法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:大数据分析挖掘
 - 新浪微博: ChinaHadoop

第八讲

机器学习基础及机器学习库 scikit-learn入门

--梁斌

目录

- 什么是机器学习?
- 通过scikit-learn认识机器学习
- scikit-learn入门
- 实战案例:利用声音数据进行性别识别

目录

- 什么是机器学习?
- 通过scikit-learn认识机器学习
- scikit-learn入门
- 实战案例:利用声音数据进行性别识别

人工智能 vs 机器学习 vs 深度学习

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

定义

- Machine Learning is a type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed.
- Provides various techniques that can learn from and make predictions on DATA.

≈ 寻找一个函数

• 语音识别

f(

) = "你好吗?"

• 图像识别

f(

) = "猫"

• 围棋对战

f(

) = "5-5" (下一步)

• 对话系统(如Siri)

f(

"你好!" (用户发问)) = "您好!" (系统回应)

如何选择?

图像识别

f(

) = "猫"

A set of function

Model

 $f_1, f_2 \cdots$

 $f_1($

) = "猫'

 $f_2($

) = "猴子"

 f_1 (

) = "狗"

 $f_2($

) = "蛇"

基本框架

基本步骤

Step 1.

定义一系列函数

Step 2:

定义函数的优劣

Step3:

选择最优的函数

机器学习就是这么简单...

目录

- 什么是机器学习?
- 通过scikit-learn认识机器学习
- scikit-learn入门
- 实战案例:利用声音数据进行性别识别

什么是scikit-learn?

什么是scikit-learn?

- 面向Python的免费机器学习库
- 包含分类、回归、聚类算法,比如:SVM、随机森林、k-means等
- 包含降维、模型筛选、预处理等算法
- 支持NumPy和SciPy数据结构
- 用户

http://scikit-learn.org/stable/testimonials/testimonials.html

- · 安装
 - pip install scikit-learn
 - conda install scikit-learn

通过scikit-learn认识机器学习

机器学习:问题描述

- "学习" 问题通常包括n个样本数据(训练样本),然后预测未知数据(测试样本)的属性
- 每个样本包含的多个属性(多维数据)被称作"特征"
- 分类:
 - 监督学习,训练样本包含对应的"标签",如识别问题
 - 分类问题,样本标签属于两类或多类(离散)
 - 回归问题,样本标签包括一个或多个连续变量(连续)
 - 无监督学习,训练样本的属性不包含对应的"标签",如聚类问题

通过scikit-learn认识机器学习

机器学习:问题描述(续)

• 训练集 vs 验证集 vs 测试集

Original dataset	Training set	Train the models
	Validation set	Select the best model
	Test set	Test the model
New	Data>	Model in production

通过scikit-learn认识机器学习

scikit-learn 上手

- 加载示例数据集
 - <u>iris</u>
 - <u>digits</u>
- 在训练集上训练模型
 - svm模型
 - .fit() 训练模型
- 在测试集上测试模型
 - .predict() 进行预测
- 保存模型
 - pickle.dumps()

示例代码: 01_scikit_ml.ipynb

目录

- 什么是机器学习?
- 通过scikit-learn认识机器学习
- scikit-learn入门
- 实战案例:利用声音数据进行性别识别

使用scikit-learn的流程

准备数据集

选择模型

训练模型 调整参数

测试模型

- 数据处理
- 特征工程
- 训练集、测 试集分割

- 根据任务选
 - 择模型
- 分类模型
- 回归模型
- 聚类模型
-

- 根据经验设
 - 定参数
- 交叉验证确定最优参数

- 预测
- 识别
-

准备数据集

- 数据处理
 - 数据集格式
 - 二维数组 , 形状 (n_samples, n_features)
 - 使用np.reshape()转换数据集形状
- 特征工程
 - 特征提取
 - 特征归一化 (normalization)
 -
- train_test_split() 分割训练集、测试集

示例代码: 02_scikit_tutorial.ipynb

准备数据集(续)

- 特征归一化 (normalization)
 - preprocessing.scale()

$$\rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Andrew Ng

选择模型

• 模型选择路线图

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

训练模型

- Estimator对象
- 从训练数据学习得到的
- 可以是分类算法、回归算法或者是特征提取算法
- fit方法用于训练Estimator
- Estimator的参数可以训练前初始化,或者之后更新
- get_params()返回之前定义的参数
- score()对Estimator进行评分
 - 回归模型:使用"决定系数"评分(Coefficient of Determination)
 - 分类模型:使用"准确率"评分(accuracy)

示例代码: 02_scikit_tutorial.ipynb

调整参数

- 依靠经验
- 依靠实验,交叉验证 (cross validation)
 - cross_val_score()
 - Validation Set
 Training Set

Final Accuracy = Average(Round 1, Round 2, ...)

测试模型

- model.predict(X_test)
 - 返回测试样本的预测标签
- model.score(X_test, y_test)
 - 根据预测值和真实值计算评分

示例代码: 02_scikit_tutorial.ipynb

目录

- 什么是机器学习?
- 通过scikit-learn认识机器学习
- scikit-learn入门
- 实战案例:利用声音数据进行性别识别

实战案例

项目介绍

- https://www.kaggle.com/primaryobjects/voicegender
- 样本包括已经提取的特征及标签

项目任务

• 根据声音属性识别说话者的性别

涉及知识点

- Pandas数据处理
- Seaborn绘图
- 使用scikit-learn完成机器学习

示例代码:lecture08_proj.zip

实战案例

分析步骤

- 1. 查看数据
- 2. 明确分析目标
- 3. 处理缺失数据 (可选)
- 4. 数据统计分析
 - 特征分布可视化
- 5. 选择模型
 - 训练模型
 - 交叉验证 (可选)
- 6. 保存分析结果
 - 1. 保存模型
 - 2. 测试模型

df_obj.info() df_obj.shape() df_obj.head() df_obj.dropna() df_obj.fillna() model.fit() pickle.dump() model.predict() model.score()

参考

• 一天搞懂深度学习

http://www.slideshare.net/tw_dsconf/ss-62245351

scikit-learn 教程
 http://scikit-learn.org/stable/tutorial/

- 使用sklearn做单机特征工程
 http://www.cnblogs.com/jasonfreak/p/5448385.html
- 机器学习模型选择路线图
 http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
- 项目参考自
 https://www.kaggle.com/lewuathe/d/primaryobjects/voicegender/evaluational-n-of-gender-classification-model

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答 @Robin_TY

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

