Билет 11-01

Шифр

1. На гладкой горизонтальной поверхности стола покоится клин. Гладкая наклонная поверхность клина образует с горизонтом угол α такой, что $\cos \alpha = 0,6$. Если шайбе, находящейся у основания клина, сообщить начальную скорость V_0 вдоль поверхности клина (см. рис.), то к моменту достижения шайбой высшей точки траектории скорость шайбы уменьшается в n=5 раз. В процессе $\sqrt{1/1/16}$ движения шайба безотрывно скользит по клину, а клин по столу. Ускорение свободного падения д. Известными считать V_0 , n и α .

- 1) Найдите отношение m/M массы шайбы к массе клина.
- 2) На какую максимальную высоту H, отсчитанную от точки старта, поднимается шайба в процессе движения по клину?
- 3) Через какое время T после старта шайба поднимается на максимальную высоту?
- 2. Подвижный поршень делит объем горизонтально расположенного сосуда на два отсека с общим объемом V = 150 л. В первый отсек ввели $v_1 = 1$ моль воды, а во второй ввели $v_2 = 2$ моль азота. Можно считать, что объем введенной воды намного меньше V. В отсеках установилась температура $T_1 = 275$ K. Сосуд вместе с содержимым прогревают до температуры T_2 =373 К. Давление насыщенного пара воды при температуре $T_1 = 275$ K равно $P_H = 705$ Па. Плотность воды $\rho = 1$ г/см³.
 - 1) Найти давление P_1 в сосуде до прогревания.

Класс 11

- 2) Найти объем V_1 первого отсека до прогревания.
- 3) Найти давление P_2 в сосуде после прогревания.
- 3. В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны. Ключ K замыкают.
 - 1) Найти напряжение на катушке индуктивности сразу после замыкания ключа.
- 2) Найти максимальную скорость изменения энергии $N_{\rm m}$ в катушке индуктивности.
 - 3) Найти скорость изменения тока в цепи в момент, когда скорость изменения энергии в катушке равна 24/49 от максимальной скорости $N_{\rm m}$.

- 1) Найти максимальный ток в рамке.
- 2) Найти максимальную силу натяжения длинной стороны рамки.
- 5. На главной оптической оси тонкой рассеивающей линзы с фокусным расстоянием F = -30 см находится муравей S на расстоянии $d_1 = 45$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V = 6 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L = 6 см от линзы.

- 1) На каком расстоянии от линзы получится изображение муравья при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение муравья в момент времени t_0 в системе линза-зеркало?
- 3) С какой скоростью движется изображение муравья в момент времени t_0 в системе линза-зеркало?

Билет 11-02

Шифр

1. На гладкой горизонтальной поверхности стола покоится клин. Гладкая наклонная поверхность клина образует с горизонтом угол $\alpha = \pi/3$. Если шайбе, находящейся у основания клина, сообщить некоторую начальную скорость V_0 вдоль поверхности клина (см. рис.), то шайба поднимается на максимальную высоту H, отсчитанную от точки старта. К этому моменту скорость шайбы уменьшается в n=4 раза. В процессе движения шайба безотрывно скользит по клину, а клин по столу. Ускорение свободного падения g. Известными считать α , n и H.

- 1) Найдите отношение M/m массы клина к массе шайбы.
- 2) Найдите начальную скорость V_0 шайбы.

Класс 11

- 3) Через какое время T после старта шайба поднимается на максимальную высоту?
- 2. Подвижный поршень делит объем горизонтально расположенного сосуда на два отсека с общим объемом V = 90 л. В первом отсеке при температуре $T_1 = 373$ K находится $v_1 = 0.5$ моль водяного пара, во втором при той же температуре $v_2 = 1,5$ моль азота. Сосуд вместе с содержимым охлаждают до температуры $T_2 = 280 \text{ K}$. Давление насыщенного пара воды при температуре $T_2 = 280 \text{ K}$ равно $P_{\rm H} = 997 \text{ Па}$. Плотность воды $\rho = 1$ г/см³. Объем воды, которая может образоваться из пара, намного меньше объема пара.
 - 1) Найти давление P_1 в сосуде до охлаждения.
 - 2) Найти давление P_2 в сосуде после охлаждения.
 - 3) Найти объем V_1 первого отсека после охлаждения.
- 3. В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны. Ключ K замыкают.
 - 1) Найти напряжение на катушке индуктивности сразу после замыкания ключа.
 - 2) Найти максимальную мощность $P_{\rm m}$, потребляемую катушкой индуктивности.
 - 3) Найти скорость изменения тока в цепи в момент, когда потребляемая катушкой мощность равна 7/16 от максимальной мощности $P_{\rm m}$.

4. По длинному соленоиду пропускается переменный ток, изменяющийся по гармоническому закону с циклической частотой ω . В результате вдали от торцов соленоида возникает однородное магнитное поле с максимальной индукцией B_0 . В плоскости торца соленоида между двумя закрепленными тонкими гладкими стеклянными пластинами помещена прямоугольная жесткая рамка из проволоки со сторонами а и 4а (см. рис.). Зазор между пластинами незначительно больше диаметра проволоки. Сопротивление единицы ДЛИНЫ проволоки

- 1) Найти максимальный ток в рамке.
- 2) Найти максимальную силу сжатия короткой стороны рамки.
- 5. На главной оптической оси тонкой рассеивающей линзы с фокусным расстоянием F = -48 см находится гайка S на расстоянии $d_1 = 80$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V = 4 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L = 9 см от линзы.

- 1) На каком расстоянии от линзы получится изображение гайки при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение гайки в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение гайки в момент времени t_0 в системе линза-зеркало?

Билет 11-03

Шифр

1. На гладкой горизонтальной поверхности стола покоится клин. Гладкая наклонная поверхность клина образует с горизонтом некоторый угол α . Если шайбе, находящейся у основания клина, сообщить начальную скорость V_0 вдоль поверхности клина (см. рис.), то к моменту достижения шайбой высшей точки траектории скорость шайбы уменьшается в n=5 раз. Отношение массы шайбы к массе клина m/M=1/3. В процессе движения шайба безотрывно скользит по клину, а клин по столу. Ускорение свободного падения g. Известными считать V_0 , n и m/M.

- 1) Найдите угол α .
- S В системе отсчета, связанной с клином, удаляется шайба от точки старта?
- 3) Через какое время T после старта шайба оказывается на этом максимальном расстоянии от точки старта?
- **2.** Подвижный поршень делит объем горизонтально расположенного сосуда на два отсека с общим объемом V = 110 л. В первый отсек ввели $v_1 = 0.6$ моль воды, а во второй ввели $v_2 = 10/3$ моль гелия. Можно считать, что объем введенной воды намного меньше V. В отсеках установилась температура $T_1 = 287$ К. Сосуд вместе с содержимым прогревают до температуры $T_2 = 373$ К. В результате часть воды превращается в пар. Давление насыщенного пара воды при температуре $T_1 = 287$ К равно $P_H = 1600$ Па. Плотность воды $\rho = 1$ г/см³.
 - 1) Найти давление P_1 в сосуде до прогревания.
 - 2) Найти объем V_1 первого отсека до прогревания.
 - 3) Найти объем V_2 первого отсека после прогревания.
- **3.** В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны. Ключ K замыкают.
 - 1) Найти напряжение на катушке индуктивности сразу после замыкания ключа.
- 2) Найти максимальную скорость изменения энергии $N_{\rm m}$ в катушке индуктивности.

диаметра проволоки. Сопротивление единицы длины проволоки ρ . Индуктивность рамки не учитывать. Размеры рамки сравнимы с диаметром соленоида.

- 1) Найти максимальный ток в рамке.
- 2) Найти максимальную силу натяжения длинной стороны рамки.
- **5.** На главной оптической оси тонкой рассеивающей линзы с фокусным расстоянием F = -42 см находится жук S на расстоянии $d_1 = 56$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V = 2 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L = 9 см от линзы.

- 1) На каком расстоянии от линзы получится изображение жука при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение жука в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение жука в момент времени t_0 в системе линза-зеркало?

Билет 11-04

Шифр

1. На гладкой горизонтальной поверхности стола покоится клин. Гладкая наклонная поверхность клина образует с горизонтом угол α такой, что $\cos \alpha = 0.8$. Если шайбе, находящейся у основания клина, сообщить некоторую начальную скорость V_0 вдоль поверхности клина (см. рис.), то в системе отсчета, связанной с клином, шайба удаляется от точки старта на максимальное расстояние S. К этому моменту скорость шайбы уменьшается в n=5 раз. В процессе

движения шайба безотрывно скользит по клину, а клин по столу. Ускорение свободного падения g. Известными считать α , n и S.

- 1) Найдите отношение m/M массы шайбы к массе клина.
- 2) Найдите начальную скорость V_0 шайбы.
- 3) Через какое время T после старта шайба оказывается на максимальном расстоянии S от точки старта?
- **2.** Подвижный поршень делит объем горизонтально расположенного сосуда на два отсека с общим объемом V=100 л. В первом отсеке при температуре $T_1=373$ К находятся вода и водяной пар, общее количество смеси $v_1=0,5$ моль. Во втором отсеке при той же температуре находится $v_2=3$ моль гелия. Сосуд вместе с содержимым охлаждают до температуры $T_2=274$ К. Давление насыщенного пара воды при температуре $T_2=274$ К равно $P_{\rm H}=650$ Па. Плотность воды $\rho=1$ г/см³. Объем воды, которая может образоваться из пара, намного меньше объема пара.
 - 1) Найти давление P_1 в сосуде до охлаждения.
 - 2) Найти давление P_2 в сосуде после охлаждения.
 - 3) Найти объем V_1 первого отсека после охлаждения.
- **3.** В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны. Ключ K замыкают.
 - 1) Найти напряжение на катушке индуктивности сразу после замыкания ключа.
 - 2) Найти максимальную мощность $P_{\rm m}$, потребляемую катушкой индуктивности.
 - 3) Найти скорость изменения тока в цепи в момент, когда потребляемая катушкой мощность равна 40/49 от максимальной мощности $P_{\rm m}$.

4. По длинному соленоиду пропускается переменный ток, изменяющийся по гармоническому закону с циклической частотой ω . В результате вдали от торцов соленоида возникает однородное магнитное поле с максимальной индукцией B_0 . В плоскости торца соленоида между двумя закрепленными тонкими гладкими стеклянными пластинами помещена прямоугольная жесткая рамка из проволоки со сторонами a и 5a (см. рис.). Зазор между пластинами незначительно больше диаметра проволоки. Сопротивление единицы длины проволоки ρ . Индуктивность рамки не учитывать. Размеры рамки сравнимы с диаметром соленоида.

- 1) Найти максимальный ток в рамке.
- 2) Найти максимальную силу сжатия короткой стороны рамки.
- **5.** На главной оптической оси тонкой рассеивающей линзы с фокусным расстоянием F=-24 см находится песчинка S на расстоянии $d_1=48$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V=5 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L=4 см от линзы.

- 1) На каком расстоянии от линзы получится изображение песчинки при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение песчинки в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение песчинки в момент времени t_0 в системе линза-зеркало?

Билет 11-05

Шифр

1. Самолёт совершает перелёт дальностью L = 2000 км на высоте $h \approx 10$ км. Его скорость изменяется так, что отношение подъёмной силы к силе сопротивления воздуха (аэродинамическое качество самолёта) остаётся постоянным и равным K = 20 почти всё время полёта. КПД двигателя $\eta = 40\%$, удельная теплота сгорания топлива q = 50 МДж/кг. Масса израсходованного топлива значительно меньше общей массы самолёта. Влиянием ветра пренебречь.

- 1) Найти отношение х силы тяги (развиваемой двигателем) к силе тяжести, действующей на самолет.
- 2) Определите долю α массы израсходованного топлива от массы самолёта.
- **2.** На диаграмме зависимости температуры T газа от объема V для гелия в количестве Tv = 1 моль показано, что сначала газ переводится из состояния с температурой $T_1 = 100$ К в процессе 1-2 прямо пропорциональной зависимости температуры от объема, при этом объем газа увеличивается в 2 раза. Затем газ охлаждается до температуры $T_3 = T_1$ в изохорическом процессе 2-3. Далее в изотермическом процессе 3-1 газ переходит в начальное состояние, при этом внешнее давление совершает над газом работу $A_{31} = 576$ Дж.

- 1) Найти максимальную температуру газа в этом цикле.
- 2) Найти работу, совершенную газом в процессе 1-2.
- 3) Найти КПД цикла.

Класс 11

- 3. В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны, конденсатор не заряжен. Ключ K замыкают.
 - 1) Какой максимальный ток будет течь через резистор после замыкания

4. В цепи, схема которой показана на рисунке, все элементы идеальные, их параметры указаны, причем $L_1 = L$, $L_2 = 2L$, $L_3 = 3L$, $L_4 = 4L$. Конденсатор емкостью C заряжен до напряжения U_0 , ключи разомкнуты, режим в цепи установился. Ключ K_1 замыкают. Когда напряжение на конденсаторе C уменьшается в 3 раза, замыкают ключ K_2 .

- 2) Найти напряжение на конденсаторе C в установившемся режиме после замыкания_ключа K_2 .
- 3) Какое количество теплоты выделится в цепи после замыкания ключа K_2 ?

5. На главной оптической оси тонкой собирающей линзы с фокусным расстоянием $\mathit{F} =$ 16 см находится муха S на расстоянии $d_1 = 24$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V = 1 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L =36 см от линзы.

- 1) На каком расстоянии от линзы получится изображение мухи при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение мухи в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение мухи в момент времени t_0 в системе линза-зеркало?

Билет 11-06

Шифр	
------	--

1. Самолёт совершает перелёт дальностью L=1000 км на высоте $h\approx 3$ км. Его скорость изменяется так, что отношение подъёмной силы к силе сопротивления воздуха (аэродинамическое качество самолёта) остаётся постоянным и равным K=40 почти всё время полёта. Удельная теплота сгорания топлива q=50 МДж/кг. Масса израсходованного топлива от общей массы самолёта составила $\alpha=0.01$. Можно считать $\alpha<<1$. Влиянием ветра пренебречь.

- 1) Найти отношение х силы тяжести (действующей на самолет) к силе тяги, развиваемой двигателем.
- 2) Определите КПД двигателя η.

Класс 11

2. На диаграмме зависимости температуры газа T от объема V для гелия в количестве V = 0.5 моль показано, что сначала газ нагревается в изохорическом процессе 1-2 до температуры $T_2 = 300$ К. Затем газ увеличивает свой объем в 3 раза в изотермическом процессе 2-3, совершив при этом работу $A_{23} \simeq 1370$ Дж. Наконец в процессе 3-1 прямо пропорциональной зависимости температуры от объема газ переходит в начальное состояние.

- 1) Найти минимальную температуру газа в цикле.
- 2) Найти работу A_{31} , совершенную над газом в процессе 3-1.
- 3) Найти КПД цикла.
- **3.** В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны, конденсатор не заряжен. Ключ *К* замыкают.
 - 1) Какой максимальный ток будет течь через источник после замыкания ключа?

3) Найти напряжение на конденсаторе в момент, когда потребляемая конденсатором мощность равна 9/25 от максимальной мощности $P_{\rm m}$.

- 2) Найти напряжение на конденсаторе C в установившемся режиме после замыкания ключа K_2 .
- 3) Какое количество теплоты выделится в цепи после замыкания ключа K_2 ?

- 1) На каком расстоянии от линзы получится изображение бусинки при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение бусинки в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение бусинки в момент времени t_0 в системе линза-зеркало?

Билет 11-07

Шифр	
------	--

1. Самолёт совершает перелёт дальностью L=1500 км на высоте $h\approx 8$ км. Его скорость изменяется так, что отношение подъёмной силы к силе сопротивления воздуха (аэродинамическое качество самолёта) остаётся постоянным и равным K=15 почти всё время полёта. КПД двигателя $\eta=50\%$, удельная теплота сгорания топлива q=50 МДж/кг. Масса израсходованного топлива значительно меньше общей массы самолёта. Влиянием ветра пренебречь.

- 1) Найти отношение х силы тяги (развиваемой двигателем) к силе тяжести, действующей на самолет.
- 2) Определите долю α массы израсходованного топлива от массы самолёта.
- **2.** На диаграмме зависимости температуры T газа от объема V для гелия в количестве V = 2 моль показано, что сначала газ нагревается от температуры $T_1 = 50$ К в изохорическом процессе 1-2, затем газ охлаждается до температуры $T_3 = T_1$ в процессе 2-3 прямо пропорциональной зависимости температуры от объема. Наконец, в изотермическом процессе 3-1 газ переходит в начальное состояние, увеличивая свой объем в 3 раза и совершив при этом работу $A_{31} \simeq 913$ Дж.

1) Найти максимальную температуру газа в цикле.

Класс 11

- 2) Найти работу A_{23} , совершенную над газом в процессе 2-3.
- 3) Найти отношение количества теплоты Q^+ , подведенной к газу в цикле, к количеству теплоты Q^- , отведенной от газа в цикле (Q^- >0).
- **3.** В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны, конденсатор не заряжен. Ключ K замыкают.
- 1) Какой максимальный ток будет течь через резистор после замыкания ключа?
 - 2) Найти максимальную скорость изменения энергии $N_{\rm m}$ конденсатора.
 - 3) Найти напряжение на конденсаторе в момент, когда скорость изменения энергии конденсатора равна 11/36 от максимальной скорости $N_{\rm m}$.

- 2) Найти напряжение на конденсаторе C в установившемся режиме после замыкания ключа K_2 .
- 3) Какое количество теплоты выделится в цепи после замыкания ключа K_2 ?

- **5.** На главной оптической оси тонкой собирающей линзы с фокусным расстоянием F = 20 см находится комар S на расстоянии $d_1 = 25$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V = 2 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L = 65 см от линзы.
 - 1) На каком расстоянии от линзы получится изображение комара при отсутствии зеркала?
 - 2) На каком расстоянии от линзы получится изображение комара в момент времени t_0 в системе линзазеркало?
 - 3) С какой скоростью движется изображение комара в момент времени t_0 в системе линза-зеркало?

Билет 11-08

Шифр

(заполняется секретарём)

1. Самолёт совершает перелёт дальностью L=600 км на высоте $h\approx 5$ км. Его скорость изменяется так, что отношение подъёмной силы к силе сопротивления воздуха (аэродинамическое качество самолёта) остаётся постоянным и равным K=30 почти всё время полёта. Удельная теплота сгорания топлива q=50 МДж/кг. Масса израсходованного топлива от общей массы самолёта составила $\alpha=0,02$. Можно считать $\alpha<<1$. Влиянием ветра пренебречь.

- 1) Найти отношение х силы тяжести (действующей на самолет) к силе тяги, развиваемой двигателем.
- 2) Определите КПД двигателя η.

Класс 11

2. На диаграмме зависимости температуры газа T от объема V для гелия в количестве v=1,5 моль показано, что сначала газ увеличивает свой объем в 2 раза, нагреваясь до температуры $T_2=100$ К в процессе 1-2 прямо пропорциональной зависимости температуры от объема. Затем внешнее давление сжимает газ в изотермическом процессе 2-3, совершив над газом работу $A_{23}\simeq 860$ Дж. Наконец, в изохорическом процессе 3-1 газ переходит в начальное состояние.

- 1) Найти минимальную температуру газа в цикле.
- 2) Найти работу A_{12} , совершенную газом в процессе 1-2.
- 3) Найти отношение количества теплоты Q^- , отведенной от газа в цикле (Q^- >0), к количеству теплоты Q^+ , подведенной к газу в цикле.
- **3.** В электрической цепи (см. рис.) все элементы идеальные, их параметры указаны, конденсатор не заряжен. Ключ K замыкают.
 - 1) Какой максимальный ток будет течь через источник после замыкания ключа?
 - 2) Найти максимальную мощность $P_{\rm m}$, потребляемую конденсатором.
 - 3) Найти напряжение на конденсаторе в момент, когда потребляемая конденсатором мощность равна 15/64 от максимальной мощности $P_{\rm m}$.
- **4.** В цепи, схема которой показана на рисунке, все элементы идеальные, их параметры указаны, причем $L_1 = L$, $L_2 = L$, $L_3 = 5L$, $L_4 = 2L$. Конденсатор емкостью C заряжен до напряжения U_0 , ключи разомкнуты, режим в цепи установился. Ключ K_1 замыкают. Когда напряжение на конденсаторе C уменьшается в 5 раз, замыкают ключ K_2 .

- 2) Найти напряжение на конденсаторе C в установившемся режиме после замыкания ключа K_2 .
- 3) Какое количество теплоты выделится в цепи после замыкания ключа K_2 ?

5. На главной оптической оси тонкой собирающей линзы с фокусным расстоянием F=24 см находится дробинка S на расстоянии $d_1=40$ см от линзы (см. рис.). По другую сторону линзы находится плоское зеркало, перемещающееся вдоль главной оптической оси линзы со скоростью V=6 мм/с. В некоторый момент времени t_0 зеркало было на расстоянии L=66 см от линзы.

- 1) На каком расстоянии от линзы получится изображение дробинки при отсутствии зеркала?
- 2) На каком расстоянии от линзы получится изображение дробинки в момент времени t_0 в системе линзазеркало?
- 3) С какой скоростью движется изображение дробинки в момент времени t_0 в системе линза-зеркало?

1.1)
$$mV_0 \cos \alpha = (M+m)\frac{V_0}{5}$$
. $\frac{m}{M} = \frac{1}{2}$. **2**) $\frac{1}{2}mV_0^2 = \frac{1}{2}(M+m)\left(\frac{V_0}{5}\right)^2 + mgH$. $H = \frac{11}{25}\frac{V_0^2}{g}$.

3) Направим ось x под углом α к горизонту вверх. В ЛСО $a_x = -g \sin \alpha$. $\frac{V_0}{5} \cos \alpha = V_0 + (-g \sin \alpha)T$.

 $T = \frac{11}{10} \frac{V_0}{g}$. Второй способ решения. В СО клин $a_{OTH} = const$ (доказательство не требовать).

$$T = \frac{S}{V_{CP}} = \frac{S}{\frac{1}{2}(V_0 + 0)} = \frac{2S}{V_0}. \quad S = \frac{H}{\sin \alpha} = \frac{11V_0^2}{20g}. \quad T = \frac{2S}{V_0} = \frac{11}{10}\frac{V_0}{g}.$$

- **2. 1**) При T_1 пара нет. $P_1 = \frac{v_2 R T_1}{V} \approx 0,3 \cdot 10^5$ Па. **2**) В первом отсеке только вода массой 18 г, ее объем $V_1 = 18$ см³.
- 3) Предположим, что вся вода испарилась. Тогда $P_2 = \frac{\left(v_1 + v_2\right)RT_2}{V} \approx 0,62 \cdot 10^5 \; \Pi a.$ Это меньше давления насыщенного пара при T_2 , т.е. предположение верное. Итак, $P_2 = \frac{\left(v_1 + v_2\right)RT_2}{V} \approx 0,62 \cdot 10^5 \; \Pi a.$
- **3. 1**) $U_0 = E$. **2**) Пусть U напряжение на катушке. N = UI, E = U + IR. $N = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная скорость изменения энергии N_m при $U = \frac{E}{2}$. $N_m = \frac{E^2}{4R}$.

$$\textbf{3)} \ \ U = L I' \,, \quad N = -\frac{U^2}{R} + U \, \frac{E}{R} \,, \quad N = \alpha N_{\scriptscriptstyle m} = \alpha \, \frac{E^2}{4R} \,, \quad \alpha = \frac{24}{49} \,. \quad \text{Отсюда} \quad I' = \frac{E}{2L} \Big(1 \pm \sqrt{1-\alpha} \, \Big) \,. \quad I'_1 = \frac{6}{7} \, \frac{E}{L} \,, \quad I'_2 = \frac{1}{7} \, \frac{E}{L} \,.$$

4. 1) Пусть b=2a - длина длинной стороны. Направим ось x вдоль оси соленоида. В любой точке на торце соленоида $B_x\left(t\right)=\frac{1}{2}B_0\cos\omega t$. Магнитный поток $\Phi=B_x\left(t\right)ab=\frac{1}{2}B_0ab\cos\omega t$.

ЭДС
$$\varepsilon = -\Phi' = -\frac{1}{2}B_0ab\omega\sin\omega t$$
. Ток $I = \frac{\varepsilon}{2(a+b)\rho} = -\frac{1}{4}\frac{B_0ab\omega\sin\omega t}{(a+b)\rho}$.

Максимальный ток $I_0 = \frac{1}{4} \frac{B_0 \omega}{\rho} \frac{ab}{a+b} = \frac{1}{6} \frac{B_0 \omega a}{\rho}$.

- **2**) Сила натяжения (сжатия) стороны b равна $F(t) = \frac{1}{2}B_x(t)I(t)a = -\frac{1}{32}\frac{B_0^2\omega}{\rho}\frac{a^2b}{a+b}\sin 2\omega t$. Максимальная сила натяжения $F_0 = \frac{1}{32}\frac{B_0^2\omega}{\rho}\frac{a^2b}{a+b} = \frac{1}{48}\frac{B_0^2\omega a^2}{\rho}$.
- **5. 1**) Изображение S_1 в линзе на расстоянии <u>18 см от линзы</u>, слева от нее, мнимое.
- **2**) Изображение S_2 в зеркале на расстоянии 24 см от зеркала, справа. S_2 источник для линзы, $d_2 = 30$ см. $f_2 = \frac{d_2 F}{d_2 F} = -15$ см. <u>Изображение</u> S_3 в системе на расстоянии 15 см от линзы (справа).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{|f_2|}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 3$ мм/с.

1.1)
$$mV_0 \cos \alpha = (M+m)\frac{V_0}{4}$$
. $\frac{M}{m} = 1$. **2**) $\frac{1}{2}mV_0^2 = \frac{1}{2}(M+m)\left(\frac{V_0}{4}\right)^2 + mgH$. $V_0 = \frac{4\sqrt{7}}{7}\sqrt{gH}$.

3) Направим ось x под углом α к горизонту вверх. В ЛСО $a_x = -g \sin \alpha$. $\frac{V_0}{4} \cos \alpha = V_0 + (-g \sin \alpha)T$.

$$T = \frac{7}{4\sqrt{3}} \frac{V_0}{g} = \sqrt{\frac{7H}{3g}}$$
. Второй способ решения. В СО клин $a_{OTH} = const$ (доказательство не требовать).

$$T = \frac{S}{V_{CP}} = \frac{S}{\frac{1}{2}(V_0 + 0)} = \frac{2S}{V_0} . \quad S = \frac{H}{\sin \alpha} . \quad T = \sqrt{\frac{7H}{3g}} .$$

- **2. 1**) Предположим, что вся вода испарилась. Тогда $P_1 = \frac{\left(v_1 + v_2\right)RT_1}{V} \approx 0,69 \cdot 10^5$ Па. Это меньше давления насыщенного пара при T_1 , т.е. в первом отсеке ненасыщенный пар, т.е. предположение верное. Итак, $P_1 = \frac{\left(v_1 + v_2\right)RT_1}{V} \approx 0,69 \cdot 10^5$ Па.
- **2**) Предположим, что при T_2 пара нет. Тогда $P_2 = \frac{v_2 R T_2}{V} \approx 0,39 \cdot 10^5$ Па. Это больше P_H , т.е. предположение верное. Итак, $P_2 = \frac{v_2 R T_2}{V} \approx 0,39 \cdot 10^5$ Па.
 - **3**) В первом отсеке только вода массой 9 г, ее объем $V_1 = 9$ см³.
- **3. 1)** $U_0 = E$. **2)** Пусть U напряжение на катушке. P = UI, E = U + IR. $P = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная мощность P_m при $U = \frac{E}{2}$. $P_m = \frac{E^2}{4R}$.

3)
$$U = LI'$$
, $P = -\frac{U^2}{R} + U\frac{E}{R}$, $P = \alpha P_{\scriptscriptstyle m} = \alpha \frac{E^2}{4R}$, $\alpha = \frac{7}{16}$. Отсюда $I' = \frac{E}{2L} \left(1 \pm \sqrt{1-\alpha}\right)$. $I'_1 = \frac{7}{8} \frac{E}{L}$, $I'_2 = \frac{1}{8} \frac{E}{L}$.

4. 1) Пусть b = 4a - длина длинной стороны. Направим ось x вдоль оси соленоида. В любой точке на торце соленоида $B_x(t) = \frac{1}{2}B_0\cos\omega t$. Магнитный поток $\Phi = B_x(t)ab = \frac{1}{2}B_0ab\cos\omega t$.

ЭДС
$$\varepsilon = -\Phi' = -\frac{1}{2}B_0ab\omega\sin\omega t$$
. Ток $I = \frac{\varepsilon}{2(a+b)\rho} = -\frac{1}{4}\frac{B_0ab\omega\sin\omega t}{(a+b)\rho}$.

Максимальный ток $I_0=rac{1}{4}rac{B_0\omega}{
ho}rac{ab}{a+b}=rac{1}{5}rac{B_0\omega a}{
ho}$.

- 2) Сила натяжения (сжатия) стороны a равна $F(t) = \frac{1}{2}B_x(t)I(t)b = -\frac{1}{32}\frac{B_0^2\omega}{\rho}\frac{b^2a}{a+b}\sin 2\omega t$. Максимальная сила сжатия $F_0 = \frac{1}{32}\frac{B_0^2\omega}{\rho}\frac{b^2a}{a+b} = \frac{1}{10}\frac{B_0^2\omega a^2}{\rho}$.
- **5. 1)** Изображение S_1 в линзе на расстоянии <u>30 см от линзы</u>, слева от нее, мнимое.
- **2)** Изображение S_2 в зеркале на расстоянии 39 см от зеркала, справа. S_2 источник для линзы, $d_2=48$ см. $f_2=\frac{d_2F}{d_2-F}=-24$ см. <u>Изображение S_3 в системе на расстоянии 24 см от линзы</u> (справа).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{|f_2|}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 2$ мм/с.

1.1)
$$mV_0 \cos \alpha = (M+m)\frac{V_0}{5}$$
. $\cos \alpha = \frac{4}{5}$. **2**) $\frac{1}{2}mV_0^2 = \frac{1}{2}(M+m)\left(\frac{V_0}{5}\right)^2 + mgH$. $H = S \sin \alpha$. $S = \frac{7V_0^2}{10g}$.

3) Направим ось x под углом α к горизонту вверх. В ЛСО $a_x = -g \sin \alpha$. $\frac{V_0}{5} \cos \alpha = V_0 + (-g \sin \alpha)T$.

 $T = \frac{7}{5} \frac{V_0}{g}$. Второй способ решения. В СО клин $a_{OTH} = const$ (доказательство не требовать).

$$T = \frac{S}{V_{CP}} = \frac{S}{\frac{1}{2}(V_0 + 0)} = \frac{2S}{V_0} \cdot T = \frac{2S}{V_0} = \frac{7}{5} \frac{V_0}{g}.$$

- **2. 1**) При T_1 пара нет. $P_1 = \frac{v_2 R T_1}{V} \approx 0,72 \cdot 10^5$ Па.
 - **2**) В первом отсеке только вода массой $m = v_1 \mu = 10,8$ г, ее объем $V_1 \approx 11$ см³.
 - **3**) При T_2 давление $P_2 \approx 10^5$ Па. $P_2 (V V_2) = v_2 R T_2$. Отсюда $V_2 = V \frac{v_2 R T_2}{P_2} \approx 0,007$ м³ = 7 л.
- **3. 1)** $U_0 = E$. **2)** Пусть U напряжение на катушке. N = UI, E = U + IR. $N = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная скорость изменения энергии N_m при $U = \frac{E}{2}$. $N_m = \frac{E^2}{4R}$.

$$\mathbf{3)} \ \ U = L I' \,, \ \ N = -\frac{U^2}{R} + U \, \frac{E}{R} \,, \quad N = \alpha N_{\scriptscriptstyle m} = \alpha \, \frac{E^2}{4R} \,, \quad \alpha = \frac{32}{81} \,. \quad \text{Отсюда} \quad I' = \frac{E}{2L} \Big(1 \pm \sqrt{1-\alpha} \, \Big) \,. \quad I'_1 = \frac{8}{9} \, \frac{E}{L} \,, \quad I'_2 = \frac{1}{9} \, \frac{E}{L} \,.$$

4. 1) Пусть b=3a - длина длинной стороны. Направим ось x вдоль оси соленоида. В любой точке на торце соленоида $B_x\left(t\right)=\frac{1}{2}B_0\cos\omega t$. Магнитный поток $\Phi=B_x\left(t\right)ab=\frac{1}{2}B_0ab\cos\omega t$.

ЭДС
$$\varepsilon = -\Phi' = -\frac{1}{2}B_0ab\omega\sin\omega t$$
. Ток $I = \frac{\varepsilon}{2(a+b)\rho} = -\frac{1}{4}\frac{B_0ab\omega\sin\omega t}{(a+b)\rho}$.

Максимальный ток $I_0 = \frac{1}{4} \frac{B_0 \omega}{\rho} \frac{ab}{a+b} = \frac{3}{16} \frac{B_0 \omega a}{\rho}$.

- **2**) Сила натяжения (сжатия) стороны b равна $F\left(t\right) = \frac{1}{2}B_{x}\left(t\right)I\left(t\right)a = -\frac{1}{32}\frac{B_{0}^{2}\omega}{\rho}\frac{a^{2}b}{a+b}\sin2\omega t$. Максимальная сила натяжения $F_{0} = \frac{1}{32}\frac{B_{0}^{2}\omega}{\rho}\frac{a^{2}b}{a+b} = \frac{3}{128}\frac{B_{0}^{2}\omega a^{2}}{\rho}$.
- **5. 1**) Изображение S_1 в линзе на расстоянии <u>24 см от линзы</u>, слева от нее, мнимое.
- **2)** Изображение S_2 в зеркале на расстоянии 33 см от зеркала, справа. S_2 источник для линзы, $d_2=42$ см. $f_2=\frac{d_2F}{d_2-F}=-21$ см. <u>Изображение S_3 в системе на расстоянии 21 см от линзы</u> (справа).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{|f_2|}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 1$ мм/с.

1.1)
$$mV_0 \cos \alpha = (M+m)\frac{V_0}{5}$$
. $\frac{m}{M} = \frac{1}{3}$. **2**) $\frac{1}{2}mV_0^2 = \frac{1}{2}(M+m)\left(\frac{V_0}{5}\right)^2 + mgH$. $H = S \sin \alpha$. $V_0 = \sqrt{\frac{10}{7}gS}$.

3) Направим ось x под углом α к горизонту вверх. В ЛСО $a_x = -g \sin \alpha$. $\frac{V_0}{5} \cos \alpha = V_0 + (-g \sin \alpha)T$.

$$T = \frac{7}{5} \frac{V_0}{g} = \sqrt{\frac{14S}{5g}}$$
. Второй способ решения. В СО клин $a_{OTH} = const$ (доказательство не требовать).

$$T = \frac{S}{V_{CP}} = \frac{S}{\frac{1}{2}(V_0 + 0)} = \frac{2S}{V_0}.$$
 $T = \sqrt{\frac{14S}{5g}}.$

- **2. 1**) $P_1 \approx 10^5$ Па. **2**) Предположим, что при T_2 пара нет. Тогда $P_2 = \frac{v_2 R T_2}{V} \approx 0,68 \cdot 10^5$ Па. Это больше P_H , т.е. предположение верное. Итак, $P_2 = \frac{v_2 R T_2}{V} \approx 0,68 \cdot 10^5$ Па.
 - **3**) В первом отсеке только вода массой 9 г, ее объем $V_1 = 9$ см³.
- **3. 1)** $U_0 = E$. **2)** Пусть U напряжение на катушке. P = UI, E = U + IR. $P = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная мощность P_m при $U = \frac{E}{2}$. $P_m = \frac{E^2}{4R}$.

3)
$$U = LI'$$
, $P = -\frac{U^2}{R} + U\frac{E}{R}$, $P = \alpha P_{\scriptscriptstyle m} = \alpha \frac{E^2}{4R}$, $\alpha = \frac{40}{49}$. Отсюда $I' = \frac{E}{2L} \left(1 \pm \sqrt{1-\alpha}\right)$. $I'_1 = \frac{5}{7}\frac{E}{L}$, $I'_2 = \frac{2}{7}\frac{E}{L}$.

4. 1) Пусть b=5a - длина длинной стороны. Направим ось x вдоль оси соленоида. В любой точке на торце соленоида $B_x\left(t\right)=\frac{1}{2}B_0\cos\omega t$. Магнитный поток $\Phi=B_x\left(t\right)ab=\frac{1}{2}B_0ab\cos\omega t$.

ЭДС
$$\varepsilon = -\Phi' = -\frac{1}{2}B_0ab\omega\sin\omega t$$
. Ток $I = \frac{\varepsilon}{2(a+b)\rho} = -\frac{1}{4}\frac{B_0ab\omega\sin\omega t}{(a+b)\rho}$.

Максимальный ток $I_0=rac{1}{4}rac{B_0\omega}{
ho}rac{ab}{a+b}=rac{5}{24}rac{B_0\omega a}{
ho}$.

- **2**) Сила натяжения (сжатия) стороны a равна $F\left(t\right) = \frac{1}{2}B_{x}\left(t\right)I\left(t\right)b = -\frac{1}{32}\frac{B_{0}^{2}\omega}{\rho}\frac{b^{2}a}{a+b}\sin2\omega t$. Максимальная сила сжатия $F_{0} = \frac{1}{32}\frac{B_{0}^{2}\omega}{\rho}\frac{b^{2}a}{a+b} = \frac{25}{192}\frac{B_{0}^{2}\omega a^{2}}{\rho}$.
- **5.** 1) Изображение S_1 в линзе на расстоянии <u>16 см от линзы</u>, слева от нее, мнимое.
- **2)** Изображение S_2 в зеркале на расстоянии 20 см от зеркала, справа. S_2 источник для линзы, $d_2 = 24$ см. $f_2 = \frac{d_2 F}{d_2 F} = -12$ см. <u>Изображение</u> S_3 в системе на расстоянии 12 см от линзы (справа).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{|f_2|}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 2,5$ мм/с.

1. 1) Подъемная сила $F_{\Pi} = mg$, сила тяги $F_{T} = F_{CO\Pi P}$. $F_{T}/mg = 1/K = 1/20$.

2)
$$\eta = \frac{F_T L}{q m_T}$$
. $\frac{mg}{F_T} = K$. $\alpha = \frac{m_T}{m} = \frac{gL}{Kq\eta} = 0.05$.

2. 1)
$$\frac{T_2}{T_1} = \frac{2V_1}{V_1}$$
, $T_{\text{max}} = T_2 = 2T_1 = 200$ K.

2) 1-2 – изобара.
$$A_{12} = P_1(V_2 - V_1) = P_1V_1 = \nu RT_1 \approx 831$$
 Дж.

3)
$$\eta = \frac{A_{12} + (-A_{31})}{Q_{12}} = \frac{A_{12} - A_{31}}{\nu C_P (T_2 - T_1)} = \frac{2}{5} \left(1 - \frac{A_{31}}{\nu R T_1} \right) \approx 0.12$$

- **3.1**) $I_M = \frac{E}{R}$.
- **2**) Пусть U напряжение на конденсаторе. N = UI, E = U + IR. $N = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная скорость изменения энергии N_M при $U = \frac{E}{2}$. $N_M = \frac{E^2}{4R}$.

3)
$$N = -\frac{U^2}{R} + U\frac{E}{R}$$
, $N = \alpha N_M = \alpha \frac{E^2}{4R}$, $\alpha = \frac{5}{9}$. Отсюда $U = \frac{E}{2} \left(1 \pm \sqrt{1-\alpha}\right)$. $U_1 = \frac{5}{6}E$, $U_2 = \frac{1}{6}E$.

4. 1) ЗСЭ:
$$\frac{1}{2}CU_0^2 = \frac{1}{2}C\left(\frac{U_0}{3}\right)^2 + \frac{1}{2}LI_0^2$$
. Отсюда $I_0 = \sqrt{\frac{8}{9}\frac{CU_0^2}{L}} = \frac{2}{3}U_0\sqrt{\frac{2C}{L}}$.

- **2)** $U_C = 0$.
- **3**) Пусть I_1 установившийся ток через катушки. Сумма магнитных потоков сохраняется:

$$LI_0 = LI_1 + 2LI_1 + 3LI_1 + 4LI_1$$
. Отсюда $I_1 = \frac{1}{10}I_0$. По ЗСЭ

$$Q = \frac{1}{2}CU_0^2 - \frac{1}{2}\left(L + 2L + 3L + 4L\right)I_1^2 = \frac{1}{2}CU_0^2 - 5LI_1^2 = \frac{1}{2}CU_0^2 - \frac{1}{20}LI_0^2. \quad Q = \frac{41}{90}CU_0^2.$$

- **5. 1**) Изображение S_1 в линзе на расстоянии $f_1 = 48$ см от линзы, справа от нее, действительное.
- 2) S_1 мнимый предмет для зеркала. Изображение S_2 в зеркале действительное, слева от зеркала, на расстоянии 12 см от зеркала. S_2 источник для линзы, $d_2=24$ см. $f_2=\frac{d_2F}{d_2-F}=48$ см. <u>Изображение S_3 в системе на расстоянии $f_2=48$ см от линзы (слева, действительное).</u>
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{f_2}{d_2} = 2$. Скорость изображения в системе $\underline{u = 8V = 8}$ мм/с.

1. 1) Подъемная сила $F_{\Pi} = mg$, сила тяги $F_{T} = F_{CO\Pi P}$. $mg/F_{T} = K = 40$.

2)
$$\eta = \frac{F_T L}{q m_T}$$
. $\frac{mg}{F_T} = K$. $\alpha = \frac{m_T}{m}$. $\eta = \frac{gL}{Kq\alpha} \approx \frac{1}{2}$.

- **2. 1)** $\frac{T_1}{T_3} = \frac{V_1}{3V_1}$, $T_{\min} = T_1 = \frac{1}{3}T_2 = 100$ K.
 - **2**) 3-1 изобара. $A_{31} = P_1(V_3 V_1) = \nu R(T_3 T_1) = \frac{2}{3} \nu R T_2 \approx 831$ Дж.

3)
$$\eta = \frac{A_{23} + (-A_{31})}{Q_{12} + Q_{23}}$$
. $Q_{12} = vC_V(T_2 - T_1) = vRT_2$. $Q_{23} = 0 + A_{23}$. $\eta = \frac{A_{23} - \frac{2}{3}vRT_2}{vRT_2 + A_{23}} \approx 0,21$.

- **3.1**) $I_M = \frac{E}{R}$.
- **2**) Пусть U напряжение на конденсаторе. P = UI, E = U + IR. $P = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная

мощность P_M при $U = \frac{E}{2}$. $P_M = \frac{E^2}{4R}$.

3)
$$P = -\frac{U^2}{R} + U\frac{E}{R}$$
, $P = \alpha P_M = \alpha \frac{E^2}{4R}$, $\alpha = \frac{9}{25}$. Отсюда $U = \frac{E}{2} \left(1 \pm \sqrt{1-\alpha}\right)$. $U_1 = \frac{9}{10}E$, $U_2 = \frac{1}{10}E$.

- **4. 1**) ЗСЭ: $\frac{1}{2}CU_0^2 = \frac{1}{2}C\left(\frac{U_0}{4}\right)^2 + \frac{1}{2}LI_0^2$. Отсюда $I_0 = \sqrt{\frac{15}{16}\frac{CU_0^2}{L}} = \frac{1}{4}U_0\sqrt{\frac{15C}{L}}$.
 - **2**) $U_C = 0$.
- **3**) Пусть I_1 установившийся ток через катушки L_2 , L_4 , L_1 . Ток через L_3 не идет. Сумма магнитных потоков сохраняется: $LI_0 = LI_1 + 2LI_1 + LI_1$. Отсюда $I_1 = \frac{1}{4}I_0$. По ЗСЭ

$$Q = \frac{1}{2}CU_0^2 - \frac{1}{2}(L + 2L + L)I_1^2 = \frac{1}{2}CU_0^2 - 2LI_1^2 = \frac{1}{2}CU_0^2 - \frac{1}{8}LI_0^2. \quad Q = \frac{49}{128}CU_0^2.$$

- **5. 1**) Изображение S_1 в линзе на расстоянии $f_1 = 48$ см от линзы, справа от нее, действительное.
- 2) S_1 мнимый предмет для зеркала. Изображение S_2 в зеркале действительное, слева от зеркала, на расстоянии 6 см от зеркала. S_2 источник для линзы, $d_2 = 36$ см. $f_2 = \frac{d_2F}{d_2 F} = 18$ см. <u>Изображение S_3 в системе на расстоянии $f_2 = 18$ см от линзы</u> (слева, действительное).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{f_2}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 2$ мм/с.

1. 1) Подъемная сила $F_{\Pi} = mg$, сила тяги $F_{T} = F_{CO\Pi P}$. $F_{T}/mg = 1/K = 1/15$.

2)
$$\eta = \frac{F_T L}{q m_T}$$
. $\frac{mg}{F_T} = K$. $\alpha = \frac{m_T}{m} = \frac{gL}{K q \eta} = 0,04$.

- **2. 1)** $\frac{T_2}{T_3} = \frac{V_2}{V_3} = 3$, $T_{\text{max}} = T_2 = 3T_1 = 150$ K.
 - **2**) 2-3 изобара. $A_{23} = P_2(V_2 V_3) = \nu R(T_2 T_3) = 2\nu RT_1 \approx 1,66$ кДж.
 - **3**) $Q^+ = Q_{31} + Q_{12} = \nu C_V (T_2 T_1) + A_{31} = 3\nu RT_1 + A_{31} \approx 3400$ Дж. $Q^- = Q_{23} = \nu C_P (T_2 T_3) = 5\nu RT_1 \approx 4150$ Дж.

$$\frac{Q^+}{Q^-} = \frac{1}{5} \left(3 + \frac{A_{31}}{vRT_1} \right) \approx 0.82.$$

- **3. 1)** $I_M = \frac{E}{R}$.
- **2**) Пусть U напряжение на конденсаторе. N = UI, E = U + IR. $N = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная скорость изменения энергии N_M при $U = \frac{E}{2}$. $N_M = \frac{E^2}{4R}$.

$$\mathbf{3)} \ \ N = -\frac{U^2}{R} + U \frac{E}{R} \,, \quad N = \alpha N_{\scriptscriptstyle M} = \alpha \frac{E^2}{4R} \,, \quad \alpha = \frac{11}{36} \,. \quad \text{Отсюда} \ \ U = \frac{E}{2} \Big(1 \pm \sqrt{1-\alpha} \, \Big) \,. \quad U_1 = \frac{11}{12} \, E \,, \quad U_2 = \frac{1}{12} \, E \,.$$

- **4. 1**) ЗСЭ: $\frac{1}{2}CU_0^2 = \frac{1}{2}C\left(\frac{U_0}{2}\right)^2 + \frac{1}{2}LI_0^2$. Отсюда $I_0 = \sqrt{\frac{3}{4}\frac{CU_0^2}{L}} = \frac{1}{2}U_0\sqrt{\frac{3C}{L}}$.
 - **2**) $U_C = 0$.
 - **3**) Пусть $I_{\scriptscriptstyle 1}$ установившийся ток через катушки. Сумма магнитных потоков сохраняется:

$$LI_0 = LI_1 + 3LI_1 + 4LI_1 + 2LI_1$$
. Отсюда $I_1 = \frac{1}{10}I_0$. По ЗСЭ

$$Q = \frac{1}{2}CU_0^2 - \frac{1}{2}(L + 3L + 4L + 2L)I_1^2 = \frac{1}{2}CU_0^2 - 5LI_1^2 = \frac{1}{2}CU_0^2 - \frac{1}{20}LI_0^2. \quad Q = \frac{37}{80}CU_0^2.$$

- **5. 1**) Изображение S_1 в линзе на расстоянии $f_1 = 100$ см от линзы, справа от нее, действительное.
- 2) S_1 мнимый предмет для зеркала. Изображение S_2 в зеркале действительное, слева от зеркала, на расстоянии 35 см от зеркала. S_2 источник для линзы, $d_2 = 30$ см. $f_2 = \frac{d_2 F}{d_2 F} = 60$ см. <u>Изображение S_3 в системе на расстоянии $f_2 = 60$ см от линзы (слева, действительное).</u>
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{f_2}{d_2} = 2$. Скорость изображения в системе $\underline{u = 8V = 16}$ мм/с.

1. 1) Подъемная сила $F_{\Pi} = mg$, сила тяги $F_{T} = F_{CO\Pi P}$. $mg/F_{T} = K = 30$.

2)
$$\eta = \frac{F_T L}{q m_T}$$
. $\frac{mg}{F_T} = K$. $\alpha = \frac{m_T}{m}$. $\eta = \frac{gL}{Kq\alpha} \approx \frac{1}{5} = 0, 2$.

2. 1)
$$\frac{T_1}{T_2} = \frac{V_1}{2V_1} = \frac{1}{2}$$
, $T_{\min} = T_1 = \frac{1}{2}T_2 = 50$ K.

2) 1-2 – изобара.
$$A_{12} = P_1(V_2 - V_1) = \nu R(T_2 - T_1) = \frac{1}{2}\nu RT_2 \approx 623$$
 Дж.

3)
$$Q^+ = Q_{12} = \nu C_P \left(T_2 - T_1 \right) = \frac{5}{4} \nu R T_2 \approx 1558$$
 Дж. $Q^- = -\left(Q_{31} + Q_{23} \right)$. $Q_{31} = \nu C_V \left(T_1 - T_3 \right) = -\frac{3}{4} \nu R T_2$.

$$Q_{23} = 0 + (-A_{23}) = -A_{23}$$
. $Q^- = \frac{3}{4}vRT_2 + A_{23} \approx 1795$ Дж. $\frac{Q^-}{Q^+} = \frac{1}{5}\left(3 + \frac{4A_{23}}{vRT_2}\right) \approx 1,15$.

- **3.1**) $I_M = \frac{E}{R}$.
- **2**) Пусть U напряжение на конденсаторе. P = UI, E = U + IR. $P = -\frac{U^2}{R} + U\frac{E}{R}$. Максимальная мощность P_M при $U = \frac{E}{2}$. $P_M = \frac{E^2}{4R}$.

3)
$$P = -\frac{U^2}{R} + U\frac{E}{R}$$
, $P = \alpha P_{\scriptscriptstyle M} = \alpha \frac{E^2}{4R}$, $\alpha = \frac{15}{64}$. Отсюда $U = \frac{E}{2} \left(1 \pm \sqrt{1-\alpha}\right)$. $U_1 = \frac{15}{16}E$, $U_2 = \frac{1}{16}E$.

4. 1) ЗСЭ:
$$\frac{1}{2}CU_0^2 = \frac{1}{2}C\left(\frac{U_0}{5}\right)^2 + \frac{1}{2}LI_0^2$$
. Отсюда $I_0 = \sqrt{\frac{24}{25}\frac{CU_0^2}{L}} = \frac{2}{5}U_0\sqrt{\frac{6C}{L}}$.

- **2)** $U_C = 0$.
- **3**) Пусть I_1 установившийся ток через катушки L_2 , L_4 , L_1 . Ток через L_3 не идет. Сумма магнитных потоков сохраняется: $LI_0 = LI_1 + 2LI_1 + LI_1$. Отсюда $I_1 = \frac{1}{4}I_0$. По ЗСЭ

$$Q = \frac{1}{2}CU_0^2 - \frac{1}{2}(L + 2L + L)I_1^2 = \frac{1}{2}CU_0^2 - 2LI_1^2 = \frac{1}{2}CU_0^2 - \frac{1}{8}LI_0^2. \quad Q = \frac{19}{50}CU_0^2.$$

- **5. 1**) Изображение S_1 в линзе на расстоянии $f_1 = 60$ см от линзы, справа от нее, действительное.
- 2) S_1 действительный предмет для зеркала. Изображение S_2 в зеркале мнимое, справа от зеркала, на расстоянии 6 см от зеркала. S_2 источник для линзы, d_2 = 72 см. f_2 = $\frac{d_2F}{d_2-F}$ = 36 см. <u>Изображение</u> $\underline{S_3}$ в системе на расстоянии f_2 = 36 см от линзы (слева, действительное).
 - **3**) Скорость S_2 равна 2V. $\frac{u}{2V} = \Gamma^2$. $\Gamma = \frac{f_2}{d_2} = \frac{1}{2}$. Скорость изображения в системе $u = \frac{1}{2}V = 3$ мм/с.

Критерии оценивания. Олимпиада «Физтех». 2019 г. Билеты 11-01, 11-02, 11-03, 11-04

Задача 1. (10 очков)

1) 1-й вопрос стоит 3 очка
Правильно записан ЗСИ 1 очко
2) 2-й вопрос стоит 3 очка
Правильно записан ЗСЭ 1 очко
3) 3-й вопрос стоит
Если T выражено через V_0 , то оценку не снижать (Б.11-02, 11-04)
Задача 2. (10 очков)
1) 1-й вопрос стоит
2) 2-й вопрос стоит
3) 3-й вопрос стоит
Если в Б.11-03 на 3-й вопрос есть прав. аналит. ответ, ставить 4 очка
Задача 3. (10 очков)
1) 1-й вопрос стоит
2) 2-й вопрос стоит
Правильно записаны все необходимые ур-я 1 очко
3) 3-й вопрос стоит 4 очка
Правильно записаны все необходимые ур-я 1 очко
Задача 4. (10 очков)
1) 1-й вопрос стоит 4 очка
Ответ завышен в 2 раза 2 очка
2) 2-й вопрос стоит 6 очков
Ответ завышен в 2 раза 3 очка
Ответ завышен в 4 раза 2 очка
Ответ завышен в 8 раз 1 очко
Задача 5. (10 очков)
1) 1-й вопрос стоит
2) 2-й вопрос стоит
3) 3-й вопрос стоит
Есть понимание, что изобр. в зеркале дв-ся со скор. $2V \dots 1$ очко
Есть отношение скоростей через Γ^2

Критерии оценивания. Олимпиада «Физтех». 2019 г. Билеты 11-05, 11-06, 11-07, 11-08

Задача 1. (10 очков)

1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит 7 очков Правильные ур-я для нахождения КПД 3 очка Правильный аналитический ответ 3 очка Правильный численный ответ 1 очко Задача 2. (10 очков)
1) 1-й вопрос стоит
2) 2-й вопрос стоит
3) 3-й вопрос стоит
Задача 3. (10 очков)
1) 1-й вопрос стоит
2) 2-й вопрос стоит
Правильно записаны все необходимые ур-я 1 очко
3) 3-й вопрос стоит
Правильно записаны все необходимые ур-я 1 очко
$\mathbf{p}_{\mathbf{q}}$
3адача 4. (10 очков)
1) 1-й вопрос стоит
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко
1) 1-й вопрос стоит3 очка2) 2-й вопрос стоит (объяснений не требовать)3 очка3) 3-й вопрос стоит4 очкаЕсть сохранение суммы потоков1 очкоНайден правильно ток I_1 1 очко
1) 1-й вопрос стоит3 очка2) 2-й вопрос стоит (объяснений не требовать)3 очка3) 3-й вопрос стоит4 очкаЕсть сохранение суммы потоков1 очкоНайден правильно ток I_1 1 очкоПравильный ЗСЭ1 очко
1) 1-й вопрос стоит3 очка2) 2-й вопрос стоит (объяснений не требовать)3 очка3) 3-й вопрос стоит4 очкаЕсть сохранение суммы потоков1 очкоНайден правильно ток I_1 1 очко
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко Найден правильно ток I ₁ 1 очко Правильный ЗСЭ 1 очко Ответ 1 очко
1) 1-й вопрос стоит3 очка2) 2-й вопрос стоит (объяснений не требовать)3 очка3) 3-й вопрос стоит4 очкаЕсть сохранение суммы потоков1 очкоНайден правильно ток I_1 1 очкоПравильный ЗСЭ1 очкоОтвет1 очкоЗадача 5. (10 очков)2 очка
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко Найден правильно ток I ₁ 1 очко Правильный ЗСЭ 1 очко Ответ 1 очко 1) 1-й вопрос стоит 2 очка 2) 2-й вопрос стоит 4 очка
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко Найден правильно ток I_1 1 очко Правильный ЗСЭ 1 очко Ответ 1 очко 3адача 5. (10 очков) 2 очка 1) 1-й вопрос стоит 2 очка 2) 2-й вопрос стоит 4 очка 3) 3-й вопрос стоит 4 очка
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко Найден правильно ток I_1 1 очко Правильный ЗСЭ 1 очко Ответ 1 очко 3адача 5. (10 очков) 2 очка 2) 2-й вопрос стоит 4 очка 3) 3-й вопрос стоит 4 очка Есть понимание, что изобр. в зеркале дв-ся со скор. $2V$ 1 очко
1) 1-й вопрос стоит 3 очка 2) 2-й вопрос стоит (объяснений не требовать) 3 очка 3) 3-й вопрос стоит 4 очка Есть сохранение суммы потоков 1 очко Найден правильно ток I_1 1 очко Правильный ЗСЭ 1 очко Ответ 1 очко 3адача 5. (10 очков) 2 очка 1) 1-й вопрос стоит 2 очка 2) 2-й вопрос стоит 4 очка 3) 3-й вопрос стоит 4 очка