

MOTION CONTROLLED GESTURE USING ARDUINO

and Python

COURSE NAME

ENR 305: Sensors, Instruments and Experimentation

SECTION DETAILS

Section Number: 1 Group Number: 18

MEMBER DETAILS

Nihar Patel >> AU1940119 Purvam Sheth >> AU1940151 Mohit Prajapati >> AU1940171

Objective

MOTION CONTROLLED GESTURE USING ARDUINO:

Our system is a hand-based gesture driven.

We can provide basic commands like:

- o Play/Pause
- Volume-Up/Volume-Down
- o Fast-Forward/Rewind
- Next/Previous

by providing different types of Hand based gesture.

Outcomes

We have achieved this goal by combining the power of Arduino and Python together.

- o For Inputs we have 2 Ultrasonic sensors HC-SR04.
- The Input will we processed and based on that Arduino will print the command on the Serial Monitor.
- Using a python script, we will read the commands printed on the Serial Monitor, and based on that it will give System command to press the related key to execute that command.

CIRCUIT DIAGRAM

(In TinkerCAD)

BLOCK DIAGRAM

CODE

Arduino // C++ code

```
//
//Arduino Code:
 * Program for gesture control
 * Controlled using Python
 */
long time_taken;
int dist,distL,distR;
void setup() {
  Serial.begin(9600);
}
//Function to calculate distance
long calculate_distance(int triggerPin, int echoPin)
  pinMode(triggerPin, OUTPUT); // Clear the trigger
  digitalWrite(triggerPin, LOW);
  delayMicroseconds(2);
  // Sets the trigger pin to HIGH state for 10 microseconds
  digitalWrite(triggerPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(triggerPin, LOW);
  pinMode(echoPin, INPUT);
  // Reads the echo pin, and returns the distance in centimeter.
  dist = 2.54*0.006783*pulseIn(echoPin, HIGH);
  return dist;
}
void loop() {
  distL = calculate_distance(8, 7); //get distance of left sensor
```

```
distR = calculate_distance(4, 2); //get distance of right sensor
  //Serial.println(distL);
  //Serial.println(distR);
  // L
                          R
  // 0- 5: Play/Pause
                         0-5
  // 5-15: Vup/Vdown
                         Near to Far/Far to Near
  //15-25: Brightness
                         Near to Far
  //25-35: Forward/Rewind Near to Far/Far to Near
  //
  //Play/Pause
  if ((distL > 0 && distL <= 5) && (distR > 0 && distR <= 5)) //Detect
both hands
    Serial.println("Play/Pause");
   delay (1000);
  }
  //Volume Up/Volume Down
  if (distL > 5 && distL <= 15)
  {
    delay(500); //Hand Hold Time
    distL = calculate_distance(8, 7); //get distance of left sensor
    if (distL > 5 && distL <= 15)
      while(distL > 5 && distL <= 15)</pre>
      {
        distR = calculate_distance(4, 2); //get distance of right
sensor
        if (distR < 15) //Hand pushed in
        {
          if (distR < 5)
          {
            break; //to break
          }
```

```
Serial.println ("Volume-Down");
          delay (500);
        }
        if (distR >= 15) //Hand pulled out
          if (distR >= 30)
          {
            break; //to break
          }
          Serial.println ("Volume-Up");
          delay (500);
        }
      }
   }
  }
  //Fast Foward/Rewind
  if (distL > 15 && distL <= 25)
  {
    delay(1000); //Hand Hold Time
    distL = calculate_distance(8, 7); //get distance of left sensor
   if (distL > 15 && distL <= 25)
      while(distL > 15 && distL <= 25)</pre>
      {
        distR = calculate_distance(4, 2); //get distance of right
sensor
        if (distR < 15) //Hand pushed in
        {
          if (distR < 5)
            break; //to exit
          Serial.println ("Rewind");
          delay (1500);
        }
        if (distR >= 15) //Hand pulled
```

```
{
          if (distR >= 30)
          {
            break; //to exit
          Serial.println ("Fast-Forward");
          delay (1500);
     }
   }
  }
  //Next/Previous
  if (distL > 25 && distL <= 35)
    delay(1500); //Hand Hold Time
    distL = calculate_distance(8, 7); //get distance of left sensor
    if (distL > 25 && distL <= 35)
    {
      while(distL > 25 && distL <= 35)</pre>
        distR = calculate_distance(4, 2); //get distance of right
sensor
        if (distR < 15) //Hand pushed in
          if (distR < 5)
            break; //to exit
          }
          Serial.println ("Previous");
          delay (2500);
        if (distR >= 15) //Hand pulled out
          if (distR >= 30)
          {
            break; //to exit
```

```
}
          Serial.println ("Next");
          delay (2500);
        }
      }
    }
  }
delay(100);
}
Python
#Python Code:
import serial #Serial imported for Serial communication
import time #Required to use delay functions
import pyautogui
ArduinoSerial = serial.Serial('COM6',9600) #Create Serial port object
called arduinoSerialData
time.sleep(2) #wait for 2 seconds for the communication to get
established
while 1:
    incoming = str (ArduinoSerial.readline()) #read the serial data and
print it as line
    print(incoming)
    if 'Play/Pause' in incoming:
        pyautogui.typewrite(['space'], 0.2)
    if 'Volume-Down' in incoming:
        pyautogui.hotkey('down')
    if 'Volume-Up' in incoming:
        pyautogui.hotkey('up')
```

```
if 'Fast-Forward' in incoming:
    pyautogui.hotkey('ctrl', 'right')

if 'Rewind' in incoming:
    pyautogui.hotkey('ctrl', 'left')

if 'Next' in incoming:
    pyautogui.hotkey('n')

if 'Previous' in incoming:
    pyautogui.hotkey('p')
```

IMAGES

4 Circuit

Project

DESCRIPTION

- For Play/Pause we need to put our both hands within 5cm of Ultrasonic Sensor.
- From the Left Ultrasonic sensor, we can change operation like switch between Volume Function, Time skip function and Neighbor Track.
- While from the Right Ultrasonic sensor, we can decide the subdivision inside the operation. We can choose between Volume-Up or Volume-Down, Fast-Forward or Rewind and Next or Previous.
- We can cancel a function by getting Left or Right hand outside the Range.