Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake CVPR 2011

PRESENTER: AHSAN ABDULLAH

PROBLEM

APPROACH

Partitioning into body parts helps localizing the joints

PIPELINE

BODY PART CLASSIFICATION

- Compute $P(c_i|w_i)$
 - pixels i = (x, y)
 - body part c_i
 - lacksquare image window w_i

- Discriminative approach
 - learn classifier $P(c_i | w_i)$ from training data

LEARNING DATA

synthetic (train & test) real (test)

LEARNING - DATA SYNTHESIS

Record MoCap 500k frames distilled to 100k poses

Retarget to several models

FEATURE SET

- Depth comparisons
 - very fast to compute

feature response
$$f(I,\mathbf{x}) = d_I(\mathbf{x}) - d_I(\mathbf{x} + \Delta)$$
 image coordinate

$$\Delta = \frac{\mathbf{v}}{d_I(\mathbf{x})}$$

scales inversely with depth

Background pixels *d* = large constant

DECISION FORESTS

Aggregation of decision trees

TRAINING DECISION TREES

Take (Δ, θ) that maximises information gain

DECISION TREE CLASSIFICATION

Toy example:

Distinguish left (L) and right (R) sides of the body

DECISION FOREST CLASSIFIER

- Trained on different random subset of images
 - "bagging" helps avoid over-fitting
- Average tree posteriors

$$P(c|I,\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I,\mathbf{x})$$

[Breiman 01]

[Geurts et al. 06]

NUMBER OF TREES

TREE DEPTH

Body parts to joint hypotheses

Define 3D world space density

$$w_{ic} = P(c|I,\mathbf{x}_i) \cdot d_I(\mathbf{x}_i)^2$$
 inferred depth at probability i th pixel

Mean shift for mode detection
 Shotton et. al. CVPR 2011

input depth

inferred body parts

front view

side view inferred joint positions
No tracking or smoothing

top view

JOINT PREDICTION ACCURACY

JOINT PREDICTION ACCURACY

ANALYSIS

- No temporal information
 - frame-by-frame
- Very fast
 - simple depth image feature
 - parallel decision forest classifier

KINECT SYSTEM

Uses...

- 3D joint hypotheses
- kinematic constraints
- temporal coherence

... to give

- full skeleton
- higher accuracy
- invisible joints
- multi-player

SUMMARY

Fast, simple machine learning

 Significant engineering to scale to a massive, varied training data set

QUESTIONS

