Spatial Econometrics

Wykład 6: Multi-source spatial models

Andrzej Torój

Institute of Econometrics – Department of Applied Econometrics

Outline

- Multi-source models
- 2 SARAR model
- 3 SDM (Durbin) model
- 4 SDEM model
- Exercises

Multi-source models

- Multi-source models
- SARAR model
- SDM (Durbin) model

Spatial lag distributions: parsimonious parametrisation

 SAR, SEM and SLX models contain only one spatial lag of the respective component, but one lag of one component may approximate the lag distribution of another:

SAR	SEM	SLX
$y = ho W y + X oldsymbol{eta} + oldsymbol{arepsilon}$	$y = X\beta + (I - \lambda W)^{-1} \varepsilon$	$y = X\beta + WX\theta + \varepsilon$
$y = (I - \rho W)^{-1} X\beta + (I - \rho W)^{-1} \varepsilon$	$y = X\beta + \varepsilon + \lambda W\varepsilon + \lambda^2 W^2\varepsilon +$	
$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \rho \mathbf{W} \mathbf{X} \boldsymbol{\beta} + \rho^2 \mathbf{W}^2 \mathbf{X} \boldsymbol{\beta} + \dots \\ + \boldsymbol{\epsilon} + \rho \mathbf{W} \boldsymbol{\epsilon} + \rho^2 \mathbf{W}^2 \mathbf{X} \boldsymbol{\epsilon} + \dots$		

 This is the underlying idea of combining different sources of spatial processess in one model: they allow to approximate the lags of higher order, and – in consequence – remove the spatial autocorrelation that can remain unremoved in the residuals of a single-source model.

- (ロ) (部) (注) (注) (注) (E) (のQC

- SARAR model
- SDM (Durbin) model
- SDEM model

SARAR model - relation to other models

Spatial models Single source SAR a = 0 $y = \rho W y + X\beta + \varepsilon$ $\beta = 0$ pure SAR Moran (L. G) $y = \rho W y + \varepsilon$ Geary Getis-Ord (L, G) $\beta = 0$ Join count Linear SEM model $y = X\beta + \varepsilon$ $\lambda = 0$ $y = X\beta + \varepsilon$ $\varepsilon = \lambda W \varepsilon + u$ SLX $\theta = 0$ $y = X\beta + WX\theta + \varepsilon$

SARAR model

SARAR model – relation to other models

SARAR model – specification

 Also referred to as SAC (comparable to ARMA model for time series):

$$y = \rho Wy + X\beta + \varepsilon$$

$$\varepsilon = \lambda \mathsf{W} \varepsilon + \mathsf{u}$$

- Applied, when previously discussed methods insufficiently remove spatial autocorrelation of the residuals.
- Estimation problem: hybrid of the problems with SLM and SEM.

SARAR model - specification

 Also referred to as SAC (comparable to ARMA model for time series):

$$y = \rho Wy + X\beta + \varepsilon$$

$$\varepsilon = \lambda \mathsf{W} \varepsilon + \mathsf{u}$$

- Applied, when previously discussed methods insufficiently remove spatial autocorrelation of the residuals.
- Estimation problem: hybrid of the problems with SLM and SFM

SARAR model – specification

 Also referred to as SAC (comparable to ARMA model for time series):

$$y = \rho Wy + X\beta + \varepsilon$$

$$\varepsilon = \lambda \mathsf{W} \varepsilon + \mathsf{u}$$

- Applied, when previously discussed methods insufficiently remove spatial autocorrelation of the residuals.
- Estimation problem: hybrid of the problems with SLM and SEM.

SARAR model

SARAR model - estimation

It is possible to use both least-squares and maximum-likelihood approaches. Both procedures for SAR and SME should be accordingly combined and merged (details e.g. in Arbia, 2014).

Method 1 - ML

model <- sacsarlm(y ~ x, listw = W)</pre>

Method 2 - generalised spatial 2SLS

model <- gstsls(y ~ x, listw = W)</pre>

- SARAR model
- 3 SDM (Durbin) model

SDM model – relation to other models

SDM model

SDM model - relation to other models

SDM model

- Two sources of the spatial process: the outcome in a given region is driven by...
 - the outcome in other regions and...
 - and the cause in other regions

$$y = \rho Wy + X\beta + WX\theta + \varepsilon$$

ML estimation (like SLM / pure SAR)

model <- lagsarlm(y \sim x, listw = W, type = ''Durbin'') More difficult for S2SLS (matrix $\mathbf{W}\mathbf{X}$ is a regressor, so it cannot any more serve as a separate instrument for $\mathbf{W}\mathbf{y}$).

- Multi-source models
- 2 SARAR model
- 3 SDM (Durbin) model
- 4 SDEM model
- Exercises

(6) Spatial Econometrics

SDEM model - specification

SDEM model – specification and estimation

- Two sources of the spatial process: the outcome in a given region is driven by...
 - the reason in other regions
 - and the unobservable factors in other regions.

$$y = X\beta + WX\theta + \varepsilon$$

$$\varepsilon = \lambda W \varepsilon + u$$

ML estimation (like SEM, with additional regressors)

SDEM with local interdependence of error terms

$$y = X\beta + WX\theta + \varepsilon$$

$$\varepsilon = \lambda \mathbf{W} \mathbf{u} + \mathbf{u}$$

Estimation: like SEM with local interdependence of error terms (but with additional regressors).

- 1 Multi-source models
- 2 SARAR model
- 3 SDM (Durbin) model
- 4 SDEM model
- 5 Exercises

Exercises

Exercise

- Come back to the previous examples:
 - Okun's law (unemployment vs output);
 - location of Biedronka markets vs labour market characteristics.

Is there a need to estimate a multi-source model?

 Estimate the 3 models in discussion (SARAR, SDM, SDEM) and draw appropriate conclusions.

(6) Spatial Econometrics

Homework 6

Consider te applicability of SARAR, SDM and SDEM models in explaining the variable from homework 1.

- Were the previously conducted tests satisfactory?
- Do LM / LR tests reject the restriction about a single source process, or not?
- Interpret the results of the three new models.
- Compute and illustrate the spatial multipliers of the dependent variable with respect to a selected regressor in all three models under consideration.

