Thousand muchusum sugarese

B zagarax que cupobases que umpobases beparensanse P procupamento $(S, F, (F_t)_{t \in IR_+}, P)$, P gobientopasagee obvirue y cubiau.

- 1) Tyong $M u N \tau u cono paypolbubu lokaloube uapmumaibe <math>C M_o = N_o = 0$, $m. \tau$ uporgector ΔM $u \Delta N$ reominime. Donamenne, $\tau u no M u N$ reominime.
- 2) Tyme $W \delta poynobouse$ glusseence omnownerous (F_t) , $H \cup K peguayyeuse$ rokarons orposeurenssee upoweccoe. Toronica $M = K \cdot W$. Uzbecumo, romo $K \neq 0$ $P \times \mu_L h.b.$, $rge \mu_L$ oboznaraem nepy lebera, u romo $(H \cdot M) M \in \mathcal{M}_{ext}$. Dokamume, romo H = 0 $P \times \mu_L h.b.$
- Typing $X^i \in Sem$, $i \in \{1, 2, 3\}$ Dollanume $Qoopluyey \left[\left[X^1, X^2 \right], X^3 \right] = \left[X^1, \left[X^2, X^3 \right] \right] (h. H.)$

(4) Tyomo X, Y \in V. Capalegnila in b Final cegrae graphyla usemerpupolania no racinal $XY = X_0Y_0 + X \cdot Y + Y \cdot X$ (h. H.) ?

Ecue omben novommensvetin (comb., ompusamensvita), no govanneme goopenyey (coomb., nocmpoine nompapurep.).

(5) Tyemb W — Spoynobenoe glousuemen omnocumentus (F_t) , τ — Konerreon novem ocuanobus, d>0 — gemepunyupobarmoe rucco. Tocrumatime E $\int_{-\infty}^{\infty} e^{-dS} W_S dW_S$.

To acreene : $\int_{0}^{\infty} e^{-ds} W_{s} dW_{s}$ homewaemes were X_{∞} , $x_{\infty} = \int_{0}^{\infty} e^{-ds} W_{s} dW_{s}$.

(6) Tycmo $X \in Sem$, $Y \in \mathcal{F}^{c}$. Dokumume, runo [X,Y] = O(h.n.)

- Typing W Spoysedeuse glumenue, N nyacconduming W nyac
 - a) Donamume, Tomo X E Sem re novementine ero rempepoloryro naprimencionyro cocinaberryro
 - 5) Resence en 6 mon apurege X° nogmunaron?
- 8 Paccuompun cuegypousejes mogent gucepernors

 byenem : $(\Sigma, \mathcal{F}, (\mathcal{F}_k)_{k=0,1,\cdots,N}, P)$,

 rymnes zampoet nozumens $k \propto \in \mathbb{R}$ cuerem

 le nomenty byenem N. Knacc conjumerat : $A(x) = \frac{1}{2} (\xi_k)_{k=0,1,\cdots,N} : (\xi_k)$ coreacobase $c(\mathcal{F}_k)$, $x + \sum_{k=0}^{\infty} \xi_k = 0 \text{ n. n.}, \quad \xi_k \in L^{\infty} \ \forall k \}$.

Mogers:

• unaffected price: prongbouveour magnimumal $S^{\circ} = (S_{h})_{k=0,1,--,N}.$

· Uperoe anyen $S=(S_h)$ uper ucualtyobarener companerum $(T_h)\in\mathcal{A}(x)$:

$$S_{\mu} = S_{\mu}^{0} + \lambda \sum_{j=0}^{k-1} \tilde{S}_{j} + \frac{\lambda}{2} \tilde{S}_{k}, k=0,1,-..,N.$$

$$\left(\begin{array}{c} \frac{-1}{\Sigma} := 0 \\ 0 \end{array}\right), \quad \lambda > 0$$

Ommune bee onnualture companerem

& klace A(x) le zagare

$$E\left(\cos(\xi)\right) \longrightarrow \min$$

$$\xi = (\xi_u) \in \mathcal{H}(x)$$

$$2ge \quad costs(z) = \sum_{k=0}^{N} S_k z_k.$$