$\underline{\mathbf{Auteur}}: \mathbf{Abdoulaye} \ \mathbf{DABO}$

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Continuité en un point	2
2	Continuité sur un intervalle	2
3	Continuité et Composée de fonctions	2
4	Fonctions continues et opérations	2
5	Exemples de fonctions continues	3
6	Théorème des valeurs intermédiaires	3

1 Continuité en un point

Définition 1.1

Soit une fonction f définie sur un intervalle ouvert I. Soit a un élément de I. On dit que la fonction f est continue en a si et seulement si : $\lim_{x\to a} f(x) = f(a)$.

Définition 1.2

- f est continue à droite en a si et seulment si $\lim_{x\to a^+} f(x) = f(a)$.
- f est continue à gauche en a si et seulment si $\lim_{x\to a^-} f(x) = f(a)$.

Théorème 1.1

f est continue en $a \iff \lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = f(a)$.

2 Continuité sur un intervalle

Définition 2.1

La fonction f est continue sur I si et seulement si elle est continue en tout point de I.

3 Continuité et Composée de fonctions

Théorème 3.1

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ des fonctions telles que $f(I) \subset J$ et $x_0 \in I$.

- Si f est continue en x_0 et g continue en $f(x_0)$ alors gof est continue x_0 .
- Si f est continue sur I et g continue sur f(I) alors $g \circ f$ est continue sur I.

4 Fonctions continues et opérations

Théorème 4.1

Soient f et g deux fonctions définies sur un intervalle I. Soit a un réel de I.

- 1. Si f et g sont continues en a, alors f + g est continue en a.
- 2. Si f et g sont continues sur I, alors f + g est continue sur I.
- 3. Si k est un réel et f est continue en a, alors kf est continue en a.
- 4. Si k est un réel et f est continue sur I, alors kf est continue sur I.
- 5. Si f et g sont continues en a, alors $f \times g$ est continue en a.

- 6. Si f et g sont continues sur I, alors $f \times g$ est continue sur I.
- 7. Si f est continue en a et $f(a) \neq 0$, alors $\frac{1}{f}$ est continue en a.
- 8. Si f et g sont continues en a et si $g(a) \neq 0$, alors $\frac{f}{g}$ est continue en a.
- 9. Si f et g sont continues sur I et si g ne s'annule pas sur I alors $\frac{f}{g}$ est continue sur I.

5 Exemples de fonctions continues

Théorème 5.1

- 1. les fonctions polynômes sont continues sur \mathbb{R} ;
- 2. les fonctions rationnelles sont continues sur tout intervalle contenu dans leur domaine de définition;
- 3. la fonction valeur absolue est continue sur \mathbb{R} ;
- 4. toutes les fonctions obtenues par opérations (somme, produit, quotient quand le dénominateur ne s'annule pas) ou composition à partir de ces fonctions de référence sont aussi continues sur leur domaine de définition.

6 Théorème des valeurs intermédiaires

Théorème 6.1 (Théorème des valeurs intermédiaires)

Soit une fonction f définie et continue sur un intervalle I = [a, b]. Pour tout réel k compris entre f(a) et f(b), il existe un réel $k \in I$ tel que f(c) = k. (k n'est pas nécessairement unique.) Si f est strictement monotone sur I alors k est unique.

Corollaire 6.1

Soit f une fonction continue sur [a, b].

- Si $f(a) \cdot f(b) < 0$, l'équation f(x) = 0 au moins une solution dans [a, b].
- Si de plus f est srtictement monotone sur [a, b], alors la solution est unique.

Merci de signaler toutes erreurs via WhatsApp: +221777426690