Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 23.09.2016

Arbeitszeit: 150 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
							1
	Aufgabe	1	2	3	4	$\sum_{i \in I}$	
	erreichbare Punkte	12	9	11	8	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	mer auf	dem I	eckbla ¹	tt ein,
rechnen S	ie die Aufgaben auf se	eparatei	n Blätte	ern, ni	c ht auf	dem A	.ngabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	die Mat	rikelnu	mmer a	ın,
begründe	n Sie Ihre Antworten a	ausführ	lich und	d			
kreuzen S antreten l	ie hier an, an welchem könnten:	der fol	genden	Termi	ne Sie z	ur mün	ıdlichen Prüfunş
	Fr., 30.09.2016	□ Mo.,	03.10.	2016		Di., 04	.10.2016

1. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

12 P.|

a) Gegeben ist die Übertragungsfunktion

5 P.|

1 P.

$$G(s) = \frac{22500\sqrt{3}}{\left(s^2 + s150\sqrt{3}\right)\left(15 + \frac{s(2+\sqrt{3})}{10}\right)}.$$

Entwerfen Sie einen realisierbaren Regler der Form

$$R(s) = V \frac{(1 + sT_D)}{s^{\rho} (1 + sT_R)^{\chi}}$$

mit einer minimalen Anzahl an Parametern nach dem FKL-Verfahren, sodass die Sprungantwort des geschlossenen Kreises folgende Eigenschaften aufweist:

- Anstiegszeit $t_r = 0.01$ s
- Überschwingen $\ddot{u} = 25 \%$
- $\bullet \ e_{\infty}|_{r(t)=\sigma(t)}=0.$

Bestimmen Sie

- i. die Parameter ρ, χ , 1P.
- ii. die Zeitkonstante T_D , 1.5 P.
- iii. den Verstärkungsfaktor V, 1.5 P.
- iv. die Zeitkonstante T_R .

Hinweis: Vernachlässigen Sie bei der Bestimmung des Verstärkungsfaktors und der Zeitkonstante T_D eventuell notwendige Realisierungsterme.

b) Von einem kausalen **zeitkontinuierlichen** LTI System sind die Hankelmatrix 4 P.

$$\mathbf{H} = \begin{bmatrix} 2 & -2 & 4 \\ -2 & 4 & -14 \\ 4 & -14 & 52 \end{bmatrix}$$

Betragsganges an, welche in Abbildung 1 dargestellt sind. Begründen Sie ihren

und die Eigenwerte $\lambda_1 = -3, \lambda_2 = -2$ sowie $\lambda_3 = -1$ bekannt.

- i. Berechnen Sie die Impulsantwort q(t) des Systems.
- ii. Berechnen Sie die Sprungantwort h(t) des Systems.
- c) Geben Sie eine mögliche Übertragungsfunktion G(s) der Ortskurve und des 3 P.
 - Lösungsweg.

Abbildung 1: Betragsgang und Ortskurve von G(s) zur Aufgabe 1c.

$$\dot{\mathbf{x}} = \begin{bmatrix} \alpha & 0 & 0 \\ -1 & -3 & 0 \\ 2 & 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}$$
(1)

wobei $\alpha \in \mathbb{R}$ gilt.

- a) Bestimmen Sie alle Werte des Parameters α , für welche das System vollständig erreichbar, vollständig beobachtbar und asymptotisch stabil ist.
- b) Wählen Sie $\alpha = 1$. Ist es sinnvoll unter dieser Bedingung für das System (2) einen trivialen Beobachter zu entwerfen? (Begründen Sie Ihre Antwort)
- c) Entwerfen Sie für das System (2) mit $\alpha=1$ einen vollständigen Luenberger Beobachter. Wählen Sie hierbei für das charakteristische Polynom der Dynamikmatrix des Fehlersystems

$$p(\lambda) = \lambda^3 + 6\lambda^2 + 12\lambda + 8.$$

3. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

11 P.

a) Gegeben ist das vollständig steuerbare zeitdiskrete LTI-System

7 P.

1 P.|

3 P.|

4 P.

$$\mathbf{x}_{k+1} = \begin{bmatrix} 2 & -4 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} u_k. \tag{2}$$

- i. Ist das System (2) vollständig erreichbar? Begründen Sie ihre Antwort.
- ii. Geben Sie eine Eingangsfolge u_k an, welche das System (2) von einem beliebigen Anfangszustand \mathbf{x}_0 in maximal drei Zeitschritten in den Ursprung überführt, d.h. $\mathbf{x}_k = \mathbf{0}$ für $k \geq 3$.
- iii. Entwerfen Sie für das System (2) einen Zustandsregler der Form $u_k = \mathbf{k}^T \mathbf{x}_k$ 3 P.| mit dem Vektor $\mathbf{k}^{\mathrm{T}} = [k_1, k_2, k_3]$, sodass die Eigenwerte des geschlossenen Kreises bei $\left[0, -\frac{1}{2}, -\frac{1}{2}\right]$ zu liegen kommen. *Hinweis*: Ein Koeffizient von **k** ist nach belieben wählbar.
- b) Gegeben ist ein zeitdiskretes LTI System in Form der Differenzengleichung

$$-\frac{1}{2}y_k + \frac{1}{4}y_{k-2} = -2u_{k-1} + 6u_{k-2}. (3)$$

- i. Berechnen Sie für die Differenzengleichung (3) die z-Übertragungsfunktion 2 P.
- ii. Beurteilen Sie die BIBO-Stabilität des Systems . 1 P.
- iii. Berechnen Sie den stationären Endwert y_{∞} der **Sprungantwort** . 1 P.

4. Betrachten Sie das nichtlineare mathematische Modell einer Regelstrecke

$$8\,\mathrm{P.}|$$

$$\dot{x_1} = x_2
\dot{x_2} = \sin(x_1)x_2^2 - x_2 + u
\dot{x_3} = x_4
\dot{x_4} = -\sin(2x_1) + 3x_2 - x_4 + u
y = x_4$$
(4)

mit dem Zustandsvektor $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]^{\mathrm{T}}$, der Eingangsgröße u und dem Streckenausgang y.

- a) Bestimmen Sie alle Ruhelagen des Systems (4).
- b) Linearisieren Sie das System (4) um die Ruhelage $\mathbf{x}_R = [\pi \ 0 \ 0 \ 0]^{\mathrm{T}},$ 4P.| $u_R = 0$. Geben Sie das resultierende lineare System an.
- c) Angenommen $\tilde{\mathbf{x}}(t)$ ist eine Trajektorie des Systems (4) für eine vorgegebene Eingangsgröße $\tilde{u}(t)$, welche den Zustand des Systems von $\mathbf{x}_0 = \tilde{\mathbf{x}}_0$ in $\mathbf{x}_{op} = \tilde{\mathbf{x}}_{op}$ überführt. Linearisieren das System (4) um diese Trajektorie und geben Sie das resultierende lineare System an. Zu welcher Systemklasse kann das linearisierte System zugeordnet werden?