UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE FÍSICA

FIS 224 – Física Experimental A

PRÁTICA: MOVIMENTO HARMÔNICO AMORTECIDO

1. OBJETIVO: Verificar experimentalmente a atenuação da amplitude de um pêndulo simples em função do tempo.

2. INTRODUÇÃO:

Na natureza há um grande número de processos que se repetem em intervalos de tempo iguais. Estes são os chamados fenômenos periódicos, entre os quais podem ser citados o movimento de um pêndulo, a oscilação de um massa suspensa em uma mola e a vibração de uma corda. Embora se diferenciem, as naturezas destas oscilações são bastante análogas as formulações matemáticas utilizadas para descrevê-las. Uma grandeza física fundamental para a análise de todos esses fenômenos é o período T, definido como o tempo correspondente a uma oscilação completa. Já ao número de oscilações efetuadas por unidade de tempo denominamos frequência f, sendo a relação entre essas grandezas

$$f = \frac{1}{T} \tag{1}$$

No caso de uma massa m oscilando na extremidade de um fio de comprimento L numa região onde a aceleração gravitacional é g, o período de oscilação, também na ausência de efeitos dissipativos, será:

$$T = 2\pi \sqrt{\frac{\mathcal{L}}{g}} \left[1 + \left(\frac{1}{2^2} \right) \sin^2 \left(\frac{\theta_{\text{m}}}{2} \right) + \left(\frac{1}{2^2} \right) \left(\frac{3^2}{4^2} \right) \sin^4 \left(\frac{\theta_{\text{m}}}{2} \right) + \dots \right]^{\frac{2}{3}} \right]$$

onde θ_m é o deslocamento angular máximo da massa (amplitude de oscilação). Pode-se então concluir que, no caso da oscilação de um pêndulo com amplitude inferior a 15° , os termos senoidais são muito pequenos, sendo o período dependente praticamente apenas do comprimento L e da aceleração gravitacional g, isto é:

$$T = 2\pi \sqrt{\frac{L}{\varepsilon}}$$
, (3)

Nesta prática, será realizado um estudo do movimento harmônico amortecido em um pêndulo simples. Na presença do ar, o movimento do pêndulo torna-se amortecido e a amplitude de oscilação (A) decrescerá com o tempo (t). A dependência de "A" com o tempo (t) é dada por:

$$A(t) = A_0 e^{-\alpha t}, \qquad (4)$$

Com o valor de α dado por $\alpha = b/2m$.

3. METODOLOGIA:

MATERIAL UTILIZADO:

Barbante, uma massa de 100 g, cronômetro e trena milimetrada.

PROCEDIMENTO:

Passos para a realização das medidas:

a) Amarre a massa de 100 g na extremidade de um barbante de aproximadamente 1,60 m de comprimento, fixando a outra extremidade no teto, de tal forma que esse pêndulo simples oscile num plano vertical. Anote o valor do barbante medido com o auxílio de uma trena.

$$L=($$
 \pm $) m$

b) Afaste lateralmente a massa formando um ângulo menor que 15° com a vertical e abandone a massa. Após abandoná-la, meça o tempo correspondente a 10(dez) oscilações completas. Determine o período médio desse pêndulo. (*T* = tempo das 10 (dez) oscilações completas/10). Faca pelo menos três medidas.

$$T_{I}$$
= , T_{2} = , T_{3} = $T_{m\'edio}\pm\Delta T_{m\'edio}$ =

c) Calcule o $T_{\text{Teórico}}$ esperado com seu respectivo desvio, utilizando o método da derivada, e compare com o valor obtido experimentalmente no item c. Adote $g = (9.78 \pm 0.01) \text{m/s}^2$.

$$T_{\text{Teórico}} \pm \Delta T_{\text{Teórico}} =$$

d) Afaste o pêndulo de uma distância horizontal de aproximadamente A₀=55 cm em relação à posição inicial (utilize uma régua de 50 cm como guia) e inicie a contagem no cronômetro ao soltar o pêndulo (início da oscilação). Sem parar o cronômetro, marque os tempos necessários para que o pêndulo alcance as amplitudes da tabela. Realize este procedimento 3 vezes.

A	50 cm	45 cm	40 cm	35 cm	30 cm	25 cm	20 cm
\mathbf{t}_1							
t_2							
t ₃							
ť+∆t							

- e) Em um papel milimetrado faça o gráfico de A *versus* t. O comportamento observado está de acordo com o esperado pela equação 4? Discuta.
- f) Linearize a equação 4, utilizando a função ln, faça uma nova tabela com os valores dos logaritmos, construa a melhor reta em papel milimetrado e encontre os valores de A_0 e α .

Ln A				
$\dot{t} + \Delta t$				

- g) Utilize os dados da tabela para construir a melhor reta em papel monolog e encontre novamente os valores de A_0 e α . Faça a linearização usando a função log na base 10.
- h) Discuta a precisão dos resultados obtidos e o significado físico destes valores.