Modeling and Simulation of Gait (part 2)

MCE 493/593 & ECE 492/592 Prosthesis Design and Control November 25, 2014

Antonie J. (Ton) van den Bogert Mechanical Engineering Cleveland State University

1

Today

- Optimizing the movement of a simulation model
 - "shooting" approach
 - space-time (collocation) approaches
- · Optimization of a hydraulic knee
 - ASME J Biomech Eng 2012
- Optimization of running with a prosthetic foot
 - Int. Soc. Biomech 2009

Optimizing a simulation model

- Goal: produce the "best" movement
- Optimizing the mechanical design parameters
 - mass, length, stiffness
- Optimizing controller parameters (p)
 - -u=u(t,x;p)
 - open loop control u = u(t;p)
 - closed loop control parameters(PD control, impedance control) u = u(t,x;p) (not today)
 - autonomous system u = u(x;p) (not today)
- Best done simultaneously!

"Shooting" approach

- 1. Guess system parameters **p**
- 2. Set initial state (x0) (sometimes this is optimized also)
- 3. Do a simulation with parameters **p**, starting at **x**0
- 4. Evaluate performance
- 5. Change the system parameters **p**, to improve performance
- 6. Repeat from 2, and stop if performance can no longer be improved

Use general purpose unconstrained optimization tools: PSO, BBO, GA, fminsearch, fminunc, simann.m

Limitations of the shooting approach

- · Optimization can end in a local optimum
 - Especially for complex movements, e.g. gait cycle
 - To minimize risk, use "global" optimization algorithms plato.asu.edu/sub/global.html
- Hard to satisfy endpoint constraints (with open loop control)
 - especially for complex and unstable movements
 - for instance: periodicity (final state = initial state)
 - constrained optimization (fmincon) often fails
 - local optimum
 - not even finding a feasible solution (satisfying the constraints)
- Shooting works well for:
 - optimizing open loop controller for ballistic movements
 - optimizing feedback controller for periodic movements (example)

The main idea (open loop)

- Do not use simulation to find x(t)
- Guess & improve **x**(t) and **u**(t) until:
 - movement is optimal
 - satisfies task constraints
 - satisfies physics constraints: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

- Luxo lamp
 - 2D, 6 DOF
 - 3 torque actuators
 - objective: minimal energy
 - task: initial and final state

1-DOF pendulum

- angle x, torque u
- System dynamics:

$$I\ddot{x} = -mgd\sin x + u$$

 $d \sin x$

- Initial state x(0) = 0, $\dot{x}(0) = 0$
- Final state $x(T) = \pi$, $\dot{x}(T) = 0$
- · Cost function: integral of squared torque

$$\int_{0}^{T} u(t)^{2} dt$$

Temporal discretization

• Time step
$$h = T/(N-1)$$

- States $x_1, x_2 \dots x_N$ controls $u_1, u_2 \dots u_N$
- Diff. eq. becomes N-2 algebraic constraints:

Direct collocation:
$$N$$
 nodes

Time step $h = T/(N-1)$

States $x_1, x_2 ... x_N$ controls $u_1, u_2 ... u_N$

Diff. eq. becomes N-2 algebraic constraints:

$$I \ddot{x} = -mgd \sin x + u \implies I \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} = -mgd \sin x_i + u_i$$

• Cost function becomes an algebraic function:

$$\sum u_i^2$$

- Time step h usually much larger than in ODE solver
 - Convergence study to decide how many nodes are needed
 - For human gait cycle: N=50 or N=100 is typically good enough

Constrained optimization problem

Unknowns

$$\mathbf{y} = (x_1, x_2 \dots x_N, u_1, u_2 \dots u_N)^T$$

Minimize

$$f(\mathbf{y})$$
 cost function

Subject to

$$\mathbf{c}(\mathbf{y}) = 0$$
 task constraints and dynamics constraints

• Matlab solvers for this type of problem:

- fmincon sequential quadratic programming

sequential quadratic programming (large scale) SNOPT

interior point method (large scale) IPOPT

Matlab code:

http://hmc.csuohio.edu/resources/human-motion-seminar-jan-23-2014/test-page

Transfemoral amputees

- 30-50% higher metabolic cost
 - Waters et al., JBJS 1976
 - passive hydraulic knees

- computer-controlled damping
- only 3-6% metabolic improvement
 - Orendurff et al., JRRD 2006
- can we do better?

C-Leg (Otto Bock)

Knee flexion in stance phase

- One of "six determinants of gait" is missing
- Cause of high metabolic cost?
- Cause of high mechanical loads?
 - residual limb
 - contralateral limb

Why no stance phase knee flexion?

- Controlled damper can dissipate (K1,K3,K4) but not generate energy (K2)
- Patients may avoid K1, even if device allows it

Energy-Storing hydraulic knee

- Equivalent to controlled damper device when accumulator is not used (valve 1 closed)
- Should improve function during gait and stand-sitstand tasks

Purpose

- · Computational model of device
- Optimization of hardware parameters and valve control patterns for:
 - normal walk
 - slow run
 - stand-sit-stand
- Quantify performance

Model of hydraulic circuit

Valve controls:

 $u_1(t), u_2(t)$

 $0 \le u \le 1$ (closed) (open)

Differential-algebraic equations:

$$V\dot{\phi}-v_1-v_2=0$$

 $\dot{P}_2 - kv_1 = 0$

$$u_1(t)^2 C_1^2 \left(\frac{M}{V} - B_1 v_1 - P_2 \right) - v_1 |v_1| = 0$$

 $u_2(t)^2 C_2^2 \left(\frac{M}{V} - B_2 v_2 \right) - v_2 |v_2| = 0$

Actuator constant: $V = 7.3 \text{ cm}^3$

Design optimization

- → optimal control problem
 - Find:
 - valve control signals $u_1(t)$ and $u_2(t)$
 - accumulator stiffness k
 - To achieve:
 - best fit to able-bodied angle/moment data
 - smooth valve controls u(t)
 - periodic boundary conditions
 - Method:
 - direct collocation
 - Ackermann & van den Bogert, J Biomech 2010

Human movement data

- 3 able-bodied subjects
- 3 activities
 - walk, run, sit-stand-sit
- knee moment and knee angle (Orthotrak, Motion Analysis Corp.)

Results – Subject 1 movement data

Notes

- Dynamics of the prosthetic system was simulated
 - human motion was not simulated
- Open loop controls were found that resulted in the best agreement with normal human motion / torques
- Controlled energy storage mechanism was sufficient to get close to able-bodied performance
 - theoretically...
 - different tasks require different accumulator stiffness
 - shows feasibility only, open loop control is not a controller!

Running with below-knee prosthetsis

- Bilateral transtibial amputee can compete with able-bodied athletes
- Does the device provide an unfair advantage?
- Still controversial:
 - banned by IAAF, December 2007
 - allowed, Court for Arbitration in Sport,
 May 2008

Cheetah foot (Ossur)

Oscar Pistorius

Previous work

- Brüggemann et al., Sports Technol, 2008
 - lower metabolic cost
 - lower joint moments
- Weyand et al., J Appl Physiol, 2009
 - similar metabolic cost
 - higher step frequency
- Observational studies
- Controlled experiment is only possible in computer model

Musculoskeletal model

based on Gerritsen et al., Motor Control 1998

- 2D, 7 segments, 9 DOF
 - SDFast for multibody dynamics
- Viscoelastic ground contact
- Air drag F=.2128·v² (Quinn, 2004)
- 16 muscles
 - Hill based contraction dynamics (ODE)
 - first order activation dynamics (ODE)
- 50 states x, 16 controls u, dynamics

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

How fast can it run?

(open loop optimal control problem)

Find:

- trajectory x(t), controls u(t)
- duration T of half a gait cycle
- speed V

Such that

- 1. Speed V is maximized
- 2. System dynamics is satisfied: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$
- 3. Trajectory is symmetric & periodic with forward translation:

$$\mathbf{x}(T) = \mathbf{x}(0)^{\text{mirror}} + V \cdot T \cdot \hat{\mathbf{x}}^*$$

*state space unit vector for forward translation

solved by direct collocation

Protocol

- · Able-bodied model
 - How fast can it run?
- Amputee model
 - Remove ankle muscles, remove heel
 - Add passive torsional spring-damper

$$M = k(\varphi - \varphi_0) + b\dot{\varphi}$$

k = 800 Nm/rad

b = 0.35 Nms/rad (Brüggemann et al., 2008)

- No change in limb mass
- How fast can it run?
- And what is different about its motion?

Mechanical energy balance Able-bodied Prosthetic 746 Ankle muscles pos. work (W) Ankle muscles neg. work (W) -566 Net prosthesis work (W) -60 907 Other muscles pos. work (W) 654 advantage -324 Other muscles neg. work (W) -810 Air drag losses (W) -88 -156

-189

Totals 0

-114

advantage

Contact losses (W)

