Недетерминированные конечные автоматы. Детерминизация

1.1. Недетерминированный конечный автомат задан диаграммой:

Определить множество состояний, в которые данный автомат может прийти по следующим словам.

1) a

4) b

7) *abb*

2) *aa*

5) *bb*

8) *bab*

3) *aaa*

6) bbb

9) *aab*

Какие из этих слов допускаются данным автоматом?

1.2. Найти языки, распознаваемые следующими недетерминированными конечными автоматами.

1

- 1.3. Построить недетерминированные конечные автоматы, распознающие следующие языки.
 - 1) Все слова, содержащие 1111
 - 2) Все слова, заканчивающиеся на 10
 - 3) Все слова, начинающиеся на 01
 - 4) Все слова, содержащие 101
 - 5) Все слова, не содержащие 000
 - 6) Все слова, содержащие ровно три 0
 - 7) Все слова, содержащие хотя бы три 0
 - 8) Все слова, содержащие 111
 - 9) Все слова, начинающиеся на 0 или 11
 - 10) Все слова, в которых за каждым 0 непосредственно следует 1
 - 11) Все слова, содержащие чётное количество 0
 - 12) Все слова, содержащие нечётное количество 1
 - 13) Пустой язык
 - 14) Язык, содержащий только пустое слово
- 1.4. Построить детерминированные конечные автоматы, эквивалентные автоматам из упр. 1.2.
- 1.5. Пусть дан алфавит $\Sigma = \{0, 1, 2\}.$
 - а) Найти недетерминированный конечный автомат, распознающий язык, состоящий из всех слов w, последний символ в которых не встречается на других позициях слова w. (Например, слова 0102, 1220, 10, 1 принадлежат данному языку, а слово 0120 не принадлежит.)
 - b) Построить детерминированный конечный автомат, эквивалентный автомату из п. a).
 - с) Построить минимальный детерминированный конечный автомат, эквивалентный автомату из п. b).
- 1.6. Языки L_1 и L_2 заданы, соответственно, следующими конечными автоматами.

- (a) Найти детерминированный конечный автомат, распознающий пересечение $L_1 \cap L_2$.
- (b) Найти детерминированный конечный автомат, распознающий разность $L_1 \setminus L_2$.
- 1.7. Введём следующее правило допустимости слова недетерминированным конечным автоматом: слово w допускается недетерминированным конечным автоматом M, если любой возможный путь по слову w приводит автомат M в финишное состояние. Показать, что язык, состоящий из всех таких слов, является регулярным.
- 1.8. Пусть $w \in \Sigma^*$ слово. Определим слово 2w следующим образом: 1) $2\varepsilon = \varepsilon$; 2) 2(wa) =(2w)aa. (Другими словами, слово 2w получается из слова w удвоением каждого символа слова w: 2(aab) = aaaabb.)

Показать, что если L — регулярный язык, то язык $\{2w \mid w \in L\}$ также регулярен.

1.9. Пусть $L \subseteq \Sigma^*$ — язык. Зададим язык префиксов языка L следующим образом:

$$\operatorname{pref}(L) = \{ w \in \Sigma^* \mid \exists v \in \Sigma^* : wv \in L \}.$$

Доказать, что если язык L регулярен, то язык $\operatorname{pref}(L)$ также регулярен.

- 1.10. Пусть $L \subseteq \Sigma^*$ язык. Определим язык $\min(L)$, состоящий из всех слов $w \in L$, таких, что $v \not\in L$ для собственных префиксов $v \prec w$. Доказать, что если язык L регулярен, то язык $\min(L)$ также регулярен.
- 1.11. Пусть $L\subseteq \Sigma^*$ язык. Определим язык $\max(L)$, состоящий из всех слов $w\in L$, таких, что $wx \notin L$ для любого непустого слова x. Доказать, что если язык L регулярен, то язык $\max(L)$ также регулярен.
- 1.12. Пусть $L \subseteq \Sigma^*$ язык. Определим язык half(L), состоящий из всех слов $w \in \Sigma^*$, таких, что существует слово x длины |w|, такое, что $wx \in L$. Доказать, что если язык L регулярен, то язык half(L) регулярен.
- 1.13. С помощью теоремы о накачке показать, что данные языки не являются регулярными.
 - 1) $\{0^{2n}1^n \mid n \ge 0\}$
 - 2) $\{1^{n^2} \mid n \ge 0\}$

 - 3) $\{w \in \Sigma \mid w = w^R\}$ 4) $\{a^n b^m a^{nm} \mid n, m \ge 0\}$

 - 5) $\{0^n 10^n \mid n \ge 0\}$ 6) $\{0^n 1^m \mid n \le m\}$