CLAIMS

A method of initializing a peer-to-peer network of devices, at least one of

We Claim:

1.

1

2	said devices remotely located at a remote node, said remote node being connected to		
3	a hub	port o	n said network, said method comprising the steps of:
4		a)	scanning remote nodes for nodes requesting communications channel
5	addre	sses fo	or unassigned active communications channels;
6		b)	identifying a requesting node for channel address assignment;
7		c)	assigning an unassigned channel address to said identified node; and
8		d)	repeating steps (b) and (c) until all requesting nodes have received
9	chanr	nel add	resses for all corresponding active communications channels.
1	2.	A m	ethod as in claim 1, wherein the step (a) of scanning remote nodes
2	comprises the steps of:		
3		i)	providing a null packet to each remote node for synchronization:
4		ii)	receiving a return null packet from said each remote node, said return
5	null packet indicating a number of unassigned active communications channels at		
6	said r	remote	node.
1	3.	A m	ethod as in claim 2, wherein the step (i) of scanning remote nodes further
2	comp	rises p	roviding power to said remote nodes.
1	4.	A m	ethod as in claim 2. wherein unassigned active communications channels
2	are indicated by a non-zero value in a left frame and a right frame of each		
3	unassigned active communications channel.		

1	3. A method as in claim 2, wherein the step (b) of identifying a requesting node				
2	comprises the steps of:				
3	i) shifting a first bit of an identification number onto a signal line, said				
4	identification number being unique to the hub port connected to said requesting				
5	node;				
6	ii) monitoring said signal line to determine whether said signal line				
7	matches such shifted bit;				
8	iii) shifting a next bit onto said signal line; and				
9	iv) repeating steps (ii) and (iii) until all bits have been shifted onto such				
10	signal line.				
1	6. A method as in claim 5, wherein in the identification step (b)(ii), when the				
2	signal line does not match the bit shifted onto the signal line, then at least one other				
3	node is requesting an address. said identification step (b) further comprising the				
4	steps of:				
5	ii1) discontinuing identification;				
6	ii2) waiting until address assignment is complete for said other requesting				
7	node; and				
8	ii3) returning to step (c)(i).				
1	7. A method as in claim 6, wherein when the first bit is shifted onto the signal				
2	line, step (b)(i) further includes asserting an initialization ready line; and, step				
3	(b)(ii1) further includes releasing said initialization ready line.				
1	8. A method as in claim 7, wherein the step (b)(ii2) of waiting until address				
2	assignment is complete comprises the steps of:				
3	A) monitoring said initialization ready line for an indication that said other				
4	node is being initialized; and				
5	B) waiting until said initialization ready line indicates said node has been				
6	initialized.				

1	9.	A method as in claim 8, wherein the step (c) of assigning addresses				
2	comprises the steps of:					
3		i) monitoring an address-in-use line;				
4		ii) sequentially placing addresses on an address bus; and				
5		iii) assigning addresses not indicated as being in use by said address-in-use				
6	line.					
1	10.	A method as in claim 9, wherein one node is identified as a master node, the				
2	maste	master node sequentially placing the addresses on the address bus and assigning				
3	addre	addresses and, wherein as each address is presented on said address bus in step (ii).				
4	corres	corresponding nodes, having been assigned said addresses, assert said address-in-use				
5	line to	indicate that said presented address is assigned.				
1	11.	A method as in claim 10, wherein in the step (b) of identifying a requesting				
2	node a	node a plurality of nodes assert a need-initialization signal and, wherein when an				
3	addre	ss has been assigned to each node, said requesting node releases said need-				
4	initial	ization signal indicating the initialization process has been completed, said				
5	need-i	initialization signal remaining asserted until addresses have been assigned to				
6	all act	all active communications channels.				
1	12.	A method as in claim 11, wherein said initialization process is started				
2	respor	nsive to a power on condition.				
1	13.	A method as in claim 11, wherein said initialization process is started				
2	respor	responsive to a manual initialization request.				
3	14.	A method of adding new remote nodes to a media network, said method				
4	compr	comprising connecting said requesting node and an associated device to a hub port				
5	and initializing as in claim 11					

1	15. A method of initializing a peer-to-peer network of devices, at least one of			
2	said devices remotely located at a remote node, said remote node being connected to			
3	a hub port on said network, said method comprising the steps of:			
4	a) identifying one hub port as a bus master, said bus master asserting an			
5	initialization signal to being network initialization;			
6	b) scanning remote nodes to identify if any nodes are requesting address			
7	assignment for unassigned active communications channels responsive to said			
8	initialization signal;			
9	c) identifying a requesting node for channel address assignment;			
10	d) assigning an unassigned channel address to said identified node; and			
11	e) repeating steps (c) and (d) until all requesting nodes have received			
12	channel addresses for all corresponding active communications channels.			
1	16. A method as in claim 15. wherein after all requesting nodes have been			
2	assigned addresses in step (e), said method further comprises placing said identified			
3	bus master port in a normal operating state, said bus master operating identically to			
4	other hub ports.			
1	17. A method as in claim 16, wherein in the step (b) of scanning remote nodes			
2	comprises the steps of:			
3	i) providing a null packet to each remote node for synchronization; and			
4	ii) receiving a return null packet from said each remote node, each said			
5	return null packet indicating a number of unassigned active communications			
6	channels at a corresponding said remote node.			
1	18. A method as in claim 17, wherein unassigned active communications			
2	channels are indicated by a non-zero value in a left frame and a right frame of each			
3	unassigned active communications channel.			

i	19. A method as in claim 17, wherein each hub port connected to a remote node				
2	participates in said identification step (c), said identification step (c) comprising the				
3	steps of:				
4	i) shifting a first bit of an identification number onto a signal line, said				
5	identification number being unique to the hub port connected to said requesting				
6	node;				
7	ii) monitoring said signal line to determine whether said signal line				
8	matches each shifted bit;				
9	iii) shifting a next bit onto said signal line; and				
10	iv) repeating steps (ii) and (iii) until all bits have been shifted onto such				
11	signal line.				
1	20. A method as in claim 19, wherein in the identification step (c)(ii), when said				
2	hub port determines that the signal line does not match the bit shifted onto the signal				
3	line, then at least one other node is requesting an address, said identification step (c)				
4	further comprising the steps of:				
5	ii1) discontinuing identification for said connected requesting node;				
6	ii2) waiting until address assignment is complete for another requesting				
7	node connected to another hub port; and				
8	ii3) returning to step (c)(i).				
1	21. A method as in claim 20, wherein when the first bit is shifted onto the signal				
2	line, step (c)(i) further includes asserting an initialization ready line; and, step				
3	(d)(ii1) further includes releasing said initialization ready line.				
1	22. A method as in claim 21, wherein the step (c)(ii2) of waiting until address				
2	assignment is complete comprises the steps of:				
3	A) monitoring said initialization ready line for an indication that said other				
4	node is being initialized; and				
5	B) waiting until said initialization ready line indicates said other node has				
6	heen initialized				

1	23. A method as in claim 20, wherein if in the identification step (c)(ii) the signal		
2	line matches every shifted bit, the matching hub port is assigned addresses in step		
3	(d), the step (d) of assigning addresses comprising the steps of:		
4	i) monitoring an address-in-use signal line;		
5	ii) sequentially placing addresses on an address bus, each respective other		
6	hub port asserting said address-in-use signal responsive to an address on said address		
7	bus previously assigned to said other hub port, said bus master placing addresses on		
8	said address bus; and		
9	iii) automatically assigning addresses not indicated by said address-in-use		
10	line as being in use by other said hub ports.		
1	24 A mothod on in plains 22 subarrain gold initialization and in the start of		
1	24. A method as in claim 23, wherein said initialization process is started		
2	responsive to a power on condition.		
1	25. A method as in claim 24, wherein said initialization process is started		
2	responsive to a manual initialization request.		