Beauty And The Burst

Remote Identification of Encrypted Video Streams

Agenda

- Background
- MPEG-DASH Standard
- Attack Overview
- Deep Neural Networks
- Adversarial Models
 - On-Path Attack
 - Off-Path Attack

Authors

- Tel Aviv University
- Cornell Tech

Vitaly Shmatikov

Eran Tromer

- Tel Aviv University
- Columbia University

Why video traffic is so interesting?

Background

- Targeted marketing purposes
- Market characterization efforts
- Not everybody wants to volunteer this information about their habits
 - Video traffic is encrypted
 - HTTPS has been in wide deployment

What still can be learned?

Initial buffering & on/off bursts

Where the bursts come from?

MPEG-DASH standard

- Widely adopted by major streaming providers
 - Netflix, YouTube etc.

MPEG-DASH standard

Adaptive bitrate streaming over HTTP

VBR Demo

Iguana vs. Snakes

MPEG-DASH leak

From a leak to a fingerprint

- Does the pattern of burst (segment) sizes uniquely characterize a title?
- Empirically for the 3500 downloaded from YouTube 20% of them have a uniquely identifying pattern
- Can we learn a title's identifying pattern?
- We can learn a title's identifying pattern because of the pattern consistency

~20% of YouTube titles have fingerprints

Attack overview

Attack overview

Deep Neural Networks

- Very good at learning high-level concepts that human can easily agree on but find it hard to formally express
- Can operate on noisy and coarse measurements
- Agnostic to protocol-specific attributes
- Can learn features other than burst patterns,
 e.g. arrival patterns of individual packets
- Can use multiple session representations, train on all at once

Deep Neural Networks

100 titles 98.5% accuracy

10 titles 92.5% accuracy

18 titles + 3500 sessions of different other titles 99.5% accuracy

10 titles 98.6% accuracy

Tuning for precision

YouTube

feature: total burst size

...... average precision/recall value 0 false positives with 0.988 recall 0.96 recall precision 0.2 0.8 confidence threshold

Netflix

feature: total burst size

So what is the vantage point?

Scenario I: on-path attack

Wi-Fi access points, proxies, routers, enterprise or national network censors, ISPs

Scenario II: off-path attack

Cross-device attack

Delay-bursts

For each traffic burst, compute aggregate delay induced Use resulting time-series as input to neural network

Delay-bursts VS. Traffic-bursts

Delay-bursts
time series: the
delays induced
by traffic bursts

Cross-site attack

Attacker web site

Mitigating the MPEG-DASH leak

- Modern streaming traffic characteristics
 - Title bitrate pattern unique when sampled at few-seconds granularity
 - Fetching at segment granularity (every few seconds)
- Maximizes quality of experience (QoE), server load, and network bandwidth utilization
- However, information leakage is intrinsic...

Conclusions

- Leakage of information about video content via network traffic patterns is prevalent in modern streaming protocols and popular services
- Detectors are tuned for high accuracy and effective in an "open-world" setting
- It can be used by on-path adversaries such as ISPs to spy on their users
- It can be used by off-path adversary who merely serves a Web page to identify videos being streamed by the user

Thank You!

 Further information and the paper: https://beautyburst.github.io/

"Everything has a fingerprint, and so do encrypted streams"

Any Questions?