Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega n°9

- 1. Sea $f(x) = x \ln(x) 5x^2 + 1$.
 - a) Mostrar que la ecuación f(x)=0 tiene una única solución real, y esta se encuentra en el intervalo $(\frac{1}{10},+\infty)$.
 - b) Mostrar que si $x_0 \ge \frac{1}{10}$, el método de Newton-Raphson converge a partir de x_1 decrecientemente al único cero de f.

Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2021 Entrega n°9 - Resolución del ejercicio

- 1a) Para probar que f tiene un único cero, hagamos un análisis de función. Primero notamos que el dominio de f es el intervalo $(0, +\infty)$. Luego, notemos que $f'(x) = \ln(x) + 1 10x$ y $f''(x) = \frac{1}{x} 10$. De esta forma, f' es creciente en $\left(0, \frac{1}{10}\right)$ y decreciente en $\left(\frac{1}{10}, +\infty\right)$. En $x = \frac{1}{10}$ vale $f'\left(\frac{1}{10}\right) = \ln\left(\frac{1}{10}\right) < 0$. Por lo tanto f' es negativa en $(0, +\infty)$ y f es estrictamente decreciente en todo su dominio y tendrá a lo sumo un cero en \mathbb{R} . De hecho, $f\left(\frac{1}{10}\right) = -\frac{\ln(10)}{10} + \frac{95}{100} > 0$ y f(1) = -5 + 1 < 0, por lo que f tiene un único cero en \mathbb{R} y está en el intervalo $\left(\frac{1}{10}, 1\right)$.
- 1b) El método de Newton-Raphson para hallar el cero de f es:

$$\begin{cases} x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \text{ para } n \ge 0, \\ x_0 \ge \frac{1}{10}. \end{cases}$$

Si llamamos x^* al cero de f tenemos $x^* > \frac{1}{10}$. Miremos el error:

$$e_{n+1} = x_{n+1} - x^* = x_n - \frac{f(x^*) + e_n f'(x_n) - \frac{e_n^2}{2} f''(\xi_n)}{f'(x_n)} - x^*$$

$$= e_n + \frac{-e_n f'(x_n) + \frac{e_n^2}{2} f''(\xi_n)}{f'(x_n)} = \frac{f''(\xi_n)}{2 \underbrace{f'(x_n)}_{<0 \ \forall x > 0}} e_n^2,$$

para ξ_n entre x_n y x^* . De esta forma, si $x_n \ge \frac{1}{10}$, entonces $\xi_n > \frac{1}{10}$ y $f''(\xi_n) < 0$. Esto nos da $e_n > 0$. Es decir, $\frac{1}{10} < x^* < x_{n+1}$ si $x_n \ge \frac{1}{10}$ y nos queda $x^* < x_n$ para todo $n \ge 1$. Además,

$$x_{n+1} = x_n - \frac{\overbrace{f(x_n)}^{<0 \forall x_n > x^*}}{\underbrace{f'(x_n)}_{<0 \forall x_n}} < x_n,$$

por lo que la sucesión será decreciente y acotada inferiormente si se toma $x_0 \ge \frac{1}{10}$, lo que nos da que la sucesión es convergente a un límite ℓ . Verifiquemos que $\ell = x^*$:

$$\underbrace{x_{n+1}}_{\to \ell} = \underbrace{x_n}_{\to \ell} - \underbrace{\frac{f(x_n)}{f'(x_n)}}_{\to f'(\ell)}.$$

Como f'(x) < 0 para todo $x \in \mathbb{R}$, estos límites tienen sentido y tiene que valer que $f(\ell) = 0$. Por la unicidad del cero que probamos en el ítem anterior, se tiene que $\ell = x^*$, como se quería probar.