Análisis de Sistemas Lineales

Comportamiento de los sistemas de primer y segundo orden

Contenido

- Funciones típicas del comportamiento dinámico de transmisión en el dominio de t
 - Respuesta al escalón
 - Respuesta al impulso
- Respuesta de lazo cerrado de los sistemas de 1^{er} y 2° orden
- Región deseada en el plano s
- Ejemplo
- Resumen
- Referencias

La respuesta forzada

$$y(t) = f(u(t)); x_0 = 0$$

La salida, cuando las condiciones iniciales son cero

$$\mathbf{y}(t) = \int_{0}^{t} \mathbf{C} \mathbf{\phi}(t - \tau) \mathbf{B} \mathbf{u}(\tau) d\tau + \mathbf{D} \cdot \mathbf{u}(t)$$

La respuesta ante escalón

$$\sigma(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

La respuesta ante el escalón $u(t) = u_0 \sigma(t)$

$$\mathbf{y}(t) = \int_{0}^{t} \mathbf{C} \mathbf{\phi}(t - \tau) \mathbf{B} \mathbf{u}_{0} d\tau + \mathbf{D} \cdot \mathbf{u}_{0} \qquad \mathbf{\phi}(t) = \mathbf{e}^{\mathbf{A}t}$$

- Si $u_0 = 1$; la respuesta al escalón se llama h(t)
 - $\sigma(t)$: Escalón unitario
 - $\mathbf{h}(t)$: Respuesta al escalón unitario
 - y(t) = h(t)

La respuesta ante escalón unitario

$$\mathbf{h}(t) = \int_{0}^{t} \mathbf{C} \mathbf{\phi}(t - \tau) \mathbf{B} d\tau + \mathbf{D}$$

$$\mathbf{h}(t) = \mathbf{C}\mathbf{A}^{-1}\mathbf{e}^{\mathbf{A}\tau}\mathbf{B}\Big|_{\tau=0}^{\tau=t} + \mathbf{D}$$

$$\mathbf{h}(t) = \mathbf{C}\mathbf{A}^{-1}\mathbf{e}^{\mathbf{A}t}\mathbf{B} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} + \mathbf{D}$$

La ganancia estática

$$\mathbf{K}_{\mathbf{s}} = \lim_{t \to \infty} \mathbf{h}(t)$$

$$\mathbf{K}_{s} = -\mathbf{C}\mathbf{A}^{-1}\mathbf{B} + \mathbf{D}$$

Parámetros importantes de la respuesta ante un escalón

El impulso de Dirac

$$r_{\varepsilon}(t) \uparrow \atop 1/\varepsilon$$

$$r_{\varepsilon}(t) = \begin{cases} \frac{1}{\varepsilon} & 0 \le t \le \varepsilon \\ 0 & \text{en el resto} \end{cases}$$

■ Definición y propiedades del impulso de Dirac $\delta(t)$:

$$\delta(t) = \lim_{\varepsilon \to 0} r_{\varepsilon}(t)$$

$$\int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1$$

$$\int_{0}^{t} \delta(\tau) d\tau = \sigma(t)$$

Respuesta al impulso unitario

$$u(t) = \delta(t)$$

$$\mathbf{y}(t) = \mathbf{g}(t)$$

$$\mathbf{g}(t) = \int_{0}^{t} \mathbf{C} \mathbf{\phi}(t - \tau) \mathbf{B} \mathbf{\delta}(\tau) d\tau + \mathbf{D} \mathbf{\delta}(t)$$

$$\mathbf{g}(t) = \mathbf{C}\mathbf{e}^{\mathbf{A}t}\mathbf{B} + \mathbf{D}\boldsymbol{\delta}(t)$$

Cuando **D** es cero, la respuesta al impulso no contiene la parte impulsiva

Relación entre respuesta al escalón y al impulso unitarios

$$\mathbf{h}(t) = \int_{0}^{t} \mathbf{g}(\tau) d\tau$$

$$\mathbf{K}_{\mathbf{s}} = \lim_{t \to \infty} \mathbf{h}(t) = \int_{0}^{\infty} \mathbf{g}(\tau) d\tau$$

Relación entre respuesta al escalón y al impulso unitario

De la respuesta al impulso

$$\mathbf{C}\mathbf{\phi}(t)\mathbf{B} = \mathbf{g}(t) - \mathbf{D}\mathbf{\delta}(t)$$

Sustituimos en

$$\mathbf{y}(t) = \mathbf{C}\mathbf{\varphi}(t)\mathbf{x}_{0} + \int_{0}^{t} \mathbf{C}\mathbf{\varphi}(t-\tau)\mathbf{B}\mathbf{u}(\tau)d\tau + \mathbf{D}\cdot\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{\varphi}(t)\mathbf{x}_{0} + \int_{0}^{t} \mathbf{g}(t-\tau)\mathbf{u}(\tau)d\tau$$

$$respuesta$$

$$natural$$

$$respuesta$$

$$forzada$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{\varphi}(t)\mathbf{x}_0 + \mathbf{g}(t) * \mathbf{u}(t)$$

Cálculo de la respuesta en el tiempo con G(s)

$$\begin{array}{c|c} u(t) & g(t) & y(t) \\ \hline U(s) & G(s) & Y(s) \\ \end{array}$$

$$\mathbf{h}(t) = \mathcal{L}^{-1} \left\{ \mathbf{G}(s) \cdot \frac{1}{s} \right\}$$

$$\mathbf{K}_{\mathbf{s}} = \lim_{t \to \infty} \mathbf{h}(t) = \lim_{s \to 0} \left(\frac{s\mathbf{G}(s)}{s} \right) = \mathbf{G}(0)$$

El valor inicial h(0+)

$$\mathbf{h}(0^+) = \lim_{t \to 0^+} \mathbf{h}(t) = \lim_{s \to \infty} \left(\frac{s\mathbf{G}(s)}{s} \right) = \mathbf{G}(\infty)$$

Pasos para el cálculo de la respuesta en el tiempo con G(s)

 Cálculo de la transformada de Laplace de la entrada

$$\mathbf{U}(s) = \mathcal{L}\{u(t)\}$$

2. Convolución en el dominio de la frecuencia

$$\mathbf{Y}(s) = \mathbf{G}(s)\mathbf{U}(s)$$

con

$$\mathbf{G}(s) = \mathcal{L}\{\mathbf{g}(t)\}\$$

Transformada inversa de Laplace

$$\mathbf{y}(t) = \mathcal{L}^{-1}\{\mathbf{Y}(s)\}$$

La respuesta de lazo cerrado en el tiempo

Introducción

Encontraremos las relaciones entre las principales características de la respuesta en el tiempo del sistema de lazo cerrado:

- sobreimpulso
- tiempo de subida
- tiempo de estabilización
- error de estado estacionario

y la ubicación de los polos en el plano complejo.

Sistemas de primer orden

- La respuesta total tiene una parte natural y otra forzada.
- Con una entrada escalón $u = \sigma$

$$y = Ae^{-a_0t} + \frac{b_0}{a_0}$$

Si y = 0 para t = 0

$$y = \frac{b_0}{a_0} (1 - e^{-a_0 t})$$

$$\frac{dy}{dt} + a_0 \cdot y = b_0 \cdot u$$

Ecuación de primer orden

Sistemas de segundo orden

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + k \cdot x = F$$

Dependiendo del valor de las raíces del polinomio característico (polos); el sistema puede tener tres tipos de comportamiento:

$$s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

- 1. Subamortiguado (ζ<1)
- 2. Críticamente amortiguado (ζ=1)
- 3. Sobreamortiguado (ζ>1)

Relación entre el comportamiento temporal y la ubicación de los polos

Para establecer esta relación se parte de que el sistema posee en lazo cerrado un comportamiento aproximado al de un sistema prototipo de segundo orden.

$$\hat{G}_R = \frac{G_O(s)}{1 + G_O(s)} = \frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$$

La aproximación es buena cuando el sistema en lazo cerrado posee un par de polos dominantes.

Polos dominantes

Polos dominantes:

- Caracterizan fuertemente la respuesta transitoria
- Se encuentran cerca del eje imaginario y por ello tienen constantes de tiempo mayores que otros polos
- Polos no dominantes:
 - Tienen poca influencia en la respuesta transitoria
 - Sus constantes de tiempo son muy pequeñas, al menos 7 veces menores, comparadas con la de los polos dominantes.

Ubicación de los polos del sistema de segundo orden en el plano s

$$s = -\zeta \omega_n \pm \sqrt{\omega_n^2 (\zeta^2 - 1)}$$

× raíz

La respuesta ante escalón

Aplicamos el escalón $R(s) = u_0/s$

$$Y(s) = R(s)G_R(s) = \frac{u_0}{s} \cdot \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = u_0 \mathcal{L}^{-1} \left\{ \frac{1}{s} \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \right\}$$

$$y(t) = u_0 \left[1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \cdot sen(\omega_n \sqrt{1 - \zeta^2} t + \theta) \right] \frac{\theta = \cos^{-1}(\zeta)}{\theta}$$

Encontrando el máximo

Derivamos y(t) e igualamos a cero, para encontrar los tiempos de mínimos y máximos.

$$\dot{y}(t) = u_0 \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \cdot sen(\omega_n \sqrt{1 - \zeta^2} t) = 0$$

La soluciones, están dadas por:

$$\omega_n \sqrt{1 - \zeta^2} t = n\pi$$

El máximo es el primero que se produce, n = 1, $t = T_m$

$$T_m = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Encontrando el sobreimpulso

Evaluando y(t) en T_m obtenemos el máximo

$$y(t)_{m \dot{\alpha} x} = u_0 (1 + e^{-\left(\frac{\zeta \pi}{\sqrt{1 - \zeta^2}}\right)})$$

El sobreimpulso está definido como:

$$M_P = \frac{y(t)_{m\acute{a}x} - \lim_{t \to \infty} y(t)}{\lim_{t \to \infty} y(t)} = \frac{1 + e^{-\left(\frac{\zeta\pi}{\sqrt{1 - \zeta^2}}\right)} - 1}{1}$$

$$M_P = e^{-\left(\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right)}$$

Sobreimpulso vrs. ζ

Encontrando el tiempo de estabilización

El tiempo de estabilización del 2%, cuando la respuesta se mantiene dentro del 2% del valor final

$$y(t_{s2\%}) < \lim_{t \to \infty} y(t) \pm 2\%$$

$$e^{-\zeta\omega_n t_{s2\%}} < 0.02$$

Se obtiene $\zeta \omega_n t_{s2\%} \cong 4$

$$t_{s2\%} = \frac{4}{\zeta \omega_n}$$

Fórmulas

$$s = -\zeta \omega_n \pm \sqrt{\omega_n^2(\zeta^2 - 1)}$$

Raíces

$$s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} \quad ; \qquad \zeta < 1$$

$$\zeta < 1$$

Raíces

$$M_{P} = e^{-\left(\frac{\zeta\pi}{\sqrt{1-\zeta^{2}}}\right)}$$

Sobreimpulso

$$\zeta = \sqrt{\frac{\left(\frac{\ln M_P}{\pi}\right)^2}{1 + \left(\frac{\ln M_P}{\pi}\right)^2}}$$

Amortiguamiento relativo

Fórmulas (2)

$$t_{s2\%} = \frac{4}{\zeta \omega_n}$$

Tiempo de estabilización 2%

$$t_{s5\%} = \frac{3}{\zeta \omega_n}$$

Tiempo de estabilización 5%

$$t_r = \frac{2.5\zeta + 0.8}{\omega_n}$$

Tiempo de subida

$$t_r = \frac{1.8}{\omega_n}$$

Tiempo de subida

Resumen dinámica de 2° orden

Valores de ζ	Comportamiento del sistema	Raíces de la ecuación característica	Respuesta en el tiempo
0 < ζ < 1	Subamortiguado	$S_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$	$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \cdot sen(\sqrt{1 - \zeta^2} \omega_n t + \theta)$
$\zeta = 1$	Críticamente amortiguado	$s_{1,2} = -\omega_n$	$y(t) = 1 - e^{-\zeta \omega_n t} \left(1 + \omega_n t \right)$
ζ > 1	Sobreamortiguado	$S_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{(\zeta^2 - 1)}$	$y(t) = 1 + \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left[\frac{e^{s_1 t}}{s_1} - \frac{e^{s_2 t}}{s_2} \right]$
ζ = 0	No amortiguado	$s_{1,2} = \pm j\omega_n$	$y(t) = 1 - \mathbf{COS}(\omega_n t)$
ζ < 0	Amortiguado negativamente	$S_{1,2} = \zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$	

Ubicación de los polos de lazo cerrado ante variación de ζ con ω_n constante

La ubicación del par de polos en el plano complejo puede expresarse también en forma polar como

$$S_{1,2} = \omega_n \angle \pm \theta$$

con

$$\zeta = \cos(\theta)$$

Respuesta al escalón unitario ante variación de ζ con ω_n cte.

Ubicación de los polos de lazo cerrado ante variación de ω_n con ζ constante

Respuesta al escalón unitario ante variación de ω_n con ζ constante

Respuesta ante escalón con ζ = 0.5

Ubicación de los polos de lazo cerrado ante variación de ζ y ω_n

Los polos se desplazan a lo largo de la recta paralela al eje imaginario dada por el valor constante - $\zeta \omega_n$.

Respuesta al escalón unitario ante variación de ζ y ω_n

Respuesta ante escalón con $\zeta\omega_n = 0.5$

Regiones para la ubicación deseada del par de polos dominantes de la función de lazo cerrado

Ejemplo: Función

Tenemos un sistema de lazo abierto Go(s), con ganancia variable K, realimentado unitariamente

$$G_O(s) = K \frac{13}{s(s+6)}$$

$$T(s) = \frac{G_O(s)}{1+G_O(s)} = \frac{13*K}{(s^2+6s+13*K)}$$

- Las condiciones son
 - $5\% \le M_P \le 10\%$
 - $1s \le t_S \le 2s$

Ejemplo: Región buscada

Ejemplo: Encontrando K

Se puede encontrar el valor de K que hace que los polos de lazo cerrado de T(s) se encuentren en la región deseada.

$$T(s) = \frac{13*K}{(s^2 + 6s + 13*K)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$2\zeta\omega_{n} = 6$$
, $y \omega_{n}^{2} = 13*K$

Escogemos un punto $s_1 = -3 + j3.6$ en el centro de la región Γ deseada, que posee los valores $\zeta \omega_n = 3$, $\omega_n = 4.69$ y $\zeta = 0.64$; entonces:

$$K = \frac{\omega_n^2}{13} = 1.69$$

Respuesta del sistema K = 1.69

Resumen

- El sobreimpulso depende exclusivamente del amortiguamiento relativo ζ.
- El tiempo de estabilización depende del producto $ζω_n$.
- La aproximación es válida para sistemas de orden superior si se cuenta con polos dominantes

Referencias

Dorf, Richard, Bishop Robert. "Sistemas de control moderno", 10^a Ed., Prentice Hall, 2005, España.