Presentación de la 4ª Práctica de PL para el Miércoles 13 de Enero 2021.

Para los que tengan como estructura complejas las pilas, o las listas, o los conjuntos:

Confeccionar el siguiente algoritmo expresado en vuestro lenguaje:

como *Dato1* junto con la inserción uno a uno de los elementos de *Dato2*.

(a) (2,75) Completo (anidamiento de funciones/procedimientos, estructuras de datos complejas). Pida por teclado un número N, y debe llamar a una función/procedimiento, denominada fibo con argumento N que deberá obtener los N primeros elementos de la serie de Fibonacci e introducirlos en una pila,o listas o conjunto denominada Dato. A su vez, anidada en fibo debe definirse otra función/procedimento sin argumentos denominada fiboimprime que imprima los elementos de Dato1 creado en fibo, así como, imprimir Dato2, donde Dato2 = Dato *2, e imprimir Dato3 = a la concatenación/union de Dato1 y Dato2. En el caso de pilas, crear Dato3

(b) (1,75) Anidamiento y datos elementales.

Lo mismo, pero sin crear la estructura *Dato1*, *Dato2* y *Dato3*. La función/procedimiento fibo debe definir a *fiboimprime* sin argumentos. *fibo* debe obtener los N primeros elementos de la serie de Fibonacci en una variable denominada *Dato* y llamar a *fiboimprime* elemento a elemento para imprimirlos. Además al final *fibo* debe imprimir el último elementos de la serie multiplicado por 10 y dividido por el (*N*-1).

(c) (2,25) Solo estructuras de datos.

Lo mismo que el completo (a) sin definir funciones/procedimientos pero la generación de la serie de Fibonacci y las impresiones y operaciones se hacen en el programa principal.

(d) (1,25) Solo estructuras de datos elementales.

Lo mismo que (b) pero sin definición de funciones como (c).

Para los que tengan arrays

Confeccionar el siguiente algoritmo expresado en vuestro lenguaje:

(a) (2,75) Completo (anidamiento de funciones/procedimientos, estructuras de datos complejas). Pida por teclado un número N, y debe llamar a una función/procedimiento, denominada fibo con argumento N que deberá obtener los 10 primeros elementos de la serie de Fibonacci e introducirlos en una array denominada Dato[10]. A su vez, anidada en fibo debe definirse otra función/procedimento sin argumentos denominada fiboimprime que imprima los elementos de Dato1 creado en fibo, asi como, imprimir Dato2, donde Dato2 = Dato*N. En fibo al final debe crear la array Dato3[N,2] y Dato4[2,N], donde la 1ª columna de Dato3 debe tener los elementos de Dato1 y la 2ª columna debe tener los elementos de Dato2. Y Dato4 debe ser la traspuesta de Dato3. Al final deberá imprimir Dato3*Dato4 y Dato4*Dato3.

(b) (1,75) Anidamiento y datos elementales.

La función/procedimiento fibo debe leer un número N y definir a *fiboimprime* sin argumentos. *fibo* debe obtener los N primeros elementos de la serie de Fibonacci en una variable denominada *Dato* y llamar a *fiboimprime* elemento a elemento para imprimirlos. Además al final *fibo* debe imprimir el último elementos de la serie multiplicado por 10 y dividido por el (*N*-1).

(c) (2,25) Solo estructuras de datos.

Lo mismo que el completo (a) pero sin funciones/procedimientos y la generación de la serie de Fibonacci y las impresiones y operaciones se hacen en el programa principal.

(d) (1,25) Solo estructuras de datos elementales.

Lo mismo que (b) pero sin definición de funciones como (c).