Información General

Curso : Cómputo Evolutivo

Semestre : 2025 - 2

Profesores : Katva Rodríguez Vázquez

: Augusto César Poot Hernández

Entrega : Marzo 18 de 2025

Alumno : Pablo Uriel Benítez Ramírez, 418003561

Objetivo

El objetivo de esta tarea es la comparación entre las codificaciones: Binaria, Real y Entera.

Comparación de métodos de codificación

Definición 0.1. La codificación binaria representa soluciones usando cadenas de bits (0's y 1's).

- Ventajas
 - Eficiencia en términos de memoria y operaciones lógicas.
 - Permite aplicar operadores genéticos simples (cruce y mutación).
 - Compatible con muchas técnicas clásicas de optimización.
- lacktriangledown Desventajas
 - Puede requerir una decodificación antes de evaluar la función objetivo.
 - La resolución está limitada por el número de bits utilizados.
 - La representación binaria puede llevar a la pérdida de precisión en problemas con soluciones continuas.

Definición 0.2. La codificación real representa directamente los valores de la solución como números reales.

- \blacksquare Ventajas
 - Evita la necesidad de decodificación.
 - Representa soluciones con mayor precisión.
- Desventajas
 - Puede ser más propensa a la convergencia prematura.
 - La manipulación de valores reales requiere más procesamiento que la manipulación de bits.

Definición 0.3. La codificación entera representa soluciones con valores enteros dentro de un rango específico.

- \blacksquare Ventajas
 - Adecuada para problemas donde las variables son inherentemente discretas.
 - Se pueden usar operadores genéticos específicos como permutaciones en problemas combinatorios.
- Desventajas
 - Dependiendo del problema, algunos operadores genéticos pueden ser ineficientes.
 - No es adecuada para problemas de optimización continua.

Característica	Binaria	Real	Entera
Espacio de búsqueda	Discreto	Continuo	Discreto
Precisión	Depende del número de bits	Alta	Depende del rango
Uso común	Problemas lógicos, combinatorios	Optimización conti- nua	Problemas combinatorios
Facilidad de imple- mentación	Alta	Media	Media
Eficiencia computacional	Alta en términos de memoria	Menos eficiente (operaciones con flotantes)	Similar a binaria

Cuadro 1: Comparación entre codificaciones Binaria, Real y Entera

Implementación

Se consideran las siguientes características:

- Se considera fija la probabilidad de cruza y el número de individuos.
- \blacksquare Criterio de paro
 - 50 generaciones sin cambiar
 - llegar al umbral esperado
 - llegar al máximo de generaciones
- Se utiliza la selección por Torneo binario.
- \blacksquare Elitismo al 20 %

Esfera

$$f(x) = \sum_{i=1}^{n} x_i^2 \qquad -10 \le x \le 10$$

$$f(x_1,\ldots,x_n) = f(0,\ldots,0) = 0$$

Codificación binaria

```
m = 15
                # longitud del genotipo
              # tamaño de la población
pob_size = 50
a = -10
              # valor mínimo de x
b = 10
              # valor máximo de x
decimales=3
               # número de decimales
n = 2
              # variables a considerar
              # total de bits
t = m * n
epsilon = 1e-6 # cota de selección
proba_cruza = 0.8  # probabilidad de cruza
proba_muta = 1/t
               # probabilidad de mutación
generaciones = 100 # número de generaciones
               # número de etapas
etapas = 5
umbral = 1e-8 # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
  n=2
Promedio de convergencia: 33.7 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 20 generaciones.
Iteracion 1:
  Total de generaciones: 20
  Mejor fenotipo(x1,...,xn): [-0. -0.]
  Mejor evaluacion (x1,...,xn): 0.0
n=5
Promedio de convergencia: 115.6 generaciones
La iteracion que tiene la minima evaluacion es: 5 con 102 generaciones.
Iteracion 5:
  Total de generaciones: 102
  Mejor fenotipo(x1,...,xn): [ 0. 0. -0. 0. 0.]
  Mejor evaluacion (x1,...,xn): 0.0
```


Figura 1: Codificación binaria Esfera n=2

Figura 2: Codificación binaria Esfera $n=5\,$

Figura 3: Promedio codificación binaria Esfera n=2

Figura 4: Promedio codificación binaria Esfera $n=5\,$

Código: O Nombre de archivo: Cod binaria.ipynb, con la función Esfera activada. Además de respetar los valores de n=2 o n=5 dependiendo del caso.

Codificación real

```
pob_size = 50
              # tamaño de la población
a = -10
                  # valor mínimo de x
b = 10
                  # valor máximo de x
                # número de decimales
decimales = 3
n = 2
                  # variables a considerar
epsilon = 1e-6 # cota de selección
proba_cruza = 0.8  # probabilidad de cruza
                   # probabilidad de mutación
proba_muta = 0.2
generaciones = 100 # número de generaciones
etapas = 5
                   # número de etapas
umbral = 1e-8
                   # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
  n=2
Promedio de convergencia: 67.2 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 92 generaciones.
Iteracion 1:
  Total de generaciones: 92
  Mejor fenotipo (x1,...,xn): [ 0.001 -0.002]
  Mejor evaluacion f(x1,...,xn): 0.0
n = 5
Promedio de convergencia: 114.1 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 98 generaciones.
Iteracion 1:
  Total de generaciones: 98
  Mejor fenotipo (x1,...,xn): [ 0.018  0.003 -0.026  0.034 -0.002]
  Mejor evaluacion f(x1,...,xn): 0.002
```


Figura 5: Codificación real Esfera n=2

Figura 6: Codificación real Esfera $n=5\,$

Figura 7: Promedio codificación real Esfera $n=2\,$

Figura 8: Promedio codificación real Esfera n=5

Código: \bigcirc Nombre de archivo: Cod real.ipynb, con la función Esfera activada. Además de respetar los valores de n=2 o n=5 dependiendo del caso.

Rosenbrok

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (1 - x_i)^2 \right]$$
$$-10 \le x \le 10$$

Min =
$$\begin{cases} n = 2 & \to & f(1,1) = 0, \\ n = 3 & \to & f(1,1,1) = 0, \\ n > 3 & \to & f(\underbrace{1, \dots, 1}_{n \text{ times}}) = 0 \end{cases}$$

Codificación binaria

```
m = 15
                  # longitud del genotipo
pob_size = 50  # tamaño de la población
a = -10
                # valor mínimo de x
b = 10 # valor minimo de x
decimales = 3 # número de decimales
n = 2
                # variables a considerar
             # total de bits
t = m * n
epsilon = 1e-6
                # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 1/t # probabilidad de mutación
generaciones = 100 # número de generaciones
                 # número de etapas
etapas = 5
umbral = 1e-8
                    # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
  n = 2
Promedio de convergencia: 132.5 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 77 generaciones.
Iteracion 1:
   Total de generaciones: 77
  Mejor genotipo: [1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0]
  Mejor fenotipo(x1,...,xn): [1.005 1.01]
  Mejor evaluacion (x1,...,xn): 0.0
n=5
Promedio de convergencia: 165.3 generaciones
La iteracion que tiene la minima evaluacion es: 7 con 205 generaciones.
Iteracion 7:
  Total de generaciones: 205
  Mejor genotipo: [1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1
 Mejor fenotipo(x1,...,xn): [1.058 1.119 1.25 1.579 2.5 ]
  Mejor evaluacion (x1,...,xn): 0.448
```


Figura 9: Codificación binaria Rosenbrok $n=2\,$

Figura 10: Codificación binaria Rosenbrok $n=5\,$

Figura 11: Promedio codificación binaria Rosenbrok n=2

Figura 12: Promedio codificación binaria Rosenbrok $n=5\,$

Código: O Nombre de archivo: Cod binaria.ipynb, con la función Rosenbrok activada. Además de respetar los valores de n=2 o n=5 dependiendo del caso.

Codificación real

```
pob\_size = 50
                  # tamaño de la población
a = -10
                 # valor mínimo de x
b = 10
                 # valor máximo de x
decimales = 3 # número de decimales
n = 5
                 # variables a considerar
epsilon = 1e-6 # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
                 # probabilidad de mutación
proba_muta = 0.2
generaciones = 100 # número de generaciones
etapas = 5
                  # número de etapas
umbral = 1e-8
                   # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
  n=2
Promedio de convergencia: 73.8 generaciones
La iteracion que tiene la minima evaluacion es: 8 con 59 generaciones.
Iteracion 8:
  Total de generaciones: 59
  Mejor fenotipo (x1,...,xn): [0.984 0.97]
  Mejor evaluacion f(x1,...,xn): 0.001
n = 5
Promedio de convergencia: 105.2 generaciones
La iteracion que tiene la minima evaluacion es: 7 con 63 generaciones.
Iteracion 7:
  Total de generaciones: 63
  Mejor fenotipo (x1,...,xn): [ 0.644  0.404  0.165  0.027 -0.018]
  Mejor evaluacion f(x1,...,xn): 2.173
```


Figura 13: Codificación real Rosenbrok $n=2\,$

Figura 14: Codificación real Rosenbrok $n=5\,$

Figura 15: Promedio codificación real Rosenbrok n=2

Figura 16: Promedio codificación real Rosenbrok n=5

Código: \bigcirc *Nombre de archivo:* Cod real.ipynb, con la función *Rosenbrok* activada. Además de respetar los valores de n=2 o n=5 dependiendo del caso.

Himmelblau

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2.$$

-5 \le x, y \le 5

$$\operatorname{Min} = \begin{cases} f\left(3,0,2,0\right) &= 0,0 \\ f\left(-2,805118,3,131312\right) &= 0,0 \\ f\left(-3,779310,-3,283186\right) &= 0,0 \\ f\left(3,584428,-1,848126\right) &= 0,0 \end{cases}$$

Codificación binaria

```
m = 14
                # longitud del genotipo
pob_size = 50
                # tamaño de la población
             # valor mínimo de x
a = -5
              # valor máximo de x
b = 5
decimales = 3  # número de decimales
n = 2
               # variables a considerar
t = m * n # total de bits
epsilon = 1e-6 # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 1/t  # probabilidad de mutación
generaciones = 100 # número de generaciones
                 # número de etapas
etapas = 5
umbral = 1e-8
                  # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
Promedio de convergencia: 83.5 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 87 generaciones.
Iteracion 1:
  Total de generaciones: 87
  Mejor fenotipo(x1,...,xn): [-2.806 3.131]
  Mejor evaluacion (x1,...,xn): 0.0
```


Figura 17: Codificación binaria Himmelblau

Figura 18: Promedio codificación binaria Himmelblau

Código: O Nombre de archivo: Cod binaria.ipynb, con la función Himmelblau activada.

Codificación real

Parámetros

```
pob_size = 50
                   # tamaño de la población
a = -5
                  # valor mínimo de x
b = 5
                  # valor máximo de x
decimales = 3
                   # número de decimales
n = 2
                   # variables a considerar
epsilon = 1e-6
                   # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 0.2
                   # probabilidad de mutación
generaciones = 100 # número de generaciones
etapas = 5
                   # número de etapas
umbral = -100
                    # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
Promedio de convergencia: 134.3 generaciones
La iteracion que tiene la minima evaluacion es: 1 con 113 generaciones.
Iteracion 1:
   Total de generaciones: 113
   Mejor fenotipo (x1,...,xn): [-2.805 3.132]
   Mejor evaluacion f(x1,...,xn): 0.0
```

Mejor Iteración: 1 (Convergencia más rápida)

Figura 19: Codificación real Himmelblau

Figura 20: Promedio codificación real Himmelblau

Código: O Nombre de archivo: Cod real.ipynb, con la función Himmelblau activada.

Eggholder

$$f(x,y) = -(y+47)\sin\sqrt{\left|\frac{x}{2} + (y+47)\right|} - x\sin\sqrt{|x-(y+47)|}$$
$$-512 \le x, y \le 512$$

$$f(512, 404, 2319) = -959, 6407$$

Codificación binaria

```
m = 20
                # longitud del genotipo
pob_size = 50
                # tamaño de la población
a = -512
                # valor mínimo de x
                # valor máximo de x
b = 512
               # número de decimales
decimales=3
n = 2
                # variables a considerar
t = m * n
               # total de bits
epsilon = 1e-6  # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 1/t # probabilidad de mutación
generaciones = 100 # número de generaciones
etapas = 5
               # número de etapas
umbral = -1000
                  # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
Promedio de convergencia: 157.0 generaciones
La iteracion que tiene la minima evaluacion es: 5 con 89 generaciones.
Iteracion 5:
  Total de generaciones: 89
  Mejor fenotipo(x1,...,xn): [512. 404.]
  Mejor evaluacion (x1,...,xn): -959.58
```


Figura 21: Codificación binaria Eggholder

Figura 22: Promedio codificación binaria Eggholder

Código: O Nombre de archivo: Cod binaria.ipynb, con la función Eggholder activada.

Codificación real

Parámetros

```
pob\_size = 50
                   # tamaño de la población
a = -512
                    # valor mínimo de x
b = 512
                    # valor máximo de x
decimales=3
                   # número de decimales
n = 2
                   # variables a considerar
epsilon = 1e-6
                   # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
generaciones = 100 # número de generaciones
etapas = 5
                  # número de etapas
umbral = -1000
                    # umbral de paro
max_sin_mejora = 50 # max de generaciones sin mejora
Promedio de convergencia: 146.9 generaciones
La iteración que tiene la mínima evaluación es: 3 con 77 generaciones.
Iteracion 3:
   Total de generaciones: 77
   Mejor fenotipo (x1,...,xn): [512.
   Mejor evaluacion f(x1,...,xn): -959.641
```

Mejor Iteración: 3 (convergencia más rápida))

Figura 23: Codificación real Eggholder

Figura 24: Promedio codificación real Eggholder

Código: O Nombre de archivo: Cod real.ipynb, con la función Eggholder activada.

N-Reinas

Para N-Reinas, la mejor representación es un vector de tamaño n donde cada valor indica la fila de la reina en la columna correspondiente. La función de aptitud es el número de pares de reinas no atacándose.

Código: Nombre de archivo: Reina.py, especificando que codificación será usada, en el parámetro codificacion es necesario escoger entre {'real', 'binario' o 'entero'}.

Codificación Binaria

```
N = 14
                            # Número de reinas
pob_size = 100
                            # Tamaño de la población
proba_muta = 0.2
                            # Tasa de mutación
codificacion = 'binario'
                           # 'entero', 'real' o 'binario'
E = 10
                             # Número de experimentos
GEN_MAX = 5000
                            # Límite de generaciones por experimento
Experimento 1 finalizado: No se encontró solución en 5000 generaciones
Experimento 2 finalizado: No se encontró solución en 5000 generaciones
Experimento 3 finalizado: No se encontró solución en 5000 generaciones
Experimento 4 finalizado: No se encontró solución en 5000 generaciones
Experimento 5 finalizado: No se encontró solución en 5000 generaciones
Experimento 6 finalizado: No se encontró solución en 5000 generaciones
Experimento 7 finalizado: No se encontró solución en 5000 generaciones
Experimento 8 finalizado: No se encontró solución en 5000 generaciones
Experimento 9 finalizado: No se encontró solución en 5000 generaciones
Experimento 10 finalizado: No se encontró solución en 5000 generaciones
No converge dada la complejidad de 2^{56}
```

Codificación Real

Parámetros

N = 14# Número de reinas $pob_size = 100$ # Tamaño de la población proba_muta = 0.2 # Tasa de mutación # 'entero', 'real' o 'binario' codificacion = 'real' E = 10# Número de experimentos $GEN_MAX = 5000$ # Límite de generaciones por experimento Experimento 1 finalizado: No se encontró solución en 5000 generaciones Experimento 2 finalizado: No se encontró solución en 5000 generaciones Experimento 3 finalizado: Solución encontrada en generación 79 Cromosoma decodificado: [2 5 11 4 12 10 3 7 0 8 13 1 6 9] Experimento 4 finalizado: No se encontró solución en 5000 generaciones Experimento 5 finalizado: No se encontró solución en 5000 generaciones Experimento 6 finalizado: No se encontró solución en 5000 generaciones Experimento 7 finalizado: No se encontró solución en 5000 generaciones Experimento 8 finalizado: No se encontró solución en 5000 generaciones Experimento 9 finalizado: No se encontró solución en 5000 generaciones Experimento 10 finalizado: Solución encontrada en generación 287

Cromosoma decodificado: [3 7 13 1 9 6 10 2 4 11 0 8 12 5]

Representación del experimento 3 (codificación real): Cromosoma decodificado: [2 5 11 4 12 10 3 7 0 8 13 1 6 9]

Figura 25: Tablero 14-Reinas

Codificación Entera

Parámetros

N = 14 # Número de reinas
pob_size = 100 # Tamaño de la población
proba_muta = 0.2 # Tasa de mutación
codificacion = 'entero' # 'entero', 'real' o 'binario'
E = 10 # Número de experimentos
GEN_MAX = 5000 # Límite de generaciones por experimento

Experimento 1 finalizado: No se encontró solución en 5000 generaciones

Experimento 2 finalizado: No se encontró solución en 5000 generaciones

Experimento 3 finalizado: Solución encontrada en generación 133 Cromosoma decodificado: [8 6 4 9 5 0 13 10 12 7 1 3 11 2]

Experimento 4 finalizado: No se encontró solución en 5000 generaciones

Experimento 5 finalizado: Solución encontrada en generación 2831 Cromosoma decodificado: [9 1 8 2 11 3 7 10 13 5 12 0 4 6]

Experimento 6 finalizado: No se encontró solución en 5000 generaciones

Experimento 7 finalizado: Solución encontrada en generación 972 Cromosoma decodificado: [5 12 1 6 13 2 8 11 0 3 10 4 7 9]

Experimento 8 finalizado: No se encontró solución en 5000 generaciones

Experimento 9 finalizado: No se encontró solución en 5000 generaciones

Experimento 10 finalizado: No se encontró solución en 5000 generaciones

Representación del experimento 3 (codificación entera): Cromosoma decodificado: [8 6 4 9 5 0 13 10 12 7 1 3 11 2]

Figura 26: Tablero 14-Reinas

TSP

Dada una lista de ciudades y las distancias entre cada par de ciudades, ¿cuál es la ruta más corta posible que visita cada ciudad exactamente una vez y regresa a la ciudad de origen?

Código: Nombre de archivo: TSP.ipynb, especificando que codificación será usada, en el parámetro CODING es necesario escoger entre {'real', 'binario' o 'entero'}.

Codificación Binaria

```
POP_SIZE = 100
GENERATIONS = 500
TOURNAMENT_SIZE = 3
MUT RATE = 0.2
MAX_NO_IMPROVE = 50
CODING = 'binario' # 'entero', 'real', 'binario'
EXPERIMENTS = 10
Exp 1: Máximo de generaciones alcanzado | Mejor costo: 2293.0
Exp 2: Máximo de generaciones alcanzado | Mejor costo: 2171.0
Exp 3: Máximo de generaciones alcanzado | Mejor costo: 2173.0
Exp 4: Máximo de generaciones alcanzado | Mejor costo: 2516.0
Exp 5: Máximo de generaciones alcanzado | Mejor costo: 2195.0
Exp 6: Máximo de generaciones alcanzado | Mejor costo: 2098.0
Exp 7: Máximo de generaciones alcanzado | Mejor costo: 2231.0
Exp 8: Máximo de generaciones alcanzado | Mejor costo: 2155.0
Exp 9: Máximo de generaciones alcanzado | Mejor costo: 2158.0
Exp 10: Máximo de generaciones alcanzado | Mejor costo: 2226.0
```

Codificación Real

```
POP_SIZE = 100
GENERATIONS = 500
TOURNAMENT_SIZE = 3
MUT_RATE = 0.2
MAX_NO_IMPROVE = 50
CODING = 'real' # 'entero', 'real', 'binario'
EXPERIMENTS = 10
Exp 1: Máximo de generaciones alcanzado | Mejor costo: 2120.0
Exp 2: Máximo de generaciones alcanzado | Mejor costo: 2088.0
Exp 3: Máximo de generaciones alcanzado | Mejor costo: 2167.0
Exp 4: Máximo de generaciones alcanzado | Mejor costo: 2095.0
Exp 5: Máximo de generaciones alcanzado | Mejor costo: 2157.0
Exp 6: Máximo de generaciones alcanzado | Mejor costo: 2158.0
Exp 7: Máximo de generaciones alcanzado | Mejor costo: 2090.0
Exp 8: Máximo de generaciones alcanzado | Mejor costo: 2085.0
Exp 9: Máximo de generaciones alcanzado | Mejor costo: 2195.0
Exp 10: Máximo de generaciones alcanzado | Mejor costo: 2085.0
```

Codificación Entera

```
POP_SIZE = 100
GENERATIONS = 500
TOURNAMENT_SIZE = 3
MUT_RATE = 0.2
MAX_NO_IMPROVE = 50
CODING = 'entero' # 'entero', 'real', 'binario'
EXPERIMENTS = 10
Exp 1: Máximo de generaciones alcanzado | Mejor costo: 2085.0
Exp 2: Máximo de generaciones alcanzado | Mejor costo: 2090.0
Exp 3: Máximo de generaciones alcanzado | Mejor costo: 2158.0
Exp 4: Máximo de generaciones alcanzado | Mejor costo: 2103.0
Exp 5: Máximo de generaciones alcanzado | Mejor costo: 2210.0
Exp 6: Máximo de generaciones alcanzado | Mejor costo: 2095.0
Exp 7: Máximo de generaciones alcanzado | Mejor costo: 2155.0
Exp 8: Máximo de generaciones alcanzado | Mejor costo: 2103.0
Exp 9: Máximo de generaciones alcanzado | Mejor costo: 2090.0
Exp 10: Máximo de generaciones alcanzado | Mejor costo: 2167.0
```