$11a_{47} (K11a_{47})$

Ideals for irreducible components 2 of $X_{\mathtt{par}}$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$\begin{split} I_1^u &= \langle -213277415u^{18} - 194607955u^{17} + \dots + 1851207634d + 1100791042, \\ &18308047u^{18} + 11585164u^{17} + \dots + 255338984c - 428406800, \\ &- 340509075u^{18} - 461083130u^{17} + \dots + 3702415268b + 2243928812, \\ &- 1103288949u^{18} - 1383517078u^{17} + \dots + 7404830536a + 9000488512, \\ &u^{19} + 2u^{18} + \dots + 4u^2 - 8 \rangle \\ I_2^u &= \langle -u^7a + 3u^6a + u^7 - 2u^5a - 2u^6 - 3u^4a + 7u^3a + 4u^4 - 6u^2a - 5u^3 + au + 2u^2 + d + 2a + 3u - 3, \\ &2u^6a + 5u^7 - 2u^5a - 13u^6 - 2u^4a + 7u^5 + 6u^3a + 16u^4 - 4u^2a - 32u^3 + 25u^2 + 2c + 6a + u - 12, \\ &- u^7a + 2u^6a + 2u^7 - 4u^6 - 4u^4a + 2u^5 + 5u^3a + 5u^4 - u^2a - 9u^3 - 3au + 8u^2 + b + 2a - u, \\ &3u^7a - 4u^7 + \dots - 6a + 8, \ u^8 - 3u^7 + 3u^6 + 2u^5 - 8u^4 + 9u^3 - 3u^2 - 2u + 2 \rangle \\ I_3^u &= \langle u^5 - u^3 + d + u, \ u^5 - 2u^3 + c + u, \ -u^4a - u^3a + u^4 + 2u^2a + u^3 + au + b - a - u, \\ &2u^5a + 2u^4a - u^5 - 2u^3a - u^4 - 3u^2a + a^2 + u^2 + a, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_4^u &= \langle -4u^5c + 2u^4c - u^5 + 12u^3c - 5u^4 + u^2c - 8u^3 - 7cu + 3u^2 + 11d - 10c + u + 3, \\ &- 3u^5c + 2u^5 + 6u^3c - u^4 + 2u^2c - 5u^3 + c^2 - 5cu - u^2 - 2c + 4u, \ -u^2 + b, \ -u^2 + a + 1, \\ &u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_5^u &= \langle u^5 - u^3 + d + u, \ u^5 - 2u^3 + c + u, \ -u^2 + b, \ -u^2 + a + 1, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_7^u &= \langle a, \ d - 1, \ c - a - 1, \ b - 1, \ v - 1 \rangle \\ I_7^u &= \langle a, \ d, \ c - 1, \ b + 1, \ v - 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ b, \ a - 1, \ v - 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ b, \ a - 1, \ v - 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle \\ I_9^u &= \langle c, \ d - 1, \ av + c + v - 1, \ bv + 1 \rangle$$

- * 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle -2.13 \times 10^8 u^{18} - 1.95 \times 10^8 u^{17} + \dots + 1.85 \times 10^9 d + 1.10 \times 10^9, \ 1.83 \times 10^7 u^{18} + 1.16 \times 10^7 u^{17} + \dots + 2.55 \times 10^8 c - 4.28 \times 10^8, \ -3.41 \times 10^8 u^{18} - 4.61 \times 10^8 u^{17} + \dots + 3.70 \times 10^9 b + 2.24 \times 10^9, \ -1.10 \times 10^9 u^{18} - 1.38 \times 10^9 u^{17} + \dots + 7.40 \times 10^9 a + 9.00 \times 10^9, \ u^{19} + 2u^{18} + \dots + 4u^2 - 8 \rangle$

(i) Arc colorings

$$\begin{array}{l} a_3 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_8 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_4 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix} \\ a_9 = \begin{pmatrix} -0.0717009u^{18} - 0.0453717u^{17} + \cdots - 0.546899u + 1.67780 \\ 0.115210u^{18} + 0.105125u^{17} + \cdots + 0.279798u - 0.594634 \end{pmatrix} \\ a_1 = \begin{pmatrix} 0.148996u^{18} + 0.186840u^{17} + \cdots + 0.656789u - 1.21549 \\ 0.0919694u^{18} + 0.124536u^{17} + \cdots + 1.08046u - 0.606072 \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.186911u^{18} - 0.150497u^{17} + \cdots - 0.826697u + 2.27243 \\ 0.115210u^{18} + 0.105125u^{17} + \cdots + 0.279798u - 0.594634 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.0237009u^{18} + 0.0450696u^{17} + \cdots + 0.0621551u - 0.293810 \\ 0.0895560u^{18} + 0.0824521u^{17} + \cdots + 1.48819u - 0.554949 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.0757590u^{18} - 0.0595485u^{17} + \cdots + 0.388792u + 1.08046 \\ 0.111152u^{18} + 0.0909481u^{17} + \cdots + 1.21549u - 1.19197 \end{pmatrix} \\ a_{11} = \begin{pmatrix} 0.141825u^{18} + 0.139813u^{17} + \cdots + 0.240467u - 1.63929 \\ -0.00966290u^{18} + 0.0305921u^{17} + \cdots + 0.504689u + 0.0161009 \end{pmatrix} \\ a_5 = \begin{pmatrix} -0.0570264u^{18} - 0.0623040u^{17} + \cdots + 0.423674u + 0.609417 \\ 0.143944u^{18} + 0.132344u^{17} + \cdots + 1.53667u - 1.02006 \end{pmatrix} \\ \begin{pmatrix} -0.0570264u^{18} - 0.0623040u^{17} + \cdots + 0.423674u + 0.609417 \\ 0.143944u^{18} + 0.132344u^{17} + \cdots + 1.53667u - 1.02006 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{1436975081}{1851207634}u^{18} - \frac{348795105}{1851207634}u^{17} + \cdots - \frac{4741127818}{925603817}u + \frac{7721567164}{925603817}u^{18} + \frac{77215671$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9	$u^{19} - 2u^{18} + \dots + 3u - 1$
c_2, c_8	$u^{19} + 8u^{18} + \dots + 19u + 1$
c_3, c_7	$u^{19} + 2u^{18} + \dots + 4u^2 - 8$
c_5, c_{10}, c_{11}	$u^{19} + 2u^{18} + \dots - 8u - 4$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{19} - 8y^{18} + \dots + 19y - 1$
c_2, c_8	$y^{19} + 12y^{18} + \dots + 195y - 1$
c_{3}, c_{7}	$y^{19} - 6y^{18} + \dots + 64y - 64$
c_5, c_{10}, c_{11}	$y^{19} - 18y^{18} + \dots + 88y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.085440 + 0.040618I		
a = -0.082939 - 0.820035I		
b = -0.548223 - 0.458686I	2.40223 - 3.63220I	3.52732 + 6.81616I
c = -0.101745 + 0.706332I		
d = -0.713652 - 0.621261I		
u = -1.085440 - 0.040618I		
a = -0.082939 + 0.820035I		
b = -0.548223 + 0.458686I	2.40223 + 3.63220I	3.52732 - 6.81616I
c = -0.101745 - 0.706332I		
d = -0.713652 + 0.621261I		
u = -0.122471 + 1.080680I		
a = 0.718026 + 0.002764I		
b = 1.002700 + 0.800999I	4.14406 - 1.22871I	4.10945 + 3.37998I
c = 1.124430 + 0.436865I		
d = 0.587370 + 0.660248I		
u = -0.122471 - 1.080680I		
a = 0.718026 - 0.002764I		
b = 1.002700 - 0.800999I	4.14406 + 1.22871I	4.10945 - 3.37998I
c = 1.124430 - 0.436865I		
d = 0.587370 - 0.660248I		
u = 0.583709 + 0.932517I		
a = 1.248640 - 0.243760I		
b = 0.757420 - 1.122890I	-4.29720 - 4.85510I	-5.63265 + 5.33490I
c = 1.54158 + 0.36785I		
d = 1.085300 + 0.470880I		
u = 0.583709 - 0.932517I		
a = 1.248640 + 0.243760I		
b = 0.757420 + 1.122890I	-4.29720 + 4.85510I	-5.63265 - 5.33490I
c = 1.54158 - 0.36785I		
d = 1.085300 - 0.470880I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.628638 + 1.123100I		
a = -1.232770 - 0.120292I		
b = -1.30952 - 1.42851I	0.71510 + 8.68076I	-0.47305 - 6.48182I
c = 1.55750 - 0.46383I		
d = 1.118990 - 0.584861I		
u = -0.628638 - 1.123100I		
a = -1.232770 + 0.120292I		
b = -1.30952 + 1.42851I	0.71510 - 8.68076I	-0.47305 + 6.48182I
c = 1.55750 + 0.46383I		
d = 1.118990 + 0.584861I		
u = 1.114960 + 0.705316I		
a = 0.111878 - 1.272940I		
b = -1.46155 - 1.34018I	-2.61225 + 10.89710I	-3.23641 - 8.50579I
c = -1.62042 - 1.03068I		
d = -1.163710 + 0.575900I		
u = 1.114960 - 0.705316I		
a = 0.111878 + 1.272940I		
b = -1.46155 + 1.34018I	-2.61225 - 10.89710I	-3.23641 + 8.50579I
c = -1.62042 + 1.03068I		
d = -1.163710 - 0.575900I		
u = -0.072034 + 0.667244I		
a = -0.502161 - 0.640166I		
b = -0.246691 + 0.049771I	-1.32552 + 1.22673I	-3.58366 - 5.47914I
c = 1.286910 - 0.134822I		
d = 0.710407 - 0.203370I		
u = -0.072034 - 0.667244I		
a = -0.502161 + 0.640166I		
b = -0.246691 - 0.049771I	-1.32552 - 1.22673I	-3.58366 + 5.47914I
c = 1.286910 + 0.134822I		
d = 0.710407 + 0.203370I		

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS) $	Cusp shape
u = -1.241950 + 0.516338I		
a = 0.276604 + 0.673540I		
b = -1.46152 + 0.68811I	7.80660 - 4.21764I	6.24313 + 1.77538I
c = 0.128975 + 0.165024I		
d = -0.379493 + 0.913957I		
u = -1.241950 - 0.516338I		
a = 0.276604 - 0.673540I		
b = -1.46152 - 0.68811I	7.80660 + 4.21764I	6.24313 - 1.77538I
c = 0.128975 - 0.165024I		
d = -0.379493 - 0.913957I		
u = 1.391220 + 0.215371I		
a = -0.043768 - 1.017560I		
b = -0.031342 + 0.273386I	9.74824 + 5.99256I	5.35093 - 5.49640I
c = -0.726247 - 0.431148I		
d = -0.892218 + 0.798617I		
u = 1.391220 - 0.215371I		
a = -0.043768 + 1.017560I		
b = -0.031342 - 0.273386I	9.74824 - 5.99256I	5.35093 + 5.49640I
c = -0.726247 + 0.431148I		
d = -0.892218 - 0.798617I		
u = -1.18800 + 0.79635I		
a = -0.064734 - 1.301180I		0.00500 . 0.400445
b = 1.97753 - 1.24306I	2.5538 - 15.5977I	0.09598 + 9.40344I
c = -1.73926 + 0.83388I		
d = -1.219920 - 0.612443I		
u = -1.18800 - 0.79635I		
a = -0.064734 + 1.301180I	0.5500 + 15.50557	0.00500 0.400447
b = 1.97753 + 1.24306I	2.5538 + 15.5977I	0.09598 - 9.40344I
c = -1.73926 - 0.83388I		
d = -1.219920 + 0.612443I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.497291		
a = 0.142445		
b = 0.642422	1.20822	9.19790
c = 1.09653		
d = -0.266152		

II.
$$I_2^u = \langle -u^7a + u^7 + \dots + 2a - 3, \ 2u^6a + 5u^7 + \dots + 6a - 12, \ -u^7a + 2u^7 + \dots + b + 2a, \ 3u^7a - 4u^7 + \dots - 6a + 8, \ u^8 - 3u^7 + \dots - 2u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6}a - \frac{5}{2}u^{7} + \dots - 3a + 6 \\ u^{7}a - u^{7} + \dots - 2a + 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a \\ u^{7}a - 2u^{7} + \dots - 2a + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{7}a - \frac{3}{2}u^{7} + \dots - a + 3 \\ u^{7}a - u^{7} + \dots - 2a + 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6}a + 2u^{7} + \dots + 3a - 4 \\ -u^{7}a + 3u^{6}a + \dots + 2a - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{7}a - \frac{3}{2}u^{7} + \dots - a + \frac{5}{2}u \\ -u^{6} + u^{5} + u^{4} - 3u^{3} + au + 2u^{2} - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{7} - \frac{3}{2}u^{6} + \dots + 2a - 1 \\ -u^{7} + 2u^{6} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{7}a - 2u^{7} + \dots - 3a + u \\ u^{7}a - u^{6}a + \dots + u - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{7}a - 2u^{7} + \dots - 3a + u \\ u^{7}a - u^{6}a + \dots + u - 4 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^7 + 4u^5 6u^4 4u^3 + 6u^2 8u 4u^3 +$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9	$u^{16} - u^{15} + \dots + 4u - 4$
c_2, c_8	$u^{16} + 7u^{15} + \dots + 40u + 16$
c_3, c_7	(u8 - 3u7 + 3u6 + 2u5 - 8u4 + 9u3 - 3u2 - 2u + 2)2
c_5, c_{10}, c_{11}	$(u^8 + u^7 - 4u^6 - 3u^5 + 5u^4 + u^3 - u^2 + 3u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{16} - 7y^{15} + \dots - 40y + 16$
c_2, c_8	$y^{16} + y^{15} + \dots - 544y + 256$
c_3, c_7	$(y^8 - 3y^7 + 5y^6 - 4y^5 + 2y^4 - 13y^3 + 13y^2 - 16y + 4)^2$
c_5, c_{10}, c_{11}	$(y^8 - 9y^7 + 32y^6 - 53y^5 + 31y^4 + 15y^3 - 15y^2 - 7y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.821613 + 0.567011I		
a = 0.327841 - 1.281680I		
b = -0.32411 - 2.07852I	-4.77492 + 2.26376I	-6.05872 - 4.53378I
c = 1.67002 + 0.21655I		
d = 1.227620 + 0.270214I		
u = 0.821613 + 0.567011I		
a = 1.55977 - 0.26895I		
b = -0.408126 - 1.151440I	-4.77492 + 2.26376I	-6.05872 - 4.53378I
c = -1.53003 - 1.99355I		
d = -1.076280 + 0.402850I		
u = 0.821613 - 0.567011I		
a = 0.327841 + 1.281680I		
b = -0.32411 + 2.07852I	-4.77492 - 2.26376I	-6.05872 + 4.53378I
c = 1.67002 - 0.21655I		
d = 1.227620 - 0.270214I		
u = 0.821613 - 0.567011I		
a = 1.55977 + 0.26895I		
b = -0.408126 + 1.151440I	-4.77492 - 2.26376I	-6.05872 + 4.53378I
c = -1.53003 + 1.99355I		
d = -1.076280 - 0.402850I		
u = 0.432344 + 1.079150I		
a = 1.115680 - 0.168353I		
b = 1.27697 - 0.76242I	2.93531 - 3.55755I	2.52739 + 2.62489I
c = 0.918952 - 0.461716I		
d = 0.365525 - 0.776365I		
u = 0.432344 + 1.079150I		
a = -0.603271 + 0.193035I		
b = -0.50994 + 1.48491I	2.93531 - 3.55755I	2.52739 + 2.62489I
c = 1.45767 + 0.43671I		
d = 0.993914 + 0.569061I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.432344 - 1.079150I		
a = 1.115680 + 0.168353I		
b = 1.27697 + 0.76242I	2.93531 + 3.55755I	2.52739 - 2.62489I
c = 0.918952 + 0.461716I		
d = 0.365525 + 0.776365I		
u = 0.432344 - 1.079150I		
a = -0.603271 - 0.193035I		
b = -0.50994 - 1.48491I	2.93531 + 3.55755I	2.52739 - 2.62489I
c = 1.45767 - 0.43671I		
d = 0.993914 - 0.569061I		
u = -1.38845		
a = 0.099908 + 0.914602I		
b = -0.636148 - 0.242515I	10.1546	6.33750
c = -0.435105 + 0.253742I		
d = -0.754559 - 0.841472I		
u = -1.38845		
a = 0.099908 - 0.914602I		
b = -0.636148 + 0.242515I	10.1546	6.33750
c = -0.435105 - 0.253742I		
d = -0.754559 + 0.841472I		
u = 1.215250 + 0.684012I		
a = 0.067480 - 1.248660I		
b = -1.57665 - 0.90527I	5.44991 + 9.88301I	3.28252 - 6.06963I
c = 0.226769 - 0.309183I		
d = -0.270006 - 0.967768I		
u = 1.215250 + 0.684012I		
a = -0.355893 + 0.630356I		
b = 1.56027 + 1.09581I	5.44991 + 9.88301I	3.28252 - 6.06963I
c = -1.52513 - 0.84692I		
d = -1.157570 + 0.635502I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.215250 - 0.684012I		
a = 0.067480 + 1.248660I		
b = -1.57665 + 0.90527I	5.44991 - 9.88301I	3.28252 + 6.06963I
c = 0.226769 + 0.309183I		
d = -0.270006 + 0.967768I		
u = 1.215250 - 0.684012I		
a = -0.355893 - 0.630356I		
b = 1.56027 - 1.09581I	5.44991 - 9.88301I	3.28252 + 6.06963I
c = -1.52513 + 0.84692I		
d = -1.157570 - 0.635502I		
u = -0.549965		
a = -1.11644		
b = -2.20354	-2.57083	2.16010
c = 1.59660		
d = 1.12630		
u = -0.549965		
a = -2.30659		
b = 0.439006	-2.57083	2.16010
c = 3.83712		
d = -0.783583		

III.
$$I_3^u = \langle u^5 - u^3 + d + u, \ u^5 - 2u^3 + c + u, \ -u^4a + u^4 + \dots + b - a, \ 2u^5a - u^5 + \dots + a^2 + a, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4}a + u^{3}a - u^{4} - 2u^{2}a - u^{3} - au + a + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5}a + u^{4}a - u^{3}a - u^{4} - 3u^{2}a - u^{3} + u^{2} + 2a + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3}a + u^{4} + u^{3} + au + 2a - u - 1 \\ u^{5}a + u^{4}a - u^{3}a - u^{4} - 3u^{2}a - u^{3} + u^{2} + 2a + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4}a + u^{3}a - u^{4} - 2u^{2}a - u^{3} - au + u \\ 2u^{4}a - 2u^{2}a + 2a - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4}a + u^{3}a - u^{4} - 2u^{2}a - u^{3} - au + u \\ 2u^{4}a - 2u^{2}a + 2a - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 2$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_{10}, c_{11}$	$u^{12} + u^{11} - 4u^{10} - 2u^9 + 7u^8 - u^7 - 5u^6 + 5u^5 - u^4 - 3u^3 + 2u^2 + 1$
c_2	$u^{12} + 9u^{11} + \dots - 4u + 1$
c_3, c_7	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
c_{6}, c_{9}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$
c ₈	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_{10}, c_{11}$	$y^{12} - 9y^{11} + \dots + 4y + 1$
c_2	$y^{12} - 13y^{11} + \dots - 12y + 1$
c_3, c_6, c_7 c_9	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$
c ₈	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = 0.228720 - 1.004780I		
b = 0.103539 - 0.942817I	1.89061 + 0.92430I	3.71672 - 0.79423I
c = 0.315740 + 0.200172I		
d = -0.428243 - 0.664531I		
u = 1.002190 + 0.295542I		
a = 1.69020 - 0.12901I		
b = -1.18901 - 0.78206I	1.89061 + 0.92430I	3.71672 - 0.79423I
c = 0.315740 + 0.200172I		
d = -0.428243 - 0.664531I		
u = 1.002190 - 0.295542I		
a = 0.228720 + 1.004780I		
b = 0.103539 + 0.942817I	1.89061 - 0.92430I	3.71672 + 0.79423I
c = 0.315740 - 0.200172I		
d = -0.428243 + 0.664531I		
u = 1.002190 - 0.295542I		
a = 1.69020 + 0.12901I		
b = -1.18901 + 0.78206I	1.89061 - 0.92430I	3.71672 + 0.79423I
c = 0.315740 - 0.200172I		
d = -0.428243 + 0.664531I		
u = -0.428243 + 0.664531I		
a = 0.305248 + 0.125739I		
b = -0.101098 + 0.828455I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
c = 1.49099 - 0.22339I		
d = 1.002190 - 0.295542I		
u = -0.428243 + 0.664531I		
a = -0.41743 - 1.68310I		
b = -0.15460 - 3.71488I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
c = 1.49099 - 0.22339I		
d = 1.002190 - 0.295542I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.428243 - 0.664531I		
a = 0.305248 - 0.125739I		
b = -0.101098 - 0.828455I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
c = 1.49099 + 0.22339I		
d = 1.002190 + 0.295542I		
u = -0.428243 - 0.664531I		
a = -0.41743 + 1.68310I		
b = -0.15460 + 3.71488I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
c = 1.49099 + 0.22339I		
d = 1.002190 + 0.295542I		
u = -1.073950 + 0.558752I		
a = 0.266694 + 0.574266I		
b = -1.16959 + 0.91104I	-5.69302I	0. + 5.51057I
c = -1.30674 + 1.20014I		
d = -1.073950 - 0.558752I		
u = -1.073950 + 0.558752I		
a = -1.57343 - 0.13663I		
b = 1.01075 - 1.59090I	-5.69302I	0. + 5.51057I
c = -1.30674 + 1.20014I		
d = -1.073950 - 0.558752I		
u = -1.073950 - 0.558752I		
a = 0.266694 - 0.574266I		
b = -1.16959 - 0.91104I	5.69302I	0 5.51057I
c = -1.30674 - 1.20014I		
d = -1.073950 + 0.558752I		
u = -1.073950 - 0.558752I		
a = -1.57343 + 0.13663I		
b = 1.01075 + 1.59090I	5.69302I	05.51057I
c = -1.30674 - 1.20014I		
d = -1.073950 + 0.558752I		

$$\begin{array}{l} \text{IV. } I_4^u = \langle -4u^5c - u^5 + \cdots - 10c + 3, \ -3u^5c + 2u^5 + \cdots + c^2 - 2c, \ -u^2 + b, \ -u^2 + a + 1, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.363636cu^{5} + 0.0909091u^{5} + \dots + 0.909091c - 0.272727 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.363636cu^{5} - 0.0909091u^{5} + \dots + 0.0909091c + 0.272727 \\ 0.363636cu^{5} + 0.0909091u^{5} + \dots + 0.909091c - 0.272727 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.909091cu^{5} + 0.272727u^{5} + \dots - 0.272727c + 0.181818 \\ -0.545455cu^{5} + 0.363636u^{5} + \dots - 0.363636c - 0.0909991 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.363636cu^{5} - 0.09099091u^{5} + \dots - 0.9099091c + 0.272727 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$
c_2	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2$
c_3, c_7	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
$c_5, c_6, c_9 \ c_{10}, c_{11}$	$u^{12} + u^{11} - 4u^{10} - 2u^9 + 7u^8 - u^7 - 5u^6 + 5u^5 - u^4 - 3u^3 + 2u^2 + 1$
c ₈	$u^{12} + 9u^{11} + \dots - 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$
c_2	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$
c_5, c_6, c_9 c_{10}, c_{11}	$y^{12} - 9y^{11} + \dots + 4y + 1$
<i>c</i> ₈	$y^{12} - 13y^{11} + \dots - 12y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.082955 + 0.592379I		
b = 0.917045 + 0.592379I	1.89061 + 0.92430I	3.71672 - 0.79423I
c = -0.529240 - 1.308250I		
d = -0.895235 + 0.524661I		
u = 1.002190 + 0.295542I		
a = -0.082955 + 0.592379I		
b = 0.917045 + 0.592379I	1.89061 + 0.92430I	3.71672 - 0.79423I
c = 1.75231 + 0.11405I		
d = 1.323480 + 0.139870I		
u = 1.002190 - 0.295542I		
a = -0.082955 - 0.592379I		
b = 0.917045 - 0.592379I	1.89061 - 0.92430I	3.71672 + 0.79423I
c = -0.529240 + 1.308250I		
d = -0.895235 - 0.524661I		
u = 1.002190 - 0.295542I		
a = -0.082955 - 0.592379I		
b = 0.917045 - 0.592379I	1.89061 - 0.92430I	3.71672 + 0.79423I
c = 1.75231 - 0.11405I		
d = 1.323480 - 0.139870I		
u = -0.428243 + 0.664531I		
a = -1.258210 - 0.569162I	4 00004 . 0 004007	2 -1 2-2 2 -2 12 1
b = -0.258209 - 0.569162I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
c = 0.888685 + 0.176317I		
$\frac{d = 0.152828 + 0.487477I}{0.438242 + 0.664521I}$		
u = -0.428243 + 0.664531I		
a = -1.258210 - 0.569162I	1 00061 + 0 004907	9.71.679 0.70.499.1
b = -0.258209 - 0.569162I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
c = -3.70174 + 2.96124I		
d = -1.155020 - 0.191936I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.428243 - 0.664531I		
a = -1.258210 + 0.569162I		
b = -0.258209 + 0.569162I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
c = 0.888685 - 0.176317I		
d = 0.152828 - 0.487477I		
u = -0.428243 - 0.664531I		
a = -1.258210 + 0.569162I		
b = -0.258209 + 0.569162I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
c = -3.70174 - 2.96124I		
d = -1.155020 + 0.191936I		
u = -1.073950 + 0.558752I		
a = -0.158836 - 1.200140I		
b = 0.84116 - 1.20014I	-5.69302I	0. + 5.51057I
c = 0.314939 + 0.139392I		
d = -0.282166 + 0.828798I		
u = -1.073950 + 0.558752I		
a = -0.158836 - 1.200140I		
b = 0.84116 - 1.20014I	-5.69302I	0. + 5.51057I
c = 1.77504 - 0.22203I		
d = 1.356120 - 0.270046I		
u = -1.073950 - 0.558752I		
a = -0.158836 + 1.200140I		
b = 0.84116 + 1.20014I	5.69302I	0 5.51057I
c = 0.314939 - 0.139392I		
d = -0.282166 - 0.828798I		
u = -1.073950 - 0.558752I		
a = -0.158836 + 1.200140I		
b = 0.84116 + 1.20014I	5.69302I	05.51057I
c = 1.77504 + 0.22203I		
d = 1.356120 + 0.270046I		

$$\begin{array}{c} {\rm V.}\ I_5^u = \\ \langle u^5 - u^3 + d + u,\ u^5 - 2u^3 + c + u,\ -u^2 + b,\ -u^2 + a + 1,\ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 2$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_9, c_{10} \\ c_{11}$	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_{2}, c_{8}	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$
c_3, c_7	$u^6 + u^5 - u^4 - 2u^3 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_{2}, c_{8}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.082955 + 0.592379I		
b = 0.917045 + 0.592379I	1.89061 + 0.92430I	3.71672 - 0.79423I
c = 0.315740 + 0.200172I		
d = -0.428243 - 0.664531I		
u = 1.002190 - 0.295542I		
a = -0.082955 - 0.592379I		
b = 0.917045 - 0.592379I	1.89061 - 0.92430I	3.71672 + 0.79423I
c = 0.315740 - 0.200172I		
d = -0.428243 + 0.664531I		
u = -0.428243 + 0.664531I		
a = -1.258210 - 0.569162I		
b = -0.258209 - 0.569162I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
c = 1.49099 - 0.22339I		
d = 1.002190 - 0.295542I		
u = -0.428243 - 0.664531I		
a = -1.258210 + 0.569162I		
b = -0.258209 + 0.569162I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
c = 1.49099 + 0.22339I		
d = 1.002190 + 0.295542I		
u = -1.073950 + 0.558752I		
a = -0.158836 - 1.200140I		
b = 0.84116 - 1.20014I	-5.69302I	0. + 5.51057I
c = -1.30674 + 1.20014I		
d = -1.073950 - 0.558752I		
u = -1.073950 - 0.558752I		
a = -0.158836 + 1.200140I		
b = 0.84116 + 1.20014I	5.69302I	0 5.51057I
c = -1.30674 - 1.20014I		
d = -1.073950 + 0.558752I		

VI.
$$I_1^v = \langle a, \ d-1, \ c-a-1, \ b-1, \ v+1 \rangle$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_6, c_8	u-1
c_2, c_4, c_9	u+1
c_3, c_5, c_7 c_{10}, c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
c_3, c_5, c_7 c_{10}, c_{11}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = 1.00000	-3.28987	-12.0000
c = 1.00000		
d = 1.00000		

VII.
$$I_2^v = \langle a, \ d, \ c-1, \ b+1, \ v-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_4, c_5	u+1
c_3, c_6, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5, c_{10}, c_{11}$	y-1
c_3, c_6, c_7 c_8, c_9	y

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = -1.00000	0	0
c = 1.00000		
d = 0		

VIII.
$$I_3^v=\langle c,\; d-1,\; b,\; a-1,\; v-1
angle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u
c_5, c_6, c_8	u-1
c_9, c_{10}, c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{11}$	y-1

	Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	1.00000		
a =	1.00000		
b =	0	0	0
c =	0		
d =	1.00000		

IX.
$$I_4^v = \langle c, d-1, av+c+v-1, bv+1 \rangle$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ -a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a+v \\ -a-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a+1\\ -a-2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a \\ a+1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a \\ a+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-a^2 v^2 2a 5$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	-1.64493	-3.92396 - 0.35058I
$c = \cdots$		
$d = \cdots$		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u(u-1)^{2}(u^{6}-u^{5}-u^{4}+2u^{3}-u+1)^{3}$ $\cdot (u^{12}+u^{11}-4u^{10}-2u^{9}+7u^{8}-u^{7}-5u^{6}+5u^{5}-u^{4}-3u^{3}+2u^{2}+1)$ $\cdot (u^{16}-u^{15}+\cdots+4u-4)(u^{19}-2u^{18}+\cdots+3u-1)$
c_2	$u(u+1)^{2}(u^{6}+3u^{5}+5u^{4}+4u^{3}+2u^{2}+u+1)^{3}$ $\cdot (u^{12}+9u^{11}+\cdots-4u+1)(u^{16}+7u^{15}+\cdots+40u+16)$ $\cdot (u^{19}+8u^{18}+\cdots+19u+1)$
c_3, c_7	$u^{3}(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{5}$ $\cdot (u^{8} - 3u^{7} + 3u^{6} + 2u^{5} - 8u^{4} + 9u^{3} - 3u^{2} - 2u + 2)^{2}$ $\cdot (u^{19} + 2u^{18} + \dots + 4u^{2} - 8)$
c_4, c_9	$u(u+1)^{2}(u^{6}-u^{5}-u^{4}+2u^{3}-u+1)^{3}$ $\cdot (u^{12}+u^{11}-4u^{10}-2u^{9}+7u^{8}-u^{7}-5u^{6}+5u^{5}-u^{4}-3u^{3}+2u^{2}+1)$ $\cdot (u^{16}-u^{15}+\cdots+4u-4)(u^{19}-2u^{18}+\cdots+3u-1)$
c_5, c_{10}, c_{11}	$u(u-1)(u+1)(u^{6}-u^{5}-u^{4}+2u^{3}-u+1)$ $\cdot (u^{8}+u^{7}-4u^{6}-3u^{5}+5u^{4}+u^{3}-u^{2}+3u-1)^{2}$ $\cdot (u^{12}+u^{11}-4u^{10}-2u^{9}+7u^{8}-u^{7}-5u^{6}+5u^{5}-u^{4}-3u^{3}+2u^{2}+1)^{2}$ $\cdot (u^{19}+2u^{18}+\cdots-8u-4)$
c ₈	$u(u-1)^{2}(u^{6}+3u^{5}+5u^{4}+4u^{3}+2u^{2}+u+1)^{3}$ $\cdot (u^{12}+9u^{11}+\cdots-4u+1)(u^{16}+7u^{15}+\cdots+40u+16)$ $\cdot (u^{19}+8u^{18}+\cdots+19u+1)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y(y-1)^{2}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{3}$ $\cdot (y^{12} - 9y^{11} + \dots + 4y + 1)(y^{16} - 7y^{15} + \dots - 40y + 16)$ $\cdot (y^{19} - 8y^{18} + \dots + 19y - 1)$
c_2, c_8	$y(y-1)^{2}(y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)^{3}$ $\cdot (y^{12} - 13y^{11} + \dots - 12y + 1)(y^{16} + y^{15} + \dots - 544y + 256)$ $\cdot (y^{19} + 12y^{18} + \dots + 195y - 1)$
c_3, c_7	$y^{3}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{5}$ $\cdot (y^{8} - 3y^{7} + 5y^{6} - 4y^{5} + 2y^{4} - 13y^{3} + 13y^{2} - 16y + 4)^{2}$ $\cdot (y^{19} - 6y^{18} + \dots + 64y - 64)$
c_5, c_{10}, c_{11}	$y(y-1)^{2}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)$ $\cdot (y^{8} - 9y^{7} + 32y^{6} - 53y^{5} + 31y^{4} + 15y^{3} - 15y^{2} - 7y + 1)^{2}$ $\cdot ((y^{12} - 9y^{11} + \dots + 4y + 1)^{2})(y^{19} - 18y^{18} + \dots + 88y - 16)$