Review of Functional Partial Least Squares Application to Spectral Misalignment

Slides by Rory Samuels

Functional Linear Regression Model

Suppose we have sample of scalar valued response variables $y_i \in \mathbb{R}$ and functional valued predictors $x_i(t) \in L^2([a,b])$, for i=1,..,n. The functional linear regression model (FLM) is given by:

$$y_i = \beta_0 + \int_a^b x_i(t)\beta(t)dt + \epsilon_i,$$

where β_0 is the intercept, $\beta(t)$ is the functional coefficient, and $\epsilon_i \sim N(0, \sigma^2)$.

Note: for notational simplicity we assume $\beta_0 = 0$.

Functional Partial Least Squares (FPLS)

Given weight functions $w_1(t),...,w_{k-1}(t)$, the kth weight function is obtained via

$$\arg\max_{w(t)} \mathsf{Cov}^2\left(y, \int_a^b x(t)w(t)dt\right).$$

subject to:

$$\operatorname{Cov}\left(\int_a^b x(t)w_j(t)dt, \int_a^b x(t)w(t)dt\right) = 0 \quad \text{for} \quad j = 1, \dots, k-1,$$

and
$$||w(t)||_2^2 = 1$$
.

Basis Approximation for Weight Functions

Let $\mathbf{B}(t) = (B_1(t), ..., B_{M+d}(t))'$ be a vector of M+d B-spline basis functions of degree d. We can approximate the jth weight function by

$$w_j(t) \approx \mathbf{b}_j' \mathbf{B}(t),$$

where \mathbf{b}_{j} is a vector of M+d basis coefficients.

If we let $u_r = \int_a^b x(t)B_r(t)dt$ and $\mathbf{u} = (u_1,...,u_{M+d})'$ then

$$\int_{a}^{b} x(t)w_{j}(t)dt \approx \mathbf{u}'\mathbf{b}_{j}$$

Basis Approximation for FPLS

Given $\mathbf{b}_1,...,\mathbf{b}_{k-1}$, the kth weight vector is obtained via

$$\arg\max_{\mathbf{b}} \mathsf{Cov}^2(y, \mathbf{u}'\mathbf{b})$$
.

subject to:

$$Cov(\mathbf{u}'\mathbf{b}_j, \mathbf{u}'\mathbf{b}) = 0 \text{ for } j = 1, ..., k - 1,$$

and
$$||\mathbf{b'Vb}||_2^2 = 1.1$$

 $^{{}^1{}m V}$ is the pos. def. matrix of inner products between all pairs of basis functions.

FPLS (Empirically)

Let ${\bf y}$ be a vector of n observations of the response, and ${\bf U}$ be the $n\times (M+d)$ matrix with elements

$$\mathbf{U}_{(ij)} = \int_{a}^{b} x_i(t) B_j(t) dt.$$

- Finding optimal \mathbf{b}_j 's is equivalent to performing classical PLS with response \mathbf{y} and covariates \mathbf{U} .
- Can be done efficiently with existing algorithms (e.g. SIMPLS or NIPALS).

FPLS Coefficient

Let $\mathbf R$ be the $(M+d) \times K$ matrix whose columns are the first K empirical weight vectors $\hat{\mathbf b}_1,...,\hat{\mathbf b}_K$.

- ightharpoonup U Scores: $\mathbf{T} = \mathbf{U}\mathbf{R}$
- ightharpoonup Y loadings: $\mathbf{q} = (\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$

The estimated functional coefficient is then

$$\hat{\beta}_{FPLS}(t) = (\mathbf{Rq})'\mathbf{B}(t)$$

Starting from Discrete Observations

The key to functional partial least squares is obtaining

$$\mathbf{U}_{(ij)} = \int_{a}^{b} x_i(t)B_j(t)dt, \quad i = 1, ..., n, \quad j = 1, ..., M + d.$$

In practice, we observe p discrete points along each $x_i(t)$ (possibly with noise).

Numerical Approximation

If we have a dense observation grid, and negligible instrument noise, we can approximate $\mathbf{U}_{(ij)}$ by

$$\mathbf{U}_{(ij)} \approx \frac{b-a}{p} \sum_{k=1}^{p} x_i(t_k) B_j(t_k).$$

Basis Expansion for Data

Alternatively, we can expand each observation onto a set of suitable basis functions:

$$x_i(t) \approx \mathbf{c}_i' \mathbf{B}^x(t),$$

where $\mathbf{B}^x(t)$ is a vector of M_x+d B-spline basis functions and \mathbf{c}_i is a vector of M_x+d basis coefficients. In this case

$$\mathbf{U}_{(ij)} \approx \mathbf{C}\mathbf{\Theta},$$

where ${\bf C}$ is an $n \times (M_x+d)$ matrix of basis coefficients and ${\bf \Theta}$ is an $(M_x+d) \times (M+d)$ matrix with elements

$$\Theta_{(ij)} = \int_a^b B_i^x(t) B_j(t) dt.$$

Example I: Generated Responses

We generated $n=500\ \mathrm{scalar}$ responses from

$$y_i = \int_0^1 x_i(t)\beta(t)dt + \epsilon_i$$

- $\triangleright x_i(t)$: random linear combinations of cubic B-spline basis functions²
- $\beta(t) = 10(t-1)^2 + 30\cos(4\pi t^3)$
- $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)^3$

 $^{^2}$ The basis functions were defined over 50 knots and all coefficients were generated from a standard normal distribution.

³The error variance σ_{ϵ}^2 was chosen such that the signal-to-noise ratio was 5.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(t)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : t = 0,.0024,.0048,...,1
- $ightharpoonup G_B$: t = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(t)$ on both G_A and G_B , for i=1,...,500.

Example I: Generated Predictors

To simulate misalignment, we sampled each $x_i(t)$ along two observation grids, G_A and G_B , of length 425 and 150 respectively.

- G_A : t = 0,.0024,.0048,...,1
- $ightharpoonup G_B$: t = 0,.0068,.0136,...,1

The final data-set consisted of y_i and corresponding discrete observations of $x_i(t)$ on both G_A and G_B , for i=1,...,500.

- ▶ Goal: predict y from x(t) observed on G_B , using a model trained with x(t) observed on G_A .
 - ▶ 80/20 train/test split.

Example I: Two Approaches

- Goal: predict y from x(t) observed on G_B , using a model trained with x(t) observed on G_A .
 - ightharpoonup 80/20 train/test split.

Classical PLS Approach:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(t)$ on G_A
- lacksquare Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- lacktriangle Predict y^{test} using observations of $x^{test}(t)$ on G_B and $oldsymbol{\hat{eta}}_B$

Example I: Two Approaches

- ▶ Goal: predict y from x(t) observed on G_B , using a model trained with x(t) observed on G_A .
 - ightharpoonup 80/20 train/test split.

Classical PLS Approach:

- lacksquare Obtain PLS coefficients $\hat{oldsymbol{eta}}_A$ using y^{train} and $x^{train}(t)$ on G_A
- lacktriangle Select PLS coefficients closest to points on G_B , $\hat{oldsymbol{eta}}_B$
- Predict y^{test} using observations of $x^{test}(t)$ on G_B and $\hat{\beta}_B$

Functional PLS approach:

- ▶ Obtain $\hat{\beta}_{FPLS}(t)$ using observations of $x^{train}(t)$ on G_A
- Predict y^{test} using observations of $x^{test}(t)$ on G_B and $\hat{\beta}(t)$.

Example I: Classical PLS

Example I: Classical PLS

Example I: Classical PLS

Example I: Functional PLS

Example I: Functional PLS

y_{test}

Example I: Functional PLS

10

20

y_{test}

-10

10

20

-10

Example II: AOP Crown Data

We applied the same method to the AOP Crown data to predict d15N from spectra. After joining the site trait data and spectra by SampleSiteID, and removing both "bad bands" and NA observations we had:

- ightharpoonup n = 2515 observations
- $ho p_A = 350$ spectral points per spectra.

To simulate spectral misalignment, we expanded the spectra onto a set of 52 cubic B-splines and sampled along an observation grid of $p_B=200$ points.

Classical PLS Approach

Functional PLS Approach

