Semantically Enhancing OLAP Cubes:

Integrating SPARQL and SQL for Next-Generation Data Publication & Business Intelligence

Benjamin Cogrel and Adrian Gschwend

Knowledge Graph Forum, Basel, Switzerland, May 30th 2024

CSV, XLS, ...; let's call it table

	Α	В	С	D
1	id	cityId	temp	timestamp
2	1	Q425415	-17	2009-05-19T06:32:08
3	2	Q671288	19.9	2003-11-26T11:33:18
4	3	Q956602	-26.9	2011-08-29T20:02:38
5	4	Q131638	44.8	2001-11-05T22:01:03
6	5	Q13025347	12	2011-12-03T08:09:07
7	6	Q10976	42.9	2006-03-10T05:17:37

	A	В	С
1	city	cityLabel	cityId
2	http://www.wikidata.org/entity/Q44214	Formosa	Q44214
3	http://www.wikidata.org/entity/Q41252	Bydgoszcz	Q41252
4	http://www.wikidata.org/entity/Q43433	Chandigarh	Q43433
5	http://www.wikidata.org/entity/Q38811	Nasiriyah	Q38811
6	http://www.wikidata.org/entity/Q42763	Santiago de los Caballeros	Q42763
7	http://www.wikidata.org/entity/Q43509	Guayaquil	Q43509
8	http://www.wikidata.org/entity/Q39984	Cannes	Q39984
9	http://www.wikidata.org/entity/Q40921	Honiara	Q40921
10	http://www.wikidata.org/entity/Q44162	San Fernando del Valle de Catamarca	Q44162
11	http://www.wikidata.org/entity/Q44237	Mendoza	Q44237
12	http://www.wikidata.org/entity/Q44239	Neuquén	Q44239

Tables

	Α	В	С	D
1	id	cityId	temp	timestamp
2	1	Q425415	-17	2009-05-19T06:32:08
3	2	Q671288	19.9	2003-11-26T11:33:18
4	3	Q956602	-26.9	2011-08-29T20:02:38
5	4	Q131638	44.8	2001-11-05T22:01:03
6	5	Q13025347	12	2011-12-03T08:09:07
7	6	Q10976	42.9	2006-03-10T05:17:37

Semantics of Tables?

Rows

Implicit Semantics

Implicit semantics refer to the unspoken or inferred meaning that **you** derive from context.

The City Table

Implicit semantics refer to the unspoken or inferred meaning that **you** derive from context.

Observation

	Α	В	С	D
1	id	cityId	temp	timestamp
2	1	Q425415	-17	2009-05-19T06:32:08
3	2	Q671288	19.9	2003-11-26T11:33:18
4	3	Q956602	-26.9	2011-08-29T20:02:38
5	4	Q131638	44.8	2001-11-05T22:01:03
6	5	Q13025347	12	2011-12-03T08:09:07
7	6	Q10976	42.9	2006-03-10T05:17:37

An Observation is a temperature measurement at a specific time and place.

All this is a (OLAP) Cube

Online Analytical Processing with a multi-dimensional array (hypercube)

RDF Cube Vocabularies

- Cube.link
 - Swiss government/Zazuko
 - used in all the demos shown before
- schema.org
 - schema:Observation
- Semantic Sensor Network Ontology
 - sosa:Observation
- RDF Data Cube Vocabulary
 - The original

"Observation" is the common theme, details differ

But Why?

ZAZUKO CUBE VIEWER	
SPARQL endpoint URL	
Username	
Password	
Source graph	
Fetch cubes ③	

But Why?

How?

RDF cubes with virtualization

- If your data in CSV/JSON/Parquet files or in a relational database
 - You can map it to RDF using an R2RML mapping
 - Systems like Dremio, Trino and DuckDB allow you to query files in SQL
- R2RML mappings enable 2 kinds of deployments
 - Materialization: data is transformed in RDF and loaded in a triplestore
 - Virtualization: user queries are translated into SQL and send to the data source
- 2 languages to query the KG
 - SPARQL
 - Ontop if virtual, triplestore otherwise
 - SQL (new!)
 - For Virtual KGs only (as of now)

Querying KGs in SQL

- All the default graph data is automatically available through virtual relational tables
 - Don't have to create custom SQL views (using a SPARQL query)
 - No extra-modelling effort, on a par with the SPARQL interface
 - One table per class, one per object property, one per data property
- Virtual tables contain as many columns as possible
 - They are denormalized so as to save users from writing joins
 - While still guaranteeing that there is no more than 1 row per entity
 - Safe to run aggregates over
 - Made possible by analyzing the structures of the mapping and of the source
 - Backed by many optimizations to run fast
- With foreign keys to pursue the linked data experience
 - For the 1-1 and n-1 relationships

Accessing the KG in BI tools

- The SQL connector emulates a PostgreSQL database
 - It works with its standard drivers (JDBC, ODBC, etc.)
- Works with popular tools
 - Tableau, PowerBI, Metabase (open-source)
 - Excel, Pandas, Veezoo

Let's demo it with Metabase (great at data exploration)

Q Search...

Learn about our data

DATABASES > CUBE-ODH

classes

data_properties

□ object_properties

Performance and scalability

With TimescaleDB

- Demo made on a cheap 8 GB server with 4 cores (Hetzner CPX31)
- With 480M observations in the same hypertable
 - With default partitioning (7 days)
 - And indexing for quickly retrieving the values of a given time series
- Having the same data in a standard Postgres table on a large RDS instance was painful (both at ingestion and querying times)

Scaling with DuckDB

DuckDB

- " DuckDB is a fast in-process analytical database"
- "SQLite" for large tables/time series
- No daemon, JDBC to file

Process described in this post:

https://www.linkedin.com/pulse/scaling-sparql-querying-billion-observations-ontop-duckdb-gschwend-myghf/

Scaling with DuckDB: Setup

Synthetic CSV file

- 1 billion rows in observation table, ~41GB
- ~ 7'000 cities from Wikidata in city table (join)

Ontop 5.2.0 beta 2

- No keys in SQL schema for DuckDB (performance)
- R2RML file
- Ontop Lenses instead of keys
- MacBook M3 Pro (2023), 36 GB memory

Scaling with DuckDB: Results

Synthetic CSV file

- DuckDB load from CSV: A few minutes
- Written into an index file on disk

SPARQL queries

- Count
- AVG temp by city for a particular year

endpoint address: http://localhost:8080/sparql | ontop v5.2.0-SNAPSHOT **Ontop SPARQL endpoint** Observations X SPOX AVG X Filter City X Count X + Query X PREFIX cube: <https://cube.link/> PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema"> PREFIX xsd: PREFIX xsd: http://www.w3.org/2001/XMLSchema#> PREFIX dimension: <https://example.org/1b/dimension/> SELECT ?cityName (AVG(?temp) as ?avgTemp) WHERE { ?obs a cube:Observation : 9 10 dimension:temperature ?temp ; dimension: time ? time : 11 dimension: city ?city . 12 13 14 ?city schema:name ?cityName . 15 FILTER(year(?time) = 2014)16 17 18 19 GROUP BY ?cityName 20 ORDER BY ?cityName

Scaling with DuckDB: Materialization

Same hardware, MacBook M3 Pro

- Ontop materialized the whole DB in 5h 15m
- 590GB N-Triples file
- Gzipped: 26GB
- 4'000'046'284 Triples

Triples per second: > 210'000!

How about RDF triplestores?

- No known option that reaches this speed (DuckDB + Ontop)
- Discussions started with QLever team
- Check out presentation by Hannah Bast later today

Conclusions: Why RDF cubes?

Beyond CSV & co

- Clear semantics for **everyone else**
- Make implicit knowledge explicit
- Virtual SQL tables also benefits!

Data becomes discoverable!

Conclusions: Why RDF cubes?

RDF & SPARQL is on the web (or Intranet):

- Same dimensions can be truly shared
 - "Set of terms"
 - Taxonomies
- Relate concepts
 - owl:sameAs
 - Or any other relation that makes sense
- Virtual SQL tables also benefits!

Data becomes discoverable!

Thank you!

Questions?

