Environmental Informatics

Ryan G

February 15, 2020

Contents

1 DONE Link to PDF / T_EX / DocX fileATTACH

This is incomplete because of the conversion, Refer to:

- Original PDF Version
 - DocX File not Yet Attached

2 TODO Get Working into this document

Either get the working out of the scripts and transcribe into org-mode. OR

Clean them up and make them into R Scripts/RMD documents in vim and then add them to:

- MD Notes
- Link them to this Org file
- ullet put the $R ext{-}Markdown$ / scripts in the DataSci Project
 - I want to have a git repo with clean exemplar code in it and I want it to be a project, when I start a unit or a semester I want to add the exemplar code as a submodule so I have something to work off, questions I need to consider are:
 - * How will I tag things?
 - · Probably #tags
 - * How will I search tags

- · Can I use my old #tag script?
- * How will i integrate this with theory notes from Org and MD?
- * How will I search Documents
 - · Probably FZF and RG
- * When do i want to use RMD and when do I want to use MD?
- This will be clearer once I:
 - 1. remove duplicate notable notes
 - 2. Import TSA Scripts and RMD files

3 Original Material

ATTACH

Chapman TextBook

- 1. Correlation a. Script
- 2. Confidence Intervals
 - (a) Notes
 - i. Source
 - (b) Lecture Material
- 3. Tolerance Intervals 1.Lecture Material
 - (a) Topic Notes
 - i. Word Doc Source
 - (b) Scripts
- 4. Linear Regression
 - (a) Scripts
 - (b) Working Exercises (PDF)
 - i. LATEX Source
 - (c) Notes
 - i. Source (DocX)
- 5. Multiple Linear Regression
 - (a) Notes
 - i. Applied Statistics Notes

- A. Source (MS Word)
- ii. Relevant Notes
 - A. Source (Ms Word)
- (b) Lecture material
- (c) Worked Exercise Solutions
 - i. Scripts
- 6. Time Series Analysis
 - (a) Notes
 - i. Source
 - (b) Old Notes Applied Stats
 - i. A
 - ii. B
 - (c) Exercises Worked Solutions
 - i. Scripts
 - (d) Lecture Material
- 7. Trend Estimation
 - (a) Notes
 - i. Source
 - (b) Exercises Worked Solutions
 - i. Scripts
 - ii. Worked Solutions
 - A. 7.1.1
 - B. 7.1.2
 - C. 7.1.3
 - D. 7.1.4
 - E. 7.1.5
 - F. 7.1.6
 - G. 7.2
 - (c) Lecture Material
- 8. AR, MA, ARMA and ARIMA
 - (a) Notes 1. Source

(b) Exercises Worked Solutions
i. 8.1
ii. 8.2
iii. 8.3
iv. Scripts
(c) Lecture Material
I haven't attached/linked anything

I haven't attached/linked anything beneath here for want of times and concern over file size.

1. Model Selection

- (a) Notes
 - i. Source
- (b) Exercises Worked Solutions
 - i. Scripts
- (c) Lecture Material

2. GeoSpatial

- (a) Notes
 - i. Source
- (b) Exercises Worked Solutions
 - i. Scripts
- (c) Lecture Material
- 3. Variograms
 - (a) Notes
 - i. Source
 - (b) Exercises Worked Solutions
 - i. Scripts
 - (c) Lecture Material
- 4. GeoSpatial
 - (a) Notes
 - i. Source

- (b) Exercises Worked Solutions
 - i. Scripts
- (c) Lecture Material
- 5. Spatio-Temporal Models
 - (a) Notes
 - i. Source
 - (b) Exercises Worked Solutions
 - i. Scripts
 - (c) Lecture Material

4 (1) - Exercises

Week 1 | Material Due: 17 July 2017

4.1 Regulations relating to Environmental Hypotheses Testing

Things that require measurement's, ostensibly by law, would include fish populations, ocean acidity, $CO\eta_2$ levels, temperature, rainfall etc.ss

Finding which legislative instrument provides for this is difficult, a cursory glance through *Westlaw, LexisNexis, Google* and *Austlii* does not provide anything obvious.

4.2 Summary of Temperature Data

A table of data with rows as observations and columns as variables is a data frame.

- 4.2.1 First few Lines
- 4.2.2 Structure of the Data Set
- 4.2.3 Summary of the Data Frame

4.2.4 Correlation of Minimum and Maximum Temperature

The value provided by the cor function is the default *Pearson* method¹ awhich is a *linear correlation coefficient such that:*²

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \times \sqrt{n(\sum y^2) - (\sum y)^2}}$$

The value of r measures the strength and direction of a linear relationship by comparing the variation, whereby a value of 1 would occur if all the data were to lie exactly on a straight line, a strong correlation is usually $r > \pm 0.8$.

The Coefficient of determination is r^2 :

$$r^2 = 0.7498076^2 = 0.562211$$

The Coefficient of determination is the percentage of variation that is explained by the linear function, so in this case 56% of the variation between maximum and minimum temperatures can be explained by a linear function between those two variables, the linear function can be found by using an RSS method, explained by .Simple\ Linear\ Regression.pdf.

This is the same method used with Excel:

[CHART]

¹Rdocumentation.org. (2017).ă/cor function | R Documentation/. [online] Available at: https://www.rdocumentation.org/packages/stats/versions/3.4.1/topics/cor [Accessed 21 Jul. 2017].

²Roberts, D. (2017).ă/Statistics 2 - Correlation Coefficient and Coefficient of Determination/. [online] Mathbits.com. Available at: https://mathbits.com/MathBits/TISection/Statistics2/correlation.htm [Accessed 21 Jul. 2017].

4.3 1.5 Re-Produce Figures³

4.3.1 Histogram

4.3.2 Line Plot

Maximum Temperature

³Use this cite as a man page:

 $\verb|https://www.tutorialspoint.com/r/r_line_graphs.htm|$