledown}$ " տեղափոխում է դեպի ներքև` (r+1,c).

Պատերը և արկղը պինդ են։ Երբ ռոբոտը փորձում է գնալ այնպիսի վանդակ, որը դուրս է սենյակի սահմաններից, կամ, որում արկղն է գտնվում, ապա ռոբոտը մնում է տեղում։ Բոլոր հրահանգները կատարելուց հետո ռոբոտը Մայային կհայտնի իր տեղը և հետ կգնա ձախ վերևի վանդակ։

Մայան ուզում է արկղը գտնել կարճ ժամանակում։

Փոխգործակցություն

Սա ինտերակտիվ խնդիր է։

- Ձեր ծրագիրը պետք է սկսի երկու ամբողջ թիվ կարդալով՝ H և W (աղյուսակի չափերը)։ Արկոր չի գտնվի (0,0) ում։
- Այնուհետև ձեր ծրագիրը պետք է սկսի հարցումներ տալ։ Ամեն հարցում պետք է սկսվի "?" սիմվոլով, որին պետք է հետևի s ոչ դատարկ տողը, որը բաղկացած է "<", ">", "^", " $_{\rm v}$ " սիմվոլներից։ Այդ տողի երկարությունը չպետք է գերազանցի $20\,000$ ը։ Հարցումը տալուց հետո Ձեր ծրագիրը պետք է կարդա երկու թիվ՝ r,c ($0 \le r \le H-1,\ 0 \le c \le W-1$) (ռոբոտի վերջնական կորդինատները)։ Նկատեք, որ ռոբոտը ամեն հարցումից հետո վերադառնում է (0,0)։
- Երբ արկղի կորդինատները գտնված են, տպեք "!", որին հետևում են երկու թվեր՝ r_b, c_b (արկղի կորդինատները, $0 \le r_b \le H-1$, $0 \le c_b \le W-1$)։ Տպելուց հետո Ձեր ծրագիրը պետք է ավարտվի (այս գործողությունը չի մտնում հարցումների քանակի մեջ Ձեր միավորը հաշվելիս)։

Հարցումները տպելուց հետո մի մոռացեք դատարկել արտածման բուֆերը, հակառակ դեպքում Ձեր ծրագիրը կարող է ստանալ Time Limit Exceeded։ Python լեզվում print()ը մեխանիկորեն դատարկում է բուֆերը։ C++ լեզվում, cout << endl;ը մաքրում է բուֆերը ևոր տողի անցնելով; եթե printf եք օգտագործում, օգտագործեք fflush(stdout) հարմանը.

Գրեյդերը հարմարվող չէ, այսինքն արկղի կորդինատները ֆիքսված են Ձեր ծրագրի աշխատանքի սկզբից։

Սահմանափակումներ և միավորներ

- $1 \le H, W \le 50$:
- ullet Արկղը չի գտնվում (0,0)ում։ Սա նշանակում է, որ $H+W\geq 3$ ։
- Ամեն հարցում պետք է բաղկացած լինի ամենաշատը $20\,000$ սիմվոլից։
- Դուք կարող եք օգտագործել ամենաշատը $2\,500$ հարցում։

Ձեր ծրագիրը կստուգվի մի քանի թեստի վրա։ Եթե Ձեր լուծումը սխալվում է այդ թեստերից որևէ մեկում (օրինակ սխալ պատասխան (WA), սխալ կատարում ընթացքում (RTE), ժամանակի սահմանափակման գերազանցում (TLE), և այլն), ապա դուք կստանաք 0 միավոր։

Եթե Ձեր ծրագիրը ճիշտ է աշխատում բոլոր թեստերի համար, ապա դուք կստանաք AC, և Ձեր միավորը կհաշվի հետևյալ բանաձևով`

score = min
$$\left(\frac{100\sqrt{2}}{\sqrt{Q}}, 100\right)$$
 points,

որտեղ Q թիվը բոլոր թեստերում Ձեր կատարած մաքսիմալ հարցումների քանակն է։ Պատասխանը տպելը դրա մեջ չի հաշվում։ Միավորը կկլորացվի դեպի վերև։

Մասնավորապես, 100 միավոր ստանալու համար, Ձեր ծրագիրը պետք է օգտագործի ամենաշատը Q=2 հարցում։ <ետևյալ աղյուսակը ցույց է տալիս Qի որոշ արժեքներ և համապատասխան միավորները։

Q	2	3	4	5	•••	20	•••	50	•••	2500
Score	100	82	71	63		32		20		3

Թեստավորման գործիք

Ձեր լոկալ թեստավորումը հեշտացնելու համար, Ձեզ տրամադրվում է թեստավորման գործիք։ Այն կարող եք գտնել "attachments" բաժնում։ Այս գործիքի օգտագործումը պարտադիր չէ։ Ձեր լուծման թեստավորման համար այս գործիքը չի օգտագործվելու։

Օրինակ թեստավորելու համար (H=4,W=5, և արկղի կորդինատներն են r=2,c=3)։ python լեզվի համար, եթե լուծուը solution.pyն t օգտագործվում t հետևյալ հրամանը`

```
python3 testing_tool.py pypy3 solution.py <<<"4 5 2 3"</pre>
```

C++ լեզվի համար, պետք է սկզբից կոմպիլացնել (Օրինակ g++ -std=gnu++17 solution.cpp -o solution.out) հետո օգտագօրծել հետևյալ հրամանը`

```
python3 testing_tool.py ./solution.out <<<"4 5 2 3"</pre>
```

Օրինակ

grader output	your output
4 5	
	? vv>>>><^^^^^>
0 2	
	?>>>>>>
3 4	
	!23