4.- Indicaciones sobre la convergencia de las series del ejercicio 4, hoja 3:

- (a) $\sum \frac{10^k}{k!}$: converge por criterio del cociente
- (b) $\sum \frac{1}{k \, 2^k}$: converge por comparación con la serie $\sum \frac{1}{2^k}$
- (c) $\sum \frac{1}{k \ln k}$: diverge por criterio de condensación diádica (o por el de la integral)
- (d) $\sum \frac{n!}{100^n}$: diverge por criterio del cociente (o porque el término general no tiende a cero)
- (e) $\sum \frac{(\log k)^2}{k}$: diverge por comparación con la serie $\sum \frac{1}{k}$
- (f) $1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \cdots$: converge por el criterio del cociente.
- (g) $\sum k \, \left(\frac{2}{3}\right)^k$: converge por criterio de la raíz
- (h) $\sum \frac{1}{1+\sqrt{k}}$: diverge por comparación con la serie $\sum \frac{1}{\sqrt{k}}$
- (i) $\sum \frac{2\,k+\sqrt{k}}{k^3+2\,\sqrt{k}}$: converge por comparación con la serie $\sum \frac{1}{k^2}$
- (j) $\sum \frac{k!}{10^4 k}$: diverge (similar al ejemplo (d))
- (k) $\sum \frac{k^2}{e^k+1}$: converge por criterio del cociente (o por el de la raíz)
- (l) $\sum \frac{2^k \, k!}{k^k}$: converge por criterio del cociente
- (m) $\sum \frac{n!}{(n+2)!}$: converge por comparación con la serie $\sum \frac{1}{n^2}$
- (n) $\sum \frac{1}{n(\log n)^{\frac{1}{2}}}$: diverge por criterio de condensación (o por el de la integral)
- $(\tilde{\mathbf{n}}) \sum \frac{1}{n \log n (\log(\log n))^{\frac{3}{2}}}$: converge por criterio de condensación (o por el de la integral)
- (o) $\sum \frac{(k!)^2}{(2\,k)!}$: converge por criterio del cociente
- (p) $\sum \frac{45}{1+100^{-n}}$: diverge porque el término general no tiende a 0
- (q) $\sum \frac{\log n}{n^2}$: converge por criterio de condensación y luego el criterio de la raíz
- (r) $\sum (\sqrt{n+1} \sqrt{n})$: diverge por comparación con la serie $\sum \frac{1}{\sqrt{n}}$
- (s) $\sum (\sqrt[n]{n}-1)^n$: converge por el criterio de la raíz
- (t) $\sum \frac{1}{2^{\log n}}$: diverge porque $2^{\log n} = n^{\log 2}$ y $\log 2 < 1$ (serie p-armónica con p < 1)

OTRAS SERIES:

- (1) $\sum \left(\frac{k}{2k+1}\right)^k$: converge por criterio de la raíz
- (2) $\sum \frac{(\log k)^2}{k^2}$: converge por condensación y luego el criterio de la raíz
- (3) $\sum \frac{k^2+2}{2\,k^3+6\,k-20}$: diverge por comparación con la serie $\sum \frac{1}{k}$
- (4) $\sum \frac{1}{\sqrt{k^3-2}}$: converge por comparación con la serie $\sum \frac{1}{k^{3/2}}$
- (5) $\sum \left(\frac{k}{k+10}\right)^k$: diverge porque el término general no tiende a 0