Digital Logic Assignment 3

12111448 Hou Fangmin

t1

A PN flipflop has four operations: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01, 10, and 11, respectively.

1

Tabulate the characteristic table

P	N	Q_{t+1}	
0	0	0	clear to 0
0	1	Q_t	no change
1	0	Q_t'	complement
1	1	1	set to 1

2

Derive the characteristic equation

Fron the above characteristic table we can get the K map,

Then we can get the characteristic equation:

$$Q_{t+1} = P Q_t' + N Q_t \tag{1}$$

3

Tabulate the excitation table

Q(t)	Q(t+1)	P	N
0	0	0	X
0	1	1	X
1	0	X	0
1	1	X	1

4

Show how the PN flipflop can be converted to a D flipflop

For D flipflop, when D=0, Q(t+1)=0; D=1, Q(t+1)=1.

To convert a PN flipflop to a D flipflop, just let P and N connect to one input D before the PN flipflop, then when D=1, P=N=1, Q=1; when D=0, P=N=0, Q=0; which is the same as the output of D flipflop.

t2

(20 points) A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations: J_A = x', K_A =B, J_B =x, K_B =A'.

1

Derive the state equations A(t + 1) and B(t + 1) by substituting the input equations for the J and K variables. raw the state diagram of the circuit.

For JF flipflop,

$$Q_{t+1} = JQ_t' + K'Q_t \tag{2}$$

then

$$A(t+1) = JA' + K'A = x'A' + B'A$$
(3)

$$B(t+1) = xB' + AB \tag{4}$$

present	present	input	next	next
A(t)	B(t)	X	A(t+1)	B(t+1)
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

t3

(20 points) A sequential circuit has two JK flipflops A and B, two inputs x and y, and one output z. The flipflop input equations and circuit output equation are JA =Bx'+B'y,KA =Bx'+y',JB =Ax',KB =A+xy',z=Axy+Bx'y'.

1

Draw the logic diagram of the circuit.

Tabulate the state table.

As for JK flip flop,

$$Q(t+1) = JQ' + K'Q \tag{5}$$

then

$$A(t+1) = (Bxt + Bty)A' + (Bxt + yt)'A$$
(6)

$$B(t+1) = (Ax')B' + (A+xy')'B$$
(7)

present	present	input	input	next	next	output
А	В	Х	У	А	В	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	1	0	0
0	1	0	0	1	1	1
0	1	0	1	1	1	0
0	1	1	0	0	0	0
0	1	1	1	0	1	0
1	0	0	0	0	1	0
1	0	0	1	1	1	0
1	0	1	0	0	0	0
1	0	1	1	1	0	1
1	1	0	0	0	0	1
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	1	0	1

Derive the state equations for A and B.

As for JK flip flop,

$$Q(t+1) = JQ' + K'Q \tag{8}$$

then

$$A(t+1) = (Bx' + B'y)A' + (Bx' + y')'A = A'Bx' + B'y + Axy$$
(9)

$$B(t+1) = (Ax')B' + (A+xy')'B = AB'x' + A'Bx' + A'By$$
(10)

	Next	State	Output	
Present State	x = 0	x = 1	x = 0	x = 1
\overline{a}	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	\boldsymbol{a}	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

Draw the corresponding state diagram.

Tabulate the reduced state table.

When the presnet state is e or b, other elements in the row is same, so e row is deleted, and e is replaced by b.

And for the same reason, h can be replaced by d.

After replacing e by b, the c row and a row become similar, and c is replaced by a.

Then we get the table below:

present state	Next state	next state	output	output
	x=0	x=1	x=0	x=1
a	f	b	0	0
b	d	a	0	0
d	g	a	1	0
f	f	b	1	1
g	g	d	0	1

Draw the state diagram corresponding to the reduced state table.

4

Determine the output sequence for input sequence 01010010111 (from left to right) with the original state table and the reduced state table, starting from a.

- Original: a--f(0)--b(1)--d(0)--a(0)--f(0)--f(1)--b(1)--d(0)--a(0)--b(0)--c(0)
- Reduced: a--f(0)--b(1)--d(0)--a(0)--f(0)--f(1)--b(1)--d(0)--a(0)--a(0)

 $\frac{\int excitation table}{\int ff type} \\ \frac{J/k/D/T}{\int ff type} \\ \text{State} \\ \text{(20 points) Obtain the simplified input equations for a sequential circuit that uses T flip-flops and is}$

Let x be the input, the state of A and B be the state of 2 T flip flops.

From the above state diagram, we can get the state table:

present	present	input	next	next	T flip flop	T flip flop
А	В	X	А	В	T_A	T_B
0	0	0	0	1	0	1
0	0	1	0	0	0	0
0	1	0	1	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	0	1
1	0	1	1	0	0	0
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Then we get the K map of A, B, T_A , T_B

$$A_{t+1} = A'B + AB' + Ax (11)$$

$$B_{t+1} = A'x' + B'x' + ABx (12)$$

$$T_A = Bx' + A'B \tag{13}$$

$$T_B = Ax' + B'x' + A'Bx \tag{14}$$