Practice Exams

Exam 1 Sample A

- 1. Write down the prime factorization of 10!.
- 2. Find the least non-negative residue of $11^{67} \mod 13$.
- 3. Find all incongruent solutions $\mod 40$, as least non-negative residues, to the following lienar congruence:

$$12x \equiv 28 \mod 40$$

- 4. Use the Euclidean Algorithm to find $\gcd(390,72)$ and write this as a linear combination of the two.
- 5. Use the Chinese Remainder Theorem to find the smallest positive solution to the system:

$$x \equiv 2 \mod 5$$

 $x \equiv 1 \mod 6$

$$x \equiv 4 \mod 7$$

6. Use mathematical induction to prove that:

$$n! \ge n^3$$
 for $n \ge 6$

7. Determine if the following sets are well-ordered or not. You may assume only that \mathbb{Z}^+ is well-ordered.

$$S_1 = [0, 1] \cap \mathbb{Q}$$

 $S_2 = \{1 - 2^k \mid k \in \mathbb{Z}^+\}$

- 8. Use the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to prove that $\sqrt{2}$ is irrational. Hint: Use contradiction.
- 9. Suppose $a, b, c, d \in \mathbb{Z}$ with $a \mid c, b \mid c, d = \gcd(a, b)$, and $d^2 \mid c$. Prove that $ab \mid c$.

1

Exam 1 Sample B

- 1. (a) Find $\pi(18)$.
 - (b) Show that the set $\{\frac{a}{b} \mid a, b \in \mathbb{Z}^+, a > b\}$ is not well-ordered.
 - (c) Find how many primes there are, approximately, between one billion and two billion.
- 2. Find the number of zeros at the end of 1000! with justification.
- 3. The following are all false. Provide explicit numerical counterexamples.
 - (a) $a \mid bc$ implies $a \mid b$ or $a \mid c$.
 - (b) $a \mid b$ and $a \mid c$ implies $b \mid c$.
 - (c) $3 \mid a \text{ and } 3 \mid b \text{ implies } \gcd(a, b) = 3.$
- 4. Simplify $\prod_{j=1}^{n} \left(1 + \frac{2}{j}\right)$. Your result should not have a \prod in it, or any sort of long product.
- 5. Use Mathematical Induction to prove $2^1 + 2^2 + \cdots + 2^n = 2^{n+1} 2$ for all integers $n \ge 1$.
- 6. Find all $n \in \mathbb{Z}$ with $n^2 5n + 6$ prime.
- 7. Suppose p is a prime and a is a positive integers less than p. Find all possibilities for gcd(a, 7a + p).
- 8. Use the Fundamental Theorem of Arithmetic to prove that $\sqrt{6}$ is irrational.
- 9. Prove that for $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ that if $a^n \mid b^n$ then $a \mid b$.

Exam 2 Sample A

- 1. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!
- 2. Prove that if $n \geq 2$ and gcd(6, n) = 1 then $\phi(3n) = 2\phi(2n)$.
- 3. Classify all numbers n for which $\tau(n) = 12$.
- 4. Suppose n is a perfect number and p is a prime such that pn is also perfect. Prove $gcd(p, n) \neq 1$.
- 5. Prove that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \mod ab$ if gcd(a, b) = 1.

- 6. Suppose that p is prime and $n \in \mathbb{Z}^+$. Prove that $p \nmid n$ iff $\phi(pn) = (p-1)\phi(n)$.
- 7. (a) Show that 3 is a primitive root modulo 17.
 - (b) Find all primitive roots modulo 17.
- 8. A partial table of indices for 7, a primitive root of 13 is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_7 a$	12	b	8	10	3	7	a	9	4	2	5	6

- (a) Find a and b.
- (b) Use the table to solve the congruence $3^{x-1} \equiv 5 \mod 13$.
- (c) Use the table to solve the congruence $4x^5 \equiv 11 \mod 13$.
- 9. Suppose $\operatorname{ord}_{p}a = 3$, where p is an odd prime. Show $\operatorname{ord}_{p}(a+1) = 6$.
- 10. Suppose r is a primitive root modulo m, and k is a positive integers with $gcd(k, \phi(m)) = 1$ Prove r^k is also a primitive root.

Exam 2 Sample B

- 1. Calculate:
 - (a) $\phi(2^3 \cdot 5 \cdot 11^2)$
 - (b) $\sigma(200)$
 - (c) $\tau(2000)$
- 2. Use Wilson's Theorem to find the remainder when 16! is divided by 19.
- 3. Find all n with $\phi(n) = 16$.
- 4. Show that 25 is a Fermat Pseudoprime to the base 7.
- 5. An abundant number is a number n with sigma(n) > 2n. Prove that there are infinitely many even abundant numbers by finding on eabundant number and by showing that if n is abundant and a prime p satisfies $p \nmid n$ then pn is also abundant.
- 6. A partial table of indices for 2, a primitive root of 13, is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_2 a$	12	1	4	2	9	5	11	3	a	b	7	6

(a) Find a and b with justification.

- (b) Use the table to solve the congruence $3^{2x+1} \equiv 9 \mod 13$.
- (c) Use the table to solve the congruence $7x^5 \equiv 3 \mod 13$.
- 7. Prove that if $\operatorname{ord}_n a = hk$ then $\operatorname{ord}_n(a^h) = k$.
- 8. Let r be a primitive root for an odd prime p. Prove that $\operatorname{ind}_r(p-1)=\frac{1}{2}(p-1).$
- 9. Find all positive integers n such that $\phi(n)$ is prime. Explain!
- 10. Show that if a is relatively prime to m and $\operatorname{ord}_m a = m-1$ then m is prime.

Final Exam Sample A