Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 4

Преподаватель: Машина Екатерина Алексеевна

Выполнил: Есоян Владимир Саркисович Группа: P3208 <u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{15x}{x^4 + 4}$$

$$n = 11$$

$$x \in [-4; 0]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-4.0	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
Уi	-0.231	-0.314	-0.441	-0.642	-0.968	-1.5	-2.274	-2.964	-2.721	-1.49	0

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = -22, sxx = 61.6, sy = -13.545 sxy = 20.554

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a - 22*b = -13.545 \\ -22*a + 61.6*b = 20.554 \end{cases} \begin{cases} 11*a - 22*b = -13.545 \\ 17.6*b = -6.536 \end{cases}$$

$$\begin{cases} b = -6.536/17.6 = -0.3714 \\ 11a = -13.545 + 22 * (-0.3714) = -21.7158 \end{cases} \begin{cases} b = -0.3714 \\ a = -1.9742 \end{cases}$$

$$\varphi(x) = -1.9742 - 0.3714 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-4.0	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
yi	-0.231	-0.314	-0.441	-0.642	-0.968	-1.5	-2.274	-2.964	-2.721	-1.49	0
φ(xi)	-0.489	-0.637	-0.786	-0.934	-1.083	-1.231	-1.38	-1.529	-1.677	-1.826	-1.974
(φ (xi)-	0.067	0.104	0.119	0.085	0.013	0.072	0.799	2.059	1.09	0.113	3.897
yi)^2											

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 0.875$$

Квадратичная аппроксимация:

$$y = \frac{15x}{x^4 + 4}$$

$$n = 11$$

$$x \in [-4; 0]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-4.0	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
yi	-0.231	-0.314	-0.441	-0.642	-0.968	-1.5	-2.274	-2.964	-2.721	-1.49	0

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = -22$$
, $sxx = 61.6$, $sxxx = -193.6$, $sxxxx = 648.525$, $sy = -13.545$, $sxy = 20.554$, $sxxy = -40.96$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a - 22*b + 61.6*c = -13.545 \\ -22*a + 61.6*b - 193.6*c = 20.554 \\ 61.6*a - 193.6*b + 648.52*c = -40.96 \end{cases}$$

По методу Крамера:

$$\Delta = 11 \cdot (61.6 \cdot 648.52 - (-193.6) \cdot (-193.6)) - (-22) \cdot (-22 \cdot 648.52 - (-193.6) \cdot 61.6) + 61.6 \cdot (-22 \cdot (-193.6) - 61.6 \cdot 61.6)$$

$$= 4251.456$$

$$\Delta_1 = -4328.09, \Delta_2 = 5195.615, \Delta_3 = 1693.6128$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{-4328.09}{4251.456} \approx -1.018 \\ b = \frac{\Delta_2}{\Delta} = \frac{5195.615}{4251.456} \approx 1.222 \\ c = \frac{\Delta_3}{\Delta} = \frac{1693.6128}{4251.456} \approx 0.398 \end{cases}$$

$$\varphi(\mathbf{x}) = -1.018 + 1.222x + 0.398x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-4.0	-3.6	-3.2	-2.8	-2.4	-2.0	-1.6	-1.2	-0.8	-0.4	0
y _i	-0.231	-0.314	-0.441	-0.642	-0.968	-1.5	-2.274	-2.964	-2.721	-1.49	0
φ(xi)	0.462	-0.259	-0.853	-1.319	-1.658	-1.87	-1.954	-1.911	-1.741	-1.443	-1.018

(φ (xi)-	0.48	0.003	0.17	0.458	0.476	0.137	0.102	1.109	0.96	0.002	1.036
yi)^2											

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 0.67$$

0.67 < **0.875**, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

https://github.com/x-oc/function-approximation

Результаты выполнения программы при различных исходных данных:

Введите 'f' для ввода из файла или 't' для ввода с клавиатуры: f Введите имя файла: in1.txt
! Невозможно прочитать файл in1.txt: [Errno 2] No such file or directory: 'in1.txt'
Введите имя файла: in.txt
Куда выводим? 'f- файл, 't'- терминал: t Выбран вариант вывода в терминал.
Линейная функция:
* Функция: $f(x) = a + b * x$ * Vandahyyyyyyyy (a, b): [1,2168, 1,6854]
 * Коэффициенты (a, b): [1.2168, 1.6854] * Среднеквадратичное отклонение: σ = 0.25995
* Коэффициент детерминации: $R^2 = 0.99484$, высокая точность аппроксимации
 * Мера отклонения: S = 0.47302 * Коэффициент корреляции Пирсона: r = 0.9974189309974396, (строгая линейная
функциональная зависимость)
Полиномиальная 2-й степени функция:
* Функция: $f(x) = a + b * x + c * x ** 2$ * Коэффициенты (a, b, c): [0.3743, 2.1974, -0.0589]
* Среднеквадратичное отклонение: σ = 0.09929
* Коэффициент детерминации: $R^2 = 0.99925$, высокая точность аппроксимации
* Мера отклонения: $S = 0.06901$
Полиномиальная 3-й степени функция:
* Функция: $f(x) = a + b * x + c * x ** 2 + d * x ** 3$
* Коэффициенты (a, b, c, d): [0.6398, 1.9119, 0.0191, -0.006]
* Среднеквадратичное отклонение: $\sigma = 0.09212$ * Коэффициент детерминации: $R^2 = 0.99935$, высокая точность аппроксимации
* Мера отклонения: $S = 0.05940$
Экспоненциальная функция:
* Функция: f(x) = a * exp(b * x) * Коэффициенты (a, b): [2.7309, 0.2346]
* Среднеквадратичное отклонение: $\sigma = 1.23676$
* Коэффициент детерминации: R^2 = 0.88332, удовлетворительная точность
аппроксимации

* Мера отклонения: S = 10.70709

Логарифмическая функция:

- * Функция: f(x) = a + b * log(x)
- * Коэффициенты (a, b): [1.1989, 5.65]
- * Среднеквадратичное отклонение: $\sigma = 0.77458$
- * Коэффициент детерминации: $R^2 = 0.95423$, высокая точность аппроксимации
- * Мера отклонения: S = 4.19978

Степенная функция:

- * Функция: f(x) = a * x ** b
- * Коэффициенты (а, b): [2.5421, 0.838]
- * Среднеквадратичное отклонение: $\sigma = 0.14851$
- * Коэффициент детерминации: R^2 = 0.99832, высокая точность аппроксимации
- * Мера отклонения: S = 0.15440

Лучшая функция приближения: Полиномиальная 3-й степени

Вывод

В ходе данной работы была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов был реализован Python скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций.

Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.