Segunda Avaliação - Análise na Reta

Daniel Alves de Lima

 $\begin{array}{l} \textbf{Quest\~ao 1.} \ \ Dado \ A > 0, \ tome \ \delta = \min\{\tfrac{3}{2}, \tfrac{2}{15A}\}. \ \ Segue \ que, \ x \in \mathbb{R} - \{3, -3\}, \ 0 < x - 3 < \delta \implies 6 < x + 3 < \tfrac{15}{2} \ e \ 0 < x - 3 < \tfrac{2}{15A} \implies 0 < x^2 - 9 = (x + 3)(x - 3) < \tfrac{1}{A} \implies \tfrac{1}{x^2 - 9} > A. \ \ Logo, \ \lim_{x \to 3^+} \frac{1}{x^2 - 9} = +\infty. \end{array}$

Questão 2. Vejamos que $\lim_{x\to 0} f(x) = 0$. Dado $\varepsilon > 0$, tome $\delta = \varepsilon$. Se $x \in \mathbb{Q}$, então $0 < |x| < \delta$ implica f(x) = x, ou seja, $|f(x)| = |x| < \varepsilon$. Se $x \notin \mathbb{Q}$, então $0 < |x| < \delta$ implica f(x) = 0, ou seja, $|f(x)| = 0 < \varepsilon$. Em qualquer caso, tem-se $0 < |x| < \delta \implies |f(x)| < \varepsilon$. Logo, $\lim_{x\to 0} f(x) = 0$. Vejamos que $\lim_{y\to 0} g(y) = 0$. Dado $\varepsilon > 0$, tome $\delta = \varepsilon$. Segue-se, $0 < |y| < \delta \implies |g(y)| = 0 < \varepsilon$. Logo, $\lim_{y\to 0} g(y) = 0$. Para mostrar que não há $\lim_{x\to 0} g(f(x))$, considere a sequência de racionais $x_n = \frac{1}{n}$, e a sequência de irracionais $y_n = \frac{\sqrt{2}}{n}$. Note que, $x_n \to 0$ e $y_n \to 0$, mas $g(f(x_n)) = g(\frac{1}{n}) = 0$ e $g(f(y_n)) = g(0) = 1$. Logo, não existe $\lim_{x\to 0} g(f(x))$.

Questão 3. • Verdadeiro.

Sejam $X \subset \mathbb{R}$ e uma função $f: X \to \mathbb{R}$. Considere um ponto $a \in X$ tal que $a \notin X'$. Então, existe $\delta > 0$ tal que $(a - \delta, a + \delta) \cap X = \{a\}$. Dado $\varepsilon > 0$, tomando este δ , segue que $x \in X$, $|x - a| < \delta \implies x = a \implies f(x) = f(a) \implies |f(x) - f(a)| = 0 < \varepsilon$. Logo, $f \notin contínua\ em\ a$.

Portanto, toda função é contínua nos pontos isolados de seu domínio. Como todos os pontos de \mathbb{Z} são isolados, então qualquer função $f: \mathbb{Z} \to \mathbb{R}$ é contínua.

• Falso.

A função contínua $f:(0,1] \to \mathbb{R}$, com $f(x) = \frac{1}{x}$, tem como domínio um intervalo limitado, porém sua imagem é ilimitada superiormente, pois $\lim_{x\to 0} f(x) = +\infty$.

• Falso.

A função contínua $f:(0,1)\to\mathbb{R}$, com f(x)=x, é tal que f((0,1))=(0,1), onde vemos que f não assume máximo, nem mínimo.

• Falso.

A função $f:(-\infty,0)\cup[1,+\infty)\to\mathbb{R}$, definida por

$$f(x) = \begin{cases} x - 1, se \ x \ge 1 \\ x, se \ x < 0 \end{cases}$$

é uma bijeção contínua, porém sua inversa $f^{-1}: \mathbb{R} \to (-\infty, 0) \cup [1, +\infty)$, onde

$$f^{-1}(x) = \begin{cases} x + 1, se \ x \ge 0 \\ x, se \ x < 0 \end{cases}$$

é uma bijeção que não é contínua em 0, pois $\lim_{x\to 0^+} f^{-1}(x) = 1$ e $\lim_{x\to 0^-} f^{-1}(x) = 0$, ou seja, não existe $\lim_{x\to 0} f^{-1}(x)$.

• Falso.

A função $f: \mathbb{R} \to \mathbb{R}$, onde

$$f(x) = \begin{cases} 1, se \ x \in \mathbb{Z} \\ 0, se \ x \notin \mathbb{Z} \end{cases}$$

é tal que $f|_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{R}$ é contínua, mas f não é contínua em nenhum ponto $n \in \mathbb{Z}$.

Com efeito, seja $n \in \mathbb{Z}$, temos que $\lim_{x\to n} f(x) = 0 \neq 1 = f(n)$. Logo, f não é contínua em n.

• Falso.

A função $f: \mathbb{Z} \to \mathbb{R}$ com f(x) = k + 1, é contínua. Já temos que $\mathcal{A} \subset \mathbb{Z}$. Para todo $x \in \mathbb{Z}$, tem-se f(x) > k. Então, $\mathbb{Z} \subset \mathcal{A}$, ou seja, $\mathbb{Z} = \mathcal{A}$ um conjunto que não é aberto.

• Falso.

Seja a > 0. A função $f : [0, a] \to [0, +\infty)$, onde $f(x) = \sqrt[n]{x}$, não é lipschitziana, apesar de ser uniformemente contínua.

Com efeito, como f é contínua no compacto [0,a] temos que f é uniformemente contínua. Dado $\delta > 0$, escolhamos $x_{\delta}, y_{\delta} \in [0,a]$ tais que $x_{\delta}, y_{\delta} < (\sqrt[n-1]{\frac{1}{n\delta}})^n$. Então, segue que $\sum_{i=0}^{n-1} (\sqrt[n]{x_{\delta}})^i (\sqrt[n]{y_{\delta}})^{n-1-i} \leq \sum_{i=0}^{n-1} (\sqrt[n-1]{\frac{1}{n\delta}})^i (\sqrt[n-1]{\frac{1}{n\delta}})^{n-1-i} = \sum_{i=0}^{n-1} (\frac{1}{n\delta}) = n(\frac{1}{n\delta}) = \frac{1}{\delta}$. Assim, podemos concluir que $|\sqrt[n]{x_{\delta}} - \sqrt[n]{y_{\delta}}| \geq \delta |x_{\delta} - y_{\delta}|$. Logo, f não é lipschitziana.

• Falso.

Todo conjunto $X \subset \mathbb{R}$ não-enumerável possui ponto de acumulação. Com efeito, suponha que todos os pontos de X são isolados. Seja $E \subset X$ um conjunto enumerável denso em X. Dado $x \in X$, tem-se $x \in \overline{E}$. Como $x \notin X'$, também deve ser $x \notin E'$, então $x \in E$. Concluímos que X = E, contradizendo a hipótese de X ser não-enumerável. Logo, X deve possuir ponto de acumulação.

• Verdadeiro.

Como f é contínua em um intervalo fechado limitado, temos que f([a,b]) é um intervalo e um conjunto compacto, ou seja, f([a,b]) também é um intervalo fechado limitado. Digamos que seja $f([a,b]) = [\alpha,\beta]$. Então, existe $x^* \in [a,b]$ tal que $\alpha = f(x^*) > 0$. Logo, este $\alpha > 0$ é tal que $f(x) \ge \alpha$, $\forall x \in [a,b]$.

• Falso.

Primeiro, notemos que para todo $x \in \mathbb{R}$ tem-se $(|x|+1)^2 \ge x^2+1$. Pondo $f(x)=(|x|+1)^2$ e $g(x)=x^2+1$, temos que $\lim_{x\to 0}f(x)=\lim_{x\to 0}g(x)=1$. Mas, não se verifica f(x)< g(x) em hipótese alguma.

Questão 4. Como X é aberto e $a \in X$, existe $\varepsilon > 0$ tal que $(a - \varepsilon, a + \varepsilon) \subset X$. Seja uma sequência qualquer $(x_n) \subset \mathbb{R}$ com $\lim x_n = a$. Para este $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Longrightarrow x_n \in (a - \varepsilon, a + \varepsilon) \subset X$, ou seja, $x_n \in X$ para todo $n > n_0$. Reciprocamente, suponhamos que X não é aberto. Então, existe $a \in X$ tal que $a \notin int(X)$. Para cada $n \in \mathbb{N}$, podemos escolher um ponto $x_n \in (a - \frac{1}{n}, a + \frac{1}{n})$ com $x_n \notin X$. Por ser $|x_n - a| < \frac{1}{n}$, tem-se $\lim x_n = a$. Portanto, (x_n) é uma sequência que converge para a, mas que $x_n \notin X$ para todo $n \in \mathbb{N}$, contradizendo a hipótese. Logo, X deve ser um conjunto aberto.

- Questão 5. (a) Primeiro, vejamos que $(\overline{X})^c = int(X^c)$ para qualquer $X \subset \mathbb{R}$. Com efeito, $x \in (\overline{X})^c \iff x \notin \overline{X} \iff \exists (a,b) \ni x; \ (a,b) \cap X = \emptyset \iff \exists (a,b) \ni x; \ (a,b) \subset X^c \iff x \in int(X^c)$. Pela definição de fronteira, é evidente que $\partial X = \overline{X} \cap \overline{X^c}$, ou seja, $(\partial X)^c = (\overline{X})^c \cup (\overline{X^c})^c$. Então, temse $(\partial X)^c = int(X^c) \cup int(X)$. Como $\mathbb{R} = \partial X \cup (\partial X)^c$, segue o resultado $\mathbb{R} = \partial X \cup int(X^c) \cup int(X)$.
 - (b) A inclusão $X \cup \partial X \subset \overline{X}$ é óbvia. Dado $x \in \overline{X}$, podemos ter $x \in X$ ou $x \notin X$. Caso seja $x \notin X$, temos que $x \in X^c \subset \overline{X^c}$, ou seja, $x \in \overline{X} \cap \overline{X^c} = \partial X$. Então, tem-se $\overline{X} \subset X \cup \partial X$, e portanto, vale $\overline{X} = X \cup \partial X$.
 - (c) Como X é aberto, seu complementar é fechado, isto é, $\overline{X^c} = X^c$. Segue que, $\partial X \cap X = (\overline{X} \cap X^c) \cap X = \overline{X} \cap (X^c \cap X) = \overline{X} \cap \emptyset = \emptyset$. Reciprocamente, dado $x \in X$, então $x \notin \partial X$, ou seja, $x \in int(X) \cup int(X^c)$. Se fosse $x \in int(X^c)$, teríamos $x \notin X$, um absurdo. Portanto, só pode ser $x \in int(X)$. Logo, $X \notin aberto$.
 - (d) Como X é fechado, simplesmente $\partial X \subset \overline{X} = X$. Reciprocamente, tem-se $\overline{X} = X \cup \partial X \subset X$. Então, $\overline{X} = X$, e portanto, X é fechado.

Questão 6. Dado $a \in f^{-1}(B)$ tem-se f contínua em a e $f(a) \in B$. Então, existe $\delta_1 > 0$ tal que $(f(a) - \delta_1, f(a) + \delta_1) \subset B$. Para este $\delta_1 > 0$, existe $\delta_2 > 0$ tal que $x \in A$, $|x - a| < \delta_2 \implies f(x) \in (f(a) - \delta_1, f(a) + \delta_1) \implies f(x) \in B \implies x \in f^{-1}(B)$. Como A é aberto, existe $\delta_3 > 0$ tal que $(a - \delta_3, a + \delta_3) \subset A$. Tomando $\delta = \min\{\delta_2, \delta_3\}$, segue que $(a - \delta, a + \delta) \subset f^{-1}(B)$ donde $f^{-1}(B) = \inf(f^{-1}(B))$. Logo, $f^{-1}(B)$ é aberto. Reciprocamente, dados $\varepsilon > 0$ e $a \in A$, tome $B = (f(a) - \varepsilon, f(a) + \varepsilon)$. Como $f(a) \in B$, tem-se $a \in f^{-1}(B)$. Então, existe $\delta > 0$ tal que $(a - \delta, a + \delta) \subset f^{-1}(B)$. Portanto, segue que $x \in A$, $|x - a| < \delta \implies x \in f^{-1}(B) \implies f(x) \in B \implies |f(x) - f(a)| < \varepsilon$. Logo, f é contínua.

Questão 7. Primeiro, vejamos o seguinte resultado: Seja uma função $f: \mathbb{R} \to \mathbb{R}$ contínua. Então, o conjunto $Z_f = \{x \in \mathbb{R}; f(x) = 0\}$ é fechado. Com efeito, seja $a \in \overline{Z_f}$, então há uma sequência $(x_n) \subset Z_f$ com $\lim x_n = a$. Como $f(x_n) = 0$, segue que $\lim f(x_n) = f(a) = 0$. Logo, $a \in Z_f$.

Voltando à questão, temos que f é derivável e que $f': \mathbb{R} \to \mathbb{R}$ é contínua. Pelo resultado acima, o conjunto $Z_{f'}$ dos pontos críticos de f é fechado.

Questão 8. Seja $a \in I$, como $\lim_{x\to a} C|x-a|^{\alpha}=0$ devemos ter $\lim_{x\to a} |f(x)-f(a)|=0$, ou seja, $\lim_{x\to a} f(x)=f(a)$. Então, f é contínua em todo $a\in I$. Por outro lado, por ser $\alpha>1$, existe $\beta>0$ tal que $\alpha=1+\beta$. Então, para cada $a\in I$ temos que $|\frac{f(x)-f(a)}{x-a}|\leq C|x-a|^{\beta}$. Como $\lim_{x\to a} C|x-a|^{\beta}=0$, devemos ter $\lim_{x\to a} |\frac{f(x)-f(a)}{x-a}|=0$, ou seja, $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}=f'(a)=0$ para todo $a\in I$. Assim, f é contínua com derivada nula em todo I, logo f deve ser constante.