Meta-learning for mixed linear regression

Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong Oh

Presented by: Manaswini Nagaraj

Motivation and Goals

Motivation:

- Scarcity of large amount of labelled data
- Abundance of number of tasks
- Heterogeneous data from multiple sources

Goals:

- Learn population of the models/parameters
- Use population knowledge to improve new user's model

Key Question

When can abundant tasks with small data compensate for lack of tasks with big data?

Meta-learning

Probabilistic view on meta-learning

- Collection of n meta-learning tasks {T_i} where i = 1...n are drawn from a distribution P(T)
- Meta-training dataset $\mathcal{D}_{\text{meta-train}} = \{\{(\mathbf{x}_{i,j}, y_{i,j}) \in \mathbb{R}^d \times \mathbb{R}\}_{j \in [t_i]}\}_{i \in [n]}$
- Goal: Train a model for new task T_new coming from the distribution P(T)
- Having only small amount of training data $\mathcal{D} = \left\{ (\mathbf{x}_j^{\text{new}}, y_j^{\text{new}}) \right\}_{j \in [\tau]}$
- Model parameter Φ_i for each task T_i and meta parameter θ, such that

$$\phi_i \sim \mathbb{P}_{\theta}(\phi)$$
.

 The meta-learning problem is defined as estimating the most likely meta-parameter given meta-training data by solving

$$\theta^* \in \underset{\theta}{\operatorname{arg\,max}} \log \mathbb{P}(\theta \,|\, \mathcal{D}_{\text{meta-data}})$$

Prediction after meta-learning

 Once meta-learning is done, the model parameter of a newly arriving task can be estimated by a Maximum a Posteriori (MAP) estimator

$$\widehat{\phi} \in \underset{\phi}{\operatorname{arg\,max}} \log \mathbb{P}(\phi \mid \mathcal{D}, \theta^*)$$

or a Bayes optimal estimator

$$\widehat{\phi} \in \underset{\phi}{\operatorname{arg\,min}} \mathbb{E}_{\phi' \sim \mathbb{P}(\phi' \mid \mathcal{D}, \theta^*)} [\ell(\phi, \phi')]$$

 This estimated parameter is then used for predicting the label of a new data point x in task T_new as

$$\widehat{y} \in \underset{y}{\operatorname{arg\,max}} \mathbb{P}_{\widehat{\phi}}(y|\mathbf{x})$$

Mixture of k Linear Regressions

- The meta-learning problem mentioned before is computationally intractable
- So to investigate the trade-offs involved, we assume a simple scenario where tasks are linear regressions $\mathbf{x}_{i,j} \sim \mathcal{P}_{\mathbf{x}}$, $y_{i,j} = \beta_i^{\top} \mathbf{x}_{i,j} + \epsilon_{i,j}$
- Here β_i is drawn uniformly at randomly from regression vectors $\{w_1, \dots, w_n\} \in \mathbb{R}^d$

Main Goals:

- Learn distribution of regression vectors
- Use knowledge of that distribution to improve estimates of new model

Number of tasks vs Number of examples

Number of examples for each tasks

What is required?

Number of examples for each tasks

Algorithm Overview

Subspace Estimation

Compute subspace spanned by the regression vectors using light tasks with singular value decomposition

Clustering

Project heavy tasks onto the subspace and perform distance based k clustering and estimate w_i

Classification

Perform
likelihood-based
classification of light
tasks using the
estimates from
clustering and compute
better estimates

Algorithm

Algorithm 1

Meta-learning

- 1. Subspace estimation. Compute subspace U which approximates span $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$, with singular value decomposition.
- 2. Clustering. Project the heavy tasks onto the subspace of U, perform distance-based k clustering, and estimate $\widetilde{\mathbf{w}}_i$ for each cluster.
- 3. Classification. Perform likelihood-based classification of the light tasks using $\widetilde{\mathbf{w}}_i$ estimated from the Clustering step, and compute the more refined estimates $(\widehat{\mathbf{w}}_i, \widehat{s}_i, \widehat{p}_i)$ of (\mathbf{w}_i, s_i, p_i) for $i \in [k]$.

Prediction

4. *Prediction*. Perform MAP or Bayes optimal prediction using the estimated meta-parameter as a prior.

Subspace Estimation

WLOG, assuming
$$E[x_{i,j}x_{i,j}^{T}] = I_d$$
. Define random index z_i s.t. $w_{z_i} = \beta_i$.

Observation:
$$\mathbf{E}[y_{i,1}\mathbf{x}_{i,1}|z_i] = \mathbf{E}[(\boldsymbol{\beta}_i^{\mathsf{T}}\mathbf{x}_{i,1} + \epsilon_{i,1})\mathbf{x}_{i,j}] = \boldsymbol{\beta}_i$$

•Unbiased estimator:
$$\mathbf{E}[y_{i,1}y_{i,2}x_{i,1}x_{i,2}^{\mathsf{T}}] = \mathbf{E}[\boldsymbol{\beta}_i\boldsymbol{\beta}_i^{\mathsf{T}}] = \frac{1}{k}\sum_{j=1}^k w_j w_j^{\mathsf{T}}$$

Subspace:
$$\mathbf{U} = \operatorname{span}(\mathbf{w}_1, ..., \mathbf{w}_k) = \operatorname{col}(\sum_{j=1}^k \mathbf{w}_j \mathbf{w}_j^{\mathsf{T}})$$

Sample complexity: dk^2 , $t \ge 2$

Clustering

- $(\mathbf{U}x_{i,j}, y_{i,j}) \in \mathbb{R}^k \times \mathbb{R}$ becomes a k-dim regression problem. Users with $t_i = \Omega(k)$ can learn $\boldsymbol{\beta}_i$ on their own (no need for clustering).
- •What if $t_i \ll k$?

Proposition. [Kong, Valiant, Brunskill 20] Given two distribution over examples

 $(\boldsymbol{x}_1, \boldsymbol{y}_1)$ and $(\boldsymbol{x}_2, \boldsymbol{y}_2) \in \mathbb{R}^k \times \mathbb{R}$ such that

- $E[x_1x_1^T] = I_k, y_1 = \beta_1^Tx_1 + noise$
- $E[x_2x_2^{\top}] = I_k, y_2 = \beta_2^{\top}x_2 + noise$

Can estimate $\beta_1^T \beta_2$, with $O(\sqrt{k})$ examples from each distribution.

Hint: $E[y_1 y_2 x_1^{T} x_2] = \beta_1^{T} \beta_2$

- Can determine whether two users share the same regression vector with $t_i = O(\sqrt{k})$
- *k-cluster the users and roughly estimate $w_1, ..., w_k$
- Sample complexity: $O(k^2)$, $t \ge \sqrt{k}$

Classification

Intuition: once having rough estimate of $w_1, ... w_k$, easy to determine which is β_i (only $t = \log k$ needed, instead of \sqrt{k}).

For all
$$l = 1 ... k$$
,
$$\text{Var}[y_{i,1} - \boldsymbol{x}_{i,1}^{\mathsf{T}} \boldsymbol{w}_l] = \text{Var}[noise] + \|\boldsymbol{\beta}_i - \boldsymbol{w}_l\|_2^2$$

$$\text{Var is large when } l \neq z_i!! \ (\boldsymbol{\beta}_i = \boldsymbol{w}_{z_i})$$

- Need $t = \log k$ to make sure w_{z_i} has the smallest residual (union bound).
- Sample complexity: $t \ge \log k$, dk/ϵ^2 total.

Conclusion and Future scope of work

Conclusion:

The proposed algorithm will efficiently utilize light task data as long as there exists some heavy task data too, each with at least √k examples.

Future scope of work:

- Investigate the case where $t_H = o(\sqrt{k})$
- What happens if P_x is different for different tasks?
- Application of the method beyond regression.