Machine Learning and Optimal Control CS 484 / CS584 2024

Dr. Hongsheng He Department of Computer Science

Learning Dexterous Robotic Manipulation (Ver 1.0)

- 1. Project Objectives
- Get familiar with robotic simulation.
- Understand intelligent robot manipulation.
- Develop an RL algorithm to control the robot accomplish pick and place task.

2. Procedure

- 1. Environment Setup (using your virtual environment)
 - Install stable baseline3 library in your virtual environment.
 - pip install stable-baselines3
 - Documentation: https://stable-baselines3.readthedocs.io/en/master/
 - Setup Pybullet Environment (you should have installed it).
 - Pybullet Reference: https://github.com/bulletphysics/bullet3
 - Install other necessary library when prompted
- 2. Run **test.py** to test the environment:
 - You would see a robot and an object in the environment. The environment is ready!
 - Drag the toolbar to control the robot arm (Only the top 3 bars that control the robot arm are enabled)
- 3. Modify the **sawyerEnv.py** file:
 - Change the value of self.index in line 98 to switch object. There are 8 objects with index from 0 to 7. Refer to "Object_assignment.pdf" for the randomly assigned object for each of you.
 - Implement the **reward_s1** function in **line 432** to encourage the robot hand to move to the grasp location.
 - Define the reward function under "implement your function here" section using the helper variables in the reward_si function.
 - Once the hand arrives the grasp location, it will grasp and pick up the object automatically.

• You shouldn't need to modify the other part of the file.

4. Modify the **train.py** file:

- Change the value of the parameter **timeStep** in **line 40** to decide the training time. The time is simulation time which is computer specific.
- Choose or implement an RL model in stable_baseline3 to train the grasping task.
 Examples of using pre-implemented models: https://stable-baselines3.readthedocs.io/en/master/guide/examples.html
- 5. Run **evaluate.py** to evaluate the trained model. The success rate of the task is displayed in the terminal.

3. What you need to submit (35 points in total)

Note: CS 484 and CS 584 have different requirements.

- Functional codes (5 points): The codes will be evaluated by a test run.
 - sawyerEnv.py and train.py
- Demo illustration (5 points)
 - A short video that demonstrates a successful grasp.
- Project Report (25 points)
 - A project report should follow the IEEE conference format (1 point): https://www.ieee.org/conferences/publishing/templates.html
 - The report should include:
 - Introduction (3 points)
 - Background discussion on at least two topics, e.g., robotic manipulation, reinforcement learning, simulation, or other related topics of your choice (1 point)
 - Summary of procedure, method, or approaches (1 point)
 - Summary of the project conclusions or discoveries (concise and brief) (1 point)
 - Method (6 points)
 - Overall approach, e.g., simulation environment with a picture, models, framework, etc (2 points)
 - Technical description of the applied RL algorithm/methods (2 points)
 - Show the equation or function of the reward (**math equations not codes**) (2 points)
 - Results (3 points)
 - Success rates of grasping and a brief review of it (1 point)

- Examples with pictures of successful and failed grasping trials AND a brief explanation on them (e.g., knocked the object to the ground, if there are any) (2 points)
- Discussion of results (10 points)
 - CS 484 students only
 - Discuss the advantages and disadvantages of the RL algorithms. Why was it successful or not? (5 points)
 - Discuss the designed reward function. What are the key parameters and how were the parameters selected? (5 points)
 - CS 584 students only
 - Discuss the advantages and disadvantages of the RL algorithms. Why was it successful or not? (3 points)
 - Discuss the designed reward function. What are the key parameters and how were the parameters selected? (3 points)
 - Review the literature and discuss one (1)
 approach/idea/environment/setup that could potentially generate improved grasping performance. (4 points)
- Conclusion (1 points)
 - Conclude the report, what you have done, what results you have got, what worked and what did not.
- Reference (1 point)