Math 109 Course Packet

Dr. Erich Jauch

Updated Spring 2023

Contents

Ι			1
\mathbf{R}	Rev	riew Material	1
	R.1	Rational Exponents & Radicals	1
		R.1.1 Simplifying Radicals	2
	R.2	Polynomials	3
		R.2.1 Basics	3
		R.2.2 Adding and Subtracting	4
		R.2.3 Multiplying	4
	R.3	Factoring	6
		R.3.1 Greatest Common Factor	6
		R.3.2 Factoring by grouping	8
		R.3.3 Special polynomials	10
1	Line	ear & Rational Equations	12
	1.1	Linear equations	12
		1.1.1 Determining type	12
		1.1.2 Solving linear equations	13
	1.2	Rational Equations	14
2	Con	nplex Numbers	17
	2.1	The Basics	17
	2.2	Addition & Subtraction	19
	2.3	Multiplication	19
	2.4	Division	21
3	Solv	ving Quadratic Equations	22
	3.1	Solving by Factoring	$\frac{-}{22}$
		3.1.1 The Square Root Property	$\frac{-2}{24}$
	3.2	Completing the Square	$\frac{24}{24}$
	3.3	The Quadratic Formula	25

4	Mor	re Equations and Some Applications 2	7
	4.1	Using the Greatest Common Factor	27
	4.2	Factoring by Grouping	28
	4.3		29
	4.4	Absolute Value Equations	30
	4.5	•	31
	4.6		33
	4.7		35
5	Line	ear, Compound, and Absolute Value Inequalities 3	86
	5.1		36
	5.2	Properties of Inequalities	38
	5.3	1	39
	5.4		10
II		4	2
6	The	Rectangular Coordinate System 4	12
	6.1	The x - y plane	12
	6.2	Graphing Lines	13
	6.3	Distances	14
	6.4	Midpoints	15
7	Circ	eles 4	l6
	7.1	Graphing circles	18
8	Fun	ctions	١9
	8.1	Equations as functions	50
	8.2	Function Notation	50
	8.3	Graphing Functions	52
		8.3.1 Vertical Line Test	52
	8.4	Finding Domain and Range from a Graph	53
	8.5	Finding domains from equations	55
9	Line	ear Functions 5	6
	9.1	Slope	56
	9.2	Graphs	57
		9.2.1 Slope-Intercept form	57
	9.3	Graphing Lines	58
10	Mor	e on Lines 5	9
	10.1	Finding the equation of a line	59
		~ -	31
	10.3	Horizontal & Vertical Lines	31
	10.4	Parallel and Perpendicular Lines	32

Dr.	. Erich Jauch	Math 109 Course Packet	Up	oda	ted	l S	pr	in	gʻ	2023
	10.5 Real-World Applica	tions								64
11	Transformations of G	raphs/Functions								65
	11.1 The Basic Transform	nations								65
	11.2 Describing transform	nations								67
	11.3 Graphing multiple t	ransformations								67
12	More on Functions &	Piece-wise Functions								69
	12.1 Even and Odd Fund	etions								69
	12.2 Piece-wise functions	8								71
13	Algebra of Functions									74
	13.1 Basics									74
	13.2 Composite Function	ns								74
	13.3 Evaluating composit	tions								76
	13.4 Domains of Compos	sitions								78
	13.5 Decomposing functi	ons					•	•		79
II	I									81
14	Quadratics & Their A	pplications								81
	=									81
										82
	14.3 Determining the equ	uation from the graph								84
	14.4 Using intercepts to	find the equation								86
	14.5 Finding domain & r	range from equations								87
	14.6 Finding intercepts f	rom the equation								88
	14.7 Maximum and Mini	mum values of quadratics								88
15	Polynomials									89
	15.1 Graphs of Polynomi	als								90
	15.2 End behavior of a p	olynomial								92
	15.3 Identifying intercept	ts								94
	_									94
	~ ·	l degrees								95
										96
		alue Theorem								97
	_	s from graphs of polynomials								99
		als								100
	_	n from the graph								101
	15.11Finding the equation	n from key information								103

22	Loga	arithmic Functions	146
	22.1	Evaluating logarithms	148
	22.2	Finding the domain	149
	22.3	Graphing basic functions	150
	22.4	Graph transformations	151
	22.5	Writing a logarithm from a description	152
23	Pro	perties of Logarithms	152
	23.1	Inverse property	152
		Product Rule	
		Quotient Rule	
		Power Rule	
		Expanding logarithmic expressions	
		Condensing logarithmic expressions	
		Change-of-base Rule	
24	Exp	onential & Logarithmic Equations	159
	$24.\bar{1}$	Exponentials	159
		Logarithms	
		Application Problems	167

Part I

R Review Material

R.1 Rational Exponents & Radicals

Fact 1

For any real number **a** the following holds:

$$a^{\frac{m}{n}} = \sqrt{a^{-}}$$

Exercise R.1. Rewrite $3^{\frac{2}{3}}$ as a radical.

Exercise R.2. Rewrite $\sqrt[5]{16}$ as a rational exponent.

R.1.1 Simplifying Radicals

We have two techniques on how to simplify radicals. One is called the *factor tree method*, and the other involves looking at powers of primes.

Exercise R.3 (Factor Tree Method). Simplify $\sqrt{72}$.

Exercise R.4 (Powers of Primes Method). Simplify $\sqrt{72}$.

Exercise R.5. Simplify $\sqrt[3]{500}$.

R.2 Polynomials

R.2.1 Basics

Definition R.6. Let n be a positive integer (not a fraction), and $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$ be real numbers with $a_n \neq 0$. The following is called a *polynomial*:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

- We call $a_0, a_1, ..., a_n$ the ______,
- \circ a_n is specifically called the ______,
- $\circ a_n x^n$ is called the _____,
- \circ a_0 is called the ______,
- \circ and n is the _____ of the polynomial.

Names based on the number of terms

# of Terms	Name
1	
2	
3	
4 or more	

Names based on the degree

Degree	Name
0th	
1st	
2nd	
3rd	
4th	
5th	

Exercise R.7. What special name(s) would the following polynomials have?

- $\circ 3x^2 + x 1$ Name: _____
- \circ 7 + -4 x^3 Name: _____

R.2.2 Adding and Subtracting

When adding or subtracting polynomials it boils down to combining the coefficients of like-terms that is terms that have the same power of x.

Exercise R.8. Add the following two polynomials together:

$$(3x^2 + x + 1) + (3 - 6x - 2x^2)$$

Exercise R.9. Compute the following subtraction of polynomials:

$$(1-x-5x^2)-(-3x^2+4x-3)$$

R.2.3 Multiplying

The basic premise of multiplication of polynomials is multiplying coefficients and adding powers.

$$(Ax^n)(Bx^m) = ABx^{n+m}$$

Exercise R.10. Compute the following multiplication:

Definition R.11. When multiplying two binomials we use an acronym to help remember which terms to multiply together, which is **F.O.I.L.**.

F_____ O____ I___ L____

Exercise R.12. Multiply the following binomials:

$$(2x+7)(3x-4)$$

Exercise R.13. Simplify the following:

$$(5x+2)^2$$

Exercise R.14. Multiply the following binomials:

$$(3x+1)(3x-1)$$

Exercise R.15. Multiply the following:

$$(5x-7)(6x^2-5x+3)$$

Exercise R.16. Multiply the following:

$$(3x^2 - 4)(6x^2 - 7x + 2)$$

R.3 Factoring

R.3.1 Greatest Common Factor

Definition R.17. Given a collection of terms, the *Greatest Common Factor* (or *GCF*) is the largest factor that divides everything in the collection.

Our process will involve breaking the problem into finding the GCF of the numbers and the GCF of the variables, and then mulitplying them together.

Fact 2

Given two real numbers a and b with $a \leq b$, the GCF of x^a and x^b is _____

Exercise R.18. Find the Greatest Common Factor (GCF) of $8z^5$ and $36z^3$

We can use this to do the most basic type of factoring for polynomials which is to factor out the GCF of all the terms in the polynomial (if there is one).

Exercise R.19. Factor out the GCF from

$$45x^5y^7 + 33x^3y^3 + 78x^2y^4$$

Exercise R.20. Factor out the GCF from

$$87x^8y^3 + 18x^5y + 21x^4y^2$$

R.3.2 Factoring by grouping

When there is not a GCF to factor out, we need different methods to factor polynomials. We will mainly focus on factoring trinomials and specifically quadratics which are of the form $ax^2 + bx + c$.

Leading coefficient a = 1

In this situation, our quadratic will look like $x^2 + bx + c$. Our method for factoring these will be to find two numbers m and n such that m + n = b and $m \cdot n = c$. We'll see what we do with this m and n in the following exercise.

Exercise R.21. Factor the following polynomial

$$y^2 + 6y + 5$$

Exercise R.22. Factor the following polynomial

$$x^2 + 8x - 20$$

Leading coefficient $a \neq 1$

The process for $a \neq 1$ turns out to be almost exactly the same. We still want an m and n such that m+n=b, but now we have $m \cdot n = a \cdot c$.

Exercise R.23. Factor the following polynomial:

$$4x^2 + 19x + 21$$

Exercise R.24. Factor the following polynomial:

$$-6x^2 + 17x - 7$$

R.3.3 Special polynomials

Definition R.25. The following is called a *perfect square trinomial* and factors as follows:

$$A^2 + 2AB + B^2 =$$

Similarly,

$$A^2 - 2AB + B^2 =$$

Exercise R.26. Factor the following polynomial:

$$16x^2 + 24x + 9$$

Exercise R.27. Factor the following polynomial:

$$25x^2 - 90x + 81$$

Definition R.28. The following is called a *difference of squares* and factors as follows:

$$A^2 - B^2 = (A + B)(A - B)$$

Exercise R.29. Factor the following:

$$x^2 - 9$$

Exercise R.30. Factor the following:

$$16x^2 - 25y^2$$

Exercise R.31. Factor the following:

$$16x^4 - 81$$

1 Linear & Rational Equations

1.1 Linear equations

Definition 1.1. An equation in one variable is called a *linear equation* if the highest power of the variable is _____

1.1.1 Determining type

When dealing with any type of equation, they come in 3 forms.

1) Identity: An equation that is always true no matter the value of the variable.

Examples:

2) Inconsistent: An equation that is always false no matter the value of the variable.

Examples:_____

3) Conditional: An equation that is only true for specific values of the variable.

Examples:

Exercise 1.2. Determine what type of equation, and solve if it is consistent.

$$9 - 10x + 7x = 2 - 3x + 6$$

Exercise 1.3. Determine what type of equation, and solve if it is consistent.

$$9x - 2 - 2x = 5 - 7 + 7x$$

Exercise 1.4. Determine what type of equation, and solve if it is consistent.

$$3x - 1 = 11$$

1.1.2 Solving linear equations

Exercise 1.5. Solve the following linear equation:

$$6(x+2) - 2 = -6 - 3(x-5)$$

Definition 1.6. Given a collection of denominators, the *Least Common Denominator* (or LCD) is the smallest term that is divisible by all of the denominators.

Note. The LCD needs to be at least as big as the largest denominator. This may seem strange since it is the "Least" which we usually associate with smallest.

Exercise 1.7. Solve the following linear equation:

$$\frac{9x}{4} + \frac{5}{2} = \frac{-1}{2}$$

1.2 Rational Equations

Definition 1.8. A rational equation is an equation that involves variables in denominators.

When solving rational equations, we will follow a similar process to the previous problem by using the Least Common Denominator. It will involve denominators with variables.

Fact 3

Given two real numbers a and b with $a \leq b$, the LCD of x^a and x^b is

Exercise 1.9. Solve the following equation:

$$\frac{7}{2x} + \frac{5}{6x} = \frac{7}{4}$$

Exercise 1.10. Solve the following equation:

$$-\frac{2}{3x} - \frac{5}{6x} = \frac{3}{2}$$

Exercise 1.11. Solve the following equation:

$$\frac{-7}{x} = \frac{-5}{x+4}$$

Exercise 1.12. Solve the following equation:

$$\frac{-1}{x+3} - \frac{6}{x+1} = \frac{-2}{x^2 + 4x + 3}$$

Exercise 1.13. Solve the following equation:

$$\frac{-3}{x-2} + \frac{5}{x-4} = \frac{-1}{x^2 - 6x + 8}$$

2 Complex Numbers

2.1 The Basics

Question. How do we deal with $\sqrt{-1}$?

Definition 2.1. The *imaginary constant* is defined to be $i = \sqrt{-1}$

Note. This will now allow us to deal with square roots with negative values. If n > 0, then

$$\sqrt{-n} =$$

Exercise 2.2. Simplify $\sqrt{-75}$.

Note. We can simplify powers of i as follows:

$$i = i$$
 $i^2 =$
 $i^3 =$
 $i^4 =$
 $i^5 =$
 $i^6 =$
 $i^7 =$

Exercise 2.3. Simplify i^{62}

Exercise 2.4. Simplify i^{19}

Note. We can also continue the pattern in reverse to get negative powers of i:

Definition 2.5. The *complex numbers* (denoted by \mathbb{C}) is the set of all numbers of the form a + bi where a and b are real numbers and i is the imaginary constant.

We call a + bi the standard form of a complex number, calling a the real part and b the imaginary part.

2.2 Addition & Subtraction

Exercise 2.6. Compute the following:

$$(3+2i)+(4-7i)$$

Exercise 2.7. Compute the following:

$$(5+7i)-(-3+2i)$$

2.3 Multiplication

Exercise 2.8. Compute the following:

$$3(7-5i)$$

Exercise 2.9. Compute the following:

$$7i(2+4i)$$

Exercise 2.10. Compute the following:

$$(-3+7i)(2+5i)$$

Exercise 2.11. Compute the following:

$$(3+2i)(3-2i)$$

Definition 2.12. The two complex numbers a + bi and a - bi are called *complex conjugates*. Their product is always $a^2 + b^2$ which is real.

2.4 Division

In order to divide complex numbers we will need to use the complex conjugate of the complex number we are dividing by (the denominator).

Example 2.13. Give the complex conjugates for the following complex numbers:

- $\circ 5 2i \longleftrightarrow$
- \circ 7 + 11 $i \longleftrightarrow$ _____
- \circ $-4-2i \longleftrightarrow$

Exercise 2.14. Divide the following and write your answer in standard form.

$$\frac{16+22i}{3+i}$$

Exercise 2.15. Divide the following and write your answer in standard form.

$$(17+5i) \div (-2+i)$$

3 Solving Quadratic Equations

3.1 Solving by Factoring

Fact 4 (The Zero Product Rule)

If
$$AB = 0$$
, then _____

Exercise 3.1. Solve the following for x:

$$x^2 + 4x - 21 = 0$$

Exercise 3.2. Solve the following for y:

$$y^2 + 8y + 12 = 0$$

Exercise 3.3. Solve the following for x:

$$9x^2 - 26x - 3 = 0$$

3.1.1 The Square Root Property

Exercise 3.4. Solve $x^2 = 36$ for x.

Exercise 3.5. Solve $x^2 = 81$ for x.

3.2 Completing the Square

This will be using the square root property from above and perfect square trinomials (see Definition R.25). We will change our quadratics as perfect square trinomials, so that we can take a square root to simplify the problem.

Exercise 3.6. If $x^2 + 4x - 45 = 0$, solve for x.

Exercise 3.7. If $x^2 - 12x + 11 = 0$, solve for x.

3.3 The Quadratic Formula

Now completing the square works to solve any quadratic equation, but what if we tried to complete the square on the general quadratic?

Example 3.8. If $ax^2 + bx + c = 0$, solve for x.

Proposition 3.9 (The Quadratic Formula)

If
$$ax^2 + bx + c = 0$$
, then

x =

Definition 3.10. For a quadratic equation $ax^2 + bx + c = 0$, the discriminant is $b^2 - 4ac$, and it tells us about the types of solutions to said equation. There are 3 (really 4) cases:

- $\circ \ b^2 4ac < 0 \Rightarrow \underline{\hspace{2cm}}$
- $\circ b^2 4ac = 0 \Rightarrow \underline{\hspace{1cm}}$
- $b^2 4ac > 0$ and
 - it IS a perfect square \Rightarrow _____
 - it IS NOT a perfect square \Rightarrow _____

Exercise 3.11. Find the discriminant and solve $-4x^2 + 5x + 3 = 0$.

Exercise 3.12. Find the discriminant and solve $4n^2 - 20n + 25 = 0$.

4 More Equations and Some Applications

4.1 Using the Greatest Common Factor

Exercise 4.1. Solve $4x^4 = 16x^2$

Exercise 4.2. Solve $9x^4 = 81x^2$

4.2 Factoring by Grouping

Exercise 4.3. Solve $x^3 - 5x^2 - 4x + 20 = 0$.

Exercise 4.4. Solve $x^3 - 8x^2 - 9x + 72 = 0$.

Exercise 4.5. Solve $x^3 + 7x^2 - x - 7 = 0$.

4.3 Polynomials in Quadratic Form

Exercise 4.6. Solve $(x-5)^2 + (x-5) - 2 = 0$.

Exercise 4.7. Solve $(x-7)^2 - 7(x-7) + 10 = 0$.

4.4 Absolute Value Equations

Definition 4.8. The *absolute value* of a number n, written |n|, is the distance from n to 0 on the number line (i.e. it is the positive version of n).

Example 4.9. If |x| = 5, then either x = 5 or x = -5

This means that absolute value equations are just two problems in one. A positive equation and a negative equation.

Exercise 4.10. If |-12x-7|-8=2, solve for x.

Exercise 4.11. Solve 2|x+1| + 7 = 10 for x.

Exercise 4.12. Solve the following for x:

$$|3x - 5| - 11 = -9$$

4.5 Radical Equations

Our goal will be to get rid of the radical in the problem.

Exercise 4.13. Solve the following for x:

$$\sqrt{8x - 23} + 2 = x$$

Exercise 4.14. Solve:

$$\sqrt{-2x+8} = x$$

Exercise 4.15. Solve:

$$\sqrt{-x+4} + \sqrt{5x+1} = 3$$

Exercise 4.16. Solve:

$$\sqrt{-2x+2} + \sqrt{x+2} = -3$$

4.6 Rational Exponent Equations

Recall that the square root is the same as the _____ power, so in general we take

$$\left(\left(\begin{array}{c} \right)^{m/n}\right)^{----/---}$$

Exercise 4.17. Solve $x^{7/6} = 128$ for x.

Exercise 4.18. Find x when $x^{-3/2} = \frac{1}{125}$

Exercise 4.19. Solve for x when $(x-1)^{-4/3} = \frac{1}{81}$

Exercise 4.20. Solve the following for x:

$$7x^4 - 189x^{13/4} = 0$$

Exercise 4.21. Solve the following for x:

$$4x^3 - 36x^{7/3} = 0$$

4.7 More Rational Equations

Note. We still need to check what makes our denominators equal to 0

Exercise 4.22. If
$$\frac{6x+5}{x+2} - \frac{1}{x} = -\frac{2}{x^2+2x}$$
, find x .

5 Linear, Compound, and Absolute Value Inequalities

We need a shared language to discuss these problems because the answers are not just single numbers they are sets (or collections) of numbers like the following:

Example 5.1. The set of all real numbers greater than or equal to 1.

5.1 Interval Notation

Set Builder Notation	Interval Notation
$\{x \mid a < x < b\}$	
$\{x\mid a\leq x\leq b\}$	
$\{x \mid a < x \le b\}$	
$\{x \mid a \le x < b\}$	
$\{x \mid a \le x\}$	
$\{x \mid x < b\}$	

Exercise 5.2. Write the number line from Example 5.1 in interval notation.

Definition 5.3.

- \circ ____ denotes the *union* which means "or".
- \circ ____ denotes the *intersection* which means "and".

Exercise 5.5. Use interval notation to express the following: The set of all real numbers greater than -7 and less than or equal to 5.

Exercise 5.6. Use interval notation to express the following: The set of all real numbers greater than or equal to 4 or less than 2.

5.2 Properties of Inequalities

Addition Property

If a < b, then for a real number c _____.

Multiplication Property

- \circ If a < b and c > 0, then _____.
- \circ If a < b and c < 0, then _____.

Exercise 5.7. If $x + 10 \le 4$, solve for x.

Exercise 5.8. Find x when $-5x - 2 \le 8$.

Exercise 5.9. Solve $-16x + 8 \ge -9x - 13$ for x.

Exercise 5.10. Find x when -10x + 12 > -8x - 10.

5.3 Compound Inequalities

Exercise 5.11. Solve $2x - 3 \le 4x + 3 < 2x + 5$ for x.

Exercise 5.12. Find x if $-4x - 10 < -2x - 8 \le -4x + 10$.

5.4 Absolute Value Inequalities

Recall that absolute values turn one problem into two!

Exercise 5.13. Solve |x - 6| + 2 = 4 for x.

With inequalities we either have an "and" or an "or" problem.

Note. Here is a trick to remember:

- And _____
- o Or –

Exercise 5.14. Solve |2x + 6| < 18 for x.

Exercise 5.15. Solve $-7|x + 12| \le -14$ for x.

Exercise 5.16. Solve $2|x - 12| + 1 \le 23$ for x.

Exercise 5.17. Solve $|x-5| \le -2$ for x.

Part II

6 The Rectangular Coordinate System

6.1 The x-y plane

Exercise 6.1. Find the coordinates of the following points:

6.2 Graphing Lines

Exercise 6.2. Graph y = 4x - 5 on the x-y plane.

Exercise 6.3. Graph $y = \frac{4}{3}x - 2$ on the x-y plane.

6.3 Distances

Question. How would we compute the value of c the length of the purple line?

The Pythagorean Theorem

Theorem 6.4 (The Pythagorean Theorem)

Given a	right	triangle	with a	a hyj	potenuse	of	length	c	and	side	lengths	a	and	b,	then	the
following	g holds	\mathbf{S}														
							=									

This means that c =_____. Which is the distance between the points (0,0) & (a,b). Looking at it a slightly different way we can say that

$$c =$$

We can generalize this to the distance between any two points on the plane.

Proposition 6.5 (The Distance Formula)

Given two points (x_1, y_1) & (x_2, y_2) in the Cartesian plane, the distance D between these points is as follows:

$$D = \underline{\hspace{1cm}}$$

Exercise 6.6. Find the distance between (-6,1) & (5,-1).

Exercise 6.7. Find the distance between (2,5) & (-4,-5).

Exercise 6.8. Find the distance between (2, -3) & (-4, -7).

6.4 Midpoints

Definition 6.9. The *midpoint* between two points $(x_1, y_1) \& (x_2, y_2)$ in the Cartesian plane is computed as follows:

$$Midpoint = \left(\underline{}, \underline{} \right)$$

Exercise 6.10. Find the midpoint between (12, 13) & (-11, 7).

Exercise 6.11. Find the midpoint between (8,7) & (12-5).

7 Circles

Definition 7.1. A *circle* is a the set of all points (x, y) a distance r from the center (h, k). We call r the _____.

Using the distance formula (see Proposition 6.5), we can come up with an equation for the equation of the a circle as follows

We call this the standard form of a circle

Exercise 7.2. Write the following in standard form:

$$x^2 - 4x + y^2 - 2y - 31 = 0$$

Exercise 7.3. Write $2x^2 + 12x + 2y^2 + 8y - 24 = 0$ in standard form.

Exercise 7.4. Write the following in standard form:

$$3x^2 - 12x + 3y^2 + 6y + 3 = 0$$

7.1 Graphing circles

Exercise 7.5. Graph $(x+4)^2 + (y+2)^2 = 16$.

Exercise 7.6. Graph $(x+1)^2 + (y-1)^2 = 4$.

8 Functions

Definition 8.1. A *relation* is any set of order pairs where the *domain* is the set of ______ values in the ordered pair, and the *range* is the set of _____ values.

Exercise 8.2. Find the domain and range of

$$\{(0,9.1), (10,6.7), (20,10.7)\}.$$

Definition 8.3. A function is a relation where each element in the domain, corresponds to exactly one element of the range (i.e. no domain element can go to two different range elements).

Example 8.4. $\{(1,2), (3,4), (6,5), (8,5)\}$ is a function

Non-Example 8.5. $\{(1,2), (3,4), (5,6), (5,8)\}$ is a NOT function

8.1 Equations as functions

Definition 8.6. We will call ____ the *independent variable* which corresponds to the _____, and we will call ____ the *dependent variable* which corresponds to the _____.

Note. This means that an equation is a functions if every ____ goes to exactly one .

Exercise 8.7. Is 2x + y = 6 a function?

Exercise 8.8. Is $x^2 + y^2 = 1$ a function?

8.2 Function Notation

Example 8.9. We can rewrite the function $y = x^2 - 2x + 7$, in function notation, as follows:

$$f(x) = x^2 - 2x + 7$$

We read f(x) as "f of x", so f(-) is "f of -"

Function notation is useful if in evaluation.

Exercise 8.10. For $f(x) = x^2 - 2x + 7$, find f(-5).

Exercise 8.11. For $f(x) = x^2 - 2x + 7$, find f(2).

Exercise 8.12. For $f(x) = x^2 - 2x + 7$, find f(x + 4).

Solving using function notation

Exercise 8.13. For $f(a) = 4a^2 - 29a$, solve f(a) = -30.

Exercise 8.14. Find when h(x) = -12 if $h(x) = x^2 - 7x$.

8.3 Graphing Functions

Recall that "f(x) =" \leftrightarrow "y =", so the output of a function is the y-value.

Exercise 8.15. Graph f(x) = 2x + 1.

Note. Every function has a graph, but not every graph has a function.

8.3.1 Vertical Line Test

Proposition 8.16 (Vertical line test)

If any vertical line crosses a graph more than once, it does not represent a function.

Here are some other symbols to be familiar with:

- \circ ends at that point, but does NOT include it.
- \circ _____ ends at that point AND includes it.
- _____ the graph continues in that direction forever.

8.4 Finding Domain and Range from a Graph

Exercise 8.17. Find the domain and range of the following:

Exercise 8.18. Find the domain and range of the following:

Exercise 8.19. Find the domain and range of the following:

Exercise 8.20. Find the domain and range of the function shown below:

8.5 Finding domains from equations

For some of these questions instead of asking what numbers work, the easier question is what numbers "don't work".

Exercise 8.21. Find the domain of

$$f(x) = \frac{1}{(x+3)(x-2)}$$

Exercise 8.22. Find the domain of

$$g(x) = \sqrt{x+2}$$

Exercise 8.23. Find the domain of

$$q(x) = \frac{1}{\sqrt{8 - 9x}}$$

9 Linear Functions

9.1 Slope

Definition 9.1. The *slope* of a line is the following ratio

$$m = -----=$$

If $(x_1, y_1) & (x_2, y_2)$ are two points on a line, then the slope is

Exercise 9.2. Find the slope of the line between (-3,4) & (-4,-2).

Exercise 9.3. Find the slope of the line between (4, -2) & (-1, 5).

Exercise 9.4. Find the slope of the line between (7, -3) & (1, 11).

9.2 Graphs

9.2.1 Slope-Intercept form

Definition 9.5 (Slope-intercept form). A line with slope m and y-intercept b has the equation

$$y = \underline{\hspace{1cm}}$$

Exercise 9.6. What are the slope and y-intercept of y = 3x - 4?

Exercise 9.7. What is the x intercept of f(x) = 2x - 8?

Exercise 9.8. Find the slope-intercept form of the line with slope 7 and y-intercept 2.

9.3 Graphing Lines

Exercise 9.9. Graph f(x) = 2x + 5

Exercise 9.10. Graph h(x) = -3x - 6

Exercise 9.11. Find y = mx + b for the following:

10 More on Lines

10.1 Finding the equation of a line

In general, to find the equation of a line we need the slope and any point on the line.

Definition 10.1 (Point-slope form). If we have a point (x_1, y_1) on a line with slope m, then the *point-slope form* is

_____ = ____

Exercise 10.2. Find the equation of a line passing through (2, -5) with slope m = 6 in slope-intercept form.

Exercise 10.3. Find the equation of a line passing through (3,4) with slope m=-5 in slope-intercept form.

Exercise 10.4. Find the equation of a line passing through (3,4) & (-1,-6) in slope-intercept form.

10.2 Standard Form

Definition 10.5 (Standard form). If A, B, and C are integers (with A > 0), then the standard form of a line is

_____ = ____ or ____ = ____

Exercise 10.6. Find the standard form of the line passing through (-8, -1) & (-1, -2).

Exercise 10.7. Find the standard form of the line passing through (-7, -4) & (-2, 3).

10.3 Horizontal & Vertical Lines

Note. A horizontal line has a slope of _____. This means that their equation is

 $y = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Every horizontal line can be written this way, which makes sense because the _____ never changes.

Note. In a similar way, the $___$ never changes for vertical lines, their equation looks like

____= ____

Exercise 10.8. What is the equation of the following line?

Exercise 10.9. What is the equation of the following line?

10.4 Parallel and Perpendicular Lines

Definition 10.10. Two lines are called *parallel* (denoted by \parallel) if they ______Proposition 10.11

- Two distinct non-vertical lines are parallel if and only if
- If two vertical lines are _____, then they are parallel.

Exercise 10.12. Find the slope-intercept form of a line passing through (-2,5) and parallel to y = 3x + 1.

Exercise 10.13. Find the line parallel to y = 5x - 9 passing through (4, -2) in slope-intercept form.

Definition 10.14. Two lines are called *perpendicular* (denoted by \perp) if they ______.

Proposition 10.15

- Two distinct non-vertical lines are perpendicular if and only if the product of their slopes is _____.
- Horizontal and vertical lines are perpendicular.

Note. Another way to understand the first point is if the one slope is $m=\frac{a}{b}$, then the perpendicular slope is $m_{\perp}=$

Exercise 10.16. Find a line through (-2, -6) and perpendicular to $y = -\frac{1}{3}x + 4$ in slope-intercept form.

Exercise 10.17. Find the equation of the line perpendicular to $y = \frac{1}{4}x - 4$ and passing through (-8, 5) in slope-intercept form.

Exercise 10.18. Are the following two lines parallel, perpendicular, or neither?

$$y = 3x - 5$$
 $y + \frac{1}{3}x = 2$

10.5 Real-World Applications

Exercise 10.19. You are considering using a moving company to help you move. They charge \$60 per hour plus a base fee of \$290. If C is the total cost of hiring the moving company and H is the number of hours worked, what is the relationship between H and C?

11 Transformations of Graphs/Functions

11.1 The Basic Transformations

Let f(x) be a function. Then there are 4 (or 6) basic transformations:

1) Vertical Shifts

2) Horizontal Shifts

3) Vertical stretches & shrinks/compressions

3.5) Vertical (x-axis) Reflection

4) Horizontal stretches & shrinks/compressions

4.5) Horizontal (y-axis) Reflection

Example 11.1. Vertical shift: Transform f(x) to f(x) + 2

Example 11.2. Horizontal shift: Find f(x+3) using f(x) below

Example 11.3. Vertical Stretch & Shrink/Compression: Find 3f(x) using f(x) below

Example 11.4. Horizontal Stretch & Shrink/Compression: Find f(-2x) using f(x) below

11.2 Describing transformations

Exercise 11.5. Describe the graph of y = 3f(x-2) + 4 in terms of the graph of y = f(x).

Exercise 11.6. Describe the graph of $y = \frac{1}{4}f(-x+2)$ in terms of the graph of y = f(x).

11.3 Graphing multiple transformations

Note. Here is a rule of thumb for transformations:

- Work inside to outside.
- Multiplication/division before addition/subtraction

Exercise 11.7. Graph y = f(-x + 3) - 4 using the graph of y = f(x) below:

Exercise 11.8. Graph y = 3f(x+2) - 1 using the graph of y = f(x) below:

Exercise 11.9. Graph y = 3f(2x - 2) + 2 using the graph of y = f(x) below:

Exercise 11.10. Using y = f(x) below, graph y = f(-x - 3) + 1

12 More on Functions & Piece-wise Functions

12.1 Even and Odd Functions

There are two ways to see whether a functions is even, odd or neither.

Algebraically

Definition 12.1.

- \circ If f(x) is odd, then $f(-x) = \underline{\hspace{1cm}}$.
- \circ If f(x) is even, then $f(-x) = \underline{\hspace{1cm}}$.

Exercise 12.2. Is $f(x) = x^2 + 6$ even, odd, or neither?

Exercise 12.3. Is $g(x) = x^3 - x$ even, odd, or neither?

Exercise 12.4. Is $h(x) = x^5 + 1$ even, odd, or neither?

Notice the following

- \circ f(x) had all even powers.
- \circ g(x) had all odd powers.
- \circ h(x) had both even and odd powers.

Fact 5

- If all the powers in a polynomial are _____, then it is as an even function.
- $\circ\,$ If all the powers in a polynomial are _____, then it is as an odd function.

Graphically

Recall that if f(x) is even, then f(-x) = f(x). This means that x and -x have the same value. So f(x) is even if it has

If f(x) is instead odd, then f(-x) = -f(x). This means that x and -x have opposite values, so we say that f(x) is odd if it has ______.

12.2 Piece-wise functions

Definition 12.5. A piece-wise defined function or piece-wise function is a function that is defined by different functions on different parts of its domain. Said another way, piece-wise functions are made of "pieces" of other functions.

Example 12.6.

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < -1\\ x + 1 & \text{if } x \ge -1 \end{cases}$$

Graphing

Exercise 12.7. Graph

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < -1\\ x + 1 & \text{if } x \ge -1 \end{cases}$$

Exercise 12.8. Graph

$$g(x) = \begin{cases} |x| & \text{if } x \le 2\\ 1 & \text{if } x > 2 \end{cases}$$

Evaluating

Exercise 12.9. Find f(2) for

$$f(x) = \begin{cases} -2x & \text{if } x < 1\\ x + 2 & \text{if } 1 \le x < 3\\ x^2 + 2 & \text{if } 3 \le x \end{cases}$$

Exercise 12.10. For

$$g(x) = \begin{cases} -6x + 4 & \text{if } x < 3\\ 3x - 5 & \text{if } x \ge 3 \end{cases}$$

find g(3).

13 Algebra of Functions

13.1 Basics

Let f(x) & g(x) be two functions and $D_f \& D_g$ be their domains

	Functions	Domains
Sum: $(f+g)(x) = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$		
Difference: $(f - g)(x) = \underline{\hspace{1cm}}$		
Product: $(fg)(x) = $		
Quotient: $\left(\frac{f}{g}\right)(x)$	=	

Exercise 13.1. For $f(x) = x^2 - 1 \& g(x) = 3x - 4$, find:

$$\circ (f+g)(x) =$$

$$\circ (f - g)(x) =$$

$$\circ$$
 $(fg)(x) =$

$$\circ \left(\frac{f}{g}\right)(x) =$$

13.2 Composite Functions

Definition 13.2. Given two functions f(x) and g(x), the composition of f and g (f compose g) is the following:

$$(f \circ g)(x) = \underline{\hspace{1cm}}$$

Exercise 13.3. For f(x) = 4x + 3 and $g(x) = 2x^2 + 5x$ find $(f \circ g)(x)$

Exercise 13.4. What if we found $(g \circ f)(x)$ instead?

Exercise 13.5. For f(x) = 6x - 1 and $g(x) = 4x^2 + x$, find both $(f \circ g)(x)$ and $(g \circ f)(x)$.

13.3 Evaluating compositions

There are two ways evaluate compositions: algebraically & graphically.

Algebraically

Exercise 13.6. Given f and g below, find f(g(3)).

$$f(x) = -4x - 6$$

$$g(x) = x - 3$$

Exercise 13.7. Find $(f \circ g)(2)$ if $f(x) = -2x^2 + 4x + 6 \& g(x) = 2x - 3$.

Graphically

This will be very similar to the second algebraic technique.

Exercise 13.8. Find f(g(2)) using the graphs of f and g below:

13.4 Domains of Compositions

Here is a nice visualization of compositions to understand their domains.

Fact 6

If we have two functions f(x) and g(x) with D_f and D_g their respective domains, then the domain of $(f \circ g)(x)$ is

$$D_{f \circ g} = \underline{\hspace{1cm}}$$

Exercise 13.9. Find the domain of $(f \circ g)(x)$ when

$$f(x) = \frac{1}{8x - 16}$$
 & $g(x) = \sqrt{2x + 10}$

Exercise 13.10. Find the domain of f(g(x)) when

$$f(x) = \frac{4}{x+2}$$
 & $g(x) = \frac{-2}{3x-2}$

13.5 Decomposing functions

Exercise 13.11. Find f(x) and g(x) such that

$$(f \circ g)(x) = \sqrt{x^2 + 1}$$

Exercise 13.12. For $h(x) = \frac{-5}{(-x-3)^9}$, find f(x) and g(x) such that f(g(x)) = h(x).

Part III

14 Quadratics & Their Applications

Question. What is a quadratic's graph?

We call these shapes _____.

14.1 Standard form

Definition 14.1. The following is the *standard form* of a parabola with *vertex* (h, k):

 $f(x) = \underline{\hspace{1cm}}$

If _____ then the quadratic opens up, and if _____ then the quadratic opens down. We call ____ the axis of symmetry.

Basic quadratic

Vertex:
Axis of Symmetry:
Scale:

Exercise 14.2. Graph $f(x) = (x - 2)^2 + 1$ below.

Exercise 14.3. Graph $f(x) = -2(x-1)^2 + 2$ below.

14.2 General form

Definition 14.4. The *general form* of a quadratic is as follows:

$$f(x) = \underline{\hspace{1cm}}$$

- o Vertex:
- Axis of Symmetry: _____.

So standard form is good for graphing, but we tend to see most quadratics in general form. As such, we will need to be able to change between the two forms.

Exercise 14.5. What is the standard form of

Dr. Erich Jauch

$$f(x) = x^2 - 4x + 2$$

Exercise 14.6. Write $f(x) = 2x^2 + 12x + 3$ in standard form.

14.3 Determining the equation from the graph

Exercise 14.7. Find the equation of the following parabola in both standard and general form:

Exercise 14.8. Find both the standard and general form of f(x) below:

14.4 Using intercepts to find the equation

Sometimes the vertex is not a nice point that we can see, but the intercepts are nice such as the following problem:

Exercise 14.9. Find the general form of f(x) below:

14.5 Finding domain & range from equations

Domain: (if a > 0) Range: (if a < 0) Range:

Exercise 14.10. Find the domain and range of $f(x) = (x+3)^2 - 4$

Exercise 14.11. Find the domain and range of $f(x) = -3x^2 + 12x + 17$

14.6 Finding intercepts from the equation

Exercise 14.12. Find the x- and y-intercepts of $f(x) = 2x^2 - 4x - 6$.

14.7 Maximum and Minimum values of quadratics

Note. The \max/\min value always occur at the

- \circ If a > 0 it has a ______,
- \circ and if a < 0 it has a _____.

Exercise 14.13. A farmer is building a fence to enclose a rectangular area next to a wall. They have 164 ft of fence to use. What is the largest area they can enclose in fence?

Exercise 14.14. Find the dimensions with the maximum area that is fenced in using the shape below and using 234 ft of fence.

15 Polynomials

Definition 15.1. A power function is a function that can be written as

$$f(x) = \underline{\hspace{1cm}}$$

Example 15.2.

0 _____

Non-Example 15.3.

0

Having defined polynomials before (see Definition R.6), we can define them sightly differently using power functions as follows:

Definition 15.4. A *polynomial* is a sum of power functions such that all of the powers are natural numbers (non-negative integers) with the following form:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Recall that a_n is called the leading coefficient, $a_n x^n$ is the leading term and n is the degree of f(x).

Exan	mple 15.5.
0	
0	
0	
Non-	Example 15.6.
0	
15.1	Graphs of Polynomials
The g	graphs of polynomials have 3 key properties:
1)	the graph has no sharp corners.
2)	no jumps or breaks in the graph.
3)	
Ques	etion. What is an?
0	- vertical lines that a function approaches by cannot cross.
0	- horizontal lines that a function approaches as $x \rightarrow$
	$\overline{\infty \text{ or } x \to -\infty}$.

Here are some visualizations of these different properties:

Exercise 15.7. Which of the following are polynomials?

(A)

(B)

(D)

End behavior of a polynomial

The end behavior of a polynomial describes what f(x) is doing as $x \to \underline{\hspace{1cm}}$ or

Question. What do we need from a polynomial's equation to determine the end behavior?

Proposition 15.8

If $f(x) = a_n x^n + a_{n-1}^{n-1} + \cdots$, then the end behavior of f(x) can be categorized as follows:

	n even	$n \ odd$	_		n even	$n \ odd$
$a_n > 0$			or	$a_n > 0$		
$a_n < 0$			-	$a_n < 0$		

Exercise 15.9. What is the end behavior of $f(x) = 18x^3 + 2$

Exercise 15.10. Describe the end behavior of

$$f(x) = -5x(x-4)(x+5)(2x+3)$$

Exercise 15.11. Which of the following factors would cause the graph of f(x) to decrease as x goes to negative infinity?

$$f(x) = (2x^2 + 5)(x - 7)$$

- \bigcirc -3
- $\bigcirc 5x^2$
- $\bigcirc 4(2x-7)$

15.3 Identifying intercepts

Recall that x-intercepts are where _____, and the y-intercept is at ____.

Exercise 15.12. What are the intercepts of

$$f(x) = (x-5)(x+3)(x-1)$$

15.4 Finding zeros

There are two steps to finding the zeros of a polynomial:

- 1) _____
- 2) _____

Exercise 15.13. Find the zeros of $f(x) = x^5 - 14x^4 + 49x^3$

15.5 More on graphs and degrees

Definition 15.14. A turning point is a point where f(x) changes from

_____·

Here are two facts relating to the degree of a polynomial and its graph.

Fact 7

A polynomial of degree n can have at most _____ turning points.

Fact 8

A polynomial of degree n can have at most $___$ x-intercepts.

Exercise 15.15. If a polynomial has 7 x-intercepts, what can you say about the degree?

Exercise 15.16. If the degree of a polynomial is 8, what can you say about the number of turning points?

15.6 More about zeros

What follows is one of the most important theorems in algebra, but we need one definition first.

Definition 15.17. If b is a zero of a polynomial f(x), then the multiplicity of b is the number of times that b appears as a zero to f(x).

Theorem 15.18 (Fundamental Theorem of Algebra)

If we allow complex numbers, then any polynomial can be completely factored into linear factors of its zeros. That is if f(x) is a polynomial and b_1, b_2, \ldots, b_k are the zeros of f(x) with multiplicities m_1, m_2, \ldots, m_k , we can write f(x) as follows:

$$f(x) = a(x - b_1)^{m_1}(x - b_2)^{m_2} \cdots (x - b_k)^{m_k}$$

Example 15.19. The polynomial $f(x) = (x-3)^2(x+4)^6$ has zeros at _____ and ____, respectively.

Note. A consequence of the Fundamental Theorem of Algebra is

$$m_1 + m_2 + \dots + m_k = \underline{\hspace{1cm}}$$

The multiplicities have an effect on how the graph acts around the corresponding zero (x-intercept).

 \circ If the multiplicity of the zero b is odd, then

_____ or ____

 $\circ\,$ If the multiplicity of the zero b is even, then

____ or ___

Additionally, the flatter the graph is around the zero the larger the multiplicity.

Using these ideas we can make conclusions about the multiplicity of zeros based on the graph of a polynomial and some information about the degree.

Exercise 15.20. Given that f(x) below is a degree 4 polynomial, find the zeros and their multiplicities:

15.7 The Intermediate Value Theorem

Theorem 15.21 (Intermediate Value Theorem)

For a continuous function (think polynomial) f(x) on [a,b] and a number z in between f(a) and f(b), there exists a c in [a,b] such that f(c)=z.

Question. Do we care?

Note. ____ is between f(a) and $f(b) \iff f(a)$ and f(b)

Exercise 15.22. Show that $f(x) = 3x^2 - 1$ has a zero in [-1, 0] using IVT.

Exercise 15.23. Does IVT guarantee that $f(x) = x^2 - 4x + 4$ have a zero between [1, 4]?

15.8 Drawing conclusions from graphs of polynomials

Exercise 15.24. Describe the leading coefficient and degree of the following polynomial:

Exercise 15.25. Describe the leading coefficient and degree of the following polynomial:

15.9 Graphing Polynomials

Exercise 15.26. Graph f(x) = 4(x-2)(x+1)(x+6).

Exercise 15.27. Graph f(x) = -2(x-6)(x-2)(x+3).

15.10 Finding the equation from the graph

Exercise 15.28. The graph of the polynomial f(x) is given below. If f(x) is degree 3, find the equation of f(x)

Exercise 15.29. The graph of the polynomial f(x) is given below. If f(x) is degree 4, find the equation of f(x)

15.11 Finding the equation from key information

Exercise 15.30. Write a polynomial, p(x), in factored form given the following requirements:

- o degree 4;
- leading coefficient of 1;
- \circ has zeros at (1,0), (-4,0), and (2,0);
- \circ y-intercept is (0, -24).

Exercise 15.31. Write a polynomial, p(x), in factored form given the following requirements:

- o degree 3;
- leading coefficient of 1;
- \circ has zeros at (8,0), (-4,0), and (1,0);
- \circ y-intercept is (0,32).

Dr. Erich Jauch

Exercise 15.32. Which of the following is the equation of a polynomial of degree 4 with zeros at (4,0) & (3,0) and y-intercept of (0,96).

$$y = (x+4)(x+3)(x+8)(x+1)$$

$$y = (x+4)(x-3)(x-2)(x-1)$$

$$y = (x-4)(x-3)(x+8)(x-1)$$

$$\bigcirc \ y = (x-4)(x-3)(x+2)(x+4)$$

16 Division of Polynomials & the Remainder Theorem

16.1 Long Division

First I want to recall how we long divide numbers

Exercise 16.1. Use long division to find $24 \div 2$.

We are now going to do the exact same thing with polynomials

Exercise 16.2. Divide $x^2 + 14x + 45$ by x + 9.

Exercise 16.3. Divide $24x^3 + 2x^2 - 20x - 6$ by 4x + 3.

Exercise 16.4. Divide 25 by 2.

Exercise 16.5. Divide $40x^2 + 31x - 33$ by 5x + 7.

Exercise 16.6. Divide $-60x^3 - 40x^2 + 54x + 38$ by 6x + 4.

Exercise 16.7. Divide $6x^3 - 8x + 4$ by 2x + 6.

Exercise 16.8. The volume of a hexagonal prism is $12x^5 + 8x^4 + 9x^3 - 42x^2 - 33x - 44$ and the area of the base is $2x^2 + 3x + 4$. Find the height of the prism.

16.2 Synthetic division

This is a way to divide polynomial when the divisor is of the form _____

Exercise 16.9. Synthetically divide $x^2 + 14x + 45$ by x + 9

Exercise 16.10. Use synthetic division to find $(x^4 - 10x^2 - 13x - 50) \div (x + 5)$

Exercise 16.11. Synthetically divide $x^4 - 2x^2 - 4x - 48$ by x - 3

16.3 The Remainder Theorem

Theorem 16.12 (Remainder Theorem)

If a polynomial f(x) is divided by x - c, then remainder is .

Exercise 16.13. What is the remainder of $g(x) = 3x^3 - 20x^2 + 29x + 30$ divided by x + 2

16.4 The Factor Theorem

Theorem 16.14 (Factor Theorem)

x-c is a factor of f(x) if and only if the remainder of f(x) when divided by x-c is _____. Another way we can say this is x-c is a factor of f(x) if and only if ______.

Exercise 16.15. Consider $f(x) = x^3 - 4x^2 - 47x + 210$. When f(x) is divided by x + 7, the remainder is 0. What other binomials have a reminder of zero?

Exercise 16.16. For what values of x is $x^3 - 12x^2 + 39x - 28 = 0$?

17 Zeros of Polynomials

First we need a rule for guessing zeros.

17.1 Rational zero theorem

Theorem 17.1 (Rational Zero Theorem)

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ has integer coefficients, then every rational zero (fraction zero) of f(x) is of the form $\frac{p}{q}$, where p is a factor ______ and q is a factor of ______

Exercise 17.2. What are the possible rational zeros of $4x^5 + 12x^4 - x - 3$

Exercise 17.3. What are the possible rational zeros of $x^3 + 2x^2 - 5x - 6$

Exercise 17.4. Find the rational zeros of $f(x) = x^3 - 5x^2 - 33x - 27$.

17.2 Polynomials with complex zeros

Exercise 17.5. Find all of the zeros of $f(x) = x^3 + 13x^2 + 57x + 85$.

17.3 Linear Factorization Theorem

Theorem 17.6 (Linear Factorization Theorem)

Any polynomial f(x) can be written as

$$f(x) = \underline{\hspace{1cm}}$$

where a_n is the leading coefficient, the degree of f(x) is n, and c_1, c_2, \ldots, c_n are the complex zeros of f(x) (not necessarily distinct).

Exercise 17.7. Find a third degree polynomial that has an output of 16 when x = 2 and zeros of 1 and -2i.

Exercise 17.8. Find a third degree polynomial that has an output of 20 when x = 0 and zeros of 4 and -1 + 3i.

17.4 Descartes' Rule of Signs

The following is occasionally useful when guessing zeros for the rational zero theorem.

Proposition 17.9

1) The number of p	ositive real zeros of a polynomial $f(x)$ is either the number of sign or less a positive even integer.	1
2) The number of n	egative real zeros of a polynomial $f(x)$ is either the number of sign	1
changes of	or less a positive even integer.	

Exercise 17.10. For $f(x) = 7x^4 + 2x^3 + 4x^2 - 6x + 5$, what are the possible combinations of positive, negative, and imaginary zeros of f(x).

Exercise 17.11. For $f(x) = x^4 - 2x^3 + 4x^2 - 3x + 17$, what are the possible combinations of positive, negative, and imaginary zeros of f(x).

Exercise 17.12. For $f(x) = x^6 - 2x^5 + 7x^4 + 5x^3 - 7x^2 + 3x - 10$, what are the possible combinations of positive, negative, and imaginary zeros of f(x).

18 Rational Functions

rational numbers \longleftrightarrow fractions of integers rational functions \longleftrightarrow

Definition 18.1. A function f(x) is a rational function if

$$f(x) =$$

where p(x) and q(x) are _____

Example 18.2.

0

0_____

Non-Example 18.3.

0

Note. Here is some useful notation that we will see when working with rational functions:

 \circ ______ - x approaches a from the right/above.

 \circ _____ - x approaches a from the left/below.

 \circ _____ - x approaches infinity.

 \circ _____ - x approaches negative infinity.

Definition 18.4. A vertical asymptote (VA) is a vertical line x = a such that $f(x) \to _$ as $x \to _$

Definition 18.5. A horizontal asymptote (HA) is a horizontal line y = b such that $f(x) \rightarrow$ ____ as $x \rightarrow$ ____

18.1 Describe the behavior of rational functions using their graph

Exercise 18.6. Describe the behavior of f(x) below:

Exercise 18.7. Describe the behavior of f(x) below:

18.2 Finding vertical asymptotes

Fact 9

The function $f(x) = \frac{p(x)}{q(x)}$ has a VA at x = a if ______.

If both _____, then either a is a _____ if we can simplify f(x) such that a no longer makes the denominator _____.

If the denominator is still $___$, but the numerator is not, then it is a VA and is called an .

Exercise 18.8. Consider

$$f(x) = \frac{x^3 - x^2 - 2x}{x^2 + x}.$$

Does f(x) have any removable discontinuities?

Exercise 18.9. Consider

$$f(x) = \frac{x^2 - 36}{x^3 - 2x^2 - 24x}.$$

What are the vertical asymptotes of f(x) (if any)?

Finding horizontal asymptotes 18.3

Let $f(x) = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}$. To find the horizontal asymptote we need to compare the degrees m and n:

- \circ _____ \Rightarrow there is no HA.
- \circ _____ \Rightarrow the x-axis (y = 0) is the HA.
- \circ $\Rightarrow y = \frac{a_n}{b_m}$ is the HA.

Exercise 18.10. What is the HA (if one) of

$$f(x) = \frac{9x}{3x+1}$$

Exercise 18.11. What is the HA (if one) of

$$g(x) = \frac{7x^5 + 4}{3x^6 + x + 3}$$

Exercise 18.12. What is the HA (if one) of

$$h(x) = \frac{x^2 + 1}{x + 1}$$

As we saw, some rational functions do not have a HA, but some have the following instead

Definition 18.13. If $f(x) = \frac{p(x)}{q(x)}$ is a rational function and deg(p(x)) = deg(q(x)) + 1, then f(x) has a slant asymptote (SA) which is a line y = mx + b that f(x) approaches as $x \to \underline{\hspace{1cm}}$

Question. How do you find a SA?

We use division! Since the denominator's degree is one less than the numerator's degree the quotient will have to have degree 1.

Exercise 18.14. If

$$h(x) = \frac{x^2 + 1}{x + 1}$$

what is its SA?

18.4 Graphing rational functions

Here is the general strategy if $f(x) = \frac{p(x)}{q(x)}$ is fully simplified.

- 1) Find the y-intercept (if there is one) by finding .
- 2) Find x-intercept (if any) by solving .
- 3) Find VA by solving _____.
- 4) Find HA (if there is one) by comparing degrees.
 - 4.5) Find the SA (if there is one) using division.
- 5) Plot extra points between the intercepts and VA as needed.

Exercise 18.15. Graph $f(x) = \frac{x-1}{x-4}$

Exercise 18.16. Graph
$$f(x) = \frac{(x-2)(x-5)}{(x-3)^2}$$

18.5 Identifying rational functions from their graphs

Exercise 18.17. Identify the rational function graphed below. Note the x-intercept of x = -3 and (-1, -2) is a point on the graph.

Exercise 18.18. Identify the rational function graphed below. Note the x-intercept of x = 3 and y-intercept at -3.

19 Polynomial and Rational Inequalities

Just as linear inequalities start with solving the "equation", the same is true of polynomial and rational inequalities.

19.1 Polynomial inequalities

Here is the procedure for solving inequalties such as f(x) > 0, f(x) < 0, $f(x) \ge 0$, $f(x) \le 0$ where f(x) is a polynomial:

- 1. Set one side to ____
- 2. Solve
- 3. Plot those solutions on a _____
- 4. Find test values in between these numbers and test to find the
- 5. Choose correct interval(s) based on original inequality _____ and

Exercise 19.1. Solve $x^2 - x > 20$ for x. (Give your answer in interval notation)

Exercise 19.2. Solve $2x^2 \le -6x - 4$ for x. (Give your answer in interval notation)

Exercise 19.3. Solve $x^3 + 3x^2 \le x + 3$ for x. (Give your answer in interval notation)

Position of a free-falling object near earth's surface

Fact 11

The position of a free falling object (in feet) at time t can be described by the following quadratic: $s(t) = _$ where $_$ is the initial velocity and $_$ is the initial position.

Exercise 19.4. Given the following position function, find the interval of time that the object is more than 64 feet above the ground.

$$s(t) = -16t^2 + 80t$$

19.2 Rational inequalities

What follows is the procedure for solving rational inequalities.

- 1. Write the inequality with 0 on one side
- 2. Combine the fractions on the other side as
- 3. Set the numerator and denominator equal to _____
- 4. Plot on number line
- 5. Test values
- 6. Choose correct interval(s)

Exercise 19.5. Solve the following for x:

$$\frac{2x}{x+1} \ge 1$$

Exercise 19.6. Solve the following for x:

$$\frac{x-2}{x+2} \le 2$$

Exercise 19.7. Find the solution to the following inequality in interval notation:

$$\frac{2}{x+3} \le \frac{1}{x-3}$$

Exercise 19.8. Find the solution to the following inequality in interval notation:

$$\frac{3}{x+7} \ge \frac{2}{x-5}$$

Part IV

20 Inverse Functions

Consider the composition of the following two functions.

$$f(x) = x + 300$$
 $g(x) = x - 300$

Definition 20.1. If for two functions f(x) and g(x), $(g \circ f)(x) = \underline{\qquad} \& (f \circ g)(x) = \underline{\qquad}$ for all x in their domains, then we call g(x) the *inverse of* f(x) denoted $f^{-1}(x)$.

Exercise 20.2. Verify that f(x) = 4x - 7 and $g(x) = \frac{x+7}{4}$ are inverses.

Exercise 20.3. Verify that f(x) = -2x - 1 and $g(x) = \frac{-x}{2} - \frac{1}{2}$ are inverses.

20.1 Finding Inverses

Example 20.4. Let's deduce the inverse for f(x) = 3x + 2

20.2 Algebraically finding the inverse

Here are the steps for calculating the inverse

- 1) Replace f(x) by y
- 2) Interchange ("switch") the x's and y's
- 3) Solve for y
- 4) Replace y by $f^{-1}(x)$
 - 4.5 Verify by composing the two functions

Exercise 20.5. Find the inverse of f(x) = 2x + 7

Exercise 20.6. Find the inverse of $f(x) = \frac{9x-7}{4x+3}$

Exercise 20.7. Find the inverse of $f(x) = \frac{2x+3}{4x-7}$

Exercise 20.8. Find the inverse of

$$f(x) = -9\sqrt{x-8} + 5$$

for $x \ge 8$

Note. Notice that since we switch the x's and y's when finding the inverse, it makes sense that

 \longrightarrow

Exercise 20.9. Based on the following table of values for f(x). Find the requested values of $f^{-1}(x)$.

$$\circ f^{-1}(1) =$$

$$\circ f^{-1}(-5) =$$

$$\circ f^{-1}(8) =$$

20.3 Finding inverses graphically

Proposition 20.10 (Horizontal Line Test)

A function f(x) has an inverse, $f^{-1}(x)$, if no horizontal line crosses its graph more than once.

Definition 20.11. We call functions that pass the Horizontal Line Test *one-to-one*

20.4 Finding the graph

Exercise 20.12. Find the graph of $f^{-1}(x)$ if f(x) is given below

Exercise 20.13. Find the graph of $f^{-1}(x)$ if f(x) is given below

20.5 Restricting the domain

Example 20.14. Consider the function $f(x) = x^2$

Exercise 20.15. How could we restrict the domain of the following function to make it one-to-one?

21 Exponential Functions

Definition 21.1. A (basic) exponential function can be written as follows

$$f(x) = \underline{\hspace{1cm}}$$

where ____ is called the base and

Example 21.2.

$$\circ f(x) =$$

$$\circ f(x) = \underline{\hspace{1cm}}$$

$$\circ f(x) = \underline{\hspace{1cm}}$$

Non-Example 21.3.

$$\circ f(x) = \underline{\hspace{1cm}}$$

$$\circ \ f(x) = \underline{\hspace{1cm}}$$

Exercise 21.4. Let $f(x) = \frac{1}{2}(4)^{x-1}$. Evaluate f(3) without a calculator.

Exercise 21.5. Let $f(x) = 3\left(\frac{1}{2}\right)^{x+1}$. Find f(1).

Exercise 21.6. Let $f(x) = -8(2)^{3x} + 3$. Evaluate f(0).

21.1 Finding the equation

Initial point/value is known

Exercise 21.7. Construct an exponential function that contains (0, -2) & (3, -128).

Initial point/value is unknown

Exercise 21.9. Find the exponential function that contains (2,48) & (3,192).

Exercise 21.10. Find the exponential function that contains (1,300) & (2,100).

21.2 Word problems

Exercise 21.11. The number of users online at a website has grown exponentially since its launch. After 2 months, there are 200 users. After 4 months, there are 800 users. Find the function that models the number of users x months after launch.

Exercise 21.12.	The selling price of	a car is \$13,500.	Each year it loses	s 11% of its value.
Find the exponen	tial that models its	value after x year	s.	

21.3 Compound Interest

Proposition 21.13 ($Compound\ Interest\ Formula$)

If an initial investment of P (typically referred to as principle) at an interest rate of r compounded n times a year, then the amount after t years would be

$$A =$$

Exercise 21.14. If \$5000 is borrowed at an interest rate of 12.3% compound semi-annually, what is the total amount of money needed to pay it back in 3 years? Round to nearest dollar.

Exercise 21.15. A loan is paid off in 15 years with a total of \$192,000. If it had a 4% interest rate compounded monthly, what was the initial amount borrowed?

21.4 The Natural Number

Definition 21.16. Euler's Constant (or the Natural Number) is a special constant denoted by the letter e. It can be found as follows

Exercise 21.17. For $f(x) = -7e^x$, find f(2) rounded to one decimal place.

21.5 Continuous growth or decay

Proposition 21.18

Something that is changing continuously either growing or decaying can be modeled as follows:

$$A = \underline{\hspace{1cm}}$$

Where P is the initial amount, r is the rate of change (r < 0 means it is decaying and r > 0 if it is growing), and t is the amount of time passed.

Exercise 21.19. A motorcycle bought at \$10,000 depreciates continuously at 9% per anum. What is its value after 7 years?

21.6 Graphs of Exponentials

The base b of an exponential b > 1 or 0 < b < 1 which have two respective styles of graphs:

Characteristics of basic exponentials

If the we have a basic exponential $f(x) = b^x$, it has the following properties:

- 1) D_f : _____ & R_f : _____
- 2) y-intercept: _____ & x-intercept: ____
- 3) If b > 1, ______. If 0 < b < 1, ______.
- 4) f(x) is ______, so ______.
- 5) f has a Horizontal Asymptote at . .

Exercise 21.20. Graph $f(x) = 3^{x-1}$, by moving key points.

Exercise 21.21. Graph $f(x) = \left(\frac{1}{2}\right)^{x+2}$, by moving key points.

21.7 Finding domain and range

- For exponentials their domain is always
- The range depends, if $f(x) = a(b)^{x-c} + d$
 - If a > 0, then the range is _____
 - If a < 0, then the range is _____

Exercise 21.22. What is the domain and range of

$$f(x) = -\frac{5}{2} (3)^{x+2} - 1$$

Exercise 21.23. What is the domain and range of

$$f(x) = 7(e)^{x-5} + 4$$

21.8 Writing the equation from a description

Exercise 21.24. If the function $y = e^{3x}$ is vertically stretched by a factor of 4, reflected over the x-axis, and then shifted down 1 unit, what is the resulting function? Write your answer as $y = Ce^{ax} + b$

22 Logarithmic Functions

Logarithms are the inverses (see Definition 20.1) of exponentials, that is they are the "mathematical opposite".

Definition 22.1. The logarithm with base b is

$$y = \underline{\hspace{1cm}}$$

with the restrictions that $___$, $___$.

Note. A logarithm output an exponent, that is

This shows that $g(x) = \underline{\hspace{1cm}}$ is the inverse of $f(x) = \underline{\hspace{1cm}}$

Exercise 22.2. Write the following in exponential form:

$$3 = \log_7 x$$

Exercise 22.3. Write the following in exponential form:

$$2 = \log_b 25$$

Exercise 22.4. Write the following in exponential form:

$$\log_4 26 = y$$

Exercise 22.5. Write the following in logarithmic form:

$$2^5 = x$$

Exercise 22.6. Write the following in logarithmic form:

$$b^3 = 27$$

Exercise 22.7. Write the following in logarithmic form:

$$e^{y} = 33$$

Two special logarithms

- $\circ \log_e \longleftrightarrow$ ____
- $\circ \log_{10} \longleftrightarrow$

22.1 Evaluating logarithms

Exercise 22.8. What is the $\log_2 16$?

Exercise 22.9. What is the $\log 100$?

Exercise 22.10. What is the $\log_3\left(\frac{1}{27}\right)$?

Exercise 22.11. What is the $\log_{\frac{1}{6}} 6$?

Logarithm	identities	involving	1
-----------	------------	-----------	---

- o _____ because _____
- o because _____

Characteristics of basic logarithms

If the we have a basic exponential $f(x) = \log_b x$, it has the following properties:

- 1) D_f : _____ & R_f : _____
- 2) x-intercept: _____ & y-intercept: ____
- 3) f has a Vertical Asymptote at _____.
- 4) If b > 1, ______. If 0 < b < 1, ______.

22.2 Finding the domain

Need what is inside the logarithm to be _____ (i.e., ____).

Exercise 22.12. What is the domain of

$$f(x) = \log(x - 5)$$

Exercise 22.13. What is the domain of

$$f(x) = \log_3(3 - 4x)$$

22.3 Graphing basic functions

Exercise 22.14. Graph $f(x) = \log_2 x$

Exercise 22.15. Graph $f(x) = \log_{\frac{1}{3}} x$

22.4 Graph transformations

Exercise 22.16. Graph
$$f(x) = -\log_5(x+1)$$

Exercise 22.17. Graph $f(x) = \log_4(-x) + 2$

22.5 Writing a logarithm from a description

Exercise 22.18. The graph of $f(x) = \log_6(x)$ is stretched by a factor of 3, reflected over the x-axis, reflected over the y-axis, and shifted up 4 units.

Find the equation of g(x) described above

Exercise 22.19. The graph of $f(x) = \log_5(x)$ is vertically stretched by a factor of 2, shifted to the right by 5, and shifted down 3.

Find the equation of g(x) described above

23 Properties of Logarithms

There are many properties of logarithms that will be important to us, and several of them are very similar to rules for exponents.

23.1 Inverse property

Recall that $f(f^{-1}(x)) = x \& f^{-1}(f(x)) = x$. As such we have the following:

Fact 12

& _____

Exercise 23.1. Evaluate $ln(e^7)$.

Exercise 23.2. Evaluate $3^{\log_3(5)}$

23.2 Product Rule

Recall that

$$b^M \cdot b^N = \underline{\hspace{1cm}}$$

As such we get the following:

Fact 13

$$\log_b(mn) = \underline{\hspace{1cm}}$$

Exercise 23.3. Expand: ln(x(3x-2))

Exercise 23.4. Condense: $\log_2(3x) + \log_2(7y)$

23.3 Quotient Rule

Recall that

$$\frac{b^M}{b^N} =$$

As such we get the following:

Fact 14

$$\log_b\left(\frac{m}{n}\right) = \underline{\hspace{1cm}}$$

Exercise 23.5. Expand: $\log_8\left(\frac{23}{y}\right)$

Exercise 23.6. Condense: $\log_5(8x) - \log_5(4)$

23.4 Power Rule

Recall that

$$(b^M)^P = \underline{\hspace{1cm}}$$

As such we get the following:

Fact 15

$$\log_b\left(m^p\right) = \underline{\hspace{1cm}}$$

Exercise 23.7. Expand: $\log(3^9)$

Exercise 23.8. Condense: $10\log_6(y)$

23.5 Expanding logarithmic expressions

Exercise 23.9. Expand: $\log\left(\frac{3}{5}x^2\right)$

Exercise 23.10. Expand: $\log_2\left(\frac{3x^4}{t}\right)$

Exercise 23.11. Expand: $\ln\left(\sqrt{8t}\right)$

23.6 Condensing logarithmic expressions

Exercise 23.12. Condense: ln(30) + 2 ln(5) - ln(15)

Exercise 23.13. Condense: $2 \ln(t) + 5 \ln(z) - \ln(t)$

Exercise 23.14. Condense: $\log(a) + 3\log(2b)$

23.7 Change-of-base Rule

Not every calculator has function for a logarithm of any base. Thankfully there is a way to "change" the base of your logarithm:

Fact 16

 $\log_b m = -$

Note. This is generally used to change to the natural log or the common log, but can be useful in other situations

Exercise 23.15. Write $\log_6 8$ using natural logarithms.

Exercise 23.16. Find $\log_3 7$ to the nearest tenth.

24 Exponential & Logarithmic Equations

24.1 Exponentials

Notice that if $b^M = b^N$, then _____ because $y = b^x$ is _____ There are two main methods for solving.

Method 1: equal base or one-to-one method

- 1) Rewrite the equation in the form _____
- 2) Set _____
- 3) Solve for the variable.

Exercise 24.1. If $3^{8x} = 3^{(x-5)}$, solve for x.

Exercise 24.2. Solve 5(3x - 6) = 125 for x.

Exercise 24.3. What is the value of x that makes $4^{(x-5)} = 64^{(x+2)}$ true?

Exercise 24.4. Determine the value of x satisfying

$$64^{(3x-3)} = 16^{(3x)}$$

Method 2: logarithms

- 1) Isolate _____ or get ____ exponential on each side.
- 2) Take the _____ (or _____) of both sides.
- 3)
- 4) Solve for the variable.

Exercise 24.5. Solve $5^{x} = 135$.

Exercise 24.6. Solve $11e^{-4x} = 21$.

Exercise 24.7. Solve $7e^{2x} - 5 = 58$ to the nearest tenth.

Exercise 24.8. Solve $7^{(x+4)} = 8^x$

Exercise 24.9. Find the solution to $15^{(x-11)} = 11^x$ to the nearest tenth.

24.2 Logarithms

There is only one method for solving logarithmic equations:

1) Express the equation as either

____ or ___

- 2) Rewrite as _____ or ____
- 3) Solve for the variable.
- 4) Check your solutions!

Exercise 24.10. Solve $\log_2(x - 4) = 3$

Exercise 24.11. Solve $\log_4(-12x + 108) - \log_4(3) = 1$

Exercise 24.12. Solve $\log_2(12x + 48) + \log_2(3) = 2$

Exercise 24.13. Solve $\log_2(x+2) + \log_2(x-5) = 3$

Exercise 24.14. Solve $\log_3(x+5) + \log_3(x+1) = \log_3(21)$

Exercise 24.15. Solve $\log_3(x+5) + \log_3(x-5) = \log_3(24)$

Exercise 24.16. Solve $\log(x+3) - \log(x-2) = \log(6)$

24.3 Application Problems

Exercise 24.17. Thomas invests \$50,000 into an account that compounds interest continuously at a rate of 15%. How long will it take for the investment to triple?

Exercise 24.18. Mai invests \$20,000 at age 20. They hope the investment will be worth \$500,000 when they turn 40. If the interest compounds continuously, what would the rate of growth (interest rate) need to be for this to occur?

Exponential growth

Exercise 24.19. Researchers record that a certain bacteria population grew from 250 to 750,000 in 48 hours. At this rate of growth, how many bacteria were there at 8 hours?

Exercise 24.20. A sample of bacteria is growing at a rate of 8% per hour, compound continuously. How long will it take for the population to double in size?

Exercise 24.21. A pride of lions is growing at a rate of 0.5% per year, compounded continuously. If the rate remains the same, how long will it take for the population to be 275% of its current size (round up to the next whole number).

Exponential decay

Exercise 24.22. A patient takes a medication with a particular half-life. Initially, there are 11 mg of the medication in their system, but after 70 minutes there are only 7 mg left. After how many minutes will there be only 3 mg left?

Exercise 24.23. A small object has an initial temperature of $135^{\circ}F$ and it is dropped into a tub with a temperature of $60^{\circ}F$. The function $f(t) = Ce^{-kt} + 60$ represents the temperature of the object after t minutes

After 6 minutes the object is $85^{\circ}F$. What is the approximate value of k to 3 decimal places?

Exercise 24.24. A small object has an initial temperature of $75^{\circ}F$ and it is dropped into a lake with a temperature of $33^{\circ}F$. The function $f(t) = Ce^{-kt} + 33$ represents the temperature of the object after t minutes

After 2 minutes the object is $55^{\circ}F$. What will the temperature be after 4 minutes?

THE END