Задача 9. (Писмен изпит 2016-02-05)

- а) Докажете, че $(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$.
- b) Напишете всички подмножества на множеството $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$

Доказателство:

Задачата е подобна на задача 7., за това тук ще покажем едно малко по-неформално и различно решение.

a) (\Rightarrow) Hexa $(A \cap B) \cup C = A \cap (B \cup C)$.

$$(A \cap B) \cup C = \{a \mid (a \in A \land a \in B) \lor a \in C\}$$

$$A \cap (B \cup C) = \{a \mid a \in A \land (a \in B \lor a \in C)\} = \{a \mid (a \in A \land a \in B) \lor (a \in A \land a \in C)\}$$

Условието от лявата страна на логическото ИЛИ (\land) е еднавко и в двете множества, тоест равенството в този случай е ипълнено винаги. Остава да разгледаме случая за елементите от C. За да имаме равенство трябва тези елементи да се припокриват с елементите, които отговарят на условието ($a \in A$ и $a \in C$). Тоест от присъствието на елемента в C трябва да следва присъствието на елемента в A, което означава точно $C \subseteq A$.

 (\Leftarrow) Доказателството в обратната посока е аналогично. От това, че $C\subseteq A$ ще следва, че ако един елемент принадлежи на C, то той ще принадлежи и на A. Тоест имаме $a\in C\Rightarrow a\in A$ и $a\in C$ и като заместим в условията за $(A\cap B)\cup C$ и $A\cap (B\cup C)$ ще получим равенството.

- b) Да разделим подмножествата на база брой елементи:
 - нула елементи: Ø
 - един елемент: \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$
 - два елемента: $\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}$
 - три елемента: $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$