

Car Accidents in the US

A presentation by Charlie Lee, Yini Zhong and Timothy Rivers

Background

1 in 55

Americans will get in a motor vehicle accident this year. That is a total average of approximately 6 million.

Deaths

Roughly, 6% of all accidents result in death.

Permanent Injury

An average of 30% of all accidents result in permanent injury

Dataset and Preparation

- Kaggle Dataset
 The dataset was collected from Kaggle, titled "US Accidents"
- US Car Accidents
 The dataset contains over 3 million records spanning from 2016-2019
- Multiple Variables
 The dataset includes over 40 variables, including: Time, State, Precipitation, Temperature, and Wind Speed.

Severity
Each record is ranked from 1 to 4 based on a "Severity" score. This is calculated by impact on traffic.

Number of Accidents

Visualize the differences in Severity and number of accidents by Day/Month

Severity for different Day/Month

number of accidents for different Day/Month

Visualize the differences in Severity and number of accidents by Hour/Day

Severity for different Hour/Day

Number of accidents for different Hour/Day

Decision Tree Method

Trend of CP Value

Decision Tree Method

```
user system elapsed
 26.39
          0.26 26.87
CART
25000 samples
  28 predictor
   4 classes: '1', '2', '3', '4'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 22500, 22500, 22500, 22500, 22499, 22500, ...
Resampling results across tuning parameters:
             Accuracy
                        Карра
 ср
 0.01242067 0.7125194 0.4230913
 0.01577516 0.7061587 0.4102005
 0.01967362 0.6973582 0.3920254
 0.02298277 0.6400839 0.2311121
Accuracy was used to select the optimal model using the largest value.
```

The final value used for the model was cp = 0.01242067.

Confusion Matrix and Statistics

Reference Prediction 1 2 3 4 1 0 0 0 0 2 13 9988 3172 6 3 6 3982 7826 7 4 0 0 0 0

Overall Statistics

Accuracy: 0.7126

95% CI: (0.7069, 0.7182)

No Information Rate : 0.5588

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.4221

Text Mining

After applying tokenization, stemming and stopwords, we finally found the frequency of words. As you can see, the 3 most frequent words are "accident", "exit", "block". which means most accidents happened at the exits and blocked the traffic

Text Mining

We can see the sentiment scores drops while the Severity increases

Text Mining

Groups 1 and 4 had too few data.

multinomial_naive_bayes

Confusion Matrix and Statistics

Reference Prediction Minor Server Minor 0 0 Server 1478 1869

Accuracy: 0.5584

95% CI: (0.5414, 0.5753)

No Information Rate : 0.5584 P-Value [Acc > NIR] : 0.5072

Kappa : 0

SVM Linear

Confusion Matrix and Statistics

Reference Prediction Minor Server Minor 89 41 Server 1389 1828

Accuracy: 0.5728

95% CI : (0.5558, 0.5896)

No Information Rate : 0.5584 P-Value [Acc > NIR] : 0.049

Kappa : 0.0423

ML Prediction

Location: Start_Lng, Start_Lat, distance.mi

Weather: Temperature.F, Humidity..., Pressure.in, Visibility.mi,

Weather_Condition, Amenity

Road Condition: Bump, Crossing, Give_Way, Junction, No_Exit, Railway, Roundabout, Station, Stop, Traffic_Calming, Traffic_Signal, Turning_Loop

Time: Sunrise_Sunset

feature_lst <- c('Severity',Start_Lng',Start_Lat',Distance.mi.,'State',Temperature.F.,'Humidity...,'Pressure.in.,'
'Visibility.mi.,'Weather_Condition',Amenity',Bump',Crossing',Give_Way',Junction',No_Exit',Railway',Roundabout',Station',Stop',Traffic_Calming',Traffic_Signal',Turning_Loop',Sunrise_Sunset'
)

ML Predition

```
Random Forest
```

```
15182 samples
51 predictor
4 classes: '1', '2', '3', '4'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 13666, 13664, 13664, 13663, 13664, 13663, ...
Resampling results across tuning parameters:
```

```
mtry Accuracy Kappa
2 0.5536384 0.03120531
26 0.8873645 0.77383588
51 0.9012628 0.80185090
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 51.

Confusion Matrix and Statistics

Reference Prediction 1 2 3 4 1 0 0 0 0 2 4 3168 260 0 3 1 361 2709 1

Overall Statistics

Accuracy : 0.9036

0

95% CI: (0.8962, 0.9107)

0

No Information Rate : 0.5426

P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8065

ML Predition

Overall <dbl></dbl>
100.0000000
91.4666615
11.6220914
9.9948449
9.1810136
8.3172216
2.5071577
2.1309127
2.0847302
1.8732345

Variable Importance with Random Forest

ML Prediction

Only Random Forest got the best result.

Key Take Aways

1

Initial Observations

- Saturday and Sundays had the lowest number of accidents
- Right before noon and around 8:00 PM had the worst
- Severity based on traffic may not be the most appropriate indicator
- 2

Predictions

- Precipitation was not a strong indicator that severity would increase
- Accuracy is low, though random forests had the highest accuracy
- 3

Next steps

- Find ways to decrease the number of variables
- · Retrain the models
- Predictive models for other variables, such as state or time of day

Questions

THANK YOU

Are there any questions?