

Cotação

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e equivalências

ESG / 2014 Exame de Física 1ª Época 10ª Classe 90 Minutos

Este exame contém 7 perguntas. Leia-as com atenção e responda-as na sua folha de exame. Na margem direita está indicada, entre parênteses, a cotação de cada pergunta em valores.

1.	Qual é a alternativa que melhor preenche a lacuna na afirmação seguinte?								
	é uma propriedade geral que os corpos possuem de reduzir o seu volume,							(1,0)	
	quando submetidos a uma força (pressão).								
	A Compressibilidade								
	B Divisibilidade								
	C Inércia								
	D Impenetrabilidade								
2.		nto de (km) h)	um p	108 2	162 3	216 4	270 5	uma trajectória rectilínea.	
	a) Calcule a velocidade deste movimento em km/h e em m/s.							(2,0)	
	b) Enuncie a lei das velocidades para este movimento.							(0,5)	
	c) Construa o gráfico do espaço em função do tempo para este caso.							(1,0)	
3.	A densidade absoluta da gasol g de gasolina?	ina é d	de 0,7	g/cm ³	. Qual	é, em	cm ³ , o	volume ocupado por 420	(2,0)

Vire a folha

2014/10^a Classe/ Exame de Física/ 1^aÉpoca

- 4. Observe o circuito eléctrico representado na figura 1. Determine a :
 - a) resistência total.
 - b) intensidade total.
 - c) intensidade da corrente que flui através do resistor R₃.

5. Uma lâmpada de incandescência dissipa 60W de potência quando ligada à rede de 120V.

Determine a:

- a) corrente que atravessa o filamento. (1,5)
- b) resistência do respectivo filamento. (1,5)
- c) energia, em Joules, consumida pela lâmpada durante 20 minutos de funcionamento. (1,5)
- 6. Quais são as palavras que preenchem correctamente as lacunas, na frase seguinte?

Polos do mesmo nome se______e polos de nomes contrários se_____. (1,0)

7. Um pêndulo simples, de comprimento L = 1.6 m, é posto a oscilar num lugar onde

g = 10 m/s². Considere π = 3 e determine:

- a) o período das oscilações. (2,5)
- b) a frequência das oscilações. (1,5)

FIM

2014/10ª Classe / Guia de Correcção / Exame de Física/1ªÉpoca

Perg.	Resolução	Cotação	
		Parc.	Tot.
1.	A Compressibilidade	1,0	<u>1,0</u>
2.	a) $\frac{\text{Dados}}{\text{s}_0 = 54 \text{km}}$ s = 370 km $\text{t}_0 = 1 \text{h}$ t = 5 h v ? $v = \frac{\Delta s}{\Delta t} = \frac{270 - 54}{5 - 1} = 54 \text{km} = \frac{54000 \text{ m}}{3600 \text{ s}} = 15 \text{m/s}$ (0,5) (0,5) (0,5)	2,0	
	b) No MRU, a velocidade é constante.	0,5	
	c) s(km) (1,0)	1,0	
3.	$ \frac{\frac{\text{Dados}}{\rho = 0.7 \text{ g/cm}^3}}{\text{m} = 420 \text{ g}} $ v? $ \rho = \frac{m}{V} \Rightarrow m = \rho.V \Rightarrow V = \frac{m}{\rho} = \frac{420}{0.7} = 600 cm^3 $ (1,0) (0,5) (0,5)	2,0	<u>3,5</u> <u>2,0</u>
4.	a) $\frac{\text{Dados}}{\text{R}_1 = 12\Omega}$ $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{12} + \frac{1}{6} + \frac{1}{4} = \frac{1+2+3}{12} \Rightarrow R_T = \frac{12}{6} = 2\Omega$ $R_2 = 6\Omega$ (1,0) (0,5) (0,5) $R_3 = 4\Omega$ R_T ?	2,0	
	b) $\frac{\text{Dados}}{\text{U}_{\text{T}}=30\text{V}}$ $I_{T}=\frac{V_{T}}{R_{T}}=\frac{30}{2}=15A$ $R_{T}=2\Omega$ (0,5) I_{T} ?	1,0	
	c) $\frac{\text{Dados}}{\text{V}_{\text{T}} = 30\text{V}}$ $R_3 = 4\Omega$ I_{R_3} ? $I_{R_3} = \frac{V_T}{R_3} = \frac{30}{4} = 7,5A$ (0,5) (0,5)	1,0	4,0

2014/10ª Classe / Guia de Correcção / Exame de Física/1ªÉpoca

Perg.	Resolução	Cotação	
		Parc.	Tot.
5.	a) $\frac{\text{Dados}}{\text{P=60W}}$ U=120V I ? $P = V.I \Rightarrow I = \frac{P}{V} = \frac{60}{120} = 0.5 \text{ A}$ (0,5) (0,5)	1,5	
	b) $\frac{\text{Dados}}{\text{I= 0,5A}}$ $R = \frac{U}{I} = \frac{120}{0,5} = 240 \ \Omega$ $U=120V$ $(0,5)$ $(0,5)$ $(0,5)$ $(0,5)$	1,5	
	c) <u>Dados</u> P = 60W $\Delta t = 20mn = 1200s$ $W = P.t = 60x1200 = 72000J$ (0,5) (0,5) (0,5)	1,5	<u>4,5</u>
6.	B repelem; atraem.	2x0,5	<u>1,0</u>
7.	a) $\frac{\text{Dados}}{\text{L}=1,6\text{m}}$ $\pi=3$ $g=10\text{m/s}^2$ $T=2\pi\sqrt{\frac{L}{g}}=2x3\sqrt{\frac{1,6}{10}}=2x3.0,4=2,4s$ $T=2\pi\sqrt{\frac{L}{g}}=2x3\sqrt{\frac{1,6}{10}}=2x3.0,4=2,4s$ $T=2\pi\sqrt{\frac{L}{g}}=2x3\sqrt{\frac{1,6}{10}}=2x3.0,4=2,4s$	2,5	
	b) $\frac{\text{Dados}}{\text{T=2,4s}}$ $f = \frac{1}{T} = \frac{1}{2,4} = 0,4Hz$ $(0,5)$ $(0,5)$ $(0,5)$	1,5	4,0