Heap sort - Introduction

Data Structure

- A data structure is a way to store and organize data in order to facilitate access and modifications
- No single data structure works well for all purposes
- It is important to know the strengths and limitations of each data structure
- To make the algorithm efficient choose an appropriate data structure

Data Structures

- Array
- Linked list
- Stack
- Queue
- Binary Tree
- Binary Search Tree

Program Memory Layout

Heap

- Heap is a data structure
- Heap sort algorithm Use Heap to manage information
- Used to implement efficient priority queue
- Not a garbage collected storage

Binary heap

- Binary heap data structure is an array object
- Viewed as a nearly complete binary tree
- Binary tree: A binary tree is defined recursively.
- A binary tree T is a structure defined on finite set of nodes that either
 - Contains no nodes (the empty tree or null tree) denoted NIL or
 - Composed of three disjoint set of nodes:
 - a root node
 - a binary tree called its left subtree
 - a binary tree called its right subtree

Binary tree - examples

In the following example,

root node:

Node 3

left subtree:

Nodes 2,4,1 and 6 together form Left subtree right subtree:

Nodes 7 and 5 together form Right subtree

Few terms....

 The number of children of a node x in a rooted tree T equals the degree of x

Example:

Degree of node 3:

2

Degree of node 7:

1

Degree of node 6:

0

- The length of the simple path from the root r to a node x is the depth of x in T.
 - Eg: Depth of node 6:
 - 3
 - Depth of nodes 1, 4, 5:
 - 2
 - Depth of nodes 2 and 7:
 - 1
 - Depth of node 3:

- Nodes at level 2:
 - 4, 1 and 5
- Ex: What are the nodes at level 0,1 and 3 in the above tree?

Few terms....

- A node with no children is a leaf or external node.
 A non-leaf node is an internal node.
- The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf
- Height of a tree is the height of its root.

Complete binary tree

 A complete binary tree is a binary tree in which all leaves have the same depth and all internal nodes have degree 2.

Figure B.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

 Number of nodes in a complete binary tree of height h, 2^{h+1} - 1

Nearly complete binary tree

Recall that Heap is viewed as a Nearly complete Binary tree

Each node in the tree - an element of the array

Tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point

Two attributes of an array A

- A.length: Number of elements in the array
- A.heapsize: How many elements in the heap are stored within array A
- Although A[1...A.length] may contain numbers, only the elements in A[1...A.heapsize], where 0<= A.heapsize <= A.length, are valid elements of the heap.

Parent, left and right child - Binary heap

The root of the tree is A[1]

Given the index *i* of a node,

Index of its parent:

PARENT(i): floor(i/2)

Index of left child:

LEFT(i): 2*i

Index of right child:

RIGHT(i): 2*i+1

Max and Min Heaps

- There are two kinds of binary heaps:
 - Max-heaps
 - Min-heaps
- In both kinds, the values in the nodes satisfy a *heap property*, the specifics of which depend on the kind of heap.

Max-heap

 Max-heap property: For every node i other than the root,

A[PARENT(i)] >= A[i];

Value of a node is at most the value of its parent.

- Largest element in a max-heap is stored at the root.
- Subtree rooted at a node contains values no larger than that contained at the node itself.

Min-heap

- Min-heap property is that for every node i other than the root, A[PARENT(i)] <= A[i]
- The smallest element in a min-heap is at the root.
- Example:

Max/Min Heapify

 How do you establish heap property (Max/ Min) in the given input array?

 Apply Max/Min-HEAPIFY procedure to establish Max/Min-HEAP property

- Where to apply the Max/Min-HEAPIFY procedure?
 - On the ith element of an array, in which Max/
 Min Heap property is violated

Maintaining the heap property

- To maintain the max-heap property: MAX-HEAPIFY
- Inputs are an array A and an index i into the array
- MAXHEAPIFY assumes that the binary trees rooted at LEFT(i) and RIGHT(i) are max heaps, but that A[i] might be smaller than its children
 - violating the max-heap property.
- MAX-HEAPIFY lets the value at A[i] "float down" in the max-heap so that the subtree rooted at index i satisfies the max-heap property

Figure 6.2 The action of MAX-HEAPIFY (A, 2), where A.heap-size = 10. (a) The initial configuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY (A, 4) now has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call MAX-HEAPIFY (A, 9) yields no further change to the data structure.

MAX-HEAPIFY

```
Max-Heapify(A, i)
 1 \quad l = \text{Left}(i)
 2 r = RIGHT(i)
 3 if l \leq A. heap-size and A[l] > A[i]
         largest = l
 5 else largest = i
    if r \leq A.heap-size and A[r] > A[largest]
         largest = r
    if largest \neq i
 9
         exchange A[i] with A[largest]
         MAX-HEAPIFY(A, largest)
10
```

How to Build a Max/Min-Heap?

Use the Max/Min-Heapify procedure

Building a Heap

- Each leaf node can be considered as a 1-element heap to begin with.
- Therefore, for building a max-heap it is sufficient to apply MAX-HEAPIFY on the remaining internal nodes of the tree
- i.e Apply MAX-HEAPIFY in a bottom-up manner to convert array A[1...A.length] into a max-heap
- Where are the leaves in the heap?
 - Ex: Leaves in the heap are appearing in the subarray A[[n/2]+1)...n]

BUILD-MAX-HEAP

Pseudocode for BUILD-MAX-HEAP

```
BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 for i = \lfloor A.length/2 \rfloor downto 1

3 MAX-HEAPIFY(A, i)
```

EXAMPLE: Working of BUILD-MAX-HEAP

Idea: HEAP SORT

- Build a Max-heap on the input array A[1...n]
 where n is the length of the array
- Maximum element is found at the root of the Max-heap
- Exchange this element with the last position of the array i.e exchange A[1] with A[n]
- This may violate the heap property at the root, but its children are Max-heaps

Idea: HEAP SORT

• To restore the Max-heap property,

call Max-heapify(A,1) in the n-1 size heap

 The heapsort algorithm then repeats this process for the max-heap of size n-1 down to a heap of size 2.

Heap Sort: ALGORITHM

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY(A, 1)
```

Example: Heap Sort

