BESIII Charm Meeting Phase-space binned analysis of strong-phase parameters in $D^0 \to K^+ K^- \pi^+ \pi^-$

Martin Tat Guy Wilkinson Sneha Malde

University of Oxford

23rd May 2023

Outline

- Introduction
- 2 Binning scheme
- 3 Formalism and measurement strategy
- 4 Selection
- 5 Fit of double tag yields
- 6 Likelihood fit
- Input-output checks
- 8 Fit results
- 9 Bonus measurements
- Summary and conclusion

Introduction

- Aim of analysis: Measure the strong-phase difference between D^0 and $\bar{D^0} \to K^+ K^- \pi^+ \pi^-$ using the 8 fb $^{-1}$ $\psi(3770)$ dataset
- Important input to:
 - **1** Measurement of the CKM angle γ
 - 2 Studies of charm mixing and CPV
 - Strong-phase measurements of other decay modes
- Phase-space integrated measurement: Phys. Rev. D 107 032009
- \bullet Strong phases are diluted when integrated over the 5D phase space \implies Perform analysis in bins
- ullet Binned model-dependent analysis of γ has already been performed at LHCb: arXiv:2301.10328

Introduction - Previous strong-phase analyses

- ullet Golden mode for strong-phase analysis: $D^0 o K^0_{S,L} \pi^+ \pi^-$
- Measurements of c_i and s_i performed in 2×8 bins:
 - CLEO: Phys. Rev. D 82 112006
 - BESIII: Phys. Rev. D 101 112002

(a) Equal δ binning scheme

(b) c_i and s_i for (left) $K_S\pi\pi$ and (right) $K_L\pi\pi$

Introduction - Previous strong-phase analyses

- Four-body decays have a 5D phase space, but their binning scheme may be defined analogously
- Many different strategies for 5D binning schemes:
 - $D \to K_5^0 \pi^+ \pi^- \pi^0$: JHEP **2018** 82 (2018)
 - $D \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}$: JHEP **2018** 144 (2018)
 - $D \to K^- \pi^+ \pi^- \pi^+$: JHEP **2021** 164 (2021)

Introduction - Previous strong-phase analyses

- The phase-space integrated strong phase of $D \to K^+K^-\pi^+\pi^-$ was previously measured: Phys. Rev. D **107** 032009
- The asymmetry in the branching fraction measured using CP even and CP odd tags is sensitive to the CP-even fraction F_+
 - $c_i = 2F_+ 1$ is the amplitude-average cosine of the strong phase

(b) F_+ combination

Binning scheme

Strong phases are determined from yield asymmetries

- When integrating over a phase-space region, variations in strong phases dilute the asymmetries
- We require a binning scheme to minimise the dilution and enhance asymmetry effects

How to bin a 5-dimensional phase space?

- Generate C++ code for LHCb amplitude model using AmpGen¹
- For each D event, calculate

$$\frac{A(D^0)}{A(\bar{D^0})} = r_D e^{i\delta_D}$$

- Bin along δ_D and r_D
 - ullet Bin boundaries in δ_D are moved to maximise sensitivity to γ

¹AmpGen by Tim Evans

Binning scheme

Bins i < 0 on top, i > 0 below Binning scheme used in this analysis

Binning scheme

 $\mbox{Bins } i < 0 \mbox{ on top, } i > 0 \mbox{ below}$ Possible binning scheme for future analysis with $20 \mbox{ fb}^{-1}$ dataset

Model-dependent LHCb measurement

This result is currently model independent, and needs external inputs from BESIII to become a proper model-independent measurement!

$Dar{D}$ pair from $\psi(3770)$ is prepared in a $\mathcal{C}=-1$ state

- D mesons are "quantum correlated"
- The decay of $D \to K^+ K^- \pi^+ \pi^-$ is correlated by the CP content of the tag mode

$$|D\bar{D}\rangle = \frac{1}{\sqrt{2}} \left(|D^0\rangle |\bar{D^0}\rangle - |\bar{D^0}\rangle |D^0\rangle \right)$$

• Equivalently, in terms of *CP* eigenstates:

$$|Dar{D}
angle = rac{1}{\sqrt{2}}ig(|D_{-}
angle|D_{+}
angle - |D_{+}
angle|D_{-}
angleig)$$

- Tag mode can be a flavour tag
 - $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, $Ke\nu$

Use flavour tags to measure fraction of $D^0 \to KK\pi\pi$ decays in bin i: $\frac{N_i^{\rm DT}}{M^{\rm NST}} = \mathcal{B} \times K_i$

- Tag mode can be a CP even tag
 - KK (fully and part. reco KK $\pi\pi$), $\pi\pi$, $\pi\pi\pi^0$, K_S $\pi^0\pi^0$, K_L π^0

 $D o K^+ K^-$, which is CP even, forces $D o K^+ K^- \pi^+ \pi^-$ to be CP odd: $rac{N_i^{\mathrm{DT}}}{N^{\mathrm{ST}}} = \mathcal{B} imes (K_i + K_{-i} - 2\sqrt{K_i K_{-i}} c_i)$

- Tag mode can be a CP odd tag
 - $K_S\pi^0$ (fully and part.reco $KK\pi\pi$), $K_S\eta$, $K_S\eta'(\pi\pi\eta,\pi\pi\gamma)$, $K_S\pi\pi\pi^0$

 $D o K_S^0 \pi^0$, which is *CP* odd, forces $D o K^+ K^- \pi^+ \pi^-$ to be *CP* even: $\frac{N_i^{\rm DT}}{N^{\rm ST}} = \mathcal{B} imes (K_i + K_{-i} + 2 \sqrt{K_i K_{-i}} c_i)$

- Tag mode can be a self-conjugate multi-body tag
 - $K_S\pi\pi$ (fully and part.reco $KK\pi\pi$), $K_L\pi\pi$

 $D \to \mathcal{K}_{S}^{0} \pi^{+} \pi^{-} \text{ has different strong phases in different bins of phase space:} \\ \frac{\mathcal{N}_{j}^{\text{DT}}}{\mathcal{N}^{\text{ST}}} = \mathcal{B} \times \left(\mathcal{K}_{i} \mathcal{K}_{-j}' + \mathcal{K}_{-i} \mathcal{K}_{j}' - 2 \sqrt{\mathcal{K}_{i} \mathcal{K}_{-i} \mathcal{K}_{j}' \mathcal{K}_{-j}'} (c_{i} c_{j}' + s_{i} s_{j}') \right)$

Selection

- Double-tag analysis: Select $D \to KK\pi\pi$ events tagged with flavour, *CP* and multi-body tags
- Selection more or less identical to previous double-tag analyses
- $D \to KK\pi\pi$ selection:
 - 4 good charged tracks
 - 3σ window around signal peak in ΔE
 - Asymmetric K_SKK veto for $m(\pi^+\pi^-) \in [477, 507]$ MeV
 - Flight significance cut at 2

(b) Single tag yield: 29227 ± 268

Partially reconstructed $D^0 o K^+ K^- \pi^+ \pi^-$

- The reconstruction efficiency of $D o KK\pi\pi$ is less than 20%
- For comparison, the efficiency of $D \to \pi\pi\pi\pi$ is around 50%!
- Poor kaon tracking efficiency at low momentum

Partially reconstructed $D^0 o K^+K^-\pi^+\pi^-$

- Solution: Only reconstruct 3 of the charged D daughters
 - Presence of missing kaon is inferred from the missing momentum
 - Yields are similar to fully reconstructed sample
 - ullet Large, but non-peaking background from $D o K\pi\pi\pi\pi^0$

Use this technique with the K^+K^- , $K^0_S\pi^0$ and $K^0_S\pi^+\pi^-$ tags

Double tag fits

- ullet Fit strategy: Only fit signal side $M_{
 m BC}$ because of low statistics
- Fit model:
 - Signal: PDF from signal MC, convolved with a Gaussian
 - Flat background: Argus PDF
 - Peaking background: Shape and efficiency from MC, correct for quantum correlation
 - Simple sideband subtraction for correct signal but wrong tag event
- Fit all bins simultaneously
 - Shape is floated and shared across all bins
 - Yield of signal and combinatorial background is floated in each bin

Double tag fit of $KK\pi\pi$ vs $K\pi$

(c) Bin -3 yield: $120.3^{+11.6}_{-10.9}$

(b) Bin -2 yield: $82.7^{+9.7}_{-9.0}$

(d) Bin -4 yield: $22.4^{+5.2}_{-4.6}$

Double tag fit of $KK\pi\pi$ vs $K\pi$

(c) Bin 3 yield: $181.0^{+14.0}_{-13.3}$

(b) Bin 2 yield: 211.2^{+15.4}_{-14.8}

(d) Bin 4 yield: $88.6^{+9.7}_{-9.0}$

Double tag fit of $KK\pi\pi$ vs KK

(a) Bin 1 yield: 25.3^{+6.2}_{-5.5}

(c) Bin 3 yield: $4.5^{+3.3}_{-2.6}$

(b) Bin 2 yield: $8.8^{+4.0}_{-3.3}$

(d) Bin 4 yield: $21.1_{-4.8}^{+5.5}$

Double tag fit of $KK\pi\pi$ vs $K_S\pi^0$

(a) Bin 1 yield: $7.9^{+3.1}_{-2.5}$

(c) Bin 3 yield: $61.1^{+8.3}_{-7.8}$

(b) Bin 2 yield: $40.4^{+6.8}_{-6.3}$

(d) Bin 4 yield: 18.3^{+4.5}_{-3.9}

Double tag fit of partially reconstructed $KK\pi\pi$ vs KK

(c) Bin 3 yield: $7.5^{+6.6}_{-5.7}$

(b) Bin 2 yield: $17.7^{+6.1}_{-5.3}$

(d) Bin 4 yield: 17.3^{+5.1}_{-4.4}

Double tag fit of partially reconstructed $KK\pi\pi$ vs $K_S\pi^0$

(a) Bin 1 yield: $7.2^{+4.3}_{-3.5}$

(c) Bin 3 yield: $64.4^{+9.6}_{-9.0}$

(b) Bin 2 yield: 39.3^{+8.3}_{-7.3}

(d) Bin 4 yield: $4.8^{+3.8}_{-3.0}$

How to put this all together to determine c_i and s_i ?

• In the past, the strategy has been to measure normalised K_i first, using flavour tags:

$$rac{N_i^{ ext{DT}}}{N^{ ext{ST}}} \propto K_i, ~~ \sum_i K_i = 1$$

② However, the K_i must be corrected for efficiencies and bin migrations, in addition to Doubly Cabbibo Suppressed decays:

$$f_i = \left(1 + r_D^2 \frac{\kappa_{-i}}{\kappa_i} - 2\sqrt{\frac{\kappa_{-i}}{\kappa_i}} \left(c_i \cos(\delta_D) + s_i \sin(\delta_D)\right)\right)^{-1}$$

Finally, with the K_i fixed, c_i and s_i are determined from CP and multi-body tags:

$$\frac{N_i^{\rm DT}}{N^{\rm ST}} \propto K_i + K_{-i} \mp 2\sqrt{K_i K_{-i}} c_i \\ \frac{N_{ij}^{\rm DT}}{N^{\rm ST}} \propto K_i K_{-j}' + K_{-i} K_j' - 2\sqrt{K_i K_{-i} K_j' K_{-j}'} (c_i c_j' + s_i s_j')$$

We propose a simpler, but more powerful strategy:

- **1** Treat all K_i , c_i and s_i as free parameters
- ② Include the $D o KK\pi\pi$ branching fraction ${\cal B}$ as a free parameter
- Fit flavour, CP and multi-body tags simultaneously

Master equations:

$$\begin{split} \hat{N}_{i}^{\mathrm{DT}} = & N^{\mathrm{ST}} \mathcal{B} \epsilon_{ij} \Big(K_{-j} + r_{D}^{2} K_{j} - 2 r_{D} \sqrt{K_{j} K_{-j}} \big(c_{j} \cos(\delta_{D}) + s_{j} \sin(\delta_{D}) \big) \Big) \\ \hat{N}_{i}^{\mathrm{DT}} = & N^{\mathrm{ST}} \mathcal{B} \epsilon_{ij} \big(K_{j} + K_{-j} \mp 2 \sqrt{K_{j} K_{-j}} c_{j} \big) \\ \hat{N}_{ij}^{\mathrm{DT}} = & N^{\mathrm{ST}} \mathcal{B} \epsilon_{ijkl} \big(K_{k} K_{-l}' + K_{-k} K_{l}' - 2 \sqrt{K_{k} K_{-k} K_{l}' K_{-l}'} (c_{k} c_{l}' + s_{k} s_{l}') \big) \end{split}$$

 ϵ_{ij} are combined efficiency and bin migration matrices

The master equations use the free parameters \mathcal{B} , K_i , c_i and s_i to make a prediction \hat{N}^{DT} to the measured double tag yields N^{DT}

Master equations

$$\hat{N}_{i}^{\text{DT}} = N^{\text{ST}} \mathcal{B} \epsilon_{ij} \left(K_{-j} + r_{D}^{2} K_{j} - 2r_{D} \sqrt{K_{j} K_{-j}} \left(c_{j} \cos(\delta_{D}) + s_{j} \sin(\delta_{D}) \right) \right)
\hat{N}_{i}^{\text{DT}} = N^{\text{ST}} \mathcal{B} \epsilon_{ij} \left(K_{j} + K_{-j} \mp 2 \sqrt{K_{j} K_{-j}} c_{j} \right)
\hat{N}_{ij}^{\text{DT}} = N^{\text{ST}} \mathcal{B} \epsilon_{ijkl} \left(K_{k} K_{-l}' + K_{-k} K_{l}' - 2 \sqrt{K_{k} K_{-k} K_{l}' K_{-l}'} \left(c_{k} c_{l}' + s_{k} s_{l}' \right) \right)$$

Ordinarily, we would construct a Gaussian (log)likelihood function \implies Obtain \mathcal{B} , K_i , c_i and s_i by minimising the following function:

$$-\ln(\mathcal{L}) = \frac{1}{2} \sum_{\mathrm{Tag}} \sum_{jj} (V^{-1})_{ij} (N_i^{\mathrm{DT}} - \hat{N}_i^{\mathrm{DT}}) (N_j^{\mathrm{DT}} - \hat{N}_j^{\mathrm{DT}})$$

$$V_{ij} = \rho_{ij}\sigma_i\sigma_i$$

 $^{^{1}\}rho$ are correlation coefficients

Master equations

$$\begin{split} \hat{N}_{i}^{\mathrm{DT}} &= N^{\mathrm{ST}} \mathcal{B} \epsilon_{ij} \Big(K_{-j} + r_{D}^{2} K_{j} - 2 r_{D} \sqrt{K_{j} K_{-j}} \big(c_{j} \cos(\delta_{D}) + s_{j} \sin(\delta_{D}) \big) \Big) \\ \hat{N}_{i}^{\mathrm{DT}} &= N^{\mathrm{ST}} \mathcal{B} \epsilon_{ij} \big(K_{j} + K_{-j} \mp 2 \sqrt{K_{j} K_{-j}} c_{j} \big) \\ \hat{N}_{ij}^{\mathrm{DT}} &= N^{\mathrm{ST}} \mathcal{B} \epsilon_{ijkl} \big(K_{k} K_{-l}' + K_{-k} K_{l}' - 2 \sqrt{K_{k} K_{-k} K_{l}' K_{-l}'} (c_{k} c_{l}' + s_{k} s_{l}') \big) \end{split}$$

Our DT yields are very small, so their uncertainties are asymmetric \implies Approximate covariance matrix from the asymmetric uncertainties²:

$$\begin{split} -\ln(\mathcal{L}) = & \frac{1}{2} \sum_{\mathrm{Tag}} \sum_{ij} (V^{-1})_{ij} (N_i^{\mathrm{DT}} - \hat{N}_i^{\mathrm{DT}}) (N_j^{\mathrm{DT}} - \hat{N}_j^{\mathrm{DT}}) \\ V_{ij} = & \rho_{ij} \sigma_i \sigma_j, \quad \sigma = \sqrt{\sigma_- \sigma_+ - (\sigma_+ - \sigma_-) (N^{\mathrm{DT}} - \hat{N}^{\mathrm{DT}})} \end{split}$$

²arXiv:physics/0406120

$$\begin{split} -\ln(\mathcal{L}) = & \frac{1}{2} \sum_{\mathrm{Tag}} \sum_{ij} (V^{-1})_{ij} (N_i^{\mathrm{DT}} - \hat{N}_i^{\mathrm{DT}}) (N_j^{\mathrm{DT}} - \hat{N}_j^{\mathrm{DT}}) \\ V_{ij} = & \rho_{ij} \sigma_i \sigma_j, \quad \sigma = \sqrt{\sigma_- \sigma_+ - (\sigma_+ - \sigma_-) (N^{\mathrm{DT}} - \hat{N}^{\mathrm{DT}})} \end{split}$$

- The above likelihood has good coverage for flavour and CP tags...
- ... but not for multi-body decays
 - Bins with $\sigma_- \approx 0$ make the fit unstable
 - Fit convergence was found to be less than 60%
- In multi-body decays, use the full unbinned likelihood directly
 - Fit convergence improves to over 95%
 - Much slower, but much more accurate

Parameterisation of K_{ii}

One last technical detail...

- 8 K_i parameters, but $\sum_i K_i = 1$, so only 7 are independent
- We could set $K_4 = 1 \sum_{i \neq 4} K_i$, but such a parameterisation is unstable due to strong correlations
- Use a recursive fraction parameterisation (JHEP 2021 169 (2021))
- Recursive fractions R_i are defined as:

$$R_{i} \equiv \begin{cases} K_{i}, & i = -4 \\ K_{i} / \sum_{j \geq i} K_{j}, & -4 < i < +4 \\ 1, & i = +4. \end{cases}$$

Parameterisation of K_i

Visualisation of this parameterisation:

1. Definition of a_1'

$$\underbrace{a_1}_{\equiv a_1'} + \underbrace{a_2 + a_3 + \dots}_{\equiv 1 - a_1'} = 1$$

2. Eliminate a_1

$$a_2 + a_3 + a_4 + \dots = 1 - a_1'$$

3. Definition of a_2'

$$\underbrace{\frac{a_2}{1 - a_1'}}_{\equiv a_2'} + \underbrace{\frac{a_3 + a_4 + \dots}{1 - a_1'}}_{\equiv 1 - a_2'} = 1$$

Repeat this procedure until the last coefficient, which is 1

Input-output checks are performed by generating toy datasets

- Check fit convergence
- ② Check error coverage
- Orrect any biases in fitted parameters

Unfortunately, in this analysis we cannot simply generate Poisson-distributed DT yields:

- Asymmetric uncertainties
- 2 Large background-to-signal
- Multi-body tags with low yields require a full unbinned likelihood

Solution: Generate toy datasets for each double tag fit

Figure 12: Fitted yields in toy datasets for the (left) KK and (right) $K_S\pi^0$ tags

- No biases are observed
- Oistributions are asymmetric support uncertainties are asymmetric
- ullet KK uncertainty is non-Poisson because of large backgrounds from $qar{q}$
- $K_S\pi^0$ has small backgrounds, so observed yields Poisson distributed

What do the toy fits tell us?

- **1** Both c_i and s_i pulls has asymmetric tails
- 2 Effect is small in c_i and a small bias correction will be sufficient
- \odot s_i has a small overcoverage, but a large tail, so special care is required

Fit results

$$c_1 = -0.40 \pm 0.13$$

 $s_1 = -0.18 \pm 0.32$
 $c_2 = 0.79 \pm 0.06$
 $s_2 = -0.21 \pm 0.24$
 $c_3 = 0.85 \pm 0.06$
 $s_3 = 0.53 \pm 0.24$
 $c_4 = -0.36 \pm 0.13$
 $s_4 = -0.38 \pm 0.31$

Figure 15: Contours of c_i vs s_i , corresponding to $\Delta \log(\mathcal{L}) = 2.30$, or 68% confidence level. Dashed lines show F_+ measurement.

Fit results

Figure 16: Comparison between model and model-independent measurements

$\delta_{K\pi}$ measurement

- \bullet K_i , which are constrained by flavour tags, are free parameters
- Corrections for DCS decays, which depend on the strong phases δ_D , are part of the fit
- ullet We could instead treat δ_D as a free parameter, and make a simultaneous measurement
- In this analysis we can measure $\delta_{K\pi}$ with negligible reduction in sensitivity to c_i and s_i

$$\hat{N}_{i}^{\mathrm{DT}} = N^{\mathrm{ST}} \mathcal{B} \epsilon_{ij} \Big(K_{-j} + r_{D}^{2} K_{j} - 2 r_{D} \sqrt{K_{j} K_{-j}} \big(c_{j} \cos(\delta_{D}) + s_{j} \sin(\delta_{D}) \big) \Big)$$

• Free parameters: $r_D \cos(\delta_{K\pi})$ and $r_D \sin(\delta_{K\pi})$

$\delta_{K\pi}$ measurement

Figure 17: Contours of $r_D \cos(\delta_{K\pi})$ vs $r_D \sin(\delta_{K\pi})$, corresponding to $\Delta \log(\mathcal{L}) = 2.30$ and 6.18, or 68% and 95% confidence level. Dashed line indicates measured value of r_D .

Branching fraction measurement

In addition, we have another nuisance parameter: The $D^0 \to K^+ K^- \pi^+ \pi^-$ branching fraction

Current PDG value:
$$\mathcal{B} = (2.47 \pm 0.11) \times 10^{-3}$$
 Fit result:

 $\mathcal{B} = (2.765 \pm 0.046) \times 10^{-3}$

Much better precision than the current world average!

Do we have the necessary estimates of tracking and PID systematics to also publish this measurement?

Summary

- A phase-space binned measurement of the $D^0 o K^+K^-\pi^+\pi^-$ strong-phases has been performed
 - Analysis uses a 2 × 4 binning scheme
 - ullet Measurement will improve significantly with full $20\,\mathrm{fb^{-1}}$ dataset
 - New strategy: Treat c_i , s_i and K_i on an equal footing
 - Additionally, $\delta_D^{K\pi}$ can also be determined
 - The $D^0 \to K^+ K^- \pi^+ \pi^-$ branching fraction more than 2 times more precise than the current PDG value
- Next steps:
 - Perform systematics studies
 - Write up MEMO

Thank you!