

NE-3102: Electronics-II Laboratory

Roll	Date	Experiment No.	
------	------	----------------	--

Name of the experiment

Design a 4-bit shift register using J-K flip-flops and verify its operation.

Contents

1	Objective	2
2	Theory	2
3	Components and apparatus	2
4	Circuit diagram/setup	2
5	Data collection and analysis	4
6	Result	5
7	Discussion	6
8	References	7

1 Objective

1. To design a 4-bit shift register using J-K flip-flops and verify its operation.

2 Theory

A shift register is a group of flip-flops so arranged that the binary numbers stored in the flip-flops are shifted from one flip-flop to the next for every (active) clock pulse. Figure 1(a) shows the arrangement of J-K flip-flops to operate as a four-bit shift register. Note that the flip-flops are connected so that the output of X_3 transfers into X_2, X_2 into X_1 , and X_1 into X_0 . This means that upon the NGT of a shift pulse, each flip-flop takes on the value stored previously in the flip-flop on its left. Flip-flop X_3 takes on a value determined by the conditions present on its J and K inputs when the NGT occurs. For now, we will assume that X_3 's J and K inputs are fed by the DATA IN waveform shown in Figure 1(b). We will also assume that all flip-flops are in the 0 states before shift pulses are applied.

The waveforms in Figure 1(b) show how the input data are shifted from left to right from flip-flop to flip-flop as shift pulses are applied. When the first NGT occurs at T_1 , each of the flip-flops X_2 , X_1 , and X_0 will have the J=0, K=1 condition present at its inputs because of the state of the flip-flop on its left. Flip-flop X_3 will have J=1, K=0 because of DATA IN. Thus, at T_1 , only T_2 0 will go HIGH, while all the other flip-flops remain LOW. When the second NGT occurs at T_2 1, flip-flop T_3 2 will have T_3 3 will have T_3 4 will have T_3 5 because of the current HIGH at T_3 6. Flip-flops T_3 7 and T_3 8 will go LOW, and flip-flops T_3 8 will remain LOW.

Similar reasoning can be used to determine how the waveforms change at T_3 and T_4 . Note that on each NGT of the shift pulses, each flip-flop output takes on the level that was present at the output of the flip-flop on its left just prior to the NGT. Of course, X_3 takes on the level present at DATA IN just before the NGT.

3 Components and apparatus

- 1. 74LS76A IC
- 2. Timing generator/clock¹
- 3. Passive components
- 4. Breadboard and connecting wires
- 5. Bench power supply

4 Circuit diagram/setup

¹Use the same one from the previous experiment

Figure 1: Four-bit shift register; J-K flip-flops with active HIGH inputs and NGT triggering .

5 Data collection and analysis

6 Result

7 Discussion

(You are expected to elaborated on the implications of hold time and propagation delay and reflect on your setup-specific details.)

8 References

1. Tocci Ronald J, Neal W, Greg M. Digital Systems Principles and Applications.

Appendix