Code ▼

Projet de serie temporelle Titre: Prévision de la demande d'electricité à court terme

NOM de l'étudiante: KAMTCHUENG KOUOKAM Daline Anastasie	
INTRODUCTION	_

Presentation de données

Ce document présente une analyse de la consommation d'énergie sur une période de huit ans (2018 à 2025), réalisée à partir des données DOM_hourly disponibles sur Kaggle. Cette étude a été menée dans le cadre de mon évaluation de la Normale.

Objectif : Exploiter ces données afin de concevoir un modèle de prévision de la consommation d'énergie à court terme.

PARTIE I: Prétraitement de données

Importation des données

Hide

data <- read.csv("DOM_hourly.csv")
head(data)</pre>

	Datetime <chr></chr>	DOM_MW <dbl></dbl>
1	2005-12-31 01:00:00	9389
2	2005-12-31 02:00:00	9070
3	2005-12-31 03:00:00	9001
4	2005-12-31 04:00:00	9042
5	2005-12-31 05:00:00	9132
6	2005-12-31 06:00:00	9353
6 ro	ws	

Nous allons nous assurer ensuite que la colonne DOM_MW contient bien des valeurs numerique et suprimer les valeur manquante

Hide

#convertion de DOM_MW envaleur numerique
data\$DOM_MW = as.numeric(data\$DOM_MW)

#Elimination des valeurs manquantes
data\$DOM_MW[is.na(data\$DOM_MW)] = 0

#convertion de la colone datatiome
data\$Datetime <- as.Date(data\$Datetime)</pre>

Différentes librairies utilisées:

Hide

```
library(TSstudio)
library(tidyverse)
library(dplyr)
library(lubridate)
library(dygraphs)
library(forecast)
library(zoo)
library(xts)
```

Après observation de nos données, nous constatons qu'elles varient sur 23 minutes chaque jour la plupart du temps, mais de façon aléatoire, car nous avons observé des journées avec une seule observation. Pour résoudre ce problème, nous allons effectuer la moyenne des données pour les minutes de chaque journée afin d'obtenir des données journalières.

```
data_jour <- data %>%
  mutate(date = as.Date(Datetime)) %>%
  group_by(date) %>%
  summarise(DOM_MW = mean(DOM_MW, na.rm = TRUE))
```

Nous obtenons donc des données qui ne dépendent plus du temps et ont une valeur journalière.

Hide

```
head(data_jour)
```

	date <date></date>	DOM_MW <dbl></dbl>
	2005-05-01	7812.348
	2005-05-02	8608.083
	2005-05-03	8665.000
	2005-05-04	8628.792
	2005-05-05	8702.542
	2005-05-06	9008.542
6 rows		

PARTIE II: Etude de notre modéle

Nous allons maintenant effectuer la transformation de nos données en données de série temporelle.

Hide

```
data_ts <- xts(data_jour$DOM_MW, order.by = data_jour$date)
```

Visualisation de nos donner de serie temprelle

Hide

```
plot.ts(
  data_ts,
  main="consomation d'energie sur une durée de 14ans",
  xlab="Date",
  ylab="DOM_MW"
)
```

consomation d'energie sur une durée de 14

Nous allons maintenant effectuer la subdivision de nos données en données d'entraînement et données de test, afin de pouvoir entraîner notre modèle et réaliser des prévisions.

```
# Définir la taille de l'ensemble d'entraînement
train_size <- floor(length(data_ts) * 0.7)

# Partitionner les données en ensemble d'entraînement et ensemble de test
train = window(data_ts, end = index(data_ts)[train_size])

test = window(data_ts, start = index(data_ts)[train_size + 1])
```

Informations sur nos données d'entraînement :

```
ts_info(train)

The train series is a xts object with 1 variable and 3390 observations
Frequency: daily
Start time: 2005-05-01
End time: 2014-08-11
```

head(train)

Hide

```
[,1]
2005-05-01 7812.348
2005-05-02 8608.083
2005-05-03 8665.000
2005-05-04 8628.792
2005-05-05 8702.542
2005-05-06 9008.542
```

Visualisation des données d'entraînement:

plot.ts(train)

Informations sur nos données de test :

Hide

ts_info(test)

The test series is a xts object with 1 variable and 1453 observations

Frequency: daily Start time: 2014-08-12 End time: 2018-08-03

Hide

head(test)

[,1]
2014-08-12 11695.42
2014-08-13 11989.42
2014-08-14 11081.08
2014-08-15 10800.88
2014-08-16 10772.21
2014-08-17 11085.79

Entraînement de notre modèle avec Auto ARIMA :

```
Hide
model <- auto.arima(train)</pre>
                                                                                                     Hide
print(model)
Series: train
ARIMA(5,0,1) with non-zero mean
Coefficients:
                                     ar4
         ar1
                   ar2
                           ar3
                                             ar5
                                                                  mean
                                                       ma1
      1.8004
              -1.3085
                        0.6444
                                 -0.2886
                                          0.1342
                                                   -0.7005
                                                           10869.2179
     0.0534
                        0.0449
                                          0.0214
               0.0651
                                  0.0350
                                                    0.0528
                                                              210.5045
sigma^2 = 564218: log likelihood = -27254.98
AIC=54525.96
               AICc=54526
                             BIC=54574.98
```

Visualisation des résidus du modèle ainsi que des autocorrélations (ACF) :

Hide

checkresiduals(model)

```
Ljung-Box test

data: Residuals from ARIMA(5,0,1) with non-zero mean
Q* = 58.707, df = 4, p-value = 5.422e-12

Model df: 6. Total lags used: 10
```


Effectuons maintenant les prédictions avec notre modèle sur la même période que les données de test :

Hide

fc=forecast(model,length(test))
print(fc)

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></db	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
3391	11352.45	10389.821	12315.08	9880.235	12824.67
3392	11370.35	9939.397	12801.31	9181.895	13558.81
3393	11339.47	9769.230	12909.71	8937.995	13740.95
3394	11258.30	9638.172	12878.43	8780.527	13736.07
3395	11184.30	9540.713	12827.88	8670.651	13697.95
3396	11150.60	9492.839	12808.37	8615.272	13685.93
3397	11145.78	9470.729	12820.82	8584.013	13707.54
3398	11152.77	9451.265	12854.28	8550.541	13755.00
3399	11160.44	9425.841	12895.04	8507.600	13813.28
3400	11161.77	9393.139	12930.40	8456.882	13866.66
1-10 of 1,453 rows			Previous 1 2	3 4 5	6 100 Next

Maintenant, estimons l'erreur entre les données prédites et les données de test :

Hide

accuracy(fc,test)

 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE
 ACF1

 Training set
 0.8821897
 750.3682
 576.5216
 -0.4458901
 5.292597
 0.8996328
 -0.002346468

 Test set
 274.2535854
 1896.3786
 1515.1259
 -0.1337928
 13.307374
 2.3642771
 NA

Effectuons maintenant des prévisions sur la consommation d'énergie à partir de nos données pour une période de 10 jours :

Hide

new_model=auto.arima(data_ts)
prevision_journaliére=forecast(new_model,h=20)
print(prevision_journaliére)

	Point Forecast	Point Forecast Lo 80 Hi 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
4844	11159.96	10162.775	12157.14	9634.898	12685.02
4845	11607.97	10119.739	13096.21	9331.915	13884.04
4846	11839.46	10202.713	13476.22	9336.269	14342.66
4847	11888.22	10198.837	13577.60	9304.531	14471.91
4848	11866.40	10143.286	13589.51	9231.126	14501.67
4849	11859.23	10104.661	13613.80	9175.849	14542.61

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></db	Hi 95 <dbl></dbl>
4850	11827.31	10045.772	13608.85	9102.681	14551.94
4851	11817.46	10008.838	13626.09	9051.410	14583.51
4852	11786.94	9954.584	13619.29	8984.594	14589.28
4853	11776.99	9920.739	13633.24	8938.099	14615.88
1-10 of 20 rows				Previous	1 2 Next

Visualisons maintenant nos données de prévisions:

```
test_forecast(
  actual = data_ts,
  forecast.obj = fc,
  test=test
)
```

data_ts - Actual vs Forecasted and Fitted

