Plan complexe

 $M(\underline{z})$

Représentation complexe d'un signal sinusoïdal

1 Rappels sur les nombres complexes

Notations du physicien : en physique, il est d'usage

- d'écrire $j^2 = -1$ car la lettre i est déjà utilisée pour désigner l'intensité du courant électrique
- de souligner toute grandeur \underline{Z} à valeurs complexes.
- de noter \underline{Z}^* le conjugué de \underline{Z}

1.1 Formes d'un nombre complexe

Soit \underline{z} un nombre complexe, on peut l'écrire sous deux formes $\acute{e}quivalentes$:

- 1. forme rectangulaire : z = x + jy
 - x = Re(z) la partie réelle de z
 - $y = \operatorname{Im}(\underline{z})$ la partie imaginaire de \underline{z}
- 2. forme trigonométrique : $z = re^{j\theta} = r(\cos\theta + j\sin\theta)$
 - $r = |\underline{z}|$ le module de \underline{z}
 - $\theta = \text{Arg}(\underline{z})$ l'argument de \underline{z} .

Conjugué:

$$\boxed{\underline{z}^* = x - jy = re^{-j\theta}}$$

Relations à connaître :

$$\boxed{|\underline{z}| = \sqrt{\operatorname{Re}(\underline{z})^2 + \operatorname{Im}(\underline{z})^2}}$$

$$\cos(\operatorname{Arg}(\underline{z})) = \frac{\operatorname{Re}(\underline{z})}{|z|}$$

$$\sin(\operatorname{Arg}(\underline{z})) = \frac{\operatorname{Im}(\underline{z})}{|\underline{z}|}$$

 Im

$$\tan\left(\mathrm{Arg}(\underline{z})\right) = \frac{\mathrm{Im}(\underline{z})}{\mathrm{Re}(\underline{z})}$$

Ŕe

1.2 Opérations sur les nombres complexes

$$\textbf{Produit}: \quad \underline{Z} = Re^{j\theta} = \underline{z}_1 \times \underline{z}_2 = r_1 e^{j\theta_1} \times r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)} \text{ donc}$$

$$\boxed{ \left| \underline{z}_1 \underline{z}_2 \right| = \left| \underline{z}_1 \right| \, \left| \underline{z}_2 \right| } \qquad \boxed{ \operatorname{Arg}(\underline{z}_1 \underline{z}_2) = \operatorname{Arg}(\underline{z}_1) + \operatorname{Arg}(\underline{z}_2) }$$

Rapport :
$$\underline{Z} = Re^{j\theta} = \frac{\underline{z}_1}{\underline{z}_2} = \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)} \text{ donc}$$

$$\boxed{ \left| \frac{\underline{z}_1}{\underline{z}_2} \right| = \frac{|\underline{z}_1|}{|\underline{z}_2|}} \qquad \boxed{ \operatorname{Arg}\left(\frac{\underline{z}_1}{\underline{z}_2}\right) = \operatorname{Arg}(\underline{z}_1) - \operatorname{Arg}(\underline{z}_2)}$$

Exercice d'application : déterminer le module et l'argument (ou sa tangente) des nombres complexes suivants, où x est un réel strictement positif :

2 Signal complexe associé à un signal réel sinusoïdal

2.1 Définition

Au signal sinuso"idal réel x(t), on associe le signal complexe $\underline{x}(t)$ tel que :

$$x(t) = X\cos(\omega t + \varphi) \qquad \longleftrightarrow \qquad \underline{x}(t) = Xe^{j(\omega t + \varphi)} = Xe^{j\varphi}e^{j\omega t} = \underline{X}e^{j\omega t}$$

avec \underline{X} l'amplitude complexe du signal complexe.

Signal Réel o signal complexe : on transforme le cosinus en exponentielle complexe

$$\boxed{\cos(\) \quad \rightarrow \quad e^{j(\)}}$$

Signal complexe \rightarrow signal réel : on prend la partie réelle du signal complexe

$$x(t) = \text{Re}[\underline{x}(t)]$$

2.2 Caractéristiques des signaux

	Signal réel $x(t) = X\cos(\omega t + \varphi)$	Signal complexe associé $\underline{x}(t) = \underline{X}e^{j\omega t}$
Caractéristiques	• pulsation $\omega = \frac{2\pi}{T}$	• pulsation identique ω
	ullet Amplitude réelle X	• amplitude complexe $\underline{X} = Xe^{j\varphi}$
	\bullet phase à l'origine φ	
Représentation	$X(t)$ $X \cos \varphi$ t	Im $M(\underline{X}e^{j\omega t})$ X' X' X' Y' Y' X' Y' Y' Y' Y' Y' Y' Y' Y

l'amplitude complexe \underline{X} est liée à l'amplitude réelle X et à la phase initiale φ du signal réel

$$X=Xe^{j\varphi}$$

3 Utilisation du signal complexe associé

3.1 Dérivation de signaux

Soit un signal réel $x(t) = X\cos(\omega t + \varphi)$ et son signal complexe associé $\underline{x}(t) = \underline{X}e^{j\omega t}$.

• la dérivée du signal réel s'exprime :

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -\omega X \sin(\omega t + \varphi) = \omega X \cos(\omega t + \varphi + \pi/2)$$

• la dérivée du signal complexe s'exprime :

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = j\omega \underline{X}e^{j\omega t} = \omega Xe^{j\frac{\pi}{2}}e^{j\varphi}e^{j\omega t} = \omega Xe^{j(\omega t + \varphi + \pi/2)}$$

en prenant sa partie réelle, on retrouve la dérivée du signal réel :

$$\operatorname{Re}\left[\frac{\mathrm{d}\underline{x}(t)}{\mathrm{d}t}\right] = \operatorname{Re}\left[\omega X e^{j(\omega t + \varphi + \pi/2)}\right] = \omega X \cos(\omega t + \varphi + \pi/2) = -\omega X \sin(\omega t + \varphi)$$

Dériver un signal complexe $\underline{x}(t) = \underline{X}e^{j\omega t}$ revient à le multiplier par $j\omega$

$$\frac{\mathrm{d}\underline{x}}{\mathrm{d}t} = j\omega \times \underline{x}(t)$$

3.2 Intégration de signaux

Soit un signal réel $x(t) = X\cos(\omega t + \varphi)$ et son signal complexe associé $\underline{x}(t) = \underline{X}e^{j\omega t}$.

• une primitive du signal réel s'exprime :

$$\int x(t)dt = \frac{X}{\omega}\sin(\omega t + \varphi) + cte = \frac{X}{\omega}\cos(\omega t + \varphi - \pi/2) + cte$$

• une primitive du signal complexe s'exprime :

$$\int \underline{x}(t)dt = \underline{X} \int e^{j\omega t}dt = \frac{1}{j\omega}\underline{X}e^{j\omega t} + \underline{cte} = \frac{e^{-j\pi/2}}{\omega}Xe^{j\varphi}e^{j\omega t} + \underline{cte} = \frac{X}{\omega}e^{j(\omega t + \varphi - \pi/2)} + \underline{cte}$$

en prenant sa partie réelle, on retrouve une primitive du signal réel :

$$\operatorname{Re}\left[\int\underline{x}(t)\mathrm{d}t\right] = \operatorname{Re}\left[\frac{X}{\omega}e^{j(\omega t + \varphi - \pi/2)}\right] + \operatorname{Re}[\underline{\operatorname{cte}}] = \frac{X}{\omega}\cos(\omega t + \varphi - \pi/2) + \operatorname{cte} = \frac{X}{\omega}\sin(\omega t + \varphi) + \operatorname{cte}$$

Intégrer un signal complexe $\underline{x}(t) = \underline{X}e^{j\omega t}$ revient à le diviser par $j\omega$

$$\int \underline{x} dt = \left[\frac{1}{j\omega} \times \underline{x}(t) \right]$$

3.3 Bilan

	Signal réel $x(t) = X\cos(\omega t + \varphi)$	Signal complexe associé $\underline{x}(t) = \underline{X}e^{j\omega t}$
Dérivation	$\frac{\mathrm{d}x}{\mathrm{d}t}$ (pas d'expression simple)	$\frac{\mathrm{d}\underline{x}}{\mathrm{d}t} = j\omega \times \underline{x}(t)$
Intégration	$\int x dt \text{ (pas d'expression simple)}$	$\int \underline{x} dt = \left[\frac{1}{j\omega} \times \underline{x}(t) \right]$

Exercice d'application : on considère le signal $s(t) = S_0 \cos(\omega t + \pi/2)$
1. Donner l'expression de son signal complexe associé $\underline{s}(t)$ ainsi que son amplitude complexe \underline{S} .
2. Déterminer l'expression de $\ddot{s}(t)$ en utilisant $\underline{s}(t)$.