

FOD817 Series

DESCRIPTION

The FOD817 Series consists of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 4-pin dual in-line package.

FEATURES

- · Applicable to Pb-free IR reflow soldering
- Compact 4-pin package
- · Current transfer ratio in selected groups:

FOD817: 50-600% FOD817A: 80-160% FOD817B: 130-260% FOD817C: 200-400% FOD817D: 300-600%

- C-UL, UL and VDE approved
- · High input-output isolation voltage of 5000 Vrms

APPLICATIONS

FOD817 Series

- Power supply regulators
- · Digital logic inputs
- Microprocessor inputs

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless otherwise specified.)				
Parameter	Symbol	Value	Units	
TOTAL DEVICE				
Storage Temperature	T _{STG}	-55 to +125	°C	
Operating Temperature	T _{OPR}	-30 to +100	°C	
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C	
Total Device Power Dissipation	P _D	200	mW	
EMITTER				
Continuous Forward Current	I _F	50	mA	
Reverse Voltage	V _R	6	V	
LED Power Dissipation	P _D	70	mW	
Derate above 25°C	LD LD	0.93	mW/°C	
DETECTOR				
Collector-Emitter Voltage	V _{CEO}	70	V	
Emitter-Collector Voltage	V _{ECO}	6	V	
Continuous Collector Current	I _C	50	mA	
Detector Power Dissipation	P _D	150	mW	
Derate above 25°C	L L D	2.0	mW/°C	

FOD817 Series

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)						
INDIVIDUAL COMPONENT CHARACTERISTICS						
Parameter	Test Conditions	Symbol	Min	Тур*	Max	Unit
EMITTER Input Forward Voltage	(I _F = 20 mA)	V _F	_	1.2	1.4	٧
Reverse Leakage Current	$(V_R = 4.0 \text{ V})$	I _R	_	_	10	μΑ
Terminal Capacitance	(V = 0, f = 1 kHz)	C _t	_	30	250	pF
DETECTOR						
Collector-Emitter Breakdown Voltage	$(I_C = 0.1 \text{ mA}, I_F = 0)$	BV_CEO	70	-	—	V
Emitter-Collector Breakdown Voltage	$(I_E = 10 \mu A, I_F = 0)$	BV _{ECO}	6	_	_	V
Collector-Emitter Dark Current	$(V_{CF} = 20 \text{ V}, I_F = 0)$	I _{CEO}	_	_	100	nA

^{*}Typical values at $T_A = 25$ °C.

TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
DC Characteristic	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit
			FOD817	50	_	600	%
			FOD817A	80	_	160	%
Current Transfer Ratio	$(I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}) \text{ (note 1)}$	CTR	FOD817B	130	_	260	%
			FOD817C	200	_	400	%
			FOD817D	300	_	600	%
Collector-Emitter Saturation Voltage	(I _F = 20 mA, I _C = 1 mA)	V _{CE (SAT)}		_	0.1	0.2	٧
AC Characteristic							
Rise Time	$(I_C = 2 \text{ mA}, V_{CE} = 2 \text{ V}, R_L = 100\Omega) \text{ (note 2)}$	t _r		_	4	18	μs
Fall Time	$(I_C = 2 \text{ mA}, V_{CE} = 2 \text{ V}, R_L = 100\Omega) \text{ (note 2)}$	t _f		_	3	18	μs

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Тур*	Max	Units
Input-Output Isolation Voltage (note 3)	f = 60Hz, t = 1 min	V _{ISO}	5000			Vac(rms)
Isolation Resistance	(V _{I-O} = 500 VDC)	R _{ISO}	5 x 10 ¹⁰	10 ¹¹		Ω
Isolation Capacitance	$(V_{I-O} = 0, f = 1 \text{ MHz})$	C _{ISO}		0.6	1.0	pf

^{*}Typical values at $T_A = 25$ °C.

NOTES

- 1. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.
- 2. For test circuit setup and waveforms, refer to page 4.
- 3. For this test, Pins 1 and 2 are common, and Pins 3 and 4 are common.

FOD817 Series

Typical Electrical/Optical Characteristic Curves (T_A = 25°C Unless otherwise specified.)

Fig. 3 Collector-Emitted Saturation Voltage vs. Forward Current

Fig. 4 Forward Current vs. Forward Voltage

Fig. 5 Current Transfer Ratio vs. Forward Current

Fig. 6 Collector Current vs. Collector-Emitter Voltage

FOD817 Series

Typical Electrical/Optical Characteristic Curves (T_A = 25°C Unless otherwise specified.)

Fig. 7. Relative Current Transfer Ratio

Fig. 8 Collector-Emitter Saturation Voltage

Fig. 9 Collector Dark Current vs. Ambient Temperature

Fig. 10. Response Time

Fig. 11. Frequency Response

Test Circuit for Response Time

Test Circuit for Frequency Response

FOD817 Series

NOTEAll dimensions are in inches (millimeters)

FOD817 Series

ORDERING INFORMATION

Option	Order Entry Identifier	Description	
S	.S	Surface Mount Lead Bend	
SD	.SD	Surface Mount; Tape and reel	
W	.W	0.4" Lead Spacing	
300	.300	VDE 0884	
300W	.300W	VDE 0884, 0.4" Lead Spacing	
3S	.3S	VDE 0884, Surface Mount	
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel	

MARKING INFORMATION

Definitions			
1	Fairchild logo		
2	Device number		
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)		
4	One digit year code		
5	Two digit work week ranging from '01' to '53'		
6	Assembly package code		

FOD817 Series

NOTEAll dimensions are in millimeters

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F P ₂	7.5 ± 0.1 (.295) 2 ± 0.1 (.079)
Distance of compartment to compartment	P ₁	12 ± 0.1 (.472)

FOD817 Series

Lead Free recommended IR Reflow condition

Profile Feature	Pb-Sn solder assembly	Lead Free assembly
Preheat condition (Tsmin-Tsmax / ts)	100°C ~ 150°C 60 ~ 120 sec	150°C ~ 200°C 60 ~120 sec
Melt soldering zone	183°C 60 ~ 120 sec	217°C 30 ~ 90 sec
Peak temperature (Tp)	240 +0/-5°C	250 +0/-5°C
Ramp-down rate	6°C/sec max.	6°C/sec max.

Recommended Wave Soldering condition

Profile Feature	For all solder assembly	
Peak temperature (Tp)	Max 260°C for 10 sec	

FOD817 Series

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.