Rozwiązywanie układów równań liniowych metodami bezpośrednimi

Martyna Olszewska

Treść zadania

Elementy macierzy **A** o wymiarze $n \times n$ są określone wzorem, gdzie m = 0,5 i k = 6:

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = (-1)^j \frac{m}{j} & dla \ j > i \end{cases}$$

$$\begin{cases} a_{i,i-1} = \frac{m}{i} \\ a_{i,j} = 0 & dla \ j < i-1 \end{cases}$$

Przyjmij wektor x jako dowolną n—elementową permutację ze zbioru { 1, -1 } i oblicz wektor b. Następnie metodą Jacobiego rozwiąż układ równań liniowych Ax=b (przyjmując jako niewiadomą wektor x). Obliczenia wykonaj dla różnych rozmiarów układu n, dla różnych wektorów początkowych, a także różnych wartości w kryteriach stopu. Wyznacz liczbę iteracji oraz sprawdź różnicę w czasie obliczeń dla obu kryteriów stopu. Sprawdź dokładność obliczeń.

SPECYFIKACJE

Do obliczeń użyłam języka python, na systemie operacyjnym Ubuntu 20.04.4 LTS. Procesor komputera to Intel Core i3-4030U CPU @ 1.90GHz \times 4 , RAM: 8GB. Do generowania wykresów użyłam biblioteki matplotlib, a dokładniej narzędzia pyplot. Do wyznaczenia równoodległych punktów użyłam narzędzia linspace z biblioteki numpy. Korzystam również z biblioteki math.

WYNIKI

Aby uzyskać wyniki stworzyłam programy, które rozwiązywały równanie. Wartości wektora X są z zakresu {-1, 1}. Wektor początkowy ma dwie postacie: { -1, 1, -1....} lub {0, 0, 0, ... } Następnie wykonywałam eksperymenty, gdzie w każdej iteracji obliczyłam wyniki dla n = 3, 5, 10, 20, 50, 100, 150, 250, 500, 1000, 1500, 2000, 2500, a wyniki zapisałam w tabeli. Uwzględniałam dwa kryteria stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2. $||Ax^{(i)} - b|| < \rho$

Gdzie ro miało wartości: 0.01, 0.0001, 0.000000001, 0.000000001.

ZADANIE PIERWSZE

Poniższe tabele zawierają wyniki błędu obliczonego z kryterium pierwszego, ilość iteracji, które program musiał wykonać aby uzyskać wymaganą dokładność oraz czas podany w sekundach. Błąd jest wyliczany jako maksimum z modułu różnicy obliczonych X oraz tych z poprzedniej iteracji. Obliczenia wykonane dla wektora startowego postaci {-1, 1, -1, 1 ... }.

	Wielkość	Błąd	Ilość iteracji	Czas w sekundach
	macierzy		·	
Ro = 0.01	3	0.001645	3	0.000356262
	5	0.002250	3	0.000190771
	10	0.003058	3	0.000224822
	20	0.003835	3	0.000195235
	50	0.004821	3	0.000285558
	100	0.005833	3	0.007580204
	150	0.006455	3	0.001419383
	250	0.007238	3	0.002366816
	500	0.008257	3	0.004594438
	1000	0.009355	3	0.010637162
	1500	0.009966	3	0.017343258
	2000	0.000864	4	0.032551442
	2500	0.000887	4	0.045190787
Ro = 0.0001	3	1.08528e-05	5	0.000283109
	5	1.33742e-05	5	0.000309967
	10	1.84099e-05	5	0.000370253
	20	2.33964e-05	5	0.000413816
	50	2.96637e-05	5	0.000916717
	100	3.42037e-05	5	0.001533164
	150	3.69256e-05	5	0.002200367
	250	4.02946e-05	5	0.003321063
	500	4.48804e-05	5	0.007262919
	1000	4.93302e-05	5	0.016177429
	1500	5.20866e-05	5	0.029554803
	2000	5.38144e-05	5	0.039146177
	2500	5.53467e-05	5	0.054973876

Tabela 1. Obliczone błędy dla różnych wielkości macierzy A

	Wielkość macierzy	Błąd	Ilość iteracji	Czas w
				sekundach
Ro = 10e-08	3	3.25e-10	9	0.000389958
	5	3.34e-10	9	0.000438604
	10	5.08e-10	9	0.000534036
	20	6.84e-10	9	0.000679495
	50	9.17e-10	9	0.001254563
	100	8.6e-11	10	0.002683108
	150	9.4e-11	10	0.003733949
	250	1.05e-10	10	0.006857172
	500	1.2e-10	10	0.012498172
	1000	1.35e-10	10	0.029117438
	1500	1.44e-10	10	0.048616186
	2000	1.5e-10	10	0.113983634
	2500	1.55e-10	10	0.131563947
Ro = 10e-10	3	2.4e-11	10	0.000356799
	5	2.3e-11	10	0.000373345
	10	3.7e-11	10	0.000480018
	20	5.1e-11	10	0.000689501
	50	7.1e-11	10	0.001401189
	100	8.6e-11	10	0.008924016
	150	9.4e-11	10	0.003725088
	250	6E-12	11	0.006767531
	500	7E-12	11	0.013777431
	1000	8E-12	11	0.032134928
	1500	8E-12	11	0.053357537
	2000	9E-12	11	0.091400322
	2500	9E-12	11	0.102988359

Tabela 2. Obliczone błędy dla różnych wielkości macierzy A

Analizując powyższe tabele można zauważyć, że błąd maleje razem z malejącą wartością ro dla każdego z rozmiarów macierzy. Wraz ze wzrostem dokładność jak i wielkością macierzy rośnie także liczba iteracji potrzebna do uzyskania satysfakcjonującego wyniku.

Lepsza precyzja wymaga więcej iteracji oraz więcej czasu. Dla każdej z precyzji czas rośnie wraz z wielkością macierzy. Gdzie przy wielkości macierzy do 100 czas dla każdej z precyzji jest bardzo podobny.

Poniższe tabele zawierają wyniki błędu obliczonego z kryterium drugiego jako norma maximum, ilość iteracji, które program musiał wykonać aby uzyskać wymaganą dokładność oraz czas podany w sekundach. Obliczenia wykonane dla wektora startowego postaci {-1, 1, -1, 1 ... }.

	Wielkość	Błąd	Ilość	Czas w
	macierzy		iteracji	sekundach
Ro = 0.01	3	0.009874144	2	0.000287086
	5	0.001321453	3	0.000234682
	10	0.001813855	3	0.000217663
	20	0.002285904	3	0.000234682
	50	0.002880383	3	0.000480437
	100	0.003318966	3	0.007041694
	150	0.003572567	3	0.000438467
	250	0.003893179	3	0.000606565
	500	0.004325323	3	0.001419301
	1000	0.004756592	3	0.005656626
	1500	0.005008579	3	0.010642753
	2000	0.005187675	3	0.018281946
	2500	0.005326465	3	0.036658527
Ro = 0.0001	3	6.5116725e-05	4	0.000381964
	5	8.0251453e-05	4	0.000293014
	10	1.0341595e-05	5	0.000336852
	20	1.3443614e-05	5	0.000374319
	50	1.7445149e-05	5	0.000355064
	100	2.0431269e-05	5	0.001312859
	150	2.216951e-05	5	0.000820331
	250	2.4354159e-05	5	0.001062607
	500	2.7312932e-05	5	0.001827072
	1000	3.026822e-05	5	0.007938628
	1500	3.1996074e-05	5	0.038577561
	2000	3.3221761e-05	5	0.103593575
	2500	3.4172376e-05	5	0.079343021

Tabela 3 Obliczone błędy dla różnych wielkości macierzy A

	Wielkość	Błąd	Ilość	Czas w
	macierzy		iteracji	sekundach
Ro = 10e-08	3	1.46e-10	9	0.00056385994
	5	1.36e-10	9	0.000801801682
	10	2.2e-10	9	0.000763893127
	20	3.07e-10	9	0.000570058823
	50	4.24e-10	9	0.000598907471
	100	5.14e-10	9	0.001988172531
	150	5.66e-10	9	0.000901222229
	250	6.32e-10	9	0.003180980682
	500	7.22e-10	9	0.012552499771
	1000	8.11e-10	9	0.032420396805
	1500	8.64e-10	9	0.046936273575
	2000	9.01e-10	9	0.097274780273
	2500	9.3e-10	9	0.107882976532
Ro = 10e-10	3	1.2e-11	10	0.000629901886
	5	1.2e-11	10	0.000586271286
	10	1.6e-11	10	0.000552177429
	20	1.9e-11	10	0.000561952591
	50	2.5e-11	10	0.000644445419
	100	3E-11	10	0.00090098381
	150	3.3e-11	10	0.001245498657
	250	3.7e-11	10	0.003018379211
	500	4.2e-11	10	0.003544330597
	1000	4.8e-11	10	0.030559301376
	1500	5.1e-11	10	0.048266172409
	2000	5.3e-11	10	0.088162660599
	2500	5.5e-11	10	0.11083316803

Tabela 4 Obliczone błędy dla różnych wielkości macierzy A

Wyniki wyglądają podobnie do tabel odnoszących się do pierwszego kryterium stopu. Czas Potrzebny do obliczeń jest minimalnie mniejszy. Błąd jest większy, a liczba iteracji jest praktycznie taka sama.

Poniższe tabele zawierają wyniki błędu obliczonego z kryterium pierwszego, ilość iteracji, które program musiał wykonać aby uzyskać wymaganą dokładność oraz czas podany w sekundach. Błąd jest wyliczany jako maksimum z modułu różnicy obliczonych X oraz tych z poprzedniej iteracji. Obliczenia wykonane dla wektora startowego postaci $\{0,0,0,\dots\}$.

	Wielkość	Błąd	Ilość iteracji	Czas w
	macierzy			sekundach
Ro = 0.01	3	0.009874144	2	0.000280886
	5	0.001321453	3	0.000234682
	10	0.001813655	3	0.000217163
	20	0.002285904	3	0.000234882
	50	0.002880383	3	0.000480437
	100	0.003318966	3	0.007041734
	150	0.003572567	3	0.000438467
	250	0.003893479	3	0.000606865
	500	0.004325823	3	0.001419801
	1000	0.004756592	3	0.005656626
	1500	0.005005779	3	0.010646953
	2000	0.005185675	3	0.018286646
	2500	0.005326365	3	0.036658467
Ro = 0.0001	3	6.5116725e-05	4	0.000386564
	5	8.0251453e-05	4	0.000293134
	10	1.0341595e-05	5	0.000336452
	20	1.3443614e-05	5	0.000374169
	50	1.7445149e-05	5	0.000355264
	100	2.0431269e-05	5	0.001315859
	150	2.216951e-05	5	0.000820331
	250	2.4354159e-05	5	0.001062607
	500	2.7312932e-05	5	0.001827572
	1000	3.026822e-05	5	0.007938428
	1500	3.1996074e-05	5	0.038577661
	2000	3.3221761e-05	5	0.103593875
	2500	3.4172376e-05	5	0.079340521

Tabela 5 Obliczone błędy dla różnych wielkości macierzy A

	Wielkość	Błąd	Ilość iteracji	Czas w
	macierzy			sekundach
Ro = 10e-08	3	1.46e-10	9	0.00056394
	5	1.36e-10	9	0.00080682
	10	2.2e-10	9	0.00076327
	20	3.07e-10	9	0.000570023
	50	4.24e-10	9	0.000598971
	100	5.14e-10	9	0.001988131
	150	5.66e-10	9	0.000901229
	250	6.32e-10	9	0.003180982
	500	7.22e-10	9	0.012552771
	1000	8.11e-10	9	0.032426805
	1500	8.64e-10	9	0.046933575
	2000	9.01e-10	9	0.097270273
	2500	9.3e-10	9	0.107882932
Ro = 10e-10	3	1.2e-11	10	0.000629986
	5	1.2e-11	10	0.000586286
	10	1.6e-11	10	0.000552129
	20	1.9e-11	10	0.000561991
	50	2.5e-11	10	0.000644419
	100	3E-11	10	0.000900941
	150	3.3e-11	10	0.001245497
	250	3.7e-11	10	0.003018371
	500	4.2e-11	10	0.003544337
	1000	4.8e-11	10	0.030559306
	1500	5.1e-11	10	0.048266109
	2000	5.3e-11	10	0.088162699
	2500	5.5e-11	10	0.110833173

Tabela 6 Obliczone błędy dla różnych wielkości macierzy A

Porównując do wyników uzyskanych za pomocą poprzedniego wektora początkowego różnią się praktycznie tylko czasem wykonania. Ilość iteracji i wartości błędu są takie same.

Poniższe tabele zawierają wyniki błędu obliczonego z kryterium drugiego jako norma maximum, ilość iteracji, które program musiał wykonać aby uzyskać wymaganą dokładność oraz czas podany w sekundach. Obliczenia są wykonane dla wektora startowego zawierające same zera.

	Wielkość	Błąd	Ilość iteracji	Czas w
	macierzy			sekundach
Ro = 0.01	3	0.001645657	3	0.000157262
	5	0.002250865	3	0.000179771
	10	0.003058654	3	0.000224472
	20	0.003837739	3	0.0001952535
	50	0.004821978	3	0.000285680
	100	0.005833935	3	0.007580204
	150	0.006451887	3	0.001419063
	250	0.007231481	3	0.002366546
	500	0.008290555	3	0.004594538
	1000	0.009350496	3	0.010637762
	1500	0.009970585	3	0.017340158
	2000	0.000864646	4	0.032551742
	2500	0.000887744	4	0.045175787
Ro = 0.0001	3	1.0852788e-05	5	0.000283709
	5	1.3375242e-05	5	0.000307567
	10	1.8451099e-05	5	0.000370253
	20	2.3395564e-05	5	0.000413416
	50	2.9637637e-05	5	0.000916717
	100	3.4250037e-05	5	0.001533034
	150	3.6926056e-05	5	0.002250567
	250	4.0283946e-05	5	0.003364063
	500	4.482604e-05	5	0.007249919
	1000	4.9359302e-05	5	0.016177429
	1500	5.2008866e-05	5	0.029583903
	2000	5.3888144e-05	5	0.039140177
	2500	5.5345567e-05	5	0.054973876

Tabela 7 Obliczone błędy dla różnych wielkości macierzy A

	Wielkość	Błąd	Ilość iteracji	Czas w
	macierzy			sekundach
Ro = 10e-08	3	3.25e-10	9	0.00037958
	5	3.34e-10	9	0.00043904
	10	5.08e-10	9	0.000534036
	20	6.84e-10	9	0.000679895
	50	9.17e-10	9	0.001254563
	100	8.6e-11	10	0.002683408
	150	9.4e-11	10	0.003733649
	250	1.05e-10	10	0.006857372
	500	1.2e-10	10	0.012498672
	1000	1.35e-10	10	0.029112538
	1500	1.44e-10	10	0.048612386
	2000	1.5e-10	10	0.113983634
	2500	1.55e-10	10	0.131569647
Ro = 10e-10	3	2.4e-11	10	0.000359299
	5	2.3e-11	10	0.000373395
	10	3.7e-11	10	0.000480118
	20	5.1e-11	10	0.000689531
	50	7.1e-11	10	0.001401189
	100	8.6e-11	10	0.008924016
	150	9.4e-11	10	0.003725088
	250	6E-12	11	0.006767031
	500	7E-12	11	0.013777431
	1000	8E-12	11	0.032134528
	1500	8E-12	11	0.053362337
	2000	9E-12	11	0.091400622
	2500	9E-12	11	0.102988959

Tabela 8 Obliczone błędy dla różnych wielkości macierzy A

W tym przypadku sytuacja jest podobna - różni się jedynie czasem wykonania, który jest w większości przypadków większy.

Obliczenia są wykonane dla wektora startowego zawierające losowe wartości z przedziału (-1000, 1000).

		Warunek stopu pierwszy				Warunek stopu drugi		
	Wielkość		Czas	Różnica	Ilość	Czas w	Różnica	
	macierzy	iteracji			iteracji	sekundach		
Ro = 0.01	3	5	0.0008203	0.0001665123	4	0.0004591	0.001314893180	
	5	4	0.0001888	0.0004437711	4	0.0003762	0.000531674505	
	10	5	0.0004336	0.0003103372	5	0.0005750	0.000216086645	
	20	5	0.0004341	0.0001647573	5	0.0004522	0.000120401573	
	50	5	0.0019788	0.0001990050	5	0.0006837	0.000179447903	
	100	5	0.0295107	0.0002594114	4	0.0097435	0.001061722664	
	150	5	0.0029735	0.0001294247	5	0.0006085	0.000231732784	
	250	5	0.0037961	0.0001014174	4	0.0007355	0.001204799816	
	500	5	0.0077371	0.0003903677	4	0.0044300	0.001417281797	
	1000	5	0.0178821	8.2660909212	5	0.0073840	0.000402577231	
	1500	4	0.0237481	0.0002207860	4	0.0130906	0.000631925859	
	2000	5	0.0413570	0.0001915516	4	0.0569438	0.000521657617	
	2500	5	0.0628318	0.0003437086	5	0.0499720	0.000260591374	
Ro = 0.0001	3	6	0.0008823	9.3688581093	6	0.0004103	2.444362771081	
	5	6	0.0005509	6.757664566	6	0.0003654	8.06571423e-06	
	10	6	0.0008068	5.858690486	6	0.0004401	1.037859894e-05	
	20	7	0.0005743	1.251335512	6	0.0003764	8.159539807e-06	
	50	6	0.0009927	6.51208945e-06	6	0.0004301	2.491883139e-06	
	100	7	0.0022828	1.34818852e-06	6	0.0005517	1.101407169e-05	
	150	7	0.0030304	1.28206028e-06	6	0.0092253	1.32622052e-05	
	250	7	0.0053234	7.79903602e-07	6	0.0012066	7.52282565e-06	
	500	6	0.0087687	7.24407345e-06	6	0.0021951	6.470224706e-06	
	1000	6	0.020494	3.48086937e-06	6	0.0267343	1.320422834e-05	
	1500	7	0.0395872	1.90837706e-06	6	0.0269734	4.004690594e-06	
	2000	7	0.0528514	1.61325697e-06	6	0.0463750	1.174808493e-05	
	2500	7	0.07496298	8.09788065e-07	6	0.0512986	1.005333397e-05	
Ro = 10e-08	3	10	0.0004024	7.51703382e-10	10	0.0007960	2.74213636e-10	
	5	10	0.0003817	1.56627876e-10	9	0.0007839	9.46189315e-10	
	10	10	0.0005073	1.74104484e-10	10	0.0009698	2.46560391e-10	
	20	10	0.0007684	4.30789384e-10	10	0.0006554	1.49217409e-10	
	50	10	0.0015778	1.83771022e-10	10	0.0006997	2.632107124e-10	
	100	10	0.0031795	2.95289866e-10	10	0.0008406	4.682378696e-10	
	150	10	0.0042674	1.77373664e-10	10	0.0009544	1.14327453e-10	
	250	10	0.0068765	4.86275654e-10	10	0.0013496	1.95581328910	
	500	10	0.013978688	3.96247126e-10	10	0.0044706	3.986240428e-10	
	1000	10	0.0435869	3.55984269e-10	10	0.0137193	2.322260706e-10	
	1500	10	0.04849245	1.52112615e-10	10	0.0288936	4.413363021e-10	
	2000	10	0.1117348	1.087563e-10	10	0.0497713	4.614959506e-10	
	2500	10	0.0958818	3.0237953e-10	10	0.0821288	4.555005592e-10	

Tabela 9. Wartości różnicy X obliczonego z X oczekiwanym dla dwóch warunków stopu

Analizując powyższa tabele można zauważyć, że dla takiej samej wielkości macierzy dla różnych warunków stopu przy innej liczbie iteracji, lepszą dokładność dostajemy przy tej liczbie iteracji, która jest większa. Można to zaobserwować przy ro = 10e-04 oraz ro = 0.01. Czas wykonania obliczeń jest porównywalny.

Nie zaobserwowałam większej różnicy w czasach oraz ilościach iteracji przy wektorach startowych dużo odbiegających od wartości oczekiwanych i tych, które nie odbiegały bardzo.

ZADANIE DRUGIE

Przy użyciu dowolnej metody znaleźć promień spektralny macierzy iteracji dla różnych rozmiarów układu. Sprawdzić czy spełnione są założenia dla zadanego układu oraz opisać metodę znajdowania promienia spektralnego.

WYNIKI

Promieniem spektralnym nazywamy maksymalną wartość pośród wartości własnych macierzy:

$$\rho(A) = max\{|\lambda_1|, ..., |\lambda_n|\}$$

Wartości własne macierzy czyli pierwiastki wielomianu charakterystycznego tej macierzy, gdzie I to macierz jednostkowa:

$$w_A(\lambda) = \det A - \lambda I$$

Do obliczenia wartości własnych została użyta funkcja eigvals z biblioteki numpy. Macierz iteracji dla metody Jacobiego ma postać:

$$M = D^{-1}(L+U)$$

Następnie A obliczamy ze wzoru, gdzie D to macierz diagonalna, L poddiagonalna, a U naddiagonalna:

$$A = D + L + U$$

Poniższa tabela zawiera promień spektralne dla rozmiarów macierzy z poprzedniego zadania:

Wielkość macierzy	Promień spektralny
3	0.0763228409
5	0.0721878203
10	0.0723248431
20	0.0723248519
50	0.0723248519
100	0.0723248519
150	0.0723248519
250	0.0723248519
500	0.0723248519
1000	0.0723248519
1500	0.0723248519
2000	0.0723248519
2500	0.0723248519

Tabela 10. Wartości promienia spektralnego dla macierzy o różnych rozmiarach

Jak widać dla każdej macierzy promień spektralny jest podobnej wartości i każda z nich jest wartością mniejszą od 1 zatem z warunku wystarczającego dla zbieżności metody iteracyjnej można stwierdzić, że dla wsyztskich macierzy metoda ta jest zbieżna.

Warunek zbieżności metody iteracyjnej:

$$\rho(M) < 1$$

WNIOSKI

- Obydwa warunki stopu dają porównywalne wyniki
- Sprawdzane wektory początkowe nie miały za dużego wpływu na wyniki, zmieniały tylko czas wykonywania obliczeń.
- Najlepszą precyzje otrzymywałam przy wielkosci macierzy 100.
- Wektor początkowy nie ma za dużego wpływu na ilość iteracji potrzebną do osiągnięcia satysfakcjonującego wyniku.