Spis treści

1.	$Wstep \dots \dots$	
	1.1 Rozwiązania alternatywne	
	1.2 Cel pracy	
	1.3 Układ pracy	1
2.	Metodologia	5
	2.1 Problem 1	5
3.	Część konstrukcyjna/Specyfikacja wewnętrzna	7
	3.1 Specyfikacja interfejsu programistycznego	
4.	Instrukcja obsługi/Specyfikacja zewnętrzna	9
5.	Rezultaty	1
6.	Podsumowanie	3
Do	odatek 15	5
A.	Dodatek A	7
В.	Dodatek B	9
	B.1 Wstawianie rysunków	9
	B.2 Wstawianie tabelek)
C.	Kwestie edytorskie	1
Bil	bliografia)

Spis rysunków

2.1	Podpis całości nawiązujący do podpisu (a)	
B.1	Logo Wydziału Inżynierii Biomedycznej.	20

Spis tabel

D 1	O 1	4 . 1 11 .															O	0
B.1	Opis nad	tabelka.	 														- 2	JU.

Projekt inżynierski a praca magisterska

W dalszej części dokumentu znajdują się wytyczne dotyczące projektu inżynierskiego. Należy jednak zaznaczyć, że na ich przykładzie pokazano sposoby wykorzystania różnych narzędzi LATEXa, dlatego także studenci realizujący pracę magisterską powinni się z nimi zaznajomić.

Dodatkowo **studenci studiów magisterskich** powinni zapoznać się z procedurami dyplomowania. **Praca magisterska** powinna zawierać następujące elementy:

- sformułowanie problemu,
- analizę literatury związanej z tematem oraz istniejącymi rozwiązaniami problemu,
- propozycję rozwiązania problemu oraz wyczerpujący opis przyjętego rozwiązania,
- analize wyników i wnioski końcowe.

Sugerowana objętość [tej] pracy to 60-100 stron.

Praca [magisterska] powinna powstać w oparciu o co najmniej 6 pozycji bibliograficznych kwalifikowanych przez promotora (monografie, artykuły w czasopismach naukowych, publikacje w materiałach konferencji

1. Wstęp

Wprowadzenie do zagadnień poruszanych w pracy w ogólnym, zwięzłym ujęciu¹. Osadzenie ich w realiach codzienności, ewentualna klasyfikacja wśród problemów szerszej grupy do której należą itp. Zdefiniowanie problemu do rozwiązania.

Automatyczna analiza obrazów (AAO)² jest niezwykle istotną i szybko rozwijającą się dziedziną nauki. Bez narzędzi (ang. tools) AAO trudno dziś sobie wyobrazić książki o przetwarzaniu obrazów [2] i inne. Jednym z popularniejszych narzędzi analizy są nożyczki.

1.1 Rozwiązania alternatywne

Opis ewentualnych znanych sposobów rozwiązania problemu wraz z ich oceną najlepiej z wyraźnym podziałem na zalety i wady, przy czym najlepiej by z wymienionych wad po części wynikał cel i przyjęte założenia.³

Nożyczki są częstym tematem prac badawczych. W [3] nie zostały wymienione żadne nożyczki. Nożyczki, które nie zostały wymienione w [2], cechują się pełnym automatyzmem, niestety relatywnie szybko ulegają stępieniu.

1.2 Cel pracy

Sformułowanie celu pracy. Określenie koniecznych do realizacji zadań, niezbędnych do osiągnięcia celu. Można je ująć i wymienić w postaci założeń projektowych z ewentualnym podziałem na założenia ogólne i szczegółowe⁴.

Celem pracy jest stworzenie automatycznych nożyczek tnących stopnia trzeciego. Wymaga to realizacji następujących etapów:

- wyboru narzędzi,
- opracowania architektury nożyczek,
- testowania nożyczek w warunkach zmiennej wilgotności.

¹ Projekt inżynierski: ±kilka paragrafów.

² Tak wprowadzamy skróty.

 $^{^3}$ \pm pół strony

 $^{^4}$ Krótkie

1. Wstęp

1.3 Układ pracy

Czasem rozdział kończy się omówieniem zawartości pracy, tłumaczącym co czytelnik znajdzie w kolejnych jej rozdziałach.

Każdy rozdział warto jest również poprzedzić krótkim wstępem.

2. Metodologia

Dokładne, szczegółowe naświetlenie problemu do rozwiązania, w sposób teoretyczny bez sugerowanych sposobów implementacyjnych. Ten rozdział można połączyć z kolejnym, stanowiącym propozycję przyjętego rozwiązania. Propozycja fizycznej/programistycznej realizacji zadania, umożliwiająca osiągnięcie postawionego celu i spełnienie założeń projektowych. Tłumaczenie proponowanego rozwiązania w oparciu o ogólny schemat blokowy.

Stworzenie odpornych, automatycznych nożyczek tnących stopnia trzeciego wymaga opracowania wieloetapowej metodologii. W pierwszej kolejności rozważona zostanie odporność na korozję cyfrową. W dalszej części pracy...

2.1 Problem 1

Stworzone nożyczki powinny cechować się dużą odpornością na korozję cyfrową. Można w tym celu wykorzstać izolację od znaków wodnych (Rys. 2.1) na poziomie warstwy płótna.

Rys. 2.1: Podpis całości nawiązujący do podpisu (a).

3. Część konstrukcyjna/Specyfikacja wewnętrzna

Część konstrukcyjna lub implementacyjna, tłumacząca sposób realizacji zadania, omówioną w poprzedniej części opracowania. Wyjaśnienie wyborów elementów, sprzętu lub programów. W przypadku programów obiektowych podział na klasy, pola, metody wraz z uzasadnieniem.

W trakcie realizacji zadania, w pierwszym kroku, należy odizolować znaki wodne w warstwie płótna. Wykorzystano w tym celu dostępną w środowisku XYZ funkcje Z. Parametry do funkcji określono poprez...

3.1 Specyfikacja interfejsu programistycznego

Jeśli projekt, praca dotyczy systemu informatycznego, w dokumentacji umieszcza się z reguły jedynie interfejs programistyczny (bądź jego fragmenty). Pełny kod można dołączyć w załączniku.

```
private double losuj(int ile, double min, double max);
```

Metoda losuje liczbę z podanego zakresu. Przed zwróceniem wartości, losowanie powtarzane jest wybraną liczbę razy w celu zwiększenia czasu obliczeń.

• Parametry:

ile określa ile rezy należy losować przed zwróceniem liczby, min definiuje wartość minimalną, max definiuje wartość minimalną,

- Wartość zwracana: wylosowana liczba
- Błędy: w przypadku, gdy ile < 0, zgłaszany jest wyjątek WrongIleException

itd.

czasami warto omówić wybrane fragmenty razem z implementacją

```
double x = 2 \ 1023-3 \ / \ 22;
int z = (int)x;
p = x - z;
...
```

w pierwszej kolejności stosowana jest stała Krafta do redukcji złożoności cięcia (linijka 2).

4. Instrukcja obsługi/Specyfikacja zewnętrzna

Instrukcja obsługi zbudowanego urządzenia/programu komputerowego. Dokładne wyjaśnienie zasad posługiwania się tym, co zostało otrzymane w efekcie przeprowadzonych prac. Można wykorzystać zrzuty ekranów, scenariusze użytkowe itp.

5. Rezultaty

Zobrazowanie i omówienie wyników otrzymywanych wskutek zastosowania danego urządzenia bądź aplikacji. Badanie ewentualnych parametrów (takich jak dokładność, czułość...), czy też zachowania w szczególnych sytuacjach. O ile to możliwe tabelaryzacja rezultatów oraz ich statystyczna interpretacja. Ocena zachowania zaproponowanego rozwiązania. Analiza możliwych przyczyn wystąpienia błędów.

6. Podsumowanie

Nawiązanie do celu pracy oraz postawionych założeń. Próba oceny realizacji celu, poprzez weryfikację otrzymanych rezultatów. Analiza dostrzeżonych problemów, błędnego, nieoczekiwanego działania, ewentualnych problemów napotkanych podczas realizacji. W przypadku niewyczerpania tematu, a także wspomnianego niepożądanego zachowania urządzenia/aplikacji sugestie ich eliminacji wymienione jako plany na przyszłość.¹

Wstęp wraz z podsumowaniem winny stanowić swego rodzaju klamrę, a nawet całość w takim rozumieniu, że przeczytanie wyłącznie tych dwóch rozdziałów tłumaczyć powinno rozważany problem wraz z efektami otrzymanymi w efekcie prac, stanowiącymi jego rozwiązanie, bez wnikania w sposób ich otrzymania (to zawiera część środkowa).

¹ Krótkie! 1-2 strony.

Dodatek

A. Dodatek A

W dodatku umieszczamy opis ewentualnych znanych algorytmów, z których korzystamy proponując własną metodologię, opisaną w rozdziale 2. Wykaz pozycji literaturowych tworzymy w oddzielnym pliku Praca.bib. Chcąc się odwołać w tekście do wybranej pozycji bibliograficznej korzystamy z komendy cite. Efekt jej użycia dla kilku pozycji jednocześnie to [3–5].

B. Dodatek B

Podstawowe kwestie techniczne dotyczące wzorów, rysunków, tabel poniżej.

Wzory tworzymy w środowisku **equation**. Chcąc odwołać się do wybranego wzoru gdzieś w tekście należy nadać mu stosowną, niepowtarzalną i jednoznaczną etykietę, po ty by móc np. napisać zdanie: ze wzoru B.1 wynika . . .

$$c = a + b \tag{B.1}$$

Wzory złożone, charakteryzujące się przypisaniem wartości zmiennej w pewnych okolicznościach tworzymy przy użyciu otoczenia eqnarray. Odwołanie do wzoru jak wcześniej.

$$BW = \begin{cases} 1, & I(x,y) \geqslant T \\ 0, & I(x,y) < T \end{cases}, \tag{B.2}$$

Numerację równań można tymczasowo (w danej linijce) wyłączyć poprzez użycie \nonumber

$$a_i = a_{i-1} + a_{i-2} + a_{i-3}$$
(B.3)

B.1 Wstawianie rysunków

Rysunki umieszczamy w otoczeniu figure, centrując je w poziomie komendą centering. Rozmiary rysunku ustalamy w komendzie includegraphics dobierając wielkość względem rozmiaru strony lub bezwzględnie np. w cm. Ponadto najpierw zapowiadamy pojawienie się rysunku w tekście (czyli np. Na rysunku (Rys B.1) pracy, a dopiero później wstawiamy sam rysunek. Dodatkowo sterować możemy umiejscowieniem rysunku na stronie dzięki parametrom [!htb] określającym miejsce. Odpowiednio są to: here, top, bottom.

Dołączając rysunki nie trzeba podawać rozszerzenia (wręcz jest to odradzane). Jeśli rysunki znajdują się w katalogu *rysunki*, nie trzeba również podawać ścieżki do nich.

B.2 Wstawianie tabelek

Analogicznie postępujemy z tabelkami, z tą różnicą że tworzymy ją w otoczeniu table. W nim natomiast samą tabelę definiujemy albo w środowisku tabular, albo tabularx. Podobnie z odwołaniami w tekście: najpierw odwołanie w Tab. B.1, a dopiero później sama tabela.

B. Dodatek B

Rys. B.1: Logo Wydziału Inżynierii Biomedycznej.

Tab. B.1: Opis nad tabelką.

Kolumna 1	Kolumna 2	Kolumna 3	Kolumna 4
Wiersz 1			
Wiersz 2			
Wiersz 3			

C. Kwestie edytorskie

Zbiór zasad pomocnych przy redagowaniu tekstu pracy wystarczająco szczegółowo przedstawia książka [1].

Uwaga! Pisząc pracę należy zwrócić uwagę na następujące kwestie:

- 1. Prace piszemy w formie bezosobowej.
- 2. Unikamy określeń potocznych, spolszczeń funkcjonujących codziennej mowie itp.
- 3. Posługując się znanymi nam (a nie czytelnikowi) hasłami (również skrótami, akronimami) najpierw je definiujemy i tłumaczymy, a dopiero później traktujemy za znane.
- 4. Podpisy pod rysunkami lub nad tabelami traktujemy jak zdania, a więc powinny stanowić spójną całość oraz powinny zostać zakończone kropką.
- 5. Podobnie wypunktowania (po dwukropku kolejne punkty pisane małymi literami, oddzielane przecinkami, ostatni zakończony kropką o ile kończy zdanie).
- 6. Do każdego rysunku, tabeli, pozycji bibliograficznej musi istnieć odwołanie w tekście pracy, przy czym do pierwszych dwóch musi się ono pojawić zanim umieścimy rysunek/tabelę.

Bibliografia

- [1] Chwałowski, R. Typografia typowej książki. Helion, 2001.
- [2] Gonzalez, R. C., and Woods, R. E. *Digital image Processing*. Prentice Hall, 2002.
- [3] Malina, W., Ablameyko, S., and Pawlak, W. *Podstawy cyfrowego przetwa-rzania obrazów*. Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2002.
- [4] NIENIEWSKI, M. Morfologia matematyczna w przetwarzaniu obrazów. Problemy współczesnej nauki. Teoria i zastosowania. Informatyka. Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1998.
- [5] Tadeusiewicz, R. Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Fundacji i Postępu Telekomunikacji, Kraków, 1997.