Домашнее задание 6

Авласов Владислав

Задание 1

Постройте пример того, что 0-1 функция потерь может обладать локальным минимумом, не являющимся глобальным.

Функция 0-1 является ступенчатой функцией, т.е. нам достаточно взять отрезок на "ступени"со значением 1. Все точки на этом отрезке будут равны и будут являться локальными минимумами. Но все они больше, чем любые точки, принадлежащие "ступени"со значением 0.

Для примера возьмём выборку из одного вектора $\mathbf{x}=(0,1)$. И возьмём $\mathbf{w}=(0,-1)$. Он лежит левее нашей точки \mathbf{x} и неправильно её классифицирует. В окрестности $\epsilon=0.1$ все вектора \mathbf{w}' тоже неправильно классифицируют нашу точку, т.е. они локальные минимумы. Если же взять $\mathbf{w}^*=(0,1)$, то теперь классификация происходит верно и ошибка равна 0, т.е. мы нашли глобальный минимум, отличающийся от локального.

Задание 2

Покажите, что задача одновременно и выпукло-липшицево-ограничена, и выпукло-гладкоограничена.

Приведите соответствующие параметры липшицевости и гладкости.

Заданное множество является ограниченным, а функция логарифма $\log(1+\exp(\mathbf{x}))$ является выпуклой по критерию выпуклости, т.к. $f''(x)=\frac{e^x}{(e^x+1)^2}\geq 0$.

Тогда наша функция потерь тоже является выпуклой, по лемме о композиции выпуклой и линейной функций.

Липшицевость для $\log(1+\exp(\mathbf{x}))$ следует из того свойства, что $|f'(x)|=\frac{\exp(x)}{1+\exp(x)}=\frac{1}{\exp(-x)+1}\leq 1$.

Т.е. функция является 1-липшецовой. Воспользовавшись свойствами о композиции липшецевых функций и утверждением из лекции, что $f(w) = \langle w, v \rangle + b$ является $\|v\|$ -липшецовой, получим, что наша функция потерь является В-липшецовой.

Через взятие второй производной на лекции мы показали, что функция $\log(1+\exp(x))$ является также 1/4-гладкой.

По лемме о композиции гладкой и линейной функции $f(w) = \log(1 + \exp(-y\langle w, x \rangle))$ является $(\|x\|^2/4)$ -гладкой, т.е. для нашей задачи ограничим сверху и получим $B^2/4$ -гладкость. Т.е. наша задача является В-липшецовой и $B^2/4$ -гладкой. ЧТД.

Задание 3

Покажите, что эта функция потерь является также R-липшицевой.

Докажем по определению, т.е. покажем, что $||f(w_1) - f(w_2)|| \le R ||w_1 - w_2||$. Зафиксируем некоторые точки (x, y) и выберем два вектора $w_1, w_2 \in \mathbb{R}^d$. И пусть l_1, l_2 будут значениями функции потерь в этих точках.

Т.е. хотим показать $|\ell_1 - \ell_2| \le R \|w_1 - w_2\|$.

Переберём возможные варианты.

Если оба значения $y \langle \mathbf{w}_1, \mathbf{x} \rangle \geq 1$, $y \langle \mathbf{w}_2, \mathbf{x} \rangle \geq 1$, то $l_1 = l_2 = 0$ и получаем тривиальный ответ: $0 \leq R \|\mathbf{w}_1 - \mathbf{w}_2\|$.

Пусть хотя бы одно из произведений $y\langle \mathbf{w}_i, x\rangle < 1$. Пусть это будет $y\langle \mathbf{w}_1, \mathbf{x}\rangle < y\langle \mathbf{w}_2, \mathbf{x}\rangle$. Тогда раскроем модуль: $|\ell_1 - \ell_2| = \ell_1 - \ell_2$.

$$\ell_{1} - \ell_{2} = 1 - y \langle \mathbf{w}_{1}, \mathbf{x} \rangle - \max \{0, 1 - y \langle \mathbf{w}_{2}, \mathbf{x} \rangle\} \le 1 - y \langle \mathbf{w}_{1}, \mathbf{x} \rangle - 1 + y \langle \mathbf{w}_{2}, \mathbf{x} \rangle = y \langle \mathbf{w}_{2}, \mathbf{x} \rangle - y \langle \mathbf{w}_{1}, \mathbf{x} \rangle = y \langle \mathbf{w}_{2} - \mathbf{w}_{1}, \mathbf{x} \rangle \le \|\mathbf{w}_{1} - \mathbf{w}_{2}\| \|\mathbf{x}\| \le R \|\mathbf{w}_{1} - \mathbf{w}_{2}\|$$

Таким образом, мы рассмотрели все варианты и доказали R-липшицевость функции потерь. ЧТД.