

Statistical Methods

Statistical Inferences

Estimation

- Point Estimation
- Interval Estimation
- Hypothesis Testing

Estimator versus Estimate

- Estimator
 - An estimator is any statistic used to estimate an unknown parameter value; it is a random variable.
- Estimate
 - An estimate is the numerical value of the estimator that results from a specific sample; it provides a best guess of an unknown parameter value; it is **fixed**, not random

3 Major Elements of the Estimator Required to Do Statistical Inferences

- Expected value of the estimator
- Standard error of the estimator
- Sampling distribution of the estimator

	Statistical	Inferences about
Target parameter	μ	р
Best point estimator	$\overline{\mathbf{X}}$	p̂
Expected value of the point estimator	$E(\overline{X}) = \mu$	E(p̂) = p
Standard error of the estimator	$\operatorname{se}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$	$se(\hat{p}) = \sqrt{\frac{pq}{n}}$
CLT – sample size requirements	n ≥ 30	n > 25, $np > 5$, and $nq > 5$
Sampling distribution	$\overline{X} \approx N \Big(\mu, \ \frac{\sigma}{\sqrt{n}} \Big)$	$\widehat{\mathbf{p}} pprox \mathbf{N} \left(\mathbf{p}, \sqrt{rac{\mathbf{p}\mathbf{q}}{\mathbf{n}}} \right)$

Estimation Methods

Point Estimation

- Provides a single value
 - Based on observations from one sample
- Gives no information about how close the value is to the unknown population parameter
- Example: Sample mean $\overline{X} = 3$ is **point** estimate of unknown population mean μ .

Interval Estimation

- Provides a range of values
 - Based on observations from one sample
- Gives information about closeness to unknown population parameter
 - Stated in terms of probability
 - Knowing exact closeness requires knowing unknown population parameter
- Example: unknown population mean lies between 50 and 70 with 95% confidence.
- The general formula for all interval estimator is

Point estimator \pm error bound

where

error bound = critical value * standard error

Terminology

- Target parameter
 - Is the unknown population parameter that we are interested in estimating
- Confidence coefficient (1α)
 - Is the probability that an interval estimator encloses the population parameter if the estimator is used repeatedly a very large number of times
- Confidence level: $100(1-\alpha)$ %
 - Is the confidence coefficient expressed as a percentage
 - Typical values are 90%, 95%, 99%
- α
 - Is the probability that target parameter is not within interval
- Error bound / margin of error
 - Is the sampling error that we are willing to tolerate

Derivation of the confidence estimator

- The sampling distribution of \overline{X} for random samples of size n from a normal population with the mean μ and the variance σ^2 is a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$. Thus, we can write
- P($|Z| < z_{\alpha/2}$) = 1 α where $Z = \frac{\overline{X} \mu}{\frac{\sigma}{\sqrt{n}}}$ and $z_{\alpha/2}$ is such that the integral of the standard normal density from $z_{\alpha/2}$ to ∞ equals $\alpha/2$. It follows that

$$P\left(\left|\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\right| < z_{\alpha/2}\right) = 1 - \alpha$$

$$P\left(\left|\overline{X} - \mu\right| < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

z-interval

Assumptions:

- $ightharpoonup \sigma$ is known and population is normal (or n ≥ 30) and
- Interval estimator of μ:

$$\overline{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- Interval estimate of μ:
 - Numerical values of the interval estimator of μ

Factors affecting interval width - precision

Define

L = lower bound and U = upper bound of the confidence interval.

E = error bound / margin of error

W = width of confidence interval

Then

$$\frac{U+L}{2}$$
 = point estimator

 $\frac{U-L}{2}$ = E where E denotes the error bound

$$W = 2E$$

- Data dispersion as measured by standard deviation
 - Standard deviation ↑ => W ↑
- Sample size
 - Sample size $\uparrow => W \downarrow$
- Level of confidence
 - Confidence level $\uparrow => W \uparrow$

Finding the critical value, $z_{\alpha/2}$

'Consider a 95% confidence interval:

Example

A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine and interpret a 90% confidence interval for the true mean resistance of the population.

$$1 - \alpha = 0.9 \implies \alpha/2 = 0.05 \ Z_{0.05} = 1.645$$

			Area in U	pper Tail		
df	0.2	0.1	0.05	0.025	0.01	0.005
$\mathbf{z} = \mathbf{t}_{\infty}$	0.842	1.282	1.645	1.96	2.326	2.576

$$\overline{\mathbf{X}} \pm \mathbf{Z}_{\alpha/2} \frac{\sigma}{\sqrt{\mathbf{n}}} = 2.2 \pm 1.645 \frac{0.35}{\sqrt{11}} = 2.2 \pm 0.174 = [2.026, 2.374]$$

We are 90% confident that the true mean resistance is between 2.026 ohms and 2.374 ohms.

What if σ is unknown?

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since *s* is variable from sample to sample.
- If $X_i \sim N(\mu, \sigma)$, then

$$\mathbf{Z} = \frac{\overline{\mathbf{X}} - \boldsymbol{\mu}}{\frac{\boldsymbol{\sigma}}{\sqrt{\mathbf{n}}}} \sim \mathbf{N}(\mathbf{0}, \mathbf{1}) \text{ but}$$

$$T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$

Characteristics of Student's t distribution

- It is based on the assumption that the population of interest is normal, or nearly normal
- It is a continuous distribution
- It is bell-shaped and symmetric
- There is not one t distribution, but rather a "family" of t distributions. All have the same mean of 0; i.e., E(t) = 0. However, their standard deviations differ according to the sample size n.
- The exact shape of the t distribution depends on a parameter called the degrees of freedom, ν
- $Var(t) = \frac{v}{v-2} > 1$, so the t distribution is more spread out and flatter at the center than is the standard normal distribution. However, as n increases, the curve representing t distribution approaches the standard normal distribution; i.e.,

$$\mathbf{t}_{\infty} = \mathbf{z}$$

t-interval

- Assumptions:
 - $ightharpoonup \sigma$ is unknown and population is normal (or $n \ge 30$)
- Interval estimator of μ:

 $\overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ where $t_{\alpha/2}$ is based on df = n - 1

Student's t Table

		Uppe	r Tail A	rea	
	df	.10	.05	.025	Let: $n = 3$ df = n - 1 = 2 $\alpha = 0.10$
'	1	3.078	6.314	12.706	$\alpha = 0.10$ $\alpha/2 = 0.05$
	2	1.886	2.920	4.303	
	3	1.638	2.353	3.182	αI
		cont	body of tains t valuabilities	the table lues, not	0 2.92

Example

You are a time study analyst in manufacturing. You have recorded the following task times (min): 3.6, 4.2, 4.0, 3.5, 3.8, 3.1. Use the following normal Q-Q plot to check if we can assume that the task time is normally distributed. If so, construct a 99% confidence interval estimate of the population mean task time?

Since the dots fall very closely along the line, the task time can be assumed normal.

$$df = n - 1 = 6 - 1 = 5$$

$$1 - \alpha = 0.99 \Rightarrow \alpha/2 = 0.005 \qquad t_{0.005; 5} = 4.032$$

$$\overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} = 3.7 \pm 4.032 \frac{0.3899}{\sqrt{6}}$$

$$= 3.7 \pm 0.642$$

$$= [3.058, 4.342]$$

Assessing normality

- Normal quantile plot / QQ plot
 - This is a plot of the data against its normal scores. If the plot is a straight line, then it suggests normality.
- Histogram or stem and leaf plot
 - Check if the histogram has a symmetric bell shape.
- The interquartile range should be close to 1.34898 times the standard deviation; i.e., $IQR \approx 1.34898s$

Z-Interval for *p*

Assumptions:

The binomial conditions have been met.

- The sample data is the result of counts.
- There are only 2 possible outcomes.
- The probability of a success remains the same from one trial to the next
- The trials are independent.
- The sample size is sufficiently large; i.e., n > 25, np > 5, and nq > 5. This condition allows us to invoke the central limit theorem and employ the standard normal distribution, that is, z, to complete a confidence interval.
- Interval estimator of p: $\widehat{\mathbf{p}} \pm \mathbf{Z}_{\alpha/2} \sqrt{\frac{\widehat{\mathbf{p}}\widehat{\mathbf{q}}}{\mathbf{n}}}$

Example

You are a production manager for a newspaper. You want to find the % defective. Of 200 newspapers, 35 had defects. Let *p* be the true proportion defective.

- a. Obtain the best point estimate of p. $\hat{p} = \frac{x}{n} = \frac{35}{200} = 0.175$
- b. Is the sample size large enough to invoke the Central Limit Theorem? Yes, because n = 200 > 25, $n\hat{p} = 200(0.175) = 35$ and $n\hat{q} = 200(165)$
- c. What is the 90% confidence interval estimate of the population proportion defective?

$$1 - \alpha = 0.9 \implies \alpha/2 = 0.05 \ Z_{0.05} = 1.645$$

$$\hat{\mathbf{p}} \pm \mathbf{Z}_{\alpha/2} \sqrt{\frac{\hat{\mathbf{p}}\hat{\mathbf{q}}}{\mathbf{n}}} = 0.175 \pm 1.645 \sqrt{\frac{0.175(0.825)}{200}} = 0.175 \pm 0.044 = [0.131, 0.219]$$

Determining Sample Size

Determining sample size - μ

Determining sample size - μ

To determine the required sample size for μ , you must know:

- The desired level of confidence (1 α), which determines the critical value, $Z_{α/2}$
- The margin of error (or error bound), E
- The standard deviation, σ

If σ is unknown, it can be estimated by

- selecting a pilot sample and estimating
 σ with the sample standard deviation,
 s
- $\sigma \approx \frac{\text{Range}}{4}$

Always round up to the nearest integer.

Example

If $\sigma = 45$, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

$$1 - \alpha = 0.9 \Rightarrow \alpha/2 = 0.05$$
 $z_{0.05} = 1.645$

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{1.645 * 45}{5}\right)^2 = 219.188 \approx 220$$

Determining sample size - p

To determine the required sample size for *p*, you must know:

- The desired level of confidence (1 α), which determines the critical value, $Z_{α/2}$
- The margin of error (or error bound), E
- The true proportion of events of interest, p
 If p is unknown, p can be estimated by
 - selecting a pilot sample and estimating p with the sample proportion, \hat{p}
 - conservatively using 0.5 as an estimate of p

Example

How large a sample would be necessary to estimate the true proportion defective in a large population within $\pm 3\%$, with 95% confidence? (Assume a pilot sample yields p = 0.12)

$$1 - \alpha = 0.95 => \alpha/2 = 0.025$$
 $z_{0.05} = 1.96$

$$n = pq \left(\frac{z_{\alpha/2}}{E}\right)^2 = 0.12(0.88) \left(\frac{1.96}{0.03}\right)^2 = 450.748 \approx 451$$

Estimate µ

If the sample size is large enough; i.e., $n \ge 30$, then it is appropriate to use the normal distribution to approximate the sampling distribution of \overline{X} .

By the CLT,
$$\overline{X} \approx N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

<u>Case 1</u>:

σ is known and population is normal (or $n \ge 30$): z-confidence interval for μ: $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Case 2:

σ is unknown and population is normal (or $n \ge 30$): t-confidence interval for μ : $\overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$

Estimate p

If the sample size is large enough; i.e., n > 25, $n\hat{p} > 5$ and $n\hat{q} > 5$, then it is appropriate to use the normal distribution to approximate the sampling distribution of \hat{p} .

By the CLT,
$$\hat{p} \approx N\left(p, \sqrt{\frac{pq}{n}}\right)$$

z-confidence interval for p: : $\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$

Sample size required to estimate μ :

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

If σ is unknown, use s. If s is unavailable, use $\sigma \approx \frac{\text{Range}}{4}$ Sample size required to estimate p:

$$n = pq \left(\frac{z_{\alpha/2}}{E}\right)^2$$

If p is unknown, use \hat{p} . If \hat{p} is unavailable, take p = 0.5

- Let $X_{11}, X_{12}, \dots, X_{1n1}$ be a random sample from a distribution with μ_1, σ_1 , and let X_{21}, X_{22} , ..., X_{2n2} be another sample independent from the first one, from a distribution with μ_2 , σ_2 .
- $\mu_1 \mu_2 = \overline{X}_1 \overline{X}_2$
- $E(\overline{X}_1 \overline{X}_2) = \mu_1 \mu_2$

$$\operatorname{Var}(\overline{X}_{1} - \overline{X}_{2}) = \operatorname{Var}(\overline{X}_{1}) + \operatorname{Var}(\overline{X}_{2}) = \begin{cases} \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}} & \text{if } \sigma_{1}^{2} \neq \sigma_{2}^{2} \\ \sigma^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) & \text{if } \sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2} \end{cases}$$

$$(\overline{X}_{1} - \overline{X}_{2}) \sim \operatorname{N}(\mu_{\overline{X}_{1} - \overline{X}_{2}}, \sigma_{\overline{X}_{1} - \overline{X}_{2}})$$

- Two populations (independent) σ_1^2 and σ_2^2 are known
- Assumptions:
 - The populations are normal or approximately normal (CLT for large n); i.e., $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$.
 - The samples are randomly and independently drawn from the respective populations
 - The population variances σ_1^2 and σ_2^2 are known

z-confidence interval:
$$(\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

- Two populations (independent) σ_1^2 and σ_2^2 are known
- Assumptions:
 - The populations are normal or approximately normal (CLT for large n); i.e., $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$.
 - The samples are randomly and independently drawn from the respective populations
 - The population variances σ_1^2 and σ_2^2 are known

z-confidence interval:
$$(\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

- Two populations (independent) σ_1^2 and σ_2^2 are unknown
- Case 1: $\sigma_1^2 = \sigma_2^2 = \sigma^2$ (unknown)
- Pooled sample variance: $\hat{\sigma}^2 = S_p^2 = \frac{(n_1 1)s_1^2 + (n_2 1)s_2^2}{n_1 + n_2 2}$
- t-confidence interval: $(\overline{X}_1 \overline{X}_2) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ where $df = n_1 + n_2 2$

- Case 2: $\sigma_1^2 \neq \sigma_2^2$ (unknown)
- t-confidence interval: $(\overline{X}_1 \overline{X}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ where $df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}$

- Two populations (dependent) σ_d unknown
- $\mu_d \neq \mu_1 \mu_2$
- \blacksquare $d_i = X_{1i} X_{2i}$ (eliminates variation among subjects)
- Assumptions:
 - Population of differences is normal or n > 30 with σ_d unknown
 - The differences are randomly selected from the population of difference.
- t-confidence interval for μ_d : $\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ where df = n 1
- Note: t-confidence interval for μ : $\overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ where df = n 1