# TIGER: Temporally Improved Graph Entity Linker Supplementary Material

#### 1. DATASET CONSTRUCTION

TempEL is a key benchmark dataset for temporal entity linking. To investigate if structured information present in the knowledge graph can help with this task, we combine TempEL<sup>1</sup> with Wikidata5M<sup>2</sup>. The dataset we've constructed is divided into five distinct parts. The text-based parts contain the **entity description** and the **mention context**. The graph-based parts include the **structure graph** representing entity relationships, the **feature graph** built from the embeddings of the entity descriptions, and the **feature matrix** derived from tokens within entity descriptions.

The construction process is shown in Figure S1 and we now walk through each step.



Fig. S1. Dataset construction process.

First, we categorized each year of data from the TempEL dataset into entity descriptions and mention context parts based on the year. The entity description comprises the title, text, document id, and importantly the unique id of the entity (its QID). The mention context consists of context left, context right, mention, label, QID, and category.

Second, we create a structure graph based on the relationship in Wikidata5M dataset and the entity IDs in TempEL dataset. There are numerous relationships among entities in the Wikidata5M dataset. To filter down the number of relationships, we matched the entity IDs (also QIDs) of these relationships with the QID in the entity descriptions from TempEL dataset. If both QIDs in a relationship in the Wikidata5M data are present in the existing entity description, we keep the relationship. The structure graph is an  $n \times n$  adjacency matrix, where n represents the total number of entities in the dataset. Each row indicates whether a entity has a connection with other entity. The adjacency matrix is made up of 0s and 1s. If entity i and entity j are connected, the value in the ith row and jth column of the matrix is 1; otherwise, it is 0.

Note that, at this point, we may have introduced temporal leakage. This is because the cutoff for the Wikidata5M dataset is July 2019. If we construct a structure graph based on Wikidata5M,

 $<sup>^1</sup> https://cloud.ilabt.imec.be/index.php/s/RinXy8NgqdW58RW\\$ 

<sup>&</sup>lt;sup>2</sup>https://deepgraphlearning.github.io/project/wikidata5m

temporal leakage might occur when dealing with data from years prior to 2019. For instance, if entity 1 and entity 2 had no relationship in 2013 but established one in 2019, our construction of the 2013 structure graph would inevitably link entity 1 and entity 2. However, the efficacy of our model can still be demonstrated. For example, when trained on 2013 data and tested in 2022, our model increased the accuracy from the baseline of 23.1% to 27.45%. During the training process, the input during training did not include entity relationships post-2019.

Third, we built the feature graph using the embeddings from entity descriptions. We employed the pre-trained bert-base-uncased model to embed the textual information associated with the "text" key in the entity description. By accessing the embedded information for each entity in the dataset, we established a kNN graph based on these entities, which we refer to as the feature graph. This graph highlights the connections between entities based on their entity descriptions. The feature graph is also an  $n \times n$  adjacency matrix, where n represents the total number of entities in the dataset. Each row indicates whether an entity has a connection with other entities. If entity i and entity j are connected, the value in the ith row and jth column of the matrix is 1; otherwise, it is 0.

The difference between connections in the structure graph and those in the feature graph is that the connections in the structure graph are constructed based on actual existing links. For instance, on the Wikipedia page for "Weightlifting (Q83462)", the "Summer Olympic Games (Q212434)" is mentioned in the first two paragraphs. Hence a connection between these two entities exists in the structure graph. However, connections in the feature graph are generated based on the embeddings of entity descriptions, which might not exist in the KG but can still benefit the model. For example, while "Arizona\_Wildcats (Q4620330)" and "Summer Olympic Games (Q212434)" aren't directly related, the embeddings of their descriptions have created a link between them. This makes "Arizona\_Wildcats (Q4620330)" less likely to be confused with "Arizona (Q816)" or "Wildcats (Q26665)" a 1986 film by Michael Ritchie.

Four, we constructed a feature matrix representing each entity based on the tokens from entity descriptions in the dataset. After getting the token IDs for each entity using the pre-trained bert-base-uncased model, we filtered all token IDs based on their frequency of occurrence. We retained those token IDs that appeared between 46 and 200 times. We discarded highly frequent token IDs since these tokens, such as "is", "an", "the", and other common words, don't offer meaningful differentiation among entities. Also, the less frequent token IDs were removed due to the possibility of them being meaningless noise or random codes, and including an excess of these rare tokens would make the matrix too sparse, slowing down computation. The final feature matrix is an  $n \times m$  dimensional matrix composed of 0s and 1s. Here, n represents the total number of entities in the dataset, while m is the number of retained token IDs. If the data in the  $i^{th}$  row and  $j^{th}$  column of the matrix is 1, it indicates that entity i contains the  $j^{th}$  token.

Finally, we generate distinct mention context subsets from all available mention context samples. Using the QID in each sample as the standard, different degrees of sampling were performed on the training set. Based on the annual entity structure graph, the degree of each QID was calculated, and the training set samples were sampled accordingly. The mention context was divided into the full training set (130k), random samples training set (10k), and top 200 degree samples training set (10k).

## 2. ADDITIONAL RESULTS - TOP 200 DEGREE SAMPLES TRAINING SET

Tables S1 through Table S7 present a comparison between the baseline model (BLINK) and our proposed model (TIGER). The training dataset, termed "top 200 degree samples training set," consists of approximately 10k samples, while the test dataset comprises around 1.5k previously unseen samples. Rows represent training datasets, while columns signify testing datasets. For instance, the entry at the intersection of the first row and tenth column in Table S1 is 0.2310, indicating the model's performance when trained on 2013 data and tested on 2022 data. Performance evaluations for both models were based on recall metrics, specifically @1, @2, @4, @8, @16, @32, and @64.

**Table S1.** Results between our model and the baseline model @1.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.1848 | 0.2193 | 0.1979 | 0.2441 | 0.2166 | 0.1972 | 0.1897 | 0.2117 | 0.2000 | 0.2310 |
| 2014          | 0.1766 | 0.2172 | 0.1917 | 0.2062 | 0.1910 | 0.1862 | 0.1738 | 0.2083 | 0.1621 | 0.2407 |
| 2015          | 0.1883 | 0.2683 | 0.2352 | 0.2414 | 0.2179 | 0.2069 | 0.2090 | 0.2366 | 0.2248 | 0.2572 |
| 2016          | 0.2110 | 0.2724 | 0.2434 | 0.2414 | 0.2628 | 0.2159 | 0.2310 | 0.2483 | 0.2283 | 0.2662 |
| 2017          | 0.2117 | 0.2593 | 0.2400 | 0.2717 | 0.2414 | 0.2331 | 0.2145 | 0.2421 | 0.2097 | 0.2772 |
| 2018          | 0.2000 | 0.2131 | 0.2145 | 0.2559 | 0.2062 | 0.1959 | 0.1800 | 0.1979 | 0.1924 | 0.2586 |
| 2019          | 0.1834 | 0.2166 | 0.1945 | 0.2076 | 0.2021 | 0.1883 | 0.1772 | 0.1869 | 0.1938 | 0.2476 |
| 2020          | 0.2262 | 0.2531 | 0.2290 | 0.2731 | 0.2690 | 0.2303 | 0.2262 | 0.2372 | 0.2228 | 0.2586 |
| 2021          | 0.1952 | 0.2400 | 0.2179 | 0.2338 | 0.2497 | 0.2221 | 0.2248 | 0.2228 | 0.2014 | 0.2379 |
| 2022          | 0.1917 | 0.2228 | 0.2207 | 0.2297 | 0.2124 | 0.2034 | 0.2076 | 0.2166 | 0.2207 | 0.2372 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.2255 | 0.2628 | 0.2324 | 0.2731 | 0.2538 | 0.2221 | 0.2214 | 0.2317 | 0.2200 | 0.2745 |
| 2014          | 0.2131 | 0.2690 | 0.2276 | 0.2517 | 0.2579 | 0.2048 | 0.2124 | 0.2262 | 0.2069 | 0.2648 |
| 2015          | 0.1924 | 0.2386 | 0.2207 | 0.2366 | 0.2393 | 0.2014 | 0.1972 | 0.2200 | 0.1855 | 0.2366 |
| 2016          | 0.1717 | 0.2324 | 0.2000 | 0.2200 | 0.2248 | 0.1903 | 0.1910 | 0.2283 | 0.2034 | 0.2359 |
| 2017          | 0.2124 | 0.2669 | 0.2303 | 0.2614 | 0.2786 | 0.2228 | 0.2234 | 0.2421 | 0.2310 | 0.2669 |
| 2018          | 0.1986 | 0.2234 | 0.2055 | 0.2455 | 0.2234 | 0.1979 | 0.1993 | 0.2324 | 0.2117 | 0.2600 |
| 2019          | 0.1917 | 0.2393 | 0.2269 | 0.2214 | 0.2248 | 0.2028 | 0.1890 | 0.2097 | 0.2193 | 0.2455 |
| 2020          | 0.2028 | 0.2421 | 0.2062 | 0.2345 | 0.2228 | 0.1945 | 0.1959 | 0.2179 | 0.1993 | 0.2559 |
| 2021          | 0.1972 | 0.2469 | 0.2062 | 0.2400 | 0.2324 | 0.2048 | 0.2041 | 0.2228 | 0.2048 | 0.2434 |
| 2022          | 0.2186 | 0.2407 | 0.2297 | 0.2428 | 0.2255 | 0.2083 | 0.2083 | 0.2276 | 0.2117 | 0.2745 |

**Table S2.** Results between our model and the baseline model @2.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.2738 | 0.3110 | 0.2793 | 0.3503 | 0.3124 | 0.2655 | 0.2600 | 0.2869 | 0.2862 | 0.3276 |
| 2014          | 0.2476 | 0.3048 | 0.2793 | 0.3110 | 0.2869 | 0.2641 | 0.2614 | 0.2848 | 0.2441 | 0.3186 |
| 2015          | 0.2897 | 0.3469 | 0.3352 | 0.3593 | 0.3366 | 0.2917 | 0.2931 | 0.3310 | 0.3131 | 0.3441 |
| 2016          | 0.2945 | 0.3607 | 0.3434 | 0.3683 | 0.3634 | 0.3021 | 0.3434 | 0.3628 | 0.3159 | 0.3483 |
| 2017          | 0.2966 | 0.3503 | 0.3345 | 0.3814 | 0.3483 | 0.3179 | 0.3172 | 0.3441 | 0.3028 | 0.3717 |
| 2018          | 0.2669 | 0.2966 | 0.2966 | 0.3531 | 0.3028 | 0.2669 | 0.2607 | 0.2903 | 0.2745 | 0.3400 |
| 2019          | 0.2641 | 0.2848 | 0.2807 | 0.3124 | 0.2972 | 0.2634 | 0.2538 | 0.2669 | 0.2607 | 0.3248 |
| 2020          | 0.3117 | 0.3586 | 0.3228 | 0.3786 | 0.3710 | 0.3007 | 0.3297 | 0.3297 | 0.3069 | 0.3545 |
| 2021          | 0.2903 | 0.3421 | 0.3145 | 0.3628 | 0.3607 | 0.3172 | 0.3193 | 0.3297 | 0.2876 | 0.3366 |
| 2022          | 0.2697 | 0.3000 | 0.3103 | 0.3434 | 0.3097 | 0.2779 | 0.2972 | 0.3152 | 0.2959 | 0.3352 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.3034 | 0.3490 | 0.3310 | 0.3897 | 0.3683 | 0.3159 | 0.3207 | 0.3455 | 0.3097 | 0.3607 |
| 2014          | 0.3069 | 0.3566 | 0.3200 | 0.3566 | 0.3476 | 0.2834 | 0.3152 | 0.3090 | 0.3048 | 0.3600 |
| 2015          | 0.2862 | 0.3152 | 0.3034 | 0.3428 | 0.3372 | 0.2703 | 0.2945 | 0.3179 | 0.2600 | 0.3331 |
| 2016          | 0.2538 | 0.3083 | 0.2821 | 0.3290 | 0.3283 | 0.2841 | 0.2924 | 0.3103 | 0.2807 | 0.3400 |
| 2017          | 0.2897 | 0.3517 | 0.3393 | 0.3779 | 0.3752 | 0.3207 | 0.3214 | 0.3407 | 0.3028 | 0.3641 |
| 2018          | 0.2779 | 0.3234 | 0.3014 | 0.3476 | 0.3234 | 0.2710 | 0.2779 | 0.3331 | 0.2855 | 0.3566 |
| 2019          | 0.2883 | 0.3241 | 0.3000 | 0.3234 | 0.3214 | 0.2786 | 0.2786 | 0.2938 | 0.2890 | 0.3317 |
| 2020          | 0.2890 | 0.3359 | 0.3131 | 0.3441 | 0.3159 | 0.2848 | 0.2966 | 0.2945 | 0.2855 | 0.3524 |
| 2021          | 0.2855 | 0.3393 | 0.3166 | 0.3524 | 0.3269 | 0.2772 | 0.2924 | 0.3179 | 0.2869 | 0.3372 |
| 2022          | 0.2924 | 0.3386 | 0.3186 | 0.3579 | 0.3269 | 0.2979 | 0.3048 | 0.3179 | 0.2993 | 0.3717 |

**Table S3.** Results between our model and the baseline model @4.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.3441 | 0.3993 | 0.3717 | 0.4752 | 0.4345 | 0.3524 | 0.3531 | 0.3979 | 0.3759 | 0.4290 |
| 2014          | 0.3455 | 0.3993 | 0.3738 | 0.4193 | 0.4021 | 0.3490 | 0.3434 | 0.3821 | 0.3207 | 0.4090 |
| 2015          | 0.3910 | 0.4448 | 0.4248 | 0.4703 | 0.4531 | 0.3924 | 0.3986 | 0.4386 | 0.4145 | 0.4538 |
| 2016          | 0.3972 | 0.4724 | 0.4407 | 0.4766 | 0.4772 | 0.4097 | 0.4441 | 0.4710 | 0.4262 | 0.4655 |
| 2017          | 0.3972 | 0.4572 | 0.4269 | 0.4959 | 0.4648 | 0.4007 | 0.4090 | 0.4490 | 0.3903 | 0.4772 |
| 2018          | 0.3469 | 0.3890 | 0.3910 | 0.4510 | 0.3966 | 0.3593 | 0.3566 | 0.3841 | 0.3634 | 0.4324 |
| 2019          | 0.3366 | 0.3917 | 0.3614 | 0.4186 | 0.3828 | 0.3400 | 0.3483 | 0.3607 | 0.3359 | 0.4055 |
| 2020          | 0.3959 | 0.4531 | 0.4069 | 0.4766 | 0.4703 | 0.3966 | 0.4193 | 0.4434 | 0.4048 | 0.4634 |
| 2021          | 0.3752 | 0.4600 | 0.4069 | 0.4766 | 0.4586 | 0.4131 | 0.4269 | 0.4359 | 0.3862 | 0.4455 |
| 2022          | 0.3690 | 0.4028 | 0.3862 | 0.4559 | 0.4303 | 0.3662 | 0.3979 | 0.4103 | 0.4000 | 0.4497 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.3952 | 0.4469 | 0.4193 | 0.4862 | 0.4834 | 0.4207 | 0.4228 | 0.4448 | 0.3931 | 0.4648 |
| 2014          | 0.3931 | 0.4476 | 0.4159 | 0.4752 | 0.4510 | 0.3966 | 0.4179 | 0.4145 | 0.4179 | 0.4745 |
| 2015          | 0.3600 | 0.4131 | 0.4041 | 0.4497 | 0.4407 | 0.3593 | 0.3848 | 0.4041 | 0.3517 | 0.4352 |
| 2016          | 0.3455 | 0.4048 | 0.3786 | 0.4297 | 0.4276 | 0.3848 | 0.3952 | 0.4076 | 0.3738 | 0.4510 |
| 2017          | 0.3924 | 0.4538 | 0.4214 | 0.4848 | 0.4724 | 0.4241 | 0.4386 | 0.4517 | 0.4014 | 0.4703 |
| 2018          | 0.3669 | 0.4352 | 0.3759 | 0.4490 | 0.4366 | 0.3593 | 0.3959 | 0.4317 | 0.3800 | 0.4448 |
| 2019          | 0.3655 | 0.4145 | 0.3890 | 0.4372 | 0.4400 | 0.3690 | 0.3752 | 0.3828 | 0.3807 | 0.4372 |
| 2020          | 0.3752 | 0.4276 | 0.4103 | 0.4345 | 0.4234 | 0.3731 | 0.3834 | 0.3903 | 0.3828 | 0.4476 |
| 2021          | 0.3655 | 0.4283 | 0.4097 | 0.4731 | 0.4283 | 0.3703 | 0.4007 | 0.4221 | 0.4007 | 0.4497 |
| 2022          | 0.4021 | 0.4441 | 0.4200 | 0.4772 | 0.4524 | 0.3910 | 0.4090 | 0.4290 | 0.4055 | 0.4690 |

**Table S4.** Results between our model and the baseline model @8.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.4455 | 0.5110 | 0.4834 | 0.5731 | 0.5497 | 0.4634 | 0.4641 | 0.5048 | 0.4855 | 0.5310 |
| 2014          | 0.4510 | 0.4986 | 0.4772 | 0.5324 | 0.5131 | 0.4545 | 0.4559 | 0.4869 | 0.4207 | 0.5179 |
| 2015          | 0.4931 | 0.5476 | 0.5324 | 0.5945 | 0.5510 | 0.5069 | 0.5131 | 0.5552 | 0.5338 | 0.5959 |
| 2016          | 0.5152 | 0.5759 | 0.5290 | 0.5938 | 0.5683 | 0.5324 | 0.5579 | 0.5628 | 0.5352 | 0.5855 |
| 2017          | 0.5062 | 0.5510 | 0.5345 | 0.6028 | 0.5676 | 0.5207 | 0.5290 | 0.5572 | 0.4959 | 0.5890 |
| 2018          | 0.4331 | 0.4903 | 0.4917 | 0.5469 | 0.4986 | 0.4462 | 0.4566 | 0.4703 | 0.4662 | 0.5200 |
| 2019          | 0.4248 | 0.4883 | 0.4579 | 0.5124 | 0.4766 | 0.4338 | 0.4545 | 0.4552 | 0.4228 | 0.5041 |
| 2020          | 0.4931 | 0.5607 | 0.5214 | 0.5814 | 0.5600 | 0.5248 | 0.5221 | 0.5407 | 0.5076 | 0.5717 |
| 2021          | 0.4745 | 0.5600 | 0.5048 | 0.5883 | 0.5517 | 0.5186 | 0.5386 | 0.5262 | 0.4986 | 0.5600 |
| 2022          | 0.4469 | 0.5228 | 0.4952 | 0.5703 | 0.5407 | 0.4890 | 0.5055 | 0.5048 | 0.5014 | 0.5393 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.4903 | 0.5600 | 0.5083 | 0.6069 | 0.5807 | 0.5248 | 0.5462 | 0.5476 | 0.5041 | 0.5710 |
| 2014          | 0.4772 | 0.5393 | 0.5228 | 0.5841 | 0.5428 | 0.5041 | 0.5172 | 0.5069 | 0.5248 | 0.5890 |
| 2015          | 0.4634 | 0.5076 | 0.5028 | 0.5752 | 0.5448 | 0.4752 | 0.4869 | 0.5179 | 0.4497 | 0.5441 |
| 2016          | 0.4441 | 0.5124 | 0.4676 | 0.5221 | 0.5393 | 0.4779 | 0.5014 | 0.4993 | 0.4821 | 0.5600 |
| 2017          | 0.5014 | 0.5579 | 0.5352 | 0.5952 | 0.5669 | 0.5228 | 0.5462 | 0.5614 | 0.4931 | 0.5662 |
| 2018          | 0.4628 | 0.5159 | 0.4800 | 0.5524 | 0.5262 | 0.4731 | 0.5021 | 0.5441 | 0.4903 | 0.5628 |
| 2019          | 0.4469 | 0.5090 | 0.4793 | 0.5538 | 0.5290 | 0.4793 | 0.4703 | 0.4834 | 0.4814 | 0.5345 |
| 2020          | 0.4662 | 0.5269 | 0.5110 | 0.5545 | 0.5310 | 0.4752 | 0.4828 | 0.4841 | 0.4917 | 0.5566 |
| 2021          | 0.4552 | 0.5310 | 0.5145 | 0.5724 | 0.5379 | 0.4924 | 0.5131 | 0.5131 | 0.5241 | 0.5655 |
| 2022          | 0.5014 | 0.5455 | 0.5234 | 0.5897 | 0.5441 | 0.5028 | 0.5172 | 0.5214 | 0.5159 | 0.5972 |

**Table S5.** Results between our model and the baseline model @16.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.5531 | 0.6055 | 0.6062 | 0.6607 | 0.6469 | 0.5766 | 0.5828 | 0.6028 | 0.5883 | 0.6359 |
| 2014          | 0.5483 | 0.5924 | 0.5945 | 0.6324 | 0.6090 | 0.5683 | 0.5662 | 0.6062 | 0.5297 | 0.6434 |
| 2015          | 0.5931 | 0.6455 | 0.6303 | 0.6952 | 0.6566 | 0.6159 | 0.6228 | 0.6497 | 0.6324 | 0.6931 |
| 2016          | 0.6152 | 0.6703 | 0.6503 | 0.6800 | 0.6759 | 0.6524 | 0.6538 | 0.6572 | 0.6269 | 0.6938 |
| 2017          | 0.6159 | 0.6524 | 0.6497 | 0.6710 | 0.6669 | 0.6400 | 0.6352 | 0.6490 | 0.6083 | 0.6855 |
| 2018          | 0.5103 | 0.5876 | 0.5959 | 0.6393 | 0.5862 | 0.5607 | 0.5524 | 0.5669 | 0.5600 | 0.6283 |
| 2019          | 0.5007 | 0.5752 | 0.5600 | 0.6117 | 0.5738 | 0.5331 | 0.5634 | 0.5297 | 0.5207 | 0.5841 |
| 2020          | 0.5717 | 0.6566 | 0.6172 | 0.6759 | 0.6586 | 0.6214 | 0.6186 | 0.6359 | 0.6110 | 0.6752 |
| 2021          | 0.5669 | 0.6483 | 0.6186 | 0.6655 | 0.6566 | 0.6310 | 0.6324 | 0.6283 | 0.6110 | 0.6634 |
| 2022          | 0.5393 | 0.6152 | 0.6076 | 0.6628 | 0.6448 | 0.5890 | 0.6159 | 0.6021 | 0.6041 | 0.6545 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.5786 | 0.6690 | 0.6159 | 0.6959 | 0.6607 | 0.6283 | 0.6503 | 0.6366 | 0.6124 | 0.6697 |
| 2014          | 0.5669 | 0.6407 | 0.6303 | 0.6703 | 0.6441 | 0.6124 | 0.6234 | 0.6103 | 0.6317 | 0.6828 |
| 2015          | 0.5614 | 0.6193 | 0.6221 | 0.6579 | 0.6469 | 0.5697 | 0.5897 | 0.6186 | 0.5655 | 0.6497 |
| 2016          | 0.5434 | 0.6097 | 0.5807 | 0.6159 | 0.6338 | 0.5821 | 0.6034 | 0.5910 | 0.5821 | 0.6586 |
| 2017          | 0.6048 | 0.6572 | 0.6248 | 0.6883 | 0.6510 | 0.6290 | 0.6345 | 0.6510 | 0.6062 | 0.6648 |
| 2018          | 0.5552 | 0.6021 | 0.5931 | 0.6503 | 0.6214 | 0.5855 | 0.5931 | 0.6338 | 0.5910 | 0.6703 |
| 2019          | 0.5276 | 0.6007 | 0.5959 | 0.6434 | 0.6290 | 0.5814 | 0.5752 | 0.5779 | 0.5841 | 0.6186 |
| 2020          | 0.5593 | 0.6097 | 0.6138 | 0.6503 | 0.6276 | 0.5807 | 0.5834 | 0.5724 | 0.5993 | 0.6359 |
| 2021          | 0.5641 | 0.6441 | 0.6138 | 0.6593 | 0.6262 | 0.5855 | 0.6166 | 0.6028 | 0.6090 | 0.6766 |
| 2022          | 0.5993 | 0.6338 | 0.6366 | 0.6841 | 0.6407 | 0.6131 | 0.6221 | 0.6090 | 0.6124 | 0.7117 |

**Table S6.** Results between our model and the baseline model @32.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.6379 | 0.7138 | 0.6966 | 0.7352 | 0.7269 | 0.6924 | 0.6759 | 0.7138 | 0.6855 | 0.7503 |
| 2014          | 0.6476 | 0.6993 | 0.6931 | 0.7041 | 0.7131 | 0.6752 | 0.6669 | 0.6910 | 0.6338 | 0.7276 |
| 2015          | 0.6807 | 0.7393 | 0.7428 | 0.7586 | 0.7297 | 0.7255 | 0.7234 | 0.7372 | 0.7166 | 0.7683 |
| 2016          | 0.6959 | 0.7703 | 0.7497 | 0.7655 | 0.7559 | 0.7628 | 0.7428 | 0.7469 | 0.7083 | 0.7807 |
| 2017          | 0.6993 | 0.7462 | 0.7400 | 0.7359 | 0.7559 | 0.7531 | 0.7214 | 0.7303 | 0.6966 | 0.7669 |
| 2018          | 0.5979 | 0.6821 | 0.6938 | 0.7200 | 0.6669 | 0.6524 | 0.6538 | 0.6476 | 0.6524 | 0.7055 |
| 2019          | 0.5738 | 0.6621 | 0.6310 | 0.6993 | 0.6593 | 0.6441 | 0.6538 | 0.6124 | 0.6262 | 0.6752 |
| 2020          | 0.6545 | 0.7324 | 0.7297 | 0.7552 | 0.7366 | 0.7172 | 0.7069 | 0.7083 | 0.7234 | 0.7655 |
| 2021          | 0.6614 | 0.7455 | 0.7193 | 0.7531 | 0.7448 | 0.7366 | 0.7138 | 0.7152 | 0.7014 | 0.7669 |
| 2022          | 0.6290 | 0.7117 | 0.6993 | 0.7490 | 0.7297 | 0.7048 | 0.7131 | 0.6855 | 0.7028 | 0.7366 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.6593 | 0.7524 | 0.7069 | 0.7690 | 0.7434 | 0.7117 | 0.7276 | 0.7062 | 0.7090 | 0.7648 |
| 2014          | 0.6510 | 0.7276 | 0.7131 | 0.7552 | 0.7283 | 0.7172 | 0.7166 | 0.6986 | 0.7214 | 0.7641 |
| 2015          | 0.6455 | 0.7172 | 0.7000 | 0.7359 | 0.7317 | 0.6697 | 0.6834 | 0.7172 | 0.6669 | 0.7262 |
| 2016          | 0.6276 | 0.7076 | 0.6834 | 0.7062 | 0.7214 | 0.6807 | 0.7000 | 0.6814 | 0.6738 | 0.7407 |
| 2017          | 0.6897 | 0.7531 | 0.7248 | 0.7745 | 0.7359 | 0.7310 | 0.7117 | 0.7310 | 0.6828 | 0.7490 |
| 2018          | 0.6352 | 0.7007 | 0.6952 | 0.7393 | 0.7090 | 0.6752 | 0.6766 | 0.7076 | 0.6759 | 0.7455 |
| 2019          | 0.6166 | 0.6979 | 0.6986 | 0.7193 | 0.7214 | 0.6807 | 0.6628 | 0.6669 | 0.6786 | 0.6993 |
| 2020          | 0.6331 | 0.7048 | 0.6945 | 0.7103 | 0.7131 | 0.6834 | 0.6793 | 0.6648 | 0.6828 | 0.7352 |
| 2021          | 0.6490 | 0.7262 | 0.6938 | 0.7393 | 0.7117 | 0.6883 | 0.7055 | 0.6834 | 0.7152 | 0.7524 |
| 2022          | 0.6793 | 0.7276 | 0.7324 | 0.7600 | 0.7310 | 0.7131 | 0.7090 | 0.7055 | 0.6931 | 0.7752 |

**Table S7.** Results between our model and the baseline model @64.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.7124 | 0.7993 | 0.7890 | 0.7945 | 0.8021 | 0.7834 | 0.7572 | 0.7869 | 0.7614 | 0.8214 |
| 2014          | 0.7324 | 0.7979 | 0.7586 | 0.7855 | 0.7848 | 0.7524 | 0.7503 | 0.7683 | 0.7124 | 0.8076 |
| 2015          | 0.7600 | 0.8131 | 0.8097 | 0.8283 | 0.8028 | 0.7952 | 0.7972 | 0.8062 | 0.7897 | 0.8421 |
| 2016          | 0.7800 | 0.8421 | 0.8193 | 0.8331 | 0.8228 | 0.8241 | 0.8124 | 0.8062 | 0.7821 | 0.8352 |
| 2017          | 0.7931 | 0.8276 | 0.8186 | 0.8124 | 0.8241 | 0.8193 | 0.7924 | 0.8014 | 0.7752 | 0.8414 |
| 2018          | 0.6834 | 0.7579 | 0.7690 | 0.7910 | 0.7655 | 0.7469 | 0.7269 | 0.7248 | 0.7310 | 0.7807 |
| 2019          | 0.6372 | 0.7497 | 0.7200 | 0.7779 | 0.7490 | 0.7324 | 0.7269 | 0.7062 | 0.7131 | 0.7469 |
| 2020          | 0.7345 | 0.8124 | 0.7924 | 0.8152 | 0.8138 | 0.7910 | 0.7752 | 0.7669 | 0.8166 | 0.8207 |
| 2021          | 0.7359 | 0.8124 | 0.7966 | 0.8166 | 0.8097 | 0.8269 | 0.7952 | 0.7979 | 0.7669 | 0.8421 |
| 2022          | 0.7228 | 0.7924 | 0.7800 | 0.8179 | 0.8014 | 0.7938 | 0.7931 | 0.7731 | 0.7924 | 0.8062 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.7393 | 0.8269 | 0.7959 | 0.8262 | 0.8083 | 0.7979 | 0.7972 | 0.7772 | 0.7862 | 0.8276 |
| 2014          | 0.7359 | 0.8166 | 0.8000 | 0.8145 | 0.8048 | 0.7931 | 0.7883 | 0.7772 | 0.8021 | 0.8352 |
| 2015          | 0.7255 | 0.7972 | 0.7738 | 0.8124 | 0.7952 | 0.7614 | 0.7931 | 0.7903 | 0.7566 | 0.8103 |
| 2016          | 0.7172 | 0.7952 | 0.7676 | 0.8021 | 0.7952 | 0.7703 | 0.7759 | 0.7703 | 0.7579 | 0.8152 |
| 2017          | 0.7814 | 0.8317 | 0.8090 | 0.8483 | 0.8041 | 0.8083 | 0.7828 | 0.8014 | 0.7703 | 0.8248 |
| 2018          | 0.7076 | 0.7897 | 0.7766 | 0.8214 | 0.7897 | 0.7662 | 0.7586 | 0.7807 | 0.7490 | 0.8290 |
| 2019          | 0.7028 | 0.7807 | 0.7772 | 0.7828 | 0.7807 | 0.7538 | 0.7352 | 0.7310 | 0.7607 | 0.7897 |
| 2020          | 0.7255 | 0.7848 | 0.7841 | 0.7903 | 0.7883 | 0.7710 | 0.7517 | 0.7366 | 0.7731 | 0.8090 |
| 2021          | 0.7269 | 0.8145 | 0.7931 | 0.8014 | 0.7848 | 0.7759 | 0.7897 | 0.7614 | 0.8041 | 0.8172 |
| 2022          | 0.7586 | 0.8186 | 0.8145 | 0.8331 | 0.8055 | 0.7979 | 0.7869 | 0.7779 | 0.7648 | 0.8400 |

## 3. ADDITIONAL RESULTS - RANDOM SAMPLES TRAINING SET

Tables S8 through Table S14 present a comparison between the baseline model (BLINK) and our proposed model (TIGER). The training dataset, termed "random samples training set," consists of approximately 10k samples, while the test dataset comprises around 1.5k previously unseen samples. Rows represent training datasets, while columns signify testing datasets. For instance, the entry at the intersection of the first row and tenth column in Table S8 is 0.4662, indicating the model's performance when trained on 2013 data and tested on 2022 data. Performance evaluations for both models were based on recall metrics, specifically @1, @2, @4, @8, @16, @32, and @64.

**Table S8.** Results between our model and the baseline model @1.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.4903 | 0.4931 | 0.4490 | 0.5000 | 0.4655 | 0.4738 | 0.4248 | 0.4917 | 0.3828 | 0.4662 |
| 2014          | 0.4586 | 0.4945 | 0.4641 | 0.4828 | 0.4731 | 0.4710 | 0.4476 | 0.4634 | 0.3869 | 0.4662 |
| 2015          | 0.4090 | 0.4703 | 0.4497 | 0.4890 | 0.4524 | 0.4297 | 0.4186 | 0.4779 | 0.3924 | 0.4372 |
| 2016          | 0.4359 | 0.4848 | 0.4172 | 0.4572 | 0.4545 | 0.4186 | 0.4110 | 0.4131 | 0.3545 | 0.4421 |
| 2017          | 0.3834 | 0.4421 | 0.3841 | 0.4545 | 0.4117 | 0.4331 | 0.4117 | 0.4379 | 0.3138 | 0.3834 |
| 2018          | 0.4503 | 0.4614 | 0.4593 | 0.4786 | 0.4828 | 0.5152 | 0.4462 | 0.4759 | 0.3538 | 0.4676 |
| 2019          | 0.3655 | 0.4214 | 0.3517 | 0.4228 | 0.4097 | 0.4179 | 0.3828 | 0.4159 | 0.3807 | 0.4207 |
| 2020          | 0.4269 | 0.4766 | 0.4172 | 0.4600 | 0.4407 | 0.4269 | 0.4172 | 0.4538 | 0.3766 | 0.4124 |
| 2021          | 0.4207 | 0.4524 | 0.4283 | 0.4510 | 0.4193 | 0.4131 | 0.4090 | 0.4497 | 0.3634 | 0.4317 |
| 2022          | 0.4290 | 0.4690 | 0.3903 | 0.4434 | 0.4214 | 0.4269 | 0.3834 | 0.4552 | 0.3407 | 0.4483 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.4172 | 0.4793 | 0.4297 | 0.4710 | 0.4110 | 0.4186 | 0.3745 | 0.4497 | 0.3634 | 0.4476 |
| 2014          | 0.4959 | 0.5021 | 0.4731 | 0.5007 | 0.4890 | 0.4924 | 0.4407 | 0.4931 | 0.4048 | 0.4669 |
| 2015          | 0.4524 | 0.4441 | 0.3931 | 0.4772 | 0.4159 | 0.4283 | 0.4062 | 0.4572 | 0.3959 | 0.4290 |
| 2016          | 0.4531 | 0.4566 | 0.4434 | 0.4607 | 0.4366 | 0.4297 | 0.3972 | 0.4462 | 0.3386 | 0.4228 |
| 2017          | 0.4166 | 0.4600 | 0.4207 | 0.4848 | 0.4366 | 0.4634 | 0.3869 | 0.4297 | 0.3345 | 0.4131 |
| 2018          | 0.4503 | 0.4634 | 0.4214 | 0.4793 | 0.4159 | 0.4903 | 0.4317 | 0.4738 | 0.3345 | 0.4552 |
| 2019          | 0.3566 | 0.4200 | 0.3655 | 0.4545 | 0.3966 | 0.4110 | 0.3662 | 0.4048 | 0.3338 | 0.3883 |
| 2020          | 0.4131 | 0.4683 | 0.4207 | 0.4986 | 0.4345 | 0.3952 | 0.3448 | 0.4283 | 0.2931 | 0.4083 |
| 2021          | 0.3841 | 0.4455 | 0.3814 | 0.3959 | 0.3979 | 0.3938 | 0.3890 | 0.4255 | 0.3510 | 0.4090 |
| 2022          | 0.4366 | 0.4807 | 0.4214 | 0.5117 | 0.4607 | 0.4772 | 0.4255 | 0.4910 | 0.3841 | 0.4421 |

**Table S9.** Results between our model and the baseline model @2.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.6524 | 0.6234 | 0.5897 | 0.6490 | 0.6131 | 0.6372 | 0.5883 | 0.6628 | 0.5110 | 0.6262 |
| 2014          | 0.6379 | 0.6138 | 0.6290 | 0.6248 | 0.6069 | 0.6255 | 0.6041 | 0.6214 | 0.4917 | 0.6441 |
| 2015          | 0.5821 | 0.5910 | 0.5924 | 0.6379 | 0.6097 | 0.5855 | 0.5876 | 0.6352 | 0.5083 | 0.5938 |
| 2016          | 0.6221 | 0.6124 | 0.5634 | 0.6186 | 0.6283 | 0.5793 | 0.5414 | 0.5931 | 0.4607 | 0.5966 |
| 2017          | 0.5455 | 0.5731 | 0.5338 | 0.5986 | 0.5745 | 0.5676 | 0.5710 | 0.5903 | 0.4552 | 0.5607 |
| 2018          | 0.6172 | 0.5793 | 0.6048 | 0.6462 | 0.6372 | 0.6428 | 0.6131 | 0.6262 | 0.4931 | 0.6248 |
| 2019          | 0.5193 | 0.5379 | 0.4972 | 0.5731 | 0.5572 | 0.5669 | 0.5297 | 0.5752 | 0.4814 | 0.5662 |
| 2020          | 0.5931 | 0.5910 | 0.5683 | 0.6214 | 0.6069 | 0.5779 | 0.5993 | 0.6366 | 0.4938 | 0.6000 |
| 2021          | 0.5945 | 0.5897 | 0.5772 | 0.6076 | 0.5972 | 0.5766 | 0.5676 | 0.6124 | 0.4800 | 0.6014 |
| 2022          | 0.6034 | 0.6124 | 0.5469 | 0.6014 | 0.5634 | 0.5903 | 0.5738 | 0.6145 | 0.4586 | 0.5890 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.5876 | 0.6055 | 0.5841 | 0.6214 | 0.5690 | 0.5710 | 0.5372 | 0.6221 | 0.4959 | 0.5959 |
| 2014          | 0.6510 | 0.6324 | 0.6221 | 0.6331 | 0.6290 | 0.6276 | 0.5993 | 0.6510 | 0.5200 | 0.6248 |
| 2015          | 0.6152 | 0.5862 | 0.5634 | 0.6234 | 0.5952 | 0.5724 | 0.5655 | 0.6345 | 0.5255 | 0.5993 |
| 2016          | 0.6297 | 0.6090 | 0.5807 | 0.6166 | 0.6262 | 0.5952 | 0.5641 | 0.6069 | 0.4531 | 0.5910 |
| 2017          | 0.6062 | 0.5841 | 0.5476 | 0.6352 | 0.5959 | 0.5945 | 0.5448 | 0.5862 | 0.4655 | 0.5759 |
| 2018          | 0.6062 | 0.5986 | 0.5738 | 0.6290 | 0.6090 | 0.6083 | 0.5772 | 0.6034 | 0.4669 | 0.6172 |
| 2019          | 0.5283 | 0.5503 | 0.5117 | 0.6076 | 0.5517 | 0.5669 | 0.5207 | 0.5703 | 0.4428 | 0.5366 |
| 2020          | 0.5628 | 0.5890 | 0.5683 | 0.6462 | 0.6021 | 0.5317 | 0.4731 | 0.5690 | 0.3952 | 0.5517 |
| 2021          | 0.5662 | 0.5697 | 0.5262 | 0.5393 | 0.5683 | 0.5400 | 0.5490 | 0.5834 | 0.4621 | 0.5683 |
| 2022          | 0.5979 | 0.6083 | 0.5703 | 0.6490 | 0.6297 | 0.5959 | 0.6021 | 0.6241 | 0.4993 | 0.6021 |

**Table S10.** Results between our model and the baseline model @4.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.7814 | 0.7338 | 0.7097 | 0.7462 | 0.7462 | 0.7517 | 0.7290 | 0.7683 | 0.6103 | 0.7379 |
| 2014          | 0.7710 | 0.7200 | 0.7352 | 0.7234 | 0.7297 | 0.7352 | 0.7276 | 0.7441 | 0.6041 | 0.7552 |
| 2015          | 0.7441 | 0.7055 | 0.7303 | 0.7510 | 0.7455 | 0.7083 | 0.7193 | 0.7331 | 0.6234 | 0.7434 |
| 2016          | 0.7593 | 0.7117 | 0.6917 | 0.7234 | 0.7552 | 0.7110 | 0.7159 | 0.7283 | 0.5593 | 0.7297 |
| 2017          | 0.7034 | 0.7014 | 0.6814 | 0.7276 | 0.7193 | 0.7110 | 0.7076 | 0.7214 | 0.5600 | 0.6807 |
| 2018          | 0.7772 | 0.6959 | 0.7310 | 0.7352 | 0.7683 | 0.7593 | 0.7248 | 0.7379 | 0.6041 | 0.7497 |
| 2019          | 0.6903 | 0.6448 | 0.6469 | 0.6903 | 0.6924 | 0.6890 | 0.6800 | 0.6924 | 0.5938 | 0.6959 |
| 2020          | 0.7359 | 0.7083 | 0.6779 | 0.7097 | 0.7448 | 0.7200 | 0.7234 | 0.7455 | 0.6055 | 0.7062 |
| 2021          | 0.7428 | 0.7152 | 0.7131 | 0.7179 | 0.7193 | 0.7034 | 0.7152 | 0.7303 | 0.5972 | 0.7303 |
| 2022          | 0.7469 | 0.7241 | 0.6814 | 0.7152 | 0.6938 | 0.7241 | 0.7048 | 0.7248 | 0.5855 | 0.7007 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.7441 | 0.7055 | 0.7021 | 0.7372 | 0.7028 | 0.7145 | 0.6759 | 0.7317 | 0.5993 | 0.7200 |
| 2014          | 0.7800 | 0.7393 | 0.7379 | 0.7421 | 0.7531 | 0.7393 | 0.7434 | 0.7283 | 0.6248 | 0.7338 |
| 2015          | 0.7600 | 0.7069 | 0.6897 | 0.7379 | 0.7345 | 0.7076 | 0.7103 | 0.7441 | 0.6228 | 0.7103 |
| 2016          | 0.7731 | 0.7159 | 0.6972 | 0.7152 | 0.7545 | 0.7179 | 0.7048 | 0.7428 | 0.5703 | 0.7214 |
| 2017          | 0.7483 | 0.7076 | 0.6855 | 0.7400 | 0.7214 | 0.7124 | 0.6834 | 0.7055 | 0.5641 | 0.7055 |
| 2018          | 0.7517 | 0.7062 | 0.6724 | 0.7379 | 0.7503 | 0.7234 | 0.7138 | 0.7276 | 0.5724 | 0.7297 |
| 2019          | 0.6931 | 0.6614 | 0.6428 | 0.7000 | 0.6917 | 0.6883 | 0.6641 | 0.6855 | 0.5586 | 0.6600 |
| 2020          | 0.7110 | 0.6959 | 0.7021 | 0.7359 | 0.7262 | 0.6641 | 0.6469 | 0.7034 | 0.5214 | 0.6897 |
| 2021          | 0.7359 | 0.6862 | 0.6483 | 0.6600 | 0.6931 | 0.6614 | 0.7021 | 0.7179 | 0.5924 | 0.7117 |
| 2022          | 0.7428 | 0.7117 | 0.7055 | 0.7510 | 0.7510 | 0.7179 | 0.7490 | 0.7297 | 0.6034 | 0.7214 |

**Table S11.** Results between our model and the baseline model @8.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.8566 | 0.8262 | 0.8241 | 0.8234 | 0.8283 | 0.8283 | 0.8234 | 0.8407 | 0.7083 | 0.8193 |
| 2014          | 0.8628 | 0.8186 | 0.8131 | 0.8200 | 0.8345 | 0.8234 | 0.8200 | 0.8262 | 0.7007 | 0.8152 |
| 2015          | 0.8607 | 0.8138 | 0.8359 | 0.8248 | 0.8428 | 0.8200 | 0.8007 | 0.8379 | 0.7117 | 0.8159 |
| 2016          | 0.8538 | 0.7959 | 0.8186 | 0.8007 | 0.8400 | 0.8152 | 0.8097 | 0.8166 | 0.6628 | 0.8228 |
| 2017          | 0.8400 | 0.7897 | 0.7883 | 0.8069 | 0.8352 | 0.8062 | 0.8007 | 0.8117 | 0.6683 | 0.7800 |
| 2018          | 0.8676 | 0.8028 | 0.8317 | 0.8200 | 0.8517 | 0.8517 | 0.8124 | 0.8248 | 0.6876 | 0.8166 |
| 2019          | 0.8200 | 0.7524 | 0.7662 | 0.7772 | 0.8000 | 0.7959 | 0.7710 | 0.7890 | 0.6938 | 0.7883 |
| 2020          | 0.8552 | 0.8014 | 0.7966 | 0.7903 | 0.8359 | 0.8241 | 0.8207 | 0.8228 | 0.6986 | 0.7890 |
| 2021          | 0.8593 | 0.8248 | 0.8248 | 0.7972 | 0.8317 | 0.8110 | 0.8138 | 0.8255 | 0.7028 | 0.8172 |
| 2022          | 0.8545 | 0.8076 | 0.8103 | 0.7890 | 0.7903 | 0.8145 | 0.8007 | 0.8145 | 0.6786 | 0.7779 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.8483 | 0.8055 | 0.8152 | 0.8076 | 0.8124 | 0.8179 | 0.7931 | 0.8193 | 0.7048 | 0.8062 |
| 2014          | 0.8752 | 0.8297 | 0.8379 | 0.8297 | 0.8441 | 0.8234 | 0.8372 | 0.8124 | 0.7159 | 0.8055 |
| 2015          | 0.8648 | 0.8214 | 0.8069 | 0.8255 | 0.8462 | 0.8214 | 0.7972 | 0.8248 | 0.7055 | 0.7993 |
| 2016          | 0.8662 | 0.8090 | 0.8131 | 0.7966 | 0.8400 | 0.8048 | 0.8145 | 0.8234 | 0.6697 | 0.8103 |
| 2017          | 0.8531 | 0.8069 | 0.8255 | 0.8103 | 0.8407 | 0.8110 | 0.7890 | 0.8048 | 0.6648 | 0.7986 |
| 2018          | 0.8683 | 0.8000 | 0.7897 | 0.8172 | 0.8297 | 0.8248 | 0.7938 | 0.8255 | 0.6772 | 0.8186 |
| 2019          | 0.8034 | 0.7669 | 0.7745 | 0.7779 | 0.8028 | 0.7945 | 0.7710 | 0.7828 | 0.6621 | 0.7566 |
| 2020          | 0.8310 | 0.8090 | 0.8131 | 0.8124 | 0.8200 | 0.7772 | 0.7545 | 0.8014 | 0.6303 | 0.7807 |
| 2021          | 0.8372 | 0.7848 | 0.7717 | 0.7586 | 0.8097 | 0.7786 | 0.7986 | 0.8214 | 0.7103 | 0.8000 |
| 2022          | 0.8434 | 0.8069 | 0.8276 | 0.8159 | 0.8469 | 0.8310 | 0.8317 | 0.8152 | 0.6945 | 0.8083 |

**Table S12.** Results between our model and the baseline model @16.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9276 | 0.8959 | 0.8938 | 0.8855 | 0.8897 | 0.8800 | 0.8931 | 0.9055 | 0.7897 | 0.8855 |
| 2014          | 0.9152 | 0.8890 | 0.9007 | 0.8855 | 0.8959 | 0.8890 | 0.8786 | 0.8910 | 0.7821 | 0.8641 |
| 2015          | 0.9214 | 0.8993 | 0.8917 | 0.8876 | 0.9131 | 0.8731 | 0.8510 | 0.8945 | 0.7862 | 0.8669 |
| 2016          | 0.9207 | 0.8766 | 0.8876 | 0.8759 | 0.9083 | 0.8814 | 0.8655 | 0.8759 | 0.7317 | 0.8710 |
| 2017          | 0.9124 | 0.8655 | 0.8834 | 0.8703 | 0.9055 | 0.8862 | 0.8676 | 0.8683 | 0.7517 | 0.8434 |
| 2018          | 0.9159 | 0.8814 | 0.9021 | 0.8759 | 0.9048 | 0.9028 | 0.8710 | 0.8828 | 0.7545 | 0.8607 |
| 2019          | 0.9014 | 0.8510 | 0.8559 | 0.8517 | 0.8814 | 0.8655 | 0.8490 | 0.8676 | 0.7807 | 0.8448 |
| 2020          | 0.9152 | 0.8731 | 0.8800 | 0.8497 | 0.9131 | 0.8766 | 0.8724 | 0.8855 | 0.7848 | 0.8441 |
| 2021          | 0.9138 | 0.8855 | 0.8979 | 0.8772 | 0.9069 | 0.8731 | 0.8800 | 0.8897 | 0.8000 | 0.8807 |
| 2022          | 0.9179 | 0.8786 | 0.8828 | 0.8600 | 0.8828 | 0.8738 | 0.8703 | 0.8800 | 0.7807 | 0.8510 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9228 | 0.8848 | 0.8855 | 0.8724 | 0.9014 | 0.8731 | 0.8559 | 0.8779 | 0.7869 | 0.8641 |
| 2014          | 0.9262 | 0.8952 | 0.8938 | 0.8959 | 0.9179 | 0.8807 | 0.8966 | 0.8821 | 0.7897 | 0.8552 |
| 2015          | 0.9221 | 0.8897 | 0.8910 | 0.8862 | 0.9103 | 0.8759 | 0.8579 | 0.8876 | 0.7834 | 0.8655 |
| 2016          | 0.9228 | 0.8793 | 0.8876 | 0.8731 | 0.9097 | 0.8731 | 0.8772 | 0.8862 | 0.7455 | 0.8676 |
| 2017          | 0.9172 | 0.8752 | 0.8841 | 0.8855 | 0.9131 | 0.8876 | 0.8634 | 0.8724 | 0.7517 | 0.8621 |
| 2018          | 0.9241 | 0.8828 | 0.8752 | 0.8717 | 0.8952 | 0.8834 | 0.8579 | 0.8869 | 0.7779 | 0.8621 |
| 2019          | 0.8959 | 0.8566 | 0.8648 | 0.8531 | 0.8910 | 0.8552 | 0.8476 | 0.8524 | 0.7607 | 0.8131 |
| 2020          | 0.9062 | 0.8717 | 0.8924 | 0.8772 | 0.8972 | 0.8538 | 0.8366 | 0.8717 | 0.7359 | 0.8510 |
| 2021          | 0.9090 | 0.8662 | 0.8703 | 0.8421 | 0.8966 | 0.8538 | 0.8717 | 0.8821 | 0.8041 | 0.8607 |
| 2022          | 0.9083 | 0.8724 | 0.8945 | 0.8807 | 0.9034 | 0.8848 | 0.8834 | 0.8897 | 0.7834 | 0.8821 |

**Table S13.** Results between our model and the baseline model @32.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9559 | 0.9338 | 0.9283 | 0.9269 | 0.9338 | 0.9228 | 0.9310 | 0.9317 | 0.8593 | 0.9366 |
| 2014          | 0.9510 | 0.9366 | 0.9393 | 0.9234 | 0.9372 | 0.9297 | 0.9193 | 0.9290 | 0.8455 | 0.9097 |
| 2015          | 0.9579 | 0.9359 | 0.9352 | 0.9276 | 0.9510 | 0.9138 | 0.9110 | 0.9324 | 0.8497 | 0.9138 |
| 2016          | 0.9545 | 0.9303 | 0.9303 | 0.9283 | 0.9428 | 0.9241 | 0.9186 | 0.9269 | 0.8159 | 0.9166 |
| 2017          | 0.9510 | 0.9069 | 0.9255 | 0.9186 | 0.9469 | 0.9200 | 0.9062 | 0.9200 | 0.8317 | 0.8952 |
| 2018          | 0.9566 | 0.9221 | 0.9324 | 0.9166 | 0.9379 | 0.9324 | 0.9152 | 0.9262 | 0.8345 | 0.8966 |
| 2019          | 0.9366 | 0.9041 | 0.9166 | 0.9055 | 0.9331 | 0.9076 | 0.9138 | 0.9234 | 0.8421 | 0.8966 |
| 2020          | 0.9517 | 0.9214 | 0.9241 | 0.9014 | 0.9421 | 0.9124 | 0.9103 | 0.9248 | 0.8497 | 0.8993 |
| 2021          | 0.9552 | 0.9228 | 0.9386 | 0.9317 | 0.9434 | 0.9172 | 0.9166 | 0.9248 | 0.8655 | 0.9193 |
| 2022          | 0.9559 | 0.9241 | 0.9345 | 0.9069 | 0.9297 | 0.9166 | 0.9138 | 0.9262 | 0.8414 | 0.9007 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9552 | 0.9276 | 0.9331 | 0.9110 | 0.9393 | 0.9110 | 0.8986 | 0.9159 | 0.8572 | 0.9159 |
| 2014          | 0.9566 | 0.9352 | 0.9366 | 0.9303 | 0.9531 | 0.9228 | 0.9262 | 0.9303 | 0.8476 | 0.8979 |
| 2015          | 0.9510 | 0.9303 | 0.9324 | 0.9345 | 0.9476 | 0.9234 | 0.9193 | 0.9221 | 0.8428 | 0.9131 |
| 2016          | 0.9579 | 0.9255 | 0.9276 | 0.9200 | 0.9483 | 0.9110 | 0.9207 | 0.9283 | 0.8200 | 0.9055 |
| 2017          | 0.9476 | 0.9214 | 0.9193 | 0.9234 | 0.9434 | 0.9241 | 0.9076 | 0.9172 | 0.8352 | 0.9083 |
| 2018          | 0.9538 | 0.9297 | 0.9228 | 0.9179 | 0.9441 | 0.9221 | 0.9097 | 0.9317 | 0.8462 | 0.8993 |
| 2019          | 0.9359 | 0.9076 | 0.9152 | 0.9034 | 0.9393 | 0.8966 | 0.9028 | 0.9117 | 0.8297 | 0.8779 |
| 2020          | 0.9483 | 0.9172 | 0.9338 | 0.9179 | 0.9393 | 0.8972 | 0.8917 | 0.9186 | 0.8124 | 0.9007 |
| 2021          | 0.9531 | 0.9221 | 0.9179 | 0.8993 | 0.9324 | 0.9014 | 0.9117 | 0.9214 | 0.8738 | 0.9124 |
| 2022          | 0.9428 | 0.9145 | 0.9297 | 0.9207 | 0.9407 | 0.9200 | 0.9200 | 0.9262 | 0.8524 | 0.9221 |

**Table S14.** Results between our model and the baseline model @64.

|               |        |        |        | BL     | INK    |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9786 | 0.9559 | 0.9593 | 0.9566 | 0.9614 | 0.9517 | 0.9531 | 0.9552 | 0.9083 | 0.9628 |
| 2014          | 0.9800 | 0.9600 | 0.9634 | 0.9441 | 0.9676 | 0.9476 | 0.9414 | 0.9648 | 0.8993 | 0.9483 |
| 2015          | 0.9793 | 0.9641 | 0.9600 | 0.9552 | 0.9703 | 0.9490 | 0.9428 | 0.9559 | 0.9062 | 0.9469 |
| 2016          | 0.9745 | 0.9566 | 0.9579 | 0.9497 | 0.9669 | 0.9531 | 0.9497 | 0.9593 | 0.8897 | 0.9503 |
| 2017          | 0.9731 | 0.9372 | 0.9510 | 0.9455 | 0.9683 | 0.9455 | 0.9400 | 0.9559 | 0.8952 | 0.9359 |
| 2018          | 0.9779 | 0.9510 | 0.9531 | 0.9352 | 0.9655 | 0.9545 | 0.9428 | 0.9579 | 0.8931 | 0.9338 |
| 2019          | 0.9752 | 0.9372 | 0.9476 | 0.9359 | 0.9621 | 0.9359 | 0.9310 | 0.9476 | 0.8924 | 0.9255 |
| 2020          | 0.9717 | 0.9503 | 0.9497 | 0.9345 | 0.9662 | 0.9448 | 0.9352 | 0.9579 | 0.9034 | 0.9448 |
| 2021          | 0.9731 | 0.9531 | 0.9676 | 0.9490 | 0.9697 | 0.9462 | 0.9434 | 0.9579 | 0.9255 | 0.9517 |
| 2022          | 0.9793 | 0.9462 | 0.9579 | 0.9331 | 0.9593 | 0.9379 | 0.9462 | 0.9545 | 0.8952 | 0.9441 |
|               |        |        |        | TI     | GER    |        |        |        |        |        |
| Test<br>Train | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| 2013          | 0.9834 | 0.9545 | 0.9607 | 0.9428 | 0.9676 | 0.9352 | 0.9317 | 0.9483 | 0.9041 | 0.9545 |
| 2014          | 0.9800 | 0.9648 | 0.9690 | 0.9545 | 0.9745 | 0.9462 | 0.9517 | 0.9572 | 0.8979 | 0.9428 |
| 2015          | 0.9793 | 0.9628 | 0.9648 | 0.9662 | 0.9766 | 0.9531 | 0.9476 | 0.9566 | 0.8966 | 0.9497 |
| 2016          | 0.9772 | 0.9538 | 0.9559 | 0.9476 | 0.9710 | 0.9428 | 0.9490 | 0.9572 | 0.8917 | 0.9455 |
| 2017          | 0.9766 | 0.9517 | 0.9428 | 0.9483 | 0.9662 | 0.9448 | 0.9345 | 0.9524 | 0.8966 | 0.9414 |
| 2018          | 0.9759 | 0.9531 | 0.9455 | 0.9386 | 0.9690 | 0.9469 | 0.9386 | 0.9621 | 0.9090 | 0.9386 |
| 2019          | 0.9676 | 0.9386 | 0.9428 | 0.9310 | 0.9641 | 0.9352 | 0.9283 | 0.9441 | 0.8897 | 0.9276 |
| 2020          | 0.9759 | 0.9469 | 0.9634 | 0.9407 | 0.9641 | 0.9262 | 0.9400 | 0.9545 | 0.8848 | 0.9455 |
| 2021          | 0.9766 | 0.9524 | 0.9531 | 0.9290 | 0.9614 | 0.9262 | 0.9455 | 0.9531 | 0.9255 | 0.9510 |
| 2022          | 0.9697 | 0.9434 | 0.9559 | 0.9448 | 0.9628 | 0.9421 | 0.9441 | 0.9566 | 0.8979 | 0.9517 |

## 4. ADDITIONAL RESULTS - TEMPORAL INTERVAL (YEARS)

Table S15 and Table S16 illuminates the effectiveness of our model in mitigating temporal degradation using results derived from the expanded TempEL dataset. Here, we use the Top 200 degree samples (10k) as the training set because we aim to explore the impact of entity relationship information on the results. Each column in the table represents the years' gap between the training and testing datasets, as denoted by the digits from 0 to 9. For instance, 0 implies that training and testing datasets come from the same year, while 9 indicates that model was trained in 2013 and tested in 2022. The rows are divided based on various metrics: @1 and @8. The complete table includes @1, @2, @4, @8, @16, @32 and @64 can be found in the supplementary material.

"Forward and Backward" means the results include two scenarios: training in the past and testing in the future, and training in the future and testing in the past. "Only Forward" means just the scenario where the model is trained in the past and tested in the future. For instance, when @1 and the gap is 9, our model's result under "Forward and Backward" is 0.2466, representing the average of two situations: training in 2013 and testing in 2022, and training in 2022 and testing in 2013. Under "Only Forward", our model's result is 0.2745, which only considers the situation of training in 2013 and testing in 2022. It's worth noting that when the gap is 0, it means the training and testing datasets come from the same year. Thus, the "Forward and Backward" and "Only Forward" values are identical.

**Table S15.** Results between our model and the baseline model Forward and Backward.

|     | Forward and Backward |        |        |        |        |        |        |        |        |        |        |  |
|-----|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|     |                      | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |  |
|     | BLINK                | 0.2169 | 0.2222 | 0.2208 | 0.2247 | 0.2228 | 0.2205 | 0.2216 | 0.2197 | 0.2147 | 0.2114 |  |
| @1  | TIGER                | 0.2298 | 0.2220 | 0.2248 | 0.2232 | 0.2261 | 0.2234 | 0.2190 | 0.2258 | 0.2307 | 0.2466 |  |
|     | Boost                | 5.95%  | -0.09% | 1.81%  | -0.67% | 1.48%  | 1.32%  | -1.17% | 2.78%  | 7.45%  | 16.65% |  |
|     | BLINK                | 0.3104 | 0.3135 | 0.3139 | 0.3182 | 0.3139 | 0.3093 | 0.3109 | 0.3065 | 0.2988 | 0.2987 |  |
| @2  | TIGER                | 0.3170 | 0.3141 | 0.3189 | 0.3133 | 0.3165 | 0.3188 | 0.3161 | 0.3217 | 0.3235 | 0.3266 |  |
|     | Boost                | 2.13%  | 0.19%  | 1.59%  | -1.54% | 0.83%  | 3.07%  | 1.67%  | 4.96%  | 8.27%  | 9.34%  |  |
|     | BLINK                | 0.4097 | 0.4115 | 0.4128 | 0.4198 | 0.4104 | 0.4090 | 0.4085 | 0.4024 | 0.3907 | 0.3990 |  |
| @4  | TIGER                | 0.4144 | 0.4145 | 0.4185 | 0.4126 | 0.4158 | 0.4204 | 0.4150 | 0.4202 | 0.4193 | 0.4335 |  |
|     | Boost                | 1.15%  | 0.73%  | 1.38%  | -1.72% | 1.32%  | 2.79%  | 1.59%  | 4.42%  | 7.32%  | 8.65%  |  |
|     | BLINK                | 0.5117 | 0.5146 | 0.5180 | 0.5238 | 0.5144 | 0.5171 | 0.5164 | 0.5116 | 0.5002 | 0.4890 |  |
| @8  | TIGER                | 0.5170 | 0.5182 | 0.5216 | 0.5206 | 0.5182 | 0.5208 | 0.5176 | 0.5229 | 0.5235 | 0.5362 |  |
|     | Boost                | 1.04%  | 0.70%  | 0.69%  | -0.61% | 0.74%  | 0.72%  | 0.23%  | 2.21%  | 4.66%  | 9.65%  |  |
|     | BLINK                | 0.6148 | 0.6141 | 0.6205 | 0.6224 | 0.6181 | 0.6118 | 0.6192 | 0.6089 | 0.6035 | 0.5876 |  |
| @16 | TIGER                | 0.6162 | 0.6180 | 0.6178 | 0.6176 | 0.6186 | 0.6187 | 0.6150 | 0.6263 | 0.6233 | 0.6345 |  |
|     | Boost                | 0.23%  | 0.64%  | -0.44% | -0.77% | 0.08%  | 1.13%  | -0.68% | 2.86%  | 3.28%  | 7.98%  |  |
|     | BLINK                | 0.7054 | 0.7077 | 0.7088 | 0.7140 | 0.7076 | 0.7044 | 0.7048 | 0.7025 | 0.6966 | 0.6897 |  |
| @32 | TIGER                | 0.7022 | 0.7058 | 0.7088 | 0.7056 | 0.7065 | 0.7066 | 0.7011 | 0.7076 | 0.7124 | 0.7221 |  |
|     | Boost                | -0.45% | -0.27% | 0.00%  | -1.18% | -0.16% | 0.31%  | -0.52% | 0.73%  | 2.27%  | 4.70%  |  |
|     | BLINK                | 0.7791 | 0.7867 | 0.7858 | 0.7896 | 0.7836 | 0.7807 | 0.7768 | 0.7781 | 0.7743 | 0.7721 |  |
| @64 | TIGER                | 0.7818 | 0.7830 | 0.7862 | 0.7834 | 0.7905 | 0.7839 | 0.7825 | 0.7907 | 0.7917 | 0.7931 |  |
|     | Boost                | 0.35%  | -0.47% | 0.05%  | -0.79% | 0.88%  | 0.41%  | 0.73%  | 1.62%  | 2.25%  | 2.72%  |  |

**Table S16.** Results between our model and the baseline model Only Forward.

|     | Only Forward |        |        |        |        |        |        |        |        |        |        |  |  |
|-----|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
|     |              | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |  |  |
|     | BLINK        | 0.2169 | 0.2195 | 0.2128 | 0.2222 | 0.2214 | 0.2226 | 0.2223 | 0.2103 | 0.2204 | 0.2310 |  |  |
| @1  | TIGER        | 0.2298 | 0.2251 | 0.2306 | 0.2318 | 0.2292 | 0.2250 | 0.2173 | 0.2251 | 0.2424 | 0.2745 |  |  |
|     | Boost        | 5.95%  | 2.55%  | 8.36%  | 4.32%  | 3.52%  | 1.08%  | -2.25% | 7.04%  | 9.98%  | 18.83% |  |  |
|     | BLINK        | 0.3104 | 0.3113 | 0.3065 | 0.3165 | 0.3125 | 0.3091 | 0.3016 | 0.2917 | 0.3024 | 0.3276 |  |  |
| @2  | TIGER        | 0.3170 | 0.3172 | 0.3256 | 0.3226 | 0.3193 | 0.3188 | 0.3074 | 0.3278 | 0.3349 | 0.3607 |  |  |
|     | Boost        | 2.13%  | 1.90%  | 6.23%  | 1.93%  | 2.18%  | 3.14%  | 1.92%  | 12.38% | 10.75% | 10.10% |  |  |
| @4  | BLINK        | 0.4097 | 0.4099 | 0.4058 | 0.4188 | 0.4126 | 0.4076 | 0.4038 | 0.3908 | 0.3925 | 0.4290 |  |  |
|     | TIGER        | 0.4144 | 0.4195 | 0.4273 | 0.4229 | 0.4198 | 0.4174 | 0.4100 | 0.4326 | 0.4338 | 0.4648 |  |  |
|     | Boost        | 1.15%  | 2.34%  | 5.30%  | 0.98%  | 1.75%  | 2.40%  | 1.54%  | 10.70% | 10.52% | 8.34%  |  |  |
| @8  | BLINK        | 0.5117 | 0.5168 | 0.5116 | 0.5255 | 0.5160 | 0.5197 | 0.5176 | 0.5071 | 0.5017 | 0.5310 |  |  |
|     | TIGER        | 0.5170 | 0.5292 | 0.5304 | 0.5304 | 0.5212 | 0.5216 | 0.5157 | 0.5388 | 0.5466 | 0.5710 |  |  |
|     | Boost        | 1.04%  | 2.40%  | 3.67%  | 0.93%  | 1.01%  | 0.37%  | -0.37% | 6.25%  | 8.95%  | 7.53%  |  |  |
|     | BLINK        | 0.6148 | 0.6186 | 0.6182 | 0.6189 | 0.6220 | 0.6210 | 0.6288 | 0.6085 | 0.6159 | 0.6359 |  |  |
| @16 | TIGER        | 0.6162 | 0.6297 | 0.6254 | 0.6248 | 0.6217 | 0.6234 | 0.6212 | 0.6393 | 0.6476 | 0.6697 |  |  |
|     | Boost        | 0.23%  | 1.79%  | 1.16%  | 0.95%  | -0.05% | 0.39%  | -1.21% | 5.06%  | 5.15%  | 5.32%  |  |  |
|     | BLINK        | 0.7054 | 0.7146 | 0.7067 | 0.7106 | 0.7124 | 0.7143 | 0.7161 | 0.7053 | 0.7066 | 0.7503 |  |  |
| @32 | TIGER        | 0.7022 | 0.7147 | 0.7135 | 0.7105 | 0.7090 | 0.7137 | 0.7085 | 0.7179 | 0.7366 | 0.7648 |  |  |
|     | Boost        | -0.45% | 0.01%  | 0.96%  | -0.01% | -0.48% | -0.08% | -1.06% | 1.79%  | 4.25%  | 1.93%  |  |  |
|     | BLINK        | 0.7791 | 0.7911 | 0.7816 | 0.7809 | 0.7856 | 0.7927 | 0.7876 | 0.7805 | 0.7845 | 0.8214 |  |  |
| @64 | TIGER        | 0.7818 | 0.7914 | 0.7886 | 0.7869 | 0.7940 | 0.7918 | 0.7866 | 0.7965 | 0.8107 | 0.8276 |  |  |
|     | Boost        | 0.35%  | 0.04%  | 0.90%  | 0.77%  | 1.07%  | -0.11% | -0.13% | 2.05%  | 3.34%  | 0.75%  |  |  |

#### 5. PERFORMANCE ANALYSIS

Figure S2 to Figure S5 displays recall@N results from the expanded TempEL dataset. We assessed our proposed model against the baseline bi-encoder using recall metrics. The x-axis indicates the year gap between training and testing sets, while the y-axis represents the recall rate. Overall, our model consistently outperforms the baseline.

Two testing scenarios are considered: "Forward and Backward" (training on past data and testing on future data, and vice versa) and "Only Forward" (training on past data and testing on future data). As an example, for a gap of 9 years at @1, our model achieves a recall of 0.2466 in "Forward and Backward", averaging results from both 2013 to 2022 and 2022 to 2013. In the "Only Forward" scenario, the recall is 0.2745, solely accounting for 2013 to 2022. Notably, a gap of 0 indicates identical training and testing years, making "Forward and Backward" and "Only Forward" values the same.

At all recall@N levels, our model's "Only Forward" setting consistently outperforms its "Forward and Backward" counterpart. This indicates that our proposed model exhibits superior generalization capabilities, particularly when predicting the future based on past data. Also, a trend can be observed where the recall rates for both models tend to increase as we move from recall@1 to recall@8. This is expected as a higher recall@N allows for more chances to correctly identify the relevant entities.



Fig. S2. The improvement in the metrics @1.



Fig. S3. The improvement in the metrics @2 and @4.



**Fig. S4.** The improvement in the metrics @8 and @16.



Fig. S5. The improvement in the metrics @32 and @64.

## 6. DIMINISHING PERFORMANCE GAINS

It is also worth noting that the improvement effect of our model diminishes gradually as the metric threshold becomes more lenient, as shown in Figure S6. A plausible explanation for this observation is when using @64 threshold, the model only needs to correctly predict one out of the top 64 answers, allowing for a higher tolerance of errors. Consequently, the relative performance improvement of our model becomes less evident at these higher thresholds. This indicates a trade-off between prediction accuracy and the employed scale, suggesting the need for careful balance in practical applications.



**Fig. S6.** Different of Recall changes as the metric changes.