

CDCE62005

SCAS862F - NOVEMBER 2008 - REVISED JANUARY 2015

CDCE62005 3:5 Clock Generator, Jitter Cleaner with Integrated Dual VCOs

Features

Superior Performance:

- Low Noise Clock Generator: 550 fs rms typical (10 kHz to 20 MHz Integration Bandwidth), $F_C = 100 \text{ MHz}$
- Low Noise Jitter Cleaner: 2.6 ps rms typical (10 kHz to 20 MHz Integration Bandwidth), $F_C = 100 \text{ MHz}$

Flexible Frequency Planning:

- 5 Fully Configurable Outputs: LVPECL, LVDS, LVCMOS and Special High Swing Output Modes
- Unique Dual-VCO Architecture Supports a Wide Tuning Range: 1.750 GHz to 2.356 GHz
- Output Frequency Ranges from 4.25 MHz to 1.175 GHz in Synthesizer Mode
- Output Frequency up to 1.5 GHz in Fan-Out
- Independent Coarse Skew Control on all Outputs

High Flexibility:

- Integrated EEPROM Determines Device Configuration at Power-up
- Smart Input Multiplexer Automatically Switches Between One of Three Reference Inputs
- 7 x 7 mm 48-pin VQFN Package (RGZ)
- -40°C to 85°C Temperature Range

Applications

- Wireless Infrastructure
- Switches and Routers
- Medical Electronics
- Military and Aerospace
- Industrial

3 Description

The CDCE62005 is a high performance clock generator and distributor featuring low output jitter, a high degree of configurability via a SPI interface, and programmable start up modes determined by on-chip EEPROM. Specifically tailored for clocking data converters and high-speed digital signals, the CDCE62005 achieves jitter performance well under 1 ps RMS (10 kHz to 20 MHz integration bandwidth).

The CDCE62005 incorporates a synthesizer block with partially integrated loop filter, a clock distribution block including programmable output formats, and an input block featuring an innovative smart multiplexer. The clock distribution block includes five individually programmable outputs that can be configured to provide different combinations of output formats (LVPECL, LVDS, LVCMOS). Each output can also be programmed to a unique output frequency (up to 1.5 GHz) and skew relationship via a programmable delay block (note that frequency range depends on operational mode and output format selected). If all outputs are configured in single-ended mode (for example, LVCMOS), the CDCE62005 supports up to ten outputs. Each output can select one of four clock sources to condition and distribute including any of the three clock inputs or the output of the frequency synthesizer. The input block includes two universal differential inputs which support frequencies in the range of 40 kHz to 500 MHz and an auxiliary input that can be configured to connect to an external crystal via an on chip oscillator block.

The smart input multiplexer has two modes of operation, manual and automatic. In manual mode, the user selects the synthesizer reference via the SPI interface. In automatic mode, the input multiplexer will automatically select between the highest priority input clock available.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
CDCE62005	VQFN (48)	7.00 mm × 7.00 mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Application Example

Table of Contents

1	Features 1		8.3 Feature Description	20
2	Applications 1		8.4 Device Functional Modes	<mark>52</mark>
3	Description 1		8.5 Programming	55
4	Revision History2		8.6 Register Maps	61
5	Pin Configuration and Functions 4	9	Application and Implementation	<mark>70</mark>
6	Specifications		9.1 Application Information	<mark>70</mark>
U	6.1 Absolute Maximum Ratings		9.2 Typical Application	7 0
	6.2 Handling Ratings	10	Power Supply Recommendations	74
	6.3 Thermal Information	11	Layout	76
	6.4 Electrical Characteristics		11.1 Layout Guidelines	
	6.5 Timing Requirements		11.2 Layout Example	
	6.6 SPI Bus Timing Characteristics	12	Device and Documentation Support	
	6.7 Typical Characteristics		12.1 Trademarks	
7	Parameter Measurement Information		12.2 Documentation Support	
8	Detailed Description		12.3 Electrostatic Discharge Caution	
0	8.1 Overview		12.4 Glossary	
	8.2 Functional Block Diagrams	13	Mechanical, Packaging, and Orderable Information	

4 Revision History

Cł	nanges from Revision E (July 2014) to Revision F	Page
•	Added Low Noise Clock Generator: 550 fs rms typical (10 kHz to 20 MHz Integration Bandwidth), F _C = 100 MHz in Features section	1
•	Added Low Noise Jitter Cleaner: 2.6 ps rms typical (10 kHz to 20 MHz Integration Bandwidth), $F_C = 100$ MHz in Features section	1
Cł	nanges from Revision D (April 2011) to Revision E	Page
•	Changed Added, updated, or revised the following sections: Features; Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information	1
•	Changed Bit Name from LOCKW(3) to LOCKW(2)	48
•	Changed Bit Name from LOCKW(2) to LOCKW(1)	48
•	Changed Bit Name from LOCKW(1) to LOCKW(0)	48
•	Changed REGISTER.BIT from 5.26 to 5.25, from 5.25 to 5.24, from 5.24 to 5.23, from 5.23 to 5.22	48

nges from Revision C (February, 2010) to Revision D	Page
Changed 0 to 1 in SPI_LE description	4
Changed last sentence in Description column of Pin 46 and Pin 2	5
Changed Outputs to Output 1 in P _{LVCMOS} Test Conditions, changed PD to Power_Down in LVCMOS INPUT MODE, and deleted (LVCMOS signals) from Input capacitance in Electrical Characteristics	7
Changed TIMING REQUIREMENTS table	11
Added 1 row to TIMING Requirements table - Input Clock Slew Rate	11
Added SPI CONTROL INTERFACE TIMING section	11
Changed Functional Block Diagrams	14
Changed pin names in Figure 11	15
Changed Feedback Divider value in Figure 15	18
Changed are 25°C to (nominal conditions) in Table 3	21
	Changed 0 to 1 in SPI_LE description

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

SCAS862F - NOVEMBER 2008 - REVISED JANUARY 2015

www.ti.com

anges from Revision B (July, 2009) to Revision C	Page
Changed Table 48	69
Changed RAM bit 22 from 0 to 1 and changed RAM bit 24 from 0 to 1 in Table 47	
Changed 1 to 0 in rows PRINVBB and SECINVB6 in the description column	66
Added note and changed Smart MUX description in Table 45	66
Changed RAM bit 1 and RAM bit 2 in Table 43	64
Changed Table 6 to Table 38 in Writing to EEPROM section	60
Changed Serial Peripheral Interface (SPI) section	55
Added new sections Crystal Input Interface, VCO Calibration, and Startup Time Estimation	48
Added note to Table 21	39
Changed AUXSEL from X to 0 in Table 7	25
Added note to Table 7	25
Changed Table 5	
Changed Figure 18	23
Changed Poer Down state SPI Port status from ON to OFF in Table 4	22
	Changed Figure 18 Changed Table 5 Added note to Table 7 Changed AUXSEL from X to 0 in Table 7 Added note to Table 21 Added new sections Crystal Input Interface, VCO Calibration, and Startup Time Estimation. Changed Serial Peripheral Interface (SPI) section. Changed Table 6 to Table 38 in Writing to EEPROM section Changed RAM bit 1 and RAM bit 2 in Table 43 Added note and changed Smart MUX description in Table 45 Changed 1 to 0 in rows PRINVBB and SECINVB6 in the description column.

5 Pin Configuration and Functions

Pin Functions⁽¹⁾

PIN		TVDE	DECORPTION		
NAME	NUMBER	TYPE	DESCRIPTION		
VCC_OUT	8, 11, 18, 21, 26, 29, 32	Power	3.3V Supply for the Output Buffers and Output Dividers		
VCC_AUXOUT	15	Power	3.3V to Power the AUX_OUT circuitry		
VCC1_PLL	5	A. Power	3.3V PLL Supply Voltage for the PLL circuitry. (Filter Required)		
VCC2_PLL	39, 42	A. Power	3.3V PLL Supply Voltage for the PLL circuitry. (Filter Required)		
VCC_VCO	34, 35	A. Power	3.3V VCO Input Buffer and Circuitry Supply Voltage. (Filter Required)		
VCC_IN_PRI	47	A. Power	Power 3.3V References Input Buffer and Circuitry Supply Voltage.		
VCC_IN_SEC	1	A. Power	3.3V References Input Buffer and Circuitry Supply Voltage.		
VCC_AUXIN	44	A. Power	3.3V Crystal Oscillator Input Circuitry.		
GND_VCO	36	Ground	Ground that connects to VCO Ground. (VCO_GND is shorted to GND)		
GND	PAD	Ground	Ground is on Thermal PAD. See Layout recommendation		
SPI_MISO	22	0	3-state LVCMOS Output that is enabled when SPI_LE is asserted low. It is the serial Data Output to the SPI bus interface		
SPI_LE	25	I	LVCMOS input, control Latch Enable for Serial Programmable Interface (SPI), with Hysteresis in SPI Mode. The input has an internal 150-kΩ pull-up resistor if left unconnected it will default to logic level 1. The SPI_LE status also impacts whether the device loads the EEPROM into the device registers at power up. SPI_LE has to be logic 1 before the Power_Down pin toggles low-to-high in order for the EEPROM to load properly.		

⁽¹⁾ Note: The internal memory (EEPROM and RAM) are sourced from various power pins. All VCC connections must be powered for proper functionality of the device.

Pin Functions⁽¹⁾ (continued)

Р	IN		
NAME	NUMBER	TYPE	DESCRIPTION
SPI_CLK	24	ı	LVCMOS input, serial Control Clock Input for the SPI bus interface, with Hysteresis. The input has an internal 150-k Ω pull-up resistor if left unconnected it will default to logic level 1.
SPI_MOSI	23	1	LVCMOS input, Master Out Slave In as a serial Control Data Input to CDCE62005 for the SPI bus interface. The input has an internal 150 -k Ω pull-up resistor if left unconnected it will default to logic level 1.
TEST_MODE	33	I	This pin should be tied high or left unconnected.
REF_SEL	31	1	If Auto Reference Select Mode is OFF this Pin acts as External Input Reference Select Pin; The REF_SEL signal selects one of the two input clocks: REF_SEL [1]: PRI_REF is selected; REF_SEL [0]: SEC_REF is selected; The input has an internal 150-k Ω pull-up resistor if left unconnected it will default to logic level 1. If Auto Reference Select Mode in ON (for example, EECLKSEL bit Register 5 Bit 5 is 1), then REF_SEL pin input setting is ignored.
Power_Down	12	1	Active Low. Power down mode can be activated via this pin. See Table 4 for more details. The input has an internal 150-k Ω pull-up resistor if left unconnected it will default to logic level 1. SPI_LE has to be HIGH in order for the rising edge of Power_Down signal to load the EEPROM.
SYNC	14	1	Active Low. Sync mode can be activated via this pin. See Table 4 for more details. The input has an internal 150-k Ω , pull-up resistor if left unconnected it will default to logic level 1.
AUX IN	43	I	Auxiliary Input is a single ended input including an on-board oscillator circuit so that a crystal may be connected.
AUX OUT	13	0	Auxiliary Output LVCMOS level that can be programmed via SPI interface to be driven by Output 2 or Output 3.
PRI_REF+	45	1	Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Primary Reference Clock.
PRI_REF-	46	1	Universal Input Buffer (LVPECL, LVDS) negative input for the Primary Reference Clock. In case of LVCMOS input on PRI_REF+, connect this pin through 1 k Ω resistor to GND.
SEC_REF+	3	1	Universal Input Buffer (LVPECL, LVDS, LVCMOS) positive input for the Secondary Reference Clock.
SEC_REF-	2	1	Universal Input Buffer (LVPECL, LVDS,) negative input for the Secondary Reference Clock. In case of LVCMOS input on SEC_REF+, connect this pin through 1 k Ω resistor to GND.
TESTOUTA	30	Analog	Reserved. Pull Down to GND Via a 1-k Ω Resistor.
REG_CAP1	4	Analog	Capacitor for the internal Regulator. Connect to a 10uF Capacitor (X5R or X7R)
REG_CAP2	38	Analog	Capacitor for the internal Regulator. Connect to a 10uF Capacitor (X5R or X7R)
VBB	48	Analog	Capacitor for the internal termination Voltage. Connect to a 1uF Capacitor (X5R or X7R)
EXT_LFP	40	Analog	External Loop Filter Input Positive
EXT_LFN	41	Analog	External Loop Filter Input Negative.
PLL_LOCK	37	0	Output that indicates PLL Lock Status. See Figure 31.
U0P:U0N U1P:U1N U2P:U2N U3P:U3N U4P:U4N	27, 28 19, 20 16,17 9, 10 6, 7	0	The Main outputs of CDCE62005 are user definable and can be any combination of up to 5 LVPECL outputs, 5 LVDS outputs or up to 10 LVCMOS outputs. The outputs are selectable via SPI interface. The power-up setting is EEPROM configurable.

Copyright © 2008–2015, Texas Instruments Incorporated

Submit Docu

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage range (2)	-0.5	4.6	V
VI	Input voltage range ⁽³⁾	-0.5	VCC + 0.5	V
Vo	Output voltage range ⁽³⁾	-0.5	VCC + 0.5	V
	Input Current ($V_1 < 0$, $V_1 > V_{CC}$)		±20	mA
	Output current for LVPECL/LVCMOS Outputs (0 < V _O < V _{CC})		±50	mA
TJ	Maximum junction temperature		125	°C

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All supply voltages have to be supplied simultaneously.

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	ge	-65	150	°C
V _(ESD)	Flootrootatio diochorge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾		2000	V
	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)		750	- V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Thermal Information (1)(2)

	THERMAL METRIC(3)	RGZ	
	THERMAL METRIC (3)	48 PINS	UNIT
		28.9 ⁽⁴⁾	
D	Junction-to-ambient thermal resistance	20.4 ⁽⁵⁾	
$R_{\theta JA}$		27.3 ⁽⁶⁾	
		20.3 ⁽⁷⁾	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	12.9	
$R_{\theta JB}$	Junction-to-board thermal resistance	4.0	
ΨЈТ	Junction-to-top characterization parameter	0.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	4.0	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.9	
		2 ⁽⁴⁾	
0	lunction to Dad(8)	2 ⁽⁵⁾	
$\theta_{\sf JP}$	Junction-to-Pad ⁽⁸⁾	2 ⁽⁶⁾	
		2 ⁽⁷⁾	

The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).

Submit Documentation Feedback

Copyright © 2008-2015, Texas Instruments Incorporated

The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Connected to GND with 36 thermal vias (0,3 mm diameter).

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

JEDEC Compliant Board (6X6 VIAs on PAD), Ariflow = 0 LFM

JEDEC Compliant Board (6X6 VIAs on PAD), Airflow = 100 LFM

Recommended Layout (7X7 VIAs on PAD), Airflow = 0 LFM Recommended Layout (7X7 VIAs on PAD), Airflow = 100 LFM

⁽⁷⁾

θ_{IP} (Junction – Pad) is used for the QFN Package, because the main heat flow is from the Junction to the GND-Pad of the QFN.

6.4 Electrical Characteristics

recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of -40° C to 85° C

to 85°C	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWER S		120100		IVIIIA	111	INIOV	CINII
V _{CC}	Supply voltage			3	3.3	3.6	V
V _{CC PLL} ,	Supply voltage			3	0.0	3.0	•
V _{CC_PLL} , V _{CC_IN} , V _{CC_VCO} , V _{CCA}	Analog supply voltage			3	3.3	3.6	
P _{LVPECL}	REF at 30.72,MHz, Outputs are LVPECL		Output 1 = 491.52 MHz Output 2 = 245.76 MHz		1.9		W
P _{LVDS}	REF at 30.72 MHz, Outputs are LVDS	Output 3 = 122.88 Output 4 = 61.44 I	MHz		1.65		W
P _{LVCMOS}	REF at 30.72 MHz, Outputs are LVCMOS	Output 5 = 30.72 I In case of LVCMC Output1 = 245.76)S		1.8		W
P _{OFF}	REF at 30.72 MHz	Dividers are disab disabled.	Dividers are disabled. Outputs are disabled.		0.75		W
P_{PD}		Device is powered	d down		20		mW
DIFFERE	NTIAL INPUT MODE (PRI_REF, SEC	_REF)					
V _{IN}	Differential input amplitude (V _{IN} – V _{/IN})			0.1		1.3	V
V_{IC}	Common-mode input voltage			1.0		V _{CC} -0.3	V
I _{IH}	Differential input current high (no internal termination)	$V_I = V_{CC}, V_{CC} = 3.$	V _I = V _{CC} , V _{CC} = 3.6 V			20	μΑ
I _{IL}	Differential input current low (no internal termination)	V _I = 0 V, V _{CC} = 3.6 V		-20		20	μΑ
	Input Capacitance on PRI_REF, SEC_REF				3		pF
CRYSTAL	L INPUT SPECIFICATIONS						
	On-chip load capacitance			8		10	pF
	Equivalent series resistance (ESR)					50	Ω
LVCMOS	INPUT MODE (SPI_CLK, SPI_MOSI,	, SPI_LE, Power_D	own, SYNC, REF_SE	L, PRI_REF, SE	C_REF)		
	Low-level input voltage LVCMOS,			0		$0.3 \times V_{CC}$	V
	High-level input voltage LVCMOS			0.7 x V _{CC}		V_{CC}	V
V_{IK}	LVCMOS input clamp voltage	$V_{CC} = 3 \text{ V}, I_{I} = -18$	8 mA			-1.2	V
I _{IH}	LVCMOS input current	$V_I = V_{CC}, V_{CC} = 3.$.6 V			20	μΑ
I _{IL}	LVCMOS input (Except PRI_REF and SEC_REF)	$V_{I} = 0 \ V, \ V_{CC} = 3.0$	6 V	-10		-40	μΑ
I _{IL}	LVCMOS input (PRI_REF and SEC_REF)	$V_{I} = 0 \ V, \ V_{CC} = 3.0$	6 V	-10		10	μΑ
Cı	Input capacitance	$V_I = 0 \text{ V or } V_{CC}$			3		pF
SPI OUTF	PUT (MISO) / PLL_LOCK OUTPUT						
I _{OH}	High-level output current	$V_{CC} = 3.3 \text{ V},$	V _O = 1.65 V		-30		mA
I _{OL}	Low-level output current	$V_{CC} = 3.3 \text{ V},$	V _O = 1.65 V		33		mA
V _{OH}	High-level output voltage for LVCMOS outputs	V _{CC} = 3 V,	I _{OH} = -100 μA	V _{CC} -0.5			V
V _{OL}	Low-level output voltage for LVCMOS outputs	V _{CC} = 3 V,	I _{OL} = 100 μA			0.3	٧
Co	Output capacitance on MISO	VCC = 3.3 V; VO	= 0 V or VCC ⁽¹⁾		3		pF
I _{OZH}	2 ototo outrout ourrant	$V_O = V_{CC}$			5		^
I _{OZL}	- 3-state output current	$V_O = 0 \text{ V}$			-5		μA

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, temperature = 25°C

Electrical Characteristics (continued)

recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of -40° C to 85° C

	PARAMETER	TEST CON	DITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
EEPRON	1	I	11.				
EEcy	Programming cycle of EEPROM			100	1000		Cycles
EEret	Data retention			10			Years
VBB			<u>, </u>				
VBB	Termination voltage for reference inputs.	I _{BB} = -0.2 mA, Deper setting.	nding on the	0.9		1.9	V
INPUT B	UFFERS INTERNAL TERMINATION R	RESISTORS (PRI_REF	and SEC_REF)			•	
	Termination resistance	Single ended			50		Ω
PHASE [DETECTOR						
f _{CPmax}	Charge pump frequency			0.04		40	MHz
	OUTPUT / AUXILIARY OUTPUT ⁽¹⁾						
f _{clk}	Output frequency (see Figure 7)	Load = 5 pF to GND		0		250	MHz
V _{OH}	High-level output voltage for LVCMOS outputs	V _{CC} = min to max	I _{OH} = -100 μA	V _{CC} -0.5			
V _{OL}	Low-level output voltage for LVCMOS outputs	V _{CC} = min to max	I _{OL} =100 μA			0.3	V
I _{OH}	High-level output current	V _{CC} = 3.3 V	V _O = 1.65 V		-30		mA
I _{OL}	Low-level output current	V _{CC} = 3.3 V	V _O = 1.65 V		33		mA
t _{pho}	Reference (PRI_REF or SEC_REF) to Output Phase offset	Outputs are set to 12 Reference at 30.72 M			0.35		ns
t _{pd(LH)/} t _{pd(HL)}	Propagation delay from PRI_REF or SEC_REF to Outputs	Crosspoint to V _{CC} /2,	Bypass Mode		4		ns
t _{sk(o)}	Skew, output to output For Y0 to Y4	All Outputs set at 200 = 200 MHz	MHz, Reference		75		ps
Co	Output capacitance on Y0 to Y4	$V_{CC} = 3.3 \text{ V}; V_{O} = 0 \text{ V}$	or V _{CC}		5		pF
I _{OZH}	0.01-1-1.1/01/00	$V_O = V_{CC}$			5		μΑ
I _{OZL}	3-State LVCMOS output current	V _O = 0 V			- 5		μΑ
I _{OPDH}	Douger Douge output ourroat	$V_O = V_{CC}$				25	μΑ
I _{OPDL}	Power Down output current	V _O = 0 V				5	μΑ
	Duty cycle LVCMOS			45%		55%	
t _{slew-rate}	Output rise/fall slew rate			3.6	5.2		V/ns

Electrical Characteristics (continued)

recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of -40°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
LVDS OU	TPUT ⁽¹⁾⁽²⁾					
f _{clk}	Output frequency (see Figure 8)	Configuration Load	0		800	MHz
V _{OD}	Differential output voltage	R _L = 100 Ω	270		550	mV
ΔV_{OD}	LVDS VOD magnitude change				50	mV
	Offset Voltage	40°C to 85°C		1.24		V
ΔV _{OS}	VOS magnitude change			40		mV
	Short circuit Vout+ to ground	VOUT = 0			27	mA
	Short circuit Vout- to ground	VOUT = 0			27	mA
t _{pho}	Reference (PRI_REF or SEC_REF) to output phase offset	Outputs are set to 491.52 MHz Reference at 30.72 MHz		1.65		ns
t _{pd(LH)} /t _{pd(} HL)	Propagation delay from PRI_REF or SEC_REF to outputs	Crosspoint to Crosspoint, Bypass Mode		3.1		ns
t _{sk(o)} (3)	Skew, output to output For Y0 to Y4	All Outputs set at 200 MHz		25		ps
Co	Output capacitance on Y0 to Y4	$V_{CC} = 3.3 \text{ V}; V_O = 0 \text{ V or } V_{CC}$		5		pF
I _{OPDH}	Power down output current	$V_O = V_{CC}$			25	μΑ
I _{OPDL}	Power down output current	$V_O = 0 V$			5	μΑ
	Duty cycle		45%		55%	
t _r / t _f	Rise and fall time	20% to 80% of V _{OUT(PP)}	110	160	190	ps
LVCMOS-	TO-LVDS ⁽⁴⁾				•	
t _{skP_c}	Output skew between LVCMOS and LVDS outputs	V _{CC} /2 to Crosspoint. Output are at the same output frequency and use the same output divider configuration.	0.9	1.4	1.9	ns
LVPECL (DUTPUT					
f _{clk}	Output frequency, Configuration load (see Figure 9 and Figure 10)		0		1500	MHz
V_{OH}	LVPECL high-level output voltage load		V _{CC} -1.06		V _{CC} -0.88	V
V_{OL}	LVPECL low-level output voltage load		V _{CC} -2.02		V _{CC} -1.58	V
$ V_{OD} $	Differential output voltage		610		970	mV
t _{pho}	Reference to Output Phase offset	Outputs are set to 491.52 MHz, Reference at 30.72 MHz		1.47		ns
$t_{pd(LH)}/$ $t_{pd(HL)}$	Propagation delay from PRI_REF or SEC_REF to outputs	Crosspoint to Crosspoint, Bypass Mode		3.4		ns
t _{sk(o)}	Skew, output to output For Y0 to Y4	All Outputs set at 200 MHz		25		ps
Co	Output capacitance on Y0 to Y4	$V_{CC} = 3.3 \text{ V}; V_O = 0 \text{ V or } V_{CC}$		5		pF
I _{OPDH}	David David Control	$V_O = V_{CC}$			25	μA
I _{OPDL}	Power Down output current	V _O = 0 V			5	μA
	Duty Cycle		45%		55%	
t _r / t _f	Rise and fall time	20% to 80% of V _{OUT(PP)}	55	75	135	ps

The phase of LVCMOS is lagging in reference to the phase of LVDS.

The $t_{sk(o)}$ specification is only valid for equal loading of all outputs. All typical values are at $V_{CC}=3.3~V$, temperature = 25°C

Electrical Characteristics (continued)

recommended operating conditions for the CDCE62005 device for under the specified Industrial temperature range of -40° C to 85° C

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
LVDS-TO	O-LVPECL					
t _{skP_C}	Output skew between LVDS and LVPECL outputs	Crosspoint to Crosspoint output dividers are configured identically.	0.9	1.1	1.3	ns
LVCMOS	S-TO-LVPECL					
t _{skP_C}	Output skew between LVCMOS and LVPECL outputs	V _{CC} /2 to Crosspoint output dividers are configured identically.	-150	260	700	ps
LVPECL	. HI-SWING OUTPUT					
V _{OH}	LVPECL high-level output voltage load		V _{CC} -1.11		V _{CC} -0.87	V
V _{OL}	LVPECL low-level output voltage load		V _{CC} -2.06		V _{CC} -1.73	٧
$ V_{OD} $	Differential output voltage		760		1160	mV
t _r / t _f	Rise and fall time	20% to 80% of V _{OUT(PP)}	55	75	135	ps

6.5 Timing Requirements

over recommended ranges of supply voltage, load and operating free air temperature (unless otherwise noted)

		MIN	NOM	MAX	UNIT		
PRI_R	EF/SEC_REF REQUIREMENTS						
	Maximum Clock Frequency Applied to PRI_REF and SEC_REF in fan-out mode			1500	MHz		
£	Maximum Clock Frequency Applied to Smart Multiplexer input Divider 500						
T _{max}	max Maximum Clock Frequency Applied to Reference Divider 250						
	For Single ended Inputs (LVCMOS) on PRI_REF and SEC_REF			250	MHz		
	Duty cycle of PRI_REF or SEC_REF at V _{CC} / 2	40%		60%			
	Input Clock Slew Rate (Differential and Single ended)	1			V/ns		
Power	_Down, SYNC, REF_SEL REQUIREMENTS						
t _r / t _f	Rise and fall time of the Power_Down, SYNC, REF_SEL signal from 20% to 80% of V _{CC}			4	ns		

6.6 SPI Bus Timing Characteristics

			MIN	NOM MAX	UNIT
f _{Clock}	Clock Frequency for the SPI_CLK			20	MHz
t ₁	SPI_LE to SPI_CLK setup time	See Figure 1 and Figure 2	10		ns
t ₂	SPI_MOSI to SPI_CLK setup time	See Figure 1 and Figure 2	10		ns
t ₃	SPI_MOSI to SPI_CLK hold time	See Figure 1 and Figure 2	10		ns
t ₄	SPI_CLK high duration	See Figure 1 and Figure 2	25		ns
t ₅	SPI_CLK low duration	See Figure 1 and Figure 2	25		ns
t ₆	SPI_CLK to SPI_LE Hold time	See Figure 1 and Figure 2	10		ns
t ₇	SPI_LE Pulse Width	See Figure 1 and Figure 2	20		ns
t ₈	SPI_CLK to MISO data valid	See Figure 2		10	ns
t ₉	SPI_LE to SPI_MISO Data Valid	See Figure 2		10	ns

Figure 1. Timing Diagram for SPI Write Command

Figure 2. Timing Diagram for SPI Read Command

6.7 Typical Characteristics

7 Parameter Measurement Information

Figure 7. LVCMOS, 5 pF

Figure 8. LVDS DC Termination Test

Figure 9. LVPECL AC Termination Test

Figure 10. LVPECL DC Termination Test

Copyright © 2008–2015, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The CDCE62005 comprises of four primary blocks: the interface and control block, the input block, the output block, and the synthesizer block. In order to determine which settings are appropriate for any specific combination of input/output frequencies, a basic understanding of these blocks is required. The interface and control block determines the state of the CDCE62005 at power-up based on the contents of the on-chip EEPROM. In addition to the EEPROM, the SPI port is available to configure the CDCE62005 by writing directly to the device registers after power-up. The input block selects which of the three input ports is available for use by the synthesizer block and buffers all clock inputs. The output block provides five separate clock channels that are fully programmable and configurable to select and condition one of four internal clock sources. The synthesizer block multiplies and filters the input clock selected by the input block.

NOTE

This section provides a high-level description of the features of the CDCE62005 for purpose of understanding its capabilities. For a complete description of device registers and I/O, please refer to *Device Configuration* and *Register Maps*.

8.2 Functional Block Diagrams

8.2.1 Interface and Control Block

The CDCE62005 is a highly flexible and configurable architecture and as such contains a number of registers so that the user may specify device operation. The contents of nine 28-bit wide registers implemented in static RAM determine device configuration at all times. On power-up, the CDCE62005 copies the contents of the EEPROM into the RAM and the device begins operation based on the default configuration stored in the EEPROM. Systems that do not have a host system to communicate with the CDCE62005 use this method for device configuration. The CDCE62005 provides the ability to lock the EEPROM; enabling the designer to implement a fault tolerant design. After power-up, the host system may overwrite the contents of the RAM via the SPI (Serial Peripheral Interface) port. This enables the configuration and reconfiguration of the CDCE62005 during system operation. Finally, the device offers the ability to copy the contents of the RAM into EEPROM, if the EEPROM is unlocked.

Figure 11. CDCE62005 Interface and Control Block

Product Folder Links: CDCE62005

8.2.2 Input Block

The Input Block includes a pair of Universal Input Buffers and an Auxiliary Input. The Input Block buffers the incoming signals and facilitates signal routing to the Internal Clock Distribution bus and the Synthesizer Block via the smart multiplexer (called the Smart MUX). The Internal Clock Distribution Bus connects to all output blocks discussed in the next section. Therefore, a clock signal present on the Internal Clock Distribution bus can appear on any or all of the device outputs. The CDCE62005 routes the PRI_REF and SEC_REF inputs directly to the Internal Clock Distribution Bus. Additionally, it can divide these signals via the dividers present on the inputs and output of the first stage of the Smart MUX.

Figure 12. CDCE62005 Input Block

8.2.3 Output Block

Each of the five identical output blocks incorporates an output multiplexer, a clock divider module, and a universal output array as shown.

Figure 13. CDCE62005 Output Block (1 of 5)

8.2.4 Clock Divider Module 0-4

The following shows a simplified version of a Clock Divider Module (CDM). If an individual clock output channel is not used, then the user should disable the CDM and Output Buffer for the unused channel to save device power. Each channel includes two 7-bit registers to control the divide ratio used and the clock phase for each output. The output divider supports divide ratios from divide by 1 (bypass the divider) to divide by 80; the divider does not support all integer values between 1 and 80. Refer to Table 13 for a complete list of divide ratios supported.

Figure 14. CDCE62005 Output Divider Module (1 of 5)

8.2.5 Synthesizer Block

Figure 15 presents a high-level overview of the Synthesizer Block on the CDCE62005.

Figure 15. CDCE62005 Synthesizer Block

8.2.6 Computing The Output Frequency

Figure 16 shows the block diagram of the CDCE62005 in synthesizer mode highlighting the clock path for a single output. It also identifies the following regions containing dividers comprising the complete clock path

- R: Includes the cumulative divider values of all dividers included from the Input Ports to the output of the Smart Multiplexer (see *Input Block* for more details)
- O: The output divider value (see Figure 18 in Output Block for more details)
- I: The input divider value (see Synthesizer Block for more details)
- P: The prescaler divider value (see Synthesizer Block for more details)
- F: The cumulative divider value of all dividers falling within the feedback divider (see Synthesizer Block for more details)

Figure 16. CDCE62005 Clock Path - Synthesizer Mode

With respect to Figure 16, any output frequency generated by the CDCE62005 relates to the input frequency connected to the Synthesizer Block by Equation 1.

$$F_{OUT} = F_{IN} \times \frac{F}{R \times I \times O} \tag{1}$$

Equation 1 holds true when subject to the following constraints:

$$1.750 \text{ Ghz} < 0 \text{ x P x } F_{\text{OUT}} < 2.356 \text{ GHz}$$
 (2)

The comparison frequency F_{COMP} is:

$$40 \text{ kHz} \le F_{\text{COMP}} < 40 \text{ MHz} \tag{3}$$

where:

$$F_{COMP} = \frac{F_{IN}}{R \times I} \tag{4}$$

NOTE

This device cannot output the frequencies between 785 MHz to 875 MHz

Copyright © 2008–2015, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Phase Noise Analysis

Table 1. Device Output Phase Noise for 30.72 MHz External Reference⁽¹⁾

PHASE NOISE	REFERENCE 30.72 MHz	LVPECL 491.52 MHz	LVDS 491.52 MHz	LVCMOS 122.88 MHz	UNIT
10 Hz	-108	-81	-81	-92	dBc/Hz
100 Hz	-130	-94	-96	-108	dBc/Hz
1 kHz	-134	-106	-106	-118	dBc/Hz
10 kHz	-152	-119	-119	-132	dBc/Hz
100 kHz	-156	-121	-122	-134	dBc/Hz
1 MHz	-157	-131	-131	-143	dBc/Hz
10 MHz	_	-145	-144	-150	dBc/Hz
20 MHz	_	-145	-144	-150	dBc/Hz
Jitter(RMS) 10k~20 MHz	193 (10 kHz – 1 MHz)	307	315	377	fs

⁽¹⁾ Phase Noise Specifications under following configuration: VCO = 1966.08 MHz, REF = 30.72 MHz, PFD Frequency = 30.72 MHz, Charge Pump Current = 1.5 mA Loop BW = 400 kHz at 3.3 V and 25°C

Table 2. Device Output Phase Noise for 25 MHz Crystal Reference⁽¹⁾

PHASE NOISE	LVPECL 500 MHz	LVDS 250 MHz	LVCMOS 125 MHz	UNIT
10 Hz	– 57	-62	-68	dBc/Hz
100 Hz	-90	-95	-102	dBc/Hz
1 kHz	-107	-113	-119	dBc/Hz
10 kHz	–115	-122	-128	dBc/Hz
100 kHz	-118	-124	-130	dBc/Hz
1 MHz	-130	-137	-143	dBc/Hz
10 MHz	-145	-147	-150	dBc/Hz
20 MHz	-145	-147	-150	dBc/Hz
Jitter(RMS) 10k~20 MHz	389	405	437	fs

⁽¹⁾ Phase Noise Specifications under following configuration: VCO = 2000.00 MHz, AUX IN = 25.00 MHz, PFD = 25.00 MHz, COD = 2000.00 MHz, COD = 200

8.3.2 Output To Output Isolation

Table 3. Output to Output Isolation⁽¹⁾

			SPUR	UNIT
Output 2	Measured Channel	In LVPECL Signaling 15.5 MHz	-67	db
Output 2	Measured Channel	In LVPECL Signaling 93 MHz	-60	db
Output 2	Measured Channel	In LVPECL Signaling 930 MHz	-59	db
Output 0	Aggressor Channel	LVPECL 22.14 MHz	·	
Output 1	Aggressor Channel	LVPECL 22.14 MHz		
Output 3	Aggressor Channel	LVPECL 22.14 MHz		
Output 4	Aggressor Channel	LVPECL 22.14 MHz		

⁽¹⁾ The Output to Output Isolation was tested under following settings (nominal conditions)

8.3.3 Device Control

Figure 17 provides a conceptual explanation of the CDCE62005 Device operation. Table 4 defines how the device behaves in each of the operational states.

Figure 17. CDCE62005 Device State Control Diagram

Copyright © 2008–2015, Texas Instruments Incorporated

Table 4. CDCE62005 Device State Definitions

					ST	ATUS	
STATE	DEVICE BEHAVIOR	ENTERED VIA	EXITED VIA	SPI PORT	PLL	OUTPUT DIVIDER	OUTPUT BUFFER
Power-On Reset	After device power supply reaches approximately 2.35 V, the contents of EEPROM are copied into the Device Registers within 100ns, thereby initializing the device hardware.	Power applied to the device or upon exit from Power Down State via the Power_Down pin set HIGH.	Power On Reset and EEPROM loading delays are finished OR the Power_Down pin is set LOW.	OFF	Disabled	Disabled	OFF
Calibration Hold	The device waits until either ENCAL_MODE (Device Register 6 bit 27) is low (Start up calibration enabled) or both ENCAL_MODE is high (Manual Calibration Enabled) AND ENCAL (Device Register 6 bit 22) transitions from a low to a high signaling the device.	Delay process in the Power-On Reset State is finished or Sleep Mode (Sleep bit is in Register 8 bit 7) is turned OFF while in the Sleep State. Power Down must be OFF to enter the Calibration Hold State.	The device waits until either ENCAL_MODE (Device Register 6 bit 27) is low (Start up calibration enabled) or both ENCAL_MODE is high (Manual Calibration Enabled) AND ENCAL (Device Register 6 bit 22) transitions from a low to a high signaling the device	ON	Enabled	Disabled	OFF
VCO CAL	The voltage controlled oscillator is calibrated based on the PLL settings and the incoming reference clock. After the VCO has been calibrated, the device enters Active Mode automatically.	Calibration Hold: CAL Enabled becomes true when either ENCAL_MODE (Device Register 6 bit 27) is low or both ENCAL_MODE is high AND ENCAL (Device Register 6 bit 22) transitions from a low to a high. Active Mode: A Manual Recalibration is requested. This is initiated by setting ENCAL_MODE to HIGH (Manual Calibration Enabled) AND initiating a calibration sequence by applying a LOW to HIGH transition on ENCAL.	Calibration Process in completed	ON	Enabled	Disabled	OFF
Active Mode	Normal Operation	CAL Done (VCO calibration process finished) or Sync = OFF (from Sync State).	Sync, Power Down, Sleep, or Manual Recalibration activated.	ON	Enabled	Disabled or Enabled	HI-Z or Enabled
Power Down	Used to shut down all hardware and Resets the device after exiting the Power Down State. Therefore, the EEPROM contents will eventually be copied into RAM after the Power Down State is exited.	Power_Down pin is pulled LOW.	Power_Down pin is pulled HIGH.	OFF	Disabled	Disabled	HI-Z
Sleep	Identical to the Power Down State except the EEPROM contents are not copied into RAM.	Sleep bit in device register 8 bit 7 is set LOW.	Sleep bit in device register 8 bit 7 is set HIGH.	ON	Disabled	Disabled	HI-Z
Sync	Sync synchronizes all output dividers so that they begin counting at the same time. Note: this operation is performed automatically each time a divider register is accessed.	Sync Bit in device register 8 bit 8 is set LOW or Sync pin is pulled LOW	Sync Bit in device register 8 bit 8 is set HIGH or Sync pin is pulled HIGH	ON	Enabled	Disabled	HI-Z

Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: *CDCE62005*

8.3.4 External Control Pins

REF SEL

REF_SEL provides a way to switch between the primary and secondary reference inputs (PRI_REF and SEC_REF) via an external signal. It works in conjunction with the smart multiplexer discussed in *Input Block*.

Power_Down The Power_Down pin places the CDCE62005 into the power down state.

The CDCE62005 loads the contents of the EEPROM into RAM after the Power_Down pin is de-asserted; therefore, it is used to initialize the device after power is applied. SPI_LE signal has to be HIGH in order for EEPROM to load correctly during the rising edge of Power_Down.

SYNC

The SYNC pin (Active LOW) has a complementary register location located in Device Register 8 bit 8.

When enabled, Sync synchronizes all output dividers so that they begin counting simultaneously. Further, SYNC disables all outputs when in the active state.

NOTE

The output synchronization does not work for reference input frequencies less than 1 MHz.

8.3.5 Input Block

The Input Block includes two Universal Input Buffers, an Auxiliary Input, and a Smart Multiplexer. The Input Block drives three different clock signals onto the Internal Clock Distribution Bus: buffered versions of both the primary and secondary inputs (PRI_REF and SEC_REF) and the output of the Smart Multiplexer.

Figure 18. CDCE62005 Input Block With References to Registers

8.3.5.1 Universal Input Buffers (UIB)

Figure 19 shows the key elements of a universal input buffer. A UIB supports multiple formats along with different termination and coupling schemes. The CDCE62005 implements the UIB by including on board switched termination, a programmable bias voltage generator, and an output multiplexer. The CDCE62005 provides a high degree of configurability on the UIB to facilitate most existing clock input formats.

Figure 19. CDCE62005 Universal Input Buffer

Switch PP and PN will be closed only if 5.8=0 and 5.0=1 or 5.1=1.

Switch PINV will be closed only if 5.9=0 and switch SINV will be closed only if R5.10=0.

Register 5.0 and 5.6 together pick the Vbb voltage.

Table 5 lists several settings for many possible clock input scenarios. Note that the two universal input buffers share the Vbb generator. Therefore, if both inputs use internal termination, they must use the same configuration mode (LVDS, LVPECL, or LVCMOS). If the application requires different modes (for example, LVDS and LVPECL) then one of the two inputs must implement external termination.

Table 5. CDCE62005 Universal Input Buffer Configuration Matrix

PRI_REF CONFIG	SURATION N	IATRIX									
Register.Bit →	5.7	5.1	5.0	5.8	5.9	5.6					
Bit Name →	HYSTEN	INBUFSELY	INBUFSELX	PRI_TERMSEL	PRIINVBB	ACDCSEL	HYSTERESI S	MODE	COUPLIN G	TERMINATIO N	Vbb
	1	0	0	Х	Х	Х	ENABLED	LVCMOS	DC	N/A	_
	1	1	0	0	0	0	ENABLED	LVPECL	AC	Internal	1.9V
	1	1	0	0	0	1	ENABLED	LVPECL	DC	Internal	1.2V ⁽¹⁾
	1	1	0	1	Х	Х	ENABLED	LVPECL	_	External	_
	1	1	1	0	0	0	ENABLED	LVDS	AC	Internal	1.2V
	1	1	1	0	0	1	ENABLED	LVDS	DC	Internal	1.2V
	1	1	1	1	Х	Х	ENABLED	LVDS	_	External	_
	0	X	X	X	Х	Х	OFF	_	_	_	_
	1	Х	X	X	Х	Х	ENABLED		_	_	_

(1) 0.95V unloaded

Table 5. CDCE62005 Universal Input Buffer Configuration Matrix (continued)

PRI_REF CONFI	PRI_REF CONFIGURATION MATRIX										
SEC_REF CONFIGURATION MATRIX											
			SET	TINGS				CC	ONFIGURATION	ON	
Register.Bit →	5.7	5.1	5.0	6.12	5.10	5.6					
Bit Name →	HYSTEN	INBUFSELY	INBUFSELX	SEC_TERMSEL	SECINVBB	ACDCSEL	Hysteresis	Mode	Coupling	Termination	Vbb
	1	0	0	Х	Х	Х	ENABLED	LVCMOS	DC	N/A	_
	1	1	0	0	0	0	ENABLED	LVPECL	AC	Internal	1.9V
	1	1	0	0	0	1	ENABLED	LVPECL	DC	Internal	1.2V(1)
	1	1	0	1	Х	Х	ENABLED	LVPECL	_	External	_
	1	1	1	0	0	0	ENABLED	LVDS	AC	Internal	1.2V
	1	1	1	0	0	1	ENABLED	LVDS	DC	Internal	1.2V
	1	1	1	1	Х	Х	ENABLED	LVDS	_	External	_
	0	Х	Х	Х	Х	Х	OFF	_	_	_	_
	1	Х	Х	Х	Х	Х	ENABLED	_	_	_	_

8.3.5.2 LVDS Fail Safe Mode

Differential receivers can switch on noise in the absence of an input signal. This occurs when the clock driver is turned off or the interconnect is damaged or missing. The traditional solution to this problem involves incorporating an external resistor network on the receiver input. This network applies a steady-state bias voltage to the input pins. The additional cost of the external components notwithstanding, the use of such a network lowers input signal magnitude and thus reduces the differential noise margin. The CDCE62005 provides internal failsafe circuitry on all LVDS inputs if enabled as shown in Table 6 for DC termination only.

Table 6. LVDS Failsafe Settings

BIT NAME → REGISTER.BIT →	FAILSAFE 5.11	LVDS FAILSAFE
	0	Disabled for all inputs
	1	Enabled for all inputs

8.3.5.3 Smart Multiplexer Controls

The smart multiplexer implements a configurable switching mechanism suitable for many applications in which fault tolerance is a design consideration. It includes the multiplexer itself along with three dividers. With respect to the multiplexer control, Table 7 provides an overview of the configurations supported by the CDCE62005.

Table 7. CDCE62005 Smart Multiplexer Settings

	REGISTER 5	SETTINGS			
EECLKSEL	AUXSEL	JXSEL SECSEL PRISEL		SMART MULTIPLEXER MODE	
5.5	5.4	5.3	5.2		
1	0	0	1	Manual Mode: PRI_REF selected	
1	0	1	0 Manual Mode: SEC_REF selected		
1	1	0	0	Manual Mode: AUX IN selected	
1	0	1	1	Auto Mode: PRI_REF then SEC_REF	
1	1	1	1	1 Auto Mode: PRI_REF then SEC_REF then AUX IN ⁽¹⁾	
0	0	1	1	1 REF_SEL pin selects PRI_REF or SEC_REF	

(1) For this mode of operation, a crystal must be connected to the AUX IN input pin.

8.3.5.4 Smart Multiplexer Auto Mode

Smart Multiplexer Auto Mode switches automatically between clock inputs based on a prioritization scheme shown in Table 7. If using the Smart Multiplexer Auto Mode, the frequencies of the clock inputs may differ by up to 20%. The phase relationship between clock inputs has no restriction.

Upon the detection of a loss of signal on the highest priority clock, the smart multiplex switches its output to the next highest priority clock on the first incoming rising edge of the next highest priority clock. During this switching operation, the output of the smart multiplexer is low. Upon restoration of the higher priority clock, the smart multiplexer waits until it detects four complete cycles from the higher priority clock prior to switching the output of the smart multiplexer back to the higher priority clock. During this switching operation, the output of the smart multiplexer remains high until the next falling edge as shown in Figure 20.

Figure 20. CDCE62005 Smart Multiplexer Timing Diagram

8.3.5.5 Smart Multiplexer Dividers

Figure 21. CDCE62005 Smart Multiplexer

The CDCE62005 Smart Multiplexer Block provides the ability to divide the primary and secondary UIB or to disconnect a UIB from the first state of the smart multiplexer altogether.

Table 8.	CDCE62005	Pre-Divider	Settings

		MARY DIVIDER			SECONI PRE-DIV		
BIT NAME → REGISTER.BIT →	DIV2PRIY 0.1	DIV2PRIX 0.0	DIVIDE RATIO	BIT NAME → REGISTER.BIT →	DIV2SECY 1.1	DIV2SECX 1.0	DIVIDE RATIO
	0	0	Hi-Z		0	0	Hi-Z
	0	1	/2		0	1	/2
	1	0	/1		1	0	/1
	1	1	Reserved		1	1	Reserved

The CDCE62005 provides a Reference Divider that divides the clock exiting the first multiplexer stage; thus dividing the primary (PRI_REF) or the secondary input (SEC_REF).

REFERENCE **DIVIDER** BIT NAME → **REFDIV2 REFDIV1 REFDIVO DIVIDE RATIO** $\textbf{REGISTER.BIT} \rightarrow$ 3.0 2.1 2.0 0 0 0 0 /2 1 0 1 0 /3 0 1 1 /4 1 0 0 /5 1 0 1 /6 1 1 0 /7 /8 1 1 1

Table 9. CDCE62005 Reference Divider Settings

8.3.5.6 Output Block

The output block includes five identical output channels. Each output channel comprises an output multiplexer, a clock divider module, and a universal output buffer as shown in Figure 22.

Figure 22. CDCE62005 Output Channel

Copyright © 2008–2015, Texas Instruments Incorporated Submit Documentation Feedback

8.3.5.7 Output Multiplexer Control

The Clock Divider Module receives the clock selected by the output multiplexer. The output multiplexer selects from one of four clock sources available on the Internal Clock Distribution. For a description of PRI_REF, SEC_REF, and SMART_MUX, see Figure 18. For a description of SYNTH, see Figure 28.

Table 10. CDCE62005 Output Multiplexer Control Settings

OUTPUT MULTIPI	LEXER CONTROL	
REGISTER n	(n = 0,1,2,3,4)	CLOCK SOURCE SELECTED
OUTMUXnSELX	OUTMUXnSELY	OLOOK GOOKOL GLELOTED
n.4	n.5	
0	0	PRI_REF
0	1	SEC_REF
1	0	SMART_MUX
1	1	SYNTH

8.3.5.8 Output Buffer Control

Each of the five output channels includes a programmable output buffer; supporting LVPECL, LVDS, and LVCMOS modes. Table 11 lists the settings required to configure the CDCE62005 for each output type. Registers 0 through 4 correspond to Output Channels 0 through 4 respectively.

Table 11. CDCE62005 Output Buffer Control Settings

		OUTPUT BUFF	ER CONTROL			
		REGISTER n	(n = 0,1,2,3,4)			OUTPUT TYPE
CMOSMODEnPX	CMOSMODEnPY	CMOSMODEnNX	CMOSMODEnNY	OUTBUFSELnX	OUTBUFSELnY	OUTPUT TYPE
n.22	n.23	n.24	n.25	n.26	n.27	
0	0	0	0	0	1	LVPECL
0	1	0	1	1	1	LVDS
Se	ee LVCMOS Output But	ffer Configuration Settir	ngs	0	0	LVCMOS
0	1	0	1	1	0	Disabled to High-Z

8.3.5.9 Output Buffer Control – LVCMOS Configurations

A LVCMOS output configuration requires additional configuration data. In the single ended configuration, each Output Channel provides a pair of outputs. The CDCE62005 supports four modes of operation for single ended outputs as listed in Table 12.

Table 12. LVCMOS Output Buffer Configuration Settings

	OUTPL	JT BUFFER CONTROL	- LVCMOS CONFIGU	IRATION				
		REGISTER n	(n = 0,1,2,3,4)			OUTPUT	PIN	OUTPUT MODE
CMOSMODEnPX	CMOSMODEnPY	CMOSMODEnNX	CMOSMODEnNY	OUTBUFSELnX	OUTBUFSELnY	TYPE	FIN	OUTFOI WIODE
n.22	n.23	n.24	n.25	n.26	n.27			
X	X	0	0	0	0	LVCMOS	Negative	Active - Non-inverted
X	Χ	0	1	0	0	LVCMOS	Negative	Hi-Z
Х	Х	1	0	0	0	LVCMOS	Negative	Active – Non-inverted
X	Х	1	1	0	0	LVCMOS	Negative	Low
0	0	Х	Х	0	0	LVCMOS	Positive	Active – Non-inverted
0	1	Х	Х	0	0	LVCMOS	Positive	Hi-Z
1	0	Х	Х	0	0	LVCMOS	Positive	Active – Non-inverted
1	1	Х	Х	0	0	LVCMOS	Positive	Low

8.3.5.10 Output Dividers

Figure 23 shows that each output channel provides a 7-bit divider and digital phase adjust block. The Table 13 lists the divide ratios supported by the output divider for each output channel. Figure 24 illustrates the output divider architecture in detail. The Prescaler provides an array of low noise dividers with duty cycle correction. The Integer Divider includes a final divide by two stage which is used to correct the duty cycle of the /1–/8 stage. The output divider's maximum input frequency is limited to 1.175 GHz. If the divider is bypassed (divide ratio = 1) then the maximum frequency of the output channel is 1.5 GHz.

Figure 23. CDCE62005 Output Divider and Phase Adjust

Figure 24. CDCE62005 Output Divider Architecture

Table 13. CDCE62005 Output Divider Settings⁽¹⁾

		OUTPU	T DIVIDER n SETTI	NGS REGISTER ((n = 0,1,2,3,4)						
MULTIF	PLEXER		INTEGER DIVIDER	!		PRESCALER		1			IPUT
OUTn- DIVSEL6	OUTn- DIVSEL5	OUTn- DIVSEL4	OUTn- DIVSEL3	OUTn- DIVSEL2	OUTn- DIVSEL1	OUTn- DIVSEL0	OUTn- DIVSEL	_		DIVIDE	RATIO
n.19	n.18	n.17	n.16	n.15	n.14	n.13	n.20	PRESCALER SETTING	INTEGER DIVIDER SETTING	OUTPUT CHANNELS 0-4	AUXILIARY OUTPUT
Х	Х	Х	Х	Х	Х	X	0			OFF	OFF
0	1	0	0	0	0	0	1	_	-	1	OFF
1	0	0	0	0	0	0	1	2	-	2*	4
1	0	0	0	0	0	1	1	3	-	3*	6
1	0	0	0	0	1	0	1	4	-	4	8
1	0	0	0	0	1	1	1	5	-	5	10
0	0	0	0	0	0	1	1	3	2	6	6
0	0	0	0	0	1	0	1	4	2	8	8
0	0	0	0	0	1	1	1	5	2	10	10
0	0	0	0	1	0	1	1	3	4	12	12
0	0	0	0	1	1	0	1	4	4	16	16
0	0	0	0	1	1	1	1	5	4	20	20
0	0	0	1	0	0	1	1	3	6	18	18
0	0	0	1	0	1	0	1	4	6	24	24
0	0	0	1	0	1	1	1	5	6	30	30
0	0	0	1	1	1	0	1	4	8	32	32
0	0	0	1	1	1	1	1	5	8	40	40
0	0	1	0	0	1	1	1	5	10	50	50
0	0	1	0	1	0	1	1	3	12	36	36
0	0	1	0	1	1	0	1	4	12	48	48
0	0	1	0	1	1	1	1	5	12	60	60
0	0	1	1	0	0	0	1	2	14	28	28
0	0	1	1	0	0	1	1	3	14	42	42
0	0	1	1	0	1	0	1	4	14	56	56
0	0	1	1	0	1	1	1	5	14	70	70
0	0	1	1	1	1	0	1	4	16	64	64
0	0	1	1	1	1	1	1	5	16	80	80

⁽¹⁾ Output channel 2 or 3 determine the auxiliary output divide ratio. For example, if the auxiliary output is programmed to drive via output 2 and output 2 divider is programmed to divide by 3, then the divide ratio for the auxiliary output will be 6.

Product Folder Links: CDCE62005

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

8.3.5.11 Digital Phase Adjust

Figure 25 provides an overview of the Digital Phase Adjust feature. The output divider includes a coarse phase adjust that shifts the divided clock signal that drives the output buffer. Essentially, the Digital Phase Adjust timer delays when the output divider starts dividing; thereby shifting the phase of the output clock. The phase adjust resolution is a function of the divide function. Coarse phase adjust parameters include:

Number of phase delay steps the number of phase delay steps available is equal to the divide ratio selected.

For example, if a Divide by 4 is selected, then the Digital Phase Adjust can be programmed to select when the output divider changes state based upon selecting one of the four counts on the input. Figure 25 shows an example of divide by 16 in which there are 16 rising edges of Clock IN at which the output divider changes state (this particular example shows the fourth edge shifting the output by one fourth of the period of the output).

Phase delay step size the step size is determined by the number of phase delay steps according to the following equations:

Figure 25. CDCE62005 Phase Adjust

8.3.5.12 Phase Adjust Example

Given:

- Output Frequency = 30.72 MHz
- VCO Operating Frequency = 1966.08 MHz
- Prescaler Divider Setting = 4
- Output Divider Setting = 16

$$Stepsize(deg) = \frac{360}{16} = 22.5^{\circ}/Step$$
(7)

8.3.5.13 Valid Register Settings for Digital Phase Adjust Blocks

Table 14 through Table 19 provide a list of valid register settings for the digital phase adjust blocks.

Copyright © 2008–2015, Texas Instruments Incorporated

Table 14. CDCE62005 Output Coarse Phase Adjust Settings (1)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0 (2π/2)
3	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/3)
	0	0	0	0	0	1	0	2(2π/3)
4	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/4)
	0	0	0	0	0	1	0	2(2π/4) 3(2π/4)
5	0	0	0	0	0	0	0	0
_	0	0	0	0	0	0	1	(2π/5)
	0	0	0	0	0	1	0	2(2π/5)
	0	0	0	0	0	1	1	3(2π/5)
	0	0	0	0	1	0	0	4(2π/5) 0
6	0	0	0	0	0	0	1	(2π/6)
	0	0	0	0	0	1	0	2(2π/6)
	1	0	0	0	0	0	0	3(2π/6)
	1	0	0	0	0	0	1	4(2π/6)
_	1	0	0	0	0	1	0	5(2π/6)
8	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	(2π/8) 2(2π/8)
	0	0	0	0	0	1	1	3(2π/8)
	1	0	0	0	0	0	0	4(2π/8)
	1	0	0	0	0	0	1	5(2π/8)
	1	0	0	0	0	1	0	6(2π/8)
10	0	0	0	0	0	0	0	7(2π/8) 0
10	0	0	0	0	0	0	1	(2π/10)
	0	0	0	0	0	1	0	2(2π/10)
	0	0	0	0	0	1	1	3(2π/10)
	0	0	0	0	1	0	0	4(2π/10)
	1	0	0	0	0	0	0	5(2π/10)
	1	0	0	0	0	0	0	6(2π/10) 7(2π/10)
	1	0	0	0	0	1	1	8(2π/10)
	1	0	0	0	1	0	0	9(2π/10)
12	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/12)
	0	0	0	0	0	1	0	2(2π/12)
	0	0	0	1	0	0	0	3(2π/12) 4(2π/12)
	0	0	0	1	0	1	0	5(2π/12)
	0	0	1	0	0	0	0	6(2π/12)
	0	0	1	0	0	0	1	7(2π/12)
	0	0	1	0	0	1	0	8(2π/12)
	0	0	1	1	0	0	0	9(2π/12) 10(2π/12)
	0	0	1	1	0	1	0	$10(2\pi/12)$ $11(2\pi/12)$
16	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/16)
	0	0	0	0	0	1	0	$2(2\pi/16)$
	0	0	0	0	0	1	1	3(2π/16)
	0	0	0	1	0	0	0	4(2π/16) 5(2π/16)
	0	0	0	1	0	1	0	6(2π/16)
	0	0	0	1	0	1	1	7(2π/16)
	0	0	1	0	0	0	0	8(2π/16)
	0	0	1	0	0	0	1	9(2π/16)
	0	0	1	0	0	1	0	$10(2\pi/16)$
	0	0	1	0	0	0	0	11(2π/16) 12(2π/16)
	0	0	1	1	0	0	1	$13(2\pi/16)$
	0	0	1	1	0	1	0	14(2π/16)
		0	1	1	0		1	$15(2\pi/16)$

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 1 4 0 0 0 1 4 0 0 0 1 4 0 0 0 0 1 4 0	0 π/18) 2π/18)
0 0 0 0 0 0 0 1 (2 0 0 0 0 0 0 0 1 0 2(2 0 0 0 0 1 0 0 0 1 0 3(3 0 0 0 0 1 0 0 0 1 4(2 0 0 0 0 1 0 0 0 1 4(3 0 0 0 0 1 0 0 0 1 4(3 0 0 0 1 0 0 0 0 0 1 7(3 0 0 1 0 0 0 1 0 1 0 8(3 0 0 0 1 1 0 0 0 1 0 8(3 0 0 0 1 1 0 0 0 1 0 8(3 0 0 0 1 1 0 0 0 1 0 1 10 0 0 1 1 0 0 0 1 1 0 8(3 0 0 0 1 1 0 0 0 1 1 0 11(1 0 1 0 0 0 0 0 0 1 13(3 0 1 0 0 0 0 0 0 1 13(4 0 1 0 0 0 0 1 1 0 14(4 0 1 0 1 0 1 0 0 1 16(6 0 1 0 1 0 1 0 0 1 16(6 0 1 0 1 0 1 0 0 1 16(6 0 1 0 1 0 1 0 0 1 16(6 0 1 0 1 0 1 0 0 0 1 16(6 0 1 0 1 0 1 0 0 0 1 16(6	m/18) 2m/18)
0 0 0 0 0 0 0 1 0 20 0 0 0 1 0 0 0 1 0 20 0 0 0 1 0 0 0 1 40 0 0 0 1 0 1 0 0 1 40 0 0 0 1 0 0 0 0 50 0 0 1 0 0 0 0 0 60 0 0 1 0 0 0 1 0 80 0 0 1 1 0 0 0 1 0 80 0 0 1 1 0 0 0 1 10 0 0 1 1 0 0 0 1 10 0 0 1 1 0 0 0 1 10 0 0 1 1 0 0 0 1 10 0 0 1 1 0 0 0 1 10 0 0 1 1 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 0 1 0 0 0 3(3) 0 0 0 1 0 0 0 1 4(3) 0 0 0 1 0 1 0 1 5(3) 0 0 0 1 0 0 0 0 6(3) 0 0 1 0 0 0 1 7(3) 0 0 1 0 0 0 1 0 8(3) 0 0 1 1 0 0 0 1 0 8(3) 0 0 1 1 0 0 0 1 0 8(3) 0 0 1 1 0 0 1 0 1 0 8(3) 0 0 1 1 0 0 1 1 0 11(1) 0 0 1 0 0 0 0 0 0 1 13(3) 0 1 0 0 0 0 1 1 3(4) 0 1 0 1 0 1 0 0 1 16(4) 0 1 0 1 0 1 0 0 1 16(6) 0 1 0 1 0 1 0 0 1 16(6) 0 1 0 1 0 1 0 1 0 17(6)	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 0 0 1 0 1 0 0 1 4(2 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 1 0 0 0 0 0 6(2) 0 0 1 0 0 0 0 1 7(2) 0 0 1 0 0 0 1 0 0 0 9(2) 0 0 1 1 0 0 0 1 10 10 0 0 1 1 0 0 0 1 10(1) 0 0 1 1 0 0 0 0 1 10(1) 0 1 0 0 0 0 0 1 13(1) 0 1 0 0 0 0 1 1 0 14(1) 0 1 0 1 0 0 0 0 1 15(1) 0 1 0 1 0 1 0 0 1 16(1) 0 1 0 1 0 1 0 0 1 16(1) 0 1 0 1 0 1 0 0 1 16(1) 0 1 0 1 0 1 0 0 1 17(1)	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 1 0 0 0 1 7(2 0 0 0 0 1 7(2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0	$2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$) $2\pi/18$)
0 0 1 0 0 0 0 0 8(2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 1 1 0 0 0 9(2) 0 0 1 1 0 0 0 1 10(0) 0 0 1 1 0 0 0 1 10(1) 0 0 1 0 0 0 0 0 1 13(1) 0 1 0 0 0 0 1 1 0 14(1) 0 1 0 1 0 0 0 0 1 0 14(1) 0 1 0 1 0 0 0 0 1 16(1) 0 1 0 1 0 0 0 1 16(1) 0 1 0 1 0 1 0 1 0 17(1)	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 1 1 1 0 0 1 10(0 0 1 1 0 0 0 1 10(0 0 1 1 0 0 0 0 12(0 1 0 0 0 0 0 1 13(0 1 0 0 0 0 1 1 0 14(0 1 0 1 0 1 0 0 0 15(0 1 0 1 0 1 0 0 1 16(0 1 0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 0 1 1 0 0 1 0 11(0 1 0 0 0 0 0 0 12(0 1 0 0 0 0 1 13(0 1 0 0 0 0 1 0 14(0 1 0 1 0 0 0 0 15(0 1 0 1 0 0 0 1 16(0 1 0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18) 2π/18) 2π/18)
0 1 0 0 0 0 1 13(0 1 0 0 0 0 1 0 14(0 1 0 1 0 0 0 0 1 1 0 14(0 1 0 1 0 0 0 1 16(0 1 0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18) 2π/18)
0 1 0 0 0 1 0 14(0 1 0 1 0 0 0 15(0 1 0 1 0 0 1 16(0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	2π/18) 2π/18) 2π/18)
0 1 0 1 0 0 0 15(0 1 0 1 0 0 1 16(0 1 0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	2π/18) 2π/18)
0 1 0 1 0 1 16(0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	2π/18)
0 1 0 1 0 1 0 17(20 0 0 0 0 0 0 0 0	
	$2\pi/18$)
	0
	π/20)
	2π/20) 2π/20)
	$2\pi/20$)
	2π/20)
0 0 0 1 0 0 1 6(2	2π/20)
	2π/20)
	2π/20)
	2π/20) 2π/20)
	$2\pi/20$)
	2π/20)
0 0 1 0 0 1 1 13($2\pi/20)$
	2π/20)
	$2\pi/20$)
	2π/20) 2π/20)
	2π/20)
	2π/20)
24 0 0 0 0 0 0 0	0
	π/24)
	2π/24) 2π/24)
	2π/24)
0 0 0 1 0 0 1 5(2	2π/24)
0 0 0 1 0 1 0 6(2	2π/24)
	2π/24)
	2π/24) 2π/24)
	2π/24)
	$2\pi/24$)
0 0 1 1 0 0 12(2π/24)
	2π/24)
	$2\pi/24$)
	2π/24) 2π/24)
	$2\pi/24$)
0 1 0 0 0 1 0 18(2π/24)
0 1 0 0 0 1 1 19($2\pi/24$)
	$2\pi/24$
	$2\pi/24$
	2π/24) 2π/24)

Table 15. CDCE62005 Output Coarse Phase Adjust Settings (2)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
28	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/28) 2(2π/28)
	0	0	0	1	0	0	1	2(211/28) 3(2π/28)
	0	0	1	0	0	0	0	4(2π/28)
	0	0	1	0	0	0	1	5(2π/28)
	0	0	1	1	0	0	0	6(2π/28)
	0	0	1	1	0	0	1	7(2π/28)
	0	1	0	0	0	0	0	8(2π/28)
	0	1	0	0	0	0	1	9(2π/28)
	0	1	0	1	0	0	0	10(2π/28)
	0	1	0	1	0	0	1	11(2π/28) 12(2π/28)
	0	1	1	0	0	0	1	12(2π/28)
	1	0	0	0	0	0	0	$14(2\pi/28)$
	1	0	0	0	0	0	1	15(2π/28)
	1	0	0	1	0	0	0	16(2π/28)
	1	0	0	1	0	0	1	$17(2\pi/28)$
	1	0	1	0	0	0	0	$18(2\pi/28)$
	1	0	1	0	0	0	1	$19(2\pi/28)$
	1	0	1	1	0	0	0	20(2π/28)
	1	0	1 0	1	0	0	0	21(2π/28)
	1	1	0	0	0	0	1	22(2π/28) 23(2π/28)
	1	1	0	1	0	0	0	$24(2\pi/28)$
	1	1	0	1	0	0	1	$25(2\pi/28)$
	1	1	1	0	0	0	0	$26(2\pi/28)$
	1	1	1	0	0	0	1	27(2π/28)
30	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	$(2\pi/30)$
	0	0	0	0	0	1	0	$2(2\pi/30)$
	0	0	0	0	0	1	1	3(2π/30)
	0	0	0	0	1	0	0	4(2π/30)
	0	0	0	1	0	0	0	5(2π/30)
	0	0	0	1	0	1	0	6(2π/30) 7(2π/30)
	0	0	0	1	0	1	1	8(2π/30)
	0	0	0	1	1	0	0	9(2π/30)
	0	0	1	0	0	0	0	10(2π/30)
	0	0	1	0	0	0	1	11(2π/30)
	0	0	1	0	0	1	0	12(2π/30)
	0	0	1	0	0	1	1	13(2π/30)
	0	0	1	0	1	0	0	14(2π/30)
	0	0	1	1	0	0	0	$15(2\pi/30)$
	0	0	1	1	0	1	0	16(2π/30) 17(2π/30)
	0	0	1	1	0	1	1	17(211/30) 18(2π/30)
	0	0	1	1	1	0	0	19(2π/30)
	0	1	0	0	0	0	0	20(2π/30)
	0	1	0	0	0	0	1	21(2π/30)
	0	1	0	0	0	1	0	22(2π/30)
	0	1	0	0	0	1	1	23(2π/30)
	0	1	0	0	1	0	0	$24(2\pi/30)$
	0	1	0	1	0	0	0	25(2π/30)
	0	1	0	1	0	0	1	$26(2\pi/30)$
	0	1	0	1	0	1	0	27(2π/30) 28(2π/30)
	0	1	0	1	1	0	0	28(211/30) 29(2π/30)
	U		U			U	U	23(211/30)

Divide Ratio	ADGC6	nADGC5	nADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	se Delay
Divic	Ŧ	₹	푼					Phase
32	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
32	0	0	0	0	0	0	1	(2π/32)
	0	0	0	0	0	1	0	$2(2\pi/32)$
	0	0	0	0	0	0	1	3(2π/32)
	0	0	0	1	0	0	1	4(2π/32) 5(2π/32)
	0	0	0	1	0	1	0	$6(2\pi/32)$
	0	0	0	1	0	1	1	7(2π/32)
	0	0	1	0	0	0	0	8(2π/32) 9(2π/32)
	0	0	1	0	0	1	0	10(2π/32)
	0	0	1	0	0	1	1	$11(2\pi/32)$
	0	0	1	1	0	0	0	$12(2\pi/32)$
	0	0	1	1	0	1	0	13(2π/32) 14(2π/32)
	0	0	1	1	0	1	1	15(2π/32)
	0	1	0	0	0	0	0	16(2π/32)
	0	1	0	0	0	0	1	17(2π/32) 18(2π/32)
	0	1	0	0	0	1	1	19(2π/32)
	0	1	0	1	0	0	0	20(2π/32)
	0	1	0	1	0	0	1	$21(2\pi/32)$
	0	1	0	1	0	1	0	22(2π/32) 23(2π/32)
	0	1	1	0	0	0	0	24(2π/32)
	0	1	1	0	0	0	1	25(2π/32)
	0	1	1	0	0	1	0	26(2π/32)
	0	1	1	0	0	0	1	27(2π/32) 28(2π/32)
	0	1	1	1	0	0	1	29(2π/32)
	0	1	1	1	0	1	0	$30(2\pi/32)$
	0	1	1	1	0	1	1	31(2π/32)
36	0	0	0	0	0	0	0	0 (2π/36)
	0	0	0	0	0	1	0	2(2π/36)
	0	0	0	1	0	0	0	$3(2\pi/36)$
	0	0	0	1	0	0	1	4(2π/36)
	0	0	0	1 0	0	0	0	5(2π/36) 6(2π/36)
	0	0	1	0	0	0	1	7(2π/36)
	0	0	1	0	0	1	0	8(2π/36)
	0	0	1	1	0	0	0	9(2π/36) 10(2π/36)
	0	0	1	1	0	1	0	10(2π/36)
	0	1	0	0	0	0	0	12(2π/36)
	0	1	0	0	0	0	1	13(2π/36)
	0	1	0	0	0	0	0	14(2π/36) 15(2π/36)
	0	1	0	1	0	0	1	16(2π/36)
	0	1	0	1	0	1	0	$17(2\pi/36)$
	1	0	0	0	0	0	0	18(2π/36)
	1	0	0	0	0	1	1	19(2π/36) 20(2π/36)
	1	0	0	1	0	0	0	21(2π/36)
	1	0	0	1	0	0	1	22(2π/36)
	1	0	0	1 0	0	1	0	23(2π/36)
	1	0	1	0	0	0	0	24(2π/36) 25(2π/36)
	1	0	1	0	0	1	0	26(2π/36)
	1	0	1	1	0	0	0	$27(2\pi/36)$
	1	0	1	1	0	0	1	$28(2\pi/36)$
	1	0	1 0	1 0	0	0	0	29(2π/36) 30(2π/36)
	1	1	0	0	0	0	1	31(2π/36)
	1	1	0	0	0	1	0	$32(2\pi/36)$
	1	1	0	1	0	0	0	$33(2\pi/36)$
	1	1	0	1	0	1	0	$34(2\pi/36)$ $35(2\pi/36)$

Table 16. CDCE62005 Output Coarse Phase Adjust Settings (3)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
40	0	0	0	0	0	0	0	0 (2π/40)
	0	0	0	0	0	1	0	2(2π/40)
	0	0	0	0	0	1	1	3(2π/40)
	0	0	0	0	1	0	0	4(2π/40)
	0	0	0	1	0	0	0	5(2π/40) 6(2π/40)
	0	0	0	1	0	1	0	7(2π/40)
	0	0	0	1	0	1	1	8(2π/40)
	0	0	0	1 0	1 0	0	0	9(2π/40) 10(2π/40)
	0	0	1	0	0	0	1	10(2π/40)
	0	0	1	0	0	1	0	$12(2\pi/40)$
	0	0	1	0	0	1	0	13(2π/40) 14(2π/40)
	0	0	1	1	0	0	0	15(2π/40)
	0	0	1	1	0	0	1	$16(2\pi/40)$
	0	0	1	1	0	1	0	17(2π/40) 18(2π/40)
	0	0	1	1	0	0	0	19(2π/40)
	0	1	0	0	0	0	0	$20(2\pi/40)$
	0	1	0	0	0	0	1	$21(2\pi/40)$
	0	1	0	0	0	1	1	22(2π/40) 23(2π/40)
	0	1	0	0	1	0	0	$24(2\pi/40)$
	0	1	0	1	0	0	0	25(2π/40)
	0	1	0	1	0	0	0	26(2π/40) 27(2π/40)
	0	1	0	1	0	1	1	28(2π/40)
	0	1	0	1	1	0	0	29(2π/40)
	0	1	1	0	0	0	0	30(2π/40) 31(2π/40)
	0	1	1	0	0	1	0	32(2π/40)
	0	1	1	0	0	1	1	$33(2\pi/40)$
	0	1	1	0	0	0	0	$34(2\pi/40)$ $35(2\pi/40)$
	0	1	1	1	0	0	1	36(2π/40)
	0	1	1	1	0	1	0	$37(2\pi/40)$
	0	1	1	1	0	0	0	38(2π/40)
42	0	0	0	0	0	0	0	39(2π/40) 0
	0	0	0	0	0	0	1	(2π/42)
	0	0	0	0	0	1	0	2(2π/42)
	0	0	0	1	0	0	1	3(2π/42) 4(2π/42)
	0	0	0	1	0	1	0	5(2π/42)
	0	0	1	0	0	0	0	6(2π/42)
	0	0	1	0	0	0	0	7(2π/42) 8(2π/42)
	0	0	1	1	0	0	0	9(2π/42)
	0	0	1	1	0	0	1	10(2π/42)
	0	0	1 0	1 0	0	1	0	11(2π/42) 12(2π/42)
	0	1	0	0	0	0	1	13(2π/42)
	0	1	0	0	0	1	0	14(2π/42)
	0	1	0	1	0	0	0	15(2π/42) 16(2π/42)
	0	1	0	1	0	1	0	17(2π/42)
	0	1	1	0	0	0	0	18(2π/42)
	0	1	1	0	0	0	1	19(2π/42) 20(2π/42)
	1	0	0	0	0	0	0	21(2π/42)
	1	0	0	0	0	0	1	22(2π/42)
	1	0	0	0	0	1	0	23(2π/42) 24(2π/42)
	1	0	0	1	0	0	1	25(2π/42)
	1	0	0	1	0	1	0	26(2π/42)
	1	0	1	0	0	0	0	27(2π/42) 28(2π/42)
	1	0	1	0	0	1	0	29(2π/42)
	1	0	1	1	0	0	0	$30(2\pi/42)$
	1	0	1	1	0	0	0	31(2π/42) 32(2π/42)
	1	1	0	0	0	0	0	32(211/42) $33(2\pi/42)$
	1	1	0	0	0	0	1	$34(2\pi/42)$
	1	1	0	0	0	0	0	35(2π/42) 36(2π/42)
	1	1	0	1	0	0	1	$36(2\pi/42)$ $37(2\pi/42)$
	1	1	0	1	0	1	0	$38(2\pi/42)$
	1	1	1	0	0	0	0	39(2π/42) 40(2π/42)
	1	1	1	0	0	1	0	41(2π/42)

Phase Delay	(radian)	0	(2π/48)																														$38(2\pi/48)$	$39(2\pi/48)$	$40(2\pi/48)$	41(2π/48)				43(2π/48)	43(2π/48) 44(2π/48)	43(2π/48)
PHnADGC0	n.6		1	0	1	0	1	0		0	1	0																				1		1	0	1	_	0	1	1	1	1
PHnADGC1	n.7		0	1	1	0	0	1		0	0	1																				0		1	0	0	4		1	1	1	1
PHnADGC2	n.8		0	0	0	0	0	0		0	0	0																				0		0	0	0	0	0	0	0	0	0
PHnADGC3	n.9		0	0	0	1	1	1		0	0	0																				1		1	0	0	0	U	0	0	0	0
PHnADGC4	n.10	0	0	0	0	0	0	0		1	1	1																				1		1	0	0	0		0	0	0	0
PHnADGC5	n.11	0	0	0	0	0	0	0		0	0	0																				0		0	1	1	- 1		1	1	1	1
PHnADGC6	n.12	0	0	0	0	0	0	0		0	0	0																				1		1	1	1	1		1	1	1	1
Divide Ratio		48																																								
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 (2π/48) 0 0 0 0 0 0 1 1 (2π/48) 0 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 1 0 0 0 4(2π/48) 0 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48)	0 0 0 0 0 0 1 0 2(2π/48) 0 0 0 0 1 1 0 2(2π/48) 0 0 0 0 1 1 0 0 0 4(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 1 0 1 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48)	0 0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 0 4 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 0 6(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 1 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 1 3(2π/48) 0 0 1 0 0 0 1 3(2π/48) 0 0 1 0 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48)	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 1 0 0 0 1 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 0 0 1 1 11(2m/48)	0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 0 1 0 10(2π/48) 0 0 1 0 0 1 1 10(2π/48) 0 0 1 0 0 1 11(2π/48)	0 0 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 7(2π/48) 0 0 1 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 0 0 1 0 1 10(2π/48) 0 0 1 0 0 1 1 11(2π/48)	0 0 1 0 0 1 1 11(2π/48)			0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 0 1 0 18(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 18(2m/48)	0 0 1 1 0 1 0 14(2π/48) 0 0 1 1 0 1 1 15(2π/48) 0 1 0 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 1 19(2π/48) 0 1 0 1 0 0 0 0 0 20(2π/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48)	0 0 1 1 0 1 0 14(2π/48) 0 0 1 1 0 1 15(2π/48) 0 1 0 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 18(2π/48) 0 1 0 1 0 0 0 1 1 18(2π/48) 0 1 0 1 0 0 0 0 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 1 22(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48)	0 0 1 1 0 1 0 14(2π/48) 0 0 1 1 0 1 0 1 15(2π/48) 0 1 0 0 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 0 1 1 19(2π/48) 0 1 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 0 1 0 1 0 1 1 1 1 23(2π/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 0 14(2m/48) 0 1 0 0 0 0 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 7(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 1 1 27(2m/48) 1 0 0 0 0 0 1 1 1 27(2m/48)	0 0 1 1 0 1 0 14(2π/48) 0 0 1 1 0 0 1 0 14(2π/48) 0 1 1 0 0 0 0 0 0 1 15(2π/48) 0 1 0 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 1 0 0 0 0 0 0 1 23(2π/48) 1 1 0 0 0 0 0 1 25(2π/48) 1 1 0 0 0 0 0 1 25(2π/48) 1 1 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 1 1 27(2π/48) 1 0 0 0 0 0 1 27(2π/48) 1 0 0 0 0 0 1 27(2π/48) 1 0 0 0 0 0 1 27(2π/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 0 14(2m/48) 0 1 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 0 30(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 0 33(2m/48) 1 0 0 1 0 1 0 1 0 33(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 1 1 0 0 0 0 0 0 15(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 29(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 1 1 0 0 1 1 15(2m/48) 0 1 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 27(2m/48) 1 0 0 0 0 1 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 0 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 0 32(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 32(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 0 332(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 0 0 0 33(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 1 16(2m/48) 0 1 0 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 0 28(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 0 0 0 0 0 0 15(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 32(2m/48) 1 0 0 0 1 0 1 0 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 1 3 35(2m/48) 1 0 1 1 1 0 0 1 33(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 1 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 1 0 0 0 22(2m/48) 1 0 0 1 0 0 0 1 22(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 1 37(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 0 14(2m/48) 0 1 0 0 0 0 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 32(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 35(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 0 0 0 0 1 1 5(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 32(2m/48) 1 0 0 1 0 1 0 1 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 1 33(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 1 16(2m/48) 0 1 0 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 1 0 1 1 33(2m/48) 1 0 1 0 0 1 1 0 0 38(2m/48) 1 0 1 0 1 0 1 0 38(2m/48) 1 0 1 1 0 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 1 0 1 1 0 38(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 1 1 16(2m/48) 0 1 0 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 1 0 1 1 33(2m/48) 1 0 1 0 0 1 1 0 0 38(2m/48) 1 0 1 0 1 0 1 0 38(2m/48) 1 0 1 1 0 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 0 1 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 1 0 1 1 0 38(2m/48)	0 0 1 1 0 0 1 0 14(2m/48) 0 1 1 0 0 1 0 14(2m/48) 0 1 1 0 0 0 0 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 32(2m/48) 1 0 0 1 0 0 1 26(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 32(2m/48) 1 0 1 0 0 1 0 0 32(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 0 0 34(2m/48) 1 1 0 1 1 0 1 1 33(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 1 1 23(2m/48) 1 1 0 0 0 0 0 1 1 23(2m/48) 1 1 0 0 0 0 0 1 1 27(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 0 0 1 0 1 0 0 0 22(2m/48) 1 0 0 1 0 1 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 0 0 22(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 1 0 33(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 1 0 0 0 0 0 0 0 0 42(2m/48) 1 1 1 0 0 0 0 0 0 0 0 42(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 0 1 27(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 41(2m/48) 1 1 0 1 1 0 0 0 0 1 41(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 44(2m/48) 1 1 0 0 0 0 1 0 44(2m/48) 1 1 0 0 0 0 1 0 44(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 0 1 0 0 0 0 1 1 5(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 1 0 1 1 0 1 1 39(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48)	0 0 1 1 0 1 0 14(2m/48) 0 1 1 0 1 1 0 14(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 0 1 32(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 1 39(2m/48) 1 1 0 1 1 0 0 1 1 39(2m/48) 1 1 0 1 1 0 0 1 1 39(2m/48) 1 1 0 1 1 0 0 0 1 1 34(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 (2π/48) 0 0 0 0 0 0 1 (2π/48) 0 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 1 0 0 0 4(2π/48) 0 0 0 1 0 0 1 0 0 4(2π/48) 0 0 0 1 0 1 0 0 1 6(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 1 3(2π/48) 0 0 1 0 0 1 1 0 1 1 7(2π/48) 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 0 2(2m/48) 0 0 0 0 1 1 0 2(2m/48) 0 0 0 1 0 0 1 1 3(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 1 0 0 1 3(2m/48) 0 0 1 0 0 1 0 1 1 1 10(2m/48) 0 0 1 0 0 1 1 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 2(2m/48) 0 0 1 1 0 0 0 1 2(2m/48)	0 0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 0 0 0 1 0 0 8(2π/48) 0 0 1 0 0 1 0 0 1 9(2π/48) 0 0 1 0 0 1 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 2(2π/48)	0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 1 8(2π/48) 0 0 1 0 0 1 0 0 1 8(2π/48) 0 0 1 0 0 1 0 1 1 1 10(2π/48) 0 0 1 0 0 1 1 1 11(2π/48) 0 0 1 1 0 0 0 1 1 12(2π/48) 0 0 1 1 0 0 0 1 2(2π/48)	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 1 0 0 0 8(2m/48) 0 0 1 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 1 9(2m/48) 0 0 1 0 0 1 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 2(2m/48) 0 0 1 1 0 0 0 1 2(2m/48)	0 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 1 0 0 1 9(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 21(2π/48) 0 0 1 1 0 0 0 0 12(2π/48)	0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/45) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 12(2π/48)	0 0 1 0 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 0 0 12(2π/48)	0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 11(2π/48) 0 0 1 1 1 0 0 0 12(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 1 0 0 0 12(2π/48)		0 0 1 1 0 1 15(2π/48) 0 1 0 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 2 20(2m/48) 0 1 0 1 0 0 0 0 20(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48)	0 0 1 1 0 1 1 5/2m/48/ 0 1 0 0 0 0 0 0 16/2m/48/ 0 1 0 0 0 0 1 17/2m/48/ 0 1 0 0 0 0 1 1 7/2m/48/ 0 1 0 0 0 1 1 0 18/2m/48/ 0 1 0 1 0 0 0 1 1 19/2m/48/ 0 1 0 1 0 0 0 20/2m/48/ 0 1 0 1 0 1 0 0 2/2m/48/ 0 1 0 1 0 1 0 1 2/2m/48/	0 0 1 1 0 1 15(2π/48) 0 1 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 0 1 1 21(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 22(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 0 1 0 1 0 1 1 1 23(2π/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 7(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 1 0 0 0 0 0 0 0 24(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 0 18(2m/48) 0 1 0 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48)	0 0 1 1 0 1 1 5[2m/48] 0 1 0 0 0 0 0 0 1 17[2m/48] 0 1 0 0 0 0 0 1 17[2m/48] 0 1 0 0 0 0 1 1 7[2m/48] 0 1 0 0 0 0 1 1 0 18[2m/48] 0 1 0 0 0 0 1 1 0 18[2m/48] 0 1 0 1 0 0 0 1 1 19[2m/48] 0 1 0 1 0 0 0 0 1 20[2m/48] 0 1 0 1 0 1 0 0 1 21[2m/48] 0 1 0 1 0 1 0 1 2 22[2m/48] 1 0 1 0 1 0 1 1 2 32[2m/48] 1 1 0 0 0 0 0 0 1 25[2m/48] 1 0 0 0 0 1 0 26[2m/48] 1 0 0 0 0 1 1 25[2m/48] 1 0 0 0 0 1 1 25[2m/48] 1 0 0 0 0 1 1 26[2m/48] 1 0 0 0 0 1 1 27[2m/48] 1 0 0 0 0 1 1 27[2m/48]	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 0 116(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 0 28(2m/48) 1 0 0 0 1 0 0 0 0 28(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48)	0 0 1 1 0 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 22(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 0 28(2m/48) 1 0 0 1 0 0 0 0 28(2m/48) 1 0 0 1 0 0 0 0 28(2m/48) 1 0 0 1 0 0 1 0 0 0 30(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 0 33(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 32(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 1 0 0 0 0 0 1 1 25(2m/48) 1 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 0 12(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2 2(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 22(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 27(2m/48) 1 0 0 1 0 1 0 26(2m/48) 1 0 0 1 0 1 0 26(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 1 1 0 0 0 1 34(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 0 0 36(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 0 0 36(2m/48) 1 0 1 1 0 0 1 1 37(2m/48)	0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 35(2m/48) 1 0 1 0 0 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 35(2m/48)	0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 1 0 0 0 1 1 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 22(2m/48) 1 0 0 0 0 0 1 0 22(2m/48) 1 0 0 0 0 0 1 0 22(2m/48) 1 0 0 0 0 0 1 0 22(2m/48) 1 0 0 0 0 1 0 1 0 26(2m/48) 1 0 0 0 0 1 0 1 22(2m/48) 1 0 0 0 0 1 0 1 22(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 22(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 1 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 (2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 (2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48)	0 0 1 1 0 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 22(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 1 23(2m/48) 1 0 0 1 0 0 1 1 22(2m/48) 1 0 0 1 0 0 1 1 22(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 3 3(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 0 0 0 38(2m/48) 1 1 0 1 1 0 0 0 1 41(2m/48) 1 1 0 1 1 0 0 0 1 41(2m/48) 1 1 0 1 1 0 0 0 1 41(2m/48) 1 1 0 1 1 0 0 0 1 41(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 40(2m/48) 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48)	0 0 1 1 0 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 0 12(2m/48) 0 1 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 1 0 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 1 0 0 0 0 1 33(2m/48) 1 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 1 0 0 0 0 1 42(2m/48) 1 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48)	0 0 1 1 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 22(2m/48) 1 0 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 1 0 1 27(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 38(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 42(2m/48) 1 1 0 1 1 0 0 0 1 42(2m/48) 1 1 0 0 0 0 1 0 44(2m/48) 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 0 42(2m/48)	0 0 1 1 0 1 152m/48) 0 1 0 0 0 0 0 1 172m/48) 0 1 0 0 0 0 0 1 172m/48) 0 1 0 0 0 0 1 172m/48) 0 1 0 0 0 0 1 1 0 182m/48) 0 1 0 0 0 0 1 1 0 182m/48) 0 1 0 1 0 0 0 0 1 1 192m/48) 0 1 0 1 0 1 0 0 0 202m/48) 0 1 0 1 0 1 0 0 222m/48) 0 1 0 1 0 1 0 1 222m/48) 0 1 0 1 0 1 0 1 222m/48) 1 0 0 0 0 0 0 0 242m/48) 1 1 0 0 0 0 0 0 1 252m/48) 1 1 0 0 0 0 0 1 252m/48) 1 0 0 0 0 1 0 282m/48) 1 0 0 1 0 1 0 0 222m/48) 1 0 0 1 0 1 0 0 222m/48) 1 0 0 1 0 1 0 302m/48) 1 0 0 1 0 1 0 302m/48) 1 0 0 1 0 1 0 332m/48) 1 0 0 1 0 1 0 332m/48) 1 0 1 0 1 0 0 322m/48) 1 0 1 0 0 1 332m/48) 1 0 1 1 0 0 1 332m/48) 1 1 0 1 1 0 0 332m/48) 1 1 0 1 1 0 0 332m/48) 1 1 0 1 1 0 0 1 332m/48) 1 1 0 1 1 0 1 0 332m/48) 1 1 0 1 1 0 0 1 332m/48) 1 1 0 1 1 0 0 0 442m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 1 1 0 0 0 1 442m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 0 0 0 1 1 432m/48) 1 1 1 0 0 0 0 0 0 442m/48) 1 1 1 0 0 0 0 1 0 442m/48) 1 1 1 0 0 0 0 0 0 442m/48) 1 1 1 0 0 0 0 0 0 0 442m/48) 1 1 1 0 0 0 0 0 0 0 442m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 0 2(2m/48) 0 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 1 0 0 1 5(2m/48) 0 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 1 6(2m/48) 0 0 1 0 0 0 1 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 1 0 0 1 13(2m/48) 0 0 1 1 1 0 0 1 13(2m/48)	0 0 0 0 0 1 0 2(2π/48) 0 0 0 0 1 1 0 2(2π/48) 0 0 0 0 1 1 0 0 4(2π/48) 0 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 0 1 13(2π/48)	0 0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 1 1 3(2π/48) 0 0 1 1 1 0 0 1 13(2π/48)	0 0 0 1 0 0 1 0 0 4(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 1 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48)	0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 12(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 0 0 1 13(2π/48)	0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 1 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 0 12m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48)	0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 1 0 10(2π/48) 0 0 1 0 0 1 1 1 1(2π/48) 0 0 1 1 0 0 1 1 12(2π/48) 0 0 1 1 0 0 1 13(2π/48)	0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 (2π/48) 0 0 1 0 0 1 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 1 13(2π/48)	0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 21(2π/48) 0 0 1 1 0 0 1 13(2π/48)	0 0 1 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 12(2π/48) 0 0 1 1 0 0 0 1 2(2π/48) 0 0 1 1 0 0 1 13(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 1 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48)	0 0 1 1 0 0 1 13(2π/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20 20(2m/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 1 18(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 0 1 23(2π/48) 1 1 0 0 0 0 0 0 0 0 24(2π/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 1 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 25(2π/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 17(2π/48) 0 1 0 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 1 0 1 20(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 0 26(2π/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 0 1 1 1 27(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 7(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 2(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 0 28(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 0 0 28(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 0 0 28(2m/48) 1 0 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 0 1 29(2m/48) 1 0 0 1 0 0 0 0 1 29(2m/48) 1 0 0 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 1 18(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 0 32(2m/48) 1 0 0 1 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 1 1 31(2m/48)	0 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 2(2π/48) 0 1 0 1 0 1 0 1 0 2(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 1 27(2π/48) 1 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 1 1 27(2π/48) 1 0 0 0 0 1 1 27(2π/48) 1 0 0 0 0 1 1 27(2π/48) 1 0 0 1 0 0 0 28(2π/48) 1 0 0 1 0 1 0 0 28(2π/48) 1 0 0 1 0 1 0 1 0 30(2π/48) 1 0 0 1 0 1 0 1 0 30(2π/48) 1 0 0 1 0 1 0 1 0 30(2π/48) 1 0 0 1 0 1 0 1 0 30(2π/48) 1 0 0 1 0 1 0 1 1 31(2π/48) 1 0 0 1 0 0 0 0 32(2π/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 12(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 0 1 0 34(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 1 34(2m/48) 1 0 1 0 1 0 0 1 1 34(2m/48) 1 0 1 0 1 0 0 1 1 34(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 28(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 1 0 0 1 33(2m/48) 1 0 1 1 1 0 0 1 33(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 1 0 1 1 0 0 33(2m/48) 1 0 1 1 0 1 1 0 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 0 33(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 7(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 1 18(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 1 29(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 1 0 1 34(2m/48) 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 1 3 3(2m/48) 1 0 1 1 0 0 0 1 36(2m/48) 1 0 1 1 0 0 1 0 3 3(2m/48) 1 0 1 1 0 0 1 0 3 3(2m/48) 1 0 1 1 0 0 1 0 3 3(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 12(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 1 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 29(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 1 0 1 27(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 34(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 39(2m/48) 1 0 1 1 0 0 1 1 39(2m/48) 1 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 0 0 0 0 0 44(2m/48) 1 1 0 1 1 0 0 0 0 0 0 44(2m/48) 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 12(2m/48) 0 1 0 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 0 3 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 0 0 1 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 32(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 1 42(2m/48) 1 1 0 0 0 1 1 42(2m/48) 1 1 0 0 0 1 1 42(2m/48) 1 1 0 0 0 1 1 42(2m/48) 1 1 0 0 0 0 1 42(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 2 25(2m/48) 1 0 0 0 0 0 1 2 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 37(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 1 0 1 1 33(2m/48) 1 0 1 1 0 1 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 33(2m/48) 1 1 1 0 1 1 0 0 0 0 1 40(2m/48) 1 1 1 0 1 1 0 0 0 1 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 42(2m/48) 1 1 1 0 0 0 0 1 1 42(2m/48) 1 1 1 0 0 0 0 1 1 42(2m/48) 1 1 1 0 0 0 0 1 1 42(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 1 0 0 0 44(2m/48)	0 1 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 12(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 0 1 44(2m/48) 1 1 0 1 1 0 0 0 1 44(2m/48) 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 1 0 0 0 1 1 43(2m/48) 1 1 1 0 1 0 0 0 1 1 43(2m/48) 1 1 1 0 1 0 0 0 1 1 43(2m/48) 1 1 1 0 1 0 0 0 1 1 43(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 1 0 2(m/48) 0 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 1 0 0 1 3(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 11(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 1 0 0 1 13(2m/48) 0 0 1 1 1 0 1 0 1 13(2m/48)	0 0 0 0 0 1 0 2(2m/48) 0 0 0 0 1 1 0 2(2m/48) 0 0 0 0 1 1 0 0 4(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 0 1 1 1 1(2m/48) 0 0 1 1 0 0 1 1 0 10(2m/48) 0 0 1 1 0 0 0 1 1 112(2m/48) 0 0 1 1 0 0 0 1 1 12(2m/48) 0 0 1 1 0 0 0 1 1 12(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 10(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 10(2m/48)	0 0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 11(2π/48) 0 0 1 1 0 0 0 1 11(2π/48) 0 0 1 1 0 0 0 1 12(2π/48) 0 0 1 1 0 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 14(2π/48)	0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 0 1 9(2π/48) 0 0 1 0 0 1 0 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 1 13(2π/48)	0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 0 0 1 10 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 10 14(2π/48)	0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 1 0 1 0 1 7(2π/48) 0 0 1 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 1 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 1 0 0 1 11(2π/48) 0 0 1 1 0 0 0 1 2(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 0 1 14(2π/48)	0 0 0 1 0 1 1 7(2m/48) 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 0 10(2m/48) 0 0 1 0 0 1 1 0 10(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 0 1 3(2m/48) 0 0 1 1 0 0 1 3(2m/48) 0 0 1 1 0 0 1 1 1(2m/48)	0 0 1 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 1 0 0 0 1 9(2π/48) 0 0 1 1 0 0 1 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 14(2π/48)	0 0 1 0 0 0 1 0(2m/48) 0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 11(2m/48) 0 0 1 1 0 0 0 12(2m/48) 0 0 1 1 0 0 1 3(2m/48) 0 0 1 1 0 0 1 0 14(2m/48)	0 0 1 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 2(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 14(2π/48)	0 0 1 0 0 1 11(2π/48) 0 0 1 1 0 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 14(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 14(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 0 20(2π/48)	0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 0 22(2m/48)	0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 18(2π/48) 0 1 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 20(2π/48) 0 1 0 1 0 0 1 0 1 21(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 0 1 0 1 0 1 1 1 23(2π/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 0 24(2m/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 1 0 0 0 1 1 12(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 1 27(2m/48) 1 0 0 0 1 0 0 0 0 28(2m/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 28(2m/48) 1 0 0 0 0 1 27(2m/48) 1 0 0 0 0 1 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 30(2m/48) 1 0 0 1 0 1 0 1 30(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 17(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 1 23(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 1 31(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 1 131(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 0 32(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 0 1 0 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 1 0 34(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 26(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 0 1 0 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 0 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 37(2m/48) 1 0 1 1 0 0 1 37(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 22(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 0 1 32(2m/48) 1 0 0 1 0 1 0 0 0 23(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 3 34(2m/48) 1 0 1 0 0 1 0 3 34(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 3 34(2m/48) 1 0 1 0 0 1 0 0 3 37(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 36(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 1 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 1 0 0 1 36(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 1 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 1 0 0 0 2 28(2m/48) 1 0 0 1 0 0 0 2 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 0 0 34(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 0 0 0 0 1 41(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 1 0 1 0 1 0 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 1 0 1 27(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 34(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 1 0 1 1 0 0 0 0 0 1 39(2m/48) 1 1 1 1 0 0 0 0 0 0 0 40(2m/48) 1 1 1 0 0 0 0 0 0 0 44(2m/48) 1 1 0 0 0 0 1 1 39(2m/48) 1 1 1 0 0 0 0 0 0 0 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 17(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 2 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 42(2m/48) 1 1 0 1 1 0 0 0 0 1 42(2m/48) 1 1 0 1 1 0 0 0 0 1 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48)	0 1 0 0 0 1 17(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 3 32(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 3 33(2m/48) 1 0 1 0 0 1 0 3 33(2m/48) 1 0 1 0 0 1 0 3 33(2m/48) 1 0 1 0 0 1 0 3 33(2m/48) 1 0 1 0 0 1 1 33(2m/48) 1 0 1 0 0 1 1 33(2m/48) 1 0 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 1 37(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 1 0 0 0 44(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48)	0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 22(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 1 0 1 1 0 0 1 39(2m/48) 1 1 0 1 1 0 0 1 39(2m/48) 1 1 0 1 1 0 0 0 0 4 41(2m/48) 1 1 0 1 1 0 0 0 1 1 39(2m/48) 1 1 0 1 1 0 0 0 1 1 39(2m/48) 1 1 1 0 1 1 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 45(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 (2π/48) 0 0 0 0 0 0 1 0 (2π/48) 0 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 1 0 0 1 3(2π/48) 0 0 0 1 0 0 1 0 0 4(2π/48) 0 0 0 1 0 0 1 0 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 1 3(2π/48) 0 0 1 0 0 0 1 3(2π/48) 0 0 1 0 0 1 0 1 1 1 7(2π/48) 0 0 1 0 0 1 1 0 10(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 1 14(2π/48) 0 0 1 1 1 0 1 1 1 15(2π/48) 0 0 1 1 1 0 1 1 15(2π/48)	0 0 0 0 0 1 0 2(2π/48) 0 0 0 0 1 1 0 2(2π/48) 0 0 0 0 1 1 0 0 4(2π/48) 0 0 0 1 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 1 12(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 0 0 1 1 13(2π/48) 0 0 1 1 1 0 1 1 14(2π/48) 0 0 1 1 1 0 1 1 15(2π/48) 0 0 1 1 1 0 1 1 15(2π/48)	0 0 0 0 0 1 1 3(2m/48) 0 0 0 1 0 0 1 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 6(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 7(2m/48) 0 0 1 0 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 14(2m/48) 0 0 1 1 0 1 15(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 0 1 1 1 0 1 1 15(2m/48)	0 0 0 1 0 0 1 0 0 4(2π/48) 0 0 0 1 0 0 1 5(2π/43) 0 0 0 1 0 0 1 5(2π/43) 0 0 0 1 0 1 1 0 6(2π/43) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 1 3(2π/43) 0 0 1 0 0 0 1 3(2π/43) 0 0 1 0 0 1 0 1 1 1 7(2π/48) 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 12(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 1 1 1 1 1 15(2m/48) 0 0 1 1 1 0 1 1 15(2m/48) 0 0 1 1 1 0 1 1 15(2m/48)	0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 0 1 1 0 1 1 15(2m/48)	0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 1 2(2π/48) 0 0 1 0 0 0 1 1 0 1 1 3(2π/48) 0 0 1 0 0 1 1 0 10(2π/48) 0 0 1 0 0 1 0 1 1 10(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 1 12(2π/48) 0 0 1 1 0 1 1 1 1 1 15(2π/48) 0 0 1 1 1 0 1 1 15(2π/48)	0 0 1 0 0 0 0 8/2m/48) 0 0 1 0 0 0 1 10/2m/48) 0 0 1 0 0 0 1 10/2m/48) 0 0 1 0 0 1 1 11/2m/48) 0 0 1 1 0 0 1 1 11/2m/48) 0 0 1 1 0 0 1 13/2m/48) 0 0 1 1 0 0 1 13/2m/48) 0 0 1 1 0 1 0 1 14/2m/48) 0 0 1 1 0 1 1 1 15/2m/48) 0 0 1 1 1 0 1 1 15/2m/48)	0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 0 1 21(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 1 15(2π/48) 0 0 1 1 0 1 1 15(2π/48)	0 0 1 0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 11(2m/48) 0 0 1 1 1 0 0 0 12(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 1 1 15(2m/48)	0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 1 0 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 14(2π/48) 0 0 1 1 0 1 1 15(2π/48)	0 0 1 1 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 4(2π/48) 0 0 1 1 0 1 1 15(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48)	0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 1 22(2π/48)	0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 22(2π/48) 0 1 0 1 0 1 1 1 23(2π/48)	0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 1 0 1 22(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 120(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48)	0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 1 22(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 0 1 25(2π/48) 1 0 0 0 0 0 1 0 1 26(2π/48)	0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48)	0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 0 18(2π/48) 0 1 0 0 0 1 1 1 20(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 0 1 1 0 28(2π/48) 1 0 0 0 0 0 1 0 28(2π/48) 1 0 0 0 0 0 0 0 28(2π/48)	0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 28(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 0 0 1 27(2m/48) 1 0 0 0 0 1 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 0 0 30(2m/48)	0 1 0 0 0 1 0 18(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 1 21(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 1 0 1 0 1 0 1 1 23(2π/48) 1 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 1 1 27(2π/48) 1 0 0 0 1 0 0 1 28(2π/48) 1 0 0 1 0 0 1 29(2π/48) 1 0 0 1 0 0 1 29(2π/48) 1 0 0 1 0 1 0 1 31(2π/48) 1 0 0 1 0 1 1 31(2π/48)	0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 20(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 0 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 202(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 32(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 0 33(2m/48) 1 0 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 24(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 1 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 1 0 34(2m/48) 1 0 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 0 1 1 33(2m/48) 1 0 1 0 1 0 1 1 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 0 20(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 1 1 0 0 0 1 35(2m/48) 1 0 1 1 1 1 0 0 0 36(2m/48)	0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 256(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 0 36(2m/48) 1 0 1 1 0 0 1 0 36(2m/48) 1 0 1 1 0 0 1 0 36(2m/48) 1 0 1 1 0 0 1 1 35(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 1 20(2m/48) 0 1 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 1 35(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 0 33(2m/48) 1 0 1 1 0 0 1 0 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 0 36(2m/48) 1 0 1 1 0 0 1 0 36(2m/48) 1 0 1 1 0 0 1 0 36(2m/48) 1 0 1 1 0 1 1 0 0 36(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 33(2m/48) 1 0 1 1 0 0 1 1 0 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 33(2m/48) 1 0 1 1 0 0 1 1 0 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 1 0 1 1 33(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 1 20(2m/48) 0 1 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 0 0 0 38(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 0 0 0 0 0 1 41(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 0 1 33(2m/48) 1 0 1 1 0 0 0 0 0 33(2m/48) 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 1 0 0 0 0 0 0 41(2m/48) 1 1 1 0 0 0 0 0 0 41(2m/48) 1 1 1 0 0 0 0 0 0 41(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 31(2m/48) 1 0 0 1 0 1 31(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 1 40(2m/48) 1 1 0 1 1 0 0 0 0 1 40(2m/48) 1 1 0 1 1 0 0 0 0 1 40(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 44(2m/48) 1 1 0 0 1 0 0 0 1 1 44(2m/48) 1 1 0 1 0 0 0 1 1 0 44(2m/48) 1 1 0 0 0 0 1 0 44(2m/48)	0 1 0 0 0 1 0 18(2m/48) 0 1 0 0 0 1 1 19(2m/48) 0 1 0 0 0 1 1 12(2m/48) 0 1 0 1 0 0 0 1 21(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 0 1 0 1 0 1 0 0 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 44(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 1 1 0 0 4(2m/48) 0 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 11(2m/48) 0 0 1 1 1 0 0 1 13(2m/48) 0 0 1 1 1 0 1 1 13(2m/48) 0 0 1 1 1 0 1 1 0 14(2m/48) 0 0 1 1 1 0 1 1 1 15(2m/48) 0 0 1 1 1 0 1 1 1 15(2m/48) 0 1 1 0 0 0 0 0 0 1 15(2m/48)	0 0 0 0 0 1 0 2(2π/48) 0 0 0 0 1 1 0 2(2π/48) 0 0 0 0 1 1 0 0 0 4(2π/48) 0 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 1 17(2π/48) 0 0 1 0 0 0 1 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 1 0 1 1 1 13(2π/48) 0 0 1 1 1 0 1 1 1 14(2π/48) 0 0 1 1 1 0 1 1 1 15(2π/48) 0 0 1 1 1 0 1 1 1 15(2π/48) 0 0 1 1 1 0 1 1 1 15(2π/48)	0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 1 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 0 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 0 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 1 13(2π/48) 0 0 1 1 1 0 0 1 1 3(2π/48) 0 0 1 1 1 0 1 1 0 14(2π/48) 0 0 1 1 1 0 1 1 0 14(2π/48) 0 0 1 1 1 0 1 1 1 15(2π/48) 0 0 1 1 1 0 1 1 0 14(2π/48)	0 0 0 1 0 0 1 0 0 4(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 0 10(2m/48) 0 0 1 0 0 0 1 11(2m/48) 0 0 1 1 0 0 0 1 11(2m/48) 0 0 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 1 0 1 0 14(2m/48) 0 0 1 1 1 0 1 1 0 14(2m/48) 0 0 1 1 0 0 0 0 15(2m/48) 0 1 0 0 0 0 0 0 0 15(2m/48)	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 0 1 0 1 1 0 14(2m/48) 0 0 1 1 0 1 1 1 1 15(2m/48) 0 0 1 1 0 1 1 1 15(2m/48) 0 0 1 1 0 0 0 0 0 0 16(2m/48)	0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 0 1 0 1 7(2m/48) 0 0 1 0 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 1 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 0 11(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 1 0 1 1 0 14(2m/48) 0 0 1 1 1 0 1 1 0 14(2m/48) 0 0 1 1 1 0 1 1 15(2m/48) 0 0 1 1 0 0 1 0 14(2m/48) 0 1 1 0 0 0 0 0 0 16(2m/48)	0 0 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 1 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 2(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 0 1 0 1 1 3(2π/48) 0 0 1 1 0 1 1 1 1 15(2π/48) 0 0 1 1 0 1 1 1 15(2π/48) 0 0 1 1 0 0 1 1 16(2π/48) 0 1 0 0 0 0 0 0 0 16(2π/48)	0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 0(2m/48) 0 0 1 0 0 0 1 0(2m/48) 0 0 1 0 0 1 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 3(2m/48) 0 0 1 1 0 1 0 1 4(2m/48) 0 0 1 1 0 1 1 0 14(2m/48) 0 0 1 1 0 0 0 0 0 15(2m/48)	0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 1 0 0 1 12(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 0 1 0 1 4(2m/48) 0 0 1 1 0 1 1 1 12(2m/48) 0 0 1 0 0 0 0 0 0 16(2m/48)	0 0 1 0 0 1 0 0 1 0 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 1 4(2π/48) 0 0 1 1 0 1 1 15(2π/48) 0 1 0 0 0 0 0 0 0 16(2π/48)	0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 12(π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 1 3(2π/48) 0 0 1 1 0 1 0 1 1 0 14(2π/48) 0 0 1 0 0 0 0 0 0 16(2π/48)	0 0 1 1 0 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 0 12(2π/48) 0 0 1 1 0 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 0 0 0 16(2π/48)	0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 1 12(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 1 0 0 0 0 0 0 16(2π/48)	0 1 0 0 0 1 1 19(2π/48)	0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 20(2π/48)	0 1 0 0 0 1 1 19(2π/48) 0 1 0 1 0 0 0 0 20(2π/48) 0 1 0 1 0 0 1 21(2π/48)	0 1 0 0 0 1 1 19/2m/48) 0 1 0 1 0 0 0 0 20/2m/48) 0 1 0 1 0 0 0 1 21/2m/48) 0 1 0 1 0 1 0 1 0 22/2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48)	0 1 0 0 0 1 1 19/2m/48) 0 1 0 1 0 0 0 1 1 19/2m/48) 0 1 0 1 0 0 0 20/2m/48) 0 1 0 1 0 1 0 0 1 21/2m/48) 0 1 0 1 0 1 0 1 0 22/2m/48) 1 0 1 0 1 0 1 1 1 23/2m/48) 1 0 0 0 0 0 0 1 25/2m/48) 1 0 0 0 0 0 1 25/2m/48) 1 0 0 0 0 1 1 0 26/2m/48) 1 0 0 0 0 1 1 27/2m/48) 1 0 0 0 0 1 1 0 26/2m/48) 1 0 0 0 0 0 1 27/2m/48) 1 0 0 0 1 0 0 0 28/2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 28(2m/48) 1 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 28(2m/48) 1 0 0 0 0 0 28(2m/48) 1 0 0 0 1 0 0 28(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 30(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 1 31(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 131(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 0 32(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 0 332(2m/48) 1 0 1 0 0 0 0 0 0 332(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 0 35(2m/48) 1 0 1 0 0 1 0 1 0 35(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 0 34(2m/48) 1 0 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 0 34(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 37(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 22(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 3 3(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 1 0 1 0 1 0 1 2(2m/48) 1 0 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 33(2m/48) 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 1 1 0 1 1 33(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 0 0 0 34(2m/48) 1 0 1 1 0 1 1 38(2m/48) 1 0 1 1 0 1 1 38(2m/48) 1 1 0 1 1 0 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 0 0 0 40(2m/48) 1 1 0 0 0 0 0 0 0 0 42(2m/48) 1 1 0 0 0 0 0 0 0 0 0 42(2m/48) 1 1 0 0 0 0 0 0 0 0 42(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 36(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 0 1 1 0 0 0 34(2m/48) 1 1 1 0 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 44(2m/48) 1 1 1 0 0 0 0 1 0 44(2m/48) 1 1 1 0 0 0 0 1 0 44(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 1 32(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 1 0 0 0 0 1 40(2m/48) 1 1 1 0 1 1 0 1 1 39(2m/48) 1 1 1 0 0 0 0 1 42(2m/48) 1 1 1 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48) 1 1 1 0 0 0 0 1 1 442(2m/48)	0 1 0 0 0 1 1 19(2m/48) 0 1 0 1 0 1 0 0 0 21(2m/48) 0 1 0 1 0 1 0 0 1 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 0 1 0 1 0 1 0 1 0 2(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 0 1 1 0 1 1 34(2m/48) 1 1 0 1 1 0 0 0 1 44(2m/48) 1 1 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 1 1 43(2m/48) 1 1 1 0 1 0 0 1 44(2m/48) 1 1 1 0 1 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 (2π/48) 0 0 0 0 0 0 1 1 (2π/48) 0 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 0 1 1 3(2π/48) 0 0 0 0 1 0 0 1 1 3(2π/48) 0 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 0 1 11(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 0 0 1 16(2π/48) 0 0 1 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 0 1 17(2π/48)	0 0 0 0 0 1 0 2(2m/48) 0 0 0 0 1 1 0 2(2m/48) 0 0 0 0 1 1 0 0 4(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 5(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 0 1 1 12(2m/48) 0 0 1 0 0 1 1 0 1 1 12(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 12(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 1 0 1 1 1 15(2m/48) 0 0 1 1 0 1 1 1 15(2m/48) 0 0 1 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 16(2m/48)	0 0 0 0 1 1 3(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 0 1 0 1 0 1 7(2π/48) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 1 1 1 11(2π/48) 0 0 1 1 0 0 0 1 11(2π/48) 0 0 1 1 0 0 0 1 12(2π/48) 0 0 1 1 0 0 1 1 3(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 17(2π/48) 0 1 0 0 0 0 1 1 17(2π/48) 0 1 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 17(2π/48)	0 0 0 1 0 0 1 0 0 4(2m/48) 0 0 0 1 0 0 1 6(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 1 8(2m/48) 0 0 1 0 0 1 0 1 1 0 10(2m/48) 0 0 1 0 0 1 1 0 1 1 12(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 1 12(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 0 0 1 1 1 15(2m/48) 0 0 1 1 0 0 0 0 1 16(2m/48) 0 0 1 1 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48)	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 1 7(2m/48) 0 0 0 1 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 9(2m/48) 0 0 1 0 0 1 0 1 1 1 10(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 1 0 0 0 0 1 16(2m/48) 0 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48)	0 0 0 1 0 1 0 1 0 6(2π/48) 0 0 1 0 1 0 1 7(2π/43) 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 0 1 8(2π/48) 0 0 1 0 0 0 1 9(2π/48) 0 0 1 0 0 0 1 10(2π/48) 0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 11(2π/48) 0 0 1 1 0 0 0 1 2(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 14(2π/48) 0 0 1 1 1 0 1 1 15(2π/48) 0 0 1 1 0 0 0 0 0 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 17(2π/48)	0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 0 1 1 0 10(2m/48) 0 0 1 0 0 1 1 0 10(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 1 1 1 15(2m/48) 0 0 1 1 0 0 1 0 1 17(2m/48) 0 0 1 1 0 0 1 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48)	0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 11(2m/48) 0 0 1 1 0 0 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 14(2m/48) 0 0 1 1 0 1 0 1 1 15(2m/48) 0 0 1 1 0 1 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48)	0 0 1 0 0 0 1 0(2m/48) 0 0 1 0 0 0 1 1(2m/48) 0 0 1 0 0 1 1 1(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 1 0 0 1 12(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 0 1 1 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48)	0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 0 1 1 12(2m/48) 0 0 1 1 0 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 0 1 15(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48)	0 0 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 0 1 12(2π/48) 0 0 1 1 0 0 1 12(2π/48) 0 0 1 1 0 0 1 0 14(2π/48) 0 0 1 1 0 1 0 1 1 15(2π/48) 0 1 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48)	0 0 1 1 0 0 0 12(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 0 14(2π/48) 0 0 1 1 0 1 1 1 15(2π/48) 0 1 0 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48)	0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 1 0 1 0 1 14(2π/48) 0 0 1 1 0 1 1 5(2π/48) 0 1 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48)		0 1 0 1 0 0 0 20(2π/48)	0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 0 1 21(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 1 0 0 0 0 020(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48)	0 1 0 1 0 0 0 0 020(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48)	0 1 0 1 0 0 0 0 020(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48)	0 1 0 1 0 1 0 0 0 020(2m/48) 0 1 0 1 0 0 1 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 1 0 26(2m/48)	0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 0 1 1 (2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 72(2m/48)	0 1 0 1 0 1 0 0 0 020(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48)	0 1 0 1 0 1 0 0 0 020(2m/48) 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 0 1 28(2m/48)	0 1 0 1 0 0 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 0 1 0 1 0 1 0 1 1 22(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 1 1 0 24(2π/48) 1 0 0 0 0 0 1 0 25(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 0 1 0 28(2π/48) 1 0 0 0 0 1 27(2π/48) 1 0 0 1 0 0 0 28(2π/48) 1 0 0 1 0 0 1 29(2π/48) 1 0 0 1 0 0 1 3 00 30(2π/48)	0 1 0 1 0 1 0 0 0 020(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 30(2m/48) 1 0 0 1 0 1 1 1 31(2m/48) 1 0 0 1 0 1 1 1 31(2m/48)	0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 3(2m/48) 1 0 0 1 0 0 0 3(2m/48)	0 1 0 1 0 1 0 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 1 22(2π/48) 0 1 0 1 0 1 0 1 1 22(2π/48) 1 0 1 0 1 0 1 0 1 1 23(2π/48) 1 0 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 0 1 1 0 26(2π/48) 1 0 0 0 1 0 0 0 1 27(2π/48) 1 0 0 1 0 0 0 1 27(2π/48) 1 0 0 1 0 0 1 31(2π/48) 1 0 0 1 0 1 1 31(2π/48) 1 0 0 1 0 0 1 33(2π/48) 1 0 1 0 0 0 0 33(2π/48) 1 0 1 0 0 0 1 33(2π/48) 1 0 1 0 0 0 1 33(2π/48)	0 1 0 1 0 1 0 0 0 020(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 0 1 34(2m/48)	0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 1 33(2m/48) 1 0 1 0 1 0 0 1 1 33(2m/48) 1 0 1 0 0 1 1 0 34(2m/48)	0 1 0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48)	0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 37(2m/48) 1 0 1 1 0 0 1 37(2m/48)	0 1 0 1 0 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 0 36(2m/48) 1 0 1 1 0 0 1 0 0 36(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 0 38(2m/48)	0 1 0 1 0 1 0 0 20(2π/48) 0 1 0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 22(2π/48) 0 1 0 1 0 1 0 1 1 23(2π/48) 1 0 1 0 1 0 1 0 1 23(2π/48) 1 0 0 0 0 0 0 0 1 25(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 0 0 1 0 26(2π/48) 1 0 0 0 1 0 1 27(2π/48) 1 0 0 1 0 0 1 29(2π/48) 1 0 0 1 0 1 0 1 31(2π/48) 1 0 0 1 0 1 1 31(2π/48) 1 0 1 0 0 0 0 32(2π/48) 1 0 1 0 0 1 0 34(2π/48) 1 0 1 0 0 1 0 34(2π/48) 1 0 1 0 0 1 0 34(2π/48) 1 0 1 1 0 0 1 33(2π/48) 1 0 1 1 0 0 1 33(2π/48) 1 0 1 1 0 0 1 37(2π/48) 1 0 1 1 0 1 1 0 38(2π/48) 1 0 1 1 0 1 1 0 1 38(2π/48)	0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 1 0 1 0 33(2m/48) 1 1 1 1 0 1 1 0 1 0 33(2m/48)	0 1 0 1 0 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 1 0 1 0 1 0 1 1 23(2m/48) 1 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 1 37(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 0 1 1 0 33(2m/48) 1 1 0 1 1 1 0 1 0 33(2m/48) 1 1 1 1 0 1 1 0 1 0 33(2m/48)	0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 30(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 0 1 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 33(2m/48) 1 0 1 1 0 0 0 0 38(2m/48) 1 1 0 1 1 0 0 0 0 38(2m/48) 1 1 0 1 1 0 0 0 0 1 33(2m/48) 1 1 1 0 1 1 0 1 1 39(2m/48) 1 1 1 0 0 0 0 0 1 41(2m/48)	0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 1 0 0 0 0 0 0 40(2m/48) 1 1 1 0 0 0 0 0 0 41(2m/48) 1 1 1 0 0 0 0 0 0 0 41(2m/48) 1 1 1 0 0 0 0 0 0 0 41(2m/48) 1 1 1 0 0 0 0 0 0 0 42(2m/48)	0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 0 26(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 0 1 1 0 0 1 33(2m/48) 1 1 1 1 0 0 0 0 1 33(2m/48) 1 1 1 1 0 1 1 0 1 38(2m/48) 1 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48)	0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 0 28(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 31(2m/48) 1 0 0 1 0 0 1 31(2m/48) 1 0 0 1 0 1 0 34(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 1 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 40(2m/48) 1 1 0 1 1 0 0 0 1 40(2m/48) 1 1 0 0 0 0 1 44(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48)	0 1 0 1 0 1 0 0 20(2m/48) 0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 0 1 0 1 0 1 0 1 1 22(2m/48) 1 0 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 28(2m/48) 1 0 0 1 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 1 0 1 1 0 0 1 38(2m/48) 1 1 0 1 1 0 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 1 34(2m/48) 1 1 0 1 1 0 0 0 1 1 33(2m/48) 1 1 1 0 0 0 0 1 1 41(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 43(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 44(2m/48) 1 1 1 0 0 0 0 1 1 45(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48)
N.12	48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 (2m/48) 0 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 0 1 1 3(2m/48) 0 0 0 0 1 0 0 1 1 3(2m/48) 0 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 0 1 3(2m/48) 0 0 0 1 0 0 0 1 3(2m/48) 0 0 1 0 0 0 1 0 1 17(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 0 0 1 1 1 13(2m/48) 0 0 1 1 0 0 1 1 1 14(2m/48) 0 0 1 1 0 0 1 1 1 15(2m/48) 0 0 1 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 10 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 1 0 0 0 0 1 1 17(2m/48) 0 1 1 0 0 0 0 1 1 18(2m/48)	0 0 0 0 0 1 0 2(2π/48) 0 0 0 0 1 1 0 2(2π/48) 0 0 0 0 1 1 0 0 0 4(2π/48) 0 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 0 1 5(2π/48) 0 0 0 1 0 1 0 1 5(2π/48) 0 0 0 1 0 1 1 7(2π/48) 0 0 0 1 0 0 0 0 8(2π/48) 0 0 1 0 0 0 1 1 0 10 10 10 10 10 10 10 1	0 0 0 0 0 1 1 3(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 6(2m/48) 0 0 0 1 0 1 0 1 6(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 1 0 0 0 8(2m/48) 0 0 1 0 0 0 1 0 1 7(2m/48) 0 0 1 0 0 0 1 0 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 0 0 1 1 1 13(2m/48) 0 0 1 1 0 0 1 1 1 15(2m/48) 0 0 1 1 0 0 1 1 1 15(2m/48) 0 0 1 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48)	0 0 0 1 0 0 1 0 0 4(2π/48) 0 0 0 1 0 0 1 5(2π/43) 0 0 0 1 0 1 0 0 1 5(2π/43) 0 0 0 1 0 1 1 1 7(2π/48) 0 0 0 1 0 1 0 1 1 7(2π/48) 0 0 1 0 0 0 1 3(2π/43) 0 0 1 0 0 0 1 3(2π/43) 0 0 1 0 0 1 0 1 1 1 7(2π/48) 0 0 1 0 0 1 1 0 10(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 1 11(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 1 1 15(2π/48) 0 0 1 1 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 1 17(2π/48) 0 1 0 0 0 0 1 1 17(2π/48)	0 0 0 1 0 0 1 5(2m/48) 0 0 0 1 0 1 0 1 5(2m/48) 0 0 0 1 0 1 0 1 7(2m/48) 0 0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 0 1 9(2m/48) 0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 0 0 1 9(2m/48) 0 0 1 0 0 1 0 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 3(2m/48) 0 0 1 1 0 0 1 1 1 12(2m/48) 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 1 0 1 0 6(2m/48) 0 0 0 1 0 1 0 1 1 7(2m/48) 0 0 1 0 0 0 0 0 1 8(2m/48) 0 0 1 0 0 0 0 1 8(2m/48) 0 0 1 0 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 13(2m/48) 0 0 1 1 0 0 1 1 0 14(2m/48) 0 0 1 1 1 0 1 0 1 15(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48)	0 0 0 1 0 1 0 1 7(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 0 0 1 3(2m/48) 0 0 1 0 0 0 1 0 10(2m/48) 0 0 1 0 0 1 0 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48)	0 0 1 0 0 0 0 8(2m/48) 0 0 1 0 0 0 1 10(2m/48) 0 0 1 0 0 0 1 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 2(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 1 0 1 13(2m/48) 0 0 1 1 0 1 1 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 17(2m/48) 0 1 0 0 0 0 1 1 18(2m/48)	0 0 1 0 0 0 1 9(2m/48) 0 0 1 0 0 1 1 0 10(2m/48) 0 0 1 0 0 1 1 11(2m/48) 0 0 1 1 0 0 1 1 11(2m/48) 0 0 1 1 1 0 0 0 1 12(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 14(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 1 0 0 0 0 0 0 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 7(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48)	0 0 1 0 0 1 0 0 1 0 10(2m/48) 0 0 1 0 0 1 1 12(2m/48) 0 0 1 1 0 0 1 1 12(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 1 15(2m/48) 0 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 0 1 1 7(2m/48) 0 1 0 0 0 0 1 1 0 18(2m/48)	0 0 1 0 0 1 1 12(27/48) 0 0 1 1 0 0 1 1 3(27/48) 0 0 1 1 0 0 1 13(27/48) 0 0 1 1 0 0 1 13(27/48) 0 0 1 1 0 1 0 1 4(27/48) 0 0 1 1 0 0 0 0 0 1 16(27/48) 0 1 0 0 0 0 0 1 17(27/48) 0 1 0 0 0 0 1 1 0 18(27/48) 0 1 0 0 0 0 1 1 (18/27/48)	0 0 1 1 0 0 12(2π/48) 0 0 1 1 0 0 13(2π/48) 0 0 1 1 0 0 1 13(2π/48) 0 0 1 1 0 1 0 1 15(2π/48) 0 0 1 1 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 0 1 16(2π/48) 0 1 0 0 0 0 1 17(2π/48) 0 1 0 0 0 0 1 0 18(2π/48) 0 1 0 0 0 0 1 0 18(2π/48)	0 0 1 1 0 0 1 13(2m/48) 0 0 1 1 0 0 1 14(2m/48) 0 0 1 1 0 1 1 15(2m/48) 0 1 0 0 0 0 0 1 16(2m/48) 0 1 0 0 0 0 1 17(2m/48) 0 1 0 0 0 1 0 18(2m/48)			0 1 0 1 0 0 1 21(2π/48)	0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 22(2π/48)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 1 1 23(2π/48) 1 0 0 0 0 0 0 0 0 24(2π/48)	0 1 0 1 0 0 1 21(2π/48) 0 1 0 1 0 1 0 1 0 22(2π/48) 0 1 0 1 0 1 1 23(2π/48) 1 0 0 0 0 0 0 0 24(2π/48) 1 0 0 0 0 0 1 25(2π/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 1 0 0 0 28(2m/48) 1 0 0 0 1 0 0 0 28(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 1 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 30(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 31(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 1 3 30(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 0 0 32(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 1 29(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 0 1 0 0 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 1 0 1 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 0 0 33(2m/48) 1 0 1 0 0 0 0 1 33(2m/48) 1 0 1 0 0 0 1 0 1 34(2m/48) 1 0 1 0 0 1 0 0 1 34(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 28(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 1 33(2m/48) 1 0 1 0 0 1 1 35(2m/48) 1 0 1 0 0 1 1 35(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 0 34(2m/48) 1 0 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 1 1 0 33(2m/48) 1 0 1 1 0 0 1 1 0 34(2m/48) 1 0 1 1 0 0 0 1 0 35(2m/48)	0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 1 25(2m/48) 1 0 0 0 0 1 1 25(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 0 24(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 1 0 1 1 35(2m/48) 1 0 1 0 1 0 1 1 35(2m/48) 1 0 1 0 0 1 0 1 35(2m/48) 1 0 1 1 0 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 1 0 1 1 0 0 1 1 35(2m/48) 1 1 0 1 1 0 0 1 1 35(2m/48) 1 1 0 1 1 0 0 1 37(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 22(2m/48) 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 1 35(2m/48) 1 0 1 1 0 0 1 3 36(2m/48) 1 0 1 1 0 0 1 3 36(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 0 0 32(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 0 0 1 0 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 0 1 1 39(2m/48)	0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 0 3 36(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 0 0 1 1 27(2m/48) 1 0 0 1 0 0 1 28(2m/48) 1 0 0 1 0 1 0 28(2m/48) 1 0 0 1 0 1 0 30(2m/48) 1 0 0 1 0 1 0 33(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 1 33(2m/48) 1 0 1 0 1 0 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 0 3 36(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 0 1 0 38(2m/48) 1 0 1 1 0 1 1 0 0 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 0 1 1 0 1 1 0 1 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 0 1 1 0 1 1 0 38(2m/48) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 2 2(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 32(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 0 1 0 1 1 31(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 35(2m/48) 1 0 1 1 0 0 1 36(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 1 39(2m/48) 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 0 0 0 1 41(2m/48) 1 1 0 1 1 0 1 1 39(2m/48) 1 1 0 1 1 0 1 1 39(2m/48)	0 1 0 1 0 1 0 2/(2m/48) 0 1 0 1 0 1 0 2/(2m/48) 0 1 0 1 0 1 0 1 2/(2m/48) 1 0 0 0 0 0 0 0 0 2/(2m/48) 1 0 0 0 0 0 0 0 0 2/(2m/48) 1 0 0 0 0 0 1 0 2/(2m/48) 1 0 0 0 0 0 1 0 2/(2m/48) 1 0 0 0 0 1 1 0 2/(2m/48) 1 0 0 0 0 1 1 0 2/(2m/48) 1 0 0 1 0 0 1 2/(2m/48) 1 0 0 1 0 0 1 2/(2m/48) 1 0 0 1 0 0 1 2/(2m/48) 1 0 0 1 0 1 0 3/(2m/48) 1 0 0 1 0 1 1 31/(2m/48) 1 0 1 0 0 0 0 1 3/(2m/48) 1 0 1 0 0 1 0 3/(2m/48) 1 0 1 0 0 1 3/(2m/48) 1 0 1 1 0 0 0 1 3/(2m/48) 1 0 1 1 0 0 0 0 0 3/(2m/48) 1 1 0 1 1 0 0 0 0 0 4/(2m/48) 1 1 0 1 1 0 0 0 0 0 0 4/(2m/48) 1 1 1 0 0 0 0 0 0 0 4/(2m/48) 1 1 1 0 0 0 0 0 0 0 4/(2m/48) 1 1 1 0 0 0 0 0 0 0 4/(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 0 22(2m/48) 1 0 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 0 1 0 26(2m/48) 1 0 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 32(2m/48) 1 0 0 1 0 0 1 31(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 1 0 1 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 0 0 1 0 1 33(2m/48) 1 0 1 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 0 1 33(2m/48) 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 1 0 38(2m/48) 1 1 0 1 1 0 0 0 1 33(2m/48) 1 1 0 1 1 0 0 0 1 42(2m/48) 1 1 0 0 0 0 1 41(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48) 1 1 1 0 0 0 0 1 0 42(2m/48)	0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 22(2m/48) 0 1 0 1 0 1 0 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 0 0 1 0 26(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 1 27(2m/48) 1 0 0 1 0 0 1 22(2m/48) 1 0 0 1 0 0 1 30(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 35(2m/48) 1 0 1 1 0 0 1 37(2m/48) 1 0 1 1 0 0 1 37(2m/48) 1 0 1 1 0 0 1 38(2m/48) 1 0 1 1 0 0 1 38(2m/48) 1 0 1 1 0 1 1 38(2m/48) 1 0 1 1 0 1 1 38(2m/48) 1 1 0 1 1 0 0 0 0 1 38(2m/48) 1 1 0 1 1 0 0 0 0 1 38(2m/48) 1 1 0 1 1 0 0 0 0 0 40(2m/48) 1 1 0 1 1 0 0 0 0 1 40(2m/48) 1 1 0 1 1 0 0 0 0 1 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 42(2m/48) 1 1 0 0 0 0 1 0 44(2m/48) 1 1 0 0 1 0 0 0 44(2m/48)	0 1 0 1 0 1 0 0 1 21(2m/48) 0 1 0 1 0 1 0 1 22(2m/48) 0 1 0 1 0 1 0 1 1 23(2m/48) 1 0 0 0 0 0 0 0 0 24(2m/48) 1 0 0 0 0 0 0 1 25(2m/48) 1 0 0 0 0 0 1 0 24(2m/48) 1 0 0 0 0 0 1 0 25(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 0 0 1 1 0 26(2m/48) 1 0 0 1 0 0 0 1 27(2m/48) 1 0 0 1 0 0 0 1 29(2m/48) 1 0 0 1 0 1 0 0 1 29(2m/48) 1 0 0 1 0 1 0 1 31(2m/48) 1 0 0 1 0 0 0 32(2m/48) 1 0 1 0 0 0 0 33(2m/48) 1 0 1 0 0 0 1 33(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 0 0 1 0 34(2m/48) 1 0 1 1 0 0 1 38(2m/48) 1 0 1 1 0 1 0 38(2m/48) 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 0 1 1 0 1 1 33(2m/48) 1 1 1 0 0 0 0 1 41(2m/48) 1 1 1 0 0 0 0 1 42(2m/48) 1 1 1 0 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 0 0 1 44(2m/48) 1 1 1 0 1 0 1 0 0 1 45(2m/48)

Table 17. CDCE62005 Output Coarse Phase Adjust Settings (4)

50	12 n.1 0 0 0 0 0 0 0 0	0	n.9	n.8	n.7		
	0 0 0 0 0 0	0	0			n.6	(radian)
	0 0			0	0	0	0
	0 0		0	0	0	1	(2π/50)
		0	0	0	1	0	2(2π/50)
		0	0	0	1	1	3(2π/50)
	0 0	0	0	1	0	0	4(2π/50)
	0 0	0	1	0	0	0	5(2π/50)
	0 0	0	1	0	0	0	6(2π/50)
	0 0	0	1	0	1	1	7(2π/50) 8(2π/50)
	0 0	0	1	1	0	0	9(2π/50)
	0 0	1	0	0	0	0	9(2π/50) 10(2π/50)
	0 0	1	0	0	0	1	10(211/50) 11(2π/50)
	0 0	1	0	0	1	0	$12(2\pi/50)$
	0 0	1	0	0	1	1	$13(2\pi/50)$
	0 0	1	0	1	0	0	$14(2\pi/50)$
	0 0	1	1	0	0	0	15(2π/50)
	0 0	1	1	0	0	1	16(2π/50)
	0 0	1	1	0	1	0	17(2π/50)
	0 0	1	1	0	1	1	18(2π/50)
	0 0	1	1	1	0	0	19(2π/50)
	0 1	0	0	0	0	0	20(2π/50)
	0 1	0	0	0	0	1	$21(2\pi/50)$
	0 1	0	0	0	1	0	$22(2\pi/50)$
	0 1	0	0	0	1	1	$23(2\pi/50)$
	0 1	0	0	1	0	0	$24(2\pi/50)$
	1 0	0	0	0	0	0	$25(2\pi/50)$
	1 0	0	0	0	0	1	$26(2\pi/50)$
	1 0	0	0	0	1	0	$27(2\pi/50)$
	1 0	0	0	0	1	1	$28(2\pi/50)$
	1 0	0	0	1	0	0	29(2π/50)
	1 0	0	1	0	0	0	30(2π/50)
	1 0	0	1	0	0	1	$31(2\pi/50)$
	1 0	0	1	0	1	0	$32(2\pi/50)$
	1 0	0	1	0	1	1	$33(2\pi/50)$ $34(2\pi/50)$
	1 0	1	0	0	0	0	$35(2\pi/50)$
	1 0	1	0	0	0	1	36(2π/50)
	1 0	1	0	0	1	0	$37(2\pi/50)$
	1 0	1	0	0	1	1	38(2π/50)
	1 0	1	0	1	0	0	$39(2\pi/50)$
	1 0	1	1	0	0	0	$40(2\pi/50)$
	1 0	1	1	0	0	1	41(2π/50)
	1 0	1	1	0	1	0	42(2π/50)
	1 0	1	1	0	1	1	43(2π/50)
	1 0	1	1	1	0	0	44(2π/50)
	1 1	0	0	0	0	0	45(2π/50)
	1 1	0	0	0	0	1	46(2π/50)
	1 1	0	0	0	1	0	$47(2\pi/50)$
	1 1	0	0	0	1	1	48(2π/50)
	1 1	0	0	1	0	0	$49(2\pi/50)$

n.12 n.11 n.10 n.9 n.8 n.7 n.6 (radia)	
0	an)
0	
0	56)
0 0 0 1 0 0 1 0 0 0 4(2π/ 0 0 0 0 1 0 0 1 5(2π/ 0 0 0 0 1 0 1 0 6(2π/ 0 0 0 1 0 1 1 7(2π/ 0 0 0 1 0 0 0 0 8(2π/ 0 0 1 0 0 1 0 1 0 10(2π/ 0 0 1 0 0 0 1 11(2π/ 0 0 1 1 0 0 0 1 13(2π/ 0 0 1 1 0 0 1 1 14(2π/ 0 0 1 1 0 0 1 1 15(2π/ 0 0 1 1 0 0 1 1 15(2π/ 0 0 1 1 0 0 1 1 15(2π/ 0 0 1 1 0 0 1 1 19(2π/ 0 0 1 1 0 0 1 19(2π/ 0 0 1 1 0 0 1 19(2π/ 0 1 0 0 1 1 1 0 1 1 14(2π/ 0 1 1 0 0 0 0 1 17(2π/ 0 1 0 0 0 1 17(2π/ 0 1 0 0 0 1 1 19(2π/ 0 1 0 0 0 1 1 19(2π/ 0 1 0 0 0 1 1 19(2π/ 0 1 0 1 0 0 0 1 12(2π/ 0 1 0 1 0 1 0 0 0 22(2π/ 0 1 0 1 0 1 0 0 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 1 0 1 0 1 0 26(2π/ 0 1 1 0 1 0 0 0 1 27(2π/ 1 0 0 0 0 1 28(2π/ 1 1 0 0 0 0 1 33(2π/ 1 0 0 0 1 33(2π/ 1 0 0 0 1 33(2π/ 1 0 0 1 0 1 0 30(2π/ 1 0 0 1 0 1 0 33(2π/ 1 0 0 1 0 1 0 1 33(2π/ 1 0 1 1 0 0 0 1 33(2π/ 1 0 0 1 0 1 0 1 33(2π/ 1 0 1 0 0 1 0 1 33(2π/ 1 0 1 0 0 1 0 1 33(2π/ 1 0 1 0 0 1 0 1 33(2π/ 1 0 1 1 0 0 0 0 0 0 36(2π/ 1 0 1 0 0 1 0 1 33(2π/ 1 0 1 1 0 0 0 1 33(2π/ 1 0 1 1 0 0 0 1 0 34(2π/ 1 0 1 0 0 1 0 1 0 34(2π/ 1 0 1 1 0 0 0 0 0 0 44(2π/ 1 0 1 1 0 0 0 0 0 0 0 44(2π/ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0	
0 0 0 1 0 1 0 1 0 6(2π/ 0 0 0 1 0 1 0 1 1 7(2π/ 0 0 0 1 0 0 0 0 8(2π/ 0 0 1 0 0 0 1 9(2π/ 0 0 1 0 0 1 1 0 10(2π/ 0 0 1 0 0 1 1 11(2π/ 0 0 1 1 0 0 1 1 11(2π/ 0 0 1 1 0 0 1 1 13(2π/ 0 0 1 1 0 0 1 1 15(2π/ 0 0 1 1 0 0 0 1 1 15(2π/ 0 0 1 1 0 0 0 0 1 16(2π/ 0 0 1 1 0 0 0 0 1 17(2π/ 0 1 0 0 0 0 1 1 1 19(2π/ 0 1 0 0 0 0 1 1 1 19(2π/ 0 1 0 0 0 0 1 1 1 20(2π/ 0 1 0 0 0 0 1 1 1 20(2π/ 0 1 0 0 0 0 1 1 1 20(2π/ 0 1 0 0 0 0 1 1 1 20(2π/ 0 1 0 0 0 0 1 1 20(2π/ 0 1 0 1 0 1 0 1 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 1 0 1 0 1 0 22(2π/ 0 1 1 0 1 0 1 0 1 0 22(2π/ 1 0 0 0 0 1 1 25(2π/ 1 0 0 0 0 0 1 25(2π/ 1 0 0 0 0 0 0 28(2π/ 1 0 0 0 0 0 1 33(2π/ 1 0 0 0 0 0 1 33(2π/ 1 0 0 1 0 1 0 1 0 34(2π/ 1 0 0 1 0 1 0 1 33(2π/ 1 0 0 1 0 0 0 0 1 33(2π/ 1 0 0 1 0 0 0 0 1 33(2π/ 1 0 0 1 0 0 0 0 1 33(2π/ 1 0 0 1 0 0 0 0 0 34(2π/ 1 0 1 0 0 0 0 1 33(2π/ 1 0 1 0 0 0 0 1 33(2π/ 1 0 1 0 0 0 0 1 33(2π/ 1 0 1 0 0 0 0 0 1 33(2π/ 1 0 1 0 0 0 0 0 1 33(2π/ 1 0 1 0 0 0 0 0 0 0 40(2π/ 1 0 1 0 1 0 0 0 0 0 40(2π/ 1 0 1 1 0 0 0 0 0 0 0 40(2π/ 1 0 1 1 0 0 0 0 0 0 0 0 44(2π/ 1 0 1 1 0 0 0 0 0 0 0 0 44(2π/ 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 1 0 1 1 7(2m) 0 0 0 1 0 0 0 8(2m) 0 0 1 0 0 0 1 9(2m) 0 0 1 0 0 0 1 9(2m) 0 0 1 0 0 0 1 0 10(2m) 0 0 1 0 0 1 1 11(2m) 0 0 1 1 0 0 1 1 11(2m) 0 0 1 1 0 0 1 1 13(2m) 0 0 1 1 0 0 1 1 15(2m) 0 0 1 1 0 0 1 1 15(2m) 0 0 1 1 0 0 0 0 1 17(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 0 0 0 1 17(2m) 0 1 0 0 0 0 1 19(2m) 0 1 0 0 0 1 1 19(2m) 0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 21(2m) 0 1 0 1 0 1 0 0 22(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 1 0 1 0 1 0 26(2m) 0 1 1 0 0 0 1 24(2m) 0 1 1 0 0 0 1 25(2m) 0 1 1 0 0 0 1 25(2m) 0 1 1 0 0 0 1 25(2m) 1 0 0 0 1 1 27(2m) 1 0 0 0 0 1 29(2m) 1 0 0 0 0 1 33(2m) 1 0 0 0 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 0 0 0 44(2m) 1 1 0 1 1 0 0 0 0 0 0 0 44(2m) 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0	
0 0 1 0 0 1 0 0 0 1 9(2π/ 0 0 0 1 0 0 1 1 11(2π/ 0 0 1 1 0 0 1 1 11(2π/ 0 0 1 1 1 0 0 0 1 13(2π/ 0 0 1 1 1 0 1 1 15(2π/ 0 0 1 1 0 0 1 1 15(2π/ 0 0 1 1 0 0 0 0 0 16(2π/ 0 1 0 0 0 0 0 1 17(2π/ 0 1 0 0 0 0 1 1 1 19(2π/ 0 1 0 0 0 0 1 1 1 19(2π/ 0 1 0 0 0 0 1 1 21(2π/ 0 1 0 0 0 1 1 1 23(2π/ 0 1 0 1 0 1 0 1 0 22(2π/ 0 1 0 1 0 1 0 1 1 23(2π/ 0 1 1 0 1 0 1 0 24(2π/ 1 0 0 1 0 0 0 0 1 25(2π/ 0 1 1 0 0 0 0 1 25(2π/ 0 1 1 0 0 0 0 1 25(2π/ 0 1 1 0 0 0 0 1 25(2π/ 1 0 0 1 1 0 0 0 0 0 28(2π/ 1 0 0 0 0 0 1 33(2π/ 1 0 0 0 0 0 1 33(2π/ 1 0 0 1 0 1 0 1 0 34(2π/ 1 0 0 1 0 1 0 1 0 34(2π/ 1 0 0 1 0 1 0 1 34(2π/ 1 0 0 1 0 1 0 1 34(2π/ 1 0 0 1 0 1 0 1 34(2π/ 1 0 0 1 0 1 0 34(2π/ 1 0 0 1 0 0 1 33(2π/ 1 0 0 1 0 1 0 34(2π/ 1 0 1 0 0 1 0 34(2π/ 1 0 1 0 0 1 0 38(2π/ 1 0 1 0 0 0 0 0 0 40(2π/ 1 0 1 1 0 0 1 1 38(2π/ 1 0 1 1 0 0 1 1 38(2π/ 1 0 1 1 0 0 0 1 1 38(2π/ 1 0 1 1 0 0 0 1 44(2π/ 1 0 1 1 0 0 0 0 0 1 44(2π/ 1 1 0 1 1 0 0 0 0 0 1 44(2π/ 1 1 0 1 1 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 0 0 0 1 44(2π/ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 1 0 0 1 0 1 0 10(2m) 0 0 1 0 0 1 1 0 10(2m) 0 0 1 1 0 0 1 1 11(2m) 0 0 1 1 1 0 0 0 1 13(2m) 0 0 1 1 0 0 1 13(2m) 0 0 1 1 0 0 1 14(2m) 0 0 1 1 0 0 1 1 15(2m) 0 0 1 0 0 0 0 0 1 17(2m) 0 1 0 0 0 0 0 1 17(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 12(2m) 0 1 0 1 0 1 0 0 0 22(2m) 0 1 0 1 0 1 0 0 22(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 1 0 1 0 1 0 26(2m) 0 1 1 0 0 0 0 1 24(2m) 0 1 1 0 0 0 0 1 26(2m) 1 0 0 0 0 1 0 28(2m) 0 1 1 0 0 0 0 1 28(2m) 1 0 0 0 0 0 1 33(2m) 1 0 0 1 0 1 0 1 0 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 1 39(2m) 1 0 1 0 0 1 0 1 1 39(2m) 1 0 1 0 0 1 0 1 1 39(2m) 1 0 1 1 0 0 0 1 0 34(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 1 0 0 0 0 0 0 40(2m) 1 0 1 1 0 0 0 1 1 33(2m)	
0 0 1 0 0 1 1 1 11(2m) 0 0 0 1 1 0 0 0 1 1 1 11(2m) 0 0 0 1 1 0 0 0 1 12(2m) 0 0 1 1 0 0 1 13(2m) 0 0 1 1 0 0 1 13(2m) 0 0 1 1 0 0 1 1 14(2m) 0 0 1 1 0 0 0 0 0 1 15(2m) 0 1 0 0 0 0 0 1 17(2m) 0 1 0 0 0 0 1 1 0 18(2m) 0 1 0 0 0 0 1 1 0 18(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 21(2m) 0 1 0 1 0 1 0 0 1 1 22(2m) 0 1 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 1 23(2m) 0 1 1 0 1 0 1 0 2 2(2m) 0 1 1 0 1 0 1 0 2 2(2m) 0 1 1 0 1 0 1 1 23(2m) 0 1 1 1 0 0 0 0 1 25(2m) 0 1 1 0 0 0 0 1 25(2m) 0 1 1 0 0 0 0 1 25(2m) 1 0 0 0 0 0 1 28(2m) 1 0 0 0 0 0 1 28(2m) 1 0 0 0 0 0 1 33(2m) 1 0 0 1 0 1 0 0 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 1 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 1 33(2m) 1 0 1 0 0 1 0 33(2m) 1 0 1 0 0 0 0 0 38(2m) 1 0 1 0 0 0 0 0 38(2m) 1 0 1 0 0 1 0 33(2m) 1 0 1 0 0 0 0 0 0 34(2m) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 1 1 0 0 14(2m 0 0 1 1 0 0 14(2m 0 0 1 1 0 0 1 13(2m 0 0 1 1 0 0 1 1 15(2m 0 1 0 0 0 0 0 0 0 16(2m 0 1 0 0 0 0 0 1 17(2m 0 1 0 0 0 0 1 0 18(2m 0 1 0 0 0 0 1 1 0 18(2m 0 1 0 0 0 0 1 1 19(2m 0 1 0 1 0 0 0 1 1 19(2m 0 1 0 1 0 0 0 1 1 21(2m 0 1 0 1 0 1 0 0 22(2m 0 1 0 1 0 1 0 1 0 22(2m 0 1 0 1 0 1 0 1 0 22(2m 0 1 0 1 0 1 0 1 22(2m 0 1 0 1 0 1 0 1 22(2m 0 1 1 0 1 0 1 22(2m 0 1 1 0 1 0 1 0 22(2m 1 0 0 1 1 0 0 0 0 0 24(2m 0 1 1 0 0 0 0 0 28(2m 1 0 0 0 0 0 1 29(2m 1 0 0 0 0 0 1 33(2m 1 0 0 0 1 0 1 33(2m 1 0 0 1 0 1 0 1 0 34(2m 1 0 0 1 0 1 0 33(2m 1 0 0 1 0 1 0 34(2m 1 0 0 1 0 0 1 33(2m 1 0 0 1 0 1 0 34(2m 1 0 1 0 0 1 0 34(2m 1 0 1 1 0 0 0 1 33(2m 1 0 1 0 0 0 0 0 0 40(2m 1 0 1 0 0 1 0 34(2m 1 0 1 1 0 0 1 1 34(2m 1 0 1 1 0 0 1 1 34(2m 1 0 1 1 0 0 1 1 34(2m 1 0 1 1 0 0 0 1 44(2m 1 0 1 1 0 0 0 0 0 0 44(2m 1 0 1 1 0 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 0 1 44(2m 1 1 1 0 0 0 0 0 0 0 1 44(2m 1 1 1 0 0 0 0 0 0 1 44(2m	
0 0 1 1 0 0 1 0 14(2π 0 0 0 1 1 0 0 1 15(2π 0 1 0 0 0 0 0 0 16(2π 0 1 0 0 0 0 0 1 17(2π 0 1 0 0 0 0 1 1 0 18(2π 0 1 0 0 0 1 1 0 18(2π 0 1 0 1 0 0 0 1 1 19(2π 0 1 0 1 0 1 0 0 0 1 21(2π 0 1 0 1 0 1 0 1 0 22(2π 0 1 0 1 0 1 0 1 0 22(2π 0 1 0 1 0 1 0 1 0 22(2π 0 1 0 1 0 1 0 1 23(2π 0 1 1 0 0 0 0 1 25(2π 0 1 1 0 0 0 0 0 24(2π 0 1 1 0 0 0 0 1 25(2π 0 1 1 0 0 0 0 1 25(2π 0 1 1 0 0 0 0 1 25(2π 1 0 0 0 0 0 0 28(2π 1 0 0 0 0 0 1 33(2π 1 0 0 0 1 0 0 0 33(2π 1 0 0 1 0 1 0 1 33(2π 1 0 0 1 0 1 0 34(2π 1 0 1 0 0 1 0 38(2π 1 0 1 1 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 1 0 0 0 1 33(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 34(2π 1 0 1 1 0 0 1 1 44(2π 1 1 0 1 1 0 0 0 0 0 1 44(2π 1 1 0 1 1 0 0 0 0 0 1 44(2π	
0 0 1 1 0 0 1 1 15(2m) 0 1 0 0 0 0 0 0 16(2m) 0 1 0 0 0 0 0 1 17(2m) 0 1 0 0 0 0 0 1 17(2m) 0 1 0 0 0 0 1 1 0 18(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 1 0 0 1 21(2m) 0 1 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 1 23(2m) 0 1 1 0 1 0 1 0 1 22(2m) 0 1 1 0 1 0 1 0 1 22(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 0 1 25(2m) 0 1 1 0 0 0 0 1 25(2m) 0 1 1 0 0 0 0 1 25(2m) 1 0 0 1 1 0 0 1 0 28(2m) 1 1 0 0 0 0 0 0 28(2m) 1 0 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 1 33(2m) 1 0 0 0 1 0 1 33(2m) 1 0 0 1 0 1 0 34(2m) 1 0 0 1 0 1 0 34(2m) 1 0 1 0 0 1 0 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 34(2m) 1 0 1 0 0 0 0 0 0 40(2m) 1 0 1 1 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 43(2m) 1 0 1 1 0 0 1 0 42(2m) 1 0 1 1 0 0 1 0 44(2m) 1 1 0 1 1 0 0 0 0 0 44(2m) 1 1 0 1 1 0 0 0 0 0 0 44(2m) 1 1 1 0 0 0 0 0 0 1 45(2m)	
0 1 0 0 0 0 0 16(2π) 0 1 0 0 0 0 1 17(2π) 0 1 0 0 0 0 1 1 7(2π) 0 1 0 0 0 0 1 1 19(2π) 0 1 0 0 0 0 1 1 19(2π) 0 1 0 1 0 0 0 1 1 19(2π) 0 1 0 1 0 1 0 0 0 20(2π) 0 1 0 1 0 1 0 1 0 22(2π) 0 1 0 1 0 1 0 1 0 22(2π) 0 1 0 1 0 1 0 1 0 22(2π) 0 1 1 0 0 0 0 0 24(2π) 0 1 1 0 0 0 0 1 25(2π) 0 1 1 0 0 0 0 1 26(2π) 0 1 1 0 0 0 1 0 26(2π) 1 1 0 0 0 1 0 1 0 26(2π) 1 1 0 0 0 0 1 29(2π) 1 0 0 0 0 1 29(2π) 1 0 0 0 0 1 30(2π) 1 0 0 0 0 1 30(2π) 1 0 0 0 0 1 33(2π) 1 0 0 1 0 1 0 33(2π) 1 0 0 1 0 1 33(2π) 1 0 1 0 0 1 0 33(2π) 1 0 1 0 0 0 0 33(2π) 1 0 1 0 0 0 1 0 34(2π) 1 0 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 1 33(2π) 1 0 1 1 0 0 0 1 44(2π) 1 1 0 1 1 0 0 0 0 0 0 0 44(2π)	
0 1 0 0 0 0 1 17(2π 0 1 0 0 0 1 1 19(2π 0 1 0 0 0 1 1 19(2π 0 1 0 1 0 0 0 1 1 19(2π 0 1 0 1 0 1 0 0 20(2π 0 1 0 1 0 1 0 0 22(2π 0 1 0 1 0 1 0 1 22(2π 0 1 0 1 0 1 0 1 23(2π 0 1 1 0 0 0 0 0 24(2π 0 1 1 0 0 0 0 0 24(2π 0 1 1 0 0 0 1 0 26(2π 0 1 1 0 0 0 1 0 26(2π 1 0 0 1 1 0 0 1 0 27(2π 1 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 33(2π 1 0 0 0 1 0 0 0 32(2π 1 0 0 0 1 0 0 0 33(2π 1 0 0 1 0 0 0 0 33(2π 1 0 0 1 0 1 0 33(2π 1 0 1 0 0 0 0 38(2π 1 0 1 0 0 0 1 33(2π 1 0 1 0 0 0 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 1 0 0 0 1 33(2π 1 0 1 0 0 1 0 1 33(2π 1 0 1 0 0 0 1 33(2π 1 0 1 0 0 0 0 0 38(2π 1 0 1 0 0 0 0 38(2π 1 0 1 0 0 1 0 1 39(2π 1 0 1 1 0 0 0 1 40(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 34(2π 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 0 44(2π	
0 1 0 0 0 0 1 1 0 18(2m) 0 1 0 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 1 0 0 0 20(2m) 0 1 0 1 0 1 0 0 1 21(2m) 0 1 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 1 23(2m) 0 1 1 0 1 0 1 0 1 23(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 0 1 25(2m) 0 1 1 0 0 0 1 1 26(2m) 0 1 1 0 0 0 1 1 27(2m) 1 0 0 0 0 0 0 0 28(2m) 1 0 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 1 3 30(2m) 1 0 0 0 0 0 1 3 31(2m) 1 0 0 1 0 0 1 3 33(2m) 1 0 0 1 0 1 0 3 34(2m) 1 0 0 1 0 1 0 3 34(2m) 1 0 0 1 0 1 0 3 34(2m) 1 0 0 1 0 1 0 3 36(2m) 1 0 0 1 0 1 0 3 36(2m) 1 0 1 0 0 1 0 3 36(2m) 1 0 1 0 0 1 0 3 36(2m) 1 0 1 0 0 1 0 38(2m) 1 0 1 0 0 1 0 38(2m) 1 0 1 0 0 1 1 39(2m) 1 0 1 1 0 0 1 1 39(2m) 1 0 1 1 0 0 1 1 39(2m) 1 0 1 1 0 0 1 1 39(2m) 1 0 1 1 0 0 1 1 39(2m) 1 0 1 1 0 0 1 1 39(2m) 1 0 1 1 0 1 1 43(2m) 1 1 0 1 1 1 0 1 1 43(2m) 1 1 0 1 1 1 0 1 1 43(2m) 1 1 1 0 1 1 1 0 1 1 43(2m) 1 1 1 0 1 1 1 0 1 1 43(2m) 1 1 1 0 1 1 1 0 1 1 43(2m) 1 1 1 0 1 1 1 0 1 1 43(2m)	
0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 0 0 1 1 19(2m) 0 1 0 1 0 1 0 0 0 20(2m) 0 1 0 1 0 1 0 0 1 22(2m) 0 1 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 0 23(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 1 0 26(2m) 0 1 1 0 0 0 1 0 26(2m) 1 0 0 1 1 0 0 1 0 26(2m) 1 0 0 0 0 0 1 27(2m) 1 0 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 1 30(2m) 1 0 0 0 0 1 1 31(2m) 1 0 0 0 1 0 0 1 33(2m) 1 0 0 1 0 0 1 33(2m) 1 0 0 1 0 1 0 34(2m) 1 0 0 1 0 1 0 34(2m) 1 0 0 1 0 1 0 34(2m) 1 0 1 0 0 0 1 33(2m) 1 0 1 0 0 1 0 33(2m) 1 0 1 0 0 1 0 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 0 1 0 1 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 1 0 0 0 0 36(2m) 1 0 1 0 0 1 0 33(2m) 1 0 1 0 0 0 1 33(2m) 1 0 1 0 0 0 1 33(2m) 1 0 1 0 0 0 1 33(2m) 1 0 1 0 0 0 0 34(2m) 1 0 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 1 33(2m) 1 0 1 1 0 0 0 1 44(2m) 1 1 0 1 1 0 0 0 0 0 0 44(2m) 1 1 0 1 1 0 0 0 0 0 0 44(2m)	
0 1 0 1 0 1 0 0 20(2π 0 1 0 1 0 1 0 0 22(2π 0 1 0 1 0 1 0 22(2π 0 1 0 1 0 1 0 1 22(2π 0 1 0 1 0 1 0 1 23(2π 0 1 1 0 0 0 0 0 24(2π 0 1 1 0 0 0 1 0 26(2π 0 1 1 0 0 0 1 0 26(2π 0 1 1 0 0 0 1 0 26(2π 1 0 0 0 0 0 1 0 28(2π 1 0 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 30(2π 1 0 0 0 0 0 1 33(2π 1 0 0 1 0 0 0 0 33(2π 1 0 0 1 0 0 0 0 33(2π 1 0 0 1 0 1 33(2π 1 0 0 1 0 1 0 33(2π 1 0 0 1 0 1 0 33(2π 1 0 0 1 0 1 33(2π 1 0 0 1 0 1 0 33(2π 1 0 0 1 0 1 0 33(2π 1 0 0 1 0 1 0 33(2π 1 0 1 0 0 1 0 33(2π 1 0 1 0 0 0 0 0 0 0 34(2π 1 0 1 1 0 0 0 1 0 42(2π 1 0 1 1 0 0 1 0 1 0 42(2π 1 0 1 1 0 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 0 0 44(2π	
0 1 0 1 0 1 0 21(2m) 0 1 0 1 0 1 0 22(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 0 1 0 1 0 1 23(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 0 0 24(2m) 0 1 1 0 0 0 1 25(2m) 0 1 1 0 0 1 0 26(2m) 0 1 1 0 0 0 1 27(2m) 1 0 0 0 0 0 0 0 28(2m) 1 0 0 0 0 0 0 1 29(2m) 1 0 0 0 0 0 1 0 30(2m) 1 0 0 0 0 0 1 1 31(2m) 1 0 0 0 1 0 0 1 33(2m) 1 0 0 1 0 1 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 0 33(2m) 1 0 1 0 0 0 0 1 33(2m) 1 0 1 0 0 0 1 0 34(2m) 1 0 1 1 0 0 0 1 1 39(2m) 1 0 1 1 0 0 0 1 40(2m) 1 0 1 1 0 0 1 1 43(2m) 1 0 1 1 0 1 1 43(2m) 1 1 0 1 1 0 1 1 43(2m) 1 1 0 1 1 0 0 0 0 0 44(2m) 1 1 0 1 1 0 0 0 0 0 0 44(2m)	
0 1 0 1 0 1 0 1 0 22(2π 0 1 0 1 0 1 0 1 1 23(2π 0 1 1 0 0 0 0 0 24(2π 0 1 1 0 0 0 0 1 25(2π 0 1 1 0 0 0 1 25(2π 0 1 1 0 0 0 1 0 26(2π 0 1 1 0 0 0 1 1 27(2π 1 0 0 0 0 0 0 0 0 28(2π 1 0 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 30(2π 1 0 0 0 1 0 0 32(2π 1 0 0 1 0 0 0 1 33(2π 1 0 0 1 0 0 1 33(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 0 1 39(2π 1 0 0 1 0 1 0 38(2π 1 0 0 1 0 1 39(2π 1 0 0 1 0 1 39(2π 1 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 1 39(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 1 39(2π 1 0 1 1 0 0 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 34(2π 1 0 1 1 0 0 0 1 44(2π 1 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 0 44(2π	
0 1 0 1 0 1 0 1 23(2m 0 1 1 0 0 0 0 0 24(2m 0 1 1 0 0 0 1 25(2m 0 1 1 0 0 0 1 26(2m 0 1 1 0 0 0 1 0 26(2m 0 1 1 0 0 0 1 0 26(2m 1 0 0 0 0 0 0 0 28(2m 1 0 0 0 0 0 1 29(2m 1 0 0 0 0 0 1 30(2m 1 0 0 0 0 1 1 0 30(2m 1 0 0 0 1 0 0 1 33(2m 1 0 0 1 0 1 0 0 1 33(2m 1 0 0 1 0 1 0 34(2m 1 0 0 1 0 0 0 36(2m 1 0 0 1 0 0 0 36(2m 1 0 1 0 0 0 36(2m 1 0 1 0 0 1 0 38(2m 1 0 1 0 0 0 1 39(2m 1 0 1 0 0 1 0 38(2m 1 0 1 0 0 0 1 38(2m 1 0 1 1 0 0 0 1 40(2m 1 0 1 1 0 0 0 1 40(2m 1 0 1 1 0 0 0 1 44(2m 1 1 0 1 1 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 0 44(2m 1 1 1 0 0 0 0 0 0 0 1 45(2m 1 1 1 0 0 0 0 0 0 1 45(2m	
0 1 1 0 0 0 0 24(2π 0 1 1 0 0 0 1 25(2π 0 1 1 0 0 0 1 25(2π 0 1 1 0 0 0 1 27(2π 1 0 0 0 0 0 0 0 28(2π 1 0 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 0 30(2π 1 0 0 0 0 0 1 1 31(2π 1 0 0 0 1 0 0 1 33(2π 1 0 0 1 0 0 1 33(2π 1 0 0 1 0 1 0 1 33(2π 1 0 0 1 0 1 0 36(2π 1 0 0 1 0 1 0 36(2π 1 0 0 1 0 1 35(2π 1 0 0 1 0 1 0 36(2π 1 0 1 0 0 1 37(2π 1 0 1 0 0 1 38(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 0 0 0 36(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 39(2π 1 0 1 0 0 1 0 34(2π 1 0 1 1 0 0 1 39(2π 1 0 1 0 0 1 39(2π 1 0 1 1 0 0 0 0 40(2π 1 0 1 1 0 1 1 39(2π 1 0 1 1 0 1 1 0 1 1 38(2π 1 0 1 1 0 0 0 0 44(2π 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 0 44(2π	
0 1 1 0 0 0 1 25(2m 0 1 1 0 0 0 1 25(2m 0 1 1 0 0 0 1 0 26(2m 1 0 0 0 0 0 0 0 0 28(2m 1 0 0 0 0 0 0 0 1 29(2m 1 0 0 0 0 0 1 0 30(2m 1 0 0 0 0 1 1 31(2m 1 0 0 0 1 0 0 0 32(2m 1 0 0 1 0 0 1 33(2m 1 0 0 1 0 1 0 34(2m 1 0 0 1 0 1 0 34(2m 1 0 0 1 0 1 0 38(2m 1 0 1 0 0 0 0 34(2m 1 0 1 0 0 0 0 36(2m 1 0 1 0 0 0 36(2m 1 0 1 0 0 0 0 36(2m 1 0 1 0 0 0 0 36(2m 1 0 1 0 0 0 1 37(2m 1 0 1 0 0 0 1 38(2m 1 0 1 0 0 0 1 40(2m 1 0 1 1 0 0 1 42(2m 1 0 1 1 0 1 0 0 1 43(2m 1 0 1 1 0 1 1 43(2m 1 0 1 1 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 1 45(2m 1 1 0 1 1 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 0 44(2m 1 1 0 1 1 0 0 0 0 1 45(2m 1 1 0 1 1 0 0 0 0 0 44(2m 1 1 0 0 0 0 0 1 45(2m 1 1 0 1 1 0 0 0 0 1 45(2m 1 1 0 1 1 0 0 0 0 0 1 45(2m	
0 1 1 0 0 1 26(27) 1 0 0 1 1 0 0 28(27) 1 0 0 0 0 0 0 0 28(27) 1 0 0 0 0 0 0 1 29(27) 1 0 0 0 0 0 1 29(27) 1 0 0 0 0 0 1 30(27) 1 0 0 0 0 1 1 31(27) 1 0 0 1 0 0 0 32(27) 1 0 0 1 0 0 1 33(27) 1 0 0 1 0 1 0 34(27) 1 0 0 1 0 1 35(27) 1 0 1 0 0 1 0 36(27) 1 0 1 0 0 0 36(27) 1 0 1 0 0 1 37(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 0 0 1 38(27) 1 0 1 1 0 0 1 1 39(27) 1 0 1 1 0 0 1 1 39(27) 1 0 1 1 0 0 1 1 39(27) 1 0 1 1 0 0 1 1 34(27) 1 0 1 1 0 0 1 1 34(27) 1 0 1 1 0 0 1 1 34(27) 1 1 0 1 1 0 0 1 1 34(27) 1 1 0 1 1 0 0 0 0 44(27) 1 1 0 1 1 0 0 0 0 0 44(27) 1 1 0 0 0 0 0 0 0 44(27) 1 1 1 0 0 0 0 0 0 0 1 45(27)	
1 0 0 0 0 0 0 28(2π 1 0 0 0 0 0 0 1 29(2π 1 0 0 0 0 0 1 0 30(2π 1 0 0 0 0 1 1 31(2π 1 0 0 1 0 0 0 32(2π 1 0 0 1 0 0 32(2π 1 0 0 1 0 1 33(2π 1 0 0 1 0 1 0 34(2π 1 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 1 37(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 1 39(2π 1 0 1 0 0 1 1 39(2π 1 0 1 1 0 0 0 1 40(2π 1 0 1 1 0 0 1 40(2π 1 0 1 1 0 1 0 1 42(2π 1 0 1 1 0 1 0 1 43(2π 1 0 1 1 0 1 1 43(2π 1 0 1 1 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 1 45(2π 1 1 0 1 1 0 0 0 0 1 45(2π	
1	
1 0 0 0 0 1 0 30(2π 1 0 0 0 0 1 1 31(2π 1 0 0 0 1 0 0 32(2π 1 0 0 1 0 0 1 33(2π 1 0 0 1 0 1 0 33(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 1 0 36(2π 1 0 1 0 0 0 0 0 36(2π 1 0 1 0 0 0 0 1 37(2π 1 0 1 0 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 34(2π 1 0 1 1 0 0 1 44(2π 1 0 1 1 0 1 1 0 1 43(2π 1 0 1 1 0 1 1 43(2π 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 0 44(2π 1 1 0 0 0 0 0 0 1 45(2π	
1 0 0 0 0 1 1 31(2π 1 0 0 1 0 0 0 32(2π 1 0 0 1 0 0 1 33(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 1 35(2π 1 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 1 37(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 1 39(2π 1 0 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 40(2π 1 0 1 1 0 0 1 42(2π 1 0 1 1 0 1 1 43(2π 1 0 1 1 0 0 0 0 44(2π 1 1 0 1 1 0 0 0 0 1 43(2π 1 1 0 1 1 0 0 0 0 1 45(2π 1 1 0 0 0 0 0 1 45(2π	
1 0 0 1 0 0 32(2π 1 0 0 1 0 0 1 33(2π 1 0 0 1 0 1 0 34(2π 1 0 0 1 0 1 1 35(2π 1 0 0 1 0 0 0 36(2π 1 0 1 0 0 0 0 36(2π 1 0 1 0 0 0 1 0 38(2π 1 0 1 0 0 1 0 38(2π 1 0 1 0 0 1 1 39(2π 1 0 1 1 0 0 1 1 39(2π 1 0 1 1 0 0 0 1 40(2π 1 0 1 1 0 0 1 42(2π 1 0 1 1 0 1 0 1 42(2π 1 0 1 1 0 1 1 43(2π 1 1 0 1 1 0 0 0 0 44(2π 1 1 0 0 0 0 0 1 45(2π 1 1 0 0 0 0 0 1 45(2π	
1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 1 0 0 0 0 1 45(2π	
1 1 0 0 0 1 1 47(2π	
1 1 0 1 0 0 48(2π	
1 1 0 1 0 0 1 49(2π	
1 1 0 1 0 1 0 50(2π	
1 1 0 1 0 1 51(2π	
1 1 1 0 0 0 0 52(2π	/56)
1 1 1 0 0 0 1 53(2π	
1 1 1 0 0 1 0 54(2π	
1 1 1 0 0 1 1 55(2π	/56)

Copyright © 2008–2015, Texas Instruments Incorporated

Table 18. CDCE62005 Output Coarse Phase Adjust Settings (5)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
Div							Ŧ	
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
60	0	0	0	0	0	0	0	0 (2π/60)
	0	0	0	0	0	1	0	2(2π/60)
	0	0	0	0	0	1	1	3(2π/60)
	0	0	0	0	1	0	0	4(2π/60)
	0	0	0	1	0	0	0	5(2π/60)
	0	0	0	1	0	0	1	6(2π/60)
	0	0	0	1	0	1	0	7(2π/60) 8(2π/60)
	0	0	0	1	1	0	0	9(2π/60)
	0	0	1	0	0	0	0	10(2π/60)
	0	0	1	0	0	0	1	$11(2\pi/60)$
	0	0	1	0	0	1	0	$12(2\pi/60)$
	0	0	1	0	0	1	1	13(2π/60)
	0	0	1	0	1	0	0	$14(2\pi/60)$
	0	0	1	1	0	0	1	15(2π/60) 16(2π/60)
	0	0	1	1	0	1	0	17(2π/60)
	0	0	1	1	0	1	1	$18(2\pi/60)$
	0	0	1	1	1	0	0	$19(2\pi/60)$
	0	1	0	0	0	0	0	20(2π/60)
	0	1	0	0	0	0	1	$21(2\pi/60)$
	0	1	0	0	0	1	0	22(2π/60) 23(2π/60)
	0	1	0	0	1	0	0	$24(2\pi/60)$
	0	1	0	1	0	0	0	$25(2\pi/60)$
	0	1	0	1	0	0	1	26(2π/60)
	0	1	0	1	0	1	0	$27(2\pi/60)$
	0	1	0	1	0	1	1	28(2π/60)
	0	1 0	0	1 0	1 0	0	0	29(2π/60) 30(2π/60)
	1	0	0	0	0	0	1	31(2π/60)
	1	0	0	0	0	1	0	32(2π/60)
	1	0	0	0	0	1	1	33(2π/60)
	1	0	0	0	1	0	0	$34(2\pi/60)$
	1	0	0	1	0	0	0	$35(2\pi/60)$
	1	0	0	1	0	0	0	$36(2\pi/60)$
	1	0	0	1	0	1	1	37(2π/60) 38(2π/60)
	1	0	0	1	1	0	0	$39(2\pi/60)$
	1	0	1	0	0	0	0	$40(2\pi/60)$
	1	0	1	0	0	0	1	$41(2\pi/60)$
	1	0	1	0	0	1	0	$42(2\pi/60)$
	1	0	1	0	0	1	1	43(2π/60)
	1	0	1	0	0	0	0	44(2π/60) 45(2π/60)
	1	0	1	1	0	0	1	46(2π/60)
	1	0	1	1	0	1	0	47(2π/60)
	1	0	1	1	0	1	1	$48(2\pi/60)$
	1	0	1	1	1	0	0	$49(2\pi/60)$
	1	1	0	0	0	0	0	50(2π/60)
	1	1	0	0	0	1	1	51(2π/60) 52(2π/60)
	1	1	0	0	0	1	1	52(211/60) 53(2π/60)
	1	1	0	0	1	0	0	54(2π/60)
	1	1	0	1	0	0	0	55(2π/60)
	1	1	0	1	0	0	1	$56(2\pi/60)$
	1	1	0	1	0	1	0	57(2π/60)
	1	1	0	1	0	1	1	58(2π/60)
	1	1	0	1	1	0	0	$59(2\pi/60)$

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
64	0	0	0	0	0	0	0	0 (2π/64)
	0	0	0	0	0	1	0	2(2π/64)
	0	0	0	0	0	1	1	3(2π/64)
	0	0	0	1	0	0	0	4(2π/64)
	0	0	0	1	0	0	1	5(2π/64)
	0	0	0	1	0	1	0	6(2π/64) 7(2π/64)
	0	0	1	0	0	0	0	8(2π/64)
	0	0	1	0	0	0	1	9(2π/64)
	0	0	1	0	0	1	0	10(2π/64)
	0	0	1	0	0	1	1	11(2π/64)
	0	0	1	1	0	0	0	12(2π/64)
	0	0	1	1	0	1	0	13(2π/64) 14(2π/64)
	0	0	1	1	0	1	1	15(2π/64)
	0	1	0	0	0	0	0	16(2π/64)
	0	1	0	0	0	0	1	$17(2\pi/64)$
	0	1	0	0	0	1	0	18(2π/64)
	0	1	0	0	0	1	1	19(2π/64) 20(2π/64)
	0	1	0	1	0	0	1	21(2π/64)
	0	1	0	1	0	1	0	22(2π/64)
	0	1	0	1	0	1	1	$23(2\pi/64)$
	0	1	1	0	0	0	0	24(2π/64)
	0	1	1	0	0	0	1	25(2π/64) 26(2π/64)
	0	1	1	0	0	1	1	27(2π/64)
	0	1	1	1	0	0	0	28(2π/64)
	0	1	1	1	0	0	1	29(2π/64)
	0	1	1	1	0	1	0	30(2π/64)
	0	1 0	1 0	1 0	0	1	1	31(2π/64)
	1	0	0	0	0	0	1	32(2π/64) 33(2π/64)
	1	0	0	0	0	1	0	34(2π/64)
	1	0	0	0	0	1	1	35(2π/64)
	1	0	0	1	0	0	0	$36(2\pi/64)$
	1	0	0	1	0	0	1	37(2π/64)
	1	0	0	1	0	1	0	38(2π/64) 39(2π/64)
	1	0	1	0	0	0	0	40(2π/64)
	1	0	1	0	0	0	1	41(2π/64)
	1	0	1	0	0	1	0	42(2π/64)
	1	0	1	0	0	1	1	43(2π/64)
	1	0	1	1	0	0	0	44(2π/64) 45(2π/64)
	1	0	1	1	0	1	0	46(2π/64)
	1	0	1	1	0	1	1	$47(2\pi/64)$
	1	1	0	0	0	0	0	48(2π/64)
	1	1	0	0	0	0	1	49(2π/64)
	1	1	0	0	0	1	0	50(2π/64) 51(2π/64)
	1	1	0	1	0	0	0	51(211/64) 52(2π/64)
	1	1	0	1	0	0	1	53(2π/64)
	1	1	0	1	0	1	0	54(2π/64)
	1	1	0	1	0	1	1	55(2π/64)
	1	1	1	0	0	0	0	56(2π/64)
	1	1	1	0	0	0	1	57(2π/64) 58(2π/64)
	1	1	1	0	0	1	1	59(2π/64)
	1	1	1	1	0	0	0	$60(2\pi/64)$
	1	1	1	1	0	0	1	61(2π/64)
	1	1	1	1	0	1	0	62(2π/64)
	1	1	1	1	0	1	1	$63(2\pi/64)$

Table 19. CDCE62005 Output Coarse Phase Adjust Settings (6)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
	n.12	n.11	n.10	n.9	n.8	n.7	n.6	(radian)
70	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/70)
	0	0	0	0	0	1	0	2(2π/70) 3(2π/70)
	0	0	0	0	1	0	0	3(2π/70) 4(2π/70)
	0	0	0	1	0	0	0	5(2π/70)
	0	0	0	1	0	0	1	6(2π/70)
	0	0	0	1	0	1	0	7(2π/70)
	0	0	0	1	0	1	1	8(2π/70)
	0	0	0	1	1	0	0	9(2π/70)
	0	0	1	0	0	0	0	$10(2\pi/70)$ $11(2\pi/70)$
	0	0	1	0	0	1	0	12(2π/70)
	0	0	1	0	0	1	1	13(2π/70)
	0	0	1	0	1	0	0	$14(2\pi/70)$
	0	0	1	1	0	0	0	$15(2\pi/70)$
	0	0	1	1	0	0	1	16(2π/70)
	0	0	1	1	0	1	0	17(2π/70) 18(2π/70)
	0	0	1	1	1	0	0	$19(2\pi/70)$
	0	1	0	0	0	0	0	20(2π/70)
	0	1	0	0	0	0	1	21(2π/70)
	0	1	0	0	0	1	0	$22(2\pi/70)$
	0	1	0	0	0	1	1	23(2π/70)
	0	1	0	0	0	0	0	$24(2\pi/70)$
	0	1	0	1	0	0	1	25(2π/70) 26(2π/70)
	0	1	0	1	0	1	0	27(2π/70)
	0	1	0	1	0	1	1	28(2π/70)
	0	1	0	1	1	0	0	$29(2\pi/70)$
	0	1	1	0	0	0	0	30(2π/70)
	0	1	1	0	0	0	1	$31(2\pi/70)$
	0	1	1	0	0	1	1	$32(2\pi/70)$ $33(2\pi/70)$
	0	1	1	0	1	0	0	34(2π/70)
	1	0	0	0	0	0	0	35(2π/70)
	1	0	0	0	0	0	1	$36(2\pi/70)$
	1	0	0	0	0	1	0	37(2π/70)
	1	0	0	0	0	0	1 0	$38(2\pi/70)$ $39(2\pi/70)$
	1	0	0	1	0	0	0	$40(2\pi/70)$
	1	0	0	1	0	0	1	41(2π/70)
	1	0	0	1	0	1	0	42(2π/70)
	1	0	0	1	0	1	1	$43(2\pi/70)$
	1	0	0	1	1	0	0	44(2π/70)
	1	0	1	0	0	0	0	45(2π/70)
	1	0	1	0	0	1	0	46(2π/70) 47(2π/70)
	1	0	1	0	0	1	1	$48(2\pi/70)$
	1	0	1	0	1	0	0	$49(2\pi/70)$
	1	0	1	1	0	0	0	50(2π/70)
	1	0	1	1	0	0	1	51(2π/70)
	1	0	1	1	0	1	0	$52(2\pi/70)$ $53(2\pi/70)$
	1	0	1	1	1	0	0	$53(2\pi/70)$ $54(2\pi/70)$
	1	1	0	0	0	0	0	$55(2\pi/70)$
	1	1	0	0	0	0	1	56(2π/70)
	1	1	0	0	0	1	0	57(2π/70)
	1	1	0	0	0	1	1	$58(2\pi/70)$
	1	1	0	0	1 0	0	0	$59(2\pi/70)$
	1	1	0	1	0	0	1	$60(2\pi/70)$ $61(2\pi/70)$
	1	1	0	1	0	1	0	$62(2\pi/70)$
	1	1	0	1	0	1	1	$63(2\pi/70)$
	1	1	0	1	1	0	0	64(2π/70)
	1	1	1	0	0	0	0	$65(2\pi/70)$
	1	1	1	0	0	0	0	$66(2\pi/70)$ $67(2\pi/70)$
	1	1	1	0	0	1	1	$68(2\pi/70)$
	1	1	1	0	1	0	0	69(2π/70)

Divide Ratio	PHnADGC6	PHnADGC5	PHnADGC4	PHnADGC3	PHnADGC2	PHnADGC1	PHnADGC0	Phase Delay
vide	HnAE	HPAE	HP AE	ΗĀ	HPAE	HnAE	HPAE	таѕе
	n.12	n.11	 n.10	n.9	n.8	n.7	n.6	radian)
80	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	(2π/80) 2(2π/80)
	0	0	0	0	0	1	1	3(2π/80)
	0	0	0	0	1	0	0	4(2π/80)
	0	0	0	1	0	0	0	5(2π/80) 6(2π/80)
	0	0	0	1	0	1	0	7(2π/80)
	0	0	0	1	0	1 0	1	8(2π/80) 9(2π/80)
	0	0	1	0	0	0	0	9(2π/80) 10(2π/80)
	0	0	1	0	0	0	1	$11(2\pi/80)$
	0	0	1	0	0	1	0	12(2π/80) 13(2π/80)
	0	0	1	0	1	0	0	14(2π/80)
	0	0	1	1	0	0	0	15(2π/80)
	0	0	1	1	0	0	1	16(2π/80) 17(2π/80)
	0	0	1	1	0	1	1	18(2π/80)
	0	0	1 0	1	1	0	0	19(2π/80) 20(2π/80)
	0	1	0	0	0	0	0	$20(2\pi/80)$ $21(2\pi/80)$
	0	1	0	0	0	1	0	22(2π/80)
	0	1	0	0	0	1 0	1	23(2π/80) 24(2π/80)
	0	1	0	1	0	0	0	25(2π/80)
	0	1	0	1	0	0	1	$26(2\pi/80)$
	0	1	0	1	0	1	0	27(2π/80) 28(2π/80)
	0	1	0	1	1	0	0	$29(2\pi/80)$
	0	1	1	0	0	0	0	$30(2\pi/80)$
	0	1	1	0	0	1	0	31(2π/80) 32(2π/80)
	0	1	1	0	0	1	1	$33(2\pi/80)$
	0	1	1	0	0	0	0	34(2π/80) 35(2π/80)
	0	1	1	1	0	0	1	36(2π/80)
	0	1	1	1	0	1	0	$37(2\pi/80)$
	0	1	1	1	0	0	1	38(2π/80) 39(2π/80)
	1	0	0	0	0	0	0	$40(2\pi/80)$
	1	0	0	0	0	0	1	41(2π/80) 42(2π/80)
	1	0	0	0	0	1	1	43(2π/80)
	1	0	0	0	1	0	0	44(2π/80)
	1	0	0	1	0	0	1	45(2π/80) 46(2π/80)
	1	0	0	1	0	1	0	$47(2\pi/80)$
	1	0	0	1	0	0	0	48(2π/80) 49(2π/80)
	1	0	1	0	0	0	0	50(2π/80)
	1	0	1	0	0	0	1	51(2π/80)
	1	0	1	0	0	1	0	52(2π/80) 53(2π/80)
	1	0	1	0	1	0	0	54(2π/80)
	1	0	1	1	0	0	0	55(2π/80) 56(2π/80)
	1	0	1	1	0	1	0	57(2π/80)
	1	0	1	1	0	1	1	$58(2\pi/80)$
	1	0	1 0	1	1 0	0	0	59(2π/80) 60(2π/80)
	1	1	0	0	0	0	1	$61(2\pi/80)$
	1	1	0	0	0	1	0	62(2π/80) 63(2π/80)
	1	1	0	0	1	0	0	$64(2\pi/80)$
	1	1	0	1	0	0	0	65(2π/80)
	1	1	0	1	0	0	0	66(2π/80) 67(2π/80)
	1	1	0	1	0	1	1	68(2π/80)
	1	1	0	1	1	0	0	69(2π/80)
	1	1	1	0	0	0	0	70(2π/80) 71(2π/80)
	1	1	1	0	0	1	0	$72(2\pi/80)$
	1	1	1	0	0	1	1	$73(2\pi/80)$
	1	1	1	0	0	0	0	74(2π/80) 75(2π/80)
	1	1	1	1	0	0	1	$76(2\pi/80)$
	1	1	1	1	0	1	0	77(2π/80) 78(2π/80)
	1	1	1	1	1	0	0	79(2π/80)

Copyright © 2008–2015, Texas Instruments Incorporated

8.3.5.14 Output Synchronization

<u>Figure</u> 26 shows the output synchronization circuitry and relative output clock phase position with respect to SYNC signal Low to High phase transition.

NOTE: The signal diagram is based on the assumption that prescalar clock is selected by output Mux (Rn[4:5] where n = 0, 1, 2, 3 or 4)

Figure 26. Output Synchronization Diagram

The synchronization of the outputs can be accomplished by toggling the SYNC pin, or Bit (R8.8), or by changing any output divider values. Table 20 shows the phase relationship between output phase and the SYNC signal, the selected reference clock and the prescalar output clock phases.

Table 20. Output Synchronization Procedure

	R4.1	R6.20	COMMENTS
	0	0	The synchronized outputs will be enabled after ~6 µs delay and the next rising edge of the reference clock and selected clock of output multiplexer.
Toggling SYNC Pin or Bit (R8.8) from low to	0	1	The synchronized outputs will be enabled after ~6 µs delay and the next rising edge of selected clock of output multiplexer (reference Figure 26 (a)).
high	1	0	The synchronized outputs will be enabled with the next rising edge of reference clock & the selected clock of output multiplexer (reference Figure 26 (c)).
	1	1	The synchronized outputs will be enabled with the next rising edge of the selected clock of output multiplexer (reference Figure 26 (b)).
Toggling SYNC Pin or Bit (R8.8) from high to low	Х	Х	All outputs are disabled.

8.3.5.15 Auxiliary Output

Figure 27 shows the auxiliary output port. Table 21 lists how the auxiliary output port is controlled. The output buffer supports a maximum output frequency of 250 MHz and drives at LVCMOS levels. Refer to Table 13 for the list of divider settings that establishes the output frequency.

Figure 27. CDCE62005 Auxiliary Output

Table 21. CDCE62005 Auxiliary Output Settings

$\textbf{BIT NAME} \rightarrow$	AUXFEEDSEL	AUXOUTEN	AUX OUTPUT SOURCE
$\textbf{REGISTER.BIT} \rightarrow$	6.25	6.24	AUX OUTPUT SOURCE
	X	0	OFF
	0	1	Divider 2 ⁽¹⁾
	1	1	Divider 3 ⁽¹⁾

(1) If Divider 2 or Divider 3 is set to divide by 1 and AUXOUT is selected from divide by 1, then AUXOUT will be disabled even if the AUXOUTEN bit (6.24) is high.

8.3.5.16 Synthesizer Block

Figure 28 provides an overview of the CDCE62005 synthesizer block. The Synthesizer Block provides a Phase Locked Loop, a partially integrated programmable loop filter, and two Voltage Controlled Oscillators (VCO). The synthesizer block generates an output clock called "SYNTH" and drives it onto the Internal Clock Distribution Bus.

Figure 28. CDCE62005 Synthesizer Block

8.3.5.17 Input Divider

The Input Divider divides the clock signal selected by the Smart Multiplexer (see Table 7) and presents the divided signal to the Phase Frequency Detector / Charge Pump of the frequency synthesizer.

INPUT DIVIDER SETTINGS **DIVIDE SELINDIVO SELINDIV7 SELINDIV6 SELINDIV5 SELINDIV4 SELINDIV3 SELINDIV2 SELINDIV1 RATIO** 5.21 5.20 5.19 5.15 5.18 5.17 5.16 5.14 •

Table 22. CDCE62005 Input Divider Settings

8.3.5.18 Feedback and Feedback Bypass Divider

Table 23 shows how to configure the Feedback divider for various divide values

Table 23. CDCE62005 Feedback Divider Settings

FEEDBACK DIVIDER								
SELFBDIV7	SELFBDIV6	SELFBDIV5	SELFBDIV4	SELFBDIV3	SELFBDIV2	SELFBDIV1	SELFBDIV0	DIVIDE
6.10	6.9	9.8	6.7	6.6	6.5	6.4	6.3	RATIO
0	0	0	0	0	0	0	0	8
0	0	0	0	0	0	0	1	12
0	0	0	0	0	0	1	0	16
0	0	0	0	0	0	1	1	20
0	0	0	0	0	1	0	1	24
0	0	0	0	0	1	1	0	32
0	0	0	0	1	0	0	1	36
0	0	0	0	0	1	1	1	40
0	0	0	0	1	0	1	0	48
0	0	0	1	1	0	0	0	56
0	0	0	0	1	0	1	1	60
0	0	0	0	1	1	1	0	64
0	0	0	1	0	1	0	1	72
0	0	0	0	1	1	1	1	80
0	0	0	1	1	0	0	1	84
0	0	0	1	0	1	1	0	96
0	0	0	1	0	0	1	1	100
0	1	0	0	1	0	0	1	108
0	0	0	1	1	0	1	0	112
0	0	0	1	0	1	1	1	120
0	0	0	1	1	1	1	0	128
0	0	0	1	1	0	1	1	140
0	0	1	1	0	1	0	1	144
0	0	0	1	1	1	1	1	160
0	0	1	1	1	0	0	1	168
0	1	0	0	1	0	1	1	180
0	0	1	1	0	1	1	0	192
0	0	1	1	0	0	1	1	200
0	1	0	1	0	1	0	1	216
0	0	1	1	1	0	1	0	224
0	0	1	1	0	1	1	1	240
0	1	0	1	1	0	0	1	252
0	0	1	1	1	1	1	0	256
0	0	1	1	1	0	1	1	280
0	1	0	1	0	1	1	0	288
0	1	0	1	0	0	1	1	300
0	0	1	1	1	1	1	1	320
0	1	0	1	1	0	1	0	336
0	1	0	1	0	1	1	1	360
0	1	0	1	1	1	1	0	384
1	1	0	1	1	0	0	0	392
0	1	1	1	0	0	1	1	400

Copyright © 2008–2015, Texas Instruments Incorporated

Table 23. CDCE62005 Feedback Divider Settings (continued)

FEEDBACK DIVIDER									
SELFBDIV7	SELFBDIV6	SELFBDIV5	SELFBDIV4	SELFBDIV3	SELFBDIV2	SELFBDIV1	SELFBDIV0	DIVIDE RATIO	
6.10	6.9	9.8	6.7	6.6	6.5	6.4	6.3	KATIO	
0	1	0	1	1	0	1	1	420	
1	0	1	1	0	1	0	1	432	
0	1	1	1	1	0	1	0	448	
0	1	0	1	1	1	1	1	480	
1	0	0	1	0	0	1	1	500	
1	0	1	1	1	0	0	1	504	
0	1	1	1	1	1	1	0	512	
0	1	1	1	1	0	1	1	560	
1	0	1	1	0	1	1	0	576	
1	1	0	1	1	0	0	1	588	
1	0	0	1	0	1	1	1	600	
0	1	1	1	1	1	1	1	640	
1	0	1	1	1	0	1	0	672	
1	0	0	1	1	0	1	1	700	
1	0	1	1	0	1	1	1	720	
1	0	1	1	1	1	1	0	768	
1	1	0	1	1	0	1	0	784	
1	0	0	1	1	1	1	1	800	
1	0	1	1	1	0	1	1	840	
1	1	0	1	1	1	1	0	896	
1	0	1	1	1	1	1	1	960	
1	1	0	1	1	0	1	1	980	
1	1	1	1	1	1	1	0	1024	
1	1	0	1	1	1	1	1	1120	
1	1	1	1	1	1	1	1	1280	

Table 24 shows how to configure the Feedback Bypass Divider.

Table 24. CDCE62005 Feedback Bypass Divider Settings

FE	FEEDBACK BYPASS DIVIDER					
SELBPDIV2	SELBPDIV1	SELBPDIV0	DIVIDE RATIO			
6.15	6.14	6.13				
0	0	0	2			
0	0	1	5			
0	1	0	8			
0	1	1	10			
1	0	0	16			
1	0	1	20			
1	1	0	RESERVED			
1	1	1	1(bypass)			

8.3.5.18.1 VCO Select

Table 25 illustrates how to control the dual voltage controlled oscillators.

Table 25. CDCE62005 VCO Select

BIT NAME →	VCO SELECT SELVCO	vo	CO CHARACTERISTI	cs
$\textbf{REGISTER.BIT} \rightarrow$	6.0	VCO RANGE	Fmin (MHz)	Fmax (MHz)
	0	Low	1750	2046
	1	High	2040	2356

8.3.5.18.2 Prescaler

Table 26 shows how to configure the prescaler.

Table 26. CDCE62005 Prescaler Settings

SETT		
SELPRESCB	SELPRESCA	DIVIDE RATIO
6.2	6.1	
0	0	5
1	0	4
0	1	3
1	1	2

8.3.5.18.3 Charge Pump Current Settings

Table 27 provides the settings for the charge pump:

Table 27. CDCD62005 Charge Pump Settings

BIT NAME →	ICPSEL3	ICPSEL2	ICPSEL1	ICPSEL0	CHARGE PUMP CURRENT
$\textbf{REGISTER.BIT} \rightarrow$	6.19	6.18	6.17	6.16	OORREIT
	0	0	0	0	50 μA
	0	0	0	1	100 μΑ
	0	0	1	0	150 μΑ
	0	0	1	1	200 μΑ
	0	1	0	0	300 μΑ
	0	1	0	1	400 μΑ
	0	1	1	0	600 μΑ
	0	1	1	1	750 µA
	1	0	0	0	1 mA
	1	0	0	1	1.25 mA
	1	0	1	0	1.5 mA
	1	0	1	1	2 mA
	1	1	0	0	2.5 mA
	1	1	0	1	3 mA
	1	1	1	0	3.5 mA
	1	1	1	1	3.75 mA

Copyright © 2008–2015, Texas Instruments Incorporated

8.3.5.18.4 Loop Filter

Figure 29 depicts the loop filter topology of the CDCE62005. It facilitates both internal and external implementations providing optimal flexibility.

Figure 29. CDCE62005 Loop Filter Topology

8.3.5.19 Internal Loop Filter Component Configuration

Figure 29 contains five different loop filter components with programmable values: C1, C2, R2, R3, and C3. Table 28 shows that the CDCE62005 uses one of four different types of circuit implementation (shown in Figure 30) for each of the internal loop filter components.

Table 28. CDCE62005 Loop Filter Component Implementation Type

COMPONENT	CONTROL BITS USED	IMPLEMENTATION TYPE (see Figure 30)
C1	5	а
C2	5	а
R2	5	С
R3	2	d
C3	4	b

Figure 30. CDCE62005 Internal Loop Filter Component Schematics

Table 29. CDCE62005 Internal Loop Filter - C1 Settings

			C1 SE	TTINGS			
$\textbf{BIT NAME} \rightarrow$	EXLFSEL	LFRCSEL14	LFRCSEL13	LFRCSEL12	LFRCSEL11	LFRCSEL10	
$\begin{array}{c} \textbf{CAPACITOR} \\ \textbf{VALUE} \rightarrow \end{array}$	_	37.5 pF	21.5 pF	10 pF	6.5 pF	1.5 pF	
$\textbf{REGISTER.BIT} \rightarrow$	6.26	7.14	7.13	7.12	7.11	7.10	CAPACITOR VALUE
	1	0	0	0	0	0	External Loop Filter
	0	0	0	0	0	0	0 pF
	0	0	0	0	0	1	1.5 pF
	0	0	0	0	1	0	6.5 pF
	0	0	0	0	1	1	8 pF
	0	0	0	1	0	0	10 pF
	0	0	0	1	0	1	11.5 pF
	0	0	0	1	1	0	16.5 pF
	0	0	0	1	1	1	18 pF
	0	0	1	0	0	0	21.5 pF
	0	0	1	0	0	1	23 pF
	0	•	•	•	•	•	•
	0	1	1	1	0	0	69 pF
	0	1	1	1	0	1	70.5 pF
	0	1	1	1	1	0	75.5 pF
	0	1	1	1	1	1	77 pF

Table 30. CDCE62005 Internal Loop Filter - C2 Settings

			C2 SE	TTINGS				
BIT NAME →	EXLFSEL	LFRCSEL4	LFRCSEL3	LFRCSEL2	LFRCSEL1	LFRCSEL0		
CAPACITOR VALUE →	_	226 pF	123 pF	87 pF	25 pF	12.5 pF		
$\textbf{REGISTER.BIT} \rightarrow$	6.26	7.4	7.3	7.2	7.1	7.0	CAPACITOR VALUE	
	1	0	0	0	0	0	External Loop Filter	
	0	0	0	0	0	0	0 pF	
	0	0	0	0	0	1	12.5 pF	
	0	0	0	0	1	0	25 pF	
	0	0	0	0	1	1	37.5 pF	
	0	0	0	1	0	0	87 pF	
	0	0	0	1	0	1	99.5 pF	
	0	0	0	1	1	0	112 pF	
	0	0	0	1	1	1	124.5 pF	
	0	0	1	0	0	0	123 pF	
	0	0	1	0	0	1	135.5 pF	
	0	•	•	•	•	•	•	
	0	1	1	1	0	0	436 pF	
	0	1	1	1	0	1	448.5 pF	
	0	1	1	1	1	0	461 pF	
	0	1	1	1	1	1	473.5 pF	

Table 31. CDCE62005 Internal Loop Filter - R2 Settings

			R2 SETTINGS	3			
$\textbf{BIT NAME} \rightarrow$	EXLFSEL	LFRCSEL9	LFRCSEL8	LFRCSEL7	LFRCSEL6	LFRCSEL5	
$\textbf{RESISTOR VALUE} \rightarrow$	_	56.4 k	38.2 k	20 k	9 k	4 k	RESISTOR VALUE
$\textbf{REGISTER.BIT} \rightarrow$	6.26	7.9	7.8	7.7	7.6	7.5	(kΩ)
	1	Х	X	Х	Х	Χ	External Loop Filter
	0	0	0	0	0	0	127.6
	0	0	0	0	0	1	123.6
	0	0	0	0	1	0	118.6
	0	0	0	0	1	1	114.6
	0	0	0	1	0	0	107.6
	0	0	0	1	0	1	103.6
	0	0	0	1	1	0	98.6
	0	0	0	1	1	1	94.6
	0	0	1	0	0	0	89.4
	0	0	1	0	0	1	85.4
	0	•	•	•	•	•	•
	0	1	1	1	0	0	13
	0	1	1	1	0	1	9
	0	1	1	1	1	0	4
	0	1	1	1	1	1	0

Table 32. CDCE62005 Internal Loop Filter - C3 Settings

		C3 SE	TTINGS		
BIT NAME →	LFRCSEL18	LFRCSEL17	LFRCSEL16	LFRCSEL15	
$\textbf{CAPACITOR VALUE} \rightarrow$	85 pF	19.5 pF	5.5 pF	2.5 pF	
$\textbf{REGISTER.BIT} \rightarrow$	7.18	7.17	7.16	7.15	CAPACITOR VALUE
	0	0	0	0	0 pF
	0	0	0	1	2.5 pF
	0	0	1	0	5.5 pF
	0	0	1	1	8 pF
	0	1	0	0	19.5 pF
	0	1	0	1	22 pF
	0	1	1	0	25 pF
	0	1	1	1	27.5 pF
	1	0	0	0	85 pF
	1	0	0	1	87.5 pF
	•	•	•	•	•
	1	1	1	0	104.5 pF
	1	1	1	1	107 pF
	1	1	1	0	110 pF
	1	1	1	1	112.5 pF

10

5

	R3 SETTINGS		
$\textbf{BIT NAME} \rightarrow$	LFRCSEL20	LFRCSEL19	
RESISTOR VALUE \rightarrow	10 k	5 k	
$\textbf{REGISTER.BIT} \rightarrow$	7.20	7.19	RESISTOR VALUE (kΩ)
	0	0	20
	0	1	15

0

1

Table 33. CDCE62005 Internal Loop Filter - R3 Settings

8.3.5.20 External Loop Filter Component Configuration

1

1

To implement an external loop filter, set EXLFSEL bit (6.26) high. Setting all of the control switches low that control capacitors C1 and C2 (see Table 29 and Table 30) remove them from the loop filter circuit. This is necessary for an external loop filter implementation.

8.3.6 Digital Lock Detect

The CDCE62005 provides both an analog and a digital lock detect circuit. With respect to lock detect, two signals whose phase difference is less than a prescribed amount are 'locked' otherwise they are 'unlocked'. The phase frequency detector / charge pump compares the clock provided by the input divider and the feedback divider; using the input divider as the phase reference. The digital lock detect circuit implements a programmable lock detect window. Table 34 shows an overview of how to configure the digital lock detect feature. When selecting the digital PLL lock option, the PLL_LOCK pin will possibly jitter several times between lock and out of lock until the PLL achieves a stable lock. If desired, choosing a wide loop bandwidth and a high number of successive clock cycles virtually eliminates this characteristic. PLL_LOCK will return to out of lock, if just one cycle is outside the lock detect window or if a cycle slip occurs.

Figure 31. CDCE62005 Digital Lock Detect

Table 34. CDCE62005 Lock Detect Window

		DIGITAL LOCK [
BIT NAME →	LOCKW(3)	LOCKW(2)	LOCKW(1)	LOCKW(0)	
$\textbf{REGISTER.BIT} \rightarrow$	5.25	5.24	5.23	5.22	LOCK DETECT WINDOW
	0	0	0	0	1.5 ns
	0	0	0	1	5.8 ns
	0	0	1	0	15.1 ns
	0	0	1	1	Reserved
	0	1	0	0	3.4 ns
	0	1	0	1	7.7 ns
	0	1	1	0	17.0 sn
	0	1	1	1	Reserved
	1	0	0	0	5.4 ns
	1	0	0	1	9.7 ns
	1	0	1	0	19.0 ns
	1	0	1	1	Reserved
	1	1	0	0	15.0 ns
	1	1	0	1	19.3 ns
	1	1	1	0	28.6 ns
	1	1	1	1	Reserved

8.3.7 Crystal Input Interference

Fundamental mode is the recommended oscillation mode of operation for the input crystal and parallel resonance is the recommended type of circuit for the crystal.

A crystal load capacitance refers to all capacitances in the oscillator feedback loop. It is equal to the amount of capacitance seen between the terminals of the crystal in the circuit. For parallel resonant mode circuits, the correct load capacitance is necessary to ensure the oscillation of the crystal within the expected parameters.

The CDCE62005 implements an input crystal oscillator circuitry, known as the *Colpitts oscillator*, and requires one pad of the crystal to interface with the AUX IN pin; the other pad of the crystal is tied to ground. In this crystal interface, it is important to account for all sources of capacitance when calculating the correct value for the discrete capacitor component, $C_{\rm I}$, for a design.

The CDCE62005 has been characterized with 10-pF parallel resonant crystals. The input crystal oscillator stage in the CDCE62005 is designed to oscillate at the correct frequency for all parallel resonant crystals with low-pull capability and rated with a load capacitance that is equal to the sum of the on-chip load capacitance at the AUX IN pin (10-pF), crystal stray capacitance, and board parasitic capacitance between the crystal and AUX IN pin.

(8)

The normalized frequency error of the crystal, as a result of load capacitance mismatch, can be calculated as Equation 8:

$$\frac{\Delta f}{f} = \frac{C_{S}}{2(C_{L,R} + C_{O})} - \frac{C_{S}}{2(C_{L,A} + C_{O})}$$

where

- Δf is the frequency error of the crystal
- f is the rated frequency of the crystal
- C_S is the motional capacitance of the crystal
- C_{LR} is the rated load capacitance for the crystal
- C_O is the shunt capacitance of the crystal
- ullet $C_{L,A}$ is the actual load capacitance in the implemented PCB for the crystal

The first three parameters can be obtained from the crystal vendor.

In order to minimize the frequency error of the crystal to meet application requirements, the difference between the rated load capacitance and the actual load capacitance should be minimized and a crystal with low-pull capability (low CS) should be used.

For example, if an application requires less than ±50 ppm frequency error and a crystal with less than ±50 ppm frequency tolerance is picked, the characteristics are as follows: $C_0 = 7$ pF, $C_S = 10$ μ F, and $C_{L,R} = 12$ pF. In order to meet the required frequency error, calculate C_{L,A} using Equation 8 to be 17 pF. Subtracting C_{L,R} from C_{I A}, results in 5 pF. Take care to ensure that the sum of the crystal stray capacitance and board parasitic capacitance is less than the calculated 5 pF during printed circuit board (PCB) layout with the crystal and the CDCE62005. Good layout practices are fundamental to the correct operation and reliability of the oscillator. It is critical to locate the crystal components very close to the XIN pin to minimize routing distances. Long traces in the oscillator circuit are a very common source of problems. Do not route other signals across the oscillator circuit. Also, make sure power and high-frequency traces are routed as far away as possible to avoid crosstalk and noise coupling. Avoid the use of vias; if the routing becomes very complex, it is better to use 0-Ω resistors as bridges to go over other signals. Vias in the oscillator circuit should only be used for connections to the ground plane. Do not share ground connections; instead, make a separate connection to ground for each component that requires grounding. If possible, place multiple vias in parallel for each connection to the ground plane. Especially in the Colpitts oscillator configuration, the oscillator is very sensitive to capacitance in parallel with the crystal. Therefore, the layout must be designed to minimize stray capacitance across the crystal to less than 5 pF total under all circumstances to ensure proper crystal oscillation. Be sure to take into account both PCB and crystal stray capacitance.

8.3.8 VCO Calibration

The CDCE62005 includes two on-chip LC oscillator-based VCOs with low phase noise covering a frequency range of 1.75 GHz to 2.356 GHz. The VCO must be calibrated to ensure proper operation over the valid device operating conditions. VCO calibration is controlled by the reference clock input. This calibration requires that the PLL be set up properly to lock the PLL loop and that the reference clock input be present.

The device enters self-calibration of the VCO automatically at power up at device default mode, after the registers have been loaded from the EEPROM and an input clock signal is detected. If there is no input clock available during power up, the VCO will wait for the reference clock before starting calibration.

If the input signal is not valid during self-calibration, it is necessary to re-initiate VCO calibration after the input clock signal stabilizes.

NOTE

Re-calibration is also necessary anytime a PLL setting is changed (for example, divider ratios in the PLL or loop filter settings are adjusted).

VCO calibration can be initiated by writing to register 6 bits 27 and 22 or register 8 bit 7 (/SLEEP bit).

Table 35. VCO Calibration Method Through Register Programming

ENCAL_MODE Bit 6.27	VCO CALIBRATION MECHANISM ⁽¹⁾	REMARKS
1	VCO calibration starts at ENCAL bit (Register 6 bit 22) toggling low-to-high.	The outputs turn off for the duration of the calibration, which are a few ns. This implementation is recommended when the VCO needs to be re-calibrated quickly after a PLL setting was changed. No device block is powered down during this calibration.
0	Device is powered down when SLEEP bit (Register 8 bit 7) is toggle 1-to-0. After asserting SLEEP from zero to one the VCO becomes calibrated.	All outputs are disabled while SLEEP bit is zero. This implementation is an alternative implementation to option one. It takes a longer duration, as all device blocks are powered down while SLEEP is low.

⁽¹⁾ A VCO calibration is also initiated if the external PD pin is toggle high-low-high and the ENCAL_MODE bit (Register 6 bit 27) is preset to 0. In this case all EEPROM registers become reloaded into the device.

8.3.9 Startup Time Estimation

The CDCE62005 startup time can be estimated based on the parameters defined in Table 36 and graphically shown in Figure 32. See also CDCE62005 SERDES Startup Mode.

Table 36. Startup Time Dependencies

PARAMETER	DEFINITION	DESCRIPTION	METHOD OF DETERMINATION
t _{pul}	Power-up time (low limit)	Power-supply rise time to low limit of Power On Reset (POR) trip point	Time required for power supply to ramp to 2.27 V
t _{puh}	Power-up time (high limit)	Power-supply rise time to high limit of Power On Reset (POR) trip point	Time required for power supply to ramp to 2.64 V
t _{rsu}	Reference start-up time	After POR releases, the Colpitts oscillator is enabled. This start-up time is required for the oscillator to generate the requisite signal levels for the delay block to be clocked by the reference input	500 µs best-case and 800 µs worst-case (This is only for crystal connected to AUX IN)
t _{delay}	Delay time	Internal delay time generated from the clock. This delay provides time for the oscillator to stabilize.	$\begin{array}{l} t_{delay} = 16384 \times t_{id} \\ t_{id} = period \ of \ input \ clock \ to \ the \ input \ divider \end{array}$
t _{VCO_CAL}	VCO calibration time	VCO calibration time generated from the PFD clock. This process selects the operating point for the VCO based on the PLL settings.	t _{VCO_CAL} = 550 x t _{PFD} t _{PFD} = period of the PFD clock
t _{PLL_LOCK}	PLL lock time	Time required for PLL to lock within ±10 ppm of reference frequency	t _{PLL_LOCK} = 3/LBW LBW = PLL Loop Bandwidth

Figure 32. Start-up Time Dependencies

(13)

8.3.10 Analog Lock Detect

Figure 33 shows the Analog Lock Detect circuit. Depending upon the phase relationship of the two signals presented at the PFD/CP inputs, the lock detect circuit either charges (if the PLL is locked) or discharges (if PLL is unlocked) the circuit shown via 110µA current sources. An external capacitor determines the sensitivity of the lock detect circuit. The value of the capacitor determines the rate of change of the voltage presented on the output pin PLL_LOCK and hence how quickly the PLL_LOCK output toggles based on a change of PLL locked status. The PLL_LOCK pin is an analog output in analog lock detect mode.

$$Vout = \frac{1}{C} \times i \times t \tag{9}$$

Solving for t yields:

$$t = \frac{V_{out} \times C}{i} \tag{10}$$

$$V_{H} = 0.55 \times V_{CC} \tag{11}$$

$$V_{L} = 0.35 \times V_{CC} \tag{12}$$

For Example, let:

C = 10 nF

$$V_{cc} = 3.3 \text{ V} \therefore V_{H} \cong 1.8 \text{ V} = V_{Out}$$

$$t = \frac{1.8 \times 10n}{110 \ \mu} \cong 164 \ \mu s$$

Figure 33. CDCE62005 Analog Lock Detect

Copyright © 2008–2015, Texas Instruments Incorporated

8.4 Device Functional Modes

8.4.1 Fan-Out Buffer

Each output of the CDCE62005 can be configured as a fan-out buffer (divider bypassed) or fan-out buffer with divide and skew control functionality.

Figure 34. CDCE62005 Fan-out Buffer Mode

8.4.2 Clock Generator

The CDCE62005 can generate 5-10 low noise clocks from a single crystal as follows:

Figure 35. CDCE62005 Clock Generator Mode

8.4.3 Jitter Cleaner - Mixed Mode

The following table presents a common scenario. The CDCE62005 must generate several clocks from a reference that has traversed a backplane. In order for jitter cleaning to take place, the phase noise of the onboard clock path must be better than that of the incoming clock. The designer must pay attention to the optimization of the loop bandwidth of the synthesizer and understand the phase noise profiles of the oscillators involved. Further, other devices on the card require clocks at frequencies not related to the backplane clock. The system requires combinations of differential and single-ended clocks in specific formats with specific phase relationships.

NOTE

Pay special attention when using the universal inputs with two different clock sources. Two clocks derived from the same source may use the internal bias generator and internal termination network without jitter performance degradation. However, if their origin is from different sources (two independent oscillators, for example) then sharing the internal bias generator can degrade jitter performance significantly.

Device Functional Modes (continued)

Table 37. Clock Frequencies

CLOCK FREQUENCY	INPUT/OUTPUT	FORMAT	NUMBER	CDCE62005 PORT	COMMENT
10.000 MHz	Input	LVDS	1	SEC_REF	Low end crystal oscillator
30.72 MHz	Input	LVDS	1	PRI_REF	Reference from backplane
122.88 MHz	Output	LVDS	1	U0	SERDES Clock
491.52 MHz	Output	LVPECL	1	U1	ASIC
245.76 MHz	Output	LVPECL	1	U2	FPGA
30.72 MHz	Outputs	LVCMOS	2	U3	ASIC
10.000 MHz	Outputs	LVCMOS	2	U4	CPU, DSP

Figure 36. CDCE62005 Jitter Cleaner Example

8.4.3.1 Clocking ADCs with the CDCE62005

High-speed analog to digital converters incorporate high input bandwidth on both the analog port and the sample clock port. Often the input bandwidth far exceeds the sample rate of the converter. Engineers regularly implement receiver chains that take advantage of the characteristics of bandpass sampling. This implementation trend often causes engineers working in communications system design to encounter the term *clock limited performance*. Therefore, it is important to understand the impact of clock jitter on ADC performance. Equation 14 shows the relationship of data converter signal to noise ratio (SNR) to total jitter.

$$SNR_{jitter} = 20 \log_{10} \left[\frac{1}{2\pi f_{in} jitter_{total}} \right]$$
(14)

Total jitter comprises two components: the intrinsic aperture jitter of the converter and the jitter of the sample clock:

$$jitter_{total} = \sqrt{\left(jitter_{ADC}\right)^2 + \left(jitter_{CLK}\right)^2}$$
(15)

With respect to an ADC with N-bits of resolution, ignoring total jitter, DNL, and input noise, the following equation shows the relationship between resolution and SNR:

$$SNR_{ADC} = 6.02N + 1.76$$
 (16)

Figure 37 plots Equation 14 and Equation 16 for constant values of total jitter. When used in conjunction with most ADCs, the CDCE62005 supports a total jitter performance value of <1 ps.

Data Converter Jitter Requirements

Figure 37. Data Converter Jitter Requirements

8.4.3.2 CDCE62005 SERDES Startup Mode

A common scenario involves a host communicating to a satellite system via a high-speed wired communications link. Typical communications media might be a cable, backplane, or fiber. The reference clock for the satellite system is embedded in the high speed link. This reference clock must be recovered by the SERDES, however, the recovered clock contains unacceptable levels of jitter due to a degradation of SNR associated with transmission over the media. At system startup, the satellite system must self-configure prior to the recovery and cleanup of the reference clock provided by the host. Furthermore, upon loss of the communication link with the host, the satellite system must continue to operate albeit with limited functionality. Figure 38 shows a block diagram of an optical based system with such a mechanism that takes advantage of the features of the CDCE62005:

Figure 38. CDCE62005 SERDES Startup Overview

The functionality provided by the Smart Multiplexer provides a straightforward implementation of a SERDES clock link. The Auxiliary Input provides a startup clock because it connects to a crystal. The on-chip EEPROM determines the default configuration at power-up. Therefore, the CDCE62005 requires no host communication to begin cleaning the recovered clock once it is available. The CDCE62005 immediately begins clocking the satellite components including the SERDES using the crystal as a clock source and a frequency reference. After

the SERDES recovers the clock, the CDCE62005 removes the jitter via the on-chip synthesizer/loop filter. The recovered clock from the communications link becomes the frequency reference for the satellite system after the smart multiplexer automatically switches over to it. The CDCE62005 applies the cleaned clock to the recovered clock input on the SERDES, thereby establishing a reliable communications link between host and satellite systems.

Figure 39. CDCE62005 SERDES Startup Mode

8.5 Programming

8.5.1 Interface and Control Block

The Interface and Control Block includes a SPI interface, three control pins, a non-volatile memory array in which the device stores default configuration data, and an array of device registers implemented in Static RAM. This RAM, also called the device registers, configures all hardware within the CDCE62005.

8.5.1.1 Serial Peripheral Interface (SPI)

The serial interface of CDCE62005 is a simple bidirectional SPI interface for writing and reading to and from the device registers. It implements a low speed serial communications link in a master/slave topology in which the CDCE62005 is a slave. The SPI consists of four signals:

SPI CLK: Serial Clock (Output from Master)

The CDCE62005 clocks data in and out on the rising edge of SPI_CLK. Data transitions therefore occur on the falling edge of the clock.

anoronoro occar on ano raming ougo or ano oro

SPI_MOSI: Master Output Slave Input (Output from Master) **SPI_MISO:** Master Input Slave Output (Output from Slave)

SPI LE: Latch Enable (Output from Master)

The falling edge of SPI_LE initiates a transfer. If SPI_LE is high, no data transfer can take

place.

The CDCE62005 implements data fields that are 28-bits wide. In addition, it contains 9 registers, each comprising a 28 bit data field. Therefore, accessing the CDCE62005 requires that the host program append a 4-bit address field to the front of the data field as follows:

Programming (continued)

Figure 40. CDCE62005 SPI Communications Format

8.5.1.2 CDCE62005 SPI Command Structure

The CDCE62005 supports four commands issued by the Master via the SPI:

- Write to RAM
- Read Command
- Copy RAM to EEPROM unlock
- Copy RAM to EEPROM lock

Table 38 provides a summary of the CDCE62005 SPI command structure. The host (master) constructs a Write to RAM command by specifying the appropriate register address in the address field and appends this value to the beginning of the data field. Therefore, a valid command stream must include 32 bits, transmitted LSB first. The host must issue a Read Command to initiate a data transfer from the CDCE62005 back to the host. This command specifies the address of the register of interest in the data field.

Table 38. CDCE62005 SPI Command Structure

				DATA FIELD (28 Bits)							ADDR FIELD (4 BITS)																							
REGISTER	OPERATION	NVM	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	3	2	1	0
0	Write to RAM	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0
1	Write to RAM	Yes	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Χ	0	0	0	1
2	Write to RAM	Yes	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	0	0	1	0
3	Write to RAM	Yes	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	0	0	1	1
4	Write to RAM	Yes	Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Χ	0	1	0	0
5	Write to RAM	Yes	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	0	1	0	1
6	Write to RAM	Yes	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	0	1	1	0
7	Write to RAM	Yes	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	0	1	1	1
8	Status/Control	No	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	1	0	0	0
Instruction	Read Command	No	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α	Α	Α	Α	1	1	1	0
Instruction	RAM EEPROM	Unlock	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Instruction	RAM EEPROM	Lock (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1

⁽¹⁾ **CAUTION:** After execution of this command, the EEPROM is permanently locked. After locking the EEPROM, device configuration can only be changed via Write to RAM after power-up; however, the EEPROM can no longer be changed

Copyright © 2008–2015, Texas Instruments Incorporated

The CDCE62005 on-board EEPROM has been factory preset to the default settings listed in Table 39.

Table 39. Register and Default Setting

REGISTER	DEFAULT SETTING
REG0000	8184032
REG0001	8184030
REG0002	8186030
REG0003	EB86030
REG0004	0186031
REG0005	101C0BE
REG0006	04BE19A
REG0007	BD0037F

The Default configurations programmed in the device is set to: Primary and Secondary are set to LVPECL accoupled termination and the Auxiliary input is enabled. The Smart Mux is set to auto select among Primary, Secondary and Auxiliary. Reference is set at 25MHz and the dividers are selected to run the VCO at 1875MHz.

- Output 0 & 1 are set to output 156.25MHz with LVPECL signaling
- Output 2 is set to output 125MHz/ LVPECL
- Output 3 is set to output 125MHz/ LVDS
- Output 4 is set to output 125MHz/ LVCMO

8.5.1.3 SPI Interface Master

The Interface master can be designed using a FPGA or a micro controller. The CDCD62005 acts as a slave to the SPI master. The SPI Master should be designed to issue none consecutive read or write commands. The SPI clock should start and stop with respect to the SPI_LE signal as shown in Figure 41. SPI_MOSI, SPI_CLK, and SPI_LE are generated by the SPI Master. SPI_MISO is gnererated by the SPI slave the CDCE62005.

Figure 41. CDCE62005 SPI Read/Write Command

8.5.1.4 SPI Consecutive Read/Write Cycles to the CDCE62005

Figure 42 illustrates how two consecutive SPI cycles are performed between a SPI Master and the CDCE62005 SPI Slave.

Figure 42. Consecutive Read/Write Cycles

8.5.1.5 Writing to the CDCE62005

Figure 43 illustrates a Write to RAM operation. Notice that the latching of the first data bit in the data stream (Bit 0) occurs on the first rising edge of SPI_CLK after SPI_LE transitions from a high to a low. For the CDCE62005, data transitions occur on the falling edge of SPI_CLK. A rising edge on SPI_LE signals to the CDCE62005 that the transmission of the last bit in the stream (Bit 31) has occurred.

Figure 43. CDCE62005 SPI Write Operation

8.5.1.6 Reading from the CDCE62005

Figure 44 shows how the CDCE62005 executes a Read Command. The SPI master first issues a Read Command to initiate a data transfer from the CDCE62005 back to the host (see Table 40). This command specifies the address of the register of interest. By transitioning SPI_LE from a low to a high, the CDCE62005 resolves the address specified in the appropriate bits of the data field. The host drives SPI_LE low and the CDCE62005 presents the data present in the register specified in the Read Command on SPI MISO.

Figure 44. CDCE62005 Read Operation

Copyright © 2008–2015, Texas Instruments Incorporated

8.5.1.7 Writing to EEPROM

After the CDCE62005 detects a power-up and completes a reset cycle, it copies the contents of the on-board EEPROM into the Device Registers. Therefore, the CDCE62005 initializes into a known state pre-defined by the user. The host issues one of two special commands shown in Table 38 to copy the contents of Device Registers 0 through 7 (a total of 184 bits) into EERPOM. They include:

- Copy RAM to EEPROM Unlock, Execution of this command can happen many times.
- Copy RAM to EEPROM Lock: Execution of this command can happen only once, after which the EEPROM
 is permanently locked.

After either command is initiated, power must remain stable and the host must not access the CDCE62005 for at least 50 ms to allow the EEPROM to complete the write cycle and to avoid the possibility of EEPROM corruption.

8.5.2 Device Configuration

The Functional Description Section described four different functional blocks contained within the CDCE62005. Figure 45 depicts these blocks along with a high-level functional block diagram of the circuit elements comprising each block. The balance of this section focuses on a detailed discussion of each functional block from the perspective of how to configure them.

Figure 45. CDCE62005 Circuit Blocks

Throughout this section, references to Device Register memory locations follow the following convention:

Figure 46. Device Register Reference Convention

8.6 Register Maps

8.6.1 Device Registers: Register 0 Address 0x00

Table 40. CDCE62005 Register 0 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK				DESCR	IPTION	/FUNC	ΓΙΟΝ			
0	DIV2PRIX	Primary	Pre-Divider Selection for the	e Prin	nary Ref	erence					EEPROM	
1	DIV2PRIY	Reference	(X,Y)=00:3-state, 01:Divide	by 1,	10:Divid	de by 2, 1	1:Rese	rved			EEPROM	
2	RESERVED		Must be set to 0								EEPROM	
3	RESERVED		Must be set to 0								EEPROM	
4	OUTMUX0SELX	Output 0	OUTPUT MUX 0 Select. Se		U						EEPROM	
5	OUTMUX0SELY	Output 0	(X,Y) = 00: PRI_REF, 01:S	EC_R	EF, 10:	SMART_N	ИUX, 11	I:VCO_	CORE		EEPROM	
6	PH0ADJC0	Output 0									EEPROM	
7	PH0ADJC1	Output 0									EEPROM	
8	PH0ADJC2	Output 0									EEPROM	
9	PH0ADJC3	Output 0	Coarse phase adjust select	for o	utput div	ider 0					EEPROM	
10	PH0ADJC4	Output 0									EEPROM	
11	PH0ADJC5	Output 0									EEPROM	
12	PH0ADJC6	Output 0									EEPROM	
13	OUT0DIVRSEL0	Output 0									EEPROM	
14	OUT0DIVRSEL1	Output 0									EEPROM	
15	OUT0DIVRSEL2	Output 0									EEPROM	
16	OUT0DIVRSEL3	Output 0	OUTPUT DIVIDER 0 Ratio	Selec	t						EEPROM	
17	OUT0DIVRSEL4	Output 0									EEPROM	
18	OUT0DIVRSEL5	Output 0									EEPROM	
19	OUT0DIVRSEL6	Output 0									EEPROM	
20	OUT0DIVSEL	Output 0	When set to 0, the divider is When set to 1, the divider is								EEPROM	
21	HiSWINGLVPECL0	Output 0	High Swing LVPECL When If LVCMOS or LVDS is set If LVPECL buffer is select is set to 0.	electe	d the Ou	ıtput swin	g will st	ay at th	e same	e level. ⁽¹⁾ s bit is set to 1 and Normal LVPECL if it	EEPROM	
22	CMOSMODE0PX	Output 0	LVCMOS mode select for 0								EEPROM	
23	CMOSMODE0PY	Output 0	(X,Y)=00:Active, 10:Inverting	ıg, 11:	Low, 01	:3-State					EEPROM	
24	CMOSMODE0NX	Output 0	LVCMOS mode select for C	DUTP	UT 0 Ne	gative Pi	٦.				EEPROM	
25	CMOSMODE0NY	Output 0	(X,Y)=00:Active, 10:Inverting	ıg, 11:	Low, 01	:3-State					EEPROM	
26	OUTBUFSEL0X	Output 0	OUTPUT TYPE	OUTPUT TYPE RAM BITS								
				22	23	24	25	26	27			
			LVPECL	0	0	0	0	0	1			
27	OUTBUFSEL0Y	Output 0	LVDS	0	1	0	1	1	1		EEPROM	
21	OUIBUFSELUY	Output 0	LVCMOS		See Se	ttings Abo	ve	0	0	<u> </u>	EEPKUW	
			Output Disabled	0	1	0	1	1	0			
			* Use Description for Bits	22,23	3,24 and	25 for se	etting th	e LVCN	10S Oi	tputs		

⁽¹⁾ Set RegisterR0.21 to 0 for LVDS and LVCMOS outputs

8.6.2 Device Registers: Register 1 Address 0x01

Table 41. CDCE62005 Register 1 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK			DI	ESCRIPT	ION/FUI	NCTIO	N						
0	DIV2SECX	Secondary	Pre-Divider Sel	ection for the Secon	dary Refe	erence					EEPROM				
1	DIV2SECY	Reference	(X,Y)=00:3-state	e, 01:Divide by 1, 10	:Divide b	y 2, 11:R	eserved				EEPROM				
2	RESERVED		Must be set to 0)							EEPROM				
3	RESERVED		Must be set to 0	flust be set to 0											
4	OUTMUX1SELX	Output 1		1 Select. Selects the							EEPROM				
5	OUTMUX1SELY	Output 1	(X,Y) = 00: PRI	_REF, 01:SEC_REF	, 10:SMA	ART_MUX	(, 11:VC	O_COI	RE		EEPROM				
6	PH1ADJC0	Output 1									EEPROM				
7	PH1ADJC1	Output 1									EEPROM				
8	PH1ADJC2	Output 1									EEPROM				
9	PH1ADJC3	Output 1	Coarse phase a	djust select for outp	ut divider	1					EEPROM				
10	PH1ADJC4	Output 1									EEPROM				
11	PH1ADJC5	Output 1									EEPROM				
12	PH1ADJC6	Output 1									EEPROM				
13	OUT1DIVRSEL0	Output 1									EEPROM				
14	OUT1DIVRSEL1	Output 1									EEPROM				
15	OUT1DIVRSEL2	Output 1									EEPROM				
16	OUT1DIVRSEL3	Output 1	OUTPUT DIVID	DUTPUT DIVIDER 1 Ratio Select											
17	OUT1DIVRSEL4	Output 1		2011 OT DIVIDEN T Natio Golden											
18	OUT1DIVRSEL5	Output 1									EEPROM				
19	OUT1DIVRSEL6	Output 1									EEPROM				
20	OUT1DIVSEL	Output 1	,	the divider is disable the divider is enable							EEPROM				
21	HiSWINGLVPECL1	Output 1	- If LVCMOS of	PECL When set to 1 r LVDS is selected the ffer is selected the C	ne Outpu	t swing w	ill stay a	t the sa	ame lev	el. ⁽¹⁾ is set to 1 and Normal LVPECL if it	EEPROM				
22	CMOSMODE1PX	Output 1		select for OUTPUT							EEPROM				
23	CMOSMODE1PY	Output 1	(X,Y)=00:Active	, 10:Inverting, 11:Lo	w, 01:3-5	State					EEPROM				
24	CMOSMODE1NX	Output 1	LVCMOS mode	select for OUTPUT	1 Negati	ve Pin.					EEPROM				
25	CMOSMODE1NY	Output 1	(X,Y)=00:Active	, 10:Inverting, 11:Lo	w, 01:3-5	State					EEPROM				
26	OUTBUFSEL1X	Output 1	OUTPUT T	YPE		RAM	BITS				EEPROM				
				22	23	24	25	26	27						
			LVPECL	0	0	0	0	0	1						
27	OUTBUFSEL1Y	Outrout 1	LVDS	0	1	0	1	1	1		EEPROM				
27	OUIBUFSELIY	Output 1	LVCMOS		See Set	tings Abo	ve*	0	0		EEPROIVI				
			Output Dis	abled 0	1	0	1	1	0						
			* Use Desc	ription for Bits 22,23	24 and 2	25 for sett	ing the L	VCMC	S Outp	uts					

⁽¹⁾ Set the R1.21 to 0 for LVDS and LVCMOS outputs

8.6.3 Device Registers: Register 2 Address 0x02

Table 42. CDCE62005 Register 2 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION									
0	REFDIV0	Reference	Reference Divider Bit 0								EEPROM	
1	REFDIV1	Divider	teference Divider Bit 1							EEPROM		
2	RESERVED		Must be set to 0	flust be set to 0							EEPROM	
3	RESERVED		Must be set to 0								EEPROM	
4	OUTMUX2SELX	Output 2	OUTPUT MUX 2 Select. Select		0	-					EEPROM	
5	OUTMUX2SELY	Output 2	(X,Y) = 00: PRI_REF, 01:SE	C_REF,	10:SMA	RT_MUX	., 11:VC	O_CC	RE		EEPROM	
6	PH2ADJC0	Output 2									EEPROM	
7	PH2ADJC1	Output 2									EEPROM	
8	PH2ADJC2	Output 2									EEPROM	
9	PH2ADJC3	Output 2	Coarse phase adjust select for	or outpu	t divider	2					EEPROM	
10	PH2ADJC4	Output 2									EEPROM	
11	PH2ADJC5	Output 2									EEPROM	
12	PH2ADJC6	Output 2									EEPROM	
13	OUT2DIVRSEL0	Output 2		-							EEPROM	
14	OUT2DIVRSEL1	Output 2									EEPROM	
15	OUT2DIVRSEL2	Output 2									EEPROM	
16	OUT2DIVRSEL3	Output 2	OUTPUT DIVIDER 2 Ratio Select							EEPROM		
17	OUT2DIVRSEL4	Output 2								EEPROM		
18	OUT2DIVRSEL5	Output 2								EEPROM		
19	OUT2DIVRSEL6	Output 2								EEPROM		
20	OUT2DIVSEL	Output 2	When set to 0, the divider is disabled When set to 1, the divider is enabled						EEPROM			
21	HiSWINGLVPEC2	Output 2	High Swing LVPECL When set to 1 and Normal Swing when set to 0. — If LVCMOS or LVDS is selected the Output swing will stay at the same level. (1) — If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to 1 and Normal LVPECL if it is set to 0.						EEPROM			
22	CMOSMODE2PX	Output 2	LVCMOS mode select for OL								EEPROM	
23	CMOSMODE2PY	Output 2	(X,Y)=00:Active, 10:Inverting	, 11:Low	, 01:3-5	State					EEPROM	
24	CMOSMODE2NX	Output 2	LVCMOS mode select for OL		-						EEPROM	
25	CMOSMODE2NY	Output 2	(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State						EEPROM			
26	OUTBUFSEL2X	Output 2	OUTPUT TYPE RAM BITS				EEPROM					
				22	23	24	25	26	27			
	OUTBUFSEL2Y	2Y Output 2		LVPECL	0	0	0	0	0	1		
27			LVDS	0	1	0	1	1	1		FEDDOM	
21			LVCMOS	See Settings Above 0 0				EEPROM				
			Output Disabled	0	1	0	1	1	0			
			* Use Description for Bits	* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs								

⁽¹⁾ Set the R2.21 to 0 for LVDS and LVCMOS outputs

8.6.4 Device Registers: Register 3 Address 0x03

Table 43. CDCE62005 Register 3 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION								
0	REFDIV2	Reference Divider	Reference Divider Bit 2.								EEPROM
1	RESERVED		Must be set to 0.								EEPROM
2	RESERVED		Must be set to 0.								EEPROM
3	RESERVED		Must be set to 0.								EEPROM
4	OUTMUX3SELX	Output 3	OUTPUT MUX 3 Select. S			-	•				EEPROM
5	OUTMUX3SELY	Output 3	(X,Y) = 00: PRI_REF, 01:	SEC_REF,	10:SM	ART_M	UX, 11:	vco_c	ORE		EEPROM
6	PH3ADJC0	Output 3									EEPROM
7	PH3ADJC1	Output 3									EEPROM
8	PH3ADJC2	Output 3									EEPROM
9	PH3ADJC3	Output 3	Coarse phase adjust selec	ct for outpu	ıt divide	r 3					EEPROM
10	PH3ADJC4	Output 3									EEPROM
11	PH3ADJC5	Output 3									EEPROM
12	PH3ADJC6	Output 3									EEPROM
13	OUT3DIVRSEL0	Output 3		OUTPUT DIVIDER 3 Ratio Select							EEPROM
14	OUT3DIVRSEL1	Output 3									EEPROM
15	OUT3DIVRSEL2	Output 3									EEPROM
16	OUT3DIVRSEL3	Output 3	OUTPUT DIVIDER 3 Ratio								EEPROM
17	OUT3DIVRSEL4	Output 3									EEPROM
18	OUT3DIVRSEL5	Output 3									EEPROM
19	OUT3DIVRSEL6	Output 3									EEPROM
20	OUT3DIVSEL	Output 3	,	When set to 0, the divider is disabled When set to 1, the divider is enabled							EEPROM
21	HiSWINGLVPEC3	Output 3	High Swing LVPECL When set to 1 and Normal Swing when set to 0. If LVCMOS or LVDS is selected the Output swing will stay at the same level. (1). If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to 1 and Normal LVPECL if it is set to 0.						EEPROM		
22	CMOSMODE3PX	Output 3	LVCMOS mode select for	OUTPUT	3 Positi	ve Pin.					EEPROM
23	CMOSMODE3PY	Output 3	(X,Y)=00:Active, 10:Inverti	ing, 11:Lov	v, 01:3-	State					EEPROM
24	CMOSMODE3NX	Output 3	LVCMOS mode select for	OUTPUT	3 Nega	tive Pin.					EEPROM
25	CMOSMODE3NY	Output 3	(X,Y)=00:Active, 10:Inverti	(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State							EEPROM
26	OUTBUFSEL3X	Output 3	OUTPUT TYPE			RAN	I BITS				EEPROM
				22	23	24	25	26	27		
			LVPECL	0	0	0	0	0	1		
07	OUTDUEDEL SY	LVCMOS	LVDS	0	1	0	1	1	1		FEDDOM
27	OUTBUFSEL3Y		LVCMOS	Se	See Settings Above* 0			0	0		EEPROM
			Output Disabled	0	1	0	1	1	0		
			* Use Description for I	Bits 22,23,2	24 and 2	25 for s	etting th	e LVCN	10S Out	uts	

⁽¹⁾ Set the R3.21 to 0 for LVDS and LVCMOS outputs

8.6.5 Device Registers: Register 4 Address 0x04

Table 44. CDCE62005 Register 4 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK		DESCRIPTION/FUNCTION							
0	RESERVED	_	This bit must be set to a 1	This bit must be set to a 1							EEPROM
1	SYNC_MODE1	Outputs	0 (default): Outputs have deterministic delay relative to low-to-high pulse of SYNC pin when the EEPROM SYNC signal is synchronized with the reference input and added 6µs delay. 1: outputs have deterministic delay relative to low-to-high pulse of SYNC pin when the SYNC signal is synchronized with the reference input								EEPROM
2	RESERVED		Must be set to 0								EEPROM
3	RESERVED		Must be set to 0								EEPROM
4	OUTMUX4SELX	Output 4	OUTPUT MUX 4 Select. Sel								EEPROM
5	OUTMUX4SELY	Output 4	(X,Y) = 00: PRI_REF, 01:SE	C_REF	10:SM	ART_M	UX, 11:	vco_c	ORE		EEPROM
6	PH4ADJC0	Output 4									EEPROM
7	PH4ADJC1	Output 4									EEPROM
8	PH4ADJC2	Output 4									EEPROM
9	PH4ADJC3	Output 4	Coarse phase adjust select	for outpu	ut divide	er 4					EEPROM
10	PH4ADJC4	Output 4									EEPROM
11	PH4ADJC5	Output 4									EEPROM
12	PH4ADJC6	Output 4									
13	OUT4DIVRSEL0	Output 4									EEPROM
14	OUT4DIVRSEL1	Output 4									EEPROM
15	OUT4DIVRSEL2	Output 4									EEPROM
16	OUT4DIVRSEL3	Output 4	OUTPUT DIVIDER 4 Ratio S	OUTPUT DIVIDER 4 Ratio Select							EEPROM
17	OUT4DIVRSEL4	Output 4									EEPROM
18	OUT4DIVRSEL5	Output 4								EEPROM	
19	OUT4DIVRSEL6	Output 4									EEPROM
20	OUT4DIVSEL	Output 4	· ·	When set to 0, the divider is disabled When set to 1, the divider is enabled							EEPROM
21	HiSWINGLVPEC4	Output 4	High Swing LVPECL When set to 1 and Normal Swing when set to 0. — If LVCMOS or LVDS is selected the Output swing will stay at the same level. (1) — If LVPECL buffer is selected the Output Swing will be 30% higher if this bit is set to 1 and Normal LVPECL if it is set to 0.							EEPROM	
22	CMOSMODE4PX	Output 4	LVCMOS mode select for O	UTPUT	4 Positi	ve Pin.					EEPROM
23	CMOSMODE4PY	Output 4	(X,Y)=00:Active, 10:Inverting	g, 11:Lov	v, 01:3-	State					EEPROM
24	CMOSMODE4NX	Output 4	LVCMOS mode select for O	UTPUT	3 Negat	tive Pin					EEPROM
25	CMOSMODE4NY	Output 4	(X,Y)=00:Active, 10:Inverting	(X,Y)=00:Active, 10:Inverting, 11:Low, 01:3-State							EEPROM
26	OUTBUFSEL4X	Output 4	OUTPUT TYPE	OUTPUT TYPE RAM BITS						EEPROM	
			1	22	23	24	25	26	27		
	OUTBUFSEL4Y	TBUFSEL4Y Output 4	LVPECL	0	0	0	0	0	1		
27			LVDS	0	1	0	1	1	1		FEDDOM
21			LVCMOS	See Settings Above* 0 0				EEPROM			
			Output Disabled	0	1	0	1	1	0		
	* Use Description for Bits 22,23,24 and 25 for setting the LVCMOS Outputs										

⁽¹⁾ Set the R4.21 0 for LVDS and LVCMOS outputs

8.6.6 Device Registers: Register 5 Address 0x05

Table 45. CDCE62005 Register 5 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION	
0	INBUFSELX	INBUFSELX	Input Buffer Select (LVPECL,LVDS or LVCMOS)	EEPROM
1	INBUFSELY	INBUFSELY	Reg5[1:0]=00=LVCMOS Reg5[1:0]=01=reserved Reg5[1:0]=10=LVPECL Reg5[1:0]=11=LVDS	EEPROM
2	PRISEL		When EECLKSEL = 1;	EEPROM
3	SECSEL	Smart MUX	Bit (2,3,4) 100 – PRISEL, 010 – SECSEL , 001 – AUXSEL 110 – Auto Select (PRI then SEC)	EEPROM
4	AUXSEL ⁽¹⁾	Smart wox	111 – Auto Select (FRI then SEC) and then AUX) When EECLKSEL = 0, REF_SEL pin determines the Reference Input to the Smart Mux circuitry.	EEPROM
5	EECLKSEL	Smart MUX	If EEPROM Clock Select Input is set to 1 The Clock selections follows internal EEPROM settings and ignores REF_SEL Pin status, when Set to 0 REF_SEL is used to control the Mux, Auto Select Function is not available and AUXSEL is not available.	EEPROM
6	ACDCSEL	Input Buffers	If set to 1 DC Termination, If set to 0 AC Termination	EEPROM
7	HYSTEN	Input Buffers	If set to 1 Input Buffers Hysteresis Enabled. It is not recommended that Hysteresis be disabled.	EEPROM
8	PRI_TERMSEL	Input Buffers	If set to 0 Primary Input Buffer Internal Termination Enabled If set to 1 Primary Internal Termination circuitry Disabled	EEPROM
9	PRIINVBB	Input Buffers	If set to 0 Primary Input Negative Pin Biased with Internal VBB Voltage.	EEPROM
10	SECINVBB	Input Buffers	If set to 0 Secondary Input Negative Pin Biased with Internal VBB Voltage	EEPROM
11	FAILSAFE	Input Buffers	If set to 1 Fail Safe is Enabled for all Input Buffers configured as LVDS, DC Coupling only.	EEPROM
12	RESERVED		Must be set to 0	EEPROM
13	RESERVED		Must be set to 0	EEPROM
14	SELINDIV0	VCO Core		EEPROM
15	SELINDIV1	VCO Core		EEPROM
16	SELINDIV2	VCO Core		EEPROM
17	SELINDIV3	VCO Core	INPUT DIVIDER Settings	EEPROM
18	SELINDIV4	VCO Core	THE OF DIVIDENCE COMINGS	EEPROM
19	SELINDIV5	VCO Core		EEPROM
20	SELINDIV6	VCO Core		EEPROM
21	SELINDIV7	VCO Core		EEPROM
22	LOCKW(0)	PLL Lock	See Table 34	EEPROM
23	LOCKW(1)			EEPROM
24	LOCKW(2)			EEPROM
25	LOCKW(3)			EEPROM
26	LOCKDET	PLL Lock	Number of coherent lock events. If set to 0 it triggers after the first lock detection if set to 1 it triggers lock after 64 PFD cycles of lock detections.	EEPROM
27	ADLOCK	PLL Lock	Selects Digital PLL_LOCK 0 ,Selects Analog PLL_LOCK 1	EEPROM

⁽¹⁾ If the AUXSEL bit is set to 1, a crystal must be connected to the AUXIN input properly (see the Crystal Input Interface section).

8.6.7 Device Registers: Register 6 Address 0x06

Table 46. CDCE62005 Register 6 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION	
0	SELVCO	VCO Core	VCO Select, 0:VCO1(low range), 1:VCO2(high range)	EEPROM
1	SELPRESCA	VCO Core	PRESCALER Setting.	
2	SELPRESCB	VCO Core	PRESCALER Setting.	EEPROM
3	SELFBDIV0	VCO Core		EEPROM
4	SELFBDIV1	VCO Core		EEPROM
5	SELFBDIV2	VCO Core		EEPROM
6	SELFBDIV3	VCO Core	FFFDDAOK DIVIDED Outlies	EEPROM
7	SELFBDIV4	VCO Core	FEEDBACK DIVIDER Setting	EEPROM
8	SELFBDIV5	VCO Core		EEPROM
9	SELFBDIV6	VCO Core		EEPROM
10	SELFBDIV7	VCO Core		EEPROM
11	RESERVED		Must be set to 0	EEPROM
12	SEC_TERMSEL	Input Buffers	If Set to Secondary Input Buffer Internal Termination Enabled If set to 1 Secondary Internal Termination circuitry Disabled	EEPROM
13	SELBPDIV0	VCO Core		EEPROM
14	SELBPDIV1	VCO Core	BYPASS DIVIDER Setting (6 settings + Disable + Enable)	EEPROM
15	SELBPDIV2	VCO Core		EEPROM
16	ICPSEL0	VCO Core		EEPROM
17	ICPSEL1	VCO Core	OLIADOS DIIMO Ormani Orlani (ana Tabla 67)	EEPROM
18	ICPSEL2	VCO Core	CHARGE PUMP Current Select (see Table 27)	
19	ICPSEL3	VCO Core		EEPROM
20	SYNC_MODE2	VCO Core	When set to 0, outputs are synchronized to the reference input on the low-to-high pulse on \$\overline{SYNC}\$ pin or bit. When set to 1, outputs are synchronized to the \$\overline{SYNC}\$ low-to-high pulse	EEPROM
21	CPPULSEWIDTH	VCO Core	If set to 1=wide pulse, 0=narrow pulse	EEPROM
22	ENCAL	VCO Core	Enable VCO Calibration Command. To execute this command a rising edge must be generated (that is, Write a LOW followed by a high to this bit location). This will initiate a VCO calibration sequence only if Calibration Mode = Manual Mode (that is, Register 6 bit 27 is HIGH).	EEPROM
23	RESERVED		Must be set to 0	EEPROM
24	AUXOUTEN	Output AUX	Enable Auxiliary Output when set to 1.	EEPROM
25	AUXFEEDSEL	Output AUX	Select the Output that will driving the AUX Output; Low for Selecting Output Divider 2 and High for Selecting Output Divider 3	EEPROM
26	EXLFSEL	VCO Core	When Set to 1 External Loop filter is used. When Set to 0 Internal Loop Filter is used.	EEPROM
27	ENCAL_MODE	PLL Calibration	Calibration Mode = Manual Mode. In this mode, a calibration will be initiated if a rising edge is asserted on ENCAL (Register 6 Bit 22). Calibration Mode = Startup Mode.	EEPROM

8.6.8 Device Registers: Register 7 Address 0x07

Table 47. CDCE62005 Register 7 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION	
0	LFRCSEL0	VCO Core	Loop Filter Control Setting	EEPROM
1	LFRCSEL1	VCO Core	Loop Filter Control Setting	EEPROM
2	LFRCSEL2	VCO Core	Loop Filter Control Setting	EEPROM
3	LFRCSEL3	VCO Core	Loop Filter Control Setting	EEPROM
4	LFRCSEL4	VCO Core	Loop Filter Control Setting	EEPROM
5	LFRCSEL5	VCO Core	Loop Filter Control Setting	EEPROM
6	LFRCSEL6	VCO Core	Loop Filter Control Setting	EEPROM
7	LFRCSEL7	VCO Core	Loop Filter Control Setting	EEPROM
8	LFRCSEL8	VCO Core	Loop Filter Control Setting	EEPROM
9	LFRCSEL9	VCO Core	Loop Filter Control Setting	EEPROM
10	LFRCSEL10	VCO Core	Loop Filter Control Setting	EEPROM
11	LFRCSEL11	VCO Core	Loop Filter Control Setting	EEPROM
12	LFRCSEL12	VCO Core	Loop Filter Control Setting	EEPROM
13	LFRCSEL13	VCO Core	Loop Filter Control Setting	EEPROM
14	LFRCSEL14	VCO Core	Loop Filter Control Setting	EEPROM
15	LFRCSEL15	VCO Core	Loop Filter Control Setting	EEPROM
16	LFRCSEL16	VCO Core	Loop Filter Control Setting	EEPROM
17	LFRCSEL17	VCO Core	Loop Filter Control Setting	EEPROM
18	LFRCSEL18	VCO Core	Loop Filter Control Setting	EEPROM
19	LFRCSEL19	VCO Core	Loop Filter Control Setting	EEPROM
20	LFRCSEL20	VCO Core	Loop Filter Control Setting	EEPROM
21	RESERVED		Must be set to 0	EEPROM
22	RESERVED		Must be set to 1	EEPROM
23	SEL_DEL2	Smart Mux	If set to 0, it enables short delay for fast operation If Set to 1, Long Delay recommended for Input References below 150 MHz.	EEPROM
24	RESERVED		Must be set to 1	EEPROM
25	SEL_DEL1	Smart Mux	If set to 0, it enables short delay for fast operation If Set to 1, Long Delay recommended for Input References below 150 MHz.	EEPROM
26	EPLOCK	Status	Read Only If EPLOCK reads 0 EEPROM is unlocked. If EPLOCK reads 1, then the EEPROM is locked (see Table 38 for how to lock the EEPROM – this can only be executed once after which the EEPROM is locked permanently).	EEPROM
27	RESERVED	Status	Read Only; Always reads 1.	EEPROM

8.6.9 Device Registers: Register 8 Address 0x08

Table 48. CDCE62005 Register 8 Bit Definitions

RAM BIT	BIT NAME	RELATED BLOCK	DESCRIPTION/FUNCTION	
0	CALWORD0	Status		RAM
1	CALWORD1	Status		RAM
2	CALWORD2	Status	NOO Oaltharting Wood and heads from during (Board anh)	RAM
3	CALWORD3	Status	VCO Calibration Word read back from device (Read only)	RAM
4	CALWORD4	Status		RAM
5	CALWORD5	Status		RAM
6	PLLLOCKPIN	Status	Read Only: Status of the PLL Lock Pin Driven by the device.	RAM
7	SLEEP	Control	Set Device Sleep mode On when set to 0, Normal Mode when set to 1	RAM
8	SYNC	Control	If set to 0 this bit forces /SYNC; Set to 1 to exit the Synchronization State.	RAM
9	RESERVED		Must be set to 0	RAM
10	VERSION0		Read only	RAM
11	VERSION1		Read only	RAM
12	VERSION2		Read only	RAM
13	RESERVED		Must be set to 0	RAM
14	CALWORD_IN0	Diagnostics		RAM
15	CALWORD_IN1	Diagnostics		RAM
16	CALWORD_IN2	Diagnostics	Ti Tool Devictors For Ti Hos Only (Morths and to 0)	RAM
17	CALWORD_IN3	Diagnostics	TI Test Registers. For TI Use Only (Must be set to 0)	RAM
18	CALWORD_IN4	Diagnostics		RAM
19	CALWORD_IN5	Diagnostics		RAM
20	RESERVED		Must be set to 0	RAM
21	TITSTCFG0	Diagnostics		RAM
22	TITSTCFG1	Diagnostics	Ti Tool Devictors For Ti Hos Only (Morths and to 0)	RAM
23	TITSTCFG2	Diagnostics	TI Test Registers. For TI Use Only (Must be set to 0)	RAM
24	TITSTCFG3	Diagnostics		RAM
25	PRIACTIVITY	Status	Synthesizer Source Indicator (27:25) (Read only)	RAM
26	SECACTIVITY	Status	0 0 1 Primary Input 0 1 0 Secondary Input	RAM
27	AUXACTIVITY	Status	1 0 0 Auxiliary Input	RAM

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Frequency Synthesizer

As shown in Figure 47, the CDCE62005 has internal dividers, twin onboard VCOs, a phase frequency detector, charge pump, partially internal loop filter, and LVPECL/LVDS/LVCMOS input and output buffers, all of which completes a PLL. Through the PLL operation, the VCO clock synchronizes with the reference clock input and ultimately with all clock outputs. All outputs are completely synchronized in terms of phase and frequency with the reference clock input. When powering up from the EEPROM, the SYNC signal synchronizes outputs after device power-up.

See SCAA096 for a detailed description of the application configuration.

9.2 Typical Application

Figure 47. CDCE62005 Settings for Multiple Frequency Synthesis Example

9.2.1 Design Requirements

Assume a typical application, where a total of two 156.25-MHz LVPECL, two 125-MHz LVDS, and two 25-MHz LVCMOS output clocks are desired and should be phase-locked to a single back-plane input reference clock of 25 MHz. The goal of this example is to identify the input (M), prescaler (N), feedback (FB), and output (P) divider values, the VCO frequency to lock to, and the other related PLL settings needed to derive the different output frequencies from the common input and VCXO frequencies. Follow the steps outlined in *Detailed Design Procedure* to achieve this goal.

Typical Application (continued)

9.2.2 Detailed Design Procedure

Step 1. From Figure 47, it can be inferred that the relationship between the output frequency and the input frequency is described by these equations,

where:

$$F_{VCO} = F_{OUT} \cdot P \cdot N \tag{17}$$

provided that:

$$80 \text{ kHz} < (\text{FIN/M}) < 40 \text{ MHz}$$
 (18)

and:

$$1750 \text{ MHz} < (F_{OUT} \hat{P} \hat{N}) < 2350 \text{ MHz}$$
 (19)

Step 2. Keep in mind the following while satisfying the equations in Step 1:

- The P divider can be chosen to be 1, 2, 3, 4, 5, up to 80
- The internal VCO range is from 1.75 GHz to 2.35 GHz
- The input (M) and prescaler (N) dividers can be chosen from Table 22 and Table 26.
- The FB divider can be chosen from the values in Table 23 and Table 24.

Step 3. Given multiple desired output frequencies and the input frequency, the first step would be to establish M, N, and FB divider values for different P divider settings to satisfy these equations:

$$F_{IN} = F_{OUT1} \times (M \times P1) / (N \times FB)$$
 (20)

$$F_{IN} = F_{OUT2} \times (M \times P2) / (N \times FB)$$

$$(21)$$

$$F_{IN} = F_{OUT3} \times (M \times P3) / (N \times FB)$$
 (22)

$$F_{IN} = F_{OUT4} \times (M \times P4) / (N \times FB) \tag{23}$$

$$F_{IN} = F_{OUT5} \times (M \times P5) / (N \times FB)$$

$$(24)$$

$$(F_{VCO}/N) = F_{OUT}1 \times P1 = F_{OUT}2 \times P2 = F_{OUT}3 \times P3 = F_{OUT}4 \times P4 = F_{OUT}5 \times P5$$
 (25)

Such that these parameters are valid:

- The common PFD frequency is always less than 40 MHz.
- The VCXO frequency is the same for deriving all outputs.

Using the example to derive these outputs, it can be seen that there is not an output divider (P5) that will generate a 25-MHz output. However, the output MUX value of output 5 can be chosen to directly bypass the 25-MHz input clock to output 5. Therefore, in order to use a common VCO frequency, the P dividers to be used are:

- P1 = 4
- P2 = 4
- P3 = 5
- P4 = 5
- P5 = 1

The common VCO frequency is 1875 MHz and is VCO1. The output MUX for outputs 1 to 4 are set to the PLL/VCO outputs. Moreover, the FB divider to be used is:

$$FB = 100$$
 (26)

The N divider to be used is:

$$N = 3$$
 (27)

These values ensure that the (FIN/M) ratio is within 40 MHz and is set at 6.25 MHz. Thus, the M divider to be used is:

$$M = 4 \tag{28}$$

Figure 47 illustrates this configuration.

Copyright © 2008–2015, Texas Instruments Incorporated

Typical Application (continued)

Step 4:

The PLL loop bandwidth of the CDCE62005 is recommended to be set according to the phase noise profile of its reference input and the phase noise profile of the onboard VCO clock. It is recommended to set the PLL loop bandwidth as the crossover point of the reference input phase noise and the phase noise of the VCO clock. When the input clock is clean and any near-frequency offsets are better than the VCO clock, it is beneficial for the PLL bandwidth to be set at several hundred kHz as determined by the crossover point. Figure 48 shows a typical 400-kHz Loop filter.

Figure 48. On-Chip Loop Filter Circuit for 400-kHz Loop Bandwidth (Loop Settings in Figure 47, CP Current at 3.5mA)

Typical Application (continued)

9.2.3 Application Curves

Submit Documentation Feedback

Product Folder Links: CDCE62005

10 Power Supply Recommendations

The CDCE62005 is a high performance device. Therefore careful attention must be paid to device configuration and printed circuit board layout with respect to power consumption. Table 49 provides the power consumption for the individual blocks within the CDCE62005. To estimate total power consumption, calculate the sum of the products of the number of blocks used and the power dissipated of each corresponding block.

Table 49. CDCE62005 Power Consumption

INTERNAL	L BLOCK POWER AT 3.3V (typ.)	POWER DISSIPATION/ BLOCK	NUMBER OF BLOCKS
Input Circuit		250 mW	1
PLL and VCO Core		500 mW	1
Output Dividoro	Divider = 1	60 mW	5
Output Dividers	Divider > 1	60 mW 5 180 mW 75 mW ⁽¹⁾ 5 76 mW 5	
LVPECL Output Buffer		75 mW ⁽¹⁾	5
LVDS Output Buffer		76 mW	5
	Static	7 mW	10
LVCMOS Output Buffer	Transient, $C_L = load$, $f_{OUT} = MHz$ output frequency, $V = output$ swing	$3.3 \times V \times f_{OUT} \times (C_L + 20 \times 10^{-12}) \times 10^3$	10

⁽¹⁾ An additional ~50 mW of power is dissipated externally at the termination resistors per LVPECL output pair.

This power estimate determines the degree of thermal management required for a specific design. Employing the thermally enhanced printed circuit board layout shown in Figure 53 ensures that the thermal performance curves shown in Figure 52 apply. Observing good thermal layout practices enables the thermal pad on the backside of the QFN-48 package to provide a good thermal path between the die contained within the package and the ambient air. This thermal pad also serves as the ground connection the device. Therefore, a low inductance connection to the ground plane is essential.

Figure 53 shows a layout optimized for good thermal performance and a good power supply connection as well. The 7×7 filled via pattern facilitates both considerations. Finally, the recommended layout achieves $R_{\theta JA} = 27.3^{\circ}\text{C/W}$ in still air and 20.3°C/W in an environment with 100 LFM airflow if implemented on a JEDEC compliant thermal test board..

Figure 52. CDCE62005 Die Temperature vs Total Device Power

74

Submit Documentation Feedback

Figure 53. CDCE62005 Recommended PCB Layout

11 Layout

11.1 Layout Guidelines

Figure 54 shows two conceptual layouts detailing recommended placement of power supply bypass capacitors. If the capacitors are mounted on the back side, 0402 components can be employed; however, soldering to the Thermal Dissipation Pad can be difficult. For component side mounting, use 0201 body size capacitors to facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the device as short as possible. Ground the other side of the capacitor using a low impedance connection to the ground plane.

11.2 Layout Example

Back Side

Component Side

Figure 54. CDCE62005 Power Supply Bypassing

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Documentation Support

For additional information, see CDCE62005 Application Report (SCAA096).

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2008–2015, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

15-Jan-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDCE62005RGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCE 62005	Samples
CDCE62005RGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCE 62005	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

15-Jan-2015

In no event shall TI's liabilit	v arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jan-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCE62005RGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CDCE62005RGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2

www.ti.com 14-Jan-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCE62005RGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
CDCE62005RGZT	VQFN	RGZ	48	250	213.0	191.0	55.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity