Practico 1

- 1.
- 2.
- 3.
- 4.
- 5. Probar lo siguiente:
 - a) Si $a^3 = 1 \Rightarrow a = 1$
 - Tricotomia: a = 1 , a > 1 , a < 1
 - Si a=1, Caso trivial: $a=1 \Rightarrow a^2=a=1 \Rightarrow a^3=a=1$
 - Si a < 1, Dos opciones:
 - i. 0 < a < 1 entonces: $a < 1 \Rightarrow a^2 < a < 1 \Rightarrow a^2 < 1 \Rightarrow a^3 < 1 < 1 \Rightarrow a^3 < 1$ lo cual claramente no cumple
 - ii. a < 0 < 1 entonces: $a < 0 \Rightarrow a^2 > 0 \Rightarrow a^3 < 0 < 1$. No lo cumple
 - Si $a > 1 \Rightarrow a^2 > a > 1 \Rightarrow a^3 > a > 1 \Rightarrow a^3 > 1$. Tampoco se cumple.
 - En conclusion la contrareciproca permite demostrar esto: Si $a \neq 1 \Rightarrow$ No se cumple: $a^3 = 1$
 - b) $a^3 = b^3 \Rightarrow a = b$
 - Si a=0 Caso trivial
 - Si a > 0 luego: $a^3(b^3)^{-1} = 1 \Rightarrow (ab^{-1})^3 = 1$
 - $-\,\,$ Falta probar que puedo intercambiar el -1 con el 3
 - Utilizando el problema anterior: $ab^{-1} = 1 \Leftrightarrow a = b$
- 6. Sean a, b, c números reales. Demostrar las siguientes afirmaciones
 - a) Si $a \leq b \Rightarrow a + c \leq b + c$
 - $\quad a \leqslant b \Rightarrow b a \in \mathbb{P} \Rightarrow b a + 0 \in \mathbb{P} \Rightarrow b a + c c \in \mathbb{P} \Rightarrow b + c \geqslant b + a$
 - b) $a < byc < d \Rightarrow a + c < b + d$
 - $-b-a \in \mathbb{P}$, $d-a \in \mathbb{P} \Rightarrow (b-a)+(d-a) \in \mathbb{P} \Rightarrow (b-a)+(d-a) \geqslant 0$
 - c) $a < b, c < 0 \Rightarrow ac > bc$
 - $-b-a \in \mathbb{P} \Rightarrow (b-a)c < 0 \Rightarrow bc < ac$
 - d) $a > 1 \Rightarrow a^2 > a$
 - $-a-1 \in \mathbb{P} \Rightarrow (a-1)a \in \mathbb{P} \Rightarrow a^2-a \ge 0 \Leftrightarrow a^2 \ge a$

- e) $ab > 0 \Leftrightarrow a > 0, b > 0 \text{ or } a < 0, b < 0$
 - -ab>0, tricotomia: a>0, $\exists a^{-1}$, $a^{-1}ab>a^{-1}0 \Rightarrow b>0$
 - -ab>0, tricotomia: $a<0, \exists a^{-1}/a^{-1}<0$ puesto que si no, $a^{-1}>0$ y luego te daria: $aa^{-1}<0\Rightarrow 1<0$ entonces: $a^{-1}ab<0\Rightarrow b<0$
 - -a=0, No por la prop absorbente tendria: ab=0.
 - La vuelta: Use tricotomia denuevo.
- f) $a^2 < b^2$, a > 0 entonces b > a o b < -a
 - $-b^2-a^2\in\mathbb{P}, (b+a)(b-a)\in\mathbb{P}$, del problema anterior esto implica lo siguiente:
 - -b+a>0 y $b-a>0 \Rightarrow b>-a$ y que $b>a\Rightarrow b>a>0>-a$
 - -b+a < 0 y $b-a < 0 \Rightarrow b < -a < a$
- 7. Para cada una de las siguientes desigualdades, hallar el conjunto de todos los números reales x que las satisfacen y graficar el resultado en la recta real.
 - a) 4 x < 3 3x
 - $-2x < -1 \Leftrightarrow x < -1/2$
 - b) $5 x^2 < 8 \Leftrightarrow 0 < x^2 + 3 \Leftrightarrow x^2 > -3$
 - c) $x^2 > 9 \Rightarrow x^2 9 > 0 \Leftrightarrow (x 3)(x + 3) > 0$ del ejercicio anterior f : x > 3 o x < -3
 - d) $x^2 4x + 3 > 0 \Rightarrow (x 3)(x 1) > 0 \Rightarrow x > 3$ o bien x < 1
 - e) x+1>x Esto se cumple para todos los reales.
 - f) x-1>x Esto es el conjunto vacio
 - g) $-\frac{3}{x} > 1 \Rightarrow x \neq 0, x < 0$ (Importante para dar vuelta la desigualdad), -3 < x. Entonces el intervalo de validez es: -3 < x < 0
 - h) $\frac{x-1}{x+1} > 0$ Se requieren dos opciones:
 - $-x-1>0, x+1>0 \Rightarrow x>1, x>-1 \Rightarrow x>1$ Como dominio.
 - $-x-1 < 0, x+1 < 0 \Rightarrow x < 1, x < -1 \Rightarrow x < -1$
 - $\{x \in \mathbb{R}/x > 1\} \mathbb{U}\{x \in \mathbb{R}/x < -1\}$
 - i) $\frac{1}{x} + \frac{1}{1-x} > 0$, $\Rightarrow \frac{1-x+x}{x(1-x)} \Leftrightarrow \frac{1}{x(1-x)} > 0 \Rightarrow x(1-x) > 0 \Leftrightarrow \text{Se generan 2 opciones:}$
 - $-x > 0 (1-x) > 0 \Rightarrow x > 0, 1 > x \Rightarrow 0 < x < 1$
 - x < 0, x > 1 Este intervalo es vacio.
- 8. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta.
 - a) $a < b \ v \ c < d$ entonces: a c < b d
 - Falso: Contraejemplo: a=1,b=2, c=3,d=8
 - $-a-c=1-3<2-8 \Rightarrow -2<-6$ Falso.

- b) $a < b \ c > 0 \Rightarrow a \ c < b \ c$ Falso:
 - $-b-a\in\mathbb{P}\Rightarrow c\geqslant 0\Rightarrow (b-a)c\in\mathbb{P}$ si c>0 Pero si c=0 No se cumple la desigualdad.
- c) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} / x + y < 0$ Verdadero:

$$-x+y=x+-ax=x(1-a)<0$$

- Si $x > 0 \Rightarrow tomo a > 1$
- Si $x < 0 \Rightarrow tomo a < 1$
- Si $x = 0 \Rightarrow$ basta elegir cualquier y < 0
- d) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} / xy < 0$. Falso:
 - Si x=0 => por prop del elemento absorbente x.y=0
- 9. Expresar lo siguiente prescindiendo de las barras de valor absoluto, tratando por separado distintos casos cuando sea necesario.

a)
$$|(|x| - 1)| =$$

$$\begin{cases} |x| - 1 \operatorname{si} |x| \geqslant 1 \Rightarrow x \leqslant -1, x \geqslant 1 \Rightarrow x - 1 \operatorname{para} x \geqslant 1, -x - 1 \operatorname{para} x \leqslant -1 \\ -|x| + 1 \operatorname{si} |x| \leqslant 1 \Rightarrow -1 < x < 1 \Rightarrow -x + 1 \operatorname{para} 0 \leqslant x < 1 \end{cases} x + 1 \operatorname{para} -1 < x < 0$$

b)
$$a-|(a-|a|)|=\left\{ egin{array}{l} a-(a-|a|)\,\mathrm{si}\,a\geqslant |a|\Rightarrow a=|a|\\ a+(a-|a|)\,\mathrm{si}\,a<|a|\Rightarrow a<0\,\mathrm{el}\,\mathrm{resultado}\,\mathrm{seria}\,3a \end{array}
ight.$$

- 10. Demostrar las siguientes afirmaciones.
 - a) $|x| = |-x| \forall x \in \mathbb{R}$
 - Tricotomia: x = 0, Caso Trivial.

$$-x > 0 \Rightarrow -x < 0, |x| = x, |-x| = -(-x) = x$$

- Similarmente: $x < 0 \Rightarrow -x > 0$ entonces: |-x| = -x y |x| = -x
- b) |xy| = |x| |y|
 - Descartando caso trivial: x = 0 o y = 0 tenemos los siguientes casos: (x > 0, y > 0), (x > 0, y < 0), (x < 0, y > 0), (x < 0, y < 0)

$$-(x>0, y>0) \Rightarrow |xy| = xy$$
, $|x| = x$, $|y| = y \Rightarrow |x| |y| = xy$

$$-(x>0, y<0) \Rightarrow xy<0 \Rightarrow |xy|=-xy, |x|=x, |y|=-y, \Rightarrow |x||y|=-xy$$

- Hacer lo mismo con los casos restantes.
- c) $|x^{-1}| = |x|^{-1}$

$$- |x^{-1}| |x| = (\text{por } b) = |x^{-1}x| = |1| = 1$$

- O sea que $|x^{-1}| = |x|^{-1}$
- 11. Resolver las siguientes ecuaciones:

a)
$$|x-3| = c$$

$$- \begin{cases} x-3=c, & \text{si } x \geqslant 3 \\ -x+3=c, & \text{si } x < 3 \end{cases} \Leftrightarrow \begin{cases} x=c+3, & \text{si } x \geqslant 3 \\ x=3-c, & \text{si } x < 3 \end{cases}$$

b)
$$|x-1||x+2|=3$$

$$-\begin{cases} (x-1)(x+2) = 3, & \text{si } x - 1 \ge 0, x+2 \ge 0 & x \ge 1, x \ge -2 & x \ge 1 \\ -(x-1)(x+2) = 3, & \text{si } x - 1 \ge 0, x+2 < 0 & x \ge 1, x < -2 & x \ge 1, x < -2 \\ -(x-1)(x+2) = 3, x - 1 < 0, x+2 \ge 0 & x < 1, x \ge -2 & 1 > x \ge -2 \\ (x-1)(x+2) = 3, & \text{si } x - 1 < 0, x+2 < 0 & x < 1, x < -2 & x < -2 \end{cases}$$

$$- \begin{cases} (x-1)(x+2) = 3 & \text{si } x \ge 1, x < -2 \\ -(x-1)(x+2) = 3 & \text{si } 1 > x \end{cases}$$

- 12. Resolver las siguientes desigualdades. Interpretar en terminos de distancia y graficar.
 - a) |x-3| < 8

$$- |x-3| = x-3 \text{ si } x-3 \geqslant 0 \Rightarrow x-3 < 8 \Leftrightarrow x < 11, \text{ cuando } x \geqslant 3 \\ |x-3| = -(x-3) \text{ si } x-3 < 0 \Rightarrow (x-3) > -8 \Leftrightarrow x > -5, \text{ cuando } x < 3$$

$$- \frac{11 > x \geqslant 3}{3 > x > -5} : Graficar esto$$

- $\quad |x-3| < 8$: Numeros cuya distancia al numero 3, sea menor que 8
- Forma rapida de hacer esto: usar que: $|x| < a \Rightarrow -a < x < a$

$$- |x-3| < 8 \Rightarrow -8 < x-3 < 8 \Leftrightarrow -5 < x < 11$$

b)
$$|x-3| \ge 8$$

$$- |x| > a \Rightarrow -a > x \quad y \quad x > a$$

$$- |x-3| \geqslant 8 \Rightarrow x-3 \geqslant 8$$
 y $x-3 \leqslant -8 \Rightarrow x \geqslant 11$ y $x \leqslant -5$

c)
$$|x-3| < 0$$

- -0 < x 3 < 0, pero el 0 es unico.
- Este conjunto es vacio

d)
$$|2x-3| > 1$$

$$-2x-3<-1 y 2x-3>1$$

$$-x < 2 \text{ v } x > 2$$

- El conjunto es: $\mathbb{R} \{2\}$
- Para interpretarlo en forma de distancia conviene factorizar antes el 2
- 13. Probar las siguientes desigualdades $\forall x, y \in \mathbb{R}$

a)
$$|x - y| \le |x| + |y|$$

$$- |x - y| = |x + (-y)| = \leq |x| + |(-y)| \Rightarrow (P10a) \Rightarrow |x| + |(-y)| = |x| + |y|$$

b)
$$|x - y| \ge |x| - |y|$$

-
$$|x| - |y| = |x + y - y| - |y| [por a] \le |x - y| + |y| - |y| = |x - y|$$

c)
$$|x-y| \ge ||x|-|y||$$
 [Reemplazo: $x \to |x|, y \to |y|$ en b)

$$- ||x - y|| \ge ||x| - |y||$$

$$- |x-y| \ge 0, ||x-y|| = |x-y|$$

- 14. Determinar cu´ales de los siguientes subconjuntos de n´umeros reales tiene supremo, ´ınfimo, m´aximo o m´ınimo. Justificar con demostraciones.
 - a) A = [3,8)
 - El conjunto A esta acotado superiormente, por ejemplo 9 cumple que $\forall a \epsilon A, a < 9$
 - El conjunto A esta acotado superiormente y es distinto del vacio, por lo tanto,
 TIENE cota superior minima (Supremo). Suponga que S es este supremo.
 - Este supremos al ser la menor de las cotas superiores debe cumplir:
 - $-~S<\frac{S}{2}+\frac{8}{2}<8$, Si ahora tomamos la definicion de $A\!:\{a/3\leqslant a<8\}\Rightarrow\frac{S+8}{2}\in A$
 - Y por lo tanto S no es cota superior de A.
 - Este conjunto no tiene maximo, puesto que su cota superior minima no pertenece al conjunto.
 - El conjunto A esta acotado inferiormente y es distinto del vacio, por lo tanto tiene cota inferior Maxima.
 - Claramente si k < 3, $k \notin A$, si $a > 3 \Rightarrow a \in A$.
 - 3 Es el minimo puesto que $3 \in A$.
 - b) $A = (-\infty, \pi)$
 - $-A = \{a/a < \pi\} \Rightarrow \text{si } x < \pi, \text{ luego: } x \in A$
 - Suponemos que existe Inf $A \Rightarrow$ Inf $A < a, \forall a \in A$.
 - En particular: si $a \in A \Rightarrow a < \pi \Rightarrow a 1 < \pi 1 < \pi \Rightarrow a 1 \in A, \forall a \in A$
 - Como $a 1 \in A \Rightarrow \text{Inf } A < a 1 \Leftrightarrow \text{Inf } A + 1 < a, \forall a \in A$
 - Lo que provoca que: Inf A < Inf(A+1) < a, $\forall a \in A$. Esto es un absurdo, que proviene de suponer que A tiene infimo.
 - Ahora use la contrarreciproca: Todo subconjunto de \mathbb{R} distinto de \mathbb{O} y acotado superiormente posee supremo. Contrareciproca: Para todo subconjunto de \mathbb{R} distinto de \mathbb{O} , si no posee supremo entonces no esta acotado superiormente.
 - Si no tiene infimo, no tiene minimo
 - Opcion B: El conjunto $-\mathbb{N} \subset A$, Como \mathbb{N} no esta acotado superiormente luego $-\mathbb{N}$ no esta acotado inferiormente, por lo cual A no debe estar acotado inferiormente.
 - El conjunto A esta acotado superiormente, por 6, por ejemplo. Como este conjunto es distinto de \mathbb{O} , entonces tiene una cota superior minima (Supremo).
 - Puede usar el mismo recurso que en a), muestre que: $\sup A < \frac{\sup A + \pi}{2} < \pi$, luego: $\frac{\sup A + \pi}{2}, \sup A \in A$, entonces $\sup A$ no es cota superior de A.

- c) $K = \{k = 6z / z \in \mathbb{Z}\}$
 - Sea $k' = \sup K \Rightarrow k < k' \Rightarrow k + 6 < k' + 6$, ahora $k + 6 \in K$, pues $k = 6z \Rightarrow k + 6 = 6(z + 1)$ y por supuesto $z + 1 \in \mathbb{Z}$ porque \mathbb{Z} no esta acotado.
 - Como k+6 ∈ K ⇒ k+6 < k' ⇔ k < k'-6 < k', como esto ocurre para todo k,k' no es la cota superior minima.
 - Ahora use la contrarreciproca: Todo subconjunto de $\mathbb R$ distinto de $\mathbb O$ y acotado superiormente posee supremo. Contrareciproca: Para todo subconjunto de $\mathbb R$ distinto de $\mathbb O$, si no posee supremo entonces no esta acotado superiormente.
- d) $A = \left\{ \frac{1}{n} / n \in \mathbb{Z}, n \neq 0 \right\}$
 - $-n \in \mathbb{Z} \Rightarrow n > 0, n < 0$ (Tricotomia)
 - Prop arquimedeana: $\forall \varepsilon > 0 \exists n \in \mathbb{N} / \frac{1}{n} < \varepsilon$ entonces, sumando 1 a ambos lados: Esta desigualdad se puede escribir como: $-\frac{1}{n} > -\varepsilon$. Ahora sumo 1 a ambos lados:
 - $1 \varepsilon < 1 \frac{1}{n}$
 - Lema util: Si $A \subset \mathbb{R}$, $\alpha = \sup A \Leftrightarrow \forall \varepsilon > 0 \exists a \in A$ tal que: $\alpha \varepsilon < a$
 - Es decir que si: $1 \frac{1}{n} \in A$, luego 1 es la cota superior. Probemos esto:
 - $\quad 1 \frac{1}{n} = \frac{n-1}{n},$ claramente: $n-1 \in \mathbb{Z},$ de manera que: $1 \frac{1}{n} \in A$
 - En particular $1 \in A$, por lo cual A, tiene maximo.
 - Ahora para probar la existencia del infimo.
 - Lema util: $A \subset \mathbb{R}$ $\alpha = \inf A \Leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{ tal que: } a < \alpha + \varepsilon$
 - Por propiedad arquimediana: $\frac{1}{n} < \varepsilon \Rightarrow -1 + \frac{1}{n} < -1 + \varepsilon$.
 - Es facil ver que $-1 + \frac{1}{n} \in A$. Por lo tanto -1 es el infimo de A.
 - Tambien se cumple que -1 es el minimo de A pues $-1 \in A$
- e) $A = \{3 \frac{1}{n}, n \in \mathbb{N}\}$
 - Claramente el conjunto tiene la pinta de que: 2 < a < 3
 - Prop Arq: $\forall \varepsilon > 0, \exists n \in \mathbb{N} / \frac{1}{n} < \varepsilon \Rightarrow -\frac{1}{n} > -\varepsilon$
 - Entonces: $3 \varepsilon < 3 \frac{1}{n}$, Claramente $3 \frac{1}{n} \in A$.
 - Lema util: Si $A \subset \mathbb{R}$, $\alpha = \sup A \Leftrightarrow \forall \varepsilon > 0 \exists a \in A \text{ tal que: } \alpha \varepsilon < a$
 - Esto significa que: 3 es el supremo de A. Como $3 \notin A$ entonces no tiene Maximo
 - Prop Arq: $\forall \varepsilon > 0, \exists n \in \mathbb{N} / \frac{1}{n} < \varepsilon$ Quisiera, pero no!

- $-2+\frac{1}{n}<2+\varepsilon$, faltaria demostrar que: $2+\frac{1}{n}\in A$ \iff Este paso falla
- Supongamos que existe: $\beta = \inf A \Rightarrow \beta < 2$, Sea $\varepsilon > 0$ tal que:
- $\quad \beta < \beta + \varepsilon < 2$, por hipotesis existe $a / \ \beta < a < \beta + \varepsilon < 2$
- $-3-\frac{1}{m}<2\Leftrightarrow 1<\frac{1}{m}\Leftrightarrow m<1,$ luego $m\notin\mathbb{N},$ un numero que cumple: $3-\frac{1}{m}<2$ no pertenece al conjunto.
- No existe entonces, para todo $\varepsilon > 0$ ese n tal que $\beta < a < \beta + \varepsilon < 2$.
- Como 2 pertenece al conjunto, este es su minimo.
- f) $\left\{x \in \mathbb{Q} / -\frac{3}{4} \leqslant x \leqslant 0\right\}$
- g) $A = \{x \in \mathbb{N} / 0 < x < \sqrt{2}\}$
 - $-A = \{1\}$, Claramente el supremo es $\sqrt{2}$ y el infimo es 0
- h) $A = \{x \in \mathbb{Q} / 0 < x < \sqrt{2}\}$
 - Sea sup $A=Q \Rightarrow \exists a \in A/Q < a < \sqrt{2}$, de manera que Q No puede ser el supremo. Solo puede cumplirse que: Sup $A=\sqrt{2}$
- 15. Probar que si A y B son subconjuntos de $\mathbb R$ acotados superiormente, entonces $A \cup B$ es acotado superiormente.
 - Como A y B son acotados superiormente, suponiendo que son distintos del vacio, entonces tienen supremo.
 - Si $a \in A$ y $b \in B$ entonces: $a \leq \sup A$, $b \leq \sup B$
 - Entonces: $\sup A < \sup B$, $\sup A > \sup B$ o bien $\sup A = \sup B$
 - El caso trivial es: $\sup A = \sup B$
 - $-a \leq \sup A < \sup B$, Por lo cual $\sup B$ es una cota superior de A.
 - El otro caso seria: $\sup B < \sup A$, que daria como resultado que $\sup A$ es una cota superior para los elementos de B.
- 16. Sean A y B subconjuntos no vacios de $\mathbb R$ tales que $x \leq y$ para todo $x \in A, y \in B$. Demostrar que:
 - a) sup $A \leq y$ para todo $y \in B$.
 - Como $x \leq y$, entonces y es una cota superior para todo x.
 - Como A es un subconjunto de \mathbb{R} y esta acotado superiormente entones $\exists \sup A$
 - Por el absurdo: Suponga que existe $y < \sup A \Rightarrow x \le y < \sup A \ \forall x \in A$.
 - Lo anterior significa que sup A no puede ser el supremo.

- b) $\sup A \leq \inf B$
 - Como $x \leq y$, B esta acotado inferiormente y como es distinto del vacio, puedo decir que: \exists inf B.
 - Por tricotomia: $\sup A = \sup B$, $\sup A > \inf B$, $\sup A < \inf B$
 - $-\sup A=\inf B$, es el caso trivial. Esto se cumple tranquilamente: $x\leqslant \sup A=\inf B\leqslant y$
 - Si ahora supongo: $\sup A > \inf B$, usando el problema a) tendriamos: $\sup A \leqslant y$, $\forall y \in B$
 - Es decir: inf $B < \sup A \le y$. Esto signfica que inf B no es la mayor de las cotas inferiores de B. Lo cual produce un absurdo
 - La unica opcion que es posible entonces es: $\sup A < \inf B$
- 17. Determinar si los siguientes subconjuntos de \mathbb{R} son densos.

Definicion: Un sub-conjunto A de R es denso si para todo a,b de R se cumple que existe $\alpha \in A$ tal que: $a < \alpha < b$

- a) $\{x \in \mathbb{R}: x^3 < 100\}$: No es denso porque si elijo a = 110, b = 111 no encuentro elementos de a
- b) No es denso: Basta tomar numeros los intervalos restados.
- c) No es denso
- d) Es denso, remover una cantidad finita de numeros no me cambia esto. DEMOSTRAR MEJOR.
- 18. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta.
 - a) Si sup $A \le \inf B$, entonces $A \cap B = \emptyset$
 - − Yo diria que lo correcto seria decir sup $A<\inf B$, porque si sup $A=\inf B$ y ahora supongamos que A y B tengan maximo y minimo. Luego max $A=\min B$, De manera que: $A\cap B\neq\emptyset$
 - b) Un conjunto formado por todos los números reales salvo un número finito de ellos es denso.
 - True