DẠNG TOÁN 18: SỐ PHỨC LIÊN HỢP

I. KIẾN THỰC CẦN NHỚ:

1. Định nghĩa số phức

⊘ Định nghĩa:

• Một số phức là một biểu thức dạng z = a + bi với $a,b \in \mathbb{R}$ và $i^2 = -1$, trong đó: i được gọi là đơn vị ảo, a được gọi là phần thực và b được gọi là phần ảo của số phức.

$$z = a + bi$$

• Tập hợp các số phức được kí hiệu là \mathbb{C} . $\mathbb{C} = \{a + bi / a, b \in \mathbb{R}; i^2 = -1\}$.

• Chú ý:

- Khi phần ảo $b = 0 \Leftrightarrow z = a$ là số thực.
- Khi phần thực $a = 0 \Leftrightarrow z = bi \Leftrightarrow z$ là số thuần ảo.
- Số 0 = 0 + 0i vừa là số thực, vừa là số ảo.
- Hai số phức bằng nhau: $a+bi=c+di \Leftrightarrow \begin{cases} a=c \\ b=d \end{cases}$ với $a,b,c,d \in \mathbb{R}$.
- Hai số phức $z_1 = a + bi$; $z_2 = -a bi$ được gọi là hai số phức đối nhau.

2. Số phức liên hợp.

• Số phức liên hợp của z = a + bi với $a,b \in \mathbb{R}$ là a - bi và được kí hiệu bởi z. Rõ ràng z = z

3. Biểu diễn hình học.

• Trong mặt phẳng phức Oxy (Ox là trục thực, Oy là trục ảo), số phức z = a + bi với $a,b \in \mathbb{R}$ được biểu diễn bằng điểm M(a;b).

4. Mô đun của số phức.

• Môđun của số phức $z = a + bi \ (a, b \in \mathbb{R})$ là $|z| = \sqrt{a^2 + b^2}$.

5. Các phép toán trên tập số phức.

Cho hai số phức: Z = a + bi; z' = a' + b'i với $a, b, a', b' \in \mathbb{R}$ và số $k \in \mathbb{R}$.

- Tổng hai số phức: z + z' = a + a' + (b + b')i.
- Hiệu hai số phức: z-z'=a-a'+(b-b')i.
- Nhân hai số phức: z.z' = (a+bi)(a'+b'i) = (a.a'-b.b') + (a.b'+a'.b)i.
- Nếu $z \neq 0$ thì $\frac{z'}{z} = \frac{z' \cdot \overline{z}}{|z|^2}$, nghĩa là nếu muốn chia số phức z' cho số phức $z \neq 0$ thì ta nhân cả tử và mẫu của

thương $\frac{z'}{z}$ cho $\frac{z}{z}$.

6. Căn bậc 2 của số thực âm.

ullet Căn bậc hai của số thực a âm là $\pm i\sqrt{|a|}$.

7. Giải phương trình bậc 2 trên tập số phức.

Cho phương trình bậc 2: $az^2 + bz + c = 0$ (1) Trong đó a, b, c là những số thực và $a \neq 0$.

• Xét biệt thức $\Delta = b^2 - 4ac$.

- Nếu $\Delta > 0$ thì phương trình (1) có 2 nghiệm thực phân biệt: $z_1 = \frac{-b + \sqrt{\Delta}}{2}$; $z_2 = \frac{-b + \sqrt{\Delta}}{2}$
- Nếu $\Delta < 0$ thì phương trình (1) có 2 nghiệm phức phân biệt: $z_1 = \frac{-b + i\sqrt{|\Delta|}}{2z}$; $z_2 = \frac{-b + i\sqrt{|\Delta|}}{2z}$
- Nếu $\Delta = 0$ thì phương trình (1) có nghiệm kép:

II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ

- Thực hiện các phép toán.
- Tìm phần thực, phần ảo.
- Số phức liên hợp.
- Tính mô đun của số phức.
- Phương trình bậc nhất theo z (và liên hợp của z).
- Hỏi tổng hợp về các khái niệm.

BÀI TÂP MẪU

(ĐỀ MINH HỌA - BDG 2020 - 2021) Số phức liên hợp của số phức z = 3 + 2i là

A.
$$\overline{z} = 3 - 2i$$
.

B.
$$\overline{z} = 2 + 3i$$
.

C.
$$\overline{z} = -3 + 2i$$
.

D.
$$\overline{z} = -3 - 2i$$
.

Phân tích hướng dẫn giải

1. DANG TOÁN: Đây là dang toán xác định số phức liên hợp khi đã biết số phức...

2. HƯỚNG GIẢI:

B1: Số phức z có dạng: z = a + bi.

B2: Số phức liên hợp của số phức z có dạng: $\overline{z} = a - bi$.

Từ đó, ta có thể giải bài toán cụ thể như sau:

Lời giải

Chon A

Số phức z = 3 + 2i có số phức liên hợp là $\overline{z} = 3 - 2i$.

Bài tập tương tự và phát triển:

§ Mức độ 1

Tìm số phức liên hợp của số phức z = -i. Câu 1.

A.
$$\overline{z} = i$$
.

B.
$$\overline{z} = 1$$
.

$$\mathbf{C.} \ \overline{z} = -i \ .$$

D.
$$\overline{z} = -1$$
.

Lời giải

Cho số phức z = -2 + 3i. Số phức liên hợp của z là? Câu 2.

A.
$$\overline{z} = \sqrt{13}$$
.

B.
$$\overline{z} = 2 - 3i$$
.

C.
$$\overline{z} = 3 - 2i$$

C.
$$\overline{z} = 3 - 2i$$
. **D.** $\overline{z} = -2 - 3i$.

Lời giải

Câu 3. Số phức z thỏa mãn $\overline{z} = -3 - 2i$ là

A.
$$z = -3 - 2i$$

B.
$$z = -3 + 2i$$

C.
$$z = 3 - 2i$$

D.
$$z = 3 + 2i$$

Tìm số phức liên hợp của số phức z = (2+i)(-3i). Câu 4.

A.
$$\bar{z} = 3 - 6i$$
.

B.
$$\overline{z} = 3 + 6i$$
.

C.
$$\overline{z} = -3 + 6i$$
.

D.
$$\overline{z} = -3 - 6i$$
.

Lời giải

Tìm số phức liên hợp của số phức z = (2-3i)(3+2i). Câu 5.

A.
$$\bar{z} = 12 - 5i$$
.

B.
$$z = -12 + 5i$$
.

C.
$$\bar{z} = -12 - 5i$$
.

D.
$$z = 12 + 5i$$
.

Lời giải:

Tìm số phức liên hợp của số phức z = 3(2+3i)-4(2i-1). Câu 6.

A.
$$10 + i$$
.

B.
$$-10-i$$
.

Lời giải:

Tìm số phức liên hợp của số phức z biết $z = i \cdot z + 2$. Câu 7.

A.
$$1-i$$
.

B.
$$-1+i$$
.

$$\mathbf{C}. -1 - i$$
.

D.
$$1+i$$
.

Lời giải:

Cho các số phức $z_1 = 2 + 3i$, $z_2 = 4 + 5i$. Số phức liên hợp của số phức $w = 2(z_1 + z_2)$ là Câu 8.

A.
$$\overline{w} = 28i$$
.

B.
$$\overline{w} = 8 + 10i$$
.

C.
$$\overline{w} = 12 - 16i$$
.

D.
$$\overline{w} = 12 + 8i$$
.

Lời giải:

Câu 9. Kí hiệu a,b lần lượt là phần thực và phần ảo của số phức z = -4 - 3i. Tìm a,b.

A.
$$a = 4$$
, $b = 3$.

B.
$$a = -4$$
, $b = -3i$.

C.
$$a = -4$$
, $b = 3$

C.
$$a = -4$$
, $b = 3$. **D.** $a = -4$, $b = -3$.

Lời giải:

Câu 10. Cho điểm M là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z.

A. Phần thực là 3 và phần ảo là -4.

B. Phần thực là -4 và phần ảo là 3i.

C. Phần thực là 3 và phần ảo là -4i.

D. Phần thực là -4 và phần ảo là 3.

Câu 11. Cho số phức z có số phức liên hợp $\overline{z} = 3 - 2i$. Tổng phần thực và phần ảo của số phức z bằng.

- **A.** -1.
- **B.** 1.

C. −5.

D. 5.

Lời giải:

Câu 12. Cho số phức z = 3 - 2i. Tìm phần ảo của của số phức liên hợp z.

- $\mathbf{A} \cdot -2i$.
- **B.** -2.
- C. 2.

D. 2*i*.

Lời giải:

Câu 13. Cho số phức $z_1 = 1 + 2i$ và $z_2 = 2 - 3i$. Phần thực và phần ảo của số phức $z_1 - 2z_2$ là.

- **A.** Phần thực là -3 và phần ảo là 8i.
- **B.** Phần thực là -3 và phần ảo là 8.
- C. Phần thực là -3 và phần ảo là -8.
- D. Phần thực là 3 và phần ảo là 8.

Lời giải:

Câu 14. Cho số phức $z = 1 - \sqrt{2}i$. Tìm phần ảo của số phức $P = \frac{1}{2}i$.

- **D.** $-\frac{\sqrt{2}}{2}$.

Lời giải:

§ Mức đô 2

Cho số phức z thoả mãn $\frac{z}{3+2i} = 1-i$ Số phức liên hợp \overline{z} là. Câu 1.

- A. $\overline{z} = 5 + i$.
- **C.** $\overline{z} = -1 5i$. **D.** $\overline{z} = -1 + 5i$.

Lời giải

Tìm số phức liên hợp của số phức $z = (2+i)(-1+i)(2i+1)^2$. Câu 2.

- **A.** $\overline{z} = 5 + 15i$.
- **B.** $\overline{z} = 5 + 5i$.
- **C.** $\overline{z} = 1 + 3i$.
- **D.** $\overline{z} = 5 15i$.

Lời giải:

Số phức liên hợp của số phức $z = \frac{\left(1 - \sqrt{3}i\right)^3}{1 - i}$ là Câu 3.

- **A.** $\overline{z} = -4 + 4i$. **B.** $\overline{z} = 4 4i$.
- C. $\overline{z} = -4 4i$. D. $\overline{z} = 4 + 4i$.

- Tìm số phức \overline{z} thỏa mãn $\frac{2+i}{1-i}z = \frac{-1+3i}{2+i}$.
 - **A.** $-\frac{22}{25} + \frac{4}{25}i$. **B.** $\frac{22}{25} + \frac{4}{25}i$. **C.** $\frac{22}{25} \frac{4}{25}i$. **D.** $\frac{22}{25}i + \frac{4}{25}$.

- Cho hai số phức z = 1 + 3i, w = 2 i. Tìm phần ảo của số phức $u = \overline{z}.w$. Câu 5.
 - **A.** 5.

- **C.** -7.
- **D.** 5*i*.

Lời giải.

- Cho số phức z thỏa mãn (3+2i)z = 7+5i. Số phức liên hợp \overline{z} của số phức z là Câu 6.
- **A.** $\overline{z} = \frac{31}{5} \frac{1}{5}i$. **B.** $\overline{z} = \frac{31}{13} \frac{1}{13}i$. **C.** $\overline{z} = -\frac{31}{13} + \frac{1}{13}i$. **D.** $\overline{z} = -\frac{31}{5} + \frac{1}{5}i$.

- Cho số phức z thỏa mãn: (1+i)z = 14-2i. Tổng phần thực và phần ảo của \overline{z} bằng: Câu 7.
 - **A.** −4.
- **C.** 4.
- **D.** −14.

Lời giải.

- Cho số phức z thỏa mãn: $(3+2i)z+(2-i)^2=4+i$. Hiệu phần thực và phần ảo của số phức z là: Câu 8.
 - **A.** 0

C. 1

D. 3.

Lời giải.

- Cho số phức z thỏa mãn (4+7i)z-(5-2i)=6iz. Tìm phần ảo của số phức z? Câu 9.
 - A. $\frac{18}{17}$.
- **B.** $-\frac{18}{17}$. **C.** $-\frac{13}{17}$. **D.** $\frac{13}{17}$.

- **Câu 10.** Cho số phức z = 1 + 2i. Tìm phần thực và phần ảo của số phức $w = 2z + \overline{z}$.
 - A. Phần thực là 2 và phần ảo là 3.
- **B.** Phần thực là 3 và phần ảo là 2i.
- C. Phần thực là 2i và phần ảo là 3.
- **D.** Phần thực là 3 và phần ảo là 2.

Câu 11. Cho số phức z = a + bi. Số phức z^2 có phần ảo là?

A. 2*ab* .

- **B.** a^2b^2 .
- C. $a^2 b^2$.
- **D.** 2abi.

Lời giải.

Câu 12. Gọi z_1 ; z_2 là các nghiệm của phương trình $z^2 - 3z + 5 = 0$. Mô đun của số phức $(2\overline{z_1} - 3)(2\overline{z_2} - 3)$ bằng

A. 7.

- **B.** 11.
- **C.** 29.
- **D.** 1.

Lời giải.

§ Mức độ 3

Có bao nhiêu số phức Z thỏa

A. 1.

- **D.** y = 2.

Lời giải:

 $\left(\frac{2+6i}{3-i}\right)^{m}$, m nguyên dương. Có bao nhiều giá trị $m \in [1;50]$ để z là số thuần Câu 2. ảo?

A. 24.

- **B.** 26.
- **C.** 25.
- **D.** 50.

Lời giải

Có bao nhiều số phức z thỏa mãn $(1+i)z+\overline{z}$ là số thuần ảo và |z-2i|=1. Câu 3.

A. 2.

- **B.** 1.
- **C.** 0.
- D. Vô số.

- Cho số phức $z = \left(\frac{1+i\sqrt{3}}{1+i}\right)^3$. Tìm phần thực và phần ảo của số phức \overline{z} ? Câu 4.
 - A. Phần thực bằng 2 và phần ảo bằng 2i.
- B. Phần thực bằng 2 và phần ảo bằng 2.
- C. Phần thực bằng 2 và phần ảo bằng -2i.
- **D.** Phần thực bằng 2 và phần ảo bằng -2.

- Cho số phức z thỏa mãn điều kiện $(3+2i)z+(2-i)^2=4+i$. Tìm phần ảo của số phức $w=(1+z)\overline{z}$ Câu 5.
 - **A.** -1.
- **B.** 0.
- **D.** -2.

Lời giải:

- Tìm phần ảo của số phức z thỏa mãn $z + 2\overline{z} = (2-i)^3(1-i)$. Câu 6.
 - **A.** −9.
- **B.** 13.
- **D.** 9.

Lời giải:

- Nếu số phức $z \ne 1$ thoả mãn |z| = 1 thì phần thực của $\frac{1}{1-z}$ bằng: Câu 7.
 - **A.** 1.

- **C.** 2.
- **D.** 4.

Lòi giải:

- Cho hai số phức z_1 , z_2 thỏa mãn $\left|z_1\right|=1$, $\left|z_2\right|=2$ và $\left|z_1+z_2\right|=3$. Giá trị của $\left|z_1-z_2\right|$ là:
 - **A.** 0.

D. một giá trị khác.

Lời giải:

- Cho 2 số phức z_1 , z_2 thỏa $\left|z_1\right|=1$, $\left|z_2\right|=1$, $\left|z_1+z_2\right|=\sqrt{3}$. Khi đó $\left|z_1-z_2\right|$ bằng: Câu 9.
 - **A.** 2.

- **B.** $\sqrt{3}$.
- C. $2 \sqrt{3}$.
- **D.** 1.

- **Câu 10.** Cho số phức z = a + bi $(a, b \in \mathbb{R})$ thỏa mãn z + 1 + 3i |z|i = 0. Tính S = a + 3b.
 - **A.** $S = \frac{7}{3}$.
- **B.** S = -5. **C.** S = 5.

- *Câu 11.* Có bao nhiều số phức z thỏa mãn $|z+1-3i|=3\sqrt{2}$ và $(z+2i)^2$ là số thuần ảo?
 - **A.** 1.

- **B.** 2.
- **C.** 3.
- **D.** 4.

Lời giải:

- *Câu 12.* Cho số phức z thỏa $\overline{z} = \frac{\left(1 i\sqrt{3}\right)^3}{1 i}$. Môđun của số phức $\overline{z} + iz$ bằng.
 - **A.** $8\sqrt{2}$.
- **B.** $2\sqrt{2}$.
- C. $4\sqrt{2}$.
- **D.** $\sqrt{2}$.

- *Câu 13.* Cho số phức z thỏa điều kiện $\frac{1+5i}{1+i}z+\overline{z}=10-4i$. Tính môđun của số phức $w=1+iz+z^2$.
 - **A.** |w| = 5.
- **B.** $|w| = \sqrt{47}$.
- **C.** |w| = 6. **D.** $|w| = \sqrt{41}$.

- *Câu 14.* Biết số phức z có phần ảo khác 0 và thỏa mãn $\left|z-(2+i)\right|=\sqrt{10}$ và $z.\overline{z}=25$. Điểm nào sau đây biểu diễn số phức z trên?
 - **A.** P(4; -3)
- **B.** N(3; -4) **C.** M(3; 4)
- **D.** Q(4; 3)

- Cho số phức z = a + bi $(a, b \in \mathbb{R}, a > 0)$ thỏa mãn |z 1 + 2i| = 5 và $z \cdot \overline{z} = 10$. Tính P = a b.
 - **A.** P = 4
- **B.** P = -4
- **C.** P = -2
- **D.** P = 2

- **Câu 16.** Số phức z = a + bi (với a, b là số nguyên) thỏa mãn (1-3i)z là số thực và |z-2+5i|=1. Khi đó a+b là
 - **A.** 9

B. 8

C. 6

D. 7

Lời giải:

§ Mức độ 4

- Cho số phức $w = 1 + (1+i) + (1+i)^2 + (1+i)^3 + ... + (1+i)^{20}$. Tìm phần thực và phần ảo của số phức \overline{w}
 - **A.** Phần thực bằng -2^{10} và phần ảo bằng $(1+2^{10})$.
 - **B.** Phần thực bằng -2^{10} và phần ảo bằng $-(1+2^{10})$.
 - C. Phần thực bằng 2^{10} và phần ảo bằng $(1+2^{10})$
 - **D.** Phần thực bằng 2^{10} và phần ảo bằng $-(1+2^{10})$.

Lời giải

- Cho số phức $z \neq 0$ thỏa mãn $\frac{iz (3i + 1)\overline{z}}{1 + i} = |z|^2$. Số phức $w = \frac{13}{3}iz$ có môđun bằng: Câu 2.
 - **A.** 26.
- **B.** $\sqrt{26}$. **C.** $\frac{3\sqrt{26}}{2}$.
- **D.** 13.

- Cho hai số phức z, w thỏa mãn |z+2w|=3, |2z+3w|=6 và |z+4w|=7. Tính giá trị của biểu thức Câu 3. $P = \overline{z.w} + \overline{z.w}$.
 - **A.** P = -14i.
- **B.** P = -28i.
- C. P = -14.
- **D.** P = -28.

- Cho các số phức z_1, z_2, z_3 thoả mãn $\left|z_1\right| = \left|z_2\right| = \left|z_3\right| = 1$ và $\left|z_1\right|^3 + \left|z_2\right|^3 + \left|z_3\right|^3 + \left|z_1z_2z_3\right| = 0$. Đặt Câu 4. $z = z_1 + z_2 + z_3$, giá trị của $|z|^3 - 3|z|^2$ bằng:
 - **A.** $\{-2, 2\}$.
- **B.** $\{-2; -4\}$. **C.** $\{-4; 4\}$. **D.** $\{2; 4\}$.

- Xét số phức z thỏa mãn $(1+2i)|z| = \frac{\sqrt{10}}{z} 2 + i$. Mệnh đề nào dưới đây đúng?

- **A.** $\frac{3}{2} < |z| < 2$. **B.** |z| > 2. **C.** $|z| < \frac{1}{2}$. **D.** $\frac{1}{2} < |z| < \frac{3}{2}$.

- Có bao nhiều số phức z thỏa mãn |z|(z-4-i)+2i=(5-i)z? Câu 6.
 - **A.** 2

B. 3

C. 1

D. 4

Lời giải:

- Có bao nhiều số phức thỏa mãn |z|(z-6-i)+2i=(7-i)z? Câu 7.
 - **A.** 2

B. 3

D. 4

Có bao nhiều số phức z thỏa mãn |z|(z-3-i)+2i=(4-i)z? Câu 8.

B. 3

C. 2

D. 4

Lời giải:

Có bao nhiều số phức z thỏa |z+1-2i| = |z+3+4i| và $\frac{z-2i}{z+i}$ là một số thuần ảo ? Câu 9.

A. 0.

B. Vô số.

C. 1.

D. 2.

Câu 10. Có bao nhiều số phức z thỏa mãn |z|(z-5-i)+2i=(6-i)z?

A. 1

B. 3

C. 4