Tutorial 2 K-Map

COMP2120B Computer organization

Kevin Lam (yklam2)

Overview

- Karnaugh Map (K-Map) is a method of representing Boolean function of up to 4 variables.
 - It provides an easy way to simplify Boolean function in the sum-of-product form.

Steps

Α	В	$F = A\mathbf{B} + A\overline{\mathbf{B}}$	
0	0	0	
0	1	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	0	1	
1	1	1	

Result: F = A

We will examine these steps one by one.

Maps

Always 1-bit difference for adjacent codes

2 variables

3 variables

4 variables

AB as 01 $\rightarrow \overline{A}B$ CD as 10 $\rightarrow C\overline{D}$

More visualization

Each variable split the map in half in a different way

Fill in values

• It is straight-forward if we already have a truth table.

		00	01	11	10
	00		1	1	1
4 D	01			1	1
AB	11	1	1	1	1
	10		1	1	

- You may omit the 0's.
- However, in many cases, you have to derive a truth table yourselves.

Α	В	С	D	F(A, B, C, D)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Exercise: truth table

 Construct the truth table for Boolean function F(A,B,C,D) as specified below:

$$F(A, B, C, D) = \begin{cases} 1, & 1 \text{ is the majority} \\ 0, & 0 \text{ is the majority} \\ d, & \text{otherwise} \end{cases}$$

- Where d stands for "don't care".
- Draw the K-Map afterwards.

Truth table: solution

Α	В	С	D	F(A, B, C, D)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	d
0	1	0	0	0
0	1	0	1	d
0	1	1	0	d
0	1	1	1	Ī
1	0	0	0	0
1	0	0	1	d
1	0	1	0	d
1	0	1	1	Ī
1	1	0	0	d
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

You may omit the 0's. You **must** keep the d's

Grouping – group size

- Grouping size must be power of 2 (1, 2, 4, 8, or 16)
- Groups must be rectangular.

Group size

What is the relationship between group size and the number of variables in a term?

 A valid group represents a single term (you cannot derive a single term from an invalid group)

AB as 11 \rightarrow AB CD as 11 \rightarrow CD

Term: ABCD

AB as 11 \rightarrow ABCD as 11 and 10 \rightarrow C

Term: ABC

AB as 01 and 11 \rightarrow B CD as 11 and 10 \rightarrow C

Term: BC

More visualization (for groups)

Grouping - wrapping

Groups can be wrapped around the edges

Grouping – choices

- Group all 1's
- Prefer bigger groups and fewer groups
- Overlap is allowed

		CD			
		00	01	11	10
	00			1	1
AB	01			1	1
	11		1	1	1
	10		1	1	

		CD			
		00	01	11	10
	00			1	1
ΛD	01			1	1
AB	11		1	1	1)
	10			<u> </u>	
			1		

OO 01 11 10

OO 1 1 1 1

AB 11 1 1 1 1

10 1 1 1

There is only one possible group of 4 for each of these two 1's.

The remaining 1's can be grouped in another group of 4.

$$F = AB + \overline{A}C + \overline{B}D$$

Don't care

- Don't care can be included in any group, but there is no need to group all of them or any of them.
- This allow us to form larger groups.

$$F = ABC + ABD + ACD + BCD$$

$$F = AB + CD$$

Note that there are many possible groupings for this K-Map

Exercise

• Given the truth table as shown, find the Boolean function for P and Q using K-Map.

Α	В	С	D	P	Q
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
0	1	1	1	1	0
1	0	0	0	d	d
1	0	0	1	d	d
1	0	1	0	d	d
1	0	1	1	d	d
1	1	0	0	0	1
1	1	0	1	0	0
1	1	1	0	d	d
1	1	1	1	0	0

Solution

A	В	С	D	P	Q
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
0	1	1	1	1	0
1	0	0	0	d	d
1	0	0	1	d	d
1	0	1	0	d	d
1	0	1	1	d	d
1	1	0	0	0	1
1	1	0	1	0	0
1	1	1	0	d	d
1	1	1	1	0	0

$$Q = \overline{B} \; \overline{C} + \overline{D}$$