Particles

1 Constituents of the atom

Specific charge - The charge to mass ratio

Isotope - An atom with the same number of protons as an element but a different number of neutrons

2 Stable and unstable nuclei

2.1 The strong nuclear force

0fm - 0.5fm - Repulsion 0.5fm - 3fm - Attraction 3fm+ - No force

2.2 Alpha decay

An atom emits an alpha particle (Helium Nucleus/2 protons and 2 neutrons) Reduces $Mass\ Number$ by 4 and $proton\ number$ by 2

2.3 Beta decay

Neutron→Proton+Electron+Neutrino
The neutrino was hypothesised to conserve energy

3 Particles, antiparticles and photons

For every particle there is a corresponding antiparticle (can be itself)

Property	Particle	Antiparticle
Mass	x	x
Charge	x	-x
Rest Energy	x	x
Baryon Number	x	-x
Lepton Number	x	-x
Strangeness	x	-X

When a particle and antiparticle collide they annihilate each other

A particle-antiparticle pair can be produced from energy

4 Particle interactions

Fundamental interactions:

Force	Affects	Gauge Boson	Range
Gravitational	Mass	Graviton	Infinite
Electromagnetic	Charge	Photon	Infinite
Nuclear Strong	Quarks	Gluon(Pion)	10^{-15} m
Nuclear Weak	Leptons+Quarks	W^{+}, W^{-}, Z^{0}	10^{-18} m

The exchange particles provide the forces between elementary particles Virtual photons are the exchange particle of the electromagnetic force Examples of the weak interaction:

- β^+ Decay
- β^- Decay
- Electron capture
- Electron-proton collisions

5 Classification of particles

5.1 Hadrons

Hadrons are subject to the strong interaction There are two types of hadrons:

- Baryon(3 Quarks)
- Meson (Quark-Antiquark pair)

The baryon number is conserved in an interaction All baryons will eventually decay into protons Kaons can decay into pions

5.2 Leptons

Types of lepton(All have a lepton number of 1):

- Electron
- Muon
- Electron Neutrino (Approximated to massless)
- Muon Neutrino (Approximated to massless)

Lepton number is conserved during an interaction Muons decay into electrons

5.3 Strange particles

Produced through the strong interaction Decay through the weak interaction

6 Quarks and antiquarks

6.1 Baryons

Proton	UUD
Neutron	DUD

6.2 Mesons

6.2.1 Pions(All 0 Strangeness)

π^0	$U\bar{U}$ or $D\bar{D}$
π^+	$U\bar{D}$
π^-	$Dar{U}$

6.2.2 Kaons (All strange)

K^+	$Uar{S}$
K ⁻	$ar{U}S$
K^0	$Dar{S}$
$ar{K^0}$	$\bar{D}S$