Overview of Linear Models, Bayesian Inference, and STAN

Key Concepts

- Linear Model Specification
- Simulating Data in R
- Fitting Linear Models in R
- Bayesian Inference
- Fitting Bayesian Models with Stan

Linear Model Specification

Linear models provide the foundation for most statistical analyses:

One assumption, that is often violated in spatial statistics is that the errors are independently distributed.

Simulating Data in R

Simulating "fake" data will be a cornerstone of fitting models in this class.

```
set.seed(01112021)
# initialize parameters
num_obs <- 100
beta <- 1
sigma <- 2

# simulate data
x <- runif(num_obs, min = -10, max = 10)
y <- x * beta + rnorm(num_obs, mean = 0, sd = sigma)</pre>
```

```
# create figure
tibble(x=x, y=y) %>%
ggplot(aes(x=x, y=y)) +
geom_point() +
theme_bw() +
geom_smooth(formula = 'y~x', method = 'lm')
```


Figure 1: Scatterplot of synthetic data with best fit regression line.

Fitting Linear Models in R

The standard method for fitting linear models in R is with lm().

```
fit_lm <- lm(y ~x)
summary(fit_lm)
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
       Min
                1Q Median
                                       Max
## -6.3524 -1.4720 0.1297 1.5266 4.4066
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16819
                           0.22278
                                     0.755
                                              0.452
## x
                1.00733
                           0.03755 26.827
                                             <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.228 on 98 degrees of freedom
## Multiple R-squared: 0.8802, Adjusted R-squared: 0.8789
## F-statistic: 719.7 on 1 and 98 DF, p-value: < 2.2e-16
A quick interlude about model interpretation.
```

• P-values... The ASA Statement on p-values is "required reading".

display(fit_lm)

An alternative framework for fitting regression models is to use the rstanarm package and the associated stan_glm() functionality.

```
synthetic_data <- tibble(x = x, y = y)</pre>
fit_stan <- stan_glm(y ~ x, data = synthetic_data, refresh = 0)</pre>
print(fit_stan)
## stan_glm
## family:
                  gaussian [identity]
## formula:
                  y ~ x
## observations: 100
## predictors:
## ----
##
               Median MAD_SD
                      0.2
## (Intercept) 0.2
## x
               1.0
                      0.0
## Auxiliary parameter(s):
         Median MAD_SD
## sigma 2.2
                0.2
##
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

Bayesian Inference

While the coefficient estimates are similar to 1m

```
coef(fit_stan)
## (Intercept) x
## 0.1747493 1.0075860
```

```
fit_stan %>% as.data.frame() %>% head(10)
```

```
##
      (Intercept)
                              sigma
                         Х
      0.18706157 1.0098023 2.529174
## 1
## 2 0.09967871 0.9939963 2.079094
## 3
      0.08007354 0.9818507 2.215735
## 4
      0.04590595 0.9796351 2.108727
## 5
      0.02927909 0.9952074 2.133086
## 6
      0.49101367 0.9909962 2.364030
## 7
      0.26350585 0.9921205 2.271885
## 8 0.22166709 0.9987937 2.009585
## 9 0.10027736 1.0141302 2.488189
## 10 0.67024064 0.9608660 2.247425
```

So what is hiding in this model specification?

```
synthetic_data <- tibble(x = x, y = y)
fit_stan <- stan_glm(y ~ x, data = synthetic_data, refresh = 0)</pre>
```

```
prior_summary(fit_stan)
```

```
## Priors for model 'fit_stan'
## ----
## Intercept (after predictors centered)
     Specified prior:
##
##
       ~ normal(location = 0.24, scale = 2.5)
##
     Adjusted prior:
##
       ~ normal(location = 0.24, scale = 16)
##
## Coefficients
     Specified prior:
##
##
       ~ normal(location = 0, scale = 2.5)
##
     Adjusted prior:
##
       ~ normal(location = 0, scale = 2.7)
##
## Auxiliary (sigma)
##
     Specified prior:
##
       ~ exponential(rate = 1)
##
     Adjusted prior:
##
       ~ exponential(rate = 0.16)
## See help('prior_summary.stanreg') for more details
```

Bayes Rule

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B|A)Pr(A)}{Pr(B)},$$

where Pr(A|B) is a conditional probability of event A, given event B.

The classic example of Bayes Rule focuses on medical testing. So consider a COVID-19 testing scenario. Assume we want to know the probability that an individual is positive given they received a positive test or Pr(An individual is positive | test is positive). Let:

- Pr(An individual is Positive) = .10
- Pr(test is positive | an individual is positive) = .93
- Pr(test is positive | an individual is not positive) = .02

As mentioned, using Bayes's theorem does not equate with Bayesian inference, but rather what we have just
done is an exercise with conditional probability.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.
Maximum likelihood estimator use the sampling distribution, or more specifically the likelihood, to select parameter values $(\hat{\theta}_{MLE})$ that maximize the likelihood.

In some situations, the posterior distribution can be analytically calculated. However, in many scenarios, p(x) requires integration and does not have an analytical solution.

STAN can be called directly from R (or R Markdown documents.). The basic structure of a STAN script looks like:

```
data {
   int<lower=0> N;
   vector[N] x;
   vector[N] y;
}

parameters {
   real alpha;
   real beta;
   real<lower=0> sigma;
}

model {
   y ~ normal(alpha + beta * x, sigma);
}
```