

GAN Improvements

Outline

- How GANs have improved
- State of the art methods for improving GANs performance

GANs Over Time

4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

Use batch standard deviation to encourage diversity

∇: gradient

Improve stability by enforcing 1-Lipschitz continuity

E.g. WGAN-GP and Spectral Normalization

Use moving average for smoother results

Available from: https://arxiv.org/abs/1806.04498v2

Progressive growing gradually trains GAN at increasing resolutions

Available from: https://arxiv.org/abs/1710.10196

Main Improvements: (2) Capacity

Main Improvements: (3) Diversity

Available from: https://github.com/NVlabs/stylegan

Summary

- GANs have improved because of:
 - Stability longer training and better images
 - Capacity larger models and higher resolution images
 - Diversity increasing variety in generated images

deeplearning.ai

StyleGAN Overview

Outline

- StyleGAN achievements
- What styles are
- Introduction to StyleGAN architecture and components

StyleGAN Goals

- 1. Greater fidelity on high-resolution images
- 2. Increased diversity of outputs
- 3. More <u>control</u> over image features

Greater Fidelity

Not fooling anyone

I'm shook

(Left) Available from: https://arxiv.org/abs/1406.2661 (Right) Available from: https://github.com/NVlabs/stylegan

Increased Diversity

Available from: https://arxiv.org/abs/1812.04948

Increased Diversity

More Feature Control

Hair color/style \rightarrow

← Glasses

Available from: https://arxiv.org/abs/1812.04948

Style in GANs

Style = variation in an image

Early styles are coarser like face shape

Later styles are finer like hair wisps

Available from: https://arxiv.org/abs/1812.04948

The Style-Based Generator

Traditional architecture

StyleGAN architecture

Progressive Growing

Available from: https://arxiv.org/abs/1710.10196

Summary

- StyleGAN's **goals**:
 - Greater fidelity, increased diversity, improved control over features
- Style is any variation in the image
- Main components of StyleGAN:
 - Progressive growing
 - Noise mapping network
 - Adaptive instance normalization (AdaIN)

Progressive Growing

Outline

- Progressive growing intuition and motivation
- How to implement it

Progressive Growing

Progressive Growing in Action

Available from: https://www.gwern.net/images/gan/2019-03-16-stylegan-facestraining.mp4

Progressive Growing: Discriminator

Progressive Growing: Discriminator

Progressive Growing in Context

Progressive Growing in Context

Summary

- Progressive growing gradually doubles image resolution
- Helps with faster, more stable training for higher resolutions

Noise Mapping Network

Outline

- Noise mapping network structure
- Motivation behind the noise mapping network
- Where its output W goes

Noise Mapping Network

Remember: Z-Space Entanglement

Not possible to control single output features

W-Space: Less Entangled

More possible to control single output features

Mapping Network in Context

Mapping Network in Context

Summary

- Noise mapping allows for a more disentangled noise space
- The intermediate noise vector Wis used as input to the generator

deeplearning.ai

Adaptive Instance Normalization (AdaIN)

Outline

- Instance Normalization
- Adaptive Instance Normalization (AdaIN)
- Where and why AdaIN is used

AdalN in Context

AdalN in Context

Step 1: Normalize convolution outputs

Step 1: Normalize convolution outputs using Instance Normalization

Batch norm

Step 1: Normalize convolution outputs using Instance Normalization

(Left) Available from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 (Right) Based on: https://arxiv.org/abs/1812.04948

Step 1: Normalize convolution outputs using Instance Normalization

(Left) Available from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 (Right) Based on: https://arxiv.org/abs/1812.04948

Step 1: Normalize convolution outputs using Instance Normalization

 $(Left) \ Available \ from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 \\ (Right) \ Based \ on: https://arxiv.org/abs/1812.04948$

Step 2: Apply adaptive styles

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

Step 1: Instance normalization

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

AdalN in Context

Summary

- AdalN transfers style information onto the generated image from the intermediate noise vector W
- Instance Normalization is used to normalize individual examples before apply style statistics from

deeplearning.ai

Style Mixing & Stochastic Noise

Outline

- Controlling coarse and fine styles with StyleGAN
- Style mixing for increased diversity during training/inference
- Stochastic noise for additional variation

Style Mixing

Tabby Cat

Tuxedo Cat

Style Mixing

Style Mixing

Available from: https://arxiv.org/abs/1812.04948

Stochastic Variation

Fine layers

Coarse layers

Available from: https://arxiv.org/abs/1812.04948

Stochastic Noise in Context

Stochastic Noise in Context

Stochastic Noise in Context

Stochastic Variation

Small details: hair strands, wrinkles, etc.

Different extra noise values create stochastic variation

Available from: https://arxiv.org/abs/1812.04948

Summary

- Style mixing increases diversity that the model sees during training
- Stochastic noise causes small variations to output
- Coarse or fineness depends where in the network style or noise is added
 - Earlier for coarser variation
 - Later for finer variation

Putting It All Together

Outline

Putting all the StyleGAN components together!

StyleGAN Architecture: Progressive Growing

StyleGAN Architecture: Noise Mapping Network

StyleGAN Architecture: AdaIN

StyleGAN Architecture: Style Mixing

StyleGAN Architecture: Stochastic Noise

StyleGAN Architecture: That's a Wrap!

Summary

- Main components of StyleGAN:
 - Progressive Growing
 - Noise Mapping Network
 - AdalN
 - Style Mixing
 - Stochastic Noise

