Теория Фильтрации и Прогнозирование данных

Липатов Данила МСМТ 243 Лабораторная работа №2

Пункт 1

График полинома второго порядка для Х.

Нахождение полинома производилось через встроенные функции ЯП Python: numpy np.polyval(coef, time) np.polyfit(time, signal, deg)

Рис. 1 График полинома 2 рода для Х.

Пункт 2

Для нахождения $AK\Phi$ сигнала X воспользуемся встроенной функцией numpy.correlate(), в качестве аргументов передается сигнал.

Для каждого сигнала (a, b) найдем его АКФ

$$\begin{split} X_mean &= X - np.mean(X) \\ X_detrended &= X - polyn \\ acf_mean, \ lags_mean &= autocovariance(X_mean) \\ acf_detrended, \ lags_detrended &= autocovariance(X_detrended) \end{split}$$

Получим следующий графики АКФ для каждого из варинатов:

Рис. 2 АК Φ для $X_{mean} / X_{detrended}$

Аналогично алгоритмам, реализованных в лаб.работе №1 БФП найдем спектры АКФ для обеих пунктов и отдельно для сигнала X, получим следующее:

Пункт 3

Для вычисления кросс-корреляционную функцию достаточно применить функцию из пункта 2, где вторым аргументом будет сигнал Y. Получим следующий график:

Рис. 4 Кросс-корреляционая функция между X и Y

Кросс-спектр между Х и Ү

Рис. 5 Кросс-спектр между Х и Ү

Пункт 4

Для генерации случайный сигнал APCC (ARMA) используем следующие коэффициенты и функции в Python

```
ar = np.array([0.5, -0.25]) # Коэффициенты AR (авторегрессия)
ma = np.array([0.5, -0.3]) # Коэффициенты MA (скользящее среднее)
arma_process = ArmaProcess(ar, ma)
n_samples = 1000
ARMA = arma_process.generate_sample(nsample=n_samples)
```


Рис. 6 Смоделированный сигнал ARMA

Так же необходимо было построить смещенную и несмещенную АКФ ARMA. Для этого воспользуемся так же функцией пр.correlate(), предварительно рассчитывая необходимую $AK\Phi$

if biased: result /= n # Смещённая АКФ else:

result = result[n - 1:]
result /= (n - np.arange(n)) # Несмещённая АКФ

Рис. 7 Графики смещенной и несмещенной АКФ (ограниченные слева и размещенные, чтобы проще было понять поведение)

Примечание:

Несмещённая АК Φ компенсирует уменьшение количества точек при больших лагах, что приводит к большим колебаниям её значений на концах ряда

Для оценки устойчивости корней в Python у функции ArmaProcess(ar, ma) есть метод проверки на устойчивость для аг и ma отдельно

>>> arma_process.isstationary
True
>>> arma_process.isinvertible
True