Welcome Back everyone

Agenda

- 1. ML understanding completion
- 2. Maths behind ML
- 3. Linear Regression
- 4. Logins Regression.

Supervised ML

2/3 HL of course la gormale supervised.

1] Classification

2] Regression

O/P is category

O/P is continue rolle

N+1 Columns

torge

target/defundant

N= predictors

m a now s

1) Problem Understanding

Amazon = Recommendation septem amoil =1 spoon / ham

Find Data 2

> Amazon = history of orders Gmail & Email date / Previous date

Can le collected from company

1 Source

multiple source

October

December

- 1) Jeanvre selection
- 2 Overling, mooing, Oullier, String - int
- 3 Variable +/-, jealore engineering.

(5) Train our algo

Xtrain Ytrain

X reot Yreot

X teot => new data

Our aim is always to perform well on fiture data /experiences. not on past data /experience

6) Test/Evalvake the Algorithm

7 Model deployement -> sigen glash

Maths for ML

1] Linear Algelun

a) Diffrential calculus

3) Probability

4) Stolistico

Linear Algebra

Alove 3-D, we face issues in thinking.

Point = A Looki

 $d = \int x^{2} + y^{2}$ $= \int x^{2} + y^{2} + 3^{2}$ $= \int x^{2} + y^{3} + 3^{3} + w^{2}$

(5,3,4)

Vector / Matrices

(numby)

Mutrices

list of list

$$\begin{bmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} \\ & \Delta_{33} \end{bmatrix}$$

Transpose of a motion

$$\begin{bmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9
 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 2 & 3 \\
 2 & 5 & 8 \\
 3 & 6 & 9
 \end{bmatrix}$$

used a lot in machine

addition

Molhphotion

Dot Product

Dot Product

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \bullet \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} (1 \cdot 5) + (2 \cdot 7) & (1 \cdot 6) + (2 \cdot 8) \\ (3 \cdot 5) + (4 \cdot 7) & (3 \cdot 6) + (4 \cdot 8) \end{bmatrix}$$
$$= \begin{bmatrix} 5 + 14 & 6 + 16 \\ 15 + 28 & 18 + 32 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

A & *C1

B xaxca

then $C_1 = 82$ close errors
seoulting motion will have
Shape as 81C2

Unit matrix	Upper triangular matrix	Lower triangular matrix
$[I] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$	$\begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$
$a_{ij} = 1$ for $i = j$ $a_{ij} = 0$ for $i \neq j$	$a_{ij} = 0$ for $i < j$	$a_{ij} = 0$ for $i > j$
Diagonal matrix	Symetric matrix	Anti symetric matrix
$\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$ $a_{ij} = 0 for \ i \neq j$	$egin{bmatrix} a_{11} & b & c \ b & a_{22} & d \ c & d & a_{33} \end{bmatrix} \ a_{ij} = a_{ji}$	$\begin{bmatrix} 0 & -b & -c \\ b & 0 & d \\ c & -d & 0 \end{bmatrix}$ $a_{ii} = 0$ $a_{ij} = -a_{ji}$
Square matrix	General size matrix	
$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$	$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$	
number of rows equal to the number of culomns $A(n \times n)$.	A is a (2×4) matrix	

Angle behind 2 vectors

$$COOD = A.B$$
 $IAIIBI$

Vector can be moved without changing its diru

$$\begin{array}{rcl}
\cos \theta &=& \underbrace{x_1 x_2 + y_1 y_2}_{\text{A1 IB1}} \\
&=& \underbrace{x_1^2}_{\text{IS1 IB1}} \underbrace{x_1^2 y_1^2}_{\text{IA1 IB1}}
\end{array}$$

$$\frac{a \cdot b}{|b|} = |a| \cos \theta = a = \frac{b \cdot b}{|a|}$$

Projection without O

Unit vector (a)

$$\hat{Q} = \frac{\vec{Q}}{1|\vec{Q}|}$$

a mag winde = 1 dir = 8 ame Line

Line equation

$$Ax_1 + Bx_2 + c = 0$$

$$\omega_1 x_1 + \omega_2 x_2 + \omega_0 = 0$$

$$W_0 + \underline{\omega}^T \kappa = 0$$

$$\omega_0 + \omega^T \kappa = 0$$

$$\omega_o = 0$$

Will pass through origin

$$\omega^{T} \varkappa = 0$$

Why transpose?

$$\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \vdots \\ \omega_N \end{bmatrix}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_4 \end{pmatrix}$$

$$\begin{bmatrix} \omega T \\ | x | x \end{bmatrix}$$

Commutative

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

which follows from the definition (θ is the angle between ${\bf a}$ and ${\bf b}$):^[6]

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta = \|\mathbf{b}\| \|\mathbf{a}\| \cos \theta = \mathbf{b} \cdot \mathbf{a}.$

Dist of a point from a Plane wo = 0 (d) distance = wTP | 11w11

(d) distance = WTP
11W11

Davase t

					Y
X	X2	83	XY	X1	
KO ld KO	SepalLength@m	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setos
<u>1</u> 2	4.9	3	1.4	0.2	Iris-setos
3	4.7	3.2	1.3	0.2	Iris-setos
4	4.6	3.1	1.5	0.2	Iris-setos
5	5	3.6	1.4	0.2	Iris-setos
6	5.4	3.9	1.7	0.4	Iris-setos
7	4.6	3.4	1.4	0.3	Iris-setos
8	5	3.4	1.5	0.2	Iris-setos
9	4.4	2.9	1.4	0.2	Iris-setos
10	4.9	3.1	1.5	0.1	Iris-setos
11	5.4	3.7	1.5	0.2	Iris-setos
12	4.8	3.4	1.6	0.2	Iris-setos
13	4.8	3	1.4	0.1	Iris-setos
14	4.3	3	1.1	0.1	Iris-setos
15	5.8	4	1.2	0.2	Iris-setos
16	5.7	4.4	1.5	0.4	Iris-setos
17	5.4	3.9	1.3	0.4	Iris-setos
18	5.1	3.5	1.4	0.3	Iris-setos
19	5.7	3.8	1.7	0.3	Iris-setos

Clos Ichels

feelows.

Yr = { >< book

vergicles

vergicles

X₁ = recto= in a N dimⁿ space