

梁郁珮

2022/03/282022/03/30

Verilog HDL介紹

- Verilog 是一種 <u>HDL 硬體描述語言</u> (Hardware Description Language)。

 HDL 在數位系統設計中已經成為設計方法的主流,基於 HDL 數位系統設計的最大優勢在於 designer 可以將精力放在電路功能的實現上,而不需處理電路構造,因此可以提高設計效率
- Verilog 可縮短數位系統開發時間,模擬電路時序圖並逐步修正電路功能

目的

i 瞭解 Verilog 的應用

Verilog 描述電路的方法

/ 如何用 Verilog 設計硬體

Basic unit - module

- module 是實現某個特定功能的 verilog code block
- A module should be enclosed within module and endmodule keywords.
 module name 寫在 module keyword 的右方,並在()內宣告 I/O ports
 下圖是一個實現加法器 module 的例子:

```
module add (
                                              module
                                                ports
     // Ports list
 8
10
11
     input
12
     //----Output ports---
              4:0
13
     //----declare net types-
14
15
     wire
16
17
     wire
18
     //---statements----(with Continuous assignment)
19
     assign c = a + b;
20
                                          statements
21
     endmodule
22
23
```


I/O Ports

```
input [<MSB> : <LSB>] a
input [<MSB> : <LSB>] b

output [<MSB> : <LSB>] c

output [<MSB> : <LSB>] c

//-----Input ports-----
input [3:0] a
input [3:0] b
input [3:0] b
input [3:0] c

output [4:0] c
;
```


MSB: most significant bit LSB: least significant bit

Port	Description
Input	The design module can only receive values from outside using its input ports
Output	The design module can only send values to the outside using its output ports
Inout	The design module can either send or receive values using its inout ports

Data types (1/2)

➤ variables 只具有以下四種狀態

0	represents a logic zero, or a false condition	
1	represents a logic one, or a true condition	
х	represents an unknown logic value // can be 1 or 0, where it means " don't care "	
Z	represents a high-impedance state	

下圖是如何在時序圖和 simulation 的波形中表示這些值 大部分 simulation tool 皆是如此,其中紅色代表任意值,橙色代表高阻抗

Data types (2/2)

Declaration syntax:

```
<data type> <port name> ;
```

data_type:

- wire: represent physical connections between devices. (If it is not drived, default value = z)
- reg: represent abstract data storage element. (default value = x)

```
//----Input ports--
    input
    input
            [3:0]
    //----Output ports--
    output [4:0] c
    //----declare net types--
    wire
    wire
16
    wire
18
```


Gate level assign

```
module LAB(inputA, inputB, outputY);
//----Input ports-----
input A;
input B;
//-----Output ports-----
output outputY;
//----component assignment----
AND2X1 x0(.A(inputA), .B(inputB), .Y(outputY));
endmodule
AND2X1 x0(inputA, inputB, outputY);
                                           module AND2X1(Å, B, Y);
                                           input A, B;
                                           output Y;
                                           assign Y= A & B;
                                           endmodule
```


Verilog example

```
module FA(A, B, Cin, S, Cout);
//----Input ports----
input A;
input B;
input Cin;
//----Output ports
output S;
output Cout;
//----declare net types-
wire AxorB, AxorBandCin, AandB;
//----component assignment----
XOR2X1 \ x0(A(A), B(B), Y(AxorB));
XOR2X1 \times 1(.A(AxorB), .B(Cin), .Y(S));
AND2X1 x2(.A(AxorB), .B(Cin), .Y(AxorBandCin));
       x3(.A(A), .B(B), .Y(AandB));
AND2X1
        x4(.A(AandB), .B(AxorBandCin), .Y(Cout));
OR2X1
```

endmodule

Sample.v

NAND2X1

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

AND2X1

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR2X1

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

NOR2X1

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XOR2X1

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

INVX1

Α	Υ
0	1
1	0
0	1
1	0

LAB

◆實驗一:A[3:0] - B[3:0] 的 4 bit 減法器運算 A、B為unsigned,輸出為signed Y[4:0] 並於波型檔完整顯示

$$B = 5$$
[3] [2] [1] [0]
0 1 0 1

LAB

範例波形檔

🌎 Simulation Waveform Editor - D:/quartus/lab04/lab - lab - [lab_20220325194725.sim.vwf (Read-Only)] Edit View Simulation Help Pointer: 82.23 ns Interval: 82.23 ns Master Time Bar: 0 ps Start: 0 0 ps 40.0 ns 120.0 ns 200.0 ns 240.0 ns 280_.0 ns 80.0 ns 160.0 ns 320 Value at Name 0 ps 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 0 \ \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 UΟ UΟ X 7 X 8 X X10X11X12X-4X-3X-2X 9 (o X 1) S 0

REPORT OF LAB 4 (4%)

The report should include ...

- 1. 請截圖輸出波形,波形和真值表是否一致?
- 2. 請簡述程式實作過程、遇到的困難及解決方法。
- 3. Discussion and experience (Everyone) (所有人的心得與討論)

- File type: pdf
- File name: Lab4 (Number of team) report
- Deadline: 2022/04/13 24:00

