Wireframe Document Investment Analytics

Revision Number - 1.2 Last Date of Revision - 16/02/2023

Siddharth Jain

Document Control

Date	Version	Description	Author
10/02/2023	1.0	Introduction, Problem Statement	Siddharth Jain
11/02/2023	1.1	Dataset Information, Architecture Description	Siddharth Jain
16/02/2023	1.2	Final Revision	Siddharth Jain

Introduction& Problem Statement

Investment analysts are financial professionals who evaluate securities, stocks, bonds, and other financial assets. They identify potential investments for purchasing, research business financials, and advise clients. They also contribute to financial decision-making through indepth analyses of market trends and performance. Investment is a game of understanding historic data of investment objects under different events but it is still a game of chances to minimize the risk we apply analytics to find the equilibrium investment. To understand the Foreign direct investment in India for the last 17 years from 2000-01 to 2016-17. This dataset contains sector and financial year-wise data of FDI in India

- Sector-wise investment analysis
- Year-wise investment analysis
- Find key metrics and factors and show the meaningful relationships between attributes.
- Do your own research and come up with your findings

Required libraries:

- 1. Pandas
- 2. Matplotlib

#Import libs

import pandas as pd import
numpy as np import seaborn as
sns import matplotlib.pyplot as
plt

1. Retrieving dataset of FDI

#	Printing the Top 10 data																	
(f.head(10)																	
✓ 0.1s											Python							
	Sector	2000- 01	2001- 02	2002- 03	2003- 04	2004- 05	2005- 06	2006- 07	2007- 08	2008- 09	2009- 10	2010- 11	2011- 12	2012- 13	2013- 14	2014- 15	2015- 16	2016- 17
0	METALLURGICAL INDUSTRIES	22.69	14.14	36.61	8.11	200.38	149.13	169.94	1175.75	959.94	419.88	1098.14	1786.14	1466.23	567.63	359.34	456.31	1440.18
1	MINING	1.32	6.52	10.06	23.48	9.92	7.40	6.62	444.36	34.16	174.40	79.51	142.65	57.89	12.73	684.39	520.67	55.75
2	POWER	89.42	757.44	59.11	27.09	43.37	72.69	157.15	988.68	907.66	1271.79	1271.77	1652.38	535.68	1066.08	707.04	868.80	1112.98
3	NON-CONVENTIONAL ENERGY	0.00	0.00	1.70	4.14	1.27	1.35	2.44	58.82	125.88	622.52	214.40	452.17	1106.52	414.25	615.95	776.51	783.57
4	COAL PRODUCTION	0.00	0.00	0.00	0.04	0.00	9.14	1.30	14.08	0.22	0.00	0.00	0.00	0.00	2.96	0.00	0.00	0.00
5	Petroleum & Natural Gas	9.35	211.07	56.78	80.64	102.78	12.09	87.71	1405.04	349.29	265.53	556.43	2029.98	214.80	112.23	1079.02	103.02	180.40
6	Boilers and Steam Generating Plants	0.00	0.00	0.00	0.04	0.54	0.00	3.31	1.51	0.00	3.96	0.63	31.79	20.05	0.17	1.33	77.91	53.91
7	PRIME MOVER (OTHER THAN ELECTRICAL GENERATORS)	0.00	0.00	0.00	0.00	2.66	0.74	25.57	40.53	74.88	39.50	166.44	313.75	184.60	212.78	230.70	159.13	286.88
8	ELECTRICAL EQUIPMENTS	79.76	65.76	34.71	73.20	97.40	39.50	76.85	653.74	417.35	728.27	153.90	566.39	195.87	134.31	574.83	444.88	2230.69
9	COMPUTER SOFTWARE & HARDWARE	228.39	419.39	314.24	368.32	527.90	1359.97	2613.33	1382.25	1543.34	871.86	779.81	796.35	485.96	1126.27	2296.04	5904.36	3651.71

2. Descriptive statistics of the Dataset

3. Visualization of the FDI dataset

4. Top 5 Investment Sectors by FDI

```
df_trans = df.transpose()
df_trans.sum().sort_values()[-5:].plot(figsize=(20,10),kind='bar',
title ='top 10 investments by FDIs')
<AxesSubplot:title={'center':'top 10 investments by FDIs'},
xlabel='Sector'>
```


5. Detailed FDI year on year for the top 5 best performing sector

```
plt.subplot(1, 5, 1)
df.loc['SERVICES SECTOR (Fin., Banking, Insurance, Non
Fin/Business, Outsourcing, R&D, Courier, Tech. Testing and Analysis,
Other) '].plot(kind='bar', figsize=(30,6))
plt.title('FDI for service sector')
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 2)
df.loc['TELECOMMUNICATIONS'].plot(kind='bar',title='FDI for Computer
software and hardware', figsize=(40,5)) plt.xlabel('FY year')
plt.ylabel('FDI') plt.subplot(1, 5, 3)
df.loc['COMPUTER SOFTWARE & HARDWARE'].plot(kind='bar',title='FDI for
Computer software and hardware', figsize=(40,5))
plt.xlabel('FY year') plt.ylabel('FDI')
plt.subplot(1, 5, 4)
df.loc['CONSTRUCTION DEVELOPMENT: Townships, housing, built-up
infrastructure and construction-development
projects'].plot(kind='bar', title='FDI for
Construction', figsize=(30,6))
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.subplot(1, 5, 5)
df.loc['CONSTRUCTION (INFRASTRUCTURE)
ACTIVITIES'].plot(kind='bar',title='FDI for
Construction', figsize=(30,6))
plt.xlabel('FY year')
plt.ylabel('FDI')
Text(0, 0.5, 'FDI')
```

6. FDI overall growth of the best performing Sector from FY 2000-2016

```
df.loc['SERVICES SECTOR (Fin.,Banking,Insurance,Non
Fin/Business,Outsourcing,R&D,Courier,Tech. Testing and Analysis,
Other)'].plot(figsize=(20,5))
plt.xlabel('FY year')
plt.ylabel('FDI') plt.show()
```


7. Visualizing the correlation among sectors

corr = df_trans.corr()
plt.matshow(corr)
<matplotlib.image.AxesImage at 0x7fde4962a700>

8. Top 10 correlated sectors

Top Absolute Correlations		
Sector	Sector	
MISCELLANEOUS MECHANICAL & ENGINEERING INDUSTRIES	DEFENCE INDUSTRIES	0.958449
SUGAR	CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES	0.937258
ELECTRICAL EQUIPMENTS	TEXTILES (INCLUDING DYED, PRINTED)	0.926705
MEDICAL AND SURGICAL APPLIANCES	TEXTILES (INCLUDING DYED, PRINTED)	0.919642
SEA TRANSPORT	RETAIL TRADING	0.918936
DYE-STUFFS	DIAMOND, GOLD ORNAMENTS	0.916723
AIR TRANSPORT (INCLUDING AIR FREIGHT)	CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES	0.916622
FERMENTATION INDUSTRIES	FOOD PROCESSING INDUSTRIES	0.910990
ELECTRICAL EQUIPMENTS	GLUE AND GELATIN	0.908833
MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS	GLASS	0.908687
dtype: float64		

9. 3 most correlated years

