УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Системы искусственного интеллекта»

Лабораторная работа №3

Вариант 9

Студент

Патутин В.М

P33101

Преподаватель

Бессмертный И. А.

Задание:

Исследование алгоритмов решения задач методом поиска. Описание предметной области. Имеется транспортная сеть, связывающая города СНГ. Сеть представлена в виде таблицы связей между городами. Связи являются двусторонними, т. е. допускают движение в обоих направлениях.

Необходимо проложить маршрут из одной заданной точки в другую.

Этап 1. Неинформированный поиск. На этом этапе известна только топология связей между городами. Выполнить:

- 1) поиск в ширину;
- 2) поиск глубину;
- 3) поиск с ограничением глубины;
- 4) поиск с итеративным углублением;
- 5) двунаправленный поиск.

Этап 2. Информированный поиск. Воспользовавшись информацией о протяженности связей от текущего узла, выполнить:

- 1) жадный поиск по первому наилучшему соответствию;
- 2) затем, использую информацию о расстоянии до цели по прямой от

каждого узла, выполнить поиск методом минимизации суммарной оценки А*.

Исходный граф:

Этап 1: Поиск в ширину (сложность b^{d+1})

Поиск в глубину (сложность b^m)

Поиск с ограничением глубины 4 (сложность b^{e} , e -предел глубины)

Поиск с итеративным углублением (сложность b^d)

Красный – ограничение глубины 1

Красный + оранжевый – ограничение глубины 2

Красный + оранжевый + желтый – ограничение глубины 3

Красный + оранжевый + желтый + шартрез – ограничение глубины 4

Двунаправленный поиск (сложность $b^{d/2}$)

Вывод Этапа 1:

Метод	Полнота	Временная	Затраты	Оптимальност
		сложность	памяти	Ь
Поиск в ширину	Да	b^{d+1}	b^{d+1}	Да
Поиск по критерию	Да	b ^{1+C/n}	b ^{1+C/n}	Да
стоимости				
Поиск в глубину	Нет	b ^m	bm	Нет
Поиск с	Нет	b ^e	be	Нет
ограничением				
глубины				
Поиск с	Да	b ^d	bd	Да
итеративным				
углублением				
Двунаправленный	Да	b ^{d/2}	b ^{d/2}	Да
поиск				

Алгоритм поиска в ширину не является оптимальным, так как имеет большую сложность, из-за запоминания всех вершин, но при этом всегда находит цель. Поиск в глубину может дать неверный вывод, зайдя в тупик. Также он может долго углубляться в один вариант решения, не проверив короткий. Поиск с ограничением глубины вводит дополнительное условие неполноты, что ускоряет процесс, но имеет шанс не найти цель. Двунаправленный поиск является оптимальным.

Этап 2: Жадный поиск по первому наилучшему соответствию (сложность b^m)

Метод минимизации суммарной оценки стоимости решения A^* (сложность b^a)

Вывод Этапа 2:

Жадный поиск по первому наилучшему соответствию	Нет	b^m	b^m	Нет
Поиск методом минимизации суммарной оценки А*	Да	b^a	a*m	Да

Алгоритм жадного поиска не является оптимальным, из-за возможного нахождения город близко, но при этом добраться напрямую нельзя. Метод А* является оптимальным, при условии, что выбрана допустимая эвристическая функция, которая не переоценивает стоимость. Но поиск А* не является применимым на практике из-за того, что ресурсы пространства исчерпываются намного быстрее чем временные.

Выводы

При выполнении лабораторной работы я изучил работу алгоритмов поиска на информированном и неинформированном графе, а также сравнил их работу и сложность.