10 An astronaut of mass m in a spacecraft experiences a gravitational force F = mg when stationary on the launchpad.

What is the gravitational force on the astronaut when the spacecraft is launched vertically upwards with an acceleration of $0.2\,g$?

- **A** 1.2 mg
- **B** mg
- **C** 0.8 mg
- 0
- **11** A beam of α -particles collides with a lead sheet. Each α -particle in the beam has a mass of 6.6×10^{-27} kg and a speed of 1.5×10^7 m s⁻¹.

 $5.0 \times 10^4~\alpha$ -particles per second collide with an area of $1.0\,\mathrm{cm}^2$ of lead. Almost all of the α -particles are absorbed by the lead so that they have zero speed after collision.

What is an estimate of the average pressure exerted on the lead by the α -particles?

- **A** $5.0 \times 10^{-15} \text{ Pa}$
- **B** $5.0 \times 10^{-13} \text{ Pa}$
- **C** $5.0 \times 10^{-11} \text{ Pa}$
- **D** $5.0 \times 10^{-9} \text{ Pa}$
- **12** An object in air is thrown upwards and towards the left.

Which diagram shows the force(s) acting on the body when it is at its highest point?

Space for working