Package 'mmod'

January 14, 2012

Version 0.1.1
Date 2011-11-22
Title Modern measures of population divergence
Author David Winter
Maintainer David Winter <david.winter@gmail.com></david.winter@gmail.com>
Depends R ($>= 2.6.0$), adegenet
ZipData no
Description mmod provides functions for measuring population divergence from genotypic data
License MIT
URL https://github.com/dwinter/mmod
'harmonic_mean.R' 'jacknife_pop.R' 'pairwise_D.R' 'pairwise_Gst_Hedrick.R' 'pairwise_Gst_Nei.R' 'help.R' 'diff_test.R' R topics documented:
diff_stats diff_test D_Jost D_Jost Gst_Hedrick Gst_Nei harmonic_mean jacknife_populations mmod pairwise_D pairwise_Gst_Hedrick pairwise_Gst_Nei
Index 1

2 diff_stats

diff_stats

Calculate differentiation statistics for a genind objects

Description

This function calculates three different statistics of differentiation for a genetic dataset. Nei's Gst, Hedrick's G'st and Jost's D

Usage

```
diff stats(x)
```

Arguments

Х

genind object (from package adegenet)

Details

See individual functions D_Jost(), Gst_Hedrick() and Gst_Nei() for more details

References

Hedrick, PW. (2005), A Standardized Genetic Differentiation Measure. Evolution 59: 1633-1638.

Jost, L. (2008), GST and its relatives do not measure differentiation. Molecular Ecology, 17: 4015-4026.

Nei M. (1973) Analysis of gene diversity in subdivided populations. PNAS: 3321-3323.

Nei M, Chesser RK. (1983). Estimation of fixation indices and gene diversities. Annals of Human Genetics. 47: 253-259.

See Also

```
Other diffstat: D_Jost, Gst_Hedrick, Gst_Nei
```

```
data(nancycats)
diff_stats(nancycats)
```

diff_test 3

diff_test

An exact test of population differentiation for Genind objects

Description

This function uses Fisher's exact test to determine if alleles in sub-populations are drawn randomly from a larger population (i.e. a significance test for allelic differentiation among sub-populations).

Usage

```
diff_test(x, sim = TRUE, nreps = 10000)
```

Arguments

genind object (from package adegenet)

sim simulate p-value (required for all but the smallest datasets)

nreps number of steps used to simulate p-value (default 1000)

Details

Note, this test returns p-values for each locus in a dataset _not_ estimates of effect size. Since most populations have some degree of population differentiation, very large samples are almost guaranteed to return significant results. Refer to estimates of D or Gst to ascertain how meaningful such results might be.

See Also

```
fisher.test which this function wraps
```

Examples

```
data(nancycats)
diff_test(seploc(nancycats)[[2]], nreps=100)
```

D_Jost

Calculate Jost's D

Description

This function calculates Jost's D from a genind object

Usage

```
D_Jost(x)
```

4 Gst_Hedrick

Arguments

x genind object (from package adegenet)

Details

Takes a genind object with population information and calculates Jost's D Returns a list with values for each locus as well as two global estimates. 'global.het' uses the averages of Hs and Ht across all loci while 'global.harm_mean' takes the harmonic mean of all loci.

Because estimators of Hs and Ht are used, its possible to have negative estimates of D. You should treat these as numbers close to zero.

References

Jost, L. (2008), GST and its relatives do not measure differentiation. Molecular Ecology, 17: 4015-4026.

See Also

```
Other D: pairwise_D
Other diffstat: diff_stats, Gst_Hedrick, Gst_Nei
```

Examples

```
data(nancycats)
D_Jost(nancycats)
```

Gst_Hedrick

Calculate Nei's Gst using estimators for Hs and Ht

Description

This function calculates Hedrick's G'st from a genind object

Usage

```
Gst_Hedrick(x)
```

Arguments

Х

genind object (from package adegenet)

Details

Takes a genind object with population information and calculates Hedrick's G'st. This Returns a list with values for each locus as well as a global estimates

Because estimators of Hs and Ht are used, it's possible to have negative estimates of Gst. You should treat such results as zeros (or estimating a value close to zero, and getting it a little wrong)

Gst_Nei 5

References

Hedrick, PW. (2005), A Standardized Genetic Differentiation Measure. Evolution 59: 1633-1638.

See Also

```
Other diffstat: diff_stats, D_Jost, Gst_Nei
Other Hedrick: pairwise_Gst_Hedrick
```

Examples

```
data(nancycats)
Gst_Hedrick(nancycats)
```

Gst_Nei

Calculate Nei's Gst using estimators for Hs and Ht

Description

This function calculates Gst following Nei's method and using Nei and Chesser's estimators for Hs and Ht

Usage

```
Gst_Nei(x)
```

Arguments

Х

genind object (from package adegenet)

References

Nei M. (1973) Analysis of gene diversity in subdivided populations. PNAS: 3321-3323.

Nei M, Chesser RK. (1983). Estimation of fixation indices and gene diversities. Annals of Human Genetics. 47: 253-259.

See Also

```
Other diffstat: diff_stats, D_Jost, Gst_Hedrick
Other Nei: pairwise_Gst_Nei
```

```
data(nancycats)
Gst_Nei(nancycats)
```

jacknife_populations

harmonic_mean

Harmonic mean

Description

6

Calculate the harmonic mean of a numeric vector (will return NA if there are any negative numbers in the vector)

Usage

```
harmonic_mean(x)
```

Arguments

Х

numeric vector

Examples

```
data(nancycats)
pop.sizes <- table(pop(nancycats))
harmonic_mean(pop.sizes)</pre>
```

```
jacknife_populations
```

Calculate differentiation stats for a jacknife sample of a Genind opject

Description

Makes a series of jacknife samples across populations from a Genind object and calculates differentiation stats for each sample.

Usage

```
jacknife_populations(x, sample_frac = 0.5, nreps = 1000)
```

Arguments

```
x genind object (from package adegenet)
sample_frac fraction of pops to sample in each replication (default 0.5)
nreps number of jacknife replicates to run (default 1000)
```

mmod 7

Examples

```
## Not run:
data(nancycats)
obs <- diff_stats(nancycats)
jn <- jacknife_populations(nancycats)
D_sampled <-jn[5,]
hist(D_sampled)
abline(h=obs$global)
## End(Not run)</pre>
```

mmod

Modern Measures of Divergence

Description

Population geneticists have traditionally used Nei's Gst (often confusingly called Fst...) to measure divergence between populations. It turns out, Gst doesn't really measure divergence so, a set of new measures have been developed.

Details

mmod is a package that brings two of these mesures, Hedricks (2008) G'st and Jost's (2008) D to R, along wiht an implementation of Nei's Gst that uses nearly unbiased estimators for Hs and Ht, the two key paramaters from which all these stats are calculated. All these functions work on genind objects from the libary adegenet so data can be read in from standard genepop files.

pairwise_D

Calculates pairwise values of Jost's D

Description

This function calculates Jost's D, a measure of genetic differentiation, between all combinations of populaitons in a genind object.

Usage

```
pairwise_D(x)
```

Arguments

x

genind object (from package adegenet)

References

Jost, L. (2008), GST and its relatives do not measure differentiation. Molecular Ecology, 17: 4015-4026.

See Also

```
Other D: D_Jost
Other pairwise: pairwise_Gst_Hedrick, pairwise_Gst_Nei
```

Examples

```
data(nancycats)
pairwise_D(nancycats[1:26,])
```

```
pairwise_Gst_Hedrick
```

Calculates pairwise values of Hedrick's G'st

Description

This function calculates Hedrick's G'st, a measure of genetic differentiation, between all combinations of populaitons in a genind object.

Usage

```
pairwise_Gst_Hedrick(x)
```

Arguments

X

genind object (from package adegenet)

References

Hedrick, PW. (2005), A Standardized Genetic Differentiation Measure. Evolution 59: 1633-1638.

See Also

```
Other Hedrick: Gst_Hedrick
Other pairwise: pairwise_D, pairwise_Gst_Nei
```

```
data(nancycats)
pairwise_Gst_Hedrick(nancycats[1:26,])
```

pairwise_Gst_Nei 9

```
pairwise_Gst_Nei Calculates pairwise values of Nei's Gst
```

Description

This function calculates Nei's Gst, a measure of genetic differentiation, between all combinations of populaitons in a genind object.

Usage

```
pairwise_Gst_Nei(x)
```

Arguments

Х

genind object (from package adegenet)

References

Nei M. (1973) Analysis of gene diversity in subdivided populations. PNAS: 3321-3323.

Nei M, Chesser RK. (1983). Estimation of fixation indices and gene diversities. Annals of Human Genetics. 47: 253-259.

See Also

```
Other Nei: Gst_Nei
Other pairwise: pairwise_D, pairwise_Gst_Hedrick
```

```
data(nancycats)
pairwise_Gst_Nei(nancycats[1:26,])
```

Index

```
D_Jost, 2, 3, 5, 8
diff_stats, 2, 4, 5
diff_test, 3
fisher.test, 3
Gst_Hedrick, 2, 4, 4, 5, 8
Gst_Nei, 2, 4, 5, 5, 9
harmonic_mean, 6
jacknife_populations, 6
mmod, 7
pairwise_D, 4, 7, 8, 9
pairwise_Gst_Hedrick, 5, 8, 8, 9
pairwise_Gst_Nei, 5, 8, 9
```