Mixed Review Exercises

- 1. Name a diameter of $\bigcirc O$.
- 2. Name a secant of $\bigcirc O$.
- 3. Name a tangent segment.
- **4.** If OQ = 7, then $LM = \frac{?}{}$.
- 5. If $\widehat{mMQ} = x$, express \widehat{mQLM} in terms of x.
- 6. Find the geometric mean between 4 and 9.

9-6 Other Angles

The preceding section dealt with angles that have their vertices on a circle. Theorem 9-9 deals with the angle formed by two chords that intersect inside a circle. Such an angle and its vertical angle intercept two arcs.

Theorem 9-9

The measure of an angle formed by two chords that intersect inside a circle is equal to half the sum of the measures of the intercepted arcs.

Given: Chords \overline{AB} and \overline{CD} intersect inside a circle.

Prove: $m \angle 1 = \frac{1}{2}(m\widehat{AC} + m\widehat{BD})$

Proof:

Statements

- 1. Draw chord \overline{AD} .
- $2. \ m \angle 1 = m \angle 2 + m \angle 3$
- 3. $m \angle 2 = \frac{1}{2} m\widehat{AC};$ $m \angle 3 = \frac{1}{2} m\widehat{BD}$
- 4. $m \angle 1 = \frac{1}{2}m\widehat{AC} + \frac{1}{2}m\widehat{BD}$ or $m \angle 1 = \frac{1}{2}(m\widehat{AC} + m\widehat{BD})$

Reasons

- 1. Through any two points there is exactly one line.
- 2. The measure of an exterior \angle of a \triangle = the sum of the measures of the two remote interior \triangle .
- 3. The measure of an inscribed angle is equal to half the measure of its intercepted arc.
- 4. Substitution (Step 3 in Step 2)