README

Reproduce evaluation results in Table 2.

1. Installation

Package	Version
Python	3.8
PyTorch	1.10.1
CUDA	11.3
PyTorch Geometric	2.0.4
RDKit	2022.03.5

Create the conda environment:

```
cd ./promptdiff
conda env create -f promptdiff.yaml
# For Vina Docking
pip install meeko==0.1.dev3 scipy pdb2pqr vina==1.2.2
python -m pip install git+https://github.com/Valdes-Tresanco-MS/AutoDockTools_py3
```

2. Evaluation from sampled results (.pt)

a. Dataset preparation

The data used for evaluation are organized in the Google Drive folder (https://drive.google.com/drive/folders/5/1j21cc7-97TedKh_El5E34yl8o5ckl7eK?usp=share_link), which is provided by TargetDiff.

b. Evaluate the sampled molecule ligands

Evaluation results in paper

Methods		Vina Score (↓)		Vina Min (↓)		Vina Dock (↓)		High Affinity (†)		QED (†)		SA (↑)		Diversity (†)	
		Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.	Avg.	Med.
Reference		-6.36	-6.46	-6.71	-6.49	-7.45	-7.26	-	-	0.48	0.47	0.73	0.74	-	-
Compare with Non-Diffusion	LiGAN	-	-	-	-	-6.33	-6.20	21.1%	11.1%	0.39	0.39	0.59	0.57	0.66	0.67
	GraphBP	-	-	-	-	-4.80	-4.70	14.2%	6.7%	0.43	0.45	0.49	0.48	0.79	0.78
	AR	<u>-5.75</u>	<u>-5.64</u>	-6.18	<u>-5.88</u>	-6.75	-6.62	37.9%	31.0%	0.51	0.50	0.63	0.63	0.70	0.70
	Pocket2Mol	-5.14	-4.70	<u>-6.42</u>	-5.82	<u>-7.15</u>	<u>-6.79</u>	<u>48.4</u> %	<u>51.0</u> %	0.56	0.57	0.74	0.75	0.69	0.71
	PROMPTDIFF	-5.86	-6.51	-7.14	-7.27	-8.33	-8.49	66.8%	73.9 %	0.53	<u>0.54</u>	0.58	0.58	0.72	<u>0.72</u>
Compare with Diffusion	TargetDiff	-5.47	<u>-6.30</u>	-6.64	-6.83	-7.80	-7.91	58.1%	59.1%	0.48	0.48	0.58	0.58	0.72	0.71
	DecompDiff	<u>-5.67</u>	-6.04	<u>-7.04</u>	<u>-7.09</u>	-8.39	<u>-8.43</u>	<u>64.4</u> %	<u>71.0</u> %	0.45	0.43	0.61	0.60	0.68	0.68
	PROMPTDIFF	-5.86	-6.51	-7.14	-7.27	<u>-8.33</u>	-8.49	66.8%	73.9 %	0.53	0.54	0.58	<u>0.58</u>	0.74	0.72

The sampled molecule ligands of PromptDiff are provided in the directory:

```
./sampled_results_promptdiff
```

step 1. run the following command for evaluation

```
conda activate promptdiff
cd ./promptdiff
python eval.py --eval_start_index 0 --eval_end_index 99 --docking_mode vina_dock --
protein_root ./crossdocked_v1.1_rmsd1.0 --sampled_results_path
./sampled_results_promptdiff --eval_result_path ./eval_results_promptdiff
```

For Vina Docking

The 'docking_mode' can be chosen from {'none', 'vina_score', 'vina_dock'}

none: QED, SA only;

vina score: QED + SA + vina score + vina min; (faster)

vina dock: QED + SA + vina score + vina min + vina dock. (slower)

And in our paper, we select the vina_dock for the evaluation, the evaluation results are present in Table 2.

Note: It will take some time to prepare pqdqt and pqr files when you run the evaluation code with vina_score/vina_dock docking mode for the first time. And we provide the evaluated results in the directory:

```
./eval_results_promptdiff
```

step 2 (optional). calculate the overall evaluation results

If you evaluate the sampled results seperately, you can run the following command for calculating the overall results.

```
cd ./promptdiff
python cal_overall_eval_results.py --eval_result_path ./eval_results_promptdiff --
docking_mode vina_dock
```

3. Training and inference code

We are committed to open sourcing the train/inference code upon paper acceptance.