Dimensional Analysis

Q-1 The angular velocity Ω of a windmill is a function of windmill diameter D, wind velocity V, air density ρ , windmill height H as compared to atmospheric boundary layer height L, and the number of blades N: $\Omega = \text{fcn}(D, V, \rho, H/L, N)$. Viscosity effects are negligible. Rewrite this function in terms of dimensionless Pi groups.

Solution: We have n = 6 variables, j = 3 dimensions (M, L, T), thus expect n - j = 3 Pi groups. Since only ρ has *mass* dimensions, it <u>drops out</u>. After some thought, we realize that H/L and N are already dimensionless! The desired dimensionless function becomes:

$$\frac{\Omega D}{V} = fcn\left(\frac{H}{L}, N\right)$$
 Ans.

Q-2 A dam spillway is to be tested by using Froude scaling with a one-thirtieth-scale model. The model flow has an average velocity of 0.6 m/s and a volume flow of $0.05 \text{ m}^3/\text{s}$. What will the velocity and flow of the prototype be? If the measured force on a certain part of the model is 1.5 N, what will the corresponding force on the prototype be?

Solution: Given $\alpha = L_m/L_p = 1/30$, Froude scaling requires that

$$V_p = \frac{V_m}{\sqrt{\alpha}} = \frac{0.6}{(1/30)^{1/2}} \approx 3.3 \frac{m}{s}; \quad Q_p = \frac{Q_m}{\alpha^{5/2}} = \frac{0.05}{(1/30)^{5/2}} \approx 246 \frac{m^3}{s}$$
 Ans. (a)

The force scales in similar manner, assuming that the density remains constant (water):

$$F_{p} = F_{m} \left(\frac{\rho_{p}}{\rho_{m}}\right) \left(\frac{V_{p}}{V_{m}}\right)^{2} \left(\frac{L_{p}}{L_{m}}\right)^{2} = F_{m}(1) \left(\frac{1}{\sqrt{\alpha}}\right)^{2} \left(\frac{1}{\alpha}\right)^{2} = (1.5)(30)^{3} \approx 40500 \text{ N} \quad \textit{Ans. (b)}$$

Q-3 The power P generated by a certain windmill design depends upon its diameter D, the air density ρ , the wind velocity V, the rotation rate Ω , and the number of blades n. (a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, develops 2.7 kW at sea level when V = 40 m/s and when rotating at 4800 rev/min. (b) What power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m, in winds of 12 m/s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the prototype?

Solution: (a) For the function $P = \text{fcn}(D, \rho, V, \Omega, n)$ the appropriate dimensions are $\{P\} = \{\text{ML}^2\text{T}^{-3}\}, \{D\} = \{\text{L}\}, \{\rho\} = \{\text{ML}^{-3}\}, \{V\} = \{\text{L/T}\}, \{\Omega\} = \{\text{T}^{-1}\}, \text{ and } \{n\} = \{1\}.$ Using (D, ρ, V) as repeating variables, we obtain the desired dimensionless function:

$$\frac{P}{\rho D^2 V^3} = fcn \left(\frac{\Omega D}{V}, n\right) \quad Ans. (a)$$

(c) "Geometrically similar" means that n is the same for both windmills. For "dynamic similarity," the advance ratio $(\Omega D/V)$ must be the same:

$$\left(\frac{\Omega D}{V}\right)_{model} = \frac{(4800 \text{ r/min})(0.5 \text{ m})}{(40 \text{ m/s})} = 1.0 = \left(\frac{\Omega D}{V}\right)_{proto} = \frac{\Omega_{proto}(5 \text{ m})}{12 \text{ m/s}},$$
or: $\Omega_{proto} = 144 \frac{\text{rev}}{\text{min}}$ Ans. (c)

(b) At 2000 m altitude, $\rho = 1.0067 \text{ kg/m}^3$. At sea level, $\rho = 1.2255 \text{ kg/m}^3$. Since $\Omega D/V$ and n are the same, it follows that the power coefficients equal for model and prototype:

$$\frac{P}{\rho D^2 V^3} = \frac{2700W}{(1.2255)(0.5)^2 (40)^3} = \frac{P_{proto}}{(1.0067)(5)^2 (12)^3},$$
solve $\mathbf{P_{proto}} = 5990 \ W \approx 6 \ \text{kW}$ Ans. (b)

Q-4 A simply supported beam of diameter D, length L, and modulus of elasticity E is subjected to a fluid crossflow of velocity V, density ρ , and viscosity μ . Its center deflection δ is assumed to be a function of all these variables. (a) Rewrite this proposed function in dimensionless form. (b) Suppose it is known that δ is independent of μ , inversely proportional to E, and dependent only upon ρV^2 , not ρ and V separately. Simplify the dimensionless function accordingly.

Solution: Establish the variables and their dimensions:

$$\delta = \text{fcn}(\rho, D, L, E, V, \mu)$$

{L} {M/L³} {L} {L} {M/LT²} {L/T} {M/LT}

Then n = 7 and j = 3, hence we expect n - j = 7 - 3 = 4 Pi groups, capable of various arrangements and selected by myself, as follows (a):

Well-posed final result:
$$\frac{\delta}{L} = fcn \left(\frac{L}{D}, \frac{\rho VD}{\mu}, \frac{E}{\rho V^2} \right)$$
 Ans. (a)

(b) If μ is unimportant, then the Reynolds number $(\rho VD/\mu)$ drops out, and we have already cleverly combined E with ρV^2 , which we can now slip out upside down:

If
$$\mu$$
 drops out and $\delta \propto \frac{1}{E}$, then $\frac{\delta}{L} = \frac{\rho V^2}{E} fcn \left(\frac{L}{D}\right)$, or: $\frac{\delta E}{\rho V^2 L} = fcn \left(\frac{L}{D}\right)$ Ans. (b)