

O Problema

- Milhões de transações imobiliárias ocorrem anualmente
- Transações das mais variadas
- Algumas dessas transações podem ser fraudulentas
- Grandes perdas financeiras
- Impactos no mercado e questões legais
- Como identificar padrões suspeitos e prevenir fraudes?

Nossa Solução

- Explorar a base de dados buscando corrigir possíveis falhas para o trabalho
- Utilizar Machine Learning para análise e detecção de padrões suspeitos
- Criar um sistema inteligente para ranquear transações com maior risco de fraude
- Apresentar os dados organizados a partir das transações com maior risco de fraude para menor risco de fraude.

- Exploração do dataset
- Análise da Qualidade dos Dados (DQR)
- Verificação de valores ausentes
- Verificação outliers
- Inconsistências nos dados

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades em Diferentes
 Bairros

- Análise da Qualidade dos Dados (DQR)
 - Quantidade de Imóveis com Diversos
 Tipos de Easement

- Análise da Qualidade dos Dados (DQR)
 - Quantidade de Imóveis por Proprietário

	Unique_values_OWNER	Counts
0	PARKCHESTER PRESERVAT	6020
1	PARKS AND RECREATION	4255
2	DCAS	2169
3	HOUSING PRESERVATION	1904
4	CITY OF NEW YORK	1450
5	DEPT OF ENVIRONMENTAL	1166
6	BOARD OF EDUCATION	1015
7	NEW YORK CITY HOUSING	1014
8	CNY/NYCTA	975
9	NYC HOUSING PARTNERSH	747
10	YORKVILLE TOWERS ASSO	558
11	DEPARTMENT OF BUSINES	527
12	DEPT OF TRANSPORTATIO	503
13	MTA/LIRR	467
14	PARCKHESTER PRESERVAT	439
15	MH RESIDENTIAL 1, LLC	411
16	434 M LLC	393
17	LINCOLN PLAZA ASSOCIA	366
18	DEUTSCHE BANK NATIONA	336
19	561 11TH AVENUE TMG L	324

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Classe de Imposto

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Tamanho de Frente do Lote em pés, filtrados para
 <= 375

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Profundidade do Lote em pés, filtrados para <= 425

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por E-Extension, G- Garage, EG- Extension e Garage

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Número de Andares do Edifício, filtrados para <= 50

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Valor de Mercado, filtrados para <= (\$) 3M

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Valor de Mercado do Terreno, filtrados para <= (\$) 50K

- Análise da Qualidade dos Dados (DQR)
 - Número de Propriedades por Faixa de ZIP Code

Tratando Valores Ausentes

- Registros ZIP ausentes através da primeira moda de cada grupo
- Registros vazios com a mediana dos grupos:
 - ZIP e BLDGCL
 - ZIP e TAXCLASS
 - B e TAXCLASS
 - P
 - BLDGCL
 - TAXCLASS

Valores Aus	sentes:
RECORD	0
BBLE	0
В	0
BLOCK	0
LOT	0
EASEMENT	1066358
OWNER	31745
BLDGCL	0
TAXCLASS	0
LTFRONT	0
LTDEPTH	0
EXT	716689
STORIES	56264
FULLVAL	0
AVLAND	0
AVTOT	0
EXLAND	0
EXT0T	0
EXCD1	432506
STADDR	676
ZIP	29890
EXMPTCL	1055415
BLDFRONT	0
BLDDEPTH	0
AVLAND2	788268
AVT0T2	788262
EXLAND2	983545
EXT0T2	940166
EXCD2	978046
PERIOD	0
YEAR	0
VALTYPE	0

Engenharia de Atributos -Extraindo Informações dos Dados

- Área 1 = LTFRONT * LTDEPTH
- Área 2 = BLDFRONT * BLDDEPTH
- Área 3 = AREA2 * STORIES
- Gerando um Índice através da divisão de FULLVAL, AVLAND e AVTOT pelas variáveis recém criadas AREA1, AREA2 e

AREA3

- ind1 é a combinação feita entre: FULLVAL AREA1
- ind2 é a combinação feita entre: FULLVAL AREA2
- ind3 é a combinação feita entre: FULLVAL AREA3
- ind4 é a combinação feita entre: AVLAND AREA1
- ind5 é a combinação feita entre: AVLAND AREA2
- ind6 é a combinação feita entre: AVLAND AREA3
- ind7 é a combinação feita entre: AVTOT AREA1
- ind8 é a combinação feita entre: AVTOT AREA2
- ind9 é a combinação feita entre: AVTOT AREA3

Engenharia de Atributos -Extraindo Informações dos Dados

 Variáveis originais e pós engenharia de atributos

```
['RECORD', 'BBLE', 'B', 'BLOCK', 'LOT', 'EASEMENT', 'OWNER', 'BLDGCL',
'TAXCLASS', 'LTFRONT', 'LTDEPTH', 'EXT', 'STORIES', 'FULLVAL', 'AVLAND',
'AVTOT', 'EXLAND', 'EXTOT', 'EXCD1', 'STADDR', 'ZIP', 'EXMPTCL',
'BLDFRONT', 'BLDDEPTH', 'AVLAND2', 'AVTOT2', 'EXLAND2', 'EXTOT2',
'EXCD2', 'PERIOD', 'YEAR', 'VALTYPE', 'ind1 media_ind1_grupo_ZIP',
'ind2_media_ind2_grupo_ZIP', 'ind3_media_ind3_grupo_ZIP'.
'ind4 media ind4 grupo ZIP', 'ind5 media ind5 grupo ZIP',
'ind6 media ind6 grupo ZIP', 'ind7 media ind7 grupo ZIP',
'ind8_media_ind8_grupo_ZIP', 'ind9_media_ind9_grupo_ZIP',
'ind1 media ind1 grupo TAXCLASS', 'ind2 media ind2 grupo TAXCLASS',
'ind3 media ind3 grupo TAXCLASS', 'ind4 media ind4 grupo TAXCLASS',
'ind5 media ind5 grupo TAXCLASS', 'ind6 media ind6 grupo TAXCLASS',
'ind7 media ind7 grupo TAXCLASS', 'ind8 media ind8 grupo TAXCLASS',
'ind9 media ind9 grupo TAXCLASS', 'ind1 media ind1 grupo B',
'ind2 media ind2 grupo B',
                           'ind3 media ind3 grupo B',
'ind4 media ind4 grupo B',
                           'ind5 media ind5 grupo B'
'ind6 media ind6 grupo B',
                            'ind7 media ind7 grupo B'
                            'ind9 media ind9 grupo B'
'ind8 media ind8 grupo B',
                             'ind2_media_ind2_grupo_All',
'ind1 media ind1 grupo All',
'ind3 media ind3 grupo All',
                              'ind4 media ind4 grupo All',
'ind5 media ind5 grupo All',
                              'ind6 media ind6 grupo All',
                              'ind8 media ind8 grupo All',
'ind7 media ind7 grupo All',
'ind9 media ind9 grupo All']
```

Como Identificamos Fraudes?

- PCA com 15 Componentes

- São criadas 15 scores, onde cada score é o quadrado do valor da componente principal correspondente
- Soma os 15 scores para cada linha e tira a raiz quadrada
- Quanto maior o valor, mais anômalo (chance de fraude) é o registro

Machine Learning

- Autoencoder (Deep Learning)
 - Rede neural que aprende uma representação comprimida dos dados (encoding) e tenta reconstruí-los (decoding)
 - Se houver um grande erro de reconstrução, significa que a entrada pode ser uma anomalia
 - O score é a raiz quadrada da soma dos erros, ou seja, quanto maior o score, mais anômala a amostra (chance de fraude)

O Ranking de Fraude

- Calculamos um score final ponderado, combinando os dois scores
 - Ordenando os valores do maior para o menor
 - Quanto maior o score maior chance de fraude

_All	ind7_media_ind7_grupo_All	ind8_media_ind8_grupo_All	ind9_media_ind9_grupo_All	Fraud Score 1	Fraud Score 2	Rank_Fraud Score 1	Rank_Fraud Score 2	Final Score	Final Rank
585	2.887832	17366.599665	38021.252085	1032.370884	1024.639358	1070994.0	1070994.0	2.203046e+09	1.0
640	11692.901316	21.429852	46.917061	1021.876097	1019.530897	1070993.0	1070993.0	2.186333e+09	2.0
905	5033.093327	24656.466391	26990.595231	925.736545	925.736545	1070992.0	1070992.0	1.982913e+09	3.0
437	1638.598722	0.407828	0.446436	916.675186	916.675186	1070991.0	1070991.0	1.963502e+09	4.0
642	310.594086	29280.261695	21368.071135	902.674789	902.674789	1070990.0	1070990.0	1.933511e+09	5.0
264	1.163778	2815.404383	1027.309143	811.364025	801.377377	1070989.0	1070989.0	1.727228e+09	6.0
527	0.422545	20409.607265	2234.170297	775.441577	775.441577	1070988.0	1070988.0	1.660977e+09	7.0
438	3.518226	22001.644354	4816.890367	740.377257	740.377257	1070987.0	1070987.0	1.585869e+09	8.0
779	0.851624	6164.253806	1686.949751	722.396934	713.516036	1070986.0	1070986.0	1.537843e+09	9.0
816	1.720284	6502.658004	14236.477143	638.775750	638.775750	1070985.0	1070985.0	1.368238e+09	10.0
907	72.248477	13170.189280	14416.958307	576.154995	571.717088	1070984.0	1070984.0	1.229353e+09	11.0
413	160.691131	0.077132	0.033773	493.699427	493.699427	1070983.0	1070983.0	1.057487e+09	12.0
290	0.665347	12752.892778	1396.015802	484.522409	484.522409	1070982.0	1070982.0	1.037830e+09	13.0
139	1142.426997	147.744635	323.462055	475.126561	475.126561	1070979.0	1070981.0	1.017702e+09	14.0

O que ganhamos?

- Priorização nas investigações
- Ganho de tempo
- Economia de recursos
- Automação eficiente no setor imobiliário
- Maior segurança jurídica
- Maior segurança aos clientes

