Draw NFAs with the specified number of states over $\Sigma=\{0,1\}$

Part a

 $L=\{0\}$ using 2 states

Part b

Language of all binary strings ending in 00, using 3 states

Question 2

Draw NFAs for the following

Part a

binary strings that begin with a 1 and end with a 0, or contain at least three 1s

Part b

binary strings that contain the substring 1010 or do not contain the substring 110

Let $L = \{w : w \text{ contains an even number of 0s and an odd number of 1s and does not contain the substring 01}.$ Draw a DFA with five states that recognizes L.

Let L be the language of all strings over {0, 1} that do not contain a pair of 1s that are separated by an odd number of symbols. Draw a DFA with five states that recognizes L.

Question 5

Let L_n be the language of all binary strings of the form $1_11_2...1_k$ for some k that is a multiple of n. For each $n \geq 1$, construct a DFA or NFA that recognizes L_n .

I'm not sure this is the solution, but to generalize L_n overall n, I think the set of strings of the form 1^* Always has a length that is a multiple of some positive integer n thus there exists some language L_n for which this model recognizes, thus it recognizes all forms of L_n

Question 6

Let D be the language of binary strings that contain an equal number of occurrences of the substrings 01 and 10. Thus $101 \in D$ because 101 contains a single 01 and a single 10, but $1010 \notin D$ because 1010 contains two 10s and one 01. Construct a DFA or NFA for D

Convert the following NFA to DFA

Part a

Part b

