```
In [1]: # importing necessary libraries
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
In [2]: # loading the data
        inflation rate = r"C:\Users\SamDutse\Desktop\Curent Work\dollar inflation.csv"
        data = pd.read csv(inflation rate)
        #viewing the top five rows of the data
In [3]:
        data.head()
           Year Dollar Value Buying Power Inflation Rate
Out[3]:
        0 1800
                      1.00
                                  1.00
                                              2.44
        1 1801
                      1.01
                                  0.99
                                              0.79
        2 1802
                      0.85
                                  1.18
                                            -15.75
                      0.90
                                              5.61
        3 1803
                                  1.11
        4 1804
                      0.94
                                  1.06
                                              4.42
In [4]: #viewing the last five rows of the data
        data.tail()
             Year Dollar Value Buying Power Inflation Rate
Out[4]:
        218 2018
                       19.94
                                    0.05
                                                2.49
        219 2019
                       20.29
                                    0.05
                                                1.76
        220 2020
                       20.54
                                    0.05
                                                1.23
        221 2021
                       21.51
                                    0.05
                                                4.70
        222 2022
                       23.56
                                    0.04
                                             #VALUE!
        #viewing the dimension of the data
In [5]:
        data.shape
        (223, 4)
Out[5]:
        #getting info on the data columns, Non null value counts and data types
In [6]:
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 223 entries, 0 to 222
        Data columns (total 4 columns):
           Column
                            Non-Null Count Dtype
        ____
                             _____
                             223 non-null int64
         \cap
           Year
         1 Dollar Value 223 non-null float64
           Buying Power 223 non-null
                                             float64
           Inflation Rate 223 non-null object
        dtypes: float64(2), int64(1), object(1)
        memory usage: 7.1+ KB
```

In [7]: #data cleaning

#removing the year 2022 due to the #VALUE

```
data = data[data["Year"] != 2022]
data
```

Out[7]:		Year	Dollar Value	Buying Power	Inflation Rate
	0	1800	1.00	1.00	2.44
	1	1801	1.01	0.99	0.79
	2	1802	0.85	1.18	-15.75
	3	1803	0.90	1.11	5.61
	4	1804	0.94	1.06	4.42
	•••				
	217	2017	19.45	0.05	2.13
	218	2018	19.94	0.05	2.49
	219	2019	20.29	0.05	1.76
	220	2020	20.54	0.05	1.23
	221	2021	21.51	0.05	4.70

222 rows × 4 columns

```
In [46]: #data visualization
plt.scatter(x = data["Year"], y = data["Dollar Value"])
```

Out[46]: <matplotlib.collections.PathCollection at 0x2c91bb7b7c0>


```
In [8]: #Building the correlation matrix
sns.heatmap(data.corr())
```

Out[8]: <AxesSubplot:>


```
In [9]: # data splicing into independent and dependent variables
         X = data.iloc[:, 0].values.reshape(-1, 1)
         y = data.iloc[:, 1].values
In [10]: #importing model and model selection
         from sklearn.linear_model import LinearRegression
         from sklearn.model selection import train test split
In [11]: #splitting the data into training and testing data
         X train, X test, y train, y test = train test split( X, y, test size = 0.3, random state
In [14]: #fitting multiple linear regression model to training set
         Regressor = LinearRegression()
         Regressor.fit(X train, y train)
        LinearRegression()
Out[14]:
In [15]:
         #predicting the test set result
         Prediction = Regressor.predict(X test)
         Prediction
        array([ 4.93193616, 9.5339957 , 7.45361262, 0.89725384, 8.14707364,
Out[15]:
                5.62539719, -0.48966821, 1.21246339, 0.77117001, -2.75917702,
                1.96896633, -0.93096159, -2.94830276, 9.28182805, 0.7081281,
                7.20144497, 3.41893029, 9.59703761, 9.47095378, 2.3472178,
                3.60805603, 8.77749276, 4.5536847, 1.40158913, 1.52767295,
               -2.50700938, 6.63406777, 6.76015159, 4.49064278, 5.81452292,
                0.20379281, \quad 4.42760087, \quad 2.85155309, \quad 3.29284647, \quad -2.12875791,
               -2.31788364, 8.58836702, -2.82221894, 1.46463104, 6.88623542,
                2.78851118, 6.12973248, 2.41025971, 7.83186409, 5.75148101,
               -1.18312924, 6.50798395, 8.39924129, 9.21878614, 4.17543323,
                9.66007952, 8.52532511, 9.09270232, -2.25484173, 2.53634353,
                3.54501411, 5.49931337, -1.87659026, 9.40791187, -0.4266263,
                9.91224716, -3.01134467, 3.10372073, 4.04934941, 0.58204428,
                0.01466708, -1.62442262])
In [47]: plt.scatter(X test, y test)
```

```
plt.plot(X test, Prediction)
         [<matplotlib.lines.Line2D at 0x2c91b8866a0>]
Out[47]:
          17.5
          15.0
          12.5
          10.0
           7.5
           5.0
           2.5
           0.0
         -2.5
               1800
                             1850
                                            1900
                                                           1950
                                                                         2000
         #calculating the coefficient and intercept
         m = Regressor.coef
         array([0.06304191])
         c = Regressor.intercept
         -116.73895280375025
         #evaluating the model
```

```
In [20]:
Out[20]:
In [21]:
Out[21]:
In [18]:
         from sklearn.metrics import r2 score
         r2_score(y_test, Prediction) * 100
         54.34015098914631
Out[18]:
         #building a predictor function
In [36]:
         def Predictor(year):
             return m*year + c
         print(Predictor(2022))
         print(Predictor(2030))
         [10.73179201]
         [11.2361273]
```