La Definición de Conexidad Propiedades de los Conexos Componentes Conexos Arcoconexidad Resumen

MA0505 - Análisis I

Lección IX: Conexidad

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Definición de Conexidad
 - ullet Conexidad en $\mathbb R$
- Propiedades de los Conexos
 - Conexidad y Funciones Continuas
 - Uniones de Conexos
- Componentes Conexos
- Arcoconexidad

Conjuntos Disconexos

Definición

Un espacio (X, d) es disconexo si existen A, B abiertos no vacíos tales que

$$X = A \cup B$$
, $(A \cap B = \emptyset)$.

Diremos que un espacio es conexo si no es disconexo.

Si X es conexo y $X = A \cup B$, con A, B abiertos, es necesario que A = X ó B = X.

Subespacios y Conexidad

Dado $E \subseteq X$ podemos definir

$$d_E: E \times E \to \mathbb{R}, \ (x,y) \mapsto d(x,y).$$

Ejercicio

 (E, d_E) es un espacio métrico. Pruebe que $D \subseteq E$ es abierto en (E, d_E) si y sólo si existe $O \subseteq X$ abierto en (X, d) tal que $D = E \cap O$.

Definición

 $E \subseteq X$ es disconexo si existen A, B abiertos en (X, d) tales que

$$E = (A \cap E) \cup (B \cap E), A \cap E \neq \emptyset \neq B \cap E.$$

Un Ejemplo

Sea $I =]a, b \subseteq \mathbb{R}$. Vamos a probar que I es conexo.

 Asumamos que I es disconexo, entonces existen A, B abiertos tales que

$$I = (I \cap A) \cup (I \cap B), \ I \cap A, \ I \cap B \neq \emptyset.$$

■ Sean $s \in I \cap A$, $t \in I \cap B$ con s < t. Así $[s, t] \subseteq I$.

Continuamos con el Ejemplo

■ Como $s \in A$, entonces existe δ_1 tal que

$$]s - \delta_1, s + \delta_1[\subseteq A.$$

■ Como $[s, s + \delta_1] \subseteq [s, t]$ entonces

$$[s, s + \delta_1] \subseteq [s, t] \cap A$$
.

- Llamemos $u = \sup\{x \in [s, t] \cap A\}$.
- De esta manera $s < u \le t$.

Continuamos con el Ejemplo

■ Si fuese que $u \in B$, entonces existe $\delta_2 > 0$ tal que

$$]u-\delta_2, u+\delta_2[\subseteq B.$$

■ De manera análoga $]u - \delta_2, u[\subseteq [s, t]$ y por tanto

$$]u - \delta_2, u[\subseteq B \cap [s, t].$$

■ Sin embargo, por propiedades del sup, existe $w \in [s, t] \cap A$ tal que

$$u - \delta_2 < w \leqslant u$$
.

Esto es una contradicción.

Terminamos el Ejemplo

De forma similar se prueba que si $u \in A$, entonces existe un δ_3 tal que

$$[u, u + \delta_3] \subseteq [s, t] \cap A$$
.

Funciones Continuas Preservan Conexidad

Lema

Sea $f: X \to Y$ una función continua. Si $E \subseteq X$ es conexo, entonces f(E) es conexo.

Asumamos que existen $B, C \subseteq Y$ abiertos tales que

$$f(E) = (f(E) \cap C) \cup (f(E) \cap B), \ f(E) \cap C \neq \emptyset \neq f(E) \cap B).$$

Terminamos la Prueba

Notemos que

$$f^{-1}(f(E) \cap C) \supseteq E \cap f^{-1}(C) \neq \emptyset,$$

$$f^{-1}(f(E) \cap B) \supseteq E \cap f^{-1}(B) \neq \emptyset.$$

Además

$$E\subseteq (E\cap f^{-1}(C))\cup (E\cap f^{-1}(B))$$

pues $f^{-1}(C)$ y $f^{-1}(B)$ son abiertos.

Los Reales son un Conjunto Conexo

- Supongamos que $\mathbb{R}^d = A \cup B$ con A, B abiertos no vacíos.
- Tomemos $x \in A, y \in B$ y consideremos

$$f:[0,1]\to\mathbb{R}^d,\ t\mapsto (1-t)x+ty.$$

- Como f es continua, [x, y] = f([0, 1]). El segmento entre x y y es conexo.
- Pero $[x, y] = ([x, y] \cap A) \cup ([x, y] \cap B)$ con $[x, y] \cap A$ y $[x, y] \cap B$ no vacíos.

Esto es una contradicción.

Uniones

Lema

Sea $\{E_{\alpha}: \alpha \in A\}$ una familia de conexos tal que $\bigcap_{\alpha \in A} E_{\alpha}$ es no vacío. Entonces $E = \bigcup_{\alpha \in A} E_{\alpha}$ es conexo.

Tomemos x en la intersección. Si fuese que E es disconexo, existen A, B tales que

$$E = (A \cap E) \cup (B \cap E), A \cap E, B \cap E \neq \emptyset.$$

Terminamos la Prueba

- Asumamos que $x \in B \cap E$.
- Como $A \cap E \neq \emptyset$, existe α_0 tal que $A \cap E_{\alpha_0} \neq \emptyset$.
- Además, como $x \in B$ y $x \in \bigcap_{\alpha \in A} E_{\alpha}$ tenemos que $x \in B \cap E_{\alpha_0}$.
- Como $E_{\alpha_0} \cap E = E_{\alpha_0}$, entonces

$$E_{\alpha_0} = (E_{\alpha_0} \cap A) \cup (E_{\alpha_0} \cap B).$$

Esto es imposible pues E_{α_0} es conexo.

Definición de Componente

Definición

Sea (X, d) un espacio métrico. Dado $x \in X$, definimos la componente conexa de x como la unión de todos lo conexos que lo contienen. Es decir, si

$$\Lambda = \{ E \subseteq X : E \text{ conexo}, x \in E \},$$

entonces la componente conexa de x es

$$C(x) = \bigcup_{E \in \Lambda} E.$$

Por el lema 2 anterior, C(x) es conexo para todo $x \in X$.

Una Relación Útil

Podemos definir la relación de equivalencia $\mathcal R$ en $\mathcal X$ por medio de

$$x\mathcal{R}y \iff \exists C, \text{ conexo}(x, y \in C).$$

Ejercicio

Si [x] es la clase de equivalencia de x, entonces [x] = C(x).

Segmentos en Conexos

Ejemplo

Sea $E \subseteq \mathbb{R}$ conexo con $a, b \in E$. Vamos a mostrar que $[a, b] \subseteq E$.

- Asuma que $x \in [a, b] \setminus E$.
- Entonces $E = (E \cap]-\infty, x[) \cup (]x, \infty[\cap E)$. Tome $a = \inf E$ y b =

La Definición de Conexidad
Propiedades de los Conexos
Componentes Conexos
Arcoconexidad
Resumen

Ejercicio

Sea $G \subseteq \mathbb{R}$ un abierto, entonces existen $\{]a_i, b_i[\}_{i=1}^{\infty}$ tales que $G = \bigcup_{i=1}^{\infty}]a_i, b_i[$.

Recordamos la Definición

Definición

Dado $E \subseteq \mathbb{R}^d$, diremos que E es arcoconexo si dados $x_0, x_1 \in E$, existe una curva $\gamma : [0, 1] \to \mathbb{R}^d$ tal que

1.
$$\gamma(0) = x_0 \text{ y } \gamma(1) = x_1.$$

2.
$$\gamma(t) \in E$$
 para $t \in [0, 1]$.

¿Es la arcoconexidad equivalente a la conexidad?

Respondamos la Pregunta

Considere

$$E = \{0\} \times [-1,1] \cup \{(x,y) : 0 < x \le 1, \ y = \sin\left(\frac{1}{x}\right)\}.$$

■ Sean A, B abiertos tales que $A \cap E$, $B \cap E$ y $A \cap B$ son todos no vacíos y

$$E \subseteq (A \cap E) \cup (B \cap E)$$
.

■ Supongamos además que $(0,0) \in A$.

Primeros Pasos

- 1. Usando el hecho de que $\{0\} \times [-1, 1]$ es conexo, muestre que está contenido en A.
- 2. La sucesión $\{x_n\}_{n=1}^{\infty}$ definida por

$$x_n = \left(\frac{1}{\pi n}, \sin(\pi n)\right) = \left(\frac{1}{\pi n}, 0\right)$$

converge a (0,0).

3. Luego existe un n_0 tal que $\left(\frac{1}{\pi n}, \sin(\pi n)\right) \in A$ para todo $n \geqslant n_0$. ¿Por qué?

Los Pasos que Siguen

4. Considere el conjunto

$$E_n = \left\{ (x, y) : \frac{1}{n\pi} \leqslant x \leqslant 1, \ y = \sin\left(\frac{1}{x}\right) \right\}.$$

5. Como

$$\gamma: \left[\frac{1}{\pi n}, 1\right] \to E_n, \ x \mapsto \left(x, \sin\left(\frac{1}{x}\right)\right),$$

tenemos que E_n es conexo. Luego $E_n \cap A$ ó $E_n \cap B$ es no vacío.

Continuamos

- 6. Sin perdida de generalidad $E_n \cap B = \emptyset$, entonces $E_n \subseteq A$. Entonces $(x, \sin(\frac{1}{x})) \in A$ para $0 < x \le 1$.
- 7. De aquí se concluye que $E \subseteq A$ y eso es imposible.
- 8. Asumimos pues que existe

$$\tilde{\gamma}: [0,1] \rightarrow E$$

continua tal que

$$\tilde{\gamma}(0) = (0,0), \ \tilde{\gamma}(1) = \left(\frac{1}{n_0\pi}, \sin(n_0\pi)\right).$$

Continuamos con la Respuesta

9. Si $t_n \downarrow 0$ cuando $n \to \infty$, entonces

$$\tilde{\gamma}(t_n) = (\tilde{\gamma}_1(t_n), \tilde{\gamma}_2(t_n)) \xrightarrow[n \to \infty]{} (0, 0).$$

10. En particular $\tilde{\gamma}_1(t_n) \xrightarrow[n \to \infty]{} 0$ y

$$\tilde{\gamma}_2(t_n) = \sin\left(\frac{1}{\tilde{\gamma}_1(t_n)}\right).$$

Es decir, existe $x_n \xrightarrow[n \to \infty]{} 0$ tal que

$$\left(x_n, \sin\left(\frac{1}{x_n}\right)\right) \in \tilde{\gamma}([0,1])$$

Un Ejercicio

Ejercicio

Basado en lo anterior, pruebe que si $x_n < x_{n+1}$ entonces para $x_n \leqslant x \leqslant x_{n+1}$ vale $\left(x, \sin\left(\frac{1}{x}\right)\right) \in \tilde{\gamma}([0,1])$. Concluya que

a)
$$B = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : 0 < x < \frac{1}{n_0 \pi} \right\} \subseteq \tilde{\gamma}([0, 1]).$$

b) Sea $t_0 = \sup_{t>0} \{ \tilde{\gamma}(t) = (0,0) \}$. Entonces

$$\tilde{\gamma}([t_0,1])\setminus B=\{(0,0)\}.$$

c) $\tilde{\gamma}$ no es continua en t_0 .

Nociones Equivalentes

Si asumimos que nuestro conjunto es abierto en \mathbb{R}^d entonces las nociones son equivalentes.

Lema

Sea $E \subseteq \mathbb{R}^d$ abierto. Entonces E es conexo si y sólo si E es arcoconexo.

La prueba de este hecho es un ejercicio.

Resumen

- La definción 1 de espacios conexos.
- La definción 2 de subconjuntos disconexos.
- Las funciones continuas preservan conexidad: 1.
- Las uniones de conexos a veces son conexas: 2.
- La definción 3 de componente conexo.
- El lema 3 que garantiza equivalencia entre conexidad y arcoconexidad.

Ejercicios

Lista 9

- El ejercicio 1 sobre abiertos dentro de subespacios.
- El ejercicio 2 que nos dice cuales son las clases de equivalencia en conexidad.
- El ejercicio 3 que da una caracterización de los abiertos en ℝ.
- El ejercicio 4 para terminar los detalles de la curva.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.