

Identificación de Asteroides Potencialmente Peligrosos

Kevin Javier Lozano Galvis Brayan Rodolfo Barajas Ochoa

Asteroides Potencialmente Peligrosos (PHA)

Órbitas que se encuentran a menos de cinco millones de millas de la tierra

MOID <= 0.05 au H <= 22.0

Vista simulada de la población de asteroides cercanos a la tierra

Propósito

Identificación

Posibilidad de mitigar el impacto mediante una misión espacial.

Investigación

Una misión de esta magnitud requeriría muchos años de preparación

Computación

Enfoque de inteligencia artificial para acelerar el procesos de identificación

02 PROCESAMIENTO

Datos Utilizados

No PHA

No identificados

NASA JPL Asteroid
Dataset

Dataset dado por Jet Propulsion Laboratory (JPL) del instituto de tecnología de California, una organización dependiente de la NASA.

> En la base interna se tienen 958524 asteroides

Preprocesamiento

Codificación label 0-No PHA, 1-PHA

03

FUNCIONAMIENTO

Método Propuesto

Al tratarse de un problema de clasificación, se utilizarán diferentes algoritmos para evaluar su precisión y tiempo de entrenamiento.

Con los asteroides no identificados se experimentan algoritmos no supervisados.

Resultados

Con el algoritmo no supervisado Kmeans se obtuvo 98% de precisión, entrenado con datos de asteroides no identificados.

Clasificador	Accuracy	Tiempo (s)
Linear SVM	98,61%	48,056
Decision Tree	98,11%	0,0919
AdaBoost	98,47%	1,3360

Matriz de Confusión

Conclusiones

Conclusiones

- Fue posible determinar técnicas de machine learning para lograr una precisión mayor al 98% en la identificación de asteroides potencialmente peligrosos de impacto en la tierra.
- Se demuestra que la inteligencia artificial tiene un gran impacto en sus aplicaciones, siendo una alternativa para respaldar procesos, decisiones y estudios detallados sobre estos cuerpos en el espacio.
- La inteligencia artifical puede facilitar el trabajo de identificación de asteroides potencialmente peligrosos, permitiendo su clasificación temprana de forma automatizada, lo que permite anticiparse a casos que sean peligrosos.
- Tanto los algoritmos supervisados como no supervisados se pueden aplicar a esta situación en particular, obteniendo resultados satisfactorios y similares entre sí.

¡Gracias!

¿Preguntas? kevin2172016@correo.uis.edu.co brayan2170688@correo.uis.edu.co Universidad Industrial de Santander