DATA SCIENCE WITH R

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Every hypothesis test may not use a normal distribution

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

What would be null hypothesis here?

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

What would be null hypothesis here?

Ho: Brand preference is 40% (2/5)

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

What would be null hypothesis here?

Ho: Brand preference is 40% (2/5)

H1: Brand preference less than 40%

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

What would be null hypothesis here?

Ho: Brand preference is 40% (2/5)

H1: Brand preference less than 40%

Sig Level: 5%

Every hypothesis test may not use a normal distribution

Example:

A manufacturer claims 2 out of 5 people prefer their washing powder over any other brand. A random sample of 25 people results in 4 people preferring this brand. Is the manufacturer's claim justified? Test at 95% confidence

What would be null hypothesis here?

Ho: Brand preference is 40% (2/5)

H1: Brand preference less than 40%

Sig Level: 5%

Test Distribution?

The outcome in the population is Binomially Distributed (Prefer / Do Not Prefer)

Binomial Distribution:

P (Seeing a 16% or less preference rate, when expecting 40%)

The outcome in the population is Binomially Distributed (Prefer / Do Not Prefer)

Binomial Distribution:

P (Seeing a 16% or less preference rate, when expecting 40%)

= Binom.dist(4,25,0.4,true) = 0.009

The outcome in the population is Binomially Distributed (Prefer / Do Not Prefer)

Binomial Distribution:

P (Seeing a 16% or less preference rate, when expecting 40%)

= Binom.dist(4,25,0.4,true) = 0.009

Since p-value < Sig Level (5% = 0.05), we REJECT the null hypothesis

The outcome in the population is Binomially Distributed (Prefer / Do Not Prefer)

Binomial Distribution:

P (Seeing a 16% or less preference rate, when expecting 40%)

= Binom.dist(4,25,0.4,true) = 0.009

Since p-value < Sig Level (5% = 0.05), we REJECT the null hypothesis

Conclusion:

Manufacturer's claim is NOT justified, and brand preference is actually less than 40%, at a 95% level of confidence

We could alternatively use a normal distribution -

We could alternatively use a normal distribution -

If we have a binomially distributed random variable:

```
approx. mean = n*p approx. std deviation = (npq)^0.5
```


We could alternatively use a normal distribution -

If we have a binomially distributed random variable:

approx. mean = n*p

approx. std deviation = $(npq)^0.5$

Here mean = 25*0.4 = 10

stdev = $(0.4*25*0.6)^{0.5}$ = 2.44

We could alternatively use a normal distribution -

If we have a binomially distributed random variable:

approx. mean = n*p approx. std deviation = $(npq)^0.5$

Here mean = 25*0.4 = 10

stdev = $(0.4*25*0.6)^0.5 = 2.44$

Normal distribution formula -

P = norm.dist(4,10,2.44,true) = 0.006: Conclusion- Reject Null

We could alternatively use a normal distribution -

If we have a binomially distributed random variable:

approx. mean = n*p approx. std deviation = $(npq)^0.5$

Here mean = 25*0.4 = 10

stdev = $(0.4*25*0.6)^0.5 = 2.44$

Normal distribution formula -

P = norm.dist(4,10,2.44,true) = 0.006: Conclusion- Reject Null

* Not really appropriate to use a normal distribution because sample size < 30

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Sample Sizes are Low

Example:

We test if college students sleep a lot less than the general population - average sleep hours for the population is 8 hours.

Example:

We test if college students sleep a lot less than the general population - average sleep hours for the population is 8 hours.

Taking a random sample of 10 college students, we get this data.

Student	Sleep Hrs
1	7
2	6.8
3	6
4	7
5	5.5
6	6.6
7	5.5
8	7.5
9	9
10	5.5
Avg	6.64

Example:

We test if college students sleep a lot less than the general population - average sleep hours for the population is 8 hours.

Taking a random sample of 10 college students, we get this data.

Should we conclude that students sleep less than the general population?

Student	Sleep Hrs
1	7
2	6.8
3	6
4	7
5	5.5
6	6.6
7	5.5
8	7.5
9	9
10	5.5
Avg	6.64

➤ In order to compute probability of an observed outcome when sample size < 30, the sample means follow what is called a **T-Distribution**

- ➤ In order to compute probability of an observed outcome when sample size < 30, the sample means follow what is called a **T-Distribution**
- Do not use the Central Limit Theorem normal approximation because it holds good for sample sizes of at least 30

- In order to compute probability of an observed outcome when sample size < 30, the sample means follow what is called a T-Distribution</p>
- Do not use the Central Limit Theorem normal approximation because it holds good for sample sizes of at least 30

For a random sample of size n (less than 30) drawn from a population with mean μ and standard deviation sigma:

For a random sample of size n (less than 30) drawn from a population with mean μ and standard deviation sigma:

1. The distribution of sample means has a *t* distribution with *n*-1 degrees of freedom

For a random sample of size n (less than 30) drawn from a population with mean μ and standard deviation sigma:

 The distribution of sample means has a t distribution with n-1 degrees of freedom

 As sample size increases and approaches 30, the t-dist approximates a normal distribution

For a random sample of size n (less than 30) drawn from a population with mean μ and standard deviation sigma:

1. The distribution of sample means has a *t* distribution with *n*-1 degrees of freedom

2. As sample size increases and approaches 30, the t-dist approximates a normal distribution

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

Null Hypothesis

Alternate

Significance Level

Test Statistic

Critical Distance

Null Hypothesis:

Ho: Students sleep same as population

Null Hypothesis:

Ho: Students sleep same as population

Alternate:

H1:Students sleep < population

Null Hypothesis:

Ho: Students sleep same as population

Alternate:

H1:Students sleep < population

Significance Level: 5%

Null Hypothesis:

Ho: Students sleep same as population

Alternate:

H1:Students sleep < population

Significance Level: 5%

Test Statistic:

 $(6.44 - 8)/(1.1/(10^{0.5})) = -3.90$

Null Hypothesis:

Ho: Students sleep same as population

Alternate:

H1:Students sleep < population

Significance Level: 5%

Test Statistic:

 $(6.44 - 8)/(1.1/(10^{0.5})) = -3.90$

Critical Distance:

5%, 9 df, one tail = 1.833

Null Hypothesis:

Ho: Students sleep same as population

Alternate:

H1:Students sleep < population

Significance Level: 5%

Test Statistic:

 $(6.44 - 8)/(1.1/(10^{0.5})) = -3.90$

Critical Distance:

5%, 9 df, one tail = 1.833

What happens when Test Statistic is negative?

alpha one-tailed alpha two-tailed	1 .05	.025 .05	.01 .02	.005 .01
	d .10			
df .	N-2000	200000	20000	200,000
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.743	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.869	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.861
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
30	1.697	2.042	2.457	2.750
40	1.684	2.021	2.423	2.704
60	1.671	2.000	2.390	2.660
120	1.658	1.980	2.358	2.617
inf	1.645	1.96	2.326	2.576

Critical Values calculated based on cut-off probabilities of outcomes to the right of the mean

If test statistic is negative, it simply implies that sample mean is < pop mean

Critical Value

=1.83 to right of mean=-1.83 to left of mean

Distribution tables usually show cumulative probabilities from infinity to Z

Critical Values calculated based on cut-off probabilities of outcomes to the right of the mean

If test statistic is negative, it simply implies that sample mean is < pop mean

Critical Value

=1.83 to right of mean=-1.83 to left of mean

If test statistic is farther away from mean than critical value, reject null

Conclusion - Students sleep less than general population

Distribution tables usually show cumulative probabilities from infinity to Z

We can directly calculate p-value using the T-Distribution pdf in Excel:

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1:

Step 2:

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1: Calculate the T-Distance:
$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

Step 2:

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1: Calculate the T-Distance:
$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

Step 2: Use the T-Distance value in Excel with the following formula:

T.DIST(T-Distance, Degrees of Freedom, TRUE)

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1: Calculate the T-Distance:
$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

Step 2: Use the T-Distance value in Excel with the following formula:

T.DIST(T-Distance, Degrees of Freedom, TRUE)

Degrees of Freedom = n-1

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1: Calculate the T-Distance:
$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

Step 2: Use the T-Distance value in Excel with the following formula:

T.DIST(T-Distance, Degrees of Freedom, TRUE)

Degrees of Freedom = n-1

In our example: p value of outcomes more extreme than observed =

T.DIST(-3.90, 9, TRUE) = 0.00181

We can directly calculate p-value using the T-Distribution pdf in Excel:

Step 1: Calculate the T-Distance:
$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

Step 2: Use the T-Distance value in Excel with the following formula:

T.DIST(T-Distance, Degrees of Freedom, TRUE)

Degrees of Freedom = n-1

In our example: p value of outcomes more extreme than observed = T.DIST(-3.90, 9, TRUE) = 0.00181.

Reject the null hypothesis and conclude that students sleep < general population

Coming Up

Types of Hypothesis Tests:

Population Std Deviation not known

THANK YOU