- 0. PROGRAMMING WITH R
- 1. ANALYTIC QUESTIONS
- 2. EXPLORATORY DATA ANALYSIS
- 3. VECTORS
- 4. DATA FRAMES
- 5. LOAD DATA
- 6. TIDY DATA
- 7. STRINGS
- 8. TRANSFORM DATA
- 9. UNSTRUCTURED DATA
- 10. MACHINE LEARNING
- 11. VISUALIZE DATA
- 12. COMMUNICATE FINDINGS
- 13. PYTHON

PROGRAMMING WITH R

variables

control structures

loops

functions

libraries

ANALYTIC QUESTIONS

did you summarize the data?

did you summarize the data? NOT a data analysis

did you report the summaries without interpretation?

EXPLORATORY DATA ANALYSIS

load

program

program

VECTORS

DATA FRAMES

{{ tibble }}

LOAD DATA

{{ readr }}

```
read_csv()
read_delim()
```

{{ readxl }}

read_excel()

TIDY DATA

tidy data

each variable is a column; each column is a variable.

each observation is a row; each row is an observation.

each value is a cell; each cell is a single value.

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898

C	ountry	year	cases	population
Afgha	nistan	1999	745	19987071
Afgha	nistan	2000	2666	20595360
	Brazil	1999	37737	172006362
	Brazil	2000	80488	174504898

variables

country	year	cases	population
Afg i nistan	1999	745	19 >7071
Afg i mistan	2000	2666	20 >5360
◆ Drazil	1999	37737	172 >6362
→ Drazil	2000	00400	174 >4898

observations

country	year	cases	population
Afgnaristan	O 1999	745	1997071
Afgnaristan	2000	2666	20595360
S razil	O 1999	7737	17(20)6362
S razil	2000	0488	17(450)4898

values

country	year	type	count
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898

longer

country	year	type	count
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898

wider

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898

tidy

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898

tidy

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898

vector

{{ tidyr }}

pivot_wider()

pivot_longer()

STRINGS

{{ stringr }}

```
str_trim()
str_squish()
```

str_ends() str_detect()

str_starts()

str_starts(txt, "Anna")

str_ends(txt, "Miller")

str_detect(txt, "Mill")

TRANSFORM DATA

{{ dplyr }}

types of transformations

mutate() A B A B SUM 1 2 1 2 3 4 3 7 2 3 5

summarize() A SUM 7 2

joining data

left_join()

inner_join()

UNSTRUCTURED DATA

no handles to grab

no handles to grab

no handles to grab

object detection

→ ["dog", "cat"]

algorithm

extracted, structured information

→ ["dog", "cat"]

program

MACHINE LEARNING

Highly recommended for background information

3Blue1Brown's YouTube Course on Neural Networks and Deep Learning

program

program

program

program

YouTube API

Whisper v3

https://arxiv.org/abs/2212.04356

https://huggingface.co/openai/whisper-large-v3

Large Language Models (LLM)

prediction of next token based on learnt probability distribution

prediction of next token based on learnt probability distribution

(randomness)

prediction of next token based on learnt probability distribution

(randomness)

(filter)

(discriminating, insulting content)

prediction of next token based on learnt probability distribution

(randomness)

(filter)

(discriminating, insulting content)

next word (token)

Phi-3

https://arxiv.org/abs/2404.14219

https://huggingface.co/microsoft/Phi-3-mini-128k-instruct

Gemma 2B / 7B Instruct

https://arxiv.org/abs/2403.08295

https://huggingface.co/google/gemma-2b-it

https://huggingface.co/google/gemma-7b-it

OpenAl GPT-4o

VISUALIZE DATA

data

category	pct
А	75
В	33
С	100

category	pct
А	75
В	33
С	100

{{ ggplot2 }}

why visualize?

```
{{ ggplot2 }}
grammar of graphics
```

any
data
visualization

ggplot()

```
ggplot() +
aes()
```

```
ggplot() +
  aes() +
  geom_point()
```

```
ggplot() +
  aes() +
  geom_point()
```


basic plots

amounts
proportions
distributions (discrete)

associations patterns

trends developments

distributions (continuous)

compare distributions (continuous)

COMMUNICATE FINDINGS

Quarto

PYTHON

{{ reticulate }}