1 Classification Methods

1 Classification Methods

Classification is the assignment of objects (data points) to categories (classes). It requires a data set (i.e. training set) of points with known class labels. If the class labels are not known you can instead group the data using clustering algorithms (chapter 2).

1.1 Linear Classifiers

Linear classifiers use linear decision boundaries to classify points to a respective class.

1.2 Support Vector Classifier (SVC)

SVCs use hyperplanes to separate data points according to their class label with a maximum margin (M) between the separating hyperplane $(x^T\beta+\beta_0=0)$ and the points. If points cannot be perfectly separated by the decision boundary, a soft margin SVM is used with a slack variable ξ that punishes points in the margin or on the wrong side of the hyperplane. The optimization problem is given by \cite{T} :

$$\max_{\beta,\beta_0,\beta=1} M,$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \quad \forall i,$

$$\xi_i \ge 0, \quad \sum \xi_i \le constant, \quad i = 1, ..., N,$$

$$(1)$$

where β are the coefficients and x are the N data points. The support vectors are the points that determine the orientation of the hyperplane (i.e. the closest points). The classification function is given by:

$$G(x) = \operatorname{sign}[x^T \beta + \beta_0] \tag{2}$$