Econometrics Week 3 Test

All results are from the python library statsmodels. The code can be found here.

- (a) Use general-to-specific to come to a model. Start by regressing the federal funds rate on the other 7 variables and eliminate 1 variable at a time.
 - 1. The highest p-value and lowest t statistic is for UNEMPL (t-value 1.059, p-value 0.290) so remove it from the model.
 - 2. The highest p-value and lowest t statistic is now PROD (t-value -0.989, p-value 0.323) so remove it from the model.
 - 3. Now everything is significant while the R^2, AIC, and BIC have only changed slightly from the original. Result is INTRATE ~ INFL + COMMPRI + PCE + PERSINC + HOUST

Formula	R^2	AIC	BIC
INTRATE ~ INFL + PROD + UNEMPL + COMMPRI + PCE + PERSINC + HOUST	0.639	2914	2950
INTRATE ~ INFL + PROD + COMMPRI + PCE + PERSINC + HOUST	0.638	2913	2945
INTRATE ~ INFL + COMMPRI + PCE + PERSINC + HOUST	0.637	2912	2939

- (b) Use specific-to-general to come to a model. Start by regressing the federal funds rate on only a constant and add 1 variable at a time. Is the model the same as in (a)?
 - 1. Each individual explanatory variable was examined on its own. Starting with INFL with t-value = 28.924506, p-value = 2.472635e-119.
 - 2. Next add PERSINC with t-value = 9.478074, p-value = 4.616637e-20.
 - 3. Next add PCE with t-value = 3.412051, p-value = 6.843747e-04.
 - 4. Next add HOUST with t-value = -4.893253, p-value = 1.249935e-06.
 - 5. Next add COMMPRI with t-value = -2.841100, p-values 4.635778e-03.
 - 6. The remaining PROD (t-value -0.988680, p-value 3.231857e-01) and UNEMPL (-0.071740, p-value 9.428308e-01) are not significant when added to the model. Stop.

Formula	R^2	AIC	BIC
INTRATE ~ INFL	0.560	3032	3041
INTRATE ~ INFL + PERSINC	0.613	2950	2963
INTRATE ~ INFL + PERSINC + PCE	0.619	2940	2958
INTRATE ~ INFL + PERSINC + PCE + HOUST	0.633	2919	2941
INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI	0.637	2912	2939

Yes, the model is the same as in (a).

(c) Compare your model from (a) and the Taylor rule of equation (1). Consider R 2, AIC and BIC. Which of the models do you prefer?

Source	Formula	R^2	AIC	BIC
(a)	INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI	0.637	2912	2939
Taylor Rule	INTRATE ~ INFL + PROD	0.575	3012	3025
simplest	INTRATE ~ INFL	0.560	3032	3041

The Taylor rule's use of PROD would not be my choice given the results above. Leaving it out only slightly lowers the R^2 from 0.575 to 0.560 while including all significan explanatory variables raises R^2 to 0.637. The AIC and BIC for all models

in the table are similar. For my own choice, of course it depends on the application, but I lean toward the simplest model based only on INFL.

d) Test the Taylor rule of equation (1) using the RESET test, Chow break and forecast test (with in both tests as break date January 1980) and a Jarque-Bera test. What do you conclude?

- The Ramsey RESET tests has the null hypothesis that additional higher order terms have coefficients of 0. I configured the test to use 2nd and 3rd order parameters. The resulting F-statistic is 2.2 with p-value 0.1. We cannot reject the null hypothesis at the desired 95% confidence interval.
- The Jarque-Bera test produces a value of 12.444 and p-value 0.002 suggesting the residual is not normally distributed. The results are similar for all regressions tested except the simplest one using only INFL.
- Testing for a break in January 1980 does produce signficant results such that we can reject the null hypothesis that there is no break.