2022年秋学期

化学2 (K2)

第14回目 2023年1月11日(水)

前回の復習

★カルボニル化合物のいろいろな反応を理解する

・カルボニル炭素	はδ <u></u> 性を帯びており、	反応が起きやす	い。
・カルボニル化合た化合物を	物とアルコールの反応を 物にアルコール分子が1つ という。 アルデヒド基とヒドロキシ	付加した化合物を	、2つ付加し することで環状になる。
	応は有機金属反応であり、 ることで新しい炭素-炭素線		反応剤となり、カルボニ
・□位に水素を持	つカルボニルは、 <u>0</u>	互変異性により2つ	つの形をとりうる。
型	$ \begin{array}{c c} R - C & C & C & R' \\ \hline $	- ene R-C-C-C-C-R' - 01 H OH	enkol Hu

本日の目標

★カルボン酸とその誘導体の性質と反応を理解する

- 酸としてのカルボン酸
- いろいろなカルボン酸誘導体

- ・エステルの合成
- ・アミドの合成
- ・カルボン酸誘導体の反応
 - ・エステルの合成
 - ・アミドの合成

カルボン酸

酸ハロゲン化物 (ハロゲン化アシル)

カルボン酸の構造と性質

カルボキシ基の炭素(カルボニルカーボン) は、 δ +に荷電している

→<u>求核剤の攻撃を受ける</u>

カルボン酸

カルボキシ基は水素イオンを放出する

<u>→カルボン酸は酸性を示す</u>

酸としての強さ

酸	分子式	pKa (25°C)
塩酸	HCI	-8.0
硫酸	H ₂ SO ₄	-3.0
	HSO ₄ -	1.99
リン酸	H_3PO_4	2.15
ギ酸	HCOOH	3.55
乳酸	CH ₃ CH(OH)COOH	3.66
安息香酸	C ₆ H ₅ COOH	4.00
酢酸	CH ₃ COOH	4.56
炭酸	H_2CO_3	6.35
フェノール	C ₆ H ₅ OH	9.82

強酸 HCL Ka H++ CL-

弱酸

酸としての強さ

<u>共鳴構造をとれる</u> = 電子が非局在化している <u>= 安定性が高い</u>

カルボン酸はH+を放出すると、安定なカルボキシラートイオンを生成する

より安定なカルボキシラートイオンを生成できるカルボン酸ほど、 水素イオンを放出しやすい = 強い酸

酸としての強さ

ギ酸(HCOOH)と酢酸(H₃COOH)ではギ酸の方が強い酸である。なぜだろう?

アルキル基の電子供与性に よるアニオンの不安定化

図 15-2 『酸イオンと酢酸イオンの安定性の比較

相対的酸性度

カルボキシラートイオンの負電荷を分散させる→安定性UP →H+を放出しやすい=強い酸

本日の目標

★カルボン酸とその誘導体の性質と反応を理解する

- ・ 酸としてのカルボン酸
- ・ いろいろなカルボン酸誘導体
- ・カルボン酸の反応
 - ・エステルの合成
 - ・アミドの合成
- ・カルボン酸誘導体の反応
 - ・エステルの合成
 - ・アミドの合成

カルボン酸

酸ハロゲン化物 (ハロゲン化アシル)

いろいろなカルボン酸誘導体

これらのカルボン酸誘導体は、カルボン酸から作ることができるほか、 ほかのカルボン酸誘導体から変換することもできる

いろいろなカルボン酸誘導体

Q. 求核付加反応への反応性が高いのはどれだろう?

本日の目標

★カルボン酸とその誘導体の性質と反応を理解する

- ・ 酸としてのカルボン酸
- ・ いろいろなカルボン酸誘導体

- ・エステルの合成
- ・アミドの合成
- ・カルボン酸誘導体の反応
 - ・エステルの合成
 - ・アミドの合成

カルボン酸

カルボン酸からエステルの合成

カルボニルの求核付加反応と 同じ考え方

酸性条件

エステル合成

塩基性条件

求核付加反応は起こらない

エステル合成不可

酸塩基反応が起こる

カルボン酸からエステルの合成と加水分解(逆反応)

酸性条件

エステルの加水分解(塩基条件)

塩基性条件では、カルボン酸からエステルを合成することはできなかったが…

塩基性条件

求核付加反応は起こらない

酸塩基反応が起こる

エステルの加水分解反応は進行する

塩基性条件

エステルの加水分解を利用した身近な例

ヤシ油、ホホバオイルなど

けんに

+ NaOH

アルカリ

せっけん

R1-COONa

R2-COONa

R3-COONa

セッケン

カルボン酸からアミドの合成とその逆反応

<酸塩基反応>

アミド

$$R-C$$
 $O:$
 $R-C$
 $O:$
 $R-C$
 $O:$
 $O:$
 $O:$
 $O:$
 $O:$
 $O:$

酸塩基反応の進行が優先する

- アミドはもともと求核付加反応が起こりにくい
- ・ カルボキシ基(酸)とアミノ基(塩基)で酸塩基反応が起こる

→反応が起こりにくい

本日の目標

★カルボン酸とその誘導体の性質と反応を理解する

- ・ 酸としてのカルボン酸
- ・ いろいろなカルボン酸誘導体

- ・エステルの合成
- ・アミドの合成
- ・カルボン酸誘導体の反応
 - ・エステルの合成
 - ・アミドの合成

カルボン酸

酸ハロゲン化物 (ハロゲン化アシル)

カルボン酸誘導体の反応

求核付加反応への反応性

酸ハロゲン化物を使えば、エステルやアミドの合成が効率よくできる!

酸ハロゲン化物の反応

そもそも酸ハロゲン化物を作るには…

図 15-10 酸塩化物の生成

酸ハロゲン化物の反応

A) エステルの合成

CQ-一よい脱額基

B) アミドの合成

アルキルアンモニウムイオン

本日のまとめ

- ・カルボキシ基の炭素は、δ+性を帯びており、求核剤の反応を受けやすい
- カルボン酸は酸性を示す。
- ・安定なカルボキシラートイオンを形成できるカルボン酸ほど、強い酸としてはたらく。
- ・カルボン酸誘導体について、求核付加反応の反応性は、酸ハロゲン化物>カルボン酸> エステル>アミドである。
- ・カルボン酸とアルコールを反応させるとエステルが生じる。
- ・エステルを塩基性条件下で加水分解する反応をけん化という。 油脂(エステル)をアルカリでけん化すると石鹸ができる。
- ・酸ハロゲン化物を用いると、カルボン酸よりも効率的にエステルやアミドを合成できる。