Electromagnetic waves

- Maxwell's equations are thusly:
- $\oint E \cdot dA = q/\epsilon_0$
- $\oint B \cdot dA = 0$ for a closed surface
- $\oint E \cdot dl = -\frac{d\Phi_B}{dt}$
- $\oint B \cdot dI = \mu_0 \left(I_c + \epsilon_0 \frac{d\Phi_E}{dt} \right)$
- $E_{max} = c \cdot B_{max}$ Poynting vector (dir of

propagating) =
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

AC circuits

- V_0 or $V_{G0} = V$ across generator
- V_R = V across resistor
- V_L = V across inductor
- V_C = V across capacitor

- Z = impedance
- X_L = inductive reactance
- X_C = capacitive reactance
- R = resistance
- $I = I_0 \cos(\omega t)$
- $V_1 = 1 + 90^{\circ}$
- $V_{\rm C} = I 90^{\rm o}$
- V_R is in phase with I
- $V_{R0} = I_{O}R$

$$V_{C0} = X_{C}I_{0}$$

$$O X_{C} = 1 / \omega C$$

- Avg power = ½VI coso

Current and resistance

- Current = I = charge per unit time
- Current density = J
- Resistivity = ρ = E / J
- V = IR
- $R = \rho L / A (L = length, A = cross$ sectional area)
- Voltage across something with internal resistance = EMF - Ir
- Power = P = $VI = I^2R = V^2 / R$

Electric potential

- Electric potential energy = U =
- Electric potential = V = $\frac{U}{Q_0} = \frac{q}{4\pi\epsilon_0 r}$
- Potential difference =

$$V_a - V_b = \int_a^b E \cos\phi dl$$

- Equipotential surface is a surface where the potential has the same
- value at erry point. $E_x = -\frac{\delta V}{dx}$ and so on for the other components

B-fields

Force on a particle in Bfield: $\vec{F} = q(\vec{v} \times \vec{B})$ and

$$|\vec{F}| = q|\vec{v}||\vec{B}|\sin\theta$$

- Particle orbiting B-field: qvB =
- Charge in electric field has circular trajectory R = $\overline{|q|B}$
- Magnetic force on conductor of length $I = \vec{F} = I\vec{l} \times \vec{B}$

$$\circ \quad \vec{\tau} = \vec{\mu} \times \vec{B}$$

Inductance

- Mutual inductance happens b/ c of changing current: EMF₂ =
- Self inductance: EMF = $-L\frac{dh}{dt}$
- Inductor w/ inductance L has energy U = $\frac{1}{2}LI^2$
- Magnetic energy density = $u = \frac{2\mu}{\mu}$
- Time for current in RL circuits to get to within 1/e of its final = L / R
- ω of LC circuits: V

E-fields

- $Flux = \oint E \cdot dA = q/\epsilon_0$

Capacitors and capacitance

- Capacitance = $C = \frac{Q}{V_{ab}} = \epsilon_0 \frac{A}{d}$ k (\dot{k} = dielectric constant, which is 1 in air)
- Energy required to charge capacitor to potential difference V and charge Q = $U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$
- Energy density = $u = \frac{1}{2} \epsilon_0 E^2$

Circuits

Resistors in series

$$\begin{array}{ccc} \circ & I_1 = I_2 = I_3 \\ \circ & V_{tot} = V_1 + V_2 + V_3 \\ \circ & R_{tot} = R_1 + R_2 + R_3 \end{array}$$

Resistors in parallel

$$\begin{array}{ccc} \circ & \mathsf{V_1} = \mathsf{V_2} = \mathsf{V_3} \\ \circ & \frac{1}{R_{\mathrm{tot}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \\ \circ & \mathsf{I}_{\mathrm{tot}} = \mathsf{I_1} + \mathsf{I_2} + \mathsf{I_3} \end{array}$$

Resistors in parallel are the same as capacitors in series (and viceversa)

Reflection

- $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Total internal reflection is when it bounces back

Polarization

- Polarizers resolve light's E-field into its components, effectively destroying all non-parallel-to-thepolarizer components.
- $E_f = E_0 \cos\theta$
- $I_f = I_0 \cos^2 \theta$
- I is proportional to E2

Induced fields

- Induced EMF in a closed loop =
- Induced current or EMF tends to oppose or cancel out the change that caused it.
- If a conductor moves in a B-field, it induces an EMF that is vBL (if L and v perp to B and each other)
- $\oint E \cdot dl = -\frac{d\Phi_B}{dt}$

Electric fields of various charge distributions

Charge distribution	Point in electric field	Electric field magnitude
Single point charge q	Distance from r to q	$E = \frac{q}{4\pi\epsilon_0 r^2}$
Charge q on a surface of conducting sphere with radius R	Outside sphere, r > R	$E = \frac{q}{4\pi\epsilon_0 r^2}$
	Inside sphere, r < R	E = 0
Infinite wire, charge per unit area λ	Distance r from wire	$E = \frac{\lambda}{2\pi\epsilon_0 f}$
Infinite conducting cylinder with radius R, charge per unit length λ	Outside cylinder, r > R	$E = \frac{\lambda}{2\pi\epsilon_0 r}$
	Inside sphere r < R	E = 0
Solid insulating sphere with radius R, charge Q distributed uniformly throughout volume	Outside cylinder, r > R	$E = \frac{Q}{4\pi\epsilon_0 t^2}$
	Inside sphere r < R	$E = \frac{Qr}{4\pi\epsilon_0 R^3}$
Infinite sheet of charge within unorm charge per unit area $\boldsymbol{\sigma}$	Any point	$E = \frac{\sigma}{2\epsilon_0}$
Two oppositely charged conducting plates with surface charge densities +σ and -σ	Any point between the plates	$E = \frac{\sigma}{\epsilon_0}$

Magnetic fields

What?	Field
Moving charge	$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$
Current-carrying conductor	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$
Long, straight, current-carrying conductor	$B = \frac{\mu_0 I}{2\pi r}$
Force between current-carrying conductors	$\frac{F}{L} = \frac{\mu_0 \text{ I I}'}{2\pi r}$
Current loop	$B_{x} = \frac{\mu_{0} I a^{2}}{2(x^{2} + a^{2})^{3/2}}$
	Center of N circular loops: $B_{x} = \frac{\mu_{0} NI}{2a}$

RC capacitor charging
$$q = C\varepsilon(1 - e^{-t/RC}) = Q_f(1 - e^{-t/RC})$$
 $i = I_0e^{-t/RC}$

RC capacitor discharging
$$q = Q_0 e^{-t/RC}$$

 $i = I_0 e^{-t/RC}$