

D 01	c. Number .
	Tentative Specification
	Preliminary Specification
_	Approval Specification

MODEL NO.: G057AGE SUFFIX: T01

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	ur confirmation with your

Approved By	Checked By	Prepared By
	Pam Liang	S C.Wang

Version 1.2 Jan 30, 2013 1/27

奇美電子 CHIMEI/NNOLUX

PRODUCT SPECIFICATION

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	 11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT 6.4 SCANNING DIRECTION	 14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 18
8. RELIABILITY TEST CRITERIA	 22
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 23
10. DEFINITION OF LABELS	 25
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 26
12. MECHANICAL CHARACTERISTICS	 27

REVISION HISTORY

Version	Date	Section	Description
1.0	Dec 11, 2012	All	G057AGE-T01 Tentative Spec. was first issued
1.1	Dec 24, 2012		Optical Spec.
1.2	Jan 30 , 2013	27	6.1.2. input timing diagram
		18	7.2 Optical Spec.

Version 1.2 Jan 30, 2013 3/27

奇美電子 CHIMEI/NNOLUX

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G057AGE-T01 model is a 5.7" TFT-LCD module with a white LED Backlight Unit and a 33-pin TTL(CMOS) interface. This module supports 320 x 240 QVGA mode and displays 262k colors. The converter for the Backlight Unit is built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- QVGA (320 x 240 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode and DE+Sync mode
- TTL interface
- Reversible scan direction
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	5.7	inch	
Active Area	115.2(H) x 86.4(V)	mm]
Bezel Opening Area	118.2(H) x 89.4(V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	320 x R.G.B. x 240	pixel	-
Pixel Pitch	360(H) x 360(V)	mm	-
Pixel Arrangement	RGB stripe	-	-
Display Colors	262 K	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Anti-Glare coating (Haze 25)	-	-
Module Power Consumption	3.35	W	Тур.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
Horizontal (H)		143.5	144	144.5		
Module Size	Vertical (V)	104.1	104.6	105.1		(1)
	Depth (D)	-	12.3	12.8		
Weight		-		TBD	-	-
I/F connector mounting		The mounting in		(2)		
pos	sition	the screen cente	r within ±0.5mm a	as the horizontal.	-	(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

⁽²⁾ Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	
Operating Ambient Temperature	T _{OP}	-30	85	ōC	
Storage Temperature	T _{ST}	-30	85	ōC	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (2) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (3) Wet-bulb temperature should be 39 ${}^{\circ}$ C Max. (Ta > 40 ${}^{\circ}$ C).
- (4) No condensation.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Symbol	Value		Unit	Note	
Item	Syllibol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Cumbal	Va	ue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Converter Voltage	V_{i}	-0.3	18	V		
Enable Voltage	EN		5.5	V		
Backlight Adjust	ADJ		3.3	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Version 1.2 Jan 30, 2013 7/27

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol	value Value			Unit	Note
Faiailletei	Parameter		Min.	Тур.	Max.	Oill	Note
Power Supply Voltage		V_{CC}	3.0	3.3	3.6	V	
Rush Current	Rush Current			TBD		Α	
Davier County Course			TBD			mA	
Power Supply Current Black			TBD			mA	
Power Consumption		P_L		TBD		W	

Note (1) The assembly should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470μs

Version 1.2 Jan 30, 2013 8/27

Note (3) The specified power supply current is under the conditions at Vcc = 3.3V, Ta = 25 ± 2 $^{\circ}$ C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

b. Black Pattern

Active Area

3.2 BACKLIGHT UNIT

 $Ta = 25 + 2 \,{}^{\circ}C$

Parameter		Symbol	Value			Unit	Note
Farameter		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Supply	Voltage	V_{i}	10.8	12	13.2	V	
Convertor Dower Cumply	Current	ı	0.00	0.26	0.23	Α	@ Vi = 12V
Converter Power Supply	Current	l _i	0.28	0.26	0.23	τ.	(Duty 100%)
LED Power Consumption		D		2.45		W	@ Vi = 12V
LED Fower Consumption		P_{LED}		2.40			(Duty 100%)
EN Control Level	Backlight on		2.0		3.3	V	
EN Control Level	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0		3.3	V	
F VVIVI COITII OI Level	PWM Low Level		0		0.15	V	
PWM Control Duty Ratio		-	1		100	%	Note(3)
PWM Control Frequency	f _{PWM}	200		30K	Hz	Note(3)	
LED Life Time	_	LL	50000			Hrs	(2)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 \pm 2 °C and Duty 100% until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Note (3) At 190 ~1KHz PWM control frequency, duty ratio range is restricted from 2% to 100%.

1K ~20KHz PWM control frequency, minimum duty on-time ≥ 20 us

Version 1.2 Jan 30, 2013 9/27

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 1.2 Jan 30, 2013 10/27

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description	Remark
1	GND	Ground	
2	CLK	Dot Clock	
3	IHS	Horizontal synchronous signal	Note(4)
4	IVS	Vertical synchronous signal	Note(4)
5	GND	Ground	
6	R0	Red data (LSB)	
7	R1	Red data	
8	R2	Red data	
9	R3	Red data	
10	R4	Red data	
11	R5	Red data (MSB)	
12	GND	Ground	
13	G0	Green data (LSB)	
14	G1	Green data	
15	G2	Green data	
16	G3	Green data	
17	G4	Green data	
18	G5	Green data (MSB)	
19	GND	Ground	
20	B0	Blue data (LSB)	
21	B1	Blue data	
22	B2	Blue data	
23	B3	Blue data	
24	B4	Blue data	
25	B5	Blue data (MSB)	
26	GND	Ground	
27	DE	Data Enable Signal	
28	VDD	Power Supply (3.3V)	
29	VDD	Power Supply (3.3V)	
30	R/L	Horizontal reverse scan	Note (5)
31	U/D	Vertical reverse scan	Note (5)
32	NC	NC	Note (3)
33	GND	Ground	

Note (1) Connector Part No.: HIROSE FH12-33S-0.5SH(55), STARCONN 089H33-000100-G2-R or equivalent.

Note (2)User's connector Part No.: HIROSE FH12-33S-0.5SH(55), STARCONN 089H33-000100-G2-R or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".

Note(4) DIP Switch for DE Only Mode or DE + Sync Mode Option

 $\label{eq:note} \textbf{Note(5) DIP Switch for Two types or four types reverse scan Option}$

5.2 BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V_{i}	Converter input voltage	12V
3	V_{GND}	Converter ground	Ground
4	V_{GND}	Converter ground	Ground
5	ADJ	Backlight Adjust	PWM Dimming

Note (1) Connector Part No.: 3808K-F06N-03L (Entery) or equivalent.

Note (2) User's connector Part No.: SHR06V-BK-B(HF) (Entery) or equivalent.

5.3 DIP Switch for 1. DE Only mode & DE+SYNC mode option 2. Reverse scan function option

(1) Switch 1

ON: DE + SYNC Mode

OFF: DE Only Mode (Hsync and Vsync input signals should be set to low logic level)

(2) Switch 2

ON: 2 types reverse scan as the Fig.5 & Fig.6 (U/D must be "OPEN")

OFF: 4 types reverse scan as the Fig.1~4

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										ata (Signa	al							
	Color			Re	ed					Gre	en						ue		
		R5	R4	R3	R2	R1	R0	G5	Ğ	G3	G G	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	L:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
1	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	5.18	5.62	6.29	MHz	
	Total	Tv	246	253	262	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	-	243	-	Th	-
	Blank	Tvb	3	10	19	Th	-
	Total	Th	351	370	400	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	-	320	-	Тс	-
	Blank	Thb	31	50	80	Тс	-

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

- (2) Frame rate is 60Hz
- (3) Tvd must be 243 Th

INPUT SIGNAL TIMING DIAGRAM

6.1.2 DE + SYNC MODE INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Tc	5.38	6.29	7.23	MHz	
	Total	Tv	251	262	287	Th	
	Display	Tvd	-	240	-	Th	-
Vertical Active Display Term	Front Porch	Tvf	1	4	22	Th	f
	Back Porch	Tvb	9	15	20	Th	
	VS Pluse width	Tvp	1	3	5	Th	
	Total	Th	357	400	420	Tc	f
	Display	Thd	-	320	-	Tc	-
Horizontal Active Display Term	Front Porch	Thf	1	12	-	Тс	-
	Back Porch	Thb	31	38	48	Тс	
	HS Pluse width	Thp	5	30	40	Tc	

Note (1) Frame rate is 60Hz

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Units		
Farameter	Min	Тур	Max	Office
T1	0.5	-	10	ms
T2	0	-	50	ms
T3	0	-	50	ms
T4	500	-	-	ms
T5	200	-	-	ms
Т6	200	-	-	ms
T7	5	-	300	ms
T8	10	-	-	ms
Т9	10	-	-	ms

Version 1.2 Jan 30, 2013 16/27

6.3 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

- Fig. 1 Normal scan (R/L=Low or NC, U/D = High or NC)
- Fig. 2 Reverse scan (R/L=High, U/D = High or NC)
- Fig. 3 Reverse scan (R/L=Low or NC, U/D = Low)
- Fig. 2 Reverse scan (R/L=High, U/D = Low)

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.5 Normal Scan

- Fig. 1 Normal scan (RL=Low or NC)
- Fig. 2 Reverse scan (RL=High,)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	V_{CC}	3.3	V				
Input Signal	According to typical va	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Converter Voltage	V_{in}	12	V				
Converter Duty		100%					

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			TBD		-		
Color	neu	Ry			TBD		-		
	Green	Gx			TBD		-		
	Green	Gy		Тур -	TBD	Typ +	-	(1) (5)	
Chromaticity	Blue	Bx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	0.05	TBD	0.05	-	(1), (5)	
	blue	Ву	CS-1000		TBD		-		
	White	Wx			(0.313)		-		
		Wy			(0.329)		-		
Center Luminan	ce of White	L _C		400	500	1	-	(4), (5)	
Contrast Ratio		CR		600	800	-	-	(2), (5)	
Response Time		T_R	0 -00 0 -00	-	(15)	-	ms	(3)	
nesponse fille		T_F	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	(35)	-	ms		
White Variation		δW	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	(1.25)	1.4	-	(5), (6)	
	Horizontal	θ_x +	CD: 10	70	80	-			
Viewing Angle	Horizoniai	θ_{x} -		70	80	-	Dog	(1), (5)	
	\/tiI	θ_{Y} +	CR≥10	60	70	-	Deg.		
	Vertical	θ _Y -		60	70	-			

Version 1.2 Jan 30, 2013 18/27

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time $(T_R,\,T_F)$ and measurement method:

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point

$$L_{\rm C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Version 1.2 Jan 30, 2013 20/27

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	85°C, 240 hours	
Low Temperature Storage Test	-30°C, 240 hours	
Thermal Shock Storage Test	-30°C, 0.5hour←→85°C, 0.5hour; 1hour/cycle,100cycles	
High Temperature Operation Test	85°C, 240 hours	(1)(2)
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity	60°C, 90%RH, 240hours]
Operation Test	00°C, 90 /oni i, 240110dis	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z direction	(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 85 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specifications are judged before reliability test.

Version 1.2 Jan 30, 2013 22/27

9. PACKAGING

9.1 PACKING SPECIFICATIONS

(1) 60pcs LCD modules / 1 Box

(2) Box dimensions: 540 (L) X 450 (W) X 275 (H) mm

(3) Weight: approximately 30Kg (60 modules per box)

9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 2 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	-
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 46 cm	Non Operation

Figure. 9-1 Packing method

Version 1.2 Jan 30, 2013 23/27

Figure. 9-2 Packing method

Version 1.2 Jan 30, 2013 24/27

10. DEFINITION OF LABELS

10.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G057AGE-T01

(b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERISTICS

