Modernizing a Pinball machine

Foreword

- Some ideas taken from BLEnky
- Focus on general principle

Machine in question

Sensors

Sensors

Actuators

Actuators

Counters

Actuators, takeaway

Actuators, technical

Actuators PWM

Implementation

```
analogWrite(PIN_OUTPUT, 900);
delay(3);
analogWrite(PIN_OUTPUT, 100);
```

5 different codebases

Infrastructure

Idea

- 1. Satellites programmed once
- 2. Single codebase
- 3. Code configuration
- 4. Config held centrally
- 5. Config updateable

Idea, low level control

CAN bus

- Differential pair
- Multi-master
- Collision detection/avoidance
- Short packets

CANopen

- Object dictionary
 - Collection of "variables"
- Profiles
 - CIA 401: "Generic I/O device profile"
 - Our own: intermediary data
- Heartbeats
- ...

Item configuration

```
flippers:
 id: flipper_left_outer
 type: microcode
 code: solenoid
 duty_cycles: [[80, 30], [20]]
 analog_channel: 0
 position:
   x: 0.29
    v: 0.31
```

BLEnky

BLEnky

BLEnky the second

BLEnky, again

gpioASM

```
label start
3
      write_digital 11111
      sleep_ms 500
      write_digital 00000
      sleep_ms 500
6
      jump start
8
```

gpioASM

```
label start
3
      write_digital 11111
      sleep_ms 500
      write_digital 00000
      sleep_ms 500
6
      jump start
```

More commands:

- jump_match label 1-0
- sleep match -00

gpioASM generation

```
flippers:
          id: flipper_left_outer
 3
          type: microcode
          code: solenoid
          duty_cycles: [[80, 30], [20]]
 6
          analog_channel: 0
          position:
            x: 0.29
 9
            y: 0.31
10
          can:
11
            id: 4
12
```

gpioASM generation

```
flippers:
          id: flipper_left_outer
 3
          type: microcode
          code: solenoid
          duty_cycles: [[80, 30], [20]]
          analog_channel: 0
          position:
 8
            x: 0.29
 9
            y: 0.31
10
          can:
11
            id: 4
12
```

```
1 label start
2
3 {% if check_input %}
4 jump_match_all exit {{ '-' * gpio.index }}{{ (gpio.state + 1) % 2 }}
5 {% endif %}
6
7 {% if wait_for_input %}
8 sleep_match_all {{ '-' * gpio.index }}{{ gpio.state }}
9 {% endif %}
10
11 {% for duty_cycle in duty_cycles %}
12
13 {% if analog_channel is defined %}
14 write_analog_channel_{{ analog_channel }} {{ duty_cycle[0] }}
15 {% endif %}
```

gpioASM generation

```
flippers:
          id: flipper_left_outer
 3
          type: microcode
          code: solenoid
          duty_cycles: [[80, 30], [20]]
          analog_channel: 4
          position:
 8
            x: 0.29
 9
            y: 0.31
10
          can:
11
            id: 4
12
```

```
1 label start
2
3 {% if check_input %}
4 jump_match_all exit {{ '-' * gpio.index }}{{ (gpio.state + 1) % 2 }}
5 {% endif %}
6
7 {% if wait_for_input %}
8 sleep_match_all {{ '-' * gpio.index }}{{ (gpio.state }}
9 {% endif %}
10
11 {% for duty_cycle in duty_cycles %}
12
13 {% if analog_chennel is defined %}
14 write_analog_channel_{{ (analog_channel })} {{ (duty_cycle[0] }}
15 {% endif %}
```

gpioASM infrastructure

```
1  label start
2  write_analog_channel_0 80
3  sleep_ms 30
4  write_analog_channel_0 20
5  label exit
6  exit
```

gpioASM infrastructure

```
label start
    write_analog_channel_0 80
    sleep_ms 30
    write_analog_channel_0 20
    label exit
6
    exit
                            008000105000201e101400c0
```

gpioASM infrastructure

```
label start
                                                              Satellite
    write_analog_channel_0 80
    sleep_ms 30
                                                  Engine
                                                              Engine
                                                                           Engine
    write_analog_channel_0 20
    label exit
6
    exit
                           008000105000201e101400c0
```

DBus interface

ItemRegistry

org.freedesktop.DBus.Properties

Get

Gets an items state

DBus interface

ItemRegistry

org.freedesktop.DBus.Properties

Get

Gets an items state

Set

Sets an items state

DBus interface

ItemRegistry

org.freedesktop.DBus.Properties

Get

Gets an items state

Set

Sets an items state

GetAllItems

Flat items list

Python gamecore

```
@engine.on_item_state_changed('button_left')
def handle(item_id, item_state):
    engine.item_proxy.flipper_left_outer = item_state
    engine.item_proxy.flipper_left_inner = item_state
```

Python gamecore

```
@engine.on_item_state_changed('button_left')
def handle(item_id, item_state):
    engine.item_proxy.flipper_left_outer = item_state
    engine.item_proxy.flipper_left_inner = item_state
```

```
engine.item_follow(
    'flipper_right_outer',
    'flipper_right_inner',
    item_source='button_right'
)
```

Website

DBus ↔ HTTP gateway

Result

- Robust
- Flexible
- Latency of around 30ms
- Reusable
- Lots of engineering

Outlook

- Idea validated
 - Centralized control of decentralized infrastructure
 - Configuration / intermediate

Outlook

- Idea validated
 - Centralized control of decentralized infrastructure
 - Configuration / intermediate

- BLEnky
 - Platform agnostic (beyond Nordic)
 - Transport agnostic (beyond BLE)
 - Protocol standardization (Packet based)

Sources

- https://pinball-factory.com/products/king-rock-flipper
- https://www.deko-design-klein-shop.de/185317-Glockenspiel-Chime-Unit-fuer
 -WILLIAMS-Flipper-anschlussfertig

Portfolio

- Projects
- Presentations (incl. this one)
- Guides
- Failures