[BAT512] Advanced Data Mining with Al

11강

Techniques for performance improvement

UNIST 융합경영대학원 2023학년도 2학기

UNIST 융합경영대학원 이규민(Gyumin Lee) glee.optimizt@gmail.com

목차

- 1. 하이퍼파라미터 튜닝
- 2. K-fold Cross validation
- 3. Early stopping
- 4. Dropout
- 6. (실습) PyTorch

개요

❖ 정의

- 머신러닝 모델에 대한 최적의 하이퍼파라미터 조합을 탐색하고 선정하는 과정
- 하이퍼파라미터 최적화(optimization) 라고도 함

❖ 하이퍼파라미터 vs. 파라미터

	하이퍼파라미터 (Hyperparameter)	파라미터 (Parameter)
설명	- 초매개변수 - 머신러닝 모델링을 위해 사용자가 직접 선택하는 값 - 머신러닝 모델 학습 전 선정	- 매개변수 - 머신러닝 모델 내부의 변수 데이터로부터 결정 - 머신러닝 모델 학습의 대상
예시	- 학습률 - 배치 크기 - 인공신경망 구조 등	- 정규분포의 평균, 표준편차 - 선형 회귀 계수 - 가중치, 편향
조정 가능 여부	0	X

개요

❖ 하이퍼파라미터의 종류

- 선형/로지스틱 회귀 모델
 - 정규화(Regularization) 여부 및 종류
 - → L1 norm, L2 norm
 - 학습 방식(로지스틱 회귀)
 - · 경사하강법 등
- 의사결정나무/랜덤 포레스트
 - 분할 기준
 - Gini 계수, Entropy 등
 - 최대 깊이
 - 분할 최소 샘플 수
 - 트리 수(랜덤 포레스트)
- 클러스터링
 - 클러스터 수(K-means clustering)
 - 군집의 반경(epsilon)
 - 반경 내 최소 샘플 수

개요

❖ 하이퍼파라미터의 종류

- 인공신경망(ANN, CNN, RNN, ...)
 - 배치 크기
 - 학습률(Learning rate)
 - 은닉층 수
 - 은닉 노드 수
 - (최대) 학습 횟수
 - 손실 함수
 - Mean squared error, Cross-entropy, Negative log loss 등
 - 학습 방식
 - Stochastic gradient descent, Momentum, Adagrad, Adam 등

필요성

❖ 모델 성능 개선

- 같은 머신러닝 모델이라도 어떤 하이퍼파라미터를 사용하는지에 따라 성능이 달라짐
 - 학습에 활용하는 데이터에 적합한 형태로 모델을 구축하고, 학습 방식을 정의해야함

방법론

Manual search (Rules of thumb)

- 경험에 따라 특정 형태의 데이터, 특정 머신러닝 모델에 적합한 하이퍼파라미터를 선정하는 방식
- 대부분의 경우 특정 머신러닝 모델이 좋은 성능을 내도록 하는 하이퍼파라미터 값들이 알려져 있음
 - scikit-learn과 같은 머신러닝 라이브러리에서는 이를 기본값으로 제공
- 간편하게 모델 학습 단계로 진입하고 실험 결과를 빠르게 알 수 있으나, 해당 결과가 최적의 결과임
 을 보장하지 않음
 - 파일럿 테스트 시 주로 활용

방법론

Grid search

- 머신러닝 모델 구축에 필요한 하이퍼파라미터의 종류와 값의 후보군을 지정하고, 가능한 모든 조합을 대상으로 학습 및 성능 평가를 실시하여, 가장 성능이 좋은 조합을 최종 하이퍼파라미터로 선정하는 방법
- 가능한 모든 조합을 탐색하므로 최적의 하이퍼파라미터 조합을 찾을 수 있으나, 하이퍼파라미터 값
 의 후보군을 적절히 설정하기 어려우며 탐색 시간이 매우 오래 걸림

```
# Tuning hyper-parameters for precision
Best parameters set found on development set:
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
Grid scores on development set:
0.986 (+/-0.016) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.959 (+/-0.028) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 10, 'qamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.974 (+/-0.012) for {'C': 1, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 10, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 100, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 1000, 'kernel': 'linear'}
```

방법론

Random search

- Grid search와 유사하지만, 하이퍼파라미터 값의 후보군을 직접 지정하지 않고 값의 범위만을 지정하여, 해당 범위 내에서 임의의 값을 선택하여 탐색하는 방식
- 탐색 횟수를 지정하여 탐색을 수행하므로, grid search에 비해 빠른 속도로 원하는 수준의 성능을 보이는 하이퍼파라미터 조합을 찾을 수 있음
- 반복 횟수 내 최적 조합이 나타나지 않을 가능성이 존재함

방법론

Grid search vs. Random search

- 모델 성능에 대한 각 하이퍼파라미터의 중요도가 다를 수 있음
- Grid search는 모든 하이퍼파라미터에 대해 동일한 횟수로 탐색
 → 중요하지 않은 하이퍼파라미터에 대해서도 많은 시간을 할애
- Grid search를 통해 대략적인 가이드라인을 정하고, 이후 random search를 사용하거나, 출력 변수와의 상관관계가 높은 하이퍼파라미터에 대해 우선적으로 튜닝을 실시하기도 함

방법론

Bayesian optimization

- Bayes rule을 바탕으로, 미지의 함수가 반환하는 값의 최대값을 탐색하기 위한 최적화 기법
 - 데이터 관측치를 하나씩 관찰하면서 사후 확률 (posterior probability) 분포를 업데이트하여 전역해(global optimum)의 근사값을 얻음
- Grid/random search에 비해 큰 규모의 데이 터셋에서 최적의 하이퍼파라미터 조합을 찾는 데 걸리는 시간을 대폭 줄일 수 있음
- 하지만 Bayesian optimization 을 수행하는 데에도 또 다른 하이퍼파라미터가 필요
 - Surrogate model
 - Acqusition function

2. K-fold Cross validation

개요

❖ 정의

데이터셋을 K개 부분 집합으로 나누어 머신러닝 모델의 학습 및 검증을 여러 번 수행하는 방법
 데이터셋의 모든 데이터 샘플을 최소 한 번 이상 검증에 활용할 수 있음

❖ 필요성

- 데이터가 많지 않은 경우, 학습/검증/테스트 데이터셋 분할이 어려울 수 있음
 → K-fold cross validation을 통해 최대한 많은 데이터를 모델 학습 및 검증에 사용할 수 있음
- 서로 다른 데이터에 대한 모델의 성능 평가 결과를 취합하여 평가하므로, 모델의 일반화 성능을 평가하는데 유용함

2. K-fold Cross validation

구현 방식

K-fold cross validation

- 전체 데이터셋을 학습용/테스트용 데이터셋으로 분할
- 학습용 데이터셋에 K-fold cross validation을 수행하여 하이퍼파라미터 튜닝
- 최적의 하이퍼파라미터 조합으로 모델을 구축하고, 학습용 데이터셋 전체에 대해 최종 학습
- 테스트용 데이터셋을 활용하여 학습이 완료된 모델의 성능을 평가

2. K-fold Cross validation

구현 방식

Stratified K-fold cross validation

• K-fold cross validation과 같은 방식이지만, 데이터셋을 여러 부분 집합으로 나눌 때 학습 데이터와 검증 데이터에 포함된 데이터 샘플의 레이블(범주) 분포가 같도록 무작위 샘플링(Stratified random sampling)을 수행하는 방식

3. Early stopping

개요

Training loss vs. Validation loss

 일반적으로 머신러닝 모델의 학습이 진행됨에 따라, 학습 데이터셋에 대한 성능은 계속해서 높아 지지만 검증 데이터셋에 대한 성능은 특정 시점 이후 더 이상 높아지지 않고 오히려 낮아짐
 → 학습 데이터셋에 과적합되기 시작

3. Early stopping

구현 방식

❖ 머신러닝 모델 학습 과정

- 모델 학습을 시작하기 전 조기 종료 조건(early stopping criterion)을 설정함
 - early stopping criterion: 특정 학습 횟수(epoch)를 지정하여, 해당 학습 횟수 동안 검증 데이터셋에 대한 성능이 개선되지 않으면 학습을 종료함
- 학습이 진행되는 동안 매 epoch마다 학습/검증 데이터셋에 대한 손실(loss)을 계산
- 검증 데이터셋에 대한 손실 값이 낮아지고 있는지 판단, early stopping patience를 업데이트
 - early stopping patience: 모델의 성능이 개선되지 않은 상태로 진행된 학습 횟수. 성능이 개선되었다고 판단되는 순간 초기화됨
 - min_delta: 모델의 성능이 개선되고 있다고 판단하기 위한 최소 변화량
- 이전 epoch에 비해 모델 성능이 개선되었다면, 현 시점의 모델(best model)을 따로 저장해둠
- early stopping patience가 early stopping criterion보다 커지는 순간 학습을 종료
- early stop이 발생하지 않았다면 최종 학습 시점의 모델을 사용하고, early stop이 발생하였다 면 학습 종료 시점 모델 대신 이전 학습 epoch 중 가장 성능이 좋았던 모델을 불러와서 사용함

개요

❖ 등장 배경

- 인공신경망의 은닉층/은닉노드의 수가 많아지면, 더욱 복잡한 문제를 해결할 수 있음
- 그러나 모델의 크기가 커질수록(깊고 복잡해질수록) 학습 데이터에 과적합될 가능성이 높고, 학습 시간도 길어지고, 필요한 데이터의 양도 많아짐 > 학습 효율 감소
- 모델의 성능은 최대한 유지하면서, 모델이 커지면서 생기는 단점을 보완하기 위한 방법으로 고안됨

❖ 정의

인공신경망에 대한 학습을 진행할 때, 모델에 존재하는 모든 뉴런(노드)에 대해 학습을 수행하지 않고, 일부를 생략(dropout)하여 보다 단순해진 모델에 대해 학습을 진행함
 → 의사결정나무/랜덤 포레스트 기법의 가지치기(pruning)과 유사

❖ 효과

- 앙상블(ensemble) 효과: 전체 데이터의 일부(mini-batch) 및 전체 특징의 일부에 대해 학습하고, 이를 무작위로 반복함으로써 앙상블 기법과 같이 모델을 일반화하는 효과를 가짐
- 동조화(co-adaptation) 방지: 학습이 진행되면서 모델에 속한 서로 다른 뉴런들이 강한 상관관계를 가지게 되어 불필요한 중복이 생기는 현상을 방지 → 강건(robust)한 모델을 구축할 수 있음

개요

❖ 일반 인공신경망과 dropout이 적용된 신경망의 비교

구현 방식

❖ 모델 학습 과정

- 특정한 비율(dropout rate)에 따라 모델 학습 과정에서 각 mini-batch별로 활성화되는 뉴런을 다르게 적용하여 학습을 진행함
 - Dropout rate: 각 뉴런의 dropout 여부를 결정하는 확률. dropout rate=0.5라면 각 뉴런은 50% 확률로 활성화/비활성화됨

구현 방식

❖ 모델 추론/검증 과정

- 모델 학습이 완료된 후, 추론(inference) 또는 검증 시에는 모든 뉴런을 복원하여 사용
 - 모든 뉴런을 사용하게 되면, 학습 시 사용되던 뉴런의 수와 차이가 발생
 - → 가중치의 크기를 조정(rescaling)하여 이를 보상
 - Dropout rate가 0.3인 경우, 매 학습 시 전체 가중치의 약 70%만 사용하여 값을 출력. 추론/검증 시전체 가중치를 다 사용하게 되면 학습 때의 출력값보다 큰 값이 나올 수 있음
 - ▶ 전체 가중치에 (1-Dropout rate)을 곱하여 출력값을 조정

5. (실습) PyTorch

PyTorch

❖ 성능 개선 기법 적용(PyTorch)

Thank you

UNIST 융합경영대학원 이규민(Gyumin Lee) glee.optimizt@gmail.com

