ISSN 0182-4624 ISSN 0024-0850

ВЕСТНИК' **95**САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА

серия 1

выпуск 3

ПОИСК НА 3-МИНИМАЛЬНЫХ ЛЕРЕВЬЯХ

В работах [1–2] изучался вопрос о минимальном числе преследователей, необходимом для успешного завершения поиска убегающего на конечном связном топологическом графе Γ в предположении, что максимальная скорость преследователей равна μ , а скорость убегающего не превосходит единицы. Это число обозначалось через $S_{\mu}(\Gamma)$. В работе [2], в которой дается точная постановка задачи, было показано, что для всякого топологического дерева Γ при $\mu \leqslant 1$ число $S_{\mu}(\Gamma)$ совпадает с комбинаторным инвариантом — поисковым числом дерева Γ , откуда следует существование эффективного алгоритма для его вычисления (см. [3]). При $\mu > 1$ нахождение S_{μ} для деревьев значительно осложняется. Основной причиной этого является зависимость минимального числа преследователей не только от комбинаторной схемы графа, но и от длин ребер.

Рассмотрим 3-минимальное дерево (подробную информацию о k-минимальных графах можно получить в работах [4-5]), т. е. дерево с четырьмя вершинами степени три: O, A_1, A_2, A_3 и шестью вершинами степени один: $B_1, C_1, B_2, C_2, B_3, C_3$, причем для каждого $i \in \overline{1,3}$ вершина A_i смежна вершине O, а вершины B_i, C_i — вершине A_i . Через $\mathfrak G$ обозначим множество всех 3-минимальных топологических деревьев.

Пусть Γ — топологическое дерево. Введем в Γ метрику. Через $\rho(A,B)$, $A,B\in\Gamma$, обозначим длину кратчайшего пути (по евклидовой норме) с концами A и B, целиком лежащего на Γ . Далее, для определенности, мы будем считать, что длины ребер $[O,A_1]$, $[O,A_2]$ и $[O,A_3]$ топологического 3-минимального дерева удовлетворяют неравенствам

$$\rho(O, A_1) \leqslant \rho(O, A_2) \leqslant \rho(O, A_3).$$

Обозначим через \mathfrak{G}' множество всех топологических 3-минимальных деревьев, длины ребер которых удовлетворяют неравенству

$$\max \{ \rho(B_1, A_1), \ \rho(C_1, A_1) \} \leq \rho(O, A_1).$$

Мы покажем, что для всякого графа $\Gamma \in \mathcal{B}'$ выполнено соотношение

$$S_{\mu}(\Gamma) = \begin{cases} 3, & \text{если} \quad \mu < 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)}, \\ 2, & \text{если} \quad \mu \geqslant 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)}. \end{cases}$$

Доказательство этого факта вытекает из следующих теорем:

Теорема 1. Если

$$\mu \geqslant 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)},$$
(1)

то на всяком топологическом графе $\Gamma \in \mathfrak{G}'$ существует виигривающая программа двух преследователей.

[©] Ф. В. Фомин, 1995.

Теорема 2. На всяком графе $\Gamma \in \mathfrak{G}$ при

$$\mu < 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)} \tag{2}$$

не существует выигрывающей программы двух преследователей.

Будем говорить, что подмножество Q графа Γ является очищенным в момент времени au, если $Q \cap F(\Pi, au) = \varnothing$.

Теорему 1 мы докажем, указав выигрывающую программу преследователей. Введем некоторые обозначения. Запись

$$P_1: X_1 \to Y_1,$$

$$P_2: X_2 \to Y_2$$

означает, что с момента t_i по t_{i+1} игрок P_j , $j\in\overline{1,2}$, стоит в точке X_j , если $\rho(X_j,Y_j)=0$, и переходит из X_j в Y_j с максимальной скоростью в противном случае.

Доказательство теоремы 1. Рассмотрим произвольный топологический граф $\Gamma \in \mathfrak{G}'$ и μ , удовлетворяющее условию (1). Опишем программу преследователей на Γ и покажем, что эта программа является выигрывающей. При описании программы удобно полагать, что для длин висячих ребер графа Γ выполнены равенства

$$\rho(B_1, A_1) = \rho(C_1, A_1) = \rho(O, A_1),$$

$$\rho(B_2, A_2) = \rho(C_2, A_2) = \rho(B_3, A_3) = \rho(C_3, A_3).$$

Нетрудно показать, что увеличение длин висячих ребер "не идет преследователям на пользу", а потому, если на произвольном графе, длины ребер которого удовлетворяют указанным равенствам, существует выигрывающая программа, то и на произвольном графе, длины ребер которого удовлетворяют условию теоремы, существует выигрывающая программа.

На ребрах $[O,A_2],[O,A_3]$ отметим такие точки A_2 и A_3 , что $\rho(O,A_2)=\rho(O,A_3)=\rho(O,A_1)$. Положим $t_1=0$ и определим следующие маршруты преследователей:

$$\begin{split} P_1: B_3 &\to A_3 \to O \to A_1 \to A_1 \to A_1 \to B_1 \to A_1 \to C_1 \to A_1 \to A_1 \to O \to A_2 \to C_2, \\ P_2: C_3 &\xrightarrow{1} A_3 \xrightarrow{2} O \xrightarrow{3} \hat{A_2} \xrightarrow{4} A_2 \xrightarrow{5} \hat{A_2} \xrightarrow{6} O \xrightarrow{7} A_1 \xrightarrow{8} O \xrightarrow{9} \hat{A_3} \xrightarrow{10} A_3 \xrightarrow{11} O \xrightarrow{12} A_2 \xrightarrow{13} B_2. \end{split}$$

Покажем, что к моменту времени $T=t_{14}$ граф Γ будет очищен. Рассмотрим множества $S_i=[A_i,B_i]\cup [A_i,C_i],\,i\in\overline{1,3},$ и множество $S=S_1\cup S_3.$ Убедимся, что если в момент времени t_{11} (в момент времени t_{11} игрок P_1 стоит в A_1 , игрок P_2 в A_3) выполнено включение $G(\Pi,t_{11})\supseteq S$, то в момент T граф Γ будет очищен.

Определим для $t \in [0,T]$, $i \in \overline{1,3}$, множество $\delta(S_i,t)$ как замыкание (в топологии \mathbb{R}^3) множества $\delta^{\circ}(S_i,t) = \{x \in \Gamma: naŭdemcs makas mouka <math>y \in S_i$, что на ломаной $[x,y] \subset \Gamma$ в момент времени t нет ни одного преследователя} и множество $\delta(S,t) = \delta(S_1,t) \cup \delta(S_3,t)$.

С момента t_{11} по T преследователи движутся таким образом, что если в момент времени $t'\geqslant t_{11}$ убегающий отсутствует на множестве $\delta(S,t')$,

то попасть на множество $\delta(S,t'')$, t''>t', игрок E может только встретив на протяжении [t',t''] преследователя. В момент времени T выполняется равенство $\delta(S,T)=\Gamma$ и из предположения $S\subseteq G(\Pi,t_{11})$ следует, что в момент T граф Γ будет очищен.

Покажем, что к моменту t_{11} множество S очищено. Предположим противное — существование траектории убегающего y(t), $t \in [0,T]$, обеспечивающей уклонение от встречи с преследователями и такой, что $y(t_{11}) \in S$. Очевидно, что к моменту времени t_5 множество $\delta(S_3,t_5) = S_3 \cup [A_3,O] \cup [O,A_1] \cup [O,A_2]$ очищено, а потому $y(t_5) \notin \delta(S_3,t_5)$, и в момент t_5 убегающий может находиться или на S_1 или на S_2 .

Предположим $y(t_5) \in S_1$. До момента t_6 игрок P_1 стоит в вершине A_1 , и таким образом $y(t_6) \in S_1$. В момент времени t_7 в вершину O заходит игрок P_2 , а поскольку за время $t_7-t_6=\rho(O,A_1)\mu^{-1}$ убегающему не пройти ребро $[O,A_1]$ целиком (скорость убегающего не превосходит по модулю единицы), то $y(t_7) \in S_1 \cup [O,A_1]$. С момента времени t_7 по t_8 преследователь P_1 переходит из B_1 в A_1 , а преследователь P_2 переходит из O в A_1 , (по условию длины ребер $[O,A_1]$ и $[B_1,A_1]$ равны), и к моменту t_8 игрок E может находиться лишь на ребре $[C_1,A_1]$. Находясь же на ребре $[C_1,A_1]$, убегающий не может уклониться от встречи с преследователем P_1 , переходящим с t_8 по t_9 из A_1 в C_1 .

По предположению траектория убегающего обеспечивает уклонение, и следовательно $y(t_5) \in S_2$. В момент времени t_{11} в вершине A_3 находится преследователь P_2 и если $y(t_{11}) \in S_3$, то игрок E должен пройти за промежуток времени

$$\Delta = t_{11} - t_5 = [2\rho(O, A_1) + \rho(O, A_2) + \rho(O, A_3)]\mu^{-1}$$

расстояние, большее $ho(A_2,A_3)=
ho(O,A_2)+
ho(O,A_3)$. По условию теоремы

$$\mu \geqslant 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)},$$

откуда

$$\Delta \leqslant \rho(O, A_2) + \rho(O, A_3) = \rho(A_2, A_3).$$

Но за время $\Delta = \rho(A_2, A_3)$ пройти расстояние, большее $\rho(A_2, A_3)$ убегающий не может, а потому из $y(t_5) \in S_2$ следует $y(t_{11}) \notin S_3$.

Убедимся, что $y(t_{11})$ не принадлежит и множеству S_1 . К моменту t_9 на $S_1 \cup [O,A_1]$ нет убегающего (до момента t_9 игрок E не может попасть на $S_1 \cup [O,A_1]$ не встретив игрока P_2). На протяжении $[t_{10},t_{11}]$ в вершине A_1 стоит P_1 , и чтобы попасть на S_1 игрок E должен пройти вершину A_1 до того, как в нее встанет преследователь P_1 ($t_{10}-t_9=\rho(O,A_1)\mu^{-1}=\rho(O,C_1)\mu^{-1}$), и мы получаем $\rho(O,A_1)<\rho(O,A_1)\mu^{-1}$. Из полученного неравенства вытекает неравенство $\mu<1$.

Достигнутое противоречие $(\mu > 1)$ показывает, что траектория убегающего $y(t), t \in [0, t_{11}], y(t_{11}) \in S$, не обеспечивает уклопение от встречи с преследователями, что, в свою очередь, завершает доказательство теоремы.

Доказательство теоремы 2. Пусть $\Gamma \in \mathfrak{G}$. Для доказательства теоремы достаточно показать, что если $\mu \in (1, 1 + \frac{2\rho(O, A_1)}{\rho(O, A_2) + \rho(O, A_3)})$, то на Γ не существует выигрывающей программы двух преследователей.

Нам понадобится вспомогательное утверждение. Рассмотрим изоморфный звезде $K_{1,3}$ топологический граф $\mathcal K$ с вершинами $X,\ X_1,\ X_2,\ X_3,$ $\deg X=3,\ \deg X_1=\deg X_2=\deg X_3=1.$

Пемма. Предположим, что для программы двух преследователей $\Pi\{x_1(t), x_2(t)\}, t \in [0, T],$ для $\mu > 1$ действующей на K выполнены условия:

a) $x_1(0) = x_2(0) = x_1(T) = x_2(T) = X_1$,

б) для каждого временного промежутка $(t_1,t_2)\subseteq [0,T],\ t_2-t_1\geqslant 2\rho(X,X_1)\mu^{-1},\$ найдется такой момент времени $t\in (t_1,t_2),\$ что $x_1(t)=X_1$ или $x_2(t)=X_1,\$ т. е. преследователи могут одновременно находиться на множестве $L_{\mathcal K}=\mathcal K\setminus\{X_1\}$ на протяжении (t_1,t_2) только при условии $t_2-t_1<2\rho(X,X_1)\mu^{-1}.$

Тогда для любой точки $M \in [X, X_1]$, $\rho(M, X) < \rho(X, X_1)\mu^{-1}$, найдется

траектория убегающего y(t), $t \in [0,T]$, такая, что:

а) y(t) обеспечивает уклонение от поимки,

6)
$$y(0) = y(T) = \{M\}.$$

Предположим, что лемма доказана. Рассмотрим на Γ произвольную программу двух преследователей $\Pi\{x_1(t),x_2(t)\},\ t\in[0,T],\ для\ \mu\in(1,1+\frac{2\rho(O,A_1)}{\rho(O,A_2)+\rho(O,A_3)})$. Покажем, что Π не может быть выигрывающей. Мы будем считать, что в начальный и в конечный моменты времени выполняются равенства $x_1(0)=x_2(0)=x_1(T)=x_2(T)=O$ (очевидно, что это предположение не умаляет общности).

Обозначим через $\Lambda_i, i \in \overline{1,3}$, следующие множества точек:

$$\Lambda_i = [B_i, A_i] \cup [C_i, A_i] \cup (O, A_i]$$

и определим

$$\theta_i = \{t \in [0, T] : \{x_1(t) \cup x_2(t)\} \subset \Lambda_i\}.$$

Для каждого $i \in \overline{1,3}$ введем в рассмотрение множество Θ_i — объединение всех компонент связности множеств θ_i по мере не меньших $2\rho(O,A_i)\mu^{-1}$.

В задаче поиска, рассматриваемой нами, траектории игроков кусочноаффинные (см. [1,2]) и, следовательно, существует такое конечное разбиение отрезка [0,T]

$$0 < t_1^- < t_1^+ < \dots < t_k^- < t_k^+ < T$$

что

$$\bigcup_{i=1}^{3} \Theta_{i} = \bigcup_{j=1}^{k} (t_{j}^{-}, t_{j}^{+}).$$

Определим $t_0^+=0$ и $t_{k+1}^-=T$. На ребре $[O,A_i], i\in\overline{1,3}$, на расстоянии $ho(O,A_i)\left(1+\frac{2\rho(O,A_1)}{\rho(O,A_2)+\rho(O,A_3)}\right)^{-1}$ от вершины A_i отметим точку A_i^* . Основываясь на определении множеств Θ_i , мы можем заключить, что для каждого $j\in\overline{1,k}$ найдутся два таких номера $i,i'\in\overline{1,3}$, что на протяжении (t_j^-,t_j^+) на ребрах $[O,A_i],[O,A_{i'}]$ нет преследователей. Точки A_i^* и $A_{i'}^*$ будем называть особыми для момента времени t_j^- . Заметим, что одна из особых для момента t_j^- точек, является особой и для момента t_{j+1}^- (мы будем полагать, что для момента времени t_{k+1}^- все точки A_i^* являются особыми). Локажем существование траектории убегающего, обеспечивающей уклонение от встречи с преследователями. Лля этого достаточно убедиться в истинности двух утверждений:

а) Если игрок E в момент времени $t_j^+, j \in \overline{0,k}$, находится в точке, являющейся особой для момента времени t_{j+1}^- , то он может действовать, обеспечивая уклонение от встречи с преследователями таким образом, чтобы к моменту t_{j+1}^- опять оказаться в этой же точке.

б) Если игрок E в момент времени t_j^- , $j\in\overline{1,k-1}$, находится в особой для этого момента времени точке, то к моменту времени t_j^+ он может перейти в точку, являющуюся особой для моментов времени t_j^- и t_{j+1}^- , не встретив преследователей.

Локажем вначале второе утверждение. На протяжении $(t_j^-, t_j^+), t_j^+ - t_j^- \geqslant \min_{i \in \overline{1,3}} 2\mu^{-1}\rho(O,A_i)$, два преследователя находятся на одном из множеств $(O,A_i]$, и, следовательно, на ломаной, соединяющей две особые для момента времени t_j^- точки, нет преследователей. Таким образом, для доказательства утверждения достаточно показать, что за промежуток времени, не превосходящий по длительности $t_j^+ - t_j^-$, убегающий успеет перейти из одной особой точки в другую, т.е. пройти расстояние, не превосходящее $\max\{\rho(O,A_1^*) + \rho(O,A_2^*), \rho(O,A_2^*) + \rho(O,A_3^*), \rho(O,A_3^*) + \rho(O,A_1^*)\} = \rho(O,A_2^*) + \rho(O,A_3^*)$. Из определения точек A_i^* имеем:

$$\begin{split} &\rho(O,A_2^*) + \rho(O,A_3^*) = \rho(O,A_2) - \rho(A_2,A_2^*) + \rho(O,A_3) - \rho(A_3,A_3^*) = \\ &= \left(\rho(O,A_2) + \rho(O,A_3)\right) \left(1 - \left(1 + \frac{2\rho(O,A_1)}{\rho(O,A_2) + \rho(O,A_3)}\right)^{-1}\right) = \\ &= 2\rho(O,A_1) \left(1 + \frac{2\rho(O,A_1)}{\rho(O,A_2) + \rho(O,A_3)}\right)^{-1}$$
 и из условия (2)
$$< 2\rho(O,A_1)\mu^{-1} \leqslant t_j^+ - t_j^-. \end{split}$$

Полученное неравенство $\rho(O, A_2^*) + \rho(O, A_3^*) < t_j^+ - t_j^-$ доказывает второе утверждение.

Доказательство первого утверждения вытекает из леммы. Действительно, пусть в момент времени $t_j^+, j \in \overline{0,k}$, игрок E находится в особой для момента времени t_{j+1}^+ точке, для определенности в A_1^* . Из определения особой точки следует, что в момент t_j^+ на множестве $\Lambda_1 = [B_1,A_1] \cup [C_1,A_1] \cup (O,A_1]$ нет преследователей. С момента времени t_j^+ по t_{j+1}^- два преследователя могут одновременно находиться на множестве Λ_1 на протяжении $[t_1,t_2] \subset [t_j^+,t_{j+1}^-]$ только если $t_2-t_1<2\rho(O,A_1)\mu^{-1}$. Топологический граф, получаемый объединением ломаных $[B_1,A_1],[C_1,A_1]$ и $[O,A_1]$, изоморфен звезде $K_{1,3}$, а поскольку $\rho(A_1^*,A_1)=\rho(O,A_1)\left(1+\frac{2\rho(O,A_1)}{\rho(O,A_2)+\rho(O,A_3)}\right)^{-1}<\rho(O,A_1)\mu^{-1}$, то, воспользовавшись леммой, мы убеждаемся в истинности первого утверждения.

Для завершения доказательства теоремы нам осталось проверить справедливость леммы.

 Π оказательство леммы. Рассмотрим произвольную программу $\Pi\{x_1(t),x_2(t)\},\ t\in[0,T],\$ удовлетворяющую условиям леммы, и обозначим $\xi=\{t\in[0,T]:x_1(t)=X\$ или $x_2(t)=X\}.$

Будем предполагать $\xi \neq \emptyset$, в противном случае лемма становится тривиальной.

Траектории игроков отвечают кусочно-постоянным управлениям, что означает существование конечного разбиения отрезка [0,T]:

$$0 < t_1^- \leq t_1^+ < \cdots < t_k^- \leq t_k^+ < T$$

причем

$$\xi = \bigcup_{i=1}^k [t_i^-, t_i^+].$$

Пусть $U-\delta$ -окрестность вершины X в пространстве \mathbb{R}^3 . Траектории игроков кусочно-аффинные и из условия б) следует существование δ , такого, что на протяжении действия программы в U находится не более одного преследователя.

Обозначим $\Xi = \{t \in [0,T]: (x_1(t) \cup x_2(t)) \subset U\}$, так, что $\xi \subset \Xi$. Нетрудно показать, что если δ достаточно мало, то множество Ξ имеет в [0,T] ровно k компонент связности, причем если Ξ_1 одна из них, то для $t \in \Xi_1$ $\Pi(t) \cap U$ принадлежит объединению не более чем двух ребер \mathcal{K} . Потребуем также $\delta < \rho(X,X_1) - \rho(M,X)\mu$ (расстояние от точки M до X меньше $\rho(X,X_1)\mu^{-1}$, поэтому разность $\rho(X,X_1) - \rho(M,X)\mu$ положительна).

Опишем теперь траекторию убегающего y(t), $t \in [0,T]$, позволяющую ему избежать встречи с преследователями. С начального момента времени игрок E начинает движение с максимальной скоростью из M в X. Очевидно, что $\rho(y(t),x_i(t)) > \delta$, $t \in [0,\rho(M,X)]$, $i \in \overline{1,2}$. Для $t \in [\rho(M,X),T-\rho(M,X)]$ положим y(t)=X, если $t \notin \Xi$.

Если же t принадлежит некоторой компоненте связности Ξ_1 , то в момент t убегающий всегда может избежать встречи, сместившись на расстояние σ по тому ребру, которое не пересекается с множеством $\Pi(t) \cap U$.

Величину σ можно выбрать столь малой, что к моменту $t_1^* = \sup\{t, t \in \Xi_1\}$ игрок E может вернуться в X. Ясно, что такое поведение убегающего позволяет ему уклониться на промежутке $[0, T-\rho(M,X)]$, причем $y(T-\rho(M,X))=X$. Переходя с максимальной скоростью из X в M убегающий не может встретить преследователей (если преследователь встречает убегающего в некоторый момент времени $t \in [T-\rho(M,X),T]$, то расстояние от места их встречи до точки X меньше $\rho(M,X)$, а потому преследователь не успевает попасть к моменту T в X_1). Лемма доказана.

Замечание. Для всякого графа $\Gamma \in \mathfrak{G}$ известно доказательство равенства $S_{\mu}(\Gamma) = 2$, если $\mu \geqslant \sqrt{5}$. Если же $\mu \in [1, \sqrt{5})$, то вопрос нахождения $S_{\mu}(\Gamma)$, $\Gamma \in \mathfrak{G}$ остается открытым.

SUMMARY

F. V. Fomin. Search in 3-minimal trees.

The graph-searching problem with restriction on velocity is investigated. Some solutions of this problem for 3-minimal trees are found.

ЛИТЕРАТУРА

- 1. Петров Н. Н. // Диф. уравнения. 1982. Т. 18, №5. С. 821-829.
- 2. Фомин Ф. В. // Вести. С.-Петербург. ун-та. Сер. 1. 1994. Вып. 3 (№17). С. 60-66.
- 3. Yannakakis. // J. of the Assoc. for Computing Machinery. 1985. Vol. 32, No.4. P. 950-988.
- 4. Петров Н. Н. //Диф. уравнения. 1982. Т. 18, №8. С. 1345-1352.
- Megiddo N., Hakimi S. L., Garey M. R., Johnson D. S., Papadimitriou C. II. //J. of ACM. 1988. Vol. 35. P. 18-44.

Статья поступила в редакцию 19 января 1995 г.