Generalized Implicit Factorization Problem

Yansong Feng ¹ Abderrahmane Nitaj ² Yanbin Pan ¹

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China ysfeng2023@163.com, panyanbin@amss.ac.cn

Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, Franceabderrahmane.nitaj@unicaen.fr

August 18, 2023

Outline

- 1 Background
- 2 Generalized Implicit Factorization Problem
- 3 Numerical Experiments
- 4 Conclusion

Introduction to RSA

RSA has three steps:

Choose two prime p and q

Compute N = pq

Calculate $d = e^{-1}$ modulo $\phi(N)$ as private key

Introduction to RSA

RSA has three steps:

Choose two prime p and q

Compute N = pq

Calculate $d = e^{-1}$ modulo $\phi(N)$ as private key

Compute the ciphertext $C \equiv M^e \pmod{N}$

Introduction to RSA

RSA has three steps:

Choose two prime p and q

Compute N = pq

Calculate $d = e^{-1}$ modulo $\phi(N)$ as private key

Compute the plaintext message $M \equiv C^d \pmod{N}$

Background 0000000000000

■ There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.

Background 000-000000000

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.
- Coppersmith's attack is a well-known attack on RSA.

Background

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.
- Coppersmith's attack is a well-known attack on RSA.
- $lue{}$ For example, by using Coppersmith's method, one can factor a RSA moduli when half of the most significant bits of p are known.

Background

Attack on RSA

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.
- Coppersmith's attack is a well-known attack on RSA.
- For example, by using Coppersmith's method, one can factor a RSA moduli when half of the most significant bits of *p* are known.
- We will discuss Coppersmith's method later.

At PKC 2009, May and Ritzenhofen introduced the Implicit Factorization Problem (IFP).

Definition (May, Ritzenhofen [1])

Let $N_1=p_1q_1$ and $N_2=p_2q_2$ be two different n-bit RSA moduli with αn -bit q_i . The Implicit Factorization Problem (IFP) is to factor N_1 and N_2 with some implicit hints.

Background

They proposed their result of IFP in the LSBs case, i.e., p_1 and p_2 share γn bits least significant bits.

Background 0000000000000 Background

IFP in the other case

In a follow-up work, Sarkar and Maitra [2] generalized the Implicit Factorization Problem to the case where the most significant bits (MSBs) or the middle bits.

Then at PKC 2010, Faugère *et al.* [3] improved the bounds to the case where the most significant bits (MSBs) or the middle bits.

The IFP in the MSBs case means factoring N_1 and N_2 with the implicit hint that p_1 and p_2 share most significant bits.

Background 00000000000000

IFP in the Middle case

IFP in the Middle case means the p_i 's are primes that all share γn bits from position t1 to t2 = t1 + γn .

Faugère et al. [3] show that N_1 and N_2 can be factored in polynomial time when p_1 and p_2 share at least $\gamma n > 4\alpha n + 6$ bits.

IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization Problem by revealing the relations between the Approximate Common Divisor Problem (ACDP) and the Implicit Factorization Problem

- **1** the primes p_1 , p_2 share an amount of the least significant bits (LSBs);
- **2** the primes p_1 , p_2 share an amount of most significant bits (MSBs);
- $\mathbf{3}$ the primes p_1 , p_2 share both an amount of least significant bits and an amount of most significant bits.

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization Problem by revealing the relations between the Approximate Common Divisor Problem (ACDP) and the Implicit Factorization Problem

- **1** the primes p_1 , p_2 share an amount of the least significant bits (LSBs);
- **2** the primes p_1 , p_2 share an amount of most significant bits (MSBs);
- ${f 3}$ the primes $p_1,\,p_2$ share both an amount of least significant bits and an amount of most significant bits.

In 2016, Lu et al. [5] presented a novel algorithm and improved the bounds for all the above three cases of the Implicit Factorization Problem.

Background

Revisit the Middle case

In 2015, Peng et al. [6] revisited the Implicit Factorization Problem with shared **middle** bits and improved the bound.

The bound was further enhanced by Wang et al. [7] in 2018

Recent work on IFP

	LSBs	MSBs	both LSBs-MSBs	Middle bits	General
May, Ritzenhofen [1]	2α	-	-	-	-
Faugère, et al. [3]	2α	-	-	4α	-
Sarkar, Maitra [4]	$2\alpha - \alpha^2$	$2\alpha - \alpha^2$	$2\alpha - \alpha^2$	-	-
Lu, et al. [5]	$2\alpha - 2\alpha^2$	$2\alpha - 2\alpha^2$	$2\alpha - 2\alpha^2$	-	-
Peng, et al.[6]	-	-	-	$4\alpha - 3\alpha^2$	-
Wang, et al.[7]	-	-	-	$4\alpha(1-\sqrt{\alpha})$	-
This work	-	-		-	$4\alpha(1-\sqrt{\alpha})$

Table: Asymptotic lower bound of γ in the Implicit Factorization Problem for n-bit $N_1=p_1q_2$ and $N_2=p_2q_2$ where the number of shared bits is γn , q_1 and q_2 are αn -bit.

- 1 Background
- 2 Generalized Implicit Factorization Problem
- 3 Numerical Experiments
- 4 Conclusion

GIFP

It can be seen in Table 1 that the positions for the sharing bits are located similarly. So we consider a general case that the positions for the sharing bits are located differently.

GIFP

It can be seen in Table 1 that the positions for the sharing bits are located similarly. So we consider a general case that the positions for the sharing bits are located differently.

Definition (GIFP (n, α, γ))

Given two n-bit RSA moduli $N_1 = p_1q_1$ and $N_2 = p_2q_2$, where q_1 and q_2 are αn -bit, assume that p_1 and p_2 share γn consecutive bits, where the shared bits may be located in different positions of p_1 and p_2 . The Generalized Implicit Factorization Problem (GIFP) asks to factor N_1 and N_2 .

GIFP

$\mathsf{Theorem}$

 $GIFP(n, \alpha, \gamma)$ can be solved in polynomial time when

$$\gamma > 4\alpha \left(1 - \sqrt{\alpha}\right)$$
,

provided that $\alpha + \gamma \leq 1$.

Figure: Shared bits M for p_1 and p_2

The proof of this theorem needs some knowledge of Lattice and Coppersmith's theory.

Let $m \geq 2$ be an integer. A lattice is a discrete additive subgroup of \mathbb{R}^m . A more explicit definition is presented as follows.

The proof of this theorem needs some knowledge of Lattice and Coppersmith's theory.

Let $m \geq 2$ be an integer. A lattice is a discrete additive subgroup of \mathbb{R}^m . A more explicit definition is presented as follows.

Definition (Lattice)

Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in \mathbb{R}^m$ be n linearly independent vectors with $n \leq m$. The lattice \mathcal{L} spanned by $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is the set of all integer linear combinations of $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$, i.e.,

$$\mathcal{L} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \sum_{i=1}^n a_i \mathbf{v_i}, a_i \in \mathbb{Z} \right\}.$$

The Shortest Vector Problem (SVP) is one of the famous computational problems in lattices.

Definition (Shortest Vector Problem (SVP))

Given a lattice \mathcal{L} , the Shortest Vector Problem (SVP) asks to find a non-zero lattice vector $\mathbf{v} \in \mathcal{L}$ of minimum Euclidean norm, i.e., find $\mathbf{v} \in \mathcal{L} \setminus \{0\}$ such that $\|\mathbf{v}\| \leq \|\mathbf{w}\|$ for all non-zero $\mathbf{w} \in \mathcal{L}$.

Although SVP is NP-hard under randomized reductions [8], there exist algorithms that can find a relatively short vector, instead of the exactly shortest vector, in polynomial time, such as the famous LLL algorithm proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result is useful for our analysis[10].

LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist algorithms that can find a relatively short vector, instead of the exactly shortest vector, in polynomial time, such as the famous LLL algorithm proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result is useful for our analysis[10].

Theorem (LLL Algorithm [9])

Given an n-dimensional lattice \mathcal{L} , we can find an LLL-reduced basis $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ of \mathcal{L} in polynomial time, which satisfies

$$\|\mathbf{v_i}\| \le 2^{\frac{n(n-1)}{4(n+1-i)}} \det(\mathcal{L})^{\frac{1}{n+1-i}}, \quad \text{for} \quad i = 1, \dots, n.$$

Theorem

Let M be a positive integer, and $f(x_1,\ldots,x_k)$ be a polynomial with integer coefficients. Coppersmith's method give us a way to find a small solution (y_1,\ldots,y_k) of the modular equation $f(x_1,\ldots,x_k)\equiv 0\pmod M$ with the bounds $y_i< X_i$ for $i=1,\ldots,k$.

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.

1 Formulate the problem as a lattice problem.

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.

- Formulate the problem as a lattice problem.
- 2 Apply lattice reduction algorithms to find short lattice vectors.

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.

- 1 Formulate the problem as a lattice problem.
- 2 Apply lattice reduction algorithms to find short lattice vectors.
- 3 Recover integer solutions from the lattice basis.

More precisely, the steps are as follows:

■ Construct a set G of k-variate polynomial equations such that $g_i(y_1, \ldots, y_k) \equiv 0 \pmod{M}$;

More precisely, the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_i(y_1, \ldots, y_k) \equiv 0 \pmod{M}$;
- use the coefficient vectors of $g_i(x_1X_1,\ldots,x_kX_k)$, $i=1,\ldots,k$, to construct a k-dimensional lattice \mathcal{L} ;

More precisely, the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_i(y_1, \ldots, y_k) \equiv 0 \pmod{M}$;
- use the coefficient vectors of $g_i(x_1X_1,\ldots,x_kX_k)$, $i=1,\ldots,k$, to construct a k-dimensional lattice \mathcal{L} ;
- Applying the LLL algorithm to \mathcal{L} , we get a new set H of k polynomial equations $h_i(x_1,\ldots,x_k)$, $i=1,\ldots,k$, with integer coefficients such that $h_i(y_1,\ldots,y_k)\equiv 0\pmod M$;

More precisely, the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_i(y_1, \ldots, y_k) \equiv 0 \pmod{M}$;
- use the coefficient vectors of $g_i(x_1X_1,\ldots,x_kX_k)$, $i=1,\ldots,k$, to construct a k-dimensional lattice \mathcal{L} ;
- Applying the LLL algorithm to \mathcal{L} , we get a new set H of k polynomial equations $h_i(x_1,\ldots,x_k)$, $i=1,\ldots,k$, with integer coefficients such that $h_i(y_1,\ldots,y_k)\equiv 0\pmod M$;
- \blacksquare One can get $h_i(y_1,\ldots,y_k)=0$ over the integers in some cases, where for $h(x_1,\ldots,x_k)=\sum_{i_1\ldots i_k}a_{i_1\ldots i_k}x_1^{i_1}\cdots x_1^{i_k}$

Proof of GIFP

Proof.

Hence, we suppose that p_1 shares γn -bits from the $\beta_1 n$ -th bit to $(\beta_1 + \gamma)n$ -th bit, and p_2 shares bits from $\beta_2 n$ -th bit to $(\beta_2 + \gamma)n$ -th bit, where β_1 and β_2 are known with $\beta_1 \leq \beta_2$ (see Fig. 1). Then we can write

$$p_1 = x_1 + M2^{\beta_1 n} + x_2 2^{(\beta_1 + \gamma)n}, \quad p_2 = x_3 + M2^{\beta_2 n} + x_4 2^{(\beta_2 + \gamma)n},$$

Figure: Shared bits M for p_1 and p_2

Next, we define the polynomial

$$f(x, y, z) = xz + 2^{(\beta_2 + \gamma)n}yz + N_2,$$

which shows that $(x_12^{(\beta_2-\beta_1)n}-x_3,x_2-x_4,q_2)$ is a solutions of

$$f(x, y, z) \equiv 0 \pmod{2^{(\beta_2 - \beta_1)n} p_1}.$$

To apply Coppersmith's method, we consider a family of polynomials $g_{i,j}(x,y,z)$ for $0 \le i \le m$ and $0 \le j \le m-i$:

$$g_{i,j}(x,y,z) = (yz)^j f(x,y,z)^i \left(2^{(\beta_2-\beta_1)n}\right)^{m-i} N_1^{\max(t-i,0)}.$$

These polynomials satisfy

$$g_{i,j}\left(x_1 2^{(\beta_2-\beta_1)n} - x_3, x_2 - x_4, q_2\right)$$

$$= (x_2 - x_4)^j q_2^j \left(2^{(\beta_2-\beta_1)n} p_1 q_2\right)^i \left(2^{(\beta_2-\beta_1)n}\right)^{m-i} N_1^{\max(t-i,0)}$$

$$\equiv 0 \pmod \left(2^{(\beta_2-\beta_1)n}\right)^m p_1^t.$$

To reduce the determinant of the lattice, we introduce a new variable w for p_2 , and multiply the polynomials $g_{i,j}(x,y,z)$ by a power w^s for some s that will be optimized later.

Similar to t, we also require $0 \le s \le m$

Note that we can replace zw in $g_{i,j}(x,y,z)w^s$ by N_2 .

We then eliminate $(zw)^i$ from the original polynomial by multiplying it by N_2^{-i} , while ensuring that the resulting polynomial evaluation is still a multiple of $\left(2^{(\beta_2-\beta_1)n}\right)^m p_1^t$.

By selecting the appropriate parameter s, we aim to reduce the determinant of the lattice.

For example, suppose m=5 and t=2, then

$$\begin{split} g_{1,2}(x,y,z) = & (yz)^j f(x,y,z)^i \left(2^{(\beta_2-\beta_1)n}\right)^{m-i} N_1^{\max(t-i,0)} \\ = & (yz)^2 f(x,y,z)^1 \left(2^{(\beta_2-\beta_1)n}\right)^{5-1} N_1^{\max(2-1,0)} \\ = & (yz)^2 f(x,y,z) \left(2^{(\beta_2-\beta_1)n}\right)^4 N_1 \end{split}$$

For example, suppose m=5 and t=2, then

$$\begin{split} g_{1,2}(x,y,z) = & (yz)^j f(x,y,z)^i \left(2^{(\beta_2-\beta_1)n}\right)^{m-i} N_1^{\max(t-i,0)} \\ = & (yz)^2 f(x,y,z)^1 \left(2^{(\beta_2-\beta_1)n}\right)^{5-1} N_1^{\max(2-1,0)} \\ = & (yz)^2 f(x,y,z) \left(2^{(\beta_2-\beta_1)n}\right)^4 N_1 \end{split}$$

Suppose s=2, we multiply the polynomials $g_{1,2}(x,y,z)$ by a power $w^s=w^2$, then

$$\widetilde{g}_{1,2}(x,y,z,w) = (yz)^2 f(x,y,z) \left(2^{(\beta_2-\beta_1)n}\right)^4 N_1 w^2$$

See that

$$\widetilde{g}_{1,2}(x,y,z,w) = (yz)^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1 w^2$$
$$= (zw)^2 y^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1$$

See that

$$\widetilde{g}_{1,2}(x,y,z,w) = (yz)^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1 w^2$$
$$= (zw)^2 y^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1$$

We then eliminate $(zw)^2$ from the original polynomial by multiplying it by N_2^{-2} , i.e.,

$$\begin{split} \overline{g}_{1,2}(x,y,z,w) = & \widetilde{g}_{1,2}(x,y,z,w) * N_2^{-2} \\ = & (zw)^2 y^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n} \right)^4 N_1 * N_2^{-2} \end{split}$$

See that

$$\widetilde{g}_{1,2}(x,y,z,w) = (yz)^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1 w^2$$
$$= (zw)^2 y^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n}\right)^4 N_1$$

We then eliminate $(zw)^2$ from the original polynomial by multiplying it by N_2^{-2} , i.e.,

$$\begin{split} \overline{g}_{1,2}(x,y,z,w) = & \widetilde{g}_{1,2}(x,y,z,w) * N_2^{-2} \\ = & (zw)^2 y^2 f(x,y,z) \left(2^{(\beta_2 - \beta_1)n} \right)^4 N_1 * N_2^{-2} \end{split}$$

For simplicity, the results $\overline{g}_{1,2}(x,y,z,w)$ are denoted as $g_{1,2}(x,y,z,w)$.

Proof of GIFP

Proof.

Consider the lattice \mathcal{L} spanned by the matrix \mathbf{B} whose rows are the coefficients of the polynomials $g_{i,j}(x,y,z,w)$ for $0 \le i \le m$, $0 \le j \le m-i$.

Then

$$\det(\mathcal{L}) < \frac{1}{2^{\frac{\omega-1}{4}}\sqrt{\omega}} \left(2^{(\beta_2-\beta_1)n}\right)^{\omega m} p_1^{t\omega},$$

The inequality implies

$$\tau^2(3-\tau) - 3(1-\alpha)\tau + \sigma^3 - 3\alpha\sigma + 1 - \gamma + \alpha < 0.$$

The left side is optimized for $\tau_0 = 1 - \sqrt{\alpha}$ and $\sigma_0 = \sqrt{\alpha}$, which gives

$$\gamma > 4\alpha \left(1 - \sqrt{\alpha} \right).$$

By Assumption 1, we can get $(x_0,y_0,z_0)=(x_12^{(\beta_2-\beta_1)n}-x_3,x_2-x_4,q_2)$, so we have $q_2=z_0$, and we calculate

$$p_2 = \frac{N_2}{q_2}$$

Next, we have

$$2^{(\beta_2-\beta_1)n}p_1=p_2+(x_12^{(\beta_2-\beta_1)n}-x_3)+(x_2-x_4)2^{(\beta_2+\gamma)n}=p_2+y_0+z_02^{(\beta_2+\gamma)n}$$

Therefore, we can calculate p_1 and $q_1 = \frac{N_1}{p_1}$. This terminates the proof.

- 2 Generalized Implicit Factorization Problem
- 3 Numerical Experiments
- 4 Conclusion

We used a famous assumption that has been mentioned in all previous work. In order to make our results more convincing, we also conducted some experiments

We used a famous assumption that has been mentioned in all previous work. In order to make our results more convincing, we also conducted some experiments

Assumption

The k polynomials $h_i(x_1,\cdots,x_k)$, $i=1,\cdots,k$, that are derived from the reduced basis of the lattice in the Coppersmith method are algebraically independent. Equivalently, the common root of the polynomials $h_i(x_1,\cdots,x_k)$ can be found by computing the resultant or computing the Gröbner basis.

The experiments were run on a computer configured with AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx (2.00 GHz).

n	αn	βn	$\beta_1 n$	$\beta_2 n$	γn	m	$\dim(\mathcal{L})$	Time for LLL (s)	Time for Gröbner Basis (s)
200	20	40	20	30	140	6	28	1.8620	0.0033
200	20	60	20	30	140	6	28	1.8046	0.0034
500	50	100	50	75	350	6	28	3.1158	0.0043
500	50	150	50	75	300	6	28	4.23898	0.0048
1000	100	200	100	150	700	6	28	8.2277	0.0147

Table: Some experimental results for the GIFP.

- 1 Background

- 4 Conclusion

In this paper, we considered the Generalized Implicit Factoring Problem (GIFP), where the shared bits are not necessarily required to be located at the same positions.

We proposed a lattice-based algorithm for this problem.

Can we improve the bound $4\alpha (1 - \sqrt{\alpha})$ to $2\alpha (1 - \alpha)$?

- [1] Alexander May and Maike Ritzenhofen. "Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint". In: Public Key Cryptography PKC 2009, 12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings. Ed. by Stanislaw Jarecki and Gene Tsudik. Vol. 5443. Lecture Notes in Computer Science. Springer, 2009, pp. 1–14. DOI: 10.1007/978-3-642-00468-1_1. URL: https://doi.org/10.1007/978-3-642-00468-1_5C_1.
- [2] Santanu Sarkar and Subhamoy Maitra. "Further results on implicit factoring in polynomial time". In: Adv. Math. Commun. 3.2 (2009), pp. 205–217. DOI: 10.3934/amc.2009.3.205. URL: https://doi.org/10.3934/amc.2009.3.205.

- [3] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault.

 "Implicit Factoring with Shared Most Significant and Middle Bits". In: Public Key Cryptography PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings. Ed. by Phong Q. Nguyen and David Pointcheval. Vol. 6056. Lecture Notes in Computer Science. Springer, 2010, pp. 70–87. DOI: 10.1007/978-3-642-13013-7_5. URL: https://doi.org/10.1007/978-3-642-13013-7%5C_5.
- [4] Santanu Sarkar and Subhamoy Maitra. "Approximate Integer Common Divisor Problem Relates to Implicit Factorization". In: IEEE Trans. Inf. Theory 57.6 (2011), pp. 4002–4013. DOI: 10.1109/TIT.2011.2137270. URL: https://doi.org/10.1109/TIT.2011.2137270.

Reference III

- [5] Yao Lu et al. "Towards optimal bounds for implicit factorization problem". In: International Conference on Selected Areas in Cryptography. Springer. 2016, pp. 462–476.
- [6] Liqiang Peng et al. "Implicit Factorization of RSA Moduli Revisited (Short Paper)". In: Advances in Information and Computer Security 10th International Workshop on Security, IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings. Ed. by Keisuke Tanaka and Yuji Suga. Vol. 9241. Lecture Notes in Computer Science. Springer, 2015, pp. 67–76. DOI: 10.1007/978-3-319-22425-1_5. URL: https://doi.org/10.1007/978-3-319-22425-1%5C_5.

- [7] Shixiong Wang et al. "A better bound for implicit factorization problem with shared middle bits". In: Sci. China Inf. Sci. 61.3 (2018), 032109:1-032109:10. DOI: 10.1007/s11432-017-9176-5. URL: https://doi.org/10.1007/s11432-017-9176-5.
- [8] Miklós Ajtai. "The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract)". In: Symposium on the Theory of Computing. 1998.
- [9] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. "Factoring polynomials with rational coefficients". In: Mathematische annalen 261.ARTICLE (1982), pp. 515–534.

[10] Alexander May. "New RSA vulnerabilities using lattice reduction methods". PhD thesis. University of Paderborn, 2003. URL: http://ubdata.unipaderborn.de/ediss/17/2003/may/disserta.pdf.

Thank you!