Assignment #4

題目範圍: section 4.5~4.9

1. Show that the following polynomials form a basis for P_3 .

$$1+ x$$
, $1- x$, $1- x^2$, $1- x^3$

- 2. In each part, let T_A : $R^3 \rightarrow R^3$ be multiplication by A, and let u = (1, -2, -1). Find the coordinate vector of $T_A(\mathbf{u})$ relative to the basis $S = \{(1, 1, 0), (0, 1,$ 1), (1, 1, 1)} for R^3 .
 - a. (5 points) $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$
 - b. (5 points) $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
- 3. In each part, find a basis for the given subspace of R^3 , and state its dimension.
 - a. (2.5 points) The plane 3x 2y + 5z = 0.
 - b. (2.5 points) The plane x y = 0.
 - c. (2.5 points) The line x = 2t, y = -t, z = 4t.
 - d. (2.5 points) All vectors of the form (a, b, c), where b = a + c.
- 4. In each part, let T_A be multiplication by A and find the dimension of the subspace R^4 consisting of all vectors x for which $T_A(x) = 0$.

 - a. (5 points) $A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ -1 & 4 & 0 & 0 \end{bmatrix}$ b. (5 points) $A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
- 5. Consider the bases $B = \{\mathbf{u_1}, \mathbf{u_2}\}$ and $B' = \{\mathbf{u'_1}, \mathbf{u'_2}\}$ for R^2 , where

$$\mathbf{u_1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \mathbf{u'_1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \mathbf{u'_2} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

- a.(2.5 points) Find the transition matrix from B' to B.
- b.(2.5 points) Find the transition matrix from B to B'.
- c.(2.5 points) Compute the coordinate vector $[\mathbf{w}]_B$, where $\mathbf{w} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ and use
- (11) to compute $[\mathbf{w}]_{B'}$.
- d.(2.5 points) Check your work by computing $[\mathbf{w}]_{B'}$ directly.

6. If B_1 , B_2 , and B_3 are bases for R^2 , and if

$$P_{B_{1}\rightarrow B_{2}}=\begin{bmatrix}3&1\\5&2\end{bmatrix}$$
 and $P_{B_{2}\rightarrow B_{3}}=\begin{bmatrix}7&2\\4&-1\end{bmatrix}$,

then $P_{B_3 \to B_1} =$ _____.

7. Suppose that $x_1 = -1$, $x_2 = 2$, $x_3 = 4$, $x_4 = -3$ is a solution of a nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$ and that the solution set of the homogeneous system $A\mathbf{x} = \mathbf{o}$ is given by the formulas

$$x_1 = -3r + 4s$$
, $x_2 = r - s$, $x_3 = r$, $x_4 = s$

a.(5 points) Find a vector form of the general solution of Ax = 0. b.(5 points) Find a vector form of the general solution of Ax = b

8. Consider the linear systems

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 4 \\ 1 & -7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 4 \\ 1 & -7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ -1 \end{bmatrix}$$

a. (2.5 points) Find a general solution of the homogeneous system.

b.(2.5 points) Confirm that $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ is a solution of the nonhomogeneous system.

- c. (2.5 points) Use the results in parts (a) and (b) to find a general solution of the nonhomogeneous system.
- d. (2.5 points) Check your result in part (c) by solving the nonhomogeneous system directly
- 9. Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be the linear transformation defined by the formula

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2, x_2 + x_3 + x_4, x_4 + x_5)$$

- a. (5 points) Find the rank of the standard matrix for T.
- b. (5 points) Find the nullity of the standard matrix for *T*.

10.a. (2.5 points) If A is a 3×5 matrix, then the rank of A is at most _____.

Why?

- b. (2.5 points)If A is a 3 × 5 matrix, then the nullity of A is at most _____. Why?
- c. (2.5 points)If A is a 3 × 5 matrix, then the rank of A^T is at most _____. Why?
- d. (2.5 points) If A is a 3 \times 5 matrix, then the nullity of A^T is at most ____. Why?

評分標準:

每題10分,每小題配分已標注,答錯即0分。

每題都需寫心得,不單獨算分,但缺一題心得-2 point,最多-20.

繳交期限: 11/8 (週二) 00:00 遲交分數*0.8

Reference:

Transforming Coordinates

Suppose now that B and B' are bases for a finite-dimensional vector space V. Since multiplication by $P_{B\to B'}$ maps coordinate vectors relative to the basis B into coordinate vectors relative to a basis B', and $P_{B'\to B}$ maps coordinate vectors relative to B' into coordinate vectors relative to B, it follows that for every vector \mathbf{v} in V we have

$$[\mathbf{v}]_{B'} = P_{B \to B'}[\mathbf{v}]_B \tag{11}$$

$$[\mathbf{v}]_B = P_{B' \to B}[\mathbf{v}]_{B'} \tag{12}$$