Measure Theory

Labix

June 28, 2022

Abstract

Contents

1	Me a	asure Theory Sigma Fields		
2	Lebesgue Measure			
	2.1	Elementary Measure		
	2.2	Jordan Measure		
	2.3	Lebesgue Outer Measure		
	2.4	Lebesque Measure		
		Lebesque Integral		

1 Measure Theory

1.1 Sigma Fields

Definition 1.1.1 (Sigma Fields). A σ -field on a non-empty set S is a collection \mathcal{F} of subsets of S such that

- $S, \emptyset \in \mathcal{F}$
- $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$
- $A_k \in \mathcal{F}, k \in \mathbb{N} \text{ implies } \bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$

Definition 1.1.2 (Measure). A measure on a σ -field \mathcal{F} of subsets of S is a function $\mu: \mathcal{F} \to [0, +\infty]$ such that

- $\mu(\emptyset) =$
- $\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu\left(A_k\right)$ where $A_k \in \mathcal{F}$ are pairwise disjoint.

Proposition 1.1.3. Let μ be a measure on a σ -field \mathcal{F} and $A_1, A_2, \dots \in \mathcal{F}$

- If $A_1 \subseteq A_2$, then $\mu(A_1) \leq \mu(A_2)$
- $\mu(\bigcup_{k=1}^{\infty} A_k) \le \sum_{k=1}^{\infty} \mu(A_k)$
- $\mu(A_1) + \mu(A_2) = \mu(A_1 \cup A_2) + \mu(A_1 \cap A_2)$

2 Lebesgue Measure

2.1 Elementary Measure

Definition 2.1.1 (Intervals). An interval I is a subset of \mathbb{R} of the form

- $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$
- $\bullet \ (a,b] = \{x \in \mathbb{R} | a < x \le b\}$
- $[a,b) = \{x \in \mathbb{R} | a \le x < b\}$
- $(a,b) = \{x \in \mathbb{R} | a < x < b\}$

Define the measure of an interval to be its length, m(I) = b - a

Definition 2.1.2 (Boxes). A box in \mathbb{R}^n is a cartesian product

$$B = I_1 \times I_2 \times \cdots \times I_n$$

of n intervals. Define the measure of a box to be its "volume",

$$m(B) = |B| = |I_1| \cdots |I_n|$$

Definition 2.1.3 (Elementary Sets). An elementary set is a finite union of boxes. Denote the set of all Elementary sets to be \mathcal{M}_E .

Proposition 2.1.4. Let $E, F \in \mathcal{M}_E$. $E \cap F$, $E \cup F$, $E/F \in \mathcal{M}_E$.

Proposition 2.1.5. Let E be an elementary set of \mathbb{R}^n .

- E can be partitioned into finite union of disjoint boxes.
- \bullet The measure of E is independent of the partition.

Proposition 2.1.6. Let E, F be an elementary set. Elementary measures have the following properties.

- $m(E) \ge 0$
- $m(E \cup F) = m(E) + m(F)$ if $E \cap F = \emptyset$
- $m(\emptyset) = 0$
- $E \subset F \implies m(E) \le m(F)$
- $m(E \cup F) \le m(E) + m(F)$

Theorem 2.1.7. The elementary measure function is unquie up to a constant multiple.

2.2 Jordan Measure

Definition 2.2.1 (Jordan Inner Measure). Let $E \subset \mathbb{R}^n$ be a bounded set. Define the Jordan Inner Measure as

$$m_{J*}(E) = \sup_{A \subset E, A \in \mathcal{M}_E} m(A)$$

Definition 2.2.2 (Jordan Outer Measure). Let $E \subset \mathbb{R}^n$ be a bounded set. Define the Jordan Outer Measure as

$$m^{J*}(E) = \inf_{E \subset A, A \in \mathcal{M}_E} m(A)$$

Definition 2.2.3 (Jordan Measurable). We say that E is Jordan mesurable if

$$m_{J*}(E) = m^{J*}(E)$$

Denote the set of all Jordan measurable sets to be \mathcal{M}_J .

Lemma 2.2.4. $\mathcal{M}_E \subseteq \mathcal{M}_J$ and m(E) is consistent if $E \in \mathcal{M}_E$

Proposition 2.2.5. Let $E, F \in \mathcal{M}_J$.

- $E \cap F \in \mathcal{M}_J$
- $E \cup F \in \mathcal{M}_J$
- $E/F \in \mathcal{M}_J$

Proposition 2.2.6. A set $E \subset \mathbb{R}^n$ is Jordna measurable if and only if for every $\epsilon > 0$ there exists $A \subset E \subset B$ such that $m(B/A) < \epsilon$

Proposition 2.2.7. Let $E, F \in \mathcal{M}_J$. Elementary measures have the following properties.

- $m(E) \ge 0$
- $m(E \cup F) = m(E) + m(F)$ if $M \cap F = \emptyset$
- $m(\emptyset) = 0$
- $E \subset F \implies m(E) \le m(F)$
- $m(E \cup F) \le m(E) + m(F)$

Theorem 2.2.8. The Jordan measure function is unquie up to a constant multiple.

Proposition 2.2.9. Let $E \subset \mathbb{R}^n$ and $F \subset \mathbb{R}^m$ be Jordan measurable. $E \times F$ is also Jordan Measurable and $m(E \times F) = m(E) \times m(F)$.

Proposition 2.2.10. $B_r(x) \subset \mathbb{R}^n$ and $\overline{B}_r(x) \subset \mathbb{R}^n$ are Jordan Measurable with Jordan Measure $c_n r^n$ for some $c_n > 0$ depending on n.

Proposition 2.2.11. Let $E \in \mathcal{M}_J$.

- $m^{J*}(E) = m^{J*}(\overline{E})$
- $m_{J*}(E) = m^{J*}(E^{\circ})$
- $E \in \mathcal{M}_J$ if and only if $m^{J*}(\partial E) = 0$

Proposition 2.2.12 (Jordan Measurable implies Riemann Integrable). Let $E \in \mathcal{M}_J$ and $E \subset [a, b]$. Let

$$1_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Then 1_E is Riemann Integrable and $\int_a^b 1_E(x) dx = m(E)$

Proposition 2.2.13. Let $f:[a,b]\to\mathbb{R}$ be bounded. f is Riemann integrable if and only if $E_*=\{(x,t)|x\in[a,b],f(x)\leq t\leq 0\}$ and $E^*=\{(x,t)|x\in[a,b],0\leq t\leq f(x)\}$ are Jordan Measurable. In this case,

$$\int_{a}^{b} f(x) \, dx = m(E^*) - m(E_*)$$

Lemma 2.2.14. Let $E_n \in \mathcal{M}_J$ for all n. $\bigcup_{n=1}^{\infty} E_n$ and $\bigcap_{n=1}^{\infty} E_n$ may not be Jordan Measurable.

2.3 Lebesgue Outer Measure

Definition 2.3.1 (Lebesgue Outer Measure). Let $E \subset \mathbb{R}^n$ be a bounded set. Define the Lebesgue Outer Measure as

$$m^*(E) = \inf_{E \subset \bigcup_{n=1}^{\infty} A_n, A_n \in \mathcal{M}_E} \sum_{n=1}^{\infty} |A_n|$$

Proposition 2.3.2. $m^*(E) \le m^{J*}(E)$

Proposition 2.3.3. Let $E, F \subset \mathbb{R}^n$.

- $m^*(\emptyset) = 0$
- $E \subset F$ implies $m^*(E) \le m^*(F)$
- Let $E_n \subset \mathbb{R}^n$ for all n. Then

$$m^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} m^*(E_n)$$

Lemma 2.3.4. Let $E, F \subset \mathbb{R}^n$ such that dist(E, F) > 0. Then

$$m^*(E \cup F) = m^*(E) + m^*(F)$$

Definition 2.3.5 (Almost Disjoint Sets). Two boxes E, F are almost disjoint if

$$E^{\circ} \cap F^{\circ} = \emptyset$$

Lemma 2.3.6. Let $E = \bigcup_{n=1}^{\infty} B_n$ be a countable union of almost disjoint boxes. Then

$$m^*(E) = \sum_{n=1}^{\infty} |B_n|$$

Lemma 2.3.7. If $E \subset \mathbb{R}^n$ is expressible as a countable union of almost disjoint boxes, then $m^*(E) = m_{J^*}(E)$

Lemma 2.3.8. Open sets can be expressed as a countable union of almost disjoint boxes.

Lemma 2.3.9. Let $E \subset \mathbb{R}^n$ be an arbitrary set. Then

$$m^*(E) = \inf_{E \subset U, U \text{ open}} m^*(U)$$

2.4 Lebesque Measure

Definition 2.4.1 (Lebesgue Measurability). A set $E \subset \mathbb{R}^n$ is Lebesgue mesurable if for every $\epsilon > 0$, there exists an open set $U \subset \mathbb{R}^n$ with $E \subset U$ such that $m^*(U/E) < \epsilon$. Denote the set of all Lebesgue measurable sets to be \mathcal{M}_L .

Proposition 2.4.2. There exists Lebesgue mesurable sets.

- Every open set is Lebesgue measurable
- Every closed set is Lebesgue measurable
- Every set of Lebesgue outer measure 0 is measurable
- $\emptyset \in \mathcal{M}_L$
- If $E \subset \mathbb{R}^n \in \mathcal{M}_L$ implies $\mathbb{R}^n/E \in \mathcal{M}_L$
- Let $E_n \in \mathcal{M}_L$ for all n and $E_n \subset \mathbb{R}^n$. Then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{M}_L$ and $\bigcap_{n=1}^{\infty} E_n \in \mathcal{M}_L$

Theorem 2.4.3 (Criteria for Measurability). Let $E \subset \mathbb{R}^n$. The following are equivalent

- $E \in \mathcal{M}_L$
- For every $\epsilon > 0$ there exists an open set U such that $E \subset U$ with $m^*(U/E) < \epsilon$
- For every $\epsilon > 0$ there exists an open set U such that $m^*(U \triangle E) < \epsilon$
- For every $\epsilon > 0$, there exists a closed set F such that $F \subset E$ with $m^*(E/F) < \epsilon$
- For every $\epsilon > 0$ there exists a closed set F such that $m^*(F \triangle E) < \epsilon$
- For every $\epsilon > 0$ there exists $L \in \mathcal{M}_L$ such that $m^*(L \triangle E) < \epsilon$.

Lemma 2.4.4. $\mathcal{M}_J \subset \mathcal{M}_L$ and m(E) is consistent if $E \in \mathcal{M}_J$.

Proposition 2.4.5 (Measure Axioms). Let $E, F \subset \mathbb{R}^n$.

- $m(\emptyset) = 0$
- Let $E_n \subset \mathbb{R}^n$ for all n. Then

$$m\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} m(E_n)$$

Theorem 2.4.6 (Monotone Convergence Theorem). Let E_n be measurable for all n.

- Suppose $E_1 \subset E_2 \subset \cdots \subset \mathbb{R}^d$. Then $m(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} m(E_n)$
- Suppose $\mathbb{R}^d \supset E_1 \supset E_2 \supset \dots$ Then $m\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} m(E_n)$

Definition 2.4.7 (Set Convergence). We say that $\{E_n\}$ converges to E if the indicator functionsd 1_{E_n} converges pointwise to E.

Theorem 2.4.8. Suppose that $\{E_n\} \subset \mathcal{M}_L$ and $\{E_n \to E\}$ pointwise. Then $E \in \mathcal{M}_L$.

Theorem 2.4.9 (Dominated Convergence Theorem). Suppose that E_n are all contained in another Lebesgue measurable set F of finite measure. Then

$$\lim_{n\to\infty} m(E_n) = m(E)$$

2.5 Lebesque Integral

Definition 2.5.1 (Simple Functions). A simple function $f: \mathbb{R}^d \to \mathbb{C}$ is a finite linear combination

$$f = c_1 1_{E_1} + \dots + c_k 1_{E_k}$$

of indicator functions 1_{E_i} that are from Lesbegue measurable sets $E_i \subset \mathbb{R}^d$ for $i \in \{1, \dots, k\}$, where $k \in \mathbb{N}$ and $c_1, \dots, c_k \in \mathbb{C}$.

Definition 2.5.2 (Unsigned Simple Functions). A simple function is unsigned if $f : \mathbb{R}^d \to [0, +\infty]$ and c_i is a function mapping to the positive reals.

Definition 2.5.3. Let f be an unsigned simple function. Then define

$$S\left(\int_{R^d} f(x) dx\right) = \sum_{k=1}^n c_k m(E_k)$$