ETC - Definizioni e Teoremi

Decidibilità

- <u>Teorema</u>: Il linguaggio ATM = {<M,w> | M è una MdT che accetta la parola w} non è decidibile. (Dimostrazioni Decidibilità 1)
- <u>Teorema:</u> Il linguaggio ATM = {<M,w> | M è una MdT che accetta la parola w}
 è Turing riconoscibile.(Dimostrazioni Decidibilità 2)
- <u>Definizione:</u> Diciamo che un linguaggio L è co-Turing riconoscibile se ¬L è Turing riconoscibile.
- <u>Teorema:</u> Se un linguaggio L è decidibile allora anche ¬L è decidibile
- <u>Teorema:</u> Un linguaggio L è decidibile se e solo se L è Turing riconoscibile e co-Turing riconoscibile. (Dimostrazioni Decidibilità 3)
- <u>Teorema:</u> ¬ATM non è Turing riconoscibile. (Dimostrazioni Decidibilità 4)

Riduzioni

- **<u>Definizione:</u>** Una funzione f: $\Sigma^* \rightarrow \Sigma^*$ è calcolabile se esiste una TM M tale che su ogni input w in Σ^* , M si arresta con f(w), e solo con f(w), sul suo nastro.
- Definizione: Un linguaggio A⊆Σ* è riducibile mediante funzione a un linguaggio B⊆Σ*, e scriveremo A ≤m B, se esiste una funzione calcolabile f: Σ*→Σ* tale che ∀w∈Σ*, w∈A ⇔ f(w)∈B. La funzione f è chiamata una riduzione da A a B.
- **Teorema:** A ≤m B se e solo se ¬A ≤m ¬B. (Dimostrazioni Riducibilità 1.)
- <u>Teorema:</u> Se A ≤m B e B è decidibile, allora A è decidibile.
 (Dimostrazioni Riducibilità 2.)
- <u>Teorema:</u> Se A ≤m B e B è Turing riconoscibile, allora A è Turing riconoscibile. (Dimostrazioni Riducibilità 3.)
- Corollario: Se A ≤m B e A è indecidibile, allora B è indecidibile.
- <u>Corollario:</u> Se A ≤m B e A non è Turing riconoscibile, allora B non è Turing riconoscibile.

Riduzioni, Indecidibilità e Riconoscibilità

A_{TM} = { \langle M,w \rangle | M \text{ è una MdT e M accetta w}
 HALT_{TM} = { \langle M,w \rangle | M \text{ è una MdT e M si arresta su w}

Teorema: A_{TM} ≤m HALT_{TM} (Dimostrazioni Riducibilità 4.)

- **Teorema:** HALT_{TM} è indecidibile.
- A_{TM} = {<M,w> | M è una TM e w∈L(M)}
 E_{TM} = {<M> | M è una TM e L(M) = Ø}

<u>Teorema:</u> A_{TM} ≤_m ¬E_{TM}. (Dimostrazioni Riducibilità, Indecidibilità e Riconoscibilità 1)

<u>Teorema:</u> ¬E_{TM} è indecidibile.
 Infatti A_{TM} ≤m ¬E_{TM} e A_{TM} indecidibile ⇒ ¬E_{TM} indecidibile.

- Corollario: ETM è indecidibile..
- REGULAR_{TM} = {<M> | M è una MdT e L(M) è regolare}
 <u>Teorema:</u> A_{TM} ≤_m REGULAR_{TM}. (Dimostrazioni Riducibilità, Indecidibilità e Riconoscibilità 2)
- E_{TM} = {<M> | M è una MdT e L(M) = Ø}
 EQ_{TM} = {<M1,M2> | M1,M2 sono MdT e L(M1) = L(M2)}
 Teorema: E_{TM} ≤_m EQ_{TM}.
- <u>Teorema:</u> A_{TM} ≤_m EQ_{TM}.
- Teorema:
 - 1) A_{TM} ≤_m HALT_{TM}
 - 2) A_{TM} ≤_m ¬E_{TM}
 - 3) A_{TM} ≤_m REGULAR_{TM}
 - 4) E_{TM} ≤_m EQ_{TM}
 - 5) A_{TM} ≤_m EQ_{TM}
 - 6) A_{TM} ≤_m ¬EQ_{TM}
- <u>Corollario:</u> ATM, HALTTM, ETM, ¬ETM, REGULARTM, EQTM, ¬EQTM, sono linguaggi indecidibili.

- <u>Teorema:</u> EQ_{TM} non è nè Turing riconoscibile nè co-Turing riconoscibile. (Dimostrazioni Riducibilità, Indecidibilità e Riconoscibilità 3)
- <u>Teorema di Rice:</u> Sia L = {<M> | M è una MdT che verifica la proprietà P} un linguaggio che soddisfa le seguenti due condizioni:
 - 1. P è una proprietà del linguaggio L(M), cioè: prese comunque due MdT M1, M2 tali che L(M1) = L(M2) risulta <M1>∈L ⇔ <M2>∈L
 - 2. P è una proprietà non banale, cioè: esistono due MdT M3, M4 tali che <M3>∈L; <M4>∉L.

Allora L è indecidibile.

Teoria della Complessità classe P

- La classe P è l'insieme dei linguaggi L per i quali esiste una macchina di Turing deterministica con un solo nastro che decide L in tempo O(n^k) per qualche k ≥ 0, cioè: P = ∪_{k>0} TIME (n^k)
- Teorema:

```
PATH = \{ \langle G, s, t \rangle \mid G \text{ è un grafo orientato in cui } c' \text{è un cammino da } s \text{ a } t \}
```

E' un problema di raggiungibilità nei grafi. Una visita BFS o DFS da s ha tempo lineare nella codifica di una rappresentazione dell'istanza.

• Teorema: $RELPRIME \in P$

Teoria della Complessità classe NP

- **Definizione:** La classe EXPTIME = $\bigcup_{k\geq 1} TIME (2^{n^k})$
- Osservazione: P ⊆ EXPTIME
- <u>Definizione</u>: HAMPATH = { <G, s, t> | G è un grafo orientato, s e t vertici, G ha un cammino Hamiltoniano da s a t }
- Definizione Algoritmo di verifica

Definizione

Un algoritmo di verifica (o verificatore) V per un linguaggio A è un algoritmo tale che

$$A = \{ w \mid \exists c \text{ tale che } V \text{ accetta } (w, c) \}$$

La stringa c prende il nome di certificato o prova.

A è il linguaggio verificato da V.

- **<u>Definizione:</u>** NP è la classe dei linguaggi verificabili in tempo polinomiale.
- <u>Teorema</u>: Un linguaggio L è in NP se e solo se esiste una macchina di Turing non deterministica che decide L in tempo polinomiale.

• <u>Definizione classe NTIME</u>

Definizione

Sia $t: \mathbb{N} \to \mathbb{R}^+$ una funzione. La classe di complessità in tempo non deterministico NTIME(t(n)) è

 $NTIME(t(n)) = \{L \mid \exists \text{ una macchina di Turing non deterministica} M \text{ che decide } L \text{ in tempo } O(t(n))\}$

Corollario 7.22

$$NP = \bigcup_{k>0} NTIME(n^k)$$

- <u>Definizione:</u> Una clique o cricca in un grafo non orientato G è un sottografo di G in cui ogni coppia di vertici è connessa da un arco. Una k-clique è una clique che contiene k vertici.
- <u>Teorema</u>:

CLIQUE = $\{ < G,k > | G \text{ è un grafo non orientato in cui esiste una k-clique} \}$ CLIQUE $\in NP$.

• <u>Definizione</u>: SUBSET-SUM: Dato un insieme finito S di numeri interi e un numero intero t, esiste un sottoinsieme S' di S tale che la somma dei suoi numeri sia uguale a t?

SUBSET-SUM= { <S,t> | S = { x_1 ,..., x_n } ed esiste S' \subseteq S tale che $\sum_{s \in S'} s = t$ }

- <u>Teorema</u>: SUBSET-SUM ∈ NP
- <u>Teorema</u>: HAMPATH ∈ NP
- **Proposizione**: La classe P è chiusa rispetto al complemento.
- <u>Teorema</u>: P ⊆ NP

Complessità - Riduzioni in tempo polinomiale

- <u>Definizione:</u> Una funzione f : Σ* → Σ* è calcolabile in tempo polinomiale se esiste una macchina di Turing deterministica M di complessità di tempo polinomiale tale che su ogni input w, M si arresta con f(w) sul suo nastro.
- Definizione: Siano A e B linguaggi sull'alfabeto Σ. Una riduzione in tempo polinomiale f di A in B è una funzione f : Σ* → Σ* calcolabile in tempo polinomiale tale che ∀w ∈ Σ* abbiamo che w ∈ A ⇔ f (w) ∈ B
- <u>Definizione</u>: Un linguaggio A ⊆ Σ* è riducibile in tempo polinomiale a un linguaggio B ⊆ Σ*, e scriveremo A ≤p B, se esiste una riduzione di tempo polinomiale di A in B
- <u>Definizione:</u> Una formula booleana φ è soddisfacibile se esiste un insieme di valori 0 o 1 per le variabili che rendono φ soddisfatta (uguale a 1)
- <u>Definizione:</u> Una formula booleana φ è in forma CNF se è un AND di clausole (una clausola è un OR di letterali). Una formula booleana φ è in forma 3CNF se è un AND di clausole e ogni clausola ha 3 letterali.
- <u>Teorema</u>: 3SAT ≤p CLIQUE.

Teoria della Complessità - NP-completezza

- **Teorema:** Se A ≤_p B e B∈P, allora A∈P (dim.1)
- **Teorema:** Se $A \leq_p B$ e $B \leq_p C$ allora $A \leq_p C$. (dim.2)
- <u>Teorema:</u> P⊆NP. (dim.3)
- **Definizione:** Linguaggio NP-Completo

Definizione

Un linguaggio B è NP-completo se soddisfa le seguenti due condizioni:

- B appartiene a NP
- Per ogni linguaggio A in NP, A ≤ p B (ovvero B è NP-hard)
- Teorema: Se B è NP-completo e B è in P allora P = NP (dim.4).
- Teorema (Cook-Levin): SAT è NP-completo. (No Dim)
- <u>Teorema:</u> Se B è NP-completo e B ≤_p C, con C∈NP, allora C è NP-completo. (dim.5)
- **Teorema:** SAT_{CNF} è NP-completo
- Teorema: 3SAT è NP-completo (dim.6)
- Teorema: CLIQUE è NP-completo (dim.7)

Linguaggi NP completi

- **<u>Definizione:</u> VERTEX-COVER =** {<G,k> | G è un grafo non orientato che ha un vertex cover di cardinalità k}
- <u>Teorema</u>: **VERTEX-COVER** ∈ NP
- Teorema: VERTEX-COVER è NP-completo
- <u>Definizione:</u> SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\} \ ed \ esiste \ S' \subseteq S \ tale \ che \ \sum_{s \in S}, s = t \}$
- <u>Teorema</u>: **SUBSET-SUM** ∈ NP
- <u>Teorema</u>: SUBSET-SUM è NP-completo
- <u>Teorema</u>: **HAMPATH** ∈ NP
- **Teorema**: **HAMPATH** ∈ NP-completo
- **<u>Definizione</u>**: **UHAMPATH** = { <G, s, t > | G è un grafo non-orientato, s e t vertici e ha un cammino hamiltoniano da s a t}
- Teorema: UHAMPATH ∈ NP
- <u>Teorema</u>: **UHAMPATH** ∈ NP-completo

<u>Decidibilità</u>

Linguaggio	<u>Problema</u>	Linguaggio Associato	<u>Decidibilità</u>	<u>Riduzioni</u>
<u>Атм</u>	Accettazione	{ <m, w=""> M è una MdT che accetta w}</m,>	- Non decidibile - Riconoscibile - Non co-Turing Riconoscibile	ATM <m <m="" atm="" eqtm="" halttm="" regulartm="" th="" ¬eqtm<="" ¬etm=""></m>
<u>HALT_{TM}</u>	Fermata	{ <m, w=""> M è una MdT che si arresta su w}</m,>	- Non decidibile - Non co-Turing riconoscibile	A _{TM} < _m HALT _{TM}
<u>Етм</u>	Vuoto	{ <m> L(M) = Ø}</m>	- Non decidibile - Non riconoscibile - co-Turing riconoscibile	Атм <m ¬етм<br="">Етм <m th="" еqтм<=""></m></m>
REGULARTM	Regolare	{ <m> L(M) è regolare}</m>	- Non decidibile - Non co-Turing riconoscibile	ATM <m regulartm<="" th=""></m>
<u>EQтм</u>	Uguaglianza	$\{ < M_1, M_2 > L(M_1) = L(M_2) \}$	- Non decidibile - Non riconoscibile - Non co-Turing riconoscibile	ETM <m <m="" atm="" eqtm="" th="" ¬eqtm<=""></m>

<u>Complessità</u>

Linguaggio	<u>Problema</u>	Linguaggio Associato	Classe	Riduzioni
<u>PATH</u>	Cammino	{ <g, s,="" t=""> G grafo orientato in cui c'è un cammino da s a t}</g,>	Р	-
RELPRIME	Co-Primi	{ <x, y=""> x e y sono primi tra loro}</x,>	Р	-
<u>HAMPATH</u>	Cammino Hamiltoniano	{ <g, s,="" t=""> G grafo orientato in cui esiste un cammino hamiltoniano da s a t}</g,>	NP-COMPLETO	3SAT HAMPATH <p th="" uhampath<=""></p>
CLIQUE	k-Clique	{ <g, k=""> G grafo non orientato in cui esiste una k-clique}</g,>	NP-COMPLETO	3SAT <p clique<="" th=""></p>
SUBSET-SUM	Zaino semplificato		NP-COMPLETO	3SAT <p subset-sum<="" th=""></p>
SAT	Soddisfacibilità	{ <Φ> Φ è soddisfacibile }	NP-COMPLETO	SAT <p 3sat<="" th=""></p>
SAT _{CNF}	Soddisfacibilità in CNF	$\{ < \Phi > \mid \Phi \ \dot{e} $ soddisfacibile e in CNF $\}$	NP-COMPLETO	SAT <p satcnf<="" th=""></p>
<u>3SAT</u>	Soddisfacibilità 3 _{CNF}	$\{ <\Phi > \mid \Phi \ \dot{e} $ soddisfacibile e in $3_{CNF} \}$	NP-COMPLETO	SAT <p 3sat="" <p="" clique="" hampath<="" subset-sum="" th="" vertex-cover=""></p>
<u>VERTEX-</u> <u>COVER</u>	Vertex cover	{ <g, k=""> G grafo non orientato in cui esiste un vertex-cover di taglia k }</g,>	NP-COMPLETO	3SAT <p th="" vertex-cover<=""></p>
<u>UHAMPATH</u>	Cammino Hamiltoniano non orientato	{ <g, s,="" t=""> G grafo non orientato in cui esiste un cammino hamiltoniano da s a t}</g,>	NP-COMPLETO	HAMPATH <p th="" uhampath<=""></p>