CSE102 Algorithmic Foundations And Problem Solving

Algorithm efficiency: asymptotic analysis

Dr Yushi Li Department of Computer Science

Learning outcomes

- > Understand the notations of asymptotic analysis.
- ➤ Able to carry out simple **asymptotic analysis** of algorithms

Time Complexity Analysis

How fast is the algorithm?

Code the algorithm and run the program, then measure the running time

- 1. Depend on the speed of the computer
 - 2. Waste time coding and testing if the algorithm is slow

Identify some important operations/steps and count how many times these operations/steps needed to executed

Time Complexity Analysis

How to measure efficiency?

Number of operations usually expressed in terms of input size

> If we doubled the input size, how much longer would the algorithm take? If we trebled the input size, how much longer would it take?

Finding the minimum...

Input: 3 numbers a, b, c

Output: the min value of these 3 numbers

2 is output

Example 2 Input a, b, c a=6, b=5, c=7 $a \leq b$ b ≤ **¿**? $a \le c$? N Output a Output b Output c Output c

5 is output

Pseudo Code

Important operation:

comparison

How many comparison this algorithm requires?

```
input a, b, c
if (a ≤ b) then
  if (a ≤ c) then
   output a
  else
   output c
else
  if (b ≤ c) then
   output b
  else
  output c
```

It takes 2 comparisons


```
input a[0], a[1], ..., a[n-1]
min = 0
i = 1
                              Example
while (i < n) do
begin
  if (a[i] < a[min]) then <math>a[]=\{50,30,40,20,10\}
    min = i
                                        min a[min]
                               iteration
  i = i + 1
end
                               before
                                             50
output a[min]
                                             30
                                             30
                                             20
                                         3
                                             10
```

> Time complexity: ?? comparisons n-1

```
input a[0], a[1], ..., a[n-1]
min = 0
i = 1
while (i < n) do
begin
  if (a[i] < a[min]) then</pre>
    min = i
  i = i + 1
end
output a[min]
```

Finding min using for-loop

Rewrite the above while-loop into a for-loop

```
input a[0], a[1], ..., a[n-1]
min = 0
for i = 1 to n-1 do
begin
  if (a[i] < a[min]) then</pre>
    min = i
end
output a[min]
```

Why efficiency matters?

- > speed of computation by hardware has been improved
- > efficiency still matters
- ➤ ambition for computer applications grow with computer power
- > demand a great increase in speed of computation

Amount of data handled matches speed increase?

When computation speed vastly increased, can we handle much more data?

Suppose

- an algorithm takes n^2 comparisons to sort n numbers
- we need 1 sec to sort 5 numbers (25 comparisons)
- computing speed increases by factor of 100

Using 1 sec, we can now perform 100x25 comparisons, i.e., to sort 50 numbers

With 100 times speedup, only sort 10 times more numbers!

Time complexity

- Big O notation ...

Which algorithm is the fastest?

Consider a problem that can be solved by 5 algorithms A_1 , A_2 , A_3 , A_4 , A_5 using different number of operations (time complexity).

$$f_1(n) = 50n + 20$$
 $f_2(n) = 10 \text{ n } \log_2 n + 100$
 $f_3(n) = n^2 - 3n + 6$ $f_4(n) = 2n^2$
 $f_5(n) = 2^n/8 - n/4 + 2$

n	1	2	4	8	16	32	64	128	256	512	1024	2048
$f_1(n) = 50n + 20$	70	120	220	420	820	1620	3220	6420	12820	25620	51220	102420
$f_2(n) = 10 \text{ n log}2n + 100$	100	120	180	340	740	1700	3940	9060	20580	46180	102500	225380
$f_3(n) = n^2 - 3n + 6$	4	4	10	46	214	934	3910	16006	64774	3E+05	1E+06	4E+06
$f_4(n) = 2n^2$	2	8	32	128	512	2048	8192	32768	131072	5E+05	2E+06	8E+06
$f_5(n) = 2^n/8 - n/4 + 2$	2	2	3	32	8190	5E+08	2E+18					

What do we observe?

- ➤ There is huge difference between
 - functions involving powers of n (e.g., n, n log n, n², called polynomial functions) and
 - functions involving powering by n (e.g., 2ⁿ, called exponential functions)
- ➤ Among polynomial functions, those with same order of power are more comparable
 - $e.g., f_3(n) = n^2 3n + 6 \text{ and } f_4(n) = 2n^2$

Growth of functions

n	$\log n$	\sqrt{n}	n	$n \log n$	n^2	n^3	2^n
2	1	1.4	2	2	4	8	4
4	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16	64	256	4096	65536
32	5	5.7	32	160	1024	32768	4294967296
64	6	8	64	384	4096	262144	1.84×10^{19}
128	7	11.3	128	896	16384	2097152	3.40×10^{38}
256	8	16	256	2048	65536	16777216	1.16×10^{77}
512	9	22.6	512	4608	262144	134217728	1.34×10^{154}
1024	10	32	1024	10240	1048576	1073741824	

Relative growth rate

Hierarchy of functions

➤ We can define a hierarchy of functions each having a greater order of magnitude than its predecessor:

We can further refine the hierarchy by inserting n log n between n and n², n² log n between n² and n³, and so on. Hierarchy of functions (2)

Important: as we move from left to right, successive functions have greater order of magnitude than the previous ones.

As n increases, the values of the later functions increase more rapidly than the values of the earlier ones.

⇒ Relative growth rates increase

Hierarchy of functions (3)

- Now, when we have a function, we can assign the function to some function in the hierarchy:
 - For example, $f(n) = 2n^3 + 5n^2 + 4n + 7$ The term with the highest power is $2n^3$. The growth rate of f(n) is dominated by n^3 .
- ➤ This concept is captured by Big-O notation

Big-O notation

f(n) = O(g(n)) [read as f(n) is of order g(n)]

- Roughly speaking, this means f(n) is at most a constant times g(n) for all large n
- > Examples
 - $-2n^3 = O(n^3)$
 - $-3n^2 = O(n^2)$
 - $-2n \log n = O(n \log n)$
 - $-n^3 + n^2 = O(n^3)$
- ➤ function on L.H.S and function on R.H.S are said to have the same order of magnitude

Big-O notation - formal definition

```
f(n) = O(g(n)): There exists a constant c and n_o
such that f(n) \le c g(n) for all n > n_o
```

f(n) = O(g(n) - Graphical illustration

Example – $2n\log_2 n + 100\sqrt{n + 1000} = O(n \log n)$ ∃constant c & n_o 3 n log i such that $\forall n > n_0, f(n) \le c g(n)$ c=3, $n_0=600$

input size (n)

Which one is the fastest?

 Usually we are only interested in the asymptotic time complexity, i.e., when n is large

$$O(\log n) < O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(2^n)$$

Proof of order of magnitude

- > Show that $2n^2 + 4n$ is $O(n^2)$
 - ✓ Since $n \le n^2$ for all n>1, we have $2n^2 + 4n \le 2n^2 + 4n^2 \le 6n^2$ for all n>1.
 - \checkmark Therefore, by definition, $2n^2 + 4n$ is $O(n^2)$.
- > Show that $n^3 + n^2 \log n + n$ is $O(n^3)$
 - ✓ Since $n \le n^3$ and $\log n \le n$ for all n>1, we have $n^2 \log n \le n^3$, and $n^3 + n^2 \log n + n \le 3n^3$ for all n>1.
 - ✓ Therefore, by definition, $n^3 + n^2 \log n + n$ is $O(n^3)$.

Exercise

Determine the order of magnitude of the following functions.

1.
$$n^3 + 3n^2 + 3$$

2.
$$4n^2 \log n + n^3 + 5n^2 + n$$

3.
$$2n^2 + n^2 \log n$$

$$4.6n^2 + 2^n$$

Exercise (2)

Prove the order of magnitude

1.
$$n^3 + 3n^2 + 3$$

2.
$$4n^2 \log n + n^3 + 5n^2 + n$$

Exercise (2) cont'd

Prove the order of magnitude

$$3. 2n^2 + n^2 \log n$$

$$4.6n^2 + 2^n$$

More Exercise

Are the followings correct?

1.
$$n^2 \log n + n^3 + 3n^2 + 3$$
 $O(n^2)$?

2.
$$n + 1000$$
 O(n)?

3.
$$6n^{20} + 2^n$$
 $O(n^{20})$?

4.
$$n^3 + 5n^2 \log n + n$$
 $O(n^2 \log n)$?

Some algorithms we learnt

Computing sum of the first n numbers

```
input n
sum = n*(n+1)/2
output sum
```

O(?)

```
input n
sum = 0
for i = 1 to n do
begin
   sum = sum + i
end
output sum
O(?)
```

Finding the min value among n numbers

```
min = 0
for i = 1 to n-1 do
   if (a[i] < a[min]) then
       min = i
output a[min]

O(?)</pre>
```

More exercise

What is the time complexity of the following pseudo code?

```
for i = 1 to 2n do
for j = 1 to n do
x = x + 1
```

0(?)