2018 CGMO #3

Tristan Shin

28 Mar 2019

Let x_1, x_2, \ldots be real numbers such that $x_1^2 = 1$. If $n \ge 2$ is an integer, prove that

$$\sum_{i|n} \sum_{j|n} \frac{x_i x_j}{\operatorname{lcm}(i,j)} \ge \prod \left(1 - \frac{1}{p}\right),$$

where the product ranges over all distinct prime divisors of n.

I claim that

$$\sum_{i|n} \sum_{j|n} \frac{nx_i x_j}{\operatorname{lcm}(i,j)} = \sum_{d|n} \varphi(d) \left(\sum_{k|\frac{n}{d}} x_k \right)^2$$

for integers $n \geq 2$. To prove this, we must compute the coefficients of x_i^2 and $x_i x_j$ on each side.

Note that x_i^2 with $i \mid n$ appears when i = j only, so the coefficient of x_i^2 on the LHS is $\frac{n}{i}$. On the other hand, x_i^2 appears in the RHS sum under d when $i \mid \frac{n}{d}$ (equivalently $d \mid \frac{n}{i}$). So the coefficient of x_i^2 on the RHS is $\sum_{d \mid \frac{n}{i}} \varphi(d) = \frac{n}{i}$ so the coefficients match.

Now, note that x_ix_j with $i,j \mid n$ and $i \neq j$ appears on the LHS twice for (i,j) and (j,i), so the coefficient of x_ix_j on the LHS is $\frac{2n}{\operatorname{lcm}(i,j)}$. On the other hand, x_ix_j appears in the RHS sum under d when $i,j \mid \frac{n}{d}$ (equivalently $d \mid \frac{n}{\operatorname{lcm}(i,j)}$), and it appears as $2x_ix_j$ in the squared part. So the coefficient of x_ix_j on the RHS is $\sum_{d \mid \frac{n}{\operatorname{lcm}(i,j)}} 2\varphi(d) = \frac{2n}{\operatorname{lcm}(i,j)}$ so the coefficients match.

Now, using this equality, we have that

$$\sum_{i|n} \sum_{j|n} \frac{x_i x_j}{\operatorname{lcm}(i,j)} = \sum_{d|n} \frac{\varphi(d)}{n} \left(\sum_{k|\frac{n}{2}} x_k \right)^2 \ge \frac{\varphi(n)}{n} x_1^2 = \frac{\varphi(n)}{n} = \prod \left(1 - \frac{1}{p} \right)$$

as desired.