Higher-Order Quantified Boolean Satisfiability

Dmitry Chistikov¹, Christoph Haase², Zahra Hadizadeh³ and **Alessio Mansutti**²

¹University of Warwick, UK

 $^2\mbox{University}$ of Oxford, UK

 $^3{\sf Sharif}$ University of Technology, Iran

In this paper...

- We introduce an higher-order Boolean satisfiability problem (HOSAT) that
 - is a natural extension of the quantified Boolean formula problem (QBF)
 - characterises complexity classes in the weak $k \to \infty$ hierarchy, for all $k \ge 1$.
- We use HOSAT to settle the complexity of **weak Presburger arithmetic**, i.e. the first-order theory of the structure $\langle \mathbb{Z}, 0, 1, +, = \rangle$.

Is the Boolean satisfiability problem "simple to use" for lower bounds?

Is the Boolean satisfiability problem "simple to use" for lower bounds?

It is a very natural problem w.r.t. NP :

Does the TM accepts the input w?

SAT:

$$\exists a \exists b \exists c \exists d : (a \lor \neg b \lor c) \land (\neg a \lor d \lor b) \land (a \lor d) \land (\neg b \lor \neg d \lor \neg c) \land (c \lor b) \land (c \lor \neg a)$$

Is the sentence true?

Is the Boolean satisfiability problem "simple to use" for lower bounds?

It is a very natural problem w.r.t. PH and PSPACE :

QBF:

$$\exists a \forall b \forall c \exists d : (a \lor \neg b \lor c) \land (\neg a \lor d \lor b) \land (a \lor d) \land (\neg b \lor \neg d \lor \neg c) \land (c \lor b) \land (c \lor \neg a)$$

Does the TM accepts the input w?

Is the sentence true?

Is the Boolean satisfiability problem "simple to use" for lower bounds?

Well-understood problem w.r.t. NExp:

Succinct SAT:

$$f:[1,n]\to\{\land,\lor,\lnot\}\times[1,n]\times[1,n]$$
 $n\in\mathbb{N}$ in binary.

Does the TM accepts the input w?

$$\exists \mathbf{x} \bigwedge_{i \in [1,n], f(i) = (\mathit{op},j,k)} x_i \Leftrightarrow x_j \ \mathit{op} \ x_k \ ?$$

Is the Boolean satisfiability problem "simple to use" for lower bounds?

Unnatural for classes above NEXP!

Turing machines:

How does Succinct succinct QBF even looks like?

Does the TM accepts the input \mathbf{w} ?

Is the Boolean satisfiability problem "simple to use" for lower bounds?

Unnatural for classes above NEXP

Does the TM accepts the input w?

Higher-order Boolean functions:

$$\mathbb{B}_{0,n} \qquad := \mathbb{B} := \{0,1\};$$

 $k, n \in \mathbb{N}$

$$\mathbb{B}_{k+1,n} \quad := [(\mathbb{B}_{k,n})^n \to \mathbb{B}].$$

E.g. given
$$g_1,\ldots,g_n\in\mathbb{B}_{1,n}:=[\mathbb{B}^n\to\mathbb{B}]$$
 and $f\in\mathbb{B}_{2,n}$, we have $f(g_1,\ldots,g_n)\in\mathbb{B}.$

Quantifier-free generalised Boolean formulas

$$\Phi := \top \mid f(g_1, \dots, g_n) \mid \neg \Phi \mid \Phi \wedge \Phi \qquad \text{(function applications are well-typed)}$$

Generalised Boolean formulas of order 0;

$$\exists \mathbf{f}_1: \mathbb{B} \ orall \mathbf{f}_2: \mathbb{B} \ ... \ \exists \mathbf{f}_d: \mathbb{B} \ \Phi \qquad (\Phi \ \mathsf{quantifier ext{-}free})$$

• Generalised Boolean formulas of order $k \ge 1$:

$$\exists \mathbf{f}_1: \mathbb{B}_{k,n} \forall \mathbf{f}_2: \mathbb{B}_{k,n} \ldots \exists \mathbf{f}_d: \mathbb{B}_{k,n} \ \Phi \qquad \big(\Phi \text{ of order } k-1\big)$$

• Higher-order Boolean functions: $\mathbb{B}_{0,n} \qquad := \mathbb{B} := \{0,1\}; \qquad k,n \in \mathbb{N}$ $\mathbb{B}_{k+1,n} \qquad := [(\mathbb{B}_{k,n})^n \to \mathbb{B}].$

E.g. given $g_1,\ldots,g_n\in\mathbb{B}_{1,n}:=[\mathbb{B}^n\to\mathbb{B}]$ and $f\in\mathbb{B}_{2,n}$, we have $f(g_1,\ldots,g_n)\in\mathbb{B}.$

• Quantifier-free generalised Boolean formulas:

$$\Phi := \top \mid f(g_1, \dots, g_n) \mid \neg \Phi \mid \Phi \wedge \Phi \qquad \text{(function applications are well-typed)}$$

Generalised Boolean formulas of order 0:

$$\exists \mathbf{f}_1: \mathbb{B} \ orall \mathbf{f}_2: \mathbb{B} \ ... \ \exists \mathbf{f}_d: \mathbb{B} \ \Phi \qquad (\Phi \ \mathsf{quantifier ext{-}free})$$

• Generalised Boolean formulas of order $k \ge 1$:

$$\exists \mathbf{f}_1: \mathbb{B}_{k,n} \forall \mathbf{f}_2: \mathbb{B}_{k,n} \dots \exists \mathbf{f}_d: \mathbb{B}_{k,n} \ \Phi \qquad (\Phi \text{ of order } k-1)$$

• Higher-order Boolean functions: $\mathbb{B}_{0,n}:=\mathbb{B}:=\{0,1\}; \qquad k,n\in\mathbb{N}$ $\mathbb{B}_{k+1,n}:=[(\mathbb{B}_{k,n})^n\to\mathbb{B}].$

E.g. given $g_1,\ldots,g_n\in\mathbb{B}_{1,n}:=[\mathbb{B}^n\to\mathbb{B}]$ and $f\in\mathbb{B}_{2,n}$, we have $f(g_1,\ldots,g_n)\in\mathbb{B}.$

Quantifier-free generalised Boolean formulas:

$$\Phi := \top \mid f(g_1, \dots, g_n) \mid \neg \Phi \mid \Phi \wedge \Phi \qquad \text{(function applications are well-typed)}$$

• Generalised Boolean formulas of order 0:

$$\exists \mathbf{f}_1 : \mathbb{B} \ \forall \mathbf{f}_2 : \mathbb{B} \ \dots \ \exists \mathbf{f}_d : \mathbb{B} \ \Phi$$
 (Φ quantifier-free)

• Generalised Boolean formulas of order $k \ge 1$:

$$\exists \mathbf{f}_1: \mathbb{B}_{k,n} \forall \mathbf{f}_2: \mathbb{B}_{k,n} \ldots \exists \mathbf{f}_d: \mathbb{B}_{k,n} \ \Phi \qquad (\Phi \ \text{of order} \ k-1)$$

$\mathsf{HOSAT}(k,d): d$ -alternating satisfiability problem of order k

Input: A sentence Φ of order k and alternation depth d for functions in $\mathbb{B}_{k,n}$.

Output: Is Φ valid?

$$\mathsf{HOSAT}(k,\,*) := \bigcup_{d \in \mathbb{N}_+} \, \mathsf{HOSAT}(k,\,d) \qquad \qquad \mathsf{HOSAT} := \bigcup_{k \in \mathbb{N}_+} \, \mathsf{HOSAT}(k,\,*)$$

$\mathsf{HOSAT}(k,d)$: d-alternating satisfiability problem of order k

Input: A sentence Φ of order k and alternation depth d for functions in $\mathbb{B}_{k,n}$.

Output: Is Φ valid?

$$\mathsf{HOSAT}(k,\,*) := \bigcup_{d \in \mathbb{N}_+} \mathsf{HOSAT}(k,\,d) \qquad \qquad \mathsf{HOSAT} := \bigcup_{k \in \mathbb{N}_+} \mathsf{HOSAT}(k,\,*)$$

Theorem 1

- 1. HOSAT(k,d) is complete for $\Sigma_d^{k ext{Exp}}$
- 2. $\operatorname{HOSAT}(k,*)$ is complete for $\operatorname{STA}(*,\exp_2^k(n^{O(1)}),O(n))$
- 3. HOSAT is Tower-complete.

HOSAT: Related work

Instances of HOSAT were already considered by several authors in the past.

- HOSAT(1,1):
 - ullet was used by Babai et al. (1991) to show the left to right inclusion of ${
 m NExp}={
 m MIP}$
 - is related to Dependency QBF: $\ \, \forall \mathbf{y} \exists x_1(Y_1) \ldots \exists x_m(Y_m) \ \Phi \$ is equivalent to

$$\exists f_1: [\mathbb{B}^{|Y_1|} \to \mathbb{B}] \ldots \exists f_m: [\mathbb{B}^{|Y_m|} \to \mathbb{B}] \ \forall \mathbf{y} \ \Phi[f_i(Y_i)/x_i]$$

- HOSAT(1,d) was used by Lohrey (2012) to show $\Sigma_d^{\rm Exp}$ -hardness of mode checking Σ_d -MSO sentences over hierarchical graph unfoldings
- HOSAT is similar to the "Boolean set theory" used by Statman (1979) to show that the *normalisation* problem for simply typed λ -terms is TOWER-hard.

HOSAT: Related work

Instances of HOSAT were already considered by several authors in the past.

- HOSAT(1,1):
 - ullet was used by Babai et al. (1991) to show the left to right inclusion of ${
 m NExp}={
 m MIP}$
 - is related to Dependency QBF: $\ \, \forall \mathbf{y} \exists x_1(Y_1) \ldots \exists x_m(Y_m) \ \Phi \$ is equivalent to

$$\exists f_1: [\mathbb{B}^{|Y_1|} \to \mathbb{B}] \ldots \exists f_m: [\mathbb{B}^{|Y_m|} \to \mathbb{B}] \ \forall \mathbf{y} \ \Phi[f_i(Y_i)/x_i]$$

- HOSAT(1,d) was used by Lohrey (2012) to show $\Sigma_d^{\rm EXP}$ -hardness of model checking Σ_d -MSO sentences over hierarchical graph unfoldings
- HOSAT is similar to the "Boolean set theory" used by Statman (1979) to show that the *normalisation* problem for simply typed λ -terms is TOWER-hard.

HOSAT: Related work

Instances of HOSAT were already considered by several authors in the past.

- HOSAT(1,1):
 - ullet was used by Babai et al. (1991) to show the left to right inclusion of ${
 m NExp}={
 m MIP}$
 - is related to Dependency QBF: $\ \, \forall \mathbf{y} \exists x_1(Y_1) \ldots \exists x_m(Y_m) \ \Phi \$ is equivalent to

$$\exists f_1: [\mathbb{B}^{|Y_1|} \to \mathbb{B}] \ldots \exists f_m: [\mathbb{B}^{|Y_m|} \to \mathbb{B}] \ \forall \mathbf{y} \ \Phi[f_i(Y_i)/x_i]$$

- HOSAT(1,d) was used by Lohrey (2012) to show $\Sigma_d^{\rm EXP}$ -hardness of model checking Σ_d -MSO sentences over hierarchical graph unfoldings
- HOSAT is similar to the "Boolean set theory" used by Statman (1979) to show that the *normalisation* problem for simply typed λ -terms is TOWER-hard.

(Weak) Presburger arithmetic

Presburger arithmetic (PA): first-order theory of $\langle \mathbb{Z}, 0, 1, +, < \rangle$

"There is no maximum integer" $\forall x \exists y : x + 1 < y$

$$\forall \mathtt{x}\,\exists \mathtt{y}:\mathtt{x}+1\leq \mathtt{y}$$

Theorem (Fischer & Rabin, '74; Berman '80)

Presburger arithmetic is complete for $STA(*,exp_2^2(n^{O(1)}),O(n))$ (= HOSAT(2,*)).

(Weak) Presburger arithmetic

Presburger arithmetic (PA): first-order theory of $(\mathbb{Z}, 0, 1, +, <)$

"There is no maximum integer" $\forall x \exists y : x + 1 < y$

$$\forall \mathtt{x}\,\exists \mathtt{y}:\mathtt{x}+1\leq \mathtt{y}$$

Theorem (Fischer & Rabin, '74; Berman '80)

Presburger arithmetic is complete for $STA(*,exp_2^2(n^{O(1)}),O(n))$ (= HOSAT(2,*)).

Weak Presburger arithmetic: first-order theory of $\langle \mathbb{Z}, 0, 1, +, = \rangle$

- the theory originally considered by Presburger
- well-understood expressivity-wise [Chistikov & Haase, ICALP'2020]
- has not been studied complexity-wise.

Weak PA: can it be easier than PA?

Quite different theories, geometric-wise:

Weak PA: can it be easier than PA?

Quite different theories, geometric-wise:

Weak PA: can it be easier than PA?

Quite different theories, geometric-wise:

For some fragments, taking = instead of \leq matters:

- $\exists \mathbf{x} \in \mathbb{Z}^d \ A \cdot \mathbf{x} \leq \mathbf{b}$ is NP-complete; $\exists \mathbf{x} \in \mathbb{Z}^d \ A \cdot \mathbf{x} = \mathbf{b}$ is PTIME-complete
- $\exists x_1 \forall x_2 \dots \exists x_d \ A \cdot \mathbf{x} \leq \mathbf{b}$ is PSPACE-hard; $\exists x_1 \forall x_2 \dots \exists x_d \ A \cdot \mathbf{x} = \mathbf{b}$ is still PTIME

Answer: No.

Theorem 2

The following fragments of Weak PA are already as hard as PA:

- positive fragment: $\Phi:=a_1x_1+\cdots+a_dx_d=c\mid\Phi\land\Phi\mid\Phi\lor\Phi\mid\exists x.\Phi\mid\forall x.\Phi$
- quantified Horn fragment: $\exists x_1 \forall x_2 \dots \exists x_d \cdot \bigwedge_{i \in I} A_i \cdot \mathbf{x} = \mathbf{c}_i \Rightarrow B_i \cdot \mathbf{x} = \mathbf{d}_i$

Proofs by reductions from HOSAT(2,*).

Answer: No.

Theorem 2

The following fragments of Weak PA are already as hard as PA:

- positive fragment: $\Phi:=a_1x_1+\cdots+a_dx_d=c\mid\Phi\land\Phi\mid\Phi\lor\Phi\mid\exists x.\Phi\mid\forall x.\Phi$
- quantified Horn fragment: $\exists x_1 \forall x_2 \dots \exists x_d \cdot \bigwedge_{i \in I} A_i \cdot \mathbf{x} = \mathbf{c}_i \Rightarrow B_i \cdot \mathbf{x} = \mathbf{d}_i$

Proofs by reductions from HOSAT(2,*).

For the reduction it suffices to show how to:

- ullet encode the functions from $\mathbb{B}_{1,n}$ and $\mathbb{B}_{2,n}$
- encode function application.

Encoding functions in Weak PA

• Functions in $\mathbb{B}_{1,n}=[\mathbb{B}^n \to \mathbb{B}]$: f encoded as $\hat{f} \in [2^{2^n}]:=[0,2^{2^n}-1]$ s.t.

$$f(b_1,\dots,b_n)=b \quad \text{if and only if} \quad \text{the j-th bit of $\hat f$ is set to b,} \\ \quad \text{where } j:=\sum_{i=1}^n b_i\cdot 2^{i-1}.$$

Encoding functions in Weak PA

• Functions in $\mathbb{B}_{1,n}=[\mathbb{B}^n o \mathbb{B}]$: f encoded as $\hat{f} \in [2^{2^n}]:=[0,2^{2^n}-1]$ s.t.

$$f(b_1,\dots,b_n)=b \quad \text{ if and only if } \quad \text{the j-th bit of \widehat{f} is set to b,} \\ \quad \text{where } j:=\sum_{i=1}^n b_i \cdot 2^{i-1}.$$

• Functions in $\mathbb{B}_{2,n}$: $\hat{f}\in\mathbb{Z}$ encodes f iff for all $b\in\mathbb{B}$, $g_1,\dots,g_n\in\mathbb{B}_{1,n}$

$$\begin{array}{ll} f(g_1,\ldots,g_n)=b & \text{iff} & \hat{f}\equiv_q b \text{ for all primes } q\in[k^3,(k+1)^3),\\ & \text{where } k:=\sum_{i=1}^n\hat{g}_i\cdot 2^{2^n(i-1)}+\text{offset}. \end{array}$$

Encoding functions in Weak PA

• Functions in $\mathbb{B}_{1,n}=[\mathbb{B}^n \to \mathbb{B}]$: f encoded as $\hat{f} \in [2^{2^n}]:=[0,2^{2^n}-1]$ s.t.

$$f(b_1,\dots,b_n)=b \quad \text{ if and only if } \quad \text{the j-th bit of \widehat{f} is set to b,} \\ \quad \text{where } j:=\sum_{i=1}^n b_i \cdot 2^{i-1}.$$

• Functions in $\mathbb{B}_{2,n}$: $\hat{f}\in\mathbb{Z}$ encodes f iff for all $b\in\mathbb{B}$, $g_1,\dots,g_n\in\mathbb{B}_{1,n}$

$$f(g_1,\ldots,g_n)=b$$
 iff $\hat{f}\equiv_q b$ for all primes $q\in[k^3,(k+1)^3)$, where $k:=\sum_{i=1}^n\hat{g}_i\cdot 2^{2^n(i-1)}+$ offset.

All functions in $\mathbb{B}_{2,k}$ admit such an encoding, thanks to Ingham's theorem and the Chinese remainder theorem.

Conclusion

• The **Higher-order Boolean satisfiability problem** is a natural extension of QBF that allows to capture all complexity classes in the weak k Exp hierarchy ($k \ge 1$).

 Weak Presburger arithmetic is as hard as (standard) Presburger arithmetic, even for its positive and quantified Horn fragments.