Mitschrift Computergrafik

Martin Lenders

21. April 2010

Inhaltsverzeichnis

1	Einf	führung	5
	1.1	Organisatorisches	-
		1.1.1 Übungsblätter:	
		1.1.2 Programmierung	
	1.2	Übersicht	
		1.2.1 Fahrplan	
2	Koo	ordinatensysteme, geometrische Transformationen	7
	2.1	kartesische Koordinaten	7
	2.2	Geometrische Transformationen	7
	2.3	Homogene Koordinaten	8
		2.3.1 Allgemeine affine Transformation in homogenen Koordinaten	Ć
	2.4	Die projektive Ebene	ć
		2.4.1 Geraden in der projektiven Ebene	
		2.4.2 Modelle der projektiven Ebene	. 1
		2.4.3 Projektive Punkte zu karthesische Koordinaten	2
		2.4.4 Allgemeine projektive Transformationen	3
	2.5	Transformation im dreidimensionalen Raum	L
		2.5.1 Affine Transformation im dreidimensionalen Raum	ŀ
		2.5.2 projektive Transformationen im dreidimensionalen Raum	6
	2.6	Projektionen und Perspektive	6

1 Einführung

1.1 Organisatorisches

1.1.1 Übungsblätter:

- Ausgabe: Mittwoch, Abgabe: Freitag
- Abgabe in Zweiergruppen
- $\bullet~60\%$ der Punkte müssen erreicht werden
- min. einmal Vorrechnen

1.1.2 Programmierung

- Aufgaben in Java gestaltet
- mit OpenGL-Interface
- auf Nachfrage kann auch C/C++ verwendet werden

1.2 Übersicht

- Computergrafik
- BILDBEARBEITUNG / BILDERKENNUNG
- Geometrisches Rechnen / Geometrische Modellierung

1.2.1 Fahrplan

- Koordinatiensysteme, geometrische Transformationen
- Licht und Farben
- Rasterung
- Beleuchtung und Schattierung
- rendering-pipeline: vom Modell bis zum gerasterten Bildbearbeitung
- $\bullet\,$ geometrische Modellierung: Kurven, Flächen und Splines
- Kein Anwendungskurs für OpenGL, JOGL, Javaview etc.!

2 Koordinatensysteme, geometrische Transformationen

2.1 kartesische Koordinaten

2.2 Geometrische Transformationen

• Translation: $p \mapsto p + t$ $t \in \mathbb{R}^2$, Translationsvektor

• Rotation (um den Ursprung $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$):

$$p \mapsto M \cdot p$$
 $M = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, Rotationsmatrix

- Rotation um den Punkt $c: p \mapsto M(p-c) + c = Mp + (c Mc), \qquad c \mapsto c$
- gleichförmige Skalierung:

$$p \mapsto \lambda \cdot p = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \cdot p, \qquad \lambda \neq 0$$

$$\lambda = 1 \qquad p \mapsto -p = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot p = \text{Spiegelung am Ursprung} = \text{Rotation um } 180^{\circ}$$

• Ungleichförmige Skalierung:

$$M = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad p \mapsto M \cdot p$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda_1 x \\ \lambda_2 y \end{pmatrix}$$

$$M = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 resultiert in der Spiegelung an der x-Achse

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 resultiert in der Spiegelung an der y-Achse

• Scherung

Scherung auf der
$$x$$
-Achse
$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} x \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} x \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \lambda y \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \lambda y \\ y \end{pmatrix}$$

Flächeninhalt:

- Translationen, Rotationen, Scherungen und Spiegelungen ändern den Flächeninhalt nicht.
- \bullet Skalierung ändert den Flächeninhalt um den Faktor $\lambda_1 \cdot \lambda_2$

Definition Eine Verknüpfung mehrerer dieser Transformationen bildet eine **affine Transformation**. Allgemein ist diese:

$$p \mapsto M \cdot p = b, \qquad M \in \mathbb{R}^{2 \times 2}, b \in \mathbb{R}^2, \det M \neq 0$$

Der Flächeninhalt ändert sich um den Faktor det M

Definition Die Verknüpfung von Translation, Rotation und Spiegelung heißt **starre Bewegung** oder **Isometrie**. Allgemein ist diese:

$$p \mapsto Mp + t \text{ mit } \mathbf{orthogonaler } \mathbf{Matrix} \ M \ (d. \ h. \ \det M = \pm 1)$$

die Isometrien zerfallen:

- orientierungserhaltende ($\det M = 1$) und
- orientierungsumkehrende ($\det M = -1$) Isometrien

2.3 Homogene Koordinaten

Definition Homogene Koordinaten: Statt $p = \begin{pmatrix} x \\ y \end{pmatrix}$ verwendet man eine dritte Koordinate $p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

Konvention Die Koordinaten
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 und $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$ stellen denselben Punkt dar $(\lambda \neq 0)$

Der Punkt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 mit $z \neq 0$ hat die kartesischen Koordinaten $\begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$

2.3.1 Allgemeine affine Transformation in homogenen Koordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} m_{11} & m_{12} & b_1 \\ m_{21} & m_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix}}_{M'} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} m_{11}x + m_{12}y + b_1 \\ m_{21}x + m_{22}y + b_2 \\ 1 \end{pmatrix}$$

Die Matrizen M' und $\lambda M'$ beschreiben dieselbe Transformation ($\lambda \neq 0$)

$$p \mapsto M'p \text{ mit } M' = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & m_{33} \end{pmatrix} \text{ und } \det M' \neq 0$$
$$\det M' \neq 0 \Leftrightarrow m_{33} \neq 0 \land \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix} \neq 0$$

 \Rightarrow o. B. d. A. kann man auch $m_{33}=1$ annehmen (Dann kann man die dritte Zeile auch weglassen).

2.4 Die projektive Ebene

Definition Die (reelle) **projektive Ebene** P^2 besteht aus den Äquivalenzklassen vo Punkten $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, wobei $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ und $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$ denselben Punkt darstellen $(\lambda \neq 0)$

$$\langle z \rangle = \langle \lambda z \rangle$$

2.4.1 Geraden in der projektiven Ebene

Gerade in \mathbb{R}^2 (karthesische Koordinaten):

y = ax + b(Gerade darf nicht senkrecht sein)

$$ax + bx = -c$$

1

Gerade in Homogenen Koordinaten

$$\begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
$$ax + by + c = 0 \Leftrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

Allgemeine Gleichung einer Geraden in P^2

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow ax + by + cz = 0 \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Wenn $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ die Gleichung erfüllt, dann erfüllt auch $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$ die Gleichung.

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ und } \begin{pmatrix} \lambda a \\ \lambda b \\ \lambda c \end{pmatrix} \text{ stellen dieselbe Gerade dar.}$$

projektive Punkte $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Skalierung egal.

projektive Gerade
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 Skalierung egal

Satz Punkt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 liegt auf der Geraden $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

Satz Zwei verschiedene Geraden schneiden sich in genau einem Punkt.

Beweis Gerade
$$\forall \lambda : \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} \neq \lambda \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}.$$

Schnittpunkt:

$$a_1x + b_1y + c_1z = 0$$
$$a_2x + b_2y + c_2z = 0$$

Koeffizientenmatrix
$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$
, rg $A = 2$

 \Rightarrow Lösungsmenge ist eindimensional

$$L = \left\{ \lambda \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \middle| y \in \mathbb{R} \right\} \text{ist ein projektiver Punkt}$$

$$\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \text{ kann als } \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \times \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \\ c_1 & c_2 \\ a_1 & a_2 \\ a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \text{ berechnet werden (Kreuzprodukt)}$$

Satz Durch zwei verschiedene Punkte gint es genau eine Geraden

Beweis gleich wie oben:
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 mit $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ vertauschen.

Dualitätsprinzip Man kann in einem Satz der projektiben Geometrie der Ebene "Punkte" und "Geraden" vertauschen und es bleibt ein gültiger Satz.

2.4.2 Modelle der projektiven Ebene

1. Räumliches Modell der projektiven Ebene $\left\{ \lambda \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$... Geraden durch den Ursprung im \mathbb{R}^3 entsprechen den projektiven Punkten.

projektive Gerade ≡ Ebene durch den Ursprung

2. Kugelmodell der projektiven Ebene entsteht durch Schnitt des räumlichen Modells mit der Einheitskugel $S^2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x^2 + y^2 + z^2 = 1 \right\}$

projektiver Punkt \equiv Paar gegenüberliegender Punkte auf der Einheitskugel projektive Gerade \equiv Großkreise

2.4.3 Projektive Punkte zu karthesische Koordinaten

Satz Die Punkte $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ mit z=0 haben keine Entsprechung in der euklidischen Ebene: Jede projektive Gerade hat als Bild in der euklidischen Ebene eine Gerade, mit einer Ausnahme: die Gerade $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Definition Die Punkte des projektiven Raumes, die keine euklidische Entsprechung haben, heißen **Fernpunkte**. Die Gerade $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ **Ferngerade**.

Satz Zwei Geraden der euklidischen Ebene sind genau dann parallel, wenn ihr Schnittpunkt ein Fernpunk ist.

Satz Die Punkte, die auf der Ferngeraden liegen, sind genau die Fernpunkte

Satz Es gibt zu jeder Schaar paralleler Geraden genau einen Fernpunkt.

Anschaulich ist ein Fernpunkt äquivalent zu perspektivischen Sammelpunkten:

2.4.4 Allgemeine projektive Transformationen

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto M \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ mit } M = \mathbb{R}^{3 \times 3}, \det M \neq 0$$

(Punkte bleiben Punkte, Geraden bleiben Geraden, Inzidenz bleibt erhalten)

Definition Affine Transformationen sind jene Transformationen, bei denen die Fernpunkte Fernpunkte bleiben.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto M \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} x' \\ y' \\ 0 \end{pmatrix}$$
$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31}0 & m_{32}0 & m_{33} \end{pmatrix}$$

$$\forall x, y : m_{31}x + m_{32}y + m_{33} \cdot 0 = 0 \Rightarrow m_{31} = m_{32} = 0$$

$$\det M \neq 0$$

$$\det M = \underbrace{m_{33}}_{\neq 0} \cdot \underbrace{\begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}}_{0}$$
 \Rightarrow o. B. d. A. $m_{3}3 = 1$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \overbrace{\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}^{\text{tineare Transformation}} + \underbrace{\begin{pmatrix} m_{13} \\ m_{23} \end{pmatrix}}^{\text{translation}}$$

Affine Transformation:

• parallele Geraden bleiben parallel

• erhalten das Teilverhältnis auf parallelen Geraden

Starre Bewegungen (Isometrien, euklidische Transformationen):

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
 ist orthogonal $M^T = M^{-1}$ erhalten Längen, Winkel und Flächen

Doppelverhältnis

Bemerkung projektive Transformationen erhalten das sogenannte Doppelverhältnis

Ausblick projektiver Raum; wird beschrieben durch homogene Koordinaten

ordinaten $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ entsprechen homogenen Koordinaten $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$ oder $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \\ \lambda \end{pmatrix}$ $(\lambda \neq 0, \text{ bel.}).$

Bemerkung 1 Transformation $x \mapsto Mx$ kann man auf zwei Arten interbretieren:

- a) Wende die transformation M auf Objekte an. Objekte werden bewegt, Standpunkt/Koordinatensystem bleibt fest.
- b) Drücke die unveränderte Lage eine Objektes in einem neuen Koordinatensystem aus.

 $x \mapsto Mx$

Rechnerisch macht dies keinen Unterschied.

Bemerkung 2 geometrische Transformationen können verknüpft; Reihenfolge ist wichtig!

$$y = M_1 x$$

$$z = M_2 y$$

$$z = \underbrace{M_2 M_1}_{\text{Matrizenmultiplikation}} x$$

Inverse Transformation wird dur die inverse Matrix ausgedrückt:

$$x = M_1^{-1} y$$

Bemerkung 3 Bei uns stehen Koordinaten in Spaltenvektoren $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$

 \Rightarrow Transformation \equiv Multiplikation mit einer Matrix von links

$$Mx = y$$

Alternative: Zeilenvektoren

 \Rightarrow Transformation \equiv Multiplikation mit einer von rechts mit der transponierten Matriz

$$y^t = x^t M^t = (Mx)^t$$

Diese Schreibweise ist an sich intuitiver (da die Rechnung in der Reihenfolge der Anwendung aufgeschrieben wird), aber mathematisch unüblich:

$$M_2 M_1 x = z \Longleftrightarrow x^t M_1^t M_2^t = z^t$$

2.5 Transformation im dreidimensionalen Raum

2.5.1 Affine Transformation im dreidimensionalen Raum

• allgemeine affine Transformationen:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{mit} \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix} \neq 0$$

• Isometrien (starre Bewegungen):

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
 ist eine orthogonale Matrix

- a) orientierungserhaltende det M = +1 [Rotation um eine Achse (+ Translation)]
- b) orientierungsumkehrende det M=-1 [Spiegelung an einer Ebene, Spiegelung an einem Punkt, Drehspiegelung ...]

Beispiele

• Drehung um die z-Achse:

$$M = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 & 0\\ \sin \varphi & \cos \varphi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \bullet Spiegelung an der xy-Ebene:

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Spiegelung am Nullpunkt:

$$M = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.5.2 projektive Transformationen im dreidimensionalen Raum

$$x \mapsto Mx$$
, $M \in \mathbb{R}^{4 \times 4}$, $\det M \neq 0$

2.6 Projektionen und Perspektive

• Sehen mit dem menschlichen Auge

• Lochkamera

• Projektionen

H = Hauptpunkt (s. u.)

Projektionen Vebinde gegebene Punkte mit einem festen *Projektionszentrum* (kann auch ein Fernpunkt sein) und schneide die Strahlen mit einer Ebene (= *Projektionsebene*)

- 1. Projektionszentrum im Endlichen: Zentralprojektion
- 2. Projektionszentrum ein Fernpunkt: Parallelprojektion (Parallele Geraden bleiben parallel)

a) Wenn die Projektion senkrecht auf den Projektionsstrahlen steht, spricht man von orthographischer Projektion

b) andernfalls von schiefer Projektion

zu 1. Zentralprojektion Der Hauptpunkt ist der Punkt der Projektionsebene, der dem Auge am nächsten liegt. Ein projeziertes Bild vermittelt den exakten wirklichkeitsgetreuen Eindruck genau dann, wenn man sich so davor stellt, das das Auge direkt vor dem Hauptpunkt H liegt und den richtigen Abstand d und im richtigen Abstand zum Bild, mit dem das Bild berechnet wurde

- Parallele Geraden können in der Projektion zu schneidenden Geraden werden
- Das Bild des entsprechenden Fernpunktes heißt Fluchtpunkt (vanishing point)
- Die Fluchtpunkte der horizontalen Gerade liegen auf dem *Horizont* (die Fluchtgerade durch die alle horizontalen Ebenen gehen).
- Wenn die Projektionsgerade senkrecht ist, dann liegt der Hauptpunkt auf dem Horizont

 ⇒ Senkrechte Geraden bleiben dann parallel (und senkrecht)

