Statistics: Confidence Intervals

- · How can we estimate the mean from data and quantify the uncertainty in our estimate?
- · Let $X_{1},...,X_{n}$ be i.i.d. random variables with mean μ . A confidence interval [A,B] for the mean μ with confidence level $1-\alpha$ satisfies $IP[A \le \mu \le B] = 1-\alpha$ where A and B are functions of $X_{1},...,X_{n}$.
- · If we estimate the mean with the sample mean $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$, we get a confidence interval $[M_n \epsilon, M_n + \epsilon]$ where we need to properly select $\epsilon > 0$ to get confidence level $1-\infty$.
- ⇒ $P[M_n \epsilon \le \mu \le M_n + \epsilon]$ Subtract $M_n + \mu$ = $P[\mu - \epsilon \le M_n \le \mu + \epsilon]$ Subtract $M_n + \mu$ from all sides, multiply by -1
- > E[Mn] = m
- -> approximate Mn as Gaussian based on Central Limit Theorem.

Select ϵ to make this area = $1-\infty$.

· Confidence Interval for the Mean: Known Variance

- → Given i.i.d. X₁,..., X_n with known variance σ^2 ,
 determine a confidence interval with confidence level 1-∞.
- ① Calculate the sample mean $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

 Assume M_n is (approximately) Gaussian $(\mu, \frac{m^2}{n})$.
- ② Choose $\epsilon > 0$ so that $1-\alpha = \mathbb{P}[\mu-\epsilon \leq M_n \leq \mu+\epsilon]$ $= 1-(\mathbb{P}[M_n < \mu-\epsilon] + \mathbb{P}[M_n > \mu+\epsilon])$ Set to $\alpha/2$. Set to $\alpha/2$.

area =
$$\frac{\alpha}{2}$$
 $\mu - \epsilon$
 $\mu + \epsilon$
 $\mu + \epsilon$

Area = 1-00

$$P[M_{n} < \mu - \epsilon] \approx \overline{\Phi}\left(\frac{\mu - \epsilon - \mu}{\int_{\overline{\Theta}^{2}/n}}\right) = \overline{\Phi}\left(-\frac{\epsilon J_{n}}{\overline{\Theta}}\right) = Q\left(\frac{\epsilon J_{n}}{\overline{\Theta}}\right) \quad \text{Standard complementary}$$

$$P[M_{n} > \mu + \epsilon] \approx Q\left(\frac{\epsilon J_{n}}{\overline{\Theta}}\right) \quad \text{by symmetry} \quad \Rightarrow Q^{-1}(\frac{\varkappa}{2}) = \frac{\epsilon J_{n}}{\overline{\Theta}}$$

3 Overall, $[M_n - \epsilon, M_n + \epsilon]$ with $\epsilon = \frac{\alpha}{J_n} Q^{-1}(\frac{\alpha}{2})$ is a confidence interval for the mean with confidence level $1-\alpha$.

MATLAB: $Q^{-1}(z) = q funcinv(z)$

- · If variance is unknown, estimate using the sample variance.
- · We need two new families of random variables.
- If $Z_{1,...,}Z_{n}$ are i.i.d. Gaussian(0,1), then $Y = \sum_{i=1}^{n} Z_{i}^{2}$ is a chi-squared random variable with n degrees-of-freedom.
 - → Mean: n → Variance: 2n → PDF Sketch:
 - Shorthand Notation: Y ~ 22
 - -> CDF: Fz2(y) evaluate using lookup table or software
- If Z is Gaussian (0,1), $Y \sim \chi_n^2$, and Y and Z are independent, then $W = Z \int_{\gamma}^{\infty}$ has a Student's t-distribution with n tegrees of freedom.
 - → Mean: O → Variance: $\frac{n}{n-2}$ for $n \ge 3$ → PDF Sketch:
 - → Shorthand Notation: W~Tn
 - → CDF: $F_{T_n}(y)$ evaluate using lookup table or software. Converges to $\overline{\Phi}(y)$ as $n \to \infty$.

mmetric fully

- · Confidence Interval for the Mean: Unknown Variance
- → Given i.i.d. X₁,..., X_n with unknown variance,

 determine a confidence interval with confidence level 1-∞.
- ① Calculate the sample mean $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and the sample variance $V_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - M_n)^2$
- ② Choose $\epsilon > 0$ so that $1-\alpha = \mathbb{P}[\mu-\epsilon \leq M_n \leq \mu+\epsilon]$ $= 1-(\mathbb{P}[M_n < \mu-\epsilon] + \mathbb{P}[M_n > \mu+\epsilon])$ Set to $\alpha/2$. Set to $\alpha/2$.
- area = $\frac{\alpha}{2}$ area = $\frac{\alpha}{2}$ μ - ϵ μ + ϵ

area = 1-00

- That $\frac{\int n (M_n \mu)}{\int V_n}$ has a Student's t-distribution with n-1 degrees-of-freedom if $X_1,...,X_n$ i.i.d. Gaussian. $P[M_n < \mu \epsilon] = P[\frac{\int n (M_n \mu)}{\int V_n} < \frac{\int n (\mu \epsilon \mu)}{\int V_n}] = F_{n-1}(-\frac{\epsilon \int n}{\int V_n}) = \frac{\omega}{2}$ $P[M_n > \mu + \epsilon] = \frac{\omega}{2}$ follows by symmetry
- 3 Overall, $[M_n \epsilon, M_n + \epsilon]$ where $\epsilon = -\frac{\int V_n}{\int n} F_{n-1}^{-1}(\frac{\alpha}{2})$ is a confidence interval for the mean with confidence level $1-\alpha$.

MATLAB: $F_{z}(z) = tinv(z, n-1)$

- · Confidence Interval for the Variance:
- For i.i.d. $X_1, ..., X_n$, find a confidence interval for the variance $\sigma^2 = Var[X]$ with confidence level $1-\infty$.
- ① Calculate the sample mean $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and the sample variance $V_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - M_n)^2$
- ② Pick $0 < \beta_1 < \beta_2$ so that $1 \alpha = \mathbb{P}[\beta_1 \vee n \leq \sigma^2 \leq \beta_2 \vee n] = \frac{\alpha}{2}$ $= 1 (\mathbb{P}[\vee_n < \frac{\sigma^2}{\beta_2}] + \mathbb{P}[\vee_n > \frac{\sigma^2}{\beta_1}])$ Set to $\alpha/2$ Set to $\alpha/2$

- That $\frac{n-1}{\sigma^2}V_n$ has a \mathcal{X}^2 -distribution with n-1 degrees-of-freedom if $X_1,...,X_n$ i.i.d. Gaussian. $\mathbb{P}\left[V_n < \frac{\sigma^2}{\beta_2}\right] = \mathbb{P}\left[\frac{n-1}{\sigma^2}V_n < \frac{n-1}{\sigma^2}\frac{\sigma^2}{\beta_2}\right] = \mathbb{F}_{\mathcal{X}_{n-1}^n}\left(\frac{n-1}{\beta_2}\right) = \frac{\omega}{2}$ $\mathbb{P}\left[V_n > \frac{\sigma^2}{\beta_1}\right] = 1 \mathbb{P}\left[V_n \le \frac{\sigma^2}{\beta_1}\right] = 1 \mathbb{F}_{\mathcal{X}_{n-1}^n}\left(\frac{n-1}{\beta_1}\right) = \frac{\omega}{2} \Rightarrow \mathbb{F}_{\mathcal{X}_{n-1}^n}\left(\frac{n-1}{\beta_1}\right) = 1 \frac{\omega}{2}$
- ③ Overall, $[\beta_1 V_n, \beta_2 V_n]$ where $\beta_i = (n-1)/F_{2n-1}^{-1}(1-\frac{1}{2})$, $\beta_2 = (n-1)/F_{2n-1}^{-1}(\frac{1}{2})$ is a confidence interval for the variance with confidence level 1- α .

MATLAB: $F_{22-1}^{-1}(z) = \text{chi2inv}(z, n-1)$