Problema 1

DATI: $R_1 = R_2 = 10k\Omega$, $R_3 = 5k\Omega$, $R_L = 20k\Omega$, $V_{DD} = 5V$, $V_{SS} = -5V$

Parametrati dei MOS: M_1 e M_2 : $k_{n1} = k_{n2} = 2mA/V^2$, $V_{TN1} = V_{TN2} = 0.5V$, $\lambda_{n1} = \lambda_{n2} = 0$

 $\begin{array}{lll} M_3: & k_{p3} = 0.5 m A/V^2, \, V_{TP3} = -0.5 V, \, \lambda_{p3} = 0 \\ M_4: & k_{n4} = 4 m A/V^2, \, V_{TN4} = 0.5 V, \, \lambda_{n4} = 0.02 \, V^{-1} \end{array}$

Dato il circuito in figura, calcolare:

- 1. Il valore della tensione V_{REF} sapendo che M₄ lavora in saturazione con I_{SS} = 0.5 mA
- 2. La polarizzazione di tutti i transistor identificando la regione di funzionamento e i valori delle tensioni V_{GS} e V_{DS} e della corrente I_{DS}.
- 3. Disegnare il modello ai piccoli segnali e calcolare le transconduttanze g_{m1} , g_{m2} e g_{m3} di M_1 , M_2 e M_3 . Dal modello ai piccoli segnali calcolare:
- 4. La resistenza di uscita R_{OUT}
- 5. Il guadagno di modo differenziale dell'intero amplificatore $A_d = v_o/(v_1 v_2)$
- 6. Il guadagno di modo comune dell'intero amplificatore e il CMRR

2)
$$T_{01} = T_{02} = T_{SS} = 0.25 \text{ mA}$$

=) $V_{4S_1} = V_{711} + \sqrt{\frac{2T_{01}}{\kappa_{m1}}} = 0.5V + \sqrt{0.25}v^2 = 1V$
 $V_{4S_2} = V_{4S_1} = 1V$
 $V_{2S_2} = V_{4S_1} = 1V$
 $V_{2S_2} = V_{4S_1} = 1V$
 $V_{2S_2} = V_{4S_2} = V_{4S_2} = 1V$
 $V_{2S_2} = V_{2S_1} = 1V$
 $V_{2S_2} = V_{2S_2} = V_{2S_2} = 1V$
 $V_{2S_2} = V_{2S_2} = V_{2S_2} = 10 \text{ KeV} \cdot 0.25 \text{ mA}$
 $V_{2S_2} = V_{2S_2} = V_{2S_2} = V_{2S_2} = 10 \text{ KeV} \cdot 0.25 \text{ mA}$
 $V_{2S_2} = V_{2S_2} = V_{2S_2} = V_{2S_2} = 0.5V$
 $V_{2S_2} = V_{2S_2} = V_{2S_2} = 0.5V$
 $V_{2S_3} = V_{2S_2} = V_{2S_2} = 0.5V$
 $V_{2S_3} = V_{2S_3} = V_{2S_3} = 0.5V$
 $V_{2S_3} = V_{2S_3} = V_{2S_3} = 0.5V$
 $V_{2S_3} = V_{2S_3} = V_{2S_3} = 0.5V$
 $V_{2S_3} = 0.5V$

Problema 2

DATI: $R_1 = 5k\Omega$, $R_2 = 0.5 k\Omega$, $R_3 = 4.5 k\Omega$, $R_4 = 1 k\Omega$, $R_5 = 100 k\Omega$, $C_1 = 20\mu F$, $C_3 = 222,2nF$, $C_5 = 10pF$, Dato il filtro in figura realizzato con un amplificatore operazionale ideale:

- 1. Trovare la funzione di trasferimento del filtro $W(\omega) = v_O / v_S$.
- 2. Tracciare il diagramma asintotico di Bode del modulo e della fase
- 3. Dato il segnale di ingresso $v_S = V_{S1} \sin(\omega_S t)$ con $V_{S1} = 0.1V$, trovare il segnale di uscita v_0 usando i diagrammi asintotici di bode alle due pulsazioni:

$$W(s) = \frac{SC_1(R_2 + R_3)}{1 + SR_1C_1} \cdot \frac{1 + SC_3R_2|R_3}{1 + SR_3C_3} \cdot \frac{R_5}{R_4} \cdot \frac{1}{1 + SR_5C_5}$$

$$=) W(S) = \frac{R_5}{R_4} \cdot \frac{SC_1(R_2 + R_3)(1 + SC_3R_2|R_3)}{(1 + SR_3C_3)(1 + SR_5C_5)}$$

$$\frac{R_5}{R_4} = \frac{100}{C_1(R_2 + R_3)} = \frac{1}{C_1R_1} = \frac{100}{C_1R_1}$$

$$W_{10} = \frac{1}{C_1(R_2 + R_3)} = \frac{100}{C_2R_3}$$

$$W_{11} = \frac{1}{C_3R_2|R_1} = \frac{100}{C_3R_3}$$

$$W_{12} = \frac{1}{C_3R_2|R_1} = \frac{100}{C_3R_3}$$

$$W_{13} = \frac{1}{C_5R_5} = \frac{100}{C_5R_5}$$

$$W_{14} = \frac{1}{C_5R_5} = \frac{100}{C_5R_5}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{C_5R_5}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_2 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_5} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_5} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_5} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

$$W_{15} = \frac{100}{C_1(R_4 + R_3)} \cdot \frac{R_5}{R_4} = \frac{100}{R_4}$$

Problema 3

DATI: $R_1 = 5k\Omega$, $R_2 = 10k\Omega$, $R_3 = 100k\Omega$

Sia dato il circuito in figura realizzato con tre amplificatori operazionali.

Supponendo che tutti gli amplificatori operazionali siano ideali, calcolare:

- 1. Il valore di v_1 , v_2 e v_0 con i_s = 0.1mA.
- 2. Il guadagno di transresistenza $R_m = v_0/i_s$
- 3. Supponiamo ora che tutti gli amplificatori operazionali abbiano la stessa tensione di offset $V_{OS} = 0.1V$, calcolare il valore delle tensioni v_1 , v_2 e v_0 con $i_S = 0.1\text{mA}$.

1)
$$N_1 = -R_1 \hat{c}_S = -0.5V$$
 $N_2 = R_1 \hat{c}_S = +0.5V$
 $VSO SOVRAPP. \in FFETT'$
 $N_1 : N_0' = N_1 \left(-\frac{R_3}{R_2}\right)$
 $N_2 : N_0'' = N_2 \frac{R_3}{R_2 + R_3} \cdot \left(1 + \frac{R_3}{R_2}\right)$
 $= N_2 \frac{R_3}{R_2}$

$$=) v_0 = v_0' + v_0'' = R_3 (v_2 - v_2)$$

$$= R_3 R_1 (2 is)$$

$$= R_2 R_2 is = 10V$$

2)
$$Rm = \frac{v_0}{is} = \frac{2 R_3 R_1}{R_2} = 100 KR$$

$$\nabla_{2} = -R, C_{S} + Vo_{S}$$

$$\nabla_{2} - V_{1} = 2R, C_{S}$$

$$\nabla_{2} = R, C_{S} + Vo_{S}$$

$$OFFSET S,$$

ANNULLA

RESTA L'OFFSET
DEL TERRO AO CHE DA: