Examenul național de bacalaureat 2024 Proba E. c)

Matematică M mate-info

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 2(1-2i)+i(4+i)=1, unde $i^2=-1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax a$, unde a este număr real. Determinați numărul real a pentru care punctul A(3,-3) aparține graficului funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2+8) = \log_2(8-2x)$.
- **5p 4.** Determinați câte numere naturale de două cifre distincte, cu cifra zecilor pară, se pot forma cu elementele mulțimii $A = \{1, 2, 3, 4, 5\}$.
- **5p 5.** În sistemul cartezian xOy se consideră punctele A(0,3) și B(4,0). Determinați coordonatele punctului C pentru care $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$.
- **5p 6.** Se consideră triunghiul ascuțitunghic ABC, cu AB = 5, $C = \frac{\pi}{4}$ și înălțimea AD = 4. Arătați că BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 0 & 0 & 1 \\ a & -1 & a \\ 1 & 0 & 0 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b)** Arătați că $A(a) \cdot A(b) = A(a) A(b) + I_3$, pentru orice numere reale a și b.
- **5p** c) Determinați matricea $X \in \mathcal{M}_3(\mathbb{R})$ pentru care $A(1) \cdot X \cdot A(0) = I_3$.
 - **2.** Pe mulțimea $M = [3, +\infty)$ se definește legea de compoziție $x \circ y = m(x-3)(y-3)+3$, unde $m \in (0, +\infty)$.
- **5p** a) Arătați că $3 \circ 5 = 3$, pentru orice $m \in (0, +\infty)$.
- **5p b)** Pentru m=2, arătați că $e=\frac{7}{2}$ este elementul neutru al legii de compoziție " \circ ".
- **5p** c) Se consideră funcția $f: M \to M$, $f(x) = 3 + \sqrt{x-3}$. Pentru m = 1, arătați că $f(x \circ y) = f(x) \circ f(y)$, pentru orice $x, y \in M$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = x \frac{e^{-x}}{x-1}$.
- **5p** a) Arătați că $f'(x) = \frac{(x-1)^2 + xe^{-x}}{(x-1)^2}, x \in (1,+\infty).$
- **5p** b) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- 5p c) Demonstrați că funcția f este bijectivă.

- 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x}{\left(x^2 + 1\right)^2}$.
- **5p** a) Arătați că $\int_{1}^{3} f(x)(x^2+1)^2 dx = 4$.
- **5p b)** Arătați că $\int_{0}^{1} f(x) dx = \frac{1}{4}$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 x^n \sqrt{x f(x)} \, dx$. Arătați că $I_n I_{n+4} = \frac{2}{(n+2)(n+4)}$, pentru orice număr natural nenul n.