Section 1. Bayesian Inference

Vincent Dorie

New York University

Overview

What is Bayesian Statistics?

Method of statistical inference that incorporates prior knowledge to make probabilistic statements about quantities of interest

- · Write a probabilistic model/data generating process
- Add prior/penalize parameters in model
- Fit model to data (experiment)
- Use fitted model to produce estimate; quantify uncertainty in estimate
- · Model checking, diagnostics

Contrast with: machine learning, classical statistics, econometrics

Why Bayes?

- · Computation
- · Prior information
- · Regularization
- Coherence
- · Explicit uncertainty, theory

Why Not Bayes?

- · Computation
- · Prior subjectivity
- DGP subjectivity
- · Ideology over accuracy
- Parsimony over accuracy

Models

Probabilistic Models

- · Joint probability distribution over data
- · Sequence of distributional and independence assumptions

$$z \mid x, u \sim \mathsf{Bernoulli}(\mathsf{logit}^{-1}(x\beta^z + \zeta^z u)),$$

 $y \mid x, u, z \sim \mathsf{Normal}(x\beta^y + \zeta^y u + \tau z, \sigma_y^2),$
 $u \sim \mathsf{Bernoulli}(\theta).$

- · Plausible story for data generation and measurement noise
- · Model (roughly) determines subsequent steps

Running Example: Trump

- · Sample random New Yorkers and poll support for Trump
- · Collect other data points, income, age, height, sex, ...

Build a model for height:

height ~ Normal (baseline +
$$eta_1 \cdot \log(\text{income})$$
 + $eta_2 \cdot \text{vote_trump} + \cdots$, σ^2)

Notation

- · Random variables: y, u
- Observed data: $y = \{y_1, \dots, y_N\}$
- · Covariates $x : N \times P$ matrix, x_i column vector
- y is modeled data, x is unmodeled data
- Inference is conditional on x
- Random variables express what could have happened (repetition)

y is "overloaded", meaning context-specific

Notation Continued

- $\cdot \alpha$, β parameters; θ vector
- $\cdot p(\cdot; \theta)$ probability density *indexed* by θ
- · $p(\cdot \mid \theta)$ conditional probability density

Overload
$$p: p(y \mid \alpha, \beta, \sigma), p(\alpha, \beta \mid \sigma), p(\sigma)$$

Common parameters:

- $\cdot \mu$: mean, expected value
- · σ : scale, standard deviation
- $\cdot \alpha$, β : regression intercept, slope

Notation Continued

Predictive quantities:

- \tilde{x} : point for which we would like to make a prediction
- \tilde{y} : prediction at \tilde{x}

Simulated quantities:

· $\theta^{(m)}$: draw of θ from a distribution, $p(\theta \mid y)$

Estimated quantities:

• $\hat{\theta}$: point estimate of θ (MLE, MAP, MM)

Common assumptions:

• y independent after controlling for covariates: $y_i \perp \!\!\! \perp y_j \mid x$ for $i \neq j$

Running Example: Trump

- · $y_1, ..., y_N$: height of individuals in sample, 1 through N
- $\cdot x_1, \dots, x_N$: column vectors of predictors for individuals
- $x: N \times P$ matrix of predictors, 1st column 1s
- $g: N \times Q$ matrix, Q num of zip-codes, rows of g "select" zip-code for individuals
- \cdot β : individual coefficients
- α : zip-code offsets

$$y \sim \text{Normal}(x\beta + g\alpha, \sigma^2)$$

Comparison with Comp-sci & Econ

Objective function:

$$f(\alpha, \beta) = \|y - x\beta - g\alpha\|^2$$

- · Find $\operatorname{argmin}_{\alpha,\beta} f$
- \cdot Possibly regularize adding penalty term to f

Estimating equation:

$$y = x\beta + q\alpha + \epsilon$$

- Estimate α , β by BLUP
- Correct correlations in error by using cluster robust standard errors

Where Do Models Come From?

- Sometimes model comes first, based on substantive considerations
 - toxicology, economics, ecology, ...
- · Sometimes model chosen based on data collection
 - traditional statistics of surveys and experiments
- · Other times the data comes first
 - observational studies, meta-analysis, ...
- Usually its a mix

Bayesian Modeling

Bayesian Overview

"Classically":

- · Write down model/data generating process
- Find parameter values that maximize likelihood of observations
- · Use interval procedure to quantify uncertainty

Bayesian:

- Model/DGP
- · Incorporate priors over parameters
- Compute posterior distribution of parameters (or QOIs)
- · Summarize posterior distribution by mean, quantiles

Likelihood

- Probability density/mass of data as viewed as function of its parameters
- $p(y;\theta) \equiv L(\theta)$
- · Not a distribution
- · Central role in classical statistics
- · Maximize for estimate, curvature for approx uncertainty

Bayesian: prior + likelihood → posterior

Bayesian Differences

- · Estimands are point and intervals
- · Make probabilistic statements about procedures used

VS

- Estimand is a distribution
- Make probabilistic statements about parameters

Distributions As Estimands

Use Bayes' rule to compute posterior:

$$p(\theta \mid y) = p(y, \theta)/p(y),$$
$$= \frac{p(y \mid \theta)p(\theta)}{p(y)}.$$

- Occasionally, can compute $p(\theta \mid y)$ directly
- · Most often, use **samples** from $p(\theta \mid y)$ as summary

$$\begin{split} \Pr[\, \theta \leq t \mid y \,] &\approx \frac{1}{M} \sum_{m=1}^{M} \mathsf{I}[\, \theta^{(m)} \leq t \,], \\ \tilde{\theta} &\sim p(\theta \mid y). \end{split}$$

Linear Model Example

$$y \mid \beta \sim \text{Normal}(x\beta, \sigma^2),$$

 $\beta \sim \text{Normal}(0, 5^2).$

 σ^2 fixed

$$p(\beta \mid y) = p(y \mid \beta)p(\beta)/p(y),$$

$$= \prod_{i=1}^{N} \left[\sqrt{2\pi\sigma^2} e^{-\frac{1}{2\sigma^2}(y_i - x_i^{\mathsf{T}}\beta)^2} \right] \times$$

$$\prod_{j=1}^{P} \left[\sqrt{2\pi5^2} e^{-\frac{1}{2\cdot5^2}\beta_j^2} \right] / p(y).$$

Linear Model Example Cont

$$p(\beta \mid y) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - x_i^{\top} \beta)^2\right\} \times (2\pi 5^2)^{-P/2} \exp\left\{-\frac{1}{2 \cdot 5^2} \sum_{i=1}^{P} \beta_j^2\right\} / p(y)$$

Bundle constants into C

$$p(\beta \mid y) = C \exp \left\{ -\frac{1}{2} \left[\frac{1}{\sigma^2} \sum_{i=1}^{N} (y_i - x_i^{\top} \beta)^2 + \frac{1}{5^2} \sum_{i=1}^{P} \beta_j^2 \right] \right\}.$$

Write $p(\beta \mid y) \propto \text{and drop } C$

Linear Model Example Cont

$$\begin{split} p(\beta \mid y) &\propto \exp\left\{-\frac{1}{2}\left[\frac{1}{\sigma^2}(y-x\beta)^\top(y-x\beta) + \frac{1}{5^2}\beta^\top\beta\right]\right\},\\ &\propto \exp\left\{-\frac{1}{2}\left[\beta^\top x^\top x\beta/\sigma^2 + \beta^\top\beta/5^2 - 2\beta^\top x^\top y/\sigma^2\right]\right\},\\ &\propto \exp\left\{-\frac{1}{2}(\beta-\Sigma_{\beta\mid y}x^\top y/\sigma^2)^\top \Sigma_{\beta\mid y}^{-1}(\beta-\Sigma_{\beta\mid y}x^\top y/\sigma^2)\right\}. \end{split}$$

Where
$$\Sigma_{\beta|y} = (x^{T}x/\sigma^{2} + I_{p}1/5^{2})^{-1}$$
.

$$\beta \mid y \sim \text{Normal}\left(\Sigma_{\beta \mid y} x^{\mathsf{T}} y / \sigma^2, \Sigma_{\beta \mid y}\right).$$

Logistic Example

Instead predict voting

$$y \mid \beta \sim \text{Bernoulli}\left(\text{logit}^{-1}(x\beta)\right),$$

 $\beta \sim \text{Normal}(0, 5^2).$

$$\begin{split} p(\beta \mid y) &\propto p(y \mid \beta) p(\beta), \\ &\propto \prod_{i=1}^{N} \left[y_i \frac{e^{x_i^{\mathsf{T}}\beta}}{1 + e^{x_i^{\mathsf{T}}\beta}} + (1 - y_i) \frac{1}{1 + e^{x_i^{\mathsf{T}}\beta}} \right] \times \\ &\exp \left\{ -\frac{1}{2 \cdot 5^2} \beta^{\mathsf{T}} \beta \right\}. \end{split}$$

Prior Choice

- · Prior information
- · Conjugate
- Uninformative
- · Jeffreys'
- · Weakly informative

Posterior Predictive Distribution

- · Predict new data \tilde{y} based on observed data y
- · Marginalize out parameters from posterior

$$p(\tilde{y} \mid y) = \int p(\tilde{y}, \theta \mid y) d\theta,$$

=
$$\int p(\tilde{y} \mid \theta) p(\theta \mid y) d\theta.$$

- Averages predictions $p(\tilde{y} \mid \theta)$ weighting by posterior $p(\theta \mid y)$
- · Allows continuous, discrete, or mixed parameters
 - integral notation shorthand for sums and/or integrals

Diagnostics

Model Checking

- · Do the inferences make sense?
 - are parameter values consistent with model's prior?
 - does simulating from parameter values produce reasonable fake data?
 - are marginal predictions consistent with the data?
- Do predictions and event probabilities for new data make sense?
- Not: Is the model true?
- Not: What is Pr[model is true]?
- · Not: Can we "reject" the model?

Model Improvement

- Expanding the model
 - hierarchical and multilevel structure ...
 - more flexible distributions (overdispersion, covariance)
 - more structure (geospatial, time series)
 - more modeling of measurement methods and errors
 - ...
- · Including more data
 - breadth (more predictors or kinds of observations)
 - depth (more observations)