

What is claimed is:

1 1. A method for improving the performance of a rotary actuator in a disk
2 drive, the rotary actuator comprises a voice coil motor (VCM) characterized by a torque
3 parameter, the disk drive comprises a servo control system having a motor driver circuit
4 for receiving a series of command effort signals transmitted based on a first seek profile,
5 and for providing an operating current to the VCM based on the command effort signals
6 for causing a movement of the actuator from a first radial location to a target radial
7 location, the method comprising:

8 recording the series of transmitted command effort signals, and while the
9 actuator is moving:

10 adjusting each recorded command effort signal to account for at
11 least one disk drive influence on the actuator movement;

12 storing the adjusted command effort signals;

13 monitoring the velocity of the moving actuator;

14 calculating an acceleration value corresponding to the moving
15 actuator from the stored command effort signals and the monitored
16 velocity; and

17 adjusting the acceleration value to account for a radial torque
18 parameter variation.

1 2. The method as defined in claim 1, wherein the recording further comprises:
2 comparing each command effort signal to a threshold value; and
3 determining if the compared command effort signal exceeds the threshold value.
1 3. The method as defined in claim 2, wherein the storing further comprises:
2 storing the last command effort signal transmitted prior to the command
3 effort signal exceeding the threshold value; and
4 storing a subset of the command effort signals transmitted following the
5 command effort signal exceeding the threshold value wherein each command
6 effort in the subset exceeds the threshold value.
1 4. The method as defined in claim 3, wherein the monitoring further comprises:

2 determining an initial velocity of the moving actuator corresponding to the
3 first-transmitted command effort signal in the subset of the command effort
4 signals following the exceeding of the threshold value; and

5 determining a final velocity of the moving actuator corresponding to the
6 most recently transmitted command effort signal in the subset of the command
7 effort signals.

1 5. The method as defined in claim 4, wherein the calculating further comprises:

2 calculating a velocity differential between the determined initial velocity
3 and the final velocity;

4 performing a summation of the stored subset of command effort signals
5 and generating a summation result;

6 subtracting a first value corresponding to a selected command effort signal in
7 subset of the command effort signals from a second value corresponding to the last
8 command effort signal transmitted prior to the command effort signal exceeding the
9 threshold value, and generating a subtraction result;

10 multiplying the subtraction result by a VCM-delay value and generating a
11 multiplication result;

12 adding the multiplication result to the summation result and generating an
13 addition result; and

14 dividing the velocity differential by the addition result and generating a
15 first division result wherein the calculated acceleration value comprises the first
16 division result.

1 6. The method as defined in claim 5, wherein the VCM-delay value is a
2 normalized VCM-delay value of 0.5.

1 7. The method as defined in claim 5, further comprising:

2 modifying the first seek profile based on the adjusted acceleration value.

1 8. The method as defined in claim 7, wherein the movement of the actuator
2 comprises an acceleration phase followed by a deceleration phase.

1 9. The method as defined in claim 8, wherein the calculating occurs during
2 the acceleration phase.

1 10. The method as defined in claim 9, wherein modifying the first seek profile
2 comprises:

3 adjusting the configuration of deceleration phase to reduce a time period
4 associated with the movement of the actuator from the first radial location to the
5 target radial location.

1 11. The method as defined in claim 10, wherein the threshold value corresponds
2 to an approximate saturation current of the motor driver circuit.

1 12. The method as defined in claim 11, wherein the subset of command effort
2 signals comprises a predetermined number of command effort signals.

1 13. The method as defined in claim 12, wherein the predetermined number of
2 command effort signals is six.

1 14. The method as defined in claim 5, wherein the servo control system comprises
2 a compensator for determining command effort signals during track-follow operations.

1 15. The method as defined in claim 14, further comprising:
2 applying a gain factor to the determined command effort signals based on
3 the adjusted acceleration value.

1 16. The method as defined in claim 15, further comprising:
2 scaling the gain factor by a ratio of the calculated acceleration value and an
3 initial acceleration value wherein the initial acceleration value is determined prior
4 to the recording.

1 17. The method as defined in claim 16, wherein the threshold value
2 corresponds to a current less than a saturation current of the motor driver circuit.

1 18. The method as defined in claim 17, wherein the subset of command effort
2 signals comprises a predetermined number of command effort signals.

1 19. The method as defined in claim 18, wherein the predetermined number of
2 command effort signals is three.

1 20. The method as defined in claim 1, wherein the adjusting the acceleration
2 value further comprises:

3 obtaining a value corresponding to the radial torque parameter variation; and
4 adjusting the calculated acceleration value based on the obtained value.

1 21. The method as defined in claim 20, wherein the value corresponding to the
2 radial torque parameter variation is obtained from a look up table.

1 22. The method as defined in claim 1, wherein the motor driver circuit
2 comprises a digital to analog converter (DAC).

1 23. The method as defined in claim 1, wherein the first seek profile is
2 determined based on an initial acceleration value determined prior to the recording.

1 24. The method as defined in claim 1, further comprising:
2 reducing the effects of noise-induced deviations in the adjusted
3 acceleration value.

1 25. The method as defined in claim 24, wherein the reducing further comprises:
2 applying a slew rate limit to the adjusted acceleration profile.

1 26. The method as defined in claim 25, wherein the reducing further comprises:
2 applying a low-pass filter to the adjusted acceleration profile.

1 27. The method as defined in claim 1, wherein the disk drive influence is
2 caused by a flex bias of a cable connecting the rotary actuator to the servo system and
3 wherein the adjusting each command effort signal further comprises filtering a flex bias
4 feed forward component from the command effort signal.

1 28. The method as defined in claim 1, wherein the disk drive comprises a disk
2 having a plurality of recorded servo tracks and wherein the disk drive influence is caused
3 by a variation in the position of a recorded servo track and wherein the adjusting each
4 command effort signal further comprises filtering from the command effort signal a
5 component corresponding to the variation in the position of the recorded servo track.