UPPSALA UNIVERSITET Matematiska institutionen Lars-Åke Lindahl PROV I MATEMATIK **Linjär algebra III, 5hp** 2008–03–12

Solutions

- 1. No such linear mapping exists since $(1,2,3) = 2 \cdot (1,1,1) (1,0,-1)$ but $2t+1 \neq 2 \cdot (t^2+t+1) (2t^2+t+2)$.
- 2. Assume $c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$. Then, forming the inner product with the vector v_i , one obtains

$$c_i ||v_i||^2 = \langle c_1 v_1 + c_2 v_2 + \dots + c_n v_n, v_i \rangle = \langle 0, v_i \rangle = 0.$$

We conclude that $c_i = 0$ for all i. Hence, the sequence is linearly independent.

3.

$$\chi_T(t) = \begin{vmatrix} t - 3 & -1 & 1 \\ -2 & t - 4 & 2 \\ -4 & -4 & t + 2 \end{vmatrix} = (t - 2)^2 (t - 1).$$

The minimal polynomial $\phi_T(t)$ is a divisor of the characteristic polynomial and has the same roots. Hence, there are two possibilities – either $\phi_T(t) = (t-2)(t-1)$ or $\phi_T(t) = (t-2)^2(t-1)$. But since the matrix of (T-2I)(T-I) is

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & -2 \\ 4 & 4 & -4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & -1 \\ 2 & 3 & -2 \\ 4 & 4 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

we conclude that

$$\phi_T(t) = (t - 2)(t - 1).$$

- 4. a) A dual basis $\phi_1, \phi_2, \ldots, \phi_n$ of e_1, e_2, \ldots, e_n is a basis for V' (the space of all linear forms on V) such that $\phi_i(e_i) = \delta_{ij}$ for $i, j = 1, 2, \ldots, n$.
 - b) Let $\phi_1(x) = a_1x_1 + x_2$ and $\phi_2 = b_1x_1 + x_2$. Then ϕ_1, ϕ_2 will be the dual basis of e_1 , e_2 if and only if

$$\begin{cases} \phi_1(e_1) = a_1 + a_2 = 1 \\ \phi_1(e_2) = a_1 + 2a_2 = 0 \end{cases} \text{ and } \begin{cases} \phi_2(e_1) = b_1 + b_2 = 0 \\ \phi_2(e_2) = b_1 + 2b_2 = 1 \end{cases}$$

The solutions are $(a_1, a_2) = (2, -1)$ and $(b_1, b_2) = (-1, 1)$. Answer: The dual basis consists of the two forms $2x_1 - x_2$ and $-x_1 + x_2$. c) The wedge product $\phi \wedge \omega$ is an alternating 3-form on the vector space V and is defined by the equation:

$$\phi \wedge \omega(v_1, v_2, v_3) = \phi(v_1)\omega(v_2, v_3) - \phi(v_2)\omega(v_1, v_3) + \phi(v_3)\omega(v_1, v_2).$$

The alternating 3-form $\omega \wedge \phi$ is defined by the equation

$$\omega \wedge \phi(v_1, v_2, v_3) = \omega(v_1, v_2)\phi(v_3) - \omega(v_1, v_3)\phi(v_2) + \omega(v_2, v_3)\phi(v_1).$$

Thus, $\phi \wedge \omega = \omega \wedge \phi$. This is a special case of the general relation $\omega_1 \wedge \omega_2 = (-1)^{k_1 k_2} \omega_2 \wedge \omega_1$ for alternating k_1 -forms ω_1 and k_2 -forms ω_2 .

5. T^* is a linear operator on \mathbf{R}^2 . Thus, $T^*(y_1, y_2) = (ay_1 + by_2, cy_1 + dy_2)$ for suitable constants a, b, c, d. The defining relation $\langle Tx, y \rangle = \langle x, T^*y \rangle$ boils down to the equation

$$(2x_1 - x_2)y_1 + 2(2x_1 - x_2)y_2 + 2(3x_1 + 5x_2)y_1 + 5(3x_1 + 5x_2)y_2$$

= $x_1(ay_1 + by_2) + 2x_1(cy_1 + dy_2) + 2x_2(ay_1 + by_2) + 5x_2(cy_1 + dy_2).$

Both sides must have the same x_1y_1 -coefficient. Hence,

$$a + 2c = 8$$
.

Similarly, by comparing x_2y_1 -, x_1y_2 - and x_2y_2 -coefficients:

$$2a + 5c = 9$$
, $b + 2d = 19$, $2b + 5d = 23$,

and by solving two systems of linear equations we obtain a=22, b=49, c=-7 and d=-15.

Thus,

$$T^*(y_1, y_2) = (22y_1 + 49y_2, -7y_1 - 15y_2).$$

A more transparent and general solution uses matrices and runs as follows: A general inner product on \mathbb{R}^n can be written in the form

$$\langle x, y \rangle = x^t C y$$

where C is a positively definite matrix and where vectors x and y in \mathbf{R}^n are written as column matrices. (In our case, $C = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$.) Now, let A be the matrix of the operator T, and B the matrix of the adjoint operator T^* . The coordinates of Tx and T^*y are then given by the column matrices Ax

and By, and the defining relation $\langle Tx, y \rangle = \langle x, T^*y \rangle$ can now be written as the matrix equation

$$(Ax)^t Cy = x^t CBy$$

that is, $x^t A^t Cy = x^t CBy$. This holds for all x and y if and only if

$$A^tC = CB$$
,

and multiplying from the left by C^{-1} we obtain the general formula

$$B = C^{-1}A^tC,$$

which gives the relation between the matrices of T^* and T for a general inner product.

In our case,
$$A=\begin{bmatrix}2&-1\\3&5\end{bmatrix}$$
 and $C^{-1}=\begin{bmatrix}5&-2\\-2&1\end{bmatrix}$. Hence,

$$B = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 22 & 49 \\ -7 & -15 \end{bmatrix}.$$

6.

$$v \in \mathcal{N}(T) \Leftrightarrow Tv = 0 \Leftrightarrow \langle v, T^*w \rangle = \langle Tv, w \rangle = 0 \text{ for all } w \in V$$

 $\Leftrightarrow v \perp \mathcal{V}(T^*) \Leftrightarrow v \in \mathcal{V}(T^*)^{\perp}.$

7. Since $\phi_{T_1}(t)$ has degree 8 and is a divisor of $\chi_{T_1}(t)$, which is a polynomial of degree 8, we first conclude that $\chi_{T_1}(t) = \phi_{T_1}(t)$. Since $\phi_{T_2}(t)$ has degree 6, is a divisor of $\chi_{T_2}(t)$, which is a polynomial of degree 7, and since the two polynomials have the same real roots, there is only one possibility left: $\chi_{T_2}(t) = (t-1)\phi_{T_2}(t) = (t-1)^3(t^2+1)^2$.

Since T is the direct sum of the two operators T_1 and T_2 , the characteristic polynomial $\chi_T(t)$ is the product of $\chi_{T_1}(t)$ and $\chi_{T_2}(t)$, and the minimal polynomial $\phi_T(t)$ is the least common multiple of $\phi_{T_1}(t)$ and $\phi_{T_2}(t)$.

(To see this, choose a basis consisting of a basis from W_1 and a basis from W_2 . The matrix of T has the form $A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$, where each submatrix A_i is the matrix of T_i . The determinant rules gives $\chi_T(t) = \det(tI - A) = \det(tI - A_1) \cdot \det(tI - A_2) = \chi_{T_1}(t)\chi_{T_2}(t)$. And for each polynomial p(t), $p(A) = \begin{bmatrix} p(A_1) & 0 \\ 0 & p(A_2) \end{bmatrix}$. Therefore, p(t) annihilates T (i. e. A) if and only

if it is an annihilating polynomial for both T_1 and T_2 , and the polynomial of least degree with this property is the least common multiple of the two minimal polynomials.)

Thus,

$$\chi_T(t) = (t-1)^4 (t-2)(t^2+1)^5$$

$$\phi_T(t) = (t-1)^2 (t-2)(t^2+1)^3$$

- 8. Start by computing the characteristic polynomials of S and T.
 - a) A simple computation results in $\chi_S(t) = (t-1)^2(t-3)(t+1)$. The eigenspace corresponding to the double eigenvalue t=1 is one-dimensional (and the minimal polynomial is

$$\phi_S(t) = \chi_S(t) = (t-1)^2(t-3)(t+1)$$

with an exponent 2 > 1.) Thus, S is **not** diagonalizable. Since every normal operator is diagonalizable, we conclude that there is no inner product on V making S normal.

b) The characteristic polynomial of T is $\chi_T(t) = (t+1)(t+2)(t-2)(t-4)$. Let e_1 , e_2 , e_3 , e_4 be eigenvectors corresponding to the four distinct eigenvalues. The four eigenvectors form a basis for V. Now define an inner product on V by setting $\langle e_i, e_j \rangle = \delta_{ij}$. This makes V to an inner product space with e_1 , e_2 , e_3 , e_4 as an ON-basis, and the matrix of T with respect to this ON-basis is diagonal with the eigenvalues as diagonal elements. Diagonal matrices are normal, so T is a normal operator, and T is even selfadjoint, since diagonal matrices with real elements are selfadjoint. Therefore, the answer to question b) is YES.