

Mathematical Entity Linking Methods and Applications

Doctoral Defense Philipp Scharpf

AnnoMathTeX Demovideo

https://annomathtex. wmflabs.org

Introduction

Research problem

Research objective

Research questions

Knowledge Graph Wikidata

https://wikidata.org

Launched 2012 to connect multilingual Wikipedia articles

in language-independent concept items

Free, **open** access, collaborative **semantic** knowledge-base

create, read, accept, decline or edit content

Wikidata Entity Linking

https://www.wikidata.org/wiki/Q2992084

in

Paris (Q90)

https://www.wikidata.org/wiki/Q90

Problem: Classical Entity Linking (EL)

representations

- Washington
- President Washington
- George Washington
- G. Washington
- Father of the United States
- The American Fabius
- The First President

concept

Item

George Washington (Q23)

Problem: Mathematical EL (MathEL)

$$\frac{1}{c^2}\frac{\partial^2 \psi}{\partial t^2} - \nabla^2 \psi + \left(\frac{m_0 c}{\hbar}\right)^2 \psi = 0 \qquad u_{tt} + Au + f(u) = 0$$

$$\partial_{ct}^{2}h_{n}\left(z,t\right)-\partial_{z}^{2}h_{n}\left(z,t\right)+\nu_{n}^{2}\,h_{n}\left(z,t\right)=0\quad \nabla^{a}\nabla_{a}\psi=\mu^{2}\psi$$

$$\frac{\hbar^2}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \frac{\hbar^2 \partial^2 \psi}{\partial x^2} = -2i \hbar \frac{\partial \psi}{\partial \tau} \qquad -\hbar^2 \frac{\partial^2 \psi}{\partial t^2} + c^2 \hbar^2 \nabla^2 \psi = m_0^2 c^4 \psi$$

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \frac{2\alpha + a}{c^2} \frac{\partial \phi}{\partial t} - \frac{\alpha^2 + a\alpha}{c^2} \phi = 0 \quad u_{tt} - \Delta u + m^2 u + G'(u) = 0$$

$$\frac{\left(\eta^{\mu\nu}\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial x^{\nu}}-\left(\frac{mc}{\hbar}\right)^{2}\right)\phi=0}{\left(-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}+\sum_{i=1}^{p}\frac{\partial}{\partial x^{i}}\frac{\partial}{\partial x^{i}}-\left(\frac{mc}{\hbar}\right)^{2}\right)\phi=0}$$

$$u_{tt}-\Delta u+mu+\mathcal{P}'(u)=0$$

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \sum_{i=1}^p \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^i} - \left(\frac{mc}{\hbar}\right)^2\right) \phi = 0$$

$$u_{tt}-\Delta u+m\ u+\mathcal{P}'(u)=0$$

concept

Klein–Gordon equation (Q868967)

representations

Mathematical Entity Linking Challenges

Different symbols for constants or variables are used

$$\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \nabla^2 \psi + \left(\frac{m_0 c}{\hbar}\right)^2 \psi = 0$$

Constants appear in different terms

Additional terms and functions are introduced

$$\frac{\hbar^2}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \frac{\hbar^2 \partial^2 \psi}{\partial x^2} = -\frac{2i\hbar}{\partial \tau} \frac{\partial \psi}{\partial \tau}$$

Additional (index or semantic) **sub- or superscripts** are introduced $\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\sum_{i=1}^p\frac{\partial}{x^i}\frac{\partial}{x^i}\right)$

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\sum_{i=1}^p \frac{\partial}{x^i}\frac{\partial}{x^i} - \left(\frac{mc}{\hbar}\right)^2\right)\varphi = 0$$

Substitutions, i.e., identifiers are subsumed into others and then appear implicitly

Mathematical Entity Linking Challenges

$$rac{1}{c^2}rac{\partial^2}{\partial\,t^2}\psi-
abla^2\,\psi+rac{m^2c^2}{\hbar^2}\psi=0$$

Research problem

Resolving mathematical ambiguities is difficult

1. many different formula representations $\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \nabla^2 \psi + \left(\frac{m_0 c}{\hbar}\right)^2 \psi = 0$ $u_{tt} + Au + f(u) = 0$

2. many involved symbols

\nabla: "del" (Q334508), m: "mass" (Q11423) , \hbar: "Planck constant" (Q122894) , ...

3. very complex semantics

Research questions (high-level)

- How to discover a math entity?
- How to recognize a math entity?
- How to represent a math entity in a KG?
- How to populate the KG with math entities?
- How to query the KG for math entities?
- How to apply linking math entities?

Publications overview (topics)

Reviews ("Where")

- Entity Linking with Wikidata (Scharpf24b?)
- Mathematics in Wikidata (Scharpf21a)

Methods ("How")

- Formula Classification
 & Clustering
 (Scharpf19a, Scharpf23a)
- Formula Annotation Recommendation (Scharpf19b, Scharpf21b)
- Formula Benchmarking (Schubotz18a, Scharpf18)

Applications ("Why")

- Mathematical Question Answering (Schubotz18b, Scharpf20, Scharpf22)
- Mathematical (Physics) Question Generation (Scharpf22, Scharpf23b)
- STEM Document Classification Explainability (Schubotz20, Scharpf20, Scharpf24a?)

13 publications first author + 3 co-outhor

Publications overview (focus)

Reviews ("Where")

- Entity Linking with Wikidata (Scharpf24b?)
- Mathematics in Wikidata (Scharpf21a)

Methods ("How")

- Formula Classification
 & Clustering
 (Scharpf19a,
 Scharpf23a)
- Formula Annotation Recommendation (Scharpf19b, Scharpf21b)
- Formula Benchmarking (Schubotz18a, Scharpf18)

Applications ("Why")

- Mathematical Question Answering (Schubotz18b, Scharpf20, Scharpf22)
- Mathematical (Physics) Question Generation (Scharpf22, Scharpf23b)
- STEM Document Classification Explainability (Schubotz20, Scharpf20, Scharpf24a?)

Presented in depth in this talk

Reviews ("Where?")

Entity Linking with Wikidata

Mathematics in Wikidata

Research Gap

Why Wikidata?

Linking (mathematical) entities to Wikidata instead of Wikipedia, allows for

modeling formula expression substructure

structured queries

multilingual entity representations

Entity Linking Types in Literature

Philipp Scharpf, Moritz Schubotz, Andreas Spitz, Norman Meuschke, André Greiner-Petter, and Bela Gipp. Entity linking with wikidata: A systematic literature review. In *CSUR*. Submitted to ACM Comput. Surv. (CSUR), Feb. 2024.

Methods ("How?)

Formula Concept Retrieval

Formula Annotation Recommendation

Research question

How to discover mathematical concept entities?

From arXiv to Wikidata

Transfer mathematical knowledge

from arXiv (unstructured)

to Wikidata (structured)

arXiv.org

Formula Concept Discovery: Dataset

Aizawa, A., Kohlhase, M., Ounis, I., Schubotz, M.: NTCIR-11 math-2 task overview. In: NTCIR. National Institute of Informatics (NII) (2014)

Formula Concept Discovery: Candidates

Formula string candidates

Formula vectors k-nearest neighbors

Hubble's law

$$p = \omega \rho$$

$$p = \kappa \rho$$

$$\omega = p/\rho$$

$$p_d = \omega \rho_d$$

Formula name candidates

Surrounding text Word window

Name (QID)

Hubble parameter (Q179916)

Equation of state (Q214967)

Accelerating universe (Q1049613)

Dark fluid (Q5223514)

Dark energy (Q18343)

...

Formula Concept Discovery: Evaluation

Retrieving equivalent representations using the k-nearest neighbor algorithm

# I	Formula	Name (QID)		$s_{e_m}, s_{\hat{e}_m}, s_{e_s}, s_{\hat{e}_s}$	Encoding: sample formula
1 1	$H = \dot{a}/a$	hubble parameter (Q179916)		0.0, 0.1, 0.0, 0.9	\hat{e}_s : $H_i = \dot{R}/R$
2 1	$p = \omega \rho$	equation of state (Q214967)		0.3, 0.0, 0.1, 0.6	e_s : $p_d = w \rho_d$
3 0	$\omega = p/\rho$	accelerating universe (Q1049613)	4 / 3	0.7, 0.0, 0.0, 0.3	e_m : $p = \omega \rho$
4 1	$p = -A/\rho^{\alpha}$	dark fluid (Q5223514)	4 / 4	0.7, 0.0, 0.3, 0.0	e_m : $p = -\frac{A}{\rho^{\alpha}}$
5 <i>j</i>	$p_d = w \rho_d$	dark energy (Q18343)	4 / 3	0.3, 0.0, 0.3, 0.3	e_s : $p_X = \omega_X \rho_X$

...

rel. success

(c_m)	math2vec	0.70]	tormulas
(\hat{e}_m)	semantics tf-idf	0.15		text
(e_s)	semantics2vec	0.11	_	frequenc
(\hat{e}_s)	math tf-idf	0.04		sequenc

We achieve best results for encoding the formula constituents with sequence (math2vec)

Formula Concept Discovery: Evaluation

Retrieving concept name candidates from the surrounding text

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ormula	Encoding: sample formula	$s_{e_m}, s_{\hat{e}_m}, s_{e_s}, s_{\hat{e}_s}$	d / \hat{d}	Name (QID)	Formula	#
3 $\omega = p/\rho$ accelerating universe (Q1049613) 4 / 3 0.7, 0.0, 0.0, 0.3 e_m : $p = \omega \rho$		\hat{e}_s : $H_i = \dot{R}/R$	0.0, 0.1, 0.0, 0.9	32 / 32	hubble parameter (Q179916)	$H = \dot{a}/a$	1
		e_s : $p_d = w \rho_d$	0.3, 0.0, 0.1, 0.6	6 / 5	equation of state (Q214967)	$p = \omega \rho$	2
4 $p = -A/\rho^{\alpha}$ dark fluid (Q5223514) 4 / 4 0.7, 0.0, 0.3, 0.0 e_m : $p = -\frac{A}{\rho^{\alpha}}$		e_m : $p = \omega \rho$	0.7, 0.0, 0.0, 0.3	4 / 3	accelerating universe (Q1049613)	$\omega = p/\rho$	3
		e_m : $p = -\frac{A}{\rho^{\alpha}}$	0.7, 0.0, 0.3, 0.0	4 / 4	dark fluid (Q5223514)	$p = -A/\rho^{\alpha}$	4
5 $p_d = w\rho_d$ dark energy (Q18343) 4 / 3 0.3, 0.0, 0.3, 0.3 e_s : $p_X = \omega_X \rho_X$		e_s : $p_X = \omega_X \rho_X$	0.3, 0.0, 0.3, 0.3	4 / 3	dark energy (Q18343)	$p_d = w \rho_d$	5

surrounding text window

For 72%, we retrieve useful formula name candidates (recommendations)

For 82% of the retrieved name candidates, there is a Wikidata QID available

Research question

How to recognize mathematical concept entities?

Formula Concept Retrieval Workflow

Formula Concept Clustering and Similarity

Formula Content Space

Philipp Scharpf, Moritz Schubotz, Howard S. Cohl, Corinna Breitinger, and Bela Gipp. Discovery and recognition of formula concepts using machine learning. Springer Scientometrics Journal, Feb. 2023.

- Classification accuracy up to 0.95
- Cluster purity up to 0.87

Fuzzy string similarity percentages heatmap

Formula Concept Similarity

High intra-class similarity / coherence (red) and low inter-class similarity / separability (blue)

Methods ("How?)

Formula Concept Retrieval

Formula Annotation Recommendation

Research question

How to populate the (Wikidata) Knowledge Graph

with mathematical concept entities?

From Wikipedia to Wikidata

Transfer mathematical knowledge

from Wikipedia (semi-structured)

to Wikidata (structured)

Formula Annotation Recommender

https://annomathtex. wmflabs.org

Formula Annotation Recommendation

ACM / IW3C2, April 2021.

FORMULA ANNOTATION

	_ocal	
No	match:	

Submit

Formula: E=mc^2

Not a formula				
Wikidata1	Wikidata2	WordWindow	FormulaConceptDB	Manual
mass-energy equivalence (Q35875)	mass-energy equivalence (Q35875)	formula (N/A)	mass-energy equivalence (Q35875)	
	time-independent Schrödinger equation (Q25829357)	einstein (N/A)	Philipp Scharpf, Moritz Schubot mathematical wikidata entities in recommendation. In <i>Proceedings</i>	n wikipedia articles us

Identifier Annotation Recommendation

Local No mato	h:	ATION	\$ E =	= m c ^2 \$		×
Not an id	lentifier ed Identifiers: 61/9	96				
Source	1	Source 2	Source 3	Source 4	Source 5	
mass (Q11423)	hypothesis tests (N/A)	N/A (N/A)	motion (N/A)	exhaust gas mass flow (Q320176)	
field (Q	185674)	edges (N/A)		law (N/A)	mass (Q11423)	
integer	(Q12503)	mass (Q11423)		newton (N/A)		
numbei	r (N/A)	message (N/A)		acceleration (Q11376)		
particle	(N/A)	rest mass (N/A)		mass (Q11423)		

Philipp Scharpf, Moritz Schubotz, and Bela Gipp. Fast linking of mathematical wikidata entities in wikipedia articles using annotation recommendation. In *Proceedings of the Web Conference (WWW) 2021*. ACM / IW3C2, April 2021.

Evaluation of Time Savings (Speed)

Identifiers	Time (seconds)
Recommendation	2.6
Manual	6.3
Formulae	Time (seconds)
Recommendation	2.8
Manual	4.0

Speedup
by a factor of
2.4 and 1.4
compared to
manual labeling

Philipp Scharpf, Moritz Schubotz, and Bela Gipp. Fast linking of mathematical wikidata entities in wikipedia articles using annotation recommendation. In *Proceedings of the Web Conference (WWW) 2021*. ACM / IW3C2, April 2021.

Applications ("Why?")

Mathematical
Question Answering

Physics

Question Generation

Research question

How to apply and evaluate

linking mathematical entities?

Applications ("Why?")

Mathematical Question Answering

Physics

Question Generation

MathQA Framework

Geometry Questions

WIKIDATA SPARQL

Relationship Questions

MathQA Demo

Home Examples Video Github

Mathematical Question Answering System (MathQA)

Language

English

Search

https://mathqa. wmflabs.org

MathQA – Formula Concept Query

What is the formula for an id	eal gas?		Search	
PV = nRT				
T (temperature)	R (gas constant)			
293	8.3144598			
n (amount of		Submit		
substance)				
2				
Solution				
P*V = 4.87e+03		https://mathqa.	P. Scharpf, M. Schubotz, and B. Gipp. "Mining Mathe Answering via Unsupervised Formula Labeling". In: J	

MathQA – Identifier Query

MathQA – Relationship Query

what is the relationship between mass and energy?		
$E = mc^2$		
c (speed of light)	m (mass)	
299792458	Enter value	
Source: www.wikidata.org/wiki/Q35875		Submit

MathQA – Direct Formula Input

T = \frac{{\hbar c^3 }}{{8\pi kGM}}	Search
$T = \frac{\hbar c^3}{8\pi kGM}$	
G	pi
Enter value	Enter value
С	k
Enter value	Enter value
M	hbar
Enter value	Enter value
	Submit

https://mathqa. wmflabs.org

MathQA – Competitors

MathQA

https://mathqa.wmflabs.org

https://www.wolframalpha.com

Google

https://www.google.com

MathQA – Competitors

Query Concept Name	MathQA Formula	Wolfram Alpha Formula	Google Formula
acceleration	a = dv/dt	v = at	$\bar{a} = \Delta v / \Delta t$
angular acceleration	$\alpha = d\omega/dt$	$\omega = \alpha t$	$\alpha = \Delta\omega/\Delta t$
angular frequency	$\omega = 2\pi f$	$\nu = \omega/(2\pi)$	$\omega = 2\pi/t$
angular momentum	$L = r \times p$	$L = I\omega, \omega = 2\pi n$	L = mvr
angular velocity	$\omega = d\varphi/dt \cdot u$	$\omega = \alpha t$	$\omega = \Delta \theta / \Delta t$

Relevant	52%	48%	68% (58% boxed)
Calculation	80%	81%	2%

https://mathqa. wmflabs.org

Applications ("Why?")

Mathematical Question Answering

Physics

Question Generation

Physics Question Generation

PhysWikiQuiz

https://physwikiquiz.wmflabs.org

Physics Question Generation and Test System

Enter Formula Concept Name (e.g., 'speed'):

Formula Concept Question:

What is the distance s, given speed $v = 10 \text{ m s}^{-1}$, duration t = 6 s?

Enter Formula Concept Question Answer:

Value correct! Unit correct!

Solution from www.wikidata.org/wiki/Q3711325 formula s = t*v with 60 m = 6 s * 10 m s^1 .

https://physwikiquiz. wmflabs.org

Philipp Scharpf, Moritz Schubotz, Andreas Spitz, André Greiner-Petter, and Bela Gipp. Collaborative and ai-aided exam question generation using wikidata in education. In Wikidata@ISWC

Conclusion & Outlook Conclusion

Contributions

Future Work

Conclusion

• MathEL *improves* the **representation**, **retrieval**, **and application** of math entities in a KG

- MathEL methods and applications for
 - defining mathematical concepts
 - recognizing entities in documents
 - structuring data in the KG
 - populating the KG
 - querying math entities
 - applying MathEL in various IR domains

retrieval & analysis (examples)
classification, clustering, matrices
high community agreement
annotation recommendation speedup
formula search & question answering
e.g., reliable question generation

energy

Contributions

- 1. Formula classification with up to 95% accuracy
- 2. Formula search outperforming the search-engine *Google* by 24% in MRR
- 3. Formula annotation acceleration by a factor of up to 2.4 x compared to human
- 4. Formula question answering outperforming the knowledge-engine *Wolfram Alpha* with 8% more relevant answers
- 5. Formula question generation (reliable AND scalable) using a KG and a CAS with with 13 x more coverage than its best-performing competitor

Practical Impact: Wikipedia

Mass-energy equivalence

ARTICLE

From Wikipedia, the free encyclopedia

In physics, mass-energy equivalence is the principle that mass is a form of energy and that in the rest frame, mass and energy are equivalent and differ only by a constant. [1][2] The principle is fundamental to many fields of physics, including nuclear and particle physics and is described by Albert Einstein's famous formula: [3]

Mass-energy relation

$$E = m c^2$$

Math Formula Information

Formula: $E=mc^2$

Name: mass-energy equivalence

Description: Physical law relating mass to energy

FORMULA DETAIL PAGE

Elements of the Formula

 ${f energy}\ E$ quantitative physical property transferred to objects to perform heating or work on them

mass m property of matter to resist changes of the state of motion and to attract other bodies

speed of light c speed at which all massless particles and associated fields travel in a vacuum

Data Source

https://www.wikidata.org/wiki/Q35875

https://en.wikipedia.org /wiki/Mass%E2%80%93 energy equivalence

Practical Impact: zbMATH

Fine-Grained MSC Prediction API

Example Queries

Text to Keywords Text to MSCs Keywords to MSCs

Public API (https://automscpredictor.wmcloud.org) to be used in production

by the mathematical library **zbMATH Open** (currently accessed around 40 Million times per year*)

Future Work (AnnoMathTeX)

equation

(Q25829357)

FORMULA ANNOTATION

■ Local	
No match:	Submit

 $$E = m c^2 $$

+ unsupervised auto-annotation of full document

Formula: E=mc^2

Not a formula				
(Open)LLaMA	Falcon	BERT & Co.	GPT-J/NeoX	Manual
mass-energy equivalence (Q35875)	mass-energy equivalence (Q35875)	formula (N/A)	mass-energy equivalence (Q35875)	
	time-independent Schrödinger	einstein		

(N/A)

Philipp Scharpf, Moritz Schubotz, and Bela Gipp. Fast linking of mathematical wikidata entities in wikipedia articles using annotation recommendation. In *Proceedings of the Web Conference (WWW) 2021*. ACM / IW3C2, April 2021.

Future Work (PhysWikiQuiz)

PhysWikiQuiz (rule-based)

- Knowledge Graph (Wikidata)
- Computer Algebra System (Sympy)

GPT (learning-based)

- Large Language Model
- = verified creative question

PhysWikiQuiz

https://physwikiquiz.wmflabs.org

Physics Question Generation and Test System

Enter Formula Concept Name (e.g., 'speed'):

Formula Concept Question:

What is the distance s, given speed $v = 10 \text{ m s}^{-1}$, duration t = 6 s?

Enter Formula Concept Question Answer:

Value correct! Unit correct!

Solution from www.wikidata.org/wiki/Q3711325 formula s = t*v with 60 m = 6 s * 10 m s^-1 .

https://physwikiquiz.wmflabs.org

Philipp Scharpf, Moritz Schubotz, Andreas Spitz, André Greiner-Petter, and Bela Gipp. Collaborative and ai-aided exam question generation using wikidata in education. In Wikidata@ISWC

Future Work (PhysWikiQuiz)

PhysWikiQuiz API

physwikiquiz.wmflabs.org/api/v1?name=speed

{"explanation_text": "Solution from www.wikidata.org/wiki/Q3711325 formula v = s/t with 2.5 m s^-1 = 10 m / 4 s .", "formula_unit_dimension": "m s^-1", "identifier_values": [2.5,10,4], "question_text": "What is the speed v, given distance s = 10 m, duration t = 4 s ?"}

GPT-4 (API)

ME

create a story question from this: What is the distance s, given speed $v = 4 \text{ m s}^{-1}$, duration t = 9 s?

In the adventure story "Race Against Time," the protagonist has a magical pair of boots that allow him to run at a constant speed of 4 m/s without getting tired. At a crucial point in the story, he must reach a portal to save his friends, but the portal is only open for 9 seconds. How far can the protagonist travel during this limited time?

Enter Answer:

36 m

Answer

Value correct! Unit correct!

GPT-4 provided

wrong answers

in almost 40%

of our test cases!

https://physwikiquiz. wmflabs.org

Philipp Scharpf, Moritz Schubotz, Andreas Spitz, André Greiner-Petter, and Bela Gipp. Collaborative and ai-aided exam question generation using wikidata in education. In Wikidata@ISWC