Тема. Нерівності з однією змінною

<u>Мета.</u> Ознайомитися з поняттями нерівності з однією змінною, розв'язку нерівності, множини розв'язків нерівності, навчитися розв'язувати нерівності з однією змінною.

Пригадайте

- Що таке рівняння, розв'язок рівняння?
- Що значить розв'язати рівняння?
- Що таке область допустимих значень?

Ознайомтеся з інформацією

Нерівністю з однією змінною називається нерівність, що містить одну незалежну змінну.

- Розв'язком нерівності з однією змінною називають значення змінної, яке перетворює її на правильну числову нерівність.
- Розв'язати нерівність означає знайти всі її розв'язки або довести, що розв'язків не існує.
- Усі розв'язки нерівності утворюють множину розв'язків нерівності.
- Якщо нерівність не має розв'язків, то множина розв'язків нерівності є порожньою множиною, і позначають її символом Ø.
- Варто завжди пам'ятати про область допустимих значень, тобто ОДЗ.

Завдання

Усні вправи

Задача 1

Які із чисел 1, 5, –7 та 3,5 є розв'язками таких нерівностей:

- 1) x > 5;
- 2) $x^2 \le 20$;
- 3) $\frac{1}{r} > 0$;
- 4) $3x < x^2$.

Розв'язання

	<i>x</i> > 5	$x^2 \le 20$	$\frac{1}{x} > 0$	$3x < x^2$
1	_	+	+	_
5	_	_	+	+
-7	_	_	_	+
3,5	_	+	+	+

Задача 2

Знайдіть множину розв'язків таких нерівностей:

1)
$$0 \cdot x > 2$$
;

2)
$$0 \cdot x < 2$$
;

3)
$$(x+1)^2 < 0$$
;

4)
$$(x-2)^2 \le 0$$
.

Розв'язання

ОДЗ в усіх прикладах — це всі дійсні числа.

1)
$$0 \cdot x = 0 \ge 2$$

 $x \in \emptyset$, або розв'язків немає;

2)
$$0 \cdot x = 0 < 2$$

 $x \in R$, або $x \in$ довільним числом;

3)
$$(x + 1)^2 \ge 0$$
, а тому $(x + 1)^2 \ne 0$ та $x \in \emptyset$, або розв'язків немає;

4)
$$(x-2)^2 \ge 0$$
, TOMY $(x-2)^2 \ne 0$

Знайдімо розв'язки
$$(x-2)^2 = 0$$

$$x - 2 = 0$$

Отже, розв'язком ϵ лише x=2.

Письмові вправи

Задача 3

Знайдіть розв'язки нерівностей:

1)
$$\frac{x^2+2}{x^2} \ge 0;$$

2)
$$\frac{x^2+2}{x^2+2} > 1$$
;

3)
$$\frac{x^2-4}{x^2-4} \le 1$$
;

4)
$$\frac{x^2}{x^2+2} > 0$$
.

Розв'язання

1) ОД3:
$$x^2 \neq 0$$
, тому ОД3: $x \neq 0$.

$$x^2 + 2 > 0, x^2 > 0$$
 для всіх x з ОДЗ, отже $\frac{x^2 + 2}{x^2} \ge 0$

2)
$$x^2 + 2 > 0$$
, тому ОДЗ — усі дійсні числа.

$$\frac{x^2+2}{x^2+2} = 1 > 1$$
, тому розв'язків немає.

3) ОДЗ
$$x^2 - 4 \neq 0$$
, тобто $x \neq 2, x \neq -2$.

$$\frac{x^2-4}{x^2-4}=1 \le 1$$
, тобто розв'язки — це всі дійсні числа, крім 2 та -2 .

4) ОДЗ — усі дійсні числа.

 $x^2+2>0$ і $x^2\geq 0$, тому $\frac{x^2}{x^2+2}\geq 0$. Щоб виконувалась строга нерівність, потрібно відкинути ті значення, для яких $\frac{x^2}{x^2+2}=0$, тобто x=0.

Відповідно, розв'язками цієї нерівності є всі дійсні числа, крім 0.

Задача 4

Розв'яжіть нерівності:

- 1) $(x-2)^2 \le 0$;
- 2) $|x| \ge -x^2$;
- 3) |x| > -x.

Розв'язання

1) $(x-2)^2 \ge 0$, отже $(x-2)^2 \le 0$ виконується тільки за умови $(x-2)^2 = 0$, тобто тільки для x=2. Відповідно, розв'язком цієї нерівності є тільки число 2;

- 2) $|x| \ge 0 \ge -x^2$;
- 3) a) x > 0, тоді |x| = x > 0 > -x.
 - б) $x \le 0$, тоді $|x| = -x \not > -x$.

Відповідно, розв'язками ε всі додатні числа.

Пригадайте

- Що називають нерівністю з однією змінною?
- Як розв'язати нерівність з однією змінною?

Домашнє завдання

- Повторити властивості числових нерівностей
- Розв'язати в зошиті:
- 1. Знайти ОДЗ виразу: 1) $\frac{x^2-4}{x^2+4}$; 2) $\frac{4}{x^2-9}$.
- 2. Знайти множину розв'язків нерівності: 1) $\frac{4}{x^2-9} \ge 0$; 2) $(x-5)^4 \le 0$.

Фото виконаних домашніх робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерело

Всеукраїнська школа онлайн