Worksheet: Logarithmic Function

1. Find the value of y.

(1)
$$\log_5 25 = a$$

$$(2) \quad \log_3 1 = y$$

$$(3) \quad \log_{16} 4 = y$$

(1)
$$\log_5 25 = y$$
 (2) $\log_3 1 = y$ (3) $\log_{16} 4 = y$ (4) $\log_2 \frac{1}{8} = y$

$$(5) \quad \log_5 1 = y$$

$$(6) \quad \log_2 8 = y$$

$$(7) \quad \log_7 \frac{1}{7} = y$$

(5)
$$\log_5 1 = y$$
 (6) $\log_2 8 = y$ (7) $\log_7 \frac{1}{7} = y$ (8) $\log_3 \frac{1}{9} = y$

$$(9) \quad \log_y 32 = 5$$

(10)
$$\log_9 y = -\frac{1}{2}$$

$$(11) \quad \log_4 \frac{1}{8} = y$$

(9)
$$\log_y 32 = 5$$
 (10) $\log_9 y = -\frac{1}{2}$ (11) $\log_4 \frac{1}{8} = y$ (12) $\log_9 \frac{1}{81} = y$

2. Evaluate.

$$(1)$$
 $\log_3 1$

$$(2) \quad \log_4 4$$

(1)
$$\log_3 1$$
 (2) $\log_4 4$ (3) $\log_7 7^3$ (4) $b^{\log_b 3}$ (3) $\log_{25} 5^3$ (4) $16^{\log_4 8}$

$$(4) \quad b^{\log_b 3}$$

(3)
$$\log_{25} 5^3$$

$$(4) 16^{\log_4 8}$$

3. Write the following expressions in terms of logs of x, y and z.

(1)
$$\log x^2 y$$

$$(2) \quad \log \frac{x^3 y^2}{z}$$

(1)
$$\log x^2 y$$
 (2) $\log \frac{x^3 y^2}{z}$ (3) $\log \frac{\sqrt{x} \sqrt[3]{y^2}}{z^4}$ (4) $\log xyz$

$$(4) \quad \log xyz$$

(5)
$$\log \frac{x}{yz}$$

(5)
$$\log \frac{x}{yz}$$
 (6) $\log \left(\frac{x}{y}\right)^2$ (7) $\log (xy)^{\frac{1}{3}}$ (8) $\log x\sqrt{z}$

$$(7) \quad \log\left(xy\right)^{\frac{1}{2}}$$

(8)
$$\log x\sqrt{z}$$

$$(9) \quad \log \frac{\sqrt[3]{x}}{\sqrt[3]{yz}}$$

$$(10) \quad \log \sqrt[4]{\frac{x^3 y^2}{z^4}}$$

(9)
$$\log \frac{\sqrt[3]{x}}{\sqrt[3]{yz}}$$
 (10) $\log \sqrt[4]{\frac{x^3y^2}{z^4}}$ (11) $\log x \sqrt{\frac{\sqrt{x}}{z}}$ (12) $\log \sqrt{\frac{xy^2}{z^8}}$

$$(12) \quad \log \sqrt{\frac{xy^2}{z^8}}$$

4. Write the following equalities in exponential form.

(1)
$$\log_3 81 = 4$$

(2)
$$\log_7 7 = 1$$

(1)
$$\log_3 81 = 4$$
 (2) $\log_7 7 = 1$ (3) $\log_{\frac{1}{2}} \frac{1}{8} = 3$ (4) $\log_3 1 = 0$

(4)
$$\log_3 1 = 0$$

(5)
$$\log_4 \frac{1}{64} = -3$$

(5)
$$\log_4 \frac{1}{64} = -3$$
 (6) $\log_6 \frac{1}{36} = -2$ (7) $\log_x y = z$ (8) $\log_m n = \frac{1}{2}$

$$(7) \quad \log_x y = z$$

$$(8) \quad \log_m n = \frac{1}{2}$$

5. Write the following equalities in logarithmic form.

(1)
$$8^2 = 64$$

(2)
$$10^3 = 10000$$

(2)
$$10^3 = 10000$$
 (3) $4^{-2} = \frac{1}{16}$ (4) $3^{-4} = \frac{1}{81}$

$$(4) \quad 3^{-4} = \frac{1}{81}$$

(5)
$$\left(\frac{1}{2}\right)^{-5} = 32$$
 (6) $\left(\frac{1}{3}\right)^{-3} = 27$ (7) $x^{2z} = y$ (8) $\sqrt{x} = y$

(6)
$$\left(\frac{1}{3}\right)^{-3} = 27$$

$$(7) \quad x^{2z} = y$$

$$(8) \quad \sqrt{x} = y$$

6. True or False?

(1)
$$\log\left(\frac{x}{y^3}\right) = \log x - 3\log y$$
 (2) $\log(a-b) = \log a - \log b$ (3) $\log x^k = k \cdot \log x$

(2)
$$\log(a-b) = \log a - \log b$$

$$(3) \quad \log x^k = k \cdot \log x$$

$$(4) \quad (\log a)(\log b) = \log(a+b) \qquad (5) \quad \frac{\log a}{\log b} = \log(a-b)$$

$$(5) \quad \frac{\log a}{\log b} = \log(a - b)$$

$$(6) \quad (\ln a)^k = k \cdot \ln a$$

$$(7) \quad \log_a a^a = a$$

$$(8) \quad -\ln\left(\frac{1}{x}\right) = \ln x$$

$$(9) \quad \ln_{\sqrt{x}} x^k = 2k$$

7. Solve the following logarithmic equations.

$$(1) \quad \ln x = -3$$

(2)
$$\log(3x-2) = 2$$

(3)
$$2\log x = \log 2 + \log(3x - 4)$$

(3)
$$2 \log x = \log 2 + \log(3x - 4)$$
 (4) $\log x + \log(x - 1) = \log(4x)$

(5)
$$\log_3(x+25) - \log_3(x-1) = 3$$
 (6) $\log_9(x-5) + \log_9(x+3) = 1$

(6)
$$\log_9(x-5) + \log_9(x+3) = 1$$

$$(7) \quad \log x + \log(x - 3) = 1$$

(8)
$$\log_2(x-2) + \log_2(x+1) = 2$$

8. Prove the following statements.

(1) $\log_{\sqrt{b}} x = 2\log_b x$ (2) $\log_{\frac{1}{\sqrt{b}}} \sqrt{x} = -\log_b x$ (3) $\log_{b^4} x^2 = \log_b \sqrt{x}$

9. Given that $\log 2 = x$, $\log 3 = y$ and $\log 7 = z$, express the following expressions in terms of x, y, and z.

 $(1) \log 12$

(2) $\log 200$ (3) $\log \frac{14}{3}$ (4) $\log 0.3$

 $(5) \log 1.5$

(6) $\log 10.5$ (7) $\log 15$ (8) $\log \frac{6000}{7}$

10. Solve the following equations.

(1) $3^x - 2 = 12$ (2) $3^{1-x} = 2$

(3) $4^x = 5^{x+1}$ (4) $6^{1-x} = 10^x$

(5) $3^{2x+1} = 2^{x-2}$ (6) $\frac{10}{1 + e^{-x}} = 2$

(7) $5^{2x} - 5^x - 12 = 0$ (8) $e^{2x} - 2e^x = 15$

11. Draw the graph of each of the following logarithmic functions, and analyze each of them completely.

 $(1) \quad f(x) = \log x$

 $(2) \quad f(x) = \log -x$

(3) $f(x) = -\log(x-3)$ (4) $f(x) = -2\log_3(3-x)$

(5) $f(x) = -\ln(x+1)$ (6) $f(x) = 2\ln\frac{1}{2}(x+3)$

(7) $f(x) = \ln(2x+4)$ (8) $f(x) = -2\ln(-3x+6)$

12. Find the inverse of each of the following functions.

(1)
$$f(x) = \log_2(x-3) - 5$$
 (2) $f(x) = 3\log_3(x+3) + 1$

(2)
$$f(x) = 3\log_3(x+3) + 1$$

(3)
$$f(x) = -2\log 2(x-1) + 2$$
 (4) $f(x) = -\ln(1-2x) + 1$

$$(4) f(x) = -\ln(1-2x) + 1$$

(5)
$$f(x) = 2^x - 3$$

$$(6) \quad f(x) = 2 \cdot 3^{3x} - 1$$

(7)
$$f(x) = -5 \cdot e^{-x} + 2$$
 (8) $f(x) = 1 - 2e^{-2x}$

(8)
$$f(x) = 1 - 2e^{-2x}$$

- 13. 15 000\$ is invested in an account that yields 5% interest per year. After how many years will the account be worth 91 221.04\$ if the interest is compounded yearly?
- 14. 8 000\$ is invested in an account that yields 6% interest per year. After how many years will the account be worth 13709.60\$ if the interest is compounded monthly?
- 15. Starting at the age of 40, an average man loses 5% of his hair every year. At what age should an average man expect to have half his hair left?
- 16. A bacteria culture starts with 10 00 bacteria and the number doubles every 40 minutes.
 - (a) Find a formula for the number of bacteria at time t.
 - (b) Find the number of bacteria after one hour.
 - (c) After how many minutes will there be 50 000 bacteria?

ANSWERS

- 1. (1) 2
 - (2) 0
 - (3) $\frac{1}{2}$
 - (4) -3
 - (5) 0
 - $(6) \ 3$
 - (7) -1
 - (8) -2
 - (9) 2
 - $(10) \frac{1}{3}$
 - $(11) -\frac{3}{2}$
 - (12) -2
- 2. (1) 0
 - (2) 1
 - $(3) \ 3$
 - $(4) \ 3$
 - $(5) \frac{3}{2}$
 - (6) 64

- 3. (1) $2 \log x + \log y$
 - $(2) 3\log x + 2\log y \log z$
 - (3) $\frac{1}{2}\log x + \frac{2}{3}\log y 4\log z$
 - $(4) \log x + \log y + \log z$
 - $(5) \log x \log y \log z$
 - $(6) \ 2\log x 2\log y$
 - (7) $\frac{1}{3}\log x + \frac{1}{3}\log y$
 - $(8) \log x + \frac{1}{2} \log z$
 - $(9) \frac{1}{3} (\log x \log y \log z)$
 - $(10) \, \frac{1}{4} \log x + \frac{1}{2} \log y \log z$
 - $(11) \ \frac{5}{4} \log x \frac{1}{2} \log z$
 - $(12) \frac{1}{2} \log x + \log y 4 \log z$

- 4. (1) $3^4 = 81$
 - $(2) 7^1 = 7$
 - (3) $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$
 - $(4) \ 3^0 = 1$
 - $(5) \ 4^{-3} = \frac{1}{64}$
 - (6) $6^{-2} = \frac{1}{36}$
 - $(7) x^z = y$
 - (8) $m^{\frac{1}{2}} = n$
- 5. $(1) \log_8 64 = 2$
 - $(2) \log_{10} 10000 = 3$
 - (3) $\log_4 \frac{1}{16} = -2$
 - $(4) \log_3 \frac{1}{81} = -4$
 - $(5) \log_{\frac{1}{2}} 32 = -5$
 - (6) $\log_{\frac{1}{3}} 27 = -3$
 - $(7) \log_x y = 2z$
 - $(8) \log_x y = \frac{1}{2}$

- 6. (1) True
 - (2) False
 - (3) True
 - (4) False
 - (5) False
 - (6) False
 - (7) True
 - (8) True
- 7. (1) $S = \{e^{-3}\}$
 - (2) $S = \{34\}$
 - (3) $S = \{2, 4\}$
 - (4) $S = \{5\}$
 - (5) $S = \{2\}$
 - (6) $S = \{6\}$
 - (7) $S = \{5\}$
 - (8) $S = \{3\}$

$$\log_{\sqrt{b}} x = 2\log_b x$$

$$\log_{\sqrt{b}} x = \frac{\log x}{\log \sqrt{b}}$$

$$= \frac{\log x}{\frac{1}{2} \log b}$$

$$= 2 \frac{\log x}{\log b}$$

$$= 2 \log_b x \quad \Box$$

(2)
$$\log_{\frac{1}{\sqrt{b}}} \sqrt{x} = -\log_b x$$

$$\log_{\frac{1}{\sqrt{b}}} \sqrt{x} = \frac{\log \sqrt{x}}{\log \frac{1}{\sqrt{b}}}$$

$$= \frac{\frac{1}{2} \log x}{-\frac{1}{2} \log b}$$

$$= -\frac{\log x}{\log b}$$

$$= -\log_b x \quad \Box$$

(3)
$$\log_{b^4} x^2 = \log_b \sqrt{x}$$

$$\log_{b^4} x^2 = \frac{\log x^2}{\log b^4}$$

$$= \frac{2 \log x}{4 \log b}$$

$$= \frac{1}{2} \frac{\log x}{\log b}$$

$$= \frac{1}{2} \log_b x$$

$$= \log_b \sqrt{x} \quad \Box$$

9.
$$(1) 2x + y$$

(2)
$$x + 2$$

$$(3) x - y + z$$

$$(4) y-1$$

(5)
$$y - x$$

(6)
$$y + z - x$$

(7)
$$1 - x + y$$

(8)
$$x + y - z + 3$$

10. (1)
$$S = \{2.402\}$$

$$(2) \quad S = \{0.369\}$$

(3)
$$S = \{-7.213\}$$

$$(4) \quad S = \{0.438\}$$

(5)
$$S = \{-1.652\}$$

(6)
$$S = \{-\ln 4\}$$

(7)
$$S = \{\log_5 4\}$$

(8)
$$S = \{\ln 5\}$$

11. (1)

$$Dom(f) =]0, +\infty[$$

$$R(f) = \mathbb{R}$$

Zeros: 1

Y-intercept: None

Variation:

$$\begin{array}{l} f(x)\nearrow \text{ if }x\in]0,+\infty[\\ f(x)\searrow \text{ if }x\in \emptyset \end{array}$$

$$f(x) \searrow \text{if } x \in \emptyset$$

Extremums: Max: None, Min: None

Sign:

$$f(x) \ge 0 \text{ if } x \in]0,1]$$

$$f(x) \le 0 \text{ if } x \in [1, +\infty[$$

(2)

$$Dom(f) =] - \infty, 0[$$

$$R(f) = \mathbb{R}$$

Zeros: -1

Y-intercept: None

Variation:

$$f(x) \nearrow \text{ if } x \in \emptyset$$

$$\begin{array}{l} f(x)\nearrow \text{ if }x\in\emptyset\\ f(x)\searrow \text{ if }x\in]-\infty,0[\end{array}$$

Extremums: Max: None, Min: None

$$f(x) \ge 0 \text{ if } x \in]-\infty, -1]$$

$$f(x) \le 0 \text{ if } x \in [-1, 0[$$

(3)

$$Dom(f) =]3, +\infty[$$

$$R(f) = \mathbb{R}$$

Zeros: 4

Y-intercept: None

Variation:

$$f(x) \nearrow \text{if } x \in \emptyset$$

$$f(x) \searrow \text{if } x \in]3, +\infty[$$

Extremums: Max: None, Min: None

Sign:

$$f(x) \ge 0 \text{ if } x \in]3, 4]$$

$$f(x) \le 0$$
 if $x \in [4, +\infty[$

(4)

$$Dom(f) =]-\infty, 3[$$

$$R(f) = \mathbb{R}$$

Zeros: 2

Y-intercept: -2

Variation:

$$\begin{array}{l} f(x)\nearrow \text{ if }x\in]-\infty,3[\\ f(x)\searrow \text{ if }x\in \emptyset \end{array}$$

$$f(x) \searrow \text{if } x \in \emptyset$$

Extremums: Max: None, Min: None

$$f(x) \ge 0 \text{ if } x \in]2, 3[$$

$$\begin{array}{l} f(x) \geq 0 \text{ if } x \in]2,3[\\ f(x) \leq 0 \text{ if } x \in]-\infty,2[\end{array}$$

(5)

$$Dom(f) =] - 1, +\infty[$$

$$R(f) = \mathbb{R}$$

Zeros: 0

Y-intercept: 0

Variation:

$$f(x) \nearrow \text{if } x \in \emptyset$$

$$f(x) \searrow \text{if } x \in]-1,+\infty[$$

Extremums: Max: None, Min: None

Sign:

$$f(x) \ge 0 \text{ if } x \in]-1,0[$$

$$f(x) \le 0 \text{ if } x \in]0, +\infty[$$

(6)

$$Dom(f) =] - 3, +\infty[$$

$$R(f) = \mathbb{R}$$

Zeros: -1

Y-intercept:
$$2 \ln \frac{3}{2}$$

Variation:

$$f(x) \nearrow \text{ if } x \in]-3,+\infty[$$

$$f(x) \searrow \text{if } x \in \emptyset$$

Extremums: Max: None, Min: None

$$f(x) \ge 0 \text{ if } x \in [-1, +\infty[$$

$$f(x) \le 0 \text{ if } x \in]-3,-1]$$

(7)

$$Dom(f) =]-2, +\infty[$$

$$R(f) = \mathbb{R}$$

Zeros:
$$-1.5$$

Variation:

$$\begin{array}{l} f(x)\nearrow \text{ if }x\in]-2,+\infty[\\ f(x)\searrow \text{ if }x\in\emptyset \end{array}$$

$$f(x) \searrow \text{if } x \in \emptyset$$

Extremums: Max: None, Min: None

Sign:

$$f(x) \ge 0 \text{ if } x \in [-1.5, +\infty[$$

$$f(x) \ge 0 \text{ if } x \in [-1.5, +\infty[$$

 $f(x) \le 0 \text{ if } x \in]-2, -1.5]$

(8)

$$Dom(f) =]-\infty, 2[$$

$$R(f) = \mathbb{R}$$

Zeros:
$$\frac{5}{3}$$

$$R(f) = \mathbb{R}$$
Zeros: $\frac{5}{3}$
Y-intercept: $-2 \ln 6$

Variation:

$$\begin{array}{l} f(x)\nearrow \text{ if }x\in]-\infty,2[\\ f(x)\searrow \text{ if }x\in \emptyset \end{array}$$

$$f(x) \searrow \text{if } x \in \emptyset$$

Extremums: Max: None, Min: None

$$f(x) \ge 0 \text{ if } x \in [\frac{5}{3}, 2[$$

$$\begin{array}{l} f(x) \geq 0 \text{ if } x \in \left[\frac{5}{3}, 2\right[\\ f(x) \leq 0 \text{ if } x \in \left] - \infty, \frac{5}{3}\right[\end{array}$$

12. (1)
$$f^{-1}(x) = 2^{x+5} + 3$$

(2)
$$f^{-1}(x) = 3^{\frac{x-1}{3}} - 3$$

(3)
$$f^{-1}(x) = \frac{1}{2} 10^{\frac{2-x}{2}} + 1$$

(4)
$$f^{-1}(x) = -\frac{1}{2}e^{1-x} + \frac{1}{2}$$

(5)
$$f^{-1}(x) = \log_2(x+3)$$

(6)
$$f^{-1}(x) = \frac{1}{3}\log_3\left(\frac{x+1}{2}\right)$$

(7)
$$f^{-1}(x) = -\ln\left(\frac{2-x}{5}\right)$$

(8)
$$f^{-1}(x) = -\frac{1}{2} \ln \left(\frac{1-x}{2} \right)$$

- 13. 37 years.
- 14. 9 years.
- 15. 53 years old.
- 16. (a) $f(t) = 10000 \cdot 2^{1.5t}$. Where t is the number of hours.
 - (b) 28 284 bacteria.
 - (c) 92.88 minutes.