

		PAGE NO.:
Solution	1: A = 2 3 0 7	
	3213	A SOLD STELL LAND Y PERSON
	[6875]	
	Subtract 2R, from R2	$R_{y} = R_{y} + 4R_{z}$
	K2 - K2 - XK1	T1 2 3 0 7
	T1 2 3 0 0 0 -3 2	1 2 3 0
	0 0 -3 2	10 -4 -4 1/2
	3 2 1 3 6 8 7 5	Lo -4 -7 7/3]
		R3 = R3-R4
	$R_3 = R_3 - 3R_1$	Ry = Ry -R3
	1 2 3 0	[1 2 3 0]
	0 0 -3 2	0 0 1 -2/2
	0 - 4 - 8 3	0 0 3 -6/2
	[6 8 7 5]	0 0 -3 6/3
	$R_{y} = R_{y} - 6R_{1}$	$Ry = Ry + R_3$
	[L 2 3 0]	T1 2 3 0
	0 0 -3 2	0 0 1 -2/3
19-1-1	0 - 4 - 8 3	6 0 3 -6/3
	(0 = Y -1 5 J	6 0 3 -6/3
	Dividing Ra by Ro -3	
	$R_1 = R_2/-2$	So, the rank of the
	$R_{2} = R_{2}/-3$ $\Gamma_{1} = 2 \cdot 3 \cdot 0$ $0 \cdot 0 \cdot 1 - 2/3$	matrix is 4.
	001-2/3	mairix & 4.
	0 - 4 - 8 3	
	P - P 1115	
	R3=R3+4R2	1
	F1 2 3 0 7	
	0 0 1 -2/3	1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1	10 -9 -11 5 3	

1 / 1 0	
Solution	2. Priven: To W > P2
	T [a b] - (a+1)
	T[a b] = $(a-b)+(b-c)x+(c-d)x^2$ Dimension of W:-
	Symmetric 2x2
	Dimension of W:- Symmetric 2x2 matric has 3 independent value
	off-diagonal element and a b [b=c][a
	Rank of To-
The second secon	applying T to 2×2 matric (symmetric).
	T marpping to all polynomial of degree at
	Ising Rank-nullity theorem, we have:
	CDuullity = dim (w) - Hank (T) = 3 - 3
	= 0 41144

-	
Solution	3 ? Cfiven? $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$
	Eigen values of A:
	$(A - b \lambda I) = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} - (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 6$
	$\begin{vmatrix} -1 & 2-\lambda \end{vmatrix}$ $\begin{vmatrix} -1 & 2-\lambda \end{vmatrix}$ $\begin{vmatrix} -1 & 2-\lambda \end{vmatrix}$
	Eigen vectors of A:
	$(A-\lambda_1 I) = \begin{bmatrix} 1 & -1 \end{bmatrix} ; (A-\lambda_1 I) v_1 = 0$
	v. = [1]
	Eigen values of A ⁻¹ : reciprocals of eigenvalues of A,
	$\lambda_1 = \frac{1}{2} = \perp$
	Eigen vectors of A-1 are same as A
	Eigen values of A+ TI: Add 4 to the diagonal elevi A+ YI = [6-1]
	$\begin{bmatrix} -1 & 6 \end{bmatrix}$ $= 6 - \lambda - 1 = (6 - \lambda)^2 - 1 = \lambda^2 - 12\lambda + 3\delta = 0$
	-1 6-λ
	$\lambda_1'' = 5$, $\lambda_2'' = 7$
3	igen vectors of A+4I;- (A+4I) v" = 0.

 $A^{-1} = \lambda_1' = 1, \lambda_2' = \frac{1}{3}, \nu, = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \nu_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ I = 1,"=5, 2; = 7, v,"-[1], v," [-1]

3x - 0.1y - 0.2z = 7.85 0.1x + 7y - 0.3z = -19.3 $0.3x \neq 0.2y + 10z = 71.4$ Solution 7: Given - $\kappa = 7.85 + 0.1y + 0.27$ y = -19.3 - 0.1x + 0.3z z = 71.4-0.3x+0.2y $\chi(0) = 0, \ \chi(0) = 0, \ \chi(0) = 0$ O x(1) = 7.85+0.1(0)+(0.2)(0) = 7.85-2.61 y(1) = (-19.3 - 0.1(2.61) + 0.3(0)) = -2.78Z(1) = 71.4 - 0.3(2.61) + 0.2(-2.79) = 7.61D 2(2) = 7.85 +0.1(-2.78)+(0.2)(7.61) = 3.000 3y(2) = -19.3 - 0.1(3.0001) + 0.3(7.61) = -3.00013z (2) = 714 - 0.3 (3.0001) + 0.2 (-3.00013) = 6.499 (3) 2(3) = (7.85 + 0.1(-3.00013) + 0.2(6.999)) = 3.00 y(3) = (-19.3 - 0.1(3.00) + 0.3(6.999)) = -3.00 z(3) = (71.4 - 0.3(3.60) + 0.2(-3.00)) = 7.00

Solution 6: Cliven: T(a+bx+cx²)=(a+1)+(b+1)x+(c+1)x²

Additivity: T(u+v)=T(u)+T(v) for all u in P2 and all scalars inc. $O u = a + bx + cx^2 \text{ and } v = a' + b'x + c'x^2 \text{ in } P_2$ Then $u + v = Ca + a') + (b + b')x + (c + c')x^2$ Now, T(u)=(a+1)+(b+1)2e+(c+1)22end T(V) = (a'+1) + (b'+1)+(c'+1)x2 T(u+v) = (a+a'+1) + (b+b'+1)x+(c+c'+1)x2 T(u)+T(v)= (a+1)+6b+12+(c+1)n2+ (a'+1)+(b'+1 = $(a+a'+1)+(b+b'+1)+(c+c'+1)n^2$ T(u+v)=T(u)+T(v), satisfy additivity. Bu=a+bx+cx² - P2, let c be a scalar. cu = ca+cbx+ccx² T(cu) = (ca+1) + (cb+1)2+ (cc+1)22 cTw = c(a+1) +c(b+1)2+c(c+)22 Ea+1) +(cb+1) x+ (cc+1) x2 Satisfy Homograity
Function T satisfies both additivity and homogenity It is a linear transformation.

Solution 8: Cirven : 3x -6y+2z=23 -4x+y-z=-15 x-3y+7z=16 $0 \quad \chi(0) = 1, \ \gamma(0) = 1, \ z(0) = 1$ $\chi(1) = 23 + 6 \cdot \gamma(0) - 2z(0) = 23 + 6 - 2 - 27 - 9$ $3 \quad 3$ 4(1) = -15 + 4\$x(6) + z(0) = -12 $\chi(1) = 16 - \pi(0) + 3\chi \chi \chi(0) = -21 = -3$ 3 22 = 23 + 6 × (-12) - 2 × (-3) = -55 $y_2 = (-15 - 4 \times 9 + (-3)) - -54$ 72 = (16 - 9 + 3 (-3)) - -2 7 3 23=23+6×(-54)-2×(-2/7)=17 y3 = (-15-4×(-55/3) + (-2/7) 58 = L7,19 $73 = 16 - (55/3) + 3 \times (-2/7) - 1347 = -72.71$

Solution 9: One application of matrix operations in image processing is image transformation, such as for example, let's consider the application of a rotation matrix to rotate an image by a cent certain angle. The notation of an image can be achieved by multiplying the coordinate of each pixel in the original image by a notation matrix. The notation matrix depends on the desired angle of rotation. The General 2-D notation matrix; T cos (6) -8in (0) 7 Sin (B) cos (B) Let, an image presented as a mother of pixel values. To notate this image by 90 degrees counterclockwise we use the following notation motion 10-17 Multiply each pixel coordinate by the matrix to get new coordinates Example, the pixel at polition (x, y) in the original image would be transformed to position (x', y') in the notated Amage using the formula: x7- [0 -17[x] After applying this transformation to every plxel in original image, we obtain the rotated image.

Solution lo: Linear transformation are fundamental operations in computer vision used to manipulate images, such as notating a 2D image. Rotating a 2D image involves applying a linear transform to each pixel in image. The transformation is typically represented by a rotation motrix, which specifies the rotation angle and direction. for example, the rotation matrix is [cos(6) -Sln(6)] sin (0) cos(0) Each pixel in the original image is represented by a coordinate (x, y). To rotate the image, we multiply this coordinate vector by the notation matrix to odt Obtain the new coordinates (x', y') after notationi $\begin{bmatrix} x' \end{bmatrix} - \begin{bmatrix} \cos(\theta) & -\sin(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}$ After this transformation to each pixel in original image, we obtain the rotated image Linear transformation offer several advantages in computer plain for notating images? 4 Efficiency: Linear transformations can be applied efficiently to each pixel using matrix multiplication, making them suitable for real-time image processing. 2. Preservation of properties: Linear transformations preserve important properties of images, such as straight lines, angles and distances, ensuring that the xotated image retains its essential characteristics