CS1510: Statistics for CS

Lecture 01:

Practicalities & Introduction to Probability Theory

Marijn ten Thij & Tim Dick

Maastricht University

Department of Advanced Computing Sciences

Probability Theory vs Statistics

- Probability theory:

 calculate the likelihood of an occurrence of a given event.
- Statistics: how to collect, organize, and interpret information

Probability Theory vs Statistics

Main goals of the course

- To have an understanding of fundamental concepts in probability and statistics
- To be familiar with the most frequently used probability distributions/densities and statistical procedures (statistical estimation and hypothesis tests)
- To be able to *recognize* several *probability distributions* in real life situations to which they
 typically apply

Intuition often fails us when dealing with probabilities and data!

Course organization

Textbook

Probability and Statistics for Engineers and Scientists 9th edition Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying E. Ye

Instruction format

Lectures

Tutorials

Assignment

Organization of Tutorials

Tutorials take place in two groups

Group	01	02
Lecturer	Marijn ten Thij	Tim Dick

- Both rooms will cover the exact same content
- Group Assignment will be visible in your schedule
- Exercises are posted on Canvas in advance of tutorials

Organization of Assignment

- Design and perform an experiment in groups
 - min 8 students and max 12 students per group
- The experiment should test a hypothesis
- Each group will act as participants for other groups
- Each group member will write an individual report (max 3 pages) that discusses:
 - The experiment itself
 - The hypothesis that is tested
 - The statistical analysis of the results of the experiment

Desired prior knowledge

Calculus

Discrete Mathematics

Examination: Grading

The following *mandatory* components will be examined, and will count towards the final grade of the course:

- Written Exam (WE), graded 0.0-10.0, weight 80%
- Individual Assignment (AS), graded 0.0-10.0, weight 20%

Assessment	Form and extent	Grading scheme
component	(length)	
Written exam	2 hours	Points per exam
(mandatory)		question depend
		on difficulty and
		expected length.
Individual	Short report (max. 3	Rubrics based
Assignment	pages) which describes	
(mandatory)	an experiment and the	
	analysis of its outcomes	

The final grade is calculated as:

$$IF(AND(WE > 0, AS > 0), MAX(1, ROUND(0.8 \cdot WE + 0.2 \cdot AS)), "NG")$$

Examination: Resit

Assessment	Form of the resit
component	
Written exam	Regular resit in the form of a written exam in the ongoing academic year
(mandatory)	
Individual	If you have a score between 40% and 60% for the assignment, and you
Assignment	failed the overall course at the regular opportunity, you are eligible for a
(mandatory)	repair opportunity for the assignment. If you make the repair
	opportunity in a satisfactory way, you will get a 60% score for the
	assignment, otherwise the score will stay as it was.

Individual Assignment

- Report: Hand-in a single PDF file of at most 3 pages!
 - Additional pages will be disregarded.
- No submission: grade 0.0 for assignment
- Late policy:

(this grace period lasts 15 minutes)

- The assignment will disappear shortly after the deadline.
- If you submit in this grade period, you lose **25%** of the grade.
- Academic Integrity:

(e.g., score: $8.0 \Rightarrow$ grade: 5.5)

- You are expected to perform the statistical analysis of the experimental data on your own, you cannot collaborate on this part.
- The use of generative AI is not allowed.
- Plagiarism checks will be performed!

Exam

- Closed book exam
- Duration: 120 minutes, without breaks.
- Allowed aids: Pen, calculator from DACS allowed calculator list.
- Mock exam will be posted on CANVAS (time TBD)
 - Multiple Choice: related to discussed concepts
 - Statements: true/false + explanation
 - Open problems: similar to tutorial exercises

Communication

- Lectures
- Tutorials
- Canvas discussion board
- Please, do NOT send us e-mails with questions

Course Overview

Tentative Schedule (Probability Theory)

W	Event	Topic	Day	Date	Time	Room
	Lecture 1	Intro to Probability and Random Variables (Sections 2.1 – 2.5 and 3.1 – 3.3)	Mon	08/04/2024	13:30h – 15:30h	EPD150 MSM
1	Tutorial 1	Intro to Probability Theory (Sections 2.1 – 2.5)	Thu	11/04/2024	08:30h – 10:30h	PHS1 C0.016/C.020
	Tutorial 2	Intro to Random Variables (Sections 3.1 – 3.3)	Fri	12/04/2024	13:30h – 15:30h	PHS1 C0.016/C.020
2	Lecture 2	Conditional Probability, Bayes Rule and Joint Distributions (Sections 2.6, 2.7 and 3.4)	Mon	15/04/2024	13:30h – 15:30h	EPD150 MSM
	Tutorial 3	Conditional Probability and Bayes Rule (Sections 2.6 and 2.7)	Thu	18/04/2024	08:30h – 10:30h	PHS1 C0.016/C.020
	Tutorial 4	Joint Distributions (Section 3.4)	Fri	19/04/2024	13:30h – 15:30h	PHS1 C0.016/C.020

Tentative Schedule (Probability Theory)

W	Event	Topic	Day	Date	Time	Room
3	Lecture 3	Properties of Distributions & Probability Distributions (Sections $4.1 - 4.3$ and 5.1)	Mon	22/04/2024	13:30h – 15:30h	EPD150 MSM
3	Tutorial 5	Properties of Distributions & Probability Distributions (Sections $4.1 - 4.3$ and 5.1)	Thu	25/04/2024	08:30h – 10:30h	PHS1 C0.016/C.020
4	Lecture 4	Discrete and Continuous Probability Distributions (Sections $5.1-5.5$ and $6.1-6.6$)	Mon	29/04/2024	13:30h – 15:30h	EPD150 MSM
4	Tutorial 6	Discrete and Continuous Probability Distributions (Sections $5.1-5.5$ and $6.1-6.6$)	Thu	01/05/2024	11:00h – 13:00h	PHS1 C0.016/C.020

Tentative Schedule (Statistics)

w	Event	Topic	Day	Date	Time	Room
5	Lecture 5	Introduction to Statistics and Estimators (Sections 8.1 – 8.3 and 9.1 – 9.3)	Mon	06/05/2024	13:30h – 15:30h	EPD150 MSM
5	Tutorial 7	Introduction to Statistics and Estimators (Sections $8.1-8.3$ and $9.1-9.3$)	Wed	08/05/2024	11:00h – 13:00h	PHS1 C0.016/C.020
6	Lecture 6	CLT, Interval Estimate and Differences of Means (Sections 8.4 – 8.6 and 9.4, 9.5, 9.8 – 9.10 & 9.12)	Mon	13/05/2024	13:30h – 15:30h	EPD150 MSM
O	Tutorial 8	CLT, Interval Estimate and Differences of Means (Sections 8.4 – 8.6 and 9.4, 9.5, 9.8 – 9.10 & 9.12)	Thu	16/05/2024	08:30h – 10:30h	PHS1 C0.016/C.020
	Lecture 7	One and Two Sample Tests of Hypothesis (Sections 10.1 – 10.5, 10.8, 10.11 – 10.13)	Wed	22/05/2024	11:00h – 13:00h	EPD150 MSM
7	Tutorial 9	Tests of Hypothesis for the Mean (Sections 10.1 – 10.5)	Thu	23/05/2024	08:30h – 10:30h	PHS1 C0.016/C.020
	Tutorial 10	Addition statistical tests (Sections 10.8, 10.11 – 10.13)	Fri	24/05/2024	11:00h – 13:00h	PHS1 C0.016/C.020

Tentative Schedule (Practical)

١	W	Topic	Day	Date	Time	Room
	7	Assignment is posted on Canvas	Wed	22/05/2024	13:00h	
	/	Deadline to submit the experimental design on Canvas	Thu	23/05/2024	18:00h	
		Question hour	Mon	27/05/2024	13:30h – 15:30h	EPD150 MSM
	8	Deadline to submit the worked out experiment on Canvas	Mon	27/05/2024	18:00h	
		Deadline to submit the outcomes of the experiment on Canvas	Wed	29/05/2024	18:00h	
		Deadline to submit the <i>individual</i> report on Canvas	Fri	31/05/2024	18:00h	

Probability Theory Basics

Sections 2.1 and 2.2

Probability Theory Basics

Experiment

An action whose outcome is determined by chance

Example: Rolling a single die

Sample Space

The set of possible outcomes of an experiment (denoted by S)

Example: the number of spots on each side of the die

$$S = \{1,2,3,4,5,6\}$$

Event

A subset of the sample space (denoted by $E \subseteq S$)

Example: the outcome of the experiment is a multiple of 3.

$$E = \{3, 6\}$$

Probability Theory Basics (example)

Experiment: Draw a card out a full deck of cards

Sample space *S*: the cards in a full deck of cards.

$$S = \{ \clubsuit 2, \clubsuit 3, \dots, \clubsuit A, \diamondsuit 2, \dots, \diamondsuit A, \heartsuit 2, \dots, \heartsuit A, \spadesuit 2, \dots, \spadesuit K, \spadesuit A \}$$
(54 outcomes)

Event *E*: the card drawn from the deck is a queen.

$$E = \{ \spadesuit \mathbf{Q}, \lozenge \mathbf{Q}, \heartsuit \mathbf{Q}, \spadesuit \mathbf{Q} \}$$

Probability Theory Basics (example)

Experiment: Flipping a coin twice

Sample space S: all possible outcomes (H and T denote heads and tails, respectively).

$$S = \{HH, HT, TH, TT\}$$
 (4 outcomes)

Event *E*: one flip lands heads and one flip lands tails.

$$E = \{HT, TH\}$$

Probability Theory Basics (example)

Experiment: Rolling a die 3 times

Sample space S: all possible outcomes (respectively). $S = \{111,112,113,...,666\}$ (6 × 6 × 6 = 216 outcomes)

Event *E*: three times the same number, i.e., $E = \{111,222,333,444,555,666\}$

Complement of an Event E (denoted by E', or E^C)

Example: Rolling a single die

$$S = \{1,2,3,4,5,6\},\ E = \{1,3,5\},\ E' = \{2,4,6\}$$

Figure: E' highlighted

Intersection of Events E and F (denoted by $E \cap F$)

Example: Rolling a single die

$$S = \{1,2,3,4,5,6\},\ E = \{1,3,5\}, F = \{3,6\}$$

 $E \cap F = \{3\}$

Figure: $E \cap F$ highlighted

Mutually Exclusive Events E and F: $E \cap F = \emptyset$

Example: Rolling a single die

$$S = \{1,2,3,4,5,6\},\ E = \{1,3,5\}, F = \{4\}$$

 $E \cap F = \emptyset$

Figure: $E \cap F$ highlighted

Union of Events E and F (denoted by $E \cup F$)

Example: Rolling a single die

$$S = \{1,2,3,4,5,6\},\ E = \{1,3,5\}, F = \{3,6\}$$

 $E \cup F = \{1,3,5,6\}$

Figure: $E \cup F$ highlighted

Combinatorics

Section 2.3

Maastricht University

Department of Advanced Computing Sciences

Calculating the number of possibilities

When you draw k times from a collection of size n, the number of possible outcomes, given the restrictions imposed on the drawing, can be calculated using:

	With replacement	Without replacement
Ordered sampling	n^k	$\frac{n!}{(n-k)!}$ (i)
Unordered sampling	$\binom{n+k-1}{k}$ (ii)	$\binom{n}{k}$ (iii)

Ordered sampling without replacement

Intuition:

Unordered sampling without replacement

Intuition: k items n positions

Unordered sampling with replacement

n positions = n-1 borders between positions

Probability Theory Basics (continued)

Sections 2.4 and 2.5

Probability Theory Basics

Probability measure

A function that maps each possible event E to a number in [0,1]. Properties of probability measures:

- 1. P(S) = 1
- 2. $P(\emptyset) = 0$
- 3. $0 \le P(E) \le 1 \forall E \subseteq S$

Probability of an event

The probability of an event E is the sum of the probabilities of the elements in E (denoted by P(E))

Probability measures (example)

A fair die

$$S = \{1,2,3,4,5,6\}, P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) = \frac{1}{6}$$

An unfair die

$$S = \{1,2,3,4,5,6\}, P(\{1\}) = \dots = P(\{5\}) = \frac{1}{10}, P(\{6\}) = \frac{1}{2}$$

5 apples, 4 pears

$$S = \{A_1, A_2, A_3, A_4, A_5, P_1, P_2, P_3, P_4\}$$

$$P(\{A_1\}) = \dots = P(\{P_4\}) = \frac{1}{9}, P(\{apple\}) = \frac{5}{9}, P(\{pear\}) = \frac{4}{9}$$

Probability Theory Basics

Rules of calculating probabilities

- $P(E) = \frac{|E|}{|S|}$, if each element in S has equal probability, where $|\cdot|$ denotes the cardinality of the set.
- Given events E and $F: P(E \cup F) = P(E) + P(F) P(E \cap F)$
- For disjoint events E and $F: P(E \cup F) = P(E) + P(F)$

Probability Theory Basics

Rules of calculating probabilities

- $P(E) = \frac{|E|}{|S|}$, if each element in S has equal probability, where |⋅| denotes the cardinality of the set.
- Given events E and $F: P(E \cup F) = P(E) + P(F) P(E \cap F)$
- For disjoint events E and $F: P(E \cup F) = P(E) + P(F)$
- For any event E: P(E) = 1 P(E')

Proof:
$$1 = P(S) = P(E \cup E') = P(E) + P(E')$$

Calculating Probabilities (example)

Example: Rolling a fair die

$$S = \{1,2,3,4,5,6\}$$
, events: $A = \{1\}$, $B = \{2,4,6\}$, $C = \{1,2,3\}$

•
$$P(A) = \frac{|A|}{|S|} = \frac{1}{6}$$

•
$$P(B \cup C) = P(B) + P(C) - P(B \cap C) = \frac{|B|}{|S|} + \frac{|C|}{|S|} - \frac{|B \cap C|}{|S|} = \frac{5}{6}$$

= $\frac{|B \cup C|}{|S|} = \frac{5}{6}$

•
$$P(A \cup B) = P(A) + P(B) = \frac{|A|}{|S|} + \frac{|B|}{|S|} = \frac{2}{3}$$

•
$$P(C') = 1 - P(C) = 1 - \frac{|C|}{|S|} = 1 - \frac{3}{6} = \frac{1}{2}$$

Introduction to Random Variables

Sections 3.1 – 3.3

Introduction to Random Variables

Random Variable (RV)

X is a random variable for the sample space S if it assigns a real number to each element of $S, X: S \to \mathbb{R}$

Example 1

$$S = \{1,2,3,4\}$$

X: square: $\forall s \in S: X(s) = s^2$

Y:
$$\begin{cases} 2s & \text{if } s \text{ is odd} \\ \frac{s}{2} & \text{if } s \text{ is even} \end{cases}$$

$$Y(1) = 2, Y(2) = 1, Y(3) = 6, Y(4) = 2$$

Introduction to Random Variables

Random Variable (RV)

X is a random variable for the sample space S if it assigns a real number to each element of $S, X: S \to \mathbb{R}$

Example 2

Rolling a die until a 6 comes up $S = \{6, N6, NN6, NNN6, ...\}$ where N denotes an outcome of 1,2,3,4 or 5

X: number of rolls required

$$X(6) = 1, X(N6) = 2, X(NN6) = 3, ...$$

Introduction to Random Variables

Discrete vs Continuous Random Variables

X is a discrete if S is finite or countable, otherwise it is continuous

Example

$$S = [1,2]$$
 (notice: S is uncountable)

$$X(s) = \frac{1}{s} \forall s \in S \Rightarrow X \in \left[\frac{1}{2}, 1\right]$$
 is continuous

$$Y(s) = \lfloor 2s \rfloor \forall s \in S \Rightarrow Y(s) = \begin{cases} 2 & \text{if } s \in \left[\frac{1,3}{2}\right) \\ 3 & \text{if } s \in \left[\frac{1,3}{2}\right) \Rightarrow Y \text{ is discrete} \end{cases}$$

$$4 & \text{if } s = 2$$

Discrete Random Variables

Probability distribution

The probability distribution of a discrete random variable (RV) is defined as f(x) = P(X = x)

Example: Rolling a die until a 6 comes up

$$S = \{6, N6, NN6, NNN6, ...\}$$

X: number of rolls required, i.e. $X(6) = 1, X(N6) = 2, ...$

$$f(1) = \frac{1}{6}$$

$$5 \quad 1$$

Discrete Random Variables

Probability distribution

The probability distribution of a discrete random variable (RV) is defined as f(x) = P(X = x)

Example: Rolling a die

$$S = \{1,2,3,4,5,6\}, X(s) = \left\lfloor \frac{s}{2} \right\rfloor$$
, where s is the outcome of the roll

$$f(0) = P(X = 0) = P(\{1\}) = \frac{1}{6}$$
$$f(1) = P(X = 1) = P(\{2,3\}) = \frac{1}{3}, f(2) = \frac{1}{3}, f(3) = \frac{1}{6}$$

Discrete Random Variables

Cumulative distribution (denoted by F(x))

$$F(x) = P(X \le x) = \sum_{y \le x} f(y)$$

Example: Rolling a die

$$S = \{1,2,3,4,5,6\}, X(s) = \left\lfloor \frac{s}{2} \right\rfloor$$
, where s is the outcome of the roll

\boldsymbol{x}	0	1	2	3
f(x) = P(X = x)	1/6	1/3	1/3	1/6
$F(x) = P(X \le x)$	1/6	1/2	5/6	1

Exercise

A shipment of 20 similar laptops to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these laptops.

- Find the probability distribution for the number of defective laptops
- b) Find the cumulative distribution function F(x)

Solution

X = # defective laptops among the purchased laptops.

$$P(X = x) = \frac{\binom{17}{2-x} \cdot \binom{3}{x}}{\binom{20}{2}}$$

\boldsymbol{x}	0	1	2
f(x) = P(X = x)	0.716	0.268	0.016
$F(x) = P(X \le x)$	0.716	0.984	1

Example:

S = [0,1], X(s) = s, and suppose that all outcomes are "equally likely".

Q: What is $P\left(X=\frac{1}{2}\right)$?

Q: What is $P\left(X \leq \frac{1}{2}\right)$?

Cumulative distribution (denoted by F(x))

$$F(x) = P(X \le x)$$
 (is well defined this way)

Probability density function (denoted by f(x))

$$f(x) = F'(x)$$

Example

$$F(x) = \begin{cases} 0 & if \ x \le 0, \\ x & if \ 0 \le x \le 1, \\ 1 & if \ x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} 0 & if \ x \le 0, \\ 1 & if \ 0 \le x \le 1, \\ 0 & if \ x \ge 1 \end{cases}$$

Properties of F(x) and f(x)

- $0 \le F(x) \le 1$ for all x
- F(x) is non-decreasing, and therefore $f(x) \ge 0$
- $\lim_{x \to \infty} F(x) = 1 \text{ and } \lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = 0$ $\int_{-\infty}^{\infty} f(x) dx = 1$
- $F(x) = \int_{-\infty}^{x} f(t)dt$
- $P(a \le X \le b) = F(b) F(a) = \int_a^b f(x) dx = 1$

Example: a) Show that f is indeed a density function

X is an RV with density
$$f(x) = \begin{cases} \frac{7-2x}{2}, & 2 < x < 3 \\ 0, & \text{elsewhere} \end{cases}$$

a) Solution: to show that $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{2} 0 \, dx + \int_{2}^{3} \frac{7 - 2x}{2} \, dx + \int_{3}^{\infty} 0 \, dx = \left[\frac{7}{2} x - \frac{1}{2} x^{2} \right]_{x=2}^{3} = 1$$

Example: b) Find F(x)

X is an RV with density
$$f(x) = \begin{cases} \frac{7-2x}{2}, & 2 < x < 3 \\ 0, & \text{elsewhere} \end{cases}$$

b) Solution: $F(x) = \int_{-\infty}^{x} f(t)dt$, so

$$F(x) = \begin{cases} \int_{-\infty}^{x} 0 \, dt = 0 & if \ x < 2, \\ \int_{-\infty}^{x} \frac{7 - 2x}{2} \, dt = \left[\frac{7}{2}t - \frac{1}{2}t^{2} \right]_{x=2}^{3} = -\frac{1}{2}x^{2} + \frac{7}{2}x - 5 & if \ 2 \le x \le 3, \\ \int_{-\infty}^{x} f(t) dt = \int_{2}^{3} f(t) dt = 1 & if \ x > 3 \end{cases}$$

Example: c) Find $P\left(1\frac{1}{2} \le X \le 2\frac{1}{2}\right)$

X is an RV with density
$$f(x) = \begin{cases} \frac{7-2x}{2}, & 2 < x < 3 \\ 0, & \text{elsewhere} \end{cases}$$

Solution:

$$P\left(1\frac{1}{2} \le X \le 2\frac{1}{2}\right) = F\left(2\frac{1}{2}\right) - F\left(1\frac{1}{2}\right) = -\frac{1}{2}\left(2\frac{1}{2}\right)^2 + \frac{7}{2}\left(2\frac{1}{2}\right) - 5 - 0$$
$$= -\frac{25}{8} + \frac{35}{4} - 5 = \frac{-25 + 70 - 40}{8} = \frac{5}{8}$$