Drew Schmidt University of Tennessee, Knoxville

July 12, 2013

Affiliations and Support

The pbdR Core Team http://r-pbd.org

Wei-Chen Chen¹, George Ostrouchov^{1,2}, Pragneshkumar Patel², Drew Schmidt¹

Ostrouchov, Patel, and Schmidt were supported in part by the project "NICS Remote Data Analysis and Visualization Center" funded by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center.

Chen and Ostrouchov were supported in part by the project "Visual Data Exploration and Analysis of Ultra-large Climate Data" funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725.

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

 $^{^{2}}$ Remote Data Analysis and Visualization Center, University of Tennessee, Knoxville, TN

About This Presentation

Conventions

We use:

- "•" as a decimal mark
- "," as order of magnitude separator

Example	Yes	No
One million	1,000,000	1.000.000
One half	0.5	0,5
One thousand and one half	1,000.5	1.000,5

Contents

- 1 Introduction
- 2 Benchmarks
- 3 Challenges

Because.

- Because.
- 2 R community has growing data size problem.

- Because.
- 2 R community has growing data size problem.
- 3 HPC community has growing need for data analytics.

Existing code.

- Existing code.
- Syntax.

- Existing code.
- Syntax.
- Opening Philosophy.

Programming with Big Data in R (pbdR)

Productivity, Portability, Performance

- Free^a R packages.
- Bridging high-performance C with high-productivity of R
- Distributed data details implicitly managed.
- Methods have syntax identical to R.

^aMPL, BSD, and GPL licensed

Reduce Operation with Rmpi

```
# int
mpi.allreduce(x, type=1)
# double
mpi.allreduce(x, type=2)
```

Reduce Operation with pbdMPI

```
1 allreduce(x)
```


Reduce Operation with Rmpi

```
# int
mpi.allreduce(x, type=1)
# double
mpi.allreduce(x, type=2)
```

Reduce Operation with pbdMPI

```
1 allreduce(x)
```

```
1 > is.integer(1)
2 [1] FALSE
3 > is.integer(2)
4 [1] FALSE
5 > is.integer(1:2)
6 [1] TRUE
```


Table: Runtimes (seconds) for $10,000 \times 10,000$ allgather with **Rmpi** and **pbdMPI**.

Rmpi	pbdMPI	Speedup
24.6	6.7	3.67
25.2	7.1	3.55
22.3	7.2	3.10
22.4	7.1	3.15
	24.6 25.2 22.3	24.6 6.7 25.2 7.1 22.3 7.2

pbdR Example Syntax

```
1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 xtx <- t(x) %*% x

4 ans <- svd(solve(xtx))
```

Look familiar?

The above runs on 1 core with R or 10,000 cores with pbdR

Shared and Distributed Memory Machines

Shared Memory Machines

Thousands of cores

Nautilus, University of Tennessee 1024 cores 4 TB RAM

Distributed Memory Machines

Hundreds of thousands of cores

Contents

- 1 Introduction
- 2 Benchmarks
- 3 Challenges

Non-Optimal Choices Throughout

• Only libre software used (no MKL, ACML, etc.).

Non-Optimal Choices Throughout

- Only libre software used (no MKL, ACML, etc.).
- $\mathbf{2}$ 1 core = 1 MPI process.

Non-Optimal Choices Throughout

- Only libre software used (no MKL, ACML, etc.).
- ② 1 core = 1 MPI process.
- No tuning for data distribution.

• Random normal *N*(100, 10000).

- Random normal N(100, 10000).
- 2 Local problem size of ≈ 43.4 *MiB*.

- Random normal N(100, 10000).
- 2 Local problem size of ≈ 43.4 MiB.
- 3 Three sets: 500, 1000, and 2000 columns.

- Random normal N(100, 10000).
- 2 Local problem size of ≈ 43.4 *MiB*.
- 3 Three sets: 500, 1000, and 2000 columns.
- 4 Several runs at different core sizes within each set.

Covariance Code

```
1 x <- ddmatrix("rnorm", nrow=n, ncol=p, mean=mean, sd=sd)
2 cov.x <- cov(x)</pre>
```


cov()

Linear Model Code

```
1 x <- ddmatrix("rnorm", nrow=n, ncol=p, mean=mean, sd=sd)
2 beta_true <- ddmatrix("runif", nrow=p, ncol=1)
3 
4 y <- x %*% beta_true
5 
6 beta_est <- lm.fit(x=x, y=y)$coefficients</pre>
```


Data Generation

lm.fit()

Contents

- Introduction
- 2 Benchmarks
- 3 Challenges

• Perceptions.

- Perceptions.
- Library loading.

- Perceptions.
- Library loading.
- Profiling.

Covariance Revisited: Distributed Data Parameter Calibration

Tutorials

- XSEDE13, July 22, San Diego, California, USA
- SC13, November 17-22, Denver, Colorado, USA

Invited Talks

- JSM 2013, August 3-8, Montréal, Québec
- IASC, Aug 22-23, Seoul
- World Statistics Congress, August 25-30, Hong Kong

Thanks for coming!

Questions?

https://github.com/wrathematics/talks/blob/master/user2013/elevatingr.pdf?raw=true

