KOSHA GUIDE E - 103 - 2011

> 저압 감전방지장치 등의 선정 및 설치에 관한 기술지침

> > 2011. 12.

한국산업안전보건공단

안전보건기술지침의 개요

○ 제정자 : 한국산업안전보건공단 윤동현 ○ 개정자 : 한국산업안전보건공단 안영준

ㅇ 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

o 제·개정 경과

- 2000년 5월 총괄제정위원회 심의

- 2007년 4월 전기분야 제정위원회 심의

- 2007년 5월 총괄제정위원회 심의

- 2011년 12월 전기안전분야 제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- IEC 60364-5-53: Electrical installations of buildings Selection and erection of electrical equipment isolation, switching and control (2005)
- IEC 60364-4-41: Electrical installations of buildings Protection for safety - Protection against electric shock (2005)
- IEC 60364-4-43: Electrical installations of buildings Protection for safety - Protection against over-current
- IEC 61140: Protection against electric shock (2001)

o 관련법령·고시 등

- 산업안전보건기준에 관한 규칙 제 304조(누전차단기에 의한 감전방지) 및 제 305조(과전류 차단장치)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기 술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

ㅇ공표일자 : 2011년 12월 29일

ㅇ제 정 자 : 한국산업안전보건공단 이사장

저압 감전방지장치 등의 선정 및 설치에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제 304조 (누전차단기에 의한 감전방지) 및 제 305조(과전류 차단장치)의 규정에 의거 저압설비에서 감전방지장치 등의 선정과 설치를 위한 기술지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 사업장내에 설치된 600 V 이하의 저압 전기설비에 설치되는 과전류보호 장치, 누전차단기, 부족전압 등의 보호장치에 대하여 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "전원의 자동차단"이라 함은 고장이 발생한 경우, 보호기기의 자동적인 작동에 의해 전용도체 1개 이상을 차단하는 것을 말한다.
 - (나) "정격감도전류"라 함은 주변온도 -20℃~40℃에서 작동전압을 정격전압의 80~ 110%로 하여 누전차단기가 반드시 차단되는 영상변류기의 1차측 검출 지락전류 (Grounding fault current) 값을 말한다.
 - (다) "정격부동작전류"라 함은 주변온도 -20℃~40℃에서 작동전압을 정격전압의 8 0~110%로 하여 누전차단기가 차단되지 않는 영상변류기의 1차측 검출 지락전류(Grounding fault current) 값을 말한다.
 - (라) "기능자"라 함은 전기사용지역에서 기술자의 적절한 조언이나 감독을 받아 전 기적인 안전조치 또는 조작을 할 수 있는 사람을 말한다.
 - (마) "기술자"라 함은 제한된 전기사용지역에서 기술적인 지식이나 충분한 경험을 보유하고 있어 전기적인 위험을 피할 수 있는 사람을 말한다.

- (바) "TN계통"이라 함은 전력계통 접지방식의 하나로 전원측의 한 점을 직접 접지 시키고, 전기기기의 접지는 전원측 접지극에 보호도체로 접속한 방식을 말한다.
- (사) "TT계통"이라 함은 전력계통 접지방식의 하나로 계통의 한쪽은 직접 접지시키고, 기기의 보호접지는 이와는 별도의 접지극에 접속하는 방식을 말한다.
- (아) "IT계통"이라 함은 전력계통 접지방식의 하나로 모든 충전부를 대지에서 격리 시키거나 한 점에서 임피던스접지시키고, 설비의 노출도전부는 독립접지 또는 공통접지한 방식을 말한다.
- (자) "노출도전부(Exposed conductive-part)"라 함은 정상적인 상태에서 충전되지 않으나, 기초 절연이 손상될 경우에 충전부가 될 수 있는 기기의 도전성부분을 말한다.
- (차) "초저전압(Extra low voltage)"이라 함은 교류전압 50 V 이하, 직류전압 120 V이하의 전압을 말한다.
- (카) "안전초저전압 시스템(Safety extra low voltage system)"이라 함은 정상상태 또는 단일 고장상태에서 인가되는 전압이 초저전압을 초과하지 않는 전기시스템을 말한다.
- (타) "기능초저전압 시스템(Functional extra-low voltage system)"이라 함은 안전 초저전압을 만족하지 못하는 경우 직접 또는 간접 접촉에 대한 방호조치를 이용하여 안전을 확보한 전기시스템을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙 에서 정하는 바에 따른다.

4. 공통사항

저압설비는 형태별로 다음의 각 항에 표시한 적절한 감전보호의 조치를 적용하여야 한다.

(1) 다극형 장치는 모든 극의 가동접점이 동시에 투입되고 차단되는 기계적인 구조로 하여야 한다. 다만, 중성극에 접점이 있을 경우에는 나머지 다른 상(Phase)의 접점보다 선 투입되고, 후 차단되는 방식은 그러하지 아니하다.

E - 103 - 2011

- (2) 다상회로에 있어서 단로장치 및 개폐장치는 중성선에 설치하여서는 아니 된다.
- (3) 단상회로에 있어서 KOSHA GUIDE E-100-2011 "저압전기설비에서의 감전예방를 위한 기술지침", 7.1항의 규정에 적합한 누전차단기를 전원측에 설치하는 경우를 제외하고는 중성선에 단극기기를 설치하여서는 아니 된다.
- (4) 복수의 기능을 가진 보호장치는 개개의 기능에 대응하는 모든 요구사항에 적합하여야 한다.

5. 전원의 자동차단에 의한 간접접촉 보호장치

5.1 과전류보호장치

- (1) TN계통에 있어서 과전류보호장치는 KOSHA GUIDE E-100-2011 7.1.3 (2)항의 요구사항을 만족하여야 하며, 다음의 내용과 6.3항에서 규정한 조건에 따라 선정 및 시공한다.
 - (가) 모든 상의 도체에 대하여 과전류가 검출되어야 한다.
 - (나) 전선의 종류, 단면적, 시설방법이나 구성에 따라 적정한 용량의 단락 및 과전 류보호장치를 설치하여야 한다.
- (2) IT계통에서 노출도전부를 상호 접속하고 있는 경우, 제2고장 발생에 대한 과전류 보호장치는 (1)항 및 KOSHA GUIDE E-100-2011 7. 1. 5 (7)항의 요구사항을 만 족하여야 한다.

5.2 누전차단기

5.2.1 누전차단기의 일반조건

- (1) 직류회로의 누전차단기는 직류의 잔류전류를 검출하고, 정상운전 및 고장시의 회로전류를 차단할 수 있도록 특별히 설계하여야 한다.
- (2) 누전차단기는 보호하는 회로의 모든 충전도체를 차단하도록 하여야 한다. 다만.

E - 103 - 2011

TN-S계통에 있어서 중성선이 대지전위와 동일한 것이 확실한 경우에는 중성선을 차단할 필요가 없다.

- (3) 누전차단기의 영상변류기 내에 보호도체가 통과하지 않도록 한다.
- (4) 정상운전시의 누설전류로 인하여 불필요한 오동작이 되지 않도록 적절한 감도의 누전차단기를 선정하고, 가능한 한 분기회로의 수를 작게 하여야 한다.
- (5) 보호도체가 없는 회로에서 누전차단기를 사용하는 경우, 간접접촉에 대한 감전방 지를 위해서는 정격감도전류를 30 mA 이하로 하여야 한다.

5.2.2 누전차단기의 보조전원

- (1) (2)항의 요구사항을 만족하는 경우, 보조전원과 관계없이 누전차단기를 설치할 수 있다.
- (2) 보조전원을 갖춘 누전차단기는 다음의 경우 이외에는 보조전원의 고장시 자동으로 회로를 차단하도록 한다.
- (가) KOSHA GUIDE E-100-2011의 7.1항에서 규정하는 간접접촉보호가 확보된 경우
- (나) 기능자나 기술자가 누전차단기를 조작, 시험 및 검사하는 설비에 설치할 경우

5.2.3 TN계통에서의 누전차단기

- (1) TN계통에서의 장치나 설비가 KOSHA GUIDE E-100-2011의 7.1.3항의 조건 중하나 이상을 만족하지 않는 경우, 누전차단기에 의해서 보호할 수 있다.
- (2) 노출도전부가 충전되어 누전차단기를 작동시킬 수 있는 접지극에 연결된 경우 노출도전부는 TN접지계통의 보호도체에 접속하지 않아도 된다.
- (3) 간접접촉보호를 하는 회로는 5.2.4항에 따르고, KOSHA GUIDE E-100-2011의 7.1.4항을 적용한다. 다만, 노출도전부에 개별 접지극이 없는 경우, 누전차단기의

E - 103 - 2011

전원측에서 노출도전부를 보호도체에 접속하여야 한다.

5.2.4 TT계통에서의 누전차단기

- (1) 2개 이상의 공급전원이 있는 경우에 각각의 입력점에 (2)항의 기준이 적용되어야한다.
- (2) 하나의 설비를 단일의 누전차단기로 보호하는 경우, 누전차단기는 설비의 전력공급점에 설치하여야 한다. 다만, 전력공급점과 누전차단기 설치점 사이에 설치된설비가 등급Ⅱ인 장치(기초절연 외에 보호절연이나 강화절연 조치가 이루어진기기)이거나 동등수준 이상의 절연보호조건(KOSHA GUIDE E-100-2011의 7.2항)에 적합한 경우에는 이를 적용하지 아니 한다.

5.2.5 IT계통에서의 누전차단기

IT계통에서의 누전차단기 사용시 제1고장에서 차단되지 않는 경우 누전차단기의 부동작전류를 상도체의 임피던스가 무시되는 전류 이상으로 선정하여야 한다.

5.3 절연감시장치

- (1) KOSHA GUIDE E-100-2011의 7.1.5(6)항에 의한 절연감시장치는 전기설비의 절연을 연속 감시하는 장치로서, 설비의 절연수준 저하로 인한 고장이 발생되기 전에 절연 감소의 원인을 알 수 있도록 하여, 가능한 전원의 차단을 억제하기 위한목적으로 사용한다.
- (2) 대상설비에 대한 절연저항의 최소값은 <표 1>에 나타난 값 이하로 하여 절연감 시장치의 감도를 설정한다.
- (3) 절연감시장치는 열쇠나 공구를 사용하지 않으면 그 감도의 설정이 변경되지 않 도록 설계 및 설치되어야 한다.

<표 1> 절연저항의 최소값

공칭회로전압 (V)	시험전압-직류 (V)	절연저항 (MΩ)
안전 초저전압 및 기능 초저전압 : 회로전원 이 안전 변압기로부터 공급되고, KOSHA GUIDE E-100-2011의 5.1.3 (3)항의 요구사 항을 만족하는 경우	250	≥0.25
500 V 이하(위 사항은 제외)	500	≥0.5
500 V 초과	1,000	≥1.0

6. 과전류보호장치

6.1 일반적인 요구사항

- (1) 나사형 퓨즈를 이용한 퓨즈베이스는 퓨즈 체결시 전원측 단자와 일치하도록 설치하여야 한다.
- (2) 탈착식(Plug-in) 퓨즈를 이용한 퓨즈베이스의 경우 인접한 두 개의 퓨즈베이스 도전부와의 사이에 섬락될 우려가 없도록 충분히 이격시켜야 한다.
- (3) 기능자나 기술자만이 퓨즈를 교체할 수 있도록 설치되어야 한다.
- (4) 기능자나 기술자 이외의 자가 회로 차단기를 조작할 가능성이 있는 경우, 차단기의 조정값은 열쇠나 공구를 사용할 경우에만 변경이 가능하도록 하고, 조정된 값이 표시되도록 차단기를 설계하거나 설치하여야 한다.

6.2 배선계통의 과부하보호장치의 선정

(1) 보호장치의 정정전류는 다음의 조건에 맞도록 선정하여야 하며, 경우에 따라서는

E - 103 - 2011

부하의 첨두전류 값을 고려하여 오작동이 되지 않도록 하여야 한다.

- $(7) I_B \leq I_n \leq I_Z$
- (나) $I_2 \leq 1.45 \cdot I_Z$

여기에서 I_n : 보호장치의 공칭전류

 I_Z : 전선의 연속허용전류

 I_2 : 보호장치의 작동전류

I_B: 회로의 설계전류

(2) 주기적인 변동이 있는 부하의 경우, 열적으로 등가인 정상부하에 대한 회로의 설계전류(I_B) 및 전선의 연속허용전류(I_Z)의 값을 기준으로 보호장치의 공칭전류(I_n) 및 보호장치의 작동전류(I_2)의 값을 선정하여야 한다.

6.3 배선계통의 단락보호장치 선정

- (1) 단락주기가 5초 이내인 단락보호장치는 전선 및 접속부에 위험한 열적, 기계적인 영향이 생기기 이전에 회로의 단락전류를 차단할 수 있도록 설치되어야 하며, 최소 및 최대 단락조건을 고려하여야 한다.
- (2) 보호장치의 규격이 정격사용 차단용량 및 정격최대 차단용량 쌍방을 규정하고 있는 경우에 최대단락조건에 대해서 정격최대 차단용량을 기초로 보호장치를 선정하여야 한다

7. 부족전압 보호장치

- (1) 부족전압 보호장치는 개폐기나 차단기를 작동시키거나 또한, 단로기나 인출장치 가 있는 형식의 것이 바람직하다.
- (2) 부족전압 보호장치는 걸쇠장치(Ratching)가 없는 접촉기를 사용하여야 한다.

8. 각종 보호장치의 협조

8.1 누전차단기와 과전류보호장치의 조합

- (1) 누전차단기가 과전류보호장치와 조합 설치된 경우 조합된 기기의 특성은 다음과 6.2항 및 6.3항의 규정에 적합하여야 한다.
 - (가) 단락보호장치가 6.3(1)항에 적합하고 그 설치점에 있어서 추정 단락전류 이상 의 차단용량을 가진 경우, 그 지점에서의 부하측 전선에 대해 단락보호가 된 것으로 본다.
 - (나) 단락보호장치의 통과에너지나 과부하보호장치의 손상 한도값을 초과하지 않도록 양쪽 보호장치의 특성을 조화시켜야 한다.
- (2) 누전차단기와 과전류 보호장치가 함께 설치되지 않은 경우, 다음의 내용을 만족하여야 한다.
- (가) 적절한 보호장치를 사용하여 과전류 보호를 실시한다.
- (나) 누전차단기는 그 설치개소에서 부하측에 생기는 단락에 따라서 일어날 위험이 있는 열적 및 기계적인 응력에 견디는 것이어야 한다.
- (다) 누전차단기는 불평형 전류나 지락전류(Grounding fault current)에 의해서 개방 되도록 함과 동시에 앞에서 설명한 단락조건하에서 손상을 받지 않는 것이어 야 한다.

8.2 누전차단기 사이의 상호협조

- (1) 2개 이상의 누전차단기를 직렬로 시설한 경우, 전원공급상의 이유, 특히 안전과 관련이 있는 설비의 비고장부분에 전기의 공급을 지속하기 위해 차단기 상호간 에 적절한 협조를 하여야 한다.
- (2) 상호협조시 설비에 필요한 보호기능을 확보함과 동시에 고장점에 가장 근접한 누전차단기의 부하측 설비부분만이 전원으로부터 격리되도록 누전차단기를 선 정·설치하여야 한다.

E - 103 - 2011

- (3) 직렬로 설치된 누전차단기 사이의 상호 협조를 위하여 다음의 두 가지 조건을 만족하여야 한다.
- (가) 전원측(상위)에 설치하는 누전차단기의 부동작시간-전류특성은 부하측(하위)에 설치하는 누전차단기의 전 동작시간-전류특성보다 위에 위치하여야 한다.
- (나) 전원측에 설치한 누전차단기의 정격감도전류는 부하측에 설치한 누전차단기의 정격감도전류보다 크게 하여야 한다.
- (4) 전원측에 설치한 누전차단기의 정격감도전류는 부하측에 설치한 누전차단기 정격감도전류의 3배 이상으로 하여야 한다.