

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 09 NOV 1999

WIPO PCT

GB99/3574

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 25 October 1999

Andrew Garside

The 6 NOV 1998

R998-E402720-1 D02806
1/7700 0.00 - 9824267.0THE PATENT OFFICE
06 NOV 1998
Patent Office**9824267.0****Request for grant of a patent**

(See the notes on the back of this form. You can also get an explanatory leaflet, from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference CDK/K1431

2. Patent application number
(The Patent Office will fill in this part)3. Full name, address and postcode of the or of each applicant (*underline all surnames*)Albright & Wilson UK Limited
210-222 Hagley Road West
Oldbury, Warley
West Midlands
B68 0NNPatents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

England

0000 181 8002

4. Title of the invention

POLYMERISABLE SURFACTANTS5. Name of your agent (*if you have one*)

Barker Brettell

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)138 Hagley Road
Edgbaston
Birmingham
B16 9PWPatents ADP number (*if you know it*)

7442494002

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number
(*if you know it*)Date of Filing
(day/month/year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day/month/year)8. Is a statement of inventorship and of right to grant of a patent required in support of this request (*Answer 'Yes' if:*

Yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

Patent Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form -

Description 14 + 14 ✓ D.M

Claim(s) 5 + 5

Abstract -

Drawing(s) -

10. If you are also filing any of the following, state how many against each item.

Priority documents -

Translations of priority documents -

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*) -

Request for preliminary examination 1
(*Patents Form 9/77*)

Request for substantive examination -
(*Patents Form 10/77*)

Any other documents -
(please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature

Barker Brettell

Date

05.11.1998

12. Name and daytime telephone number of person to contact in the United Kingdom

Colin D. Kinton

Tel: 0121 456 1364

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

POLYMERISABLE SURFACTANTS

The present invention relates to polymerisable surfactants comprising at least one hydrophobic polymerisable group which is linked by 5 polyalkyleneoxy groups to a hydrophilic group. The surfactants are particularly useful in emulsion-polymerised surface coatings. The present invention also relates to a method of making the polymerisable surfactants, to uses thereof, and to surface coatings including the surfactants.

10

Polymerisable surfactants are known in the art and have often been used in surface coatings. However, such prior-art surfactant-containing coatings have a tendency to absorb moisture resulting in partial detachment of the coating, a problem known as "bloom". The problem of 15 "blush", a whitening effect of a coating when subjected to prolonged immersion in water, is also evident in coatings containing prior-art surfactants.

The object of the present invention is to provide a polymerisable 20 surfactant which is particularly suitable for use in surface coatings, which has improved water resistance and which reduces the problems of "bloom" and "blush" in coatings. A method of making such a polymerisable surfactant is also provided.

25 According to a first aspect, the present invention provides a polymerisable surfactant having at least one hydrophobic polymerisable group which is linked by polyalkyleneoxy groups to a hydrophilic group, wherein the polymerisable surfactant is of the general formula:

(RCH = CR'COO [CH₂CHR''O]_x)_nPO (OY)_m

where n + m = 3

x is between 10-30

R = H or CH₃ or COOR'''

5 R' = H or CH₃

R'' = H, CH₃ or C₂H₅

R''' = C₁ - C₂₀ alkyl

Y = H or an alkali metal atom

10 Preferably the hydrophobic polymerisable group represented by RCH=CR'COO is acrylate or methacrylate, in which case R is hydrogen and R' is hydrogen or methyl respectively.

15 The hydrophobic polymerisable group may alternatively be maleate, fumarate, crotonate or isocrotonate.

Preferably x is between 17 and 22, most preferably x is 20.

20 Preferably the oxyalkylene groups represented by [CH₂CHR''O] comprise mainly propyleneoxy groups. For example, from 80% - 100% of the oxyalkylene groups may be propyleneoxy groups. Preferably, at least 90%, more preferably at least 95% and most preferably at least 98% of the oxyalkylene groups are propyleneoxy groups.

25 The balance of the oxyalkylene groups not being propyleneoxy groups is preferably selected from ethyleneoxy or butyleneoxy groups.

Preferably the hydrophilic group represented by PO (OY)_m is a phosphate group, i.e. Y represents hydrogen. Alternatively, the hydrophilic group

may be a water-soluble phosphate salt group, for example alkali metal phosphate, in which Y represents an alkali metal atom.

Although it is not intended that the present invention be construed with reference to any particular theory, it is believed that surfactants according to the present invention exhibit improved water-resistance in comparison with prior-art surfactants because they do not include a non-ionic hydrophilic group, such as polyethylene oxide. In many prior-art polymerisable surfactants, a hydrophilic non-ionic group is present which can give rise to poor water sensitivity in a final coating. Ionic groups are only hydrophilic when ionised and therefore the resultant dried coatings are less hydrophilic and less water sensitive than coatings including non-ionic hydrophiles.

According to a second aspect, the present invention provides a method of making a polymerisable surfactant according to the first aspect of the present invention, the method comprising the steps of:

reacting an unsaturated carboxylic acid corresponding to the hydrophobic group with an alkylene oxide corresponding to the oxyalkylene linking group while maintaining the temperature of the reaction below that at which spontaneous polymerisation of the unsaturated groups of the hydrophobic group would occur; and

phosphating the resultant polyalkoxylated hydrophobic group.

The polyalkoxylation process step may be carried out with the aid of a catalyst. The catalyst is preferably a catalyst for alkoxylation which does not catalyse the polymerisation of unsaturated groups of the hydrophobic group.

A preferred catalyst for alkoxylation is a strong Lewis acid such as boron trifluoride.

5 Preferably, a portion, most preferably a small portion, of the catalyst for alkoxylation is added to the unsaturated carboxylic acid before the alkylene oxide. Preferably the bulk of the catalyst is added with the alkylene oxide. A remaining portion of the catalyst is preferably added after completion of addition of the alkylene oxide to maximise conversion
10 as the catalyst has a short active life. Hydroquinone is preferably added to the reaction mixture after the addition of the remaining portion of the catalyst. The hydroquinone is added to inhibit autopolymerisation of the unsaturated groups of the hydrophobic group. Any unreacted alkylene oxide may be removed, preferably by sparging with air.

15 Preferably, the reaction of the unsaturated carboxylic acid and the alkylene oxide is carried out in an inert atmosphere, for example under nitrogen. The reaction mixture may be stirred. Preferably, moisture is excluded from the reaction mixture. Preferably, the alkylene oxide is
20 added continuously at a constant rate over a given time period, suitably 90 minutes.

The phosphorylation step is preferably carried out by means of phosphorus pentoxide. The most preferred form of phosphorus pentoxide is the solid
25 form. The phosphorus pentoxide may be added over a given period of time, preferably one hour. Preferably, when addition of the phosphorus pentoxide is complete, the resulting mixture is maintained at an elevated temperature, such as 80°C, for about 4 hours, with stirring.

Preferably, the product of the phosphation step is treated to remove any free phosphoric acid. The presence of phosphoric acid can be detrimental to the final product containing the surfactant. Deionised water may be used to wash the product.

5

According to a third aspect, the present invention provides a coating including a polymerisable surfactant according to the first or second aspect of the invention.

- 10 Preferably the coating is an acrylic coating, an acrylic or vinyl halide latex composition, a latex paint, a coating for contact lenses, a coating to modify the surface properties of organic polymers, glass, graphite, metals, a coating to convert hydrophilic articles to hydrophobic articles and vice versa, a coating for fabrics.
- 15 The present invention also provides adhesives, flocculants, resinous binders, polymer materials for medical or dental use and oil-displacing fluids including the polymerisable surfactant of the present invention.
- 20 Examples of the polyalkoxylation and phosphation steps are set out below:

Polyalkoxylations

Example 1

Polypropoxylate(20) Methacrylate (PP20M)

5

Reagents:

Methacrylic Acid: 28.3g (0.329 mol)

Propylene oxide: 381.6g (6.580 mol)

10 Boron trifluoride etherate: 5.0 ml

Hydroquinone, monomethyl ether: 0.20 g

A reactor comprising a 1-litre jacketed vessel fitted with overhead stirrer, septum cap, nitrogen bleed, condenser, peristaltic addition tube and thermometer was heated to 120°C for 1 hour under nitrogen and the flask lid flamed to ensure dryness. The reactor was then cooled to room temperature.

20 Methacrylic acid (28.3g, 0.329 mol) and boron trifluoride etherate (1.0 ml) were charged to the reactor (BF_3 by syringe/septum seal). Propylene oxide was then added to the stirred reaction mixture at a constant rate over 90 minutes, using a peristaltic pump. Starting at the same time, the remainder of the BF_3 was added over 120 minutes via a screw-feed syringe pump. Immediately the additions commenced the temperature 25 rose to 40°C and the reactor jacket was cooled to - 5°C. Care was taken to ensure that the reaction temperature was maintained between 40 and 50°C throughout the propylene oxide addition.

30 After the addition of the propylene oxide was complete, the jacket temperature was raised to 50°C while the BF_3 addition was completed.

When this addition was complete the nitrogen bleed was replaced with an air bleed and monomethyl ether hydroquinone (0.20g, 500 ppm) added. The jacket temperature was raised to 60°C and the clear, colourless product was sparged with air to remove any unreacted propylene oxide.

5

Example 2

Polypropoxylate(6) Methacrylate (PP6M)

10 The procedure of Example 1 was followed, but with the following reagents:

Methacrylic Acid: 28.3g (0.329 mol)

Propylene oxide: 114.5g (1.974 mol)

15 Boron trifluoride etherate: 3.0 ml

Hydroquinone, monomethyl ether 0.07g

Example 3

Polypropoxylate(12) Methacrylate (PP12M)

The procedure of Example 1 was followed, but with the following reagents:

Methacrylic Acid:	28.3g	(0.329 mol)
Propylene oxide:	229.0g	(1.974 mol)
Boron trifluoride etherate:	5.0 ml	
Hydroquinone, monomethyl ether	0.13g	

5

Example 4**Polypropoxylate(28) Methacrylate (PP28M)**

10 The procedure of Example 1 was followed, but with the following reagents:

Methacrylic Acid:	14.1g	(0.164 mol)
Propylene oxide:	266.3g	(4.592 mol)
Boron trifluoride etherate:	5.0 ml	
Hydroquinone, monomethyl ether	0.14g	

Example 5**Polybutoxylatepropoxylate(12) Methacrylate (PBP12M)****Reagents:**

Methacrylic Acid:	28.3g	(0.329 mol)
Propylene oxide:	114.5g	(1.970 mol)
Butylene oxide:	142.0g	(1.970 mol)
Boron trifluoride etherate:	8.0 ml	
Hydroquinone, monomethyl ether	0.14g	

A reactor comprising a 1-litre jacketed vessel fitted with overhead stirrer, septum cap, nitrogen bleed, condenser, peristaltic addition tube and thermometer was heated to 120°C for 1 hour under nitrogen and the flask lid flamed to ensure dryness. The reactor was then cooled to room 5 temperature.

Methacrylic acid (28.3g, 0.329 mol) and boron trifluoride etherate (1.0 ml) were charged to the reactor (BF_3 by syringe/septum seal). Propylene oxide (114.5g) and butylene oxide (142.0g) were combined and added to 10 the stirred reaction mixture at a constant rate over 90 minutes, using a peristaltic pump. Starting at the same time, the remainder of the BF_3 was added over 120 minutes, via a screw-feed syringe pump. Immediately the additions commenced the temperature rose to 40°C and the reactor jacket was cooled to -5°C. Care was taken to ensure that the reaction 15 temperature was maintained between 40 and 50°C throughout propylene oxide and butylene oxide addition.

After the addition of propylene oxide/butylene oxide was complete, the jacket temperature was raised to 50°C while the BF_3 addition was completed. When this addition was complete the nitrogen bleed was replaced with an air bleed and monomethyl ether hydroquinone (0.14g, 20 500 ppm) added. The jacket temperature was raised to 60°C and the clear, colourless product was sparged with air to remove any unreacted propylene oxide/butylene oxide.

Phosphation**Example 6****Polypropoxylate(20) Methacrylate Phosphate (PP20MP)**

5

Reagents:

PP20M (Example 1): 260g (0.196 mol)

Phosphorus Pentoxide: 9.9g (0.081 mol)

10

A 1 litre jacketed vessel fitted with overhead stirrer, air bleed, condenser, solid-addition inlet and thermometer was charged with PP20M (260g), which was stirred vigorously whilst being heated to 60°C. Phosphorus pentoxide (9.9g) was added via the solid-addition inlet over 1 hour. The temperature was then raised to 80°C and the reaction mixture stirred at this temperature for a further 4 hours before being cooled. The yellow, oily product was then washed with distilled water until the pH of the water washings rose to 3.0.

15
20

An example of the use of the polymerisable surfactant of Example 1 in an acrylic emulsion is set out below.

Example 7**Preparation of an Acrylic Latex Using PP20MP**

5 Reagents:

Solution (1) PP20MP (Example 1) : 5.6g
 Water: 290g
 Ammonia (37% aq) 0.5ml

10 201g
Solution (2) Methyl Methacrylate: 201g
 Butyl Acrylate: 162g

15 4.6g
Solution (3) Methacrylic Acid: 1.2g
 Ammonium Persulphate: 58g
 Water: 5.0ml
 Ammonia (37%aq):

20 0.3g
Solution (4) Ammonium Persulphate: 6g
 Water:

A 2 litre resin pot fitted with nitrogen inlet, condenser, overhead stirrer and two peristaltic addition inlets was charged with solution (1). The milky solution was stirred at 350 rpm whilst being heated to 80°C under nitrogen. After 30 minutes 15g of solution (2), 3g of solution (3) and half
5 of solution (4) was added. Almost immediately a blue tint was observed indicating that polymerisation had commenced. After 5 minutes the remainder of solutions (2) and (3) were added dropwise over 3.5 hours. Fifteen minutes after additions were completed the remainder of solution
10 (4) was added and the emulsion left stirring for 1 hour at 80°C. The latex produced was cooled to room temperature and filtered through a 150 µm mesh.

Preparation of a Comparative Latex Using an Industry Standard Surfactant - Aerosol A-501

15

The procedure of Example 7 (above) was repeated using 5.6g Aerosol A-501 (an alkyl sulfosuccinate made by American Cyanamid) in place of PP20MP.

20 **Comparison Test**

A comparison of two polymer latices made by the method of Example 7, but using amounts of 1.5% and 3.0% weight with respect to total monomer weight of polymerisable surfactant with the control polymer
25 latex made by the method of Example 8 was, carried out.

The comparison used three tests set out below:

(a) Gloss on mild steel

5 Emulsions were drawn on a film of a cleaned dry mild steel panel using a
100 µ bar. The coated panels were placed in an oven at 50°C overnight.

The gloss was measured at 20°C and 60°C using a Rhopoint
"Novo-Gloss" glossmeter.

10

(b) Foaming

25ml of each emulsion was diluted with an equal volume of deionised water and placed in a 100 ml measuring cylinder and shaken for 30
15 seconds. The foam height is presented as a percentage of the initial liquid height.

(c) Adhesion

20 Adhesion was tested on panels of mild steel and aluminium by applying emulsion to the panels as described in (a) and according to BS 3900:
E6 : 1992.

The results of the above 3 tests are set out in Table 1 (below).

25

6. A polymerisable surfactant according to Claim 5 wherein x is 20.
7. A polymerisable surfactant according to any preceding claim
5 wherein the oxyalklene groups represented by $[CH_2CHR''O]$ comprise mainly propyleneoxy groups.
8. A polymerisable surfactant according to Claim 7 wherein from 80% - 100% of the oxyalkylene groups are propyleneoxy groups.
10
9. A polymerisable surfactant according to Claim 7 or 8 wherein the balance of the oxyalkylene groups not being propyleneoxy groups is selected from ethyleneoxy and butyleneoxy groups.
- 15 10. A polymerisable surfactant according to any preceding claim wherein the hydrophilic group represented by $PO(OY)_m$ is a phosphate group, where Y represents hydrogen.
11. A polymerisable surfactant according to any one of Claims 1-9
20 wherein the hydrophilic group represented by $PO(OY)_m$ is a water-soluble phosphate salt group.
- 25 12. A polymerisable surfactant according to Claim 11 wherein the water soluble phosphate salt group is an alkali metal phosphate, in which Y represents an alkali metal atom.
13. A method of making a polymerisable surfactant according to any one of Claims 1 to 12, the method comprising the steps of:

reacting an unsaturated carboxylic acid corresponding to the hydrophobic group with an alkylene oxide corresponding to the oxyalkylene linking group while maintaining the temperature of the reaction below that at which spontaneous polymerisation of the unsaturated groups of the hydrophobic group would occur; and

phosphating the resultant polyalkoxylated hydrophobic group.

14. A method according to Claim 13 wherein the polyalkoxylation process step is carried out with the aid of a catalyst.

15. A method according to Claim 14 wherein the catalyst is a catalyst for alkoxylation which does not catalyse the polymerisation of unsaturated groups of the hydrophobic group.

16. A method according to Claim 14 or 15 wherein the catalyst for alkoxylation is a strong Lewis acid.

17. A method according to Claim 16 wherein the Lewis acid is boron trifluoride.

18. A method according to any one of Claims 14 to 17 wherein a small portion of a catalyst for alkoxylation is added to the unsaturated carboxylic acid before addition of the ethylene oxide.

19. A method according to any one of Claims 14 to 18 wherein a bulk portion of the catalyst for alkoxylation is added to the unsaturated carboxylic acid with the alkylene oxide.

20. A method according to any one of Claims 14 to 19 wherein a small portion of the catalyst for alkoxylation is added after completion of the addition of the alkylene oxide.

5 21. A method according to Claim 20 wherein hydroquinone is added to the reaction mixture after the addition of the small portion of catalyst.

22. A method according to any one of Claims 13 to 21 wherein any unreacted alkylene oxide is removed.

10 23. A method according to Claim 22 wherein the alkylene oxide is removed by sparging with air.

15 24. A method according to any one of Claims 13 to 23 wherein the reaction of the unsaturated carboxylic acid and the alkylene oxide is carried out in an inert atmosphere.

25. A method according to any one of Claims 13 to 24 wherein the phosphation step is carried out by reaction with phosphorus pentoxide.

20 26. A method according to any one of Claims 13 to 25 wherein the product of the phosphation step is treated to remove any unreacted phosphoric acid.

25 27. A coating including a polymerisable surfactant according to any one of Claims 1 to 12 or made by the method of any one of Claims 13 to 26.

28. A polymerisable surfactant substantially as described herein.

29. A method of making a polymerisable surfactant substantially as described herein.

30. A coating including a polymerisable surfactant substantially as
5 described herein.

THIS PAGE BLANK (USPTO)