MATH 131AH (Real Analysis): Homework 6

Lucas Jeong April 1, 2022

Problem 1.

An ultrametric on X is a metric ρ on X such that

$$\forall x, y, z \in X : \rho(x, y) \le \max \left\{ \rho(x, z), \rho(y, z) \right\}.$$

Prove that, in this metric, every open ball $B(x,r) := \{y \in X : \rho(x,y) < r\}$ is closed and every closed ball $B'(x,r) := \{y \in X : \rho(x,y) \le r\}$ is open. Determine the topological boundary $\partial B(x,r)$ of B(x,r).

To give an example of such a setting, let $X := \{0,1\}^{\mathbb{N}}$. Prove that then $\rho : X \times X \to \mathbb{R}$ defined for $\sigma, \sigma' \in X$ with $\sigma \neq \sigma'$ by

$$\rho(\sigma,\sigma') := 2^{-\inf\{k \in \mathbb{N} : \sigma(k) \neq \sigma'(k)\}}$$

(and by $\rho(\sigma, \sigma) := 0$) is an ultrametric.

Solution.

Note that for all $y \in X \setminus B(x,r)$ there is $\rho(x,y) \ge r$. Then for all $z \in B(y,r)$ there is $\rho(x,y) \le \max \{\rho(x,z), \rho(z,y)\}$. Since $\rho(z,y) < r \le \rho(x,y)$, there must be $\rho(x,z) \ge \rho(x,y) \ge r$. Then $z \in X \setminus B(x,r)$. Then $X \setminus B(x,r)$ is open and B(x,r) is closed.

Note that $\partial B(x,r) = \{b \in X : \forall r > 0 : B(x,r) \cap B(b,r) \neq \emptyset \land B(b,r) \setminus B(x,r) \neq \emptyset\}.$

Suppose $b \in \partial B(x,r)$. Then there exists $y \in X$ such that $\rho(x,y) < r$ and $\rho(b,y) < r$. There also exists $z \in X$ such that $\rho(z,b) < r$ and $\rho(z,x) \le r$. However, there is $\rho(z,x) \le \max \left\{ \rho(z,b), \rho(b,x) \right\} = \max \left\{ \rho(z,b), \rho(b,y), \rho(y,x) \right\} < r$, resulting in a contradiction. Then $\partial B(x,r) = \emptyset$.

Note that exponential functions are positive over \mathbb{R} . Then $\rho(\sigma, \sigma') \geq 0$ and equality holds only when $\sigma = \sigma'$. Since inequality is symmetric $(\sigma(k) \neq \sigma'(k) \Leftrightarrow \sigma'(k) \neq \sigma(k))$, ρ is symmetric.

Suppose for the sake of contradiction that for some $\sigma, \sigma', \sigma'' \in X$, $\rho(\sigma, \sigma'') > \max \left\{ \rho(\sigma, \sigma'), \rho(\sigma', \sigma'') \right\}$. Let $i = \inf \{ k \in \mathbb{N} : \sigma(k) \neq \sigma''(k) \}$, $j = \inf \{ k \in \mathbb{N} : \sigma(k) \neq \sigma'(k) \}$, and $l = \inf \{ k \in \mathbb{N} : \sigma'(k) \neq \sigma''(k) \}$. Then i < j and i < k. Then $\sigma(k) = \sigma'(k) = \sigma''(k)$ for all $k = 1, \ldots, \min \{ j, l \}$ and i is not the greatest lower bound of $\{ k \in \mathbb{N} : \sigma(k) \neq \sigma''(k) \}$, resulting in a contradiction. Then $\rho(\sigma, \sigma'') \leq \max \left\{ \rho(\sigma, \sigma'), \rho(\sigma', \sigma'') \right\} \leq \rho(\sigma, \sigma') + \rho(\sigma', \sigma'')$.

Then ρ is an ultrametric on X.

Problem 2 (Baby Rudin p.43 exercise 9).

Let E° denote the set of all interior points of a set E.

2.1 Prove that E° is always open.

Solution.

 E° is open by definition: for all $x \in E^{\circ}$ there exists r > 0 such that $B(x, r) \subseteq A$.

2.2 Prove that *E* is open if and only if $E^{\circ} = E$.

Solution.

If $E = E^{\circ}$ then E is clearly open.

If *E* is open then for all $x \in E$ there exists r > 0 such that $B(x, r) \subseteq E$. Then $x \in E^{\circ}$. Then $E \subseteq E^{\circ}$. For all $x \in E^{\circ}$, there exists r > 0 such that $B(x, r) \subseteq E$. Then $x \in E$. Then $E \subseteq E^{\circ}$.

Homework 6

2.3 If $G \subseteq E$ and G is open, prove that $G \subseteq E^{\circ}$.

Solution.

Suppose *G* is open and $G \subseteq E$. Then for all $x \in G$ there exists r > 0 such that $B(x, r) \subseteq G \subseteq E$. Then $x \in E^{\circ}$.

2.4 Prove that the complement of E° is the closure of the complement of E.

Solution.

Note that since for all open subsets $G \subseteq E$ there is $G \subseteq E^{\circ}$, $E^{\circ} = \bigcup \{G \subseteq E : G \text{ is open}\}$. Then, by De Morgan's law, there is $X \setminus E^{\circ} = \bigcap \{X \setminus G : G \subseteq E \land G \text{ is open}\} = \bigcap \{F \subseteq X : X \setminus E \subseteq F \land F \text{ is closed}\} = \overline{X \setminus E}$.

2.5 Do *E* and \overline{E} always have the same interiors?

Solution.

No. Let $X = \mathbb{R}$ and $E = \mathbb{Q}$. Note that $E^{\circ} = \emptyset$ while $\overline{E} = \mathbb{R}$ and $\overline{E}^{\circ} = \mathbb{R}$.

2.6 Do *E* and E° always have the same closures?

Solution.

No. Let $X = \mathbb{R}$ and $E = \mathbb{Q}$. Note that $\overline{E} = \mathbb{R}$ while $E^{\circ} = \emptyset$ and $\overline{E^{\circ}} = \emptyset$.