Number Systems:

(Decimal)

base (radix)=10

base (radix) = 2 (Binary)

0,1

base (radix) = 8 (odal)

6, 1, 2, 3, 4, 5, 6, 7

base (radix) = 16 (Hexa decimal)

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

1734: 1x10+7x10+3x10+4x10

dp. dp_2 d, do o d d ___ d_n

Tadix point

$$(11010) \longrightarrow 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{2} + 0 \times 2^{2}$$

$$= (26)_{10}$$

use "Summation" method to convert binary to decimal

Decimal to Binary Conversion:

Use "Division" method to Convert decimal to binary
(179)10

Remainder

R=1 LSB (Least Significant

$$R = 1$$

$$5 \div 2 = 2$$
 R=1

$$2 - 2 = 5$$
 $R = 6$

(Most Significant Bit)

$$(179)_{10} = (10110011)_{2}$$

(3.703125)10

$$0.40625 \times 2 = 0.812$$

$$0.8125 \times 2 = 1.625$$

$$0.625 \times 2 = 0.25$$

$$(3.763125)_{10} = (11.10||01)_{2}$$

$$0.25 \times 2 = 0.5$$

$$0.8125 \times 2 = 1.625$$

0.625 \times 2 = 1.25

Octal base
$$(r=8)$$
: $(0,1,2,3,4,5,6,7)$
radix

octal -> Decimal: Use "Summertion" method

$$(127.4)_8 = 118^2 + 218^1 + 718^2 + 418^1$$

$$(127.4)_8 = (87.5)_{10}$$

Octal - binary: Use "Substitution" method"

$$\frac{\text{odd}}{\text{o}} = \frac{\text{binary}}{\text{o}}$$

$$\frac{\text{o}}{\text{o}} = \frac{\text{o}}{\text{o}} = \frac{\text{o$$

binary = octal: Use "Substitution" method

$$(1006|1001110)_2 = (4316)_8$$

$$(10.1011)_2 = (?)_8$$

 $(10.1011)_2 = (?)_8$
 $(10.1011)_2 = (2.54)_8$

Decimal to Octal:

$$467 \div 8 = 58$$

$$58 \div 8 = 7$$

$$7 \div 8 = 0$$

$$(467)_{(0)} = (723)_{Q}$$

use "Substitution" method

Decimal to Hexadecimal Conversion:

$$(3417)_{10} = (?)_{16}$$
 Use Division method
 $3417 - 16 = 213$ 9 - LSD
 $213 - 16 = 13$ 5
 $313 - 16 = 0$ 3 - MSD
 $(3417)_{10} = (D 59)_{16}$

ed in	\							
Cozy in	/ C	in]	X	Y	Parate	Cout	Sum	
	•	0	0	0	\$	0	0	
		ව	0	1	200	0	1	
		ð	\	0		0	A	
	-	0	1	1	A PARTY.	•	0	
		1	0	0	7	O	1	
		1	•	1	*	1	0	
	-	1	1	0	September 1	•	0	
	-	1		\ 1	¥.	t	1	
	1 1 1 1 1							
	+ 11111							

Signed Magnitude Representation:

Example: 4-bit System:

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

g-bit System:

$$0|0|0|0| = (+85)_{0}$$
 $1|0|0|0| = (-85)_{0}$

25-Complement Representation:

- 1 Complement the digits
- (2) Add " to LSB
- 3 Discard Cout in the MSB
 Carry out

- 1) Complement the digits: 1600
- 2) Add "1" to LSB;

$$(-1) x^{2} + 0x^{2} + 0x^{2} + 1x^{2}$$

$$= -8 + 1 = -7$$

Range of numbers in a n-bit 25-complement

Unsigned binary System: $(89)_{10}$ [$1\times2^{6}+1\times2^{2}+1\times2^{2}+1\times2^{2}$]

Signed - magnitude representation system: $(-25)_{10}$ 2's-Corplemed representation system: $(-39)_{10}$ $(-1)\times2^{6}+(\times2^{4}+1\times2^{2}+1\times2^{2})=-39$

Addition/Subtraction with 25-Complement numbers:

$$(+4) - (+3) = (+4) + (-3)$$

$$+ \frac{1}{100} (-3)$$
 $+ \frac{1}{100} (-3)$

Addition/Subtraction in Signed-magnitude systems:

o work with the magnitudes then make the decision on the sign

magnitude companion

Addition:
$$(+A) + (+B)$$
 $+ (A+B)$ $+ (A+B)$

Example: n=4, Signed-magnitude System

$$\begin{array}{c|cccc}
+ & 0 & 0 & 1 & (+3)_{16} \\
\hline
+ & 0 & 0 & 1 & (+2)_{16} \\
\hline
0 & 1 & 0 & 1 & (+5)_{10}
\end{array}$$

$$(AB)$$

$$(AB)$$

$$(AB)$$

$$(AB)$$

Binary Multiplication: