A FORMAL MODELING APPROACH TO ONTOLOGY ENGINEERING

MODELING, TRANSFORMATION & VERIFICATION

YUAN FANG LI

B.Sc. (Hons). NUS

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE NATIONAL UNIVERSITY OF SINGAPORE

2006

Acknowledgement

I would like to take this opportunity to express my sincere gratitude to those who assisted me, in one way or another, with my Ph.D. in the last four years.

First and foremost, I would like to thank my Honor's Year Project and Ph.D. advisor Dr. Dong Jin Song for his never-ending enthusiasm, guidance, support, encouragement and insight throughout the course of my post graduate study. His diligent reading and insightful and constructive criticism of early drafts and many other works made this thesis possible.

To my fellow students, Chen Chunqing, Sun Jun and my cousin Feng Yuzhang – your friendship, collaboration and funny chit chat gave me inspiration and helped me go through the long and sometimes not-so-smooth ride of Ph.D. study.

To my former lab mates Dr. Sun Jing and Dr. Wang Hai – for your suggestions on all aspects of research works and generous hospitality.

I am indebt to Dr. Bimlesh Wadha and Dr. Khoo Siau Cheng for the valuable comments on an early draft of this thesis. Dr. Wadha, in particular, carefully reviewed the entire thesis and corrected many language errors. I am sincerely grateful to her for the time and effort put into this.

I am also grateful to the external examiner and many anonymous reviewers who reviewed this thesis and previous publications that are part of this thesis and provided critical comments, which contributed to to the clarification of many of the ideas presented in this thesis.

This thesis was in part funded by the "Defence Innovative Research Project – Formal Design Methods and DAML" by the Defence Science and Technology Agency of Singapore. The Advanced Study Institute of NATO Science Committee sponsored me for attending the 2004 Marktoberdorf Summer School. My gratitude also goes to Singapore Millennium Foundation and National University of Singapore for the generous financial support, in forms of scholarship, the President's Graduate Fellowship and conference travel allowance.

I wish to thank sincerely and deeply my parents who have raised me, taught me and supported me all these years and who always have faith in me.

Finally and most importantly, to my beloved wife Xing Meng Nan. Your ceaseless love, encouragement, patience and wonderful cooking have kept my morale and stamina high.

Contents

1	Intr	roduction 1				
	1.1	Motivation and Goals	1			
	1.2	Thesis Outline	6			
		1.2.1 Chapter 2	6			
		1.2.2 Chapter 3	7			
		1.2.3 Chapter 4	7			
		1.2.4 Chapter 5	9			
		1.2.5 Chapter 6	10			
		1.2.6 Chapter 7	11			
		1.2.7 Chapter 8	11			
	1.3	Publications	12			
2	Bac	$\operatorname{ckground}$ 1				
	2.1	The Semantic Web – Languages & Tools	13			
	2.2	Semantic Web Services Ontology OWL-S	25			
	2.3	Z & Alloy – Languages & Tools	27			
		2.3.1 Z	27			
		2.3.2 Alloy	33			
	2.4	Institutions & Institution Morphisms	37			

iii

3	Che	m ecking~Web~Ontologies~using~Z/EVES	41		
	3.1	Z.1 Z Semantics for DAML+OIL			
		3.1.1 Basic Concepts	42		
		3.1.2 Class Elements	43		
		3.1.3 Property Restrictions	44		
		3.1.4 Property Elements	45		
		3.1.5 Instances	46		
	3.2	Import Mechanisms & Proof Support	46		
	3.3	Military Plan Ontologies	47		
3.4 Transformation from DAML+OIL/RDF to Z		Transformation from DAML+OIL/RDF to Z	49		
	3.5	Checking DAML+OIL Ontologies using Z/EVES	51		
		3.5.1 Inconsistency Checking	51		
		3.5.2 Subsumption Reasoning	53		
		3.5.3 Instantiation Reasoning	53		
		3.5.4 Instance Property Reasoning	54		
	3.6	3.6 Chapter Summary			
4	A (Combined Approach to Checking Web Ontologies	57		
	4.1	Alloy Semantics for DAML+OIL	59		
		4.1.1 Import Mechanisms & Proof Support	61		
	4.2	Z Semantics for SWRL	61		
	4.3	Transformation from Web Ontologies to Z & Alloy	63		
		4.3.1 Transformation from SWRL to Z	63		
		4.3.2 Transformation from DAML+OIL to Alloy	64		
	4.4	The Combined Approach to Checking Web Ontologies	65		

		4.4.1 An Overview of the Combined Approach	
		4.4.2 Checking Military Plan Ontology 67	
		4.4.3 Reasoning About More Complex Properties	
	4.5	Chapter Summary	
5	Z S	mantics for OWL: Soundness Proof Using Institution Morphisms	83
	5.1	The OWL Institution \mathfrak{O}	
		5.1.1 The Grothendieck Institution of OWL	
	5.2	The Institution 3	
		5.2.1 The Use of the Mathematical Tool-kit	
	5.3	Encoding D in 3	
	5.4	Chapter Summary	
6	The	Tools Environment: SESeW 103	
	6.1	Overview of SESeW	
	6.2	Ontology Creation	
		6.2.1 Performance Evaluation	
	6.3	Ontology Querying	
	6.4	Ontology Transformation	
	6.5	External Tools Connection	
	6.6	Chapter Summary	
7	Sim	ulating Semantic Web Services with LSCs and Play-Engine 115	
	7.1	LSCs & Play-Engine	
	7.2	Modeling OWL-S with LSCs	
		7.2.1 Basics	

		7.2.2 Processes	120
	7.3	Case Study	124
		7.3.1 System scenario	124
		7.3.2 Simulation	127
	7.4	Chapter Summary	129
8	Con	aclusion	131
	8.1	Main Contributions of the Thesis	131
	8.2	Future Work Directions	136
		8.2.1 Further Development of SESeW	136
		8.2.2 Verification of Web Ontologies – Beyond Static Data	137
		8.2.3 Augmenting the Semantic Web with Belief	139
A	Glos	ssary of Z Notation	155
	A.1	Definitions and Declarations	155
	A.2	Logic	156
	A.3	Sets	157
	A.4	Numbers	158
	A.5	Relations	159
	A.6	Functions	160
	A.7	Sequences	162
	A.8	Bags	163
	A.9	Axiomatic Definitions	163
	A.10	Generic Definitions	164
	A.11	Schema Definition	165
	A.12	Schema Operators	165

		CONTENTS	vii
	A.13	Operation Schemas	169
	A.14	Operation Schema Operators	170
В	Z Se	emantics for DAML+OIL	171
	B.1	Basic Concepts	171
	B.2	Class Elements	172
	B.3	Class Enumeration	173
	B.4	Property Restriction	173
	B.5	Property Elements	175
	B.6	Instances	176
\mathbf{C}	C Z Semantics for OWL DL		179
	C.1	Basic Concepts	179
	C.2	Classes	181
		C.2.1 Class Descrpitions	181
		C.2.2 Class Axioms	185

C.3.1

C.3.3

Summary

The Semantic Web has been regarded by many as the new generation of the World Wide Web. It enables software agents on the Web to autonomously and collaboratively understand, process and aggregate information by giving Web resources well-defined and machine-interpretable markups, in the form of ontologies.

Ensuring the correctness of ontologies is very important as inconsistent ontologies may lead software agents to reason erroneously. Such tasks are non trivial as the more expressive ontology languages are, the less automated are the reasoners/provers and with the growth of the size of ontologies, locating inconsistencies is also more difficult.

Further, as the expressivity of these languages is also limited in more than one way, certain desirable ontology-related properties cannot be expressed in these languages. The ability to express and check these properties will make ontologies more accurate and more robust. It is therefore highly desirable.

Dynamic Web services help make the Web truly ubiquitous. In the Semantic Web, service ontologies describe the capabilities, requirements, control structures, etc., of Web services. Their consistency must also be guaranteed to ensure the correct functioning of software agents.

Software engineering and in particular formal methods are an active and well-developed research area. We believe that mature formal methods and their tool support can contribute to the development of the Semantic Web. This thesis presents a formal modeling approach for verifying ontologies. By defining semantics of ontology languages in expressive formal languages, their proof tools can be used to ensure the correctness of ontology-related properties.

The validity of the above approach entirely relies on the correctness of the semantics of ontology languages in formal methods. Hence, the other important topic in this thesis is the proof of such correctness. An abstract approach using institutions and institution morphisms is employed to represent and reason about ontology languages and formal languages. An integrated tools environment is also presented to facilitate the application of the verification approach.

Key words: Semantic Web, DAML+OIL, institutions, ontology, OWL, verification, Z, LSC

List of Tables

2.1	Predefined Qualified Name Prefixes	16
2.2	Strength & weakness of the reasoning tools	36
4.1	SWRL rules atoms in Z	63
4.2	Statistics of the ontology planA.daml	75
7.1	A Partial Summary of the OWL-S constructs	121

List of Figures

1.1	Generic architecture of the Semantic Web	2
2.1	A newly proposed layering of the Semantic Web	22
2.2	Architecture of the OWL-S ontology	26
3.1	Sample IE output	48
4.1	Discovery of an unsatisfiable concept by RACER	68
4.2	Alloy concepts related to the inconsistency	69
4.3	Alloy Analyzer showing the source of unsatisfiability	71
6.1	Main Window of SESeW	104
6.2	Flow of Ontology Creation	105
6.3	Creating Datatype Property	106
6.4	Performance of Ontology Creation	108
6.5	The Query Interface	109
7.1	Holiday booking System	125
7.2	LSC Example: Budget checking	127
7.3	Simulation Screen Shot	128