Proyecto Final Lógica para Ciencias de la Computación

Juan Andres Russy Juan Camilo Canizales

Escuela de Ingeniería, Ciencia y Tecnología Universidad del Rosario

2022-1

Tabla de Contenidos

1. Planteamiento del Problema

1. Planteamiento del Problema

Formulación del problema: El problema trata de resolver el juego

Flow Free dado unas condiciones iniciales.

1. Planteamiento del Problema

El juego consiste en conectar los puntos del mismo color, ninguna casilla puede dejarse sin colorear.

Ejemplo:

En la figura, se puede observar como el "mapa" conecta 4 colores distintos de tal manera que se cumplen las condiciones del problema.

Reglas:

- Cada casilla debe tener un color asignado.
- Se conoce el color de cada terminal.
- Cada terminal tiene especificamente un vecino del mismo color.

- Cada casilla de flujo tiene una direccion.
- ► Los vecinos se definen por la direccion de una casilla, y estos deben tener el mismo color de esta.
- Los vecinos no definidos por la dirección de una celda no deben tener el color de esta.

Direcciones: D

- Izquierda-derecha
- ► Cima-fondo
- Cima-izquierda
- Cima-derecha:
- Fondo-izquierda
- ► Fondo-derecha

- ► N casillas y C colores
- ► (x,y) E N (casilla especifica en N)
- ▶ v E C (color especifico en C)

- ► P(x,y,u,d,1) es verdadero sii la casilla (x,y) tiene color u con direccion d y no es terminal(flujo)
- 1. Cada casilla debe tener un color asignado (no terminales).

$$\bigwedge_{(x,y) \in \textit{Casillas}} \left(\bigvee_{u \in \textit{Colores}} P(x,y,u,d,1) (\bigvee_{k \in \textit{Colores}-u} \neg P(x,y,k,d,f)) \right)$$

2. Cada casilla debe tener un color asignado (terminales).

 Como partimos de conocer las casillas terminales solo nos aseguramos de que

$$\bigwedge_{(x,y)\in \textit{Casillas}} (\bigvee_{u\in \textit{Colores}} P(x,y,u,d,0))$$

3. Cada terminal debe tener un vecino del mismo color.

Sea (x,y) una casilla terminal de color u, (p,q),(r,s),(t,z),(v,w) sus posibles vecinos.

$$\bigvee_{u \in Colores} (P(p, q, u, d, 1) \lor P(r, s, u, d, 1) \lor P(t, z, u, d, 1) \lor P(v, w, u, d, 1) \land P(x, y, u, d, 0))$$

3. Cada terminal debe tener un vecino del mismo color.

Sea (x,y) una casilla terminal de color u, (p,q),(r,s),(t,z),(v,w) sus posibles vecinos.

$$\bigvee_{u \in Colores} (P(p, q, u, d, 0) \lor P(r, s, u, d, 0) \lor P(t, z, u, d, 0) \lor P(v, w, u, d, 0) \land P(x, y, u, d, 0))$$

4. Cada terminal de flujo debe tener una direccion.

$$\bigwedge_{(x,y) \in \textit{Casillas}} \left(\bigvee_{d \in \textit{Direcciones}} P(x,y,u,d,1) (\bigvee_{k \in \textit{Direcciones}-d} \neg P(x,y,u,k,1)) \right)$$

5.Los vecinos se definen por la direccion de una casilla, y estos deben tener el mismo color de esta. ¡

► Para cualquier casilla (x,y) con direccion d, debe cumplirse que sus 2 vecinos acordes cumplan que

$$\bigwedge_{(x,y)\in\textit{Casillas}} (P(x,y,u,d,1) \lor P(p,q,u,d,1) \lor P(r,s,u,d,1)(t,z,u,d,1))$$

asegurando que sus vecinos compartan color u

6.Los vecinos no definidos por la direccion de una casilla no deben tener el color de esta. i

$$\bigvee_{(x,y)\in \textit{Casillas}} (P(x,y,u,d,1)
ightarrow \lnot (P(x,y,y,d,1) \land (p,q,u,d,1))$$