

Optimización del punto de frenado en curvas de pistas en juego F1_2020 mediante un enfoque sistemático

MITSIU ALEJANDRO CARREÑO SARABIA
ISRAEL HERNÁNDEZ GARCÍA

Tabla de contenido

Introducción

Desarrollo

Resultados

Conclusión

01 Introducción

Introducción

El automovilismo, requiere habilidades y conocimientos técnicos para obtener un **rendimiento óptimo**. Uno de los aspectos clave para lograrlo es el **punto de frenado correcto en curvas**. Recientemente, se ha utilizado el análisis de datos y aprendizaje automático, mediante recopilación de datos de **telemetría** y utilización de **técnicas de análisis de datos** para desarrollar algoritmos que determinen el punto óptimo de frenado en curvas. Se espera que esta investigación ayude a mejorar los trayectos y rendimiento en pistas de carreras.

¿Cuál es el punto de frenado óptimo en las curvas de una pista de carreras?

Justificación

Este enfoque basado en datos y estrategia puede reducir los tiempos de vuelta y aumentar las posibilidades de éxito en las competiciones, este sistema puede proporcionar una guía confiable y precisa para minimizar el riesgo de salir de la pista. Además, ayuda en el proceso de calibración y ajuste de los vehículos para cada pista donde no solo beneficiaría a jugadores, también podría tener aplicaciones en otras áreas del automovilismo y la industria automotriz en general.

Desarrollo 02

Carga y descarga de datos

Lap data packet

Información estadística de la carrera

Car telemetry packet

Información de telemetría del vehículo

Google drive

Local

Transformación de datos

Preparación de datos				
1 - Exploración de datos	2 - Identificación campos clave	3 - Unión de 2 fuentes	4 - Conteo duplicados	
5 - Reducción columnas	6 - Reducción filas	7 - Validación de nulos	8 - Configuración variable categórica	
9 - Detección de anomalías	10 - Dataset pruebas y entrenamiento	11 - Descarga sábana de datos		

Análisis de curvas

Núm.	Traj.	Ubic.	Mapeo frenado
1	58.59	223 ⇒ 282	223.8 ⇒224.9⇒244.4⇒245.3⇒247.1⇒248.0⇒266.4⇒267.7⇒26 8.3⇒269.6⇒282.4
2	1.51	417 ⇒ 419	417.6⇒419.1
3	0	1267⇒1267	1267.6
4	1.87	1338⇒1340	1338.7⇒1339.3⇒1340.5
5	1.14	1436→1437	1808
6	0	1808⇒1808	1931.9⇒1934.1⇒1960.9⇒1962.7
7	30.81	1931→1962	2225.5⇒2226.4⇒2255.0⇒2256.3⇒2279.8
8	54.37	2225-2279	2637.1 →2639.2→2640.2→2668.2→2675.5→2676.1→2683.1→26

Análisis de curvas

Speed

Brake

lapDistance

Detección puntos frenado

Speed

Brake

currentLapTime

lapDistance

Agrupación por densidad

Agrupación por densidad

```
    Zona de freno = -1
    Zona de freno = 2
    Zona de freno = 2
    Zona de freno = 3
    Zona de freno = 5
    Zona de freno = 1
```


03 Resultados

zona de freno

zona de freno

Regresión lineal

Conclusión 04

Conclusión

Mediante este proyecto se exploró cómo, mediante el análisis de datos de telemetría de un coche, es posible detectar las tendencias de manejo y es más sencillo para el piloto entender porqué es lento y que debe hacer para mejorar, incluso puede ser útil para analizar el rendimiento de componentes propios del coche como vida útil de frenos.

El punto óptimo de frenado en curvas de una pista de carreras de Fórmula 1 es **crucial para maximizar el rendimiento**. El equilibrio está en maximizar la velocidad de entrada a la curva sin perder el control.

Gracias por su atención!

¿Tiene usted alguna pregunta o comentario?