TPK4171 - Advanced Industrial Robotics Exercise 2, 2024

Department of Mechanical and industrial Engineering NTNU

Deadline: 2024-01-31

Problem 1

The lines $\ell_1 = [1, -1, 0]^T$ and $\ell_2 = [0, 1, -1]^T$ are given.

- a) Write the lines ℓ_1 and ℓ_2 in the form y = Ax + B, find the point that is closest to the origin for both lines. Sketch the lines.
- b) Find the intersection point x of the lines ℓ_1 and ℓ_2 . Sketch the lines and the intersection point.
- c) Find the distance from ℓ_1 to the point $\boldsymbol{x}_1 = [3, 1, 1]^{\mathrm{T}}$.
- d) Find the line ℓ_d through the points $\boldsymbol{x}_2 = [1,0,0]^{\mathrm{T}}$ and $\boldsymbol{x}_3 = [0,1,1]^{\mathrm{T}}$. Sketch the line.
- e) Find the line ℓ_e through the points $\boldsymbol{x}_4 = [1,0,0]^{\mathrm{T}}$ and $\boldsymbol{x}_5 = [0,1,0]^{\mathrm{T}}$. What type of line is ℓ_e ? Is it possible to write the line in the form y = Ax + B and make a sketch of the line and the point?

Problem 2

A camera is used to find points in a horizontal plane. The object frame has a vertical z_o axis. The displacement from the camera frame to the object frame is given by

$$\boldsymbol{T}_o^c = \begin{bmatrix} \boldsymbol{R}_x (120^\circ) \boldsymbol{R}_z (45^\circ) & \boldsymbol{t} \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{bmatrix}$$
 (1)

where $t = [0, 0, 2]^{\mathrm{T}}$.

4 points are given in the xy plane of the object frame as the corners of a quadratic rectangle with coordinates $\mathbf{r}_{o1}^o = [0,0,0]^{\mathrm{T}}$, $\mathbf{r}_{o2}^o = [1,0,0]^{\mathrm{T}}$, $\mathbf{r}_{o3}^o = [1,1,0]^{\mathrm{T}}$ and $\mathbf{r}_{o4}^o = [0,1,0]^{\mathrm{T}}$. In the xy plane of the object frame these points can be written as the homogeneous points $\mathbf{x}_1 = [0,0,1]^{\mathrm{T}}$, $\mathbf{x}_2 = [1,0,1]^{\mathrm{T}}$, $\mathbf{x}_3 = [1,1,1]^{\mathrm{T}}$ and $\mathbf{x}_4 = [0,1,1]^{\mathrm{T}}$ where the first two coordinates are the x and y coordinates in the xy plane of the object frame, and the third coordinate is the homogeneous coordinate.

- a) Find the homogeneous representation in the xy plane of the object frame for the line ℓ_{12} defined by the points x_1 and x_2 , the line ℓ_{23} defined by the points x_2 and x_3 , the line ℓ_{34} defined by the points x_3 and x_4 , and the line ℓ_{41} defined by the points x_4 and x_1 . Find the homogeneous intersection point y_1 of the lines ℓ_{12} and ℓ_{34} , and the homogeneous intersection point y_2 of the lines ℓ_{23} and ℓ_{41} . What type of points are y_1 and y_2 ?
- b) Find the homogeneous normalized image coordinate vectors $\tilde{s}_1, \ldots, \tilde{s}_4$ corresponding to the points $r_{o1}^o, \ldots, r_{o4}^o$.
- c) Find the homogeneous lines $\lambda_{12} = \tilde{s}_1 \times \tilde{s}_2$, $\lambda_{23} = \tilde{s}_2 \times \tilde{s}_3$, $\lambda_{34} = \tilde{s}_3 \times \tilde{s}_4$ and $\lambda_{41} = \tilde{s}_4 \times \tilde{s}_1$ in the normalized image plane. This lines will be the image of the lines ℓ_{12} , ℓ_{23} , ℓ_{34} and ℓ_{41} .
- d) Find the homogeneous intersection point z_1 of the lines λ_{12} and λ_{34} , and the intersection point z_2 of the lines λ_{23} and λ_{41} and the corresponding points in the normalized image plane. Which points in the xy plane of the object frame will correspond to the points z_1 and z_2 ?
- e) Find the line $\lambda_z = z_1 \times z_2$. What is the interpretation of this line?

Problem 3

Point	1	2	3	4	5	6
x	0.0	1.0	2.0	3.0	5.0	5.5
y	1.0	2.0	3.0	4.2	5.3	6.25

Table 1: Data-set for RANSAC

- a) Use SVD to find the line $\ell = [a, b, c]^{T}$ that is the total least-squares fit to all the data-points in Table 1.
- b) In a RANSAC setting, let the candidate solution for the line be determined by points 1 and 2. Find the inliers and the outliers for this solution when the requirement for a point to be inlier is that the magnitude of the distance from the point to the line is less than $\delta = 0.1$. It is given that the distance from a line $\ell = [a, b, c]^{T}$ to a point x is $\delta = \ell^{T} x/|n|$, where $n = [a, b]^{T}$ is the normal vector of the line.
- c) Find the total least-squares solution for the line when only the inliers from b) are used to determine the line.