Automated Citrus Sorting System

Dr. Mohamed Azzam

Automated Citrus Sorting System

• Dr. Mohamed Azzam

Outline

Our Process

Industrial companies that work in this domain

GREEFA

iscansorter

Reemoon

Background Removal

Background Removal: Introduction

Background Removal: Lightness challenge

Background Removal: Defect Color

Background Removal: Approaches

GrabCut Algorithm

GrabCut: Interactive Foreground Extraction

Input image Result

• Gray-scale

Color-Based Segmentation

• RGB

• HSV

Color-based Segmentation: Gray-scale

Input image Result

Color-based Segmentation: RGB

Color-based Segmentation: HSV

Input image result

Color-based Segmentation: HSV

Input image result

Detection

Detection Ways

Hough Circle Transform

HSV Space Detection

Circularity and Ellipticity

Hough Circle Transform Main idea

 Converting the image from a Cartesian coordinate system to a polar coordinate system

• Then searches for circles by identifying patterns.

• Each edge pixel in the image accumulates votes for possible circle centers.

Output

HSV Space Detection

Take masked image from segmentation

Search for contours

Drow contours

Output

- Perfectly detect all contours
- There are no wanted and overlapped detected

Overlapping

• HSV Area constrain

• Euclidean distance

• Circularity & Ellipticity

HSV Area constrain

Take Contour in the range 5000 to 25000

 Solve small and big contours

HSV Area constrain Problems

OverlappedContour < 25000

Near contours

Euclidean distance

Clacultate the distance between the two centers

•
$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$
.

Ignor the nearest centers

Output

• Solve Near contours

Problems

OverlappedContour < 25000

Circularity & Ellipticity

• Circularity = $\frac{(4 * \pi * Area)}{(Perimeter^2)}$ Therthold 95

- Ellipticity = $\frac{\text{MajorAxisLength}}{\text{MinorAxisLength}}$
 - Therthold 95

Output

• Ignore anting not orange

Output

• Solva Overlapped Contour < 25000

Sorting

Citrus Color Index

•
$$\underline{CCI} = \frac{100 * a}{L * b}$$

• LAB Space

• L: Reference illuminant

• a : mean value of channel a

• b : mean value of channel b

Color index

• CCI Range: -22 -> 24

Most orange orange

Mapping to 0–>99

Mapped CCI

Size (Radius)

Radius =
$$\frac{\text{(major_axis + minor_axis)}}{4}$$

Radius

Depth per inch

Camera calibration

Real

Orange Real = $\frac{orange\ camera\ *real\ square}{camer\ square}$

Defect Detection

Semantic Segmentation

Thresholding

Thresholding

Removing the background from images.

Transforming images to Lab.

Using images in b channel.

Apply Threshold in images.

First Step:

- After removing the background from images.
- We transformed images to Lab.
- Then, we used images in b channel.

Second Step:

- After using images in b channel.
- Now, we can apply Threshold:

Threshold =
$$\frac{3}{4} \times median(b-channelpixels)$$
.

The problems of Thresholding

The values are not Inclusive

Stem-end is considered a blemish area

Some defects have

Semantic Segmentation

CONVOLUTIONAL
NEURAL
NETWORKS (CNN)

VISION
TRANSFORMERS
(VITS)

The main difference between CNNs & ViTs

Convolutional neural networks CNNs use convolution, a "local" operation bounded to a small neighborhood of an image. Vision Transformers ViTs use self-attention, a "global" operation, since it draws information from the whole image.

 Citation: SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.

Vision Transformers

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Enze Xie¹⁺ Wenhai Wang² Zhiding Yu¹ Anima Anandkumar^{3,4} Jose M. Alvarez³ Ping Luo¹

³The University of Hong Kong. ²Nanjing University. ³NVIDIA. ⁴Caltech.

Abstract

We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perceptron (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding, thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from different layers, and thus combining both local attention and global attention to render powerful representations. We show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters, being 5× smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C. Code will be released at: github.com/NVlahn/SegForner.

1 Introduction

arXiv:2105.15203v2

Semantic segmentation is a fundamental task in computer vision and enables numy downstream applications. It is related to image classification since it produces per-pixel category prediction instead of image-level prediction. This relationship is pointed out and systematically studied in a seminal work [1], where the authors used fully convolutional networks (FCNs) for semantic segmentation tasks. Since then, FCN has inspired many follow-up works and has become a perdominant design choice for dense prediction.

Since there is a strong relation between classification and semantic segmentation, many state-of-the-art semantic segmentation frameworks are variants of popular architectures for image classification on ImageNet. Therefore, designing backbone architectures has remained an active area in semantic segmentation. Indeed, starting from

k. Figure 1 Performance on model efficiency on ADE206. All coults are reported with copin model and single water information. Supplement authorities a new source of the art 21 EVs could which being operationally made efficient than personal authorities.

Preprint, Under review.

[&]quot;Work done during an intereship at NVIDIA.

Let's train SegFormer on our Custom Dataset

STEP 1

Create A Dataset

This means we need image label pairs where the label assigns a class to every pixel in the image.

Citrus melanose

Citrus black spot

Citrus canker

Define the Model class

A LightningModule organizes your PyTorch code into 6 sections:

```
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from pytorch lightning.lite import LightningLite
class Lite(LightningLite)
    def run(self, num_epochs: int):
        model = Model(...)
        optimizer = torch.optim.SGD(model.parameters(), ...)
        model, optimizer = self.setup(model, optimizer)
        dataloader = DataLoader(MyDataset(...), ...)
        dataloader = self.setup_dataloaders(dataloader)
        for epoch in range(num_epochs):
            for batch_idx, batch in enumerate(dataloader):
              optimizer.zero_grad()
              loss = model(batch)
              self.backward(loss) # Instead of loss.backward()
              optimizer.step()
Lite(strategy="deepspeed", devices=8, accelerator="gpu").run(10)
```

STEP 2

Train the Model

We can create the Pytorch Lightning trainer and hit the launch button!

STEP 3

Evaluate the Model

In true Pytorch Lightning style, testing our model is a one line!

STEP 4

Visualize Results

Original image (left)

SegFormer (right)

Convolutional neural networks

Mask R-CNN

- We will use Mask R-CNN.
- It's a new convolutional network proposed based on the previous fast R-CNN architecture.

Visualize Results

Original image

Mask R-CNN

GU

Read image

62

Automatic

1- the color index and size of the oranges will be displayed in two tables.

The first table shows the results for the current image

The second table shows the results for all previous images

name	class	size	area	color index	blemish area
	class3	48.11519		64.55787658311	
	class3	53.79657		62.15259819592	
	class3	53.23221		63.57140530445	
	premium	65.91625		64.38872516732	
	class1	64.87527		63.10984521742	
	premium	75.98425		62.71051975600	

result for current image

result for all previous images

name	class	size	area	color index	blemish area
	class2	57.8673(63.68714297720	
	premium	75.1706		63.19395548066	
	premium	74.38986		61.80311638649	
	class3	51.72672		64.50141171710	
	premium	72.92792		64.02219549089	
	premium	74.02283		63.12157946831	

result for current image

result for all previous images

Automatic

2-writing in file

- 1- provide a daily reports of work
- 2- by the type of writingit provide a way of detect any fraud

```
C:/Users/N R/Desktop/pythonProject2/1.bmp
0 class3 48.11519813537598 0 64.55787658311374
0 class3 53.796573638916016 0 62.152598195929116
0 class3 53.23221206665039 0 63.57140530445746
0 premium 65.91625595092773 0 64.38872516732671
0 class1 64.87527465820312 0 63.10984521742118
0 premium 75.98425674438477 0 62.71051975600577
C:/Users/N R/Desktop/pythonProject2/2.bmp
0 class2 57.8673095703125 0 63.68714297720027
0 premium 75.17061996459961 0 63.19395548066267
0 premium 74.3898696899414 0 61.80311638649217
0 class3 51.726722717285156 0 64.5014117171002
0 premium 72.92792510986328 0 64.02219549089963
0 premium 74.0228385925293 0 63.12157946831567
```


History

• The data saved in a file can be accessed by clicking the 'History' button. The history button display all saved data in the file

Background removal

Detect oranges

Color index

Size of oranges

Thanks