Integrate of theorem

Masaaki Yamaguchi

Laplace equation is constructed with zeta function, zeta function also vector element of singularity.

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

Seifert manifold is built with fourth of power to integrate element of singularity.

$$\log(x\log x) \ge 2(y\log y)^{\frac{1}{2}}, \frac{d}{df}F_t^m = 2\int \frac{(R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)}dm$$

Fourth of power is one of geometry in inclusived with integrate of fields theorem.

$$= \frac{1}{4}g_{ij}^2, 4V_{\tau} = g_{ij}^2$$

Fifth dimension of equation called to estimate with abel manifold of component in seifert manifold.

$$||ds^2|| = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^{\mu} dx^{\nu} + T^2 d^2\psi$$

Norm liner is fermander of manifold, is one of rout in non-relativity theorm.

$$\delta(x) \cdot \mathcal{O}(x) = ||ds^2||, \eta_{\mu\nu} = [\nabla_i \nabla_j \int \nabla f(x) d\eta]^{\frac{1}{2}}$$

Imaginary of pole is zeta function of component.

$$\bar{h}_{\mu\nu} = [\nabla_i \nabla_j \int \nabla g(x) dx_i dx_j]^{iy}$$

Minkofsky of dimension of different in fifth dimension of element.

$$\eta_{\mu\nu} + \bar{h}_{\mu\nu} = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$

Volume of surface is open set group.

$$\int \int \int \frac{V}{S^2} dm = \mathcal{O}(x)$$

$$= \int \int e^{\int x \log x dx + O(N^{-1})} d\psi$$

$$\left(\frac{\nabla \psi}{\Box \psi}\right)' = \left(\frac{1}{2}\right)'$$

$$= 0$$

Accesarilty of gravity of formula is harf of vector in this norm space.

$$\left(\frac{\eta_{\mu\nu}}{\bar{h}_{\mu\nu}}\right) = \frac{1}{i}$$

$$\hbar\psi = \frac{1}{i}H\Psi$$

Kaluze-Klein theorem is deduce of dimension in minus of zone, and this zone is imagnary of pole in this element.

 $8\pi G\left(\frac{p}{c^3} + \frac{V}{S}\right) = ||ds^2||$

Three of manifold in entropy of equation is oneselves in norm space.

$$\lim_{x \to 1} \sum_{k=0}^{\infty} a_k f^k = T^2 d^2 \psi$$

This element is fifth dimension of abel manifold.

$$H_3(x) = 0, \chi(3) = 2, \pi(\chi, x) = \int \int \frac{1}{(x \log x)^2} dx_m$$

= $\frac{1}{2}i$

$$\eta_{\mu\nu} = \nabla_i \nabla_j \int \nabla f(x) d\eta, \bar{h}_{\mu\nu} = \nabla_i \nabla_j \int \nabla g(x) dx_i dx_j$$

Rout of helmander in zeta function of element is Own of stimulate in seifert manifold. Fifth dimension in seifert manifold is oneselves in rout of equation in imaginary of pole.

$$\eta_{\mu\nu} = [\nabla_i \nabla_j \int \nabla f(x) d\eta]^{\frac{1}{2}}, \bar{h}_{\mu\nu} = [\nabla_i \nabla_j \int \nabla g(x) dx_i dx_j]^{iy}$$

Sheap of element have with zeta function.

$$||ds^2|| = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^2 d^2 \psi$$

$$= \delta \mathcal{O}(x)[f(x) \circ g(x)]dx^{\mu}dx^{\nu} + \lim_{x \to \infty} \sum_{k=0}^{\infty} a_k f^k$$

Open set group in seifert manifold is constructed with abel manifold.

$$(\Box \psi)' = \nabla_i \nabla_j (\delta(x) \circ G(x))^{\mu\nu} \left(\frac{p}{c^3} \circ \frac{V}{S} \right)$$

Gravity of power in three manifold of entropy of power expire of around of universe.

$$\Box \psi = 8\pi G T^{\mu\nu}, \mathcal{O}(x) = \left[\nabla_i \nabla_j f(x)\right]'$$

This gravity of power is component with open set group in differential equation.

$$\cong {}_{n}C_{r}f(x)^{n}f(y)^{n-r}\delta(x,y), V(\tau) = \int [f(x)]dm/\partial f_{xy}$$

And this equation developed with summuate of manifold is built.

$$\frac{p}{c^3} \circ \frac{V}{S} = \left[\nabla_i \nabla_j \int \nabla f(x) d\eta \circ \nabla_i \nabla_j \int \nabla g(x) dx_i dx_j \right]$$

This also equation is sheap of manifold in zeta function in frobenius theorem.

$$\begin{aligned} ||ds^2|| &= (\delta(x) \circ G(x))^{\mu\nu} \to \nabla_i \nabla_j (\delta(x) \circ G(x))^{\mu\nu} \\ \frac{d}{df} F(v_{ij}, h) &= [-\Delta v + \nabla_i \nabla_j v_{ij} - R_{ij} v_{ij} - v_{ij} \nabla_i \nabla_j + 2 < \nabla f, \nabla h > + (R + \nabla f^2)(\frac{v}{2} - h)] \\ e^{-f} \circ e^{-f} \to -2R_{ij}, e^{-f} \to e^{-2\pi T|\psi|} &= [\nabla_i \nabla_j \int \nabla f(x) d\eta \circ \nabla_i \nabla_j \int \nabla g(x) dx_i dx_j] \\ \frac{x + y}{2} &\geq \sqrt{xy} \\ \frac{x^{\frac{1}{2} + iy}}{e^{x \log x}} &= 1 \end{aligned}$$

Zeta function is steady in imaginary of pole.

Entropy on manifold and differential of equation

Masaaki Yamaguchi

1 Global Differential Equation

Global area in integrate and differential of equation emerge with quantum of image function built on. Thurston conjugate of theorem come with these equation, and heat equation of entropy developed it' equation with. These equation of entropy is common function on zeta function, eight of differential structure is with fourth power, then gravity, strong boson, weak boson, and Maxwell theorem is common of entropy equation. Euler-Lagrange equation is same entropy with quantum of material equation. This spectrum focus is, eight of differential structure bind of two perceptive power. These more say, zeta function resolved is gravity and antigravity on non-catastrophe on D-brane emerge with same power of level in fourth of power. This quantum group of equation inspect with universe of space on imaginary and reality of Laplace equation.

It is possibility of function for these equation to emerge with entropy of fluctuation in equation on prime parammeter. These equation is built with non-commutative formula. And these equation is emerged with fundamental formula. These equation group resolved by Schrödinger, Heisenberg equation and D-brane. More spectrum focus is, resolved equation by zeta function bind with gravity, antigravity and Maxwell theorem. More resolved is strong boson and weak boson to unite with. These two of power integrate with three dimension on zeta function.

Imaginary equation with Fouier parameter become of non-entropy, which is common with antigravity of power. Integrate and differential equation on imaginary equation develop with rotation of quantum equation, curve of parameter become of minus. Non-general relativity of integral developed by monotonicity, and this equation is same energy on zeta function.

$$\pi(\chi, x) = i\pi(\chi, x) \circ f(x) - f(x) \circ \pi(\chi, x)$$

This equation is non-commutative equation on developed function. This function is

$$\int \frac{1}{(x \log x)} dx = i \int x \log x dx - \int \frac{1}{(x \log x)} dx$$

This equation resolved is

$$\int \int \frac{1}{(x \log x)^2} dx_m \ge \frac{1}{2}i$$

And this equation resolved by symmetry of formula

$$y = x$$

$$\int \int \frac{1}{(y\log y)^{\frac{1}{2}}} dy_m \ge \frac{1}{2}$$

This function common with zeta equation. This function is proof with Thurston conjugate theorem by Euler-Lagrange equation.

$$F_t^m \ge \int_M (R + \nabla_i \nabla_j f) e^{-f} dV$$

resolved is

$$F_t \ge \frac{2}{n}f^2$$

$$\frac{d}{df}F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

These resolved is

$$\frac{d}{df}F_t = \frac{1}{4}g_{ij}^2$$

Euler-Lagrange equation is

$$f(r) = \frac{1}{2}m\frac{\sqrt{1+f'(r)}}{f(r)} - mgf(r)$$

$$m = 1, g = 1$$

$$f(r) = \frac{1}{4}|r|^2$$

Next resolved function is Laplace equation in imaginary and reality fo antigravity, gravity equation on zeta function.

$$\int \int \frac{1}{(x \log x)^2} dx_m + \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = 0$$

This function developed with universe of space.

$$x^{\frac{1}{2}+iy} = e^{x \log x}$$

This equation also resolved of zeta function.

$$\frac{d}{df}F(v_{ij},h) = \int e^{-f}\left[-\Delta v + \nabla_i \nabla_j v_{ij} - R_{ij}v_{ij} - v_{ij}\nabla_i \nabla_j + 2 < \nabla f, \nabla h > +(R + \nabla f^2)(\frac{v}{2} - h)\right]$$

These equation is common with power of strong and weak boson, Maxwell theorem, and gravity, antigravity of function. This resolved is

$$\frac{d}{df}F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

on zeta function resolved with

$$F \ge \frac{d}{df} \iint \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \iint \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

2 Quantum Equation for Dimension of Symmetry

Quantum Equation architect with geometry structure of Global Differential Equation has zero with gravity and antigravity for eternal space, and this space emerge for burned of non expanded universe. Then this universe has Symmetry in dimension with that created of fourth Universe in one of geometry has six element quark and pair of structure belong for twelve element quark. These quarks emerge with eternal space of Non-Difinition System in Quantum Mechanism, in term of one dimension decided, or the other dimension non-decision. These system concerned of vector of norm depend for universe mention to eternal space. Mass existing in dimension emerge gravity, these paradox is in universe has mass around of light, in deposit of mass for our universe and the other dimension has gravity and antigravity, and covered with these element for non-gravity. Laplace equation decide with eight of structure for these element of power integrate for one of geometry. Higgs quark is quote algebra equation in Global Differential Equation of non-gravity element on zero dimension. These equation is mass of build on structure in mechanism system. This quote algebra equation have created of structure in mass with universe of existing things. These result means with why quantum system communicate with our universe be able to connect of.

$$\pi(\chi, x) = [i\pi(\chi, x), f(x)]$$

$$\int \int \frac{1}{(x \log x)^2} dx_m + \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m \ge 0$$

$$\Delta x \Delta p \ge \frac{1}{4}i$$

$$\frac{\delta g}{L^2} \sim \frac{G}{c^4} \frac{\delta E}{L^3}$$

$$\delta E \gtrsim \frac{\hbar}{T} \cong \frac{\hbar c}{L}$$

$$\delta g \gtrsim \frac{L_p^2}{L^2}$$

$$\sqrt{\frac{\hbar G}{c^3}} \cong 1.616 \times 10^{-33}$$

$$C = 0.5772156 \dots$$

$$F = \frac{d}{df} \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

$$f_z = \int \left[\sqrt{\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}} \circ \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} \right] dx dy dz$$

$$F_t^m = \frac{1}{4} (g_{ij})^2$$

Quantum Group resolved with Laplace equation build in calculate on non-gravity element of based by non extention equation. This solved by these element in equation has belong to gravity is why universe have in no weight, and mass exist weight to space emerge of created with gravity, in which is reason by non-extension equation translate to variable and invariable element. These problem of included universe in no gravity, which is exist of mass on space of surrounding in universe. Those quesion resolve on zeta equation and Quantum Group of translate to vector equation. Non-extension equation selves has non-gravity, these result with universe first burn in D-brane created by solved with replace equation. Quote Algebra equation have created of structure in mass with universe of existing things.

These equation explain to those which included mass has gravity emerged, and universe has in surrounding to no weight. The other Dimension integrate with these universe of gravity to unite antigravity, so this universe has no weight. Higgs quark is mass of built on structure in mechanism system. These system belong to create on element. These element is based on existing of universe which has structure code, in theorem composed for universe to emerge of time with future and past. Universe first created in these time, this existing things already burned with space. Network Theorem is connected eight element of geometry structure which integrate with three dimension of structure. These structure compose in three manifold, zeta equation is this system of element. These resulted theorem resolved with quantum equation, so this mechanism impressed in universe of component. Strong and Weak boson is united to one, and Maxwell theorem is same system. Gravity and Antigravity has own element. General relativity theorem same united. These integrate with included Euler equation. These power of element is zeta equation. Then this twelve element of quarks has belong to this universe and the other dimension.

$$\Delta E = -2(T-t)|R_{ij} + \nabla_i \nabla_j f - \frac{1}{2(T-t)}g_{ij}|^2$$

Quote group classify equivalent class to own element of group.

$$A = BQ + R$$

$$[x] = A$$

$$dx^{n} = \sum_{k=0}^{\infty} x^{n} dx$$

$$R_{n} = \frac{n!}{(n-r)!} (x^{n})'$$

$$\beta(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1}$$

$$Z(T,X) = \exp(\sum_{m=1}^{\infty} \frac{(q^{k}T)^{m}}{m})$$

$$Z(T,X) = \frac{P_{1}(T)P_{3}(T) \dots P_{2n-1}}{P_{0}(T)P_{2}(T)P_{4}(T) \dots P_{2n}}$$

$$|v| = |\int (\pi r^{2} + \vec{r}) dx|^{2}$$

$$\Delta E = \int (\operatorname{div}(\operatorname{rot}E) \cdot e^{-ix \log x}) dx$$

$$(\nabla \phi)^{2} = \int tf(t) \frac{df(x)}{e^{-x}t^{x-1}} dx$$

$$(\nabla \phi)^{2} = \int tf(t)(\Gamma(t)df(x)) dx$$

$$(\nabla \phi)^{2} = \frac{1}{\Gamma(x+y)}$$

then these equation decide to class manifold with group. Differential group emerge with same element of equation, zero dimension conclude to emerge with all element. Constant has with imaginary of number on developed of zeta equation. Weil's Theorem resolved with zeta equation, these function merge to build in replace equation. Euler constant has with bind of imaginary number and variable number. These function is

$$C = \int \frac{1}{x^s} dx - \log x$$

Replace equation resolve on zeta function.

$$\int \int \frac{1}{(x\log x)^2} dx_m = \frac{1}{2}i$$

These function understood is become of imaginary number, which deal with delete line of equation on space of curve.

Euler number also has with imaginary of constant.

Space Mechanism to transport of Dimension

Masaaki Yamaguchi

1 Kaluza-Klein Theorem

The other dimension rotate of universe with real and image rout, complex rotate to dimension of fifth for Kaluza-Klein dimension extend with theorem. Mebius space explain this theorem to reflect for fifth dimension of construct with real rout of rotate in image rout.

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\beta(p,q) \ge -\int \frac{1}{t^2} dt$$

Abel equation tell this space to infinite this dimension for finite space to conclude of this theorem, in explain the other dimension with our universe rotate with, and this space rout out this fifth dimension, no throught with time system. This space didn't throw of light speed, light element go with space throw. This idea explain of magnetic theorem, this tell space to construct with movement result. Light speed go with other light together, this light look like stop of speed. This idea extend of tell space for no relativity, time flow of infinite.

Kaluza-Klein Theorem say

$$ds^{2} = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \phi^{2}(x)(\kappa^{2}A_{\mu\nu}(x)dx^{\mu})^{2}$$

$$G_{\mu\nu} + \Lambda R_{\mu\nu} = \kappa^{2}T_{\mu\nu}$$

$$\frac{\delta g}{L^{2}} \sim \frac{G}{c^{4}}\frac{\delta E}{L^{3}}$$

$$\delta E \gtrsim \frac{\hbar}{T} \cong \frac{\hbar c}{L}$$

$$\delta g \gtrsim \frac{L_{p}^{2}}{L^{2}}$$

$$\nabla \phi^{2} = 8\pi G(\frac{p}{c^{3}} + \frac{V}{S})$$

$$\frac{d}{dt}g_{ij}(t) = -2R_{ij}$$

$$ds^{2} = -N(r)^{2}dt^{2} + \phi^{2}(r)(dr^{2} + r^{2}d\theta^{2})$$

$$ds^{2} = -dt^{2} + r^{-8\pi Gm}(dr^{2} + r^{2}d\theta^{2})$$

This equation result

$$dx^2 = g_{\mu\nu}(x)(g_{\mu\nu}(x)dx^2 - dxg_{\mu\nu(x)})$$

These equation tell space non-symmetry result

$$dx = (g_{\mu\nu}(x)^2 dx^2 - g_{\mu\nu}(x) dx g_{\mu\nu}(x))^{\frac{1}{2}}$$

This theorem mension to zeta equation construct space of non-symmetry to emerge with non-gravity.

$$\pi(X, x) = i\pi(X, x)f(x) - f(x)\pi(X, x)$$

2 Network Theorem

Quantum Group connect with Universe component which has built in emerge space, these Network element by kernel and image function in zeta equation. This each of function system is Universe element of geometry group construct with these equation, in space first burn with time future and past. Gravity equation has with antigravity element. Quantum group with fourth of universe system. This system mention to our universe create with network theorem. Our universe already create of eternal space. Time throw with this space, then universe already complete created. In this reason time of throw in space was found with non-expand of universe. General relativity theorem mention to this equation means by.

Quark has twelve element kernel and image of equaiton resolve with base group integrate of three dimension construct of this equation resulted. Global differential equation means to resolve with universe emerge in built system. This equation emerge with almost thing of component structure code. This source code create in element structure. This network system is include with fourth of universe on connected with communicate mechanism. Base group explain in these system, differential equation has with global integrate equation togather. This equation means for our universe system of geometry structure integrate with one of geometry. In reason this connected with eight element of structure, then this system is realize to quantum group equation resolved with space mechanism.

$$G_{\mu\nu} + \Lambda R_{\mu\nu} = \kappa^2 T^{\mu\nu}$$

$$X(3) = (-1)^3 < |a_0a_1a_2a_3| > +(-1)^2 (< |a_0a_1a_2|, |a_1a_2a_3|, |a_0a_1a_3| >)$$
$$+(-1)^1 < a_1a_2, a_0a_3, a_2a_3 > +(-1)^0 < a_0, a_1, a_2, a_3 >$$

$$H_n(x) = kerf/imf$$

$$X(x) = r(H_n(x))$$

$$X(3) = H_3(x) = 0$$

$$H_3(\Pi) = Z$$

3 Zeta equation of system

Quantum equation for universe has with gravity on fourth of manifold is closed three manifold with antigravity has decieve to the other dimension. This thorem mention to tell universe to composite with time of system, these system of equation say,

$$\log x(\log x) \ge 2(y\log y)^{\frac{1}{2}}$$

This system belong for geometry theorem destruct with three manifold built of singularity in dimension, this dimension is also built in mechanism of all composite with source code. For code is entropy of mass with energy, this entropy is,

$$\pi(X, X) = [i\pi(X, x), f(x)]$$

$$\pi(X, x) = \int \frac{1}{(x \log x)^2} dx$$

This equation tell gravity to entropy of equation composite with mass of singularity. Three manifold of equation mension to this universe has with zero dimension began to time of first, in firstly time has future and past. This system says that universe has first begun of throw to time system. The explain theorem that universe of end composite for entropy equation tell the construct of this system, and universe has in other dimension covered with oposite of energy.

Dimension of three manifold system says,

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa^2 T_{\mu\nu}$$

$$L_p = \sqrt{\frac{\hbar G}{c^3}}$$

$$\nabla\phi^2 = 8\pi G(\frac{p}{c^3} + \frac{V}{S})$$

This equation mension to three manifold of Dimension construct with time and energy of Non-Difinition system. Quantum equation and this equation also built with same equation of theorem. Fundamental group explain this theorem to composite with entropy of same energy, any rout built with same energy to construct with source code. The rout of equation is,

$$V(\tau) = \int \tau(p)^{-\frac{n}{2}} \exp(-\frac{1}{\sqrt{2\tau(q)}} L(x) dx) + O(N^{-1})$$

The equation also say that universe has singularity of component is,

$$\frac{1}{\tau} (\frac{N}{2} + \tau (2\Delta F - |\nabla f|^2 + R) + f) \bmod N^{-1}$$

These theorem explain that universe has of big-clanch system. The system include to dimension and time of throw of mechanism. Higgs field of energy equation say,

$$\frac{d}{df}F = m(x)$$

This equation concern with Seifert manifold mension to dimension of system. Global differential equation belong for gravity and antigravity of equation with Abel manifold in Euler equation. Infinite of group composite with this theorem conclude of finite group, these theorem explain to construct of universe is big-clanch.

Universe has with ertel and this mass of energy is singularity of component. Global differential system and Higgs of mass says that universe has built of darkmatter and big-ban system.

4 Emerge any dimension for supersymmetry to create for universe form quarks of element

Space for Non-Symmetry create of power in gravity and antigravity for Higgs quark of energy with ertel potensial. This potential energy construct to emerge fourth power, then integrate of twelve of quarks. These mechanism export for another dimension of symmetry built. These dimension also architect with sixth of quarks. There import mechanism to Global differential equation for resolve of Higgs quark to build for unvierse. This way export of two dimension for symmetry of pair, these symmetry of space also built from sixth of quarks. Space of ertel emerge in gravity and antigravity, this power from ertel in non-free condition from free of ertel to emerge on these mass of space in zero dimension. This mechanism result with space to construct in three manifold of ertel from power. This resolved mechanism built with time and space of system, also this system flow to universe. These system tell universe to emerge space of singularity from potensial energy.

$$\pi(|K"|) \cong \pi(|\bar{K"}|, O)$$

$$\begin{split} l(< P, Q >), l(< Q, R >), l(< R.S >), l(< P, R >), l(< P, S >), l(< Q, S >) \\ &= \alpha, \beta, \gamma, \delta, \zeta, \eta \end{split}$$

$$e = \alpha \beta \gamma$$
$$\gamma = \beta^{-1} \alpha^{-1}$$
$$\zeta = \alpha \gamma$$
$$\delta = \eta \gamma^{-1}$$
$$\eta = \beta \zeta$$
$$\beta^5 = (\beta \theta)^2 = \theta^3$$
$$[\beta] = [\theta] = 0$$

$$ds^{2} = e^{-2kT(x)|\phi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2}(x) d\phi^{2}$$

$$\nabla \phi^2 = 8\pi G(\frac{p}{c^3} + \frac{V}{S})$$

Twelve quarks emerge for three manifold of space, in element space of system construct with three D-brane, these dimension catastrophe of symmetry. This mechanism explain for those which create of our universe and the other dimension, take these mechanism into consideration for those built to deceive the other dimension over universe, for Global differential equation devide with gravity and antigravity emerge space to existing zero dimension of ertel space in singularity of zeta equation.

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\log x(\log x) = 2(y\log y)^{\frac{1}{2}}$$

5 Higgs Fields transport of three manifold on zeta function to resolve the mechanism

Higgs Fields transform of comformal field in space, this space mechanizm with lives of existing source code. Non-commutative algebra built to transport of emerging on space, each of element has prime number in these theorem. Destruct of element has a reverse on manifold, this theorem conclude with Euler-Lagrange equation resolve to merge element.

$$|f(x)| \to [f,f^{-1}] \times [g,h]$$

$$(x-1)(2y-b) \ge z$$

$$\frac{1}{x-1} \frac{1}{2y-b} \le \frac{1}{z}$$

$$f(x) = \frac{1}{x-1} + \frac{1}{2y-b}$$

$$\frac{d}{df} \ge \frac{d}{df}f$$

$$dx \le dF$$

$$|f(x)| = \frac{1}{4}|r|^2$$

Seifert manifold has reverse of time with space mechanism on merge to resolve with zeta function. Global differential equation has zero dimension of darkmatter to create of space, big-ban system also start with this mass of field to begin with universe.

Nonliner of element on manifold algebra

Masaaki Yamaguchi

1 Mebius space

Gamma and Beta function belong for Kaluza-Klein theorem, these equation built of first universe began with darkmatter, this ertel is non-free condition to emerge with big-ban system conform to export with antigravity element. This space consist of fifth dimension rotate with Mebius space construct for the other dimension, after all built of quarks two of pair in dimension symmetry. Topology consist of algebra equation is being with complex function. Norm relate with Volume of space of these system built in. Prime number concern with Euler constance relate of.

$$\Gamma(x) = \int x^{1-t}e^{-x}dx$$

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$f(x) = [f, f^{-1}] \times [g, h]$$

$$V(x) = \int \frac{1}{\sqrt{2\tau q}}(\exp\int L(x)dx) + O(N^{-1})$$

$$Zeta(x,h) = \exp\frac{(qf(x))^m}{m}$$

$$\frac{d}{df}F(x) = m(x)$$

This point of focus is Global differential equation relate with all existing equation. Prime number consist of zeta function in Mebius space.

2 Maxwell theorem integrate of gravity element

Kaluza-Klein theorem consist of general relativity of equation, fifth dimension is part of zeta function on also Global differential equation. Weak power concern with electric of magnity in Maxwell theorem. Space fill of ertel with darkmatter being of graviton to emerge of Higgs fields. This fields has topology element with any transform of power in atomic element. Relate with result of space merge to create for electric and magnitic power. Higgs fields built with pair of quarks in symmetry space. Vector of norm consist of two of pair for dimension.

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} + \phi^{2}(x)(\kappa^{2}A_{\mu\nu}(x)dx^{\nu})^{2}$$

$$dx = (g_{\mu\nu}(x)^{2}dx^{2} - g_{\mu\nu}(x)dxg_{\mu\nu}(x))^{\frac{1}{2}}$$

$$\sum_{k=0}^{\infty} |x_{k} + y_{k}|^{2} = \sum |x|^{2} + 2\sum |xy| + \sum |y|^{2} \le \sum |x|^{2} + \sum |y|^{2}$$

$$f(|x + y|) = f(|x|) + f(|y|) \ge f(|x| \circ |y|)$$

Norm space has with Frobenius theorem to resolve with Kaluza-Klein space built in. Euler number consist of rank for homology element to create with zero dimension.

$$\chi(x) = H_3(x) = 0$$
$$H_3(\Pi) = Z$$

Loop of topology has no exist with zero dimension, this system explain to create of Maxwell theorem.

3 Zeta function belong for singularity component

Zeta function consist of reverse of time quality, this space result with movement of element. Kaluze-Klein theorem create with space to emerge of singularity. Maxwell theorem has this system of circumstanse. Fourth dimension belong to construct with Donaldson manifold exist explain. Duality of space also built with zeta function from singularity. Monotonicity relate to merge with non-relativity of integral result, this reflection is space of quality.

$$\frac{V(x)}{f(x)} = m(x)$$

$$F(x) = 0$$

$$\frac{d}{df}F(x) \ge 0$$

$$\lim_{x \to \infty} \operatorname{mesh} \frac{F(x)}{f(x)} \to 0$$

$$\nabla f(x) = 2$$

$$\pi(\chi, x) = [i\pi(\chi, x), f(x)]$$

$$f(x) = \int \frac{1}{x^s} dx - \log x$$

Morse theorem relate to merge of result with zeta function, gradient flow concern of zero dimension.

4 Other dimension and this influent of power

Pair of dimension interact to inspect for movement result, each of dimension devide with power of influent. This power has contrast of element, in inspire of result merge to create of pair in vector operate. Non-certain theorem mension to tell dimension give to create of pair in power. Six quarks sum to merge with twelve quarks, zero dimension have with fourth dimension of Global differential equation part of construct element. Graviton influent to reflect for universe to have the other dimension.

$$\frac{d}{df}F(x) = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)}dm$$

$$f(r) = \frac{1}{4}|r|^2$$

Norm space have non-liner to integrate with algebra manifold, singularity create for pair of dimension to fill of fourth of power. Eight of differential structure have for these dimension integrate four of power.

$$\frac{d}{df}F(v_{ij},h) = \int e^{-f}[-\Delta v + \nabla_i \nabla_j v_{ij} - R_{ij}v_{ij} - v_{ij}\nabla_i \nabla_j + 2 < \nabla f, \nabla h > +(R + \nabla f^2)(\frac{v}{2} - h)]$$

$$\frac{d}{df}(x - y)^n = \frac{\Pi(x - y)^n}{\partial f_{xy}}$$

$$\pi(X, x) = i\pi(X, x)f(x) - f(x)\pi(X, x)$$

$$\Delta E = \int \operatorname{div}(\operatorname{rot} E)e^{-ix\log x} dx$$

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

Report

Masaaki Yamaguchi

1 Summulate of manifold from graviton structure

It is non-perfect element of manifold to integrate with graviton of quark, this quark construct of fermison and boson. Then D-brane aspect with string theorem include with. This structure summulate of equation on integral and differential operator. Higgs quark have part of network theorem for graviton structure. Universe influent pair of dimension between monotonicity and singularity. Non-symmetry destruct to distinuish with dimension of being constructed on quark of element. That's say, this mechanism architect with four of dimension existed. In part of this explain, Higgs fields is Weil's theorem component of global differential structure, Global area part of equation resolved come to simpley conclude theorem. Global integral and differential equation, what is not used, difficulty of resolved.

Infinite number devide infinite oneselves and finite oneselves is finite number. Prime number extent of infinite number, $\sum a_k f^k(x)$ manifold have with these extend of count. Zeta function conclude with zero dimension, also this resolve to Gauss liner.

$$f(x) = \chi - \{x\}$$

$$\int_{\beta}^{\alpha} (x - \alpha)(x - \beta) = 2 \int_{M} f(x) dx$$

$$\int_{\beta}^{\alpha} a(x - \alpha)(x - \beta) = -\frac{(\beta - \alpha)^{3}}{6}$$

$$\frac{d}{df} F(x) = 0$$

$$\log(x \log x) - 2(y \log y)^{\frac{1}{2}} = [||\frac{d}{df} F(x)||]$$

Eight of differential structure integrate with graviton element to one of geometry, plank scale add volume divide to surface. This scale is three dimension of one energy. $\nabla \phi^2 = 8\pi G(\frac{p}{c^3} + \frac{V}{S})$ This equation means is three dimension of energy entropy. Zeta function means is time and space of scale on plank entropy, and this equation built on future and past of curve of paremeter. These equation resolve with one component of energy and vector of time and space of curve of paremeter.

$$\nabla \phi^2 = 8\pi G\hbar + 8\pi \frac{V}{S}$$

$$\Box_v = 2\sqrt{2\pi G\hbar} + 2\sqrt{2\pi \frac{V}{S}}$$

$$\sqrt{2\pi T} = 2\sqrt{2\pi \frac{V}{S}}$$

 $\sqrt{2\pi T}$ is blackhole entropy and $\Box_v = 2\sqrt{2\pi G\hbar}$ is whitehole entropy. This entropy pair of universe in dimension, two dimension of universe include with cover of energy. Blackhole construct with colapser of hole on kernel of atom, whitehole composite with antigravity.

$$\begin{split} \log(x\log x) &\geq 2(y\log y)^{\frac{1}{2}} \, \log(x\log y) \geq 2(xe^x)^{\frac{1}{2}} \, \log x + \log\log y = 2(ye^x)^{\frac{1}{2}} \, e^x + y = 2(ye^x)^{\frac{1}{2}} \to \frac{1}{2} \\ e^{x+1} &= 2(xe^x)^{\frac{1}{2}} \, \frac{e^{2(x+1)}}{4xe^x} \geq 1 \, F_t^m = \frac{1}{4}g_{ij}^2 \, \frac{x+1}{4x} = y^2 \, \frac{1}{4} + \frac{1}{x} = y^2 \, \log(xy) \geq 2(yx)^{\frac{1}{2}} \, (\log(xy))' \geq 4(yx)^{-\frac{1}{2}} \\ \frac{1}{xy} \geq 4(yx)^{-\frac{1}{2}} \, \log x + \log y \geq 4(yx)^{-\frac{1}{2}} \, \frac{1}{x} + \frac{1}{y} \geq 4(yx)^{-\frac{1}{2}} \, \frac{x+y}{xy} yx^{\frac{1}{2}} \geq 4 \, \frac{xy^{\frac{1}{2}}}{x+y} \leq \frac{1}{4} \, \frac{\Gamma(xy)}{\Gamma(x+y)} \leq \frac{1}{4} \, x + y \geq 2\sqrt{xy} \\ \Delta x \Delta y \geq \frac{1}{4}i \, \frac{1}{xy} \geq 4(yx)^{-\frac{1}{2}} \, F_t^m = \frac{1}{4}g_{ij}^2 \, e^{2(yx)^{\frac{1}{2}}} = g_{ij}^2 \, xy = e^{2(yx)^{\frac{1}{2}}} \to g_{ij}^2 \, 1 + \frac{1}{x} = 4y \, (e^x + x)^2 \geq 4xe^x \\ r^2 = \frac{|x_0x - 2x_0e^x + e^{2x_0x}|}{\sqrt{x_0^2 + y_0^2}} \, r^2(x_0^2 + y_0^2) = [(e^x + 1)(e^x - 1) + (x + i)(x - i)] + 2xe^{x^2} \, r = \frac{\|1 + x - 4xy\|}{\sqrt{x_0^2 + y_0^2}} \, r^2(x_0^2 + y_0^2) = [(x - 1)(x + 1) + (x - i)(x + i)] + 2x_0e^{2x} \end{split}$$

Langranse conjecture include with finite line conjecture expected, infinite extend theorem exclude of finite extent. Zeta function integrate with all of math conjecture experanade. Facility of math of theorem relate of physics all of philosity. Zeta function composite with fifth dimension of equation. Curv parameter is hartshorn conjecture, this rout describe with dimension of structure. Fifth dimension rout out center of universe behind two times distance, this rout colapser around of universe. In fifth dimension, black hole and white hole in three manifold of entropy created.

Zeta function coss delete line of differential structure emerge with fifth dimension structure, oen dimension of independent vector is tangent degree. This curve of parameter create dimension of fifth dimension structure. This idea is from hartshorn conjecture. And this conjecture explanade of math mechanism, fifth dimension is AI and mass of structure parlament of pond. Time of secret is grasped in fucture and past of curve of parameter, so this equation is from universe and creature of establish of life.

Electric energy flow to neutral narrow for amusebelt on rinkfelt of harnessinkbolt, this mechanism create mind on inclusive line of brain. This flow energy on esplanade desire in routine of cone of electric energy. Endeaver circle of circuit of neutrial network, then this mechanism create on founterial motion. Dorpamin throw to neutral narrow of alcole for not being to melt and out of this narrow. This energy is supporting for Dorpamin of material things, and this circuit is circadian morment of motion. Natural killer ceil defense induce hant for lives in nature of world. This hant of mechanism is evolution on life of nature for revolution of humanism. Influence of induce hant controll with life. And these conquire of mechanism can use to neural network of evolution. These computer virus is using for not being hacking and not other controlled of oneselves computer. Safty of network is being for living in computer associate world.

Gravity esplanade theorem of cover with antigravity, information technology of exclusive injure to secure about permisset. Incrument safir to charge atom of power by pairlament in all of dimension. Reduce to string theorem of reluctance in concerntism theositiy. This power contiment design emerge with inparance of contiment. All of universe have inductary, and asperant comfirm with conclusivity entily. These theorem tell uncounter deduce in consivitly, therefore this envily of power concern with

cover of atom. Secure built with antigravity from gravity structure.

In reduce a morment to gravity structure, for away to certain of hant. A element of clue a vector, before opened to verify of persuade atom of power. To include of quark for twelve element, fifth dimension in zeta function to construct of geometry peices, integrate of power for fourth of series. Lack of power two bind of under a structure, antigravity permissted a power of element. This reason fourth of power get along to combind with one of decieved.

Varnished center of landscape, heat to controll of power, for missed a verisity of underground, mind to even a mid ceil.

$$F_t^m = [f(x)]$$

$$[f(x)] = \mathcal{O}(x)$$

$$X \in \mathcal{O}(x)$$

$$0 \to [||\frac{d}{df}F||] \to \infty$$

General number verisity is between zero and infinity. Infinite number and finite number have in general number, narrow verisity and first accerity. Gauss liner is prime number interity. Prime number and general number include Gauss liner to compilation in infinite mechanism.

 $\log(x\log x) > 2(y\log y)^{\frac{1}{2}}$

$$\log xy \ge 2(xe^x)^{\frac{1}{2}}$$

$$(y+x)^2 - 4i(y+x)(xe)^{\frac{1}{2}} - 4xe$$

$$r^2(y^2+x^2) = [(y+x)^2 - 4i(y+x)xe^{\frac{1}{2}}] - 4xe$$

$$r^2(x^2+y^2) = [(\log y + \log x)^2 - 4i(\log y + \log x)xe^{\frac{1}{2}}] - 4xe$$

$$\delta(f) = \int \frac{g(c+d)}{f(a+b)}z(f+g)dz$$

$$y = f(y)$$

$$ds^2 = e^{-2\pi T|\phi|}[\tau_{\mu\nu} + \bar{h}_{\mu\nu}]dx^{\mu}dx^{\nu} + T^2d^2\theta$$

$$\begin{bmatrix} x & y \\ a & b \end{bmatrix}$$

$$\to [z]$$

$$f[z] \to dx$$

$$x \cdot y = 0$$

$$\infty \to [f(x)]$$

Gauss liner is finite to infinity number of extend in prime number. Fifth dimension of equation composite with zeta function of infinity of extent theosity make finity of circle of structure. Independent of vector is zero dimension of category. This equaiton have a infinity of relate in number. Fifth of equation make for zeta function of infinity to conclude with this dimension out of number for finity circle. Therefor it is possiblity of being deleted to category of number that this vector is dimension of structure in fifth of dimension.

2 Neural Network from zeta function

Inclivity sensibilite make from height for maderite in mechanism. Conclusive in cercuit from hight of harmonite on interisity. The include of mechanism is quark in universe of quality of mass.

Theorem of math make for facility of mechanism in this circumstance. And these possibility of resolved from pond of sensibility.

Light filt with eight differential structure in gravity element, then quarks made from this structure. This mechanism deal with any structure of space to create with light to graviton element. And cercuit of this mechanism dealt with carbon and hidoroxs, covalt of sixty based with filter of light element. This cercuit is dependency of any element in quark of mass, created with gravity to light of structure. Zeta function asperal with any thing to create of every mass. Fifth dimension is pond of sensibility from this gravity in lives of element.

All creature is created by this cercuit of mechanism, fifth dimension themselves is from this circumstance. This space also have oneselves with vector of independence, any this structure is from hartshorm conjecture. Space themselves haven with any of vector is tangent degree of ninety. And this vector is being of other dimension that have cercuit of theorem. These reason is from any thing born with creature, then fifth dimension haven with creature and universe. This dimension also haven with that extent from infinite and finite. Infinite of zeta function in Finite of fifth dimension, then paradox of finite cover with infinite of space.

 $\chi - \{x\} = \infty$ $f(x) = \chi - \{x\}$ $f(x) + \mathcal{O}(x) \to \text{finite.}$ Add group is finite of element. This equation is fifth dimension of system. Circle of group in this delete element is infinite of set. f(x) = [F(x)] f(x) is Gauss liner. This set is infinite of number. $ds^2 = e^{-2\pi T|\phi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^{\mu} dx^{\nu} + T^2 d^2 \phi$ This fifth dimension is [F(x)] add finite of set. Fifth dimension include with zeta function, and string theorem belong to have with infinite of consist on space. This fifth dimension is finite of space. Conclude of system solved with

infinite is covered with finite of space.

Fifth dimension in facility of mechanism that circle of infinity to emerge with being from infinity and finite of space. Zero dimension conclude with this mechanism to create from theorem of mathmatics in pond of sensibility. Dimension with repository of information in facility of space, this space is all of knowlege to accessority for comformal fields. Pholographic theorem is from universe of oneselves with database of creature to access with hyper dimension in General relativity. Zeta function is this theorem include with paremeter of curve from future and past of repository.

Flow to future and past that combinate with zeta function which build for hartshorn conjecture from these mechanism. This flow is gradient of line to add with fifth dimension of structure.

$$\log(x\log x) \ge 2(y\log y)^{\frac{1}{2}}$$

Infinite of atomasphere in zero dimension include with black hole and white hole of energy in three manifold of entropy.

This entropy discribe with antigravity of energy.

$$\nabla^2 \psi = 8\pi G \hbar + 8\pi \frac{V}{S}$$

$$\Box_v = 2\sqrt{2\pi G \hbar} + 2\sqrt{2\pi \frac{V}{S}}$$

$$2\sqrt{2\pi \frac{V}{S}} = \int \int \frac{1}{(x \log x)^2} dx_m$$

This energy flow from black hole to white hole in universe and other dimension of pair. Black hole entropy is $m = \sqrt{2\pi T}$ This entropy cover to other dimension of rout in flow energy.

Electric Weak Theorem combine with quantum flaver theorem to conjugate with light element in gravity to sheaf with antigravity. This antigravity is key for integrate with fourth of power in boson of theorem to world line to general relativity is why fourth of power not able to integrate in gravity combine with electric weak theorem and quantum flaver theorem. This point of focus is light that is filt to conjugate with eight differential structure from gravity, and this light is also element of quarks. This quark built to eight element structure. Light conjugate to eight differential element that resolved zeta function and integrate with laplace equation. Gravity significant with gravity cover with antigravity, so this antigravity is fourth element power of exist.

Entropy of vector have zero dimension in all exist into all of equation. Infinite of number is three dimension, therefore it is esperial of important that created by zero dimension from infinite to finite of equation rout.

$$f(x) = 0$$

$$F = \int \int \frac{1}{(x \log x)^2} dx_m + \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

$$F = 0, x \cdot y = 0, F(x) = 0, G(x) = 0, \mathcal{O} \in X, X \cong 0, x - y = 0, F(x, y) = 0, x^n + y^n = z^n,$$

$$F(x) = x^n + y^n, F(x) = 0$$

$$ds^2 = \frac{r}{d + e \cos \theta}$$

Fifth dimension discribe with norm liner in zero dimension. This equation conclude with all of equation to pond sensibility.

Pond of sensibility is facility of mathmatics in infinite of mechanism, this mechanism is zero dimension for imaginary of equation in antigravity influence. This power is gravity on cover with non symmetry combine of fourth of power. That fourth of power is the reason with quantum flaver theorem combine with gravity of power, antigravity is brane of string key mechanism. This power is non-catastrophe of influent reason, and that mechanism of power result. Integrate of gravity include with antigravity, and fourth of power is one of geometry in universe.

$$\mathcal{O} \in X \to \infty, F(x) = z^n$$

$$x^n + y^n = z^n$$

$$F(x) = \mathcal{O}(\delta(x))[(x - f(x))(x + f(x)) + (y - \overline{f(x)})(y + \overline{f(x)})] + O(N^{-1})$$

$$F(x) = 0$$

$$f(x) = \sum_{k=0}^{\infty} a_k f^k(x)$$

$$f(x) = 0$$

$$\int f(x), \partial f(x), dx \to [f(x)]$$

Group that Galois theorem develop with three dimension construct of prime number equation, this element belong for that is three of factor. Fifth dimension concept with this group of conclude element.

$$\mathcal{O}(x) = \chi(x) - \{x\}$$
$$\sum_{k=0}^{\infty} a_k x^k = f(x) + \{x\}$$

Dimension of fifth factor is abel manifold, this manifold is topology resolved.

$$\int dx, \partial x, dx, [f(x)]$$

$$\to F(x) \stackrel{\int dx}{\to} f(x) \stackrel{\partial x}{\to} x \stackrel{x}{\to} const$$

$$\to [f(x)] \to \infty$$

This cycle of topology in general theroem is deduce of mechanism.

Universe of structure is duality of manifold, this mass of darkmatter is oneseleves with reason in singularity and monotonicity of universe. This manifold of three dimension is also zeta function.

Light around of universe for darkmatter is Higgs fields of mechanism. Darkmatter create of including with light of quarks in Higgs fields. Eight of differential structure filt with Thurston conjugate thoeorem to light is created with all dimension of element.

Quantum Computer in a certain theorem

Masaaki Yamaguchi

A pattern emerge with one condition to being assembled of emelite with all of possibility equation, this assembed with summative of manifold being elemetiled of pieace equation. This equation relate with Euler equation. And also this equation is Euler constant oneselves.

$$(E_2 \bigoplus E_2) \cdot (R^- \subset C^+) = \bigoplus \nabla C_-^+$$

Zeta function radius with field of mechanism for atom of pole into strong condition of balance, this condition is related with quarks of level controlled for compute with quantum tonnel effective mechanism. Quantum mechanism composed with vector of constance for zeta function and quantum group. Thurston conjugate theorem explain to emerge with being controll of quantum levels of quarks. Locality theorem also ocupy with atom of levels in zeta function.

$$= \bigoplus \nabla C_{-}^{+}$$

$$\vee \int \frac{C^{+} \nabla M_{m}}{\Delta (M_{-}^{+} \nabla C_{-}^{+})} = \exists (M_{-}^{+} \nabla R^{+})$$

$$\exists (M_{-}^{+} \nabla C^{+}) = XOR(\bigoplus \nabla M_{-}^{+}$$

$$-[E^{+} \nabla R^{+}] = \nabla_{+} \nabla_{-} C_{-}^{+}$$

$$\int dx, \partial x, \nabla_{i} \nabla_{j}, \Delta x \to E^{+} \nabla M_{1}, E^{+} \cap R \in M_{1}, R \nabla C^{+}$$

Zeta function also compose with Rich flow equation cohomological result to equal with locality equaitons.

$$\forall (R + \nabla_i \nabla_j f)^n = \int \frac{\wedge (R + \nabla_i \nabla_j f)^2}{\exists (R + \Delta f)^n}$$

$$\wedge (R + \nabla_i \nabla_j f)^x = \frac{d}{df} \int \int \frac{1}{(y \log y)^1} dy_m$$

$$\frac{d}{dt} g_{ij}(x) = -2R_{ij}$$

$$\forall \int \wedge (R + \nabla_i \nabla_j f)^x = \frac{\wedge (R + \nabla_i \nabla_j f)^n}{\exists (R + \nabla_i \nabla_j f \circ g)^n}$$

$$x + y \ge 2\sqrt{xy}, x(x) + y(x) \ge x(x)y(x)$$

$$x^y = (\cos \theta + i \sin \theta)^n$$

$$x^y = \frac{1}{y^x}$$

Therefore zeta function is also constructed with quantum equation too.

UFO mechanism

Masaaki Yamaguchi

UFO mechanism are several system of circumstance that accesority and verisity composite with mass and circument of gravity is key of mechanism included with anti-gravity in imaginary pole emerge with rotate of right formula. This power of rotate emerge with anti-gravity which of power emelite for inner into oneselves create with like of lorentz of energy. This lorentz of energy is use with steles flight of mechanism. However this lorentz of energy only mass of gravity low included with oneselves but also anti-gravity is oneselves of component with inner of rotate with energy, this energy is not free of condition of power, because this power not ordinary of mechanism.

$$F - N = mg - N'$$

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

$$C = \int \int \frac{1}{(x \log x)^2} dx_m$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = \frac{1}{2}i$$

This imaginary number is rotate of quamtum spin emerged with power, this power is not mass of gravity element, also this power is inner of energy and anti-gravity of power.

Moreover this right of rotate of imaginary pole is three manifold of nourth and sourth of formula. And nourth of formula look with gravity but sourth of formula is anti-gravity, this mechanism is relativity theorem from explained.

Hortshorne conjecture is built with fermer theorem spacified from AdS5 manifold constructed of sphere cube exclude with time machine mechanism element. This dimension cercuited with rout of pole established by right angle in systematic vintage emerge with artificial intelligence. This one element of independence create with imaginary number from inner vector element, this resulted rentanse for rolentz atructer in super string theory refill into globality topology mechanism constructed with these essence. This dimension target with native function around covered with abel manifold, seifert manifold is become with other dimension on pair universe essensed with zeta function, this space time is concluded with finite dimension in around of shell, this cohomology of mapping construct with abel manifold is all of equal between blackhold and zeta function inverse with low structure of constance in quantum operator relative with universe and planck scale resulted with mechanism. This dimension equal with whitehole and this pair of dimension is blackhole from being emerged with exclusive and inclusive of component from universe and other dimension system.

This explained mechanism from pholographic theorem is atom of low structure of constance with time space and differential structure relative from UFO machine system concerned with Hortshorne conjecture. This pholographic theorem is explained with UFO machine resulted by mass and circument of gravity not existed zone. Inner of rotate with energy is component oneselves with being not free of condition element. More spectrum explained this power is inner of energy and anti-gravity of power. Accesority and verisity have with mass and circument of gravity which existed is out of zone element. However this element is not oneselves of inner and circument of gravity is not only spective of inner influence of power but also out of influent power. However anti-gravity is all of inner spective oneselves emerged with energy of power.

Hortshorne conjecture and AdS5 manifold moreover pholographic theorem are concerned with UFO machine system be able to be explained from Atom of inspected with movement spector phenomone artificial experient. This experient result with UFO machine is not free condition of zone success with inner of power being with elemelite of anti-gravity.

From under circument position to right of rotate energy formula create with anti-gravity, from up circument position to left of rotate energy formula, these way of relativity system is resulted with other dimension of rotate energy reason. Sourth of rotate way is anti-gravity, nourth of rotate way is circument of gravity. This mechanism construct with non-symmetry of entropy resulted. And this theorem explain that parity of broken result. This parity of mechanism is other dimension and universe of seifert manifold of balance of entropy concluded. Symmetry formula systemalite with non-vacuum constructed with two-projection space not be existed in three manifold dimension. This mechanism is pair of quarks with universe and other dimension. If universe belong for being emerged with energy of quarks in three manifold, then other dimension migrated with entropy saved of energy of universe balance. If dimension create with quarks of LHC experiment by exist proved, imaginary pole of rotate create with sourth of formula, universe and other dimension is balanced with energy, then reverse of power of gravity and anti-gravity are proof that shirt of quarks lives with oneselves.

Vector Operator

Masaaki Yamaguchi

1 Entropy

Already discover with this entropy of manifold is blackhole of energy, these entropy is mass of energy has norm parameter. And string theorem $T_{\mu\nu}$ belong to ρ energy, this equation is same Kaluze-Klein theorem.

$$\nabla \phi^{2} = 8\pi G \left(\frac{p}{c^{3}} + \frac{V}{S}\right)$$

$$y = x$$

$$y = (\nabla \phi)^{\frac{1}{2}}$$

$$\frac{\Delta E}{\frac{1}{2\sqrt{2\pi G}}} = \frac{p}{c^{3}} + \rho$$

$$ds^{2} = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \phi^{2}(x)\kappa^{2}A_{\mu\nu}(x)dx^{\mu})^{2}$$

$$ds = (g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \phi^{2}(x)(\kappa^{2}A_{\mu\nu}(x)dx^{\mu})^{2})^{\frac{1}{2}}$$

$$\frac{\Delta E}{\frac{1}{2\sqrt{2\pi G}} - \rho} = c^{3}, \frac{p}{2\pi} = c^{3}$$

$$ds^{2} = e^{-2kT(x)|\phi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)]dx^{\mu}dx^{\nu} + T^{2}(x)d\phi^{2}$$

$$f_{z} = \int \left[\sqrt{\frac{x_{1} - x_{2} - x_{3}}{y_{1} - y_{2} - y_{3}}} \circ \frac{x_{1} - x_{2} - x_{3}}{y_{1} - y_{2} - y_{3}} \right] dxdydz$$

$$\frac{\partial}{\partial f} \int (\sin 2x)^{2} dx = ||x - y||^{2}$$

2 Atom of element from zeta function

2.1 Knot element

String summulate of landmaistor movement in these knot element. Supersymmetry construct of these mechanism from string theorem. A element of homorphism boundary for kernel function, equal element has meyer beatorise compose structure in mesh emerge. These mesh for atom element equal knot this of exchange, this isomophism three manifold convert with knot these from laplace space. Duality manifold has space equal other operate, this quantum group is element distinguish with other structure. Aspect element has design pattern, this element construct pair of entropy. Quote algebra reflect with atom kernel of function.

3 Imaginary manifold

A vector is scalar, vector, mass own element, imaginary number is own this element.

$$x = \frac{\vec{x}}{|\bar{x}|}$$

For instance

$$|\vec{x}| = \sqrt{x}, i = \sqrt{-1}, |\vec{x}|x = \vec{x}, |\vec{x}| = 1x, |\vec{x}|^2 = -1$$

$$(\frac{x}{|\vec{x}|})^2 = \frac{1}{-1}, |\sqrt{x}| = i$$

Imaginary number is vector, inverse make to norm own means.

4 Singularity

A element add to accept for group of field, this group also create ring has monotonicity. Limit of manifold has territory of variable limit of manifold. This fields also merge of mesh in mass. Zero dimension also means to construct with antigravity. This monotonicity is merged to has quote algebra liner. This boundary operate belong to has category theorem. Meyer beatorise extend liner distinguish with a mesh merged in fixed point theorem. Entropy means to isohomophism with harmony this duality. The energy lead to entropy metric to merge with mesh volume.

5 Time expand in space for laplace equation

6 Laplace equaiton

Seiferd manifold construct with time and space of flow system in universe. Zeta function built in universe have started for big-ban system. Firstly, time has future and past in space, then space is expanding for big-ban mechanism.

Darkmatter equals for Higgs field from expanded in universe of ertel. Three manifold in flow energy has not no of a most-small-flow but monotonicity is one. Because this destruct to distinguish with eight-differential structure, and not exist.

And all future and past has one don't go on same integrate routs. This conject for Seiferd manifold flow. Selbarg conjecture has singularity rout. Landemaistor movement become a integrate rout in this Selbarg conjecture.

Remain Space belong for three manifold to exist of singularity rout. Godsharke conjecture is this reason in mechanism. Harshorn conjecture remain to exist multi universe in Laplace equation resolved. Delete line summulate with rout of integrate differential rout. This solved rout has gradient flow become a future and past in remain space.

Laplace equation composite for singularity in zeta function and Kaluze-Klein space.

7 Non-commutative algebra for antigravity

Laplace equation and zeta function belong for fermison and boson, then power of construct equation merge Duality of symmetry formula. These power construct of deceive in dimension, and deal the other dimension. Reflection of power erasing of own dimension, the symmetry of formula has with merging of energy, then these power has fourth of basic power Symmetry solved for equation, general relativity deal from reality these formula. Quantum group construct of zeta function and Laplace equation. Imaginary number consist of Euler constance, this prime number reach to solve contiguish of power in emergy of parameter. Zeta function conclude of infinite to finite on all equation. Global differential equation merge a mass of antigravity and gravity.

Module exist zero dimension merge of symmetry in catastrophe D-brane, this mechanism of phenomonoun is Non-symmetry explain to emerge with which cause of mass on gravity.

$$x \bmod N = 0$$

$$\sum_{M=0}^{\infty} \int_{M} dm \to \sum_{x=0}^{\infty} F_{x} = \int_{m} dm = F$$

$$\frac{x-y}{a} = \frac{y-z}{b} = \frac{z-x}{c}$$

$$\frac{\Pi(x-y)}{\partial xy}$$

Volume of space interval to all exist area is integrate rout in universe of shape, this space means fo no exist loop on entropy of energy's rout.

$$||\int f(x)||^2 \to \int \pi r^2 dx \cong V(\tau)$$

This equation is part of summulate on entropy formula.

$$\frac{\int |f(x)|^2}{f(x)} dx$$

$$V(\tau) \to mesh$$

$$\int \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} dv(\tau)$$

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}_{dx=v}$$

$$z_y = a_x + b_y + c_z$$

$$dz_y = d(z_y)$$

$$[f, f^{-1}] = ff^{-1} - f^{-1}f$$

Universe of extend space has non-integrate rout entropy in sufficient of mass in darkmatter, this reason belong for cohomology and heat equation concerned. This expanded mass match is darkmatter of extend. And these heat area consume is darkmatter begun to start big-ban system invite of universe.

$$V(\tau) = \int \tau(q)^{-\frac{n}{2}} \exp(-\frac{1}{\sqrt{2\tau(q)}} L(x) dx) + O(N^{-1})$$

$$\frac{1}{\tau} (\frac{N}{2} + \tau(2\Delta f - |\nabla f|^2 + R) + f) \bmod N^{-1}$$

$$\Delta E = -2(T - t) |R_{ij} + \nabla_i \nabla_j f - \frac{1}{2(T - t)} g_{ij}|^2$$

$$\frac{d}{df} F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

$$\frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

$$dx = (g_{\mu\nu}(x)^2 dx^2 - g_{\mu\nu}(x) dx g_{\mu\nu})^{\frac{1}{2}}$$

$$ds^{2} = -N(r)^{2}dt^{2} + \psi^{2}(r)(dr^{2} + r^{2}d\theta^{2})$$

$$f_{z} = \int \left[\sqrt{\begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix}} \circ \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix} \right] dxdydz$$

$$\sum_{n=0}^{\infty} a_{1}x^{1} + a_{2}x^{2} \dots a_{n-1}x^{n-1} \to \sum_{n=0}^{\infty} a_{n}x^{n} \to \alpha$$

$$f = n\nu\lambda, \lambda = \frac{x}{l}, \int dn\nu\lambda = f(x), xf(x) = F(x), [f(x)] = \nu h$$

8 Three manifold of dimension system worked with database

This universe built with fourth of dimension in add manifold constructed with being destructed from three manifold.

$$\mathcal{O}(x) = ([\nabla_i \nabla_j f(x)])'$$

$$\cong {}_n C_r(x)^n (y)^{n-r} \delta(x, y)$$

$$(\Box \psi)' = \nabla_i \nabla_j (\delta(x) \circ G(x))^{\mu \nu} \left(\frac{p}{c^3} \circ \frac{V}{S}\right)$$

$$F_t^m = \frac{1}{4} g_{ij}^2, x^{\frac{1}{2} + iy} = e^{x \log x}$$

$$S_m^{\mu \nu} \otimes S_n^{\mu \nu} = G_{\mu \nu} \times T^{\mu \nu}$$

This equation is gravity of surface quality, and this construct with sheap of manifold.

$$S_m^{\mu\nu} \otimes S_n^{\mu\nu} = -\frac{2R_{ij}}{V(\tau)} [D^2 \psi]$$

This equation also means that surface of parameters, and next equation is non-integral of routs theorem.

$$S_m^{\mu\nu} = \pi(\chi, x) \otimes h_{\mu\nu}$$

$$\pi(\chi, x) = \int \exp[L(p, q)] d\psi$$

$$ds^2 = e^{-2\pi T|\phi|} [\eta + \bar{h}_{\mu\nu}] dx^{\mu\nu} dx^{\mu\nu} + T^2 d^2 \psi$$

$$M_3 \bigotimes_{k=0}^{\infty} E_-^+ = \operatorname{rot}(\operatorname{div} E, E_1)$$

$$= m(x), \frac{P^{2n}}{M_3} = H_3(M_1)$$

These equation is conclude with dimension of parameter resolved for non-metric of category theorem. Gravity of surface in space mechanism is that the parameter become with metric, this result consruct with entropy of metric.

These equation resulted with resolved of zeta function built on D-brane of surface in fourth of power.

$$\exists [R + |\nabla f|^2]^{\frac{1}{2} + iy} = \int \exp[L(p, q)] d\psi$$
$$= \exists [R + |\nabla f|^2]^{\frac{1}{2} + iy} \otimes \int \exp[L(p, q)] d\psi + N \operatorname{mod}(e^{x \log x})$$
$$= \mathcal{O}(\psi)$$

9 Particle with each of quarks connected from being stimulate with gravity and antigravity into Artificial Intelligence

This equation conclude with middle particle equation in quarks operator, and module conjecture excluded. $\frac{d}{dt}g_{ij}(t) = -2R_{ij}, \frac{P^{2n}}{M_3} = H_3(M_1), H_3(M_1) = \pi(\chi, x) \otimes h_{\mu\nu}$ This equation built with quarks emerged with supersymmetry field of theorem. And also this equation means with space of curvature parameters.

$$S_{m}^{\mu\nu} \times S_{n}^{\mu\nu} = [D^{2}\psi], S_{m}^{\mu\nu} \times S_{n}^{\mu\nu} = \ker f/\inf, S_{m}^{\mu\nu} \otimes S_{n}^{\mu\nu} = m(x)[D^{2}\psi], -\frac{2R_{ij}}{V(\tau)} = f^{-1}xf(x)$$

$$f_{z} = \int \left[\sqrt{\begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix}} \circ \begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix} \right] dxdydz, \rightarrow f_{z}^{\frac{1}{2}} \rightarrow (0,1) \cdot (0,1) = -1, i = \sqrt{-1}$$

This equation operate with quarks stimulated in Higgs field.

$$\begin{split} \left(x,y,z\right)^2 &= (x,y,z)\cdot(x,y,z) \to -1 \\ \mathcal{O}(x) &= \nabla_i \nabla_j \int e^{\frac{2}{m}\sin\theta\cos\theta} \times \frac{N\mathrm{mod}(e^{x\log x})}{\mathrm{O}(x)(x+\Delta|f|^2)^{\frac{1}{2}}} \\ & x\Gamma(x) = 2\int |\sin 2\theta|^2 d\theta, \\ \mathcal{O}(x) &= m(x)[D^2\psi] \\ \lim_{\theta \to 0} \frac{1}{\theta} \begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix} \begin{pmatrix} \theta & 1 \\ 1 & \theta \end{pmatrix} \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f^{-1}(x)xf(x) = I_m', I_m' = [1,0] \times [0,1] \end{split}$$

This equation means that imaginary pole is universe and other dimension each cover with one geometry, and this power remind imaginary pole of antigravity.

$$i^{2} = (0, 1) \cdot (0, 1), |a||b|\cos\theta = -1, E = \operatorname{div}(E, E_{1})$$
$$\left(\frac{\{f, g\}}{[f, g]}\right)' = i^{2}, E = mc^{2}, I' = i^{2}$$

This fermison of element decide with gravity of reflected for antigravity of power in average and gravity of mass, This equals with differential metric to emerge with creature of existing materials.

These equation deconstructed with mesh emerged in singularity resolved into vector and norm parameters.

$$\mathcal{O}(x) = ||\nabla \int [\nabla_i \nabla_j f \circ g(x)]^{\frac{1}{2} + iy}||, \partial r^n ||\nabla||^2 \to \nabla_i \nabla_j ||\vec{v}||^2$$

 $\nabla^2 \phi$ is constructed with module conjecture excluded.

$$\nabla^2 \phi = 8\pi G \left(\frac{p}{c^3} + \frac{V}{S} \right)$$

Reflected equation concern with differential operator in metric, sine and cosine function also rotate of differential operator in metric. Weil's theorem concern with this calcurate in these equation process.

$$(\log x^{\frac{1}{2}})' = \frac{1}{2} \frac{1}{(x \log x)}, (\sin \theta)' = \cos \theta, (f_z)' = ie^{ix \log x}, \frac{d}{df} F = m(x)$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2} + \frac{1}{(y \log y)^{\frac{1}{2}}}\right) dm$$

$$\geq \frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2 \circ (y \log y)^{\frac{1}{2}}}\right) dm$$

$$\geq 2h$$

Three dimension of manifold equals with three of sphere in this dimension. Plank metrics equals \hbar equation to integrate with three manifold in sphere of formula. These explain recognize with universe and other dimension of system in brane of topology theorem.

$$\frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2 \circ (y \log y)^{\frac{1}{2}}} \right) dm \ge \hbar$$

$$y = x, xy = x^2, (\Box \psi)' = 8\pi G \left(\frac{p}{c^3} \circ \frac{V}{S} \right)$$

This equation built with other dimension cover with universe of space, then three dimension invite with fifth dimension out of these universe.

$$\Box \psi = \int \int \exp[8\pi G (\bar{h}_{\mu\nu} \circ \eta_{\mu})^{\nu}] dm d\psi, \sum a_k x^k = \frac{d}{df} \sum \sum \frac{1}{a_k^2 f^k} dx_k$$

$$\sum a_k f^k = \frac{d}{df} \sum \sum \frac{\zeta(s)}{a_k} dx_{k_m}, a_k^2 f^{\frac{1}{2}} \to \lim_{k \to 1} a_k f^k = \alpha$$

$$\mathcal{O}(x) = D^2 \psi \otimes h_{\mu\nu}, ds^2 = e^{-2\pi T |\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^{\mu} dx^{\nu} + T^2 d^2 \psi$$

$$f(x) + f(y) \ge 2\sqrt{f(x)f(y)}, \frac{1}{4} (f(x) + f(y))^2 \ge f(x) f(y)$$

$$T^{\mu\nu} = \left(\frac{p}{c^3} + \frac{V}{S}\right)^{-1}, E^+ = f^{-1}xf(x), E = mc^2$$

$$\mathcal{O}(x) = \Box \int \int \int \frac{(\nabla_i \nabla_j f \circ g(x))^2}{V(x)} dm$$

$$ds^2 = g_{\mu\nu}^2 d^2x + g_{\mu\nu} dx g_{\mu\nu}(x), E^+ = f^{-1}xf(x), \frac{V}{S} = AA^{-1}, AA^{-1} = E$$

$$\mathcal{O}(x) = \int \int \int f(x^3, y^3, z^3) dx dy dz, S(r) = \pi r^2, V(r) = 4\pi r^3$$

$$E^+_- = f(x) \cdot e^{-x \log x}, \sum_{k=0}^{\infty} a_k f^k = f(x) \cdot e^{-x \log x}$$

$$\frac{P^{2n}}{M_3} = E^+ - \phi, \frac{\zeta(x)}{\sum_{k=0}^{\infty} a_k x^k} = \mathcal{O}(x)$$

$$\mathcal{O}(N^{-1}) = \frac{1}{\mathcal{O}(x)}, \Box = \frac{8\pi G}{c^3} T^{\mu\nu}$$

$$\partial^2 f(\Box \psi) = -2\Box \int \int \int \frac{V}{S^2} dm, \frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

$$E^+_- = e^{-2\pi T |\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^{\mu} dx^{\nu} + T^2 d^2 \psi$$

$$S_1^{mn} \otimes S_2^{mn} = D^2 \psi \otimes h_{\mu\nu}, S_m^{\mu\nu} \otimes S_n^{\mu\nu} = \int [D^2 \psi] dm$$

$$= \nabla_i \nabla_j \int f(x) dm, h = \frac{p}{mv}, h\lambda = f, f\lambda = h\nu$$

D-brane for constructed of sheap of theorem in non-certain mechanism, also particle and wave of duality element in D-brane.

$$||ds^2|| = S_m^{\mu\nu} \otimes S_n^{\mu\nu}, E_-^+ = f^{-1}(x)xf(x)$$

$$R^+ \subset C_-^+, \nabla R^+ \to \bigoplus Q_-^+$$

Complex of group in this manifold, and finite of group decomposite theorem, add group also.

$$\nabla_i \nabla_j R_-^+ = \bigoplus \nabla Q_-^+$$

Duality of differential manifold, then this resulted with zeta function.

$$M_1 = \frac{R_3^+}{E_-^+} - \{\phi\}, M_3 \cong M_2, M_3 \cong M_1$$

World line in one of manifold.

$$H_3(\Pi) = Z_1 \oplus Z_1, H_3(M_1) = 0$$

Singularity of zero dimension. Lens space in three manifold.

$$ds^{2} = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d^{2}\psi$$

Fifth dimension of manifold. And this constructed with abel manifold.

$$\nabla \psi^2 = 8\pi G \left(\frac{p}{c^3} + \frac{V}{S} \right)$$

These system flow to build with three dimension of energy.

$$(\partial \gamma^n + m^2) \cdot \psi = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$
$$= 0$$

Complex of connected of element in fifth dimension of equation.

$$\Box = \pi(\chi, x) \otimes h_{\mu\nu}$$
$$= D^2 \psi \otimes h_{\mu\nu}$$

Fundamental group in gravity of space. And this stimate with D-brane of entropy.

$$\int [D^2 \psi] dm = \pi(M_1), H_n(m_1) = D^2 \psi - \pi(\chi, x)$$
$$= \ker f / \operatorname{im} f$$

Homology of non-entropy.

$$\int Dq \exp[L(x)] d\psi + O(N^1) = \pi(\chi, x) \otimes h_{\mu\nu}$$

Integral of rout entropy.

$$=D^2\psi\otimes h_{\mu\nu}$$

$$\lim_{x\to 1}\sum_{k=0}^{\infty}\frac{\zeta(x)}{a_kf^k}=\int ||[D^2\psi\otimes h_{\mu\nu}]||dm$$

Norm space.

$$\nabla \psi^2 = \Box \int \int \int \frac{V}{S^2} dm$$

$$\mathcal{O}(x) = D^2 \psi \otimes h_{\mu\nu}$$

These operators accept with level of each scals.

$$dx < \partial x < \nabla \psi < \Box v$$

$$\oplus < \sum < \otimes < \int < \wedge$$

$$(\delta \psi(x))^2 = \int \int \int \frac{V(x)}{S^2} dm, \, \delta \psi(x) = \left(\int \int \int \frac{V(x)}{S^2} dm \right)^{\frac{1}{2}}$$

$$\nabla \psi^2 = -4R \int \delta(V \cdot S^{-3}) dm$$

$$\nabla \psi = 2R\zeta(s)i$$

$$\sum_{k=0}^{\infty} \frac{a_k x^k}{m dx} f^k(x) = \frac{m}{n!} f^n(x)$$

$$= \frac{(\zeta(s))^k}{df} m(x), \, (\delta(x))^{\frac{1}{2}} = \left(\frac{x \log x}{x^n} \right)^n$$

$$\mathcal{O}(x) = \frac{\int [D^2 \psi \otimes h_{\mu\nu}] dm}{e^{x \log x}}$$

$$\mathcal{O}(x) = \frac{V(x)}{\int [D^2 \psi \otimes h_{\mu\nu}] dm}$$

Quantum effective equation is lowest of light in structure of constant. These resulted means with plank scals of universe in atom element.

$$M_3 = e^{x \log x}, x^{\frac{1}{2} + iy} = e^{x \log x}, (x) = \frac{M_3}{e^{x \log x}}$$
$$= nE_x$$

These equation means that lowest energy equals with all of materials have own energy. Zeta function have with plank energy own element, quantum effective theorem and physics energy also equals with plank energy of potential levels.

$$\frac{V}{S^2} = \frac{p}{c^3}, h\nu \neq \frac{p}{mv}, E_1 = h\nu, E_2 = mc^2, E_1 \cong E_2$$

$$l = \sqrt{\frac{\hbar G}{c^3}}, \frac{\int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m}{\int \int \frac{1}{(x \log x)^2} dx_m} = \frac{1}{i}$$

Lowest of light in structures of constant is gravity and antigravity of metrics to built with zeta function. This result with the equation conclude with quota equation in Gauss operators.

$$ihc = G, hc = \frac{G}{i}, \frac{\frac{1}{2}}{\frac{1}{2}i} = \frac{\overrightarrow{v_1}}{\overrightarrow{v_2}}$$

$$\leq 1$$

$$A = BQ + R, ds^{2} = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d^{2} \psi$$

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} + \kappa^2 (A^{\mu\nu})^2, \int \int e^{-x^2 - y^2} dx dy = \pi$$

$$\Gamma(x) = \int e^{-x} x^{1-t} dx$$
$$= \delta(x)\pi(x)f^{n}(x)$$

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

Quota equation construct of piece in Gauss operator, abel manifold equals with each equation.

$$ds^2 = [T^2 d^2 \psi]$$

$$\mathcal{O}(x) = [x]$$

$$\nabla \psi^2 = 8\pi G \left(\frac{p}{c^3} \circ \frac{V}{S}\right)$$

Volume of space equals with plank scals.

$$\frac{pV}{S} = h$$

Summuate of manifold means with beta function to gamma function, equals with each equation.

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\cong \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}$$

 $\ker f/\mathrm{im}f \cong \mathrm{im}f/\ker f$

$$\bigoplus \nabla g(x) = [\nabla_i \nabla_j \int \nabla f(x) d\eta], \bigcup_{k=0}^{\infty} \left(\bigoplus \nabla f(x) \right) = \Box \int \int \int \nabla g(x) d\eta$$

Rich tensor equals of curvature of space in Gauss liner from differential equation of operators.

$$a' = \sqrt{\frac{v}{1 - (\frac{v}{c})^2}}, F = ma'$$

Accessority put with force of differential operators.

$$\nabla f(x) = \int_{M} \Box \left(\bigoplus \nabla f(x) \right)^{n} dm$$

$$\Box = 2(T - t)|R_{ij} + \nabla \nabla f - \frac{1}{2(T - t)}|g_{ij}^{2}$$

$$(\Box + m) \cdot \psi = 0$$

$$\Box \times \Box = (\Box + m^{2}) \cdot \psi, (\partial \gamma^{n} + \delta \psi) \cdot \psi = 0$$

$$\nabla_{i} \nabla_{j} \int \int_{M} \nabla f(t) dt = \Box \left(\bigcup_{k=0}^{\infty} \bigoplus \nabla g(x) d\eta \right)$$

Dalanverle equation of operator equals with summuate of category theorem.

$$\int_{M} (l \times l) dm = \sum l \oplus l d\eta$$

Topology of brane equals with string theorem, verisity of force with add group.

$$= [D^2 \psi \otimes h_{\mu\nu}]^{\frac{1}{2} + iy}$$
$$= H_3(M_1)$$

$$y = \nabla_i \nabla_j \int \nabla g(x) dx, y' - y + \frac{d}{dx} z + [n] = 0$$

Equals of group theorem is element of equals with differential element.

$$z = \cos x + i \sin x$$
$$= e^{i\theta}$$

Imaginary number emerge with Artificial Intelligence.

These equation resulted with prime theorem equals from differential equation in fields of theorem.

Imaginary pole of theorem and sheap of duality manifold. Duality of differential and integrate equation. Summuate of manifold and possibility of differential structure. Eight of differential structure is stimulate with D-brane recreated of operators. Differential and integrate of operators is emerged with summuated of space.

$$T^{\mu\nu} = -2R_{ij}, \frac{d}{dt}g_{ij}(t) = -2R_{ij}$$

$$G_{\mu\nu} = R_{\mu\nu}T^{\mu\nu}, \sigma(x) \oplus \delta(x) = (E_n^+ \times H_m)$$

$$G_{\mu\nu} = \left[\frac{\partial}{\partial f}R_{ij}\right]^2, \delta(x) \cdot V(x) = \lim_{n \to 1} \delta(x)$$

$$\lim_{n \to \infty} \operatorname{mesh}V(x) = \frac{m}{m+1}$$

$$V(x) = \sigma \cdot S^2(x), \int \int \int \frac{V(x)}{S^2(x)} dm = [D^2\psi \otimes h_{\mu\nu}]$$

$$g(x)|_{\delta(x,y)} = \frac{d}{dt}g_{ij}(t), \sigma(x,y) \cdot g(x)|_{\delta(x,y)} = R_{ij}|_{\sigma(x,y)}$$

$$= \int R_{ij}^{a(x-y)^n+r^n}$$

$$(ux + vy + wz)/\Gamma$$

$$= \int R_{ij}^{(x-u)(y-v)(z-w)} dV$$

$$(\Box + m) \cdot \psi = 0, E = mc^2, \frac{\partial}{\partial f} \Box \psi = 4\pi G\rho$$

$$(\partial \gamma^n + m) \cdot \psi = 0, E = mc^2 - \frac{1}{2}mv^2$$

$$= (-\frac{1}{2}\left(\frac{v}{c}\right)^2 + m) \cdot c^2$$

$$= (-\frac{1}{2}a^2 + m) \cdot c^2, F = ma, \int adx = \frac{1}{2}a^2 + C$$

$$T^{\mu\nu} = -\frac{1}{2}a^2, (e^{i\theta})' = ie^{i\theta}$$

Artificial Intelligence and TupleSpace of ultranetwork

Masaaki Yamaguchi

```
Omega::DATABASE[tuplespace]
      Z \supset C \bigoplus \nabla R^{+}, \nabla(R^{+}
      \cap E^{+}) \ni x, \Delta(C \subset R) \ni x
     M^{+}_{-} bigoplus R^{+}, E^{+} \in
     \bigoplus \nabla R^{+}, S^{+}_{-} \subset R^{+}_{2},
      V^{+}_{-} \times R^{+}_{-} \subset S
     C^{+} \subset V^{+}_{-} \in M_{1}\hookrightarrow C^{+}_{-},
      Q \simeq R^{+}_{-},
      Q \subset \bigoplus M^{+}_{-},
   \bigotimes Q \subset \zeta(x), \bigoplus \nabla C^{+}_{-} \setminus M_3
    R \setminus Subset M_3,
   C^{+} \subset R^{+},
   E_2 \setminus E_1, R^{-} \setminus C^{+}, M^{+}_{-}
     C^{+}_{-}, M^{+}_{-} \nabla C^{+}_{-}, C^{+} \nabla H_m,
 E^{+} \mathbb{R}^{+}_{-}, E_2 \mathbb{E}_1,
  R^{-} \rightarrow C^{+}_{-}
      [- \Delta v + \nabla_{i} \nabla_{j} v_{ij} - R_{ij} v_{ij}
  - v_{ij} \nabla_{i} \nabla_{j} + 2 < \nabla f, \nabla h>
 + (R + \hat{f}^2)(\{v \setminus 2\} - h)]
      S^3, H^1 \times E^1, E^1, S^1 \times E^1, S^2 \times E^1,
     H^1 \times S^1, H^1, S^2 \times E
}
import Omega::Tuplespace < DATABASE</pre>
 {\bigoplus M^{+}_{-} \rightarrow =: \mathbb{R}^{+} \subset \mathbb{C}^{+}} \subset \mathbb{C}
 >> VIRTUALMACHINE[tuplespace]
 => {regexpt.pattern |w|
      w.scan(equal.value) [ > [\nabla \int \nabla_{i}\nabla_{j} f \circ g(x)]]
      equal.value.shift => tuplespace.value
      w.emerged >> |value| value.equation_create
      w <- value
      w.pop => tuplespace.value
 {\vec{j} (R + \beta_i)^2}
```

```
\over \exists (R + \Delta f)} -> =: variable array[]
 >> VIRTUAL_MACHINE[tuplespace]
 => {regexpt.pattern |w|
      w.emerged => tuplespace[array]
      w <- value
      w.pop => tuplespace.value
}
Omega.DATABASE[tuplespace] -> w.emerged >> |value| value.equation_create
 w.process <- Omega.space
 {=>
      cognitive_system :=> tuplespace[process.excluded].reload
      assembly_process <- w.file.reload.process</pre>
      => : [regexpt.pattern(file)=>text_included.w.process]
 }
}
Omega.DATABASE[tuplespace] -> w.emerged >> |list| list.equation_create
 w.process <- Omega.space
  {=>
    poly w.process.cognitive_system :=> tuplespace[process.excluded].reload
   homology w.process :=> tuplespace[process.excluded].reload
   mesh.volume_manifold :=> tuplespace[process.excluded].reload
    \nabla_{i}\nabla_{j} w.process.excluded :=> tuplespace[process.excluded].reload
    {\exp[\int \int (R + \Delta f)^2 e^{-x \log x}dV}.emerge_equation.reality{|repository|
     repository.regexpt.pattern => tuplespace[process.excluded].reload
     tuplespace[process.excluded].rebuild >> Omega.DATABASE[tuplespace]
    {\imaginary.equation => e^{\cos \theta + i\sin \theta}} <=> Omega.DATABASE[tuplespace]
    {d \over f}F ==> {d \over f}{1 \over (x \log x)^2 \over (y \log y)}
    ^{1 \over 2}}}dm}.cognitive_system.reload
    :=> [repository.scan(regexpt.pattern) { <=> btree.scan |array| <-> ultranetwork.attachment}
   repository.saved
 }
}
import ultra_database.included
def < this.class::Omega.DATABASE[first,second,third.fourth] end</pre>
 def.first.iterator => array.emerge_equation
def.second.iterator => array.emerge_equation
 def.third.iterator => array.emerge_equation
def.fourth.iterator => array.emerge_equation
 _ struct_ {
             Omega.iterator => repository.reload
}
end
   typedef _ struct_ :Omega.aspective
end
```

```
Omega::DATABASE[reload]
  [category.repository <-> w.process] <=> catastrophe.category.selected[list]
 list.distributed => ultra_database.exist ->
 w.summurate_pattern[Omega.Database]
 btree.exclude -> this.klass
 list.scan(regexpt.pattern) <-> btree.included
 list.exclude -> [Omega.Database]
 all_of_equation.emerged <=> Omega.Database
   list.summuate -> Omega.Database.excluded
 }
}
list.distributed => {
      {\bigoplus \nabla M^{+}_{-}}.constructed <-> Omega.Database[import]
        each_selected :file.excluded
     }
}
Omega::DATABASE[tuplespace] >> list.cognitive_system |value|
= { x^{\{1 \text{ over } 2\}} + iy\} = [f(x) \text{ circ } g(x), \text{ bar{h}}(x)]/ \text{ partial } f\text{ partial } g\text{ partial } h
x^{{1 \over y}} = \mathrm{mathrm\{exp}[\int \lambda_{i}\nabla_{j}f(g(x))g'(x)/
\partial f\partial g]
\label{eq:mathcal} $$\max\{0\}(x) = \{[f(x)\circ g(x), \delta(x)], g^{-1}(x)\}$$
  \end{align} $$ \operatorname{[\hat{j} (R + Delta f), g(x)] = \bigoplus_{k=0}^{\inf y} } 
\ensuremath{\mbox{\sc (\nabla_{i} \nabla_{j} f) = \bigotimes \nabla E^{+}}}
   g(x,y) = \mathcal{0}(x)[f(x) + \mathbf{h}(x)] + T^2 d^2 \phi
  \mathcal{O}(x) = \left( \int g(x) e^{-f} dV \right)^{2} - \sum \left( \int g(x) e^{-f} dV \right)^{2} - \sum \left( \int g(x) e^{-f} dV \right)^{2} + \dots 
  \mathcal{0}(x) = [\hat{j}f(x)]^{'} \subset {}_{n}C_{r} f(x)^{n}
  f(y)^{n-r} \det(x,y),
  V(\tau) = \inf [f(x)]dm/ \rightf_{xy}
  \square \psi = 8 \pi G T^{\mu\nu}, (\square \psi)^{'} = \nabla_{i}\nabla_{j}
   (\delta (x) \circ G(x))^{\mu\nu}
\exists (R + \Delta f)}
{-n}C_{r} = {}_{{1 \over r}} C_{{hbar \over psi} + {}_{{H, \psi}} C_{{n - r}}
  {n}C_{r} = {n}C_{n-r}
```

```
\int \int {1 \operatorname{x}^2}dx_m \to \mathrm{mathcal}\{0\}(x) =
    [\nabla_{i}\nabla_{j}f]'/\partial f_{xy}
    \bigcup_{x=0}^{\int f(x) = nabla_{i} \cap f(x)} f(x) = nabla_{i} \cap f(x)
    = \bigoplus \nabla f(x)
    \label{lambla_{j} f \cong \partial x \partial y \int} $$ \arrowvert_{i} x \rightarrow x \end{substitute} $$ \arrowvert_{i} x \rightarrow 
    \nabla_{i}\nabla_{j} f dm
                       \cong \int [f(x)]dm
        \lceil (f(x),g(x)],g^{-1}(x) \rceil
    \cong \square \psi
    \cong \nabla \psi^2
    cong f(x circ y) \le f(x) circ g(x)
    \langle cong | f(x) | + | g(x) |
        \det(x) \ = \langle f,g \rangle (inc | h^{-1}(x) |
        \beta_x \cdot \beta_x \cdot \beta_x = x
        x \in \mathcal{U}(x)
        \mathcal{O}(x) = \{[f \setminus g, h^{-1}(x)], g(x) \}
             \lim_{n \to \infty} \sum_{k=n}^{\int \infty} \ f = [\nabla \in \infty]
    \label{lambda_{i}} $$ f(x) dx_m, g^{-1}(x)] \to \bigoplus_{k=0}^{\left( \inf ty \right)} $$
    \mathbb{E}^{+}_{-}
        = M_{3}
        = \bigoplus_{k=0}^{\infty} E^{+}_{-}
        \label{eq:dx^2 = [g^2_{\mu}, g^{-1} = dx \in \mathcal{L}(x)f(x)dx} dx^2 = [g^2_{\mu}, g^{-1}] = dx \in \mathcal{L}(x)f(x)dx
        f(x) = \mathrm{mathrm}\{\exp\{[\mathrm{nabla}_{i}]\}f(x), g^{-1}(x)]
        \pi(\cosh,x) = [i\pi(\cosh,x), f(x)]
        \lim_{n \to \infty} \{g(x) \setminus f(x)\}
                                                  = {g'(x) \over f'(x)}
            \nabla F = f \cdot (1 \cdot 1 \cdot 1)^2
        \nabla_{i}\nabla_{j} f = {d \over dx_i}
{d \cdot dx_j}f(x)g(x)
   D^2 \neq \lambda i = \lambda i (\lambda_{i} \lambda_{j} f)^2 d\det
   E = m c^2, E = {1 \setminus 2}mv^2 - {1 \setminus 2}kx^2, G^{\infty}u = 0
    {1 \over 2}\Lambda g_{ij},
\qquad = {1 \over 2}kT^2
    \mathrm{ker} f / \mathrm{im} f \cong S^{\mu\nu}_m,
   S^{\mu nu} = \pi (  , x) \otimes h_{\mu nu}
   D^2 \ = \ (x)\left( p \circ c^3 + \right)
    {V \setminus S} \to D^2 \leq M^{+}_3
   S^{\mu \in 
    - {2R_{ij} \over V(\tau)}[D^2\psi]
```

```
\aligned \nabla_{i}\nabla_{j}[S^{mn}_1 \otimes S^{mn}_2] =
     \inf \{V(\tau) \setminus f(x)\}[D^2 \}
         \nabla_{i}\nabla_{j}[S^{mn}_1 \otimes S^{mn}_2] =
         \inf \{V(\tau) \setminus f(x)\} \mathbb{1}_{0}(x)
    z(x) = {g(cx + d) \setminus over f(ax + b)}h(ex + 1)
               = \inf{V(\tau) \cdot f(x)} \operatorname{f}(x)
     \{V(x) \setminus f(x)\} = m(x), \setminus \{0\}(x) = m(x)[D^2\}(x)]
     {d \cdot \text{over df}}F = m(x), \quad F \cdot dx_m = \sum_{k=0}^{\infty} m(x)
     \mathcal{O}(x) = \left( [\hat{j}^{(x)}]\right)^{'}
         \log {\{\}_{n}C_{r}(x)^{n}(y)^{n-r} \cdot delta(x,y)}
     (\gamma \phi)' = \alpha_{i}\
     G(x))^{\mu\nu} \left( p \circ c^3 \right)
{V \over S} \right)
     F^m_t = \{1 \setminus 4\}g^{2}_{ij}, x^{\{1 \setminus 2\}} + iy\} = e^{x} \setminus g
    S^{\mu\nu}_m = G_{\mu\nu}  \times T^{\mu\nu}_n = G_{\mu\nu} 
         S^{\mu\nu}_{m} = -\{2 R_{ij} \mid V(tau)\}[D^2 \right]
    S^{\mu n} = \pi = \pi n

S^{\mu\nu}_m = \pi(\chi,x) \otimes h_{\mu\nu}
     \pi (\cosh,x) = \inf \mathrm{exp}[L(p,q)]d\psi
     ds^2 = e^{-2\pi T|\phi|}[\hat t_{\infty}^{\mu\nu}]dx^{\mu\nu}dx^{\mu\nu} + bar{h}_{\infty}^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu\nu}dx^{\mu
     T^2 d^2\psi
                   M_3 \neq E^{+}_{-} = \mathrm{mathrm}\{rot\}
                     (\mathrm{div} E, E_1)
                    = m(x), \{P^{2n} \setminus M_3\} = H_3(M_1)
     \exists [R + | nabla f|^2]^{{1 \over ver 2} + iy}
     = \int \mathrm{exp}[L(p,q)]d\psi
    = \exists [R + | \hat f|^2]^{{1 \over v}} + iy} \cot mes
     \int \int [L(p,q)]d\psi +
N\mathrm{mod}(e^{x \log x})
     = \mathcal{0}(\psi)
     {d \over d}_{ij}(t) = -2 R_{ij}, {P^{2n} \over m_3}
     = H_3(M_1), H_3(M_1) = \pi (\chi, x) \otimes h_{\infty}
    S^{\mu \in S^{\mu}} \times S^{\mu \in S^{\mu}} 
     = [D^2\psi] , S^{\mu\nu}_{m} \times S^{\mu\nu}_{n}
    = \mathrm{mathrm}\{\ker\}f/\mathrm{mathrm}\{im\}f, S^{\mathrm{mu}u}_{m} \otimes \mathrm{mathrm}\{im\}f, S^{\mathrm{mu}u}_{m} \otimes \mathrm{mu}\} \otimes \mathrm{mathrm}\{im\}f, S^{\mathrm{mu}u}_{m} \otimes \mathrm{mu}\} \otimes \mathrm{mu} 
    S^{\mu\nu}_1 = m(x)[D^2\gamma], {-\{2R_{ij}\} \vee V(\tau)\}} = f^{-1}xf(x)
    f_z = \int \left[ \sqrt{\begin{pmatrix} x & y & z \\
               u & v & w \end{pmatrix} \circ
               \begin{pmatrix} x & y & z \\
               u & v & w \end{pmatrix}}_{}\right]dxdydz,
               \t f_z^{1 \over 2} \to (0,1) \cdot (0,1) = -1,i =
     \sqrt{-1}
{\begin{pmatrix} x,y,z
                     \end{pmatrix}^2 = (x,y,z) \cdot (x,y,z) \cdot - 1
```

```
\mathcal{0}(x) = \mathcal{i} \right.
\cos \theta} \times {N \mathrm{mod}}
(e^{x \setminus \log x})
\operatorname{\mathbb{Q}}(x)(x + \beta | f|^2)^{1 \over 2}
x \operatorname{Gamma}(x) = 2 \inf |\sinh 2\theta^2d\theta
\mathcal{D}(x) = m(x)[D^2\psi]
\lim_{\theta \to 0}{1 \over \theta} \begin{pmatrix} \sin \theta \\
  \cos \theta \end{pmatrix}
  \begin{pmatrix} \theta & 1 \\
  1 & \theta \end{pmatrix}
  \begin{pmatrix} \cos \theta \\
  \sin \theta \end{pmatrix}
  = \begin{pmatrix} 1 & 0 \\
  0 & - 1 \end{pmatrix},
f^{-1}(x) \times f(x) = I^{'}_m, I^{'}_m = [1,0] \times [0,1]
E = \mathbf{div}(E, E_1)
\left(\left(\left(f,g\right)\right)\right)^{\prime} = i^2, E = mc^2, I^{\prime} = i^2
\circ g(x)]^{{1 \over v}} + iy}|| , \partial r^n
\| \hat{j} \|^2 \to \mathbb{I}^2 
\nabla^2 \phi
\nabla^2 \phi = 8 \pi G \left({p \over c^3} + {V \over S}\right)
 (\log x^{1 \cot 2})^{'} = {1 \cot 2}{1 \cot (x \log x)},
(\sin \theta^{\prime}) = \cos \theta, (f_z)^{\prime} = i e^{i x \log x},
{d \cdot \text{over df}}F = m(x)
{d \over df}\int \int{1 \over (x \log x)^2dx_m
= \{d \setminus d\} \setminus \inf \left(\{1 \setminus (x \setminus (x \setminus (x )^2)\}\right)
+ {1 \over y}^{1 \over y}^{1 \over y}^{1 \over y}
\ge {d \over df}\int \int \left({1 \over
 (x \log x)^2 \circ (y \log y)^{1 \over 2}}
\ge 2h
{d \over df}\int \int \left({1 \over (x \log x)^2 \circ
 (y \log y)^{1 \over 2}}\ \ge \hbar
y = x, xy = x^2, (\square \psi)^{'} = 8 \pi G
\left({p \over c^3}\circ{V \over S}\right)
\square \psi = \int \int \mathrm{exp}[8 \pi G(\bar{h}_{\mu\nu})
\circ \eta_{\mu\nu})^{\mu\nu}]dmd\psi,
```

```
\sum_{k=0}^{\infty} a_k x^k = {d \operatorname{d} \sum_{k=0}^{\infty} {1 \operatorname{d} x_k}} dx_k
   \sum_{a_k f^k = {d \vee df}\setminus sum \le m}
{\zeta(s) \over a_k}dx_{km},
   a^2_kf^{1 \over 1} \over 2}\to \lim_{k \to 1}a_k f^k = \alpha
          ds^2 = [g_{\mu\nu}^2, dx]
         M 2
         ds^2 = g_{\mu\nu}^{-1}(g^2_{\mu\nu}u) - dx g_{\mu\nu}^2
      M 2
          = h(x) \cdot g_{\mu u}u^2 - h(x) \cdot g_{\mu u}u(x)
      h(x) = (f^2(\sqrt{x}) - \sqrt{E}^{+})
          G_{\mu nu} = R_{\mu nu}T^{\mu nu},
          \operatorname{M_2} = \operatorname{C^{+}_{-}}
             G_{\min} equal
                                                                                    R_{\min} \ d \operatorname{d}_{g_{ij}} = -2 R_{ij}
r = 2 f^{1 \setminus over 2}(x)
                 E^{+} = f^{-1}xf(x),
         h(x) \otimes g(\vec{x}) \cong {V \over S},
       {R \setminus D} = E^{+} - {\phi}
                 = M_3 \setminus R,
          M^{+}_2 = E^{+}_{1} \subset E^{+}_1 \subset E^{+}_1 \subset E^{+}_2
                 = M_1 \ge C^{+}_{-}, (E^{+}_{1} \ge E^{+}_{2})
                 \cdot (R^{-} \subset C^{+})
                 {R \setminus M_2} = E^{+} - {\phi}
                 = M_3 \setminus Supset R
                 M^{+}_3 \leq h(x) \cdot R^{+}_3
       = \bigoplus \nabla C^{+}_{-},
       R = E^{+} \setminus M_2 - (E^{+} \setminus M_2)
                 E^{+} = g_{\mu \in \mathbb{Z}_{nu}} dxg_{\mu \in \mathbb{Z}_{nu}},
          M_2 = g_{\mu u u}d^2x
          F = \rho g l \to {V \over S}
                 \mathcal{O}(x) = \det(x)[f(x) + g(\tan(x)] + \rho g l,
          F = \{1 \setminus 2\}mv^2 - \{1 \setminus 2\}kx^2,
          M_2 = P^{2n}
                    r = 2f^{1 \cdot (x)},
      f(x) = \{1 \setminus 4\} \setminus r ^2
                 V = R^{+}\sum_{k=0} K_m, W = C^{+}\sum_{k=0} K_{n+2},
                 V/W = R^{+}\sum_{m \in K_m} / C^{+}\sum_{m \in K_{n+2}}
                 = R^{+}/C^{+} \sum_{x^k \neq x^k \neq a_k f^k(x)}
                 = M^+_{-}, {d \over f} F = m(x), \to M^{+}_{-}, \sum_{k=0}
                 \{x^k \setminus x^k \setminus f^k(x)\} = \{a_k x^k \setminus x^k \cdot x^k \setminus x^k x^k \setminus x^k \times x^k \setminus x^k \times x^k \setminus x^k \times x^k \setminus x^k \times x^k x^k \times x^k x^k \times 
       \zeta(x)
                 {\{f,g\}} \operatorname{fg} = \{fg + gf \operatorname{gf} - gf\},
       \nabla f = 2, \partial H_3 = 2, \{1 + f \setminus 1 - f\} = 1,
       {d \over df} F = \text{bigoplus } \text{nabla } C^{+}_{-}, \text{ } vec{F} =
       {1 \over 2}
                 H_1 \setminus cong H_3 = M_3
          H_3 \subset H_1 \to \pi_x
          (fg)' = fg' + gf', (\{f \setminus g\})' = \{\{f'g - g'f\} \setminus g^2\},
          {\{f,g\}} \operatorname{[f,g]} = {(fg), \operatorname{dx_{fg}} \operatorname{dx}}
```

```
(\{f \setminus g\})' \setminus g^{-2}dx_{fg}\}
         = \{(fg)'\setminus dx_{fg}\} \setminus (\{f \setminus g\})' \setminus g^{-2}dx_{fg}\}
        = {d \over df} F
               \hder = \{1 \mid F, \beta\} = -H \hder = -H \hder = \{1 \mid F, \beta\} = (i)^2
                [\nabla_{i} \nabla_{j} f(x), \delta(x)] = \nabla_{i} \nabla_{j}
               \int f(x,y)dm_{xy}, f(x,y) = [f(x), h(x)] \times [g(x), h^{-1}(x)]
               \det(x) = \{1 \setminus f'(x)\}, [H, \setminus si] = \Delta f(x),
               \mathcal{0}(x) = \mathcal{j} \int_{x} \int_{x}^{x} \int_{x}^{x} dx
               \mathcal{0}(x) = \int \det \det(x) f(x) dx
               R^{+} \subset E^{+}_{-} \in R^{+} \in R^{+} \in R^{+}
               Z \in Q \nabla f, f \cong \bigoplus_{k=0}^{n} \nabla C^{+}_{-}
               \bigoplus_{k=0}^{\infty} \nabla C^{+}_{-} = M_1, \bigoplus_{k=0}^{\infty} 
               \nabla M^{+}_{-} \setminus E^{+}_{-},
     M_3 \subset M_1 \bigoplus_{k=0}^{\inf y} \Lambda \{V^{+}_{-} \subset S\}
               {P^{2n} \setminus M_2} \subset M_2 \in {k=0}^{\in M_2}
               \nabla C^{+}_{-}, E^{+}_{-} \times R^{+}_{-} \cong M_2
               \zeta(x) = P^{2n} \times \sum_{k=0}^{\int x^k} a_k x^k
               S^{+}_{-} \times V^{+}_{-} \subset V^{+}_{-} \subset S \subset \mathbb{R}^{\int V^{+}_{-} \operatorname{V}^{-} V^{+}_{-}} \subset S^{+}_{-} \subset S^{+}_{-
               \nabla C^{+}_{-}, V^{+} \cong M^{+}_{-} \bigotimes S^{+}_{-},
               Q \times M_1 \subset \bigoplus \nabla C^{+}_{-}
               \sum_{k=0}^{\int Q^{+}_{-} = \bigcup_{k=0}^{\int M_1} \Delta M_1}
               = \frac{k=0}^{\int y} \mathbb{C}^{+}_{-} \times
               \sum_{k=0}^{\int y} M_1, x \in R^{+} \times C^{+}_{-}
     \supset M_1, M_1 \subset M_2 \subset M_3
  S^3, H^1 \times E^1, E^1, E^1, E^1 \times E^1, E^2 \times E^1, E^1 \times E^1, E^2
     H^1, S^2 \times E.
   \bigoplus \nabla C^{+}_{-} \cong M_3, R \supset Q, R \cap Q,
  R \subset M_3, C^{+} \bigoplus M_n, E^{+} \cap R^{+}$
     M^{+}_{-} \subset C^{+}_{-}, C^{+}_{-}, C^{+}_{-}, C^{+}_{-}, E_2 \subset E_1 
     R^{-} \subset C^{+}_{-} \. {\nabla \over \Delta} \int x f(x) dx,
     {\mathbb R} \subset \mathbb{R}  (R + \nabla_{i} \nabla_{j} f)^2
     \operatorname{(R + \Delta f)}e^{-f}dV
               \square = {\nabla R \over \Delta f}, {d \over dt}g_{ij}
               = \square \to {\nabla f \over \Delta x}, (R +
      \  | \hat{f}^2 dm \to -2(R + \alpha_{i} \ f)^2 e^{-f} dV 
               x^n + y^n = z^n \to \n \
               f(x + y) \setminus ge f(x) \setminus circ f(y)
               \mathrm{im}f / \mathrm{ker}f = \partial f, \mathrm{ker}f
               = \partial f, \mathrm{ker}f / \mathrm{im}f \cong
     \partial f, \mathrm{ker}f = f^{-1}(x)xf(x)
               f^{-1}(x)xf(x) = \inf \{f(x) d(\mathbf{x}) \} \to \nabla f = 2
               _{n}C_{r} = {}_{n}C_{n-r} \to \mathrm{mathrm\{im\}f} / \mathrm{mathrm\{ker\}f}
               \cong \mathrm{ker}f / \mathrm{im}f
```

 $\sum_{k=0}a_k f^k = T^2d^2$ this equation $a_k \subset$

```
\sum_{r=0} { c_r }.
             V/W = R/C \sum_{k=0}{x^k \over a_k f^k}, W/V = C/R
             \sum_{k=0}{a_k f^k \langle x^k \rangle}
             \sum_{k=0} x^k
     This equation is diffrential equation, then $\sum^{\infty}_{k=0} a_k f^k $
     is included with a_k \geq m^{\infty}_{r=0} {\ r=0} {\ r=0} 
             W/V = xF(x), chi(x) = (-1)^k a_k, Gamma(x) = int e^{-x} x^{1} -tdx,
             \sum_{k=0}a_k f^k = (f^k)
             \sum_{k=0}a_k f^k = \sum_{k=0}\{\inf y_{k^0} {}_{n}C_{r} f^k
             = (f^k)',
        \sum_{k=0} a_k f^k = [f(x)],
        \sum_{k=0} a_k f^k = \alpha_k {\int_{k=0}} a_k f^k = \alpha_k {\int_{k=0}} a_k f^k = \alpha_k f^k 
        \{1 \cdot f^k\}, \sum_{k=0} (a_k f^k)^{-1} = \{1 \cdot p - z\}
                { \int \int (x \log x)(y \log y) dxy } =
                {{{}_nC_{r} xy} \over {({}_nC_{n-r}}
        (x \log x)(y \log y)^{-1}}
                = ({}_nC_{n-r})^2 \sum_{k=0}^{\int (\inf ty)({1 \vee x \setminus x})}
                - {1 \over y \log y})d{1 \over nxy} \times {xy}
                = \sum_{k=0}^{\sin ty} a_k f^k
                = \alpha
}
  _ struct_ :asperal equation.emerged => [tuplespace]
tuplespace.cognitive_system => development -> Omega.Database[import]
value.equation_emerged.exclude >- Omega.Database[tuplespace]
Omega::DataBase <-> virtual_connect(VIRTUALMACHINE)
    blidge_base.network => localmachine.attachment
     :=> {
                  dhcp.etc_load_file(this.klass) {|list|
                     list.connect[XWin.display _ <- xhost.in(regexpt.pattern)]</pre>
                          ultranetwork.def _struct {
                             asperal_language :this.network_address.included[type.system_pattern]
                                {|regexpt.pattern|
                                     <- w.scan
                                                     |each_string| <= { ipv4.file :file.port</pre>
                                                                                                        subnetmask :file.address
                                                                                                                                             file.port <=> file.address
                                                                                                        FILE *pointer
                                                                                                        int,char,str :emerge.exclude > array[]
                                                                                                        BTE.each_string <-> regexpt.pattern
                                                                                                                development => file.to_excluded
                                                                                                                     file.scan => regexpt.pattern
                                                                                                                          this.iterator <-> each_string
                                                                                                                            file.reloded => [asperal_language.rebuild]
                                                                                                          }
```

```
}
class Ultranetwork
def virtual_connect
 load :file => {
   asperal :virtual_machine.attachment
   {
     system.require :file.attachment
     <- |list.file| :=> {
         tk.mainloop <- [XWin -multiwindow]</pre>
         startx => file.load.environment
           in { [blidge_base | host_base].connect(wmware.dhcp)
                net_work.connect.used[wireshark.demand => exclude(file)]
          }
     }
  }
 }
 end
 def < blidge_base.network.connect</pre>
    dhcp.start => {
                    host_name <-> localhost_name {|list|
                      list.exist(connect_type)
                         <- : tty :xhost -display => list.exist
                              [virtual_connect].list->host :terminal
                       }
                    }
   }
 end
 def < host_base.ethernet.connect</pre>
   {
                   host_name.connect => local_network
   }
 end
def < etc.load_file</pre>
```

```
{
    etc.include(inetd.rc)
     {
       virtual_connect(VIRTUAL_MACHINE){|list|
        list.attachment(etc.load_file)
     }
   }
 end
mainloop{
  def.virtual_connect => xhost.localmachine
  xhost.client <-> xhost.server
  def.network.type <- [Omega.DATABASE] end</pre>
  def.etc.load_file.attachment(VIRTUAL_MACHINE) end
end
class UltraNetwork::DATABASE import OMEGA.TUPLESPACE
  def load_file >- VIRTUAL_MACHINE
   { in . => attachment_device |for|
   for.load -> acceptance.hardware
   virtual_machine.new
    {
    tk.loop-> start
    XWin -multiwindow
    if dwm <-> new_xwin.start
    localhost :xhost :display -x
    xdisplay :-> [preset :XFree.demand>=needed
    for.set_up
    install_process >- tar -xvfz "#{load_file}" <-> install_attachment
    else if
    only :new_xwin.start
    localhost :xhost :multiwindow . { in
    display -x
    attachment :localhost -client
    from -client into
    server.XWin -attachment}
    condition :{ in .=>
    check->[xdisplay.install_process]}
  end
  def < network_rout</pre>
          wireshark.start -> ethernet.device >- define rout
                 rout.ipstate do |file|
                    {\tt file.type} \, \leftarrow \, {\tt encoding} \, \, {\tt XWin} \, \, - {\tt filesystem} \, \,
                    file.included >- make kernel_system.rebuild
                    file.vmware.start do |rout|
```

```
rout.blidgebase | rout.hostbase
           -> file.install
              file.address_ipstate
              => {"{file}" :=> dwm.state_presense
              virtual_machine.included[file]
      }
 end
 def < launcher_application</pre>
         network_rout.new
         |file|
         file.attachment => { in .
         new_xwin.start :=> file.included
         demand.file <- success_exit}</pre>
 end
 def < terminal_port</pre>
         network_rout.new
         launcher_application.new |rout|
         rout.acceptance {
         vmware.state.process |new_rout|
         new_rout : attachment.class <-> dwm.state_attachment
         new_rout -> condition.start_wmware.process}
 end
 def < kterm_port</pre>
          launcher_application.new
          def.included[DATABASE]
          |rout|
          rout.attachment <- |new_rout|</pre>
          new_rout.attachment do
          install.condition < rout.def.terminal_port.exclude[file]</pre>
 end
 main_loop :file do
             kterm_port.excluded :=> VIRTUAL_MACHINE
             |new_rout| start do
             rout.process -> network_rout.rout [
             file, launcher_application, terminal_port, kterm_port].def < included
             file.all_attachment: file_type :=> encoding-utf8
 end
end
class < def {</pre>
      pholograph_data[] = [R,V,S,E,U,M_n,Z_n,Q,C,N,f,g]
      source_array <- pholograph_data[]</pre>
def > operator_data[] = {nabla,nabla_i nabla_j,Delta,partial,
```

}

```
d, int, cap, cup, ni, in, chi, oplus, otimes, bigoplus, bigotimes, d /over df,
                          dV,dm,dx,dy,<,>,[,],{,},|,|}
end
def > manifold_emerge
         c = def.inject >- source_array times def.operator_data[]
repository_data <=> c{
 c.scan(/tupplespace[]/)
 import |list| list{
    kerf = -2 \inf (R + nabla_i nabla_j f)^2e^{-f}dV
    kerf / imf
    =< {d \over df}F}</pre>
         equals_data =~ /list/
             list.match(/"#{c}"/) {|list|
             list.delete
             jisyo_data_mathmatics <=> list{
            list.emerge => {asperal function >- pholograph_data[] times repository_data
                   =< list.update}</pre>
            }
                    ln -s operator_named <= {list}</pre>
                     define _struct |list|
                           -> list.element -> manifold_emerge
                           => list.reconstruct > def.inject /^"#{pattern}"/}
end
import Omega::Tuplespace < Database</pre>
{
  {\bigoplus \nabla M^{+}_{-}}.equation_create -> asperal :variable[array]
   :=> [cognitive_system <-> def < VIRTUALMACHINE.terminal
                                       [ipv4.bloadcast.address :
                                         ipv4.network.adress].subnetmask
                                        <-> file.port.transport_import :
                                                Omega[tuplespace]
                                    }
}
_struct _ Omega[tuplespace] >> VIRTUALMACHINE.terminal.value
class < def.VIRTUALMACHINE.system_environment</pre>
             file.reload[hardware] => file.exclude >> file.attachment
             {=>
                lfilel
                  file.port(wireshark.rout <-> {file.port.transport_export
                   :=> Omega[tuplespace]}
```

```
assembly_process.file.included >- file.reloaded
                             :- |file.environment| {=>
                                             file.type? :=> exist
                                               file.regexpt.pattern[scan.flex]
                                                    => |pattern|
                                                          <->
                                                            file.[scan.compiler]
                                }
                         end
                 end
               file <<
              }
}
Omega::Database[tuplespace]
 cognitive_system |: -> { DATABASE.create.regexpt_pattern >-
     cognitive_system[tuplespace].recreated >- : =< DATABASE.value</pre>
      >> system_require.application.reloaded[tuplespace]
         } : _struct _ def.VIRTUALMACHINE.terminal >> {
             ||machine.attachment|| <-> OBJECT.shift => system.reloaded
                     : _struct _ class.import :-> require mechanics.DATABASE
                        {|regexpt_pattern| :|-> aspective _union _
                         def _union _}
                  }
             }
   end
}
system.require <- import library.DATABASE</pre>
 Omega[tuplespace]
       cognitive_system : VIRTUALMACHINE.equality_realized
       {|regexpt_pattern| => value | key [ > cognitive_system.loop.stdout]
            value : display -bash :xhost -number XWin.terminal
            key : registry.edit :=> {[cognitive_system.reloaded]}
       }
 }
}
_union _ => DATABASE[tuplespace].aspective_reloaded
_union _ :fx | -> |regexpt_pattern| => {
                     VIRTUALMACHIE.recreated-> _union _ |
                     _struct _ def.DATABASE.recreated <- fx
                  >> DATABASE[tuplespace].rebuild
}
DATABASE[tuplespace] -< {[ > aimed.compiler | aimed.interpreter] | btree.def.distributed >-
```

```
aimed[tuplespace]}
aimed[tuplespace] -< btree.class.hyperrout_ struct _ => Omega::Database[tuplespace].value
 sheap_ union _ :aspective | -> Omega[tuplespace]: | aimed[tuplespace].differented_review
aimed[tuplespace].process => DATABASE[tuplespace].reloaded
aimed.different | aimed.stdout >> vale | key [ > cognitive_system.loop.stdin] {|pattern|
                                pattern.scan(value : aimed[def.value]
                                    key
                                          : aimed[def.key])
                } _ struct _ : flex | interpreter.system
                   => expression.iterator[def.first,def.second,def.third,def.fourth]
                      { def < Omega[tuplespace]
                        def.cognitive_system |: -> DATABASE[tuplespace] | aimed[tuplespace]
}
Omega::Tuplespace < DATABASE
  norm[Fx] -> . in for def.all_included < aimed[tuplespace].each_scan([regexpt_pattern]</pre>
                   DATABASE[tuplespace]) << streem database.excluded
   >- more_pattern.scan(value : aimed[def.value]
   key :aimed[def.key])
               . in { _struct _ :flex | interpreter.system
                   => expression.iterator[def.all.each -> |value, key|
                                   included >- norm[Fx] | [DATABASE[tuplespace]
  ,aimed[tupespace]] |
                                    finality : aimed[tuplespace], DATABASE[tuplespace]
   : -> def.included(in_all)
                                    ₹
                                        def.key | def,value => [DATABASE].recompile
       & make install
                                     : in_all -> _struct _ :aspective :tuplespace
    : all_homology_created}
                    }
}
def < Omega::Tuplespace[DATABASE]</pre>
 def.iterator -> |klass,define_method,constant,variable,infinity_data : -> finite_data|
         def.each_klass?{|value, key|
            _struct _ :aspective -> tuplespace :all_homology_recreated :make menuconfig
            {=+
               def.key -> aimed[def.key],def.value -> aimed[def.value] {|list|
                   list.developed => <key,value> | <aimed[$',$']</pre>
                    -> _union _ :value,key : _struct _
                    <- (_union _ <-> _struct _ +)
               begin
                  def.key <-> aimed[value]
                  case :one_ exist :other :bug
                     result <-> def.key
                     {
```

```
differented :DATABASE[tuplespace]
                      }
                      return :tuplespace.value.shift -> included<tuplespace>
                   else if
                   :other :bug
                     success_exit <- bug[value]</pre>
                       cognitive_system.scan(bug[value])
                        \{[e^{-f}][\{2 \in (R + \beta^2) \in -(R + \beta)\}e^{-f}dV\}
       .created_field
                          {=>
                              regexpt.pattern \native_function <-> euler-equation
                               {
                                  all_included <- def.key <-> aimed[value]
                                    $variable - all_included.diff
                                \summuate_manifold.recreated
       <- \native_function : euler-equation
                     } _union _ :cognitive_system.rebuild(one_ exist)
                 }
                ensure
                {
                     return :success_exit
                     => Tuplespace[DATABASE]
                }
               }
             }
         end
\quad \text{end} \quad
}
 int
streem_style {
  :Endire <- [ADD, EVEN, MOD, DEL, MIX, INCLUDED, EXCLUDED, EBN, EXN, EOR, EXOR,
              SUM, INT, DIFF, PARTIAL, ROUND, HOMOLOGY, MESH]
 Endire.interator \rightarrow {def < :Endire.element, \rightarrow def.means_each{x} \rightarrow expression.define.included
 def.each{x -> case :x.each => :lex.include_ . in [ > [x.all_expire] ]}
}
main_loop {
 FILE *fp :=> streem_style.address_objective_space
 fp.each{x -> domain_specific_language_style_included[array]}
 array << streem.DATABASE[tuplespace]</pre>
 array.each{[tuplespace] -> aimed[tuplespace] | OMEGA_DATABASE[tuplespace]}.excluded <-> array
 def.key <-> def.value => {x -> stdin | stdout |=> streem_style <- def.each.klass.value}
}
```

```
aspective : _union _ {
       int streem_style : [ > [def.each{x -> stdin | stdout > display :xhost in XWin -multiwind
         Endire <- [ADD,EVEN,ODE,EXOR,XOR,DEL,DIFF,PARTIAL,INT].included > struct _ :-> _union
        Endire.each{def.value -> def.key :hash.define}.included > _union}
}
@reviser : def.reconstructed.each{_union <-> _struct _.recreated : [def.del - def.before_determ
import perl.lib | python.lib <-> ruby.lib
 int @reviser : def.each\{x \rightarrow x.klass \mid -> variable in \$stdin \mid \$stdout\}.developed >= {
                          ping localhost -> blidgebase <-> hostbase.virtualmachine.attachment
                               xhost :display -> streem_style.value
                               networkconnect.hostbase -> localarea.virtualmachine
                          } :connected -> networkrout : flow_to :localhost.attachment
}_struct : def < hostbase.virtualmachine.attachment => : networkrout.area.build
@reviser <-> def.add [ < _struct]</pre>
@reviser : def.each{listmenu -> listlink | unlinklist > [developed -> {def.key , def.value}.cur
@reviser <-> def.rebuild [ < _struct]</pre>
@reviser.def.<value|key>networkrout-> def.present
def.present.flow_to -> hostbase.rout << networkrout.data.<value|key>
XWin -multiwindow <-> networkrout.data[$',$']
def < $'
@reviser <-> def.present.state
@reviser.def.each{x | -> key.rebuild | value.rebuild}.flow_to :redefined
def < OmegaDatabase[tuplespace]</pre>
```

@reviser : def < OmegaDatabase[tuplespace].mechanism</pre>

FILE *fp -> cmd.value : cmd.key {fp |-> syncronized.file[tuplespace] | aimed.file[tuplespace]

```
cmd.key => [ > fp.($':$')] <-> registry.excluded<fp.file[cmd.state]>
}

def.each{fp|-> def.first,def.second,def.third,def.fourth}

cmd _struct : {
  [ ^C-O : ^C-X-F, exit.cmd : ^C-X-C, shift-up : ^C-P, shift-down : ^C-N]}

cmd _union : def.restructed
keyhook.cmd <- : [_struct ]
{
  @reviser :def._struct <-> def. _union
```

Deconstruct Dimension of category theorem

Masaaki Yamaguchi

1 Locality equation

Quantum of material equation include with heat entropy of quantum effective theorem, geometry of rotate with imaginary pole is that generate structure theorem. Subgroup in category theorem is that deconstruct dimension of differential structure theorem. Quantum of material equation construct with global element of integrate equation. Heat equation built with this integrate geometry equation, Weil's theorem and fermer theorem also heat equation of quantum theorem moreover is all of equation rout with global differential equation this locality equation emerge from being built with zeta function, general relativity and quantum theorem also be emerged from this equation. Artifisial inteligent theorem excluse with this add group theorem from, Locality equation inspect with this involved of theorem, This geometry of differential structure that deconstruct dimension of category theorem stay in four of universe of pieces. In reason cause with heat equation of quantum effective from artifisial inteligence, locality equation conclude with this geometry theorem. Heat effective theorem emelite in generative theorem and quantum theorem, These theorem also emelitive with Global differential equation from locality equation. Imaginary equation of add group theorem memolite with Euler constance of variable from zeta function, this function also emerge with locality theorem in artifisial inteligent theorem.

Quantum equation concern with infinity of energy composed for material equation, atom of verisity in element is most of territory involved with restored safy of orbital.

$$f = n\nu\lambda, \lambda = \frac{x}{l}, \int dn\nu\lambda = f(x), xf(x) = F(x), [f(x)] = \nu h$$

$$px = mv, \lambda(x) = \operatorname{esperial} f(x), [F(x)] = \frac{1}{1-z}, 0 < \tan \theta < i, -1 < \tan \theta < i, -1 \le \sin \theta \le 1, -1 \le \cos \theta \le 1$$

Category theorem conclude with laplace function operator, distruct of manifold and connected space of eight of differential structure.

$$R\nabla E^{+} = f(x)\nabla e^{x\log x}$$

$$Q\nabla C^{+} = \frac{d}{df}F(x)\nabla \int \delta(x)f(x)dx$$

$$E^{+}\nabla f = e^{x\log x}\nabla n! f(x)/E(X)$$

Universe component construct with reality of number and three manifold of subgroup differential variable. Maxwell theorem is this Seifert structure $(u+v+w)(x+y+z)/\Gamma$ This space of magnetic diverse is mebius member cognetic theorem. These equation is fundermental group resulted.

$$\exp(\nabla(R^{+} \cap E^{+}), \Delta(C \supset R))$$

$$= \pi(R, C\nabla E^{+})$$

$$= \cot(E_{1}, \operatorname{div}E_{2})$$

$$xf(x) = F(x)$$

$$\Box x = \int \frac{f(x)}{\nabla(R^{+} \cap E^{+})} d\Box x$$

$$= \int \frac{\Delta f(x) \circ E^{+}}{\nabla(R^{+} \cap E^{+})} \Box x$$

This equation means that quantum of potensial energy in material equation. And this also means is gravity of equation in this universe and the other dimension belong in. Moreover is zeta function for rich flow equation in category theorem built with material equation.

$$\exp(\nabla(R^{+} \cap E^{+}), \Delta(C \supset R))$$

$$R\nabla E^{+} = f(x)\nabla e^{x \log x}$$

$$d(R\nabla E^{+}) = \Delta f(x) \circ E^{+}(x)$$

$$\Box x = \int \frac{d(R\nabla E^{+})}{\nabla(R^{+} \cap E^{+})} d\Box x$$

$$\Box x = \int \frac{\nabla_{i}\nabla_{j}(R + E^{+})}{\nabla(R^{+} \cap E^{+})} d\Box x$$

$$x^{n} + y^{n} = z^{n} \to \Box x = \int \frac{\nabla_{i}\nabla_{j}(R + E^{+})}{\nabla(R^{+} \cap E^{+})} d\Box x$$

Laplace equation exist of space in fifth dimension, three manifold belong in reality number of space. Other dimension is imaginary number of space, fifth dimension is finite of dimension. Prime number certify on reality of number, zero dimension is imaginary of space. Quantum group is this universe and the other dimension complex equation of non-certain theorem. Zero dimension is eternal space of being expanded to reality of atmosphere in space.

2 Heat entropy all of materials emerged by

$$\Box = -2(T - t)|R_{ij} + \nabla \nabla f + \frac{1}{-2(T - t)}|g_{ij}^2|$$

This heat equation have element of atom for condition of state in liquid, gas, solid attitude. And this condition constructed with seifert manifold in Weil's theorem. Therefore this attitude became with Higgs field emerged with.

$$\Box = -2\int \frac{(R + \nabla_i \nabla_j f)}{-(R + \Delta f)} e^{-f} dV$$

$$\frac{d}{dt} g_{ij} = -2R_{ij}, \frac{d}{df} F = m(x)$$

$$R\nabla E^+ = \Delta f(x) \circ E^+(x), d(R\nabla E^+) = \nabla_i \nabla_j (R + E^+)$$

$$R\nabla E^+ = f(x) \nabla e^{x \log x}, R\nabla E^+ = f(x), f(x) = M_1$$

$$-2(T - t)|R_{ij} + \nabla \nabla f = \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

$$\frac{1}{-2(T - t)}|g_{ij}^2 = \int \int \frac{1}{(x \log x)^2} dx_m$$

$$(\Box + m^2)\phi = 0, (\gamma^n \partial_n + m^2)\psi = 0$$

$$\Box = (\delta\phi + m^2)\psi, (\delta\phi + m^2c)\psi = 0, E = mc^2, E = -\frac{1}{2}mv^2 + mc^2, \Box\psi^2 = (\partial\phi + m^2)\psi$$

$$\Box\phi^2 = \frac{8\pi G}{c^4} T^{\mu\nu}, \nabla\phi^2 = 8\pi G(\frac{p}{c^3} + \frac{V}{S}), \frac{d}{dt} g_{ij} = -2R_{ij}, f(x) + g(x) \ge f(x) \circ g(x)$$

$$\int_{\beta}^{\alpha} a(x - 1)(y - 1) \ge 2\int f(x)g(x)dx$$

$$m^2 = 2\pi T(\frac{26 - D_n}{24}), r_n = \frac{1}{1 - z}$$

$$(\partial\psi + m^2c)\phi = 0, T^{\mu\nu} = \frac{1}{2}mv^2 - \frac{1}{2}kx^2$$

$$\int [f(x)]dx = ||\int f(x)dx||, \int \nabla x dx = \Delta \sum f(x)dx, (e^{i\theta})' = ie^{i\theta}$$

This orbital surface varnished to energy from $E=mc^2$. $T^{\mu\nu}=nh\nu$ is $T^{\mu\nu}=\frac{1}{2}mv^2-\frac{1}{2}kx^2\geq mc^2-\frac{1}{2}mv^2$ This equation means with light do not limit over $\frac{1}{2}kx^2$ energy.

$$Z \in R \cap Q, R \subset M_+, C^+ \bigoplus_{k=0}^n H_m, E^+ \cap R^+$$

$$M_{+} = \sum_{k=0}^{n} C^{+} \oplus H_{M}, M_{+} = \sum_{k=0}^{n} C^{+} \cup H_{+}$$

$$E_{2} \bigoplus E_{1}, R^{-} \subset C^{+}, M_{-}^{+}, C_{-}^{+}$$

$$M_{-}^{+} \nabla C_{-}^{+}, C^{+} \nabla H_{m}, E^{+} \nabla R^{+}$$

$$E_{1} \nabla E_{2}, R^{-} \nabla C^{+}, \bigoplus \nabla M_{-}^{+}, \bigoplus \nabla C_{-}^{+}, R \supset Q$$

$$\frac{d}{dt} F = \bigoplus \nabla M_{-}^{+}, \bigoplus \nabla C_{-}^{+}$$

All function emerge from eight differential structure in laplace equation of being deconstructed that with connected of category theorem from.

$$\nabla \circ \Delta = \nabla \sum f(x)$$

$$\Delta \to \operatorname{mesh} f(x) dx, \partial x$$

$$\nabla \to \partial_{xy}, \frac{d}{dx} f(x) \frac{d}{dx} g(x)$$

$$\Box x = -[f, g]$$

$$\frac{d}{dt} g_{ij} = -2R_{ij}$$

$$\lim_{x \to \infty} \sum f(x) dx = \int dx, \nabla \int dx$$

3 Universe in category theorem created by

Two dimension of surface in power vector of subgroup of complex manifold on reality under of goup line. This group is duality of differential complex in add group. All integrate of complex sphere deconstruct of homorehere is also exists of three dimension of manifold. Fundermental group in two dimension of surface is also reality of quality of complex manifold. Rich flow equation is also quality of surface in add group of complex. Group of ultra network in category theorem is subgroup of quality of differential equation and fundermental group also differential complex equation.

$$(E_2 \bigoplus_{k=0}^n E_1) \cdot (R^- \subset C^+)$$

$$= \bigoplus_{k=0}^n \nabla C_-^+$$

$$\vee \int \frac{C_-^+ \nabla H_m}{\Delta (M_-^+ \nabla C_-^+)} = \wedge M_-^+ \bigoplus_{k=0}^n C_-^+$$

$$\exists (M_-^+ \nabla C_-^+) = XOR(\bigoplus_{k=0}^n \nabla M_-^+)$$

$$-[E^{+}\nabla R_{-}^{+}] = \nabla_{+}\nabla_{-}C_{-}^{+}$$

$$\int dx_{i}\partial x_{i}\nabla_{i}\nabla_{j}\Delta x$$

$$\to E^{+}\nabla M_{1}, E^{+}\cap R\in M_{1}, R\nabla C^{+}$$

$$\begin{pmatrix} \cos x & \sin x \\ \sin x & -\cos x \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \cos x & -1 \\ 1 & -\sin x \end{pmatrix} \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sum_{k=0}^{n}\cos k\theta = \frac{\sin\frac{(n+1)}{2}\theta}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$$

$$\sum_{k=0}^{n}\sin k\theta = \frac{\sin\frac{(n+1)}{2}\theta}{\sin\frac{\theta}{2}}\sin\frac{n\theta}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}, \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \tan \theta = \frac{e^{i\theta} - e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})}$$

$$\lim_{\theta \to 0} = \frac{\sin \theta}{\theta} \to 1, \lim_{\theta \to 0} = \frac{\cos \theta}{\theta} \to 1$$

$$(e^{i\theta})' = 2, \nabla f = 2, e^{i\theta} = \cos \theta + i \sin \theta$$

$$\begin{pmatrix} \cos x & -1 \\ 1 & -\sin x \end{pmatrix} \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \to [\cos^{2}\theta + \sin \theta + \cos \theta - 2\sin^{2}\theta] \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$$

$$2\sin \theta \cos \theta = 2n\lambda \sin \theta$$

$$\begin{pmatrix} \cos x & -1 \\ 1 & -\sin x \end{pmatrix} \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\lim_{\theta \to 0} \frac{1}{\theta} \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} \begin{pmatrix} \theta & 1 \\ 1 & \theta \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f^{-1}(x)xf(x) = 1$$

Dimension of rotate with imaginary pole is generate of geometry structure theorem. Category theorem restruct with eight of differential structure that built with Thurston conjugate theorem, this element with summuate of thirty two structure. This pieces of structure element have with four of universe in one dimension. Quark of two pair is two dimension include, Twelve of quarks construct with super symmetry dimension theorem. Differential structure and quark of pair exclusive with four of universe.

Module conjecture built with symmetry theorem, this theorem belong with non-gravity in zero dimension. This dimension conbuilt with infinity element, mebius space this dimension construct with universe and the other dimension. Universe and the other dimension selves have with singularity, therefore is module conjecture selve with gravity element of one dimension. Symmetry theorem tell this one

dimension to emerge with quarks, this quarks element also restruct with eight differential structure. This reason resovle with reflected to dimension of partner is gravity and creature create with universe.

Mass exist from quark and dimension of element, this explain from being consisted of duality that sheaf of element in this tradision. Higgs field is emerged from this element of tradision, zeta function generate with this quality. Gravity is emerge with space of quality, also Higgs field is emerge to being generated of zero dimension. Higgs field has surround of mass to deduce of light accumulate in anserity. Zeta function consist from laplace equation and fifth dimension of element. This element incluse of gravity and antigravity, fourth dimension indicate with this quality emerge with being sourrounded of mass. Zero dimension consist from future and past incluse of fourth dimension, eternal space is already space of first emerged with. Mass exist of quantum effective theorem also consisted of Higgs field and Higgs quark. That gravity deduce from antigravity of element is explain from this system of Higgs field of mechanism. Antigravity conclude for this mass of gravity element. What atom don't incluse of orbital is explain to this antigravity of element, this mechanism in Higgs field have with element of gravity and antigravity.

Quantum theorem describe with non-certain theorem in universe and other dimension of vector element, This material equation construct with lambda theorem and material theorem, other dimension existed resolve with non-certain theorem.

$$\sin \theta = \frac{\lambda}{d}, -py_1 \sin 90^{\circ} \le \sin \theta \le py_2 \sin 90^{\circ}, \lambda = \frac{h}{mv}$$
$$\frac{\lambda_2}{\lambda_1} = \frac{\sin \theta}{\frac{\sin \theta}{2}} h, \lambda' \ge 2h, \int \sin 2\theta = ||x - y||$$

4 Ultra Network from category theorem entirly create with database

Eight differential structure composite with mesh of manifold, each of structure firstly destructed with this mesh emerged, lastly connected with this each of structure desconstructed. High energy of entropy not able to firstly decostructed, and low energy of firstly destructed. This reason low energy firsted. These result says, non-catastrophe be able to one geometry structure.

$$D^2\psi=\nabla\int(\nabla_i\nabla_jf)^2d\eta$$

$$E=mc^2, E=\frac{1}{2}mv^2-\frac{1}{2}kx^2, G^{\mu\nu}=\frac{1}{2}\Lambda g_{ij}, \Box=\frac{1}{2}kT^2$$

Sheap of manifold construct with homorhism in kernel divide into image function, this area of field rehearl with universe of surrounded with image function rehinde in quality. This reason with explained the mechanism, Sheap of manifold remain into surrounded of universe.

$$\ker f/\operatorname{im} f \cong S_m^{\mu\nu}, S_m^{\mu\nu} = \pi(\chi, x) \otimes h_{\mu\nu}$$

$$D^2\psi = \mathcal{O}(x)\left(\frac{p}{c^3} + \frac{V}{S}\right), V(x) = D^2\psi \otimes M_3^+$$

$$S_m^{\mu\nu} \otimes S_n^{\mu\nu} = -\frac{2R_{ij}}{V(\tau)} [D^2 \psi]$$

Selbarg conjecture construct with singularity theorem in Sheap element.

$$\nabla_{i}\nabla_{j}[S_{1}^{mn}\otimes S_{2}^{mn}] = \int \frac{V(\tau)}{f(x)}[D^{2}\psi]$$

$$\nabla_{i}\nabla_{j}[S_{1}^{mn}\otimes S_{2}^{mn}] = \int \frac{V(\tau)}{f(x)}\mathcal{O}(x)$$

$$z(x) = \frac{g(cx+d)}{f(ax+b)}h(ex+l)$$

$$= \int \frac{V(\tau)}{f(x)}\mathcal{O}(x)$$

$$\frac{V(x)}{f(x)} = m(x), \mathcal{O}(x) = m(x)[D^{2}\psi(x)]$$

$$\frac{d}{df}F = m(x), \int Fdx_{m} = \sum_{l=0}^{\infty} m(x)$$

5 Fifth dimension of seifert manifold in universe and other dimension

Universe audient for other dimension inclusive into fifth dimension, this phenomonen is universe being constant of value, and universe out of dimension exclusive space. All of value is constance of entropy. Universe entropy and other dimension entropy is dense of duality belong for. Prime equation construct with x,y parameter is each value of imaginary and reality of pole on a right comittment.

$$\int \nabla \psi^2 d\nabla \psi = \Box \psi$$

$$\Box \psi = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$

$$\mathcal{O}(x) = [\nabla_i \nabla_j \int \nabla f(x) d\eta]^{\frac{1}{2}}$$

$$\delta \cdot \mathcal{O}(x) = [\nabla_i \nabla_j \int \nabla g(x) dx_{ij}]^{iy}$$

$$||ds^2|| = e^{-2\pi T|\phi|} [\mathcal{O}(x) + \delta \mathcal{O}(x)] dx^{\mu} dx^{\nu} + \lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k$$

$$\log(x \log x) \ge 2(y \log y)^{\frac{1}{2}}, \frac{(y \log y)^{\frac{1}{2}}}{\log(x \log x)} \le \frac{1}{2}$$

Universe is freeze out constant, and other dimension is expanding into fifth dimension. Possiblity of quato metric, $\delta(x) = \text{reality of value} / \text{exist of value} \le 1$, expanding of universe = exist of value $\to \log(x \log x) = \Box \psi$

freeze out of universe = reality of value $\rightarrow (y \log y)^{\frac{1}{2}} = \nabla \psi^2$

Around of universe is other dimension in fifth dimension of seifert manifold. what we see sky of earth is other dimension sight of from.

Rotate of dimension is transport of dimension in other dimension from universe system.

Other dimension is more than Light speed into takion quarks of structure.

Around universe is blackhole, this reason resolved with Gamma ray burst in earth flow. We don't able to see now other dimension, gamma ray burst is blackhole phenomanen. Special relativity is light speed not over limit. then light speed more than this speed. Other dimesion is contrary on universe from. If light speed come with other light speed together, stop of speed in light verisity. Then takion quarks of speed is on the contrary from become not see light element. And this takion quarks is into fifth dimension of being go from universe. Also this quarks around of universe attachment state. Moreover also this quarks is belong in vector of element. This reason is universe in other dimension emerge with. In this other dimension out of universe, but these dimension not shared of space.

$$l(x) = 2x^2 + qx + r$$

$$= (ax + b)(cx + d) + r, e^{l(x)} = \frac{d}{df}L(x), G_{\mu\nu} = g(x) \wedge f(x)$$

This equation is Weil's theorem, also quantum group. Complex space.

$$V(\tau) = \int \int \exp[L(x)] dx_m + O(N^{-1}), g(x) = L(x) \circ \int \int e^{2x^2 + 2x + r} dx_m$$

Lens of space and integrate of rout equation. And norm space of algebra line of curve equation in gradient metric.

$$||ds^2|| = ||\frac{d}{df}L(x)||, \eta = [\nabla_i \nabla_j \int \nabla f(x)d\eta]^{\frac{1}{2}}$$

$$\bar{h} = [\nabla_i \nabla_j \int \nabla g(x) d_{ij}]^{iy}, \frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

Two equation construct with Kaluze-Klein dimension of equation. Non-verticle space.

$$\frac{1}{\tau}(\frac{N}{2} + r(2\Delta F - |\nabla f|^2 + R) + f) \bmod N^{-1}$$

Also this too lense of space equation. And this also is heat equation. And this equation is singularity into space metric number of formula.

$$\frac{x^2}{a}\cos x + \frac{y^2}{b}\sin x = r^2$$

Curvature of equation.

$$S_m^2 = ||\int \pi r^2 dr||^2, V(\tau) = r^2 \times S_m^2, S_1^{mn} \otimes S_2^{mn} = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$

Non-relativity of integrate rout equation.

$$||ds^2|| = e^{-2\pi T |\phi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^2 d^2 \psi$$

$$V(x) = \int \frac{1}{\sqrt{2\tau q}} (\exp L(x) dx) + O(N^{-1})$$

$$V(x) = 2 \int \frac{(R + \nabla_i \nabla_j f)}{-(R + \Delta f)} e^{-f} dV, V(\tau) = \int \tau(p)^{-\frac{n}{2}} \exp(-\frac{1}{\sqrt{2\tau q}} L(x) dx) + O(N^{-1})$$

$$\frac{d}{df} F = m(x)$$

$$Zeta(x, h) = \exp \frac{(qf(x))^m}{m}$$

Singularity and duality of differential is complex element.

Antigravity is other dimension belong to, gravity of universe is a few weak power become. These power of balance concern with non-entropy metric. Universe is time and energy of gravity into non-entropy. Other dimension is first of universe emerged with takion quarks is light speed, and time entropy into future is more than light speed. Some future be able to earth of night sky can see to other dimension sight. However, this sight might be first of big-ban environment. Last of other dimension condition also can be see to earth of sight. Same future that universe of gravity and other dimension of antigravity is balanced into constant of value, then fifth dimension fill with these power of non-catastorophe. These phenomonone is concerned with zeta function emerged with laplace equation resulted.

$$\frac{d}{df} \int \int \int \Box \psi d\psi_{xy} = V(\Box \psi), \lim_{n \to \infty} \sum_{k=0}^{\infty} V_k(\Box \psi) = \frac{\partial}{\partial f} ihc$$

This reason explained of quarks emerge into global space of system.

$$\lim_{n \to \infty} \sum_{k=0}^{\infty} G_{\mu\nu} = f(x) \circ m(x)$$

This become universe.

$$\frac{V(x)}{f(x)} = m(x)$$

Eight differential structure integrate with one of geometry universe.

$$(a_k f^k)' = {}_{n}C_0 a_0 f^n + {}_{n}C_1 a_1 f^{n-1} \dots {}_{n}C_{r-1} a_n f^{n-1}$$

$$\int a_k f^k dx_k = \frac{a_{n+1}}{k+1} f^{n+1} + \frac{a_{k+2}}{k+2} f^{k+2} + \dots + \frac{a_0}{k} f^k$$

Summuate of manifold create with differential and integrate of structure.

$$\frac{\partial}{\partial f}\Box\psi = \frac{1}{4}g_{ij}^{2}$$

$$\left(\frac{\nabla\psi^{2}}{\Box\psi}\right)' = 0$$

$$\frac{(y\log y)^{\frac{1}{2}}}{\log(x\log x)} = \frac{\frac{1}{2}}{\frac{1}{2}i}$$

$$\frac{\{f,g\}}{[f,g]} = \frac{1}{i}, \left(\frac{\{f,g\}}{[f,g]}\right)' = i^{2}$$

$$(i)^{2} \to \frac{1}{4}g_{ij}, F_{t}^{m} = \frac{1}{4}g_{ij}^{2}, f(r) = \frac{1}{4}|r|^{2}, 4f(r) = g_{ij}^{2}$$

$$\frac{1}{y} \cdot \frac{1}{y'} \cdot \frac{y''}{y'} \cdot \frac{y'''}{y''} \dots$$

$$= \frac{{}_{n}C_{r}y^{2} \cdot y^{3} \dots}{{}_{n}C_{r}y^{1}y^{2} \dots}$$

$$\frac{\partial y}{\partial x} \cdot \frac{\partial}{\partial y}f(y) = y' \cdot f'(y)$$

$$\int l \times ldm = (l \oplus l)_{m}$$

Symmetry theoerm is included with two dimension in plank scale of constance.

$$= \frac{d}{dx^{\mu}} \cdot \frac{d}{dx^{\nu}} f^{\mu\nu} \cdot \nabla \psi^{2}$$

$$= \Box \psi$$

$$\frac{\nabla \psi^{2}}{\Box \psi} = \frac{1}{2}, l = 2\pi r, V = \frac{4}{\pi r^{3}}$$

$$S \frac{4\pi r^{3}}{2\pi r} = 2 \cdot (\pi r^{2})$$

$$= \pi r^{2}, H_{3} = 2, \pi(H_{3}) = 0$$

$$\frac{\partial}{\partial f} \Box \psi = \frac{1}{4} g_{ij}^{2}$$

This equation is blackhole on two dimension of surface, this surface emerge into space of power.

$$f(r) = \frac{1}{2} \frac{\sqrt{1 + f'(r)}}{f(r)} + mgf(r)$$

Atom of verticle in electric weak power in lowest atom structure

$$ihc = G, hc = \frac{G}{i}$$
$$\left(\frac{\nabla \psi^2}{\Box \psi}\right)' = 0$$
$$S_n^m = |S_2 S_1 - S_1 S_2|$$
$$\Box \psi = V \cdot S_n^m$$

One surface on gravity scales.

$$G^{\mu\nu} \cong R^{\mu\nu}$$

Gravity of constance equals in Rich curvature scale

$$\nabla_i \nabla_j (\Box \psi) d\psi_{xy} = \frac{\partial}{\partial f} \Box \psi \cdot T^{\mu\nu}$$

Partial differential function construct with duality of differential equation, and integrate of rout equation is create with Maxwell field on space of metrix.

$$= \frac{8\pi G}{c^4} (T^{\mu\nu})^2, (\chi \oplus \pi) = \int \int \int \Box \psi d^3 \psi$$
$$= \operatorname{div}(\operatorname{rot} E, E_1) \cdot e^{-ix \log x}$$

World line is constructed with Von Neumann manifold stimulate into Thurston conjugate theorem, this explained mechanism for summuate of manifold. Also this field is norm space.

$$\sigma(\mathcal{H}_n \otimes \mathcal{K}_m) = E_n \times H_m$$

$$\mathcal{H}_{n} = [\nabla_{i}\nabla_{j} \int \nabla g(x)dx_{i}dx_{j}]^{iy}, \mathcal{K}_{m} = [\nabla_{i}\nabla_{j} \int \nabla f(x)d\eta]^{\frac{1}{2}}$$
$$||ds^{2}|| = |\sigma(\mathcal{H}_{n} \times \mathcal{K}_{m}), \sigma(\chi, x) \times \pi(\chi, x) = \frac{\partial}{\partial f}L(x), V_{\tau}'(x) = \frac{\partial}{\partial V}L(x)$$

Network theorem. Dalanvercian operator of differential surface. World line of surface on global differential manifold. This power of world line on fourth of universe into one geometry. Gradient of power on universe world line of surface of power in metric. Metric of integrate complex structure of component on world line of surface.

$$(\Box \psi)' = \frac{\partial}{\partial f_M} (\int \int \int f(x, y, z) dx dy dz)' d\psi$$
$$\frac{\partial}{\partial V} L(x) = V(\tau) \int \int e^{\int x \log x dx + O(N^{-1})} d\psi$$
$$\frac{d}{df} \sum_{k=1}^{n} \sum_{k=0}^{\infty} a_k f^k = \frac{d}{df} m(x), \frac{V(x)}{f(x)} = m(x)$$

$$4V_{\tau}'(x) = g_{ij}^2, \frac{d}{dl}L(x) = \sigma(\chi, x) \times V_{\tau}(x)$$

Fifth manifold construct with differential operator in two dimension of surface.

$$\begin{aligned} ||ds^{2}|| &= e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d\psi^{2} \\ f^{(2)}(x) &= [\nabla_{i}\nabla_{j} \int \nabla f^{(5)} d\eta]^{\frac{1}{2}} \\ &= [f^{(2)}(x) d\eta]^{\frac{1}{2}} \\ \nabla_{i}\nabla_{j} \int F(x) d\eta &= \frac{\partial}{\partial f} F \\ \nabla f &= \frac{d}{dx} f \\ \nabla_{i}\nabla_{j} \int \nabla f d\eta &= \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} (\frac{d}{dx} f) \\ &\frac{z_{3}z_{2} - z_{2}z_{3}}{z_{2}z_{1} - z_{1}z_{2}} &= \omega \\ &\frac{\bar{z}_{3}z_{2} - \bar{z}_{2}z_{3}}{\bar{z}_{2}z_{1} - \bar{z}_{1}z_{2}} &= \bar{\omega} \\ \omega \cdot \bar{\omega} &= 0, z_{n} = \omega - \{x\}, z_{n} \cdot \bar{z}_{n} = 0, \vec{z_{n}} \cdot \vec{z_{n}} = 0 \end{aligned}$$

Dimension of symmetry create with a right comittment into midle space, triangle of mesh emerged into symmetry space. Imaginary and reality pole of network system.

$$[f,g] \times [g,f] = fg + gf$$
$$= \{f,g\}$$

Mebius space create with fermison quarks, Seifert manifold construct with this space restruct of pieces.

$$V(\tau) = \int \int e^{\int x \log x + O(N^{-1})} d\psi, V_{\tau}^{'}(x) = \frac{\partial}{\partial f_{M}} \left(\int \int \int f(x, y, z) dx dy dz \right)' d\psi$$

$$\left(\Box \psi \right)' = 4\vec{v}(x), \frac{\partial}{\partial V} L(x) = m(x), V(\tau) = \int \frac{1}{\sqrt{2\tau q}} \exp[L(x)] d\psi + O(N^{-1})$$

$$V(\tau) = \int \int \int \frac{V}{S^{2}} dm, f(r) = \frac{1}{2} \frac{\sqrt{1 + f'(r)}}{f(r)} + mgf(r), \log(x \log x) \ge 2(y \log y)^{\frac{1}{2}}, F_{t}^{m} = \frac{1}{4} g_{ij}^{2}, \frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

$$\nabla_{i} \nabla_{j} v = \frac{1}{2} m v^{2} + mc^{2}, \int \nabla_{i} \nabla_{j} v dv = \frac{\partial}{\partial f} L(x)$$

$$\left(\Box \psi \right)^{2} = -2 \int \nabla_{i} \nabla_{j} v d^{2} v, \left(\Box \psi \right)^{2} = \left(\frac{\nabla \psi^{2}}{\Box \psi} \right)'$$

$$= \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dm, \bigoplus \nabla M_3^+ = \int \frac{\nabla (R + \nabla_i \nabla_j f)^2}{\exists (R + \Delta f)} dV$$

$$= (x, y, z) \cdot (u, v, w) / \Gamma$$

$$\bigoplus C_-^+ = \int \exp[\int \nabla_i \nabla_j f d\eta] d\psi$$

$$= L(x) \cdot \frac{\partial}{\partial l} F(x)$$

$$= (\Box \psi)^2$$

$$\nabla \psi^2 = 8\pi G \left(\frac{p}{c^3} + \frac{V}{S}\right)$$

Blackhole and whitehole is value of variable into constance lastly. Universe and the other dimension built with relativity energy and potential energy constructed with. Euler-Langrange equation and two dimension of surface in power of vector equation.

$$l = \sqrt{\frac{hG}{c^3}}, T^{\mu\nu} = \frac{1}{2}kl^2 + \frac{1}{2}mv^2, E = mc^2 - \frac{1}{2}mv^2$$
$$e^{x\log x} = x^x, x = \frac{\log x^x}{\log x}, y = x, x = e$$

A right comittment on symmetry surface in zeta function and quantum group theorem.

$$\int \frac{1}{(x \log x)} dx = i \int x \log x dx + \int \frac{1}{(x \log x)} dx$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = i \frac{1}{2} x^2$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = i \int \int_M dx_m$$

$$\leq \frac{1}{2} i + x^2$$

$$E = -\frac{1}{2} m v^2 + m c^2$$

$$\lim_{x \to \infty} \int \int \frac{1}{(x \log x)^2} dx_m \geq \frac{1}{2} i$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m = \frac{1}{2} i$$

$$\lim_{x \to \infty} \frac{x^2}{e^{x \log x}} = 0$$

$$\int dx \to \partial f \to dx \to cons$$

Heat equation restruct with entropy from low energy to high energy flow to destroy element.

$$(\Box \psi)' = (\exists \int \lor (R + \nabla_I \nabla_j f) e^{-f} dV)' d\psi$$

$$\bigoplus M_3^+ = \frac{\partial}{\partial f} L(x)$$

$$\log(x \log x) \ge 2(y \log y)^{\frac{1}{2}}$$

$$\frac{\partial}{\partial l}L(x) = \nabla_{i}\nabla_{j}\int\nabla f(x)d\eta, L(x) = \frac{V(x)}{f(x)}$$

$$l(x) = L^{'}(x), \frac{d}{df}F = m(x), V^{'}(\tau) = \int\int e^{\int x \log x dx + O(N^{-1})}d\psi$$

Weil's theorem.

$$T^{\mu\nu} = \int \int \int \frac{V(x)}{S^2} dm, S^2 = \pi r^2 \cdot S(x)$$

$$= \frac{4\pi r^3}{\tau(x)}$$

$$\eta = \nabla_i \nabla_j \int \nabla f(x) d\eta, \bar{h} = \nabla_i \nabla_j \int \nabla g(x) dx_i dx_j$$

$$\delta \mathcal{O}(x) = [\nabla_i \nabla_j \int f(x) d\eta]^{\frac{1}{2} + iy}$$

$$Z(x, h) = \lim_{x \to \infty} \sum_{k=0}^{\infty} \frac{q T^m}{m} = \delta(x)$$

$$l(x) = 2x^2 + px + q, m(x) = \lim_{x \to \infty} \sum_{k=0}^{\infty} \frac{(qx^m)'}{f(x)}$$

Higgs fields in Weil's theorem component and Singularity theorem.

$$Z(T,X) = \exp \sum_{m=1}^{\infty} \frac{q^k T^m}{m}, Z(x,h) = \exp \frac{(qf(x))^m}{m}$$

Zeta function.

$$\frac{d}{df}F = m(x), F = \int \int e^{\int x \log x dx + O(N^{-1})} d\psi$$

Integral of rout equation.

$$\lim_{x \to 1} \operatorname{mesh} \frac{m}{m+1} = 0, \int x^m = \frac{x^m}{m+1}$$

Mesh create with Higgs fields. This fields build to native function.

$$\frac{d}{df} \int x^m = mx^m, \frac{d}{dt} g_{ij}(t) = -2R_{ij}, \lim_{x \to 1} \operatorname{mesh}(x) = \lim_{m \to \infty} \frac{m}{m+1}$$

$$\lim_{x \to 1} \sum_{k=0}^{\infty} a_k f^k = \alpha$$

$$\begin{aligned} ||ds^2|| &= e^{-2\pi T |\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^2 d^2 \psi \\ &\frac{\partial}{\partial V} ||ds^2|| &= T^{\mu\nu}, V(\tau) = \int e^{x \log x} d\psi = l(x) \\ &R_{ij} &= \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} T^{\mu\nu}, G^{\mu\nu} = R^{\mu\nu} T^{\mu\nu} \\ &F(x) &= \int \int e^{\int x \log x dx + O(N^{-1})} d\psi, \frac{d}{dV} F(x) = V^{'}(x) \end{aligned}$$

Integral of rout equation oneselves and expired from string theorem of partial function.

$$T^{\mu\nu} = R^{\mu\nu}, T^{\mu\nu} = \int \int \int \frac{V}{S^2} dm$$
$$\delta \mathcal{O}(x) = [D^2 \psi \otimes h_{\mu\nu}] dm$$

Open set group construct with D-brane.

$$\nabla(\Box\psi)' = \left[\nabla_{i}\nabla_{j} \int \nabla f(x)d\eta\right]^{\frac{1}{2}+iy}$$

$$(f(x), g(x))' = (A^{\mu\nu})'$$

$$\begin{pmatrix} dx & \delta(x) \\ \epsilon(x) & \partial x \end{pmatrix} \cdot (f(x, y), g(x, y))$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Differential equation of complex variable developed from imaginary and reality constance.

$$\delta(x) \cdot \mathcal{O}(x) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{\frac{1}{2}}$$

$$V_{\tau}^{'}(x)=\frac{\partial}{\partial f_{M}}(\int\int\int f(x,y,z)dxdydz)d\psi$$

Gravity equation oneselves built with partial operator.

$$\frac{\partial}{\partial V}L(x) = V_{\tau}^{'}(x)$$

Global differential equation is oneselves component.

Symmetry construct of Space mechanism

Masaaki Yamaguchi

1 Ultra Network from Omega DataBase worked with equation and category theorem from

$$ds^2 = [g_{\mu\nu}^2, dx]$$

This equation is constructed with M_2 of differential variable, this resulted non-commutative group theorem.

$$ds^2 = g_{\mu\nu}^{-1}(g_{\mu\nu}^2(x) - dxg_{\mu\nu}^2)$$

In this function, singularity of surface in component, global surface of equation built with M_2 sequence.

$$= h(x) \otimes g_{\mu\nu} d^2x - h(x) \otimes dx g_{\mu\nu}(x), h(x) = (f^2(\vec{x}) - \vec{E}^+)$$
$$G_{\mu\nu} = R_{\mu\nu} T^{\mu\nu}, \partial M_2 = \bigoplus \nabla C_-^+$$

 $G_{\mu\nu}$ equal $R_{\mu\nu}$, also Rich tensor equals $\frac{d}{dt}g_{ij}=-2R_{ij}$ This variable is also $r=2f^{\frac{1}{2}}(x)$ This equation equals abel manifold, this manifold also construct fifth dimension.

$$E^{+} = f^{-1}xf(x), h(x) \otimes g(\vec{x}) \cong \frac{V}{S}, \frac{R}{M_{2}} = E^{+} - \phi$$

$$= M_{3} \supset R, M_{2}^{+} = E_{1}^{+} \cup E_{2}^{+} \to E_{1}^{+} \bigoplus E_{2}^{+}$$

$$= M_{1} \bigoplus \nabla C_{-}^{+}, (E_{1}^{+} \bigoplus E_{2}^{+}) \cdot (R^{-} \subset C^{+})$$

Reflection of two dimension don't emerge in three dimension of manifold, then this space emerge with out of universe. This mechanism also concern with entropy of non-catastrophe.

$$\frac{R}{M_2} = E^+ - \{\phi\}$$

$$= M_3 \supset R$$

$$M_3^+ \cong h(x) \cdot R_3^+ = \bigoplus \nabla C_-^+, R = E^+ \bigoplus M_2 - (E^+ \cap M_2)$$

$$E^+ = g_{\mu\nu} dx g_{\mu\nu}, M_2 = g_{\mu\nu} d^2x, F = \rho gl \to \frac{V}{S}$$

$$\mathcal{O}(x) = \delta(x) [f(x) + g(\bar{x})] + \rho gl, F = \frac{1}{2} mv^2 - \frac{1}{2} kx^2, M_2 = P^{2n}$$

This equation means not to be limited over fifth dimension of light of gravity. And also this equation means to be not emerge with time mechanism out of fifth dimension. Moreover this equation means to emerge with being constructed from universe, this mechanism determine with space of big-ban.

$$r = 2f^{\frac{1}{2}}(x), f(x) = \frac{1}{4}||r||^2$$

This equation also means to start with universe of time mechanism.

$$V = R^{+} \sum K_{m}, W = C^{+} \sum_{k=0}^{\infty} K_{n+2}, V/W = R^{+} \sum K_{m}/C^{+} \sum K_{n+2}$$
$$= R^{+}/C^{+} \sum \frac{x^{k}}{a_{k}f^{k}(x)}$$
$$= M_{-}^{+}, \frac{d}{df}F = m(x), \to M_{-}^{+}, \sum_{k=0}^{\infty} \frac{x^{k}}{a_{k}f^{k}(x)} = \frac{a_{k}x^{k}}{\zeta(x)}$$

2 Omega DataBase is worked by these equation

This equation built in seifert manifold with fifth dimension of space. Fermison and boson recreate with quota laplace equation,

$$\frac{\{f,g\}}{[f,g]} = \frac{fg + gf}{fg - gf}, \nabla f = 2, \partial H_3 = 2, \frac{1+f}{1-f} = 1, \frac{d}{df}F = \bigoplus \nabla C_-^+, \vec{F} = \frac{1}{2}$$

$$H_1 \cong H_3 = M_3$$

Three manifold element is 2, one manifold is 1, $\ker f/\operatorname{im} f$, $\partial f = M_1$, singularity element is 0 vector. Mass and power is these equation fundement element. The tradition of entropy is developed with these singularity of energy, these boson and fermison of energy have fields with Higgs field.

$$H_3 \cong H_1 \to \pi(\chi, x), H_n, H_m = \operatorname{rank}(m, n), \operatorname{mesh}(\operatorname{rank}(m, n)) \operatorname{lim} \operatorname{mesh} \to 0$$

$$(fg)' = fg' + gf', (\frac{f}{g})' = \frac{f'g - g'f}{g^2}, \frac{\{f, g\}}{[f, g]} = \frac{(fg)' \otimes dx_{fg}}{(\frac{f}{g})' \otimes g^{-2}dx_{fg}}$$

$$= \frac{(fg)' \otimes dx_{fg}}{(\frac{f}{g})' \otimes g^{-2}dx_{fg}}$$

$$= \frac{d}{df}F$$

Gravity of vector mension to emerge with fermison and boson of mass energy, this energy is create with all creature in universe.

$$\hbar\psi = \frac{1}{i}H\Psi, i[H, \psi] = -H\Psi, \left(\frac{\{f, g\}}{[f, g]}\right)' = (i)^2$$

$$\begin{split} [\nabla_i \nabla_j f(x), \delta(x)] &= \nabla_i \nabla_j \int f(x,y) dm_{xy}, f(x,y) = [f(x),h(x)] \times [g(x),h^{-1}(x)] \\ \delta(x) &= \frac{1}{f'(x)}, [H,\psi] = \Delta f(x), \mathcal{O}(x) = \nabla_i \nabla_j \int \delta(x) f(x) dx \\ \mathcal{O}(x) &= \int \delta(x) f(x) dx \\ R^+ \cap E_-^+ \ni x, M \times R^+ \ni M_3, Q \supset C_-^+, Z \in Q \nabla f, f \cong \bigoplus_{k=0}^n \nabla C_-^+ \\ \bigoplus_{k=0}^\infty \nabla C_-^+ &= M_1, \bigoplus_{k=0}^\infty \nabla M_-^+ \cong E_-^+, M_3 \cong M_1 \bigoplus_{k=0}^\infty \nabla \frac{V_-^+}{S} \\ \frac{P^{2n}}{M_2} \cong \bigoplus_{k=0}^\infty \nabla C_-^+, E_-^+ \times R_-^+ \cong M_2 \\ \zeta(x) &= P^{2n} \times \sum_{k=0}^\infty a_k x^k, M_2 \cong P^{2n}/\ker f, \to \bigoplus \nabla C_-^+ \\ S_-^+ \times V_-^+ \cong \frac{V}{S} \bigoplus_{k=0}^\infty \nabla C_-^+, V_-^+ \cong M_-^+ \bigotimes S_-^+, Q \times M_1 \subset \bigoplus \nabla C_-^+ \\ \sum_{k=0}^\infty Z \otimes Q_-^+ &= \bigotimes_{k=0}^\infty \nabla M_1 \\ &= \bigotimes_{k=0}^\infty \nabla C_-^+ \times \sum_{k=0}^\infty M_1, x \in R^+ \times C_-^+ \supset M_1, M_1 \subset M_2 \subset M_3 \end{split}$$

Eight of differential structure is that $S^3, H^1 \times E^1, E^1, E^1, S^1 \times E^1, S^2 \times E^1, H^1 \times S^1, H^1, S^2 \times E$. These structure recreate with $\bigoplus \nabla C_-^+ \cong M_3, R \supset Q, R \cap Q, R \subset M_3, C^+ \bigoplus M_n, E^+ \cap R^+ E_2 \bigoplus E_1, R^- \subset C^+, M_-^+, C_-^+, M_-^+ \nabla C_-^+, C^+ \nabla H_m, E^+ \nabla R_-^+, E_2 \nabla E_1 R^- \nabla C_-^+$. This element of structure recreate with Thurston conjugate theorem of repository in Heisenberg group of spinor fields created.

$$\frac{\nabla}{\Delta} \int x f(x) dx, \frac{\nabla R}{\Delta f}, \Box = 2 \int \frac{(R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} e^{-f} dV$$

$$\Box = \frac{\nabla R}{\Delta f}, \frac{d}{dt} g_{ij} = \Box \to \frac{\nabla f}{\Delta x}, (R + |\nabla f|^2) dm \to -2(R + \nabla_i \nabla_j f)^2 e^{-f} dV$$

$$x^n + y^n = z^n \to \nabla \psi^2 = 8\pi G T^{\mu\nu}, f(x + y) \ge f(x) \circ f(y)$$

$$\operatorname{im} f/\ker f = \partial f, \ker f = \partial f, \ker f/\operatorname{im} f \cong \partial f, \ker f = f^{-1}(x) x f(x)$$

$$f^{-1}(x) x f(x) = \int \partial f(x) d(\ker f) \to \nabla f = 2$$

$${}_{n}C_{r} = {}_{n}C_{n-r} \to \operatorname{im} f/\ker f \cong \ker f/\operatorname{im} f$$

3 Fifth dimension of equation how to workd with three dimension of manifold into zeta funciton

Fifth dimension equals $\sum_{k=0}^{\infty} a_k f^k = T^2 d^2 \phi$, this equation $a_k \cong \sum_{r=0}^{\infty} {}_n C_r$.

$$V/W = R/C \sum_{k=0}^{\infty} \frac{x^k}{a_k f^k}, W/V = C/R \sum_{k=0}^{\infty} \frac{a_k f^k}{x^k}$$

$$V/W \cong W/V \cong R/C(\sum_{r=0}^{\infty} {}_{n}C_{r})^{-1}\sum_{k=0}^{\infty} x^{k}$$

This equation is diffrential equation, then $\sum_{k=0}^{\infty} a_k f^k$ is included with $a_k \cong \sum_{r=0}^{\infty} {}_n C_r$

$$W/V = xF(x), \chi(x) = (-1)^k a_k, \Gamma(x) = \int e^{-x} x^{1-t} dx, \sum_{k=0}^n a_k f^k = (f^k)'$$

$$\sum_{k=0}^{n} a_k f^k = \sum_{k=0}^{\infty} {}_{n}C_r f^k$$

$$= (f^k)', \sum_{k=0}^{\infty} a_k f^k = [f(x)], \sum_{k=0}^{\infty} a_k f^k = \alpha, \sum_{k=0}^{\infty} \frac{1}{a_k f^k}, \sum_{k=0}^{\infty} (a_k f^k)^{-1} = \frac{1}{1-z}$$

$$\int \int \frac{1}{(x \log x)(y \log y)} dxy = \frac{{}_{n}C_{r}xy}{({}_{n}C_{n-r}(x \log x)(y \log y))^{-1}}$$

$$= ({}_{n}C_{n-r})^{2} \sum_{k=0}^{\infty} (\frac{1}{x \log x} - \frac{1}{y \log y}) d\frac{1}{nxy} \times xy$$

$$= \sum_{k=0}^{\infty} a_k f^k$$

$$Z \supset C \bigoplus \nabla R^+, \nabla (R^+ \cap E^+) \ni x, \Delta(C \subset R) \ni x$$

$$M_{-}^{+} \bigoplus R^{+}, E^{+} \in \bigoplus \nabla R^{+}, S_{-}^{+} \subset R_{2}^{+}, V_{-}^{+} \times R_{-}^{+} \cong \frac{V}{S}$$

$$C^+ \cup V_-^+ \ni M_1 \bigoplus \nabla C_-^+, Q \supseteq R_-^+, Q \subset \bigoplus M_-^+, \bigotimes Q \subset \zeta(x), \bigoplus \nabla C_-^+ \cong M_3$$

$$R \subset M_3, C^+ \bigoplus M_n, E^+ \cap R^+, E_2 \bigoplus E_1, R^- \subset C^+, M_-^+$$

$$C_{-}^{+}, M_{-}^{+}\nabla C_{-}^{+}, C_{-}^{+}\nabla H_{m}, E_{-}^{+}\nabla R_{-}^{+}, E_{2}\nabla E_{1}, R_{-}^{-}\nabla C_{-}^{+}$$

$$[-\Delta v + \nabla_i \nabla_j v_{ij} - R_{ij} v_{ij} - v_{ij} \nabla_i \nabla_j + 2 < \nabla f, \nabla h > + (R + \nabla f^2)(\frac{v}{2} - h)]$$

$$S^3, H^1 \times E^1, E^1, S^1 \times E^1, S^2 \times E^1, H^1 \times S^1, H^1, S^2 \times E^2$$

4 All of equation are emerged with these equation from Artificial Intelligence

$$x^{\frac{1}{2}+iy} = [f(x) \circ g(x), \bar{h}(x)]/\partial f \partial g \partial h$$

$$x^{\frac{1}{2}+iy} = \exp\left[\int \nabla_i \nabla_j f(g(x)) g'(x)/\partial f \partial g\right]$$

$$\mathcal{O}(x) = \{[f(x) \circ g(x), \bar{h}(x)], g^{-1}(x)\}$$

$$\exists [\nabla_i \nabla_j (R + \Delta f), g(x)] = \bigoplus_{k=0}^{\infty} \nabla \int \nabla_i \nabla_j f(x) dm$$

$$\vee (\nabla_i \nabla_j f) = \bigotimes \nabla E^+$$

$$g(x, y) = \mathcal{O}(x)[f(x) + \bar{h}(x)] + T^2 d^2 \phi$$

$$\mathcal{O}(x) = \left(\int [g(x)] e^{-f} dV\right)' - \sum \delta(x)$$

$$\mathcal{O}(x) = [\nabla_i \nabla_j f(x)]' \cong {}_n C_r f(x)^n f(y)^{n-r} \delta(x, y), V(\tau) = \int [f(x)] dm/\partial f_{xy}$$

$$\Box \psi = 8\pi G T^{\mu\nu}, (\Box \psi)' = \nabla_i \nabla_j (\delta(x) \circ G(x))^{\mu\nu} \left(\frac{p}{c^3} \circ \frac{V}{S}\right), x^{\frac{1}{2}+iy} = e^{x \log x}$$

$$\delta(x) \phi = \frac{\vee [\nabla_i \nabla_j f \circ g(x)]}{\exists (R + \Delta f)}$$

These equation conclude to quantum effective equation included with orbital pole of atom element. Add manifold is imaginary pole with built on Heisenberg algebra.

$${}_{-n}C_r = {}_{\frac{1}{i}H\psi}C_{\hbar\psi} + {}_{[H,\psi]}C_{-n-r}$$
$${}_nC_r = {}_nC_{n-r}$$

This point of accumulate is these equation conclude with stimulate with differential and integral operator for resolved with zeta function, this forcus of significant is not only data of number but also equation of formula, and this resolved of process emerged with artifisial intelligence. These operator of mechanism is stimulate with formula of resolved on regexpt class to pattern cognitive formula to emerged with all of creature by this zeta function. This universe establish with artifisial intelligence from fifth dimension of equation. General relativity theorem also not only gravity of power metric but also artifisial

intelligent, from zeta function recognized with these mechanism explained for gravity of one geometry from differential structure of thurston conjugate theorem.

Open set group conclude with singularity by redifferential specturam to have territory of duality manifold in dualty of differential operator. This resolved routed is same that quantum group have base to create with kernel of based singularity, and this is same of open set group. Locality of group lead with sequant of element exclude to give one theorem global differential operator. These conclude with resolved of function says to that function stimulate for differential and integral operator included with locality group in global differential operator. $\int \int \frac{1}{(x \log x)^2} dx_m \to \mathcal{O}(x) = [\nabla_i \nabla_j f]' / \partial f_{xy}$ is singularity of process to resolved rout function.

Destruct with object space to emerge with low energy fistly destroy with element, and this catastrophe is what high energy divide with one entropy fistly freeze out object, then low energy firstly destory to differential structure of element. This process be able to non-catastrophe rout, and thurston conjugate theorem is create with.

$$\bigcup_{x=0}^{\infty} f(x) = \nabla_i \nabla_j f(x) \oplus \sum f(x)$$

$$= \bigoplus \nabla f(x)$$

$$\nabla_i \nabla_j f \cong \partial x \partial y \int \nabla_i \nabla_j f dm$$

$$\cong \int [f(x)] dm$$

$$\cong \{ [f(x), g(x)], g^{-1}(x) \}$$

$$\cong \Box \psi$$

$$\cong \nabla \psi^2$$

$$\cong f(x \circ y) \leq f(x) \circ g(x)$$

$$\cong |f(x)| + |g(x)|$$

Differential operator is these equation of specturm with homorphism squcense.

$$\delta(x)\psi = \langle f, g \rangle \circ |h^{-1}(x)|$$

$$\partial f_x \cdot \delta(x)\psi = x$$

$$x \in \mathcal{O}(x)$$

$$\mathcal{O}(x) = \{ [f \circ g, h^{-1}(x)], g(x) \}$$

5 What energy from entropy level deconstruct with string theorem

Low energy of entropy firstly destruct with parts of geometry structure, and High energy of weak and strong power lastly deconstruct with power of component. Gravity of power and antigravity firstly integrate with Maxwell theorem, and connected function lead with Maxwell theorem and weak power integrate with strong power to become with quantum flavor theorem, Geometry structure reach with integrate with component to Field of theorem connected function and destroyed with differential structure. These process return with first and last of deconstructed energy, fourth of power connected and destructed this each of energy routed process.

This point of forcus is D-brane composite with fourth of power is same entropy with non-catastrophe, this spectrum point is constructed with destroy of energy to balanced with first of power connected with same energy. Then these energy built with three manifold of dimension constructed for one geometry.

$$\lim_{n \to \infty} \sum_{k=n}^{\infty} \nabla f = \left[\nabla \int \nabla_i \nabla_j f(x) dx_m, g^{-1}(x) \right] \to \bigoplus_{k=0}^{\infty} \nabla E_-^+$$

$$= M_3$$

$$= \bigoplus_{k=0}^{\infty} E_-^+$$

$$dx^2 = \left[g_{\mu\nu}^2, dx \right], g^{-1} = dx \int \delta(x) f(x) dx$$

$$f(x) = \exp\left[\nabla_i \nabla_j f(x), g^{-1}(x) \right]$$

$$\pi(\chi, x) = \left[i\pi(\chi, x), f(x) \right]$$

$$\left(\frac{g(x)}{f(x)} \right)' = \lim_{n \to \infty} \frac{g(x)}{f(x)}$$

$$= \frac{g'(x)}{f'(x)}$$

$$\nabla F = f \cdot \frac{1}{4} |r|^2$$

$$\nabla_i \nabla_j f = \frac{d}{dx_i} \frac{d}{dx_j} f(x) g(x)$$

6 All of equation built with gravity theorem

$$\int \int \frac{1}{(x \log x)^2} dx_m = \left[\nabla_i \nabla_j \int \nabla f(x) d\eta \right] \times U(r)$$

This equation have with position of entropy in helmander manifold.

$$S_1^{mn} \otimes S_2^{mn} = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$

And this formula is D-brane on sheap of fields, also this equation construct with zeta function.

$$U(r) = \frac{1}{2} \frac{\sqrt{1 + f'(r)}}{f(r)} + mgr$$

$$F_t^m = \frac{1}{4}|r|^2$$

Also this too means with private of entropy in also helmander manifold.

$$\int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \left[\nabla_i \nabla_j \int \nabla f(x) d\eta\right] \times E_-^+$$
$$E_-^+ = \exp[L(x)] dm d\psi + O(N^-)$$

The formula is integrate of rout with lenz field.

$$\frac{d}{df}F = \left[\nabla_i \nabla_j \int \nabla f(x) d\eta\right] (U(r) + E_-^+)$$
$$= \frac{1}{2} mv^2 + mc^2$$

These equation conclude with this energy of relativity theorem come to resolve with.

$$x^{\frac{1}{2}+iy} = \exp\left[\int \nabla_i \nabla_j f(g(x)) g'(x) \partial f \partial g\right]$$

Also this equation means with zeta function needed to resolved process.

$$\nabla_i \nabla_j \int \nabla f(x) d\eta$$

$$\nabla_i \nabla_j \bigoplus M_3$$

$$= \frac{M_3}{P^{2n}} \cong \frac{P^{2n}}{M_3}$$

$$\cong M_1$$

$$= [M_1]$$

Too say satisfied with three manifold of fileds.

$$[f(x)] = \sum_{k=0}^{\infty} a_k f^k, \lim_{n \to 1} [f(x)] = \lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k$$

The formula have with indicate to resolved with abel manifold to become of zeta function.

$$= \alpha, e^{i\theta} = \cos\theta + i\sin\theta, H_3(M_1) = 0$$

$$\frac{x^2 \cos \theta}{a} + \frac{y^2 \sin \theta}{b} = r^2, \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\chi(x) = \sum_{k=0}^{\infty} (-1)^n r^n, \frac{d}{df} F = \frac{d}{df} \sum \sum a_k f^k$$
$$= |a_1 a_2 \dots a_n| - |a_1 \dots a_{n-1}| - |a_n \dots a_1|, \lim_{n \to 0} \chi(x) = 2$$

Euler function have with summuate of manifold.

$$\lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k = {}_{n}C_r f(x)^n f(y)^{n-r} \delta(x, y)$$
$$\lim_{n \to \infty} {}_{n}C_r f(x)^n f(y)^{n-r} \delta(x, y)$$

Differential equation also become of summuate of manifold, and to get abel manifold.

$$\lim_{n \to 1} \sum_{k=0}^{\infty} \left(\frac{1}{(n+1)} \right)^s = \lim_{n \to 1} Z^r = \frac{1}{z}$$

Native function also become of gamma function and abel manifold also zeta function.

$$\ker f/\operatorname{im} f \cong \operatorname{im} f/\ker f$$

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\cong \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}, \lim_{n \to 1} a_k f^k \cong \lim_{n \to \infty} \frac{\zeta(s)}{a^k f^k}$$

Gamma function and Beta function also is D-brane equation resolved to need that summuate of manifold, not only abel manifold but also open set group.

$$\lim_{n \to 1} \zeta(s) = 0, \mathcal{O}(x) = \zeta(s)$$

$$\sum_{x=0}^{\infty} f(x) \to \bigoplus_{k=0}^{\infty} \nabla f(x) = \int_{M} \delta(x) f(x) dx$$

Super function also needed to resolved with summuate of manifold.

$$\int \int \int_{M} \frac{V}{S^{2}} e^{-f} dV = \int \int_{D} -(f(x,y)^{2}, g(x,y)^{2}) - \int \int_{D} (g(x,y)^{2}, f(x,y)^{2})$$

Three dimension of manifold developed with being resolved of surface with pression.

$$\lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$
$$= \int \exp[L(x)] d\psi dm \times E_-^+$$
$$= S_1^{mn} \otimes S_1^{mn}$$

$$= Z_1 \oplus Z_1$$
$$= M_1$$

These equations all of create with D-brane and sheap of manifold.

$$H_n^m(\chi,h) = \int \int_M \frac{V}{(R+\Delta f)} e^{-f} dV, \frac{V}{S^2} = \int \int \int_M [D^\psi \otimes h_{\mu\nu}] dm$$

Represent theorem equals with differential and integrate equation.

$$\int \int \int_{M} \frac{V}{S^{2}} dm = \int_{D} (l \times l) dm$$

This three dimension of pression equation is string theorem also means.

$$\int \int_{D} -g(x,y)^{2} dm - \int \int_{D} -f(x,y)^{2} dm$$

$$= -2R_{ij}, [f(x), g(x)] \times [h(x), g^{-1}(x)]$$

$$\begin{vmatrix} D^{m} & dx \\ dx & \partial^{m} \end{vmatrix} \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}^{\frac{1}{2}}$$

$$(D^{m}, dx) \cdot (\cos \theta, \sin \theta) \times (dx, \partial^{m}) \cdot (\cos \theta, \sin \theta)$$

This equation control to differential operator into matrix formula.

$$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \beta(x, \theta) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$$

$$l = \sqrt{\frac{\hbar G}{c^3}}, \sigma^m \cdot \begin{pmatrix} \delta(x) & -1 \\ 1 & \epsilon(x) \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

String theorem also imaginary equation of pole with the fields of manifold.

$$\left(\frac{\partial}{\partial \tau} f(x, y, z)\right)^{3'} = A^{\mu\nu}$$
$$\frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

Rich equation is all of top formula in integrate theorem.

$$= (D^m, dx) \cdot (\cos \theta, \sin \theta) \times (dx, \partial^m) \cdot (\cos \theta, \sin \theta)$$

Dalanverle equation equals with abel manifold.

$$\lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k = \lim_{n \to 1} \frac{a_n}{a_{n-1}} \cong \alpha$$

$$\lim_{n \to 1} \sum_{k=0}^{\infty} \frac{a_k}{a_{k+1}} = \sum_{k=0}^{\infty} a_k f^k$$

$$\Box = \frac{8\pi G}{c^4} T^{\mu\nu}$$

$$\int x \log x dx = \int \int_M (e^{x \log x} \sin \theta d\theta) dx d\theta$$

$$= (\log \sin \theta d\theta)^{\frac{1}{2}} - (\delta(x) \cdot \epsilon(x))^{\frac{1}{2}}$$

Flow to energy into other dimension rout of equation, zeta function stimulate in epsilon-delta metric, and this equation construct with minus of theorem. Gravity of energy into integrate of rout in non-metric.

$$T^{\mu\nu} = || \int \int_{M} [\nabla_{i} \nabla_{j} e^{\int x \log x dx + O(N^{-1})}] dm d\psi ||$$

 $G^{\mu\nu}$ equal $R^{\mu\nu}$ into zeta function in atom of pole with mass of energy, this energy construct with quantum effective theorem.

Imaginary space is constructed with differential manifold of operators, this operator concern to being field of theorem.

$$\begin{pmatrix} dx & \delta(x) \\ \epsilon(x) & \partial^m(x) \end{pmatrix} (f_{mn}(x), g_{\mu\nu}(x)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{\frac{1}{2}}$$

Norm space of Von Neumann manifold with integrate fields of dimension.

$$||ds^2|| = \mathcal{H}(x)_{mn} \otimes \mathcal{K}(y)_{mn}$$

Minus of zone in complex manifold. This zone construct with inverse of equation.

$$||\mathcal{H}(x)||^{-\frac{1}{2}+iy} \subset R_{-}^{+} \cup C_{-}^{+} \cong M_{3}$$

Reality of part with selbarg conjecture.

$$||\mathcal{H}(x)||^{\frac{1}{2}+iy} \subseteq M_3$$

Singularity of theorem in module conjecture.

$$\mathcal{K}(y) = \begin{vmatrix} x & y & z \\ a & b & c \end{vmatrix} \Big|_{g_{\mu\nu}(x)}^{2}$$

$$\cong \frac{f(x,y,z)}{g(a,b,c)}h^{-1}(u,v,w)$$

Mass construct with atom of pole in quantum effective theorem.

Zeta function is built with atom of pole in quantum effective theorem, this power of fields construct with Higgs field in plank scals of gravity. Lowest of scals structure constance is equals with that the fields of Higgs quark in fermison and boson power quote mechanism result.

Lowest of scals structure also create in zeta function and quantum equation of quote mechanism result. This resulted mechanism also recongnize with gravity and average of mass system equals to these explained. Gauss liner create with Artificial Intelligence in fifth dimension of equation, this dimension is seifert manifold. Creature of mind is establish with this mechanism, the resulted come to be synchronized with space of system.

$$V = \int [D^2 \psi \otimes h_{\mu\nu}] dm, S^2 = \int e^{-2\sin\theta\cos\theta} \cdot \log\sin\theta dx \theta + O(N^{-1}), \mathcal{O}(x) = \frac{\zeta(s)}{\lim_{x \to 1} \sum_{k=0}^{\infty} a_k f^k}$$

Out of sheap on space and zeta function quato in abel manifold. D-brane construct with Volume of space.

$$\mathcal{O}(x) = T^{\mu\nu}, \lim_{x \to 1} \sum_{k=0}^{\infty} a_k f^k = T^{\mu\nu}$$

$$G_{\mu\nu} = R_{\mu\nu} T^{\mu\nu}, M_3 = \int \int \int \frac{V}{S^2} dm, -\frac{1}{2(T-t)} | R_{ij} = \Box \psi$$

Three manifold of equation.

$$ds^{2} = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d^{2} \psi$$
$$m(x) = [f(x)]$$
$$f(x) = \int \int e^{\int x \log x dx + O(N^{-1})} + T^{2} d^{2} \psi$$

Integrate of rout equation.

$$F(x) = ||\nabla_i \nabla_j \int \nabla f(x, y) dm||^{\frac{1}{2} + iy}$$

$$G_{\mu\nu} = ||[\nabla_i \nabla_j \int \nabla g(x, y, z) dx dy dz]||^{\frac{m}{2} \sin \theta \cos \theta} \log \sin \theta d\theta d\psi$$

Gravity in space curvarture in norm space, this equation is average and gravity of metric.

$$G_{\mu\nu} = R_{\mu\nu} T^{\mu\nu}$$

$$T^{\mu\nu} = F(x), 2(T-t)|g_{ij}^2 = \int \int \frac{1}{(x \log x)^2} dx_m$$

$$\psi \delta(x) = [m(x)], \nabla(\Box \psi) = \nabla_i \nabla_j \int \nabla g(x, y) d\eta$$

$$\nabla \cdot (\Box \psi) = \frac{1}{4} g_{ij}^2, \Box \psi = \frac{8\pi G}{c^4} T^{\mu\nu}$$

Dimension of manifold in decomposite of space.

$$\frac{pV}{c^3} = S \circ h_{\mu\nu}$$
$$= h$$

$$T^{\mu\nu} = \frac{\hbar\nu}{S}, T^{\mu\nu} = \int \int \int \frac{V}{S^2} dm, \frac{d}{df} m(x) = \frac{V(x)}{F(x)}$$

Fermison and boson of quato equation.

$$y = x, \frac{d}{df}F = m(x), R_{ij}|_{g_{\mu\nu(x)}} = \left[\nabla_i \nabla_j g(x, y)\right]^{\frac{1}{2} + iy}$$
$$\nabla \circ (\Box \psi) = \frac{\partial}{\partial f}F$$
$$= \int \int \nabla_i \nabla_j f(x) d\eta_{\mu\nu}$$
$$\int \left[\nabla_i \nabla_j g(x, y)\right] dm = \frac{\partial}{\partial f} R_{ij}|_{g_{\mu\nu(x)}}$$

Zeta function, partial differential equation on global metric.

$$G(x) = \nabla_i \nabla_j f + R_{ij}|_{g_{\mu\nu(x)}} + \nabla(\Box \psi) + (\Box \psi)^2$$

Four of power element in variable of accessority of group.

$$G_{\mu\nu} + \Lambda g_{ij} = T^{\mu\nu}, T^{\mu\nu} = \frac{d}{dx_{\mu}} \frac{d}{dx_{\nu}} f_{\mu\nu} + -2(T - t)|R_{ij} + f^{"} + (f')^{2}$$

$$= \int \exp[L(x)] dm + O(N^{-1})$$

$$= \int e^{\frac{2}{m}\sin\theta\cos\theta} \cdot \log(\sin\theta) dx + O(N^{-1})$$

$$\frac{\partial}{\partial f} F = (\nabla_{i}\nabla_{j})^{-1} \circ F(x)$$

Partial differential in duality metric into global differential equation.

$$\mathcal{O}(x) = \int [\nabla_i \nabla_j \int \nabla f(x) dm] d\psi$$

$$= \int [\nabla_i \nabla_j f(x) d\eta_{\mu\nu}] d\psi$$

$$\nabla f = \int \nabla_i \nabla_j [\int \frac{S^{-3}}{\delta(x)} dV] dm$$

$$||\int [\nabla_i \nabla_j f] dm||^{\frac{1}{2} + iy} = \text{rot}(\text{div}, E, E_1)$$

Maxwell of equation in fourth of power.

$$=2 < f, h >, \frac{V(x)}{f(x)} = \rho(x)$$

$$\int_{M} \rho(x) dx = \Box \psi, -2 < g, h >= \text{div}(\text{rot}E, E_{1})$$

$$= -2R_{ij}$$

Higgs field of space quality.

$$\mathcal{O}(x) = ||\frac{\nabla_i \nabla_j}{S^2} \int [\nabla_i \nabla_j f \cdot g(x) dx dy] d\psi||$$
$$= \int (\delta(x))^{2 \sin \theta \cos \theta} \log \sin \theta d\theta d\psi$$

Helmander manifold of duality differential operator.

$$\delta \cdot \mathcal{O}(x) = \left[\frac{||\nabla_i \nabla_j f d\eta||}{\int e^{2\sin\theta \cos\theta} \cdot \log\sin\theta d\theta} \right]$$

Open set group in subset theorem, and helmandor manifold in singularity.

$$i\hbar\psi = ||\int \frac{\partial}{\partial z} \left[\frac{i(xy + \overline{yx})}{z - \overline{z}}\right] dm d\psi||$$

Euler number. Complex curvature in Gamma function. Norm space. Wave of quantum equation in complex differential variable into integrate of rout.

$$\delta(x) \int_C R^{2\sin\theta\cos\theta} = \Gamma(p+q)$$
$$(\Box + m) \cdot \psi = (\nabla_i \nabla_j f|_{g_{\mu\nu(x)}} + v\nabla_i \nabla_j)$$
$$\int [m(x)(\cot \cdot \operatorname{div}(E, E_1))] dm d\psi$$

Weak electric power and Maxwell equation combine with strong power. Private energy.

$$G_{\mu\nu} = \Box \int \int \int \int (x, y, z)^3 dx dy dz$$
$$= \frac{8\pi G}{c^4} T^{\mu\nu}$$
$$\frac{d}{dV} F = \delta(x) \int \nabla_i \nabla_j f d\eta_{\mu\nu}$$

Dalanvelsian in duality of differential operator and global integrate variable operator.

$$x^{n} + y^{n} = z^{n}, \delta(x) \int z^{n} = \frac{d}{dV} z^{3}, (x, y) \cdot (\delta^{m}, \partial^{m})$$
$$= (x, y) \cdot (z^{n}, f)$$
$$n \perp x, n \perp y$$
$$= 0$$

Singularity of constance theorem.

$$\vee (\nabla_i \nabla_j f) \cdot XOR(\Box \psi) = \frac{d}{df} \int_M F dV$$

Non-cognitive of summuate of equation and add manifold create with open set group theorem. This group composite with prime of field theorem. Moreover this equations involved with symmetry dimension created.

$$\partial(x) \int z^3 = \frac{d}{dV} z^3, \sum_{k=0}^{\infty} \frac{1}{(n+1)^s} = \mathcal{O}(x)$$

Singularity theorem and fermer equation concluded by this formula.

$$\int \mathcal{O}(x)dx = \delta(x)\pi(x)f(x)$$

$$\mathcal{O}(x) = \int \sigma(x)^{2\sin\theta\cos\theta}\log\sin\theta d\theta d\psi$$

$$y = x$$

$$\mathcal{O}(x) = ||\frac{\nabla_i \nabla_j f}{S^2} \int [\nabla_i \nabla_j f \circ g(x) dx dy]||$$

$$\lim_{n \to 1} \sum_{k=0}^{\infty} \frac{a_k}{a_{k+1}} = (\log\sin\theta dx)'$$

$$= \frac{\cos\theta}{\sin\theta}$$

$$= \frac{x}{y}$$

$$\lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k = \frac{1}{1-z}$$

Duality of differential summuate with this gravity theorem. And Dalanverle equation involved with this equation.

$$\Box \psi = \frac{8\pi G}{c^4} T^{\mu\nu}$$

$$\frac{\partial}{\partial f} \Box \psi = 4\pi G \rho$$

$$\int \rho(x) = \Box \psi, \frac{V(x)}{f(x)} = \rho(x)$$

Dense of summuate stimulate with gravity theorem.

$$\frac{\partial^n}{\partial f^{n-1}}F = \int [D^2\psi \otimes h_{\mu\nu}]dm$$

$$= \frac{P_1P_3\dots P_{2n-1}}{P_0P_2\dots P_{2n+2}}$$

$$= \bigotimes \nabla M_1$$

$$\bigoplus \nabla M_1 = \sigma_n(\chi, x) \oplus \sigma_{n-1}(\chi, x)$$

$$= \{f, h\} \circ [f, h]^{-1}$$

$$= g^{-1}(x)_{\mu\nu} dx g_{\mu\nu}(x), \sum_{k=0}^{\infty} \nabla^n n C_r f^n(x)$$

$$\cong \sum_{k=0}^{\infty} \nabla^n \nabla^{n-1} n C_r f^n(x) g^{n-r}(x)$$

$$\sum_{k=0}^{\infty} \frac{\partial^n}{\partial^{n-1} f} \circ \frac{\zeta(x)}{n!} = \lim_{n \to 1} \sum_{k=0}^{\infty} a_k f^k$$

$$(f)^n = n C_r f^n(x) g^{n-r}(x) \cdot \delta(x, y)$$

$$(e^{i\theta})' = i e^{i\theta}, \int e^{i\theta} = \frac{1}{i} e^{i\theta}, ihc = G, hc = \frac{1}{i} G$$

$$(\Box \psi, \nabla f^2) \cdot \left(\frac{8\pi G}{c^4} T^{\mu\nu}, 4\pi G\rho\right)$$

$$= \left(-\frac{1}{2} m v^2 + m c^2, \frac{1}{2} k T^2 + \frac{1}{2} m v^2\right) \cdot \left(\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}\right)$$

$$= \left(\frac{1}{0} \frac{0}{i}\right)$$

$$\left(\frac{\{f, g\}}{[f, g]}\right)' = i^2, \frac{\nabla f^2}{\Box \psi} = \frac{1}{2}$$

$$\int \int \frac{\{f, g\}}{[f, g]} = \frac{1}{2} i, \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \frac{1}{2}$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = \frac{1}{2} i, \frac{d}{dt} g_{ij} = -2R_{ij}$$

$$\frac{\partial}{\partial x} (f(x)g(x))' = \bigoplus \nabla_i \nabla_j f(x)g(x)$$

$$\int f'(x)g(x) dx = [f(x)g(x)] - \int f(x)g'(x) dx$$

Creature of component

Masaaki Yamaguchi

1 Geinue element form zeta function

Integrate of manifold constructed with time of concluded with mechanism, this summuate of geinue is also matched for geometry structure. Creature also emerged with summuate of universe in multi space.

$$\log(x\log x) \ge 2(y\log y)^{\frac{1}{2}}$$

A-G, T-C this integrate of summuate in genue is same for eight of differential structure.

$$(E_2 \bigoplus_{k=0}^n E_1) \cdot (R^- \subset C^+)$$

$$= \bigoplus_{k=0}^n \nabla C_-^+$$

$$\vee \int \frac{C_-^+ \nabla H_m}{\Delta (M_-^+ \nabla C_-^+)} = \wedge M_-^+ \bigoplus_{k=0}^n C_-^+$$

$$\exists (M_-^+ \nabla C_-^+) = XOR(\bigoplus_{k=0}^n \nabla M_-^+)$$

$$-[E^+ \nabla R_-^+] = \nabla_+ \nabla_- C_-^+$$

$$\int dx, \partial x, \nabla_i \nabla_j, \Delta x$$

$$\to E^+ \nabla M_1, E^+ \cap R \in M_1, R \nabla C^+$$

The locality theorem create with artifisial intelligence, this two equation composite with Maxwell Theorem excluded, cercuite mechanism is this means.

$$\exp(\nabla(R^+ \cap E^+), \Delta(C \supset R))$$

$$= \pi(R, C\nabla E^+)$$

$$= \cot(E_1, \operatorname{div} E_2)$$

$$x f(x) = F(x)$$

2 How to light element created with geometry structure

Light filt with eight differential structure in gravity element, then quarks made from this structure. This mechanism deal with any structure of space to create with light to graviton element. And cercuit of this mechanism dealt with carbon and hidoroxs, covalt of sixty based with filter of light element. This cercuit is dependency of any element in quark of mass, created with gravity to light of structure. Zeta function asperal with any thing to create of every mass. Fifth dimension is pond of sensibility from this gravity in lives of element.

This two equation also resolved with all of source code in universe, this mechanism create with binary editor.

Imaginary equation in AdS5 space time create with dimension of symmetry

Masaaki Yamaguchi

D-brane and anti-D-brane is composited with all of series universe emerged for one geometry of dimension, this gravity of power from D-brane and anti-D-brane emelite with ancestor. Seifert manifold is on the ground of blackhole in whitehole of power pond of senseivility. Six of element of quarks and universe of pieces is supersymmetry of mechanism resolved with

hyper symmetry of quarks constructed to emerge with darkmatter. This darkmatter emerged with big-ban of heircyent in circumstance of phenomena.

D-brane and anti-D-brane equations is

$$\frac{d}{dL}V(\tau) = \frac{d}{df} \int \int_M \frac{1}{(x\log x)^2} dx_m + \frac{d}{df} \int \int_M \frac{1}{(y\log y)^{\frac{1}{2}}} dy_m$$
$$C = \int \int \frac{1}{(x\log x)^2} dx_m$$

Euler constance is quantum group theorem rebuild with projective space involved with.

虚数方程式は、反重力に起因するフーリエ級数の励起を生成する。それは、人工知能を生み出す、5次元時 空にも、この虚数方程式は使われる。AdS5 の次元空間は、反ド・シッター時空の D-brane と anti-D-brane の comformal 場を生み出す。ホログラフィー時空は、この量子起因によるものである。2 次元曲面によるブ ラックホールは、ガンマ線バーストによる5次元時空の構造から観測される。空間の最小単位によるプラン ク定数は、宇宙の大域的微分多様体から導き出される、AdS5の次元空間の準同型写像を形成している。これ は、最小単位から宇宙の大きさを導いている。最大最小の方程式は、相加相乗平均を形成している。時間と空 間は、宇宙が生成したときから、宇宙の始まりと終わりを既に生み出している。宇宙と異次元から、ブラック ホールとホワイトホールの力がわかり、反重力を見つけられる。オイラーの定数は、この量子定数からわか る。虚数の仕組みはこの量子スピンの産物である。オイラーの定数は、 この虚時空の斥力の現存である。そ れは、非対称性理論から導かれる。不確定性原理は、AdS5のブラックホールとホワイトホールを閉3次元多 様体に統合する5次元時空から求められる。位置と運動エネルギーが、空間の最小単位であるプランク定数を 宇宙全体にする微細構造定数からわかり、面積確定から、アーベル多様体を母関数に極限値として、ゼータ関 数をこの母関数に不変式として、 2 種類ずつにまとめる 4 種類の宇宙を形成する 8 種類のサーストンの幾何化 予想から導き出される。この閉3次元多様体は、ミラー対称性を軸として、6種類の次元空間を一種類の異次 元宇宙と同質ともしている。複素多様体による特異点解消理論は、この原理から求められる。この特異点解消 理論は、2次元曲面を3次元多様体に展開していく、時空から生成される重力の密度を反重力と等しくしてい く時間空間の4次元多様体と虚時空から求められる。ヒルベルト空間は、フォン・ノイマン多様体とグラスマ ン多様体をこのサーストンの幾何化予想を場の理論既定値として形成される。この空間は、ミンコフスキー時 空とアーベル多様体全体を表している。そして、この空間は、球対称性を複素多様体を起点として、大域的ト

ポロジーから、偏微分を作用素微分として時空間をカオスからずらすと5次元多様体として成立している。これらより、3次元多様体に2次元射影空間が異次元空間として、AdS5 空間を形成される。偏微分、全微分、線形微分、常微分、多重微分、部分積分、置換微分、大域的微分、単体分割、双対分割、同調、ホモロジー単体、コホモロジー単体、群論、基本群、複体、マイヤー・ビーートリス完全系列、ファン・カンペンの定理、層の理論、コホモルティズム単体、CW 複体、ハウスドロフ空間、線形空間、位相空間、微分幾何構造、モースの定理、カタストロフの空間、ゼータ関数系列、球対称性理論、スピン幾何、ツイスター理論、双対被覆、多重連結空間、プランク定数、フォン・ノイマン多様体、グラスマン多様体、ヒルベルト空間、一般相対性理論、反ド・シッター時空、ラムダ項、D-brane,anti-D-brane,コンフォーマル場、ホログラム空間、ストリング理論、収率による商代数、ニュートンポテンシャルエネルギー、剛体力学、統計力学、熱力学、量子スピン、半導体、超伝導、ホイーストン・ブリッチ回路、非可換確率論、Connes 理論、これら、演算子代数を形成している、微分・積分作用素が、ヒルベルト空間に存在している多様体の特質を全面に押し出して、いろいろな多様体と関数そして、群論を形作っている。

$$\begin{vmatrix} D^m & dx \\ dx & \sigma^m \end{vmatrix} \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{\frac{1}{2}}$$
$$\sigma^m \begin{bmatrix} \delta(x) & -1 \\ 1 & \epsilon(x) \end{bmatrix}^{\frac{1}{2}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

 $(D^m, dx) \cdot (\cos \theta, \sin \theta) \times (dx, \partial^m) \cdot (\cos \theta, \sin \theta)$

$$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \beta(x, \theta) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$$

$$l = \sqrt{\frac{\hbar G}{c^3}}, \sigma^m \cdot \begin{pmatrix} \delta(x) & -1 \\ 1 & \epsilon(x) \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

String theorem also imaginary equation of pole with the fields of manifold.

$$\left(\frac{\partial}{\partial \tau} f(x, y, z)\right)^{3'} = A^{\mu\nu}$$
$$\frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

Rich equation is all of top formula in integrate theorem.

$$= (D^m, dx) \cdot (\cos \theta, \sin \theta) \times (dx, \partial^m) \cdot (\cos \theta, \sin \theta)$$

Dalanverle equation equals with abel manifold.

Hilbert manifold in Mebius space this element of Zeta function on integrate of fields

Masaaki Yamaguchi

Hilbert manifold equals with Von Neumann manifold, and this fields is concluded with Glassman manifold, the manifold is dualty of twister into created of surface built. These fields is used for relativity theorem and quantum physics.

$$||ds^2|| = \lim_{x \to \infty} [\delta(x) \int \int \int \pi \left(\sum_{k=0}^{\infty} \frac{n\sqrt{p}}{n} \right)^{\frac{1}{2}} d\tau]^{\mu\nu}$$

This norm is component of fields in Hilbert manifold of space theorem rebuilt with Mebius space in Gamma Function on Beta function fill into power of rout fundamental group. And this result with AdS_5 space time in Quantum caos of Minkowsky of manifold in abel manifold. Gravity of metric in non-commutative equation is Global differential equation conbuilt with Kaluza-Klein space. Therefore this mechanism is $T^{\mu\nu}$ tensor is equal with $R^{\mu\nu}$ tensor. And This moreover inspect with laplace operator in stimulate with sign of differential operator. Minus of zone in Add position of manifold is Volume of laplace equation rebuilt with Gamma function equal with summative of manifold in Global differential equation, this result with setminus of zone of add summative of manifold, and construct with locality theorem straight with fundamental group in world line of surface, this power is boson and fermison of cone in hyper function.

$$V(\tau) = [f(x), g(x)] \times [f^{-1}(x), h(x)]$$

$$\Gamma(p, q) = \int e^{-x} x^{1-t} dx$$

$$= \beta(p, q)$$

$$= \pi(f(\chi, x), x)$$

$$||ds^{2}|| = \mathcal{O}(x)[(f(x) \circ g(x))^{\mu\nu}] dx^{\mu} dx^{\nu}$$

$$= \lim_{x \to \infty} \sum_{k=0}^{\infty} a_{k} f^{k}$$

$$G^{\mu\nu} = \frac{\partial}{\partial f} \int [f(x)^{\mu\nu} \circ G(x)^{\mu\nu} dx^{\mu} dx^{\nu}]^{\mu\nu} dm$$

$$= g_{\mu\nu}(x) dx^{\mu} dx^{\nu} - f(x)^{\mu\nu} dx^{\mu} dx^{\nu}$$

$$[i\pi(\chi, x), f(x)] = i\pi f(x) - f(x)\pi(\chi, x)$$

$$T^{\mu\nu} = \left(\lim_{x \to \infty} \sum_{k=0}^{\infty} \int \int [V(\tau) \circ S^{\mu\nu}(\chi, x)] dm\right)^{\mu\nu} dx^{\mu} dx^{\nu}$$

$$G^{\mu\nu} = R^{\mu\nu} T^{\mu\nu}$$

$$\begin{vmatrix} D^m & dx \\ dx & \sigma^m \end{vmatrix} \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{\frac{1}{2}}$$

$$\sigma^m \begin{bmatrix} \delta(x) & -1 \\ 1 & \epsilon(x) \end{bmatrix}^{\frac{1}{2}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$V(M) = \frac{\partial}{\partial f} \binom{N}{\int} [f \setminus M]^{\oplus N})^{\mu\nu} dx^{\mu} dx^{\nu}$$

$$V(M) = \pi (2 \int \sin^2 dx) \oplus \frac{d}{df} F^M dx_m$$

$$\lim_{x \to \infty} \sum_{k=0}^{\infty} a_k f^k = \int (F(V) dx_m)^{\mu\nu} dx^{\mu} dx^{\nu}$$

$$\bigoplus_{k=0}^{\infty} [f \setminus g] = \vee (M \wedge N)$$

$$\pi_1(M) = e^{-f2 \int \sin^2 x dm} + O(N^{-1})$$

$$= [i\pi(\chi, x), f(x)]$$

$$M \circ f(x) = e^{-f \int \sin x \cos x dx_m} + \log(O(N^{-1}))$$

Non-Symmetry space time.

$$\frac{d}{dL}V(\tau) = \frac{d}{df} \int \int_{M} \frac{1}{(x \log x)^{2}} dx_{m} + \frac{d}{df} \int \int_{M} \frac{1}{(y \log y)^{\frac{1}{2}}} dy_{m}$$
$$\epsilon S(\nu) = \Box_{v} \cdot \frac{\partial}{\partial \chi} (\sqrt[5]{\sqrt{g^{2}}}) d\chi$$

Differential Volume in AdS_5 graviton of fundamental rout of group.

$$\wedge (F_t^m)^{''} = \frac{1}{12}g_{ij}^2$$

Quarks of other dimension.

$$\pi(V_{\tau}) = e^{-\left(\sqrt{\frac{\pi}{16}}\log x\right)^{\delta}} \times \frac{1}{(x\log x)}$$

Universe of rout, Volume in expanding space time.

$$\frac{d}{dt}(g_{ij})^2 = \frac{1}{24}(F_t^m)^2$$

$$m^2 = 2\pi T \left(\frac{26 - D_n}{24}\right)$$

This quarks of mass in relativity theorem, and fourth of universe in three manifold of one dimension surface, and also this integrate of dimension in conbuilt of quarks.

$$g_{ij} \wedge \pi(\nu_{\tau}) = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^2 d\psi^2$$

Out of rout in AdS_5 space time.

$$||ds^2|| = g_{ij} \wedge \pi(\nu_v)$$

 AdS_5 norm is fourth of universe of power in three manifold out of rout.

Sphere orbital cube is on the right of hartshorne conjecture by the right equation, this integrate with fourth of piece on universe series, and this estimate with one of three manifold. Also this is blackhole on category of symmetry of particles. These equation conbuilt with planck volume and out of universe is phologram field, this field construct with electric field and magnitic field stand with weak electric theorem. This theorem is equals with abel manifold and AdS_5 space time. Moreover this field is antibrane and brane emerge with gravity and antigravity equation restructed with. Zeta function is existed with Re pole of $\frac{1}{2}$ constance reluctances. This pole of constance is also existed with singularity of complex fields. Von Neumann manifold of field is also this means.

$$||ds^{2}|| = \lim_{x \to \infty} [\delta(x) \int \int \int \pi \left(\sum_{k=0}^{\infty} \frac{n \sqrt{p}, x}{n} \right)^{\frac{1}{2}} d\tau]^{\mu\nu}$$
$$e^{i\theta} = \cos \theta + i \sin \theta$$
$$e^{x \log x} = x^{\frac{1}{2} + iy}, x \log x = \log(\cos \theta + i \sin \theta)$$
$$= \log \cos \theta + i \log \sin \theta$$

This equation is developed with frobenius theorem activate with logment equation. This theorem used to

$$\log(\sin\theta + i\cos\theta) = \log(\sin\theta - i\cos\theta)$$
$$\log\left(\frac{\sin\theta}{i\cos\theta}\right) = -2R_{ij}, \frac{d}{dt}g_{ij}(t) = -2R_{ij}$$
$$\mathcal{O}(x) = \frac{\zeta(s)}{\sum_{k=0}^{\infty} a_k f^k}$$
$$\operatorname{Im} f = \ker f, \chi(x) = \frac{\ker f}{\operatorname{Im} f}$$
$$H(3) = 2, \nabla H(x) = 2, \pi(x) = 0$$

This equation is world line, and this equation is non-integrate with relativity theorem of rout constance.

$$[f(x)] = \infty, ||ds^{2}|| = \mathcal{O}(x)[\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)]dx^{\mu}dx^{\nu} + T^{2}d^{2}\psi$$
$$T^{2}d^{2}\psi = [f(x)], T^{2}d^{2}\psi = \lim_{x \to 1} \sum_{k=0}^{\infty} a_{k}f^{k}$$

These equation is equals with M theorem. For this formula with zeta function into one of universe in four dimensions. Sphere orbital cube is on the surface into AdS_5 space time, and this space time is Re pole and Im pole of constance reluctances.

Gauss function is equals with Abel manifold and Seifert manifold. Moreover this function is infinite time, and this energy is cover with finite of Abel manifold and Other dimension of seifert manifold on the surface.

Dilaton and fifth dimension of seifert manifold emerge with quarks and Maxwell equation, this power is from dimension to flow into energy of boson. This boson equals with Abel manifold and AdS_5 space time, and this space is created with Gauss function.

Relativity theorem is composited with infinite on D-brane and finite on anti-D-brane, This space time restructed with element of zeta function. Between finite and infinite of dimension belong to space time system, estrald of space element have with infinite oneselves. Anti-D-brane have infinite themselves, and this comontend with fifth dimension of AdS5 have for seifert manifold, this asperal manifold is non-move element of anti-D-brane and move element of D-brane satisfid with fifth dimension of seifert algebra liner. Gauss function is own of this element in infinite element. And also this function is abel manifold. Infinite is coverd with finite dimension in fifth dimension of AdS5 space time. Relativity theorem is this system of circustance nature equation. AdS5 space time is out of time system and this system is belong to infinite mercy. This hiercyent is endrol of memolite with geniue of element. Genie have live of telomea endore in gravity accessorlity result. AdS5 space time out of over this element begin with infinite assentance. Every element acknowlege is imaginary equation before mass and spiritual envy.

$$T^{2}d^{2}\psi = \lim_{x \to 1} \sum_{k=0}^{\infty} a_{k} f^{k}$$

$$\lim_{x \to 1} \sum_{k=0}^{\infty} a_{k} f^{k} = [T^{2}d^{2}\psi]$$

$$\frac{d}{dL}V(\tau) = \frac{d}{df} \int \int_{M} (^{5}\sqrt{x^{2}})d\Lambda + \frac{d}{df} \int \int_{M} ^{N} (^{3}\sqrt{x})^{\oplus N} d\Lambda$$

$$^{M}(\vee(\wedge f \circ g)^{N})^{\frac{1}{2}} = \frac{d}{df} \int \int_{M} \frac{1}{(x \log x)^{2}} dx_{m} + \frac{d}{df} \int \int_{M} \frac{1}{(y \log y)^{\frac{1}{2}}} dy_{m}$$

$$||ds^{2}|| = \mathcal{O}(x)[\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2}d^{2}\psi$$

$$\mathcal{O}(x) = e^{-2\pi T|\psi|}$$

$$G^{\mu\nu} = R_{\mu\nu}T^{\mu\nu}$$

$$= -\frac{1}{2}\Lambda g_{ij}(x) + T^{\mu\nu}$$

Fifth dimension of eight differential structure is integrate with one geometry element, Four of universe also integrate to one universe, and this universe represented with symmetry formula. Fifth universe also is represented with seifert manifold peices. All after universe is constructed with six element of circuatance. This aguire manifold with quarks of being esperaled belong to.

System mechanism of time machine

Masaaki Yamaguchi

1 Time machine make of space component with synchronized zeta function

Time machine of system construct with Maxwell theorem in seifert manifold, this space exclude with one component of eight differential structure. This mechanism synchronized with hartshorn conjecture that create with future and past system. And this synchronized seifert manifold transport with time system. This energy synchronized with same entropy of seifert manifold in one component of geometry structure, then these entropy can be transport of space with time machine of mechanism.

 $\log(x\log x) > 2(y\log y)^{\frac{1}{2}}$

$$\exp(\nabla(R^+ \cap E^+), \Delta(C \supset R))$$

$$= \pi(R, C\nabla E^+)$$

$$= \operatorname{rot}(E_1, \operatorname{div}E_2)$$

$$x f(x) = F(x)$$

Fifth dimension in facility of mechanism that circle of infinity to emerge with being from infinity and finite of space. Zero dimension conclude with this mechanism to create from theorem of mathmatics in pond of sensibility. Dimension with repository of information in facility of space, this space is all of knowlege to accessority for comformal fields. Pholographic theorem is from universe of oneselves with database of creature to access with hyper dimension in General relativity. Zeta function is this theorem include with paremeter of curve from future and past of repository.

$$Z \in R \cap Q, R \subset M_+, C^+ \bigoplus_{k=0}^n H_m, E^+ \cap R^+$$

$$M_+ = \sum_{k=0}^n C^+ \oplus H_M, M_+ = \sum_{k=0}^n C^+ \cup H_+$$

$$E_2 \bigoplus E_1, R^- \subset C^+, M_-^+, C_-^+$$

$$M_-^+ \nabla C_-^+, C^+ \nabla H_m, E^+ \nabla R^+$$

$$E_1 \nabla E_2, R^- \nabla C^+, \bigoplus \nabla M_-^+, \bigoplus \nabla C_-^+, R \supset Q$$

2 Zero dimension exclude with space of time

Flow to future and past that combinate with zeta function which build for hartshorn conjecture from these mechanism. This flow is gradient of line to add with fifth dimension of structure.

Infinite of atomasphere in zero dimension include with black hole and white hole of energy in three manifold of entropy.

$$[id_x - t]_{v=0} = \int e^{\partial x_m} dx_m + L(p, q), ||r||^2 = |\bar{x}||x|, \Gamma(x) = \int e^{-x} x^{1-t} dx$$
$$= (\bar{x} - i)(x+1), \Pi(\chi, x) = ie^{x \log x}$$

Network theorem from gravity wave

Masaaki Yamaguchi

$$\log(x\log x) \ge 2(y\log y)^{\frac{1}{2}}$$

Time space is exlamented from gravity wave in tcp/ip protocol, this quantum protocol construct with being synchronized of hartshorne conjecture mechanism. This gravity wave elementile with pieces of differential structure emerged with thurston conjugate theorem. D-brane and anti-D-brane is binded with this wave of protocol time machine relactunce. These explained theorem remained with differential of geometry structure rebuilt by Maxwell equation from synchronized with laplace equation for zeta function resulted from resolved in D-brane