ELE 535: Machine Learning and Pattern Recognition Homework 4

Zachary Hervieux-Moore

Monday 15th October, 2018

Exercise 1: Determine general sufficient conditions (if any exist) under which the indicated function f is convex.

- a) $f: \mathbb{R} \to \mathbb{R}$ with f(x) = |x|.
- b) $f:(0,\infty)\to\mathbb{R}$ with $f(x)=x\ln(x)$.
- c) $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = (x^T Q x)^3$. Here $Q \in \mathbb{R}^{n \times n}$ is symmetric PSD.
- d) $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = 1 + e^{\sum_{i=1}^n |x_i|^3}$.
- e) For $x \in \mathcal{C} = \{x \in \mathbb{R}^n : x_i > 0, i = 1, ..., n\}$ let $\ln(x) = [\ln(x_i)] \in \mathbb{R}^n$ and define $f(x) = x^T \ln(x)$

Answer:

a) Simply applying the triangle inequality we get

$$f(\lambda x + (1 - \lambda)y) = |\lambda x + (1 - \lambda)y|$$

$$\leq \lambda |x| + (1 - \lambda)|y| = \lambda f(x) + (1 - \lambda)f(y)$$

Thus, it is convex.

b) Here, we take the second derivative since it is continuous on the domain,

$$f''(x) = \frac{1}{x} > 0 \quad \forall x \in (0, \infty)$$

As this is always positive, then we have that f is strongly convex.

- c) Here, we use theorem 7.3.2e) that states that h(x) = g(f(x)) is convex if g is convex and non decreasing on the range of f. Here we have $f(x) = x^T Q x$ whose range is $[0, \infty)$ as Q is PSD and $g(x) = x^3$. Thus, on $[0, \infty)$, we have that $g'(x) = 2x^2 \ge 0$ and $g''(x) = 6x \ge 0$ which means that g is on decreasing and convex respectively. Thus, we have shown that the original function is convex.
- d) Again, we use the same theorem as in the previous part. First $g(x) = 1 + e^x$ and $f(x) = (\sum_{i=1}^n |x_i|)^3$. The range of f(x) is $[0, \infty)$. We also have $g'(x) = e^x$ and $g''(x) = e^x$ which are both always positive and so non decreasing and convex. This shows that the original function is convex.

e) We have that $f(x) = x^T \ln(x)$ which is just a short form for

$$[f(x)]_i = x_i \ln(x_i)$$

Thus, we have

$$[\nabla f(x)]_i = 1 + \ln(x_i)$$
$$[Hf(x)]_{ii} = \frac{1}{x_i} \text{ and } [Hf(x)]_{ij} = 0 \text{ for } i \neq j$$

Exercise 2: You want to learn an unknown function $f:[0,1] \to \mathbb{R}$ using a set of noisy measurements (x_j, y_j) , with $y_j = f(x_j) + \epsilon_j$, $j = 1, \ldots, m$. Your plan is to approximate $f(\cdot)$ by a Fourier series on [0,1] with $q \in \mathbb{N}$ terms:

$$f_q(x) = \frac{a_0}{2} + \sum_{k=1}^q a_k \cos(2\pi kx) + b_k \sin(2\pi kx).$$

To control the smoothness of $f_q(\cdot)$, you also decide to penalize the size of the coefficients a_k, b_k more heavily as k increases.

- a) Formulate the above problem as a regularized regression problem.
- b) For q=2, display the regression matrix, the label vector y, and the regularization term.
- c) Comment briefly on how to select q.

Exercise 3: Let $D \in \mathbb{R}^{n \times n}$ be diagonal with nonnegative diagonal entries and consider the problem:

$$\min_{x \in \mathbb{R}^n} ||x - y||_2^2 + \lambda ||Dx||_2^2$$

This problem seeks to best approximate $y \in \mathbb{R}^n$ with a nonuniform penalty for large entries in x.

- a) Solve this problem using the solution of ridge regression.
- b) Show that the objective function is separable into a sum of decoupled terms. Show that this decomposes the problem into n independent scalar problems.
- c) Finc the solution of each scalar problem.
- d) By putting these scalar solutions together, find and interpret the solution to the original problem.

Exercise 4: Let $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^m$ be given, and $\lambda > 0$. Consider the problem

$$w^* = \underset{w \in \mathbb{R}^n}{\arg \min} \|y - X^T w\|_2^2 + \lambda \|w\|_2^2$$

From the notes we know that there exists a unique solution w^* and that $w^* \in \mathcal{R}(X)$. Using the above and these two results, show that $w^* = X(X^TX + \lambda I_m)^{-1}y$.

Exercise 5: One form of regularized least squares can be posed as:

$$w^* = \underset{w \in \mathbb{R}^n}{\min} ||Fw - y||_2^2 + \lambda ||Gw - g||_2^2$$

where $F \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $G \in \mathbb{R}^{k \times n}$, $g \in \mathbb{R}^k$, and $\lambda > 0$.

- a) Show that a sufficient condition for the above to have a unique solution is that rank(G) = n.
- b) Show that a necessary and sufficient condition is that $\mathcal{N}(F) \cap \mathcal{N}(G) = \mathbf{0}$.