Information Technologies for Industrial Engineers

เทคโนโลยีสารสนเทศสำหรับวิศวกรอุตสาหการ

Object Detection Application

Image classification

- Dog (50%)
- ... (15%)
- ... (15%)

Object detection

- Car
 - Top: 500, Bottom: 200, Left:
 - 50, right: 400
 - o 50%
- Bicycle
 - o ...
 - o ...

Models

- YOLO (You Only Look Once)
 - Grid-based approach
 - Faster, less accurate
- SSD (Single Shot Detector)
 - Feature-map approach
 - Faster, less accurate (comparable to YOLO)
- **R-CNN** (Region-based Convolutional Neural Network)
 - Pixel classification
 - Slower, more accurate

Source

COCO dataset

- Common Objects in Context
- Large-scale image recognition dataset for object detection, segmentation, and captioning tasks.
 - o Contains over 330,000 images.
 - Annotated with 80 object categories.
- https://cocodataset.org/#explore

COCO SSD

- This model detects objects defined in the COCO dataset.
- Uses SSD algorithm
- https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd

Object detection app (image file)

Setting up

- npm create vite@latest
- ...
- npm install @tensorflow/tfjs @tensorflow-models/coco-ssd react-webcam

Code

- ./src/model.ts
- ./src/app.tsx &

Object detection app (webcam)

Setting up

- npm create vite@latest
- ...
- npm install @tensorflow/tfjs @tensorflow-models/coco-ssd react-webcam

Utility files

- ./src/model.ts
- ./src/App.css Ø
- ./src/utils.ts &

Main program

./src/App.tsx

Webcam + Prediction Display

• Canvas overlays the webcam.

```
./src/App.tsx
```

Single prediction

```
./src/App.tsx
```

```
async function singlePrediction() {
  const predictions = await getPrediction(model, webcamRef);
  setPredictions(predictions);
  if (predictions) displayPredictions(predictions, width, height);
}
```

displayPrediction

./src/utils.tsx

```
export function displayPredictions(predictions, width, height) {
  var canvas = document.getElementById("canvas");
  const ctx = canvas.getContext("2d");
  // ...
  predictions.forEach((prediction) => {
    drawBox(prediction, ctx);
  });
}
```

drawBox

./src/utils.ts

```
function drawBox(prediction, ctx) {
  let bboxLeft = prediction.bbox[0];
  let bboxTop = prediction.bbox[1];
  let bboxWidth = prediction.bbox[2];
  let bboxHeight = prediction.bbox[3]; // - bboxTop;

  // ...
  ctx.rect(bboxLeft, bboxTop, bboxWidth, bboxHeight);
  // ...
}
```

Continuous prediction

./src/App.tsx

```
const sub = useRef<any>(null);
function continuousPrediction() {
  setIsPredicting(true);
  sub.current = setInterval(async () => {
    const predictions = await getPrediction(model, webcamRef);
    setPredictions(predictions);
    if (predictions) displayPredictions(predictions, width, height);
  }, 1000);
function stopPrediction() {
  setIsPredicting(false);
  if (sub.current) clearInterval(sub.current);
```

Development with mobile

- Visit https://ngrok.com
 - Sign up
 - Sign in
 - Verify email
- Go to Cloud Edge -> Domains
 - Create a new domain
 - Let's call it DOMAIN_NAME.
- Download software and extract to Desktop

- Open Command Prompt and nagivate to Desktop
 - cd Desktop
- Authenticate
 - o ngrok config add-authtoken AUTH_TOKEN
 - AUTH_TOKEN is from the website.
- Run
 - ngrok http --domain=DOMAIN_NAME 5173
- Open your DOMAIN_NAME in a mobile browser.
 - Do not use Line browser.

In PowerShell, you need to use ./ngrok ...