BLATT 12

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(16.01.2017)

Aufgabe 1

Sei \mathcal{L} eine Sprache, E ein zweistelliges Relationszeichen in \mathcal{L} und T_E die \mathcal{L} -Theorie, die aussagt, dass E die Gleichheitsaxiome erfüllt.

Wir definieren nun die Struktur \mathcal{M}/E wie folgt:

- Universum M/E ist die Menge der Äquivalenzklassen von E.
- Für die Funktionszeichen $f \in \mathcal{L}$ gilt

$$f^{\mathcal{M}/E}(a_1/E,\ldots,a_n/E) = f^{\mathcal{M}}(a_1,\ldots,a_n)/E$$

• Für die Relationszeichen $R \in \mathcal{L}$ gilt

$$(a_1/E, \dots, a_n/E) \in R^{\mathcal{M}/E} \iff (a_1, \dots, a_n) \in R^{\mathcal{M}}$$

- (a) Zeigen Sie, dass die Struktur \mathcal{M} wohldefiniert ist, d.h. dass die Auswertung der Funktionsund Konstantenzeichen unabhängig von der Wahl der Repräsentanten ist.
- (b) Sei $\pi: M \to M/E$, $m \mapsto m/E$ die natürliche Projektion. Zeigen Sie, dass π ein starker \mathcal{L} -Homomorphismus ist.
- (c) Zeigen Sie, dass $E^{\mathcal{M}/E}$ die Gleichheit ist.

Aufgabe 2

Sei $\mathcal{L}' = \mathcal{L} \setminus \{E\}$, wobei \mathcal{L} und E wie in Aufgabe 1 gegeben sind. Sei ϕ eine \mathcal{L}' -Formel und ϕ^* die \mathcal{L} -Formel, die aus ϕ hervorgeht, indem man jedes $\tau_1 \dot{=} \tau_2$ durch $E\tau_1\tau_2$ ersetzt. Zeigen Sie, dass in einer \mathcal{L} -Struktur \mathcal{M} für jede Belegung β gilt

$$\mathcal{M} \models \phi^*[\beta] \Leftrightarrow \mathcal{M}/E \models \phi[\beta/E]$$

wobei $\beta/E(v_i) = \beta(v_i)/E$ ist.

Aufgabe 3

Sei \mathcal{L} eine Sprache, T eine \mathcal{L} -Theorie und $\psi(v_1,\ldots,v_n,v_0)$ eine \mathcal{L} -Formel, in der die v_i nicht als gebundene Variablen vorkommen. Es gelte $T \vdash \forall v_1 \ldots \forall v_n \exists ! v_0 \, \psi(v_1,\ldots,v_n,v_0)$, wobei $\exists ! v_0$ die übliche Abkürzung für "es gibt genau ein v_0 " ist. Sei f ein neues n-stelliges Funktionszeichen, $\mathcal{L}' := \mathcal{L} \cup \{f\}$ und $T' := T \cup \{\forall v_1 \ldots \forall v_n \, \psi(v_1,\ldots,v_n,\frac{fv_1\ldots v_n}{v_0})\}$.

- (a) Zeigen Sie, dass jede atomare \mathcal{L}' -Formel äquivalent zu einer \mathcal{L}' -Formel ist, bei der jede atomare Teilformel die Form $v_i \doteq f\tau_1 \dots \tau_n$, $v_i \doteq \tau_1$ oder $R\tau_1 \dots \tau_m$ hat, wobei in den Termen τ_i das Zeichen f nicht vorkommt (In dieser Formel dürfen Existenzquantoren vorkommen). Verwende hierzu Tricks wie $\tau_1 \doteq \tau_2 \sim \exists v_0 (v_0 \doteq \tau_1 \wedge v_0 \doteq \tau_2)$.
- (b) Zeigen Sie, dass es zu jeder \mathcal{L}' -Formel ϕ eine \mathcal{L} -Formel $\hat{\phi}$ mit $T' \vdash (\phi \leftrightarrow \hat{\phi})$ gibt. Hinweis: Verwenden Sie für den Induktionsanfang das Ergebnis von (a).

Aufgabe 4

Wir betrachten die Sprache $\mathcal{L}=\{f_0,f_1,c_0,c_1\}$, wobei die Funktionszeichen beide zweistellig sind. Des Weiteren betrachten wir die \mathcal{L} -Struktur $\mathcal{N}=(\mathbb{N},+,\cdot,0,1)$, d.h. $f_0^{\mathcal{M}}=+, f_1^{\mathcal{N}}=\cdot, c_0^{\mathcal{N}}=0$ und $c_1^{\mathcal{N}}=1$.

Dozent: PD Dr. Markus Junker Assistent: Andreas Claessens

(a) Werten Sie folgende Formeln in \mathcal{N} aus und entscheiden Sie, ob die Struktur die Formeln erfüllt oder nicht.

$$\exists v_{0} \exists v_{1} \exists v_{2} \forall v_{4} \forall v_{5} \Big(\big((f_{1}v_{4}v_{5} \stackrel{.}{=} v_{0} \rightarrow ((v_{4} \stackrel{.}{=} c_{1} \lor v_{5} \stackrel{.}{=} c_{1}) \land \neg v_{4} \stackrel{.}{=} v_{5}) \big)$$

$$\land (f_{1}v_{4}v_{5} \stackrel{.}{=} v_{1} \rightarrow ((f_{1}v_{4}v_{5} \stackrel{.}{=} v_{5} \lor f_{1}v_{4}v_{5} \stackrel{.}{=} v_{4}) \land \neg v_{1} \stackrel{.}{=} c_{1} \land \neg v_{2} \stackrel{.}{=} c_{0}) \big)$$

$$\land (f_{1}v_{4}v_{5} \stackrel{.}{=} v_{2} \rightarrow ((v_{4} \stackrel{.}{=} v_{2} \lor v_{5} \stackrel{.}{=} v_{2}) \land \neg v_{2} \stackrel{.}{=} c_{1} \land \neg v_{2} \stackrel{.}{=} c_{0})) \big)$$

$$\land f_{0}v_{0}v_{1} \stackrel{.}{=} v_{2} \big)$$

$$\forall v_0 \left((v_0 \doteq f_0 f_0 f_0 f_0 111111 \rightarrow \forall v_0 \ v_0 \doteq f_0 f_0 f_0 f_0 111111 \right) \rightarrow \forall v_1 (\neg v_0 \doteq v_1 \rightarrow \exists v_0 \ v_0 + v_0 \doteq v_1) \right)$$

- (b) Finden Sie zu folgenden Aussagen jeweils eine äquivalente prädikatenlogische \mathcal{L} -Aussage:
 - Das Polynom $x^3 4x^2 + x + 6$ hat (mindestens) eine Nullstelle in N.
 - Es gibt unendlich viele Primzahlen.