Two-Level Systems, Part III

We can make $[\Pi, H] \neq 0$ by applying an external Rebl $\hat{E} = E_2 \hat{z}$

12) × 11): = N = H+

U= -d.E

H= Ho+ U

In 117,127 basis

 $H = \begin{pmatrix} E_0 - \epsilon & -\Delta \\ -\Delta & E_0 + \epsilon \end{pmatrix}$

2-State Math - Find eigenvalues of this Z-level system.

 $H = E_0 1 + \begin{pmatrix} -6 & -\Delta \\ -\Delta & +E \end{pmatrix}$ (This trick is useful when all elements of H are real)

[U] - Now just diagonalize L

$$\begin{pmatrix} -\epsilon & -\Delta \\ -\Delta & \epsilon \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E_{\mathcal{A}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$-E\alpha - \Delta\beta = E_{R}\alpha = -\Delta\beta = (E_{R} - E)\alpha$$

$$-\Delta\alpha + E_{\beta} = E_{R}\beta = -\Delta\alpha = (E_{R} - E)\beta$$

$$\frac{\Delta}{\beta} = \frac{-\Delta}{E_{R} + \epsilon} = \frac{E_{R} - \epsilon}{-\Delta}$$

$$= \sum_{n=1}^{\infty} (E_n + \epsilon)(E_n - \epsilon) = \Delta^2$$

$$= E_n^2 - \epsilon^2$$

$$= \sum_{n=1}^{\infty} (E_n + \epsilon)(E_n - \epsilon) = \Delta^2$$

$$= \sum_{n=1}^{\infty} (E_n + \epsilon)(E_n - \epsilon) = \Delta^2$$

$$= \sum_{n=1}^{\infty} (E_n + \epsilon)(E_n - \epsilon) = \Delta^2$$

Eigenvalues of H:

Eigenvectors of H found by plugging in those energies

$$\frac{\alpha}{\beta} = \frac{-\Delta}{6 \pm \sqrt{\Delta^2 + \hat{\epsilon}^2}}$$

In 11), 12) basis

 $\frac{G}{8}$ 14g > = (Ng)(-01) + (6-582+62)(2)

Alternate (one of a few) approach to diagonalization. $H19 = \lambda 19 > (H - \lambda 1) 19 > 0 = Det(H - \lambda 1) = 0$ Eigenvalues & one given by Ideterminant equation $= \rangle (E_0 - \frac{1}{2} - \lambda)(E_0 + \frac{1}{2} - \lambda) - \Delta^2 = 0$ Quadratic can for & which is easy. - Equivalent to what we did before

Check a few properties:

Orthogonality (if sor E #0)

H is non-degenerate, so (Yuly) should be O

< (u | (g) = (NuNg) (\(\sigma^2 + \(\sigma^2 - (\sigma^2 + \epsilon^2 \) = 0 \)</pre>

Limit of strong \vec{E} pointing right E > 0, $|E| >> \Delta$, $\int_{\Delta^2 + \vec{E}^2} = E \int_{\vec{E}} \int_{\Delta} (E) (1 + \frac{1}{2} \frac{\vec{E}^2}{\vec{E}^2})$

 $|Q_{g}\rangle \rightarrow N_{g} \begin{pmatrix} -\Delta \\ -\frac{\Delta^{2}}{2E} \end{pmatrix} \rightarrow e^{i\phi} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1$

(Oriented)

Limit of strong E pointing left

6<0, | E | >> 1 , \[\sigma^2 + \ell^2 = \] \[\frac{1}{6} \frac{1

 $|\Psi_g\rangle \rightarrow N_g \begin{pmatrix} -\Delta \\ 2\epsilon \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |2\rangle$

14y >> Nu (-4) - (1) = 11>

 $= -\frac{\Delta^2}{26}$ (Oriented too) but s.t. g.s. points opposite direction

Limit of weak field 1E << A $19g \rightarrow N_g \begin{pmatrix} -\Delta \\ -\Delta \end{pmatrix} = 1+>$ $|\psi_{u}\rangle \rightarrow N_{u}\begin{pmatrix} -\Delta \\ \Delta \end{pmatrix} = |-\rangle$ Eu>Eg for all E. (Lower eigenstate for Eu = Eo+Jar+62 all & is 14g).) Eg = E0 - Ja2+62 140>21-> Straight lines are energies of dipole tunelling coupling on in field, with a=0 field applied N < H 19/2×18) Field orients the eigenstates if it

enough

6

-Notice how as we change the field ground strength, the character of the appear eigenstate changes smoothly from the IR>>> 1+>>> 12>

- Without twelling, we would have a crossing

- But with turnelling interaction, we have an "avoided crossing". Common story in QM. Ballettines Usually there is some interaction.

Sometimes have to zoon in + measure carefully to see it.

- Notice that either Δ or \tilde{E} lifts degeneracy of N getting to choose between sitting in two identical wells. With either term in H, degeneracy is broken + eigenstates of H are unique. $\langle 4g | \tilde{d} | 4g \rangle = 0$. No dipole moment - Notice that at $|\tilde{E}| = 0$, and $|\tilde{E}| = 0$.

until you induce it by twning on field. Prefer to say "nolecule trane dipole moment" rather than "Permanent dipole moment"

- However, if 17 is not a real symmetry of nature, then $\langle \vec{d} \rangle \neq 0$ in eigenstates.

=> Search for EPM (fundamental electric dipole moment) of electrons, rentrons, molecules, etc.

hould also be indication of time-reversal symmetry violation

Finding eigenvalues of the general and system is very easy, as shown above. However, the eigenstate math, although straightforward, is ugly. So, for instance to see time dependence, it is often preferable to express the results in terms of mixing angles 0+0, where the results are more concise.

$$H = \begin{pmatrix} |+|_{11} & |+|_{12} \\ |+|_{21} & |+|_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(|+|_{11} + |+|_{22}) & 0 \\ \frac{1}{2}(|+|_{11} + |+|_{22}) & + \end{pmatrix} + \begin{pmatrix} \frac{1}{2}(|+|_{11} - |+|_{22}) \\ |+|_{21} & -\frac{1}{2}(|+|_{11} - |+|_{22}) \end{pmatrix}$$

$$= \frac{1}{2}(|+|_{11} + |+|_{22}) + \frac{1}{2}(|+|_{11} - |+|_{22}) \times \text{ where } K = \begin{pmatrix} 1 & 2H_{12} \\ |+|_{11} - |+|_{22} \\ |+|_{11} - |+|_{22} \end{pmatrix}$$

$$- \text{ Eigenvectors of } K \text{ are also eigenvectors of } H$$

- Ergenenersias are $E_{\pm} = \frac{1}{2}(H_{11} + H_{22}) + \frac{1}{2}(H_{11} - H_{22})K_{\pm}$ where K± are eigenvalues of K

tano= 21Hz1/ H11-Hzz) 050<71 Hz1 = | Hz1/eip , 0≤ \$<27

[9] [Maj

$$K = \begin{cases} 1 & \tan\theta e^{-i\phi} \\ \tan\theta e^{i\phi} & -1 \end{cases}$$

Eigenvalues of K are given by

$$=$$
 $(1-K)(-1-K)-\tan^2\theta=0$

$$K^2 = 1 + 6a^2\theta = \frac{1}{\cos^2\theta}$$

$$\Rightarrow$$
 $K_{\pm} = \pm \frac{1}{\cos \Theta}$

Eigenvectors:

For
$$K_{+}$$
, $\begin{pmatrix} 1 & tanoe^{-i\phi} / q \\ tanoe^{i\phi} & -1 \end{pmatrix} \begin{pmatrix} 1 & tanoe^{-i\phi} / q \\ 0 & tanoe^{-i\phi} \end{pmatrix} = 0$

$$(apobsies for trig identities...)$$

$$=) -(sin \frac{1}{2}e^{i\phi} / 2)q + (cos \frac{1}{2}e^{-i\phi} / 2)b = 0$$

$$=) \qquad [(q_{+}) = cos \frac{1}{2}e^{-i\phi} / 2)q + sin \frac{1}{2}e^{-i\phi} / 2p_{2}$$
And similarly we get $(normalized)$

$$[(q_{-}) = -sin \frac{1}{2}e^{-i\phi} / 2p_{1}) + cos \frac{1}{2}e^{-i\phi} / 2p_{2})$$

So often we will parameterize composit - diagonal coupling in terms of mixing angles, e.g. neutrinos.

tictitions B-Fields	
-Representation in terms of angles might - Yes. 2-level	GSESTS The <- level problem with
And the state of t	Same real-
- Yes. Z-level	Space and
- Yes. 2-level Systems is almost dyngo	nics are completely
equivalent to a spin-	
Spy	2 98 1/2 9
B field.	
"all I "	19,)es 1+>
z Stoch sphere	
i A d	(P2) 200 1-)
	19, 00 1+)u
Stoch sphere H) precesses about B	14->=>1->u
about B	6
B X 2 101.1	[+-E-C> tw
	H11-H22 2> - 8th B2
O+ P from before	1H21 (25)-1/2
define Bangle + eigenvectors when Hzi #0	11/21/2
Even resonant + off-resonant driv	ves map.

e.g., when B1=0 1+>> 1+>> 1+>> 1+>> by ""/2" palse. Works in NMR. equivalent can be done $|\Psi_{i}\rangle \rightarrow \frac{1}{\sqrt{2}}(|\Psi_{i}\rangle + |\Psi_{2}\rangle)$