1 Operators

$$a|b :\Leftrightarrow \exists c\ b = ac \text{ for } a \neq 0$$

 $a \equiv_m b :\Leftrightarrow m|(a-b) \text{ i.e. } \exists r \in \mathbb{Z} \ a = b + rm$

2 Propositions

Implication: $A \rightarrow B : \Leftrightarrow \neg A \lor B$ **Two-sided Implication:** $A \leftrightarrow B : \Leftrightarrow A \equiv B$

Associativity: $(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$ **Distributive Law:** $(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$

 $(A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)$

Idempotence: $F \wedge F \equiv F$ Absorption: $F \wedge (F \vee G) \equiv F$ do Morgan's Law: $-(A \wedge B) = (-A \wedge C)$

de Morgan's Law: $\neg (A \land B) \equiv (\neg A \lor \neg B)$

3 Proofs

To prove a sentence (either true or false) means to show that it's a tautology. The following **proof patterns** may be used.

3.0.1 Direct Proof of an Implication

Example: $F \to G$

A direct proof of an implication works by assuming F and then deriving G from F.

$$F \Rightarrow \dots \Rightarrow \dots \Rightarrow G$$

3.0.2 Indirect Proof of an Implication

Example: $F \to G$

An **indirect proof of an implication** proceeds by assuming $\neg G$ and deriving $\neg F$ under this assumption.

$$\neg G \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \neg F$$

1

3.0.3 Composition of Implications

Example: $F \to G$ and $G \to H$

1. Prove the statement F

2. Prove the implications $F \Rightarrow G$ and $G \Rightarrow H$

3.0.4 Case Distinction

1. Define a complete list of cases

2. Prove the statement for each case separately

3.0.5 Proof by Contradiction

Assume that the sentence F is false and derive a false statement from it.

$$\neg F \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \bot$$

3.0.6 Existence Proof

Example: $\exists x \ P(x)$

Either find a variable which satisfies the sentence (**constructive**) or proof the existence of such a variable without exhibiting it (**non-constructive**).

3.0.7 Proof by Counterexample

Example: $\neg \forall x \ P(x)$

Find a variable such that the sentence is wrong.

3.0.8 Proof by Induction

Example: $\forall n \ P(n)$

- 1. Basis step: Prove P(0)
- 2. Assume P(n)
- 3. Induction step: Prove P(n+1)

4 Predicate Logic

4.1 Rules

- 1. $\forall x \ P(x) \land \forall x \ Q(x) \Leftrightarrow \forall x \ (P(x) \land Q(x))$
- 2. $\exists x \ (P(x) \land Q(x)) \Rightarrow \exists x \ P(x) \land \exists x \ Q(x)$
- 3. $\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$
- 4. $\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$
- 5. $\exists y \forall x \ P(x,y) \Rightarrow \forall x \exists y \ P(x,y)$
- 6. $\forall x \ (\exists x \ P(x) \land P(x)) \lor P(\underline{x}), \text{ where } \underline{x} \text{ is free}$

5 Sets

$$A \subseteq B :\Leftrightarrow \forall x \ (x \in A \rightarrow x \in B)$$

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

$$P(A) := \{S \mid S \subseteq A\}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}, |A \times B| = |A| * |B|$$

$$\mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\} (teilmenge) |\mathcal{P}| = 2^{|A|}$$

$$Ordered_sets := (a,b) := \{\{a\}, \{a,b\}\}$$

A teilmenge of a set is the set itself, every element of the set and the null element.

Relations 6

6.1Reflexive

Formula: $a \rho a$

Set: $id \subseteq \rho$

Matrix: Diagonal is all 1

Graph: Every vertex has a loop

Examples: $\leq, \geq, \mid, \equiv_m \text{ on } \mathbb{Z}$

6.2 Transitive

Formula: $a \rho b \wedge b \rho c \Rightarrow a \rho c$

Set: $\rho^2 \subseteq \rho$

Examples: \leq , \geq , |, <, >, \equiv_m on \mathbb{Z}

6.3Symmetric

Formula: $a \rho b \Leftrightarrow b \rho a$

Set: $\rho = \hat{\rho}$

Matrix: Matrix is symmetric

Graph: Undirected graph, possibly with loops

Examples: \equiv_m on \mathbb{Z}

Antisymmetric 6.4

Formula: $a \rho b \wedge b \rho a \Rightarrow a = b$

Set: $\rho \cap \hat{\rho} \subseteq id$

Graph: No cycle of length 2 **Examples:** \leq , \geq on \mathbb{Z} and \mid on \mathbb{N}

6.4.1 Relations as Sets

 $a \rho \sigma b$: $\exists b \in B : (a \rho b \wedge b \sigma c)$ Either $a \rho b$ or $a \sigma b$ $a \ (\rho \cup \sigma) \ b$:

 $a (\rho \cap \sigma) b$: $a \rho b$ and $a \sigma b$ The empty set \emptyset : symmetric and transitive

6.4.2 Transitive closure

$$p^{\star} = \bigcup_{n=1}^{\infty} p^n \tag{1}$$

6.4.3 Equivalence Relation

Example: =

A relation that is reflexive, symmetric, and transitive.

The set of elements in A that equivalent to $a \in A$ according to the equivalence relation θ is called the **equivalence class** of a.

$$[a]_{\theta} := \{b \in A \mid b \mid \theta \mid a\}$$

The set A/θ of equivalence classes of θ on A is a partition.

If you are looking for a equivalence relation give the matrix with the above properties.

Hint:

 $a \theta b \Rightarrow [a] = [b]$ $a \not b b \Rightarrow [a] \cap [b] = \emptyset$

Partial Order (Ordnungsrelation) 6.5

Example: \leq and \geq on \mathbb{Z} , \mathbb{Q} or \mathbb{R} , = on \mathbb{N}

A relation that is reflexive, antisymmetric, and transitive.

If every two elements in a poset are comparable than the Set is **totally ordered**.

Special elements in a poset (A, \preceq) with a subset $S \subseteq A$:

minimal (maximal) element: $a \in S$ if there exists no $b \in S$ with $b \prec a$ $(b \succ a)$

maximal elements greatest elements minimal elements least elements

Hasse Diagram of the Poset $(\{2,3,4,5,6,7,8,9\};|)$ and $(\{1,2,3,4,6,8,12,24\};|)$

least (greatest) element: $a \in S$ if $a \leq b$ $(a \succeq b)$ for all $b \in S$

lower (upper) bound: $a \in A \text{ if } a \leq b \ (a \succeq b) \text{ for all } b \in S$

greatest lower (least upper) bound: $a \in A$ if a is the greatest (least) element of the

set of all lower (upper) bounds of S

6.6 Function

injective: no collisions. $\forall h_1, h_2 \in A \ h_1 \neq h_2 \Rightarrow f(h_1) \neq f(h_2)$.

surjective: every value in the codomain is taken on for some argument

bijective: one-to-one mapping (injective and surjective)

bereinigter pranexform is when you write a formula with first all the quantifiers and then the formula.

7 Combinatorics

	with repetition	without repetition
ordered	n^k	$\frac{n!}{(n-k)!}$
	A passcode of length n with k dif-	How many ways can k places be
	ferent digits	awarded to n people
unordered	$\binom{n+k-1}{k}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
	Distribute k bananas (identical) to	Select k from n objects
	n monkeys (identical)	

Hint:
$$\binom{n}{0} = \binom{n}{n} = 1$$
, $\binom{n}{1} = \binom{n}{n-1} = n$

7.1 Countability

same cardinality $A \sim B$: There exists a bijection $A \to B$

B has at least the cardinality of A $A \leq B$: $A \sim C$ for some subset $C \subseteq B$

B dominates A $A \prec B$: $A \preceq B \land A \not\sim B$

countable: $A \leq \mathbb{N}$

Hint:

The set $\{0,1\}^* := \{0,1,00,01,...\}$ of **finite binary sequences** is countable.

The set $\{0,1\}^{\infty}$ is uncountable (Cantor's diagonalization argument).

The set A^n of n-tuples over A is countable.

The union of a countable list of countable sets is countable (can be considered as tuples).

 \mathbb{N} , \mathbb{Z} und \mathbb{Q} are countable $\mathbb{P}(\mathbb{Z})$ ist uberabzahlbar(=not countable).

7.2 Inclusion/Exclusion Principle

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

7.3 Double counting principal

We want to count the subset of $A \times B$ (which is a relation). We can $a \in A$ the number m_a of $b \in B$ such that $(a,b) \in S$. Or the same for B(equal to the sum of ones in the matrix representation).

7.4 Pigeon hole principal

If a set of n objects is partitioned into k < n sets, then at least one of these sets contains at least $\frac{n}{k}$ objects

7.5 Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

8 Graph Theory

 $\sum_{v \in V} deg(v) = 2|E|$

8.1 Special Graphs

complete graph K_n n vertices, $\frac{n(n-1)}{2}$ edges, (n)-regular (every vertex has the

same degree n).

k regular graph Each vertex has k neighbours.

compete bipartite graph m+n vertices, mn edges, with two vertex subsets $|V_b|=m$

 $K_{m,n}$ and $|V_w| = n$

tree: undirected, connected graph with no cycles and n-1 edges.

hypercube Q_d : d-regular with 2^d vertices and $2^{d-1}d$ edges

mesh $M_{m,n}$: mn vertices

8.2 Traversals

walk: sequence of vertices such that consecutive vertices are connected

tour: a walk with distinct edges

circuit: a tour that ends where it started

Euler cycle: a circuit that visits every node exactly once Hamiltonian cycle: a circuit that visits every vertex exactly once

8.3 Planar Graphs

For *connected*, *planar* graphs, the following equations hold:

$$r = |E| - |V| + 2$$
 (number of regions)
 $\Sigma_{r \in R} deg(r) = 2|E|$
if $|V| \ge 3 \Rightarrow |E| \le 3|V| - 6$
if $|V| \ge 3$ and bipartite $\Rightarrow |E| \le 2|V| - 4$
 K_n is planar if and only if $n \le 4$ i

Rules to prove non-planarity

- deletion of edges
- deletion of singleton vertices
- merging neighboring vertices

8.4 Isomorphism

Two graphs are **isomorphic** (denoted \cong) if there exists a bijection $\pi: V \mapsto V'$ such that

$$\{u,v\} \in E \Leftrightarrow \{\pi(u),\pi(v)\} \in E'$$

Hint: Look for cycles with vertices that have a distinct number of degrees. If the graph in question doesn't contain that specific cycle, it can't be isomorph.

- 1. $|E| + |E^-| = 2|E|$ ist gleich der Maximalen Anzahl kanten in Graph.
- 2. $\frac{|v|(|v|-1)}{2}$ ist gleich der Maximalen Anzahl kanten in Graph.

8.5 Trees

A tree is an undirected connected graph with no cycles. A forest is an undirected graph with no cycles. A leaf is a vertex with degree one. A tree has n-1 edges.

9 Number Theory

9.1 Division

Hint: Every non-zero integer is a divisor of 0. 1 and -1 are divisors of every integer.

9.2 Greatest Common Divisor

For integers a and b (not both 0), an integer d is called a gcd(a, b) if d divides both a and b and if every common divisor of a and b divides d.

$$d|a$$
 and $d|b$ and $c|a \wedge c|b \Rightarrow c|d$
 $gcd(a,b) :\Leftrightarrow \exists u, v \ ua + vb$

9.3 Chinese Remainder Theorem

given
$$z \equiv_{b_1} c_1$$

$$z \equiv_{b_2} c_2$$

$$z \equiv_{b_3} c_3$$
then
$$z = R_B(B_1x_1c_1 + B_2x_2c_2 + B_3x_3c_3)$$
where
$$B_i = \frac{B}{b_1} \text{ with } B = b_1b_2b_3 \text{ and } B_ix_i \equiv_{b_i} 1$$

To find different z to satisfy certain constraints $z' = z \pm n \cdot B, n \in \mathbb{N}$

9.4 Extended Euclidean Algorithm

given
$$x = gcd(888, 54)$$

then $888 = 54(16) + 24$
 $54 = 24(2) + \underline{6}$
 $24 = 6(4) + 0$
to find $6 = u(888) + v(54)$: $6 = 54 - 24(2)$
 $= 54 + 24(-2)$
 $= 54 + (888 - 54(16))(-2)$
 $= 54 + (888 + 54(-16))(-2)$
 $= 54 + 888(-2) + 54(32)$
 $= (-2)888 + (33)54$

9.5 Ideal

$$(a,b) := \{ua + vb | u, v \in \mathbb{Z}\}$$
$$(a) := \{ua | u \in \mathbb{Z}\}$$

For $a, b \in \mathbb{Z}$ there exists $d \in \mathbb{Z}$ such that (a, b) = (d). This is implies that d is the **gcd** of a and b.

9.6 Least Common Multiple

l = lcm(a, b) is the common multiple of a and b which divides every common multiple of a and b.

$$a|l'$$
 and $b|l' \Rightarrow l|l'$

It follows:

$$gcd(a,b) \cdot lcm(a,b) = ab$$

9.7 Modular Arithmetic

$$R_m(a+b) = R_m(R_m(a) + R_m(b))$$

$$R_m(ab) = R_m(R_m(a) \cdot R_m(b))$$

$$R_m(a^{bc}) = R_m(R_m(a^b)^c)$$

9.8 Multiplicative Inverses

The **congruence equation** has a solution $x \in \mathbb{Z}_m$ if and only if gcd(a, m) = 1. The solution is unique.

$$ax \equiv_m 1$$

The x satisfying the equation is called the multiplicative inverse of a modulo m (a Einheit of the Ring) $(x \equiv_m a^{-1} \text{ or } x \equiv_m \frac{1}{a})$.

9.9 Diffie-Hellmann Key-Agreement Protocol

The Diffie-Hellmann protocol is based on the **discrete logarithm problem**. Basically, while $y = R_p(g^x)$ can be computed efficiently, it can't be solved for x.

$$k_{AB} \equiv_p y_B^{x_A} \equiv_p (g^{x_B})^{x_A} \equiv_p g^{x_A x_B} \equiv_p k_{BA}$$

9.10 RSA

A finite group needs G needs to be chosen. Usually, the group \mathbb{Z}_n^* where n=pq is the product of two secret prime numbers. Then d is equal to

$$d \equiv_{|G|} e^{-1} \equiv_{(p-1)(q-1)} e^{-1}$$

where d is the **private key** and the tuple (n, e) is the **public key**. *Hint:* It's not possible to calculate d without knowing G's order.

Alice	insecure channel	Bob
Generate primes p and q		
$n = p \cdot q$ $f = (p-1)(q-1)$		
select e $d \equiv_f e^{-1}$	$\stackrel{n,e}{-\!\!\!-\!\!\!\!-}$	$plaintext \\ m \in \{1, \dots, n-1\}$
$m = R_n(y^d)$	y	ciphertext $y = R_n(m^e)$

10 Algebra

10.1 Special Properties

Some special properties of an algebra $\langle S; *, e \rangle$ are

neutral element: $e \in S$ such that e * a = a * e = a

associativity: * is associative if a * (b * c) = (a * b) * c for all $a, b, c \in S$

inverse element: b is the inverse of a if b*a=a*b=e

commutative/abelian: a * b = b * a for all $a, b \in S$

The **neutral** and **inverse element** can have a left and right version. E.g. e * a = a is the left neutral element. However, there is *always only one* neutral/inverse element.

10.2 Special Algebras

	Notation	Axioms	Examples
Semigroup	$\langle S; * \rangle$	* is associative	
Monoid	$\langle M; *, e \rangle$	* is associative	
		e is the neutral element	
Group	$\langle G; *, \hat{,} e \rangle$	* is associative	$\langle \mathbb{Z}; +, -, 0 \rangle$,
			$ \langle \mathbb{Q} - \{0\}; \cdot, ^{-1}, 1 \rangle,$
			$\langle \mathbb{R}; +, -, 0 \rangle$
		e is the neutral element	
		every $a \in G$ has an inverse element	
Ring	$\langle R; +, -, 0, \cdot, 1 \rangle$	$\langle R; +, -, 0 \rangle$ is a commutative group	$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (commuta-
			tive)
		$\langle R; \cdot, 1 \rangle$ is a monoid	
		a(b+c) = ab + ac and (b+c)a = ab + ac	
		$ba + ca$ for all $a, b, c \in R$	
Integral		cummutative	$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
Domain (kor-			
per)			
		no zerodividers	
		$ab = 0 \Rightarrow a = 0 \lor b = 0$	
Field	$GF(p) \equiv \mathbb{Z}_p$	$\langle F - \{0\}; \cdot, ^{-1}, 1 \rangle$ is a commutative	$\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$
		ring	
		every nonzero element is a unit (has	
		an inverse)	

Hint: In order to prove a specific algebra, prove its axioms and that the set is closed in correspondence to its operations, a ring R^* means the ring that only contains units.

10.3 Groups

10.3.1 Direct Product

The direct product of n groups $\langle G_1; *_1 \rangle, ..., \langle G_n; *_n \rangle$ is the group

$$\langle G_1 \times ... \times G_n, \star \rangle$$

where the operation \star is component-wise:

$$(a_1,...,a_n) \star (b_1,...,b_n) = (a_1 *_1 b_1,...,a_n *_n b_n)$$

10.3.2 Homomorphism

A function ψ from a group $\langle G; *, \hat{}, e \rangle$ to a group $\langle H; \star, \hat{}, e' \rangle$ is a group homomorphism if, for all a and b

$$\psi(a * b) = \psi(a) \star \psi(b)$$

Furthermore, ψ is an **isomorphism** if it's a bijection.

A group homomorphism satisfies:

$$\psi(e) = e'$$

$$\psi(\hat{a}) = \widehat{\psi(a)}$$

10.4 Subgroup

A subset $H \subseteq G$ of a group $\langle G; *, \hat{}, e \rangle$ is called a subgroup if $\langle H; *, \hat{}, e \rangle$ is *closed* with respect to all operations.

$$a * b \in H$$
 for all $a, b \in H$
 $e \in H$
 $\hat{a} \in H$ for all $a \in H$

The smallest subgroup of a group G containing the element $g \in G$ is the **group generated** by g:

$$\langle g \rangle := \{ g^n | n \in \mathbb{Z} \}$$

where the resulting group is called **cyclic**.

Hint: The order of a subgroup of a finite group divides its enclosing group's order i.e. |H| divides |G|. A subgroup of size two contains e and an element a, a has to be it's own invers: aa=e. A subgroup with a prime order is cyclic and therefore isomorph to \mathbb{Z}_n , \bigoplus and because of \bigoplus is also kommutativ.

10.4.1 Cyclic Group

A **cyclic group** of order n is isomorphic with $\langle \mathbb{Z}_n; \oplus \rangle$.

Hint: Every group of prime order is cyclic, and in such a group every element except the neutral element is a generator.

Hint: \mathbb{Z}_p^* is cyclic if and only if $m=2, m=4, m=p^e$ or $m=2p^e$, where p is a prime and $e\geq 1$

10.4.2 Order

of a finite group: |G| is the order of G

of an element of G: The order of $a \in G$ is the least $m \ge 1$ such that $a^m = e$ if such an m exists, and $ord(a) = \infty$ otherwise.

Hint: ord(e) = 1. If ord(a) = 2, then $a^{-1} = a$.

10.5 Group \mathbb{Z}_m^* and Euler's Function

 $\langle \mathbb{Z}_m^*; \odot, ^{-1}, 1 \rangle$ is a group with the set

$$\mathbb{Z}_m^* := \{ a \in \mathbb{Z}_m \mid \gcd(a, m) = 1 \}$$

The **Euler function** is defined as follows:

$$\varphi(m) = |\mathbb{Z}_m^*| = (p-1)(q-1) \text{ with } n = pq$$

where p and q are prime.

Hint: If p is a prime, then $\mathbb{Z}_p^* = \{1, ..., p-1\} = \mathbb{Z}_p - \{0\}$

Fermat, euler

$$a^{\varphi(m)} \equiv_m 1 \tag{2}$$

for every prime p and every a not divisible by p

$$a^{p-1} \equiv_p 1 \tag{3}$$

10.6 Polynomials over Fields

R[x] denotes a **polynomial ring**, a set of polynomials over R.

A polynomial is called **monic**, if its first coefficient is 1.

The polynomial $a(x) \in F[x]$ is called **irreducible** if it is divisible only by constants and by constant multiples of a(x). Moreover, $\alpha \in F$ is a **root** $\Leftrightarrow (x - \alpha)$ divides a(x).

Hint: Every polynomial of degree 2 except $x^2 + x + 1$ is reducible. Every irreducible polynomial of degree ≥ 2 has no roots.

Example: Polynomial Division on GF(2):

$$(x^{4} + x + 1) : (x^{2} + x + 1) = x + 2$$

$$\frac{-(x^{3} + 2x)}{-2x^{2} - 2x + 5}$$

$$\frac{-(2x^{2} + 4)}{-2x + 1}$$

Example: Polynomial Interpolation

given
$$a(x)$$
 with $a(3) = 2$, $a(4) = 6$, $a(5) = 7$
then $a(x) = 2\frac{(x-4)(x-5)}{(3-4)(3-5)} + 6\frac{(x-3)(x-5)}{(4-3)(4-5)} + 7\frac{(x-3)(x-4)}{(5-3)(5-4)}$

10.6.1 Finite fields

There exists a finite field with q elements if and only if q is a power of a prime. The prime is called the charakteristik of the field. Moreover, any two finite fields of the same size q are isomorphic.

10.7 Error-Correcting Codes

A (k,n)-error-correcting code C over the alphabet A with |A| = q is a subset of cardinality q^k of A^n i.e. one element is of length n, with q^k different elements.

Hint: Usually, $A = \{0, 1\}$ with q = 2 is being considered

The **Hamming distance** between two codewords is the number of positions at which the two codewords differ.

The **minimum distance** of an error-correcting code C is the minimal Hamming distance between any two codewords.

A code C with minimum distance d can correct t errors if and only if $d \ge 2t + 1$.

11 Logic

11.1 Proof System

A **proof system** is a quadruple $\Pi = (\mathcal{S}, \mathcal{P}, \tau, \phi)$ with the following components:

set of statements S: every $s \in S$ is either true or false set of proofs P: e.g. strings over some alphabet

truth function τ : defines the meaning (semantics) of objects in S

verification function ϕ : $\phi(s,p) = 1$ means that p is a valid proof for the statement s

The proof system $\Pi = (\mathcal{S}, \mathcal{P}, \tau, \phi)$ is

sound if no false statement has a proof

 $\phi(s,p) = 1 \Rightarrow \tau(s) = 1$

complete if every true statement has a proof

 $\tau(s) = 1 \Rightarrow \exists p \in (P) \ \phi(s, p) = 1$

11.2 Syntax and Semantics

	Description	Notation
Syntax	alphabet of allowed symbols and	
	which strings are valid	
Interpretation	an assignment to all variable, predi-	$\mathcal{A}(A) = \{0, 1\}$
	cate, function and constant symbols	
Semantics	a function σ assigning to each fo-	$\sigma(F, \mathcal{A}) = \{0, 1\},\$
	rumla F and each suitable interpre-	$\mathcal{A}(F)$
	tation \mathcal{A} a truth value	
Model	an interpretation \mathcal{A} for which F is	$A \models F$
	true	

Hint: $F \models G$ means that every model for F is also a model for G.

11.2.1 Structure

A **structure** is a tuple $\mathcal{A} = (U, \phi, \psi, \xi)$ with the following components:

universe U: nonempty set

function ϕ : assigns to each function symbol a function $U^k \mapsto U$ function ψ : assigns to each predicate symbol a function $U^k \mapsto \{0,1\}$

function ξ : assigns to each variable symbol a value in U

11.3 Calculi

A derivation rule is a rule for deriving a formula from a set of formulas. G can be derived from the set $\{F_1, ..., F_k\}$ by rule R:

$$\{F_1,...,F_k\} \vdash_R G$$

A calculus K is a finite set of derivation rules $K = \{R_1, ..., R_m\}$. It is

sound/correct if and only if every derivation rule is correct

complete if F is a logical consequence of M, then F can be derived from M using K

11.4 Normal Forms

11.4.1 Conjunctive Normal Form (CNF)

$$F = (L_{11} \vee ... \vee L_{1m_1}) \wedge ... \wedge (L_{n1} \vee ... \vee L_{nm_n})$$

11.4.2 Disjunctive Normal Form (DNF)

$$F = (L_{11} \wedge \ldots \wedge L_{1m_1}) \vee \ldots \vee (L_{n1} \wedge \ldots \wedge L_{nm_n})$$

Hint: Every formula is equivalent to a formula in CNF and DNF.

11.5 Resolution Calculus

Given a Formula F in CNF, one can transform it into a set of clauses:

$$\mathcal{K}(F) = \{\{L_{11}, ..., L_{1m_1}\}, ..., \{L_{n1}, ..., L_{nm_1}\}\}\$$

A clause K is then a **resolvent** of clauses K_1 and K_2 if there is a literal L such that $L \in K_1$ and $\neg L \in K_2$

$$K = (K_1 - \{L\}) \cup (K_2 - \{\neg L\})$$

This derivation is denoted as follows:

$$\{K_1, K_2\} \vdash_{res} K$$

Hint: A set M of formulas is unsatisfiable if and only if $\mathcal{K}(M) \vdash_{res} \emptyset$

11.5.1 Prenex Form

In order to bring a formula into prenex form

- 1. Resolve all name collisions
- 2. Pull the quantifiers to the front by inverting them every time they surpass a \neg .