11/17/2018 multiwingspan

MultiWingSpan

Home Programming Web Design Computer Science Twisting Puzzles

BBC micro:bit LEDs With MicroPython

Introduction

You can use the external pins to connect more LEDs and have colours other than red. Using some LEDs gives us a chance to use the 3 main large pins as digital and analogue outputs.

This project uses 3 LEDs. Each LED will need a resistor. Here I've used 220 Ohm resistors, one for each of the LEDs used.

Making The Circuit

The longer legs of the LEDs are the anodes or positive legs. These are the ones we connect to the micro:bit pins. The shorter legs are the cathodes, negative. They get connected to GND through a resistor.

Programming - Digital

We can turn the LEDs off by using the $write_digital()$ method and supplying either a 1 (HIGH) or 0 (LOW) in the brackets to specify what we want to do.

This program blinks each of the LEDs in turn.

```
from microbit import *
pin0.write_digital(0)
pin1.write_digital(0)
pin2.write_digital(0)
sleep(1000)
while True:
    pin0.write_digital(1)
    sleep(500)
    pin0.write_digital(0)
    pin1.write_digital(1)
    sleep(500)
    pin1.write_digital(1)
    sleep(500)
    pin1.write_digital(0)
    pin2.write_digital(1)
    sleep(500)
    pin2.write_digital(1)
    sleep(500)
    pin2.write_digital(0)
```

Programming - Analog

We use the **write_analog()** with a value from 0 to 1023. This creates a PWM signal (pulse width modulation) on the pin that makes the LEDs fade in and out very slowly.

```
from microbit import
pin0.write digital(0)
pin1.write_digital(0)
pin2.write_digital(0)
sleep(1000)
while True:
    for i in range(0,1024):
        pin0.write_analog(i)
        pin1.write_analog(i)
        pin2.write_analog(i)
        sleep(10)
    for i in range(1023,-1,-1):
        pin0.write_analog(i)
        pin1.write_analog(i)
        pin2.write_analog(i)
        sleep(10)
```

BBC Microbit

BBC micro:bit

Arduino

Collapse All Expand All

- + Block Editor The Basics
- + Block Editor Components
- + Kodu micro:bit Worlds
- + JavaScript Blocks
- + JavaScript Blocks Exercises
- + Blocks Bit:Bot
- + Blocks Bit:Commander
- + MicroPython Starting Off
- + MicroPython Examples
- MicroPython Components
- * Introduction
- * Buzzer With MicroPython
- ★ LEDs With MicroPython
- * Connecting micro:bits Together
- 🛨 Extra Buttons
- X Knock Sensor
- * Rotary Encoder
- * Potentiometer
- * Soft Potentiometer
- * Flex Sensor
- * Tilt Sensor
- 大 Reed Switch 大 More Buttons
- * Temperature Sensor
- 大 7 Segment Display
- * Reflectance Sensor
- ★ Driving A Motor
- * Shift Register
- 大 Shifting In 大 Neopixels
- * IR Break Beam Sensor
- ★ DIY MIDI Out
- * PCF8574A Port Expander
- ★ 16x2 Character LCD Display
- * SNES Controller
- + MicroPython Breakout Boards
- + MicroPython Exercises
- + MicroPython Pi Accessories
- + MicroPython Bit:Bot
- + MicroPython Bit:Commander
- + MicroPython Projects
- + MicroPython Visual Basic
- + Other Odds & Ends

11/17/2018 multiwingspan

Challenge

Using 3 LEDs, you can count up to 7 in binary. The following table shows you how we can represent these using 3 bits (3 binary place values).

Denary	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

The following pseudocode will give you a one or zero in the variables fours, twos and units. Your leftmost LED is the fours LED, then twos, then units.

```
denary ← any integer from 0 to 7 included fours ← denary // 4 remainder ← denary % 4 twos ← remainder // 2 units ← remainder % 2
```

Pages designed and coded by MHA since 2003 | Valid HTML 4.01(Strict) | CSS