Lesson 7: Power Functions. Basic Operations with Functions

Francisco Blanco-Silva

University of South Carolina

WHAT DO WE KNOW?

- ► Functions
 - ► x- and y-intercepts (f(x) = 0, f(0))
 - ► Change from x = a to x = b

$$\Delta y = f(b) - f(a)$$

Average Rate of Change from x = a to x = b

$$ARC = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

▶ Relative Change from x = a to x = b

$$RC = \frac{\Delta y}{f(a)} = \frac{f(b) - f(a)}{f(a)}$$

- ► Linear Functions:
- f(x) = b + mx
- Exponential Functions $P_0 a^t = P_0 (1+r)^t = P_0 e^{kt}$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x}$$

$$y = 2x$$

$$y = \frac{3}{x}$$

$$y = (3x^{5})^{2}$$

$$y = \frac{3}{8x}$$

$$y = \frac{5}{2\sqrt{x}}$$

$$y = \pi$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

k = 5

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2}$$

$$y = 2x$$

$$y = \frac{3}{x}$$

$$y = (3x^{5})^{2}$$

$$y = \frac{3}{8x}$$

$$y = \frac{5}{2\sqrt{x}}$$

$$y = \pi$$

$$p = \frac{1}{2}$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2}$$

$$y = 2x = 2x^{1}$$

$$y = \frac{3}{x}$$

$$y = (3x^{5})^{2}$$

$$y = \frac{3}{8x}$$

$$y = \frac{5}{2\sqrt{x}}$$

$$y = \pi$$

$$k = 5$$

$$k = 2$$

$$p=\frac{1}{2}$$

$$p = 1$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2}$$

$$y = 2x = 2x^{1}$$

$$y = \frac{3}{x} = 3x^{-1}$$

$$y = (3x^{5})^{2}$$

$$y = \frac{3}{8x}$$

$$y = \frac{5}{2\sqrt{x}}$$

$$y = \pi$$

$$k = 5$$

$$k = 2$$

$$p = 1$$

$$k = 3$$

$$p = -1$$

 $y = \pi$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2} \qquad k = 5 \qquad p = \frac{1}{2}$$

$$y = 2x = 2x^{1} \qquad k = 2 \qquad p = 1$$

$$y = \frac{3}{x} = 3x^{-1} \qquad k = 3 \qquad p = -1$$

$$y = (3x^{5})^{2} = 9x^{10} \qquad k = 3^{2} = 9 \qquad p = 10$$

$$y = \frac{3}{8x}$$

$$y = \frac{5}{2\sqrt{x}}$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2} \qquad k = 5 \qquad p = \frac{1}{2}$$

$$y = 2x = 2x^{1} \qquad k = 2 \qquad p = 1$$

$$y = \frac{3}{x} = 3x^{-1} \qquad k = 3 \qquad p = -1$$

$$y = (3x^{5})^{2} = 9x^{10} \qquad k = 3^{2} = 9 \qquad p = 10$$

$$y = \frac{3}{8x} = \frac{3}{8}x^{-1} \qquad k = \frac{3}{8} \qquad p = -1$$

$$y = \frac{5}{2\sqrt{x}}$$

$$y = \pi$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2} \qquad k = 5 \qquad p = \frac{1}{2}$$

$$y = 2x = 2x^{1} \qquad k = 2 \qquad p = 1$$

$$y = \frac{3}{x} = 3x^{-1} \qquad k = 3 \qquad p = -1$$

$$y = (3x^{5})^{2} = 9x^{10} \qquad k = 3^{2} = 9 \qquad p = 10$$

$$y = \frac{3}{8x} = \frac{3}{8}x^{-1} \qquad k = \frac{3}{8} \qquad p = -1$$

$$y = \frac{5}{2\sqrt{x}} = \frac{5}{2}x^{-1/2} \qquad k = \frac{5}{2} \qquad p = -\frac{1}{2}$$

$$y = \pi$$

DEFINITIONS

We say that Q(x) is a power function of x if Q(x) is proportional to a constant power of x:

$$Q(x) = kx^p$$

The coefficient *k* is called *constant of proportionality*, and *p* is the *power*.

$$y = 5\sqrt{x} = 5x^{1/2} \qquad k = 5 \qquad p = \frac{1}{2}$$

$$y = 2x = 2x^{1} \qquad k = 2 \qquad p = 1$$

$$y = \frac{3}{x} = 3x^{-1} \qquad k = 3 \qquad p = -1$$

$$y = (3x^{5})^{2} = 9x^{10} \qquad k = 3^{2} = 9 \qquad p = 10$$

$$y = \frac{3}{8x} = \frac{3}{8}x^{-1} \qquad k = \frac{3}{8} \qquad p = -1$$

$$y = \frac{5}{2\sqrt{x}} = \frac{5}{2}x^{-1/2} \qquad k = \frac{5}{2} \qquad p = -\frac{1}{2}$$

$$y = \pi = \pi x^{0} \qquad k = \pi \qquad p = 0$$

DEFINITIONS

Sums of power functions with non-negative integer exponent are called polynomials

$$y = p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The highest of the powers, n, is called the degree of the polynomial. The power function with that highest power, $a_n x^n$, is called the leading term of the polynomial, and the corresponding coefficient a_n is called the leading coefficient.

DEFINITIONS

Sums of power functions with non-negative integer exponent are called polynomials

$$y = p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The highest of the powers, n, is called the degree of the polynomial. The power function with that highest power, $a_n x^n$, is called the leading term of the polynomial, and the corresponding coefficient a_n is called the leading coefficient.

Exampl ϵ

$$y = \pi$$

$$y = 1 - 2x + 3x^{4} - 5x^{6}$$

$$y = \frac{1}{2}x^{3} - \frac{3}{4}x^{5} + \frac{5}{6}x^{7}$$

DEFINITIONS

Sums of power functions with non-negative integer exponent are called polynomials

$$y = p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The highest of the powers, n, is called the degree of the polynomial. The power function with that highest power, $a_n x^n$, is called the leading term of the polynomial, and the corresponding coefficient a_n is called the leading coefficient.

Example

$$y = \pi$$
 $n = 0$ $a_0 = \pi$
 $y = 1 - 2x + 3x^4 - 5x^6$
 $y = \frac{1}{2}x^3 - \frac{3}{4}x^5 + \frac{5}{6}x^7$

DEFINITIONS

Sums of power functions with non-negative integer exponent are called polynomials

$$y = p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The highest of the powers, n, is called the degree of the polynomial. The power function with that highest power, $a_n x^n$, is called the leading term of the polynomial, and the corresponding coefficient a_n is called the leading coefficient.

Example

$$y = \pi$$
 $n = 0$ $a_0 = \pi$
 $y = 1 - 2x + 3x^4 - 5x^6$ $n = 6$ $a_6 = -5$
 $y = \frac{1}{2}x^3 - \frac{3}{4}x^5 + \frac{5}{6}x^7$

DEFINITIONS

Sums of power functions with non-negative integer exponent are called polynomials

$$y = p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

The highest of the powers, n, is called the degree of the polynomial. The power function with that highest power, $a_n x^n$, is called the leading term of the polynomial, and the corresponding coefficient a_n is called the leading coefficient.

Example

$$y = \pi$$
 $n = 0$ $a_0 = \pi$
 $y = 1 - 2x + 3x^4 - 5x^6$ $n = 6$ $a_6 = -5$
 $y = \frac{1}{2}x^3 - \frac{3}{4}x^5 + \frac{5}{6}x^7$ $n = 7$ $a_7 = \frac{5}{6}$

VERTICAL OPERATIONS

Operation on f(x)

Effect on the graph

Operation on $f(x)$	Effect on the graph
$f(x) + C \qquad (C > 0)$	Vertical shift (up) by <i>C</i> units

Operation	\mathbf{n} on $f(x)$	Effect on the graph
f(x) + C	(C > 0)	Vertical shift (up) by C units
f(x) - C	(C > 0)	Vertical shift (down) by <i>C</i> units

Operation on $f(x)$		Effect on the graph
f(x) + C	(C > 0)	Vertical shift (up) by <i>C</i> units
f(x) - C	(C > 0)	Vertical shift (down) by C units
af(x)	(<i>a</i> > 1)	Vertical stretching by a factor of <i>a</i>

Operation on $f(x)$	Effect on the graph
$f(x) + C \qquad (C > 0)$	Vertical shift (up) by <i>C</i> units
$f(x) - C \qquad (C > 0)$	Vertical shift (down) by C units
$af(x) \qquad (a>1)$	Vertical stretching by a factor of <i>a</i>
$af(x) \qquad (0 < a < 1)$	Vertical compression by a factor of $1/a$

Operation on $f(x)$	Effect on the graph
$f(x) + C \qquad (C > 0)$	Vertical shift (up) by C units
$f(x) - C \qquad (C > 0)$	Vertical shift (down) by <i>C</i> units
$af(x) \qquad (a>1)$	Vertical stretching by a factor of <i>a</i>
$af(x) \qquad (0 < a < 1)$	Vertical compression by a factor of $1/a$
-f(x)	Reflection with respect to the <i>x</i> –axis

VERTICAL OPERATIONS

Example

VERTICAL OPERATIONS

Example

$$f(x) \rightarrow 2f(x) \rightarrow 2f(x) - 3$$

VERTICAL OPERATIONS

Example

$$f(x) \rightarrow 2f(x) \rightarrow 2f(x) - 3$$

VERTICAL OPERATIONS

Example

$$f(x) \rightarrow 2f(x) \rightarrow 2f(x) - 3$$

VERTICAL OPERATIONS

Example

$$f(x) \rightarrow 2f(x) \rightarrow 2f(x) - 3$$

HORIZONTAL OPERATIONS

Operation on f(x)

Effect on the graph

Operations with Functions ○○●○○○

OPERATIONS WITH FUNCTIONS

Operation on $f(x)$	Effect on the graph
$f(x+C) \qquad (C>0)$	Horizontal shift (left) by C units

Operations with Functions ○○●○○○

OPERATIONS WITH FUNCTIONS

Operation on $f(x)$	Effect on the graph
$f(x+C) \qquad (C>0)$	Horizontal shift (left) by C units
$f(x-C) \qquad (C>0)$	Horizontal shift (right) by C units

Operation on $f(x)$		Effect on the graph
f(x+C)	(C > 0)	Horizontal shift (left) by C units
f(x-C)	(C>0)	Horizontal shift (right) by C units
f(ax)	(<i>a</i> > 1)	Horizontal compression by a factor of $1/a$

Operation on $f(x)$	Effect on the graph
$f(x+C) \qquad (C>0)$	Horizontal shift (left) by C units
$f(x-C) \qquad (C>0)$	Horizontal shift (right) by C units
$f(ax) \qquad (a>1)$	Horizontal compression by a factor of $1/a$
$f(ax) \qquad (0 < a < 1)$	Horizontal stretching by a factor of <i>a</i>

Operation on $f(x)$	Effect on the graph
$f(x+C) \qquad (C>0)$	Horizontal shift (left) by C units
$f(x-C) \qquad (C>0)$	Horizontal shift (right) by C units
$f(ax) \qquad (a>1)$	Horizontal compression by a factor of $1/a$
$f(ax) \qquad (0 < a < 1)$	Horizontal stretching by a factor of <i>a</i>
f(-x)	Reflection with respect to the <i>y</i> –axis

HORIZONTAL OPERATIONS

Example

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(2x) \rightarrow -f(2x) \rightarrow -f(2x) + 2$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(2x) \rightarrow -f(2x) \rightarrow -f(2x) + 2$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(2x) \rightarrow -f(2x) \rightarrow -f(2x) + 2$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(2x) \rightarrow -f(2x) \rightarrow -f(2x) + 2$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(2x) \rightarrow -f(2x) \rightarrow -f(2x) + 2$$

HORIZONTAL OPERATIONS

Example

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(4x) \rightarrow f(4x-2)$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(4x) \rightarrow f(4x-2)$$

HORIZONTAL OPERATIONS

Example

$$f(x) \rightarrow f(4x) \rightarrow f(4x-2)$$

EXAMPLES

Example

Write an equation for a graph obtained by vertically stretching the graph of $y = x^3$ by a factor of 3, followed by a vertical upward shift of 2 units.

EXAMPLES

Example

Write an equation for a graph obtained by vertically stretching the graph of $y = x^3$ by a factor of 3, followed by a vertical upward shift of 2 units.

Solution:
$$y = 3x^3 + 2$$

Original function

After vertical stretch

After shift up

EXAMPLES

Example

Write an equation for a graph obtained by vertically stretching the graph of $y = x^3$ by a factor of 3, followed by a vertical upward shift of 2 units.

Solution:
$$y = 3x^3 + 2$$

Original function After vertical stretch After shift up x^3 $3x^3$

EXAMPLES

Example

Write an equation for a graph obtained by vertically stretching the graph of $y = x^3$ by a factor of 3, followed by a vertical upward shift of 2 units.

Solution:
$$y = 3x^3 + 2$$

Original function After vertical stretch After shift up
$$x^3$$
 $3x^3 + 2$

Example

What is the equation if the order of the transformations is interchanged?

EXAMPLES

Example

Write an equation for a graph obtained by vertically stretching the graph of $y = x^3$ by a factor of 3, followed by a vertical upward shift of 2 units.

Solution:
$$y = 3x^3 + 2$$

Original function After vertical stretch After shift up
$$x^3$$
 $3x^3 + 2$

Example

What is the equation if the order of the transformations is interchanged?

Solution:
$$y = 3(x^3 + 2)$$

Original function After shift up After vertical stretch
$$x^3$$
 $x^3 + 2$ $3(x^3 + 2)$