Un tutoriel pour libhydro (version 0.2 - maj 20130830)

Le module core.sitehydro: les sites, les stations et les capteurs

Usage normal:

```
In [1]: from libhydro.core import sitehydro
         s = sitehydro.Sitehydro('00334010', libelle=u'La Garonne à Toulouse')
         print(s)
          Site REEL 00334010::La Garonne à Toulouse [0 station]
 In [2]: s.stations = [
             sitehydro.Stationhydro('0033401001', libelle=u'La Garonne à Toulouse - échell
             sitehydro.Stationhydro('0033401001', libelle=u'La Garonne à Toulouse - échell
         s.typesite = 'SOURCE'
         print(s)
         for t in s.stations: print t
          Site SOURCE 00334010::La Garonne à Toulouse [2 stations]
          Station LIMNI 0033401001::La Garonne à Toulouse - échelle principale [0 capteur]
          Station LIMNI 0033401001::La Garonne à Toulouse - échelle de secours [0 capteur]
 In [3]: c = sitehydro.Capteur('003340100201', 'H', 'radar')
         print(c)
          Capteur H 003340100201::radar
Usage libre avec strict=False:
 In [4]: | s = sitehydro.Sitehydro('site 10', stations=['station1', 'station2'], strict=Fals
         print s
         # il faut au minimum un code...
         s = sitehydro.Sitehydro(10, strict=False)
         print(s)
          Site REEL site 10::<sans libelle> [2 stations]
          Site REEL 10::<sans libelle> [0 station]
 In [5]: c = sitehydro.Capteur(2, 'vitesse', strict=False)
         print(c)
          Capteur vitesse 2::<sans libelle>
```

Le module core.obshydro

Les obshydro. Observations sont des pandas. DataFrame, dont l'index est une série de timestamp. La seule colonne

obligatoire est la colonne résultat.

La classe Serie s'appuie sur les classe Observation et Observations:

```
In [39]: from libhydro.core import sitehydro
          from libhydro.core import obshydro
          r = obshydro.Serie(
              entite=sitehydro.Sitehydro('00334010', libelle=u'La Garonne à Toulouse'),
              grandeur='H',
              observations=obshydro.Observations(
                   obshydro.Observation('2012-10-05 08:33+00', 10),
                   obshydro.Observation('2012-10-05 09:33Z', 20), obshydro.Observation('2012-10-05 12:33', 30), obshydro.Observation('2012-10-06 11:33', 40),
                   obshydro.Observation('2012-10-07 11:33', 50),
                   obshydro.Observation('2012-10-08 11:33', 60)
              )
          print('ATTENTION, heure locale => TU !')
          print(r)
          ATTENTION, heure locale => TU !
          Serie H sur le Site REEL 00334010::La Garonne à Toulouse [0 station]
          Statut 0::sans validation
          Observations:
                                  res mth qal cnt
          dte
          2012-10-05 08:33:00
                                  10
                                          0
                                              16 True
          2012-10-05 09:33:00
                                  20
                                         0
                                              16 True
          2012-10-05 10:33:00
                                  30
                                         0
                                              16 True
          2012-10-06 09:33:00
                                40
                                              16 True
                                         0
          2012-10-07 09:33:00
                                50
                                         0
                                              16 True
          2012-10-08 09:33:00
                                60
                                         0
                                              16 True
          6 values
```

Extraction de valeurs

```
In [38]: # récupérer une pandas.Serie ne contenat que la colonne 'res'
         print(r.observations.res) # idem r.observations['res']
         print('-' * 70)
         # avec ix on peux récupérer l'observation d'un timestamp précis...
         print(r.observations.ix['2012-10-05 10:33+00'])
         print('-' * 70)
         # ... ou imprécis
         print(r.observations.ix['2012-10-05'].res)
         2012-10-05 08:33:00
                                 10
         2012-10-05 09:33:00
                                 20
         2012-10-05 10:33:00
                                 30
         2012-10-06 09:33:00
                                 10
         2012-10-07 09:33:00
                                 20
         2012-10-08 09:33:00
                                 30
         Name: res, dtype: float64
                  30
         res
         mth
                   0
         qal
                  16
                True
         Name: 2012-10-05 10:33:00, dtype: object
         dte
         2012-10-05 08:33:00
                                 10
         2012-10-05 09:33:00
                                 20
         2012-10-05 10:33:00
                                 30
         Name: res, dtype: float64
```

Slicing

```
In [40]: r.observations['2012-10-05 10:33+00':]
```

Out[40]:

	res	mth	qal	cnt
dte				
2012-10-05 10:33:00	30	0	16	True
2012-10-06 09:33:00	40	0	16	True
2012-10-07 09:33:00	50	0	16	True
2012-10-08 09:33:00	60	0	16	True

```
In [41]: r.observations[:'2012-10-05 11:33+00']
```

Out[41]:

	res	mth	qal	cnt
dte				
2012-10-05 08:33:00	10	0	16	True
2012-10-05 09:33:00	20	0	16	True
2012-10-05 10:33:00	30	0	16	True

Concaténation

In [49]: obshydro.Observations.concat(r.observations, r.observations)

Out[49]:

	res	mth	qal	cnt
dte				
2012-10-05 08:33:00	10	0	16	True
2012-10-05 09:33:00	20	0	16	True
2012-10-05 10:33:00	30	0	16	True
2012-10-06 09:33:00	40	0	16	True
2012-10-07 09:33:00	50	0	16	True
2012-10-08 09:33:00	60	0	16	True
2012-10-05 08:33:00	10	0	16	True
2012-10-05 09:33:00	20	0	16	True
2012-10-05 10:33:00	30	0	16	True
2012-10-06 09:33:00	40	0	16	True
2012-10-07 09:33:00	50	0	16	True
2012-10-08 09:33:00	60	0	16	True

Une obshydro.Serie à partir du convertisseur SHOM:

```
In [50]: from libhydro.conv import shom
        r = shom.serie_from_hfs('../../test/data/shom/LOCMARIAQUER.hfs')
        print(r)
        r.observations.plot()
         Serie H sur la Station LIMNI <sans code>::LOCMARIAQUER [0 capteur]
         Statut 0::sans validation
         Observations:
                              res
         dte
         2013-01-23 00:00:00
                            3.46
         2013-01-23 00:10:00
                            3.51
         2013-01-23 00:20:00 3.55
         2013-01-23 00:30:00 3.58
         2013-01-23 00:40:00 3.62
         2013-01-23 00:50:00 3.64
         2013-01-23 01:00:00 3.66
         2013-01-23 01:10:00 3.68
         2013-01-23 01:20:00
                            3.70
         2013-01-23 01:30:00
                            3.70
         2013-01-23 01:40:00
                            3.71
         2013-01-23 01:50:00
                            3.70
         2013-01-23 02:00:00 3.70
         2013-01-23 02:10:00 3.68
         2013-01-23 02:20:00 3.67
         2013-01-23 21:30:00 1.85
         2013-01-23 21:40:00 1.92
         2013-01-23 21:50:00 2.01
         2013-01-23 22:00:00 2.09
         2013-01-23 22:10:00 2.19
         2013-01-23 22:20:00
                            2.28
                            2.38
         2013-01-23 22:30:00
         2013-01-23 22:40:00 2.48
         2013-01-23 22:50:00 2.59
         2013-01-23 23:00:00 2.69
         2013-01-23 23:10:00 2.79
         2013-01-23 23:20:00 2.89
         2013-01-23 23:30:00 2.99
         2013-01-23 23:40:00 3.09
         2013-01-23 23:50:00 3.18
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 144 entries, 2013-01-23 00:00:00 to 2013-01-23 23:50:00
         Data columns (total 1 columns):
               144 non-null values
         dtypes: float64(1)
Out[50]:
         <matplotlib.axes.AxesSubplot at 0x359e050>
         4.0
                                             res
         3.5
         3.0
         2.5
```

Le module core.simulation

Les simulation.Previsions sont des pandas.Series avec un double index (hiearchical index): une date et une probabilité de prévision. En dérogation au modèle de données, les résultats (min, moy ,max) sont traités comme des prévisions de probabilité respective (0, 50, 100).

Instancier une simulation

```
In [66]: from libhydro.core import simulation, sitehydro
         u = simulation.Simulation(
             entite=sitehydro.Stationhydro(code='0034552001'),
             grandeur='H',
             previsions=simulation.Previsions(
                 simulation.Prevision(dte='2012-10-11 10:00Z', res=42, prb=50),
                 simulation.Prevision(dte='2012-10-12 10:00Z', res=43, prb=50),
                 simulation.Prevision(dte='2012-10-12 10:00Z', res=53, prb=33),
                 simulation.Prevision(dte='2012-10-13 10:00Z', res=44, prb=100),
                 simulation.Prevision(dte='2012-10-13 10:00Z', res=88, prb=50),
                 simulation.Prevision(dte='2012-10-13 10:00Z', res=440, prb=0),
                 simulation.Prevision(dte='2012-10-13 11:00Z', res=45, prb=0)
             )
         print(u)
         Simulation brute de H sur la Station LIMNI 0034552001::<sans libelle> [0
         capteur]
         Date de production: <inconnue> - Qualite <inconnue>
         Commentaire: <sans>
          <modele inconnu>
         Previsions:
          dte
                                prb
         2012-10-11 10:00:00
                               50
                                       42
                                       43
         2012-10-12 10:00:00
                               50
                                       53
                               33
         2012-10-13 10:00:00
                              100
                                       44
                               50
                                       88
                               0
                                      440
         2012-10-13 11:00:00 0
                                       45
         Name: res, dtype: float64
```

Manipuler les prévisions

```
In [108]: # toutes les prévisions d'une probabilité donnée
          print(u.previsions[:,50])
          print('-' * 70)
          # extraction d'une valeur
          print(u.previsions['2012-10-12 10:00'])
          print('-' * 70)
          print(u.previsions['2012-10-12 10:00'][33]) + 1
          print('-' * 70)
          # slicing partiel
          print(u.previsions[:'2012-10-13 10:00'])
          print('-' * 70)
          # slicing complet
          print(u.previsions['2012-10-12 10:00Z':'2012-10-13 10:00Z'])
          print('-' * 70)
          # fuzzy slice
          # ATTENTIOn, on ne peux pas faire un fuzzy slice directement sur le double index
          print(u.previsions[:,50]['2012-10-12':'2012-10-13 23:52'])
          print('-' * 70)
          dte
          2012-10-11 10:00:00
                                  42
          2012-10-12 10:00:00
                                  43
          2012-10-13 10:00:00
                                  88
          Name: res, dtype: float64
          prb
          50
                 43
          33
                 53
          Name: res, dtype: float64
          54.0
                                prb
          dte
          2012-10-11 10:00:00 50
                                        42
          2012-10-12 10:00:00 50
                                        43
                                33
                                        53
          2012-10-13 10:00:00 100
                                        44
                                50
                                        88
                                       440
          Name: res, dtype: float64
          dte
                                prb
          2012-10-12 10:00:00
                               50
                                        43
                                        53
                                33
          2012-10-13 10:00:00 100
                                        44
                                50
                                        88
                                0
                                       440
          Name: res, dtype: float64
          dte
          2012-10-12 10:00:00
                                  43
          2012-10-13 10:00:00
                                  88
          Name: res, dtype: float64
```

Une Simulation à partir du convertisseur SHOM

```
In [11]: from libhydro.conv import shom
         import pylab
        font = {'family': 'sans', 'color': 'darkgreen', 'weight': 'bold', 'size': 20}
         r = shom.simulation_from_hfs('../../test/data/shom/LOCMARIAQUER.hfs')
        print(r)
         r.previsions['2013-01-23 10:00':'2013-01-23 23:00'].plot(
            style='^', color='r', grid=0, linewidth=5
        # title
        pylab.title('Graphique data SHOM', fontdict=font)
        pylab.text(1, 4.5, r.entite, fontdict={'family': 'sans', 'color': 'green', 'size'
        pylab.xlabel('Date', fontdict=font)
        pylab.ylabel('Hauteur', fontdict=font)
        pylab.xticks(rotation=45)
        pylab.legend(loc='upper right')
         Simulation critiquee de H sur la Station LIMNI <sans code>::LOCMARIAQUER [0 capte
         Date de production: <inconnue> - Qualite 100%
         Commentaire: data SHOM
         Modele de type <inconnu> SCnMERshom::<sans libelle>
         Description: <sans description>
         Previsions:
                              prb
          dte
         2013-01-23 00:00:00 50
                                   3.46
         2013-01-23 00:10:00 50
                                   3.51
         2013-01-23 00:20:00 50
                                   3.55
         2013-01-23 00:30:00 50
                                    3.58
         2013-01-23 00:40:00 50
                                    3.62
         2013-01-23 00:50:00 50
                                   3.64
         2013-01-23 01:00:00 50
                                   3.66
         2013-01-23 01:10:00 50
                                   3.68
                                  3.70
         2013-01-23 01:20:00 50
         2013-01-23 01:30:00 50
                                  3.70
         2013-01-23 01:40:00 50
                                  3.71
         2013-01-23 01:50:00 50
                                  3.70
         2013-01-23 02:00:00 50
                                  3.70
         2013-01-23 02:10:00 50
                                  3.68
         2013-01-23 02:20:00 50
                                   3.67
         2013-01-23 21:30:00 50
                                   1.85
         2013-01-23 21:40:00 50
                                   1.92
         2013-01-23 21:50:00 50
                                   2.01
         2013-01-23 22:00:00 50
                                   2.09
         2013-01-23 22:10:00 50
                                   2.19
         2013-01-23 22:20:00 50
                                   2.28
         2013-01-23 22:30:00 50
                                   2.38
         2013-01-23 22:40:00 50
                                   2.48
         2013-01-23 22:50:00 50
                                   2.59
         2013-01-23 23:00:00 50
                                    2.69
         2013-01-23 23:10:00 50
                                   2.79
         2013-01-23 23:20:00 50
                                   2.89
         2013-01-23 23:30:00 50
                                   2.99
         2013-01-23 23:40:00 50 3.09
2013-01-23 23:50:00 50 3.18
         Name: res, Length: 144, dtype: float64
         . . . . . . .
                      . .
```

```
Options for the color characters are:
 'r' = red
 'g' = green
 'b' = blue
 c' = cyan
 'm' = magenta
 'y' = yellow
 'k' = black
'w' = white
Options for line styles are
 '-' = solid
 '--' = dashed
 ':' = dotted
 '-.' = dot-dashed
 '.' = points
 'o' = filled circles
 '^' = filled triangles
```

Les autres modules core implémentés: intervenant et modeleprevision

```
In [ ]: from libhydro.core import (intervenant, modeleprevision)

c = intervenant.Contact(10, 'Robert')
    i = intervenant.Intervenant(code='1537', nom='SCHAPI', contacts=[c])
    c.intervenant = i
    print c, ' *** ', c.intervenant
```

```
Classe Contact: Classe pour manipuler des contacts.

Proprietes:
    code (entier < 9999, defaut 0)
    nom (string)
    prenom (string)
    civilite (entier parmi NOMENCLATURE[538])
    intervenant (Intervenant)

Classe Intervenant: Classe pour manipuler les intervenants Sandre.

Proprietes:
    code (int) = code SIRET (14 chiffres) ou Sandre
    origine (string in (SIRET, SANDRE)) = origine du code
    nom (string) = nom de l'intervenant
    mnemo (string) = mnemonique
    contacts (une liste de Contact)
```

```
In [ ]: from libhydro.core import modeleprevision

m = modeleprevision.Modeleprevision('ScnMerSHOM', 'predictions du SHOM', typemode
print m
```

```
Class Modeleprevision.

Classe pour manipuler les modeles numeriques de prevision.

Proprietes:
    code (string <= 10) =
    libelle (string)
    typemodele (integer parmi NOMENCLATURE[525])
    description (string)
```

Le convertisseur Xml Hydrométrie

La classe Scenario:

```
In [11]: from libhydro.conv import xml
    from libhydro.core import intervenant

    emetteur = intervenant.Contact(code=45, nom='M.')
    destinataire = intervenant.Intervenant(code=1537)
    sce = xml.Scenario(emetteur=emetteur, destinataire=destinataire)
    print '{}\n'.format(sce)
    print sce.__dict__

Message du 2013-09-05 16:38:53.026417
    Emis par le Contact 45::<sans civilite> M. <sans prenom> pour l'Intervenant
    SANDRE 1537::<sans mnemo> [0 contact]

{'_dtprod': datetime.datetime(2013, 9, 5, 16, 38, 53, 26417),
    '_destinataire': <libhydro.core.intervenant.Intervenant object at 0x2eeldd0>,
    '_emetteur': <libhydro.core.intervenant.Contact object at 0x2eelf10>}
```

La classe Message:

```
In [13]: from libhydro.conv import xml
    print xml.Message.__doc__

ClasseMessage.

Classe pour manipuler les messages Xml hydrometrie.

Proprietes:
    scenario (xml.Scenario) = un objet Scenario obligatoire
    sitesydro (sitehydro.Sitehydro collection) = iterable ou None
    series (obshydro.Serie collection) = iterable ou None
    simulations (simulation.Simulation collection) = iterable ou None
```

Message from xml and msg.show():

```
In [23]: from libhydro.conv import xml
         msg = xml.Message.from_file('../../test/data/xml/1.1/siteshydro.xml')
         print '{}\n'.format(msg)
         print msg.show()
         Message du 2010-02-26 12:53:10
         Emis par le Contact 1069::<sans civilite> <sans nom> <sans prenom> pour
         l'Intervenant SANDRE 1537::<sans mnemo> [0 contact]
         Contenu: 4 siteshydro - 0 series - 0 simulations
         <?xml version='1.0' encoding='UTF-8'?>
         <hydrometrie>
           <Scenario>
             <CodeScenario>hydrometrie</CodeScenario>
             <VersionScenario>1.1</VersionScenario>
             <NomScenario>Echange de données hydrométriques</NomScenario>
             <DateHeureCreationFichier>2010-02-26T12:53:10</DateHeureCreationFichier>
             <Emetteur>
               <CdIntervenant schemaAgencyID="SANDRE">25</CdIntervenant>
               <CdContact schemaAgencyID="SANDRE">1069</CdContact>
             </Emetteur>
             <Destinataire>
               <CdIntervenant schemaAgencyID="SANDRE">1537</CdIntervenant>
             </Destinataire>
           </Scenario>
           <RefHvd>
             <SitesHydro>
               <SiteHydro>
                 <CdSiteHydro>A1984310</CdSiteHydro>
                 <TypSiteHydro>REEL</TypSiteHydro>
               </SiteHydro>
               <SiteHydro>
                 <CdSiteHydro>01984310</CdSiteHydro>
                 <LbSiteHydro>Le Touch à Toulouse [Saint-Martin-du-Touch]/LbSiteHydro>
                 <TypSiteHydro>SOURCE</TypSiteHydro>
                 <StationsHydro>
                   <StationHydro>
                     <CdStationHydro>0198431001</CdStationHydro>
                     <LbStationHydro>station 1</LbStationHydro>
                     <TypStationHydro>LIMNI</TypStationHydro>
                   </StationHydro>
                   <StationHydro>
                     <CdStationHydro>0198431002</CdStationHydro>
                     <LbStationHydro>station 2</LbStationHydro>
                     <TypStationHydro>LIMNI</TypStationHydro>
                   </StationHydro>
                   <StationHydro>
                     <CdStationHydro>0198431003</CdStationHydro>
                     <LbStationHydro>station 3</LbStationHydro>
                     <TypStationHydro>LIMNI</TypStationHydro>
                   </StationHydro>
                 </StationsHydro>
               </SiteHydro>
               <SiteHydro>
                 <CdSiteHydro>02000040</CdSiteHydro>
                 <LbSiteHydro>La Garonne à Toulouse
                 <TypSiteHydro>REEL</TypSiteHydro>
                 <StationsHydro>
                   <StationHydro>
                     </d></d>
```

Ajouter des éléments à un message:

```
In [16]: msg2 = xml.Message.from_file('../../test/data/xml/1.1/obsshydro.xml')
    msg3 = xml.Message.from_file('../../test/data/xml/1.1/simulations.xml')
    msg.add(series=msg2.series, simulations=msg3.simulations)
    print msg

Message du 2010-02-26 12:53:10
    Emis par le Contact 1069::<sans civilite> <sans nom> <sans prenom> pour
    l'Intervenant SANDRE 1537::<sans mnemo> [0 contact]
    Contenu: 4 siteshydro - 3 series - 3 simulations
```

Enregistrer un message dans un fichier:

```
In [20]: msg.write('/tmp/message.xml', force=True)
print msg.write.__doc__
```

Ecrit le Message dans le fichier dst.

Cette methode est un wrapper autour de lxml.etree.ElementTree.write. Se referer a la documentation de lxml pour le detail des options.

```
Arguments:
```

```
dst (fichier)
force (bool)
encoding (string)
compression (int de 0 a 9) = niveau de compression gzip
```