

RAPPORT DE PRÉ-ÉTUDE

Exemple de préétude - Exemple de société

Projet défini par : XXX - XXX

E-mail: contact@eurocodes-tools.com

Dernière modification : 2024-01-16 21:36

Ce logiciel, développé par la société Optimax Structures, est fourni uniquement dans le but d'estimation en phase d'avant-projet.

XXX s'engage à faire vérifier les résultats obtenus par un ingénieur en structure compétent et à assumer l'entière responsabilité de leur utilisation.

Veuillez noter que ce document est destiné uniquement à des fins d'estimation pour établir une offre de projet.

En aucun cas, il n'est autorisé de fabriquer ou construire une structure en utilisant ce document.

Budget prévisionnel

Poste de chiffrage	Quantité	Prix
Structure primaire en acier fabriquée	2000 kg	5670 €
Pannes fabriquées	2531 kg (Saisi par l'utilisateur)	6113 €
Système d'intégration fabriqué	316.4 m ²	5349 €
Montage de la structure en acier	305.6 m²	5363 €
Excavation, coulage des fondations et renforcement	27.5 m³	5150 €
Enlèvement de terre	34.4 m³	303 €
Total		27948 €

Prédimensionnement des éléments structuraux principaux

Élément	Vérification
Poteau	OK (89.4 %)
Arbalétrier	OK (78.6 %)
Bracon gauche	OK (99.3 _%)
Bracon droite	OK (84.6 %)

Hypothèses pour les calculs

Charges permanentes

Nom	Туре	Intensité
Poids propre des structures en acier	poids volumique	7698 daN/m³
Panneaux solaires	charge uniformément répartie	20.0 daN/m ²
Pannes	charge uniformément répartie	8.0 daN/m ²
Chéneau	charge linéaire en rive inférieure	10.0 daN/m

Localisation

Coordonnées dans le système géodésique mondial 1984 (WGS84) :

Coordonnées dans le système géodésique français 1993 (Lambert 93) :

48.827249 , 2.2709353 6858824 m , 646476 m

Adresse: 24, Rue du Gouverneur Général Éboué, 92130 Issy-les-Moulineaux, Île-de-France

Altitudes

Distances / Direction	Au droit de la construction	500 m	1000 m
Nord		36 m	33 m
Nord-Est		38 m	36 m
Est	32 m	37 m	53 m
Sud-Est		43 m	64 m
Sud	. 52 m	48 m	85 m
Sud-Ouest		34 m	46 m
Ouest		36 m	34 m
Nord-Ouest		39 m	30 m

source : European digital elevation model Copernicus 25m

Neige (NF EN 1991-1-3/NA (mai 2007) + A1 (juillet 2011))

<u>Au sol</u>

Zone: $A1(s_{R,O} = 0.45 \text{ kN/m}^2)$ Critère pour le zonage :HAUTS-DE-SEINE (92)

Charge caractéristique de neige sur le sol à l'emplacement considéré : $s_{R,32\,\text{m}}$ = 0.45 kM/m^2

Charge de neige sur le sol correspondant à une période de retour de 50 années : $s_{50\,\text{ans}}$ = 0.45 kH/m^2

En toiture

Nom	Туре	Valeur caractéristique	Coefficient de forme de la toiture	Valeur de calcul (projection horizontale)
Neige normale	charge uniformément répartie	45.0 daN/m²	0.8	34.77 daN/m²

Catégories de terrain

Secteurs	sl	s2	s3	s4
Catégories	IV	IV	IV	IV

Rayon R du secteur angulaire : 300 m

Bord bas orienté vers le secteur : s2

<u>Vent - Pression dynamique de pointe</u>

Zone : $2(v_{b,O} = 24.0 \text{ m/s})$ Critère pour le zonage :HAUTS-DE-SEINE (92)

Zone c_{dir}: 1

Secteurs	sl	s2	s3	s4
Définition du secteur	de 9 · à 99 ·	de 99 · à 189 ·	de 189 · à 279 ·	de 279 · à 9
Valeur de base de la vitesse de référence du vent v _{b,0}		24.	O m/s	
Paramètre de forme K		C	0.2	
Exposant n		C).5	
Probabilité annuelle de dépassement p		0	.02	
Coefficient de probabilité c _{prob}		1	.0	
Coefficient de direction c _{dir}	1.0	1.0	1.0	1.0
Vitesse de référence du vent v _b	24.0 m/s	24.0 m/s	24.0 m/s	24.0 m/s
Longueur de rugosité de référence z _{O,II}		0.0	D5 m	
Longueur de rugosité z ₀	1.0 m	1.0 m	1.O m	1.0 m
Facteur de terrain k _r	0.234	0.234	0.234	0.234
Hauteur au-dessus du sol z		5.1	73 m	
Hauteur minimale z _{min}	15.0 m	15.0 m	15.0 m	15.0 m
Coefficient de rugosité c _{r(z)}	0.635	0.635	0.635	0.635
Coefficient d'orographie [*] c _{o(z)}	1.0	1.0	1.0	1.0
Vitesse moyenne du vent $v_{m(z)}$	15.2 m/s	15.2 m/s	15.2 m/s	15.2 m/s
Coefficient de turbulence k _l	0.854	0.854	0.854	0.854
Ecart type de la turbulence σ_{v}	4.804 m/s	4.804 m/s	4.804 m/s	4.804 m/s
Intensité de turbulence l _{v(z)}	0.315	0.315	0.315	0.315
Masse volumique de l'air ρ	1.225 kg/m³			
Coefficient d'exposition $c_{e(z)}$	1.292	1.292	1.292	1.292
Pression dynamique de pointe q _{p(z)}	455.8 N/m²	455.8 _{N/m²}	455.8 N/m²	455.8 N/m ²
Vitesse maximale du vent pour les États Limites de Service v _{p(z),ELS}	98.2 km/h	98.2 km/h	98.2 km/h	98.2 km/h
Vitesse maximale du vent pour les États Limites Ultimes v _{p(z),ELU}	120.3 km/h	120.3 km/h	120.3 km/h	120.3 km/h

^{*} Ici, le coefficient d'orographie est calculé selon la procédure 1, pour une orographie constituée d'obstacles de hauteurs et de formes variées. Ce type d'orographie est le plus fréquemment rencontré, mais si le bâtiment est dans un cas d'orographie constitué d'obstacles bien individualisés (collines isolées ou en chaîne, falaises et escarpements), le coefficient d'orographie doit être calculé selon la procédure 2.Conformément à EN 1991-1-4 §4.3.3(I), le coefficient d'orographie calculé (I.O) n'est pas pris en compte car il n'augmente pas les vitesses du vent de plus de 5%.

Séisme

Zone: $1 (0.4 \, \text{m/s}^2)$ Critère pour le zonage :HAUTS-DE-SEINE (92)

Catégorie d'importance définie par le maître d'ouvrage : I (Bâtiments d'importance mineure pour la sécurité des personnes et dans lesquels est exclue toute activité humaine nécessitant un séjour de longue durée).

→ Aucune analyse sismique n'est donc nécessaire.

Descente de charges

Axes	Largeur de chargement	Coefficient de continuité
1	5.1 m	1.0
2	8.75 m	1.136
3	8.75 m	1.0
4	8.75 m	1.0
5	8.75 m	1.136
6	5.1 m	1.0

Axes 1 et 6

(Largeur de chargement : 5.1m, facteur de continuité : 1.0)

Nœud	F _X (daN)	Fy (daN)	F _Z (daN)	M_X (m.daN)	My (m.daN)	M _Z (m.daN)	
Charges permanentes							
1	0.0	-	-1417.4	-	-151.0	-	
Neige normale							
1	0.0	-	-1241.7	-	-0.0	-	
		Nei	ge acciden	telle			
1	-0.0	-	-0.0	-	-0.0	-	
		Vent gau	che en affa	aissement			
1	306.2	-	-938.1	-	101.4	-	
		Vent gau	che en sou	llèvement			
1	-383.1	-	1634.5	-	151.8	-	
		Vent dro	ite en affa	issement			
1	196.5	-	-938.1	-	2236.6	-	
		Vent dro	ite en soul	èvement			
1	-492.8	-	1634.5	-	-4225.5	-	
		Vent ava	nt en affai	issement			
1	84.2	298.9	-314.4	-1087.8	391.8	-0.0	
		Vent ava	nt en soul	èvement			
1	-296.3	298.9	1106.0	-1087.8	-1378.3	-0.0	
		Vent arri	ère en affa	issement			
1	84.2	-298.9	-314.4	1087.8	391.8	0.0	
		Vent arri	ère en sou	lèvement			
1	-296.3	-298.9	1106.0	1087.8	-1378.3	0.0	

Axes 2, 3, 4 et 5

(Largeur de chargement : 8.75m, facteur de continuité : 1.136)

Nœud	F _X (daN)	Fy (daN)	F _Z (daN)	M _X (m.daN)	My (m.daN)	M _Z (m.daN)	
Charges permanentes							
1	0.0	-	-2414.1	-	-314.5	-	
		Ne	eige norma	ale			
1	0.0	-	-2419.3	-	-0.0	-	
		Nei	ge acciden	telle			
1	-0.0	-	-0.0	-	-0.0	-	
		Vent gau	che en affa	issement			
1	544.6	-	-1827.7	-	85.9	-	
		Vent gau	che en sou	lèvement			
1	-798.5	-	3184.7	-	184.1	-	
		Vent dro	ite en affa	ssement			
1	434.9	-	-1827.7	-	4469.5	-	
		Vent dro	ite en soul	èvement			
1	-908.2	-	3184.7	-	-8121.6	-	
		Vent ava	int en affai	ssement			
1	164.2	298.9	-612.6	-1087.8	763.4	-0.0	
		Vent ava	nt en soul	èvement			
1	-577.4	298.9	2154.9	-1087.8	-2685.5	-0.0	
		Vent arri	ère en affa	issement			
1	164.2	-298.9	-612.6	1087.8	763.4	0.0	
		Vent arri	ère en sou	lèvement			
1	-577.4	-298.9	2154.9	1087.8	-2685.5	0.0	

Actions <u>supplémentaires</u> à prendre en compte pour les poteaux jouxtant la travée contenant le système de stabilité (poutre au vent de toiture) :

Position	F _X (daN)	F _Y (daN)	F _Z (daN)	M _X (m.daN)	M _Y (m.daN)	M _Z (m.daN)	
	Vent avant en affaissement et Vent avant en soulèvement						
Axe 4	14.8	-	4.0	-	63.3	-	
Axe 3	-14.8	-	-4.0	-	-63.3	-	
	Vent arrière en affaissement et Vent arrière en soulèvement						
Axe 3	14.8	-	4.0	-	63.3	-	
Axe 4	-14.8	-	-4.0	-	-63.3	-	

Plan d'implantation

Plan de façade

Plan de pignon

Commentaires supplémentaires

Les résultats présentés ci-dessus sont donnés à titre de pré-étude et ne sont pas certifiés.

Si vous en faites la demande (en cliquant sur le bouton ci-dessus), nous pouvons vous fournir une note de calcul complète.

<u>Cette prestation comprend également l'optimisation de la géométrie de la structure, des sections des éléments et des assemblages.</u>

Résumé de la note de calculs de structure

- A Informations générales
- B Données et résumé des résultats
 - B1 Croquis et dimensions de l'ombrière photovoltaïque
 - B 2 Récapitulatif des vérifications selon les Eurocodes
- C Descente de charges
- D Fonctionnement de la structure et principes constructifs
 - D1-Pannes
 - D 1.1 Épaisseur minimale recommandée
 - D 1.2 Efforts normaux nécessaires au dimensionnement des pannes formées à froid
 - D 2 Arbalétrier
 - D3-Poteau
 - D 4 Assemblages
 - D 4.1 Pied de poteau et ancrages
 - D 4.2 Platine d'about en tête de poteau
 - D 4.3 Goussets des bracons
 - D 4.4 Goussets de poutre au vent de toiture
- Annexe 1 Caractéristiques du modèle
 - Annexe 1.1 Nœuds
 - Annexe 1.2 Éléments
 - Annexe 1.3 Sections transversales et matériaux
- Annexe 2 Chargements
 - Annexe 2.1 Charges permanentes
 - Annexe 2.2 Charges d'exploitation entretien
 - Annexe 2.3 Charges climatiques
 - Annexe 2.3.1 Localisation
 - Annexe 2.3.2 Altitudes
 - Annexe 2.3.3 Bâtiment
 - Annexe 2.3.4 Catégories de terrain
 - Annexe 2.3.5 Neige (NF EN 1991-1-3/NA (mai 2007) + A1 (juillet 2011))
 - Annexe 2.3.5.1 Au sol
 - Annexe 2.3.5.2 En toiture
 - Annexe 2.3.6 Vent (NFEN 1991-1-4/NA (mars 2008) + AI (juillet 2011) + A2 (septembre 2012) + A3 (avril 2019))
 - Annexe 2.3.6.1 Vent Pression dynamique de pointe
 - Annexe 2.3.6.2 Degré d'obstruction sous la toiture (EN 1991-1-4 \$7.3+)
 - Annexe 2.3.6.3 Pressions de surface sur le toit
 - Annexe 2.3.6.4 Frottement sur les éléments
 - Annexe 2.3.6.5 Coefficient structural c_sc_d (EN 1991-1-4 96)
 - Annexe 2.4 Actions thermiques (EN 1991-1-5)
 - Annexe 2.4.1 Températures
 - Annexe 2.4.2 Dilatation
 - $\bullet \quad Annexe \ 2.5 \ \text{-} \ S\'{e}isme \quad \text{(Cat\'egorie d'importance I} \ \to \ \text{Aucune analyse sismique n'est requise)}$
 - Annexe 2.6 Tableaux des charges
 - Annexe 2.6.1 Charges dues au poids propre
 - Annexe 2.6.2 Charges concentrées
 - Annexe 2.7 Combinaisons de chargements (EN 1990)
 - Annexe 2.7.1 États Limites Ultimes
 - Annexe 2.7.2 États Limites de Service
- Annexe 3 Résultats des calculs mécaniques
 - \circ Annexe 3.1 Efforts normaux N_X
 - Annexe 3.2 Efforts tranchant V_Z
 - \circ Annexe 3.3 Moments de flexion M_Y
 - Annexe 3.4 Efforts tranchant V_Y
 - $\circ~$ Annexe 3.5 Moments de flexion M_Z
 - Annexe 3.6 Déplacements des nœuds
 - Annexe 3.6.1 Translations horizontales U_X
 - $\,\blacksquare\,\,$ Annexe 3.6.2 Translations horizontales U_Y
 - Annexe 3.6.3 Translations verticales U_Z
- Annexe 4 Vérifications détaillées des éléments (EN 1993-1-1)
 Annexe 4.1 Poteau

- Annexe 4.2 Arbalétrier
- Annexe 4.3 Bracons
- Annexe 5 Système de stabilité longitudinale (EN 1993-1-1)
 - Annexe 5.1 Poutre au vent de toiture
- Annexe 6 Vérifications détaillées des assemblages (EN 1993-1-8)
 - Annexe 6.1 Pied de poteau et ancrages
 - Annexe 6.2 Platine d'about en tête de poteau
 - Annexe 6.3 Goussets des bracons
 - Annexe 6.4 Goussets de poutre au vent de toiture
- Fondations
 - Croquis et tableau des dimensions
 - Taux de travail maximum par type de sollicitation et combinaisons associées
 - Détail des calculs pour la combinaison de dimensionnement

Le système pris en compte pour l'installation des pannes est : inconnu (avec ou sans éclisses)

La capacité portante du sol considérée dans l'estimation des fondations est de 0.168 MPa, soit l'équivalent de 1.68 bars (indiquant un sol de qualité plutôt médiocre). Aucune étude de sol n'a été réalisée, et il sera nécessaire de vérifier la validité de l'hypothèse de capacité portante.