ECG Classification using Deep Learning

MIT-BIH Arrythmia Dataset

Lewis Richter

University West, Trollhättan, Sweden

GitHub: ECGClassification.git

Creating change together.

EU AI Regulations Impact

- Why it matters: Healthcare AI is high-risk under EU law.
- Implications:
 - Requires GDPR compliance
 - Mandatory risk assessment
 - Transparent design and human oversight
- Outcome: Your model must be explainable and medically safe before deployment.

N

(

Requirements and Specifications

- Main Goal: Classify ECG heartbeats into 5 categories
- Requirements:
 - 1. Dataset: MIT-BIH Arrhythmia Dataset
 - 2. Accuracy $\geq 95\%$
 - 3. Training Time \leq 5 hours on M2 Mac Book Air
 - 4. Generalization on unseen data
 - 5. Evaluation with accuracy, precision, recall and F1-score

Dataset Overview

- Dataset: MIT-BIH Arrhythmia (via Kaggle)
- 5 Classes: Normal, Supraventricular, Ventricular, Fusion, Unknown
- Samples:
 - Training: 87,554 sample heartbeats
 - Test: 21,890 sample heartbeats

Dataset Overview

- Dataset: MIT-BIH Arrhythmia (via Kaggle)
- 5 Classes: Normal, Supraventricular, Ventricular, Fusion, Unknown
- Samples:
 - Training: 87,554 sample heartbeats
 - Test: 21,890 sample heartbeats

Dataset Overview

- 5 Classes:
 - Normal (N),
 - Supraventricular (S),
 - Ventricular (V),
 - Fusion (F),
 - Unknown (Q)
- Individual Beats extracted from 24 hours ECG
- Labelled independently by two experts

System Overview

- Dataset: MIT-BIH Arrhythmia (via Kaggle)
- Preprocessing:
 - Normalizing using StandardScaler:
 - Remove Mean
 - Scale to Unit Variance
 - Balancing using ImbLearn Library:
 - Random Under Sampling of Majority Class (N) to 50% (36,235 Heartbeats)
 - Random Over Sampling of Minority Classes to the same number of Heartbeats

System Overview

- Model Creation & Training:
 - CNN Model:
 - Input
 - 3x Convolutional Layer & MaxPooling
 - Flatten
 - Dense & Dropout
 - Output
 - CNN-RNN Model:
 - LSTM (Long Short-Term Memory):
 - LSTM (64 Units)
 - GRU (Gated Recurrent Units):
 - GRU(64 Units)
 - RELU Activation Function
 - ADAM Optimizer
 - Categorical Crossentropy
 - Reduce Learning Rate on Plateau

System Overview

- Evaluation:
 - Training Duration
 - Predict Class Labels for Test Set
 - Accuracy Score
 - Precision Score
 - Recall Score
 - F1 Score
 - Classification Report
 - Confusion Matrix
- Required Accuracy greater or equal to 95%
- Repeat, if necessary, otherwise satisfied

Algorithm Design (Iteration 1)

- Iterative Process for Model Refinement
- Based on Academic Literature and Course Concepts

Algorithm Design (Iteration 1)

Model Comparison: Accuracy:

• CNN: 8 min 4.4 sec 98.36%

• LSTM: 94 min 4.9 sec 98.20%

• GRU 74 min 33.7 sec 98.36%

Confusion Matrices in %

CNN	N	s	v	F	U	LSTM	N	S	v	F	U	GRU	N	S	v	F	U
N	99.12	0.45	0.35	0.09	0.09	N	98.87	0.75	0.18	0.07	0.13	N	99.07	0.45	0.22	0.10	0.16
s	17.09	81.47	1.26	0.00	0.18	s	13.31	85.25	0.72	0.54	0.18	S	13.85	83.81	1.98	0.00	0.36
v	2.49	0.07	96.13	1.24	0.07	v	2.28	0.35	95.51	1.59	0.28	v	1.93	0.41	95.93	1.31	0.41
F	8.02	0.00	7.41	84.57	0.00	F	9.26	0.00	7.41	83.33	0.00	F	9.26	0.62	10.49	79.63	0.00
U	0.75	0.06	0.06	0.00	99.13	U	0.81	0.12	0.06	0.00	99.00	U	0.44	0.00	0.12	0.00	99.44

Algorithm Design (Iteration 2)

 Incorporated Residual Blocks (Main Path and Shortcut using Skip Connection)

• Model Comparison: Accuracy: Improvement

CNN: 120 min 41.4 sec 98.15% No
 LSTM: 259 min 55.6 sec 98.57% Yes

• GRU 113 min 9.3 sec 97.88% No

CNN	N	s	v	F	U	LSTM	N	S	v	F	U	GRU	N	s	v	F	U
N	98.80	0.55	0.41	0.12	0.11	N	99.35	0.28	0.20	0.09	0.08	N	98.69	0.63	0.46	0.09	0.13
S	14.75	83.09	1.98	0.18	0.00	S	16.01	81.83	1.62	0.36	0.18	s	18.53	79.86	1.26	0.36	0.00
v	1.66	0.07	96.34	1.66	0.28	v	2.07	0.28	96.20	1.38	0.07	v	1.59	0.69	95.86	1.38	0.48
F	5.56	1.23	8.64	84.57	0.00	F	7.41	0.62	7.41	84.57	0.00	F	8.02	0.62	10.49	80.86	0.00
U	0.81	0.06	0.12	0.06	98.94	U	0.87	0.00	0.06	0.00	99.07	U	0.81	0.19	0.44	0.00	98.57

Algorithm Design (Iteration 3)

- Incorporated Batch Normalization,
- Extend RNNs by introducing bidirectional layers
- Global Average Pooling instead of Flattening
- Model Comparison: Accuracy: Improved:
 - CNN: 34 min 33.9 sec 97.88% No
 - LSTM: 28 min 20.7 sec 98.20% No
 - GRU 30 min 50.9 sec 98.04% No
- Confusion Matrices in %

CNN	N	s	v	F	U	LSTM	N	s	v	F	U	GRU	N	S	v	F	U
N	98.60	0.81	0.38	0.06	0.15	N	98.88	0.64	0.24	0.11	0.13	N	98.65	0.67	0.36	0.19	0.13
s	15.65	82.55	1.44	0.36	0.00	S	15.29	82.37	1.80	0.54	0.00	S	13.67	83.81	1.80	0.36	0.36
v	1.80	0.41	95.99	1.31	0.48	v	2.28	0.21	96.13	1.24	0.14	v	1.86	0.41	95.86	1.59	0.28
F	9.88	0.00	12.35	77.78	0.00	F	9.26	0.00	8.02	82.72	0.00	F	3.70	0.62	8.64	87.04	0.00
U	0.81	0.31	1.87	0.00	98.69	U	0.37	0.62	0.12	0.62	99.38	U	0.56	0.00	0.12	0.19	99.13

Future Work & Conclusion

- Iteration 1 Models have already been promising classifiers.
- The Requirements have been met generally, a working classifier has been trained using multiple approaches.
- Nevertheless per-class performance needs improvement.
- The most efficient classifier was the CNN in Iteration 1, and the overall best classifier the CNN-LSTM in Iteration 2 using Residual Connections.
- Suggestion:
 - Perform synthetic over sampling techniques such as SMOTE or ADASYN for better class balancing
 - Focus on per-class precision and recall to meet EU AI Regulations on healthcare requirements

Thank You!

Contact: lewis.richter@student.hv.se
University West, Trollhättan, Sweden
GitHub: ECGClassification.git

Creating change together.