I. Choose the correct answer

- 1. A function which is not of exponential order is?
 - cosh t
- **B**. sinh t
- C. tan t
- **D**. $(e^t)^2$
- 2. The mathematical function representing "a satellite hit by a meteorite" is

- exponential **B**. unit step **C**. dirac delta
- **D**. periodic

- 3. $L(\sinh 2t) = \frac{2}{s^2 4}$ is true for

- **A.** s>2 **B.** s<2 **C.** $s\neq 2$ **D.** s>0
- 4. Say True (T) or False (F): i. First shifting theorem translation on t-axis
 - ii. Second shifting theorem translation on s-axis
 - **A.** i F, ii F **B.** i T, ii T **C.** i T, ii F

- **D**. i F, ii T
- 5. Let k be a constant, the Laplace transform of $\frac{k}{2} * \frac{k}{2} * \frac{k}{2} * \frac{k}{2} * \dots * \frac{k}{2}$ (n times) is

- **A.** $\frac{k}{2s^n}$ **B.** $\frac{k^n}{(2s)^n}$ **c.** $\frac{k}{2} \left(\frac{n}{s^{n+1}} \right)$ **D.** $\frac{k}{2} \left(\frac{n!}{s^{n+1}} \right)$
- 6. If L(f(t)) = F(s) the L(f(ct)) is

- **A.** cF(s) **B.** cF(cs) **C.** cF $\left(\frac{c}{s}\right)$ **D.** $\left(\frac{1}{c}\right)$ F $\left(\frac{c}{s}\right)$

II. Given f(t) in graph below, Sketch the following functions

- 1. f (t) u (t-T)
- 2. f (t-T) u (t-T)
- 3. f (t) u (t-T/2) f (t) u (t-T)

III. Obtain the inverse Laplace transform of the following function

1.
$$F(s) = \frac{1}{s^2(s^2 - 1)}$$

$$2. F(s) = \ln \left(\frac{s - a}{s - b} \right)$$

IV. Find the inverse Laplace transform of the following

$$1. f(t) = te^{-t} sinht$$

2.

V. Find the inverse Laplace transform of $F(s)=\frac{5}{(s^2+1)(s^2+25)}$ using convolution theorem

VI. Solve the following differential equations using Laplace transform technique:

1.
$$y'' + 3y' + 2y = r(t)$$
; $y(0) = 0$, $y'(0) = 0$, where $r(t) = u(t-1) - u(t-2) + \delta(t-1)$.

2.
$$-2y_1' + 3y_2' + 2y_2 = 4$$
; $-y_1' + 2y_2' + 3y_2 = 0$; $y_1(0) = y_2(0) = 0$, $y_1'(0) = 0$, $y_2'(0) = 0$.