Homework Assignment 5

Matthew Tiger

 $\mathrm{May}\ 3,\ 2016$

Problem 1. Use the method of stationary phase to find the leading behavior of the following integral as $x \to +\infty$:

$$\int_0^1 e^{ixt^2} \cosh t^2 dt.$$

 \Box

Problem 2. Use second-order perturbation theory to find approximations to the roots of the following equation:

$$x^3 + \varepsilon x^2 - x = 0.$$

 \Box

Problem 3. Analyze in the limit $\varepsilon \to 0$ the roots of the polynomial

$$\varepsilon x^8 - \varepsilon^2 x^6 + x - 2 = 0.$$

 \square

Problem 4. Solve perturbatively

$$\begin{cases} y'' = (\sin x)y \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

Is the resulting perturbation series uniformly valid for $0 \le x \le \infty$? Why?

Problem 5. Find leading-order uniform asymptotic approximations to the solution of the following equation in the limit $\varepsilon \to 0^+$:

$$\varepsilon y'' + (x^2 + 1)y' - x^3 y = 0$$

y(0) = 1, y(1) = 1.

 \square

Problem 6. Obtain a uniform approximation accurate to order ε^2 as $\varepsilon \to 0^+$ for the problem

$$\varepsilon y'' + (1+x)^2 y' + y = 0$$

y(0) = 1, y(1) = 1.

Solution. \Box

Problem 7. For what real values of the constant α does the singular perturbation problem

$$\varepsilon y''(x) + y'(x) - x^{\alpha} y(x) = 0$$

 $y(0) = 1, \ y(1) = 1.$

have a solution with a boundary layer near x = 0 as $\varepsilon \to 0^+$?

Solution. \Box