

Institut d'Optique Graduate School TP d'Opto-Électronique

OPTO-ÉLECTRONIQUE

Travaux Pratiques

Semestre 5

Développer et caractériser un système de photodétection

Ce sujet est disponible au format électronique sur le site du LEnsE - https://lense.institutoptique.fr/ dans la rubrique Année / Première Année / Opto-Electronique S5 / TP / Sujet.

Objectif global

L'objectif principal de l'ensemble des séances de TD et de TP de ce module est de **développer et ca**ractériser un système de photodétection permettant d'obtenir idéalement une tension proportionnelle à l'intensité lumineuse d'une source à mesurer.

Modalités

À l'issue des séances de TP et de TD, les étudiant es seront capables de :

- Bloc 1 caractériser un dipôle électronique (linéaire ou non-linéaire) et en déduire ses zones de fonctionnement
- Bloc 2 caractériser un système linéaire dans les domaines temporel et fréquentiel
- Bloc 3 mettre en œuvre des montages de photodétection et de comparer leurs performances fréquentielles et temporelles
- Bloc 4 documenter un travail scientifique/technique

Une description plus détaillée de chacun des acquis d'apprentissage visés dans cette unité d'enseignement est donnée à la page suivante.

Autres ressources

Un **feuillet annexe**, présentant succinctement l'**ensemble des instruments**, est disponible sur chacune des paillasses.

Un **document annexe** contient des ressources nécessaires pour les TP : documents constructeurs, aide de cours, protocoles d'utilisation du matériel...

L'ensemble de ces documents est également disponible sur le site du LEnsE.

Acquis d'Apprentissage Visés - AAV

Plus spécifiquement pour chacun des blocs suivants, les étudiant es seront capables de :

Bloc 1 - caractériser un dipôle électronique (linéaire ou non-linéaire) statiquement et en déduire ses zones de fonctionnement

- **B 1.1** Lister les **grandeurs** et les **paramètres d'intérêt** du composant à partir d'une documentation technique fournie
- B 1.2 Choisir les paramètres des instruments de mesures et des composants de protection
- B 1.3 Tracer la caractéristique statique à l'aide :
 - d'un multimètre
 - d'un oscilloscope en mode XY
- B 1.4 Décrire le fonctionnement d'un montage simple à diodes

Bloc 2 - caractériser un système linéaire dans les domaines temporel et fréquentiel

- B 2.1 Donner l'expression de la **réponse en fréquence** attendue à partir du schéma électrique d'un circuit passif ou contenant des ALI
- B 2.2 Tracer l'allure de la **réponse en fréquence** d'un circuit sur l'écran d'un oscilloscope par une méthode de balayage en fréquence
- B 2.3 Mesurer le diagramme de Bode en amplitude d'un circuit linéaire point par point à l'aide :
 - d'un oscilloscope
 - d'un dB mètre
- B 2.4 Mesurer un déphasage
- B 2.5 Définir et mesurer la réponse indicielle et/ou la réponse impulsionnelle d'un circuit
- B 2.6 Proposer un **modèle mathématique** des caractéristiques d'un circuit à partir de relevés de mesure de la réponse en fréquence et/ou de la réponse indicielle

Bloc 3 - mettre en œuvre des montages de photodétection et de comparer leurs performances fréquentielles et temporelles

- B 3.1 Réaliser un circuit contenant une source à LED
- **B 3.2** Caractériser un **circuit de photodétection** (simple, suiveur, transimpédance, transimpédance avec filtrage)
- B 3.3 Choisir et adapter les **éléments d'un circuit de photodétection** en fonction d'une application donnée

Bloc 4 - documenter un travail scientifique/technique

- B 4.1 Documenter un cahier de laboratoire numérique partagé incluant les différents protocoles réalisés, les résultats analysés et leurs analyses
- B 4.2 Ecrire un compte-rendu d'une expérience scientifique
- B 4.3 Produire un document de communication scientifique à partir d'une expérience (en équipe)

Travail à réaliser au cours des séances

Livrables et cahier de laboratoire numérique

Au cours des différentes séances, vous serez amenés à **réaliser des expériences** afin de répondre à la problématique posée par les missions proposées.

Dans le cadre de ces expériences, vous devrez :

- 1. vous **approprier** la problématique
- 2. proposer ou justifier un protocole expérimental
- 3. câbler un circuit et le rendre opérationnel
- 4. exécuter les protocoles expérimentaux
- 5. **collecter des résultats** et les présenter de manière pertinente
- 6. justifier ou proposer un modèle mathématique
- 7. expliquer la **cohérence** entre les résultats et la problématique traitée

Vous devrez **garder une trace** de l'ensemble des ces étapes dans un **cahier de laboratoire** sous forme **numérique** et **partagé** par les membres du binôme.

Démarche scientifique

En partant d'un montage simple, nous allons suivre une démarche scientifique pour caractériser ce montage, en déduire son modèle mathématique puis l'améliorer pour obtenir des montages aux performances dynamiques (fréquentielles ici) maitrisées.

Pour cela, vous serez amenés à **utiliser et mettre en place des protocoles expérimentaux**, mettant en œuvre de l'instrumentation scientifique. Les **résultats obtenus** seront alors à **comparer au modèle mathématique**.

Tout au long des séances, vous serez alors amené à **modifier le modèle** associé à chaque montage afin de prendre en compte les observations faites sur les résultats. Cela entrainera une amélioration du montage pour **améliorer les performances** et ainsi proposer un nouveau modèle puis de nouveaux essais pour le valider. Et ainsi de suite.

Approche par compétences et livrables

Ce module d'enseignement s'inscrit dans le **déploiement de l'approche par compétences** à l'IOGS (APC à l'IOGS). Dans le cadre de ce module, les compétences suivantes seront particulièrement évaluées, au niveau 1, dans le cadre de diverses activités au cours des séances :

- C3 Réaliser et développer une solution technologique
- C4 Valider une solution technologique
- C5 Extraire et interpréter des informations et des données

La description des compétences est fournie en annexe pour chacune des 3 compétences.

Validation de missions - séances 1 et 2

Vous devrez faire valider, en binôme, auprès d'un·e encadrant·e :

- une **caractéristique statique** (photodiode)
- une **réponse fréquentielle** (détecteur simple) incluant une **mesure de bande-passante** et de la **phase** associée

Vous devrez présenter l'ensemble des livrables attendus pour justifier de la validité de vos résultats : protocoles, résultats, analyse et comparaison au modèle théorique.

Compte-rendu - séance 4

Un **compte-rendu** par binôme est à remettre en fin de séance 4.

Ce compte-rendu devra porter sur l'un des 3 montages réalisés au cours des séances 3 ou 4.

Ce document synthétique et riche de preuves (basées sur vos résultats expérimentaux) a pour objectif de revendiquer le fait que vous êtes capable de réaliser et de caractériser un système linéaire dans les domaines temporel et fréquentiel.

Une grille d'auto-évaluation, identique à celle permettant d'évaluer les comptes-rendus de TP d'Optique, est fournie à la fin de ce document.

Paragraphe sur l'impact sociétal et environnemental

Votre compte-rendu devra également **intégrer un paragraphe autour de l'impact sociétal et environnemental** de l'utilisation des 3 composants utilisés : LED, photodiode et amplificateur opérationnel/linéaire intégré.

Ce paragraphe devra faire clairement ressortir les **précautions à prendre** pour la mise en œuvre de chacun de ces composants (grandeurs électriques limitantes), ainsi que leur **prix** et leur **impact carbone**.

Quelques ressources:

- https://base-empreinte.ademe.fr/
- https://www.openlca.org/
- https://www.glimpact.com/european-global-impact-score

Autres activités - séances 3 à 5

Un **test individuel** est prévu en séance 3 ou 4 (voir planning fourni lors de la séance 2) et un **atelier par équipe** en séance 5.

Pour ces activités, veuillez vous référer au site du LEnsE, dans la rubrique Année / Première Année / Opto-Electronique S5 / Modalités.

Objectif de la séance

Lors de cette première séance, vous allez :

- étudier un premier montage de photodétection et déterminer certaines de ses caractéristiques
- caractériser statiquement le capteur de ce montage, la photodiode
- mettre en œuvre un montage d'amplification basé sur un amplificateur linéaire intégré (ALI) et le caractériser fréquentiellement et temporellement

Vous allez également vous **familiariser avec l'utilisation des appareils de mesure** mis à votre disposition au cours des séances de Travaux Pratiques d'Opto-Électronique et mettre en œuvre des protocoles expérimentaux standards en photonique.

Etude d'un montage simple de photodétection - Durée : 90 min

On s'intéresse au circuit de la figure 1 avec E = 5 V (tension continue), une photodiode de type **SFH206K** (documentation fournie dans le document annexe) et $R_{PHD} = 100 \, k\Omega$:

FIGURE 1 – Schéma du circuit de photodétection simple

On souhaite pouvoir remplir le tableau suivant (à reproduire dans votre cahier de laboratoire) :

Grandeur	Unité	Flux ambiant	Obscurité	Lampe de bureau
Intensité lumineuse Φ_e				
Tension V_S				
Courant I_{photo}				

- Proposer des protocoles (avec les schémas associés incluant les appareils de mesure) pour remplir ce tableau.
 - Quel est le lien entre la tension V_S et le flux lumineux mesuré Φ_e ?
- Câbler le montage ci-dessus, en incluant les instruments de mesure adéquats et relever les informations nécessaires pour le tableau précédent.

- ightharpoonup Q Chercher dans la documentation technique de la photodiode la valeur de la **sensibilité spectrale** et comparer le courant mesuré au courant théorique. Que pouvez-vous conclure?
- ightharpoonup M Visualiser la tension aux bornes de R_{PHD} à l'aide d'un oscilloscope et comparer le signal observé au signal attendu.

Etude statique d'une photodiode - Durée : 60 min

Le système de photodétection précédent inclus un **capteur particulier**, une photodiode, que nous allons à présent chercher à **caractériser statiquement**, c'est à dire de **tracer expérimenta-lement la loi mathématique** qui lie le courant traversant le dipôle et la différence de potentiel à ses bornes.

Nous utiliserons ici une méthode de tracer automatisée de la caractéristique statique.

Ressources

— Fiche: Diode / LED / Photodiode

— Fiche: Photodétection

— Protocole : Caractéristique statique d'un dipôle / Caractéristique Automatisée

Photodiode SFH206K

On utilisera une photodiode de type **SFH206K** (une partie de la documentation est fournie en annexe).

→ Q Rechercher et relever dans la documentation technique du constructeur de la photodiode SFH206K les valeurs intéressantes pour la mise en œuvre pratique (électrique et optique) d'un tel composant.

Choix des appareils et des composants

Dans le schéma proposé dans la rubrique **Caractéristique Automatisée** du tutoriel *Caractéristique statique d'un dipôle*, une résistance R_P est proposée comme protection en courant et une résistance R_I comme élément de mesure du courant.

On choisira $R_P=270\,\Omega$ et $R_I=10\,\Omega$. Le calcul de R_P sera étudié lors de la séance suivante.

- \rightarrow M Relever la caractéristique i=f(u) de cette photodiode, lorsqu'elle est plongée dans l'obscurité, pour des tensions u positives ET négatives.
- $ightharpoonup \mathbf{M}$ Relever la caractéristique i=f(u) de cette photodiode, lorsqu'elle est soumise à un flux lumineux constant, pour des tensions u positives ET négatives. Quelle précaution faut-il prendre lors de cette mesure?
- ightharpoonup Déterminer les zones d'utilisation possible de ce composant. Quel modèle peut-on alors proposer pour ce capteur?

Validation des résultats

→ Préparer une présentation (3-4 min maximum) rassemblant les schémas de mesure, les protocoles utilisés, les calculs réalisés, les résultats pertinents obtenus ainsi qu'une brève analyse de ces derniers.

Faire valider l'ensemble par un e encadrant e

Cette présentation devra clairement faire ressortir des preuves en lien avec :

- les compétences C3, C4 et C5
- les AAV du bloc 1

Etude fréquentielle d'un montage amplificateur - Durée : 120 min

On se propose d'étudier le circuit **amplificateur inverseur** dont le schéma est donné dans la figure 2 :

FIGURE 2 – Schéma d'un circuit amplificateur inverseur

Ce montage utilise un **amplificateur linéaire intégré (ALI)**. Pour ce TP, on choisira un ALI de type **TL081**.

On peut montrer que la fonction de transfert théorique d'un tel montage vaut :

$$\boxed{\frac{V_s}{V_e} = -\frac{R_2}{R_1}}$$

On souhaite **vérifier que cette loi reste valable** quelque soit la fréquence et l'amplitude du signal d'entrée.

Pour cela, on souhaite pouvoir remplir le tableau suivant (à reproduire dans votre cahier de laboratoire) :

Gain (dB)	[A]mplification	R_1	R_2	[B]ande [P]assante	Produit [A].[BP]	$\Delta T_{95\%}$
12						
32						

où l'amplification correspond à $\frac{V_s}{V_e}$, R_1 et R_2 les valeurs des résistances choisies, la bande-passante à $-3\,\mathrm{dB}$ et $\Delta T_{95\%}$ est le temps de réponse à 95%.

Ressources

— Fiche: Amplificateur Linéaire Intégré

— Fiche : Amplificateur Linéaire Intégré / Modèle

— Fiche : Régime Harmonique

— Fiche: Filtrage / Analyse Harmonique / Ordre 1

— Protocole : Réponse en fréquence d'un système linéaire / Procédure "classique"

— Protocole : Réponse indicielle d'un système linéaire

Alimentation symétrique

Certains composants, notamment les amplificateurs linéaires intégrés, sont capables de traiter des différences de potentiel positives et négatives. Pour cela, il est nécessaire de les alimenter de manière symétrique, c'est-à-dire, avec deux sources de tension fournissant des tensions opposées, souvent notées +VCC, pour l'alimentation positive, et -VCC, pour l'alimentation négative.

- → Q A partir de la documentation technique, noter le câblage du composant **TL081** et les tensions d'alimentation maximales.
- → M Réaliser une alimentation symétrique +10V / -10V à partir des alimentations stabilisées disponibles et mettre en place un système de contrôle de ces tensions.
 - → Q Quelles précautions faudra-t-il prendre sur la tension d'entrée de ce montage?

Réponse en fréquence

- ightharpoonup Q Quelles valeurs de résistances choisir pour obtenir un gain de 12 dB? La somme des résistances doit être comprise entre $10 \,\mathrm{k}\Omega$ et $50 \,\mathrm{k}\Omega$.
 - → M Réaliser le montage précédent et alimenter le avec l'alimentation symétrique réalisée.
- → M Tracer le diagramme de Bode en gain de ce système pour des fréquences allant de 100 Hz à 1 MHz, à l'aide de mesure réalisée à l'oscilloscope.
 - → Q Quelle était la réponse en fréquence attendue théoriquement?
 - → M Mesurer la bande-passante à -3 dB de ce montage.
 - \rightarrow M Modifier la résistance R_1 pour obtenir un gain de 32 dB.
- → M Tracer le diagramme de Bode en gain de ce système pour des fréquences allant de 100 Hz à 1 MHz, à l'aide de mesure réalisée à l'oscilloscope.
 - \rightarrow M Mesurer la bande-passante à $-3 \, dB$ de ce nouveau montage.
 - → Q Préciser alors le modèle à utiliser pour ce montage.

Réponse indicielle

- → M Pour les deux montages précédents, visualiser la réponse indicielle.
- → M Mesurer le temps de réponse à 95%.
- → Q Quel est le lien entre ce temps et la bande-passante mesurée dans la partie précédente?

Cahier de laboratoire / Check-List

tableau comparatif rempli
protocoles utilisés (avec schéma de câblage, paramètres des instruments de mesure et étapes expérimentales)
diagrammes de Bode légendés
captures d'écran d'oscilloscope des réponses indicielles
analyse des résultats
modélisation du système

Objectif de la séance

Lors de cette seconde séance, vous allez :

- mettre en place un **banc de caractérisation** d'un montage de photodétection
 - caractériser statiquement une LED
 - réaliser un **émetteur de flux lumineux** basé sur une source à LED
- mettre en œuvre un montage simple de photodétection et le caractériser fréquentiellement et temporellement

Premier modèle du montage de photodétection

Les premiers résultats obtenus lors de la précédente séance autour du montage simple de photodétection ont permis de conclure que ce type de montage permettait d'**obtenir une tension proportionnelle au flux lumineux**.

On peut montrer que la fonction de transfert théorique d'un tel montage vaut :

$$V_s = R_{PHD} \cdot I_{photo} = R_{PHD} \cdot k \cdot \Phi_e$$

où k est la sensibilité de la photodiode et Φ_e le flux lumineux à mesurer.

Validité du modèle

On souhaite **vérifier que cette loi reste valable** quelque soit la fréquence et l'amplitude du flux lumineux d'entrée.

Pour cela, on souhaite pouvoir remplir le tableau suivant (à reproduire dans votre cahier de laboratoire) et **mesurer la réponse en fréquence de ce montage** :

R_{PHD}	$ V_s _{MAX}$	[B]ande [P]assante	$[BP]/R_{PHD}$
$10\mathrm{k}\Omega$			
$100\mathrm{k}\Omega$			
$1\mathrm{M}\Omega$			

où $|V_s|_{MAX}$ est l'amplitude maximale du signal de sortie, [BP] est la bande-passante à $-3\,\mathrm{dB}$ du système et [BP]/ R_{PHD} le rapport de la bande-passante sur la valeur de la résistance R_{PHD} .

Nécessité d'une source lumineuse paramètrable

Afin de pouvoir étudier le montage de photodétection pour différentes fréquences, il est **indispensable** d'avoir à disposition **une source lumineuse dont la fréquence du flux lumineux est modifiable**.

Etude statique d'une LED - Durée : 60 min

Nous allons chercher à **caractériser statiquement** une source lumineuse de type **LED**, c'est à dire **tracer expérimentalement la loi mathématique** qui lie le courant traversant le dipôle et la différence de potentiel à ses bornes.

Ressources

- Fiche: Diode / LED / Photodiode
- Protocole : Caractéristique statique d'un dipôle / Caractéristique Manuelle

LED Rouge

On utilisera une LED Rouge de type **Kingbright L-1503ID** (une partie de la documentation est fournie en annexe).

→ Q Rechercher et relever, dans la documentation technique du constructeur de la LED Rouge, les valeurs intéressantes pour la mise en œuvre pratique (électrique et optique) d'un tel composant.

Choix des appareils et des composants

Dans le schéma proposé dans la rubrique **Caractéristique manuelle** du tutoriel *Caractéristique statique d'un dipôle*, une résistance R_P est proposée comme protection en courant.

- → Q Comment choisir cette résistance et comment régler les différents appareils de mesure?
- ightharpoonup M Relever la caractéristique i=f(u) de cette LED pour des tensions u positives ET négatives.
 - → M Déterminer les zones d'utilisation possible de ce composant.

Cahier de laboratoire / Check-List

protocoles utilisés (avec schéma de câblage, paramètres des instruments de mesure et étapes expérimentales)
courbe de la caractéristique statique
analyse de la courbe

Réalisation d'un émetteur lumineux - Durée : 60 min

Afin de pouvoir caractériser en fréquence le montage de photodétection, nous allons avoir besoin d'un émetteur lumineux dont il est possible de **contrôler la fréquence du flux lumineux émis** (voir circuit sur la figure 3).

FIGURE 3 – Schéma du circuit émetteur (à gauche) et du circuit de photodétection simple (à droite)

où Φ_e est le flux lumineux résultant de l'émetteur.

On souhaite un **flux lumineux sinusoïdal** dont il est possible de contrôler la fréquence de modulation. *Attention, on ne parle pas ici de la variation de la longueur d'onde de la source lumineuse mais bien de la modulation du flux lumineux en amplitude.*

- \rightarrow Q Quel signal doit-on appliquer sur V_e ? Quels sont les paramètres à donner à ce signal (amplitude, valeur moyenne...) pour obtenir un flux lumineux sinusoïdal?
- \rightarrow **Q** A quoi correspond la résistance R_{LED} ? Comment vérifier que le flux est sinusoïdal (sans utiliser le montage de photodétection proposé puisqu'on ne connaît pas sa réponse en fréquence)?
 - → M Réaliser le système d'émission et vérifier son bon fonctionnement.

Cahier de laboratoire / Check-List

- \square paramètres utilisés pour le générateur V_e
- ☐ protocole de vérification de la forme du flux lumineux
- □ validation du fonctionnement (capture d'écran d'oscilloscope)

Montage de photodétection - Rappel

Dans le circuit précédent, la partie de droite correspond au montage de photodétection que nous allons par la suite chercher à caractériser.

- \rightarrow **Q** A quoi sert la tension E? De quelle nature doit-elle être?
- → Q Quelle fonction de transfert cherche-t-on à caractériser sur ce montage de photodétection?
- ightharpoonup Q A-t-on accès directement à la valeur du flux lumineux Φ_e ? De quoi dépend le flux lumineux reçu par la photodiode (en lien avec celui émis par la LED)? Quelles seront alors les précautions à prendre lors des prochaines mesures?

Réponse en fréquence du montage - Durée : 120 min

On souhaite à présent **vérifier la validité du modèle proposé initialement** pour le montage simple de photodétection pour des flux lumineux modulés à différentes fréquences.

Pour cela, on placera le système émetteur devant le montage de photodétection à caractériser (voir schéma de la section précédente).

Ressources

- Fiche: Photodétection
- Fiche: Filtrage / Analyse Harmonique / Ordre 1
- Protocole : Réponse en fréquence d'un système linéaire / Procédure "classique"
- Protocole : Mesure de bande-passante
- Protocole : Réponse indicielle d'un système linéaire

Réponse en fréquence

- → M Placer le montage émetteur face au montage de photodétection (la LED en face de la partie sensible de la photodiode). Utiliser une résistance $R_{PHD} = 100 \, \mathrm{k}\Omega$.
- → M Tracer le diagramme de Bode en gain de ce système pour des fréquences allant de 100 Hz à 1 MHz, à l'aide de mesure réalisée à l'oscilloscope.
 - → Q Quelle était la réponse en fréquence attendue théoriquement?
 - → M Mesurer la bande-passante à -3 dB de ce montage.
- \Rightarrow M $\;\;$ Refaire le tracé du diagramme de Bode et la mesure de la bande-passante pour des résistances $R_{PHD}=10\,\mathrm{k}\Omega$ et $R_{PHD}=1\,\mathrm{M}\Omega$
 - → Q Conclure sur le modèle à utiliser pour ce montage.

Validation des résultats

→ Préparer une présentation (3-4 min maximum) rassemblant les schémas de mesure, les protocoles utilisés, les calculs réalisés, les résultats pertinents obtenus ainsi qu'une brève analyse de ces derniers.

Faire valider l'ensemble par un e encadrant e

Cette présentation devra clairement faire ressortir des preuves en lien avec :

- les compétences C3, C4 et C5
- les AAV du bloc 2

OPTO-ÉLECTRONIQUE 5N-027-SCI **TP Séances 3/4**

Auto-évaluation - Durée: 120 min

Au cours de l'une des séances 3 ou 4, vous aurez à réaliser une **auto-évaluation pratique** selon le planning transmis par les responsables du module.

Cette auto-évaluation portera sur la caractérisation statique d'un composant et la caractérisation en fréquence d'un système.

Les modalités du module d'Opto-Electronique sont données sur les site Internet du LEnsE.

Objectif des séances

Lors de ces séances, vous allez :

- utiliser le banc de caractérisation mis en place précédemment pour :
 - caractériser fréquentiellement et temporellement différents montages de photodétection
 - comparer les performances de chacun de ces montages

Éléments à prendre en considération pour la modélisation

Afin d'expliquer le phénomène observé précédemment, il est possible d'affiner le modèle utilisé pour l'étude du montage précédent en prenant en compte les éléments "perturbateurs".

La figure 4 présente le schéma du modèle plus complet du circuit étudié précédemment.

FIGURE 4 – Schéma du modèle équivalent du circuit de photodétection simple, incluant le système de mesure (oscilloscope et câble coaxial)

- → Q A quoi correspondent les différents éléments présents?
- → Q A partir des mesures réalisées précédemment, comment remonter aux valeurs du modèle précédent? Donner les valeurs des différents éléments qu'il est possible de calculer.

Optimisation des performances / Démarche

Dans les **3 étapes** décrites par la suite, qui correspondent à une amélioration du montage de photodétection, vous devrez être en mesure de pouvoir **comparer les grandeurs caractéristiques de ces montages**.

Comparaison des caractéristiques fréquentielles et temporelles

Vous devrez, en particulier, vous intéresser, pour chacun de ces systèmes, à :

- la **réponse en fréquence** en faisant varier la résistance R_{PHD} pour voir l'influence de ce paramètre sur leur **bande-passante** et la fréquence de résonance lorsqu'il y a lieu
- la **réponse à un échelon** (indicielle) en faisant varier la résistance R_{PHD} pour voir l'influence de ce paramètre sur le **temps de réaction** du système

Pour cela, on souhaite pouvoir remplir le tableau suivant (à reproduire dans votre cahier de laboratoire) et **mesurer la réponse en fréquence des quatre circuits** proposés (incluant le circuit simple de photodétection) :

R_{PHD}	$ V_s _{MAX}$	[B]ande [P]assante	$[BP]/R_{PHD}$	Temps de réponse
$10\mathrm{k}\Omega$				
$100\mathrm{k}\Omega$				
$1\mathrm{M}\Omega$				

où $|V_s|_{MAX}$ est l'amplitude maximale du signal de sortie, [BP] est la bande-passante à $-3\,\mathrm{dB}$ du système, [BP]/ R_{PHD} le rapport de la bande-passante sur la valeur de la résistance R_{PHD} et le temps de réponse à 95% du système.

Etape 0 / Circuit simple de photodétection

Hypothèse : une photodiode, dans sa zone de fonctionnement en capteur, produit un courant proportionnel au flux lumineux qu'elle reçoit

Réalisation : mise en série de la photodiode avec une résistance pour convertir le courant en une différence de potentiel mesurable et visualisable en fonction du temps

Etape 1 / Suiveur

Hypothèse : l'ajout d'un suiveur permet d'isoler le circuit de mesure (oscilloscope et câbles) de la partie photodétection

Réalisation: mise en place d'un montage suiveur en cascade avec le montage simple de photodétection

Résultats attendus : augmentation de la bande-passante du système de photodétection (dépendance à R_{PHD})

Etape 2 / Transimpédance

Hypothèse : la mise en place d'un montage transimpédance permet d'isoler la photodiode du circuit de mesure (oscilloscope et câbles) et ainsi imposer un potentiel constant à ses bornes (limitant ainsi l'impact de la capacité intrinsèque de la photodiode)

Réalisation: mise en place du montage transimpédance

Résultats attendus : augmentation de la bande-passante du système de photodétection (dépendance à R_{PHD}) mais apparition d'un modèle du second ordre

Modélisation : modélisation d'un système du second ordre (rebouclage d'un ALI avec un montage du premier ordre)

Etape 3 / Transimpédance amélioré

Hypothèse: l'ajout d'une capacité dans le montage transimpédance permet de contrôler parfaitement la bande-passante et de supprimer la résonance du montage précédent

Réalisation : capacité en parallèle de la résistance de contre-réaction du montage

Résultats attendus : légère dégradation de bande-passante du système de photodétection (dépendance à R_{PHD}) mais suppression de la résonance

Etape 1 / Suiveur - Durée : 120 min

On se propose d'améliorer les performances dynamiques du montage précédent en ajoutant un montage suiveur (basé sur un amplificateur linéaire intégré) entre le montage simple et les éléments de mesure (oscilloscope). On souhaite également vérifier les performances dynamiques (réponse en fréquence notamment) de ce nouveau montage et conclure sur l'intérêt de l'ajout d'un étage suiveur.

Ressources

Vous pouvez utiliser les fiches résumées suivantes :

- Protocole : Réponse en fréquence d'un système linéaire
- Protocole : Mesure de bande-passante
- Protocole : Réponse indicielle d'un système linéaire

Montage

On se propose d'analyser le circuit de la figure 5, avec $R_{PHD}=100\,\mathrm{k}\Omega$. L'amplificateur linéaire intégré sera alimenté à l'aide d'une alimentation symétrique $+10\mathrm{V}$ / $-10\mathrm{V}$.

FIGURE 5 – Schéma du circuit émetteur (à gauche) et du circuit de photodétection incluant un circuit suiveur (à droite)

- $ightharpoonup \mathbf{Q}$ Quel est le lien entre V_S et V_{RPHD} ? Puis entre V_S et I_{photo} ? Puis entre I_{photo} et le flux lumineux capté par la photodiode Φ_e ?
 - → Q Quelle est la forme théorique de la réponse en fréquence de ce montage?

Cahier de laboratoire / Check-List

☐ captures d'écran des réponses à un échelon

- □ protocoles utilisés (avec schéma de câblage, paramètres des instruments de mesure et étapes expérimentales)
 □ diagrammes de Bode
- ☐ mesures des grandeurs caractéristiques (bande-passante, temps de réponse...)
- \Box analyse des différents résultats pour 3 valeurs de R_{PHD} (10 k Ω , 100 k Ω et 1 M Ω)
- \square éléments de modélisation et lien entre les grandeurs caractéristiques et la valeur de R_{PHD}

Etape 2 / Transimpédance - Durée : 120 min

On se propose d'**étudier le montage transimpédance**, un circuit très fréquemment utilisé pour la photodétection pour ses performances dynamiques. Ce montage est basé sur un amplificateur linéaire intégré également et permet d'augmenter la bande-passante des montages vus précédemment.

On souhaite donc **vérifier les performances dynamiques** (réponse en fréquence notamment) de ce nouveau montage et conclure sur son intérêt.

Ressources

Vous pouvez utiliser les fiches résumées suivantes (en plus de celles de l'étape précédente) :

— Fiche: Filtrage actif / Analyse Harmonique / Ordre 2

Afin de faciliter la compréhension des phénomènes mis en jeu dans ce montage, vous pouvez vous reporter à la ressource : **Montage transimpédance : modélisation**.

Montage

On se propose d'analyser le circuit de la figure 6, avec $R_{PHD}=100\,\mathrm{k}\Omega$. L'amplificateur linéaire intégré sera alimenté à l'aide d'une alimentation symétrique $+10\mathrm{V}$ / $-10\mathrm{V}$.

FIGURE 6 - Schéma du circuit de photodétection de type transimpédance

 $ightharpoonup \mathbf{Q}$ Quel est le lien entre V_S et I_{photo} ? Puis entre I_{photo} et le flux lumineux capté par la photodiode Φ_e ?

Cahier de laboratoire / Check-List

protocoles utilisés (avec schéma de câblage, paramètres des instruments de mesure et étapes expérimentales)
diagrammes de Bode
captures d'écran des réponses à un échelon
mesures des grandeurs caractéristiques (bande-passante, temps de réponse, fréquence de résonance)
Solialice)

- \Box analyse des différents résultats pour 3 valeurs de R_{PHD} (10 k Ω , 100 k Ω et 1 M Ω)
- \Box éléments de modélisation et lien entre les grandeurs caractéristiques et la valeur de R_{PHD}

Etape 3 / Transimpédance amélioré - Durée : 120 min

On se propose de **s'affranchir d'un des défauts majeur du montage transimpédance**, sa résonance. On souhaite donc **vérifier les performances dynamiques** (réponse en fréquence notamment) de ce nouveau montage et conclure sur son intérêt.

Montage

On se propose d'analyser le circuit de la figure 7, avec $R_{PHD} = 100 \,\mathrm{k}\Omega$. L'amplificateur linéaire intégré sera alimenté à l'aide d'une alimentation symétrique $+10\mathrm{V}$ / $-10\mathrm{V}$.

FIGURE 7 – Schéma du circuit de photodétection de type transimpédance, avec l'ajout d'une capacité pour supprimer la résonance

 \rightarrow Q Quelle valeur de C_T faut-il pour éliminer le phénomène de résonance ? Vous pouvez vous reporter à la ressource : **Montage transimpédance : modélisation**.

Cahier de laboratoire / Check-List

protocoles utilisés (avec schéma de câblage, paramètres des instruments de mesure et étapes expérimentales)
diagrammes de Bode
captures d'écran des réponses à un échelon
mesures des grandeurs caractéristiques (bande-passante, temps de réponse, fréquence de résonance)
analyse des différents résultats pour 3 valeurs de R_{PHD} (10 k Ω , 100 k Ω et 1 M Ω)
éléments de modélisation et lien entre les grandeurs caractéristiques et la valeur de \mathcal{R}_{PHD}

OPTO-ÉLECTRONIQUE 5N-027-SCI **TP Séance 6**

Lors de cette dernière séance, vous aurez le choix parmi trois propositions.

Ce choix est laissé au libre arbitre des binômes en fonction de leurs besoins de consolider les connaissances expérimentales et théoriques sur la photodétection, de découvrir une application de la photodétection ou de mettre en oeuvre un système de régulation numérique.

Sujet au choix

Au cours de cette dernière séance, vous aurez à choisir parmi l'une des trois possibilités suivantes :

- □ consolider vos acquis sur les travaux pratiques précédents autour de la photodétection
 □ mettre en place une transmission de données par la lumière basée sur de la modulation d'amplitude (idéalement à 2 binômes)
 - ▶ Analyse spectrale, mise en œuvre d'un émetteur et d'un photodétecteur
- □ mettre en place un système de **régulation de température** incluant des aspects de traitement numérique de l'information
 - ► Etude d'un système numérique, mise en œuvre d'un capteur de température, étude de la commande d'un moteur à courant continu

Les deux dernières propositions se basent partiellement sur des maquettes (en nombre limité) à étudier puis à compléter pour obtenir l'application souhaitée.

Les sujets **Transmission par la lumière** et **Régulation de température** sont disponibles sur le site du LEnsE.

		Compétence	es d'un∙e ingénieur∙e IOGS • 2025-2026					
	C1.CE1	Proposer des solutions originales, et les faire	en mobilisant toutes les ressources nécessaires					
1	C1.CE2	évoluer, en réponse à une demande, ou à des enjeux scientifiques et techniques des acteur-ices du monde industriel ou de la société dans son ensemble	en les appuyant sur des raisonnements scientifiques					
	C1.CE3	ensemble	en considérant leurs impacts environnementaux et sociétaux					
	C2.CE1		en répondant à une problématique donnée (technique, fonctionnelle, économique, industrielle ou environnementale) et en respectant les contraintes associées					
	C2.CE2	Concevoir et dimensionner une solution	en utilisant des logiciels dédiés de simulation et de CAO					
	C2.CE3	technologique pertinente, qui intègre des fonctionnalités optiques/photoniques	en identifiant les méthodes numériques pertinentes de traitement du signal ou de l'image					
	C2.CE4		en établissant un cahier des charges technique en réponse à une demande client					
	C3.CE1		en mettant en oeuvre des moyens techniques et de l'instrumentation scientifique de pointe					
	C3.CE2	Réaliser et développer une solution technologique	en adoptant une démarche respectueuse de la sécurité et de l'intégrité des personnes					
333	C3.CE3	intégrant des fonctionnalités	en mobilisant et en associant les ressources, moyens et compétences nécessaires à cette réalisation					
	C3.CE4	optiques/photoniques	en prenant en compte l'impact sociétal et environnemental des différents choix techniques					
	C3.CE5		en documentant la démarche, les résultats et leur analyse					
	C4.CEI		en définissant et mettant en oeuvre des protocoles de test pour des diagnostics pertinents et concluants					
(C4.CE2	Valider une solution technologique intégrant des	en caractérisant ses performances					
	C4.CE3	fonctionnalités optiques/photoniques	en contrôlant la conformité à un cahier des charges selon des contraintes technologiques, budgétaires sociétales et de mise en oeuvre					
	C4.CE4		en s'assurant qu'elle répond aux attentes et aux besoins de sa hiérarchie, du client, ou de l'utilisateur·ice					
	C5.CE1		en synthétisant des données issues de mesures ou de simulations					
	C5.CE2	Extraire et Interpréter des informations et des données permettant de comprendre une situation ou un phénomène, et d'accompagner la prise de décision	en mettant en œuvre des solutions de visualisation et de représentation adaptées et convaincantes					
	C5.CE3		en enrichissant un propos par la mobilisation de ressources (état de l'art, autres sources, expertises) mettant en perspective une information					
	C6.CE1		en mobilisant son expertise acquise et sa connaissance de l'état de l'art					
√× √×	C6.CE2	Analyser et/ou modéliser un processus physique, un système ou un problème complexe	en réalisant des expériences physiques ou numériques et/ou un modèle analytique					
	C6.CE3		en commentant les résultats, les limites et les incertitudes des modèles utilisés ou des expériences réalisées					
	C7.CE1		en prenant en compte ses propres compétences et celles présentes dans son environnement de travail.					
000	C7.CE2	Travailler en équipe dans le cadre de projets de	en utilisant des outils de gestion et d'organisation du travail d'équipe					
W	C7.CE3	recherche, de développement, de production, de stratégie industrielle ou d'innovation.	en adaptant et maîtrisant sa propre communication et en s'assurant de la qualité de celle associant tous-tes les acteur-ices du projet					
	C7.CE4		en identifiant les ressources internes ou externes (humaine, financières, techniques, technologiques) nécessaires à la réalisation du projet					
80	C8.CE1	Communiquer au sujet de son projet, tant en interne qu'en externe	en produisant un contenu original sous forme écrite, orale ou multimédia, en français et en anglais, adapté au niveau d'expertise de ses interlocuteurs-trices					
	C8.CE2		en interagissant de manière adaptée au niveau d'expertise de ses interlocuteurs et en intégrant la prise en compte de la dimension interculturelle dans sa démarche, son expression et son attitude					
	C9.CE1		en s'appuyant sur un processus réflexif (autoévaluation)					
7	C9.CE2	Adapter ses pratiques et ses compétences dans un	en suscitant les interactions avec ses pair∙es et collaborateur∙ices					
1	C9.CE3	environnement en évolution constante et rapide	en prenant en compte l'impact et le contexte sociétal et environnemental de son activité					
	C9.CE4		en adoptant une démarche éthique et inclusive					

C3 · Réaliser et développer

Réaliser et développer une solution technologique intégrant des fonctionnalités optiques/photoniques

efficacité de réalisation		Niveau 3	Niveau 2	Niveau 1
2025 - 202	6	Sans guide et de façon efficace	Avec guide et de façon efficace	Avec guide
C3.CE1	en mettant en oeuvre des moyens techniques et de l'instrumentation	motive le choix le matériel	utilise les fonctionnalités avancées et pertinentes du matériel	utilise les fonctionnalités de base des matériels à disposition
C3.CE1	scientifique de pointe	choisit un protocole adapté	applique un protocole donné en temps limité	suit un protocole donné
C3.CE2	en adoptant une démarche respectueuse de la sécurité et de	liste les mesures de sécurité adaptées	respecte les mesures de sécurité habituelles	respecte les mesures de sécurité
C3.CE2	l'intégrité des personnes	ité des personnes les met en oeuvre de manière rep	repère les moments ou les lieux à risque	□ indiquées
C3.CE3	en mobilisant et en associant les ressources, moyens et	explicite les ressources, les moyens, et les compétences nécessaires et suffisantes	liste les ressources, les moyens, et les compétences utiles	reconnait les ressources et les moyens mis à disposition
C3.CE3	compétences nécessaires à cette réalisation	extrait de documents les informations utiles	extrait des documents fournis les informations utiles	extrait des documents fournis des informations ciblées
67.65/	en prenant en compte l'impact sociétal et environnemental des	fait des choix de matériels et/ou de consommables les plus respectueux de l'environnement, et dont l'impact sociétal est contrôlé	quantifie les impacts environnementaux (Bilan GES, etc) d'une solution téchnologique	applique des procédures mises en
C3.CE4	différents choix techniques	met en place une procédure permettant d'éviter le gaspillage ou de recycler des matériels et/ou consommables	liste les procédures mises en place dans le cadre de la RSE et applique celles qui sont pertinentes	□ place dans le cadre de la RSE.
C3.CE5	en documentant la démarche, les	alimente un cahier de laboratoire avec toutes les informations pertinentes	rédige un rapport d'expérience (ou support autre) en faisant de choix de plan	rédige un compte-rendu d'expérience en respectant un plan donné
	résultats et leur analyse	rédige un rapport scientiifique (ou support autre) dans les standards liés	prend des notes et relève des mesures pertinentes de façon	prend des notes et relève les informations et mesures, indiquées

C4 • Valider

Valider une solution technologique intégrant des fonctionnalités optiques/photoniques

Optimalité ou exhaustivité)			Niveau 4		Niveau 3		Niveau 2	Niveau 1 Ébauche	
2025 - 2026	5		Rigueur & optimalité		Ebauche & optimalité		Rigueur		
	en définissant et mettant en oeuvre des protocoles de test pour		Rédige les protocoles de test détaillés nécessaires.		Choisit un protocole de test optimal		Choisit un protocole existant de test de manière argumentée.		Etablit les grandes lignes d'un protocole de test
C4.CE1	des diagnostics pertinents et concluants		Met en oeuvre les tests nécessaires et suffisants de manière optimale		Met en oeuvre des tests d'une partie des fonctionnalités de manière optimale		Réalise des tests précis et rigoureux d'une partie des fonctionnalités		Réalise un test sommaire d'une partie des fonctionnalités
C4.CE2	en caractérisant ses performances		Quantifie les performances dans leur ensemble avec une indication fiable des incertitudes sur les valeurs données.		Mesure les grandeurs nécessaires et suffisantes à la caractérisation.		Mesure des grandeurs caractéristiques des performances avec des estimations fiables des incertitudes.		Mesure des grandeurs caractéristiques des performances
C4.CE3	en contrôlant la conformité à un cahier des charges selon des contraintes technologiques, budgétaires, sociétales et de mise en oeuvre		Rédige une analyse exhaustive de la conformité, appuyée par des données quantitatives		Rédige une analyse exhaustive et préliminaire des résultats des tests.		Rédige une analyse partielle de la conformité, appuyée par des données quantitatives		Rédige une analyse partielle et préliminaire des résultats des tests.
C4.CE4	en s'assurant qu'elle répond aux attentes et aux besoins de sa hiérarchie, du client, ou de l'utilisateur·ice		Sollicite de façon structurée et systématique des retours des client-es, de la hiérarchie ou des utilisateur-ices.		Sollicite des retours des client-es, de la hiérarchie ou des utilisateur-ices.		Rédige une analyse globale de la conformité aux besoins		Rédige une brève auto- analyse de la conformité aux besoins

C5 · Extraire et Interpréter

Extraire et Interpréter des informations et des données permettant de comprendre une situation ou un phénomène, et d'accompagner la prise de décision

Dimension d'évolution : Complexité et Univers			Niveau 3		Niveau 2		Niveau 1	
2025 - 202	6			Complexité et hétérogénéïté	Sin	nplicité et hétérogénéïté	Sin	nplicité et homogénéïté
C5.CE1	en synthétisant des données issues de mesures ou de simulations	Produit des données réduites		par un procédé à plusieurs étapes et à partir de données hétérogènes		par un procédé à plusieurs étapes et à partir de données homogènes		par un procédé simple (moyennage, etc.) et pour des données homogènes
C5.CE2	en mettant en œuvre des solutions de visualisation et de représentation adaptées et convaincantes	Produit des graphiques scientifiques		multi-paramètres et incluant la visualisation des incertitudes		incluant la visualisation des incertitudes		d'évolution de grandeurs indépendantes en fonction d'un paramètre
C5.CE3	en enrichissant un propos par la mobilisation de ressources (état de l'art, autres sources, expertises) mettant en perspective une information	Justifie une interprétation des données traitées		avec de multiples arguments issus de ressources externes		avec quelques arguments issus de ressources externes		avec quelques arguments simples

Grille d'évaluation de la qualité des compte-rendus de TP - Cycle Ingénieur 1ère année

Critère	Eléments observables	observables Manifeste Attendu		Attendu	Perfectible	Non observable	
	Énoncé de la problématique		Problématique claire, présentée dans l'introduction, rappelée dans le corps du		Problématique présentée dans l'introduction		
	Enonce de la problematique		document et dans la conclusion.		et reprise dans la conclusion		
	Structure du document		Plan apparent et pertinent. Démarche bien mise en évidence. Plan apparent (paragraphes numé hierarchisés)		Plan apparent (paragraphes numérotés et hierarchisés)		
Problématique et démarche	Contenu				Toutes les mesures et tous les réglages effectués en séance sont décrits dans le document.		
			Des résultats supplémentaires sont présentés dans le document. Présence de schémas/ dessins/photos réutilisables.		Toutes les courbes et figures ont un titre et sont citées dans le corps du texte.		
					Les éventuels éléments externes sont clairement crédités.		
	Cohérence de l'exposé		Cohérence et rigueur de l'introduction, de la conclusion et des paragraphes d'analyse des résultats.		Fil conducteur rigoureux, apparent.		
	Relevés expérimentaux		Motivation argumentée des protocoles utilisés. Présentation des réglages et/ou des		Présentation précise : des protocoles suivis,		
	mesures brutes avec leur incert	mesures brutes avec leur incertitudes		des mesures brutes avec leur incertitudes, et/ou des réglages.			
Mesures et réglages	Eléments de preuve		Présence d'éléments de preuve (copie d' écran, photos, etc) en nombre adapté.		Présence de quelques éléments de preuve (copie d'écran, photos, etc).		
	Traitement des mesures		Justification argumentée du choix des		Traitement éventuel des mesures explicité dans le texte.		
	Incertitudes de mesures		traitements éventuels des données.		Evaluation justifiée des incertitudes de mesure		
	Résultats		Résultats de mesure corrects ou pointage et		Résultats de mesure corrects ou pointage des erreurs manifestes.		
			analyse des erreurs manifestes		Courbes éventuelles au format scientifique (axes, unités, légendes, titre, incertitudes, courbes de tendance).	0	
Analyse	Modèle		Comparaison argumentée à un modèle.	Eléments de comparaison à un modèle		0	
	Critique		Critique argumentée du protocole et du modèle	Eléments de critique du protocole ou du modèle			
	Erreurs		Analyse des erreurs commises		Pointage des erreurs commises.		
	Synthèse		Paragraphe de conclusion reprenant les principaux résultats et leur apport à la		Paragraphe de conclusion reprenant les principaux résultats		
Conclusion	-5		problématique et présentant des perspectives		et leur apport à la problématique		
	Bilan des acquis d'apprentissag		Acquis d'apprentissage listés et comparés à ceux visés par la séance		Acquis d'apprentissage listés		
					Nom des membres du binôme, numéro de binôme, titre du TP présents sur la première page.	0	
Format			Document synthétique (nombre de pages limité).		Nom du fichier respectant le format demandé. Nombre de pages inférieur à 10.	0	
					Nombre de pages inférieur à 10.		

26 septembre 2024

Grille d'auto-évaluation des compétences expérimentales - Semestre 5 **Opto-Electronique / Test Individuel**

	А	В	С	D
Démarche	J'ai choisi le protocole adapté parmi ceux que j'ai déjà réalisé de façon autonome et argumentée.	J'ai choisi le protocole adapté mais sans pouvoir justifier son choix.	J'ai choisi partiellement le protocole adapté avec une aide extérieure pour l'établir.	Le protocole adapté m'a été fourni par une aide extérieure.
Protocole et instrumentation	J'ai mis en oeuvre protocole de manière rigoureuse et précise dans un temps raisonnable sans aide extérieure.	J'ai mis en oeuvre le protocole avec soin avec de l'aide à une seule étape.	J'ai mis en oeuvre le protocole avec de l'aide à plusieurs étapes.	Je n'ai pas su mettre en oeuvre le protocole établi, même avec de l'aide.
Réalisation / Prototypage	J'ai réalisé un circuit fiable qui permet de répérer les erreurs et de modifier les paramètres (longueur et couleur des fils adaptées, connexions robustes, accès aux composants).	J'ai réalisé un circuit fonctionnel et fiable, avec de l'aide pour la validation du circuit.	J'ai construit un circuit fonctionnel de faible fiabilité, de façon autonome.	Je n'ai pas su construire un circuit fonctionnel de façon autonome.
Résultats expérimentaux	J'ai obtenu des résultats cohérents avec les attentes initiales et en justifiant les écarts possibles.	J'ai obtenu des résultats corrects mais sans incertitudes fiables.	J'ai obtenu des résultats approximatifs et sans pouvoir justifier les erreurs potentielles.	Je n'ai pas obtenu de résultats quantitatifs exploitables.
Analyse	J'explique de manière pertinente les résultats expérimentaux à l'aide d'un modèle physique.	J'explique partiellement les résultats expérimentaux à l'aide d'un modèle physique.	J'ai une vague idée d'un modèle physique permettant d'expliquer mes résultats, sans argumentaire précis.	Je ne sais pas interpréter les résultats obtenus.

Des preuves sont attendues pour chacun des critères mentionnés précédemment (démarche, protocoles mis en oeuvre, réglages des appareils de mesure, capture d'écran d'oscilloscope...)