Module 1 Supplemental Notes 1

Recall

 $\lim_{t \to x} f(t) = L$ means for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - t| < \delta$, then $|f(t) - L| < \varepsilon$.

Illustration

Definition

Let $f: [a,b] \to \mathbb{R}$. Fix $x \in [a,b]$ and define $(t) = \frac{f(t)-f(x)}{t-x}$ $(a < t < b, t \neq x)$. Let $f'(x) = \lim_{t \to x} \phi(t)$ (assuming the limit exists). If f'(x) exists, we say f is **differentiable** at x. If $E \subset (a,b)$ and f' is defined at each point of E, we say f is **differentiable** on E.

Illustration

Example 1: f(x) = |x|

Theorem

Let $f: [a, b] \to \mathbb{R}$. If f is differentiable at $x \in (a, b)$, then f is continuous at x.

Proof:

Arithmetic of Differentiation

Suppose $f,g:[a,b]\to\mathbb{R}$ are differentiable at $x\in(a,b)$. Then f+g and fg are differentiable at x and $\frac{f}{g}$ is differentiable at x provided $g(x) \neq 0$. Furthermore:

1.
$$(f+g)'(x) = f'(x) + g'(x)$$

2.
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

1.
$$(f+g)'(x) = f'(x) + g'(x)$$

2. $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$
3. $\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$, for $g(x) \neq 0$

Proof:

Proposition

If $f(x) = x^n$ for $n \in \mathbb{Z}^+$, then f is differentiable everywhere and $f'(x) = nx^{n-1}$.

Proposition

Polynomials are differentiable everywhere. Furthermore, rational functions $\left(r(x) = \frac{p(x)}{q(x)}\right)$, where p and q are polynomials are differentiable wherever $q(x) \neq 0$.

Chain Rule

Let $f:[a,b]\to\mathbb{R}$ be continuous and let f'(x) exist at some point $x\in(a,b)$. Suppose $g:I\to\mathbb{R}$ for $I\supset Range(f)$ and g is differentiable at f(x). If $h(t)=g\bigl(f(t)\bigr)$ $(a\le t\le b)$, then h is differentiable at x and $h'(x)=g'\bigl(f(x)\bigr)f'(x)$.

Illustration

Discussion

<u>Proof</u>:

Example 2:
$$f(x) = \begin{cases} x sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Example 3:
$$f(x) = \begin{cases} x^2 sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Definition

Let $f: X \to \mathbb{R}$ where X is a metric space. We say f has a **local maximum** at $p \in X$ if there exists r > 0 such that $f(p) \ge f(q)$ for all $q \in N_r(p)$. We say f has a **local minimum** at $p \in X$ if there exists r > 0 such that $f(p) \le f(q)$ for all $q \in N_r(p)$,

<u>Theorem</u>

Let $f:[a,b]\to\mathbb{R}$. If f has a local maximum at $p\in(a,b)$ and f'(p) exists, then f'(p)=0.

Proof:

Generalized Mean Value Theorem

If $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b] and differentiable on (a,b). Then there exists $x\in(a,b)$ such that [f(b)-f(a)]g'(x)=[g(b)-g(a)]f'(x).

Discussion

Proof:

Recall

A function $f:[a,b] \to \mathbb{R}$ is monotonically increasing if $a \le x_1 < x_2 \le b$, then $f(x_2) \ge f(x_1)$. A function $f:[a,b] \to \mathbb{R}$ is monotonically decreasing if $a \le x_1 < x_2 \le b$, then $f(x_2) \le f(x_1)$.

Theorem

Suppose f is differentiable in [a, b].

- 1. If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing
- 2. If $f'(x) \le 0$ for all $x \in (a, b)$, then f is monotonically decreasing
- 3. If f'(x) = 0 for all $x \in (a, b)$, then f is constant

Discussion

Example 4:
$$f(x) = \begin{cases} x^2 sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

<u>Theorem</u>

Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b] and $f'(a) < \lambda < f'(b)$. Then there exists $x \in (a,b)$ such that $f'(x) = \lambda$.

Proof:

Corollary

If $f:[a,b] \to \mathbb{R}$ is differentiable, then f' has no simple discontinuities.