Geometry/ Topology January 2022 Calum Shearer

Problem 1.

(a) Prove that X is a Hausdorff topological space if and only if the diagonal $\Delta \subset X \times X$

$$\Delta = \{(x, y) \in X \times X \mid x = y\}$$

is a closed subset of $X \times X$ (equipped with the product topology).

(b) Let $f, g: X \to Y$ be continuous functions between topological spaces X and Y. Assume that Y is Hausdorff. Show that

$$A = \{ x \in X \mid f(x) = g(x) \}$$

is a closed subset of X. (Hint: Construct a new continuous function $F: X \to Y \times Y$ and use (a), even if you haven't solved it.)

Solution:

- (a) (\Rightarrow) Let X be Hausforff. We show that Δ^{\complement} is open. Let $(x,y) \in \Delta^{\complement}$. Then $x \neq y$, where $x,y \in X$. As X is Hausdorff, there exist disjoint open neighborhoods $x \in U, y \in V$. Then $U \times V$ is a neighborhood of (x,y) contained in Δ^{\complement} : for if there existed $(z,z) \in \Delta \cap U \times V$, then $z \in U \cap V$, which is a contradiction to disjointness of U and V. Hence ever point in Δ^{\complement} has a neighborhood contained in Δ^{\complement} , and so Δ^{\complement} is open and hence Δ is closed.
 - (\Leftarrow) Now suppose that Δ is closed. Then Δ^{\complement} is open. Now pick arbitrary $x \neq y \in X$. Then the point $(x,y) \in \Delta^{\complement}$. Thus there exists some open set O with $(x,y) \in O \subset \Delta^{\complement}$. Then as $\mathcal{B} = \{U \times V \mid U, V \text{ open in } X\}$ forms a basis for the product topology on X, O is union of basic sets of this type, and thus there is some basic set $U \times V$ with $(x,y) \in U \times V \subset O \subset \Delta^{\complement}$. Hence $x \in U, y \in V$ with $U \cap V = \emptyset$ (if the intersection were non-empty, then there exists $z \in U \cap V$ so $(z,z) \in U \cap V \subset \Delta^{\complement}$, a contradiction). Hence as $x \neq y \in X$ was arbitrary, X is Hausdorff.
- (b) Define the function $F: X \to Y \times Y$ by F(x) = (f(x), g(x)). Then as Y is Hausdorff, $\Delta \subset Y$ is closed. But $F^{-1}(\Delta) = \{x \in X \mid F(x) \in \Delta\} = \{x \in X \mid f(x) = g(x)\} = A$. So as the preimage of a closed set under a continuous function (note that F is continuous as its projections onto each coordinate, f and g are continuous), we have that $F^{-1}(\Delta) = A$ is closed in X.

Problem 2.

Let $B^2 \subseteq \mathbb{R}^2$ be the set of vectors of length less than or equal to one, and $S^1 \subseteq B^2$ be those vectors of length exactly one. In this problem, you may assume without proof that the map $\pi \colon S^1 \times [0,1] \to B^2$ given by $\pi(x,t) = (1-t)x$ is a quotient map.

(a) Prove that if $h \colon S^1 \to S^1$ is a continuous map which is nullhomotopic, then there exists a continuous map

$$f \colon B^2 \to S^1$$

such that f(x) = h(x) for all $x \in S^1$.

(b) Prove that a continuous nullhomotopic map $h: S^1 \to S^1$ has a fixed point.

Solution:

(a) We use the theorem that if $\pi\colon X\to Y$ is a quotient map and $g\colon X\to Z$ is a map that is constant on the fibers of π , then there exists a map $f\colon Y\to Z$ such that $f\circ\pi=g$. In our case, we have that $h\colon S^1\to S^1$ is a map which is nullhomotopic, i.e. there exists a map $H\colon S^1\times I\to S^1$ s.t. $H|_{S^1\times\{0\}}=h$ and $H|_{S^1\times\{1\}}=c$ where c is some fixed element of S^1 . Thus we we have the commutative diagram:

$$S^{1} \times I$$

$$\downarrow^{\pi} \qquad H$$

$$B^{2} \qquad f \qquad S^{1}$$

where f is the induced map from the theorem. First we must show that H is constant on fibers of π . Well, $\pi(x,t)=(1-t)x$, which can be rewritten as $\pi(e^{i\theta},t)=(1-t)e^{i\theta}$. Hence given $0 \neq y = re^{i\theta} \in B^2$, $\pi^{-1}(\{y\}) = \{(e^{i\theta},t)\colon (1-t)e^{i\theta} = re^{i\theta}\} = \{(e^{i\theta},t)\colon (1-t-r)e^{i\theta} = 0\} = \{(e^{i\theta},1-r)\}$, as $e^{i\theta} \neq 0$. Hence the fibers of non-zero points in B^2 are singletons (because $r \in [0,1]$) is unique and so is $e^{i\theta}$, and $r \in [0,1] \implies 1-r \in [0,1]$), and thus H is constant on these fibers. We also have: $\pi^{-1}(\{0\}) = \{(x,t)\colon (1-t)x = 0\} = S^1 \times \{1\}$, because $x \in S^1$ so $x \neq 0$. As H is a homotopy between h and the constant map at c, we have that $H|_{S^1 \times \{1\}} = c$ and thus H is also constant along the fiber of 0. Hence the map $f \colon B^2 \to S^1$ exists, with the property $H = f \circ \pi$, which means that h(x) = H(x,0) = f(x) for all $x \in S^1$ (because the homotopy H starts at the map h).

(b) The map f from part (a) can be considered as a map $f: B^2 \to B^2$ by composing with the inclusion $S^1 \hookrightarrow B^2$. Then Brouwer's fixed point theorem implies that f has a fixed point, i.e. $\exists x \in B^2$ s.t. f(x) = x. However, the image of f is contained in S^1 , so in particular $x \in S^1$. But then by part (a) we get that h(x) = f(x) = x, so x is a fixed point of h

Problem 3.

Let $\mathbb{T} = S^1 \times S^1$ (equipped with the product topology) be the torus and $x \in \mathbb{T}$ be any point. Let $\mathbb{R}P^2$ be the real projective plane, which is the quotient of S^2 by the antipodal map. In this problem, you may give the value of the fundamental groups of $\mathbb{R}P^2$ or of S^1 without proof.

- (a) Use the method of your choice to compute $\pi_1(\mathbb{T}, x)$.
- (b) Prove that any continuous map $f: \mathbb{R}P^2 \to \mathbb{T}$ is nullhomotopic.

Solution:

- (a) There are several methods to do this which I will list now:
 - Use without proof that $\pi_1(S^1) \cong \mathbb{Z}$, and that for path-connected spaces, the fundamental group functor respects products. Hence

$$\pi_1(\mathbb{T}, x) = \pi_1(S^1 \times S^1) = \pi_1(S^1) \times \pi_1(S^1) = \mathbb{Z} \times \mathbb{Z}$$

• Use Seifert van-Kampen on the torus as the quotient of a square, with U being a neighborhood of the boundary of the square and V being a disc in the middle of the square (such that U and V cover all of \mathbb{T} , and pick $x \in U \cap V$). Then U is homotopic to the wedge of two circles, which has fundamental group $\mathbb{Z} \star \mathbb{Z}$, the free group generated by two symbols (say a and b), and V is contractible. The circle generating $\pi_1(U \cap V)$ embeds into U as the boundary of the square, which in $\pi_1(U)$ is represented by $aba^{-1}b^{-1} = [a, b]$, while the inclusion into V maps this element of $\pi_1(U \cap V)$ to the identity element, as $\pi_1(V)$ is the trivial group. Hence SVK tells us that

$$\pi_1(\mathbb{T}, x) = \langle a, b \mid [a, b] = 1 \rangle \cong \mathbb{Z} \times \mathbb{Z}$$

where we used that $\langle a, b \mid [a, b] = 1 \rangle$ is the abelianization of $\mathbb{Z} \star \mathbb{Z}$ (the free group on two generators), which gives $\mathbb{Z} \times \mathbb{Z}$ (the free *Abelian* group on two generators).

- Finally, we could also use that \mathbb{R}^2 is a simply connected space that covers $S^1 \times S^1$ by the map $(x,y) \to (e^{2\pi x}, e^{2\pi y})$ and so this is the universal covering map. This map has kernel $\mathbb{Z} \times \mathbb{Z}$, so this is the fundamental group of $S^1 \times S^1 = \mathbb{T}$.
- (b) Without proof: $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}_2$. If $f: \mathbb{R}P^2 \to \mathbb{T}$, then we have the induced map $f_*: \mathbb{Z}_2 \to \mathbb{Z}^2$ between fundamental groups. f_* must send 0 to 0 as it's a homomorphism, and it must also send $1 \in \mathbb{Z}_2$ to a torsion element of \mathbb{Z}^2 , because 1 is torsion in \mathbb{Z}_2 . However, \mathbb{Z}^2 is torsion-free, so its only torsion element is (0,0). So f_* must send 1 to (0,0) as well, and so f_* is the zero-map, i.e. $f_*(\mathbb{Z}_2) = 0$.

Now consider the universal covering map $p: \mathbb{R}^2 \to \mathbb{T}$. We have that $f_*(\mathbb{Z}_2) = 0 \subset 0 = p_*(\mathbb{R}^2)$, so the map lifting lemma can be applied to give a lift $\tilde{f}: \mathbb{R}P^2 \to \mathbb{R}^2$ such that the following diagram commutes:

$$\mathbb{R}^{P^2} \xrightarrow{\tilde{f}} \mathbb{T}^2$$

Now, as \mathbb{R}^2 is contractible, there exists a homotopy $H \colon \mathbb{R}P^2 \times I \to \mathbb{R}^2$ between \tilde{f} and the constant map at some $c \in \mathbb{R}^2$. Then $p \circ H \colon \mathbb{R}P^2 \times I \to \mathbb{T}$ gives a homotopy between $\tilde{f} \circ p = f$ and the constant map at p(c). Hence f is nullhomotopic.

Problem 4.

In this problem, \mathbb{C}^n is identified with \mathbb{R}^{2n} equipped with its canonical real manifold structure. Define $f: \mathbb{C}^2 \to \mathbb{C}$ by $f(w, z) = w^2 - z^3$, and let $V = f^{-1}(0)$.

- (a) Show that f is a submersion at each $(w, z) \in \mathbb{C}^2 \setminus \{(0, 0)\}$ and conclude from that that $V \setminus \{(0, 0)\}$ is a submanifold of \mathbb{C}^2 of real dimension 2.
- (b) Show that V intersects the unit sphere $S^2\subset\mathbb{C}^2$ transversally which means that

$$T_p V + T_p S^3 = \mathbb{C}^2$$

for all $p \in S^3 \cap V$

(Hint: Consider the path $\gamma \colon \mathbb{R}_{>0} \to V$ given by $\gamma(t) = (t^3 w, t^2 z)$.)

(c) Conclude from (b) that the intersection $S^3 \cap V$ is a 1-manifold K.

Solution:

- (a) We have that $Df_{(w,z)} = (2w, -3z^2)$ which has full rank (1) unless $2w = 0 = -3z^2$, which can only occur when w = 0 = z. Hence $Df: T_p\mathbb{C}^2 \to T_f(p)\mathbb{C}$ is surjective at all points $p \in \mathbb{C}^2 \setminus \{0\}$. By identifying \mathbb{C}^n with \mathbb{R}^{2n} we get that $Df: T_p\mathbb{R}^4 \to T_p\mathbb{R}^2$ is surjective as well. Note that we can restrict f to a submersion $\tilde{f}: \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}$, because have restricted to an open submanifold so the behaviour of the differential of f locally does not change. Then 0 is a regular value of \tilde{f} , and the regular level set theorem implies that $\tilde{f}^{-1}(0) = V \setminus \{(0,0)\}$ is an embedded submanifold of \mathbb{C}^2 of real codimension $\dim_{\mathbb{R}} \mathbb{C} = 2$, i.e. of real dimension $\dim_{\mathbb{R}} \mathbb{C}^2 2 = 4 2 = 2$.
- (b) Note that we can replace V with $V \setminus \{(0,0)\}$ if needed, as $S^3 \cap V = S^3 \cap (V \setminus \{(0,0)\})$, because $0 \notin S^3$. We consider the path given in the question, with $p = (w, z) \in S^3 \cap V$. Then $f(\gamma(t)) = t^6(w^2 z^3) = t^6(0) = 0$, so that γ is a path in V. Note that $\gamma(1) = p$, so that $\gamma'(1)$ is an element of T_pV . Now recall that S^3 has real dimension 3, as $S^3 = g^{-1}(\{1\})$, where $g : \mathbb{R}^4 \to \mathbb{R}$, $g(x) = ||x||^2$. So in order to show that $T_pV + T_pS^3 = \mathbb{C}^2$, we only need to show that T_pV is not contained inside T_pS^3 , as \mathbb{C}^2 has real dimension 4, which is only one more than that of T_pS^3 . Also recall that as the preimage of a regular value, we have that $T_pS^3 = \ker Dg_p$. So we calculate that

$$Dg(\gamma'(1)) = (g \circ \gamma)'(1) = (t^6|w|^2 + t^4|z|^2)'(1) = (6t^5|w|^2 + 4t^3|z|^2)|_{t=1} = 6|w|^2 + 4|z|^2 \neq 0$$

where we used that |w| and |z| are not both zero because $(0,0) \notin S^3$ and so $p \neq (0,0)$. Hence $\gamma'(1)$ is an element of T_pV which is not an element of T_pS^3 . Hence $T_pV + T_pS^3 = \mathbb{C}^2$ by comparing dimensions. As $p \in S^3 \cap V$ was arbitrary, we are done.

(c) By theorem 6.30 (b) of Lee, we have that $S^3 \cap (V \setminus \{(0,0)\}) = S^3 \cap V$ is an embedded submanifold of \mathbb{C}^2 with codimension equal to the sum of the codimensions of S^3 and $V \setminus \{(0,0)\}$ i.e. of codimension 2+1=3, and so $S^3 \cap V$ has real dimension dim_{\mathbb{R}} $\mathbb{C}^2-3=4-3=1$.

Problem 5.

- (a) Let $\gamma: (a,b) \to M$ with a < b be an integral curve to a smooth vector field on a manifold M. Suppose that $\gamma'(t) = 0$ for some t. Prove that then γ is a constant map.
- (b) Find the integral curves of the following vector field X on \mathbb{R}^2

$$X(x,y) = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}$$

where x, y are coordinates of \mathbb{R}^2 .

Solution:

(a) Suppose that $\gamma'(t) = 0$ and let $p = \gamma(t)$. Then as γ is the integral curve to a smooth vector field, call it V, we have that $V_p = \gamma'(t) = 0$. But now observe that $\tilde{\gamma} : \mathbb{R} \to M$, $\tilde{\gamma}(t) = p$ is also an integral curve to V which goes through the point p. By existence and uniqueness of integral curves, γ and $\tilde{\gamma}$ must agree on the overlap of their domains, which is (a, b), and so $\gamma(t) = \tilde{\gamma}(t) = p$ for all $t \in (a, b)$.

(b) For an integral curve to X, we want to find a curve $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ such that $\gamma'_1(t) = \gamma_1^2(t), \ \gamma'_2(t) = \gamma_1(t)\gamma_2(t)$. First, observe that:

$$\gamma_1(t) = (a-t)^{-1}$$

solves the first equation, with $\gamma_1(0) = 1/a$, and

$$\gamma_2(t) = b(a-t)^{-1}$$

solves the second equation.

Now fix $(x,y) \in \mathbb{R}^2$. We want to find the integral curves that go through (x,y) at t=0. Note that if x=0 then X(x,y)=0 and so $\gamma(t)=(x,y)$ a constant curve (by part (a)). So now we only need to find integral curves starting at points where $x \neq 0$.

Choose $a = x^{-1}$ and b = y/x (which makes sense as $x \neq 0$) to get:

$$\gamma(t) = \left(\left(\frac{1}{x} - t \right)^{-1}, \frac{y}{x} \left(\frac{1}{x} - t \right)^{-1} \right)$$

which satisfies $\gamma'(t) = \gamma_1(t)^2 \frac{\partial}{\partial x} + \gamma_1(t) \gamma_2(t) \frac{\partial}{\partial y}$, and $\gamma(0) = (x, y)$

Problem 6.

Suppose that η is a closed k-form on an n-manifold M and let N be a closed, oriented k-manifold. Assume that $f_0: N \to M$ and $f_1: N \to M$ are smooth maps. Prove that if f_0 is smoothly homotopic to f_1 then

$$\int_{N} f_0^* \eta = \int_{N} f_1^* \eta$$

(Hint: Recall that smooth homotopy from f_0 to f_1 is a smooth map $F: N \times [0,1] \to M$ such that $F \circ i_t = f_t$ for t = 0, 1, where $i_t: N \to N \times [0,1], p \mapsto (p,t)$.)

Solution: As N and I are compact, oriented manifolds, we have that $N \times I$ is also a compact, oriented manifold, with boundary $N \times \{0\} \cup N \times \{1\}$, where $N \times \{0\}$ will have the opposite orientation to the orientation to that of N. We have a smooth homotopy $F: N \times I \to M$. As η is a closed k-form, so if $F^*\eta$, as d commutes with pullbacks. $N \times I$ is a (k+1) manifold, because N is a k manifold, and I is a 1-manifold. Hence we can apply Stokes's theorem to $F^*\eta$ on $N \times I$ to get:

$$0 = \int_{N \times I} F^* 0 = \int_{N \times I} F^* d\eta = \int_{N \times I} dF^* \eta = \int_{\partial (N \times I)} F^* \eta = \int_{N \times \{0\}} F^* \eta + \int_{N \times \{1\}} F^* \eta = -\int_N f_0^* \eta + \int_N f_1^* \eta = \int_{N \times I} f_0^* \eta + \int_N f_0^* \eta + \int_N f_0^* \eta = \int_{N \times I} f_0^* \eta = \int_{N$$

Where we used that F restricted to $N \times \{0\}$ is f_0 , and similarly for f_1 (implicitly we've used that i_0 is an orientation-reversing diffeomorphism from N to $N \times \{0\}$ so that $\int_{N \times \{0\}} F^* \eta = -\int_N i_0^* F^* \eta = -\int_N f_0^* \eta$, and a similar argument for f_1 , but now i_1 is orientation-preserving so we get a + sign).

Rearranging gives:

$$\int_N f_0^* \eta = \int_N f_1^* \eta$$