VERSUCH 302

Brückenschaltung

Tabea Hacheney tabea.hacheney@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 30.11.2021 Abgabe: 07.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung4.1Wheatston'sche Messbrücke4.2Kapazitätsmessbrücke4.3Induktivitätsmessbrücke4.4Maxwellbrücke4.5Wien-Robinson-Brücke	3 3 4 4 4
5	Diskussion	4
6	Messwerte	5
Lit	teratur	11

1 Zielsetzung

2 Theorie

[1]

3 Durchführung

4 Auswertung

4.1 Wheatston'sche Messbrücke

Tabelle 1: Messung von ${\cal R}_3$ und ${\cal R}_4$ für ${\cal R}_{14}$

R_2/Ω	R_3/Ω	R_4/Ω	R_{14}/Ω
332	243	757	106,6
664	392	608	428,1
1000	612	388	1577,3

Tabelle 2: Messung von R_3 und R_4 für R_{13}

•	R_2/Ω	R_3/Ω	R_4/Ω	R_{13}/Ω
	332	579	421	456,6
	664	595	405	$975,\!5$
	1000	789	211	3739,3

4.2 Kapazitätsmessbrücke

Tabelle 3: Messung von C_8 und R_8

R_2/Ω	R_3/Ω	R_4/Ω	$C_8/10^{-9}{ m F}$	R_8/Ω
500	640	360	336	889
600	580	420	432	829
700	480	520	647	646
800	491	509	619	772
900	470	530	673	789
1000	440	560	760	786

4.3 Induktivitätsmessbrücke

Tabelle 4: Messung von L_{16} und R_{16}

R_2/Ω	R_3/Ω	R_4/Ω	$L_{16}/10^{-3}{\rm H}$	R_{16}/Ω
500	342	638	268,0	7,8
600	430	570	$452,\!6$	11,0
700	492	508	678,0	14,1
800	445	555	$641,\!4$	11,7
900	527	473	1002,7	16,3
1000	532	568	936,6	13,7

4.4 Maxwellbrücke

4.5 Wien-Robinson-Brücke

Abbildung 1: Plot.

Siehe Abbildung 1!

5 Diskussion

6 Messwerte

Brückenschaltung	en
a) 1. Unbehannte: West 14	
R2: 1000 D	
R3, R4: 612	
Rz: 664 SZ	
K3.R4:392	ne
R ₂ :332 Q	201
Ls, Ry: 243	n
2. Unbeliannte: West 13	
Re: 1000 D Ks. Ru: 789	
K2: 332 52	
Ru, Ru: 579	
Rz: 664 , Rz, Ru: 595	

Abbildung 2: Messdaten 1

```
6) Wet 8 C2: 597nF
   Rz: 500 P3, Ru: 640
              1 " : 580
   Rz: 600
               . :480
               " : 491
   Rg: 800
                 : 470
  Rt : 900
                 : 448
  R2: 1000
 Wet 15 G: 597NF
 R; 500 R3, R4:
Rz : 600
" : 700
 : 800
: 1000
```

Abbildung 3: Messdaten 2

c) Not 16 1x and Rx R: 5000 L2:14,6 mH Kz, Ru 342 R2: 600 SZ R3, Ru: 430 L: 700 sz R3, Ru: 492 R: 800 SZ R3, R4: 445 R, : 900 SZ Ry Ru: 527 12:1000 SL Hailu 532

Abbildung 4: Messdaten 3

100 h 100 h 10 to ba	Date
d) West.	16
d	
Rz: 1KD	
C4:597NF	
16 50 total	1/1/2/6/6/6/6/6/6/6/6/6/6/6/6/6/6/6/6/6/
1/3 /300 / SV	11/1/1/16
## ## ## ## ## ## ## ## ## ## ## ## ##	1, 85,800 79
V/245/1/1	100/200
Rz: 222	
R3: 238	, Ry: 600 SZ
R3: 210	1R4:700s2
Rs: 175	, Ru: 800 52
(3: 95	1Ru . 90052
Ry: 4	Ry: 1000 R

Abbildung 5: Messdaten 4

e)					
R=14_D					
Upr: 560	6=20	1 Us			
880 510	40	2500 V			
390	80 usr	2600			
EAR 150	160 /220 40	2700			
100	320 280 60	2750			
320	640 300	2300			
560	1280 7380	2600			
560	1560 P420	2600 260			
600	4405 5820	2600 2500			
580	10240	2600 2500			
400	20480	-2600 2300			
300	40 968 30000	2600 1000			
		K.POPP			

Abbildung 6: Messdaten 5

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch zum Literaturverzeichnis. } 2014.$