10 Qüestions de TEORIA (6 punts) . Puntuació: BÉ:+0.6 punts. MAL: -0.15 punts, N.C: 0

- 1. Donat el circuit retallador de la figura, si en Ve es connecta un senyal sinusoidal que varía entre -7V i 7V, ¿Quina de les següents afirmacions sobre Vs és **CORRECTA**? (Supose $V\gamma = 0.7V$ per ambdos díodes)
 - [A] Vs=3.7V quan Ve > 3.7V
 - [B] Vs=3.7V quan Ve > 2.3V
 - [C] Vs=-2.3V quan Ve < -2.3V
 - [D] Vs=-3V quan Ve < -3V

2. Per al circuit de la figura s'han representat les corbes característiques del transistor i la recta de càrrega del circuit. Indique quina de les següents afirmacions és **FALSA**: (Dades: $R_B = 100k\Omega$; $V_{BE(ON)} = 0.7V$; $V_{CE(SAT)} = 0.2V$)

- [A] $V_{CC} = 8V$
- [B] $R_C = 4k\Omega$
- [C] $\beta = 500$
- [D] Si V_{BB} és 3.7 V, aleshores V_{CE} = 2V
- 3. Per al circuit següent, indique la resposta FALSA:
 - [A] Si Ve < 2 V el díode LED no condueix ni emet llum.
 - [B] Si Ve > 1V circula corrent pel díode normal, però no pel LED.
 - [C] Si Ve=22V el LED brilla de forma adequada.
 - [D] Si ambdos resistències foren de 500 Ohm i la Ve = 12V, el corrent pels dos díodes seria exactament de 10 mA.

- 4. Referent als transistors MOSFET, és **FALS** afirmar que:
 - [A] Permeten una alta densitat d'integració (VLSI).
 - [B] Els circuits digitals basats en MOSFET presenten un baix consum.
 - [C] Presenten una molt alta impedància d'entrada, al tindre la porta aïllada.
 - [D] Són més lineals que els BJT.

- 5. Referent al transistor MOSFET de canal N, assenyale la resposta FALSA.
 - [A] En la zona de saturació, el corrent augmenta quadràticament en funció de V_{GS} - V_T .
 - [B] En la zona òhmica, la R_{ON} equivalent és menor quant major és V_{GS}.
 - [C] El límit entre la zona òhmica i la de saturación ve donat per l'equació: V_{DS}=V_{GS}-V_T.
 - [D] La saturació es produeix quan V_{DS}≤V_{GS}-V_T.
- En el circuit de polarització de la figura, indique l'afirmació CORRECTA sobre la zona de funcionament del transistor MOSFET. (Paràmetres del transistor: V_T = 2V, K = 2mA/V²)
 - [A] El transistor està Tallat.
 - [B] El transistor està en la Zona Activa.
 - [C] No és possible determinar la zona de funcionament. Les dades són insuficients.
 - [D] El transistor es troba en el límit entre zona Òhmica i Saturació.

- 7. Donat el següent circuit retallador a dos nivells, Indique el punt de treball de cada díode sabent que Vi=-3.7V; R=1 k Ω i V γ =0.7V per ambdos díodes.
 - [A] $D1(V_{AK}=-8.7V,I_{AK}=0mA), D2(V_{AK}=-3.7V,I_{AK}=0mA)$
 - [B] $D1(V_{AK}=5.7V,I_{AK}=2mA), D2(V_{AK}=-0.7V,I_{AK}=0mA)$
 - [C] D1(V_{AK} =-5.7 V_{AK} =2mA), D2(V_{AK} =-3.7 V_{AK} =0mA)
 - [D] $D1(V_{AK}=-5.7V,I_{AK}=0mA), D2(V_{AK}=0.7V,I_{AK}=3mA)$

8. En el circuit amb transistor de la figura, i per a les dades que s'indiquen, calcule la β del transistor.

Dades: V1=3.7V, Vcc=8V, V_{CE} =4V, R1=150kΩ, R2=0.4 kΩ, $V_{BE(ON)}$ =0.7V

- [A] $\beta = 650$
- [B] $\beta = 500$
- [C] $\beta = 100$
- [D] Falten dades.

- 9. En el circuit amb BJT de la figura, ¿Quina és la mínima resistència R_C per a què el transistor estiga saturat?
 - [A] $R_{C} = 323\Omega$
 - [B] $R_{C} = 223\Omega$
 - [C] $R_C = 123\Omega$
 - [D] $R_{\rm C} = 183\Omega$

- 10. Indique els nivells de tensió mínima i màxima de l'eixida Vs en l'inversor lògic de la figura si Vi és una ona quadrada amb valors mínim i màxim de 0V i 5V. [Supose que en la zona òhmica la $R_{DS(ON)}$ equivalent del MOSFET es pot aproximar per: $R_{DS(ON)} \approx 1/(2K(V_{GS}-V_T))$]
- [A] 5V y 0.05V
- [B] 5V y 0.2V
- [C] 3V y 0.01V
- [D] 3V y 0.2V

PAGINA INTENCIONADAMENT EN BLANC

Cognoms: Nom:

PROBLEMA (4 PUNTS)

El circuit de la figura utilitza un transistor MOSFET amb les corbes característiques i recta de càrrega que es mostren en la gràfica de la dreta. Sabent que el valor de la V_T del transistor és 1V, es demana:

A. (0.5punts) Obtinga el valor de la transconductància K del MOSFET. Justifique la resposta.

B. (0.5punts) ¿Quin serà el valor de la tensió d'alimentació Vdd del circuit?. **Justifique la resposta.**

C. (0.5punts) Calcule el valor de la resistència Rd. Justifique la resposta.

D. (1punt) Si s'apliquen 3V a l'entrada Ve del circuit, ¿Quin serà el Punt de Treball del MOSFET?. Calcule V_{GS} , V_{DS} i I_{DS} i comprove la zona de funcionament del transistor.

E. (1punt) Es desitja utilitzar el circuit anterior com una porta lògica inversora i apliquem a l'entrada una tensió Ve=10V, ¿Quin serà el valor de la tensió de l'eixida corresponent (V_{OL}) ?. Nota: pot utilitzar-se l'equació de la zona òhmica simplificada: $R_{ON}=1/(2 \text{ K } (V_{GS}-V_T))$

5 d'Abril de 2017

F. (0.5punts) Si afegim dos transistors més al circuit tal com s'indica en la figura següent, obtindrem una nova porta lògica amb tres entrades A B i C. **Indique** quina és l'expressió lògica d'aquesta funció F(A,B,C) i **calcule** quin serà el valor de la tensió d'eixida Vs per a la combinació d'entrades A=10V, B=10V i C=10V.

DNI

	0	_0_	_ 0 _	_0_	_ 0_		_0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

1 - - - -

2 __ _ _ _ _

С

8 🖂 🖂 🖂 b c

9 __ _ _ _

10 ___ __ __

ETSINF - Tco

Examen Primer parcial - 05/04/2017

Apellidos

Marque así Así NO marque

NO BORRAR, corregir con Typex