CHIMIE NIVEAU MOYEN ÉPREUVE 1

Mercredi 14 mai 2003 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

223-164 12 pages

Le tableau de la classification périodique des éléments

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	Numéro atomique Élément	Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Numéro Élés	Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	-1	* *
7		Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Quelle est la quantité de dioxygène, O_2 , (en moles) qui contient 1.8×10^{22} molécules?
 - A. 0,0030
 - B. 0,030
 - C. 0,30
 - D. 3,0
- **2.** Parmi les composés proposés ci-dessous, quel est celui dont la formule empirique correspond à la masse la plus élevée ?
 - A. C_2H_6
 - B. C_4H_{10}
 - C. C_5H_{10}
 - D. C_6H_6
- **3.** Soit l'équation suivante :

$$_C_2H_2(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(g)$$

Une fois cette équation pondérée (équilibrée), le coefficient du dioxygène est :

- A. 2
- B. 3
- C. 4
- D. 5

4. 3,0 dm³ de dioxyde de soufre réagissent avec 2,0 dm³ de dioxygène, selon l'équation :

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

Quel volume de trioxyde de soufre (en dm³) obtient-on ? (On suppose que la réaction est complète et que le volume de tous les gaz est mesuré à la même température et sous la même pression).

- A. 5,0
- B. 4,0
- C. 3,0
- D. 2,0
- 5. Le tableau suivant donne la constitution des espèces W, X, Y et Z. Quelle espèce est un anion?

Espèce	Nombre de protons	Nombre de neutrons	Nombre d'électrons
W	9	10	10
X	11	12	11
Y	12	12	12
Z	13	14	10

- A. W
- B. X
- C. Y
- D. Z
- **6.** Les niveaux d'énergie d'un électron de l'atome d'hydrogène sont :
 - A. également espacés.
 - B. plus espacés à proximité du noyau.
 - C. plus rapprochés à proximité du noyau.
 - D. répartis de manière aléatoire.

- 7. Lorsqu'on considère les éléments situés entre les métaux alcalins et les halogènes, quelle caractéristique est en relation avec le nombre d'électrons occupant le niveau d'énergie principal le plus externe ?
 - I. Le numéro du groupe
 - II. Le numéro de la période
 - A. Uniquement I
 - B. Uniquement II
 - C. À la fois I et II
 - D. Ni I, ni II
- **8.** Quelle paire d'éléments réagit le plus facilement ?
 - A. $Li + Br_2$
 - B. $Li + Cl_2$
 - C. $K + Br_2$
 - D. $K + Cl_2$
- **9.** Quelle est la formule du composé formé par le calcium et l'azote ?
 - A. CaN
 - B. Ca₂N
 - C. Ca₂N₃
 - D. Ca₃N₂

10. Comment varient la longueur de liaison et l'énergie de liaison lorsque le nombre de liaisons entre deux atomes augmente ?

	Longueur de liaison	Énergie de liaison	
A.	augmente	augmente	
B.	augmente	diminue	
C.	diminue	augmente	
D.	diminue	diminue	

11. Laquelle des propositions suivantes est vraie pour CO₂?

	Liaison C=O	Molécule CO ₂
A.	polaire	non polaire
B.	non polaire	polaire
C.	polaire	polaire
D.	non polaire	non polaire

- 12. Les masses molaires de C_2H_6 , de CH_3OH et de CH_3F sont très voisines. Dans quel ordre se succèdent leurs températures d'ébullition?
 - A. $C_2H_6 < CH_3OH < CH_3F$
 - B. $CH_3F < CH_3OH < C_2H_6$
 - C. $CH_3OH < CH_3F < C_2H_6$
 - D. $C_2H_6 < CH_3F < CH_3OH$
- 13. Sous une pression très basse et au voisinage de 0 °C, l'eau est présente sous les trois états : solide, liquide et gazeux. Dans ces conditions, comment peut-on caractériser les distances intermoléculaires dans ces trois états ?
 - A. Les distances intermoléculaires sont identiques dans les trois états.
 - B. Les distances sont similaires dans le solide et dans le liquide, mais elles sont plus petites que dans le gaz.
 - C. Les distances sont les plus petites dans le solide, mais similaires dans le liquide et dans le gaz.
 - D. Les distances sont les plus petites dans le liquide, mais similaires dans le solide et dans le gaz.

14.	Qu'adviendra-t-il du volume d'une masse donnée de gaz lorsque sa pression et sa température (en kelvins)
	sont toutes deux doublées ?

- A. Il ne variera pas.
- B. Il augmentera.
- C. Il diminuera.
- D. On ne peut pas prédire la manière dont il variera.

15. Quelles sont les variations d'énergie accompagnant la formation et la rupture de liaisons chimiques ?

- A. Il y a absorption d'énergie lorsque des liaisons sont formées ou rompues.
- B. Il y a libération d'énergie lorsque des liaisons sont formées ou rompues.
- C. Il y a absorption d'énergie lorsque des liaisons sont formées et libération d'énergie lorsqu'elles sont rompues.
- D. Il y a libération d'énergie lorsque des liaisons sont formées et absorption d'énergie lorsqu'elles sont rompues.
- 16. La température d'un échantillon de 2,0 g d'aluminium passe de $25\,^{\circ}$ C à $30\,^{\circ}$ C. Quelle quantité d'énergie thermique, en joules, a été fournie à cet échantillon? (la capacité calorifique massique de $Al = 0.90~J~g^{-1}~K^{-1}$)
 - A. 0,36
 - B. 2,3
 - C. 9,0
 - D. 11

17. En utilisant les équations ci-dessous :

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H = -390 \text{ kJ}$$

$$Mn(s) + O_2(g) \rightarrow MnO_2(s)$$

$$\Delta H = -520 \text{ kJ}$$

Que vaut ΔH (en kJ) de la réaction suivante ?

$$MnO_2(s) + C(s) \rightarrow Mn(s) + CO_2(g)$$

- A. 910
- B. 130
- C. -130
- D. -910
- 18. À quelles conditions une réaction est-elle spontanée quelle que soit la température ?

	ΔH^{Θ}	ΔS ^Θ
A.	+	+
B.	+	-
C.	-	-
D.	-	+

- 19. Quel(s) facteur(s) est (sont) important(s) pour déterminer si une réaction se produit ?
 - I. L'énergie des molécules
 - II. L'orientation des molécules
 - A. Uniquement I
 - B. Uniquement II
 - C. À la fois I et II
 - D. Ni I, ni II

- **20.** On considère la réaction entre CaCO₃ solide et HCl en solution aqueuse. La réaction sera accélérée si l'on augmente une ou plusieurs des grandeurs précisées ci-dessous. Quelle(s) est (sont) cette (ces) grandeur(s)?
 - I. La concentration de HCl
 - II. La taille des particules de CaCO₃
 - III. La température
 - A. Uniquement I
 - B. Uniquement I et III
 - C. Uniquement II et III
 - D. I, II et III
- 21. Soit la réaction

$$I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$$

Quelle est l'expression de sa constante d'équilibre ?

A.
$$K_c = \frac{[ICl_3]}{[I_2][Cl_2]}$$

B.
$$K_c = \frac{2[ICl_3]}{3[I_2][Cl_2]}$$

C.
$$K_c = \frac{2[ICl_3]}{[I_2] + 3[Cl_2]}$$

D.
$$K_c = \frac{[ICl_3]^2}{[I_2][Cl_2]^3}$$

22. On considère la réaction suivante :

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H^{\ominus} = -200 \text{ kJ}$

Compte tenu de ces informations, quelles sont les conditions de température et de pression qui permettront d'obtenir la quantité maximale de SO₃?

	Température	Pression
A.	basse	basse
B.	basse	élevée
C.	élevée	élevée
D.	élevée	basse

- 23. Quel est le réactif capable de réagir en solution aqueuse avec le magnésium métallique ?
 - A. L'ammoniac
 - B. Le chlorure d'hydrogène
 - C. L'hydroxyde de potassium
 - D. L'hydrogénocarbonate de sodium
- 24. Des deux mélanges suivants, quel est celui qui constitue une solution tampon?
 - I. 0,01 mol dm⁻³ HCl, 0,01 mol dm⁻³ NaCl
 - II. $0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}, 0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COONa}$
 - A. Uniquement I
 - B. Uniquement II
 - C. À la fois I et II
 - D. Ni I, ni II

- **25.** Quelle est la proposition correcte ?
 - A. L'oxydation implique une perte d'électrons et une diminution du degré d'oxydation.
 - B. L'oxydation implique un gain d'électrons et une augmentation du degré d'oxydation.
 - C. La réduction implique une perte d'électrons et une augmentation du degré d'oxydation.
 - D. La réduction implique un gain d'électrons et une diminution du degré d'oxydation.
- **26.** Que se passe-t-il dans une pile électrochimique siège de la réaction :

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

	Dans le circuit extérieur	Mouvement des ions dans la solution
A.	Les électrons se déplacent de Ni vers Pb	Les ions Pb ²⁺ (aq) s'éloignent de Pb(s)
B.	Les électrons se déplacent de Ni vers Pb	Les ions Pb ²⁺ (aq) se dirigent vers Pb(s)
C.	Les électrons se déplacent de Pb vers Ni	Les ions Ni ²⁺ (aq) s'éloignent de Ni(s)
D.	Les électrons se déplacent de Pb vers Ni	Les ions Ni ²⁺ (aq) se dirigent vers Ni(s)

- 27. Parmi les composés suivants, lequel appartient à la même série homologue que CH₃CH₂CH₂CH₃?
 - A. CH₃CH₂CH₃
 - B. CH₃CHCHCH₃
 - C. $CH_3CH(CH_3)_2$
 - D. CH₃CH₂CH₂CH₂OH

28. Parmi les composés suivants, lequel est un aldéhyde ?

A.
$$CH_3CH_2CH$$

- 29. Quel produit obtient-on lorsqu'on fait réagir CH₂=CH₂ avec Br₂?
 - A. CHBrCHBr
 - B. CH₂CHBr
 - C. CH₃CH₂Br
 - D. CH₂BrCH₂Br
- **30.** Quel est le produit final obtenu par chauffage à reflux de CH₃CH₂OH en présence d'une solution acidifiée de dichromate(VI) de potassium ?
 - A. CH₃CHO
 - B. $CH_2 = CH_2$
 - C. CH₃COOH
 - D. HCOOCH₃