

Architectures neuronales bout-en-bout pour la compréhension de la parole

Valentin Pelloin¹ Nathalie Camelin¹ Antoine Laurent¹ Renato De Mori^{2,3} Sylvain Meignier¹

¹LIUM, Le Mans Université, 72085 Le Mans, France ²LIA, Avignon Université, 84029 Avignon, France ³Université de McGill, Montréal H3A 0G4, Canada

Introduction

- Compréhension de la parole dans le cadre de dialogues homme-machine, en français
- Systèmes bout-en-bout ou cascade :
 - systèmes neuronaux bout-en-bout (end-to-end)
 - → pas de propagation des erreurs ASR
 - systèmes cascade (ASR + NLU)
 - → informations linguistiques (mots) utilisées pour la NLU
 - → le système NLU travaille sur l'ensemble de la séquence de mots (futur compris)
- →Proposition : architecture unifiée (bout-en-bout) multi-décodeurs : un décodeur par modalité (mots, SLU mots, SLU valeurs normalisées)

Compréhension automatique de la parole (SLU)

• extraire certaines informations sémantiques contenues dans le signal de parole

Exemple annoté {mots; concept; valeur}

{est ce qu' il y a; -; -} {une piscine; hôtel-services; piscine} {à; -; -} {l';

lienref-coref; singulier} {hôtel;
objet-bd; hotel}

ASR SLU_{Mots}

est ce qu'il y a une piscine à l'hôtel est ce qu'il y a <hôtel-services> une piscine </> à lienref-coref> l' </>>

<objet-bd> hôtel </>

 SLU_{Norm}

<hôtel-services> piscine </>
lienref-coref> singulier </>

<objet-bd> hotel </>

Table 1. Exemple annoté du corpus MEDIA et ses différentes représentations utilisées en sortie des décodeurs.

Architectures à n décodeur(s)

Figure 1. Architecture d'un modèle multi-décodeurs comportant deux décodeurs chaînés : un décodeur ASR et un décodeur SLU_{Mots}.

- encodeur-décodeur-s avec mécanisme-s d'attention
- chaînage entre les décodeurs :
 - ullet le décodeur D_N dispose en entrée des sorties des décodeurs D_0 à D_{N-1}
 - ullet le décodeur D_N dispose également de la sortie de l'encodeur
 - concaténation des vecteurs de contexte des mécanismes d'attention
- apprentissage en utilisant une loss pondérée pour chaque décodeur
- entrées : MelFBanks
- sorties : caractères + tags de concepts

Protocole expérimental

- corpus de transcriptions ASR :
- 414 heures d'apprentissage : MEDIA, PortMEDIA, DECODA, EPAC, ESTER1, ESTER2, ETAPE, QUAERO, REPERE, et émissions TV
- corpus de dialogues homme-machine (woz) :
 - **MEDIA** : réservation de chambres d'hôtel (23 heures)
 - PortMEDIA: informations touristiques lors du festival d'Avignon (12 heures)

Figure 2. Processus d'apprentissage des modèles (ASR et SLU)

- décodage en faisceau (beam search)
 - chaque décodeur possède son beam search
 - les hypothèses du décodeur D_N sont agrégées pour le décodeur D_{N+1}
- en mode SLU_{Norm} : **traduction directe** vers les valeurs normalisées
 - aucune règle : pas d'expertise humaine requise (en dehors de l'annotation)

Résultats

Simple-decodeur	décodag %CER	ge en <i>beam</i> %CVER
(a) SLU _{Mots}	13, 6	18, 5
(b) SLU _{Norm}	15, 4	21, 6

Table 2. Résultats sur le corpus MEDIA Test du modèle (*optimisé* sur MEDIA, **avec modèle de langage**) simple décodeur.

#	Multi-décodeurs			décodage %CER	e en beam %CVER
1 (c) SLU _{Mots}			16,74	21,51
$2 (\epsilon$	d) ASR e) ASR	SLU _{Mots} SLU _{Norm}		16, 58 18, 98	22, 70 26, 00
3 (1	f) ASR	SLU _{Mots}	SLU _{Norm}	$16,40/22,28^*$	22, 31/27, 77*

Table 3. Résultats sur le corpus MEDIA Test de l'architecture multi-décodeurs (uniquement *optimisé* sur MEDIA + PortMEDIA, **sans modèle de langage**).

Conclusions et perspectives

- Architecture de compréhension de la parole bout-en-bout, sans règles pour l'extraction des valeurs
- Nouvelle architecture hybride bout-en-bout & cascade
- Nombreuses perspectives d'amélioration de l'architecture multi-décodeurs
 - intégration de modèles de langage
 - optimisation des modèles sur MEDIA et améliorations du beam search
 - intégration d'informations supplémentaires (parties de mots, POS, BERT, ...)

Références

^[1] V. Pelloin, N. Camelin, A. Laurent, R. De Mori, A. Caubrière, Y. Estève, and S. Meignier. End2End Acoustic to Semantic Transduction. In *ICASSP* 2021, Toronto, ON, Canada, June 2021.