Fluid Mechanics Assignment 3

Kinematics

Aditya Bandopadhyay

- 1. For the two-dimensional steady flow having velocity components u = Sy and v = Sx, determine the following when S is a positive real constant having units of inverse time.
 - (a) equations for the streamlines with a sketch of the flow pattern
 - (b) the components of the strain-rate tensor
 - (c) the components of the rotation tensor
 - (d) the coordinate rotation that diagonalizes the strain-rate tensor, and the principal strain rates
- 2. Consider a time-dependent flow field in two-dimensional Cartesian coordinates where $u = l\tau/t^2$, $v = xy/l\tau$, and l and τ are constant length and time scales, respectively.
 - (a) Use dimensional analysis to determine the functional form of the streamline through \mathbf{x}' at time t'.
 - (b) Find the equation for the streamline through \mathbf{x}' at time t' and put your answer in dimensionless form.
 - (c) Repeat part b) for the path line through \mathbf{x}' at time t'.
 - (d) Repeat part b) for the streak line through \mathbf{x}' at time t'.
- 3. The velocity components in an unsteady plane flow are given by u = x/(1+t) and v = 2y/(2+t). Determine equations for the streamlines and path lines subject to $x = x_0$ at $t = t_0$.
- 4. Determine the unsteady, $\partial \mathbf{u}/\partial t$, and advective, $(\mathbf{u} \cdot \nabla)\mathbf{u}$, fluid acceleration terms for the following flow fields specified in Cartesian coordinates.
 - (a) $\mathbf{u} = (u(x, y, z), 0, 0)$
 - (b) $\mathbf{u} = \Omega \times \mathbf{x}$ where $\Omega = (0, 0, \Omega_z(t))$
 - $(c) \mathbf{u} = A(t)(x, -y, 0)$
 - (d) $\mathbf{u} = (U_0 + u_0 \sin(kx \Omega t), 0, 0)$ where U_0, u_0, k and Ω are positive constants
- 5. For the flow field $\mathbf{u} = \mathbf{U} + \Omega \times \mathbf{x}$, where \mathbf{U} and Ω are constant linear- and angular velocity vectors, use Cartesian coordinates to a) show that S_{ij} is zero, and b) determine R_{ij} .
- 6. A flow field on the xy-plane has the velocity components u = 3x + y and v = 2x 3y. Show that the circulation around the circle $(x 1)^2 + (y 6)^2 = 4$ is 4π .
- 7. Determine the streamline, path line, and streak line that pass through the origin of coordinates at t = t' when $u = U_0 + \omega \xi_0 \cos(\omega t)$ and $v = \omega \xi_0 \sin(\omega t)$ in two-dimensional Cartesian coordinates where U_0 is a constant horizontal velocity.
- 8. Consider the following steady Cartesian velocity field $\mathbf{u} = \left(\frac{-Ay}{(x^2+y^2)^{\beta}}, \frac{+Ax}{(x^2+y^2)^{\beta}}, 0\right)$
 - (a) Determine the streamline that passes through $\mathbf{x} = (x_0, y_0, 0)$.
 - (b) Compute R_{ij} for this velocity field.
 - (c) For A > 0, explain the sense of rotation (i.e., clockwise or counterclockwise) for fluid elements for $\beta < 1, \beta = 1$, and $\beta > 1$.
- 9. Calculate the speed and acceleration of a fluid particle at the point (2, 1, -3) when t = 2 s if the velocity field is given by (distances are in meters and the constants have the necessary units):
 - (a) $\mathbf{V} = 2xy\mathbf{i} + y^2t\mathbf{j} + yz\mathbf{k} \text{ m/s}$
 - (b) $\mathbf{V} = 2(xy z^2)\mathbf{i} + xyt\mathbf{j} + xzt\mathbf{k} \text{ m/s}$

10. What is the equation of the streamline that passes through the point (2, -1) when t = 2 s if the velocity field is given by:

(a)
$$\mathbf{V} = 2xy\mathbf{i} + y^2t\mathbf{j} \text{ m/s}$$

(b)
$$\mathbf{V} = 2y^2\mathbf{i} + xyt\mathbf{j}$$
 m/s

11. Find the unit vector normal to the streamline at the point (2, -1) when t = 2 s if the velocity field is given by:

(a)
$$\mathbf{V} = 2xy\mathbf{i} + y^2t\mathbf{j} \text{ m/s}$$

(b)
$$\mathbf{V} = 2y(x - y)\mathbf{i} + xyt\mathbf{j} \text{ m/s}$$

12. The temperature field of a flow in which $\mathbf{V} = 2y\mathbf{i} + x\mathbf{j} + t\mathbf{k}$ is given by $T(x, y, z) = 20xy^{\circ}\mathrm{C}$. Determine the rate of change of the temperature of a fluid particle in the flow at the point (2, 1, -2) at t = 2 s.