

Global United Technology Services Co., Ltd.

Report No.: GTS201605000144E04

FCC Report (Bluetooth)

Applicant: SHENZHEN XINYI DIGITAL TECHNOLOGY CO.,LTD

Address of Applicant: 4th Floor,2nd Building,BaiShiXia Xintang Industry, Fuyong

Street, Bao'an District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: X01, X02, X03, X04, X05, X06, X07, X08, X09, X01(S),

X02(S), X03(S), X04(S), X05(S), X06(S), X07(S), X08(S),

X09(S), X(Series)

FCC ID: 2AIFM-X01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: May 17, 2016

Date of Test: May 18-27, 2016

Date of report issued: May 30, 2016

Test Result: PASS *

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	May 30, 2016	Original

Prepared By:	Zolward.Pan	Date:	May 30, 2016	
	Project Engineer			
Check By:	Andy wa	Date:	May 30, 2016	
	Reviewer			

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4		T SUMMARY	
5		NERAL INFORMATION	
J	GEN		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	_
	7.6.		
	7.6.2		
	7.7	Spurious Emission	
	7.7.		
	7.7.2		
8	TES	T SETUP PHOTO	30
9	EUT	CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 Client Information

Applicant:	SHENZHEN XINYI DIGITAL TECHNOLOGY CO.,LTD
Address of Applicant:	4th Floor,2nd Building,BaiShiXia Xintang Industry, Fuyong Street,Bao'an District, Shenzhen, China
Manufacturer:	SHENZHEN XINYI DIGITAL TECHNOLOGY CO.,LTD
Address of Manufacturer:	4th Floor,2nd Building,BaiShiXia Xintang Industry, Fuyong Street,Bao'an District, Shenzhen, China

5.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	X01, X02, X03, X04, X05, X06, X07, X08, X09, X01(S), X02(S), X03(S), X04(S), X05(S), X06(S), X07(S), X08(S), X09(S), X(Series)
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PIFA antenna
Antenna Gain:	1.0dBi
Power Supply:	DC 3.7V 600mAh Li-ion Battery

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
•		•	. !	• !	• !		. :	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the	EUT in continuously transmitting mode
----------------------------	---------------------------------------

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
Emerson Network Power	USB Charger	A1299	N/A	FCC VoC

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jun. 30 2015	Jun. 29 2016			
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jun. 30 2015	Jun. 29 2016			
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jun. 30 2015	Jun. 29 2016			
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jun. 26 2015	Jun. 25 2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 26 2016	Mar. 25 2017			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016	Mar. 26 2017			
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016	Mar. 26 2017			
11	Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016	Mar. 26 2017			
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016	Mar. 26 2017			
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 30 2015	Jun. 29 2016			
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 30 2015	Jun. 29 2016			
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Jun. 26 2015	Jun. 25 2016			
16	Band filter	Amindeon	82346	GTS219	Mar. 27 2016	Mar. 26 2017			

Cond	ducted Emission:					
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Jun. 30 2015	Jun. 29 2016
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jun. 30 2015	Jun. 29 2016
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jun. 30 2015	Jun. 29 2016
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 30 2015	Jun. 29 2016
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jun. 30 2015	Jun. 29 2016
6	Coaxial Cable	GTS	N/A	GTS227	Jun. 30 2015	Jun. 29 2016
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 1dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Fraguency range (MHz)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
_	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane		_		
	AUX Equipment E.U.T Remark E.U.T EQuipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data

Line:

Site

: Shielded room : FCC PART15 CLASSB QP LISN-2013 LINE Condition

: 0144

Job No. Test mode : Bluetooth 4.0 mode

Test Engineer: Sky

	Freq	Read Level		LISN Factor				Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
3 4 5	0.433 0.844 1.324 1.970	41.76 40.68 41.12	44. 27 42. 03 40. 93 41. 38	0.12 0.14	0.11 0.13 0.13 0.14	57. 20 56. 00 56. 00 56. 00	-12.93 -13.97 -15.07 -14.62	QP QP QP QP

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0144

Test mode : Bluetooth 4.0 mode

Test Engineer: Sky

	Freq			LISN Factor				Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1 2 3 4	0. 435 0. 880	41.94 44.48 37.63 37.64	44.65 37.83	0.06 0.07	0.11	57.15 56.00	-12.50 -18.17	QP QP
5 6		43.77	44.03	0.11	0.15	56.00	-11.97	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	-5.41			
Middle	-5.40	30.00	Pass	
Highest	-5.46			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.698			
Middle	0.700	>500	Pass	
Highest	0.699			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-6.23		
Middle	-6.43	8.00	Pass
Highest	-6.39		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	· ·			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Test plot as follows:

Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15 209	and 15 205				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:			ested, only	the worst ba	and's (2310MHz to		
l con request, remiger	2500MHz) data was showed.						
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
·		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Value		
	Above 1	CH2	54.0	0	Average		
	Above i	GHZ	74.0	0	Peak		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Procedure:	the ground at determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to dethorizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified the EUT where 10dB meak or averasheet. 7. The radiation And found the self-minited the self-maximum the self-minited t	t a 3 meter can be position of the set 3 meters and the set 3 meters and the set 3 meters and the set 4 meters and	nber. The tall he highest race highest race away from the don the top of the don the top of the don the EUT uned to heigh as set to Peak aximum Hole EUT in peak ng could be ded. Otherwise re-tested or specified ar so are performant on the performant of the highest rested or specified ar so are performant on the highest re-tested or specified ar so are performant or the highest re-tested or specified ar so are performant or the highest re-tested or specified ar so are performant representation.	ble was rotated ble was rotated ble was rotated ble interference of a variable of a variable of the field he antenna a was arrange was arrange was arrange was arrange was arrange was arrange was 10 mode. The was 10 mode was 10 we the emission by one us and then reportmed in X, Y, it is worse care	meters above the strength. Both are set to make the d to its worst case after to 4 meters degrees to find anction and db lower than d the peak values ons that did not sing peak, quasi-		
Test Instruments:	Refer to section			-			
Test mode:	Refer to section						
Test results:	Pass						

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Fest channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	41.47	27.59	5.38	30.18	44.26	74.00	-29.74	Horizontal
2400.00	58.06	27.58	5.39	30.18	60.85	74.00	-13.15	Horizontal
2390.00	41.89	27.59	5.38	30.18	44.68	74.00	-29.32	Vertical
2400.00	59.94	27.58	5.39	30.18	62.73	74.00	-11.27	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.34	27.59	5.38	30.18	35.13	54.00	-18.87	Horizontal
2400.00	43.49	27.58	5.39	30.18	46.28	54.00	-7.72	Horizontal
2390.00	32.18	27.59	5.38	30.18	34.97	54.00	-19.03	Vertical
2400.00	45.01	27.58	5.39	30.18	47.80	54.00	-6.20	Vertical

1	-	
	Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.41	27.53	5.47	29.93	46.48	74.00	-27.52	Horizontal
2500.00	42.85	27.55	5.49	29.93	45.96	74.00	-28.04	Horizontal
2483.50	44.01	27.53	5.47	29.93	47.08	74.00	-26.92	Vertical
2500.00	43.71	27.55	5.49	29.93	46.82	74.00	-27.18	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.15	27.53	5.47	29.93	38.22	54.00	-15.78	Horizontal
2500.00	33.35	27.55	5.49	29.93	36.46	54.00	-17.54	Horizontal
2483.50	36.24	27.53	5.47	29.93	39.31	54.00	-14.69	Vertical
2500.00	33.16	27.55	5.49	29.93	36.27	54.00	-17.73	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

30MHz~10GHz

30MHz~10GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

10GHz~25GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:20	13						
Test Frequency Range:	30MHz to 25GHz	7						
Test site:	Measurement Di	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak			
	Ab av a 4 CU -	Peak	1MHz	3MHz	Peak			
	Above 1GHz	RMS	1MHz	3MHz	Average			
Limit:	Frequer	псу	Limit (dBuV/	/m @3m)	Value			
	30MHz-88	MHz	40.0	0	Quasi-peak			
	88MHz-216	6MHz	43.5	0	Quasi-peak			
	216MHz-96	60MHz	46.0	0	Quasi-peak			
	960MHz-1	GHz	54.0	0	Quasi-peak			
	Above 1GHz		54.0	0	Average			
			74.0	0	Peak			
Test setup:	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz							

	Antenna Tower Horn Antenna Turn Table 1.5m V Image: Antenna Tower Antenna Tower Horn Antenna Spectrum Analyzer
	Amplifier Amplifier
Test Procedure:	The EUT was placed on the top of a rotating table (0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

- DCIOW I								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
86.81	37.51	12.89	1.08	29.76	21.72	40.00	-18.28	Vertical
216.78	45.10	13.10	1.94	29.36	30.78	46.00	-15.22	Vertical
241.68	52.77	14.09	2.08	29.57	39.37	46.00	-6.63	Vertical
547.10	44.86	19.51	3.51	29.30	38.58	46.00	-7.42	Vertical
704.23	36.63	20.86	4.10	29.20	32.39	46.00	-13.61	Vertical
807.43	34.96	22.15	4.49	29.19	32.41	46.00	-13.59	Vertical
81.50	45.12	11.13	1.04	29.79	27.50	40.00	-12.50	Horizontal
214.51	49.63	13.03	1.93	29.35	35.24	43.50	-8.26	Horizontal
368.11	40.79	16.49	2.71	29.65	30.34	46.00	-15.66	Horizontal
625.08	40.85	20.54	3.82	29.27	35.94	46.00	-10.06	Horizontal
807.43	38.11	22.15	4.49	29.19	35.56	46.00	-10.44	Horizontal
912.86	37.30	23.18	4.90	29.10	36.28	46.00	-9.72	Horizontal

■ Above 1GHz

Test channel	Fest channel: Lowest									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4804.00	37.74	31.78	8.60	32.09	46.03	74.00	-27.97	Vertical		
7206.00	32.12	36.15	11.65	32.00	47.92	74.00	-26.08	Vertical		
9608.00	31.72	37.95	14.14	31.62	52.19	74.00	-21.81	Vertical		
12010.00	*					74.00		Vertical		
14412.00	*					74.00		Vertical		
4804.00	42.11	31.78	8.60	32.09	50.40	74.00	-23.60	Horizontal		
7206.00	33.91	36.15	11.65	32.00	49.71	74.00	-24.29	Horizontal		
9608.00	31.19	37.95	14.14	31.62	51.66	74.00	-22.34	Horizontal		
12010.00	*					74.00		Horizontal		
14412.00	*					74.00		Horizontal		
Average val	IIO.	•	•	•	•		•			

Average var	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.47	31.78	8.60	32.09	34.76	54.00	-19.24	Vertical
7206.00	20.75	36.15	11.65	32.00	36.55	54.00	-17.45	Vertical
9608.00	19.80	37.95	14.14	31.62	40.27	54.00	-13.73	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.74	31.78	8.60	32.09	39.03	54.00	-14.97	Horizontal
7206.00	22.95	36.15	11.65	32.00	38.75	54.00	-15.25	Horizontal
9608.00	19.57	37.95	14.14	31.62	40.04	54.00	-13.96	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	l:				Middle	е			
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or ,	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	37.24	31.85	8.67	32.12	2	45.64	74.00	-28.36	Vertical
7320.00	31.79	36.37	11.72	31.89	9	47.99	74.00	-26.01	Vertical
9760.00	31.43	38.35	14.25	31.62	2	52.41	74.00	-21.59	Vertical
12200.00	*						74.00		Vertical
14640.00	*						74.00		Vertical
4880.00	41.51	31.85	8.67	32.12	2	49.91	74.00	-24.09	Horizontal
7320.00	33.54	36.37	11.72	31.89	9	49.74	74.00	-24.26	Horizontal
9760.00	30.85	38.35	14.25	31.62	2	51.83	74.00	-22.17	Horizontal
12200.00	*						74.00		Horizontal
14640.00	*						74.00		Horizontal
Average val	ue:		,						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or ,	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	26.08	31.85	8.67	32.12	2	34.48	54.00	-19.52	Vertical
7320.00	20.49	36.37	11.72	31.89	9	36.69	54.00	-17.31	Vertical
9760.00	19.57	38.35	14.25	31.62	2	40.55	54.00	-13.45	Vertical
12200.00	*						54.00		Vertical
14640.00	*						54.00		Vertical
4880.00	30.30	31.85	8.67	32.12	2	38.70	54.00	-15.30	Horizontal
7320.00	22.66	36.37	11.72	31.89	9	38.86	54.00	-15.14	Horizontal
9760.00	19.30	38.35	14.25	31.62	2	40.28	54.00	-13.72	Horizontal
12200.00	*						54.00		Horizontal
14640.00	*						54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	Highest								
Peak value:			_						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	36.04	31.93	8.73	32.16	44.54	74.00	-29.46	Vertical	
7440.00	30.99	36.59	11.79	31.78	47.59	74.00	-26.41	Vertical	
9920.00	30.72	38.81	14.38	31.88	52.03	74.00	-21.97	Vertical	
12400.00	*					74.00		Vertical	
14880.00	*					74.00		Vertical	
4960.00	40.07	31.93	8.73	32.16	48.57	74.00	-25.43	Horizontal	
7440.00	32.63	36.59	11.79	31.78	49.23	74.00	-24.77	Horizontal	
9920.00	30.02	38.81	14.38	31.88	51.33	74.00	-22.67	Horizontal	
12400.00	*					74.00		Horizontal	
14880.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	25.14	31.93	8.73	32.16	33.64	54.00	-20.36	Vertical	
7440.00	19.85	36.59	11.79	31.78	36.45	54.00	-17.55	Vertical	
9920.00	19.01	38.81	14.38	31.88	40.32	54.00	-13.68	Vertical	
12400.00	*					54.00		Vertical	
14880.00	*					54.00		Vertical	
4960.00	29.24	31.93	8.73	32.16	37.74	54.00	-16.26	Horizontal	
7440.00	21.95	36.59	11.79	31.78	38.55	54.00	-15.45	Horizontal	
9920.00	18.63	38.81	14.38	31.88	39.94	54.00	-14.06	Horizontal	
12400.00	*					54.00		Horizontal	
14880.00	*					54.00		Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201605000144E01

-----End-----