PHYS 110 Midterm II answers – Spring 2022

This set of exam answers is produced for the use of students registered in PHYS 110 during the Jan – Apr 2022 term at UVic. It may not be otherwise reproduced or distributed.

© M. Laidlaw 2022

Note that the exam you had may have had questions in a different order, and may have had answers to questions in a different order. Any material posted that refers to 'your' answers have had the answers rearranged so they correspond to this version of the exam.

- 1. This is test version 'A'. Put 'A' as the answer to this question.
 - (a) A
 - (b) B
 - (c) C
 - (d) D
 - (e) E

A 7kg mass travels at a speed of $5\frac{m}{s}$ along a line which makes an angle of 37° with $\hat{\imath}$ and 53° with $\hat{\jmath}$. A 6kg mass travels at $8\frac{m}{s}$ along a line which makes an angle of 120° with $\hat{\imath}$ and 150° with $\hat{\jmath}$.

The two masses collide. After the collision the 6kg mass has velocity $-4\frac{m}{s}\hat{\jmath}$.

- 2. What is the magnitude of the total momentum before the collision? In other words what is $|\vec{p}_{total}|$?
 - (a) $13kg\frac{m}{s}$
 - (b) *** $21kg\frac{m}{s}$
 - (c) $35kg\frac{m}{s}$
 - (d) $48kg\frac{m}{s}$
 - (e) $83kg\frac{m}{s}$
- 3. What is the speed of the 7kg mass after the collision? In other words what is $|\vec{v}_{7,f}|$?
 - (a) $0.0\frac{m}{s}$
 - (b) $0.56\frac{m}{s}$
 - (c) *** $0.75\frac{m}{s}$
 - (d) $3.4\frac{m}{s}$
 - (e) $5.3\frac{m}{s}$
- 4. What angle does \vec{v}_7 make with $\hat{\imath}$ after the collision?
 - (a) *** 41°
 - (b) 49°
 - (c) 90°
 - (d) 131°
 - (e) 139°
- 5. The collision took 0.1s. What was the magnitude of the average force on the 6kg mass?
 - (a) 53N
 - (b) 149N
 - (c) 241N
 - (d) *** 297*N*
 - (e) It cannot be determined.

A 50kg mass is at $\vec{r}_1 = 7m\hat{\jmath}$.

An object with mass 30kg and charge $8 \times 10^{-9}C$ is at $\vec{r}_2 = 4m\hat{\imath} + 4m\hat{\jmath}$. A $5 \times 10^{-10}C$ charge is at $\vec{r}_3 = 4m\hat{\imath}$.

- 6. What is the force on the 30kg object due to the 50kg mass?
 - (a) $\vec{F} = 3.2 \times 10^{-9} N \hat{\imath} + 2.4 \times 10^{-9} N \hat{\jmath}$
 - (b) $\vec{F} = 3.2 \times 10^{-9} N \hat{\imath} 2.4 \times 10^{-9} N \hat{\jmath}$
 - (c) *** $\vec{F} = -3.2 \times 10^{-9} N\hat{\imath} + 2.4 \times 10^{-9} N\hat{\jmath}$
 - (d) $\vec{F} = -3.2 \times 10^{-9} N\hat{\imath} 2.4 \times 10^{-9} N\hat{\jmath}$
 - (e) $\vec{F} = 4.0 \times 10^{-9} N \hat{\jmath}$
- 7. What is the magnitude of the net force on the object at \vec{r}_2 due to the mass and the charge?
 - (a) $1.8 \times 10^{-9} N$
 - (b) $2.6 \times 10^{-9} N$
 - (c) $3.2 \times 10^{-9} N$
 - (d) *** $5.6 \times 10^{-9} N$
 - (e) $6.3 \times 10^{-9} N$
- 8. What angle does the net force on the object at \vec{r}_2 due to the mass and the charge make with \hat{i} ?
 - (a) 24°
 - (b) 55°
 - (c) 111°
 - (d) *** 125°
 - (e) 156°
- 9. Suppose that the charge on the object at \vec{r}_3 was instead $-5 \times 10^{-10} C$. How would \vec{F}_{net} change
 - (a) Its magnitude would increase and the angle it makes with $\hat{\imath}$ would increase
 - (b) Its magnitude would increase and the angle it makes with $\hat{\imath}$ would decrease.
 - (c) *** Its magnitude would decrease and the angle it makes with $\hat{\imath}$ would increase.
 - (d) Its magnitude would decrease and the angle it makes with $\hat{\imath}$ would stay constant.
 - (e) Its magnitude would decrease and the angle it makes with $\hat{\imath}$ would decrease.

A car of mass 1500kg travels in a circle of radius 50m at a speed of $20\frac{m}{s}$. It is on a track that is banked (sloped) towards the inside of the curve at an angle of 15° with the horizontal. The coefficient of static friction between the car and the slope is $\mu = 0.70$.

- 10. What is the magnitude of the net force on the car?
 - (a) $0.27 \times 10^4 N$
 - (b) $0.99 \times 10^4 N$
 - (c) $1.03 \times 10^4 N$
 - (d) *** $1.20 \times 10^4 N$
 - (e) $1.47 \times 10^4 N$
- 11. The equation we obtain by considering the vertical component of Newton's second law is

$$0 = \frac{\left|\vec{F}_N\right|}{m}\cos 15 - \frac{\left|\vec{F}_f\right|}{m}\sin 15 - g\tag{1}$$

What equation do we obtain by considering the horizontal component of Newton's second law?

(a) ***
$$-|\vec{a}| = -\frac{|\vec{F}_N|}{m} \sin 15 - \frac{|\vec{F}_f|}{m} \cos 15$$

(b)
$$-|\vec{a}| = -\frac{|\vec{F}_N|}{m}\sin 15 + \frac{|\vec{F}_f|}{m}\cos 15$$

(c)
$$-|\vec{a}| = \frac{|\vec{F}_N|}{m} \sin 15 - \frac{|\vec{F}_f|}{m} \cos 15$$

(d)
$$-|\vec{a}| = \frac{|\vec{F}_N|}{m} \sin 15 + \frac{|\vec{F}_f|}{m} \cos 15$$

(d)
$$-|\vec{a}| = \frac{|\vec{F}_N|}{m} \sin 15 + \frac{|\vec{F}_f|}{m} \cos 15$$

(e) $-|\vec{a}| = -\frac{|\vec{F}_N|}{m} \cos 15 + \frac{|\vec{F}_f|}{m} \sin 15$

- 12. What is the magnitude of the friction force on the car?
 - (a) *** $0.78 \times 10^4 N$
 - (b) $0.95 \times 10^4 N$
 - (c) $1.23 \times 10^4 N$
 - (d) $1.73 \times 10^4 N$
 - (e) $2.51 \times 10^4 N$
- 13. The car's speed $|\vec{v}|$ increases. What happens to the magnitudes of the normal and friction forces?
 - (a) $|\vec{F}_N|$ decreases and $|\vec{F}_f|$ decreases.
 - (b) $|\vec{F}_N|$ decreases and $|\vec{F}_f|$ increases.
 - (c) $|\vec{F}_N|$ increases and $|\vec{F}_f|$ decreases.
 - (d) $|\vec{F}_N|$ increases and $|\vec{F}_f|$ remains constant.
 - (e) *** $\left| \vec{F}_N \right|$ increases and $\left| \vec{F}_f \right|$ increases.

A disk of mass m=5kg, radius R=0.1m, and moment of inertia $I=0.02kgm^2$ is held with its center at the origin. A light and inextensible rope which is under tension T pulling upward (in the \hat{k} direction) is wrapped around the disk and leaves contact with the disk at $R\hat{\imath}$.

The disk is released from rest.

- 14. What is the value of $\frac{d}{dt}\vec{L}$ for this disk measured around the center of disk at the moment described?
 - (a) $RT\hat{\imath}$
 - (b) $RT\hat{\jmath}$
 - (c) $-RT\hat{\imath}$
 - (d) *** $-RT\hat{\jmath}$
 - (e) $-RT\hat{k}$
- 15. The equation from applying Newton's second law is $|\vec{a}| = g \frac{T}{m}$, from applying that the rope does not slip is $R\frac{d^2\theta}{dt^2} = |\vec{a}|$, and from applying dynamics of angular momentum we find $RT = I\frac{d^2\theta}{dt^2}$. What is $|\vec{a}|$?
 - (a) $\frac{I}{mR^2+I}g$
 - (b) *** $\frac{mR^2}{mR^2 + I}g$
 - (c) $\frac{I}{|mR^2-I|}g$
 - (d) $\frac{mR^2}{|mR^2 I|}g$
 - (e) $\frac{mR^2+I}{mR^2I}g$
- 16. What is the tension in the rope?
 - (a) *** 14N
 - (b) 20N
 - (c) 30N
 - (d) 35N
 - (e) 49N
- 17. If the disk were more spread out, so that I was bigger while m and R stayed the same
 - (a) T would decrease and $|\vec{a}|$ would decrease.
 - (b) T would remain constant and $|\vec{a}|$ would decrease.
 - (c) *** T would increase and $|\vec{a}|$ would decrease.
 - (d) T would decrease and $|\vec{a}|$ would increase.
 - (e) T would remain constant and $|\vec{a}|$ would increase.

A very thin object of mass 8kg is held between two springs and restricted to move on the x-axis. The spring to the object's left has an unstretched length of 0.2m, a spring constant $k=100\frac{N}{m}$, the left end is attached to the origin, and the right end attached to the object. The spring to the object's right has an unstretched length of 0.3m, a spring constant of $k=60\frac{N}{m}$, the left is attached to the object and the right end is attached to $0.4m\hat{\imath}$.

The object is at $0.15m\hat{\imath}$

- 18. What is the force on the object due to the spring to the left?
 - (a) *** $5N\hat{\imath}$
 - (b) $9N\hat{\imath}$
 - (c) $12N\hat{\imath}$
 - (d) $15N\hat{\imath}$
 - (e) $18N\hat{\imath}$
- 19. What is the object's acceleration?
 - (a) $-1.3\frac{m}{s}\hat{\imath}$
 - (b) *** $-0.5\frac{m}{s}\hat{\imath}$ This question was edited inconsistently during exam preparation; this is the closest value to the acceleration for the situation described.
 - (c) $1.8\frac{m}{s}\hat{i}$
 - (d) $2.9\frac{m}{s}\hat{\imath}$
 - (e) $4.1 \frac{m}{s} \hat{\imath}$

A block of mass 3kg and charge q=-2C is at $-2m\hat{\imath}+3m\hat{\jmath}$ travelling at a velocity of $3\frac{m}{s}\hat{\imath}-4\frac{m}{s}\hat{k}$ in a region where $\vec{B}=5T\hat{\jmath}$

- 20. What is the magnitude of the block's angular momentum around the origin?
 - (a) $17kg\frac{m^2}{s}$
 - (b) $27kg\frac{m^2}{s}$
 - (c) $34kg\frac{m^2}{s}$
 - (d) *** $51kg\frac{m^2}{s}$
 - (e) $54kg\frac{m^2}{s}$
- 21. What is the Lorentz force on the block?
 - (a) 0N
 - (b) *** $-40N\hat{\imath} 30N\hat{k}$
 - (c) $-40N\hat{\imath} + 30N\hat{k}$
 - (d) $40N\hat{\imath} 30N\hat{k}$
 - (e) $40N\hat{\imath} + 30N\hat{k}$

This page is intentionally blank. It may be used as scrap paper.

This page is intentionally blank. It may be used as scrap paper.

End of Exam