# EC413 Computer Organization Lab 7 – Single-Cycle CPU

## Overview:

The purpose of Lab 7 is to learn in-depth how a CPU works. Given the basic single-cycle MIPS CPU, you will add, debug, and test several new features.



#### Recommended Order of Tasks:

- 1. PreLab: Simulate the project and generate outputs for the given instruction sequences. Add testbench for AND, NOR and XOR.
- 2. Add capability for SLT instruction. This is similar to how we implemented XOR in the Pre-Lab. Edit ALU.v and ALU\_control.v accordingly.
- 3. Add instruction J. You may start with the general implementation using the text provided in discussion slides. If you implement your own block, explain with comments.
  - a. J target → This jumps to the address "target"
- 4. Add I type instructions: ADDI, ANDI, LUI
  - a. For ADDI and ANDI:
  - Notice the op code and add corresponding capability into the control
  - b. For LUI:
  - The immediate value is shifted left 16 bits and stored in the register. The lower 16 bits are zeroes
  - lui \$t, imm → \$t = (imm << 16); advance pc (4);
- 5. Add instruction BNE.
- 6. Modify your testbench so it tests for all the following instructions
  - a. ALU: ADD, ADDI, SUB, OR, XOR, AND, ANDI, NOR, SLT
  - b. Memory: SW, LW, LUI
  - c. Branch: BEQ, BNE
  - d. Jump: J

#### **DELIVERABLES:**

## Submission on blackboard:

- 1. All your .v files
- 2. A brief report with a:
  - Description of how you added each of the instruction capability
  - Waveforms for the following test cases: SLT, LUI, BNE, J

## A DEMO to one of the TAs:

Be sure to submit all your code and report on blackboard before the demo Both group members must be present during the demo ALL GRADING WILL BE DONE DURING THE DEMO

## **GRADING GUIDELINES:**

- 1. Ensure all code and brief report have been submitted to blackboard [20 points]
- 2. Quickly demonstrate the concepts learnt during the Prelab and Verilog files have been submitted to blackboard[10 points]
- 3. Demonstrate SLT instruction[10 points]
- 4. Demonstrate J instruction[10 points]
- 5. Demonstrate I-type instructions ADDI, ANDI, LUI [10 points each 30points]
- 6. Demonstrate BNE instruction[10 points]
- 5. Demonstrate overall understanding through short questions asked [10 points]