Introduction to Astrophysics 0321.3108 Exercise 6

- 1. Measurements of the radial recession velocities of five galaxies in a cluster give velocities of $9700, 8600, 8200, 8500, \text{ and } 10,000 \text{ km s}^{-1}$.
 - **a.** What is the distance to the cluster if the Hubble parameter is $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$? Hint: Use the Hubble law for the average velocity of the members in the cluster.
 - **b.** Estimate, to an order of magnitude, the mass of the cluster if every galaxy is projected roughly half a degree from the cluster center. *Hint: Use the virial theorem*
- 2. The age of the Universe For a Hubble constant of $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$, calculate the Hubble time $t_H = H_0^{-1}$.
- 3. The critical density
 - **a.** Consider the Friedmann equation: $\left(\frac{\dot{R}}{R}\right)^2 = H^2 = \frac{8\pi G}{3}\rho \frac{kc^2}{R^2}$. What is the critical density ρ_c that gives a marginally bound Universe. Assume: $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$ and flat Universe.
 - **b.** Estimate the stellar mass density ρ_{\star} . Assume that the density of galaxies is $2 \times 10^{-2} \,\mathrm{Mpc^{-3}}$ and that in each galaxy there are $5 \times 10^{10} \,\mathrm{stars}$, and that each star has an average mass of $0.5 \,\mathrm{M_{\odot}}$. What is the ratio $\frac{\rho_{\star}}{\rho_{c}}$.
- 4. The proper distance to a source is rR_0 where r is the comoving distance and R is the scale factor.
 - **a.** Use the relation between redshift and the scale factor, i.e., $1+z=\frac{R_0}{R(t)}$ and show that $\frac{1}{R(t)}=\frac{1}{R_0}-\frac{1}{R_0}H_0(t-t_0)$. Hint: Use Taylor series about the point $t=t_0$ (the age of the Universe today) to the first order
 - **b.** Consider the geodesic expression: $cdt = R(t) \frac{dr}{\sqrt{1-kr^2}}$, and assume a flat Universe. Calculate to the first order the physical distance today, rR_0 in terms of z and Hubble time t_0 . Hint: Use the above approximation, and approximate to the first order.