'17 Spring DUE: May 22 (Mon)

PROBLEM SET #5

For the problems below, you need to write programs using Python. Turn in your own source programs written independently together with a report in pdf format by email (both to the instructor at wkim@astro.snu.ac.kr and the TA at moon@astro.snu.ac.kr.)

1. Leap-frog Integrator: Consider a binary system consisting of two stars with masses $m_1 = 1$ and $m_2 = 0.5$ placed in the x-y plane. Initially (t = 0), the two stars are located at $\mathbf{r}_1 = (x_1, y_1) = (-0.5, 0)$ and $\mathbf{r}_2 = (1, 0)$, and have velocities of $\mathbf{v}_1 = (0.01, 0.05)$ and $\mathbf{v}_2 = (0.02, 0.2)$. The two stars orbit with each other due to the mutual gravity. The relevant equation of motion is

$$\ddot{\mathbf{r}}_i = -m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}, \quad (i \neq j), \tag{1}$$

for i, j = 1 or 2.

- (a) Integrate Equation (1) from t = 0 to t = 50 using the Leap-frog scheme, and plot the orbits of the two stars in the x-y plane. You need to choose a small enough dt for accurate orbit calculations.
- (b) Indicate the motion of the center of mass of the binary in the figure you draw in Part (a).
- (c) Plot the angular momentum \mathbf{L} and the total energy E defined by

$$\mathbf{L} = m_1 \mathbf{r}_1 \times \mathbf{v}_1 + m_2 \mathbf{r}_2 \times \mathbf{v}_2 \tag{2}$$

and

$$E = \frac{1}{2}m_1\mathbf{v}_1^2 + \frac{1}{2}m_2\mathbf{v}_2^2 - \frac{m_1m_2}{|\mathbf{r}_1 - \mathbf{r}_2|}.$$
 (3)

over t = 0 - 1000. Comment on the accuracy of the calculated orbits in terms of the energy conservation.

2. Consider the following differential equation

$$y'' + [\lambda - 2Q\cos(2x)]y = 0, \quad \text{over} \quad 0 \le x \le \pi, \tag{4}$$

subject to the boundary conditions y(0) = 1 and $y'(0) = y'(\pi) = 0$. Here, λ and Q are constants.

- (a) Solve Equation (4) for Q = 5 and find the corresponding eigenvalue λ . Plot the resulting y.
- (b) Repeat the calculations for $0 \le Q \le 10$, and plot the resulting λ as a function of Q.

3. Solve the following tridiagonal system

$$u_{i-1} - 2u_i + u_{i+1} = -\left(\frac{2\pi}{n}\right)^2 \cos\left(\frac{2\pi i}{n}\right), \text{ for } i = 1, 2, \dots, n,$$
 (5)

for n = 256, using

- (a) the Gauss-Jordan elimination method, and
- (b) the forward and backward substitutions method.

Compare your results with the solution $u(x) = \cos(x) + constant$ over $0 \le x \le 2\pi$.

4. Consider a 6-level model of the N^+ (which produces the [N II] lines). The statistical equilibrium between transitions into and out of any level i requires

$$n_i \left[n_e \sum_{k \neq i} q_{ik} + \sum_{k < i} A_{ik} \right] = n_e \sum_{k \neq i} n_k q_{ki} + \sum_{k > i} n_k A_{ki}.$$
 (6)

This leads to six equations in the six unknowns n_1, \dots, n_6 , but it can be shown that this system is *degenerate*, i.e., any one of the equations can be constructed as a linear combination of the other five. We thus introduce another equation, which is the equation of normalization: $\sum_{i=1}^{6} n_i = 1$. This plus any five of the others may then be solved for the relative populations n_i .

In this problem, you are asked to develop a computer routine to solve for n_i of the N⁺ ions. The required values of the atomic parameters are statistical weights ω_i , differences between the energy levels E_{ij} , Einstein A-values A_{ji} , and collisional parameters Ω_{ji} , which are given in Figure 1 and Table 1. The temperature dependence of the collision parameter Ω_{ji} can be fit to a power law: $\Omega_{ji}(t) = t^{\beta_{ji}}\Omega_{ji}(1.0)$, where the temperature is $t \equiv T/(10^4 \text{ K})$. The rate of downward collisions $j \to i$ is given by

$$q_{ji} = \frac{8.629 \times 10^{-8} \,\Omega_{ji}(t)}{t^{1/2}} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}, \quad (j > i), \tag{7}$$

while the rate of upward collisions can be found from

$$q_{ij} = \frac{\omega_j}{\omega_i} q_{ji} e^{-1.1605 E_{ij}/t},\tag{8}$$

where the energy separation E_{ij} is in eV.

- (a) Write a computer program to calculate the populations for any given n_e , T pair.
- (b) Find the populations for the following values of n_e and T: $T = 10^4$ K and $n_e = 10, 10^2, 10^3, 10^4, 10^5$ cm⁻³; also $n_e = 10^4$ cm⁻³ and T = 5,000, 7,000, 12,000, 15,000, 20,000 K. Make sure that all n_i 's should be positive.
- (c) The ratio of the $\lambda6584$ line to the $\lambda5755$ line of [N II]

$$R = \frac{4\pi j_{\nu}(4 \to 3)}{4\pi j_{\nu}(5 \to 4)} = \frac{N_4 A_{43} 5755}{N_5 A_{54} 6584} \tag{9}$$

can be an important indicator of the electron temperature in ionized nebulae. Plot this ratio over the temperature range 5,000 K < T < 20,000 K for densities $n_e = 10, 10^2, 10^3, 10^4$, and 10^5 cm⁻³.

Figure 1: The first six energy levels and statistical weights of N II

i	j	λ_{ij}	E_{ij} (eV)	A_{ji}	$\Omega_{ji}(1.0)$	β_{ji}
1	2	$203.53 \mu\mathrm{m}$	0.00609	2.08×10^{-6}	0.408	0.125
1	3	$76.136 \mu { m m}$	0.01628	1.16×10^{-12}	0.272	0.21
1	4	$6527.8 \rm{\AA}$	1.89879	5.35×10^{-7}	0.2934	0.048
1	5		4.05244	0.0	0.0326	0.050
1	6		5.80061	0.0	0.1323	0.025
2	3	$121.64 \mu\mathrm{m}$	0.01019	7.46×10^{-6}	1.120	0.17
2	4	$6548.8 \rm{\AA}$	1.89270	1.01×10^{-3}	0.8803	0.048
2	5	$3063.2 \rm{\AA}$	4.04635	3.38×10^{-2}	0.0977	0.050
2	6	$2139.0 \rm{\AA}$	5.79452	$4.80 \times 10^{+1}$	0.3968	0.025
3	4	$6584.3 \rm{\AA}$	1.88251	2.99×10^{-3}	1.4672	0.048
3	5	$3070.9 \mathrm{\AA}$	4.03616	1.51×10^{-4}	0.1628	0.050
3	6	$2142.8 \rm{\AA}$	5.78433	$1.07 \times 10^{+2}$	0.6613	0.025
4	5	$5755.3 \rm{\AA}$	2.15365	1.12	0.8338	-0.18
4	6		3.90182	0.0	0.0	0.0
5	6		1.74817	0.0	0.0	0.0

Table 1: Data for all possible transitions between the levels