Approche hybride de modélisation explicable du métabolisme des écosystèmes microbiens

Hybrid approach for explainable metabolic modelling of microbial ecosystems'

Présenté par Maxime LECOMTE

November 14, 2023

Membres du iurv

Président: SIMON Laurent

Rapportrices: BAROUKH Caroline

COCAIGN-BOUSQUET Muriel

Examinateurs: COTTRET Ludovic Co-direction: David SHERMAN et Hélène FALENTIN

Encadrement: Clémence FRIQUX LAROCHE Béatrice

MARKOV Gabriel

École doctorale Mathématiques et informatique

iniversité

Why the study of microorganisms is relevant?

- High diversity of microorganisms
- Microorganisms roles specific to the environment (Royet and Plailly, 2004; Belkaid and Hand, 2014; Zhang et al., 2015; Hoorman, 2011; McSweeney and Sousa, 2000)

What underlying mechanisms are responsible of the observed activity ?

Metabolism

Figure 1: Gas chromatograms of the major aroma compounds isolated from rum (from Suomalainen and Lehtonen, 1978)

What underlying mechanisms are responsible of the observed activity?

Metabolism

Figure 1: Gas chromatograms of the major aroma compounds isolated from rum (from Suomalainen and Lehtonen, 1978)

What is metabolism?

Set of all biochemical reactions occurring in the cell of an organism that permit the production of energy and metabolic goods. (Sánchez López de Nava A. 2023)

What underlying mechanisms are responsible of the observed activity ?

Metabolism and Bacterial interactions

Figure 1: Gas chromatograms of the major aroma compounds isolated from rum (from Suomalainen and Lehtonen, 1978)

What is metabolism?

Set of all biochemical reactions occurring in the cell of an organism that permit the production of energy and metabolic goods. (Sánchez López de Nava A, 2023)

- a fatty acyl-CoA + ethanol \rightarrow ethyl palmitate + coA
 - Metabolism of an organism explain observable phenotype

What underlying mechanisms are responsible of the observed activity?

Metabolism and Bacterial interactions

Figure 1: Gas chromatograms of the major aroma compounds isolated from rum (from Suomalainen and Lehtonen, 1978)

What is metabolism?

Set of all biochemical reactions occurring in the cell of an organism that permit the production of energy and metabolic goods. (Sánchez López de Nava A, 2023)

- a fatty acyl-CoA + ethanol \rightarrow ethyl palmitate + coA
 - Metabolism of an organism explain observable phenotype

Figure 2: List of different types of bacterial interactions (Faust and Raes, 2012)

 Bacterial interaction can affect positively / negatively other organisms

What underlying mechanisms are responsible of the observed activity?

Metabolism and Bacterial interactions

Figure 1: Gas chromatograms of the major aroma compounds isolated from rum (from Suomalainen and Lehtonen, 1978)

What is metabolism?

Set of all biochemical reactions occurring in the cell of an organism that permit the production of energy and metabolic goods. (Sánchez López de Nava A, 2023)

- a fatty acyl-CoA + ethanol \rightarrow ethyl palmitate + coA
 - Metabolism of an organism explain observable phenotype

Figure 2: List of different types of bacterial interactions (Faust and Raes, 2012)

 Bacterial interaction can affect positively / negatively other organisms

Bacterial interactions can modulate metabolic goods

How can we study this impact through metabolism?

Genome-scale metabolic network (GEMs) reconstruction

Figure 3: Top down genome-scale metabolic network reconstruction approach (modified from Machado et al., 2018)

- For bacteria: average of 1500 reactions, 1000 genes, 800 metabolites
- Informatic can help to resolve combinatorial problem

How can we study this impact through metabolism?

Systems biology

System biology

Associate an organism to a system and study the all system (Kitano, 2002)

 System biology combines biology and informatic analysis for studying bacterial behavior

Metabolic network representation

```
\begin{array}{l} r_1: \text{2 pyr} \rightarrow \text{1 acetoL} + \text{1 CO}_2 \\ r_2: \text{1 acetoL} \rightarrow \text{1 diac} + \text{1 CO}_2 \\ r_3: \text{1 acetoL} \rightarrow \text{1 acetoin} + \text{1 CO}_2 \\ r_4: \text{1 diac} \rightarrow \text{1 acetoin} \\ r_5: \text{1 acetoin} \rightarrow \text{1 butanediol} \end{array}
```


Metabolic network representation

```
\begin{array}{l} r_1: \text{2 pyr} \rightarrow \text{1 acetoL} + \text{1 CO}_2 \\ r_2: \text{1 acetoL} \rightarrow \text{1 diac} + \text{1 CO}_2 \\ r_3: \text{1 acetoL} \rightarrow \text{1 acetoin} + \text{1 CO}_2 \\ r_4: \text{1 diac} \rightarrow \text{1 acetoin} \\ r_5: \text{1 acetoin} \rightarrow \text{1 butanediol} \\ \textbf{Stoichiometry matrix} \end{array}
```


Metabolic network representation

 $r_1: 2 \text{ pyr} \rightarrow 1 \text{ acetoL} + 1 \text{ CO}_2$

 $r_2: 1 \mathsf{acetoL} \to 1 \mathsf{diac} + 1 \mathsf{CO}_2$

 $r_3:1\ \mathsf{acetoL} \to 1\ \mathsf{acetoin} + 1\ \mathsf{CO}_2$

 $r_4:1\;\mathsf{diac}\to 1\;\mathsf{acetoin}$

 $r_5:1$ acetoin $\rightarrow 1$ butanediol

Stoichiometry matrix

$$\begin{array}{c} \text{pyr} \\ \text{acetoL} \\ \text{diac} \\ \text{CO}_2 \\ \text{acetoin} \\ \text{butanediol} \end{array} \left(\begin{array}{cccccccc} r_1 & r_2 & r_3 & r_4 & r_5 \\ -2 & 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right)$$

Stoichiometry matrix is commonly used for quantitative analysis instead of graph, more focused on topology analysis

Build a metabolic model

Metabolic model

From a GEM, a model metabolic has the capacity to simulate and to predict on the metabolic content

Build a metabolic model

Metabolic model

From a GEM, a model metabolic has the capacity to simulate and to predict on the metabolic content

Constraint-based approaches

$$\frac{dx}{dt} = S.v = 0$$

- Faust, Karoline and Jeroen Raes (2012). "Microbial interactions: From networks to models". In: Nature Reviews Microbiology 10.8, pp. 538–550. ISSN: 17401526. DOI: 10.1038/nrmicro2832. URL: http://dx.doi.org/10.1038/nrmicro2832.
- Hoorman, James J (2011). "The Role of Soil Bacteria". In: The Ohio State University Extension, pp. 1–4.
- Kitano, Hiroaki (2002). "Systems biology: A brief overview". In: Science 295.5560, pp. 1662–1664. ISSN: 00368075. DOI: 10.1126/science.1069492.
- Machado, Daniel et al. (2018). "Fast automated reconstruction of genome-scale metabolic models for microbial species and communities". In: *Nucleic Acids Research*. ISSN: 13624962. DOI: 10.1093/nar/gky537.
- McSweeney, Paul L.H. and Maria José Sousa (2000). "Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review". In: Lait 80.3, pp. 293–324. ISSN: 00237302. DOI: 10.1051/lait:2000127.
- Royet, Jean-Pierre and Jane Plailly (Oct. 2004). "Lateralization of Olfactory Processes". In: Chemical Senses 29.8, pp. 731-745. ISSN: 0379-864X. DOI: 10.1093/chemse/bjh067. eprint: https://academic.oup.com/chemse/article-pdf/29/8/731/930410/bjh067.pdf. URL: https://doi.org/10.1093/chemse/bjh067.

Suomalainen, By Heikki and Matti Lehtonen (1978). "JJu lt". In: 85, pp. 149–156.

Sánchez López de Nava A, Raja A (2023). *Physiology, Metabolism*. url: www.ncbi.nlm.nih.gov/books/NBK546690/.

Zhang, Yu Jie et al. (2015). "Impacts of gut bacteria on human health and diseases". In: *International Journal of Molecular Sciences* 16.4, pp. 7493–7519. ISSN: 14220067. DOI: 10.3390/ijms16047493.

