SUBJECT INDEX

A	immunoglobin superfamily of proteins and, 450	Agatoxins, 713–28 AIDS
Acetaminophen, 130, 133, 135,	integrins and, 45	dementia in
655, 657	methotrexate and, 450, 456-	nitric oxide and, 221
toxicity, 130, 133, 135	59	4-Alkyl-1,4-dihydropyridines, 32
Acetic acid, 158	NSAIDs and, 449-55	Alkylamines, 33–34
		Alloxan, 135, 140
Acetylcholine	Adrenergic receptors, 18-20	
parietal cell stimulation and,	Adrenocorticotropin (ACTH), 439	Amiloride, 257, 259-61
279–80	Adrenoreceptors, 418-32	Aminoalkylindoles, 614-16
Acetylcholine receptor	expression by cells in immune	α-Amino-3-hydroxy-4-methyl-5-
nicotinic, 474	system, 423-25	isoxazolepropionic acid
Acetylenes	intracellular signaling of	(AMPA), 466
cytochrome P450 inhibition	lymphocytes and, 431-	Amoxicillin, 278, 301
and, 30	32	Angiotensin, 242
Activin, 242	Adriamycin, 135, 140	Angiotensin-converting enzyme
Adeyhyde dehydrogenase, 324	African sleeping sickness, 55, 67-	(ACE), 679-80, 686-96
Adenine nucleotides, 541-43	68	inhibition, 690-96
physiological effects of, 543	African trypanosomes, 93-120	inhibitors, 679, 691-96
Adenosine, 458-59, 519-20,	antigenic variations, 93, 95,	Anticancer drugs
541, 581-602	118–19	metallothioneins and, 636-49
antiinflammatory effects of,	controlled protein degradations	acquired and intrinsic drug
458-59	of, 93, 113-14	resistance and, 640
therapeutic uses of, 599-601	glycolitic enzymes, 98	induction of, 638-40
coronary vasodilation, 600	glycosomal functions of, 93,	Antiestrogens
narrow complex tachycardia	98–99, 107	drug development program for
diagnosis, 599		new, 204-6
	kinetoplast DNAs, 107	molecular mechanism for re-
preconditioning, 600	polyamine metabolism of, 93,	
supraventricular arrhyth-	114–15	sistance to, 200-4
mias, 599	protein import of, 93	nonsteroidal, 195-96
Adenosine receptor	purine salvage enzymes of, 93,	tamoxifen, 195-206
ligands, 592–96	116–18	Antigenic variation, 93, 95, 118-
subtype, 581-602	RNA editing in, 100, 107	19
A ₁ , 583–85, 598–99	surface glycoproteins of, 93,	Antiinflammatory drugs, 449-
A _{2a} , 585–87	118	59
A _{2b} , 587	trans-splicing of RNAs, 93,	corticosteroids, 450, 455-56
A ₃ , 588–91	107, 112–13	methotrexate, 450, 456-59
structure, 582	trypanothione metabolism, 93,	Antineoplastic agents
Adenosine triphosphate (ATP),	105, 107	metallothioneins, 643-44
140-41, 258, 261-62	African trypanosomiasis, 93-120	Antioxidant response element
depletion of	chemotherapy, potential tar-	(ARE), 324-25
mitochondrial dysfunction	gets, 107-20	Antioxidants
and, 140-41	glycolipid anchor for variant	cardiac remodeling and, 520
S-Adenosylmethionine (Ad-	surface glycoprotein,	metallothioneins, 635, 646-48
oMet), 67	118–19	Antithrombin III, 197
S-Adenosylmethionine decarbox-	glycosomes, 107-12	Antitrypanosomal action
ylase (AdoMetDC), 55, 57,	polyamine metabolism, 114-	DFMO, 103–7
62-63	15	eflornithine and, 93, 95, 103-6
inhibition of, 70–73	protein degradation, 113-14	mechanisms of, 93, 95–97
therapeutic applications, 73–74	purine salvage, 116–18	melasoprol, 95–96, 101–3
Adenylate cyclase, 612, 621-24	RNA processing, 112–13	pentamidine, 95-96, 99-101
Adenylyl cyclase, 547-48, 555	trypanothione metabolism,	suramin, 95–99
Adhesion	115–16	Antitrypanosomal chemotherapy
leukocyte-endothelial, 450-59	chemotherapy, present, 93-101	potential targets for, 107-20
antiinflammatory agents	eflornithine, 93, 95	glycolipid anchor for variant
and, 450-59	melarsoprol, 95-96	surface glycoprotein,
corticosteroids and, 450,	pentamidine, 95-96, 99-101	118-19
455-58	suramin, 95-99	glycosomes, 107-12

Arylquinolines, 27, 296-98

polyamine metabolism, 114-Atherosclerosis, 522-23 isolated hepatocyte suspen-15 Autoimmune disease, 418, 438sions, 132 protein metabolism, 114-15 39 protein degradation, 113-14 Calmodulin purine salvage, 116-18 RNA processing, 112-13 trypanotione metabolism, B lymphoblastoid cells 115-16 cytochrome P450 expression α₁ Antitrypsin, 263-64 Cancer in. 380-81 **Antitumor agents** Bacillus Calmette Guerin, 169 AdoMet, 73-74 Baculovirus DFMO, 68-69 and, 145 cytochromes P450 expression MGBG, 70, 74 in, 369, 371, 379-80 polyamine analogues, 57, Basal transcriptional enhancer 68-69, 79-83 (BTE), 322 Arachidonyl ethanolamine amide, Basic transcription element bind-616-18 ing protein (BTEB), 322 Arcaine, 471 Basophils, 425-26 Arginine, 165, 167, 176-78, 182-Benzimidazole, 277, 290-96, 85, 213-14, 218-21, 242, 298, 300-1 465 Biologically based dose-response methyl, 214 model of risk assessment, nitric oxide and biosynthesis of, 165, 167, Birth defects 172, 213 measurement of chemically innitric oxide synthase inhibition duced mutations and, 145 and, 182-85 Bis(chlorethyl)-nitrosourea nitric oxide synthase-catalyzed (BCNU), 82 oxidation of, 176-78 Bovine retractor penis inhibitory nitro-, 214, 218, 221 factor (BRPIF), 22-23 Aromatic amines, 308 Bradykinin, 687-96 Arsenazo III, 130-31 Breast cancer Arthritis long-term tamoxifen therapy rheumatoid, 418, 438-39, 449and, 195-98, 201-6 50, 456-59 Bromobenzene, 130 Artificial chromosomes, 271 Bronchoconstriction, 237 Atractaspis engaddensis, 236 tert-Butylhydroperoxide (tBH), Atrial natriuretic peptide (ANP), 130, 135, 140 531 Aryl hydrocarbon receptor (AHR), 307-30 cloning and structure of, 309-11 α-Calcitonin-gene-related peptide, 249, 280 ligand-binding domain of, 314-Calcium channels 624 protein regulation by, 324-27 antagonists, 707-8, 717-25 analgesic potential of, 724xenobiotic-responsive element of, 310, 317-24 25 antihypertensive potential Aryl hydrocarbon receptor complex (AHRC), 307-30 of, 717 endogenous ligand for, 328 ischemia, 719-21 27 genetics of, 311-14 therapeutic potential of, 719-Captopril, 249 novel heterodimers of, 329-30 nuclear translocation of, 329 voltage-sensitive, 707-28 Aryl hydrocarbon receptor nu-Calcium ionophore, 242 clear translocator protein Carcinogenesis Calcium-mediated toxic cell injury, 129-39 (ARNT), 307-30 cloning and structure of, 309chemicals involved in, 130 11 evidence against causative role, 134-35, 138-39 novel heterodimers of, 329-30 61 xenobiotic-response element measurement of intracellular nongenotoxic, 158-60 of, 310, 317-24 free calcium, 130-32 ornithine decarboxylase over-

arsenazo III uptake, 130-31

phosphorylase a activity, 130 quin-2, 131-32 nitric oxide synthase and, 175, 180-81, 185 cAMP (See Cyclic AMP) breast, 195-98, 201-6 chemically induced mutations endometrial, 197-200 liver, 198-200 polyamine analogues for treatment of, 55, 64-65, 68-69, 79-82 transgenic animal models of. 145-46, 150-52, 158-61 (See also Carcinogenesis, Carcinogenicity, Hepatocarcinogenicity, Mutagenesis, Transgenic mutation systems) Cannabinoid compounds, 607-28 biological activity of enantioselectivity of, 610 hydrophobicity of alkyl chain, 610 hydroxylation of C9 substituent 612 orientation of Co substituent of, 610, 612 phenolic hydroxyl constituent of, 612 Cannabinoid receptor, 607-28 analgesia, 624-26 agonists, 609-19 antagonists, 619-20 CB1 subtype, 608, 623-24 regulation of ion channels, 623-24 CB2 subtype, 608-9, 620-24 coupling to effector systems, cognition and memory and, 626 endocrine actions of, 627 as G protein-coupled receptors, 621-24 locomotor function and, 626-Carbon monoxide (CO), 213, 215 as neurotransmitter, 213 Carbon tetrachloride, 130 chemically induced transgenic animal models of, 145-46, 150-52, 158-

expression and, 64-65

cAMP-regulated chlorine secre-

Cystamine, 130 Cystic fibrosis, 257-71

polyamine accumulation and, chemicals involved in, 130 56 chemically induced, 129-41 (See also Cancer, Carcinogeoxidative nicity, Hepatocarcinocalcium and, 129-39 genicity, Mutagenesis, characteristics of, 133-34 mitochondrial lesions and, Transgenic mutation sys-129, 139-41 Carcinogenicity Cell proliferation molecular biology of, 358-60 abnormal, 64-65, 68-70, 150 DFMO as antitumor agent, 68risk assessment, 344, 355-60 (See also Cancer, Carcinogenemutations and, 150 sis, Hepatocarcinogenicpolyamines and, 56, 64-65 ity, Mutagenesis, Transgenic mutation systems) Chemical toxicity calcium and, 129-39 Carcinoma endometrial Chicken ovalbumin upstream protamoxifen and, 195 motor transcription factor, in situ, 197-98 Chloecystokinin-B receptor, 279 Cardiac muscle Chloramphenicol, 35-36, 38-40 contractility of Chloramphenicol acetyl transfercardiac glycosides and, 14 ase (CAT), 317 factors influencing, 13-14 **Chloramphenicolacyltransferase** intracellular calcium concen-(CAT), 111 tration and, 14 Chloride secretion, 257-63, 266norepinephrine and, 14 ryanondine and, 14 cAMP-regulated, 257 Cardiac remodeling, 509-20 cystic fibrosis and, 257-63, adenosine and, 519-20 266-71 a adrenoreceptors and, 516gene therapy for, 266-71 Chloroform, 130 antioxidants and, 520 Cholinergic (ACh) neurotransmitfibroblast growth factor and, ter system 516 effects of low-level lead expoinsulin-like growth factor and, sure on, 392, 399, 405-9 Chromatin structure ischemia and, 514 polyamines as modulators of, mechanical overload and, 513-57 Circulatory shock renin-angiotensin system and, vasoactive factors in, 7-8 517-19 Citrulline, 213 transforming growth factor-B Clarithromycin, 278 and, 515-16 Clofibrate, 485, 490, 493, 496 Conopeptides, 710-28 Cardioprotection kinins and, 695 Conotoxins, 710-28 Catecholamine, 238, 425-40 neuronal voltage-sensitive calactivation of neutrophils, basocium channels and, 710-28 phils, and mast cells, 425-Corticosteroids, 450, 455-56 aging and, 436-38 Corticotropin-releasing factor cytokine production and, 428-(CRF), 439 COS cells immune system and, 425-40 cytochrome P450 expression in, 377-78 lymphocyte modulation by, Cyclic AMP, 257, 423-26 426-27 lytic activity and, 428 chloride secretion regulation cDNA expression, 369-83 and, 257 Cell death Cyclic AMP-dependent protein kinase A (PKA), 258

Cyclin-dependent kinases, 354,

359

Cyclins, 354, 359

Cycloalkylamines, 32

anticancer drug-mediated, 636-46

calcium-mediated, 129-39

Cell injury

metallothioneins and, 635-46

tion and, 257-58 ATP and, 258 PKA and, 258 control of inflammation antitrypsin and, 263-64 al proteinase inhibitor and, 264 corticosteroids and, 264-65 NSAIDs and, 265 secretory leukocyte protease inhibitors and, 264 gene therapy for, 266-71 artificial chromosomes, 271 liposomal-mediated, 270 viral vectors for, 267-70 increase in chloride secretion, 261-62 adenosine triphosphate and, 261-62 nucleotidyl triphosphates and, 261-62 uridine triphosphte and, 261-62 in vivo gene therapy for, 257 mutations in CF transmembrane regulator, 257 new therapies for, 258-71 protein replacement therapy, 265-66 reduction for mucus viscosity deoxyribonucleases and, 262-63 gelsolin and, 263 reduction of sodium absorption and, 259-61 amiloride and, 259-61 Cystic fibrosis transmembrane regulator (CFTR) adenosine triphosphate and, 258 cAMP-dependent protein kinase A and, 258 gene therapy, 266-71 protein replacement therapy, 265-66 Cytochrome b₅, 370, 377, 379-80 Cytochrome P450, 29-47, 177, 215, 299, 308, 369-83 aromatase, 383 bacterial expression systems, 369-74 catalytic activities, 30-31 catalytic mechanisms, 32 inhibition acetylenes, 30 mechanisms of, 32-36 olefins, 30 structural basis of, 44-47 inhibitors identifying, 39-41

vasoconstriction and, 679-80 selectivity, 36-39 antitumor, 68-69 insect expression systems of, chemoprevention, 69 vasodilation and, 679-80 369, 379-80 toxicity of, 70 Endothelium-derived baculovirus, 379-80 Diabetes hyperpolarizing factor, 682-B-lymphoblastoid cells, 380-81 potential therapeutic effect of 83 mammalian expression syskinins, 693 Endothelium-derived mediators tems, 369, 377-79 Diaminobutane, 464 COS cells, 377-78 Diethyldithiocarbamate, 39 vaccinia, 378-79 Diethylenetriamine (DET), 471mechanism-based inactivation 73, 476 of, 31-32, 34-36 Diethylnitrosamine (DEN), 151oxygen transfer by, 32 52, 159 682-83 DL-α-Difluoromethylornithin polycyclic aromatic hydrocarbon metabolism and, 308 (See DFMO) retrovirus, 381 Digital imaging fluorescence misite-directed mutagenesis studcroscopy, 129, 132, 134-35 ies of, 41-44 Dihydroxyphenylacetic acid substrate specificity of, 29-31, (DOPAC), 398, 440 41-47 Dimethylnitrosamine (DMN), enzymatic determinants of, 150-52 Diminazene, 95, 106-7 29 Dioxin, 307-30, 346 (See also structural basis of, 41-47 use of inhibitors for deter-TCDD) mining, 31 Dizocilpine, 402 82 xenobiotic metabolism and, 29 Dopaminergic (DA) neurotransyeast expression systems, 369, mitter system 371, 374-77 effects of low-level exposure Cytochrome P450 reductase, 215 to lead, 392, 398-402, Cytokines, 417, 428-29, 655, 407-9 664-66, 684 Droloxifene, 205 catecholamines and, 428-29 Drug metabolism mechanism-based cytochrome Enzymology tissue injury and, 655, 664-66 P450 inactivators and, 31-32, 34-36 role of macrophages in, 664strucure-based cytochrome Epinephrine, 423 Cytotoxic T lymphocytes (CTL), P450 inhibitors and, 30 Epithelial cells Duodenum ulcer disease (See Ulcer disease) E D1 receptor Ectonucleotidases, 542 Erythrocytes EDRF (See Endothelium-derived low-level lead exposure and, 398-402, 409 relaxing factor, Nitric oxide) D2 receptor Eflornithine, 93, 95-96 Escherichia coli

D

low-level lead exposure and, EGTA, 139 398-402, 409 Eicosanoids, 616-18, 663-64 Decarboxylated S-ad-Ellipticines, 33 enosylmethionine Endometrial cancer (dcAdoMet), 57 tamoxifen and, 197-200 Endothelin, 235-50, 684 Delayed hypersensitivity response, 350 isoforms of, 236 Delayed type hypersensitivity, presynaptic neuromodulatory 434 effect of, 241 Deoxyribonuclease (DNase). shear stress and, 242 257, 262-63 in vascular beds, 242-44 DFMO, 59, 65-83, 103-7 vasoconstriction and, 235, 237antitrypanosomal action of, 50 103-7 vasodilation and, 235-50 contragestational property of, Endothelin-converting enzyme 69-70 (ECE), 239, 243-44, 247

Endothelium, 679-96

transduction mechanisms in

cells of, 687-89

therapeutic uses of, 67-70,

antiparasitic, 67-68, 103-7

103-7

cytokines, 417, 428-29, 655, 664-66, 684 endothelin, 235-50, 684 endothelium-derived hyperpolarizing factor, growth factors, 324, 515-16, 524, 664-66, 684 nitric oxide, 1, 20-24, 165-86, 213-26, 235, 239, 242, 248-49, 525-26, 655-56, 680-81, 684, 688-90 oxygen reactive metabolites, 682, 693 platelet-activating factor, 682prostaglandins, 451-54, 681-Endothelium-derived relaxing factor (EDRF), 1, 13, 20-24, 167-68, 170, 214 discovery of, 20-24 Enterochromaffin-like cell, 279 Enzyme replacement pancreatic, 257 of nitric oxide synthases, 165-66, 172-86 cAMP-regulated chlorine secretion of, 257-63, 266-71 cystic fibrosis and, 257-71 Erythrocyte membranes, 1, 4 electrophoretic mobility of, 4 shape changes in, 4 lacl of, 145-47, 149, 151, 153lacZ of, 145-47, 149, 151, 153-56 Estradiol, 204 Estrogen, 196, 201, 203-4 receptors, 203-4 7-Ethoxycoumarin, 38 7-Ethoxyresorufin-O-deethylase, Ethylene glycol-bis(β-aminoethyl ether) (EGTA), 139 Ethylnitrosourea (ENU), 151-52

Ferritin, 8

Fibrogen, 197

Fibroblast growth factor, 516, 524

Fixed-Interval schedule operant behavior, 391, 402, 407–9 low-level lead exposure and changes in DA system, 402, 407–9 Flavin adenine dinucleotide (FAD), 215 Flavin mononucleotide, 215 Flavoprotein function nitric oxide synthase and, 179–80 Free radicals protective role of metallothioneins against, 635, 646–48 Furafylline, 39

G

Gamma-butyrolactone, 398 Gastric acid pump (See H*, K* ATPase) Gastric secretion, 277-301 acid-related disease, 278 regulation of, 279-80 therapeutic control of, 278, 292-301 (See also H*, K* ATPase) Gastric ulcer disease (See Ulcer disease) Gelsolin, 263 Gene rescue techniques, 153-54 lambda phage systems, 153-54 plasmid-based systems, 154 Gene therapy cystic fibrosis and, 257, 266-71 Genotoxicity, 145, 150-52, 157 Gestodene, 39 Ghosts erythrocyte, 4, 5 Glossina, 93 Glutamate neurotoxicity nitric oxide and, 171 Glutamergic (GLU) neurotransmitter system effects of low-level lead exposure on, 392, 399, 402-5, 407-9 Glycosomes, 93, 98-99, 107-12

as potential target for antitrypanosomal chemotherapy, 107–12 G protein-coupled receptors,

581-602, 621-24, 687-89, 694

cannabinoid receptors as, 621– 24 desensitization, 596–98

G protein-linked receptors
P₂-purinergic receptors, 541-71
Guide RNAs, 100

n

H*,K* ATPase, 277–301 biosynthesis of, 285–86 catalytic cycle of, 287–89 inhibitors lansoprazole, 277–78, 292–

> 96, 298–99 omeprazole, 277–78, 284, 292–96, 298–300 pantoprazole, 277–78, 293–

96, 298–99 membrane assembly and targetting of, 286–87 structure of, 280–85

therapeutic control of, 278, 292-301 side effects, 292-301

Haemophilus influenza, 258
Halogenated aromatic hydrocarbons (HAHs), 307–30
pathways of pathogenesis, 307
Haliophotes pulgri 278, 298

Helicobacter pylori, 278, 298, 300-1 duodenal and gastric ulcer dis-

ease and benzimidazole treatment of, 300-1

Heme

binding agents
nitric oxide synthase inhibition and, 181–82
nitric oxide and, 224
proteins, 681
Hemoglobin, 167

Hemorrhage subarachnoid kinins and, 695–96 Heparin, 530

Hepatocarcinogenicity, 483–50 mechanisms of, 483, 488–96 cell replication, 483, 494– 95, 499 oxidative stress, 483, 491–

> 94 promotion of lesions, 483, 495–96

(See also Liver tumor formation, Peroxisomes)

Hepatocytes, 134 Heptachlor, 158 Homeobox genes, 512 Homidum, 95, 106-7

Homovanillic acid (HVA), 398 Human adenovirus neutralizing antibody (HAN), 268 Hydrazines, 33

6-Hydroxydopamine (6-OHDA), 422, 433, 438 5-Hydroxytryptamine (5-HT),

248 Hypertension, 167, 237–38, 521– 22, 692 kinins

potential therapeutic effect of, 692 pathogenesis of, 238 catecholamines and, 238

catecholamines and, 238 renin-angiotensin system and, 238

Hypusine, 62

I

ICI, 182,780, 205 Imizadoles, 33 Imidazopyridines, 296 Immune system, 169–70,

Immune system, 169–70, 417–41 adrenoreceptors and, 418–32 aging and, 436–38 catecholamine and, 425–40 cytokine production and,

428-29 lytic activity and, 428 modulation of lymphocytes

by, 426–27 modulation of sympathetic activity by, 440–41

nitric oxide's role in, 169-70 Inflammation macrophage activation and,

655–96 cytokines and, 664–66 eicosanoids and, 663–64 growth factors and, 664–66 hydrolytic enzymes and, 664 reactive oxygen and, 661–63

Inositol lipid hydrolysis, 546–47 Inositol 1,4,5-trisphosphate (IP₃), 246, 250

endothelin-1-induced vasoconstriction and, 246, 250 Insulin, 242 Interferon-y, 169

Interleukin-1, 451 Iron regulatory factors, 222 Iron-responsive elements, 222

Isoform-selective chemical inhibitors, 30, 37–47 Isometamidium, 95, 106–7

Isoproterenol, 423

K

Kainic acid, 466 Keoxifene (See Raloxifene) Ketoconazole, 33 Kinins

> angiotensin-converting enzyme, 679–80, 686–96 inhibitors and, 679 blood pressure regulation and,

cardiovascular disease and, 691-92

changes in reaction time from,

chelation therapy for, 393

dopaminergic system im-

402, 407-9

407-9

391-409

low-level, 391-409

cholinergic system changes

from, 392, 399, 405-9

Fixed-Interval schedules and,

glutaminergic system changes from, 392, 399, 402-5,

391, 402, 407-9

learning impairments from,

NMDA receptor complex and

impairments from lead expo-

sure, 391-409

nitric oxide and, 219

antimony-resistant, 99

tions, 450-59

Ligand binding, 592-96

Leukocyte-endothelial interac-

Ligation-mediated polymerase

Lipopolysaccharide, 216-17,

426-27, 451, 667

chain reaction, 317-18

Leishmaniasis

inhibitory effects on, 391

pairments from, 391, 398-

397

potential therapeutic benefits sepsis and, 217 tissue injury and, 655-96 of, 692-96 tumor necrosis factor-B and, model for, 667-69 athersclerosis and, 694-95 428-29 Major histocompatibility comcardioprotection and, 695 Liver plex (MHC), 427 diabetes and, 693 cancer, 198-200 Mast cells, 425-26 hypertension and, 692 damage Medula oblongata, 241 subarachnoid hemorrhage calcium accumulation and, Melarsen-trypanothione adduct, and, 695-96 130 102 potentiation of, 692 hepatoxicity Melarsoprol, 95-96, 101-3 receptors, 687-89 macrophages and, 660-61 antitrypanosomal action of, 103 regional blood flow and, 689tissue injury in, 655-56 resistance to, 102 Liver tumor formation Memory septic shock and, 690-91 mechanisms of nitric oxide and, 219 vascular metabolism of, 684-87 cell replication, 483, 494-Menadione, 130, 135, 140 Metabolic inhibitors kininases, 686-87 95, 499 kininogenases, 685-86 oxidative stress, 483, 491sites of action of, 9 kininogens, 685, 690 04 Metabolism, 5, 8, 10 Kininases, 686-87 promotion of lesions, 483. drug mechanism-based cyto-Kininogenases, 685, 86 495-96 Kininogens, 685, 690 species differences in, 496chrome P450 in-(See also Hepatocarcinogenicity, Peroxisomes) Lobular carcinoma in situ, 197-98 lacl, 145-47, 149, 151, 153-60 lacZ, 145-47, 149, 151, 153-56 Long-term potentiation, 219, 403 Lambert-Eaton myasthenic synnitric oxide and, 219 drome, 725-26 Lowest observed effect level Lansoprazole, 277-78, 292-96, (LOEL), 344, 347 298-99 Lead exposure pulmonary toxicity auditory and visual system defimacrophages and, 657-60 cits from, 397

nitric oxide and, 219
Lowest observed effect level
(LOEL), 344, 347
Lung
pulmonary toxicity
macrophages and, 657–60
tissue injury in, 655–56
Lymphocytes, 417–32
activation of, 424
β-adrenoreceptor density
among, 423–24
catecholamine-induced modulation of, 426–27
cytotoxic, 430
intracellular signaling of, 431–
32
adrenoreceptor-mediated
mechanisms and, 431–

32 Lymphoid organs noradrenergic innervation of, 418–23

Lymphokine-activated killer cells, 429

M

Macrophages, 655–96 hepatotoxicity and, 660–61 proinflammatory mediators released by, 661–66 cytokines, 664–66 eicosanoids, 663–64 growth factors, 664–66 hydrolytic enzymes, 664 reactive oxygen, 661–63 pulmonary toxicity and, 657–

KB

activators and, 31-32, 34-36 structure-based cytochrome P450 inhibitors and, 30 oxidative energy, 5, 8-9 rabbit intestinal smooth muscle, 8-10 xenobiotic, 29-30 Metallothioneins, 635-49 antineoplastic properties of, 643-46 antioxidant properties of, 635, 646-48 biology of cell death and, 635-46 gene transfer studies, 638-40 induction mechanisms of, 638protection against electrophilic anticancer drugs, 636-46 Methotrexate, 450, 456-59 adenosine and, 458-59 (2R, 5R)-δ-Methyl-acetylenic putrascine (MAP), 66-67 Methylene blue, 167 Methylenedioxybenes, 33-34 Methylmethane sulfonate (MMS), 150, 157, 159 Mitochondria calcium cycling in, 139-40 oxidative cell injury and, 129, 139-41 ATP depletion and, 340-41 calcium ions and, 139-41 Mixed lymphocyte response, 350 Mosaic plaque techniques, 155 Mutagenesis, 145-61 diethylnitrosamine-induced, 150-51, 157, 159 ethylnitrosourea-induced, 151-52, 157 methylmethane sulfonate-induced, 150, 157, 159

by nongenotoxic carcinogens, 158-50 target genes for, 147-49 transgenic mutation systems and, 147-49 (See also Carcinogenesis, Transgenic mutation systems) Mutations cell proliferation and, 150 chemically induced, 145, 150-52, 157 deletion, 157-58 measurement of, 145-61 Myocardial ischemia, 138 NADPH-P450 oxidoreductase, 370, 379 Nagana, 93 National Surgical Adjuvant Breast Project, 198 Natural killer cell activity, 350 Neuronal cells hypoxic injury to, 138 Neurotoxicity nitric oxide as mediator of. 221-26 glutamate and, 221 Neutrophils, 425-26 N-Hydroxy-L-arginine, 177 Nicotinic acetylcholine receptor, 474 Nitric oxide (NO), 1, 20-24, 165-86, 213-26, 235, 239, 242, 248-49, 525-26, 655-56, 680-81, 684, 688-90 biosynthesis of, 213-26, 165-86 arginine and, 165, 167, 172, calmodulin and, 213 citrulline and, 213 nitric oxide synthases and, 166-86, 213 in central nervous system, 170 as cytotoxic agent, 169-71 glutamate neurotoxicity and, 171 as endothelium-derived relaxing factor, 167 learning and memory and, 219

long-term potentiation and, 219

immune system and, 169-70

inhibition of platelet aggrega-

AIDS dementia and, 221 poly(ADP-ribose) synthesis

and, 225-26

tion, 168-69

manipulation of, 166 as mediator of neurotoxicity,

221-26

S-nitrosylation and, 224 in neural development, 217-21 as neurotransmitter, 167, 170-71, 213-26 in peripheral nervous system, 170 in signal transduction, 167, 170-71, 213-26 tissue injury and, 655-56 vascular system and, 167-68, 213 vascular tone and, 235, 239. 242, 248-49 vasorelaxation and, 167-68 Nitric oxide synthase, 165-86, 213-21 constitutive, 173-76, 178-86, endothelial (eNOS), 215 enzymology of, 165-66, 172-86 inducible, 173-76, 178-86, 216 isoforms of, 165-66 macrophage form (mNOS), 215 neuronal (nNOS), 214, 218-21 regulation of, 175-76 selective inhibition of, 165-66, 176-86 arginine analogs and, 182-85 calmodulin function and, 180-81 flavoprotein function and, 179-80 H₄ biosynthesis and, 182 heme-binding agents and, 181-82 nitrogen-containing compounds, 182 thiol function and, 180 in spinal cord, 216 Nitrogen heterocycles, 33 Nitroglycerin, 214 NMDA (See N-methyl-p-aspartate) N-methyl-p-aspartate (NMDA), 170, 213-14, 218, 221-22 N-methyl-D-aspartate receptor channels, 463-77 characterization of, 469-70 molecular biology of, 473-75 polyamine binding site on, 471 polyamine interaction with, 463-69, 471-77 regulatory sites on, 470-71 N-methyl-D-aspartate receptor complex long-term potentiation and, 403 low-level lead exposure and, 391, 402-5, 407-9 glutamatergic system changes and, 402-5, 407-9 inhibitory effects of, 391

N-methyl-L-arginine, 167, 183-85 No-monomethyl-L-arginine, 239 N-nitro-L-arginine, 184-85 Nonadrenergic, noncholinergic neurons, 170-71 Nonadrenergic, noncholinergic neurotransmitter, 22-23 Nonsteroidal antiinflammatory drugs (NSAIDS), 265, 449biochemical mechanism of, 454-55 neutrophil functions and, 454 prostaglandins and, 451-53 No observed effect level (NOEL), 344 Noradrenergic innervation of lymphoid organs, 417-23 lymph nodes, 418 spleen, 448 Norepinephrine, 248, 418 immune responsiveness and, Nucleotide triphosphate, 261-62 Nucleus accumbens low-level lead exposure and, 398-402

6-OHDA (See 6-Hydroxydopamine) Olefins ctyochrome P450 inhibition and, 30, 32 Omeprazole, 277-78, 284, 292-96, 298-300 Ornithine decarboxylase (ODC), 55-57, 62-67, 93, 96, 103-4, 464-66 biosynthesis of polyamines and, 103 inhibition of, 65-67 DFMO and, 65-67 MAP and, 66-67 overexpression of malignant transformation and, 64-65 Overdose poisoning, 129

Oxidative stress, 130-41, 483, 491-94, 635, 646-48 calcium-translocating enzyme systems and, 132-33 influx of extracellular calcium and, 133 intracellular calcium release

Oxidative energy metabolism, 5

and, 133
liver tumor promotion and,
483, 491–94
mitochondrial dysfunction and,
139–41
models of, 130, 135

Oxotremorine, 406 Oxygen reactive metabolites, 682, 693 Pancreatic enzyme replacement, Pantaprazole, 277-78, 293-96, 298-99 Parasitic diseases, 55, 67-68, 73-74 Parietal cell, 278-80, 289-91 gastric secretion regulation and, 278-80, 289-91 acetylcholine and, 279-80 Parkinson's disease, 398 Pentamidine, 95-96, 99-101 antitrypanosomal action of, 95-96, 99-101 molecular conformation of, 99 Peripheral adrenergic mechanisms, 12, 15-17 Peroxisome proliferator-activated receptors (PPAR), 488-90 Peroxisomes, 483-500

> assessment of, 486-88 characteristics of, 485 in vitro, 488 peroxisome proliferators as substrates for peroxisomal enzyme hypothesis, 488-90 receptor hypothesis of, 488-90

hepatic proliferation of, 483-

substrate overload hypothesis of, 488-90 structure of rodent liver peroxisome proliferators, 484,

(See also Hepatocarcinogenicity, Liver tumor formation) Pertussis toxin, 455, 584, 600

p53 tumor suppressor gene, 359-60 Phenobarbital, 159

Phenycyclidine, 39, 402 Phorbol myristate acid (PMA), 425 Phospholipase C (PLC), 246,

250, 544, 547, 549 endothelin-1-induced vasoconstriction and, 246, 250

Phosphorylase a, 131, 135 Photorelaxation of blood vessels, 11-13 discovery of, 11 potentiation by sodium nitrite, 13

Physiologically based pharmacokinetic models of risk assessment. 361 Plasminogen activator inhibitor, 324 Platelet-derived growth factor. 524 Platelets

nitric oxide and, 168-69 Poly(ADP-ribose) synthetase (PARS), 225-26 Polyamine analogues

antitumor potential of, 68-69 BE-3-3-3, 80-81 BE-3-7-3, 80-81 BE-4-4-4, 81-82 cancer treatment with, 55, 68-

69, 79-82 synthesis of, 56-57 antitumor agents from, 57 Polyamine oxidase, 63, 69 Polyamines, 55-83, 93, 103-6. 114-15, 463-77 biosynthesis of, 103-6 cell proliferation and, 56

chromatin structure and modulation of \$7 inhibitors of, 57-63 interaction with DNA, 77-79 metabolism, 93, 114-15 NMDA receptor channel regulation and, 463-77

spermidine, 57, 59, 62, 77, 79-80, 103-5, 114, 464-66, 468-69, 472-73 spermine, 57, 59, 62, 77, 79-

putrescine, 103-4

80, 103-4, 464-66, 468-69, 472-73, 476 synthesis of, 57-63

Polyamine transport, 74-79 polyamine-DNA interactions and, 77-79 up-regulation of

polyamine depletion and, 75-76 Polyaromatic hydrocarbons

(PAHs), 346 Polychlorinated biphenyls (PCBs), 346 Polycyclic aromatic hydrocar-

bons (PAHs), 307-30 cytochrome P450 metabolism of. 308

Potassium cyanide, 132, 134 P2-purinergic receptors, 541-

agonists, 560-63 radioligand-binding assays for, 563-66 structure, 566-70

subtypes, 545-59

Pravadoline, 614-16 Preconditioning adenosine treatment for, 600

Prostacycline, 235, 249 Prostaglandins, 451-54, 681-82 Protein kinase cAMP-dependent, 258

Protein kinase C (PKC), 432, 585, 601

Protein replacement therapy, 265 a1-Proteinase inhibitor, 264 Proton-pump inhibitors, 277 Pseudomonas, 258 Putrescine, 57, 59, 64, 79-80,

103-4, 464-66 Pyridines, 33 2-Pyridyl methylsulfinyl benzimidazole, 277, 290-

94, 298

0

Ouinidine, 39 Ouinolines, 33 Quinoxalinediones, 466 Quin-2, 131-32, 139

Raloxifene, 205-6 Ranitidine, 285, 301 Reactive oxygen intermediates tissue injury and, 655, 661

Receptor theory, 10-12, 17-20 Recombinant adreno-associated virus, 269 Reference dose, 344

Remodeling (See Cardiac remodeling, Vascular remodeling; see also Renin-angiotensin

system) Renin-angiotensin system, 238, 249, 250, 517-19, 528-29, 691-92

cardiovascular remodelinge and, 517-19 angiotensin II and, 528-29

increased extracellular matrix collagen and, 518myocyte hypertrophy and,

517 ventricular dilation and, 517-18

Reperfusion injury, 138 Restinosis, 523-24 Retinoid X receptor, 489 Retrovirus cytochrome P450 expression

in, 381-82 Risk assessment, 341-63 animal-to-human extrapola-

tion, 344-45

carcinogenicity, 344, 355-60 developmental toxicity, 352-54 dose-response assessment, 341-43, 360-63 dose-response extrapolation, exposure assessment, 342-43 genotoxicity, 354-55 hazard identification, 341, 343 immunotoxicity, 349-52 low-dose extrapolation for quantitative, 356-58 modeling, 356-57, 360-63 biologically based dose-response model, 361 neurotoxicity, 344, 346-49 reference dose, 344 reproductive toxicity, 352-54 risk characterization, 342-43 toxicokinetics, 360-63 US EPA Integrated Risk Information System, 351 (See also Toxicity) RNA editing, 100, 107, 112-13 Rostro-ventrolateral medulla, 241 RU 486, 439-40 Ryanodine calcium transport and, 14 contractility of cardiac muscle and, 14

S Sarafotoxin, 236 Sarcoplasmic and endoplasmic reticulum (SERCA), 281 Secobarbital, 36 Second-messenger signaling G protein-linked, 543-45 P2-purinergic receptors and, 543-45 Septic shock kinins and, 690-91 lipopolysaccharide, 217 Serine-lysine-leucine (SKL), 109, 111 Shuttle-vector packaging reaction, 153 Site-directed mutagenesis, 41-44, 595-96 cytochrome P450, 41-44 ligand binding of adenosine receptor, 595-96 Sleeping sickness, 93 Small nuclear ribonucleoprotein particles, 100 Smooth muscle metabolism, 8-11 photorelaxation in, 11-12 receptor theory and, 10-12 Snake venom sarofotoxin, 236

S-nitrosylation nitric oxide and, 224 Species differences in hepatic peroxisome proliferation, 496-98 Spermidine, 57, 59, 62, 77, 79-80, 103-5, 114, 464-66, 468-69, 472-73 Spermidine-spermine N1acetyltransferase (SSAT). 57, 63 Spermine, 57, 59, 62, 77, 79-80, 103-4, 464-66, 468-69, 472-73, 476 Spider venom, 713-28 Staphlococcus aureus, 258 Steroid hyroxylase assays, 37 Steroid-thyroid retinoic acid receptor superfamily of proteins, 309 Structure-activity relationships, 346 Sulfaphenzole, 39 Superoxide, 167 Superoxide dismutase (SOD), 22-23 Suramin, 95-99 analogues of, 97 antitrypanosomal action of mechanism of, 98-99 multiaction of, 97-98 therapeutic value of basis of, 97 Synaptic transmission carbon monoxide and, 213 nitric oxide and, 213-14 Tamoxifen, 195-206 breast cancer prevention and treatment with, 195-206 cholesterol levels and, 197 drug resistance, 200-4 high estrogen levels and, 201 liver carcinogenesis and, 198-

long-term therapy with, 196 mammary tumorigenesis and, 196-98 mutated estrogen receptors and, 203-4 post-menopausal bone density and, 196 toxicities of, 198-200 TATA box, 217, 322 mutations in, 322 TCDD, 308-30 mechanisms involved in pathogenic responses to, 330 2,3,7,8-Tetrachlorodibenzo-p-dioxin (See Dioxin, TCDD) Tetradecanoyl phorbol acetate, 323

 Δ^9 -Tetrahydrocannabinol (Δ^9 -THC), 607-28 (See also Cannabinoid compounds, Cannabinoid receptors) Thiol function nitric oxide synthase and, 180 Thrombin, 242 Time-to-tumor models, 356 Tissue injury macrophages' role in, 655-96 model for, 667-69 xenobiotic-induced, 655 Toremifine, 204-5 Toxicity, 129-39, 341-63 animal-to-human extrapolation, 344 calcium ions and chemical, 129-39 dose-response extrapolation, 344 lowest observed effect level, 344 mechanisms of low-level, 343 no observed effect level, 345 overdose poisoning and, 129 reference dose, 344 risk assessment, 341-63 (See also Risk assessment) Toxicity equivalent factors, 346 for dioxin, 346 Transforming growth factor, 324 Transforming growth factor-β (TGF-B), 242 Transgenic animals, 145-61 measuring mutations, 145-61 methods for producing, 146 multiple, 160 (See also Transgenic mutation systems) Transgenic mutation systems, 146-61 color screening of mutants, 154-56 DNA isolation, 152 dose selection, 150 dosing regimen, 149-50 fixation time, 151-52 gene rescue techniques, 153methods of analysis, 156-58 mosaic plaque assay, 155 mutation spectra, 156-58 plating conditions, 155 selectable systems, 155-56 target genes for, 147-49 Triacetyloleadomycin, 39

Tricaboxylic acid, 94

panosomes) Trypanothione, 93, 105, 107,

metabolism, 115-16

115-16

Trypanosoma (See African try-

Tsetse African trypanosomiasis from, 93-120 (See also African trypanosomes, African trypanoso-

miasis) Tumor necrosis factor-a, 242,

524 **Tumor promotion**

enhanced cell replication and, 483, 494-95, 499 oxidative stress and, 483, 491-94

promotion of spontaneous preneoplastic lesions, 483, 495-96

species differences in, 496-98

Tumorigenesis mammary

tamifen and, 196-98 Tyrosine hydroxylase (TH), 398, 420, 424, 441

U

Ulcer disease duodenum, 278, 298, 300-1 gastric, 278, 300-1 noniatrogenic, 278, 300-1

Helicobacter pylori infection and, 278, 298, 300-1 therapy for, 300-1

Unscheduled DNA synthesis, 159 Uridine, 545 Uridine triphosphate, 257, 261-

62, 271 Urokinase-type plasmoginogen

activator, 529-30 US EPA Integrated Risk Information System, 351

V

Vaccinia virus cytochrome P450 expression in, 378 Vagus nerve, 279

Variant surface glycoprotein (VSG), 94-95, 118-19 antigenic variation of, 95, 118-

Vascular endothelial growth factor, 524-25

Vascular kallikrein-kinin system (See Kinins)

Vascular remodeling, 509-12, 520-31 antihypertensive drugs and,

526-27

in atherosclerosis, 522-23 endothelium-derived vasoactive substances, 525-26 nitric oxide, 525-26 prostacyclin, 525

TGF-B, 525-26 in hypertension, 521-22 polypeptides and, 524-25 restinosis and, 523-24

thrombin and, 529 urokinase-type plasmoginogen inhibitor and, 529-30 atrial natriuretic peptide, 531

heparin, 530 Vascular smooth muscle endothelial control of, 679-96

Vascular smooth muscle cells. 511, 520-31 angiotensin II and, 528-29 hyperplasia of, 521 (See also Vascular remodeling)

Vascular tone role of endothelin in, 235-50 Vasoactive intestinal polypeptide (VIP), 219

Vasodepressor material, 7-8 circulatory shock and, 7-8 hypertension and, 8

Vasoexcitatory material (VEM), 7-8 circulatory shock and, 7-8

hypertension and, 8 Vasoconstriction

endothelin-1-induced, 235-50 cytosolic IP3 production and, 246, 250 phospholipid C stimulation and, 246, 250

Vasodilation endothelin-1 and, 235-50 Vasorelaxation EDRF-elicited, 167-68 nitric oxide and, 167-68

vasorelaxing factor and, 242 Vasorelaxing factor, 242 Vasospasm, 237-38

Xenobiotic metabolism hepatic gene families responsible

for, 29-30 Xenobiotic responsive element (XRE), 310, 317-25, 330

Xenobiotics tissue injury and, 655-96

Yeast cytochrome P450 expression in, 369, 371, 374-77

CUMULATIVE INDEXES

CONTRIBUTING AUTHORS, VOLUMES 31-35

A

Alemà S, 31:205–28 Amidon GL, 34:321–41 Andersen ME, 31:503–23 Angle CR, 33:409–33

В

Bathon JM, 31:129–62 Bellomo G, 32:449–70 Bertolino M, 32:399–421 Bessis A, 31:37–72 Bevan JA, 34:173–90 Birnbaum LS, 31:101–28 Blumer JL, 31:525–47 Bowery NG, 33:109–47 Boyer JL, 35:541–79 Brater DC, 33:435–65 Bray TM, 34:91–115 Briving C, 35:277–305 Bunzow JR, 33:281–307 Burch RM, 32:511–36

C

Caron MG, 32:167-83 Chan P-C, 34:41-67 Chang LW, 34:41-67 Changeux J-P, 31:37-72 Chao AC, 35:257-76 Chaudhuri G. 35:165-94 Chen AY, 34:191-218 Chiou GCY, 31:457-67 Chiu AT. 32:135-65 Civelli O, 33:281-307 Claghorn JL, 33:165-77 Clarkson TW, 33:545-71 Cohen AJ, 31:253-87 Conolly RB, 31:503-23 Cordell B, 34:69-89 Corey JL, 34:219-49 Cory-Slechta DA, 35:391-415 Costa M, 31:321-37 Cronstein BN, 35:449-62 Crooke ST, 32:329-76

D

Dahl AR, 33:383-407 Davis B, 35:341-68 Delzenne N, 31:163-75 De Mey JGR, 35:501-39 de Montellano PRO, 32:89-107 Dubocovich ML, 31:549-68

F

Eaton DL, 34:135-72 Edwards G, 33:597-637 Elion GB, 33:1-23 Emmerson KS, 34:91-115 Esbenshade TA, 34:117-33

F

Fan A, 35:341–68 Farley JM, 32:67–88 Farmer SG, 32:511–36 Farrar HC, 31:525–47 Felten DL, 35:417–48 Fisher MH, 32:537–53 Fryxell D, 32:579–621 Fukuto JM, 35:165–94 Fulco AJ, 31:177–203 Fung B-K, 33:201–41 Furchgott RF, 35:1–27

G

Gallagher EP, 34:135–72 Galzi J-L, 31:37–72 Gardner P, 35:257–76 Gnegy ME, 33:45–70 Gonzalez FJ, 35:369–90 Grandy DK, 33:281–307 Grasso P, 31:253–87 Guilmette RA, 31:569–601

н

Halpert JR, 35:29–53 Hankinson O, 35:307–40 Harden TK, 35:541–79 Harman AW, 35:129–44 Haseman J, 31:621–52 Henrion D, 34:173–90 Herblin WF, 32:135–65 Hersey S, 35:277–305 Hidaka H, 32:377–97 Hieble JP, 33:243–79 Hinson JA, 32:471–510 Hitchings GH, 32:16–6 Hollister LE, 33:165–77

Haffner ME, 31:603-20

Holsapple MP, 31:73–100 Homeister JW, 34:17–40 Howd R, 35:341–68 Howlett AC, 35:607–34 Hsia SMT, 34:41–67 Hsieh L-L, 34:41–67 Huff J, 31:621–52; 34:343–72 Hughes J, 31:469–501 Hulbert WC, 32:109–34

J

Jackson EK, 31:1-35 Johnson NF, 31:569-601 Jordan VC, 35:195-211

K

Kemp JA, 31:401–25 Kjelsberg MA, 32:167–83 Kobayashi R, 32:377–97 Kopin IJ, 33:467–95 Korzekwa KR, 35:369–90 Krause DN, 31:549–68 Krueger KE, 32:211–37

1

Lake BG, 35:483-507 Laskin DL, 35:655-77 Lazo JS, 35:635-53 Lee HJ, 34:321-41 Lefer AM, 33:71-90 Lefer DJ. 33:71-90 Lefkowitz RJ, 32:167-83 Lester HA, 34:219-49 Levi A, 31:205-28 Lewis JL, 33:383-407 Li B, 32:579-621 Liu LF, 34:191-218 Llinás R. 32:399-421 Lowenthal DT, 32:271-302 Lucchesi BR, 34:17-40 Lucier G. 34:343-72 Ludden T, 32:185-209

N

Macdonald RL, 35:463–82 Madden KS, 35:417–48 Mager S, 34:219–49 Malins DC, 31:371–99 Marton LJ, 35:55–91 Masaki T, 35:235–55

746 CONTRIBUTING AUTHORS

Maxwell MJ, 35:129–44 McGiff JC, 31:339–69 Miljanich GP, 35:707–34 Minneman KP, 34:117–33 Mirsalis JC, 35:145–64 Mocchetti I, 32:301–26 Mohanraj D, 32:579–621 Mombouli J-V, 35:679–705 Monforte JA, 35:125–44 Morris DL, 31:73–100 Mrozik H, 32:537–53 Mulder GJ, 32:25–49 Murray MD, 33:435–65

N

Newton GJ, 31:569–601 Nicholas RA, 35:541–79 Nichols AJ, 33:243–79 Nicotera P, 32:449–70

0

Oguri K, 34:251–79 Olah ME, 35:581–606 Oliyai R, 33:521–44 Olson M, 32:579–621 Ondetti MA, 34:1–16 Ostrander GK, 31:371–99 Ostrowski J, 32:167–83

p

Pang S, 32:623–69 Papadopoulos V, 32:211–37 Pechnick RN, 33:353–82 Pegg AE, 35:55–91 Pendino KJ, 35:655–77 Piti BR, 35:635–53 Portoghese PS, 32:239–69 Preát V, 31:163–75 Proud D, 31:129–62

0

Quick MW, 34:219-49

R

Radić Z. 34:281-320 Rall DP, 31:621-52 Ramachandran J, 35:707-34 Ramakrishnan S. 32:579-621 Rand MJ, 33:24-44 Reiffenstein RJ, 32:109-34 Reinberg AE, 32:51-66 Reis DJ, 33:309-52 Revah F, 31:37-72 Ricaurte GA, 33:639-77 Richman DD, 33:149-64 Roberfroid MB, 31:163-75 Roberts DW, 32:471-510 Rock DM. 35:463-82 Rockhold RW, 33:497-520 Roth SH, 32:109-34 Ruffolo RR Jr, 33:243-79

S

Sabol KE, 33:639-77 Sachs G, 35:277-305 Sanders VM, 35:417-48 Scarpace PJ, 32:271-99 Scremin OU, 31:229-51 Seiden LS, 33:639-77 Sharratt M, 31:253-87 Sheiner LB, 32:185-209 Shin JM, 35:277-305 Smith RD, 32:135-65 Smits JFM, 35:501-39 Snyder NK, 31:73-100 Snyder SH, 35:213-33 St-Pierre MV, 32:623-69 Stadel J M, 33:243-79 Stanski D, 32:423-47 Stella VJ, 33:521-44 Stiles GL, 35:581-606 Struijker-Boudier HAJ, 35:509-39

T

Takemori AE, 32:239-69

Taylor P, 34:281–320 Thomas HA, 33:91–108 Thomassen DG, 31:529–601 Timmermans PBMWM, 32:135–65

Tolstoshev P, 33:573–96 Tritscher A, 34:343–72 Tumer N, 32:271–99

V

Van de Kar LD, 31:289-320 Vanhoutte PM, 35:679-705

W

Wagner JA, 35:257–76
Wahlestedt C, 33:309–52
Wallmark B, 35:277–305
Wang CC, 35:93–127
Wei ET, 33:91–108
Weissmann G, 35:449–62
Weston AH, 33:597–637
Winegar RA, 35:145–64
Wong EHF, 31:401–25
Wong PC, 32:135–65
Wood SC, 31:73–100
Woodruff GN, 31:469–501
Woosley RL, 31:427–55

X

Xu X. 32:623-69

Y

Yamada H, 34:251-79 Yamane HK, 33:201-41 Yeh HC, 31:569-601 Yoshimura H, 34:251-79

Z

Zhang J, 35:213-33 Ziegler DM, 33:179-99

CHAPTER TITLES, VOLUMES 31-35

PREFATORY CHAPTERS Antagonists of Nucleic Acid Derivatives as		
Medicinal Agents	GH Hitchings	32:1-6
The Quest for a Cure	GB Elion	33:1-23
Adventures in Autopharmacology: A Biographic View with Digressions into Other		
Matters	MJ Rand	33:24 44
From Peptides to Peptidases: A Chronicle of	Mi O los	24.1.16
Drug Discovery A Research Trail Over Half A Century	MA Ondetti RF Furchgott	34:1-16 35:1-27
•	RF Fulcingott	33.1-27
ALLERGY AND DRUG SENSITIVITY Bradykinin Antagonists Catecholamine Influences and Sympathetic Neural Modulation of Immune	JM Bathon, D Proud	31:129-62
Responsiveness	KS Madden, VM Sanders, DL Felten	35:417-48
ANESTHETICS, ANALGESICS, & ANTIINFLAMM Pharmacokinetics and Pharmacodynamics of	ATORY AGENTS	
Anesthetics	D Stanski	32:423-47
Antiinflammatory Peptide Agonists	ET Wei, HA Thomas	33:91-108
Targets for Antiinflammatory Drugs	BN Cronstein, G Weissmann	35:449-62
ANTIMICROBIAL, ANTIVIRAL, AND ANTIPARA The Chemistry and Pharmacology of	SITIC CHEMOTHERAPY	
Avermectins	H Mrozik, MH Fisher	32:537-53
Polyamines as Targets for Therapeutic	11M AF D	25.55 01
Intervention Molecular Mechanisms and Therapeutic Approaches to the Treatment of African	LJ Marton, AE Pegg	35:55–91
Trypanosomiasis	CC Wang	35:93-127
AUTONOMIC PHARMACOLOGY Inhaled Toxicants and Airway		
Hyperresponsiveness Pharmacologic and Therapeutic Application of	JM Farley	32:67–88
α ₂ -Adrenoceptor Subtypes	RR Ruffolo Jr, AJ Nichols, JM Stadel, JP Hieble	33:243-79
α ₁ -Adrenergic Receptor Subtypes	KP Minneman, TA Esbenshade	34:117-33
BEHAVIORAL AND PSYCHOPHARMACOLOGY Geriatric Pharmacology: Basic and Clinical		
Considerations	DT Lowenthal, PJ Scarpace, N Tumer	32:271-302
New Antidepressants	LE Hollister, JL Claghorn	33:165-77
Cardiovascular Toxicity of Anabolic Steroids	RW Rockhold	33:497-520
Relationships Between Lead-Induced Learning Impairments and Changes in Dopaminergic, Cholinergic, and Glutamergic		
Neurotransmitter System Functions	DA Cory-Slechta	35:391-415
CANCER CHEMOTHERAPY AND IMMUNOPHAR 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Induced	RMACOLOGY	
Changes in Immunocompetence: Possible		
Mechanisms	MP Holsapple, DL Morris, SC Wood, NK Snyder	31:73–100
HIV Drug Resistance	DD Richman	33:149-64

748 CHAPTER TITLES

DNA Topoisomerases: Essential Enzymes and		
Lethal Targets	AY Chen, LF Liu	34:191-218
The ARYL Hydrocarbon Receptor Complex	Oliver Hankinson	35:307-40
Metallothionens and Cell Death by Anticancer Drugs	JS Lazo, BR Pitt	35:635-53
CARDIOVASCULAR PHARMACOLOGY		
Functional Architecture of the Nicotinic		
Acetylcholine Receptor: From the Electric		
Organ to Brain	J-L Galzi, F Revah, A Bessis, J-P Changeux	31:37–72
Mechanism of Action of Nerve Growth Factor	A Levi, S Alemà	31:205-28
Pharmacological Control of the Cerebral		
Circulation	OU Scremin	31:229-51
Antiarrhythmic Agents	RL Woosley	31:427-55
Melatonin Receptors	DN Krause, ML Dubocovich	31:549-68
Pharmacology of Nonpeptide Angiotensin II		
Receptor Antagonists	P Timmermans, AT Chiu, PC Wong, WF Herblin, RD Smith	32:135–65
Pharmacology of the Endothelium in		
Ischemia-Reperfusion and Circulatory Shock Complement Activation and Inhibition in	AM Lefer, DJ Lefer	33:71–90
Myocardial Ischemia and Reperfusion Injury Pharmacology of Cardiac and Vascular	JW Homeister, BR Lucchesi	34:17-40
Remodeling	HAJ Struijker-Boudier, JFM Smits,	35:509-39
	JGR De Mey	
CLINICAL TOXICOLOGY AND DRUG INTERACT	TIONS	
DRUGS AND RESPIRATION		
ELECTROLYTES AND MINERAL METABOLISM		
Molecular Strategies for Therapy of Cystic		
Fibrosis	JA Wagner, AC Chao, P Gardner	35:257-76
ENDOCRINE PHARMACOLOGY		
Neuroendocrine Pharmacology of Serotonergic		
(5-HT) Neurons	LD Van de Kar	31:289-320
Effects of Opioids on the		
Hypothalamo-Pituitary-Adrenal Axis	RN Pechnick	33:353-82
Tamoxifen: Toxicities and Drug Resistance		
During the Treatment and Prevention of		
Breast Cancer	VC Jordan	35:195-211
ENVIRONMENTAL AND INDUSTRIAL PHARMA	COLOGY AND TOXICOLOGY	
Pharmacokinetic Basis of Age-Related Changes		
in Sensitivity to Toxicants	LS Birnbaum	31:101-28
Role of Persistent Non-Genotoxic Tissue		211101 00
Damage in Rodent Cancer and its Relevance		
to Humans	P Grasso, M Sharratt, AJ Cohen	31:253-87
Molecular Mechanisms of Nickel		
Carcinogenesis	M Costa	31:321-37
Risks from Radon Progeny Exposure: What We		
Know and What We Need to Know	RA Guilmette, NF Johnson, GJ Newton, DG Thomassen, HC	31:569-601
Scientific Concepts, Value, and Significance of		
Chemical Carcinogenesis Studies	JE Huff, J Haseman, DP Rall	31:621-52
Hydrogen Sulphide and its Toxicologic		
Implications	RJ Reiffenstein, SH Roth, WC Hulbert	32:109-34
Respiratory Tract Uptake of Inhalants and		
Metabolism of Xenobiotics	AR Dahl, JL Lewis	33:383-407
Childhood Lead Poisoning and its Treatment	CR Angle	33:409-33

Consideration of TCDD. Francisco		
Carcinogenicity of TCDD: Experimental, Mechanistic, and Epidemiological Evidence	J Huff, G Lucier, A Tritscher	34:343-72
Risk Assessment of Environmental Chemicals Macrophages and Inflammatory Mediators in	A Fan, R Howd, B Davis	35:341-68
Tissue Injury	DL Laskin, KJ Pendino	35:655-77
GASTROINTESTINAL PHARMACOLOGY		
The Pharmacology of the Gastric Acid Pump:		
The H ⁺ ,K ⁺ ATPase	G Sachs, JM Shin, C Briving, B Wallmark, S Hersey	35:277-305
MECHANISMS OF ACTION OF DRUGS AND CHE	MICALS	
Mutagenesis of the Beta-2 Adrenergic		
Receptor: How Structure Elucidates Function	RJ Lefkowitz, J Ostrowski, MA Kjelsberg, MG Caron	32:167-83
Therapeutic Applications of Antisense Agents	ST Crooke	32:329-76
Pharmacology of Protein Kinase Inhibitors Calcium-Mediated Mechanisms in Chemically	H Hidaka, R Kobayashi	32:377–97
Induced Cell Death	S Orrenius, P Nicotera, G Bellomo	32:449-70
Role of Covalent and Noncolvalent Interactions		
in Cell Toxicity: Effects on Proteins Cytotoxic Conjugates Containing Translational	JA Hinson, DW Roberts	32:471–510
Inhibitory Proteins	S Ramakrishnan, D Fryxell, D Mohanraj, M Olson, B Li	32:579-621
Calmodulin in Neurotransmitter and Hormone		
Action	ME Gnegy	33:45-70
Covalent Modifications of G-Proteins Gene Therapy: Concepts, Current Trials, and	B-K Fung, HK Yamane	33:201-41
Future Directions	P Tolstoshev	33:573-96
Putative Mechanisms of Toxicity of		
3-Methylindole: From Free Radical to		
Pneumotoxicosis Mechanisms of Hepatocarcinogenicity of	TM Bray, KS Emmerson	34:91-115
Peroxisome-Proliferating Drugs and		
Chemicals	BG Lake	35:483-507
P2-Purinergic Receptors: Subtype-Associated		
Signaling Responses and Structure	TK Harden, JL Boyer, RA Nicholas	35:541-79
Pharmacology of Cannabinoid Receptors	AC Howlett	35:607-34
METABOLIC FATE OF DRUGS AND CHEMICALS		
Cytochrome 450 Metabolism of Arachidonic		
Acid	JC McGiff	31:339–69
Glucuronidation and its Role in Regulation of Biological Activity of Drugs	GJ Mulder	32:25-49
Catalytic Sites of Hemoprotein Peroxidases	PRO de Montellano	32:89-107
Recent Studies on the Structure and Function of		
Multisubstrate Flavin-Containing	DMT.	22 170 00
Monooxygenases Macromolecular Adducts: Biomarkers for	DM Ziegler	33:179-99
Toxicity and Carcinogenesis	LW Chang, SMT Hsia, P-C Chan, L-L Hsieh	34:41–67
Regiochemistry of Cytochrome P450 Isozymes	K Oguri, H Yamada, H Yoshimura	34:251-79
Structural Basis of Selective Cytochrome P450	In II I	25.20 52
Inhibition Cytochromes P450 Expression Systems	JR Halpert FJ Gonzalez, KR Korzekwa	35:29–53 35:369–90
MISCELLANEOUS Medulation of Hanatagarainaganasis	MB Roberfroid, N Delzenne, V Preát	31:163-75
Modulation of Hepatocarcinogenesis P450 _{BM-3} and Other Inducible Bacterial P450	NID RODERFOID, N DEIZERNE, V Preat	31:103-73
Cytochromes: Biochemistry and Regulation	AJ Fulco	31:177-203
Orphan Products: Origins, Progress, and Prospects	ME Haffner	31:603-20
Concepts in Chronopharmacology	AE Reinberg	32:5166

750 CHAPTER TITLES

NEUROMUSCULAR PHARMACOLOGY

NEUROPHARMACOLOGY AND NEUROCHEMIST	ΓRY	
Sites for Antagonism on the		
N-methyl-D-aspartate Receptor- Channel		
Complex	EHF Wong, JA Kemp	31:401-25
Cholecystokinin Antagonists	GN Woodruff, J Hughes	31:469-501
Mitochondrial Benzodiazopine Receptors and		
the Regulation of Steroid Biosynthesis	KE Krueger, V Papadopoulos	32:211-37
The Theoretical Basis for a Pharmacology of		
Nerve Growth Factor Biosynthesis	I Mocchetti	32:301-26
The Central Role of Voltage-Activated and		
Receptor-Operated Calcium Channels in		
Neuronal Cells	M Bertolino, R Llinás	32:399-421
GABA _B Receptor Pharmacology	NG Bowery	33:109-47
Neuropeptide Y-Related Peptides and Their		
Receptors—Are the Receptors Potential		
Therapeutic Drug Targets?	C Wahlestedt, DJ Reis	33:309-52
β-Amyloid Formation as a Potential		
Therapeutic Target for Alzheimer's Disease	B Cordell	34:69-89
Permeation Properties of Neurotransmitter		24.210.40
Transporters	HA Lester, S Mager, MW Quick, JL	34:219-49
TH. CI. I	Corey	24 201 220
The Cholinesterases: From Genes to Proteins	P Taylor, Z Radić	34:281-320
Inhibition of Constitutive and Inducible Nitric		
Oxide Synthase: Potential Selective Inhibition	JM Fukuto, G Chaudhuri	35:165-94
Nitric Oxide in the Nervous System	J Zhang, SH Snyder	35:213-33
Polyamine Regulation of N-Methyl-p-Aspartate		25 452 00
Receptor Channels	RL Macdonald, DM Rock	35:463-82
Adenosine Receptor Subtypes: Characterization	ME OL 1 CT 0:1	25 501 606
and Therapeutic Regulation	ME Olah, GL Stiles	35:581-606
PERINATAL AND DEVELOPMENTAL PHARMAC		
Fetal Effects of Maternal Drug Exposure	HC Farrar, JL Blumer	31:525-47
PHARMACOKINETICS, DRUG ABSORPTION, AN	DEVOPETION	
Biologically Based Pharmacodynamics Models:	DEACRETION	
Tools for Toxicological Research and Risk		
Assessment	RB Conolly, ME Andersen	31:503-23
Population Pharmacokinetics/Dynamics	LB Sheiner, T Ludden	32:185-209
Determinants of Metabolite Disposition	S Pang, X Xu, MV St-Pierre	32:623-69
Absorption of Peptide and Peptidomimetic	Stang, A Au, MV Striche	34.043-07
Drugs	GL Amidon, HJ Lee	34:321-41
Diugs	OL Allidon, 15 Lec	34.321-41
PHARMACOLOGICALLY ACTIVE NATURAL SUI	RSTANCES	
Adenosine: A Physiological Brake on Renin	BUTANCES	
Release	EK Jackson	31:1-35
Mechanisms of Aflatoxin Carcinogenesis	DL Eaton, EP Gallagher	34:135-72
Antagonists of Neuronal Calcium Channels:	DE Laton, El Gallagher	34.133-12
Structure, Function, and Therapeutic		
Implications	GP Miljanich, J Ramachandran	35:707-34
Implications	Or Miljanien, 5 Kamachandian	33.101-34
RENAL PHARMACOLOGY		
Renal Toxicity of Non-Steroidal		
	MD Murrou DC Brotos	33:435-65
Anti-Inflammatory Drugs	MD Murray, DC Brater	33:433-03
REPRODUCTION AND FERTILITY		
NO ROBOTON AND I ENTIRE I		
SMOOTH MUSCLE PHARMACOLOGY		
Pharmacological Implications of the		
Flow-Dependence of Vascular Smooth		
Muscle Tone	JA Bevan, D Henrion	34:173-90

Possible Role of Endothelin in Endothelial		
Regulation of Vascular Tone	T Masaki	35:23555
Kinins and Endothelial Control of Vascular		
Smooth Muscle	J-V Mombouli, PM Vanhoutte	35:679-705
STRUCTURE-ACTIVITY RELATIONSHIPS AND M	MEDICINAL CHEMISTRY	
Selective Naltrexone-Derived Opioid Receptor		
Antagonists	AE Takemori, PS Portoghese	32:239-69
Biochemical and Molecular Pharmacology of		
Kinin Receptors	SG Farmer, RM Burch	32:511-36
Molecular Diversity of the Dopamine Receptors	O Civelli, JR Bunzow, DK Grandy	33:281-307
Pharmacology of Parkinson's Disease Therapy:		
An Update	IJ Kopin	33:467-95
Prodrugs of Peptides and Proteins for Improved	DOL: THE H	22 521 44
Formulation and Delivery	R Oliyai, VJ Stella	33:521-44
Molecular and Ionic Mimicry of Toxic Metals	TW Clarkson	33:545-71
The Pharmacology of ATP-Sensitive Potassium		
Channels	G Edwards, AH Weston	33:597-637
Amphetamine: Effects on Catecholamine		
Systems and Behavior	LS Seiden, KE Sabol, GA Ricaurte	33:639-77
TECHNIQUES		
Perspectives in Aquatic Toxicology	DC Malins, GK Ostrander	31:371-99
Systemic Delivery of Polypeptide Drugs		
through Ocular Route	GCY Chiou	31:457-67
Tandem Mass Spectrometry: The Competitive		
Edge for Pharmacology	C Fenselau	32:555-78
An Evaluation of the Role of Calcium in Cell		
Injury	AW Harman, MJ Maxwell	35:129-44
Transgenic Animal Models for Detection of In		
Vivo Mutations	JC Mirsalis, JA Monforte, RA Winegar	35:145-64

CONTENTS

A RESEARCH TRAIL OVER HALF A CENTURY, Robert F. Furchgott	1
STRUCTURAL BASIS OF SELECTIVE CYTOCHROME P450 INHIBITION,	
James R. Halpert	29
POLYAMINES AS TARGETS FOR THERAPEUTIC INTERVENTION,	
Laurence J. Marton and Anthony E. Pegg	55
MOLECULAR MECHANISMS AND THERAPEUTIC APPROACHES TO THE TREATMENT OF AFRICAN TRYPANOSOMIASIS, C. C. Wang	93
AN EVALUATION OF THE ROLE OF CALCIUM IN CELL INJURY.	73
Andrew W. Harman and Michael J. Maxwell	125
TRANSGENIC ANIMAL MODELS FOR DETECTION OF IN VIVO	
MUTATIONS, Jon C. Mirsalis, Joseph A. Monforte, and Richard A. Winegar	145
INHIBITION OF CONSTITUTIVE AND INDUCIBLE NITRIC OXIDE	
Synthase: Potential Selective Inhibition, J. M. Fukuto and G.	
Chaudhuri	165
TAMOXIFEN: Toxicities and Drug Resistance During the Treatment and Prevention of Breast Cancer, V. Craig Jordan	195
NITRIC OXIDE IN THE NERVOUS SYSTEM, J. Zhang and S. H.	
Snyder	213
Possible Role of Endothelin in Endothelial Regulation of	
VASCULAR TONE, Tomoh Masaki	235
MOLECULAR STRATEGIES FOR THERAPY OF CYSTIC FIBROSIS, John A.	
Wagner, Anthony C. Chao, and Phyllis Gardner	257
THE PHARMACOLOGY OF THE GASTRIC ACID PUMP: The H+,K+	
ATPase, George Sachs, Jai Moo Shin, Carin Briving, Bjorn	
Wallmark, and Steve Hersey	277
THE ARYL HYDROCARBON RECEPTOR COMPLEX, Oliver Hankinson	307
RISK ASSESSMENT OF ENVIRONMENTAL CHEMICALS, A. Fan, R.	
Howd, and B. Davis	341
CYTOCHROMES P450 EXPRESSION SYSTEMS, Frank J. Gonzalez and	
Kenneth R. Korzekwa	369

RELATIONSHIPS BETWEEN LEAD-INDUCED LEARNING IMPAIRMENTS AND CHANGES IN DOPAMINERGIC, CHOLINERGIC, AND GLUTAMERGIC NEUROTRANSMITTER SYSTEM FUNCTIONS, D. A. 391 Corv-Slechta CATECHOLAMINE INFLUENCES AND SYMPATHETIC NEURAL MODULATION OF IMMUNE RESPONSIVENESS, Kellev S. Madden. Virginia M. Sanders, and David L. Felten 417 TARGETS FOR ANTIINFLAMMATORY DRUGS, Bruce N. Cronstein and Gerald Weissmann 449 POLYAMINE REGULATION OF N-METHYL-D-Aspartate Receptor Channels, Robert L. Macdonald and David M. Rock 463 MECHANISMS OF HEPATOCARCINOGENICITY OF PEROXISOME-PROLIFERATING DRUGS AND CHEMICALS, Brian G. Lake 483 PHARMACOLOGY OF CARDIAC AND VASCULAR REMODELING, Harry A. J. Struijker-Boudier, Jos F. M. Smits, Jo G. R. De Mey 509 P2-PURINERGIC RECEPTORS: Subtype-Associated Signaling Responses and Structure, T. Kendall Harden, José L. Boyer, and Robert A. Nicholas 541 ADENOSINE RECEPTOR SUBTYPES: Characterization and Therapeutic Regulation, Mark E. Olah and Gary L. Stiles 581 PHARMACOLOGY OF CANNABINOID RECEPTORS, Allyn C. Howlett 607 METALLOTHIONENS AND CELL DEATH BY ANTICANCER DRUGS, John S. Lazo and Bruce R. Pitt 635 MACROPHAGES AND INFLAMMATORY MEDIATORS IN TISSUE INJURY. Debra L. Laskin and Kimberly J. Pendino 655 KININS AND ENDOTHELIAL CONTROL OF VASCULAR SMOOTH Muscle, Jean-Vivien Mombouli and Paul M. Vanhoutte 679 ANTAGONISTS OF NEURONAL CALCIUM CHANNELS: Structure. Function, and Therapeutic Implications, George P. Miljanich and J. Ramachandran 707 INDEXES SUBJECT INDEX 735 CUMULATIVE INDEX OF CONTRIBUTING AUTHORS, VOLUMES 31-35 745 CUMULATIVE INDEX OF TITLES, VOLUMES 31-35 747

