

#### MIPI D-PHY Receiver 1.3 IP Core User Guide

Revised December 5, 2018; Author Elod Gyorgy

## 1 Introduction

This user guide describes the Digilent MIPI D-PHY Receiver Intellectual Property. This IP is compatible with D-PHY 1.0 specifications and serves as the lowest layer of the high-speed source-synchronous interface defined by MIPI Alliance. It pairs up with a MIPI CSI-2 Receiver IP over the standard PHY Protocol Interface (PPI) to receive data from an image sensor and source a video subsystem. The physical interconnect for Xilinx 7-series FPGA relies on techniques outlined in XAPP894[1].

| 2 | <b>Featu</b> | res |
|---|--------------|-----|
|   |              |     |

- Single or dual lane support
- CIL-SFEN, CIL-SCNN lane implementation: unidirectional, Control and High-Speed modes
- Xilinx interfaces used: AXI4-Lite, rx\_mipi\_ppi\_if\_rtl:1.0
- Debug module

DOC#: 516-000

| IP quick facts            |                                    |  |  |  |
|---------------------------|------------------------------------|--|--|--|
| Supported device families | Zynq®-7000, 7 series               |  |  |  |
| Supported user interfaces | Xilinx®: AXI4-Lite,<br>rx_mipi_ppi |  |  |  |
| Provided with core        |                                    |  |  |  |
| Design files              | VHDL                               |  |  |  |
| Simulation model          | VHDL Behavioral                    |  |  |  |
| Constraints file          | XDC                                |  |  |  |
| Software driver           | standalone                         |  |  |  |
| Tested design flows       |                                    |  |  |  |
| Design entry              | Vivado™ Design<br>Suite 2017.4     |  |  |  |
| Synthesis                 | Vivado Synthesis<br>2017.4         |  |  |  |

### 3 Performance

The IP has been tested in dual-lane configuration with 1344 Mbps total data rate, resulting in 84 MHz PPI high-speed byte clock (RxByteClkHS).

# 4 Resource Utilization

| Device          | Configuration         | Resource |     |      |      |     |  |
|-----------------|-----------------------|----------|-----|------|------|-----|--|
|                 |                       | LUT      | FF  | BRAM | URAM | DSP |  |
| xc7z020clg400-1 | AXI-Lite<br>Interface | 297      | 312 | 0    | 0    | 0   |  |



## 5 Overview



Figure 1. DVI to VGA converter block diagram.

The IP is built from multiple blocks: input buffers, clock buffers, de-serializer, control logic and optional debug modules.

# 6 Port Descriptions

| Signal Name      | Interface | Signal Type | Init State | Description                                                                                                                                                                                                                                                                                   |
|------------------|-----------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefClk           | -         | I           | N/A        | 200 MHz reference clock.                                                                                                                                                                                                                                                                      |
| aRst(_n)         | -         | l           | N/A        | Asynchronous reset of configurable polarity. Assert, if RefClk is not within spec.                                                                                                                                                                                                            |
| rDlyCtrlLockedIn | -         | l           | N/A        | Available when Shared Logic is not included in the IP. It is expected to have a single master instance of D-PHY IP in the design with Shared Logic included. The port rDlyCtrlLockedOut from the master block should drive all the rDlyCtrlLockedIn ports of the slave instances (see below). |



| Signal Name       | Interface | Signal Type | Init State | Description                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-----------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rDlyCtrlLockedOut |           | 0           | 0          | Available when Shared Logic is included in the IP. An IDELAYCTRL block with proper reset circuitry will be instantiated, which will manage all the IDELAY components of all the D-PHY instances in the design. The port rDlyCtrlLockedOut from the master block should drive all the rDlyCtrlLockedIn ports of the slave instances (see above). |

# 7 Designing with the core

The IP expects to be connected directly to top-level ports, since input buffers are instantiated internally. Since the D-PHY I/O standard is not supported directly by FPGA pins, it implements the techniques described in [1] that separate the D-PHY lane into a differential high-speed bus (LVDS\_25) and two low-power control signals (HSUL\_12). It was verified as working with either passive or active termination. This implementation allows 3.3V-supplied HR banks to interface with D-PHY transmitters using external on-board terminations and internal voltage reference.

#### 7.1 Constraints

See an example below on how to constrain the low-power (LP) and high-speed (HS) input pins. Banks hosting HSUL\_12 pins need a 0.6V voltage reference, either internal or external. A primary clock with a frequency corresponding to the maximum expected data rate should be created on the clock input port.

```
set property INTERNAL VREF 0.6 [get iobanks 35]
set property -dict {PACKAGE PIN J19 IOSTANDARD HSUL 12} [get ports dphy clk lp n]
set property -dict {PACKAGE PIN H20 IOSTANDARD HSUL 12} [get ports dphy clk lp p]
set property -dict {PACKAGE PIN M18 IOSTANDARD HSUL 12} [get ports
{dphy data lp n[0]}]
set property -dict {PACKAGE PIN L19 IOSTANDARD HSUL 12} [get ports
{dphy data lp p[0]}]
set_property -dict {PACKAGE_PIN L20 IOSTANDARD HSUL_12} [get_ports
{dphy data lp n[1]}]
set property -dict {PACKAGE PIN J20 IOSTANDARD HSUL 12} [get ports
{dphy data lp p[1]}]
set_property -dict {PACKAGE PIN H18 IOSTANDARD LVDS 25} [get ports
dphy hs clock clk n]
set_property -dict {PACKAGE_PIN J18 IOSTANDARD LVDS 25} [get ports
dphy hs clock clk p]
# 672Mbps/lane = 336 MHz HS Clk
create clock -period 2.976 -name dphy hs clock p -waveform {0.000 1.488} [get ports
dphy hs clock clk p]
set property -dict {PACKAGE PIN M20 IOSTANDARD LVDS 25} [get ports
{dphy data hs n[0]}]
set_property -dict {PACKAGE_PIN M19 IOSTANDARD LVDS 25} [get ports
{dphy data hs p[0]}]
set_property -dict {PACKAGE_PIN L17 IOSTANDARD LVDS 25} [get ports
{dphy data hs n[1]}]
```



set\_property -dict {PACKAGE\_PIN L16 IOSTANDARD LVDS\_25} [get\_ports
{dphy\_data\_hs\_p[1]}]

### 7.2 Customization

# 8 Debugging

# 9 References

1. Xilinx Inc., XAPP894: D-PHY Solutions, v1.0, August 25, 2014.