CS 572: Computer Architecture

(Due: April 27th, 2021)

Submission Homework 2

Instructor: Prof. Justin Goins Name: Rashmi Jadhav, Student ID: 934-069-574

1. Direct-mapped cache utilizing 26-bit address:

Offset bits - 0, 1, ..., 4 (total 5) Index bits - 5, 6, 7 (total 3) Tag bits - 8, 9, ..., 25 (total 18)

- (a) The byte offset has a total of 5 bits and thus it can represent 2^5 bytes within a block. Thus, the **block** size for the given direct-mapped cache is $2^5 = 32$ bytes.
- (b) The address has 3 bits for storing indexes which means that it can represent a total of 2^3 indexes. Thus, the cache can contain $2^3 = 8$ blocks.
- (c) One entry in the cache would occupy 1 valid bit, 18 tag bits, and 256 data bits(since block size is 32 bytes = 32 x 8 bits).

Thus, one cache entry takes a total of 1 + 18 + 256 = 275 bits.

Since the cache can contain 8 such entries, the total number of bits required by the entire hypothetical cache would be $275 \times 8 = 2200$ bits.

- 2. Direct-mapped cache memory accesses:
 - (a) Following are the cache accesses for the given byte addresses (the convention for depicting hit: green, miss: gray, and evict:red is same as per class):

Byte	Block	Cache	Hit/Miss	Cache Content after access										
Address	Address	Index	HIL/IVIISS	0	1	2	3	4	5	6	7			
71	2	2	miss			Mem[2]								
65	2	2	hit			Mem[2]								
1927	60	4	miss			Mem[2]		Mem[60]						
244	7	7	miss			Mem[2]		Mem[60]			Mem[7]			
585	18	2	miss evict			Mem[18]		Mem[60]			Mem[7]			
225	7	7	hit			Mem[18]		Mem[60]			Mem[7]			
900	28	4	miss evict			Mem[18]		Mem[28]			Mem[7]			
1616	50	2	miss evict			Mem[50]		Mem[28]			Mem[7]			
1410	44	4	miss evict			Mem[50]		Mem[44]			Mem[7]			
81	2	2	miss evict			Mem[2]		Mem[44]			Mem[7]			
590	18	2	miss evict			Mem[18]		Mem[44]	•		Mem[7]			
1942	60	4	miss evict		·	Mem[18]		Mem[60]			Mem[7]			

(b) The final state of the cache is as follows:

Word Address	Binary Address	Cache Block
7	000 111	111
18	010 010	010
60	111 100	100

Index	Valid	Tag
000 (0)	0	
001 (1)	0	
010 (2)	1	00 0000 0000 0000 0010
011 (3)	0	
100 (4)	1	00 0000 0000 0000 0111
101 (5)	0	
110 (6)	0	
111 (7)	1	00 0000 0000 0000 0000

- 3. (a) The byte offset has a total of 5 bits and thus it can represent 2^5 bytes within a block. Thus, the **block** size for the given 4-way set associative cache is $2^5 = 32$ bytes.
 - (b) The address has 3 bits for storing indexes which means that it can represent a total of $2^3 = 8$ indexes. For a 4-way set associative cache, each index can contain 4 blocks and thus this **cache can contain 8** $\mathbf{x} \ \mathbf{4} = \mathbf{32} \ \mathbf{blocks}$.
 - (c) One entry in the cache would occupy 1 valid bit, 18 tag bits, and 256 data bits(since block size is 32 bytes = 32 x 8 bits).

Thus, one cache entry takes a total of 1 + 18 + 256 = 275 bits.

Since the cache can contain 32 such entries, the total number of bits required by the entire hypothetical cache would be $275 \times 32 = 8800$ bits.

- 4. 4-way set associative cache memory accesses:
 - (a) Following are the cache accesses for the given byte addresses (the convention for depicting hit: green, miss: gray, and evict:red is same as per class):

Byte	Block	Cache	Hit/Miss	Cache Content after access													
Address	Addre	Index	HIT/IVIISS	Set 0			Set 1			Set 2			Set 3				
71	2	2	Miss								Mem [2]						
65	2	2	Hit								Mem [2]						
1927	60	0	Miss	Mem [60]							Mem [2]						
244	7	3	Miss	Mem [60]							Mem [2]			Mem [7]			
585	18	2	Miss	Mem [60]								Mem [18]		Mem [7]			
225	7	3	Hit	Mem [60]							Mem [2]	Mem [18]		Mem [7]			
900	28	0	Miss	Mem [60]								Mem [18]		Mem [7]			
1616	50	2	Miss	Mem [60]							Mem [2]	Mem [18]	1 1	Mem [7]			
1410	44	0	Miss	Mem [60]	Mem [28]	Mem [44]					Mem [2]	Mem [18]	1 1	Mem [7]			
81	2	2	Hit	Mem [60]	Mem [28]	Mem [44]					Mem [2]	Mem [18]	Mem [50]	Mem [7]			
590	18	2	Hit	Mem [60]	Mem [28]	Mem [44]					Mem [2]	Mem [18]	Mem [50]	Mem [7]			
1942	60	0	Hit	Mem [60]		Mem [44]					Mem [2]	Mem [18]	Mem [50]	Mem [7]			

(b) The final state of the cache is as follows:

Word Address	Binary Address	Cache Block						
2	000 010	010						
7	000 111	111						
18	010 010	010						
28	011 100	100						
44	101 100	100						
50	110 010	010						
60	111 100	100						
Index	Valid 0	Tag 0	Valid 1	Tag 1	Valid 2	Tag 2	Valid 3	Tag 3
(-)							_	

Index	Valid 0	Tag 0	Valid 1	Tag 1	Valid 2	Tag 2	Valid 3	Tag 3
000 (0)	0		0		0		0	
001 (1)	0		0		0		0	
010 (2)	1	00 0000 0000 0000 0000	1	00 0000 0000 0000 0010	1	00 0000 0000 0000 0110	0	
011 (3)	0		0		0		0	
100 (4)	1	00 0000 0000 0000 0111	1	00 0000 0000 0000 0011	1	00 0000 0000 0000 0101	0	
101 (5)	0		0		0		0	
110 (6)	0		0		0		0	
111 (7)	1	00 0000 0000 0000 0000	0		0		0	

5. Given:

The system thus operates approximately **3x faster** when we add a secondary cache with given parameters.