GALOIS THEORY 2019: HW 5

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 11 of the term

- 1. (This is part of the proof of Theorem 11.1(c).) Suppose that $L: K_0$ is a finite Galois extension with $G = Gal(L: K_0)$ and $H \triangleleft G$. We let ϕ, γ be the maps as defined in section 11 of the notes. Here you show that for any $\sigma \in G$, $\phi(H) = \sigma\phi(H)$ (which by Theorem 11.1(b) is equivalent to showing that for any $\sigma \in G$, $H = \gamma \sigma \phi(H)$).
 - (a) Take $\sigma \in G$. Show that $\sigma \phi(H) \subseteq \phi(H)$.
 - (b) Show that for $\sigma \in G$, we have $\sigma \phi(H) = \phi(H)$.
- 2. Let f denote the polynomial $t^3 7 \in \mathbb{Q}[t]$.
 - (a) Find a splitting field extension $L: \mathbb{Q}$ for f.
 - (b) Construct $Gal(L : \mathbb{Q})$; show that $Gal(L : \mathbb{Q}) \simeq S_3$ (where S_3 denotes the symmetric group on 3 letters).
 - (c) Find all subgroups H of $Gal(L:\mathbb{Q})$, and for each subgroup H, use the Fundamental Theorem of Galois Theory (Theorem 11.1) to find $Fix_L(H)$, clearly explaining your reasoning. (It may be helpful to draw the lattice of subfields and corresponding lattice of subgroups of S_3 .)
- 3. (Here you prove Theorem 12.2.) Let p be a prime and $q = p^n$ where $n \in \mathbb{Z}_+$. Let \mathbb{F}_p denote a field of order p, and let \mathbb{F}_q denote a field of order q; recall that by Theorem 12.1, $\mathbb{F}_q : \mathbb{F}_p$ is a Galois extension with $|Gal(\mathbb{F}_q : \mathbb{F}_p)| = n$. Assume that $\mathbb{F}_p \subseteq \mathbb{F}_q$.
 - (a) Briefly explain why $\mathbb{F}_q : \mathbb{F}_p$ is a Galois extension.
 - (b) Let ϕ denote the Frobenius map on \mathbb{F}_q . Show that $\langle \phi \rangle = Gal(\mathbb{F}_q : \mathbb{F}_p)$, and use this to show that $Gal(\mathbb{F}_q : \mathbb{F}_p) \simeq \mathbb{Z}/n\mathbb{Z}$.
- 4. (This is a continuation of a problem on HW 3.) Let $g(X) = X^4 5 \in \mathbb{Q}[t]$. Let $\alpha = \sqrt[4]{5} \in \mathbb{R}_+$, and let $\zeta = \mathrm{e}^{2\pi i/4} = i$; then $L = \mathbb{Q}(\alpha, i)$ is a splitting field for g over \mathbb{Q} . We have seen that $[L:\mathbb{Q}] = 8$ and $Gal(L:\mathbb{Q})$ is generated by the \mathbb{Q} -homomorphisms σ and τ where $\sigma(\alpha) = i\alpha$, $\sigma(i) = i$, $\tau(\alpha) = \alpha$, $\tau(i) = -i$, and $\sigma\tau = \tau\sigma^3$. Find all subgroups H of $Gal(L:\mathbb{Q})$, and for each subgroup H, use the Fundamental Theorem of Galois Theory (Theorem 11.1) to find $Fix_L(H)$, clearly explaining your reasoning. (It may be helpful to draw the lattice of subfields and corresponding lattice of subgroups of $Gal(L:\mathbb{Q})$.)
- 5. (This is a continuation of a problem on HW 3.) Let $f = (X^2 2)(X^2 + 7)$. We have seen that with $L = \mathbb{Q}(\sqrt{2}, \sqrt{-7}) \subseteq \mathbb{C}$, $L : \mathbb{Q}$ is a splitting field extension for f with $[L : \mathbb{Q}] = 4$. We have also seen that $Gal(L : \mathbb{Q})$ is generated by the \mathbb{Q} -homomorphisms σ and τ where $\sigma(\sqrt{2}) = -\sqrt{2}$, $\sigma(\sqrt{-7}) = \sqrt{-7}$, $\tau(\sqrt{2}) = \sqrt{2}$, $\tau(\sqrt{-7}) = -\sqrt{-7}$, and $\sigma\tau = \tau\sigma$. Find all subgroups H of $Gal(L : \mathbb{Q})$, and for each subgroup H, use the Fundamental Theorem of Galois Theory (Theorem 11.1) to find $Fix_L(H)$, clearly explaining your reasoning.

(It may be helpful to draw the lattice of subfields and corresponding lattice of subgroups of $Gal(L : \mathbb{Q}.)$

- 6. Let p be a prime number, and let \mathbb{F}_p be the finite field with p elements. Put $f(t) = t^p t + 1$, and let $K = \mathbb{F}_p(\alpha)$, where α is a root of f.
 - (a) Show that for all $\xi \in \mathbb{F}_p$, the element $\alpha + \xi$ is a root of f.
 - (b) Let σ be the Frobenius map on K. Show that for $1 \leq d < p$, one has that $\sigma^d(\alpha)$ is a root of f.
 - (c) Show that f is irreducible over \mathbb{F}_p .
- 7. Let L be a field, G a subgroup of Aut(L), and $K = Fix_L(G)$. Suppose that each G-orbit in L is finite; thus by Theorem 10.2, we know that L: K is a Galois extension.
 - (a) Briefly explain why G is a subset of Gal(L:K).
 - (b) Take $\alpha \in L$, and let $\alpha, \alpha_2, \ldots, \alpha_r$ be the distinct elements in the G-orbit of α . With

$$f_{\alpha} = (t - \alpha)(t - \alpha_2) \cdots (t - \alpha_r),$$

we have seen in the proof of Theorem 10.2 that $f_{\alpha} \in K[t]$. Set $g = m_{\alpha}(K)$; show that $f_{\alpha} = g$.