KU-The Future

조교 실습 2

250918

Simulink

- 다중 도메인 동적 시스템의 시뮬레이션 및 분석에 사용되는 MATLAB 기반 그래픽 프로그래밍 소프트웨어
- 주로 자동 제어 및 디지털 신호 처리에 사용

Simulink

- 다중 도메인 동적 시스템의 시뮬레이션 및 분석에 사용되는 MATLAB 기반 그래픽 프로그래밍 소프트웨어
- 주로 자동 제어 및 디지털 신호 처리에 사용

Simulink

- 다중 도메인 동적 시스템의 시뮬레이션 및 분석에 사용되는 MATLAB 기반 그래픽 프로그래밍 소프트웨어
- 주로 자동 제어 및 디지털 신호 처리에 사용

- · Simulink가 없는 경우
 - 애드온 클릭

- ▸ Simulink가 없는 경우
 - 검색창에 simulink

· Simulink 설치(약 4GB)

- 블록 삽입 방법1
 - 빈 공간에 마우스 좌클릭 2번 후, 'Sine Wave' 블록 검색

BIOSYSTEM CONTROL LAB.

- 블록 삽입 방법2
 - '라이브러리 브라우저' 클릭 후 'Sine Wave' 검색

• 'Sine Wave' 블록 파라미터 값 수정 방법

• Gain 블록 추가 후 값을 3으로 수정

· Scope 블록 추가

실행 후 Scope 블록 더블 클릭

- Plot 배경색 변경 및 그래프 스타일 수정 방법1
 - 스코프 -> 설정 클릭 후 원하는 배경 색 및 그래프 선 스타일 수정

- Plot 배경색 변경 및 그래프 스타일 수정 방법2
 - 스코프 -> Figure에 출력

- · Plot 배경색 변경 및 그래프 스타일 수정 방법2
 - 형식 -> 플롯 편집 선택(&P) -> 추가속성

Simscape

- Simulink 환경 내에서 물리 시스템 모델 생성
- 제어 시스템 개발 및 시스템 성능 테스트

 로봇, 차량 서스펜션, 건설 장비, 항공기 착륙장치 등 3차원 기계 시 스템의 다물체(Multibody) 시뮬레이션 환경을 제공

World Frame

Solver Configuration

World Frame

Mechanism Configuration

World Frame

Spherical Solid 블록 추가

Spherical Solid 블록 더블 클릭 후, 이름 Ball로 변경 및 파라미터

값 수정

• Ball 블록 클릭 후, ctrl + r 2번(R이 왼쪽에 오게끔 회전)

World Frame

• Infinite Plane 블록 추가 후, 이름을 Ground로 변경

6-DOF Joint 블록 추가 후, 이름을 Ball Joint로 변경

• 6-DOF Joint 블록

• Rigid Transform 블록 추가 후, 이름을 Ball Location으로 변경

Rigid Transform 블록

· Spatial Contact Force 블록 추가 후, 이름을 Contact으로 변경

Spatial Contact Force 블록

· Ball Location 블록 더블 클릭 후, Ball Joint의 초기 위치 변경

• 빈 공간 클릭 후 Ctrl + E , 중지 시간 및 스텝 크기 값 수정 후, 적용 확인

• 실행

Transform Sensor 블록 추가

· Transform Sensor 블록

PS-Simulink Converter 블록, Scope 블록 추가

• 실행

후 Scope 블록 클릭. 공의 중심 위치(z축) 변화 그래프 확인 가능

BIOSYSTEM CONTROL LAB.

KU-The Future

Q&A

KU-The Future

Thank you

