International Rectifier

IRF7509PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching
- Lead-Free

S1 III 1 D1 G1 III 2 D1 S2 III 3 G2 III 5 D2 G2 III P-CHANNEL MOSFET D2 Top View

	N-Ch	P-Ch
V _{DSS}	30V	-30V
R _{DS(on)}	0.11Ω	0.20Ω

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8 package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	M	Units	
		N-Channel	P-Channel	
V _{DS}	Drain-Source Voltage	30	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS}	2.7	-2.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS}	2.1	-1.6	Α
I _{DM}	Pulsed Drain Current①		-16	\neg
P _D @T _A = 25°C	Maximum Power Dissipation 4	1.	W	
P _D @T _A = 70°C	Maximum Power Dissipation 4	C	0.8	W
	Linear Derating Factor	1	0	mW/°C
V _{GS}	Gate-to-Source Voltage		± 20	
V _{GSM}	Gate-to-Source Voltage Single Pulse tp<10µS	30		V
dv/dt	Peak Diode Recovery dv/dt ②	5.0		V/ns
T _J , T _{STG}	J, T _{STG} Junction and Storage Temperature Range		-55 to + 150	
	Soldering Temperature, for 10 seconds	240 (1.6m	m from case)	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④	100	°C/W

www.irf.com

IRF7509PbF

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Electrical	cal Characteristics @ 1 _J - 25 C (unless otherwise specified)							
	Parameter			Тур.	Max.	Units		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch		_	_	V	$V_{GS} = 0V, I_D = 250\mu A$	
(BK)D22	Brain to Cource Broakactin Voltage	P-Ch	-30	_	_	V	$V_{GS} = 0V, I_{D} = -250\mu A$	
Δ\/,ρρ,ροσ/ΔΤ,	Breakdown Voltage Temp. Coefficient	N-Ch		0.059		V/°C	Reference to 25°C, I _D = 1mA	
A (BR)DSS/A I J	Breakdown Voltage Temp. Goemolent	P-Ch0.039 - V		V/ C	Reference to 25°C, I _D = -1mA			
		N-Ch	_		0.110		V _{GS} = 10V, I _D = 1.7A ⊕	
R _{DS(ON)}	Static Drain-to-Source On-Resistance	IN-CII	_		0.175	Ω	V _{GS} = 4.5V, I _D = 0.85A ④	
· 105(ON)		P-Ch	—		0.20	22	V _{GS} = -10V, I _D =-1.2A ⊕	
			_	0.30	0.40		V _{GS} = -4.5V, I _D =-0.6A ④	
V _{GS(th)}	Gate Threshold Voltage	N-Ch	_	_	_	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
• GS(III)	Cate Timesheld Tellage	P-Ch				V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
9 _{fs}	Forward Transconductance	N-Ch				s	V _{DS} = 10V, I _D = 0.85A ④	
015		P-Ch					$V_{DS} = -10V, I_{D} = -0.6A$ (4)	
		N-Ch	_		1.0		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	
I _{DSS}	Drain-to-Source Leakage Current	P-Ch		_	-1.0	μA	$V_{DS} = -24V, V_{GS} = 0V$	
-033		N-Ch			25	μΛ	V _{DS} = 24 V, V _{GS} = 0V, T _J = 125°C	
		P-Ch			-25		$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125$ °C	
I _{GSS}	Gate-to-Source Forward Leakage	N-P	_	_	±100		V _{GS} = ± 20V	
Q_{α}	Total Gate Charge	N-Ch		7.8			N-Channel	
·9	3	P-Ch	_	7.5	_		I _D = 1.7A, V _{DS} = 24V, V _{GS} = 10V	
Q_{qs}	Gate-to-Source Charge	N-Ch		1.2		nC	(A)	
95	ŭ .	P-Ch	_	1.3	_		P-Channel	
Q_{qd}	Gate-to-Drain ("Miller") Charge	N-Ch		2.5			I _D = -1.2A, V _{DS} = -24V, V _{GS} = -10V	
94	, , ,	P-Ch		2.5	3.7			
$t_{d(on)}$	Turn-On Delay Time	N-Ch		4.7			N-Channel	
-()	·	P-Ch	_	9.7			$V_{DD} = 15V$, $I_D = 1.7A$, $R_G = 6.1\Omega$,	
t _r	Rise Time	N-Ch	_	10			$R_D = 8.7\Omega$	
-		P-Ch		12		ns	(h)	
$t_{d(off)}$	Turn-Off Delay Time	N-Ch		12			P-Channel	
. ,		P-Ch		19			$V_{DD} = -15V$, $I_D = -1.2A$, $R_G = 6.2\Omega$,	
t _f	Fall Time	N-Ch		5.3			$R_D = 12\Omega$	
		P-Ch	_	9.3				
Ciss	Input Capacitance	N-Ch		210			N-Channel V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz	
-		P-Ch		180				
Coss	Output Capacitance	N-Ch		80 87		pF		
	•	P-Ch N-Ch		32			P-Channel	
C _{rss} F	Reverse Transfer Capacitance	P-Ch	_				$V_{GS} = 0V, V_{DS} = -25V, f = 1.0MHz$	
	· · · · · · · · · · · · · · · · · · ·		I —	42	I —			

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
		N-Ch	l —	_	1.25		
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-1.25	Α	
		N-Ch	_	_	21	^	
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-16]	
\ /	Diada Farandi Valtana	N-Ch	—	_	1.2	V	$T_J = 25$ °C, $I_S = 1.7A$, $V_{GS} = 0V$ ③
V _{SD}	Diode Forward Voltage	P-Ch	_	_	-1.2	•	$T_J = 25$ °C, $I_S = -1.8A$, $V_{GS} = 0V$ ③
	D	N-Ch	_	40	60	ns	N-Channel
ι _{rr}	Reverse Recovery Time	P-Ch	_	30	45	'''3	$T_J = 25$ °C, $I_F = 1.7A$, di/dt = 100A/ μ s
Q _{rr}	Bayerea Bassyany Charma	N-Ch	_	48	72	nC	P-Channel 3
	Reverse Recovery Charge	P-Ch	_	37	55		$T_J = 25$ °C, $I_F = -1.2A$, $di/dt = -100A/\mu s$

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 21)
- ② N-Channel I_{SD} \leq 1.7A, di/dt \leq 120A/ μ s, V_{DD} \leq V_{(BR)DSS}, T_J \leq 150°C P-Channel I_{SD} \leq -1.2A, di/dt \leq 160A/ μ s, V_{DD} \leq V_{(BR)DSS}, T_J \leq 150°C
- $\center{3}$ Pulse width $\le 300 \mu s$; duty cycle $\le 2\%$.
- 4 Surface mounted on FR-4 board, $t \leq 10 sec.$

International TOR Rectifier

N - Channel

IRF7509PbF

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Normalized On-Resistance Vs. Temperature www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical On-Resistance Vs. Drain Current

IRF7509PbF

International

TOR Rectifier

OPERATION IN THIS AREA LIMITED
BY RDS(on)

10

OPERATION IN THIS AREA LIMITED
BY RDS(on)

100us

10u

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

International TOR Rectifier

IRF7509PbF

Fig 11. Typical Output Characteristics

Fig 13. Typical Transfer Characteristics

Fig 15. Normalized On-Resistance Vs. Temperature

Fig 12. Typical Output Characteristics

Fig 14. Typical Source-Drain Diode Forward Voltage

Fig 16. Typical On-Resistance Vs. Drain Current

IRF7509PbF

International
Rectifier

P - Channel

Fig 17. Typical On-Resistance Vs. Gate Voltage

Fig 18. Maximum Safe Operating Area

Fig 19. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 20. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 21. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Micro8 Package Outline

Dimensions are shown in milimeters (inches)

Micro8 Part Marking Information

EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

WORK WEEK YE AR 2001 01 02 A B 2002 2003 03 2004 2005 04 D 2006 2007 2008 2009 24 25 26

WW = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	A
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Е	1	1
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	1
2010	K	50	Χ
		51	Υ
		52	Z

www.irf.com 7

Micro8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

- NOTES:
 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
 2. CONTROLLING DIMENSION : MILLIMETER.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.06/04