

Predicting Disease Probabilities Using a Single Gait Data Type Through Deep Learning

2024.07.26 Digital Healthcare Bootcamp 8조(박상연, 배하정, 오해규, 이승준, 정희현)

Severance

목차

- 1. 연구 배경 Rationale
- 2. 연구 목표 & 목적
- 3. 연구 방법
- 4. 연구 결과
- 5. 논의 사항
- 6. 향후 계획
- 7. 주요 코드
- 8. 참고문헌

1. 연구 배경 – Rationale

- 정상적인 gait는 중추신경계, 말초신경계, 근골격계가 정확히 조절되고, 이들의 조화, 반사, 학습이 총체적으로 작용해야[1] 가능함
- Pathologic Gait는 이 과정의 어떠한 요소에서라도 이상이 생기면 발생할 수 있으며, 구체적으로

통증, 구조 이상, 신경계 이상

등의 원인에 의해 발생할 수 있음 [1-3]

- 이러한 이유로 보행 분석은 이미 general practice [3,4], 신경학적 질환의 감별 [5,6] 등에 사용되고 있으며 노인의학 [7,8]에서도 주목받고 있음.
- 그럼에도 gait data는 실생활에서 쉽게 측정이 가능한 만큼 더 많은 real-life potential을 가지고 있음.

1. 연구 배경 – Rationale

- 여기에 더해, gait disturbance는 QoL(quality of life)에도 악영향을 끼침.
 - ➤ Parkinson's disease에서 보이는 <u>FOG(Freezing of Gait)가 QoL을 저해</u>한다는 보고[9,10]
 - > Stroke 환자에서 <u>Functional Gait Assessment(FGA) 결과가 AQoL-6D(</u>의 6개 dimension 중 dimension of independent living)<u>와 연관</u>이 있다는 보고[11]
- 더 나아가, gait에 대한 실생활 data에 대한 연구는 실시간으로 잘못된 gait를 탐지하는 등 운동 및 실생활에서의 건강 관리에 있어서도 응용 가능할 것으로 기대됨.

1. 연구 배경 – Rationale

- 제한된 데이터를 사용한 분석이 의료 AI에서 각광받고 있음.
 - Low-dose CT → Full-dose CT로 변환하는 연구[12]
 - ▶ 가상 data를 생성하여 AI 모델의 학습에 활용하는 연구[13]
- 기존에도 gait analysis 연구는 이뤄져 왔지만[4,14,15], <u>병원 밖에서 부족한 data로 condition을 예측하</u>
 는 Al model에 대한 연구는 이뤄지지 않음.
 - ➤ Full body kinematics data를 사용한 deep-learning 연구[4]
 - ➤ Multimodal data를 사용한 deep-learning 연구[14]
 - ➤ Foot force data를 사용한 deep-learning 연구[15]
- 따라서, wearable device 등으로 얻은 <u>Single point data만을 사용하는 deep-learning 연구</u>를 통해 높은 정확성과 접근성을 지닌 model을 개발하고자 함.
 - 1-3차에 걸친 전 주기적 예방 의료에 큰 도움이 될 것으로 기대됨.

2. 연구 목표 & 목적

Our Question

실생활 device로 보행 패턴을 분석하여 원인 질환(군)을 밝힐 수 있을까?

기대 성과

- ▶ 높은 접근성으로 신경/근골격계 질환의 조기 진단
- ▶ 별도 검사 없이 신경/근골격계 질환의 회복 수준 판별

2. 연구 목표 & 목적

Our Question

실생활 device로 보행 패턴을 분석하여 원인 질환(군)을 밝힐 수 있을까?

Tasks

- 1. 3D 가속도 데이터를 사용한 Parkinson's 환자 vs normal gait 분류
- 2. 3D 위치 데이터를 사용한 Cerebellar Ataxia vs normal gait 분류

• 학습 Data 및 Model 선택 – Kaggle 플랫폼에서 데이터 취득

• 학습 Data 및 Model 선택 – Kaggle 플랫폼에서 데이터 취득

데이터 비교	Normal	Parkinson's disease	Cerebellar ataxia (CA + Normal)
Data (location)	3D Acceleration (Lt. waist, Rt. thigh)	3D Acceleration (sensor @ lower back)	3D Distance(coordinate) (Lt. and Rt. shoulder, elbow, wrist, hip, knee, and ankle)
N수	93	437	100/100 (CA/normal)
Time point	1/100s (등간격 X)	1/128s (등간격 O)	1/1000s (등간격 X)
Data Length for model	약16s(2000개) 총 n = 1906	약16s(2000개) n =962	약30s (6000개) n=100/100
비고			정상인이 cerebellar ataxia 모방한 data, 비디오 분석(Sensor 사용하지 않음)

93 Human Gait (walking) Parkinson's Freezing of Database Gait Prediction

Human Gait Database for Normal Walk Collected by SmartPhone Accelerometer Event detection from wearable sensor data

Gait Analysis Dataset: Cerebellar Ataxia

University Student Gait Dataset: Simulated Ataxia & Normal Walking

• 학습 Data 및 Model 선택 – Kaggle 플랫폼에서 데이터 취득

데이터 비교	Normal	Parkinson's disease	Cerebellar ataxia (CA + Normal)	
Data (location)	3D Acceleration (Lt. waist , Rt. thigh)	3D Acceleration (sensor @ lower back)	3D Distance(coordinate) (Lt. and Rt. shoulder, elbow, wrist, hip, knee, and ankle)	

위치 선택 기준

- 1. Single point로써 전신의 운동에 대한 종합적인 정보를 가지고 있는 신체의 중심부를 선택
- 2. 어쩔 수 없이 데이터를 취합*하는 과정에서 가장 유사한 위치를 선택
- cf1. Timestamp의 길이가 dataset 내/dataset 간에 불균등한 경우 linear interpolation technique을 적용.
- cf2. Data augmentation 및 input data의 형식 통일을 위해 동일한 시간 간격으로 truncation 진행.
- cf3. FFT를 진행하는 과정에서 중력가속도 등의 영향을 제거하기 위해 linear regression을 사용.
- 동일한 data가 없어서 여러 source의 data를 합칠 수밖에 없었음. 그 과정에서 가장 유사한 위치에 sensor를 부착한 데이터를 취합할 수 있도록 했음.12

• 학습 Data 및 Model 선택

EDA(Explorative Data Analysis) – clipped data

VS.

'전체' 수준에서의 분석 '일부' 수준에서의 분석

Data_Pos	Time	X, Y, Z
환자1	t1	x1, y1, z1
환자2	t2	x2, y2, z2
•••	•••	
환자n	ti	xi, yi, zi

'전체' 수준에서의 분석

Data_Neg	
정상1	
정상2	
•••	
정상m	

'일부' 수준에서의 분석

Time	X, Y, Z
t1	x1, y1, z1
t2	x2, y2, z2
•••	
tj0	xj, yj, zj

EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

- 1. 결측값 및 중복값 확인
 - 결측값 없음
 - (시점 제외) 중복값 있음

Normal(일부)

[144, 112, 131, 129, 129, 129, 135, 144, 158, 0, 125, 132, 137, 242,

- 2. 분포 및 이상치 확인
 - 기초 통계량 확인

Parkinson's Disease(일부)

count mean	Time 2000.000000 999.500000	AccX 2000.000000 3.204363	AccY 2000.000000 0.271466	AccZ 2000.000000 -9.048364
std	577.494589	1.895198	1.392298	1.528158
min	0.000000	-4.633833	-5.366474	-24.863996
25%	499.750000	2.502734	-0.693723	-9.725266
50% 75%	999.500000 1499.250000	3.308928 4.021285	0.436756 1.160875	-9.043219 -8.539737
max	1999.000000	14.257240	4.774288	-4.367093

Normal(일부)

		•	•	
	Time	AccX	AccY	AccZ
count	2000.000000	2000.000000	2000.000000	2000.000000
mean	999.500000	0.024775	0.013695	-0.318089
std	577.494589	0.464237	0.386892	0.285804
min	0.000000	-0.957669	-1.551539	-1.621656
25%	499.750000	-0.333991	-0.162614	-0.467573
50%	999.500000	0.020320	0.049784	-0.273953
75%	1499.250000	0.397109	0.278716	-0.144301
max	1999.000000	1.351709	0.905103	0.634754

EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

• 2. 분포 및 이상치 확인

Parkinson's Disease(전체):

각 데이터마다 z-score를 계산하여, 각 축마다 z-score < -3 또는 zscore > 3인 시점의 비율을 구한 후, boxplot으로 시각화

Normal(전체):

EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

• 3. 시계열 데이터의 시각화

Parkinson's Disease(일부):

EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

• 3. 시계열 데이터의 시각화

Parkinson's Disease(일부):

• EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

• 3. 시계열 데이터의 시각화

Normal(일부):

• EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag

Parkinson's Disease(일부):

• EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag

Normal(일부):

EDA(Explorative Data Analysis) – clipped data

Parkinson's Disease vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag Parkinson's Disease(전체) Normal(전체)

각 데이터의 각 축마다 1~29까지의 lag 값에 대해 autocorrelation을 계산하여, autocorrelation > 0.5인 데이터의 비율을 lineplot으로 시각화

EDA(Explorative Data Analysis) – clipped data

Cerebellar Ataxia vs. Normal

• 2. 분포 및 이상치 확인

Cerebellar Ataxia(전체):

각 데이터마다 z-score를 계산하여, 각 축마다 z-score < -3 또는 zscore > 3인 시점의 비율을 구한 후, boxplot으로 시각화

Normal(전체):

EDA(Explorative Data Analysis) – clipped data

Cerebellar Ataxia vs. Normal

• 3. 시계열 데이터의 시각화

EDA(Explorative Data Analysis) – clipped data

Cerebellar Ataxia vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag

Cerebellar Ataxia(일부):

EDA(Explorative Data Analysis) – clipped data

Cerebellar Ataxia vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag

Normal(일부):

EDA(Explorative Data Analysis) – clipped data

Cerebellar Ataxia vs. Normal

- 4. 시계열 데이터의 분석
 - Autocorrelation: lag Cerebellar Ataxia(전체) Normal(전체)

각 데이터의 각 축마다 1~29까지의 lag 값에 대해 autocorrelation을 계산하여, autocorrelation > 0.5인 데이터의 비율을 lineplot으로 시각화

- 데이터 전처리 Fast Fourier Transform(FFT)
- Fourier Transform이란? f(x)를 삼각함수들로 구성된 급수, 더 나아가 적분 식으로 근사하는 변환법

$$f(x)=\int_{-\infty}^{\infty}F(k)e^{2\pi ikx}dk$$
 $F(k)=\int_{-\infty}^{\infty}f(x)e^{-2\pi ikx}dx$ $x[k]=\sum_{n=0}^{N-1}x[n]e^{rac{-j2\pi kn}{N}}$ Fast Fourier Transform(FFT)

그 계수를 정하기 위해 서로 다른 진동수를 가진 삼각함수의 곱을 정적분하면 값이 0이 된다는 점을 이용하며 위와 같은 식이 나오게 된다. (FFT는 이산적으로 빠르게 Fourier Transform을 수행하는 방식)

- 데이터 전처리 Fast Fourier Transform(FFT)
- <u>Gait data는 본질적으로 일정한 주기를 두고 같은 행위가 반복</u>되기에, 이러한 데이터를 처리하기에는 주 기함수의 형태로 표현되는 Fourier Transform을 적용하는 것이 유리하겠다 판단함.
- 물론, FFT를 사용함으로써 model 학습 상 불리해질 수 있음을 고려하여 가공되지 않은 data를 사용한 model 역시 만든 뒤 boosting stacking algorithm을 사용하기로 판단함.

• EDA(Explorative Data Analysis) – after FFT

Parkinson's vs. normal

Cerebellar ataxia vs. normal

Pink: Cerebellar ataxia

Mint: normal

• 학습 Data 및 Model 선택

기본적으로 model 3개를 사용 후, Stacking Ensemble Algorithm 적용.

- Non-linear SVM : Support Vector Machine의 non-linear form
- EfficientNet : 높은 확장성과 효율성을 보이는 고성능 CNN
- **LSTM**: vanishing gradient problem 방지 및 높은 성능의 RNN 모델 (Long Short Term Memory)

nonlinear SVM EfficientNet LSTM

32

- 세 가지 model의 data input은 **다르게** 지정하였습니다.
- Nonlinear SVM과 EfficientNet은 Fast Fourier Transform를 거친 data를 사용합니다.
- 이는 저희의 modeling pipeline에서 두 model을 주파수 영역의 **Base Wave** 로부터 Disease Pattern을 인식하기 위한 model로 설계하였기 때문입니다.
- LSTM은 기존 시계열 속성을 유지한 전처리된 data를 그대로 사용하였습니다.

EfficientNet과 LSTM의 학습 environment는 다음과 같습니다.

- CPU: 20, Memory: 128 Gi, using GPU
- Base setting: 100 epochs, batch = 4, BCEWithLogitsLoss
- optimization setting : optimizer = Adam, lr = 1e-3 & schedular (step = 10, gamma = 0.5),

4. 연구 결과

Task 1. 3D 가속도 데이터를 사용한 Parkinson's 환자 vs normal gait 분류

4. 연구 결과

Non-linear SVM(with RBF kernel)

Accuracy: 0.9861

Classificatio	on Report: precision	recall	f1-score	support
Normal	0.98	1.00	0.99	381
Parkinson	1.00	0.96	0.98	193
accuracy			0.99	574
macro avg	0.99	0.98	0.98	574
weighted avg	0.99	0.99	0.99	574

EfficientNet(with pretrained ver. b6)

Classificatio	n Report: precision	recall	f1-score	support
	•			
Normal	1.00	1.00	1.00	381
Parkinson	1.00	0.99	1.00	193
accuracy			1.00	574
macro avg	1.00	1.00	1.00	574
weighted avg	1.00	1.00	1.00	574

• LSTM

Task 2. 3D 위치 데이터를 사용한 Cerebellar Ataxia vs normal gait 분류

Non-linear SVM(with RBF kernel)

Classification	n Report:			
	precision	recall	f1-score	support
Normal	0.79	0.55	0.65	20
Ataxixa	0.65	0.85	0.74	20
accuracy			0.70	40
macro avg	0.72	0.70	0.69	40
weighted avg	0.72	0.70	0.69	40

EfficientNet(with pretrained ver. b6)

Classification Report:					
	precision	recall	f1-score	support	
Normal	0.83	0.95	0.88	20	
Ataxia	0.94	0.80	0.86	20	
			0.00	40	
accuracy			0.88	40	
macro avg	0.88	0.88	0.87	40	
veighted avg	0.88	0.88	0.87	40	

• LSTM

Stacking Ensemble

Classificatio	on Report: precision	recall	f1-score	support
Normal	1.00	0.95	0.98	21
Ataxia	0.95	1.00	0.97	19
accuracy			0.97	40
macro avg	0.97	0.98	0.97	40
weighted avg	0.98	0.97	0.98	40

5. 논의 사항

- Task 1에서는, 3가지 model에서 모두 충분히 높은 성능을 보임.
 - ▶ 이는 정상인과 Parkinson's 환자의 gait가 확연히 다른 행태를 보임을 시사함.
- 주목할 만한 점은, Parkinson's 환자를 정상인으로 분류한 case가 1건도 없다는 것임.

- Task 2에서는, Parkinson's 환자에 비해 cerebellar atrophy 환자는 정상과 비교하여 덜 확연한 차이를 보였으며 세 모델 모두 Task 1에 비해 낮은 성능을 보임.
- Stacking Ensemble algorithm을 통해 세 모델에 비해 확연히 높은 성능을 얻어냄. (with. logistic regression)

6. 향후 계획

- 더 체계적이고 일관된 data 취득을 통해 모델의 정확도와 신뢰도 향상
 - ▶ 다른 방식으로 취합된 data들을 합치는 과정에서 group간 바람직하지 않은 차이가 발생
 - 보행 이상의 원인이 될 수 있는 다양한 질환 군에 대한 데이터 취득, 이후 학습 진행
 - ▶ 비중증 or 호전(+/- 치료)된 Parkinson's disease data를 추가하여 더 자세한 분류를 지원
- FFT 대신 STFT(Short Time Fourier Transformation)과 같이 더 발전된 Fourier Transform 기법 사용
- PCA 상 splitting을 보이는 subgroup에 대한 subgroup analysis
 - ➤ Parkinson's disease EDA 상에서 splitting 관찰됨
- 워치, 링, 폰 등에 기능을 도입하기 위해 다양한 부위의 data에 적용할 수 있는 AI모델 개발
- 날씨, 식사 전후 등 오차 요인에 대응하기 위한 방안 마련

Non-linear SVM(RBF kernel)

```
class Gait_Dataset(Dataset):
   def init (self, root dir, transform=None):
       self.root dir = root dir
       self.transform = transform
       self.data = []
       self.labels = []
       normal dir = os.path.join(root dir, 'normal')
       parkinson_dir = os.path.join(root_dir, 'parkinson')
       # Load normal data
       for file in os.listdir(normal dir):
           if file.endswith('.csv'):
               file_path = os.path.join(normal_dir, file)
               data = np.loadtxt(file path, delimiter=',')
               self.data.append(data)
               self.labels.append(0) # Label for normal
       # Load parkinson data
       for file in os.listdir(parkinson_dir):
           if file.endswith('.csv'):
               file_path = os.path.join(parkinson_dir, file)
               data = np.loadtxt(file path, delimiter=',')
               self.data.append(data)
               self.labels.append(1) # Label for parkinson
       # Convert data and labels to numpy arrays
       self.data = np.array(self.data)
       self.labels = np.array(self.labels)
   def __len__(self):
      return len(self.labels)
   def __getitem__(self, idx):
       sample = self.data[idx]
       label = self.labels[idx]
       if self.transform:
           sample = self.transform(sample)
       return sample, label
```

```
root_dir = 'Task1/ffT'
dataset = Gait_Dataset(root_dir=root_dir)
data = dataset.data
labels = dataset.labels
data = np.array([sample.flatten() for sample in dataset.data])
labels = np.array(dataset.labels)

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, random_state=42)

svm_model = SVC(kernel='rbf', probability=True)
svm_model.fit(X_train, y_train)
joblib.dump(svm_model, 'svm_model.joblib')
print('Model saved to svm_model.joblib')

y_pred = svm_model.predict(X_test)
y_prob = svm_model.predict_proba(X_test)[:, 1]

Model saved to svm_model.joblib
```


EfficientNet(with pretrained ver. b6)

```
class CustomEfficientNet(nn.Module):
   def __init__(self, model_name='efficientnet_b6'):
       super(CustomEfficientNet, self). init ()
       if model name == 'efficientnet b0':
           self.base model = efficientnet b0(weights=EfficientNet B0 Weights.IMAGENET1K V1)
       elif model name == 'efficientnet b1':
          self.base model = efficientnet b1(weights=EfficientNet B1 Weights.IMAGENET1K V1)
       elif model name == 'efficientnet b2':
           self.base model = efficientnet b2(weights=EfficientNet B2 Weights.IMAGENET1K V1)
       elif model name == 'efficientnet b3':
           self.base_model = efficientnet_b3(weights=EfficientNet_B3_Weights.IMAGENET1K_V1)
       elif model name == 'efficientnet b4':
           self.base model = efficientnet b4(weights=EfficientNet B4 Weights.IMAGENET1K V1)
       elif model name == 'efficientnet b5':
           self.base model = efficientnet b5(weights=EfficientNet B5 Weights.IMAGENET1K V1)
       elif model name == 'efficientnet b6':
           self.base_model = efficientnet_b6(weights=EfficientNet_B6_Weights.IMAGENET1K_V1)
       elif model name == 'efficientnet b7':
           self.base model = efficientnet b7(weights=EfficientNet B7 Weights.IMAGENET1K V1)
       else:
           raise ValueError("Invalid model name. Choose from 'efficientnet b0' to 'efficientnet b7'.")
       self.base model.features[0][0] = nn.Conv2d(1, self.base model.features[0][0].out channels,
                                                  kernel size=self.base_model.features[0][0].kernel_size,
                                                  stride=self.base model.features[0][0].stride,
                                                  padding=self.base_model.features[0][0].padding,
                                                  bias=False)
       self.fc = nn.Linear(self.base_model.classifier[1].in_features, 1)
       self.base model.classifier = nn.Identity()
   def forward(self, x):
       x = self.base model(x)
       x = self.fc(x)
       return x
   def predict(self, x):
       logits = self.forward(x)
       probs = torch.sigmoid(logits)
       preds = (probs > 0.5).float() # Threshold at 0.5 for binary classification
       return preds, probs
```

```
def train with eval(model, criterion, optimizer, scheduler, train loader, val loader, num epochs=10):
   best loss = float('inf')
   for epoch in range(num_epochs):
       model.train()
       running loss = 0.0
       for inputs, targets in train loader:
           inputs = inputs.to(device)
           targets = targets.to(device)
           optimizer.zero_grad()
           outputs = model(inputs)
           targets = targets.unsqueeze(1)
           loss = criterion(outputs, targets)
           loss.backward()
           optimizer.step()
           running loss += loss.item() * inputs.size(0)
       epoch_loss = running_loss / len(train_loader.dataset)
       print(f"Epoch {epoch+1}/{num epochs}, Loss: {epoch loss:.4f}")
       scheduler.step()
       model.eval()
       running loss = 0.0
       with torch.no_grad():
           for inputs, targets in val loader:
               inputs = inputs.to(device)
               targets = targets.to(device)
               outputs = model(inputs)
               targets = targets.unsqueeze(1)
               loss = criterion(outputs, targets)
               running_loss += loss.item() * inputs.size(0)
       val loss = running loss / len(val loader.dataset)
       print(f"Validation Loss: {val loss:.4f}")
       if val loss < best loss:</pre>
           best loss = val loss
           torch.save(model.state_dict(), 'lstm_model.pth')
           print(f"Model saved with loss: {best loss:.4f}")
```

```
model = CustomEfficientNet('efficientnet_b6').to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
```


LSTM

```
class Gait Dataset(Dataset):
   def __init__(self, root_dir, transform=None):
       self.root_dir = root_dir
       self.transform = transform
       self.data = []
       self.labels = []
       normal_dir = os.path.join(root_dir, 'normal')
       parkinson dir = os.path.join(root dir, 'parkinson')
       # Load normal data
       for file in os.listdir(normal dir):
           if file.endswith('.csv'):
               file_path = os.path.join(normal_dir, file)
               data = np.loadtxt(file_path, delimiter=',')
               self.data.append(data)
               self.labels.append(0) # Label for normal
       # Load parkinson data
       for file in os.listdir(parkinson_dir):
          if file.endswith('.csv'):
               file path = os.path.join(parkinson dir, file)
               data = np.loadtxt(file path, delimiter=',')
               self.data.append(data)
               self.labels.append(1) # Label for parkinson
       # Convert data and labels to tensors
       self.data = [torch.tensor(d, dtype=torch.float32) for d in self.data]
       self.labels = torch.tensor(self.labels, dtype=torch.float32)
   def len (self):
      return len(self.labels)
   def getitem (self, idx):
       sample = self.data[idx]
       label = self.labels[idx]
       if self.transform:
           sample = self.transform(sample)
       return sample, label
```

```
# Dataset usage
root dir = 'Task1/ffT'
dataset = Gait Dataset(root dir=root dir)
# Stratified split of dataset into training and test sets
labels = np.array(dataset.labels)
stratified split = StratifiedShuffleSplit(n splits=1, test size=0.2, random state=42)
train_idx, test_idx = next(stratified_split.split(np.zeros(len(labels)), labels))
train dataset = Subset(dataset, train idx)
test dataset = Subset(dataset, test idx)
train loader = DataLoader(train dataset, batch size=4, shuffle=True)
test loader = DataLoader(test dataset, batch size=4, shuffle=False)
class LSTMClassifier(nn.Module):
   def __init__(self, input size, hidden size, num layers, output size, dropout=0.3):
        super(LSTMClassifier, self).__init__()
        self.hidden size = hidden size
        self.num layers = num layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout)
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(hidden_size, output_size)
    def forward(self, x):
       h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
        c0 = torch.zeros(self.num layers, x.size(0), self.hidden size).to(device)
       out, _ = self.lstm(x, (h0, c0))
       out = out[:, -1, :]
       out = self.dropout(out)
        out = self.fc(out)
        return out
```


시각화

```
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
all labels = []
all preds = []
all_probs = []
with torch.no_grad():
    for inputs, labels in test loader:
        inputs = inputs.to(device)
        labels = labels.to(device)
        outputs = model(inputs)
       probs = torch.sigmoid(outputs)
       preds = (probs > 0.5).float()
        all labels.extend(labels.cpu().numpy())
        all_preds.extend(preds.cpu().numpy())
       all_probs.extend(probs.cpu().numpy())
accuracy = accuracy score(all labels, all preds)
print(f'Accuracy: {accuracy:.4f}')
```

```
classification_rep = classification_report(all_labels, all_preds, target_names=['Normal', 'Parkinson'])
print(f'Classification Report:\n{classification_rep}')
```

```
conf_matrix = confusion_matrix(all_labels, all_preds)
print(f'Confusion Matrix:\n(conf_matrix)')

plt.figure(figsize*(8, 6))
sns.heatmap(conf_matrix, annot-True, fmt-'d', cmap='Slues', xticklabels=['Normal', 'Parkinson'], yticklabels=['Normal', 'Parkinson'])
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()
```

```
fpr, tpr, _ = roc_curve(all_labels, all_probs)
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Parkinson Classification with EfficientNet')
plt.legend(loc="lower right")
plt.show()
```

참고문헌

- 1. Center AM. Abnormalities of Gait and Mobility [cited 2024 0725]
- 2. Medicine S. Gait Abnormalities: Standford Medicine; [cited 2024 0725].
- 3. Appukutty Manickam MDG. Gait Assessment in General Practice. Australian Journal of General Practice. 2021;50(11):801-6.
- 4. Joshi S, Khanal S, Bista R. Spatiotemporal Gait Analysis for Cardiovascular Disease. 2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)2022. p. 181-6.
- 5. Mc Ardle R MR, Wilson J, Galna B, Thomas AJ, Rochester L. What Can Quantitative Gait Analysis Tell Us about Dementia and Its Subtypes? A Structured Review. J Alzheimers Dis. 2017;60(4):1295-312.
- 6. Bahureksa L, Najafi B, Saleh A, Sabbagh M, Coon D, Mohler MJ, et al. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology. 2017;63(1):67-83.
- 7. Kikkert L. Gait characteristics as indicators of cognitive impairment in geriatric patients. Groningen: Rijksuniversiteit te Groningen; 2018.
- 8. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127-36.
- 9. Cronin P, Collins LM, Sullivan AM. Impacts of gait freeze on quality of life in Parkinson's disease, from the perspectives of patients and their carers. Ir J Med Sci. 2024.
- 10. Walton CC, Shine JM, Hall JM, O'Callaghan C, Mowszowski L, Gilat M, et al. The major impact of freezing of gait on quality of life in Parkinson's disease. J Neurol. 2015;262(1):108-15.
- 11. Price R, Choy NL. Investigating the Relationship of the Functional Gait Assessment to Spatiotemporal Parameters of Gait and Quality of Life in Individuals With Stroke. J Geriatr Phys Ther. 2019;42(4):256-64.

참고문헌

- 12. Chitale V, Playne D, Liang H-N, Baghaei N. Virtual Reality Data for Predicting Mental Health Conditions. 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)2022. p. 6-8.
- 13. Chen H, Zhang, Y., Kalra, M. K., Lin, F., Chen, Y., Liao, P., ... & Wang, G. Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network. IEEE transactions on medical imaging. 2017;36(12):2524-35.
- 14. Van Criekinge T, Saeys W, Truijen S, Vereeck L, Sloot LH, Hallemans A. A full-body motion capture gait dataset of 138 able-bodied adults across the life span and 50 stroke survivors. Sci Data. 2023;10(1):852.
- 15. Noella RN, Gupta, D., & Priyadarshini, J. Diagnosis of Parkinson's disease using Gait Dynamics and Images. Procedia Computer Science. 2019;165:428-34.