Vectors and Ax = b.

1. Determine if **b** is a linear combination of the columns of *A* when:

a.
$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$.

b.
$$A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$.

2. List 4 vectors in the span of \mathbf{v}_1 , \mathbf{v}_2 in the cases below. For each example, show the weights on \mathbf{v}_1 and \mathbf{v}_2 used to generate the example vectors.

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}.$$

b.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -6 \\ -2 \\ 4 \end{bmatrix}$.

- 3. True or false:
 - a. Another notation for $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $\begin{bmatrix} 1 & 2 \end{bmatrix}$.
 - b. An example of a linear combination of vectors ${\bf v}_1$ and ${\bf v}_2$ is $\frac{1}{2}{\bf v}_1$.
 - c. Asking whether the linear system corresponding to the augmented matrix $\begin{bmatrix} a_1 & a_2 & a_3 & b \end{bmatrix}$ has a solution is equivalent to asking if b is in the span of $\{a_1, a_2, a_3\}$.
 - d. The coefficients c_1, \ldots, c_n in a linear combination $c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ cannot be all 0.
- **4.** Write the system as a matrix equation $A\mathbf{x} = \mathbf{b}$:

$$5x_1 + x_2 - 3x_3 = -2$$
$$7x_2 + x_3 = 0$$

$$4x_1 - x_2 = 9$$
$$7x_1 + x_2 = 0$$
$$7x_1 + 3x_2 = 1$$

5. Given the following examples of A and b, solve Ax = b for x. Write the solutions as a vector.

a.
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$.

b.
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.

6. Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why?

7. Can every vector in \mathbb{R}^4 be written as a linear combina-

tion of the columns in
$$\begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix}$$
? Do these

columns span \mathbb{R}^4 ?

- 8. True or false:
 - a. A vector \mathbf{b} is a linear combination of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.
 - b. Any linear combination of vectors can always be written as Ax for some matrix A and vector x.