ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 12 ABGABE: 23.1.2017

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Sei A eine lokale Banachalgebra, $e, f \in \operatorname{Idem}(\widehat{A})$ und $\varepsilon > 0$. Zeigen (3 Punkte) Sie: Es gibt ein $e_0 \in \operatorname{Idem}(A)$ mit $||e - e_0|| < \varepsilon$; falls weiter $e \sim_s f$, so gibt es ein $f_0 \in \operatorname{Idem}(A)$ mit $||f - f_0|| < \varepsilon$ und $e_0 \sim_s f_0$.

Aufgabe 2. Sei A eine lokale C*-Algebra und seien $p, q \in A$ Projektionen. Zeigen (4 Punkte) Sie, dass die folgenden Aussagen äquivalent sind:

- (i) $p \leqslant q$;
- (ii) $p \leqslant \lambda q$ für ein $\lambda > 0$;
- (iii) pq = qp = p;
- (iv) q p ist eine Projektion.

Aufgabe 3. Sei A eine unitale lokale Banachalgebra und seien $x, y \in A^{\times}$. Zeigen (4 Punkte) Sie: Es existiert in $GL_2(A) = M_2(A)^{\times}$ ein stetiger Pfad von diag(xy, 1) zu diag(x, y); ist A eine lokale C*-Algebra und sind $x, y \in U(A)$, so kann man annehmen, dass der Pfad in $U_2(A)$ verläuft.

Aufgabe 4. Sei X ein kompakter Hausdorffraum. Gegeben ein Hausdorffraum E, (6 Punkte) eine stetige Surjektion $p:E\longrightarrow X$ und eine \mathbb{C} -Vektorraumstruktur auf jeder Faser $E_x\coloneqq p^{-1}(\{x\})\subseteq E$, so sagt man, dass E ein Vektorbündel auf X sei, falls es eine offene Überdeckung (U_i) von X und Homöomorphismen $\varphi_i:p^{-1}(U_i)\longrightarrow U_i\times\mathbb{C}^{r_i}$ gibt, so dass (a) $p=p_1\circ\varphi_i$ auf $p^{-1}(U_i)$, (b) $p_2\circ\varphi_i|_{E_x}:E_x\longrightarrow\mathbb{C}^{r_i}$ für alle $x\in U_i$ linear ist, sowie (c) für $U_{ij}\coloneqq U_i\cap U_j\neq\emptyset$ gilt $r=r_i=r_j$ und eine stetige Abbildung $g_{ij}:U_{ij}\longrightarrow \mathrm{GL}(r,\mathbb{C})$ existiert, so dass

$$\varphi_j^{-1}(x, g_{ij}(x)v) = \varphi_i^{-1}(x, v), \quad \forall x \in U_{ij}, v \in \mathbb{C}^r.$$

Der Schnittmodul von E ist die Menge

$$\Gamma(X, E) := \{s : X \longrightarrow E \mid s \text{ stetig}, p \circ s = \mathrm{id}_X \}.$$

Dann ist $\Gamma(X, E)$ ein Modul über $A := \mathcal{C}(X)$ vermöge

$$(s_1+s_2)(x) \coloneqq s_1(x)+s_2(x), \quad (fs)(x) \coloneqq f(x)s(x) \quad \text{in } E_x,$$

für alle $s, s_1, s_2 \in \Gamma(X, E), f \in A, x \in X$. Zeigen Sie die folgenden Aussagen:

- (1) Ist (E,p) ein Vektorbündel über A, so gibt es ein $e \in \text{Idem}(M_n(A))$, so dass $\Gamma(X,E) \cong eA^n$ als A-Modul. Hierbei wirkt A auf dem zweiten Raum durch Rechtsmultiplikation. Hinweis: Mithilfe einer Teilung der Eins bette man E in ein triviales Vektorbündel $(X \times \mathbb{C}^n, p_1)$ ein.
- (2) Für $e \in \mathrm{Idem}(M_n(A))$ ist

$$E := \{(x, v) \mid x \in X, v \in e(x)(\mathbb{C}^n)\} \subseteq X \times \mathbb{C}^n,$$

versehen mit der Relativtopologie, $p := p_1|_E$ und der induzierten faserweisen Struktur, ein Vektorbündel auf X, dessen Schnittmodul genau eA^n ist.