The elementary liquid-phase series reaction is carried out in a batch reactor:

$$A \rightarrow B \rightarrow C$$
 (A to B : k_1 , B to C : k_2)

In this reaction, A is decomposed to the desired product B. The flow rate of the feed containing A is **40 L/min**. The initial concentrations of A, B, and C are C_{A0} =6mol/L, C_{B0} = C_{C0} =0. Assume isothermal conditions.

I. Determine the maximum concentration of B and the time when the concentration of B reaches the maximum value.

The reaction rate constants are $k_1=0.5 \text{ min}^{-1}$, $k_2=0.15 \text{ min}^{-1}$.

II. Find the reactor volume when C_B is at its maximum concentration (use the feed rate given).