Esercizio simulazione Monte-Carlo

Lorenzo Tasca

Dipartimento di Fisica "Giuseppe Occhialini" Università degli Studi di Milano-Bicocca

Aprile 2024

Monte-Carlo for adsorbate configurations

Study a system of adsorbate atom with Monte-Carlo

The energy is

$$H = \frac{1}{2} \sum_{i=0}^{N-1} n_1(i) J_1$$

$$N = 25, E_{min} = -8 \, eV$$

$$N = 25, E_{min} = -8 \, eV$$

$$N = 25, E_{min} = -8 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

$$N = 27, E_{min} = -8.6 \, eV$$

Obtain minimum energy configuration for different values of N

Obtain minimum energy configuration for different values of N

Obtain minimum energy configuration for different values of N

Zero temperature MC, energy variation with N

Zero temperature MC, μ variation with N

Zero temperature MC, number of neighbours variation with N

$$T = 4 K$$

$$T = 4 K$$

 $T = 604 \, K$

 $T = 604 \, K$

T = 1904 K

T = 1904 K

Mean energy variation with temperature

Mean energy variation with temperature

Mean energy variation with temperature

Mean number of neighbours variation with temperature

Mean number of neighbours variation with temperature

Mean number of neighbours variation with temperature

3 dimensional MC, T = 0 K

Final configuration, J0=-0.1 eV

3 dimensional MC, T = 0 K

Final configuration, J0=0.1 eV

3 dimensional MC, T = 1000 K

Final configuration, J0=-0.1

3 dimensional MC, T = 1000 K

Final configuration, J0=0.1

Energy @ T = 0 K

Energy @ *T* = 500 *K*

Energy @ *T* = 1000 *K*

 $N_1/N @ T = 0 K$

$$N_1/N @ T = 500 K$$

$$N_1/N @ T = 1000 K$$

Low temperature, negative coupling

Low temperature, negative coupling Final configuration T=4 K, J0=-0.4 eV

Low temperature, positive coupling

Low temperature, positive coupling Final configuration T=4 K, J0=0.2 eV

High temperature, negative coupling

High temperature, negative coupling Final configuration T=2000 K, J0=-0.4 eV

High temperature, positive coupling

High temperature, positive coupling Final configuration T=2000 K, J0=0.2 eV

