AE 7

Un modèle d'exécution - Von Neumann

Introduction

De quoi traite l'Informatique

Computer Science

compute = calculer

Informatique = Information + Automatique

traitement automatique de l'information

Modèle de Von Neumann

- John Von Neumann 1943-45
 - Lignes essentielles pour construire une machine électronique. (Projet ENIAC)
 - Appliqués jusqu'à nos jours
- Quatre blocs fonctionnels:
 - Le processeur (ALU + Control Unit)
 - La mémoire
 - Le bus
 - Les I/O

Du câblé au programmé..

- Premiers ordinateurs les pas d'exécution du programme étaient directement câblés dans le circuit
 - Aujourd'hui on parlerait d'accélérateur matériel
- On invente le programme vu comme des données stockées dans la mémoire principale
 - l'architecture de Von Neumann
- La fonction de l'unité de contrôle est de
 - lire le programme de la mémoire
 - décoder les instructions
 - commander leur exécution
- Un changement de programme se fait par une simple réécriture de la mémoire

Du calcul sur des données...

Notion d'instruction

Mémoire banalisée

Quels échanges dans la machine?

Zoom inside

Figure 3.2 Computer Components: Top-Level View

Un ordinateur simplifié...

Lecture de l'instruction

L'instruction arrive on prépare la suite...

Les opérandes arrivent!

Prêt pour le calcul!!!

On range le résultat ... et on recommence ...

Et si on en exécute plusieurs?

- Le processeur exécute (interprète) les instructions élémentaires à la suite
- Une séquence d'opérations peut décrire tous les problèmes

notion de Programme

Déroulement du programme

Le déroulement du programme est contrôlé par le Compteur Ordinal qui pointe vers la prochaine instruction à exécuter.

La séquentialité est intrinsèque au modèle VN »

Les instructions sont exécutées en séquence sauf en cas de saut. (Jump)

Les données

- La mémoire conserve les données et les instructions, on parle de mémoire banalisée.
- Les instructions sont amenées une à une vers le processeur
- Les échanges entre mémoire / processeur se font via le système de communication : souvent le bus

Von Neumann vs. Harvard

Séquencement des instructions

- L'exécution d'une instruction passe par plusieurs étapes successives, chacune étant considérée comme une microopération.
- Certaines de ces actions correspondent à une activité mémoire, d'autres à une activité processeur.
- Pour effectuer une instruction, il faut toujours effectuer les actions suivantes:

Séquencement des instructions

- 1. Aller chercher l'instruction en mémoire;
- 2. Calculer l'adresse de la prochaine instruction, incrémenter le compteur ordinal
- 3. Décoder le code de l'opération
- 4. Calculer les adresses des opérandes si nécessaire
- 5. Extraire les opérandes éventuelles de la mémoire
- 6. Exécuter l'instruction
- 7. Calculer l'adresse du résultat
- 8. Ranger le résultat en mémoire

Phases 123

- 1: Lit instruction suivante
 - Bus Adresse Õ PC
 - Bus Commande Õ « Lire instruction »
 - RI Õ Bus Donnée
- 2: Incrémente compteur ordinal
 - PC Õ PC + taille(instruction)
- 3 :Décode Instruction ex: Add A,(123)
 - A Õ A + contenu @123.

Phases 45

- 4 et 5 : Lit données (facultatif)
 - Bus A Õ 123
 - Bus C Õ « lire donnée »
 - tmp Õ Bus D
- Transfert données Õ UAL
 - UAL.E1 Õ A
 - UAL.E2 Õ tmp
 - UAL.Inst Õ « addition »

Phases 678

- 6: UAL calcule opération
 - Activation de l'additionneur intégral
 - > Õ tmp'
- 7 et 8 : UC range résultat
 - > A Õ tmp'

- Recommence
 - Lit & Exécute instruction suivante
- Pas de repos pour un processeur...

Aller chercher l'instruction en mémoire

Calculer l'adresse de la prochaine instruction

Décoder le code de l'opération

Calculer les adresses des opérandes si nécessaire

Extraire les opérandes éventuelles de la mémoire

Exécuter l'instruction

Calculer l'adresse du résultat

Ranger le résultat en mémoire

Cycle du processeur

- L'exécution d'une instruction peut être découpée en plusieurs phases successives.
- Deux phases au moins sont définies:
 - la phase de chargement 'Fetch' et

Figure 3.3 Basic Instruction Cycle

Différentes classes d'instruction

Instructions UAL	Instructions Mémoire	Instructions Branchement
Lecture instruction	Lecture instruction	Lecture instruction
Incrémentation CP	Incrémentation CP	Incrémentation CP
Décodage de l'instruction	Décodage de l'instruction	Décodage de l'instruction
Lecture des opérandes		Calcul de l'adresse de
Exécution	mémoire	branchement
Ecriture du résultat	Accès mémoire	Exécution
	Rangement du résultat	