Coordenadas Polares

Mauri C. Nascimento – Dep. De Matemática – FC – Unesp/Bauru

Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P = (a,b) onde a é a projeção de P no eixo x e b, a projeção no eixo y. Podemos também descrever a localização de P, a partir da distância de P à origem O do sistema, e do ângulo formado pelo eixo x e o segmento OP, caso P \neq O. Denotamos P = (r, θ) onde r é a distância de P a O e θ o ângulo tomado no sentido anti–horário, da parte positiva do eixo Ox ao segmento OP, caso P \neq O. Se P = O, denotamos P = (0, θ), para qualquer θ . Esta maneira representar o plano é chamada Sistema de Coordenadas Polares.

Exemplos.

Coordenadas	Coordenadas
cartesianas	polares
(1,0)	(1,0)
(0,2)	(2, π/2)
(-3,0)	(3,π)
(0,-3)	(3,3π/2)
(1,1)	$(\sqrt{2},\pi/4)$
(-2,-2)	$2\sqrt{2}$,3 π /4)

Para representar pontos em coordenadas polares, necessitamos somente de um ponto O do plano e uma semi-reta com origem em O. Representamos abaixo um ponto P de coordenadas polares (r,θ) , tomando o segmento OP com medida r.

O ponto fixo O é chamado *polo* e a semi-reta, *eixo polar*.

Em coordenadas polares, podemos ter representações diferentes para um mesmo ponto, isto é, podemos ter P = (r,θ) e P = (s,α) sem que r=s e $\theta=\alpha$, ou seja $(r,\theta)=(s,\alpha)$ não implica em r=s e $\theta=\alpha$. Assim, (r,θ) não representa um par ordenado, mas sim uma classe de pares ordenados, representando um mesmo ponto.

Denotamos um ponto P por $(r,-\theta)$, para r e θ positivos, se θ é tomado no sentido horário. Assim, $(r,-\theta)=(r,2\pi-\theta)$ e $(r,-\theta)$ é o simétrico de (r,θ) em relação à reta suporte do eixo polar.

Exemplo. $(1,-\pi/4) = (1, 7\pi/4)$

Denotamos P por $(-r,\theta)$, para r positivo, se P = $(r,\pi+\theta)$, ou seja, consideramos $(-r,\theta)=(r,\theta+\pi)$. Assim, $(-r,\theta)$ é o simétrico de (r,θ) em relação ao polo.

Exemplo. $(3,\pi/2) = (-3,3\pi/2)$

Dado um ângulo θ , θ pode ser representado por θ +2k π , para todo k inteiro. Assim, $(r,\theta)=(r,\theta+2\pi)=(r,\theta+4\pi)=(r,\theta-2\pi)=(r,\theta-4\pi)=...$

Exemplo.
$$(5,\pi/2) = (5, \pi/2 + 10\pi) = (5, 21\pi/2)$$

Mudança de coordenadas

Um ponto P do plano pode ser representado em coordenadas cartesianas por (x,y) ou em coordenadas polares por (r,θ) . Para facilidade de comparação entre os dois

sistemas, consideramos o ponto O coincidindo com a origem do sistema cartesiano e, a semi-reta, a parte do não negativa do eixo x.

a) Mudança de coordenadas polares para coordenadas cartesianas

Seja P um ponto com coordenadas polares (r,θ) .

Se $0 < \theta < \pi/2$ e r > 0. No triângulo retângulo OPx a seguir, obtemos as seguintes relações:

Se $\theta=0$ e r > 0, temos P no eixo das abcissas. Logo, P tem coordenadas cartesianas (x,0) e coordenadas polares (x,0) (r = x e $\theta=0$). Assim, x = x·1 = r $\cos\theta$ e y = $0 = r \cdot 0 = r \sin\theta$.

Se r = 0, $P = (0,\theta)$ para qualquer θ . Aqui também, $x = r \cos \theta$ e $y = r \sin \theta$.

Para os casos onde $\theta \ge \pi/2$, fica como exercício mostrar que também vale: $x = r \cos \theta$ e $y = r \sin \theta$.

b) Mudança de coordenadas cartesianas para coordenadas polares

Seja P um ponto com coordenadas cartesianas (x,y). Como vimos acima, considerando P com coordenadas (r,θ) , temos as relações $x = r\cos\theta$ e $y = r\sin\theta$ Como $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\cos^2\theta+\sin^2\theta)=r^2\times 1=r^2$, temos que $r=\sqrt{x^2+y^2}$. Se r=0, isto é, x=y=0 então podemos tomar θ qualquer. Se $r\neq 0$, θ é tal que $\cos\theta=x/r$ e $\sin\theta=y/r$.

Exemplo. Se P tem coordenadas polares $(-2,\pi/6)$, então $x=-2cos(\pi/6)$ e $y=-2sen(\pi/6)$. Logo, x=-1 e $y=-\sqrt{3}$, portanto, P tem coordenadas cartesianas $(-1,-\sqrt{3})$.

Exemplo. Se P tem coordenadas cartesianas (-1,1) então $r^2 = (-1)^2 + 1^2$, ou seja, $r = \sqrt{2}$.

Como $\cos \theta = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$ e $\sin \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ então $\theta = 3\pi/4$. Assim, P temo como coordenadas polares, $(\sqrt{2}, \frac{3\pi}{4})$

Podemos também transformar equações cartesianas em polares e vice-versa.

Exemplo. A circunferência de centro na origem e raio 3 tem equação cartesiana $x^2+y^2=9$. Como $x = r \cos \theta$ e $y = r \sin \theta$ então $r^2 = 9$, ou seja, r = 3 é a equação polar dessa circunferência.

Exemplo. Se uma curva tem equação polar $r = \cos \theta + \sin \theta$, multiplicando ambos os membros da igualdade por r, obtemos $r^2 = r\cos \theta + r\sin \theta$. Logo, $x^2 + y^2 = x + y$. Manipulando essa equação chegamos em $(x-\frac{1}{2})^2 + (y-\frac{1}{2}) = \frac{1}{2}$, ou seja, na equação da circunferência com centro em (½,½) e raio $\sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$.

Exercícios.

1) Transforme coordenadas cartesianas em coordenadas polares:

- b) (2,-2)
- c) $(\sqrt{3},1)$ d) (4,0)

2) Transforme coordenadas polares em coordenadas cartesianas:

- b) $(-2.49\pi/6)$ c) $(3.-5\pi/3)$
- d) $(0,\pi/9)$
- e) $(7,\pi)$

3) Encontre a equação polar para cada uma das seguintes equações cartesianas.

a)
$$(x-1)^2 + y^2 = 1$$
 b) $(x+2)^2 + (y-3)^2 = 13$ c) $x = -2$ d) $y = 3$ e) $y = x$

4) Encontre a equação cartesiana para cada uma das seguintes equações polares.

a)
$$r = 5$$
 b) $r = 2sen \theta$

c)
$$r = 2\cos\theta - 4\sin\theta$$
 d) $\theta = \pi/3$ e) $\sin\theta = \cos\theta$

d)
$$\theta = \pi/3$$

e) sen
$$\theta = \cos \theta$$

f)
$$r = \frac{2}{3 \sin \theta - 5 \cos \theta}$$

5) Encontre as equações polares das seguintes curvas:

a) da elipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 b) da hipérbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ c) da parábola $y = x^2$.

Respostas. 1) a) $(\sqrt{2}, \pi/4)$ b) $(2\sqrt{2}, 7\pi/4)$ c) $(2, \pi/6)$ d) (4,0) e) $(3, 3\pi/2)$

2) a) (0,1) b)
$$(-1, -\sqrt{3})$$
 c) $(\frac{3\sqrt{3}}{2}, \frac{3}{2})$ d) (0,0) e) $(-7,0)$

3) a)
$$r = 2\cos(\theta)$$
 b) $r = 6\sin(\theta) - 4\cos(\theta)$ c) $r = -2\sec(\theta)$ d) $r = 3\csc(\theta)$ e) $\theta = \frac{\pi}{4}$

4) a)
$$x^2 + y^2 = 25$$
 b) $(x-1)^2 + y^2 = 1$ c) $(x-1)^2 + (y+2)^2 = 5$ d) $y = \frac{\sqrt{3}}{3}x$ e) $y = x$

5) a)
$$r = \frac{ab}{\sqrt{b^2 \cos^2(\theta) + a^2 \sin^2(\theta)}} = \frac{ab}{\sqrt{b^2 - (b^2 - a^2) \sin^2(\theta)}}$$

b)
$$r = \frac{ab}{\sqrt{b^2 \cos^2(\theta) - a^2 \sin^2(\theta)}} = \frac{ab}{\sqrt{b^2 - (b^2 + a^2) \sin^2(\theta)}}$$

c)
$$r = tg(\theta)sec(\theta)$$

Gráficos em coordenadas polares

Como no caso de equações cartesianas, um ponto P está no gráfico da curva de equação $r = f(\theta)$ se, e somente se, $P = (r, f(\theta))$.

O uso de coordenadas polares simplifica, em alguns casos, equações de curvas. Apresentaremos alguns exemplos abaixo.

Exemplo 1. R = c, c uma constante positiva. Esta equação representa os pontos do plano, cuja distância ao polo é igual a c, isto é, representa a circunferência de raio c e centro no polo. Observe que r=-c representa a mesma circunferência.

Exemplo 2. $\theta=\theta_0$ onde $\theta_0\geq 0$. Esta equação representa os pontos $P=(r,\theta_0)$ onde r é um número real qualquer. Logo, $\theta=\theta_0$ representa uma reta passando pelo polo e que forma um ângulo de θ_0 com o eixo polar.

Exemplo 3. $r = \theta$, $\theta \ge 0$. Representa os pontos P = (r,r) onde $r \ge 0$, ou seja, os pontos P tais que a distância de P ao polo é igual ao ângulo, em radianos, entre o eixo polar e o segmento OP. A equação geral da espiral é dada por $r = a\theta$, considerando $\theta \ge 0$. Abaixo temos os gráficos de $r = \theta$ e $r = -\theta$, para $0 \le \theta \le 4\pi$.

Procedimentos para traçar gráficos

- 1) Verificar se existem simetrias, isto é, se a equação se altera ao trocar:
 - a) θ por $-\theta$: simetria em relação à reta $\theta = 0$ (eixo x)
 - b) θ por π – θ : simetria em relação à reta $\theta = \pi/2$ (eixo y)
 - c) θ por $\pi+\theta$: simetria em relação ao polo. É equivalente a trocar r por -r, pois $(-r,\theta)=(r,\theta+\pi)$. Logo $(r,\theta)=(-r,\theta)\Leftrightarrow (r,\theta)=(r,\theta+\pi)$.
- 2) Verificar se a curva passa pelo polo (r = 0)
- 3) Determinar os pontos da curva variando θ a partir de θ = 0
- 4) Verificar a existência de pontos críticos (máximos e mínimos): $f(\theta)' = 0$ e $f''(\theta) > 0 \Rightarrow \theta$ é um mínimo relativo; $f(\theta)' = 0$ e $f''(\theta) < 0 \Rightarrow \theta$ é um máximo relativo.
- 5) Verificar se r não se altera ao trocar θ por θ +2 π . Caso não haja alteração, basta variar θ entre θ e θ 2 π .

No exemplo 1, temos simetrias em relação aos eixos coordenados e ao polo.

No exemplo 2, temos simetria em relação ao polo.

No exemplo 3, não temos nenhum tipo de simetria e ao trocar θ por θ +2 π , temos variação no valor de r.

As seguintes relações trigonométricas serão úteis aqui:

- $\cos(-\theta) = \cos\theta = \cos(2\pi \theta) = \cos(2\pi + \theta)$ e $\cos(\pi \theta) = -\cos\theta$
- $sen(-\theta) = -sen(\theta) = sen(2\pi \theta) = sen(\pi \theta) = sen(\theta + 2\pi)$

Exemplo 4. $r = cos 2\theta$

Temos $cos 2\theta = cos(-2\theta)$; $cos 2(\pi-\theta) = cos (2\pi-2\theta) = cos (-2\theta) = cos 2\theta$ e $cos 2(\pi+\theta) = cos (2\pi+2\theta) = cos 2\theta$. Logo, existem simetrias em relação ao polo e em relação aos eixos x e y.

Derivando r em relação a θ , temos dr/d θ = -2sen(2 θ), logo, θ = k π /2, k inteiro, são pontos críticos. A derivada segunda de r fica r" = -4 cos (2 θ). Quando θ = 0, π , 2 π , 3 π , ... temos r" < 0, portanto, pontos de máximo; para θ = π /2, 3 π /2, 5 π /2, ... temos r" > 0, portanto, pontos de mínimo.

Para $\theta = \pi/4$, r = 0, ou seja, a curva passa pelo polo quando $\theta = \pi/4$.

Também r não se altera ao trocar θ por θ + 2π .

Assim, basta fazer o gráfico para $0 \le \theta \le \pi/2$ e completá-lo, a partir das simetrias.

Equações da forma $r = asen(n\theta)$ ou $r = acos(n\theta)$ para n inteiro positivo representam rosáceas.

Exemplo 5. $r = 1 + \cos \theta$.

Temos $1+cos \theta = 1+cos(-\theta) \neq 1+cos(\pi-\theta)$. Também, $1+cos \theta \neq 1+cos (\pi+\theta)$. Logo, o gráfico é simétrico em relação ao eixo x mas não é simétrico em relação ao eixo y e nem em relação ao polo. Também r não se altera ao trocar θ por $\theta+2\pi$.

Como $\frac{dr}{d\theta}$ = -sen θ , temos pontos críticos para θ = 0 e θ = π . Para θ = 0 temos um ponto de máximo (2,0) e para θ = π temos um ponto de mínimo (0, π).

Pontos para o gráfico:

θ	r				
0	2,00				
π/6	1,87				
π/4	1,71				
π/3	1,50				
π/2	1,00				
2π/3	0,50				
3π/4	0,29				
5π/6	0,13				
π	0,00				

Equações da forma $r = a(1\pm sen \theta)$ ou $r = a(1\pm cos \theta)$ representam uma categoria de curvas chamadas cardióides, por terem a forma de coração.

Exemplo 6. $r = 1+2\cos\theta$

Como no exemplo anterior, temos que o gráfico é simétrico em relação ao eixo x, mas não é simétrico em relação ao eixo y e ao polo.

Pontos para o gráfico:

θ	0	π/12	π/6	π/4	π/3	5π/12	π/2	7 π/12	2π/3	3π/4	5π/6	11π/12	π
r	3	2,93	2,73	2,41	2	1,52	1	0,48	0	-0,41	-0,73	-0,93	-1

Equações do tipo $r = a \pm b \ sen \ \theta$, ou $r = a \pm b \ cos \ \theta$, são chamadas limaçons. Quando b>a>0 ou b<a<0 seu gráfico apresenta um laço, semelhante ao gráfico acima. Se a = b a equação representa uma cardióide.

Exemplo 7. Circunferência passando pela origem, centro na reta $e = \pi/2$ (eixo y) em $(b,\pi/2)$ e raio |b|.

A equação da circunferência com centro em coordenadas cartesianas (0,b) e raio |b|, em coordenadas cartesianas é $x^2 + (y - b)^2 = b^2$. Desenvolvendo esta equação obtemos $x^2 + y^2 - 2by = 0$. Transformando para coordenadas polares, obtemos $r^2cos^2\theta + r^2sen^2\theta - 2brsen\theta = 0$, ou seja, $r^2(cos^2\theta + sen^2\theta) - 2brsen\theta = 0$. Assim, a equação em coordenadas polares fica $r^2 = 2brsen \theta$. Portanto, r = 0 ou $r = 2bsen \theta$. Mas na equação $r = 2bsen \theta$, temos que r = 0 quando $\theta = 0$. Assim, basta tomar a equação $r = 2bsen \theta$.

Exemplo 8. Circunferência passando pela origem, centro na reta e = 0 (eixo x) $em (a, \pi/2)$ e raio |a|.

Desenvolvendo, como no exemplo anterior, obtemos a equação $r = 2a\cos\theta$.

Exemplo 9. Reta paralela ao eixo polar.

Em coordenadas cartesianas, a equação de uma reta paralela ao eixo x é dada por y = b. Passando para coordenadas polares , a equação fica $r sen\theta = b$, ou seja, $r = b cos sec\theta$.

Exemplo 10. Reta perpendicular ao eixo polar.

Em coordenadas cartesianas, a equação de uma reta perpendicular ao eixo x é dada por x = a. Fazendo como no exemplo anterior a equação, em coordenadas polares é dada por $r = asec\theta$.

Exercícios. Elaborar os gráficos das funções.

a)
$$r = sen(2\theta)$$
 b) $r = 1 + sen \theta$ c) $r = \frac{1}{2}\theta$

Gráficos em coordenadas polares no winplot.

Para trabalhar com o plano polar acione "ver", "grade" e selecione as opções "eixos", "polar" e "setores polares"

Acione no menu "Equação, Polar" para abrir a janela para equação em coordenadas polares.

Note que a letra t indica o ângulo θ .

Indique a variação de t em "t min" e "t máx"

Para colocar ponto em coordenadas polares, acione "Equação, Ponto (r,t)..."

Exemplo. Entre com a equação polar r = t/2, colocando "t min = 0 e t máx = 2*pi"

Entre com o ponto em coordenadas polares (a/2,a)

Faça a animação de a de 0 a 2*pi

Exemplo. Faça como no exemplo anterior para cada uma das equações

- a) r = -t/2 (é a mesma curva do exemplo anterior?)
- b) r = 3
- c) r = 1 + 2cos(t). Qual o menor valor para "t máx" para que o gráfico seja uma curva fechada?

Exercícios.

- 1. Entre com as equações r = 3cos(2t), r = 3cos(4t) e r = 3cos(6t). Qual a relação entre os números (pares) que aparecem multiplicando t e os gráficos. Teste sua resposta para outros valores destes números.
- 2. Na atividade anterior, o número 3 multiplicando o cosseno tem algum significado? Troque o 3 por alguns outros números e tente chegar a uma conclusão.
- 3. Faça como na atividade (1) para as equações $r = 4\cos(t)$, $r = 4\cos(3t)$ e $r = 4\cos(5t)$.
- 4. Para a curva de equação polar r = 1 + cos(t), tomando t min = 0, qual o menor valor de t máx para que o gráfico seja uma curva fechada?
- 5. Gráficos clássicos em coordenadas polares
 - a) r = 2 b) r = t c) $r = 2\cos(t)$ d) $r = -3\cos(t)$ e) $r = 2+2\cos(t)$ f) $r = 2-2\cos(t)$ g) $r = 2+4\cos(t)$ h) $r = 4+2\cos(t)$
- 6. Na atividade anterior troque cosseno por seno.
- Observe, graficamente, que as equações cartesiana 2x+3y = 4 e polar r = 4/(2cos(t)+3sin(t)) representam a mesma reta.
- 8. Em vista da atividade anterior, qual seria a equação polar da reta y = 2x-5?
- 9. Tente generalizar as duas atividades anteriores para uma reta de equação y = ax+c. Verifique graficamente se sua teoria pode funcionar.

Equações de algumas curvas especiais em coordenadas polares

Circunferências

- a) r = c: circunferência com centro no polo e raio |c|.
- b) $r = a \cos(\theta)$: circunferência com centro na reta $\theta = 0$, passando pelo polo e raio |a|/2.
- c) $r = a sen(\theta)$: circunferência com centro na reta $\theta = \pi/2$, passando pelo polo e raio |a|/2.

Retas

- a) θ = a: reta passando pelo pólo
- b) $r sen(\theta) = a$: reta paralela ao eixo polar
- c) $r \cos(\theta) = a$: reta perpendicular à reta que contém o eixo polar

Espirais

- a) $r = a\theta$: espiral de Arquimedes
- b) $r = a/\theta$: espiral hiperbólica
- c) $r = a^{b\theta}$, a > 0: espiral logarítmica
- d) $r = a \sqrt[n]{\theta}$: espiral parabólica quando n = 2

Rosáceas

 $r = asen(n\theta)$ ou $r = acos(n\theta)$, n inteiro positivo, $a \ne 0$. Se n é par, o gráfico consiste de 2n laços. Se n é ímpar, o gráfico consiste de n laços. Observe que se n = 0 ou $n = \pm 1$, obtém-se equações de circunferências ou o pólo (caso r = asen(nt)).

Limaçons

 $r = a + bsen(\theta)$ ou $r = a + bcos(n\theta)$, n inteiro positivo, $a \neq 0$ e $b \neq 0$.

Se |a| < |b| apresentam laço. Se a = b recebem o nome de **cardióide** pelo formato de coração da curva.

Lemniscatas

 $r^2 = \pm a\cos(2\theta)$ ou $r^2 = \pm a\sin(2\theta)$

