Annexe A: List of TrioCFD PRM files

PDF File name	Problem Dis. Dim.	Dim.	Mesh	Vb jdd	Nb jdds Goal of the sheet	State
			Laminar Flow			
Channel_lam_pressure_drop	Pb_hydraulique VDF	3	160 hexa 1920 tetra	21	Convection schemes - Periodic BC fluid: helium	old format
Cir_Cyl_Re100	Pb_hydraulique VEF	2	9668 triang.	2	Explicit Euler with implicit diffusion - literature comparison	new format report
ConvergenceTaylorGreen	Pb_hydraulique VEF	2	$4 \Rightarrow 256 \text{ to}$ 16384 triang.	20	Convergence for different meshes and convection scheme	old format
Convergence Taylor Green With Diffusion	Pb_hydraulique VEF	2	$3 \Rightarrow 256 \text{ to}$ 4096 triang.	54	Convergence for different meshes and time scheme	old format
DirectionalPressureLoss	Pb_hydraulique VEF	3	$3 \Rightarrow 1152, 9216$ and 73728 tetra	9	Validation of 64 bits integers possibility to configure	old format
FVCA_test_EF_stab	Pb_hydraulique VEF	3	$7 \Rightarrow 27 \text{ to}$ 1728 tetra	70	Convergence orders of the EF_stab convection schemes	old format
FVCAB_Cas_2.2_3D_steady Pb_hydraulique VEF_Stokes_Taylor_Green_vortex VDF	Pb_hydraulique VEF VDF	3	$7 \Rightarrow 215$ to 61052 tetra $5 \Rightarrow 8$ to 32768 hexa	12	3D Taylor-Green vortex FVCAB experiments	old format
Lid_driven_cavity	Pb_hydraulique VEF	2	105724 triang.	1	Implicit Euler steady scheme comparison with litterature	new format report
Poiseuilleperio2D	Pb_hydraulique VEF	2	$6 \Rightarrow 6, 24, 96$ 384, 1536, 6144 triang.	18	Poiseuille comparisons: EF_stab versus Amont schemes	old format
PoiseuillePerio2DVEF prismes	Pb_hydraulique VEF	3	2785 triang.	2	EF_stab versus Amont schemes with an ICEM generated VEF mesh	old format
PoiseuillePerio2DVEF fNcells	Pb_hydraulique VEF	2	$8 \Rightarrow 6 \text{ to}$ 98304 triang.	20	EF_stab versus Amont schemes with different mesh sizes	old format
PoiseuillePerio2DVEF _fNcells_prismes	Pb_hydraulique VEF	2	2785 triang.	3	EF_stab versus Amont schemes with an ICEM generated VEF mesh	old format

PDF File name	${ m Problem}$	Dis.	Dim.	Mesh	Nb jdds	s Goal of the sheet	State
				Laminar Flow	low		
PoiseuillePerio2DVEF	Pb_hydraulique	VEF	2	$6 \Rightarrow 6 \text{ to}$	20	Convection schemes comparison	old format
Incells triannn		VEF		24576 triang.		mesh created using trianguler_nn	
Poiseuille_flow_2D	Pb_hydraulique	VDF	2	200 rect.	က	Validation of the incompressible laminar	new format
$_\mathrm{VDF}_\mathrm{VEF}$		VEF		400 triang.		module with analytical solution	report
PoiseuilleInOutVDFVEF	Pb_hydraulique	VDF	2	600 rect.	10	Hydraulic with pressure drop	old format
		VEF		1200 triang.			
PoiseuilleInOut2DVDFVEF	Pb_hydraulique	VDF	2	600 rect.	10	Hydraulic with pressure drop	old format
trianfin		VEF		4800 triang.		mesh created using trianguler_fin	
PoiseuilleInOut2DVDFVEF	Pb_hydraulique	VDF	2	600 rect.	10	Hydraulic with pressure drop	old format
prismes		VEF		3474 triang.		ICEM generated VEF mesh	
poiseuille_3D	Pb_hydraulique	VEF	3	17360 tetra.	5	Hydraulic with pressure drop	old format
						comparison of 2 convection schemes	
PoiseuillePerio3DVDFVEF	Pb_hydraulique	VDF	3	160 hexa.	28	Validation of convection and time schemes	old format
_fRe		VEF		1920 tetra.		Tetraedrisation for VEF discretization	
PoiseuillePerio3DVDFVEF	Pb_hydraulique	VDF	3	160 hexa.	28	VEF mesh is created using tetraedriser	old format
_fRe_tetrafin		VEF		15360 tetra		homogene_fin - improved results	
PoiseuillePerio3DVDFVEF	Pb_hydraulique	VDF	3	160 hexa.	28	Same as previous with VEF mesh	old format
_fRe_prismes		VEF		29313 tetra.		generated with ICEM	
Poiseuille_Pipe_Velocity	Pb_hydraulique	VEF	3	126560 tetra	4	Validation of different convection schemes	old format
Diagonale_Cube	Pb_hydraulique VEF	VEF	က	192000 tetra.	22	Convection schemes recommandations for 3D	old format
	_concentration					scalar passive transport	
test_div_grad_Prep1b	Pb_hydraulique	VEF	2	1324 tri	2	Laminar flow through a plane channel	old format
						coding verification	
Mixing_Bidim_Axi	Pb_hydraulique	VDF	2	$5 \Rightarrow 5784 \text{ to}$	ಬ	Comparison of the dispersion coefficient	old format
	_concentration		Axi	$1439232\ \mathrm{rect}.$		with experimental for different meshes	

PDF File name	Problem	Dis.	Dim.	Mesh	Nb jdds	Nb jdds Goal of the sheet	State
				Laminar Flow			
Turbulence_synthetique	Pb_hydraulique	$\begin{array}{c} \text{VDF} \\ \text{VEF} \end{array}$	3	1024 to 65536 hexa 6144 to 16777216 hexa	15	Generation of isotropic synthetic fluctuations as inlet boundary condition	new format
Vorticite_et_fonction _de_Courant	Pb_hydraulique Pb_conduction	VDF VEF VEF	2	$7 \Rightarrow 16 \text{ to } 65536 \text{ rect}$ $7 \Rightarrow 16 \text{ to } 65536 \text{ quad}$ $6 \Rightarrow 40 \text{ to } 104420 \text{ tri}$	40	Verification of vorticity and Stream function in a square cavity	old format
2D_VEF_Cylindre _steady	Pb_hydraulique	VEF	2	999 tri	1	Implicit_Euler_steady_scheme Numerical Test	old format
Navier_Stokes_2d _steady	Pb_hydraulique	VEF	2	104420 tri.	8	Implicit_Euler_steady_scheme Numerical: comparison with analytical	old format
Navier_Stokes_3d _steady	Pb_hydraulique	VEF	3	61052 tetra	3	Implicit_Euler_steady_scheme Numerical: comparison with analytical	old format
NoFlow	Pb_hydraulique	VEF P0 RT	2	$3 \Rightarrow 242, 1054$ & 4262 tri.	24	Validation of the P_0-RT scheme in case of a $\vec{u}=0$	old format
StatVortex2D	Pb_hydraulique	VEF P0 RT	2	$3 \Rightarrow 242, 1054$ & 4262 tri.	24	Validation of the $P_0 - RT$ scheme for a steady state 2D vortex	old format
StatVortex	Pb_hydraulique	VEF P0 RT	3	$4 \Rightarrow 215$ to 7711 tetra	40	Validation of the $P_0 - RT$ scheme for a steady state 3D vortex	old format
RotFlow	Pb_hydraulique	VEF P0 RT	2	$3 \Rightarrow 242, 1054$ $\& 4262 \text{ tri.}$	24	Validation of the $P_0 - RT$ scheme for a rotational velocity	old format
Convection_Vahl_Davis Pb_thermohydraulique	Pb_thermohydrauliqu	e VDF VEF	2	4761 rect 1444 & 6084 tri	10	Validation of the coupling between flow and thermics in laminar condition	new format report
VAHL_DAVIS_impl F	Pb_thermohydraulique	e VDF VEF	2	10000 rect 6400 tri	22	Comparison of velocity and temperature old format profiles using explicit or implicit algo	old format

PDF File name	Problem	Dis.	Dim.	$\mathrm{Mesh} \qquad \qquad \Gamma$	Nb jdds	Goal of the sheet	State
			T	Thermal Laminar Flow			
Convection_RotatingTable	Pb_thermohydraulique	VEF	2	6130 tri	28	Laminar advection of temperature fields on a circular rotating table	old format
therm stratif	Pb_thermohydraulique	VDF	2 8	39402 rect 86246 hexa.	2	Vertical flat heated plate immersed in pool of water	old format
water_tank		VEF	2	18816 tri	2	open to atmosphere	
Demonstrate DI con	Db. 4b.composebardaeen];	VEF	ى د	80400 tetra 84 t-:i	21 -	T continue from the continue of	John Commont
Porous WithPlossVEF	Γb_thermonydrau⊔que	VEF VEF	3 2	84 tri 486 tetra	4	Lammar flow in a channel with porous media and pressure loss	old format
Oscillating_Flow	Pb_thermohydraulique	VDF	2	2500 rect	2	Natural convection inside a	new format
		VEF		5040 tri		rectangular heated cavity	report
Pb_couple_2D	${ m Pb_thermohydraulique}$	VDF	2	36 rect	2	Laminar heat exchange through a	old format
	${ m Pb_conduction}$	VEF		64 tri		plane channel with wall conduction	
ThHyd_3D_VEF steady	Pb_thermohydraulique	VEF	3	1270 tetra	1	Implicit_Euler_steady_scheme Numerical Test	old format
		VDF	2	20+25 and 100 rect		Coupling between radiation,	
	Pb_Thermohydraulique	VEF	2	80+40 and 1600 tri		Conduction and natural convection	
Radiation	Pb_conduction	VDF	ဘ	100+125 and 125 hexa	10	inside a 2D or 3D channel	old format
	Pb_Couple_Rayonnement		က	1958+1220 to 5884 tetra		diation in	
		VDF	Axi	100 rect		Pb_Couple_Rayonnement	
				Turbulent Flow			
Backward_Facing_Step_impl	Pb_hydraulique_Turbulent	VEF	2	2944 tri	11	Turbulent channel air flow with backward step - $\kappa - \epsilon + \text{loi_standard_hydr}$	old format
Backward_Facing Sten_3D	Pb_hydraulique_Turbulent	VDF VEF	3	28620 rect 366230 tri	2	Turbulent channel air flow with backward step - $\kappa - \epsilon$ + loi standard hydr	old format
Backward_Facing	Pb_hydraulique_Turbulent	VDF	2	3228 rect	9	$\kappa - \epsilon + \text{loi_standard_hydr}$	old format
Step		VEF		2944 tri		or loi_expert_hydr	
ChannelPerio2D VEF_fNy	Pb_hydraulique_Turbulent	VEF	3	$4 \Rightarrow 80 \rightarrow 640 \text{ tri}$	∞	Longueur_Melange + loi_standard_hydr	old format

PDF File name	Problem	Dis. D	Dim.	Mesh	Nb jdds	Goal of the sheet	State
			L	Turbulent Flow			
Turbulent_perio_2D_channel	Pb_hydraulique_Turbulent V	VEF	2	$6 \Rightarrow 6 \rightarrow 6144 \text{ tri}$	24	Comparison of convection schemes - Longueur_Melange+loi_standard_hydr	old format
ChannelML3DVDF _fNydxdz	Pb_hydraulique_Turbulent VDF	/DF	ಣ	$3 \Rightarrow 684 \text{ to}$ 10516 hexa	19	Longueur_Melange + loi_standard_hydr	old format
ChannelML3DVEF _fNydxdz	Pb_hydraulique_Turbulent V	VEF	က	$960 \& 3840 \text{ tetra}$ $2348 \rightarrow 47405 \text{ tetra}$	24	Longueur_Melange + loi_expert_hydr	old format
ChannelMLPerio3D VEF_fRe	Pb_hydraulique_Turbulent V	VEF	ಣ	480 tetra	12	Turbulent helium flow through a periodic plane channel	old format
ChannelMLPerio3D VEF_fRe_tetrafin	Pb_hydraulique_Turbulent V	VEF	33	3840 tetra	12	Same than previous with mesh refinement - better results for high Re	old format
KEps_MeshingVEF	Pb_hydraulique_Turbulent V	VEF	3	960 & 3840 tetra 11735 \rightarrow 16551 tetra	23	Meshing tests for 3D VEF-plane channel with $\kappa-\epsilon$ model	old format
ChannelkepsPerio 3DVEF_fRe	Pb_hydraulique_Turbulent V	VEF	3	480 tetra	12	Pressure drop in a 3D periodic turbulent flow in a plane channel	old format
ChannelkepsPerio 3DVEF_fRe_tetrafin	Pb_hydraulique_Turbulent V	VEF	ಣ	3840 tetra	12	Same than previous with mesh refinement - κ - ϵ + loi_expert_hydr	old format
Channelkeps 3DVDF_fNydxdz	Pb_hydraulique_Turbulent VDF	/DF	ಣ	$3 \Rightarrow 684, 2332$ & 10516 hexa	18	Meshing tests for 3D VDF plane channel with $\kappa-\epsilon$ model	old format
Channelkeps 3DVEF_fNydxdz	Pb_hydraulique_Turbulent V	VEF	3	960 & 3840 tetra $5 \Rightarrow 2348 \rightarrow 47405$	24	Meshing tests for 3D VEF plane channel with $\kappa-\epsilon$ model	old format
ChannelKEps_CLboite Perio_entree	Pb_hydraulique_Turbulent V	VEF	3	13552 tetra	1	Periodic box on a turbulent flow in a plane channel with $\kappa-\epsilon$ model	old format
k_eps_vef _perio	Pb_hydraulique_Turbulent V	VEF	3	1152 tetra	1	Verification of friction velocity in a periodic plane channel with $\kappa-\epsilon$ model	old format
Canal_plan_VDF_VEF _k_eps_standard _bicephale	Pb_hydraulique_Turbulent	VDF VEF VDF	3 3 5 5	276 rect 172 tri 828 hexa 1982 tetra	5 5 5 5	Comparaison of the coupled and decoupled methods for solving the $\kappa-\epsilon$ transport equations k_epsilon_bicephale	new format

PDF File name	${ m Problem}$	Dis.	Dim.	$\mathrm{Mesh} \Gamma$	Ib jdds	Nb jdds Goal of the sheet	State
			Tur	Turbulent Flow			
expansion_2D_axi_3D	Pb_hydraulique_Turbulent	VDF	Axi	5577 rect	ಬ	Expanding turbulent flow with	old format
_VEF_circular		VEF	3	65923 tetra	5	various inlet velocities	
expansion_3D	Pb_hydraulique_Turbulent	VDF	3	48400 hexa	25	Same than previous in 3D	old format
_VDF_VEF		VEF		51840 tetra	2	with VDF and VEF mesh	
Mixing_length	Pb_hydraulique_Turbulent	VEF	2	$7 \Rightarrow 80 \text{ to}$	14	Mixing length in 2D and 3D	new format
_VEF_WF		VEF	3	7680 tetra		VEF-plane channel	report
OBI_diffuser_VEF	Pb_hydraulique_Turbulent	VEF	2	36644 tetra	2	Turbulent flow in a 2D diffuser	new format
_k_eps						with the $\kappa-\epsilon$ model	report
Tube_turb_perio	Pb_hydraulique_Turbulent	VEF	3	78576 tetra	1	Fully developed turbulent flow	old format
_EF_stab						in circular tube	
Tube_turb_perio	Pb_hydraulique_Turbulent	VEF	3	78576 tetra	1	Same than previous with muscl scheme	old format
muscl						better prediction of turbulent viscosity	
EsthairNoWire	Pb_hydraulique_Turbulent	VEF	3	$3 \Rightarrow 3114 \text{ to}$	2	Esthair calculations of a 19 rods	old format
				11829 tetra		sub-assembly without space wire	
ContractionTurbFlow	Pb_hydraulique_Turbulent	VEF	3	684 & 1260	9	Pressure loss through a	old format
_3D_VEF				29011 & 107842		sudden contraction	
Cube_Atmo	Pb_hydraulique_Turbulent	VEF	3	$2 \Rightarrow 42964$ and	4	Atmospheric flow around	old format
				55183 hexa		a cube	
Couche_Limite	Pb_hydraulique_Turbulent	VEF	3	27727 tetra	3	Simulation of the atmospheric boundary	old format
Atmospherique						layer - Source_Transport_K_Eps	
Loi_paroi_3D_VEF	Pb_hydraulique_Turbulent	VEF	3	$9 \Rightarrow 288 \text{ to}$	24	Validate behaviour of VEF/Nicholson/	old format
				9216 tetra		$\lambda u'$ approach - Source_Qdm_lambdaup	
Watlon_k_eps	Pb_hydraulique_Turbulent	ΛEF	3	661632 tetra	9	Watlon experiment: fluid mixing in	old format
						T-pipe with long cycle fluctuations	skip
Flow_in_curved_pipe	Flow_in_curved_pipe skip Pb_Hydraulique_Turbulent VEF	VEF	33	463259 tetra	2	Swirling turbulent flow through	old format
						a curved pipe	skip

PDF File name	${ m Problem}$	Dis.	Dim.	Mesh	Nb jdds	s Goal of the sheet	State
			T	Turbulent Flow			
Fiche_validation_Re590	Pb_hydraulique_Turbulent	VDF VEF	3	62370 hexa 61440 tetra	4	New wall law treatment for the LES of turbulent heat transfer in a periodic channel	old format
CHANNEL_LES_VEF RE_TAU_1110	Pb_hydraulique_Turbulent VEF	VEF	က	65856 tetra	4	Channel LES VEF $Re_{\tau} = 1110$ with EF_STAB scheme	old format
les_THI_qdm_ReInf_VEF Pb_hydraulique	Pb_hydraulique_Turbulent	VDF VEF	ಣ	195112 hexa 196608 tetra	12	LES: Isotropic homogeneous turbulence in a periodic cube	old format exclu_nr
Channel_VEF_LES_Hyd WF_Pressure_drop	Pb_hydraulique_Turbulent VEF	VEF	3	4800 tetra	12	Pressure drop in a 3D periodic turbulent flow in a plane channel	old format
Loi_paroi2D_VEF	Pb_hydraulique_Turbulent	VEF	2	$5 \Rightarrow 80$ to 1280 tetra	24	Validation of a Cranck-Nicholson time scheme - stabilization with a source term $\lambda u'$	old format
Baglietto	Pb_hydraulique_Turbulent VEF	VEF	2	162 tri	9	Study of non-linear Baglietto $\kappa-\epsilon$ model for low Reynolds number	old format
Low_Reynolds	Pb_hydraulique_Turbulent	$\begin{array}{c} \text{VDF} \\ \text{VEF} \end{array}$	3	1192 hexa mesh	7	Validation of Launder-Sharma, Jones-Launder and Lam-Bremhorst for low Reynolds	old format
Verification_k_epsilon_transport_equation	Pb_hydraulique_Turbulent	$\begin{array}{c} \text{VDF} \\ \text{VEF} \end{array}$	င	10^6 hexa $7.5 \cdot 10^5 \text{ tetra}$	4	Check the post-processing of the convective, diffusive and source terms of the $k-\varepsilon$ model	new format
decroissance_keps	Pb_hydraulique_Turbulent VDF	VDF	2	1 rect	2	Decreasing turbulence in a plane channel - Coding verification	old format
Marche_incline	Pb_hydraulique_Turbulent VEF	VEF	2	200 tria	3	Turbulent channel flow with backward step - Coding verification	old format
Test_ghost_visit	Pb_hydraulique_Turbulent VDF	VDF	3	300 rect	1	Test of visualisation mors specially with ghost - Coding verification	old format
2D_Cyl_Re20000	Pb_hydraulique_Turbulent	VEF	2	$3 \Rightarrow 9034 \text{ to}$ 32032 tetra	18	2D cylinder in turbulent oscillating cross water flow	old format skip
Drag	Pb_hydraulique_Turbulent VEF	m VEF	2	$6 \Rightarrow 920 \text{ to}$ 1123 tri	24	Obstacles of different shapes in turbulent air flow	old format
3D_Cyl_Re20000	Pb_hydraulique_Turbulent VEF	VEF	3	458802 tetra	9	3D cylinder in turbulent oscillating cross water flow	old format skip

PDF File name	Problem	Dis.	Dim.	${ m Mesh}$	Nb jdds	s Goal of the sheet	State
				Turbulent Flow			
Turbulent_Simple_water_jet	Pb_hydraulique_ Concentration_Turbulent	VEF	3	72692 tetra	4	Turbulent water jet with concentration in a box	old format
Turbulent_Simple water_jet_refined	Pb_hydraulique_ Concentration_Turbulent	VEF	င	283772 tetra	∞	Turbulent simple water jet with refined mesh	old format skip
Marche_SKE_steady	Pb_hydraulique_Turbulent	VEF	2	45489 tri	1	Steady 2D Turbulent $k-\epsilon$: Marche_SKE Implicit_Euler_steady_scheme	old format
Diffuseur_SKE_steady	Pb_hydraulique_Turbulent	VEF	2	47940 tri	-	Steady 2D Turbulent $k-\epsilon$: Diffuseur_SKE Implicit_Buler_steady_scheme	old format
Verification_CEG	Pb_hydraulique_Turbulent	VEF	33	$3 \Rightarrow 3465 \text{ to}$ 15628 tetra	3	Vortices detection and calculation of gas entrainment criterias - CEG	old format
			Ther	Thermal Turbulent F	Flow		
Channel_T1_T2 incompressible	Pb_thermohydraulique	VEF	င	$5 \Rightarrow 1536 \text{ to}$ 5184 tetra	ಬ	$\kappa - \epsilon + \text{loi_standard_hydr}$ Prandtl + loi standard hydr scalaire	new format
Channel_ML_Thydr _TBLE_VEF_ReT7200	Pb_thermohydraulique_turbulent	VEF	က	2880 tetra + 4 TBLE 1D mesh	7	Turbulent heat exchange through a periodic plane channel	old format
Conv_Heated_pipe_wall_temp	Pb_thermohydraulique _turbulent	VEF	က	$5 \Rightarrow 576 \text{ to}$ 3308 tetra	14	Forced convection with imposed wall heat flux	old format
Conv_Pipe_Perio _Expl	Pb_thermohydraulique _turbulent	VEF	င	2160 tetra	ಣ	Forced convection with EF_stab scheme in explicit time scheme	old format
Conv_Pipe_Perio _Impl	Pb_thermohydraulique _turbulent	VEF	က	2160 tetra	33	Forced convection with EF_stab scheme in implicit time scheme	old format
Conv_Pipe_InOut	Pb_thermohydraulique _turbulent	VEF	က	97200 tetra	3	Forced convection with EF_stab scheme Inlet/Outlet BC	old format
Heated_floor _k_eps	Pb_thermohydraulique _turbulent	$\begin{array}{c} \text{VDF} \\ \text{VEF} \end{array}$	2	7784 rect 11385 tri	3	Turbulent flow above a heated floor: $k - \epsilon$ modeling	old format
Heated_Backward _Facing_Step_2D	Pb_thermohydraulique _turbulent	VDF VEF	2	4134 rect 10855 tri	3	Turbulent flow above a heated backward facing step: $k - \epsilon$ modeling	old format

PDF File name	${ m Problem}$	Dis.	Dim.	Mesh	Nb jdd	Nb jdds Goal of the sheet	State
				Thermal Turbulent Flow	lent Fl	MC	
Jet_impingement_on_a_hot_flat_plate	Pb_thermohydrauliqueturbulent	VEF	င	116356 tetra	ဇာ	Turbulent heated air jet impacting an isothermal plane wall	old format
Thermal_stratification Pb_dow	_thermohydraulique _turbulent	VEF	3 2	2968 tri 27252 tetra	4	Thermal stratification in a cooled plenum	new format report
Two_Layers Stratif	Pb_thermohydraulique_turbulent	VDF VEF	2 2	7000 rect 7200 tetra	9	Turbulent mixing layers at different velocities and temperatures	old format
Two_Layers Stratif_impl	Pb_thermohydraulique VEF _turbulent	VEF	2	7200 tetra	20	Same as previous with implicite time scheme - with different algorithms	old format
Turb_coupled _pipeFlow	Pb_thermohydraulique _turbulent Pb_conduction	VEF	3	Fluid: 3304 tetra Solid: 2543 tetra	15	Turbulent heat exchange through a periodic circular pipe coupled with wall conduction	old format
PeriodicBox	Pb_thermohydrauliqueturbulent	ue VEF	3	463259 tetra	4	Flow in a curved pipe with RANS and LES model Re=50000	old format
wl_vef_laminar	Pb_thermohydraulique _turbulent	VEF	3	2400 tetra	4	Wall law validation for VEF discretization	old format
wl_vef_analytic	Pb_thermohydraulique VEF _turbulent	VEF	3	$3 \Rightarrow 1200 \text{ to}$ 28800 tetra	9	Same than previous with comparison between with and whitout wall laws	old format
wl_vef_correlation	Pb_thermohydraulique_turbulent	VEF	3	2400 tetra	5	Same than previous with $k-\epsilon+\log$ _standard_hydr	old format
wl_vcf_coupling	Pb_thermohydrauliqueturbulent Pb_conduction	VEF	3	2400 hexa + 2400 in wall	4	Turbulent heat exchange through a periodic plane channel coupled with wall conduction	old format
Uniform_keps_front _field_from_ud	Pb_thermohydraulique	VDF VEF VDF VEF	2 2 2 2	781 rect 3124 tri 700 hexa 16800 tetra	∞	Check Champ_front_normal fields Coding verification	old format exclu_nr
Boussinesq_VEF	Pb_thermohydraulique VEF _turbulent	VEF	3	34992 tetra	∞	Check Boussinesq source term in VEF for LES - Schema_Predictor_Corrector	old format

PDF File name	Problem Dis.	. Dim	. Mesh	Nb jdds	Goal of the sheet	State
			Thermal Tu	Turbulent Flow	Flow	
Channel_LES_Re_ tau405_Pr071_T0Q	Pb_thermohydraulique VDF	თ ნა ნა	8192 hexa $24192 \& 65856$	က	Channel LES T0-Q $Re_{\tau}=405$ with VEF – EF_STAB Scheme - logarithmic standard wall law	old format
$\begin{array}{c} les_Re395Pr0025 \\ -T0Q \end{array}$	Pb_thermohydraulique VDF _turbulent VEF	es (T. (T.	8192 hexa 32928 & 67362	9	Turbulence (LES) and Heat transport (Heat Flux) in a channel flow $Re_{\tau}=395$ - $Pr=0.025$	old format
les_Re395Pr0025 _ToQ_couple	Pb_thermohydraulique VDF _turbulent VEF Pb_conduction wall	eco	8192 hexa 12960 tetra 2048/4320	4	Turbulence (LES) and Heat transport (coupling with solid walls - thermal activity ratio K=0.28) in a channel flow $Re_{\tau}=395$ - $Pr=0.025$	old format
$\begin{array}{c} les_Re395Pr071 \\ -T0Q \end{array}$	Pb_thermohydraulique VDF _turbulent VEF	ες. (T) (T)	8192 hexa 22176 & 67362	ಬ	Turbulence (LES) and Heat transport (Heat Flux) in a channel flow $Re_r = 395 - Pr = 0.71$	old format
les_Re180Pr071 _T0Q	Pb_thermohydraulique VDF _turbulent VEF	en En En	67392 hexa 134640 tetra	က	Turbulence (LES) and Heat transport (Heat Flux) in a channel flow $Re_{\tau}=180$ - $Pr=0.71$	old format
Fiche_validation _Re395_Pr0.71	Pb_thermohydraulique VDF _turbulent VEF	es (t) (t)	18216 hexa 22176 tetra	4	New wall law treatment for the LES of turbulent heat transfer in a periodic channel $\text{Re}_{\tau}=395$ and $\text{Pr}=0.71$	old format
Fiche_validation _Re180_Pr0.025	Pb_thermohydraulique VDF _turbulent VEF	m m	1920 hexa 2880 tetra	4	New wall law treatment for the LES of turbulent heat transfer in a periodic channel $\mathrm{Re}_{\tau}=180$ and $\mathrm{Pr}=0.025$	old format
Fiche_validation _Re180_Pr0.71	Pb_thermohydraulique VDF _turbulent VEF	თ	1920 hexa 2880 tetra	4	New wall law treatment for the LES of turbulent heat transfer in a periodic channel $\text{Re}_{\tau}=180$ and $\text{Pr}=0.71$	old format
Comp_conv	Pb_thermohydraulique VEF _turbulent VEF	2 8	628 tri 40320 tetra	26 24	Temperature convection as a passive scalar	old format
Test_tparoi	Pb_thermohydraulique VEF _turbulent	2	4 tri	က	Coding verification of the Tparoi post treatment	old format
Verification_ flux_implicite	Pb_thermohydraulique _turbulent VEF Pb_conduction	Ω.	fluid: 16 solid: 16	28	Coding verification of the heat balance: compensation between the flow from solid to liquid and the flow from liquid to solid	old format
Poreux_VEF	Pb_thermohydraulique VEF _turbulent VEF	3 2	2968 tri 486 & 560 tetra	9	Verification case of the flow in a porous channel	old format
Nusselt_Correlation_2D	Nusselt_Correlation Pb_thermohydraulique VDF	C2	10 rect 24 tri	2	1D flow using a Nusselt number correlation in a Forced convection regime	old format

PDF File name	${ m Problem}$	Dis. I	Dim.	Mesh	Nb jdds	Nb jdds Goal of the sheet	State
				Thermal Turbulent Flow	ulent F	low	
Nusselt_Correlation_ _Coupling_Pb	Pb_thermohydraulique_turbulent Pb_conduction	VDF VEF	ಣ	100 hexa 222 tetra	2 2	1D flow using a Nusselt number correlation, coupled to a conduction problem; forced convection	old format
EFstab_Muscl_and_Limiters_VEF	Pb_thermohydraulique _turbulent	VEF VEF	3 2	900 & 6130 tri 6000 tetra	20	Evaluation of EF_stab an Muscl convective schemes in simple VEF-configurations	old format
T_paroi	Pb_thermohydraulique_turbulent	VEF	2	144 tri	က	Wall temperature verification in VEF discretisation with Neumann conditions	old format
GR16_k_eps	Pb_thermohydraulique_turbulent	VEF	က	2851995 tetra	4	Validation of heat exchange in tube bundles without spacer wire on sodium heat exchangers	old format skip
ThermalCoupling_ TurbulentFlow_VEF	Pb_thermohydraulique_turbulent Pb_conduction	VEF VEF	8	864 + 432 (Trio) 1578 (ICEM)	2	Thermal coupling between a fluid and a solid domains for a turbulent flow	old format
Couplage_Implicite _Instationnaire	Pb_thermohydraulique_turbulent Pb_conduction	VEF	3	160 tetra	1	Coupled pipe flow with non stationnary conduction solved by an implicit scheme Check of the heat balances	old format
Marche_k_eps_T _steady	Pb_thermohydrauliqueturbulent	VEF	2	365 tri	1	Steady The mohydraulique 2D Turbulent K-Eps VEF Numerical test	old format
les_THI_T _scalaire_VEF	Pb_thermohydraulique_turbulent	VEF	က	196608 tetra	2	Isotropic homogeneous turbulence in a periodic cube	old format exclu_nr
			-owT	Two-phase Flows wit	th Fron	with Front-Tracking	
FTD_particles_coupling	Probleme_FT_Disc gen	VDF VEF	3	20000 hexa 1600 or 20000 tet	2	Account for fluid effetcs on a particle in a column and for reaction effect and two way coupling	old format
FTD_particlestransfo	Probleme_FT_Disc gen	VDF VEF	3	200096 hexa 72000 tetra	2	Transformation of gas bubbles into particles and vanishing of particles entering into the gas	old format
FTD_hangingdrop	Probleme_FT_Disc gen	VDF	3	67240 hexa	2	Drop hanging to a solid wall	new format report
FTD_oscillating_bubble	Probleme_FT_Disc_gen	VDF	3	216000 hexa	2	Bubble in surrounding fluid with a free surface subject to oscillations	new format report

PDF File name	${ m Problem}$	Dis.	Dim.	Mesh	Nb jdds	Goal of the sheet	State
			Lwo-p	Two-phase Flows with Front-Tracking	th Front	-Tracking	
FTD_solid_particle_fall_viscosity	FTD_solid_particle Probleme_FT_Disc_gen_fall_viscosity	VDF	က	20000 hexa	3	Fall of a solid particle in viscous fluid followed by FTD	old format
FTD_sloshing	Probleme_FT_Disc_gen	VDF	က	365520 hexa	1	Free surface oscillations due to the sloshing of a liquid in a cylindrical pool	old format
FTD_hysteresis	Probleme_FT_Disc_gen	VDF	လ	72000 hexa	38	Contact line treatment with contact angle hysteresis	old format
FTD_PhaseChange_1D	PhaseChange Probleme_FT_Disc_gen	VDF	ဇာ	720 hexa	4	Validation Test for the Interface Movement and the Diphasic Heating	old format
FTD_rising_drop	Probleme_FT_Disc_gen	m VDF	3	11664000 hexa	1	Rising of an inclusion of light fluid in a heavy fluid	old format exclu_nr
ftd_gravite	Probleme_FT_Disc_gen	VEF	3	5239 tetra	1	Free fall of a drop	old format
ftd_remaillage	Probleme_FT_Disc_gen	VDF VEF	3	1500 hexa 5239 tetra	4	Test of the volume and surface conservation during the remeshing	old format
PB_FT	Probleme_FT_Disc_gen	gen VDF	2	7200, 8800 and 21600 rect	3	Influence of the mesh and its discontinuity on the behavior of a bubble - verification test	old format
IBC_penalisation_poiseuille	Probleme_FT_Disc_gen	VDF	2	902 rect	2	Influence of penalization in Front-Tracking in 2D verification test	old format
ibc_refroidi	Probleme_FT_Disc_gen	m VDF	2	2400 rect	2	Influence of thermal penalization in Front-Tracking old format	; old format
Chimie_FT	Probleme_FT_Disc_gen	VDF VEF	2	1 rect 4 tri	2	Test of chemical reactions in Front-Tracking Chimie, reactions	old format
pena_couette	Probleme_FT_Disc_gen	VDF	2	961 rect	2	Interpolation method test on a Taylor-Couette flow old format Fluid flow between two counter-rotating cylinders	7 old format
pena_ellipsoide	Probleme_FT_Disc_gen	gen VDF	3	2250 hexa	2	Influence of penalization in Front-Tracking in 3D Molten glass bath reactor with stirrer	old format

PDF File name	$\operatorname{Problem}$	Dis.	Dim.	Mesh	Nb jdds	s Goal of the sheet	State
		I-owT	ohase	Two-phase Flows with Front-Tracking	Front-	Tracking	
tubeY	Probleme_FT_Disc_gen_VDF_VEF	a VDF VEF	2	1088 rect 1088 tri	2	Checking for competing reactions	old format
ellipsoid_vdf _therm	Probleme_FT_Disc_gen	a VDF	က	18000 hexa	2	Influence of thermal penalization in Front- Tracking in 3D molten glass bath reactor with stirrer + thermal	old format
Bullage_Huile_ Creuset_Froid	Probleme_FT_Disc_ge	gen VEF	3	52920 hexa	2	Rapport on IBC with interfaces	old format
iodure-iodate	Probleme_FT_Disc_gen VI	a VEF	2	4 tri	2	Verification of competing reactions	old format
iodure-iodate-melange	Probleme_FT_Disc_gen VI	a VEF	2	4 tri	17	Checking for competing reactions	old format
		T	wo-pł	Two-phase Flows with CMFD	ith CI	AFD	
Verification_k_tau_ transport	Pb_Multiphase	$\operatorname{PolyMAC}$	33	8000	2	verification of velocity gradient and vorticity	Jupyter
Verification_wall_law	Pb_Multiphase	$\operatorname{PolyMAC}$	3	18000	2	Coding verification of CMFD turbulent wall laws	Jupyter
canal_plan	Pb_Multiphase	$\operatorname{PolyMAC}$	2	$81 \Rightarrow 5 \text{ to}$ 7500	1	Verification of adaptive wall laws in a 2D plane channel	Jupyter
decroissance_ktau	Pb_Multiphase	$\operatorname{PolyMAC}$	2	4 tetra	2	Verification of velocity gradient and vorticity coding	Jupyter
expansion_NO_MASS	Pb_HEM	$\operatorname{PolyMAC}$	2	4999	1	Validation of the Homogeneous Equilibrium Model new format coupled with Stiffened Gaz on an expansion tube	new format
expansion_WITH_ MASS	Pb_HEM	$\operatorname{PolyMAC}$	2	4999	1	Validation of the Homogeneous Equilibrium Model new format with mass transfert on an expansion tube skip_prm	new format skip_prm
shock_dodecane	Pb_HEM	$\operatorname{PolyMAC}$	2	10000	1	Validation of the Homogeneous Equilibrium Model on a two-phase shock tube	new format

PDF File name	$\mathbf{Problem}$	Dis. I	Dim.	Mesh	Nb jdds	Goal of the sheet	State
			Fluic	Fluid-structure interactions with ALE	ctions	with ALE	
${\bf Two Cylinders ALE}$	Pb_hydraulique_ALE	VEF	2	110466 tri	1	2D fluid annulus region confined between an inner wall moving with an harmonic motion and an outer wall fixed	new format report
RotationALE	Pb_hydraulique_ALE	VEF	2	30000 tri	П	2D annulus with the inner wall turning with a constant angular velocity and outer wall fixed was chosen	new format
TwoOscillating CylindersALE	Pb_hydraulique_ALE	VEF	2	241618 tri	1	Hydrodynamic interaction of two cylinders subjected to small oscillations	new format report
3dOscillatingBeam	Pb_hydraulique_ALE	VEF	3	1454267 tetra	1	3D oscillating cylindrical beam into a confined space	new format
SquareObstacleALE	SquareObstacleALE Pb_hydraulique_ALE	VEF	2	51700 tri	3	Flow across a horizontally moving square in a tank	new format
DivaALE	Pb_hydraulique_ALE	VEF	2	25806, 51146 & 102080 tri	က	Vibrations of a cylinder in a square tube bundle immersed in a viscous fluid	new format report
				Dilatable Fluids	Fluids		
ConvectionJuarez	Pb_Thermohydraulique _QC	m VDF $ m VEF$	2 3 2 2 2	$\Rightarrow 2974, 12344$ & 50284 rect 49376 tri	2	Heat transfer calculations in an open cavity considering natural convection and temperature-dependent fluid properties	old format
INEEL_VEF_QC	Pb_Thermohydraulique VDFQC VEF	m VDF $ m VEF$	3	6400 hexa 19200 tetra	8	Laminar flow heated either with a volumetric power or a wall heat flux - Analytical valid. with INEEL exp	old format
INEEL_VDF_QC _1D_2D	Pb_Thermohydraulique VDF _QC	VDF	3 4	400 & 6400 hexa	3	Laminar flow in a heated pipe with a volumetric power in a rectangular cavity	old format signal
laminar_flow_ vertical_plate	Pb_Thermohydraulique VDF _QC VEF	m VDF $ m VEF$	3 3	4800 hexa $\Rightarrow 9600 \text{ to } 19200$	27	Free and mixed convection along a vertical hot plate	old format
Convection_kEps _QC	Pb_Thermohydraulique VDFTurbulent_QC VEF	VDF VEF	2	4752 rect 4752 tri	5	Thermohydraulic and turbulent flow in a heated square cavity - Quasi Compressible fluid at low Mach	old format

PDF File name	$\operatorname{Problem}$	Dis. Dim.	Dim.	Mesh	Nb jdd	Nb jdds Goal of the sheet	State
				Dilatable Fluids	luids		
Channel_T1_T2 _QC	Pb_Thermohydraulique_Turbulent_QC	, VEF	က	2214 tetra with 3 stretching	ಣ	Quasi-compressible turbulent heat exchange old through a plane channel	old format
Coupled_plane_ channel_VEF channel_VEF	Pb_Thermohydraulique _Turbulent_QC Pb_Conduction	VEF	ಣ	Fluid: 2598 tetra Solid: 5355 tetra	1	plane chanel ermohydraulics coupled to c	old format
NoFlow-lami -espece	Pb_Thermohydraulique _Especes_QC	, VDF VEF	က	4000 hexa 24000 tetra	2	Mixing of species without chemical reactions new	new format
				Sensitivity Analysis	nalysis		
Sensitivity_analysis_fSteady_Obstacle	Sensitivity_analysis_for Pb_Thermohydraulique_ _Steady_Obstacle	VEF	2	91829 triang.	1	Sensitivity equation method for the Navier-Stokes: Estimation of the variance	new format
Sensitivity_analysis_f_ _Vahl_Davis	Sensitivity_analysis_for Pb_Thermohydraulique_ _Vahl_Davis	m VEF	2	98635 triang.	ಬ	Sensitivity equation method for the Navier-Stokes: applied on the benchmark problem of natural convection	new format
				Other applications	ations		
conduction_T_ oscillant	Pb_conduction	VEF	3	$4 \Rightarrow 576 \text{ to}$ 129600 tetra	7	VEF calculation of Conduction in a wall old through a rectangular box	old format
							Ī