Constrained Optimization
- how to optimize a objective function
subject to certain constraints
ef. Farmer's Jenee.
Farmer jet F jeets of Jence, and he would choose
the width w and the length L, so how could she
obtain largest area?
choice variables: 1, w
constrain: f > Ltw
objetive function: L-W
Formal problem:
mex L.W
L>0 f is parameter
w30
subject to LIWEF
In general,
max (or ruin) fix)
U., U ₂
S.t. constrain 1:
constrain 2:
Endozenous : variable determined by the model
Exogenous : variables that is pre set (i.e., parameters)
e.g. marketing: Firm split a million budget on TV and radio
spending TV radio
spending IV radio
100 K 4750 950
200 k 9000 1800
300K 12750 2550

800k 24,000 4800
900k 24.750 49\$0
1 m 25,000 5000
objective: maximum sales BCT,R)
choose variables: spending on TU (T) and radio (R)
Constrain: m >, T+R
max T.R B(T,R)
St T+R≤1.000, 000
Egnilibrium Analysis
27 the model output doesn't change,
when the exogenous variable do not change)
then it is an equilibrium.
Example competitive equilibrium.
(clear and secretaria and the secretaria demand for any of the
demand wrve: quantity the market demand for any given
price
supply curve: quantity the market supply for any given
price
While there's no influentient on supply /demand.
This market is in equalibrium it no seller or buyer want
to change their decision
?-e. the market curve.
porilet excess supply
s-paly.
P
24
demand
Q, Q* Q2. Gty.
~1 (<u>X</u> ×2.
at the point (a*, p*), it reaches equiliborium.

Comparative statics:
- how does the outcome of the model change
when we make change in exogenous variable and
deep all else constant?
Positive versus normative analysis.
posithe: explaining economic phenomas or predicting how
systems change in response to other change
normative: how should we achieve serial goals, answer
questions about what we should be happening