Chapter 1

Separation Axioms

Definition 1 (Quasi T_0 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a quasi T_0 -space, if for every two distinct fuzzy points x_a and x_b with same support point x, there exists $U \in Q_{\delta}(x_a)$ such that $x_b \not\propto U$ or, there exists $V \in Q_{\delta}(x_b)$ such that $x_a \not\propto V$.

Definition 2 (Sub T_0 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a sub T_0 -space, if for every two distinct $x, y \in X$, there exists $a \in [0, 1]$ such that either $\exists U \in Q_{\delta}(x_a)$ with $y_a \not\propto U$ or, $\exists V \in Q_{\delta}(y_a)$ with $x_a \not\propto V$.

Definition 3 $(T_0$ -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_0 -space, if for every two distinct fuzzy points x_a and y_b , $\exists U \in Q_\delta(x_a)$ such that $y_b \not\propto U$ or, $\exists V \in Q_\delta(y_b)$ with $x_a \not\propto V$.

Definition 4 $(T_1$ —space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_1 —space, if for every two distinct fuzzy points x_a and y_b such that $x_a \not\leq y_b$ then there exists $U \in Q_{\delta}(x_a)$ such that $y_b \not\propto U$ and, $\exists V \in Q_{\delta}(y_b)$ such that $x_a \not\propto V$.

Definition 5 (T_2 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_2 -space, if for every two distinct fuzzy points x_a and y_b (i.e., $x_a \neq y_b$) then there exists $U \in Q_\delta(x_a)$ and, $V \in Q_\delta(y_b)$ such that $U \wedge V = 0$.

Theorem 1.0.1. Quasi T_0 property is heriditary. or, Every subspace of a Quasi T_0 space is Quasi T_0 space.

Proof. Suppose, $\langle X, \delta \rangle$ be a fuzzy topological space which is Quasi T_0 -space. Let $\langle Y, \mu \rangle$ be the subspace of $\langle X, \delta \rangle$. We have to prove that, $\langle Y, \mu \rangle$ be a Q- T_0 -space.

Now, since, $Y \subseteq X$ so every $V \in \mu$, $V = U_{|Y}$ for some $U \in \delta$. Let y_a and y_b be two distinct fuzzy points in Y such that, $y_a \neq y_b$. Then as $Y \subseteq X$, we have y_a and y_b are in X with $y_a \neq y_b$.

Again, since $\langle X, \delta \rangle$ is a Quasi T_0 -space there exist $U \in Q_{\delta}(y_a)$ such that $y_b \not\propto U$ or, there exist $V \in Q_{\delta}(y_b)$ such that $y_a \not\propto V$. This implies, there is $U_{|y|} \in Q_{\delta|y}(y_a)$ such that $y_b \not\propto U_{|Y|}$ or there is $V_{|Y|} \in Q_{\delta|y}(y_b)$ such that $y_a \not\propto V_{|Y|}$.

Thus, by definition of a Q- T_0 -space $\langle Y, \mu \rangle$ is a Q- T_0 -space.

Theorem 1.0.2. Every subspace of a T_0 -space is T_0 -space.

Proof. Let, $\langle X, \delta \rangle$ be a fuzzy topological space and $\langle Y, \mu \rangle$ be a subspace of $\langle X, \delta \rangle$. Let x_a and y_b be two distinct points in Y. Then since, $Y \subseteq X$, we have, x_a and y_b in X with $x_a \neq y_b$. Now since $\langle X, \delta \rangle$ is a fuzzy T_0 —space. We have either there is $U \in Q_\delta(x_a)$ such that $y_b \not\propto U$ or, there is $V \in Q_\delta(y_b)$ such that $x_a \not\propto V$.

Now, $U_{|Y|} \in Q_{\delta|Y}(x_a)$ such that $y_b \not\propto U_{|Y|}$ as $x_a, y_b \in Y$ and $V_{|Y|} \in Q_{\delta|Y}(y_b)$ such that $x_a \not\propto V_{|Y|}$.

Thus, $\langle Y, \mu \rangle$ is a T_0 -space.

Theorem 1.0.3. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is a quasi- T_0 -space iff for every $x \in X$ and $a \in [0, 1]$ there exists $B \in \delta$ such that B(x) = a.

Proof. Suppose, $\langle \mathcal{F}(X), \delta \rangle$ be a quasi T_0 -space. If a = 0, then it suffices to take $B = \underline{0}$. If 0 < a < 1, we take a strictly monotonic increasing sequence of positive real numbers converging to a. Let $\Delta_n = (a_n, a_{n+1}]$, $n = 1, 2, 3, \ldots$

Since $\langle \mathcal{F}(X), \delta \rangle$ be a quasi T_0 -space, then for any $x \in X$ and $\Delta = (a_1, a_2)$ with $0 \le a_1 < a_2 < 1$, there exists $B \in \delta$ such that $B(x) \in \Delta$.

From this property, we can say that, $\exists B_n \in \delta$ such that $B_n(x) \in \Delta_n$, for each n

$$\therefore B = \bigvee_{n=1}^{\infty} B_n \in \delta \quad \text{and} \quad B(x) = a.$$

Conversely, suppose x_a and x_b are two fuzzy points with b < a where $a, b \in [0, 1]$. Then by hypothesis, there is an open set B such that B(x) = 1 - b > 1 - a.

This implies, B is an open Q-nbd of x_a but not quasi-conincident with x_b [since, B is a nbd of x_{1-a}]. Hence, $\langle \mathcal{F}(X), \delta \rangle$ is a quasi T_0 —space.

Theorem 1.0.4. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is T_1 -space iff for every $x \in X$ and each $a \in [0,1]$ there exists $B \in \delta$ such that B(x) = 1 - a and B(y) = 1 for $y \neq x$.

Or, $\langle \mathcal{F}(X), \delta \rangle$ is a T_1 -space \Leftrightarrow every fuzzy point in $\langle X, \delta \rangle$ is closed.

Proof. Suppose $\langle \mathcal{F}(X), \delta \rangle$ be a T_1 -space. If a = 0 then it suffices to take $B = \underline{1}$.

Suppose, a > 0 and x_a is a fuzzy point. Since, every fuzzy point in a T_1 -space is closed, so, x_a is a closed set. \therefore We have, $B = 1 - x_a \in \delta$ and hence B(x) = 1 - a and B(y) = 1. if $y \neq x$.

Conversely, let x_a be a fuzzy point. Then by hypothesis there exists $B \in \delta$ such that B(x) = 1 - a and B(y) = 1 with $y \neq x$. This implies, $B = 1 - x_a$ and hence $B^c = x_a$ which is closed. Thus, $B \in \delta$. Hence, $\langle \mathcal{F}(X), \delta \rangle$ is a T_1 -space.

Definition 6 (Purely T_2 -space). $\langle \mathcal{F}(X), \delta \rangle$ is called purely T_2 -space if for every two zero-meet fuzzy points x_a and y_b , $\exists U \in Q_\delta(x_a)$ and $V \in Q_\delta(y_b)$ such that $U \wedge V = \underline{0}$.

Definition 7. A fuzzy topological space $\langle X, \delta \rangle$ is said to be fuzzy regular iff for each $x \in X$ and each closed fuzzy set U with U(x) = 0 there exists $V, W \in \delta$ such that V(x) = 1 and $V \subseteq 1 - W$.

Theorem 1.0.5. For a fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ the following statements are equivalent

- 1. $\langle X, \delta \rangle$ is a fuzzy T_0 -space.
- 2. For $x, y \in X$, $x \neq y$, $\exists U \in \delta$ such that U(x) > 0, U(y) = 0 or U(y) > 0, U(x) = 0.

Proof. (1) \Rightarrow (2), Suppose $\langle X, \delta \rangle$ is a fuzzy T_0 -space. Thus, we have $\overline{x_1(y)} \cap \overline{y_1(x)} < 1$.

Theorem 1.0.6. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called a fuzzy T_0 space iff

- (i) $\forall x, y \in X, \exists U \in \delta \text{ such that } U(x) = 1, U(y) = 0 \text{ or } U(y) = 1, U(x) = 0.$
- (ii) $\forall x, y \in X, x \neq y, \overline{x_1(y)} \cap \overline{y_1(x)} < 1$
- (iii) $\forall x, y \in X, x \neq y$, such that U(x) < U(y) or U(y) < U(x)

Proof. (ii) \rightarrow (i)

Suppose $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy T_0 space. Thus we have, $\overline{x_1(y)} \cap \overline{y_1(x)} < 1$. This implies that either