

Exercícios sobre números complexos

Exercícios

- **1.** Sendo i a unidade imaginária, então $\left(1+i\right)^{20}-\left(1-i\right)^{20}$ é igual a
 - **a)** -1024
 - **b)** -1024i
 - **c)** 0
 - **d)** 1024
 - **e)** 1024i
- 2. A medida do argumento dos números complexos z = x + yi pertencentes à reta y = x, em radianos, é
 - a) $\frac{\pi}{4}$ ou $\frac{5\pi}{4}$
 - **b)** $\frac{\pi}{2}$ ou $\frac{3\pi}{2}$
 - c) $-\frac{\pi}{4}$ ou $\frac{\pi}{4}$
 - d) $\frac{\pi}{3}$ ou $\frac{4\pi}{3}$
- 3. Se y = 2x, sendo $x = \frac{1+i}{1-i}$ e $i = \sqrt{-1}$, o valor de $(x+y)^2$ é
 - **a)** 9i
 - **b)** -9 + 1
 - **c)** -9
 - d) 9
 - **e)** 9 i

- **4.** No conjunto dos números complexos, o número 1 apresenta três raízes cúbicas: $1, \ \frac{-1+i\sqrt{3}}{2} \ e^{-1-i\sqrt{3}} \ .$ Os pontos que correspondem às representações desses três números no plano de Argand Gauss são vértices de um triângulo de área
 - a) $\frac{\sqrt{3}}{4}$
 - **b)** $\frac{\sqrt{3}}{2}$
 - **c)** $\frac{3\sqrt{3}}{4}$
 - **d)** $\sqrt{3}$
 - e) ⁻
- **5.** No sistema de coordenadas cartesianas usual com origem no ponto O, considere os números complexos, na forma trigonométrica, dados por z = 2(cos60° + isen60°) e w = 2(cos30° + isen30°). Os pontos do plano que representam estes números e a origem O são vértices de um triângulo cuja medida da área é
 - a) 1,0 u.a.
 - **b)** 0,5 u.a.
 - **c)** 2,0 u.a.
 - **d)** 1,5 u.a.
- **6.** O módulo do número complexo $z = i^{2014} i^{1987}$ é igual a
 - a) $\sqrt{2}$
 - **b)** 0
 - **c)** $\sqrt{3}$
 - **d)** 1
- 7. Se os números complexos z e w estão relacionados pela equação z + wi = i e se $z = 1 \frac{1}{i}$, então w é igual a
 - **a**) i
 - **b)** 1 i
 - **c)** -i
 - **d)** 1 + i

8. Considere os números complexos $z_1=a+bi$, $z_2=-b+ai$ e $z_3=-b+3i$, com a e b número inteiros.

Sabendo que $\ z_1+z_2+z_3=0$, o valor de $\left(\dfrac{z_2}{z_1}\right)^3$ é igual a

- **a**) 1
- **b)** -1
- **c)** -i
- **d)** I
- **e)** 0
- **9.** Considere θ um número real qualquer. Sobre os números complexos $z = \cos 2\theta + isen\theta$ e $w = \cos \theta + isen2\theta$, pode-se afirmar que
 - **a)** |z| + |w| = 1
 - **b)** $z^2 w^2 = 0$
 - c) $z = \overline{w}$
 - $d) \quad z iw = 0$
 - **e)** $|z|^2 + |w|^2 = 2$
- **10.** O número complexo z, tal que $5z + \overline{z} = 12 + 16i$, é igual a:
 - a) -2 + 2i
 - **b)** 2 3i
 - **c)** 3+i
 - **d)** 2 + 4i
 - **e)** 1 + 2i

Gabarito

1. C

$$(1+i)^{20} = ((1+i)^2)^{10} = (1+2i+i^2)^{10} = (2i)^{10} = 1024.i^2$$

 $(1-i)^{20} = ((1-i)^2)^{10} = (1-2i+i^2)^{10} = (-2i)^{10} = 1024.i^2$
 $\log_{10} (1+i)^{20} - (1-i)^{20} = 0$

2. A

$$45^{\circ} = \frac{\pi}{4} e 225^{\circ} = \frac{5\pi}{4}$$

3. C

$$x = \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{i^2 + 2i - i^2}{1^2 - i^2} \cdot \frac{2i}{2} = i \text{ e y = 2i}$$

$$(x+y)^2 = (i + 2i)^2 = (3i)^2 = 9i^2 = -9$$

4. C

Localizando os afixos no plano complexo, temos o triângulo da figura.

Calculando sua área:

$$A = \frac{\left(\frac{\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right)\right) \cdot \left(1 - \left(-\frac{1}{2}\right)\right)}{2}$$

$$A = \frac{\sqrt{3} \cdot \frac{3}{2}}{2}$$

$$A = \frac{3.\sqrt{3}}{4}$$

5. A

Sejam P e Q, respectivamente, as imagens de z e w. Tem-se que

$$(OPQ) = \frac{1}{2} \cdot |\overrightarrow{OP}| \cdot |\overrightarrow{OQ}| \cdot sen(argz - argw)$$
$$= \frac{1}{2} \cdot 2 \cdot 2 \cdot sen30^{\circ}$$
$$= 1 \text{ u.a.}$$

6. A

$$z = i^{2014} - i^{1987}$$

$$= i^{4.503+2} - i^{4.496+3}$$

$$= (i^4)^{503} \cdot i^2 - (i^4)^{496} \cdot i^3$$

$$= -1 + i$$

Portanto,

$$|z| = |-1+i| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}.$$

7. A

Substituindo o valor de z na equação dada e resolvendo:

$$z + wi = i \rightarrow 1 - \frac{1}{i} + wi = i$$

 $i - 1 + wi^2 = i^2$
 $i - 1 + w \cdot (-1) = (-1)$
 $i - 1 - w = -1$
 $w = i$

8. C

$$z_1 + z_2 + z_3 = 0 \Rightarrow (a - 2b) + (a + b + 3) \cdot i = 0 \Rightarrow \begin{cases} a - 2b = 0 \\ a + b + 3 = 0 \end{cases}$$

Resolvendo o sistema, temos:

$$a = -2 e b = -1$$

Portanto:

$$\left(\frac{z_2}{z_1}\right)^3 = \left(\frac{1-2i}{-2-i}\right)^3 = \left(\frac{1-2i}{-2-i} \cdot \frac{-2+i}{-2+i}\right)^3 = \left(\frac{-2+i+4i-2i^2}{5}\right)^3 = i^3 = -i$$

9. E

Tomando $\theta = 0$, vem z = 1 e w = 1. Logo, segue que |z| + |w| = 2 e z - iw = 1 - i.

Por outro lado, para $\theta = \frac{\pi}{4}$ rad, temos $z = \frac{\sqrt{2}}{2}i$ e $w = \frac{\sqrt{2}}{2} + i$. Desse modo, é fácil ver que $z^2 - w^2 = \sqrt{2}i$ e $z \neq \overline{w}$.

Finalmente, sendo

$$|z| = \sqrt{\cos^2 2\theta + \sin^2 \theta}$$

e

$$|w| = \sqrt{\cos^2 \theta + \sin^2 2\theta}$$

encontramos

$$|z|^2 + |w|^2 = \cos^2 2\theta + \sin^2 \theta + \cos^2 \theta + \sin^2 2\theta = 2.$$

10. D

Suponha que z = a + bi, então $\overline{z} = a - bi$.

Logo,
$$5(a+bi)+(a-bi)=12+16i \Rightarrow 6a+4bi=12+16i \Rightarrow \begin{cases} a=2\\b=4 \end{cases}$$

Portanto,

$$z = 2 + 4i$$
.