Name: Connor Raymond Stewart Student Number: 107041125

a) The Scatter diagram on Page two of the SAS output Shows an approximately linear relationship.

The line in the graph shows that as x increases, so does y indicating a Positive relationship. b) The SLR (Model Used: 4=B0+B1X1+E Where E is the error term the Assumptions are: 1) x's observed W/ no error 2) y's are independently distributed with mean: E(4)= Bot BIX 3) Veriance of y's Constant (1) $B_1 = \frac{S_{XY}}{S_{XX}} = \frac{\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sum x_i^2 - (\sum x_i)^2/n} = \frac{6251 - (738)(38)}{45580 - (738)^2/3}$ the least squares estimates of Bo & Bi are as $=\frac{8934}{47896} = 0.186633539 = 0.1866$ follows: $\hat{B}_{o} = \bar{y} - \hat{B}_{1}\bar{X} = \frac{\Sigma_{41}}{n} - \hat{B}_{1}^{2} \left(\frac{\Sigma_{xi}}{n}\right) = \frac{98}{13} - \frac{8939}{47896} \left(\frac{738}{13}\right)$ = 13 - 10.59504246 = -3.056580925 = [-3.0566] thus, for $y = \hat{B_0} + \hat{B_1} \times i$ we get the following least-Squares littled Regression line: $y = -3.0566 + 0.1866 \times i$ $y = 3.0566 + 0.1866 \times i$ d) to venify the fitted regression line goes through (x, 3); $(X, \mathcal{I}) = (\underbrace{X_i}_{n}, \underbrace{X_i}_{n}) = (\underbrace{\frac{738}{13}}, \frac{78}{13})$ thus: $y = B_0 + B_1 x_1 = \frac{96}{13} = 0$ $y = -3.0566 + 0.1866 \left(\frac{738}{13}\right)$ $=7\frac{274}{630}=7.536538462=7.63$ $\frac{98}{13} = 7.538461538 = 7.53$

thus: 4 = Bo + B, x, = 13 So Since y= y, we can say (x,y) is verified.

e) Obtain the Residuals for this data Set:

$$e_{i} = y_{i} - \hat{y}_{i}$$
 $e_{i} = y_{i} - \hat{y}_{i} - \sum \hat{y}_{i} = \frac{98}{13} - \frac{8939}{47896} + \frac{8939}{13} + \frac{8939}{47896} + \frac{27}{47896}$

 $e_1 = \lambda - 1.782524637 = 0.017475363 = 0.017475$

for the remaining, see excel sheet on Next page

Hilling

Evaluation Procedure (X)	% of Market Shares (Y)	Residual (e_i)	Sum of Residuals
27	2	0.017475363	-6.21725E-15
39	3	-1.222127109	1. —
73	10	-0.567667446	D ∑e;=-6.21725E-15
66	9	-0.261232671	(=0)
33	4	0.897674127	• 40 11
43	6	1.031338734	the residuals sum to Zero
47	. 5	-0.715195423	Since this is a sittle linear
55	8	0.791736262	repression it makes
60	7	-1.141431435	That sense that
68	9	-0.634499749	regression, it makes sense that the residuals Sum to Zero.
70	10	-0.007766828	
75	13	2.059065475	
82	12	-0.2473693	
		1	

 $\begin{cases}
e_i = y_i - \hat{y}_i \\
\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_i x,
\end{cases}$

f) Find
$$S^{2}$$
:

$$S^{2} = \frac{SSE}{n-2} = \frac{(Sw)^{2}}{Ssx} = \frac{(\Sigma y)^{2} - (\Sigma y)^{2}}{Sxx} = \frac{(Sw)^{2}}{Sxx}$$

$$= (\Sigma y)^{2} - \frac{(\Sigma y)^{2}}{N} - \frac{(\Sigma x)y - (\Sigma x)Zyy}{Sxx} - \frac{(\Sigma x)Zyy}{Sxx} = \frac{(\Sigma y)^{2} - (\Sigma x)Zyy}{(\Sigma x)^{2} - (\Sigma x)Zyy} = \frac{(Sw)^{2}}{Sx} - \frac{(Sw)^{2}}{Sx} - \frac{(Sw)^{2}}{Sx} = \frac{(Sw)^{2}}{Sx} = \frac{(Sw)^{2}}{Sx} - \frac{(Sw)^{2}}{Sx} = \frac{(Sw)^{2}}{Sx} - \frac{(Sw)^{2}}{Sx} = \frac{(Sw)^{2}}{Sx} - \frac{(Sw)^{2}}{Sx} = \frac{(Sw)$$

Step IV) Since t > (0r<) 2.201 (R.R), We reject the & Conclude at 95% confidence, there is a linear relationship between evaluation Score & Percentage of Market Shares.

Hilroy

```
h) Find a 95% Confidence interval for Bi:
       B, E(B) + (En-2; 9/2) · S/VSxx [SV, bv]
                  £11/0.025 = 2,201
          B, ± (2,201) (10,990788754 / [45580 - (738)2/13]1/2)
          (0.186633539) ± 0.036093801
          LD (0.150539737, 0.22272734) = (0.1505, 0.2227)
     .. the true value of B, lies between (0.1505, 0.2227)
i) Setup an AMOVA table:
        TSS = Syy = \(\Sy\)^2/n = 878 - 982/13 = 139,2307692 = 139,23077
        SSIR = \frac{S_{x_{2}}^{2}}{S_{xx}} = \frac{\left[\sum_{x_{1},y_{1}} - \frac{(\sum_{x_{1}})(\sum_{y_{1}})^{2}}{N}\right]^{2}}{\sum_{x_{1}} \frac{(\sum_{x_{1}})^{2}}{N}} = \frac{\left[6251 - \frac{(788)(38)}{13}\right]^{2}}{45580 - \frac{7389}{13}}
                      =\frac{\left[687\frac{8}{13}\right]^2}{36844/13} = \left[128.3320927\right] = 128.33209
      SSE = 10.89868 (See Part 1.f)

MSR = \frac{SSR}{ds_2} = \frac{SSR}{1} = SSR = \frac{(S_{NN})^2}{S_{XX}} = 128.33209 der #516pes = 1
     MSE = 35 = 52 = 0.990788754 = 0.99079 de=n-2
   F = MSR = 128.3321 = 129.53
   this Gives us the AMOVA Table as Follows:
                     of SS MS
        Model 1 128.33209 128.33209 129.53
        Error 11 10.89868 0.99079
        Total 12 139,23077
   We are testing if there's a linear relationship, we will use the F-test:
         I) Ho: B, =0 , Ha: B, ≠0
        II) F-test: F=129.53
        III) Rejection Region: FacusemsE) = Fo.05(1,11) = 4.84
                  4.84 < F=129.63 : We must reject the null hypothesis
        II) .. since F>484 We reject to, & Conclude at 95% Confidence that
            there is a linear relationship between the evaluation Procedure & the precentage
```

of Market Shares.

i) Find the values of the coefficient of correlation, r, & the coefficient of determination, Find the values of the coercition of this problem: $r^{2}, \text{ k interpret their meanings in this problem:}$ $r^{2} = \frac{8512}{755} = \frac{\left(\frac{5xu^{2}}{35t}\right)}{\frac{139,2307692}{139,2307692}} = \frac{0.921722214}{0.9217} \text{ or } \frac{92.175}{120}$ $r = \frac{5xu}{\sqrt{5xx5yy}} = \frac{\sum x_{i}y_{i} - \left(\frac{\sum x_{i}}{2}\right)^{2}}{\sqrt{\left(\sum x_{i}^{2} - \frac{\left(\sum y_{i}^{2}}{2}\right)^{2}}\right)}$

6251- (732)(98) $\sqrt{(45580 - \frac{738^2}{13})(878 - \frac{38^2}{13})}$

= 0.960063651 = 0.96 or (36%)

Alternativly: r= Vr2 = V0.921728214 = 0.960063651 = 0.96 or 19696

.. 92.17% of the total variation in the experiment is explained by the model 4D thus, Approximatly 7.83% is explained by error (1-0.7217= 7.83%) high n2: the SLR model's pretty good Since n is 96%, we can state there's a Strong positive Correlation

a) Find a 95% Condidence interval for the mean value of the response variable: Confidence Interval:

g=tn-2; = SV + (x0-x)2 Tujo.025 = 2.201 n = 13Xp = 79 $\overline{\chi} = \underline{\Sigma}_{x_1} = \underline{738}$ $S_{XX} = \sum_{x}^{2} - \frac{(\sum_{x})^{2}}{2} = 45580 - \frac{738^{2}}{13}$ [see 1.6] $\hat{y} = \left[\frac{96}{13} - \left(\frac{8931}{49646}\right)\left(\frac{738}{13}\right)\right] + \left(\frac{6931}{47896}\right)\left(\frac{77}{77}\right) = 11.68746868$ from 1.f, we see \$2 = 0.790788754 So S=V52 = \$0.990788754 =0.975383722) thus: 11.68746868 = (2,201)(6.985383722) (1/3+ (79-738-)2/(45580-7382) 1/2 11.68746868 = 1.006502951 (10.68096573, 12.69397163) × (10.6810, 12.6940) So; the 95% Considence interval is (10.6810, 12.6740) Prediction Interval: y=tn-2;0/2 · SVn+(x)-x)2+1 Using the values defined above: 11.68746868± (2.201)(0.990788754)(1+13+(79-738)2/(45580-7382))1/2 11.68746868 = 2.410980344 (9.276488338, 14.09844903) (9.2765, 14.0984), So this is the 95% value for the P.I. the width of the Considence internal & the Prediction internal: CI: 12.6940-10.6810 = 2.013 PI: 14.0984-9.2765 = 4.8219 Since the Prediction interval has a +1 in the Square mot, it's wider then the Considence interval, Since the addition of 1 increases the Std. error. this is because the CI is more consengtive, whereas the PI is more estimative. Adding one in the PI increases the Std. error & .: increases

the midth of the interval since more people are included.

b) on page 4 of the SAS output we see 75% CL mean & 75% CL Predict. These columns show the intenals. on obs #14, we see the total for the whole data set. The left elements the lower-bound of the interval, whereas the right's the upper-bound:

CI: (10.6810,12.6940) PI: (9.2765, 14.0984)

. The Calculated values for the intervals are:

CI: (10.6810, 12.6940) PI: (9.2765, 14.0984)

i. the Calculated Intervals is the same as the SAS outputted intervals to the fourth decimal Place.

3) Preform a residual analysis to check the SLR model assumptions using SAS:
Page 6 of the SAS output Shows a residual graph:

· No Pattern amount the y-values is noted, thus Assumption 2 is not violated if the graph tests the assumption of independence, since no pattern means no violation

· The residual vs. our x's tests the assumption that the y's have constant Varience: (13.7 of SAS output)

The y's have no pattern

i. There's no violation of Assumption 3

The residual histogram tests for normality, since the histogram is skew right, this is a violation of the assumption of normality (Page 8)

Only one assumption (Number 4) is violated, we could fix this situation by changing the data points to a logarithmic, expanential, or square-root Curve. This would be capable of Changing the data to allow Assumption 4 to hold.

thus, Considering the assumptions are dine, the R° is high, the SSE is high compared to the SSE, & The relationships Statistically Significant, this leads us to believe the model is pretly good.

The REG Procedure Model: MODEL1 Dependent Variable: percent

Number of Observations Read 13 Number of Observations Used 13

		Parameter	Estimates			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	
Intercept	1	-3.05658	0.97102	-3.15	0.0093	
eval	1	0.18663	0.01640	11.38	<.0001	

y = Bo + B, X, Score
Lo % market shares

The REG Procedure Model: MODEL1 Dependent Variable: percent

Number of Observations Read	14
Number of Observations Used	13
Number of Observations with Missing Values	1

		- 3	Analysis of Va	riance		
Sourc	е	DF	Sum of Squares	Mean Square	F Value	Pr>F
Model		1	128.33209			<.0001
Error		11	10.89868	0.99079	MSE,52	
Corre	cted Total	12	139.23077			
			TSS			-2
	Root MS		0.99538	R-Squar	e (0.9217	1

Root MSE	0.99538	R-Square	0.9217) V
Dependent Mean	7.53846	Adj R-Sq	0.9146
Coeff Var	13.20407		

		Parameter	Estimates			
Variable	DF	Parameter Estimate		t Value	Pr > t	
ntercept	1	-3.05658	0.97102	-3.15	0.0093	
eval	1	0.18663	0.01640	11.38	<.0001	

The REG Procedure Model: MODEL1 Dependent Variable: percent

			Out	put Statis	tics			
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% C	L Mean	95% CL	. Predict	Residua
1	. 2	1.9825	0.5608	0.748,1	3.2169	-0.5321	4.4972	0.0175
2	3	4.2221	0.4014	3.3386	5.1056	1.8599	6.5844	-1.2221
3	10	10.5677	0.3835	9.7236	11.4117	8.2199	12.9155	-0.5677
4	9	9.2612	0.3148	8.5683	9.9542	6.9634	11.5590	-0.2612
5	4	3.1023	0.4776	2.0510	4.1536	0.6723	5.5323	0.8977
6	6	4.9687	0.3567	4.1837	5.7536	2.6415	7.2959	1.0313
7	5	5.7152	0.3192	5.0127	6.4177	3.4145	8.0159	-0.7152
8	. 8	7.2083	0.2776	6.5973	7.8192	4.9338	9.4827	0.7917
9	7	8.1414	0.2811	7.5227	8.7601	5.8649	10.4179	-1.1414
10	9	9.6345	0.3319	8.9041	10.3649	7.3251	11.9439	-0.6345
11	10	10.0078	0.3511	9.2349	10.7806	7.6846	12.3309	-0.007767
12	13	10.9409	0.4069	10.0453	11.8366	8.5741	13.3078	2.0591
13	12	12.2474	0.4974	11.1526	13.3421	9.7982	14.6965	-0.2474
14		11.6875	0.4573	10.6810	12.6940	9.2765	14.0984	

Sum of Residuals 0
Sum of Squared Residuals 10.89868
Predicted Residual SS (PRESS) 15.06091

Connor, 101041125

The REG Procedure Model: MODEL1 Dependent Variable: percent

Number of Observations Read	14
Number of Observations Used	13
Number of Observations with Missing Values	1

this ANOVA Table matches of the Calculations Made in Part

		Α	nalysis of Var	riance				
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F	,	
Model		1 (128.33209 1	28.33209	129.53	<.0001		-1
Error		1.1	10.89868	0.99079	MSE		→ Same as d	(
Corrected	d Total	12	139.23077	= -	+XS2)		
Ro	oot MSE		0.99538	R-Square	0.9217)r2		
, De	epender	nt Me	an 7.53846	Adj R-Sq	0.9146			
Co	oeff Var		13.20407					

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-3.05658	0.97102	-3.15	0.0093
eval	1	0.18663	0.01640	11.38	<.0001

This graph tests the assumption of independence
There's no pattern among the unit

There's no pottern among the y-values i. Assumption two's not violated

The REG Procedure

This graph looks at the varience of y's by stowing our residuals vs. our x's

The y's have no Pattern

i. Assumption 3's not violated

Connor, 101041125

The residual histogram tests for normallity since the histogram is skew-right this violates the assumption of normallity. However, we could six this by changing the scale of the data points to logerithmic, exponential, or square-root.

So Although the histogram violates assumption 4, the experement can be altered easily to so it does not.