U.F.R de Sciences

1ère Session

LICENCE D'INFORMATIQUE - L3

INF62 - Langages et Compilation (UL5)

DURÉE: 2H

Chaque candidat doit, au début de l'épreuve, porter son nom dans le coin de la copie qu'il cachera par collage <u>après</u> avoir été pointé. Il devra en outre porter son numéro de place sur chacune des copies, intercalaires, ou pièces annexées.

Documents autorisés: Polycopié et notes personnelles.

1. Automates

Soit l'expression rationnelle R = ab | (aablaa)*. En appliquant l'algorithme de Glushkov, trouver un automate non déterministe reconnaissant le même langage.

2. Analyse syntaxique

On considère l'ensemble de symboles terminaux {i,+,=}. Soit la grammaire G, d'axiome A :

 $A \rightarrow i A i$

 $A \rightarrow + B$

 $B \rightarrow i B i$

 $B \rightarrow =$

1) Donnez une dérivation et un arbre d'analyse pour les mots suivants :

w1: i+ii=iii

w2:ii+=ii

Donnez 2 autres productions.

- 2) Calculez les ensembles PREMIER et SUIVANT, et la table d'analyse LL(1) pour G. G estelle LL(1) ?
- 3) Simulez l'analyse prédictive descendante (LL) de w1 ci-dessus et w3 : i i + = i i i. En cas de succès donnez la dérivation produite.
- 4) Transformez la grammaire en grammaire attribuée (format « théorique » ou ANTLR) pour calculer le nombre de 'i' à droite de '='.
- 5) *Bonus*. Simulez une analyse ascendante par décalage-réduction de w2, selon le modèle vu en cours et TD. Votre analyse sera « non déterministe » (on ne demande donc PAS de construire la table d'analyse).

3. Compilation

- 1) Expliquez quelles sont les grandes étapes de la compilation. Définissez clairement les termes utilisés.
- 2) Soit le programme suivant (au dos de cette page) écrit dans le langage étudié en CM et en TP. Donnez l'arbre de syntaxe abstraite et le code généré.
- **NB.** On ne demande PAS d'écrire quelque règle de grammaire que ce soit.

PROGRAMME

```
var n
var p
n = 3
p = 1
while (n > 0) {
    p = p * 2
    n = n - 1
}
```

CORRIGE

1. Automates

Soit l'expression rationnelle $R = ab \mid (aablaa)^*$

1) En appliquant l'algorithme de Glushkov, trouver un automate non déterministe reconnaissant le même langage.

Expression linéarisée : x1 x2 | (x3 x4 x5 | x6 x7)*

Prem = $\{x1,x3,x6\}$ Der = $\{x2,x5,x7\}$

x1 x2 x3 x4 x5 x6 x7

Suivants x2 - x4 x5 x3,x6 x7 x3,x6

Automate: 8 états: I(nit), 1..7. (ou x1.. x7)

Init = i, Fin = $\{2,5,7,I\}$ (i car ε est dans le langage)

I 1 2 3 5 7 6 1,3,6 4 3,6 7 3,6 a 5 b 2

2) Déterminisez cet automate en appliquant la méthode vue en cours. Comparez l'automate obtenu avec celui que vous aurez proposé dans la question 1.

{I} {1,3,6} {4,7} {2} {3,6} {5} a {1,3,6} {4,7} {3,6} - {4,7} {3,6} b - {2} {5} - -

Init = $\{I\}$ et Fin= $\{\{I\}, \{4,7\}, \{2\}, \{5\}\}\$, On obtient l'automate du 1).

3. Grammaires

 $A \rightarrow i A i$

 $A \rightarrow + B$

 $B \rightarrow i B i$

 $B \rightarrow =$

1) Les productions représentent une table d'addition sur des nombres représentés par des « bâtons » i.

$$w1:i+ij=ijj$$

$$w2:ii+=ii$$

2) Calculez les ensembles PREMIER et SUIVANT, et la table d'analyse LL(1) pour G. G estelle LL(1) ?

	PREM SUIV	
A	i +	\$ i
В	i =	\$ i

Table d'analyse

	•			_
	+	=	<u> </u>	\$
Α	$A \rightarrow + B$		$A \rightarrow i A i$	
В		B → =	B → i B i	

3) Simulez l'analyse prédictive de w1: i + ii = iii.

s) Simulos i analyse productive de will i i i i i i i i i i i i i i i i i				
PILE	TAMPON	OPERATION		
A \$	i + i i = i i i \$	Règle A → i A i		
i A i \$	i + i i = i i i	Dépiler		
A i \$	+ii=iii	Règle A → + B		
+ B i \$	+ii=iii	Dépiler		
B i \$	i i = i i i \$	Règle B → i B i		
i B i i \$	i i = i i i \$	Dépiler		
Bii\$	i = i i i \$	Règle B → i B i		
iBiii\$	i = i i i \$	Dépiler		
Biii\$	= i i i \$	Règle B → =		
= i i i \$	= i i i \$	Dépiler		
iii\$	iii\$	Dépiler		
i i \$	i i \$	Dépiler		
i \$	i \$	Dépiler		
\$	\$	SUCCES		

Dérivation: A \rightarrow i A i \rightarrow i + B i \rightarrow i + i B i i \rightarrow i + i i B i i i \rightarrow i + i i = i i i

w3:ii+=iii

PILE	TAMPON	OPERATION
A \$	i i + = i i i \$	Règle A → i A i
i A i \$	i i + = i i i \$	Dépiler
Ai\$	i += i i i \$	Règle A → i A i

```
Dépiler
i A i i $
                             i + = i i i $
  Aii$
                                          Règle A \rightarrow + B
                              + = i i i $
                                          Dépiler
+ B i i $
                              + = i i i $
                                         Règle B → =
  Bii$
                                 = i i i $
  = i i $
                                 = i i i $
                                          Dépiler
    ii$
                                  iii$
                                          Dépiler
     i $
                                    ii$
                                          Dépiler
                                          ECHEC
       $
                                     i $
```

4) Grammaire attribuée ANTLR

```
aaa returns [int nb]
    : I a= aaa I {$nb=$a.nb+1;}
    | '+' b=bbb {$nb = $b.nb;}
    ;
bbb returns [int nb]
    : I b=bbb I {$nb = $b.nb+1;}
    | EGAL {$nb=0;}
    ;

// LEXER
I : 'i';
EGAL: '=';
```

5) Analyse LR

PILE	TEXTE	ACTION
\$	i i + = i i \$	Décaler
\$ i	i + = i i \$	Décaler
\$ i i	+ = i i \$	Décaler
\$ i i +	= i i \$	Décaler
\$ i i + =	i i \$	Réduire B → =
\$ i i + B	i i \$	Réduire A → +B
\$ i i A	i i \$	Décaler
\$ i i A i	i \$	Réduire A → i A i
\$ i A	i \$	Décaler
\$ i A i	\$	Reduire A → i Ai
\$ A	\$	SUCCES

4. Compilation

Code

PUSHI 0

PUSHI 0

JUMP 0

LABEL 0

PUSHI 3

STOREG 0

PUSHI 1

STOREG 1

LABEL 1

PUSHG 0

PUSHI 0

SUP

JUMPF 2

PUSHG 1

PUSHI 2

MUL

STOREG 1

PUSHG 0

PUSHI 1

SUB

STOREG 0

JUMP 1

LABEL 2

HALT