Calculating Biological Quantities CSCI 2897

Prof. Daniel Larremore 2021, Lecture 21

· HW #5 due @ 11:59 P.M.

daniel.larremore@colorado.edu @danlarremore

Last time on CSCI 2897

diagonal matrix

upper triangular matrix

lower triangular matrix

Multiplication (side note)

P Q 2x12 /12x1

· consider work by hand

· consider computer memory 9; well!

$$P Q V = (PQ)^{10x/2} V^{2x/3} = P(QV)^{2x/3}$$

$$V = (PQ)^{10x/2} V^{2x/3} = P(QV)^{2x/3}$$

Complex Eigenvalues

Unreal! Sometimes we can have eigenvalues which are complex numbers.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \lambda_1, \lambda_2 = \frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}^2(A) - 4\operatorname{det}(A)}}{2}$$

If $tr^2(A) - 4det(A) < 0$, then λ_1, λ_2 will be **complex numbers**.

A **complex number** is a number c = a + bi, where a and b are real and $i = \sqrt{-1}$ is "imaginary."

In our formula above, what's the real part? And the imaginary part?

Re =
$$\frac{fr(A)}{2}$$
 $|m=i|$ $\frac{\int 4 det(A) - fr^2(A)}{2}$

Complex Eigenvalues

Unreal! Sometimes we can have eigenvalues which are complex numbers.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \lambda_1, \lambda_2 = \frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}^2(A) - 4\operatorname{det}(A)}}{2}$$

If $tr^2(A) - 4det(A) < 0$, then λ_1, λ_2 will be **complex numbers**.

A complex number is a number c=a+bi, where a and b are real and $i=\sqrt{-1}$ is "imaginary."

$$a = \frac{\operatorname{tr}(A)}{2}, \text{ and } b = \frac{\sqrt{\operatorname{tr}^2(A) + 4\operatorname{det}(A)}}{2}$$

and therefore
$$\lambda_1 = a + bi$$
, $\lambda_2 = a - bi$

Euler's Equation

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$e^{i\pi t} = -1 + 0$$

$$e^{i\pi t} + 1 = 0$$

$$identity$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
 Taylor Series

$$e^{ix} = 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \cdots$$

$$= 1 + ix - \frac{x^{2}}{2!} - \frac{ix^{3}}{3!} + \frac{x^{4}}{4!} + \frac{ix^{5}}{5!} - \frac{x^{6}}{6!} - \frac{ix^{7}}{7!} + \frac{x^{8}}{8!} + \dots$$

every other tern is imagicary! (the odd terms)

$$= \left| -\frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots \right| > \cos x$$

$$+ i \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} \right) + \dots \rightarrow i \sin x$$

Solutions to linear systems

$$\frac{d\overrightarrow{n}}{dt} = A\overrightarrow{n} \qquad \text{Solution: } \overrightarrow{n}(t) = k_1 \overrightarrow{x_1} e^{\lambda_1 t} + k_2 \overrightarrow{x_2} e^{\lambda_2 t}$$

So what's going to happen when λ_1 and λ_2 are complex?

$$n(t) = k_1 \times_1 e^{(a+bi)t} + k_2 \times_2 e^{(a-bi)t}$$

$$= k_1 \times_1 e^{at}e^{bit} + k_2 \times_2 e^{at-bit}$$

$$= e^{at} \left(k_1 \times_1 e^{bit} + k_2 \times_2 e^{-bit} \right)$$

$$= e^{at} \left(k_1 \times_1 \left(\cos bt + i \sin bt \right) + k_2 \times_2 \left(\cos bt - i \sin bt \right) \right)$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$

 $e^{ibt} = \cos bt + i \sin bt$
 $e^{-ibt} = \cos(bt) + i \sin(-bt)$
 $= \cos bt - i \sin(bt)$

$$\lambda_1 = a + bi$$

$$\lambda_2 = a - bi$$

Solutions to linear systems

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\frac{d\overrightarrow{n}}{dt} = A \overrightarrow{n} \qquad \text{Solution: } \overrightarrow{n}(t) = k_1 \overrightarrow{x_1} e^{\lambda_1 t} + k_2 \overrightarrow{x_2} e^{\lambda_2 t}$$

$$\overrightarrow{X_1} = \overrightarrow{y} + \lambda \overrightarrow{z}$$

$$\overrightarrow{X_2} = \overrightarrow{y} - \lambda \overrightarrow{z}$$

$$(A - \lambda_1 \ D) \overrightarrow{X_1} = \overrightarrow{O}$$

$$(A - \lambda_1 \ D) \overrightarrow{A} = \overrightarrow{O}$$

$$(A - \lambda_1$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\frac{d\overrightarrow{n}}{dt} = A\overrightarrow{n} \qquad \text{Solution: } \overrightarrow{n}(t) = k_1 \overrightarrow{x_1} e^{\lambda_1 t} + k_2 \overrightarrow{x_2} e^{\lambda_2 t}$$

$$= e^{-at} \left((k_1 + k_2) \dot{\gamma} \cos bt + (k_1 - k_2) \dot{\gamma} \sin bt - (k_1 + k_2) \dot{z} \sin bt + (k_1 - k_2) \dot{z} \cos bt \right)$$

Solutions to linear systems

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\frac{d\vec{n}}{dt} = A \vec{n} \quad \text{Solution: } \vec{n}(t) = k_1 \vec{x_1} e^{\lambda_1 t} + k_2 \vec{x_2} e^{\lambda_2 t} \qquad (k_1 - k_2) \vec{i} \equiv C_2$$

$$= e^{at} \left((k_1 + k_2) \vec{y} \cos bt + (k_1 - k_2) \vec{i} \vec{y} \sin bt - (k_1 + k_2) \vec{z} \sin bt + (k_1 - k_2) \vec{i} \vec{z} \cos bt \right)$$

$$\vec{n}(t) = e^{at} \left((\vec{y} \cos bt - \vec{z} \sin bt) + (z (\vec{z} \cos bt + \vec{y} \sin bt) \right)$$

$$rotation / oscillation$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\frac{d\overrightarrow{n}}{dt} = A\overrightarrow{n} \qquad \text{Solution: } \overrightarrow{n}(t) = k_1 \overrightarrow{x_1} e^{\lambda_1 t} + k_2 \overrightarrow{x_2} e^{\lambda_2 t}$$

What do solutions look like if eigenvalues are complex?

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\frac{d\overrightarrow{n}}{dt} = A\overrightarrow{n} \qquad \text{Solution: } \overrightarrow{n}(t) = k_1 \overrightarrow{x_1} e^{\lambda_1 t} + k_2 \overrightarrow{x_2} e^{\lambda_2 t}$$

$$\lambda = -2 \pm i$$

$$\text{invard savs}.$$

Solutions to linear systems imaginary part (b)

faster rotation

pure oscillation $\lambda = a \pm bi$ Complex: Real parts of ergennalines must be regative to have stability. growth forten real part (a) decay Real: both eigs must be neg. to have stability.

Last time on CSCI 2897

The eigenvalues of a diagonal or triangular (upper or lower) matrix are easy to get: they are just the values on the diagonal of the matrix!

Stability of equilibria (real eigenvalues):

- If all eigenvalues are negative, the system is stable.
- If one or more eigenvalues are positive, the system is unstable.

Stability of equilibria (complex eigenvalues):

- If the real part of all eigenvalues is negative, the system is stable.
- The complex part of the eigenvalues tells us about rotation.

The **complex conjugate** of a complex number a + bi is a - bi. If all the entries of a matrix are real, then the eigenvalues are real or come in conjugate pairs — no long complex eigenvalues.

Class structured populations

The study of population age structure or size structure is known as demography.

three

There are war kinds of questions we can ask which commonly come up:

- 1. What is the long-term growth rate of a population? consend ton.
- 2. What is the long-term class structure of a population?
- 3. Which classes contribute most to the long-term growth rate of a population.

conservation