Package 'mvnTest'

October 13, 2022

Version 1.1-0

Author Natalya Pya [aut, cre],

Vassilly Voino Rashid Makaro	ov [aut],				
Yevgeniy Voin					
Maintainer Natalya	ι Pya <nat.pya< th=""><th>@gmail.com></th><th></th><th></th><th></th></nat.pya<>	@gmail.com>			
Title Goodness of Fi	it Tests for Mul	tivariate Norm	nality		
Date 2016-01-25					
	_	Anderson-Da	rling and Cram	ements three Wald's er-von Mises tests;	• •
Depends R (>= 2.15	5.0), mvtnorm				
Imports methods, st	tats, graphics, N	MASS			
License GPL (>= 2))				
LazyLoad yes					
NeedsCompilation	no				
Repository CRAN	110				
	016 00 10 10 5	7.00			
Date/Publication 20	J16-02-10 18:5	1:23			
R topics docu	mented:				
mvnTest-pa	ickage				
ad-class .					

2 ad-class

mvnTe	est-packag	;e		(<i>30</i>	od	ne	ss-	of	f-fi	t t	esi	ts j	foi	r n	nui	lti	vai	ric	ıte	n	or	mo	ali	ty						
Index																															14
	S2-class . S2.test																														

Description

mvnTest provides functions for assessing multivariate normality. It includes eight test statistics such as three Wald's type chi-squared tests (McCulloch, Nikulin-Rao-Robson and Dzhaparidze-Nikulin tests), non-parametric Anderson-Darling and Cramer-von Mises tests; Doornik-Hansen test, Royston test and Henze-Zirkler test.

Details

Package: mvnTest
Type: Package
License: GPL (>= 2)

Note

The printing method and plotting are in part adapted from R package MVN (version 4.0, Korkmaz, S. et al., 2015)

Author(s)

Vassilly Voinov, Natalya Pya, Rashid Makarov, Yevgeniy Voinov Maintainer: Natalya Pya <nat.pya@gmail.com>

ad-class "ad"

Description

An S4 class for the Anderson-Darling test for multivariate normality.

Slots

AD: stores the values of the test statistics p.value: stores the p-value of the test data.name: stores the name of the data

AD.test 3

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

AD.test

Anderson-Darling test for multivariate normality

Description

This function implements the Anderson-Darling test for assessing multivariate normality. It calculates the value of the test and its approximate p-value.

Usage

```
AD.test(data, qqplot = FALSE)
```

Arguments

data A numeric matrix or data frame.

qqplot If TRUE produces a chi-squared QQ plot.

Value

AD the value of the test statistic.

p. value the p-value of the test.

Note

The printing method and plotting are in part adapted from R package MVN (version 4.0, Korkmaz, S. et al., 2015).

The computations are relatively expensive as Monte Carlo procedure is used to calculate empirical p-vales.

Author(s)

Rashid Makarov, Vassilly Voinov, Natalya Pya

References

Paulson, A., Roohan, P., and Sullo, P. (1987). Some empirical distribution function tests for multivariate normality. Journal of Statistical Computation and Simulation, 28, 15-30

Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19, 3595-3617

Selcuk Korkmaz, Dincer Goksuluk, and Gokmen Zararsiz. MVN: Multivariate Normality Tests, 2015. R package version 4.0

4 cm-class

See Also

```
S2.test, CM.test, DH.test, R.test, HZ.test
```

Examples

```
## Not run:
## generating n bivariate normal random variables...
dat <- rmvnorm(n=100,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- AD.test(dat)
res

## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2),df=10,delta=rep(0,2))
res1 <- AD.test(dat)
res1

data(iris)
setosa <- iris[1:50, 1:4] # Iris data only for setosa
res2 <- AD.test(setosa, qqplot = TRUE)
res2

## End(Not run)</pre>
```

cm-class

Class "cm"

Description

An S4 class for the Cramer-von Mises test for multivariate normality.

Slots

```
CM: stores the values of the test statistics p.value: stores the p-value of the test data.name: stores the name of the data
```

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

CM.test 5

\sim		_	_	_	_
CI	٧I	L	е	S	L

Cramer-von Mises test for Multivariate Normality

Description

This function implements the Cramer-von Mises test for assessing multivariate normality.

Usage

```
CM.test(data, qqplot = FALSE)
```

Arguments

data A numeric matrix or data frame qqplot if TRUE creates a chi-square Q-Q plot

Details

Calculates the value of the Cramer-von Mises test and the approximate p-value.

Value

CM the value of the test statistic p.value the p-value of the test

data.name a character string giving the name of the data

Note

The printing method and plotting are in part adapted from R package MVN (version 4.0, Korkmaz, S. et al., 2015).

The computations are relatively expensive as Monte Carlo procedure is used to calculate empirical p-vales.

Author(s)

Rashid Makarov, Vassilly Voinov, Natalya Pya

References

Koziol, J. (1982). A class of invariant procedures for assessing multivariate normality. Biometrika, 69, 423-427

Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19, 3595-3617

See Also

```
S2.test, AD.test, DH.test, R.test, HZ.test
```

6 DH.test

Examples

```
## Not run:
## generating n bivariate normal random variables...
dat <- rmvnorm(n=100,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- CM.test(dat)
res

## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2),df=10,delta=rep(0,2))
res1 <- CM.test(dat)
res1

data(iris)
setosa <- iris[1:50, 1:4] # Iris data only for setosa
res2 <- CM.test(setosa, qqplot = TRUE)
res2

## End(Not run)</pre>
```

dh-class

Class "dh"

Description

An S4 class for the Doornik-Hansen test for multivariate normality.

Slots

```
DH: stores the values of the test statistics p.value: stores the p-value of the test data.name: stores the name of the data
```

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

DH.test

Doornik-Hansen test for Multivariate Normality

Description

This function implements the Doornik-Hansen test for assessing multivariate normality.

Usage

```
DH.test(data, qqplot = FALSE)
```

DH.test 7

Arguments

data A numeric matrix or data frame qqplot if TRUE creates a chi-square Q-Q plot

Details

Calculates the value of the Doornik-Hansen test and the approximate p-value.

Value

DH the value of the test statistic
p.value the p-value of the test

data.name a character string giving the name of the data

Note

The printing method and plotting are in part adapted from R package MVN (version 4.0, Korkmaz, S. et al., 2015).

Author(s)

Rashid Makarov, Vassilly Voinov, Natalya Pya

References

Doornik, J. and Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 915-925.

See Also

```
S2.test, AD.test, CM.test, R.test, HZ.test
```

Examples

```
## generating n bivariate normal random variables...
dat <- rmvnorm(n=200,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- DH.test(dat)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2)*.8,df=10,delta=rep(0,2))
res1 <- DH.test(dat)
res1

data(iris)
setosa <- iris[1:50, 1:4] # Iris data only for setosa
res2 <- DH.test(setosa, qqplot = TRUE)
res2</pre>
```

8 HZ.test

hz-class

Class "hz"

Description

An S4 class for the Henze-Zirkler test for multivariate normality.

Slots

```
HZ: stores the values of the test statistics p.value: stores the p-value of the test data.name: stores the name of the data
```

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

HZ.test

Henze-Zirkler test for Multivariate Normality

Description

This function implements the Henze-Zirkler test for assessing multivariate normality.

Usage

```
HZ.test(data, qqplot = FALSE)
```

Arguments

data A numeric matrix or data frame qqplot if TRUE creates a chi-square Q-Q plot

Details

Calculates the value of the Henze-Zirkler test and the approximate p-value.

Value

HZ the value of the test statistic

p.value the p-value of the test

data. name a character string giving the name of the data

r-class 9

Note

The printing method and plotting are in part adapted from R package MVN (Korkmaz, S. et al., 2015, version 4.0).

Author(s)

Rashid Makarov, Vassilly Voinov, Natalya Pya

References

Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics-Theory and Methods, 19, 3595-3617

See Also

```
S2.test, DH.test, AD.test, CM.test, R.test
```

Examples

```
## generating n bivariate normal random variables...
dat <- rmvnorm(n=200,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- HZ.test(dat)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2)*.8,df=10,delta=rep(0,2))
res1 <- HZ.test(dat)
res1

data(iris)
setosa = iris[1:50, 1:4] # Iris data only for setosa
res2 <- HZ.test(setosa, qqplot = TRUE)
res2</pre>
```

r-class

Class "r"

Description

An S4 class for the Royston test for multivariate normality.

Slots

```
R: stores the values of the test statistics p.value: stores the p-value of the test data.name: stores the name of the data
```

10 R.test

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

R.test

Royston test for Multivariate Normality

Description

This function implements the Royston test for assessing multivariate normality.

Usage

```
R.test(data, qqplot = FALSE)
```

Arguments

data A numeric matrix or data frame qqplot if TRUE creates a chi-square Q-Q plot

Details

Calculates the value of the Royston test and the approximate p-value.

Value

R the value of the test statistic p.value the p-value of the test

data.name a character string giving the name of the data

Note

The printing method and plotting are in part adapted from R package MVN (Korkmaz, S. et al., 2015, version 4.0).

Author(s)

Rashid Makarov, Vassilly Voinov, Natalya Pya

References

Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and Computing, 2, 117-119.

See Also

```
S2.test, DH.test, AD.test, CM.test, HZ.test
```

S2-class

Examples

```
## generating n bivariate normal random variables...
dat <- rmvnorm(n=200,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- R.test(dat)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2)*.8,df=10,delta=rep(0,2))
res1 <- R.test(dat)
res1

data(iris)
setosa = iris[1:50, 1:4] # Iris data only for setosa
res2 <- R.test(setosa, qqplot = TRUE)
res2</pre>
```

S2-class

Class "S2"

Description

An S4 class for Chi-squared type tests for multivariate normality.

Slots

```
s2: stores the values of the McCulloch test statistics
y2: stores the values of the Nikulin-Rao-Robson test statistics
u2: stores the values of the Dzhaparidze-Nikulin test statistics
p.value.s2: stores the p-value for S2 test
p.value.y2: stores the p-value for Y2 test
p.value.u2: stores the p-value for U2 test
data.name: stores the data set name
```

Author(s)

Natalya Pya, Vassilly Voinov, Rashid Makarov

12 S2.test

Description

This function implements three chi-squared type goodness-of-fit tests for multivariate normality, namely, the McCulloch S2 test, Nikulin-Rao-Robson Y2 and Dzhaparidze-Nikulin U2 tests.

Usage

```
S2.test(data, M=5, qqplot = FALSE)
```

Arguments

data A numeric matrix or data frame

M A number of equiprobable intervals

qqplot if TRUE it creates a chi-square Q-Q plot

Details

Calculates the values of the three chi-squared type test statistics, the McCulloch S2, Nikulin-Rao-Robson Y2 and Dzhaparidze-Nikulin U2 tests, and the corresponding p-values. The construction of all three tests is based on the Wald's type chi-squared goodness-of-fit tests. The vector of unknown parameters is estimated by the maximum likelihood method. The Karhunen-Loeve transformation is applied to a multi-dimensional sample data in order to diagonalize a sample covariance matrix. The null asymptotic distributions of the S2, Y2 and U2 tests are chi-squared distributions with 1, M-1 and M-2 degrees of freedom correspondingly.

Value

s2	the value of the McCulloch test S2
p.value.s2	the p-value of S2 test
y2	the value of the Nikulin-Rao-Robson test Y2
p.value.y2	the p-value of Y2 test
u2	the value of the Dzhaparidze-Nikulin test U2
p.value.u2	the p-value of U2 test
data.name	a character string giving the name of the data

Note

The displayed result about multivariate normality is based on the McCulloch S2 test.

Author(s)

Vassilly Voinov, Natalya Pya, Rashid Makarov, Yevgeniy Voinov

S2.test 13

References

Voinov, V., Pya, N., Makarov, R., and Voinov, Y. (2015) New invariant and consistent chi-squared type goodness-of-fit tests for multivariate normality and a related comparative simulation study. Communications in Statistics - Theory and Methods. doi link: http://www.tandfonline.com/doi/full/10.1080/03610926.2014.901370

Voinov, V., Nikulin, M. and Balakrishnan, N., Chi-squared goodness of fit tests with applications. New York: Academic Press, Elsevier, 2013

See Also

```
AD.test, DH.test, R.test, CM.test, HZ.test
```

Examples

```
## generating n bivariate normal random variables...
dat <- rmvnorm(n=200,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- S2.test(dat, qqplot = FALSE)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2)*.8,df=10,delta=rep(0,2))
res1 <- S2.test(dat, qqplot = TRUE)
res1

data(iris)
setosa = iris[1:50, 1:4] # Iris data only for setosa
res2 <- S2.test(setosa, qqplot = TRUE)
res2</pre>
```

Index

```
ad (ad-class), 2
ad-class, 2
AD.test, 3, 5, 7, 9, 10, 13
cm (cm-class), 4
cm-class, 4
CM. test, 4, 5, 7, 9, 10, 13
dh (dh-class), 6
dh-class, 6
DH. test, 4, 5, 6, 9, 10, 13
hz (hz-class), 8
hz-class, 8
HZ.test, 4, 5, 7, 8, 10, 13
{\tt mvnTest-package}, \textcolor{red}{2}
r (r-class), 9
r-class, 9
R. test, 4, 5, 7, 9, 10, 13
S2 (S2-class), 11
S2-class, 11
S2.test, 4, 5, 7, 9, 10, 12
```