Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VITMO

ЛАБОРАТОРНАЯ РАБОТА №5 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «АКТИВНЫЕ ФИЛЬТРЫ НА ОПЕРАЦИОННЫХ УСИЛИТЕЛЯХ»

Вариант №10

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цел	ь рабо	ыты					
2	Исходные данные							
	2.1	Актив	вные фильтры первого порядка					
			ФНЧ инвертирующий					
			ФВЧ неинвертирующий					
	2.2	Актив	вные фильтры второго порядка					
		2.2.1	ФВЧ Салена-Ки					
		2.2.2	$\Pi\Phi$ многопетлевая OC					
		2.2.3	Режекторный фильтр					
3	Исс	лелова	ание активных фильтров первого порядка					
	3.1		а инвертирующего ФНЧ					
	3.2		ЧХ характеристика инв. ФНЧ					
	3.3		а неинвертирующего ФВЧ					
	3.4		ЧХ характеристика неинв. ФВЧ					

Цель работы

Цель работы – исследование схем активных фильтров.

Исходные данные

Операционный усилитель берем как в лабораторной работе \mathbb{N}_3 – LT1037.

Активные фильтры первого порядка

ФНЧ инвертирующий

Исходные данные ФНЧ инвертирующий

R_1 , OM	R_2 , Om	C_1 , н Φ	K_U^*	$f_{ m cp}^*$, к Γ ц
442.1	2650	10	6	6

Рис. 1: Схема ФНЧ инвертирующий

ФВЧ неинвертирующий

Исходные данные ФВЧ неинвертирующий

R_1 , Om	R_2 , кОм	R_3 , кОм	C_1 , н Φ	K_U^*	$f_{ m cp}^*$, к Γ ц
3180	1	4	10	5	5

Рис. 2: Схема ФВЧ неинвертирующий

Активные фильтры второго порядка

ФВЧ Салена-Ки

Исходные данные ФВЧ Салена-Ки

C_1 , н Φ	C_2 , н Φ	R_1 , Om	R_2 , кОм	R_3 , кОм	R_4 , кОм	K_U^*	$f_{ m cp}^*$, к Γ ц
100	100	292.2	0.8766	1	3	4	4

Рис. 3: Схема ФВЧ Салена-Ки

ПФ многопетлевая ОС

Исходные данные ПФ многопетлевая ОС

C_1 , н Φ	C_2 , н Φ	R_1 , Om	R_2 , кОм	R_3 , кОм	K_U^*	f_{cp}^{*} , к Γ ц	Δf^* , к Γ ц
10	10	530.5	4.78	5.3	5	10	6

Рис. 4: Схема ПФ с многопетлевой ОС

Режекторный фильтр

Исходные данные для режекторного фильтра

C_1 , н Φ	C_2 , н Φ	C_3 , н Φ	R_1 , кОм	R_2 , кОм	R_3 , Om	R_4 , кОм	R_5 , кОм
10	10	20	0.7958	0.7958	397.9	∞	0

K_U^*	$f_{ m cp}^*$, к Γ ц	Δf^* , к Γ ц	
1	20	20	

Рис. 5: Схема РФ

Исследование активных фильтров первого порядка

Схема инвертирующего ФНЧ

Построим схему инвертирующего ФНЧ в LTspice

Рис. 6: ФНЧ инвертирующий

ЛАФЧХ характеристика инв. ФНЧ

Зададим на входной сигнал AC 1 и снимем ЛАЧХ на выходе через .ac dec 100 10 100k (sweep по частоте от 10 Γ ц до 100 к Γ ц с 100 точками на декаду)

Рис. 7: ЛАФЧХ характеристика инвертирующего ФНЧ

Курсором снимем значения $A_{n \text{ дБ}}, A_{n-3 \text{ дБ}}, f_{n \text{ дБ}}, f_{n-3 \text{ дБ}}, \varphi_{n \text{ дБ}}, \varphi_{n-3 \text{ дБ}}$, где n-3 – амплитуда, на которой находится полоса пропускания фильтра

$$f_{n, \text{дБ}} = 10 \ \Gamma \text{ц} : \ A_{n, \text{дБ}} = 15.554492 \ \text{дБ}, \ \varphi_{n, \text{дБ}} = 179.90453^{\circ};$$

$$f_{n-3\;\mathrm{дB}}=5.9961892\;\mathrm{k}\Gamma\mathrm{ц}:\;A_{n-3\;\mathrm{дB}}=12.548454\;\mathrm{дB},\;\varphi_{n-3\;\mathrm{дB}}=135.02205^\circ;$$

Имеем

$$\Delta A = 3.006038$$
 дБ, f_{n-3 дБ $= 5.9961892 \approx f_{\mathrm{cp}}^* = 6$ кГц;

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной.

Схема неинвертирующего ФВЧ

Построим схему неинвертирующего ФВЧ в LTspice

Рис. 8: ФВЧ неинвертирующий

ЛАФЧХ характеристика неинв. ФВЧ

Аналогично найдем ЛАФЧХ характеристику фильтра

Рис. 9: ЛАФЧХ характеристика неинвертирующего ФВЧ

Аналогично курсором снимем значения

$$f_{n \text{ дБ}} = 100 \text{ к}\Gamma\text{ц}: A_{n \text{ дБ}} = 13.977885 \text{ дБ}, \ \varphi_{n \text{ дБ}} = 2.4062551^{\circ};$$

$$f_{n-3~{\rm дB}}=5.0300312~{\rm к}\Gamma$$
ц: $A_{n-3~{\rm дB}}=10.990257~{\rm дB},~\varphi_{n-3~{\rm дB}}=44.830656^{\circ};$

Имеем

$$\Delta A = 2.987628 \; \mathrm{д E}, \; f_{n-3 \; \mathrm{д E}} = 5.0300312 pprox f_{\mathrm{cp}}^* = 5 \; \mathrm{к \Gamma u};$$

Экспериментально полученная полоса пропускания фильтра равна теоретиески расчитанной.