### CENG 506 Deep Learning

## Lecture 3 – Neural Networks and Backpropagation

Slides were prepared using the course material of Stanford's Machine Learning Course (CS229 by Andrew Ng) and CNN Course (CS231n by Fei-Fei, Karpathy, Johnson)

#### **Brain neurons**



#### **Neuron Model**



$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

The parameters w are called 'weights'.

This computation is determined by the *activation function*. In this example, activation function is sigmoid function.

### **Example: AND**

Let's build a linear classifier with a one-neuron model (no hidden layers).

#### Logical AND operation



 $x_1$ ,  $x_2$  are binary (0 or 1). y=1 if  $x_1$  AND  $x_2$ (So blue circle is the positive class)

### **Example: AND**



$$f_w(x) = g(-30+20x_1+20x_2)$$

#### g: sigmoid function



| $x_1$ | $x_2$ | $f_{w}(x)$        |
|-------|-------|-------------------|
| 0     | 0     | $g(-30)\approx 0$ |
| 0     | 1     | $g(-10)\approx 0$ |
| 1     | 0     | $g(-10)\approx 0$ |
| 1     | 1     | $g(10) \approx 1$ |

$$f_w(x) \approx x_1 \text{ AND } x_2$$

### **Example: OR**

#### Another linear classifier for logical OR operation



 $x_1$ ,  $x_2$  are binary (0 or 1). y=1 if  $x_1$  OR  $x_2$ 



 $f_w(x) = g(-10+20x_1+20x_2)$ 

$$f_w(x) \approx x_1 \text{ OR } x_2$$

### Nonlinear classification example

Wait a minute! NNs are good for nonlinear classification. This is done by adding more layers.

A non-linear classification example: XNOR



$$y=0$$
 if  $x_1$  XOR  $x_2$   
 $y=1$  if NOT  $(x_1$  XOR  $x_2)=x_1$  XNOR  $x_2$   
(blue circles are the positive class)

Hint:  $x_1$  XNOR  $x_2$  = (NOT  $x_1$  AND NOT  $x_2$ ) OR ( $x_1$  AND  $x_2$ )

### **Example: XNOR**





# 2-layer Neural Network (or 1-hidden-layer neural network)



# 3-layer Neural Network (or 2-hidden-layer neural network)

As we go further in layers, more complex functions are modeled.



## Effect of the number of hidden neurons/layers

More neurons, more capacity to learn complex boundaries



### **Forward Propagation**

$$z_{1}^{(2)} = w_{10}^{(1)} + w_{11}^{(1)}x_{1} + w_{12}^{(1)}x_{2} + w_{13}^{(1)}x_{3}$$

$$a_{1}^{(2)} = g(z_{1}^{(2)})$$
Remember  $g$  is the sigmoid function 
$$a_{i}^{(j)} = \text{``activation''} \text{ of unit } i \text{ in layer } j$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{2}$$

$$x_{4}$$

$$x_{5}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{9}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{9}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

### **Forward Propagation**



### **Forward Propagation**

#### Important note:

If we do not use a non-linear activation function,

$$a_1^{(2)} = w_{10}^{(1)} + w_{11}^{(1)} x_1 + w_{12}^{(1)} x_2 + w_{13}^{(1)} x_3$$
  $a^{(2)} = W^{(1)} x$   $f_w(x) = W^{(2)} W^{(1)} x$ 

it doesn't work. Everything boils down to a linear product.

That's why we add non-linearity:  $a_1^{(2)} = g(z_1^{(2)})$ 



### **Activation functions**

#### **Sigmoid**



#### ReLU



#### tanh



#### **Leaky ReLU**



### **Neural Network Learning**

#### We have learned about:

- Analogy with the human brain
- Layers of neural networks
- Forward propagation

But how do neural networks 'learn' actually?

Learning corresponds to determining the 'weights' of units.

These weights are optimized using a cost function.

We define 'loss' here.

### Loss



To update the weights, we 'backpropagate' the loss to previous layers.

### Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g. 
$$x=-2$$
,  $y=5$ ,  $z=-4$ 

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want: 
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



### Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g. 
$$x=-2$$
,  $y=5$ ,  $z=-4$ 

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want:  $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ 



### Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g. 
$$x=-2$$
,  $y=5$ ,  $z=-4$ 

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want:  $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ 



Chain rule: 
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$
  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$ 

### **Gradients for backpropagation**







$$egin{aligned} f(x) = e^x & 
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} & 
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax & 
ightarrow & rac{df}{dx} = a & f_c(x) = c + x & 
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x)=e^x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad 
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad 
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$egin{aligned} f(x) = e^x & 
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} & 
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax & 
ightarrow & rac{df}{dx} = a & f_c(x) = c + x & 
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$egin{aligned} f(x) = e^x & 
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} & 
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax & 
ightarrow & rac{df}{dx} = a & f_c(x) = c + x & 
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x)=e^x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad 
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad 
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x)=e^x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad \qquad 
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad 
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad 
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$egin{aligned} f(x) = e^x & 
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} & 
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax & 
ightarrow & rac{df}{dx} = a & f_c(x) = c + x & 
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

w0 2.00

x0 -1.00

w2 -3.00

0.20

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

#### Multiplication



$$x1: -3 * 0.2 = -0.6$$
  
 $w1: -2 * 0.2 = -0.4$ 



$$egin{array}{lll} f(x)=e^x & 
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} & 
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax & 
ightarrow & rac{df}{dx}=a & f_c(x)=c+x & 
ightarrow & rac{df}{dx}=1 \end{array}$$

#### **Another example**

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \boxed{\left(1-\sigma(x)\right)\sigma(x)} \quad \frac{\text{sigmoderival}}{\text{derival}}$$



#### **Another example**

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \boxed{\left(1-\sigma(x)\right)\sigma(x)} \quad \begin{array}{l} \text{sigmoid's derivative} \\ \text{derivative} \end{array}$$



### **Example of weight update**

Gradients, when applied to weights, decrease the loss at each iteration.

Let's say that correct value for a training sample is 0.43 whereas the neuron gives 0.73 at the beginning (loss is 0.3).

Update in the 1<sup>st</sup> round (we subtract the gradients):

weights:  $w_0=2.06 w_1=-2.88 w_2=-3.06$  function value: 0.66



#### **Example of weight update**

Gradients, when applied to weights, decreases the loss at each iteration.

Let's say that correct value for a training sample is 0.43 whereas the neuron gives 0.73 at the beginning (loss is 0.3).

Update in the,

```
1<sup>st</sup> round, weights: w_0=2.06 w_1=-2.88 w_2=-3.06 function value: 0.66
```

$$2^{nd}$$
 round, weights:  $w_0=2.11$   $w_1=-2.78$   $w_2=-3.11$  function value: 0.58

$$3^{rd}$$
 round, weights:  $w_0=2.14$   $w_1=-2.70$   $w_2=-3.15$  function value: 0.53

- -

. .

. .

19<sup>th</sup> round, weights:  $w_0=2.21 w_1=-2.57 w_2=-3.21$  function value: **0.43** 

#### **Forward Propagation Refresher**



$$z_1^{(2)} = w_{10}^{(1)} + w_{11}^{(1)} x_1 + w_{12}^{(1)} x_2 + w_{13}^{(1)} x_3$$
$$a_1^{(2)} = g(z_1^{(2)})$$

# Backpropagation: multiple layers

Need to compute  $\frac{\partial E}{\partial w_{ij}^{(l)}}$  for weight update



# Backpropagation: multiple layers

$$\delta_j^{(l)} = \frac{\partial E}{\partial z_j^{(l)}}$$
 , aka node delta, is the error of unit  $j$  in layer  $l$  .

For output unit (layer 4 here) error is:

$$\delta_{1}^{(4)} = (a_{1}^{(4)} - y) \cdot \frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}$$

$$\begin{array}{c} loss, \\ output \ gradient \end{array} \begin{array}{c} local \\ gradient \end{array}$$



$$\delta_1^{(4)} = (a_1^{(4)} - y) \cdot a_1^{(4)} \cdot (1 - a_1^{(4)})$$
local gradient

Note: We assumed that we used sigmoid in the output unit  $\,\delta_1^{(4)}\,$ 

#### Backpropagation: example

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = \delta_1^{(4)} \cdot w_{11}^{(3)} \cdot a_1^{(3)} \cdot (1 - a_1^{(3)})$$



We 'backpropagate' the error.

#### **Backpropagation: example**

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = \delta_1^{(4)} \cdot w_{11}^{(3)} \cdot a_1^{(3)} \cdot (1 - a_1^{(3)})$$



#### Backpropagation: example

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = \delta_1^{(4)} \cdot w_{11}^{(3)} \cdot \boxed{a_1^{(3)} \cdot (1 - a_1^{(3)})}$$



#### Backpropagation: weight gradient





#### Backpropagation: weight gradient

Another E.g. 
$$\frac{\partial E}{\partial w_{13}^{(2)}} = \frac{\partial E}{\partial z_{1}^{(3)}} \underbrace{\frac{\partial Z_{1}^{(3)}}{\partial w_{13}^{(2)}}} = \delta_{1}^{(3)} a_{3}^{(2)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(2)} = (a_{1}^{(3)} \cdot a_{1}^{(3)} \cdot (1 - a_{1}^{(3)}) \cdot a_{3}^{(2)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot (1 - a_{1}^{(4)}) \cdot a_{3}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} \cdot a_{1}^{(4)} = (a_{1}^{(4)} - y) \cdot a_{1}^{(4)}$$



# An example of backpropagation with actual numbers

Please see the example given in https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/comment-page-5/#comments



#### **Forward pass**



#### **Backward pass (1)**



#### Backward pass (2)



#### Putting it together

#### Training a neural network

- 1. Randomly initialize weights
- 2. Implement forward propagation to get  $a^{(L)}$  where L: last layer
- 3. Implement code to compute loss, i.e. cost function E
- 4. Implement backpropagation to compute partial derivatives:  $\frac{\partial L}{\partial w_{ij}^{(l)}}$
- 5. Use gradient descent or an advanced optimization method with backpropagation and try to minimize E as a function of parameters

Note: Batch size means how many samples you see to do one cycle of weight update. If you compute E over 8 samples (images) and you update all the weights based on this E, then your batch size = 8.

#### **Next**

Next week, we will see the whole procedure to train neural networks.