

Library Protocols Discussion

The world leader in serving science

Ion Workflow – Library Prep

Ion Workflow - Library Prep

Library Prep: Fragment Workflow for gDNA

Ion Fragment Library Workflow

Ion Fragment Library Fragmentation Options

Two methods for Fragmentation

Enzymatic fragmentation:

•Fragmented DNA is ready for adapter ligation (end-repair not needed).

Ultrasonic fragmentation:

- •Fragmented DNA is endrepaired and purified to prepare for ligation to Ion adapters.
- Different sequencing read lengths require different sizes of library inserts
- Shorter library insert size require more (enzymatic) incubation times
- Check fragment size after shearing, using Bioanalyzer® (optimal sensitivity) or E-Gel® system

Ion Fragment Library

End Repair (physical shearing only)

Enzymatic shearing creates blunt ends, so end repair of DNA sheared enzymatically is *not* needed.

Adapter
Ligation
&
Nick
Translation

Don't freeze-thaw the 10x ligase buffer

Prepare single-use aliquots of 10x ligase buffer

Ion Fragment Library: Size Selection Options

Size-select	ion options	20-90 mir	
Method	E-Gel® SizeSelect™ 2% Agarose	Pippin Prep™ instrument	
Features	Quicker; Broader size distribution	Automated; Tighter size distribution results in more consistent library size	
Time	400-base-read libraries: ~35 min 300-base-read libraries: ~30 min 100-200-base-read libraries: ~20 min	90 min	

Alternative method: Manual gel size selection method is available:

Ion Torrent Community ightarrow Products ightarrow PGM ightarrow User Guides and Bulletins ightarrow Documents

Ion Fragment Library Size Selection: E-Gel® SizeSelect™ Gels

200-base-read library gel

Size selection is necessary for maximization of sequencing yield

Ion Fragment Library Amplification (if needed)

Advantage

- Can generate sufficient library amount from limited initial input
- Helps increase efficiency of library: higher representation of productive fragments (with both A & P1 adaptors)

Disadvantage

- May introduce bias (control by limiting cycle #)
- Much higher cycle numbers can result in concatemers, etc.

How many cycles should I use to amplify my library?

Number of cycles by library input					
DNA	50-100 ng	1 ug			
Cycles	8	5			

Amplification conditions can vary by application, see appropriate User Guides or User Bulletins.

Ion AmpliSeq[™] DNA and Amplicon Library Prep

Ion AmpliSeq™ DNA Target Selection Solutions

Ion AmpliSeq™ Cancer Hotspot Panel v2

Ion AmpliSeq™ Inherited Disease Panel

Ion AmpliSeq™ Comprehensive Cancer Panel

Ready-to-Use Panels

Ion AmpliSeq™ Designer

www.ampliseq.com

NEW! Ion AmpliSeq™ Community Panels: Designed with leading researchers

Ion AmpliSeq[™] Library Kit 2.0

Core reagent kit for library construction

Ion AmpliSeq™ Cancer Hotspot Panel v2

The Ion AmpliSeq™ Cancer Panel targets 50 genes

ABL1	EZH2	JAK3	PTEN
AKT1	FBXW7	IDH2	PTPN11
ALK	FGFR1	KDR	RB1
APC	FGFR2	KIT	RET
ATM	FGFR3	KRAS	SMAD4
BRAF	FLT3	MET	SMARCB1
CDH1	GNA11	MLH1	SM0
CDKN2A	GNAS	MPL	SRC
CSF1R	GNAQ	NOTCH1	STK11
CTNNB1	HNF1A	NPM1	TP53
EGFR	HRAS	NRAS	VHL
ERBB2	IDH1	PDGFRA	
ERBB4	JAK2	PIK3CA	

TaqMan® Mutation Detection Assays are available for the genes listed above.

*Gene list available www.lifetechnologies.com/amplisegready

Ion AmpliSeq™ Comprehensive Cancer Panel (CCP)

- Targets coding exons in 409 human oncogenes and tumor suppressor genes
- ~16,000 amplicons
- Detection of known COSMIC somatic mutations

*Gene list available www.lifetechnologies.com/ampliseqready

Ion AmpliSeq™ Inherited Disease Panel (IDP)

Genes	Diseases
75	193
62	159
28	46
87	245
73	210
	75 62 28 87

325

- >700 disease states based on OMIM database
- ■325 genes
- ■~10,500 amplicons

For Research Use Only. Not for use in diagnostic procedures.

853

Total

^{*} Disease groups and gene list available at ampliseq.com

DNA Amplicon Libraries: "Standard" DNA Amplicons

DNA Amplicon Library: Fusion Method

NOTE: No Ion Library Kit is needed for Fusion Method.

Ion AmpliSeq[™] RNA Panels

Ion AmpliSeqTM Reverse Reverse Transcription PCR Digest Primers Adapter Ligation Purify Amplification Qualify & Quantify ~5 hrs

RNA Cancer Panel

- 50 genes
- Corresponds to genes in Ion AmpliSeq[™] Cancer Hotspot v2
- 5 ng FFPE or 500 pg unfixed RNA

RNA Apoptosis Panel

- 267 genes
- TaqMan® Assay validated
- 5 ng FFPE or 500 pg unfixed RNA

RNA Custom Panels

- Over 20,000 human genes with thorough coverage of the coding genome
- Single amplicon per gene
- 1 pool design
- 5 ng FFPE or 500 pg unfixed RNA

Ion Total RNA-Seq Kit v2

- Create whole transcriptome (WT) or small RNA libraries
- Preserves strand information
- Adaptor and RT primer sequences for PGMTM sequencing, for inputs of 100 ng total RNA or 1 ng miRNA
- Optimized Workflow 5-6 hrs for small RNA and for WT libraries

Hands-on Lab Course Also available!

Ion RNA Library Prep

Ion Kit Guides: Decision Trees

Ion Torrent Community → Protocols → PGM Protocols → Documents

http://ioncommunity.lifetechnologies.com/docs/DOC-1804

Template Dilution Factor

How much library is needed for template preparation?

The world leader in serving science

- Specific range of library input is critical for optimal results
- This ratio needs to be optimized per library
 - Range listed below is a good starting point, but ideal point may fall outside this range
 - Begin with 1x TDF, and then scale up or down depending on results of templating reaction (Qubit® fluorometer values of preenrichment samples and/or sequencing data)

*Note: Consult specific library prep protocol for optimal range of DNA input per library type

Determine the dilution factor that results in a concentration of ~26 pM. This concentration is suitable for downstream template preparation.

Use the following formula:

Dilution factor = (Library concentration in pM)/26 pM

Example:

The library concentration is 10,000 pM.

Dilution factor = 10,000 pM/26 pM = 385

Thus, 1 μ L of library mixed with 385 μ L of Low TE (1:385 dilution) yields approximately 26 pM. Use this library dilution for template preparation.

 Accurate qualification & quantitation of library DNA is critical (qPCR, Bioanalyzer® analysis)

Optimizing the library input concentration

DNA Concentration

Optimal DNA input will maximize system throughput

Amplification onto ISPs

What is percent of ISPs that are templated?

Use Qubit® fluorometer

Enrichment of templated ISPs

ISP Quality Assessment

Qubit® 2.0 Fluorometer

- Protocol and Excel® program calculator available on the Ion Community
- Calculate template-positive ISPs by measuring fluorescent ratio:

Value = 10% to 30% templated ISPs

(proper TDF /correct amount of input library DNA)

NEW! The Ion Library Equalizer™ Kit

"Simple library normalization without quantitation or dilutions"

Library Template Sequence Analysis

Ion AmpliSeq[™] Libraries or Ion gDNA Fragment Libraries lon Library Equalizer™ Kit

Ion OneTouch™ 2 System

Library Quantification & Normalization

Ion Library Equalizer™ Kit: Simple Workflow

For Research Use Only. Not for use in diagnostic procedures.

Life Technologies is a Thermo Fisher Scientific brand. © 2014 Thermo Fisher Scientific, Inc. All rights reserved. Bioruptor is a registered trademark of Diagenode SA. Bioanalyzer is a registered trademark of Agilent Technologies, Inc. Pippin Prep is a trademark of Sage Science, Inc. Excel is a registered trademark of Microsoft Corporation. TaqMan is a registered trademark of Roche Molecular Systems, Inc., used under permission and license. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries.