Лабораторна робота № 3. Основи вибіркового методу

Гладкий Іван

Мета: засвоїти основи статистичного оцінювання характеристик випадкової величини на основі вибіркового підходу засобами мови програмування R; набути навичок роботи у середовищі RStudio із застосуванням концепції "грамотного програмування" із застосуванням пакету R Markdown.

1. Постановка задачі

Випадкова величина X має нормальний закон розподілу: $X \sim F(a,\sigma^2)$, тобто $X \sim N(a,\sigma^2)$, вектор параметрів $\Theta=(a,\sigma^2)$ якого відомий: $(a,\sigma^2)=($ -1 , 1) . Тобто, a= -1, $\sigma^2=1$. Згенерувати дві вибірки випадкової величини X за допомогою відповідного генератору псевдовипадкових чисел: $(x_1,x_2,...,x_n)$ відповідно обсягів n=100 та n=1000, що мають розподіл $X \sim N($ -1, 1), обчислити і дослідити оцінки параметрів розподілу $\tilde{a}=\tilde{a}(x_1,x_2,...,x_n)\approx a, \tilde{\sigma}=\tilde{\sigma}(x_1,x_2,...,x_n)=\sigma$ та інші статистичні характеристики, зробити порівняльний аналіз оцінених характеристик між собою і з теоретичними характеристиками. Для цього необхідно:

- 1. Побудувати статистичний розподіл у вигляді інтервальної таблиці відносних частот.
- 2. Побудувати гістограму, теоретичну $f(x, a, \sigma)$ та емпіричну $f^*(x, \tilde{a}, \tilde{\sigma})$ функції щільності на одному графіку.
- 3. Побудувати графіки теоретичної $F(x, a, \sigma)$ та емпіричної $F^*(x, \tilde{a}, \tilde{\sigma})$ функції розподілу.
- 4. Побудувати п'ятиквантильний графік (boxplot) "ящик з вусами".
- 5. Обчислити точкові незміщені і конзістентні оцінки вектору параметрів розподілу (a,σ^2) , математичного сподівання m(x), дисперсії D(x), СКВ $\sigma(x)$, центральних теоретичних моментів 3-го μ_3 і 4-ого μ_4 порядків, асиметрії A_s та ексцесу E_k :
- написавши власну користувацьку функцію;
- за допомогою вбудованих засобів R.

6. Дані звести у таблицю:

Таблица 1: Таблиця 1 — **Теоретичні та емпіричні (вибіркові) числові характеристики випадкової величини**

Назва числової	теоретичне	Вибіркове значення,	
характеристики	значення	n = 100	Вибіркове значення, $n=1000$
\overline{a}	\overline{a}	$ ilde{a}$	$ ilde{a}$
σ	σ	$ ilde{\sigma}$	$ ilde{\sigma}$
Математичне сподівання	m(x)	$ ilde{m}(x)$	$ ilde{m}(x)$

Назва числової характеристики	теоретичне значення	Вибіркове значення, $n = 100$	Вибіркове значення, $n = 1000$
	эна юния		<u> </u>
Дисперсія	D(x)	$ ilde{D}(x)$	$ ilde{D}(x)$
Виправлена дисперсія		$ ilde{ ilde{D}}(x)$	$ ilde{ ilde{D}}(x)$
СКВ	$\sigma(x)$	$ ilde{\sigma}(x)$	$ ilde{\sigma}(x)$
Виправлене СКВ		$ ilde{ ilde{\sigma}}(x)$	$ ilde{ ilde{\sigma}}(x)$
Центральний момент 3-го	μ_3	$ ilde{\mu}_3$	$ ilde{\mu}_3$
порядку			
Центральний момент 4-го	μ_4	$ ilde{\mu}_4$	$ ilde{\mu}_4$
порядку			
Асимерія	A_s	$ ilde{A}_s$	$ ilde{A}_s$
Ексцес	E_k	$egin{aligned} A_s \ ilde{E}_k \end{aligned}$	$egin{aligned} A_s \ ilde{E}_k \end{aligned}$

1. Виконання роботи

Генеруємо вибірку з нормального розподілу з параметрами a= -1, $\sigma=1$ об'єму n=100:

```
set.seed(0) #
X <- rnorm(n, a, s) #</pre>
cat("\n", " :", "\n", "a = ", a, "\n", "s = ", s, "\n", "n = ", n, "\n")
##
##
##
##
            1
##
           100
cat("
                        :", head(X))
                      : \hspace{0.1cm} 0.2629543 \hspace{0.1cm} \textbf{-1.326233} \hspace{0.1cm} 0.3297993 \hspace{0.1cm} 0.2724293 \hspace{0.1cm} \textbf{-0.5853586} \hspace{0.1cm} \textbf{-2.53995}
##
cat("
                          :", tail(X))
##
                       : -0.403741 -0.8802824 -1.282174 0.4559884 -0.7709804 -0.003456071
```

Будуємо варіаційний ряд.

```
SortX <- sort(X) #
plot(SortX, col=4)
title(" - ")</pre>
```


dev.off()

Будуємо інтервальний статистичний розподіл і гістограму частот.

```
1 + 1.332 * log(n)
```

[1] 7.134087

main="

.....

Гістограма відносних частот.

Сумарні статистики.

Вивід сумарних статистик.

summary(X)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.2239 -1.5694 -1.0330 -0.9773 -0.3746 1.4414
```

Можна так:

Таблица 2: Таблиця 2 – Числові характеристики вибірки

Характеристика	Значення
$\overline{\tilde{m}(x)}$	-0.9773316
$ ilde{ ilde{\sigma}}(x)$	0.8826502
$ ilde{R}$	1.1947698

Функція describe() з пакету Hmisc надає можливість вивести цілу низку сумарних оцінок характеристик вибірки:

describe(X)

X

```
Info Mean pMedian
##
         n missing distinct
                                                          Gmd
                                                                  .05
                              1 -0.9773 -0.9989
##
       100
                 0
                        100
                                                       0.9995 -2.2916
                        .50
##
       .10
                .25
                                .75
                                         .90
                                                 .95
   -2.0738 -1.5694 -1.0330 -0.3746
                                     0.2399
                                              0.3008
##
##
## lowest : -3.2239 -2.56378 -2.53995 -2.43759 -2.4251
## highest: 0.329799 0.455988 0.757903 1.40465 1.44136
```

А можна написати власну функцію.

```
##
##
                     , m = -0.9773316
##
##
           = -1.032961
              , s^2 = 0.7790714
##
##
           , s = 0.8826502
##
       R = 4.665265
##
                , IQR = 1.19477
##
       , Ek = 2.959992
##
        , As= 0.2273757
```

Ще один варіант представлення теоретичного і емпіричного розподілів.

```
plot(density(X, adjust=2), main="X", col=4)
rug(X, col=2) #
```


Емпірична функція росподілу F(x).

F(x) з числом інтервалів за Стерджессом.

```
# Fn <- ecdf(table(cut(X, nclass.Sturges(X))))
Fn <- ecdf(X)

## luxury plot
plot(Fn,
    verticals = TRUE,
    col.points = "blue",
    col.hor = "red",
    col.vert = "bisque",
    main = " ")</pre>
```


Побудова боксплотів (ящиків з вусами).

```
# - " - "
boxplot(X, main="box-plot X") #
beeswarm(X, col=2, add=TRUE) # " " jutter
```

box-plot X

На практиці оптимальним може бути компактний варіант виводу основних графіків вибіркових характеристик. Наприклад, такий.

```
op \leftarrow par(mfrow = c(2,2))
#
hist(X,
     freq = FALSE,
     col = "Lightgray",
     main="Histogram",
     border=4)
curve(dnorm(x, a, s),
      col = 2,
      lty = 2,
      lwd = 2,
      add = TRUE) #
plot(Fn,
     main = "Quantile Plot",
     verticals = TRUE,
     col.points = "blue",
     col.hor = "red",
     col.vert = "bisque",
     xlab = "X",
     ylab = "Fn(x)")
```

```
boxplot(X,
        main = "Box-and-Wisker Plot",
        col = "Lightgray",
        border = 4,
        xlab = "X",
        ylab = "",
        horizontal = TRUE) #
beeswarm(X,
         col = 2,
         add = TRUE,
         horizontal = TRUE) #
                                               jutter
plot(density(X, adjust=2),
     main = "density trace",
     xlab = "X",
     ylab = "Dencity",
     col="blue")
rug(X,
   col=2,
 main="fn(x)") #
```


Box-and-Wisker Plot

density trace

par(op) #

Результати моделювання зводимо у таблицю.

Таблица 3: Таблиця 3 — **Теоретичні та емпіричні (вибіркові) числові характеристики випадкової величини**

Назва числової	теоретичне	Вибіркове значення,	
характеристики	значення	n = 100	Вибіркове значення, $n = 1000$
\overline{a}	-1	-0.9773316	$ ilde{a}$
σ	1	0.8826502	$ ilde{\sigma}$
Математичне сподівання	-1	-0.9773316	$ ilde{m}(x)$
Дисперсія	1	0.7790714	$ ilde{D}(x)$
Виправлена дисперсія		0.7869408	$ ilde{ ilde{D}}(x)$
CKB	1	0.8826502	$ ilde{\sigma}(x)$
Виправлене СКВ		0.8870968	$ ilde{ ilde{\sigma}}(x)$
Центральний момент 3-го	μ_3	$ ilde{\mu}_3$	$ ilde{\mu}_3$
порядку			
Центральний момент 4-го	μ_4	$ ilde{\mu}_4$	$ ilde{\mu}_4$
порядку			
Асимерія	A_s	$ ilde{A}_s$	$ ilde{A}_s$
Ексцес	E_k	$egin{array}{c} A_s \ ilde{E}_k \end{array}$	$egin{aligned} ilde{A}_s \ ilde{E}_k \end{aligned}$

Контрольні Питання

- 1. Вибірка це підмножина даних, обрана з генеральної сукупності для дослідження її властивостей.
- 2. Вибіркове математичне сподівання оцінюється за допомогою середнього арифметичного. Воно ϵ точковою оцінкою математичного сподівання генеральної сукупності.
- 3. Дисперсія, дисперсія, середнє квадратичне відхилення, коефіцієнт варіації.
- 4. Асиметрія, Ексцес.

Висновок

На цьому занятті я засвоїв основи статистичного оцінювання характеристик випадкової величини на основі вибіркового підходу засобами мови програмування R; набув навичок роботи у середовищі RStudio із застосуванням концепції "грамотного програмування" із застосуванням пакету R Markdown