CS-302 Theory of Computation Assignment 7

Name:	

1. Construct a regular expression whose language is equivalent to the language of the following DFA.

2.		Consider the languages over a fixed alphabet Σ with $ \Sigma =2$. Answer true or false to each of the following questions. If a statement is false, give a counterexample.		
	a.	If L_1 is nonregular and $L_1 \subseteq L_2$ then L_2 is nonregular.		
	-			
	b.	If $L_1 \subseteq L_2$ and L_2 is nonregular, then L_1 is nonregular.		
	-			
	c.	If L is nonregular, then its complement \overline{L} is nonregular.		
	-			
	d.	If L_1 is regular, then $L_1 \cup L_2$ is regular for any language L_2 .		
	e.	If L_1 and L_2 are nonregular, then $L_1 \cap L_2$ is nonregular.		