# Personalized and Private Peer-to-Peer Machine Learning

(novembre 2018)

Pierre-Louis Biojout, Leonid Kniazev

# Learning from connected devices data

- Connected devices are widespread and collect increasingly large and sensitive user data
- Ex: browsing logs, health data, accelerometer, geolocation...
- Great opportunity for providing personalized services but raises
- serious privacy concerns
- Centralize data from all devices: best for utility, bad for privacy
- Learn on each device separately: best for privacy, bad for utility

# Proposed solution: fully decentralized network

- Personal data stays on user's device
- Peer-to-peer and asynchronous communication
- No single point of failure/entry as in server-client architecture
- Scalability-by-design to many devices through local updates (see e.g. NIPS 2017 paper [Lian et al., 2017])
- Learn a personalized model for each user (multi-task learning)
- General idea: trade-off between model accuracy on local data and smoothness with respect to similar users



- A set  $V = [n] = \{1, ..., n\}$  of n learning agents
- A convex loss function  $\ell : \mathbb{R}^p \times \mathcal{X} \times \mathcal{Y}$
- Personalized and imbalanced data: agent i has dataset  $S_i = \{(x_i^j, y_i^j)\}_{j=1}^{m_i}$  of size  $m_i \ge 0$  drawn from  $\mu_i$
- Purely local model: agent i can learn a model  $\theta_i$  on its own by minimizing the loss on its local data

$$\mathcal{L}_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(\theta; x_i^j, y_i^j) + \lambda_i \|\theta\|^2, \text{ with } \lambda_i \geq 0$$

- Network: weighted connected graph G = (V, E)
- $E \subseteq V \times V$  set of undirected edges
- Weight matrix  $W \in \mathbb{R}^{n \times n}$ : symmetric, nonnegative, with  $W_{ij} = 0$  if  $(i,j) \notin E$  or i=j
- Assumption: network weights are given and represent the underlying similarity between agents



• Agents have only a local view of the network: they only know their neighborhood  $\mathcal{N}_i = \{j \neq i : W_{ij} > 0\}$  and associated weights

## Problem formulation

• Denoting  $\Theta = [\Theta_1; ...; \Theta_n] \in \mathbb{R}^{np}$ , we use a graph regularization formulation [Evgeniou and Pontil, 2004, Vanhaesebrouck et al., 2017]:

$$\min_{\Theta \in \mathbb{R}^{np}} \mathcal{Q}_{\mathcal{L}}(\Theta) = \frac{1}{2} \sum_{i < j}^{n} W_{ij} \|\Theta_i - \Theta_j\|^2 + \mu \sum_{i=1}^{n} D_{ii} c_i \mathcal{L}_i(\Theta_i; \mathcal{S}_i)$$

- $\mu > 0$  trade-off parameter,  $D_{ii} = \sum_{j} W_{ij}$  normalization factor
- $c_i \in (0,1] \propto m_i$  is the "confidence" of agent i
- Implements a trade-off between having similar models for strongly connected agents and models that are accurate on their respective local datasets

# Non-private decentralized algorithm

# Non-private decentralized algorithm

- · Time and communication models:
  - Asynchronous time: each agent has a random local clock and wakes up when it ticks
  - Broadcast communication: agents send messages to all their neighbors at once (without expecting a reply)
- Algorithm: assume agent i wakes up at step t
  - 1. Agent *i* updates its model based on information from neighbors:

$$\Theta_i(t+1) = (1-\alpha)\Theta_i(t) + \alpha \Big(\sum_{j \in \mathcal{N}_i} \frac{W_{ij}}{D_{ii}} \Theta_j(t) - \mu c_i \nabla \mathcal{L}_i(\Theta_i(t); \mathcal{S}_i)\Big)$$

2. Agent i sends its updated model  $\Theta_i(t+1)$  to its neighborhood  $\mathcal{N}_i$ 

# Private algorithm

# Private algorithm

- In some applications, data may be sensitive and agents may not want to reveal it to anyone else
- In our algorithms, the agents never communicate their local data but exchange sequences of models computed from data
- Consider an adversary observing all the information sent over the network (but not the internal memory of agents)
- Goal: how can we guarantee that no/little information about the local dataset is leaked by the algorithm?

# Differential privacy

### $(\epsilon, \delta)$ -Differential Privacy

Let  $\mathcal{M}$  be a randomized mechanism taking a dataset as input, and let  $\epsilon > 0$ ,  $\delta \geq 0$ . We say that  $\mathcal{M}$  is  $(\epsilon, \delta)$ -differentially private if for all datasets  $\mathcal{S}, \mathcal{S}'$  differing in a single data point and for all sets of possible outputs  $\mathcal{O} \subseteq \text{range}(\mathcal{M})$ , we have:

$$Pr(\mathcal{M}(S) \in \mathcal{O}) \leq e^{\epsilon} Pr(\mathcal{M}(S') \in \mathcal{O}) + \delta.$$

- Guarantees that  ${\mathcal M}$  does not leak much information about any individual data point
- Information-theoretic (no computational assumptions)

# Differentially private algorithm

- Differentially-private algorithm:
  - 1. Replace the update of the algorithm by

$$\widetilde{\Theta}_{i}(t+1) = (1-\alpha)\widetilde{\Theta}_{i}(t) + \alpha \left( \sum_{j \in \mathcal{N}_{i}} \frac{W_{ij}}{D_{ii}} \widetilde{\Theta}_{j}(t) - \mu c_{i}(\nabla \mathcal{L}_{i}(\widetilde{\Theta}_{i}(t); \mathcal{S}_{i}) + \frac{\eta_{i}(t)}{\eta_{i}(t)}) \right),$$

where 
$$\eta_i(t) \sim Laplace(0, s_i(t))^p \in \mathbb{R}^p$$

2. Agent *i* then broadcasts noisy iterate  $\widetilde{\Theta}_i(t+1)$  to its neighbors

# Privacy guarantee

### Theorem ([Bellet et al., 2017])

Let  $i \in [n]$  and assume

- $\ell(\cdot; x, y)$   $L_0$ -Lipschitz w.r.t. the  $L_1$ -norm for all (x, y)
- Agent i wakes up on iterations  $t_i^1, \ldots, t_i^{T_i}$
- For some  $\epsilon_i(t_i^k) > 0$ , the noise scale is  $s_i(t_i^k) = \frac{2L_0}{\epsilon_i(t_i^k)m_i}$

Then for any initial point  $\widetilde{\Theta}(0)$  independent of  $S_i$ , the mechanism  $\mathcal{M}_i(S_i)$  is  $(\bar{\epsilon}_i, 0)$ -DP with  $\bar{\epsilon}_i = \sum_{k=1}^{T_i} \epsilon_i(t_i^k)$ .

Sweet spot: the less data, the more noise added by the agent,
but the least influence in the network

# Privacy/utility trade-off

### Theorem ([Bellet et al., 2017])

For any T > 0, let  $(\widetilde{\Theta}(t))_{t=1}^T$  be the sequence of iterates generated by T iterations. Under appropriate assumptions, we have:

$$\mathbb{E}\left[\mathcal{Q}_{CL}(\Theta(T)) - \mathcal{Q}_{CL}^{\star}\right] \leq (1 - \rho)^{T} \left(\mathcal{Q}_{CL}(\Theta(0)) - \mathcal{Q}_{CL}^{\star}\right) + additive \ error.$$

- Second term gives additive error due to noise
- · More results in the paper

# Experiments

# Experiments

- Implementation in Python
- Simulation of the network on a single computer
- Use of ml-100k dataset
- The network is obtained by setting  $W_{ij} = 1$  if agent i is within the 10-nearest neighbors of agent j

# Results

|                   | Purely local<br>models | Non-priv. CD | Priv. ε = 1 | Priv. ε̄ = 0.5 | Priv. ε = 0.1 |
|-------------------|------------------------|--------------|-------------|----------------|---------------|
| Published results | 1.2834                 | 0.9502       | 0.9527      | 0.9545         | 0.9855        |
| Our results       | 2.5821                 | 2.5676       | 2.6524      | 2.4766         | 2.9688        |

Per-user test RMSE (averaged over users and 5 random runs) on MovieLens-100K.

# Graphs







# Conclusion

# Acknowledgement

- Based on the paper *Personalized and Private Peer-to-Peer Machine Learning* (Aurélien Bellet and al.)
- Part of the illustrations and formulas in our slides are from the slides *personalized and private peer-to-peer machine learning* (NIPS 2017 workshop on "Machine Learning on the Phone and other Consumer Devices" Long Beach, December 9, 2017)