# Multiple Access Links: MAC Protocols

#### two types of "links":

- point-to-point
  - PPP for dial-up access
  - point-to-point link between Ethernet switch, host (PPPoE)
- broadcast (shared wire or medium)
  - old-fashioned Ethernet
  - upstream HFC
  - 802.11 wireless LAN



shared wire (e.g., cabled Ethernet)



shared RF (e.g., 802.11 WiFi)



shared RF (satellite)



humans at a cocktail party (shared air, acoustical)

CSci4211: Data Link Layer: Part 2

### Broadcast LAN: Media Access Control

- Broadcast LAN: single shared broadcast channel
  - two or more simultaneous transmissions by nodes: interference!
    - collision if node receives two or more signals at the same time
  - only one node can send successfully at a time!
- How to share a broadcast channel?
  - Humans use multi-access protocols all the time

### Multiple Access Protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
- what to look for in multiple access protocols:
  - synchronous or asynchronous
  - information needed about other stations
  - robustness
  - performance: access delay and throughput

### MAC Protocols: a Taxonomy

#### Three broad classes:

- Channel Partitioning (static controlled access)
  - divide channel into smaller "pieces" (e.g., time slots -> TDMA, frequency->FDMA, code->CDMA)
  - allocate piece to node for exclusive use
- "Demand Adaptive" Controlled Access: e.g., Polling or Taking Turns
  - tightly coordinate shared access to avoid collisions
- Random Access
  - channel not divided, allow collisions
  - "recover" from collisions

# Taxonomy of MAC Protocols



# Channel Partitioning MAC protocols: TDMA

### TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle



# Channel Partitioning MAC Protocols: FDMA

### FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle



# "Taking Turns" MAC protocols

#### channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

#### "Demand-Adaptive" Controlled Protocols

- > Human analogy:
  - traffic control with green/red light
    - fixed time vs. adaptive time vs. no lights at all
- (Master-Slave based) Polling:
  - e.g., in a classroom: I am the "master" ;-)
- "Taking Turns" via token-passing:
  - e.g., a round-table panel with a single microphone

### "Taking Turns" MAC Protocols

### Polling:

- centralized
- master node "invites" slave nodes to transmit in turn
- · concerns:
  - polling overhead
  - latency
  - single point of failure (master)



#### Token passing:

- distributed
- control token passed from one node to next sequentially.
- what is a token? a special control message
- · concerns:
  - token overhead
  - latency
  - single point of failure (token)



# Token Ring Topology



Using token-passing, nodes do not have to form a physical ring! E.g., token bus: all nodes connected via a bus, forming a logical ring!)

### Token Release



Release after Reception (used by Token Ring)



Release after Transmission (used by FDDI)

# Token Ring Performance

· Efficiency with "release after reception"

$$\approx \frac{1}{1+a}$$
where  $a = \frac{PROP}{TRANS}$ 

 What is the efficiency with "release after transmission"?

### Random Access Protocols

- When node has packet to send
  - transmit at full channel data rate R.
  - no a priori coordination among nodes
- two or more transmitting nodes -> "collision",
- random access MAC protocol specifies:
  - how to detect or avoid collisions
  - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
  - ALOHA
  - slotted ALOHA
  - CSMA, CSMA/CD, CSMA/CA

# Pure (unslotted) ALOHA

- · unslotted Aloha: simple, no synchronization
- when frame first arrives
  - transmit immediately
- collision can happen!
  - frame sent at  $t_0$  collides with other frames sent in  $[t_0-1,t_0+1]$



CSci4211:

Data Link Layer: Part 2

### Slotted ALOHA

#### **Assumptions**

- · all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- · nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

#### **Operation**

- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. p until success

### Slotted ALOHA



#### Pros

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- · simple

#### Cons

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet

# Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there's many nodes, each with many frames to send

- Suppose N nodes with many frames to send, each transmits in slot with probability p
- prob that 1st node has success in a slot =  $p(1-p)^{N-1}$
- prob that any node has a success =  $Np(1-p)^{N-1}$

- For max efficiency with N nodes, find p\* that maximizes Np(1-p)<sup>N-1</sup>
- For many nodes, take limit of Np\* $(1-p*)^{N-1}$  as N goes to infinity, gives 1/e = .37

At best: channel used for useful transmissions 37% of time!

# Pure Aloha Efficiency

```
P(success by given node) = P(node transmits) \cdot

P(no other node transmits in [p_0-1,p_0] \cdot

P(no other node transmits in [p_0,p_0+1]

= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}

= p \cdot (1-p)^{2(N-1)}
```

... choosing optimum p and then letting n -> infty ...

$$= 1/(2e) = .18$$

Efficiency is even worse!

### Performance of Aloha Protocols



Can we do better with random access?

## Carrier Sense Multiple Access

- Aloha is inefficient (and rude):
  - doesn't listen before talking
- CSMA: Listen before transmit
  - Human analogy: don't interrupt others!
  - If channel idle, transmit entire packet
  - If busy, defer transmission
    - How long should we wait?
- Persistent vs. Nonpersistent CSMA
  - Nonpersistent:
    - if idle, transmit
    - if busy, wait random amount of time
  - p-persistent
    - If idle, transmit with probability p
    - If busy, wait till it becomes idle
    - If collision, wait random amount of time
- Can carrier sense avoid collisions completely?

### CSMA Collisions

#### collisions can still occur:

propagation delay means two nodes may not hear each other's transmission

#### collision:

entire packet transmission time wasted

#### note:

role of distance & propagation delay in determining collision probability



# CSMA/CD (Collision Detection)

### CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- human analogy: the polite conversationalist
  - talking while keep listening, stop if collision detected
- How to detect collision?
  - easy in wired LANs: measure signal strengths, compare transmitted, received signals
  - difficult in wireless LANs: receiver shut off while transmitting

### CSMA/CD: Illustration



# Token Ring (IEEE 802.5)

#### Station

- Wait for token to arrive
- Hold the token and start data transmission
  - Maximum token holding time → max packet size
- Strip the data frame off the ring
  - After it has gone around the ring
- When done, release the token to next station

#### When no station has data to send

- Token circulates continuously
- Ring must have sufficient delay to contain the token

# Ring Topology



CSci4211:

Data Link Layer: Part 2

# Token Release after Reception



Release after Reception

In token passing protocols, sender is always responsible for removing the frame it has transmitted! (Why?)

## Tokens and Data Frames

| 8                  | 8                 | 8             | 48           | 48          | Variable | 32       | 8                | 8            |  |
|--------------------|-------------------|---------------|--------------|-------------|----------|----------|------------------|--------------|--|
| Start<br>delimiter | Access<br>control | Frame control | Dest<br>addr | Src<br>addr | Body 7   | Checksum | End<br>delimiter | Frame status |  |

CSci4211: Data Link Layer: Part 2 26

# Token Ring Frame Fields

- Access Control
  - Token bit: 0 → token 1 → data
  - Monitor bit: used for monitoring ring
  - Priority and reservation bits: multiple priorities
- Frame Status
  - Set by destination, read by sender
- Frame control
  - Various control frames for ring maintenance

# Priority and Reservation

- Token carries priority bits
  - Only stations with frames of equal or higher priority can grab the token
- · A station can make reservation
  - When a data frame goes by
  - If a higher priority has not been reserved
- A station raising the priority is responsible for lowering it again

# Ring Maintenance

- · Each ring has a monitor station
- How to select a monitor?
  - Election/self-promotion: CLAIM\_TOKEN
- Responsibilities
  - Insert additional delay
    - To accommodate the token
  - Check for lost token
    - Regenerate token
  - Watch for orphan frames
    - Drain them off the ring
  - Watch for garbled frames
    - · Clean up the ring and regenerate token

### Fault Scenarios

- What to do if ring breaks?
  - Everyone participates in detecting ring breaks
  - Send beacon frames
  - Figure out which stations are down
  - By-pass them if possible
- What happens if monitor dies?
  - Everyone gets a chance to become the new king
- What if monitor goes berserk?

# Token Ring Summary

- Stations take turns to transmit
- Only the station with the token can transmit
- Sender receives its own transmission
  - Drains its frame off the ring
- Releases token after transmission/reception
- Deterministic delivery possible
- · High throughput under heavy load

# Ethernet vs Token Ring

- Non-deterministic
- No delays at low loads
- Low throughput under heavy load
- No priorities
- No management overhead
- Large minimum size

- Deterministic
- Substantial delays at low loads
- High throughput under heavy load
- Multiple priorities
- Complex management
- Small frames possible

### Cable Access Network



- multiple 40Mbps downstream (broadcast) channels (each: 6MHz)
  - single CMTS transmits into channels
- multiple 30 Mbps upstream channels (each: 6.4MHz)
  - multiple access: all users contend for certain upstream channel time slots (others assigned)

CSci4211: Data Link Layer: Part 2

### Cable Access Network



DOCSIS: data over cable service interface spec

- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
  - downstream MAP frame: assigns upstream slots
  - request for upstream slots (and data) transmitted random access (binary backoff) in selected slots ("content slots")

CSci4211: Data Link Layer: Part 2

## Summary of MAC Protocols

- Why media access control?
  - Shared media: only one user can send at a time
  - Media access control: determine who has access
- · MAC issues:
  - distributed, using the same channel for regulating access
- What do you do with a shared media?
  - Channel Partitioning, by time, frequency or code
    - Time Division, Code Division, Frequency Division
  - Random Access (dynamic)
    - · ALOHA, S-ALOHA, CSMA, CSMA/CD
    - carrier sensing easy in some technologies (wire), hard in others (wireless)
    - CSMA/CD used in Ethernet; CSMA/CA used in WiFi/802.11
  - Taking Turns
    - polling from a central site, token passing (Bluetooth, Token Ring, FDDI)