Name: Jeremy Florence Course: Math 672

Assignment: Final Exam

Due: 5/19/17

1. Show that every quotient ring of a Noetherian ring is a Noetherian Ring. Is the same true for "every subring of..."?

Proof: Let R be a Noetherian ring with an ideal I. We want to show that R/I is also Noetherian. Recall that $R/I = \{r+I | r \in R\}$. Since R is Noetherian, we know that I is finitely generated. That is, $I = (i_1, i_2, ..., i_n)$ for some $i_1, i_2, ..., i_n \in R, n \in \mathbb{N}$. Now consider the canonical map to the quotient $\varphi : R \to R/I$ defined by $\varphi(r) = r+I$ for all $r \in R$. Now we can extend I to R/I through φ to get $I^e = (\varphi(I))$. Note that $\varphi(I) = \{i+I | i \in I\}$, so $\varphi(I) = \{I\}$.

- 2. Let k be field. Prove that k[x, y] is not a PID.
- 3. Find a ring R which has a chain of prime ideals $P_1 \subsetneq P_2 \subsetneq P_3 \subsetneq P_4 \subsetneq R$.
- 4. Prove that $\mathbb{Z}[i]$ is a Euclidean domain.

Proof: Define $d: \mathbb{Z}[i] - \{0\} \to \mathbb{N}$ by $d(a+bi) = a^2 + b^2$ for all $a+bi \in \mathbb{Z}[i] - \{0\}$. Let $(a+bi), (c+di) \in \mathbb{Z}[i] - \{0\}$. Then

$$d((a+bi)(c+di)) = (ac-bd)^{2} + (ad+bc)^{2}$$

$$= a^{2}c^{2} - 2abcd + b^{2}d^{2} + a^{2}d^{2} + 2abcd + b^{2}c^{2}$$

$$= a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}.$$

Thus as $d(a+bi) = a^2 + b^2$, and $a, b, c, d \in \mathbb{Z}$, it is clear that

$$d((a+bi)(c+di)) \ge d(a+bi).$$

- 5. Let $I \subseteq P \subsetneq R$, where I is an ideal and P is a prime ideal of R. Prove that the ring R_P/I^e (the quotient of the localization at P by the extension of the ideal I to that localization) and the ring $(R/I)_{P/I}$ (the localization of the quotient ring R/I at the prime ideal P/I) are isomorphic.
- 6. Let R be a ring and let $f \in R$ be not nilpotent. Let $S = \{f^n : n \in \mathbb{N}\}$. Prove that $R[S^{-1}]$ is isomorphic to R[z]/(fz-1).