

Introducción a la estimación del error en Reconocimiento de Formas

Alfons Juan Albert Sanchis Jorge Civera

Departamento de Sistemas Informáticos y Computación

Objetivos formativos

- Calcular el error teórico de un clasificador
- Calcular el error de Bayes
- Estimar el error de un clasificador por resubstitución
- Estimar el error de un clasificador por holdout y añadir un intervalo de confianza al 95 %

Índice

1	Error teórico de un clasificador	3
2	Error del clasificador de Bayes	4
3	Estimación del error por resubstitución	5
4	Estimación del error por holdout	6
5	Conclusiones	8

1. Error teórico de un clasificador

El *error* (esperado) de un clasificador c(x), para todo $x \in E$, es:

$$\varepsilon = \mathrm{E}(\varepsilon(c(x))) = \begin{cases} \sum_x P(x) \, \varepsilon(c(x)) & \text{si } E \text{ es discreto} \\ \int p(x) \, \varepsilon(c(x)) \, \, dx & \text{si } E \text{ es continuo} \end{cases}$$

donde $\varepsilon(c(x))$ es la probabilidad de error de c(x) para x:

$$\varepsilon(c(x)) = 1 - P(c = c(x) \mid x)$$

Ejemplo (problema y clasif.): $E = [0, 1]^2$, C = 2, $\eta_c(\boldsymbol{x}) \triangleq P(c \mid \boldsymbol{x})$

$$\begin{vmatrix} x_1 & x_2 & \eta_1(\boldsymbol{x}) & \eta_2(\boldsymbol{x}) & P(\boldsymbol{x}) & c(\boldsymbol{x}) & \varepsilon(c(\boldsymbol{x})) \\ 0 & 0 & 1 & 0 & 1/2 & 1 & 0 \\ 0 & 1 & 3/4 & 1/4 & 1/4 & 1 & 1/4 \\ 1 & 0 & 1/4 & 3/4 & 1/4 & 1 & 3/4 \\ 1 & 1 & 0 & 1 & 0 & 2 & 0 \end{vmatrix} \Rightarrow \varepsilon = \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} = \frac{1}{4}$$

2. Error del clasificador de Bayes

El *clasificador de Bayes* elige una clase de máxima probabilidad a posteriori:

$$c^*(x) = \underset{c}{\arg\max} \ P(c \mid x)$$

Su probabilidad de error para un x cualquiera es mínima:

$$\varepsilon(c^*(x)) = 1 - P(c^*(x) \mid x) = 1 - \max_{c} P(c \mid x)$$

por lo cual también lo es su error, el *error de Bayes*:

$$\varepsilon^* = \mathrm{E}(\varepsilon(c^*(x))) = \begin{cases} \sum_x P(x) \, \varepsilon(c^*(x)) & \text{si } E \text{ es discreto} \\ \int p(x) \, \varepsilon(c^*(x)) \, \, dx & \text{si } E \text{ es continuo} \end{cases}$$

Ejemplo: $\varepsilon^* = \frac{1}{8}$ (para el problema ejemplo)

3. Estimación del error por resubstitución

Sea $c_N(x)$ un clasificador aprendido con un conjunto de N muestras, $S_N=\{(x_1,c_1),(x_2,c_2),\ldots,(x_N,c_N)\}$, y sea ε_N su error.

Denominamos estimador por *resubstitución* de ε_N a:

$$\hat{\varepsilon}_N^r = \frac{1}{N} \sum_{n=1}^N \left[c_N(x_n) \neq c_n \right] = \frac{\text{número de errores}}{N}$$

Es *optimista*, sobre todo con clasificadores complejos y N <<

Ejemplo: N=4 (para el problema ejemplo)

		$c_N(oldsymbol{x})$	$N_2(\boldsymbol{x})$	$N_1(\boldsymbol{x})$	$P(\boldsymbol{x})$	$\eta_2(m{x})$	$\eta_1(m{x})$	x_2	x_1
Γ		1	0	2	1/2	0	1	0	0
$\hat{\varepsilon}_N^r = \frac{1}{4}$	\Rightarrow	1	0	1	1/4	1/4	3/4	1	0
4		1	0	1	1/4	3/4	1/4	0	1
			0	0	0	1	0	1	1

4. Estimación del error por holdout

Sea $S_M = \{(x_1, c_1), (x_2, c_2), \dots, (x_M, c_M)\}$ un *conjunto de test* de muestras M independientes de las N de entrenamiento.

Denominamos estimador *holdout* de ε_N a:

$$\hat{\varepsilon}_{N,M} = \frac{1}{M} \sum_{m=1}^{M} \left[c_N(x_m) \neq c_m \right] = \frac{\text{número de errores}}{M}$$

Aproxima bien ε_N cuando M es grande, pero "desaprovecha" muestras.

Ejemplo: $S_M = \{((0,0)^t,1),((0,1)^t,1),((1,0)^t,2)\} \to \hat{\varepsilon}_{N,M} = \frac{1}{3}$ (para el problema y clasificador ejemplo)

Intervalo de confianza al 95%

Si $Var(\varepsilon_N)$ es despreciable y M es grande, podemos asumir que:

$$\hat{\varepsilon}_{N,M} \sim \mathcal{N}\left(\mathrm{E}(\varepsilon_N), \frac{\mathrm{E}(\varepsilon_N)(1-\mathrm{E}(\varepsilon_N))}{M}\right)$$

y podemos construir un *intervalo de confianza al 95* % para ε_N ,

$$P(\varepsilon_N \in I) = 0.95 \quad \text{amb} \quad I = \left[\hat{\varepsilon}_{N,M} \pm 1.96 \sqrt{\frac{\hat{\varepsilon}_{N,M} (1 - \hat{\varepsilon}_{N,M})}{M}} \right]$$

Ejemplo: $M = 2000, \, \hat{\varepsilon}_{N,M} = 0.05$

$$I = \left[0.05 \pm 1.96\sqrt{\frac{0.05 \cdot 0.95}{2000}}\right] = [0.05 \pm 0.01] = [4\%, 6\%]$$

5. Conclusiones

Hemos visto:

- La estimación del error teórico de un clasificador
- La estimación del error del clasificador de Bayes
- La estimación del error por resubstitución y holdout

