

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

-----ANÁLISIS DE ALGORITMOS-----ACTIVIDAD

Dominio Asintótico

PROFESOR:

Franco Martínez Edgardo Adrián

ALUMNO:

 $Meza\ Vargas\ Brandon\ David-2020630288$

GRUPO: 3CM13

ÍNDICE

Ejercicio 01	3
Desarrollo	3
Grafica Comparativa	4
Ejercicio 02	5
Desarrollo	5
Grafica Comparativa	6
Ejercicio 03	7
Desarrollo	7
Grafica Comparativa	8
Ejercicio 04	9
Desarrollo	9
Grafica Comparativa	10
Ejercicio 05	11
Desarrollo	11
Grafica Comparativa	12
Ejercicio 06	13
Desarrollo	13
Grafica Comparativa	14
Ejercicio 07	15
Desarrollo	15
Grafica Comparativa	16

Demuestre para los dos primeros ejercicios el dominio asintótico de f(x)f(x) sobre g(x)g(x) y para los ejercicios del 3 al 7 demostrar que las funciones tienen una correcta cota asignada (para las tres primeras funciones de complejidad tienen asignada correctamente la cota O "Cota superior ajustada" y que las últimas dos también tienen una correcta cota Θ "exacta")

Ejercicio 01

$$f(x) = x^2$$
$$g(x) = 2x^2 + 300x - 1000$$

$$f(x) = x^3$$
$$g(x) = 2x^3 - 30x + 500$$

$$f_t(n) = 3n^2 + 9n + 12 \in O(2n^2)$$

$$f_t(n) = 2n + 8 \in O(n)$$

$$f_t(n) = 2n^3 - 3n^2 + 9n + 120 \in O(n^3)$$

$$f_t(n) = 2n^3 + 3n^2 + 9n + 120 \in \Theta(n^3 + n^2)$$

Ejercicio 07

$$f_t(n) = 2n^2 + 9n \in \Theta(n^2)$$

