

CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Low Resource With Contrastive Learning

Xiaoming Liu ^{1,†} Zhaohan Zhang ^{1,2,†} Yichen Wang ^{1,†} Hang Pu ¹ Yu Lan ¹ Chao Shen ¹

¹Xi'an Jiaotong University

²Queen Mary University of London [†]Equal Contribution

Motivation and Introduction

The emergence of Large Language Models (LLMs) brings broad concern about the malicious usage of machine-generated text (MGT). Effective MGT detectors are urgently needed.

Defects on existing detectors:

- Treat input documents as flat sequences of tokens while ignoring high-level linguistic representation of text structure
- Performance constrained by the amount of available annotated data

Our contributions:

- We model the text coherence with entity consistency and sentence interaction while statistically proving its distinctiveness in MGT detection, and we further introduce the linguistic feature at the input stage
- We introduce contrastive learning and improved contrastive loss into the MGT detector to alleviate data dependence
- We surprisingly find that MGTs originated from up-to-date language models could be easier to detect than those from previous models in our experiments

Coherence Modeling based on Centering Theory [1]

"Coherence of texts could be modeled by sentence interaction around center entities." We build a coherence graph, treat entities as nodes and co-occurrence relationship of entities as edges.

CoCo Methodology

CoCo consists of two complements: Coherence Graph Construction and Contrastive Learning.

Encoder Design: Coherence Graph Construction

We propose an innovative coherence encoder module (CEM), which is utilized to integrate coherence information into a semantic representation of text by propagating and aggregating information from different granularity via graph, to encode a coherence enhanced representation.

Toward Low Resource Scenario: Contrastive Learning

To instance compactness and class separability in low-resource settings, we utilize $MOCO^{[2]}$ as backbone and come up with an improved contrastive loss (ICL) for dynamically adjusting the weight of negative pair similarity according to the hardness of negative samples.

$$\mathcal{L}_{ICL} = \sum_{j=1}^{M} \mathbf{1}_{y_i = y_j} \log \frac{S_{ij}}{\sum_{p \in \mathcal{P}(i)} S_{ip} + \sum_{n \in \mathcal{N}(i)} r f_{in} S_{in}},$$

$$S_{ij} = \exp(D_q^i D_k^j / \tau), r f_{ij} = \beta \frac{D_q^i D_k^n}{\text{avg}(D_q^i D_k^{1:|\mathcal{N}(i)|})},$$

$$(1)$$

where $\mathcal{P}(i)$ is the positive set in which data has the same label with q_i and $\mathcal{N}(i)$ is the negative set in which data has a different label from q_i . D_k is the key module representations and D_q is the query module representations.

Experiment and Analysis on Comparison, Ablation and Robustness

We conduct our main experiments on two public datasets and two self-constructed GPT-3.5 datasets[3], against seven baselines and SOTA. Also, an ablation study and robustness test are implemented. More additional experiments are in the paper. Here are some key findings:

- CoCo surpasses the state-of-the-art methods in MGT detection in both settings
- GROVER Dataset is the hardest to detect while GPT-3.5 datasets are surprisingly easy
- Coherence graph and contrastive learning module both contribute orthogonally
- CoCo shows comparable robustness to perturbations to some extent

Dataset		GRO	OVER			GPT-2					
Size	Limited Dataset	Full Dataset				Limited Dataset	(500 examples)	Full Dataset			
Metric	ACC	F1	ACC			F1	ACC	F1	ACC	F1	
GPT2	0.5747 ± 0.0217	0.4394 ± 0.0346	$0.8274 \pm 0.$	0091	0.8003	± 0.0141	0.5380 ± 0.0067	0.4734 ± 0.0182	0.8913 ± 0.0066	0.8839 ± 0.0078	
XLNet	0.5660 ± 0.0265	0.4707 ± 0.0402	$0.8156 \pm 0.$	0079	0.7493	± 0.0073	0.6551 ± 0.0083	0.5715 ± 0.0095	0.9091 ± 0.0091	0.9027 ± 0.0111	
RoBERTa	0.6621 ± 0.0133	0.5895 ± 0.0231	$0.8772 \pm 0.$	0.8772 ± 0.0029		0.8171 ± 0.0048	0.8223 ± 0.0088	0.7978 ± 0.0085	0.9402 ± 0.0039	0.9384 ± 0.0044	
DualCL	0.5835 ± 0.0857	0.4628 ± 0.1076	0.7574 ± 0.0855		0.6388 ± 0.1300		0.6039 ± 0.1367	0.5435 ± 0.0903	0.8023 ± 0.1120	0.8046 ± 0.1530	
CE+SCL	0.6870 ± 0.0142	0.5961 ± 0.0197	0.8782 ± 0.0044		0.8202 ± 0.0057		0.8355 ± 0.0046	0.8127 ± 0.0067	0.9408 ± 0.0006	0.9390 ± 0.0009	
GLTR	0.3370	0.4935	0.6040		0.5182		0.7755	0.7639	0.7784	0.7691	
DetectGPT	0.5910	0.4258	0.6142		0.5018		0.7941	0.6982	0.7939	0.7002	
CoCo	0.6993 ± 0.0119	$\textbf{0.6125} \pm \textbf{0.0159}$	$\textbf{0.8826} \pm \textbf{0.0018}$		$\bf 0.8265 \pm 0.0036$		$\textbf{0.8530} \pm \textbf{0.0019}$	$\textbf{0.8410} \pm \textbf{0.0018}$	$\textbf{0.9457} \pm \textbf{0.0004}$	$\textbf{0.9452} \pm \textbf{0.0004}$	
Dataset	GPT-3.5 Unmixed						GPT-3.5 Mixed				
Size	Limited Dataset	Full Dataset				Limited Dataset	(500 examples)	Full Dataset			
Metric	ACC	F1	ACC		F1		ACC	F1	ACC	F1	
GPT2	0.9023 ± 0.0095	0.8920 ± 0.0073	0.9917 ± 0.0056		0.9905 ± 0.0042		0.8898 ± 0.0094	0.8914 ± 0.0084	0.9910 ± 0.0046	0.9910 ± 0.0033	
XLNet	0.9107 ± 0.0068	0.9037 ± 0.0064	0.9620 ± 0.0043		0.9634 ± 0.0068		0.8925 ± 0.0106	0.8922 ± 0.0089	0.9513 ± 0.0052	0.9505 ± 0.0039	
RoBERTa	0.9670 ± 0.0084	0.9681 ± 0.0077	0.9928 ± 0.0035		0.9913 ± 0.0040		0.9565 ± 0.0103	0.9583 ± 0.0092	0.9923 ± 0.0017	0.9901 ± 0.0024	
CE+SCL	0.9823 ± 0.0053	0.9703 ± 0.0070	0.9944 ± 0.0023		0.9943 ± 0.0031		0.9628 ± 0.0077	0.9686 ± 0.0062	0.9932 ± 0.0017	0.9905 ± 0.0038	
GLTR	0.9255	0.9287	0.9350	0.9358		0.9175	0.9181	0.9210	0.9212		
DetectGPT	0.9220	0.8744	0.9245		0.8991		0.8980	0.8814	0.9113	0.9041	
CoCo	0.9889 ± 0.0044	$\textbf{0.9791} \pm \textbf{0.0062}$	$\bf 0.9972 \pm 0.0015$		$ 0.9957 \pm 0.0020 $		$\textbf{0.9701} \pm \textbf{0.0069}$	$\bf 0.9735 \pm 0.0086$	$\bf 0.9932 \pm 0.0019$	0.9937 ± 0.0028	
Model			ACC	F	F1 Mode		l RoBERTa		CoCo		
						Metric	e Acc	F1	Acc	F1	
CoCo (Plain)			0.7697	0.6	428	Origina	al 0.6635	0.5901	0.6993	0.6125	
CoCo (Sentence Nodes)			0.7733	0.6379							
CoCo (Coherence)			0.7777	0.6	463	Delete	,	,	, ,	0.5703 (-0.0422	
					Ke _j		t 0.6320 (-0.0315) 0.5743 (-0.0158)	0.6732 (-0.0261)	0.6004 (-0.0121	
CoCo (Coherence+LSTM)			0.7787		471	Inser	0.6325 (-0.0310) 0.4881 (-0.1020)	0.6286 (-0.0707)	0.4970 (-0.1155	
CoCo (Coherence+LSTM+SCL)			0.7827	0.6	609	ъ.					

Preliminary Explore on the Detectable Feature in GPT-3.5 Dataset

We probe the statistical interpretation behind the GPT-3.5 dataset and try to answer the question: Why the MGTs by GPT-3.5 are relatively easy to detect? We count the N-gram coverage of the supporters in Transformers-Interpret and the token coverage from the Statistic Cue.

N-gram Coverage	MGT HWT		Token	Productivity	Coverage	
γ_1	0.6659 0.4250	0.6377 0.3630	according	0.6923	0.3126	
$rac{\gamma_2}{\gamma_3}$	0.2883	0.2076	where	0.6842	0.1998	
$rac{\gamma_4}{\gamma_5}$	0.2019 0.1425	0.1372 0.0935	they	0.6316	0.3837	

- More consecutive spans of tokens act as an indicator for MGT than HWT
- No existing vulnerability in our dataset since trade-off between productivity and coverage
- The Easy-to-detect nature of GPT-3.5 texts might originate from language patterns

References

CoCo

[1] Grosz B J, Sidner C L. Attention, intentions, and the structure of discourse[J]. Computational linguistics, 1986. [2] He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9729-9738.

[3] CoCo GPT-3.5 Machine-Generated Text Datasets, https://huggingface.co/datasets/ZachW/MGTDetect_CoCo