Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. The linear system $A\mathbf{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ does not have a solution, because

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \text{ is not in } \mathsf{Col} A = \mathsf{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}.$$

We wish to find a "closest approximate solution", i.e. a vector $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is the unique point in $\operatorname{\mathsf{Col}} A$ that is "closest" to called a least-squares solution (p17).

To do this, we have to first define what we mean by "closest", i.e. define the idea of distance.

Semester 2 2018, Week 11, Page 1 of 27

In \mathbb{R}^2 , the distance between \mathbf{u} and \mathbf{v} is the length of their difference $\mathbf{u} - \mathbf{v}$. So, to define distances in \mathbb{R}^n , it's enough to define the length of vectors.

In \mathbb{R}^2 , the length of $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is $\sqrt{v_1^2 + v_2^2}$.

So we define the length of $\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ is $\sqrt{v_1^2+\cdots+v_n^2}$.

 v_1

§6.1, p368: Length, Orthogonality, Best Approximation

It is more useful to define a more general idea:

Definition: The *dot product* of two vectors
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n is

the scalar

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = u_1 v_1 + \dots + u_n v_n.$$

Warning: do not write uv, which is an undefined matrix-vector product, or $\mathbf{u} \times \mathbf{v}$, which has a different meaning. Do not write \mathbf{u}^2 , which is ambiguous.

Definition: The *length* or *norm* of \mathbf{v} is

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Definition: The *distance* between \mathbf{u} and \mathbf{v} is $\|\mathbf{u} - \mathbf{v}\|$.

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 3 of 27

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = u_1 v_1 + \dots + u_n v_n.$$
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u} - \mathbf{v}\|$.

Example:
$$\mathbf{u} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}.$$

$$\mathbf{u} \cdot \mathbf{v} = 3 \cdot 8 + 0 \cdot 5 + -1 \cdot -6 = 24 + 0 + 6 = 30.$$

Properties of the dot product:

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbf{R}^n , and let c be any scalar. Then

a.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

b.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

c.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$$

d. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$. positivity; and the only vector with length 0 is $\mathbf{0}$

Combining parts b and c, one can show

$$c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{w})$$

So b and c together says that, for fixed w, the function $\mathbf{x} \mapsto \mathbf{x} \cdot \mathbf{w}$ is linear - this is true because $\mathbf{x} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{x} = \mathbf{w}^T \mathbf{x}$ and matrix multiplication by \mathbf{w}^T is linear.

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 5 of 27

From property c:

$$\|c\mathbf{v}\|^2 = (c\mathbf{v}) \cdot (c\mathbf{v}) = c^2 \mathbf{v} \cdot \mathbf{v} = c^2 \|\mathbf{v}\|^2$$

so (squareroot both sides)

$$||c\mathbf{v}|| = |c| ||\mathbf{v}||.$$

For many applications, we are interested in vectors of length 1.

Definition: A *unit vector* is a vector whose length is 1.

Given \mathbf{v} , to create a unit vector in the same direction as \mathbf{v} , we divide \mathbf{v} by its length $\|\mathbf{v}\|$ (i.e. take $c=\frac{1}{\|\mathbf{v}\|}$ in the equation above). This process is called normalising.

Example: Find a unit vector in the same direction as $\mathbf{v} = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}$.

Answer: $\mathbf{v} \cdot \mathbf{v} = 8^2 + 5^2 + (-6)^2 = 125$.

So a unit vector in the same direction as \mathbf{v} is $\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{\sqrt{125}} \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}$.

Visualising the dot product:

In \mathbb{R}^2 , the cosine law says $\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$. We can "expand" the left hand side using dot products:

$$\begin{aligned} \|\mathbf{u} - \mathbf{v}\|^2 &= (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) \\ &= \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} \\ &= \|\mathbf{u}\|^2 - 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2. \end{aligned}$$

Comparing with the cosine law, we see $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$.

In particular, if **u** is a unit vector, then $\mathbf{v} \cdot \mathbf{u} = ||\mathbf{v}|| \cos \theta$, as shown in the bottom picture.

Notice that \mathbf{u} and \mathbf{v} are perpendicular if and only if $\theta = \frac{\pi}{2}$, i.e. when $\cos \theta = 0$. This is equivalent to $\mathbf{u} \cdot \mathbf{v} = 0$.

Semester 2 2018, Week 11, Page 7 of 27

 $\mathbf{v} \cdot \mathbf{u}$

So, to generalise the idea of perpendicularity to \mathbb{R}^n for n > 2, we make the following definition:

Definition: Two vectors \mathbf{u} and \mathbf{v} are *orthogonal* if $\mathbf{u} \cdot \mathbf{v} = 0$.

We also say \mathbf{u} is orthogonal to \mathbf{v} .

Another way to see that orthogonality generalises perpendicularity:

Theorem 2: Pythagorean Theorem: Two vectors **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Proof:

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$
$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$
$$= \|\mathbf{u}\|^2 + 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2.$$

So $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Instead of ${\bf v}$ being orthogonal to just a single vector ${\bf u}$, we can consider orthogonality to a set of vectors:

Definition: Let W be a subspace of \mathbb{R}^n (or more generally a subset). A vector \mathbf{z} is *orthogonal to* W if it is orthogonal to every vector in W. The *orthogonal complement* of W, written W^\perp , is the set of all vectors orthogonal to W. In other words, \mathbf{z} is in W^\perp means $\mathbf{z} \cdot \mathbf{w} = 0$ for all \mathbf{w} in W.

Example: Let W be the x_1x_3 -plane in \mathbb{R}^3 , i.e. $W = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$. $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ is orthogonal to } W \text{, because } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = 0 \cdot a + 1 \cdot 0 + 0 \cdot b = 0.$ We show on p13 that W^\perp is Span $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 9 of 27

Key properties of W^{\perp} , for a subspace W of \mathbb{R}^n :

- 1. If ${\bf x}$ is in both W and W^\perp , then ${\bf x}={\bf 0}$ (ex. sheet #21 q2b).
- 2. If $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then \mathbf{y} is in W^{\perp} if and only if \mathbf{y} is orthogonal to each \mathbf{v}_i (same idea as ex. sheet q2a, see diagram).
- 3. W^{\perp} is a subspace of \mathbb{R}^n (checking the axioms directly is not hard, alternative proof p13).
- 4. $\dim W + \dim W^{\perp} = n$ (follows from alternative proof of 3, see p13).
- 5. If $W^{\perp} = U$, then $U^{\perp} = W$.
- 6. For a vector \mathbf{y} in \mathbb{R}^n , the closest point in W to \mathbf{y} is the unique point $\hat{\mathbf{y}}$ such that $\mathbf{y} \hat{\mathbf{y}}$ is in W^{\perp} (see p15-17).

(1 and 3 are true for any set W, even when W is not a subspace.)

Dot product and matrix multiplication:

Remember (week 2 p16, §1.4) the row-column method of matrix-vector multiplication:

Example:
$$\begin{bmatrix} 4 & 3 \\ 2 & 6 \\ 14 & 10 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4(-2) + 3(2) \\ 2(-2) + 6(2) \\ 14(-2) + 10(2) \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}$$
.

This last entry is $\begin{bmatrix} 14\\10 \end{bmatrix} \cdot \begin{bmatrix} -2\\2 \end{bmatrix}$.

In general,

$$\begin{bmatrix} -- & \mathbf{r}_1 & -- \\ -- & \vdots & -- \\ -- & \mathbf{r}_m & -- \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix}. \tag{*}$$

Now consider

By (*), this is equivalent to $\mathbf{r}_i \cdot \mathbf{x} = 0$ for all i.

this is equivalent to

 $\mathbf{x} \in \mathsf{Nul}A$

By property 2 on the previous page, $\mathbf{r} \cdot \mathbf{x} = 0$ for all $\mathbf{r} \in \mathsf{Span} \{\mathbf{r}_1, \dots, \mathbf{r}_m\} = \mathsf{Row} A$. Semester 2 2018, Week 11, Page 11 of 27

By definition of orthogonal complement, this is equivalent to

$$\mathbf{x} \in (\mathsf{Row} A)^{\perp}$$

So $\mathbf{x} \in \mathsf{Nul}A$ if and only if $\mathbf{x} \in (\mathsf{Row}A)^{\perp}$. We have proved

Theorem 3: Orthogonality of Subspaces associated to Matrices: For a matrix A, $(Row A)^{\perp} = Nul A$ and $(Col A)^{\perp} = Nul A^{T}$.

The second assertion comes from applying the first statement to ${\cal A}^{\cal T}$ instead of A, remembering that $Row A^T = Col A$.

Theorem 3: Orthogonality of Subspaces associated to Matrices: For a matrix A, $(Row A)^{\perp} = NulA$ and $(ColA)^{\perp} = NulA^{T}$.

We can use this theorem to prove that W^\perp is a subspace: given a subspace W of \mathbb{R}^n , let A be the matrix whose rows is a basis for W, so $\mathrm{Row} A = W$. Then $W^\perp = \mathrm{Nul} A$, and null spaces are subspaces, so W^\perp is a subspace. Futhermore, the Rank Nullity Theorem says $\dim \mathrm{Row} A + \dim \mathrm{Nul} A = n$, so $\dim W + \dim W^\perp = n$.

The argument above also gives us a way to compute orthogonal complements:

Example: Let
$$W = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$
. A basis for W is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$, so W^{\perp} is the solutions to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$, i.e. $W^{\perp} = \left\{ s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \middle| s \in \mathbb{R} \right\}$.

Notice $\dim W + \dim W^{\perp} = 2 + 1 = 3$.

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 13 of 27

On p11, we related the matrix-vector product to the dot product:

$$egin{bmatrix} -- & \mathbf{r}_1 & -- \ -- & draverontomed & \vdots & -- \ -- & \mathbf{r}_m & -- \end{bmatrix} \mathbf{x} = egin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \ draverontomed & \vdots \ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix}.$$

Because each column of a matrix-matrix product is a matrix-vector product,

$$AB = A \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ A\mathbf{b}_1 & \dots & A\mathbf{b}_p \\ | & | & | \end{bmatrix},$$

we can also express matrix-matrix products in terms of the dot product: the (i, j)-entry of the product AB is (ith row of $A) \cdot (j$ th column of B)

$$\begin{bmatrix} -- & \mathbf{r}_1 & -- \\ -- & \vdots & -- \\ -- & \mathbf{r}_m & -- \end{bmatrix} \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{b}_1 & \dots & \mathbf{r}_1 \cdot \mathbf{b}_p \\ \vdots & & \vdots \\ \mathbf{r}_m \cdot \mathbf{b}_1 & \dots & \mathbf{r}_m \cdot \mathbf{b}_p \end{bmatrix}.$$

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 14 of 27

Closest point to a subspace:

Theorem 9: Best Approximation Theorem: Let W be a subspace of \mathbb{R}^n , and y a vector in \mathbb{R}^n . Then there is a unique point $\hat{\mathbf{y}}$ in W such that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} , and this $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} in the sense that $\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$ for all \mathbf{v} in W with $\mathbf{v} \neq \hat{\mathbf{y}}$.

Example: Let $W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$, so $W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$. Let $\mathbf{y} = \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$. Take $\hat{\mathbf{y}} = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix}$, then $\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$ is in W^{\perp} ,

W

so $\hat{\mathbf{y}} = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix}$ is unique point in W that is

closest to

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 15 of 27

Theorem 9: Best Approximation Theorem: Let W be a subspace of \mathbb{R}^n , and y a vector in \mathbb{R}^n . Then there is a unique point $\hat{\mathbf{y}}$ in W such that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} , and this $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} in the sense that $\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$ for all \mathbf{v} in W with $\mathbf{v} \neq \hat{\mathbf{y}}$.

Partial Proof: We show here that, if $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} , then $\hat{\mathbf{y}}$ is the unique closest point (i.e. it satisfies the inequality). We will not show here that there is always a $\hat{\mathbf{y}}$ such that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . (See §6.3 on orthogonal projections, in Week 12 notes.) We are assuming that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . (vertical blue edge)

W

 $\hat{\mathbf{y}} - \mathbf{v}$ is a difference of vectors in W, so it is in W. (horizontal blue edge) So $y - \hat{y}$ and $\hat{y} - v$ are orthogonal. Apply the Pythagorean Theorem (blue

The right hand side: if $\mathbf{v} \neq \hat{\mathbf{y}}$, then the second term is the squared-length of a nonzero vector, so it is positive. So $\|\mathbf{y} - \mathbf{v}\|^2 > \|\mathbf{y} - \hat{\mathbf{y}}\|^2$ and so

 $\|\mathbf{y} - \mathbf{v}\| > \|\mathbf{y} - \hat{\mathbf{y}}\|.$

HKBU Math 2207 Linear Algebra

§6.5-6.6: Least Squares, Application to Regression

Remember our motivation: we have an inconsistent equation $A\mathbf{x} = \mathbf{b}$, and we want to find a "closest approximate solution" $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}}$ is the point in ColAthat is closest to b.

Definition: If A is an $m \times n$ matrix and b is in \mathbb{R}^m , then a *least-squares solution* of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $\|\mathbf{b} - A\hat{\mathbf{x}}\| \leq \|\mathbf{b} - A\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .

0

Col A

Equivalently: we want to find a vector $\hat{\mathbf{b}}$ in ColA that is closest to \mathbf{b} , and then solve $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Because of the Best Approximation Theorem (p15-16): $\mathbf{b} - \hat{\mathbf{b}}$ is in $(ColA)^{\perp}$. Because of Orthogonality of Subspaces associated to Matrices (p11-13):

 $(\mathsf{Col}A)^{\perp} = \mathsf{Nul}A^T$.

So we need $\hat{\mathbf{b}}$ so that $\mathbf{b} - \hat{\mathbf{b}}$ is in Nul A^T .

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 17 of 27

The least-squares solutions to $A\mathbf{x} = \mathbf{b}$ are the solutions to $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ where $\hat{\mathbf{b}}$ is the unique vector such that $\mathbf{b} - \hat{\mathbf{b}}$ is in Nul A^T . Equivalently,

$$A^{T}(\mathbf{b} - \hat{\mathbf{b}}) = \mathbf{0}$$

$$A^{T}\mathbf{b} - A^{T}\hat{\mathbf{b}} = \mathbf{0}$$

$$A^{T}\mathbf{b} = A^{T}\hat{\mathbf{b}}$$

$$A^{T}\mathbf{b} = A^{T}A\hat{\mathbf{x}}$$

So we have proved:

Theorem 13: Least-Squares Theorem: The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the set of solutions of the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Because of the existence part of the Best Approximation Theorem (that we will prove later), $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ is always consistent.

Warning: The terminology is confusing: a least-squares solution $\hat{\mathbf{x}}$, satisfying $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$, is in general **not** a solution to $A \mathbf{x} = \mathbf{b}$. That is, usually $A \hat{\mathbf{x}} \neq \mathbf{b}$. Theorem 13: Least-Squares Theorem: The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the set of solutions of the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Example: Let $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$. Find a least- x_3

squares solution of the inconsistent equation $A\mathbf{x} = \mathbf{b}$.

Answer: We solve the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$:

$$\begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$
$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

By row-reducing $\begin{bmatrix} 17 & 1 & | 19 \\ 1 & 5 & | 11 \end{bmatrix}$, we find $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Note that $A\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 19 of 27

Ax

(2, 0, 11)

(0, 2, 1)

ColA

(4, 0, 1)

Example: (from p1) Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Find the set of least-squares solutions of the inconsistent equation $A\mathbf{x} = \mathbf{b}$.

 \mathbf{x}_1

Answer: We solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$:

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 7 \\ 14 \end{bmatrix}$$
 Row-reducing
$$\begin{bmatrix} 5 & 10 & | 7 \\ 10 & 20 & | 14 \end{bmatrix}$$
 gives $\hat{\mathbf{x}} = \begin{bmatrix} 7/5 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ where s can take any value.

Note that
$$A\hat{\mathbf{x}} = A\left(\begin{bmatrix} 7/5 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 7/5 \\ 14/5 \end{bmatrix}$$
,

independent of s: $A\hat{\mathbf{x}}$ is the closest point in ColA to b, which by the Best Approximation

Theorem is unique.

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 20 of 27

Observations from the previous examples:

- A^TA is a square matrix and is symmetric. (Exercise: prove it!)
- ullet The normal equations sometimes have a unique solution and sometimes have infinitely many solutions, but $A\hat{\mathbf{x}}$ is unique.

When is the least-squares solution unique?

Theorem 14: Uniqueness of Least-Squares Solutions: The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution if and only if the columns of A are linearly independent.

Consequences:

- The number of least-squares solutions to $A\mathbf{x} = \mathbf{b}$ does not depend on \mathbf{b} , only on A.
- Because A^TA is a square matrix, if the least-squares solution is unique, then it is $\hat{\mathbf{x}} = (A^TA)^{-1}A^T\mathbf{b}$. This formula is useful theoretically (e.g. for deriving general expressions for regression coefficients, see Homework 6 q5).

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 21 of 27

Theorem 14: Uniqueness of Least-Squares Solutions: The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution if and only if the columns of A are linearly independent.

Proof 1: The least-squares solutions are the solutions to the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. So

- "unique least-squares solution" is equivalent to $Nul(A^TA) = \{0\}.$
- ullet "columns of A are linearly independent" is equivalent to $\mathop{\rm Nul} A = \{ {f 0} \}.$

So the theorem will follow if we prove the stronger fact $Nul(A^TA) = NulA$; in other words, $A^TAx = 0$ if and only if Ax = 0.

- If $A\mathbf{x} = \mathbf{0}$, then $A^T A\mathbf{x} = A^T (A\mathbf{x}) = A^T \mathbf{0} = \mathbf{0}$.
- If $A^T A \mathbf{x} = \mathbf{0}$, then $||A\mathbf{x}||^2 = (A\mathbf{x}) \cdot (A\mathbf{x}) = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x}$ = $\mathbf{x}^T (A^T A \mathbf{x}) = \mathbf{x}^T \mathbf{0} = 0$. So the length of $A\mathbf{x}$ is 0, which means it must be the zero vector.

Proof 2: The least-squares solutions are the solutions to $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ where $\hat{\mathbf{b}}$ is unique (the closest point in ColA to \mathbf{b}). The equation $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ has a unique solution precisely when the columns of A are linearly independent.

Application: least-squares line

Suppose we have a model that relates two quantities x and y linearly, i.e. we expect $y = \beta_0 + \beta_1 x$, for some unknown numbers β_0, β_1 .

To estimate β_0 and β_1 , we do an experiment, whose results are $(x_1, y_1), \ldots, (x_n, y_n)$.

Now we wish to solve (for β_0, β_1):

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 23 of 27

Because experiments are rarely perfect, our data points (x_i,y_i) probably don't all lie exactly on any line, i.e. this system probably doesn't have a solution. So we ask for a least-squares solution.

A least-squares solution minimises $\|\mathbf{y} - X\boldsymbol{\beta}\|$, which is equivalent to minimising $\|\mathbf{y} - X\boldsymbol{\beta}\|^2 = (y_1 - (\beta_0 + \beta_1 x_1))^2 + \dots + (y_n - (\beta_0 + \beta_1 x_n))^2$, the sums of the squares of the residuals. (The residuals are the vertical distances between each data point and the line, as in the diagram above).

Semester 2 2018, Week 11, Page 24 of 27

Example: Find the equation $y = \hat{\beta_0} + \hat{\beta_1}x$ for the least-squares line for the following data

points:

Answer: The model $X\beta = y$ is

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

The normal equations
$$X^TX\hat{\boldsymbol{\beta}}=X^T\mathbf{y}$$
 are
$$\begin{bmatrix}1&1&1&1\\2&5&7&8\end{bmatrix}\begin{bmatrix}1&2\\1&5\\1&7\\1&8\end{bmatrix}\hat{\boldsymbol{\beta}}=\begin{bmatrix}1&1&1&1\\2&5&7&8\end{bmatrix}\begin{bmatrix}1\\2\\3\\3\end{bmatrix}$$

$$\begin{bmatrix}4&22\\22&142\end{bmatrix}\hat{\boldsymbol{\beta}}=\begin{bmatrix}9\\57\end{bmatrix}.$$
 Row-reducing gives $\hat{\boldsymbol{\beta}}=\begin{bmatrix}2/7\\5/14\end{bmatrix}$, so the equation of the least-squares line is $y=2/7+5/14x$.

We wish to solve (for β_0, β_1):

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$X \qquad \boldsymbol{\beta} = \mathbf{y}$$

HKBU Math 2207 Linear Algebra

Semester 2 2018, Week 11, Page 25 of 27

Application: least-squares fitting of other curves

Suppose we model y as a more complicated function of x, i.e.

 $y = \beta_0 f_0(x) + \beta_1 f_1(x) + \cdots + \beta_k f_k(x)$, where f_0, \ldots, f_k are known functions, and β_0, \ldots, β_k are unknown parameters that we will estimate from experimental data. Such a model is still called a "linear model", because it is linear in the parameters β_0,\ldots,β_k .

 $\beta_1 3 + \beta_2 3^2 + \beta_3 3^3 = 2.0$, and so on.

In matrix form: $\begin{bmatrix} 2 & 4 & 8 \\ 3 & 9 & 27 \\ 4 & 16 & 64 \\ 6 & 36 & 216 \\ 7 & 49 & 343 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} 1.6 \\ 2.0 \\ 2.5 \\ 3.1 \\ 3.4 \end{bmatrix}.$ Then we solve the normal equations etc...

Semester 2 2018, Week 11, Page 26 of 27

So in general, to estimate the parameters β_0, \ldots, β_k in a linear model $y=eta_0f_0(x)+eta_1f_1(x)+\cdots+eta_kf_k(x)$, we find the least-squares solution to $eta_0f_0(x_1)+eta_1f_1(x_1)+\cdots+eta_kf_k(x_1)=y_1$ $\beta_0 f_0(x_2) + \beta_1 f_1(x_2) + \dots + \beta_k f_k(x_2) = y_2$ parameter vector with more general i.e. $\begin{bmatrix} f_0(x_1) & f_1(x_1) & \dots & f_k(x_1) \\ f_0(x_2) & f_1(x_2) & \dots & f_k(x_2) \\ \vdots & \vdots & & \vdots \\ f_0(x_n) & f_1(x_n) & \dots & f_k(x_n) \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \text{more rows}$ design matrix (Least-squares lines correspond to the case $f_0(x) = 1, f_1(x) = 1$

Least-squares techniques can also be used to fit a surface to experimental data, for linear models with more than one input variable (e.g. $y = \beta_0 + \beta_1 x + \beta_2 xw$, for input variables x and w) - this is called multiple regression.