Entity-Relationship Model

- 1. Entity
- 2. Attributes
- 3. Entity Sets
- 4. Relationship Sets
- 5. Design Issues
- 6. Mapping Constraints
- 7. Weak Entity
- 8. Keys
- 9. E-R Diagram
- 10. Extended E-R Features
- 11. Design of an E-R Database Schema
- 12. Reduction of an E-R Schema to Tables

Roles

- Entity sets of a relationship need not be distinct
- The labels "manager" and "worker" are called roles; they specify how employee entities interact via the works-for relationship set.
- Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles.
- Role labels are optional, and are used to clarify semantics of the relationship

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g. participation of loan in borrower is total
 - every loan must have a customer associated to it via borrower
- Partial participation: some entities may not participate in any relationship in the relationship set
 - E.g. participation of customer in borrower is partial

Specialization

- Top-down design process; we designate subgroupings within an entity set that are distinctive from other entities in the set.
- These subgroupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- Depicted by a triangle component labeled ISA (E.g. customer "is a" person).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higherlevel entity set to which it is linked.

Specialization Example

partha.banerjee@juet.ac.in

Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higherlevel entity set.
- Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- The terms specialization and generalization are used interchangeably.

Complex Specialization and Generalization

BASIS FOR COMPARISON	GENERALIZATION	SPECIALIZATION
Basic	It proceeds in a bottom-up manner.	It proceeds in a top-down manner.
Function	Generalization extracts the common features of multiple entities to form a new entity.	Specialization splits an entity to form multiple new entities that inherit some feature of the splitting entity.
Entities	The higher level entity must have lower level entities.	The higher level entity may not have lower level entities.
Size	Generalization reduces the size of a schema.	Specialization increases the size of a schema.
Application	Generalization entities on group of entities.	Specialization is applied on a single entity.
Result	Generalization results in forming a single entity from multiple entities.	Specialization results in forming the multiple entity from a single entity.

Specialization and Generalization (Contd.)

- Can have multiple specializations of an entity set based on different features.
- E.g. permanent-employee vs. temporary-employee, in addition to officer vs. secretary vs. teller
- Each particular employee would be
 - a member of one of permanent-employee or temporaryemployee,
 - and also a member of one of officer, secretary, or teller
- The ISA relationship also referred to as superclass subclass relationship

Design Constraints on a Specialization/Generalization

- Constraint on which entities can be members of a given lower-level entity set.
 - condition-defined
 - E.g. all customers over 65 years are members of *senior-citizen* entity set; *senior-citizen* ISA *person*.
 - user-defined
- Constraint on whether or not entities may belong to more than one lower-level entity set within a single generalization.
 - Disjoint
 - an entity can belong to only one lower-level entity set
 - Noted in E-R diagram by writing disjoint next to the ISA triangle
 - Overlapping
 - an entity can belong to more than one lower-level entity set

Design Constraints on a Specialization/Generalization (Contd.)

- Completeness constraint -- specifies whether or not an entity in the higher-level entity set must belong to at least one of the lower-level entity sets within a generalization.
 - total: an entity must belong to one of the lower-level entity sets
 - partial: an entity need not belong to one of the lower-level entity sets

Aggregation

- Consider the ternary relationship works-on, which we saw earlier
- Suppose we want to record managers for tasks performed by an employee at a branch

Aggregation (Cont.)

- Relationship sets works-on and manages represent overlapping information
 - Every manages relationship corresponds to a works-on relationship
 - However, some works-on relationships may not correspond to any manages relationships
 - So we can't discard the works-on relationship
- Eliminate this redundancy via aggregation
 - Treat relationship as an abstract entity
 - Allows relationships between relationships
 - Abstraction of relationship into new entity
- Without introducing redundancy, the following diagram represents:
 - An employee works on a particular job at a particular branch
 - An employee, branch, job combination may have an associated manager

Relations Corresponding to Aggregation

- To represent aggregation, create a table containing
 - primary key of the aggregated relationship,
 - the primary key of the associated entity set
 - Any descriptive attributes

Relations Corresponding to Aggregation (Cont.)

- E.g. to represent aggregation manages between relationship workson and entity set manager, create a table manages(employee-id, branch-name, title, manager-name)
- Table works-on is redundant provided we are willing to store null values for attribute manager-name in table manages

partha.banerjee@juet.ac.in

Representing Specialization as Tables

Method 1:

- Form a table for the higher level entity
- Form a table for each lower level entity set, include primary key of higher level entity set and local attributes

table	table attributes	
personcustomeremployee	name, street, city name, credit-rating name, salary	

 Drawback: getting information about, e.g., employee requires accessing two tables

Representing Specialization as Tables (Cont.)

Method 2:

Form a table for each entity set with all local and inherited attributes
table table attributes

person	name, street, city
customer	name, street, city, credit-rating
employee	name, street, city, salary

- If specialization is total, table for generalized entity (person) not required to store information
 - Can be defined as a "view" relation containing union of specialization tables
 - But explicit table may still be needed for foreign key constraints
- Drawback: street and city may be stored redundantly for persons who are both customers and employees

- If the existence of entity x depends on the existence of entity y, then x is said to be existence dependent on y.
 - y is a dominant entity (in example below, loan)
 - x is a subordinate entity (in example below, payment)

If a loan entity is deleted, then all its associated payment entities must be deleted also.

E-R Diagram With Composite, Multivalued, and Derived Attributes

Relationship Sets with Attributes

E-R Diagram for a Banking Enterprise

Redundancy of Tables

- Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the many side, containing the primary key of the one side
- E.g.: Instead of creating a table for relationship account-branch, add an attribute branch to the entity set account

Redundancy of Tables (Cont.)

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the many side, replacing a table by an extra attribute in the relation corresponding to the "many" side could result in null values
- The table corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
 - E.g. The payment table already contains the information that would appear in the loan-payment table (i.e., the columns loan-number and payment-number).