Math. - CC 2 - Correction

EXERCICE I

Pour $n \in \mathbb{N}$, on note

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$$
 et, pour $n \neq 0$, $I_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt$

- $W_0 = \frac{\pi}{2}; \quad W_1 = 1$ 1. Calculer W_0 et W_1 .
- 2. a. A l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \quad W_{n+2} = \frac{n+1}{n+2}W_n$$

Pour
$$n \in \mathbb{N}$$
, $W_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+1}(t) \sin(t) dt$.

En posant, pour
$$t \in \left[0; \frac{\pi}{2}\right]$$
 $\left|\begin{array}{l} u(t) = \sin^{n+1}(t) \Rightarrow u'(t) = (n+1)\sin^{n}(t)\cos(t) \\ v'(t) = \sin(t) & \Leftarrow v(t) = -\cos(t) \end{array}\right|$ u et v étant de classe C^{1} sur $\left[0; \frac{\pi}{2}\right]$ le théorème d'intégration par parties donne :

$$W_{n+2} = \left[-\sin^{n+1}(t)\cos(t)\right]_0^{\frac{\pi}{2}} + (n+1)\int_0^{\frac{\pi}{2}}\sin^n(t)\cos^2(t)dt = (n+1)\int_0^{\frac{\pi}{2}}\sin^n(t)(1-\sin^2(t))dt$$
$$= (n+1)W_n - (n+1)W_{n+2} \quad \text{d'où le résultat.}$$

b. En déduire que pour tout $n \in \mathbb{N}, W_n > 0$.

 $W_0>0; W_1>0$. Soit $n\in\mathbb{N}^*$; on suppose que $W_p>0, \forall p\in\llbracket 0,n
Vert$. Alors, d'après $\mathbf{2a}$, $W_{n+1}=\frac{n}{n+1}W_{n-1}>0$. Ainsi, par principe de récurrence, $W_n>0, \forall n\in\mathbb{N}$.

3. a. Montrer que la suite (W_n) est décroissante.

Soit
$$n \in \mathbb{N}$$
; $W_{n+1} - W_n = \int_0^{\frac{\pi}{2}} \left(\sin^{n+1}(t) - \sin^n(t) \right) dt = \int_0^{\frac{\pi}{2}} \sin^n(t) \left(\sin(t) - 1 \right) dt$.

Or, $\forall t \in \left[0; \frac{\pi}{2}\right]$, $\sin^n(t) \left(\sin(t) - 1\right) \leq 0$ donc par positivité de l'intégrale, $W_{n+1} - W_n \leq 0$.

b. Déduire des questions **2.a** et **3.a** que $\lim_{n\to+\infty} \frac{W_{n+1}}{W_n} = 1$.

 (W_n) étant strictement positive et décroissante, pour $\in \mathbb{N}$, $\frac{W_{n+1}}{W_n} \le 1$ et pour $n \in \mathbb{N}^*$, $\frac{W_{n-1}}{W_n} \ge 1$.

De plus, pour
$$n \in \mathbb{N}^*$$
, $\frac{W_{n+1}}{W_n} = \frac{W_{n+1}}{W_{n-1}} \times \frac{W_{n-1}}{W_n} = \frac{n}{n+1} \times \frac{W_{n-1}}{W_n} \ge \frac{n}{n+1}$

De plus, pour $n \in \mathbb{N}^*$, $\frac{W_{n+1}}{W_n} = \frac{W_{n+1}}{W_{n-1}} \times \frac{W_{n-1}}{W_n} = \frac{n}{n+1} \times \frac{W_{n-1}}{W_n} \ge \frac{n}{n+1}$. Ainsi, pour $n \in \mathbb{N}^*$, $\frac{n}{n+1} \le \frac{W_{n+1}}{W_n} \le 1$ donc le théorème d'encadrement donne $\lim_{n \to +\infty} \frac{W_{n+1}}{W_n} = 1$.

4. a. Montrer que la suite $((n+1)W_nW_{n+1})$ est constante (et préciser cette constante)

D'après la question **2a.** il vient immédiatement pour $n \in \mathbb{N}$:

 $(n+1)W_nW_{n+1} = (n+2)W_{n+2}W_{n+1} = (n+2)W_{n+1}W_{n+2}$, donc la suite $((n+1)W_nW_{n+1})$ est constante et vaut $W_0W_1 = \frac{\pi}{2}$.

b. En déduire que $\lim_{n \to +\infty} \sqrt{2n} W_n = \sqrt{\pi}$.

Des questions précédentes, on a, pour $n \in \mathbb{N}^*$:

$$nW_nW_{n-1}=\frac{\pi}{2}\text{ donc }2nW_n^2=\pi\frac{W_n}{W_{n-1}},\text{ puis, }\sqrt{2n}W_n=\sqrt{\pi}\times\sqrt{\frac{W_n}{W_{n-1}}}\text{ ; la question }\textbf{3b.}\text{ permet de conclure.}$$

5. a. Montrer que $I_n = \sqrt{n}W_{2n+1}$.

On posera le changement de variable $t = \sqrt{n}\cos(u)$ dans l'intégrale I_n .

$$I_{n} = \int_{\substack{t = \sqrt{n}\cos(u) \\ \Rightarrow dt = -\sqrt{n}\sin(u)du}} -\sqrt{n} \int_{\frac{\pi}{2}}^{0} (1 - \cos^{2}(u))^{n} \sin(u) du = \sqrt{n} \int_{0}^{\frac{\pi}{2}} \sin^{2n+1}(u) du = \sqrt{n} W_{2n+1}$$

b. En déduire $\lim_{n\to +\infty} I_n$.

Pour
$$n \in \mathbb{N}$$
, $I_n = \sqrt{n}W_{2n+1} = \sqrt{2(2n+1)}W_{2n+1} \times \sqrt{\frac{n}{2(2n+1)}} \xrightarrow[n \to +\infty]{} \frac{\sqrt{\pi}}{2}$

EXERCICE II

Les parties I et II sont indépendantes.

Partie I

Résoudre dans $\mathbb R$ l'équation différentielle

$$y'' - y' + y = x^4 \qquad (L)$$

Les solutions de l'équation caractéristique sont $\frac{1}{2}\pm i\frac{\sqrt{3}}{2}$;

on en déduit l'ensemble des solution de l'équation homogène associée à (L) :

$$S_H = \left\{ y : \mathbb{R} \to \mathbb{R}, y(x) = e^{\frac{x}{2}} \left(A \cos\left(\frac{\sqrt{3}}{2}x\right) + B \sin\left(\frac{\sqrt{3}}{2}x\right) \right), (A, B) \in \mathbb{R}^2 \right\}.$$

On cherche une solution particulière de (L) sous la forme d'un polynôme de degré 4, et on obtient par identification : $x \mapsto x^4 + 4x^3 + 24x + 24$.

Finalement, l'ensemble des solutions de (L) est :

$$S_L = \left\{ y : \mathbb{R} \to \mathbb{R}, y(x) = e^{\frac{x}{2}} \left(A \cos\left(\frac{\sqrt{3}}{2}x\right) + B \sin\left(\frac{\sqrt{3}}{2}x\right) \right) + x^4 + 4x^3 - 24x - 24, (A, B) \in \mathbb{R}^2 \right\}$$

Partie II

Le but de cette partie est de trouver les solutions sur \mathbb{R}_+^* de l'équation différentielle :

$$x^2y'' - xy' + y = x^4 (E)$$

1. Résoudre dans \mathbb{R}_{+}^{*} l'équation différentielle

$$y' + \frac{1}{x}y = x \qquad (E_1)$$

$$\int_{-\infty}^{x} -\frac{1}{t} dt = -\ln|x| + C^{te};$$

on en déduit l'ensemble des solutions de l'équation différentielle homogène associée à (E_1) :

$$S_{H_1} = \left\{ y_0 : \mathbb{R}_+^* \to \mathbb{R}, y_0(x) = \frac{C}{x}, C \in \mathbb{R} \right\}.$$

La méthode de variation de la constante donne pour solution particulière $y_p: x \mapsto \frac{1}{3}x^2$.

On en déduit l'ensemble des solutions de $\left(E_{1}\right)$:

$$S_{E_1} = \left\{ y : \mathbb{R}_+^* \to \mathbb{R}, y(x) = \frac{C}{x} + \frac{1}{3}x^2, C \in \mathbb{R} \right\}.$$

- **2.** On va chercher les solutions de l'équation différentielle (E) sur \mathbb{R}_+^* sous la forme $\varphi: x \mapsto x\lambda(x)$ où λ est une fonction définie sur \mathbb{R}_+^* , deux fois dérivable.
 - **a.** Déterminer φ' et φ'' à l'aide de λ , λ' et λ'' . $\varphi'(x) = x\lambda'(x) + \lambda(x); \quad \varphi''(x) = x\lambda''(x) + 2\lambda'(x)$
 - **b.** Montrer que φ est solution de (E) sur \mathbb{R}_+^* si, et seulement si λ' est solution de (E_1) sur \mathbb{R}_+^* . $\varphi \in S_E \Leftrightarrow \forall x \in \mathbb{R}_+^*, x^2 (x\lambda''(x) + 2\lambda'(x)) x (x\lambda'(x) + \lambda(x)) + x\lambda(x) = x^4$ $\Leftrightarrow \forall x \in \mathbb{R}_+^*, x^3\lambda''(x) + x^2\lambda'(x) = x^4 \Leftrightarrow \forall x \in \mathbb{R}_+^*, \lambda''(x) + \frac{1}{x}\lambda'(x) = x \Leftrightarrow \lambda' \in S_{E_1}$
- 3. Déduire des questions précédentes l'expression de λ , puis de φ .

D'après les questions précédentes, il existe une constante C_1 telle que pour $x \in \mathbb{R}_+^*, \lambda'(x) = \frac{C_1}{x} + \frac{1}{3}x^3$.

On en déduit qu'il existe une constante C_2 telle que pour $x \in \mathbb{R}_+^* : \lambda(x) = C_1 \ln(x) + \frac{1}{9} x^3 + C_2$;

on obtient donc : φ : $\begin{vmatrix} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & (C_1 \ln(x) + C_2) x + \frac{1}{9} x^4 \end{vmatrix}$

EXERCICE III

1. Démontrer que

$$\forall x > 0$$
, Arctan $\left(\frac{1}{2x^2}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right)$

 $\underline{\text{Première méthode}:} \text{ La fonction } f: x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right) - \operatorname{Arctan}\left(\frac{x}{x+1}\right) + \operatorname{Arctan}\left(\frac{x-1}{x}\right) \text{ est dérivable sur la fonction } f: x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right) - \operatorname{Arctan}\left(\frac{x}{x+1}\right) + \operatorname{Arctan}\left(\frac{x-1}{x}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) = \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan}\left(\frac{x}{x}\right) = \operatorname{Arctan}\left(\frac{x}{x}\right) + \operatorname{Arctan$

$$\mathbb{R}_{+}^{*}, \text{ et } \forall x > 0, f'(x) = \frac{\frac{-1}{x^{3}}}{1 + \frac{1}{4x^{4}}} - \frac{\frac{1}{(x+1)^{2}}}{1 + \frac{x^{2}}{(x+1)^{2}}} - \frac{\frac{1}{x^{2}}}{1 + \frac{(x-1)^{2}}{x^{2}}} = 0;$$

 $\underline{\text{Deuxième méthode}:} \text{ Soit } x>0 \, ; \, \text{Arctan} \left(\frac{1}{2x^2}\right) \in \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[\, \text{donc, en appliquant la fonction tan, on a :} \right.$

$$\operatorname{Arctan}\left(\frac{1}{2x^2}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right) \Rightarrow \frac{1}{2x^2} = \frac{\frac{x}{x+1} - \frac{x-1}{x}}{1 + \frac{x}{x+1} \times \frac{x-1}{x}} \Rightarrow \frac{1}{2x^2} = \frac{1}{2x^2}$$
La dernière égalité étant vraie pour tout $x > 0$, on en déduit l'existence d'un entier $k \in \mathbb{Z}$ tel
$$\operatorname{Arctan}\left(\frac{1}{2x^2}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right) + k\pi.$$

$$\operatorname{Arctan}\left(\frac{1}{2x^2}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right) + k\pi.$$

La fonction $x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right) - \operatorname{Arctan}\left(\frac{x}{x+1}\right) + \operatorname{Arctan}\left(\frac{x-1}{x}\right)$ est continue sur \mathbb{R}_+^* , on en déduit que l'entier k ne dépend pas du réel x > 0. L'égalité pour x = 1 donne k = 0.

2. En déduire la limite de la suite $(S_n)_{n\geq 1}$ définie par

$$S_n = \sum_{k=1}^n \operatorname{Arctan}\left(\frac{1}{2k^2}\right)$$

$$\forall n \ge 1, S_n = \sum_{k=1}^n \left(\operatorname{Arctan}\left(\frac{k}{k+1}\right) - \operatorname{Arctan}\left(\frac{k-1}{k}\right) \right) \underset{\text{t\'elescopage}}{=} \operatorname{Arctan}\left(\frac{n}{n+1}\right);$$

$$\lim_{n \to +\infty} \frac{n}{n+1} = 1 \text{ donc par composition, } \lim_{n \to +\infty} S_n = \frac{\pi}{4}.$$

EXERCICE IV

Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. On propose de calculer les sommes : $A_n = \sum_{k=1}^n \cos^2(kx)$ et $B_n = \sum_{k=1}^n \sin^2(kx)$.

1. Calculer $A_n + B_n$ pour $n \in \mathbb{N}$.

$$A_n + B_n = \sum_{k=0}^{n} (\cos^2(kx) + \sin^2(kx)) = \sum_{k=0}^{n} 1 = n+1$$

2. a. Montrer que pour $n \in \mathbb{N}$, $A_n - B_n = \sum_{k=0}^{n} \cos(2kx)$.

$$A_n - B_n = \sum_{k=0}^n (\cos^2(kx) - \sin^2(kx)) = \sum_{k=0}^n \cos(2kx)$$

b. En déduire une expression simplifiée de $A_n - B_n$ en fonction de n (on discutera selon les valeurs de $x \in \mathbb{R}$).

Pour
$$n \in \mathbb{N}$$
, $x \in \mathbb{R}$, on a : $A_n - B_n = \operatorname{Re}\left(\sum_{k=0}^n \left(e^{2ix}\right)^k\right)$
 $\Rightarrow \operatorname{Si} x \equiv 0 \ [\pi], \quad A_n - B_n = n+1$
 $\Rightarrow \operatorname{Sinon}, \quad A_n - B_n = \operatorname{Re}\left(\frac{1 - e^{2i(n+1)x}}{1 - e^{2ix}}\right) = \operatorname{Re}\left(\frac{-2\mathrm{i}e^{(n+1)ix}\sin((n+1)x)}{-2\mathrm{i}e^{ix}\sin(x)}\right) = \frac{\cos(nx)\sin((n+1)x)}{\sin(x)}$

3. En déduire une expression simplifiée de A_n et de B_n en fonction de n.

Pour
$$n \in \mathbb{N}$$
, on $a : A_n = \frac{1}{2} ((A_n + B_n) + (A_n - B_n))$ et $B_n = \frac{1}{2} ((A_n + B_n) - (A_n - B_n))$. D'où :

$$\Rightarrow \text{ Si } x \equiv 0 \ [\pi], \quad A_n = n+1 \quad \text{et} \quad B_n = 0$$

$$\Rightarrow \text{ Sinon,} \quad A_n = \frac{1}{2} \left(\frac{\cos(nx)\sin((n+1)x)}{\sin(x)} + n + 1 \right) \quad \text{et} \quad B_n = \frac{1}{2} \left(n + 1 - \frac{\cos(nx)\sin((n+1)x)}{\sin(x)} \right)$$

EXERCICE V

On propose de résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$:

$$z^3 - 6z - 6 = 0 \qquad (\mathscr{E})$$

- **1.** On considère $z \in \mathbb{C}$ une solution de (\mathscr{E}) . Soient alors $u, v \in \mathbb{C}$ tels que u + v = z et uv = 2.
 - a. Justifier que $(u+v)^3 = 6(u+v) + 6$ et montrer que $(u+v)^3 = u^3 + v^3 + 6(u+v)$. u+v est une solution de (\mathscr{E}) donc $(u+v)^3 = 6(u+v) + 6$; Par ailleurs, la formule du binôme de Newton donne : $(u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3 = u^3 + v^3 + 3uv(u+v)$. Comme uv=2 on a donc $(u+v)^3 = u^3 + v^3 + 6(u+v)$.
 - **b.** En déduire $u^3 + v^3$ et déterminer u^3v^3 . Le résultat précédent donne : $6(u+v) + 6 = u^3 + v^3 + 6(u+v)$ donc $u^3 + v^3 = 6$. De plus, uv = 2 donc $u^3v^3 = 2^3 = 8$.
 - c. Montrer que u^3 et v^3 sont solutions de l'équation $Z^2-6Z+8=0$ d'inconnue $Z\in\mathbb{C}$. u^3 et v^3 sont solutions de l'équation $Z^2-(u^3+v^3)Z+u^3v^3=0$ ce qui est précisément $Z^2-6Z+8=0$.
 - **d.** Résoudre l'équation $Z^2 6Z + 8 = 0$. Les solutions sont 2 et 4.
- **2. a.** Résoudre l'équation $W^3=2$, d'inconnue $W\in\mathbb{C}$ en exprimant les solutions sous forme trigonométrique. $W\in\left\{2^{\frac{1}{3}}\mathrm{e}^{\frac{2\mathrm{i}k\pi}{3}},k\in\left[0,2\right]\right\}$.
 - **b.** Résoudre l'équation $W^3=4$, d'inconnue $W\in\mathbb{C}$ en exprimant les solutions sous forme trigonométrique. $W\in\left\{4^{\frac{1}{3}}\mathrm{e}^{\frac{2ik\pi}{3}},k\in\left[0,2\right]\right\}$.
 - **c.** A l'aide des questions précédentes, déterminer les valeurs possibles de u et v, puis de z. D'après ce qui précède, $u^3=2, v^3=4$ et uv=2; on en déduit que l'on peut avoir : $u=\sqrt[3]{2}$ et $v=\sqrt[3]{4}$, ou $u=\sqrt[3]{2}e^{\frac{2i\pi}{3}}$ et $v=\sqrt[3]{4}e^{\frac{4i\pi}{3}}$ ou $u=\sqrt[3]{2}e^{\frac{4i\pi}{3}}$ et $v=4^{\frac{1}{3}}\sqrt[3]{4}e^{\frac{2i\pi}{3}}$ et par suite, $z=\sqrt[3]{2}+\sqrt[3]{4}$, ou $z=-\frac{1}{2}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)+\mathrm{i}\frac{\sqrt{3}}{2}\left(\sqrt[3]{2}-\sqrt[3]{4}\right)$ ou $z=-\frac{1}{2}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)-\mathrm{i}\frac{\sqrt{3}}{2}\left(\sqrt[3]{2}-\sqrt[3]{4}\right)$
 - **d.** En déduire les solutions de (\mathscr{E}) .

On vérifie par le calcul que les trois valeurs déterminées à la question précédente sont bien toutes les trois solutions de (\mathscr{E}) .

De plus, sachant qu'une équation de degré 3 ne peut admettre plus de 3 solutions, on a bien l'ensemble des solutions de (\mathscr{E}) .