

Chapel over MPI-3

Pavan Balaji

Computer Scientist

Group Lead, Programming Models and Runtime Systems

Mathematics and Computer Science Division

Argonne National Laboratory

MPI: A Philosophical Perspective

- Debate in the community that MPI is too hard to program
 - We don't disagree; it was never meant to be easy to program ☺
- A programming model has to pick a tradeoff between programmability, portability, and performance
 - MPI has chosen to be a high-performance and portable programming model
 - If we have to pick between losing performance/portability vs. losing programmability, we typically pick the latter
 - Focus has been on completeness and ability to help real and complex applications meet their computational needs
- MPI's goal is not to make simple programs easy to write,
 rather it is to make complex programs possible to write

MPI as a Common Runtime System

- We want to encourage high-level libraries/languages on top of MPI to meet productivity goals or domain-specific optimizations
- MPI was traditionally considered to be too "two-sided" in nature to be suitable to be a PGAS or HPCS runtime system
- MPI-2 introduced one-sided communication, but the semantics were too restrictive to take advantage of modern hardware
 - Cache-coherent systems
 - PUT/GET hardware
- MPI-3 introduced a significantly revamped one-sided communication interface
 - Better support for cache-coherent hardware
 - Better communication and synchronization primitives
- The standard was released in September 2012
- MPICH released a (full) implementation at SC 2012

Status of MPI-3 Implementations (as of 11/20/2013)

	MPICH	MVAPICH	Cray	Tianhe	Intel	IBM PE	IBM Platform	Open MPI	SGI	Fujitsu	MS
NB collectives	/	~	V	/	v	Q1 '14	V	~	V		
Neighborhood collectives	V	•	•	~	•	Q1 '14	Q3 '14	Q4 '13 (in nightly snapshots)	Q1 '14		
RMA	/	/	V	/	/	Q1 '14	Q3 '14	Q1 '14	Q4 '13		
Shared memory	/	/	V	/	v	Q1 '14	Q2 '15	Q1 '14	Q4 '13		
Tools Interface	/	Q1 '14	Q2 '14	Q1 '14	Q1 '14	Q1 '14	Q2 '15	/	Q1 '14		
Non-collective comm. create	V	~	V	V	V	Q1 '14	Q2 '15	Q4 '13 (in nightly snapshots)	V		
F08 Bindings (MPI-3 + errata)	(Q1 '14)	(Q2 '14)	(Q2 '14)	(Q1 '14)	(Q1 '14)	(Q1 '14)	(Q3 '14)	(~)	(Q1 '14)		
New Datatypes	/	/	V	/	V	Q1 '14	Q2 '15	/	V		
Large Counts	~	~	/	/	/	Q1 '14	Q2 '15	•	Q1 '14		
Matched Probe	~	/	V	✓	~	Q1 '14	Q3 '14	/	~		

Release dates are estimates and are subject to change at any time. Empty cells indicate no *publicly announced* plan to implement/support that feature.

Chapel over MPI-3

- Combine strengths of different runtime systems
 - Performance of MPI
 - Usability of PGAS languages
- Ability to leverage external, MPI-based libraries

- Easy to program a Jacobi iteration in CHAPEL
- Write one from scratch, or make use of PETSc, elemental, etc.
- Adopting a new language like CHAPEL is not easy for real-world applications
 - Many applications have an MPI dependence
 - Users slow to adopt if performance hinges on new runtime systems
- Chapel over MPI-3
 - Reduces duplication of runtime resources

Pavan Balaji, Argonne National Laboratory

MPI-3 provides a much better match to Chapel's needs than MPI-1

: blocking put

: MPI BARRIER

MPI-3 Features in CHAPEL

- MPI Windows
 - Allocation handled by MPI Implementation
 - Exposed memory shared by all processes in a communicator

Chapel Tasks

- Traditionally done with Active Messages in GASNet
- No active messages in MPI (yet)
- Our model is to use a remote queuing model using MPI RMA atomic operations
 - Lock remote target
 - Enqueue task and arguments
 - Unlock target
- Partial asynchronous progress in this model
 - Enqueue operation can be asynchronous on a good MPI RMA implementation
 - The actual execution of the task requires the target process to see the enqueued operations and execute them

