Independencies Revisited

3/3 得分 (100%)

测验通过!

返回第3周课程

1/1分

1.

I-Maps. Graph G is a perfect I-map for distribution P , i.e. $\mathcal{I}(G)=\mathcal{I}(P)$. Which of the other graphs is a **perfect** I-map for P?

None of the above

正确回答

I isn't because it has the extra independence $(A \perp C)$

•

II has the extra independence relation $(B \perp C \mid D)$

(among others).

III has no extra independencies but does not preserve an independence relationship in G.

II and III

I and II

1/1分

2.

I-Equivalence. In the figure below, graph ${\cal G}$ is I-equivalent to which other graph(s)?

正确回答

II, III, and IV all have extra independencies.

() I and III

None of the above

() I and IV

3.

***I-Equivalence.** Let Bayesian network G be a simple directed chain $X_1 \to X_2 \to \ldots \to X_n$ for some number n. How many Bayesian networks are I-equivalent to G including G itself?

n

正确回答

The chain $X_1 \leftarrow \ldots \leftarrow X_i \rightarrow \ldots \rightarrow X_n$ is I-equivalent, where i can be 2 through n (when i=n, all arrows point left). Thus, there are n-1 I-equivalent networks like this. Including the original network makes n.

- \bigcirc 2n
- \bigcap n-1
- \bigcap n!

