Fibonacci Heaps

Chapter 19

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	n	log n	log n	log n	log n
decrease-key	n	log n	log n	1	1
delete	n	log n	log n	log n	log n
union	1	n	log n	1	1
find-min	n	1	log n	1	1

n = number of elements in priority queue

† amortized

Theorem. Starting from empty Fibonacci heap, any sequence of a_1 insert, a_2 delete-min, and a_3 decrease-key operations takes $O(a_1 + a_2 \log n + a_3)$ time.

Fibonacci Heaps

History. [Fredman and Tarjan, 1986]

- Ingenious data structure and analysis.
- Original motivation: improve Dijkstra's shortest path algorithm from O(E log V) to O(E + V log V).

Basic idea.

- It is a collection of rooted trees that are min-ordered
- Each node points to its parent and its children
- The children are linked together in a circular, doubled linked-list
- Fibonacci heap: lazily defer consolidation until next delete-min.

Fibonacci Heaps: Structure

Fibonacci heap.

each parent larger than its children

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

find-min takes O(1) time

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

use to keep heaps flat (stay tuned)

Fibonacci Heaps: Notation

Notation.

- n = number of nodes in heap.
- rank(x) = number of children of node x.
- $_{\square}$ rank(H) = max rank of any node in heap H.
- trees(H) = number of trees in heap H.
- marks(H) = number of marked nodes in heap H.

Fibonacci Heaps: Potential Function

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential of heap H

Insert

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

insert 21 21 min 23 3 26 52 Heap H

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

insert 21

Fibonacci Heaps: Insert Analysis

Actual cost. O(1)

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

Change in potential. +1

potential of heap H

Actual cost. O(1)

Amortized cost. O(1)+1=O(1)

$$\Phi(H) = 5 + 2.3 = 11$$

$$\Phi(H') = 6 + 2.3 = 12$$

Change in potential = +1

Union

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Actual cost. O(1)

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

Change in potential. 0

potential function

Amortized cost. O(1)

ExtractMin

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Extract min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 23 into 17

Extract min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 17 into 7

Extract min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 24 into 7

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: ExtractMin Analysis

Extract min.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Actual cost. O(rank(H)) + O(trees(H))

- O(rank(H)) to meld min's children into root list.
- O(rank(H)) + O(trees(H)) to update min.
- O(rank(H)) + O(trees(H)) to consolidate trees.

Change in potential. O(rank(H)) - trees(H)

- trees(H') \leq rank(H) + 1 since no two trees have same rank.
- $_{□}$ ΔΦ(H) ≤ rank(H) + 1 trees(H).

Amortized cost. O(rank(H))

Fibonacci Heaps: Delete Min Analysis

- Q. Is amortized cost of O(rank(H)) good?
- A. Yes, if only insert and delete-min operations.
 - In this case, all trees are binomial trees.
 - This implies $rank(H) \leq lg n$.

we only link trees of equal rank

A. Yes, we'll implement decrease-key so that rank(H) = O(log n).

Decrease Key

Intuition for deceasing the key of node x.

- If heap-order is not violated, just decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- To keep trees flat: as soon as a node has its second child cut, cut it off and meld into root list (and unmark it).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key Analysis

Decrease-key.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Actual cost. O(c)

- O(1) time for changing the key.
- O(1) time for each of c cuts, plus melding into root list.

Change in potential. O(1) - c

- $_{\square}$ trees(H') = trees(H) + c.
- $\Delta \Phi \leq c + 2 \cdot (-c + 2) = 4 c.$

Amortized cost. O(1)

Analysis

Analysis Summary

```
Insert. O(1)
```

Delete-min. O(rank(H)) †

Decrease-key. O(1) †

† amortized

Key lemma.
$$rank(H) = O(log n)$$
.

number of nodes is exponential in rank

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to x. Then:

$$rank (y_i) \ge \begin{cases} 0 & \text{if } i=1\\ i-2 & \text{if } i \ge 1 \end{cases}$$

Pf.

- When y_i was linked into x (during Consolidate), x had at least i-1 children y₁, ..., y_{i-1}.
- Since only trees of equal rank are linked, at that time $rank(y_i) = rank(x_i) \ge i 1$.
- Since then, y_i has lost at most one child (with Cut).
- □ Thus, right now rank(y_i) $\geq i 2$. Or y_i would have been cut

Fibonacci Heaps: Bounding the Rank

Why are they called Fibonacci heaps?

$$F_k = \begin{bmatrix} 0 & \text{if } k = 0 \\ 1 & \text{if } k = 1 \\ F_{K-1} + F_{k-2} & \text{if } k \ge 2 \end{bmatrix}$$

Lemma: For all
$$k \ge 0$$
 $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$

Lemma: For all $k \ge 0$, the (k+2)nd Fibonacci number satisfies $F_{k+2} \ge \phi^k$, where $\phi = (1 + \sqrt{5}) / 2 \approx 1.618$.

Lemma: let x be any node in a Fibonacci heap, and k = rank(x), and size(x) the number of nodes in the tree including x.

Then size(x)
$$\geq F_{k+2} \geq \phi^k$$

rank(n) \geq size(x) $\geq \phi^k$
K <= log ϕ n

Fibonacci Heaps: Bounding the Rank

Def. Let F_k be smallest possible tree of rank k

