MTBBSI detection & quantification serial sub-study KDHTB: analysis for manuscript

davidadambarr

23/07/2020

Contents

T	Packages and functions	1
2	Raw data read in	1
3	Initial data wrangling	2
4	Raw qualitative headline results	4
5	Raw quantitative headline results	7
6	Summary measures from quantitative data	10
7	Clinical description cohort	16
8	Agreement between methods	28
9	Ordinal scaling data	35
10	Extracting data from KDHTB cohort to use as priors in ordinal regression model	40
11	Ordinal regression model relating blood bacilliary load dynamics to mortality 11.1 Summary of model	43 47 48 50 56 57 60
12	Serial observations	67
13	Bacilli lengths	67

1 Packages and functions

2 Raw data read in

```
gxp <- bind_rows(read_csv("tidy_gxp.csv"), read_csv("tidy_gxp2.csv")) # two batches</pre>
dmn <- read_csv("DMN.csv")</pre>
mfl <- read_csv("MFL.csv")</pre>
clin <- read_csv("log.csv")</pre>
nhls <- read_csv("nhls.csv")</pre>
blds <- read_csv("baseline_blds.csv")</pre>
# Assign new PIDs which are easier to understand (specific to substudy, not contig with KDHTB)
pids <- data.frame(</pre>
 study_id = unique(gxp$study_id),
 pid = paste0("pid",
       c(9,10,11,12,13,14,1,2,15,16,17,3,18,19,
         20,21,4,5,6,22,7,8,23,24,25,26,27,28))
oc <- data.frame(
  study_id = c("pid9", "pid10", "pid11", "pid12", "pid13", "pid14",
               "pid1", "pid2", "pid15", "pid16", "pid17", "pid3",
               "pid18", "pid19", "pid20", "pid21", "pid4", "pid5",
               "pid6", "pid22", "pid7", "pid8", "pid23", "pid24",
               "pid25", "pid26", "pid27", "pid28"),
  1,1,0,0,0,1,
           0,0,0,0,1,1,
           1,0,1,1,0,0,
           0,0,0,0)
```

3 Initial data wrangling

```
#### GXP
gxp %>% select(-X1) %>%
 mutate(
   rpoB1_CT = na_if(rpoB1_CT, 0), # misssing from negative are coded 0 - fix
   rpoB2_CT = na_if(rpoB2_CT, 0),
   rpoB3_CT = na_if(rpoB3_CT, 0),
   rpoB4_CT = na_if(rpoB4_CT, 0),
   IS1081_IS6110_CT = na_if(IS1081_IS6110_CT, 0),
   result = factor(result,
                    levels = c("ERROR", "MTB NOT DETECTED", "MTB DETECTED TRACE",
                                "MTB DETECTED VERY LOW", "MTB DETECTED LOW",
                                "MTB DETECTED MEDIUM", "MTB DETECTED HIGH")),
   timepoint = round(timepoint/24, 1)) %>%
  left_join(pids, by = "study_id") %>%
  mutate(study_id = pid) %>% select(-pid) -> gxp
#### DMN
dmn %>%
 dplyr::mutate(DMN_ml =
                  round((2850/3) * (bacilli/random_fields), 0), # FOV calculation for /ml
                timepoint = round(timepoint/24, 1)
                ) %>%
```

```
left_join(pids, by = "study_id") %>%
  mutate(study_id = pid) %>%
  dplyr::select(study_id, timepoint, qualitative_result, DMN_ml) -> dmn
#### MFL
# mfl$MFL[mfl$TTP<10 & !is.na(mfl$TTP)] # these are mixed (contam) growth but MTB was recovered...
mfl %>%
 mutate(
   TTP = ifelse(TTP<10, NA, TTP),
   timepoint = round(timepoint/24, 1)
  ) %>% left_join(pids, by = "study_id") %>%
  mutate(study_id = pid) %>% select(-pid, -X10) -> mfl
#### clinical log data
clin %>%
  left_join(pids, by="study_id") %>%
  left_join(blds, by="study_id") %>%
  mutate(outcome = ifelse(outcome_12wk=="died", "Died", "Survived"),
         age =
           as.numeric(as.Date(dateRecruited,
                              format="%d/%m/%Y") -
                        as.Date(dob,
                                format="%d/%m/%Y"))/364.75
         ) %>%
  select(
   study_id = pid,
   age, sex, ARVstatus,
   cd4, creat = Cr_pp,
   pH, HCO3, BE, lactate, pO2, pCO2, glucose,
   HR, sBP, RR, sats, temp, GCS,
   walks.unaided, self.feed, wasting,
   flushed, sweating, cool.periph, cap.refil,
   ancil.muscles, nasal.flare, full.sentances,
    candida, oedema, periph.LN,
    splenomegaly, hepatomegaly, ascities, doughy.abdo, tender.abdo,
   CXR.pleff, CXR.inf.character, CXR.inf.lobes,
   CXR.inf.bilat, CXR.inf.symetrical, CXR.LN,
   liver_enlarged, liver_echogen, liver_hypoecho_lesions,
    spleen_enlarged, spleen_hypoecho_lesions,
   kidney_size, kidney_hydronephrosis, kidney_echogen, kidney_CMD_loss,
    frank_ascities, pleural_effusion, pericardial_effusion,
   adenopathy, GB_oedema, GB_sludge, CBD, veins,
   T_4, HR_4, RR_4, BP_4, GCS_4, sweat_4, flush_4,
    cool_4, lethargy_4, ambulant_4, eating_4, improved_4,
   T_24, HR_24, RR_24, BP_24, GCS_24, sweat_24, flush_24,
    cool_24, lethargy_24, ambulant_24, eating_24, improved_24,
```

```
T_48, HR_48, RR_48, BP_48, GCS_48, sweat_48, flush_48,
cool_48, lethargy_48, ambulant_48, eating_48, improved_48,
T_72, HR_72, RR_72, BP_72, GCS_72, sweat_72, flush_72,
cool_72, lethargy_72, ambulant_72, eating_72, improved_72
) -> clin
```

4 Raw qualitative headline results

```
# mung out the qualitative results by pt-sample-timepoint
# to have same levels notation across methods
  select(study_id, timepoint, type, MFL) %>%
  mutate(MFL = str_replace(MFL, "contam|lost_viability",
                           replacement = "Not available"),
         MFL = replace_na(MFL, "Not available"),
         MFL = str_replace(MFL, "MTB",
                           replacement = "M.tb detected")) %>%
  pivot_wider(id_cols = c("study_id", "timepoint"),
              names_from = "type",
              values_from = "MFL") %>%
  rename(mfl_pellet=pellet, mfl_lysate=lysate) -> qual_mfl
gxp %>%
  select(study id, timepoint, sample type, result) %>%
  filter( # these are duplicates which mess up the later pivot wider
    !(study_id==871 & timepoint==72 & result=="MTB NOT DETECTED"),
    !(study_id==872 & timepoint==24 & result=="MTB NOT DETECTED") ) %>%
  mutate(result = case when(
    str_detect(result, "ERROR") ~ "Not available",
    str_detect(result, "MTB DETECTED") ~ "M.tb detected",
    str_detect(result, "MTB NOT DETECTED") ~ "negative")) %>%
  filter(sample_type=="bldextract" | sample_type=="urine") %>%
  pivot_wider(id_cols = c("study_id", "timepoint"),
              names_from = "sample_type",
              values_from = "result") %>%
# mutate(bldextract = ifelse(
   is.na(bldextract) & !is.na(buffy), buffy, bldextract # a single case
# )) %>%
  select(study_id, timepoint,
         bld_xpert = bldextract, urn_xpert = urine) -> qual_gxp
dmn %>%
  mutate(qualitative_result =
           str_replace(qualitative_result, "positive",
                       replacement = "M.tb detected"),
         qualitative_result =
           str_replace(qualitative_result,
                       "non-quantifiable M.tb detected",
                       replacement = "negative"),
         qualitative_result =
```

```
replace_na(qualitative_result, "Not available")) %>%
  select(study_id, timepoint,
         dmn_micro = qualitative_result) -> qual_dmn
qual mfl %>%
  full_join(qual_gxp, by=c("study_id", "timepoint")) %>%
  full join(qual dmn, by=c("study id", "timepoint")) %>%
 filter(timepoint!=96) -> qual
rm(qual_dmn, qual_gxp, qual_mfl)
qual %>%
  mutate(
    study_id = factor(study_id, levels = paste0("pid", 1:28)),
   mfl_pellet = ifelse(is.na(mfl_pellet), "Not available", mfl_pellet),
   mfl_lysate = ifelse(is.na(mfl_lysate), "Not available", mfl_lysate),
   bld_xpert = ifelse(is.na(bld_xpert), "Not available", bld_xpert),
   urn_xpert = ifelse(is.na(urn_xpert), "Not available", urn_xpert),
   dmn_micro = ifelse(is.na(dmn_micro), "Not available", dmn_micro),
   mfl_culture = case_when(
     mfl_pellet=="M.tb detected" |
       mfl_lysate=="M.tb detected" ~ "M.tb detected",
     mfl pellet=="Not available" &
       mfl_lysate=="Not available" ~ "Not available",
     mfl pellet=="negative" &
       mfl_lysate=="negative" ~ "negative",
     mfl_pellet=="Not available" &
       mfl_lysate=="negative" ~ "negative",
     mfl_pellet=="negative" &
       mfl_lysate=="Not available" ~ "negative"
   )
  ) %>%
  select(-mfl_pellet, -mfl_lysate) %>%
  filter(timepoint < 4) -> qual
qual %>%
  pivot_longer(cols = 3:6,
              names_to = "assay",
              values_to = "Result") %>%
  mutate(assay = factor(assay,
                        levels = c("mfl_culture", "dmn_micro",
                                   "bld_xpert", "urn_xpert"),
                        labels = c("MFL blood culture", "DMN microscopy",
                                   "Blood Xpert-ultra", "Urine Xpert"))) %>%
  ggplot(aes(as.factor(timepoint), assay)) +
  geom_tile(aes(fill=Result), colour="white", alpha=0.8) +
  scale_fill_manual(values=c(viridis(8, option="E")[c(2,6)], "grey80")) +
  theme_minimal() +
  facet_wrap(~study_id, ncol = 7) +
  theme(legend.position = "top",
```

```
panel.spacing = unit(0, "lines"),
        axis.text.x = element_text(size=7, angle=90, hjust=1, vjust=0.5)) +
  ylab("") + xlab("Time from start treatment (days)") -> g_tileplot
qual %>%
  pivot_longer(3:6, names_to = "assay", values_to = "result") %>%
  group by (timepoint, assay) %>%
  count(result) %>%
  pivot_wider(names_from = result, values_from = n) %>%
  rename_all(list(~make.names(.))) %>%
  rename_with( ~ tolower(gsub(".", "_", .x, fixed = TRUE))) %>%
  mutate(
   valid_tests = sum(m_tb_detected, negative, na.rm = T),
   proportion_positive = m_tb_detected / valid_tests
  ) %>%
  select(timepoint, assay, valid_tests, proportion_positive) -> qual_km_df
qual_km_df %>%
  select(timepoint, valid_tests) %>%
  mutate(valid_tests = ifelse(valid_tests==2, 0, valid_tests)) %>%
  pivot_wider(names_from = timepoint,
              values_from = valid_tests) %>%
  mutate(assay = factor(assay,
                        levels = c("urn_xpert", "dmn_micro",
                                   "bld xpert", "mfl culture"),
                        labels = c("Urine Xpert", "DMN microscopy",
                                   "Blood Xpert-ultra", "MFL blood culture" ))) -> atrisk_table
atrisk_table <- as.data.frame(atrisk_table)</pre>
rownames(atrisk_table) <- atrisk_table$assay</pre>
ggtexttable(atrisk_table[,2:6], theme = ttheme("light")) %>%
 tab_add_title("Number valid tests at timepoint:") -> t1
qual_km_df %>%
  filter(!(timepoint==0.2 & assay=="urn_xpert")) %>%
  mutate(assay = factor(assay,
                        levels = c("urn_xpert", "dmn_micro",
                                   "bld_xpert", "mfl_culture" ),
                        labels = c("Urine Xpert", "DMN\nmicroscopy",
                                    "Blood\nXpert-ultra", "MFL\nblood culture" ))) %>%
  ggplot(aes(timepoint, proportion_positive, colour=assay)) +
  geom_point() +
  geom line() +
  theme_dab() +
  ylim(0,1) +
  scale_colour_manual(
   values = c( "#f68f46ff", "#1F968BFF",
                "#453781FF", "#b8627dff" )) +
  ylab("Proportion\ntests positive") +
```


Figure 1: MTB identified by assay and time point

5 Raw quantitative headline results

```
# MFL quant results to longer format with preseved sample types pellet v lysate
mfl %>%
   select(study_id, timepoint, type, TTP, MFL) %>%
   mutate(mfl = str_replace(MFL, "contam|lost_viability", replacement = "Not available"),
        mfl = replace_na(mfl, "Not available"),
        mfl = str_replace(mfl, "MTB", replacement = "M.tb detected"),
        mfl = ifelse( is.na(TTP) & MFL == "MTB",
```

```
"Not available", mfl)) %>% select(-MFL) %>%
  pivot_wider(id_cols = c("study_id", "timepoint"),
              names_from = "type",
              values_from = c("mfl", "TTP")) %>%
  rename_all(tolower) -> quant_mfl
# bld extract and urine CT values
gxp %>%
  select(study_id, timepoint, sample_type, result,
         matches("rpoB._CT"), IS1081_IS6110_CT) %>%
  filter(
    # these are accidental duplicates which mess up the later pivot wider
    !(study_id=="pid3" & timepoint==72 & result=="MTB NOT DETECTED"),
    !(study_id=="pid18" & timepoint==24 & result=="MTB NOT DETECTED"),
    # not needed for main quant analysis: plasma & buffy samples
    (sample_type == "bldextract" | sample_type == "urine"),
    # 2 pts with (unscheduled, not protocol) TP 96h samples - remove
   timepoint <= 3
   ) %>%
  mutate(result = case_when(
    str_detect(result, "ERROR") ~ "Not available",
    str_detect(result, "MTB DETECTED") ~ "M.tb detected",
    str detect(result, "MTB NOT DETECTED") ~ "negative")) %>%
  rename(rpoB1=rpoB1_CT, rpoB2=rpoB2_CT, rpoB3=rpoB3_CT,
         rpoB4=rpoB4 CT, IS=IS1081 IS6110 CT) %>%
  pivot_longer(cols = c("rpoB1", "rpoB2", "rpoB3", "rpoB4", "IS"),
               names_to = "probe", values_to = "Ct" ) -> quant_gxp
### DMN
dmn %>%
 mutate(qualitative_result =
           str_replace(qualitative_result, "positive", replacement = "M.tb detected"),
         qualitative_result =
           replace_na(qualitative_result, "Not available")) %>%
 select(study_id, timepoint, dmn_micro = qualitative_result, dmn_ml=DMN_ml) -> quant_dmn
# negatives are O, missing are NA
quant_gxp %>%
  mutate(study_id = factor(study_id,
                           levels = paste0("pid", 1:28)),
         sample = case_when(
           sample_type=="bldextract" ~ "Blood",
           sample_type=="urine" ~ "Urine"
         )) %>%
  drop_na() %>%
  ggplot(aes(timepoint, Ct)) +
  geom_point(aes(shape=probe, colour=sample)) +
  geom_line(aes(
   group = interaction(study_id, sample, probe),
```

```
colour = sample)) +
  facet_wrap(~study_id, nrow=7, drop = FALSE) +
  theme_minimal() +
  scale_colour_manual(values = c("#b8627dff", "grey")) +
 theme(legend.position = "bottom",
         legend.box="vertical", legend.margin=margin()) +
  ggtitle("Xpert-ultra") +
  ylab("Xpert-ultra Ct value") +
  xlab("Time from start treatment (days)") +
  guides(fill=guide legend(nrow=2,byrow=TRUE)) -> g1
quant_mfl %>%
  select(-mfl_lysate, -mfl_pellet) %>%
  pivot_longer(cols = c("ttp_pellet", "ttp_lysate"),
              names_to = "sample_type", values_to = "TTP") %>%
  mutate(study_id = factor(study_id,
                           levels = paste0("pid", 1:28)),
         sample = str_replace(sample_type, pattern = "ttp_", replacement = "")) %>%
  drop_na() %>%
  ggplot(aes(timepoint, TTP)) +
  geom_point(aes(colour=sample)) +
  geom_line(aes(
    group = interaction(study_id, sample),
    colour = sample)) +
  facet_wrap(~study_id, nrow=7, drop = FALSE) +
  theme minimal() +
  scale_colour_manual(values = c("#eb8055ff", "#7e4e90ff")) +
# theme(legend.position = "bottom",
         legend.box="vertical", legend.margin=margin()) +
  ggtitle("Myco/F lytic blood culture") +
  ylab("Time to positivity (TTP)") +
  xlab("Time from start treatment (days)") -> g2
quant_dmn %>%
  mutate(study_id = factor(study_id,
                           levels = paste0("pid", 1:28)),
         Result = case_when(
           dmn_micro=="M.tb detected" ~ "M.tb \ndetected",
           dmn_micro=="negative" ~ "zero \ncount",
           dmn_micro=="non-quantifiable M.tb detected" ~ "zero \ncount"
         )) %>%
  drop na() %>%
  ggplot(aes(timepoint, log(dmn_ml))) +
  geom_point(aes(colour = Result)) +
  geom_line(colour = "#13306dff") +
  facet_wrap(~study_id, nrow=7, drop = FALSE) +
  theme_minimal() +
  scale_colour_manual(values = c("#13306dff", "grey")) +
  ggtitle("DMN-tre microscopy count") +
  ylab("Log count per ml") +
  xlab("Time from start treatment (days)") -> g3
```


Figure 2: MTBBSI quantification by time and pt: blood Xpert-ultra raw Ct values

g2 g3

6 Summary measures from quantitative data

Figure 3: MTBBSI quantification by time and pt: MFL bllod culture raw TTP values

Figure 4: MTBBSI quantification by time and pt: raw log DMN-tre counts per mL

```
# filter and store urine results
quant_gxp %>%
 filter(sample_type == "urine") -> quant_gxp_urine
#### GXP - make summary measure across all probes - based on mean rpoB Ct
quant_gxp %>%
  filter(sample_type == "bldextract") %>%
  select(-sample_type, -result) %>%
  pivot_wider(id_cols = c("study_id", "timepoint"),
              names_from = "probe", values_from = "Ct") %>%
  mutate(
  # min CT from rpob probes as summary measure
   mean_rpob_ct = pmap_dbl(
      list(rpoB1, rpoB2, rpoB3, rpoB4),
      ~mean(c(...), na.rm=TRUE))) -> quant_gxp
# impute the trace positive samples' CT value
quant_gxp$IS_log = log(quant_gxp$IS)
fit <- lm(mean_rpob_ct ~ rcs(IS_log,3),</pre>
          # in data excluding a suspect high leverage outlier
          data=quant_gxp[quant_gxp$IS<26,])</pre>
ar2 = paste0(
  "RCS model\n aR2=",
 round(summary(fit)$adj.r.squared, 2)
quant_gxp %>%
  add_predictions(fit) %>%
  dplyr::mutate(
   pred_mean_rpoB_CT = pred,
    # imuted_ct is mean_rpob_ct, or predicted if trace, or NA if all probes negative
    imputed_ct = case_when(
      !is.na(mean_rpob_ct) ~ mean_rpob_ct,
      is.na(mean_rpob_ct) & !is.na(pred_mean_rpoB_CT) ~ pred_mean_rpoB_CT
                )) -> quant gxp
quant_gxp %>%
  ggplot(aes(IS, imputed_ct)) +
  geom_point(aes(colour=is.na(mean_rpob_ct)), alpha=0.6) +
  geom_line(aes(IS, pred_mean_rpoB_CT)) +
 theme_minimal() + scale_colour_ptol() +
  theme(legend.position = "none") +
 ylab("Mean rpoB ct\n (imputed values shown)") +
  annotate("text", x = 25, y=22, label=ar2) -> g_imputed
# note non constant residual variance...
### MFL - make summary measure which deals with the difference
# between pellet and lysate, "scaling" pellet ttp to lysate ttp scale
fit <- lm(ttp_lysate ~ ttp_pellet, data=quant_mfl)</pre>
quant_mfl %>%
 add predictions(fit) %>%
    ggplot(aes(ttp_pellet, ttp_lysate)) +
```

```
geom_point() +
  geom_smooth() +
  geom_abline(slope=1, intercept = 0) +
  geom_line(aes(ttp_pellet, pred), colour="red") -> g_scaled_ttp
quant_mfl %>%
  add_predictions(fit) %>%
  dplyr::mutate(
   ttp_pellet = pred
  ) %>%
  select(study_id, timepoint, ttp_lysate, ttp_pellet) %>%
  filter(
    is.na(ttp_lysate) == FALSE | is.na(ttp_pellet) == FALSE) %>%
 mutate(
   ttp = pmap_dbl(
   list(ttp_lysate, ttp_pellet),
    ~mean(c(...), na.rm=TRUE))) -> quant_mfl
quant_dmn %>%
  mutate(dmn_ml_log = log(dmn_ml + 1)) %>%
  select(study_id, timepoint, dmn_ml_log) %>%
 left_join(
   quant_gxp %>%
      select(study_id, timepoint,
             mean_rpoB_Ct = imputed_ct),
   by = c("study_id", "timepoint")
  ) %>%
 left_join(
   quant_mfl %>%
      select(study_id, timepoint, ttp),
   by = c("study_id", "timepoint")
  ) -> quant_df
### urine ct values
quant_gxp_urine %>%
  select(-sample_type, -result) %>%
 pivot_wider(id_cols = c("study_id", "timepoint"),
              names_from = "probe", values_from = "Ct") %>%
 mutate(
  # mean CT from rpob probes as summary measure
   mean_rpob_ct = pmap_dbl(
      list(rpoB1, rpoB2, rpoB3, rpoB4),
      ~mean(c(...), na.rm=TRUE))) -> quant_gxp_urine
# impute the trace positive samples' CT value
quant_gxp_urine$IS_log = log(quant_gxp_urine$IS)
fit <- lm(mean_rpob_ct ~ rcs(IS_log,3),</pre>
          data=quant_gxp_urine)
```

```
ar2 = paste0(
  "RCS model\n aR2=",
  round(summary(fit)$adj.r.squared, 2)
quant_gxp_urine %>%
  add_predictions(fit) %>%
  dplyr::mutate(
   pred mean rpoB CT = pred,
    # imuted_ct is mean_rpob_ct, or predicted if trace, or NA if all probes negative
    imputed_ct = case_when(
      !is.na(mean_rpob_ct) ~ mean_rpob_ct,
      is.na(mean_rpob_ct) & !is.na(pred_mean_rpoB_CT) ~ pred_mean_rpoB_CT
                )) -> quant_gxp_urine
quant_gxp_urine %>%
  ggplot(aes(IS, imputed_ct)) +
  geom_point(aes(colour=is.na(mean_rpob_ct)), alpha=0.6) +
  geom_line(aes(IS, pred_mean_rpoB_CT)) +
  theme_minimal() + scale_colour_ptol() +
  theme(legend.position = "none") +
  ylab("Mean rpoB ct\n (imputed values shown)") +
  annotate("text", x = 22, y=22, label=ar2) -> g_imputed_urine
quant_gxp_urine %>%
      select(study id, timepoint,
             urine_mean_rpoB_Ct = imputed_ct) -> quant_gxp_urine
quant_df %>% select(study_id, timepoint,
                     dmn_ml_log,
                     blood_mean_rpoB_Ct = mean_rpoB_Ct,
                     ttp) %>%
 left_join(
   quant_gxp_urine,
   by = c("study_id", "timepoint")
  pivot_longer(3:6, names_to = "assay") %>%
  mutate(
    assay = factor(assay,
                   levels = c("ttp",
                              "dmn_ml_log",
                              "blood_mean_rpoB_Ct",
                              "urine mean rpoB Ct"),
                   labels = c("MFL blood culture TTP",
                              "Log DMN-tre bacilli/ml",
                              "Blood Xpert-ultra mean rpoB Ct",
                              "Urine Xpert mean rpoB Ct"))
  ) %>%
  drop_na(value) %>%
 ggplot(
   aes(timepoint, value, group=study_id, colour=assay)
  geom_quasirandom(alpha=0.5) +
```


Figure 5: Imputation of trace positive mean rpoB Ct values: A blood; B urine

g_raw_quant

7 Clinical description cohort

With focus on relating clinical phenotype to MTBBSI bacilliary load and outcome.

```
# make binary versions of clinical signs to facilitate cluster them
clin %>%
  transmute(
    study_id=study_id,
    tachycardia = as.numeric(HR>median(HR)),
    hypotension = as.numeric(sBP<90),
    tachyopnea = as.numeric(RR>median(RR)),
    hypoxia = as.numeric(sats <94),
    pyrexia = as.numeric(temp>37.5),
    reduced_GCS = as.numeric(GCS<15),</pre>
```


Figure 6: Quant results summarised to a single measure per assay

```
non_mobile = ifelse(walks.unaided==0, 1, 0),
    feeding_dependent = ifelse(self.feed==0,1,0),
    wasting = wasting,
    flushed = flushed,
    sweating = sweating,
    cool_periph = cool.periph,
   delayed_cap_refill = as.numeric(cap.refil>2),
   ancil muscles = ancil.muscles,
   nasal_flare = nasal.flare,
   not_full_senatnces = ifelse(full.sentances==0,1,0),
    candida = candida,
   oedema = oedema,
   adenopthy_periph = periph.LN,
   doughy_abdo = doughy.abdo,
   tender_abdo = tender.abdo,
   bilat_infil_CXR = CXR.inf.bilat,
    adenopathy_mediastinal = CXR.LN,
    liver_enlarged = liver_enlarged,
   liver_echogen = liver_echogen,
   spleen_enlarged = spleen_enlarged,
   spleen_hypoecho_lesions = spleen_hypoecho_lesions,
   kidney_echogen = as.numeric(ifelse(kidney_echogen=="normal", 0, 1)),
    adenopathy_abdo = ifelse(adenopathy=="no", 0, 1)
  ) -> baseline_signs
# clustering algorithm requires complete cases:
set.seed(1)
imp_blsigns <- mice(baseline_signs, m=1)</pre>
##
##
   iter imp variable
        1 liver_echogen* spleen_hypoecho_lesions*
                                                      kidney_echogen*
##
                                                                       adenopathy_abdo*
    1
##
       1 liver_echogen* spleen_hypoecho_lesions*
                                                      kidney_echogen*
                                                                       adenopathy_abdo*
        1 liver_echogen* spleen_hypoecho_lesions*
##
                                                      kidney_echogen*
                                                                       adenopathy_abdo*
     3
##
        1 liver_echogen*
                            spleen_hypoecho_lesions*
                                                      kidney_echogen*
                                                                       adenopathy_abdo*
##
         1 liver_echogen* spleen_hypoecho_lesions*
                                                      kidney_echogen*
                                                                       adenopathy_abdo*
   * Please inspect the loggedEvents
baseline_signs <- mice::complete(imp_blsigns)</pre>
quant_df %>%
 pivot_wider(id_cols = "study_id",
              names_from = "timepoint",
              values_from = c("dmn_ml_log", "mean_rpoB_Ct", "ttp")) -> quant_df_wide
set.seed(1)
imp_quantdf <- mice(quant_df_wide, m=1)</pre>
##
##
   iter imp variable
##
         1 dmn_ml_log_0* dmn_ml_log_0.2* dmn_ml_log_1* dmn_ml_log_2* dmn_ml_log_3* mean_rpoB_Ct_0
    1
         1 dmn_ml_log_0* dmn_ml_log_0.2* dmn_ml_log_1* dmn_ml_log_2* dmn_ml_log_3* mean_rpoB_Ct_0
##
```

```
##
       1 dmn_ml_log_0* dmn_ml_log_0.2* dmn_ml_log_1* dmn_ml_log_2* dmn_ml_log_3* mean_rpoB_Ct_0
##
        1 dmn_ml_log_0* dmn_ml_log_0.2* dmn_ml_log_1* dmn_ml_log_2* dmn_ml_log_3*
                                                                                           mean_rpoB_Ct_0
                                                                                           mean_rpoB_Ct_0
##
         1 dmn_ml_log_0* dmn_ml_log_0.2* dmn_ml_log_1* dmn_ml_log_2* dmn_ml_log_3*
   * Please inspect the loggedEvents
quant_df_wide <- mice::complete(imp_quantdf)</pre>
quant_df_wide %>%
  select(study_id, ends_with("_0")) -> quant_df_wide
baseline_signs %>%
  left_join(
    quant_df_wide,
    by = "study_id"
  ) %>%
  left_join(
    oc,
    by="study_id"
  ) %>%
  mutate(outcome = ifelse(died==1, "Died", "Survived"))-> baseline_signs
blsdf <- baseline_signs[, 2:27]</pre>
# heat map with clustering:
bls clusters <- data.frame(</pre>
  study_id = paste0(
    "pid",
    c(7,25,10,2,5,27,8,16,3,4,
      24,26,21,6,
      22,14,1,9,11,18,28,15,17,13,20,12,19,23)
  ),
  cluster = c(
   rep("A", 10),
    rep("B", 18) ) # added retrospectively so can easier add to figure
  )
rownames(blsdf) <- baseline_signs$study_id</pre>
rowanno <- data.frame(</pre>
  study_id = baseline_signs$study_id,
  outcome = baseline_signs$outcome,
  mean_rpoB_Ct = baseline_signs$mean_rpoB_Ct_0,
  dmn_ml_log = baseline_signs$dmn_ml_log_0,
 MFL_TTP = baseline_signs$ttp_0
) %>%
  left_join(bls_clusters, by = "study_id") %>%
  select(-study_id)
rownames(rowanno) <- baseline_signs$study_id</pre>
set.seed(221214)
grid.grabExpr(
  pheatmap(blsdf, legend = FALSE,
           annotation_row = rowanno,
```



```
as_ggplot(bls_hm) -> g_bls_hm

# complimentary MCA:

bls <- names(baseline_signs[2:27])
baseline_signs %>%
  mutate(
    across(all_of(bls), as.factor),
    outcome = as.factor(outcome)
  ) %>%
  select(-died) -> baseline_signs
rownames(baseline_signs) <- baseline_signs$study_id
baseline_signs <- select(baseline_signs, -study_id)</pre>
```

```
mca1 <- MCA(baseline_signs, quali.sup = 30, quanti.sup = c(27:29))</pre>
mca1$ind$coord %>% as tibble() %>% select(`Dim 1`, `Dim 2`) %>%
  mutate(
    study_id = rownames(baseline_signs),
    mean_rpoB_Ct = baseline_signs$mean_rpoB_Ct_0,
    dmn_ml_log = baseline_signs$dmn_ml_log_0,
   MFL TTP = baseline signs$ttp 0,
    outcome = baseline_signs$outcome
  ) %>%
  left_join(bls_clusters, by="study_id") -> mca1_coord
set.seed(221214)
mca1_coord %>%
  ggplot(aes(`Dim 1`, `Dim 2`, fill=outcome, shape=cluster, colour=cluster)) +
  xlim(-1, 1) + ylim(-1, 1) +
  geom_vline(xintercept = 0, colour="grey") +
  geom_hline(yintercept = 0, colour="grey") +
  geom_point(size=3, alpha=0.5,
             position = position_jitter(width=0.05, height=0.05)) +
  theme dab() +
  scale_colour_manual(values = c("#55C667FF","#39568CFF")) +
  scale shape manual(values = c(24,21)) +
  scale_fill_manual(
    values = c(
      viridis_pal(option="E")(8)[8],
      viridis_pal(option="E")(8)[1]
    )) +
  guides(fill = guide_legend(override.aes=list(shape=22))) +
  xlab("MCA Clinical signs Dim 1") +
  ylab("MCA clinical signs Dim 2") -> g_mca1_pts
mca1$quanti.sup$coord %>%
  as_tibble() %>%
  select(`Dim 1`, `Dim 2`) %>%
  bind rows(
    mca1$quali.sup$coord %>%
    as tibble() %>%
   select(`Dim 1`, `Dim 2`)
  ) %>%
  mutate(
    var = c("log\nDMN/ml", "Mean\nrpoB Ct", "MFL\nTTP", "Died", "Survived"),
    x = c(-0.3, -0.25, -0.9, 0.55, -0.35),
    y = c(0.65, -0.3, -0.40, 0.85, -0.2),
    sup_var_type = c("bacilli_burden", "bacilli_burden", "bacilli_burden",
                     "outcome", "outcome")) -> mca1_sup_loading
ggplot(mca1_sup_loading %>% filter(var!="Survived"),
       aes(colour=sup_var_type)) +
  xlim(-1, 1) + ylim(-1, 1) +
  geom_vline(xintercept = 0, colour="grey") +
```

```
geom_hline(yintercept = 0, colour="grey") +
  geom_text(
   mapping = aes(x = x,
                  y = y,
                  label = var),
   hjust=0, vjust=1, size=3.5) +
  geom_segment(
   mapping = aes(x = 0, xend = `Dim 1`,
                  y = 0, yend = `Dim 2`),
   size=1.
   arrow = arrow(length = unit(0.3, "cm"))) +
  theme_minimal() +
  xlab("Loadings on MCA Dim 1") +
  ylab("Loadings on MCA Dim 2") +
  scale_colour_manual(values = c("#042333ff", "#a65c85ff")) +
  theme(legend.position = "none") -> g_mca1_loadings
mca1_projn <- data.frame(</pre>
  xend = c(
  cor(mca1_coord$mean_rpoB_Ct, mca1_coord$`Dim 1`),
  cor(mca1_coord$dmn_ml_log, mca1_coord$`Dim 1`),
  cor(mca1_coord$MFL_TTP, mca1_coord$`Dim 1`)),
  yend = c(
  cor(mca1_coord$mean_rpoB_Ct, mca1_coord$`Dim 2`),
  cor(mca1_coord$dmn_ml_log, mca1_coord$`Dim 2`),
  cor(mca1_coord$MFL_TTP, mca1_coord$`Dim 2`)),
 label = c(
   "Mean\nrpoB Ct", "log\nDMN-tre", "MFL\nTTP"),
 x = c(-0.35, 0.25, -0.9),
 y = c(-0.4, 0.8, -0.1)
mca1_projn %>%
  ggplot(aes(colour=label)) +
  xlim(-1,1) + ylim(-1,1) +
  geom_vline(xintercept = 0, colour="grey") +
  geom_hline(yintercept = 0, colour="grey") +
  geom_segment(
   mapping = aes(x = 0, xend = xend,
                  y = 0, yend = yend),
   size=1,
   arrow = arrow(length = unit(0.2, "cm"))) +
  geom text(
   mapping = aes(x = x,
                  y = y,
                  label = label),
   hjust=0, vjust=1, size=3.5) +
  theme_dab() + theme(legend.position = "none") +
  scale_colour_manual(values = c( "#1F968BFF", "#453781FF", "#b8627dff" )) +
  xlab("Correlation MCA Dim 1") +
  ylab("Correlation MCA Dim 2") -> g_mca1_cor
```


Figure 7: Baseline clinical signs dimension reduction: hclust heatmap

```
g_mca1_cor + g_mca1_loadings + g_mca1_pts +
    plot_annotation(tag_levels = "A") +
    plot_layout(nrow=1)

#### bloods PCA

blds <- read_csv("baseline_blds.csv")

blds %>%
```


Figure 8: Baseline clinical signs dimension reduction: MCA

```
select(-X1) %>%
  left_join(pids, by="study_id") %>%
  mutate(study_id = pid) -> blds
blds %>%
  select(study_id,
         cd4, wcc, platelets, MPV,
         Hb, Hct, MCH, MCHC, MCV, rcc, RDW,
         Na, K, urea,
         AST, ALT, ALP = `alk phos`, GGT, Tbil, Cbil) %>%
  left_join(
    clin %>%
      select(study_id,
             pH, HCO3, BE, lactate, pO2, pCO2, glucose, creat),
    by = "study id"
  ) -> blds
blds %>%
  select(study_id,
         cd4, Hb, platelets, MPV, lactate, AST,
         wcc, Na, urea, creat, glucose, MCHC) %>%
  left_join(
    mca1_coord %>% select(study_id, outcome),
    by = "study_id"
  ) %>%
  pivot_longer(2:13, names_to = "variable") %>%
  ggplot(
    aes(value, fill=outcome)
  geom_density(alpha=0.5, adjust=1.8) +
  facet wrap(~variable, scales= "free", nrow=4) +
  theme_dab() +
  scale_fill_manual(
    values = c(
```

```
viridis_pal(option="E")(8)[8],
      viridis_pal(option="E")(8)[1]
   )) +
  xlab("") +
  theme(legend.position = "bottom",
       panel.spacing = unit(0, "lines"),
       axis.text.x = element_text(size=8),
       axis.text.y = element_text(size=8)) -> g_blds_dist
blds %>%
 transmute(
   study id = study id,
   cd4 = \log(cd4+1),
   wcc = log(wcc),
   platelets = log(platelets),
   MPV = log(MPV),
   Hb = Hb,
   Hct = Hct,
   MCH = MCH
   MCHC = MCHC,
   MCV = MCV,
   rcc = rcc,
   RDW = RDW,
   wcc = sqrt(wcc),
   Na = Na,
   K = K,
   urea = log(urea),
   creat = log(creat),
   AST = log(AST),
   ALT = log(ALT),
   ALP = log(ALP),
   GGT = log(GGT),
   u_bil = log(Tbil - Cbil),
   c_bil = log(Cbil),
   pH = pH,
   HCO3 = HCO3,
   BE = BE,
   lactate = log(lactate),
   pCO2 = pCO2,
   glucose = log(glucose)
  ) %>%
   mutate_at(c(2:10), funs(c(scale(.)))) -> blds_scaled
set.seed(1)
imp_blds <- mice(blds_scaled, m=1)</pre>
##
##
   iter imp variable
##
       1 MPV* RDW*
                       Na*
                            K*
                                       AST* ALT* ALP* GGT* u_bil* c_bil*
    1
                                urea*
        1 MPV* RDW*
                                                         GGT* u_bil* c_bil*
##
     2
                                       AST* ALT*
                                                   ALP*
                       Na*
                            K*
                                urea*
##
    3
        1 MPV*
                 RDW*
                            K*
                                        AST*
                                              ALT*
                                                   ALP*
                                                         GGT*
                       Na*
                                urea*
                                                               u_bil* c_bil*
##
       1 MPV*
                                                   ALP*
                 RDW*
                       Na* K*
                                urea*
                                        AST* ALT*
                                                         GGT*
                                                               u_bil* c_bil*
       1 MPV* RDW*
                       Na* K*
                                urea*
                                       AST* ALT* ALP*
                                                         GGT* u_bil* c_bil*
```

```
## * Please inspect the loggedEvents
blds_scaled <- mice::complete(imp_blds)</pre>
blds_scaled$AST_resid <- resid(lm(AST ~ ALT, data=blds_scaled))</pre>
blds_scaled$wcc_resid <- resid(lm(wcc ~ cd4, data=blds_scaled))</pre>
# PCA*
rownames(blds_scaled) <- blds_scaled$study_id</pre>
pca1 <- principal(</pre>
  blds_scaled %>%
    select(cd4, Hb, platelets, MPV, lactate, AST_resid,
           wcc, Na, urea, creat, glucose, MCHC),
  nfactors = 2, rotate = "varimax")
pca1_loadings <- data.frame(pc1 = pca1$loadings[,1],</pre>
                             pc2 = pca1$loadings[,2],
                             variable = names(pca1$loadings[,1]),
                             adverse = c("1", "1", "1", "h", "h", "h",
                                          "u", "u", "h", "h", "u", "u"))
pca1_loadings %>%
  ggplot(
    aes(pc1, pc2, colour=adverse)) +
  geom vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point(size=3, alpha=0.7) +
  geom_label_repel(
    aes(pc1, pc2,
        label = variable),
    box.padding = 0.35, point.padding = 0.5,
    segment.color = 'grey50') +
  theme_dab() +
  scale_color_manual(values =
                        viridis(12, option="E")[c(9,3,6)]) +
  theme(legend.position = "none") +
  xlab("Blood results PC1 variable loadings") +
  ylab("Blood results PC2 variable loadings") -> g_pca1_loadings
pca1_coord <- pca1$scores %>%
  as_tibble() %>%
  transmute(
    study_id = rownames(pca1$scores),
    pc1 = RC1,
    pc2 = RC2
    ) %>%
  left_join(
    mca1_coord %>% select(-`Dim 1`, -`Dim 2`, -cluster),
    by = "study_id"
  )
```

```
pca1_coord %>%
  ggplot(
   aes(pc1, pc2, fill=outcome)
  geom_vline(xintercept = 0, colour="grey") +
  geom_hline(yintercept = 0, colour="grey") +
  geom_point(size=3.5, alpha=0.5, shape=21) +
  scale fill manual(
   values = c(
      viridis_pal(option="E")(8)[8],
      viridis_pal(option="E")(8)[1]
   )) +
  theme_dab() +
  xlab("Blood results PC1") +
  ylab("Blood results PC2") -> g_pca1_pts
pca1_projn <- data.frame(</pre>
  xend = c(
  cor(pca1_coord$mean_rpoB_Ct, pca1_coord$pc1),
  cor(pca1_coord$dmn_ml_log, pca1_coord$pc1),
  cor(pca1_coord$MFL_TTP, pca1_coord$pc1)),
 yend = c(
  cor(pca1_coord$mean_rpoB_Ct, pca1_coord$pc2),
  cor(pca1_coord$dmn_ml_log, pca1_coord$pc2),
  cor(pca1_coord$MFL_TTP, pca1_coord$pc2)),
 label = c(
   "Mean\nrpoB Ct", "log\nDMN-tre", "MFL\nTTP"),
 x = c(-0.4, 0.3, -0.8),
 y = c(-0.6, 0.9, -0.1)
pca1_projn %>%
  ggplot(aes(colour=label)) +
  xlim(-1,1) + ylim(-1,1) +
  geom_vline(xintercept = 0, colour="grey") +
  geom_hline(yintercept = 0, colour="grey") +
  geom_segment(
   mapping = aes(x = 0, xend = xend,
                  y = 0, yend = yend),
   size=1,
   arrow = arrow(length = unit(0.2, "cm"))) +
  geom_text(
   mapping = aes(x = x,
                  y = y,
                  label = label),
   hjust=0, vjust=1, size=3.5) +
  theme_dab() + theme(legend.position = "none") +
  scale_colour_manual(values = c( "#1F968BFF", "#453781FF", "#b8627dff" )) +
  xlab("Correlation with PC1") +
  ylab("Correlation with PC2") -> g_pca1_cor
##########
```

```
#fit_pc1_ct <- brm(pc1 ~ mean_rpoB_Ct, data = pca1_coord)</pre>
#fit_pc1_ct_R2 <- bayes_R2(fit_pc1_ct, summary = TRUE)</pre>
\#fit\_pc1\_ct\_prob\_neg <- \ round((sum(posterior\_samples(fit\_pc1\_ct)\$b\_mean\_rpoB\_C < 0))/4000, \ 3)
#fit_pc1_dmn <- brm(pc1 ~ dmn_ml_log, data = pca1_coord)
#fit_pc1_dmn_R2 <- bayes_R2(fit_pc1_dmn, summary = TRUE)</pre>
\#fit_pc1_dmn_prob_pos \leftarrow round((sum(posterior_samples(fit_pc1_dmn)\$b_dmn_ml_log > 0))/4000, 3)
#fit pc1 ttp <- brm(pc1 ~ MFL TTP, data = pca1 coord)
#fit_pc1_ttp_R2 \leftarrow bayes_R2(fit_pc1_ttp, summary = TRUE)
\#fit_pc1\_ttp\_prob\_neg \leftarrow round((sum(posterior\_samples(fit_pc1\_ttp)\$b\_MFL\_TTP < 0))/4000, 3)
\#fit\_pc2\_ct \leftarrow brm(pc2 \sim mean\_rpoB\_Ct, data = pca1\_coord)
#fit_pc2_ct_R2 \leftarrow bayes_R2(fit_pc2_ct, summary = TRUE)
\#fit_pc2_ct_prob_neq \leftarrow round((sum(posterior_samples(fit_pc2_ct)\$b_mean_rpoB_C < 0))/4000, 3)
#fit_pc2_dmn <- brm(pc2 ~ dmn_ml_log, data = pca1_coord)</pre>
\#fit\_pc2\_dmn\_R2 \leftarrow bayes\_R2(fit\_pc2\_dmn, summary = TRUE)
\#fit_pc2_dmn_prob_pos \leftarrow round((sum(posterior_samples(fit_pc2_dmn)\$b_dmn_ml_log > 0))/4000, 3)
#fit pc2 ttp <- brm(pc2 ~ MFL TTP, data = pca1 coord)
#fit_pc2_ttp_R2 \leftarrow bayes_R2(fit_pc2_ttp, summary = TRUE)
\#fit_pc2\_ttp\_prob\_neg \leftarrow round((sum(posterior\_samples(fit_pc2\_ttp)\$b\_MFL\_TTP < 0))/4000, 3)
#c(fit_pc1_dmm_R2[1], fit_pc1_ttp_R2[1], fit_pc1_ct_R2[1])
#c(fit_pc1_ct_prob_neq, fit_pc1_dmn_prob_pos, fit_pc1_ttp_prob_neq)
#c(fit_pc2_dmm_R2[1], fit_pc2_ttp_R2[1], fit_pc2_ct_R2[1])
\#c(fit\_pc2\_ct\_prob\_neg, fit\_pc2\_dmn\_prob\_pos, fit\_pc2\_ttp\_prob\_neg)
#fit_pc1_outcome <- brm(pc1 ~ outcome, data = pca1_coord)</pre>
#fit_pc2_outcome <- brm(pc2 ~ outcome, data = pca1_coord)
##########
g_blds_dist
g_pca1_loadings + g_pca1_cor + g_pca1_pts +
  plot_annotation(tag_levels = "A") +
 plot_layout(nrow=1)
```

8 Agreement between methods

Figure 9: Patient blood results

Figure 10: Patient blood results dimension reduction

```
fit_ttp_ct <- brm(ttp ~ ns(blood_mean_rpoB_Ct, df=3), data = quant_df_u)</pre>
fit_dmn_ttp <- brm(dmn_ml_log ~ ns(ttp, df=3), data = quant_df_u)</pre>
fit ct dmn <- brm(blood mean rpoB Ct ~ ns(dmn ml log, df=3), data = quant df u)
fit_ct_uct <- brm(blood_mean_rpoB_Ct ~ ns(urine_mean_rpoB_Ct, df=3), data = quant_df_u)</pre>
fit_dmn_uct <- brm(dmn_ml_log ~ ns(urine_mean_rpoB_Ct, df=3), data = quant_df_u)</pre>
fit_ttp_uct <- brm(ttp ~ ns(urine_mean_rpoB_Ct, df=3), data = quant_df_u)</pre>
r2 ttp ct <- as.numeric(round(bayes R2(fit ttp ct), 2))
r2_dmn_ttp <- as.numeric(round(bayes_R2(fit_dmn_ttp), 2))
r2_ct_dmn <- as.numeric(round(bayes_R2(fit_ct_dmn), 2))</pre>
r2_ct_uct <- as.numeric(round(bayes_R2(fit_ct_uct), 2))</pre>
fit_ttp_ct_df <- fitted(fit_ttp_ct,</pre>
       newdata = data.frame(
         blood_mean_rpoB_Ct = seq(20,37, by = 0.2))) \%
  as_tibble() %>%
  bind cols(
    data.frame(
      blood_mean_rpoB_Ct = seq(20,37, by = 0.2))) %>%
  select(blood_mean_rpoB_Ct, ttp_hat = Estimate, Q2.5, Q97.5)
fit_dmn_ttp_df <- fitted(fit_dmn_ttp,</pre>
       newdata = data.frame(ttp = seq(20,42, by = 0.2))) %>%
  as_tibble() %>%
  bind_cols(
    data.frame(ttp = seq(20,42, by = 0.2))) %>%
  select(ttp, dmn_ml_log_hat = Estimate, Q2.5, Q97.5)
fit_ct_dmn_df <- fitted(fit_ct_dmn,</pre>
       newdata = data.frame(dmn_ml_log = seq(0,10, by = 0.2))) %>%
  as_tibble() %>%
  bind cols(
    data.frame(dmn_ml_log = seq(0,10, by = 0.2))) %>%
  select(dmn_ml_log, blood_mean_rpoB_Ct_hat = Estimate, Q2.5, Q97.5)
fit_ct_uct_df <- fitted(fit_ct_uct,</pre>
       newdata = data.frame(
         urine_mean_rpoB_Ct = seq(19,37, by = 0.2))) %>%
  as tibble() %>%
  bind cols(
    data.frame(urine_mean_rpoB_Ct = seq(19,37, by = 0.2))) %>%
  select(urine_mean_rpoB_Ct, blood_mean_rpoB_Ct_hat = Estimate, Q2.5, Q97.5)
quant_df_u %>%
  ggplot(aes(dmn_ml_log, blood_mean_rpoB_Ct)) +
  geom_point(alpha=0.4, size=1.5,
                                    colour="#9E9677FF") +
  geom_line(data = fit_ct_dmn_df,
            aes(dmn_ml_log, blood_mean_rpoB_Ct_hat)) +
  geom_ribbon(
    data = fit_ct_dmn_df,
    mapping =
      aes(x=dmn_ml_log, ymin = Q2.5, ymax=Q97.5),
```

```
inherit.aes = FALSE,
    alpha=0.3) +
  theme minimal() +
  theme(legend.position = "none") +
  geom_text(x = 10, y = 38, parse=TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
                "R^2==", r2_ct_dmn[1])) +
  geom_text(x = 10, y = 35, parse = TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
                "(", r2_ct_dmn[3], "-", r2_ct_dmn[4], ")"
  xlab("Log DMN-tre bacilli/m1") + ylab("Blood mean rpoB Ct") -> g3
ggExtra::ggMarginal(g3, margins = "x",
                    type = "density",
                    fill="#1F968BFF",
                    alpha=0.25) -> g3
quant_df_u %>%
  ggplot(aes(ttp, dmn_ml_log)) +
  geom_point(alpha=0.4, size=1.5,
                                    colour="#9E9677FF") +
  geom_line(data = fit_dmn_ttp_df,
            aes(ttp, dmn_ml_log_hat)) +
  geom_ribbon(
    data = fit_dmn_ttp_df,
    mapping =
      aes(x=ttp, ymin = Q2.5, ymax=Q97.5),
    inherit.aes = FALSE,
    alpha=0.3) +
  theme minimal() +
  theme(legend.position = "none") +
  geom_text(x = 42, y = 15, parse = TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
               "R^2==",r2_dmn_ttp[1])) +
  geom_text(x = 42, y = 12.5, parse = TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
                "(", r2_dmn_ttp[3], "-", r2_dmn_ttp[4], ")")) +
  ylab("Log DMN-tre bacilli/ml") + xlab("MFL blood culture TTP") -> g1
ggExtra::ggMarginal(g1, margins = "x",
                    type = "density",
                    fill="#b8627dff", alpha=0.25) -> g1
quant_df_u %>%
```

```
ggplot(aes(blood_mean_rpoB_Ct, ttp)) +
  geom_point(alpha=0.4, size=1.5,
                                   colour="#9E9677FF") +
  geom_line(data = fit_ttp_ct_df,
            aes(blood_mean_rpoB_Ct, ttp_hat)) +
  geom_ribbon(
   data = fit_ttp_ct_df,
   mapping =
      aes(x=blood mean rpoB Ct, ymin = Q2.5, ymax=Q97.5),
    inherit.aes = FALSE,
    alpha=0.3) +
  theme_minimal() +
  geom_text(x = 37.5, y = 21, parse = TRUE,
            hjust = 1, vjust = 0, size=3.5,
            label =
              paste0(
                "R^2==", r2_ttp_ct[1])) +
  geom_text(x = 37.5, y = 17, parse = TRUE,
            hjust = 1, vjust = 0, size=3.5,
            label =
              paste0(
                "(", r2_ttp_ct[3], "-", r2_ttp_ct[4], ")"
   xlab("Blood mean rpoB Ct") + ylab("MFL blood culture TTP") -> g2
ggExtra::ggMarginal(g2, margins = "x",
                    type = "density",
                    fill="#453781FF", alpha=0.25) -> g2
quant_df_u %>%
  ggplot(aes(urine_mean_rpoB_Ct, blood_mean_rpoB_Ct)) +
  geom_point(alpha=0.4, size=1.5,
                                    colour="#9E9677FF") +
  geom_line(data = fit_ct_uct_df,
            aes(urine_mean_rpoB_Ct, blood_mean_rpoB_Ct_hat)) +
  geom_ribbon(
   data = fit_ct_uct_df,
   mapping =
      aes(x=urine_mean_rpoB_Ct, ymin = Q2.5, ymax=Q97.5),
   inherit.aes = FALSE,
   alpha=0.3) +
  theme minimal() +
  theme(legend.position = "none") +
  geom_text(x = 37, y = 25, parse=TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
                "R^2==", r2_ct_uct[1])) +
  geom_text(x = 37, y = 22, parse = TRUE,
            hjust = 1, vjust = 1, size=3.5,
            label =
              paste0(
                "(", r2_ct_uct[3], "-", r2_ct_uct[4], ")"
  xlab("Urine mean rpoB Ct") + ylab("Blood mean rpoB Ct") -> g4
```

```
ggExtra::ggMarginal(g4, margins = "x",
                    type = "density",
                    fill="#f68f46ff",
                    alpha=0.25) \rightarrow g4
# grid.arrange(g1, g3, g2, g4, nrow=2)
#table(rowSums(qual[,3:6]=="Not available"))
qual %>%
  mutate(
    bld_xpert = na_if(bld_xpert, "Not available"),
    urn_xpert = na_if(urn_xpert, "Not available"),
    dmn_micro = na_if(dmn_micro, "Not available"),
    mfl_culture = na_if(mfl_culture, "Not available")
  ) %>%
  mutate(
    bld_xpert = as.numeric((bld_xpert=="M.tb detected")),
    urn_xpert = as.numeric((urn_xpert=="M.tb detected")),
    dmn_micro = as.numeric((dmn_micro=="M.tb detected")),
    mfl_culture = as.numeric((mfl_culture=="M.tb detected"))
  ) -> qual
u = qual$urn_xpert
b = qual$bld_xpert
d = qual$dmn_micro
m = qual$mfl_culture
k < -c(
  cohen.kappa(table(u,u))$k, cohen.kappa(table(u,b))$k, cohen.kappa(table(u,d))$k, cohen.kappa(table(u,d))$k,
  cohen.kappa(table(b,u))$k, cohen.kappa(table(b,b))$k, cohen.kappa(table(b,d))$k, cohen.kappa(table(b,d))$k
  cohen.kappa(table(d,u))$k, cohen.kappa(table(d,b))$k, cohen.kappa(table(d,d))$k, cohen.kappa(table(d,d))
  cohen.kappa(table(m,u))$k, cohen.kappa(table(m,b))$k, cohen.kappa(table(m,d))$k, cohen.kappa(table(m,
k <- matrix(k, nrow=4, byrow = TRUE)</pre>
rownames(k) <- c("Urine Xpert", "Blood Xpert-ultra", "DMN-tre micro.", "MFL blood culture")
colnames(k) <- c("Urine Xpert", "Blood Xpert-ultra", "DMN-tre micro.", "MFL blood culture")</pre>
updf <- as.data.frame(qual[,3:6])</pre>
UpSetR::upset(updf,
              sets = c("bld_xpert", "urn_xpert",
                        "dmn_micro", "mfl_culture"),
              order.by = "freq", matrix.color = "#332288",
              sets.bar.color = c("#CC6677", "#DDCC77",
                                  "#44AA99", "yellow"))
colfunc <- colorRampPalette(c("black", "white"))</pre>
pheatmap(k, display_numbers = TRUE, color = colfunc(10) )
```


Figure 11: Agreemnet between qualitative results

Figure 12: Agreemnet between qualitative results

Figure 13: Correleation between quantitative measures of bacilliary load

9 Ordinal scaling data

```
mutate(
    rpoB1_CT = ifelse(rpoB1_CT==0, LOQ, rpoB1_CT),
    rpoB2_CT = ifelse(rpoB2_CT==0, LOQ, rpoB2_CT),
    rpoB3_CT = ifelse(rpoB3_CT==0, LOQ, rpoB3_CT),
    rpoB4_CT = ifelse(rpoB4_CT==0, LOQ, rpoB4_CT),
    IS1081_IS6110_CT = ifelse(IS1081_IS6110_CT==0, LOQ, IS1081_IS6110_CT),
    mean_ct = pmap_dbl(
      list(rpoB1 CT, rpoB2 CT, rpoB3 CT, rpoB4 CT, IS1081 IS6110 CT),
      ~mean(c(...))),
    mean ct =
      ifelse(result=="ERROR", NA, mean_ct),
    result =
      factor(result,
             levels = c("ERROR", "MTB NOT DETECTED",
                        "MTB DETECTED TRACE", "MTB DETECTED VERY LOW",
                        "MTB DETECTED LOW", "MTB DETECTED MEDIUM",
                        "MTB DETECTED HIGH")),
    ct_ordinal = as.integer(cut(-1*mean_ct, breaks = 10))) %>%
  select(sample_id, study_id, sample_type, timepoint,
         result, ct_ordinal, mean_ct,
         rpoB1_CT, rpoB2_CT, rpoB3_CT,
         rpoB4_CT, IS1081_IS6110_CT) -> gxp_ord
#### MFL TTP
mfl <- read csv("MFL.csv")</pre>
mfl$MFL[mfl$TTP<10 & !is.na(mfl$TTP)] # mixed (contam) growth but MTB was recovered...
## [1] "MTB" "MTB"
mfl$TTP[mfl$TTP<10] <- NA
# MFL quant results to long format with preseved sample types pellet v lysate
mfl %>%
  select(study id, timepoint, type, TTP, MFL) %>%
  mutate(
    mfl = str_replace(MFL,
                      "contam|lost_viability",
                      replacement = "Not available"),
    mfl = replace_na(mfl, "Not available"),
    mfl = str_replace(mfl, "MTB", replacement = "M.tb detected"),
    mfl = ifelse( is.na(TTP) & MFL == "MTB",
                       "Not available", mfl)) %>%
  select(-MFL) %>%
  pivot_wider(id_cols = c("study_id", "timepoint"),
              names from = "type",
              values_from = c("mfl", "TTP")) %>%
  rename all(tolower) -> quant mfl
# empirical LOQ for MFL = set as max observed ttp + 1
quant_mfl %>% select(ttp_lysate, ttp_pellet) %>%
  pivot_longer(1:2) %>% summarise(LOQ = max(value, na.rm = TRUE)+1) -> LOQ
LOQ <- as.numeric(LOQ$LOQ)
```

```
# scale the pellet and lystae ttps same
quant_mf12 <- quant_mf1</pre>
m_p_l <- lm(ttp_lysate ~ rcs(ttp_pellet,5), data=quant_mfl2)</pre>
quant_mfl2$ttp_lysate_imputed <- predict(m_p_1, newdata=data.frame(ttp_pellet = quant_mfl2$ttp_pellet))
quant mf12 %>%
 mutate(
   ttp =
      case_when(
  is.na(ttp_lysate) & is.na(ttp_lysate_imputed) ~ 999,
  !is.na(ttp_lysate) & is.na(ttp_lysate_imputed) ~ ttp_lysate,
  is.na(ttp_lysate) & !is.na(ttp_lysate_imputed) ~ ttp_lysate_imputed,
  !is.na(ttp_lysate) & is.na(ttp_lysate_imputed) ~ ttp_lysate,
  !is.na(ttp_lysate) & !is.na(ttp_lysate_imputed) ~ (ttp_lysate_imputed + ttp_lysate)/2),
      na_if(ttp, 999),
   ttp_ordinal =
      as.integer(cut(-1*ttp, 9))+1,
   ttp_ordinal =
      ifelse(is.na(ttp_ordinal) &
               (mfl_pellet=="negative" | mfl_lysate=="negative"),
                         1, ttp_ordinal)
  ) %>%
  select(study_id, timepoint, mfl_pellet, mfl_lysate,
         ttp, ttp_pellet, ttp_lysate, ttp_ordinal) -> mfl_ord
#### DMN
read_csv("DMN.csv") %>%
  dplyr::mutate(DMN_ml =
                  # FOV calculation for /ml
                  round((2850/3) * (bacilli/random_fields), 0),
                qualitative_result =
                  str_replace(qualitative_result,
                              pattern = "non-quantifiable positive",
                              replacement = "negative") ) -> dmn
dmn %>%
 mutate(dmn_ordinal = as.integer(cut(log(DMN_ml+1), 10))) -> dmn_ord
#### JOIN
dmn_ord %>% select(study_id, timepoint, dmn_ordinal) %>%
 left_join(
   gxp_ord %>% select(study_id, timepoint, ct_ordinal),
   by=c("study_id", "timepoint")
 left_join(
   mfl_ord %>% select(study_id, timepoint, ttp_ordinal),
   by=c("study_id", "timepoint")
  ) -> df_ord
```

```
df_ord %>%
  group_by(dmn_ordinal, ttp_ordinal) %>% count() %>%
  ggplot(aes(dmn_ordinal, ttp_ordinal, size=n, fill=n)) +
  geom_point(shape=21) +
  scale fill gradient(low = canva pal("Green fields")(4)[3],
                      high = canva_pal("Green fields")(4)[2]) +
  geom abline(a=0, b=1) +
  theme minimal() +
  theme(legend.position = "none") -> g1
df_ord %>%
  group_by(dmn_ordinal, ct_ordinal) %>% count() %>%
  ggplot(aes(dmn_ordinal, ct_ordinal, size=n, fill=n)) +
  geom_point(shape=21) +
  scale_fill_gradient(low = canva_pal("Green fields")(4)[3],
                      high = canva_pal("Green fields")(4)[2]) +
  geom_abline(a=0, b=1) +
  theme minimal() +
  theme(legend.position = "none") -> g2
df ord %>%
  group by(ct ordinal, ttp ordinal) %>% count() %>%
  ggplot(aes(ct_ordinal, ttp_ordinal, size=n, fill=n)) +
  geom point(shape=21) +
  scale_fill_gradient(low = canva_pal("Green fields")(4)[3],
                      high = canva_pal("Green fields")(4)[2]) +
  geom_abline(a=0, b=1) +
  theme minimal() +
  theme(legend.position = "none") -> g3
#grid.arrange(g1, g2, g3)
df ord %>%
  pivot_longer(3:5,
              names_to = "method",
               values_to = "bacilli") %>%
  mutate(
   method = str_replace_all(method,
                             pattern = " ordinal",
                             replacement = ""),
   timepoint = round(timepoint/24,2)) -> df_ord
df_ord %>% filter(method=="ct") %>%
  group_by(timepoint, bacilli) %>% count() %>%
  ungroup() %>% group_by(timepoint) %>% rename(obs = n) %>%
  drop_na() %>%
  add_tally(obs) %>%
  mutate(prob = obs/n,
         timepoint = str_c(timepoint, " days")) %>%
  ggplot(aes(bacilli, prob,
             fill=as.factor(timepoint),
             group=as.factor(timepoint))) +
  geom_bar(stat="identity", colour="black", alpha=0.5) +
```

```
facet_wrap(~timepoint, ncol=1) +
  theme_minimal() +
  scale_fill_manual(values = viridis_pal(option = "E")(6) ) +
  theme(legend.position = "none") + ylab("") +
  xlab("Bacilli quantification \n(ordinal)") +
  ggtitle("Xpert-ultra") -> g_gxp_ord
df ord %>% filter(method=="dmn") %>%
  group by(timepoint, bacilli) %>% count() %>%
  ungroup() %>% group_by(timepoint) %>% rename(obs = n) %>%
  drop_na() %>%
  add_tally(obs) %>%
  mutate(prob = obs/n,
         timepoint = str_c(timepoint, " days")) %>%
  ggplot(aes(bacilli, prob,
             fill=as.factor(timepoint),
             group=as.factor(timepoint))) +
  geom_bar(stat="identity", colour="black", alpha=0.5) +
  facet_wrap(~timepoint, ncol=1) +
  theme_minimal() +
  scale_fill_manual(values = viridis_pal(option = "E")(6) ) +
  theme(legend.position = "none") + ylab("") +
  xlab("Bacilli quantification \n(ordinal)") +
  ggtitle("DMNtre") -> g_dmn_ord
df ord %>% filter(method=="ttp") %>%
  group_by(timepoint, bacilli) %>% count() %>%
  ungroup() %>% group_by(timepoint) %>% rename(obs = n) %>%
  drop_na() %>%
  add_tally(obs) %>%
  mutate(prob = obs/n,
         timepoint = str_c(timepoint, " days")) %>%
  ggplot(aes(bacilli, prob,
             fill=as.factor(timepoint),
             group=as.factor(timepoint))) +
  geom_bar(stat="identity", colour="black", alpha=0.5) +
  facet_wrap(~timepoint, ncol=1) +
  theme minimal() +
  scale_fill_manual(values = viridis_pal(option = "E")(6) ) +
  theme(legend.position = "none") + ylab("") +
  xlab("Bacilli quantification \n(ordinal)") +
  ggtitle("MFL") -> g_mfl_ord
df ord %>%
  group_by(timepoint, bacilli) %>% count() %>%
  ungroup() %>% group_by(timepoint) %>% rename(obs = n) %>%
  drop_na() %>%
  add_tally(obs) %>%
  mutate(prob = obs/n,
         timepoint = str_c(timepoint, " days")) %>%
  ggplot(aes(bacilli, prob,
             group=as.factor(timepoint))) +
  geom_bar(stat="identity", fill="black", colour="black", alpha=0.8) +
```

```
facet_wrap(~timepoint, ncol=1) +
  theme minimal() +
  theme(legend.position = "none") + ylab("Proportion") +
  xlab("Bacilli quantification \n(ordinal)") +
  ggtitle("Aggregated")-> g_combined_ord
g1 + g2 + g3 +
  plot_layout(ncol=1)
 ttp_ordinal
                                                   00
                          2.5
                                                   5.0
                                                                           7.5
                                                                                                   10.0
                                                   dmn_ordinal
 ct_ordinal
                                                   8
                          2.5
                                                   5.0
                                                                           7.5
                                                                                                   10.0
                                                   dmn_ordinal
 tp_ordinal
                                                                                                    8
                                                   Ŏ
                          2.5
                                                   5.0
                                                                           7.5
                                                                                                   10.0
                                                    ct_ordinal
```

Figure 14: Correlation of ordinal results by assay

10 Extracting data from KDHTB cohort to use as priors in ordinal regression model

Figure 15: Ordinal results by time

```
rpoB1 = ifelse(rpoB1==0, LOQ, rpoB1),
   rpoB2 = ifelse(rpoB2==0, LOQ, rpoB2),
   rpoB3 = ifelse(rpoB3==0, LOQ, rpoB3),
   rpoB4 = ifelse(rpoB4==0, LOQ, rpoB4),
   IS1081_IS6110 = ifelse(IS1081_IS6110==0, LOQ, IS1081_IS6110),
   mean_ct = pmap_dbl(
     list(rpoB1, rpoB2, rpoB3, rpoB4, IS1081_IS6110),
      ~mean(c(...))),
    ct_ordinal = as.integer(cut(-1*mean_ct, breaks = 10)),
   died = as.numeric(outcome=="Died")
  ) %>%
  select(ct_ordinal, died) -> kdhtb
ggplot(kdhtb, aes(ct_ordinal, fill=as.factor(died))) +
  geom_histogram(binwidth = 1,
                 colour="black", alpha=0.7) +
  scale_fill_manual(values = viridis_pal(option="E")(8)[c(2,6)]) +
  facet_wrap(~died) +
  theme_dab() -> kdhtb_bldxpt_ordinal
kdhtb_fit <- brm(
  ct_ordinal ~ died,
  data = kdhtb,
  family = cumulative("logit"),
  control = list(adapt_delta = 0.97),
  seed = 140916,
  cores=2)
```

kdhtb_bldxpt_ordinal

Figure 16: Blood Xpert-ultra Ct value distribution by outcome in KDHTB study

Giving these posterior distributions for parameters relating mortality to blood Xpert-ultra Ct value in KDHTB, to use to inform priors for ordinal regression model:

```
mean(posterior_samples(kdhtb_fit)$b_died)
```

```
sd(posterior_samples(kdhtb_fit)$b_died)
## [1] 0.2260973
```

Ordinal regression model relating blood bacilliary load dynamics to mortality

```
df_ord %>%
  left_join(pids, by = "study_id") %>%
  select(study_id = pid, timepoint, method, bacilli) -> df_ord
# (this is just a df to annotate plot):
oc2 <- oc %>% mutate(
  outcome = ifelse(died==1, "Died", "survived"),
 timepoint = 1,
  bacilli = ifelse(
    study_id=="pid3" | study_id == "pid8" | study_id == "pid10",
  ))
df_ord %>%
  mutate(study_id = factor(study_id,
                           levels = paste0("pid", 1:28))) %>%
  ggplot(aes(timepoint, bacilli)) +
  geom_point(aes(colour=method)) +
  geom_smooth(method = "lm", se=FALSE, aes(colour=method)) +
  geom_smooth(method = "lm", se=FALSE, colour="black") +
  facet_wrap(~study_id, nrow=7) +
  theme_minimal() +
  scale_colour_manual(values = viridis_pal(option = "D")(3) ) +
  geom_text(data = oc2,
            mapping = aes(label=outcome),
            colour="black", size=3) -> g_ord_study_id
rm(oc2)
g_ord_study_id
left_join(
 df_ord,
  by = "study id"
) -> df_ord
fit <- brm(</pre>
  bacilli ~ timepoint + died + timepoint:died + method + timepoint:method +
    (timepoint | study_id),
  data = df_ord,
  family = cumulative("logit"),
  prior = c(
    set prior("normal(1,0.5)", class = "b", coef = "died"),
    set_prior("normal(-0.5,1)", class = "b", coef = "timepoint"),
```


Figure 17: Ordinal data by time and patient, simiple linear fit

```
set_prior("normal(0,1)", class = "b", coef = "timepoint:died"),
    set_prior("normal(0,1)", class = "b", coef = "methoddmn"),
    set_prior("normal(0,1)", class = "b", coef = "methodttp"),
    set_prior("normal(0,2)", class = "b", coef = "timepoint:methoddmn"),
    set_prior("normal(0,2)", class = "b", coef = "timepoint:methodttp"),
    set_prior("student_t(3, 0, 2.5)", class = "sd",
              coef = "Intercept", group = "study_id"),
    set prior("student t(3, 0, 2.5)", class = "sd",
              coef = "timepoint", group = "study id")
  ),
  control = list(adapt_delta = 0.97),
  seed = 140916,
  iter = 8000, warmup = 2000, chains=2,
  cores=4, sample_prior = TRUE
bind_rows(
  hypothesis(fit, hypothesis = "timepoint < 0") $hypothesis,
  hypothesis(fit, hypothesis = "died > 0") $hypothesis,
  hypothesis(fit, hypothesis = "timepoint:died > 0") $hypothesis,
  hypothesis(fit, hypothesis = "methoddmn < 0")$hypothesis,
  hypothesis(fit, hypothesis = "methodttp < 0")$hypothesis,</pre>
  hypothesis(fit, hypothesis = "timepoint:methoddmn < 0") hypothesis,
  hypothesis(fit, hypothesis = "timepoint:methodttp < 0")$hypothesis</pre>
  as_tibble() %>% select(-Star, -Hypothesis) %>%
  mutate(
    `Hypothesis statement` = c(
      "Decrease in bacilli load over time on Rx",
      "Patients who died had higher bacilli load",
      "Patients who died had slower decrease in bacilli load over time on Rx",
      "DMN-tre observations of bacilli load were lower than Xpert-ultra",
      "Culture TTP observations of bacilli load were lower than Xpert-ultra",
      "DMN-tre observations of bacilli load declined faster than Xpert-ultra",
      "Culture TTP observations of bacilli load declined faster than Xpert-ultra"
   ),
    `coefficient (beta)` = c(
      "Time in days (slope)",
      "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
   ),
   h1 = c("<0", ">0", ">0", "<0", "<0", "<0", "<0", "<0")
  ) %>%
  select(`coefficient (beta)`, h1, `Hypothesis statement`, everything()) -> h1df
h1df[,4:8] <- round(h1df[,4:8], 2)
h1df[,9] <- round(h1df[,9], 3)
```

```
max_iter = 1e3
posterior_samples(fit, subset = 1:max_iter) %>%
   b_timepoint, b_died, `b_timepoint:died`,
   b_methoddmn, b_methodttp,
    `b_timepoint:methoddmn`, `b_timepoint:methodttp`
  ) %>%
  pivot_longer(1:7,
               names_to = "coefficient",
               values_to = "posterior_draw") %>%
  mutate(
    coefficient = factor(
      coefficient,
      levels = c("b_timepoint", "b_died", "b_timepoint:died",
                 "b_methoddmn", "b_methodttp",
                 "b_timepoint:methoddmn", "b_timepoint:methodttp"),
      labels = c(
      "Time in days (slope)",
      "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
  )) -> post_samples
annotate_df <- data.frame(</pre>
  coefficient = factor(
    c("b_timepoint", "b_died", "b_timepoint:died",
      "b_methoddmn", "b_methodttp",
      "b_timepoint:methoddmn", "b_timepoint:methodttp"),
   levels = c("b_timepoint", "b_died", "b_timepoint:died",
      "b_methoddmn", "b_methodttp",
      "b_timepoint:methoddmn", "b_timepoint:methodttp"),
   labels = c(
      "Time in days (slope)",
      "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
  h1 = c("<0", ">0", ">0", "<0", "<0", "<0", "<0"),
  post_prob = signif(h1df$Post.Prob, 3),
  evid_ratio = formatC(h1df$Evid.Ratio, digits = 2),
  y1 = 4.5, y2=6, y3=8.5
```

11.1 Summary of model

```
fit
##
    Family: cumulative
     Links: mu = logit; disc = identity
##
## Formula: bacilli ~ timepoint + died + timepoint:died + method + timepoint:method + (timepoint | stud
##
      Data: df_ord (Number of observations: 330)
  Samples: 2 chains, each with iter = 8000; warmup = 2000; thin = 1;
##
            total post-warmup samples = 12000
##
## Group-Level Effects:
  ~study_id (Number of levels: 28)
##
                             Estimate Est.Error 1-95% CI u-95% CI Rhat
                                                      1.95
## sd(Intercept)
                                 2.71
                                            0.47
                                                               3.77 1.00
## sd(timepoint)
                                            0.19
                                                      0.01
                                                               0.69 1.00
                                 0.28
## cor(Intercept,timepoint)
                                            0.45
                                                     -0.89
                                                               0.84 1.00
                                -0.12
##
                             Bulk ESS Tail ESS
## sd(Intercept)
                                 3175
                                           5615
## sd(timepoint)
                                 2559
                                           5478
## cor(Intercept,timepoint)
                                 10335
                                           6476
## Population-Level Effects:
##
                        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS
## Intercept[1]
                           -2.87
                                       0.60
                                               -4.09
                                                         -1.74 1.00
                                                                         2434
## Intercept[2]
                           -2.20
                                       0.59
                                               -3.41
                                                         -1.10 1.00
                                                                         2419
## Intercept[3]
                           -1.69
                                       0.59
                                               -2.88
                                                         -0.59 1.00
                                                                         2391
## Intercept[4]
                                               -1.98
                           -0.79
                                       0.58
                                                          0.29 1.00
                                                                         2494
## Intercept[5]
                            0.40
                                       0.57
                                               -0.77
                                                          1.47 1.00
                                                                         2533
## Intercept[6]
                                                0.48
                                                          2.77 1.00
                            1.65
                                       0.58
                                                                         2698
## Intercept[7]
                            2.95
                                       0.62
                                                1.75
                                                          4.16 1.00
                                                                         3093
## Intercept[8]
                                       0.64
                                                2.51
                                                          5.03 1.00
                                                                         3287
                            3.76
## Intercept[9]
                            4.87
                                       0.68
                                                3.54
                                                          6.21 1.00
                                                                         3692
## timepoint
                                               -0.97
                                                         -0.20 1.00
                                                                         7647
                           -0.58
                                       0.20
## died
                                                                         6979
                            1.14
                                       0.46
                                                0.22
                                                          2.04 1.00
## methoddmn
                           -1.00
                                       0.36
                                               -1.70
                                                         -0.30 1.00
                                                                         8534
## methodttp
                           -1.32
                                       0.37
                                               -2.05
                                                         -0.62 1.00
                                                                         8888
                                               -0.20
## timepoint:died
                            0.29
                                       0.25
                                                          0.79 1.00
                                                                         9535
                                               -0.70
                                                                         7791
## timepoint:methoddmn
                           -0.25
                                       0.23
                                                          0.20 1.00
## timepoint:methodttp
                           -0.94
                                       0.26
                                               -1.46
                                                         -0.44 1.00
                                                                         8774
                        Tail_ESS
## Intercept[1]
                            4903
## Intercept[2]
                            4625
## Intercept[3]
                            4731
## Intercept[4]
                            4756
## Intercept[5]
                            4867
## Intercept[6]
                            5134
## Intercept[7]
                            5617
## Intercept[8]
                            5828
## Intercept[9]
                            6586
## timepoint
                            8112
## died
                            7922
## methoddmn
                            8519
## methodttp
                            9507
```

```
## timepoint:died
                           8285
                           7865
## timepoint:methoddmn
## timepoint:methodttp
                           8801
##
## Family Specific Parameters:
       Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
            1.00
                      0.00
                               1.00
                                        1.00 1.00
## disc
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

11.2 Formal hypothesis testing and parameter posterior distributions

```
kable(hidf, caption = "Model parameters: posterior distribution and hypothesis tests", booktabs = T) %>
kable_styling(latex_options = c("striped", "hold_position", "scale_down"))
```

Table 1: Model parameters: posterior distribution and hypothesis tests

coefficient (beta)	h1	Hypothesis statement	Estimate	Est.Error	CI.Lower	CI.Upper	Evid.Ratio	Post.Prob
Time in days (slope)	<0	Decrease in bacilli load over time on Rx	-0.58	0.20	-0.90	-0.26	665.67	0.998
Died (intercept)	>0	Patients who died had higher bacilli load	1.14	0.46	0.38	1.88	132.33	0.992
Time * Died interaction (slope)	>0	Patients who died had slower decrease in bacilli load over time on Rx	0.29	0.25	-0.12	0.70	7.08	0.876
DMN-tre (intercept)	< 0	DMN-tre observations of bacilli load were lower than Xpert-ultra	-1.00	0.36	-1.59	-0.40	362.64	0.997
Culture-TTP (intercept)	<0	Culture TTP observations of bacilli load were lower than Xpert-ultra	-1.32	0.37	-1.93	-0.73	11999.00	1.000
Time * DMN-tre interaction (slope)	<0	DMN-tre observations of bacilli load declined faster than Xpert-ultra	-0.25	0.23	-0.62	0.13	6.29	0.863
Time * Culture-TTP interaction (slope)	<0	Culture TTP observations of bacilli load declined faster than Xpert-ultra	-0.94	0.26	-1.38	-0.52	11999.00	1.000

```
post_samples %>%
  ggplot(
    aes(fct_rev(coefficient), posterior_draw)
# ggtitle("Posterior probability density\nfor population coefficients") +
  theme_minimal() +
  theme(plot.margin = unit(c(3,3,3,1), "lines"),
        panel.grid = element_blank(),
        plot.title=element_text(size=10,face="bold", hjust=0)) +
  annotation custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 0.5, xmax = 0.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 1.5, xmax = 1.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 2.5, xmax = 2.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 3.5, xmax = 3.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 4.5, xmax = 4.5
```

```
) +
annotation_custom(
      grob = linesGrob(gp = gpar(col="grey90")),
      ymin = -3, ymax = 10, xmin = 5.5, xmax = 5.5
 ) +
annotation_custom(
      grob = linesGrob(gp = gpar(col="grey90")),
     ymin = -3, ymax = 10, xmin = 6.5, xmax = 6.5
 ) +
annotation_custom(
     grob = linesGrob(gp = gpar(col="grey90")),
     ymin = -3, ymax = 10, xmin = 7.5, xmax = 7.5
 ) +
annotation_custom(
      grob = linesGrob(),
      ymin = 3.5, ymax = 10, xmin = 0.4, xmax = 0.4
 ) +
annotation_custom(
      grob = linesGrob(),
      ymin = 3.5, ymax = 10, xmin = 7.5, xmax = 7.5
 ) +
annotation_custom(
     grob = linesGrob(),
     ymin = 3, ymax = -3, xmin = 7.5, xmax = 7.5
geom_hline(yintercept = 0) +
geom_violin(
 fill = viridis_pal(option="E")(8)[2],
 alpha=0.5,
 colour = viridis_pal(option="E")(8)[2]
geom_boxplot(colour = "black", fill="white", alpha=0.7,
             outlier.alpha = 0, width=0.1) +
ylab("") + xlab("") +
coord_flip(clip = "off") +
annotation_custom(
      grob = textGrob(label = "Higher bacilli load",
                      hjust = 0, gp = gpar(fontsize = 10)),
     ymin =0.3, ymax=0.3, xmin = -0.5, xmax=-0.5
 ) +
annotation_custom(
      grob = textGrob(label = "Lower bacilli load",
                      hjust = 1, gp = gpar(fontsize = 10)),
     ymin = -0.3, ymax = -0.3, xmin = -0.5, xmax = -0.5
 ) +
annotation_custom(
      grob = textGrob(label = "Estimate for coefficient (logit scale)",
                      gp = gpar(fontsize = 10, fontface="bold")),
     ymin = 0, ymax = 0, xmin = -1.5, xmax = -1.5
 ) +
annotation_custom(
      grob = linesGrob(
       arrow = arrow(type = "closed",
```

```
ends = "last",
                        length = unit(.2, "cm"))),
       ymin = 0.1, ymax=3, xmin = 0.4, xmax=0.4
   ) +
  annotation custom(
        grob = linesGrob(
          arrow = arrow(type = "closed",
                        ends = "first",
                        length = unit(.2, "cm"))),
       ymin = -0.1, ymax = -3, xmin = 0.4, xmax = 0.4
   ) +
  geom_text(
   data = annotate_df,
   aes(x = coefficient, y=y1, label = h1),
   hjust = 0, size=3.5
  ) +
  geom_text(
   data = annotate_df,
   aes(x = coefficient, y=y2, label = post_prob),
   hjust = 0, size=3.5
 ) +
  geom_text(
   data = annotate_df,
   aes(x = coefficient, y=y3, label = evid_ratio),
   hjust = 0, size=3.5
  ) + scale_y_continuous(breaks=c(-2,-1,0,1,2)) +
  geom_text(label = "Hypothesis", x=7.75, y=4, size=3.5,
            hjust=0.2, vjust=0) +
  geom_text(label = "Posterior\nprobability", x=7.75, y=6, size=3.5,
            hjust=0, vjust=0) +
  geom_text(label = "Evidence\nratio", x=7.75, y=8.5, size=3.5,
            hjust=0, vjust=0) +
  geom_text(
   label = "Posterior probability density\nfor population coefficients",
   x=7.75, y=0, size=3.5,
   hjust=0.5, vjust=0) -> g_coef
g_coef
```

11.3 Expected probabilities of specific ordinal values by time and assay

Lower bacilli load Higher bacilli load

Estimate for coefficient (logit scale)

Figure 18: Posterior distribution model parameters and hypothesis tests

```
gather(key = "bacilli") %>%
  mutate(
    timepoint = rep(nd$timepoint,10),
    died = rep(nd$died,10),
    method = rep(nd$method,10),
    method = case_when(
      method=="ct" ~ "Xpert-ultra",
     method=="dmn" ~ "DMN-tre",
     method=="ttp" ~ "MFL culture"
    ),
    bacilli = factor(bacilli,
                     levels = 10:1),
    outcome = ifelse(died==1, "Died", "Survived")
  ) %>%
  ggplot(
    aes(as.factor(timepoint), value, fill=bacilli)
  geom_bar(position="stack", stat = "identity",
           colour="grey80", width = 1, alpha=0.8, size=0.2) +
  theme_minimal() + theme(legend.position = "bottom") +
  scale_fill_viridis_d(option = "E",
                       direction = -1, begin = 0.1) +
  facet wrap(method~outcome, ncol = 2 ) +
  xlab("Time from start treatment (days)") +
  ylab("Expected proportion of patients in ordinal category") +
  labs(fill = "Ordinal\nScale") +
  # Change legend key size and key width
  legend.key.size = unit(0.4, "cm"),
  legend.key.width = unit(0.2, "cm"),
  strip.text.x = element_text( margin = margin( b = 0, t = 0) )
  ) -> g_expected_ordinal
# Expected probability of negative sample by 72 hours Rx
nd <- data.frame(</pre>
 timepoint = 3,
 died = rep(c(0,1), each=3),
  method = rep(c("dmn", "ct", "ttp"), 2)
max_iter = 1e3
fitted(fit,
       newdata=nd,
       summary = FALSE,
       re_formula = NA,
       subset = 1:max_iter)[,,1] %>%
  as_tibble() -> d3_pp_neg_wide
d3_pp_neg_wide %>%
  pivot_longer(1:nrow(nd),
```

```
names_to = "condition",
               values_to = "post_prob") %>%
  mutate(
    method = rep(nd$method, max_iter),
    died = rep(nd$died, max_iter),
    outcome = ifelse(died==1, "Died", "Survived")
  ) -> d3_pp_neg_long
d3_pp_neg_long %>%
  group_by(method, outcome) %>%
  summarise(
    median = median(post_prob),
    mad = mad(post_prob),
    q.025 = quantile(post_prob, 0.025),
    q.975 = quantile(post_prob, 0.975)
  ) -> d3_pp_neg_table
names(d3_pp_neg_wide) <- c("dmn_0", "ct_0", "ttp_0", "dmn_1", "ct_1", "ttp_1")</pre>
d3_pp_neg_wide %>%
  mutate(dmn_p = dmn_0>dmn_1,
         ct_p = ct_0>ct_1,
         ttp_p = ttp_0>ttp_1) %>%
  summarise(
    dmn_delta = sum(dmn_p)/length(dmn_p),
    ct_delta = sum(ct_p)/length(ct_p),
    ttp_delta = sum(ttp_p)/length(ttp_p)
  ) -> d3_pp_neg_delta
# Expected time to 50% probability sterilisation of blood
nd <- data.frame(</pre>
  timepoint = rep(seq(0.1,50, length.out = 500), 6),
  died = rep(c(0,1), each=1500),
 method = rep(c("dmn", "ct", "ttp"), each=500)
)
max_iter = 1e3
fitted(fit,
       newdata=nd,
       summary = FALSE,
       re_formula = NA,
       subset = 1:max_iter)[,,1] %>%
  as_tibble() %>%
  pivot_longer(1:nrow(nd),
               names_to = "condition",
               values_to = "post_prob") %>%
  mutate(
    iter = rep(1:max_iter, each=nrow(nd)),
    method = rep(nd$method, max_iter),
    died = rep(nd$died, max_iter),
    timepoint = rep(nd$timepoint, max_iter),
```

```
outcome = ifelse(died==1, "Died", "Survived")) %>%
  filter(post_prob >= 0.5) %>%
  select(-condition, -outcome) %>%
  group_by(iter, method, died) %>%
  arrange(post_prob, by_group=TRUE) %>%
  slice(n=1) -> time_to_50perc_neg
time_to_50perc_neg %>%
  ungroup() %>% group_by(method, died) %>%
  summarise(
   median = median(timepoint),
    `IQR lower` = quantile(timepoint, 0.25),
    IQR upper = quantile(timepoint, 0.75)
  ) -> tt50 table
time_to_50perc_neg %>%
  select(-post_prob) %>%
  pivot_wider(names_from = c("method", "died"),
              values_from = "timepoint" ) %>%
  mutate(dmn_p = dmn_0<dmn_1,</pre>
         ct_p = ct_0 < ct_1,
         ttp_p = ttp_0<ttp_1) %>%
  ungroup() %>%
  summarise(
   dmn_delta = sum(dmn_p, na.rm = T)/sum(!is.na(dmn_p)),
   ct_delta = sum(ct_p, na.rm = T)/sum(!is.na(ct_p)),
   ttp_delta = sum(ttp_p, na.rm = T)/sum(!is.na(ttp_p))
  ) -> tt50_delta_prob_table
```

g_expected_ordinal

Extrapolated median time (days) to 50% probability of negative sample (+ IQR), by assay and outcome status:

```
kable(tt50_table, caption = "Model estimated time in days to 50% probability of negative sample", bookt
   kable_styling(latex_options = c("striped", "hold_position"))
```

$\left\{ \text{begin} \left\{ \text{table} \right\} \right[!h]$

 $\label{tab:extrapolation for time to 50\% clearing BSI} Model estimated time in days to 50\% probability of negative sample}$

method	died	median	IQR lower	IQR upper
ct	0	4.8	4.00	6.1
ct	1	11.5	8.25	18.4
dmn	0	2.3	1.80	2.8
dmn	1	5.5	4.20	7.6
ttp	0	1.0	0.80	1.2
ttp	1	2.2	1.80	2.6

 $\ensuremath{\mbox{end}\{\ensuremath{\mbox{table}}\}}$

Figure 19: Expected proportions of patients in ordinal categories by time and assay

11.4 Prediction intervals for new patient

```
nd <- data.frame(</pre>
 timepoint = c(0, 0.167, 1, 2, 3),
 died = rep(c(0,1), each=5),
  study_id = 999,
 method = rep(c("dmn", "ct", "ttp"), each=10)
max_iter = 2e3
set.seed(140916)
posterior_predict(
  fit,
  newdata=nd,
  summary = FALSE,
  re_formula = bacilli ~ timepoint + died + timepoint:died +
    method + timepoint:method +
    (timepoint | study id),
  subset = 1:max_iter,
  allow_new_levels = TRUE,
  sample_new_levels = "gaussian",
  seed = 140916) %>%
  as tibble() %>%
  pivot_longer(1:nrow(nd),
               names_to = "condition",
               values_to = "bacilli") %>%
  mutate(
    timepoint = rep(nd$timepoint, max_iter),
    died = rep(nd$died, max_iter),
    method = rep(nd$method, max_iter)
  ) %>%
  select(-condition) %>%
  group_by(method, died, timepoint) %>%
  summarise(
    predicted bacilli = median(bacilli),
    predicted_q_l = quantile(bacilli, probs = 0.25),
    predicted_q_h = quantile(bacilli, probs = 0.75)
      ) %>%
  mutate(bacilli = predicted_bacilli,
         outcome = ifelse(died==1, "Died", "Survived"),
         method = case_when(
           method=="ct" ~ "Xpert-ultra",
           method=="dmn" ~ "DMN-tre",
           method=="ttp" ~ "MFL culture"
    )) -> pred_new_pt
###
ggplot() +
  geom_point(
   data = df_ord %>%
    mutate(
```

```
outcome = ifelse(died==1, "Died", "Survived"),
     method = case_when(
        method=="ct" ~ "Xpert-ultra",
        method=="dmn" ~ "DMN-tre",
        method=="ttp" ~ "MFL culture"
 )),
 aes(x=timepoint, y=bacilli, group=study_id, colour=method),
 position = position jitter(width=0.05, height=0.1),
 alpha=0.4, size=0.9
geom_line(
 data = df_ord %>% drop_na() %>%
   mutate(
     outcome = ifelse(died==1, "Died", "Survived"),
     method = case_when(
        method=="ct" ~ "Xpert-ultra",
        method=="dmn" ~ "DMN-tre",
        method=="ttp" ~ "MFL culture"
 aes(x=timepoint, y=bacilli, group=study_id, colour=method),
 size=0.5
) +
geom_line(
 data = pred_new_pt,
 aes(timepoint, bacilli),
 colour="black", size=1.1
geom_ribbon(
 data = pred_new_pt,
 mapping = aes(x=timepoint,
                ymin=predicted_q_l, ymax=predicted_q_h),
 alpha=0.6, colour="grey80", fill="grey"
facet_wrap(method~outcome, nrow=3) +
theme_dab() +
scale_colour_manual(values = viridis_pal(option = "D")(20)[c(16,3,9)]) +
scale_fill_manual(values = viridis_pal(option = "D")(20)[c(16,3,9)]) +
vlab("Bacilli ordinal scale") +
xlab("Time from start treatment (days)") +
theme(legend.position = "none",
     strip.text.x = element_text(
        margin = margin( b = 0, t = 0) )) -> g_pred_overlay_observed
```

g_pred_overlay_observed

11.5 Model diagnostics

```
post <- posterior_samples(fit, add_chain = T)

# rhats (chain convergence)
rhats <- rhat(fit)
mcmc_rhat(rhats) + yaxis_text(hjust = 1)</pre>
```


Figure 20: Model predictions for ordinal category by time, assay and outcome status, overlaid on observed data. Black line is median predicted value, shaded area is 50% prediction interval

Figure 21: Rhats (chain convergence): none >1.05

```
ratios_cp <- neff_ratio(fit)
mcmc_neff(ratios_cp, size = 2)</pre>
```


Figure 22: effective sample size (est independent draws): none <0.1

```
mcmc_plot(fit, type = "trace")

post %>%
    mcmc_rank_overlay(
    pars = vars(b_timepoint:cor_study_id__Intercept__timepoint)
    ) +
    labs(title = "MCMC chain (trank) plots") +
    coord_cartesian(ylim = c(250, 350))

# autocorrelation
#post %>%
    # mcmc_acf(
# pars = vars(b_timepoint:cor_study_id__Intercept__timepoint),
    lags = 8) # b_study_id... don't look great - but isn't that what we'd expect here?
```

11.6 Checking sensitivity to priors

Figure 23: Trace plots (chain convergence): no divergences $61\,$

MCMC chain (trank) plots b_died b_timepoint $b_methoddmn$ b_methodttp 350 325 300 275 250 b_timepoint:died imepoint:methodd timepoint:method _study_id__Interce 350 325 Chain 300 275 250 0 2505000500000002500 0 250500050000002500 _study_id__timepc /_id__Intercept__1 350 325 300 275 250

Figure 24: Trank plots (chain convergence): no divergences $62\,$

Rank

0 250500050000002500

0 250**5**00**0**50**0**00**00**2500

```
fit2 <- brm(
  bacilli ~ timepoint + died + timepoint:died + method + timepoint:method +
    (timepoint|study_id),
  data = df_ord,
  family = cumulative("logit"),
  prior = c(
    set_prior("normal(0,2)", class = "b", coef = "died"),
   set_prior("normal(0,2)", class = "b", coef = "timepoint"),
   set_prior("normal(0,2)", class = "b", coef = "timepoint:died"),
   set_prior("normal(0,2)", class = "b", coef = "methoddmn"),
    set_prior("normal(0,2)", class = "b", coef = "methodttp"),
   set_prior("normal(0,2)", class = "b", coef = "timepoint:methoddmn"),
    set_prior("normal(0,2)", class = "b", coef = "timepoint:methodttp"),
   set_prior("student_t(3, 0, 2.5)", class = "sd",
              coef = "Intercept", group = "study_id"),
    set_prior("student_t(3, 0, 2.5)", class = "sd",
              coef = "timepoint", group = "study_id")
  ),
  control = list(adapt delta = 0.97),
  seed = 140916,
  iter = 8000, warmup = 2000, chains=2,
  cores=4, sample_prior = TRUE
bind rows(
  hypothesis(fit2, hypothesis = "timepoint < 0" )$hypothesis,
  hypothesis(fit2, hypothesis = "died > 0") $hypothesis,
  hypothesis(fit2, hypothesis = "timepoint:died > 0") $hypothesis,
  hypothesis(fit2, hypothesis = "methoddmn < 0")$hypothesis,
  hypothesis(fit2, hypothesis = "methodttp < 0")$hypothesis,
  hypothesis(fit2, hypothesis = "timepoint:methoddmn < 0") $hypothesis,
  hypothesis(fit2, hypothesis = "timepoint:methodttp < 0")$hypothesis
) %>%
  as_tibble() %>% select(-Star, -Hypothesis) %>%
  mutate(
    `Hypothesis statement` = c(
      "Decrease in bacilli load over time on Rx",
      "Patients who died had higher bacilli load",
      "Patients who died had slower decrease in bacilli load over time on Rx",
      "DMN-tre observations of bacilli load were lower than Xpert-ultra",
      "Culture TTP observations of bacilli load were lower than Xpert-ultra",
      "DMN-tre observations of bacilli load declined faster than Xpert-ultra",
      "Culture TTP observations of bacilli load declined faster than Xpert-ultra"
    `coefficient (beta)` = c(
      "Time in days (slope)",
     "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
```

```
h1 = c("<0", ">0", ">0", "<0", "<0", "<0", "<0")
  ) %>%
  select(`coefficient (beta)`, h1, `Hypothesis statement`, everything()) -> h1df
max_iter = 1e3
posterior_samples(fit2, subset = 1:max_iter) %>%
   b_timepoint, b_died, `b_timepoint:died`,
   b_methoddmn, b_methodttp,
    `b_timepoint:methoddmn`, `b_timepoint:methodttp`
  ) %>%
  pivot_longer(1:7,
               names_to = "coefficient",
               values_to = "posterior_draw") %>%
  mutate(
    coefficient = factor(
      coefficient,
      levels = c("b_timepoint", "b_died", "b_timepoint:died",
                 "b_methoddmn", "b_methodttp",
                 "b_timepoint:methoddmn", "b_timepoint:methodttp"),
      labels = c(
      "Time in days (slope)",
      "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
  )) -> post_samples
annotate_df <- data.frame(</pre>
  coefficient = factor(
    c("b_timepoint", "b_died", "b_timepoint:died",
      "b_methoddmn", "b_methodttp",
      "b_timepoint:methoddmn", "b_timepoint:methodttp"),
   levels = c("b_timepoint", "b_died", "b_timepoint:died",
      "b_methoddmn", "b_methodttp",
      "b_timepoint:methoddmn", "b_timepoint:methodttp"),
   labels = c(
      "Time in days (slope)",
      "Died (intercept)",
      "Time * Died interaction (slope)",
      "DMN-tre (intercept)",
      "Culture-TTP (intercept)",
      "Time * DMN-tre interaction (slope)",
      "Time * Culture-TTP interaction (slope)"
  h1 = c("<0", ">0", ">0", "<0", "<0", "<0", "<0", "<0"),
  post_prob = signif(h1df$Post.Prob, 3),
  evid_ratio = formatC(h1df$Evid.Ratio, digits = 2),
```

```
y1 = 4.5, y2=6, y3=8.5
post_samples %>%
  ggplot(
    aes(fct_rev(coefficient), posterior_draw)
# ggtitle("Posterior probability density\nfor population coefficients") +
  theme_minimal() +
  theme(plot.margin = unit(c(3,3,3,1), "lines"),
        panel.grid = element_blank(),
        plot.title=element_text(size=10,face="bold", hjust=0)) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 0.5, xmax = 0.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 1.5, xmax = 1.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 2.5, xmax = 2.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 3.5, xmax = 3.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 4.5, xmax = 4.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 5.5, xmax = 5.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 6.5, xmax = 6.5
    ) +
  annotation_custom(
        grob = linesGrob(gp = gpar(col="grey90")),
        ymin = -3, ymax = 10, xmin = 7.5, xmax = 7.5
  annotation_custom(
        grob = linesGrob(),
        ymin = 3.5, ymax = 10, xmin = 0.4, xmax = 0.4
    ) +
  annotation_custom(
        grob = linesGrob(),
        ymin = 3.5, ymax = 10, xmin = 7.5, xmax = 7.5
```

```
annotation_custom(
     grob = linesGrob(),
      ymin = 3, ymax = -3, xmin = 7.5, xmax = 7.5
 ) +
geom_hline(yintercept = 0) +
geom_violin(
 fill = viridis_pal(option="E")(8)[2],
 alpha=0.5,
 colour = viridis_pal(option="E")(8)[2]
geom_boxplot(colour = "black", fill="white", alpha=0.7,
             outlier.alpha = 0, width=0.1) +
ylab("") + xlab("") +
coord_flip(clip = "off") +
annotation_custom(
      grob = textGrob(label = "Higher bacilli load",
                      hjust = 0, gp = gpar(fontsize = 10)),
     ymin = 0.3, ymax = 0.3, xmin = -0.5, xmax = -0.5
 ) +
annotation_custom(
      grob = textGrob(label = "Lower bacilli load",
                      hjust = 1, gp = gpar(fontsize = 10)),
     ymin = -0.3, ymax = -0.3, xmin = -0.5, xmax = -0.5
 ) +
annotation_custom(
      grob = textGrob(label = "Estimate for coefficient (logit scale)",
                      gp = gpar(fontsize = 10, fontface="bold")),
     ymin =0, ymax=0, xmin = -1.5, xmax=-1.5
annotation_custom(
      grob = linesGrob(
        arrow = arrow(type = "closed",
                      ends = "last",
                      length = unit(.2, "cm"))),
     ymin = 0.1, ymax=3, xmin = 0.4, xmax=0.4
 ) +
annotation_custom(
     grob = linesGrob(
        arrow = arrow(type = "closed",
                      ends = "first",
                      length = unit(.2, "cm"))),
     ymin = -0.1, ymax = -3, xmin = 0.4, xmax = 0.4
 ) +
geom_text(
 data = annotate_df,
 aes(x = coefficient, y=y1, label = h1),
 hjust = 0, size=3.5
geom_text(
 data = annotate_df,
 aes(x = coefficient, y=y2, label = post_prob),
 hjust = 0, size=3.5
```

12 Serial observations

(not included)

13 Bacilli lengths

```
files <- list.files(path = paste0(getwd(), "/bacilli_lengths"),</pre>
                      pattern = ".csv",
                      recursive = TRUE, full.names = TRUE)
bldf <- data.frame()</pre>
for(i in 1:length(files)){
  path <- files[i]</pre>
  temp_dat <- read.csv(path)</pre>
  temp_dat$id <- path</pre>
  bldf <- rbind(bldf, temp_dat)</pre>
rm(temp_dat)
bldf %>% as tibble() %>%
  mutate(
    id =
      str_replace(
        pattern = "C:/Users/David/OneDrive/PhD/manuscripts/serialsubstudy/wd/bacilli_lengths/",
        replacement = ""),
    id =
      str_replace(
        id,
```

```
pattern = ".csv",
        replacement = ""),
    id list = str split(id, pattern = "/"),
    study_id = map_chr(.x=id_list, 1),
    timepoint = as.numeric(map_chr(.x=id_list, 2))/24
  ) %>%
  select(study_id, timepoint, id, X, Y) %>%
  dplyr::group_by(study_id, timepoint, id) %>%
  dplyr::summarise(length = max(X),
                   log_length = log(length)) %>%
  filter(length < 12.5) -> bldf
bldf %>%
  ggplot(aes(length)) +
  geom_histogram(fill=viridis(8, option="E")[2],
                 colour="black", alpha=0.6,
                 binwidth = 0.2) +
  theme dab() +
  xlab(paste0("Bacilli length (", "\u03bc", "m)")) -> g_length_hist
# priors are based on Vijay et al. Front Microbiol 2017 https://doi.org/10.3389/fmicb.2017.02296
prior dist = rnorm(1e4,
                   mean = rnorm(1e4, 1.05, 0.175), # mean should be between 2 and 4 (non log scale)
                   sd = rnorm(1e4, 0.43, 0.06))
# hist(exp(prior_dist))
m_lengths <- brm(</pre>
  log_length ~ timepoint + (timepoint|study_id),
  data=bldf,
  prior = c(
    set_prior("normal(1.05,0.175)", class = "Intercept"),
    set_prior("normal(0.43,0.06)", class = "sigma")),
  control = list(adapt_delta = 0.97),
  seed = 140916,
  cores=4
max_iter = 1e3
nd = data.frame(
    study_id = rep(unique(bldf$study_id), each = 5),
    timepoint = rep(c(0,1/6,1,2,3), 10)
posterior_predict(
  m_lengths,
  newdata = nd,
  subset = 1:max_iter,
  seed = 140916) %>%
  as_tibble() %>%
  pivot_longer(1:nrow(nd)) %>%
    study_id = rep(nd$study_id, max_iter),
```

```
timepoint = rep(nd$timepoint, max_iter),
    iter = rep(1:max_iter, each = nrow(nd)),
    length_pred = exp(value)
  ) %>%
  select(iter, study_id, timepoint, length_pred) %>%
  ggplot(aes(as.factor(round(timepoint,2)), length_pred)) +
  geom_quasirandom(
    data=bldf,
    aes(x=as.factor(round(timepoint,2)), y=length),
    alpha=0.7, size = 0.5, colour = viridis(8, option="E")[2]
  geom_violin(alpha=0.2) +
  facet_wrap(~study_id, nrow=2) +
  theme_dab() +
  theme(panel.spacing = unit(0.2, "lines"),
        axis.text.x = element_text(size=7, angle=90, hjust=1, vjust=0.5)) +
  ylab(paste0("Bacilli length (", "\u03bc", "m)")) +
  xlab("Time from start treatment (days)") -> g_length_fit_data
max_iter = 4e3
nd = data.frame(
    study_id = "pidx",
    timepoint = seq(0,3, length.out = 20)
posterior_predict(
  m_lengths,
  newdata = nd,
  subset = 1:max_iter,
  re_formula = log_length ~ timepoint + (timepoint|study_id),
  allow_new_levels = TRUE,
  sample_new_levels = "gaussian",
  seed = 140916
  ) %>%
  as_tibble() %>%
  pivot_longer(1:nrow(nd)) %>%
  mutate(
    timepoint = rep(nd$timepoint, max_iter),
    iter = rep(1:max_iter, each = nrow(nd)),
    length_pred = exp(value)
  ) %>%
  select(iter, timepoint, length_pred) %>%
  group_by(timepoint) %>%
  summarise(
    pred_length = median(length_pred),
    pred_q0.025 = quantile(length_pred, probs = 0.025),
    pred_q0.975 = quantile(length_pred, probs = 0.975)
  ) %>%
  left_join(
    fitted(
      m_lengths, newdata = nd, summary = F,
```

```
re_formula = NA,
      subset = 1:max_iter,
      seed = 140916) %>%
      as tibble() %>%
      pivot_longer(1:nrow(nd)) %>%
      mutate(
        timepoint = rep(nd$timepoint, max_iter),
        iter = rep(1:max_iter, each = nrow(nd)),
        length_pred = exp(value)
        ) %>%
      select(iter, timepoint, length_pred) %>%
      group_by(timepoint) %>%
      summarise(
        fit_length = median(length_pred),
        fit_q0.025 = quantile(length_pred, probs = 0.025),
        fit_q0.975 = quantile(length_pred, probs = 0.975)
        ),
    by = "timepoint"
  ) -> m_lengths_fit_pred
m_lengths_fit_pred %>%
  ggplot(
    aes(x=timepoint)
  geom ribbon(
    aes(ymin=pred_q0.025, ymax=pred_q0.975),
    alpha=0.1, linetype=2,
    fill=viridis(8, option="E")[3],
    colour=viridis(8, option="E")[2]
  ) +
  geom_ribbon(
    aes(ymin=fit_q0.025, ymax=fit_q0.975),
    alpha=0.7,
   fill=viridis(8, option="E")[3],
   colour=viridis(8, option="E")[2]
  ) +
  geom_line(
    aes(y=fit_length)
  ) +
  theme_dab() +
  ylab(paste0("Predicted\nlength (", "\u03bc", "m)")) +
  xlab("Time from start\ntreatment (days)") -> g_lengths_fit_pred
```

(g_length_hist | g_lengths_fit_pred) / g_length_fit_data

Figure 25: Bacilli length variation with time on treatment