EPITA

Mathématiques

Contrôle 1

Novembre 2020

Durée : 3 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème indiqué est sur 30 points qui seront ramenés à 20 par une règle de trois.
Consignes:
 Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (3 points)

On appelle $\mathcal C$ l'ensemble des élèves d'une classe. On définit sur \mathcal{C} la relation suivante : $\forall (e,e') \in \mathcal{C}^2$, $e\mathcal{R}e' \iff "e$ habite à moins de 5mn de chez e'"

On notera $e \not R e'$ si : "e habite à strictement plus de 5mn de chez e'".

b. Un des élèves n'a aucun camarade à moins de 5mn de chez lui.

Exprimer avec des quantificateurs les phrases suivantes.

Exemple: "Un des élèves de la classe est à moins de 5mn de tous les autres élèves." s'écrit: $\exists e \in \mathcal{C}, \forall e' \in \mathcal{C}, e\mathcal{R}e'$

a. Tout élève a au moins un camarade à moins de 5mn de chez lui.

c. Si un élève e habite à moins de 5mn d'un élève e' et que e' habite à moins de 5mn de e'', alors e habite à moins de 5mn de e''.

Exercice 2 (4 points)

On s'intéresse de nouveau à la relation $\mathcal R$ décrite dans l'exercice 1. Citer les différentes propriétés qui définissent une relation d'ordre.

Pour chacune d'elles, dire si la relation $\mathcal R$ la vérifie et justifier sa réponse.

Exercice 3 (5 points)

1. Sans vous préoccuper du domaine de définition, calculer la dérivée de la fonction : $f(x) = \sin(e^{3x} + 2)$

2. Calculer l'intégrale : $J = \int_0^1 \frac{1}{x^2 + 3} \, \mathrm{d}x$ en posant $t = \frac{x}{\sqrt{3}}$

3. A l'aide d'une intégration par parties, calculer l'intégrale : $K = \int_1^e \frac{\ln(x)}{\sqrt{x}} \, \mathrm{d}x$.

Exercice 4 (3 points)

Soient $E=\mathbb{R},\, F=\mathbb{R}$ et $f:\left\{\begin{array}{ccc} E&\longrightarrow&F\\ x&\longmapsto&(x-2)^2-1\end{array}\right.$ dont voici le graphe ci-contre.

a. f est-elle injective? Surjective? Justifiez votre réponse.

b. Proposer un intervalle I de $\mathbb R$ tel qu'en remplaçant un seul des ensembles E ou F par I, f soit injective.

Justifiez votre réponse.

c. Proposer un intervalle J de $\mathbb R$ tel qu'en remplaçant un seul des ensembles E ou F par J, f soit surjective. Justifiez votre réponse.

Exercice 5 (4 points)

Soient $(n,p) \in \mathbb{N}^2$, $p \leqslant n$.

1. Quelle relation relie $\binom{n}{p}$ et $\binom{n}{n-p}$?

2. Démontrer cette relation par le calcul.

3. Soit E un ensemble à n éléments. À quoi correspond le nombre $\binom{n}{p}$? $\binom{n}{n-p}$? Comment justifier la relation du 1.?

Exercice 6 (4 points)

Montrer par récurrence la proposition suivante : $\forall n \in \mathbb{N}, \quad n \geqslant 2, \quad \frac{2^n}{n!} \leqslant \frac{9}{2} \left(\frac{2}{3}\right)^n$

Exercice 7 (7 points)

- 1. Dans cet exercice, l'application numérique exacte n'est pas demandée. Seule la formule appliquée aux données de l'exercice est attendue.
- 2. Les questions de cet exercice sont indépendantes les unes des autres.

On considère l'ensemble $E = \{a, b, c, d, e, f, g, h, i, j, k, l\}$

a. Quel est le	cardinal de $\mathcal{M}_5(E)$?				
o. Combien y	a-t-il de mots conte	enant <u>au moins</u> une	fois la lettre " l " o	dans $\mathcal{M}_5(E)$?		
e. Combien y	a-t-il d'anagramme	s du mot "babab"?				
kgehj"	(E) l'ensemble des		sans répétition c	onstruits à partir d	des lettres de E . E	Exem
kgehj"	(E) l'ensemble des cardinal de $\mathcal{N}_5(E)$ s		sans répétition c	onstruits à partir d	des lettres de E . I	Exemp
kgehj" Quel est le	cardinal de $\mathcal{N}_5(E)$,			des lettres de E . I	Exemp
kgehj" . Quel est le		,			des lettres de E. F	Exemp
kgehj" Quel est le	cardinal de $\mathcal{N}_5(E)$,			des lettres de E. F	Exemp
kgehj" Quel est le	cardinal de $\mathcal{N}_5(E)$,			des lettres de E . I	Exemp
kgehj" Quel est le	cardinal de $\mathcal{N}_5(E)$ a-t-il de mots se ter	minant par une vo	$ ho$ elle dans $\mathcal{N}_5(E)$?		Exemp
kgehj" . Quel est le . Combien y	cardinal de $\mathcal{N}_5(E)$	minant par une vo	$ ho$ elle dans $\mathcal{N}_5(E)$?		Exemp
kgehj" a. Quel est le b. Combien y	cardinal de $\mathcal{N}_5(E)$ a-t-il de mots se ter	minant par une vo	$ ho$ elle dans $\mathcal{N}_5(E)$?		Exemp
kgehj" a. Quel est le b. Combien y	cardinal de $\mathcal{N}_5(E)$ a-t-il de mots se ter	minant par une vo	$ ho$ elle dans $\mathcal{N}_5(E)$?		Exemp
kgehj" L. Quel est le Combien y L. Combien y	cardinal de $\mathcal{N}_5(E)$ a-t-il de mots se ter	eminant par une vo	velle dans $\mathcal{N}_5(E)$	$\{f,h\}\;\mathrm{dans}\;\mathcal{N}_5(E)?$,	Exemp