Commutative laws	$P \vee Q \equiv Q \vee P$		
	$P \wedge Q \equiv Q \wedge P$		
Associative laws	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$		
	$(P \land Q) \land R \equiv P \land (Q \land R)$		
Distributive laws:	$(P \lor Q) \land (P \lor R) \equiv P \lor (Q \land R)$		
	$(P \land Q) \lor (P \land R) \equiv P \land (Q \lor R)$		
Identity	$P \vee F \equiv P, P \wedge T \equiv P$		
	$P \lor F = P, P \lor T = P$		
Negation	$P \vee \sim P \equiv T \text{ (excluded middle)}$		
	$P \land \sim P \equiv F \text{ (contradiction)}$		
Double negation	~(~P) ≡ P		
	~(~P) = P		
Idempotent laws	$P \vee P \equiv P$		
	$P \wedge P \equiv P$		
De Morgan's Laws	$\sim (P \vee Q) \equiv \sim P \wedge \sim Q$		
	$\sim (P \land Q) \equiv \sim P \lor \sim Q$		
Universal bound laws (Domination)	$P \vee T \equiv T$		
	$P \wedge F \equiv F$		
Absorption Laws	$P \vee (P \wedge Q) \equiv P$		
	$P \wedge (P \vee Q) \equiv P$		
Negation of T and F	T-F F-T		
-	\sim T \equiv F, \sim F \equiv T		

Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Solution

$$P \rightarrow Q; R \rightarrow P; R \rightarrow Q$$

• To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

Quiz

• Construct a truth table for the following compound proposition:

$$(p \lor q) \rightarrow (p \land q).$$

- Let p stand for the proposition "I bought a lottery ticket" and q for "I won the jackpot". Express the following as natural English sentences:
 - ¬p
 - $p \lor Q$
 - p ^ q
 - $p \rightarrow Q$
 - $\neg p \rightarrow \neg q$
 - $\neg p \lor (p \land q)$

First-Order Logic

- is also known as First-order Predicate Calculus, the Lower Predicate Calculus, Quantification Theory, and Predicate Logic.
- First-order logic is distinguished from propositional logic by its use of quantified variables as :
 - Quanitfier → ∃ | ∀ where ∀ x asserts that a sentence is true for all values of variable x for example "all man loves soccer" could be represented as ∀x man(x)→love (x, soccer).
 - While ∃x asserts that a sentence is true for at least one value of a variable x for example "Haneen is not the youngest girl" could be represented as ∃x younger (x, Haneen).

First-Order Logic

- Function symbols, which map individuals to individuals
 - father-of(Mary) = John
 - color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
 - greater(5,3)
 - green(Grass)
 - color(Grass, Green)
- Example
 - $(\forall x)$ student(x) → smart(x) means "All students are smart"
 - $(\forall x)$ student(x) \land smart(x) means "Everyone in the world is a student and is smart"
 - $(\exists x)$ student(x) \rightarrow smart(x) means "there is a student who is smart"

Examples

Every gardener likes the sun.

 $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x,\text{Sun})$

You can fool some of the people all of the time.

 $\exists x \ \forall t \ person(x) \land time(t) \rightarrow can-fool(x,t)$

You can fool all of the people some of the time.

 $\forall x \exists t (person(x) \rightarrow time(t) \land can-fool(x,t))$

 $\forall x (person(x) \rightarrow \exists t (time(t) \land can-fool(x,t)))$

All purple mushrooms are poisonous.

 $\forall x (mushroom(x) \land purple(x)) \rightarrow poisonous(x)$

No purple mushroom is poisonous.

 $\neg \exists x \text{ purple}(x) \land \text{mushroom}(x) \land \text{poisonous}(x)$

 $\forall x \ (mushroom(x) \land purple(x)) \rightarrow \neg poisonous(x)$

There are exactly two purple mushrooms.

 $\exists x \exists y \; mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y)$

Clinton is not tall.

¬tall(Clinton)

Semantic Networks

- humans tend to store and manipulate knowledge in Graphs.
- Graphs are very easy to store inside programs.
- Semantic Network is a graph structure for representing knowledge in patterns of interconnected nodes and arcs.

- Propositional logic is declarative
- Propositional logic allows partial / disjunctive / negated information unlike most data structures and databases
- Propositional logic has very limited expressive power
- The symbols in this logic are:

```
∧ ...and [conjunction]
∨ ...or [disjunction]
⇒ ...implies [implication / conditional]
⇔ ...is equivalent [biconditional]
¬ ...not [negation]
```

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping parentheses: (...)
- · We can summarize the meanings of these connectives using

p	Q	¬ q	p^q	p∨q	p→q	p⇔q
T	T	F	T	T	T	T
T	F	T	F	T	F	F
F	T	F	F	T	T	F
F	F	T	F	F	T	T

Propositional Logic

- If "it is hot" and "the sun is shining" then "kids should wear hats"
 - P means "It is hot"
 - Q means "the sun is shining"
 - R means "kids should wear hats"

P ^ Q \rightarrow R

- A sentence is a Well Formed Formula when:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then (S \vee T), (S \wedge T), (S \rightarrow T), and (S \Leftrightarrow T) are sentences
 - A sentence results from a finite number of applications of the above rules