Eigenvalues and Characteristic Polynomial

Theory and Definitions

Definition

Let A be an $n \times n$ matrix. A scalar λ is called an **eigenvalue** of A if there exists a nonzero vector \mathbf{v} such that:

$$A\mathbf{v} = \lambda \mathbf{v}$$

Equivalently, λ satisfies:

$$\det(A - \lambda I) = 0$$

This equation is called the **characteristic equation**, and its left-hand side is the **characteristic polynomial** of A.

Properties:

- \bullet The characteristic polynomial of an $n\times n$ matrix is a degree- n polynomial.
- The sum of the eigenvalues equals tr(A) (the trace of A).
- The **product** of the eigenvalues equals det(A) (the determinant of A).
- Real symmetric matrices have only **real** eigenvalues.

Skills:

- Compute eigenvalues by solving $det(A \lambda I) = 0$.
- Interpret the characteristic polynomial.
- Factor and analyze for multiplicities.

Examples

Example 1: 2x2 Matrix

Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
. Find its eigenvalues.

$$det(A - \lambda I) = det \begin{bmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{bmatrix}$$
$$= (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3$$

Solve: $\lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda = 1, 3$

Example 2: 3x3 Matrix

Let
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

This matrix is upper triangular, so its eigenvalues are the diagonal entries:

$$\lambda = 3, 2, 1$$

Example 3: Symmetric Matrix

Let
$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$$
.

$$det(A - \lambda I) = det \begin{bmatrix} 4 - \lambda & 1\\ 1 & 3 - \lambda \end{bmatrix}$$
$$= (4 - \lambda)(3 - \lambda) - 1 = \lambda^2 - 7\lambda + 11$$

Solve: $\lambda^2 - 7\lambda + 11 = 0 \Rightarrow \lambda = \frac{7 \pm \sqrt{5}}{2}$ (real eigenvalues)

Practice Problems

- **P1** Find the eigenvalues of $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.
- **P2** Find the eigenvalues of $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.
- **P3** A 3x3 matrix has characteristic polynomial $\lambda^3 6\lambda^2 + 11\lambda 6$. What are its eigenvalues?
- **P4** If the trace of A is 10 and its determinant is 24, and one eigenvalue is 2, what are the other two eigenvalues (assume real roots)?

Answers:

P1:
$$\lambda = 3, -1$$

P2:
$$\lambda = -1, -2$$

P3:
$$\lambda = 1, 2, 3$$

P4: Remaining sum of eigenvalues = 8. Product of remaining two = 24/2 = 12. So roots of $x^2 - 8x + 12 = 0 \Rightarrow x = 2,6$

Diagonalization

Theory and Definitions

A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be **diagonalizable** if there exists an invertible matrix P and a diagonal matrix D such that:

$$A = PDP^{-1}$$

This means A is similar to a diagonal matrix.

When is a matrix diagonalizable?

A matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. This is always true if:

- \bullet A has n distinct eigenvalues.
- A is a real symmetric matrix.

Steps to Diagonalize a Matrix

- 1. Compute the eigenvalues $\lambda_1, \lambda_2, \ldots$ of A.
- 2. Find corresponding eigenvectors v_1, v_2, \ldots
- 3. Form matrix $P = [v_1 \ v_2 \ \dots \ v_n]$.
- 4. Form diagonal matrix D with eigenvalues on the diagonal.
- 5. Then $A = PDP^{-1}$.

Examples

Example 1: Diagonalizable Matrix

Let

$$A = \begin{bmatrix} 4 & 1 \\ 0 & 2 \end{bmatrix}$$

Find if A is diagonalizable.

Solution: Eigenvalues are $\lambda=4,2.$ Two linearly independent eigenvectors exist, so matrix is diagonalizable.

Example 2: Non-diagonalizable Matrix

Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Solution: Has only one eigenvalue $\lambda=1,$ and only one linearly independent eigenvector. Not diagonalizable.

Example 3: Symmetric Matrix

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Solution: Symmetric diagonalizable. Compute eigenvalues and eigenvectors, form P and D.

Practice Problems

- 1. Diagonalize $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
- 2. Is $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ diagonalizable?
- 3. Find a matrix A that is **not** diagonalizable and explain why.
- 4. Diagonalize the symmetric matrix $A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$

- 1. Eigenvalues $\lambda=6,1,$ diagonalizable.
- $2.\,$ Not diagonalizable. One eigenvalue, one eigenvector.
- 3. Example: $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, only one eigenvector.
- 4. Diagonalizable, real symmetric guaranteed.

Famous Matrix Decompositions

Theory and Definitions

Matrix decompositions are powerful tools in linear algebra, used to simplify solving systems, inverting matrices, and analyzing structure.

LU Decomposition

LU decomposition expresses a matrix A as the product:

$$A = LU$$

where:

- ullet L is a lower triangular matrix
- \bullet *U* is an upper triangular matrix

Conditions:

- LU decomposition exists if no row swaps are needed during Gaussian elimination.
- Otherwise, a permutation matrix P is included: PA = LU

LDV Decomposition

An LU-type decomposition where:

$$A = LDV$$

- L: unit lower triangular
- D: diagonal
- ullet V: unit upper triangular

$\mathbf{L}\mathbf{D}\mathbf{L}^{\top}\ \mathbf{Decomposition}$

For symmetric matrices:

$$A = LDL^{\top}$$

- \bullet L: lower unit triangular
- \bullet D: diagonal
- L^{\top} : transpose of L

Cholesky Decomposition

For symmetric positive-definite matrices:

$$A = LL^{\top}$$

• L: lower triangular with positive diagonal entries

Examples

Example 1: LU Decomposition

Decompose

$$A = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$$

into LU.

Solution:

Using Gaussian elimination:

$$L = \begin{bmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

Example 2: Cholesky Decomposition

Find the Cholesky decomposition of:

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

Solution:

$$L = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{2} \end{bmatrix}, \quad LL^{\top} = A$$

Practice Problems

- 1. Find the LU decomposition of $\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$
- 2. Find the Cholesky decomposition of $A = \begin{bmatrix} 25 & 15 \\ 15 & 13 \end{bmatrix}$
- 3. Which decomposition would be most appropriate for a symmetric, positive-definite matrix?

2

4. True or False: Every matrix has a Cholesky decomposition.

1.
$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

$$2. \ L = \begin{bmatrix} 5 & 0 \\ 3 & 1 \end{bmatrix}$$

- 3. Cholesky Decomposition
- 4. False

Famous Matrix Decompositions

Examples

Example 1: LU Decomposition

Decompose

$$A = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$$

into LU.

Solution:

$$L = \begin{bmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

Example 2: LU Decomposition with 3x3 matrix

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 6 & 18 & 5 \end{bmatrix}$$

Solution: Use Gaussian elimination to find L and U matrices.

Example 3: Cholesky Decomposition

Find the Cholesky decomposition of:

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

Solution:

$$L = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{2} \end{bmatrix}$$

Example 4: Cholesky Decomposition (3x3)

$$A = \begin{bmatrix} 6 & 3 & 4 \\ 3 & 6 & 5 \\ 4 & 5 & 10 \end{bmatrix}$$

Solution: Matrix is symmetric positive-definite. Apply Cholesky algorithm to compute L.

Example 5: LDL^{\top} Decomposition

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix}$$

Solution:

$$L = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

Example 6: LDV Decomposition (outline)

$$A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$$

Solution: Decompose into A=LDV, where L and V are unit triangular, and D is diagonal.

Practice Problems

- 1. Find the LU decomposition of $\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$
- 2. Find the Cholesky decomposition of $A = \begin{bmatrix} 25 & 15 \\ 15 & 13 \end{bmatrix}$
- 3. Which decomposition would be most appropriate for a symmetric, positive-definite matrix?
- 4. True or False: Every matrix has a Cholesky decomposition.
- 5. Perform LU decomposition of:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$

6. Determine the LDL $^{\top}$ decomposition of:

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

2

- 7. Explain why LU decomposition might require row swapping.
- 8. Find the LDV decomposition of:

$$\begin{bmatrix} 3 & 1 \\ 6 & 4 \end{bmatrix}$$

1.
$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

$$2. \ L = \begin{bmatrix} 5 & 0 \\ 3 & 1 \end{bmatrix}$$

- 3. Cholesky Decomposition
- 4. False
- 5. Use Gaussian elimination
- 6. Tridiagonal symmetric $\rightarrow \mathbf{L}\mathbf{D}\mathbf{L}^{\top}$ applicable
- 7. If a pivot is zero, row swaps are required to avoid division by zero.
- 8. Solve using elementary transformations to extract L, D, V

Positivity and Positive-Definite Matrices

Based on Oliver Shakiban's Text

Theory and Definitions

A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be **positive-definite** if it satisfies any of the following equivalent conditions:

- For all nonzero vectors $x \in \mathbb{R}^n$, the quadratic form $x^{\top}Ax > 0$.
- All eigenvalues of A are positive.
- All leading principal minors of A are positive.

If a matrix satisfies only that $x^{\top}Ax \geq 0$ for all $x \in \mathbb{R}^n$, then it is called **positive semi-definite**.

Symmetric Matrices and Cholesky Decomposition

A matrix A must be symmetric to be tested for positive-definiteness using the **Cholesky decomposition**. A symmetric matrix A is positive-definite if and only if there exists a lower triangular matrix L such that

$$A = LL^{\top}$$
.

Examples

Example 1: A Positive-Definite Matrix

Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

We check if $x^{\top}Ax > 0$ for all $x \neq 0$. Also compute eigenvalues:

$$\det(A - \lambda I) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0.$$

Eigenvalues: $\lambda = 1, 3$ (positive). So A is positive-definite.

Example 2: Not Positive-Definite

Let

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

Compute eigenvalues:

$$\det(A - \lambda I) = (1 - \lambda)^{2} - 4 = \lambda^{2} - 2\lambda - 3.$$

Eigenvalues: $\lambda = 3, -1$ (one negative). So A is not positive-definite.

Practice Problems

1. Determine if the matrix is positive-definite:

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$$

2. Determine if the matrix is positive-definite using leading principal minors:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

3. Use Cholesky decomposition to verify if the following matrix is positive-definite:

$$A = \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}$$

- 1. Eigenvalues are positive: $5,2 \Rightarrow$ Positive-definite.
- 2. All leading principal minors are positive: \Rightarrow Positive-definite.
- 3. Cholesky exists: $A = LL^{\top}$ with

$$L = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \Rightarrow \text{Positive-definite}.$$

Gram-Schmidt Process and QR Decomposition

Based on Oliver Shakiban's Text

Gram-Schmidt Process

The **Gram-Schmidt Process** takes a linearly independent set of vectors and converts it into an **orthonormal basis** for the same subspace. It is foundational for QR decomposition and orthogonal projections.

Given a set of linearly independent vectors u_1, u_2, \ldots, u_n , the process generates an orthonormal set q_1, q_2, \ldots, q_n as follows:

$$v_k = u_k - \sum_{j=1}^{k-1} \langle u_k, q_j \rangle q_j, \quad q_k = \frac{v_k}{\|v_k\|}$$

Example

Given $u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, perform Gram-Schmidt:

$$q_{1} = \frac{u_{1}}{\|u_{1}\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$v_{2} = u_{2} - \langle u_{2}, q_{1} \rangle q_{1} = \begin{bmatrix} 1\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 0.5\\-0.5 \end{bmatrix}$$

$$q_{2} = \frac{v_{2}}{\|v_{2}\|} = \frac{1}{\sqrt{0.5}} \begin{bmatrix} 0.5\\-0.5 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

QR Decomposition

QR Decomposition expresses a full-rank matrix A as a product A = QR where:

- Q has orthonormal columns (i.e., $Q^{\top}Q = I$),
- R is an upper triangular matrix.

This decomposition is especially useful for:

- Solving least squares problems
- Connecting to **Gram-Schmidt**: the Q matrix contains the orthonormal vectors produced by Gram-Schmidt, and R gives the coefficients used in forming the original vectors.

Example

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Applying Gram-Schmidt on the columns gives Q, and $R = Q^{T}A$.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad R = Q^{\top} A = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Practice Problems

1. Use Gram-Schmidt to orthonormalize the set:

$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$$

2. Find the QR decomposition of:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

3. Explain why Q in QR decomposition is always orthogonal when A is full rank.

- 1. Apply the Gram-Schmidt formula step-by-step to obtain orthonormal vectors.
- 2. Use Q from Gram-Schmidt; compute $R = Q^{\top}A.$
- 3. Because Gram-Schmidt constructs an orthonormal set, $Q^\top Q = I.$

Inner Products and Norms

Based on Oliver Shakiban's Text

Inner Products

An **inner product** is a generalization of the dot product. It is a function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ that satisfies:

- Linearity: $\langle ax+by,z\rangle=a\langle x,z\rangle+b\langle y,z\rangle$
- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Positivity: $\langle x, x \rangle \ge 0$ and equals 0 only if x = 0

The standard inner product in \mathbb{R}^n is:

$$\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i$$

Weighted inner products use a symmetric positive-definite matrix W:

$$\langle x, y \rangle_W = x^\top W y$$

Norms

A **norm** is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ that satisfies:

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- $\|\alpha x\| = |\alpha| \|x\|$ (homogeneity)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Vector Norms

- $||x||_1 = \sum_i |x_i|$ (Manhattan norm)
- $||x||_2 = \sqrt{\sum_i x_i^2}$ (Euclidean norm)
- $||x||_{\infty} = \max_{i} |x_{i}|$ (Maximum norm)

1

Matrix Norms

A matrix norm assigns a size to matrices. Common types include:

- Frobenius norm: $||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$
- Induced 2-norm: $||A||_2 = \max_{||x||_2=1} ||Ax||_2 = \text{largest singular value of } A$

Examples

Example 1: Standard Inner Product

For
$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$:

$$\langle x, y \rangle = 1 \cdot 3 + 2 \cdot 4 = 11$$

Example 2: Weighted Inner Product

With
$$W = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
,

$$\langle x,y\rangle_W=x^\top Wy=\begin{bmatrix}1&2\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\begin{bmatrix}3\\4\end{bmatrix}=1\cdot 2\cdot 3+2\cdot 4=6+8=14$$

Example 3: Induced 2-Norm

For $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, the induced 2-norm is the maximum singular value = 2.

Practice Problems

1. Compute
$$\langle x,y \rangle$$
 for $x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $y = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$.

2. Compute
$$||x||_2$$
 for $x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

3. Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Find $||A||_F$.

1.
$$\langle x, y \rangle = 1 \cdot 4 + 3 \cdot (-2) = 4 - 6 = -2$$

2.
$$||x||_2 = \sqrt{3^2 + 4^2} = 5$$

3.
$$||A||_F = \sqrt{0^2 + 1^2 + (-1)^2 + 0^2} = \sqrt{2}$$

Cholesky Factorization, Equivalence of Norms, Orthogonal Matrices

Based on Oliver Shakiban's Text

Cholesky Factorization

The Cholesky Factorization is a matrix decomposition applicable only to symmetric positive-definite matrices. For such a matrix A, there exists a unique lower triangular matrix L with positive diagonal entries such that:

$$A = LL^{\top}$$

Key Features:

- Works only for symmetric positive-definite matrices.
- More efficient and numerically stable than LU decomposition.
- Useful in solving systems Ax = b by forward and backward substitution.

Example

Let

$$A = \begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix}$$

Cholesky factorization gives:

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix}, \quad \text{since } A = LL^{\top}$$

Equivalence of Norms on \mathbb{R}^n

Theorem (3.17): All norms on \mathbb{R}^n are equivalent.

This means that for any two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^n , there exist constants c, C > 0 such that:

$$c||x||_a \le ||x||_b \le C||x||_a$$
 for all $x \in \mathbb{R}^n$

Implications:

- Convergence in one norm implies convergence in any other.
- Boundedness is preserved under any norm.
- Topological properties of \mathbb{R}^n do not depend on the choice of norm.

Example

Although $||x||_1$, $||x||_2$, and $||x||_{\infty}$ differ in value, they all define the same notion of convergence and bounded sets in \mathbb{R}^n .

Orthogonal Matrices

A matrix $Q \in \mathbb{R}^{n \times n}$ is **orthogonal** if:

$$Q^{\top}Q = I$$
 (equivalently, $Q^{-1} = Q^{\top}$)

Properties:

- \bullet Columns (and rows) of Q form an orthonormal set.
- ||Qx|| = ||x|| for all x (length-preserving).
- Preserves angles between vectors.
- $\det(Q) = \pm 1$.

Example

Let

$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Then $Q^{\top}Q = I$, so Q is orthogonal.

Practice Problems

1. Perform Cholesky decomposition of:

$$A = \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}$$

- 2. Prove that $||x||_1 \le \sqrt{n}||x||_2$ for $x \in \mathbb{R}^n$.
- 3. Show that if Q is orthogonal, then $||Qx||_2 = ||x||_2$.

- 1. Cholesky factorization exists. $L = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix}$
- 2. Follows from Cauchy-Schwarz: $||x||_1 \leq \sqrt{n}||x||_2$
- 3. $||Qx||_2^2 = x^\top Q^\top Qx = x^\top x = ||x||_2^2$

Apostol Volume II - Chapter 8 Differentiation of Functions of Several Variables

1. Directional Derivatives and Partial Derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **directional derivative** of f at a point **a** in the direction of a unit vector **u** is:

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$$

If f is differentiable at \mathbf{a} , then:

$$D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

Partial derivatives are special cases where \mathbf{u} is a standard basis vector.

Example

Let $f(x,y) = x^2y + y^3$. Find the directional derivative at (1,2) in the direction of $\mathbf{u} = \frac{1}{\sqrt{2}}(1,1)$.

$$\nabla f = (2xy, x^2 + 3y^2), \quad \nabla f(1, 2) = (4, 13)$$

$$D_{\mathbf{u}}f(1, 2) = \frac{1}{\sqrt{2}}(4 + 13) = \frac{17}{\sqrt{2}}$$

2. Partial Derivatives of Higher Order

Higher-order partial derivatives are derivatives taken multiple times with respect to one or more variables:

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial x \partial y}$, etc.

Example

$$f(x,y) = x^2 y^3$$

$$\frac{\partial f}{\partial x} = 2xy^3, \quad \frac{\partial^2 f}{\partial x \partial y} = 6xy^2$$

3. Directional Derivatives and Continuity

A function may have directional derivatives at a point without being continuous there.

Example

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$, and $f(0,0) = 0$.
Directional derivatives at the origin exist but f is not continuous at $(0,0)$.

4. Total Derivative

The total derivative of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the linear map $Df(\mathbf{a})$ such that:

$$f(\mathbf{a} + \mathbf{h}) \approx f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{h})$$

If f has continuous partial derivatives, then the total derivative exists and is given by the gradient:

$$Df(\mathbf{a}) = \nabla f(\mathbf{a})$$

5. A Sufficient Condition for Differentiability

If all partial derivatives of f exist and are continuous near \mathbf{a} , then f is differentiable at \mathbf{a} .

6. A Chain Rule for Derivatives of Scalar Fields

Let $f: \mathbb{R}^n \to \mathbb{R}$, and $\mathbf{x}(t): \mathbb{R} \to \mathbb{R}^n$, then:

$$\frac{d}{dt}f(\mathbf{x}(t)) = \nabla f(\mathbf{x}(t)) \cdot \frac{d\mathbf{x}}{dt}$$

Example

If $f(x,y) = x^2 + y^2$, $x = t^2$, $y = \sin t$, then:

$$\frac{d}{dt}f = 2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} = 2t^2 \cdot 2t + 2\sin t \cdot \cos t$$

7. Derivatives of Vector Fields

Let $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$, then the derivative at a point is the Jacobian matrix:

$$J_{\mathbf{F}} = \left[\frac{\partial F_i}{\partial x_j} \right]$$

Example

$$\mathbf{F}(x,y) = (x^2 + y, xy^2) \Rightarrow J = \begin{bmatrix} 2x & 1\\ y^2 & 2xy \end{bmatrix}$$

8. Differentiability Implies Continuity

If a function is differentiable at a point, it is also continuous at that point.

9. Chain Rule for Derivatives of Vector Fields

Let $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{G}: \mathbb{R}^m \to \mathbb{R}^p$, then:

$$D(\mathbf{G} \circ \mathbf{F})(x) = D\mathbf{G}(\mathbf{F}(x)) \cdot D\mathbf{F}(x)$$

10. Matrix Form of the Chain Rule

The chain rule in matrix form for compositions of vector functions:

$$J_{\mathbf{G} \circ \mathbf{F}} = J_{\mathbf{G}} \cdot J_{\mathbf{F}}$$

11. Sufficient Conditions for Equality of Mixed Partial Derivatives

If the mixed partial derivatives are continuous at a point, then they are equal:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Example

$$f(x,y) = x^2 y^3 \Rightarrow \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 6xy^2$$

Apostol Volume II - Chapter 9 Extrema of Functions of Several Variables

1. Maxima, Minima and Saddle Points

A point $\mathbf{a} \in \mathbb{R}^n$ is a:

- Local maximum if $f(\mathbf{a}) \ge f(\mathbf{x})$ for all \mathbf{x} near \mathbf{a} ,
- Local minimum if $f(\mathbf{a}) \leq f(\mathbf{x})$ for all \mathbf{x} near \mathbf{a} ,
- Saddle point if it is not a max/min but is a stationary point (i.e., $\nabla f(\mathbf{a}) = 0$).

Example

 $f(x,y) = x^2 - y^2$: has a saddle point at (0,0) since

$$\nabla f = (2x, -2y), \quad \nabla f(0, 0) = (0, 0)$$

2. Second Order Taylor Formula for Scalar Fields

The second-order Taylor expansion of f near \mathbf{a} is:

$$f(\mathbf{a} + \mathbf{h}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T H_f(\mathbf{a}) \mathbf{h}$$

Where $H_f(\mathbf{a})$ is the **Hessian matrix** of second partial derivatives.

Example

Let $f(x,y) = x^2 + y^2$, compute Taylor expansion at (0,0):

$$\nabla f = (2x, 2y), \quad H_f = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$f(h, k) \approx 0 + 0 + \frac{1}{2}(h^2 + k^2) = \frac{1}{2}(h^2 + k^2)$$

3. Nature of Stationary Point Determined by Eigenvalues of Hessian Matrix

If $\nabla f(\mathbf{a}) = 0$, then the behavior of f near **a** is determined by the eigenvalues of the Hessian matrix:

- All eigenvalues positive: local minimum
- All eigenvalues negative: local maximum
- Mixed signs: saddle point
- Zero eigenvalue(s): test is inconclusive

4. Second Derivative Test for Extrema of Functions of Two Variables

Let f(x,y) be C^2 and let (a,b) be a critical point. Define:

$$D = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^{2}$$

- If D > 0 and $f_{xx}(a, b) > 0$: local minimum
- If D > 0 and $f_{xx}(a,b) < 0$: local maximum
- If D < 0: saddle point
- If D = 0: test is inconclusive

Example

Let $f(x,y) = x^3 - 3xy^2$

$$f_x = 3x^2 - 3y^2, \quad f_y = -6xy$$

Critical point at (0,0)

$$f_{xx} = 6x$$
, $f_{yy} = -6x$, $f_{xy} = -6y \Rightarrow D = f_{xx}f_{yy} - (f_{xy})^2 = -36x^2 - 36y^2 \Rightarrow D(0,0) = 0$

So test is inconclusive.

Practice Problems Apostol Volume II Chapters 8 and 9

Practice Problems

Chapter 8: Differentiation of Functions of Several Variables

- **8.1** Compute the directional derivative of $f(x,y) = x^2y + y^3$ at (1,2) in the direction of $\mathbf{u} = \frac{1}{\sqrt{2}}(1,1)$.
- **8.2** Compute the gradient of $f(x,y) = \ln(x^2 + y^2)$ and evaluate it at (1,1).
- **8.3** Find all second-order partial derivatives of $f(x,y) = e^{xy}$.
- **8.4** Check whether the function $f(x,y) = \frac{2xy}{x^2+y^2}$ (with f(0,0) = 0) is continuous at the origin.
- **8.5** Find the total derivative of $f(x,y) = x^2 + xy$ at the point (1,2).
- **8.6** State a sufficient condition for differentiability of a function f(x,y) at a point.
- **8.7** Let $f(x,y) = \sin(x^2 + y^2)$, and $x = t^2, y = t$. Use the chain rule to compute $\frac{df}{dt}$.
- **8.8** Find the Jacobian matrix of $\mathbf{F}(x,y) = (xy, x^2 + y^2)$.
- **8.9** If f(x,y) is differentiable at (1,2), is it necessarily continuous at that point? Justify.
- **8.10** Given $\mathbf{F}(x,y) = (x+y,xy)$ and $\mathbf{G}(u,v) = (u^2,v^2)$, compute $D(\mathbf{G} \circ \mathbf{F})$.
- **8.11** Verify whether $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ for $f(x, y) = \ln(x^2 + y^2)$.

Chapter 9: Extrema of Functions of Several Variables

- **9.1** Identify and classify the critical points of $f(x,y) = x^2 y^2$.
- **9.2** Find and classify the critical points of $f(x,y) = x^2 + y^2 + xy$.
- **9.3** Use the second-order Taylor formula to approximate $f(x,y) = e^x \cos y$ at (0,0) for small x,y.
- **9.4** Compute the Hessian matrix of $f(x,y) = x^2 + 4xy + y^2$, and determine the nature of the stationary point at the origin.
- **9.5** Use the second derivative test to classify the critical point of $f(x,y) = x^3 3xy^2$ at (0,0).
- **9.6** Find all critical points and use the second derivative test for $f(x,y) = x^4 + y^4 4xy$.
- **9.7** Let $f(x,y) = x^2 + 3xy + y^2$. Compute the second-order Taylor polynomial at (1,1).
- 9.8 Explain how eigenvalues of the Hessian matrix help classify stationary points.
- **9.9** Determine whether the function $f(x,y) = x^2 + y^2$ has a saddle point.

Solutions

8.1
$$\nabla f = (2xy, x^2 + 3y^2) = (4, 13)$$
, Answer: $\frac{17}{\sqrt{2}}$

8.2
$$\nabla f = \left(\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}\right) = (1, 1)$$

8.3
$$f_x = ye^{xy}, f_y = xe^{xy}, f_{xx} = y^2e^{xy}, f_{yy} = x^2e^{xy}, f_{xy} = (1+xy)e^{xy}$$

8.4 Not continuous at origin (limit depends on path)

8.5
$$Df = (2x + y, x)$$
, at $(1, 2) : (4, 1)$

8.6 If all partials exist and are continuous \rightarrow function is differentiable.

8.7 Chain rule:
$$df/dt = \nabla f \cdot dx/dt = 2t\cos(t^4+t^2) + 2t^2\cos(t^4+t^2)$$

8.8
$$J = \begin{bmatrix} y & x \\ 2x & 2y \end{bmatrix}$$

8.9 Yes, differentiability implies continuity.

8.10
$$D\mathbf{F} = \begin{bmatrix} 1 & 1 \\ y & x \end{bmatrix}, D\mathbf{G} = \begin{bmatrix} 2u & 0 \\ 0 & 2v \end{bmatrix} \Rightarrow D(\mathbf{G} \circ \mathbf{F})$$
 via chain rule

8.11 Mixed partials are equal if function is smooth — here they are.

9.1 Saddle point at
$$(0,0)$$

9.2
$$\nabla f = (2x + y, 2y + x) = 0 \Rightarrow (0, 0) \rightarrow \min$$

9.3
$$f(x,y) \approx 1 + x - \frac{y^2}{2}$$

9.4
$$H = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$$
, eigenvalues: $6, -2 \Rightarrow$ saddle

9.5
$$D = -36x^2 - 36y^2 = 0 \Rightarrow \text{inconclusive}$$

9.6
$$\nabla f = (4x^3 - 4y, 4y^3 - 4x)$$
, critical points at $(0,0)$ and more \rightarrow test each using Hessian.

9.7 Gradient =
$$(2x + 3y, 3x + 2y)$$
, Hessian = $[[2, 3], [3, 2]] \rightarrow$ Apply Taylor formula

9.8 Positive definite \rightarrow local min, negative definite \rightarrow max, mixed \rightarrow saddle

9.9 No, has a local minimum