Applied Linear Algebra

I Matrices and Gaussian Elimination	
1.2 The Geometry of Linear Equations	3
1.3 Gaussian Elimination	4
1.4 Matrix Notation and Matrix Multiplication	Ę
1.5 Triangular Factors and Row Exchanges	6
1.6 Inverses and Transposes	7
1.7 Special Matrices and Applications	8
Chapter 1 Review Exercises	Ģ
2 Vector Spaces	
2.1 Vector Spaces and Subspaces	10
2.2 Solving Ax = 0 and Ax = b	1
2.3 Linear Independence, Basis, and Dimension	12
2.4 The Four Fundamental Subspaces	13
2.5 Graphs and Networks	14
2.6 Linear Transformations	15
Chapter 2 Review Exercises	16
3 Orthogonality	
3.1 Orthogonal Vectors and Subspaces	17
3.2 Cosines and Projections onto Lines	18
3.3 Projections and Least Squares	19
3.4 Orthogonal Bases and Gram-Schmidt	20
3.5 The Fast Fourier Transform	2
Chapter 3 Review Exercises	22
4 Determinants	
4.2 Properties of the Determinant	23
4.3 Formulas for the Determinant	24
4.4 Applications of Determinants	25
Chapter 4 Review Exercises	26
5 Eigenvalues and Eigenvectors	
5.2 Diagonalization of a Matrix	27
5.3 Difference Equations and Dowers	28

5.4 Differential Equations	29
5.5 Complex Matrices	30
5.6 Similarity Transformations	31
Chapter 5 Review Exercises	32
6 Positive Definite Matrices	
6.1 Minima, Maxima, and Saddle Points	33
6.2 Tests for Positive Definiteness	34
6.3 Singular Value Decomposition	35
6.4 Minimum Principles	36
6.5 The Finite Element Method	37
7 Computations with Matrices	
7.2 Matrix Norm and Condition Number	38
7.3 Computation of Eigenvalues	39
7.4 Iterative Methods for Ax = b	40
8 Linear Programming and Game Theory	
8.1 Linear Inequalities	41
8.2 The Simplex Method	42
8.3 The Dual Problem	43
8.4 Network Models	44
8.5 Game Theory	45

1 Matrices and Gaussian Elimination

1.2 The Geometry of Linear Equations

1.3 Gaussian Elimination

1.4 Matrix Notation and Matrix Multiplication

1.5 Triangular Factors and Row Exchanges

1.6 Inverses and Transposes

1.7 Special Matrices and Applications

Chapter 1 Review Exercises

2 Vector Spaces

2.1 Vector Spaces and Subspaces

2.2 Solving Ax = 0 and Ax = b

2.3 Linear Independence, Basis, and Dimension

2.4 The Four Fundamental Subspaces

2.5 Graphs and Networks

2.6 Linear Transformations

Chapter 2 Review Exercises

3 Orthogonality

3.1 Orthogonal Vectors and Subspaces

3.2 Cosines and Projections onto Lines

3.3 Projections and Least Squares

→ 20 **↔**-

3.4 Orthogonal Bases and Gram-Schmidt

3.5 The Fast Fourier Transform

Chapter 3 Review Exercises

4 Determinants

4.2 Properties of the Determinant

4.3 Formulas for the Determinant

→ 25 ↔

4.4 Applications of Determinants

Chapter 4 Review Exercises

5 Eigenvalues and Eigenvectors

5.2 Diagonalization of a Matrix

→ 28 **↔**-

5.3 Difference Equations and Powers

5.4 Differential Equations

5.5 Complex Matrices

5.6 Similarity Transformations

Chapter 5 Review Exercises

6 Positive Definite Matrices

6.1 Minima, Maxima, and Saddle Points

→ 34 ₩-

6.2 Tests for Positive Definiteness

→ 35 **↔**-

6.3 Singular Value Decomposition

6.4 Minimum Principles

6.5 The Finite Element Method

7 Computations with Matrices

7.2 Matrix Norm and Condition Number

→ 39 ₩-

7.3 Computation of Eigenvalues

7.4 Iterative Methods for Ax = b

8 Linear Programming and Game Theory

8.1 Linear Inequalities

8.2 The Simplex Method

8.3 The Dual Problem

8.4 Network Models

8.5 Game Theory