Chapter 1

整除

问题 1.1 (1.25) 设 f 是整系数多项式,次数 n>1. 属于序列 $f(1),f(2),f(3),\cdots$ 的连续整数个数的最大值为多少?

问题 1.2 (1.26) 设 f 是整系数多项式,次数 $n \ge 2$. 证明: 方程 f(f(x)) = x 最多有 n 个整数解.

问题 1.3 (1.28) 设 $a_1 < a_2 < \cdots$ 是递增的正整数无穷数列,满足 a_n 整除 $a_1 + a_2 + \cdots + a_{n-1}$ 对所有 $n \geq 2002$ 成立. 证明:存在正整数 n_0 ,满足 $a_n = a_1 + \cdots + a_{n-1}$ 对所有 $n \geq n_0$ 成立.

问题 1.4 (1.33) 证明: 若 n > 1, 则 $s = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ 不是整数.

问题 1.5 (1.34) 是否存在二元整系数多项式 f(x,y),满足下列条件: (a) 方程 f(x,y) = 0 没有整数解; (b) 对每个正整数 n,存在整数 x,y 满足 $n \mid f(x,y)$.

问题 1.6 (1.38 韦达跳跃)(a) 设正整数 a, b 满足 $ab \mid a^2 + b^2 + 1$. 证明: $a^2 + b^2 = 5ab - 1$.

- (b) 设正整数 a, b 满足 $a^2 + b^2$ 被 ab 1 整除. 证明: $a^2 + b^2 = 5ab 1$.
- (c) 设 a, b, c, d 是正整数,满足 $abcd = a^2 + b^2 + c^2 + 1$. 证明: d = 4.
- (d) 求所有的有序正整数对 (m,n), 满足 mn-1 整除 m^2+n^2 .
- (e) 求所有的正整数对 (m, n), 满足 mn 1 整除 $(n^2 n + 1)^2$.
- (f) 证明: 当 k > n 时,方程 $x_1^2 + x_2^2 + \dots + x_n^2 = kx_1x_2 \dots x_n$ 没有正整数解.

问题 1.7 (1.43) 证明存在常数 c>0 满足性质: 如果正整数 a 是偶数,并且不是 10 的倍数,则 a^k 的十进制数码和大于 $c\log k$ 对所有 $k\geq 2$ 成立.

问题 1.8 (1.50) 证明每个足够大的正整数 n 可以写成 2004 个正整数的求和: $n=a_1+a_2+\cdots+a_{200}$, $1 \le a_1 < a_2 < \cdots < a_{2004}$,而且 $a_i \mid a_{i+1}$,对所有 $1 \le i \le 2003$ 成立.

问题 1.9 (1.55) 称 $C_n = C_{2n}^n/(n+1)$ 为第 n 个卡特兰数.

(a) 证明其递推公式:

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$$

(b) 证明其组合意义:将一个凸 n+2 边形通过连接一些顶点来分为 n 个三角形的方法数,就是 C_n .

问题 1.10 (1.75) 证明: 有无穷多个正整数 n, 满足 $2^n + 3^n$ 被 n^2 整除.