第 30 章

二次形式

二次式の平方完成

乗法公式 $(x+k)^2=x^2+2kx+k^2$ を利用した次の形を、二次式の平方完成という

$$(x+k)^2 - k^2 = x^2 - 2kx$$

斉次二次式と行列

2 つの文字 x, y の斉次二次式は、一般に次のように表される

$$ax^2 + 2bxy + cy^2 \quad (a, b, c \neq 0)$$

この式は、次のように行列の積として表すことができる

$$ax^{2} + 2bxy + cy^{2} = ax^{2} + byx + bxy + cy^{2}$$

$$= (ax + by)x + (bx + cy)y$$

$$= (ax + by bx + cy) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

すなわち、

$$A=egin{pmatrix} a & b \ b & c \end{pmatrix}$$
 , $oldsymbol{x}=egin{pmatrix} x \ y \end{pmatrix}$

とおくと、

$$ax^2 + 2bxy + cy^2 = {}^t\boldsymbol{x}A\boldsymbol{x}$$

ここで、A は実対称行列になっている

このような斉次二次式を一般化したものが、n 個の文字 x_1, \ldots, x_n についての二次形式である

二次形式

n 個の変数 x_1, \ldots, x_n の斉次二次式を二次形式という

各項の係数を a_{ij} とすると、一般の二次形式(n 変数斉次二次式)は次のように書くことができる

$$Q(\boldsymbol{x}) = \sum_{i=1}^{n} a_{ii} x_{i}^{2} + 2 \sum_{i < j} a_{ij} x_{i} x_{j}$$

ここで、各変数は可変、すなわち $x_ix_j=x_jx_i$ であるので、 $i\neq j$ の場合は、i< j を満たす項だけの和として書き、それを 2 倍している

あえて展開して書くと、次のようになる

$$Q(oldsymbol{x}) = \sum_{i=1}^n a_{ii}x_{ii}x_{ii} + \sum_{i < j} a_{ij}x_ix_j + \sum_{i < j} a_{ji}x_jx_i$$

i < j においては $x_i x_j = x_j x_i$ であり、その係数についても $a_{ij} = a_{ji}$ が成り立つので、行列 $A = (a_{ij})$ は対称行列である

$$a_{ij} = egin{cases} a_{ii} & (i=j) \ a_{ij} = a_{ji} & (i < j) \end{cases}$$

このように a_{ij} を定めた上で、 \sum を 1 つにまとめることができる

$$Q(oldsymbol{x}) = \sum_{i,j=1}^n a_{ij} x_i x_j$$

★ def - 二次形式の係数行列

二次形式は対称行列 $A = (a_{ij})$ によって、次のように表される

$$Q(oldsymbol{x}) = \sum_{i,j=1}^n a_{ij} x_i x_j$$

このとき、A を二次形式 $Q(\mathbf{x})$ の係数行列という

i が A の行番号、j が列番号であるので、 x_i は横ベクトル、 x_j は縦ベクトルの成分である

$$egin{aligned} Q(oldsymbol{x}) &= \sum_{i,j=1}^{n} x_i a_{ij} x_j \ &= \left(x_1 \quad \cdots \quad x_n
ight) A \left(egin{aligned} x_1 \ dots \ x_n \end{aligned}
ight) \end{aligned}$$

そこで、 $m{x}$ を縦ベクトルとみるとき、二次形式 $Q(m{x})$ とその係数行列は次のような関係にある

$$Q(\boldsymbol{x}) = {}^{t}\boldsymbol{x}A\boldsymbol{x}$$

この関係を用いて、任意の対称行列 A から二次形式を作ることができる

 $Q(\boldsymbol{x})$ から A を作り、A から $Q(\boldsymbol{x})$ を作ることができるので、n 変数の二次形式 $Q(\boldsymbol{x})$ と n 次の対称行列 A は対応し、さらにこの対応は一対一である

実二次形式の標準化

A が実対称行列であることから、A は適当な直交行列 P を用いて対角化できる

$$B = P^{-1}AP = \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_n \end{pmatrix}$$

与えられた二次形式 $Q(\boldsymbol{x}) = {}^t\boldsymbol{x}A\boldsymbol{x}$ に対して、 $\boldsymbol{y} = P^{-1}\boldsymbol{x}$ 、すなわち $\boldsymbol{x} = P\boldsymbol{y}$ という 変数の変換を行うと、

$$t$$
 $m{x} A m{x} = {}^t(Pm{y}) A(Pm{y})$
 $= {}^tm{y}^t P A Pm{y}$
 $= {}^tm{y}(P^{-1}AP)m{y}$ 直交行列の定義 ${}^tP = P^{-1}$
 $= {}^tm{y} B m{y}$

となるので、変数 \boldsymbol{y} に関する係数行列は $B=P^{-1}AP$ である

B の形から、実際に ${}^{t}yBy$ を計算してみると、

$$egin{aligned} {}^toldsymbol{y} Boldsymbol{y} &= egin{pmatrix} y_1 & \cdots & y_n \end{pmatrix} egin{pmatrix} lpha_1 & & & \ & \ddots & \ & & lpha_n \end{pmatrix} egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \ &= lpha_1 y_1^2 + \cdots + lpha_n y_n^2 \end{aligned}$$

となり、交叉項 $y_i y_i (i \neq j)$ が現れない形に書き換わったことがわかる

このような交叉項のない形を実二次形式の標準形という

♣ theorem - 実二次形式の直交対角化と標準形

実二次形式 $Q(\boldsymbol{x})={}^t\boldsymbol{x}A\boldsymbol{x}$ に対して、A を対角化する直交行列 P による座標変換 $\boldsymbol{x}=P\boldsymbol{y}$ を行えば、

$$Q(\boldsymbol{x}) = \alpha_1 y_1^2 + \dots + \alpha_n y_n^2$$

という、変数 $m{y}$ に関する交叉項のない形(実二次形式の標準形)にできるここで、 $m{lpha_1,\ldots,lpha_n}$ は重複を含めて $m{A}$ の固有値と一致する