Introduction to PyTorch

CS236 Section, Autumn 2024 Honglin Chen

What is Pytorch?

A machine learning framework that accelerates the path from research prototyping to production deployment

Machine learning framework

Deep learning primitives such as data loading, NN layer types, activations, loss functions, and optimizers

Hardware acceleration on NVIDIA GPUs

Libraries for vision, NLP, and audio applications

Research prototyping

Models are Python code, Automatic differentiation, and eager mode

Production deployment

TorchScript, TorchServe, quantization

Overview

Motivations

Python NumPy

Building Blocks

Tensors Operations Modules

Examples

MNIST

Beyond PyTorch

Tools
High Level Libraries
Domain Specific Libraries

Motivations

Python vs. NumPy

Motivations

NumPy vs. PyTorch

```
X = np.full((10000,), 1)
Y = np.full((10000,), 0.5)
Z = X * Y
```

```
# 0.08273124694824219 ms
# Low Level Implementation
# Vectorization
```

```
X = torch.full((10000,), 1).cuda()
Y = torch.full((10000,), 0.5).cuda()
Z = X * Y
# 0.3185272216796875 ms
# GPU Acceleration
Z.sum().backward()
dX = X.grad
# Automatic Differentiation
```

TENSORS

```
torch.tensor([5., 3.])
tensor([ 5., 3.,]) # defaults to
torch.float32

torch.from_numpy(np.array([5., 3.]))
tensor([ 5., 3.,], dtype=torch.float64) #
because numpy defaults to 64bit

torch.tensor([5., 3.]).numpy()
array([5., 3.], dtype=float32)
```

Tensors / Indexing & Reshaping

```
torch.tensor([[5., 3.]])[0, :]
tensor([ 5., 3.,])
torch.tensor([[5., 3.]]).view(-1)  # infer
dimension size
torch.tensor([[5., 3.]]).view(2)
tensor([ 5., 3.,])
torch.tensor([[5., 3.]]).size()
torch.Size([1, 2])
```

Tensors / Broadcasting

```
X = torch.ones((3, 3, 3))
Y = torch.ones((1, 1, 3))
Z = X * Y
Z.size()

torch.Size([3, 3, 3])
#
https://pytorch.org/docs/stable/notes/broad
casting.html
```

Tensors / Devices

```
if torch.cuda.is_available():
    device = torch.device("cuda")  # a CUDA device object
    x = torch.ones(2, device=device)  # directly create a tensor on GPU
    y = torch.ones(2).to(device)  # or just use strings

`.to("cuda")`
    z = x + y
    print(z)  # z is on GPU
    print(z.to("cpu", torch.double))  # to('cpu') moves array to CPU

# `x.cuda()` and `x.cpu()` also works
```

Operations / Primitives

```
torch.tensor([5., 3.]) + torch.tensor([3., 5.])
tensor([ 8., 8.,])
z = torch.add(x, y)
torch.add(x, y, out=z)
y = y.add_(x) # inplace y += x
torch.tanh(y)
torch.stack([x, y])
 https://pytorch.org/docs/stable/torch.html
```

Operations / Functional

```
import torch.nn.functional as F

X = torch.randn((64, 3, 256, 256))
W = torch.randn((8, 3, 3, 3))

out = F.conv2d(X, W, stride=1, padding=1)

# Like SciPy
# https://pytorch.org/docs/stable/nn.functional.html
```

Operations / Automatic Differentiation

Computation as a graph built at runtime

Operations / Automatic Differentiation

```
z = y * 3
out = z.mean()
tensor(9., grad_fn=<MeanBackward1>)
out.backward() # Must be scalar
print(x.grad) # Only leaf nodes have grad
Gradient w.r.t. the input Tensors is computed
```

step-by-step from loss to the top in reverse

Operations / Automatic Differentiation

```
x.requires_grad # True
(x ** 2).requires_grad # True

# Keeping track of activations is expensive
with torch.no_grad():
    (x ** 2).requires_grad # False

(x.detach() ** 2).requires_grad # False
```

Operations / nn

```
import torch.nn as nn
                                         import torch.nn.functional as F
X = torch.ones((64, 3, 256, 256))
                                        X = torch.randn((64, 3, 256, 256))
                                        W = torch.randn((8, 3, 3, 3))
conv = nn.Conv2D(in_channels=3,
                 out_channels=8,
                                        out = F.conv2d(X, W,
                 kernel_size=3,
                                                        stride=1, padding=1)
                 stride=1.
                 padding=1)
                                        # Inherits from nn.Module
                                        # Implemented using functional
                                        # Stores internal states
out = conv(img)
```

Operations / Module

```
# Move the module to GPUs
import torch.nn as nn
                                         conv.cuda()
X = torch.ones((64, 3, 256, 256))
                                        # Saves states
conv = nn.Conv2D(in_channels=3,
                                        conv.state_dict()
                 out_channels=8,
                 kernel_size=3,
                                        # Saves trainable states
                 stride=1,
                                         conv.parameters()
                 padding=1)
                                        # Recursively visit child modules
                                         conv.apply(weight_init)
```

MNIST

ExampleMNIST

Preprocessing

Dataloader

Network

Optimizer

Training

ExamplesMNIST / Preprocessing

```
import torchvision.transforms as transforms

transform = transforms.Compose(
        [transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# Convert to Torch Tensor and perform normalization
# https://pytorch.org/vision/stable/transforms.html
# e.x Color Jitter, Five Crops
```

MNIST / Dataloader

```
Import torch
import torchvision
trainset = torchvision.datasets.CIFAR10(
                 root='./data', train=True,
                 download=True, transform=transform)
# Dataloaders are python iterators
trainloader = torch.utils.data.DataLoader(
                 trainset, batch_size=8,
                 shuffle=True, num_workers=2)
```

MNIST / Network

```
import torch.nn as nn
class Net(nn.Module):
    def __init__(self):
         super().__init__()
         self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
         self.conv2 = nn.Conv2d(6, 16, 5)
         self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        |self.fc3 = nn.Linear(<u>84, 10)</u>
```

MNIST / Network

```
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = torch.flatten(self.pool(F.relu(self.conv2(x))))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)
```

MNIST / Optimizer

```
import torch.optim as optim

# Instantiate nn.Module (Use default weights)
net = Net().to("cuda")

# Define loss function
criterion = nn.CrossEntropyLoss()

# Create optimizer: https://pytorch.org/docs/stable/optim.html
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```

MNIST / Training

```
net.train() # Set to training mode (there is also `net.eval()`)
for epoch in range(2):
    for inputs, labels in trainloader:
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs.to("cuda"))
        loss = criterion(outputs, labels.to("cuda"))
        loss.backward()
        optimizer.step()
```

MNIST / Recap

```
... transforms.Compose( ... # Define preprocessing transforms
... torch.utils.data.DataLoader( ... # Create Dataloader
... def Net(nn.Module): ... # Define Network
... criterion = nn.CrossEntropyLoss() ... # Define loss function
... optim.SGD(net.parameters(), ... # Create Optimizer
... for x, y in trainloader: ... # Iterate over Dataloader
... outputs = net(inputs) # Forward Pass
... criterion(outputs, labels) ... # Compute Loss
   optimizer.zero_grad() ... # Zero out gradients
... loss.backward() ... # Back Propagate
... optimizer.step() ... # Update weights
```

Beyond PyTorch

Tools / Keep Track of experiments, artifacts

Beyond PyTorch

High Level Libraries / Distributed & Mixed Precision Training

Beyond PyTorch

Domain Specific Libraries / Graph, RL, Probabilistic Programming

NEWS

DOCS

PyG is the ultimate library for Graph Neural Networks

Build graph learning pipelines with ease.

JOIN SLAC

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation : View on GitHub >

