jee-main-maths-25-06-2022-shift-2

EE24BTECH11030 - J.KEDARANANDA

- 1) Let $A = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}$ Then the number of elements in the set $(n, m) : n, m \in [1, 2, \dots, 10]$ and $nA^n + mB^m = I$ is _____.
- 2) Let $f(x) = [2x^2 + 1]$ and $g(x) = \begin{cases} 2x 3, & x < 0 \\ 2x + 3, & x \ge 0 \end{cases}$, where [t] is the greatest integer $\le t$. Then, in the open interval (-1, 1), the number of points where f(g(x)) is discontinuous is equal to _____.
- 3) The value of b > 3 for which $12 \int_3^b \frac{1}{(x^2-1)(x^2-4)} dx = \ln(\frac{49}{40})$, is equal to _____.
- 4) If the sum of the co-efficients of all the positive even powers of x in the binomial expansion of $\left(2x^3 + \frac{3}{x}\right)^{10}$ is $5^{10} \beta 3^9$ then β equal to _____
- 5) If the mean deviation about the mean of the numbers 1, 2, 3, \cdots , n, where n is odd, is $\frac{5(n+1)}{n}$, then n is equal to _____.
- 6) $\overrightarrow{b} = \hat{i} + \hat{j} + \lambda \hat{k}$, $\lambda \in R$. If \overrightarrow{b} is a vector such that $\overrightarrow{a} \times \overrightarrow{b} = 13\hat{i} 1\hat{j} 4\lambda \hat{k}$ and $\overrightarrow{a} \cdot \overrightarrow{b} + 21 = 0$, then $(\overrightarrow{b} \overrightarrow{a}) \cdot (\hat{k} \hat{j}) + (\overrightarrow{b} + \overrightarrow{a}) \cdot (\hat{i} \hat{k})$.
- 7) The total number of three-digit numbers, with one digit repeated exactly two times, is _____.
- 8) Let $f(x) = |(x-1)(x^2 2x 3)| + x 3$, $x \in R$. If m and M are, respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to _____.
- 9) Let the eccentricity of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be $\frac{5}{4}$. If the equation of the normal at the point $(\frac{8}{\sqrt{5}}, \frac{12}{5})$ on the hyperbola is $8\sqrt{5}x + \beta y = \lambda$, then $\lambda \beta$ is equal to _____.
- 10) Let l_1 be the line in xy-plane with x and y intercepts $\frac{1}{8}$ and $\frac{1}{4\sqrt{2}}$ respectively and l_2 be the line in zx-plane with x and z intercepts $\frac{-1}{8}$ and $\frac{-1}{6\sqrt{3}}$ respectively. If d is the shortest distance between the line l_1 and l_2 , then d^{-2} is equal to _____.