

Présentation de BE Pilote de barre franche

Présenté par :

Meriem BOUSLAH Nouria KACEMI

Encadré par :

Pedro CARVALHO MENDES

Jury:

Pedro CARVALHO MENDES Thierry PERISSE

SOMMAIRE

- 1. Contexte du projet
- 2. Environnement technique
- 3. Etapes de réalisation
- 4. Signal PWM
- 5. Gestion Anemomètre
- 6. Gestion Verin
- 7. Conclusion

Contexte du projet

Environnement technique

Quartus II 9.0sp2

Web Edition

Etapes de réalisation

- Répartition des fonctions
- Comprendre l'enchaînement des blocs
- Codage et simulation de chaque bloc
- Test du fonctionnement de ma fonction sur la carte DE2
- Implémentation du bus Avalon sur le SOPC
- Développement logiciel sur NIOS II
- Test et validation

Signal PWM

Achitecture de la PWM

Simulation de la PWM

La fréquence (8 bits) varie, pour un front montant d'horloge, il faut que la valeur de la fréquence soit suppérieur à celle du rapport cyclique (8 bits).

Gestion Anemomètre

Le bloc anémomètre reçoit un signal physique à l'entrée : vitesse du vent.

Le signal sera transformé en signal numérique carré et la fréquence de ce signal doit être en sortie égale à 1Mhz. Machine à état :

Mode Monocoup : start stop = 1 et data valid = 1

BasculeD:uBascule1

Mode Continu : continu = 1

Simulation Anemomètre

Test:

Fréquence de 32KHz

Code binaire affiché sur 8 bits : 00100000

Nous avons bien une fréquence qui correspond à un nombre binaire de 00100000 qui correspond à 32 en base décimale

BUS Avalon de l'Anemomètre

Mission:

Assurer l'interconnexion entre le processeur (NIOS II) et des circuits périphériques

Circuit Anemomètre avalon

Intégration du SOPC

Communication Maître/Esclave

Le convertisseur AN MCP 3201 est l'esclave

La carte DE0 est le maître

Gestion Vérin

Architecture Vérin

Simulation Vérin

Nous avons bien une remise à 0 de notre compteur Cptbit à 15 et à un front montant de SCK et une mémorisation data.

Conclusion

Compétences acquises :

- ✓ Apprendre une méthode de travail fondée sur la réflexion, l'observation et l'analyse.
- ✓ Maîtrise du VHDL et des logiciels Quartus.

