Lecture 2 - Key

Axioms of Probability

Kolmogorov's Axioms of Probability:

- $0 = Pr(not H|H) \le Pr(F|H) \le Pr(H|H) = 1$
- $Pr(F \cup G|H) = Pr(F|H) + Pr(G|H)$ if $F \cap G = \emptyset$
- $Pr(F \cap G|H) = Pr(G|H)Pr(F|G \cap H)$

The textbook discusses the idea of belief functions. The important thing to note here is that a probability function can be used to express beliefs in a principled manner.

Partitions and Bayes Rule

A collection of sets $\{H_1, ..., H_K\}$ is a **partition** of another set \mathcal{H} if

- the events are disjoint, $H_i \cap H_j = \emptyset$ for $i \neq j$ and
- the union of the sets is \mathcal{H} , $\bigcup_{k=1}^K H_k = \mathcal{H}$.

Let \mathcal{H} be a Bozemanite's favorite ski hill. Partitions include:

- {Big Sky, Bridger Bowl, other}
- {Any Montana Ski Hill, Any Colorado Ski Hill, other}

Let $\mathcal H$ be the number of stats courses taken by people in this room. Partitions include:

- {0, 1, 2, ...}
- {0 3, 4-6, 7-10, 10+}

Suppose $\{H_1, ..., H_K\}$ is a partition of \mathcal{H} , $Pr(\mathcal{H}) = 1$, and E is some specific event. The axioms of probability imply the following statements:

- 1. Rule of Total Probability: $\sum_{k=1}^{K} Pr(H_k) = 1$
- 2. Rule of Marginal Probability:

$$Pr(E) = \sum_{k=1}^{K} Pr(E \cap H_k)$$
$$= \sum_{k=1}^{K} Pr(E|H_k) Pr(H_k)$$

3. Bayes rule:

$$Pr(H_j|E) = \frac{Pr(E|H_j)Pr(H_j)}{Pr(E)}$$
$$= \frac{Pr(E|H_j)Pr(H_j)}{\sum_{k=1}^{K} Pr(E|H_k)Pr(H_k)}$$

Assume a sample of MSU students are polled on their skiing behavior. Let $\{H_1, H_2, H_3, H_4\}$ be the events that a randomly selected student in this sample is in, the first quartile, second quartile, third quartile and 4th quartile in terms of number of hours spent skiing.

Then $\{Pr(H_1), Pr(H_2), Pr(H_3), Pr(H_4)\} = \{.25, .25, .25, .25\}.$

Let E be the event that a person has a GPA greater than 3.0, where $\{Pr(E|H_1), Pr(E|H_2), Pr(E|H_3), Pr(E|H_4)\} = \{.40, .71, .55, .07\}.$

Now compute the probability that a student with a GPA greater than 3.0 falls in each quartile for hours spent skiing: $\{Pr(H_1|E), Pr(H_2|E), Pr(H_3|E), Pr(H_4|E)\}$

$$Pr(H_1|E) = \frac{Pr(E|H_1)Pr(H_1)}{\sum_{k=1}^{4} Pr(E|H_k)Pr(H_k)}$$

$$= \frac{Pr(E|H_1)}{Pr(E|H_1) + Pr(E|H_2) + Pr(E|H_3) + Pr(E|H_4)}$$

$$= \frac{.40}{.40 + .71 + .55 + .07} = \frac{.4}{1.73} = .23$$

Similarly, $Pr(H_2|E) = .41$, $Pr(H_3|E) = .32$, and $Pr(H_4|E) = .04$.

Independence

Two events F and G are conditionally independent given H if $Pr(F \cap G|H) = Pr(F|H)Pr(G|H)$

If F and G are conditionally independent given H then $Pr(F|H \cap G) = Pr(F|H)$

What is the relationship between Pr(F|H) and $Pr(F|H \cap G)$ as well as Pr(F|H) and $Pr(F|H \cap I)$? - \$F = \${ you draw the jack of hearts } - \$G = \${ a mind reader claims you drew the jack of hearts } - \$H = \${ the mind reader has extrasensory perception } - \$I = {Andyisthemindreader}*Pr(F|H) = 1/52\$ and $Pr(F|G \cap H) > 1/52 \ Pr(F|H) = 1/52$ and $Pr(F|G \cap I) = 1/52$ *

Random Variables

In Bayesian inference a random variable is defined as an unknown numerical quantity about which we make probability statements. For example, the quantitative outcome of a study is performed. Additionally, a fixed but unknown population parameter is also a random variable.

Discrete Random Variables

Let Y be a random variable and let \mathcal{Y} be the set of all possible values of Y. Y is discrete if the set of possible outcomes is countable, meaning that \mathcal{Y} can be expressed as $\mathcal{Y} = \{y_1, y_2, ...\}$.

The event that the outcome Y of our study has the value y is expressed as $\{Y = y\}$. For each $y \in \mathcal{Y}$, our shorthand notation for Pr(Y = y) will be p(y).

This function (known as the probability distribution function (pdf)) p(y) has the following properties.

- $0 \le p(y) \le 1$ for all $y \in \mathcal{Y}$
- $\sum_{y \in \mathcal{Y}} p(y) = 1$

Example 1. Binomial Distribution

Let $\mathcal{Y} = \{0, 1, 2, ...n\}$ for some positive integer n. Then $Y \in \mathcal{Y}$ has a binomial distribution with probability θ if

$$*Pr(Y = y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.*$$

Example 2. Poisson Distribution

Let $\mathcal{Y} = \{0, 1, 2...\}$. Then $Y \in \mathcal{Y}$ has a Poisson distribution with mean θ if

$$*Pr(Y = y|\theta) = \theta^y \exp(-\theta)/y!*$$

Continuous Random Variables

Suppose that the sample space $\mathcal Y$ is $\mathbb R$, then $Pr(Y \le 5) \ne \sum_{y \le 5} p(y)$ as this sum does not make sense. Rather define the cumulative distribution function (cdf) $F(y) = Pr(\bar Y \le y)$.

The cdf has the following properties:

- $F(\infty) = 1$
- $F(-\infty) = 0$
- F(b) < F(a) if b < a.

Using the CDF, probabilities of events can be derived as:

- Pr(Y > a) = 1 F(a)
- Pr(a < Y < b) = F(b) F(a)

If F is continuous, then Y is a continuous random variable. Then $F(a) = \int_{-\infty}^{a} p(y)dy$.

Example. Normal distribution.

Let $\mathcal{Y} = (-\infty, \infty)$ with mean μ and variance σ^2 . Then y follows a normal distribution if

$$*p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2\right\} *$$

Moments of Distributions

The mean or expectation of an unknown quantity Y is given by

$$\begin{split} *E[Y] &= \sum_{y \in \mathcal{Y}} y p(y) \text{ if Y is discrete and } * \\ *E[Y] &= \int_{y \in \mathcal{Y}} y p(y) \text{ if Y is continuous.} * \end{split}$$

The variance is a measure of the spread of the distribution.

$$Var[Y] = E[(Y - E[Y])^{2}]$$

$$= E[Y^{2} - 2YE[Y] + E[Y]^{2}]$$

$$= E[Y^{2}] - 2E[Y]^{2} + E[Y]^{2}$$

$$= E[Y^{2}] - E[Y]^{2}$$

If $Y \sim \text{Binomial}(n, p)$, then E[Y] = np and Var[Y] = np(1 - p).

if $Y \sim \text{Poisson}(\mu)$, then $E[Y] = \mu$ and $Var[Y] = \mu$.

if $Y \sim \text{Normal}(\mu, \sigma^2)$, then $E[Y] = \mu$ and $Var[Y] = \sigma^2$.

Joint Distributions

Let Y_1, Y_2 be random variables, then the joint pdf or joint density can be written as

$$*P_{Y_1,Y_2}(y_1,y_2) = Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\}), \text{ for } y_1 \in \mathcal{Y}_1, y_2 \in \mathcal{Y}_2 *$$

The marginal density of Y_1 can be computed from the joint density:

$$p_{Y_1}(y_1) = Pr(Y_1 = y_1)$$

$$* = \sum_{y_2 \in \mathcal{Y}_2} Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\})$$

$$* = \sum_{y_2 \in \mathcal{Y}_2} p_{Y_1, Y_2}(y_1, y_2).*$$

Note this is for discrete random variables, but a similar derivation holds for continuous.

The conditional density of Y_2 given $\{Y_1 = y_1\}$ can be computed from the joint density and the marginal density.

$$p_{Y_2|Y_1}(y_2|y_1) = \frac{Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\})}{Pr(Y_1 = y_1)}$$
$$= \frac{p_{Y_1,Y_2}(y_1, y_2)}{p_{Y_1}(y_1)}$$

Note the subscripts are often dropped, so $p_{Y_1,Y_2}(y_1,y_2) = p(y_1,y_2)$, ect...

Independent Random Variables and Exchangeability

Suppose $Y_1, ..., Y_n$ are random variables and that θ is a parameter corresponding to the generation of the random variables. Then $Y_1, ..., Y_n$ are conditionally independent given θ if

$$*Pr(Y_1 \in A_1, ..., Y_n \in A_n | \theta) = Pr(Y_1 \in A_1) \times ... \times Pr(Y_n \in A_n) *$$

where $\{A_1, ..., A_n\}$ are sets.

Then the joint distribution can be factored as

$$*p(y_1,...,y_n|\theta) = p_{Y_1}(y_1|\theta) \times ... \times p_{Y_n}(y_n|\theta).*$$

If the random variables come from the same distribution then they are conditionally independent and identically distributed, which is noted $Y_1, ..., Y_n | \theta \sim i.i.d.p(y | \theta)$ and

$$p(y_1, ..., y_n | \theta) = p_{Y_1}(y_1 | \theta) \times ... \times p_{Y_n}(y_n | \theta) = \prod_{i=1}^n p(y_i | \theta).$$

Exchangeability

Let $p(y_1,...y_n)$ be the joint density of $Y_1,...,Y_n$. If $p(y_1,...,y_n)=p(y_{\pi_1},...,y_{\pi_n})$ for all permutations π of $\{1, 2, ..., n\}$, then $Y_1,...,Y_n$ are exchangeable.

Assume data has been collected on apartment vacancies in Bozeman. Let $y_i = 1$ if an affordable room is available. Do we expect $p(y_1 = 0, y_2 = 0, y_3 = 0, y_4 = 1) = p(y_1 = 1, y_2 = 0, y_3 = 0, y_4 = 0)$? If so the data are exchangeable.

Let $\theta \sim p(\theta)$ and if $Y_1, ..., Y_n$ are conditionally i.i.d. given θ , then marginally (unconditionally on θ) $Y_1, ..., Y_n$ are exchangeable. Proof omitted, see textbook for details.