Math Final Summary Note

Definite Integral

$$\int_a^b f(x) dx \ \int_a^b -f(x) dx = -\int_a^b f(x) dx$$

Given f(x) defined on [a,b] and $\exists s \in [a,b]$,

$$\int_a^b f(x) dx = \int_a^s f(x) dx + \int_s^b f(x) dx$$

Riemann Sum/Integral

- ullet Given f defined on [a,b]
 - \bullet *n* subdivisions of equal length
 - approximate each vertical strip using a rectangle
 - \sum Area of strip
 - ullet $n o\infty$
- f is continuous on [a,b], consider $\int_a^b f(x)dx$
 - n strips: $\Delta x = \frac{b-a}{n}$
 - $[x_0, x_1], [x_1, x_2], \ldots, [x_{k-1}, x_k], \ldots, [x_{n-1}, x_n]$
 - consider sample point $x_k^* \in [x_{k-1},x_k]$ and build rectangle with height $f(x_k^*)$, and area $\Delta x \cdot f(x_k^*)$

$$S_n = \Delta x \sum_{k=1}^n f(x_k^*)$$

- ullet Possible x_k^*
 - ullet Right Riemann sum: $x_k^* = x_k = a + k \Delta x$

$$R_n = \Delta x \sum_{k=1}^n f(x_k)$$

ullet Left Riemann sum: $x_k^* = x_{k-1} = a + (k-1) \Delta x$

$$ullet L_n = \Delta x \sum_{k=1}^n f(x_{k-1})$$

ullet Midpoint Riemann sum: $x_k^* = rac{x_{k-1} + x_k}{2}$

$$oldsymbol{\Phi} M_n = \Delta x \sum_{k=1}^n f(x_k^M)$$

• Trapezoidal Riemann sum

$$ullet T_n = \Delta x \sum_{k=1}^n rac{f(x_{k-1}) + f(x_k)}{2}$$

Properties of Integral

Definition of Definite Integral

$$\lim_{n o\infty}\sum_{k=1}^n f(x_k^*)\Delta x = \int_a^b f(x)dx$$

ullet If the limit exists, the limit takes the same value $orall x_k^* \in [x_{k-1},x_k]$

When does $lim_{n o \infty} S_n$ exist?

- f(x) is defined on [a,b]
 - ullet continuous on [a,b], or,
 - finite number of jump discontinuities
- f(x) is integrable on [a,b]

Properties of the Definite Integral

$$egin{aligned} \int_a^b [f(x)\pm g(x)]dx &= \int_a^b f(x)dx \pm \int_a^b g(x)dx \ &\int_a^b kdx = k(b-a) \ &\int_a^b [Af(x)\pm Bg(x)]dx = A\int_a^b f(x)dx \pm B\int_a^b g(x)dx \ &\int_a^b -f(x)dx = -\int_a^b f(x)dx \ &\int_a^a f(x)dx = 0 \ &\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \end{aligned}$$

Properties of Summation

$$egin{aligned} \sum_{i=1}^n k \cdot x_i &= k \sum_{i=1}^n x_i \ \sum_{i=1}^n (x_i + y_i) &= \sum_{i=1}^n x_i + \sum_{i=1}^n y_i \ \sum_{i=a}^n k &= k(n-a+1) \ \sum_{i=1}^n &= rac{n(n+1)}{2} \end{aligned}$$

Reverse Engineering

- Find Δx
- order(i) = order(n)
- ullet Guess a and b
- ullet Guess f

$$\lim_{n o \infty} \sum_{i=1}^n rac{i^4}{n^5} = \int_a^{a+1} (x-a)^4 dx$$

Fundamental Theorem of Calculus

Definition of Integral Function

Given **continuous** function f on [a,b], $\forall x \in [a,b]$, let

$$F(x) = \int_a^x f(t) dt$$

Function composition

$$F(g(x)) = \int_a^{g(x)} f(t) dt$$

Derivatives

$$F'(x) = f(t)$$
 $[F(g(x))]' = f(g(x)) \cdot g'(x)$

Fundamental Theorem of Calculus

Let f be continuous on I, $\exists a \in I$

- ullet Part 1: Define $F(x)=\int_a^x f(t)dt$ on I o F'(x)=f(x) on I
- ullet Part 2: G be any antiderivative of f on I, then $orall b \in I$, $\int_a^b f(t) dt = G(b) G(a)$

Area Between Curves

If f(x) and g(x) are continuous, and $f(x) \geq g(x)$ on [a,b], then the area between curve is

$$Area = \int_a^b [f(x) - g(x)] dx$$

Depending on the situation, it could be easier to do $\int [f(y)-g(y)]dy$

Also make sure the different intervals of different inequality relationships

Modelling with ODEs

- $\frac{dy}{dt} = ay + b$
- separable if y' = g(y)f(t)
- if separable, $\int \frac{1}{g(y)} dy = \int f(t) dt$
- IVP: ODE with initial conditions
- Solving an ODE is to find the functions that satisfy the ODE

Techniques of Integration

Substitution - Reverse Chain Rule

Assume: f(x) and g(x) are continuous, f(g(x)) is defined. If u=g(x), then

$$\int f'g(x)\cdot g'(x)dx=\int f'(u)dx$$

$$\int_a^b f'g(x)\cdot g'(x)dx=\int_{g(a)}^{g(b)} f'(u)dx$$

Integration by Parts - Reversing Product Rule

If u and v are differentiable,

$$\int u dv = uv - \int v du, \int_a^b u dv = uv \Big|_a^b - \int_a^b v du \Big|_a^b$$

where $dv = \frac{dv}{dx} dx$, and $du = \frac{du}{dx} dx$.

Make sure $\int v du$ can be computed with existing techniques

Choosing \boldsymbol{u} and \boldsymbol{v}

- easy to either differentiate or integrate
 - ln(x) is easy to differentiate, not to integrate
 - arctan(x) is easy to differentiate, not to integrate
 - $\frac{1}{1+x^2}$ is easy to integrate, not to differentiate
 - e^x , sin(x), cos(x), . . .

Partial Fraction

$$\int rac{a}{bx+c} = rac{a}{b}ln|bx+c|+C$$
 $Case1: \Delta>0, \int rac{dx+e}{ax^2+bx+c}dx = \int (rac{A}{x-m}+rac{B}{x-n})dx$ $Case2: \Delta=0, \int rac{dx+e}{ax^2+bx+c}dx = \int [rac{A}{x-m}+rac{B}{(x-m)^2}]dx$

 $Case 3: \Delta < 0, complete the square for denominator$

$$egin{split} rac{P(x)}{(x-r)(x-s)(x-t)} &= rac{A}{x-r} + rac{B}{x-s} + rac{C}{x-t}, A = rac{P(r)}{(r-s)(r-t)}, etc \ &rac{P(x)}{(x-r)(x^2+bx+c)} &= rac{A}{x-r} + rac{B}{x^2+bx+c} \end{split}$$
 $By \ long \ division, rac{P(x)}{Q(x)} &= s(x) + rac{r(x)}{Q(x)}, if \ deg(P(x)) > deg(Q(x)) \end{split}$

Trig Sub

- Trig Integrals
 - $\int sin(x)dx = -cos(x) + C$
 - $\int cos(x)dx = sin(x) + C$
 - $\int sec^2(x)dx = tan(x) + C$
 - $\int sec(x)tan(x)dx = sec(x) + C$
 - $\int tan(x)dx = -ln|cos(x)| + C$
 - $\int sec(x)dx = ln|sec(x) + tan(x)| + C$
- Trig Identities

•
$$sin^2(x) = \frac{1}{2}(1 - cos(2x))$$

•
$$cos^2(x) = \frac{1}{2}(1 + cos(2x))$$

•
$$sin(2x) = 2sin(x)cos(x)$$

•
$$cos(2x) = cos^2(x) - sin^2(x)$$

•
$$sin^2(x) + cos^2(x) = 1$$

• Prosthaphaeresis

$$ullet \ sin(lpha) + sin(eta) = 2sin(rac{lpha+eta}{2})cos(rac{lpha-eta}{2})$$

•
$$sin(\alpha)cos(\beta) = \frac{1}{2}[sin(\alpha + \beta)sin(\alpha - \beta)]$$

$$\bullet \ sec^2(x)=1+tan^2(x)$$

• $\int sin^n(x)cos^m(x)dx$

$$ullet$$
 n odd, $u=cos(x)
ightarrow -\int (1+u^2)^{rac{n-1}{2}}u^mdu$

$$ullet \ m ext{ odd, } u = sin(x)
ightarrow \int u^n (1-u^2)^{rac{m-1}{2}} du$$

ullet m and n even, integration of sum of even power of sin(x)

• $\int sec^m(x)tan^n(x)dx$

•
$$\int sec^2(x)dx = tan(x) + C$$

•
$$\int sec(x)tan(x)dx = sec(x) + C$$

• Trig sub

•
$$\sqrt{a^2-x^2} o x = asin(\theta)$$

•
$$\sqrt{a^2 + x^2} \rightarrow x = atan(\theta)$$

Solids

$$Volume = \lim_{n o \infty} \sum_{i=1}^n A(x_i^*) \Delta x = \int_a^b A(x) dx$$

Washer: $L \perp$ axis of rotation

$$Area=\pi(y_2^2-y_1^2)$$

$$Volume = \int_a^b \pi [(f(x))^2 - (g(x))^2] dx$$

Cylinder: $L \parallel$ axis of rotation

$$Area = 2\pi x(y_2 - y_1)$$

$$Volume = \int_a^b 2\pi x [f(x) - g(x)] dx$$

Improper Integrals

Type I

Let f be continuous on $[a, \infty)$, or $(-\infty, a]$

$$\int_a^\infty f(x)dx = \lim_{R o\infty}\int_a^R f(x)dx, \int_{-\infty}^a f(x)dx = \lim_{R o-\infty}\int_R^a f(x)dx$$

- If the limit exists, the integral is convergent
- If the limit DNE, the integral is divergent, if $lim=\pm\infty$, it diverges to $\pm\infty$
- If f is continuous on $[d,\infty)$, s.t. $a\in [d,\infty)$ and $b\in [d,\infty)$, $\int_a^\infty f(x)dx$ converges $iff\int_b^\infty f(x)dx$ converges, since $\int_a^\infty f(x)dx = \int_a^b f(x)dx + \int_a^\infty f(x)dx$

Type II

If f is continuous on (a,b] or [a,b), and $c\in(a,b]$ or $c\in[a,b)$,

$$\int_a^b f(x)dx = \lim_{c o a^+} \int_c^b f(x)dx, \int_a^b f(x)dx = \lim_{c o b^-} \int_a^c f(x)dx$$

Comparison Theorem

 $-\infty \leq a \leq b \leq \infty$, assume f and g are continuous on (a,b), and $\forall x \in (a,b)$, $0 \leq f(x) \leq g(x)$,

- If $\inf_a^b g(x)dx$ is convergent, $\int_a^b f(x)dx$ is convergent
- If $\int_a^b f(x)dx$ is divergent (to ∞), $\int_a^b g(x)dx$ is divergent (to ∞)

Continuous Probability

Definition: A continuous random variable X is an object that records **outcome** of an experiment as one of a continuous set of values

$$p(x_1 \leq X \leq x_2) = \int_{x_1}^{x_2} f(x) dx$$

f(x): Probability Density Function (PDF)

- $f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x)dx = 1$

Statistical Tools:

- Mean: $\mu = \int_{-\infty}^{\infty} x f(x) dx$
- Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x-\mu) f(x) dx$
- Standard deviation: $\sigma = \sqrt{\sigma^2}$
- Expectation: $E(X) = \int_{-\infty}^{\infty} X f(x) dx$
- $\sigma^2 = E(x^2) \mu^2$

Distributions

- Uniform
 - $f(x) = \frac{1}{b-a}, \forall x \in [a,b], f(x) = 0, otherwise$
 - $\mu = \frac{a+b}{2}, \sigma^2 = \frac{a^2+ab+b^2}{3} (\frac{a+b}{2})^2$
- Exponential
 - ullet $f(x)=ke^{-kx}, orall x\in [0,\infty), f(x)=0, otherwise$
 - $\mu = \sigma = \frac{1}{k}$
- Standard
 - $\bullet \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$
 - $\mu=0, \sigma=1$
 - $ullet f_{\mu,\sigma}(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$
 - $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$

Cumulative Density Function

• Given a PDF, define a CDF

$$F(t) = \int_{-\infty}^t f(x) dx$$
 $\lim_{t o \infty} F(t) = 1$

- Median
 - Uniform: $\frac{a+b}{2}$
 - Exponential: $\frac{ln2}{k}$
 - Standard: 0

$$t \ when \ F(t) = rac{1}{2}$$

Work

$$W=\int_a^b F(r)dr$$

Can also integrate over time, be flexible regarding which integral to use.

Key to find the force F(r) over a small displacement Δr .

Sequence and Series

Sequence

- A sequence is an ordered list of real numbers with a first element in the list but no last element.
- A sequence is a function where the domain is set of $\ensuremath{\mathbb{Z}}^+$
- $ullet \ a_n=f(n), orall n\in \mathbb{Z}^+$
- A sequence a_n is said to converge to L $(a_n o L)$ if as n gets larger and larger, a_n gets closer and closer to L

- If a_n does not converge, it diverges; if $a_n \to \pm \infty$, then the sequence diverges to $\pm \infty$
- Theorem
 - Suppose $a_n \le c_n \le b_n$, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$, then $\lim_{n \to \infty} c_n = L$
- $n^p \le r^n \le n! \le n^n$
- Rigorous Definition
 - ullet $\forall \epsilon>0,\exists N\in\mathbb{Z}^{+},$ if $n\geq N,$ $|a_{n}-L|<\epsilon$
- Every convergent sequence is bounded
- Every bounded increasing sequence is convergent

Series

• Infinite series: A formal sum $a_1+a_2+a_3+\ldots+a_n+\ldots$, where $a_1,a_2,a_3,\ldots,a_n,\ldots$ is an infinite sequence, written as

$$ullet \sum_{n=1}^\infty a_n$$

• *n*th partial sum of a series is

$$S_n = \sum_{i=1}^n a_i$$

• Therefore,

$$ullet \sum_{i=1}^{\infty} a_i = \lim_{n o\infty} \sum_{i=1}^n a_i = S$$

- ullet In this case, we say the series converges to that limit S
- Geometric Series

$$\sum_{n=1}^{\infty} a r^{n-1}$$

• If
$$a = 0, S = 0$$

• If
$$|r|<1$$
, $S=rac{a}{1-r}$

• If $r \geq 1$ and a > 0, diverges to ∞

- If a < 0, diverges to $-\infty$
- If r = -1, series diverges
- Telescoping Series

•

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

- Partial sum: $S_n = 1 \frac{1}{n+1}$
- Converges to 1
- Harmonic Series

•

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- Diverges to ∞
- p-Series

•

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

- If p > 1, converges
- If p=1, harmonic series
- If p < 1, diverges

Tests for Convergence and Divergence

- Divergence Test
 - ullet If $\sum_{n=1}^\infty a_n$ converges, then $\lim_{n o\infty} a_n=0$
- ullet If $a_n \geq 0$ and S_n are bounded, $\sum_n a_n$ converges (S_n is bounded and increasing)
- Integral Test
 - $\bullet \;$ Let f be **continuous**, **non-negative**, and **decreasing**, on some interval $[N,\infty)$
 - Let $a_n = f(n)$
 - Then $\sum_n a_n$ converges $iff \int_N^\infty f(x) dx converges$
- Elementary Comparison Tests
 - Let $\forall n: 0 \leq a_n \leq b_n$

- If $\sum_n b_n$ converges, $\sum_n a_n$ converges
- If $\sum_n a_n$ diverges to ∞ , $\sum_n b_n$ diverges to ∞
- If $\sum_n |a_n|$ converges, then $\sum_n a_n$ converges
- Limit Comparison Test
 - Let a_n, b_n be infinite sequences, s.t. each $b_n>0$, and $\lim_{n\to\infty} \frac{a_n}{b_n}=L$, L is finite
 - If $\sum_n b_n$ converges, so does $\sum_n a_n$
 - If $\sum_n a_n$ diverges and L
 eq 0, so does $\sum_n b_n$
- Ratio Test

$$\lim_{n o\infty}|rac{a_{n+1}}{a_n}|=L$$

- If L < 1, the series converges
- If L > 1, the series diverges
- Otherwise, the series can go either way
- ullet An infinite series $\sum_n a_n$ is absolutely convergent if $\sum_n |a_n|$ converges
 - If $\sum_n a_n$ is absolutely convergent, then $\sum_n a_n$ is convergent, since $\sum_n a_n \leq \sum_n |a_n|$
 - An infinite series is **conditionally convergent**, if $\sum_n a_n$ is convergent but $\sum_n |a_n|$ diverges
- Alternating Series Test
 - ullet Let a_n be a sequence, $orall a_n \geq 0$, a_n is decreasing, $\lim_{n o \infty} a_n = 0$
 - Then $\sum_n (-1)^{n-1} a_n = a_1 a_2 + a_3 a_4 + a_5 \dots$ is convergent

Power Series

Definition: A power series is an object of the form

$$\sum_{n=0}^{\infty} A_n (x-c)^n = A_0 + A_1 (x-c) + A_2 (x-c)^2 + \ldots$$

 A_n is the coefficient, and c is the center

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \ldots = \frac{1}{1-x}, |x| < 1$$

Can differentiate and integrate power series

$$f(x)=\sum_{n=0}^{\infty}A_n(x-c)^n \ f'(x)=\sum_{n=0}^{\infty}nA_n(x-c)^{n-1} \ \int f(x)dx=C+\sum_{n=0}^{\infty}A_nrac{(x-c)^{n+1}}{n+1}$$

Let R be the radius of convergence, $A=\lim_{n o\infty}|rac{A_{n+1}}{A_n}|$, we have $R=rac{1}{A}$

- ullet $R=\infty$, converges everywhere
- ullet R=0, converges only at x=c, $\sum_{n=0}^{\infty}A_n(x-c)^n=A_0$

Taylor Series

$$f(x)=\sum_{n=0}^{\infty}rac{f^{(n)}(c)}{n!}(x-c)^n$$

If $f(x) = \sum_{n=0}^{\infty} A_n (x-c)^n$ holds true $\forall x$ in some open interval containing c, then that power series is a Taylor Series,

$$A_n = rac{f^{(n)}(c)}{n!}$$

This does not indicate that $f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(c)}{n!}(x-c)^n$ holds true throughout the radius of convergence.

Remainder:

$$\exists a \in [c,x], R_n(x) = rac{f^{(n+1)}(a)}{(n+1)!} (x-c)^{n+1}$$

To prove a power series hold for all x, just prove $\lim_{n o\infty}R_n(x)=0$

In a Taylor series, the nth derivative is always obtained from the coefficient of the term x^n .

Function with no analytical solutions to its integral can be expressed in a power series. $\int \frac{sin(x)}{x} dx$

Common Taylor Series

$$rac{1}{1-x} = \sum_{n=0}^{\infty} x^n, |x| < 1$$
 $e^x = \sum_{n=0}^{\infty} rac{x^n}{n!}$ $sin(x) = \sum_{n=0}^{\infty} rac{(-1)^n}{(2n+1)!} x^{2n+1}$ $cos(x) = \sum_{n=0}^{\infty} rac{(-1)^n}{(2n)!} x^{2n}$