Exercices du chapitre 4

9. Soit $a \in \mathbb{R}^n$ tel que ||a|| < 1 et soit $f : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto (1 + ||x||^2)^{\frac{1}{2}} - \langle a, x \rangle$. Montrer que f est convexe et déterminer $\operatorname{Arg}_{\mathbb{R}^n} \min f$.

10. Soit $\varphi : \Omega \subset \mathbb{R}^n \to \mathbb{R}$. Pour tout $y \in \mathbb{R}^n$, on pose $\varphi^*(y) = \sup_{x \in \Omega} (\langle y, x \rangle - \varphi(x))$.

- a) Montrer que φ^* est convexe.
- b) Soit $p \in]1, +\infty[$ et $\varphi(x) = \frac{\|x\|^p}{p}$. Montrer que φ est convexe ; déterminer $\varphi^*(y)$ et montrer que $\varphi^{**} = \varphi$. (On utilisera q tel que $\frac{1}{p} + \frac{1}{q} = 1$).
- c) Soit $\varphi(x) = \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle + c$ où A est une matrice symétrique définie positive. Montrer que φ est convexe ; déterminer $\varphi^*(y)$ et montrer que $\varphi^{**} = \varphi$.

11. Soit $C \subset \mathbb{R}^n$ un convexe fermé non vide et $b \in \mathbb{R}^n$. Soit $\pi = \operatorname{Arg}_C \min N$ où $N(x) = \|x - b\|^2$.

- a) Montrer que:
 - i) π est non vide;
 - ii) si $p \in \pi$, pour tout $c \in C$, $\langle p b, p c \rangle \leq 0$.

(On utilisera $F(\lambda) = \|\lambda c + (1 - \lambda)p - b\|^2$).

- iii) π contient exactement 1 élément, noté p(b).
- iv) Si $\langle u-b, u-c \rangle \leq 0$ pour tout $c \in C$, alors u=p(b).
- **b)** Déduire de a) que, $b \notin C$ si et seulement si il existe $w \in \mathbb{R}^n$ tel que

$$\langle w,b\rangle < \inf_{c\in C} \langle w,c\rangle.$$