1. (original): A dye mixture comprising

at least one dye of formula

$$(R_3)_{0.3}$$
 $(N_2)_{0.3}$
 $(N_3)_{0.3}$
 $(N_4)_{0.3}$
 $(N_4)_{0.3}$
 $(N_5)_{0.3}$
 $(N_7)_{0.3}$
 $(N_7)_{0.3}$

together with at least one dye of formula

$$(R_4)_{0-3}$$
 $(Y_3)_r$
 $(P_4)_{0-3}$
 $(P_5)_{0-3}$
 $(P_4)_{0-3}$
 $(P_4)_{0-3}$

wherein

 R_1 and R_2 are each independently of the other hydrogen or unsubstituted or substituted C_1 - C_4 alkyl, $(R_3)_{0-3}$, $(R_4)_{0-3}$ and $(R_5)_{0-3}$ denote, each independently of the others, from 0 to 3 identical or differing substituents from the group halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, carboxy and sulfo,

A is unsubstituted or substituted phenylene, naphthylene, or C₂-C₈alkylene which may be interrupted by oxygen,

 X_1 is halogen or a non-fibre-reactive substituent, and q is the number 0 or 1,

r and s are each independently of the other the number 0 or 1, and the sum of r + s is the number 1 or 2,

Y₁, Y₂, Y₃ and Y₄ are each independently of the others a fibre-reactive radical of formula

-SO ₂ -Z	(3a),
-NH-CO-(CH ₂) _m -SO ₂ -Z	(3b),
-CONH-(CH ₂) _n -SO ₂ -Z	(3c),
-NH-CO-CH(Hal)-CH ₂ -Hal	(3d),
-NH-CO-C(Hal)=CH ₂	(3e) or

wherein

 X_2 is halogen, T independently has the definition of X_2 , is a non-fibre-reactive substituent or is a fibre-reactive radical of formula

H, Me, Et | (4a),
$$-N-(CH_2)_{2,3}SO_2-Z$$

$$-NH-(CH_2)_{2-3}-O-(CH_2)_{2-3}-SO_2-Z$$
 (4b),

H, Me, Et
$$(R_6)_{0-2}$$
 SO_2 Z (4c),

$$-NH - (SO_3H)_{0.1}$$

$$-CO-NH-(CH_a)_{0.0}-SO_0-Z$$
(4d) or

 $(R_6)_{0-2}$ denotes from 0 to 2 identical or differing substituents from the group halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo,

Z is vinyl or a radical -CH₂-CH₂-U and U is a group removable under alkaline conditions, Q is a group -CH(Hal)-CH₂-Hal or -C(Hal)=CH₂,

m and n are each independently of the other the number 2, 3 or 4, and Hal is halogen,

at least one of the radicals Y₃ and Y₄ being a radical of formula (3b) or (3f).

2. (original): A dye mixture according to claim 1, wherein

R₁ is hydrogen, methyl or ethyl and R₂ is hydrogen.

5 4 " F"

- 3. (currently amended): A dye mixture according to either claim 1-or-claim-2, wherein X₁ is chlorine.
- 4. (currently amended): A dye mixture according to any one of claims 1 to 3 claim 1, wherein -A-Y₁ is a radical of formula

$$SO_2-Z_1$$

$$(R_7)_{0-2}$$
(5a),

$$(SO_3H)_{0-1}$$
 $(5b)$ or SO_2 - Z_2

$$(SO_3H)_{0-1}$$

 NH - CO - $(CH_2)_m$ - SO_2 - Z_3 (5c), wherein

 $(R_7)_{0-2}$ denotes from 0 to 2 identical or differing substituents from the group halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo,

m is the number 2 or 3, and

- Z_1 , Z_2 and Z_3 are each independently of the others vinyl, β -chloroethyl or β -sulfatoethyl.
- 5. (currently amended): A dye mixture according to any one of claims 1 to 4 claim 1, wherein the dye of formula (1) is a dye of formula

$$(HO_3S)_{1:2} \longrightarrow N = N \longrightarrow SO_2-Z_1$$

$$(1a)$$

$$HO_3S \longrightarrow SO_3H$$

wherein

 R_1 is hydrogen, methyl or ethyl and Z_1 is vinyl, β -chloroethyl or β -sulfatoethyl.

6. (currently amended): A dye mixture according to any one of claims 1 to 5 claim 1, wherein the dye of formula (2) is a dye of formula

$$(R_4)_{0-2}$$
 $N = N$
 $N = N$
 $N = N$
 SO_3H
 $(2a)$

wherein

 $(R_4)_{0-2}$ and $(R_5)_{0-2}$ denote, each independently of the other, from 0 to 2 identical or differing substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo, and one of the fibre-reactive radicals Y_3 and Y_4 is a radical of formula (3a), (3b), (3c), (3d) or (3e) and the other of the fibre-reactive radicals Y_3 and Y_4 is a radical of formula (3b) or (3f), the definitions according to claim 1 applying to the fibre-reactive radicals of formulae (3a), (3b), (3c), (3d), (3e) and (3f).

- 7. (currently amended): A method of The use of a dye mixture according to any one of claims 1 to 6 in the dyeing or printing of hydroxyl-group-containing or nitrogen-containing fibre material, which comprises contacting said material with a tinctorially effective amount of a dye mixture according to claim 1.
- 8. (currently amended): Use A method according to claim 7, wherein cellulosic fibre material, especially cotton containing fibre material, is dyed or printed.
- 9. (original): An aqueous ink comprising a dye mixture according to claim 1.
- 10. (currently amended): A method of The use of an aqueous ink according to claim 9 in an inkjet printing method for the printing of hydroxyl-group-containing or nitrogen-containing fibre material, which comprises printing said material with an aqueous ink according to claim 9 in an inkjet printer.
- 11. (new): A method according to claim 7, wherein cotton-containing fibre material is dyed or printed.