

SRN			
-----	--	--	--

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE16EC352

END SEMESTER ASSESSMENT (ESA): B.Tech. 6^{th} SEM. – May 2019 UE16EC352 –DIGITAL COMMUNICATION

Time	3 F	Irs Answer All Questions	Max. Marks: 100	
1.	(a)	(a) The signal $x(n) = A \cos \omega_o n$ is uniformly quantized with N bits per sample. Assumit to be large, find the expression for the SNR of the quantized signal in dB.		
	(b)	x(n) is a sequence of samples from a uniform distribution over DPCM system that uses an N-bit quantizer. The error signal $e(n)$ over $[-1, 1]$. The SNR is 60.06 dB. Find i) the prediction gain in	a) is uniformly distributed	
	(c)	The signal $x(t) = A \cos 1000\pi t$ undergoes delta modulation wis sampling frequency $f_s = 10$ kHz. What is the maximum value overload is to be avoided?	th step size $\delta = 0.1$ and	
	(d)	Indicate the bandwidth required for the following schemes, with derive it)		
		i. Bipolar NRZ	,	
		ii. Manchester Coding NRZ		
2.	(a)	Write the expression for the raised cosine pulse $p(t)$ and its spectrum expression for $p(t)$ when $\alpha = 1$.	ectrum $P(f)$. Derive the (6)	
		An octal communication system $(M=8)$ uses raised cosine puls If the first zero crossings of the raised cosine pulse $p(t)$ occur at \pm rate, ii) the bit rate, and iii) the bandwidth.	e shaping with $\alpha = 0.75$.	
	(c)	Starting from the MAP decision rule, derive the minimum dista AWGN channel. Draw the block diagram of i) detector and ii) ve	ance decision rule for the	
3.	(a)	Consider the signal $s(t)$ shown below.		
		2		
		-1- ¹ 2 t		

- i. Plot h(t), the impulse response of the filter matched to s(t).
- ii. Suppose s(t) is input to the matched filter. What is the output SNR at t=2 sec, if the additive white Gaussian noise has a two-sided power spectrum $S_w(f)=10^{-4}$ W/Hz? (4)

- (b) Write the expression for the QPSK signal in terms of the basis signals and draw its constellation diagram. Derive the expression for the probability of symbol error. (7)
- (c) A digital modulation system uses a bandwidth of 3 MHz. The additive white Gaussian noise has $N_0 = 10^{-19}$. Find the average carrier power required to achieve $P_e = 10^{-4}$, for the following cases: i) BFSK, ii) BASK, and iii) DPSK. Note that $erfc(2.75) = 10^{-4}$. (9)
- 4. (a) A fair coin is tossed 3 times. Let X indicate the number of Heads. Let the random variable Y be defined as follows:

$$Y = \begin{cases} 1 & \text{number of Heads} > \text{number of Tails} \\ 0 & \text{otherwise} \end{cases}$$

Find H(X,Y) and I(X;Y). (8)

- (b) For any source, prove that the average length of any prefix code is greater than or equal to its entropy. (5)
- (c) Find the Huffman code for the source whose symbols $\{x_1, \ldots, x_6\}$ have the probabilities $\{0.3, 0.25, 0.18, 0.10, 0.09, 0.08\}$. Also find the efficiency of the code. (7)
- 5. (a) Let X and Y indicate the input and the output respectively of a binary symmetric channel with P_e = 0.15. Another binary symmetric channel with P_e = 0.1 takes Y as input and outputs the random variable Z. Suppose P(X = 0) = 0.4. Find i) I(X; Y) and ii) the capacity of the channel between X and Z.
 - (b) Derive the capacity of the Gaussian channel Y = X + Z, where the noise Z is Gaussian with zero mean and variance σ^2 . X satisfies the constraint $E[X^2] \leq P$. X and Z are independent.
 - (c) An analog signal bandlimited to 6 kHz is sampled at twice the Nyquist rate, resulting in a sequence of independent samples. The samples are uniformly quantized into 256 equally likely levels.
 - i. Find the average information rate of this source.
 - ii. If this data is to be transmitted without errors over a channel with a bandwidth of 100 kHz, what is the minimum transmit power required? The additive white Gaussian noise has $N_0 = 10^{-10}$.