University of South Alabama

## Journal of Double Star Observations

VOLUME 7 NUMBER 1 January 1, 2011

#### Inside this issue:

| Double Star Measures Using a DSLR Camera #6<br>Ernő Berkó                                                                                                                       | 2  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| New Suspected Common Proper Motion Pairs  Massimiliano Martignoni                                                                                                               | 22 |
| The Rapid Convergence of 44 Boötis with Revised Orbit and Updated Ephemerides Henry Zirm                                                                                        | 24 |
| Neglected Double Stars: First Measurement of Double Star SEI 1007 and Updating Measures to SEI 1006AB, SLE 964AC, and SEI 1011  Giuseppe Micello                                | 37 |
| Miscellaneous New Common Proper Motion Stars<br>Carlos E. López                                                                                                                 | 40 |
| Visual Measurements of the Binary Star S 654  Thomas G. Frey, Irina Achildiyev, Chandra Alduenda, Reid Bridgeman, Rebecca Chamberlain, and Alex Hendrix                         | 45 |
| Visual Measurements of the Multiple Star STT 269 AB-C and ARN 8 AB-D  Thomas G. Frey, Irina Achildiyev, Chandra Alduenda, Reid Bridgeman, Rebecca Chamberlain, and Alex Hendrix | 50 |
| The U.S. Naval Observatory Double Star Program: Frequently Asked Questions Brian D. Mason and William I. Hartkopf                                                               | 56 |

Ernő Berkó

3188-Ludányhalászi, Bercsényi u. 3. Hungary

berko@is.hu

**Abstract**: This article contains measures by the author made with a DSLR camera. The images used for the measures were taken in the period between 2009.874-2009.926. The result is 442 positive and 18 negative measures.

Recently, I have had some problems, causing a short break in measuring, and in publishing measurement data. One of the problems was that in the spring, due to extreme weather, the building of my telescope was flooded twice.

Now, continuing the work, I report here the evaluation of the photos taken in 2009 between 15 November -4 December.

The equipment used for photographing, and the methods of photo processing and measuring, are the same as those detailed in my first article [1]. Therefore, I would only like to note that I was working with a Canon 350D digital camera with a 35.5cm Newton telescope, and focal length increased to 4200mm. The pictures were measured with Florent Losse's program (Reduc 3.85). I used approximately 3279 photos for the present article. It contains the data of 4184 independent measures of 460 pairs.

A table contains the results of the measures, followed by the notes. I have also attached images of the doubles that I measured, with captions provided. In the first three columns of the table, the WDS coordinates and names of the doubles, as well as the components' brightness can be found. I described the brightness of the components on the basis of WDS, although it seems contradictory sometimes. When

there is an Anon. component, I gave the GSC or USNO "R" brightness, if not available, I provided the brightness that I estimated on the basis of the photo.

This is followed by the position angle (PA) and the separation (Sep) measured and calculated by me. In both cases, the value of the standard deviation is also indicated (+/-). The column (Epoch) gives the time when the images was taken. Finally, in every row, the number of individual measures (n), the reference number to the description (Notes), and the reference number of the image belonging to the measures (Img) can be seen.

In the descriptions (notes), you can find the GSC number of the primary star of those doubles that I measured; in case it appears in the GSC catalog. Also, my personal notes about the given double star can be read here. I found the greatest problem with the 10-character identification coordinates of WDS. In many cases it is different from the real position of the double. Although WDS contains more precise coordinates for most of the pairs, at times the double cannot be found at these locations. For the doubles measured by me, I "give suggestions" regarding these closest coordinates in the form of (xxxxx+xxxx!).

In the case of some doubles, when the available

measures show a significant deviation in the parameters, I tried to explore the reason for this difference. I Kiricsi, who has helped a lot in this publication with downloaded the DSS images of the area (POSS 1 Blue the English translation and the correspondence. and POSS 2 IR): using these I checked if the doubles under scrutiny changed in the period between the different measures. In some cases it has been proved that the proper motion of one of the components causes this change. I employed the same method DSLR Camera", JDSO, 4, 144-156, 2008. when I could not identify a double in or near the position given by WDS.

I would specially like to thank the work of Ágnes

#### References

1. Berkó, Ernő, "Double Star Measures Using a

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep   | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|-------|------|----------|----|-------|-----|
| 20100+2314 | POU4238    | 11.02 | 11.4  | 354.56 | 0.24 | 15.36 | 0.05 | 2009.874 | 15 | 1     |     |
| 20108+2319 | POU4247    | 12.7  | 12.7  | 95.73  | 0.17 | 10.45 | 0.04 | 2009.874 | 18 | 2     | 1   |
| 20109+2311 | Anon 1     | 12.0  | 13.0  | 143.96 |      | 5.46  |      | 2009.874 | 1  | 3     | 1   |
| 20111+2330 | Anon 2     | 11.5  | 11.6  | 255.48 | 0.24 | 7.18  | 0.07 | 2009.874 | 4  | 4     |     |
| 20112+2330 | Anon 3     | 11.5  | 11.6  | 98.92  | 0.26 | 5.24  | 0.06 | 2009.874 | 7  | 5     |     |
| 20112+2319 | Anon 4     | 13.5  | 13.5  | 326.33 |      | 4.76  |      | 2009.874 | 1  | б     |     |
| 20113+2333 | POU4253    | 13.8  | 14.1  | 50.74  | 0.14 | 9.18  | 0.08 | 2009.874 | 5  | 7     |     |
| 20113+2314 | POU4254    | 12.7  | 12.8  | 314.48 | 0.13 | 13.81 | 0.02 | 2009.874 | 16 | 8     |     |
| 20114+2331 | POU4255    | 11.63 | 12.9  | 43.32  | 0.10 | 17.85 | 0.04 | 2009.874 | 16 | 9     |     |
| 20115+2328 | Anon 5     | 13.5  | 13.5  | 256.63 | 0.38 | 2.75  | 0.14 | 2009.874 | 3  | 10    |     |
| 20115+2318 | Anon 6     | 14.0  | 14.0  | 82.86  |      | 4.18  |      | 2009.874 | 1  | 11    | 2   |
| 20116+2318 | Anon 7     | 13.5  | 14.0  | 119.68 | 0.42 | 5.77  | 0.05 | 2009.874 | 11 | 12    | 2   |
| 20117+2320 | POU4256    | 11.04 | 12.5  | 249.42 | 0.21 | 10.99 | 0.02 | 2009.874 | 15 | 13    | 2   |
| 20118+2317 | Anon 8     | 14.0  | 14.0  | 281.87 | 0.47 | 5.64  | 0.06 | 2009.874 | 6  | 14    | 2   |
| 20118+2316 | POU4258    | 12.6  | 13.8  | 176.08 | 0.18 | 9.30  | 0.04 | 2009.874 | 16 | 15    | 2   |
| 20119+2351 | POU4262    | 10.72 | 11.5  | 5.84   | 0.28 | 7.51  | 0.04 | 2009.874 | 13 | 16    |     |
| 20119+2348 | POU4260    | 12.17 | 13.1  | 334.60 | 0.18 | 14.75 | 0.06 | 2009.874 | 4  | 17    |     |
| 20119+2329 | POU4261    | 12.6  | 14.1  | 112.17 | 0.24 | 6.48  | 0.06 | 2009.874 | 11 | 18    | 3   |
| 20119+2328 | Anon 9     | 12.2  | 14.0  | 34.52  |      | 4.56  |      | 2009.874 | 1  | 19    | 3   |
| 20120+2358 | POU4264    | 12.2  | 12.7  | 353.51 | 0.15 | 16.77 | 0.03 | 2009.874 | 16 | 20    | 3   |
| 20120+2357 | POU4265    | 12.5  | 14.0  | 238.13 | 0.22 | 9.40  | 0.05 | 2009.874 | 16 | 21    |     |
| 20120+2350 | POU4263    | 10.7  | 11.6  | 293.69 | 0.25 | 7.60  | 0.06 | 2009.874 | 14 | 22    |     |
| 20121+2429 | Anon 10    | 10.5  | 12.5  | 26.06  | 0.22 | 8.78  | 0.07 | 2009.882 | 8  | 23    |     |
| 20121+2324 | Anon 11    | 12.7  | 13.5  | 54.64  |      | 6.82  |      | 2009.874 | 1  | 24    |     |
| 20122+2359 | POU4267    | 13.0  | 14.1  | 172.36 | 0.30 | 6.16  | 0.04 | 2009.874 | 12 | 25    |     |
| 20123+2404 | POU4268    | 8.81  | 14.9  | 41.05  | 0.18 | 14.18 | 0.06 | 2009.874 | 5  | 26    |     |
| 20123+2348 | Anon 12    | 12.5  | 13.0  | 162.43 | 0.39 | 4.49  | 0.07 | 2009.874 | 3  | 27    |     |
| 20124+2433 | POU4269    | 11.80 | 12.05 | 272.09 | 0.08 | 13.18 | 0.02 | 2009.882 | 15 | 28    |     |
| 20125+2326 | POU4270AB  | 14.0  | 14.1  | 219.60 | 0.33 | 13.64 | 0.04 | 2009.874 | 13 | 29    |     |
| 20125+2326 | Anon 13Ax  | 14.0  | 14.3  | 183.61 | 0.15 | 5.37  | 0.03 | 2009.874 | 2  | 29    |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep    | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|--------|------|----------|----|-------|-----|
| 20126+2539 | DOO 15AB   | 7.47  | 11.03 | 296.48 | 0.06 | 117.40 | 0.06 | 2009.882 | 10 | 30    |     |
| 20126+2539 | DOO 15BC   | 9.1   | 10.8  | 170.28 |      | 2.39   |      | 2009.882 | 1  | 31    |     |
| 20126+2539 | OPI 22BD   | 11.03 | 13.5  |        |      |        |      | 2009.882 |    | 32    |     |
| 20126+2539 | OPI 22BE   | 11.03 | 11.72 | 243.95 | 0.13 | 38.43  | 0.06 | 2009.882 | 13 | 33    |     |
| 20126+2529 | BRT3355    | 11.30 | 11.3  | 206.75 | 0.29 | 3.48   | 0.07 | 2009.882 | 7  | 34    |     |
| 20126+2326 | POU4272AB  | 12.0  | 12.4  | 31.63  | 0.14 | 13.61  | 0.03 | 2009.874 | 17 | 35    |     |
| 20126+2326 | Anon 14Ax  | 12.0  | 14.5  | 58.81  |      | 8.52   |      | 2009.874 | 1  | 35    |     |
| 20126+2326 | Anon 14By  | 12.4  | 14.5  | 19.16  |      | 7.10   |      | 2009.874 | 1  | 35    |     |
| 20127+2430 | POU4273AB  | 10.95 | 12.06 | 233.07 | 0.25 | 8.11   | 0.04 | 2009.882 | 15 | 36    |     |
| 20127+2430 | POU4274AC  | 10.95 | 13.91 | 8.72   | 0.26 | 13.32  | 0.05 | 2009.882 | 15 | 36    |     |
| 20128+2412 | Anon 15    | 13.0  | 13.5  | 249.27 |      | 2.68   |      | 2009.874 | 1  | 37    |     |
| 20128+2405 | POU4277    | 12.12 | 13.1  | 318.42 | 0.25 | 12.57  | 0.08 | 2009.874 | 6  | 38    |     |
| 20130+2527 | Anon 16    | 12.0  | 12.0  | 223.46 | 0.28 | 6.87   | 0.09 | 2009.882 | 10 | 39    |     |
| 20131+2414 | POU4279    | 14.0  | 14.1  | 184.05 |      | 2.63   |      | 2009.874 | 1  | 40    |     |
| 20132+2328 | POU4280    | 11.04 | 13.3  | 47.25  | 0.27 | 6.91   | 0.06 | 2009.874 | 8  | 41    |     |
| 20133+2411 | POU4282    | 12.7  | 13.2  | 14.85  | 0.32 | 6.59   | 0.08 | 2009.874 | 6  | 42    |     |
| 20135+2325 | POU4284    | 12.6  | 14.0  | 342.77 | 0.18 | 14.49  | 0.03 | 2009.874 | 15 | 43    |     |
| 20136+2334 | POU4287    | 12.2  | 14.1  | 62.96  | 0.26 | 15.31  | 0.05 | 2009.874 | 15 | 44    |     |
| 20137+2333 | POU4288    | 10.6  | 11.7  | 105.83 | 0.11 | 14.72  | 0.02 | 2009.874 | 14 | 45    |     |
| 20137+2330 | Anon 17    | 12.5  | 13.5  | 293.30 |      | 2.22   |      | 2009.874 | 1  | 46    |     |
| 20138+2334 | Anon 18AB  | 13.0  | 13.5  | 171.85 | 0.32 | 9.93   | 0.06 | 2009.874 | 15 | 47    |     |
| 20138+2334 | Anon 18AC  | 13.0  | 14.0  | 13.49  | 0.24 | 10.22  | 0.07 | 2009.874 | 11 | 47    |     |
| 20138+2325 | Anon 19    | 13.1  | 13.5  | 83.47  |      | 6.58   |      | 2009.874 | 1  | 48    |     |
| 20139+2358 | POU4290    | 12.03 | 14.1  | 165.27 | 0.25 | 13.96  | 0.04 | 2009.874 | 12 | 49    |     |
| 20139+2357 | NYS 5AB    | 13.7  | 13.8  | 134.51 | 0.17 | 17.81  | 0.05 | 2009.874 | 8  | 50    |     |
| 20139+2357 | NYS 5BC    | 13.8  | 15.0  | 154.00 | 0.21 | 8.90   | 0.06 | 2009.874 | 2  | 50    |     |
| 20140+2449 | Anon 20    | 11.5  | 13.0  | 182.66 | 0.19 | 7.09   | 0.07 | 2009.882 | 7  | 51    |     |
| 20140+2335 | POU4292    | 13.2  | 14.1  | 248.30 | 0.10 | 12.39  | 0.07 | 2009.874 | 2  | 52    |     |
| 20141+2446 | Anon 21    | 13.5  | 13.5  | 249.04 | 0.28 | 6.07   | 0.09 | 2009.882 | 7  | 53    |     |
| 20141+2443 | POU4293    | 13.17 | 13.15 | 204.94 |      | 2.84   |      | 2009.882 | 1  | 54    |     |
| 20142+2446 | POU4295    | 12.67 | 14.1  | 302.54 | 0.04 | 3.67   | 0.11 | 2009.882 | 2  | 55    |     |
| 20142+2355 | Anon 22    | 14.0  | 14.0  | 298.92 | 0.52 | 5.61   | 0.10 | 2009.874 | 2  | 56    |     |
| 20143+2401 | Anon 23    | 14.3  | 14.4  | 162.89 | 0.23 | 8.49   | 0.05 | 2009.874 | 7  | 57    |     |
| 20143+2352 | Anon 24    | 13.0  | 13.0  | 325.77 |      | 1.86   |      | 2009.874 | 1  | 58    |     |
| 20143+2328 | POU4296    | 13.1  | 13.7  | 80.85  | 0.07 | 15.54  | 0.03 | 2009.874 | 16 | 59    |     |
| 20144+2453 | POU4300    | 12.2  | 14.0  | 268.58 |      | 24.94  |      | 2009.882 | 1  | 60    |     |
| 20144+2358 | POU4299AB  | 12.60 | 14.3  | 334.69 | 0.29 | 10.47  | 0.02 | 2009.874 | 5  | 61    |     |
| 20144+2358 | POU4298AC  | 12.60 | 14.1  | 320.40 | 0.22 | 12.36  | 0.06 | 2009.874 | 11 | 61    |     |
| 20144+2354 | Anon 25    | 13.0  | 13.2  | 217.69 | 0.40 | 3.43   | 0.14 | 2009.874 | 2  | 62    |     |
| 20145+2451 | STT 402    | 7.46  | 10.73 | 35.00  | 0.15 | 13.97  | 0.05 | 2009.882 | 13 | 63    |     |
| 20145+2359 | POU4302    | 11.34 | 12.4  | 107.32 | 0.17 | 15.62  | 0.02 | 2009.874 | 14 | 64    |     |
| 20146+2459 | POU4304    | 12.31 | 14.3  | 324.43 | 0.12 | 17.76  | 0.07 | 2009.882 | 17 | 65    |     |
| 20146+2453 | J 1165     | 10.75 | 12.4  | 119.44 |      | 1.24   |      | 2009.882 | 1  | 66    |     |
| 20146+2334 | POU4305    | 12.39 | 14.6  | 316.16 | 0.25 | 6.66   | 0.03 | 2009.874 | 13 | 67    |     |
| 20147+2355 | Anon 26    | 13.5  | 13.5  | 158.69 |      | 2.51   |      | 2009.874 | 1  | 68    |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep    | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|--------|------|----------|----|-------|-----|
| 20147+2327 | POU4306    | 12.55 | 13.2  | 205.06 | 0.13 | 12.81  | 0.05 | 2009.874 | 16 | 69    |     |
| 20148+2335 | POU4307    | 11.77 | 13.7  | 233.10 | 0.27 | 12.26  | 0.08 | 2009.874 | 5  | 70    |     |
| 20149+2451 | Anon 27    | 12.5  | 13.5  | 264.57 |      | 5.57   |      | 2009.882 | 1  | 71    |     |
| 20150+2428 | POU4311    | 12.7  | 14.0  | 38.83  | 0.15 | 11.03  | 0.05 | 2009.882 | 12 | 72    |     |
| 20150+2424 | POU4309AB  | 13.2  | 13.2  | 71.58  | 0.29 | 6.94   | 0.06 | 2009.882 | 16 | 73    |     |
| 20150+2424 | POU4310AC  | 13.2  | 13.2  | 38.98  | 0.15 | 17.84  | 0.04 | 2009.882 | 16 | 73    |     |
| 20150+2424 | Anon 28Ax  | 13.2  | 14.0  | 313.95 | 0.29 | 4.47   | 0.05 | 2009.882 | 4  | 73    |     |
| 20153+2432 | POU4313    | 11.5  | 12.2  | 329.75 | 0.27 | 12.11  | 0.04 | 2009.882 | 18 | 74    | 4   |
| 20153+2428 | POU4312AB  | 9.78  | 13.1  | 220.98 | 0.14 | 20.44  | 0.07 | 2009.882 | 18 | 75    |     |
| 20153+2428 | Anon 29Ax  | 9.78  | 14.0  | 31.22  | 0.37 | 6.95   | 0.10 | 2009.882 | 5  | 75    |     |
| 20153+2428 | Anon 29Ay  | 9.78  | 14.0  | 186.35 | 0.19 | 17.98  | 0.05 | 2009.882 | 11 | 75    |     |
| 20155+2439 | POU4317    | 12.5  | 13.9  | 96.08  | 0.22 | 4.72   | 0.06 | 2009.882 | 3  | 76    | 4   |
| 20155+2437 | POU4315    | 10.48 | 10.6  | 92.91  | 0.58 | 4.24   | 0.03 | 2009.882 | 4  | 77    | 4   |
| 20157+2503 | POU4318    | 11.41 | 12.9  | 214.04 | 0.29 | 14.36  | 0.05 | 2009.882 | 11 | 78    |     |
| 20158+2437 | Anon 30    | 14.1  | 14.1  | 96.50  | 0.17 | 8.23   | 0.06 | 2009.882 | 8  | 79    |     |
| 20160+2505 | Anon 31    | 14.0  | 14.0  | 9.68   | 0.39 | 3.35   | 0.05 | 2009.882 | 2  | 80    |     |
| 20162+2506 | POU4323    | 14.0  | 14.1  | 21.90  | 0.34 | 4.84   | 0.05 | 2009.882 | 9  | 81    |     |
| 20162+2437 | POU4324    | 11.02 | 14.4  | 189.06 |      | 18.07  |      | 2009.874 | 1  | 82    |     |
| 20166+2503 | POU4329    | 12.6  | 13.8  | 51.10  | 0.34 | 8.35   | 0.06 | 2009.882 | 12 | 83    |     |
| 20166+2433 | POU4330    | 11.18 | 12.6  | 306.98 | 0.19 | 15.07  | 0.03 | 2009.874 | 4  | 84    |     |
| 20177+2510 | POU4344    | 11.38 | 13.9  | 226.33 | 0.04 | 6.45   | 0.07 | 2009.887 | 6  | 85    |     |
| 20178+3956 | НЈ 2951    | 8.80  | 9.54  | 124.93 | 0.11 | 10.88  | 0.03 | 2009.920 | 16 | 86    |     |
| 20179+3712 | SEI1071    | 10.77 | 11.6  | 11.42  | 0.09 | 27.30  | 0.05 | 2009.920 | 15 | 87    |     |
| 20180+2450 | Anon 32    | 13.5  | 13.5  | 229.60 | 0.18 | 5.29   | 0.05 | 2009.887 | 5  | 88    |     |
| 20183+3953 | Anon 33    | 8.80  | 12.0  | 58.70  | 0.19 | 7.09   | 0.06 | 2009.920 | 9  | 89    |     |
| 20183+2539 | BU 985AB   | 6.99  | 12.8  | 153.18 |      | 5.94   |      | 2009.887 | 1  | 90    |     |
| 20183+2539 | HJ 1499AC  | 6.96  | 10.87 | 356.72 | 0.14 | 21.47  | 0.07 | 2009.887 | 17 | 91    |     |
| 20183+2539 | WAL 131AE  | 6.96  | 8.13  | 151.17 | 0.02 | 123.10 | 0.05 | 2009.887 | 17 | 91    |     |
| 20183+2539 | BU 985CD   | 9.7   | 12.4  | 65.58  | 0.36 | 8.53   | 0.02 | 2009.887 | 3  | 91    |     |
| 20183+2449 | POU4349    | 11.47 | 13.1  | 13.71  | 0.18 | 10.31  | 0.01 | 2009.887 | 16 | 92    |     |
| 20184+2511 | POU4352    | 13.25 | 14.04 | 280.90 | 0.08 | 14.03  | 0.03 | 2009.887 | 15 | 93    |     |
| 20184+2501 | POU4350    | 14.1  | 14.2  |        |      |        |      | 2009.887 |    | 94    |     |
| 20187+3720 | SLE 995    | 11.6  | 11.6  | 142.77 | 0.22 | 8.88   | 0.04 | 2009.920 | 16 | 95    |     |
| 20187+3715 | SLE 994    | 11.6  | 12.3  | 353.89 | 0.17 | 14.57  | 0.08 | 2009.920 | 15 | 96    |     |
| 20188+2504 | POU4355    | 13.2  | 14.0  | 177.57 | 0.22 | 10.70  | 0.04 | 2009.887 | 16 | 97    |     |
| 20188+2454 | POU4357    | 14.0  | 14.2  | 65.84  | 0.20 | 13.73  | 0.05 | 2009.887 | 16 | 10    |     |
| 20189+3723 | Anon 34    | 12.0  | 13.0  | 202.51 | 0.11 | 6.71   | 0.02 | 2009.920 | 3  | 98    |     |
| 20192+3938 | ES 2051    | 10.43 | 12.9  | 306.12 |      | 4.93   |      | 2009.920 | 1  | 99    |     |
| 20192+2441 | A 391AB    | 9.82  | 10.40 |        |      |        |      | 2009.887 |    | 100   |     |
| 20192+2441 | Anon 35Ax  | 9.82  | 13.0  | 262.80 | 0.29 | 6.72   | 0.01 | 2009.887 | 3  | 101   |     |
| 20193+2443 | POU4361    | 10.89 | 14.1  | 233.83 | 0.08 | 20.75  | 0.04 | 2009.887 | 16 | 102   |     |
| 20194+2457 | GRV 330    | 12.9  | 13.6  | 148.31 | 0.03 | 47.34  | 0.04 | 2009.887 | 16 | 10    |     |
| 20194+2446 | POU4366    | 11.9  | 13.1  | 258.11 | 0.14 | 13.20  | 0.01 | 2009.887 | 17 | 103   |     |
| 20195+2454 | POU4369    | 11.53 | 12.5  | 39.73  | 0.05 | 20.40  | 0.04 | 2009.887 | 16 | 104   |     |
| 20195+2453 | POU4368    | 12.8  | 14.2  | 183.59 | 0.27 | 10.75  | 0.03 | 2009.887 | 14 | 105   |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep   | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|-------|------|----------|----|-------|-----|
| 20196+3808 | SEI1084AB  | 10.5  | 11.0  | 247.43 | 0.08 | 26.30 | 0.02 | 2009.920 | 16 | 106   |     |
| 20196+3808 | TOB 185AC  | 11.8  | 12.3  | 259.58 | 0.10 | 13.64 | 0.04 | 2009.920 | 16 | 106   |     |
| 20196+2442 | POU4373    | 14.2  | 14.3  | 219.74 | 0.25 | 8.74  | 0.03 | 2009.887 | 16 | 10    |     |
| 20197+2447 | Anon 36    | 13.0  | 13.5  | 245.61 | 0.15 | 4.73  | 0.07 | 2009.887 | 7  | 10    |     |
| 20198+3958 | MLB1014    | 10.7  | 11.5  | 240.72 | 0.29 | 7.57  | 0.05 | 2009.920 | 6  | 107   |     |
| 20198+3806 | Anon 37    | 13.0  | 13.5  | 81.21  | 0.21 | 4.93  | 0.06 | 2009.920 | 5  | 10    |     |
| 20199+4000 | MLB1015    | 12.0  | 12.1  | 86.17  |      | 3.96  |      | 2009.920 | 1  | 10    |     |
| 20199+3933 | SEI1086    | 9.58  | 11.3  | 316.05 | 0.21 | 4.83  | 0.04 | 2009.920 | 12 | 108   |     |
| 20200+3938 | но 593     | 9.0   | 10.8  |        |      |       |      | 2009.920 |    | 109   |     |
| 20202+2458 | POU4378    | 13.6  | 14.0  | 315.35 | 0.24 | 6.82  | 0.05 | 2009.887 | 13 | 110   |     |
| 20203+3958 | BRT2260    | 12.55 | 12.78 | 7.65   | 0.27 | 2.7   | 0.03 | 2009.920 | 5  | 111   |     |
| 20203+2501 | J 1195     | 10.01 | 14.5  | 105.51 | 0.07 | 4.38  | 0.06 | 2009.887 | 6  | 112   |     |
| 20205+4122 | LI 5AB     | 10.95 | 15.9  | 143.87 | 0.36 | 8.34  | 0.02 | 2009.920 | 3  | 113   |     |
| 20205+4122 | FAB 15AC   | 10.95 | 12.81 | 202.89 | 0.14 | 19.50 | 0.05 | 2009.920 | 15 | 113   |     |
| 20207+2502 | POU4387    | 12.0  | 13.8  | 281.89 | 0.25 | 13.06 | 0.05 | 2009.887 | 14 | 114   |     |
| 20208+2448 | POU4389    | 12.06 | 12.7  | 255.94 | 0.10 | 14.76 | 0.05 | 2009.887 | 16 | 115   |     |
| 20213+2514 | POU4393    | 12.8  | 13.8  | 241.49 | 0.11 | 13.09 | 0.05 | 2009.887 | 15 | 116   |     |
| 20213+2445 | Anon 38    | 14.0  | 14.0  | 106.80 | 0.32 | 3.45  | 0.05 | 2009.887 | 3  | 117   |     |
| 20213+2443 | Anon 39    | 11.6  | 13.5  | 65.58  | 0.28 | 7.60  | 0.06 | 2009.887 | 12 | 118   |     |
| 20213+2440 | POU4394    | 13.2  | 14.4  | 24.09  | 0.10 | 15.09 | 0.02 | 2009.887 | 16 | 10    |     |
| 20216+3836 | SEI1102    | 9.86  | 10.1  | 156.79 | 0.09 | 18.96 | 0.03 | 2009.920 | 16 | 119   |     |
| 20218+2517 | POU4399AB  | 12.4  | 13.4  | 21.24  | 0.19 | 10.74 | 0.03 | 2009.887 | 15 | 120   |     |
| 20218+2517 | POU4400AC  | 12.4  | 14.2  | 72.81  | 0.14 | 17.71 | 0.06 | 2009.887 | 15 | 120   |     |
| 20219+2510 | Anon 40    | 13.5  | 14.0  | 355.62 | 0.12 | 5.11  | 0.04 | 2009.887 | 3  | 121   |     |
| 20221+3839 | Anon 41    | 12.6  | 13.7  | 94.29  | 0.25 | 8.25  | 0.06 | 2009.920 | 9  | 122   |     |
| 20221+2516 | Anon 42    | 13.5  | 13.6  | 85.36  | 0.25 | 6.24  | 0.06 | 2009.887 | 5  | 123   |     |
| 20223+3837 | Anon 43    | 11.5  | 12.5  | 332.11 | 0.25 | 5.21  | 0.05 | 2009.920 | 11 | 124   |     |
| 20229+3829 | MLB 773AB  | 10.5  | 11.7  | 293.85 | 0.19 | 9.50  | 0.06 | 2009.920 | 15 | 125   |     |
| 20229+3829 | Anon 44Bx  | 11.7  | 12.5  | 151.81 | 0.32 | 2.52  | 0.05 | 2009.920 | 6  | 125   |     |
| 20241+2453 | POU4448    | 13.0  | 13.0  | ,      |      | ,     | 1    | 2009.874 |    | 126   |     |
| 20242+3516 | POP1230AC  | 10.8  | 11.4  | 147.64 | 0.06 | 46.99 | 0.05 | 2009.909 | 15 | 127   |     |
| 20242+2453 | POU4450    | 11.53 | 11.7  | 230.69 | 0.16 | 17.93 | 0.04 | 2009.874 | 14 | 128   |     |
| 20243+2445 | POU4455    | 11.93 | 13.1  | 299.05 | 0.43 | 6.63  | 0.02 | 2009.874 | 12 | 129   |     |
| 20245+3511 | POP 202    | 9.71  | 12.4  |        |      |       |      | 2009.909 |    | 130   |     |
| 20246+2510 | POU4463    | 12.39 | 13.3  | 142.83 | 0.24 | 12.43 | 0.04 | 2009.874 | 14 | 131   |     |
| 20247+3523 | SEI1117    | 11.80 | 12.15 | 126.59 | 0.26 | 13.01 | 0.06 | 2009.909 | 11 | 132   |     |
| 20251+3522 | SEI1118    | 11.1  | 11.2  | 149.52 | 0.20 | 9.27  | 0.06 | 2009.909 | 17 | 133   |     |
| 20252+3522 | SEI1120    | 10.34 | 10.55 | 216.53 | 0.09 | 27.25 | 0.03 | 2009.909 | 17 | 134   |     |
| 20253+2506 | POU4483    | 12.8  | 13.8  | 228.40 | 0.34 | 5.63  | 0.04 | 2009.874 | 8  | 135   |     |
| 20293+3731 | WEI 35AB   | 8.35  | 8.81  | 213.26 | 0.39 | 3.49  | 0.01 | 2009.909 | 2  | 136   |     |
| 20293+3731 | WEI 35AC   | 8.35  | 9.40  | 99.92  | 0.16 | 87.67 | 0.09 | 2009.909 | 7  | 136   |     |
| 20293+3731 | WEI 35BC   | 8.81  | 9.40  | 97.89  | 0.01 | 89.17 | 0.03 | 2009.909 | 11 | 136   |     |
| 20293+3731 | WEI 35CD   | 9.40  | 10.4  | 200.81 | 0.26 | 12.13 | 0.06 | 2009.909 | 10 | 136   |     |
| 20296+4021 | STN 50     | 9.0   | 10.0  |        |      |       |      | 2009.909 |    | 137   |     |
| 20299+4022 | НЈ 1525АВ  | 9.13  | 9.58  | 234.36 | 0.14 | 9.09  | 0.03 | 2009.909 | 16 | 138   |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep   | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|-------|------|----------|----|-------|-----|
| 20299+4022 | HJ 1525AC  | 9.13  | 13.5  | 38.74  |      | 16.78 |      | 2009.909 | 1  | 138   |     |
| 20311+3652 | SEI1148    | 12.19 | 12.9  | 280.94 | 0.11 | 24.62 | 0.07 | 2009.909 | 7  | 139   |     |
| 20313+3654 | TOB 188    | 11.8  | 12.8  | 261.70 | 0.15 | 16.54 | 0.09 | 2009.909 | 5  | 140   |     |
| 20317+3831 | ES 246AB   | 10.92 | 13.4  |        |      |       |      | 2009.909 |    | 141   |     |
| 20317+3831 | ES 246AC   | 10.92 | 12.4  | 353.56 | 0.24 | 10.03 | 0.05 | 2009.909 | 8  | 142   |     |
| 20327+3916 | SEI1160AB  | 8.20  | 10.38 | 50.85  | 0.15 | 14.51 | 0.05 | 2009.909 | 14 | 143   |     |
| 20327+3916 | SEI1159AC  | 8.20  | 10.2  |        |      |       |      | 2009.909 |    | 144   |     |
| 20332+3910 | SEI1165    | 9.34  | 10.8  | 4.28   | 0.30 | 10.81 | 0.06 | 2009.909 | 14 | 145   |     |
| 20332+3324 | SEI1162    | 8.89  | 10.40 | 91.12  | 0.11 | 20.59 | 0.04 | 2009.909 | 15 | 146   |     |
| 20333+4119 | НЈ 1539АВ  | 9.23  | 10.80 | 202.12 | 0.25 | 9.54  | 0.08 | 2009.909 | 15 | 147   |     |
| 20333+4119 | НЈ 1539АС  | 9.23  | 11.8  | 51.84  | 0.27 | 18.32 | 0.06 | 2009.909 | 11 | 147   |     |
| 20333+4119 | arn 77ad   | 9.23  | 10.14 | 120.72 | 0.09 | 38.16 | 0.03 | 2009.909 | 15 | 147   |     |
| 20333+4119 | ARN 77BD   | 10.80 | 10.14 | 106.32 | 0.06 | 37.92 | 0.03 | 2009.909 | 15 | 147   |     |
| 20333+3323 | НЈ 1535АВ  | 8.29  | 11.9  | 245.60 | 0.25 | 17.20 | 0.06 | 2009.909 | 7  | 148   |     |
| 20333+3323 | HJ 1535AC  | 8.29  | 11.9  | 191.79 | 0.03 | 30.43 | 0.09 | 2009.909 | 2  | 148   |     |
| 20333+3323 | HJ 1535AD  | 8.29  | 11.03 | 229.46 | 0.04 | 57.81 | 0.03 | 2009.909 | 15 | 148   |     |
| 20335+3913 | SEI1168    | 9.80  | 11.3  | 117.40 | 0.21 | 19.74 | 0.04 | 2009.909 | 15 | 149   |     |
| 20340+3737 | SEI1170    | 12.36 | 13.4  | 28.82  | 0.17 | 17.45 | 0.05 | 2009.909 | 10 | 150   |     |
| 20349+4143 | STU 13     | 7.57  | 10.13 | 195.68 | 0.21 | 27.27 | 0.08 | 2009.920 | 14 | 151   |     |
| 20351+3914 | MLB 777    | 11.0  | 11.1  | 185.37 | 0.29 | 6.09  | 0.01 | 2009.909 | 2  | 152   |     |
| 20355+3749 | SEI1184    | 10.59 | 11.98 | 35.96  | 0.28 | 27.23 | 0.05 | 2009.909 | 9  | 153   |     |
| 20357+3747 | TOB 190    | 9.8   | 12.6  | 68.68  | 0.20 | 17.78 | 0.09 | 2009.909 | 4  | 154   |     |
| 20362+3737 | SEI1188AB  | 10.64 | 11.29 | 78.20  | 0.13 | 15.49 | 0.04 | 2009.909 | 13 | 155   |     |
| 20362+3737 | SEI1187BC  | 9.0   | 11.0  | 272.40 | 0.22 | 22.74 | 0.05 | 2009.909 | 7  | 155   |     |
| 20362+3737 | TOB 191BD  | 11.9  | 12.7  | 134.74 | 0.07 | 37.38 | 0.06 | 2009.909 | 9  | 155   |     |
| 20363+3854 | MLB 953    | 11.70 | 12.2  | 6.12   |      | 6.10  |      | 2009.909 | 1  | 156   |     |
| 20383+3814 | SEI1202    | 11.0  | 11.0  |        |      |       |      | 2009.909 |    | 157   |     |
| 20390+3804 | SEI1204    | 11.0  | 11.0  | 294.79 | 0.30 | 7.80  | 0.09 | 2009.909 | 3  | 158   | 5   |
| 20391+3759 | SEI1208    | 10.58 | 11.8  | 10.46  | 0.33 | 7.41  | 0.08 | 2009.909 | 5  | 159   |     |
| 20411+2322 | Anon 45    | 12.0  | 13.5  | 210.44 | 0.29 | 7.39  | 0.06 | 2009.901 | 12 | 160   |     |
| 20411+2321 | POU4864AB  | 12.20 | 15.0  | 212.51 | 0.20 | 13.78 | 0.04 | 2009.901 | 18 | 161   |     |
| 20411+2321 | Anon 46Bx  | 15.0  | 14.0  | 300.73 | 0.32 | 10.47 | 0.05 | 2009.901 | 8  | 162   |     |
| 20412+2322 | POU4866    | 14.3  | 14.4  | 38.82  | 0.24 | 10.17 | 0.05 | 2009.901 | 11 | 163   |     |
| 20415+2318 | Anon 47    | 12.0  | 13.8  | 239.84 | 0.23 | 10.72 | 0.05 | 2009.901 | 18 | 164   |     |
| 20415+2317 | Anon 48    | 13.8  | 13.8  | 32.80  | 0.31 | 8.73  | 0.07 | 2009.901 | 5  | 165   |     |
| 20416+2323 | POU4871    | 13.5  | 13.6  | 68.51  | 0.11 | 15.46 | 0.06 | 2009.901 | 18 | 166   |     |
| 20417+2318 | Anon 49    | 13.0  | 13.5  | 345.75 | 0.24 | 8.10  | 0.06 | 2009.901 | 16 | 167   |     |
| 20418+2321 | Anon 50    | 13.9  | 14.2  | 76.80  | 0.25 | 7.74  | 0.03 | 2009.901 | 6  | 168   |     |
| 20418+2317 | Anon 51    | 11.0  | 13.0  | 262.06 | 0.25 | 9.87  | 0.06 | 2009.901 | 10 | 169   |     |
| 20420+2317 | POU4884AB  | 12.58 | 13.3  | 286.81 | 0.18 | 6.43  | 0.03 | 2009.901 | 16 | 170   |     |
| 20420+2317 | POU4885AC  | 12.58 | 13.5  | 227.32 | 0.10 | 20.19 | 0.04 | 2009.901 | 18 | 170   |     |
| 20420+2317 | Anon 52Ax  | 12.58 | 14.0  | 12.16  | 0.31 | 15.06 | 0.05 | 2009.901 | 11 | 170   |     |
| 20420+2317 | Anon 52Ay  | 12.58 | 13.8  | 95.27  | 0.12 | 22.32 | 0.03 | 2009.901 | 18 | 170   |     |
| 20421+2319 | Anon 53AB  | 12.5  | 13.5  | 299.07 | 0.29 | 4.76  | 0.04 | 2009.901 | 3  | 171   |     |
| 20421+2319 | Anon 53AC  | 12.5  | 13.0  | 344.76 | 0.22 | 9.59  | 0.06 | 2009.901 | 15 | 171   |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep   | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|-------|------|----------|----|-------|-----|
| 20423+2352 | POU4893    | 11.09 | 14.3  | 248.21 | 0.17 | 14.83 | 0.05 | 2009.901 | 11 | 172   |     |
| 20425+2352 | Anon 54    | 14.0  | 14.0  | 311.50 | 0.12 | 9.01  | 0.03 | 2009.901 | 4  | 10    |     |
| 20425+2350 | POU4900    | 13.5  | 14.4  | 3.73   | 0.32 | 10.63 | 0.04 | 2009.901 | 13 | 173   |     |
| 20427+2355 | POU4907AB  | 11.77 | 11.76 | 220.04 | 0.30 | 5.73  | 0.05 | 2009.901 | 13 | 174   |     |
| 20427+2355 | POU4906AC  | 11.77 | 13.79 | 159.48 | 0.19 | 12.10 | 0.04 | 2009.901 | 15 | 175   |     |
| 20429+2356 | Anon 55    | 12.5  | 13.6  | 311.50 | 0.18 | 9.05  | 0.05 | 2009.901 | 3  | 176   |     |
| 20430+2421 | POU4910    | 12.3  | 12.4  | 114.07 | 0.10 | 16.01 | 0.03 | 2009.901 | 16 | 177   |     |
| 20432+2353 | POU4912AB  | 13.0  | 13.1  | 27.84  | 0.10 | 16.28 | 0.04 | 2009.901 | 16 | 178   |     |
| 20432+2353 | Anon 56Bx  | 13.1  | 14.0  | 77.51  | 0.27 | 6.63  | 0.04 | 2009.901 | 3  | 178   |     |
| 20432+2349 | POU4913    | 10.46 | 15.3  | 26.97  | 0.22 | 18.14 | 0.06 | 2009.901 | 9  | 179   |     |
| 20435+2420 | Anon 57    | 12.0  | 13.6  | 346.49 | 0.32 | 10.42 | 0.05 | 2009.901 | 16 | 180   |     |
| 20435+2415 | POU4922    | 12.00 | 10.90 | 190.59 | 0.09 | 18.63 | 0.05 | 2009.901 | 12 | 181   |     |
| 20436+2420 | BRT2481    | 10.99 | 11.1  |        |      |       |      | 2009.901 |    | 182   |     |
| 20439+2416 | POU4928    | 12.8  | 14.3  | 208.67 | 0.25 | 8.61  | 0.04 | 2009.901 | 13 | 183   |     |
| 20445+2420 | Anon 58    | 12.5  | 13.5  | 69.14  |      | 4.11  |      | 2009.901 | 1  | 184   |     |
| 20445+2402 | POU4935    | 13.9  | 14.4  | 79.19  | 0.21 | 2.84  | 0.08 | 2009.901 | 5  | 185   |     |
| 20445+2356 | STF2724    | 8.97  | 9.00  | 150.98 | 0.29 | 2.07  | 0.12 | 2009.901 | 3  | 186   |     |
| 20446+2423 | POU4936    | 11.4  | 12.3  | 256.85 | 0.24 | 9.46  | 0.03 | 2009.901 | 16 | 187   | 6   |
| 20446+2423 | Anon 59    | 13.0  | 13.2  | 62.76  | 0.37 | 4.78  | 0.09 | 2009.901 | 2  | 188   | 6   |
| 20446+2403 | Anon 60    | 12.5  | 13.5  | 130.27 |      | 3.85  |      | 2009.901 | 1  | 189   |     |
| 20446+2358 | POU4941    | 13.9  | 14.4  | 328.43 | 0.27 | 9.73  | 0.04 | 2009.901 | 17 | 190   |     |
| 20447+2424 | POU4943    | 13.4  | 13.6  | 295.50 | 0.31 | 11.65 | 0.03 | 2009.901 | 10 | 191   | 6   |
| 20447+2356 | Anon 61    | 13.5  | 14.0  | 13.46  | 0.25 | 11.39 | 0.02 | 2009.901 | 3  | 192   |     |
| 20450+2423 | POU4950    | 12.0  | 12.2  | 137.31 | 0.11 | 13.91 | 0.03 | 2009.901 | 14 | 193   |     |
| 20450+2356 | POU4949    | 12.50 | 13.44 | 271.67 | 0.24 | 13.48 | 0.08 | 2009.901 | 16 | 194   |     |
| 20451+2414 | POU4967    | 13.7  | 14.0  |        |      |       |      | 2009.901 |    | 195   |     |
| 20459+2344 | POU4962    | 13.4  | 13.7  | 0.26   | 0.43 | 2.95  | 0.02 | 2009.901 | 5  | 196   |     |
| 20460+2349 | POU4965    | 14.5  | 14.5  | 113.80 | 0.32 | 7.69  | 0.05 | 2009.901 | 5  | 197   |     |
| 20460+2343 | POU4963AB  | 13.7  | 13.9  | 297.60 | 0.22 | 7.82  | 0.06 | 2009.901 | 15 | 198   |     |
| 20460+2343 | Anon 62Bx  | 13.9  | 14.5  | 220.52 | 0.10 | 4.11  | 0.01 | 2009.901 | 2  | 198   |     |
| 20461+2358 | POU4970    | 14.5  | 14.5  | 1.88   | 0.22 | 14.69 | 0.06 | 2009.901 | 12 | 199   |     |
| 20461+2354 | POU4969    | 13.4  | 13.8  | 146.36 | 0.18 | 18.53 | 0.03 | 2009.901 | 14 | 200   |     |
| 20462+2358 | POU4971    | 9.53  | 13.3  | 74.12  | 0.21 | 13.28 | 0.05 | 2009.901 | 14 | 201   |     |
| 20463+2343 | POU4973    | 14.3  | 14.5  | 331.64 | 0.29 | 4.06  | 0.05 | 2009.901 | 10 | 202   |     |
| 20465+2403 | POU4975    | 12.14 | 14.8  | 159.40 | 0.25 | 18.53 | 0.07 | 2009.901 | 11 | 203   |     |
| 20469+2342 | POU4983    | 11.53 | 14.1  | 245.04 | 0.19 | 16.20 | 0.06 | 2009.901 | 14 | 204   |     |
| 20471+2343 | POU4984    | 12.4  | 14.1  | 154.34 | 0.24 | 9.67  | 0.07 | 2009.901 | 10 | 205   |     |
| 20471+2341 | POU4985    | 12.25 | 14.2  | 110.13 | 0.08 | 16.26 | 0.03 | 2009.901 | 16 | 206   |     |
| 20475+2342 | Anon 63    | 13.0  | 14.0  | 127.77 | 0.20 | 6.55  | 0.07 | 2009.901 | 9  | 207   |     |
| 20476+2518 | POU4996    | 12.27 | 14.3  | 126.84 | 0.20 | 12.30 | 0.05 | 2009.884 | 15 | 208   |     |
| 20476+2339 | POU4993    | 13.3  | 13.5  | 114.26 |      | 3.23  |      | 2009.901 | 1  | 209   |     |
| 20476+2322 | Anon 64    | 13.6  | 14.0  | 314.80 | 0.24 | 9.63  | 0.07 | 2009.901 | 11 | 210   |     |
| 20477+2339 | POU4997AB  | 12.4  | 14.2  | 194.89 | 0.25 | 12.29 | 0.04 | 2009.901 | 10 | 211   |     |
| 20477+2339 | Anon 65Ax  | 12.4  | 12.5  | 235.40 | 0.77 | 1.66  | 0.01 | 2009.901 | 2  | 211   |     |
| 20478+2519 | BUP 218AB  | 11.27 | 11.29 | 36.73  | 0.03 | 49.48 | 0.01 | 2009.884 | 15 | 212   |     |

| WDS        | Discoverer      | m1    | m2    | PA              | +/-  | Sep    | +/-  | Epoch    | n        | Notes | Img |
|------------|-----------------|-------|-------|-----------------|------|--------|------|----------|----------|-------|-----|
| 20478+2519 | BUP 218AC       | 11.27 | 11.2  | 142.78          | 0.22 | 5.74   | 0.02 | 2009.884 | 2        | 213   |     |
| 20478+2519 | BUP 218AD       | 11.27 | 10.78 | 252.49          | 0.01 | 154.66 | 0.02 | 2009.884 | 15       | 214   |     |
| 20478+2320 | POU4999         | 12.23 | 13.2  | 125.73          | 0.07 | 21.28  | 0.04 | 2009.901 | 14       | 215   |     |
| 20479+2519 | Anon 66         | 13.4  | 13.5  | 177.43          | 0.26 | 9.26   | 0.05 | 2009.884 | 10       | 216   |     |
| 20480+2428 | Anon 67         | 13.7  | 13.9  | 148.97          | 0.31 | 8.25   | 0.05 | 2009.884 | 10       | 217   |     |
| 20480+2321 | Anon 68         | 13.9  | 14.1  | 208.35          | 0.26 | 9.74   | 0.04 | 2009.901 | 9        | 218   |     |
| 20480+2319 | POU5000         | 14.1  | 14.2  | 6.59            | 0.19 | 10.96  | 0.04 | 2009.901 | 15       | 219   |     |
| 20482+2624 | STF2728AB       | 7.92  | 10.38 | 25.93           | 0.25 | 10.36  | 0.04 | 2009.884 | 17       | 220   |     |
| 20482+2624 | STF2728AC       | 7.92  | 13.6  | 210.62          | 0.27 | 19.31  | 0.06 | 2009.884 | 6        | 220   |     |
| 20483+2515 | POU5004         | 13.4  | 13.2  | 325.25          | 0.14 | 15.04  | 0.06 | 2009.884 | 18       | 221   |     |
| 20484+2426 | Anon 69         | 13.5  | 13.5  | 264.07          | 0.26 | 8.81   | 0.03 | 2009.884 | 8        | 10    |     |
| 20484+2422 | POU5005         | 11.9  | 13.0  | 61.29           | 0.25 | 13.90  | 0.06 | 2009.884 | 13       | 222   |     |
| 20485+2444 | POU5007         | 14.5  | 14.6  | 155.86          | 0.33 | 3.62   | 0.04 | 2009.884 | 11       | 223   | 7   |
| 20486+2444 | Anon 70         | 13.5  | 13.5  | 299.93          | 0.18 | 8.58   | 0.07 | 2009.884 | 17       | 224   | 7   |
| 20486+2428 | POU5009AB       | 13.5  | 13.8  | 185.15          | 0.13 | 14.63  | 0.07 | 2009.884 | 5        | 10    |     |
| 20486+2428 | Anon 71Bx       | 13.8  | 14.0  | 224.75          |      | 1.98   |      | 2009.884 | 1        | 10    |     |
| 20487+2507 | Anon 72         | 13.0  | 14.0  | 59.62           | 0.22 | 7.49   | 0.06 | 2009.884 | 5        | 225   |     |
| 20487+2442 | Anon 73         | 13.5  | 14.0  | 275.23          | 0.31 | 3.85   | 0.03 | 2009.884 | 9        | 10    |     |
| 20488+2449 | POU5010         | 13.1  | 13.4  | 217.43          | 0.31 | 2.60   | 0.04 | 2009.884 | 6        | 226   | 7   |
| 20488+2446 | POU5013         | 13.4  | 14.0  | 353.79          | 0.13 | 14.65  | 0.03 | 2009.884 | 17       | 10    | 7   |
| 20488+2427 | POU5014         | 12.7  | 13.5  | 140.91          | 0.16 | 13.51  | 0.04 | 2009.884 | 16       | 227   |     |
| 20490+2637 | COU 828AC       | 10.66 | 13.3  | 96.34           | 0.16 | 25.59  | 0.05 | 2009.884 | 11       | 228   |     |
| 20490+2504 | Anon 74         | 11.0  | 14.0  | 315.60          | 0.33 | 8.84   | 0.04 | 2009.884 | 5        | 229   |     |
| 20490+2439 | POU5018         | 11.10 | 13.28 | 282.91          | 0.05 | 22.31  | 0.05 | 2009.884 | 16       | 230   |     |
| 20491+2509 | Anon 75         | 13.9  | 14.0  | 100.92          | 0.30 | 8.53   | 0.07 | 2009.884 | 7        | 231   |     |
| 20491+2442 | Anon 76         | 13.3  | 13.5  | 114.15          | 0.21 | 2.25   | 0.02 | 2009.884 | 2        | 232   |     |
| 20492+2510 | POU5021         | 12.0  | 13.4  | 359.70          | 0.14 | 5.75   | 0.02 | 2009.884 | 5        | 233   |     |
| 20492+2504 | POU5020         | 13.1  | 13.6  | 70.28           | 0.49 | 3.83   | 0.07 | 2009.884 | 2        | 10    |     |
| 20493+2440 | Anon 77         | 11.3  | 13.0  | 350.88          | 0.11 | 4.56   | 0.05 | 2009.884 | 2        | 234   |     |
| 20494+2405 | POU5022         | 13.4  | 13.6  | 45.07           | 0.30 | 10.62  | 0.09 | 2009.884 | 10       | 10    |     |
| 20494+2359 | POU5023         | 13.0  | 13.2  | 291.03          | 0.22 | 13.34  | 0.05 | 2009.884 | 13       | 235   |     |
| 20496+2444 | POU5027         | 11.4  | 13.6  | 179.12<br>92.65 | 0.17 |        | 0.03 | 2009.884 | 16<br>15 | 236   | 8   |
| 20496+2404 | POU5026 Anon 78 | 13.1  | 13.9  | 275.72          | 0.15 | 9.71   | 0.04 | 2009.884 | 7        | 238   | 0   |
| 20497+2358 | Anon 79         | 13.5  | 13.7  | 299.71          | 0.19 | 9.73   | 0.04 | 2009.884 | 4        | 10    |     |
| 20497+2338 | POU5029         | 12.15 | 13.53 | 19.75           | 0.19 | 12.53  | 0.04 | 2009.884 | 16       | 239   | 9   |
| 20499+2508 | POU5030         | 12.15 | 12.4  | 345.58          | 0.13 | 4.03   | 0.04 | 2009.884 | 11       | 240   | 9   |
| 20499+2456 | Anon 80         | 13.3  | 13.5  | 237.65          | 0.22 | 8.26   | 0.03 | 2009.884 | 6        | 241   | ,   |
| 20499+2454 | POU5035         | 12.8  | 13.4  | 54.37           | 0.32 | 9.60   | 0.05 | 2009.884 | 12       | 242   |     |
| 20499+2412 | POU5031AB       | 11.74 | 11.88 | 318.49          | 0.32 | 17.72  | 0.00 | 2009.884 | 1        | 243   |     |
| 20499+2412 | POU5032AC       | 11.74 | 12.3  | 310.83          |      | 16.47  |      | 2009.884 | 1        | 243   |     |
| 20499+2408 | Anon 81         | 13.5  | 13.9  | 266.84          |      | 11.81  |      | 2009.884 | 1        | 10    |     |
| 20499+2407 | Anon 82         | 12.1  | 13.9  | 93.34           | 0.21 | 11.61  | 0.06 | 2009.884 | 14       | 244   |     |
| 20499+2402 | POU5034         | 13.65 | 13.8  | 127.43          | 0.27 | 4.40   | 0.06 | 2009.884 | 5        | 245   | 8   |
| 20499+2401 | Anon 83         | 13.5  | 13.5  | 290.26          | 0.22 | 11.34  | 0.06 | 2009.884 | 8        | 246   | 8   |

 $Table\ continues\ on\ next\ page.$ 

| WDS                      | Discoverer           | m1           | m2   | PA     | +/-  | Sep            | +/-  | Epoch    | n       | Notes | Img |
|--------------------------|----------------------|--------------|------|--------|------|----------------|------|----------|---------|-------|-----|
| 20500+2508               | Anon 84              | 13.5         | 14.0 | 256.52 | 0.27 | 12.59          | 0.08 | 2009.884 | 9       | 10    |     |
| 20500+2412               | Anon 85              | 13.5         | 13.6 | 146.34 |      | 5.62           |      | 2009.884 | 1       | 247   |     |
| 20501+2512               | POU5038              | 12.15        | 13.7 | 342.31 | 0.06 | 16.55          | 0.04 | 2009.884 | 3       | 248   | 9   |
| 20503+2518               | POU5040              | 10.45        | 12.4 | 290.65 | 0.06 | 18.34          | 0.04 | 2009.884 | 17      | 249   |     |
| 20503+2507               | POU5039              | 11.1         | 13.5 | 84.37  | 0.18 | 10.68          | 0.05 | 2009.884 | 14      | 250   | 9   |
| 20506+2512               | POU5041              | 12.5         | 12.7 | 176.96 | 0.23 | 14.52          | 0.06 | 2009.884 | 16      | 251   |     |
| 20507+2527               | POU5042              | 12.00        | 12.4 | 344.25 | 0.21 | 7.36           | 0.04 | 2009.884 | 13      | 252   |     |
| 20507+2525               | Anon 86              | 13.5         | 14.0 | 66.61  | 0.32 | 7.91           | 0.08 | 2009.884 | 8       | 253   |     |
| 20510+2320               | POU5043              | 11.02        | 12.5 | 157.91 |      | 5.07           |      | 2009.901 | 1       | 254   |     |
| 20513+2426               | Anon 87              | 12.2         | 13.5 | 269.55 | 0.02 | 5.14           | 0.07 | 2009.884 | 2       | 255   |     |
| 20514+2329               | POU5047              | 13.5         | 13.6 | 145.24 | 0.29 | 6.97           | 0.06 | 2009.901 | 7       | 256   |     |
| 20514+2326               | POU5046              | 12.4         | 13.6 | 268.36 |      | 3.41           |      | 2009.901 | 1       | 257   |     |
| 20515+2444               | POU5048AB            | 10.85        | 11.0 | 303.74 | 0.18 | 8.42           | 0.02 | 2009.884 | 16      | 258   |     |
| 20515+2444               | Anon 88Bx            | 11.0         | 13.0 | 226.75 |      | 7.30           |      | 2009.884 | 1       | 258   |     |
| 20516+2440               | Anon 89              | 12.5         | 12.5 | 157.65 | 0.24 | 5.20           | 0.05 | 2009.884 | 11      | 259   |     |
| 20516+2429               | POU5049              | 11.61        | 13.9 | 107.00 | 0.06 | 14.95          | 0.03 | 2009.884 | 14      | 260   |     |
| 20516+2426               | Anon 90              | 13.2         | 13.5 | 219.99 | 0.35 | 6.20           | 0.07 | 2009.884 | 4       | 10    |     |
| 20517+2323               | Anon 91              | 13.5         | 13.6 | 79.81  |      | 2.22           |      | 2009.901 | 1       | 10    |     |
| 20522+2353               | POU5051              | 11.8         | 11.9 | 349.67 | 0.18 | 6.49           | 0.03 | 2009.901 | 15      | 261   |     |
| 20523+2352               | Anon 92              | 13.5         | 13.5 | 308.63 | 0.24 | 4.38           | 0.03 | 2009.901 | 7       | 262   |     |
| 20526+2353               | Anon 93              | 13.6         | 13.6 | 8.44   | 0.24 | 8.98           | 0.05 | 2009.901 | 10      | 263   |     |
| 21110+2353               | POU5224              | 12.61        | 14.8 | 32.07  |      | 15.86          |      | 2009.882 | 1       | 264   |     |
| 21110+2345               | Anon 94              | 12.0         | 13.0 | 16.18  | 0.34 | 4.29           | 0.02 | 2009.882 | 2       | 265   |     |
| 21112+2353               | POU5227              | 11.90        | 14.6 | 323.91 | 0.18 | 14.93          | 0.05 | 2009.882 | 16      | 266   |     |
| 21112+2351               | Anon 95              | 12.4         | 14.5 | 89.71  | 0.23 | 13.91          | 0.04 | 2009.882 | 12      | 267   |     |
| 21112+2347               | POU5228              | 12.3         | 14.0 | 238.95 | 0.16 | 17.40          | 0.08 | 2009.882 | 13      | 268   | 10  |
| 21113+2349               | POU5230              | 14.1         | 14.4 | 21.42  | 0.16 | 11.01          | 0.04 | 2009.882 | 6       | 269   | 10  |
| 21114+2348               | POU5232              | 11.5         | 12.8 | 143.15 | 0.07 | 17.74          | 0.03 | 2009.882 | 16      | 270   | 10  |
| 21118+2348               | POU5240              | 13.5         | 14.2 | 43.11  | 0.34 | 8.12           | 0.05 | 2009.882 | 3       | 271   |     |
| 21122+2556               | SLE 368              | 11.18        | 13.0 | 267.61 | 0.30 | 13.20          | 0.07 | 2009.882 | 7       | 272   |     |
| 21124+2333<br>21125+2619 | POU5247<br>STF2774AB | 13.8<br>8.55 | 14.0 | 21.84  | 0.21 | 14.16<br>27.25 | 0.06 | 2009.882 | 8<br>15 | 273   |     |
| 21125+2619               | SLE 369AC            | 8.55         | 10.6 | 335.84 | 0.11 | 51.66          | 0.05 | 2009.884 | 15      | 274   |     |
| 21123+2019               | POU5251              | 11.2         | 13.8 | 302.85 | 0.07 | 18.26          | 0.04 | 2009.882 | 17      | 276   |     |
| 21129+2457               | POU5257              | 12.4         | 13.8 | 157.09 | 0.11 | 14.87          | 0.04 | 2009.882 | 1       | 277   |     |
| 21129+2330               | POU5252AB            | 11.24        | 12.8 | 226.75 | 0.23 | 13.24          | 0.04 | 2009.882 | 16      | 278   |     |
| 21129+2330               | POU5253AC            | 11.24        | 13.0 | 207.45 | 0.21 | 17.14          | 0.04 | 2009.882 | 16      | 278   |     |
| 21129+2330               | POU5254AD            | 11.24        | 13.2 | 217.89 | 0.06 | 30.86          | 0.04 | 2009.882 | 16      | 278   |     |
| 21129+2330               | Anon 96Ax            | 11.24        | 14.0 | 141.95 |      | 6.99           |      | 2009.882 | 1       | 278   |     |
| 21129+2329               | Anon 97              | 11.19        | 13.7 | 114.49 | 0.09 | 42.60          | 0.03 | 2009.882 | 16      | 279   |     |
| 21130+2513               | POU5260              | 11.30        | 11.9 | 193.36 | 0.22 | 6.54           | 0.02 | 2009.882 | 16      | 280   |     |
| 21132+2503               | POU5263              | 12.2         | 12.3 | 298.88 |      | 1.37           |      | 2009.882 | 1       | 281   |     |
| 21133+2515               | POU5265              | 12.5         | 13.7 | 34.02  | 0.15 | 21.04          | 0.04 | 2009.882 | 10      | 282   |     |
| 21133+2501               | POU5266              | 13.8         | 13.9 | 328.80 | 0.13 | 12.20          | 0.05 | 2009.882 | 9       | 10    |     |
| 21134+2457               | POU5267              | 14.0         | 14.1 | 113.24 | 0.06 | 6.06           | 0.05 | 2009.882 | 2       | 283   |     |

| WDS                      | Discoverer          | m1    | m2    | PA        | +/-  | Sep   | +/-  | Epoch    | n   | Notes | Img |
|--------------------------|---------------------|-------|-------|-----------|------|-------|------|----------|-----|-------|-----|
| 21135+2512               | POU5269             | 11.4  | 11.6  | 269.58    | 0.26 | 4.29  | 0.06 | 2009.882 | 10  | 284   |     |
| 21136+2508               | Anon 98             | 14.7  | 14.8  | 286.96    |      | 5.51  |      | 2009.882 | 1   | 285   |     |
| 21136+2503               | POU5272             | 12.7  | 13.4  | 37.60     | 0.23 | 7.59  | 0.05 | 2009.882 | 8   | 286   |     |
| 21137+2510               | POU5273             | 10.24 | 13.6  |           |      |       |      | 2009.882 |     | 287   |     |
| 21138+2333               | POU5274             | 13.3  | 13.4  | 323.69    | 0.09 | 17.51 | 0.04 | 2009.882 | 16  | 288   |     |
| 21138+2329               | Anon 99             | 14.7  | 14.0  | 14.39     | 0.03 | 8.05  | 0.03 | 2009.882 | 3   | 289   |     |
| 21139+2512               | POU5276             | 11.28 | 13.9  | 110.62    | 0.26 | 5.52  | 0.05 | 2009.882 | 3   | 290   |     |
| 21139+2329               | Anon100             | 15.0  | 15.0  | 189.82    | 0.18 | 9.07  | 0.01 | 2009.882 | 2   | 291   |     |
| 21143+2522               | POU5283AB           | 10.0  | 11.0  | 85.90     | 0.07 | 15.99 | 0.03 | 2009.882 | 12  | 292   |     |
| 21143+2522               | POU5284AC           | 10.0  | 12.4  |           |      |       |      | 2009.882 |     | 293   |     |
| 21143+2519               | POU5286             | 11.94 | 13.2  | 159.47    | 0.18 | 18.10 | 0.07 | 2009.882 | 17  | 294   |     |
| 21143+2333               | POU5282             | 12.81 | 13.5  | 358.91    | 0.22 | 7.39  | 0.03 | 2009.882 | 13  | 295   |     |
| 21145+2523               | Anon101             | 13.1  | 14.0  | 117.35    | 0.26 | 9.60  | 0.06 | 2009.882 | 2   | 296   |     |
| 21153+2527               | SLE 375             | 11.35 | 13.1  |           |      |       |      | 2009.882 |     | 297   |     |
| 21160+2524               | POU5301             | 12.9  | 13.0  | 61.85     | 0.36 | 10.00 | 0.08 | 2009.882 | 7   | 298   |     |
| 21170+2452               | POU5310             | 10.37 | 12.4  | 12.75     | 0.18 | 15.07 | 0.04 | 2009.884 | 15  | 299   |     |
| 21174+2445               | POU5313             | 12.23 | 13.2  | 314.86    | 0.12 | 15.34 | 0.03 | 2009.884 | 17  | 300   |     |
| 21174+2332               | POU5314             | 11.53 | 11.8  | 125.48    | 0.09 | 17.23 | 0.02 | 2009.884 | 15  | 301   |     |
| 21174+2330               | POU5312             | 12.72 | 14.3  | 292.81    |      | 4.10  |      | 2009.884 | 1   | 302   |     |
| 21176+2556               | SLE 380             | 12.01 | 12.9  | 272.79    | 0.28 | 10.89 | 0.06 | 2009.884 | 13  | 303   |     |
| 21176+2453               | POU5317             | 12.4  | 14.0  | 336.95    |      | 14.63 |      | 2009.884 | 1   | 304   |     |
| 21177+2449               | POU5318AB           | 10.60 | 12.9  | 231.69    | 0.19 | 8.76  | 0.04 | 2009.884 | 16  | 305   |     |
| 21177+2449               | POU5319AC           | 10.60 | 14.4  | 154.46    | 0.30 | 17.04 | 0.07 | 2009.884 | 16  | 305   |     |
| 21178+2449               | POU5320             | 10.60 | 11.8  | 0.40, 0.0 | 0.04 | 00.01 | 0.05 | 2009.884 | 1.5 | 306   |     |
| 21185+2428               | POU5327             | 12.12 | 13.7  | 248.28    | 0.24 | 20.01 | 0.05 | 2009.884 | 15  | 307   |     |
| 21190+2423               | POU5331             | 11.75 | 13.4  | 233.06    | 0.29 | 11.75 | 0.05 | 2009.884 | 12  | 308   |     |
| 21194+2513<br>21194+2513 | POU5332AB POU5333AC | 12.86 | 13.1  | 53.81     | 0.26 | 9.40  | 0.04 | 2009.884 | 2   | 309   |     |
| 21194+2313               | Anon102             | 14.4  | 14.5  | 89.07     | 0.40 | 5.79  | 0.10 | 2009.884 | 1   | 310   |     |
| 21199+2432               | POU5337             | 12.0  | 13.6  | 191.01    | 0.24 | 10.87 | 0.05 | 2009.901 | 8   | 311   |     |
| 21200+2440               | POU5338             | 12.66 | 13.9  | 267.77    | 0.32 | 11.61 | 0.03 | 2009.901 | 8   | 312   |     |
| 21203+2453               | POU5341             | 11.67 | 14.1  | 73.08     | 0.11 | 14.43 | 0.03 | 2009.901 | 11  | 313   |     |
| 21205+2448               | Anon103             | 14.5  | 14.5  | 9.21      |      | 2.55  |      | 2009.901 | 1   | 314   |     |
| 21209+2426               | POU5343             | 13.6  | 13.9  | 137.58    | 0.32 | 6.67  | 0.09 | 2009.901 | 4   | 315   |     |
| 21210+2435               | POU5347             | 12.49 | 13.2  | 19.41     | 0.10 | 17.87 | 0.01 | 2009.901 | 2   | 316   |     |
| 21210+2428               | POU5345             | 13.4  | 14.0  | 263.89    | 0.29 | 4.06  | 0.04 | 2009.901 | 8   | 317   |     |
| 21216+2344               | POU5350             | 11.2  | 12.9  | 342.75    | 0.27 | 11.51 | 0.07 | 2009.901 | 8   | 318   |     |
| 21217+2420               | POU5351             | 12.09 | 12.7  | 145.01    | 0.11 | 17.29 | 0.05 | 2009.901 | 16  | 319   |     |
| 21218+2241               | HLM 40              | 10.7  | 11.0  |           |      |       |      | 2009.901 |     | 320   |     |
| 21220+2350               | COU 132             | 8.85  | 10.33 | 201.04    | 0.19 | 13.34 | 0.04 | 2009.901 | 12  | 321   |     |
| 21229+2346               | POU5355             | 13.2  | 13.3  | 12.41     | 0.29 | 14.04 | 0.06 | 2009.901 | 11  | 322   |     |
| 21237+2519               | Anon104             | 11.5  | 12.5  | 252.77    |      | 4.85  |      | 2009.901 | 1   | 323   |     |
| 21240+2416               | НЈ 1641             | 5.71  | 10.5  | 301.88    | 0.09 | 61.52 | 0.05 | 2009.901 | 5   | 324   |     |
| 21240+2352               | Ј 3137              | 11.2  | 11.5  | 238.98    | 0.26 | 7.24  | 0.06 | 2009.901 | 10  | 325   | 11  |
| 21241+2519               | BU 447AB            | 6.20  | 12.2  | 313.92    | 0.38 | 9.24  | 0.05 | 2009.901 | 7   | 326   |     |

Table continues on next page.

| WDS                      | Discoverer         | m1    | m2    | PA              | +/-  | Sep   | +/-  | Epoch    | n   | Notes      | Img |
|--------------------------|--------------------|-------|-------|-----------------|------|-------|------|----------|-----|------------|-----|
| 21241+2519               | BU 447AC           | 6.20  | 11.7  | 191.41          | 0.07 | 57.80 | 0.06 | 2009.901 | 12  | 326        |     |
| 21241+2519               | BU 447AD           | 6.20  | 11.8  | 83.85           | 0.08 | 46.88 | 0.06 | 2009.901 | 11  | 327        |     |
| 21241+2519               | BU 447AE           | 6.20  | 10.96 | 115.74          | 0.06 | 66.59 | 0.06 | 2009.901 | 13  | 326        |     |
| 21241+2519               | BU 447AF           | 6.20  | 10.7  | 217.27          | 0.05 | 83.17 | 0.06 | 2009.901 | 13  | 326        |     |
| 21490+2456               | POU5512AB          | 12.35 | 12.9  | 5.05            | 0.26 | 11.41 | 0.05 | 2009.901 | 10  | 328        |     |
| 21490+2456               | POU5513AC          | 12.35 | 13.76 | 66.92           | 0.27 | 11.32 | 0.06 | 2009.901 | 11  | 328        |     |
| 21494+2509               | POU5517            | 12.5  | 12.6  | 233.02          | 0.30 | 6.43  | 0.06 | 2009.909 | 3   | 329        |     |
| 21495+2458               | POU5519            | 13.7  | 13.9  | 250.33          | 0.10 | 8.07  | 0.01 | 2009.901 | 2   | 330        |     |
| 21495+2334               | BU 1306AB          | 8.43  | 13.2  | 301.85          | 0.25 | 31.04 | 0.07 | 2009.901 | 14  | 331        |     |
| 21495+2334               | BU 1306A-CD        | 8.43  | 13.0  | 271.53          | 0.21 | 34.53 | 0.06 | 2009.901 | 11  | 331        |     |
| 21495+2334               | POU5518B-CD        | 13.2  | 13.0  | 208.04          | 0.12 | 17.54 | 0.08 | 2009.901 | 7   | 332        |     |
| 21495+2334               | BU 1306CD          | 13.6  | 14.0  |                 |      |       |      | 2009.901 |     | 333        |     |
| 21496+2431               | POU5520            | 11.76 | 12.4  | 307.31          | 0.19 | 19.20 | 0.05 | 2009.901 | 12  | 334        |     |
| 21498+2503               | POU5521            | 13.0  | 13.2  | 75.48           | 0.21 | 15.51 | 0.07 | 2009.909 | 7   | 335        |     |
| 21500+2437               | POU5522            | 12.7  | 13.8  | 137.63          | 0.32 | 4.22  | 0.09 | 2009.901 | 3   | 336        |     |
| 21501+2433               | GRV 512            | 10.9  | 13.1  | 190.84          | 0.04 | 69.06 | 0.06 | 2009.901 | 15  | 337        |     |
| 21504+2519               | POU5524AB          | 12.4  | 13.6  | 126.58          | 0.07 | 14.24 | 0.08 | 2009.909 | 2   | 338        |     |
| 21504+2519               | POU5525AC          | 12.4  | 13.8  | 302.19          | 0.16 | 15.69 | 0.06 | 2009.909 | 2   | 338        |     |
| 21506+2447               | POU5527AB          | 12.10 | 13.8  | 97.29           | 0.17 | 8.01  | 0.04 | 2009.909 | 4   | 339        |     |
| 21506+2447               | POU5528AC          | 12.10 | 13.9  | 157.70          | 0.38 | 8.98  | 0.01 | 2009.909 | 5   | 339        |     |
| 21507+2449               | POU5529            | 13.9  | 14.0  | 19.39           | 0.28 | 9.03  | 0.09 | 2009.909 | 6   | 340        |     |
| 21507+2422               | POU5530            | 10.44 | 11.95 | 50.04           | 0.05 | 35.20 | 0.06 | 2009.901 | 14  | 341        |     |
| 21508+2451               | POU5532            | 12.1  | 13.7  | 322.83          | 0.30 | 9.16  | 0.05 | 2009.909 | 7   | 342        |     |
| 21510+2437               | GRV 514            | 11.9  | 13.0  | 115.01          | 0.22 | 42.93 | 0.07 | 2009.909 | 9   | 343        |     |
| 21510+2420               | POU5533            | 13.2  | 13.7  | 234.17          | 0.27 | 10.62 | 0.07 | 2009.901 | 7   | 344        |     |
| 21516+2434               | POU5537            | 11.69 | 14.6  | 95.51           | 0.21 | 18.36 | 0.06 | 2009.909 | 14  | 345        |     |
| 21517+2437               | POU5538            | 10.93 | 12.1  | 277.79          | 0.32 | 6.63  | 0.05 | 2009.909 | 16  | 346        |     |
| 21524+2348               | POU5540            | 12.1  | 13.7  | 283.53          | 0.26 | 11.15 | 0.06 | 2009.926 | 16  | 347        |     |
| 21529+2354               | POU5545            | 10.26 | 12.4  | 124.40          | 0.17 | 19.13 | 0.03 | 2009.926 | 13  | 348        |     |
| 21535+2347               | POU5550            | 10.49 | 13.2  | 125.10          | 0.26 | 9.49  | 0.03 | 2009.926 | 11  | 349        |     |
| 21556+2406               | POU5572            | 12.7  | 13.3  | 277.36          | 0.24 | 20.29 | 0.04 | 2009.926 | 10  | 350        |     |
| 21565+2613               | ES 526             | 9.25  | 13.4  | 98.21           | 0.33 | 10.01 | 0.03 | 2009.920 | 7   | 351        |     |
| 21568+2357               | POU5580            | 12.13 | 14.0  | 140.81          | 0.25 | 15.02 | 0.05 | 2009.926 | 12  | 352        |     |
| 21571+2509               | POU5582            | 12.9  | 13.3  | 338.09          | 0.25 | 7.74  | 0.04 | 2009.926 | 7   | 353        |     |
| 21572+2457               | POU5583            | 12.6  | 13.2  | 15.55           | 0.24 | 13.64 | 0.05 | 2009.926 | 1.0 | 354        |     |
| 21574+2458               | POUS 587           | 11.8  | 13.1  | 329.65          | 0.21 | 12.95 | 0.06 | 2009.926 | 10  | 355        |     |
| 21574+2354               | POUS 585           | 12.7  | 13.3  | 73.58           | 0.21 | 5.42  | 0.01 | 2009.926 | 2   | 356        |     |
| 21575+2457               | POUS 588           | 12.6  | 13.3  | 11.51           | 0.21 | 5.44  |      |          | 6   | 357        |     |
| 21576+2440<br>21578+2437 | POU5589<br>POU5590 | 11.9  | 13.1  | 26.18<br>136.39 | 0.31 | 13.09 | 0.07 | 2009.926 | 10  | 358<br>359 |     |
| 215/8+243/               | POU5590<br>POU5591 | 11.12 | 13.2  | 323.65          | 0.28 | 14.71 | 0.04 | 2009.926 | 13  | 360        |     |
| 21582+2507               | POU5591<br>POU5592 | 11.7  | 12.9  | 99.26           | 0.17 | 9.21  | 0.04 | 2009.926 | 14  | 361        |     |
| 21583+2440               | POU5592<br>POU5593 | 12.39 | 13.6  | 325.24          | 0.43 | 4.64  | 0.05 | 2009.926 | 1   | 362        |     |
| 22049+2158               | GAU 18             | 11.29 | 11.83 | 132.05          | 0.03 | 53.68 | 0.04 | 2009.926 | 16  | 363        |     |
| 22052+2158               | HJ 3088            | 9.46  | 12.98 | 193.54          | 0.19 | 23.33 | 0.03 | 2009.926 | 16  | 364        |     |

| WDS        | Discoverer | m1    | m2    | PA     | +/-  | Sep   | +/-  | Epoch    | n  | Notes | Img |
|------------|------------|-------|-------|--------|------|-------|------|----------|----|-------|-----|
| 22053+2156 | нј 3089    | 9.1   | 13.43 | 110.78 | 0.11 | 22.02 | 0.06 | 2009.926 | 16 | 365   |     |
| 22063+2423 | POU5636    | 11.54 | 14.3  | 42.98  | 0.17 | 18.57 | 0.06 | 2009.874 | 15 | 366   |     |
| 22066+2427 | POU5638    | 10.16 | 13.68 | 164.59 | 0.28 | 18.40 | 0.08 | 2009.874 | 8  | 367   |     |
| 22077+2421 | POU5641    | 11.2  | 13.3  | 238.65 |      | 6.47  |      | 2009.874 | 1  | 368   |     |
| 22081+2419 | POU5643    | 13.1  | 13.3  | 284.82 | 0.28 | 3.85  | 0.08 | 2009.874 | 9  | 369   | 12  |
| 22082+2418 | GRV 541    | 8.4   | 13.6  | 269.00 | 0.07 | 45.48 | 0.06 | 2009.874 | 14 | 370   | 12  |
| 22082+2416 | Anon105    | 10.2  | 13.5  | 151.17 | 0.23 | 9.47  | 0.05 | 2009.874 | 11 | 371   | 12  |
| 22084+2525 | POU5644    | 11.5  | 13.8  | 321.89 | 0.24 | 16.16 | 0.03 | 2009.874 | 15 | 372   |     |
| 22087+2342 | Anon106    | 13.0  | 13.2  | 316.34 | 0.31 | 9.32  | 0.04 | 2009.884 | 8  | 373   |     |
| 22089+2347 | POU5646    | 11.68 | 13.0  | 119.50 | 0.27 | 3.41  | 0.03 | 2009.884 | 2  | 374   |     |
| 22090+2518 | POU5647    | 9.92  | 13.5  | 114.07 | 0.18 | 22.22 | 0.08 | 2009.874 | 9  | 375   |     |
| 22092+2510 | POU5648    | 12.3  | 13.9  | 210.97 | 0.38 | 9.24  | 0.08 | 2009.874 | 6  | 376   |     |
| 22096+2425 | POU5650    | 13.4  | 13.6  | 293.65 | 0.15 | 16.43 | 0.08 | 2009.874 | 5  | 377   |     |
| 22102+2418 | POU5653    | 11.94 | 12.54 | 310.41 | 0.09 | 21.71 | 0.06 | 2009.874 | 11 | 378   |     |
| 22105+2421 | POU5655    | 13.4  | 13.8  | 223.52 | 0.13 | 13.71 | 0.05 | 2009.874 | 15 | 379   |     |
| 22106+2342 | POU5656    | 14.10 | 13.95 | 280.18 | 0.29 | 8.44  | 0.05 | 2009.926 | 11 | 380   |     |
| 22109+2417 | POU5657    | 12.1  | 13.8  | 325.56 | 0.13 | 11.89 | 0.03 | 2009.874 | 13 | 381   |     |
| 22112+2359 | POU5658    | 11.8  | 11.9  | 17.89  | 0.13 | 9.25  | 0.03 | 2009.884 | 17 | 382   |     |
| 22112+2335 | ARY 63     | 9.68  | 10.14 | 188.75 | 0.03 | 93.19 | 0.07 | 2009.874 | 13 | 383   |     |
| 22113+2353 | CBL 100    | 13.0  | 14.5  | 348.61 | 0.15 | 21.79 | 0.05 | 2009.884 | 17 | 384   |     |
| 22115+2356 | POU5659    | 12.01 | 13.67 | 92.06  | 0.11 | 13.29 | 0.05 | 2009.884 | 17 | 385   |     |
| 22131+2351 | нј 1743    | 11.4  | 11.4  | 297.62 | 0.18 | 10.43 | 0.05 | 2009.874 | 15 | 386   |     |
| 22132+2358 | POU5667    | 11.7  | 13.1  | 232.12 | 0.22 | 3.95  | 0.02 | 2009.874 | 3  | 387   |     |
| 22133+2352 | нј 1744    | 11.64 | 13.4  | 345.47 | 0.18 | 14.75 | 0.04 | 2009.874 | 15 | 388   |     |
| 22134+2402 | ARY 57     | 7.93  | 10.75 | 55.28  | 0.03 | 92.79 | 0.06 | 2009.874 | 9  | 389   |     |

#### Table Notes

- 1. A=GSC 2154 374.
- 2. A=GSC 2154 1130 non star (20108+2314!).
- 3. AB=GSC 2154 1497 non star.



Figure 1: See Notes 2 and 3.

- 4. AB=GSC 2154 3324 non star.
- 5. AB=GSC 2154 3396 non star.
- 6. AB=GSC 2154 1371 non star.
- 7. A=GSC 2154 3310 non star.
- 8. A=GSC 2154 1205.
- 9. A=GSC 2154 3352.
- 10. Does not appear in GSC.
- 11. AB=GSC 2154 377 non star.
- 12. AB=GSC 2154 707 non star.
- 13. AB=GSC 2154 1010 non star.
- 14. AB=GSC 2154 356 non star.
- 15. AB=GSC 2154 1495 non star.
- 16. AB=GSC 2154 3278.
- 17. A=GSC 2154 2130.
- 18. AB=GSC 2154 650 non star.
- 19. A=GSC 2154 104.
- 20. A=GSC 2154 335.
- 21. AB=GSC 2154 912 non star.
- 22. AB=GSC 2154 1386 non star.
- 23. AB=GSC 2158 243 non star.



Figure 2: See notes 11 - 15.



Figure 3: See notes 18 - 20.

- 24. AB=GSC 2154 68 blended object.
- 25. AB=GSC 2154 1194 non star.
- 26. A=GSC 2154 1014.
- 27. AB=GSC 2154 2368 non star.
- 28. A=GSC 2158 1903 (20123+2433!).
- 29. Ax=GSC 2154 1951 non star.
- 30. A=GSC 2158 1023. The proper motion in PA 10 direction of component A accounts for the changes of the measured parameters. This however is of small scale, therefore the 1900 measures could be PA302, in my opinion.
- 31. BC=GSC 2158 1438. The proper motion in PA 40 direction of components B and C accounts for the changes of the measured parameters. Cpm pair?
- 32. I cannot find component D. It cannot be identified in the DSS images, either.
- 33. BC=GSC 2158 1438.
- 34. AB=GSC 2158 1516.

- 35. Bxy=GSC 2154 1287 non star.
- 36. A=GSC 2158 369.
- 37. AB=GSC 2154 1742.
- 38. A=GSC 2154 2872.
- 39. AB=GSC 2158 1381 non star.
- 40. AB=GSC 2154 1236 non star. Uncertain measures.
- 41. AB=GSC 2154 1079.
- 42. AB=GSC 2154 1107 non star.
- 43. A=GSC 2154 1449. The proper motion in PA 210 direction of component B accounts for the changes of the measured parameters.
- 44. A=GSC 2154 2968.
- 45. A=GSC 2154 2884.
- 46. AB=GSC 2154 3468.
- 47. AC=GSC 2154 2942 non star.
- 48. A=GSC 2154 899 blended object.
- 49. A=GSC 2155 1877.
- 50. A=GSC 2154 1454 non star.
- 51. AB=GSC 2159 401 non star.
- 52. A=GSC 2155 1941.
- 53. AB=GSC 2159 339 non star.
- 54. AB=GSC 2159 807.
- 55. AB=GSC 2159 25 non star (20142+2447!).
- 56. AB=GSC 2155 1751 non star.
- 57. A=GSC 2155 1917 non star.
- 58. AB=GSC 2155 1217.
- 59. A=GSC 2155 1503.
- 60. A= J1165AB! (20145+2453!). Very different parameters. The images available do not show significant proper motion of the nearby stars.
- 61. A=GSC 2155 1215 non star.
- 62. AB=GSC 2155 703 non star.
- 63. A=GSC 2159 483.
- 64. A=GSC 2155 513.
- 65. A=GSC 2159 91.
- AB=GSC 2159 941 (20145+2453!). Uncertain measures.
- 67. AB=GSC 2155 1295 non star.
- 68. AB=GSC 2155 1730 non star.
- 69. A=GSC 2155 1433 non star.
- 70. A=GSC 2155 1169.
- 71. A=GSC 2159 183 blended object.
- 72. A=GSC 2159 461.
- 73. AB=GSC 2159 2001 non star.
- 74. A=GSC 2159 2063 (20152+2432!).
- 75. A=GSC 2159 459.
- 76. AB=GSC 2159 619 non star.
- 77. AB=GSC 2159 129 non star.



Figure 4: See notes 74, 76, 77.

- 78. A=GSC 2159 1379.
- 79. A=GSC 2159 655.
- 80. AB=GSC 2159 1311 non star.
- 81. AB=GSC 2159 1372 non star.
- 82. A=GSC 2159 919.
- 83. AB=GSC 2159 1497 non star (20162+2507!). Far from the indicated position (6').
- 84. A=GSC 2159 593.
- 85. AB=GSC 2159 1354 non star (20176+2509!).
- 86. A=GSC 3155 1860.
- 87. A=GSC 2684 951.
- 88. AB=GSC 2159 307 non star.
- 89. A=GSC 3155 1332.
- 90. A=GSC 2159 108. Very difficult to measure.
- 91. A=GSC 2159 108.
- 92. A=GSC 2159 317 (20183+2448!).
- 93. Does not appear in GSC. The proper motion in PA 200 direction of component A accounts for the changes of the measured parameters.
- 94. AB=GSC 2159 1524. According to DSS images, the members are getting closer. At present star-like, impossible to measure.
- 95. AB=GSC 2684 1827 non star.
- 96. A=GSC 2684 1415.
- Does not appear in GSC. (20187+2504!).
   According to DSS images, the members are becoming more distant.
- 98. AB=GSC 2684 1779 non star.
- 99. AB=GSC 3155 242.
- 100. AB=GSC 2159 497. Cannot be measured.
- 101. AB=GSC 2159 497.
- 102. A=GSC 2159 725 (20192+2443!). The proper motion in PA 30 direction of component A accounts for the changes of the measured

- parameters.
- 103. A=GSC 2159 837.
- 104. A=GSC 2159 615.
- 105. A=GSC 2159 281 (20195+2452!). The proper motion in PA 40 direction of component B accounts for the changes of the measured parameters.
- 106. A=GSC 3151 3207.
- 107. A=GSC 3155 80 blended object. The proper motion in PA 200 direction of component B accounts for the changes of the measured parameters.
- 108. AB=GSC 3155 298.
- 109. A=GSC 3155 348. I cannot find component B. It cannot be identified in the DSS images, either. In my opinion, it is the same as SEI 1086.
- 110. AB=GSC 2159 121 non star.
- 111. AB=GSC 3156 2170 (20205+4000!).
- 112. A=GSC 2159 1513.
- 113. A=GSC 3160 391.
- 114. A=GSC 2159 1505 (20206+2502!).
- 115. A=GSC 2159 901.
- 116. A=GSC 2159 1092 (20212+2514!).
- 117. AB=GSC 2159 147 non star.
- 118. AB=GSC 2159 635 non star.
- 119. A=GSC 3152 1159.
- 120. A=GSC 2159 1219.
- 121. AB=GSC 2159 1251 non star.
- 122. A=GSC 3152 1261.
- 123. AB=GSC 2159 1211 non star.
- 124. AB=GSC 3152 1059 non star.
- 125. A=GSC 3152 624 blended object.
- 126. It is the same as POU 4450, but with a difference of 180 degrees. I cannot find any other double.
- 127. AB=GSC 2693 181 (20243+3517!).
- 128. A=GSC 2160 1144.
- 129. AB=GSC 2160 1219 non star (20243+2446!).
- 130. A=GSC 2693 421 I cannot find component B. It cannot be identified in the DSS images, either.
- 131. A=GSC 2160 300.
- 132. A=GSC 2693 562.
- 133. AB=GSC 2693 445 non star. )20251+3521!).
- 134. A=GSC 2693 924.
- 135. AB=GSC 2160 1203 non star.
- 136. A=GSC 3152 824 1.
- 137. I cannot find such double in the vicinity. It cannot be identified in the DSS images, either. The images available do not showsignificant proper motion of the nearby stars.
- 138. A=GSC 3156 1942 1.

- 139. A=GSC 2697 1159.
- 140. A=GSC 2697 1353.
- 141. A=GSC 3153 1233 I cannot find component B. It cannot be identified in the DSS images, either. It may have got too close to component C.
- 142. A=GSC 3153 1233
- 143. A=GSC 3153 1235.
- 144. I cannot find component C. It cannot be identified in the DSS images, either.
- 145. A=GSC 3153 317.
- 146. A=GSC 2690 774.
- 147. A=GSC 3161 1325 1.
- 148. A=GSC 2690 833. The proper motion in PA 40 direction of components A and B accounts for the changes of the measured parameters. Cpm pair?
- 149. A=GSC 3153 289.
- 150. A=GSC 3153 340 non star.
- 151. A=GSC 3161 880.
- 152. AB=GSC 3153 239 non star (20351+3913!).
- 153. A=GSC 3153 56.
- 154. A=GSC 3153 112.
- 155. A=GSC 3153 890.
- 156. AB=GSC 3153 677 non star.
- 157. I cannot find such double in the vicinity. It cannot be identified in the DSS images, either. The images available do not show significant proper motion of the nearby stars.
- 158. AB=GSC 3153 674 non star (20392+3805!). The



Figure 5: See note 158.

proper

motion in PA 700 direction of component A accounts for the changes of the measured parameters. B are brightness star.

159. A=GSC 3153 86.

- 160. AB=GSC 2170 307 non star.
- 161. A=GSC 2170 69.
- 162. B=GSC 2170 372 non star (13,3m).
- 163. A=GSC 2170 19 non star.
- 164. A=GSC 2170 193.
- 165. A=GSC 2170 2039 non star.
- 166. A=GSC 2170 1897.
- 167. AB=GSC 2170 137 non star.
- 168. A=GSC 2170 2011.
- 169. AB=GSC 2170 321 non star.
- 170. AB=GSC 2170 163 non star.
- 171. AB=GSC 2170 711 non star.
- 172. A=GSC 2170 1411 (20423+2353!).
- 173. A=GSC 2170 621 non star.
- 174. AB=GSC 2170 1856 non star (20426+2354!). PA136 value might have been a typo in earlier WDS. The images available do not show significant proper motion.
- 175. AB=GSC 2170 1856 non star.
- 176. AB=GSC 2170 1616 non star.
- 177. A=GSC 2170 625 non star (20429+2421!).
- 178. A=GSC 2170 714 (20431+2353!).
- 179. A=GSC 2170 783 (20432+2348!).
- 180. A=GSC 2170 1376 non star.
- 181. A=GSC 2170 716.
- 182. I cannot find a double for these data. The images available do not show significant proper motion of the nearby stars. In my opinion, it is the same as POU 4928.
- 183. AB=GSC 2170 1808 non star.
- 184. AB=GSC 2170 514 non star.
- 185. AB=GSC 2170 1452 non star.



Figure 6: See notes 187, 188, 191.

- 186. A=GSC 2170 1648 1.
- 187. AB=GSC 2174 2220 non star (20445+2423!).
- 188. AB=GSC 2174 1534 non star.
- 189. AB=GSC 2170 1328 non star.
- 190. A=GSC 2170 1396 non star.
- 191. A=GSC 2174 2330 (20446+2424!).
- 192. A=GSC 2170 1634.
- 193. A=GSC 2174 575 non star.
- 194. A=GSC 2170 1682 (20449+2355!).
- 195. I cannot find such double in the vicinity. It cannot be identified in the DSS images, either. The images available do not show significant proper motion of the nearby stars.
- 196. AB=GSC 2170 1905.
- 197. AB=GSC 2170 1511 non star.
- 198. ABx=GSC 2170 537 non star.
- 199. B=GSC 2170 1582 non star (20461+2359!).
- 200. A=GSC 2170 630.
- 201. A=GSC 2170 1488.
- 202. AB=GSC 2170 2430 non star.
- 203. A=GSC 2170 1258.
- 204. A=GSC 2170 1513.
- 205. A=GSC 2170 1231 non star.
- 206. A=GSC 2170 1393.
- 207. AB=GSC 2171 912 non star.
- 208. A=GSC 2175 1403 non star = BUP 218D.
- 209. AB=GSC 2171 116.
- 210. A=GSC 2171 300 non star.
- 211. Ax=GSC 2171 34 non star.
- 212. A=GSC 2175 1431.
- Actually this is BUP 218BC! I measured it accordingly.
- 214. A=GSC 2175 1431.
- 215. A=GSC 2171 20.
- 216. A=GSC 2175 1215 non star.
- 217. A=GSC 2175 246 non star.
- 218. A=GSC 2171 818 non star.
- 219. A=GSC 2171 1367.
- 220. A=GSC 2179 1370.
- 221. A=GSC 2175 1551. The proper motion in PA 80 direction of component A accounts for the changes of the measured parameters.
- 222. A=GSC 2171 371 (20487+2420!). Mirror image? I cannot find any other double. The images available do not show significant proper motion of the nearby stars.
- 223. AB=GSC 2175 1731 non star.
- 224. AB=GSC 2175 1826 non star.



Figure 7: See notes 223, 224, 226, 10.

- 225. AB=GSC 2175 1863 non star.
- 226. AB=GSC 2175 1560 (20487+2449!).
- 227. A=GSC 2175 738 non star.
- 228. AB=GSC 2179 1668. The proper motion in PA 100 direction of component C accounts for the changes of the measured parameters.
- 229. AB=GSC 2175 1883 non star.
- 230. A=GSC 2175 6. The proper motion in PA 50 direction of component A accounts for the changes of the measured parameters. In my opinion the 1999' measure are correct in earlier WDS.
- 231. A=GSC 2175 1466 non star.
- 232. AB=GSC 2175 1824 non star.
- 233. AB=GSC 2175 1408 nonstar. The proper motion in PA 210 direction of component B accounts for the changes of the measured parameters.
- 234. AB=GSC 2175 1929.
- 235. A=GSC 2171 7.
- 236. A=GSC 2175 1792 non star (20496+2445!).
- 237. A=GSC 2171 199. The proper motion in PA 10 direction of component B accounts for the changes of the measured parameters.
- 238. A=GSC 2175 1041.
- 239. A=GSC 2175 1666 (20498+2510!).
- 240. AB=GSC 2175 1085 non star (20498+2509!).
- 241. A=GSC 2175 1144 non star.
- 242. AB=GSC 2175 1652 non star. The proper motion in PA 180 direction of component A accounts for the changes of the measured parameters.
- 243. A=GSC 2171 325 non star (20499+2413!).
- 244. A=GSC 2171 385 non star.
- 245. AB=GSC 2171 235 non star (20500+2402!).

Journal of Double Star Observations



Figure 8: See notes 237, 245, 246.



Figure 9: See notes 239, 240, 248, 249.

- 246. B=GSC 2171 49.
- 247. AB=GSC 2171 283 non star.
- 248. A=GSC 2175 965.
- 249. A=GSC 2175 1360 (20504+2518!).
- 250. A=GSC 2175 1689 non star (20503+2508!).
- 251. A=GSC 2175 1068 non star.
- 252. AB=GSC 2175 731 non star.
- 253. AB=GSC 2175 1052 non star.
- 254. AB=GSC 2171 424. The proper motion in PA 20 direction of component B accounts for the changes of the measured parameters.
- 255. AB=GSC 2175 309 non star. The proper motion in PA 200 direction of component A accounts for the changes of the measured parameters.
- 256. AB=GSC 2171 962 non star.

- 257. AB=GSC 2171 1638 non star (20514+2327!).
- 258. AB=GSC 2175 1867 non star.
- 259. AB=GSC 2175 1954 non star.
- 260. A=GSC 2175 45 non star. Mirror image? I cannot find any other double.
- 261. AB=GSC 2171 877 non star.
- 262. AB=GSC 2171 707 non star.



**Figure 10**: See notes 268 - 270.

- 263. A=GSC 2171 635 non star.
- 264. A=GSC 2173 1149 (21109+2353!).
- 265. AB=GSC 2173 1831 non star.
- 266. A=GSC 2173 1331 (21111+2352!).
- 267. A=GSC 2173 1758.
- 268. A=GSC 2173 1229 (21111+2347!).
- 269. A=GSC 2173 2239.
- 270. A=GSC 2173 1641 non star (21114+2346!).
- 271. AB=GSC 2173 1910 non star.
- 272. A=GSC 2177 2622 non star.
- 273. A=GSC 2173 1217 (21124+2332!).
- 274. A=GSC 2181 1268.
- 275. C=GSC 2181 1508. Could PA be a typo in WDS? I cannot find any other double.
- 276. A=GSC 2190 1825 (21128+2515!).
- 277. A=GSC 2190 1860.
- 278. Ax=GSC 2186 269.
- 279. A=GSC 2186 2248. The proper motion in PA 220 direction of components A and B accounts for the changes of the measured parameters. Cpm pair?
- 280. AB=GSC 2190 1600 non star.
- 281. AB=GSC 2190 2441. Uncertain measures.
- 282. A=GSC 2190 1206.
- 283. A=GSC 2190 2080 non star.

- 284. AB=GSC 2190 37 non star. The proper motion in PA 340 direction of component A accounts for the changes of the measured parameters.
- 285. A=GSC 2190 283 non star. The proper motion in PA 200 direction of component A accounts for the changes of the measured parameters.
- 286. A=GSC 2190 1120 non star.
- 287. A=GSC 2190 1556. I cannot find component B. It cannot be identified in the DSS images, either.
- 288. A=GSC 2186 2060 non star.
- 289. A=GSC 2186 647.
- 290. A=GSC 2190 1776. The proper motion in PA 270 direction of component B accounts for the changes of the measured parameters.
- 291. A=GSC 2186 197.
- 292. A=GSC 2190 968.
- 293. I cannot find component C. It cannot be identified in the DSS images, either.
- 294. A=GSC 2190 1955 (21144+2519!).
- 295. A=GSC 2186 2128 non star.
- 296. A=GSC 2190 1659 non star.
- 297. A=GSC 2190 2410. I cannot find component C. It cannot be identified in the DSS images, either.
- 298. A=GSC 2190 1262 non star.
- 299. A=GSC 2190 2174 (21170+2453!).
- 300. A=GSC 2190 1894.
- 301. A=GSC 2186 2134.
- 302. AB=GSC 2186 1537 non star. The proper motion in PA 80 direction of component B accounts for the changes of the measured parameters.
- 303. A=GSC 2190 413. There's nothing else nearby. Very different parameters. The images available do not show significant proper motion of the nearby stars.
- 304. A=GSC 2190 2443 (21177+2453!).
- 305. A=GSC 2190 2002.
- 306. I cannot find such double in the vicinity. It cannot be identified in the DSS images, either.
- 307. A=GSC 2190 729.
- 308. A=GSC 2190 378.
- 309. A=GSC 2190 1646 non star (21195+2514!). The proper motion in PA 100 direction of component A accounts for the changes of the measured parameters.
- 310. AB=GSC 2190 399 non star.
- 311. A=GSC 2190 591.
- 312. A=GSC 2190 2217.
- 313. A=GSC 2190 1697 non star. The proper motion in PA 220 direction of component B accounts for the changes of the measured parameters.
- 314. AB=GSC 2190 1802 non star.

- 315. AB=GSC 2191 1717 non star (21212+2427!).
- 316. A=GSC 2191 1856 (21210+2436!).
- 317. AB=GSC 2191 1669 non star. The proper motion in PA 120 direction of component A accounts for the changes of the measured parameters.
- 318. A=GSC 2187 1626.
- 319. A=GSC 2187 1277.
- 320. I cannot find such double in the vicinity. It cannot be identified in the DSS images, either. The images available do not show significant proper motion of the nearby stars.
- 321. A=GSC 2187 2180.



Figure 11: See note 325.

- 322. A=GSC 2187 2122. The proper motion in PA 170 direction of component A accounts for the changes of the measured parameters.
- 323. AB=GSC 2191 2186 non star. The proper motion in PA 30 direction of component A accounts for the changes of the measured parameters.
- 324. A=GSC 2187 2177. The proper motion in PA 90 direction of component A accounts for the changes of the measured parameters.
- 325. AB=GSC 2187 1077 non star (21239+2351!).
- 326. A=GSC 2191 2228.
- 327. A=GSC 2191 2228. The proper motion in PA 250 direction of component D accounts for the changes of the measured parameters.
- 328. A=GSC 2206 1862 (21489+2456!).
- 329. AB=GSC 2206 877 non star. The proper motion in PA 210 direction of component A accounts for the changes of the measured parameters.
- 330. A=GSC 2206 1445 non star.

- 331. A=GSC 2202 34.
- 332. CD= GSC 2202 584. The proper motion of components accounts for the changes of the measured parameters.
- CD=GSC 2202 584. The duplicity can be seen, but cannot be measured.
- 334. A=GSC 2206 1266.
- 335. A=GSC 2206 432.
- 336. AB=GSC 2206 1164 non star.
- 337. A=GSC 2206 1404.
- 338. A=GSC 2206 1259 non star (21503+2519!).
- 339. ABC=GSC 2206 1786 non star.
- 340. A=GSC 2206 809 (21509+2449!).
- 341. A=GSC 2202 693 (21506+2422!). The proper motion in PA 220 direction of component A accounts for the changes of the measured parameters.
- 342. AB=GSC 2206 1600 non star.
- 343. A=GSC 2206 1380 (21511+2438!).
- 344. AB=GSC 2202 429 non star.
- 345. A=GSC 2206 1242.
- 346. AB=GSC 2206 1143. The proper motion in PA 150 direction of component B accounts for the changes of the measured parameters.
- 347. A=GSC 2202 945.
- 348. A=GSC 2202 348.
- 349. A=GSC 2202 70.
- 350. A=GSC 2203 2272.
- 351. A=GSC 2207 2049.
- 352. A=GSC 2203 2225 (21568+2356!).
- 353. AB=GSC 2207 2533 non star. The proper motion in PA 250 direction of component B accounts for the changes of the measured parameters.
- 354. A=GSC 2207 2221.
- 355. A=GSC 2207 1750 (21574+2457!).
- 356. AB=GSC 2203 2162 non star.
- 357. AB=GSC 2207 1766 non star.
- 358. A=GSC 2207 2325.
- 359. AB=GSC 2207 1843 non star.
- 360. A=GSC 2207 1780 (21582+2506!).
- 361. A=GSC 2207 2001 non star.
- 362. AB=GSC 2207 1878 non star.
- 363. A=GSC 1692 1687.



Figure 12: See notes 369 - 371.

- 364. A=GSC 1692 1717. The images available do not show significant proper motion.
- 365. A=GSC 1692 1885. The images available do not show significant proper motion.
- 366. A=GSC 2208 564.
- 367. A=GSC 2208 1472 (22068+2428!).
- 368. AB=GSC 2208 2006 non star (22078+2520!). A little proper motion can be observed.
- 369. AB=GSC 2204 112 non star (22082+2420!).
- 370. A=GSC 2204 259 (22083+2419!)
- 371. A=GSC 2204 562.
- 372. A=GSC 2208 807.
- 373. A=GSC 2204 486.
- 374. AB=GSC 2204 1364 non star.
- 375. A=GSC 2208 1147. The proper motion in PA 230 direction of component A accounts for the changes of the measured parameters.
- 376. A=GSC 2208 1905 non star.
- 377. A=GSC 2208 1422 (22095+2426!).
- 378. A=GSC 2204 271 (22102+2419!).
- 379. A=GSC 2204 448. The proper motion in PA 150 direction of component B accounts for the changes of the measured parameters.
- 380. A=GSC 2204 1649 (22106+2341!).
- 381. A=GSC 2204 127 non star.
- 382. A=GSC 2205 989 non star.

*Editor's Note:* Ernő Berkó made reference to extreme weather and the flooding of his observatory at the beginning of this article. He sent us pictures showing his flooded facility, which we show below. You can see that he came very close to experiencing a disastrous loss. At its highest, the water was 30 cm from his telescope. Considering this, it is remarkable that Mr. Berkó was able to do any double star observations at all.



Outside Ernő Berkó's observatory during the flooding.



Inside the observatory. You can see that water came to within a few inches of his telescope.

## **New Suspected Common Proper Motion Pairs**

Massimiliano Martignoni Stazione Astronomica Betelgeuse (SAB) Via Don Minzoni 26/d 20020 Magnago (Milano) Italy

massimiliano.martignoni@alice.it

**Abstract**: This article describes the identification of 9 new suspected pairs of stars with common proper motion. I provide position measurements and proper motion values using data from NOMAD and PPMXL catalogs.

#### Introduction

During the analysis of CCD images taken for the purpose of photometry of variable stars and of astrometry of minor planets of our solar system, I have identified serendipitously 9 new suspected pairs of common proper motion stars not previously reported by observers and not enclosed in the last edition of the Washington Visual Double Star Catalog (Mason, 2001).

#### **Analysis**

In order to search for new pairs of common proper motion stars I analyzed images collected during the year 2009 and the first half of 2010 with the instruments of the "Stazione Astronomica Betelgeuse (SAB)" located in Magnago, Italy (a Schmidt-Cassegrain 0.20m-F/10.0 Telescope with a KAF-0402ME CCD Camera).

For each suspected pair identified, I checked the NOMAD (Zacharias, 2005) and the PPMXL (Roeeser, 2010) catalogs in order to establish a similarity in the proper motion components (not exceeding 5 mas/yr).

In Table 1, for each pair of stars with suspected common proper motion are reported the position (RA and declination) and magnitude as measured with the software Astrometrica (Raab, 2010), epoch, separation and position angle derived as described by Buchheim (2008), proper motion in right ascension

(pm RA) and proper motion in declination (pm Dec) for both components (A and B) as derived from NO-MAD and PPMXL, as well as their mean values.

Table 2 shows the images of fields containing the suspected double stars; the orientation of the images is north up and east left.

#### References

Buchheim R.K., "CCD Double-Star Measurements at Altimira Observatory in 2007", JDSO 4, 27, 2008.

Mason B.D., Wycoff G.L., Hartkopf W.I., Douglass G.G., Worley C.E., "The Washington Visual Double Star Catalog (WDS), Version 2010-07-03", A.J. 122, 3466, 2001.

Raab H., Astrometrica (Version 4.6.1.385), 2010, http://www.astrometrica.at.

Roeeser S., Demleitner M., Schilbach E., "The PPMXL catalog of positions and proper motions on the ICRS. Combining USNO-B1.0 and the two Micron All Sky Survey (2MASS)", Astron. J. 139, 2440, 2010.

Zacharias N., Monet D.G., Levine S.E., Urban S.E., Gaume R., Wycoff G.L., "Naval Observatory Merged Astrometric Dataset (NOMAD)", San Diego AAS Meeting, January 2005.

#### **New Suspected Common Proper Motion Pairs**

Table 1: Analysis Results

|            |               |             |      |          |       |            | NON             | fAD              | PPI             | νχτ.             | AVER  | RAGE   |
|------------|---------------|-------------|------|----------|-------|------------|-----------------|------------------|-----------------|------------------|-------|--------|
|            |               |             |      |          |       |            | 2102            |                  |                 |                  |       |        |
| Identifier | R.A.<br>h m s | Dec.        | Mag. | Epoch    | Rho   | Theta<br>o | pm RA<br>mas/yr | pm Dec<br>mas/yr | pm RA<br>mas/yr | pm Dec<br>mas/yr | -     | pm Dec |
| MMA001 A   | 5 31 7.05     | + 9 43 9.4  | 12.4 | 2009.116 | 25.66 | 225.13     | 2.0             | -10.3            | -3.8            | -7.9             | -0.9  | -9.1   |
|            |               |             |      | 2009.110 | 23.00 | 223.13     | - * *           |                  |                 |                  |       |        |
| MMA001 B   | 5 31 5.82     | + 9 42 51.3 | 14.1 |          |       |            | 0.8             | -9.7             | -0.4            | -8.6             | 0.2   | -9.2   |
| MMA002 A   | 16 30 7.97    | +13 26 3.1  | 12.3 | 2009.122 | 15.10 | 173.34     | -4.3            | -8.8             | -5.2            | -11.9            | -4.8  | -10.4  |
| MMA002 B   | 16 30 48.09   | +13 25 48.1 | 12.6 |          |       |            | 0.4             | -10.9            | -0.1            | -16.8            | 0.2   | -13.9  |
| MMA003 A   | 20 19 39.66   | +41 51 10.6 | 12.2 | 2009.122 | 10.63 | 106.96     | -4.9            | -8.7             | -0.9            | -10.8            | -2.9  | -9.8   |
| MMA003 B   | 20 19 40.57   | +41 51 7.5  | 14.0 |          |       |            | -10.0           | -11.1            | -5.5            | -10.2            | -7.8  | -10.7  |
| MMA004 A   | 8 13 28.38    | +20 4 3.6   | 12.3 | 2009.124 | 22.51 | 309.10     | -6.9            | -13.7            | -2.0            | -15.4            | -4.5  | -14.6  |
| MMA004 B   | 8 13 27.14    | +20 4 17.8  | 14.8 |          |       |            | -7.5            | -14.1            | -5.2            | -5.9             | -6.4  | -10.0  |
| MMA005 A   | 16 44 33.00   | +19 19 39.7 | 14.4 | 2009.189 | 28.34 | 324.59     | -9.3            | 7.1              | -10.5           | -1.4             | -9.9  | 2.9    |
| MMA005 B   | 16 44 31.84   | +19 20 2.8  | 15.0 |          |       |            | -7.2            | 6.4              | -12.1           | -2.7             | -9.7  | 1.9    |
| MMA006 A   | 14 9 4.31     | - 4 57 35.8 | 11.9 | 2010.307 | 10.72 | 53.99      | -45.7           | 10.6             | -45.8           | 10.7             | -45.8 | 10.7   |
| мма006 в   | 14 9 4.89     | - 4 57 29.5 | 11.9 |          |       |            | -47.1           | 11.5             | -46.6           | 11.7             | -46.9 | 11.6   |
| MMA007 A   | 14 39 0.43    | +30 2 4.3   | 11.2 | 2009.291 | 17.47 | 156.33     | 8.0             | -2.5             | 7.2             | -2.8             | 7.6   | -2.7   |
| ММА007 В   | 14 39 0.97    | +30 1 48.3  | 13.7 |          |       |            | 12.9            | -3.4             | 8.2             | -4.7             | 10.6  | -4.1   |
| MMA008 A   | 19 17 23.46   | +37 11 38.5 | 10.1 | 2009.729 | 27.16 | 298.36     | 17.1            | 42.6             | 17.7            | 41.4             | 17.4  | 42.0   |
| MMA008 B   | 19 17 21.46   | +37 11 51.4 | 10.9 |          |       |            | 17.1            | 42.6             | 23.3            | 39.6             | 20.2  | 41.1   |
| MMA009 A   | 5 0 54.08     | +49 25 10.9 | 11.3 | 2009.786 | 17.75 | 47.46      | -1.1            | -13.5            | -1.0            | -10.6            | -1.1  | -12.1  |
| MMA009 B   | 5 0 55.42     | +49 25 22.9 | 12.3 |          |       |            | -4.4            | -18.3            | -3.9            | -5.6             | -4.2  | -12.0  |

Table 2: Identification Charts



#### Henry Zirm

Jena, Thuringia, Germany

#### henryzirm@gmx.de

**Abstract**: In this article I investigate the apparent orbital motion for the visual double star 44 Boötis (WDS 15038+4739, *i* Boötis) near periastron. Observations from about 200 years and the comparison with recent orbit references from the literature show systematic increasing differences between observed and calculated positions in polar coordinates. The current separation of the components of 1.6 arcsec is expected to approach 0.2 arc seconds in the next 10 years. Based on the calculation of a new and improved orbit and updated ephemeris, the expected positions are predicted more accurately.

#### Introduction

The visual double star 44 Boötis, also known as i Boötis, ADS 9494, WDS 15038+4739, STF1909 AB, HD133640, HIP73695, HR5618, is a 4.8 magnitude (visual) bright star located in constellation Boötes. The coordinates in IRCS epoch 2000 are right ascension 15h 03m 47sec and declination +47° 39' 14". Sir William Hershel discovered this pair in 1781 and a few decades later, Friedrich Georg Wilhelm Struve confirmed the visual duplicity. The supposed variability in brightness was investigated by Schilt (1926) and he established variability with a period of about 6.4 hours. Recently detailed results of an investigation into this eclipsing binary component, located in component 44 Boötis B, were given by Liu, et al. (2001) and Pribulla (2001). The corresponding weakening in brightness due to the variability of 44 Boötis B is less than 0.2 magnitudes from the combined light. The difference in brightness between the visual components is about 0.8 magnitude.

#### Motivation

44 Boötis is one of the relatively bright interest-

ing systems for visual double star observers; the apparent motion of both components is nearing a phase of rapid change. Presently, the distance is near 1.6 arc seconds and is just possible to resolve with a small aperture telescope. But in the coming 10 years, the components will approach to about 0.2 arc seconds, which will lead to increasing requirements on telescope resolution power. Therefore, this pair offers the opportunity to check the resolution of one's equipment.

With the separation nearing distances of 0.2 arc seconds, techniques such as speckle interferometry will be increasingly more important. A good overview of the application of speckle interferometry with amateur means was given by Joerg Schlimmer (Schlimmer, 2008).

For checking the quality of these measurements, it's necessary to use ephemerides from a recent orbit calculation. This information can be easily obtained from the *Sixth Catalog of Orbits of Visual Binary Stars* (Hartkopf & Mason, 2010). If one can accept the ephemeris as trustworthy, it is a good way to check the one's own measurements.

In case of 44 Boötis, I don't trust the orbit quality from the two latest published orbits, especially due



Figure 1: 44 Boötis, residuals in Rho vs. time

to the rapid motion for next decade and the definitely Preparation decreasing separations since 2000. Before year 2000, the end of growing distances was not clear enough.

I have calculated residuals from the large observational data (see the section titled Preparation), based on the two most recent orbits (Soederhjelm, 1999 and Heintz, 1997). For evaluating the quality of these orbits and consequently the plausibility of needed ephemerides for the next decade, I've checked the residuals via graphical representation in Theta vs. time and in Rho vs. time.

In case of Heintz orbit, particularly since 1990, the residuals in distance are especially enlarged and for recent measures the residuals | O-C r" | have increased up to about -0.4 arc seconds (Figure 1, moving average).

The residuals from Soederhjelm's orbit shows a large error, surprisingly especially in the time interval about 1960 to about 1990. Since 1960 a clear systematic growing error in position angle |O-C W° | is visible (Figure 2, moving average), after the maximum error with 7° (Theta) in 1972, the residuals decreasing to "normal" in year 1990. One important fact should be noted, the author had in all probability used measurements up to Epoch 1999. So I suppose any mistakes in orbit computation, particularly in estimation of weightings (see Preparation). This fact leads to a probable overestimated eccentricity in the Soederhjelm orbit and accordingly the time of closest approach is 1 year earlier than estimated by me.

As a result to get more probability estimation for positions on the apparent orbit for the next 10 years, I have decided to calculate a new orbit. Below I described shortly the steps to get a new orbit for 44 Boötis.



Figure 2: 44 Boötis, residuals in Theta vs. time

Most observations I used were from the Washington Double Star Catalog, obtained via email request from Brian D. Mason and his colleagues. Other measurements were recently reported in the Journal of Double Star Observations (Anton 2010 and Schlimmer 2010).

Initially, all position angles were corrected for precession to epoch 2000 (Heintz, 1978).

In case of 44 Boötis the influence of proper motion was ignored.

Furthermore, I divided all observations in three classes: visual observations, photographic and CCD observations and speckle measures (including Hipparcos). For each class it's useful to create normal points, in case of 44 Boötis, all observations from the same year have to be merged into a weighted average. An example is shown in Figure 3.

The extracted information for a single visual normal point at Epoch 1879 is:

| t         | 1879.488                                                                                     |
|-----------|----------------------------------------------------------------------------------------------|
| Theta     | 240.5                                                                                        |
| Rho       | 4.90                                                                                         |
| Observers | $\mathrm{Sp\_6}\ \mathrm{Hod4}\ \mathrm{Sbk3}\ \mathrm{Prc2}\ \mathrm{Sbk3}\ \mathrm{Je\_3}$ |
|           |                                                                                              |

| , | Date    | P.A.  | Sep. | Mag-a | Mag-b | # | RefCode | Aperture | Method |
|---|---------|-------|------|-------|-------|---|---------|----------|--------|
| , |         |       |      |       |       |   |         |          |        |
|   |         |       |      |       |       |   |         |          |        |
| , |         |       |      |       |       |   |         |          |        |
|   | 1879.18 | 240.4 | 4.76 |       | •     | 6 | Sp_1888 | 09       | A      |
|   | 1879.44 | 240.1 | 4.80 |       |       | 4 | Hod1881 | 8        | A      |
| • | 1879.55 | 241.9 | 5.04 |       |       | 3 | Sbk1881 | 8        | A      |
|   | 1879.59 | 238.2 | 4.88 |       |       | 2 | Prc1887 | 12       | A      |
|   | 1879.63 | 241.4 | 5.01 |       |       | 3 | Sbk1881 | 8        | A      |
|   | 1879.66 | 241.5 | 4.97 |       |       | 3 | Je_1882 | 06       | A      |
| ļ |         |       |      |       |       |   |         |          |        |

Figure 3: 44 Boötis, example observation data file extraction from WDS

I'll not describe here the topic of calculating weights. But, I recommend publications from well known double star observers such as Wulff D. Heintz, (Heintz 1967, Heintz 1978), J.D. Docobo (Docobo & Ling, 2003), and from the CHARA team (Mason, et al., 1999).

All computed normal point observations and combined with calculated residuals, are shown in Table 4, Appendix A.

#### Orbit calculation

Numerous methods for orbit computation exist in the literature as well as many methods to improve a given (more or less preliminary) orbit. In Observing and Measuring Visual Double Stars (Argyle, ed., 2004) chapters 7 and 8 by A. Alzner, are detailed and clearly arranged information about the fundamentals of orbit and ephemerides computation and references to further readings.

In case of 44 Boötis, I used the method of least squares. I have two important reasons for this decision: first, the observation data set is large and consistent and second, on basis of the two recent orbits orbital elements (P, T, e, a, i,  $\omega$ ,  $\Omega_{2000}$ ). (Heintz, 1997 and Soederhjelm, 1999) the residuals showed systematic trends and affected only single mean anomaly M and eccentric anomaly E and is calparts of the apparent orbital path.

So I tried an improvement on the basis of existing orbits using the well-described method of least squares in polar coordinates by Heintz (1967, 1978). On basis of weighted normal equations (see literature references in the section Preparation), I obtained differential corrections and transformed into the dynamical orbital elements for period P in years, the time of periastron passage T, the numerical eccentricity e, the semi major axis a in arc seconds and finally the elements from apparent orbit: the position angle of node  $\Omega$  in degrees, the inclination i in degrees and the argument of periastron  $\omega$ . The uncertainties were derived from the covariance matrix of normal equations and the sum of residuals in both polar coordinates.

Figure 4 shows the retrograde apparent orbital motion on basis of the new elements and the normal points of used observations. The scale is 1 arc second per large tic.

The resulting (so called Campbell-) elements are listed in Table 1, combined with the previously discussed recent orbit results.

**Ephemerides:** I'll give a brief overview how to compute ephemerides respectively residuals on basis of present measurements (t<sub>i</sub>,  $\vartheta_i$ ,  $\rho_i$ ) and the desired



Figure 4: 44 Boötis, apparent orbit from new orbital elements, normal points visible for visual, photographic/CCD and speckle measures.

The Kepler equation is the correlation between culated by:

$$M = E - \sin E$$

*M* is defined as:

$$M = \mu(t_i - T) = 360^{\circ} (t_i - T) / P$$

Heintz (1978) gave an easy, iterative, method to determine the eccentric anomaly E:

$$E_o = M + e \sin M + (e^2 / M) \sin(2M)$$

With  $E_0$  calculate  $M_0$ :

Table 1: 44 Boötis, new orbital elements and uncertainties

|                 | Zirm    | 2010    | Hei1997 | Sod1999 | unit   |
|-----------------|---------|---------|---------|---------|--------|
| P               | 209.8   | ±3.3    | 220.0   | 206     | years  |
| Т               | 2012.04 | ±0.26   | 2017.0  | 2013    |        |
| е               | 0.5111  | ±0.0065 | 0.451   | 0.55    |        |
| a               | 3.666   | ±0.021  | 3.70    | 3.8     | arcsec |
| i               | 83.55   | ±0.05   | 83.7    | 84      | degree |
| ω               | 39.86   | ±0.68   | 37.5    | 45      | degree |
| $\Omega_{2000}$ | 57.14   | ±0.06   | 57.7    | 57      | degree |

$$M_o = E_o - e \sin E_o$$

The next step is calculating  $E_1$  from  $E_0$  and  $M_0$ :

$$E_1 = E_o + (M - M_o) / (1 - e \cos E_o)$$

Using the last two formulas for four more iterations, the accuracy should be sufficient ephemerides calculation in case  $e \le 0.95$ .

For a given epoch, the theoretical positions in polar coordinates can then be calculated. The value v is the true anomaly and r is the radius vector:

$$\tan(\nu/2) = \sqrt{(1+e)/(1-e)} \tan(E/2)$$

$$r = a(1-e^2)/(1+e\cos\nu)$$

$$\tan(\theta - \Omega) = \tan(\nu + \omega)\cos i$$

$$\rho = r\cos(\nu + \omega)\sec(\theta + \Omega)$$

With this simple "tool" it is quick and easy to compute theoretical positions for each time. Calculate residuals for Epoch i via:

O-C 
$$\vartheta_{2000 \, i} = \vartheta_{observed \, (corrected \, for \, precession) \, i} - \vartheta_{calculated \, I}$$
  
O-C  $\rho_{i} = \rho_{observed \, i} - \rho_{calculated \, i}$ 

The estimated ephemerides for the new and the two recent 44 Boötis orbits are listed for comparison in Table 2. The probable year of closest approach is characterized by bold letters.

A detailed view of the apparent orbit is given in Figure 5, additionally included are points of coming yearly ephemerides for the new orbit and those from Soederhjelm orbit:

next two decades is shown.

errors during the last approach phase 1960 – 1990.

#### Discussion

in combination with a good estimate of the distance, it B is: is one of the most direct routes to obtain stellar

Table 2: 44 Boötis, Ephemerides from 2011 to 2030

|        | Zirm               | 2010  | Heint              | z 1997 | Soeder<br>19       |       |
|--------|--------------------|-------|--------------------|--------|--------------------|-------|
| t      | J° <sub>2000</sub> | r"    | J° <sub>2000</sub> | r"     | J° <sub>2000</sub> | r"    |
| 2011.0 | 61.4               | 1.502 | 58.7               | 2.083  | 60.6               | 1.490 |
| 2012.0 | 62.5               | 1.386 | 59.2               | 2.028  | 61.6               | 1.359 |
| 2013.0 | 63.7               | 1.260 | 59.8               | 1.963  | 63.0               | 1.216 |
| 2014.0 | 65.3               | 1.125 | 60.4               | 1.890  | 64.7               | 1.061 |
| 2015.0 | 67.3               | 0.983 | 61.0               | 1.807  | 67.0               | 0.896 |
| 2016.0 | 70.0               | 0.835 | 61.7               | 1.716  | 70.4               | 0.725 |
| 2017.0 | 73.9               | 0.684 | 62.5               | 1.617  | 75.9               | 0.551 |
| 2018.0 | 80.0               | 0.533 | 63.4               | 1.511  | 86.4               | 0.382 |
| 2019.0 | 90.8               | 0.390 | 64.4               | 1.397  | 111.1              | 0.241 |
| 2020.0 | 112.2              | 0.273 | 65.7               | 1.277  | 161.4              | 0.207 |
| 2021.0 | 150.4              | 0.230 | 67.2               | 1.152  | 196.9              | 0.319 |
| 2022.0 | 185.1              | 0.297 | 69.0               | 1.022  | 211.4              | 0.482 |
| 2023.0 | 203.0              | 0.424 | 71.4               | 0.889  | 218.3              | 0.658 |
| 2024.0 | 212.2              | 0.571 | 74.7               | 0.754  | 222.3              | 0.835 |
| 2025.0 | 217.6              | 0.725 | 79.4               | 0.620  | 224.9              | 1.011 |
| 2026.0 | 221.1              | 0.880 | 86.7               | 0.489  | 226.8              | 1.184 |
| 2027.0 | 223.5              | 1.034 | 98.9               | 0.370  | 228.2              | 1.352 |
| 2028.0 | 225.3              | 1.186 | 120.5              | 0.281  | 229.2              | 1.517 |
| 2029.0 | 226.7              | 1.335 | 152.7              | 0.255  | 230.1              | 1.677 |
| 2030.0 | 227.9              | 1.482 | 181.5              | 0.311  | 230.8              | 1.832 |

For clarity, alternatively in Figure 6 the theoreti- masses. However, to get the information about the cal evolution of separations (p in arc seconds) in the masses of each component we need the mass ratio  $(M_B/M_A)$ . Many techniques are available, for instance: The Heintz orbit (1997) is definitely not in line mass ratio from double lined spectroscopic orbits or with actual measurements. A clear indication that the astrometric or photocentric motion of main componew calculated orbit is a better interpretation than nent from long time photographic investigations. In Soederhjelm's, seems to be the discussed systematic case of 44 Boötis, I used another way. As described in the Introduction, it's known that component B is an eclipsing binary. From recent photometric and spectroscopic investigations made by Liu et al. (2001) and I will now compare the new orbit with the older Pribulla (2001), the values for inclination and miniorbits. One of the main reasons why astronomers cal- mum mass for 44 Boötis B are available. Hence the cuate visual (and spectroscopic) binary orbits is that derived mass (in unit of solar masses) for component



**Figure 5**: 44 Boötis, detail of apparent orbit and yearly ephemerides points from new orbit and those from Soederhjelm orbit.



Figure 6: 44 Boötis, estimated evolution of distances (in arc seconds) vs. time

$$M/M_{\odot B} = 1.28 \pm 0.02$$

With a known parallax ( $\pi$  in arc seconds), the period (P in years) and the semi major axis (a in arc seconds), the sum of the masses can be calculated from Kepler's third law:

$$\Sigma M = M_A + M_B = a^3 / (\pi^3 P^2)$$

Furthermore, the mass uncertainty is

$$\sigma \Sigma M = \Sigma M \sqrt{9(\sigma a/a)^3 + 9(\sigma \pi/\pi)^3 + 4(\sigma P/P)^2}$$

Now the mass (and a simplified estimation for the mass error) are calculated for the A component.

$$M_A = \Sigma M - M_B; \quad \sigma M_A = \sigma \Sigma M - \sigma M_B$$

The recent parallax value comes from "Hipparcos, the New Reduction of the Raw Data" (van Leeuwen, 2007) and was:

$$\pi = 0.07838 \pm 0.00103 \text{ (arc seconds)}$$
 or, 
$$\text{distance} = 12.8 \pm 0.2 \text{ parsec.}$$

The resulting sum of masses and mass for component A from the discussed orbits are listed in Table 3.

Due the possible high mass sum described by Pribulla (2001), he assumed on basis of Soederhjelms orbit, 44 Boötis A is possibly itself a binary. With the new orbit the sum of masses was clearly reduced.

Adapted from Schmidt-Kaler (1982) tables for physical parameters of main sequence stars, with the derived absolute magnitude 4,6 mag and the spectral class of an early G-Star (G0 - G2 V), a theoretical mass of 1,0 - 1,1 Msol is adopted. The calculated mass  $1.04 \pm 0.10$  M<sub>sol</sub> supports my assumption that component A is a simple, normal main sequence star.

#### Acknowledgements

Andreas Alzner, played a crucial role in my interest in the calculation and publication of orbits. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the NASA Astrophysics Data System Bibliographic Services and the SIMBAD database (operated at CDS, Strasbourg, France).

Table 3: 44 Boötis, sum of masses and mass for component A

|                | Zirm 2010 | Heintz 1997                               | Soederhjelm<br>1999 |
|----------------|-----------|-------------------------------------------|---------------------|
| Σм             | 2.32      | 2.17                                      | 2.69                |
| σΣΜ            | ±0.12     | >±0.08                                    | >±0.10              |
|                |           | no informati<br>certainty in<br>available |                     |
| M <sub>A</sub> | 1.04      | 0.89                                      | 1.41                |
| $\sigma_{M_A}$ | ±0.10     | >±0.06                                    | >±0.08              |

#### References

- Anton, R., 2010, Journal of Double Star Observations, vol. 6, no. 3, p. 180-196.
- Observing and measuring visual double stars, by Bob Argyle. Patrick Moore's practical astronomy series. Berlin: Springer, 2004, ISBN: 1852335580
- Docobo, J. A.; Ling, J. F., 2003, Astronomy and Astrophysics, v.409, 989-992.
- Hartkopf, W. I., & Mason B. D., Sixth Catalog of Orbits of Visual Binary Stars (Washington:USNO), http://ad.usno.navy.mil/wds/orb6/orb6frames.html
- Hartkopf, W. I., Mason, B. D., Wycoff, G. L., & McAlister, H. A., Fourth Catalog of Interferometric Measurements of Binary Stars (Washington: USNO), http://ad.usno.navy.mil/wds/int4.html
- Heintz, W. D., 1997, Astrophysical Journal Supplement v.111, p.335.
- Heintz, W. D., 1978, Double Stars (revised edition), Dordrecht, D. Reidel Publishing Co. (Geophysics and Astrophysics Monographs. Volume 15).
- Heintz, W.D., 1967, ActaAstr., 17, 311.
- Lu, Wenxian; Rucinski, Slavek M.; Ogłoza, Waldemar, 2001, The Astronomical Journal, Volume 122, Issue 1, 402-412.
- Mason, B. D., Wycoff, G. L., & Hartkopf, W. I., The Washington Double Star Catalog (Washington: USNO), http://ad.usno.navy.mil/wds/wds.html

- Mason, B. D., Douglass, G.G., Hartkopf, W. I., 1999, AJ, 117, 1023.
- Perryman, M. A. C., et al. 1997, The Hipparcos and Tycho Catalogues (ESA SP-1200; Noordwijk: ESA)
- Pribulla, T.; Tremko, J.; Rovithis-Livaniou, H.; Rovithis, P., 2001, Odessa Astronomical Publications, 14, 74-77.
- Schilt, J., 1926, Astrophys. J., 64, 215-224.
- Schlimmer, J., 2010, Journal of Double Star Observations, vol. 6, no. 3, p. 197-205.
- Schlimmer, J., 2008, Gamma Virginis (ADS 8630) -Interferometrische Beobachtungen
- der Periastronpassage, http://www.epsilon-lyrae.de/ Doppelsterne/GammaVirginis/ GammaVirginis\_Interferometrie.html
- Schmidt-Kaler, T.H.: Physical parameters of the stars. In: 1982, Landolt-Bornstein New Series, Volume 2b, astronomy and astrophysics – stars and star cluster (eds. K.Schaifers, H.H. Voigt), (New York: Springer)
- Söderhjelm, Staffan., 1999, Astronomy and Astrophysics, v.341, 121-140.
- van Leeuwen, F. 2007, Hipparcos, the New Reduction of the Raw Data (New York: Springer) (data obtained from Simbad data base: I/311).

#### **Appendix**

A total of 799 measures up to mid 2009 are available, collected and transformed in weighted yearly normal points: 175 normal points for the class of visual measurements, 23 for photographic and CCD and 29 for speckle normal points. Due to large errors or insufficient measurements 11 single measurements were not used.

Table 4: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|          |        |       |                                  |        | Weight | ts    | Zirm 20 | 010    | Heintz | 1997   | Soederl<br>1999 | njelm  |
|----------|--------|-------|----------------------------------|--------|--------|-------|---------|--------|--------|--------|-----------------|--------|
| Date     | 9°2000 | ρ"    | Reference/Nights                 | Class  | Wi 9"  | Wi ρ" | 0-С 9°  | Ο-C ρ" | о-с 9° | Ο-C ρ" | 0-C 9°          | Ο-C ρ" |
| 1781.620 | 60.1   | 1.500 | H1                               | Visual | 0.06   | 0.02  | 9.8     | -0.21  | 4.4    | -0.70  | 14.2            | 0.07   |
| 1802.250 | 63.0   |       | H1                               | Visual | 0.00   | 0.00  | -0.7    |        | -7.8   |        | 3.5             |        |
| 1819.430 | 228.0  | 1.500 | StF1                             | Visual | 0.21   | 0.07  | -0.1    | 0.13   | -1.0   | -0.05  | 1.1             | 0.41   |
| 1821.330 | 229.1  | 2.280 | SHJ1                             | Visual | 0.07   | 0.02  | -0.9    | 0.63   | -1.4   | 0.49   | -0.5            | 0.87   |
| 1826.790 | 231.0  | 2.230 | StF1                             | Visual | 2.19   | 0.73  | -2.0    | -0.13  | -2.2   | -0.20  | -2.3            | -0.01  |
| 1829.200 | 233.6  | 2.560 | StF2                             | Visual | 2.76   | 0.92  | -0.3    | -0.08  | -0.4   | -0.13  | -0.6            | 0.00   |
| 1830.497 | 234.6  | 2.974 | HJ_3 Smy1                        | Visual | 8.77   | 2.92  | 0.3     | 0.19   | 0.2    | 0.16   | 0.0             | 0.25   |
| 1831.507 | 234.1  | 3.004 | HJ_4 Smy1 Da_8                   | Visual | 8.74   | 2.91  | -0.4    | 0.11   | -0.5   | 0.09   | -0.8            | 0.16   |
| 1832.565 | 234.4  | 2.964 | StF12 HJ_1 Da_4                  | Visual | 11.80  | 3.93  | -0.4    | -0.03  | -0.5   | -0.05  | -0.8            | 0.00   |
| 1833.250 | 235.0  | 3.060 | HJ_1                             | Visual | 1.96   | 0.65  | 0.0     | -0.01  | 0.0    | -0.02  | -0.4            | 0.02   |
| 1834.557 | 235.2  | 3.300 | Smy1 Da_2                        | Visual | 3.00   | 1.00  | -0.1    | 0.11   | -0.1   | 0.10   | -0.5            | 0.12   |
| 1835.511 | 235.3  | 3.270 | Mad2 StF6 Da_2                   | Visual | 10.53  | 3.51  | -0.1    | -0.01  | -0.2   | -0.01  | -0.6            | 0.00   |
| 1836.551 | 235.1  | 3.541 | Mad4 Da_1 StF4<br>Smy1           | Visual | 12.22  | 4.07  | -0.6    | 0.17   | -0.6   | 0.17   | -1.0            | 0.17   |
| 1837.750 | 236.0  | 3.390 | StF4                             | Visual | 4.34   | 1.45  | 0.1     | -0.08  | 0.1    | -0.07  | -0.3            | -0.10  |
| 1839.620 | 235.3  | 3.500 | Smy1                             | Visual | 2.49   | 0.83  | -0.9    | -0.12  | -1.0   | -0.11  | -1.3            | -0.15  |
| 1840.760 | 235.2  | 3.660 | Stt5                             | Visual | 6.26   | 2.09  | -1.2    | -0.05  | -1.2   | -0.03  | -1.6            | -0.09  |
| 1841.408 | 236.0  | 3.765 | Da_11 Gsh1 Mad3<br>Kai6          | Visual | 16.34  | 5.45  | -0.5    | 0.01   | -0.5   | 0.03   | -0.9            | -0.03  |
| 1842.712 | 236.5  | 3.816 | Smy1 Da_1 Mad2                   | Visual | 9.54   | 3.18  | -0.2    | -0.04  | -0.2   | -0.01  | -0.5            | -0.08  |
| 1843.626 | 236.9  | 3.829 | Mad6 Kai9                        | Visual | 11.45  | 3.82  | 0.1     | -0.08  | 0.0    | -0.06  | -0.3            | -0.14  |
| 1845.513 | 237.1  | 4.100 | Mad5                             | Visual | 6.27   | 2.09  | 0.0     | 0.07   | 0.0    | 0.10   | -0.3            | 0.01   |
| 1846.180 | 236.5  | 4.220 | Jc_2                             | Visual | 2.79   | 0.93  | -0.6    | 0.15   | -0.7   | 0.18   | -1.0            | 0.08   |
| 1847.423 | 237.0  | 3.915 | Hin2 Mad1 Smy1<br>Mtl1           | Visual | 11.59  | 3.86  | -0.3    | -0.23  | -0.4   | -0.20  | -0.6            | -0.30  |
| 1848.481 | 237.6  | 4.253 | Stt3 Da_3 BdW2<br>BdG1           | Visual | 21.86  | 7.29  | 0.2     | 0.05   | 0.1    | 0.08   | -0.2            | -0.02  |
| 1849.480 | 237.3  | 4.360 | Da_1                             | Visual | 3.10   | 1.03  | -0.2    | 0.10   | -0.3   | 0.14   | -0.6            | 0.03   |
| 1851.656 | 237.8  | 4.430 | Flt4 Da_1 Mad9                   | Visual | 14.84  | 4.95  | 0.0     | 0.07   | 0.0    | 0.10   | -0.3            | -0.01  |
| 1852.650 | 237.9  | 4.250 | Mad15                            | Visual | 10.12  | 3.37  | 0.0     | -0.16  | -0.1   | -0.12  | -0.3            | -0.24  |
| 1853.345 | 238.0  | 4.309 | Stt2 Jc_2 Flt1<br>MiJ5 Mad7 Pwl8 | Visual | 24.60  | 8.20  | 0.0     | -0.13  | 0.0    | -0.09  | -0.3            | -0.21  |
| 1854.570 | 239.0  | 4.481 | Mrt2 D11 Da_1                    | Visual | 14.79  | 4.93  | 0.9     | -0.01  | 0.8    | 0.03   | 0.6             | -0.09  |
| 1855.245 | 238.4  | 4.405 | D2 Mad3 Pwl2                     | Visual | 9.21   | 3.07  | 0.2     | -0.11  | 0.2    | -0.08  | -0.1            | -0.20  |
| 1856.576 | 238.0  | 4.575 | Se_7 D5 Stt4                     | Visual | 19.35  | 6.45  | -0.3    | 0.01   | -0.4   | 0.05   | -0.6            | -0.08  |

Table 4, continued: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|          |        |       |                                   |        | Weig  | ghts  | Zirm   | 2010   | Heint  | z 1997 | Soeder<br>19 | hjelm  |
|----------|--------|-------|-----------------------------------|--------|-------|-------|--------|--------|--------|--------|--------------|--------|
| Date     | 9°2000 | ρ"    | Reference/Nights                  | Class  | Wi 9" | Wi ρ" | o-c 9° | O-C ρ" | o-c 9° | 0-C ρ" |              | O-C ρ" |
| 1858.560 | 237.6  | 4.680 | D4 Mad2                           | Visual | 9.45  | 3.15  | -0.9   | 0.05   | -1.0   | 0.08   | -1.2         | -0.04  |
| 1861.290 | 238.8  | 5.040 | Pwl5                              | Visual | 4.84  | 1.61  | 0.0    | 0.33   | 0.0    | 0.36   | -0.2         | 0.24   |
| 1862.420 | 238.1  | 4.610 | Mai1                              | Visual | 3.92  | 1.31  | -0.8   | -0.13  | -0.8   | -0.10  | -1.0         | -0.22  |
| 1863.388 | 237.8  | 4.717 | D6 Stt7                           | Visual | 15.05 | 5.02  | -1.2   | -0.05  | -1.2   | -0.01  | -1.4         | -0.13  |
| 1864.670 | 240.6  | 4.500 | Eng1                              | Visual | 3.83  | 1.28  | 1.5    | -0.29  | 1.5    | -0.26  | 1.3          | -0.38  |
| 1865.375 | 239.5  | 4.711 | Eng4 D12 Flt1                     | Visual | 16.91 | 5.64  | 0.4    | -0.09  | 0.3    | -0.06  | 0.1          | -0.18  |
| 1866.586 | 240.3  | 4.776 | Se_1 Sea1                         | Visual | 10.94 | 3.65  | 1.0    | -0.05  | 1.0    | -0.02  | 0.8          | -0.14  |
| 1867.379 | 237.7  | 4.720 | Win2 Tal2                         | Visual | 6.75  | 2.25  | -1.6   | -0.12  | -1.7   | -0.09  | -1.9         | -0.20  |
| 1869.372 | 239.2  | 4.762 | Du_10 Mai2 D5                     | Visual | 19.10 | 6.37  | -0.3   | -0.10  | -0.4   | -0.07  | -0.5         | -0.19  |
| 1870.320 | 240.0  | 4.690 | Gld1                              | Visual | 4.31  | 1.44  | 0.4    | -0.18  | 0.4    | -0.16  | 0.2          | -0.27  |
| 1871.463 | 240.0  | 4.808 | Gld4 Du_14 Pei1<br>Tal1 WS_4 Brn1 | Visual | 36.06 | 12.02 | 0.3    | -0.08  | 0.3    | -0.05  | 0.1          | -0.16  |
| 1872.191 | 238.8  | 4.887 | Stt2 Brn1                         | Visual | 11.68 | 3.89  | -0.9   | 0.00   | -1.0   | 0.02   | -1.2         | -0.09  |
| 1873.113 | 240.4  | 5.058 | D6 WS_3                           | Visual | 11.79 | 3.93  | 0.6    | 0.16   | 0.5    | 0.19   | 0.3          | 0.08   |
| 1874.144 | 238.9  | 4.608 | Tal2 Gld11                        | Visual | 13.82 | 4.61  | -1.0   | -0.29  | -1.1   | -0.27  | -1.2         | -0.37  |
| 1875.442 | 240.2  | 4.778 | Mail Sttl Du_4                    | Visual | 16.44 | 5.48  | 0.2    | -0.13  | 0.1    | -0.10  | -0.1         | -0.21  |
| 1876.322 | 240.2  | 4.944 | Sp_6 Dob4 Hl_2                    | Visual | 18.98 | 6.33  | 0.1    | 0.04   | 0.0    | 0.06   | -0.1         | -0.04  |
| 1877.281 | 240.0  | 5.011 | Plm7 Dob5 Fla1<br>Je_8            | Visual | 19.64 | 6.55  | -0.2   | 0.11   | -0.2   | 0.13   | -0.4         | 0.03   |
| 1878.482 | 240.7  | 4.981 | WJM7 Smt2 Dob3                    | Visual | 19.03 | 6.34  | 0.4    | 0.08   | 0.4    | 0.10   | 0.2          | 0.00   |
| 1879.488 | 240.5  | 4.898 | Sp_6 Hod4 Sbk6<br>Prc2 Je_3       | Visual | 33.31 | 11.10 | 0.1    | 0.00   | 0.1    | 0.02   | -0.1         | -0.08  |
| 1880.379 | 240.7  | 4.930 | Dob3 Je_3                         | Visual | 11.29 | 3.76  | 0.2    | 0.04   | 0.2    | 0.05   | 0.0          | -0.04  |
| 1881.365 | 241.4  | 4.837 | Sp_5 Big1 Hl_2<br>Prt2 Prc2       | Visual | 33.52 | 11.17 | 0.9    | -0.05  | 0.8    | -0.03  | 0.7          | -0.12  |
| 1882.489 | 240.8  | 4.904 | Hl_4 Sbk6 Frs3<br>Sp_5 Sttl Je_5  | Visual | 45.41 | 15.14 | 0.2    | 0.02   | 0.1    | 0.04   | 0.0          | -0.05  |
| 1883.471 | 240.4  | 4.869 | Eng6 Frs3 Sp_5<br>Hl_3 Per2 Ku_5  | Visual | 47.52 | 15.84 | -0.3   | 0.00   | -0.4   | 0.01   | -0.5         | -0.07  |
| 1884.453 | 241.4  | 4.889 | Nst1 Hl_3 Sp_4                    | Visual | 19.95 | 6.65  | 0.6    | 0.03   | 0.5    | 0.04   | 0.4          | -0.04  |
| 1885.444 | 240.9  | 4.982 | Hl_3 Per3 Smt1<br>Sp_4 Je_3       | Visual | 33.08 | 11.03 | 0.0    | 0.13   | -0.1   | 0.15   | -0.2         | 0.07   |
| 1886.473 | 241.7  | 4.843 | Hl_3 Smt2                         | Visual | 15.01 | 5.00  | 0.7    | 0.01   | 0.7    | 0.02   | 0.5          | -0.06  |
| 1887.527 | 241.0  | 4.850 | Tar2 Cel4 Sp_6                    | Visual | 20.81 | 6.94  | -0.1   | 0.03   | -0.1   | 0.04   | -0.3         | -0.03  |
| 1888.581 | 240.6  | 4.825 | Glp2 Hl_3 Cel2<br>Sp_5 Stt3       | Visual | 34.88 | 11.63 | -0.6   | 0.02   | -0.6   | 0.04   | -0.8         | -0.04  |
| 1889.518 | 241.9  | 4.767 | SBc2 Hl_3 Maw2                    | Visual | 18.97 | 6.32  | 0.6    | -0.02  | 0.6    | -0.01  | 0.5          | -0.08  |
| 1890.481 | 241.5  | 4.812 | Glp2 Hl_3 Nst1<br>Cel1            | Visual | 21.75 | 7.25  | 0.1    | 0.05   | 0.1    | 0.06   | 0.0          | -0.01  |
| 1891.482 | 241.6  | 4.844 | Hl_3 See4 Sp_4                    | Visual | 34.05 | 11.35 | 0.2    | 0.10   | 0.1    | 0.11   | 0.0          | 0.04   |
| 1892.486 | 241.4  | 4.852 | Lv_2 Sea3 Com2                    | Visual | 18.78 | 6.26  | -0.1   | 0.13   | -0.2   | 0.14   | -0.3         | 0.07   |
| 1893.398 | 241.5  | 4.794 | Jns2 Cls2 Big7                    | Visual | 18.60 | 6.20  | -0.1   | 0.09   | -0.2   | 0.10   | -0.3         | 0.04   |
| 1894.560 | 242.7  | 4.790 | Ebl1                              | Visual | 4.69  | 1.56  | 1.0    | 0.11   | 0.9    | 0.12   | 0.8          | 0.06   |
| 1895.313 | 241.0  | 4.789 | Ren8 Glp2 Cls2<br>Com3            | Visual | 33.00 | 11.00 | -0.8   | 0.13   | -0.9   | 0.14   | -1.0         | 0.08   |
| 1896.486 | 242.2  | 4.738 | Lv_2 Nst1 Hu_4<br>Eic3            | Visual | 21.46 | 7.15  | 0.3    | 0.11   | 0.2    | 0.12   | 0.1          | 0.06   |
| 1897.539 | 241.9  | 4.506 | Vil3 Col3                         | Visual | 10.36 | 3.45  | -0.1   | -0.09  | -0.2   | -0.09  | -0.3         | -0.14  |
| 1898.412 | 241.7  | 4.649 | Hu_1 Col4 Coh1                    | Visual | 16.04 | 5.35  | -0.4   | 0.08   | -0.5   | 0.08   | -0.6         | 0.03   |
| 1899.582 | 243.0  | 4.646 | See2 Maw2                         | Visual | 10.08 | 3.36  | 0.8    | 0.11   | 0.7    | 0.11   | 0.6          | 0.06   |
| 1900.407 | 242.2  | 4.517 | Doo3 Loh2 Bog3<br>Dob2            | Visual | 24.93 | 8.31  | -0.1   | 0.01   | -0.2   | 0.01   | -0.3         | -0.04  |
| 1901.463 | 243.6  | 4.466 | Lohl Es_4 Bowl                    | Visual | 18.09 | 6.03  | 1.2    | -0.01  | 1.1    | -0.01  | 1.0          | -0.05  |
| 1902.520 | 242.6  | 4.800 | Pos1                              | Visual | 5.66  | 1.89  | 0.1    | 0.36   | 0.0    | 0.36   | -0.1         | 0.32   |
| 1903.322 | 241.6  | 4.444 | VBs2 Dob2 L1                      | Visual | 21.42 | 7.14  | -1.0   | 0.03   | -1.1   | 0.03   | -1.2         | -0.01  |

Table 4, continued: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|                      | ,      |       | 4 Bootis, normai point                            |                  | Weig           |       | Zirm   |        | Heintz |        |        | hjelm |
|----------------------|--------|-------|---------------------------------------------------|------------------|----------------|-------|--------|--------|--------|--------|--------|-------|
| Date                 | 9°2000 | 0"    | Reference/Nights                                  | Class            | Wi 9"          | Wi ρ" | o-c 9° | 0-C 0" | o-c 9° | O-C ρ" | 0-C 9° |       |
| 1904.518             | 244.7  | 4.279 | Lohl Frml                                         | Visual           | 8.43           | 2.81  | 1.9    | -0.09  | 1.9    | -0.09  | 1.8    | -0.13 |
| 1905.333             | 243.5  | 4.275 | Bu_4 L1 Bow1<br>Lau2                              | Visual           | 34.71          | 11.57 | 0.7    | -0.06  | 0.6    | -0.06  | 0.5    | -0.10 |
| 1906.451             | 243.2  | 4.416 | A2 L2                                             | Visual           | 20.80          | 6.93  | 0.2    | 0.12   | 0.2    | 0.12   | 0.1    | 0.08  |
| 1907.462             | 242.6  | 4.100 | VBs3                                              | Visual           | 6.19           | 2.06  | -0.5   | -0.16  | -0.5   | -0.16  | -0.6   | -0.19 |
| 1908.373             | 243.2  | 4.251 | VBs2 Laul Jan1<br>Bu_4 Fox3 Dob3<br>Prz4 L1 Has6  | Visual           | 49.82          | 16.61 | 0.0    | 0.03   | 0.0    | 0.03   | -0.1   | -0.01 |
| 1909.429             | 243.3  | 4.179 | VBs3 Phl2 J_3<br>Dob4 Doo3 Lau3                   | Visual           | 33.72          | 11.24 | 0.0    | 0.00   | 0.0    | 0.00   | -0.1   | -0.03 |
| 1910.576             | 244.5  | 4.184 | Lau1 Dob3 VBs3<br>Gut2 Fur2                       | Visual           | 32.55          | 10.85 | 1.0    | 0.06   | 1.0    | 0.06   | 0.9    | 0.02  |
| 1911.448             | 243.4  | 4.067 | VBs3 Dob3 Vou4<br>Es_3 Fox3 L1<br>Jan1            | Visual           | 34.69          | 11.56 | -0.2   | -0.02  | -0.2   | -0.02  | -0.3   | -0.06 |
| 1912.434             | 243.7  | 4.077 | Neu3 Vou4 Dob2<br>Fes1                            | Visual           | 19.24          | 6.41  | 0.0    | 0.03   | 0.0    | 0.03   | -0.1   | 0.00  |
| 1913.480             | 244.1  | 3.970 | Vou6 Sla3 Lv_1<br>VBs3 WFD1                       | Visual           | 19.10          | 6.37  | 0.3    | -0.03  | 0.2    | -0.03  | 0.2    | -0.06 |
| 1914.407             | 244.7  | 4.018 | Vys3 Rab7 Phl3<br>Chp1                            | Visual           | 24.39          | 8.13  | 0.7    | 0.06   | 0.7    | 0.06   | 0.6    | 0.03  |
| 1915.356             | 244.7  | 3.914 | Dob3 Rab12 Frk3<br>Com2                           | Visual           | 17.85          | 5.95  | 0.6    | 0.00   | 0.6    | 0.00   | 0.5    | -0.03 |
| 1916.340             | 245.0  | 3.814 | VBs3 Rab10 Com3                                   | Visual           | 23.42          | 7.81  | 0.8    | -0.05  | 0.8    | -0.05  | 0.7    | -0.08 |
| 1917.474             |        | 3.875 | Com3 J2                                           | Visual           | 14.45          | 4.82  | 0.0    | 0.07   | 0.0    | 0.07   | -0.1   | 0.04  |
| 1918.480             | 243.9  | 3.770 | Com3                                              | Visual           | 5.92           | 1.97  | -0.7   | 0.01   | -0.7   | 0.01   | -0.7   | -0.01 |
| 1919.492<br>1920.463 | 243.9  | 3.739 | Com3 Lv_3 Dob3 Pav2 Cha4 Kpz4                     | Visual<br>Visual | 10.28<br>21.56 | 7.19  | -0.8   | 0.03   | -0.8   | 0.04   | -0.9   | 0.01  |
| 1921.459             | 244.9  | 3.588 | Lbz2 VBs3 Prz4<br>Btz1 B3                         | Visual           | 31.25          | 10.42 | -0.1   | -0.01  | -0.1   | -0.01  | -0.2   | -0.04 |
| 1922.501             | 245.0  | 3.600 | Necl B_4 Lv_1<br>Dic5 Lbz1 Prz3<br>StG3 Pek3      | Visual           | 38.34          | 12.78 | -0.2   | 0.06   | -0.2   | 0.06   | -0.3   | 0.03  |
| 1923.469             | 245.0  | 3.551 | Fur3 B_4 VBs2<br>Dic2 Rou2 Lv_3<br>Lbz2 Prz5 StG2 | Visual           | 54.01          | 18.00 | -0.4   | 0.06   | -0.4   | 0.06   | -0.4   | 0.04  |
| 1924.478             | 245.2  | 3.389 | StG1 B_4 Dob4<br>Jan2 Fat2 Lv_2<br>Wtl1 VBs3      | Visual           | 42.36          | 14.12 | -0.3   | -0.04  | -0.3   | -0.04  | -0.4   | -0.07 |
| 1925.445             |        | 3.377 | B4 Dob4 VBs3<br>StG4 Baz4 Lv_4<br>Ber6            | Visual           | 37.08          | 12.36 | 0.2    | 0.00   | 0.2    | 0.00   | 0.1    | -0.02 |
| 1926.455             | 245.9  | 3.183 | VBs3 Lv_6 Ber6                                    | Visual           | 18.40          | 6.13  | 0.0    | -0.14  | 0.0    | -0.13  | -0.1   | -0.16 |
| 1927.516             |        | 3.339 | Rab4 Kom5 StG4<br>Baz2                            | Visual           | 19.27          | 6.42  |        | 0.08   | -0.7   | 0.08   | -0.8   | 0.06  |
| 1928.443             |        | 3.348 | Kom3 Buc5 Bea4                                    | Visual           | 13.53          | 4.51  | 0.1    | 0.15   | 0.1    | 0.15   | 0.0    | 0.12  |
| 1929.255             | 246.3  | 3.170 | VBs3 All2 Kom3<br>Kui4 Dob3 All1                  | Visual           | 16.07          | 5.36  | -0.2   | 0.02   | -0.2   | 0.02   | -0.2   | 0.00  |
| 1930.502             | 246.6  | 3.070 | Kom4 StG3 Baz19                                   | Visual           | 28.37          | 9.46  | -0.2   | -0.01  | -0.2   | 0.00   | -0.2   | -0.03 |
| 1931.455             | 247.1  | 2.901 | VBs3 StG4 Smw6<br>All1 Kom4 Bon4                  | Visual           | 30.92          | 10.31 | 0.1    | -0.11  | 0.1    | -0.11  | 0.1    | -0.14 |
| 1932.433             |        | 2.890 | VBs2 Smw4 Kom3<br>StG4 Smw19 Rab5                 | Visual           | 38.78          |       |        | -0.06  | -0.2   | -0.06  | -0.3   | -0.09 |
| 1933.572             | 248.0  | 2.801 | Baz4 Rab5                                         | Visual           | 6.89           | 2.30  | 0.5    | -0.08  | 0.5    | -0.08  | 0.5    | -0.10 |
| 1934.377             | 247.7  | 2.934 | Rab10 Kui1 Dob4<br>Pok2                           | Visual           | 15.08          | 5.03  | 0.0    | 0.11   | 0.0    | 0.11   | 0.0    | 0.08  |

Table 4, continued: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|          |                    |       |                                                                    |        | Weig  | ghts  | Zirm   | 2010   | Heintz | z 1997 | Soeder<br>19 | hjelm |
|----------|--------------------|-------|--------------------------------------------------------------------|--------|-------|-------|--------|--------|--------|--------|--------------|-------|
| Date     | 9° <sub>2000</sub> | 0"    | Reference/Nights                                                   | Class  | wi Qu | Wi ρ" | 0-C 8° | 0-C ρ" | 0-C 3° | 0-0 0" | 0-C 30       |       |
| 1935.161 | 249.0              | 2.702 | Baz4 Rab6                                                          | Visual | 4.84  | 1.61  | 1.0    | -0.08  | 1.1    | -0.07  | 1.0          | -0.10 |
| 1936.396 | 250.5              | 2.778 | Dur3 Rab6                                                          | Visual | 3.94  | 1.31  | 2.2    | 0.08   | 2.2    | 0.09   | 2.2          | 0.06  |
| 1937.305 | 248.9              | 2.599 | Baz4 Mlr4 Str5<br>Phl3 Rab9 Dur4                                   | Visual | 17.31 | 5.77  | 0.3    | -0.04  | 0.3    | -0.03  | 0.3          | -0.06 |
| 1938.417 | 248.4              | 2.573 | Phl3                                                               | Visual | 20.69 | 6.90  | -0.6   | 0.01   | -0.5   | 0.02   | -0.5         | -0.01 |
| 1939.446 |                    | 2.433 | Dur13 Sem2 VBs4                                                    | Visual |       | 12.07 |        | -0.06  | -0.1   | -0.05  | -0.1         | -0.08 |
| 1940.421 | 249.9              | 2.420 | Kor4 Dur1 Rab9                                                     | Visual | 13.09 | 4.36  | 0.2    | 0.00   | 0.3    | 0.01   | 0.3          | -0.02 |
| 1941.430 | 250.5              | 2.264 | Baz5 VBs5 Rab10<br>Sem4 Dur5                                       | Visual | 21.62 | 7.21  | 0.4    | -0.09  | 0.5    | -0.08  | 0.5          | -0.11 |
| 1942.466 | 251.0              | 2.298 | Ahn5 Dur10 Rab11                                                   | Visual | 11.72 | 3.91  | 0.5    | 0.02   | 0.6    | 0.03   | 0.6          | 0.00  |
| 1943.381 | 251.8              | 2.122 | Baz5 VBs1 Dur16<br>Rab9                                            | Visual | 20.35 | 6.78  | 0.9    | -0.09  | 1.0    | -0.08  | 1.0          | -0.11 |
| 1944.387 | 252.7              | 2.058 | VBs6 Dur12 Rab5                                                    | Visual | 21.18 | 7.06  | 1.3    | -0.08  | 1.4    | -0.07  | 1.5          | -0.11 |
| 1945.347 | 253.2              | 2.011 | Baz5 VBs4 Arm2<br>Dur5                                             | Visual | 20.13 | 6.71  | 1.4    | -0.06  | 1.4    | -0.05  | 1.5          | -0.08 |
| 1946.508 | 252.3              | 1.982 | Mlr5 Rab5                                                          | Visual | 4.94  | 1.65  | -0.2   | 0.00   | -0.1   | 0.01   | 0.0          | -0.03 |
| 1947.305 | 252.3              | 2.002 | Baz5 Mlr5 Mun3                                                     | Visual | 7.91  | 2.64  | -0.6   | 0.08   | -0.5   | 0.09   | -0.4         | 0.05  |
| 1948.478 | 253.9              | 1.831 | Mlr3 Fok4 Rab7<br>Baz2 VBs2                                        | Visual | 14.12 | 4.71  | 0.3    | -0.01  | 0.3    | 0.00   | 0.4          | -0.04 |
| 1949.349 | 255.3              | 1.677 | VBs4 Rab7 Baz2                                                     | Visual | 9.91  | 3.30  | 1.1    | -0.10  | 1.2    | -0.09  | 1.3          | -0.13 |
| 1950.379 | 255.8              | 1.634 | VBs4 Mlr3 Rab10<br>Guy4                                            | Visual | 9.92  | 3.31  | 0.8    | -0.06  | 0.9    | -0.05  | 1.1          | -0.09 |
| 1951.465 | 255.3              | 1.614 | Mlr4 Prel Rabl1<br>WRH2 Baz4                                       | Visual | 12.12 | 4.04  | -0.6   | 0.00   | -0.5   | 0.01   | -0.3         | -0.03 |
| 1952.381 | 256.2              | 1.485 | VBs4 Mlr2 Pre1<br>Rab12                                            | Visual | 13.38 | 4.46  | -0.5   | -0.06  | -0.4   | -0.05  | -0.1         | -0.09 |
| 1953.468 | 258.1              | 1.404 | Mlr3 Dju3 Rab9<br>Ces3 Baz4 VBs6                                   | Visual | 16.58 | 5.53  | 0.4    | -0.06  | 0.4    | -0.05  | 0.7          | -0.09 |
| 1954.362 | 257.9              | 1.366 | Guy2 Mlr5 Wie2<br>Rab7 Baz4                                        | Visual | 7.20  | 2.40  | -0.8   | -0.03  | -0.7   | -0.02  | -0.4         | -0.06 |
| 1955.394 | 258.9              | 1.307 | Wor4 Mlr7 Cou3<br>Br_4 Baz5 Rab7<br>Fle5                           | Visual | 12.36 | 4.12  | -1.0   | -0.01  | -1.0   | 0.00   | -0.6         | -0.04 |
| 1956.373 | 261.7              | 1.222 | VBs4 Mlr6 Br_3<br>Wor3 Rab4 Baz4                                   | Visual | 14.73 | 4.91  | 0.4    | -0.02  | 0.5    | -0.01  | 1.0          | -0.05 |
| 1957.473 | 262.5              | 1.194 | Sgt4 Mlr6 Clu3<br>Br_3 VBs6 Cou4<br>Dju4 Dic1 Hnz4<br>Pau4 Rab6 B3 | Visual | 30.76 | 10.25 | -0.4   | 0.03   | -0.4   | 0.05   | 0.2          | 0.00  |
| 1958.476 | 264.3              | 1.116 | Cou3 B6 Wor3<br>VBs4 Clu3                                          | Visual | 14.80 | 4.93  | -0.4   | 0.03   | -0.4   | 0.04   | 0.4          | 0.00  |
| 1959.423 | 266.0              | 1.093 | Wor4 Woy13                                                         | Visual | 12.94 | 4.31  | -0.6   | 0.08   | -0.6   | 0.09   | 0.3          | 0.04  |
| 1960.465 | 269.2              | 0.958 | VBs7                                                               | Visual | 12.26 | 4.09  | 0.1    | 0.02   | 0.1    | 0.03   | 1.2          | -0.01 |
| 1961.591 | 272.4              | 0.886 | Wor4 Cdy3 Woy3<br>Cou2 B4 VBs12                                    | Visual | 8.91  | 2.97  | 0.2    | 0.03   | 0.1    | 0.04   | 1.6          | 0.00  |
| 1962.425 | 274.8              | 0.854 | Lan1 Baz4                                                          | Visual | 13.17 | 4.39  | -0.1   | 0.06   | -0.2   | 0.07   | 1.5          | 0.02  |
| 1963.371 | 279.0              | 0.720 | VBs5 Wor3 Dur9<br>Hei6 B_6 Cou3<br>Pau3 Hnz4                       | Visual | 11.53 | 3.84  | 0.5    | -0.01  | 0.3    | 0.00   | 2.4          | -0.05 |

Table 4, continued: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|                      |                    |                |                                          |                  | Weig  | ghts         | Zirm   | 2010           | Heintz | 1997           |        | hjelm<br>99 |
|----------------------|--------------------|----------------|------------------------------------------|------------------|-------|--------------|--------|----------------|--------|----------------|--------|-------------|
| Date                 | 9° <sub>2000</sub> | ρ"             | Reference/Nights                         | Class            | Wi 9" | Wi o"        | o-c 9° | O-C ρ"         | o-c 9° | 0-C ρ"         | 0-C 9° |             |
| 1964.445             |                    | 0.677          | Baz4                                     | Visual           | 7.07  | 2.36         | -0.3   | 0.01           | -0.6   | 0.03           | 2.1    | -0.02       |
| 1965.305             | 287.7              | 0.642          | Hei4                                     | Visual           | 7.00  | 2.33         | -0.4   | 0.03           | -0.9   | 0.04           | 2.5    | 0.00        |
| 1966.334             | 294.9              | 0.571          | Dur5 VBs8 Wak4<br>Wor9 Sym3 Mlr4<br>Baz2 | Visual           | 10.06 | 3.35         | 0.1    | 0.01           | -0.6   | 0.03           | 3.7    | -0.01       |
| 1967.388             | 302.0              | 0.534          | Dur5 Wor6 Wak3<br>Sym5 Baz4 VBs2<br>Srb3 | Visual           | 5.44  | 1.81         | -1.0   | 0.02           | -2.0   | 0.04           | 3.4    | 0.00        |
| 1968.404             | 312.1              | 0.506          | VBs6 Wor8 Wak3<br>Dur5                   | Visual           | 7.88  | 2.63         | -0.2   | 0.03           | -1.6   | 0.04           | 5.0    | 0.01        |
| 1969.419             | 324.1              | 0.479          | Wor4 Cou2 Baz4                           | Visual           | 2.67  | 0.89         | 1.3    | 0.02           | -0.3   | 0.03           | 7.2    | 0.01        |
| 1970.455             | 334.8              | 0.508          | Wor6 Ary3 Wak2<br>Dur4                   | Visual           | 1.47  | 0.49         | 0.8    | 0.06           | -1.0   | 0.06           | 7.0    | 0.05        |
| 1971.492             | 346.2              | 0.515          | Cou2 Wor2 Dur1                           | Visual           | 1.50  | 0.50         | 1.1    | 0.05           | -0.7   | 0.05           | 7.3    | 0.06        |
| 1972.381             | 355.9              | 0.480          | Wor4 Dur5                                | Visual           | 2.16  | 0.72         | 2.1    | -0.01          | 0.4    | -0.01          | 7.9    | 0.01        |
| 1973.455             | 3.4                | 0.561          | Dur6 Wiel Hei4<br>Wor4 Hln4              | Visual           | 3.95  | 1.32         | 0.3    | 0.03           | -1.2   | 0.03           | 5.5    | 0.06        |
| 1974.395             | 10.1               | 0.584          | Dur3 Wor4 Cou2<br>Beh3                   | Visual           | 4.02  | 1.34         | 0.1    | 0.01           | -1.2   | 0.00           | 4.7    | 0.04        |
| 1975.398             | 16.5               | 0.611          | Ole1 Hei4 Wor4<br>Wie4 Wak2 Beh1         | Visual           | 4.53  | 1.51         | 0.4    | -0.02          | -0.8   | -0.03          | 4.3    | 0.01        |
| 1976.450             |                    | 0.725          | Wor3 Wie4 Wak2                           | Visual           | 2.10  | 0.70         | 0.2    | 0.03           | -0.8   | 0.02           | 3.5    | 0.07        |
| 1977.343             | 25.6               | 0.839          | Hei3 Wor3 Wie2                           | Visual           | 2.32  | 0.77         | 0.4    | 0.08           | -0.4   | 0.08           | 3.3    | 0.13        |
| 1978.488             | 30.1               | 0.849          | Wie4 Hln2 Wor4                           | Visual           | 4.60  | 1.53         | 0.8    | 0.02           | 0.2    | 0.01           | 3.3    | 0.06        |
| 1979.460<br>1980.418 | 33.8<br>35.5       | 0.920<br>1.007 | Wor3 Cll3 Wor2 Hei3                      | Visual<br>Visual | 1.98  | 0.66<br>1.63 | 0.9    | 0.02           | 0.4    | 0.01           | 2.8    | 0.07        |
| 1980.416             |                    | 1.240          | Wor4 Ary2 Wie3<br>Mss3                   | Visual           | 6.15  | 2.05         | 0.0    | 0.13           | -0.3   | 0.11           | 1.6    | 0.18        |
| 1985.531             | 45.6               | 1.382          | Wie2 Wor3                                | Visual           | 3.12  | 1.04         | 2.3    | 0.05           | 2.1    | 0.03           | 3.4    | 0.10        |
| 1986.437             |                    | 1.462          | Tob1 Stu3 Sca1                           | Visual           | 5.67  | 1.89         | 0.5    | 0.07           | 0.4    | 0.05           | 1.6    | 0.12        |
| 1987.350             | 45.6               | 1.660          | Doc2                                     | Visual           | 2.34  | 0.78         | 0.2    | 0.20           | 0.1    | 0.18           | 1.2    | 0.25        |
| 1988.434             |                    | 1.600          | Stu5 Wiel Gel5                           | Visual           | 4.53  | 1.51         | -0.4   | 0.07           | -0.4   | 0.05           | 0.6    | 0.12        |
| 1989.750             | 49.4               | 1.628          | Stu4 Gir1 Wor4                           | Visual           | 5.00  | 1.67         | 1.8    | 0.02           | 1.8    | -0.01          | 2.7    | 0.06        |
| 1990.356             | 48.0               | 1.589          | Tobl Kzn5 Ary4                           | Visual           | 2.91  | 0.97         | -0.1   | -0.06          | -0.1   | -0.09          | 0.7    | -0.01       |
| 1991.620             | 49.7               | 1.780          | Ary3                                     | Visual           | 0.94  | 0.31         | 0.6    | 0.06           | 0.7    | 0.02           | 1.4    | 0.10        |
| 1992.459             | 49.9               | 1.799          | Tob2 Stu4 Kzn5<br>Ary5                   | Visual           | 5.41  | 1.80         | 0.2    | 0.03           | 0.3    | -0.01          | 1.0    | 0.07        |
| 1993.463             |                    |                | Stu3 Kzn4 Ary4                           | Visual           | 3.21  | 1.07         | -0.8   | 0.02           | -0.6   | -0.03          | 0.0    | 0.06        |
| 1994.576             |                    | 1.916          |                                          | Visual           | 4.22  | 1.41         | 0.8    | 0.05           | 1.1    | -0.01          | 1.6    | 0.08        |
| 1995.471             |                    | 1.853          | Ctt4 Hei3 Kzn3                           | Visual<br>Visual | 9.09  | 3.03         | 0.4    | 0.01           | 0.7    | -0.12          | 1.1    | 0.03        |
|                      |                    |                | Ary4 Alz4 Kzn3 Ary5                      |                  |       |              | -0.2   |                |        |                |        | -0.03       |
| 1997.465<br>1998.519 |                    | 1.926          | -                                        | Visual<br>Visual | 9.61  | 3.20<br>1.62 | -0.2   | -0.05<br>-0.04 | 0.2    | -0.14<br>-0.15 | 0.6    | -0.03       |
| 1999.456             |                    | 2.021          | Alz3 Tob1 Tob1<br>Ary5                   | Visual           | 6.33  | 2.11         | 0.4    | 0.01           | 1.0    | -0.12          | 1.2    | 0.02        |
| 2000.452             | 54.5               | 2.046          | _                                        | Visual           | 4.32  | 1.44         | 0.0    | 0.02           | 0.6    | -0.13          | 0.7    | 0.03        |
| 2001.459             |                    | 2.027          | -                                        | Visual           | 5.53  | 1.84         | 0.1    | 0.00           | 0.7    | -0.17          | 0.8    | 0.00        |
| 2002.499             |                    | 2.034          |                                          | Visual           | 5.55  | 1.85         | -0.3   | 0.02           | 0.5    | -0.18          | 0.4    | 0.01        |
| 2003.490             | 56.7               | 1.989          | _                                        | Visual           | 4.83  | 1.61         | 0.6    | -0.01          | 1.4    | -0.24          | 1.3    | -0.02       |
| 2004.495             | 56.7               | 1.934          | Alz2 Ary3                                | Visual           | 4.51  | 1.50         | 0.0    | -0.04          | 1.0    | -0.30          | 0.8    | -0.05       |

Table 4, continued: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|                      |        |       |                        |                    | Weig  | ghts           | Zirm   | 2010   | Heint  | z 1997 | Soeder<br>19 | hjelm<br>99 |
|----------------------|--------|-------|------------------------|--------------------|-------|----------------|--------|--------|--------|--------|--------------|-------------|
| Date                 | 9°2000 | ρ"    | Reference/Nights       | Class              | Wi 9" | Wi ρ"          | o-c 9° | 0-C ρ" | o-c 9° | 0-C ρ" | 0-C 9°       | 0-C ρ"      |
| 2005.455             | 57.7   | 1.902 | Alz3 Ary5              | Visual             | 5.00  | 1.67           | 0.4    | -0.03  | 1.6    | -0.33  | 1.2          | -0.05       |
| 2006.507             | 57.6   | 1.836 | Alz3 Ary6              | Visual             | 5.01  | 1.67           | -0.3   | -0.04  | 1.0    | -0.39  | 0.5          | -0.06       |
| 2007.494             | 59.2   | 1.835 | Alz2 Ary6              | Visual             | 4.83  | 1.61           | 0.7    | 0.02   | 2.2    | -0.37  | 1.5          | 0.00        |
| 2008.548             | 60.4   | 1.680 | Ary4                   | Visual             | 1.93  | 0.64           | 1.1    | -0.06  | 2.9    | -0.50  | 2.0          | -0.07       |
| 1889.520             | 241.2  | 4.700 | Kin1                   | Phot+CCD           | 4.70  | 4.70           | -0.1   | -0.084 | -0.1   | -0.074 | -0.2         | -0.144      |
| 1904.270             | 243.4  | 4.360 | Thi1                   | Phot+CCD           | 4.36  | 4.36           | 0.7    | -0.019 | 0.6    | -0.016 | 0.5          | -0.059      |
| 1915.322             | 243.9  | 3.909 | Hzg7                   | Phot+CCD           | 7.82  | 7.82           | -0.2   | -0.004 | -0.2   | -0.003 | -0.3         | -0.033      |
| 1919.356             | 244.7  | 3.712 | Hzg2                   | Phot+CCD           | 7.42  | 7.42           | 0.0    | 0.001  | 0.0    | 0.001  | -0.1         | -0.026      |
| 1922.437             | 245.0  | 3.540 | Mch1                   | Phot+CCD           | 7.08  | 7.08           | -0.2   | -0.007 | -0.2   | -0.006 | -0.2         | -0.032      |
| 1926.464             | 246.1  | 3.301 | Mch2 Lbz1              | Phot+CCD           | 16.51 | 16.51          | 0.2    | -0.017 | 0.2    | -0.016 | 0.1          | -0.041      |
| 1930.320             | 246.8  | 3.170 | Reu2                   | Phot+CCD           | 6.34  | 6.34           | 0.1    | 0.084  | 0.1    | 0.086  | 0.0          | 0.061       |
| 1938.310             | 248.9  | 2.555 | Jef2                   | Phot+CCD           | 10.22 | 10.22          | 0.0    | -0.011 | 0.0    | -0.006 | 0.0          | -0.034      |
| 1941.490             | 250.0  | 2.306 | Str1                   | Phot+CCD           | 4.61  | 4.61           | -0.1   | -0.040 | 0.0    | -0.033 | 0.0          | -0.063      |
| 1949.184             | 254.2  | 1.747 | DeO2                   | Phot+CCD           | 6.99  | 6.99           | 0.1    | -0.040 | 0.2    | -0.029 | 0.3          | -0.067      |
| 1951.483             | 255.6  | 1.567 | Jef1                   | Phot+CCD           | 3.13  | 3.13           |        | -0.048 | -0.2   | -0.036 | 0.0          | -0.076      |
| 1953.502             | 257.3  | 1.417 | Jef1                   | Phot+CCD           | 2.83  | 2.83           | -0.5   | -0.045 | -0.4   | -0.032 | -0.1         | -0.075      |
| 1954.292             | 258.1  | 1.320 | Jef1                   |                    | 2.64  | 2.64           |        | -0.043 | -0.4   | -0.032 | -0.1         | -0.112      |
| 1954.292             | 260.0  |       |                        | Phot+CCD           |       |                |        |        |        |        |              |             |
|                      |        | 1.294 | Jef1                   | Phot+CCD           | 2.59  | 2.59           | 0.3    | -0.038 | 0.4    | -0.025 | 0.8          | -0.069      |
| 1957.190             | 261.9  | 1.089 | Gz11                   | Phot+CCD           | 1.09  | 1.09           | -0.6   | -0.093 | -0.5   | -0.079 | 0.0          | -0.125      |
| 1997.660             | 53.9   | 2.000 | ADP10                  | Phot+CCD           | 4.00  | 4.00           | 0.9    | 0.021  | 1.3    | -0.076 | 1.7          | 0.042       |
| 2003.366             | 55.8   | 1.995 | Izm8                   | Phot+CCD           | 7.98  | 7.98           |        | -0.008 | 0.6    | -0.233 | 0.5          | -0.015      |
| 2004.234             | 55.9   | 1.971 | Izm7                   | Phot+CCD           | 7.88  | 7.88           | -0.7   | -0.009 | 0.3    | -0.263 | 0.1          | -0.020      |
| 2005.180             | 56.9   | 1.945 | Izm4                   | Phot+CCD           | 7.78  | 7.78           | -0.2   | -0.001 | 0.9    | -0.290 | 0.6          | -0.014      |
| 2006.241             | 57.4   | 1.897 | Izm5                   | Phot+CCD           | 7.59  | 7.59           | -0.3   | 0.001  | 0.9    | -0.331 | 0.5          | -0.013      |
| 2007.401             | 57.9   | 1.816 | Izm6 WSI2 Smr1         | Phot+CCD           | 16.34 | 16.34          | -0.6   | -0.009 | 0.9    | -0.394 | 0.2          | -0.022      |
| 2008.333             | 58.3   | 1.723 | Ant2 Smr1              | Phot+CCD           | 5.17  | 5.17           | -0.8   | -0.033 | 0.9    | -0.465 | 0.0          | -0.043      |
| 2009.347             | 60.4   | 1.680 | Antl Smrl              | Phot+CCD           | 3.36  | 3.36           | 0.5    | 0.010  | 2.5    | -0.475 | 1.4          | 0.006       |
| 1976.241             | 21.2   | 0.684 | McA5                   | Speckle            | 11.63 | 11.63          | 0.7    | 0.001  | -0.3   | -0.006 | 4.2          | 0.039       |
| 1977.136             | 24.7   | 0.745 | McA2                   | Speckle            | 3.73  | 3.73           | 0.3    | 0.004  | -0.6   | -0.004 | 3.3          | 0.045       |
| 1978.183             | 29.1   | 0.813 | McA2                   | Speckle            | 4.07  | 4.07           | 0.8    | 0.001  | 0.1    | -0.008 | 3.4          | 0.045       |
| 1979.464             | 32.5   | 0.906 | McA2 Tok1              | Speckle            | 4.53  | 4.53           | 0.4    | 0.005  | -0.2   | -0.006 | 2.5          | 0.051       |
| 1980.318             | 35.0   | 0.977 | McA2                   | Speckle            | 7.82  | 7.82           | 0.7    | 0.015  | 0.2    | 0.003  | 2.6          | 0.063       |
| 1981.459             | 36.2   | 1.056 | Tok2 McA3              | Speckle            |       | 13.73          |        | 0.012  |        | -0.001 |              | 0.061       |
| 1982.428             | 37.3   | 1.106 | McA3 Tok1              | Speckle            | 4.42  |                | -1.4   | -0.008 | -1.7   | -0.021 | 0.1          | 0.042       |
| 1983.471<br>1984.316 | 40.8   | 1.190 | McA4<br>McA7           | Speckle<br>Speckle |       | 11.90<br>25.02 | 0.4    | 0.001  | 0.1    | -0.014 | 1.7          | 0.052       |
| 1984.316             | 43.2   | 1.323 | MCA7                   | Speckle            |       | 15.88          | 0.3    | 0.002  | 0.0    | -0.014 |              | 0.053       |
| 1986.362             | 44.4   | 1.394 | McA6                   | Speckle            |       | 19.52          | 0.1    | 0.003  | 0.0    | -0.013 | 1.2          | 0.053       |
| 1987.261             | 45.3   | 1.459 | McA6                   | Speckle            | 17.51 | 17.51          | 0.0    | 0.007  | -0.1   | -0.015 |              | 0.056       |
| 1988.175             | 46.0   | 1.508 | McA7                   | Speckle            | 24.13 | 24.13          | -0.2   | -0.004 | 0.3    | -0.029 | 0.8          | 0.044       |
| 1989.224             | 47.2   | 1.589 | McA3 Iso3              | Speckle            | 14.62 | 14.62          | 0.0    | 0.010  | 0.0    | -0.019 | 0.9          | 0.056       |
| 1991.381             | 48.3   | 1.696 | HIP1 Hrt1 WSI7<br>TYC1 | Speckle            | 23.74 | 23.74          | -0.7   | -0.012 | -0.6   | -0.050 | 0.2          | 0.031       |
| 1992.428             | 48.6   | 1.745 | WSI2                   | Speckle            | 3.49  | 3.49           | -1.1   | -0.020 | -1.0   | -0.065 | -0.3         | 0.020       |

Table 4, concluded: 44 Boötis, normal points for each observation class and residuals, compared with the recent orbits

|          |        |       |                  |         | Weights |       | Zirm 2010 |        | Heintz 1997 |        | Soederhjelm<br>1999 |        |
|----------|--------|-------|------------------|---------|---------|-------|-----------|--------|-------------|--------|---------------------|--------|
| Date     | 9°2000 | ρ"    | Reference/Nights | Class   | Wi 9"   | Wi ρ" | o-c 9°    | Ο-C ρ" | o-c 3°      | 0-C ρ" | o-c 9°              | 0-C ρ" |
| 1993.479 | 49.2   | 1.790 | WSI2             | Speckle | 3.58    | 3.58  | -1.2      | -0.029 | -1.0        | -0.080 | -0.4                | 0.008  |
| 1994.414 | 49.8   | 1.852 | WSI5             | Speckle | 9.26    | 9.26  | -1.2      | -0.010 | -1.0        | -0.070 | -0.5                | 0.024  |
| 1995.150 | 51.6   | 1.885 | Hrt1             | Speckle | 3.77    | 3.77  | 0.1       | -0.009 | 0.4         | -0.075 | 0.9                 | 0.022  |
| 1996.477 | 51.7   | 1.967 | WSI3             | Speckle | 5.90    | 5.90  | -0.6      | 0.024  | -0.3        | -0.057 | 0.1                 | 0.050  |
| 1997.145 | 51.9   | 1.965 | Hrt1 TtB1        | Speckle | 4.32    | 4.32  | -0.8      | 0.001  | -0.4        | -0.089 | 0.0                 | 0.023  |
| 1998.413 | 53.3   | 1.960 | WSI5             | Speckle | 9.80    | 9.80  | -0.1      | -0.037 | 0.4         | -0.145 | 0.6                 | -0.020 |
| 1999.379 | 53.1   | 2.025 | WSI2             | Speckle | 4.05    | 4.05  | -0.8      | 0.011  | -0.3        | -0.114 | -0.1                | 0.023  |
| 2000.409 | 55.1   | 2.000 | WSI3             | Speckle | 2.00    | 2.00  | 0.6       | -0.025 | 1.2         | -0.171 | 1.3                 | -0.018 |
| 2001.443 | 55.8   | 2.030 | WSI1 Hor2        | Speckle | 6.09    | 6.09  | 0.8       | 0.003  | 1.4         | -0.167 | 1.5                 | 0.005  |
| 2002.385 | 55.6   | 1.900 | WSI1             | Speckle | 0.38    | 0.38  | 0.1       | -0.120 | 0.8         | -0.315 | 0.8                 | -0.122 |
| 2004.274 | 56.6   | 1.975 | Doc1 WSI3        | Speckle | 3.95    | 3.95  | 0.0       | -0.004 | 1.0         | -0.259 | 0.8                 | -0.015 |
| 2005.427 | 57.1   | 1.935 | WSI4 Scal        | Speckle | 5.81    | 5.81  | -0.1      | -0.001 | 1.0         | -0.299 | 0.6                 | -0.014 |
| 2006.320 | 58.1   | 1.900 | WSI2             | Speckle | 1.90    | 1.90  | 0.3       | 0.009  | 1.6         | -0.327 | 1.1                 | -0.006 |

The author is a mechanical engineer involved in research and development for laser direct imaging technologies. In addition to double stars, he also enjoys hiking.



# Neglected Double Stars: First Measurement of Double Star SEI 1007 and Updating Measures to SEI 1006AB, SLE 964AC, and SEI 1011

Giuseppe Micello

Bologna Emilia Romagna, Italy

EMAIL: 7mg8@libero.it

**Abstract**: The purpose of this study is to obtain updated measurements of the double star SEI 1007, discovered by J. Scheiner in 1896. Moreover, I updated the astrometric measurements of the double stars SEI 1006AB, SLE 964AC and SEI 1011. The data were controlled on Washington Double Star Catalog (General Catalog and "Neglected Doubles" section).

#### Introduction

I used the Washington Double Star Catalog to identify an interesting double star and to perform some astrometric measurements: SEI 1007 (WDS 20127+3642SEI1007). This double star was seen for the first time by J. Scheiner in 1896.

Moreover, I checked the archives of "Journal of Double Star Observations" to see if this double star had recently been measured.

In the same field of the CCD camera, near SEI 1007, there are other double stars including two observed by Scheiner in 1896: SEI 1006AB and SEI 1011.

From the Washington Double Star Catalog, I saw that SEI 1006AB is a triple star. The third companion belongs to the system SLE 964AC with the component C (visual magnitude 13) discovered and measured in 1985.

The main interest of this study is to obtain precise astrometric measurements of SEI 1007 and to compare new measurements of Theta and Rho with the measures of 1896.

#### **Methods**

With the collaboration of Lorenzo Preti on September 13, 2010 I obtained images of SEI 1007 and with processing, I have seen other double and multiple systems near SEI 1007.

I made some checks on Washington Double Star Catalog and on The Aladin Sky Atlas (NED, Simbad and DSS2.F.POSSII), and I identified the following systems: SEI 1006AB, SLE 964AC and SEI 1011.

In Figure 1, we see the reference field (The Aladin Sky Atlas) with the double stars identified, in the constellation Cygnus.

While in Figure 2, we see the field in the CCD camera with an exposure of about 10 seconds.

The telescope used was a Newton SkyWatcher 200/1000 on German equatorial mount EQ6 SkyScan and the optical train is composed of CCD camera MAGZERO MZ-5m and Barlow 2x Celestron Ultima.

In Figure 3, the secondary component of the system SLE 964AC has been carefully marked. The visual magnitude of this star is 13 and it position is more obvious with the image processing.

#### Neglected Double Stars: First Measurement of Double Star SEI 1007 and Updating Measures ...



Figure 1: Reference field from the Aladin Sky Atlas.



Figure 2: Field of the CCD camera.



Figure 3: Detail of SEI 1006AB and SLE 964AC.

When I analyzed the data, I saw a difference in visual magnitude of the systems SEI 1006AB and SLE 964AC.

The latest measurements are in the WDS are dated 1999 and the Washington Double Star Catalog provides the following magnitudes:

SEI 1006AB: Mv1 = 12; Mv2 = 12.8 SLE 964AC: Mv1 = 12; Mv2 = 14.7

I compared the data with the The Aladin Sky Atlas (NED, Simbad and DSS2.F.POSSII) which list the magnitudes as:

SEI 1006AB: Mv1 = 9.8; Mv2 = 10.5 SLE 964AC: Mv1 = 9.8; Mv2 = 13.

All these data are shown in Table 1.

## **Measurements and Comparisons**

The astrometric measurements were performed using the software "Reduc" (V3.88e), courtesy of Florent Losse (http://www.astrosurf.com/hfosaf/).

For calibration of the stars I used an image of Albireo, obtained during the September 13 observing session. The measure of Theta and Rho, useful for calibration, was taken from the Washington Double Star Catalog.

As shown in Table 2, the measures Theta and Rho of the systems studied have not changed significantly over time. SEI 1007, topic of this study, has a slight change in the values of separation and position angle in 114 years.

#### Conclusions

From the astrometric measurements performed on SEI1007, the difference of Theta and Rho between 1896 and 2010 are 0.56° and 0.496", respectively. The position angle and separation, based on a mean of 15 measurements, are:

Teta: 239.56°; Rho: 23.004"; DeltaM = 1,29.

No significant changes were noted (Theta and Rho) of systems SEI 1006AB , SLE 964AC and SEI1011.

# Acknowledgements

I sincerely thank Florent Losse for the excellent software "Reduc".

#### Neglected Double Stars: First Measurement of Double Star SEI 1007 and Updating Measures ...

**Table 1**: Table with astrometric measurements (WDS). (\*) = Exact values reported in The Aladin Sky Atlas.

| Name                                        | Coordinate (WDS)           | Theta - Rho | Mv1 - Mv2    |
|---------------------------------------------|----------------------------|-------------|--------------|
| <b>SEI 1006AB</b> (WDS 20127+3645SEI1006AB) | 20 12 43.53<br>+36 45 20.1 | 306 - 17.0  | 9.8* - 10.5* |
| SLE 964AC<br>(WDS 20127+3645SEI964AC)       | 20 12 43.53<br>+36 45 20.1 | 331 - 11.5  | 9.8* - 13*   |
| SEI 1007<br>(WDS 20127+3642SEI1007)         | 20 12 44.23<br>+36 41 27.6 | 239 - 23.5  | 9.5 - 11.0   |
| <b>SEI 1011</b><br>(WDS 20129+3642SEI1011)  | 20 12 56.25<br>+36 42 17.9 | 258 - 7.0   | 10.5 - 11.0  |

Table 2: Periodic astrometric measurements with data updated to September, 2010 (\*).

| Nane       | Theta - Rho (1)   | Theta - Rho (3)              |                              |
|------------|-------------------|------------------------------|------------------------------|
| SEI 1006AB | 307 - 17.1 (1896) | 306 - 17.0 (1999)            | 307.12* - 17.124* (2010.701) |
| SLE 964AC  | 328 - 11.5 (1985) | 331 - 11.5 (1999)            | 331.44* - 11.571* (2010.701) |
| SEI 1007   | 239 - 23,5 (1896) | 239.56* - 23.004* (2010.701) |                              |
| SEI 1011   | 260 - 6.4 (1896)  | 258 - 7.0 (2006)             | 258.87* - 6.841* (2010.701)  |

This work was done thanks to The Aladin Sky Atlas, the Washington Double Star Catalog and consulting the archives of Journal of Double Star Observations.

Thanks to Lorenzo Preti for giving me the images and Adriano for advice.

### References

Brian D. Mason, Gary L. Wycoff, and William I. Hartkopf. Washington Double Star Catalog http:// ad.usno.navy.mil/wds/

The Aladin Sky Atlas. http://aladin.u-strasbg.fr/aladin.gml

Carlos E. López

Observatorio Astronómico Félix Aguilar San Juan, Argentina

celopez@speedy.com.ar

**Abstract**: We report the identification of fifteen new common proper motion stars detected during the course of an extensive data mining search in astrometric and non-astrometric databases. In order to compile our final list, several catalogs were searched and compared; this approach allows us to avoid overlooking potential pairs due to large differences in the proper motions quoted in different databases for the same pair of stars.

#### Introduction

Our data mining search was started about eight years ago, mainly as a first project for undergraduate astronomy students interested in learning the different options included in the - at that time - new tool called Virtual Observatory. In order to define a focus for the project, it was decided to aim the search at double stars in general, exploring them with a twofold purpose: to detect unreported common proper motion stars (CPMS) and to improve the astrometric parameters (coordinates, proper motions, separations and position angles) of already known systems listed in the Washington Double Star Catalog (WDS). With the purpose of providing participants with comprehensive training, the idea was to work with a telescope and observe those pairs showing large variations and differences with the values quoted in the WDS.

After a short time of searching, a wealth of data was collected and some students had the opportunity to use the Yale Southern Observatory Double Astrograph, located on the eastern side of the Andes (San Juan, Argentina) where they were introduced to the use of CCD detectors. Reports about our data mining

program in general have been published by López (2004, 2006) and López, Mallamaci and Veramendi (2004). For different reasons, the program was in some way discontinued and a large amount of information was left on stand by for roughly five years.

In 2009 it was decided to resume the search starting by a general revision of all the material. In doing so, new CPMS were identified and other types of objects were included in our search (see López, 2008 and López and Varela Mugas, 2008 for details). We are now able to communicate some results, while about 500 new additional CPMS are still being processed and will be communicated as soon as possible.

#### Search and Results

Our search was first conducted by analyzing southern areas of the SuperCOSMOS Sky Survey Catalogue (SSS) (Hambly *et al.* 2001) around LDS doubles. This approach was used to improve the astrometric data for the LDS themselves as well as to detect potential new members for those systems. At the same time, the search was oriented to the detection of new, unreported CPMS. To this end, different limits and constraints were applied to the detections. In all cases, Halbwachs' (1986) criteria were used to

keep or reject the pairs.

After a list of pre-selected objects was compiled, we made a comparison of the astrometric data quoted in SSS, NOMAD (VizieR I/297), UCAC3 (VizieR I/315), and 2MASS Point Sources (VizieR II/246). This step allowed us to detect large differences (mainly in Hambly, N. C.; MacGillivray, H. T.; Read, M. A. et al. proper motions) among the catalogs we used (see the comment below for the system 12AB).

Our identifications are listed in Table 1. We refer to them as unreported since they were not found in the online version of the WDS we checked on September 19, 2010. For each star, we list an object identification, Right Ascension and Declination (from 2MASS), magnitude, proper motion (in mas/yr), epoch and PA (in degrees) and Sep (in seconds of arc). This data was primarily taken from the SSS, although some information was extracted from NOMAD and UCAC3.

Since the data we present in Table 1 has been taken from a variety of astrometric sources, we decided to use the coordinates given in 2MASS to compute the PA and Sep in order to have a more uniform López, C. E., Mallamaci, C., and Veramendi, M. E. type of data. The epochs listed in this Table correspond to the 2MASS epoch for each Right Ascension and Declination.

### Acknowledgements

This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory and the Aladin facilities.

This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

#### References

- Halbwachs, J. L. (1986) "Common proper motion stars in the AGK 3" Astronomy and Astrophysics Supplement Series 66, 131.
- (2001) "The SuperCOSMOS Sky Survey I. Introduction and description" Monthly Notices of the Royal Astronomical Society 326, 1279.
- López, C. E. (2004) "Astrometry with Virtual Observatories" Astrophysics and Space Science 290, 439.
- López, C. E. (2006) "Improved Astrometric Parameters for Equatorial LDS Systems" RevMexAA (Serie de Conferencias) 25, 16.
- López, C. E. (2008) "New Common Proper Motion Stars in the LSPM-North Catalogue" Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) 34, 123.
- (2004) "Astrometric Data for Southern Double Stars", ADeLA Publications Series, No. 1, 213.
- López, C.E., and Varela Mugas, M. L. (2008) "A Revision of the Trapezium Systems Catalogue" Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) 34, 125.

Table 1 begins on the next page.

Table 1: Data on the individual star of each pair.

| Object | RA (2000.0)      | Dec        | Mag  | pmRA  | pmDec   | Epoch  | PA  | Sep  | Notes |
|--------|------------------|------------|------|-------|---------|--------|-----|------|-------|
| 1 A    | 00 00 03.819 -01 |            | 12.3 | 123.9 | 34.6    | 1998.8 | 347 | 6.2  | 1     |
| В      | 00 00 03.725 -01 |            |      |       | 0 = 1 1 | 1998.8 |     |      | _     |
|        | 00 00 03.725 03  | 1 10.30    |      |       |         | 1330.0 |     |      |       |
| 2 A    | 00 06 29.729 -07 | 7 37 07 73 | 14.6 | -48.3 | -49.6   | 1998.8 | 299 | 48.6 | 2     |
| В      | 00 06 26.873 -07 |            | 17.2 | -46   | -42     | 1998.8 | 200 | 10.0 | 2     |
| Б      | 00 00 20:073 0   | 30 11.13   | 17.2 | 10    | 12      | 100.0  |     |      |       |
| 3 A    | 00 17 38.109 -32 | 2 50 00 19 | 16.3 | 121.9 | -100    | 1998.9 | 181 | 13.5 |       |
| В      | 00 17 38.084 -32 |            | 17.8 | 120.1 | -93.7   | 1998.9 | 101 | 13.3 |       |
|        | 00 17 30:001 32  | 30 13.03   | 17.0 | 120.1 | 33.7    | 1000.0 |     |      |       |
| 4 A    | 00 44 36.893 -39 | ) 17 13.13 | 12.6 | 175.4 | 29      | 1999.6 | 152 | 92.4 |       |
| В      | 00 44 40.569 -39 |            | 19.7 | 181.5 | 32.1    | 1999.6 |     |      |       |
|        | 00 11 10:303 33  | 10 33.07   | 13.7 | 101.5 | 32.1    | 1999.0 |     |      |       |
| 5 A    | 01 20 46.347 -09 | 33 36.52   | 15.3 | 48    | 84      | 1998.8 | 90  | 8.9  | 3     |
| В      | 01 20 46.946 -09 |            | 19.8 | 58    | 76      | 1998.8 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 6 A    | 01 23 07.832 -32 | 2 40 23.42 | 17.3 | 100.9 | -137.4  | 1998.9 | 286 | 44.7 |       |
| В      | 01 23 04.427 -32 |            | 18.6 | 102.6 | -134.4  | 1998.9 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 7 A    | 01 25 08.736 -15 | 5 47 02.88 | 18.1 | 55.7  | -13     | 1998.6 | 335 | 25.8 |       |
| В      | 01 25 07.987 -15 | 5 46 39.44 | 19.2 | 57.2  | -13.8   | 1998.6 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 8 A    | 01 26 36.747 +00 | 37 30.94   | 18.1 | -10   | -62     | 2000.7 | 96  | 12.5 | 4     |
| В      | 01 26 37.574 +00 | 37 29.56   | 18.9 | -10   | -60     | 2000.7 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 9 A    | 01 32 45.961 -13 | 36 36.06   | 14.8 | 110.5 | 13.1    | 2000.9 | 347 | 14.3 |       |
| В      | 01 32 45.739 -13 | 36 22.17   | 18   | 104.4 | 9.1     | 2000.9 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 10 A   | 02 42 43.914 -15 | 13 05.67   | 16.7 | -20   | -68     | 1998.6 | 224 | 28   | 5     |
| В      | 02 42 42.580 -15 | 13 25.98   | 17.7 | -20   | -74     | 1998.6 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 11 A   | 02 48 47.151 -03 | 01 08.05   | 10.8 | 171.9 | 100.3   | 1998.7 | 333 | 49.3 | 6     |
| В      | 02 48 45.665 -03 | 00 24.11   | 19.8 | 160   | 106     | 1998.7 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 12 A   | 02 57 06.336 -12 | 2 43 59.40 | 15   | -37.0 | -132    | 1998.6 | 18  | 8.9  | 7     |
| В      | 02 57 06.520 -12 | 2 43 50.87 | 15.7 | -42.0 | -103    | 1998.6 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 13 A   | 03 26 59.834 -20 | 47 22.29   | 13.8 | 150.5 | -46.3   | 1998.9 | 28  | 61.9 |       |
| В      | 03 27 01.934 -20 | 46 27.79   | 14   | 143.6 | -48.0   | 1998.9 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 14 A   | 03 33 18.327 -43 | 3 25 10.02 | 14.5 | 239.1 | 146.9   | 1999.6 | 21  | 16.3 | 8     |
| В      | 03 33 18.870 -43 | 3 24 54.81 | 19.8 | 220.6 | 144.7   | 1999.6 |     |      |       |
|        |                  |            |      |       |         |        |     |      |       |
| 15 A   | 09 25 58.176 -15 | 35 14.66   | 14.7 | -44.0 | -20.0   | 1998.2 | 19  | 37.2 | 9     |
| В      | 09 25 59.017 -15 | 34 39.53   | 17.9 | -52   | -28.0   | 1998.2 |     |      |       |

#### **Table Notes**

Proper motion and V magnitude for the A component taken from NOMAD. The B component is not included in the SSS and the NOMAD proper motion is zero in both coordinates. The A component is also included in UCAC3. Due to the small separation between these two stars we have been not able to determine a reliable proper motion for both components, however the blinking of POSS1 and POSS2 images clearly shows these two stars share a very similar proper motion. A composite image of the pair is shown in Fig. 1.



**Figure 1**: Aladin composite (POSS1, red and POSS2, green) image showing the motion of this pair. The crosses mark 2MASS positions. For all the figures, North is up and East is to the left.

- Proper motions and B magnitudes taken from NO-MAD.
- Proper motions and B magnitudes taken from NO-MAD.
- Proper motions and B magnitudes taken from NO-MAD.
- Proper motions and B magnitudes taken from NO-MAD. This pair should not be confused with the nearby LDS 5391. See Fig. 2 for a proper identification.
- Proper motion and B magnitudes taken from NO-MAD.
- 7. The available proper motion determinations of this system are very discordant. The two stars are included in UCAC3, but with no proper motion determination for the A component and zero for the B one. They are also included in NOMAD with zero proper motion for A and a motion for the B compo-



Figure 2: Location of pair 10 with respect to LDS 5391.

nent that does not match what is seen in the blinking of POSS1 and POSS2 images. This system is also included in the SSS with a proper motion that depends on the passband. The proper motion quoted on Table 1 is a preliminary value determined by us through the rereduction of DSS plate areas around this pair. The B magnitudes are from NOMAD. These two stars should not be confused with the nearby LDS 5406. A composite image of the pair is shown in Fig. 3.



**Figure 3**: Aladin composite image showing the motion of pair 12. The yellow arrow shows the direction of motion according to the proper motion quoted by NOMAD for the B component. The red arrow represents the direction of motion suggested by the blinking of POSS1 (red, epoch 1955) and POSS2 (green, epoch 1995) images. The crosses mark 2MASS positions.

- 8. The A component is UCAC3 star, but with no proper motion determination.
- 9. Proper motions and B magnitudes taken from NO-MAD. This pair is around 4.5 arc minutes to the south of the A component of LDS 3891. See Fig. 4 for a proper identification.



Figure 4: Location of pair 15 with respect to the A component of LDS 3891.

Carlos E. López teaches an introductory course in astronomy for undergraduate students at the National University of San Juan, Argentina.



Thomas G. Frey<sup>1</sup>, Irina Achildiyev<sup>2</sup>, Chandra Alduenda<sup>2</sup>, Reid Bridgeman<sup>2</sup>, Rebecca Chamberlain<sup>2</sup>, and Alex Hendrix<sup>2</sup>

- 1. California Polytechnic State University, San Luis Obispo
- 2. Evergreen State College, Olympia, Washington

**Abstract**: A member of the faculty and students from The Evergreen State College, Olympia, Washington, participated in the 2010 summer astronomy workshop at Pine Mountain Observatory. They learned the proper techniques and skills required for measuring the separation and position angle of binary star S 654. They learned how to calibrate an astrometric eyepiece, make appropriate measurements, do a statistical analysis, and analyze the data. The separation and position angle values obtained were 69.9 arc seconds and 237 degrees, respectively. The percent difference for each value was less than 0.5% from the literature value.

#### Introduction

An interdisciplinary group of undergraduate liberal arts and science students from The Evergreen State College (TESC) in Olympia, Washington, and students from other institutions, joined an invitational summer research workshop at Pine Mountain Observatory (PMO) near Bend, Oregon. The workshop ran from August 5-8, 2010. The observatory, run by the University of Oregon, hosted the workshop conducted by both professional and amateur astronomers. The projects included double star observations and measurements, photometry, and spectroscopy. The students from TESC participated in the double star research as part of a course entitled, Astronomy and Cosmology: Stars and Stories, taught by team member, Rebecca Chamberlain. None of the students had ever done any type of astronomy research, so a bright double star with moderate separation was selected for their project.



Figure 1: The Evergreen State College team, left to right: Thomas G. Frey, Professor Emeritus, California Polytechnic State University, Rebecca Chamberlain, Faculty, The Evergreen State College, followed by Chandra Alduenda, Irina Achildiyev, Reid Brldgeman, and Alex Hendrix, all students at Evergreen State College. The team is standing by Frey's 18-inch Obsession alt-az telescope used in this investigation.

### Background

Double star observation began in 1650 when the Italian Giovanni Roccioli recorded Mizar, in the constellation Ursa Major, as a double star. But Sir William Herschel in the late 18<sup>th</sup> century is credited with the initiation of double star investigations. He utilized his 20 and 40-foot alt-azimuth reflectors without clock-drives to observe double stars. He therefore had to continuously move the telescope in both coordinates to keep the stars in the field of view. He published catalogs in 1782, 1784, and 1821 citing a total of 848 double stars. (Aitken 1935)

In 1802, Herschel presented a paper to the Royal Society entitled Catalogue of 500 new Nebulae, nebulous Stars, planetary Nebulae, and Clusters of Stars; with Remarks on the Construction of the Heavens, where it cites the distinction between optical and binary stars. Namely, "a real double star-the union of two stars that are formed together in one system, by the laws of attraction." (Aitken 1935)

Following in Herschel's footsteps, the German-Russian astronomer Friedrich G.W. von Struve, performed unparalleled observations using the Dorpat refractor, constructed by Joseph Fraunhofer. This telescope was undoubtedly the largest and finest refractor of its time. It was 13 feet long with a 9.5-inch objective lens and utilized a clock-drive on an equatorial mount. Struve stated that the telescope was so easy to manipulate and the optical properties were so excellent that he was able to examine 400 stars per hour. He surveyed 120,000 stars from 1823-1827. (Aitken 1935)

Other astronomers followed these historic beginnings into the modern period of astronomy research. S. W. Burnham of Chicago, who worked at the Dearborn, the Lick, and the Yerkes observatories, discovered over 1340 new double stars and made thousands of very accurate measurements. His 1906 A General Catalogue of Double Stars within 121° of the North Pole contained 13,665 double stars with measurements, notes, and complete references to all published papers regarding each pair. (Aitken 1935)

Presently, the Washington Double Star Catalog, under the direction of Brian Mason at the US Naval Observatory, has accumulated over 107,000 double

star measurements (Mason 2009).

Historically, most double star measurements have been made using telescopes on equatorial mounts (Argyle 2004, and Teague 2000). In recent years, telescopes on altitude-azimuth mounts have been shown to be effective in these studies (Frey 2008). The double star research at Pine Mountain Observatory was conducted with Frey's 18 inch, f/4.5 Obsession telescope, equipped with a ServoCAT GOTO system and an Argo Navis computer. Double star measurements were made with an illuminated Celestron 12.5 mm Micro Guide astrometric eyepiece. Calibration of the eyepiece was done with a stopwatch having 0.01-second resolution.

Pine Mountain is located at +43.79 degrees north latitude and 120.94 degrees west longitude. During the observing period the transparency was very good with the exception of some smoky haze produced by a nearby forest fire, which had minimal effect on the observations. The seeing was excellent with minimum scintillation. The temperature during observing hours of 9:00 PM to 2:00 AM was 40-45 degrees Fahrenheit. Breezy conditions existed each night with occasional strong gusts which did hamper some results.

# Calibration of the Celestron Micro Guide Astronomic Eyepiece

Double star measurements can only be carried out after the astrometric eyepiece-telescope system has been calibrated. The linear scale on the eyepiece is divided into 60 equal divisions. It is necessary to determine the number of arc seconds per division for each eyepiece-telescope setup. This calibration procedure has been described at length (Frey 2008). The reference star used for the calibration was Dubhe (Alpha Ursae Majoris), which fulfilled the requirement of a declination between 60-75 degrees. The students worked together as a team to learn the calibration procedure. The results of the calibration and determination of the scale constant is summarized in Table 1. Twelve observations were made with one outlier deleted. The statistical standard deviation and mean error are given to show the precision of the observations. The scale constant for the Celestron-Obsession setup is given in arc seconds per division.

| Star  | Bess.<br>epoch | Declin. | #Obs | AvDrift<br>time(sec) | Std<br>dev | Mean<br>error | Scale<br>constant |
|-------|----------------|---------|------|----------------------|------------|---------------|-------------------|
| Dubhe | B2010.594      | 61°75′  | 11*  | 86.30                | 0.94       | 0.29          | 10.23             |

Table 1. Scale Constant Determination. \* One outlier

#### Double Star S 654

After determining the scale constant, the Obsession was two-star aligned and the tracking motors engaged. The double star selected for observation was S 654 in the constellation Canes Venatici. The primary star is a K0III giant star with a magnitude of 5.6. The secondary star is a F8V main sequence star with a magnitude of 8.9. These stars are sufficiently bright to be easily measured with the 18-inch aperture Obsession. This binary pair was first studied in 1825 when a separation of 71.3 arc seconds and position angle of 238 degrees was reported. The pair has been observed 24 times since then. The latest published observation in the Washington Double Star catalog was in 2004 with a separation of 70.1 arc seconds and position angle of 236 degrees.

There appears to have been little change in the orientation over 179 years. The primary star has a proper motion of RA: -134.18, Dec: -21.64 milli-arc seconds per year (SIMBAD, RA: 13 46 59.7, Dec: 38 32 33.7) and the secondary star has a proper motion of -135.20, -15.80 milli-arc seconds per year (TheSky6, RA:13 47 27, Dec: 38 29 30), indicating similar motions through space and the possibility of it being a visual binary star.

## Separation Measurements of S 654

The telescope was two-star aligned and the servomotors engaged. The Celestron Micro Guide eyepiece was rotated until the central linear scale was parallel with the axis joining the two stars. The distances between the centers of the two stars was estimated to the nearest 0.1 divisions and recorded. Then, using the slow motion controls, the stars were shifted to a new location along the linear scale, a new measurement was made, and the process repeated many times. This method of moving the stars to new loca-

tions each time is to negate any systematic error that might exist if the stars were continually kept and measured at the same division marks. The method seemed to work very well since our standard deviation was only 0.37 divisions and the standard error of the mean was 0.11 divisions. The results of the separation measurements for S 654 are shown in Table 2. Thirteen observations were recorded with one outlier deleted due to a wind gust. The SD/ME are the standard deviation and standard error of the mean. The observed and literature separations are given in arc seconds. The percent difference is based on the difference between our observations and the most recently reported literature values.

# Position Angle Measurements of S 654

The determination of the position angle using the drift method with an alt-az telescope has been described at length in a previous paper (Frey 2008). Briefly, it involves disengaging the servo-motors so the telescope becomes a "push Dob". The double star is aligned with the linear scale and adjusted manually so when it is released the primary star drifts through the central division (the 30th division) and continues to drift to the outer protractor scales. It usually takes several attempts to get the star to drift precisely through the center. To compensate for field rotation, the eyepiece was continually adjusted so that the two stars remained aligned with the linear scale. The results of the position angle measurements for S 654 are shown in Table 3. Position angles (PA) are given in degrees. The SD/ME are the standard deviation and standard error of the mean. The percent difference for the positional angle is based on the difference between our observations and the most recently reported literature value.

Table 2. Separation Measurements for S 654 \* One outlier

|   | Double Identifier |             | Bess.<br>epoch | Lit.<br>epoch | #<br>Obs. | SD/ME     | Obs.<br>sep | Lit.<br>sep | %<br>difference |
|---|-------------------|-------------|----------------|---------------|-----------|-----------|-------------|-------------|-----------------|
| S | 654               | 134659+3832 | в2010.594      | 2004          | 12*       | 0.37/0.11 | 69.9        | 70.1        | -0.29%          |

Table 3: Position Angle Measurements for S 654

| Double<br>star | Identifier  | Bess.<br>epoch | Lit.<br>epoch | #<br>Obs. | SD/ME     | Obs.<br>PA | Lit.<br>PA | %<br>difference |
|----------------|-------------|----------------|---------------|-----------|-----------|------------|------------|-----------------|
| S 654          | 134659+3832 | B2010.594      | 2004          | 12        | 2.04/0.59 | 237        | 236        | 0.42%           |

#### Discussion

The separation measurements from 1825 and 2004 were 71.3 and 70.1 arc seconds, respectively. Our experimental separation taken in 2010 is 69.9 arc seconds, indicating a further statistically significant decrease in separation. If the orbit is elliptical, this could indicate that the secondary star is approaching the periastron since the change in separation from 1825 to 2004 was 1.2 arc seconds and the change from 2004 to 2010 was a proportionally larger 0.2 arc seconds. If the change had continued at the same rate from 2004 to 2010 as it did from 1825 to 2004, we would have expected a change of only 0.07 arc seconds instead of the observed 0.20 arc seconds. Yet, our precision was very good with a percent difference based on the literature value of -0.29%.

The position angle measurements were similarly close in agreement with the literature values. Yet the standard deviation of 2.04 indicated a much broader distribution of observed position angles. This is probably due to the fact that students taking position angle measurements for the first time have some problems aligning the double stars on the linear scale before allowing the drift to the protractor scale. There is also a slight parallax that occurs when looking at the values on the protractor scales. First-time investigators find it frustrating to read the angles on the protractor scale, seeing the numbers move slightly, resulting in erroneous values. This is one reason 12 observations were made to reduce these random errors. Even though the standard deviation was fairly high, by making many observations the percent difference of 0.42%, indicated a very close agreement between our observations and the most recent literature value.

### Conclusions

The purpose of Rebecca Chamberlain's interdisciplinary course, *Astronomy and Cosmology: Stars and Stories*, is the introduction of "... cosmological concepts from mythology, literature, philosophy, and history, to an introduction to astronomy, archeoastronomy, and theories about the origins of the universe" (Chamberlain 2010). She wanted the students "... to deepen their understanding of the principles of astronomy and refine their understanding of the role that cosmology plays in our lives ..." By attending the summer research workshop at Pine Mountain the students enhanced their observing skills and learned how to make fairly rigorous physical measurements of a double star, winding up with precise and accurate

results.

The workshop experience consisted of a combination of rapidly learning the operation of a sophisticated telescope in a professional research context, the pleasure of the impressive viewing conditions at Pine Mountain Observatory, the satisfaction of successful class teamwork, and additional understanding of binary stars and telescope operation. Some students were surprised and perplexed by the ability of the telescope to focus the image of such distance objects. Some had experience using telescopes before the workshop but were never involved in scientific investigations. Through developing skills in making accurate readings, students discovered latent talents and achieved remarkably accurate results for new researchers, thus enhancing their motivation, focus, and discipline. Each member of this diverse team developed and offered different skills as they rotated through a variety of tasks, from recording observations, to assessing the data through analysis, to writing narratives that described their experience. Throughout the process, they supported each other's learning. Mentorship from the professional and amateur astronomers, along with the cutting edge scientific research being conducted and presented by various teams at PMO throughout the week, provided students with a guided, hands-on, professional experience in scientific methods of investigation and inquiry. This team of students, new to astronomical research, left trained and enthusiastic about continuing binary star research at their own institutions.

#### Acknowledgements

The team wants to thank Russ Genet, Jo Johnson, and Tom Smith for reviewing this paper and for their suggestions and corrections. We also want to thank Gregory Bothun, Director of Pine Mountain Observatory, Mark Dunaway, Kent Fairfield, Allan Chambers, and Rick Kang, for opening the facility and being on hand to answer questions and assist our needs. A special thanks goes to Danyal Medley at Celestron for the donation of a 12.5 mm Micro Guide astrometric eyepiece to Evergreen State College, and to Theresa Aragon (Dean of TESC Summer School), and Peter Robinson (Director of Lab I and Lab II, and Science Technician at TESC), for purchasing an additional 12.5 mm Micro Guide astrometric eyepiece. Thanks to Sarah Pederson, Tina Pearson, Lori Moore, Sharon Wendt, Frank Barber, Katie Frank, and the other members of the TESC community for their support. The workshop would never have been as successful with out the organization, dedication, and tire-

less effort of Richard Berry as Workshop Director. Our team also wants to recognize the other double star team leaders, Jo Johnson and Chris Estrada, for their cooperation and assistance with the project. Finally, if it weren't for Russ Genet's initial efforts, none of the double star projects would have taken place.

#### References

Aitken, Robert G., *The Binary Stars*, Dover Publications, Inc., New York, 1935.

Argyle, Robert, Observing and Measuring Visual Double Stars, Springer, London, 2004.

Chamberlain, Rebecca, course syllabus for Astronomy and Cosmology: Stars and Stories, 2010.

less effort of Richard Berry as Workshop Director. Frey, Thomas G., Spring 2008, *Journal of Double Star* Our team also wants to recognize the other double *Observations*, **3(2)**, p. 59-65.

Mason, Brian, The Washington Double Star Catalog. July 2009. Astrometry Department, U.S. Naval Observatory. http://ad.usno.navy.mil/wds/ wds.html.

SIMBAD database: http://simbad.u-strasbg.fr/simbad/.

Teague, Thomas, 2000, Sky and Telescope, July, 112-117.

The Sky6 software: http://www.bisque.com/sc/pages/thesky6family.aspx.

Thomas Frey is a Professor Emeritus of Chemistry at California Polytechnic State University. He was a Team Leader at the PMO Workshop 2009, and the Principle Investigator of the double star group at the PMO Workshop in 2010. Rebecca Chamberlain, is a Member of the Faculty at The Evergreen State College and teaches interdisciplinary programs that link sciences, humanities, and the arts. She has taught Earth and Sky Sciences for Antioch University's Teacher Education Program, and has worked as the lead Science Interpreter in the Starlab Planetarium at the Pacific Science Center. Irina Achildiyev, Chandra Alduenda, Reid Bridgeman, and Alex Hendrix are all students at Evergreen State College.



Thomas G. Frey<sup>1</sup>, Irina Achildiyev<sup>2</sup>, Chandra Alduenda<sup>2</sup>, Reid Bridgeman<sup>2</sup>, Rebecca Chamberlain<sup>2</sup>, and Alex Hendrix<sup>2</sup>

- 1. California Polytechnic State University, San Luis Obispo
- 2. Evergreen State College, Olympia, Washington

**Abstract**: This astrometry project was performed by a member of the faculty and students from The Evergreen State College at the 2010 Pine Mountain Observatory Summer Science Research Workshop. This study involved measuring and analyzing the separation and position angles of the multiple star system STT 269 AB-C and ARN 8 AB-D. The astrometric binary AB was treated as a single star. Separation and position angles of the C and D components relative to AB were made. Percent differences between observed and literature values were all less than 1 percent.

#### Introduction

A multiple star astrometry investigation was performed by an interdisciplinary team (Figure 1) from The Evergreen State College (TESC) at the Pine Mountain Observatory (PMO) Summer Science Research Workshop near Bend, Oregon. The workshop was conducted August 5-8, 2010. This investigation involved the separation and position angle measurements of the multiple star system, STT 269 AB-C and ARN 8 AB-D, shown in a modified ALA-DIN image in Figure 2 (ALADIN previewer, RA: 13 32 50.99, Dec: +34 54 25.69).

#### Equipment

The instrumentation used in this investigation was the same as has been previously reported [Frey 2008], namely, an 18-inch Newtonian telescope by Obsession on an alt-az mount. The tracking unit was StellarCAT's ServoCAT GOTO system guided by an Argo Navis computer. A Celestron 12.5 mm Micro Guide astrometric eyepiece was used to measure the separation and position angles. Calibration of the Celestron eyepiece was unnecessary because the telescope was in the same configuration as in a previous study [Frey, et. al. 2010]. The scale constant for the linear scale, as previously determined, was 10.24 arc seconds per division. The standard deviation for the



Figure 1. Clockwise from top right: Thomas Frey, Alex Hendrix, Rebecca Chamberlain, Irina Achildiyev, Reid Brickman, and Chandra Alduenda. The team is gathered around Frey's 18" alt-az Obsession telescope used in this study.

11 observations was 0.94 arc seconds/division; the standard error of the mean was 0.29 arc seconds/division.

# **Locale and Observing Conditions**

Pine Mountain is located east of Bend, Oregon at +43.79 degrees north latitude and 120.94 degrees



Figure 2: The multiple star system STT 269 AB-C and ARN 8 AB-D

Fahrenheit. Breezy conditions existed each night with Venatici. occasional strong gusts that did lead to a few outliers that were recorded, but were deleted from the analysis.

#### Background

small separations. The choice of neglected double was just within the Dawes limit for this instrument. stars in the northern hemisphere has diminished in star list are either too dim or too close together to be tude of the "C" star of 9.2. Its spectral type is F5. easily evaluated by beginners.

So the Pine Mountain Observatory team decided to measure a visual triple star system instead of attempting one of the neglected double stars. Triple are close enough that their Airy disks overlap, they

stars are common, such as  $\Sigma 279$  in Andromeda (Haas 2006). The three stars are indicated by the letters A, B, and C listed in this order and, usually, in diminishing brightness. In essence, this study is like measuring two double stars in the same field of view, with the same primary star. Since triple star measurements are less often reported, the students decided to take on the challenge.

The multiple star chosen was STT 269 AB-C and ARN 8 AB-D. Frey had originally requested a list of triple stars from Brian Mason, Director of the Washington Double Star Catalog (WDS) at the US Naval Observatory [Mason, 2010]. His request included stars with no RA limits, declinations limited from -15 to +90 degrees, separations greater than 15 arc seconds and magnitudes for each star no greater than 11. Mason graciously sent a list of 26 possible candidates. As an added bonus the 26 were actually quaternary systems. The four-star system selected for obserwest longitude. The sky was clear and the seeing was vation by the TESC team visually appears as a triple excellent with a minimum of scintillation. The tem- star since the A and B components have a very small perature during observing hours was 40-45 degrees separation. The stars are in the constellation Canes

The investigation of STT 269 AB began in 1843 when it was discovered by Otto Struve, the son of the Russian astronomer Friedrich G. W. von Struve. In In past workshops and undergraduate research 1839 the Russian government called upon Friedrich seminars, double star investigations often follow the to build and direct the new Imperial Observatory at pattern of (1) calibration of the eyepiece, (2) collecting Pulkowa. The principle instrument was an equatorial separation and position angle measurements on a refractor with a 15-inch objective lens. This was the "known" double star (a system that has been exten- largest refractor in the world at the time just as the sively studied), and (3) repeating this operation on a 9.5-inch Fraunhofer refractor at Dorpat Observatory "neglected" double star. Neglected double stars are had been in 1824. It was thought that this 15-inch systems that have been rarely studied or have not instrument might reveal double stars that had esbeen restudied for quite a while. For investigators caped detection by the Dorpat refractor due to smaller new to double star research, the neglected double angular separations or faint components [Aitken stars are chosen to be fairly bright and have separa- 1935]. Otto Struve's observations of STT 269 AB retions of 25 arc seconds or greater because only an as-vealed a binary system having magnitudes 7.3 and tronomic eyepiece is being used without a Barlow lens 8.1 with a position angle of 210 degrees and a separaand cannot effectively measure dim stars or ones with tion of 0.3 arc seconds (Mason 2009). This separation

In 1879 the third star of the system was identified recent years thanks to the Herculean efforts of such as the "C" component of STT 269 AB-C with a posivisual observers as David Arnold in Flagstaff, Ari- tion angle of 333 degrees relative to the AB compozona. The ones remaining on the neglected double nents, a separation of 116.5 arc seconds, and magni-

#### The Dawes Limit

If two stars of approximately the same magnitude

mined by the empirically developed formula

#### Dawes Limit = 4.56 arc seconds/A

where A is the aperture of the objective lens in inches. inch refractor had the theoretical capability to resolve error of the mean was 0.18 degrees. tudes were minimal (7.3 and 8.1). The combined -0.30%. These values are summarized in Table 2. magnitude of the two stars in STT 269 AB listed in the WDS is 6.8.

# **Current Separation and Position Angle** of STT 269 AB

of STT 269 AB had changed to 220 degrees while the separation measurements had been completed, the separation had remained constant at 0.3 arc seconds. servo motors were disengaged and the position angles This system, also known as ADS 8939, has been used evaluated by the drift method. Both operations were as an astrometric standard to calibrate deformable easily manipulated because all stars in the system secondary mirror adaptive optic systems [Close 2003]. were in the same field of view. Its separation of 0.3 arc seconds in our telescope, using just the Celestron astrometric eyepiece, cannot be the system. It was originally observed with position detected and thus it appears as a single star.

# Separation and Position Angle Measurements of STT 269 AB-C

and 4 outliers were deleted due to strong wind gusts of the AB-D system occurred in 2002 with an 8"

will be seen as an elongated single star. If these disks leaving a total of 17 observations. The separation of generate a figure-8 shape and the light intensity be- the AB-C system in the current study was determined tween the two touching disks drops by 30%, the two to be 123.4 arc seconds. The most recent WDS separastars can still be viewed as separate stars. William tion, determined in 2002, was 122.5 arc seconds. The Dawes (1799-1868), an English astronomer, discov-standard deviation of our observations was 0.53 arc ered that the smallest separation between two stars seconds, while the standard error of the mean was manifesting this 30% drop in intensity can be deter- 0.13 arc seconds. The percent difference from the most recent literature value was 0.74%. These values are summarized in Table 1. The Besselian epoch for all measurements recorded in this study was B2010.597.

The position angle was then evaluated. Some 15 The larger the aperture, the smaller the Dawes limit. trials with no outliers were observed. Our observa-For a 15-inch refractor, the Dawes limit is 0.304 arc tionally determined position angle was 331 degrees, seconds. Dave Arnold (Arnold 2010), a well known compared to the WDS value of 332 degrees. The standouble star observer, pointed out that Struve's 15- dard deviation was 0.66 degrees and the standard this pair, especially since the difference in magni- difference from the most recent literature value was

# Separation and Position Angle Measurements of ARN 8 AB-D

The separation measurements of both STT 269 AB-C and ARN 8 AB-D were taken consecutively In 2007, according to the WDS, the position angle while the servo motors were still engaged. After the

In 1919, the fourth "D" star was incorporated into angle of 259 degrees from STT 269 AB, a separation of 357.1 arc seconds, and the magnitude of the "D" component was 8.4. Dave Arnold is the official discoverer of ARN 8 AB-D, dated in 2002. The 1919 data After performing two star alignment and engag- were obtained from other catalogs available to the ing the servo motors, 21 separation trials were taken Naval Observatory (Mason 2010). Arnold's discovery

Table 1: Separation Measurements for STT 269 AB-C. \*plus 4 Outliers

| Star<br>System | Identifiers               | Lit.<br>Epoch | #<br>Obs. | SD/ME     | Obs.<br>Sep. | Lit.<br>Sep. | %<br>Diff. |
|----------------|---------------------------|---------------|-----------|-----------|--------------|--------------|------------|
| STT 269AB-C    | 13 32 52.1<br>+34 54 25.8 | 2002          | 17*       | 0.53/0.13 | 123.4        | 122.5        | 0.74       |

Table 2: Position Angle Measurements for STT 269 AB-C

| Star System | Identifiers               | Lit<br>Epoch | #<br>Obs. | SD/ME     | Obs.<br>PA | Lit.<br>PA | %<br>Diff. |
|-------------|---------------------------|--------------|-----------|-----------|------------|------------|------------|
| STT 269AB-C | 13 32 52.1<br>+34 54 25.8 | 2002         | 15        | 0.66/0.18 | 331        | 332        | -0.30      |

Table 3: Separation Measurements for ARN 8 AB-D. \*plus 1 Outlier

|     | tar<br>stem | Identifiers               | Lit.<br>Epoch | #<br>Obs. | SD/ME     | Obs.<br>Sep. | Lit.<br>Sep. | % Diff. |
|-----|-------------|---------------------------|---------------|-----------|-----------|--------------|--------------|---------|
| ARN | 8AB-D       | 13 32 52.1<br>+34 54 25.8 | 2002          | 19*       | 0.42/0.10 | 349.7        | 352.5        | -0.79   |

Table 4:. Position Angle Measurements for ARN 8 AB-D

| Star | System | Identifiers               | Lit<br>Epoch | #<br>Obs. | SD/ME     | Obs.<br>PA | Lit.<br>PA | % Diff. |
|------|--------|---------------------------|--------------|-----------|-----------|------------|------------|---------|
| ARN  | 8AB-D  | 13 32 52.1<br>+34 54 25.8 | 2002         | 12        | 1.08/0.31 | 258        | 260        | -0.77   |

Schmidt Cassegrain telescope. The results were pub-bound by gravity. Beta Cephei, however, is composed lished in 2003 [Arnold 2003].

seconds, respectively. In the current study, 20 trials them, i.e. their alignment is just coincidental. with 1 outlier deleted resulted in a separation of 349.7 arc seconds, with a standard deviation of 0.42 the star system it is necessary to examine the proper arc seconds and a standard error of the mean of 0.10 motion vectors and relative distances between the arc seconds. The percent difference from the most re- components. Some of the physical parameters for the cent literature value was -0.79%. This information is star system STT 269 AB-C and ARN 8 AB-D are sumsummarized in Table 3.

als (no outliers). The experimentally determined posi- (mas/yr). tion angle was 258 degrees, compared to the most revalues are summarized in Table 4.

#### Analysis

can either be bound by gravity or just optically seconds is considered an astrometric binary. aligned by coincidence. For instance, the Alpha Cen-15,000 AU, orbiting the AB components about every Double Star data of 2002. 100,000 to 150,000 years. All three components are

of a true binary star and an optical component. In In 2002, position angle and separation measure- some other triple systems none of the components are ments were taken yielding 260 degrees and 352.5 arc bound by gravity due to the great distances between

In order to specify the binary or optical nature of marized in Table 5. Proper motion vectors and paral-The position angle was then observed with 12 tri- lax values are given in milli-arc seconds per year

Experienced double star observer, Dave Arnold, cent WDS value of 260 degrees. The standard devia- [Arnold 2010] explains that in order to be considered tion was 1.08 degrees and the standard error of the a true binary star, the proper motion vectors of a pair mean was 0.31 degrees. The percent difference from should have about 90% agreement. Examination of the most recent literature value was -0.77%. These the AB-C and AB-D proper motion vectors in Table 5 shows that these vectors lay outside these restrictions and should be considered optical components. However, the STT 269 AB system has been studied at Triple star systems, analogous to double stars, length [Close 2003] and with a separation of 0.3 arc

Examination of the standard deviation and stantauri system is composed of two sun-like stars, Cen- dard error of the mean for separation and position tauri AB, orbiting one another every 80 years, and angle for this system shows our measurements to be Proximi Centauri located at a distance of about precise and in good agreement with the Washington

Figure 3 shows a modified ALADIN applet photo

Table 5: Parameters for SST 269 AB-C and ARN 8 AB-D

| Star<br>System | Proper<br>Motion <sup>1</sup><br>(mas/yr) | Parallax<br>(mas/yr) | Distance<br>(parsecs) | Sep. <sup>1</sup> (arcsec) | Spectral<br>Type       | WDS<br>Epoch |
|----------------|-------------------------------------------|----------------------|-----------------------|----------------------------|------------------------|--------------|
| STT 269AB      | (A)-046-015                               | 5.73 <sup>2</sup>    | 174.5                 | 0.3                        | (A) A6III <sup>1</sup> | 2007         |
| STT 269AB-C    | (AB)-046-015<br>(C) -082+037              | 4.363                | 229.5 <sup>3</sup>    | 122.5                      | (C) F5 <sup>3</sup>    | 2002         |
| STT 269AB-D    | (AB)-046-015<br>(D) +013-027              | 2.313                | 432.9 <sup>3</sup>    | 352.9                      | (D) G0 <sup>3</sup>    | 2002         |

Journal of Double Star Observations



Figure 3: Proper motion vectors for STT 269 AB-C, ARN 8 AB-D.

with enhanced proper motion vectors. Arrows are shown to approximate scale and direction. The vectors stars.

#### Conclusions

linear scale, simultaneously, to get the appropriate without the organization, dedication, and tireless efwould be inaccurate.

Future studies of multiple stars will concentrate on systems with smaller angular separations when true binary star systems may be investigated.

The position angle measurement for ARN 8 AB-D also suffered from the wide separation. For STT 269 AB-C, the experimental separation of 123.4 arc seconds was small enough to allow easy alignment on the linear scale. The position angle was then precisely measured to within a degree of the literature value and standard deviation and mean error values less than 1.0. But the observed separation of ARN 8 AB-D was over 2.8 times larger than that of STT 269 AB-C. Team members found it more challenging to align the two stars on the linear scale before performing the drift method of position angle determination. The resulting values for the position angle had a wider spread (standard deviation of 1.08 degrees) and an experimental value 2 degrees from the literature

Through these experiences, the students gained confidence and the ability to apply these newly crafted skills toward further work on the "push-Dobs" available at The Evergreen State College.

# Acknowledgements

The team wants to thank Dave Arnold, Russ show pictorially the divergent proper motion vectors Genet, and Tom Smith for reviewing this paper and indicating the optical nature of the AB, C, and D for their suggestions and corrections. A special thanks is extended to Brian Mason at the U.S. Naval Observatory for additional information on the multiple star system studied. We also want to thank Gregory Bot-The separation measurements for both compo- hun, Director of Pine Mountain Observatory, Mark nents were precise with standard deviation and mean Dunaway, Kent Fairfield, Allan Chambers, and Rick error values all below 1.0 arc seconds. The experimen- Kang, for opening the facility and being on hand to tal difference in separation for STT 269 AB-C was answer questions and assist our needs. A special less than 1 arc second from the current WDS litera- thanks goes to Danyal Medley at Celestron for the ture value. However, the experimental value for the donation of a 12.5 mm Micro Guide astrometric eyeseparation of ARN 8 AB-D differed from the literature piece to Evergreen State College, and to Theresa value by 2.8 arc seconds. One possibility for this dif- Aragon (Dean of TESC Summer School), and Peter ference could be due to a persistent breeze that was Robinson (Director of Lab I and Lab II, and Science causing the two stars to jitter around on the linear Technician at TESC), for purchasing an additional scale making precise measurements more difficult. 12.5 mm Micro Guide astrometric eyepiece. Thanks to The larger separation was an additional factor. With Sarah Pederson, Tina Pearson, Lori Moore, Sharon a separation of about 350 arc seconds, and a scale Wendt, Frank Barber, Katie Frank, and the other constant of about 10 arc seconds per division, it re- members of the TESC community for their support. quired the observer to scan about 35 divisions on the The workshop would never have been as successful separation. Actually, the observer would often cite fort of Richard Berry as Workshop Director. Our team one value on the scale and the second value several also wants to recognize the other double star team seconds later. During this hiatus, the breeze could leaders, Jo Johnson and Chris Estrada, for their coopeasily have moved the telescope so the second value eration and assistance with the project. Finally, if it

weren't for Russ Genet's initial efforts, none of the Close, Laird M., et.al., The Astrophysical Journal, double star projects would have taken place.

#### References

Aitken, Robert G., The Binary Stars, Dover Publications, Inc., New York, 1935.

ALADIN database (applet): http://aladin.u-strasbg.fr/java/alapre.pl.

ALADIN database (previewer): http://aladin.u-strasbg.fr/alapre.pl.

Arnold, D., The Double Star Observer, 9(1), 2003.

Arnold, D., Small Telescopes and Astronomical Research, Collins Foundation Press, Santa Margarita, CA, 2010.

Arnold, D., personal communication, 2010.

**599**, 537-547, 2003.

Frey, Thomas G., Spring 2008, Journal of Double Star Observations, 3(2), p. 59-65.

Frey, Thomas G., et. al., submitted JDSO Sept. 2010.

Haas, Sissy, Double Stars for Small Telescopes, Sky Publishing, Cambridge, MA, 2006, p.15.

Mason, Brian, The Washington Double Star Catalog. July 2009. Astrometry Department, U.S. Naval Observatory.

Mason, Brian, personal communication, 2010.

SIMBAD database:http://simbad.u-strasbg.fr/simbad/.



Brian D. Mason and William I. Hartkopf

U.S. Naval Observatory 3450 Massachusetts Avenue, NW Washington, DC, 20392-5420

bdm@usno.navy.mil wih@usno.navy.mil

**Abstract**: We present from the U.S. Naval Observatory's web site Frequently Asked Questions on double star observations, the Washington Double Star Catalog, and other products and services provided by the U.S. Naval Observatory Astrometry Department.

#### Introduction

Over the past dozen years, questions about double stars and the work of the USNO Double Star group have been asked by a variety of astronomers and other interested parties. The highlights of these, which have been posted to our website (http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/faq/), are listed below. We hope that these questions will generate others, which the authors will be happy to entertain for possible inclusion on our faq page.

#### Glossary of Terms and Acronyms

- - ADS: The "New General Catalogue of Double Stars within 121 degrees of the North Pole" (a.k.a., "Aitken Double Star Catalog"; Aitken, 1932). When Burnham retired, he gave all his double star catalog information to W. Hussey of Lick Observatory, with the intent that he publish an updated version of the BDS. Hussey died before this could be accomplished, however, and the task was assumed by Robert Grant Aitken, also of Lick. Lick later obtained the files of the SDS and merged all these data to create the IDS.
- BDS: The "General Catalogue of Double Stars within 121 degrees of the North Pole" (a.k.a., "Burnham Double Star Catalog"; Burnham 1906). Based on S.W. Burnham's observing notes collected over three decades, this was the

first attempt to collect all published double star measurements.

- DM3: The "USNO Third Photometric Magnitude Difference Catalog". Currently maintained by the USNO. Earlier published versions were DM2 (2006.5) and DM (2001.0, Worley et al.).
- **DSL**: The "Double Star Library". This is the official webpage of IAU Commission 26 (Double and Multiple Stars).
- IAU: The International Astronomical Union. This is a professional organization for astronomers around the world. Most of our work is centered around IAU Commission 26: Binary and Multiple Stars.
- IDS: Lick Observatory's "Index Catalogue of Visual Double Stars, 1961.0" (Jeffers & van den Bos, 1963). This catalog by Hamilton Jeffers and Willem van den Bos combined data from the ADS and SDS into the first all-sky compilation of double star data. Due to its size, individual measures were maintained on computer punch cards and only the first and last observations were published. These boxes of punch cards were brought to the USNO by Charles Worley soon afterward to form the basis of the WDS.
- INT4: The "Fourth Catalog of Interferometric Measurements of Binary Stars". Currently maintained by the USNO. An earlier version

published at the USNO was INT3 (2001.0, Angular Resolution Astronomy (CHARA) in me? 1988 and 1984, respectively. Initially created to keep track of observations made at CHARA and ad.usno.navy.mil/wds/obslist request.html otherhigh-resolution frared methods.

- LIN1: The "Catalog of Rectilinear Elements". Currently maintained by the USNO.
- ORB6: The "Sixth Catalog of Orbits of Visual Binary Stars". ORB5 was published in 2001 (Hartkopf et al.). Earlier versions, ORB4 (Worley & Heintz 1983), ORB3 (Finsen & Worley 1970), ORB2 (Finsen 1938) and ORB1 (Finsen 1934) were printed publications.
- SDS: The "Southern Double Star Catalogue, -19 to -90 degrees" (Innes, 1927). This catalog by R.T.E. Innes was the southern equivalent to the BDS and ADS and was later incorporated into the IDS.
- leases were made in 1984 (Worley & Douglass), needed. 1996 (Worley & Douglass), 2001 (Mason et al.) and 2006.5, with additional incremental releases over the years.
- by the USNO.

#### Frequently Asked Questions

USNO catalogs are "updated nightly". What does that ably differential proper motion linear solution targets mean?

At present there are two astronomers at the USNO who make changes to the WDS and associated catalogs. At approximately 2am local time the WDS is re-compiled from the existing data files and put How do I get them into the WDS? online for users to access. Web versions of other cataadded.

days, like over the weekend, there may be no changes. includes the tabular information from the publication. Other days the changes may be significant. Some new may yield many days' work.

2. I am interested in making some double star ob-Hartkopf et al.). INT2 and INT1 were published servations but don't know what doubles are appropriby Georgia State University's Center for High ate for my telescope or need observing. Can you help

Yes. The Observing List Request form http:// elsewhere using the technique of speckle inter- signed for people to make requests for observing lists. ferometry, the catalog was later expanded to While typical questions to make the list are provided, techniques the field is free form and you can specify exactly what (Hipparcos, adaptive optics, etc.) as well as in- you want or ask the sorts of questions that can guide us in helping you generate an observing list.

> 3. Are there actually doubles that still need to be observed?

> Quite a few. Naturally, the ones that most need observation are those which are hardest to observe and those that are easiest to observe do not typically need more. The number of pairs needing observation that are accessible to you depends on your capabili-

> 4. What sort of parameters are needed for a double star observation?

Typically date, position angle and separation. If the magnitude difference is estimated, providing that • WDS: The "Washington Double Star Catalog". is helpful, too. For publication the aperture of the Currently maintained by the USNO. Major re-telescope, method of data collection, etc., would be

#### 5. What about calibration?

Ah, yes. An uncalibrated measure is worthless. • WMC: The "Washington Multiplicity Catalog". Independent methods for determining your calibra-Currently in preparation, it will be maintained tion parameters, such as looking at a single star with a slit-mask and performing Young's experiment, are preferred. However, should you be unable to do this we provide a set of calibration quality orbits (http:// 1. The Double Star Library notes that some of the ad.usno.navy.mil/wds/orb6/orb6c.html). The presume-(http://ad.usno.navy.mil/wds/lin1.html) should also be good for this.

6. I have made some double star observations.

The easiest way to get data in the WDS is to have logs are usually updated whenever new data are them published in a refereed journal. Those will then be added as time permits. A faster way to get them Changes are made in a sporadic fashion. Some into the WDS is to also send us a flat ascii file which

The fastest way is to get in touch with us papers may take only minutes to add, while others (wds@usno.navy.mil) and let us provide you with the "ready to fold into the catalog" format.

7. Who maintains all the USNO double star catalogs?

The oldest catalog, the WDS, was created when Aren't all those data in the WDS? Charles Worley brought the IDS from Lick Observatory in the early 1960s. It then is the "great grand- Catalog is also found in the Interferometric Catalog. log, the BDS (BDS ---> ADS, ADS+SDS ---> IDS, by techniques not classified as "High Angular Resolutained by him with help mainly from Geoff Douglass. as measures from 2MASS. Over this time, Charles painstakingly went through the enormous resources of the USNO library adding periodically released, Charles made two major re- (Washington Double Star Catalog)? leases in 1984 and 1996. As he compiled the WDS he ures in his own internal "Delta-M Catalog."

with W.S. Finsen in producing the "Third Catalog of WMC will also include spectroscopic, photometric and Binary Orbits." He later made the 4th Catalog with other unresolved companions. Also, these companions W.D. Heintz. The Interferometric Catalog was first are not necessarily stellar, so it will include Brown compiled at Georgia State University. When two of Dwarfs and exoplanets. those authors came to the USNO the Catalog came with them.

In 2001 new versions of all four catalogs were released on the first USNO double star CD. In 2006.5 or multiple star systems. The only way to determine the second double star CD was released with these stellar mass, the most fundamental property of a star, four plus the new linear elements catalog for likely is through analysis of binary star systems. While optical pairs. This catalog also included a html his- stars similar to the Sun are known well, the most tory of USNO double star work.

two astronomers in the Cataloging Division of the As- OB stars, are not well determined. trometry Department at the US Naval Observatory. (i.e., "full-time equivalents") depending on circum- implications for the evolution of the Galaxy. stances.

Yes. Fill out the form at http://ad.usno.navy.mil/ chemical composition. wds/cd\_request.html and one will be mailed to you.

9. Why is there also an interferometric catalog? Aren't all these data in the WDS?

No, not all of it. The interferometric catalog contains a subset of WDS data, but may contain addidimensional results (e.g., data from lunar occultations) not found in the WDS, as well as single-star information from large surveys for duplicity.

10. Why are there separate catalogs of interferometric measurements and magnitude differences?

Much of the data in the Magnitude Difference catalog" of the first comprehensive double star cata- However, a large number of measures that were made IDS ---> WDS). For over thirty years it was main- tion" are in the Magnitude Difference Catalog, such

11. What is the difference between the WMC measures by hand. While intermediate versions were (Washington Multiplicity Catalog) and the WDS

The WMC is an IAU-mandated catalog to hieraralso collected accurate magnitude difference meas- chically assign designations to pairs discovered by all double star techniques. While the vast majority of Shortly thereafter, Charles began collaborating these will be resolved pairs from the WDS, the final

#### 12. Why do astronomers care about double stars?

The majority of stars in the sky are part of double common stars, Red Dwarfs and those that have the Currently the USNO catalogs are maintained by greatest impact on Galactic Evolution, the Massive

While double or multiple stars are broadly charac-In addition to cataloging double stars we have observ-terized as more abundant than single stars, how difing and other responsibilities as assigned --- in actual ferent subsets, either based on stellar type or environwork spent cataloging, probably from one to two FTE ment, may be enhanced or not can have significant

The coeval nature of binary stars makes them an insolated set which can be studied together. While the 8. Is it possible to get a copy of the most recent individual stars may be different, they are of at least approximately the same age and have the same

> Binary stars are not only the predominent stellar evolutionary track, but they are a boon to astronomers for the plethora of data that can be determined from them.

13. I am interested in a particular binary star, but tional photometric information. It also contains one- the WDS only lists the first and last observations. How do I obtain all the data?

> The Data Request form ({http://ad.usno.navy.mil/ wds/data\_request.html) will return to you all data,

ephemerides and an orbit plot. These typically are component (considering bolometric magnitude). returned within 24 hours.

#### 14. What are "discoverer designations"?

Historically, each discoverer of a pair would pro-When a pair was resolved and published for the first gle of position is less than 180 deg. time it was added to the catalog with that designation. In more recent years pairs discovered, but not copy, can assist in assigning the primary. resolved, for the first time (by, for example, spectroscopy) were credited to someone sometimes many vears later.

Generally speaking, the discovery designation can Struve) are easier to split than BU pairs (first seen

helps personalize the star and can make it a little the orbit catalog has some other information as well, more interesting.

WMC is to not use the discovery designation if alter-troscopic Binary Orbits: http://sb9.astro.ulb.ac.be/. nate designators of greater usage are available. Coordinates and components will be the primary identifiers, instead.

15. Some double-star names include components such as AB or AC, while others have Aa, Ab or Ba, Bb and there are many papers out there!) See question 6 and still others have no components listed at all. Why? above. At the very least, drop an email to

tive position is of the secondary relative to the pri- out the comment form http://ad.usno.navy.mil/wds/ in a polar coordinate system the A component is at how much information is provided. the origin and the B component is at a position angle of 90 deg (i.e., due east of the A component) at a separation of 3".

By default a simple binary has no components explicitly listed; the primary is understood to be A and the secondary to be B.

AB,C indicates that C is measured relative to the cen- so prattle on to your heart's content. ter of light (or photocenter) of the AB system. This is often measured when the AB pair is beyond the capability of one observer, but they can measure C.

More complex hierarchical arrangements follow a listed with very imprecise coordinates. Why? strict set of rules. More details are available at http://ad.usno.navy.mil/wds/wmc.html.

#### 16. Which is the primary?

notes and references we have for double stars. If it we have a full characterization of the system, it is the has an orbit we will also provide elements, most massive component. If not, it is the brightest

> If we don't know the magnitudes in many bands it is the brightest component as assigned by observers (most commonly in the visual band).

If the magnitude difference is zero or unknown vide a list of his "new" discoveries in his publications. the primary is arbitrarily assigned such that the an-

In some cases other techniques, such as spectros-

#### 17. Do you have any information on spectroscopic binaries?

While the WMC will contain information about tell you something about the difficulty of seeing the spectroscopic binaries when fully populated, none of pair. For example, STF pairs (first seen by F.G.W. the all-sky USNO double star catalogs contains a comprehensive list of spectroscopic binaries. by S.W. Burham). Also, the discovery designation notes file to the WDS contains some information and but these are not comprehensive. The best source for The current plan of the more comprehensive spectroscopic binaries is the 9th Catalogue of Spec-

> 18. I published a paper of double star measurements and orbits, but it is not in your catalogs or even in your list of references. How can I get it included?

We may have just missed it (we have a small staff When a component designation is given the rela- wds@usno.navy.mil and provide the reference or fill mary. For example, for an AB pair at 90 deg and 3", wds\_comment.html. Speed of addition is based on

> 19. I found an error in the WDS. How can I get it corrected?

Just tell us! The online comment form

http://ad.usno.navy.mil/wds/wds comment.html is designed for people to tell us of errors or ask us Another common arrangement, such as AB-C or questions. Like the observing list form, it is free form

> 20. Most of the doubles in the WDS have good right ascensions and declinations, but a few are only

Historically, double star coordinates were published only to the nearest minute of arc and early double star catalogs did not include proper motion. The result of this is that if it was not followed on a regular It depends on how much information we have. If basis the pair could become "lost". The pair could also

erroneous identification of a "plate flaw" as a real ever. star. There also may have been a printing error in the it to nearby pairs we have online in the Cataloging position) and person who made the measure. Division.

Sometimes it takes only a look through the telescope to see where it is and "find" the pair again. For used for orbit grading? example, using the 26" in Washington we have con-

more of the above reasons we add an "X" code for the bration, for example). pair to it in the WDS. Removing the pair entirely might prompt someone to add it back in one day and consideration. We do not release these parameters. adding the "X" code is like giving it the "Black Spot of But, for the record, ours are not the best. Binaries."

21. If there are bad doubles are there also bad measures?

similarly mark it as such. It remains in the WDS but many different ways is on the WDS website. is henceforth not considered when, for example, counting measures of systems or calculating an orbit. It is a marker that lets someone else know that the the WDS published online? measure has been added, evaluated and found wanting. If a published measure has an obvious error we will correct it and add a flag indicating a correction completely corrected. has been made.

the orbit catalog?

Both the Third and Fourth orbit catalogs assigned a quality grade to an orbit. This subjective grading was based on many factors as judged by probably the most experienced double star astronomers and cata- able via the Data Request form logers at the time. Since their expertise and experience could not be replicated, in the Fifth Catalog a fying the previous subjective grade. See http:// systems! ad.usno.navy.mil/wds/orb6/orb6text.html for details.

#### 23. How is this grade assigned?

When an orbit is added, all data are plotted with this new orbit and then evaluated. If the grade is better it becomes the new default orbit. Just adding one measure and re-computing an orbit is rarely justifica-

be a chance alignment that is no longer there, or the tion for your orbit being the new "best" orbit, how-

In adding an orbit the weight of each measure in original paper or a transcription error in entering the that orbit is considered, which takes into account the object into the WDS or one of its predecessor catalogs. method, size of the telescope, separation, magnitude, In any event, we have thus far been unable to match magnitude difference, N (number of nights in a mean

24. What are the weights of individual measurers

Not all observers are the same. Some get a low firmed an extensive number of John Herschel's pairs, weight because they were always working at the limlast seen in 1820 but long lost due to poor coordinates. its of their telescope. Some get a low weight because When a pair is judged to be false or lost for one or the observations were not as good (due to poor cali-

Evaluating an observer is a sociologically complex

25. Who has observed the most double stars?

It depends on how you count them. Counted by the number of measures, the three top are W.H. van Yes, there are. When we have thoroughly ana- den Bos, W.D. Heintz and C.E. Worley. A full listing lyzed a measure and found it to be insufficient we of the top twenty-five groups and individuals counted

26. Why aren't all the measures used to compile

Size is one consideration.

Integrity of the product is another, as it is not

There is also a historical reason. The full database was once taken, repackaged and then presented 22. What is the orbit "grade" which is assigned in as a new catalog with no attribution. Given the enormous number of man years spent by USNO personnel over the past decades to maintain this database, that will not be allowed to happen again.

All measures of specific systems are always avail-

http://ad.usno.navy.mil/wds/data request.html.

Bottom line: You can have some of the data on all painstaking method was developed to replicate their of the systems or all of the data on some of the sysgrading based on many key parameters: thus objecti- tems, but you cannot have all of the data on all of the

#### References

Aitken, R.G. 1932, New General Catalogue of Double Stars within 121 degrees of the North Pole. Carnegie Institution of Washington

Burnham, S.W. 1906, General Catalogue of Double Stars within 121 degrees of the North Pole, Carnegie Institution of Washington

Finsen, W.S. 1934, Union Obs. Circ. 4, 23

Finsen, W.S. 1938, Union Obs. Circ. 4, 66

Finsen, W.S. & Worley, C.E. 1970, Republic Obs. Circ. 7, 203

Hartkopf, W.I., Mason, B.D., & Worley, C.E. 2001, AJ 122, 3472

Hartkopf, W.I., McAlister, H.A., & Mason, B.D. 2001, AJ 122, 3480

Innes, R.T.A. 1927, Southern Double Star Catalogue, -19 to -90 degrees,

Union Observatory, Johannesburg, South Africa

Jeffers, H.M. & van den Bos, W.H. 1963, Index Catalogue of Visual Double Stars, 1961.0, Pub. of the Lick Observatory, 21

Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglass, G.G., & Worley, C.E. 2001, AJ 122, 3466

Worley, C.E., & Douglass, G.G. 1984, Washington Visual Double Star Catalog, 1984.0, U.S. Naval Observatory, Washington

Worley, C.E., & Douglass, G.G. 1997, A&AS, 125, 523 (Washington Visual Double Star Catalog, 1996.0)

Worley, C.E. & Heintz, W.D. 1983, Pub. U.S. Naval Obs. 24, pt. 7

Worley, C.E., Mason, B.D., & Wycoff, G.L. 2001, AJ, 122, 3482



Journal of Double Star Observations

January 1, 2011 Volume 7, Number 1

Editors R. Kent Clark Rod Mollise

Editorial Board Justin Sanders Michael Boleman

Advisory Editor Brian D. Mason

The Journal of Double Star Observations is an electronic journal published quarterly by the University of South Alabama. Copies can be freely downloaded from http://www.jdso.org.

No part of this issue may be sold or used in commercial products without written permission of the University of South Alabama.

©2011 University of South Alabama

Questions, comments, or submissions may be directed to rclark@jaguar1.usouthal.edu or to rmollise@bellsouth.net The Journal of Double Star Observations (JDSO) publishes articles on any and all aspects of astronomy involving double and binary stars. The JDSO is especially interested in observations made by amateur astronomers. Submitted articles announcing measurements, discoveries, or conclusions about double or binary stars may undergo a peer review. This means that a paper submitted by an amateur astronomer will be reviewed by other amateur astronomers doing similar work.

Not all articles will undergo a peer-review. Articles that are of more general interest but that have little new scientific content such as articles generally describing double stars, observing sessions, star parties, etc. will not be refereed.

Submitted manuscripts must be original, unpublished material and written in English. They should contain an abstract and a short description or biography (2 or 3 sentences) of the author(s). For more information about format of submitted articles, please see our web site at www.jdso.org

Submissions should be made electronically via e-mail to rclark@jaguar1.usouthal.edu or to rmollise@bellsouth.net. Articles should be attached to the email in Microsoft Word, Word Perfect, Open Office, or text format. All images should be in jpg or fits format.



We're on the web!

http://www.jdso.org