

Camada de Internet

Politica de alocação de endereços IP- ICANN

Politica de alocação de endereços

A ICANN assim como a IANA são responsável por manter o registro de blocos alocados e não alocados de endereços IPv4 e IPv6, ASNs e Nomes de domínios ; e é responsável por alocar grandes blocos de endereços IP e ASNs aos cinco RIRs de acordo com as políticas globais.

Politica de alocação de endereços

- Em geral um hospedeiro está ligado diretamente a um roteador, o roteador default para esse hospedeiro.
- O problema de rotear um pacote do hospedeiro de origem até o hospedeiro de destino se reduz, claramente, ao problema de direcionar o pacote do roteador de origem ao roteador de destino.

E = conjunto de enlaces = $\{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

 $N = conjunto de roteadores = \{ u, v, w, x, y, z \}$

Grafo: G = (N,E)

• C(x,x') = custo do enlace (x,x')

$$-eg., c(w,z) = 5$$

 custo poderia ser sempre 1, ou inversamente relacionado à largura ou inversamente relacionado ao congestionamento

E = **conjunto de enlaces** = $\{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

N = conjunto de roteadores = { u, v, w, x, y, z }

Grafo: G = (N,E)

• c(x,x') = custo do enlace (x,x')

$$-eg., c(w,z) = 5$$

 custo poderia ser sempre 1, ou inversamente relacionado à largura ou inversamente relacionado ao congestionamento

Pergunta: Qual é o caminho de menor custo entre u e z?
Isso é uma função do Algoritmo de Roteamento !!!

Estático ou dinâmico?

Estático ou não adaptativos:

- ✓ Todas as rotas são calculadas previamente
- ✓ Rotas mudam lentamente com o tempo
- ✓ Não responde bem a falhas

Classificação

Dinâmico ou adaptativos:

- ✓ Rotas mudam mais rapidamente
 - atualização periódica
 - em resposta a mudanças no custo do enlace e topologias

Adaptativos ou Dinâmicos: As rotas remotas são aprendidas automaticamente através de mensagens trocadas entre os roteadores. Esses algoritmos alternam nas decisões de roteamento conforme mudanças na topologia, assim como no trafego da rede.

Global:

- Todos os roteadores têm topologia completa, informação de custo do enlace
- Algoritmos de "estado do enlace"

Descentralizada:

- Roteador conhece vizinhos conectados fisicamente, custos de enlace para vizinhos
- Processo de computação iterativo, troca de informações com vizinhos
- Algoritmos de "vetor de distância"

Algoritmos de Estado do enlace Link state(LS)

Algoritmo de Estado do Enlace

Algoritmo de Dijkstra

- Nova topologia, custos de enlace conhecidos de todos os nós
 - Realizado por "broadcast de estado do enlace"
 - Todos os nós têm a mesma informação
- Calcula caminhos de menor custo de um nó ("origem") para todos os outros nós
 - Da tabela de repasse para esse nó
- Iterativo: após k iterações, sabe caminho de menor custo para k destinos

Notação:

- c(x,y): Custo do enlace do nó x até y; = ∞
 se não forem vizinhos diretos
- D(v): Valor atual do custo do caminho da origem ao destino v
- p(v): Nó predecessor ao longo do caminho da origem até v
- N': Conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Algoritmo de Estado do Enlace

Etapa	N	1, D	(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0		u	2,u	5,u	1,u	∞	∞
1	u	X •	2,u	4,x		2,x	∞
2	ux	y ←	2,u	3,y			4,y
3	uxy	V		3,y			4,y
4	uxyv\	N •					4,y
5	uxvvw	7					

Saindo do roteador U como chegar com menor custo ao roteador W

Algoritmo de Estado do Enlace

Eta	ара	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy ←	2,u	3,y			4,y
	3	uxyv 🗸		3,y			4,y
	4	uxyvw 🗸					4,y
	5	UXVVWZ ←					

tabela de repasse resultante em u:

des	stino	enlace		
	٧	(u,v)		
	X	(u,x)		
	У	(u,x)		
	W	(u,x)		
egar com	Z	(u,x)		

Saindo do roteador U como chegar com menor custo ao roteador W

Algoritmos de Vetor de distância

Algoritmo de Vetor de distância

Equação de Bellman-Ford (programação dinâmica)

Defina:

 $d_x(y) := custo do caminho de menor custo de uma rede x para rede y$

Depois:

$$d_x(y) = \min \{c(x,v) + d_v(y)\}$$

onde min assume todos os vizinhos v de x

Algoritmo de Vetor de distância

Exemplo de Bellman-Ford

claramente,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

equação B-F diz:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

nó que alcança mínimo é o próximo salto no caminho mais curto → tabela de repasse

Roteamento hierárquico

Algoritmo de roteamento hierárquico

Os algoritmos de roteamento *Link-state* e *Distance vetor* exigem que todos os roteadores executem o mesmo algoritmo, saibam da existência uns dos outros, serem de complexidade quadrática e gerarem trafego adicional na rede. Na prática isso não é viável, uma rede mundial de computadores nesses termos seria impossível.

Escala: com 200 milhões de destinos:

- •Não pode armazenar todos os destinos nas tabelas de roteamento!
- •Troca de tabela de roteamento atolaria os enlaces!

Fonte: Google

Algoritmo de roteamento hierárquico

Fonte: Google

Escala: com 200 milhões de destinos:

- Não pode armazenar todos os destinos nas tabelas de roteamento!
- Troca de tabela de roteamento atolaria os enlaces!

Autonomia administrativa

- Internet = rede de redes
- Cada administrador de rede pode querer controlar o roteamento em sua própria rede'

- Roteadores agregados em regiões, "sistemas autônomos" (AS)
- Roteadores no mesmo AS rodam o mesmo protocolo de roteamento
 - Protocolo de roteamento "intra-AS"
 - Roteadores em ASes diferentes podem executar protocolo de roteamento intra-AS diferente

- Tabela de repasse configurada por algoritmo de roteamento intra e inter-AS
 - Intra-AS define entradas para destinos internos
 - Inter-AS & intra-AS definem entradas para destinos externos

Algoritmo de roteamento hierárquico

Um Autonomous System (AS), é um grupo de roteadores que estão sob um mesmo controle administrativo;

- ❖ Dentro do AS a empresa executa o seu protocolo de preferência e entre ASs haverá necessidade de um mesmo protocolo;
- ❖ Roteador que conecta a outro AS é um roteador de borda (Border Gateway).

Algoritmo de roteamento hierárquico

Tarefas inter-AS

- Suponha que roteador no AS1 recebe datagrama destinado para fora do AS1:
 - roteador deve encaminhar pacote ao roteador de borda, mas qual?

AS1 deve:

- 1. Descobrir quais destinos são alcançáveis por AS2 e quais por AS3
- 2. Propagar essa informação de acessibilidade a todos os roteadores no AS1

Tarefa do roteamento inter-AS!

- Suponha que AS1 descubra (pelo protocolo inter-AS) que a sub-rede x é alcançável via AS3 (gateway 1c), mas não via AS2.
- Protocolo inter-AS propaga informação de acessibilidade a todos os roteadores internos.
- Roteador 1d determina pelo roteamento intra-AS informação de que sua interface / está no caminho de menor custo para 1c.
 - Instala entrada da tabela de repasse (x,I)

- Agora suponha que o AS1 descubra pelo protocolo inter-AS que a sub-rede x pode ser alcançada por AS3 e por AS2.
- Para configurar a tabela de repasse, roteador 1d deve determinar para que gateway ele deve repassar os pacotes para o destino x.
 - Isso também é tarefa do protocolo de roteamento inter-AS!

- Agora suponha que AS1 descubra pelo protocolo inter-AS que sub-rede x pode ser alcançada por AS3 e por AS2.
- Para configurar a tabela de repasse, o roteador 1d deve determinar para qual gateway deve repassar pacotes para destino x.
 - isso também é tarefa do protocolo de roteamento inter-AS!
- Envia pacote para o mais próximo dos dois roteadores.

Roteamento hierárquico

Roteamento hierárquico

Protocolos de roteamento

Protocolos de roteamento

Protocolos de roteamento

Os Protocolos de Roteamento são divididos em 2 grupos:

✓ Protocolos de Roteamento Interno

Protocolos onde as informações são trocadas dentro de Sistemas Autônomos (SA).

Objetivo: enviar pacotes de forma mais eficiente possível da origem ao destino.

Ex: RIP, OSPF e IGRP (Cisco)

✓ Protocolos de Roteamento Externo

Protocolos que trocam informações entre SA's.

Objetivo: permitir que políticas de roteamento sejam executadas entre SA's.

Ex: BGP e EGP

Routing Information Protocol (RIP)

RIP (Routing Information Protocol)

Um dos protocolos internos mais amplamente usados em redes IP. Baseado no Algoritmo com *Vetor de Distâncias* e utiliza a métrica do números de hops, ou seja, escolhe o caminho que percorre o menor número de gateways.

Características:

- ✓ Facilidade de configuração;
- ✓ Seu algoritmo não necessita de grande poder de computação e capacidade de memória nos roteadores;
- ✓ Funciona bem em ambiente pequenos;
- ✓ Roteamento Classful
- ✓ Troca de mensagens em UDP

RIP (Routing Information Protocol)

RIP (Routing Information Protocol)

RIP (Routing Information Protocol)

RIP (Routing Information Protocol)

Desvantagens:

- Limita o número de hops em 15, sendo assim inadequado para redes grandes -Lenta convergência;
- Leva relativamente muito tempo para que alterações na rede fiquem sendo conhecidas por todos os roteadores, podendo causar loops de roteamento devido a falta de sincronia nas informações nos roteadores;
- Grande consumidor de largura de banda, pois, a cada 30s faz um broadcast de sua tabela de roteamento
- Determina o melhor caminho entre dois pontos levando em conta somente o número de saltos entre eles, ignorando outros fatores como: velocidade e tráfego da rede, entres outras métricas.

RIP (Routing Information Protocol)

A primeira versão do RIP foi descrita em 1988 (RFC 1058). Com o surgimento de protocolos mais robustos e as deficiências apresentadas pelo RIP, em 1993 um no versão RIPv2 (RFC 1388). Esta nova versão tem como características:

- ✓ Anúncios RIPv2 são baseados em tráfego multicast;
- ✓ Suporte a CIDR;
- ✓ Autenticação MD5;

Open Shortest Path First (OSPF)

OSPF - Open Shortest Path First

O protocolo Open Shortest Path First (OSPF), definido no RFC 2328, é um protocolo IGP utilizado para distribuir a informação de roteamento em um único Sistema Autônomo. Baseado no algoritmo de Estado do Enlace (Link-State), o qual foi especificamente projetado para operar com redes grandes.

- "open": publicamente disponível
- Usa algoritmo Link State
 - disseminação de pacote LS
 - mapa de topologia em cada nó
 - cálculo de rota usando algoritmo de Dijkstra
- Anúncio OSPF transporta uma entrada por roteador vizinho
- Anúncios disseminados ao AS inteiro (com inundação)
 - transportados nas mensagens OSPF diretamente por IP (em vez de TCP ou UDP)

OSPF - Open Shortest Path First

O protocolo Open Shortest Path First (OSPF) possui as seguintes características:

- Protocolo Aberto (RFC1247 e RFC2328)
- Usa algoritmo Link State
- OSPF usa datagramas IP diretamente (89 protocolo superior)
- Anúncios disseminados ao AS inteiro (com inundação)
- Todas as mensagens OSPF autenticadas Senhas ou hash MD-5

Entalecendo conexão com os Vizinhos

Entalecendo conexão com os Vizinhos

Os Protocolos de Roteamento são divididos em 2 grupos:

✓ Protocolos de Roteamento Interno

Protocolos onde as informações são trocadas dentro de Sistemas Autônomos (SA).

Objetivo: enviar pacotes de forma mais eficiente possível da origem ao destino.

Ex: RIP, OSPF e IGRP (Cisco)

✓ Protocolos de Roteamento Externo

Protocolos que trocam informações entre SA's.

Objetivo: permitir que políticas de roteamento sejam executadas entre SA's.

Ex: BGP e EGP

BGP - Border Gateway Protocol

- ✓BGP é um protocolo de roteamento do tipo interdomínio que transmite informações de prefixos
- ✓BGP é um protocolo do tipo "path vector"
 - ✓ Similar ao "distance vector"
- ✓ BGP percebe a Internet como uma coleção de autonomous systems (AS)
- ✓ BGP suporta CIDR
- ✓ Roteadores BGP trocam informações de roteamento entre "peers"

BGP - Border Gateway Protocol

- BGP oferece a cada AS um meio de:
 - 1. Obter informação de acessibilidade da sub-rede a partir de ASs vizinhos.
 - 2. Propagar informação de acessibilidade a todos os roteadores internos ao AS.
 - Determinar rotas "boas" para sub-redes com base na informação e política de acessibilidade.
- Permite que a sub-rede anuncie sua existência ao resto da Internet.

BGP - Border Gateway Protocol

- Sessões BGP Pares de roteadores (BGP peers) trocam informações de roteamento por conexões TCP.
- Quando AS2 comunica um prefixo ao AS1, AS2 está prometendo que irá encaminhar todos os datagramas destinados a esse prefixo em direção ao prefixo.
- AS2 pode agregar prefixos em seu comunicado.

BGP - Border Gateway Protocol

- Usando sessão eBGP entre 3a e 1c, AS3 envia informação de tangibilidade do prefixo a AS1.
 - 1c pode então usar iBGP para distribuir nova informação de prefixo a todos os roteadores em AS1
 - 1b pode então reanunciar nova informação de atingibilidade para AS2 por sessão eBGP 1b-para-2a

 Quando roteador descobre novo prefixo, ele cria entrada para prefixo em sua tabela de repasse.

BGP - Border Gateway Protocol

Dois atributos importantes:

Prefixo	Next-hop	AS-Path
10.1.0.0/16	10.10.0.1	222, 123, 111
10.2.0.0/16	10.10.0.1	222, 123
10.3.0.0/16	10.10.0.1	222
10.4.0.0/16		

- AS-PATH: contém ASs através dos quais o anúncio do prefixo passou: p. e., AS 67, AS 17
- NEXT-HOP: indica roteador específico do AS interno para AS do próximo salto (podem ser múltiplos enlaces para AS atual até AS do próximo salto)

Obrigado!

Referências:

Algoritmos de roteamento – link state e Distance vector

Capitulo 4 - Páginas de 268 à 279

Roteamento hierárquico

Capitulo 4 – Página 280

Protocolos de Roteamento

Capitulo 4 – Páginas de 283 à 294

Referências:

Algoritmos de roteamento – link state e Distance vector

Capitulo 5 - Páginas de 226 à 236

Roteamento hierárquico

Capitulo 5 – Página 237

Protocolos de Roteamento

Capitulo 5 – Páginas de 296 à 302

Referências:

COMER, D. E. **Redes de computadores e internet.** 6. ed. Porto Alegre: Bookman, 2016.

The Internet Engineering Task Force (IETF®) - https://www.ietf.org/

Apostilas Cert Br https://cartilha.cert.br/downloads/

Notas de curso - Cisco Routing & Switching

Notas de Aulas - Ana Cristina Benso da Silva

Algoritmos de roteamento

Algoritmo de Vetor de distancia

custo para

 $\infty \infty \infty$

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

Algoritmos de roteamento

Algoritmo de Vetor de distancia

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= min{2+0, 7+1} = 2

