

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

- What is the big-theta of a polynomial?
- What is the worst-case algorithmic complexity of:
 - linear search
 - binary search
 - bubble sort
 - insertion sort
- Use pseudocode to define the "division algorithm"

Lecture 17

Chapter 3. The Fundamentals

- 3.4 The Integers and Division
- 3.5 Primes and Greatest Common Divisors

- It's really just a theorem, not an algorithm...
 - Only called an "algorithm" for historical reasons.
- Theorem: For any integer dividend a and divisor d∈Z⁺, there are unique integers quotient q and remainder r∈N such that a = dq + r and 0 ≤ r < d. Formally, the theorem is:</p>

 $\forall a \in \mathbb{Z}, d \in \mathbb{Z}^+: \exists !q,r \in \mathbb{Z}: 0 \le r < d, a = dq + r$

• We can find q and r by: $q = \lfloor a/d \rfloor$, r = a - dq

Jniversity of Hawa

The mod Operator

- An integer "division remainder" operator.
- Let a,d∈Z with d > 1. Then a mod d denotes the remainder r from the division "algorithm" with dividend a and divisor d; i.e. the remainder when a is divided by d. Also, a div d denotes the quotient q.
- We can compute $(a \mod d)$ by: $a - d \cdot |a/d| = a - dq$.
- In C/C++/Java languages, "%" = mod.

The mod Operator: Examples

- 101 = 11·9 + 2 (dividend: 101, divisor: 11)
 - 101 div 11 = 9 101 mod 11 = 2
- $-11 = 3 \cdot (-4) + 1$ or $-11 = 3 \cdot (-3) 2$? (dividend: -11, divisor: 3)
 - -11 div 3 = -4 -11 mod 3 = 1
 (quotient: -4, remainder: 1)

Note that the remainder must not be negative.

niversity of Hawa

Modular Congruence

- Let a,b∈Z, m∈Z⁺, where Z⁺ = {n∈Z | n > 0} =
 N {0} (the positive integers).
- Then a is congruent to b modulo m, written " $a \equiv b \pmod{m}$ ", iff $m \mid (a b)$.
 - Note: this is a different use of "≡" than the meaning "equivalent" or "is defined as" used before.
- It's also equivalent to: $(a b) \mod m = 0$.
- E.g. $17 \equiv 5 \pmod{6}$, $24 \not\equiv 14 \pmod{6}$

Useful Congruence Theorems

- Theorem: Let $a,b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then: $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$.
- Theorem: Let $a,b\in \mathbb{Z}$, $m\in \mathbb{Z}^+$. Then: $a \equiv b \pmod{m} \Leftrightarrow \exists k\in \mathbb{Z}$: a = b + km.
- Theorem: Let $a,b,c,d \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:
 - $a + c \equiv b + d \pmod{m}$, and
 - $ac \equiv bd \pmod{m}$

Congruence Theorem Example

- $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$.
 - 7 + 11 = 18 and 2 + 1 = 3Therefore, 7 + 11 = 2 + 1 (mod 5)
 - $7 \times 11 = 77$ and $2 \times 1 = 2$ Therefore, $7 \times 11 = 2 \times 1$ (mod 5)

Applications of Congruence

- Hashing Functions (hashes)
- Pseudorandom Numbers
- Cryptology
- Universal Product Codes
- International Standard Book Numbers

Hashing Functions

- We want to quickly store and retrieve records in memory locations.
- A hashing function takes a data item to be stored or retrieved and computes the first choice for a location for the item.
- $h(k) = k \mod m$
 - A hashing function h assigns memory location h(k) to the record that has k as its key.
 - h(064212848) = 064212848 mod 111 = 14
 - h(037149212) = 037149212 mod 111 = 65
 - $h(107405723) = 107405723 \text{ mod } 111 = 14 \Rightarrow \text{collision!}$
 - Find the first unoccupied memory location after the occupied memory.
 - In this case, assign memory location 15.
- If collision occurs infrequently, and if when one does occur it is resolved quickly, then hashing provides a very fast method of storing and retrieving data.

Cryptology (I)

- The study of secret messages
- Encryption is the process of making a message secret. Decryption is the process of determining the original message from the encrypted message.
- Some simple early codes include Caesar's cipher.
 - Assign an integer from 0 to 25 to each letter based on its position in the alphabet.
 - Caesar's encryption method: $f(p) = (p + 3) \mod 26$
 - Caesar's decryption method: $f^{-1}(p) = (p-3) \mod 26$
 - MEET YOU IN THE PARK ⇒ PHHW BRX LQ WKH SDUN

Cryptology (II)

- Caesar's encryption method does not provide a high level of security
- A slightly better approach: $f(p) = (ap + b) \mod 26$
 - Example 10:

What letter replaces the letter K when the function $f(p) = (7p + 3) \mod 26$ is used for encryption?

- 10 represents K
- $f(10) = (7 \times 10 + 3) \mod 26 = 73 \mod 26 = 21$
- 21 represents V
- Therefore, K is replaced by V in the encrypted message

Prime Numbers

- An integer p > 1 is prime iff the only positive factors of p are 1 and p itself.
- Some primes: 2, 3, 5, 7, 11, 13,...
- Non-prime integers greater than 1 are called composite, because they can be composed by multiplying two integers greater than 1.

The Fundamental Theorem of Arithmetic

Its "Prime Factorization"

- Every positive integer greater than 1 has a unique representation as a prime or as the product of a non-decreasing series of two or more primes.
 - Some examples:
 - 2 = 2 (a prime 2)
 - $4 = 2 \cdot 2 = 2^2$ (product of series 2, 2)
 - $\mathbf{2000} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5 = 2^4 \cdot 5^3$
 - 2001 = 3.23.29
 - 2002 = 2.7.11.13
 - 2003 = 2003 (no clear pattern!)

Prime Numbers: Theorems

- Theorem 2: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}
 - **Proof**: If n is composite then we have $\underline{n = ab}$ for 1 < a < n and a positive integer b greater than 1. Show that $a \le \sqrt{n}$ or $b \le \sqrt{n}$. (Use proof by contradiction)

If $a > \sqrt{n}$ and $b > \sqrt{n}$, then $\underline{ab > n}$ (Contradiction!)

Therefore, $a \le \sqrt{n}$ or $b \le \sqrt{n}$, i.e. n has a positive divisor not exceeding \sqrt{n} (a or b).

By the Fundamental Theorem of Arithmetic, this divisor is either a prime, or has a prime divisor less than itself. In either case, n has a prime divisor less than or equal to \sqrt{n}

Prime Numbers: Theorems

- Contrapositive of Theorem 2:
 - An integer is prime if it is not divisible by any prime less than or equal to its square root \sqrt{n}
- Example: Show that 101 is prime
 - Primes not exceeding $\sqrt{101}$: 2, 3, 5, 7
 - 101 is not divisible by any of 2, 3, 5, or 7
 - Therefore, 101 is a prime

Prime Factorization

- **Example 4**: Fine the prime factorization of $7007 (\sqrt{7007} \approx 83.7)$
 - Perform division of 7007 by successive primes
 7007 / 7 = 1001 (7007 = 7·1001)
 - Perform division of 1001 by successive primes beginning with 7

$$1001 / 7 = 143$$
 $(7007 = 7.7.143)$

 Perform division of 143 by successive primes beginning with 7

$$143 / 11 = 13$$
 $(7007 = 7 \cdot 7 \cdot 11 \cdot 13)$ $= 7^2 \cdot 11 \cdot 13)$

Greatest Common Divisor

The greatest common divisor gcd(a,b) of integers a, b (not both 0) is the largest integer d that is a divisor both of a and of b.

```
d = \gcd(a,b) = \max(d: d|a \wedge d|b)
\Leftrightarrow d|a \wedge d|b \wedge \forall e \in \mathbf{Z}, (e|a \wedge e|b) \rightarrow (d \ge e)
```

- Example: gcd(24,36) = ?
 - Positive divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24
 - Positive divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
 - Positive common divisors: 1, 2, 3, 4, 6, 12.
 The largest one of these is 12.

Relative Primality

- Integers a and b are called relatively prime or coprime iff their gcd = 1.
- **Example:** Neither 21 nor 10 is prime, but they are *relatively prime*. (divisors of 21: 1, 3, 7, 21; divisors of 10: 1, 2, 5, 10; so they have no common factors > 1, so their gcd = 1.
- A set of integers {a₁, a₂, a₃,...} is pairwise relatively prime if all pairs (a_i, a_j), for i ≠ j, are relatively prime.

GCD Shortcut

If the prime factorizations are written as

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
 and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then the GCD is given by:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}.$$

Example of using the shortcut:

$$a = 84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3^1 \cdot 7^1$$

$$b = 96 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^5 \cdot 3^1 \cdot 7^0$$

$$= \gcd(84,96)$$
 $= 2^2 \cdot 3^1 \cdot 7^0 = 2 \cdot 2 \cdot 3 = 12.$

Least Common Multiple

Icm(a,b) of positive integers a, b, is the smallest positive integer that is a multiple both of a and of b. E.g. Icm(6,10) = 30

```
m = \text{lcm}(a,b) = \min(m: a|m \land b|m)

\Leftrightarrow a|m \land b|m \land \forall n \in \mathbf{Z}: (a|n \land b|n) \rightarrow (m \leq n)
```

- Example: lcm(24,36) = ?
 - Positive multiples of 24: 24, 48, <u>72, 96, 120, 144,...</u>
 - Positive multiples of 36: 36, <u>72</u>, 108, <u>144</u>,...
 - Positive common multiples: 72, 144,...
 The smallest one of these is 72.

LCM Shortcut

If the prime factorizations are written as

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
 and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then the LCM is given by

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}.$$

Example of using the shortcut:

$$a = 84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^{2} \cdot 3^{1} \cdot 7^{1}$$

$$b = 96 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^{5} \cdot 3^{1} \cdot 7^{0}$$

■
$$lcm(84,96)$$
 = $2^5 \cdot 3^1 \cdot 7^1 = 32 \cdot 3 \cdot 7 = 672$

LCM: Another Example

Example 15:

What is the least common multiple of 2³·3⁵·7² and 2⁴·3³?

Solution:

Icm(
$$2^3 \cdot 3^5 \cdot 7^2$$
, $2^4 \cdot 3^3$)
= $2^{\max(3,4)} \cdot 3^{\max(5,3)} \cdot 7^{\max(2,0)}$
= $2^4 \cdot 3^5 \cdot 7^2$

GCD and LCM

Theorem: Let a and b be positive integers. Then

$$ab = \gcd(a,b) \times \operatorname{lcm}(a,b)$$

Example

$$a = 84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3^1 \cdot 7^1$$

$$b = 96 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^{5} \cdot 3^{1} \cdot 7^{0}$$

$$ab = (2^2 \cdot 3^1 \cdot 7^1) \cdot (2^5 \cdot 3^1 \cdot 7^0) = 2^2 \cdot 3^1 \cdot 7^0 \cdot 2^5 \cdot 3^1 \cdot 7^1$$
$$= 2^{\min(2,5)} \cdot 3^{\min(1,1)} \cdot 7^{\min(1,0)} \cdot 2^{\max(2,5)} \cdot 3^{\max(1,1)} \cdot 7^{\max(1,0)}$$

$$= \gcd(a,b) \times \operatorname{lcm}(a,b)$$

Spiral Visualization of mod

Example shown: modulo-5 arithmetic

Pseudorandom Numbers

- Numbers that are generated deterministically, but that appear random for all practical purposes.
 - We need to repeat the same sequence when testing!
- Used in many applications, such as:
 - Hash functions
 - Simulations, games, graphics
 - Cryptographic algorithms
- One simple common pseudo-random number generating procedure:
 - The linear congruential method
 - Uses the mod operator

Linear Congruential Method

- Requires four natural numbers:
 - The modulus m, the multiplier a, the increment c, and the seed x_0 .
 - where $2 \le a < m$, $0 \le c < m$, $0 \le x_0 < m$.
- Generates the pseudo-random sequence {x_n} with 0 ≤ x_n < m, via the following:</p>

$$x_{n+1} = (ax_n + c) \bmod m$$

- Tends to work best when a, c, m are prime, or at least relatively prime.
- If c = 0, the method is called a pure multiplicative generator.

Example

- Let modulus $m = 1,000 = 2^3 \cdot 5^3$.
 - To generate outputs in the range 0-999.
- Pick increment c = 467 (prime), multiplier a = 293 (also prime), seed x₀ = 426.
- Then we get the pseudo-random sequence:

$$x_1 = (ax_0 + c) \mod m = 285$$

 $x_2 = (ax_1 + c) \mod m = 972$
 $x_3 = (ax_2 + c) \mod m = 263$ and so on...

Prime Numbers: Theorems

- Theorem 3: There are infinitely many primes. (Euclide)
- Assume: there are only finite many primes p₁, p₂,..., p_n
- Let Q = $p_1p_2\cdots p_n + 1$
- Then, Q is prime or it can be written as the product of two or more primes (by Fundamental Theorem of Arithmetic)
- None of the primes p_i divides Q
 (if p_i|Q then p_i|(Q p₁p₂···p_n), i.e. p_i|1)
- Hence there is a prime not in the list p₁, p₂,..., p_n, which is either Q itself or a prime factor of Q (CONTRADICTION!!)

Mersenne Primes

■ <u>Definition</u>: A *Mersenne prime* is a prime number of the form $2^p - 1$, where p is prime.

prime p	2 ^p – 1	Mersenne?
2	$2^2 - 1 = 3$	yes
3	$2^3 - 1 = 7$	yes
5	$2^5 - 1 = 31$	yes
7	$2^7 - 1 = 127$	yes
11	$2^{11} - 1 = 2047 = 23.89$	no
11,213	2 ^{11,213} – 1	yes
19,937	$2^{19,937} - 1$	yes
3,021,377	23,021,377 — 1	Yes (late 1998)
43,112,609	2 ^{43,112,609} _ 1	Yes (MID 2008)

largest Mersenne prime known (with almost 13 million digits)