Diszkrét matematika I.

1. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Emlékeztető - Logikai jelek/műveletek

Tagadás, jele: $\neg A$.

És, jele: $A \wedge B$.

Vagy (megengedő), jele: $A \vee B$.

Ha..., akkor... (implikáció), jele: $A \Rightarrow B$.

Ekvivalencia, jele: $A \Leftrightarrow B$.

Igazságtáblázat

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Ι	I	Н	I	I	I	I
Ι	Н	Н	Н	I	Н	Н
Н	I	I	Н	I	I	Н
Н	Н	I	Н	Н	Į	ı

Emlékeztető - Az implikáció

Nagyon sokszor fogjuk használni az implikációt ($A \Rightarrow B$).

$A \Rightarrow B$	ı	Н
I	ı	Н
Н	ı	ı

Fontos: csak logikai összefüggést jelent, és nem okozatit!

Példa

$$2 \cdot 2 = 4 \Rightarrow i^2 = -1$$

$$2 \cdot 2 = 4 \implies \text{cs\"{u}t\"{o}rt\"{o}k} \text{ van}$$

Hamis állításból minden következik:

Példa

$$2 \cdot 2 = 5 \quad \Rightarrow \quad i^2 = -2$$

Adott logikai jel, más módon is kifejezhető: $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$

Emlékeztető

Predikátumokból (nyitott kijelentés) a kvantorok és logikai jelek (logikai műveletek) segítségével formulákat alkotunk.

Diszkrét matematika I.

Definíció(Formulák)

- A predikátumok a legegyszerűbb, ún. elemi formulák.
- Ha \mathcal{A}, \mathcal{B} két formula, akkor $\neg \mathcal{A}, \ (\mathcal{A} \land \mathcal{B}), \ (\mathcal{A} \lor \mathcal{B}), \ (\mathcal{A} \Rightarrow \mathcal{B}), \ (\mathcal{A} \Leftrightarrow \mathcal{B})$ is formulák.
- Ha A egy formula és x egy változó, akkor (∃xA) és (∀xA) is formulák.

Példa

Minden veréb madár, de nem minden madár veréb.

$$(\forall x(V(x) \Rightarrow M(x))) \land (\exists x(M(x) \land \neg V(x))).$$

Ez egy formula.

Ha nem okoz félreértést, a zárójelek elhagyhatóak.

A logikai műveletek tulajdonságai, ítéletlogikai tételek

Állítás

 $\forall A, B, C$ -re

- $(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C)), (A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$ (disztributivitás);

- $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (a kontrapozíció tétele);

A logikai műveletek tulajdonságai, ítéletlogikai tételek

Bizonyítás (példa)

Α	В	C	$B \vee C$	$A \lor (B \lor C)$	$A \vee B$	$(A \lor B) \lor C$	$(A \lor (B \lor C)) \Leftrightarrow ((A \lor B) \lor C)$
Ι	I	I	I	I	I	I	I
I	I	Н	I	I	I	I	I
Ι	Н	I	I	I	I	I	I
Н	I	I	I	I	I	I	I
Н	Н	I	I	I	Н	I	I
Н	I	Н	I	I	I	I	I
Ι	Н	Н	Н	I	I	I	I
Н	Н	Н	Н	Н	Н	Н	I

Halmazok

A halmazelméletben két alapvető fogalmat (predikátum) fogunk használni:

- A halmaz (rendszer, osztály, összesség,...) elemeinek gondolati burka.
- $x \in A$, ha az x eleme az A halmaznak.

A halmazok alapvető tulajdonságai axiómák, nem bizonyítjuk őket. Példa:

Meghatározottsági axióma

Egy halmazt az elemei egyértelműen meghatároznak.

- Két halmaz pontosan akkor egyenlő, ha ugyanazok az elemeik.
- Egy halmaznak egy elem csak egyszer lehet eleme.

Halmazok megadása speciális esetben

Ures halmaz Annak a halmaznak, melynek nincs eleme, a jele: ∅. A meghatározottsági axióma alapján ez egyértelmű.

Halmaz megadása elemei felsorolásával. Annak a halmaznak, melynek csak az a elem az eleme a jelölése: $\{a\}$. Annak a halmaznak, melynek pontosan az a és b az elemei a jelölése: $\{a, b\}, \ldots$

Speciálisan
$$\emptyset = \{\}$$
, illetve, ha $a = b$, akkor $\{a\} = \{a, b\} = \{b\}$.

Halmaz számossága. Ha az A halmaznak $n \in \mathbb{N}$ (különböző) eleme van, akkor azt mondjuk, hogy a számossága n, amit így jelölünk: |A| = n.

Definíció

Az A halmaz részhalmaza a B halmaznak: $A \subseteq B$, ha

 $\forall x (x \in A \Rightarrow x \in B).$

Ha $A \subseteq B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subsetneq B$.

Megjegyzés

Az üres halmaz bármely halmaznak részhalmaza, illetve minden halmaz önmaga részhalmaza.

A részhalmazok tulajdonságai:

Állítás (Biz. HF)

- (1) $\forall A \ A \subseteq A$ (reflexivitás).
- (2) $\forall A, B, C \ (A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C \ (tranzitivitás).$
- (3) $\forall A, B \ (A \subseteq B \land B \subseteq A) \Rightarrow A = B \ (antiszimmetria).$

Halmazok egyenlősége egy további tulajdonságot is teljesít:

(3'). $\forall A, B \quad A = B \Rightarrow B = A$ (szimmetria).

Halmazok megadása formulával

Definíció

A halmaz és $\mathcal{F}(x)$ formula esetén $\{x \in A : \mathcal{F}(x)\} = \{x \in A | \mathcal{F}(x)\}$ halmaz elemei pontosan azon x elemei A-nak, melyre $\mathcal{F}(x)$ igaz.

- $\{z \in \mathbb{C} : \operatorname{Im}(z) = 0\}$: valós számok halmaza.
- $\{n \in \mathbb{Z} \mid \exists m \ (m \in \mathbb{Z} \land n = m^2)\}$: a négyzetszámok halmaza.

Műveletek halmazokkal - Unió

Definíció

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan az A és a B elemeit tartalmazza. Általában: Legyen $\mathcal A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor

 $\cup \mathcal{A} = \cup \{A: A \in \mathcal{A}\} = \cup_{A \in \mathcal{A}} A$ az a halmaz, mely az \mathcal{A} összes elemének elemét tartalmazza:

$$\cup \mathcal{A} = \{x | \exists A \in \mathcal{A} : x \in A\}.$$

Speciálisan: $A \cup B = \cup \{A, B\}$.

- $\{a, b, c\} \cup \{b, c, d\} = \{a, b, c, d\}$
- Ha $I_n = \{x \in \mathbb{R} : n \le x \le n+1\}$ $(n \in \mathbb{Z})$, illetve $\mathcal{I} = \{I_n | n \in \mathbb{Z}\}$, akkor:
 - $I_2 \cup I_3 = [2, 4];$
 - $I_n \cup I_{n+1} = [n, n+2];$
 - $\cup \mathcal{I} = \mathbb{R}$.

Műveletek halmazokkal (Az unió alaptulajdonságai)

Állítás

Bizonyítás

Később

Műveletek halmazokkal - Metszet

Definíció

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és a B közös elemeit tartalmazza: $A \cap B = \{x \in A : x \in B\}$.

Általában: Legyen $\mathcal A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cap \mathcal A = \cap \{A: A \in \mathcal A\} = \cap_{A \in \mathcal A} A$ a következő halmaz:

$$\cap \mathcal{A} = \{ x | \ \forall A \in \mathcal{A} : \ x \in A \}.$$

Speciálisan: $A \cap B = \cap \{A, B\}$.

- $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}.$
- Ha $I_n = \{x \in \mathbb{R} : n \le x \le n+1\}$ $(n \in \mathbb{Z})$, illetve $\mathcal{I} = \{I_n | n \in \mathbb{Z}\}$, akkor:
 - $I_2 \cap I_3 = \{3\};$
 - $I_8 \cap I_{11} = \emptyset$;
 - $I_n \cap I_{n+1} = \{n+1\};$
 - $\bullet \cap \mathcal{I} = \emptyset.$

Műveletek halmazokkal - Metszet

Definíció

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

Ha \mathcal{A} egy halmazrendszer, és $\cap \mathcal{A} = \emptyset$, akkor \mathcal{A} diszjunkt, illetve \mathcal{A} elemei diszjunktak.

Ha $\mathcal A$ egy halmazrendszer, és $\mathcal A$ bármely két eleme diszjunkt, akkor $\mathcal A$ elemei páronként diszjunktak.

- Az {1,2} és {3,4} halmazok diszjunktak.
- Az {1,2}, {2,3} és {1,3} halmazok diszjunktak, de nem páronként diszjunktak.
- Az $\{1,2\}$, $\{3,4\}$ és $\{5,6\}$ halmazok páronként diszjunktak.

Műveletek halmazokkal - Metszet

A metszet alaptulajdonságai:

Állítás (Biz. HF)

2021. tavasz

Az unió és metszet disztributivitási tulajdonságai:

Állítás

Bizonyítás

Később

Definíció

Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$.

Műveletek halmazokkal - Komplementer

Definíció

Egy rögzített X alaphalmaz és $A\subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A}=A'=X\setminus A$.

