# Approximation guarantees of local search algorithms via localizability of set functions

## Kaito Fujii

(National Institute of Informatics)

**ICML 2020** 

## A function that assigns a value to every subset



## A function that assigns a value to every subset

$$f(\{5, 3, 3, \}) = 50$$



## A function that assigns a value to every subset

$$f(\{*, \frac{1}{N}\}) = 20$$



#### Finding a subset maximizing the objective value



#### Algorithmic framework for set function max.



When do local search algorithms work well?

 If the objective function satisfies localizability, local search is guaranteed to work well

- 1 If the objective function satisfies localizability, local search is guaranteed to work well
- 2 The objective function of sparse optimization satisfies localizability

- 1 If the objective function satisfies localizability, local search is guaranteed to work well
- 2 The objective function of sparse optimization satisfies localizability
- 3 Local search for sparse optimization can be accelerated

## Finding a subset of size at most s

Maximize f(X)

subject to  $|X| \le s$ 

## Finding a subset of size at most s

Maximize 
$$f(X)$$
 Assume  $f$  is monotone subject to  $|X| \le s$  i.e.  $A \subseteq B \Rightarrow f(A) \le f(B)$ 

## **Warmup: Cardinality constraints**

### Finding a subset of size at most s

Maximize 
$$f(X)$$
 Assume  $f$  is monotone subject to  $|X| \le s$  i.e.  $A \subseteq B \Rightarrow f(A) \le f(B)$ 

An algorithm is  $\alpha$ -approximation ( $\alpha \in [0, 1]$ )

$$\stackrel{\triangle}{\Leftrightarrow} f(X) \ge \alpha f(X^*),$$

where X is the output and  $X^*$  is an optimal

Let X be any maximal feasible solution

For 
$$i = 1, \dots, T$$
:

For each  $a \in N \setminus X$ ,  $b \in X$ , compute  $f(X \setminus \{b\} \cup \{a\})$ 

Update X with the best exchange



Find the best exchange at each step

$$f(\lbrace 5, , , 3 \rbrace) = 35$$



# Approx. guarantee: Cardinality constr. 9/22

#### Theorem

If the objective function is  $(\alpha, \beta)$ -localizable,

our local search algo. is 
$$\frac{\alpha}{\beta} \left( 1 - \exp\left(-\frac{\beta T}{s}\right) \right)$$
-approx.

*T*: #iterations, *s*: maximum solution size

# Approx. guarantee: Cardinality constr. $_{9/22}$

#### Theorem

If the objective function is  $(\alpha, \beta)$ -localizable,

our local search algo. is 
$$\frac{\alpha}{\beta} \left( 1 - \exp\left(-\frac{\beta T}{s}\right) \right)$$
-approx.

T: #iterations, s: maximum solution size

#### **Guarantees for well-known classes**

$$(\alpha, \beta)$$
 approx. guarantee linear  $(1, 1)$   $(1 - \exp(T/s))$  submodular  $(1, 2)$   $\frac{1}{2}(1 - \exp(T/s))$ 

# General settings: Structured constraints<sub>/ 22</sub>

Maximize f(X)  $\mathcal{I} \subseteq 2^N$  represents a family of feasible subsets



Matroids 11/22

*N* finite set,  $\mathcal{I} \subseteq 2^N$  s.t.  $\emptyset \in \mathcal{I}$  and  $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ 

$$\mathcal{M} = (N, \mathcal{I})$$
 is a **matroid**

$$\forall A, B \in \mathcal{I}, |A| < |B| \Rightarrow \exists i \in B \setminus A, A \cup \{i\} \in \mathcal{I}$$

e.g.) partition matroid





Matroids 11/22

*N* finite set, 
$$\mathcal{I} \subseteq 2^N$$
 s.t.  $\emptyset \in \mathcal{I}$  and  $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ 

$$\mathcal{M} = (N, \mathcal{I})$$
 is a **matroid**

$$\forall A, B \in \mathcal{I}, |A| < |B| \Rightarrow \exists i \in B \setminus A, A \cup \{i\} \in \mathcal{I}$$

(N,  $\mathcal{I}$ ) is a p-matroid intersection

$$\exists (N, \mathcal{I}_1), \cdots, (N, \mathcal{I}_p) \text{ matroids s.t. } \mathcal{I} = \bigcap_{i=1}^p \mathcal{I}_p$$

*N* finite set,  $\mathcal{I} \subseteq 2^N$  s.t.  $\emptyset \in \mathcal{I}$  and  $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$   $(N, \mathcal{I})$  is a *p*-exchange system



 $\exists \phi : A \setminus B \rightarrow 2^{B \setminus A} \text{ s.t.}$ 

- $|\phi(v)| \le p \ (\forall v \in A \setminus B)$
- Each  $v' \in B \setminus A$  appears at most p sets of  $(\phi(v))_{v \in A \setminus B}$
- For all  $B' \subseteq B \setminus A$ ,  $(A \setminus (\bigcup_{v \in B'} \phi(v))) \cup B' \in \mathcal{I}$

# $p extsf{-}\mathsf{Exchange}$ systems <code>[Feldman-Naor-Schwartz-Ward'11]/22</code>

*N* finite set,  $\mathcal{I} \subseteq 2^N$  s.t.  $\emptyset \in \mathcal{I}$  and  $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$   $(N, \mathcal{I})$  is a *p*-exchange system

e.g.) b-matching



2-matching



not 2-matching

 $\mathcal{I} = \{X \subseteq E \mid \forall v \in V, \deg_v(X) \leq b\}$  is a 2-exchange sys.

## Localizability (general version)



 $\mathcal{P}$  a multiset of  $2^N$  s.t.  $\begin{cases} each \text{ of } X^* \setminus X \text{ appears } k \text{ times} \\ each \text{ of } X \setminus X^* \text{ appears } \ell \text{ times} \end{cases}$ 

$$f$$
 is  $(\alpha, \beta_1, \beta_2)$ -localizable  
 $\Leftrightarrow \sum_{P \in \mathcal{P}} \{ f(X \triangle P) - f(X) \} \ge \alpha k f(X^*) - (\beta_1 \ell + \beta_2 k) f(X)$ 

# **Approximation guarantees**

#### Theorem

If the objective function is  $(\alpha, \beta_1, \beta_2)$ -localizable

Matroids the local search algorithm is

$$\frac{\alpha}{\beta_1 + \beta_2} \left( 1 - \exp\left( -\frac{(\beta_1 + \beta_2)T}{s} \right) \right)$$
-approximation

*p*-MI/*p*-ES the local search algo. with paramter

$$q \in \mathbb{Z}_{>0}$$
 is  $\frac{\alpha \left(1 - \exp\left(\frac{(\beta_1(p-1+1/q)+\beta_2)T}{s}\right)\right)}{\beta_1(p-1+1/q)+\beta_2}$ -approx.

q is a parameter of the algorithms you can choose (you must check  $n^{{\rm O}(q)}$  solutions at each step)

## Finding a sparse solution for continuous opt.

```
Maximize_{\mathbf{w} \in \mathbb{R}^n} u(\mathbf{w}) subject to \sup_{\mathbf{w} \in \mathcal{I}} \mathbf{w} \in \mathcal{I}
```

### **Notation**

- $u: \mathbb{R}^n \to \mathbb{R}$  continuous function with  $u(\mathbf{0}) \ge 0$
- $\bullet N \stackrel{\triangle}{=} \{1, \dots, n\}$
- $supp(\mathbf{w}) \stackrel{\triangle}{=} \{i \in N \mid \mathbf{w}_i \neq 0\}$  indices of non-zeros

## Finding a sparse solution for continuous opt.

```
Maximize_{\mathbf{w} \in \mathbb{R}^n} u(\mathbf{w}) subject to \sup_{\mathbf{w} \in \mathbb{R}^n} u(\mathbf{w}) \in \mathcal{I}
```

#### **Notation**

- $u: \mathbb{R}^n \to \mathbb{R}$  continuous function with  $u(\mathbf{0}) \ge 0$
- $\bullet N \stackrel{\triangle}{=} \{1, \dots, n\}$
- $supp(\mathbf{w}) \stackrel{\triangle}{=} \{i \in N \mid \mathbf{w}_i \neq 0\}$  indices of non-zeros

# Feature selection with matroid constraints

## Selecting one feature from each category



Maximize 
$$u_{R^2}(\mathbf{w}) \stackrel{\triangle}{=} 1 - \frac{\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2}{\|\mathbf{y}\|_2^2}$$
  
subject to  $\sup_{\mathbf{w}} \mathbf{w} \in \mathcal{I}$ 

# Structure learning of graphical models<sub>17/22</sub>

## Estimate supp(w) of a sparse Ising model

$$p(\mathbf{x}|\mathbf{w}) \propto \exp\left(\sum_{(u,v)\in E} w_{uv} x_u x_v + \sum_{u\in V} w_u x_u\right)$$
 from data  $\{\mathbf{x}^1, \cdots, \mathbf{x}^m\} \sim p(\mathbf{x}|\mathbf{w})$ 



A degree constraint is a special case of a 2-ES constr.

*u* is restricted strongly concave

$$\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in \Omega, \ u(\mathbf{y}) - u(\mathbf{x}) - \langle \nabla u(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq -\frac{m_{\Omega}}{2} ||\mathbf{y} - \mathbf{x}||_{2}^{2}$$

*u* is restricted smooth

$$\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in \Omega, \ u(\mathbf{y}) - u(\mathbf{x}) - \langle \nabla u(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge -\frac{M_{\Omega}}{2} ||\mathbf{y} - \mathbf{x}||_{2}^{2}$$



Restricted strong concavity constant  $m_s$  on

$$\Omega_{s} = \{\mathbf{x}, \mathbf{y} \mid ||\mathbf{x} - \mathbf{y}||_{0} \le s\}$$

Restricted smoothness constant  $M_{s,t}$  on  $\Omega_{s,t} = \{\mathbf{x}, \mathbf{y} \mid ||\mathbf{x}||_0 \le s, ||\mathbf{y}||_0 \le s, ||\mathbf{x} - \mathbf{y}||_0 \le t\}$ 

# Sparse optimization $\rightarrow$ set function opt<sub>9/22</sub>

## We can reduce sparse opt. to set function opt.

$$\begin{aligned} & \mathsf{Maximize}_{\mathbf{w} \in \mathbb{R}^n} \quad u(\mathbf{w}) \\ & \mathsf{subject} \ \mathsf{to} & & \mathsf{supp}(\mathbf{w}) \in \mathcal{I} \end{aligned}$$

Maximize<sub>$$X \subseteq N$$</sub>  $f_u(X)$   
subject to  $X \in \mathcal{I}$ 

 $f_u$  is  $\left(\frac{m_{2s}}{M_{s,t}}, \frac{M_{s,t}}{m_{2s}}, 0\right)$ -localizable with size s and exchange size t

# Approximation guarantees for sparse opt<sub>22</sub>

| Constraint  | Local search                                                                  | Greedy                                              |
|-------------|-------------------------------------------------------------------------------|-----------------------------------------------------|
| Cardinality | $\frac{m_{2s}^2}{M_{s,2}^2} \left( 1 - \epsilon_1(T) \right)$                 | $1-\exp\left(-\frac{m_{2s}}{M_{s,1}}\right)\dagger$ |
| Matroids    | $\frac{m_{2s}^2}{M_{s,2}^2} (1 - \epsilon_1(T))$                              | $\frac{1}{(1+\frac{M_{s,1}}{m_s})^2}$ ‡             |
| p-MI/p-ES   | $\frac{1}{p-1+1/q} \frac{m_{2s}^2}{M_{s,2}^2} \left(1 - \epsilon_2(T)\right)$ | N/A                                                 |

$$\epsilon_1(T)$$
 and  $\epsilon_2(T)$  are terms converging to 0 as  $T \to \infty$ 

- † [Elenberg–Khanna–Dimakis–Negahban'18]
- ‡ [Chen-Feldman-Karbasi'18]

It takes much time to decide  $\underset{\alpha \in N \setminus X, b \in X}{\operatorname{argmax}} f_u(X \setminus \{a\} \cup \{b\})$ 

 $\longrightarrow$  Approximately evaluate the value of  $f_u$ 

It takes much time to decide  $\underset{a \in N \setminus X, b \in X}{\operatorname{argmax}} f_u(X \setminus \{a\} \cup \{b\})$ 

 $\longrightarrow$  Approximately evaluate the value of  $f_u$ 

#### semi-oblivious

 $\mathbf{w}^{(X)} \in \underset{\mathbf{w}: \text{ supp}(\mathbf{w}) \subseteq X}{\operatorname{argmax}} u(\mathbf{w})$ 

 $\underset{a \in N \setminus X}{\operatorname{argmax}} f_u(X \setminus \{b\} \cup \{a\}), \text{ where } b \in \underset{b \in X}{\operatorname{argmin}} (\mathbf{w}^{(X)})_b^2$ 

Quickly decides the element to be removed

It takes much time to decide  $\underset{a \in N \setminus X, b \in X}{\operatorname{argmax}} f_u(X \setminus \{a\} \cup \{b\})$ 

 $\longrightarrow$  Approximately evaluate the value of  $f_u$ 

 $\mathbf{w}^{(X)} \in \underset{\mathbf{w}: \text{ supp}(\mathbf{w}) \subseteq X}{\operatorname{argmax}} u(\mathbf{w})$ 

#### semi-oblivious

 $\underset{a \in N \setminus X}{\operatorname{argmax}} f_u(X \setminus \{b\} \cup \{a\}), \text{ where } b \in \underset{b \in X}{\operatorname{argmin}} (\mathbf{w}^{(X)})_b^2$ 

Quickly decides the element to be removed

#### non-oblivious

$$\underset{a \in N \setminus X, b \in X}{\operatorname{argmax}} \ \left\{ \frac{1}{2M_{s,2}} \left( \nabla u(\mathbf{w}^{(X)}) \right)_a^2 - \frac{M_{s,2}}{2} \left( \mathbf{w}^{(X)} \right)_b^2 \right\}$$

- If the objective function satisfies localizability,
  local search is guaranteed to work well
- 2 The objective function of sparse optimization satisfies localizability
- 3 Local search for sparse optimization can be accelerated