BELL AEROSPACE TEXTRON BUFFALO N Y LACV-30 TEST AND DEMONSTRATION REPORT.(U) FEB 78 M M LASZEWSKI 7467-928009 F/G 1/3 AD-A053 610 DAAK02-75-C-0149 NL UNCLASSIFIED 1 0F 2 ADA 053610

REPORT: 7467-928009

LACV-30 TEST AND DEMONSTRATION REPORT

Marion M. Laszewski Bell Aerospace Textron P. O. Box 1 Buffalo, New York 14240

FEBRUARY 1978

FINAL REPORT

Approved for Public Release; Distribution is unlimited

PREPARED FOR

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND Ft. Belvoir, VA

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER I. REPORT NUMBER 2. GOVT ACCESSION NO. S. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Final Report LACV-30 TEST AND DEMONSTRATION REPORT. PERFORMING ORG. REPORT NUMBER 7467-928009/ CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(A) Marion M./Laszewski DAAKØ2-75-C-Ø149 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Bell Aerospace Textron P. O. Box 1 Buffalo, New York 14240 U. S. Army Mobility Equipment Research 12. REPORT DATE Feb. 978 and Development Command 13. NUMBER OF PAGES Ft. Belvoir, VA 159 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT A Approved for public releases Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Approved for Public Release; Distribution is unlimited 18. SUPPLEMENIANT NUICO 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

U. S. Army Logistic Air Cushion Vehicle

This report presents the test data and analysis of all acceptance and type tests performed on the LACV-30-1 and -2 vehicles. The tests were performed as specified in Contract No. DAAK02-75-C-0149 dated 7 March 1975.

All test data were accepted by the U.S. Army prior to delivery of the vehicles. Two corrective actions were required on the LACV-30-1, installation of a new horn and addition of bow pre-loaders to maintain pressure on the front landing pads during swing crane

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

ABSTRACT

This report presents the test data and analysis of all acceptance and type tests performed on the LACV-30-1 and LACV-30-2 vehicles. The tests were performed as specified in Contract No. DAAK02-75-C-0149 dated 7 March 1975.

All test data were accepted by the U. S. Army prior to delivery of the vehicles. Two corrective actions were required on the LACV-30-1, installation of a new horn and addition of bow pre-loaders to maintain pressure on the front landing pads during swing crane operation.

TABLE OF CONTENTS

				PAG
1.0		INTRO	ODUCTION	1
		1.1	GENERAL GENERAL VEHICLE DESCRIPTION 1.2.1 GENERAL 1.2.2 VEHICLE CHARACTERISTICS 1.2.2.1 PRINCIPAL DIMENSIONS 1.2.2.2 POWER & TRANSMISSION 1.2.2.3 FUEL 1.2.2.4 ELECTRICAL 1.2.3 INSTRUMENTATION SYSTEM	1 1 3 3 3 4 4 4
2.0		APPL	ICABLE DOCUMENTS	9
3.0		TEST	PLAN	10
4.0		TEST	DATA AND ANALYSIS	14
		4.1 4.2	TEST DATA ANALYSIS 4.2.1 ACCEPTANCE TESTS 4.2.1.1 HOVER TESTS 4.2.1.2 SPEED RUNS 4.2.1.3 SWING CRANE TEST 4.2.1.4 SYSTEM RUN-IN TEST 4.2.2 TYPE TESTS 4.2.2.1 CABIN NOISE LEVEL 4.2.2.2 MANEUVERING 4.2.2.3 OBSTACLE TESTS 4.2.2.4 SAFE LIMITS 4.2.2.5 ENGINE FAILURE - "CRASH STOP" 4.2.2.6 ENGINE FAILURE "SPIN OUT" 4.2.2.7 THRUST LOADING 4.2.2.8 AIR CONDITIONING 4.2.2.9 PROPELLER REVERSAL 4.2.2.10 CABIN CONTAMINATION 4.2.2.11 SKIRT PRESSURE SURVEY	14 14 14 14 15 15 16 17 17 17 18 18 18 19 19
APPENDIX	Α		CONTRACTORS' ACCEPTANCE TESTS	A-1
APPENDIX	В		1976 IR&D REPORT 7467-928002 "COMPARISON OF MEASURED AND PREDICTED HOVER PERFORMANCE OF LACV-30 VEHICLES AT BATNFO" 31 DECEMBER 1976	B-1

LIST OF FIGURES

FIGURE		PAGE
1.1	3 VIEW AND GENERAL ARRANGEMENT - LACV-30	8
4.1	LACV-30-1 ACCEPTANCE TEST - SPEED RUN OVER WATER	84
4.2	LACV-30-2 ACCEPTANCE TEST - SPEED RUN OVER WATER	85
4.3	LACV-30-1 TURNING RADIUS OVER WATER	86
4.4	LACV-30-1 TURNING RADIUS OVER WATER	87
TABLE	LIST OF TABLES	
1.1	INSTRUMENTATION PACKAGE ON LACV-30-2	6
3.1	TYPE AND ACCEPTANCE TESTS (OVER LAND)	11
3.2	TYPE AND ACCEPTANCE TESTS (OVER WATER)	12
3.3	COMPLETED TYPE AND ACCEPTANCE TESTS	13
4.1	LACV-30-1 TESTS AT BAT	20
4.2	LACV-30-1 TESTS AT FT. STORY	42
4.3	LACV-30-2 AT BAT	58
4.4	LACV-30-2 AT APG	68
4.5	THRUST LOADING	83

1.0 INTRODUCTION

1.1 GENERAL

This Test and Demonstration Report for the LACV-30 Air Cushion Vehicle fulfills the requirement of Contract No. DAAK02-75-C-0149. This report includes all the acceptance and type tests performed on the LACV-30-1 and LACV-30-2 vehicles as part of the vehicle demonstration program and proof of design tests.

Where possible, vehicle performance estimates are presented for comparison to measured test data. Contractor's tests performed but not specified in the contract are presented in the Appendices.

1.2 GENERAL VEHICLE DESCRIPTION

1.2.1 GENERAL

The Bell Model 7467 LACV-30 (Lighter, Amphibian Air Cushion Vehicle-30-Ton Payload) is a fully amphibious, high speed craft planned to meet projected Army needs as identified in the Required Operational Capability Document (ROC). It is a high mobility vehicle capable of transporting military cargo payloads in the 25 to 30 short ton category (including MILVANS) primarily in support of the logistics overthe-shore (LOTS) mission involving operations over water, marginal areas and land.

The LACV-30 is a hardened version of the standard commercial Bell "Voyageur" Model 7380 ACV which is in production and already operating in a number of remote area cargo haul applications.

To provide the U.S. Army with an optimum craft, the following hardening items are included in the LACV-30:

Hardening Item

Provides

- Longitudinal Stretch
- Increased payload weight and deck area capability
- 2. Air Management System

Longer engine life (intake air filtration to remove sand/water). Improved quality air to cabin. More lift fan output for cushion air. APU power take-off availability provides 15 VAC. High intake stack minimizes water ingestion in the surf zone.

Provides
Loading of U. S. Army-specified tracked and wheeled vehicles and containers.
Improved surf transition.
<pre>Increased payload and/or craft performance.</pre>
Increased payload and/or craft performance.
Compatibility with U. S. Army requirements. Night and low visibility operations.
Improved habitability for intensive operations.
Fast, effective cargo tie-down System
Craft anchoring
Heating and cooling for improved habitability
Cargo handling. Craft self- retrieval and improved gradeability.
To Army requirements
To Army requirements
Roll-on/roll-off of specified tracked and wheeled Army vehicles and MHE
Improved craft skirt protection during operations alongside container ships
Self-unloading capability

1.2.2 VEHICLE CHARACTERISTICS

A 3-view of the Model 7467 LACV-30 is provided in Figure 1.1. The following subsections give leading particulars of the vehicle.

1.2.2.1 PRINCIPAL DIMENSIONS

Overall length (without optional swing crane)	76 ft 3 in
Overall beam (skirts inflated)	36 ft 8 in
Overall height on landing pads	21 ft 6 in
Overall height from skirt hemlines (hovering)	24 ft 8 in
Cargo deck length	51 ft 6 in
Cargo deck width	32 ft 6 in
Cargo deck height	3 ft 11.5 in
Cushion Height	4 ft 0 in
Cushion area	2061 sq ft
Cushion pressure at gross weight 1g	55.8 psf
Reserve buoyancy	155%

fixed pitch

1.2.2.2 POWER AND TRANSMISSION

2	FOWER AND TRANSMISSION	
	Engines	2 UACL/Pratt & Whitney Twin Pac ST6T-76 gas turbines
	Maximum rating (std day) (each)	1850 SHP
	Normal rating (std day) (each)	1400 SHP
	Propellers	Two Hamilton Standard 3-blade variable pitch (HSD Model 43D50-363)
	Lift Fan	Two Bell/British Hover- craft Corp., 7 ft. centrifugal, 12-bladed,

1.2.2.3 FUEL

Fuel Types Standard turbine fuel

either Jet A-1, JP-4, JP-5, or light diesel

fuel oil

Main fuel usable 1,272 U.S. Gal.

capacity

(15,450 lb)

Fuel Ballast Emergency fuel 294 U.S. Gal. (5,400 lb)

capacity

1.2.2.4 ELECTRICAL

Starter Generators per Twin Pac

Powerplant Two (4 total) Gearbox

driven b rushless 28 VDC,

200 amps (each)

Batteries Two nickel-cadmium

28 VDC, 40 amp hr (each)

Generator (APU) One gearbox driven

115 VAC, 400 H.

1.2.3 INSTRUMENTATION SYSTEM

The U.S. Army follow-on Development Test Program for LACV-30-2 employed an analog instrumentation system capable of recording 76 multiplexed channels of data on magnetic tape. The data were capable of being time-coded, voice-annotated, and event-marked.

The major portion of this data acquisition system is pallet mounted and installed on the fore deck just below the cabin. The pallet contains the tape recorder, multiplexes, signal conditioners, amplifiers, converters, patch panel, time code generator, power distribution panel, and attitude/rate gyros. The system controls and displays (time, oscillograph, and visual meters) are located in the cabin and manned by the navigator. Primary power (28 vdc and 115v 400H AC) is supplied from the craft electrical system to the pallet and distributed. Table 1.1 is a listing of parameters with range and type of sensor to be used.

Data were gathered in land and water tests as required by specific development test objectives. All parameters are recorded. The patch panel is utilized to provide the test engineer with selected

information pertinent to a particular test. These data can be "quick look" reviewed to verify attaining test conditions and to determine trend information.

The test engineer is provided with an "Event Mark" control to identify a specific data point on all recorded information. Additionally, the test engineer maintains a detailed log in time code of all tests and significant occurrences.

The Instrumentation System was installed by BAT and its operation verified during the Contractor Test Program.

TABLE 1.1. INSTRUMENTATION PACKAGE ON LACV-30-2

PARAMETER	RANGE	SENSOR	ERROR
1. Power Turbine Temperature	0-1300°r	Engine Pickup	±10°
2. Power Turbine Temperature	0-1300°F	Engine Pickup	±10°
3. Power Turbine Temperature	0-1300°F	Engine Pickup	±10°
4. Power Turbine Temperature	0-1300°F	Engine Pickup	±10°
5. Gas Generator RPM	0-1055	Engine Pickup	±.5%
6. Gas Generator RPM	0-1055	Engine Pickup	±.5%
7. Gas Generator RPM	0-1055	Engine Pickup	±.5% ±.5%
8. Gas Generator RPM 9. Power Turbine RPM	0-105% 0-100%	Engine Pickup	±.5%
10. Power Turbine RPM	0-100%	Engine Pickup Engine Pickup	±.5%
11. Power Turbine RPM	0-1005	Engine Pickup	±.5%
12. Power Turbine RPM	0-1005	Engine Pickup	±.5%
13. Engine Torque	0-70 psi	Engine Pickup	t1.0 psi
14. Engine Torque	0-70 psi	Engine Pickup	±1.0 psi
15. Engine Torque	0-70 psi	Engine Pickup	±1.0 psi
16. Engine Torque	0-70 psi	Engine Pickup	±1.0 psi
17. Air Intake Temperature	-70 +200°F	IC Couple	±40F
18. Air Intake Temperature	-70 +200°F	IC Couple	±4°F
19. Air Intake Temperature	-70 +200°F	IC Couple	±40F
20. Air Intake Temperature	-70 +200°F	IC Couple	±40F
21. Engine Bay Temperature	0-400°F	IC Couple	±40F
22. Engine Bay Temperature	0-400°F	IC Couple	440F
23. Engine Bay Temperature	0-400°F	IC Couple	±40F
24. Engine Bay Temperature	0-400°F	IC Couple	±40F
25. Engine Bay Temperature	0-400°F	IC Couple	±40F
26. Engine Bay Temperature	0~400°F	IC Couple	±40F ±40F
27. Engine Bay Temperature	0-400°F	IC Couple	±4°F
28. Engine Bay Temperature	0-400°F 0-400°F	IC Couple	±40F
29. Engine Bay Temperature 30. Fuel Flow	0-400 T	IC Couple Potter	±.025 GPM
31. Fuel Flow	0-5 GP11	Potter	±.025 GP11
32. Fuel Flow	0-5 GPM	Potter	±.025 GPM
33. Fuel Flow	0-5 GP11	Potter	±.025 GPM
34. Propeller Blade Angle	±25°	Potentioneter	±.5°
35. Propeller Blade Angle	±25°	Potentioneter	±.50
36. Forward Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
37. Forward Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
38. Rear Trunk Pressure	0-120 psf	Press. Xducer	±.84 psf
39. Peripheral Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
40. Peripheral Trunk Pressure	0-100 psf	Press. Xducer	t.7 psf
41. Keel Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
42. Stab. Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
43. Stab. Trunk Pressure	0-100 psf	Press. Xducer	±.7 psf
44. Rear Trunk Pressure	0-120 psf	Press. Xducer	±.84 psf
45. Cushion Pressure	0-75 psf	Press. Xducer	t.5 psf t.5 psf
46. Cushion Pressure 47. Cushion Pressure	0-75 psf 0-75 psf	Press. Xducer Press. Xducer	±.5 psf
48. Cushion Pressure	0-75 psf	Press. Xducer	±.5 psf
49. Pitch Attitude	±600	Gyro	±.50
50. Roll Attitude	±60°	Gyro	±.50
51. Roll Rate	±600/scc	Gyro	±.6 - 1.20/sec
52. Pitch Rate	±600/sec	Gyro	±.6 - 1.2°/sec
53. Yaw Rate	±600/sec	Gyro	±.6 - 1.20/scc
54. C.G. Acceleration Vertical	±5q	Accelerometer	±.049

TABLE 1.1 (Cont'd)

	PARAMETER	RANGE	SIMSOR	EPROR
56. 57. 58.	C.G. Acceleration Long. C.G. Acceleration Lateral Bow Acceleration Vertical Air Management Pressure Air Management Pressure	±5g ±5q ±10a 05 psi 05 psi	Accelerometer Accelerometer Accelerometer Press. Xducer Press. Xducer	±.04a ±.04a ±.075a ±.0035 psi ±.0035 psi
61. 62. 63.	Air Management Pressure Air Management Pressure Air Management Pressure Air Management Pressure Air Speed	05 psi 05 psi 05 psi 05 psi 0-100 MPH	Press. Mducer Press. Mducer Press. Mducer Press. Mducer Anenometer	±.0035 psi ±.0035 psi ±.0035 psi ±.0035 psi ±1 MPH
65. 66.	Wind Direction Puff Port L Puff Port R Air Management Temperature	±170° ON/OPF ON/OPF 0-250°F	Vane Switch Switch IC Couple	±2.0°
69. 70. 71.	Air Management Temperature Strut Load Port L/F Strut Load Port R/H Strut Load Stbd. L/H	0-250°F 15% psi 15% psi 15% psi	IC Couple Strain Gage Strain Gage Strain Gage	±.40p ±.3% psi ±.3% psi ±.3% psi
73. 74. 75.	Strut Load Stbd. R/H Time Code Intercon Event Marker	15K psi	Strain Gage	±.3K psi

FIGURE 1.1. 3 VIEW AND GENERAL ARRANGEMENT - LACV-30

2.0 APPLICABLE DOCUMENTS

The specifications and documents listed below are the basis for the LACV-30 Test Program and vehicle performance.

- (a) Contract No. DAAK-2-75-C-0149, U. S. Army Mobility Equipment Research and Development Center, Ft. Belvoir, Virginia, 7 March 1975.
- (b) United Aircraft of Canada Limited, "Installation Manual ST6T-76 Twinned Turboshaft Engine."
- (c) Pratt and Whitney Aircraft of Canada Ltd., ST6T-76 Twin Turboshaft Engine Specific Operating Instructions," Part No. 3028241, 27 October 1975.
- (d) Hamilton Standard "Model Specification for 43D50-359 Controllable Pitch Propeller Assembly," Model Specification No. MS 5088.
- (e) Hamilton Standard "Model Specification for 43D50-363 Controllable Pitch Propeller Assembly," Model Specification No. 5122.
- (f) Bell Aerospace Company "Technical Proposal for LACV-30-2 Instrumentation System (TECOM) Report No. 7467-953007, June 1975.
- (g) Bell Aerospace Company "Calibration Requirements Summary LACV-30-2, Contract DAAK02-75-C-0149 Mod P00003 Data Item C001" Report No. 7467-956008, March 1976.
- (h) Bell Aerospace Textron, "LACV-30 Pre-Delivery Water Test Program," Report No. 7467-958006, February 1978.
- (i) Bell Aerospace Textron "U.S. Army Lighter ACV LACV-30 P/N 4-099001-1, Operating Manual," Report No. 7467-954001, 9 May 1977.

3.0 TEST PLAN

The LACV-30-1 vehicle was tested in three phases. The first phase of testing was performed at the Bell Aerospace plant in Grand Bend, Ontario, Canada. The initial tests were performed overwater with a vehicle configuration which included volutes in both lift fan plenums and the lengthened Voyageur skirt system. These tests were the pre-delivery water tests performed on Lake Huron. The tests were performed under contract No. DAAKO2-75-C-0149 Mod. No. P00007 CLIN No. 0006. The pre-delivery test results are presented in the report listed as 2.0(h) in the preceding section.

The second phase of testing was performed at the BAT facility adjoining the Niagara Falls International Airport in Wheatfield, N. Y. The modified skirt system was installed prior to these tests. The final phase of testing was performed at Ft. Story, Virginia.

The LACV-30-2 vehicle was tested in two phases, the first at the BAT facility in Wheatfield, N. Y., and the second at the Aberdeen Proving Grounds (APG) in Maryland.

The proposed type and acceptance tests to be performed on both vehicles are presented in Tables 3.1 and 3.2. These tests are outlined in Contract No. DAAK02-75-C-0149 which is listed as Item 2.0(a) in the preceding section. The actual tests performed on both vehicles are presented in Table 3.3. The swing crane acceptance test was only performed on LACV-30-1 because a swing crane was not installed on the LACV-30-2. Other tests performed but not included in Tables 3.1 and 3.2 are the skirt surveys and cabin contamination tests. The results of these tests are presented in the Appendix.

TABLE 3.1. TYPE AND ACCEPTANCE TESTS (OVER LAND)

- 1	* TEST	(WT. AND L.C.G.)	SPEED (MPH)	SURFACE	METHOD
.≰	Hover	60,000 lb., mid 115,000 lb., mid		Smooth	On cushion; record hover height and trim attitudes.
A	SPEED RUNS	Any	30 - limit	Any	Surveyed course; distance/time up and down wind; increments of 5 mph
E	Maneuvers	Any	Safe	Any	Figure - 8 turns.
H	Obstacles	Any	Safe	Dirt	Negotiate prepared obstacle course consisting of hump varying from 1 to 3 ft. over length and 8 foot deep ditch varying in width from 3 to 6 feet over length. Courses from minimum to maximum.
EH	Prop Reversal Stop	Any	25	Any	Stop by propeller reversal at speeds of 10, 15, 20 and 25 mph.
æ	Swing Crane	Any		Smooth Concrete	Off cushion resting on landing pads with the engines at idle and APU operating to provide engine combustion air and electric
	*A - Acceptance T - Tune				power.

TABLE 3.2. TYPE AND ACCEPTANCE TESTS (OVER WATER)

	* TEST	LOADING (WT. AND L.C.G.)	SPEED (MPH)	WAVE HEIGHT	МЕТНОВ
A	Hover	60,000 lb., mid 115,000 lb., mid	0	Calm	On cushion, record hover height and trim attitudes.
E	Thrust Calibration	60,000 lb., mid	0	Calm	On and off cushion; tether aft. Using load cells, measure static Propeller Thrust at 70, 80, 90, 95 and 100%.
A	Speed Runs	Any	30 - Limit	18 in.	Surveyed course; distance/time. Up and down wind runs; increments of 5 mph.
H	Crash Stop	Any	30 - Limit	18 in.	Simulated engines (2) failures in 5 mph steps.
H	Manuevers	Any	30 - Limit	12 in.	Figure -8 turns at increasing entry speeds; 5 mph step.
E	Spin Out	Any	30 - Limit	6 in.	Simulated critical engine failure in 5 mph steps.
E	Safe Operating Limits	A11	AS reg'd.	30 in.	α
	*A - Acceptance T - Type				sare speed at Iwd. L.C.G.

TABLE 3.3. COMPLETED TYPE AND ACCEPTANCE TESTS

		VEHIC	CLE
ACCE	PTANCE TESTS	LACV-30-1	<u>LACV-30-2</u>
a)	OVER LAND		
	HOVER WITH FULL LOAD	X	X
	HOVER WITH NO LOAD	X	X
	GROUND SPEED	X	X
	SWING CRANE	X	*
	SYSTEM RUN-IN	X	X
b)	OVER WATER		
	HOVER WITH FULL LOAD	X	X
	HOVER WITH NO LOAD	X	X
	SPEED RUNS	X	X
TYPE	TESTS		
a)	OVER LAND		
	CABIN NOISE LEVEL	X	Х
	SKIRT PRESSURE SURVEY	X	X
	CABIN CONTAMINATION		X
	OBSTACLE		X
	MANEUVERING	X	
	PROPELLER REVERSAL	X	
b)	OVER WATER		
	THRUST LOADING		· X
	AIR CONDITIONING		X
	CABIN NOISE LEVEL	X	
	MANEUVERING	X	
	SAFE LIMITS	X	
	ENGINE FAILURE CRASH	X	
	ENGINE FAILURE SPINOUT	X	

^{*}SWING CRANE NOT INSTALLED

4.0 TEST DATA AND ANALYSIS

4.1 TEST DATA

The test data for all the required acceptance and type tests are presented in four tables, two test phases for each vehicle. The initial test phase on the LACV-30-1 vehicle is not discussed here since it has been reported separately. Tables 4.1 and 4.2 present LACV-30-1 test data for tests performed at BAT and Ft. Story, Virginia. Tables 4.3 and 4.4 present LACV-30-2 test data obtained from tests at BAT and Aberdeen Proving Ground .

4.2 ANALYSIS

4.2.1 ACCEPTANCE TESTS

The analysis of the acceptance tests performed on the test vehicles is presented in the following subsections, where possible test data is compared to estimated values.

4.2.1.1 HOVER TESTS

Hover acceptance tests for both of the test vehicles were satisfactory. Both vehicles were tested with full and no load, on land and over water.

4.2.1.2 SPEED RUNS

The overland speed runs were required to be made in the speed range of 25 to 35 mph. The LACV-30-1 vehicle was tested at BAT and attained an average indicated air speed of 43.5 mph and a ground speed of 35 mph. The LACV-30-2 vehicle attained an average indicated air speed of 45 mph and ground speed of 36 mph.

The overwater speed test for the LACV-30-1 vehicle was performed at Ft. Story, Virginia. The vehicle attained a calibrated airspeed of 53 mph at a gross weight of 76,000 pounds. The power output of the ST6T-76 Twin Pac was 1701 horsepower. The power output was obtained using the TOP and N₂ readings taken during the test and inputting the data into the equation obtained from the Engine Operating Instructions listed in Section 2.0. The maximum speed of the LACV-30-1 with swing crane is presented in Figure 4.1 as a function of horsepower and average wave height for the test condition shown. The sea state

condition during the test was estimated as less than sea state 1 which means the average wave height was somewhere between 0 and 0.8 feet. The cross plot of 53 mph and 1701 horsepower in Figure 4.1 indicates an average wave height of 0.43 feet which basically verifies the speed attained.

The overwater speed test of the LACV-30-2 was performed at Aberdeen Proving Grounds. The comparison of estimated to average speed obtained in the test is shown in Figure 4.2. The average test speed of 42.5 mph is well below the predicted value of 51 mph for a 1200 horsepower lift fan and propeller input. The test data indicate that the speed runs were performed with a 2 mph cross wind. Although the cross wind is not significant, the variation of output horsepower for each Twin Pac is. According to the test data it appears that one Twin Pac was producing 1277 horsepower and the other 1121 horsepower which could indicate that propeller thrust was being used to control vehicle heading. The low power level for the test was due to operating the vehicle with uncompensated T7 limits. The vehicle engine normally operates with cmmpensated T7 limits which for the values of T7 recorded during the test would normally indicate higher power output levels.

4.2.1.3 SWING CRANE LOADING TESTS

The swing crane loading tests were performed at BAT on the LACV-30-1 vehicle. The test is presented in Table 4.1. The swing crane was accepted with the provision that bow pre-loaders be installed to maintain pressure on the front landing pads during swing crane operation.

4.2.1.4 SYSTEM RUN-IN TESTS

System run-in tests were performed on both vehicles at BAT. The only discrepancy occurred in the LACV-30-1 vehicle where it was recommended that the existing horn be replaced and rechecked.

4.2.2 TYPE TESTS

The analysis of the type tests performed on the test vehicles is presented in the following subsections. Where possible test data are compared to estimated values.

4.2.2.1 CABIN NOISE LEVEL

Cabin noise level tests were performed on both vehicles, the LACV-30-1 overland and water, and the LACV-30-2 overland only. Noise spectra in octave bands were measured at crew stations of the LACV-30 at full power, with the craft both stationary on cushion and at maximum speed. Significant data obtained is compared below with "Steady-State Noise Limits for Personnel Occupied Areas", Category D in Table 2 of MIL-STD-1744A(MI).

Octave Band Center Frequency	Cat. D 8 Hr. Ex- posure (db)	Underway MCP (db)	Underway MAP (db)
125	96	94	99
250	89	91	94
500	83	84	89
1000	80	82	88
2000	79	75	81
4000	79	66	71
8000	81	63	69
db(A)	85	84-Compt	uted-90

The above shows the highest levels measured; underway at maximum continuous power (MCP) and at maximum available power (MAP), a power setting limited to five (5) minutes to prevent damage to the engines. Note that the prevailing full speed operation underway at MCP (2800 eshp) closely agrees to Category D standards which permits unprotected exposure for eight hours and is based primarily on hearing conservation priorities.

To judge the compatibility of the short duration higher levels at MAP, the Walsh-Healy Act safety regulations on industrial noise exposure equates db(A) sound level with exposure time by permitting a 5 db(A) increase in noise level with a 50% reduction in time exposed. Therefore, the noise measured at MAP (3700 eshp) is acceptable for a four (4) hour continuous exposure; engine operating limits restrict MAP to five (5) minutes.

The data taken with craft stationary (1600 eshp) is generally less than that experienced underway at MCP. At the lower frequencies, the decibel level is slightly above the underway cases most probably due to propeller blade pass noise at the effective zero pitch angle required to hover. Average levels measured comply with the specified standard.

4.2.2.2 MANEUVERING

Maneuvering tests were performed with the LACV-30-1 at Ft. Story. Turn radii on land were small, 15 ft. and 20 ft. in upwind and downwind tests. No estimates have ever been made for turning radii on land.

The overwater tests were performed for two entry speeds, 40 and 30 mph, at a gross weight of 76,000 pounds. The comparison of predicted with test data is shown in Figures 4.3 and 4.4. The turning radii obtained from the tests were estimated The turning radius for an entry speed of 40 mph was in good agreement with predicted as shown in Figure 4.3. The turning radius for an entry speed of 30 mph was substantially lower than predicted as can be seen in Figure 4.4. Further testing at other test conditions would be required to substantitate the predicted values.

4.2.2.3 OBSTACLE TESTS

Obstacle crossing tests were performed at Aberdeen Proving Grounds using the LACV-30-2 vehicle. In the ditch crossing test the ditch measured 10 feet wide at the crossing point. The ditch crossing speed was an indicated air speed (IAS) of 22 mph. The second obstacle crossed was a three-foot high step. The test was performed at an IAS of 33 mph. The vehicle performed satisfactorily in both tests.

4.2.2.4 SAFE LIMITS

The safe operating limits overwater were performed to demonstrate that the vehicle would not "plow in" at selected speeds and yawed conditions. Tests were performed with the LACV-30-1 vehicle at entering yaw angles of 0 and 30 degrees at an IAS of 45 mph. No adverse behavior was recorded.

4.2.2.5 ENGINE FAILURE - "CRASH STOP"

"Crash stop" tests were performed overwater with the LACV-30-1 vehicle at Ft. Story. The tests were performed to demonstrate vehicle conditions with the loss of power from both engines. The tests were performed at a yaw angle of 0 degrees at a cut-off IAS of 40 mph and at a 30 degree yaw angle at a cut-off IAS of 45 mph. The vehicle exhibited no adverse behavior.

4.2.2.6 ENGINE FAILURE - "SPINOUT"

"Spinout" tests were performed on the LACV-30-1 vehicle at Ft. Story. The tests were performed to demonstrate the vehicle under a simulated engine failure condition with optimum trim from a target speed of 10-50 mph. The selected engine to be cut was at the discretion of the operator. tests were performed at a yaw angle of 0 degrees at a cut-off IAS of 40 mph and a yaw angle of 30 degrees with a cut-off IAS of 30 mph. After engine cut-off the vehicle yawed in the direction of the cut-off engine and sideslipped until the operator took corrective action. The estimated maximum roll angle incurred during the test was 25 degrees. The corrective action taken by the operator for restoring vehicle control was to reduce power on the opposite engine. The recovery action successfully corrected the unusual vehicle attitude.

4.2.2.7 THRUST LOADING

The thrust loading test was performed at APG with the LACV-30-2 vehicle hovering overwater. The vehicle was tethered to a government furnished measuring device to determine thrust of the 43D50-363 propeller over a range of engine settings. Due to the inability of maintaining the vehicle normal to the tether point, the values obtained in the test were not considered to be the maximum available.

The test was repeated overland. The vehicle was tethered at the stern to a GFE thrust measurement van which was used to determine the net forward force. A bridle on the starboard side restrained the vehicle from lateral movement. A total of seven test points were obtained. The test conditions were:

 $T_{AMB} = 80^{\circ} F$

 $V_{WIND} = 4 MPH$

BAROMETER = 29.95 inHg

W_G = 85,000 Lb. (empty MILVAN's placed on deck)

The results of the analysis are presented in Table 4.5. The predicted propeller data provided by Hamilton Standard has a minimum Cp value of 0.07, therefore no comparison to predicted can be made for the first three test points. Test points 4, 5 and 6 indicate that the resulting performance of the propellers was within 10% of the predicted, while the test point 7 was within 3% of predicted. No angles of attack were recorded during the test, therefore cushion thrust effects have not been included in the analysis.

4.2.2.8 AIR CONDITIONING

Air conditioning tests were performed overwater on the LACV-30-2 vehicle at Ft. Story. The outside temperature was $101^{\rm OF}$. At the end of the test, 30 minutes later, the cabin temperature dropped to $78^{\rm OF}$. The test results were satisfactory and accepted by the U. S. Army.

4.2.2.9 PROPELLER REVERSAL

The overland stop tests were performed on the LACV-30-1 vehicle at BAT. The propeller reverse thrust was used to stop the craft. The stopping time from an IAS of 45 mph was 56 seconds. The stopping distance was 1600 feet. The test results were accepted by the U. S. Army.

4.2.2.10 CABIN CONTAMINATION

The cabin contamination tests were performed on the LACV-30-2 vehicle at BAT. The data is presented in Appendix A. The measured noxious fumes were in allowable limits and were acceptable for habitation.

4.2.2.11 SKIRT PRESSURE SURVEY

The skirt pressure survey was performed at BAT on both of the test vehicles. The tests were not required as part of the acceptance test program. The report presenting the test data and results is presented in Appendix B to provide a complete data package for both of the vehicles.

TABLE 4.1. LACV-30-1 TESTS AT BAT

THIS TABLE CONSISTS OF A SERIES OF TEST PLANS FOLLOWED BY TEST DATA.

BELL AEROSPACE ACV TEST PLAN ACV CREW		LACV-30,- NO CHASE AIRCHAFT		0-1 OPER. NO. A1-0218			
					TEST CONDITIONS		
CREW POSITION	NAME.	TYPE A/C	CREW			TAKEOFF	LAND
Operator	D. Hall			WEIGHT		115,000	TBD
Co-Operator	G. Yaeger			FUEL		See Load	ing 4
U.S.A. Obs.	J. Sargent			c.G.		_	-
	H. Woods		ENTATION PLAN ONE	BALLAS	г	-	-
	L/C Pope	SETUP NO.	AMEND NO.	ALT SET	TING		
		RAG	DIO FREQ.	PRESS A	LT		
TEST ENGINEER	C. Stauffer	UHF	121.7	WIND			
TEST DIRECTOR	n n	UHF-FM	6	TEMP			
FINAL GO-NO GO AUTHORITY	и	VHF-FM	TBD	REC	ORD AI	BOVE DATA	
CRAFT CHANGES SIN	CE LAST OPERATION			TEST PURPOSE			
	nagement Insti s pressure tap		ion			ration to or accepta	
20 (202	- FILLDAIO GAI			1	. Hov	er with f	ull lo
				2	. Sys	tem run-i	n test

TEST ENGINEER

OPER, IN COMMAND

APPROVAL

TEST PROCEDURE

OPER, IN COMMAND

- Position craft on BAC concrete ramp north of production hangar. restrain as required for wind and slope.
- II. Perform Operator Inspection IAW Checklist.
- III. Perform normal pre-start, start, etc. IAW Checklists.
- IV. Raise craft in hover mode
 - A. Conduct acceptance tests (DAAK02-75-C-0149, Attachment I, Pages 10 and 11).
 - 1. Hover with full load per Attachment I (Ref. Item 9(A)2)A.

Cabin noise level (stationary)

- Perform system run-in tests per Attachment 2 (Ref. Item 9(A)3)A & B).
- Obtain cabin noise level data per Attachment 3 (Ref. Item 9(A)5)
- V. Secure craft as required for cargo handling tests.

U.S. ARMY ACCEPTANCE

LACV-30-1

LAND HOVER WITH FULL LOAD

- 1. Verify craft configured per Loading 4 (115,000 lb. G.W.).
- 2. In cushion mode, trim and perform a 15 minute demonstration at N2 maximum (91% N2 minimum).
- 3. Manually record the following data:

	START			COMPLETE			
Time	153	30		1640			
Fuel (Fwd)	54%	54%		54%	54%		
(Main)	80%	75%		75%	75%		
(Aft)		52%		52	8		
T7 (°C)	405 465	450 420		405 465	450 420		
N ₁ (%)	85.5 89.0	86.5 86.0		85.5 89.0	86.5 86.0		
N ₂ (%)	91 91	91 91		91 91	91 91		
Torque (psi) 1	8 18	16 18	18	_18	16 18		

COMMENTS:

All operations satisfactory.

COMPLETED

6 BAC

VERIFIED Jack Mull

BAC QUALITY

ACCEPTED U.S.

.S.A. REPRESENTATIV

U.S. ARMY ACCEPTANCE

LACV-30-1

SYSTEM RUN-IN TESTS

Starting concurrent with Hover (Attachment 1) and continuing off cushion for a total of one hour, functionally operate the following systems:

Start Time 1530	Complete Time _	1640
Puff Ports (20 cycles each)	Grey	(19 Feb 74)
Cabin Heaters (Both, Lo and Hi)	Ty.	- Sep
Windshield Heat (Continuous)	yes	200
Air Conditioner (Vent & Cool)	SICY	_80_
APU (Generator On)	Skif	80
AN/URC-80 (4 Contacts)	gef	_ ©
AN/URC-46 (4 Contacts)	GICY	_0
AN/PRC-94 (4 Contacts)	Sey	870
RMHS System (Continuous)	yey	\$20
AN/ASN-43 Compass (Continuous)	gry	300
Radar (Continuous)	Sily	80
Fuel Trim (To/From Transfers)	gey	\$70
Engines (Continuous)	gay	
Propellers (As Required)	GRY	
Windshield Wipers (4 Cycles)	My	- SO-
Spotlight (4 Cycles)	My	
Running Lights (Continuous)	Siry	
Horn (4 Blasts)		
	BAC	U.S.A.

DISCREPANCIES AND DISPOSITION:

 ${\tt RMHS}$ operative; needs repeat Compass Swing. Will be accomplished during BAC tests at Fort Storey.

Existing horn will be replaced; recheck as above.

COMPLETED

VERIFIED

BAC QUALITY

ACCEPTED

U.S. ARMY ACCEPTANCE

LACV-30-1

CABIN NOISE LEVEL - STATIONARY

1. Concurrent with Attachment 1, conduct survey with engines at full power (N2 maximum). Using an Octive-Bad Noise Analyzer, record noise levels at ear level.

		Opera	tor	Freq.	Pas	senger
		(Raw)	(Corr.)	(Hertz)	(Raw)	(Corr.)
Band	1	48	48.9	16000	48	48.9
	2	60	60	8000	60	60
	3	61	58	4000	60	57
	4	68	68.2	2000	67	67.2
	5	74	74	1000	73	73
	6	82	81.8	500	82	81.8
	7	92	92	250	94	94
	8	125	125.7	125	105	105.6

Record engine parameters.

N1 (%)	85.5	89.0	86.	5	86.0
N ₂ (%)	91	91	91		91
Torque (psi)	17 18		16	18	_
Prop. Pitch	-5		-5		

Record Model and Serial No. of Test Equipment.

General Radio Model 1558AP Octave Band Noise Analyzer, S/N 732.

Attach Calibration Sheets.

COMPLETED

VERIFIED (

ACCEPTED

POST OFFICE BOX ONE . BUFFALO, NEW YORK 14240

	LHRATICA	
	OCEDUR.	41.11
NI	MRER	0644
1		3

CALIBRATION DATA SHEET

NOMENCLATURE	MANUFACTURER	MODEL NO.	. 10
CC TAUL BANDWILL ANDOIZE	GEN, RADIO	1558-AF	11
FILE NO.	TECH. S.R. MITROWSKI	CALIBR. DETE	
32 60053	4.2	5-19-75	Mari

CALIBRATION EQUIPMENT

FILE NO.			1
	V7VM	XALC ANTINO	300
1050002	1700	41 12	4000
1910003	DELAPE ATTEN	12 M	1450
25800024	255	110	20546-
	0.5 C	40	200 CO
2050003	CONTEN	BRECEL	7375
3250001	ALL RESPONE	an	15590
3010001	TAMSONLE MAPTON	0.1	2995-9129
	m Ishop None-	on	i.
	TA.		
			1

CALIBRATION DATA

PARA.		AL TOTTO	ME	ASUREMENT DA	TA	TOLE	RANCES	N.
TEP NO.	PUNCTE	ON TESTED	NOMINAL	MEASURED	CORRECTED		1.5	1
	BAND L	WELDS						100
	WITERUA						-	
	Pos	ans.	STOSET			\$1.013		
12	50 (4)		10	Twing			1	
	60 (\$		80	-0.1			-	-
	2014		20	-0.2			-	3
	Se) (9)		60	- 0.1				-
	9012		50	-0,1		-	-	
	in (1)	, ,	40 R	FO 05				-
	111	110	30	-0.1			-	11
	(1)	120	20	-0.1			1	
	()	130	10	-0.1		- 1 53		17.00
	(1)	140	0	-0.1		± 1.0 DB	-	-
						3	-	-
	METER	HECK			-	77	1	
	- A STEA	4.1.10						
	947762	DIAL	500			7	1 4	
	105 4 (00)		GET	 			 	1
	(4)	7 20:4 (201)	45	-5.0	T. F		1.	-
	4	(41	44	- 4.0			1	1
	(4)		42	-2.0	- 3		1	-
	+ 2	(4)		REF O			1 7	-
			30	+2.0				
	141	(4	36	+4.0		***************************************	1	
		(4)	32	+8.0		-	-	
	14/1/2	(;;	30	+10.0			1	
	(4)	(4)				i.		1
	1					1		
			26					7

1000 CO THURSTON

32 60053

		CALIBRAT	ION DATA		1558 PKS	
				612	320	
TARA.	PUNCTION TESTED	1	TATUREMENT JA		* TOLFR	VNCA:
TEP VC.		NOMNAL	MEASURED	CORECTO	7	
	GAMP MASS DIEL	1-Korn		L	-	-
	the Concet were	1115	>30 de		7 30 PB	-
	LONG CUTOFIE	22:3	-3.0		3.503	TIPE.
	315 CETRICA	21.5	1.0 ds		±103	-
	BX HIGH CUTOFF	44.6	12.5		3503	100
	AN HIGH COLORE	89.2	>30 "		730 PB	-
	1 76	1000	E		22.00	
,	1/2 2000	22.3	>30 de		73003	+ . 00
	63 cont cros	63	- 3.0 "		\$5 PB	11/50
						+ 100
	1410-17 2X 1/16-44	428.4	750. "		7 30 013	IDB
		16.7	730,		SOVIS	
	YALOV .	44.6	>30dl-		2 300B	
	1-0W	188.4	- 2.4 "		3.5 DB	TIDA
	125 GENT FROM	125	+0.7"		2103	The state of the s
	111-11	1177	- 3.0 "		35 DB	TIDE
	dx Hirt	354	730. "		>3000	
	TO BIFT	1	12.		-	
	1/2 LOW	84.4	730 db		730 PB	
	Low	127		*	3.5 DB	7103
·	250 CLATHER FREE	1050	0.0 "		#-103	
	HIGH	354	- 3.0 "		3.5PB	± 10B
	2X HILA	207	>30. "		73003	1
			1		1.	
	1250~	177	>30db		7 30DB	
	40~	354	- 2.2	*	3.5 DB	2100
	SID CONTOR	500	-0.2 "		+ 100	
	Heg-H	707	-4.0 "		3.500	1100
	dx HIT	19414	>30 11		730 DB	
		4	*		<u> </u>	
-9	1/2 400	354	730 de		30 PB	
•	100	707	-2.8 "		3.5 03	IIPB.
	1000 Contre	1000	0.0 "		7100 3-503	-
	MION	1414	-4.0 "		3-503	-103
	exHICH	2828	730 "		730 DB	
					<u> </u>	1
	1/2 600	707	>30 db		230 PB	-
	400	1414	- 2.0	*	3-500	2103
	2010 5000	2000	+0.2"		+109	1
-	ply 1-st	12628	-30 "		3-5013	1108
+	124.60	1202.6	730."		>30 BB	
-	1	100 6	15.77		t	1
-	124600	2828	- 39 4		230 PB	#123
fi	1000 Conten	5656	0.0		3.5 M	-113
11		\$130	- 3.2			± 185
*		22620	>30.		3.50B	
N.	The state of the s		128.1			1
	Takon	15656	730.20		> 30 DB	7
1	1400	11310	-28 "		3.508	TIDB
	VACO CENTY	VLOCE	+0.9 "		=103	
	HIVE	12 620	-3.0 "		3.5/19	1103
	2×121-17	45240	>30. "		> 3000	
	BLOW	1414	730 de		230 DB	
	Low	2828	-1.6 "	* "	3.500	±108
	HONE CENTER	4000 5656 11320 27	0		±1.0 00	
SE	DX HIGH	. 5656	730		1 2 50B	I I D.B.

BELL AEDOSSAS	C ACU TECY DI ANI		TYPE		OPER. NO		
BELL ALKUSPAU	E ACV TEST PLAN		LACV-30-	1		A2-0219	
ACV CREW		NO	NO CHASE AIRCRAFT		TE	ST CONDITIO	NS
CREW POSITION	NAME	TYPE A/C	CAEW			TAKEOFF	LAND
Operator	Hall			WEIGHT		Not appl	cable
Co-Operator	Yaeger			FUEL			
Crew	Finch			C.G.			
"	Greenspan	INSTRUM	ENTATION PLAN	BALLAST		See Load	ling 4
U.S.A. Obs.	J. Sargent	SETUP NO.	AMEND NO.	ALT SET	TING		
		RA	DIO FREQ.	PRESS AL	т.		
TEST ENGINEER	Stauffer	No	t Required	WIND			
TEST DIRECTOR	11			TEMP			
FINAL GO-NO GO AUTHORITY				RI	ECORD	ABOVE DA	r _A
CRAFT CHANGES SIN	CE LAST OPERATION			TEST PUF			
NONE				The state of the s		cration to or accepta	
				1		load 2 M	

TEST ENGINEER	OPER. IN COMMAND
TEST PROCEDURE	1

APPROVAL Danger

- I. Position craft on BAC concrete ramp. In the event of adverse weather, hangar craft on North Side of Flight Test Hangar. (In hangar, external 400 hertz power to be used in lieu of APU.)
- II. Perform Operator Inspection IAW Checklist.
- III. Perform sections of normal pre-start, start, etc. required for APU (Generator On) operation. Man the operators position for periods when APU is operating.
- IV. With craft on landing pads:
 - A. Conduct acceptance tests (DAAK02-75-C-0149, Attachment I, Page 11)
 - 1. Swing crane off-load MILVANS per Attachment 1 (Ref. Item $9(\lambda)6$).
- V. Secure craft and prepare for taxi tests (A3-0220).

Bell Aerospace

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

B. Swing Crane Operations

The LACV-30 will be off cushion resting on its landing pads with the engines at idle and the APU operating to provide engine combustion air and electrical power. Observe precautions in Chapter 2, Section 3. The basic functions and sequence are as follows:

- (1) The crewmen exit the cabin.
- (2) Unlash the MILVANS.
 - (a) Slide the lock and pull handle on tensioner assembly to open position.
 - (b) Remove beaded assembly from tensioner.
 - (c) Remove beaded assembly from the MILVAN corner fitting.
 - (d) Remove tensioner assembly from the cargo tiedown fitting by removing the screw pin from the shackle and removing the shackle from the deck fitting. Reinstall the screwpin.
 - (e) Stow all lashings.
- (3) Unlash load spreader pallets.
 - (a) Slip lines from the bollard.
 - (b) Unhook the line from pallet "D" ring.
 - (c) Stow all lines.
- (4) Unlash chain hoists and lifting beams, stow lashings.
- (5) Pull pins on outboard surf fence struts, swing forward and stow and repin. Install surf fence locks between surf fence sections.
- (6) Pull swing crane transportation stow pins.

Bell Aerospace

Bell Aerospace Division of Textron Inc.

Post Office Box Orie Buffalo, New York 14240 716/297-1000

- (7) Engage tow chain in pallet chain fitting (2 forward pallets) and pin in position. Place tail of chain on pallets. Raise pallet tierod to UP position.
- (8) Start hydraulic power unit.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING CHAIN, PULLEY, TIEROD AND HYDRAULIC ACTUATOR, ASSURE PALLETS AND CHAIN DO NOT SNAG OR JAM DURING FORWARD MOVEMENT.

(9) Operate swing crane forward. The two forward pallets and MILVAN will move forward approximately 13 ft.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING OR ROTATING EQUIPMENT.

- (10) Operate swing crane aft, disengage pin and chain from both pallets, replace in, and simultaneously pull the port and starboard chain aft keeping the chain under tension and free of obstructions.
- (11) Stop the crane when the <u>limit blocks</u> are aft of the pallet tow chain fittings.
- (12) Re-engage tow chains in the pallet tow fittings. The nylon limit block must be forward of the tow fitting and as close to the fitting as possible with an equal number of links between fittings and limit blocks port and starboard. Replace pin. Place tail of chain on pallets.

WARNING

IF, DUE TO POSITION OF MILVAN ON PALLET, THE TIEROD WILL HIT THE SURF FENCE STRUTS — REMOVE THE TIEROD AND STORE ON FWD. DECK.

Bell Aerospace NEXTRON

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

- (13) Operate swing crane to position the front edge of MILVAN at guide mark on deck.
- (14) Position swing crane to VERTICAL POSITION.
- (15) Disengage chain from pallet tow fitting both sides. Replace pin.
- (16) Attach snatch block from winch swing crane to jack assembly.
- (17) Unlock jack and lower to ground.
- (18) Repeat for opposite jack.
- (19) Rotate jack pad 90 degrees. Jack swing crane tierod end to top of lateral support fitting.
- (20) Repeat for opposite jack and secure winch.
- (21) Operate swing crane to full aft position, simultaneously pulling the tow chain aft keeping the chain under tension and free of obstructions.
- (22) Lower chain fall and lifting beam to top of MILVAN and engage beam hooks in MILVAN. Raise chain-fall to pretension the hooks.

CAUTION

BE CERTAIN BOW TRUNK SKIRTS ARE UNDER THE CRAFT SO TRAILER DOES NOT RUN OVER THEM.

(23) Move tractor/trailer into position.

WARNING

ENSURE THAT THE TOW CHAINS DO NOT CATCH ON PALLETS, CURBS. TIEDOWN FITTINGS OR THE HOIST HAND CHAIN DOES NOT ENGAGE THE SURF FENCE.

Bell Aerospace HEXTRON

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1900

- (24) Operate swing crane to lift MILVAN from the deck to the trailer.
- (25) Lower chain fall and position MILVAN on trailer. Use tag lines if required.
- (26) Disengage beam hooks from the MILVAN and operate chain hoist to raise the beam back up to position.

When only one MILVAN is to be unloaded, proceed to step 45. If a second MILVAN is to be unloaded, proceed as follows:

(27) Operate swing crane to aft position simultaneously pulling the tow chains aft keeping tension on the chains and free of obstructions.

NOTE

TRAILER CAN BE MOVED OUT.

- (28) Remove pallet tierods and place on fwd deck.
- (29) Attach pallet tiedown ropes to "D" rings of pallets and position pallets to center of deck.
- (30) Engage tow chain in pallet chain fitting (2 aft pallets) and pin in position. Place tail of chain on pallets. Raise pallet tierod to UP position.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING CHAIN, PULLEY, TIEROD AND HYDRAULIC ACTUATOR. ASSURE PALLETS AND CHAIN DO NOT SNAG OR JAM DURING FORWARD MOVEMENT.

(31) Operate swing crane forward. The two pallets and MILVAN will move forward approximately 13 ft.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING OR ROTATING EQUIPMENT.

Bell Aerospace HI⇒XIRON

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

- (32) Operate swing crane aft, disengage pin and chain from both pallets, replace pin, and simultaneously pull the port and starboard chain aft keeping the chain under tension and free of obstruction.
- (33) Reengage tow chains in pallet chain fittings and pin in position. Place tail of chains on pallets.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING CHAIN, PULLEY, TIEROD AND HYDRAULIC ACTUATOR. ASSURE PALLETS AND CHAIN DO NOT SNAG OR JAM DURING FORWARD MOVEMENT.

CAUTION

ASSURE THE PALLET TIEROD IS IN THE UP POSITION AND OBSERVE THAT TIEROD AND MILVAN TRAVERSE THE TWO PALLETS ON CENTER OF DECK.

(34) Operate swing crane forward.

WARNING

KEEP HANDS AND FEET CLEAR OF MOVING OR ROTATING EQUIPMENT.

- (35) Operate swing crane aft, disengage pin and chain from both pallets, replace pin, and simultaneously pull the port and starboard chain aft keeping the chain under tension and free of obstructions.
- (36) Stop the crane when the nylon <u>limit blocks</u> are aft of the pallet tow chain fittings.
- (37) Re-engage tow chains in the pallet tow fittings. The nylon limit block must be forward of the tow fitting and as close to the fitting as possible with an equal number of links between fittings and limit blocks port and starboard. Replace pin. Place tail of chain on pallets.

Bell Aerospace HEXICON

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

- (38) Operate swing crane to position the front edge of MILVAN at guide mark on deck. As the pallets/MILVAN moves forward observe the tierod assembly in the lateral support fitting. If the rod assembly moves out of the supporting fitting, adjust the jacks to lower the tierod assembly back into position.
- (39) Operate swing aft, disengage chain from pallet tow fitting both sides. Replace pin and pull tow chains aft.
- (40) Lower chain fall and lifting beam to top of MILVAN and engage beam hooks in MILVAN. Raise chain fall to pretension the hooks.

CAUTION

BE CERTAIN BOW TRUNK SKIRTS ARE UNDER THE CRAFT SO TRAILER DOES NOT RUN OVER THEM.

(41) Move tractor/trailer into position.

WARNING

ENSURE THAT THE TOW CHAINS DO NOT CATCH ON PALLETS, CURBS OR TIEDOWN FITTINGS.

- (42) Operate swing crane to lift MILVAN from the deck to the trailer.
- (43) Lower chain fall and position MILVAN on trailer. Use tag lines if required.
- (44) Disengage beam hooks from the MILVAN and operate chain hoist to raise the beam back up to position.
- (45) Operate the swing crane to the vertical position simultaneously pulling the chains aft. Keeping tension on the chains and free of obstruction.

Bell Aerospace FIDARION

Bell Aerospace Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

NOTE

MOVE THE TRAILER OUT.

- (46) Raise the jack pads and repin the tierods in the lateral support fitting, both sides.
- (47) Attach the winch hook to the jack and hoist to the stow position and latch onto the gantry.
- (48) Repeat for opposite jack and secure winch.
- (49) Reposition and repin surf fence struts. Remove surf fence locks and stow.
- (50) Operate swing craft aft simultaneously pulling the chains aft. Keeping tension on chains and free of obstructions.
- (51) Attach pallet tiedown ropes and manually pull aft pallets to position as marked on deck.
- (52) Repeat for the fwd pallets.
- (53) Secure the chain hoists and lift beams.
- (54) Lash pallets to deck with 4-150070-33 rope assemblies.
- (55) Reposition the pallet tierods between the aft pallets and between the fwd pallets.
- (56) Secure the tow chains.

LACV-30-1

SWING CRANE MILVAN OFF-LOAD

The acceptance tests as defined in this attachment were accomplished.

Accepted with understanding that a hydraulic actuation will insure contact of hydraulic actuation will insure contact of the forward skids with ground surface the forward skids with ground (44,800 lbs) when a fully loaded miluan (44,800 lbs) is over center, forward, to prevent load is over center, run away.

VERIFIED FIRMWILL 2/19/26

ACCEPTED US.A. REPRE

36

BELL AEROSPACE ACV TEST PLAN			LACV-30-1 OPER. NO. A3-			A3-0220	13-0220	
ACV CREW		NO	NO CHASE AIRCRAFT			TEST CONDITIONS		
CREW POSITION	NAME	TYPE A	C	CREW			TAKEOFF	LAND
Operator	Hall				WEIGHT	r		TBD
Co-Operator	Yaeger				FUEL		Loading	No. 5
U.S.A. Obs.					c.G.		_	_
ULUIAI UUSI			MENT	ATION PLAN	BALLAS	т	0	0
		SETUPNO		AMEND NO.	ALTSE	TING		
		R.	ADIO	FREQ.	PRESS A	LT		
TEST	Stauffer	VHF		121.7	WIND			
TEST	п	VHF-F	м	P 55.85 S 85.55	TEMP			
FINAL GO-NO GO AUTHORITY		UHF-FI	м	6	REC	ORD AB	OVE DATA	
MILVANS removed.	ce LAST OPERATION and associaté	d hardwa	are		1 2 3	emonstarmy fo . Hov . Man . Spe . Pro	ration to r accepta er with r euvering ed Run (2 p Reversa m > 25 mp	ance: no load. (8's). 25-35 mp
TEST ENGINEER	1/2	OPER. IN COM	MAN	D		enoyal o	ugon	-
TEST PROCEDURE	7				1 - 7	1	- gon	~

- I. Position craft on BAC concrete ramp north of Production Hangar. Restrain as required for wind and slope.
- II. Perform Operator Inspection IAW Checklist.
- III. Perform normal pre-start, start, etc. IAW Checklists.
- IV. Operate craft and systems as required:
 - . Conduct acceptance tests (DAAK02-75-C-0149, Attachment I, Page 11)
 - 1. Hover without load per Attachment 1 (Ref. Item (9)(a)2)a)
 - After release of restraints, taxi to preselect area on NFIAP. Maneuver (8's) per Attachment 2 (Ref. Item (9)(a)2)
 - 3. Perform speed runs per Attachment 3 (Ref. Item (9) (a) 2) b)
 - On any 25 mph run, accomplish stop using full propeller reversal per Attachment 4 (Ref. Item (9)(a)2)e).
- V. Return to BAC Ramp and secure craft.

LACV-30-1

OVERLAND HOVER WITHOUT LOAD

- 1. Verify craft configured per loading 5 (~85,000 lb. G.W.).
- In cushion mode, trim and perform a 15 minute demonstration at N2 maximum (91% N2 minimum).
- Manually record the following data: 3.

	START	COMPLETE
Time	1,342	1,357
Fuel (Fwd)	55% 55%	55% 55%
(Main)	65% 65%	65% 65%
(Aft)	468	48%
T7 (°C)	405 460 450 430	405 460 450 430
N ₁ (%)	85.0 87.5 87.0 86.0	85.0 87. 87. 86.
N ₂ (%)	91 91 91 91	91 91 91 91
Q (psi)	22 22 21 25	22 22 21 25

COMMENTS:

L. Janfor Pred Muller 2/20/16

ACCEPTED

LACV-30-1

OVERLAND MANEUVERING (8's)

1.	Determine wind direction in the	test area.		
2.	At a safe maneuvering ground speapproximately up and down wind.	ed (5 to 10 m	mph) perf	orm "8"
3.	Record time through each (2) 360	۰.		
	Upwind 15 Secs.	Downwind	20	Secs.
4.	Record wind direction 260	Velocity _	5	mph.
5.	As practicable, record turn radi	i.		
	Upwind15 Ft.	Downwind	20	_ Ft.
6.	COMMENTS:			
COM	PLETED C. J. Saff	ACCEPTED U.S	A. REPR	ESENTATIVE 76
VER	RIFIED FED MULLIN 7/20/26			

LACV-30-1

OVERLAND SPEED RUNS (25 TO 35 mph)

1.	Determine wind d	irection in th	e Test Area	•			
2.	Record Wind Dire	ction 260	, Veloci	ty	5	mph.	
3.	On wind dependen at speed from 25			m two	reciproca	al runs	
4.	Record IAS, ground speeds attained and measurement method (pacer, time/dist., other).						
		IAS (mph)	GS (mph)	Ņ	Method		
	Run 1	42	37	Time	Distance		
	Run 2	45	33	"			
	Average	43.5	35	"			
_	COMMENIES .						

COMPLETED ACCEPTED Darage To Tol 76

WERIFIED ACCEPTED DATASET ZO FEL 76

WERIFIED ACCEPTED DATASET ZO FEL 76

BAC QUALITY

ACCEPTED DATASET ZO FEL 76

BAC QUALITY

LACV-30-1

OVERLAND STOP (>25 mph)

1.	In conjunction with "C	VERLAND SPEE	D RUNS"	(Attach	. 3),]	perform
	a stop from any attair	ed speed over	r 25 mph	using i	normal	propel-
	ler reversal technique	s.				

2. Record

Attained Speed (mph)	45 IAS37	GS
Stopping Distance	1,600 Ft. Scal	e (Method)
Stopping Time	56 Sec.	
Inst. Obs. (Av.)	RUN (Reference S	TOP (Max.)
T ₇ (°C)	450	450
N ₁ (%)		
N ₂ (%)	92	92
Q (psi)	34	36

3. COMMENTS

VERIFIED FOR MULLIN 2/20/76

TABLE 4.2. LACV-30-1 TESTS AT FT. STORY

THIS TABLE CONSISTS OF A SERIES OF TEST PLANS FOLLOWED BY TEST DATA.

BELL AEROSPA	CE ACV TEST PLAN	7	LACV-30-	OPER.	Al- 011	4 (1977)
ACV	CREW	NO C	HASE AIRCRAFT		TEST CONDITION	NS
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND
perator	D. Hall			WEIGHT	76,000	
Oper. Nav.	MSGTR, LAYING			FUEL	As NO710	
068.	LT. R. Luckey			C.G.	447	
066.	G. Peud		NTATION PLAN BAND ANAL.	BALLAST	Nine	
Obs./C.O.R.	6 Spragent	SETUP NO. N/A	AMEND NO. N/A	ALT SETTING	30.14	
		RADI	O FREQ.	PRESS ALT	5.4.	
TEST ENGINEER	C. Stauffer	URC-80	VRC-46	WIND	4/1	
TEST DIRECTOR	C. Stauffer	P	P	TEMP	135F	
INAL GO-NO GO AUTHORITY	C. Stauffer	s	s	Sea State	4/	
reliefrat	PUAN. TG	P	5 12.5 35	III. Cabi IV. Mane V. Safe VI. Engi stop VII. Engi	d runs (30- n Noise Lev uvering 8's Limits nes failure (30-50 mph ne failure/ 50 mph)	rel (V mass (30-50 e/crash
TEST ENGINEER	Safe ?	PER A COMMA	dell-	APP OVA	لتوينا	5 0078
	rt, etc. in accorde water test				hecklists.	Proceed
	states are cri 2 is acceptabl				SS < 1 is op	otimum,
Conduct Acc Pages 10 ar	ceptance and Ty	pe Tests	(Ref.: DA	AK02-75-C-	0149, Exhib	oit I,
I. Water	hover per Att	achment	I (Ref. Ite	m (9)(a)1)	b) - Accept	ance)
II. Speed	runs per Atta	chment I	I (Ref. Ite	ms (9) (a) 1)d) - Accer	tance

- Speed runs per Attachment II (Ref. Items (9)(a)1)d) Acceptance) II.
- III. Cabin noise level per Att. III (Ref. Item (9) (a)5) Type
- Maneuvering 8's per Att. IV (Ref. Item (9)(a)1)f) Type IV.
- v. Safe limits per Att. V (Ref. Item (9)(a)1)a) - Type
- Crash stop per Att. VI (Ref. Item (9)(a)1)e) Type VI.
- VII. Spin out per Att. VII (Ref. Item (9)(a)1)g) - Type

Englic STAT 0900 Deport Angio 1912 (for FT. Stay)
Arrive FT Stay 1008 (41 Minute Average)

LOCALE FT STONE

LACV-30-1

WATER HOVER WITHOUT LOAD

- Record craft weight 80,000 lbs. 447 l.c.g.
- In cushion mode, trim and perform a 15 minute hover demonstration into the wind.
- 3. Manually record the following data:

	Start	Complete
Time	0915	0930
Sea State	41	41
Heading	140	135
Wind/Vel.	40	40
% Fuel (Fwd.)	5 12.5	5 12.5
(Main)	35 35	32.5 32.5
(Aft)	42.5	42.5
N ₂ (%)	95 95 95 95	95 95 96 95
TOP (psig)	22 24 24 23	23 25 24 23

COMMENTS:

Verified

Verified (110)

LACV-30-1

OVERWATER SPEED RUNS

1.	Proceed	to	the	selected	operating	area.
----	---------	----	-----	----------	-----------	-------

2.	Record	environmental	data	off	cushion.
----	--------	---------------	------	-----	----------

3. Hover into the wind and trim as required.

4. Accelerate thru hump observing engine limits.

5. Continue acceleration to full speed (30 - 50 mph target).with ballast trim as required for maximum performance.

6. Record data at maximum speed (53mpl CAS).

T7 (°C)	580	595	590	575
N ₁ (%)	99	100	100	100
N ₂ (%)	95	95	95	95
TOP (psi)	52	51	52	52

Limiting Parameter/Value # 2 E 0 7 595

NOTE: Speed obtainable may be a function of Sea State and/or Gross Weight. Maximum permissable speeds, CAS (mph) = IAS - Wind Speed are: SS1 = 60, SS2 = 45, SS3 = 35.

7. If practicable, timed runs should be made in near calm water over a measured course. Upwind and downwind passes should be made if the head/tail wind component is greater than 5 mph. Record pertinent data below:

W/V	Heading	Dist.	Time	Speed
4/	160	IN. m	1.12 BON	53 K

7. Cont'd.

NOTE: If used, record craft data in Item 6.

8. COMMENTS:

DATA TAKE DE MISGT R. LAYMACC

Completed Che and Tanffer Accepted U.S.D. Representa

Verified (75 fg

46

LACV-30-1

CABIN NOISE LEVEL - FULL SPEED

- Concurrent with Attachment Al-II, conduct a survey with engines at full power and craft at full speed. Obtain noise data at ear level.
- 2. Record reference data:

T7 (°C)	520	540	545	500
N ₁ (%)	91	94	92	94
N ₂ (%)	93	95	95	95
TOP (psi)	43	4.5 (cm.)	43	43
_ 5_	<1	OAT (°C)	IAS (mp	
No. of Crew	SS	OAT (°C)	IAS (mp	on)

3. Record Octave Band Analyzer data:

Freq.	A Operator &	Passenger Passen
16,000	61 66	62 68
8,000	63 69	60 65
4,000	66, 71	68 71
2,000	75 81	77 83
1,000	82 88	83 89
500	84 89	85 80
250	91 94	93 99
125	94 99	96 101
	The state of the s	

NOTE: A is AT MAX. CONT. Parer (Normal)
B is AT MAX. Power (5 minute limit

4. Record model and S/N of Test Equipment. General Rudio Comp Type 15887 5/2 732 5. Attach calibration sheets.

Completed Charles Staffer Accepted U. D. Representative

Verified C. J. State 40
BAC Quality

LACV-30-1

MANEUVERING (8's) - OVER WATER

1. Proceed to the selected operations area.

NOTE: If practicable, maneuvers should be made near buoys so that turning radii can be estimated. Alternately, distances can be measured by radar.

- Demonstrate maneuvering by performing Figure 8's at two speeds (IAS) as determined in BAC tests to be safe in the existing sea and wind conditions (30 - 50 mph target entry).
- 3. Record data as follows:

	Pattern 1	Pattern 2
Sea State	_ _</td <td></td>	
W/V	4/2	4/
Radii (Up wind)	1500	400
(Down wind)		
Method	ESTIMA	(Radar, other)
Average N ₂ (%)	95	90
Maximum TOP (psi)	46	42
Entry Speed (IAS)	40	30

4. Comments:

Completed

Verified

Accepted

LACV-30-1

SAFE OPERATING LIMITS (WATER)

- 1. Proceed to the selected operations area.
- 2. Based on BAC tests under similar water and wind conditions, demonstrate that the craft will not "Plow In" at selected speeds in straight and yawed conditions (over water).
- 3. Record the following data:

	Yaw Angle = 0	Yaw Angle = 30 (Enter)
Sea State	</td <td></td>	
W/V	41	41
Av. N ₂ (%)	45	95
Av. TOP (psi)	48	48
Entry Speed (IAS)	45	45

4. Record any adverse behavior.

None

NOTE: "Plow In" is primarily encountered at high speeds over calm water where craft pitch trim is bow down. If requested and practicable, trim ballast may be moved forward to a condition proven safe in BAC tests for the foregoing demonstration.

5. Record fuel quantities (%) demonstrated:

Forward		
Main	12	15
Aft	30	

Comments:

Completed Child Stanff Accepted U.S.A. Representative

Verified C. S. S. Representative

BAC Quality

LACV-30-1

ENGINES (2) FAILURE - "CRASH STOP"

- 1. Proceed to the selected operations area.
- 2. Based on BAC tests under similar water and wind conditions, demonstrate the craft under simulated engines (2) failure conditions with optimum trim from a target speed of 30-50 mph.
- 3. Record pertinent data.

	$\underline{\text{Yaw Angle}} = 0$	Yaw Angle = 50 (Enter)
Sea State		41
W/V	40	40
"Cut" IAS	40	45
Time to Stop	9	15
Entry N2 (%)	95 Av.	95 Av.
Entry TOP (psi)	<u>44</u> Av.	48 Av.

4. Record craft behavior.

No Adverse behavior

5. Record fuel quantities (%) demonstrated:

Forward		
Main	20	20
Aft	30	

Comments:

Stop in 9 see; estimated 50 yos.

Completed Child Stiff Accepted U.S.A. Representative

Verified BAC Quality

LACV-30-1

ENGINE (1) FAILURE - "SPINOUT"

- 1. Proceed to the selected operations area.
- 2. Based on BAC tests under similar water and wind conditions, demonstrate the craft under simulated engine (1) failure conditions with optimum trim from a target speed of 30-50 mph. Selected engine to be cut is at operator's discretion; corrective action is allowable.
- 3. Record pertinent data:

	Yaw Angle = 0	Yaw Angle = 36 (Enter)
Sea State	_ < /	_ _</td
W/V	40	4/0
"Cut" IAS	40	30
Entry N ₂ (%)	95 Av.	95 Av.
Entry TOP (psi)	48 Av.	Av.

4. Record corrective action.

Reduced power on applica side

5. Record craft behavior.

VAN indirection of Cut, side lip UNTIL Connection Action of Taken. Estimate roll Angle To failure =35°.

-	moora ruci quantities	(v) demonstrated.	
	Forward		0
	Main	20	20
	Aft	30	
7.	Comments:		

Completed Chuh John Accepted U.S.A. Representative

Verified Chuh John Accepted U.S.A. Representative

BELL AEROSPAC	E ACV TEST PLAN	7	LACV-30-1	OPER. N	o. A2- 0//3	(1971)
ACV	CREW	NO C	HASE AIRCRAFT		EST CONDITION	
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND
Operator	D. Hall			WEIGHT		
Oper. Nav.	RLAYMON			FUEL	As NOTA	
bs/merao	LTR Luchen			C.G.	SucLord	my Shen 7
Obs/TECane	100	INSTRUME	NTATION PLAN	BALLAST	554 447	-
Obs./C.O.R.	J. SArgnit	SETUP NO.	AMEND NO. N/A	ALT SETTING	30.09	
22017010111	1		O FREQ.	PRESS ALT	5.4,	
TEST Engi neer	C. Stauffer	URC-80	VRC-46	WIND	270/12	
TEST DIRECTOR	C. Stauffer	P 16	P	TEMP	+25°F	
FINAL GO-NO GO AUTHORITY	C. Stauffer	s 8	s	Sea State	,	
CRAFT CHANGES SING				TEST PURPOSE		
Deliver, Configuration Less: 1. EGT, Wirey, STED Pawer Made: 2. Windshield Washer Tuspenshire 3. Pat Nau Light Oct Full; P 20 62.5 42.5 S 25 62.5 42.5						
TEST ENGINEER OPER, IN COMMAND APPROVAL						
Normal start, etc. in accordance with Procedures and Checklists. Proceed to a suitable water test site agreeable to C.O.R. Conduct Acceptance Test (Ref: DAAK02-75-C-0149, Exhibit I, Page 11).						
I. Water hover per Att. I (Ref. Item (9) (a)b). Engue START - 1148 Lift aff - 1147 an 1/12/27						
2. P.S. 4 repeated at share desarture. Reseation. 3. P.S. 4 No Ng Cuitval						
3/D 121870 7/5 7.5.4.						
L.O 1336 m 1/13/77						

LACV-30-1

WATER HOVER WITH LOAD

1. Record craft weight	lbs.	445	1.c.g.
------------------------	------	-----	--------

3. Manually record the following data:

	Start	Complete
Time	1350	1405
Sea State	41	</td
Heading	330	330
Wind/Vel.	140/10	140/10
% Fuel (Fwd.)	20 25	10 10
(Main)	625 62.5	50 50
(Aft)	42.5	70
N ₂ (%) 99	94 94 94	94 94 94 94
TOP (psig) 48	49 47 47	48 49 47 47

COMMENTS:

Also speed rous; Average evite Alax Cont Pewer 33 mph. L. LAGMAN USING YADAY TAGET DISTALL/Time.

Completed (f Jan Accepted U.S.A. Represent

Verified BAC Quality

NOTE: May not be required since hover overland conducted at 115,000 G.W.

In cushion mode, trim and perform a 15 minute hover demonstration into the wind.

TABLE 4.3 LACV-30-2 AT BAT

THIS TABLE CONSISTS OF A SERIES OF TEST PLANS FOLLOWED BY TEST DATA.

BELL AEROSPACE ACV TEST PLAN ACV CREW NO			LACV-30-2		NO. A1-0409	
		NO CHASE AIRCRAFT		TEST CONDITIONS		
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND
Operator	D. Hall			WEIGHT	Loading	006-2
Co-Operator	G. Yaeger			FUEL	(atta	ched)
U.S.A. Obs.	J. Sargent			c.G.		
•		INSTRUM	ENTATION PLAN #1	BALLAST		
		SETUP NO.	AMEND NO.	ALT SETTING		
		RAI	DIO FREQ.	PRESS ALT		
TEST ENGINEER	C. Stauffer	UHF	121.7	WIND		
TEST DIRECTOR	п	UHF-FM	6	TEMP		
FINAL GO-NO GO AUTHORITY	n	VHF-FM	TBD			
CRAFT CHANGES SINC	E LAST OPERATION			1. H 1. S 2. S 3. C	stration for accep- lover with oad. ystem run- abin noise stationar	full -in tese
TEST ENGINEER	tw 1º	PER. IN COMM	AND	APPROVAL	3. Sur	and the same

- Position craft on BAC concrete ramp north of production hangar. Restrain as required for wind and slope.
- II. Perform Operator Inspection IAW Checklist.
- III. Perform normal pre-start, start, etc. IAW Checklists.
- IV. Raise craft in hover mode.
 - A. Conduct acceptance tests (DAAK02-75-C-0149, Attachment 1, Pages 10 and 11).
 - 1. Hover with full load per Attachment I (Ref. Item 9(A)2)A.
 - Perform system run-in tests per Attachment 2 (Ref. Item 9(A)3)A & B.
 - Obtain cabin noise level data per Attachment 3 (Ref. Item 9(A)5).

LACV-30-2

LAND HOVER WITH LOAD

- 1. Verify craft configured per Loading.
- 2. In mushion mode, trim and perform a 15 minute demonstration at N2 maximum (91% N2 minimum).
- 3. Manually record the following data:

	START	COMPLETE
Time	1440	1455
Fuel (FWD)	(P) 60 (S) 63	
(Main)	60 65	50
(Aft)	25	HM.
T7 (°C)	570 540 480 460	/
N ₁ (%)	93.0 93.5 89.5 88.5	
N ₂ (%)	91 91 91 91.5	
Torque (psi)	21 27 20 20	

COMMENTS:

COMPLETED

BAC

ACCEPTED

VERIFIED

LACV-30-2

SYSTEM RUN-IN TESTS

1. Starting concurrent with Hover (Attachment 1) and continuing off cushion for a total of one hour, functionally operate the following systems:

Start Time 1445	Complete Time	1545
Puff Ports (20 cycles each)	YES	2
Cabin Heaters (Both, Lo and Hi)	YES	
Windshield Heat (Continuous)	YES	
Air Conditioner (Vent & Cool)	YES	
APU (Generator On)	YES	
AN/URC-80 (4 Contacts)	YES	
AN/URC-46 (4 Contacts)	No	
AN/PRC-94 (4 Contacts)	YES	
RMHS System (Continuous)	YES	
AN/ASN-43 Compass (Continuous)	No	
Radar (Continuous)	YES	
Fuel Trim (To/From Transfers)	YES	
Engines (Continuous)	YES	
Propellers (As Required)	YES	
Windshield Wipers (4 Cycles)	YES	
Spotlight (4 Cycles)	YES	
Running Lights (Continuous)	YES	
Horn (4 Blasts)	YE.S	
	BAC	U.S.A.

DISCREPANCIES AND DISPOSITION:

VERIFIED Sel Mulle 4/9/76
BAC QUELITY

ACCEPTED

62

LACV-30-2

CABIN NOISE LEVEL - STATIONARY

 Concurrent with Attachment 1, conduct survey with engines at full power (N₂ maximum). Using an Octive-Bad Noise Analyzer, record noise levels at ear level.

	Operator		Freq.	Passenger		
	(Raw)	(Corr.)	(Hertz)	(Raw)	(Corr.)	
Band 1	0]6000	0		
2	58		8000	58	-	
3	64		4000	64		
4	66		2000	68		
5	74		1000	78		
6	84		500	88	•	
7	98		250	98		
8	102		125	106		

Record engine parameters.

N ₁ (%)	93.0	93.5	89.5	88.5
N ₂ (%)	91.0	91.0	91.0	91.5
Torque (psi)	27	27	20	20
Prop. Pitch		2	0	

Record Model and Serial No. of Test Equipment.

General Radio Model 1558AP Octave Band Noise Analyzer, S/N 732.

Attach Calibration Sheets.

COMPLETED Stefficial	ACCEPTED Darco
9 omhuller 4/2	U.S.A. REPRESENTATIVE
Sommer 1/2	126

LACV-30 #2, VOYAGEUR #006 2ND TEST WEIGHT AND BALANCE

	Weight	Longitudi:	nal Moment
Basic Weight LACV-30 #2 Voyageur #006 From LACV-30 #1 Actual Weight	51859	488.4	25328000
Test Instrumentation Instr. Package Install. Craft	(536) 34	439.5	(322906) 14943
Attitude Instr. Package Install. Data Acquisition	484	613.8	297079
Flex. Conduit for above Control Install. Cabin Data Acquisition	10	690.0 498.0	6900 3984
Revised Basic Weight	52395	489.6	25650906
Load Spreaders - Twd Load Spreaders - Aft	1106 958	299 483	330694 462714
Lashings - MILVAN - Fwd Tee Hooks	428 352	390 658	166920 100016
Sub-Total Weight	55039	485.3	26711250
Crew Passengers Unusable Fuel Carbo - MILVAN #3610 - Ballast	360 360 650 4745 14331	397.5	235080 257760 258375 1850550 5589090
Operating Weight	75485	462.4	34902105
Fuel - Fwd 73% (5103) - Main 85% (14755) - Aft 12% (4849)	-3748 12543 590	100.5 397.5 810.5	376674 4985843 478195
Cross Weight	92366	441.1	40742817

DELL APPOORAG	- AOU TEOT DI AN		TYPE	OPER.	NO.		
BELL AEROSPACE ACV TEST PLAN			LACV-30-	2	A2-0409		
ACV	CREW	NO	NO CHASE AIRCRAFT		TEST CONDITIONS		
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND	
Operator	Hall			WEIGHT	Loading	006-2	
Co-Operator	Yaeger			FUEL	(Attached)		
U.S.A. Obs.				C.G.			
		#1		BALLAST			
		SETUP NO.	AMEND NO.	ALT SETTING			
		RA	DIO FREQ.	PRESS ALT			
TEST ENGINEER .	Stauffer	VHF	121.7	WIND			
TEST DIRECTOR	ı.	VHF-FM	P 55.85 S 85.55	TEMP			
FINAL GO-NO GO AUTHORITY		UHF-FM	6				
CRAFT CHANGES SING	CE LAST OPERATION			TEST PURPOSE			

A. Demonstration to U.S. Army for acceptance:

1. Hover with no load.

Speed Run
 (25 - 35 mph)

TEST ENGINEER

OPER IN COMMAND

APPROVAL

TEST PROCEDURE

OPER IN COMMAND

APPROVAL

Scrige

TEST PROCEDURE

- Position craft on BAC concrete ramp north of Production Hangar. Restrain as required for wind and slope.
- II. Perform Operator Inspection IAW Checklist.
- III. Perform normal pre-start, start, etc. IAW Checklists.
- IV. Operate craft and systems as required:
 - A. Conduct acceptance tests (DAAK02-75-C-0149, Attachment I, Page 11):
 - 1. Hover without load per Attachment 1 (Ref. Item (9)(a)2)a).
 - 2. Perform speed runs per Attachment 2 (Ref. Item (9)(a)2)b).
- V. Return to BAC Ramp and secure craft.

LACV-30-2

OVERLAND HOVER WITHOUT LOAD

- 1. Verify craft configured per loading.
- 2. In cushion mode, trim and perform a 15 minute demonstration at N2 maximum (91% N2 minimum).
- 3. Manually record the following data:

	START	COMPLETE
Time	· ·	
Fuel (Fwd)		
(Main	SEE TH	t/
(Aft)	· ·	
T7 (°C)		
N ₁ (%)		
N ₂ (%)		
Q (psi)		
COMMENTS:	. SAIgHT WAS SATISFIED	with periors
results;	Therefore repeat of Test	0. 4. St. //e- 4/9/76
COMPLETED BAC	Speger ACCEP	TED U.S.A. REPRESENTATIVE
VERIFIED SAL	Mulle 4/9/76	

U.S. ARMY ACCEPTANCE

LACV-30-2

OVERLAND SPEED RUNS (25 TO 35 mph)

1. Determine wind direction in the Test Area.

2.	Record Wind Di	rection <u>34</u>	Velo	ocity 10 mph.
3.	On wind depend at speed from	ent course selection 25 to 35 mph (es	cted, perfor stimated).	m two reciprocal runs
4.	Record IAS, gr (pacer, time/d		ained and me	asurement method
		IAS (mph)	GS (mph)	Method (Time/Dist)
	Run 1	35	30	SCALED EAST TO WES
	Run 2	55	12	SCALED WEST TO EAST
	Average	45	36	SCALED (AVENAGE)
5.	COMMENTS:			
СОМІ	PLETED BAC	Jaeger	ACCEPTED _	U.S. A. REPRESENTATIVE
VER	IFIED BAC QUA	Muller 4/9/70	6	

TABLE 4.4. LACV-30-2 AT APG

THIS TABLE CONSISTS OF A SERIES OF TEST PLANS FOLLOWED BY TEST DATA.

BELL AEROSPA	CE ACV TEST PLAN	Company was a state of the company of	LACV-30-2			OPER. NO	A1-09/4		
ACV	CREW	NO	NO CHASE AIRCRAFT		TEST CONDITIONS				
CREW POSITION	NAME	TYPE A/	С	CREW			TAKEOFF	LAND	
Operator	D. Hall				WEIGHT		75,000#	73,000	
Oper. Nav.	C. STAUTE				FUEL		See A	1-1	
0681	CANT Pemles				c.G.		433		
065 2	Funella	INSTRU	MENTATIO APG	NPLAN	BALLAS	Т	As Rege	and)	
Obs./C.O.R.	J. Surga. T	SETUP NO	D. AM	MEND NO.	ALT SET	TING	01		
	OUTSIDE	R	ADIO FREC) .	PRESS A	t BAO	30.34"	he	
TEST ENGINEER	C. Stauffer	URC-80	0 V	RC-46	WIND		181/3	2	
TEST	C. Stauffer	P	P		TEMP		30.400	31.00	
FINAL GO-NO GO AUTHORITY	C. Stauffer	s	S		Sea	State	CAL	14	
CRAFT CHANGES SIN	ICE LAST OPERATION				TEST PU	RPOSE			
. Ams	Complete				I.	Water	hover (15	minute	
Two	Complete MILLANS						runs (30-		
1000							les (wall		
					0		rust Meas		
							nditionin		
						runcti	onal Test		

TEST PROCEDURE

OPER. IN COMMAND

Charles Man

Normal start, etc. in accordance with Procedures and Checklists. Proceed to a suitable water test site agreeable to the C.O.R.

NOTE: Sea states are critical for the demonstration; SS < 1 is optimum, SS < 2 is acceptable, SS < 3 is limiting.

Conduct Acceptance and Type Tests (Ref.: DAAK02-75-C-0149, Exhibit I, Pages 10 and 11).

- I. Water hover per Attachment I (Ref. Item (9) (a)1)b) Acceptance)
- II. Speed runs per Attachment II (Ref. Items (9)(a)1)d) Acceptance)
- III. Obstacles per Attachment III (Ref. Item (9)(a)2)d) Type)
- IV. Net thrust per Attachment IV (Ref. Item (9)(a)1)c) Type)
- V. Air conditioning per Attachment V (Ref. Item (9)(b)7) Acceptance)

U.S. ARMY ACCEPTANCE

LACV-30-2

WATER HOVER WITHOUT LOAD

,	Danaud	61		75 000	11	473	
1.	Record	craft	weight	75,000	IDS.	433	1.c.g.

- In cushion mode, trim and perform a 15 minute hover demonstration into the wind.
- 3. Manually record the following data:

	Start	Complete
Time	1450	1510
Sea State	Calm	Calm
Heading	115	100
Wind/Vel.	1/1	4/1
% Fuel (Fwd.)	85 85	63 65
(Main)	30 25	30 25
(Aft)		0
N ₂ (%)	82 81 82 82	52 82 81 82
TOP (psig)	14 16 14 16	15 16 15 16

COMMENTS:

None

Completed

Verified

Ind Muller

Accepted 3. Sacrat. Ve

U.S. ARMY ACCEPTANCE

LACV-30-2

OVERWATER SPEED RUNS

1.	Proceed	to	the	selected	operating	area
----	---------	----	-----	----------	-----------	------

2	Donoud			3-4-			
4.	Record	envi	ronmental	data	OII	cusnion	•

30,4 CA/M 180/2 25,000 OAT (°C) Sea State W/W G.W. (1bs.)

3. Hover into the wind and trim as required.

4. Accelerate thru hump observing engine limits. 94 500.

5. Continue acceleration to full speed (30 - 50 mph target).with ballast trim as required for maximum performance.

6. Record data at maximum speed (45 mplo CAS).

45 mph Pland

T₇ (°C) 590 586 600 N₁ (8) 98 99.5 95 95.5N₂ (8) 90 90 90 TOP (psi) 40 40 40

Limiting Parameter/Value TRIM ATTITUDE

NOTE: Speed obtainable may be a function of Sea State and/or Gross Weight. Maximum permissable speeds, CAS (mph) = IAS - Wind Speed are: SSl = 60, SS2 = 45, SS3 = 35.

7. If practicable, timed runs should be made in near calm water over a measured course. Upwind and downwind passes should be made if the head/tail wind component is greater than 5 mph. Record pertinent data below:

W/V Heading Dist. Time Speed

L/V 265 2 N.m. 3.2 38 K (44 mpl)

L/V 060 2 N.m. 3.4 35.5 (41 mpl)

7. Cont'd.

NOTE: If used, record craft data in Item 6.

8. COMMENTS:

1. ITem 7, and you had gentle place-in Prior To CarpleTio. 2. Speed your were not AT MAXIMUM power · due To uncureousaled Ty limits.

Completed C. L. Starfe Accepted 2. San Verified And Million

US ARMY ACCEPTANCE LACV-30-2

OBSTACLES

- Record craft weight 78,000 lbs and 438,0 l.c.g.
- 2. With N2 at maximum and power as required, negotiate a ditch (approximately 6 ft wide by 9 ft deep) and vertical obstacle (3 ft maximum height).
- 3. Manually record the following data:

	DITCH	STEP
TIME	9/14/26 2530	9/15/76 1045
HEADING	180	340
WIND/VEL	40	09111
N ₁ (%)	98 98 98 98	199 99 100 100
N ₂ (%)	90 90 90 90	196 95 95 55
т ₇ (°с)		d. 1630 630 630 630
TOP (psig)	42 42 41 4	2 38 11 12 48.
COMMENTS:		

IAS 22 mph Ave ApproxInATE

COMPLETED Challed-Sanff

VERIFIED

ACCEPTED

NOTE: MEASURED 10 foot wide ditele AT Crossing pourt.

Total Time for Depirations = 1.0 his.

US ARMY ACCEPTANCE LACV-30-2

NET THRUST MEASUREMENT

1.	Record craft	weight	78,600	lbs and	440	1.c.g
----	--------------	--------	--------	---------	-----	-------

- On water, tether the craft to a government furnished thrust measuring device using a bridle attached to bow (and stern) tow fittings.
- 3. At target shaft speeds (N_2) of 60 and 95%, measure reverse and forward thrust. Record data in attached sheet (Test Nos. A thru D).

COMMENTS:

Due To inability To MAINTAIN OVALT would to Tother board, The values obtained fire not onicided to be The macine were while. Test will De repeated our in doja 9/8/76

ACCEPTED Army Representa

								9/13/75	{
		TEST	DATA RECO	RDING L	06		OPERATION NO.	A1-IV	SHT 2 OF 2
TEST INST POWER PLANT						051110110			
NO.	INST	1	2	3	4		RE	MARKS	
	T7					Revei	se thrust off	cushion	
Α	N1							casiiioii	
	N2					Targ	get = 60%		
	TOP					Measu	red fhrust =	5401	65
	PP	23.5		-23.5				Q 707	
		W/V	ASI RD	3 1	HEADING				
	17				I	Revei	rse thrust on	cushion	
	NI					Tom	- 0F%		
В	N2		` _				jet = 95%		
	ТОР					Measi	ured thrust =	20/1	25
	PP	-2	3.5	-0	3,5				
		W/V	ASI RD	3 1	HEADING				
	17				T	Forwa	ard thrust off	cushion	
	N1					Tar	get = 60%		
c	N2								.,
·	TOP					Measi	ured thrust = ,	2300,	163
	PP	70	3.5	10	5.5				
		W/V	ASI RD	G F	HEADING	-			
	T7					Forwa	ard thrust on	cushion	
	N1								
D	N2					Targ	get = 95%		
	TOP					Meas	ure thrust =	37001	ws.
	PP	723		the state of the s	3.5	-			
		W/V	ASI RDO		TEADING				
	Т7					w/o	150/2	Hog 230	START STOP
	N1					TIME	1115		12.10
	N2 TOP					TEMPE	RATURE 15.6	C	16.00
	PP				1		ETER 30.13		30.13
		W/V	ASI RDI	G I	IEADING			49-14-5	30.13 Calau
						SEV S.	TATE CRINC		CEINU

US ARMY ACCEPTANCE LACV-30-2

AIR CONDITIONER PERFORMANCE

- 1. In conjunction with any previous tests, determine the performance of the air conditioner (Target: 85° F maximum effective temperature at outside temperature of 125° F).
- Manually record the following data (30 minute period):

	START	STOP
TIME (AIR CONDITIONER)	1425	1435
OUTSIDE AIR TEMPERATURE .	LOIFO	1010E
CABIN TEMPERATURE:		
LEFT FRONT	101	78
RIGHT FRONT	101	78
LEFT REAR	101	78
RIGHT REAR	101	28
AVERAGE	101	78

COMMENTS:

Thermonter to Air Conditions cooled in 10 minutes To 42°F.

COMPLETED .

VERIFIED

Fred Muller BAT QUALITY ACCEPTED US Army Represent

BELL AEROSPAC	E ACV TEST PLAN		ACV-30	-2 S		16	
ACV	CREW	CI	ASE AIRCHAFT	TI	EST CONDITION	vs	
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND	
OPENATON	D. Hall			WEIGHT	W	4	
•				FUEL	/	/_	
		NETEIMEN	TATION PLAN	C.G.			
		A	PG	BALLAST	1	/	
		SETUP NO.	AMEND NO.	ALTSETTING			
EOT	-	RADI	O FREQ.	PRESS ALT			
NGINEER .	C. Bardak	1	MA	WIND			
TINAL GO-NO GO	C. BANDE			TEMP			
UTHORITY	C-STANFEL						
RAFT CHANGES SING	CE LAST OPERATION "MIXVAUS"	replace	2 with	1. Oyerla	nd There	st	
Enspty		•			venut		
2.	ina FATTOR P	ATChed	AS NOTED	2. PATIA	1 Propel	le	
	p			BERKOX	VORNATA	c Jewe	
				3. Exha	15.T Cello	eter	
NOTE: Ex	haust Colle	TWS NO	ot installa	VIbration	Sure	7	
EST ENGINEER	. OF	ER. IN COMMA	ND	APPROVAL	Stude	d'A	
EST PROCEDURE			7		1 /		
A. TEThe	, cinft A	1 STE	un / B G	FEIN	rus!		
MEASUN	ent YAN.	MTTAGO	e bridle	a Stad	side 10	,	
	in lateral					,	
B. Perfu	m wormal	pre-ox	destual	, STANT, e	L. Pruc	ecun	
1 41.7	Page CanTr	el set	for Oct	Lective 7	terst,		
370000	N2 from	Minim	1 Ta ma	Kimen 1	is 2-3	%	
Siep op	To the	1	To man	netie TA	pe.		
INDIENCITS. Voice Annotate magnetie Tape.							
D. SET No AT 95%. Advance & for TOP SETS of Approximately 5% To limit Conditions. Manually read data on ATTACKED Sheets.							
of Appro	LATA DE	Trabe	Sheets	egovins.	MANUA	ing	
E. AT N	MAR red	ueed	1 10 2	-3% Inc	erents	To	
Minimum	u. Voice A	nuita	Te magi	Tie TAK	u.		
	e opera						

		TEST	DATA REC	ORDING !	.0G	OPERATION NO0916 SHT / OF 2
TEST	INST		POWER	PLANT		
NO.	INST	1	2	3	4	All with No = 95%
	T7	510	190	500	190	
	N1	87.8	90	87.5	87.2	
	N2	95.5	95.2	25,5	75.2	
	TOP	22	23	22.	22-	- War
	· PP	~	OF ALL	5,50		Sero Effective Thrust
		W/V ASI RDG HEADING		HEADING		
	17	510	520	520	570	
	N1	90.5	91.5	89	89.2	
	N2	95	94.5	95	04.8	
	TOP	25	26	25	25	TAIGET 2570 TUP
	PP	-	-65	rad		
		W/V	ASI RD	G '	HEADING	
	T7	530	520	550	530	
	N1	92.3	73.7	71.2	91.9	
	N2	94.3	94	94.3	94	A. 7. 0
	TOP	30	30	30	30	TANGET 30% TOP
	PP	0	15	Ray		
		W/V	ASI RE	G I	HEADING	
	17	550	510	5 70	560	
	N1	94.8	26	93.4		
	N2	93.5	93.2	93.7		
	TOP	35-	36	35	3.5	TAGE 35% TOP
	PP	/	4.5	Rad		•
		W/V	AST RE	IG '	HEADING	
_	T7	570	550	600	580	
,	N1	96	97	96	96	
	967	92	192.4	92	72.5	4
	TOF	40	10	di	10	Traget 40% Tor
	250		AL	214		,
			ASI NO	16 / I	HEADING	

6:00

		TEST	DATA REC	ORDING I	LOG		OPERATION NO.		SHT	_ 0F
TEST	INST		POWER	PLANT			D.F.	HADKO		
NO.	INST	1	2	3	4		HE	MARKS		
	T7	600	580	640	6.10					
	N1	98.5	99.8	98.5	The state of the s					
	N2	92.3	92	92	91.7					
	TOP	45	96	45-	16	TAVA	et 45%	, 701	0	
	PP		As A	ad		,				
		W/V	ASI RD	G,	HEADING					
	17	625	610	640	610	7	1		1.	1
	N1	100	101.5	78.5	99	10	limit po	LU EV	C hu	011/111
	N2	81	80	78.5	77.5					
	TOP	53.5	53.5	53.5	53.5					
	PP	-+	23.5	+2	3.5		,	1	(**/	
		W/V	ASI RD	G	HEADING	15	preason	ed er	1 06	e lele way
		·								
	T7									
	N1									
	N2									
	TOP									
	PP									
		W/V	ASI RE	G	HEADING					
	17				+					
	N1									
	N2				-					
	TOP		L							
		W/V	ASI RD	G T	HEADING					
	-		ASIRL	u	HEADING					
	T7	I			T					
	N1				-					
	N2									
	TOP	· · · ·								
	PP									
		W/V	ASI RE	G	HEADING					

8500

CAR . (from No waters) 0: -0.037V 4 = 12.07V = 1088016 = SINE,7 14/017 Aug SIES, 2 14/027 3 = +1.03 = 545016 = SINE, (SOP HP 70-6)

DATE: 16 DATE: 16.8 - 76 LACU-30 POSIATO PUEL SHEET NO. PULL Tor in Time VIIT. 1355 2513 0.465 2580 1.455 2530 3084 3710 663 3600 80 4610 35 fin 647 4540 863 41.30 1.00 5320 40151 141.0 1.02 5430 45 131 5940 1.12 1.15 6530 MAX ON CHILDOTAIN 1-04 MAN HULL

STEAP-MT FORM 247, I May 74 (Edition of 29 Aug 69 may be used.)

			TYPE	OPER. N	о.	
BELL AEROSPAC	E ACV TEST PLAN		LACV-30-	-2	A2-	
ACV (CREW	NO	CHASE AIRCRAFT	T	EST CONDITIO	NS
CREW POSITION	NAME	TYPE A/C	CREW		TAKEOFF	LAND
Operator	D. Hall			WEIGHT	115,000	
Oper. Nav.				FUEL A 100	F 78 M 59	F 78 M 5 G
				c.G.	439.5	
		A CONTRACTOR OF THE PROPERTY O	MENTATION PLAN	BALLAST	50,000 A	
Obs./C.O.R.		SETUP NO	. AMEND NO.	ALT SETTING	0	
		RA	DIO FREQ.	PRESS ALT BAO	30.16	he
TEST ENGINEER	C. Stauffer	URC-80	VRC-46	WIND	030/4	
TEST DIRECTOR	C. Stauffer	P	P	TEMP	23.70€	
FINAL GO:NO GO AUTHORITY	C. Stauffer	S	S	Sea State	4/'	
CRAFT CHANGES SINC		1.5		TEST PURPOSE	1 /	

I. Water hover with full load (115,000 lb. G.W.) for 15 minutes.

TEST ENGINEER Sauff

OPER, IN COMMAND

and Checklists. Procee

Normal start, etc. in accordance with Procedures and Checklists. Proceed to a suitable water test site agreeable to C.O.R.

Conduct Acceptance Test (Ref: DAAK02-75-C-0149, Exhibit I, Page 11).

Water hover per Att. I (Ref. Item (9) (a)b).

NOTE: Open items from Test Al may be added by reference to this operation.

BEST_AVAILABLE COPY

U.S. ARMY ACCEPTANCE

LACV-30-1

WATER HOVER WITH LOAD

-	. Record	craft we	eight //	000	lbs.	0.30	1,5	1.c.g.
2.	. In cus	hion mode nto the w	e, trim and p	erform	a 15	minute	hover	demonstra-
3.	Manual	ly record	the followi	ng dat	a:			
			Start			Con	mplete	
	Time		1540			1	600	
	Sea St	ate	2.1				41	
	Headin	Э	275				92	
	Wind/Ve	el.	030/4			0	30/4	,
	% Fuel	(Fwd.)	40 40			40	40	2
		(Main)	60 60	2_		60	4	7_
		(Aft)	97_			5	2	
	N ₂ (%)	70	93 90	03	57	· C6	67	22
	TOP (ps	sig) <u>49</u>	42 42	42	17	. 16	18	16
CO	MMENTS:		MUN			400	er	,
600	Pe 101	N, 90	a Men 5 Ma : 527	ن. د. <u>ن</u>	ASA	is mod	1 100	10 wx 21.
	WA	Ter 40	1 - N A 200					
	710	ine rol	1 1.47 sea	= 19	9,2 m	ph		
Con	mpleted	1/	Suffe	Acc	epted	1e	3. 5	Samet
Ve	rified (Celhu	-	<		Js.A.	Repre	Fontative

TABLE 4.5 - THRUST LOADING

Condition	H-P-TOT	T. 6.10	o. 0.	ο,	Net Force/Prop	Aero Drag Lbs.	Mom. Drag	Thrust Ibs.	0	C. Thred	2 Pred
cver Test Point											
1	734	245	184	0.0206		6.67	45.4	32.7	0.0020	MA	,
CI.	828	536	236	0.0325	1265		6.44	1297.4	9520.0	E	-
(*)	572	513	412	0.0527	1650		43.9	1861.9	0.1172	4.	
4	1139	505	617	0.0736	2295		43.7	2326.8	0.1470	0.166	00000
m	1285	254	777	0.0937	2688		43.1	2719.5	0.1742	0.1962	88.8
10	2448	481	948	0.1154	2597		45.4	3028.1	0.1974	0.226	87.3
	1467	252	1148	0.224	3113	D. 0.	32.2	3139.0	0.2758	0.287	26.1
-	The second secon										

H.P. Calculated

 $\text{H.2.p} = 0.98 \; (\text{H.P.Tor} - \text{H.P.L}) \; 7_{p} = 0.98 \; \text{Used in all predicted calculations}$

86

87

APPENDIX A

CONTRACTORS' ACCEPTANCE TESTS

A-1

BELL AEROSPA	CE ACV TEST PLAN		LACV-30-2 OPER. NO. S2- 04/0			2		
ACV	CREW	NO	CHASE AIF	RCRAFT	91,000		ST CONDITIO	-
CREW POSITION	NAME	TYPE A	C CR	EW			TAKEOFF	LAND
Operator	G. Yeager				WEIGHT		91,000	89,000
Oper. NAV	R. Towers				FUEL		See L	Ade #2
Inst.	E. Schiffmac				c.G.		44	06
Engr.	R. Speth	INSTRU	MENTATION	PLAN	BALLAST			
		SETUP NO	D. AME	ND NO.	ALT SETT	TING	29.	96
		R	ADIO FREQ.		PRESS AL	т.	59	0-
TEST ENGINEER .	M. Laszewski	Not	Requir	ed	WIND		000	20
DIRECTOR	M. Laszewski				TEMP		1490	2 457%
FINAL GO-NO GO AUTHORITY	G. Yeager							
CRAFT CHANGES SIN	NCE LAST OPERATION				TEST PUR	POSE		
					I. S	Skirt	pressure 000 lb. (survey
					The second second	Cabin sampli	contamina	ation
TEST ENGINEER		OPER. IN COM			APP	ROVAL		
5	Signed	Si	gned					

TEST PROCEDURE

Position craft on selected concrete ramp. Perform standard checklists. Tether craft at stern.

- I. Conduct skirt pressure survey in accordance with Attachment I (M. Laszewski's IOM).
- II. During the above test, sample cabin atmosphere at breathing level for noxious and toxic fumes using sampling kit provided by Safety Engineering. Record data on Attachment II.

A-2

CABIN CONTAMINATION

(Tethered - Max. Power)

A.	Craft Configuration:			
	Ty (°C) 49	W Y80	960	440
	N_1 (%) 9ε	2 98.5	78.3	96.0
	N ₂ (%) . 93	5 95	95	96
	TOP (psi)	2 27	25	5
	Air Conditioner	OFI	?	
	Heater	OF	7	
	Cabin Vents	CLOSE	ED	
в.	Environment:			
	OAT (°C) + 4	70C B	aro. (in. H	
	Wind Direction 650	Cı	raft Heading	2300
	Wind Velocity 30 m	uph		
c.	Samples:			
	Fumes	Measured (pr	om)	Limit (ppm)
	Carben Miluor de	20	-	50
	CALBON DOXIDE	3500		5000
	NITrogen Dioxide	DUMENSUM	oble .	_5_
	Suffer Dioxide	Un intersus.	<u>ic</u>	_5_
	Unbowed Hodiocarais	_ 50 .		VALIOUS
	<u> </u>			

OBSERVATIONS:

and hydrocombon S. I have a hard on a hour ode

BELL AEROSPAC	E ACV TEST PLAN		TYP	LACV-30-2	OPEN. NO. 2 S2-04/0			
ACV	CREW	NO	CHA	SE AIRCRAFT	91,00	0 1b.TE	ST CONDITIO	NS
CREWPOSITION	NAME	TYPE A/	С	CREW		•	TAKEOFF	LAND
Operator	G. Yeager				WEIGHT			
Oper. NAV	R. Towers				FUEL			
Inst.	E. Schiffmac		TE AND		c.G.			
Engr.	R. Speth	INSTRUMENTATION PLAN		BALLAST	г			
		SETUP NO	O. AMEND NO. ALTS		ALT SET	TING		
		R	RADIO PREQ.			LT		
TEST ENGINEER	M. Laszewski	Not	Re	quired	WIND			
DIRECTOR	M. Laszewski				TEMP			
FINAL GO NO GO AUTHORITY	G. Yeager							
CRAFT CHANGES SIN	CE LAST OPERATION				II. (Skirt pat 91,	pressure 000 lb. (contamina ng.	G.W.
TEST ENGINEER	T	OPER. IN COM			API	PROVAL		
S	igned	Si	gne	ed	L			

Position craft on selected concrete ramp. Perform standard

checklists. Tether craft at stern.

- I. Conduct skirt pressure survey in accordance with Attachment I (M. Laszewski's IOM).
- II. During the above test, sample cabin atmosphere at breathing level for noxious and toxic fumes using sampling kit provided by Safety Engineering. Record data on Attachment II.

Copied dATA - Informally sent TO J. SArgent.

C. Starff
7/1/76

A-5

CABIN CONTAMINATION

(Tethered - Max. Power)

A.	Craft Configuration	on:			
	T ₅ (°C)	490	480	460	440
	N ₁ (%)	98.2	98.5	98.3	960
	N ₂ (%)	95	95	95	95.5
	TOP (psi)	27	27	25	25
	Air Conditioner		OFF		
	Heater		ON *	<u> </u>	
	Cabin Vents		CLOSEI)	
В.	Environment:				
	OAT (°C)	+9°C	Bai	co. (in. H	29.96
	Wind Direction	1950	Cra	aft Heading	2100
	Wind Velocity	- Tomph			
c.	Samples:				
2	Fumes CAN <u>bon Monoxide</u> ANDOXIDE SULFON DIOXIDE	3	sured (ppr 9-40 8600 2-3	<u>n)</u>	100 5000
N	Trucker Dioxide		0		5
13	ENZENE		0		10
6	Asoline	Line	e to fc	_	200
				_	
				_	
		-		_	
				-	
	* One hear	Er ho.	A-6		

OBSERVATIONS:

This was a repent Test. Previous
Mensurements Showed similar but mamplete
Func data.

Note that Tests for Aldelydes
was repositive, not definitive; i.e., did
Not define the Types present.

WIRE ROPE CORPORATION OF AMERICA, INC.

Fabricated Products Division

609 North 2nd Street • P. O. Box 288 • Saint Joseph, Missouri 64502 • 816/233-0287 • Telex 42546

September 19, 1975

CERTIFICATION OF PROOF TEST

To Whom It May Concern:

This is to certify that the 22 ton capacity adjust-a-leg wire rope assembly sold and shipped to The Caldwell Company Incorporated of Rockford, Illinois on their purchase order number 10353, file number 43753, have been proof tested to 84,000 pounds with legs vertical.

WIRE ROPE CORP. OF AMERICA, INC.

& Jumathico

D. Giannattasio, Manager Fabricated Products

DG:sb

Subscribed And Sworn To Before Me

This 19th Day Of Not March 1975

Notary Public

My Commission Expires March 7, 1979

APPENDIX B

1976 IR&D REPORT 7467-928002 "COMPARISON OF MEASURED AND PREDICTED HOVER PERFORMANCE OF LACV-30 VEHICLES AT BATNFO" 31 DECEMBER 1976

Bell Aerospace TEXTRON

Division of Textron Inc.

Post Office Box One Buffalo, New York 14240 716/297-1000

1976 IR&D FINAL REPORT

COMPARISON OF MEASURED AND PREDICTED HOVER
PERFORMANCE OF LACV-30 VEHICLES AT BATNFO

PROJECT NO. 21508

REPORT NO. 7467-928022

31 DECEMBER 1976

PRINCIPAL INVESTIGATOR: M. LASZEWSKI

TABLE OF CONTENTS

		PAG
ı.	INTRODUCTION	1
II.	SUMMARY	2
III.	TEST PROGRAM AND VEHICLES	3
IV.	INSTRUMENTATION	5
v.	DATA REDUCTION	7
VI.	DISCUSSION OF RESULTS	
VII.	SUMMARY OF RESULTS	12
VIII.	RECOMMENDATIONS	13
IX.	REFERENCES	14

LIST OF SYMBOLS

AG	Air Gap - in. or ft.
ВС	Cushion beam - ft.
EAG	Equivalent Air Gap - in. or ft.
F	Froude No. $\frac{V}{\sqrt{gL_C}}$
g	Acceleration due to gravity - ft/sec ²
н.н.	Heave height - in.
н.Р.	Horsepower
^L C	Cushion length - ft.
N_{F}	Lift Fan Speed - RPM
PB	Peripheral bag pressure - PSF
P_{AB}	Anti-bounce bag pressure - PSF
PC	Cushion pressure - PSF
Q	Flow rate - CFS
s_{C}	Cushion area - ft ²
W_{G}	Gross weight - lbs.
δ	Ratio of test barometric pressure to standard day sea level pressure (29.92 in.Hg)
θ	Ratio of test temperature to standard day temperature $(59^{\circ}F)$

LIST OF TABLES

TABLE NO.		PAGE
I	LACV-30-1 TEST WEIGHT - TEST NO. 2	15
II	LACV-30-1 TEST WEIGHT - TEST NO. 3	16
III	LACV-30-2 TEST WEIGHT - TEST NO. 1	17
IV	STATIC TEST SUMMARY	18
V	VOYAGEUR 002 STATIC TEST JUNE 1972	29

LIST OF FIGURES

FIGURE NO.		PAGE
1	3 VIEW AND GENERAL ARRANGEMENT - LACV-30	30
2	STARBOARD VIEW OF LACV-30-1 ON HANGAR RAMP, $W_{\rm G} = 92,000$ LBS.	31
3	THREE-QUARTER VIEW OF LACV-30-1 ON HANGAR RAMP, $W_G = 92,000$ LBS.	32
4	STERN VIEW OF LACV-30-1 ON HANGAR RAMP, $W_G = 92,000$ LBS.	33
5	PORT VIEW OF LACV-30-2 VEHICLE ON CONCRETE RAMP, $W_G = 92,000$ LBS., $N_2 = 90\%$	34
6	STARBOARD VIEW OF LACV-30-2 VEHICLE ON CONCRETE RAMP, $W_G = 92,000$ LBS, $N_2 = 90$ %	35
7	STERN VIEW OF LACV-30-2 VEHICLE SHOWING MODIFIED STERN SEAL, $W_G = 92,000$ LBS., $N_2 = 90\%$	36
8	WEDGE USED TO MEASURE CUSHION AIR GAP	37
9	LACV-30 FLIGHT TEST RESULTS, CUSHION AREA, ALL TEST GROSS WEIGHTS	38
10	LACV-30-1 FLIGHT TEST RESULTS AVERAGE PERIPHERAL BAG PRESSURE $W/\delta = 94,302$ LBS.	39
11	LACV-30-2 FLIGHT TEST RESULTS AVERAGE PERIPHERAL BAG PRESSURE W_G/δ = 116,000 LBS.	40
12	LACV-30-2 FLIGHT TEST RESULTS AVERAGE PERIPHERAL BAG PRESSURE $W/\delta = 93,820$ LBS.	41
13	LACV-30-1 FLIGHT TEST RESULTS AFT PERIPHERAL BAG PRESSURE $W/\delta = 94,302$ LBS.	42
14	LACV-30-1 FLIGHT TEST RESULTS AFT PERIPHERAL BAG PRESSURE Wc/8 116,000 LBS.	43

LIST OF FIGURES (Cont'd)

FIGURE NO.		PAGE
15	LACV-30-2 FLIGHT TEST RESULTS AFT PERIPHERAL BAG PRESSURE $W/\delta = 93,820$ LBS.	44
16	LACV-30-1 FLIGHT TEST RESULTS AIR GAP VARIATION WITH FAN SPEED W_G/δ = 116,000 LBS.	45
17	LACV-30-2 FLIGHT TEST RESULTS AIR GAP VARIATION WITH FAN SPEED W/ δ - 93,820 LBS.	46
18	LACV-30-1 FLIGHT TEST RESULTS HEAVE HEIGHT VARIATION WITH FAN SPEED, $W_G/\delta = 94,302$ LBS.	47
19	LACV-30-1 FLIGHT TEST RESULTS HEAVE HEIGHT VARIATION WITH FAN SPEED, $W_G/\delta = 116,000$ LBS.	48
20	LACV-30-2 FLIGHT TEST RESULTS HEAVE HEIGHT VARIATION WITH FAN SPEED, $W/\delta = 93,820$ LBS.	49
21	LACV-30 TOTAL PREDICTED LIFT FAN FLOW RATE VARIATION WITH LIFT FAN SPEED AND GROSS WEIGHT	50
22	LACV-30 PREDICTED SIDE BAG PRESSURE VARIATION WITH LIFT FAN SPEED AND GROSS WEIGHT	51
23	LACV-30 PREDICTED BAG-TO-CUSHION PRESSURE RATIO VARIATION WITH LIFT FAN SPEED AND GROSS WEIGHT	52
24	LACV-30 PREDICTED EQUIVALENT AIR GAP (EAG) VARIATION WITH LIFT FAN SPEED AND GROSS WEIGHT	53
25	LACV-30 TOTAL PREDICTED LIFT FAN HORSEPOWER VARIATION WITH LIFT FAN SPEED AND GROSS WEIGHT	54

I. INTRODUCTION

The purpose of the hover tests on the LACV-30-1 and LACV-30-2 vehicles was to obtain trunk and cushion characteristics for a number of gross weights and lift fan speeds for comparison to test data obtained from the Stretched Voyageur Model Tests. The comparison of full scale to model would be used to evaluate the accuracy of model data if necessary to obtain test scale factors for future model tests of comparable configurations.

This report includes a description of both vehicles, test instrumentation and data reduction techniques. Results are presented and compared to calculated values obtained from a computer program which uses model test data as the basis for lift system performance.

II. SUMMARY

The purpose of the 1976 IR&D program was to perform full scale craft tests, evaluate the test results and correlate them with model test data. The initial task in the program was to perform hover tests of the full scale LACV-30-1 and LACV-30-2 vehicles at the Bell Aerospace Flight Test Facility in Wheatfield, New York.

The most extensive testing was performed on the LACV-30-1 where data was obtained for corrected gross weights of 83,678, 94,302 and 116,000 pounds. The lift fan speeds tested ranged from 930 to 980 RPM. All test data were corrected to standard day conditions for correlation and comparison. Instrumentation problems voided the test results obtained from the 83,678 pound gross weight condition. The LACV-30-2 test was performed for a corrected gross weight of 93,820 pounds and corrected lift fan speeds of 845, 907 and 955 RPM.

Analysis of the full scale test results indicate that the LACV-30 has a larger than predicted cushion footprint area with a corresponding reduction in cushion pressure.

The peripheral bag pressures measured in the tests were compared to predicted values obtained from a computer model of the lift system. The increased cushion area was used to calculate the predicted values. The use of immediate side deck pressure adjacent to the lift fan discharge area provided the best correlation to predicted values. A complete set of updated lift system performance predictions based upon the measured cushion area is included in this report.

The LACV-30 vehicle exhibited the same characteristic drop in bow bag pressure as seen on the Voyageur (002) craft; however, it appears that the addition of the stretch section resulted in a larger pressure drop from stern to bow bag pressure. The results of the 1/7.5 stretched Voyageur model tests indicated a negligible difference in peripheral bag pressure.

It is recommended that a continual monitoring of full scale data from the LACV-30 and Voyageur Vehicles be performed and the results incorporated into the computer lift system model for future design considerations.

III. TEST PROGRAM AND VEHICLES

The hover flight test program performed at Bell Aerospace in Wheatfield, New York, involved the use of two test vehicles, the LACV-30-1 and the LACV-30-2. The two vehicles are similar to the configuration shown in Figure 1. The configurations tested included volutes in both lift fan plenums, modified stern seal and surf fence. The volutes and new stern seal installations were the outgrowth of the Stretched Voyageur Model test program performed in the ACV Laboratory at Wheatfield, New York. The LACV-30-1 vehicle had a swing crane mounted on the bow as shown in Figure 1.

The LACV-30-1 vehicle was tested in January and February of 1976 at three gross weights; 82,000, 92,000 and 116,000 pounds. Instrumentation problems, described in the next section, voided the results of the 82,000 pound test gross weight. However, the unusually large movement of ballast fuel required to keep the craft in level trim was noted at that weight and resulted in a change in the test program. In the light weight condition the vehicle was tested in only one position on the hangar apron; facing south. In order to investigate the ballast trim effect it was recommended in future tests to rotate the vehicle 180 degrees to establish whether the uneven ground plane or the vehicle itself necessitated ballast fuel trim adjustment.

The second gross weight tested was 92,000 pounds. test weight was obtained by increasing the fuel on board and increasing the ballast weight in the MILVAN mounted on the deck. A weight breakdown is presented in Table I. Figures 2, 3 and 4 are photographs of the test configuration. Four tests were performed, two lift fan speeds at each of the two vehicle positions, facing south and north. After the test, a survey of the test site or cushion footprint area was made to determine the slope of the apron surface. The northern area of the test site was found to be level. This area is covered by the forward cushion compartments of the vehicle when the vehicle is pointed north and covered by the aft cushion compartments when the vehicle is pointed south. The slope at the southern end of the test site was higher, varying in angle from 1 to 3 degrees. Changes in ground slope will cause vehicle movement due to varying air gap, a shifting of ballast fuel to trim the craft in an attempt to keep it level would be required to minimize fore and aft movement.

The final test of the LACV-30-1 was to have been performed at the design gross weight of 115,000 pounds. However, 1000 pounds of additional fuel was put into the tanks for a final gross weight of 116,000 pounds. A weight breakdown for the test configuration is presented in Table II. The procedure was the same as in the previous test performed at 92,000 pounds, two lift fan speeds for each vehicle position on the apron.

The LACV-30-2 vehicle was tested in April 1976. The test site was changed to a concrete ramp between the Chemistry Building and the runway approach area. The concrete ramp was surveyed to determine the best area for the test.

The test program was limited to one gross weight, 92,000 pounds, and three lift fan speeds for one vehicle position, due to the limited availability of the vehicle. The weight breakdown for the test is presented in Table III. Photographs of the vehicle are presented in Figures 5, 6 and 7.

IV. INSTRUMENTATION

All instrumentation was simple and direct visual readings were taken by the test engineer. The visual readings were recorded directly into data sheets for each specific run.

The intent of the program was to measure cushion pressures, bag and anti-bounce bag pressures and heave heights throughout the entire trunk system. The pressures were measured using an open ended tube which was inserted into the cushion and bag areas. The measuring stations are indicated in Table IV. The open ended probe was used in areas where low velocities were predicted and where dynamic pressures were expected to be negligible. These pressure readings represent both local total and static pressure.

In the first test of the LACV-30-1 at a gross weight of 82,000 pounds, Magnehelic gages were used to determine the pressures. Upon completion of the test the gages were returned to the Instrumentation Laboratory where it was discovered that the zero reading on all the gages had drifted significantly. The gages were reset to zero before a calibration could be made to correct the measured test data. No attempt was made to analyze the data for inclusion in this report.

The pressure readings in the remaining tests were read with a hand held pressure probe attached to a U-Tube marometer containing King indicating liquid. Corrections due to test temperature conditions were provided for data analysis by the instrumentation personnel.

Metal rods located at four corners of the vehicle were installed to provide deck heave height readings. Readings were taken with the craft resting on the landing pads in the power off condition and after trunk inflation at the specified lift fan speed. The intent of the heave height measurement was to determine cushion height and air gap height.

After two tests of the LACV-30-1 vehicle, gross weights of 82,000 and 92,000 pounds, it was felt that heave height measurements alone could not be used to determine air gap height. A calibrated wedge was used in the remaining tests to measure the gap between the bottom of the fingers and the ground. The wedge is shown in Figure 8. The gap measurements were read at stations 220 and 695 for both port and starboard sides of the craft. The stations are shown in Table IV.

It also became evident after the first two tests of the LACV-30-1 vehicle that the cushion area of the vehicle is larger than predicted. A cushion footprint of the LACV-30-1 vehicle at a gross weight of 116,000 pounds was obtained using chalk to outline the cushion. A cushion footprint was obtained for all three lift fan speeds during the LACV-30-2 tests.

Outside air temperature and barometric pressure were recorded on the data sheets. These data were used for normalizing test data to standard day conditions.

V. DATA REDUCTION

The bag and cushion pressure data were reduced by correcting the manometer readings for the test temperature and applying the proper conversion from inches of water to pounds per square foot. The two stern heave height readings were increased by 0.7 inches to account for the difference in deck height between the bow and stern measuring locations. The step decrease in deck height occurs at station 624.

The reduced data for each of the eleven tests are presented in Tables IVa through IVk. The data shown includes, P_B , bag pressure, P_{AB} , anti-bounce bag pressure, P_C , cushion pressure and AG, measured air gap.

For analysis the reduced data was corrected to standard day conditions, in the following form:

Bag Pressure $\sim P_{\rm B}/\delta \sim PSF$

Lift Fan Speed~ N_F/ $\sqrt{\theta}$ ~ RPM

Cushion Pressure $\sim P_C/\delta \sim RPM$

Bag-to-Cushion pressure ratio \sim $P_{\rm B}/P_{\rm C}$

Gross Weight \sim W_G/ δ \sim LBS.

Heave Height ~ H.H. ~ inches

Air Gap Height ~ AG~FT

The predicted hover characteristics include the following items:

Horsepower $\sim \frac{\text{H.P.}}{\delta \text{ /-}\theta}$

Cushion Flow $\sim \frac{Q}{\sqrt{A}} \sim CFS$

 θ is the ratio of test temperature to standard day temperature of 518.9 O Rankine and $\,\delta$ is the ratio of test barometric pressure to standard day barometric pressure of 29.92 inches of mercury.

VI. DISCUSSION OF RESULTS

The purpose of the hover flight tests on the LACV-30 full scale vehicle was to obtain trunk characteristics for comparison to predicted values obtained from a computer program. The computer program was developed using Stretched Voyageur model test data for determination of lift system losses. The program titled, VOYLSV3, calculates the total system air flow and distribution of flow, equivalent air gap (EAG), power requirements and pressures throughout the system. Details of the entire program can be found in reference 2.

The Stretched Voyageur model test data indicated the difference in peripheral bag pressure from stern to bow to be negligible. Therefore the average of all trunk pressure was used to determine the lift system losses from lift fan plenum to the side deck or peripheral bag. The computer program calculates one peripheral bag pressure and assumes that both lift fans provide the same bag pressure and flow. The air gap, which is the cushion flow discharge area between the bottom of the fingers and the ground is calculated using the sum of cushion flow from the peripheral and stability bags. The stern bag flow is a separate calculation and is not included in the air gap calculation because it is assumed to exhaust to atmosphere. The program has the capability to account for loss of flow due to leakage area. Because the leakage area was set to zero for this study, the calculated air gap is actually the so-called "equivalent air gap."

The cushion pressure (P_C) is calculated directly from input vehicle weight and cushion geometry. Since it is a major parameter in the program, cushion geometry must be correctly established in order to obtain a valid comparison of full scale test results to predicted values.

Figure 9 presents the variation of effective and measured cushion areas as a function of lift fan speed. The effective cushion area is defined as the test gross weight divided by the average test cushion pressure. The measured cushion areas were obtained from actual footprints of the vehicle at four test conditions. The initial design assumption of cushion area as shown in Figure 9 was for a cushion length (L_C) of 67.2 feet and a cushion beam (BC) of 31.3 feet. As can be seen in the figure the test results indicate that the LACV-30 has a larger cushion area than previously assumed. The measured footprints varied in length from 69.8 to 70.5 feet and in width from 32.5 to 33.5 feet. For comparison to test results, a cushion length of 70.5 feet and beam of 33.5 feet were used to calculate predicted performance. The resultant cushion area is indicated by a solid line in Figure 9 and appears to be a good average of all the test data shown.

The stretched Voyageur model data indicated that the average of all peripheral bag pressures could be used to calculate lift system performance. An attempt was made to correlate the computed values with test data by averaging the peripheral bag pressures for each full scale test. The LACV-30-1 results for the 92,000 gross weight (or a corrected weight of 94,302 pounds) are shown in Figure 10. The solid line is the calculated values of bag and cushion pressures using the model test pressure loss of 0.5 to account for loss in pressure between the lift fan plenum and side bag. The average test bag pressures show a considerable disagreement with the predicted values. determine if this discrepancy could be due to a small change in the loss coefficient, the coefficient was arbitrarily increased until agreement was reached. As shown in Figure 10, the test data shows good agreement with the calculated values only when the anticipated pressure loss coefficient is increased by a factor of three.

The flight test results for the corrected gross weight of 116,000 pounds shown in Figure 11 exhibit the same characteristics as those obtained in the lighter weight test. Again, average peripheral bag pressure aggrees with the calculated value only when the pressure loss coefficient is increased from 0.5 to 1.25.

The LACV-30-2 test results shown in Figure 12 for a corrected gross weight of 93,820 pounds exhibits the same characteristics as the test results shown in Figure 10. Based upon the results obtained from both vehicles it is quite apparent that the use of average bag pressure from the full scale craft does not correlate with the predicted values.

The pressure losses included in the computer program were obtained from 1/7.5 scale model tests where the peripheral bag pressure variation from stern to bow was negligible. The full scale test data shown in Table IV does not indicate the same trend. The test data indicates a decrease in bag pressure with increasing distance away from the lift fan discharge area. The pressure drop from stern to bow is approximately 15 percent. Of some concern is the stretched trunk system drop in bag-to-cushion pressure ratio at the bow and its relationship to plow-in tendencies.

The results of a trunk system pressure survey performed on the full scale Voyageur, craft 002, are presented in Table V. The data taken in June of 1972 indicates no significant change in bag pressure along the side deck. However, the bow bag pressure does drop an average of 7 percent for a majority of the tests. It can therefore be concluded that the addition of the stretch section resulted in a larger than expected pressure drop in the peripheral bag. This loss in pressure also makes it difficult to predict lift system performance using average peripheral bag pressures.

A more significant pressure that can be used for estimating lift system performance is the side bag pressure measured in the vicinity of the lift fan plenum discharge area. Here the pressure is only affected by the lift fan output and the obstructions in the discharge area and does not include losses which occur downstream of the fan discharge area.

Figures 13, 14 and 15 present flight test values obtained by averaging the most aft readings in the port and starboard peripheral bag sections. The center line of the 7 foot diameter lift fan is at station 740. The readings as shown in Table IV were taken at station 695 which is in the area of flow discharge to the side bag.

The predicted or computed values shown in the figures were calculated using the model test pressure loss coefficient of 0.5 to account for loss in pressure between lift fan plenum and side bag. The flight test results for the corrected weights of 94,302 pounds, 116,000 pounds and 93,820 pounds show good agreement with the calculated values of bag pressure. The correlation indicates that a modification should be made to the computer program to include a bow pressure calculation to account for downstream pressure losses and variation in total cushion flow.

The comparison of measured air gap and predicted values is presented in Figures 16 and 17 for corrected weights of 116,000 and 93,820 pounds. Only a limited amount of test data is available since air gap measurement using a calibrated wedge was introduced late in the test program. The computer program assumes level ground and uniform flow exiting from the bottom of the fingers with no leakage between fingers or corners of the trunk system. In reality the ground at the test site is uneven and efforts to keep the craft level resulted in variable exit flow areas around the periphery of the cushion.

The data shown in Figures 16 and 17 are the average of the gap measurements taken during the tests. Their general agreement with predicted values demonstrate satisfactory lift system performance.

Heave height measurements, the distance from ground to deck, are presented in Figures 18, 19 and 20 for corrected cross weights of 94,302 pounds, 116,000 pounds and 93,820 pounds. The predicted value was calculated using the sum of the predicted air gap, theoretical cushion height of 47.5 inches and deck height of 37.5 inches. The heave height reading for the no-gap condition should be 85.0 inches. All the test data shown in the three figures show a divergent trend with the predicted with decreasing lift fan speed. Factors which influence heave height readings are uneven ground at the test site and variation of peripheral bag shape with bag-to-cushion pressure ratio. The measured air gap is a better indication of lift system performance.

The test results can be considered to have validated the computer program, provided that the side bag pressure adjacent to the lift fan discharge area is used for bag pressure and an increased cushion area (2315 ft²) is used. For future prediction purposes, the calculated lift system performance over the range of vehicle weights from 70,000 to 120,000 pounds and lift fan speeds from 695 to 1000 RPM are presented in Figures 21 through 25 as part of this report. The predicted performance includes total cushion flow (Q/ $\sqrt{\theta}$), side bag pressure (PB/ δ), bag-to-cushion pressure ratio, air gap (AG) and total required horsepower (H.P./ δ $\sqrt{\theta}$).

VII. SUMMARY OF RESULTS

- 1. The full scale tests indicated a larger than predicted cushion footprint area with a corresponding reduction in cushion pressure.
- 2. The average peripheral bag pressure did not correlate with predicted values of bag pressure obtained from a lift system computer program.
- 3. Correlation of peripheral bag pressure with predicted values was obtained using the average of port and starboard side bag pressures measured adjacent to the lift fan discharge area.
- 4. The air gap measurement using the calibrated wedge was more indicative of lift system performances than the measured heave height at the deck level. The measured air gap heights were comparable to the predicted.
- 5. The LACV-30 exhibited the same characteristic drop in bow bag pressure as seen on the Voyageur (002) craft; however, it appears that the addition of the stretch section resulted in a larger decrease in bag pressure with increasing distance away from the lift fan discharge area.

VIII. RECOMMENDATIONS

The full scale test data indicated a 15 percent pressure drop from stern to bow in the peripheral bag. Stretched Voyageur model test data, which is the basis for predicting lift system performance, indicated the difference in peripheral bag pressure from stern to bow to be negligible.

The discrepancy in trunk system characteristics must be resolved in order to establish prediction techniques where vehicle growth is obtained by stretching the existing seal system.

The following recommendations are being made to improve our design capability:

- 1. A continual monitoring of static bag pressure data from full scale craft such as the LACV-30 and Voyageur.
- 2. Incorporation of the full scale data into the computer program to include bow bag pressure calculations accounting for downstream losses and variations in total flow.
- 3. An attempt should be made using the stretch Voyageur model to determine model to full scale relationship with regards to bag shape and pressure distribution and establish areas of discrepancies.

IX. REFERENCES

- Laszewski, M. & Watt, C. S., "Stretched Voyageur Model Testing," Bell Aerospace, Report No. 7467-927001, 31 December 1974.
- Bissell, J. R., "VOYLSV3 A Digital Computer Program for Evaluating ACV Type Lift/Seal System Performance," Bell Aerospace, Report No. 7467-927013, May 1976.

TABLE I

LACV-30-1 TEST WEIGHT

TEST NO. 2

BASIC CONFIGURA	TION	58,072	LBS.
LASHINGS	475		
AFT PALLET	945		
PALLET TIE BAR	85		
MILVAN	4745		
CREW	360		
PASSENGER	360		
UNUSEABLE FUEL	650		

7620 LBS.

OPERATING WEIGHT EMPTY 65,692 LBS

FUEL 12,583 LBS.

BALLAST 13,725 LBS.

FLIGHT CONDITION 92,000 LBS.

TABLE II

LACV-30-1 TEST WEIGHT

TEST NO. 3

BASIC CONFIGURAT	58,240 LBS.	
LASHINGS PALLETS PALLET TIE BARS MILVANS (2) CREW PASSENGERS UNUSEABLE FUEL	950 2008 170 9345 360 360 650	
	13,843	LBS.
OPERATING WEIGHT	EMPTY	72,083 LBS.
FUEL	18,546	LBS.
BALLAST	25,371	
FLIGHT CONDITION		116,000 LBS.

TABLE III

LACV-30-2 TEST WEIGHT

TEST NO. 1

BASIC CONFIGURAT	ION	51,859	LBS.
LASHING PALLET PALLET TIE BAR MILVAN CREW PASSENGERS	4745 360 360		
UNUSEABLE FUEL TEE HOOKS	650 152		
	8929	LBS.	
OPERATING WEIGHT	EMPTY	60,788	LBS.
FUEL	16,881	LBS.	
BALLAST	14,331	LBS.	
FLIGHT CONDITION		92,000	LBS.

TABLE IV a

STATIC TEST RUN SUMMARY

TABLE IV b
STATIC TEST RUN SUMMARY

TABLE IV C
STATIC TEST RUN SUMMARY

TABLE IV d
STATIC TEST RUN SUMMARY

TABLE IV e

STATIC TEST RUN SUMMARY

TABLE IV_f
STATIC TEST RUN SUMMARY

TABLE IVg
STATIC TEST RUN SUMMARY

TABLE IV h
STATIC TEST RUN SUMMARY

TABLE IV i

TABLE IV j
STATIC TEST RUN SUMMARY

TABLE IV k
STATIC TEST RUN SUMMARY

CENTER KEEL PRESSURE

PORT PEAR TRUNK PRESSURE

PORT AFT INNER PERIPHERAL TRUNK PRESSURE

00

PORT AFT OUTER PERIPHERAL TRUNK PRESSURE

CUSHION PRESSURE

PORT STABILITY TRUNK PRESSURE

PORT FORWARD OUTER PERIPHERAL TRUNK PRESSURE

09

a.

J.

00

ano 2

a.

a.

PORT FORWARD INNER PERIPHERAL TRUNK PRESSURE

CUSHION PRESSURE

BOW TRUCK PRESSURE

STBD. REAR TRUNK PRESSURE

STBD. AFT INNER PERIPHERAL TRUNK PRESSURE

STBD. AFT OUTER PERIPHERAL TRUNK PRESSURE

9

95

E

an

am

ar

Q=

22

2

CUSHION PRESSURE

STBD, STABILITY TRUNK PRESSURE

STBD. FORWARD OUTER PERIPHERAL TRUNK PRESSURE

STBD. FORWARD INNER PERIPHERAL TRUMK PRESSURE

CUSHION PRESSURE

VOYAGEUR 002 STATIC TEST JUNE 1972

1	-						
	120	38.1	31.2	39.0	45.5	46,8	52.0
	17	6.7	7.2	0.0	5.0	2.4	0.0
-	91	- 00	.45	90.	0.	.76	.76
-	۵.	1 59	1 64	99 8	4 65	0 63	69 0
	ما	53.	54.	59.	62.	65.	65,
	14	26,5	31.2	33.0	42,6	44.2	1,64
	P 13	8.63	32.4	5.0	37.6	33.7	3.6
-	12	E.7	4,6	2.0	1.1	1.1	4.5
-		1.	6.5	00	5	2 6	9 6
_	۵.	68	19	172	17	70	74
	70	51.5	53.3	62,4	60.9	57.2	62,9
	5	9.97	31.2	39.0	45.5	46.8	51.0
	S	5.1	7.2	2,4	4.4	1.1	5.5
-	7	5	.8	0.	3	9 4.	99
-	a.	1 59	1 59	8 65	4 66	0 62	0 67
	4	53.	54.	59.	62.	65.	64.
	5	24.0	31.2	3.1.8	42.0	41,6	8/94
	P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18	60.3 62.9 54.6 58.7 24.0 53.1 59.3 55.1 26.6 51.5 68.1 56.7 59.8 26.5 53.1 59.8 56.7 38.	63.7 55.9 61.1 31.2 54.1 59.8 57.2 31.2 53.3 67.6 54.6 62.4 31.2 54.1 64.4 57.2 31.2	65.0 70.2 59.8 65.0 34.8 59.8 65.0 62.4 39.0 62.4 72.8 62.0 65.0 33.0 59.8 66.0 60.0 39.0	66.6 70.2 65.0 66.6 42.0 62.4 66.3 64.4 45.5 60.9 71.5 61.1 67.6 42.6 62.4 65.0 65.0 45.5	65.0 65.0 59.8 62.4 41.6 65.0 62.4 61.1 46.8 57.2 70.2 61.1 63.7 44.2 65.0 63.7 62.4 46.8	65.5
	73	4.6	5.9	8.6	5.0	8.6	5.5
-	2	5	.75	1.2 5	1.2 6	50.	0.
-	1	62	63	70	70	9	19
	7	60.3	61.1	65.0	9,99	65.0	67.6
7	(9F)	99	65	25	9	80	80
11,	(%)	99	05	06	66	06	66
CRAFT	WEIGHT (LB)	45.000	49,600	64,000	78,000	78,000	88,000

FIGURE 1. 3 VIEW AND GENERAL ARRANGEMENT - LACV-30

BEST AVAILABLE COPY

BEST AVAILABLE COPY

BEST_AVAILABLE_COPY

A = 12 and Tet Company of A = 12 and Tet A

BEST_AVAILABLE COPY

VEHICLE ON COICETE

BEST_AVAILABLE COPY

BEST AVAILABLE COPY

I O E F. STELM ILIJUE DAGG-30-2 VERYCLE SICHING ME.

BEST_AVAILABLE_COPY

CONT. S. WINGS HOTO TO TREAT COUNTY ST. CTP.

	l Pilbi)RE 18											
			\Box	ACV -	±,0 −								
					TEST								
		HEAU	WC HE	1647	1 VA	RIATI	DM (]:1 ¹ 1 -4	FAN	THE	LD		210
			8		1,20%	- L-C-1							
												+	
'n	95												
1													
HEIGHT - H.H. 2 NOTHES													
5	36												
I										00			
) }									0				
<u>,</u>	82.												
101													
W T													
	78			י יכו	DICTR		ے بری	c 1)					
EASE			6	A COLUMN TO A STATE OF	A - 20	E THE PERSON NAMED IN		771					
1													
7	74		+ 10 S										
VECK													
144					-								
	70												
	500		600	7	00	5	90	90	ن	1	222		
							1					-	
		1 6	187 1	MIN	FRA		1/10	~ /2/	PAY				

