

National Institute of Technology, Calicut Computer Science & Engineering Department

CS6122E: Computer Architecture & Design

Assignment-2

Important Instructions

- → This is a group Assignment.
- → Everyone in a group must submit a report (pdf), with all necessary plots and explanations, on EduServer for this assignment. Everyone in the group can have the same report, but the report must include a work distribution section.
- → For all of the tasks, you need to use the **GEM5** simulator.
- → For all simulations, you must warm up for the first **50M instructions** and do a detailed simulation for **50M instructions**.
- → Each team will be given four specific benchmarks and a specific 'i' used in LRU_i for the experiments which can be found at the <u>link</u>.

Table 1: List of applications to be simulated

astar	hmmer	mile	specrand_integer
bzip2	lbm	namd	gobmk
gamess	mcf	sphinx3	libquantum

Table 2: Baseline System Configuration

Parameter	Value	
Core	OoO, Single Core	
Frequency	3 GHz	
Fetch/Decode/Issue/Commit Width	2	
IQ/LSQ size	64/32	
ROB size	192	
Branch Predictor	Tage SC-L Predictor	
BTB/RAS size	4K/32	
Cache Block Size	64 Bytes	
L1 I-cache	32 KB, 4-way, 3-cycle latency, 32 MSHRs, LRU	
L1 D-cache	32 KB, 4-way, 3-cycle latency, 32 MSHRs, LRU	
L2 Cache (LLC)	256 KB, 16-way, 9-cycle latency, 32 MSHRs, LRU, Best Offset Prefetcher (BOP)	
Main Memory	4 GB, DDR3 1600 MHz	

MIP Replacement Policy

- The *LRU_i* cache replacement policy is for the last-level cache (LLC).
- Insertion Policy: LRU_i inserts the cache block at the ith position in the MRU recency stack, where 0 is MRU, and 15 is LRU. For example, LRU_0 will insert the incoming block at the MRU position in the MRU recency stack. LRU_15, which will insert the incoming cache block at the LRU position, is the same as the baseline LRU replacement policy
- Eviction Policy: The eviction policy of *LRU_i* is the same as the LRU policy. The cache block at the LRU position in the recency stack is the eviction candidate.
- <u>Promotion/Update Policy:</u> The update policy of *LRU_i* is also the same as the LRU policy. On a hit, the cache block is moved to the MRU position in the recency stack.

Tasks

- 1. Implement the *LRU_i* cache replacement policy for the last-level cache (LLC). Analyze the applications listed in Table 1 using both LRU and LRU_i as the replacement policies for the LLC.
- 2. For each group the value of i = (sum of roll numbers of all team members) mod 15
- 3. Analyse and compare the results of both simulated policies (LRU, LRU_i).
- 4. Identify the best-performing cache replacement policy among them.
- 5. Provide all necessary plots and a detailed explanation to justify your conclusion.
- 6. Plots may include the miss rate of LLC, MPKI (misses per kilo instructions) of LLC and IPC (instructions per cycle) for both replacement policies.

Evaluation Guidelines

- For the plots, use the LRU as the baseline LLC replacement policy and normalize the parameters for other the *LRU_i* replacement policy with respect to the baseline configuration.
- Use absolute values for LLC miss rate comparison.