

MOST Project - 2 Now

U. S. NAVY ELECTRONICS LABORATORY, SAN DIEGO, CALIFORNIA

A BUREAU OF SHIPS LABORATORY

This is a working paper giving tentative information about some work in progress at NEL. If cited in the literature the information is to be identified as tentative and unpublished.

TECHNICAL MEMORANDUM TM-843

CARR INLET ACOUSTIC RANGE. SONAR PROPAGATION PATHS TO 1000 YARDS.

21 September 1965

F. R. Abbott (Code 3130)
D. J. Fraughton (Code 3370)

SF 001 03 16 (8132) NEL E11461 AEL/Tochnical Memorandum 843

Nel Technical Memorandum

No. IM-843

21 September 1965

THE PROBLEM

Determine the practicability of using Carr Inlet for submarine hull sonar frequency response studies. Such an appraisal requires analyses of frequency dependence of signal propagation over a prescribed path.

RESULTS

Results for one thousand yard propagation path, in the frequency band of 100 to 700 c/s.

For a unit signal transmitted, the level at the receiver will vary from 0.25 to 2 in amplitude or 18db in level. This can be tolerated for some studies by use of correction curves. The level is sensitive to bottom attenuation. A bottom reflection loss of 10db was assumed herein.

RECOMMENDATIONS

Undertake sonar tests of submarine hull resonant modes and associated scattered sound. This can be performed by adding a day to the scheduled noise trials of some submarine. It would guide future work on target classification along the lines projected from model studies described in NEL Report 1273.

ADMINISTRATIVE INFORMATION

Work was performed at NEL under AS 02 101 SF 001 03 16, task 8528 on NEL Problem Ell461 (entitled: "Target Strength Study") during May and June of 1965.

ACCESSION	Tr.	
WT48	White Section	4
900	Buff Section C	3
RUDHHAMB		3
JUSTIENCA	No.	
Till	5 on file	,
	0	
BY	TIGH /AVAILABILITY CORFE	
	TIGH/AVALABICITY CODES	
DISTRIBU	TIGN/AVALLABICITY CODES AVAIL. DATE SPECIAL	

INTRODUCTION

Simple geometric shaped shells act as enhanced scatterers of sonic beams at their resonant frequencies. This has not yet been successfully demonstrated using full scale submarines. The persistent resonant modes can best be established and characterized in a quiet body of water such as Carr Inlet in Puget Sound. A simple ray and phase analysis was used herein to predict any problems that will arise due to propagation anomalies between source and target.

CALCULATED SOUND INTENSITIES OVER A 3000 FOOT RANGE IN CARR INLET - BETWEEN 100 to 800 C/S.

Basic Assumptions:

Velocity of sound in sea water	4900 ft./sec
Depth of water in Carr Inlet	300 ft.
On Surface Reflections -	
- Phase change	180°
Sound attenuation	O db
On Bottom Reflections -	
Phase change	0°
Sound attenuation	10 db

This study was made to indicate the feasibility of making low frequency calibration measurements on a moored submarine at Carr Inlet in Puget Sound.

Figure 1 shows the geometry of the paths at the three depths studied, and the corresponding path lengths.

The next five pages are the tabulation of calculations made to determine the sound intensities along the different paths, the phase angle that the sound arrives with, and the resultant value of the vectorially combined signals:

Column 3 "Total Waves" is:

Total Waves = Range Length Wave length @ freq. noted

Column 4 "ôfrom direct path" shows the % displacement of the last wave with respect to the direct path A.

Column 5 converts column 4 to degrees.

Column 6 and 8 are from the basic assumptions.

Figure 2 illustrates the cyclic nature of the sound intensity resultants as the frequency increases from 100 to 200 c/s at 300 feet depth. A typical vector diagram is shown to illustrate how the resultants are determined graphically. Figure 3 shows amplitude in rectangular form.

Figures 4 and 5 show the phase change of each path relative to the direct path, plotted vs. frequency. From these plots one can readily see the number of phase reversals each vector goes through and determine maximum and minimum intensities quite readily, as indicated on Figure 3.

SOUND PATHS STUDIED

PATH LENGTHS:

- (A) 3000.00 FEET
- 3059.4
- 3231.0

TH LENGTHS:

- B2 3027.06
- © 3006.66
- P 3104 .86
- E23162 .25

100 FT. DEPTH

PATH LENGTHS:

- (A) 3000.00 FEET
- 3027.06
- 3006.66
- 3104.86
- 3/62.25

la parte d

FIG. 1

63.68	
64.94	.26
68.58	.90
64.28	0
65.56	.28
69.24	. 96
64.90	
66.18	.28
69.90	. 0
65.51	.0
66.81	.30
70.55	.04
66.12	. 0
67.43	.31
71.21	.09

TELES /SEC.	PATH	TOTAL WAVES	S FROM DIRECT PATH	50	PHASE	ES°	Ampl.	Resulton
	As	85.71	. 0	0°	0°	0°	7.	-11
140	B3	87.41	.70	2520	180°	72°	1.	1.32
	C3	92.31	.60	2160	360	216	.3	
	As	91.84	:0	0.	0°	0.	1.	
150	B	93.65	.81	292	1800	1120	1.	1.39
	C3	98.91	.07	25°	360	250	.3	
	As	97.96	.0	0.	0°	0°	1.	
160	B	99.90	.94	338"	180°	1580	1.	.38
	C ₃	105.50	.54	194	360.	1940	.3	
	A3	104.08	. 0	0.	0'	00		
170	Bs	106.14	.04	140	1860	1940	1.	.39
	Cs	112.10	.02	7.	3600	70	.3	
	A ₃	110.20	.0	0,	0	0.	7.	
180	Bs	112.39	.19	68'	180.0	248	j.	01
	C3	118.69	.49	176	360	176°	.3	.96
	A ₃	116.33	.0	0.	0.	00		
190	B ₃	118.63	.30	108°	1800	2880	1.	100
130	C ₃	125.28	.95	342	360		1.	1.90
	A ₃	122.44	, 0	0°	00	3420	3	
200	B ₃	124.88	.44	158°	180	00	1.	
	. C3	131.88	.44	158°	360	3380	1.	1.68
	. A3	183.71	.0	00	00	1580	3	
300	B ₃	187.35	.64		1800		1.	~
	Co	197.86	.15	230°	360°	50°	1.	2.05
		244.90	1.0	00	00		.3	
400	A ₃	249.75		306°		00	1.	
700		213.75	.85		1800	126	1.	.82
		306.12		3060	360°		.5	
500	A ₃	312.18	.0	0.	00	0.	1.	
300	B ₃		.06	22'	1800	2020	1.	.43
		329 .69	.57	205°	360	205	3	
600	A ₃	367.20	. 0	0	0	0.	1.	
300	B ₃	374.47	.27	97'	180	277	1.	1.14
	C3	395.47	.27	97°	360°	92"	3	
700	A ₃	428.57	.0	0.	0	0°	1.	
700	<i>B</i> ₃	437.06	.49	126.	180°	356	1.	2.3
	<u>C3</u>	461.57	. 0	0.	360	0.	.3	
	A3	429.80	.0	0.	0:	0.	1.	
702	83	438 .31	.5/	184°	1800	4.	1.	2.27
	Co	462.89	.09	32°	360	32'	.3	

A CONTRACTOR OF THE PARTY OF TH

con and and		300 F1	SFROM	TH	PHASE	E C'	April 1	Re
CYCLES/SEC.	PATH	TOTAL WAVES	DIRECT PATH	9	PHASE CHE.	Σδ.	A COUNTY OF THE PROPERTY.	Resulta
~~~	. A,	431.03	.0	0'	0.	0	1.	
704	<i>B</i> ₃	439.57	.54	194	180	140	1.	2.15
	_ C3	464.22	.19	18.	360	68	.3	
	A ₃	432.28	. 0	0	1	0	1.	
706	B ₃	440.84	.56	202	1	22°	1.	2.0
		465.56	.28	101°		1010	.3	
	A ₃	433.63	. 0	0.		0	1.	
708	$B_3$	442.11	.58	209°	. 1	29"	1.	1.80
	C3	466.91	.38	137°		137	,3	
	A3	434.78	.0	0'		0	1.	
710	B3 :	443.39	6/	220		40	1.	1.63
	C ₃	468.26	.48	173		173°	,3	
	A ₃	441.18	0	0		0	1.	
720	B3	449.91	.73	263°		83*	1.	1.72
	C3	475.15	.97	349		349	. 3	
	A ₃	447.09	.0	0.		0	1.	
730	$B_3$	455.95	. 86	310		130°	1.	.90
	C3	481.52	.43	155°		1550	.3	
	A ₃	453.17	0	0.		0	1.	
740	B ₃	462.15	.98	353°		173°	1.	.25
	C3.	488.07	.90	3240		324	.3	1124
	A3	459.42	.0	0.		0	1.	
750	$B_3$	468.51	.09	32°		212	1.	:32
	C ₃	494.79	.37	133°		133°	.3	
	A ₃	465.12	.0.	0.		. 0	1:	
760	$B_3$	474.33	.21	760		256'	1.	1.52
	C3	500.93	.81	292°		292	.3	
	A3	471.70	.0	0.		0	1.	
770	B ₃	481.04	.34	122'		302"	1.	1.50
	C ₃	508.02	.32	1150		1150	.3	
	A3	477.71	. 0	0.	(4) 1-5	0.	1.	
780	B ₃	487.17	.46	1660		346.	1.	2.10
	C3	514.49	.78	281°		28/	.3	
	A3	483.87	. 0	0		00	1.	
790	B3	493.45	.58	209		29.	1.	2.0/
	. C3	521.13	.26	94°	7	940	.3	
	A ₃	489.80	. 0	0	00	0.	1.	
800	B	499.49	.69	248	180	68	1	1.45
	G	517 51	.71	256	360	256	13	", 7-0
	1.1.1.		16	110171	1-1-1-1	FIG	JRE	le

A Part of the last	DE VIEW AND BE		AND AND AND ADDRESS OF THE PARTY OF THE PART	STATE OF THE PARTY	THE RESIDENCE OF	Wattalli Salib	MASSING LANSING
ZC	e e e e e e		The second second		ig process c		H
	///	1 1					
~ ~	COLUMN TO SERVICE STATE OF THE PARTY OF THE			Till brown til Sidde			

creles/sec	PATH	TOTAL WAYES	S FRIM DIRECT PATH	S°	PHASE CHE.	2 S'	Amol.	RouHa
	A ₂	61.22	. 0	0°	.0.	0°	1.	
	· B2	61.78	.56	202'	180°	220	1.	
100	Cz	61.36	.14	50°	360°	50°	.3	
	D ₂	63.36	2:14	50	1800	230'	1.1	
	E ₂	64.54	3.32	115°	360°	115	.3	
	A ₂	122.44	.0	0		0'	1.	
	B.	123.55	1.11	400	1	220	1.	
200	C ₂	122.72	.28	101.		1010	.3	
	D ₂	126.73	2.29	1040	1.	284°	.1	
	E ₂	129.07	6.63	226°		226'	.3	
	. A.	183.71	. 0	0		0.	1.	
	B	185.33	1.62	223°		73'	1.	
300	. C2	184.08	.37	/33°	,	133°	.3	
	D ₂	190.09	6.38	137°		317	.1	
	E ₂	193.61	19.90	324		324°	.3	
	A,	244.90	0	0		0°	1.	
	B	247.11	2.21	76.		256°	1.	
400	Cı	245.44	.54	1940	•	194"	.3	
	02	253,46	8.56	202		22°	.1	
	E ₂	258.14	13.24	810		86°	.3	
	A ₂ .	306.12	.0	0.		0°	1.	
	Bz	308.88	2.76	274"		940	1.	
500	Cz	306.80	.68	245		245°	.3	
	Dz	316.82	10.70	2520	3	72°	.1	
	E ₂	322.68	16.56	202°		2020	.3	
	AL	367.35	. 0	00		0.	1.	
	B	370.66	3.31	166.		346.	1.	
600	C ₂	368.16	.81	346	1	346	3	
	· Da	380.18	12.83	299°		1190	.1	
	E ₂	387.21	19.86	3100	1	310°	.3	
	A ₂	428.57	. 0	00	00.	0°	1.	1012
	Bz	432.44	3.87	313°	180	1330	1.	1
700	Cz	429.52	.95	342°	360°	342"	.3	
	O.	443.55	14.98	353°	1800	173'	.,	and the
	E ₂	451.75	23.18	650	310	650	.3	
				11-1-1-1		111		
	je pr							
				11111				
	14111111		14:111	11111	1111	111.		
			1 1 - 1 - 1 - 1	- I want of		FIGU	RE	1d

1/				A ST AND	F AND THE	THE PART WATER
10	-	1.	L	E	-	H

CYCLES/SEC.	PATH	TOTAL WAYES	S FROM DIRECT PATA	50	PHASE CHG.	≥5°	Ampl.	Routant
	A,	61.22	.0	0.	0.	0°	1.	
.0	B,	61.78	.56	2020	360'	202°	.3	
100	C,	61.36	.14	50°	1800	230'	1.	
	D,	63.36	2.14	50	360°	50'	.3	
	Ĕ,	64.54	3.92	1150	1800	290	.1	
	A,	122.44	.0	00	1	o°	1.	
	B,	123.55	1.11	400	T	40°	.3	. 1
200	C,	122.72	.28	1010		2810	1.	
	D,	126.73	2.29	104"		1040	.3	
	E,	129.07	6.63	226		460	.1	
	A,	183.71	.0	0		0°	1.	
	Bi	185.33	1.62	2230		223'	.3	
300	C,	184.08	.37	1330		3/3°	1.	•
	D.	190.09	6.38	1370		1320	.3	
	E,	193.61	9.90	324"		1440	./	
	A,	244.90	. 0	. 0		0°	1.	
	В,	247.11	2.21	760		760	.3	
400	C,	245.44	.54	1940		140	1.	
	a	253.46	8.56	2020		202°	.3	
	E,	258.14	13.24	861		2660	.1	
	Α, .	306.12	. 0.	00		0°	1.	
	B,	308.88	2.76	2740		2740	.3	
500	C,	306.80	.68	2450		65'	1.	
	D,	316.82	10.70	252°		2520	.3	
	E,	322.68	16.56	2020		220	.1	
	Α,	367.35	.0	00		0°	1.	110
	B,	370.66	3.31	1120		112'	.3	
600	C,	368.16	.81	292°		1120	1.	
	D,	380.18	12,83	2990		2990	.3	
	E,	387.21	19.86	310°		130	./	
	.A,	428.57	.0	00	0°	0°	1.	
	B,	432.44	3.87	3130	360	3/30	.3	
700	C,	429.52	.95	3420	180	1620	1.	
	D,	443.55	14.98	3530	360	3530	.3	
	D, E,	451.75	23.18	650	1800	245	./	
		1	11:11					
1.	14.71							
				111	11			
			n 8			FIGU	RE	le
						- 3 3	., .,	

FIGURE

2.



HOE TA 10 HOUSE NOT 46 0705



