Lecture 4: Fundamentals of Machine Learning Pt. 1

INFO 1998: Introduction to Machine Learning

Lecture 4: Fundamentals of Machine Learning Pt. 1

INFO 1998: Introduction to Machine Learning

Attendance!

Announcements

- Office Hours Update
- A2 grades released Friday, A3 due tonight, A4 released + due next Friday
- Partner finding megathread
- Weeks 6-8: mid semester check-in

Mid Semester Project Check-In 👀

- Starting in 2 weeks (can complete anytime from 10/15 10/29)!
- Attend OH, and fill out a Google Form (will be posted on EdStem)
 - Expecting hypothesis/question/problem to solve
 - Chosen dataset
 - Some progress on data cleaning/data visualization

Agenda

Today's Goal: be able to write code to do some kind of ML (to some extent)

- **Define Machine Learning:** or like, 5 definitions
- Start learning the language of ML: There's a lot of terminology!
- Try Linear Regression (via ScikitLearn): Our first ML algorithm!
- Introduce our Workflow: An outline for developing an ML model
- Discuss Some Important Considerations: What should we be thinking about as we're MLing?

What's Machine Learning? Part 1: what does an ML engineer do

Some Definitions of ML

- Give computers the ability to learn without being explicitly programmed
- Build a useful mathematical model, based on sample data, to make inferences
- Take in data and make predictions or decisions
- Help your computer learn patterns

Machine Learning can involve:

- Preprocessing data
- Splitting and selecting pieces of data
- Doing mathematical analysis on the data
- Deciding what data structures are needed to efficiently implement algorithms
- Implementing accuracy metrics
- ...and a lot more

What we're going to do:

Our main tasks:

- Formulate a problem
- Find and understand data for that problem
- Choose a specific algorithm class to solve the problem
- Choose different parts of the data to best solve the problem
- Find which pandas, numpy, and scikit-learn functions do what we want
- Interpret the results and fine-tune our model

Write as little code as possible!

- Use pandas to deal with data
- Use numpy to do math
- Use scikit-learn ("sklearn") to make & analyze ML models

Quick analogy: studying

- Setup
 - Goal: Be able to solve the test problems well
 - Resources: Practice problems + answers
- Method
 - You study those practice problems and answers. Given a problem, how do you get the answer?
- Result:
 - On the real test, the problems aren't the exact same as the practice problems. But they're similar!
 - Since you learned generally how to solve the practice problems, you can solve the similar test problems too :)

What's Machine Learning? Part 2: like seriously what is it

Traditional Computer Science

Machine Learning

Using Machine Learning

Traditional CS Machine Learning New **Data Data Output** Program Known **Output** Computer Computer

Physics: A White-Box View of the World

- We have studied the world and crafted models by ourselves to represent it
- Our models are interpretable
- White-box algorithms: The inner workings of the algorithm are transparent

Black Box Models

- Perhaps we can derive a process to solve the problem
 - Determine what a function would roughly look like
 - Think of relevant inputs
 - Allow the function to build itself
- Black Box Model: Results may not be interpretable!

What's Machine Learning? Part 3: what's a model?

What's a model?

- The output of a machine learning algorithm
- A procedure to produce some outputs when given some inputs
- A relationship between inputs and outputs
- A guess at how inputs and outputs are related
- A set of assumptions we're imposing on the dataset
- A parametrized function we can configure

Review: Dataset Structure

- Rows are data points
 - AKA samples
- Columns are features
 - A sample is made of lots of features, including the goal

	Name	Age	Major
0	Ann	19	Computer Science
1	Chris	20	Sociology
2	Dylan	19	Computer Science
3	Camilo	NaN	NaN
4	Tanmay	NaN	NaN

A Sample (Regression) Task

name	city	state	adm_rate	undergrads	cost	compl_4	median_hh_inc	median_earnings
Cornell University	Ithaca	NY	0.1507	14226	63596	0.8639	80346.48	73600
Washington University in St								
Louis	Saint Louis	MO	0.1674	7032	65887	0.8643	79298.58	66300
Lafayette College	Easton	PA	0.3025	2505	61905	0.8653	85923.51	67500
Johns Hopkins University	Baltimore	MD	0.1412		63509			69800
Vanderbilt								
University	Nashville	TN	0.1168	6857	62320	0.8697	76279.78	64500

What are some things we can do?

name	city	state	adm_rate	undergrads	cost	compl_4	median_hh_inc	median_earnings
Cornell University	Ithaca	NY	0.1507	14226	63596	0.8639	80346.48	73600
Washington University in St Louis	Saint Louis	MO	0.1674	7032	65887	0.8643	79298.58	66300
Lafayette College	Easton	PA	0.3025	2505	61905	0.8653	85923.51	67500
Johns Hopkins University	Baltimore	MD	0.1412	5862	63509	0.869	81539.46	69800
Vanderbilt University	Nashville	TN	0.1168	6857	62320	0.8697	76279.78	64500

Predict Median Graduate Earnings

name	city	state	adm rate	undergrads	cost	compl 4	median_hh_inc	median_earnings
Harrio	Oity	Otato	dam_rate	anaorgiaao	0001	compi_1	modian_mi_mo	modian_oamingo
Cornell University	Ithaca	NY	0.1507	14226	63596	0.8639	80346.48	73600
Washington University in St								
Louis	Saint Louis	MO	0.1674	7032	65887	0.8643	79298.58	66300
Lafayette College	Easton	PA	0.3025	2505	61905	0.8653	85923.51	67500
Johns Hopkins								
University	Baltimore	MD	0.1412	5862	63509	0.869	81539.46	69800
Vanderbilt								
University	Nashville	TN	0.1168	6857	62320	0.8697	76279.78	64500

Pick Some Features

name	city	state	adm_rate	undergrads	cost	compl_4	median_hh_inc	median_earnings
Cornell University	Ithaca	NY	0.1507	14226	63596	0.8639	80346.48	73600
Washington University in St								
Louis	Saint Louis	MO	0.1674	7032	65887	0.8643	79298.58	66300
Lafayette College	Easton	PA	0.3025	2505	61905	0.8653	85923.51	67500
Johns Hopkins University	Baltimore	MD	0.1412	5862	63509	0.869	81539.46	69800
Vanderbilt University	Nashville	TN	0.1168	6857	62320	0.8697	76279.78	64500

Our Goal?

							median_hh_in	
name	city	state	adm_rate	undergrads	cost	compl_4	с	median_earnings
Cornell University	Ithaca	NY	0.1507	14226	63596	0.8639	80346.48	73600
Washington University in St Louis	Saint Louis	MO	0.1674	7032	65887	0.8643	79298.58	66300
Lafayette College	Easton	PA	0.3025					67500
Johns Hopkins University	Baltimore	MD	0.1412	5862	63509	0.869	81539.46	69800
Vanderbilt University	Nashville	TN	0.1168	6857	62320	0.8697		64500
Rutgers University	New Brunswick	NJ	0.5845	35102	29076	0.5838	82669.68	?
Case Western Reserve								2
University	Cleveland	ОН	0.3627	5039	59467	0.6311	69873.4	.

ML Algorithms

- We pick different kinds of algorithms to accomplish different tasks
- Classification
 - Group Data Into Distinct Classes
- Regression
 - Based on an input, provide a continuous-value output
- "All Models Make Assumptions"

Linear Regression

Our first ML model!

Linear Regression

$$y = B_0 + B_I x_I + \dots + B_p x_p + \varepsilon$$

- x is an input; $x_1, x_2, ..., x_p$ are the features of x
- y is an output (usually a single value)
- B's are "weights"
 - a linear regression equation is defined by its B's
 - "program" produced by ML
- Given a set of x's and y's, find the "B"-s that "most closely" satisfies the equation above for training points
- Plug in new values to of x to predict respective y

$$y = B_0 + B_1 x_1 + ...$$
 is a model

- A relationship between inputs and outputs $y = B_0 + B_1 x_1 + ...$ relates inputs to outputs
- A guess at how inputs and outputs are related

but $y = B_0 + B_I x_I + ...$ is just a guess/estimate; it's not exactly true

- A set of assumptions we're imposing on the dataset
 We're assuming output is linearly related to input features
- A configurable thing (hyperparameters)
 Sorry, we don't cover very much linear
 regression configuration here

 $y = B_0 +$

$$y = B_0 + B_1 x_1 + ...$$
 is a model

- A relationship between inputs and outputs $y = B_0 + B_1 x_1 + ...$ relates inputs to outputs
- A guess at how inputs and outputs are related

but $y = B_0 + B_I x_I + ...$ is just a guess/estimate; it's not exactly true

- A set of assumptions we're imposing on the dataset
 We're assuming output is linearly related to input features
- A configurable thing (hyperparameters)
 Sorry, we don't cover very much linear
 regression configuration here

Use algorithm to "learn" parameters that give us this line of best fit

$$y = B_0 + B_1 x$$

Linear Regression

Function

Linear Regression: Ordinary Least Squares

- Ordinary least squares method of linear regression calculates the weight vector B by minimizing the mean-squared error of the predicted y-values
- Other types of linear regression (i.e. ridge regression) use different loss functions to calculate the weights

"Training" a Model

- Dataset of n training points
- Datapoints: $(X, Y_i) \rightarrow (input, output)$
- Objective: Minimize MSE
- 1. Use the X values in our dataset to make a prediction
 - a. Note: X is a vector
- 2. Compare our prediction to the real Y_i
- 3. Update B to get a better prediction
 - a. Special Algorithm: Gradient Descent
- 4. Repeat until MSE is as small as possible

$$\hat{Y}_i = B_0 + B_I x_I + \dots + B_p x_p + \varepsilon$$

What's Machine Learning? Part 4: What makes a good model?

Terminology: Training and Validating

- Split data into two sets
- Train model on one, validate on the other
- "Model training" = learn a relationship/program
 - \circ e.g. give the linear regression data so it can define the B's
- "Model validation" = see if the learned relationship is accurate on other data

Our ML Workflow

- 1. Select data
- 2. Assess model accuracy
- 3. Adjust Model

Pitfall of Training: Overfitting

Just right! overfitting

Model is accurate for train data

Model can accurately predict **new** data

- We learned the specific mapping from train input to train outputs...
- But, we didn't learn the data's general patterns cc

Solution: train on part of data, and check accuracy on a separate part of data (validation set)

Pitfall of Validation: Overfitting

Predicting well on validation set

Predicting well on new data

- We used the validation set to make our adjustments.
 - ⇒ Our model is **biased** to the validation set. •

Solution: keep a separate, rarely-used *test* set

Demo

Model Goals

When training a model we want our models to:

- Capture the trends of the training data
- Generalize well to other samples of the population
- Be moderately interpretable

The first two are especially difficult to do simultaneously!
The more sensitive the model, the less generalizable and vice versa.

Things to Keep In Mind

Linear Regression is just one algorithm — we'll cover many more!

- The "model" produced by an algorithm is not always a simple equation like in linear regression.
- Validation is *really* important.
 - Overfitting is a huge problem!
 - We'll delve deeper in the next few lectures...

Coming Up

Next Lecture: Assessing Model Accuracy + Fundamentals of ML

(a.k.a. What's Machine Learning? Part ∞)

