

Y-90 SPECT maximum likelihood image reconstruction with a new model for tissue-dependent bremsstrahlung production

- 2017 SNM Annual Meeting -

Hongki Lim, Yuni Dewaraja, Scott Wilderman, Jeffrey Fessler University of Michigan, Ann Arbor

Disclosure

• Yuni Dewaraja and Jeffrey Fessler are consultants for MIM software Inc., Cleveland, Ohio

Objectives

- Material dependence of the bremsstrahlung generation
 - Bremsstrahlung production is proportional to \mathbb{Z}^2 of absorber

Bremsstrahlung generation illustration

Objectives

- Y-90 SPECT
 - Existing reconstruction methods do not account for tissue-dependency

True image with equal activity conc. in bone & marrow

Reconstruction

Reconstructed image

Methods

- Monte Carlo simulation
 - Bremsstrahlung generation in bone is ~2 times higher than in other tissues

- Simulation Software: EGS5 [1]
- Simulated for Bone, Tissue, Marrow, Lung in an infinite media

Same amount of activity in different tissue will produce different numbers of bremsstrahlung photons

Methods

- New system matrix
 - Incorporated the tissue-dependent bremsstrahlung generation probability (based on CT) into the reconstruction system matrix:

```
y \approx \text{Poisson}(Ax + s)
Where, A = A_{\text{attn+psf}} B_{\text{prob}}
    B_{\text{prob}} = \text{diag}(b)
          b_i = q_{\text{tissue}} * (1 - \text{BVF}_i) + q_{\text{bone}} * (\text{BVF}_i)
     q_{\rm bone} \simeq 2 * q_{\rm tissue}
    BVF_j: Bone-Volume Fraction of jth voxel in SPECT
```

- Modification to standard system matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} b_1 & 0 & \dots & 0 \\ 0 & b_2 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & b_n \end{bmatrix}$$
Standard system matrix Our modification

Methods

BVF example:

b_i: 1.76

*BVF: 19/25 = 0.76

 $b_i: 2*0.76 + 1*0.24 = 1.76$

25 voxels in CT image

* B: Bone, T: Tissue

→ Determined by thresholding

1 voxel in SPECT image

- Measurement setup
 - Same Y-90 concentration in syringes with water and bone equivalent solution

	Water Syringe	Bone Syringe	
Injected Y-90 Amount	6.94mCi	6.81mCi	
Solution	Water	Bone equivalent solution [2] (K2HPO4, Dipotassium Hydrogen Phosphate)	
Solution Density	$\sim 1.0 \ g/cm^3$	~ 1.68 <i>g/cm</i> ³	
Solution Amount	40 <i>cc</i>	40 <i>cc</i>	

- CT Image:

- Bremsstrahlung yields from our EGS5 simulations
- Attenuation coefficients from [2]

Photon Energy (keV)

Photon generation vs Photon Energy

Attenuation coefficient vs Photon Energy

Commercial PET and SPECT OSEM

Our in-house SPECT OSEM reconstruction

Profile comparison:

Slice comparison

True Image

Standard Reconstruction

New Reconstruction

- Simulation setup
 - XCAT phantom slices from spine to upper femur
 - Attenuation map at three slices:

s Upper femur

- Set amount of activity in bone and marrow region as 1:1, 3:1, 1:3

True Activity Map (1:1 case) at Pelvis

- Simulation result (ratio = 1:1)
 - Qualitative result

True Image

New Reconstruction

Standard Reconstruction

Quantitative Results

Simulation result (ratio = 1:1)

Quantitative Results

- Simulation result
 - When activity ratio between bone:marrow is 3:1 and 1:3

Uptake ratio (Bone:marrow)	Model	ROI	Count Recovery @ Marrow	Count Recovery @ Bone
3:1	New model	Average	169.4	69.4
	Standard model		217.9	110.6
1:3	New model		81.6	109.6
	Standard model		92.6	160.3

Summary / Conclusion

Demonstrated the tissue-effect in simulation and measurement

 Demonstrated proof of concept of reconstruction incorporating tissue-dependent bremsstrahlung generation

 Potentially applicable to Y-90 therapies such as radio immunotherapy and synovectomy

Acknowledgements

- NIH R01EB022075
- MIM for providing research license
- UM Radiology:
 Allen Brooks, David Hubers, Jeremy Niedbala

Thank you.

