ATTACHMENT A

Claims 1 - 13: (Cancelled)

- 14. (New) A monocyclopentadienyl complex comprising a structural feature of formula $Cp-Y_mM^A$ (I), wherein:
 - Cp is a cyclopentadienyl system comprising an aryl
 substituent;
 - Y is a substituent which is bound to Cp and comprising at least one uncharged donor comprising at least one atom of group 15 or 16 of the Periodic Table;
 - M^A is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, or an element of group 3 or a lanthanide of the Periodic Table; and
 - m is 1, 2 or 3.
- 15. (New) A monocyclopentadienyl complex comprising formula $Cp-Y_mM^AX^A_{\ n}\ (V)\ ,\ wherein:$
 - Cp is a cyclopentadienyl system comprising an aryl
 substituent;
 - Y is a substituent which is bound to Cp and comprises at least one uncharged donor comprising at least one atom of group 15 or 16 of the Periodic Table;

M^A is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, or an element of group 3 or a lanthanide of the Periodic Table;

m is 1, 2 or 3;

independently of one another, are fluorine, chlorine, bromine, iodine, hydrogen, a C_1 - C_{10} -alkyl, a C_2 - C_{10} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, $NR^{23A}R^{24A}$, OR^{23A} , SR^{23A} , SO_3R^{23A} , $OC(O)R^{23A}$, CN, SCN, β -diketonate, CO, BF_4 , PF_6 or bulky noncoordinating anions, or two radicals X^A form a substituted or unsubstituted diene ligand, or two or more X^A radicals may be joined to one another;

independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{25A}_{3} , wherein R^{23A} - R^{24A} may also be substituted by halogens or nitrogen- and oxygencontaining groups, or two R^{23A} - R^{24A} radicals optionally can be joined to form a five-or six-membered ring;

 R^{25A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an

alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, wherein two R^{25A} radicals optionally can join to form a five- or six-membered ring; and

n is 1, 2, or 3.

- 16. (New) The monocyclopentadienyl complex as claimed in claim 15, wherein X^{A} is a 1,3-diene ligand.
- 17. (New) The monocyclopentadienyl complex as claimed in claim 14, wherein Y comprises group $-Z_k-A-$; the group $-Z_k-A-$ together with the cyclopentadienyl system Cp and M^A form a monocyclopentadienyl complex comprising formula $Cp-Z_k-A-M^A$ (II), wherein $Cp-Z_k-A$ comprises:

$$A \xrightarrow{E^{1A}} E^{2A}$$

$$A \xrightarrow{E^{5A}} E^{5A} \xrightarrow{E^{3A}} R^{3A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

$$R^{4A}$$

wherein:

- $E^{1A}-E^{5A}$ are each carbon or a heteroatom, with the proviso that not more than one E^{1A} E^{5A} are phosphorus;
- $R^{1A}-R^{4A}$ independently of one another, are hydrogen, a C_1-C_{22} -alkyl, a C_2-C_{22} -alkenyl, a C_6-C_{22} -aryl, an alkylaryl comprising 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl

radical, NR^{5A}_{2} , $N(SiR^{5A}_{3})_{2}$, OR^{5A} , $OSiR^{5A}_{3}$, SiR^{5A}_{3} , BR^{5A}_{2} , wherein optionally $R^{1A}-R^{4A}$ can be substituted by at least one halogen, or two vicinal $R^{1A}-R^{4A}$ radicals optionally can be joined to form a five-, six-, or seven-membered ring, or two vicinal $R^{1A}-R^{4A}$ radicals optionally can be joined to form a five-, six-, or seven-membered heterocycle ring comprising at least one atom from the group consisting of N, P,O and S, with the proviso that at least one $R^{1A}-R^{4A}$ is a C_1 - C_{22} -alkyl, a C_2 - C_{22} -alkenyl, a halogen, a haloalkyl comprising 1-10 carbon atoms, or a haloaryl comprising 1-10 carbon atoms, or a C_6 - C_{22} aryl, wherein the C_6 - C_{22} aryl optionally can be substituted by N-, P-, O- or S-containing substituents;

- R^{5A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or two geminal radicals that optionally can be joined to form a five- or six-membered ring;
- Z is a divalent bridge between A and Cp selected from the group consisting of:

$$-BR^{6A}-, -BNR^{6A}R^{7A}-, -AlR^{6A}-, -Sn-, -O-, -S-, -SO-, \\ -SO_2-, -NR^{6A}-, -CO-, -PR^{6A}- \ or \ -P(O)R^{6A}, \\ wherein$$

- $L^{1A}-L^{3A}$ independently of one another, are silicon or germanium;
- $R^{6A}-R^{11A}$ independently of one another, are hydrogen, a C_1-C_{20} -alkyl, a C_2-C_{20} -alkenyl, a C_6-C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{12A}_3 , wherein $R^{6A}-R^{11A}$ optionally can be substituted by at least one halogen or two geminal or vicinal $R^{6A}-R^{11A}$ radicals optionally can be joined to form a five- or six-membered ring;
- R^{12A} independently of one another, are hydrogen, a C_1 C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, a C_6 - C_{20}

alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, a C_1 - C_{10} -alkoxy, or C_6 - C_{10} -aryloxy, wherein two R^{12A} radicals optionally can be joined to form a five- or six-membered ring;

- A is an uncharged donor group comprising at least one atom of group 15 or 16 of the Periodic Table of Elements, or a carbine;
- M^A is a metal selected from the group consisting of titanium comprising an oxidation state 3, vanadium, chromium, molybdenum, and tungsten; and
- k is 0 or 1.
- 18. (New) The monocyclopentadienyl complex as claimed in claim 17, wherein A is an unsubstituted, substituted, or fused heteroaromatic ring system.
- 19. (New) The monocyclopentadienyl complex as claimed in claim 15, wherein Y comprises group $-Z_k-A-$; the group $-Z_k-A-$ together with the cyclopentadienyl system Cp, and M^A forms a monocyclopentadienyl complex comprising formula $Cp-Z_k-A-M^A$ (II), wherein $Cp-Z_k-A$ comprises:

$$A \longrightarrow Z_{k}^{1A} \xrightarrow{E^{1A}} E^{2A}$$

$$A \longrightarrow Z_{k}^{5A} \xrightarrow{E^{5A}} E^{3A}$$

$$R^{4A}$$

$$R^{4A}$$

$$(III)$$

- $E^{1A}-E^{5A}$ are each carbon or a heteroatom, with the proviso that not more than one E^{1A} E^{5A} are phosphorus;
- $R^{1A}-R^{4A}$ independently of one another, are hydrogen, a C_1 - C_{22} -alkyl, a C_2 - C_{22} -alkenyl, a C_6 - C_{22} -aryl, alkylaryl comprising 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}_{2} , $N(SiR^{5A}_{3})_{2}$, OR^{5A} , $OSiR^{5A}_{3}$, SiR^{5A}_{3} , BR^{5A}_{2} , wherein optionally R1A-R4A can be substituted by at least one halogen, or two vicinal $R^{1A}-R^{4A}$ radicals optionally can be joined to form a five-, six-, or seven-membered ring, or two vicinal R1A-R4A radicals optionally can be joined to form a five-, six-, or seven-membered heterocycle ring comprising at least one atom from the group consisting of N, P,O and S, with the proviso that at least one $R^{1A}-R^{4A}$ is a C_1 - C_{22} -alkyl, a C_2 - C_{22} -alkenyl, a halogen, a haloalkyl comprising 1-10 carbon atoms, or a haloaryl comprising 1 -10 carbon atoms, or a C_6 - C_{22} aryl, wherein the C_6-C_{22} aryl optionally can substituted by N-, P-, O- or S-containing substituents;
- R^{5A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or two geminal radicals that optionally can be joined to form a five- or six-membered ring;

Z is a divalent bridge between A and Cp selected from the group consisting of:

$$-BR^{6A}$$
-, $-BNR^{6A}R^{7A}$ -, $-A1R^{6A}$ -, $-Sn$ -, $-O$ -, $-S$ -, $-SO$ -, $-SO_2$ -, $-NR^{6A}$ -, $-CO$ -, $-PR^{6A}$ - or $-P(O)R^{6A}$, wherein

- $L^{1A}-L^{3A}$ independently of one another, are silicon or germanium;
- $R^{6A}-R^{11A}$ independently of one another, are hydrogen, a C_1-C_{20} -alkyl, a C_2-C_{20} -alkenyl, a C_6-C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{12A}_3 , wherein $R^{6A}-R^{11A}$ optionally can be substituted by at least one halogen or two geminal

or vicinal R^{6A}-R^{11A} radicals optionally can be joined to form a five- or six-membered ring;

- R^{12A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, a C_6 - C_{20} alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, a C_1 - C_{10} -alkoxy, or C_6 - C_{10} -aryloxy, wherein two R^{12A} radicals optionally can be joined to form a five- or six-membered ring;
- A is an uncharged donor group comprising at least one atom of group 15 or 16 of the Periodic Table of Elements, or a carbine;
- M^A is a metal selected from the group consisting of titanium comprising an oxidation state 3, vanadium, chromium, molybdenum, and tungsten; and
- k is 0 or 1.
- 20. (New) The monocyclopentadienyl complex as claimed in claim 19, wherein A is an unsubstituted, substituted, or fused heteroaromatic ring system.
- 21. (New) The monocyclopentadienyl complex as claimed in claim 17, wherein A comprises formula (IVa) or (IVb):

 $E^{6A}-E^{11A}$ independentl

independently of one another, are carbon or nitrogen;

 $R^{16A}-R^{21A}$

independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{22A}_{3} , wherein R^{16A} - R^{21A} optionally can be substituted by at least one halogen or nitrogen, or two vicinal R^{16A} - R^{21A} radicals or R^{16A} and Z optionally can be joined to form a five- or six-membered ring;

 R^{22A}

independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 -a C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or two R^{22A} radicals optionally can be joined to form a five- or six-membered ring; with the proviso that

p is 0 when $E^{6A}-E^{11A}$ is nitrogen, and p is 1 when $E^{6A}-E^{11A}$ is carbon.

22. (New) The monocyclopentadienyl complex as claimed in claim 18, wherein A comprises formula (IVa) or (IVb):

wherein:

 $E^{6A}-E^{11A}$ independently of one another, are carbon or nitrogen;

 $R^{16A}-R^{21A}$ independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{22A}_3 , wherein R^{16A} - R^{21A} optionally can be substituted by at least one halogen or nitrogen, or two vicinal R^{16A} - R^{21A} radicals or R^{16A} and Z optionally can be joined to form a five- or six-membered ring;

R^{22A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 -a C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20

carbon atoms in the aryl part, or two R^{22A} radicals optionally can be joined to form a five- or six-membered ring; with the proviso that

- p is 0 when $E^{6A}-E^{11A}$ is nitrogen, and p is 1 when $E^{6A}-E^{11A}$ is carbon.
- 23. (New) The monocyclopentadienyl complex as claimed in claim 17, wherein -Z-A and the aryl substituent are in the 1,3-positions relative to one another.
- 24. (New) The monocyclopentadienyl complex as claimed in claim 19, wherein -Z-A and the aryl substituent are in the 1,3-positions relative to one another.
- 25. (New) A catalyst system for olefin polymerization comprising:
 - A) at least one monocyclopentadienyl complex according to claim 14;
 - B) optionally, an organic or inorganic support;
 - C) optionally, one or more activating compounds;
 - D) optionally, further catalysts for olefin polymerization; and
 - E) optionally, one or more metal compounds comprising a metal of group 1, 2 or 13 of the Periodic Table.

- 26. (New) A catalyst system for olefin polymerization comprising:
 - A) at least one monocyclopentadienyl complex according to claim 15;
 - B) optionally, an organic or inorganic support;
 - C) optionally, one or more activating compounds;
 - D) optionally, further catalysts for olefin polymerization; and
 - E) optionally, one or more metal compounds comprising a metal of group 1, 2 or 13 of the Periodic Table.
- 27. (New) The prepolymerized catalyst system comprising a catalyst system as claimed in claim 25, the catalyst system further comprising one or more linear C_2 - C_{10} 1-alkenes polymerized onto the catalyst system in a mass ratio of from 1:0.1 to 1:1,000.
- 28. (New) The process for preparing polyolefins by polymerization or copolymerization of olefins in presence of the catalyst system as claimed in claim 25.
- 29. (New) The process for preparing polyolefins by polymerization or copolymerization of olefins in presence of the catalyst system as claimed in claim 27.

- 30. (New) The prepolymerized catalyst system comprising a catalyst system as claimed in claim 26, the catalyst system further comprising one or more linear C_2 - C_{10} 1-alkenes polymerized onto the catalyst system in a mass ratio of from 1:0.1 to 1:1,000.
- 31. (New) The process for preparing polyolefins by polymerization or copolymerization of olefins in presence of the catalyst system as claimed in claim 26.
- 32. (New) The process for preparing polyolefins by polymerization or copolymerization of olefins in presence of the catalyst system as claimed in claim 30.
- 33. (New) A process for preparing a cyclopentadiene system of formula (VIa)

$$A \xrightarrow{R^{30A}} E^{12A} \xrightarrow{E^{13A}} R^{27A}$$

$$A \xrightarrow{R^{30A}} E^{16A} \xrightarrow{E^{16A}} E^{14A}$$

$$R^{29A}$$

$$R^{29A}$$

$$R^{27A}$$

$$E^{13A} \xrightarrow{E^{14A}} R^{28A}$$

- $E^{12A}-E^{16A}$ are each carbon, wherein four adjacent $E^{12A}-E^{16A}$ form a conjugated diene system and the remaining $E^{12A}-E^{16A}$ bears hydrogen,
- $R^{26A}-R^{29A}$ independently of one another, are hydrogen, a $C_1-C_{20}-alkyl$, a $C_2-C_{20}-alkenyl$, a $C_6-C_{20}-aryl$, a C_6-C_{20}

alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{32A}_{2} , $N(SiR^{32A}_{3})_{2}$, OR^{32A}_{3} , $OSiR^{32A}_{3}$, BR^{32A}_{2} , SiR^{32A}_{3} , wherein $R^{26A}-R^{29A}$ optionally can be substituted by at least one halogen or two vicinal $R^{26A}-R^{29A}$ radicals that optionally can be joined to form a five- or six-membered ring, or two vicinal $R^{26A}-R^{29A}$ radicals optionally can form a heterocycle comprising at least one atom from the group consisting of N, P, O or S;

- $R^{30A}-R^{31A}$ independently of one another, are a hydrogen, a C_1-C_{20} -alkyl, a C_2-C_{20} -alkenyl, a C_6-C_{20} -aryl, a alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A}_3 , wherein $R^{30A}-R^{31A}$ optionally can be substituted by at least one halogen, and R^{30A} and A, or R^{31A} and A optionally can be joined to form a five- or six-membered ring;
- independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, and two geminal R^{32A} radicals optionally can be joined to form a five- or six-membered ring;

m is 0, 1 or 2;

A is an uncharged donor group comprising at least one atom of group 15 or 16 of the Periodic Table of Elements, or a carbine;

the process comprising:

- reacting an $(A-(CR^{29A}R^{30A})_m)^-$ anion with a cyclopentanedione or a silyl ether of an enolised cyclopentanedione.
- 34. (New) The process of claim 33, wherein A is an unsubstituted, substituted, or fused heteroaromatic ring system.
- 35. (New) A process for preparing a cyclopentadiene system of formula (VIb)

$$A \xrightarrow{R^{30A}} E^{12A} \xrightarrow{E^{13A}} Aryl^{A}$$

$$A \xrightarrow{R^{31A}}_{m} E^{16A} \xrightarrow{E^{14A}} R^{27A}$$

$$R^{28A}$$
(VIb)

wherein:

- $E^{12A}-E^{16A}$ are each carbon, wherein four adjacent $E^{12A}-E^{16A}$ form a conjugated diene system and the remaining $E^{12A}-E^{16A}$ bears hydrogen;
- $R^{26A}-R^{28A}$ independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR^{32A}_{3} , wherein R^{26A} - R^{28A} optionally can be substituted by at least one halogen, and two

vicinal R^{27A} - R^{28A} radicals optionally can be joined to form a five- or six-membered ring, or two vicinal R^{27A} - R^{28A} radicals optionally can be joined to form a heterocycle comprising at least one atom from the group consisting of N, P, O or S;

 $R^{30A}-R^{31A}$ independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A}_3 , wherein $R^{30A}-R^{31A}$ optionally can be substituted by at least one halogen, and R^{30A} and A, or R^{31A} and A optionally can be joined to form a five- or six-membered ring;

independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or two geminal R^{32A} radicals optionally can be joined to form a five- or six-membered ring;

Aryl^A is a C_6 - C_{22} -aryl, optionally substituted by at least one N-, P-, O- or S-containing substituent, C_1 - C_{22} -alkyl, C_2 - C_{22} -alkenyl, halogen, haloalkyl comprising 1-10 carbon atoms, or haloaryl comprising 1-10 carbon atoms;

m is 0 or 1;

A is an unsubstituted, substituted, or fused heteroaromatic ring system;

the process comprising:

- reacting an $(A-(CR^{30A}R^{31A})_m)^-$ anion with a cyclopentenone system of formula (VII)

$$R^{32A}_{3}SiO$$
 R^{26A}
 R^{27A}
 R^{27A}

to form a cyclopentenone of the formula (VIII)

$$\begin{array}{c|c}
R^{26A} & R^{30A} \\
 & C \\
 & R^{31A} \\
 & R^{27A}
\end{array}$$
(VIII)

- 36. (New) The process for preparing a cyclopentadiene system of claim 35, wherein Aryl^A is selected from phenyl, naphthyl, biphenyl, anthracenyl, and phenanthrenyl.
- 37. (New) A cyclopentadiene system of formula (VIb),

 $E^{12A}-E^{16A}$ are each carbon, wherein four adjacent $E^{12A}-E^{16A}$ form a conjugated diene system and the remaining $E^{12A}-E^{16A}$ bears hydrogen;

R^{26A}-R^{28A} independently of one another, are hydrogen, a C₁-C₂₀-alkyl, a C₂-C₂₀-alkenyl, a C₆-C₂₀-aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A}_{3} , wherein R^{26A} - R^{28A} optionally can be substituted by at least one halogen, and two vicinal R^{27A} - R^{28A} radicals optionally can be joined to form a five- or six-membered ring, or two vicinal R^{27A} - R^{28A} radicals optionally can be joined to form a heterocycle comprising at least one atom from the group consisting of N, P, O or S;

 $R^{30A}-R^{31A}$ independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A}_3 , wherein $R^{30A}-R^{31A}$ optionally can be substituted by at least one halogen, and R^{30A} and

A, or R^{31A} and A optionally can be joined to form a five- or six-membered ring;

 R^{32A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or two geminal R^{32A} radicals optionally can be joined to form a five- or six-membered ring;

Aryl^A is a C_6 - C_{22} -aryl, optionally substituted by at least one N-, P-, O- or S-containing substituent, C_1 - C_{22} -alkyl, C_2 - C_{22} -alkenyl, halogen, haloalkyl comprising 1-10 carbon atoms, or haloaryl comprising 1-10 carbon atoms;

m is 0 or 1; and

A is an unsubstituted, substituted, or fused heteroaromatic ring system.

38. (New) The cyclopentadiene system as claimed in claim 37, wherein Aryl^{A} is selected from phenyl, naphthyl, biphenyl, anthracenyl, and phenanthrenyl.

39. (New) A cyclopentenone of formula (VIII)

$$\begin{array}{c|c}
R^{26A} & R^{30A} \\
C & A \\
R^{31A} & M
\end{array}$$
(VIII)

 $R^{26A} - R^{28A}$

 $R^{30A} - R^{31A}$

independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A}_3 , wherein R^{26A} - R^{28A} optionally can be substituted by at least one halogen, and two vicinal R^{27A} - R^{28A} radicals optionally can be joined to form a five- or six-membered ring, or two vicinal R^{27A} - R^{28A} radicals optionally cab be joined to form a heterocycle comprising at least one atom from the group consisting of N, P, O and S;

 C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{32A} , wherein R^{30A} - R^{31A} optionally can be

part, or SiR^{32A}_3 , wherein $R^{30A}-R^{31A}$ optionally can be substituted by at least one halogen, and R^{30A} and A, or R^{31A} and A optionally can be joined to form

independently of one another, are hydrogen, a C1-

a five- or six-membered ring;

 R^{32A} independently of one another, are hydrogen, a C_1 - C_{20} -alkyl, a C_2 - C_{20} -alkenyl, a C_6 - C_{20} -aryl, an

alkylaryl comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, and two geminal R^{32A} radicals optionally can be joined to form a five- or six-membered ring;

Aryl is a C_6 - C_{22} -aryl, optionally substituted by at least one N-, P-, O- or S-containing substituent, C_1 - C_{22} -alkyl, C_2 - C_{22} -alkenyl, halogen, haloalkyl comprising 1-10 carbon atoms, or haloaryl comprising 1-10 carbon atoms;

m is 0 or 1; and

- A is an unsubstituted, substituted, or fused heteroaromatic ring system.
- 40. (New) The cyclopentenone as claimed in claim 39, wherein Aryl^{A} is selected from phenyl, naphthyl, biphenyl, anthracenyl, and phenanthrenyl.