Билет 93

Aвтор1, ..., AвторN

22 июня 2020 г.

Содержание

0.1	Билет 93: ! Ло	экальные экст	гремумы.	Определение	И	неоох	одиг	иое	ycı	ювие	9 9.	KCT	pe-	
	мума. Стацион	нарные точки.												1

Билет 93

0.1. Билет 93: ! Локальные экстремумы. Определение и необходимое условие экстремума. Стационарные точки.

Определение 0.1.

 $E \subset \mathbb{R}^n, \ f: E \mapsto \mathbb{R}, a \in E$

a – точка локального минимума, если $\exists U$ – окрестность точки a, такая что $\forall x \in U \cap E \ f(x) \geqslant f(a)$.

a – точка строгого локального минимума, если $\exists U$ – окрестность точки a, такая что $\forall x \in U \cap E,$ $x \neq a \ f(x) > f(a).$

Аналогично определяются локальный максимум, строгий локальный максимум, точка экстремума и точка строгого экстремума.

Теорема 0.1 (Необходимое условие экстремума).

 $f: E \mapsto \mathbb{R}, a \in \text{Int } E, a$ – точка экстремума. Если существует $\frac{\partial f}{\partial x_k}(a)$, то $\frac{\partial f}{\partial x_k}(a) = 0$. В частности, если f – дифференцируема в точке a, то $\frac{\partial f}{\partial x_1}(a) = \cdots = \frac{\partial f}{\partial x_n}(a) = 0$, т.е. $\nabla f(a) = 0$.

Доказательство.

Пусть a — точка минимума для f. Заведем функцию $g(t) = f(a_1, \ldots, a_{k-1}, t, a_{k+1}, \ldots, a_n) \geqslant f(a_1, a_2, \ldots, a_n) = g(a_k)$. Тогда a_k — точка минимума для g и g дифференцируема в точке a_k . Применяем одномерную теорему и получается, что $g'(a_k) = 0$, но $\frac{\partial f}{\partial x_k}(a) = g'(a_k) = 0$.

Определение 0.2 (Стационарная точка).

Если f дифференцируема в точке a и $\nabla f(a) = 0$, то a – стационарная точка.

Замечание Формула Тейлора в стационарной точке.

$$f(a+h) = f(a) + \frac{1}{2} \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j + o(\|h\|^2)$$