tions $\,\xi_{\,f}\,$. The assumption on $\,\phi\,$ implies the set of all derivatives $\,\{\,\xi_{\,f}^{\,\iota}\,:\,f\,\in\,D(A)\,$, $\,\|\,f\,\|\,\leq\,1\,\}\,$

to be equicontinuous at t=0 . This means that for every $\epsilon>0$ there exists $0< t_0<1$ such that $\left|\xi_f'(0)-\xi_f'(s)\right|<\epsilon$ for every $f\in D(A)$, $\left\|f\right\|\leq 1$ and $0< s< t_0$.

In particular,

$$\varepsilon > |\xi_{f}'(0)| - \frac{1}{s}(\xi_{f}(s) - \xi_{f}(0))| = |\langle f, A' \phi - \frac{1}{s}(T(s)' \phi - \phi) \rangle|$$
, hence

 $\varepsilon > \|A'\phi - \frac{1}{s}(T(s)'\phi - \phi)\|$

for all $0 \le s \le t_0$. From this it follows that $\phi \in D(A^*)$.

On reflexive Banach spaces we have $A^* = A'$ by the above proposition. In other cases this construction is more interesting.

Calculating D(A') and D(A*) respectively, one obtains $D(A') = \{f \in L^{\infty}(\mathbb{R}) : f \in AC , f' \in L^{\infty}(\mathbb{R}) \},$ $D(A*) = \{f \in L^{\infty}(\mathbb{R}) : f \in C^{1}(\mathbb{R}) , f' \in C_{bu}(\mathbb{R}) \}.$

Obviously, the function $x \to |\sin x|$ belongs to D(A') but not to $D(A^*)$.

3.5. The Associated Sobolev Semigroups

Since the generator A of a strongly continuous semigroup $(T(t))_{t \ge 0}$ is closed, its domain D(A) becomes a Banach space for the graph norm $\|f\|_1 := \|f\| + \|Af\|$.

We denote this Banach space by E_1 and the continuous injection from E_1 into E by i_1 . Since E_1 is invariant under $(T(t))_{t\geq 0}$ - apply Prop.1.6.i - it makes sense to consider the semigroup $(T_1(t))_{t\geq 0}$ of all restrictions $T_1(t):=T(t)_{|E_1}$. The results of Prop.1.6 imply that $T_1(t)\in L(E_1)$ and $\|T_1(t)f-f\|_1 \to 0$ as $t \to 0$ for every $f_1(E_1)$. Thus, $(T_1(t))_{|E_1|}$ is a strongly continuous seminary equations.

Prop.1.6 imply that $T_1(t) \in L(E_1)$ and $\|T_1(t)f-f\|_1 \to 0$ as $t \to 0$ for every $f \in E_1$. Thus $(T_1(t))_{t \ge 0}$ is a strongly continuous semigroup on E_1 and has a generator denoted by $(A_1,D(A_1))$. Using Prop.1.6 again we see that A_1 is the restriction of A to E_1 with maximal domain, i.e.