ME572: Homework #7

Due on March 21, 2012

Jedediah Frey

A a planar two link manipulator shown has equal link lengths of 20 and is to move from (6, 0.01) to (-4,0.01) in 0.5 seconds.

Generate values for  $\theta_1$ ,  $\theta_2$ ,  $\dot{\theta}_1$ ,  $\dot{\theta}_2$  at every 0.025 seconds first using JIM then using CIM. In JIM the joints should reach constant speed in 0.05 s. In CIM the end point should reach constant speed in 0.05 s. Deceleration of each of the parameters should also occur in 0.05 s and use a linear change in speed during both acceleration

First generate the forward kinematic equations for the manipulator.

$$\phi_1 = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 & 0 \\ \sin(\theta_1) & \cos(\theta_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1)

$$T_1 = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 20.00 \\ 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 1.00 \end{bmatrix}$$

$$(2)$$

$$\phi_2 = \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) & 0 & 0 \\ \sin(\theta_2) & \cos(\theta_2) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3)

$$T_2 = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 20.00 \\ 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 1.00 \end{bmatrix}$$

$$(4)$$

$$T_{w} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & 0 & 20 \cdot \cos(\theta_{1} + \theta_{2}) + 20 \cdot \cos(\theta_{1}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & 0 & 20 \cdot \sin(\theta_{1} + \theta_{2}) + 20 \cdot \sin(\theta_{1}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5)

Since we only care about the end position and not orientation we only need the equations for x and y coordinates:

$$x = \left[20 \cdot \cos(\theta_1 + \theta_2) + 20 \cdot \cos(\theta_1)\right] \tag{6}$$

$$y = \left[20 \cdot \sin(\theta_1 + \theta_2) + 20 \cdot \sin(\theta_1)\right] \tag{7}$$

The inverse kinematics for  $\theta_1$  can be found by using atan2 to find the angle of the point (x, y) from the world coordinates. ( $\hat{\theta}$  in the sketch below). Then use the law of cosines to find the interior angle of the triangle. As drawn the interior angle is always additive to  $\hat{\theta}$  to get  $\theta_1$ , but it can also be oriented in the other direction.  $\theta_2$  can be found using atan2 from the end of link 1 to the end of link 2 then subtracting off  $\theta_1$  since  $\theta_2$  is measured from coordinate frame rotating with the first linkage.

$$\theta_1 = \tan\left(\frac{y}{x}\right)^{-1} + \cos\left(\frac{l_1^2 - l_2^2 + x^2 + y^2}{2l_1\sqrt{x^2 + y^2}}\right)^{-1} \tag{8}$$

$$\theta_2 = \tan\left(\frac{y - l_1 \sin \theta_1}{x - l_1 \cos \theta_1}\right)^{-1} - \theta_1 \tag{9}$$

Where  $l_1 = l_2 = 20$ .

For the the initial and final points the following joint angles were found:

| X  | Y    | $	heta_1$      | $	heta_2$      |
|----|------|----------------|----------------|
| 6  | 0.01 | $81.4686^{o}$  | $197.2539^{o}$ |
| -4 | 0.01 | $264.1176^{o}$ | $191.4784^{o}$ |

For each of the types of motion the velocity profile must ramp up and then down the area under the velocity curve will be the distance traveled by either the  $\theta$ s for JIM or the tip (x, y) for CIM.

Divide the constant velocity time steps up into areas of size  $A^*$ , with magnitude  $\dot{Q}_{max}$  and duration  $\Delta$ .

$$0.25A^* + 0.75A^* + 16A^* + 0.75A^* + 0.25A^* = Q_{final} - Q_{initial}$$
(10)

For all variables  $A^* = \frac{\Delta Q}{18}$ . The  $\delta$  of each variable for each step is given by  $0.25A^*$  &  $0.75A^*$  during acceleration and reverse during deceleration. At all points in between it is equal to  $A^*$ .

| Step | Time  | $\Delta 	heta_1$ | $\theta_1$ | $\Delta \theta_2$ | $\theta_2$ | X      | Y     | $\dot{	heta}_1$ | $\dot{	heta}_2$ | Ż       | $\dot{Y}$ |
|------|-------|------------------|------------|-------------------|------------|--------|-------|-----------------|-----------------|---------|-----------|
| 0    | 0.000 | 0.000            | 81.469     | 0.000             | 197.254    | 6.000  | 0.010 |                 |                 |         |           |
| 1    | 0.025 | 2.537            | 84.005     | -0.080            | 197.174    | 5.947  | 0.534 | 101.472         | -3.209          | -2.660  | 26.176    |
| 2    | 0.050 | 7.610            | 91.616     | -0.241            | 196.933    | 5.848  | 1.048 | 304.415         | -9.626          | -4.928  | 25.715    |
| 3    | 0.075 | 10.147           | 101.763    | -0.321            | 196.612    | 5.468  | 2.005 | 405.887         | -12.834         | -19.006 | 47.852    |
| 4    | 0.100 | 10.147           | 111.910    | -0.321            | 196.291    | 4.937  | 2.863 | 405.887         | -12.834         | -26.578 | 42.910    |
| 5    | 0.125 | 10.147           | 122.057    | -0.321            | 195.970    | 4.276  | 3.599 | 405.887         | -12.834         | -33.026 | 36.820    |
| 6    | 0.150 | 10.147           | 132.204    | -0.321            | 195.650    | 3.512  | 4.196 | 405.887         | -12.834         | -38.185 | 29.818    |
| 7    | 0.175 | 10.147           | 142.352    | -0.321            | 195.329    | 2.674  | 4.639 | 405.887         | -12.834         | -41.937 | 22.164    |
| 8    | 0.200 | 10.147           | 152.499    | -0.321            | 195.008    | 1.789  | 4.922 | 405.887         | -12.834         | -44.218 | 14.130    |
| 9    | 0.225 | 10.147           | 162.646    | -0.321            | 194.687    | 0.889  | 5.041 | 405.887         | -12.834         | -45.010 | 5.988     |
| 10   | 0.250 | 10.147           | 172.793    | -0.321            | 194.366    | 0.002  | 5.002 | 405.887         | -12.834         | -44.348 | -1.992    |
| 11   | 0.275 | 10.147           | 182.940    | -0.321            | 194.045    | -0.844 | 4.810 | 405.887         | -12.834         | -42.313 | -9.560    |
| 12   | 0.300 | 10.147           | 193.087    | -0.321            | 193.724    | -1.625 | 4.481 | 405.887         | -12.834         | -39.027 | -16.484   |
| 13   | 0.325 | 10.147           | 203.235    | -0.321            | 193.404    | -2.318 | 4.029 | 405.887         | -12.834         | -34.652 | -22.567   |
| 14   | 0.350 | 10.147           | 213.382    | -0.321            | 193.083    | -2.905 | 3.476 | 405.887         | -12.834         | -29.376 | -27.645   |
| 15   | 0.375 | 10.147           | 223.529    | -0.321            | 192.762    | -3.374 | 2.845 | 405.887         | -12.834         | -23.415 | -31.595   |
| 16   | 0.400 | 10.147           | 233.676    | -0.321            | 192.441    | -3.713 | 2.158 | 405.887         | -12.834         | -16.995 | -34.337   |
| 17   | 0.425 | 10.147           | 243.823    | -0.321            | 192.120    | -3.920 | 1.441 | 405.887         | -12.834         | -10.351 | -35.835   |
| 18   | 0.450 | 10.147           | 253.970    | -0.321            | 191.799    | -3.995 | 0.719 | 405.887         | -12.834         | -3.715  | -36.098   |
| 19   | 0.475 | 7.610            | 261.581    | -0.241            | 191.559    | -4.013 | 0.363 | 304.415         | -9.626          | -0.915  | -17.788   |
| 20   | 0.500 | 2.537            | 264.118    | -0.080            | 191.478    | -4.000 | 0.010 | 101.472         | -3.209          | 0.654   | -17.670   |

Table 1: Joint interpolated motion

| Step    | Time   | $\theta_1$ | $\theta_2$ | $\Delta X$ | X       | $\Delta Y$ | Y    | $\dot{	heta}_1$ | $\dot{	heta}_2$ | $\dot{X}$ | $\dot{Y}$ |
|---------|--------|------------|------------|------------|---------|------------|------|-----------------|-----------------|-----------|-----------|
| 0.0     | 0.0    | 81.4686    | 197.2539   | 0.0        | 6.0000  | 0.0        | 0.01 |                 |                 |           |           |
| 1.0000  | 0.0250 | 81.8754    | 196.4494   | -0.1389    | 5.8611  | 0.0        | 0.01 | 16.2746         | -32.1783        | -5.5556   | 0.0       |
| 2.0000  | 0.0500 | 82.2823    | 195.6458   | -0.4167    | 5.4444  | 0.0        | 0.01 | 16.2772         | -32.1457        | -16.6667  | 0.0       |
| 3.0000  | 0.0750 | 83.0968    | 194.0408   | -0.5556    | 4.8889  | 0.0        | 0.01 | 32.5785         | -64.2002        | -22.2222  | 0.0       |
| 4.0000  | 0.1000 | 83.9130    | 192.4385   | -0.5556    | 4.3333  | 0.0        | 0.01 | 32.6458         | -64.0896        | -22.2222  | 0.0       |
| 5.0000  | 0.1250 | 84.7323    | 190.8387   | -0.5556    | 3.7778  | 0.0        | 0.01 | 32.7738         | -63.9921        | -22.2222  | 0.0       |
| 6.0000  | 0.1500 | 85.5573    | 189.2410   | -0.5556    | 3.2222  | 0.0        | 0.01 | 32.9996         | -63.9074        | -22.2222  | 0.0       |
| 7.0000  | 0.1750 | 86.3923    | 187.6452   | -0.5556    | 2.6667  | 0.0        | 0.01 | 33.3994         | -63.8353        | -22.2222  | 0.0       |
| 8.0000  | 0.2000 | 87.2460    | 186.0508   | -0.5556    | 2.1111  | 0.0        | 0.01 | 34.1495         | -63.7758        | -22.2222  | 0.0       |
| 9.0000  | 0.2250 | 88.1395    | 184.4576   | -0.5556    | 1.5556  | 0.0        | 0.01 | 35.7413         | -63.7285        | -22.2222  | 0.0       |
| 10.0    | 0.2500 | 89.1403    | 182.8652   | -0.5556    | 1.0000  | 0.0        | 0.01 | 40.0310         | -63.6930        | -22.2222  | 0.0       |
| 11.0000 | 0.2750 | 90.6521    | 181.2736   | -0.5556    | 0.4444  | 0.0        | 0.01 | 60.4728         | -63.6657        | -22.2222  | 0.0       |
| 12.0000 | 0.3000 | 264.6974   | 180.3196   | -0.5556    | -0.1111 | 0.0        | 0.01 | 6961.8117       | -38.1596        | -22.2222  | 0.0       |
| 13.0000 | 0.3250 | 268.1855   | 181.9102   | -0.5556    | -0.6667 | 0.0        | 0.01 | 139.5244        | 63.6226         | -22.2222  | 0.0       |
| 14.0000 | 0.3500 | 267.7802   | 183.5021   | -0.5556    | -1.2222 | 0.0        | 0.01 | -16.2142        | 63.6763         | -22.2222  | 0.0       |
| 15.0000 | 0.3750 | 267.1304   | 185.0947   | -0.5556    | -1.7778 | 0.0        | 0.01 | -25.9934        | 63.7058         | -22.2222  | 0.0       |
| 16.0000 | 0.4000 | 266.4103   | 186.6884   | -0.5556    | -2.3333 | 0.0        | 0.01 | -28.8036        | 63.7460         | -22.2222  | 0.0       |
| 17.0000 | 0.4250 | 265.6600   | 188.2833   | -0.5556    | -2.8889 | 0.0        | 0.01 | -30.0102        | 63.7981         | -22.2222  | 0.0       |
| 18.0000 | 0.4500 | 264.8937   | 189.8799   | -0.5556    | -3.4444 | 0.0        | 0.01 | -30.6518        | 63.8626         | -22.2222  | 0.0       |
| 19.0000 | 0.4750 | 264.5066   | 190.6789   | -0.4167    | -3.8611 | 0.0        | 0.01 | -15.4832        | 31.9594         | -16.6667  | 0.0       |
| 20.0    | 0.5000 | 264.1176   | 191.4784   | -0.1389    | -4.0000 | 0.0        | 0.01 | -15.5626        | 31.9803         | -5.5556   | 0.0       |

Table 2: Cartesian interpolated motion

For both of the tables the velocities of the end effector and joint angles are the average velocity during that step. For example for CIM the average x velocity during step 1 is -5.5556/s, since speed is ramping linearly (constant acceleration) the velocity at the beginning of step 1 is 0/s and at the end is -11.1111/s, for step 2 it starts at -11.1111/s and ends at -22.2222/s, averaging -16.6667/s, and reaching a constant speed by the end of step 2 (0.05s).



Figure 1: End Position X & Y coordinates vs time for both types of motion



Figure 2: Joint angles  $\theta_1$  &  $\theta_2$  vs time for both types of motion



Figure 3: Velocity of X & Y position vs time for both types of motion



Figure 4: Angular velocity of  $\theta_1$  &  $\theta_2$  position vs time for both types of motion



Figure 5: Angular velocity plot zoomed in to see the detail of the other angular velocities



Figure 6: Manipulator motion in for both types of motion

Comment on the results obtained

Joint interpolated motion kept the angular velocities of each of the joints reasonable however it didn't follow a straight line path from start to finish. The cartesian interpolated motion followed a straight line from start to finish however since it passed near the singularity the angular velocity of  $\theta_1$  spiked as it swung around from quadrant II to III. Dexterity ellipsoid.

The Jacobian matrix is in the form of:

$$\begin{pmatrix}
\dot{P}_{x} \\
\dot{P}_{y} \\
\dot{P}_{z} \\
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{pmatrix} = \begin{bmatrix}
J \\
6 \times 2
\end{bmatrix} \begin{cases}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{cases}$$
(11)

The Jacobian matrix for this problem is:

$$J = \begin{cases} \vec{a}_0 \times (\vec{P}_E - \vec{P}_0) & \vec{a}_1 \times (\vec{P}_E - \vec{P}_1) \\ \vec{a}_0 & \vec{a}_1 \end{cases}$$

$$(12)$$

Where:

$$P_{e} = \begin{bmatrix} 20 \cdot \cos(\theta_{1} + \theta_{2}) + 20 \cdot \cos(\theta_{1}) \\ 20 \cdot \sin(\theta_{1} + \theta_{2}) + 20 \cdot \sin(\theta_{1}) \\ 0 \end{bmatrix}$$
(13)

$$P_{e} = \begin{bmatrix} 20 \cdot \cos(\theta_{1} + \theta_{2}) + 20 \cdot \cos(\theta_{1}) \\ 20 \cdot \sin(\theta_{1} + \theta_{2}) + 20 \cdot \sin(\theta_{1}) \\ 0 \end{bmatrix}$$

$$a_{0} = \begin{bmatrix} 0.00 \\ 0.00 \\ 1.00 \end{bmatrix}$$

$$P_{0} = \begin{bmatrix} 20 \cdot \cos(\theta_{1} + \theta_{2}) + 20 \cdot \cos(\theta_{1}) \\ 20 \cdot \sin(\theta_{1} + \theta_{2}) + 20 \cdot \sin(\theta_{1}) \\ 0 \end{bmatrix}$$

$$(13)$$

$$P_{0} = \begin{bmatrix} 20 \cdot \cos(\theta_{1} + \theta_{2}) + 20 \cdot \cos(\theta_{1}) \\ 20 \cdot \sin(\theta_{1} + \theta_{2}) + 20 \cdot \sin(\theta_{1}) \\ 0 \end{bmatrix}$$
(15)

$$a_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{16}$$

$$P_1 = \begin{bmatrix} 20 \cdot \cos(\theta_1 + \theta_2) \\ 20 \cdot \sin(\theta_1 + \theta_2) \\ 0 \end{bmatrix}$$

$$\tag{17}$$

$$J = \begin{bmatrix} -20 \cdot \sin(\theta_1 + \theta_2) - 20 \cdot \sin(\theta_1) & -20 \cdot \sin(\theta_1 + \theta_2) \\ 20 \cdot \cos(\theta_1 + \theta_2) + 20 \cdot \cos(\theta_1) & 20 \cdot \cos(\theta_1 + \theta_2) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
(18)

The manipulability of linear velocity is given by  $\dot{\vec{x}} = J_{top}\dot{q}$  where  $J_{top}$  is square. For the manipulator:

$$J_{top} = \begin{bmatrix} -20 \cdot \sin(\theta_1 + \theta_2) - 20 \cdot \sin(\theta_1) & -20 \cdot \sin(\theta_1 + \theta_2) \\ 20 \cdot \cos(\theta_1 + \theta_2) + 20 \cdot \cos(\theta_1) & 20 \cdot \cos(\theta_1 + \theta_2) \end{bmatrix}$$
(19)

$$B = J_{top}J_{top}^{T} (20)$$

$$B_{(1,1)} = \left[400 \cdot \sin(\theta_1 + \theta_2)^2 + 400 \cdot (\sin(\theta_1 + \theta_2) + \sin(\theta_1))^2\right]$$
 (21)

$$B_{(1,2)} = \left[ -400 \cdot \sin(2 \cdot \theta_1 + \theta_2) - 200 \cdot \sin(2 \cdot \theta_1) - 400 \cdot \sin(2 \cdot \theta_1 + 2 \cdot \theta_2) \right]$$
 (22)

$$B_{(2,1)} = \left[ -400 \cdot \sin(2 \cdot \theta_1 + \theta_2) - 200 \cdot \sin(2 \cdot \theta_1) - 400 \cdot \sin(2 \cdot \theta_1 + 2 \cdot \theta_2) \right]$$
 (23)

$$B_{(2,2)} = \left[ (20 \cdot \cos(\theta_1 + \theta_2) + 20 \cdot \cos(\theta_1))^2 + 400 \cdot \cos(\theta_1 + \theta_2)^2 \right]$$
 (24)

The ellipsoid can then be determined from the eigenvalues and eigenvectors where

$$a_x = \frac{1}{\sqrt{\lambda_1}} \tag{25}$$

$$b_y = \frac{1}{\sqrt{\lambda_2}} \tag{26}$$

(27)

For the point near the singularity where:  $\theta_1 = 264.6974 \& \theta_2 = 180.3196$ :

 $\beta = 175.0170, a_x = 0.0500, b_y = 8.9637.$ 

For the point at the start where:  $\theta_1 = 81.469 \& \theta_2 = 197.254$ :

 $\beta = 170.4411, a_x = 0.0499, b_y = 0.1688.$ 

The shape becomes very cylindrical near the singularity because  $b_y$  is very large compared to  $a_x$ .