

Biostatistics for Med Students

Lecture 2

John J. Chen, Ph.D.

Professor & Director of Biostatistics Core

UH JABSOM

JABSOM MD7

February 20, 2019

Lecture note: http://biostat.jabsom.hawaii.edu/Education/training.html

Lecture Objectives

- To understand basic research design principles and data presentation approaches
- To build a foundation which will facilitate the active participation in clinical research
- To fully grasp descriptive statistics
- To introduce key concepts of inferential statistics
- To survey some commonly used statistical approaches
- To be prepared for the USMLE Step 1 biostat/epi questions

Outline

Lecture 1 (02/13/2019)

- The goal of statistics
- Introduction to descriptive biostatistics
- Basic research design principles and data presentation approaches

Lecture 2 (02/20/2019)

- Introduction to inferential statistics
- Commonly used statistical approaches

Effects and Variability Birth Birth Weight Weight $-\overline{Y}_3$ \overline{Y}_3 \overline{Y}_{ullet} \overline{Y}_{ullet} $\overline{Y_1}$ \overline{Y}_1 $\overline{}$ \overline{Y}_2 Group B Group A Group B Group C Group A Group C Note: Biological/clinical significance vs. statistical significance

AUC For Normal Distribution

The Rule of Thumb:

Within one s.d.: 68.27% (2/3) Within two s.d.: 95.45% (95%) Within three s.d.: 99.74% (99%)

The Normal Distribution

Standard normal distribution: $Z \sim N(\mu = 0, \sigma^2 = 1)$

Given $X \sim N(\mu, \sigma^2)$, we have $Z=(X - \mu)/\sigma$.

Sampling Distribution

The distribution of individual observations versus the distribution of sample means:

Central Limit Theorem

The distribution of sample means (sampling distribution) from a population is <u>approximately normal as long as the sample size is large</u>, i.e.,

$$\overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}}^2)$$
 \rightarrow $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$

- 1. The population distribution can be non-normal.
- 2. Given the population has mean μ , then the mean of the sampling distribution, $\mu_{\overline{\chi}} = \mu$.
- 3. If the population has variance σ^2 , the standard deviation of the sampling distribution, or the standard error (a measure of the amount of sampling error) is

$$\sigma_{\overline{X}} = s.e.(\overline{X}) = \frac{\sigma}{\sqrt{n}}.$$

Hypothesis Testing

An Example:

Normal serum creatinine level depends on the population studied. From the literature a 4th year JABSOM med student found that one well-established study showed an average sCr of 0.56 (with a standard deviation of 0.15 mg/dL) for 2nd trimester Caucasian pregnant women living on the east coast. But based on her knowledge and experience, she believed that the μ of sCr among Japanese pregnant women in Hawaii seemed different.

She decided to test this by measuring sCr of 49 local Japanese 2nd trimester pregnant women.

Hypothesis Testing

Basic steps of hypothesis testing:

- 1. State null $(H_0:)$ and alternative $(H_1:)$ hypotheses
- 2. Choose a significance level, α (usually 0.05 or 0.01)
- 3. Determine the critical (or rejection) region and the non-rejection region, based on the sampling distribution and under the null hypothesis
- 4. Based on the sample, calculate the test statistic and compare it with the critical values
- 5. Make a decision, and state the conclusion

Errors, Power, and Statistical Decision

<u>Type I Error (α)</u> - False positives, errors due to chance

Reject H₀ when H₀ is true

<u>Type II Error (β)</u> - False negatives

- Don't reject H₀ when H₁ is true

Power: $(1-\beta) = 1 - P$ (Type II Error)

Truth
Ho True Ho False

Decision

Reject Ho Not reject Ho

α	1- β
1- α	β

p-values

Interpretation:

The *p*-value is the probability of obtaining a result as extreme or more extreme than the one observed based on the current sample, given the null hypothesis is true.

Note: "Statistically significant" does not necessarily mean "biologically (or clinically) significant"!!!

Study Design: Power & Sample Size

Five General Design Factors:

- DF 1. Effect difference
- DF 2. Variability
- DF 3. Statistical power (1- β)
- DF 4. α level (Type I error)
- DF 5. Sample size

Sample Size =
$$f(DF1, DF2, DF3, DF4)$$

Statistical Power = f(DF1, DF2, DF4, DF5)

Sample Size = $f(DF1 = 0.62 - 0.56, DF2 = 0.15, DF3 = 0.80, DF4 = 0.05) \approx 49$.

 μ_0

Hypothesis Testing (cont.)

Example (cont.): Say, the average sCr of the sample of 49 locals is 0.60 mg/dL and the population standard deviation is 0.15 mg/dL (based on the literature).

Step 1. State
$$H_0$$
: and H_1 :
 H_0 : $\mu_{sCr} = 0.56$ vs. H_1 : $\mu_{sCr} \neq 0.56$

Step 2. Choose a significant level, say, α =0.05.

Step 3. Calculate the test statistic:

$$Z = \frac{\overline{X} - \mu_{sCr}}{\sigma / \sqrt{n}} = \frac{0.60 - 0.56}{0.15 / \sqrt{49}} = 1.87.$$

Hypothesis Testing (cont.)

Step 4. Determine the critical region and the non-rejection region:

The critical value: \pm 1.96.

The rejection region: $|Z| \ge 1.96$. The non-rejection region: |Z| < 1.96.

Step 5. Make a decision, based on the sample, and state the conclusion: As the test statistic Z = 1.87 < 1.96, it is within the non-rejection region. Therefore, we do not reject the null hypothesis. We conclude that there is no evidence that the average sCr among local Japanese 2nd trimester women is different from 0.56 mg/dL.

Confidence Intervals

Cls for μ : 90% CI : $\overline{X} \pm 1.645 \frac{\sigma}{\sqrt{n}}$ 95% CI : $\overline{X} \pm 1.960 \frac{\sigma}{\sqrt{n}}$ 99% CI : $\overline{X} \pm 2.575 \frac{\sigma}{\sqrt{n}}$

Interpretation of 95% Confidence Interval for μ :

A. You can be 95% sure that the true mean (μ) will fall within the upper and lower bounds.

B. 95% of the intervals constructed using sample means, will contain the true mean (μ).

Guinness & The Student's t-Test

- A small sample from normal distribution
- Unknown population standard deviation, σ

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$
 with n -1 degrees of freedom.

The (Student's) t-distribution is very similar to normal distribution, with heavier tails.

t – Table (tail probabilities of the t-distributions)						
Degrees of Freedom	2Q (Q) 0.10 (0.05)	0.05 (0.025)	0.01 (0.005)	0.005 (0.0025)	0.001 (0.0005)	
1	6.3138	12.706	63.657	127.32	636.62	
2	2.9200	4.3026	9.9251	14.0911	31.6075	
3	2.3534	3.1825	5.8408	7.4533	12.9258	
4	2.1318	2.7764	4.6040	5.5980	8.6087	
5	2.0151	2.5706	4.0323	4.7734	6.8701	
6	1.9432	2.4469	3.7075	4.3169	5.9590	
7	1.8946	2.3646	3.4995	4.0293	5.4088	
8	1.8595	2.3060	3.3555	3.8326	5.0421	
9	1.8331	2.2621	3.2498	3.6895	4.7805	
10	1.8125	2.2281	3.1693	3.5814	4.5871	
11	1.7959	2.2010	3.1057	3.4967	4.4374	
12	1.7823	2.1788	3.0545	3.4285	4.3184	
13	1.7709	2.1604	3.0122	3.3726	4.2215	
14	1.7613	2.1448	2.9768	3.3258	4.1412	
15	1.7530	2.1314	2.9467	3.2862	4.0735	
16	1.7459	2.1199	2.9207	3.2521	4.0157	
17	1.7396	2.1098	2.8982	3.2226	3.9659	
18	1.7341	2.1009	2.8784	3.1967	3.9224	
19	1.7291	2.0930	2.8609	3.1738	3.8841	
20	1.7247	2.0860	2.8453	3.1535	3.8502	
21	1.7207	2.0796	2.8313	3.1353	3.8200	
22	1.7171	2.0739	2.8187	3.1189	3.7928	
23	1.7139	2.0687	2.8073	3.1041	3.7683	
24	1.7109	2.0639	2.7969	3.0906	3.7461	
25	1.7081	2.0595	2.7874	3.0783	3.7258	
26	1.7056	2.0555	2.7787	3.0670	3.7073	
27	1.7033	2.0518	2.7707	3.0566	3.6903	
28	1.7011	2.0484	2.7632	3.0470	3.6746	
29	1.6991	2.0452	2.7564	3.0382	3.6601	
30	1 6072	2.0422	2.7500	2.0200	2.6466	

One Sample t – Test

Problem: Neonates gain (on average)
100 grams/wk in the first 4 weeks. A
sample of 25 infants given a new
nutrition formula gained 112 grams/wk
(on average) with standard deviation =
30 grams. Is this statistically significant?

Test: H_0 : $\mu = 100$ H_1 : $\mu \neq 100$

One Sample t - Test

Solution:

$$t = \frac{112 - 100}{30 / \sqrt{25}} = 2.0 < t_{24, \, 0.025} = 2.06$$

Therefore, do not reject (p-value=0.057).

Two Independent Sample *t* - Test

Test: H_0 : $\mu_1 = \mu_2$ versus H_1 : $\mu_1 \neq \mu_2$, assuming $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

Two Independent Sample *t* - Test

Problem: Two headache remedies

Brand A: $\overline{X}_1 = 20.1$, $S_1 = 8.7$, $N_1 = 12$

Brand B: \overline{X}_2 = 18.9, S_2 = 7.5, N_2 = 13

<u>Test:</u> H_0 : $\mu_1 = \mu_2 \Rightarrow \mu_1 - \mu_2 = 0$ H_1 : $\mu_1 = \mu_2$

Two Paired Sample *t* - Test

Test: H_0 : $\mu_2 - \mu_1 = 0$ versus H_1 : $\mu_2 - \mu_1 \neq 0$

Two Paired Sample t - Test

- Same subject for both treatments:
 - -- placebo (X_1) versus active (X_2)
 - -- before (X_1) versus after (X_2)
- Intra individual comparison, e.g., left (X₁) versus right (X₂)

<u>Approach:</u> reduce data to one sample t-test problem. First, calculate the difference, $d = X_2 - X_1$, for each subject; then, perform one sample *t*-test on the *d* scores, with *d.f.*=*n*-1.

Two Paired Sample *t* - Test

<u>Problem:</u> Does the medication significantly lower blood pressure?

<u>Subject</u>	Reaction to Placebo	Reaction to Med.
1	150	130
2	180	148
3	148	126
4	172	150
5	160	136

Contingency Tables

The most common two-way tables: 2-by-2 tables For example, smoking and lung cancer status

- RD: risk difference (prospective studies)
 - RR: relative risk (prospective studies)
 - OR: odds ratio (prospective or retrospective)

Interpretations

Interpretation of estimates of RR/OR:

- If RR/OR is above 1, we say there is a positive relationship/association between risk factor and outcome.
- If RR/OR is below 1, we say there is a negative relationship/association between risk factor and outcome.

Interpretation of CI of population RR/OR:

- If the entire interval is above 1, we conclude that the probability that having the outcome of interest is higher in those with risk factor.
- If the entire interval is below 1, we conclude that the probability is lower in those with risk factor.
- We conclude that there is no evidence that the probabilities of the outcome of interest are different between those with vs. without risk factor, if the interval contains 1.

Expected and observed frequencies are compared

- Goodness of fit of a single variable
- · Test of independence of two variables

χ^2 Test of Independence

Observed:

$$\begin{array}{c|cccc}
C1 & C2 \\
R1 & A & C & A+C \\
R2 & B & D & B+D \\
\hline
 & A+B & C+D & A+B+C+D
\end{array}$$

Expected:

$$Exp = \frac{(row total) * (column total)}{(grand total)}$$

e.g.,
$$E_{1,1}$$
=(A+C)*(A+B) / (A+B+C+D)

$$\chi^{2} = \sum_{i,j} \frac{(Obs_{ij} - Exp_{ij})^{2}}{Exp_{ij}}$$
 d.f. = (r-1)*(c-1)=(2-1)*(2-1) = 1

Fisher's Exact Tests

<u>Fisher's Exact Test</u> – for small expected frequencies

If any expected frequencies are < 2 or if half of the expected frequencies are < 5, you should use Fisher's Exact Test instead of χ^2 .

Fisher's Exact Tests

Fisher's Tea Tasting Experiment

Poured First (Guessed)

Fisher's Tea Tasting Experiment (cont.):

Based on hypergeometric distribution, the p-value is the sum of all probabilities for tables that give even more evidence in favor of the lady's claim.

Poured First (Guess) Poured First (Guess)							
	Milk	Tea			Milk	Tea	
Milk	3	1		Milk	4	0	
Tea	1	3		Tea	0	4	

p-value = $P_{(1,1)}(3) + P_{(1,1)}(4) = 0.229 + 0.014 = 0.243$

Therefore, the experiment did not establish a significant association between the actual order of pouring and the woman's guess.

Review: Lecture Objectives

- To understand basic research design principles and data presentation approaches
- To build a foundation which will facilitate the active participation in clinical research
- To fully grasp descriptive statistics
- To introduce key concepts of inferential statistics
- To survey some commonly used statistical approaches
- To be prepared for the USMLE Step 1 biostat/epi questions

