MAE 770 Written Preliminary Exam#1

Kyle B. Thompson

February 19, 2016

1. The units can be determined from the left hand side of the equation

$$\rho D_k \frac{\partial Y_k^{(g)}}{\partial x_i} \cdot \hat{n}_j = M_k \dot{s}_k \tag{1}$$

Using the following nomenclature:

mmass Nnumber of molecules llength time

The units of the variables on the left hand side of 1 are

$$\rho = \frac{m}{l^3}$$

$$D_k = \frac{l^2}{t}$$

$$x_i = l$$

The mass fraction, $Y_k^{(g)}$, is unitless, as well as the unit normal vector, \hat{n}_j . Since the unit of molecular weight are, $M_k = m/N$, we can rearrange Eq. (1) and solve for the units of \dot{s}_k

$$\dot{s}_k = \frac{\rho D_k}{M_k} \frac{\partial Y_k^{(g)}}{\partial x_j} \cdot \hat{n}_j$$

$$= \frac{m}{l^3} \frac{N}{m} \frac{l^2}{l} \frac{1}{l}$$

$$= \frac{N}{l^2 t}$$
(2)

Expressing surface coverage, Θ_i , as the fraction of sites occupied by species i implies that it is unitless. The concentration of surface-absorbed species, C_k , has units N/l^2 and must be equivalent to the product of surface coverage and surface site density, Γ ; therefore, the units of surface site density must be N/l^2 . Thus, the units for \dot{s}_k and Γ , expressed in the same basis as the problem was posed, are

$$\label{eq:sk} \boxed{ \dot{s}_k = \frac{moles}{area^2 - sec} }$$

$$\boxed{ \Gamma = \frac{moles}{area^2} }$$

$$\Gamma = \frac{moles}{area^2}$$

2. The formulation of the source terms \dot{s}_k for k = gas species and k = surfacespecies can be expressed as

$$\dot{s}_{k} = \sum_{r=1}^{N_{r}} \left[(\nu_{k,r}^{"} - \nu_{k,r}^{'})(R_{f,r} - R_{b,r}) \right]$$

$$R_{f,r} = k_{f,r} \prod_{i=1}^{N_{k}} (C_{i}^{\nu_{i,r}^{'}}), \quad R_{b,r} = k_{b,r} \prod_{i=1}^{N_{k}} (C_{i}^{\nu_{i,r}^{"}})$$

$$(3)$$

where $\nu_{k,r}'$ is the stoichometric coefficient for species k in reaction r as a reactant in the forward reaction, and $\nu_{k,r}''$ is for that species as a product in the forward reaction. N_k denotes the number of species and N_r denotes the number of reactions. Additionally, the backward rate coefficient $k_{b,r}$ can be determined from the forward rate coefficient $k_{f,r}$ and the equilibrium constant $k_{c,r}$. This is much better, since the law of mass action enables the determination of $k_{c,r}$ as a function of species concentrations, C_i , resulting in $\dot{s}_k = \dot{s}_k(k_{f,r}, C_1, \ldots, C_{N_k})$. Thus, using Eq. (3) the \dot{s}_k source terms can be expressed as

$$\dot{s}_{H_2}^{(g)} = -\left(k_{f,1}C_{H_2}^{(g)} - \frac{k_{f,1}}{k_{c,1}}C_H^{(s)^2}\right) \tag{4}$$

$$\dot{s}_{O_2}^{(g)} = -\left(k_{f,2}C_{O_2}^{(g)} - \frac{k_{f,2}}{k_{c,2}}C_O^{(s)^2}\right) \tag{5}$$

$$\dot{s}_{H_2O}^{(g)} = k_{f,6} C_{H_2O}^{(s)} - \frac{k_{f,6}}{k_{c,6}} C_{H_2O}^{(g)} \tag{6}$$

$$\dot{s}_{H}^{(s)} = 2 \left(k_{f,1} C_{H_2}^{(g)} - \frac{k_{f,1}}{k_{c,1}} C_{H}^{(s)^2} \right)
- \left(k_{f,3} C_{H}^{(s)} C_{O}^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_{OH}^{(s)} \right)
- \left(k_{f,4} C_{H}^{(s)} C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}} C_{H_2O}^{(s)} \right)$$
(7)

$$\dot{s}_{O}^{(s)} = 2 \left(k_{f,2} C_{O_2}^{(g)} - \frac{k_{f,2}}{k_{c,2}} C_{O}^{(s)^2} \right)
- \left(k_{f,3} C_{H}^{(s)} C_{O}^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_{OH}^{(s)} \right)
+ \left(k_{f,5} C_{OH}^{(s)^2} - \frac{k_{f,5}}{k_{c,5}} C_{H_2O}^{(s)} C_{O}^{(s)} \right)$$
(8)

$$\dot{s}_{OH}^{(s)} = 2 \left(k_{f,3} C_{OH}^{(s)} - \frac{k_{f,3}}{k_{c,3}} C_H^{(s)} C_O^{(s)} \right)
- \left(k_{f,4} C_H^{(s)} C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}} C_{H_2O}^{(s)} \right)
- 2 \left(k_{f,5} C_{OH}^{(s)}^2 - \frac{k_{f,5}}{k_{c,5}} C_{H_2O}^{(s)} C_O^{(s)} \right)$$
(9)

$$\dot{s}_{H_2O}^{(s)} = \left(k_{f,4}C_H^{(s)}C_{OH}^{(s)} - \frac{k_{f,4}}{k_{c,4}}C_{H_2O}^{(s)}\right)
+ \left(k_{f,5}C_{OH}^{(s)}^2 - \frac{k_{f,5}}{k_{c,5}}C_{H_2O}^{(s)}C_O^{(s)}\right)
- \left(k_{f,6}C_{H_2O}^{(s)} - \frac{k_{f,6}}{k_{c,6}}C_{H_2O}^{(g)}\right)$$
(10)

3. Determining the units for the forward and backward rate coefficients, k_f and k_b , begins with looking at the units of \dot{s}_k . Since the source term was found to have units of $moles/(area^2-sec)$, in the generic sense, it would have proper units of $mol/(cm^2-s)$ using a cm, mol, s basis. The units of

 k_f and k_b will vary for each reaction, but must ultimately conform to the fact that $R_{f,r}$ and $R_{b,r}$ in Eq. (3) must have units of $mol/(cm^2-s)$. For the first reaction

$$k_{f,1} = 1.9e19 \quad \frac{cm}{s}$$
 (11)

which satisfies

$$R_{f,1} = k_{f,1}C_{H_2}^{(g)} = \frac{cm}{s} \frac{mol}{cm^3} = \frac{mol}{cm^2 - s}$$
 (12)

Much more generally, the units for k_f can be expressed as

$$k_{f,r} = \frac{mol}{(cm^2)(s) \prod_{i=1}^{N_k} \left(\left(\frac{mol}{cm^3} \right)^{\nu'_{i,r}} \left(\frac{mol}{cm^2} \right)^{\nu'_{i,r}} \right)}$$
(13)

where $\nu_{i,r}^{'(g)}$ is the stoichiometric coefficient of gas-phase reactant species i in reaction r, and $\nu_{i,r}^{'(s)}$ is the stoichiometric coefficient of surface reactant species i in reaction r. Since $R_{b,r}$ must also have units of mol/(cm-s), the same reasoning can be used to derive

$$k_{b,r} = \frac{mol}{(cm^2)(s) \prod_{i=1}^{N_k} \left(\left(\frac{mol}{cm^3} \right)^{\nu''_{i,r}} \left(\frac{mol}{cm^2} \right)^{\nu''_{i,r}} \right)}$$
(14)

where $\nu_{i,r}^{"(g)}$ and $\nu_{i,r}^{"(s)}$ are the are the stoichiometric coefficients of gasphase and surface product species i in reaction r, respectively. Using Eq.s (13-14), the units of $k_{f,r}$ and $k_{b,r}$ (using a cm, mol, s basis) are

$$k_{f,1} = 1.9e19 \quad \frac{cm}{s} \qquad k_{b,1} = \frac{k_{f,1}}{k_{c,1}} \frac{cm^2}{mol - s}$$

$$k_{f,2} = 3e21 \quad \frac{cm}{s} \qquad k_{b,2} = \frac{k_{f,2}}{k_{c,2}} \frac{cm^2}{mol - s}$$

$$k_{f,3} = 6e18 \quad \frac{cm^2}{mol - s} \qquad k_{b,3} = \frac{k_{f,3}}{k_{c,3}} \frac{1}{s}$$

$$k_{f,4} = 1e7 \quad \frac{cm^2}{mol - s} \qquad k_{b,4} = \frac{k_{f,4}}{k_{c,4}} \frac{1}{s}$$

$$k_{f,5} = 2.4e24 \quad \frac{cm^2}{mol - s} \qquad k_{b,5} = \frac{k_{f,5}}{k_{c,5}} \frac{cm^2}{mol - s}$$

$$k_{f,6} = 1e5 \quad \frac{1}{s} \qquad k_{b,6} = \frac{k_{f,6}}{k_{c,6}} \frac{cm}{s}$$

$$(15)$$

by the law of mass action, the equilibrium constant can be defined as

$$k_{c,r} = \frac{\prod_{i=1}^{N_k} (C_i^{\nu''_{i,r}})}{\prod_{i=1}^{N_k} (C_i^{\nu'_{i,r}})}$$
(16)

Converting $k_{f,r}$ in Eq. (15) to an SI basis (m, kmol, s), using m = 100 cm

and $kmol = 1000 \, mol$, yields

$$k_{f,1} = 1.9e17 \quad \frac{m}{s}$$

$$k_{f,2} = 3e19 \quad \frac{m}{s}$$

$$k_{f,3} = 6e17 \quad \frac{m^2}{kmol - s}$$

$$k_{f,4} = 1e6 \quad \frac{m^2}{kmol - s}$$

$$k_{f,5} = 2.4e23 \quad \frac{m^2}{kmol - s}$$

$$k_{f,6} = 1e5 \quad \frac{1}{s}$$

$$(17)$$

Using this and Eq. (16), $k_{b,r}$ can also be defined in an SI basis

$$k_{b,1} = 1.9e17 \left(\frac{C_{H_2}^{(g)}}{C_H^{(s)^2}} \right) \qquad \frac{m^2}{kmol - s}$$

$$k_{b,2} = 3e19 \left(\frac{C_{O_2}^{(g)}}{C_O^{(s)^2}} \right) \qquad \frac{m^2}{kmol - s}$$

$$k_{b,3} = 6e17 \left(\frac{C_H^{(s)}C_O^{(s)}}{C_{OH}^{(s)}} \right) \qquad \frac{1}{s}$$

$$k_{b,4} = 1e6 \left(\frac{C_H^{(s)}C_{OH}^{(s)}}{C_{H_2O}^{(s)}} \right) \qquad \frac{1}{s}$$

$$k_{b,5} = 2.4e23 \left(\frac{C_{OH}^{(s)}}{C_{H_2O}^{(s)}} \right) \qquad \frac{m^2}{kmol - s}$$

$$k_{b,6} = 1e5 \left(\frac{C_{H_2O}^{(s)}}{C_{H_2O}^{(g)}} \right) \qquad \frac{m}{s}$$

It should be noted that the species concentrations $C_i^{(g,s)}$ must be in an SI basis for the units in Eq. (18) to be the correct units of $k_{b,r}$. If the concentrations are in a another basis, then another conversion will be necessary.