HOMEWORK 5

Proposition 4.6. Let $b \in \mathbb{Z}$ and $k, m \in \mathbb{Z} \geq 0$.

- (i) If $b \in \mathbb{N}$ then $b^k \in \mathbb{N}$.
- (ii) $b^m b^k = b^{m+k}$.
- $(iii) (b^m)^k = b^{mk}$.

Proof. (i) Isolate P(k): " $b^k \in \mathbb{N}$ "

Base. k = 0, $b^0 = 1$. By definition, we have that $1 \in \mathbb{N}$, so P(0) holds. **successor** Suppose P(n) holds. That is, $b^n \in \mathbb{N}$. $(b^n) \cdot b \in \mathbb{N}$, since $b \in \mathbb{N}$ and \mathbb{N} is closed under multiplication. By definition, $b^{n+1} = b^n \cdot b$. Hence $b^{n+1} \in \mathbb{N}$. That is P(n+1) holds. This completes the induction.

(ii) We argue by induction on the claim P(k) " $b^m b^k = b^{m+k}$."

Base. k = 0. In this case $b^0 = 1$, by definition. So $b^m b^k = b^m \cdot 1 = b^m$. Plainly, $b^{m+0} = b^m$.

Successor. Suppose P(n) holds. Consider $b^m b^{n+1}$. By definition, $b^{n+1} = b^n b$. So we may write $b^m b^{n+1} = (b^{m+n})b$. On the other hand, $(b^{m+n})b = b^{m+n+1}$. We conclude that $b^m b^{n+1} = b^{m+n+1}$. The induction is complete, so we conclude that P(n) holds for all n.

(iii) We argue by induction the claim P(k) " $(b^m)^k = b^{mk}$ "

Base. k = 0. $(b^m)^0$. By definition, $(b^m)^0 = 1 = b^{m0} = b^0$ by our axioms for the integers.

Successor. Suppose P(n) holds. That is, $(b^m)^n = b^{mn}$. Consider $(b^m)^{n+1}$. By definition, $(b^m)^{n+1} = (b^m)^n b^m$. $(b^m)^n b^m = b^{mn} b^m$. $b^{mn} b^m = b^{mn+m}$ By definition. Finally, $b^{mn+m} = b^{m(n+1)}$. We conclude that $(b^m)^{n+1} = b^{m(n+1)}$.

Proposition 4.7. For all $k \in \mathbb{N}$:

- (i) 5^{2k} 1 is divisible by 24;
- (ii) $2^{2k+1} + 1$ is divisible by 3;
- (iii) $10^k + 3 \cdot 4^{k+2} + 5$ is divisible by 9.

Proof. (i) Let P(k) be the sentence " 5^{2k} - 1 is divisible by 24". Consider P(1):

Base. $5^{2(1)}$ - $1 = 5^2$ - $1 = 5 \cdot 5$ - 1 = 24. Thus P(1) holds.

Successor. Suppose P(n) holds. That is, 5^{2n} - 1 is divisible by 24.

Date: February 20, 2017.

Consider $5^{2(n+1)}$ - 1. $5^{2(n+1)}$ - $1 = 5^{2n+2}$ - 1. By definition, 5^{2n+2} - $1 = 5^{2n}$ 5^2 - $1 = (5^{2n} - 1)5^2 + 5^2$ - 1. We've assumed that 5^{2n} - 1 = 24j, so we can substitute $(5^{2n} - 1)5^2 + 5^2 - 1 = 24j \cdot 5^2 + 5^2 - 1 = 24j \cdot 25 + 24 = 24(25j + 1)$. Hence $5^{2(n+1)}$ - 1 is divisible by 24. We conclude the proposition holds by the principle of induction.

(ii) Let P(k) be the sentence $2^{2k+1} + 1$ is divisible by 3." Consider P(1):

Base. $2^{2(1)+1} + 1 = 2^3 + 1 = 8 + 1 = 9$. 9 = 3(3). We have thus proven P(1).

Successor. We assume P(n) holds. That is, $2^{2n+1} + 1$ is divisible by 3. Consider $2^{2(n+1)+1} + 1$. $2^{2(n+1)+1} + 1 = 2^{2n+3} + 1$. By definition, $2^{2n+3} + 1 = 2^{2n+1}2^2 + 1 = (2^{2n+1} + 1)2^2 - 2^2 + 1$. Since we assumed P(n), we can substitute $(2^{2n+1} + 1)2^2 - 2^2 + 1 = 3j2^2 - 2^2 + 1 = 12j - 3 = 3(4j - 3)$. Hence $2^{2(n+1)+1} + 1$ is divisible by 3. We have thus proven the proposition by induction.

(iii) Let P(k) be the sentence " $10^k + 3 \cdot 4^{k+2} + 5$ is divisible by 9." Consider P(1):

Base. $10^1 + 3 \cdot 4^{1+2} + 5 = 10 + 3 \cdot 64 + 5 = 10 + 192 + 5 = 207 = 9(23)$. Hence, P(1) holds.

Successor. Assume P(n) holds. That is, $10^n + 3 \cdot 4^{n+2} + 5$ is divisible by 9. Consider $10^{(n+1)} + 3 \cdot 4^{(n+1)+2} + 5$. $10^{(n+1)} + 3 \cdot 4^{(n+1)+2} + 5 = 10^n 10 + 3 \cdot 4^{n+2} \cdot 4 + 5 = 10^n + 3 \cdot 4^{n+2} + 5 + 9 \cdot 10^n + 3 \cdot 3 \cdot 4^{n+2}$. Because we assumed P(n), we can substitute $10^n + 3 \cdot 4^{n+2} + 5 + 9 \cdot 10^n + 3 \cdot 3 \cdot 4^{n+2} = 9j + 9 \cdot 10^n + 3 \cdot 3 \cdot 4^{n+2} = 9j + 9 \cdot 10^n + 9 \cdot 4^{n+2} = 9(j + 10^n + 4^{n+2})$. We have thus shown that P(n + 1) holds, and have proven the proposition by induction.

Proposition 4.8. For all $k \in \mathbb{N}$, $4^k > k$.

Proof. Let P(k) be the statement " $4^k > k$." Consider P(1):

Base. $4^1 = 4 > 1$. Hence, P(1) holds.

Successor. Assume P(n) holds. That is, $4^n > n$. Consider 4^{n+1} . By definition, $4^{n+1} = 4^n 4 > n \cdot 4$ since we assumed P(n) and by proposition 2.7(iii). $n \cdot 4 = 4n = 3n + n$. Because $n \in \mathbb{N}$, $3n \ge 3(1) > 1$. Therefore, 3n + n > 1 + n = n + 1. We can conclude that $4^{n+1} > n + 1$, and have proven the proposition by induction.

Proposition 4.13. For $x \neq 1$ and $k \in \mathbb{Z}_{\geq 0}$, $\sum_{j=0}^{k} x^j = \frac{1 - x^{k+1}}{1 - x}$.

Proof. Let P(k) be the statement " $\sum_{j=0}^{k} x^j = \frac{1-x^{k+1}}{1-x}$." Let's first observe P(0).

Base. k = 0. $\sum_{j=0}^{0} x^j = x^0 = 1 = \frac{1-x}{1-x}$. We have thus proven that P(0) holds.

textbfSuccessor Assume P(n) holds. Consider $\sum_{j=0}^{n+1} x^j$.

$$\begin{split} &\sum_{j=0}^{n+1} x^j := \sum_{j=0}^n x^j + x^{n+1}. \text{ By induction,} \\ &\sum_{j=0}^n x^j + x^{n+1} = \frac{1-x^{n+1}}{1-x} + x^{n+1} = \frac{1-x^{n+1}+(1-x)^{n+1}}{1-x} = \frac{1-x^{n+2}}{1-x}. \end{split}$$

Hence, P(n+1) holds, and we have proven the proposition by induction.

Proposition 4.17. Let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} , and let $a,b,r \in \mathbb{Z}$ be such that $a \leq b$. Then $\sum_{j=a}^{b} x_j = \sum_{j=a+r}^{b+r} x_{j-r}$.

Proof. Let P(a,b) be the statement " $\sum_{j=a}^{b} x_j = \sum_{j=a+r}^{b+r} x_{j-r}$ ". Let's first observe P(0,1).

Base.
$$a = 0$$
, $b = 1$. $\sum_{j=0}^{1} x_j = x_0 + x_1 = x_{r-r} + x_{1+r-r} = \sum_{j=0+r}^{1+r} x_{j-r}$

Successor. Suppose P(m,n) holds. That is, $\sum_{j=m}^{n} x_j = \sum_{j=m+r}^{n+r} x_{j-r}$.

Consider $\sum_{j=m+1}^{n+1} x_j$. We can rewrite this as $\sum_{j=m}^{n} x_j + x_{n+1} - x_m$. By

induction, we have $\sum_{j=m}^{n} x_j + x_{n+1} - x_m = \sum_{j=m+r}^{n+r} x_{j-r} + x_{n+1} - x_m$. By definition, we have

$$\sum_{j=m+r}^{n+r} x_{j-r} + x_{n+1} - x_m := \sum_{j=m+1+r}^{n+1+r} x_{j-r}.$$
 We have proven $P(m+1,n+1)$ holds, and thus proven the proposition by the principle of induction.

Sources.

https://www.cs.uaf.edu/maxwell/math215/HW8Sols.pdf http://www.voutsadakis.com/TEACH/LSSU/F03/LSSU215F03/hwk4sol.pdf