## Laboratory 1

- 0. Read carefully and try the Maple commands written in the first 3 pages of the tutorial.
- 1. Evaluate the number using floating point arithmetic:  $\frac{1}{2}$ ; e;  $\sqrt{3}$ ;  $\pi$ ;  $\sin(0.1)$
- 2. Assign the following expression to a variable and then expand it:
- a)  $(x^2 + 2 \cdot x 1)^3 \cdot (x^2 2)$  b)  $(x + n)^5$ . Unassign the used variables.
- 3. Factorize:  $x^8$ -1
- 4. Add the following rational expressions by applying the simplify command:  $\frac{2 \cdot x^2}{x^3 1} + \frac{3 \cdot x}{x^2 1}$
- 5. Simplify the expression:  $\sin(x)^2 + \cos(x)^2$
- 6. Evaluate using both subs and eval the expression  $e^x + \ln(x)$  in x=1. Use first ?subs and ?eval
- 7. Solve: a) the equation  $x^2 4 \cdot x + 3 = 0$  where x is the unknown;
- b) the equation  $x^2 \cdot y + 2 \cdot y x = 0$  where x is a parameter and y is the unknown;
- c) the equation  $x^2 \cdot y + 2 \cdot y x = 0$  where y is a parameter and x is the unknown;
- d) the equation  $x \cos(x) = 0$  where x is the unknown;
- e) the equation  $x^5 3 \cdot x^3 1 = 0$  where x is the unknown; f) the system of two equations 4x + 3y = 10, 3x y = 1 where x and y are the unknowns.
- 8. Assign to a variable f the function (not the expression)  $f: R \to R$ ,  $f(x) = e^x \sin(x)$ . Evaluate f(0), f'(-1), f'(0), f'(1). Calculate the first and second order derivatives of f (using both D and diff) and a primitive of f. Evaluate  $\int_{-\infty}^{1} f(x) dx$ . Unassign f. Write the commands together with your comments in your notebook.
- 9. Assign to a variable g the expression  $e^x \sin(x)$ . Evaluate this expression in x = 0. Compute its first order derivative and than evaluate it in x = 0. Find a primitive. Evaluate  $\int_{0}^{\infty} g \, dx$ . Using unapply assign to a variable f the second order derivative of g. Evaluate f(0). Write the commands together with your comments in your notebook.
- 10. Find  $\lim_{x \to 0} \frac{\sin(x)}{x}$  and  $\lim_{x \to \pi} \frac{\cos(x) + 1}{x \pi}$ .
- 11. Plot the graph of  $f(x) = \sin(x)$  in each of the intervals:  $[0, 2 \cdot \pi], [-4\pi, 4 \cdot \pi], [-100, 100], (-\infty, \infty).$
- 12. Plot the graph of  $f(x) = \frac{1}{x}$  in intervals at your choice.
- 13. Plot the planar curve of parametric equations  $x = 2 t^2$ ,  $y = t t^3$ ,  $t \in [-2, 2]$ .

14. Plot the planar curve of parametric equations  $x = \cos(t)$ ,  $y = \sin(t)$  in each of the intervals:

$$\left[0,\frac{\pi}{6}\right], \left[0,\frac{\pi}{3}\right], \left[0,\frac{\pi}{2}\right], \left[0,\pi\right], \left[0,\frac{3\cdot\pi}{2}\right], \left[0,2\cdot\pi\right], \left[-10,10\right].$$

Write the commands together with your comments in your notebook.

- 15. Plot the planar curves of parametric equations a)  $x = 2 \cdot \cos\left(\frac{t}{3}\right)$ ,  $y = 2 \cdot \sin\left(\frac{t}{3}\right)$
- b)  $x = \cos(4 \cdot t)$ ,  $y = \sin(4 \cdot t)$  in different intervals at your choice. Write your comments in your notebook.
- 16. Write in your notebook the implicit equations of a circle, an ellipse and a parabola. Then plot at leats a circle, an ellipse and a parabola.
- 17. Plot the planar curves of implicit equations a)  $x^2 2 \cdot x \cdot y y^2 = 1$  b)  $y^3 + y^2 5 \cdot y x^2 = -4$ . You have to choose properly a rectangle where to see the curve.
- 18. Plot in 3d the graph of the function  $H(x, y) = x^2 + y^2$ . For the variable (x,y) choose a rectangle centered at (0,0). What remarkable planar curves are the level curves of H? Write your comments in your notebook.
- 19. Plot in 3d the graph of the function  $H(x, y) = x^2 + 4y^2$ . For the variable (x,y) choose a rectangle centered at (0,0). What remarkable planar curves are the level curves of H? Write your comments in your notebook.
- 20. Plot in 3d the graph of the function  $H(x, y) = 4x^2 + y^2$ . For the variable (x,y) choose a rectangle centered at (0,0). What remarkable planar curves are the level curves of H? Write your comments in your notebook.