Project Euler #184: Triangles containing the origin.

This problem is a programming version of Problem 184 from projecteuler.net

Consider the set I_r of points (x,y) with integer co-ordinates in the interior of the circle with radius r, centered at the origin, i.e. $x^2 + y^2 < r^2$.

For a radius of 2, I_2 contains the nine points (0,0), (1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1) and (1,-1). There are eight triangles having all three vertices in I_2 which contain the origin in the interior. Two of them are shown below, the others are obtained from these by rotation.

For a radius of 3, there are 360 triangles containing the origin in the interior and having all vertices in I_3 and for I_5 the number is 10600.

How many triangles are there containing the origin in the interior and having all three vertices in I_r ?

Input Format

The only line of every test file contains a single integer - r.

Constraints

$$2 < r < 10^6$$

Output Format

Output a single integer - an answer to the problem modulo $10^9 + 7\,$

Sample Input 0

Sample Output 0

8

2

Sample Input 1

3

Sample Output 1

360

Sample Input 2

Sample Output 2						
	10600					