

Multimodal Amodal Instance Segmentation

Peize Sun, Ke Li equal contribution)

Xi'an Jiaotong University, University of California Berkeley

Definition

(b) Amodal Instance Segmentation

Only one possibility?

- (c) Multimodal Amodal Instance Segmentation
- **Instance Segmentation:** predicting mask of (visible part of) each object instance
- Amodal Instance Segmentation:[1,2] predicting not only mask of visible part of object, but also that of invisible part
- Multimodal Amodal Instance Segmentation: predicting all possible amodal instance segmentations

Method

- Our model is based on Mask R-CNN^[3]. We extend a new branch to predict amodal instance mask, whose input is RoIAlign feature and random vector.
- We apply IMLE^[4] to **train the model to make** random vector represent information about invisible part.

Key idea of IMLE^[4] is making sure each data point(training example) has corresponding sample(random vector) so that to avoid Mode Collapse.

Result

(a) Mask R-CNN^[3]

(b) Our result

(c) More examples

Our model basically achieves to output multimodal amodal instance segmentation. Future work is towards to be more realistic and smooth.

Reference

- [1] Ke Li and Jitendra Malik. Amodal Instance Segmentation. 2016. In ECCV.
- [2] Yan Zhu, Yuandong Tian, Dimitris Mexatas, and Piotr Doll ár. Semantic Amodal Segmentation. 2017. In CVPR.
- [3] Kaiming He, Georgia Gkioxari, Piotr Doll ár, and Ross Girshick. Mask R-CNN.2017. In ICCV.
- [4] Ke Li and Jitendra Malik. Implicit Maximum Likelihood Estimation. 2018. arXiv:1809.09087.