

Laboratório de Introdução à Física Experimental

Experiência de Milikan

Estimativa da carga elétrica de gotículas de óleo eletrizadas em suspensão num fluido

2023

Objetivos

Pretende-se com este trabalho determinar a carga eléctrica de pequenas gotas de óleo, tendo como objetivo final mostrar que a carga eléctrica não aparece com uma quantidade qualquer mas sempre como um múltiplo de uma unidade fundamental: a carga do electrão. Deste modo, um corpo electrizado apresenta um excesso de carga de sinal positivo ou negativo, mas cuja valor é sempre um múltiplo do valor da carga elementar $q_{ele}=1,602176634\cdot 10^{-19}\,$ C. Traduz-se este facto dizendo-se que a carga eléctrica é $q_{ele}=1,602176634\cdot 10^{-19}\,$ C. Traduz-se este facto dizendo-se que a carga eléctrica é $q_{ele}=1,602176634\cdot 10^{-19}\,$ C.

Dentro das várias experiências elaboradas para mostrar este facto, uma montagem clássica é a do físico americano Robert A. Millikan^a (1869-1953), também chamada experiência da gota de óleo.

^a Millikan recebeu o prémio Nobel da Física em 1923 pelos seus trabalhos sobre a determinação da carga do electrão e efeito fotoeléctrico.

Millikan LIFE

1 Conceitos fundamentais

1.1 Corpo esférico em queda livre num fluido

Um corpo de dimensões muito pequenas,¹ ao mover-se com uma velocidade relativamente baixa através de um fluido (líquido ou gás), fica sujeito a uma força de atrito aproximadamente proporcional à sua velocidade, modelada pela expressão:

$$\vec{F}_{at} = -k \, \eta \vec{v} \tag{1}$$

em que η é o coeficiente de viscosidade do fluido, \vec{v} é a velocidade do corpo e k é um coeficiente que depende da forma do corpo, que no caso deste ser uma esfera de raio R toma o valor (lei de Stokes):

$$k = 6\pi R \tag{2}$$

O coeficiente k virá assim expresso em metro no Sistema Internacional (SI) e o coeficiente de viscosidade em Pa·s (ou N·s/m²). Normalmente a unidade de viscosidade que aparece na literatura é a unidade do sistema C.G.S. (g/cm·s) que é designada por Poise (abreviatura P), verificando-se então a equivalência:

$$1P = 0, 1Pa \cdot s$$

Quando um corpo de massa m cai em queda livre sob a ação do seu peso $(\vec{P}=m\vec{g})$ através de um fluido, o seu movimento de queda será abrandado pela força de atrito, e a equação do movimento escreve-se:

$$m a \equiv m \frac{dv}{dt} = m g - k \eta v \tag{3}$$

A partir de uma velocidade inicial nula, e sendo o peso do corpo constante, a aceleração a produz um aumento em v(t) e, por consequência, um aumento na força de atrito F_{at} . Para uma determinada velocidade limite v_L , o segundo membro de (??) anula-se e o corpo passará a deslocar-se com movimento uniforme. A velocidade limite v_L será então obtida fazendo a = 0 na equação (??):

$$v_L = \frac{m \, g}{k \, \eta} \tag{4}$$

o que poderá ser facilmente constatado pela resolução² da equação (**??**), cuja solução é da forma:

$$v(t) = \frac{m g}{k \eta} (1 - e^{-(k \eta/m)t}) = v_L (1 - e^{-t/\tau})$$
(5)

à qual corresponde o gráfico da Fig ??, e onde se definiu o tempo caraterístico $\tau = k\eta/m$.

 $^{^{1}}$ Com número de Reynolds $Re=\frac{\rho vL}{\eta}$ inferior a $\simeq 100$

² Ver notas de apoio às aulas teóricas

Quando $t \to \infty$ temos $v(t) \to v_L = \frac{mg}{k\eta}$.

Fig. 1: Evolução da velocidade de um corpo em queda livre sujeito a uma força de atrito.

Se pretendermos ser mais rigorosos, devemos substituir em (??) o peso do corpo pelo seu "peso aparente" no fluido. De fato, um corpo em queda livre através de um fluido experimenta, além da ação da força de atrito, outra força de baixo para cima cujo módulo é igual ao peso do fluido deslocado pelo corpo, de acordo com o Princípio de Arquimedes. Assim, as equações (??) e (??) deverão ser modificadas para:

$$m a = m g - m_f g - k \eta v \tag{6}$$

$$v_L = \frac{(m - m_f) g}{k \eta} \tag{7}$$

onde m_f é a massa do fluido deslocado. No caso de um corpo esférico de raio R, introduzindo a equação (??) em (??) e atendendo a que:

 $m = \frac{4}{3}\pi R^3 \rho \quad \mathbf{e} \quad m_f = \frac{4}{3}\pi R^3 \rho_f$

obtemos

$$v_L = \frac{2R^2(\rho - \rho_f)g}{9\eta} \tag{8}$$

em que ρ e ρ_f são as massas específicas do corpo e do fluido. Note-se que conhecendo o raio do corpo é pois possível determinar a sua velocidade limite de queda, e vice-versa.

Fig. 2: Equilíbrio de forças numa gota sujeita a campos gravítico e elétrico.

1.2 Equilíbrio dum corpo carregado, imerso num fluido, através de um campo elétrico vertical

Considere o esquema representado na figura $\ref{eq:constraint}$, em que um fluido não condutor se encontra entre duas placas condutoras paralelas separadas de uma distância d. Ao aplicar-se uma diferença de potencial $U = V_1 - V_2 > 0$ com a polaridade indicada na figura, é criado um campo elétrico ascendente. Se entre as placas se encontrar uma partícula de massa m e carga positiva q esta ficará sujeita a uma força elétrica que contrariará a sua queda. Na hipótese do campo elétrico ser uniforme q o módulo de q e o módulo da força elétrica q que atua na partícula serão dados por:

$$E = \frac{U}{d}, \qquad F_e = |q| \frac{U}{d}$$

Assim, a queda da partícula será agora contrariada pela força elétrica e pela força de atrito. A equação (??) passa a escrever-se:

$$m a = (m - m_f) g - q \frac{U}{d} - k \eta_{ar} v$$

$$\tag{9}$$

Variando a diferença de potencial (ddp) U, pode-se estabelecer o equilíbrio entre o peso da partícula e a força elétrica, conseguindo-se a sua paragem entre as placas. Nessa situação, tem-se simultaneamente $F_{at}=0$, a=0 e v=0:

$$0 = (m - m_f) g - q \frac{U}{d}$$
 (10)

Nesta equação a expressão $(m-m_f)g$ pode ser substituída usando a equação (??), obtendo-se:

$$v_L k \eta_{ar} = q \frac{U}{d}$$

E entrando também com a eq. (??) no caso de a partícula ser esférica, obtemos por fim:

³ No caso da partícula estar carregada negativamente obteríamos o mesmo resultado invertendo o sentido do campo elétrico.

⁴ Nomeadamente, se a distância entre as placas for muito menor que as suas dimensões laterais.

Millikan LIFE

$$q = \frac{6\pi R \eta_{ar} dv_L}{U} \tag{11}$$

onde

 \bullet v_L , a velocidade limite de queda da partícula através do fluido, na ausência do campo elétrico

- $\eta_{ar} = 18,52 \cdot 10^{-5} \text{ P} = 18,52 \cdot 10^{-6} \text{ Pa·s}$ (viscosidade do ar a 23 °C)
- $\rho = 973 \text{ kg/m}^3$ (massa específica do óleo de silicone)
- $\rho_f = 1 \text{ kg/m}^3$ (massa específica do ar)
- $g = 9,80 \text{ m/s}^2$ (aceleração gravítica em Lisboa)
- d (distância entre placas, a medir no laboratório)

1.3 Correções

1.3.1 Temperatura ambiente

No caso da temperatura ambiente se afastar muito de $23\,^{\circ}$ C, o valor da viscosidade do ar terá de ser corrigido.⁵

1.3.2 Dimensão das gotas

A Lei de Stokes não é exata quando as dimensões dos corpos esféricos forem comparáveis à distância média entre as moléculas do ar. Nestas condições, Millikan verificou que a viscosidade η_{ar} deveria ser substituída por:

$$\eta_{ar}' = \frac{\eta_{ar}}{1 + b/(pR)} \tag{12}$$

em que a constante $b=7,88\cdot 10^{-3}$ Pa·m, p é pressão atmosférica expressa em pascal e R é o raio da gota em metros.

O valor corrigido q' será determinado a partir do valor experimental q por

$$q' = q \left(\frac{\eta'_{ar}}{\eta_{ar}}\right)^{3/2} = q \left(\frac{1}{1 + b/(pR)}\right)^{3/2}$$
(13)

⁵ Utilize por exemplo a calculadora online: http://www.lmnoeng.com/Flow/GasViscosity.htm

2 Figuras dos aparelhos da montagem experimental

Fig. 3: Equipamento para determinação da carga das gotas.

Fig. 4: Gerador de alta tensão DC regulável.

3 Procedimento experimental

3.1 Material

- 1. Célula de Millikan com gerador de alta tensão DC regulável
- 2. Atomizador e óleo de silicone
- 3. Cronómetro
- 4. Nível de bolha de ar

3.2 Trabalho preparatório

- 1. Preencha os objetivos do trabalho que irá realizar na sessão de laboratório.
- 2. Preencha o quadro com as equações necessárias para o cálculo das grandezas, bem como as suas incertezas.

3.3 Montagem experimental

Efetue a montagem de acordo com a Fig. ??. Chame o professor antes de ligar os aparelhos à corrente elétrica.

Fig. 5: Esquema da montagem da experiência de Millikan. 1 - Célula de Millikan; 2 - lâmpada; 3 - gerador de alta tensão regulável; 4 - cronómetro.

3.4 Determinação da tensão de equilíbrio

1. Depois de verificar que a célula está horizontal, meça o distância entre placas, d. Visualizando no computador, tente focar o microscópio na zona onde as gotas irão "flutuar". Atenção: o microscópio amplia a imagem e a escala por 2×.

2. Coloque o potenciómetro que controla a alimentação das placas do condensador no valor mínimo de tensão elétrica.

- 3. Verifique se o interruptor de inversão da alimentação do condensador está na posição "Neutra". Rode o potenciómetro para uma posição que permita, quando ligar o interruptor de inversão, estabelecer um campo elétrico entre as placas do condensador.
- 4. Utilizando o pulverizador junto do orifício da célula, produza uma pequena "nuvem" de gotículas de óleo. Observe através do microscópio o movimento das gotículas em frente do retículo, ajustando a focagem se necessário.
- 5. Ligando o interruptor e variando a intensidade e o sentido do campo elétrico, verifique se existem gotículas eletrizadas.
- 6. Escolha uma das gotas e, ajustando a tensão, manipule a sua posição vertical de modo a que esta fique colocada numa determinada divisão do topo do retículo, imobilizando-a de seguida. Registe o valor da tensão.

3.5 Determinação da velocidade limite e da carga

- 7. Anule o campo elétrico e verifique que a gota cai sob acção da gravidade (com velocidade limite). Com um cronómetro ou gravando no computador e analisando o vídeo, meça o tempo necessário para que a gota percorra N > 4 divisões do retículo.
- 8. Repondo o campo elétrico, conduza a gota para a posição inicial para medir o tempo pelo menos duas vezes.
- 9. Repita este processo para várias gotas, tentando escolher as gotas de menor carga.
- 10. Para cada gota, calcule a velocidade limite média e a respetiva incerteza, usando esse valor para estimar o raio e a carga. Calcule a carga corrigida pela viscosidade.
- 11. De modo a obter resultados mais fiáveis, tente assegurar-se de que as diversas gotas apresentam valores experimentais diferentes. Duas gotas com valores da velocidade limite e raio muito semelhantes têm provavelmente a mesma carga, pelo que deverá repetir as medições para uma gota diferente.

3.6 Análise, conclusões e comentários finais

Discuta a qualidade dos dados obtidos e as conclusões que pode retirar desta experiência. Comente também sobre as condições de realização da experiência, dos equipamentos utilizados e a influência de erros aleatórios e sistemáticos, identificando-os. Supondo que não conhecia o valor tabelado da carga do eletrão, e apenas a partir dos resultados obtidos, poderá tirar conclusões sobre a quantificação da carga elétrica?