межгосударственный стандарт

ОТЛИВКИ СТАЛЬНЫЕ

Общие технические условия

ГОСТ 977—88

Steel castings.
General specifications

MKC 77.140.80 ΟΚΠ 41 1200

Дата введения 01.01.90

Настоящий стандарт распространяется на стальные отливки, изготавливаемые всеми способами литья из нелегированных и легированных конструкционных, легированных со специальными свойствами литейных сталей.

1. МАРКИ

1.1. Для изготовления отливок предусмотрены следующие марки стали:

конструкционные нелегированные:

15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л;

конструкционные легированные:

20ГЛ, 35ГЛ, 20ГСЛ, 30ГСЛ, 20Г1ФЛ, 20ФЛ, 30ХГСФЛ, 45ФЛ, 32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ, 20ГНМФЛ, 35ХМЛ, 30ХНМЛ, 35ХГСЛ, 35НГМЛ, 20ДХЛ, 08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ, 12ДХН1МФЛ, 23ХГС2МФЛ, 12Х7Г3СЛ, 25Х2ГНМФЛ, 27Х5ГСМЛ, 30Х3С3ГМЛ, 03Н12Х5М3ТЛ, 03Н12Х5М3ТЮЛ;

конструкционные легированные, применяемые в договорно-правовых отношениях между странами — членами СЭВ:

15ГЛ, 30ГЛ, 45ГЛ, 70ГЛ, 55СЛ, 40Г1, 5ФЛ, 15ФЛ, 30ХЛ, 25ХГЛ, 35ХГЛ, 50ХГЛ, 60ХГЛ, 70Х2ГЛ, 35ХГФЛ, 40ХФЛ, 30ХМЛ, 40ХМЛ, 40ХНЛ, 40ХНД, 30ХГ1, 5МФРЛ, 75ХНМФЛ, 40ГТЛ, 20ГНМЮЛ;

легированные со специальными свойствами:

- а) мартенситного класса
- 20X13Л, 08X14НДЛ, 09X16Н4БЛ, 09X17Н3СЛ, 10X12НДЛ коррозионностойкие; 20X5МЛ, 20X8ВЛ, 40X9С2Л жаростойкие; 20X12ВНМФЛ жаропрочная; 85X4М5Ф2В6Л (Р6М5Л), 90X4М4Ф2В6Л (Р6М4Ф2Л) быстрорежущие;
 - б) мартенситно-ферритного класса
 - 15X13Л коррозионностойкая;
 - в) ферритного класса
 - 15Х25ТЛ коррозионностойкая;
 - г) аустенитно-мартенситного класса
 - 08X15H4ДМЛ, 08X14H7МЛ, $14X18H4\Gamma4Л$ коррозионностойкие;
 - д) аустенитно-ферритного класса
- $12X25H5TM\Phi$ Л, 16X18H12C4TЮЛ, $10X18H3\Gamma3Д2Л$ коррозионностойкие; 35X23H7CЛ, 40X24H12CЛ, 20X20H14C2Л жаростойкие;
 - е) аустенитного класса
- 10X18Н9Л, 12X18Н9ТЛ, 10X18Н11БЛ, 07X17Н16ТЛ, 12X18Н12М3ТЛ коррозионностойкие; 55X18Г14С2ТЛ, 15X23Н18Л, 20X25Н19С2Л, 18X25Н19СЛ, 45X17Г13Н3ЮЛ — жаростойкие;

Издание официальное

Перепечатка воспрещена

* 0

35X18H24C2Л, 31X19H9MBБТЛ, 12X18H12БЛ, 08X17H34B5T3Ю2PЛ, 15X18H22B6M2PЛ, 20X21H46B8PЛ — жаропрочные; 110Г13Л, 110Г13X2БРЛ, 110Г13ФТЛ, 130Г14XМФАЛ, 120Г10ФЛ — износостойкие:

легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами — членами СЭВ:

- а) мартенситно-ферритного класса
- 15Х14НЛ, 08Х12Н4ГСМЛ коррозионностойкие;
- б) аустенитно-ферритного класса
- 12X21H5Г2СЛ, 12X21H5Г2СТЛ, 12X21H5Г2СМ2Л, 12X19H7Г2САЛ, 12X21H5Г2САЛ, 07X18H10Г2С2M2Л, 15X18H10Г2С2M2Л, 15X18H10Г2С2M2Л коррозионностойкие.

Область применения конструкционных легированных сталей приведена в приложении 1, легированных со специальными свойствами — в приложении 2.

1.2. Сталь должна выплавляться в печах с основной футеровкой. Допускается выплавка стали в печах с кислой футеровкой при условии выполнения требований настоящего стандарта.

П р и м е ч а н и е. Возможность применения конверторной стали должна быть указана в конструкторской документации (КД) и (или) нормативно-технической документации (НТД).

1.3. Химический состав конструкционной нелегированной и легированной стали должен соответствовать указанному в табл. 1, легированной со специальными свойствами — в табл. 2.

Таблица 1

	Марка стали			Массовая д	оля элемента,	%		
———— Код ОКП	Обозначение по	Обозначе- ние по СТ	Углерод	Марганец	Кремний	Фосфор	Cepa	Хром
OKII	ГОСТ 977	СЭВ	-	-	-	не б	олее	•
		Стали	конструкцио	нные нелегир	ованные			
	15Л	<u>52731</u> 51731	0,12-0,20	0,45-0,90	0,20-0,52	По табл. 4	По табл. 4	_
	20Л	_	0,17-0,25	0,45-0,90	0,20-0,52	То же	То же	_
	25Л	<u>52821</u> 51821	0,22-0,30	0,45-0,90	0,20-0,52	*	*	_
41 1200	30Л	_	0,27-0,35	0,45-0,90	0,20-0,52	*	*	_
41 1200	35Л	<u>52831</u> 51831	0,32-0,40	0,45-0,90	0,20-0,52	*	*	_
	40Л	<u>52861</u> 51861	0,37—0,45	0,45-0,90	0,20-0,52	»	»	_
	45Л	<u>52862</u> 51862	0,42-0,50	0,45-0,90	0,20—0,52	»	*	_
	50Л	_	0,47-0,55	0,45-0,90	0,20-0,52	»	*	_
		Стали	конструкцие	онные легиро	ванные			
	20ГЛ 35ГЛ	52763 52833	0,15-0,25 $0,30-0,40$	1,20—1,60 1,20—1,60	0,20-0,40 $0,20-0,40$	0,040	0,040 0,040	_
	20ГСЛ	_	0,30-0,40 $0,16-0,22$	1,20-1,00 $1,00-1,30$	0,20-0,40 0,60-0,80	0,030	0,030	
	30ГСЛ	52834	0,25-0,35	1,10—1,40	0,60-0,80	0,040	0,040	_
	20Г1ФЛ	55244	0,16-0,25	0,90-1,40	0,20-0,50	0,050	0,050	_
41 1220	20ФЛ	55242	0,14-0,25	0,70-1,20	0,20-0,52	0,050	0,050	_
	30ХГСФЛ	55142	0,25-0,35	1,00-1,50	0,40-0,60	0,050	0,050	0,30-0,50
	45ФЛ	55243	0,42 - 0,50	0,40-0,90	0,20-0,52	По	По	_
	223/07/11		0.25 0.25	0.40 0.00	0.20 0.40	табл. 4	табл. 4	0.50 0.00
	32X06Л 40XЛ	55111	0,25-0,35	$0,40-0,90 \ 0,40-0,90$	0,20-0,40	0,050	0,050	0,50-0,80
	20XMЛ		0,35-0,45 0,15-0,25	0,40-0,90 0,40-0,90	0,20-0,40 0,20-0,42	0,040	$0,040 \\ 0,040$	$\begin{bmatrix} 0,80-1,10 \\ 0,40-0,70 \end{bmatrix}$
	ZUZIVIJI		0,15-0,25	0,40-0,50	0,20-0,42	0,040	0,040	0,40-0,70

Продолжение таблицы 1

	Марка стали			Массовая т	цоля элемента,	-	ооолжен	ие таолицы 1
———— Код	Обозначение по	Обозначе-		TVIACCOBAST J.	, com onemerra,	Фосфор	Cepa	
окп	ГОСТ 977	ние по СТ СЭВ	Углерод	Марганец	Кремний	не б	-	Хром
	20ХМФЛ	_	0,18-0,25	0,60-0,90	0,20-0,40	0,025	0,025	0,90-1,20
	20ГНМФЛ	_	0,14-0,22	0,70—1,20	0,20-0,40	0,030	0,030	Не более 0,30
	35ХМЛ	55432	0,30-0,40	0,40-0,90	0,20-0,40	0,040	0,040	0,80-1,10
	30ХНМЛ	55711	0,25-0,35	0,40-0,90	0,20-0,40	0,040	0,040	1,30—1,60
	35ХГСЛ	55812	0,30-0,40	1,00—1,30	0,60-0,80	0,040	0,040	0,60-0,90
	35НГМЛ	_	0,32-0,42	0,80—1,20	0,20-0,40	0,040	0,040	_
	20ДХЛ	_	0,15-0,25	0,50-0,80	0,20-0,40	0,040	0,040	0,80-1,10
	08ГДНФЛ	55781	Не более 0,10	0,60—1,00	0,15-0,40	0,035	0,035	_
41 1220	13ХНДФТЛ	55782	Не более 0,16	0,40-0,90	0,20-0,40	0,030	0,030	0,15-0,40
	12ДН2ФЛ	55783	0,08-0,16	0,40-0,90	0,20-0,40	0,035	0,035	_
	12ДХН1МФЛ	55761	0,10-0,18	0,30-0,55	0,20-0,40	0,030	0,030	1,20-1,70
	23ХГС2МФЛ	55451	0,18-0,24	0,50-0,80	1,80—2,00	0,025	0,025	0,60-0,90
	12Х7Г3СЛ	_	0,10-0,15	3,00—3,50	0,80-1,20	0,020	0,020	7,00—7,50
	25Х2ГНМФЛ	_	0,22-0,30	0,70-1,10	0,30-0,70	0,025	0,025	1,40-2,00
	27Х5ГСМЛ	_	0,24-0,28	0,90—1,20	0,90-1,20	0,020	0,020	5,00-5,50
	30Х3С3ГМЛ	_	0,29-0,33	0,70—1,20	2,80—3,20	0,020	0,020	2,80-3,20
	03Н12Х5М3ТЛ	_	0,01-0,04	Не более 0,20	Не более 0,20	0,015	0,015	4,50—5,00
	03Н12Х5М3ТЮЛ	_	0,01-0,04	He более 0,20	Не более 0,20	0,015	0,015	4,50—5,00
	Стали конструкцио		' ованные, при жду странами	' іменяемые в	' договорно-пј	равовых о	тношени	ХR
		Ī		ı				1
	15ГЛ	52711	0,12-0,18	0,70-1,00	0,30-0,60	0,040	0,040	_
	30ГЛ	52832	0,25-0,32	1,40—1,70	0,20-0,50	0,040	0,040	_
	45ГЛ	52864	0,40-0,50	0,80—1,20	0,20-0,50	0,040	0,040	_
	70ГЛ	51931	0,65-0,80	1,10—1,60	0,20-0,50	0,045	0,045	_
	55СЛ	51891	0,52-0,60		0,50-0,70	0,045	0,045	_
	40Г1, 5ФЛ	55241	0,35—0,45	1,60-1,90	0,20-0,50	0,040	0,040	_
	15ХЛ	55115	0,12-0,18	0,40-0,60	0,20-0,50	0,040	0,040	0,50-0,80
	30XЛ 25XГЛ	55116 55117	0,25-0,35	0,50-0,90 0,85-1,15	0,20-0,50	0,040	0,040	0,50-0,80
	25ХГЛ 35ХГЛ	55117	0,20-0,30 0,30-0,45	$\begin{bmatrix} 0.85-1.15 \\ 0.60-0.90 \end{bmatrix}$	0,20-0,50 0,50-0,75	0,040	$0,040 \\ 0,040$	0,90-1,30 0,50-0,80
	50ХГЛ	55116	0,30-0,43 0,45-0,60	0,50-0,90	0,30-0,73 0,20-0,50	0,040	0,040	0.50 - 0.80 0.60 - 0.90
	60ХГЛ	55114	0,43-0,60 0,50-0,65	0,30-0,30 0,90-1,30	0,20-0,50 0,20-0,50	0,040	0,040	0.00 = 0.30 0.90 = 1.30
41 1220	70Х2ГЛ	55113	0,50-0,05 0,60-0,75	0.90-1.30 0.80-1.20	0,20-0,50 0,20-0,50	0,050	0,050	1,80-2,20
	35XГ Ф Л	55141	0,28-0,38	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,20-0,50	0,040	0,040	0,20-0,60
	40ХФЛ	55181	0,35-0,45	0,50-0,80	0,20-0,50	0,040	0,040	1,00-1,40
	30ХМЛ	55433	0,25-0,35	0,50-0,80	0,20-0,50	0,040	0,040	0.80 - 1.20
	40ХМЛ	55434	0,38-0,45	0,50-0,80	0,20-0,50	0,040	0,040	0.80 - 1.20
	40ХНЛ	55811	0,35—0,45	0,40-0,90	0,20-0,50	0,040	0,040	0,50-0,80
	40ХН2Л	55813	0,35—0,45	0,60-0,90	0,20-0,50	0,045	0,045	0,40-0,70
	30ХГ1, 5МФРЛ	55471	0,25-0,32	1,40—1,80	0,40-0,50	0,030	0,025	0,50-1,00
	75ХНМФЛ	55762	0,70-0,85	0,60-0,90	0,20-0,50	0,050	0,050	1,30—1,70
	40ГТЛ	55771	0,34-0,42	1,20—1,60	0,20-0,50	0,045	0,045	
	20ГНМЮЛ	55772	0,16-0,23	1,10—1,60	0,20-0,50	0,035	0,035	_

	Марка стали			N	1ассовая доля	элемента, %			
Код ОКП	Обозначение по ГОСТ 977	Обозна- чение по СТ СЭВ	Никель	Молибден	Ванадий	Медь	Титан	Бор	Алю- ми- ний
		Стал	и конструкі	ционные нел	егированные	2			
	15Л	52731						l _	l _
	1331	51731	_		_	_	_		
	20Л	_	_	_	_	_	_	_	-
	25Л	$\frac{52821}{51821}$	_	_	_	_	_	_	-
41 1220	30Л	_	_	_	_	_	_	_	_
41 1220	35Л	<u>52831</u> 51831	_	_	_	_	_	_	_
	40Л	52861 51861	_	_	_	_	_	_	_
	45Л	52862 51862	_	_	_	_	_	_	_
	50Л	_	_	_	_	_	_	_	_
		Ста	али конструк	кционные ле	гированные				
!	20ГЛ	52763	1	1	<u> </u>	1	I	I	1
	35ГЛ	52833	_	_	_	_	_		
	20ГСЛ	_	_	_	_	_	_	_	_
	30ГСЛ	52834	_	_	_	_	_	_	_
	20Г1ФЛ	55244	_	_	0,06-0,12	_	Не более 0,05	_	_
	20ФЛ	55242	_	_	0,06-0,12	_	_	_	_
	30ХГСФЛ	55142	_	_	0,06-0,12	_	_	_	_
	45ФЛ	55243	_	_	0,05-0,10	_	Не более 0,03	_	_
	32Х06Л	_	_	_	_	_	_	—	-
	40ХЛ	55111	_	_	_	_	_	-	-
41 1220	20ХМЛ	_	_	0,40-0,60	_	_	_	—	-
11 1220	20ХМФЛ	_	_	0,50-0,70	0,20-0,30	_	_	—	-
	20ГНМФЛ	_	0,70—1,00	0,15-0,25	0,06-0,12	_	_	—	-
	35ХМЛ	55432	_	0,20-0,30	_	_	_	—	-
	30ХНМЛ	55711	1,30—1,60	0,20-0,30	_	_	_	—	-
	35ХГСЛ	55812	_	_	_	_	_	—	-
	35НГМЛ	_	0,80-1,20	0,15-0,25	_	_	_	—	-
	20ДХЛ	_	_	_	_	1,40—1,60	_	-	-
	08ГДНФЛ	55781	1,15—1,55	_	По расчету 0,10	0,80—1,20	_	-	_
	13ХНДФТЛ	55782	1,20—1,60	_	0,06-0,12	0,65-0,90	0,04-0,10	—	-
	12ДН2ФЛ	55783	1,80-2,20	-	0,08-0,15	1,20-1,50	_	—	-

Продолжение таблицы 1

	Марка стали		Массовая доля элемента, %										
Код ОКП	Обозначение по ГОСТ 977	Обозна- чение по СТ СЭВ	Никель	Молибден	Ванадий	Медь	Титан	Бор	Алю- ми- ний				
	12ДХН1МФЛ	55761	1,40-1,80	0,20-0,30	0,08-0,15	0,40-0,65	_	-	_				
	23ХГС2МФЛ	55451	_	0,25-0,30	0,10-0,15	_	_	_	_				
	12Х7Г3СЛ	_	_	_	_	_	_	_	_				
	25Х2ГНМФЛ	_	0,30-0,90	0,20-0,50	0,04-0,20	_	_	_	_				
	27Х5ГСМЛ	_	_	0,55 - 0,60	_	_	_	_	_				
	30Х3С3ГМЛ	_	_	0,50 - 0,60	_	_	_	_	_				
	03Н12Х5М3ТЛ	_	12,00—12,50	2,50-3,00	_	_	0,70-0,90	_	_				
	03Н12Х5М3ТЮЛ	_	12,00—12,50	2,50-3,00	_	_	0,70-0,90	_	0,25-				
									0,45				

Стали конструкционные легированные, применяемые в договорно-правовых отношениях между странами — членами СЭВ

	i i	ı	i	I	i i		I	1	i
	15ГЛ	52711	_	_	_	_	_	_	_
	30ГЛ	52832	_	_	_	_	_	_	_
	45ГЛ	52864	_	_	_	_	_	_	_
	70ГЛ	51931	_	_	_	_	_	_	_
	55СЛ	51891	_	_	_	_	_	_	_
41 1220	40Г1, 5ФЛ	55241	_	_	0,10-0,20	_	_	_	_
	15ХЛ	55115	_	_	_	_	_	_	_
	30ХЛ	55116	_	_	_	_	_	_	_
	25ХГЛ	55117	_	_	_	_	_	_	_
	35ХГЛ	55118	_	_	_	_	_	_	_
	50ХГЛ	55114	_	_	_	_	_	_	_
	60ХГЛ	55112	_	_	_	_	_	_	_
	70Х2ГЛ	55113	_	_	_	_	_	_	_
	35ХГФЛ	55141	_	_	0,10-0,25	_	_	_	_
	40ХФЛ	55181	_		0,15-0,30	_	_	_	_
	30ХМЛ	55433	_	0,20-0,30	_	_	_	_	_
	40ХМЛ	55434		0,20-0,30	_	_	_	_	_
	40ХНЛ	55811	1,00-1,50	_	_	_	_	_	_
	40ХН2Л	55813	1,60-2,00	l –		_	_	_	_
	30ХГ1, 5МФРЛ	55471	_	0,40-0,60	0,20-0,40	_	_	0,006-	· —
		/-						0,010	
	75ХНМФЛ	55762	0,50-0,80	0,40-0,60	0,10-0,25	_		_	_
	40ГТЛ	55771			_	_	0,02-0,10	_	
	20ГНМЮЛ	55772	0,30-0,50	0,15-0,30	_	_	_	_	He
									ме-
									нее
									0,01
	!		l	I			ı		1

Примечания:

- 1. Наличие элементов, не являющихся легирующими, их допускаемое содержание и необходимость контроля устанавливается в КД и (или) НТД.
- 2. По требованию потребителя содержание серы и фосфора в легированных конструкционных сталях может быть установлено не более 0,030 %.
- 3. При выплавке легированной стали в печах с кислой футеровкой допустимая массовая доля серы и фосфора может быть увеличена на 0.010~% каждого при условии обеспечения остальных требований настоящего стандарта.
- 4. Для стали марки 40ХНЛ допускается введение титана до 0,15 % с целью повышения ее механических свойств.
- 5. Для сталей марок 15Л, 25Л, 35Л, 40Л, 45Л дано обозначение по СТ СЭВ 4559-84, для остальных сталей по СТ СЭВ 4561-84.

$^{\prime}$
ಡ
Ħ
И
H
O
B
Ε

	фос-	элее		0,030	0,025	0,030	0,035	0,040	0,040	0,035	0,030	0,025	0,030	0,035	0,025	0,030	0,035
	Cepa	не более		0,025	0,025	0,025	0,030	0,040	0,035	0,030	0,025	0,025	0,025	0,030	0,025	0,030	0,030
		йиqэД		ı	I	ĺ	I	I	I	ı	ĺ	I	I	I	I	I	ľ
		Медъ		ı	0,80—	I	I	I	I	I	I	0,80—	I	1	1,00—	I	I
	йил	нимопт		I	ı	l	ı	I	I	I	I	I	I	ı	I	I	I
		тоеА		Ι	ı	I	I	I	I	I		I	I	ı	ı	I	I
%		pop		Ι	I	I	I	I	I	I	I	I	I	I	I	I	I
		йидоиН		ı	I	0,05	2,	I	I	ı	I	I	1	I	I	I	I
Массовая доля элемента,		нстиТ	ИИ	ī	I	I	I	I	I	I	I	I	I	0,40-	I	I	I
ссовая д	м	Вольфр	ойствал	ı	I	I	I	I	1,25-	1,75	0,70	1,10	I	1	I	I	I
Ma	j	йиденьЯ	лми св	1	I	ĺ	ı	I	I	ı	0,15	nc,u -	I	I	I	I	I
	нэ	ддикоМ	циальн	ı	I	I	I	0,40—	C9,0	I		۱ (۵٬	ı	I	0,30—	0,50—	I
		Никель	со спет	I	1,20-	3,50-	2,80—),oU	I	I	0,50	1,00— 1,50	I	ı	3,50 <u>—</u>	6,00— 8,50	5,00
		мофХ	Стали легированные со специальными свойствами	12,0-	14,0 13,0— 14,5		15,0—	18,0 4,0—	7,5—	8,0 -0,8	10,0 10,5—	12,0— 13,0	12,0— 14,0	23,0 _ 27,0	14,0— 16,0	13,0— 15,0	16,0— 20,0
	еп	нетдьМ	легиров	0,30-	0,80 0,50— 0,80	0,30-	0,30	0,40	0,30	0,30	0,70	0,20— 0,60	0,30—	0,50—	1,00—	0,30—	4,00— 5,00
	Й	Кремни	Стали			0,40	0,80	0,35	0,30	0,60 2,00—	3,00 0,20—	0,80 0,17— 0,40	0,20—	0,50—	Не более	0,40 0,20— 0,75	0,20—
	:	Угиерол		0,16-	0,25 Не более	0,08	0,05	$0,12 \\ 0,15 \\ 0,25$	0,15	0,35	0,50	0,23 Не более 0,10	Не более 0,15	0,10— 0,20	Не более	о, оз Не более	0,08 Не более 0,14
	COB	Обознач ТО оп 4563—8		58113	I	I	ı	I	I	I	I	I	58112	ı	I	ı	I
Марка стали	Обозначение по	FOCT 977		20Х13Л	08Х14НДЛ	09Х16Н4БЛ	09Х17Н3СЛ	20X5MJI	20X8BJI	40X9C2JI	20Х12ВНМФЛ	10Х12НДЛ	15X13JI	15X25TJI	08Х15Н4ДМЛ	08X14H7MJI	14X18H4F4JI
	Код ОКП							41 1240					41 1240	41 1240		41 1240	
	Класс							Мартен-	ситный				Мартен- ситно- феррит- нъй	Феррит- ный		Аустенит- но-мар-	тенсит- ный

	фос-	0,030	0,030	0,035	0,035	0,035	0,030	0,035	0,035	0,035	0,035	0,035	0,040	0,030	0,035	0,035	0,035
	Сера фо не более	0,030	0,030	0,035	0;030	0,025	0,030	0,030	0,030	0,030	0,020	0,030	0,030	0,030	0,030	0;030	0;030
	йидэД	ı	I	ı	I	I	I	ı	I	I	I	ı	1	I	I	ı	ı
	Медь	1	1	I	I	I	2,20	I	I	I	I	I	ı	I	I	I	ı
	йинимот.А	I	0,13-	1,55	I	I	I	ı	ı	I	ı	I	ı	ı	I	l	0,60—
	тоеА	0,08-	I	I	I	I	I	ı	I	I	I	I	I	I	ı	I	ı
	pop	I	I	I	I	I	1	I	I	I	I	I	I	I	I	I	ı
нта, %	йидоиН	1	1	I	I	1	1	ı	1	0,45— 0,90	I	1	1	I	1	I	1
Массовая доля элемента,	натиТ	0,08—	0,40-	0,,0	1	I	I	I	Or (5×C)	до 0,70 —	0,005—	(5×C)	0,10—	00,0	I	I	I
совая д	Вольфрам	1	I	I	I	I	I	I	I	I	I	I	I	I	l	I	ı
Mac	йиданаЯ	0,07-0,15	I	I	I	I	I	I	I	I	1	I	1	I	l	I	1
	нэддипоМ	0,06-	I	I	I	I	I	I	I	ı	1	3,00-	I	I	1	ı	ı
	Никель	5,00-	11,00—	6,00— 8,00	11,00—	12,00— 15,00	3,00— 3,50	8,00— 11,00	8,00 <u>—</u> 11,00	8,00— 12,00	15,00-	11,00— 13,00	I	17,00—	20,00 18,00— 20,0	17,00— 21,00	$\begin{vmatrix} 2,50-\\ 3,50 \end{vmatrix}$
	wodx	23,5— 26,0	17,0—	$\begin{array}{c c} 19,0 \\ 21,0- \\ 25,0 \\ \end{array}$	22,0 _ 26,0	19,0— 22,0	13,0— 19,0	17,0— 20,0	17,0— 20,0	17,0— 20,0	16,0-	16,0 16,0 19,0	16,0-	22,0—		22,0 -	$\begin{vmatrix} 16,0-\\ 18,0 \end{vmatrix}$
	Марганец	0,30—	0,50	0,50-0,85	0,30—	Не более	$\begin{array}{c} 1,50\\ 2,30-\\ 3,00 \end{array}$	1,00-	1,00— 2,00	1,00— 2,00	1,00—	2,00 2,00	12,00—		0,50-1,50	0,70-1,50	12,00— 15,00
	Кремний	0,20 _ 1,00	3,80—	0,50 0,50 1,20	0,50—	2,00 <u>—</u> 3,00	Не более 0,60	0,20 _ 1,00	0,20—	0,20—	0,20—	0,20— 1,00	1,50-	0	2,00— 3,00	0,80— 2,00	$\begin{vmatrix} 0,80-\\1,50 \end{vmatrix}$
	Углерод	Не более	$0,12 \\ 0,13 -$	0,19 Не более	0,35 Не более	0,40 Не более	0,20 Не более 0,10	Не более	0,14 Не более	0,12 Не более	0,10	о, го Не более	$0,12 \\ 0,45 \\ 0,65$		0,20 Не более	0,20 Не более	$0,18 \ 0,40 - 0,50$
	Обозначение по СТ СЭВ 4563—84	I	I	1	I	I	I	58762 58511	58561	ı	1	I	I	I	1	ı	ı
Марка стали	Обозначение по ГОСТ 977	12Х25Н5ТМФЛ	16Х18Н12С4ТЮЛ	35Х23Н7СЛ	40Х24Н12СЛ	20Х20Н14С2Л	10Х18Н3Г3Д2Л	10Х18Н9Л	12Х18Н9ТЛ	10X18H11БЛ	07Х17Н16ТЛ	12Х18Н12М3ТЛ	55X18F14C2TJI	15Х23Н18Л	20Х25Н19С2Л	18Х25Н19СЛ	45Х17Г13Н3ЮЛ
	Код ОКП				41 1240							41 1240					
	Класс				Аустенит- ч	ритныи						енит-	ныи				

Продолжение табл. 2

aos. 2		фос-	лее	0,035	0,035	0,020	0,010	0,035	0,040	0,120	0,120	0,120	0,070	0,120	0,030	0,040		0,035
прооолжение таол.	•	Cepa	не более	0,030	0,020	0,025	0,010	0,030	0,035	0,050	0,050	0,050	0,050	0,050	0,025	0,040		0,035
жиооо		•	йиզэД	I	I	I	более	5,	I	ı	I	I	I	1	I	ı	CBB	I
dri			Медь	I	I	I	I	I	I	ı	I	I	I	Не более 0,7	I	ı	членами С	
		йинг	лмоптА	I	I	I	$^{1,70}_{2,10}$	ı	I	I	I	I	ı	I	I	ı	— TITE	I
			тоеА	ı	1	1	I	I	I	ı	ı	I	$^{0,025-}_{0,050}$	Не более 0,03	I	ı	анами	
			Pop	I	1	1	Не более	С, С, Не более	о, от Не более 0,06	1	0,001-0,006	I	I	I	I	ı	кду стр	1
	ента, %	Й	идоиН	I	0,20 _ 0,50	$^{0,70}_{1,10}$	I	ı	ı	ı	0,08—	I	ı	Не более 0,01	I	ı	иях мех	ı
	Массовая доля элемента,		нетиТ	1	0,20-	1	2,60 - 3,20	ı	I	1		0,01	<u> </u>	Не более 0,15	I	ı	ношен	1
	совая до	мед	Вольфј	I	1,00-	I	4,50— 5,50	5,00—7,00	7,00—	I	I	ı	ı	1	5,50— 6,50	5,00—	BELIX OT	I
;	Mac	Йт	Іванаді	I	I	I	I	I	I	ı	I	0,10	0,08—	0,03—	1,70—2,10	$\begin{vmatrix} 2,00-\\ 2,60 \end{vmatrix}$	о-прав(I
	•	нэп	ЭикоМ	I	1,00—	I	I	2,00—	I	ı	I	I	0,20—	1	4,80— 5,30	$\begin{vmatrix} 3,00 - \\ 4,00 \end{vmatrix}$	юворн	I
		P	Никел	23,00—	8,00— 10,00	11,0— 13,00	32,00— 35,00	20,00—	43,00— 48,00	Не более	г,чо Не более	0c,0 	Не более	1,00 Не более 1,00	Не более	 ;; 	ле в до	$\begin{vmatrix} 0,70-\\ 1,20 \end{vmatrix}$
			мофх	17,0— 20,00	18,0— 20,0	17,0— 19,0	15,0— 18,0	16,0 -	19,0 -	Не более	1,0— 2,0	ı	1,0—	Не более 1,00	3,8-	$\begin{vmatrix} 3,0-\\ 4,0 \end{vmatrix}$	еняем	$\begin{vmatrix} 12,0-\\15,0 \end{vmatrix}$
	•	нєп	sıqsM	Не более		0,50—	0,30-	0,30—	0,30—	11,50— 15,00	11,50— 14,50	11,50-	12,50— 15,00	8,50— 12,00	Не более	$\begin{vmatrix} 0.30 \\ 0.40 \\ 0.70 \end{vmatrix}$	и, приъ	0,40—
	•	йп	Кремн	2,00 _ 3,00	Не более	Не более	0,20— 0,50	0,20—	0,20—	0,30—	0,30—	0,40—	С,70 Не более	0,20— 0,90 0,90	Не более	0,20— 0,40 0,40	эйствам	Не более 0,60
	•	ПС	Углерс	0,30-	0,26-	более		0,10— 0,20	0,10-	0,90—	0,90—		1,20— 1,40	0,90— 1,40	0,82— 0,90	0,85—	лми св	Не более 0,15
		8† СЭВ заєниє	неодО ТЭ оп —£824	I	I	I	I	ı	I	ı	I	I	I	ı	I	1	пециальні	58411
;	Марка стали	Обозначение по	FOCT 977	35X18H24C2JI	31Х19Н9МВБТЛ	12Х18Н12БЛ	08X17H34B5T3 Ю2РЛ	15X18H22B6M2PJI	20Х21Н46В8РЛ	110Г13Л	110Г13Х2БРЛ	110Г13ФТЛ	130F14XM ΦA JI	120Г10ФЛ	85X4M5Ф2B6Л (P6M5Л)	90Х4М4Ф2В6Л (Р6М4Ф2Л)	Стали легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами	15X14HJI
		Код				0701 17	0471 14					41 1250			41 1260		Cran	41 1240
		Класс							Аусте- нитный	1					Мартен- ситный		=	Мартен- ситно-фер- ритный

	фос-	олее	0,035	0,045	0,045	0,045	0,040	0,040	0,040	0,040	0,040
	Cepa	не более	0,035	0,035	0,035	0,035	0,040	0,040	0,040	0,040	0,040
		йидэД	Ι	I	I	I	I	I	I	I	1
		Медь	1	I	I	I	I	I	I	I	1
	йил	нимонгА	1	I	I	I	I	I	I	I	1
		тоғА	I	ı	I	I	0,10— 0,20	0,10— 0,20	ı	I	ı
%		pop	I	I	I	I	I	I	I	I	1
		йидоиН	Ι	I	I	I	I	I	I	I	1
Массовая доля элемента,		нвтиТ	I	I	QT (4×C)	до U, /U	I	I	ı	ı	Or 5×(C— —0,03) до 0,80
ссовая	M	Вольфр	1	I	I	I	I	I	I	I	1
Mz	j	йиденьЯ	1	I	I	I	I	I	I	ı	1
	ен	ддипоМ	Не более 1,00	I	I	1,80—2,20	ı	I	2,00—	2,00—	2,00—
		Никель	3,50— 5,00	4,50—6,00	4,50—6,00	4,50—6,00	6,00—8,00	4,00—6,00	9,00 _	9,00 _	9,00—
		wodX	11,5—	20,0 _ 22,0	20,0 -	20,0 _ 22,0	18,0— 20,0	20,0 _ 22,0	17,0—	17,0—	17,0—
	еп	нетдьМ	Не более 1,50	45	2,00 Не более	2,00 Не более	2,00 Не более	2,00 Не более	2,00 Не более	2,00 Не более	2,00 Не более 2,00
	й	Кремни	Не более 1,00	Не более	1,50 Не более	1,30 Не более	1,30 Не более	1,30 Не более	1,30 Не более	2,000 Не более	2,00 Не более 2,00
	1	Углерол	Не более 0,08	Не более	0,12 Не более	0,12 Не более			0,12 Не более	0,0/ Не более	0,13 Не более 0,15
	ф С ЭВ нение	обознач ОТО оп 58—6324	58711	58451	58461	58761	58462	58463	58763	58764	58765
Марка стали	Обозначение по	TOCT 977	08X12H4FCMJI	12X21H5F2CJI	12X21H5F2CTJI	12X21H5F2CM2JI	12X19H7F2CAJI	12X21H5F2CAJI	07X18H10F2C2 M2JI	15X18H10F2C2 M2JI	15X18H10F2C2 M2TJI
	Код ОКП		41 1240				1040	41 1240			
	Класс запи стали Мартен- стино- феррит- нъй						A	Аустенит- но-фер- ритный			

римечания:

 Наличие элементов, не являющихся легирующими, их допускаемое содержание и необходимость контроля устанавливают в КД и(или) НТД.
 В стали марки 20Х5МЛ молибден может быть заменен титаном в количестве не более 0,1 % при условии работы дегалей при температуре не более 425 °C.
 В стали марки 10Х18Н9Л при необходимости обеспечения большей стойкости против межкристаллитной коррозии содержание углерода может быть установлено не более 0,07 %.

4. В стали марки 20Х13Л допускается при выплавке в индукционной печи повышение массовой доли серы до 0,030 %.

5. В стали марки 12X18H12БЛ суммарная массовая доля серы и фосфора должна быть не более 0,040 %. 6. В стали марок 12X21H5T2CTЛ и 15X18H10T2C2M2TЛ допускается для стабилизации вместо титана использовать ниобий с танталом в количестве от (8×C) до 1,20 %.

7. В стали марок 08Х17Н34В5Т3Ю2РЛ, 15Х18Н22В6М2РЛ, 20Х21Н46В8РЛ содержание и необходимость контроля бора и церия устанавливается в КД и НТД.

Примеры условного обозначения сталей: 25Л ГОСТ 977—88 23ХГС2МФЛ ГОСТ 977—88 20Х25Н19С2Л ГОСТ 977—88

 Π р и м е р ы у с л о в н о г о о б о з н а ч е н и я сталей для отливок, предназначенных для изделий, подлежащих приемке представителем заказчика:

25Л K20 ГОСТ 977—88 23ХГС2МФЛ KT 110 ГОСТ 977—88

В обозначении марок стали первые цифры указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента; буквы за цифрами означают: A- азот, B- ниобий, B- вольфрам, $\Gamma-$ марганец, Д- медь, M- молибден, H- никель, P- бор, C- кремний, T- титан, $\Phi-$ ванадий, X- хром, W- алюминий, W- литейная. Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в пропентах.

Индексы «К» и «КТ» являются условными обозначениями категории прочности, следующее за ними число означает значение требуемого предела текучести. Индекс «К» присваивается материалу в отожженном, нормализованном или отпущенном состоянии; индекс «КТ» — после закалки и отпуска.

1.4. Допускаемые отклонения легирующих элементов от норм химического состава, приведенных в табл. 1, не должны превышать значений, указанных в табл. 3.

Таблица 3

Химический	Массовая доля	Допускаемое	отклонение, %
элемент	элемента, %	для нижнего предела содержания	для верхнего предела содержания
Углерод	До 0,25 Св. 0,25 до 0,50 Св. 0,50	$-0.02 \\ -0.03 \\ -0.04$	+0,01 +0,02 +0,03
Кремний	До 0,50 Св. 0,50 до 0,90 Св. 0,90 до 1,30 Св. 1,30	-0,05 -0,08 -0,15 -0,15	+0,10 +0,15 +0,20 +0,25
Марганец	До 0,50 Св. 0,50 до 0,90 Св. 0,90	-0.07 -0.10 -0.12	+0,10 +0,18 +0,25
Хром	До 1,00 Св. 1,00 до 2,00 Св. 2,00	-0.07 -0.10 -0.15	+0,10 +0,15 +0,20
Никель	До 1,00 Св. 1,00 до 2,00 Св. 2,00	-0.10 -0.15 -0.20	+0,15 +0,20 +0,25
Молибден	До 0,20 Св. 0,20	$-0.03 \\ -0.05$	+0,03 +0,05
Ванадий	До 0,20 Св. 0,20	$-0.03 \\ -0.05$	+0,03 +0,05
Медь	Для всех содержаний элемента	-0,10	+0,10
Титан	Для всех содержаний элемента	-0,02	+0,02
Алюминий	Для всех содержаний элемента	-0,01	+0,01

Массовая доля серы и фосфора в конструкционных нелегированных сталях до 01.01.92 должна соответствовать требованиям, указанным в табл. 4, с 01.01.92 — указанным в табл. 4а.

Таблица 4

		Массо	овая доля примесе	ей, %, не более, в	стали			
Группа отливок	основной	кислой	конверторной	основной	кислой	конверторной		
		Cepa	•	Фосфор				
1	0,050	0,060	0,060	0,050	0,060	0,080		
2	0,045	0,060	0,050	0,040	0,060	0,070		
3	0,045	0,050	_	0,040	0,050	_		

 Π р и м е ч а н и е. По требованию потребителя содержание серы в сталях марок 15Л, 25Л, 35Л, 40Л, 45Л и 45 Φ Л должно быть не более 0,040 %.

Таблица 4а

		Массо	вая доля примесе	ей, %, не более, в	стали	
Группа отливок	основной	кислой	основной мартеновской	основной	кислой	основной мартеновской
		Сера			Фосфор	
1 2 3	0,040 0,035 0,030	0,060 0,060 0,050	0,050 0,045 0,045	0,040 0,035 0,030	0,060 0,060 0,050	0,050 0,040 0,040

Допускаемые отклонения легирующих элементов от норм химического состава, приведенных в табл. 2, не должны превышать значений, указанных в табл. 5.

Таблица 5

Химический	Массовая доля	Допускаемое о	отклонение, %
элемент	элемента, %	для нижнего предела содержания	для верхнего предела содержания
Углерод	До 0,12 Св. 0,12		+0,01 +0,02
Марганец	До 0,90 Св. 0,90 до 8,00 Св. 8,00	-0.10 -0.12 -0.50	$^{+0,10}_{+0,20}_{+0,50}$
Кремний	До 0,90 Св. 0,90	$-0.10 \\ -0.10$	+0,10 +0,20
Хром	До 5,00 Св. 5,00 до 20,00 Св. 20,00	$-0.20 \\ -0.50 \\ -1.00$	+0,20 +0,50 +1,00
Никель	До 1,00 Св. 1,00 до 2,00 Св. 2,00 до 3,00 Св. 3,00 до 6,00 Св. 6,00	-0.10 -0.15 -0.20 -0.25 -0.50	$^{+0,10}$ $^{+0,10}$ $^{+0,20}$ $^{+0,20}$ $^{+0,50}$
Молибден	Для всех содержаний элемента	-0,02	+0,02

Химический	Массовая доля	Допускаемое	отклонение, %		
элемент	элемента, %	для нижнего предела содержания	для верхнего предела содержания		
Титан	До 0,50 Св. 0,50 до 1,0 Св. 1,0	-0.03 -0.05 -0.10	+0,03 +0,05 +0,10		
Ванадий	Для всех содержаний элемента	-0,02	+0,03		
Вольфрам	Для всех содержаний элемента	-0,05	+0,05		
Ниобий	Для всех содержаний элемента	-0,02	+0,02		
Медь	Для всех содержаний элемента	-0,1	+0,1		

Примечания:

- 1. Для стали марки 85Х4М5Ф2В6Л (P6М5Л) допускаются отклонения по массовой доле ванадия $\pm 0,1$ %.
- 2. Для стали марки $90X4M4\Phi2B6\Pi$ ($P6M4\Phi2\Pi$) допускаются отклонения по массовой доле ванадия минус 0.2; плюс 0.1 %.

2. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

2.1. В зависимости от назначения и требований, предъявляемых к деталям, отливки разделяются на три группы в соответствии с табл. 6.

Таблица 6

Группа отливок	Назначение	Характеристика отливок	Перечень контролируемых показателей качества
1	Отливки общего назначения	Отливки для деталей, конфигурация и размеры которых определяются только конструктивными и технологическими соображениями	Внешний вид, размеры, химический состав
2	Отливки ответ- ственного назначе- ния	Отливки для деталей, рас- считываемых на прочность и работающих при статических нагрузках	Внешний вид, размеры, химический состав, механические свойства; предел текучести или временное сопротивление и относительное удлинение
3	Отливки особо ответственного на- значения	Отливки для деталей, рас- считываемых на прочность и работающих при циклических и динамических нагрузках	Внешний вид, размеры, химический состав, механические свойства; предел текучести или временное сопротивление, относительное удлинение и ударная вязкость

Примечания:

1. При необходимости введения дополнительных показателей, не предусмотренных табл. 6 для данной группы отливок, их наличие и соответствующие нормы должны быть указаны в КД и (или) НТД.

По требованию потребителя в число дополнительных контролируемых показателей могут быть включены: твердость, излом металла, механические свойства для отливок со стенкой толщиной свыше 100 мм, механические свойства при пониженных и повышенных температурах, герметичность, микроструктура, плотность, коррозионная стойкость, жаростойкость, стойкость против межкристаллитной коррозии и другие.

Для отливок 3-й группы, предназначенных для изделий, подлежащих приемке представителем заказчика, работающих при пониженных температурах и подвергающихся динамическим нагрузкам, при наличии указания в КД и (или) НТД ударная вязкость стали определяется при температуре минус 50 °C. Нормы ударной вязкости при этом указывают в КД и (или) НТД на конкретную продукцию.

- 2. Возможность установления в качестве нормируемого показателя относительного сужения вместо относительного удлинения указывается в КД и (или) НТД.
- 3. Возможность увеличения норм прочности при соответствующем снижении норм пластичности и вязкости указывают в КД и (или) НТД.
- 4. Нормы, возможность снижения уровня механических свойств на образцах, вырезанных из отливок, указывают в КД.
- 5. Для отливок 2-й и 3-й группы, предназначенных для изделий, подлежащих приемке представителем заказчика, заменять контролируемый показатель «Предел текучести» показателем «Временное сопротивление» допускается только по требованию представителя заказчика.

Обозначение отливки в технических требованиях чертежа:

Для отливок 1-й группы:

Отливки 1-й группы ГОСТ 977—88

Для отливок 2-й группы:

Отливки 2-й группы ГОСТ 977—88

Для отливок 3-й группы:

Отливки 3-й группы ГОСТ 977—88

2.2. Группа отливок, марка стали, дополнительные контролируемые показатели и требования указывают в КД и (или) НТД. При поточно-массовом производстве разделение отливок по группам не производят, перечень контролируемых показателей указывают на чертеже отливки.

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 3.1. Отливки изготавливают в соответствии с требованиями настоящего стандарта, КД и (или) НТД, утвержденными в установленном порядке.
- 3.2. Отливки должны подвергаться термической обработке. Рекомендуемые режимы термической обработки конструкционной нелегированной и легированной стали приведены в приложении 3, легированной стали со специальными свойствами в приложении 4.

По согласованию изготовителя с потребителем допускается не производить термическую обработку отливок 1-й группы из конструкционных нелегированных и легированных сталей и отливок 1—3-й групп из легированных сталей со специальными свойствами при обеспечении механических и специальных свойств стали технологией выплавки и формообразования.

Число допустимых полных термических обработок отливок не должно быть более трех, а для отливок из аустенитных и аустенитно-ферритных легированных сталей со специальными свойствами — не более двух.

 Π р и м е ч а н и е. Количество отпусков или стабилизирующих отжигов отливок с пробными брусками одной и той же партии после закалки или нормализации для получения требуемых механических свойств не ограничивается.

- 3.3. Механические свойства конструкционной нелегированной и легированной стали для отливок со стенкой толщиной до 100 мм при комнатной температуре после окончательной термической обработки должны соответствовать нормам, приведенным в табл. 7, легированной стали со специальными свойствами в табл. 8.
- 3.4. Конфигурация и размеры отливок должны соответствовать чертежам, утвержденным в установленном порядке.

Допуски размеров и массы отливок, а также припуски на механическую обработку должны соответствовать требованиям ГОСТ 26645, формовочные уклоны — ГОСТ 3212 или указаны в КД.

3.5. Отливки должны быть очищены от формовочной смеси, окалины и пригара. Прибыли и питатели должны быть удалены.

Места отрезки питателей и прибылей, заливы и просечки должны быть зачищены или обрублены в пределах допусков по чертежу отливки.

Допускается по согласованию изготовителя с потребителем устанавливать в КД и (или) НТД наличие пригара на отливках.

аолица /	Ударная вязкость KCU, $\kappa \downarrow \downarrow \times /M^2$					343	294 294	245 294		383 491 491 491 			
Iac	Относи- тельное сужение ψ, %					33	20 20	70 70 70 70		200 000 100			
	Относи- тельное удлинение δ, %	Не менее	1 отпуск			22	16	10 7		44 14 17 17 17 17 17 17			
	Временное сопротив- ление о _в , МПа		Закалка и отпуск			491	540 540	589 736		530 638 638 638 638 638 638 638 638			
	Предел текучести о _т , МПа					294	343 243	392 392		334 343 343 392 392 589 441 441 441 491 638 589 589 589 589 589 589 589 589 589 58			
	Категория прочности			Стали конструкционные нелегированные	1 1	KT30	KT35 KT35	KT40 KT40	грованные	KT30 KT40			
	Ударная вязкость KCU, кД \mathbb{X}/M^2			нные неле	491	392	343 243	294 245	Стали конструкционные легированные	294 294 294 294 491 491 294 294 294 294 294 294 294 294 294 294			
	Относи- тельное сужение ψ, %		пе менее мализация с отпуском	၂ ၁	၂၁	၂ ၁	энструкцис	35 35	30	25 25	20 20	конструкци	50 50 50
	Относи- тельное удлинение δ, %	Не менее					рмализация	рмализация	Стали к	24	19	15.	12
	Временное сопротив- ление ов, МПа		Нормализация или нормализация		392	441	47.1 491 520	540 569		540 540 540 589 510 491 687 687 687 687 687 687 687 687 687 687			
	Предел текучести о _r , МПа		Нормализа		196	235	275	314 334		275 294 294 343 314 392 392 392 491 392 392 393 393 393 393 393 393 393 393			
	Категория прочности				K20 K20	K20	K25 K25	K30 K30		K K K K K K K K K K K K K K K K K K K			
	Марка стали				15J 20J	25JI 20II	35J 40T	45Л 50Л		20ГЛ 35ГЛ 20ГСЛ 30ГСЛ 20ГЛФЛ 20ФЛ 30ХГСФЛ 45ФЛ 45ФЛ 20ХМЛ 20ХМФЛ 35ХМЛ 35ХМЛ 35ХМЛ 35ХГСЛ 35СС			

Марка	Категория прочности	Предел текучести о _r , МПа	уременное сопротив- ление ов, МПа	Относи- тельное удлинение 8, %	Относи- тельное сужение ψ, %	Ударная вязкость KCU , KJ	Категория прочности	Предел текучести о _r , МПа	Временное сопротив- ление ов, МПа	ое Относи- з- тельное з, удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость KCU, кДж/ M^2
				Не менее						Не менее		
		Нормализа	Нормализация или нормализация с отпуском	мализация с	оппуском				Закалка и отпуск	и отпуск		
25X2ГНМФЛ ¹⁾	I		I	I	I	l	KT50	491	638	12	30	589
$25X2\Gamma HM\Phi \Pi^{2}$							KT110	1079	1275	5	25	392
27X5FCMJI		1				1	KT120	1177	1472	5	20	392
30X3C3FMJI	1	1					KT150	1472	1766	4	15	196
03H12X5M3TJI							KT130	1275	1324	∞	45	491
03H12X5M3TIOJI							KT145	1422	1472	8	35	294

Стали конструкционные легированные, применяемые в договорно-правовых отношениях между странами — членами СЭВ

		235	285		١	285	ļ	402	206	167		285		383	196	265	206	383	334	147		334	
	I	20	20			20	1	30	20	20		20		1	8	25	20	25	20	4		20	I
	ı	16	13		12	8		15	12	10	13	13	1	15	4	14	11	12	12	2		10	1
1		628	628		736	819	1	229	579	726	775	628		687	1177	229	229	672	785	1275		726	1
	-	481	334		392	520	1	432	304	383		338		491	883	334	481	481	540	932		422	
		KT45	KT30		KT40	KT50		KT40	KT30	KT35	1	KT30		KT50	KT90	KT30	KT45	KT45	KT55	KT95		KT40	1
1	373	206	285				373	265		137		285		285	245	304	206		285	49		285	491
	35	25	25	1	I		30	30		25					18	25	25		25	5		25	30
•	22	20	14	4	10		30	15		14	5	4	4	13	10	18	14		15	4	ю	14	18
•	413	579	579	785	687		383	530		628	687	785	785	638	770	530	628		638	981	981	809	200
	235	334	334		334	1	196	285		334				392	579	285	334		373	638		323	343
,	K20	K30	K30		K30	1	K20	K25		K30				K40	K55	K25	K30		K35	K65		K30	K35
	15FJI	30FJI	45LJI	70LJI	SSCI	40Г1, 5ФЛ	15XJI	30XJI	25XTJI	35XI ^J I	50XLJI	60ХГЛ	70X2FJI	35ХГФЛ	40ХФЛ	30XMJI	40XMJI	40XHJI	40XH2Л	30XT1, 5MΦPJI	75ХНМФЛ	40ITJI	20FHMIOJI

1), 2) Характеристики механических свойств получены при режиме термической обработки, указанном в табл. 11.

Таблица 8

					1 6	аолица 8		
Класс стали	Марка стали	Предел текучести σ _τ , МПа	Временное сопротив- ление $\sigma_{_{\rm B}}$, МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м²		
			•	Не менее	•	•		
	Стали легированнь	ие со специа	льными свой	и ствами				
	20Х5МЛ	392	589	16	30	392		
	20Х8ВЛ	392	589	16	30	392		
	20Х13Л	441	589	16	40	392		
	08Х14НДЛ	510	648	15	40	590		
	09Х16Н4БЛ¹)	785	932	10	_	392		
Мартенситный	09Х16Н4БЛ ²⁾	883	1128	8		245		
Trup Torretti	09X17H3CЛ ¹⁾	736	981	8	15	196		
	09X17H3CЛ ²⁾	736	932	8	20	245		
	09X17H3CЛ ³⁾	638	834	6	10			
	40Х9С2Л	056		і е нормируют		I		
	10Х12НДЛ	441	638	14	30	294		
	20X12ВНМФЛ	491	589	15	30	294		
	20/(12/)111111451	771	367	13	50	2,74		
Мартенситно-фер- ритный	15Х13Л	392	540	16	45	491		
Ферритный	15Х25ТЛ	275	441	_	_	_		
Аустенитно-мар-	08Х15Н4ДМЛ	589	736	17	45	981		
тенситный	08Х14Н7МЛ	687	981	10	25	294		
Тепентиви	14Х18Н4Г4Л	245	441	25	35	981		
	12Х25Н5ТМФЛ	392	540	12	40	294		
	35Х23Н7СЛ	245	540	12	+0	234		
Аустенитно-фер-	40X24H12СЛ	245	491	20	28			
	20Х20Н14С2Л	245	491	20	25	_		
ритный		243	491	15	30	275		
	16Х18Н12С4ТЮЛ							
	10Х18Н3Г3Д2Л	491	687	12	25	294		
	10Х18Н9Л	177	441	25	35	981		
	12Х18Н9ТЛ	196	441	25	32	590		
	10Х18Н11БЛ	196	441	25	35	590		
	07Х17Н16ТЛ	196	441	40	55	392		
	12Х18Н12М3ТЛ	216	441	25	30	590		
	55Х18Г14С2ТЛ	_	638	6	_	147		
	15Х23Н18Л	294	540	25	30	981		
	20Х25Н19С2Л	245	491	25	28	_		
Аустенитный	18Х25Н19СЛ	245	491	25	28	_		
·	45Х17Г13Н3ЮЛ	_	491	10	18	981		
	15Х18Н22В6М2РЛ	196	491	5	_	_		
	08Х17Н34В5Т3Ю2РЛ	687	785	3	3	_		
	20Х21Н46В8РЛ	_	441	6	8	294		
	35Х18Н24С2Л	294	549	20	25	_		
	31Х19Н9МВБТЛ	294	540	12	_	294		
	12Х18Н12БЛ	196	392	13	18	196		
	110Г13Х2БРЛ	491		22	30	1962		
	130Г14ХМФАЛ	441	883	50	40	2453		
			ı	1	 	<u>I</u>		
	85Х4М5Ф2В6Л	Не регламентируются						
Managravevvvv	(Р6М5Л)		_					
Мартенситный	l .		_	егламентиру регламентиру				

Продолжение табл. 8

Класс стали	Марка стали	Предел текучести о _т , МПа	Временное сопротив- ление $\sigma_{_{\rm B}}$, МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м²
				Не менее		
Стали легированные	е со специальными свой между стр	ствами, приз анами — чло		цоговорно-пр	равовых отно	ошениях
Мартенситно-фер- ритный	15Х14НЛ ¹⁾ 15Х14НЛ ²⁾ 08Х12Н4ГСМЛ	289 383 549	481 579 736	15 15 15	50 50 35	294 441 540
Аустенитно-фер- ритный	12X21H5Г2СЛ 12X21H5Г2СТЛ 12X21H5Г2СМ2Л 12X19H7Г2САЛ 12X21H5Г2САЛ	343 343 343 240 334	549 549 549 481 657	22 12 22 20 18	20 10 20 30 20	590 196 590 590 245
r	07X18H10Г2С2М2Л 15X18H10Г2С2М2Л	177 216	432 432	30 30	35 35	441 785

 $^{^{1)}}$, $^{2)}$, $^{3)}$ Характеристики механических свойств получены при режиме термической обработки, указанном в табл. 12.

 Π р и м е ч а н и е. Механические свойства стали марок $110\Gamma13\Pi$, $110\Gamma13\Phi$ ТЛ и $120\Gamma10\Phi$ Л устанавливаются по согласованию изготовителя с потребителем.

3.6. Удаление питателей и прибылей проводится любым способом.

15Х18Н10Г2С2М2ТЛ

Удаление питателей и прибылей огневой резкой должно проводиться до окончательной термической обработки.

Удаление питателей и прибылей огневой резкой после окончательной термической обработки должно быть указано в КД и НТД.

3.7. На подлежащей механической обработке поверхности отливки не допускаются дефекты поверхности в виде раковин, спаев, утяжин, плен и т. д., превышающие по глубине припуск на механическую обработку.

На обработанных поверхностях отливок допускаются раковины, не влияющие на работоспособность и прочность детали, размеры и расположение которых указаны в КД на отливки.

- 3.8. На необрабатываемых поверхностях отливок допускаются без исправления раковины и другие дефекты, кроме трещин, вид, размеры, количество и расположение которых указаны в КД.
- 3.9. Допускается исправлять на отливках дефекты, снижающие прочность и работоспособность отливок, если это оговорено в КД.
- 3.10. При исправлении дефектов заваркой она должна проводиться до окончательной термической обработки, если нет других указаний в КД и НТД.

Допустимость исправления заваркой дефектов, обнаруженных после окончательной термической или механической обработки, а также необходимость и вид последующей термической обработки отливок указывают в КД и НТД.

- 3.11. Допустимость несплошностей в виде раковин, пористости и т. д., а также их размеры, количество и расположение указывают в КД и НТД.
- 3.12. Допускается правка (исправление коробления) отливок в холодном и горячем состоянии. Размеры правки, необходимость отпуска для снятия напряжений после правки устанавливают в КД и НТД.
- 3.13. Необходимость проверки обезуглероженного слоя металла отливок и его глубину указывают в КД и НТД.

На обрабатываемых трущихся поверхностях отливок и в местах проверки твердости припуск на механическую обработку должен обеспечивать полное удаление обезуглероженного слоя.

3.14. Нормы дополнительных контролируемых показателей устанавливаются в КД и (или) НТД.

3.15. Отливки должны иметь на необрабатываемой поверхности клеймо технического контроля предприятия-изготовителя и маркировку в соответствии с требованиями КД и НТД. Знаки маркировки могут быть литыми, набивными или нанесенными несмываемой краской.

При невозможности маркирования и клеймения из-за конфигурации и размеров партия отливок должна иметь бирку с маркировкой и клеймом технического контроля с указанием количества отливок в партии. При поточно-массовом производстве отливок маркировать и клеймить их необходимо в соответствии с указанием в КД и НТД.

4. ПРИЕМКА

4.1. Отливки принимают партиями. Партию составляют из отливок одной плавки. По согласованию изготовителя с потребителем партию допускается составлять из отливок стали одной марки, одной или нескольких плавок сменной выплавки, прошедших термическую обработку в одной или нескольких садках по одинаковому режиму с обязательной регистрацией режима автоматическими приборами.

Партию отливок, термически не обработанных на предприятии-изготовителе, комплектуют из отливок одной плавки.

Для отливок, предназначенных для изделий, подлежащих приемке представителем заказчика, партия комплектуется из отливок, прошедших термическую обработку.

При поточно-массовом производстве по согласованию изготовителя с потребителем допускается составлять партию из отливок стали одной марки нескольких плавок, изготовленных по одному чертежу, выплавленных на одной шихте и прошедших термическую обработку по одному режиму. При этом в документе о качестве вместо номера плавки допускается указывать номер партии.

При мелкосерийном производстве при установившемся технологическом процессе по согласованию изготовителя с потребителем допускается составление партии из отливок стали одной марки нескольких плавок; по согласованию изготовителя с представителем заказчика допускается составлять партию из отливок стали одной марки нескольких плавок сменной выплавки.

Допускается составлять партию из отливок 1-й и 2-й группы, близких по конфигурации и размерам, изготовленных по разным чертежам из стали одной плавки, прошедших термическую обработку в одной садке.

- 4.2. Приемку отставших от партии отливок, а также отливок, исправленных заваркой с последующей термической обработкой, проводят по результатам испытаний основной партии, если режим термической обработки в обоих случаях одинаков и подтверждается записью автоматических приборов или по результатам испытаний образцов других партий той же марки стали, термически обработанных одновременно с отставшими отливками.
 - 4.3. На партию отливок должен составляться документ о качестве, содержащий:

товарный знак предприятия-изготовителя;

номер чертежа или отливки;

условное обозначение отливки;

количество и массу отливок;

номер партии;

номер плавки;

марку стали;

результаты химического анализа;

вид термической обработки;

результаты механических испытаний;

результаты дополнительных испытаний;

обозначение настоящего стандарта.

4.4. Для проверки соответствия химического состава стали отливок требованиям, указанным в табл. 1 и 2, выборку проводят по ГОСТ 7565 (разд. 2).

Допускается проверку соответствия химического состава стали отливок проводить на каждой плавке.

Допускается проверять соответствие химического состава конструкционной нелегированной и легированной стали от одной плавки в смену при установившемся технологическом процессе, постоянной шихте и выплавке стали одной марки в печах вместимостью не более 3 т — для отливок 1-й группы, вместимостью не более 500 кг — для отливок 2-й и 3-й групп.

При поточно-массовом производстве объем контроля химического состава устанавливают по КД и (или) НТД.

4.5. Для контроля соответствия отливок требованиям настоящего стандарта устанавливают приемосдаточные, периодические и типовые испытания. Вид и объем испытаний указывают в КД и (или) НТД.

Для проверки соответствия показателей механических свойств стали отливок требованиям настоящего стандарта для каждой партии отливают пробные бруски в количестве, указанном в КД и (или) НТД на отливки.

Допускается по указанию в КД и (или) НТД отливать пробные бруски от одной или нескольких плавок данной смены.

По согласованию изготовителя с потребителем допускается проводить проверку показателей механических свойств стали на отливках, отбираемых от каждой партии в соответствии с КД и (или) НТД.

Проверку соответствия показателей механических свойств стали отливок требуемой в настоящем стандарте категории прочности изготовитель проводит для каждой партии отливок 2-й и 3-й группы.

Допускается проводить оценку показателей механических свойств нелегированных конструкционных сталей методами математической статистики в соответствии с КД и НТД на отливки и по согласованию с представителем заказчика, принимающим продукцию.

При поточно-массовом производстве контроль показателей механических свойств стали проводят периодически по КД и (или) НТД.

- 4.6. Механические свойства стали отливок проверяют на одном образце при испытании на растяжение и на двух образцах при испытании на ударный изгиб.
- 4.7. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей механических свойств по нему проводят повторное испытание на удвоенном количестве образцов, взятых от пробных брусков или отливок той же партии и плавки, или отливки и пробные бруски подвергают повторной термической обработке и проводят испытания всех механических свойств.
- 4.8. Соответствие внешнего вида отливок чертежу и требованиям пп. 3.5, 3.7—3.9 проверяют на каждой отливке партии.
- 4.9. Размеры отливок, подлежащие контролю, а также вид контроля и объем выборки устанавливают в КД и (или) НТД на отливки.
- 4.10. Объем, периодичность и методы контроля металла отливок на соответствие требованиям п. 3.11 (магнитная и капиллярная дефектоскопия, просвечивание рентгеновскими или гамма-лучами и др.) устанавливают в КД и НТД.
- 4.11. Объем и периодичность испытаний дополнительных контролируемых показателей устанавливают в КД и (или) НТД.

5. МЕТОДЫ ИСПЫТАНИЙ

- 5.1. Контроль химического состава проводят по ГОСТ 12344, ГОСТ 12345, ГОСТ 12346, ГОСТ 12347, ГОСТ 12348, ГОСТ 12349, ГОСТ 12350, ГОСТ 12351, ГОСТ 12352, ГОСТ 12354, ГОСТ 12355, ГОСТ 12356, ГОСТ 12357, ГОСТ 12359, ГОСТ 12360, ГОСТ 12361, ГОСТ 28473, ГОСТ 22536.0 ГОСТ 22536.5, ГОСТ 22536.7 ГОСТ 22536.12, ГОСТ 22536.14 или другими методами, обеспечивающими точность определения, предусмотренную указанными стандартами.
- 5.2. Пробы для определения химического состава стали отливок отбирают в соответствии с ГОСТ 7565.

При выплавке стали в печах вместимостью не более 500 кг допускается пробы для определения химического состава отбирать в середине разливки плавки и использовать пробы массой 200 г и более.

При заливке одной отливки отбор проб от плавки проводят после заливки формы.

Для определения химического состава допускается использовать металл, взятый от пробного бруска для механических испытаний или от отливки.

Пробы маркируют номером плавки.

5.3. Определение механических свойств металла отливок проводят на образцах, взятых от пробных брусков, или, при отсутствии пробных брусков, от отливок.

Пробные бруски рекомендуется отливать в середине разливки каждой плавки.

П р и м е ч а н и е. По требованию представителя заказчика образцы изготавливают из отливок.

5.4. Рекомендуемые конфигурации, размеры пробных брусков и схема вырезки образцов указаны на черт. 1—6.

Для отливок, предназначенных для изделий, подлежащих приемке представителем заказчика, пробные бруски по черт. 2, 4, 5 не изготавливают.

Положение образцов для испытания на растяжение и определение ударной вязкости в пробных брусках не регламентируют и на чертежах оно указано условно.

Тип пробного бруска устанавливается предприятием-изготовителем.

При изготовлении отливок, требующих индивидуального контроля механических свойств, допускается применять приливной пробный брусок, размеры и место расположения которого устанавливают в КД и (или) НТД. Место расположения приливных брусков на отливках, предназначенных для изделий, подлежащих приемке представителем заказчика, устанавливается предприятиемизготовителем. Отделение приливных брусков от отливок может проводиться после окончательной термической обработки.

Условия изготовления пробных брусков и отливок должны быть одинаковыми. Пробные бруски или вырезанные из них заготовки для определения механических свойств должны проходить термическую обработку вместе с отливками данной партии.

Допускается отливать пробные бруски в песчаные формы (сухие или сырые) независимо от способа изготовления отливок.

Черт. 5

Черт. 6

С. 22 ГОСТ 977-88

Для толстостенных отливок допускается вырезать образцы на расстоянии не более 30 мм от внешней поверхности отливки.

- 5.5. Испытание на растяжение проводят по ГОСТ 1497 на образцах типа I—IV № 4.
- Допускается проводить испытание на образцах типа II—IV № 7.
- 5.6. Определение ударной вязкости проводят по ГОСТ 9454 на образцах типа I.
- 5.7. Результаты испытаний образцов, имеющих дефекты, связанные с условиями их отливки (раковины, посторонние включения, горячие трещины, пористость и т. д.), условиями механической обработки или условиями испытания, в расчет не принимаются. Дефектные образцы заменяют новыми, взятыми из брусков или отливок.
- 5.8. Определение твердости по Бринеллю по ГОСТ 9012, определение твердости по Роквеллу по ГОСТ 9013.
 - 5.9. Контроль внешнего вида отливок проводят по КД и (или) НТД.
 - 5.10. Определение глубины обезуглероженного слоя по ГОСТ 1763.
 - 5.11. Испытание на жаростойкость по ГОСТ 6130.
 - 5.12. Испытание на стойкость против межкристаллитной коррозии по ГОСТ 6032.

Примечание. Методы испытания сталей, не включенных в ГОСТ 6032, устанавливают в КД и (или) НТД.

- 5.13. Испытание на растяжение при повышенных температурах проводят по ГОСТ 9651, при пониженных температурах по ГОСТ 11150.
 - 5.14. Испытание длительной прочности по ГОСТ 10145.
- 5.15. Методы испытаний специальных свойств, не оговоренные в настоящем стандарте, должны быть указаны в КД и (или) НТД.

6. УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Правила упаковки, транспортирования и хранения отливок устанавливают в КД и (или) НТД на отливку.

ОБЛАСТЬ ПРИМЕНЕНИЯ КОНСТРУКЦИОННОЙ ЛЕГИРОВАННОЙ СТАЛИ

Марка стали	Область применения
20ГЛ	Диски, звездочки, зубчатые венцы, барабаны и др. детали, к которым предъявляются требования по прочности и вязкости, работающие под действием статических и динамических нагрузок
35ГЛ	Диски, звездочки, зубчатые венцы, барабаны, шкивы и др. тяжелонагруженные детали экскаваторов, крышки подшипников, цапфы
20ГСЛ 30ГСЛ	Корпусные детали гидротурбин, работающие при температуре до 450 °C Зубчатые колеса, ролики, обоймы, зубчатые венцы, рычаги, фланцы, шкивы, сектора,
	колонны, ходовые колеса и другие детали
20Г1ФЛ	Рамы, балки, корпуса и др. детали вагонов
20ФЛ 30ХГСФЛ	Литые детали вагонов, металлургического и горнодобывающего оборудования Литые детали экскаваторов
45ФЛ 32Х06Л	Износостойкие литые детали для тракторов и металлургического оборудования Кронштейны, балансиры, катки, другие ответственные детали со стенкой толщиной до 50 мм и общей массой детали до 80 кг
40ХЛ 20ХМЛ	Детали повышенной прочности, а также работающие на износ Шестерни, крестовины, втулки, зубчатые колеса, цилиндры, обоймы и другие корпусные детали, работающие при температуре до 500 °C
20ХМФЛ	Детали арматуры, корпусные детали, цилиндры, работающие при температуре до 540 °C
20ГНМФЛ 35ХМЛ	Сварные конструкции больших сечений, бандажи цементных печей Шестерни, крестовины, втулки, зубчатые колеса, печные детали и другие ответственные детали, к которым предъявляются требования высокой прочности и вязкости, работа-
30ХНМЛ	ющие под действием статических и динамических нагрузок Ответственные нагруженные детали, к которым предъявляются требования высокой прочности и достаточной вязкости, работающие под действием статических и динамических нагрузок при температуре до 400 °C
35ХГСЛ	Зубчатые колеса, звездочки, оси, валы, муфты и др. ответственные детали, от которых требуется повышенная износостойкость
35НГМЛ	Ответственные нагруженные детали, к которым предъявляются требования высокой прочности и достаточной вязкости, работающие под действием статических и динамических нагрузок
20ДХЛ	То же
08ГДНФЛ	Сварные конструкции, ответственные детали со стенкой толщиной до 700 мм, к которым предъявляются требования высокой вязкости и достаточной прочности, работающие при температурах не более 350 °C
13ХНДФТЛ	Сварные конструкции, ответственные нагруженные детали, к которым предъявляются требования достаточной прочности и вязкости, работающие под действием статических и
12ДН2ФЛ	динамических нагрузок при температуре до 500 °C Сварные конструкции, ответственные нагруженные детали, к которым предъявляются требования достаточной прочности и вязкости, работающие под действием статических и
12ДХН1МФЛ	динамических нагрузок при температуре до 400 °C Сварные конструкции, ответственные нагруженные детали, к которым предъявляются требования высокой прочности и достаточной вязкости, работающие под действием стати-
23ХГС2МФЛ	ческих и динамических нагрузок Детали ответственного назначения со стенкой толщиной до 30 мм, работающие в усло-
12Х7Г3СЛ	виях циклических и ударных нагрузок и в условиях ударно-абразивного износа Ответственные высоконагруженные детали со стенкой толщиной до 100 мм, работаю-
25Х2ГНМФЛ	щие в условиях статических и динамических нагрузок Детали ответственного назначения со стенкой толщиной до 50 мм, работающие в условиях статических и динамических нагрузок
27Х5ГСМЛ	Высоконагруженные детали ответственного назначения со стенкой толщиной до 50 мм, работающие в условиях ударных нагрузок и ударно-абразивного износа
30Х3С3ГМЛ	Высоконагруженные детали ответственного назначения со стенкой толщиной до 30 мм, к которым предъявляются требования высокой прочности и достаточной вязкости
03H12X5M3TЛ 03H12X5M3TЮЛ	Высоконагруженные детали ответственного назначения со стенкой толщиной до 200 мм То же

ОБЛАСТЬ ПРИМЕНЕНИЯ ЛЕГИРОВАННОЙ СТАЛИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

Класс стали	Марка стали	Основное свойство	Область применения
		Легированные со специальными сво	ОЙСТВАМИ
	20Х13Л	Несколько менее коррозион- ностойкая в атмосферных условиях по сравнению со сталью марки 15Х13Л	Детали, подвергающиеся ударным нагрузкам (турбинные лопатки, клапаны гидравлических прессов, арматура крекинг-установок, сегменты сопел, формы для стекла, рамы садочных окон, предметы домашнего обихода и др.), а также изделия, подвергающиеся действию относительно слабых агрессивных сред (атмосферные осадки, влажный пар, водные растворы солей органических кислот при комнатной температуре)
	08Х14НДЛ	Коррозионностойкая в морской воде и атмосферных условиях. Коррозионная стойкость выше, чем у стали марок 15Х13Л и 20Х13Л	Детали, работающие в морской воде (гребные винты и другие)
Мартен- ситный	09Х16Н4БЛ	Коррозионностойкая. Высоко- прочная при нормальной темпе- ратуре, устойчива против окисле- ния в атмосферных условиях при температуре до 500 °C	Детали повышенной прочности для авиационной, химической и других отраслей промышленности
	09Х17Н3СЛ	Коррозионностойкая сталь. Высокопрочная при нормальной температуре	Детали повышенной прочности для авиационной, химической и других отраслей промышленности, работающие в средах средней агрессивности (азотная и слабые органические кислоты, растворы солей органических и неорганических кислот)
	20Х5МЛ	Жаростойкая в горячих нефтяных средах, содержащих сернистые соединения. Жаростойкость до 600 °C	Детали арматуры нефтеперерабатывающих установок, печные двойники, корпуса насосов, др. детали, работающие в нефтяных средах под давлением при температуре до 550 °C
	20Х8ВЛ	Жаростойкая в более агрессивных сернистых средах по сравнению со сталью марки 20Х5МЛ, жаростойкость до 600 °C	Те же детали, работающие в условиях сильно сернистых нефтяных сред под давлением при температуре до 575 °C
	40Х9С2Л	Жаростойкая при температуре до 800 °C, жаропрочная при температуре до 700 °C	Детали, работающие длительное время под нагрузкой при температуре до 700 °C (клапаны моторов, колосники, крепежные детали)

Класс стали	Марка стали	Основное свойство	Область применения		
Мартен- ситный	10Х12НДЛ	Кавитационностойкая. Коррозионностойкая и эрозионностойкая и эрозионностойкая в условиях проточной воды. Сталь не склонна к отпускной хрупкости, не флокеночувствительна	Элементы сварных конструкций ра- бочих колес гидротурбин, детали гидро- турбин (лопатки, детали проточной час- ти), работающие в условиях кавитаци- онного разрушения		
	20Х12ВНМФЛ	Коррозионностойкая, жаро- прочная до 650 °C	Литые детали турбин (цилиндры, сопла, диафрагмы и арматура) с рабочей температурой до 600 °C		
Мартен- ситно-фер- ритный	15Х13Л	Коррозионностойкая в атмосферных условиях, в речной и водопроводной воде. Наивысшая коррозионная стойкость достигается термической обработкой и полировкой	Детали с повышенной пластичностью, подвергающиеся ударным нагрузкам (турбинные лопатки, клапаны гидравлических прессов, арматура крекингустановок и другие), а также изделия, подвергающиеся действию относительно слабых агрессивных сред (атмосферные осадки, влажный пар, водные растворы солей органических кислот при комнатной температуре)		
Феррит- ный	15Х25ТЛ	Коррозионностойкая, жаростойкая при температуре до 1100 °C, обладает удовлетворительной сопротивляемостью межкристаллитной коррозии	Детали, не подвергающиеся действиям постоянных и переменных нагрузок (аппаратура для дымящейся азотной или фосфорной кислот), многие детали химического машиностроения, в том числе работающие в условиях контакта с мочевиной, печная арматура, плиты и другие		
Avamayyyy	08Х15Н4ДМЛ	Коррозионностойкая в морской воде и атмосферных условиях. По сравнению с 08Х14НДЛ менее чувствительна к концентрато-	Детали, работающие в морской воде (тяжелонагруженные гребные винты ледоколов и др.)		
Аустенит- но-мартен- ситный	08Х14Н7МЛ	рам напряжений Коррозионностойкая	Детали изделий, работающих при комнатных и низких (до минус 196 °C) температурах		
	14Х18Н4Г4Л	Коррозионностойкая. Обладает большей, чем сталь марки 10X18H9Л склонностью к меж-кристаллитной коррозии	Арматура для химической промышленности, коллекторы выхлопных систем, детали печной арматуры и др.		
	12Х25Н5ТМФЛ	Коррозионностойкая, жаростойкая при температуре до 600 °C	Арматура химической промышленно- сти, детали авиационной и других отрас- лей промышленности, а также детали, работающие под высоким давлением до		
Аустенит- но-феррит- ный	16Х18Н12С4ТЮЛ	Коррозионностойкая	300 атм (30 МПа) Сварные изделия, работающие в агрессивных средах, в частности для концентрированной азотной кислоты при		
	35Х23Н7СЛ	Коррозионностойкая в сернистых средах, жаростойкая при температуре до 1000 °C	температуре 105 °C Детали трубчатых печей нефтезаводов и другие детали, работающие при температуре до 1000 °C. Рекомендуется взамен стали марки 40Х24Н12СЛ		

Класс стали	Марка стали	Основное свойство	Область применения
	40Х24Н12СЛ	Коррозионностойкая, жаростойкая при температуре до 1000 °C, жаропрочная	Детали, работающие при высокой температуре и давлении (лопатки компрессоров и сопловых аппаратов, печные конвейеры, шнеки, крепежные детали и другие)
Аустенит- но-феррит- ный	20Х20Н14С2Л	Сталь жаростойкая до 1000— 1050 °C, устойчива в науглероживающей среде	Печные конвейеры, шнеки для цементации и другие детали, работающие при высоких температурах в нагруженном состоянии
	10Х18Н3Г3Д2Л	Кавитационностойкая, имеет повышенную стойкость от песчаной эрозии по сравнению со сталью марки 10Х12НДЛ	Литые лопатки и сварные детали ра- бочей части гидротурбин, работающих при напорах, не превышающих 80 л/ч в сечениях до 300 мм
	10Х18Н9Л	Коррозионностойкая, жаростойкая до 750 °С. Не стойкая в сернистых средах. При содержании углерода в стали не более 0,07 % стойкая против межкристаллитной коррозии	Арматура для химической промышленности, коллекторы выхлопных систем, детали печной арматуры, плиты для травильных корзин и другие детали, работающие при температуре до 400 °C
	12Х18Н9ТЛ	Коррозионностойкая, жаростойкая до 750 °С, жаропрочная при температуре до 600 °С. Обладает высокой стойкостью против газовой и межкристаллитной коррозии	Арматура для химической промышленности, коллекторы выхлопных систем, детали печной арматуры, ящики и крышки для травильных корзин и другие детали
	10Х18Н11БЛ	Коррозионностойкая, жаропрочная при температуре до 800°С. Нечувствительна к межкристаллитной коррозии	Те же детали, а также детали газовых турбин разного назначения, детали турбокомпрессоров, работающих при малых нагрузках. Детали аппаратов целлюлозной, азотной, пищевой и мыловаренной промышленности
Аустенит- ный	07Х17Н16ТЛ	Коррозионностойкая. Обладает малой магнитной восприимчивостью, высокой стойкостью против газовой и межкристаллитной коррозии, хорошей обрабатываемостью резанием	Литые фасонные детали ответственного назначения, к которым предъявляются требования по малой магнитной восприимчивости, высокой коррозионной стойкости и хорошей обрабатываемости резанием
	12Х18Н12М3ТЛ	Коррозионностойкая, жаропрочная, не подвержена межкристаллитной коррозии при температуре до 800 °C	Детали, устойчивые при воздействии сернистой кипящей, фосфорной, муравьиной, уксусной и других кислот, а также детали, длительное время работающие под нагрузкой при температуре до 800 °C
	55Х18Г14С2ТЛ	Коррозионностойкая сталь, жаростойкая до температуры 950 °C. В среде сернистой кислоты нестойкая	Те же детали, которые изготовляют из стали марки 40X24H12CЛ
	15Х23Н18Л	Жаропрочная до 900 °C. При температуре 600—800 °C склонна к охрупчиванию из-за образования сигма-фазы	Детали установок для химической, нефтяной и автомобильной промышленности, газопроводы, камеры сгорания сопловых аппаратов. Детали печной арматуры, не требующие высокой механической прочности (может применяться для нагревательных элементов сопротивления)
	20Х25Н19С2Л	Коррозионностойкая, жаро- стойкая при температуре до 1100°С	Реторты для отжига, части печей и ящики для цементации

Класс стали	Марка стали	Основное свойство	Область применения
	18Х25Н19СЛ	Коррозионностойкая, кислотоупорная, жаростойкая	Детали паровых и газовых турбин, котельных установок, лопаток и венцов компрессоров и сопловых аппаратов турбин и другие детали, работающие при высоких температурах
	45Х17Г13Н3ЮЛ	Коррозионностойкая, стойкая против коррозии в сернистых средах. Жаростойкая при температуре до 900 °C, жаропрочная	Детали отпускных, закалочных и цементационных печей, подовые плиты, короба, тигли для соляных ванн и другие детали, работающие при высоких температурах. Рекомендуется как заменитель стали марки 40Х24Н12СЛ
	35Х18Н24С2Л	Коррозионностойкая, жаростойкая при температуре до 1100—1200 °C, жаропрочная	Детали, работающие при высоких температурах в сильнонагруженном состоянии (печные конвейеры, шнеки, крепежные детали)
	31Х19Н9МВБТЛ	Сталь жаропрочная	Рабочие колеса турбины турбокомпрессоров, турбинные и направляющие аппараты
	12Х18Н12БЛ	Коррозионностойкая, жаро- прочная до 650 °C	Литые детали энергоустановок с дли- тельным сроком работы при 600—650 °C и ограниченным при 700 °C
	08Х17Н34В5Т3Ю2РЛ	Жаростойкая при температуре до 1000 °C	Сопловые и рабочие лопатки газовых турбин, цельнолитые роторы и другие детали, работающие при температуре до 800 °C
A	15Х18Н22В6М2РЛ	Жаростойкая при температуре до 1000 °C, жаропрочная при температуре до 800 °C	Детали двигателей авиационной про- мышленности (рабочие и сопловые ло- патки газовых турбин и другие)
Аусте- нитный	20Х21Н46В8РЛ	Жаростойкая при температуре до 1000 °С, жаропрочная при температуре до 800 °С.	Детали двигателей авиационной про- мышленности (рабочие и сопловые ло- патки газовых турбин и другие)
	110Г13Л	Высокое сопротивление износу при одновременном воздействии высоких давлений или ударных нагрузок	Корпуса вихревых и шаровых мельниц, щеки дробилок, трамвайные и железнодорожные стрелки и крестовины, гусеничные траки, звездочки, зубья ковшей экскаваторов и другие детали, работающие на ударный износ
	110Г13ФТЛ	Высокое сопротивление ударно-абразивному изнашиванию, высокая хладостойкость	Корпуса вихревых и шаровых мельниц, щеки дробилок, трамвайные и железнодорожные стрелки и крестовины, гусеничные траки, звездочки, зубья ковшей экскаваторов и другие детали, работающие на ударный износ; детали металлургического и горнообогатительного оборудования
	130Г14ХМФАЛ	Высокое сопротивление изно- су при одновременном воздей- ствии высоких давлений или удар- ных нагрузок. Высокая стойкость против абразивного изнашивания, высокая хладостойкость. Сохраня- ет высокое значение ударной вяз- кости в упрочненном состоянии (в процессе эксплуатации деталей)	Корпуса вихревых и шаровых мельниц, щеки дробилок, трамвайные и железнодорожные стрелки и крестовины, гусеничные траки, звездочки, зубыя ковшей экскаваторов и другие детали, работающие на ударный износ
	120Г10ФЛ	Высокое сопротивление абразивному износу	Звенья гусениц тракторов и другие детали, работающие в условиях абразивного износа
	110Г13Х2БРЛ	Высокое сопротивление изно- су при одновременном воздей- ствии высоких давлений или удар- ных нагрузок	Для спецпродукции

Класс стали	Марка стали	Основное свойство	Область применения
Мартен- ситный	85Х4М5Ф2В6Л (Р6М5Л) 90Х4М4Ф2В6Л	Высокая износоустойчивость, теплостойкая Высокая износоустойчивость,	Литые заготовки для инструмента, получаемого последующим методом горячей пластической деформации (ковка, горячее выдавливание) и для литого металлорежущего инструмента (применяются для отливок 1-ой группы) То же
	(Р6М4Ф2Л)	теплостойкая	
		анные со специальными свойствами правовых отношениях между страна	
Мартен- ситно-фер- ритный	15X14НЛ 08X12Н4ГСМЛ	Коррозионностойкая в воде, влажном паре, разбавленной азотной кислоте и слабых органических кислотах. Повышенная стойкость против кавитации Коррозионностойкая в воде, влажном паре, разбавленной азотной кислоте и слабых органичес-	Применяется в договорно-правовых отношениях То же
		ких кислотах	
	12Х21Н5Г2СЛ	Коррозионностойкая на возду- хе, в азотной кислоте, очень раз- бавленной серной кислоте и сла- бых или разбавленных органичес- ких кислотах	Применяется в договорно-правовых отношениях
	12Х21Н5Г2СТЛ	Коррозионностойкая на возду- хе, в азотной кислоте, очень раз- бавленной серной кислоте и сла- бых или разбавленных органичес- ких кислотах, более стойкая про- тив межкристаллитной коррозии, чем сталь 10X18H9Л	То же
	12Х21Н5Г2СМ2Л	Коррозионностойкая в ряде неорганических и органических	»
Аусте- нитно-фер- ритный	12Х19Н7Г2САЛ	кислот Коррозионностойкая на возду- хе, в азотной кислоте, очень раз- бавленной серной кислоте и сла- бых или разбавленных органичес-	»
	12Х21Н5Г2САЛ	ких кислотах Коррозионностойкая на возду- хе, в азотной кислоте, очень раз- бавленной серной кислоте и сла- бых или разбавленных органичес-	»
	07Х18Н10Г2С2М2Л	ких кислотах Коррозионностойкая в ряде неорганических и органических кислот, более стойкая против межкристаллитной коррозии, чем сталь марки 15Х18Н10Г2С2М2Л	*
	15Х18Н10Г2С2М2Л	Коррозионностойкая в ряде неорганических и органических	»
	15Х18Н10Г2С2М2ТЛ	кислот Коррозионностойкая в ряде неорганических и органических кислот, более стойкая против межкристаллитной коррозии, чем сталь марки 15Х18Н10Г2С2М2Л	*

РЕЖИМЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНСТРУКЦИОННОЙ НЕЛЕГИРОВАННОЙ И ЛЕГИРОВАННОЙ СТАЛИ

	Режим термической обработки					
Марка стали	Нормализац	ия и отпуск	Закалка и отпуск			
марка стали	Нормализация	Отпуск	Закалка	Отпуск		
		Температура, °С				
15Л	910—930 или	_	_	_		
	910—930	670—690	_	_		
20Л	880—900 или	_	_	_		
	880—900	630—650	_	_		
:5Л	880—900	610—630	870—890	610—630		
80Л	880—900	610—630	860—880	610—630		
35Л	860—880	600—630	860—880	600—630		
-0Л	860—880	600—630	860—880	600—630		
5Л	860—880	600—630	860—880	600—630		
50Л	860—880	600—630	860—880	600—630		
20ГЛ	880—900	600—650	870—890	620—650		
35ГЛ	880—900	600—650 600—650	850—860	600-650		
20ГСЛ	870—890	570—600	830-800	000-050		
201 СЛ 80ГСЛ			920, 950	570 650		
	870—890	570—600	920—950	570—650		
20Г1ФЛ	930—970	600—650	_	_		
20ФЛ	920—960	600—650		- (70		
30ХГСФЛ	900—930	600—650	900—920	630—670		
5 ФЛ	880—920	600—650	880—920	600—650		
32Х06Л	_	=	890—910	620—660		
ЮХЛ	_	_	850—870	600—650		
20ХМЛ	880—890	600—650	_	_		
20ХМФЛ	970—1000 и	710—740	_	_		
	960—980					
20ГНМФЛ	910—930	600—650	910—930	640—660		
35ХМЛ	860—880	600 - 650	860—870	600—650		
80ХНМЛ	860—880	600—650	860—870	600—650		
35ХГСЛ	870—890	570—600	870—880	630—670		
35НГМЛ	_	_	860—880	600—650		
20ДХЛ	880—890	560-600	880—890	560—600		
8ГДНФЛ	920—950 или	_		_		
	920—950	590—650	_	_		
ЗХНДФТЛ	950—970 или	_	_	_		
371144 1 101	900—920	530—560	_	_		
12ДН2ФЛ	910—930	530—560	_	_		
24112 401	710 750	или				
	Предваритель:		Окончательн	l ag ofinaforka		
	940—950	Oopaooika	890—910	560—600		
эпунамал	940—950 940—960 или	_	070-710	500-000		
2ДХН1МФЛ		520 (20	900 010	520—630		
OVECOMAT	890—910	520—630	890—910	l e		
ЗХГС2МФЛ	Предваритель	_	Окончательная обработка			
ATTENA CIT	1000—1040	720—740	1000—1020	180—220		
2Х7Г3СЛ	Предваритель	-	Окончательн			
	940—960	650 - 720	880—900	200—250		

	Режим термической обработки			
Нормализация и отпуск		Закалка и отпуск		
Нормализация	Отпуск	Закалка	Отпуск	
Температура, °С				
Предварительная обработка 900—950 650—700		Окончательная обработка 880—920 630—700		
Предварителы 900—950		Окончательная обработка		
		Окончательна	я обработка 200—220	
Предварителы	Предварительная обработка			
Стали конструкционные легированные, применяемые в договорно-правовых				
х кинэшонто	к между странами — ч.	ленами СЭВ		
900—920	550—650			
			570—610	
		840—860	600—650	
840—880	650—720		650—720	
	— 550 (50	860-870	640—660	
			-	
900—920	550-650		620—660	
	— 550 (50		500—680 500—680	
			620-650	
		630-630	020-030	
		840—880	700—740	
			500—520	
			530—670	
			530—670	
			550—650	
860—900	550—650	830—870	550—650	
910—960	_	870—890	220—280	
870—920	620—660	680—880	620—660	
840—870	630—670	_		
880—920	600 - 700	_	_	
	Предваритель: 900—950 Предваритель: 900—950 Предваритель: 970—990 Предваритель: 970—990 Предваритель: 970—990 Предваритель: 970—990 Предваритель: 970—990 Вабо—890 870—890 870—890 840—880 — 900—930 900—920 — 850—880 820—850 850—890	Предварительная обработка 900—950 650—700 Предварительная обработка 900—950 660—680 Предварительная обработка 970—990 700—720 Предварительная обработка 970—990 700—720 Предварительная обработка 970—990 700—720 Предварительная обработка 970—990 700—720 Предварительная обработка 970—990 750—650 100—660 100—650 100—660 100—660 100—660 100—660 100—660 100—660 100—660 100—670 100—660 100—670	Предварительная обработка Окончательна 900—950 650—700 880—920 Предварительная обработка 900—950 660—680 900—950 1000—950 980—1000 980—1000 1000—1000—1000—1000—1000—1000—1	

 $^{^{1)}}$, $^{2)}$ Режимы термической обработки, обеспечивающие получение уровня механических свойств, указанного в табл. 7.

Примечания:

^{1.} Для стали марки 40ХФЛ допускается применять отпуск после нормализации.

^{2.} Для стали марки 23XГС2МФЛ приведенные режимы предварительной термической обработки могут заменяться закалкой с отпуском, отжигом или отпуском.

^{3.} Для стали марок 03H12X5M3TЛ и 03H12X5M3TЮЛ рекомендуется применять термическую обработку по режиму: гомогенизация при температуре 1180—1200 °C; закалка с 1000 °C; старение при температуре 500 °C.

РЕЖИМЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛЕГИРОВАННОЙ СТАЛИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

		1 а о л и ца 12
Класс стали	Марка стали	Рекомендуемый режим термической обработки
Мартенситный	20X5МЛ 20X8ВЛ 20X13Л 08X14НДЛ 09X16Н4БЛ ¹⁾ 09X16Н4БЛ ²⁾ 09X17Н3СЛ ¹⁾ 09X17Н3СЛ ²⁾ 09X17Н3СЛ ³⁾ 40X9С2Л 10X12НДЛ 20X12ВНМФЛ	Отжиг при 940—960 °C, нормализация при 940—960 °C, охлаждение на воздухе; отпуск при 680—720 °C, охлаждение на воздухе То же Отжиг при 940—960 °C; закалка с 1040—1060 °C, охлаждение в масле или на воздухе; отпуск при 740—760 °C, охлаждение на воздухе Закалка с 1000—1200 °C, охлаждение на воздухе; отпуск при 660—700 °C, охлаждение на воздухе; отпуск при 660—620 °C, охлаждение на воздухе; закалка с 950—1050 °C, охлаждение в масле или на воздухе; отпуск при 600—620 °C, охлаждение на воздухе; отпуск при 600—620 °C, охлаждение на воздухе; отпуск при 600—620 °C, охлаждение на воздухе Нормализация при 1040—1060 °C, охлаждение на воздухе; отпуск при 600—620 °C, охлаждение в масле; отпуск при 290—310 °C, охлаждение на воздухе Отжиг при 660—670 °C; закалка с 1040—1060 °C, охлаждение в масле; отпуск при 300—350 °C, охлаждение на воздухе Закалка с 1040—1060 °C, охлаждение в масле; отпуск при 540—560 °C, охлаждение на воздухе Отпуск при 670—690 °C, охлаждение на воздухе Без термической обработки Нормализация при 940—960 °C, охлаждение на воздухе или закалка с 950—1050 °C, охлаждение со скоростью 30 °C/ч; отпуск при 650—680 °C Отжиг, отпуск при 710—730 °C, 10—15 ч, охлаждение с печью до 200 °C; двойная нормализация: 1100 и 1050 °C, охлаждение с печью до 200 °C; двойная нормализация: 1100 и 1050 °C, охлаждение с скоростью не менее 300 °C/ч, обдувка воздухом; отпуск при 710—730 °C, 10—15 ч, охлаждение с печью до 200 °C. Мелкие отливки (толщина стенки до 5 мм) могут подвергаться одной нормализации при температуре 1070—1090 °C
Мартенситно- ферритный	15Х13Л	Отжиг при 940—960 °С; закалка с $1040-1060$ °С, охлаждение в воде, масле или на воздухе; отпуск при $740-760$ °С, охлаждение на воздухе
Ферритный	15Х25ТЛ	Без термической обработки
Аустенитно- мартенситный	08Х15Н4ДМЛ 08Х14Н7МЛ 14Х18Н4Г4Л	Закалка с 1030—1050 °C, охлаждение на воздухе. Отпуск при 600—620 °C, охлаждение на воздухе Закалка с 1090—1110 °C, нагрев в защитной среде, охлаждение на воздухе; обработка холодом при минус 50—70 °C; отпуск при 250—350 °C, охлаждение на воздухе Закалка с 1020—1070 °C, охлаждение в воде
Аустенитно- ферритный	12X25H5TMФЛ 35X23H7СЛ 40X24H12СЛ 20X20H14С2Л 16X18H12C4ГЮЛ 10X18H3Г3Д2Л	Закалка с 1140—1160 °C, охлаждение с печью до 970—990 °C, далее в масле Без термической обработки Закалка с 1040—1060 °C, охлаждение в воде, масле или на воздухе Нормализация при 1100—1150 °C, охлаждение на воздухе Закалка с 1150—1200 °C, охлаждение на воздухе Нормализация при 1070—1100 °C, охлаждение на воздухе. Отпуск первый при 790—810 °C, охлаждение до 20 °C. Отпуск второй при 590—610 °C

Класс стали	Марка стали	Рекомендуемый режим термической обработки
А устенит- ный	10Х18Н9Л 07Х17Н16ТЛ 12Х18Н9ТЛ 10Х18Н11БЛ 12Х18Н12МЗТЛ 55Х18Г14С2ТЛ 15Х23Н18Л 20Х25Н19С2Л 18Х25Н19СЛ 45Х17Г13НЗЮЛ 15Х18Н22В6М2РЛ 08Х17Н34В5ТЗЮ2РЛ 20Х21Н46В8РЛ 35Х18Н24С2Л 31Х19Н9МВБТЛ 12Х18Н12БЛ 110Г13Х2БРЛ 110Г13ФТЛ 130Г14ХМФАЛ 120Г10ФЛ 110Г13Л	Закалка с 1050—1100 °С, охлаждение в воде, масле или на воздухе Закалка с 1050—1100 °С, охлаждение в воде Закалка с 1050—1100 °С, охлаждение в воде, масле или на воздухе Закалка с 1100—1150 °С, охлаждение в воде Закалка с 1100—1150 °С, охлаждение в воде Без термической обработки Закалка с 1050—1100 °С, охлаждение в воде, масле или на воздухе Закалка с 1090—1110 °С, охлаждение в воде, масле или на воздухе Без термической обработки Старение при 790—810 °С, 12—16 ч, охлаждение на воздухе Старение при 790—810 °С, 12—16 ч, охлаждение на воздухе Старение при 890—910 °С, 5 ч, охлаждение на воздухе Старение при 890—910 °С, 5 ч, охлаждение в воде Закалка с 1140—1160 °С, охлаждение в воде Закалка с 1150—1180 °С, охлаждение в воде; старение при 700—800 °С Закалка с 1170—1190 °С, охлаждение на воздухе; двойное старение: 790—810 °С, 10 ч и 740—760 °С, 16 ч Закалка с 1050—1100 °С, охлаждение в воде
Мартен- ситный	85Х4М5Ф2В6Л (Р6М5Л) 90Х4М4Ф2В6Л (Р6М4Ф2Л)	Отжиг при 860—880 °C, выдержка, охлаждение с печью до 740—760 °C, выдержка, охлаждение с печью до 500 °C, охлаждение на воздухе Отжиг при 860—880 °C, выдержка, охлаждение с печью до 740—760 °C, выдержка, охлаждение с печью до 500 °C, охлаждение на воздухе

Стали легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами — членами СЭВ

Мартен- ситно-феррит- ный	15X14HЛ¹) 15X14HЛ²) 08X12H4ГСМЛ	Нормализация при 930—950 °C, охлаждение на воздухе; отпуск при 680—740 °C, охлаждение с печью или на воздухе Гомогенизация при 1020—1100 °C, охлаждение на воздухе; нормализация при 930—950 °C, охлаждение на воздухе; отпуск при 680—740 °C, охлаждение с печью или на воздухе Нормализация при 950—1050 °C, охлаждение на воздухе или ускоренное охлаждение на воздухе; отпуск при 570—620 °C, охлаждение с печью или на воздухе	
Аустенит- но-ферритный	12X21H5Г2СЛ 12X21H5Г2СТЛ 12X21H5Г2СМ2Л 12X19H7Г2САЛ 12X21H5Г2САЛ 07X18H10Г2С2М2Л 15X18H10Г2С2М2Л 15X18H10Г2С2М2Л	Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе Закалка с 1050—1100 °C, охлаждение в воде или на воздухе	

 $[\]overline{^{(1)},^{(2)},^{(3)}}$ Режимы термической обработки, обеспечивающие получение уровня механических свойств, указанного в табл. 8.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.12.88 № 4458
- 2. Стандарт полностью соответствует СТ СЭВ 4559—84, СТ СЭВ 4561—84 и СТ СЭВ 4563—84 в части марок
- 3. B3AMEH FOCT 977-75, FOCT 2176-77
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 1497—84	5.5	ГОСТ 12355—78	5.1
ГОСТ 1763—68	5.10	ГОСТ 12356—81	5.1
ГОСТ 3212—92	3.4	ΓΟCT 12357—84	5.1
ГОСТ 6032—89	5.12	ГОСТ 12359—99	5.1
ГОСТ 6130—71	5.11	ΓΟCT 12360—82	5.1
ГОСТ 7565—81	4.4, 5.2	ΓΟCT 12361—82	5.1
ГОСТ 9012—59	5.8	ГОСТ 22536.0—87	5.1
ГОСТ 9013—59	5.8	ГОСТ 22536.1—88	5.1
ГОСТ 9454—78	5.6	ГОСТ 22536.2—87	5.1
ГОСТ 9651—84	5.13	ГОСТ 22536.3—88	5.1
ГОСТ 10145—81	5.14	ГОСТ 22536.4—88	5.1
ΓΟCT 11150—84	5.13	ГОСТ 22536.5—87	5.1
ГОСТ 12344—2003	5.1	ГОСТ 22536.7—88	5.1
ГОСТ 12345—2001	5.1	ΓΟCT 22536.8—87	5.1
ГОСТ 12346—78	5.1	ГОСТ 22536.9—88	5.1
ГОСТ 12347—77	5.1	ГОСТ 22536.10—88	5.1
ГОСТ 12348—78	5.1	ГОСТ 22536.11—87	5.1
ГОСТ 12349—83	5.1	ГОСТ 22536.12—88	5.1
ΓΟCT 12350—78	5.1	ГОСТ 22536.14—88	5.1
ГОСТ 12351—2003	5.1	ГОСТ 26645—85	3.4
ГОСТ 12352—81	5.1	ГОСТ 28473—90	5.1
ГОСТ 12354—81	5.1		

- 5. Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 6. ПЕРЕИЗДАНИЕ. Август 2004 г.