Latches and flip flops

Set-reset (SR) latch

SR latch using NAND gates

SR latch using NOR gates

Clocked SR latch (using NAND gates)

Truth table					
Clk	S	R	Q		
1	0	0	No change		
	0	1	0		
	1	0	1		
	1	1	Invalid		
0	No change				

Chatterless switch

JK flip flop

Basic JK FF

Truth table

Clk	J	K	Q	Q New	
1	0	0		No change	
	0	1	0	0 (NC)	
	0	1	1	0 (Q'→1)	
	1	0	0	1 (Q→1)	
	1	0	1	1 (NC)	
	1	1	1	0 (Q'→1)	
	1	1	0	1 (Q→1)	
0	No change				

Master-slave JK FF

Clk	J	K	Q	Q New		
0	Master: NC; MLat → SLat					
1	Slave: NC					
$\begin{array}{c} 1 \\ \rightarrow \\ 0 \end{array}$	0	0	_	MLat → SLat		
	0	1		0 (S=0, R=1)		
	1	0		1 (S=1, R=0)		
	1	1	1	0 (S=0, R=1)		
	1	1	0	1 (S=1, R=0)		

D FF with asynchronous preset and clear

D FF with synchronous preset and clear

Residual problem with above DFF

- 1. Let the gate delay be Δ
- 2. Let *D*=0, *Clk*=1
- 3. Let D=1 and just before Δ time, Clk=0
- 4. Master latch has the invalid input combination of 00
- 5. Before valid inputs could appear at the steering gates of the master latch, Clk=0
- 6. Now, invalid input combination of 11 is presented to the slave steering gates, with Clock'=1
- 7. Slave latch has the invalid input combination of 00
- 8. Output of DFF is indeterminate

Problem may be avoided if D remains steady when Clk=1, allowed to change only when Clk=0

T FF with preset and clear

Similar to DFF, but J and K terminals tied (J=K=1)

Huffman model

Schematic diagram

Setup and hold times

Setup time

It is defined as the minimum amount of time *before* the active clock edge by which the data must be stable for it to be latched correctly; any violation in this required time causes incorrect data to be captured and is known as a setup violation

Time available for data at D2 to reach D1 after active clock edge

$$T_{\rm clk} + T_{\rm skew} - T_{\rm setup}$$

Time needed for date to reach D1 from D2 after active clock edge

$$T_{\rm c2q} + T_{\rm comb}$$

Resulting constraint

$$T_{\rm c2q} + T_{\rm comb} \le T_{\rm clk} + T_{\rm skew}$$
 - $T_{\rm setup}$

$$T_{\rm c2q} + T_{\rm comb} + T_{\rm setup} \le T_{\rm clk} + T_{\rm skew}$$

Hold time

It is defined as the minimum amount of time *after* the active clock edge by which the data must be stable for it to be latched correctly; any violation in this required time causes incorrect data to be captured and is known as a hold violation

Minimum time for data at D2 to reach D1 after active clock edge

$$T_{\rm c2q} + T_{\rm comb}$$

Time for data to remain steady at D1 after active clock edge

$$T_{\text{skeq}} + T_{\text{hold}}$$

Resulting constraint

$$T_{\rm c2q} + T_{\rm comb} \ge T_{\rm skeq} + T_{\rm hold}$$

Example for setup and hold times

- What is the minimum clock frequency?
- $T_{\text{clk}} + T_{\text{skew}} \ge T_{\text{c2q}} + T_{\text{comb}} + T_{\text{s2}}$
- $T_{\text{clk}} + 0.25 \text{ns} \ge 0.1 \text{ns} + 5 \text{ns} + 3 \text{ns}$
- $T_{\rm clk} \ge 7.85 \, \rm ns$

Positive clock edge triggered DFF

Transition table						
C	D	R	S	R_{Δ}	S_{Δ}	Q_{Δ}
0	_	_	_	1	1	Q
1	0	1	1	0	1	0
	1	1	1	1	0	1
	_	0	1	0	1	0
		1	0	1	0	1
		0	0	1	0	1

- $S_{\Delta} = (C \cdot A)' = C' + A' = C' + B \cdot S = C' + (D' + R') \cdot S$
- $R_{\Delta} = (S \cdot C \cdot B)' = S' + C' + B' = S' + C' + R \cdot D$
- As long as C = 0, R = S = 1 and the output latch retains its older value
- When C changes from 0 to 1, R and S change as follows:
 - If $\mathbf{D} = \mathbf{0}$: $R_{\Delta} = 0$, $S_{\Delta} = 1$ (from R = S = 1) and $\mathbf{Q} = \mathbf{0}$
 - If $D=1: R_A = 1, S_A = 0$ (from R = S = 1) and Q=1
 - Thereafter, R and S remain stable, while C=1, irrespective of changes in D
- The invalid state of R = S = 0 is never reached
- If some how R = S = 0, state immediately changes to R = 1 and S = 0

Types of sequential m/cs

Moore m/c

Outputs depend only on the present state

Mealy m/c

Outputs depend on the present state and also on the inputs (transducer)

Both are computationally equivalent

Shift register

4-bit bidirectional shift register with parallel I/O

OP=00: nop OP=01: left-shift OP=10: right-shift OP=11: load

Barrel shift/rotate

