Law of Large Numbers

STRONG AND WEAK LLN

Definitions

- Weak Law of Large Numbers:
 - ▶ $\overline{X_n}$ converges <u>in probability</u> to μ as $n \to \infty$.

$$\lim_{n\to\infty} P(|\overline{X_n} - \mu| \le \varepsilon) = 1$$

Strong Law of Large Numbers:

$$P(\lim_{n\to\infty}\overline{X_n}=\mu)=1$$

▶ $\overline{X_n}$ converges <u>almost surely</u> to μ as $n \to \infty$.

Almost Surely

- ▶ In probability theory, an event is said to happen **almost surely** if it happens with probability 1.
- This definition exists for infinite sample spaces. In finite sample states it is surely.
- In finite sample spaces, all subsets with probability of 0 are null sets (empty sets) but in infinite sample spaces, a non-empty subset with probability of 0 may exist.
- In math terms: event E is almost surely if P(E) = 1 or $P(E^c) = 0$ or E^c contained a null set.

Almost Surely cont.

Example:

- \blacktriangleright Consider tossing a coin where observing a H has probability of p.
- If we toss the coin for infinite times where each toss is i.i.d. RVs, the probability of event "at least one T" will be almost surely because $1-p^{\infty}=1$
- ▶ But if we stop tossing for a large N such as 1000000, then the probability of aforementioned event won't be 1 anymore
- ▶ This is same definition of intuitive concept of probability of a limit in infinity.

Strong vs. Weak

- Strong a generalized and stronger form of weak LLN.
- \blacktriangleright Let X_i be i.i.d. Bernouli RVs where:
 - $P(X_i) = p, P(X_i = 0) = 1 p = q$
 - ightharpoonup And, $k=X_1+X_2+\cdots+X_n$ represents the number of successes in n trails.
- ▶ Weak LLN:

 - ightharpoonup The ratio total number of successes to total number of trials tends to p in probability as n increases.
- ▶ Strong LLN:
 - ▶ This ratio $\frac{k}{n}$ tends to p no only **in probability**, but **with probability 1**.

Strong vs. Weak cont.

- Strong LLN:

 - ▶ Event $\left\{ \left| \frac{k}{n} p \right| < \varepsilon \right\}$ occurs infinitely w.r.t. $\left\{ \left| \frac{k}{n} p \right| > \varepsilon \right\}$
 - So, event $\frac{k}{n}$ converges to p almost surely.

Strong vs. Weak cont.

- The weak law states that for every n that is large enough, the ratio $\frac{\sum_{i=1}^{n} X_i}{n} = \frac{k}{n}$ is likely to be near p with certain probability that tends to 1 as n increases.
- it does not say that $\frac{k}{n}$ is bound to stay near p if the number of trials is increased.
- Suppose (1) is satisfied for a given in a certain number of trials n_0 . If additional trials are conducted beyond n_0 the weak law does not guarantee that the new $\frac{k}{n}$ is bound to stay near p for such trials.
- Weak LLN unbale to say anything about sum of small probabilities of events that violet (1).

Strong vs. Weak

- However, the strong law states that not only all such sums converge, but the total number of all such events, is in fact finite.
- This implies that the probability $\left\{\left|\frac{k}{n}-p\right|>\varepsilon\right\}$ of the events as n increases becomes and remains small, since with probability 1 only finitely many violations to the above inequality takes place as $n\to\infty$
- Example:
 - $\epsilon = 0.1$, for tossing for 1000 times we have: $P\left\{\left|\frac{k}{n} \frac{1}{2}\right| > 0.01\right\} \le \frac{1}{40}$

Reference

- https://www.mhhe.com/engcs/electrical/papoulis/graphics/ppt/le ctr13a.pdf
- http://www.dklevine.com/archive/strong-law.pdf
- https://en.wikipedia.org/wiki/Almost_surely
- https://en.wikipedia.org/wiki/Law_of_large_numbers
- http://math.mit.edu/~sheffield/600/Lecture30.pdf
- https://math.stackexchange.com/questions/2024255/what-is-the-difference-between-the-weak-and-strong-law-of-large-numbers/3673386#3673386