3D Plot

Hao Wang

January 22, 2017

Data: Boston Housing from MASS package

link: http://www.clemson.edu/economics/faculty/wilson/R-tutorial/analyzing_data.html The Boston data frame has 506 rows and 14 columns. This data frame contains variables of Boston real estate information. We're using the following variables in our plots:

- 1. crim: per capita crime rate by town
- 2. dis: weighted mean of distances to five Boston employment centres
- 3. lstat: lower status of the population (percent)
- 4. medv: median value of owner-occupied homes in \$1000

3D Scatterplots

You can create a 3D scatterplot with the scatterplot3d package. Use the function scatterplot3d(x, y, z).

```
library(MASS)
library(scatterplot3d)
attach(Boston)
scatterplot3d(medv,dis,crim, main="3D Scatterplot")
```

3D Scatterplot

3D Scatterplot with Coloring and Vertical Drop Lines

```
scatterplot3d(medv,dis,crim,highlight.3d=TRUE,
type="h", main="3D Scatterplot")
```

3D Scatterplot

3D Scatterplot with Coloring and Regression Plane

3D Scatterplot

Spinning 3D Scatterplots

You can also create an interactive 3D scatterplot using the plot3d(x, y, z) in the rgl package.. It creates a spinning 3D scatterplot that can be rotated with the mouse.

```
library(rgl)
plot3d(medv,dis,crim, col="red", size=3)
```

Surface Plot Using Lattice

You can create a surface plot with the Lattice package using the following codes.

```
library(lattice)
require(MASS)

Boston.df = data.frame(medv = Boston$medv, lstat = Boston$lstat, dis = Boston$dis)
Boston.loess = loess(medv ~ lstat+dis, data = Boston.df,
    degree = 2, span = 0.25)
Boston.fit = expand.grid(list(lstat = seq(1, 40, 1), dis = seq(0, 89, 1)))
medv = predict(Boston.loess, newdata = Boston.fit)

wireframe(medv ~ dis*lstat, data = Boston.fit,
    xlab = "Distance", ylab = "Low Status Population %",
```

```
zlab = "Price",
main = "Surface Boston Housing",
drape = TRUE,
colorkey = TRUE,
screen = list(z = -60, x = -60)
)
```

Surface Boston Housing

