Statistical Learning

Kernel Density and Regression Estimators

Spring 2024

Outline

- We will introduce a new technique for nonparametric estimations
- An important concept is the kernel function
- We will use this in two different ways
 - · Kernel density estimation
 - · Kernel regression
- The central idea is to estimate things locally, but the bias-variance trade-off also applies to this problem

Kernel Density Estimation

Kernel Density Estimation

- Given some observations from an unknown distribution, we want to estimate the probability density function (pdf)
- This is an unsupervised problem, however, the technique can be used for regression later
- · Suppose we have

$$X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} f(\cdot)$$

- · Some popular methods
 - Assume a family of distributions (e.g., Gaussian) $f_{\theta}(\cdot)$ and estimate the parameters
 - · Kernel density estimator

Histogram Estimator of Density Functions

- If a continuous variable $X \sim f(\cdot)$ the following are some facts:
 - f(u) > 0 and $\int f(u)du = 1$
 - $P(x \frac{\lambda}{2} \le X \le x + \frac{\lambda}{2}) = \int_{x-\lambda/2}^{x+\lambda/2} f(u) du$
 - $f(x) = \lim_{\lambda \to 0} \frac{1}{\lambda} \mathsf{P}(x \lambda/2 \le X \le x + \lambda/2)$
- · Histogram is a commonly used technique to visualize the data
- · A similar and intuitive approach estimator is

$$\widehat{f}(x) = \sum_{i=1}^{n} \frac{\mathbb{1}\left\{x_i \in [x - \lambda/2, x + \lambda/2]\right\}}{\lambda n}$$

· However, this estimation is bumpy and non-smooth

Kernel Density Estimation

Histogram Estimator of Density Functions

- Let's look at the previous estimator in a different way
 - Suppose we put $\frac{1}{n}$ point mass for each observation x_i
 - Further spread that probability onto a region with width λ , e.g., uniformly on $[x_i \lambda/2, x_i + \lambda/2]$ for all i
 - · Add up all such density functions.
- This is exactly the previous estimator (switch x and x_i). For any target point x, the estimator will be affected only by observations within $\lambda/2$

$$\widehat{f}(x) = \sum_{i=1}^n \frac{\mathbb{1}\big\{x \in \overbrace{[x_i - \lambda/2, x_i + \lambda/2]}\big\}}{\underbrace{\lambda n}_{\text{normalizing constant}}}$$

What if we use a different distribution, other than uniform?

Kernel Functions

- Denote K a kernel function, centered at 0
- Usually, we use a density function $K(\cdot)$ with
 - $\int K(u)du = 1$
 - K(-u) = K(u)
 - $\int K(u)u^2du \le \infty$
- Furthermore, we introduce a bandwidth λ that controls how "local" this estimator is $K_{\lambda}(u) = K(u/\lambda)/\lambda$
- In our previous uniform example, $K(u)=\mathbb{1}\{u\in[-\frac{1}{2},\frac{1}{2}]\}$ and

$$K_{\lambda}(u) = \frac{1}{\lambda} \mathbb{1}\{u \in [-\lambda/2, \lambda/2]\}$$

Popular Kernels

· Symmetric Beta family kernel

$$K(u,d) = \frac{(1-u^2)^d}{2^{2d+1}B(d+1,d+1)} \mathbf{1}\{|u| \le 1\}$$

- Uniform kernel d=0
- Epanechnikov kernel d=1
- Bi/Tri weight d=2,3
- Tri-cube kernel: $K(u) = (1 u^3)^3 \mathbf{1}\{|u| \le 1\}$
- Gaussian kernel: $K(u) = \phi(u) = 1/\sqrt{2\pi} \exp(-u^2/2)$

Kernels

Kernel Density Estimation

Parzen estimator

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{\lambda}(x, x_i)$$

where
$$K_{\lambda}(x,x_i) = K_{\lambda}(|x-x_i|) = K(\frac{|x-x_i|}{\lambda})/\lambda$$

• Popular choice: K(u) is the Gaussian density function with mean zero and standard deviation λ

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda \sqrt{2\pi}} \exp\left\{\frac{-(x-x_i)^2}{2\lambda^2}\right\}$$

Kernel Density Estimation

Properties of the Kernel Density Estimator

 Under regularity assumptions, the kernel density estimator is asymptotically unbiased for a target point x

$$\begin{split} E\big[\widehat{f}(x)\big] &= E\left[K\left(\frac{x-x_1}{\lambda}\right)\Big/\lambda\right] \\ &= \int_{-\infty}^{\infty} \frac{1}{\lambda} K\left(\frac{x-x_1}{\lambda}\right) f(x_1) dx_1 \\ &= \int_{\infty}^{-\infty} \frac{1}{\lambda} K(t) f(x-t\lambda) d(x-t\lambda) \\ \text{(Taylor expansion)} &= f(x) + \frac{\lambda^2}{2} f''(x) \int_{-\infty}^{\infty} K(t) t^2 dt + o(\lambda^2) \\ &\to f(x) \qquad \text{as } \lambda \to 0 \end{split}$$

Properties of the Kernel Density Estimator

 We can further verify that the integrated Bias² (integrating the Bias² previously over the domain of x) is

$$\mathsf{Bias}^2 = \int \left(E[\widehat{f}(x)] - f(x) \right)^2 dx$$
$$\approx \frac{\lambda^4 \sigma_K^4}{4} \int \left[f''(x) \right]^2 dx$$

where
$$\sigma_K^2 = \int_{-\infty}^{\infty} K(t) t^2 dt$$
.

Properties of the Kernel Density Estimator

... and the integrated variance is

$$\mathrm{Var} \approx \frac{1}{n\lambda} \int K^2(t) dt$$

 Hence, the optimal bias-variance trade-off happens where the asymptotic mean integrated squared error (AMISE)

$$\mathsf{Bias}^2 + \mathsf{Var}$$

is minimized

- This leads to $\lambda \approx \left(\frac{\int K^2(t)dt}{n\sigma_K^4\int [f''(x)]^2dx}\right)^{\frac{1}{5}}$
- This leads to an optimal convergence rate of $\mathcal{O}(n^{-4/5})$

Popular Kernels

- Epanechnikov kernel minimizes AMISE and is therefore optimal.
- Kernel efficiency is measured in comparison to Epanechnikov kernel:
 - Biweight 0.994; Triangular 0.986; Normal 0.951; Uniform 0.930
- However, choosing kernel is not as important as choosing the bandwidth!

The choice of λ

• The rule of thumb (Silverman 1986) for the bandwidth λ in univariate case is

$$\widehat{\lambda} = 1.06\widehat{\sigma}n^{-1/5}$$

where $\hat{\sigma}$ is the standard deviation of the observed data

- This is based on assuming that both f and K are Gaussian
- For multidimensional case (p cannot be too large), the optimal λ is at the rate of $n^{-1/(p+4)}$.

R implementations

- · hist makes histograms
- density for kernel density estimator
- bw.nrd and a set of related functions for bandwidth selection
- Library locfit: function locfit can perform both local polynomial regressions and density estimation

Kernel regression

k-Nearest Neighbor Smoother

k-Nearest Neighbor averaging

$$\widehat{f}(x) = \sum_{i=1}^{n} w(x, x_i) y_i$$

where

$$w(x,x_i) = \begin{cases} \frac{1}{k} & \text{if } x_i \in N_k(x) \\ 0 & \text{o.w.} \end{cases}$$

• The weight $w(x,x_i)$ drops off abruptly to zero outside the neighborhood of x. This accounts for jagged appearance of the fit.

Rectangular vs. Epanechnikov Kernels

Kernel Smoother

- · We can still use the local averaging idea:
 - Fit a simple model locally at each point x using only those observations close to it
 - Localization via the weighting function $K(x, x_i)$, the weight of x_i is based on its distance from x
 - ullet Weight decreases as we move further away from x
- For any point $x \in \mathcal{X}$,

$$\widehat{f}(x) = \frac{\sum_{i} K_{\lambda}(x, x_{i}) y_{i}}{\sum_{i} K_{\lambda}(x, x_{i})}$$

where $K_{\lambda}(x,x_i)=K(|x-x_i|/\lambda)/\lambda$ is a kernel function and λ is some tuning parameter for bandwidth.

Kernel Smoother

- The estimator is called Nadaraya-Watson kernel estimator
- It shares the same intuition as the kernel density estimator, but with y_i as the outcome instead of 1/n as the point mass
- Requires little or no training time; all the work gets done during prediction (same as kNN).

Choice of λ

- The bandwidth λ again controls how "local" the estimator is
- In many kernels (except Gaussian), only points within $[x \lambda, x + \lambda]$ receive positive weights
- Small λ: rougher estimate, bias ↓, variance ↑
- Large λ: smoother estimate, bias ↑, variance ↓
- Although there are some theoretical values (e.g., Fan and Gijbels (1992, 1995)) for the optimal λ , most may fail in practice (violation of assumptions)
- We can choose λ using CV in practice

Drawbacks of Local Averaging

- The kernel averaging formulation can be badly biased on the boundaries of the domain due to the asymmetry of the kernel in that region (we have already seen this)
- Locally weighted linear regression can make a first order correction (straight lines vs. constants)
- · Minimizing the objective function

- · The estimation is extremely simple
- The solution $\widehat{f}(x_0)=\widehat{eta}_0(x_0)+\widehat{eta}_1(x_0)x_0$ is evaluated only at x_0
- · Correct the boundary bias of the kernel estimator

Kernel Boundary Bias

Local Linear Regression

- The objective function can still be solved similarly as a linear regression
- If we let $\mathbf{W}(x_0) = \operatorname{diag}(K_{\lambda}(x_0, x_1), K_{\lambda}(x_0, x_2), \dots, K_{\lambda}(x_0, x_n))$
- Then the objective function (for target point x_0) is

$$\ell(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} \mathbf{W}(x_0) (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

· The solution is

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^\mathsf{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{W} \mathbf{y}$$

Local Polynomial Regression

- Locally weighted d polynomial regression
- · Minimizing the objective function

$$\underset{\beta_0(x_0),\beta_r(x_0)}{\text{minimize}} \ \sum_{i=1}^n K_{\lambda}(x_0,x_i) \Big[y_i - \beta_0(x_0) - \sum_{r=1}^d \beta_j(x_0) x_i^r \Big]^2$$

- Still a weighted linear regression problem at each target point x_0
- $\widehat{f}(x_0) = \widehat{\beta}_0(x_0) + \sum_{r=1}^d \widehat{\beta}_r(x_0) x_0^r$
- Correct the boundary bias of the kernel estimator
- Reduce bias in regions of curvature, however, at a price of higher variance

Kernel Boundary Bias

R implementation

- R function loess provides fitting of the local polynomial regressions
- The most important parameter span = α controls the degree of smoothing: only αn number of closest points are used based on the distance $|x-x_i|$, forming the neighborhood "N(x)"
- A weighted least-square linear regression is fit within the neighborhood
- The weights uses tri-cube kernel: $w_{x,i} = (1 u^3)^3$ with

$$u_i = \frac{|x_i - x|}{\max_{N(x)} |x_j - x|}$$

- · degree specifies the degree of the polynomial
- Other implementations such as locfit and locpoly (use Gaussian kernel)