Atividade AA-12

Nesta tarefa deve-se (i) propor uma gramática livre de contexto G_n que gere a linguagem \mathcal{L}_n selecionada e (ii) provar que a linguagem $\mathcal{L}(G_n)$, gerada pela gramática G_n , é igual à linguagem \mathcal{L}_n , ou seja, $\mathcal{L}(G_n) = \mathcal{L}_n$. (Cada aluna(o) deve consultar na descrição da atividade AA-12, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "Lista de linguagens livres de contexto" da Seção "Coletânea de exercícios".)

Rafael Nunes Moreira Costa (202107855)

- $\mathcal{L}_{19} = \{ w = 0^m 1^m 0^n \mid n, m \in \mathbf{N} \}.$
- Gramática G_{19} que gera as cadeias da linguagem \mathcal{L}_{19} : $G_{19} = (\{S, A, B\}, \{a, b, c\}, P, S), \text{ com } P = \left\{ \begin{array}{c} S \to S0 \mid A, \\ A \to 0A1 \mid \varepsilon \end{array} \right\}.$

$\mathcal{L}_{19} \subseteq \mathcal{L}(G_{99})$, ou seja, se $w \in \mathcal{L}_{19}$, então $S \stackrel{*}{\Longrightarrow} w$.

Qualquer cadeia $w \in \mathcal{L}_{19}$ pode ser obtida a partir de G_{99} a partir dos seguintes procedimentos de derivação:

Derivação	Regra usada
$S \stackrel{\scriptscriptstyle{n}}{\Longrightarrow} S0^n$	$S \to S0$
$\stackrel{\scriptscriptstyle{1}}{\Longrightarrow} A0^n$	$S \to A$
$\stackrel{\scriptscriptstyle{m}}{\Longrightarrow} 0^m A 1^m 0^n$	$A \rightarrow 0A1$
$\stackrel{m}{\Longrightarrow} 0^m 1^m 0^n$	$A \to \varepsilon$
$\implies 0^m 1^m 0^n$	
$S \stackrel{\scriptscriptstyle 1}{\Longrightarrow} A$	$S \to A$
$\stackrel{\scriptscriptstyle{1}}{\Longrightarrow} 0^n A 1^n$	$A \rightarrow 0A1$
$\stackrel{\scriptscriptstyle{1}}{\Longrightarrow} 0^n 1^n$	$A \to \varepsilon$

Portanto, se $w = 0^m 1^m 0^n$, com $n, m \in \mathbb{N}$, então $S \underset{G_{99}}{\Longrightarrow} w$.

$\mathcal{L}(G_{99}) \subseteq \mathcal{L}_{19}$, ou seja, se $S \stackrel{*}{\Longrightarrow} w$, então $w = a^n b^{2m+1} c^{2m+1} a^{2n}$, $n, m \geqslant 0$.

Sejam $|u|_x$ o número de ocorrências do símbolo x na cadeia u, $|u|_{xp}$ o número de ocorrências do símbolo x como prefixo de u e $|u|_{xs}$ o número de ocorrências do símbolo x como sufixo de

- u. As relações seguintes são válidas para qualquer forma sentencial u gerada por G_{99} :
 - (i) $2 \cdot |u|_{ap} = |u|_{as}$;
 - (ii) se $u = u_1 X u_2$ e $X \in V$, então $|u_1|_b = |u_2|_c = 2m$, $m \in \mathbb{N}$ (ou seja, quantidade par de símbolos se u é uma forma sentencial, mas não é uma cadeia);
- (iii) os a's aparecem somente como prefixo e sufixo, todos os b's precedem todos os c's e os b's não aparecem como prefixo; e
- (iv) em uma cadeia u, $|u|_b = |u|_c = 2m+1$, $m \in \mathbb{N}$ (ou seja, se temos uma cadeia de símbolos terminais, a quantidade de b's é igual à de c's e é ímpar.)

A seguir será provado, por indução na quantidade de passos de derivação, que as relações (i)-(iv) são válidas para qualquer cadeia derivável a partir de S.

Base: As relações são válidas para todas as cadeias que podem ser obtidas a partir de S com a aplicação de apenas uma regra de derivação:

$$S \stackrel{1}{\Longrightarrow} S0$$
 ou $S \stackrel{1}{\Longrightarrow} A$.

Hipótese de Indução: As relações são válidas para todas as cadeias u que podem ser obtidas a partir de S com a aplicação de até k regras de derivação ($S \stackrel{k}{\Longrightarrow} u$).

Passo indutivo: Seja w uma cadeia derivável a partir de S em k+1 passos de derivação, ou seja, $S \stackrel{k+1}{\Longrightarrow} w$. Essa derivação pode ser escrita como $S \stackrel{k}{\Longrightarrow} u \stackrel{1}{\Longrightarrow} w$. Pela hipótese indutiva, as relações (i)–(iv) são válidas para as formas sentenciais deriváveis a partir de S com a aplicação de até k regras de derivação, ou seja, são válidas para u. Queremos mostrar que a aplicação de mais uma regra não muda as relações descritas. A tabela a seguir mostra o efeito da aplicação de mais uma regra de derivação à forma sentencial u:

Regra	$ w _0$	$ w _1$
$S \to S0$	$ u _0 + 1$	$ u _1$
$S \to A$	$ u _0$	$ u _1$
$A \rightarrow 0A1$	$ u _0 + 1$	$ u _1 + 1$
$A \to \varepsilon$	$ u _0$	$ u _1$

Pela análise das entradas na tabela, pode-se concluir que as relações (i)–(iv) são mantidas para a cadeia w.