Arjun Gupta

arjung2@illinois.edu | arjung128.github.io

EDUCATION

 SELECTED PUBLICATIONS [2] A Training-Free Framework for Precise Mobile Manipulation of Small Everyday Object Arjun Gupta, Rishik Sathua, Saurabh Gupta [1] Opening Articulated Objects in the Real World Arjun Gupta, Michelle Zhang*, Rishik Sathua*, Saurabh Gupta [3] Estimating Perceptual Uncertainty to Predict Robust Motion Plans Arjun Gupta, Michelle Zhang, Saurabh Gupta [4] Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops Aditya Prakash, Arjun Gupta, Saurabh Gupta [5] Predicting Motion Plans for Articulating Everyday Objects 	ts Under Review [webpage] RSS 2025 [webpage] IROS 2024 [webpage] ECCV 2024 [webpage] ICRA 2023
 Arjun Gupta, Rishik Sathua, Saurabh Gupta [1] Opening Articulated Objects in the Real World	[webpage] RSS 2025 [webpage] IROS 2024 [webpage] ECCV 2024 [webpage]
 Arjun Gupta, Michelle Zhang*, Rishik Sathua*, Saurabh Gupta [3] Estimating Perceptual Uncertainty to Predict Robust Motion Plans	[webpage] IROS 2024 [webpage] ECCV 2024 [webpage]
 Arjun Gupta, Michelle Zhang, Saurabh Gupta [4] Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops Aditya Prakash, Arjun Gupta, Saurabh Gupta 	[webpage] ECCV 2024 [webpage]
Aditya Prakash, Arjun Gupta , Saurabh Gupta	[webpage]
[5] Predicting Motion Plans for Articulating Everyday Objects	ICRA 2023
Arjun Gupta, Max E. Shepherd, Saurabh Gupta	[webpage]
[6] Learning Value Functions from Undirected State-only Experience Matthew Chang*, Arjun Gupta *, Saurabh Gupta	ICLR 2022 [webpage]
[7] Semantic Visual Navigation by Watching YouTube Videos Matthew Chang, Arjun Gupta , Saurabh Gupta	NeurIPS 2020 [webpage]
Research Experience	
 University of Illinois at Urbana-Champaign PhD Student — Advisor: Prof. Saurabh Gupta Real World Robotics. Developed end-to-end mobile manipulation pipelines for real robots perception, navigation, and manipulation) which generalize to in-the-wild settings across 10+ Computer Vision. Trained state-of-the-art computer vision models for improving robustnes Motion Planning. Developed a TrajOpt-based approach which outperforms existing planning. Sim2Real RL. Designed sim2real reinforcement learning approaches for navigation via learn 	buildings [1, 2]. ss in 3D vision [3, 4]. ng methods [5].
Hello Robot Inc.	Martinez, CA
Research Intern — Manager: Dr. Chris Paxton • Developed general-purpose grasping functionality for Stretch AI using sim2real techniques.	[webpage]
Awards and Honors	
Andrew T. Yang Research and Entrepreneurship Award * Full graduate funding for two years.	2022 - 2024
Daniel W. and Carol A. Dobberpuhl Award ¹	2020
Omron Electrical Engineering Scholarship ² Ackmann Family Scholarship ¹	2019, 2020 2018
¹ Awarded to one student out of a pool of 1000+, ² Awarded to two students out of a pool of 1000+	2010
SKILLS	

Software: PyTorch, Keras, Tensorflow, NumPy, SciPy, OpenAI Gym, Git.