

[A4-004] 딥러닝 코딩 실습

Lecture 03: Implicit Neural Representations

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Topic

- Implicit Neural Representations
- Occupancy Networks
- INRs with Periodic Activation Functions

Explicit Representation of Signals

Traditionally, discrete representations for signals are used

1D Signal: Audio

Samples of sound wave

2D Signal: Images

Pixels

3D Signal: Shapes

Voxels / Mesh / Point clouds

Implicit Representation of Signals

- In implicit neural representations (INRs), signals are parameterized by neural networks
- Example of implicit neural representations for 3D shapes
- Do not represent 3D shape explicitly
- Consider surface implicitly as decision boundary

L. Mescheder et al., Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR, 2019

J. J. Park et al., DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR, 2019

Implicit Representation of Signals

- Benefits of Implicit Neural Representations (INRs)
- Agnostic to grid resolution
- Differentiations computed automatically

Input: Coordinates

 $\mathbf{x} \in \mathbb{R}^3$

Output:

RGB or Signed distance

$$\Phi(\mathbf{x}) = s$$

L. Mescheder et al., Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR, 2019

J. J. Park et al., DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR, 2019

Occupancy Network

Occupancy Network

Hak Gu Kim

— The occupancy network f_{θ} takes a pair (\mathbf{p}, \mathbf{x}) as input and outputs a real number which represents the probability of occupancy:

Occupancy Network: Architecture

Model & Loss Function

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{i=1}^{K} BCE(f_{\theta}(\mathbf{p}_{ij}, \mathbf{x}_i), o_{ij})$$

 $|\mathcal{B}|$: #. of batch

: #. of randomly sampled points

BCE: Cross-entropy loss

L. Mescheder et al., Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR, 2019

Hak Gu Kim

Fully Connected Residual Blocks

Marching Cube for 3D Visualization

Marching Cubes

Hak Gu Kim

 A computer graphics algorithm for extracting a polygonal mesh of an isosurface from a three-dimensional discrete scalar field (e.g., point clouds)

Results of Occupancy Network

Results of Occupancy Network

Problems of INRs

- Recent implicit neural representations build on ReLU-based MLPs lack the capacity to represent fine details in the underlying signals
 - Missing high frequencies in sound wave
 - Blurry images

Distorted 3D shapes

Original Signals

Signals represented by INRs (MLP w/ ReLU)

Problems of INRs

- Recent implicit neural representations build on ReLU-based MLPs lack the capacity to represent fine details in the underlying signals
 - Missing high frequencies in sound wave
 - Blurry images
 - Distorted 3D shapes

ONet

Ground-Truth Mesh

Limitations of **ReLU**

- Characteristics of ReLU
- Being piecewise linear → The second derivative is zero
- Incapable of modeling information contained in higher-order derivatives of natural signals

Sinusoidal Representation Networks (SIREN)

- Contributions of SIREN
- A continuous INR using periodic activation functions (sine) that fits complicated signals as well as their derivatives robustly
- An initialization scheme for training and validation that distributions of these representations can be learned using hypernetworks
- Demonstration of a wide range of applications:
 - image, video, and audio representation
 - 3D shape reconstruction
 - solving first/second-order differential equations

Problem Formulation

Implicit problem formulation takes as in put the spatial coordinates $\mathbf{x} \in \mathbb{R}^m$ and, optionally, derivatives of Φ with respect to these coordinates

$$F(\mathbf{x}, \Phi, \nabla_{\mathbf{x}} \Phi, \nabla_{\mathbf{x}}^2 \Phi, \cdots) = 0, \quad \Phi: \mathbf{x} \mapsto \Phi(\mathbf{x})$$

Our goal is to find a class of functions $\Phi(\mathbf{x})$ that satisfies the relation F

Find
$$\Phi(\mathbf{x})$$

subject to
$$C_m(a(\mathbf{x}), \Phi(\mathbf{x}), \nabla_x \Phi(\mathbf{x}), \cdots) = 0$$
, $\forall \mathbf{x} \in \Omega_m$, $m = 1, \cdots, M$

SIREN: Model Architecture

- Periodic Activations for INRs
- MLPs with Sine activations

$$\Phi(\mathbf{x}) = \mathbf{W}_n(\phi_{n-1} \circ \phi_{n-2} \circ \cdots \circ \phi_0)(\mathbf{x}) + \mathbf{b}_n$$

$$\mathbf{x}_i \mapsto \phi_i(\mathbf{x}_i) = \sin(\mathbf{W}_n \mathbf{x}_i + \mathbf{b}_n)$$

- $\phi_i: \mathbb{R}^{M_i} \mapsto \mathbb{R}^{N_i}$ is the *i*-th layer of the networks
- $\mathbf{W}_i : \mathbb{R}^{M_i \times N_i}$ is the *i*-th weight matrix
- $\mathbf{b}_i: \mathbb{R}^{N_i}$ is the *i*-th bias vector
- $\mathbf{x}_i : \mathbb{R}^{M_i}$ is the *i*-th input vector

SIREN: Initialization Scheme

- Key idea of Initialization in SIREN
- It is to preserve the distribution of activations through the network so that the final output at initialization does not depend on the number of layers
- Without carefully chose uniformly distributed weights, SIREN doesn't perform well
- Assuming that $\mathbf{x} \sim \mathcal{U}(-1,1)$
- For the 1st layer: Initialize the weights **W** of the 1st layer such that $\sin(\omega_0 \cdot \mathbf{W} \mathbf{x} + \mathbf{b})$ spans multiple periods over [-1,1]
- For other layers: Initialize the weights ${\bf W}$ according to $\mathcal{U}\left(-\sqrt{6/n}\,,\sqrt{6/n}\right)$

Experiments: Image Representation

Mapping 2D Pixel Coordinates to a Color

https://www.vincentsitzmann.com/siren/

Experiments: Video Representation

 SIREN with pixel coordinates together with a time coordinate to parameterize a video

 $\mathcal{L} = \sum_{i} \|\Phi(\mathbf{x}_i) - f(\mathbf{x}_i)\|^2$

Experiments: Poisson Image Reconstruction

SIREN for solving Poisson equation to reconstruct images from their derivatives

 $\mathcal{L}_{\text{grad}} = \int_{\Omega} \| \nabla_{\mathbf{x}} \Phi(\mathbf{x}) - \nabla_{\mathbf{x}} f(\mathbf{x}) \| d\mathbf{x}$

Experiments: Audio Representation

- SIREN with a single, time-coordinate input and scalar output may parameterize audio signals
- It succeeds in reproducing the audio signal for music

Ground-Truth

MLP + ReLU

MLP + ReLU w/ Positional Encoding

SIREN

Experiments: 3D Scene Representation

 SIREN for fitting differentiable signed distance functions (SDFs) to represent 3D scene

When **x** is on the surface, SDF to be 1

When \mathbf{x} is not on the surface, penalize it

$$\mathcal{L}_{\text{sdf}} = \int_{\Omega} \||\nabla_{\mathbf{x}} \Phi(\mathbf{x})| - 1\|d\mathbf{x} + \int_{\Omega_0} \|\Phi(\mathbf{x})\| + (1 - \langle \nabla_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \rangle) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

Gradient of SDF to be 1

Gradient of SDF to be the normal vector of the surface

ReLU (baseline)

Experiments: 3D Scene Representation

Practice: INRs

- Practice
- Implicit Neural Representations with Periodic Activation Functions
 - https://github.com/vsitzmann/siren