Вопросы к экзамену по Теории Графов и Комбинаторным Алгоритмам 3 семестр

Данил Заблоцкий 17 января 2024 г.

Содержание

1	Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.	3
2	Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.	5
3	Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).	6
4	Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).	6
5	Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных n -вершинных графов.	7
6	Проблема изоморфизма. Инварианты графа. Примеры.	8
7	Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.	- 9
8	Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.	9
9	Деревья. Первая теорема о деревьях.	10
10	Деревья. Вторая теорема о деревьях.	11
11	Теорема Кэли о числе помеченных n -вершинных деревьев (с леммой).	11
12	Центр дерева. Центральные и бицентральные деревья. Тео- рема Жордана.	11
13	Изоморфизм деревьев. Процедура кортежирования (на примере). Теорема Эдмондса.	12

14 Вершинная и реберная связность графа. Основное неравен-	
ство связности.	13
15 Отделимость и соединимость. Теорема Менгера.	14
16 Реберный вариант теоремы Менгера.	14

1 Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.

Определение 1 (Неориентированный граф, вершины и ребра графа). Heopuentupoванный граф — пара множеств G = (V, E), где

V – непустое конечное множество,

E – множество, состоящее из неупорядоченных пар элементов из V.

Элементы множества V называются $\epsilon epuunamu$, а элементы E – $pe\delta pamu$ графа.

Примечание. Если $u, v \in V, \{u, v\} \in E$, то будем записывать

$$e = uv (= vu)$$

и говорить, что вершины u и v cмежсны, вершина u и ребро e-uнии-

Определение 2 (Степень вершины). *Степенью вершины v* называется число инцидентных ей ребер.

Обозначение:
$$d(v) (deg(v))$$

Пример. deg(v) = 3

Пример. $\Pi y cmo \ddot{u}$ граф – граф без ребер: O_n .

Пример. Полный граф – граф, любая пара которого смежна: K_n .

Примечание.

$$|E| = C_n^2 = \frac{n(n-1)}{2}$$
 — число ребер.

Пример. Двудольный граф — граф, вершины которого разбиты на 2 непересекающиеся части (доли) так, что любое ребро ведет из одной доли в другую.

Если любая вершина одной доли смежна с любой вершиной другой доли, то такой граф называется nonhum deydonuhum.

Полный двудольный граф с долями размера p и q обозначают: $K_{p,q},$

$$|E| = p \cdot q$$
.

Пример. 3 везда — полный двудольный граф $K_{1,q}$: одна доля состоит из одной вершины, а из нее веером расходятся лучи.

Пример. Графы многогранников

Лемма 1 (О рукопожатиях). Пусть G = (V, E) — произвольный граф. Сумма степеней всех вершин графа G — четное число, равное удвоенному количеству его ребер:

$$\sum_{v \in V} deg_G(v) = 2|E| \tag{1}$$

2 Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.

Определение 3 (Маршрут). Mapupymom, соединяющим вершины u и v ((u,v)-маршрут), называется чередующаяся последовательность вершин и ребер вида

$$(u = v_1, e_1, v_2, \dots, v_k, e_k, v_{k+1} = v)$$

такая, что $e_i = v_i v_{i+1}, i = \overline{1, k}$.

Определение 4 (Замкнутый маршрут). Маршрут называется *замкнутым*, если первая вершина совпадает с последней, то есть

$$v_1 = v_{k+1}.$$

Определение 5 (Цепь, простая цепь). Маршрут называется *цепью*, если в нем все ребра различны и *простой цепью*, если в нем все вершины различны (за исключением, быть может, первой и последней).

Определение 6 (Цикл, простой цикл). Замкнутая цепь называется $uu\kappa$ -лом, а замкнутая простая цепь — простым $uu\kappa$ лом.

Лемма 2 (О выделении простой цепи). Всякий незамкнутый (u, v)-маршрут содержит простую (u, v)-цепь.

Лемма 3 (Об объединении простых цепей). Объединение двух несовпадающих простых (u,v)-цепей содержит простой цикл.

2 МАРШРУТЫ, ЦЕПИ, ЦИКЛЫ. ЛЕММА О ВЫДЕЛЕНИИ 5 ПРОСТОЙ ЦЕПИ. ЛЕММА ОБ ОБЪЕДИНЕНИИ ПРОСТЫХ ЦЕПЕЙ.

3 Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).

Определение 7 (Эйлеров цикл). Пусть G = (V, E) – произвольный граф (мультиграф). Цикл в графе G называется *эйлеровым*, если он содержит все ребра графа.

Определение 8 (Эйлеров граф). Граф называется *эйлеровым*, если в нем есть эйлеров цикл.

Теорема 1 (Эйлер, 1736). В связном графе G = (V, E) существует эйлеров цикл \Leftrightarrow все вершины графа G четны (то есть имеют четную степень).

4 Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).

Определение 9 (Гамильтонов цикл, граф). Пусть G = (V, E) – обыкновенный граф, |V| = n. Простой цикл в графе G называется *гамильтоновым*, если он проходит по всем вершинам графа.

Граф называется *гамильтоновым*, если он содержит гамильтонов цикл.

Определение 10 (Гамильтонова цепь). Простая цепь в графе G называется *гамильтоновой*, если она проходит по всем вершинам графа.

Теорема 2 (Оре, 1960). Пусть $n \ge 3$. Если в n-вершинном графе G для любой пары несмежных вершин u,v выполнено условие

$$deg(u) + deg(v) \ge n$$
,

то граф – гамильтонов.

Теорема 3 (Дирак, 1953). Пусть $n \geqslant 3$. Если в n-вершинном графе G для любой вершины выполнено условие

$$deg(v) \geqslant \frac{n}{2},$$

то граф – гамильтонов.

5 Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных n-вершинных графов.

Определение 11 (Изоморфные графы). Графы $G = (V_G, E_G)$, $H = (V_H, E_H)$ называются *изоморфными*, если между множествами из вершин существует взаимнооднозначное соответствие

$$\phi: V_G \to V_H$$
,

сохраняющее смежность, то есть $\forall u,v \in V_G$

$$uv \in E_G \Leftrightarrow \phi(u)\phi(v) \in E_H$$
.

Обозначение: $G \cong H$

Определение 12 (Помеченный граф). Граф называется *помеченным*, если его вершины отличаются одна от другой какими-то метками.

3 разных помеченных графа

2 одинаковых помеченных графа

Теорема 4 (О числе помеченных n-вершинных графах). Число p_n различных помеченных n-вершинных графов с фиксированным множеством вершин равно

 $2^{\frac{n(n-1)}{2}}$

6 Проблема изоморфизма. Инварианты графа. Примеры.

Определение 13 (Инвариант графа). Инвариант графа G=(V,E) – это число, набор чисел, функция или свойство связанные с графом и принимающие одно и то же значение на любом графе, изоморфном G, то есть

$$G \cong H \Rightarrow i(G) = i(G)$$
.

Инвариант i называется nолным, если

$$i(G) = i(H) \Rightarrow G \cong H.$$

Обозначение: i(G)

Пример.

- 1. n(G) число вершин.
- 2. m(G) число ребер.
- 3. $\delta(G)$ min степень.
- 4. $\Delta(G)$ max степень.
- 5. $\phi(G)$ плотность графа G наибольшее число попарно смежных вершин.
- 6. $\varepsilon(G)$ неплотность наибольшее число попарно несмежных вершин
- 7. ds(G) вектор степеней (или степенная последовательность) последовательность степеней всех вершин, выписанная в порядке неубывания.
- 8. $\chi(G)$ хроматическое число наименьшее число χ , для которого го граф имеет правильную χ -раскраску множества вершин (правильная раскраска раскраска, при которой смежные вершины имеют разный цвет).

$$n(Q_4) = 4$$
 $\phi(Q_4) = 3$
 $m(Q_4) = 5$ $\varepsilon(Q_4) = 2$
 $\delta(Q_4) = 2$ $ds(Q_4) = (2, 2, 3, 3)$
 $\Delta(Q_4) = 3$ $\chi(Q_4) = 3$

7 Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.

Определение 14 (Соединимые вершины, связный граф). Две вершины u,v графа G называются coeduнимыми, если в G \exists (u,v)-маршрут.

Граф называется ceязным, если в нем любые две вершины соединимы.

Замечание. Тривиальный граф считается связным.

Определение 15 (Циклическое, ациклическое ребро). Ребро e называется $uu\kappa$ лическим, если оно принадлежит некоторому циклу, и $auu\kappa$ лическим – в противном случае.

Лемма 4 (Об удалении ребра). Пусть G = (V, E) – связный граф, $e \in E$.

- 1. Если e циклическое ребро, то граф G e связен.
- 2. Если e ациклическое, то граф G e имеет ровно две компоненты связности.

Теорема 5 (Оценки числа ребер связного графа). Если G — связный (n,m)-граф, то

$$n-1\leqslant m\leqslant \frac{n(n-1)}{2}.$$

8 Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.

Определение 16 (Плоский, планарный граф). *Плоский граф* – это такой граф, вершины которого являются точками плоскости, а ребра – непрерывными плоскими линиями без самопересечений, соединяющими вершины так, что никакие два ребра не имеют общих точек вне вершин.

 Π ланарный граф – это граф, изоморфный некоторому плоскому графу.

Замечание. Несложно доказать, что графы $K_{3,3}$ и K_5 – непланарны.

Определение 17 (Гомеоморфные графы). Два графа называются *го*меоморфными, если их можно получить из одного и того же графа с помощью разбиения ребер, то есть замены некоторых ребер простыми цепями.

Теорема 6 (Понтрягин-Куратовский). Граф планарен \Leftrightarrow он не содержит подграфов, гомеоморфных $K_{3,3}$ или K_5 .

Определение 18 (Грань). *Гранью* плоского графа называется максимальное множество точек плоскости, каждая пара из которых может быть соединена непрерывной плоскоской линией, не пересекающей ребер графа.

Теорема 7 (Формула Эйлера). Для всякого связного плоского графа верна формула

$$n - m + l = 2, (2)$$

где n – число вершин, m – число ребер, l – число граней графа.

9 Деревья. Первая теорема о деревьях.

Определение 19 (Ациклический граф, дерево). Граф называется $auu\kappa$ - $nuчec\kappa um$, если в нем нет цикла. Связный ациклический граф называется depesom.

Теорема 8 (Первая теорема о деревьях). Для (n,m)-графа G следующие утверждения эквивалентны:

- 1. G дерево, то есть связный ациклический граф.
- $2. \ G$ связен и m = n-1.
- 3. G ациклический и m = n 1.

10 Деревья. Вторая теорема о деревьях.

Теорема 9 (Вторая теорема о деревьях). Для (n,m)-графа G следующие утверждения эквивалентны:

- 1. G дерево, то есть связный ациклический граф.
- 4. G ациклический и если любую пару его несмежных вершин соединить ребром, то полученный граф будет содержать ровно один цикл.
- 5. Любые две вершины графа G соединены единственной простой цепью.

11 Теорема Кэли о числе помеченных *n*-вершинных деревьев (с леммой).

Лемма 5. При $n \geqslant 2$ существует взаимнооднозначное соответствие между множеством всех помеченных n-вершинных деревьев с метками $1,2,\ldots,n$ и множеством всех слов длины n-2 в алфавите $\{1,2,\ldots,n\}$.

Теорема 10 (А. Кэли, 1889). Число различных помеченных деревьев с n вершинами равно $t_n = n^{n-2}.$

12 Центр дерева. Центральные и бицентральные деревья. Теорема Жордана.

Примечание. $d(u,v) - \partial nu + a$ самой короткой простой (u,v)-цепи (длина — число ребер).

Определение 20 (Эксцентриситет). Эксцентриситет вершины v – расстояние до самой удаленной от v вершины графа:

$$\varepsilon(v) = \max_{u \in V} d(v, u).$$

Определение 21 (Радиус). Paduyc связного графа – это наименьший из эксцентриситетов его вершин:

$$\tau(G) = \min_{v \in V} \varepsilon(v).$$

Определение 22 (Центральная вершина). Вершина называется *центральной*, если ее эксцентриситет равен радиусу графа.

Определение 23 (Центр графа). Множество центральных вершин графа называется его *центром*.

Пример. Центр графа:

Определение 24 (Центральное, бицентральное дерево). Дерево, центр которого состоит из одной вершины, называется *центральным*, а дерево, центр которого состоит из двух смежных вершин – *бицентральным*.

Теорема 11 (Жордан). Центр любого дерева состоит из одной или двух смежных вершин.

13 Изоморфизм деревьев. Процедура кортежирования (на примере). Теорема Эдмондса.

Примечание (Процедура кортежирования дерева).

Вход: n-вершинное дерево T = (V, E).

Выход: Список натуральных чисел, представляющий кортеж Т.

13 ИЗОМОРФИЗМ ДЕРЕВЬЕВ. ПРОЦЕДУРА КОРТЕЖИРОВАНИ**Я** (НА ПРИМЕРЕ). ТЕОРЕМА ЭДМОНДСА.

Теорема 12 (Эдмондс). Для изоморфизма деревьев необходимо и достаточно, чтобы совпадали их центральные кортежи.

14 Вершинная и реберная связность графа. Основное неравенство связности.

Определение 25 (Вершинная связность (связность)). Вершинной связностью (связностью) обыкновенного нетривиального графа G называется наименьшее число вершин, в результате удаления которых получается несвязный или тривиальный граф:

$$\mathcal{X}(G)$$
.

Примечание. Для тривиального графа по определению полагаем

$$\mathcal{X}(O_1) = 0.$$

Пример. Для C_5, K_5 и C_3

Определение 26 (Реберная связность). *Реберной связностью* нетривиального графа называется наименьшее число ребер, в результате удаления которых получается несвязный граф:

$$\lambda(G)$$
.

Пример. $\lambda(O_1) = 0$,

14 ВЕРШИННАЯ И РЕБЕРНАЯ СВЯЗНОСТЬ ГРАФА. ОСНОВНОЕЗ НЕРАВЕНСТВО СВЯЗНОСТИ.

Теорема 13 (Основное неравенство связности). Для любого графа G $\mathcal{X}(G) \leqslant \lambda(G).$

15 Отделимость и соединимость. Теорема Менгера.

Определение 27 (Разделение вершин). Пусть G=(V,E) — связный граф, s и t — две несмежные вершины. Говорят, что множество вершин $\Omega \subset V$ разделяет s и t, если эти вершины принадлежат разным компонентам связности графа G — Ω .

Определение 28 (k-отделимые вершины). Несмежные вершины s и t называются k-отделимыми, если k равно наименьшему числу вершин, разделяющих s и t.

Определение 29 (Вершинно-независимые цепи). Две простые цепи, соединяющие s и t, называются вершинно-независимыми, если они не имеют общих вершин, отличных от s и t.

Определение 30 (l-соединимые вершины). Вершины s и t называются l-соединимымu, если l равно наибольшему числу вершинно-независимых цепей.

Теорема 14 (Менгер). В связном графе любые две несмежные вершины k-отделимы \Leftrightarrow они k-соединимы.

16 Реберный вариант теоремы Менгера.

Определение 31 (Разделение вершин). Пусть G=(V,E) — связный граф, s и t — две его произвольные вершины. Говорят, что множество ребер $R \subset E$ разделяет s и t, если эти вершины принадлежат разным компонентам связности графа G — R.

Определение 32 (k-реберно-отделимые вершины). Вершины s и t называются k-реберно-отделимыми, если k равно наименьшему числу ребер, разделяющих s и t.

Определение 33 (Вершинно-независимые цепи). Две простые цепи, соединяющие s и t, называются вершинно-независимыми, если они не имеют общих вершин, отличных от s и t.

Определение 34 (Реберно-независимые цепи). Две простые цепи, соединяющие s и t, называются peберно-независимыми, если они не имеют общих ребер.

Определение 35 (l-реберно-соединимые вершины). Вершины s и t называются l-реберно-соединимыми, если наибольшее число реберно-независимых (s,t)-цепей равно l.

Теорема 15 (Реберный аналог теоремы Менгера). В связном графе любые две вершины k-реберно-отделимы \Leftrightarrow они k-реберно-соединимы.