

DepthContrast: Learning Self-supervised 3D Features from Single-view Depth Scans

Zaiwei Zhang¹, Rohit Girdhar², Armand Joulin², Ishan Misra² ¹University of Texas at Austin ²Facebook Al Research

versions

Format-specific encoders Spatial Features

Instance Discrimination

Motivation

Expensive 3D data labeling

Input Depth map

- Availability of existing large collection of single-view depth scans
- More commercial 3D sensors will lead to more unlabeled singleview 3D data

Key Takeways

- Works with single/multi-view depth scans acquired by varied sensors (Lidar or Kinect)
- Works on point cloud and voxelbased model architectures
- Improves label efficiency on dow nstreamtasks

Method & Formulation

$$l_i = -\log \frac{\exp(\mathbf{v}_{i,1}^{\top} \mathbf{v}_{i,2} / \tau)}{\exp(\mathbf{v}_{i,1}^{\top} \mathbf{v}_{i,2} / \tau) + \sum_{j \neq i}^{K} \exp(\mathbf{v}_{i,1}^{\top} \mathbf{v}_{j} / \tau)}$$

Extension to Multiple 3D Input Formats

Instance Discrimination

Final Loss:
$$L_i = \underbrace{l_i^{ab} + l_i^{ba}}_{\text{across format}} + \underbrace{l_i^{aa} + l_i^{bb}}_{\text{within format}}$$

Main Results

Dataset	Stats	Task	Gain of				
			DepthContrast				
Self-supervised Pretraining							
ScanNet-vid (Dai et al., 2017)	190K single-view depth maps (Indoor)						
Redwood-vid (Choi et al., 2016)	370K single-view depth map	s (Ind	oor/Outdoor)				
Transfer tasks							
ScanNet (Dai et al., 2017)	1.2K train, 312 val (Indoor)	Det.	+3.6% mAP				
		Seg.	+0.9% mIOU†				
SUNRGBD (Song et al., 2015)	5.2K train, 5K val (Indoor)	Det	+3.3% mAP				
S3DIS (Armeni et al., 2017)	199 train, 67 val (Indoor)	Det	+12.1% mAP				
		Seg.	+2.4% mIOU				
Synthia (Ros et al., 2016)	19.8K train, 1.8K val (Synth.)	Seg.	+2.4% mIOU				
Matterport3D (Chang et al., 2017)	1.4K train, 232 val (Indoor)	Det.	+3.9% mAP				
ModelNet (Wu et al., 2015)	9.8K train, 2.4K val (Synth.)	Cls.	+3.1% Acc [†]				

Baseline Comparison

Initialization	ScanNet	SUNRGBD	Matterport3D	S3DIS
Scratch	58.6	57.4	38.8	31.2
Supervised	-	59.1 (+1.7)	41.7 (+2.9)	48.5 (+17.3)
DepthContrast (Ours)	61.3 (+2.7)	60.4 (+3.0)	41.9 (+3.1)	43.3 (+12.1)
PointContrast (Xie et al., 2020)	59.2(+2.5)	57.5(+1.9)	-	-

Loss	Point Transfer		Voxel Transfer	
	SUNRGBD	ScanNet	S3DIS	Synthia
Scratch	57.4	58.6	68.2	78.9
Within Format only	60.4 (+3.0)	61.3 (+1.7)	66.5 (-2.7)	80.1 (+1.2)
Across format only	60.0 (+2.6)	61.1 (+2.5)	69.9 (+1.7)	81.2 (+2.3)
Both (Ours)	60.7 (+3.3)	62.2 (+3.6)	70.6 (+2.4)	81.3 (+2.4)
PointContrast (Xie et al., 2020)	59.2(+2.5)	57.5(+1.9)	70.9 (+2.7)	83.1 (+3.3)

Benefits on Label Efficiency

Scaling on Model & Pretraining Data

Code Link: https://github.com/facebookresearch/DepthContrast