Introducción a ML y GenAl

Clasificación - KNN

Ariel Ramos Vela 17-09-2024

Agenda

- 1. Introducción a la Clasificación
- 2. Modelos de Clasificación Comunes
- 3. Division de datos: Entranamiento, Validación y Prueba.
- 4. KNN algorithm
- 5. Evaluación de Modelos de Clasificación
- 6. Ejemplo: Dataset del Titanic
- 7. Conclusiones
- 8. Taller 3

¿Qué es la Clasificación?

- Definición: La clasificación es una técnica de machine learning supervisada que asigna una etiqueta (categoría) a una nueva observación basada en datos etiquetados previos.
- **Ejemplo cotidiano**: Clasificación de correos electrónicos como spam o no spam.

Tipos de Problemas de Clasificación

- Binaria: Solo hay dos clases posibles (0 o 1).
 - Ejemplo: Dataset Titanic
- Multiclase: Más de dos clases (p.ej., clasificación de dígitos escritos a mano).
 - Ejemplo: Dataset MNIST
- Multietiqueta: Cada instancia puede pertenecer a varias clases al mismo tiempo.
 - Dataset de Películas (MovieLens): Clasificar una película en múltiples géneros (acción, comedia, drama).

Pipeline de un Modelo de Clasificación

Recopilación de datos.

Preprocesamiento:

Limpieza de datos Transformación (p.ej., one-hot encoding)

División de datos:

Conjunto de entrenamiento (80%) / Conjunto de prueba (20%)

Entrenamiento del modelo.

Evaluación del modelo.

Predicción en datos nuevos.

Modelos de Clasificación Comunes

- Regresión Logística: Para problemas de clasificación binaria.
 - Salida: Probabilidades de pertenencia a cada clase.
- k-Nearest Neighbors (k-NN): Clasificación basada en la proximidad de los puntos de datos.
- Árboles de Decisión: División de los datos en función de características importantes.
- Random Forest: Conjunto de múltiples árboles de decisión.
- Máquinas de Soporte Vectorial (SVM): Encuentra un hiperplano óptimo que separe las clases.

División de Datos: Entrenamiento, Prueba y Validación

- ¿Por qué dividir los datos?
- Evitar el sobreajuste: Un modelo que se entrena en todos los datos puede aprender demasiado bien los detalles específicos del conjunto de datos, haciéndolo menos efectivo para predecir sobre nuevos datos.

Cómo se hace la división de los datos?

- Entrenamiento (80%): Se utiliza para entrenar el modelo, ajustando los parámetros internos.
- Prueba (20%): Se usa para evaluar el modelo una vez que ha sido entrenado, proporcionando una estimación del rendimiento en datos no vistos.

Train/Test Split

¿Qué es un conjunto de Validación?

 Validación (10-20%): A veces, se añade un conjunto adicional de datos llamado conjunto de validación. Este se usa durante el entrenamiento para ajustar hiperparámetros (como el valor de k en k-NN) sin afectar el conjunto de prueba.

- División típica:
 - Entrenamiento (60-70%)
 - Validación (10-20%)
 - Prueba (20%)

Introducción a k-Nearest Neighbors (k-NN)

- k-Nearest Neighbors (k-NN) es un algoritmo de aprendizaje supervisado utilizado tanto para clasificación como para regresión.
- Principio básico: Dado un punto nuevo, el algoritmo busca los k puntos más cercanos en el conjunto de datos de entrenamiento y toma una decisión basada en la mayoría (para clasificación) o el promedio (para regresión) de sus etiquetas.

Funcionamiento de k-NN

- 1. Recoge datos etiquetados (conjunto de entrenamiento).
- 2. Elige un valor de k (el número de vecinos más cercanos).
- 3. Calcula la distancia entre el nuevo punto y cada punto del conjunto de datos.
- **4. Selecciona los k vecinos más cercanos** (usualmente con la distancia Euclidiana).
- 5. Clasificación o predicción:
 - 1. Clasificación: Elige la clase más común entre los k vecinos.
 - 2. Regresión: Promedia los valores de los k vecinos.

Cálculo de la Distancia (Distancia Euclidiana)

• Distancia Euclidiana es la más utilizada para medir la cercanía entre puntos.

$$d(A,B) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

Altura	Peso	Clase
160 cm	55 kg	Deportista
170 cm	70 kg	No deportista
165 cm	60 kg	?

Ejemplo:

- •Para este ejemplo, elegimos **k = 1**, lo que significa que clasificaremos la nueva muestra en la clase de su vecino más cercano.
- •¿Cuál es el vecino más cercano?

Elección del valor de k

- Elección de k: Es crucial elegir el valor de k correcto, ya que afecta el rendimiento del modelo.
- k pequeño (p.ej., k=1): El modelo puede sobreajustarse (problema con outliers)
- **k grande:** El modelo puede volverse demasiado general.
- ¿Hay algún problema si k es un número par?
- ¿Qué pasa si k es igual al número de datos que tenemos?

Pros y Contras de k-NN

- Ventajas: Sencillo de implementar.
 - No hace ninguna suposición sobre la distribución de los datos.
 - Funciona bien con datos pequeños y bien distribuidos.

Desventajas:

- Lento en tiempo de predicción: k-NN necesita calcular distancias para todos los puntos en el conjunto de datos.
- Sensible a la escala de las características (se recomienda normalizar los datos).
- Requiere una buena elección de k.

Evaluación de Modelos de Clasificación

1. Exactitud (Accuracy)

• **Descripción**: Mide la proporción de predicciones correctas entre todas las predicciones realizadas.

$$ext{Exactitud} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

 Interpretación: Ideal para datasets balanceados. Sin embargo, no es adecuada si las clases están desbalanceadas. TP: True positive

TN: True negative

FP: False positive

FN: False negative

2. Precisión (Precision)

- Descripción: Mide la proporción de predicciones positivas correctas sobre el total de predicciones positivas.
- Interpretación: Alta precisión significa que hay pocos falsos positivos. Es útil cuando los falsos positivos son costosos, como en un diagnóstico médico.

$$Precisi\'on = \frac{TP}{TP + FP}$$

3. Exhaustividad (Recall)

- Descripción: Mide la proporción de verdaderos positivos capturados sobre el total de verdaderos positivos.
- Interpretación: Alta exhaustividad significa que el modelo captura la mayoría de los verdaderos positivos. Es importante cuando los falsos negativos son costosos, como en la detección de fraudes.

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

4. F1-Score

- Descripción: Es el promedio armónico entre la precisión y el recall. Proporciona un balance entre ambas métricas.
- Interpretación: El F1-Score es útil cuando se busca un equilibrio entre la precisión y el recall, especialmente en datasets desbalanceados.

$$ext{F1-Score} = 2 imes rac{ ext{Precisión} imes ext{Recall}}{ ext{Precisión} + ext{Recall}}$$

5. Matriz de Confusión

- Descripción: Es una tabla que muestra el rendimiento del modelo al clasificar instancias en clases reales y predichas.
- Interpretación: Permite identificar cuántas predicciones fueron correctas o incorrectas para cada clase, lo que facilita ver errores de clasificación y sesgos del modelo.

	Predicción: Sobrevive	Predicción: No sobrevive
Real: Sobrevive	35 (TP)	15 (FN)
Real: No sobrevive	10 (FP)	50 (TN)

6. AUC-ROC (Área bajo la curva - Receiver Operating Characteristic)

- Descripción: Mide la capacidad del modelo para distinguir entre clases. ROC es una curva que muestra la relación entre TPR (Tasa de verdaderos positivos) y FPR (Tasa de falsos positivos).
- Interpretación: Un valor de AUC cercano a 1 indica un modelo excelente, mientras que un valor de 0.5 indica un modelo que no tiene mejor desempeño que el azar.

Entrenamiento del Modelo con el Dataset Titanic

- Paso 1: División en conjunto de entrenamiento (80%) y prueba (20%).
- Paso 2: Selección del modelo (KNN).
- Paso 3: Entrenamiento del modelo (Usando los datos de entranamiento).
- Paso 4: Predicción en el conjunto de prueba.
- Paso 5: Evaluación del modelo.
 - Interpreta las métricas.
- Paso 6: Interpretación del modelo
 - **Discusión:** Cómo se interpretan estos resultados en el contexto del Titanic? (Con relación a estos features: Sex, Pclass, Age)

Conclusiones

- La clasificación es una técnica fundamental en Machine Learning que tiene aplicaciones en muchos campos.
- **Modelos** como la Regresión Logística, k-NN, Árboles de Decisión y SVM son herramientas útiles dependiendo del problema.
- La evaluación del modelo es esencial para entender su rendimiento y hacer mejoras.