```
(Item 1 from file: 351)
DIALOG(R) File 351: Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.
012736695
             **Image available**
WPI Acc No: 1999-542812/199946
XRPX Acc No: N99-402573
  Electrical motor/generator with two rotors and a double wound stator
Patent Assignee: NISSAN MOTOR CO LTD (NSMO )
Inventor: NAKANO M
Number of Countries: 027 Number of Patents: 003
Patent Family:
                     Date
                             Applicat No
                                            Kind
                                                   Date
                                                            Week
Patent No
              Kind
              A2 19990929 EP 99105970
                                                 19990324
                                                           199946 B
EP 945965
                                            A
                   19991008 JP 9877465
                                                 19980325 199954
JP 11275827
              A
                                             Α
              B1 20010403 US 99275788
                                                 19990325 200120
US 6211597
                                             Α
Priority Applications (No Type Date): JP 9877465 A 19980325
Patent Details:
Patent No Kind Lan Pg
                         Main IPC
                                     Filing Notes
              A2 E 74 H02K-016/02
EP 945965
   Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
   LI LT LU LV MC MK NL PT RO SE SI
                    31 H02K-016/02
JP 11275827
             Α
                       H02K-001/22
US 6211597
              B1
Abstract (Basic): EP 945965 A2
        NOVELTY - The machine has two rotors (3,4) and one stator (2)
    arranged coaxially. The stator comprises a coil unit (6) with two
    windings connected to first and second alternating current supplies
    that produce a number of rotating magnetic fields according to the
    number of magnetic poles in the first and second rotors. A composite
    current of first and second alternating supply currents is supplied to
    the coil unit (6). A separate circuit is provided to compensate torque
    fluctuations due to non-uniformity of the magnetic field accompanying
    the relative rotation of the two rotors.
        USE - For motor and generator applications using a single shaft
    machine with two concentric rotors.
        ADVANTAGE - Reduces current loss due to copper losses and switching
        DESCRIPTION OF DRAWING(S) - The figure shows a schematic cross
    section of machine.
        Stator (2)
        Rotors (3,4)
        Coil unit (6)
        Cores (7)
        pp; 74 DwgNo 1/22
Title Terms: ELECTRIC; MOTOR; GENERATOR; TWO; ROTOR; DOUBLE; WOUND; STATOR
Derwent Class: X11; X13
International Patent Class (Main): H02K-001/22; H02K-016/02
International Patent Class (Additional): H02K-021/12; H02K-051/00
File Segment: EPI
           (Item 1 from file: 347)
DIALOG(R) File 347: JAPIO
(c) 2003 JPO & JAPIO. All rts. reserv.
            **Image available**
06334225
ROTATARY MACHINE
PUB. NO.:
              11-275827 A]
              October 08, 1999 (19991008)
PUBLISHED:
INVENTOR(s): NAKANO MASAKI
APPLICANT(s): NISSAN MOTOR CO LTD
             10-077465 [JP 9877465]
APPL. NO.:
```

1

FILED: INTL CLASS:

•

March 25, 1998 (19980325) H02K-016/02; H02K-021/12

ABSTRACT

PROBLEM TO BE SOLVED: To reduce the number of item of a stator and number of steps in the process of assembling them when two rotors are provided at both sides of the stator.

SOLUTION: Having a body 1, this rotatary machine is constituted of two rotors 3, 4 and a stator 2 structured in three layers on the same shaft. Then, a single coil 6 is formed on the stator 2 and compound currents are caused to flow in this single coil 6, in such a way that the same number of revolving magnetic fields with the number of rotors 3, 4 are produced. Here, rotors 3, 4 are arranged at both sides of the stator 3 with a gap 8 at a given interval. If the ratio of the number of magnetic poles of these two rotors 3, 4 is expressed as N:1 (where N = an integer of 2 or larger), the total number of salient poles 7d at the side facing the rotor, having a fewer number of magnetic poles of the salient poles formed at the both sides of the stator 2, is set as 1/N of the total number of the single coils 6.

COPYRIGHT: (C)1999, JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-275827

(43)公開日 平成11年(1999)10月8日

(51) Int.Cl.6

識別記号

FΙ

H02K 16/02

21/12

H 0 2 K 16/02

21/12

M

審査請求 未請求 請求項の数2 OL (全 31 頁)

(21)出願番号

(22)出願日

特願平10-77465

平成10年(1998) 3月25日

(71)出願人 000003997

日産自動車株式会社

神奈川県横浜市神奈川区宝町2番地

(72)発明者 中野 正樹

神奈川県横浜市神奈川区宝町2番地 日産

自動車株式会社内

(74)代理人 弁理士 後藤 政喜 (外1名)

(54) 【発明の名称】 回転電機

(57)【要約】

【課題】 ステータの両側に2つのロータを備える場合 に、ステータの部品点数と組み付けの工数を小さくす る。

【解決手段】 2つのロータ(3,4)と1つのステータ(2)を 三層構造かつ同一の軸上に構成するとともに、前記ステ ータ(2)に単一のコイル(6)を形成し、この単一のコイル (6) に前記ロータの数と同数の回転磁場が発生するよう に複合電流を流すようにした回転電機において、ステー タ(2)の両側に所定のギャップ(8)をおいてロータ(3,4) を配置し、これら2つのロータ(3,4)の磁極数比をN:1(N は2以上の整数)とする場合に、ステータ(2)の両側に形 成される突極のうち、磁極数の少ないほうのロータに対 向する側の突極(7d)の総数を単一のコイル(6)の総数の1 /Nとする。

2…ステータ

6…コイル

3…外側ロータ

7…コア

4…内側ロータ

7d…突極

【特許請求の範囲】

【請求項1】2つのロータと1つのステータを三層構造かつ同一の軸上に構成するとともに、前記ステータに単一のコイルを形成し、この単一のコイルに前記ロータの数と同数の回転磁場が発生するように複合電流を流すようにした回転電機において、

ステータの両側に所定のギャップをおいてロータを配置し、これら2つのロータの磁極数比をN:1(Nは2以上の整数)とする場合に、前記ステータの両側に形成される突極のうち、磁極数の少ないほうのロータに対向する側の突極の総数を前記単一のコイルの総数の1/Nとすることを特徴とする回転電機。

【請求項2】前記単一のコイルを巻回するコアを、磁気抵抗の大きな部位で連結することにより一体で形成することを特徴とする請求項1に記載の回転電機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は回転電機に関す る.

[0002]

【従来の技術】同一定格トルクの同期モータを独立に2つ設け、それぞれを同期回転させるようにしたものが提案されている(特開平9-275673号公報参照)。 【0003】

【発明が解決しようとする課題】ところで、構造をコンパクトにするため、2つのロータと1つのステータを三層構造かつ同一の軸上に構成することが考えられる(特開平8-340663号公報参照)。

【0004】この場合、2つのロータを別々に同期回転させるため、ステータには各ロータに専用のコイルを用意するとともに、この各専用コイルに流す電流を制御するインバータ(電流制御器)を2つ備えさせなければならない。

【0005】しかしながら、それぞれのコイル、それぞれのインバータに電流を流すのでは、電流による損失 (銅損、スイッチングロス)をまぬがれない。

【0006】そこで、コイルを共用化するため単一のコイルとし、このコイルに複数の回転磁場が発生するように複合電流を流すことにより、電流による損失を防止することが考えられる。

【0007】たとえば、図1、図5に示したように円筒状のステータ2の外周側と内周側に所定のギャップをおいてロータ3、4を配置するとともに、外側ロータ3と内側ロータ4の磁極数比を2:1の組み合わせとしたとき、単一のコイルは合計で12個からなる。

【0008】この場合に、図5のように、ステータ2の両側に形成される突極の数を、外周側、内周側のいずれの側も単一コイルの総数と同じ数としたのでは、コイルを巻回するためのコアの数が増すばかりか、組付けの工数も多くなる。

【0009】そこで本発明は、ステータの両側に形成される突極のうち、磁極数の少ないほうのロータに対向する側の突極の総数を単一コイルの総数より少なくすることにより、ステータの部品点数と組み付けの工数を小さくすることを目的とする。

[0010]

【課題を解決するための手段】第1の発明は、2つのロータと1つのステータを三層構造かつ同一の軸上に構成するとともに、前記ステータに単一のコイルを形成し、この単一のコイルに前記ロータの数と同数の回転磁場が発生するように複合電流を流すようにした回転電機において、ステータの両側(ラジアルギャップ型では外周側と内周側)に所定のギャップをおいてロータを配置し、これら2つのロータの磁極数比をN:1(Nは2以上の整数)とする場合に、前記ステータの両側に形成される突極のうち、磁極数の少ないほうのロータに対向する側の突極の総数を前記単一のコイルの総数の1/Nとする。

【0011】第2の発明では、第1の発明において前記 単一のコイルを巻回するコアを、磁気抵抗の大きな部位 で連結することにより一体で形成する。

[0012]

【発明の効果】第1の発明では、ステータの両側に形成される突極のうち、磁極数の少ないほうのロータに対向する側の突極の総数を単一のコイルの総数の1/Nとしたので、いずれの側の突極の総数とも単一のコイルの総数と同数とした場合と比較して、単一のコイルを巻回するためのコアの総数が1/Nとなることから、ステータを構成する部品点数を減少させることが可能となるとともに、組み付けの工数を減らすことができる。

【0013】第2の発明では、ステータの部品点数と組み付けの工数をさらに減らすことができる。

[0014]

【発明の実施の形態】図1は回転電機本体1の断面図である。同図において、円筒状のステータ2の外側と内側に所定のギャップをおいてロータ3、4が配置され(3層構造)、外側と内側の各ロータ3、4は全体を被覆する外枠5(図3参照)に対して回転可能にかつ同軸に設けられている。

【0015】内側ロータ4は半周をS極、もう半周をN極とした一対の永久磁石で形成され、これに対して、外側ロータ3は内側ロータ4の一極当たり2倍の極数を持つように永久磁石極が配置される。つまり、外側ロータ3のS極、N極は各2個であり、90度毎にS極とN極が入れ替わるように構成されている。

【0016】このように各ロータ3、4の磁極を配置すると、内側ロータ4の磁石は外側ロータ3の磁石により回転力を与えられることがなく、この逆に外側ロータ3の磁石が内側ロータ4の磁石により回転力を与えられることもない。

【0017】たとえば、内側ロータ4の磁石が外側ロー

タ3に及ぼす影響を考えてみる。簡単のため内側ロータ4は固定して考える。まず、内側ロータ4のS極とこれに対峙する外側ロータ3の上側磁石SNとの関係において、図示の状態で仮に内側ロータ4のS極が出す磁力を受けて、外側ロータの上側磁石SNが時計方向に回転しようとしたとすると、内側ロータ4のN極とこれに対峙する外側ロータ3の下側磁石SNとの関係においては、内側ロータ4のN極により外側ロータ3の下側磁石SNが反時計方向に回転しようとする。つまり、内側ロータ4のS極が外側ロータ3の上側磁石に及ぼす磁力と内側ロータ4のN極が外側ロータ3の下側磁石に及ぼす磁力とがちょうど相殺することになり、外側ロータ3は内側ロータ4と関係なく、ステータ2との関係だけで制御可能となるわけである。このことは、後述するようにステータコイルに発生する回転磁場とロータとの間でも同じである。

【0018】ステータ2は、外側ロータ3の1磁極当たり3個のコイル6で構成され、合計12個(=3×4)のコイル6が同一の円周上に等分に配置されている。

【0019】7はコイルが巻回されるコアで、2つのコイル当たり1個のコア7が、円周上に所定のギャップ8をおいて配置される。このコア7には円周方向中央に外周側に向かって開くスリット7aを設けることで、外周側に2つの突極7b、7cが、内周側に1つの突極7dが形成される。したがって、全体では外周側に2×6=12個、内周側に1×6=6個の突極が構成される。外周側の突極の総数がコイルの総数と同数であるのに対して、内周側の突極の総数はコイル総数の1/2である。

【0020】上記12個のコイルは番号で区別しており、この場合に、後述するように6番目のコイルという意味でコイル6が出てくる。構成要素としての上記コイル6という表現と紛らわしいが、意味するところは異なっている。

【0021】これら12個のコイルには次のような複合電流 $I_1 \sim I_{12}$ を流す。

【0022】まず内側ロータ4に対する回転磁場を発生させる電流(三相交流)を流すため、 $\begin{bmatrix}1,2\end{bmatrix}=\begin{bmatrix}7,8\end{bmatrix}$ 、 $\begin{bmatrix}3,4\end{bmatrix}=\begin{bmatrix}9,10\end{bmatrix}$ 、 $\begin{bmatrix}5,6\end{bmatrix}=\begin{bmatrix}11,12\end{bmatrix}$ の3組のコイルに120度ずつ位相のずれた電流Id、If、leを設定する。

【0023】ここで、番号の下に付けたアンダーラインは反対方向に電流を流すことを意味させている。たとえば、1組のコイル [1,2] = [7,8] に電流Idを流すとは、コイル1からコイル?に向けてIdの半分の電流を、かつコイル2からコイル8に向けてIdのもう半分の電流を流すことである。1と2、7と8が円周上でそれぞれ近い位置にあるので、この電流供給により、内側ロータ4の磁極と同数(2極)の回転磁場を生じさせることが可能となる。

【0024】次に、外側ロータ3に対する回転磁場を発生させる電流(三相交流)を流すため、[1]=[4]=

[7] = [10]、[2] = [5] = [8] = [11]、[3] = [6] = [9] = [12] の3組のコイルに120度ずつ位相がずれた電流[a]、[b]を設定する。

【0025】たとえば、1組のコイル [1] = [4] = [7] = [10] に電流 Iaを流すとは、コイル1からコイル4に Iaの電流をかつコイル7からコイル10に向けても Iaの電流を流すことである。コイル1と7、コイル4と10がそれぞれ円周上の180度ずつ離れた位置にあるため、この電流供給により、外側ロータ3の磁極と同数(4極)の回転磁場を生じさせることができる。

【0026】この結果、12個のコイルには次の各複合電流 $I_1 \sim I_{12}$ を流せばよいことになる。

 $[0027]I_1 = (1/2)Id + Ia$

 $I_2 = (1/2) Id + Ic$

 $I_3 = (1/2) I_1 f + I_2 b$

 $I_4 = (1/2) If + Ia$

 $I_5 = (1/2) I_6 + I_6$

 $I_6 = (1/2) I_6 + I_b$

 $I_7 = (1/2) Id + Ia$

 $I_8 = (1/2) Id + Ic$

 $I_0 = (1/2) I f + I b$

 $I_{1,0} = (1/2) If + Ia$

 $I_{11} = (1/2) \underline{Ie} + \underline{Ic}$

 $I_{12} = (1/2) \underline{Ie} + Ib$

ただし、電流記号の下につけたアンダーラインは逆向き の電流であることを表している。

【0028】さらに図2を参照して複合電流の設定を説 明すると、図2は、図1との比較のため、ステータ2の 内周側と外周側に各ロータに対して別々の回転磁場を発 生させる専用のコイルを配置したものである。つまり、 内周側コイルd、f、eの配列が内側ロータに対する回転 磁場を、また外周側コイルa、c、bの配列が外側ロータ に対する回転磁場を発生する。この場合に、2つの専用 コイルを共通化して、図1に示した単一のコイルに再構 成するには、内周側コイルのうち、コイルdに流す電流 の半分ずつをコイルdの近くにあるコイルaとcに負担さ せ、同様にして、コイルfに流す電流の半分ずつをコイ ルfの近くにあるコイルbとaに、またコイルeに流す電流 の半分ずつをコイルeの近くにあるコイルcとbに負担さ せればよいわけである。上記複合電流11~112の式はこ のような考え方を数式に表したものある。なお、電流設 定の方法はこれに限られるものでなく、後述するよう に、他の電流設定方法でもかまわない。

【0029】このように電流設定を行うと、単一のコイルでありながら、内側ロータ4に対する回転磁場と外側ロータ3に対する回転磁場との2つの磁場が同時に発生するが、内側ロータ4の磁石は外側ロータ3に対する回転磁場により回転力を与えられることがなく、また外側ロータ3の磁石が内側ロータ4に対する回転磁場により回転力を与えられることもない。この点は、後述するよう

に、理論解析で証明されている。

【0030】上記Id、If、Ieの電流設定は内側ロータ4の回転に同期して、また上記Ia、Ic、Ibの電流設定は外側ロータ3の回転に同期してそれぞれ行う。トルクの方向に対して位相の進み遅れを設定するが、これは同期モータに対する場合と同じである。

【0031】図3は上記回転電機を制御するためのブロック図である。

【0032】上記複合電流 $I_1 \sim I_{12}$ をステータコイルに 供給するため、バッテリなどの電源11からの直流電流 を交流電流に変換するインバータ12を備える。瞬時電流 の全ての和は0になるためこのインバータ12は、図4に 詳細を示したように、通常の3相ブリッジ型インバータを12相にしたものと同じで、24個のトランジスタTr1~Tr24とこのトランジスタと同数のダイオードから構成される

【0033】インバータ12の各ゲート(トランジスタの ベース)に与えるON、OFF信号はPWM信号であ る。

【0034】各ロータ3、4を同期回転させるため、各ロータ3、4の位相を検出する回転角センサ13、14が設けられ、これらセンサ13、14からの信号が入力される制御回路15では、外側ロータ3、内側ロータ4に対する必要トルク(正負あり)のデータ(必要トルク指令)に基づいてPWM信号を発生させる。

【0035】このように、本発明の実施の形態では、2つのロータ3、4と1つのステータ2を三層構造かつ同一の軸上に構成するとともに、ステータ2に単一のコイル6を形成し、この単一のコイル6にロータの数と同数の回転磁場が発生するように複合電流を流すようにしたことから、ロータの一方をモータとして、残りをジェネレータとして運転する場合に、モータ駆動電力と発電電力の差の分の電流を単一のコイルに流すだけでよいので、効率を大幅に向上させることができる。

【0036】また、2つのロータに対してインバータが1つでよくなり、さらにロータの一方をモータとして、残りをジェネレータとして運転する場合には、上記のように、モータ駆動電力と発電電力の差の分の電流を単一のコイルに流すだけでよくなることから、インバータの電力スイッチングトランジスタのキャパシタンスを減らすことができ、これによってスイッチング効率が向上し、より全体効率が向上する。

【0037】また、ステータ2の外周側と内周側の両側に形成される突極のうち、内側ロータ(磁極数の少ないほうのロータ)4に対向する側の突極7dの総数をコイルの総数の1/2としたので、図5に示したように、いずれの側の突極の総数もコイルの総数と同数の12個とした場合と比較すると、コア7の総数が図5の場合の半分の6個となることから、ステータ2を構成する部品点数が減るとともに、組み付けの工数が減少する。

【0038】図6は第2実施形態で、第1実施形態の図 1に対応する。

【0039】図1では外側ロータ3と内側ロータ4の磁極数比(以下単に磁極数比という)が2:1の組み合わせであったのに対して、第2実施形態は、磁極数比が3:1の組み合わせとしたものである。

【0040】この実施形態では、3つのコイル当たり1個のコア21が円周上に所定のギャップ22をおいて配置され、このコア21には、円周方向に3分割する位置に外周側に向かって開く2つのスリット21a、21bを設けることで、外周側に3つの突極21c、21d、21eが、また内周側に1つの突極21fが形成される。したがって、全体では外周側に3×6=18個の、また内周側に1×6=6個の突極が構成される。外周側の突極の総数がコイル総数と同数であるのに対して、内周側の突極の総数はコイル総数の1/3である。

【0041】この実施形態でも、第1実施形態と同様に、内側ロータ4に対向する側の突極の総数をコイル総数と同数とした場合と比較すると、コア7の総数がこの場合の1/3の6個となることから、ステータ2の部品点数と組み付けの工数が減少する。

【0042】一方、磁極数比が3:1の組み合わせでは、磁極数比が2:1の組み合わせの場合と異なり、外側ロータ3の磁石と内側ロータ4の磁石の間に影響が若干発生する。つまり、外側ロータ3の磁石が内側ロータ4に対する回転磁場により回転力を与えられることがないのであるが、内側ロータ4の磁石のほうは、外側ロータ3に与える回転磁場の影響を受けるため、内側ロータ4がトルク変動を生じながら回転するのである。

【0043】しかしながら、この内側ロータ4の回転に対する外側ロータ3の干渉、つまり、内側ロータ4に生じる一定のトルク変動は、後述する理論解析からわかるように、外側ロータ3と内側ロータ4の位相差($\omega_1-\omega_2$)の関数になることから、予めその一定トルク変動分を打ち消すように、振幅変調を、外側コイルに対する回転磁場を発生させるための交流に対してかけることで、内側ロータ4に生じるトルク変動を打ち消すことができる。

【0044】したがって、この磁極数比が3:1の組み合わせでも、基本的に磁極数比が2:1の組み合わせと同様の作用効果を奏する。

【0045】一方、外側ロータ3の1磁極当たり3個のコイルを設ける点は図5の場合と同じであるため、ステータコイル6の総数が18個(=3×6)になる。したがって、ステータコイル6に18相の交流を流すインバータが必要になる。しかしながら、18相の交流は、180度毎に電流が反転するので、18相の半分である9相の交流を発生させるインバータであればよい。つまり、18個のトランジスタとこのトランジスタと同数のダイオードからインバータを構成すればよく、第1、第2の各実施形態よりもインバータを構成するトランジスタとダイオードの

数を減らすことができるのである。

【0046】図7は第3実施形態で、第2実施形態の図 6に対応する。

【0047】この実施形態は、ギャップに代えて、磁気抵抗の大きな部位32で連結することにより、ステータコイル6を巻回するコア31を一体で形成したもので、これによって、図6の場合よりもステータ2の部品点数と組み付けの工数がさらに減少する。

【0048】なお、31a、31bは外側ロータ3に対向する側の突極の総数をコイル総数と同数にするためのスリット、31c、31d、31eは外側ロータ3に対向する側の突極、31fは内側ロータ4に対向する側の突極である。ただし、各番号は、ステータ全体のうち1/6周分についてだけ示している

【0049】さて、第1、第2の各実施形態では磁極数 比が2:1の組み合わせで、また第3、第4の各実施形態 では磁極数比が3:1の組み合わせで説明したが、実は磁 極数比の組み合わせはこれに限られるものでなく、以下 の理論的解析によればどんな組み合わせでも回転電機として働かせることが可能であることが判明している。 【0050】以下にこの理論的解析を項を分けて説明する。

【0051】〈1〉N(2p-2p)基本形

磁極数比が1:1の組み合わせの場合である。

【0052】ここで、N(2p-2p)の表記について説明しておくと、左側の2pが外側磁石(外側ロータ)の磁極数、右側の2pが内側磁石(内側ロータ)の磁極数を表す。また、Nは正の整数であり、(2p-2p)を展開して整数倍し円環にしたものでも同じであることを表している。

【0053】磁極数比が1:1の最もシンプルなものは、 外側磁石の磁極数が2、内側磁石の磁極数が2の場合で、 これを図8に示す。

【0054】 $\langle 1-1 \rangle$ 図8において、外側磁石 m_1 、内側磁石 m_2 を等価コイルに置き換えると、各磁石に発生する磁束密度 B_1 、 B_2 は次のように表現することができる。【0055】

$$B_1 = B \mathbf{m}_1 \sin(\omega_1 t - \theta) = \mu \mathbf{I} \mathbf{m}_1 \sin(\omega_1 t - \theta) \qquad \cdots (1)$$

$$B_2 = B \mathbf{m}_2 \sin(\omega_2 t + \alpha - \theta) = \mu \mathbf{I} \mathbf{m}_2 \sin(\omega_2 t + \alpha - \theta) \qquad \cdots (2)$$

ただし、Bm,、Bm2:振幅

u:透磁率

In₁:外側磁石の等価直流電流 In₂:内側磁石の等価直流電流 ω₁:外側磁石の回転角速度

ω。: 内側磁石の回転角速度

 α : 2つの磁石の位相差(t=0のとき)

すと、各磁束密度は正弦波で変化する。

ただし、図8では外側磁石とコイルの位相が合った時刻 を0として考える。

【0056】ステータコイルに流す電流を3相交流とすれば、ステータコイルによる磁束密度Bcは

【0059】角度θにおける全体の磁束密度Bは次のよ

Bc = μ n (Ica(t)sin(θ)+Icb(t)sin(θ -2 π /3)

+Icc(t)sin(θ -4 π /3)) ...(3)

うになる。 【0060】

ただし、n: コイル定数

の式により与えることができる。

【0057】(3)式において、Ica(t)、Icb(t)、Icc(t)は120度ずつ位相のずれた電流である。

【0058】上記磁東密度B₁、B₂、Bcの変化を図9に示

 $B=B_1+B_2+Bc$

 $= \mu \operatorname{Im}_{1} \sin(\omega_{1} t - \theta) + \mu \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \theta)$ $+ \mu \operatorname{n}(\operatorname{Ica}(t) \sin(\theta) + \operatorname{Icb}(t) \sin(\theta - 2\pi/3)$

 $+Icc(t)sin(\theta-4\pi/3))$...(4)

ここで、外側磁石 m_1 に作用するトルクを τ_1 とすると、 直径を中心として線対称的に発生トルクが等しい。した がって f_1 を半周分の力とすると、全体の駆動力は $2f_1$ と なることから、

 $\tau_1 = 2f_1 \times r_1 (r_1 は半径)$ である。

【0061】トルク τ_1 を考察するには f_1 (つまり等価直流電流 Im_1 が磁場(磁束密度B) の影響を受けて生じる駆動力)を考えておけばよい。半周には 1 つの等価直流電流が流れるだけなので、 f_1 は次のようになる。

[0062]

$$f_1 = \operatorname{Im}_1 \times B(\theta = \omega_1 t)$$

$$= \operatorname{Im}_1 (\mu \operatorname{Im}_2 \sin(\omega_2 t + \alpha - \omega_1 t))$$

 $+\mu$ n(lca(t)sin(ω_1 t)+lcb(t)sin(ω_1 t-2 π /3)

同様にして、内側磁石 m_2 に作用するトルク τ_2 も直径を中心として線対称的に発生トルクが等しく、したがって f_2 を半周分の力とすると、 $\tau_2=2f_2\times r_2$ (r_2 は半径)

 $+lcc(t)sin(\omega_1 t-4\pi/3))) …(5)$ である。半周には1つの等価直流電流が流れるだけなので、 f_2 は次のようになる。

[0063]

```
f_2 = I m_2 \times B(\theta = \omega_2 t + \alpha)
                                      =\operatorname{Im}_{2}(\mu\operatorname{Im}_{1}\sin(\omega_{1}t-\omega_{2}t-\alpha))
                                                         +\mu n(lca(t)sin(\omega_2 t+\alpha)+lcb(t)sin(\omega_2 t+\alpha-2\pi/3)
                                                                                            +Icc(t)sin(\omega_2 t + \alpha - 4\pi/3))
                                                                                                                          ...(6)
                                                                                       すため、(3)式の3相交流Ica(t)、Icb(t)、Icc(t)を
 〈1-2〉外側回転磁界を与えた場合
コイルに外側磁石の位相に合わせてβの位相差電流を流
                                   Ica(t) = Ic cos(\omega_1 t - \beta)
                                                                                                                          \cdots(7a)
                                                                                                                          ···(7b)
                                   Icb(t) = Ic \cos(\omega_1 t - \beta - 2\pi/3)
                                                                                                                          ···(7c)
                                   Icc(t) = Ic cos(\omega_1 t - \beta - 4\pi/3)
ただし、Ic:振幅
                                                                                        【0064】(7a)~(7c)式を(5)、(6)式に代入して駆動
β:位相のズレ分
                                                                                      力f1、f2を計算する。
とする。
                                                                                       [0065]
                                   f_1 = Im_1 \times B(\theta = \omega_1 t)
                                      =\operatorname{Im}_{1}(\mu\operatorname{Im}_{2}\sin(\omega_{2}t+\alpha-\omega_{1}t))
                                      +\mun Ic(cos(\omega1t-\beta)sin(\omega1t)
                                                 +\cos(\omega_1 t - \beta - 2\pi/3)\sin(\omega_1 t - 2\pi/3)
                                                 +\cos(\omega_1 t - \beta - 4\pi/3)\sin(\omega_1 t - 4\pi/3))
                                ここで、cos(a+b)=1/2(sin(2a+b)-sin(b)) の公式を用いて
                                   f_1 = Im_1 (\mu Im_2 \sin(\omega_2 t + \alpha - \omega_1 t))
                                              +\mun Ic (1/2(\sin(2\omega_1 t-\beta)+\sin(\beta))
                                                    +1/2(\sin(2(\omega_1 t-2\pi/3)-\beta)+\sin(\beta))
                                                         +1/2(\sin(2(\omega_1t-4\pi/3)-\beta)+\sin(\beta)))
                                     =Im<sub>1</sub> (\muIm<sub>2</sub> sin(\omega_2t+\alpha-\omega_1t)
                                              +1/2\mun Ic(3sin(\beta)+sin(2(\omega_1t-2\pi/3)-\beta)
                                                                           +\sin(2(\omega_1 t-4\pi/3)-\beta))
                                     = \operatorname{Im}_{1}(\mu \operatorname{Im}_{2} \sin(\omega_{2}t + \alpha - \omega_{1}t)
                                              +1/2\mun Ic (3sin(\beta)+sin(2\omega_1t-4\pi/3-\beta)
                                                                            +\sin(2\omega_1 t - 8\pi/3 - \beta))
                                     = \operatorname{Im}_{1}(\mu \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \omega_{1} t))
                                              +1/2\mun Ic (3sin(\beta)+sin(2\omega_1t-\beta-2\pi/3)
                                                                             +\sin(2\omega_1 t - \beta - 4\pi/3))
                                     =-Im<sub>1</sub> (\mu Im<sub>2</sub> sin((\omega_2-\omega_1)t-\alpha)-3/2\mun Ic sin(\beta))
                                                                                                                             ...(8)
(8)式によれば一定トルクの項(第2項)に内側磁石の磁場
                                                                                      なっている。
の影響によるトルク変動(第1項)の項が加算された形と
                                                                                       [0066]
                                   f_2 = Im_2 \times B(\theta = \omega_2 t + \alpha)
                                         \lim_{t \to \infty} (\mu \lim_{t \to \infty} \sin(\omega_1 t - \omega_2 t - \alpha))
                                              +\mun Ic(cos(\omega_1t-\beta)sin(\omega_2t+\alpha)
                                                         +\cos(\omega_1 t-2\pi/3-\beta)\sin(\omega_2 t-2\pi/3+\alpha)
                                                         +\cos(\omega_1 t-4\pi/3-\beta)\sin(\omega_2 t-4\pi/3+\alpha))
                                ここで、cos(a)sin(b) = 1/2(sin(a+b)-sin(a-b)) の公式を用いて
                                   f_2 = Im_2 (\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha))
                                        +\mun Ic 1/2 (sin(\omega_1t-\beta+\omega_2t+\alpha)-sin(\omega_1t-\beta-\omega_2t-\alpha)
                                   +\sin(\omega_1 t-2\pi/3-\beta+\omega_2 t-2\pi/3+\alpha)-\sin(\omega_1 t-2\pi/3-\beta-\omega_2 t+2\pi/3-\alpha)
                                    +\sin(\omega_1 t - 4\pi/3 - \beta + \omega_2 t - 4\pi/3 + \alpha) - \sin(\omega_1 t - 4\pi/3 - \beta - \omega_2 t + 4\pi/3 - \alpha))
                                     = \operatorname{Im}_{2}(\mu \operatorname{Im}_{1} \sin(\omega_{1} t - \omega_{2} t - \alpha))
                                         +\mun Ic 1/2 (sin((\omega_1+\omega_2)t+\alpha-\beta)-sin((\omega_1-\omega_2)t-\alpha-\beta)
                                                            +\sin((\omega_1+\omega_2)t-4\pi/3+\alpha-\beta)-\sin((\omega_1-\omega_2)t-\alpha-\beta)
                                                            +\sin((\omega_1+\omega_2)t-8\pi/3+\alpha-\beta)-\sin((\omega_1-\omega_2)t-\alpha-\beta)
                                    = Im_2 (\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha))
```

```
-3/2\mun Ic \sin((\omega_1-\omega_2)t-\alpha-\beta)
                                          +\mun Ic 1/2(sin((\omega_1+\omega_2)t+\alpha-\beta)
                                                           +\sin((\omega_1+\omega_2)t+\alpha-\beta-2\pi/3)
                                                           +\sin((\omega_1+\omega_2)t+\alpha-\beta-4\pi/3))
                                   = \mu \operatorname{Im}_2(\operatorname{Im}_1 \sin((\omega_1 - \omega_2)t - \alpha) - 3/2n \operatorname{Ic} \sin((\omega_1 - \omega_2)t - \alpha - \beta)) \cdots (9)
 〈1-3〉内側回転磁界を与えた場合
                                                                                   すため、今度は上記の3相交流Ica(t)、Icb(t)、Icc(t)
コイルに内側磁石の位相に合わせてアの位相差電流を流
                                                                                                                       ···(10a)
                                 Ica(t) = Ic cos(\omega, t-\gamma)
                                 Icb(t) = Ic \cos(\omega_2 t - \gamma - 2\pi/3)
                                                                                                                        ···(10b)
                                 Icc(t) = Ic cos(\omega_2 t - \gamma - 4\pi/3)
                                                                                                                        ···(10c)
ただし、Ic:振幅
                                                                                    【0067】(10a)~(10c)式を(5)、(6)式に代入して外
r: 位相のズレ分
                                                                                    側磁石と内側磁石の各駆動力f<sub>1</sub>、f<sub>2</sub>を計算する。
とする。
                                                                                    [0068]
                                 f_1 = Im_1 (\mu Im_2 \sin(\omega_2 t + \alpha - \omega_1 t))
                                      +\mun Ic(cos(\omega_2t-\gamma)sin(\omega_1t)
                                                +\cos(\omega_2 t - \gamma - 2\pi/3)\sin(\omega_1 t - 2\pi/3)
                                                +\cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_1 t - 4\pi/3))
                               ここでも、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて
                                 f_1 = Im_1 (\mu Im_2 \sin(\omega_2 t + \alpha - \omega_1 t))
                                             +1/2\mun Ic(sin(\omega_2t-\gamma+\omega_1t)-sin(\omega_2t-\gamma-\omega_1t)
                                          +\sin(\omega_2 t - \gamma - 2\pi/3 + \omega_1 t - 2\pi/3) - \sin(\omega_2 t - \gamma - 2\pi/3 - \omega_1 t + 2\pi/3)
                                          +\sin(\omega_2 t - \gamma - 4\pi/3 + \omega_1 t - 4\pi/3) - \sin(\omega_2 t - \gamma - 4\pi/3 + \omega_1 t + 4\pi/3))
                                   = \operatorname{Im}_{1}(\mu \operatorname{Im}_{2} \sin((\omega_{2} - \omega_{1}) t + \alpha)
                                               +1/2\mun Ic(sin((\omega_2+\omega_1)t-\gamma)-sin((\omega_2-\omega_1)t-\gamma)
                                                              +\sin((\omega_2+\omega_1)t-\gamma-4\pi/3)-\sin((\omega_2-\omega_1)t-\gamma)
                                                              +\sin((\omega_2+\omega_1)t-\gamma-8\pi/3)-\sin((\omega_2-\omega_1)t-\gamma))
                                   =\operatorname{Im}_{1}(\mu\operatorname{Im}_{2}\sin((\omega_{2}-\omega_{1})t+\alpha)-3/2\mu\operatorname{n}\operatorname{Ic}\sin((\omega_{2}-\omega_{1})t-\gamma)
                                               +1/2\mun Ic(sin((\omega_2 + \omega_1)t-\gamma)+sin((\omega_2 + \omega_1)t-\gamma-2\pi/3)
                                                                                            +\sin((\omega_2 t + \omega_1) t - \gamma - 4\pi/3)))
                                   =-\mu \operatorname{Im}_1 \left( \operatorname{Im}_2 \sin((\omega_2 - \omega_1) t - \alpha) - 3/2 \operatorname{n} \operatorname{Ic} \sin((\omega_1 - \omega_2) t + \gamma) \right)
                                                                                                                        ...(11)
(11)式は外側磁石にトルク変動のみが発生することを示
                                                                                    [0069]
している。
                                  f_2 = Im_2 (\mu Im_1 \sin(\omega_2 t - \omega_1 t - \alpha))
                                                   +\mun Ic(cos(\omega_2t-\gamma)sin(\omega_2t+\alpha)
                                                              +\cos(\omega_2 t - \gamma - 2\pi/3)\sin((\omega_2 t + \alpha - 2\pi/3))
                                                              +\cos(\omega_2 t - \gamma - 4\pi/3)\sin((\omega_2 t + \alpha - 4\pi/3)))
                             ここで、\cos(a)\sin(b) = 1/2(\sin(a+b)-\sin(a-b))を用いて
                                  f_2 = Im_2 (\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha) - 3/2\mu n \text{ Ic } \sin(-\alpha - \gamma)
                                                   +1/2\mun Ic(sin(2\omega_2t+\alpha-\gamma)+sin(2\omega_2t+\alpha-\gamma-2\pi/3)
                                                                                            +\sin(2\omega_2t+\alpha-\gamma-4\pi/3)))
                                   = \mu \operatorname{Im}_{2} (\operatorname{Im}_{1} \sin((\omega_{1} - \omega_{2})t - \alpha) + 3/2 \operatorname{n} \operatorname{Ic} \sin(\alpha + \gamma))
                                                                                                                          ...(12)
(12)式によれば、一定トルクの項(第2項)に内側磁石の
                                                                                    もに与えた場合コイルに外側磁石と内側磁石にそれぞれ
磁場の影響によるトルク変動の項(第1項)が加算された
                                                                                    同期する電流を流すため、上記のIca(t)、Icb(t)、Icc
形をしている。
                                                                                    (t)を
 【0070】(1-4)外側回転磁界と内側回転磁界をと
                                  Ica(t) = Ic \cos(\omega_1 t - \beta) + Ic_2 \cos(\omega_2 t - \gamma)
                                                                                                                      ···(13a)
                                  lcb(t) = lc cos(\omega_1 t - \beta - 2\pi/3) + lc_2 cos(\omega_2 t - \gamma - 2\pi/3)
                                                                                                                      ···(13b)
                                  lcc(t) = lc cos(\omega_1 t - \beta - 4\pi/3) + lc_2 cos(\omega_2 t - \gamma - 4\pi/3)
                                                                                                                       ···(13c)
                                                                                     [0071]
とする。
```

```
f_1 = Im_1 (\mu Im_2 \sin(\omega_2 t + \alpha - \omega_1 t))
                                          +\mun((Ic cos(\omega_1t-\beta)+Ic<sub>2</sub> cos(\omega_2t-\gamma))sin(\omega_1t)
                                              +(Ic \cos(\omega_1 t - \beta - 2\pi/3)+Ic<sub>2</sub> \cos(\omega_2 t - \gamma - 2\pi/3))\sin(\omega_1 t - 2\pi/3)
                                              +(Ic \cos(\omega_1 t - \beta - 4\pi/3) + Ic_2 \cos(\omega_2 t - \gamma - 4\pi/3)) \sin(\omega_1 t - 4\pi/3)))
                                             = \operatorname{Im}_{1} \left( \mu \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \omega_{1} t) \right)
                                                       +\mu n(Ic cos(\omega_1 t - \beta)sin(\omega_1 t)
                                                              +Ic_2 \cos(\omega_2 t - \gamma) \sin(\omega_1 t)
                                                              +Ic \cos(\omega_1 t - \beta - 2\pi/3)\sin(\omega_1 t - 2\pi/3)
                                                              +Ic<sub>2</sub> cos(\omega_2t-\gamma-2\pi/3)sin(\omega_1t-2\pi/3)
                                                              +Ic \cos(\omega_1 t - \beta - 4\pi/3)\sin(\omega_1 t - 4\pi/3)
                                                              +Ic_2 \cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_1 t - 4\pi/3))
                                           =\operatorname{Im}_{1}(\mu\operatorname{Im}_{2}\sin(\omega_{2}t+\alpha-\omega_{1}t)
                                                       +\mun(Ic(cos(\omega_1t-\beta)sin(\omega_1t)
                                                                   +\cos(\omega_1 t - \beta - 2\pi/3)\sin(\omega_1 t - 2\pi/3)
                                                                   +\cos(\omega_1 t - \beta - 4\pi/3)\sin(\omega_1 t - 4\pi/3)
                                                       +Ic_2(\cos(\omega_2 t-\gamma)\sin(\omega_1 t)
                                                              +\cos(\omega_2 t - \gamma - 2\pi/3)\sin(\omega_1 t - 2\pi/3)
                                                              +\cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_1 t - 4\pi/3)))
                                           = \operatorname{Im}_{1}(\mu \operatorname{Im}_{2} \sin(\omega_{2}t + \alpha - \omega_{1}t))
                                                          +\mun(Ic(3/2sin(\beta))+Ic<sub>2</sub>(3/2sin((\omega<sub>1</sub>-\omega<sub>2</sub>)t+\gamma)))···(14)
                                                                                                       [0072]
(14)式によれば外側磁石に対する回転位相差(β)に応じ
た一定トルクに回転変動が乗った形となる。
                                        f_2 = Im_2 (\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha))
                                                   +\mu n((Ic cos(\omega_1 t-\beta))
                                                                      +lc_2 \cos(\omega_2 t-\gamma))\sin(\omega_2 t+\alpha)
                                                          +(Ic \cos(\omega_1 t - \beta - 2\pi/3)
                                                                     +lc_2 cos(\omega_2 t-\gamma-2\pi/3))sin(\omega_2 t+\alpha-2\pi/3)
                                              +(Ic \cos(\omega_1 t - \beta - 4\pi/3)
                                                                      +\text{Ic}_2 \cos(\omega_2 t - \gamma - 4\pi/3))\sin(\omega_2 t + \alpha - 4\pi/3))
                                           =\operatorname{Im}_{2}(\mu\operatorname{Im}_{1}\sin(\omega_{1}t-\omega_{2}t-\alpha)
                                                    +\mu n(Ic \cos(\omega_1 t - \beta)\sin(\omega_2 t + \alpha)
                                                                   +Ic_2 \cos(\omega_2 t - \gamma) \sin(\omega_2 t + \alpha)
                                                          +Ic \cos(\omega_1 t - \beta - 2\pi/3)\sin(\omega_2 t + \alpha - 2\pi/3)
                                                                   +Ic<sub>2</sub> \cos(\omega_2 t - \gamma - 2\pi/3)\sin(\omega_2 t + \alpha - 2\pi/3)
                                                          +Ic \cos(\omega_1 t - \beta - 4\pi/3)\sin(\omega_2 t + \alpha - 4\pi/3)
                                                                    +Ic<sub>2</sub> cos(\omega_2t-\gamma-4\pi/3)sin(\omega_2t+\alpha-4\pi/3))
                                         = \operatorname{Im}_{2} (\mu \operatorname{Im}_{1} \sin(\omega_{1} t - \omega_{2} t - \alpha))
                                                    +\mu n(Ic(cos(\omega_1 t-\beta)sin(\omega_2 t+\alpha))
                                                                +\cos(\omega_1 t - \beta - 2\pi/3)\sin(\omega_2 t + \alpha - 2\pi/3)
                                                                +\cos(\omega_1 t - \beta - 4\pi/3)\sin(\omega_2 t + \alpha - 4\pi/3)
                                                    +Ic_2(\cos(\omega_2t-\gamma)\sin(\omega_2t+\alpha)
                                                           +\cos(\omega_2 t - \gamma - 2\pi/3)\sin(\omega_2 t + \alpha - 2\pi/3)
                                                           +\cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_2 t + \alpha - 4\pi/3))
                                    ここで、\cos(a)\sin(b) = 1/2(\sin(a+b)-\sin(a-b))を用いて
                                         f_2 = Im_2 (\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha))
                                                    +\mun(Ic(1/2sin(\omega_1t-\beta+\omega_2t+\alpha)
                                                                                    -\sin(\omega_1 t - \beta - \omega_2 t - \alpha)
                                                                +1/2\sin(\omega_1 t - \beta - 2\pi/3 + \omega_2 t + \alpha - 2\pi/3)
                                                                                    -\sin(\omega_1 t - \beta - 2\pi/3 - \omega_2 t - \alpha + 2\pi/3))
```

 $+1/2\sin(\omega_1 t - \beta - 4\pi/3 + \omega_2 t + \alpha - 4\pi/3)$

```
-\sin(\omega_1 t - \beta - 4\pi/3 - \omega_2 t - \alpha + 4\pi/3))
                                                      +Ic_2(1/2\sin(\omega_2 t-\gamma+\omega_2 t+\alpha))
                                                                                        -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                                             +1/2\sin(\omega_2 t-\gamma-2\pi/3+\omega_2 t+\alpha-2\pi/3)
                                                                                        -\sin(\omega_2 t - \gamma - 2\pi/3 - \omega_2 t - \alpha + 2\pi/3))
                                                             +1/2\sin(\omega_2 t - \gamma - 4\pi/3 + \omega_2 t + \alpha - 4\pi/3)
                                                                                        -\sin(\omega_2 t - \gamma - 4\pi/3 - \omega_2 t - \alpha + 4\pi/3)))
                                             = Im_2(\mu Im_1 \sin(\omega_1 t - \omega_2 t - \alpha))
                                                      +\mu n (Ic(1/2sin(\omega_1 t - \beta + \omega_2 t + \alpha)))
                                                                                        -\sin(\omega_1 t - \beta - \omega_2 t - \alpha))
                                                                   +1/2\sin(\omega_1 t - \beta + \omega_2 t + \alpha - 4\pi/3)
                                                                                        -\sin(\omega_1 t - \beta - \omega_2 t - \alpha))
                                                                   +1/2\sin(\omega_1 t - \beta + \omega_2 t + \alpha - 8\pi/3)
                                                                                        -\sin(\omega_1 t - \beta - \omega_2 t - \alpha)))
                                                      +Ic_2(1/2\sin(\omega_2t-\gamma+\omega_2t+\alpha)
                                                                                        -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                                             +1/2\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 4\pi/3)
                                                                                        -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha)
                                                              +1/2\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 8\pi/3)
                                                                                        -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha)))
                                             = \lim_{\alpha \to \infty} (\mu \lim_{\alpha \to \infty} \sin(\omega_1 t - \omega_2 t - \alpha))
                                                      +1/2\mun Ic(sin(\omega_1t-\beta+\omega_2t+\alpha)-sin(\omega_1t-\beta-\omega_2t-\alpha)
                                                                         +\sin(\omega_1 t - \beta + \omega_2 t + \alpha - 4\pi/3) - \sin(\omega_1 t - \beta - \omega_2 t - \alpha)
                                                                         +\sin(\omega_1 t - \beta + \omega_2 t + \alpha - 8\pi/3) - \sin(\omega_1 t - \beta - \omega_2 t - \alpha))
                                                      +1/2\mun Ic<sub>2</sub>(sin(\omega_2t-\gamma+\omega_2t+\alpha)-sin(\omega_2t-\gamma-\omega_2t-\alpha))
                                                                           +\sin(\omega_1 t - \gamma + \omega_2 t + \alpha - 4\pi/3) - \sin(\omega_2 t - \gamma - \omega_2 t - \alpha)
                                                                           +\sin(\omega_1 t - \gamma + \omega_2 t + \alpha - 8\pi/3) - \sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                           =\operatorname{Im}_{2}(\mu\operatorname{Im}_{1}\sin(\omega_{1}\operatorname{t-}\omega_{2}\operatorname{t-}\alpha)
                                                      +1/2\mun Ic(-3\sin((\omega_2-\omega_1)t-\alpha-\beta)
                                                      +1/2\mun Ic<sub>2</sub> (-3sin(-\alpha-\gamma))
                                           =Im<sub>2</sub> (\muIm<sub>1</sub> sin(\omega, t-\omega<sub>2</sub>t-\alpha)
                                                      -3/2\mun Ic \sin((\omega_2-\omega_1)t-\alpha-\beta)
                                                                                                                                                     ...(15)
                                                      +3/2\mun Ic<sub>2</sub> 3sin(\alpha+\gamma)
                                                                                                          このようにして得られた上記(8)、(9)、(11)、(12)、(1
(15)式も内側磁石に対する回転位相差(α+γ)に応じた
                                                                                                          4)、(15)の式を次に並べる。
一定トルクに回転変動が乗った形となる。
 【0073】 〈1-5〉 まとめ
                                                                                                           [0074]
                                      外側回転磁界を与えた場合
                                                                                                                                                              ...(8)
                                          f_1 = -\mu \operatorname{Im}_1(\operatorname{Im}_2 \sin((\omega_2 - \omega_1)t - \alpha) - 3/2n \operatorname{Ic} \sin(\beta))
                                          f_2 = \mu \operatorname{Im}_2 \left( \operatorname{Im}_1 \sin((\omega_1 - \omega_2) t - \alpha) - 3/2 n \operatorname{Ic} \sin((\omega_1 - \omega_2) t - \alpha - \beta) \right)
                                                                                                                                                              ...(9)
                                       内側回転磁界を与えた場合
                                           f_1 = -\mu \operatorname{Im}_1 \left( \operatorname{Im}_2 \sin((\omega_2 - \omega_1)t - \alpha) - 3/2 \operatorname{n} \operatorname{Ic} \sin((\omega_1 - \omega_2)t + \gamma) \right)
                                                                                                                                                           ...(11)
                                                                                                                                                          ...(12)
                                           f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin((\omega_1 - \omega_2)t - \alpha) + 3/2 \operatorname{n} \operatorname{Ic} \sin(\alpha + \gamma))
                                      外側回転磁界と内側回転磁界をともに与えた場合
                                           f_1 = Im_1 (\mu Im_2 \sin(\omega_2 t + \alpha - \omega_1 t))
                                                                  +\mu n(Ic(3/2sin(\beta)))
                                                                                                                                                            ...(14)
                                                                           +Ic_2(3/2 \sin((\omega_1-\omega_2)t+\gamma)))
                                           f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(\omega_1 t - \omega_2 t - \alpha))
```

+3/2n Ic $\sin((\omega_1-\omega_2)t-\alpha-\beta)$ +3/2n Ic₂ sin($\alpha+\gamma$))

...(15)

これらの式のもつ意味は次の通りである。(8)式の右辺 第2項、(12)式の右辺第2項、(14)式の右辺第2項、(15) 式の右辺第3項だけが固定項(一定値)であり、固定項 が含まれるときだけ回転トルクが発生する。これに対し て、固定項以外の項は三角関数であるため、駆動力fの 平均値がゼロとなり、したがって、固定項以外の項によ っては回転トルクが発生しない。つまり、外側磁石に同 期させてステータコイルに電流を流したときは外側磁石 にのみ、内側磁石に同期させてステータコイルに電流を 流したときは内側磁石にのみ回転トルクが発生し、外側 磁石と内側磁石のそれぞれに同期させてステータコイル に電流を流すと、両方の磁石にそれぞれ回転トルクが発 生する。

【0075】このことから、磁極数比が1:1の組み合わ せであるとき、回転電機として働くことが可能であるこ とが証明された。これより類推して磁極数が任意の組み 合わせであるときにも、回転電機として働くことが可能

$$f_1 = A + IcC + Ic_2 V$$

ただし、 $A = \mu Im_1 Im_2 \sin(\omega_2 t + \alpha - \omega_1 t)$

 $V = Im_1 3/2 \sin((\omega_1 - \omega_2)t + \gamma)$

 $C = \mu n \operatorname{Im}_1 \operatorname{Ic}(3/2\sin(\beta))$

ここで、 $Ic=(C1-A-Ic_2V)/C$ という変調を加えればf 1=C1(定数)となり、外側磁石の回転からトルク変動が 解消される。

$$f_2 = -A + IcD + Ic_2E$$

ただし、 $D=3/2\mu Im_2 n \sin((\omega_1-\omega_2)t-\alpha-\beta)$

 $E = 3/2\mu Im_2 n \sin(\alpha + \gamma)$

ここで、 Ic_2 =(C2+A-IcD)/Eという変調を加えれ ば、 $f_2 = C2$ (定数)となり、内側磁石の回転からトルク 変動が解消される。

$$C1 = A + IcC + Ic_2 V$$

 $C2 = -A + IcD + Ic_2 E$

〈2〉N(2(2p)-2p)基本形

〈2-1〉図10を参照して磁極数比が2:1(図10では 外側磁石の磁極数が4、内側磁石の磁極数が2)であると $\mathbf{B_1} = \mathbf{Bm_1} \ \sin(2\omega_1 \mathbf{t} - 2\theta) = \mu \, \mathbf{Im_1} \ \sin(2\omega_1 \, \mathbf{t} - 2\theta)$

となるのに対して、内側磁石に発生する磁束密度B₂は上

$$B_2 = Bm_2 \sin(\omega_2 t + \alpha - \theta) = \mu \operatorname{Im}_2 \sin(\omega_2 t + \alpha - \theta)$$

である。

【0084】ステータコイルの作る磁場は、外側回転磁 界用と内側回転磁界用に分けて計算するため、図10の

 $Bc_1 = \mu n (Ica(t)sin(2\theta) + Icb(t)sin(2\theta - 2\pi/3)$

 $+Icc(t)sin(2\theta-4\pi/3))$

 $Bc_2 = \mu n (Icd(t)sin(\theta)+Ice(t)sin(\theta-2\pi/3)$

+lcf(t)sin(θ -4 π /3))

とする。

【0085】ただし、Ica(t)、Icb(t)、Icc(t)のほか、 Icd(t)、Ice(t)、Icf(t)も120度位相のずれた電流であ である。 【0076】〈1-6〉トルク変動の抑制

一方、固定項を含む式において固定項の残りの項、つま り(8)式の右辺第1項、(14)式の右辺第1項および第3項に より2つの磁石の位相差 $(\omega_1 - \omega_2)$ に応じた一定のトルク 変動が外側磁石の回転に、また(12)式の右辺第1項、(1 5)式の右辺第1項および第2項により同じく2つの磁石の 位相差 $(\omega_1 - \omega_2)$ に応じた一定のトルク変動が内側磁石 の回転に生じる。

【0077】そこで、外側回転磁界と内側回転磁界をと もに与えた場合にトルク変動を抑えることを考える。上 記の(14)式より

 $f_1 = \mu \operatorname{Im}_1 \operatorname{Im}_2 \sin(\omega_2 t + \alpha - \omega_1 t) + \operatorname{Ic} \mu n \operatorname{Im}_1 \operatorname{Ic}(3/2\sin \alpha t)$ (β))+Ic₂Im₁ 3/2 sin($(\omega_1-\omega_2)$ t+ γ)

であるから、f₁を次のようにおく。

[0078]

...(16)

【0079】同様にして、上記の(15)式より

 $f_2 = \mu I m_2 I m_1 \sin(\omega_1 t - \omega_2 t - \alpha) + Ic 3/2 \mu I m_2 n \sin \alpha$ $((\omega_1 - \omega_2)t - \alpha - \beta) + lc_2 3/2\mu Im_2 n sin(\alpha + \gamma)$

であるから、f₂を次のようにおく。

[0080]

...(17)

【0081】したがって、両方の磁石とも一定回転にす るには、次の連立2元方程式をIc、Ic₂について解けば よい。

[0082]

...(18)

...(19)

きを考える。

【0083】各磁石を等価コイルに置き換えると、外側 磁石に発生する磁束密度Biは

...(21)

記(2)式と同じ、つまり

...(22)

ようにコイルを配置し、外周側と内周側の各磁石用のス テータコイルによる磁束密度Bc1、Bc2を、

...(23)

...(24)

【0086】上記の磁束密度 B_1 、 B_2 、 Bc_1 、 Bc_2 の変化を モデル的に図11に示す。

```
【0087】角度&での磁束密度Bは上記4つの磁束密度
                                                                                     [0088]
の和である。
                                  B = B_1 + B_2 + Bc_1 + Bc_2
                                    = \mu \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\theta) + \mu \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \theta)
                                                  +\mun(Ica(t)sin(2\theta)+Icb(t)sin(2\theta-2\pi/3)
                                                                               +Icc(t)sin(2\theta-4\pi/3)
                                                  +\mun(Icd(t)sin(\theta)+Ice(t)sin(\theta-2\pi/3)
                                                                             +Icf(t)sin(\theta-4\pi/3)
                                                                                                                       ...(25)
外側磁石m_1に作用するトルクを\tau_1とすると、\tau_1 = f_1
                                                                                    について考える。一周に4つの等価直流電流が流れるの
\times r_1(r_1は半径)である。図10では直径を中心として線
                                                                                    で、これら4つの電流に働く力の和がf1となる。
対称的に発生トルクが等しくならないので、一周の全て
                                                                                     [0089]
                                  f_1 = I m_1 \times B(\theta = \omega_1 t) + I m_1 \times B(\theta = \omega_1 t + \pi)
                                                                -\operatorname{Im}_1 \times \operatorname{B}(\theta = \omega_1 t + \pi/2)
                                                                -\operatorname{Im}_1 \times \operatorname{B}(\theta = \omega_1 t + 3\pi/2)
                                     = \mu \operatorname{Im}_{1} \left( \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{1} t) + \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{1} t - 2\pi) \right)
                                                                               -\operatorname{Im}_{i} \sin(2\omega_{i} t-2\omega_{i} t-\pi)
                                                                               -\operatorname{Im}_1 \sin(2\omega_1 t - 2\omega_1 t + 3\pi)
                                               +Im<sub>2</sub> \sin(\omega_2 t + \alpha - \omega_1 t)+Im<sub>2</sub> \sin(\omega_2 t + \alpha - \omega_1 t + \pi)
                                                                                -Im_2 \sin(\omega_2 t + \alpha - \omega_1 t + \pi/2)
                                                                                -\ln_2 \sin(\omega_2 t + \alpha - \omega_1 t + \pi/2)
                                               +n(Ica(t)sin(2\omega_1t)+Icb(t)sin(2\omega_1t-2\pi/3)
                                                                            +Icc(t)sin(2\omega_1t-4\pi/3))
                                               +n(Ica(t)sin(2\omega_1t+2\pi)+Icb(t)sin(2\omega_1t+2\pi-2\pi/3)
                                                                                  +Icc(t)sin(2\omega_1 t + 2\pi - 4\pi/3))
                                               -n(Ica(t)sin(2\omega_1t+\pi)+Icb(t)sin(2\omega_1t+\pi/3)
                                                                                +Icc(t)sin(2\omega, t-\pi/3)
                                               -n(Ica(t)sin(2\omega_1t+\pi)+Icb(t)sin(2\omega_1t+\pi/3)
                                                                                +Icc(t)sin(2\omega_1 t-\pi/3)
                                               +n(Icd(t)sin(\omega_1t)+Ice(t)sin(\omega_1t-2\pi/3)
                                                                          +Icf(t)sin(\omega_1 t-4\pi/3))
                                               +n(Icd(t)sin(\omega_1t+\pi)+Ice(t)sin(\omega_1t+\pi-2\pi/3)
                                                                               +Icf(t)sin(\omega_1 t + \pi - 4\pi/3))
                                               -n(\operatorname{Icd}(t)\sin(\omega_1 t + \pi/2) + \operatorname{Ice}(t)\sin(\omega_1 t + \pi/2 - 2\pi/3)
                                                                                  +Icf(t)sin(\omega_1t+\pi/2-4\pi/3)
                                               -n (Icd(t)sin(\omega_1t+3\pi/2)+Ice(t)sin(\omega_1t+3\pi/2-2\pi/3)
                                                                                     +Icf(t)sin(\omega_1t+3\pi/2-4\pi/3)
                                    =4\mu \operatorname{Im}_{1} \operatorname{n}(\operatorname{Ica}(t)\sin(2\omega_{1}t)+\operatorname{Icb}(t)\sin(2\omega_{1}t-2\pi/3)
                                                                          +Icc(t)sin(2\omega, t-4\pi/3))
                                                                                                                       ...(26)
(26)式によれば、コイルa、b、cの励磁電流によって外
                                                                                    とすると、
側磁石に作用するトルクをコントロールできることを示
                                                                                    \tau_{12} = f_2 \times r_2 (r_2 は半径)
している。また、コイルd、e、fの励磁電流の影響を受
                                                                                    である。一周に2つの等価直流電流が流れるので、これ
けないことも示している。
                                                                                    ら2つの電流に働く力の和がfgとなる。
【0090】次に、内側磁石m_2に作用するトルクを\tau_2
                                                                                     [0091]
                                  f_2 = Im_2 \times B(\theta = \omega_2 t + \alpha) - Im_2 \times B(\theta = \omega_2 t + \pi + \alpha)
                                     = \mu \operatorname{Im}_{2} \left( \operatorname{Im}_{1} \sin \left( 2\omega_{1} \operatorname{t-}2\omega_{2} \operatorname{t-}2\alpha \right) - \operatorname{Im}_{1} \sin \left( 2\omega_{1} \operatorname{t-}2\omega_{2} \operatorname{t-}2\alpha - 2\pi \right) \right)
                                                                                     +\text{Im}_2 \sin(2\omega_2 t + 2\alpha - 2\omega_2 t - 2\alpha)
                                                                                    -\text{Im}_2 \sin(2\omega_2 t + 2\alpha - 2\omega_2 t - 2\alpha - 2\pi)
                                               +n(lca(t)sin(2\omega_2t+2\alpha)+lcb(t)sin(2\omega_2t+2\alpha-2\pi/3)
                                                                                  +Icc(t)sin(2\omega_2 t+2\alpha-4\pi/3)
                                               -n(\operatorname{Ica}(t)\sin(2\omega_2t+2\pi+2\alpha)+\operatorname{Icb}(t)\sin(2\omega_2t+2\pi+2\alpha-2\pi/3)
```

```
+Icc(t)sin(2\omega_2t+2\pi+2\alpha-4\pi/3)
                                       +n(Icd(t)sin(\omega_2t+\alpha)+Ice(t)sin(\omega_2t+\alpha-2\pi/3)
                                                                 +Icf(t)sin(\omega_2 t + \alpha - 4\pi/3))
                                      -n(\operatorname{Icd}(t)\sin(\omega_2 t + \pi + \alpha) + \operatorname{Ice}(t)\sin(\omega_2 t + \pi + \alpha - 2\pi/3)
                                                                    +lcf(t)sin(\omega_2t+\pi+\alpha-4\pi/3)))
                             =2\muIm<sub>2</sub> n (Icd(t)sin(\omega_2t+\alpha)+Ice(t)sin(\omega_2t+\alpha-2\pi/3)
                                                                +Icf(t)sin(\omega_2t+\alpha-4\pi/3)) ···(27)
(27)式によれば、コイルd、e、fの励磁電流によって内
                                                                      【0092】〈2-2〉外側回転磁界を与えた場合
側磁石に作用するトルクをコントロールでき、また、コ
                                                                     コイルa、b、cに外側磁石に合わせて B の位相差の電流
                                                                     を流す。つまり、上記の3相交流Ica(t)、Icb(t)、Icc
イルa、b、cの励磁電流の影響を受けないことを示して
                                                                     (t)11
いる。
                            Ica(t) = Ic cos(2\omega_1 t - 2\beta)
                                                                                                 ···(28a)
                                                                                                 ...(28ь)
                           Icb(t) = Ic \cos(2\omega_1 t - 2\beta - 2\pi/3)
                           Icc(t) = Ic cos(2\omega_1 t - 2\beta - 4\pi/3)
                                                                                                 ···(28c)
である。(28a)~(28c)を(26)、(27)式に代入してf<sub>1</sub>を
                                                                      [0093]
計算する。
                            f_1 = 4\mu Im_1 n Ic(cos(2\omega_1 t-2\beta)sin(2\omega_1 t)
                                               +\cos(2\omega_1 t - 2\beta - 2\pi/3)\sin(2\omega_1 t - 2\pi/3)
                                               +\cos(2\omega_1 t - 2\beta - 4\pi/3)\sin(2\omega_1 t - 4\pi/3))
                         ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて
                            f_1 = 4\mu Im_1 n Ic(1/2(sin(2\omega_1 t - 2\beta + 2\omega_1 t)))
                                                    -\sin(2\omega_1 t - 2\beta - 2\omega_1 t)
                                               +1/2(\sin(2\omega_1 t-2\beta-2\pi/3+2\omega_1 t-2\pi/3)
                                                    -\sin(2\omega_1 t - 2\beta - 2\pi/3 - 2\omega_1 t + 2\pi/3))
                                               +1/2(\sin(2\omega_1 t-2\beta-4\pi/3+2\omega_1 t-4\pi/3)
                                                    -\sin(2\omega_1 t - 2\beta - 4\pi/3 - 2\omega_1 t + 4\pi/3)))
                              =2\mu Im_1 n Ic(\sin(4\omega_1 t-2\beta) + \sin(2\beta)
                                              +\sin(4\omega_1 t-2\beta-4\pi/3)+\sin(2\beta)
                                              +\sin(4\omega_1 t-2\beta-8\pi/3)+\sin(2\beta)
                              =2\mu Im_1 n Ic(\sin(4\omega_1 t-2\beta))
                                              +\sin(4\omega_1 t-2\beta-4\pi/3)
                                              +\sin(4\omega_1 t-2\beta-4\pi/3)
                                              +3\sin(2\beta)
                                                                                                    ...(29)
                              =6\mu \text{Im}_{l} \text{ n Ic sin}(2\beta)
(29)式によれば、位相差(\beta)に応じて外側磁石のトルク
                                                                      【0094】(2-3)内側回転磁界を与えた場合
が変化することを示している。したがって、外側磁石の
                                                                     コイルd、e、fに外側磁石に合わせてアの位相差電流を
回転角度を計測し、それに対しβだけ位相をずらしてコ
                                                                     流すため、Icd(t)、Ice(t)、Icf(t)を
イルa、b、cに励磁電流を供給すればよいことがわか
                            Icd(t) = Ic cos(\omega_2 t - \gamma)
                                                                                                   ... (30a)
                                                                                                   ...(30b)
                            Ice(t) = Ic \cos(\omega_2 t - \gamma - 2\pi/3)
                                                                                                   \cdots(30c)
                            lcf(t) = lc cos(\omega_2 t - \gamma - 4\pi/3)
とする。
                                                                     る。
                                                                     [0096]
【0095】これらを(27)式に代入してf<sub>2</sub>を計算す
                            f_2 = 2\mu Im_2 n(Ic cos(\omega_2 t - \gamma)sin(\omega_2 t + \alpha))
                                           +Ic \cos(\omega_2 t - \gamma - 2\pi/3)\sin(\omega_2 t + \alpha - 2\pi/3)
                                           +Ic \cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_2 t + \alpha - 4\pi/3)
                        ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて
                            f_2 = 2\mu Im_2 n Ic(1/2(sin(\omega_2 t - \gamma + \omega_2 t + \alpha)))
                                                   -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                              +1/2(\sin(\omega_2 t - \gamma - 2\pi/3 + \omega_2 t + \alpha - 2\pi/3)
```

 $-\sin(\omega_2 t - \gamma - 2\pi/3 - \omega_2 t - \alpha + 2\pi/3))$ $+1/2(\sin(\omega_2 t - \gamma - 4\pi/3 + \omega_2 t + \alpha - 4\pi/3))$ $-\sin(\omega_2 t - \gamma - 4\pi/3 - \omega_2 t - \alpha + 4\pi/3))$ $= \mu \operatorname{Im}_2 \operatorname{n} \operatorname{Ic}(\sin(2\omega_2 t - \gamma + \alpha) + \sin(\gamma + \alpha))$ $+\sin(2\omega_2 t - \gamma - 4\pi/3 + \alpha) + \sin(\gamma + \alpha)$ $+\sin(2\omega_2 t - \gamma - 8\pi/3 + \alpha) + \sin(\gamma + \alpha))$ $= \mu \operatorname{Im}_2 \operatorname{n} \operatorname{Ic}(\sin(2\omega_2 t - \gamma + \alpha) + \sin(2\omega_2 t - \gamma - 4\pi/3 + \alpha))$ $+\sin(2\omega_2 t - \gamma - 8\pi/3 + \alpha)$ $+\sin(2\omega_2 t - \gamma - 8\pi/3 + \alpha)$ $+\sin(2\omega_2 t - \gamma - 8\pi/3 + \alpha)$ $+3\sin(\gamma + \alpha))$

 $=3\mu \text{Im}_2 \text{ n Ic } \sin(\gamma + \alpha)$

(31)式によれば位相差 $(\gamma+\alpha)$ により内側磁石のトルクが変化することを示している。したがって、内側磁石の回転角度を計測し、それに対し $(\gamma+\alpha)$ だけ位相をずらしてコイルd、e、fに励磁電流を供給すればよいことがわかる。

【0097】 (2-4) まとめ

(29)式は外側磁石に同期させてステータコイルに電流を流したときは外側磁石にのみ、また(31)式は内側磁石に同期させてステータコイルに電流を流したときは内側磁石にのみ回転トルクが発生する。それぞれの磁界はそれぞれの相電流にしか対応しないため、計算はしなかったが、外側磁石と内側磁石のそれぞれに同期させてステータコイルに電流を流すと、両方の磁石にそれぞれ回転トルクが発生する。

【0098】このことから、磁極数比が2:1の組み合わせであるときにも、回転電機として働くことが可能であることが証明された。

【0099】〈2-5〉ステータコイルに流す電流の設定図10では理論計算のため、外側回転磁場を発生させるための専用コイルと、内側回転磁場を発生させるための専用コイルとを考えたが、いま図12に示したように、コイルを共用させることを考える。図10において、コイルaとd、コイルbとf、コイルcとe、コイルaとd、コイルbとf、コイルcとeをまとめることができる。そこで、図10と図12のコイルを対照させると、図12のコイル1~12に流す複合電流 I_1 ~ I_{12} は、

```
I_1 = Ia + Id
I_2 = \underline{Ic}
I_3 = Ib + \underline{If}
I_4 = \underline{Ia}
I_5 = Ic + Ie
I_6 = \underline{Ib}
I_7 = Ia + \underline{Id}
I_8 = \underline{Ic}
I_9 = Ib + If
I_{10} = \underline{Ia}
I_{11} = Ic + \underline{Ie}
I_{12} = \underline{Ib}
Can Air L N C L N D D A.
```

【0100】この場合、I₁、I₃、I₅、I₇、I₉、I₁₁の各

...(31)

電流を流すコイルの負担が、 I_2 、 I_4 、 I_6 、 I_8 、 I_{10} 、 I_{12} の各電流を流す残りのコイルよりも大きくなるため、残りのコイルにも負担を分散させて内側回転磁界を形成させることを考える。

【0101】たとえば、図2と図1を対照すると、図1の1、1、2、2に対応する部分は、図2では外周側コイルのa、a、c、cと内周側コイルのd、dである。この場合に、コイルd、dの位相を等価的にずらした状態を考え、そのずらせたものを新たにコイルd」、d」とすると、このうちコイルd」に流す電流Id」の半分ずつをコイルaとに、またコイルd」に流す電流Id」の半分ずつをコイルaとにに割り振る。残りも同様である。

【0102】このようにすることで、別の電流設定として

```
I_1 = Ia + (1/2) Id

I_2 = Ic + (1/2) Id

I_3 = Ib + (1/2) If

I_4 = Ia + (1/2) If

I_5 = Ic + (1/2) Ie

I_6 = Ib + (1/2) Ie

I_7 = Ia + (1/2) Id

I_8 = Ic + (1/2) Id

I_9 = Ib + (1/2) If

I_{10} = Ia + (1/2) If

I_{11} = Ic + (1/2) Ie

I_{12} = Ib + (1/2) Ie

が得られる。ただし、コイル
```

が得られる。ただし、コイル e^- 、 f^- もコイルe、fを等価的にずらしたものである。

【0103】さらに考えると、

```
\begin{split} &I_{1} = Ia + I_{i} \\ &I_{2} = \underline{Ic} + I_{ii} \\ &I_{3} = Ib + I_{iii} \\ &I_{4} = \underline{Ia} + I_{iv} \\ &I_{5} = Ic + I_{v} \\ &I_{6} = \underline{Ib} + I_{vi} \\ &I_{7} = Ia + I_{vii} \\ &I_{8} = \underline{Ic} + I_{viii} \\ &I_{9} = Ib + I_{ir} \\ &I_{10} = \underline{Ia} + I_{x} \\ &I_{11} = Ic + I_{ri} \end{split}
```

```
【0104】〈2-6〉12相交流で内側回転磁界を与える
I_{12} = \underline{Ib} + I_{xii}
でもかまわない。つまり、これら」1~112の式の右辺第
2項の電流I_i \sim I_{xii}は図13に示したように12相交流と
                                                                              〈2-6-1〉12相交流で内側回転磁界を作ることを考える
なるわけで、この12相交流で内側回転磁界を形成するよ
                                                                             と、このときの磁束密度Bc2は次のようになる。
うにすればよいのである。
                                                                              [0105]
                               Bc_2 = \mu n(Ic_i(t)\sin(\theta) + Ic_{ii}(t)\sin(\theta - 2\pi/12)
                                                             +Ic_{iii}(t)\sin(\theta-4\pi/12)
                                                             +Ic_{iv}(t)\sin(\theta-6\pi/12)
                                                             +Ic_v(t)\sin(\theta-8\pi/12)
                                                             +Ic_{vi}(t)\sin(\theta-10\pi/12)
                                                             +Ic_{vii}(t)\sin(\theta-12\pi/12)
                                                             +Ic_{viii}(t)sin(\theta-14\pi/12)
                                                             +Ic_{ix}(t)\sin(\theta-16\pi/12)
                                                             +Ic_x(t)\sin(\theta-18\pi/12)
                                                             +Ic_{xi}(t)\sin(\theta-20\pi/12)
                                                             +Ic_{xii}(t)\sin(\theta-22\pi/12)
                                                                                                              ...(32)
このとき、全体の磁束密度Bは次のようになる。
                                                                              [0106]
                               B = B_1 + B_2 + Bc_1 + Bc_2
                                = \mu \operatorname{Im}_1 \sin(3\omega_1 t - 3\theta) + \mu \operatorname{Im}_2 \sin(\omega_2 t + \alpha - \theta)
                                              +\mun(Ica(t)sin(3\theta)+Icb(t)sin(3\theta-2\pi/3)
                                                                        +lcc(t)sin(3\theta-4\pi/3)
                                              +\mu n(Ic_i(t)sin(\theta)+Ic_{ii}(t)sin(\theta-2\pi/12)
                                                                       +Ic_{ii}(t)\sin(\theta-4\pi/12)
                                                                       +lc_{iv}(t)sin(\theta-6\pi/12)
                                                                       +Ic_v(t)\sin(\theta-8\pi/12)
                                                                       +Ic_{vi}(t)\sin(\theta-10\pi/12)
                                                                       +Ic_{vii}(t)sin(\theta-12\pi/12)
                                                                       +lc_{viii}(t)sin(\theta-14\pi/12)
                                                                       +Ic_{ix}(t)sin(\theta-16\pi/12)
                                                                       +Ic_x(t)\sin(\theta-18\pi/12)
                                                                       +Ic_{xi}(t)\sin(\theta-20\pi/12)
                                                                      +lc_{xii}(t)sin(\theta-22\pi/12)
                                                                                                           ...(33)
このときのfiを計算してみると、
                               f_1 = Im_1 \times B(\theta = \omega_1 t) + Im_1 \times B(\theta = \omega_1 t + \pi)
                                                          -Im_1 \times B(\theta = \omega_1 t + \pi/2)
                                                          -\operatorname{Im}_1 \times \operatorname{B}(\theta = \omega_1 t + 3\pi/2)
                                  = \mu \operatorname{Im}_{1} \left( \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{1} t) + \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{1} t - 2\pi) \right)
                                                                        -Im_1 \sin(2\omega_1 t - 2\omega_1 t - \pi)
                                                                        -Im_1 \sin(2\omega_1 t - 2\omega_1 t + 3\pi)
                                                                        +lm_2 \sin(\omega_2 t + \alpha - \omega_1 t)
                                                                        +Im_2 \sin(\omega_2 t + \alpha - \omega_1 t + \pi)
                                                                        -Im_2 \sin(\omega_2 t + \alpha - \omega_1 t + \pi/2)
                                                                        -Im_2 \sin(\omega_2 t + \alpha - \omega_1 t + \pi/2)
                                                 +n(Ica(t)sin(2\omega_1t)+lcb(t)sin(2\omega_1t-2\pi/3)
                                                                           +Icc(t)sin(2\omega_1 t-4\pi/3))
                                      +n(Ica(t)sin(2\omega_1t+2\pi)+Icb(t)sin(2\omega_1t+2\pi-2\pi/3)
                                                                                +Icc(t)sin(2\omega_1 t + 2\pi - 4\pi/3))
                                                 -n(Ica(t)sin(2\omega_1 t+\pi)+Icb(t)sin(2\omega_1 t+\pi/3)
                                                                               +Icc(t)sin(2\omega_1t+2\pi-\pi/3))
                                                 -n(Ica(t)sin(2\omega_1t+\pi)+Icb(t)sin(2\omega_1t+\pi/3)
```

+Icc (t) $\sin(2\omega_1 t + 2\pi - \pi/3)$)

```
+n(Ic_i(t)(sin(\omega_1 t)+sin(\omega_1 t+\pi)
                                                                                    -\sin(\omega_1 t + \pi/2)
                                                                                    -\sin(\omega_1 t + 3\pi/2)
                                                         +Ic_{ij}(t)(\sin(\omega_1 t-2\pi/12)+\sin(\omega_1 t-2\pi/12+\pi)
                                                                                                -\sin(\omega_1 t - 2\pi/12 + \pi/2)
                                                                                                -\sin(\omega_1 t - 2\pi/12 + 3\pi/2)
                                                         +Ic_{ij}(t)(\sin(\omega_1 t-4\pi/12)+\sin(\omega_1 t-4\pi/12+\pi)
                                                                                                  -\sin(\omega_1 t - 4\pi/12 + \pi/2)
                                                                                                  -\sin(\omega_1 t - 4\pi/12 + 3\pi/2))
                                                         +Ic_{iv}(t)(\sin(\omega_1 t-6\pi/12)+\sin(\omega_1 t-6\pi/12+\pi)
                                                                                                -\sin(\omega_1 t - 6\pi/12 + \pi/2)
                                                                                                -\sin(\omega_1 t - 6\pi/12 + 3\pi/2))
                                                         +Ic_v(t)(\sin(\omega_1 t-8\pi/12)+\sin(\omega_1 t-8\pi/12+\pi)
                                                                                              -\sin(\omega_1 t - 8\pi/12 + \pi/2)
                                                                                              -\sin(\omega_1 t - 8\pi/12 + 3\pi/2))
                                                         +1c_{vi}(t)(\sin(\omega_1 t-10\pi/12)+\sin(\omega_1 t-10\pi/12+\pi)
                                                                                                  -\sin(\omega_1 t - 10\pi/12 + \pi/2)
                                                                                                  -\sin(\omega_1 t - 10\pi/12 + 3\pi/2))
                                                         + Ic_{vii}(t) (\sin(\omega_1 t - 12\pi/12) + \sin(\omega_1 t - 12\pi/12 + \pi)
                                                                                                   -\sin(\omega_1 t - 12\pi/12 + \pi/2)
                                                                                                   -\sin(\omega_1 t - 12\pi/12 + 3\pi/2))
                                                         +Ic_{viii}(t) (\sin(\omega_1 t-14\pi/12)+\sin(\omega_1 t-14\pi/12+\pi)
                                                                                                   -\sin(\omega_1 t - 14\pi/12 + \pi/2)
                                                                                                   -\sin(\omega_1 t - 14\pi/12 + 3\pi/2)
                                                          +Ic_{ir}(t)(\sin(\omega_1 t-16\pi/12)+\sin(\omega_1 t-16\pi/12+\pi)
                                                                                                  -\sin(\omega_1 t - 16\pi/12 + \pi/2)
                                                                                                  -\sin(\omega_1 t - 16\pi/12 + 3\pi/2))
                                                          +I_{c_x}(t) (\sin(\omega_1 t - 18\pi/12) + \sin(\omega_1 t - 18\pi/12 + \pi)
                                                                                                -\sin(\omega_1 t - 18\pi/12 + \pi/2)
                                                                                                -\sin(\omega_1 t - 18\pi/12 + 3\pi/2))
                                                          +Ic_{xi}(t)(\sin(\omega_1 t-20\pi/12)+\sin(\omega_1 t-20\pi/12+\pi)
                                                                                                  -\sin(\omega_1 t - 20\pi/12 + \pi/2)
                                                                                                  -\sin(\omega_1 t - 20\pi/12 + 3\pi/2))
                                                          +Ic_{xij}(t) (\sin(\omega_1 t-22\pi/12) + \sin(\omega_1 t-22\pi/12 + \pi)
                                                                                                   -\sin(\omega_1 t - 22\pi/12 + \pi/2)
                                                                                                   -\sin(\omega_1 t - 22\pi/12 + 3\pi/2))
                                      =4\mun Im<sub>1</sub> (Ica(t)sin(2\omega_1t)+Icb(t)sin(2\omega_1t-2\pi/3)
                                                                               +Icc(t)sin(2\omega_1 t-4\pi/3)
                                                                                                                            ...(34)
となり、3相交流で内側回転磁界を作ったときの(26)式
                                                                                       る。
                                                                                       [0108]
と変わりない。
【0107】一方、f2を計算してみると、次のようにな
                                  f_2 = Im_2 \times B(\theta = \omega_2 t + \alpha) - Im_2 \times B(\theta = \omega_2 t + \pi + \alpha)
                                      = \mu \operatorname{Im}_{2} \left( \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{2} t - 2\alpha) - \operatorname{Im}_{1} \sin(2\omega_{1} t - 2\omega_{2} t - 2\alpha - 2\pi) \right)
                                          +\operatorname{Im}_2 \sin(2\omega_2 t + 2\alpha - 2\omega_2 t - 2\alpha) - \operatorname{Im}_2 \sin(2\omega_2 t + 2\alpha - 2\omega_2 t - 2\alpha - 2\pi)
                                            +n(Ica(t)sin(2\omega_2t+2\alpha)+Icb(t)sin(2\omega_2t+2\alpha-2\pi/3))
                                                                               +Icc(t)sin(2\omega_2t+2\alpha-4\pi/3)
                                            -n(Ica(t)sin(2\omega_2t+2\pi+2\alpha)+Icb(t)sin(2\omega_2t+2\pi+2\alpha-2\pi/3)
                                                                                     +Icc(t) \sin(2\omega_2 t + 2\pi + 2\alpha - 4\pi/3)
                                            +n(Ic_i(t)(sin(\omega_2t+\alpha)-sin(\omega_2t+\pi+\alpha))
```

```
+lc_{ii}(t)(sin(\omega_2 t + \alpha - 2\pi/12)-sin(\omega_2 t + \pi + \alpha - 2\pi/12))
                                                 +Ic_{ii} (t) (sin(\omega_2t+\alpha-4\pi/12)-sin(\omega_2t+\pi+\alpha-4\pi/12))
                                                 +Ic_{iv}(t) \left(\sin(\omega_2 t + \alpha - 6\pi/12) - \sin(\omega_2 t + \pi + \alpha - 6\pi/12)\right)
                                                 +Ic_v(t)(\sin(\omega_2t+\alpha-8\pi/12)-\sin(\omega_2t+\pi+\alpha-8\pi/12))
                                                 +Ic_{v_1}(t) (\sin(\omega_2 t + \alpha - 10\pi/12) - \sin(\omega_2 t + \pi + \alpha - 10\pi/12))
                                                 +Ic_{vii}(t) (\sin(\omega_2 t + \alpha - 12\pi/12) - \sin(\omega_2 t + \pi + \alpha - 12\pi/12))
                                                 +Ic_{viii}(t)(\sin(\omega_2 t + \alpha - 14\pi/12) - \sin(\omega_2 t + \pi + \alpha - 14\pi/12))
                                                 +Ic_{ix}(t) \left(\sin(\omega_2 t + \alpha - 16\pi/12) - \sin(\omega_2 t + \pi + \alpha - 16\pi/12)\right)
                                                 +Ic_{\tau}(t) \left(\sin(\omega_2 t + \alpha - 18\pi/12) - \sin(\omega_2 t + \pi + \alpha - 18\pi/12)\right)
                                                 +Ic_{xi}(t) \left(\sin(\omega_2 t + \alpha - 20\pi/12) - \sin(\omega_2 t + \pi + \alpha - 20\pi/12)\right)
                                                 +Ic_{\pi i i}(t) \left(\sin(\omega_2 t + \alpha - 22\pi/12) - \sin(\omega_2 t + \pi + \alpha - 22\pi/12)\right)
                                        =2\mu Im_2 n (Ic_i(t)sin(\omega_2 t+\alpha)
                                                         +Ic_{ij}(t)\sin(\omega_2 t + \alpha - 2\pi/12)
                                                         +Ic_{ii}(t)sin(\omega_2 t + \alpha - 4\pi/12)
                                                         +Ic_{iv}(t)\sin(\omega_2 t + \alpha - 6\pi/12)
                                                         +Ic_v(t)\sin(\omega_2 t + \alpha - 8\pi/12)
                                                         +Ic_{vi}(t)\sin(\omega_2 t + \alpha - 10\pi/12)
                                                         +Ic_{vii}(t)\sin(\omega_2 t + \alpha - 12\pi/12)
                                                         +Ic_{viii}(t)sin(\omega_2 t + \alpha - 14\pi/12)
                                                         +Ic_{ix}(t)\sin(\omega_2 t + \alpha - 16\pi/12)
                                                         +Ic_x(t)\sin(\omega_2 t + \alpha - 18\pi/12)
                                                         +Ic_{xi}(t)sin(\omega_2t+\alpha-20\pi/12)
                                                         +Ic_{xii}(t)\sin(\omega_2 t + \alpha - 22\pi/12)
                                                                                                                                    ...(35)
〈2-6-2〉内側回転磁界を与える場合
                                                                                           上記の12相交流Ic;(t)~Ic,;;(t)を
                                    Ic_i(t) = Ic_2(t) cos(\omega_2 - \gamma)
                                                                                                                                 ···(36a)
                                    Ic_{ii}(t) = Ic_{2}(t) \cos(\omega_{2}t - \gamma - 2\pi/12)
                                                                                                                                 ...(36b)
                                    Ic_{ii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 4\pi/12)
                                                                                                                                 ···(36c)
                                    Ic_{iv}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 6\pi/12)
                                                                                                                                 ···(36d)
                                    Ic_v(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 8\pi/12)
                                                                                                                                 ...(36e)
                                    Ic_{vi}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 10\pi/12)
                                                                                                                                 ···(36f)
                                 Ic_{vij}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 12\pi/12)
                                                                                                                              ···(36g)
                                    Ic_{viii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 14\pi/12)
                                                                                                                                 ···(36h)
                                    Ic_{1x}(t) = Ic_{2}(t) \cos(\omega_{2}t - \gamma - 16\pi/12)
                                                                                                                                 ···(36i)
                                    Ic_x(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 18\pi/12)
                                                                                                                                 ···(36j)
                                    Ic_{xi}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 20\pi/12)
                                                                                                                                 ···(36k)
                                    Ic_{xii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 22\pi/12)
                                                                                                                                 ...(361)
とおく。
                                                                                           を計算する。
【0109】(36a)式~(361)式を(35)式に代入して、f2
                                                                                            [0110]
                                    f_2 = 2\mu \operatorname{Im}_2 \operatorname{n} \operatorname{Ic}_2(t) (\cos(\omega_2 t - \gamma) \sin(\omega_2 t + \alpha))
                                                                    +\cos(\omega_2 t - \gamma - 2\pi/12)\sin(\omega_2 t + \alpha - 2\pi/12)
                                                                   +\cos(\omega_2 t - \gamma - 4\pi/12)\sin(\omega_2 t + \alpha - 4\pi/12)
                                                                   +\cos(\omega_2 t - \gamma - 6\pi/12)\sin(\omega_2 t + \alpha - 6\pi/12)
                                                                   +\cos(\omega_1 t - \gamma - 8\pi/12)\sin(\omega_1 t + \alpha - 8\pi/12)
                                                                   +\cos(\omega_2 t - \gamma - 10\pi/12)\sin(\omega_2 t + \alpha - 10\pi/12)
                                                                   +\cos(\omega_2 t - \gamma - 12\pi/12)\sin(\omega_2 t + \alpha - 12\pi/12)
                                                                   +\cos(\omega_2 t - \gamma - 14\pi/12)\sin(\omega_2 t + \alpha - 14\pi/12)
                                                                   +\cos(\omega_2 t-\gamma-16\pi/12)\sin(\omega_2 t+\alpha-16\pi/12)
                                                                   +\cos(\omega_2 t-\gamma-18\pi/12)\sin(\omega_2 t+\alpha-18\pi/12)
```

```
+\cos(\omega_2 t - \gamma - 20\pi/12)\sin(\omega_2 t + \alpha - 20\pi/12)
                                      +\cos(\omega_2 t - \gamma - 22\pi/12)\sin(\omega_2 t + \alpha - 22\pi/12))
ここで、\cos(a)\sin(b) = 1/2(\sin(a+b)-\sin(a-b))の公式を用いて
   f_2 = 2\mu \operatorname{Im}_2 \operatorname{n} \operatorname{Ic}_2(t) \left(\frac{1}{2} \left(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha)\right)\right)
                                             -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                      +1/2(\sin(\omega_2 t - \gamma - 2\pi/12 + \omega_2 t + \alpha - 2\pi/12)
                                             -\sin(\omega_2 t - \gamma - 2\pi/12 - \omega_2 t - \alpha + 2\pi/12))
                                     +1/2(\sin(\omega_2 t - \gamma - 4\pi/12 + \omega_2 t + \alpha - 4\pi/12)
                                             -\sin(\omega_2 t - \gamma - 4\pi/12 - \omega_2 t - \alpha + 4\pi/12))
                                     +1/2(\sin(\omega_1 t-\gamma_1 - 6\pi/12 + \omega_1 t+\alpha_1 - 6\pi/12)
                                             -\sin(\omega_1 t - \gamma_1 - 6\pi/12 - \omega_2 t - \alpha_1 + 6\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 8\pi/12 + \omega_2 t + \alpha - 8\pi/12)
                                             -\sin(\omega_2 t - \gamma - 8\pi/12 - \omega_2 t - \alpha + 8\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 10\pi/12 + \omega_2 t + \alpha - 10\pi/12)
                                            -\sin(\omega_2 t - \gamma - 10\pi/12 - \omega_2 t - \alpha + 10\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 12\pi/12 + \omega_2 t + \alpha - 12\pi/12)
                                           -\sin(\omega_2 t - \gamma - 12\pi/12 - \omega_2 t - \alpha + 12\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 14\pi/12 + \omega_2 t + \alpha - 14\pi/12)
                                             -\sin(\omega_2 t - \gamma - 14\pi/12 - \omega_2 t - \alpha + 14\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 16\pi/12 + \omega_2 t + \alpha - 16\pi/12)
                                             -\sin(\omega_2 t - \gamma - 16\pi/12 - \omega_2 t - \alpha + 16\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 18\pi/12 + \omega_2 t + \alpha - 18\pi/12)
                                             -\sin(\omega_2 t - \gamma - 18\pi/12 - \omega_2 t - \alpha + 18\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 20\pi/12 + \omega_2 t + \alpha - 20\pi/12)
                                             -\sin(\omega_2 t - \gamma - 20\pi/12 - \omega_2 t - \alpha + 20\pi/12))
                                      +1/2(\sin(\omega_2 t - \gamma - 22\pi/12 + \omega_2 t + \alpha - 22\pi/12)
                                             -\sin(\omega_2 t - \gamma - 22\pi/12 - \omega_2 t - \alpha + 22\pi/12))
     =2\mulm<sub>2</sub> n lc<sub>2</sub>(t)(1/2(sin(2\omega_2t-\tau+\alpha)+sin(\tau+\alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-4\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-8\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2 t-\gamma+\alpha-12\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2 t-\gamma+\alpha-16\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-20\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2 t - \gamma + \alpha - 24\pi/12) + \sin(\gamma + \alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-28\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-32\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2 t-\gamma+\alpha-36\pi/12)+\sin(\gamma+\alpha))
                                    +1/2(\sin(2\omega_2 t - \gamma + \alpha - 40\pi/12) + \sin(\gamma + \alpha))
                                    +1/2(\sin(2\omega_2t-\gamma+\alpha-44\pi/12)+\sin(\gamma+\alpha))
     = \mu \ln_2 n \ln_2(t) (\sin(2\omega_2 t - \gamma + \alpha))
                                  +\sin(2\omega_2 t - \gamma + \alpha - 4\pi/12)
                                  +\sin(2\omega_2 t-\gamma+\alpha-8\pi/12)
                                  +\sin(2\omega,t-\gamma+\alpha-12\pi/12)
                                  +\sin(2\omega_2t-\gamma+\alpha-16\pi/12)
                                  +\sin(2\omega_2 t - \gamma + \alpha - 20\pi/12)
                                  +\sin(2\omega_2 t - \gamma + \alpha - 24\pi/12)
                                  +\sin(2\omega_2 t - \gamma + \alpha - 28\pi/12)
                                  +\sin(2\omega_2t-\gamma+\alpha-32\pi/12)
                                  +\sin(2\omega_2 t - \gamma + \alpha - 36\pi/12)
                                  +\sin(2\omega_2t-\gamma+\alpha-40\pi/12)
```

 $+\sin(2\omega_2t-\gamma+\alpha-44\pi/12)$

```
+12\sin(\gamma+\alpha)
                            =\mu \operatorname{Im}_2 \operatorname{n} \operatorname{Ic}_2(t) \left( \sin(2\omega_2 t - \gamma + \alpha) \right)
                                                +\sin(2\omega_2 t - \gamma + \alpha - \pi/3)
                                                +\sin(2\omega_2 t - \gamma + \alpha - 2\pi/3)
                                                -\sin(2\omega_2 t - \gamma + \alpha)
                                                -\sin(2\omega_2 t - \gamma + \alpha - \pi/3)
                                                -\sin(2\omega_2 t - \gamma + \alpha - 2\pi/3)
                                                +\sin(2\omega_2 t - \gamma + \alpha)
                                                +\sin(2\omega_{\gamma}t-\gamma+\alpha-\pi/3)
                                                +\sin(2\omega_2t-\gamma+\alpha-2\pi/3)
                                                -\sin(2\omega_2 t - \gamma + \alpha)
                                                -\sin(2\omega_2 t - \gamma + \alpha - \pi/3)
                                                -\sin(2\omega_2 t - \gamma + \alpha - 2\pi/3)
                                                +12\sin(\gamma+\alpha)
                            =12\mu Im<sub>2</sub> n Ic<sub>2</sub>(t)sin(\gamma+\alpha)
                                                                                                  ...(37)
                                                                    電流は3相時の1/4で済むことを意味している。
 〈2-6-3〉 まとめ
内側回転磁界を12相交流で与えた場合に得られるこの(3
                                                                    【0111】〈3〉N(3(2p)-2p)基本形
                                                                    〈3-1〉図14を参照して磁極数比が3:1(たとえば外
7)式を、内側回転磁界を3相交流で与えた場合に得られ
                                                                    側磁石の磁極数が6、内側磁石の磁極数が2)である場合
る上記の(31)式と比較すると、(37)式のほうが(31)式よ
りも固定項(最後の項)が4倍となっている。つまり、
                                                                    を考える。
                                                                    【0112】この場合の外側と内側の各磁石に発生する
内側磁石の駆動電流を12相の交流(Ii~Ixii)とすれ
ば、内側磁石の駆動電流を3相交流とする場合より4倍も
                                                                    磁束密度B<sub>1</sub>、B<sub>2</sub>は次のようになる。
の駆動力が得られるわけである。このことは、逆にいえ
                                                                    [0113]
ば、内側磁石に同じ駆動力を発生させるのに、内側駆動
                                                                                                   ...(41)
                           B_1 = Bm_1 \sin(3\omega_1 t - 3\theta) = \mu Im_1 \sin(3\omega_1 t - 3\theta)
                           B_2 = Bm_2 \sin(\omega_2 t + \alpha - \theta) = \mu Im_2 \sin(\omega_2 t + \alpha - \theta)
                                                                                                   ...(42)
ステータコイルの作る回転磁場も分けて計算するため、
                                                                   Bc1、Bc2を、
外側と内側の各磁石用のステータコイルによる磁束密度
                           Bc_1 = \mu n(Ica(t)\sin(3\theta) + Icb(t)\sin(3\theta - 2\pi/3))
                                                       +Icc(t)sin(3\theta-4\pi/3)
                                                                                                  ...(43)
                           Bc_2 = \mu n(Icd(t)sin(\theta) + Ice(t)sin(\theta - 2\pi/3))
                                                      +Icf(t)sin(\theta-4\pi/3))
                                                                                                  ...(44)
とする。
                                                                    【0115】全体の磁束密度Bは次のようになる。
【0114】上記の磁東密度B<sub>1</sub>、B<sub>2</sub>、Bc<sub>1</sub>、Bc<sub>2</sub>の変化
                                                                    [0116]
を図15に示す。
                           B = B_1 + B_2 + Bc_1 + Bc_2
                          = \mu \operatorname{Im}_1 \sin(3\omega_1 t - 3\theta) + \mu \operatorname{Im}_2 \sin(\omega_2 t + \alpha - \theta)
                                        +\mun(Ica(t)sin(3\theta)+Icb(t)sin(3\theta-2\pi/3)
                                                                +Icc(t)sin(3\theta-4\pi/3)
                                        +\mun(Icd(t)sin(\theta)+Ice(t)sin(\theta-2\pi/3)
                                                              +Icf(t)sin(\theta-4\pi/3)
                                                                                                ...(45)
                                                                    である。半周に3つの等価直流電流が流れるので、これ
外側磁石m, に作用するトルク τ, は、直径を中心として
                                                                    ら3つの電流に働く力の和がf1となる。
線対称で発生するから、fiを半周分の力とすると、
\tau_1 = 2f_1 \times r_1 (r_1 は半径)
                                                                     [0117]
                           f_1 = I m_1 \times B(\theta = \omega_1 t) + I m_1 \times B(\theta = \omega_1 t + 3\pi/2)
                                                    -I \mathbf{u}_1 \times B(\theta = \omega_1 t + \pi/3)
                             = \mu \operatorname{Im}_{1} (\operatorname{Im}_{1} \sin(3\omega_{1}t - 3\omega_{1}t) + \operatorname{Im}_{1} \sin(3\omega_{1}t - 3\omega_{1}t - 2\pi)
                                                              -Im_1 \sin(3\omega_1 t - 3\omega_1 t - \pi)
                                   +lm_2 \sin(\omega_2 t + \alpha - \omega_1 t) + Im_2 \sin(\omega_2 t + \alpha - \omega_1 t - 2\pi/3)
```

```
-Im_2 \sin(\omega_2 t + \alpha - \omega_1 t - \pi/3)
                                        +n(Ica(t)sin(3\omega_1t)+Icb(t)sin(3\omega_1t-2\pi/3)
                                                                   +Icc(t)sin(3\omega_1 t-4\pi/3))
                                        +n(Ica(t)sin(3\omega_1t+2\pi)+Icb(t)sin(3\omega_1t+2\pi-2\pi/3))
                                                                        +Icc(t)sin(3\omega_1 t + 2\pi - 4\pi/3))
                                        -n(Ica(t)\sin(3\omega_1t+\pi)+Icb(t)\sin(3\omega_1t+\pi-2\pi/3)
                                                                       +\operatorname{Icc}(t)\sin(3\omega_1t+\pi-4\pi/3)
                                        +n(Icd(t)sin(\omega_1 t)+Ice(t)sin(\omega_1 t-2\pi/3)
                                                                 +Icf(t)sin(\omega_1t-4\pi/3))
                                        +n(Icd(t)sin(\omega_1 t+2\pi/3)+Ice(t)sin(\omega_1 t+2\pi/3-2\pi/3)
                                                                          +Icf(t)sin(\omega_1 t + 2\pi/3 - 4\pi/3))
                                        -n(\operatorname{Icd}(t)\sin(\omega_1 t + \pi/3) + \operatorname{Ice}(t)\sin(\omega_1 t + \pi/3 - 2\pi/3)
                                                                        +lef(t)sin(\omega_1t+\pi/3-4\pi/3))
                                = \mu \operatorname{Im}_1 \left( \operatorname{n}(\operatorname{Ica}(t)\sin(3\omega_1 t) + \operatorname{Icb}(t)\sin(3\omega_1 t - 2\pi/3) \right)
                                                                       +Icc(t)sin(3\omega_1t-4\pi/3))
                                            +n(Ica(t)sin(3\omega_1t)+Icb(t)sin(3\omega_1t-2\pi/3)
                                                                       +Icc(t)sin(3\omega_1t-4\pi/3))
                                            +n(Ica(t)sin(3\omega_1t)+Icb(t)sin(3\omega_1t-2\pi/3)
                                                                       +Icc(t)sin(3\omega_1t-4\pi/3))
                                            +n(Icd(t)sin(\omega_1 t)+Ice(t)sin(\omega_1 t-2\pi/3))
                                                                     +Icf(t)sin(\omega_1t-4\pi/3)
                                            +n(Icd(t)sin(\omega_1 t+2\pi/3)+Ice(t)sin(\omega_1 t)
                                                                              +Icf(t)sin(\omega_1 t-2\pi/3))
                                            +n(\operatorname{Icd}(t)\sin(\omega_1 t+4\pi/3)+\operatorname{Ice}(t)\sin(\omega_1 t+2\pi/3)
                                                                              +Icf(t)sin(\omega_1 t))
                                  = \mun Im<sub>1</sub> (3(Ica(t)sin(3\omega<sub>1</sub>t)+Icb(t)sin(3\omega<sub>1</sub>t-2\pi/3)
                                                                          +Icc(t)sin(3\omega_1t-4\pi/3))
                                                 +Icd(t)sin(\omega_1t)+Icd(t)sin(\omega_1t+2\pi/3)
                                                                        +Icd(t)sin(\omega_1t+4\pi/3)
                                                 +Ice(t)sin(\omega_1t)+Ice(t)sin(\omega_1t+2\pi/3)
                                                                        +Ice(t)sin(\omega_1t+4\pi/3)
                                                  +Icf(t)sin(\omega_1t)+Icf(t)sin(\omega_1t+2\pi/3)
                                                                        +Icf(t)sin(\omega_1t+4\pi/3))
                                  =3\mu \operatorname{Im}_1 \operatorname{n}(\operatorname{Ica}(t)\sin(3\omega_1 t) + \operatorname{Icb}(t)\sin(3\omega_1 t - 2\pi/3)
                                                                        +lcc(t)sin(3\omega_1t-4\pi/3))
                                                                                                                \cdots(46)
(46)式によれば、外側磁石を正弦波で近似した場合、コ
                                                                              直径を中心として線対称で発生するから、f2を半周分の
イルa、b、cの励磁電流によって外側磁石に作用するト
                                                                              力とすると、\tau_2 = 2f_2 \times r_2である。半周に1つの等価直
ルクをコントロールできることを示している。また、コ
                                                                              流電流が流れるので、この1つの等価直流電流に働く力
イルd、e、fの励磁電流の影響を受けないことも示して
                                                                              がf2となる。
いる。
                                                                               [0119]
{\tt 【0118}次に、内側磁石{\tt m_2}に作用するトルク{\tt r_2}も
                               f_2 = Im_2 \times B(\theta = \omega_2 t + \alpha)
                                  = \mu \operatorname{Im}_{2} (\operatorname{Im}_{1} \sin(3\omega_{1} t - 3\omega_{2} t - 3\alpha) + \mu \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \omega_{2} t - \alpha)
                                          +n(Ica(t)sin(3\omega_2t+3\alpha)+Icb(t)sin(3\omega_2t+3\alpha-2\pi/3)
                                                                           +Icc(t)sin(3\omega_2t+3\alpha-4\pi/3)
                                           +n(Icd(t)sin(\omega_2t+\alpha)+Ice(t)sin(\omega_2t+\alpha-2\pi/3)
                                                                        +lcf(t)sin(\omega_2t+\alpha-4\pi/3))
                                  = \mu \operatorname{Im}_{2} (\operatorname{Im}_{1} \sin(3(\omega_{1} - \omega_{2}) t - 3\alpha)
                                           +n(Ica(t)sin(3\omega_2t+3\alpha)+Icb(t)sin(3\omega_2t+3\alpha-2\pi/3)
                                                                           +Icc(t)sin(3\omega_2t+3\alpha-4\pi/3)
```

```
+n(Icd(t)sin(\omega_2t+\alpha)+Ice(t)sin(\omega_2t+\alpha-2\pi/3)
                                                                     +Icf(t)sin(\omega_2t+\alpha-4\pi/3)) ···(47)
(47)式をみると、内側磁石の回転に対して、計算してい
                                                                           2=\omega t+5\pi/6, \phi 3=\omega t+9\pi/6 \xi \phi 3=\omega t+9\pi/6 \xi
                                                                            【0120】それぞれの影響を考えて、回転角度\thetaの磁
る磁場以外の影響(相対位相角度で2π/3、4π/3)がある
ことがわかる。この影響をわかりやすくするためピーク
                                                                           界は、
の時刻tのときの各外側磁石の位置を\phi1=\omega t+\pi/6、\phi
                              B_1 = Bm_1 \left(\cos(\omega_1 t + \pi/6 - \theta) + \cos(\omega_1 t + 5\pi/6 - \theta) + \cos(\omega_1 t + 9\pi/6 - \theta)\right)
                                 = \mu \operatorname{Im}_{1} \left( \cos(\omega_{1} t + \pi/6 - \theta) + \cos(\omega_{1} t + 5\pi/6 - \theta) + \cos(\omega_{1} t + 9\pi/6 - \theta) \right)
これは120度ごとの交差角度のある磁極は内側コイル上
                                                                           して外側コイルの作る磁場も合計で0となる。したがっ
では打ち消しあってしまうことを示している。つまり、
                                                                           て、このときの駆動力f_2は次のようになる。
外側磁石の磁極数は内側磁石に影響を与えない。同様に
                                                                           [0121]
                              f_2 = \mu \operatorname{Im}_2 \left( \operatorname{n}(\operatorname{Icd}(t) \sin(\omega_2 t + \alpha) + \operatorname{Ice}(t) \sin(\omega_2 t + \alpha - 2\pi/3) \right)
                                                                      +lcf(t)sin(\omega_2t+\alpha-4\pi/3))
〈3-2〉外側回転磁界と内側回転磁界をともに与える場
                                                                           上記の3相交流Ica(t)、Icb(t)、Icc(t)と同じく3相交流
                                                                           Icd(t)、Ice(t)、Icf(t)を
                              Ica(t) = Ic_1 cos(3\omega_1 t - 3\beta)
                                                                                                           \cdots (49a)
                              Icb(t) = Ic<sub>1</sub> cos(3\omega_1t-3\beta-2\pi/3)
                                                                                                           \cdots (49b)
                              Icc(t) = Ic_1 \cos(3\omega_1 t - 3\beta - 4\pi/3)
                                                                                                           ···(49c)
                              Icd(t) = Ic_2(t) cos(\omega_2 t - \gamma)
                                                                                                           ···(50a)
                              Ice(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 2\pi/3)
                                                                                                           ...(50b)
                              Icf(t) = Ic_2(t) cos(\omega_2 t - \gamma - 4\pi/3)
                                                                                                           \cdots (50c)
とする。
                                                                           【0123】(49a)式~(49c)式を(46)式に、(49a)式~
【0122】ただし、(50a)式~(50c)式では振幅変調を
                                                                           (49c)および式(50a)式~(50c)式を(47)式に代入して、f
可能とするため、時間の関数であるIc2(t)とおいてい

 f<sub>2</sub>を計算する。

                                                                           [0124]
る。
                              f_1 = 3\mu \operatorname{Im}_1 \operatorname{n} \operatorname{Ic}_1(\cos(3\omega_1 t - 3\beta)\sin(3\omega_1 t))
                                                   +\cos(3\omega_1 t - 3\beta - 2\pi/3)\sin(3\omega_1 t - 2\pi/3)
                                                   +\cos(3\omega_1 t - 3\beta - 4\pi/3)\sin(3\omega_1 t - 4\pi/3)
                           ここで、cos(a)sin(b)=1/2(sin(a+b)-sin(a-b))の公式を用いて
                              f_1 = 3\mu Im_1 n Ic_1 (1/2(\sin(3\omega_1 t - 3\beta + 3\omega_1 t) - \sin(3\omega_1 t - 3\beta - 3\omega_1 t))
                                                   +1/2(\sin(3\omega_1 t-3\beta-2\pi/3+3\omega_1 t-2\pi/3)
                                                        -\sin(3\omega_1 t - 3\beta - 2\pi/3 - 3\omega_1 t + 2\pi/3))
                                                   +1/2(\sin(3\omega_1 t-3\beta-4\pi/3+3\omega_1 t-4\pi/3)
                                                        -\sin(3\omega_1 t - 3\beta - 4\pi/3 - 3\omega_1 t + 4\pi/3)))
                                 =3/2\mu \operatorname{Im}_1 \operatorname{n} \operatorname{Ic}_1 (\sin(6\omega_1 t - 3\beta) + \sin(3\beta))
                                                      +\sin(6\omega_1 t-3\beta-4\pi/3)+\sin(3\beta)
                                                      +\sin(6\omega_1 t-3\beta-8\pi/3)+\sin(3\beta))
                                 =3/2\mu Im_1 n Ic_1 (\sin(6\omega_1 t-3\beta) + \sin(6\omega_1 t-3\beta-4\pi/3)
                                                                          +\sin(6\omega_1 t-3\beta-8\pi/3)
                                                                          +3\sin(3\beta)
                                 =9/2\mu Im_1 n Ic_1 sin(3\beta)
                                                                                                            ...(51)
                              f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3(\omega_1 - \omega_2)t - 3\alpha)
                                              +n Ic<sub>1</sub> (cos(3\omega_1t-3\beta)sin(3\omega_2t+3\alpha)
                                                      +\cos(3\omega_1 t - 3\beta - 2\pi/3)\sin(3\omega_2 t + 3\alpha - 2\pi/3)
                                                      +\cos(3\omega_1 t - 3\beta - 4\pi/3)\sin(3\omega_2 t + 3\alpha - 4\pi/3))
                                              +n Ic_2(t)(cos(\omega_2 t-\gamma)sin(\omega_2 t+\alpha)
                                                          +\cos(\omega_2 t-\gamma-2\pi/3)\sin(\omega_2 t+\alpha-2\pi/3)
                                                          +\cos(\omega_2 t - \gamma - 4\pi/3)\sin(\omega_2 t + \alpha - 4\pi/3))
                          ここで、\cos(a)\sin(b) = 1/2(\sin(a+b)-\sin(a-b))の公式を用いて
```

```
f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3(\omega_1 - \omega_2)t - 3\alpha)
                                                        +n Ic<sub>1</sub> (1/2(\sin(3\omega_1 t-3\beta+3\omega_2 t+3\alpha)
                                                                         -\sin(3\omega_1 t - 3\beta - 3\omega_2 t - 3\alpha)
                                                                  +1/2(\sin(3\omega_1 t-3\beta-2\pi/3+3\omega_2 t+3\alpha-2\pi/3)
                                                                         -\sin(3\omega_1 t - 3\beta - 2\pi/3 - 3\omega_2 t - 3\alpha + 2\pi/3))
                                                                  +1/2(\sin(3\omega_1 t-3\beta-4\pi/3+3\omega_2 t+3\alpha-4\pi/3)
                                                                         -\sin(3\omega_1 t - 3\beta - 4\pi/3 - 3\omega_2 t - 3\alpha + 4\pi/3))
                                                        +n Ic_2(t)(1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha))
                                                                             -\sin(\omega_1 t - \gamma - \omega_2 t - \alpha))
                                                                       +1/2(\sin(\omega_2 t - \gamma - 2\pi/3 + \omega_2 t + \alpha - 2\pi/3)
                                                                             -\sin(\omega_2 t - \gamma - 2\pi/3 - \omega_2 t - \alpha + 2\pi/3))
                                                                       +1/2(\sin(\omega_2 t - \gamma - 4\pi/3 + \omega_2 t + \alpha - 4\pi/3)
                                                                             -\sin(\omega_2 t - \gamma - 4\pi/3 - \omega_2 t - \alpha + 4\pi/3))))
                                        = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3(\omega_1 - \omega_2) t - 3\alpha)
                                                              +1/2 n Ic<sub>1</sub> (sin(3\omega_1t+3\omega_2t-3\beta+3\alpha)
                                                                               +\sin(3\omega_1t+3\omega_2t-3\beta+3\alpha-4\pi/3)
                                                                               +\sin(3\omega_1t+3\omega_2t-3\beta+3\alpha-8\pi/3)
                                                                               -3\sin(3\omega_1 t - 3\beta + 3\omega_2 t - 3\alpha)
                                                              +1/2 n Ic<sub>2</sub>(t) (sin(2\omega_2 t - \gamma + \alpha)
                                                                                    +\sin(2\omega_2 t - \gamma + \alpha - 4\pi/3)
                                                                                    +\sin(2\omega_2 t - \gamma + \alpha - 8\pi/3) + 3\sin(\gamma + \alpha)))
                                        = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3(\omega_1 - \omega_2) t - 3\alpha)
                                                              +1/2 n Ic<sub>1</sub> (sin(3\omega_1t+3\omega_2t-3\beta+3\alpha)
                                                                               +\sin(3\omega_1t+3\omega_2t-3\beta+3\alpha-2\pi/3)
                                                                               +\sin(3\omega_1t+3\omega_2t-3\beta+3\alpha-4\pi/3)
                                                                               -3\sin(3\omega_1 t - 3\beta - 3\omega_2 t - 3\alpha)
                                                              +1/2 n Ic<sub>2</sub>(t) (\sin(2\omega_2 t - \gamma + \alpha)
                                                                                    +\sin(2\omega_2 t - \gamma + \alpha - 2\pi/3)
                                                                                    +\sin(2\omega_2 t - \gamma + \alpha - 4\pi/3)
                                                                                    +3\sin(\gamma+\alpha))
                                        = \mu \operatorname{Im}_2(\operatorname{Im}_1 \sin(3(\omega_1 - \omega_2)t - 3\alpha)
                                                              -3/2 n Ic<sub>1</sub> sin(3\omega_1t-3\beta-3\omega_2t-3\alpha)
                                                                                                                                       ...(52)
                                                              +3/2 n Ic_2(t)\sin(\gamma+\alpha))
ここで、f<sub>2</sub>については、(48)式のところでみたように、
外側磁石および外側コイルの作る磁界の影響がない場合
                                      f_2 = 3/2 \text{ n } Ic_2(t)\sin(\gamma + \alpha)
                                                                                                                                        ...(53)
となり、一定トルクで駆動できる。
                                                                                                る磁界の影響が残る場合は、(52)式において、
 【0125】これに対して、外側磁石や外側コイルの作
                                      Ic_2(t) = (2/3C/\mu Im_2 - Im_1 \sin(3(\omega_1 - \omega_2)t - 3\alpha)
                                                                  +n Ic<sub>1</sub> \sin(3\omega_1 t - 3\beta - 3\omega_2 t - 3\alpha))/(n \sin(\gamma + \alpha))
                                                                                                                                         ...(54)
ただし、C: 定数
```

とすると、 f_2 =Cとなり一定トルクでの駆動が可能となる。つまり、磁極数比が3:1の場合、(52)式によれば、内側磁石の回転に対して外側磁石の影響が若干発生することを意味している。より正確には位相差(ω_1 - ω_2)に応じた一定のトルク変動が内側磁石の回転に生じる。その様子を図16に示す。矩形波モデルとしたとき、顕著に外側磁石と内側磁石の磁力干渉の影響が表される。いま、状態Aを考えると、この状態よりも状態B

のほうが安定するため、Bの状態へ移そうとするトルクが発生する。このトルクは断続トルクとなり、位相差 $(\omega_1-\omega_2)$ によって発生するわけである。さらに述べると、現実にはコイルの間の距離の影響を受けたり完全な正弦波が実現できないため、完全に外側磁石の影響を打ち消すことができない場合があり、その場合の最も極端な場合がこの(52)式で表される。

【0126】しかしながら、(54)式により振幅変調を行うことで、その一定トルク変動を打ち消すことが可能と

なり、磁極数比が3:1の場合であっても内側磁石を一定 トルクで駆動できるのである。

【0127】 (3-3) まとめ

(51)、(52)の各式によれば、外側磁石と内側磁石のそれぞれに同期させてステータコイルに電流を流すとき、両方の磁石にそれぞれ回転トルクが発生することがわかる。計算はしなかったが、外側磁石に同期させてステータコイルに電流を流したときは外側磁石にのみ、また内側磁石に同期させてステータコイルに電流を流したときは内側磁石にのみ回転トルクが発生することはいうまでもない。このことから、磁極数比が3:1の組み合わせであるときにも、回転電機として働くことが可能であることが証明された。

【0128】〈3-4〉電流設定

```
I_1 = Ia + Id
                                                     I_{10} = I_1 = Ia + Id
I_2 = \underline{Ic}
                                                     I_{11} = I_2 = I_C
I_3 = Ib
                                                     I_{12} = \underline{I}_3 = \underline{I}\underline{b}
I_4 = Ia + If
                                                     I_{13} = I_4 = I_{a+1}f
                                                     I_{14} = \underline{I_5} = \underline{Ic}
l_5 = l_c
                                                     I_{15} = I_6 = I_b
I_6 = Ib
I_7 = Ia + Ie
                                                     I_{16} = \underline{Ia} + \underline{Ie}
I_8 = I_C
                                                     I_{17} = I_8 = I_C
I_9 = Ib
                                                      I_{18} = I_9 = Ib
```

とすればよいことがわかる。つまり、磁極数比が3:1の 組み合わせでは、9相の電流で代表することができる。 これは、磁極数比が2:1の組み合わせとの対比からいえ ば、磁極数比が3:1の組み合わせでは18相の交流としな ければならないのであるが、磁極数比が3:1の組み合わ せの場合に限り、半周で位相が反転しているため、18相 の半分の9相の交流で代表することができるからであ る。

【0129】ただし、コイル1、4、7、1、4、7のコイルの負担が大きくなるため、残りのコイルも使用して内側回転磁界を形成させることを考えると、

```
I_1 = Ia + I_i
                                                       I_{10} = I_1 = I_{a+1}
                                                       I_{11} = I_2 = I_{c+1}
I_2 = I_{c+I_{vi}}
I_3 = Ib + I_{i,i}
                                                       I_{12} = I_3 = I_{b+1}
                                                       I_{13} = I_4 = I_{a+1_{vii}}
I_4 = I_{a+I_{gii}}
I_5 = I_{c+I_{i,i,i}}
                                                       I_{14} = \underline{I}_5 = \underline{I}_{c} + \underline{I}_{iii}
l_6 = lb + l_{viii}
                                                       I_{15} = I_{6} = Ib + I_{viii}
I_7 = Ia + I_{iu}
                                                       I_{16} = \underline{I_7} = \underline{Ia} + \underline{I_{iv}}
I_8 = \underline{I_C} + \underline{I_i}_x
                                                       I_{17} = I_8 = I_{c+1}
I_9 = Ib + I_9
                                                       I_{18} = I_9 = \underline{Ib} + \underline{I_v}
であればよい。
```

【0130】内側回転磁界を形成させるための電流 I_{ix} 、 I_{ix} 、 I_{ix} の位置関係を図18に示す。

【 0 1 3 1 】 〈3-5〉9相交流で内側回転磁界を与える場合

〈3-5-1〉9相交流で内側回転磁界を作ることを考えると、このときの磁束密度Bc₂は次のようになる。

[0132]

```
\begin{split} \text{Bc}_2 &= \mu n (\text{Ic}_{\mathbf{i}}(t) \sin(\theta) + \text{Ic}_{\mathbf{i}\mathbf{i}}(t) \sin(\theta - 2\pi/9) \\ &\quad + \text{Ic}_{\mathbf{i}\mathbf{i}\mathbf{i}}(t) \sin(\theta - 4\pi/9) \\ &\quad + \text{Ic}_{\mathbf{i}\mathbf{v}}(t) \sin(\theta - 6\pi/9) \\ &\quad + \text{Ic}_{\mathbf{v}}(t) \sin(\theta - 8\pi/9) \\ &\quad + \text{Ic}_{\mathbf{v}\mathbf{i}}(t) \sin(\theta - 10\pi/9) \\ &\quad + \text{Ic}_{\mathbf{v}\mathbf{i}\mathbf{i}}(t) \sin(\theta - 12\pi/9) \\ &\quad + \text{Ic}_{\mathbf{v}\mathbf{i}\mathbf{i}\mathbf{i}}(t) \sin(\theta - 14\pi/9) \\ &\quad + \text{Ic}_{\mathbf{i}\mathbf{x}}(t) \sin(\theta - 16\pi/9) \\ \end{split}
```

したがって、全体の磁束密度Bは次のようになる。

[0133]

$$\begin{split} B = & B_1 + B_2 + Bc_1 + Bc_2 \\ = & \mu \, \text{Im}_1 \, \sin(3\omega_1 \, \text{t} - 3\, \theta) + \mu \, \text{Im}_2 \, \sin(\omega_2 \, \text{t} + \alpha - \theta) \\ & + \mu \, \text{n} \, (\text{Ica}(t) \sin(3\, \theta) + \text{Icb}(t) \sin(3\, \theta - 2\pi/3) \\ & + \text{Icc}(t) \sin(3\, \theta - 4\pi/3) \\ & + \mu \, \text{n} \, (\text{Ic}_i \, (t) \sin(\theta) + \text{Ic}_{ii} \, (t) \sin(\theta - 2\pi/9) \\ & + \text{Ic}_{iii} \, (t) \sin(\theta - 4\pi/9) \\ & + \text{Ic}_{iv} \, (t) \sin(\theta - 6\pi/9) \\ & + \text{Ic}_v \, (t) \sin(\theta - 8\pi/9) \\ & + \text{Ic}_{vi} \, (t) \sin(\theta - 10\pi/9) \end{split}$$

+ $Ic_{vi}(t)\sin(\theta-10\pi/9)$ + $Ic_{vii}(t)\sin(\theta-12\pi/9)$ + $Ic_{vii}(t)\sin(\theta-14\pi/9)$

 $+Ic_{ix}(t)\sin(\theta-16\pi/9)$...(56)

```
このときのf<sub>1</sub>を計算してみると、
```

```
f_1 = Im_1 \times B(\theta = \omega_1 t) + Im_1 \times B(\theta = \omega_1 t + 2\pi/3) - Im_1 \times B(\theta = \omega_1 t + \pi/3)
  = \mu \operatorname{Im}_{1} \left( \operatorname{Im}_{1} \left( \sin(3\omega_{1} t - 3\omega_{1} t) + \sin(3\omega_{1} t - 3\omega_{1} t + 2\pi \right) \right)
                                                      -\sin(3\omega_1 t - 3\omega_1 t + \pi)
                  +\operatorname{Im}_{2}(\sin(\omega_{2}t+\alpha-\omega_{1}t)+\sin(\omega_{2}t+\alpha-\omega_{1}t-2\pi/3)
                                                        -\sin(\omega_2 t + \alpha - \omega_1 t + \pi/3)
                  +n(Ica(t)(sin(3\omega_1 t)+sin(3\omega_1 t+2\pi)
                                                     -\sin(3\omega_1 t + \pi)
                  +Icb(t) (\sin(3\omega_1 t-2\pi/3)+\sin(3\omega_1 t+2\pi-2\pi/3)
                                                            -\sin(3\omega_1 t + \pi - 2\pi/3)
                  +Icc(t) (\sin(3\omega_1 t - 4\pi/3) + \sin(3\omega_1 t + 2\pi - 4\pi/3)
                                                            -\sin(3\omega_1 t + \pi - 4\pi/3))
                  +n(lc_1(t)(sin(\omega_1t)+sin(\omega_1t+2\pi/3)
                                                   +\sin(\omega_1 t + \pi/3)
                  +Ic_{ii}(t)(\sin(\omega_1 t-2\pi/9)+\sin(\omega_1 t-2\pi/9+2\pi/3))
                                                            +\sin(\omega_1 t - 2\pi/9 + \pi/3))
                   +Ic_{iii}(t)(\sin(\omega_1 t - 4\pi/9) + \sin(\omega_1 t - 4\pi/9 + 2\pi/3))
                                                              +\sin(\omega_1 t - 4\pi/9 + \pi/3)
                   +Ic_{iv}(t)(\sin(\omega_1 t-6\pi/9)+\sin(\omega_1 t-6\pi/9+2\pi/3)
                                                            +\sin(\omega_1 t - 6\pi/9 + \pi/3))
                   +\operatorname{Ic}_{v}(t)(\sin(\omega_{1}t-8\pi/9)+\sin(\omega_{1}t-8\pi/9+2\pi/3))
                                                           +\sin(\omega_1 t-8\pi/9+\pi/3)
                   +Ic_{vi}(t)(\sin(\omega_1 t-10\pi/9)+\sin(\omega_1 t-10\pi/9+2\pi/3))
                                                              +\sin(\omega_1 t - 10\pi/9 + \pi/3))
                   +Ic_{vii}(t)(\sin(\omega_1 t-12\pi/9)+\sin(\omega_1 t-12\pi/9+2\pi/3)
                                                                +\sin(\omega_1 t - 12\pi/9 + \pi/3))
                   +Ic_{viii}(t) (sin(\omega_1 t-14\pi/9)+sin(\omega_1 t-14\pi/9+2\pi/3)
                                                                  +\sin(\omega_1 t - 14\pi/9 + \pi/3))
                   +Ic_{ix}(t)(\sin(\omega_1 t-16\pi/9)+\sin(\omega_1 t-16\pi/9+2\pi/3))
                                                              +\sin(\omega_1 t - 16\pi/9 + \pi/3))
 \operatorname{Im}_1\left(\sin(3\omega_1 t - 3\omega_1 t) + \sin(3\omega_1 t - 3\omega_1 t + 2\pi\right) - \sin(3\omega_1 t - 3\omega_1 t + \pi)\right)
+\operatorname{Im}_2(\sin(\omega_2 t + \alpha - \omega_1 t) + \sin(\omega_2 t + \alpha - \omega_1 t - 2\pi/3) - \sin(\omega_2 t + \alpha - \omega_1 t + \pi/3)
                                                                                                            (=0)
+n(Ica(t)(sin(3\omega_1t)+sin(3\omega_1t+2\pi)-sin(3\omega_1t+\pi))
+Icb(t) (\sin(3\omega_1 t - 2\pi/3) + \sin(3\omega_1 t + 2\pi - 2\pi/3) - \sin(3\omega_1 t + \pi - 2\pi/3))
+Icc(t) (\sin(3\omega_1 t - 4\pi/3) + \sin(3\omega_1 t + 2\pi - 4\pi/3) - \sin(3\omega_1 t + \pi - 4\pi/3)))
+n(Ic; (t) (\sin(\omega_1 t) + \sin(\omega_1 t + 2\pi/3) + \sin(\omega_1 t + \pi/3))
                                                                                                          (=0)
+\mathrm{Ic_{ii}}\left(\mathrm{t}\right)\left(\sin(\omega_{1}\,\mathrm{t}\text{-}2\pi/9)+\sin(\omega_{1}\,\mathrm{t}\text{-}2\pi/9+2\pi/3)\right)+\sin(\omega_{1}\,\mathrm{t}\text{-}2\pi/9+\pi/3)\right)
                                                                                                              (=0)
+Ic_{iii}(t)(\sin(\omega_1 t-4\pi/9)+\sin(\omega_1 t-4\pi/9+2\pi/3))+\sin(\omega_1 t-4\pi/9+\pi/3))
                                                                                                             (=0)
+Ic_{iv}(t)(\sin(\omega_1 t - 6\pi/9) + \sin(\omega_1 t - 6\pi/9 + 2\pi/3) + \sin(\omega_1 t - 6\pi/9 + \pi/3))
                                                                                                              (=0)
+Ic_{\nu}(t)(\sin(\omega_1 t - 8\pi/9) + \sin(\omega_1 t - 8\pi/9 + 2\pi/3)) + \sin(\omega_1 t - 8\pi/9 + \pi/3))
                                                                                                              (=0)
+ I_{c_{\text{vi}}}(t) \left(\sin(\omega_1 t - 10\pi/9) + \sin(\omega_1 t - 10\pi/9 + 2\pi/3)\right)
                                           +\sin(\omega_1 t - 10\pi/9 + \pi/3))
                                                                                                                (=0)
```

```
特開平11-275827
```

```
+Ic_{vii}(t) \left( \sin(\omega_1 t - 12\pi/9) + \sin(\omega_1 t - 12\pi/9 + 2\pi/3) \right)
                                                                     +\sin(\omega_1 t-12\pi/9+\pi/3))
                                                                                                                             (=0)
                              +Ic_{viii}(t)(\sin(\omega_1 t-14\pi/9)+\sin(\omega_1 t-14\pi/9+2\pi/3))
                                                                       +\sin(\omega_1 t - 14\pi/9 + \pi/3))
                                                                                                                              (=0)
                              +Ic_{ix}(t)(\sin(\omega_1 t-16\pi/9)+\sin(\omega_1 t-16\pi/9+2\pi/3))
                                                                   +\sin(\omega_1 t - 16\pi/9 + \pi/3))
                                                                                                                             (=0)
                                    =3\mun Im<sub>1</sub> (Ica(t)sin(3\omega<sub>1</sub>t)+Icb(t)sin(3\omega<sub>1</sub>t-2\pi/3)
                                                                            +Icc(t)sin(3\omega_1 t-4\pi/3))
                                                                                                                       ...(57)
となり、内側回転磁界を3相交流で与えた場合に得られ
                                                                                   3.
                                                                                    [0135]
る上記 (46)式と変わりない。
【0134】一方、f2を計算してみると、次のようにな
                                 f_2 = I m_2 \times B(\theta = \omega_2 t + \alpha)
                                    = \mu \operatorname{Im}_{2} (\operatorname{Im}_{1} \sin(3\omega_{1} t - 3\omega_{2} t - 3\alpha) + \operatorname{Im}_{2} \sin(\omega_{2} t + \alpha - \omega_{2} t - \alpha)
                                                  +n(Ica(t)sin(3\omega_2t+3\alpha)+Icb(t)sin(3\omega_2t+3\alpha-2\pi/3)
                                                                                    +Icc(t)sin(3\omega_2t+3\alpha-4\pi/3)
                                                  +n(Ic; (t)sin(\omega_2t+\alpha)
                                                     +Ic_{ii}(t)\sin(\omega_2t+\alpha-2\pi/9)
                                                     +Ic_{ii}(t)\sin(\omega_2 t + \alpha - 4\pi/9)
                                                     +Ic_{iv}(t)sin(\omega_2t+\alpha-6\pi/9)
                                                     +Ic_v(t)\sin(\omega_2 t + \alpha - 8\pi/9)
                                                     +Ic_{vi}(t)\sin(\omega_2 t + \alpha - 10\pi/9)
                                                     +Ic_{vii}(t)sin(\omega_2 t + \alpha - 12\pi/9)
                                                     +Ic_{viii}(t)\sin(\omega_2 t + \alpha - 14\pi/9)
                                                     +Ic_{ix}(t)sin(\omega_2t+\alpha-16\pi/9))
                                   = \mu \operatorname{Im}_2(\operatorname{Im}_1 \sin(3\omega_1 t - 3\omega_2 t - 3\alpha)
                                                  +n(Ica(t)sin(3\omega_2 t +3\alpha)+Icb(t)sin(3\omega_2 t +3\alpha-2\pi/3)
                                                                                     +Icc(t)sin(3\omega_2t+3\alpha-4\pi/3)
                                                  +n(Ic_i(t)sin(\omega_2t+\alpha)
                                                     +Ic_{ii}(t)\sin(\omega_2 t + \alpha - 2\pi/9)
                                                     +Ic_{ii}(t)\sin(\omega_2 t + \alpha - 4\pi/9)
                                                     +Ic_{iu}(t)\sin(\omega_2 t + \alpha - 6\pi/9)
                                                     +1c_v(t)\sin(\omega_2 t + \alpha - 8\pi/9)
                                                     +Ic_{v_1}(t)\sin(\omega_2 t + \alpha - 10\pi/9)
                                                     +Ic_{vii}(t)\sin(\omega_2 t + \alpha - 12\pi/9)
                                                     +Ic_{viii}(t)\sin(\omega_2 t + \alpha - 14\pi/9)
                                                     +Ic_{i\pi}(t)\sin(\omega_2 t + \alpha - 16\pi/9))
                                                                                                                         ...(58)
 〈3-5-2〉外側回転磁界と内側回転磁界をともに与える
                                                                                   上記の3相交流Ica(t)、Icb(t)、Icc(t)は
場合
                                 Ica(t) = Ic_1 cos(3\omega_1 t-3\beta)
                                                                                                                       \cdots (59a)
                                                                                                                        ...(59b)
                                 Icb(t) = Ic_1 \cos(3\omega_1 t - 3\beta - 2\pi/3)
                                                                                                                       ···(59c)
                                 Icc(t) = Ic_1 \cos(3\omega_1 t - 3\beta - 4\pi/3)
であり、上記の9相交流Ic_i(t) \sim Ic_{ix}(t)を
                                 Ic_i(t) = Ic_2(t) cos(\omega_2 t - \gamma)
                                                                                                                        ···(60a)
                                 Ic_{ii}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 2\pi/9)
                                                                                                                       ...(60b)
                                                                                                                       ...(60c)
                                 Ic_{iii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 4\pi/9)
                                 Ic_{iv}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 6\pi/9)
                                                                                                                        ···(60d)
                                                                                                                       ...(60e)
                                 Ic_v(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 8\pi/9)
```

(24)

```
···(60f)
                                       Ic_{vi}(t) = Ic_2(t) \cos(\omega_2 t - \gamma - 10\pi/9)
                                       Ic_{vii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 12\pi/9)
                                                                                                                                            ···(60g)
                                       Ic_{viii}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 14\pi/9)
                                                                                                                                            ... (60h)
                                       Ic_{ix}(t) = Ic_2(t) cos(\omega_2 t - \gamma - 16\pi/9)
                                                                                                                                            ···(60i)
                                                                                                  を(58)式に代入して、f2を計算する。
とおく。
【0136】(59a)式~(59c)および式(60a)式~(60i)式
                                                                                                   [0137]
                                       f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3\omega_1 t - 3\omega_2 t - 3\alpha))
                                                 +n(Ic_1 \cos(3\omega_1 t-3\beta)\sin(3\omega_2 t-3\alpha)
                                                    +Ic_1 \cos(3\omega_1 t - 3\beta - 2\pi/3)\sin(3\omega_2 t + 3\alpha - 2\pi/3)
                                                     +Ic<sub>1</sub> \cos(3\omega_1 t - 3\beta - 4\pi/3)\sin(3\omega_2 t + 3\alpha - 4\pi/3)
                                                 +n(Ic_2(t) cos(\omega_2 t-\gamma)sin(\omega_1 t+\alpha)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 2\pi/9) \sin(\omega_1 t + \alpha - 2\pi/9)
                                                     +Ic_2(t) \cos(\omega_2 t - \gamma - 4\pi/9) \sin(\omega_1 t + \alpha - 4\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 6\pi/9) \sin(\omega_1 t + \alpha - 6\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 8\pi/9) \sin(\omega_1 t + \alpha - 8\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 10\pi/9) \sin(\omega_1 t + \alpha - 10\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 12\pi/9) \sin(\omega_1 t + \alpha - 12\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 14\pi/9) \sin(\omega_1 t + \alpha - 14\pi/9)
                                                    +Ic_2(t) \cos(\omega_2 t - \gamma - 16\pi/9) \sin(\omega_1 t + \alpha - 16\pi/9))
                                   ここで、\cos(a)\sin(b)=1/2(\sin(a+b)-\sin(a-b))の公式を用いて
                                       f_2 = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3\omega_1 t - 3\omega_2 t - 3\alpha))
                                                     +n Ic<sub>1</sub> (1/2(sin(3\omega_1t-3\beta+3\omega_2t+3\alpha)
                                                                      -\sin(3\omega_1 t - 3\beta - 3\omega_2 t - 3\alpha)
                                                               +1/2(\sin(3\omega_1 t-3\beta-2\pi/3+3\omega_2 t+3\alpha-2\pi/3)
                                                                      -\sin(3\omega_1 t - 3\beta - 2\pi/3 - 3\omega_2 t - 3\alpha + 2\pi/3))
                                                               +1/2(\sin(3\omega_1 t-3\beta-4\pi/3+3\omega_2 t+3\alpha-4\pi/3)
                                                                      -\sin(3\omega_1 t - 3\beta - 4\pi/3 - 3\omega_2 t - 3\alpha + 4\pi/3)))
                                                     +n Ic<sub>2</sub>(t)(1/2(sin(\omega_2t-\gamma+\omega_2t+\alpha)
                                                                           -\sin(\omega_2 t - \gamma - \omega_2 t - \alpha))
                                                                    +1/2(\sin(\omega_2 t-\gamma-2\pi/9+\omega_2 t+\alpha))
                                                                            -\sin(\omega_2 t - \gamma - 2\pi/9 - \omega_2 t - \alpha)
                                                                    +1/2(\sin(\omega_2 t-\gamma-4\pi/9+\omega_2 t+\alpha)
                                                                            -\sin(\omega_2 t - \gamma - 4\pi/9 - \omega_2 t - \alpha)
                                                                    +1/2(\sin(\omega_2 t-\gamma-8\pi/9+\omega_2 t+\alpha)
                                                                            -\sin(\omega_2 t - \gamma - 6\pi/9 - \omega_2 t - \alpha)
                                                                    +1/2(\sin(\omega_2 t-\gamma-10\pi/9+\omega_2 t+\alpha)
                                                                            -\sin(\omega_2 t - \gamma - 8\pi/9 - \omega_2 t - \alpha))
                                                                    +1/2(\sin(\omega_2 t-\gamma-12\pi/9+\omega_2 t+\alpha)
                                                                            -\sin(\omega_2 t - \gamma - 10\pi/9 - \omega_2 t - \alpha)
                                                                    +1/2(\sin(\omega_2 t-\gamma-14\pi/9+\omega_2 t+\alpha))
                                                                            -\sin(\omega_2 t - \gamma - 12\pi/9 - \omega_2 t - \alpha))
                                                                    +1/2(\sin(\omega_2 t-\gamma-16\pi/9+\omega_2 t+\alpha)
                                                                            -\sin(\omega_2 t - \gamma - 14\pi/9 - \omega_2 t - \alpha))
                                       = \mu \operatorname{Im}_2 (\operatorname{Im}_1 \sin(3\omega_1 t - 3\omega_2 t - 3\alpha))
                                                                    +1/2n Ic<sub>1</sub> (sin(3\omega_1t+3\omega_2t-3\beta+3\alpha)
                                                                                    -\sin(3\omega_1 t - 3\omega_2 t - 3\alpha - 3\beta)
                                                                                    +\sin(3\omega_1 t+3\omega_2 t-3\beta+3\alpha-4\pi/3)
                                                                                    -\sin(3\omega_1 t - 3\omega_2 t - 3\alpha - 3\beta)
                                                                                     +\sin(3\omega_1 t+3\omega_2 t-3\beta+3\alpha-2\pi/3)
                                                                                     -\sin(3\omega_1 t - 3\omega_2 t - 3\alpha - 3\beta))
```

+n $Ic_2(t)(1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha) + \sin(\gamma + \alpha))$ $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 4\pi/9) + \sin(\gamma + \alpha))$ $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 8\pi/9) + \sin(\gamma + \alpha))$ $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 12\pi/9) + \sin(\gamma + \alpha))$ $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 16\pi/9) + \sin(\gamma + \alpha))$ $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 2\pi/9) + \sin(\gamma + \alpha))$ +1/2($\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 6\pi/9$)+ $\sin(\gamma + \alpha)$) +1/2($\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 10\pi/9$)+ $\sin(\gamma + \alpha)$) $+1/2(\sin(\omega_2 t - \gamma + \omega_2 t + \alpha - 14\pi/9) + \sin(\gamma + \alpha))))$ -3/2 n Ic₁ sin(3 ω_1 t+3 ω_2 t-3 α -3 β)

 $= \mu \operatorname{Im}_{2} (\operatorname{Im}_{1} \sin(3\omega_{1} t - 3\omega_{2} t - 3\alpha))$

+9/2n Ic₂(t)sin($\gamma+\alpha$))

...(61)

〈3-5-3〉 まとめ

4.4

(61)式右辺の第1項、第2項は、(48)式のところでみたよ うに、他相の分を考慮すると打ち消されることになるの は、3相交流の場合と同じである。

【0138】一方、内側回転磁界を9相交流で与えた場 合に得られるこの(61)式を、内側回転磁界を3相交流で 与えた場合に得られる上記の(52)式と比較すると、(61) 式のほうが(52)式よりも固定項(最後の項)が3倍とな っている。つまり、内側磁石の駆動電流を9相の交流(I ;~I;,)とすれば、内側磁石の駆動電流を3相交流とす る場合より3倍もの電磁力(駆動トルク)が得られるわ けである。このことは、逆にいえば、内側磁石に同じ駆 動トルクを発生させるのに、駆動電流は1/3でよいこと を意味している。

【0139】これで、理論的な解析を終える。

【0140】次に、図19~図25に第4から第8まで の各実施形態を示す。これらも前述の3つの実施形態と 同様に、ステータの内と外にロータ3、4を配置したもの である。ただし、図19、図20、図21、図23は磁 極数比が2:1、図22は磁極数比が9:1の組み合わせの ものであり、これらでは、コアの形状を図示していない が、ステータうち磁極数の少ないほうのロータに対向す る側の突極の総数を1/N(図19、図20、図21、図2 3では1/2、図24では1/9)としたり、コイルを巻回す るコアを、磁気抵抗の大きな部位で連結することにより 一体で形成することができる。まとめると、外側磁石の 磁極数が内側磁石の磁極数より多い場合に限らず、外側 磁石の磁極数が内側磁石の磁極数より少ない場合でもか まわない。また、ロータは第1から第3までの各実施形 態で説明した一周分を展開して複数個を連結し、円筒状 に構成しても、展開する前のものと同様に扱うことがで きる。

【0141】実施形態では、2つのロータを永久磁石で 構成する場合で説明したが、各ロータを電磁石で構成す ることができることはいうまでもない。

【0142】モータ駆動電流回路はPWM信号を用いる 場合に限らず、PAM信号その他の信号を用いる場合で もかまわない。

【0143】実施形態では、電機の構造がラジアルギャ ップ型(径方向にロータとステータの空隙がある)のも のについて述べたが、アキシャルギャップ型(軸方向に ロータとステータの空隙がある)のものについても本発 明を適用できる。

【図面の簡単な説明】

【図1】第1実施形態の回転電機本体の概略断面図。

【図2】ステータ2の内周側と外周側に専用コイルを配 置した回転電機本体の概略断面図。

【図3】制御システム図。

【図4】インバータの回路図。

【図5】比較のため示す磁極数比が2:1の組み合わせの 場合の回転電機本体の概略断面図。

【図6】第2実施形態の回転電機本体の概略断面図。

【図7】第3実施形態の回転電機本体の概略断面図。

【図8】N(2p-2p)基本形を考えるのに参照するモデル

【図9】磁東密度の変化を示すモデル図。

【図10】N(2(2p)-2p)基本形を考えるのに参照するモ デル図。

【図11】磁束密度の変化を示すモデル図。

【図12】N(2(2p)-2p)基本形を考えるのに参照するモ デル図。

【図13】12相交流の分布を示す波形図。

【図14】N(3(2p)-2p)基本形を考えるのに参照するモ デル図。

【図15】磁束密度の変化を示すモデル図。

【図16】外側磁石と内側磁石の磁力干渉の説明図。

【図17】N(3(2p)-2p)基本形を考えるのに参照するモ デル図。

【図18】9相交流の分布を示す波形図。

【図19】第4実施形態の回転電機本体の概略断面図。

【図20】第5実施形態の回転電機本体の概略断面図。

【図21】第6実施形態の回転電機本体の概略断面図。

【図22】第7実施形態の回転電機本体の概略断面図。

【図23】第8実施形態の回転電機本体の概略断面図。

【符号の説明】

2 ステータ

3 外側ロータ4 内側ロータ

6 コイル

7 コア

7d 突極

21 コア

21f 突極

31 コア

31f 突極

32 磁気抵抗の大きな部位

時刻ゼロの位置関係(外側とコイルの位相があった時刻を0) 時刻ゼロの位置関係 (外側とコイルの位相があった時刻を0)

【図19】

時刻ゼロの位置関係 (外側とコイルの位相があった時刻をD)

【図16】

状態A

状態B