

Created by: Israa Abdelghany

Linkedin: www.linkedin.com/in/israa-abdelghany-4872b0222

GitHub: https://github.com/IsraaAbdelghany9

we will discuss:

- _ Random variable
- _ Discrete distributions
- Mean, Variance, Covariance, Correlation.

probability: is mapping between any event A by a value between 0 and one

Random variables:-

in a line each possible outcome by point

 $p(H) = 0.5 \Leftrightarrow p(x = x_1) = 0.5 \Leftrightarrow p(x_1) = ?$

impulse function has value in a certain point and other wise OYSZ probability mass function (PMF) boxwith (2 blue , 5 green , 3 yellow) 2 = 0 _outcome is blue 11 1, Green yellow P2(2) Z o Random variable $P_{2}(z_{1}) = \frac{2}{10} \qquad (P_{2}(z_{2}) = \frac{5}{10} \qquad (P_{2}(z_{3}) = \frac{3}{10})$ $-p(2) = \text{function of } Z \implies \text{session } 3$ different mons for the probability represent $\rho(0) = 0.2$ distributions P(0-5) = 0 (impossible event)

Joint probability; = Joint PMF :-- Joint distribution: P(H, H2) = first is head and second is H too P(x,y)p(-1, -1) = = p(-1,+1)=1 p(+1,-1) = 1 ρl-1,-1)=1 this Joint probability or can be represented by (distribution. a table p(x, y)So it can be represented as a -b marginal
PMF's 1 table 2 graph 31 List Joint PMF \star from P(x,y) we can get $P_{x}(x)$ ($P_{y}(y)$ it's the Px (H) = Px (-1) = + + + ===

- given Joint PMF we can find marginal PMF's as follows :-

$$\leq \rho \quad (z, y) = \rho \quad (y)$$

$$\underline{\xi} \underbrace{\xi} \underbrace{\rho}_{x,y} (\underbrace{\chi}_{i}, \underbrace{y}_{i}) = \underbrace{\xi} \underbrace{\rho}_{x} (\underbrace{\chi}_{i}) = 1$$

Review:
$$\rightarrow$$
 Independence of events A, B are independent if $P(A/B) = P(A)$ or $P(B/A) = P(B)$

$$P(AB) = P(A) \cdot P(B)$$

n de pendent P(AB) = P(A). P(B) not Independent PIAB) + PIAJ-PIB)

$$=$$
 two R-U.s x, y are independent if $P(x, y) = P(x) P(y)$

_			ı		
Ex	ar	ní)l	P.	-
		٠.١			•

$$P(x_i);$$

$$P(-1) = \frac{1}{4}$$

$$P(+1) = \frac{3}{4}$$

$$P_{y}(y_{1});$$
 $P(-1) = \frac{3}{8}$
 $P_{y}(+1) = \frac{5}{8}$

are they independent or not?

$$P_{x,y}(x,y) = P_{x}(x,) \cdot P_{y}(y,)$$
?

$$P_{xy}(-1,-1) = \frac{1}{8} \cdot P_{x}(-1) - P_{y}(-1) = \frac{1}{4} \times \frac{3}{8} + \frac{1}{6}$$

$$P_{X/Y}(x_i, y_i) = P_{X/Y}(x_i, y_i) + P_{Y}(y_i)$$

Conditional

 P_{MF}
 P_{MF}

Example 2-

tossing
$$2$$
 coins observing total number 4 heads.

$$P_{2}(2)$$

$$P_{2}(n) = \binom{n}{k} \binom{1}{2}^{k} \binom{1}{2}^{n-k}$$

$$P_{2}(n) = \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n-k}$$

$$P(0) = \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n-k} = \frac{1}{4}$$

$$P(1) = \binom{n}{2} \binom{1}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(2) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(3) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(4) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(2) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(3) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(4) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

$$P(4) = \binom{n}{2} \binom{n}{2} \binom{1}{2}^{n} \binom{1}{2}^{n} = \frac{1}{4}$$

statistical tools - Moments mean, variance, correlation, covariance standard diviation, correlation coefficient , covariance matrix mean, average, expected value, expectation, expected value; $\overline{X} = \frac{3+4+4+5+5}{5} = \frac{3}{5} \times \frac{1}{5} + \frac{4}{7} \times \frac{2}{5} + \frac{5}{5} \times \frac{2}{5}$ $\bar{x} = \frac{5}{i} \times \frac{n(x_i)}{N}$ Number of time the number $\overline{x} = \underbrace{x}_{i} P_{x} (x_{i}) \xrightarrow{appears} 1st \text{ moment of R.V.}^{n}$ general $g(x) = \sum_{i} g(x) P_{x}(x_{i})$ 1st moment is the "center"— weighted average"

one of the problems of the mean is that it losses info.

they are not same but there mean is the same

So \overline{x} :- measure of centrality. we need other measures to describe distribution. eg; measure of dispertion around \overline{x}

2nd Central moment:

Variance: - 6x2 | 15x2 = 6x | standard diviation

the aim of the square is to remove near tive signs $6x^2 = \frac{1}{(x_i - \overline{x})^2}$ by $\frac{1}{2}$ by $\frac{1}{2}$ by $\frac{1}{2}$

 $\delta_{x}^{1} = \frac{(2-5)^{2} + (5-5)^{2} + (8-5)^{2}}{n}$ $= \frac{9+0+9}{3} = 6$ $\delta_{x} = \frac{1+0+1}{3} = \frac{2}{3} = 0.6667$ $\delta_{y} = \sqrt{\frac{2}{3}}$

if data is Normally distributed ___ I can describe it using mean and standard diviation

$$6\frac{2}{x} = \frac{3}{1} (x_1 - \overline{x})^2 P_{\chi}(x_1)$$

$$0\frac{1}{x} = (\overline{x_1} - \overline{x})^2$$

$$= (\overline{x_1}^2 - 2x_1 \overline{x} + \overline{x}^2)$$

$$= \overline{x_1}^2 - 2x_1 \overline{x} + \overline{x}^2$$

$$= \overline{x_1}^2 - 2x_1 \overline{x} + \overline{x}^2$$

$$= \overline{x_2}^2 - 2\overline{x} + \overline{x}^2$$

$$= \overline{x_2}^2 - 2\overline{x} + \overline{x}^2$$

$$= \overline{x_2}^2 - 2\overline{x} + \overline{x}^2$$
mean $3q$ ware

Value

 $\sigma_{x}^{2} = \overline{x^{2}} - \overline{x^{2}}$

So here comes the Covariance

Notes:

Variance =
$$o_x^2 = o_x o_x = o_x = (x - \overline{x}) \cdot (x - \overline{x}) = (x - \overline{x})^2 = o_x^2$$

- Co variance as terminology means the variance between
- change in the other one

we need standarization of covariance

Correlation Coefficient:-

Pay =
$$\frac{\sigma_{xy}}{\sigma_{x}}$$
 $\frac{-1}{\sigma_{x}}$ $\frac{1}{\sigma_{x}}$ $\frac{1$

$$C_{XY} = (X - \overline{X}) \cdot (Y - \overline{Y})$$

$$= \times y - \times \overline{y} - \overline{x}y + \overline{x}\overline{y}$$

=> if x, y are uncorrelated:-

$$o_{XY} = 0 = \overline{X}\overline{Y} - \overline{X}\overline{Y}$$

 $\overline{XY} = \overline{X} \overline{Y} \implies$ so to check if it's correlated or not you can multiply each value by the other and get their mean = $\overline{X} \overline{Y}$? if they are independent then there's no linear correlation

** Resons for outliers = noise (error in measurement But it can also be real data

** So you need to study the outliers well to see if I will leave it or keep it