Analysis

Ji Yong-Hyeon

July 26, 2020

Contents

Ι	I Introduction to Real Number System		3
1	 The Real Number System 1.1 Principle of Mathematical Induction 1.2 The Algebraic Properties of Real Number ℝ 1.3 The Order Properties of Real Number ℝ 1.4 The Completeness Property of Real Number ℝ 		3 3 3 5
II	II Sequences and Series in Real Number		6
1	<u> -</u>		6
	1.1 Convergent Sequences		6
	1.2 Limit Theorem		8
	1.3 Monotone Sequences		10
	1.4 Subsequences and the Cauchy Criterion		11
2			19
	2.1 Introduction to Infinite Series		19
	* The n -th Term Test		19
	* Cauchy criterion for series		19
	2.2 Convergence Test Part I: Comparison, Limit Comp	9	20
	2.3 Absolute Convergence		2324
	2.4 Convergence Test Part II: Root and Ratio Tests .2.5 Alternating Series		2426
	2.9 Afternating Series		20
Η	III Functions in Real number	ć	31
1	1 Limits of Functions	:	31
	1.1 Limits of Functions		31
	1.2 Some Properties		34
2	2 Continuous Functions	;	38
	2.1 Continuous Functions		38
	2.2 Properties of Continuous Functions		39
	2.3 Uniformly Continuous Functions		43

I	V I	Differentiations and Integrations	48
1	Diff	Gerentiation	49
	1.1	Derivative & Carathéodory's Theorem	49
	1.2	Rolle's and Mean Value Theorem	53
	1.3	L'Hospital's Rules	55
	1.4	Taylor's Theorem	55

Part I

Introduction to Real Number System

1 The Real Number System

1.1 Principle of Mathematical Induction

Axiom. (Well-ordering Principle) Every nonempty subset of $\mathbb{N}(\text{or } \mathbb{Z}_{\geq 0})$ has a least element.

1.2 The Algebraic Properties of Real Number $\mathbb R$

Definition. A binary operation B on a set F is a function from $F \times F$ into F.

1.3 The Order Properties of Real Number \mathbb{R}

Axiom. (Axiom of order) A relation < defined on $\mathbb{R} \times \mathbb{R}$ satisfies the following axiom of order:

1. For $a, b \in \mathbb{R}$, exactly one of the following holds (property of trichotomy):

$$a = b$$
, $a < b$ or $b < a$.

- 2. For $a, b \in \mathbb{R}$, if 0 < a and 0 < b then 0 < a + b and 0 < ab.
- 3. For $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c.

Theorem. For $a, b \in \mathbb{R}$, if a < b then

$$a < \frac{1}{2}(a+b) < b.$$

Proof. $a = \frac{1}{2}(a+a) < \frac{1}{2}(a+b) < \frac{1}{2}(b+b) = b$.

Corollary. For $a \in \mathbb{R}^+$

$$0 < \frac{1}{2} < a$$
.

Corollary. If $a \in \mathbb{R}$ satisfies $0 \le a < \varepsilon$ for every $\varepsilon > 0$ then

$$a=0.$$

If $a \neq 0$, then one of the number a and -a is strictly positive by the trichotomy property. The **absolute** value of $a \neq 0$ is defined to be the strictly positive one of the pair $\{a, -a\}$, and the absolute value of 0 is defined to be 0.

Definition. If $a \in \mathbb{R}$, the absolute value of a is denoted by |a| and is defined by

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Theorem. (Triangle inequality) If $a, b \in \mathbb{R}$ then

$$|a+b| \le |a| + |b|.$$

Corollary. If $a, b \in \mathbb{R}$ then

- 1. $||a| |b|| \le |a| |b|$.
- 2. $|a b| \le |a| + |b|$.

Corollary. If $a_1, a_2, \dots, a_n \in \mathbb{R}$ then

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$
.

Theorem. Let $a, b \in \mathbb{R}$. For arbitrary $\varepsilon > 0$, if $|a - b| < \varepsilon$ then

$$a = b$$

Note. In analysis, $a = b \iff \forall \varepsilon > 0, |a - b| < \varepsilon.$

1.4 The Completeness Property of Real Number \mathbb{R}

Definition. Let X be a nonempty subset of \mathbb{R} .

- 1. The set X is said to be **bounded above** if $\exists a \in \mathbb{R}$ such that $x \leq a$ for all $x \in X$. Each number a is called an **upper bound** of X.
- 2. The set X is said to be **bounded below** if $\exists b \in \mathbb{R}$ such that $b \leq x$ for all $x \in X$. Each number a is called a **lower bound** of X.
- 3. The set X is said to be bounded if it is both bound above and bounded below.

Definition. Let X be a nonempty subset of \mathbb{R} .

- 1. If X is bounded above then a number a is said to be a **supremum**(or a **least upper bound**) of X if it satisfies the following conditions:
 - (a) a is an upper bound of X
 - (b) if b is any upper bound of X then $a \leq b$.
- 2. If X is bounded below then a number b is said to be a **infimum**(or a **greatest lower bound**) of X if it satisfies the following conditions:
 - (a) b is a lower bound of X
 - (b) if a is any lower bound of X then $a \ge b$.

Theorem. Let A be a bounded above, nonempty subset of \mathbb{R} and $a \in \mathbb{R}$ is an upper bound of A. Then the following statements are equivalent:

- 1. $a = \sup A$.
- 2. $\forall b \in \mathbb{R}$ satisfying b < a, $\exists x \in A$ such that $b < x \le a$.

Axiom. (Completeness property of real number) Every non-empty set of real numbers which has an upper bound also has a supremum in \mathbb{R} .

This axiom is also called *supremum property* of real number.

e.g. Assume that only rational numbers \mathbb{Q} exists. Let us consider a set

$$X = \{1.4, 1.41, 1.414, 1.4142, 1.414213, 1.4142135, \dots\}.$$

Then X has an upper bound 2. However, $\sup X = \sqrt{2} \notin \mathbb{Q}$. It means that \mathbb{Q} is not complete.

Theorem. Every nonempty set of real numbers which has a lower bound has an infimum in \mathbb{R} .

Part II

Sequences and Series in Real Number

1 Sequence in Real Number

1.1 Convergent Sequences

Definition. A sequence of real number (or a sequence in \mathbb{R}) is a function defined on the set \mathbb{N} whose range is contained in the set \mathbb{R} .

Consider

$$\lim_{n\to\infty} a_n = L.$$

To define the limit of a sequence, we need to make the concepts close to and for all large positive integers n precise.

1. $\forall \varepsilon > 0, |a_n - L| < \varepsilon.$

e.g. Consider $\lim_{n\to\infty}\frac{1}{n}=0$. Let $\varepsilon=0.1$. Then $|a_n-L|<0.1$ and so

$$\frac{1}{n}$$
 < 0.1 \Rightarrow n > 10.

Hence, after 11-th term, 1/n = 0 $(a_n = L)$.

2. "there exists $N(\varepsilon) \in \mathbb{N}$ such that if $n \geq N(\varepsilon)$ " then $a_n = L$.

Definition A sequence $\{a_n\}$ in \mathbb{R} is said to **converge** to $L \in \mathbb{R}$ or L is said to be a **limit** of $\{a_n\}$, if for every $\varepsilon > 0$ there exists a natural number $N(\varepsilon)$ such that for all $n \geq N(\varepsilon)$, the term a_n satisfy

$$|a_n - L| < \varepsilon.$$

If a sequence has a limit, we say that the sequence is **convergent**; if it has no limit, we say that the sequence is **divergent**.

Note.

$$\lim_{n\to\infty}a_n=L\iff \forall \varepsilon>0,\ \exists N(\varepsilon)\in\mathbb{N}\text{ such that if }n\geq N(\varepsilon)\text{ then }|a_n-L|<\varepsilon.$$

e.g. Prove that the sequence

$$\{a_n\} = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$

converges to 0.

Sol. Let $\varepsilon > 0$. Then $\exists N > \frac{1}{\varepsilon}$ such that if $n \ge N$,

$$|a_n - 0| = \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Theorem. (Uniqueness of limits) The limit of a sequence in \mathbb{R} is unique. That is, if a sequence $\{a_n\}$ has limit L_1 and L_2 then $L_1 = L_2$.

Proof. Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L_1$, $\exists N_1 \in \mathbb{N}$ such that if $n \ge N_1$ then $|a_n - L_1| < \frac{\varepsilon}{2}$.

And since $\lim_{n\to\infty} a_n = L_2$, $\exists N_2 \in \mathbb{N}$ such that if $n \geq N_2$ then $|a_n - L_2| < \frac{\varepsilon}{2}$. Let $N = \max\{N_1, N_2\}$. Then if $n \geq N$,

$$|L_1 - L_2| = |L_1 - L_2 + a_n - a_n|$$

$$= |(a_n - L_2) - (a_n - L_1)|$$

$$= |a_n - L_1| + |a_n - L_2|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition. Let $\{a_n\}$ be a sequence of real numbers.

1. $\{a_n\}$ is said to be **bounded above** if there exists a real number M such that for all $n \in \mathbb{N}$,

 $a_n \leq M$.

2. $\{a_n\}$ is said to be **bounded below** if there exists a real number M such that for all $n \in \mathbb{N}$,

 $a_n > M$.

3. $\{a_n\}$ is said to be **bounded** when it is both bounded above and bounded below, i.e., if there exists a real number M > 0 such that for all $n \in \mathbb{N}$,

 $|a_n| \leq M$.

Theorem. A convergent sequence of real numbers is bounded. That is, if $\{a_n\}$ converges to L, there exists M > 0 such that

$$|a_n| \leq M$$

for all $n \in \mathbb{N}$.

Proof. Since $\lim_{n\to\infty} a_n = L$, for $\varepsilon = 1 > 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - L| < 1$. Note that

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|.$$

Let $M = \max \{|a_1|, |a_2|, \dots, |a_{N-1}|, 1+|L|\}$. Then

$$|a_n| \leq M$$

for all $n \in \mathbb{N}$.

1.2 Limit Theorem

Theorem. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers that converges to x and y, respectively. Then

- 1. For $k \in \mathbb{R}$, $\{ka_n\}$ converges to kx.
- 2. $\{a_n + b_n\}$ converges to x + y.
- 3. $\{a_nb_n\}$ converges to xy.
- 4. If $\{b_n\}$ is a sequence of non-zero numbers that converges to non-zero number y then $\{a_n/b_n\}$ converges to x/y.

Proof.

 $3. \lim_{n \to \infty} a_n b_n = xy.$

Note that, since $\{a_n\}$ converges, $\exists M>0$ such that $|a_n|\leq M$ for all $n\in\mathbb{N}$. Let $\varepsilon>0$. Since $\lim_{n\to\infty}b_n=y$, $\exists N_1\in\mathbb{N}$ such that if $n\geq N_1$ then $|b_n-y|<\frac{\varepsilon}{2M}$. And since $\lim_{n\to\infty}a_n=x$, $\exists N_2\in\mathbb{N}$ such that if $n\geq N_2$ then $|a_n-x|<\frac{\varepsilon}{2|y|+1}$. Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$,

$$|a_n b_n - xy| = |a_n b_n - a_n y + a_n y - xy|$$

$$\leq |a_n| |b_n - y| + |a_n - x| |y|$$

$$< M \frac{\varepsilon}{2M} + \frac{\varepsilon}{2|y| + 1} |y|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

4. $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{y}$ with $b_n \neq 0$ and $y \neq 0$.

Since $\lim_{n\to\infty} b_n = y$, for $\frac{|y|}{2}$, $\exists N_1 \in \mathbb{N}$ such that if $n \geq N_1$ then $|b_n - y| < \frac{|y|}{2}$. By corollary $-|a-b| \leq |a| - |b|$,

$$|b_n| \ge |y| - |b_n - y| > |y| - \frac{|y|}{2}$$

and so $\frac{1}{|b_n|} < \frac{2}{|y|}$.

Let $\varepsilon > 0$. Since $\{b_n\}$ converges, $\exists N_2 \in \mathbb{N}$ such that if $n \geq N_2$ then $|b_n - y| < \frac{|y|^2}{2}\varepsilon$. Let $N = \max\{N_1, N_2\}$. Then if $n \geq N$,

$$\left|\frac{1}{b_n} - \frac{1}{y}\right| = \frac{|b_n - y|}{|b_n||y|} < \frac{2}{|y|} \cdot \frac{1}{|y|} \cdot \frac{|y|^2}{2} \varepsilon = \varepsilon.$$

Theorem. (Squeeze Theorem) Let $\{a_n\}$ and $\{b_n\}$ are convergent sequences of real numbers such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L.$$

If $\{c_n\}$ be a sequence of real numbers such that $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$ then

$$\lim_{n \to \infty} c_n = L.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L$, $\exists N_1 \in \mathbb{N}$ such that if $n \geq N_1$ then

$$|a_n - L| < \varepsilon \text{ implies } L - \varepsilon < a_n.$$

Since $\lim_{n\to\infty} b_n = L$, $\exists N_2 \in \mathbb{N}$ such that if $n \geq N_2$ then

$$|b_n - L| < \varepsilon \text{ implies } b_n < L + \varepsilon.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$L - \varepsilon < a_n \le c_n \le b_n < L + \varepsilon$$
,

and so $|c_n - L| < \varepsilon$.

e.g. Prove that

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1.$$

Sol. Let $a_n = n^{\frac{1}{n}} - 1$. Then

$$n = (1 + a_n)^n = 1 + \binom{n}{1} a_n + \binom{n}{2} (a_n)^2 + \dots + (a_n)^n.$$

Note that $a_n \ge 0$. Since $n > \binom{n}{2}(a_n)^2 = \frac{n(n-1)}{2}(a_n)^2$,

$$0 \le a_n < \sqrt{\frac{2}{n-1}}.$$

Since $\lim_{n\to\infty} \sqrt{\frac{2}{n-1}} = 0$, by squeeze theorem, $\lim_{n\to\infty} a_n = 0$, and so $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

1.3 Monotone Sequences

Definition. Let $\{a_n\}$ be a sequence of real numbers. $\{a_n\}$ is (strictly) **monotone** if it is either (strictly) increasing or (strictly) decreasing.

Theorem. (Monotone convergence theorem) A monotone sequence of real numbers is convergent if and only if it is bounded. Further:

1. If $\{a_n\}$ is bounded increasing sequence then

$$\lim_{n \to \infty} a_n = \sup \left\{ a_n : n \in \mathbb{N} \right\}.$$

2. If $\{a_n\}$ is bounded decreasing sequence then

$$\lim_{n \to \infty} a_n = \inf \left\{ a_n : n \in \mathbb{N} \right\}.$$

3. Bounded monotone sequence is convergent.

Proof. Let $S = \{a_n : n \in \mathbb{N}\}$. Then $S \neq \emptyset$ and, since $\{a_n\}$ is bounded, S has an upper bound. Thus, $\exists \sup S = \sup \{a_n : n \in \mathbb{N}\} = L$.

Let $\varepsilon > 0$. Since $L - \varepsilon$ is not an upper bound of $S, \exists N \in \mathbb{N}$ such that

$$L - \varepsilon < a_N$$
.

Since $\{a_n\}$ is increasing sequence, $a_N \leq a_n$ whenever $n \geq N$, so that for all $n \geq N$,

$$L - \varepsilon < a_N \le a_n \le L < L + \varepsilon$$
.

Thus, $\exists N \in \mathbb{N}$ such that if $n \geq N$,

$$|a_n - L| < \varepsilon.$$

Hence,

$$\lim_{n \to \infty} a_n = \sup \left\{ a_n : n \in \mathbb{N} \right\}.$$

e.g. (Recurrence formula) Let $\{b_n\}$ be defined inductively by

$$b_1 = 3$$
, $b_{n+1} = \frac{b_n}{2} + \frac{3}{b_n}$

for all $n \geq 1$. Show that $\{b_n\}$ is convergent and $\lim_{n \to \infty} b_n = \sqrt{6}$.

Sol. Since $\{b_n\}$ is decreasing and $0 < b_n \le 3$, i.e., $\{b_n\}$ is bounded, $\exists \lim_{n \to \infty} b_n = L$. Then

$$L = \frac{L}{2} + \frac{3}{L},$$

so that $L^2 = 6$, i.e., $L = \sqrt{6}$. Hence $\lim_{n \to \infty} b_n = \sqrt{6}$.

1.4 Subsequences and the Cauchy Criterion

Definition. Let $\{a_n\}$ be a sequence of real numbers and let $n_1 < n_2 < \cdots < n_k < \cdots$ be a strictly increasing sequence of natural numbers. Then $\{a_{n_k}\} := \{a_{n_k}\}_{k=1}^{\infty}$ is called **subsequence** of $\{a_n\}$.

Theorem. If a sequence $\{a_n\}$ of real numbers converges to a real number L if and only if any subsequence $\{a_{n_k}\}$ of $\{a_n\}$ converges to L.

Proof. We show that

$$\lim_{n \to \infty} a_n = L \iff \exists \lim_{k \to \infty} a_{n_k} = L.$$

(\Rightarrow) Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L$, $\exists N \in \mathbb{N}$ such that if $k \ge N$ then $|a_k - L| < \varepsilon$. Since $n_k \ge k$, if $n_k \ge k \ge N$ then $|a_{n_k} - L| < \varepsilon$. Thus, $\lim_{k \to \infty} a_{n_k} = L$.

$$(\Leftarrow)$$
 Since $\{a_n\}$ is subsequence of $\{a_n\}$, $\exists \lim_{n\to\infty} a_n = L$.

Corollary. Let $\{a_n\}$ be a sequence of real numbers.

- 1. If $\{a_n\}$ converges and there exists a subsequence converging to L then $\{a_n\}$ converges to L.
- 2. If $\{a_n\}$ has two convergent subsequence whose limits are not equal then $\{a_n\}$ diverges.
- 3. If a subsequence of $\{a_n\}$ diverges then $\{a_n\}$ diverges.

Definition. We say that a sequence of intervals $\{I_n : n \in \mathbb{N}\}$ is **nested** if the following chain of inclusions holds $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots$.

Theorem. (Nested intervals property) If $I_n = [a_n, b_n]$ is a nested sequence of closed bounded intervals then there exists a $x \in \mathbb{R}$ such that $x \in I_n$ for all $n \in \mathbb{N}$.

Theorem. If $I_n = [a_n, b_n]$ is a nested sequence of closed bounded intervals such that the lengths $b_n - a_n$ of I_n satisfy

$$\lim_{n \to \infty} (b_n - a_n) = 0$$

then the number $x \in I_n$ for all $n \in \mathbb{N}$ is unique.

Proof. Let $A = \{a_n : n \in \mathbb{N}\}$ and $B = \{b_n : n \in \mathbb{N}\}$. Since $A \neq \emptyset$ and A has an upper bound, $\exists \sup A = a$. Similarly, $\exists \inf B = b$. Since $a_n \leq a \leq b \leq b_n$,

$$I = [a, b] \subseteq I_n$$

for all $n \in \mathbb{N}$. Since $\{a_n\}$ is bounded and increasing, $\lim_{n \to \infty} a_n = a$. Similarly, $\lim_{n \to \infty} b_n = b$. Since $a_n \le a$ and $b \le b_n$, for any $n \in \mathbb{N}$,

$$0 \le b - a \le b_n - a_n.$$

By squeeze theorem,

$$\lim_{n \to \infty} (b - a) = 0,$$

that is, a = b.

Theorem. (Bolzano-Weierstrass theorem) A bounded sequence of real numbers has a convergent subsequence.

Definition. A sequence $\{a_n\}$ of real number is said to be a **Cauchy sequence** if for every $\varepsilon > 0$ there exists a natural number N such that for all natural numbers $n, m \geq N$, the terms a_n and a_m satisfy

$$|a_n - a_m| < \varepsilon.$$

Note. $\{a_n\}$ is a Cauchy sequence : $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that if } n, m \geq N \text{ then } |a_n - a_m| < \varepsilon.$

Lemma. If $\{a_n\}$ is a convergent sequence of real numbers, then $\{a_n\}$ is a Cauchy sequence.

Proof. Let $\lim_{n\to\infty} a_n = L$ and let $\varepsilon > 0$. Then $\exists N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - L| < \frac{\varepsilon}{2}$. If $m, n \geq N$ then

$$|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |a_m - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence $\{a_n\}$ is a Cauchy sequence.

Lemma. A Cauchy sequence of real number is bounded.

Proof. Let $\varepsilon = 1$. Since $\{a_n\}$ is a Cauchy sequence, $\exists N \in \mathbb{N}$ such that if $n, N \geq N$ then

$$|a_n - a_N| < 1$$
 implies $|a_n| < 1 + |a_N|$.

Let $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1+|a_N|\}$. Then

$$|a_n| \leq M$$

for all $n \in \mathbb{N}$. Hence $\{a_n\}$ is bounded.

Theorem. (Cauchy convergence criterion) A sequence of real number is convergent if and only if it is a Cauchy sequence.

Proof. (\Rightarrow) It is proved in **Lemma**.

(\Leftarrow) Let $\varepsilon > 0$. Since $\{a_n\}$ is bounded, by Bolzano-Weierstrass Theorem, $\exists \{a_{n_k}\}$, a subsequence of $\{a_n\}$ such that $\lim_{k\to\infty} a_{n_k} = L$. This implies $\exists N_1 \in \mathbb{N}$ such that if $n_k \geq k \geq N$ then $\left|a_{n_k} - L\right| < \frac{\varepsilon}{2}$. Since $\{a_n\}$ is a Cauchy sequence, $\exists N_2 \in \mathbb{N}$ such that if $n, m \geq N_2$ then $|a_n - a_m| < \frac{\varepsilon}{2}$. Let $N = \max\{N_1, N_2\}$. Then if $n_k \geq k \geq N$,

$$|a_k - L| = |a_k - a_{n_k} + a_{n_k} - L| \le |a_k - a_{n_k}| + |a_{n_k} - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definition. We say that sequence $\{a_n\}$ of real numbers is **contractive** if there exists a constant α , $0 < \alpha < 1$ such that

$$|a_{n+2} - a_{n+1}| \le \alpha |a_{n+1} - a_n|$$

for all $n \in \mathbb{N}$. The number α is called the **constant of the contractive sequence**.

Theorem. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Proof. Let $\varepsilon > 0$. Since $\{a_n\}$ is contractive, $\exists \alpha, 0 < \alpha < 1$, such that

$$|a_{n+2} - a_{n+1}| \le \alpha |a_{n+1} - a_n|$$

$$\le \alpha^2 |a_n - a_{n-1}|$$

$$\le \alpha^3 |a_{n-1} - a_{n-2}|$$

$$\le \cdots$$

$$\le \alpha^n |a_2 - a_1|.$$

Then, for $m > n \ge N$,

$$|a_{m} - a_{n}| = |a_{m} - a_{m-1} + a_{m-1} + \dots - a_{n+1} + a_{n+1} - a_{n}|$$

$$\leq |a_{m} - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+2} - a_{n+1}| + |a_{n+1} - a_{n}|$$

$$\leq \alpha^{m-2} |a_{2} - a_{1}| + \alpha^{m-3} |a_{2} - a_{1}| + \dots + \alpha^{n} |a_{2} - a_{1}| + \alpha^{n-1} |a_{2} - a_{1}|$$

$$\leq (\alpha^{n-1} + \alpha^{n} + \dots + \alpha^{m-3} + \alpha^{m-2}) |a_{2} - a_{1}|$$

$$\leq \frac{\alpha^{n-1} (1 - \alpha^{m-n})}{1 - \alpha} |a_{2} - a_{1}|$$

$$\leq \frac{\alpha^{n-1}}{1 - \alpha} |a_{2} - a_{1}|$$

$$\leq \frac{\alpha^{N}}{1 - \alpha} |a_{2} - a_{1}| < \varepsilon.$$

This implies

$$N < \frac{\ln\left(\frac{\varepsilon(1-\alpha)}{|a_2-a_1|}\right)}{\ln\alpha}.$$

By the completeness axiom of real number, there exists N. Hence $\{a_n\}$ is a Cauchy sequence.

Definition. Let $\{a_n\}$ be a sequence of real numbers.

1. We say that $\{a_n\}$ diverges to infinity (or tends to infinity) if for every $M \in \mathbb{R}$, there exists a natural number N such that if $n \geq N$ then

$$a_n > M$$

and write

$$\lim_{n \to \infty} a_n = +\infty.$$

2. We say that $\{a_n\}$ diverges to minus infinity (or tends to minus infinity) if for every $M \in \mathbb{R}$, there exists a natural number N such that if $n \geq N$ then

$$a_n < M$$

and write

$$\lim_{n\to\infty} a_n = -\infty.$$

3. We say that $\{a_n\}$ is **properly divergent** in case we have either

$$\lim_{n \to \infty} a_n = +\infty \quad \text{or} \quad \lim_{n \to \infty} a_n = -\infty.$$

Note. $\lim_{n\to\infty} a_n = \pm \infty \iff \forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that if } n \geq N \text{ then } a_n > M(\text{or } a_n < M).$

Theorem. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that

$$\lim_{n \to \infty} a_n = +\infty \quad \text{and} \quad \lim_{n \to \infty} b_n > 0$$

then

$$\lim_{n\to\infty} a_n b_n = +\infty.$$

Proof. Let M > 0. Since $\lim_{n \to \infty} b_n > 0$, $\exists L = \frac{1}{2} \lim_{n \to \infty} b_n \in \mathbb{R}$ such that $0 < L < \lim_{n \to \infty} b_n$ and $\exists N_1 \in \mathbb{N}$ such that if $n \ge N_1$ then $b_n > L$. Since $\lim_{n \to \infty} a_n = +\infty$, $\exists N_2 \in \mathbb{N}$ such that if $n \ge N_2$ then $a_n > \frac{M}{L}$. Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$a_n b_n > \frac{M}{L} L = M.$$

Hence $\lim_{n\to\infty} a_n b_n = +\infty$.

Theorem. A monotone sequence of real numbers is properly divergent if and only if it is unbounded.

1. If $\{a_n\}$ is an bounded increasing sequence then

$$\lim_{n\to\infty} a_n = +\infty.$$

2. If $\{a_n\}$ is an bounded decreasing sequence then

$$\lim_{n\to\infty} a_n = -\infty.$$

Proof. Let $M \in \mathbb{R}$. Since $\{a_n\}$ is increasing and unbounded $\exists N \in \mathbb{N}$ such that $a_N > M$. If $n \geq N$,

$$a_n \ge a_N > M$$
.

Hence, $\lim_{n\to\infty} a_n = +\infty$.

Theorem. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers and suppose that for all $n \in \mathbb{N}$,

$$a_n \leq b_n$$
.

Then the followings are holds:

If
$$\lim_{n\to\infty} a_n = +\infty$$
 then $\lim_{n\to\infty} b_n = +\infty$

If
$$\lim_{n\to\infty} b_n = -\infty$$
 then $\lim_{n\to\infty} a_n = -\infty$

Proof. Let $M \in \mathbb{R}$. Since $\lim_{n \to \infty} a_n = +\infty$, $\exists N \in \mathbb{N}$ such that if $n \ge N$ then $a_n > M$. Since $a_n \le b_n$, $b_n > M$. Hence $\lim_{n \to \infty} b_n = +\infty$.

Theorem. (Limit comparison theorem) Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive real numbers and suppose that for some positive real number L > 0, we have

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L.$$

Then

 $\lim_{n \to \infty} a_n = +\infty \text{ if and only if } \lim_{n \to \infty} b_n = +\infty.$

Theorem. Let $\{a_n\}$ be a sequence of real numbers such that $a_n > 0$ for all $n \in \mathbb{N}$. Then

$$\lim_{n\to\infty} a_n = +\infty \text{ if and only if } \lim_{n\to\infty} \frac{1}{a_n} = 0.$$

Proof. (\Rightarrow) Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = +\infty$, for $M(=\frac{1}{\varepsilon}) \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then $a_n > M(=\frac{1}{\varepsilon})$ implies

$$\left| \frac{1}{a_n} \right| = \frac{1}{a_n} < \varepsilon.$$

 (\Leftarrow) Let $M \in \mathbb{R}^+$. Since $\lim_{n \to \infty} \frac{1}{a_n} = 0$, for $\varepsilon (=\frac{1}{M}) > 0$, $\exists N \in \mathbb{N}$ such that if $n \ge N$ then

$$\left| \frac{1}{a_n} - 0 \right| = \frac{1}{a_n} < \varepsilon (= \frac{1}{M})$$

implies

$$a_n > M$$
.

Definition. Let $\{a_n\}$ be a sequence of real numbers.

1. Let $A_k = \sup \{a_k, a_{k+1}, \dots\} = \sup \{a_n : n \ge k\}$. Then L is the **limit superior** of $\{a_n\}$ if

$$L := \lim_{k \to \infty} A_k = \lim_{k \to \infty} \sup a_k.$$

2. Let $B_k = \inf \{a_k, a_{k+1}, \dots\} = \inf \{a_n : n \ge k\}$. Then L is the **limit inferior** of $\{a_n\}$ if

$$L := \lim_{k \to \infty} B_k = \lim_{k \to \infty} \inf a_k.$$

Theorem. Let $\{a_n\}$ be a bounded sequence of real numbers. Then

 $\lim_{n\to\infty} a_n = L \quad \text{if and only if} \quad L = \limsup a_n = \liminf a_n.$

Proof. (\Rightarrow) Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L$, $\exists N \in \mathbb{N}$ such that if $n \ge N$ then $|a_n - L| < \frac{\varepsilon}{2}$, i.e.,

$$L - \frac{\varepsilon}{2} < a_n < L + \frac{\varepsilon}{2}.$$

Thus, if $n \geq N$,

$$L - \varepsilon < L - \frac{\varepsilon}{2} < \sup \{a_n, a_{n+1}, a_{n+2}, \dots\} \le L + \frac{\varepsilon}{2} < L + \varepsilon,$$

and so $\left|\sup\{a_n, a_{n+1}, a_{n+2}, \cdots\} - L\right| < \varepsilon$. Hence $\limsup a_n = L$. Similarly, $\liminf a_n = L$.

 (\Leftarrow) Let $\varepsilon > 0$. Since $\limsup a_n = L$, $\exists N_1 \in \mathbb{N}$ such that if $n \geq N_1$ then $|\sup \{a_n, a_{n+1}, a_{n+2}, \cdots\} - L| < \varepsilon$. This implies

$$a_n \le \sup \{a_n, a_{n+1}, a_{n+2}, \cdots\} < L + \varepsilon.$$

Since $\liminf a_n = L$, $\exists N_2 \in \mathbb{N}$ such that if $n \geq N_2$ then $\left|\inf \{a_n, a_{n+1}, a_{n+2}, \cdots\} - L\right| < \varepsilon$. This implies

$$L-\varepsilon < \inf \{a_n, a_{n+1}, a_{n+2}, \cdots \} \le a_n.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$L - \varepsilon < a_n < L + \varepsilon$$
, i.e., $|a_n - L| < \varepsilon$.

Hence $\lim_{n\to\infty} a_n = L$.

2 Infinite Series

2.1 Introduction to Infinite Series

Definition. If $\{a_n\}$ is a sequence is \mathbb{R} then the **infinite series**(or simply the series) generated by $\{a_n\}$ is the sequence $\{S_k\}$ defined by

$$S_1 := a_1$$
 $S_2 := a_1 + a_2$
 \vdots
 $S_k := a_1 + a_2 + \dots + a_{k-1} + a_k$
 \vdots

The number of a_k are called the **terms** of the series and the numbers S_k are called the **partial** sums of this series. If

$$\lim_{k\to\infty} S_k$$

exists, we say that his series is **convergent** and call this limit the **sum** or the **value** of this series. If this limit does not exits, we say that the series $\{S_k\}$ is **divergent**.

* The *n*-th Term Test

Theorem. (The *n*-th term test) If the series $\sum a_n$ converges then

$$\lim_{n \to \infty} a_n = 0.$$

Proof. Let $S_n = \sum_{k=1}^n a_k$ and let $\lim_{n \to \infty} S_n = L$. Then, since $a_n = S_n - S_{n-1}$,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = L - L = 0.$$

Corollary. If $\lim_{n\to\infty} a_n \neq 0$ then the series $\sum a_n$ diverges.

* Cauchy criterion for series

Recall.

 $\{a_n\}$ is a Cauchy sequence $\iff \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. if } n, m \geq N, \text{ then } |a_n - a_m| < \varepsilon.$

Theorem. (Cauchy criterion for series) The series $\sum a_n$ converges if and only if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m > n \ge N$ then

$$|S_m - S_n| = |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$$

Corollary. The series $\sum a_n$ converges if and only if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then

$$\sum_{k=n}^{\infty} |a_k| < \varepsilon.$$

2.2 Convergence Test Part I: Comparison, Limit Comparison & Integral Tests

Theorem. (Comparison test) Let $\{a_n\}$ and $\{b_n\}$ be real sequences and suppose that $0 \le a_n \le b_n$ for $n \in \mathbb{N}$. Then

- 1. The convergence of $\sum b_n$ implies the convergence of $\sum a_n$.
- 2. The divergence of $\sum a_n$ implies the divergence of $\sum b_n$.

Proof. Let $\varepsilon > 0$. Since $\exists \sum_{n=1}^{\infty} b_n$, $\exists N \in \mathbb{N}$ such that if $m > n \geq N$ then

$$|b_{n+1} + b_{n+2} + \dots + b_m| < \varepsilon.$$

Since $0 \le a_n \le b_n$,

$$|a_{n+1} + a_{n+2} + \dots + a_m| = a_{n+1} + a_{n+2} + \dots + a_m$$

$$\leq b_{n+1} + b_{n+2} + \dots + b_m$$

$$= |b_{n+1} + b_{n+2} + \dots + b_m| < \varepsilon.$$

Hence, $\exists \sum_{n=1}^{\infty} a_n$.

e.g. (The p-series) The p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges when p > 1 and diverges when $(0 <) p \le 1$.

e.g. The series

$$\sum_{n=1}^{\infty} \frac{1}{3n^3}$$

converges. Then the series

$$\sum_{n=1}^{\infty} \frac{1}{3n^3 - 1}$$

converges?

Sol. Since $\frac{1}{3n^3 - 1} < \frac{1}{n^3}$, $\sum_{n=1}^{\infty} \frac{1}{3n^3 - 1}$ converges.

Theorem. (Limit comparison test) Let $\{a_n\}$ and $\{b_n\}$ are strictly positive sequences and suppose that the following limit exists in \mathbb{R}

$$r = \lim_{n \to \infty} \frac{a_n}{b_n}.$$

- 1. If $r \neq 0$ then $\sum a_n$ is convergent (divergent) if and only if $\sum b_n$ is convergent (divergent).
- 2. If r = 0 and if $\sum b_n$ is convergent then $\sum a_n$ is convergent.

Proof. Let
$$a_n = \frac{1}{n^p}$$
 and $b_n = \frac{1}{n^q}$. Then $r = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^q}{n^p}$.

1. Let $r \neq 0$, i.e., p = q. Thus,

$$\exists \sum_{n=1}^{\infty} a_n \iff \exists \sum_{n=1}^{\infty} b_n.$$

2. Let r = 0, i.e., p > q. If $\exists \sum_{n=1}^{\infty} b_n$ with q > 1, then

$$\exists \sum_{n=1}^{\infty} a_n \text{ with } p > q > 1.$$

(Another proof) For $\varepsilon = 1 > 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then

$$\left| \frac{a_n}{b_n} - r \right| < 1$$
, i.e., $(r-1)b_n < a_n < (r+1)b_n$

That is, for $c \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then

$$\frac{r}{c}b_n \le a_n \le crb_n.$$

So

$$\frac{r}{c}\sum_{n=1}^{\infty}b_n \le \sum_{n=1}^{\infty}a_n \le cr\sum_{n=1}^{\infty}b_n.$$

Theorem. Let $f:[1,\infty)\to\mathbb{R}$ be a positive, decreasing function on $[1,\infty)$. Then the series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral

$$\int_{1}^{\infty} f(x) \ dx = \lim_{b \to \infty} \int_{1}^{b} f(x) \ dx$$

exists. In the case of convergence, the partial sum $S_n = \sum_{k=1}^n f(k)$ and the sum $S = \sum_{k=1}^\infty f(k)$ satisfy the estimate

 $\int_{n+1}^{\infty} f(x) \ dx \le S - S_n \le \int_{n}^{\infty} f(x) \ dx.$

Proof. Since f is positive and decreasing on the interval [k-1,k], we have

$$f(k) \le \int_{k-1}^{k} f(x) \ dx \le f(k-1).$$

And then

$$\sum_{k=2}^{n} f(k) \le \sum_{k=2}^{n} \int_{k-1}^{k} f(x) \ dx \le \sum_{k=2}^{n} f(k-1),$$

and so

$$S_n - f(1) \le \int_1^n f(x) \ dx \le S_{n-1}.$$

Consequently,

$$\lim_{n \to \infty} S_n - f(1) \le \int_1^\infty f(x) \ dx \le \lim_{n \to \infty} S_{n-1}.$$

By Comparison test,

$$\exists \sum_{n=1}^{\infty} f(n) \iff \exists \int_{1}^{\infty} f(x) \ dx.$$

2.3 Absolute Convergence

Definition. Let $\{a_n\}$ be a sequence in \mathbb{R} . We say that the series $\sum a_n$ is **absolutely convergent** if the series $\sum |a_n|$ is convergent in \mathbb{R} . A series is said to be **conditionally**(or **non-absolutely**) **convergent** if it is convergent, but it is not absolutely convergent.

Theorem. (Absolute convergence test) If a series $\sum a_n$ in \mathbb{R} is absolutely convergent then it is convergent.

Proof. Let $\varepsilon > 0$. Since $\exists \sum_{n=1}^{\infty} |a_n|, \exists N \in \mathbb{N}$ such that if $m > n \ge N$,

$$||a_{n+1}| + |a_{n+2}| + \dots + |a_m|| < \varepsilon.$$

By triangle inequality,

$$||a_{n+1}| + |a_{n+2}| + \dots + |a_m|| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m| < \varepsilon.$$

Hence, $\exists \sum_{n=1}^{\infty} a_n$ by Cauchy criterion.

2.4 Convergence Test Part II: Root and Ratio Tests

Theorem. (Root test) Let $\sum a_n$ be a series such that

$$r = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

- 1. If r < 1 then the series $\sum a_n$ is absolutely convergent.
- 2. If r > 1 then the series $\sum a_n$ is divergent.
- 3. If r = 1 then this test gives no information.

Proof.

1. Let r < 1. Since $\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = r$, for $\varepsilon > 0$ such that $r + \varepsilon < 1$, $\exists N \in \mathbb{N}$ such that if $n \ge N$, then

$$\left\|a_n\right|^{\frac{1}{n}} - r\right| < \varepsilon.$$

This implies that

$$0 \le |a_n|^{\frac{1}{n}} < r + \varepsilon,$$

$$0 \le |a_n| < (r + \varepsilon)^n.$$

Since $r + \varepsilon < 1$, $\exists \sum_{n=N}^{\infty} (r + \varepsilon)^n$. By the comparison test, $\exists \sum_{n=N}^{\infty} |a_n|$. Since $\exists \sum_{n=1}^{N-1} |a_n|$,

$$\exists \sum_{n=1}^{\infty} |a_n| .$$

2. Let r > 1. Since $\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = r$, for $\varepsilon > 0$ such that $r - \varepsilon > 1$, $\exists N \in \mathbb{N}$ such that if $n \ge N$, then

$$\left\|a_n\right|^{\frac{1}{n}} - r\right| < \varepsilon.$$

This implies that

$$r - \varepsilon < |a_n|^{\frac{1}{n}},$$

 $(r - \varepsilon)^n < |a_n|.$

Since $r - \varepsilon > 1$ and by comparison test,

$$\nexists \sum_{n=N}^{\infty} (r - \varepsilon)^n \implies \nexists \sum_{n=N}^{\infty} |a_n| \implies \nexists \sum_{n=1}^{\infty} |a_n|.$$

Theorem. (Ratio test) Let $\sum a_n$ be a series such that

$$r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- 1. If r < 1 then the series $\sum a_n$ is absolutely convergent.
- 2. If r > 1 then the series $\sum a_n$ is divergent.
- 3. If r = 1 then this test gives no information.

Proof. It is similar to Root test.

e.g. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

converges.

Proof. Let $a_n = \frac{1}{n!}$. Since

$$r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+1)!} \cdot n! \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1,$$

 $\sum_{n=1}^{\infty} a_n$ converges.

2.5 Alternating Series

Definition (Alternating series) A sequence $\{a_n\}$ of nonzero real numbers is said to be alternating if the terms $(-1)^{n+1}a_n, n \in \mathbb{N}$, are all positive(or all negative) real numbers. If the sequence $\{a_n\}$ is alternating, we say that the series $\sum a_n$ it generates is an alternating series.

Theorem. (Alternating series test) Let $\{a_n\}$ be a decreasing sequence of strictly positive numbers with $\lim a_n = 0$. Then the alternating series $\sum (-1)^{n+1}a_n$ is convergent.

Proof. Let

$$S_n := \sum_{k=1}^n (-1)^{k+1} a_k.$$

Then since

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + (a_5 - a_6) + \dots + (a_{2n} - a_{2n})$$

$$\leq (a_1 - a_2) + (a_3 - a_4) + (a_5 - a_6) + \dots + (a_{2n} - a_{2n}) + (a_{2n+1} + a_{2n+2}) = S_{2(n+1)},$$

 $\{S_{2n}\}$ is increasing. Since

$$S_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n}$$

 $\leq a_1$.

 $\{S_{2n}\}$ is bounded. By monotone convergence theorem, $\exists \lim_{n\to\infty} S_{2n} = S$.

We must show that $\lim_{n\to\infty} S_{2n+1}=S$. Let $\varepsilon>0$. Since $\lim_{n\to\infty} S_{2n}=S$, $\exists N_1\in\mathbb{N}$ such that if $(2n>)n\geq N_1$ then

$$|S_{2n} - S| < \frac{\varepsilon}{2}.$$

Since $\exists \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} \sum_{k=1}^{2n} (-1)^{k+1} a_k$, by the *n*-th term test,

$$\lim_{n \to \infty} (-1)^{n+1} a_n = 0.$$

Then $\exists N_2 \in \mathbb{N}$ such that if $(2n+1) > n \geq N_2$, then

$$\left| (-1)^{2n+2} a_{2n+1} \right| < \frac{\varepsilon}{2} \implies \left| a_{2n+1} \right| < \frac{\varepsilon}{2}.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$|S_{2n+1} - S| = |S_{2n} + a_{2n+1} - S|$$

$$\leq |S_{2n} - S| + |a_{2n+1}| < \varepsilon.$$

Hence,
$$\lim_{n\to\infty} S_{2n+1} = S$$
.

Lemma. (Abel's lemma) Let $\{a_n\}$ and $\{b_n\}$ sequences in \mathbb{R} and let the parital sums of $\sum b_n$ be denoted by $\{S_n\}$ with $S_0 = 0$. If m > n then

$$\sum_{k=n+1}^{m} a_k b_k = (a_m S_m - a_{n+1} S_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) S_k.$$

Proof. Let
$$S_n = \sum_{k=1}^n b_k$$
 with $S_0 = 0$. Then

$$\sum_{k=n+1}^{m} a_k b_k = \sum_{k=n+1}^{m} a_k (S_k - S_{k-1})$$

$$= \sum_{k=n+1}^{m} a_k S_k - \sum_{k=n+1}^{m} a_k S_{k-1}$$

$$= a_{n+1} S_{n+1} + a_{n+2} S_{n+2} + \dots + a_{m-1} S_{m-1} + a_m S_m$$

$$-(a_{n+1} S_n + a_{n+2} S_{n+1} + a_{n+3} S_{n+2} + \dots + a_m S_{m-1})$$

$$= a_m S_m - a_{n+1} S_n + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) S_k$$

Theorem. (Dirichlet's test) If $\{a_n\}$ is a decreasing sequence with $\lim a_n = 0$ and if the partial sums $\{S_n\}$ of $\sum b_n$ are bounded then $\sum a_n b_n$ is convergent.

Proof. Let $\varepsilon > 0$. Since S_n is bounded, $\exists B > 0$ such that

$$|S_n| \leq M$$

for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} a_n = 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then

$$|a_n| < \frac{\varepsilon}{2B}.$$

Since
$$\sum_{k=n+1}^{m} a_k b_k = (a_m S_m - a_{n+1} S_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) S_k$$
, if $m > n \ge N$, then

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| (a_m S_m - a_{n+1} S_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) S_k \right|$$

$$= \left| a_m S_m \right| + \left| a_{n+1} S_n \right| + \left| \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) S_k \right|$$

$$\leq a_m |S_m| + a_{n+1} |S_n| + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) |S_k|$$

$$\leq a_m B + a_{n+1} B + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) B$$

$$= (a_m + a_{n+1}) B + (a_{n+1} + a_m) B$$

$$= 2a_{n+1} B < \varepsilon.$$

Hence, $\exists \sum_{n=1}^{\infty} a_n b_n$.

Theorem. (Abel's test) If $\{a_n\}$ is a convergent monotone sequence and the series $\sum b_n$ is convergent, then the series $\sum a_n b_n$ is also convergent.

Proof. Let
$$S_n = \sum_{k=1}^n b_k$$
. Since $\exists \lim_{n \to \infty} S_n$, $\sum_{k=1}^n b_k$ is bounded.

1. Let $\{a_n\}$ be a decreasing sequence and $\lim_{n\to\infty} a_n = L$.

Let $c_n = a_n - L$. Then $\{c_n\}$ is decreasing and

$$\lim_{n \to \infty} c_n = 0.$$

Since
$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (c_n - L) b_n = \sum_{n=1}^{\infty} c_n b_n + \sum_{n=1}^{\infty} L b_n, \ \exists \sum_{n=1}^{\infty} a_n b_n.$$

2. Let $\{a_n\}$ be a increasing sequence and $\lim_{n\to\infty} a_n = L$.

Let $d_n = L - a_n$. Then $\{d_n\}$ is decreasing and

$$\lim_{n \to \infty} d_n = 0.$$

Since
$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (L - d_n) b_n = \sum_{n=1}^{\infty} L b_n - \sum_{n=1}^{\infty} d_n b_n$$
, $\exists \sum_{n=1}^{\infty} a_n b_n$.

Theorem. (Cauchy Condensation Test) Let $\sum a_n$ be a series of monotone decreasing positive numbers. Then

$$\sum_{n=1}^{\infty} a_n \text{ converges if and only if } \sum_{n=1}^{\infty} 2^n a_{2^n} \text{ converges.}$$

Proof. Let $S_n = \sum_{k=1}^n a_k$. Then

$$S_{2^n} = (a_1 + a_2 + \dots + a_{2^n})$$
 and $\sum_{n=1}^{\infty} S_{2^n} = \sum_{n=1}^{\infty} S_n$.

Then

$$S_{2^{n}} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} + \dots + a_{2^{n}}$$

$$\leq a_{1} + (a_{2} + a_{2}) + (a_{4} + a_{4} + a_{4} + a_{4}) + \underbrace{(a_{2^{n-1}} + a_{2^{n-1}} + \dots + a_{2^{n-1}})}_{2^{n-1} \text{ times}} + a_{2^{n}}$$

$$= a_{1} + 2a_{2} + 4a_{4} + \dots + 2^{n-1}a_{2^{n-1}} + a_{2^{n}}$$

. Since

$$S_{2^{n}} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} + \dots + a_{2^{n}}$$

$$\geq \frac{1}{2}a_{1} + a_{2} + (a_{4} + a_{4}) + (a_{8} + a_{8} + a_{8} + a_{8}) + \dots + (\underbrace{a_{2^{n}} + a_{2^{n}} + \dots + a_{2^{n}}}_{2^{n} \text{ times}})$$

$$= \frac{1}{2}(a_{1} + 2a_{2} + 4a_{4} + 8a_{8} + \dots + 2^{n}a_{2^{n}}),$$

by comparison test, we can conclude that

$$\exists \sum_{n=1}^{\infty} a_n \iff \exists \sum_{n=1}^{\infty} 2^n a_{2^n}.$$

Part III

Functions in Real number

1 Limits of Functions

1.1 Limits of Functions

Definition. Let $a \in \mathbb{R}$ and let $\varepsilon > 0$.

1. The ε -neighborhood of a is the set

$$\mathcal{N}_{\varepsilon}(a) := \left\{ x \in \mathbb{R} : |x - a| < \varepsilon \right\} = \left\{ x \in \mathbb{N} : a - \varepsilon < x < a + \varepsilon \right\}.$$

2. D is called the **neighborhood** of a if there exists an ε -neighborhood $\mathcal{N}_{\varepsilon}(a)$ such that

$$\mathcal{N}_{\varepsilon}(a) \subset D.$$

3. The ε -deleted neighborhood of a is the set

$$\mathcal{N}_{\varepsilon}^{*}(a) := \left\{ x \in \mathbb{R} : 0 < |x - a| < \varepsilon \right\} = \left\{ x \in \mathbb{N} : a - \varepsilon < x < a + \varepsilon \right\} \setminus \left\{ a \right\}.$$

Definition. Let $D \in \mathbb{R}$. A point a is an accumulation point or cluster point (or limit point) of D if for every δ -neighborhood $\mathcal{N}_{\delta}(a)$ of a contains at least one point of D distinct from a, i.e.,

$$(a-\delta,a+\delta)\cap (D\setminus\{a\})\neq\varnothing,$$

Theorem. A number $a \in \mathbb{R}$ is an accumulation point of a subset $D \subseteq \mathbb{R}$ if any only if there exists a sequence $\{a_n\}$ in D such that for all $n \in \mathbb{N}$

$$\lim_{n \to \infty} a_n = a \quad \text{and} \quad a_n \neq a.$$

Proof. (\Rightarrow) Let a be an accumulation point of $D \in \mathbb{R}$. Then, for $n \in \mathbb{N}$, $\exists a_n \in D$ such that

$$a_n \in \left(a - \frac{1}{n}, \ a + \frac{1}{n}\right) - \{a\}.$$

And this implies

$$0<|a_n-a|<\frac{1}{n}.$$

By squeeze theorem, $\lim_{n\to\infty} a_n = a$.

(\Leftarrow) Let $\exists \{a_n\}$ such that $\lim_{n\to\infty} a_n = a$ and $a_n \neq a$. Let $\varepsilon > 0$ / Since $\lim_{n\to\infty} a_n = a$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then $0 < |a_n - a| < \varepsilon$ and $0 < |a_N - a| < \varepsilon$ also. Hence, a is an accumulation point of D.

Definition. Let $D \in \mathbb{R}$ and a be an accumulation point of D. A function $f: D \to \mathbb{R}$, a real number L is said to be a **limit** of f at a if for given $\varepsilon > 0$, there exists a $\delta(\varepsilon) > 0$ such that if $x \in D$ and $0 < |x - a| < \delta(\varepsilon)$ then

$$|f(x) - L| < \varepsilon.$$

If the limit of f at a doest not exists, we say that f diverges at a.

Note.

• (Limit of sequence) $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}$ such that

if
$$n \ge N(\varepsilon)$$
 then $|a_n - L| < \varepsilon$.

• (Limit of function) $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \text{ such that}$

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \varepsilon$.

Theorem. (Uniqueness of limits) Let $f: D \to \mathbb{R}$ be a function and if a is an accumulation point of D then f can have only one limit at a.

Proof. Let $\lim_{x\to a} f(x) = L_1$ and $\lim_{x\to a} f(x) = L_2$. Let $\varepsilon > 0$. Since $\lim_{x\to a} f(x) = L_1$, $\exists \delta_1 > 0$ such that if $0 < |x-a| < \delta_1$ then $|f(x) - L_1| < \frac{\varepsilon}{2}$. Since $\lim_{x\to a} f(x) = L_2$, $\exists \delta_2 > 0$ such that if $0 < |x-a| < \delta_1$ then $|f(x) - L_2| < \frac{\varepsilon}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then if $0 < |x-a| < \delta$ then

$$|L_1 - L_2| = |L_1 - f(x) + f(x) - L_2| \le |f(x) - L_1| + |f(x) - L_2| < \varepsilon.$$

Hence
$$L_1 = L_2$$
.

Definition. Let $f: D \to \mathbb{R}$ be a function.

1. If a is an accumulation point of $D \cap (a, \infty)$, then we say that $L \in \mathbb{R}$ is a **right-hand limit** of f at a if given any $\varepsilon > 0$, there exists a $\delta > 0$ such that all $x \in D$ with $a < x < a + \delta$,

$$|f(x) - L| < \varepsilon.$$

In this case, we write

$$\lim_{x \to a+} f(x) = L \quad \text{or} \quad f(a+) = L.$$

2. If a is an accumulation point of $D \cap (-\infty, a)$, then we say that $L \in \mathbb{R}$ is a **left-hand limit** of f at a if given any $\varepsilon > 0$, there exists a $\delta > 0$ such that all $x \in D$ with $a - \delta < x < a$,

$$|f(x) - L| < \varepsilon.$$

In this case, we write

$$\lim_{x \to a^{-}} f(x) = L \quad \text{or} \quad f(a^{-}) = L.$$

Note.

$$\lim_{x \to a+} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that if } a < x < a + \delta \text{ then } |f(x) - L| < \varepsilon.$$

$$\lim_{x \to a^{-}} f(x) = L \iff \forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that if } a - \delta < x < a \text{ then } |f(x) - L| < \varepsilon.$$

Theorem. Let $f:D\to\mathbb{R}$ be a function and a be an accumulation point of $D\cap(a,\infty)$ and $D\cap(-\infty,a)$. Then

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a+} = L = \lim_{x \to a-} f(x).$$

Proof. (\Rightarrow) Let $\varepsilon > 0$. Since $\lim_{x \to a} f(x) = L$, $\exists \delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \varepsilon$.

Thus

if
$$a < x < a + \delta$$
 then $|f(x) - L| < \varepsilon$, i.e., $\lim_{x \to a+} f(x) = L$,

if
$$a - \delta < x < a$$
 then $|f(x) - L| < \varepsilon$, i.e., $\lim_{x \to a^-} f(x) = L$.

 (\Leftarrow) Let $\varepsilon > 0$. Since $\lim_{x \to a^+} f(x) = L$, $\exists \delta_1 > 0$ such that

if
$$a < x < a + \delta_1$$
 then $|f(x) - L| < \varepsilon$.

Since $\lim_{x\to a^-} f(x) = L$, $\exists \delta_2 > 0$ such that

if
$$a - \delta_2 < x < a$$
 then $|f(x) - L| < \varepsilon$.

Let
$$\delta = \min \{\delta_1, \delta_2\}$$
. Then if $0 < |x - a| < \delta, |f(x) - L| < \varepsilon$. $\lim_{x \to a} f(x) = L$.

1.2 Some Properties

Theorem. (Sequential criterion) Let $f: D \to \mathbb{R}$ be a function and a be an accumulation point of D. Then the following are equivalent.

- $1. \lim_{x \to a} f(x) = L.$
- 2. For every sequence $\{x_n\}$ in D that converges to a such that $x_n \neq a$ for all $n \in \mathbb{N}$,

$$\lim_{n \to \infty} f(x_n) = L.$$

Proof. (\Rightarrow) Let $\varepsilon > 0$. Since $\lim_{x \to a} = L$, $\exists \delta > 0$ such that if $0 < |x - a| < \delta$ then

$$|f(x) - L| < \varepsilon.$$

Since $\lim_{n\to\infty} x_n = a$ and $x_n \neq a$, for given $\delta > 0$, $\exists N \in \mathbb{N}$ such that if $n \geq N$ then

$$0 < |x_n - a| < \delta.$$

Since $x_n \in D$, $|f(x) - L| < \varepsilon$. $\therefore \lim_{n \to \infty} f(x_n) = L$.

(\Leftarrow) Assume that $\lim_{x\to a} f(x) \neq L$, i.e., $\exists \varepsilon > 0, \, \forall \delta > 0, \, \exists x \in D$ such that

$$0 < |x - a| < \delta$$
 but $|f(x) - L| \ge \varepsilon$.

Since $\lim_{n\to\infty} x_n = a$ and $x_n \neq a$, for $n \in \mathbb{N}$, $\exists x_n \in D$ such that

$$0 < |x_n - a| < \frac{1}{n} \implies |f(x_n) - L| \ge \varepsilon.$$

Since $\lim_{n\to\infty} f(x_n) = L$, it is contradiction. Hence, $\lim_{x\to a} f(x) = L$.

Note.

 $\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ such that if } 0 < |x-a| < \delta, \text{ for } x \in D, \text{ then } |f(x) - L| < \varepsilon.$

 $\lim_{x \to a} f(x) \neq L \iff \exists \varepsilon > 0, \forall \delta > 0, \ \exists x \in D \text{ such that if } 0 < |x - a| < \delta \text{ but } \left| f(x) - L \right| \ge \varepsilon.$

Theorem. (Divergence criterion) Let $f: D \to \mathbb{R}$ be a function and a be an accumulation point of D. Then the following are equivalent.

- 1. $\lim_{x \to a} f(x) \neq L.$
- 2. There exists a sequence $\{x_n\}$ in D with $x_n \neq a$ for all $n \in \mathbb{N}$ such that

$$\lim_{n \to \infty} x_n = a \quad \text{but} \quad \lim_{n \to \infty} f(x_n) \neq L.$$

Definition. Let $f: D \to \mathbb{R}$ be a function and let a be an accumulation point of D. We say that f is **bounded** on a neighborhood of a if there exists a $\mathcal{N}_{\delta}(a)$ and a constant M > 0 such that for all $x \in D \cap \mathcal{N}_{\delta}(a)$,

$$|f(x)| \le M.$$

Theorem. Let $f: D \to \mathbb{R}$ be a function and let a be an accumulation point of D. If

$$\lim_{x \to a} f(x) = L,$$

then f is bounded on some neighborhood of a.

Proof. Let $\varepsilon = 1$. Since $\lim_{x \to a} f(x) = L$, $\exists \delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$. Let $x \in (a - \delta, a + \delta) \cap D$ and let

$$M := \begin{cases} 1 + |L|, & a \notin D \\ \sup \left\{ 1 + |L|, |f(a)| \right\}, & a \in D \end{cases}.$$

Then $|f(x)| \leq M$, for $x \in (a - \delta, a + \delta) \cap D$.

Theorem. Let $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ be functions and a be an accumulation point of D. Further, let $k\in\mathbb{R}$. If

$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M$$

then:

- $(i) \lim_{x \to a} (fg)(x) = LM.$
- (ii) $\lim_{x\to a} (f/g)(x) = L/M$ where $M \neq 0$.

Proof. Let $\varepsilon > 0$.

(i) Since $\lim_{x\to a} f(x) = L$, $\exists \delta_1 > 0$ and $\exists F > 0$ such that if $0 < |x - a| < \delta_1$ then $|f(x)| \le F$. Since $\lim_{x\to a} g(x) = M$, $\exists \delta_2 > 0$ such that if $0 < |x - a| < \delta_2$ then $|g(x) - M| < \frac{\varepsilon}{2F}$.

Since $\lim_{x\to a} f(x) = L$, $\exists \delta_3 > 0$ such that if $0 < |x-a| < \delta_3$ then $|f(x) - L| < \frac{\varepsilon}{2|M| + 1}$.

Let $\delta = \min \{\delta_1, \delta_2, \delta_3\}$. Then if $0 < |x - a| < \delta$, then

$$\begin{split} \left| f(x)g(x) - LM \right| &\leq \left| f(x) \right| \left| g(x) - M \right| + \left| f(x) - L \right| |M| \\ &< F \cdot \frac{\varepsilon}{2F} + \frac{\varepsilon}{2|M| + 1} \cdot |M| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

(ii) Since $\lim_{x\to a} g(x) = M$, for given $\varepsilon = \frac{|M|}{2} > 0$, $\exists \delta_1 > 0$ such that if $0 < |x-a| < \delta_1$ then

$$\left| \left| g(x) \right| - |M| \right| \leq \left| g(x) - M \right| < \frac{|M|}{2} \quad \Longrightarrow \quad \frac{|M|}{2} < \left| g(x) \right| \quad \Longrightarrow \quad \frac{1}{\left| g(x) \right|} < \frac{2}{|M|}.$$

Since $\lim_{x\to a} g(x) = M$, $\exists \delta_2 > 0$ such that if $0 < |x-a| < \delta_2$ then

$$\left|g(x) - M\right| < \frac{\left|M\right|^2}{2}\varepsilon.$$

Let $\delta = \min \{\delta_1, \delta_2\}$. Then if $0 < |x - a| < \delta$, then

$$\left| \frac{1}{g(x)} - \frac{1}{M} \right| = \frac{1}{|M|} \frac{1}{|g(x)|} |g(x) - M|$$

$$< \frac{1}{|M|} \frac{2}{|M|} \frac{|M|^2}{2} \varepsilon = \varepsilon.$$

Definition. Let $f: D \to \mathbb{R}$ be a function and a be an accumulation point of D.

1. We say that f approaches to infinity (or tend to infinity) as $x \longrightarrow a$ if for every $M \in \mathbb{R}$ there exists $\delta = \delta(M) > 0$ such that for all $x \in D$ with $0 < |x - a| < \delta$ then

$$f(x) > M$$
 and write $\lim_{x \to a} f(x) = \infty (\text{or } + \infty).$

2. We say that f approaches to minus infinity (or tend to minus infinity) as $x \longrightarrow a$ if for every $M \in \mathbb{R}$ there exists $\delta = \delta(M) > 0$ such that for all $x \in D$ with $0 < |x - a| < \delta$ then

$$f(x) < M$$
 and write $\lim_{x \to a} f(x) = -\infty$.

Note.

 $\lim_{x \to a} f(x) = \infty \iff \forall M \in \mathbb{R}, \ \exists \delta > 0 \text{ such that if } 0 < |x - a| < \delta \text{ then } f(x) > M.$

Definition. Let $f: D \to \mathbb{R}$ be a function

1. We say that L is a **limit** of f as $x \to \infty$ if given $\varepsilon > 0$ there exists M such that for any x > M, then

$$|f(x) - L| < \varepsilon$$
 and write $\lim_{x \to \infty} f(x) = L$.

2. We say that f **approaches to infinity**(or **tend to infinity**) as $x \longrightarrow \infty$ if given any $M \in \mathbb{R}$ there exists $K \in \mathbb{R}$ such that for any x > K, then

$$f(x) > M$$
 and write $\lim_{x \to \infty} f(x) = \infty$.

Note.

 $\lim_{x \to \infty} f(x) = L \iff \forall \varepsilon > 0, \ \exists N \in \mathbb{R} \text{ such that if } x > N \text{ then } \left| f(x) - L \right| < \varepsilon.$

 $\lim_{x \to \infty} f(x) = \infty \iff \forall M \in \mathbb{R}, \ \exists N \in \mathbb{R} \text{ such that if } x > N \text{ then } f(x) > M.$

2 Continuous Functions

2.1 Continuous Functions

Definition. Let $f: D \to \mathbb{R}$ be a function and let $a \in D$. W say that f is **continuous at** a if, given any number $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in D$ satisfying $|x - a| < \delta$ then

$$|f(x) - f(x)| < \varepsilon.$$

If f is continuous on every point of D, then we say that f is **continuous on** D. If f fails to be continuous at a, then we say that f is **discontinuous at** a.

Note.

 $\lim_{x \to a} f(x) = f(a) \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ such that if } |x - a| < \delta \text{ then } |f(x) - f(a)| < \varepsilon.$

Theorem. (Sequential criterion for continuity) A function $f: D \to \mathbb{R}$ is continuous at the point $a \in D$ if and only if for every sequence $\{x_n\}$ in D that converges to a, the sequence $\{f(x_n)\}$ converges to f(a).

Theorem. (Discontinuity criterion) A function $f: D \to \mathbb{R}$ is discontinuous at the point $a \in D$ if and only if for every sequence $\{x_n\}$ in D that converges to a, but the sequence $\{f(x_n)\}$ does not converges to f(a).

Theorem. Let $A, B \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. If f and g are continuous at $g \in A$ and $g \in B$, respectively, then the composition

$$g \circ f : A \to \mathbb{R}$$

is continuous at a.

Proof. Let $\varepsilon > 0$. Since g is continuous on B, $\exists \delta_1 > 0$ such that if $|y - b| < \delta_1, y, b \in B$, then

$$|g(y) - g(b)| < \varepsilon.$$

Since f is continuous at a, for given δ_1 , $\exists \delta > 0$ such that if $|x - a| < \delta$, $x, a \in A$, then

$$\left| f(x) - f(a) \right| < \delta_1.$$

Let y = f(x) and g = f(a). Since $f[A] \subseteq B$, $f(x), f(a) \in B$,

$$|f(x) - f(a)| < \delta_1 \implies |g(f(x)) - g(f(a))| < \varepsilon.$$

Hence, $g \circ f$ is continuous at x = a.

2.2 Properties of Continuous Functions

Definition. A function $f: D \to \mathbb{R}$ is said to be **bounded** on D if there exists a constant M > 0 such that

$$|f(x)| \le M$$

for all $x \in D$. On the other hand, f is said to be **unbounded** on D if given M > 0, there exists a point $x \in D$ such that

Theorem. (Boundedness theorem) Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b]. Then f is bounded on [a, b].

Proof. Assume that f is unbounded on [a,b]. For $n \in \mathbb{N}$, $\exists x_n \in [a,b]$ such that

$$|f(x_n)| > n.$$

This implies that

$$\lim_{n \to \infty} |f(x_n)| \ge \lim_{n \to \infty} n = \infty.$$

Since $a \leq x_n \leq b$ for all $n \in \mathbb{N}$, $\{x_n\}$ is a bounded sequence in [a, b]. By Bolzano-Weierstrass theorem, $\exists \{x_{n_k}\}$, a subsequence of $\{x_n\}$, such that

$$\lim_{k \to \infty} x_{n_k} = c \in [a, b].$$

Since f is continuous at $c \in [a, b]$,

$$\lim_{k \to \infty} f(x_{n_k}) = f(c) \implies \lim_{k \to \infty} |f(x_{n_k})| = |f(c)|.$$

But $\lim_{k\to\infty} |f(x_{n_k})| \ge \lim_{k\to\infty} n_k = \infty$. It is contradiction. Hence, f is bounded on [a,b].

Definition. Let $f: D \to \mathbb{R}$ be a function.

1. We say that f has an absolute maximum on D if there is a point x^* such that

$$f(x^*) \ge f(x)$$
 for all $x \in D$.

In this case, x^* is called an **absolute maximum point** for f on D if it exists.

2. We say that f has an absolute minimum on D if there is a point x^* such that

$$f(x^*) < f(x)$$
 for all $x \in D$.

In this case, x^* is called an **absolute minimum point** for f on D if it exists.

Theorem. (Maximum-Minimum theorem) Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b]. Then f has an absolute maximum and an absolute minimum on [a, b], i.e., there exists $p, q \in [a, b]$ such that

$$f(p) \le f(x) \le f(q)$$
.

Proof. Let I = [a, b]. Since f is continuous on $I, \exists M > 0$ such that

$$|f(x)| \le M$$

for all $x \in I$. Let $f(I) = \{f(x) : x \in I\}$. Then f(I) satisfies

- (i) $f(I) \neq \emptyset$;
- (ii) f(I) has an upperbound M.

By completeness of \mathbb{R} , $\exists \sup f(I) = s^*$. Let $n \in \mathbb{N}$. Since $s^* - \frac{1}{n}$ is not an upperbound of f(I), $\exists x_n \in I \text{ such that}$

$$s^* - \frac{1}{n} < f(x_n) \le s^*$$

By squeeze theorem, $\lim_{n\to\infty} f(x_n) = s^*$. Since $\{x_n\}$ is bounded on I, by Bolzano-Weierstrass theorem, $\exists \{x_{n_k}\}$, a subsequence of $\{x_n\}$, such that

$$\lim_{k \to \infty} x_{n_k} = q \in I.$$

Since $s^* - \frac{1}{n_k} < f(x_{n_k}) \le s^*$,

$$\lim_{k \to \infty} f(x_{n_k}) = s^*.$$

Since f is continuous at $q \in [a, b]$,

$$\lim_{k \to \infty} f(x_{n_k}) = f(q) \implies f(x) \le f(q) = s^*.$$

Theorem. (Bolzano's intermediate value theorem) Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b] and f(a) < f(b). If $r \in \mathbb{R}$ satisfies f(a) < r < f(b), then there exists a point $c \in (a, b)$ such that

$$f(c) = r$$
.

Proof. Let $A = \{x \in [a, b] : f(x) < r\}$. Then

- (i) Since $a \in A$, $A \neq \emptyset$;
- (ii) A has an upperbound b.

Thus, $\exists c \in \sup A$. Let $n \in \mathbb{N}$. Since $c - \frac{1}{n}$ is not an upperbound of A, $\exists x_n \in A$ such that

$$c - \frac{1}{n} < x_n \le c.$$

Then

$$\lim_{n \to \infty} x_n = c \in [a, b] \implies \lim_{n \to \infty} f(x_n) = f(c).$$

Since $f(x_n) < r$, $\lim_{n \to \infty} f(x_n) \le r$, and so $f(c) \le r$.

Assume that f(c) < r then $c \in A$. Since f is continuous at $c \in [a, b]$, for $\varepsilon = \frac{1}{2}(r - f(c)) > 0$, $\exists \delta > 0$ such that if $|x - c| < \delta$ then

$$|f(x) - f(c)| < \varepsilon.$$

For $x \in (c, c + \delta) \cap (c, b]$,

$$f(x) < f(c) + \varepsilon = f(c) + \frac{1}{2}(r - f(c))$$

$$= \frac{1}{2}(r + f(c))$$

$$< \frac{1}{2}(r + r) = r.$$

Thus $x \in A$. It is contradiction. Hence f(c) = r.

Definition. Let $f: D \to \mathbb{R}$ be a continuous function. A point x is said to be a **fixed point** of f in case

$$f(x) = x$$
.

Theorem. (Fixed point theorem) Let $f:[0,1] \to [0,1]$ be a continuous function then there exists a point $c \in [0,1]$ such that

$$f(c) = c$$
.

Proof. If f(0) = 0 or f(1) = 1, then x = 0 or x = 1, respectively. Let $f(0) \neq 0$ and $f(1) \neq 1$. Define a function $g: [0,1] \to \mathbb{R}$ such that

$$g(x) = f(x) - x.$$

Then

1. g is continuous on [0, 1];

2.
$$g(0) = f(0) - 0 > 0$$
;

3.
$$g(1) = f(1) - 1 < 0$$
.

By Bolzano's intermediate value theorem, $\exists c \in (0,1)$ such that g(c) = 0. This implies that

$$f(c) = c$$
.

2.3 Uniformly Continuous Functions

Definition. (Continuous function - revisited) Let $f: D \to \mathbb{R}$ be a continuous function. Then, the following statements are equivalent:

- 1. f is continuous at every point $a \in D$.
- 2. Given $\varepsilon > 0$ and $a \in D$, there exists $\delta(\varepsilon, a) > 0$ such that for all $x \in D$ and $|x a| < \delta(\varepsilon, a)$ then

$$|f(x) - f(a)| < \varepsilon.$$

Definition. (Uniformly continuous function) We say that $f: D \to \mathbb{R}$ is uniformly continuous on D if for each $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that if $|x - y| < \delta$, $x, y \in D$, then

$$|f(x) - f(y)| < \varepsilon.$$

Note.

f is uniformly continuous on D

 \iff

 $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 \text{ such that if for } x, y \in D, |x - a| < \delta \text{ then } |f(x) - f(y)| < \varepsilon.$

Theorem. (Non-uniform continuity criteria) Let $f: D \to \mathbb{R}$ be a function then the following statements are equivalent:

- 1. f is not uniformly continuous on D.
- 2. There exists an ε_0 such that for every delta $\delta > 0$ there are points $x, y \in D$ such that

$$|x - y| < \delta$$
 and $|f(x) - f(y)| \ge \varepsilon_0$.

3. There exists an $\varepsilon_0 > 0$ and two sequences $\{x_n\}$ and $\{y_n\}$ in D such that

$$\lim_{n \to \infty} (x_n - y_n) = 0 \quad \text{and} \quad |f(x_n) - f(y_n)| \ge \varepsilon_0$$

for all $n \in \mathbb{N}$.

Theorem. (Uniform continuity theorem) Let I = [a, b] be a closed interval and $f : I \to \mathbb{R}$ be a continuous function on I. Then f is uniformly continuous on I.

Proof. Assume that f is not uniformly continuous on I. Then $\exists \varepsilon > 0$ and $\exists \{x_n\}, \{y_n\}$ in I such that

$$|x_n - y_n| < \frac{1}{n}$$
 but $|f(x_n) - f(y_n)| \ge \varepsilon$.

for all $n \in \mathbb{N}$. Since $a \leq x_n \leq b$, $\{x_n\}$ is bounded on I and so $\exists \{x_{n_k}\}$, a subsequence of $\{x_n\}$ such that

$$\lim_{k \to \infty} x_{n_k} = c \in I.$$

Then since

$$0 \le |y_{n_k} - c| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - c|, 0$$

we have $\lim_{k\to\infty} y_{n_k} = c$. Since f is continuous at $c \in I$,

$$\lim_{k \to \infty} f(x_{n_k}) = f(c) = \lim_{k \to \infty} f(y_{n_k}).$$

But since

$$\left| f(x_{n_k}) - f(y_{n_k}) \right| \ge \varepsilon$$

for all $n \in \mathbb{N}$, it is contradiction. Hence f is uniformly continuous on I.

Definition. (Lipschitz function) Let $f: D \to \mathbb{R}$ be a function. If there exists a constant K > 0 such that

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in D$, then f is said to be a **Lipschitz function** or to satisfy a **Lipschitz condition** on D.

Theorem. If $f: D \to \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on D.

Proof. Let $\varepsilon > 0$. Since f is a Lipschitz function, for $x, y \in D$, $\exists K > 0$ such that

$$|f(x) - f(y)| \le K|x - y|.$$

Let $\delta = \frac{\varepsilon}{K} > 0$ Then if $|x - a| < \delta$, then

$$|f(x) - f(y)| \le K|x - y| < K\delta = K \cdot \frac{\varepsilon}{K} = \varepsilon.$$

Hence, f is uniformly continuous on D.

Theorem. If $f: D \to \mathbb{R}$ is uniformly continuous on D and if $\{x_n\}$ is a Cauchy sequence in D, then $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} .

Proof. Let $\varepsilon > 0$. Since f is uniformly continuous on D, $\exists \delta (= \delta(\varepsilon)) > 0$ such that if $|x - y| < \delta$, $x, y \in D$, then

$$|f(x) - f(y)| < \varepsilon.$$

Since $\{x_n\}$ is a Cauchy sequence in D, for given $\delta > 0$, $\exists N \in \mathbb{N}$ such that if $m, n \geq N$ then

$$|x_m - x_n| < \delta.$$

Since $x_m, x_n \in D$,

$$|f(x_m) - f(x_n)| < \varepsilon.$$

Hence, $\{f(x_n)\}$ is a Cauchy sequence.

Remark. Note that $f(x) = x^{-1}$ is not uniformly continuous on (0,1). Let

$$x_n = \frac{1}{n}.$$

Then $\{x_n\}$ is a Cauchy sequence in (0,1) but

$$\{f(x_n)\} = \{n\}$$

is not a Cauchy sequence.

Theorem. (Continuous extension theorem) A function $f:(a,b)\to\mathbb{R}$ is uniformly continuous on (a,b) if and only if it can be defined at the endpoints a and b such that the extended function f^* is continuous on [a,b].

Proof. (\Leftarrow) Since f^* is uniformly continuous on [a,b] by the uniform continuity theorem, $\forall \varepsilon > 0$, $\exists \delta (=\delta(\varepsilon)) > 0$ such that if $|x-y| < \delta$ and $x,y \in [a,b]$, then

$$|f^*(x) - f^*(y)| < \varepsilon.$$

If $x, y \in (a, b) \subset [a, b]$ and $|x - y| < \delta$, then

$$|f(x) - f(y)| < \varepsilon,$$

since $f^*(x) = f(x)$ for all $x \in (a, b)$.

 (\Rightarrow) Assume that f is uniformly continuous on (a,b). Let $\{x_n\}$ be a sequence in (a,b) such that

$$\lim_{n \to \infty} x_n = a.$$

Then since $\{x_n\}$ is Cauchy sequence in (a,b), $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} , i.e.,

$$\exists \lim_{n \to \infty} f(x_n) = p.$$

Let $\{y_n\}$ be a any other sequence in (a,b) such that

$$\lim_{n\to\infty} y_n = a.$$

Then $\lim_{n\to\infty}(x_n-y_n)=0$ and so

$$\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} \{ f(y_n) - f(x_n) + f(x_n) \}$$

=
$$\lim_{n \to \infty} \{ f(y_n) - f(x_n) \} + \lim_{n \to \infty} f(x_n) = p.$$

That is, $\lim_{n\to\infty} f(x_n) = \lim_{x\to a} f(x) = p$. Similarly, $\exists \lim_{x\to b} f(x) = q$. Define $f^*: [a,b] \to \mathbb{R}$ such that

$$f^*(x) := \begin{cases} f(x) &, x \in (a, b) \\ p &, x = a \\ q &, x = b. \end{cases}$$

Definition. (One-sided continuous function) Let $f: D \to \mathbb{R}$ be a function and $a \in D$.

1. We say that f is **right-continuous function** at a if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in D$ with $a < x < a + \delta$ then

$$|f(x) - f(a)| < \varepsilon.$$

2. We say that f is **left-continuous function** at a if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in D$ with $a - \delta < x < a$ then

$$|f(x) - f(a)| < \varepsilon.$$

Theorem. Let $f:(a,b)\to\mathbb{R}$ be a function and $c\in(a,b)$. Then f is right-continuous function at c if and only if there exists f(c+) and f(c+)=f(c).

Theorem. Let $f:(a,b)\to\mathbb{R}$ be a function and $c\in(a,b)$. Then f is left-continuous function at c if and only if there exists f(c-) and f(c-)=f(c).

Definition. Let $f: D \to \mathbb{R}$ be a function and $c \in D$.

- 1. We say that f is **discontinuous** at a if f does not defined at a or there exists $\lim_{x\to a} f(x)$ but does not equal to f(a). In this cases, the point a is called **removable discontinuous point**.
- 2. We say that f is **jump discontinuous** at a if there exists f(a+) and f(a-) but $f(a+) \neq f(a-)$.

Theorem. Let $I \in \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ be an increasing function on I. Then for all $c \in I$ there exists f(c+), f(c-) and

$$\sup \{ f(x) : x < c, x \in I \} = f(-c) \le f(c) \le f(c+) = \inf \{ f(x) : c < x, x \in I \}.$$

Moreover, if $c, d \in I$ satisfies c < d then $f(c+) \le f(d-)$.

Proof. Let $S = \{f(x) : x < c\}$. Then since

- 1. $S \neq \emptyset$;
- 2. S has an upperbound f(c),

 $\exists \sup S = L$. We claim that $L = \lim_{x \to c^-} f(x)$.

Let $\varepsilon > 0$. Since $L - \varepsilon$ is not upperbound of S, $\exists x_c \in I$ such that

$$x_c < c$$
 and $L - \varepsilon < f(x_c) \le L$.

let $\delta = c - x_c > 0$. Then if $c - \delta < x < c$,

$$L - \varepsilon < f(x_c) \le f(x) \le L < L + \varepsilon$$
,

i.e., $|f(x) - L| < \varepsilon$. Hence,

$$\lim_{x \to c^{-}} f(x) = L \iff f(c^{-}) = \sup \{f(x) : x < c\}$$

and sup $\{f(x), x < c\} \le f(c)$.

Theorem. (Continuous inverse theorem) Let $I \in \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be strictly increasing (or decreasing) and continuous on I. Then the function f^{-1} inverse to to f strictly increasing (or decreasing) and continuous on J := f(I).

Part IV

Differentiations and Integrations

1 Differentiation

1.1 Derivative & Carathéodory's Theorem

Definition. Let $I \in \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, and let $a \in I$. We say that a real number L is the **derivative of** f at a if given any $\varepsilon > 0$ there exists $\delta := \delta(\varepsilon) > 0$ such that if $x \in I$ satisfies $0 < |x - a| < \delta$, then

$$\left| \frac{f(x) - f(a)}{x - a} - L \right| < \varepsilon.$$

In this case we say that f is **differentiable** at a, and we write f'(a) for L. In other words, the derivative of f at a is given by the limit

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided this limit exists.

Theorem. If $f: I \to \mathbb{R}$ has a derivative at $a \in I$, then f is continuous at a.

Proof. Since $\exists f'(a)$,

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{(x - a)} (x - a)$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$

$$= f'(a) \cdot 0 = 0.$$

Hence, $\lim_{x\to a} f(x) = f(a)$.

Theorem. (Carathéodory's theorem) Let f be defined on an interval I containing the point a. Then f is differentiable at a if and only if there exists a function φ on I that is continuous at a and satisfies

$$f(x) - f(a) = \varphi(x)(x - a)$$
 for $x \in I$.

In this case, we have $\varphi(a) = f'(a)$.

Proof. (\Rightarrow) Assume that $\exists f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$. Define $\varphi : I \to \mathbb{R}$ such that

$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} &, x \neq a \\ f'(a) &, x = a \end{cases}$$

Then

- (i) If $x \neq a$, then $f(x) f(a) = \varphi(x)(x a)$. If x = a, then $0 = \varphi(a) \cdot 0$.
- (ii) φ is continuous at a.

Moreover, $\varphi(a) = f'(a)$.

 (\Leftarrow) Let $x \neq a$ and $x \to a$. The continuity of φ implies that

$$\varphi(a) = \lim_{x \to a} \varphi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. f is differentiable at a and $\phi(a) = f'(a)$.

e.g. Let us consider the function f defined by $f(x) := x^3$ for $x \in \mathbb{R}$. For $a \in \mathbb{R}$, we see from the factorization

$$f(x) - f(a) = x^3 - a^3 = (x^2 + ax + a^2)(x - a)$$

that $\varpi(x) := x^2 + ax + a^2$ satisfies the condition of Caratheódory's theorem. Therefore, we conclude that f differentiable at $a \in \mathbb{R}$ and that

$$f'(a) = \varphi(a) = 3a^2.$$

Theorem. (Chain rule) Let I, J be intervals in \mathbb{R} , let $g: J \to \mathbb{R}$ and $f: I \to \mathbb{R}$ be functions such that $f(I) \subseteq J$, and let $a \in I$. If f is differentiable at a and if g is differentiable at f(a), then the composite function $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

Proof. Since $\exists f'(a)$, by Carathéodory's theorem, $\exists h: I \to \mathbb{R}$ such that

(i) h is continuous at $a \in I$;

(ii)
$$f(x) - f(a) = h(x)(x - a)$$
;

(iii)
$$f'(a) = h(a)$$
.

Since $\exists g'(b)$ for $b = f(a) \in J$, by Carathéodory's theorem, $\exists H : I \to \mathbb{R}$ such that

(i) H is continuous at $b \in J$;

(ii)
$$g(y) - g(b) = H(y)(y - b)$$
;

(iii)
$$g'(y) = H(y)$$
.

Since $f(I) \subseteq J$, f(x) and f(a) are in J. Then

$$g(f(x)) - g(f(a)) = H(f(x))(f(x) - f(a))$$

= $H(f(x))h(x)(x - a)$.

Let $\varphi(x) = H(f(x))h(x)$. Then $\varphi: I \to \mathbb{R}$ is continuous at a and

$$g(f(x)) - g(f(a)) = \varphi(x)(x - a).$$

Thus g(f(x)) is differentiable at $a \in I$ and

$$(g \circ f)'(a) = \varphi(a) = H(f(a))h(a) = g'(f(a))f'(a).$$

Theorem. (Differentiability of the inverse functions) Let I be an interval in \mathbb{R} and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Let J:=f(I) and let $g: J \to \mathbb{R}$ be the strictly monotone and continuous function inverse to f. If f is differentiable at $a \in I$ and $f'(a) \neq 0$, then g is differentiable at b := f(a) and

$$g'(f(a)) = \frac{1}{f'(a)}.$$

Proof. Since $\exists f'(a) \neq 0, \exists h : I \to \mathbb{R}$ such that

(i) h is continuous at $a \in I$;

$$(ii) f(x) - f(a) = h(x)(x - a)$$

(*iii*)
$$f'(a) = h(a) \neq 0$$
.

Since $h(a) \neq 0$, $\exists \delta > 0$ such that

$$h(x) \neq 0, \quad x \in (a - \delta, a + \delta) \cap I.$$

Let $\Omega = f[(a - \delta, a + \delta) \cap I]$. Then, for $y, b \in \Omega$ such that y = f(x), b = f(a),

$$f(g(y)) = y$$
 and $f(g(b)) = b$

holds. Then

$$y - b = f(g(y)) - f(g(b)) = h(g(y))(g(y) - g(b)).$$

Since $h(g(y)) \neq 0$,

$$g(y) - g(b) = \frac{1}{h(g(y))}(y - b)$$
, where $\varphi(y) = \frac{1}{h(g(y))}$.

Thus $g = f^{-1}$ is differentiable at b = f(a) and

$$g'(b) = g'(f(a)) = \frac{1}{h(a)} = \frac{1}{f'(a)}.$$

1.2 Rolle's and Mean Value Theorem

Theorem. (Interior extremum theorem) let c be an interior point of the interval I = (a, b) at which $f: I \to \mathbb{R}$ has a relative extremum. If the derivative of f at c exists, then

$$f'(c) = 0.$$

Proof. If f'(c) > 0, then $\exists N_{\delta}(c) \in I$ of c such that

$$\frac{f(x) - f(c)}{x - c} > 0 \quad \text{for} \quad x \in N_{\delta}(c), x \neq c.$$

If $c \in N_{\delta}(c)$ and x > c, then

$$f(x) - f(c) = (x - c) \cdot \frac{f(x) - f(c)}{x - c} > 0.$$

But this contradicts the hypothesis that f has a relative maximum at c. Similarly, we can not have f'(c) < 0. Hence, f'(c) = 0.

Remark.

- 1. Let us notice that the converse of Interior extremum theorem does not hold. For example, if $f(x) := x^3$ for $x \in \mathbb{R}$, then there exists f'(0) = 0 but f does not have relative extrema.
- 2. If f := |x| on [-1, 1], then f has an relative minimum at x = 0; however, the derivative of f fail to exists at x = 0.

Corollary. Let $f:(a,b)\to\mathbb{R}$ be continuous on an interval (a,b) and suppose that f has a relative extremum at an interior point c of (a,b). Then either the derivative of f at c does not exist, or it is equal to zero.

Theorem. (Rolle's theorem) Suppose that f is continuous on a closed interval I = [a, b], that the derivative f' exists at every point of the open interval (a, b), and that f(a) = f(b) = 0. Then there exists at least one point c in (a, b) such that

$$f'(c) = 0.$$

Theorem. (Mean value theorem of differential calculus) Suppose that f is continuous on a closed interval I = [a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one point c such that

$$f(a) - f(b) = f'(c)(b - a).$$

Proof. Define $g:[a,b]\to\mathbb{R}$ such that

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then

- (i) g is continuous on [a, b];
- (ii) g is differentiable;
- (*iii*) g(a) = 0 = g(b).

By Rolle's theorem, $\exists c \in (a, b)$ such that g'(c) = 0. Since

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

we have

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Hence, f(b) - f(a) = f'(c)(b - a).

Theorem. Let $f: I \to \mathbb{R}$ be differentiable on the interval I and if the derivative f' is bounded on I then f satisfies a Lipschitz condition on I so that f is uniformly continuous on I.

Proof. Since $\exists f'(x), x \in I$ and f' is bounded, $\exists K > 0$ such that

$$|f'(x)| \le K, \quad x \in I.$$

Let $a, b \in I$, a < b. Then by Mean-value theorem, $\exists c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

This implies that

$$|f(b) - f(a)| = |f'(c)||b - a|$$

$$\leq K|b - a|.$$

Hence, f is a Lipschitz function on I.

1.3 L'Hospital's Rules

Theorem. (Cauchy's mean value theorem of differential calculus) Let f and g be continuous on [a,b] and differentiable on (a,b), and assume that $g'(x) \neq 0$ for all $x \in (a,b)$. Then there exists $c \in (a,b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Theorem. (L'Hopital's Rule - First) Let $-\infty \le a < b \le \infty$ and let f, g be differentiable on (a, b) such that $g'(x) \ne 0$ for all $x \in (a, b)$. Suppose that

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0.$$

Then

1. If
$$\lim_{x\to a+} \frac{f'(x)}{g'(x)} = L$$
 then $\lim_{x\to a+} \frac{f(x)}{g(x)} = L$.

2. If
$$\lim_{x\to a+} \frac{f'(x)}{g'(x)} = \pm \infty$$
 then $\lim_{x\to a+} \frac{f(x)}{g(x)} = \pm \infty$.

1.4 Taylor's Theorem

Theorem. (Taylor's theorem) Let $n \in \mathbb{N}$, I := [a,b] and $f : I \to \mathbb{R}$ be such that f and its derivatives $f', f'', \dots, f^{(n)}$ are continuous on I and that $f^{(n+1)}$ exists on (a,b). If $a \in I$ then for any $x \in I$ there exists a point c between a and x such that

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - a)^{n+1}.$$

Proof. Define $F:[a,x]\to\mathbb{R}$ such that

$$F(t) = f(x) - f(t) - f'(t)(x - t) - \frac{f''(t)}{2!}(x - t)^{2}$$
$$- \dots - \frac{f^{(n)}(t)}{n!}(x - t)^{n}.$$

We claim that $\exists c \in (a, x)$ such that

$$F(a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

Define $G:[a,x]\to\mathbb{R}$ such that

$$G(t) = F(t) - \left(\frac{x-t}{x-a}\right)^{n+1} F(a).$$

Then

- (i) G is continuous on [a, x];
- (ii) G is differentiable on (a, x);
- (*iii*) G(a) = 0 = G(x).

By Rolle's theorem, $\exists c \in (a, x)$ such that

$$G'(c) = 0.$$

Since
$$G'(t) = F'(t) + \frac{(n+1)(x-t)^n}{(x-a)^{n+1}}F(a)$$
, we have $F(a) = -\frac{(x-a)^{n+1}}{(n+1)(x-c)^n}F'(c)$. Since

$$F'(t) = -f'(t)$$

$$-f''(t)(x-t) + f'(t)$$

$$-\frac{f'''(t)}{2!}(x-t)^2 + f''(t)(x-t)$$

$$-\cdots$$

$$-\frac{f^{(n+1)}(t)}{n!}(x-t)^n + \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1},$$

we have

$$F'(c) = \frac{f^{(n+1)}(c)}{n!} (x - c)^n.$$

Hence,

$$F(a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

We shall use the notation $P_n(x)$ for the n-th Taylor polynomial of f

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

We shall use the notation $R_n(x)$ for the remainder of f. Thus we may write the conclusion of Taylor's theorem as

$$f(x) = P_n(x) + R_n(x)$$

where R_n is given by

$$R_n(x) := \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

for some point c between x and x_0 .

This formula for R_n is referrer to as the **Lagrange form**(or the derivative form) of the remainder.