Dubrovnik Skein Theory and Power Sum Elements

Alexander Pokorny University of California, Riverside

Introduction

Introduction o
●

Introduction

BACKGROUND

POWER SUM ELEMENTS

The Algebra $\mathcal{D}(T^2)$

(FRAMED) LINK INVARIANTS

POWER SUM ELEMENTS

POWER SUM ELEMENTS

(FRAMED) LINK INVARIANTS

(3)

DUBROVNIK SKEIN RELATIONS

$$= \bigcirc + (s - s^{-1}) \left(\bigcirc - \bigcirc \right)$$
 (1)
$$= v \bigcirc$$
 (2)

DUBROVNIK SKEIN RELATIONS

SKEIN MODULES

Observation: Skein relations are defined locally.

Observation: Skein relations are defined locally.

<u>Consequence:</u> May impose skein relations on tangles in arbitrary 3-dimensional manifolds.

SKEIN MODULES

INTRODUCTION

Observation: Skein relations are defined locally.

Consequence: May impose skein relations on tangles in arbitrary 3-dimensional manifolds.

Definition

Let *M* be an oriented 3-manifold and $R := \mathbb{Q}(s, v)$.

$$\mathcal{D}(M, N) := R\{\text{Tangles in } M \text{ relative to } N\}/\sim$$

POWER SUM ELEMENTS

FUNCTORIALITY

INTRODUCTION

- A "nice" embedding $f: M \rightarrow M'$
- + A wiring diagram in image complement
- = A linear transformation $D(f) : \mathcal{D}(M, N) \to \mathcal{D}(M', N')$

FUNCTORIALITY

INTRODUCTION

- A "nice" embedding $f: M \to M'$
- + A wiring diagram in image complement
- = A linear transformation $D(f): \mathcal{D}(M,N) \to \mathcal{D}(M',N')$

<u>Consequence</u>: Dubrovnik skein theory is a type of algebraic topology for smooth, oriented, 3-manifolds.

SPECIAL CASE: SKEIN ALGEBRAS

If

INTRODUCTION

$$ightharpoonup M = \Sigma \times I$$

$$N = (X \times \{0\}) \sqcup (X \times \{1\})$$

Then $\mathcal{D}(M, N)$ is naturally an algebra.

POWER SUM ELEMENTS

SPECIAL CASE: SKEIN ALGEBRAS

If

$$ightharpoonup M = \Sigma \times I$$

$$N = (X \times \{0\}) \sqcup (X \times \{1\})$$

Then $\mathcal{D}(M, N)$ is naturally an algebra.

e.g.: $\Sigma = \text{Square}, N = 2n \text{ points } \rightsquigarrow \mathcal{D}(\Sigma, N) \cong BMW_n$

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet, 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

IDEMPOTENTS IN BIRMAN-MURAKAMI-WENZI. ALGEBRAS

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet, 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

POWER SUM ELEMENTS

IDEMPOTENTS IN BIRMAN-MURAKAMI-WENZL ALGEBRAS

Theorem (Ram-Wenzl 1992, Beliakova-Blanchet, 2001)

For each partition $\lambda \vdash n$, there is a minimal idempotent $\tilde{y}_{\lambda} \in BMW_n$.

Theorem (Lu-Zhong 2002)

The elements $\widetilde{Q}_{\lambda} := \operatorname{cl}(\widetilde{y}_{\lambda})$ form a basis of $\mathcal{D}(A)$.

DUBROVNIK POWER SUM ELEMENTS

Define a family of elements $P_k \in \mathcal{D}(A)$ for $k \in \mathbb{Z}_{>1}$ via

$$\sum_{k\geq 1} \frac{\widetilde{P}_k}{k} t^k = \ln\left(1 + \sum_{n\geq 1} \widetilde{Q}_{(n)} t^n\right)$$

POWER SUM ELEMENTS •0000000

<u>Idea:</u>

INTRODUCTION

 $Q_{(n)}$ are "like" complete homogeneous symmetric functions.

 $\rightsquigarrow P_k$ are "like" power sum symmetric functions.

(Will make more precise later)

POWER SUM ELEMENTS 0000000

 $e \cdot \operatorname{cl}(x) =$

A RELATIVE SKEIN ALGEBRA

Let $A := \mathcal{D}(A, 1)$.

INTRODUCTION

COMMUTATION RELATIONS

INTRODUCTION

Theorem (Morton-P.-Samuelson)

$$e \cdot \widetilde{P}_k - \widetilde{P}_k = (s^k - s^{-k})(a^k - a^{-k})$$

COMMUTATION RELATIONS

Theorem (Morton-P.-Samuelson)

$$e \cdot \widetilde{P}_k - \widetilde{P}_k = (s^k - s^{-k})(a^k - a^{-k})$$

Theorem (P.)

$$e \cdot \widetilde{Q}_{(n)} - \widetilde{Q}_{(n)} \cdot e = \sum_{i=1}^{n} d_i (e \cdot \widetilde{Q}_{(n-i)})$$

where

$$d_i = \sum_{i=1}^{i-1} (s^2 - 1)s^{2l-i}a^{i-2l} + (s^{-2} - 1)s^{i-2l}a^{2l-i}$$

IDEA OF PROOF

1) By power series manipulations, the statement is equivalent to

POWER SUM ELEMENTS

00000000

$$e \cdot (\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}) - (\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}) \cdot e$$

$$= (sa + s^{-1}a^{-1})(e \cdot \widetilde{Q}_{(n+1)}) - (s^{-1}a + sa^{-1})(\widetilde{Q}_{(n+1)} \cdot e)$$

IDEA OF PROOF

INTRODUCTION

1) By power series manipulations, the statement is equivalent to

POWER SUM ELEMENTS 00000000

$$\begin{split} e\cdot \big(\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}\big) - \big(\widetilde{Q}_{(n+2)} + \widetilde{Q}_{(n)}\big) \cdot e \\ &= \\ (sa + s^{-1}a^{-1})\big(e\cdot \widetilde{Q}_{(n+1)}\big) - (s^{-1}a + sa^{-1})\big(\widetilde{Q}_{(n+1)} \cdot e\big) \end{split}$$

2) [Shelly, 2016] The $\widetilde{y}_{(n)}$ satisfy a skein-theoretic recurrence relation.

APPLICATION: CENTRAL ELEMENTS OF BMW_n

The Jucys-Murphy elements $M_{n,i}$ generate a commutative subalgebra of BMW_n .

 $2 \le i \le n$

APPLICATION: CENTRAL ELEMENTS OF BMW_n

The Jucys-Murphy elements $M_{n,i}$ generate a commutative subalgebra of BMW_n .

 $2 \le i \le n$

Theorem (P.)

APPLICATION: CENTRAL ELEMENTS OF BMW_n Sketch: Apply commutation relation for \widetilde{P}_k .

INTRODUCTION

APPLICATION: CENTRAL ELEMENTS OF BMW_n Sketch: Apply commutation relation for \widetilde{P}_k .

APPLICATION: MERIDIANS OF \widetilde{y}_{λ}

Theorem (P.)

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \mathrm{cn}(\square)} - v^k s^{-2 \mathrm{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

POWER SUM ELEMENTS

00000000

APPLICATION: MERIDIANS OF \widetilde{y}_{λ}

Theorem (P.)

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \operatorname{cn}(\square)} - v^k s^{-2 \operatorname{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

Observation: For any fixed k, the eigenvalues of \tilde{y}_{λ} are distinct.

Application: Meridians of \widetilde{y}_{λ}

Theorem (P.)

$$= \left(\langle \widetilde{P}_k \rangle + (s^k - s^{-k}) \sum_{\square \in \lambda} \left(v^{-k} s^{2 \operatorname{cn}(\square)} - v^k s^{-2 \operatorname{cn}(\square)} \right) \right) \widetilde{y}_{\lambda}$$

<u>Observation:</u> For any fixed k, the eigenvalues of \tilde{y}_{λ} are distinct. <u>Consequence:</u> The basis $\{\widetilde{Q}_{\lambda}\}$ of $\mathcal{D}(A)$ is an eigenbasis with 1-dimensional eigenspaces. Setting k=1 recovers the result from [Lu-Zhong, 2002].

COMPATIBILITY WITH KAUFFMAN BRACKET SKEIN THEORY K

The Kauffman bracket skein relation → Jones polynomial

COMPATIBILITY WITH KAUFFMAN BRACKET SKEIN THEORY K

The Kauffman bracket skein relation → Jones polynomial

Fact: The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

COMPATIBILITY WITH KAUFFMAN BRACKET SKEIN THEORY K

The Kauffman bracket skein relation → Jones polynomial

Fact: The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

Consequence: There is a natural transformation of skein theories $\eta: \mathcal{D} \Rightarrow \mathcal{K}$.

COMPATIBILITY WITH KAUFFMAN BRACKET SKEIN Theory \mathcal{K}

The Kauffman bracket skein relation → Jones polynomial

Fact: The Dubrovnik skein relation satisfies the Kauffman bracket skein relation.

Consequence: There is a natural transformation of skein theories $\eta: \mathcal{D} \Rightarrow \mathcal{K}$.

Theorem (P.)

The image of $P_k \in \mathcal{D}(A)$ under η_A is the Chebyshev polynomial $T_k \in \mathcal{K}(A)$.

OTHER SKEIN ALGEBRAS OF T^2

Theorem (Frohman-Gelca, 2000)

The algebra $K(T^2)$ is presented by generators T_x for $\mathbf{x} \in \mathbb{Z}^2/\langle \mathbf{x} = -\mathbf{x} \rangle$ subject to the relations

$$T_{\mathbf{x}}T_{\mathbf{y}} = s^{\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}+\mathbf{y}} + s^{-\det(\mathbf{x},\mathbf{y})}T_{\mathbf{x}-\mathbf{y}}$$

Theorem (Morton-Samuelson, 2017)

The algebra $\mathcal{H}(T^2)$ is presented by generators P_x for $\mathbf{x} \in \mathbb{Z}^2$ subject to the relations

$$[P_{\mathbf{x}}, P_{\mathbf{y}}] = (s^{\det(\mathbf{x}, \mathbf{y})} - s^{-\det(\mathbf{x}, \mathbf{y})})P_{\mathbf{x} + \mathbf{y}}$$

A Presentation of $\mathcal{D}(T^2)$

Let $\mathbf{x} = (a, b), k = \gcd(\mathbf{x}).$

Define $\widetilde{P}_x \in \mathcal{D}(T^2)$ be the embedding of \widetilde{P}_k along the closed curve of slope a/b.

Theorem (Morton-P.-Samuelson)

The algebra $\mathcal{D}(T^2)$ is presented by generators P_x for $\mathbf{x} \in \mathbb{Z}^2/\langle \mathbf{x} = -\mathbf{x} \rangle$ subject to the relations

$$[\widetilde{P}_{\mathbf{x}},\widetilde{P}_{\mathbf{y}}] = (s^{\det(\mathbf{x},\mathbf{y})} - s^{-\det(\mathbf{x},\mathbf{y})})(\widetilde{P}_{\mathbf{x}+\mathbf{y}} - \widetilde{P}_{\mathbf{x}-\mathbf{y}})$$

00

Frame 1