Билет 10

Автор 1,, Автор N
20 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 10:	Абсолютная	сходимость.	Признак	Дирихле													1
-----	-----------	------------	-------------	---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	---

0.1. Билет 10: Абсолютная сходимость. Признак Дирихле.

Определение 0.1 (Абсолютная сходимость.).

$$f \in C[a,b)$$

 $\int\limits_a^b f$ абсолютно сходится, если $\int\limits_a^b |f|$ сходится.

Теорема 0.1.

Если $\int_{a}^{b} f$ абсолютно сходится, то $\int_{a}^{b} f$ сходится.

Доказательство.

$$0 \leqslant f_+ \leqslant |f|$$

 $\int\limits_a^b f$ абсолютно сходится $\Longrightarrow \int\limits_a^b |f|$ сходится $\Longrightarrow \int\limits_a^b f_\pm$ сходится

$$\int\limits_a^b f = \int\limits_a^b (f_+ - f_-) = \int\limits_a^b f_+ - \int\limits_a^b f_- \implies \int\limits_a^b f$$
 сходится.

Теорема 0.2 (признак Дирихле).

$$f,g\in C[a,+\infty)$$

1.
$$\exists M: \ |\int\limits_a^c f| \leqslant M$$
 при всех $c > a$.

2. g – монотонная функция.

$$3. \lim_{x \to +\infty} g(x) = 0$$

Тогда $\int_{a}^{+\infty} fg$ сходится.

Доказательство.

Лишь для $g \in C^1[a, +\infty)$.

Пусть
$$F(y) := \int_{a}^{y} f$$

По условию $|F| \leqslant M$

$$\int_{a}^{c} fg = \int_{a}^{c} F'g = Fg|_{a}^{c} - \int_{a}^{c} Fg'$$

Надо доказать, что существует предел при $c \to +\infty$

Распишем первое слагаемое как: F(c)g(c)-F(a)g(a). Тогда $F(c)g(c)\to 0$ при $c\to +\infty$, так как это произведение бесконечно малой на ограниченную.

Надо доказать, что $\int\limits_a^c Fg'$ сходится. Докажем, что он абсолютно сходится, то есть, что $\int\limits_a^c |F|\cdot|g'|$ сходится.

$$\int\limits_a^c |F|\cdot |g'|\leqslant M\int\limits_a^c |g'|=M|\int\limits_a^c g'|=M|\,g|_a^c\,|=M|g(c)-g(a)|\leqslant M|g(a)|\implies \int\limits_a^{+\infty} |F'g|\,\operatorname{сходится}.$$

1