08 RelationsCS201 Discrete Mathematics

Instructor: Shan Chen

Relations and Their Properties

Binary Relations

- Definition: Let A, B be two sets. A binary relation R from A to B is a subset of the Cartesian product A × B.
 - By definition, a binary relation $R \subseteq A \times B$ is a set of ordered pairs of the form (a, b) with $a \in A$ and $b \in B$.
 - We use a R b to denote $(a, b) \in R$, and a R b to denote $(a, b) \notin R$.
- Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$
 - Is R = {(a, 1), (b, 2), (c, 2)} a relation from A to B?
 Yes
 - Is Q = {(1, a), (2, b)} a relation from A to B?
 No, it's a relation from B to A
 - Is P = {(a, a), (b, c), (b, a)} a relation from A to A?
 Yes

Visualizing Binary Relations

- We can visually represent a binary relation R:
 - as a graph: if a R b, then draw an arrow from a to b: $a \rightarrow b$
 - as a table: if a R b, then mark the table cell at (a, b)
- Example: $A = \{0, 1, 2\}, B = \{a, b\}, R = \{(0, a), (0, b), (1, a), (2, b)\}.$

R	а	b
0	×	×
1	×	
2		×

Relations vs Functions

- Functions can also be visualized as graphs, but they map each element in the domain to exactly one element in the codomain.
- Relations are able to represent one-to-many relationships between elements in A and B.
- Relations are a generalization of graphs of functions.

Relations between Finite Sets

Theorem: There are 2^{nm} binary relations from an n-element set A to an m-element set B.

Proof:

- The cardinality of the Cartesian product $|A \times B| = nm$.
- R is a binary relation from A to B if and only if $R \subseteq A \times B$.
- The number of subsets of a set with nm elements is 2nm.
- Matrix representation: A relation R between finite sets can be represented using a zero—one matrix M_R.

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Relations on a Set

- Definition: A relation on a set A is a relation from A to A.
- o Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a \mid b\}$
 - What does R_{div} consist of?

$$R_{div} = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$$

R	1	2	3	4
1	×	×	×	×
2		×		×
3			×	
4				×

- Reflexive relation: A relation R on a set A is called reflexive if
 (a, a) ∈ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} reflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∈ R_{div}
 - Is R = {(1, 2), (2, 2), (3, 3)} reflexive?
 No, because (1, 1), (4, 4) ∉ R
- A relation R is reflexive if and only if M_R has 1 in every position on its main diagonal.

- Irreflexive relation: A relation R on a set A is called irreflexive if
 (a, a) ∉ R for every element a ∈ A.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_≠ = {(a, b) : a ≠ b} irreflexive?
 Yes, because (1, 1), (2, 2), (3, 3), (4, 4) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} irreflexive?
 No, because (2, 2), (3, 3) ∈ R * actually R is not reflexive either
- A relation R is irreflexive if and only if M_R has 0 in every position on its main diagonal.

- Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} symmetric?
 No, because (1, 2) ∈ R_{div} but (2, 1) ∉ R_{div}
 - Is R_≠ = {(a, b) : a ≠ b} symmetric?
 Yes, because if (a, b) ∈ R_≠ then (b, a) ∈ R_≠
- \circ A relation R is symmetric if and only if M_R is symmetric.

- Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$, $(a, b) \in R$ implies a = b for all $a, b \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R = {(1, 2), (2, 2), (2, 1), (3, 3)} antisymmetric?
 No, because both (1, 2) ∈ R and (2, 1) ∈ R but 1 ≠ 2
 - Is R = {(2, 2), (3, 3)} antisymmetric?
 Yes * actually R is also symmetric
- A relation R is antisymmetric if and only if $m_{ij} = 1$ implies $m_{ji} = 0$ for $i \neq j$, where m_{ij} is the (i, j)-th element of M_R .

- Transitive Relation: A relation R on a set A is called transitive if $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.
- \circ Example: consider relations on $A = \{1, 2, 3, 4\}$
 - Is R_{div} = {(a, b) : a | b} transitive?
 Yes, because if a | b and b | c then a | c
 - Is R_≠ = {(a, b) : a ≠ b} transitive?
 No, because (1, 2), (2, 1) ∈ R_≠ but (1, 1) ∉ R_≠
 - Is R = {(1, 2), (2, 2), (3, 3)} transitive?
 Yes

Representing Relations

Recall that a relation can be represented as a directed graph:

Exercise (5 mins)

- Consider binary relations on a finite set A with |A| = n: Hint: think of a binary relation as a zero-one matrix
 - How many reflexive relations?
 - How many irreflexive relations?
 - How many symmetric relations?
 - How many antisymmetric relations?
 - O **Theorem:** There are 2^{nm} binary relations from an n-element set A to an m-element set B.
 - Proof:
 - The cardinality of the Cartesian product $|A \times B| = nm$.
 - R is a binary relation from A to B if and only if $R \subseteq A \times B$.
 - The number of subsets of a set with nm elements is 2^{nm}.

Exercise (5 mins)

- Consider binary relations on a finite set A with |A| = n: Hint: think of a binary relation as a zero-one matrix
 - How many reflexive relations?
 2n(n 1)
 - How many irreflexive relations?
 2ⁿ⁽ⁿ⁻¹⁾
 - How many symmetric relations?
 2^{n(n + 1)/2}
 - How many antisymmetric relations?
 2n3n(n 1)/2
 - * First, values on the main diagonal m_{ij} can be chosen arbitrarily. Then, for each pair of matrix elements (m_{ij}, m_{ji}) with $i \neq j$ (there are n(n-1)/2 such pairs), it has 3 possible choices: (0, 0), (0, 1), (1, 0).

Combining Relations

- Since relations are sets, we can combine relations via set operations: union, intersection, complement, difference, etc.
- Example: consider relations from $A = \{1, 2, 3\}$ to $B = \{u, v\}$
 - $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}, R_2 = \{(1, v), (3, u), (3, v)\}$
 - What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$?
- We may also combine relations by matrix operations.
 - E.g., can get R₁ ∩ R₂ from **element-wise and**: M_{R1} ∧ M_{R2} * what about other set operations?

Composite of Relations

- **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
 - We denote the composite of R and S by S R.

Composite of Relations

- **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there exists a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
 - We denote the composite of R and S by $S \circ R$.
- Example: $A = \{1, 2\}, B = \{1, 2, 3\}, C = \{a, b\}$
 - $R = \{(1, 2), (1, 3), (2, 1)\} \subseteq A \times B, S = \{(1, a), (3, a), (3, b)\} \subseteq B \times C$
 - $S \circ R = \{(1, a), (1, b), (2, a)\}$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_S & = & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Boolean product of matrices : replace + with v and replace x with A

Composite of Relations

- O **Definition:** Let R be a relation on the set A. The powers R^n for n = 1, 2, 3, ... is defined inductively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.
- Example: Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$
 - $R^1 = R$
 - $R^2 = R \circ R = \{(1, 3), (1, 4), (2, 3), (3, 3)\}$
 - $R^3 = R^2 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^4 = R^3 \circ R = \{(1, 3), (2, 3), (3, 3)\}$
 - $R^{k} = ? (k > 4)$

Transitive Relation and Rⁿ

○ **Theorem:** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

- Proof:
 - "if" part: In particular, $R^2 \subseteq R$. If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.
 - "only if" part: Proof by induction. * the proof is left as an exercise
- O Note that Rⁿ can be computed by Boolean product of matrices:

$$M_{R^n} = M_R \odot M_R \odot \cdots \odot M_R$$

n-ary Relations

n-ary Relations

- **Definition:** An *n*-ary relation *R* on sets $A_1, A_2, ..., A_n$, written as $R: A_1, ..., A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.
 - The sets A_i s are called the domains of R.
 - The degree of *R* is *n*.
 - R is functional in domain A_i if for any a_i ∈ A_i the relation R contains at most one n-tuple of the form (···, a_i, ···).
- Some ways to represent *n*-ary relations:
 - as an explicit list or table of its tuples
 - as a function from the domains to {T, F}

Relational Databases

- A relational database is essentially an n-ary relation R.
- A domain A_i is a primary key for the database if the relation R is functional in A_i .
 - Recall that R is functional in domain A_i if for any a_i ∈ A_i the relation
 R contains at most one n-tuple of the form (···, a_i, ···).
- o A composite key for the database is a set of domains $\{\cdots, A_i, \cdots, A_j, \cdots\}$ such that R contains at most one n-tuple $(\cdots, a_i, \cdots, a_j, \cdots)$ for each composite value $(\cdots, a_i, \cdots a_j, \cdots) \in \cdots A_i \times \cdots \times A_j \times \cdots$.

Entity-Relationship (ER) Diagrams

Selection Operators

- Let \mathbf{A} be an n-ary domain $\mathbf{A} = A_1 \times \cdots \times A_n$, and let $\mathbf{C} : \mathbf{A} \to \{T, F\}$ be any condition (predicate) on elements (n-tuples) of \mathbf{A} .
- The selection operator s_C is the operator that maps any n-ary relation R on A to the n-ary relation consisting of all n-tuples from R that satisfy C.
 - $\forall R \subseteq A$, $s_C(R) = R \cap \{a \in A \mid C(a) = T\} = \{a \in R \mid C(a) = T\}$
- Example: consider A = StudentName × Standing × SocSecNos
 - Condition UpperLevel(name, standing, ssn) is defined as (standing = junior) \(\text{(standing = senior)} \)
 - Then, supperLevel is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of just the upper-level students (juniors or seniors).

Projection Operators

- Let A be an n-ary domain $A = A_1 \times \cdots \times A_n$, and let $\{i_1, \ldots, i_m\}$ be a sequence of indices such that $1 \le i_1 < \cdots < i_m \le n$ and m < n.
- o The projection operator $P_{\{i_1, \dots, i_m\}}: A \to A_{i_1} \times \dots \times A_{i_m}$ is defined by

$$P_{\{i_1, ..., i_m\}}(a_1, ..., a_n) = (a_{i_1}, ..., a_{i_m})$$

- Example: consider a ternary domain Cars = Model × Year × Color
 - Index sequence is {1, 3}
 - The projection operator $P_{\{1, 3\}}$ simply maps each 3-tuple, e.g., $(a_1, a_2, a_3) = (Tesla, 2020, black)$ to $(a_1, a_3) = (Tesla, black)$.
 - This operator can be applied to any relation $R \subseteq Cars$ to obtain a list of model-color combinations available.

Join Operators

- The joint operator puts two relations together to form a sort of combined relation.
- o If the tuple (a, b) appears in R_1 , and the tuple (b, c) appears in R_2 , then the tuple (a, b, c) appears in their join $J(R_1, R_2)$.
- Note that a, b, c each can also be a sequence of elements rather than a single element.
- Example:
 - Let R₁ be a teaching assignment table, relating Professors to Courses.
 - Let R₂ be a room assignment table, relating Courses to Rooms and Times.
 - Then, $J(R_1, R_2)$ is like your class schedule, listing tuples of the form (professor, course, room, time).

Closures of Relations

Closures of Relations

- Properties of Relations:
 - reflexive
 - irreflexive
 - symmetric
 - antisymmetric
 - transitive
- Closures of Relations:
 - reflexive closures
 - symmetric closures
 - transitive closures

Example: Reflexive Closures

- Consider $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ defined on $A = \{1, 2, 3\}$.
- **Q:** Is relation *R* reflexive?
 - No, (2, 2) and (3, 3) are not in R
- \circ What is the minimal relation $S \supseteq R$ that is reflexive?
 - How to make R reflexive by adding the minimum number of pairs?
 Add (2, 2) and (3, 3).

```
S = \{(1, 1), (1, 2), (2, 1), (3, 2), (2, 2), (3, 3)\} \supseteq R is reflexive.
```

 \circ The minimal set $S \supseteq R$ is called the reflexive closure of R.

^{*} what about the irreflexive closure? does it make sense?

Definition of Closures

- Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is the minimal set containing R satisfying the property P.
 - For every relation Q that satisfies P and $R \subseteq Q$, we have $S \subseteq Q$.

• Examples:

- reflexive closure * see the example we just showed in previous slide
- symmetric closure: relation R = {(1, 2), (1, 3), (2, 2)} on A = {1, 2, 3}
 * how to make it symmetric?
 S = {(1, 2), (1, 3), (2, 2)} ∪ {(2, 1), (3, 1)}
- transitive closure: relation R = {(1, 2), (2, 2), (2, 3)} on A = {1, 2, 3}
 * how to make it transitive?
 S = {(1, 2), (2, 2), (2, 3)} ∪ {(1, 3)}

Transitive Closures and Paths

- **Definition:** A (directed) path from a to b in a directed graph G is a sequence of edges (x_0, x_1) , (x_1, x_2) , ..., (x_{n-1}, x_n) in graph G, where $n \ge 0$, $x_0 = a$ and $x_n = b$.
- Recall that we can represent a relation using a directed graph.
 Then, finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path.
- Example: relation $R = \{(1, 2), (2, 2), (2, 3)\}$ on $A = \{1, 2, 3\}$
 - transitive closure: $S = \{(1, 2), (2, 2), (2, 3), (1, 3)\}$

Relations and Paths

- **Theorem:** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.
- Proof by induction:

Exercise (5 mins)

O Show that "If R is transitive, then R" is also transitive."

Theorem: Let R be relation on a set A. There is a path of length n from a to b if and only if (a, b) ∈ Rⁿ.

Proof by induction:

The Connectivity Relation

O **Definition:** *R* is a relation on a set *A*. The connectivity relation *R** consists of all pairs (*a*, *b*) such that there is a path (of any length) from *a* to *b* in *R*.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

- Example: consider a relation R on $A = \{1, 2, 3, 4\}$
 - $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 - $R^2 = \{(1, 3), (2, 4)\}$
 - $R^3 = \{(1, 4)\}$
 - $R^4 = \emptyset$

Transitive Closures

- Theorem: The transitive closure of a relation R equals the connectivity relation R*.
- Proof:
 - R^* is transitive * view (a, b) $\in R^*$ as pairs connected by a path in R
 - $R^* \subseteq S$ whenever S is a transitive relation containing RSince S is a transitive relation, we have $S^n \subseteq S$. * already proved Therefore, $S^* \subseteq S$. Since $R \subseteq S$, we have $R^* \subseteq S^* \subseteq S$.

- Recall that finding a transitive closure corresponds to finding the connectivity relation, which consists of all pairs of elements that are connected with a directed path.
- The following lemma shows that it is sufficient to examine paths containing no more than n edges, where n is the number of elements in the set.
- **Lemma:** Let A be a set with n elements and let R be a relation on A. If there is a path of length ≥ 1 in R from a to b, then there is such a path with length $\leq n$. Moreover, when $a \neq b$, if there is a path from a to b, then there is such a path with length $\leq n 1$. Therefore,

$$R^* = \bigcup_{k=1}^n R^k$$

○ **Lemma:** Let A be a set with n elements and let R be a relation on A. If there is a path of length ≥ 1 in R from a to b, then there is such a path with length $\leq n$. Moreover, when $a \neq b$, if there is a path from a to b, then there is such a path with length $\leq n - 1$.

Proof intuition:

• The longest path is of length n-1 if it does not have loops.

 Loops may increase the path length but the same node will be visited more than once, so we can remove all loops.

Recall that from the previous lemma we have

$$R^* = \bigcup_{k=1}^n R^k$$

• **Theorem:** Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

- the matrix superscripts denote the power of Boolean product of matrices, i.e., $M_R^{[n]}=M_R\odot M_R\odot \cdots \odot M_R=M_{R^n}$
- the proof is easy by applying the previous lemma

 Theorem: Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

 \circ Example: what is the transitive closure for M_R ?

$$\mathbf{M}_R = \left[egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}$$

• **Theorem:** Let M_R be the zero—one matrix of the relation R on a set with n elements. Then the zero—one matrix of the transitive closure R is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

Finding transitive closures: a naive algorithm

```
procedure transClosure (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

A := B := \mathbf{M}_R;

for i := 2 to n

A := A \odot \mathbf{M}_R

B := B \vee A

return B

// B is the zero-one matrix for R^*

This algorithm takes \Theta(n^4) time.
```


 Finding transitive closures: the Floyd-Warshall algorithm * this time do not compute $M_R, M_R^{[2]}, ..., M_R^{[n]}$ one by one **procedure** Warshall (M_R : zero-one $n \times n$ matrix) // computes R^* with zero-one matrices $W:=\mathbf{M}_R$; for k := 1 to nfor i := 1 to nThis algorithm takes $\Theta(n^3)$ time. for j := 1 to n $w_{ii} := w_{ii} \vee (w_{ik} \wedge w_{ki})$ return W //W is the zero-one matrix for R^* $w_{ij} = 1$ means there is a path from i to j going only through nodes $\leq k$. $W_{ii}^{[k]} = W_{ii}^{[k-1]} \vee \left(W_{ik}^{[k-1]} \wedge W_{ki}^{[k-1]} \right)$

Exercise (3 mins)

- \circ For the relation R shown in the figure, find the Floyd-Warshall matrices W_1 , W_2 , W_3 , W_4 . (W_4 is the transitive closure of R.)
- o Let $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$


```
procedure Warshall (M_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

W := M_R;

for k := 1 to n

for i := 1 to n

for j := 1 to n

w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})

return W

// W is the zero-one matrix for R^*
```

Equivalence Relations

Equivalence Relations

- Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Example: $R = \{(a, b) : a \equiv b \mod 3\}$ on $A = \{0, 1, 2, 3, 4, 5, 6\}$
 - R has the following pairs:

• Is R reflexive?

Yes

Is R symmetric?Yes

- Is R transitive?Yes
- Therefore, R is an equivalence relation.

Equivalence Relations

- Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Are the following relations equivalence relations?
 - "Strings a and b have the same length."
 Yes
 - "Integers a and b have the same absolute value."
 Yes
 - "The relation ≥ between real numbers."
 No
 - "Real numbers a and b have the same fractional part: a − b ∈ Z."
 Yes
 - "Natural numbers have a common factor greater than 1."
 No

Equivalence Classes

• Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a, denoted by [a]R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b: (a, b) \in R\}$$

- Example: $R = \{(a, b) : a \equiv b \mod 3\}$ on $A = \{0, 1, 2, 3, 4, 5, 6\}$
 - $[0] = [3] = [6] = \{0, 3, 6\}$
 - $[1] = [4] = \{1, 4\}$
 - [2] = [5] = {2, 5}

Equivalence Classes

• Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a, denoted by [a]_R. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b: (a, b) \in R\}$$

- Find [a] for the following relations:
 - "Strings a and b have the same length."
 [a] = the set of all strings of the same length as string a
 - "Integers a and b have the same absolute value."

$$[a] = \{a, -a\}$$

"Real numbers a and b have the same fractional part: a − b ∈ Z."

$$[a] = \{..., a - 2, a - 1, a, a + 1, a + 2, ...\}$$

Equivalence Classes

- Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:
 - (i) a R b
 - (ii) [a] = [b]
 - (iii) [a] ∩ [b] ≠ Ø

Proof:

- (i) → (ii): prove [a] ⊆ [b] and [b] ⊆ [a]
- (ii) → (iii): [a] is not empty (R is reflexive)
- (iii) \rightarrow (i): there exists a c such that $c \in [a]$ and $c \in [b]$

Partition of a Set S

• **Definition:** Let S be a set. A collection of nonempty subsets of S $A_1, A_2, ..., A_k$ is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Equivalence Classes and Partitions

 Theorem: Let R be an equivalence relation on a set A. Then the union of all the equivalence classes of R is A:

$$A = \bigcup_{a \in A} [a]_R$$

- Theorem: The equivalence classes form a partition of A.
- **Theorem:** Let $\{A_1, A_2, ..., A_i, ...\}$ be a partition of S. Then there is an equivalence relation R on S, which has the sets A_i as its equivalence classes.
- The proofs are left as exercises.

Partial Orderings

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.
- Example: $S = \{1, 2, 3, 4, 5\}$, R denotes the " \geq " relation
 - Is R reflexive?

Yes

• Is R antisymmetric?

Yes

• Is R transitive?

Yes

• Therefore, *R* is a partial ordering.

Partial Ordering

- Definition: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.
- \circ Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the "" relation
 - Is R reflexive?

Yes

• Is R antisymmetric?

Yes

• Is R transitive?

Yes

• Therefore, *R* is a partial ordering.

Comparability

- Definition: The elements a, b of a poset (S, ≤) are comparable if a ≤ b or b ≤ a. Otherwise, a and b are called incomparable.
- \circ Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the "" relation
 - Is 2, 4 comparable?Yes
 - Is 5, 5 comparable?

 Yes
 - Is 3, 5 comparable?No

Total Ordering

- Definition: If (S, ≤) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≤ is called a total order or a linear order. A totally ordered set is also called a chain.
- Example: $S = \{1, 2, 3, 4, 5\}, R$ denotes the " \geq " relation
 - Is S a totally (linearly) ordered set?
 Yes, S is a chain.

Lexicographic Ordering

• **Definition:** Given two posets (A_1, \le_1) and (A_2, \le_2) , the lexicographic ordering \le on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e.,

 $(a_1, a_2) < (b_1, b_2),$

either if $a_1 < 1$ b_1 or if both $a_1 = b_1$ and $a_2 < 2$ b_2 .

Then, we obtain a partial ordering \leq by adding equality to the above ordering < on $A_1 \times A_2$.

- Example: Consider strings of lowercase English letters. A lexicographic ordering can be defined via the ordering of letters in the alphabet. This is the same ordering as used in dictionaries.
 - e.g., discreet < discrete, discreet < discrete, etc.

Hasse Diagram

- A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.
- Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) The directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Exercise (3 mins)

- Construct the Hasse diagram of ({1, 2, 3, 4, 6, 8, 12}, |).
 - A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.
 - Example: Construct the Hasse diagram of ({1, 2, 3, 4}, ≤).
 - (a) The directed graph for the partial ordering.
 - (b) Remove the loops due to the reflexive property.
 - (c) Remove the edges due to the transitive property; remove all arrows and ensure that all edges point upwards toward their terminal vertex.

Maximal and Minimal Elements

- **Definition:** a is a maximal (resp. minimal) element in poset (S, \leq) if there is no $b \in S$ such that a < b (resp. b < a).
- Example: consider the poset ({2, 4, 5, 10, 12, 20, 25},)
 - What are the maximal elements?
 12, 20, 25
 - What are the minimal elements?
 2, 5

Greatest and Least Elements

- Definition: a is the greatest (resp. least) element of poset (S, ≤) if $b \le a \text{ (resp. } a \le b) \text{ for all } b \in S.$
- Example: Find the greatest and least elements, if any.
 - (a) least: a

- (b) none (c) greatest: d (d) least: a greatest: d

Well-Ordered Induction

- Definition: (S, ≤) is a well-ordered set if ≤ is a total order and every nonempty subset of S has a least element.
- The Principle of Well-Ordered Induction: Suppose that S is a well-ordered set. To prove that P(x) is true for all $x \in S$, we complete two steps:
 - Basis Step: prove $P(x_0)$ is true for the least element x_0 of S
 - Inductive Step: prove, for every $y \in S$, if P(x) is true for all $x \in S$ with x < y, then P(y) is true.
- \circ Proof by contradiction: consider the set $\{x \in S : P(x) \text{ is false}\}$.

Upper and Lower Bounds

- **Definition:** Let A be a subset of a poset (S, \leq) .
 - u ∈ S is called an upper bound (resp. lower bound) of A if a ≤ u (resp. u ≤ a) for all a ∈ A.
 - x ∈ S is called the least upper bound (resp. greatest lower bound) of A if x is an upper bound (resp. lower bound) that is less than any other upper bound (resp. lower bound) of A.
- Example: Find the greatest lower bound and the least upper bound of set {1, 2, 4, 5, 10}, if they exist, in the poset (Z⁺, |).
 - greatest lower bound: 1 least upper bound: 20

Lattices

- Definition: A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.
- Example: Are the following lattices?
 - (a) Yes (b) No, e.g., (d, e) has no greatest lower bound (c) Yes

Topological Sorting

- Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?
- Given a partial ordering R, a total ordering ≤ is said to be compatible with R if a ≤ b whenever a R b. Constructing a compatible total ordering from a partial ordering is called topological sorting.

Topological Sorting for Finite Posets

Algorithm for topological sorting for finite posets:

```
procedure topological_sort (S: finite poset) k := 1; while S \neq \emptyset a_k := a minimal element of S S := S \setminus \{a_k\} k := k+1 end while \binom{a_1, a_2, \ldots, a_n}{} is a compatible total ordering of S
```

- Theorem: Every finite nonempty poset (S, ≤) has at least one minimal element.
 - see the textbook for its proof

09 Graphs and Trees

To be continued...

Announcement

- Assignment 5 was already released and is due on Dec 25:
 - 100 points maximum but 110 in total
 - DO NOT CHEAT!

