Лазерный датчик измерения расстояния 40м 650нм

Технические характеристики:

Параметр	Значение		
Бренд	JRT		
Название продукта	Лазерный датчик расстояния		
Номер модели	м703А		
Сертификаты	FDA/ISO9001/CE/FCC/ROHS		
Страна происхождения	Китай		
Точность	±1 мм (0.04 дюйма)		
Единицы измерения	метр/дюйм/фут		
Диапазон измерения (без отражателя)	0.03-40м		
Время измерения	0.125~4 секунды		
Класс лазера	Класс II		
Тип лазера	635нм, <1мВт		
Размеры	45 <i>25</i> 12мм (±1 мм)		
Вес	Около 10г		
Напряжение	DC2.0~3.3B		
Электрический уровень	TTL/CMOS		
Частота	ЗГц~8Гц		
Рабочая температура	0~40°C (32~104°F)		
Температура хранения	-25~60°C (-13~140°F)		

Описание продукта

Лазерный датчик измерения расстояния JRT модели 703A073 компактного размера 45x25x12мм способен измерять расстояние до 40 метров с точностью до 1мм. Для чипа датчика измерения расстояния можно выбрать скорость передачи данных 19200 бит/с. Это высокопроизводительная схема лазерного дальномера, поддерживающая подключение USB, что значительно удобнее для тестирования функций с компьютера, также может подключаться к проектам Arduino. Лазерный датчик 650нм поддерживает TTL опционально и может подключаться не только через USB, RS232, RS485, Bluetooth, но и применяться с Arduino, Raspberry Pi, UDOO и т.д. Последняя версия модуля датчика – M88B.

Характеристики промышленного лазерного датчика расстояния:

- 1. Подходит для промышленных измерительных систем
- 2. Поддерживает единичные/непрерывные измерения
- 3. Вывод данных: RXTX, USB, RS232, RS485, Bluetooth (опционально)

Примечания:

- 1. При плохих условиях измерения, таких как среда с сильным освещением или слишком высокая/низкая диффузная отражательность измерительной точки, точность может иметь большую погрешность: ± 1 mm+40PPM.
- 2. При сильном освещении или плохой диффузной отражательности цели используйте отражатель.
- 3. Напряжение может быть изменено с помощью преобразователя питания LDO
- 4. На частоту может влиять окружающая среда.

: хеледом о моделях

- Название продукта: Промышленный лазерный датчик расстояния JRT
- Модель старой версии: M512A/M701A/M703A
- Модель последней версии: М88В
- Опциональные интерфейсы данных: Последовательный порт/USB/RS232/ RS485/Bluetooth

Коммуникационный интерфейс:

- Тип интерфейса: Последовательная связь (TTL)
- Скорость передачи: 19200 бод (19.2К)
- Бит чётности: Нет (без чётности)
- Биты данных: 8 бит

Расположение контактов модуля измерения расстояния:

p1: GND

p2: +3V5 p3: VIN

p4: -

p5: -

p6: -

p7: PWR ON

p8: TXD

p9: RXD

p10: VIN

p11: GND

p12: +3V5

p13: nCTRL

Расположение контактов модуля измерения расстояния

Команды управления:

Nº	Команда	ASCII код (HEX)	Функция	
1	0	4F	Включение лазера. После включения лазера модуль возвращает строку: ",OK!"	
2	С	43	Выключение лазера. После выключения лазера модуль возвращает строку: ",ОК!"	
3	S	53	Чтение состояния модуля. Модуль возвращает строку состояния: "18.0'С, 3.0V", представляющую текущую температуру и входное напряжение модуля соответственно	
4	D	44	Запуск процесса автоматического измерения. Модуль возвращает строку, содержащую расстояние измерения и качество сигнала измерения, например: "12.345m,0079". Измеренное расстояние выражается как 12.345м, качество сигнала 79.	
5	М	4D	Запуск процесса медленного измерения и возврат строки, как у команды D. Эта команда имеет самую низкую скорость, но самую высокую точность.	
6	F	46	Запуск процесса быстрого измерения и возврат строки, как у команды D. Эта команда имеет самую высокую скорость измерения, но самую низкую точность. При плохом отражателе могут возникнуть ошибочные результаты измерения. Обычно эта команда используется при хороших условиях измерения.	
7	V	56	Запрос информации о версии модуля, возврат строки, например: "170225002929456". Из них 1702250029 - серийный номер модуля, а 29456 - информация о версии программного обеспечения.	
8	Х	58	Выключение модуля, закрытие модуля и перевод вывода PWR_ON в низкий уровень.	

Примечания к команде D:

- 1. Если измеренное расстояние меньше 10 метров, то позиция 10 метров занята символом пробела, чтобы обеспечить неизменность расстояния возвращаемой строки.
- 2. Чем меньше значение качества сигнала, тем лучше качество сигнала. Чем больше значение, тем хуже отраженный сигнал.
- 3. Автоматическое измерение автоматически выбирает различную скорость измерения при условии гарантии точности измерения в зависимости от состояния отражателя.
- 4. Когда измерение расстояния не удалось, команда вернет строку сообщения об ошибке "Er.XX!", где XX представляет различные номера ошибок. Пожалуйста, проверьте список номеров ошибок для конкретной информации.

Коды ошибок:

Nº	Код ошибки	Значение		
1	:Er01!	VBAT слишком низкий, напряжение питания должно быть >= 2.0V		
2	:Er02!	Внутренняя ошибка, не обращайте внимания		
3	:Er03!	Температура модуля слишком низкая (<-20°C)		
4	:Er04!	Температура модуля слишком высокая (>+40°C)		
5	:Er05!	Цель вне диапазона измерения		
6	:Er06!	Недействительный результат измерения		
7	:Er07!	Фоновый свет слишком сильный		
8	:Er08!	Лазерный сигнал слишком слабый		
9	:Er09!	Лазерный сигнал слишком сильный		
10	:Er10!	Аппаратная неисправность 1		
11	:Er11!	Аппаратная неисправность 2		
12	:Er12!	Аппаратная неисправность 3		
13	:Er13!	Аппаратная неисправность 4		
14	:Er14!	Аппаратная неисправность 5		
15	:Er15!	Лазерный сигнал нестабилен		

