Raport - Zadanie numeryczne 3

Grzegorz Janysek

21 listopada 2021

1 Wstęp teoretyczny

1.1

W ogólnym przypadku złożoność numerycznego rozwiązywania układów równań z liniowych to $O(n^3)$. Daje się ją jednak znacząco zmniejszyć stosując algorytmy wykożystujące strukturę macierzy. Zadanie skupia się na metodzie dla szczególego rodzaju kwadratowej macjeży żadkiej: macieży wstęgowej (in. pasmowej). Charakteryzuje się ona tym że poza główną diagonalą i wstęgą wokół niej wszystkie elementy są zerowe.

1.2

Przechowywanie macieży w pamięci w ogólnym przypadku zajmuje $x * n^2$, gdzie x to rozmiar typu danych. Do zapisania macierzy z zadania dla typu danych float64 konieczne by było:

dla
$$N = 100$$
: $8B * 100^2 = 80kB$ (2)

dla
$$N = 1,000$$
: $8B * 1,000^2 = 8MB$ (3)

dla
$$N = 10,000$$
: $8B * 10,000^2 = 800MB$ (4)

Dla ogólnej macierzy wstęgowej większość elementów to zera na znanych pozycjach poza wstęgą. Pozwala to na optymalizację polegającą na przechowywaniu jedynie wstęgi, w postaci np. tablicy dwuwymiarowej $a \times n$ której rozmiar to x*a*n, gdzie a to szerokość wstęgi.

dla
$$N = 100$$
: $8B * 4 * 100 = 3.2kB$ (5)

dla
$$N = 1,000$$
: $8B * 4 * 1,000 = 32kB$ (6)

dla
$$N = 10,000$$
: $8B * 4 * 10,000 = 320kB$ (7)

1.3

Faktoryzacja LU zachowuje strukturę macieży pasmowej. Wiedząc to można pominąć obliczanie elementów macieży L oraz U poza wstęgą, ponieważ z powyższego wynika że będą one zerowe. Ogranicza to konieczność obliczeń tylko dla elemetów wstęgi, których ilosć jest rzędu n. Dodatkowo ilość elementów sumy koniecznych do obliczania wartości elementu w L lub w U pozostaje nie większa niż szerokość wstęgi. Wykożystując to można zmniejszyć złożoność rozkładu dla macieży wstęgowej do O(n). W połączeniu z back-substitution i forward-substitution których złożoność wynosi O(n), otrzymujemy całkowitą złożoność rozwiązywania układów równań liniowych z macieżą wstęgową wynoszącą O(n)

2 Wyniki

3 Podsumowanie

Podczas rozwiązywania układów równań liniowych kluczowa jest znajomość struktury macieży. Pozwala to na dobranie odpowiedniego sposobu przechowywania w pamięci, oraz algorytmu faktoryzacji, potencjalnie dramatycznie zmniejszając zużycie pamięci oraz czas procesora.