Midterm Exam #2

NAME:			

You have almost 2 hours for 3 problems.

- Please do preliminary calculations on your own scratch paper. (Do not hand in.)
- Show enough (neat) work in the clear spaces on this exam to convince us that you derived, not guessed, your answers.
- Put your final answers in the boxes at the bottom of the page.

You can use your course notes, homework sets and solutions, calculator, and the text.

Problem	Score
1	
2	
3	
Total	

Consider a non-causal Haar filter bank with $H_0(z) = 1 + z$, $H_1(z) = 1 - z$, and $\downarrow M$ operators. These are applied on an infinite sequence x[n], that is nonzero between $0 \le n < 16$. For each of the following time frequency tiling, construct a filter bank which matches it. For example:

will be a result of

Make sure you show your work, including intermediate steps.

a) Sketch the filter bank which matches the following tiling:

filter bank:

b) Sketch the filter bank which matches the following tiling:

filter bank:

From here on, we replace the Haar filters with ideal low-pass and highpass filters, $H_{LO}(z)$ and $H_{HI}(z)$, with cutoff frequency of $\omega_c = \pi/2$. Also, consider a <u>new</u> input signal x[n] with the spectrum $X(e^{j\omega})$:

c) You pass x[n] through the following filter-bank. Sketch the resulting spectrum.

spectrum:

d) Now, you pass the same x[n] as in part (c) above through a new filter bank. The resulting spectrum is shown below.

Sketch a filter bank which will result in the above spectrum.

filterbank:		

Consider following system:

a) Let y[n] = x[n], $T_1 = T_2 = \frac{1}{3}$, $x(t) = \cos(2\pi t)$. Find the expression for y(t). Explain the result, and how you got to it.

y(t) =

b) Let System A be a $\downarrow 2$ compressor, $T_1 = \frac{1}{2}$, $T_2 = 1$, $x(t) = \cos(2\pi t)$. Find the expression for y(t). Explain the result, and how you got to it.

y(t) =

c) Let System A be a $\uparrow 2$ expander, $T_1 = T_2 = \frac{3}{4}$, $x(t) = \cos(2\pi t)$. Find the expression for y(t). Explain the result, and how you got to it.

y(t) =

d) Let System A be $\uparrow 2$ followed by an ideal low-pass filter with gain=2 for $|\omega| \leq \pi/2$ and zero elsewhere. Let $T_1 = \frac{1}{2}$, and $T_2 = \frac{1}{4}$ and $x(t) = \cos(2\pi t + \pi/3)$. Find the expression for y(t). Explain the result, and how you got to it.

y(t) =

(60 points)

The baseband signal of broadcast FM-stereo as discussed in Lab-III is given by

$$x(t) = L(t) + R(t) + 0.1\cos(2\pi f_p t) + \cos(2\pi \cdot 2f_p t)(L(t) - R(t)),$$

where L(t) and R(t) at the left and right channels respectively, and $f_p = 19000 \mathrm{Hz}$.

The associated magnitude spectrum of x(t) is given by:

Similarly to Lab-III, you perform FM demodulation on the IQ data you got from the SDR, and obtain samples, x[n] of x(t) at a sampling rate of $f_s = 240 \text{KHz}$. In the lab, you reconstructed the mono L(t) + R(t) signal, and the subcarriers (not shown here). In this question we will design a stereo reconstruction to separate L(t) and R(t).

a) The following system recovers L[n] + R[n]:

$$x[n] \longrightarrow \begin{array}{c} \mathsf{LPF} \\ h_1[n] \end{array} \longrightarrow L[n] + R[n]$$

You would like to design a causal, linear-phase $M^{\rm th}$ order low-pass filter using the window method. Other parameters are TBW=8, M even and Hamming window function W[n] which is nonzero for 0 < n < M.

Write an expression for the impulse response, $h_1[n]$. What is M? (round up to the closest even integer). By design, the system is linear phase. What is the group delay?

more space.....

$$h_1[n]= M= ext{group-delay}=$$

b) Ideally, if the frequency source at the FM station and your receiver would be synchronized in frequency and phase, the following system would recover L[n] - R[n]:

Unfortunately, this is not the case. Therefore, we would like to leverage the pilot tone around $\omega = 2\pi f_p/f_s$ as a frequency reference for the demodulation. Leveraging the trigonometric relation $\cos(2\alpha) = 2\cos^2(\alpha) - 1$, the frequency recovery system which recovers the transmitting station pilot frequency f_p' and ϕ' is given by:

Design a TBW=2, Hamming-windowed, even P^{th} order low pass filter with equivalent BW=240Hz (cutoff frequency 120Hz). Use W[n] to express the window function. Modulate the filter to the appropriate frequency to obtain the desired bandpass filter. Write an expression for the impulse response $h_2[n]$. What is P? What is the group delay?

more space.....

$$h_2[n] = P =$$
group-delay=

c) In order to separate the result into the L[n] and R[n] we must compensate for all the different delays in the system. Consider the full system:

What are the delay values for D_1, D_2, D_3 , and D_4 that would result in the minimum total delay, D, between the input and the outputs? What is D?

$$D_1 = D_2 = D_3 = D_4 = D =$$