DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

Math 331 Final Exam Fall 2022

Name:	Student ID Number:
Instructor name:	Vous coation number
instructor name:	Your section number

In this exam there are 6 sheets, including this one, and there are 6 problems. Instructions:

- Calculators and outside notes are **not allowed** to be used during the exam.
- A table of Laplace Transforms is provided to you on the back page.
- You must explain how you arrived at your answers, and show your algebraic calculations.
- You can leave fractions and square roots in your answers no need to give decimal expansions.
- Be sure that your work on each problem stays inside of the boxed area.
- If you need to use the blank page on the back of the exam to finish your work on a problem, be sure to make a note on the problem that additional work can be found on the blank page and, also, label any/all additional work on the back page by its problem number(s).

Question	Points	
1	16	
2	16	
3	17	
4	17	
5	17	
6	17	
Total:	100	

1. (16 points) Find the General Solution to the differential equation:

$$y'' + 2y' + 17y = e^{\alpha t}$$

where α is a real constant. Note that your answer will depend on α .

Char eq:
$$r^{2} + 2r + 17 = 0$$

$$r = \frac{-2 \pm \sqrt{4 - 4 \cdot 17}}{2!} = \frac{-2 \pm \sqrt{4 - 68}}{2} = \frac{-2 \pm 8 \cdot 2}{2} = -1 \pm 7 \cdot 2$$

Gen. sh. for H.D. Eq: $y_{(t)} = c_{1}e^{-t} \omega_{s}(4t) + c_{2}e^{-t} s_{in}(4t)$

$$y_{p}(t) = Ae^{\alpha t}$$

$$y_{p}''(t) = \alpha A e^{\alpha t}$$

$$y_{p}''(t) = \alpha^{2} A e^{\alpha t}$$

$$x^{1} A e^{\alpha t} + 2\alpha A e^{\alpha t} + 17 A e^{\alpha t} = e^{\alpha t}$$

$$A e^{\alpha t} \left(\alpha^{2} + 2\alpha + 17\right) = e^{\alpha t}$$

$$A = \frac{1}{\alpha^{2} + 2\alpha + 17}$$

$$y_{p}(t) = \frac{1}{\alpha^{2} + 2\alpha + 17} e^{\alpha t}$$

$$y_{p}(t) = \frac{1}{\alpha^{2} + 2\alpha + 17} e^{\alpha t}$$

Gen. Sol: $y_{(t)} = c_{1}e^{-t} \omega_{s}(4t) + c_{2}e^{-t} s_{in}(4t) + \frac{1}{\alpha^{2} + 2\alpha + 17} e^{\alpha t}$

2. (16 points) Find the solution to the initial value problem:

$$y'' + 6y' + 9y = 0$$
 with $y(0) = 3$ and $y'(0) = 7$

char eq:
$$r^{2} + 6r + 9 = 0$$

 $(r+3)^{2} = 0$
 $r = -3$ repeated mosts

$$y(t) = C_{1}e^{-3t} + C_{2}te^{-3t}$$

$$y(0) = C_{1} = 3$$

$$y'(t) = -3C_{1}e^{-3t} + \left[C_{2}e^{-3t} + C_{2}t\left(-3e^{-3t}\right)\right]$$

$$y'(0) = -3C_{1} + C_{2} = 7$$

$$C_{2} = 7 + 3C_{1} = 7 + 9 = 16$$

$$y(t) = 3e^{-3t} + 16te^{-3t}$$

Name: _____

3. (17 points) Solve the Initial Value Problem:

$$y' + 2y = u_5(t) \cdot e^{t-5}, \qquad y(0) = 3$$

$$\frac{1}{2} \{y' + 2y \} = \frac{1}{2} \{y(t) e^{t-5} \} = e^{-55} \frac{1}{2} e^{t} \}.$$

$$\frac{1}{2} \{y' + 2y \} = \frac{1}{2} \{y(t) e^{t-5} \} = e^{-55} \frac{1}{5-1}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{2} \{y' + 2y \} = \frac{e^{-55}}{5-1}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{2} \{y' + 2y \} = \frac{e^{-55}}{5-1}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{2} \{y' + 2y \} = \frac{e^{-55}}{5-1}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{2} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3} \{y' + 2y \} = \frac{1}{3}$$

$$\frac{1}{5} \{y' + 2y \} = \frac{1}{3}$$

Name:

4. (17 points) Compute the Inverse Laplace Transform:

$$\mathcal{L}^{-1}\left\{\frac{s+1+e^{-7s}}{s^2-4s+13}\right\} \qquad \qquad \mathcal{L}\left\{e^{at} f(t)\right\} = f(s-a).$$

$$F(s) = \mathcal{L}\left\{f(t)\right\}.$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{e^{-7s}}{s^{2}-4s+13} \right\}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{e^{-7s}}{(s-2)^{2}+9} \right\}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{e^{-7s}}{(s-2)^{2}+9} \right\} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{e^{-7s}}{(s-2)^{2}+9} \right\}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ \frac{1}{(s-2)^{2}+9} \right\} +$$

Name:

5. (17 points) Find the solution to the Initial Value Problem:

$$\vec{Y}' = A \vec{Y}, \quad \text{with} \quad A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} \quad \text{and} \quad \vec{Y}(0) = \begin{pmatrix} 9 \\ 5 \end{pmatrix}.$$
therefore, the puly: $\det \begin{pmatrix} \alpha - \lambda & b \\ c & \lambda - \lambda \end{pmatrix} = \lambda^2 - (\alpha + d) \lambda + \alpha d - b c$

Char phy:
$$\det\left(\begin{array}{cccc} c & J - \lambda \end{array}\right) = \lambda - (3 - \lambda)^{3} - \lambda - (3 -$$

$$\vec{Y} = 2e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 7e^{5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Name:

6. Consider the following system of differential equations:

$$\vec{Y}' = A \vec{Y}$$
, with $A = \begin{pmatrix} -3 & 4 \\ -2 & 1 \end{pmatrix}$

(a) (9 points) Find the General Solution to the system of differential equations.

$$\frac{f_{r}(A)z \rightarrow +|z-2|}{f_{r}(A)z \rightarrow +|z-2|} = \frac{d_{r}(A)z - 3 - (-\delta)z}{2} = 5$$

$$\frac{f_{r}(A)z \rightarrow +|z-2|}{f_{r}(A)z + 5} = 0.$$

$$\frac{f_{r}(A)z \rightarrow +|z-2|}{f_{r}(A)z + 5} = \frac{-2 \pm 4i}{2} = -|\pm 3i|$$

$$\frac{f_{r}(A)z \rightarrow +|z-2|}{f_{r}(A)z + 5} = 0.$$

$$\frac{f_{r}(A)z \rightarrow -|z-2|}{f_{r}(A)z + 5} = 0.$$

$$\frac{f_{r}(A)$$

(b) (6 points) Sketch the phase portrait in the xy - plane.

(c) (2 points) Classify the equilibrium solution at the origin. Justify your classification.

Name:
This page is intentionally left blank for work. If you want any work done on this page to be looked
at by the grader, please make note in the problem to check this page.

Name:
This page is intentionally left blank for work. If you want any work done on this page to be looked
at by the grader, please make note in the problem to check this page.

Table of Laplace Transforms

f(t)	$\mathcal{L}(f(t))$	f(t)	$\mathcal{L}(f(t))$
1	$\frac{1}{s}$		
t	$\frac{1}{s^2}$		Derivatives
t^2	$\frac{2}{s^3}$	y	$\mathcal{L}(y)$
t^n	$\frac{n!}{s^{n+1}}$	y'	$s\mathcal{L}(y) - y(0)$
e^{at}	$\frac{1}{s-a}$	y''	$s^2 \mathcal{L}(y) - sy(0) - y'(0)$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$		
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$		
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$		t-Shift
$\cosh(at)$	$\frac{s}{s^2 - a^2}$	f(t)	F(s)
$\sinh(at)$	$\frac{a}{s^2 - a^2}$	$u_a(t)f(t-a)$	$e^{-as}F(s)$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2 + \omega^2}$		
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2 + \omega^2}$		s-Shift
$\delta(t-a)$	e^{-as}	f(t)	F(s)
$u_a(t)$	$\frac{e^{-as}}{s}$	$e^{at}f(t)$	F(s-a)