MATH50001 Analysis II, Complex Analysis

Lecture 20

Section: Möbius Transformations.

Definition.

A Möbius transformation (that is also called a bilinear transformation) is a map

$$f(z) = \frac{az+b}{cz+d}$$
, where $a, b, c, d \in \mathbb{C}$ and $ad-bc \neq 0$.

Special Möbius transformations.

Let

$$f(z) = \frac{az+b}{cz+d}$$

and consider the following cases:

(M1)
$$z \mapsto az$$
 $(b = c = 0, d = 1);$

if |a| = 1, $a = e^{i\theta}$, then this is a rotation by θ . If a > 0 then f corresponds to a dilation and if a < 0 the map consists of a dilation by |a| followed by a rotation of π .

(M2)
$$z \mapsto z + b$$
 $(a = d = 1, c = 0 - \text{translation by } b);$

(M3)
$$z \mapsto \frac{1}{z}$$
 $(a = d = 0, b = c = 1 - inversion).$

In (M1), if $a = re^{i\theta}$, the geometrical interpretation is an expansion by the factor r followed by a rotation anticlockwise by the angle θ .

Theorem.

Every Möbius transformation

$$f(z) = \frac{az+b}{cz+d}$$

is a composition of transformations of type (M1), (M2) and (M3).

Proof.

1. If c = 0 and $d \neq 0$, then

$$f(z) = \frac{az+b}{d} = g_2 \circ g_1(z),$$

where

$$g_1(z) = \frac{a}{d}z, \qquad g_2(z) = z + \frac{b}{d}.$$

2. If $c \neq 0$, then $f(z) = g_5 \circ g_4 \circ g_3 \circ g_2 \circ g_1(z)$, where

$$g_1(z) = cz,$$
 $g_2(z) = z + d,$ $g_3 = \frac{1}{z},$

$$g_4(z) = \frac{1}{c}(bc - ad)z$$
 $g_5(z) = z + \frac{a}{c}.$

Indeed,

$$g_{1}(z) = cz, g_{2} \circ g_{1}(z) = cz + d, g_{3} \circ g_{2} \circ g_{1}(z) = \frac{1}{cz + d},$$

$$g_{4} \circ g_{3} \circ g_{2} \circ g_{1}(z) = \frac{bc - ad}{c(cz + d)},$$

$$g_{5} \circ g_{4} \circ g_{3} \circ g_{2} \circ g_{1}(z) = \frac{a}{c} + \frac{bc - ad}{c(cz + d)} = \frac{az + b}{cz + d} = f(z).$$

Corollary.

A Möbius transformation transforms circles into circles, and interior points into interior points. (Here we mean that straight lines are also circles whose radius equal infinity).

Proof. Each of the transformations (M1), (M2) and (M3) transform circles into circles.

Section: Cross-Ratios Möbius Transformation.

Theorem.

If w = f(z) is a Möbius transformation that maps the distinct points (z_1, z_2, z_3) into the distinct points (w_1, w_2, w_3) respectively, then

$$\left(\frac{z-z_1}{z-z_3}\right) \left(\frac{z_2-z_3}{z_2-z_1}\right) = \left(\frac{w-w_1}{w-w_3}\right) \left(\frac{w_2-w_3}{w_2-w_1}\right), \text{ for all } z.$$

Proof.

The Möbius transformation

$$g(z) = \left(\frac{z-z_1}{z-z_3}\right) \left(\frac{z_2-z_3}{z_2-z_1}\right)$$

maps z_1, z_2, z_3 to $0, 1, \infty$ respectively. Similarly the Möbius transformation

$$h(w) = \left(\frac{w - w_1}{w - w_3}\right) \left(\frac{w_2 - w_3}{w_2 - w_1}\right)$$

maps w_1, w_2, w_3 to $0, 1, \infty$ respectively. Therefore $h^{-1} \circ g$ maps (z_1, z_2, z_3) into (w_1, w_2, w_3) .

Example. Find a Möbius transformation w = f(z) that maps the points 1, i, and -1 on the unit circle |z| = 1 onto the points -1, 0, 1 on the real axis. Determine the image of the interior |z| < 1 under this transformation.

Proof. Let $z_1 = 1$, $z_2 = i$, $z_3 = -1$ and $w_1 = -1$, $w_2 = 0$, $w_3 = 1$. The the mapping w = f(z) must satisfy the Cross-Ratios Möbius Transformation

$$\frac{z-1}{z-(-1)} \cdot \frac{\mathbf{i}-(-1)}{\mathbf{i}-1} = \frac{w-(-1)}{w-1} \cdot \frac{0-1}{0-(-1)}$$

$$\implies \frac{z-1}{z+1} \cdot \frac{\mathbf{i}+1}{\mathbf{i}-1} = -\frac{w+1}{w-1} \implies \frac{z-1}{z+1}(-\mathbf{i}) = -\frac{w+1}{w-1}$$

$$\implies (w-1)(z-1)\mathbf{i} = (w+1)(z+1)$$

$$\implies w((z-1)\mathbf{i}-(z+1)) = (z-1)\mathbf{i}+(z+1)$$

$$\implies w = \frac{\mathbf{i}z-\mathbf{i}+z+1}{z\mathbf{i}-\mathbf{i}-z-\mathbf{i}-1} = \frac{z(1+\mathbf{i})+(1-\mathbf{i})}{\mathbf{i}z(1+\mathbf{i})-(1+\mathbf{i})} = \frac{z-\mathbf{i}}{\mathbf{i}z-1}.$$

Note that if z = 0 then f(0) = i.

Example. Find a linear fractional transformation w = f(z) that maps the points $z_1 = -i$, $z_2 = 1$, and $z_3 = \infty$ on the line y = x - 1 onto the points $w_1 = 1$, $w_2 = i$, and $w_3 = -1$ on the unit circle |w| = 1.

Proof. Note that

$$\lim_{z_3 \to \infty} \frac{z+i}{z-z_3} \cdot \frac{1-z_3}{1+i} = \lim_{t \to 0} \frac{z+i}{z-1/t} \cdot \frac{1-1/t}{1+i}$$

$$= \lim_{t \to 0} \frac{z+i}{tz-1} \cdot \frac{t1-1}{1+i} = \frac{z+i}{1+i}.$$

Therefore in this case the cross-ratio could be written

$$\frac{z+i}{1+i} = \frac{w-1}{w+1} \cdot \frac{i+1}{i-1} \implies \frac{z+i}{1+i} = -i \frac{w-1}{w+1}$$

$$\implies w = \frac{-z-1}{z+2i-1}.$$

Section: Conformal mapping of a half-plane to the unit disc.

The upper half-plane can be mapped by a holomorphic bijection to the disc, and this is given by a Möbius transformation.

Let

$$\mathbb{H} = \{ z = x + iy \in \mathbb{C} : \text{Im } z = y > 0 \}.$$

A remarkable surprising fact is that the unbounded set \mathbb{H} is conformally equivalent to the unit disc. Moreover, an explicit formula giving this equivalence exists. Indeed, let

$$w = f(z) = \frac{i-z}{i+z}, \qquad g(w) = i\frac{1-w}{1+w}.$$

Theorem. Let $\mathbb{D} = \{z : |z| < 1\}$. Then the map $f : \mathbb{H} \to \mathbb{D}$ is a conformal map with inverse $g : \mathbb{D} \to \mathbb{H}$.

Proof. Clearly both functions are holomorphic in their respective domains. If z = x + iy, y > 0, then

$$\left|\frac{\mathbf{i}-z}{\mathbf{i}+z}\right|^2 = \left|\frac{x^2 + (y-1)^2}{x^2 + (y+1)^2}\right| < 1.$$

Let w = u + iv, |w| < 1. Then

$$\operatorname{Im} g(w) = \operatorname{Re} \left(\frac{1 - u - iv}{1 + u + iv} \right) = \operatorname{Re} \left(\frac{(1 - u - iv)(1 + u - iv)}{(1 + u)^2 + v^2} \right)$$
$$= \frac{1 - u^2 - v^2}{(1 + u)^2 + v^2} > 0.$$

Finally

$$f \circ g(w) = \frac{i - i \frac{1 - w}{1 + w}}{i + i \frac{1 - w}{1 + w}} = \frac{1 + w - 1 + w}{1 + w + 1 - w} = w.$$

Similarly we also have $g \circ f(z) = z$.

Note that f is holomorphic in $\mathbb{C} \setminus \{-i\}$ and, in particular, it is continuous on the boundary of $\mathfrak{d}(\mathbb{H}) = \{z = x + i0 \in \mathbb{C}\}$. Clearly

$$|f(z)|_{z=x+i0} = \left|\frac{i-x}{i+x}\right| = 1.$$

Thus f maps \mathbb{R} onto the boundary of the unit disc $\partial \mathbb{D}$. Moreover,

$$f(z) = \frac{i - x}{i + x} = \frac{1 - x^2}{1 + x^2} + i \frac{2x}{1 + x^2}.$$

$$f(z) = \frac{i - x}{i + x} = \frac{1 - x^2}{1 + x^2} + i \frac{2x}{1 + x^2}.$$

Let $x = \tan \theta$ with $\theta \in (-\pi/2, \pi/2)$. Since

$$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$
 and $\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$

we obtain

$$f(z) = \cos 2\theta + i \sin 2\theta = e^{2i\theta}$$
.

$$f(z) = \cos 2\theta + i \sin 2\theta = e^{2i\theta}, \qquad \theta \in (-\pi/2, \pi/2).$$

Therefore the image of the real line is the arc consisting of the circle omitting the point -1. Moreover, if the value of x changes from $-\infty$ to ∞ , f(x) changes along that arc starting from -1 and first going through that part of the circle that lies in the lower half-plane. The point -1 on the circle corresponds to "infinity" of the upper half-plane.

Section: Riemann mapping theorem.

Definition. We say that $\Omega \subset \mathbb{C}$ is *proper* if it is non-empty and not the whole of \mathbb{C} .

Theorem. Suppose Ω is proper and simply connected. If $z_0 \in \Omega$, then there exists a unique conformal map $f: \Omega \to \mathbb{D}$ such that

$$f(z_0) = 0$$
 and $f'(z_0) > 0$.

Corollary Any two proper simply connected open subsets in \mathbb{C} are conformally equivalent.

Thank you