Project Presentation: Data Analysis and Modeling

AUTHORS:
MOLDOBAEVA ADINAI
DUISHENALIEVA MILENA
KUVONDIKOV DILMUROD

PROJECT OVERVIEW:

The goal of this project is to analyze a dataset, extract meaningful insights, and build predictive models to support data-driven decision-making.

Scope of Analysis:

- Dataset Overview
- Exploratory Data Analysis (EDA)
- Data Preprocessing and Feature Engineering
- Machine Learning Model Development
- Hyperparameter Tuning and Optimization
- Model Interpretation and Business Insights

Business Problem:

- Understanding key patterns in the data to improve accuracy in classification and forecasting.
- Identifying high-impact features to enhance predictive performance.
- Exploring customer segmentation to optimize business strategies.

Dataset Overview:

dataset contains This 9.000 entries and features, including numerical and categorical types. It is intended for a binary classification task, where the target variable (target) takes the value 0 or 1. The objective is to predict this target value using the other features

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9000 entries, 0 to 8999
Data columns (total 11 columns):
    Column
                Non-Null Count Dtype
                                float64
    feature 1
                9000 non-null
    feature 2
                9000 non-null
                                float64
    feature 3
                8600 non-null
                                float64
    feature 4
                9000 non-null
                                float64
                                float64
    feature 5
                9000 non-null
    feature 6
                                float64
                8500 non-null
                                float64
    feature 7
               9000 non-null
                                float64
    feature 8
                9000 non-null
                                object
    category_1 9000 non-null
                                object
    category 2 9000 non-null
                9000 non-null
                                int64
    target
dtypes: float64(8), int64(1), object(2)
memory usage: 773.6+ KB
```

ORIGINAL DATASET:

- Data Characteristics: 8 numerical features, 2 categorical, target is an integer.
- Missing Values:
 Some missing data needs to be filled or removed.
- Class Balance:
 Class distribution should be checked before training.
- Data Preprocessing:
 Handle missing values,
 encode categories, scale
 features if needed.

```
(9000, 11)
              feature 2
                         feature 3
                                     feature 4
                                                feature 5
                                                            feature_6 \
  feature 1
   0.496714
               1.146509
                         -0.648521
                                      0.833005
                                                 0.784920
                                                            -2.209437
              -0.061846
                                                            -2.498565
   -0.138264
                               NaN
                                      0.403768
                                                 0.704674
                         -0.764126
   0.647689
               1.395115
                                      1,708266
                                                 -0.250029
                                                             1.956259
   1.523030
               2.657560
                         -2,461653
                                      2.649051
                                                 0.882201
                                                             3,445638
              -0.499391
                                                             0.211425
   -0.234153
                          0.576097
                                     -0.441656
                                                 0.610601
   -0.234137
              -0.699415
                          0.268972
                                     -0.702775
                                                 0.702283
                                                            -0.332383
   1.579213
               3.117904
                         -2.885133
                                      3.312708
                                                 0.864708
                                                             2.045283
    0.767435
                                      1,411070
                                                             0.674730
               1.730870
                         -1.445877
                                                 0.874003
   -0.469474
              -0.877919
                          0.575087
                                     -0.532917
                                                 -0.519870
                                                                  NaN
   0.542560
               1.314738
                         -0.403383
                                      1.456165
                                                -0.744625
                                                             1.987345
   feature 7
              feature 8
                             category 1 category 2
                                                    target
                                          Region C
                         Above Average
   -1.300105
              -2.242241
                         Below Average
                                          Region A
   -1.339227
              -1.942298
                                   High
                                          Region C
               1.503559
   1.190238
                                          Region B
    2.120913
               3.409035
                                   High
                         Below Average
                                          Region C
    0.935759
              -0.401463
                         Below Average
                                          Region A
              -0.826721
    0.453958
               1.771851
                                          Region A
   1.531547
                                   High
                                          Region A
    0.812931
               1.489838
                                   High
                         Below Average
                                          Region A
              -4.779960
   -3.002925
               3.309386
                                          Region C
    0.431966
                                   High
```

CLEANED DATASET

```
feature 1 feature 2 feature 3 feature 4 feature 5
                                                        feature 6 \
   0.518009
               0.593722
                        -0.455144
                                     0.428411
                                               1.363756
                                                          -1,222596
                         0.002307
                                               1.224748
  -0.144373 -0.033278
                                    0.209292
                                                         -1.381927
    0.675499
              0.722721
                        -0.536041
                                    0.875218
                                               -0.429068
                                                          1.073018
   1.588618
              1.377788
                        -1.723920
                                    1.355474
                                               1.532275
                                                          1.893779
   -0.244401
             -0.260315
                         0.401806
                                    -0.222283
                                               1.061787
                                                          0.111482
   feature 7
             feature 8
                        target
                                category 1 Below Average
                                                          category 1 High
                                                                    False
                                                    False
  -1.287604
             -1.173168
                           1.0
                                                                     False
  -1.326097 -1.017482
                            0.0
                                                     True
                                                    False
    1.162679
              0.771098
                           1.0
                                                                     True
    2.078383
                                                    False
              1.760140
                           1.0
                                                                     True
   0.912294 -0.217708
                            0.0
                                                     True
                                                                     False
   category_1_Low category_2_Region B category_2_Region C
0
            False
                                 False
                                                      True
            False
                                 False
                                                      False
            False
                                 False
                                                      True
            False
                                  True
                                                      False
```

False

True

False

```
#Remove outliers from given numerical columns

def remove_outliers_iqr(df,columns):
    cleaned_df = df.copy()
    for col in columns:
        Q1 = cleaned_df[col].quantile(0.25) # 1st quartile
        Q3 = cleaned_df[col].quantile(0.75) # 3rd quartile
        IQR = Q3 - Q1 # Interquartile range
        lower = Q1 - 1.5 * IQR
        upper = Q3 + 1.5 * IQR
        # Removing outliers
        cleaned_df = cleaned_df[(cleaned_df[col] >= lower) & (cleaned_df[col] <= upper)]
    return cleaned_df

df_cleaned = remove_outliers_iqr(df,numerical_columns)</pre>
```

This code removes outliers from specified numerical columns in a DataFrame using the Interquartile Range (IQR) method.

NORMALIZED DATASET

BEFORE:

NORMALIZED DATASET

AFTER:

EXPLORATORY DATA ANALYSIS

The correlation matrix shows linear relationships between features.

- feature_1 and feature_2 are strongly positively correlated with the target (0.71).
- feature_3 has a strong negative correlation (-0.69).
- category_1_High and category_1_Low also distinguish the target well (0.61 and -0.59).

These features are highly informative and useful for the model.

T-TEST AND CHI-SQUARE TEST

Chi2 Statistic

3225.8919

3049.1399

0.4402

0.3173

380.8968 7.9382e-85

Feature

p-value

0.0000e+00

0.0000e+00

5.0702e-01

5.7322e-01

```
from scipy.stats import ttest_ind
# Select numeric columns excluding 'target'
numerical_columns = df_encoded.select_dtypes(include=["float64", "int64"]).drop(columns='target').columns
# Perform t-tests and collect results
t_test_results = pd.DataFrame([
       'feature': col,
                                                                feature t statistic
                                                                                                    p value
       't statistic': round((t stat := ttest ind(
                                                         0 feature 1
                                                                                 -94.2060
                                                                                               0.0000e+00
          df_encoded[df_encoded['target'] == 0][col],
          df_encoded[df_encoded['target'] == 1][col],
                                                             feature 2
                                                                                               0.0000e+00
                                                                                 -95.1465
          equal_var=False
                                                             feature 3
                                                                                               0.0000e+00
                                                                                  89.6765
      )[0]), 4),
       'p value': format(ttest ind(
                                                                                 -91.6341
                                                             feature 4
                                                                                               0.0000e+00
          df_encoded[df_encoded['target'] == 0][col],
          df_encoded[df_encoded['target'] == 1][col],
                                                             feature 8
                                                                                  -1.0621
                                                                                               2.8822e-01
          equal var=False
                                                             feature 5
                                                                                    0.9378
                                                                                              3.4837e-01
      )[1], '.4e')
                                                             feature 6
                                                                                   -0.7573
                                                                                               4.4889e-01
   for col in numerical columns
                                                            feature 7
                                                                                   -0.3025
                                                                                              7.6230e-01
# Sort and display results by p-value
print(t test results.sort values(by='p value'))
```

```
from scipy.stats import chi2_contingency
# Select binary categorical features (one-hot encoded)
                                                                                                       category 1 High
binary_columns = [col for col in df_encoded.columns
                                                                                                         category 1 Low
                 if col.startswith('category_1_') or col.startswith('category_2_')]
                                                                                                  category_2_Region C
                                                                                        4
                                                                                                  category 2 Region B
                                                                                        3
# Chi-square tests
chi2_df = pd.DataFrame([
                                                                                            category 1 Below Average
        'Feature': col,
       'Chi2 Statistic': round((stat := chi2_contingency(pd.crosstab(df_encoded[col], df_encoded['target'])))[0], 4),
        'p-value': format(stat[1], '.4e')
   for col in binary_columns
print(chi2 df.sort values(by='p-value'))
```

Feature engineering

Removed Features:

- feature_5, feature_6, feature_7 —
 removed due to low correlation and
 statistical insignificance.
- The original categorical feature category_2 — removed after one-hot encoding.

Added Features:

- Arithmetic combinations: feature_sum, diff_f1_f2, f1_f4_sum, f1_f4_diff.
- Aggregates: total_features, mean_features, max_feature, min_feature, f1_f4_max, f1_f4_min.
- One-hot encoded features: category_1_High, category_1_Low, category_1_Below Average.

These modifications aim to improve feature informativeness for modeling.

```
feature 1 feature 2 feature 3
                                    feature 4
                                               feature 8
                                                          target \
    0.518009
               0.593722
                         -0.455144
                                     0.428411
                                               -1.173168
                                                             1.0
   -0.144373
              -0.033278
                          0.002307
                                     0.209292
                                               -1.017482
                                                              0.0
    0.675499
               0.722721
                         -0.536041
                                     0.875218
                                                0.771098
                                                             1.0
              1.377788
                                                1.760140
    1.588618
                         -1.723920
                                     1.355474
                                                             1.0
   -0.244401
             -0.260315
                          0.401806
                                    -0.222283
                                               -0.217708
                                                              0.0
   category_1_Below Average category_1_High category_1_Low feature_sum \
0
                                       False
                      False
                                                       False
                                                                 1.111731
                                       False
                                                       False
                                                                 -0.177652
                       True
                                                                 1.398220
                      False
                                                       False
                                        True
                                                       False
                      False
                                        True
                                                                 2.966406
                                       False
                                                       False
                       True
                                                                 -0.504716
   total features
                  mean features
                                  diff f1 f2
                                              max feature
                                                           min_feature \
                        0.271250
                                   -0.075713
                                                 0.593722
                                                              -0.455144
         1.084998
                        0.008487
                                   -0.111095
         0.033948
                                                 0.209292
                                                              -0.144373
                        0.434349
                                   -0.047222
        1.737397
                                                 0.875218
                                                              -0.536041
                                    0.210829
        2.597961
                        0.649490
                                                 1.588618
                                                              -1.723920
        -0.325194
                       -0.081298
                                    0.015914
                                                 0.401806
                                                              -0.260315
  f1 f4 sum f1 f4 diff f1 f4 max f1 f4 min
   0.946420
               0.089598
                           0.518009
                                      0.428411
              -0.353666
                          0.209292 -0.144373
    0.064919
              -0.199719
                                      0.675499
    1.550717
                           0.875218
                0.233144
    2.944092
                           1.588618
                                      1.355474
               -0.022117
   -0.466684
                          -0.222283
                                     -0.244401
```

MODDELING (RANDOM FOREST)

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, precision score, recall score, f1 score, roc auc score, classificati
                                                                                                               Classification Report:
#Load the data
                                                                                                                                 precision
df = pd.read_csv('FINAL_DATA.csv')
#Separate features and target variable
                                                                                                                          0.0
                                                                                                                                       0.86
X = df.drop(columns=['target'])
                                                                                                                                       0.88
                                                                                                                          1.0
y = df['target']
                                                                                                                    accuracy
#Split the data into training and testing sets
                                                                                                                                       0.87
                                                                                                                   macro avg
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42)
                                                                                                               weighted avg
                                                                                                                                       0.87
#Train a Random Forest model
rf model = RandomForestClassifier(n estimators=100, random state=42)
rf model.fit(X train, y train)
                                                                                                                CV Accuracy: 0.8818
#Predict on the test set
                                                                                                                 Test Accuracy: 0.8743
rf pred = rf model.predict(X test)
#Evaluate accuracy
                                                                                                                Classification Report:
rf_accuracy = accuracy_score(y_test, rf_pred)
print(f'Random Forest Accuracy: {rf accuracy:.4f}')
#Classification report
print("\nClassification Report:")
print(classification report(y test, rf pred))
#ROC AUC score
rf proba = rf model.predict proba(X test)[:, 1]
rf roc auc = roc auc score(y test, rf proba)
print(f"Random Forest ROC AUC Score: {rf roc auc:.4f}")
```

Random Forest Accuracy: 0.8708 recall f1-score support 0.88 0.89 889

0.85 0.86 845 0.87 1734 0.87 1734 0.87 0.87 0.87 1734

Random Forest ROC AUC Score: 0.9455

Best Hyperparameters: {'max_depth': 10, 'max_features': 'sq

	precision	recall	f1-score	support	
0.0 1.0	0.86 0.89	0.90 0.84	0.88 0.87	889 845	
accuracy macro avg weighted avg	0.88 0.88	0.87 0.87	0.87 0.87 0.87	1734 1734 1734	

ROC AUC Score for Best Random Forest Model: 0.9509

PERFORMANCE (RANDOM FOREST)

Feature value

MODDELING (GRADIENT BOOSTING)

```
from sklearn.ensemble import GradientBoostingClassifier
#Train the Gradient Boosting model
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
gb_model.fit(X_train, y_train)
#Make predictions on the test set
gb pred = gb model.predict(X test)
#Evaluate accuracy
gb_accuracy = accuracy_score(y_test, gb_pred)
print(f'Gradient Boosting Accuracy: {gb accuracy:.4f}')
#Classification report
print("\nClassification Report for Gradient Boosting:")
print(classification_report(y_test, gb_pred))
#ROC AUC score
gb_proba = gb_model.predict_proba(X_test)[:, 1]
gb_roc_auc = roc_auc_score(y_test, gb_proba)
print(f"Gradient Boosting ROC AUC Score: {gb roc auc:.4f}")
```

Gradient Boosting Accuracy: 0.8737									
Classification Report for Gradient Boosting:									
	precision	recall	f1-score	support					
0.0	0.86	0.90	0.88	889					
1.0	0.89	0.84	0.87	845					
accuracy	,		0.87	1734					
macro avg		0.87	0.87	1734					
weighted avg	•		0.87						
Gradient Boosting ROC AUC Score: 0.9518 Best Hyperparameters: {'learning_rate': 0.01, 'max_depth': CV Accuracy: 0.8828 Test Accuracy: 0.8789									
Classification Report:									
	precision	recall	f1-score	support					
0.0	0.86	0.91	0.89	889					
1.0	0.90	0.84	0.87	845					
accuracy			0.88	1734					
macro avg	0.88	0.88	0.88	1734					
weighted avg				1734					
ROC AUC Score for Best Gradient Boosting Model: 0.9512									

PERFORMANCE(GRADIENT BOOSTING)

MODDELING (ADABOOST)

```
from sklearn.ensemble import AdaBoostClassifier
#Train the AdaBoost model
ab_model = AdaBoostClassifier(n_estimators=100, random_state=42)
ab model.fit(X train, y train)
#Make predictions on the test set
ab_pred = ab_model.predict(X_test)
#Evaluate accuracy
ab_accuracy = accuracy_score(y_test, ab_pred)
print(f'AdaBoost Accuracy: {ab_accuracy:.4f}')
#Classification report
print("\nClassification Report for AdaBoost:")
print(classification_report(y_test, ab_pred))
#ROC AUC score
ab_proba = ab_model.predict_proba(X_test)[:, 1]
ab roc auc = roc auc score(y test, ab proba)
print(f"AdaBoost ROC AUC Score: {ab_roc_auc:.4f}")
```

AdaBoost Accuracy: 0.8749								
Classification Report for AdaBoost:								
	•			f1-score	support			
	r	LJ _L U .						
(0.0	0.85	0.92	0.88	889			
	1.0	0.91	0.83	0.87	845			
accur	acy			0.87	1734			
macro	avg	0.88	0.87	0.87	1734			
weighted	avg	0.88	0.87	0.87	1734			
AdaBoost ROC AUC Score: 0.9480								
Best Hyperparameters: {'estimator_max_depth': 3, 'learn								
CV Accuracy: 0.8825								
Test Accuracy: 0.8829								
, and the second								
Classification Report:								
	preci	sion r	ecall	f1-score	support			
6	0.0	0.88	0.89	0.89	889			
1	1.0	0.88	0.87	0.88	845			
accura	-			0.88	1734			
macro a	_		0.88		1734			
weighted a	avg	0.88	0.88	0.88	1734			
DOC AUG C C D+ AI-D- + H 1 3 0 0504								
ROC AUC Score for Best AdaBoost Model: 0.9501								

PERFORMANCE (ADABOOST)

LIME AND SHAP

- The analysis using SHAP and LIME revealed that each model relies on a specific set of features that have the strongest influence on predicting the target variable. By identifying and focusing on these key features, we can improve model accuracy and overall efficiency.
- Less impactful features can be removed or further examined, helping to simplify the model without sacrificing performance. This approach enhances the model's effectiveness and its applicability in real-world business scenarios.

BUSINESS LOGIC

A car service station uses a model to predict the likelihood of a car breaking down based on factors like age, mileage, oil type, and repair history.

- SHAP helps explain how each factor (e.g., age, mileage) influences the prediction.
- LIME explains individual predictions, showing why a specific car is at high risk of breakdown (e.g., due to high mileage or previous issues).

Application in business

- **Personalized Recommendations:** The service station can offer services (e.g., diagnostics or oil changes) based on factors influencing breakdowns.
- **Inventory Optimization:** The service station can prepare necessary parts in advance, knowing which cars are more likely to break down.
- Marketing and Loyalty: The service station can offer discounts on services based on breakdown predictions.
- **Decision Support:** SHAP and LIME help managers understand how to improve service by providing explanations for the model's predictions.
- **Regulatory Compliance:** Using SHAP and LIME allows the service station to be transparent in decision-making and ensure customer data protection.

Thanks for your attention!

