Corrigendum to "Strong Normalization Proof with CPS-Translation for Second Order Classical Natural Deduction"

Makoto Tatsuta † Koji Nakazawa *

September 2, 2003

Our paper [1] contains a serious error. Proposition 4.6 of [1] is actually false and hence our strong normalization proof does not work for the Curry-style $\lambda\mu$ -calculus. However, our method still can show that (1) the correction of Proposition 5.4 of [2], and (2) the correction of the proof of strong normalization of Church-style $\lambda\mu$ -calculus by CPS-translation.

Firstly, our method is still effective for the correction of Proposition 5.4 of [2]. The proposition claims that for any Curry-style $\lambda\mu$ -term u, which is not necessarily typable, if u^* is strongly normalizable, then u is strongly normalizable too. But its proof does not work, since Proposition 5.1 (i) of [2] is false because of erasing-continuation. Our method proves the similar result for the Curry-style $\lambda\mu$ -calculus by Propositions 4.3 and 4.12 of [1].

Proposition. For any Curry-style $\lambda\mu$ -term u, if there exists an augmentation u^+ of u such that u^{+*} is strongly normalizable, then u is strongly normalizable.

Secondly, as mentioned in the concluding remarks of [1], our method is effective for the strong normalization proof of the Church-style $\lambda\mu$ -calculus, which is called the second-order typed $\lambda\mu$ calculus in [2]. The strong normalization of the typed $\lambda\mu$ -calculus is proved in [2], but its proof with CPS-translation does not work since Proposition 5.5 of [2] is false because of erasing-continuation.

For the Church-style system, the CPS-translation preserves typability of terms, and the strong normalization is proved by our method in [1]. Definition 4.7 in [1] is naturally changed for Churchstyle terms as follows:

Aug($\mu\alpha^A.t$) = { $\mu\alpha^A.(\lambda z^{\perp}.t^+)([\alpha^A]c^{\forall X.X}\vec{a})$; $t^+ \in \text{Aug}(t), \ z^{\perp}$ is a fresh λ -variable and \vec{a} is a finite sequence of terms and types}. Then, similarly to the case of the Curry-style, we can prove the following facts, where \triangleright_{λ} , \triangleright_{μ} and \triangleright_{\forall} are defined as in [2].

Lemmas. (1) If $t: \Gamma \vdash A, \Delta$ is provable in the typed $\lambda \mu$ -calculus, then there is an augmentation t^+ of t such that $t^+ : \Gamma, (\forall X.X)^c \vdash A, \Delta$.

- (2) If $t > \frac{1}{\lambda} u$ and t^+ is an augmentation of t, then there exists an augmentation u^+ of u such that $t^{+*} >^+ u^{+*}$.
- (3) If $t \rhd^1_{\mu} u$ or $t \rhd^1_{\forall} u$, and t^+ is an augmentation of t, then there exists an augmentation u^+ of u such that $t^{+*} \rhd u^{+*}$.

Using these lemmas, the strong normalization of the typed $\lambda\mu$ -calculus is proved as follows.

Theorem. Any typed term of the typed $\lambda\mu$ -calculus is strongly normalizable.

^{*} Graduate School Informatics, Kyoto University, Kyoto 606-8501. JAPAN. knak@kuis.kyoto-u.ac.jp

[†] National Institute of Informatics, Tokyo 101-8430, JAPAN, e-mail: tatsuta@nii.ac.jp

Proof. Suppose that there exists an infinite sequence of typed $\lambda \mu$ -terms $\{t_i\}_{i<\omega}$ such that $t_i \rhd^1$ t_{i+1} for all $i<\omega$. Then there are infinitely many i such that $t_i \rhd^1_{\lambda} t_{i+1}$ as proved in [2]. We can find an augmentation t_0^+ of t_0 which is typed, then there is an infinite sequence of λ -terms $\{t_i^{+*}\}$ such that $t_i^{+*} \rhd t_{i+1}^{+*}$ by (2) and (3) of the above lemmas. Then there are infinitely many i such that $t_i^{+*} \rhd^+ t_{i+1}^{+*}$ by (2) of the above lemmas, but it contradicts the strong normalization of the second-order λ -calculus. \square

References

- [1] K. Nakazawa, M. Tatsuta, Strong Normalization Proof with CPS-Translation for Second Order Classical Natural Deduction, *Journal of Symbolic Logic* 68 (3) (2003) 851-859.
- [2] M. Parigot, Proofs of Strong Normalization for Second Order Classical Natural Deduction, Journal of Symbolic Logic 62 (4) (1997) 1461-1479.