Module X: fastlink

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- Edmorando et al. (2020)
- ► Fellegi and Sunter (1969)

Probabilistic Entity Resolution

While Fellegi and Sunter (1969) have provided a framework for probabilistic entity resolution, there are few implementations that scale to large size data sets.

fastlink

- ► Edmorando et al. (2020) developed fastlink a scalable implementation of the FS method.
- In addition, the authors incorporated auxiliary information such as population name frequency and migration rates.
- The authors used parallelization and hashing to merge millions of records in a near real-time on a laptop computer, and provided open-source software of their proposed methodology.

- Assume two data sets (A and B) with overlapping variables in common (such as name, gender, address, etc.)
- ▶ Define an agreement value in field a for record pair (i, j):

$$ho_{\mathsf{a}}(i,j) \ = \ \left\{ egin{array}{l} \mathsf{agree} \ \\ \mathsf{disagree} \end{array}
ight.$$

	First	Last	Age	Street	
Da	ita set ${\cal A}$				
1	James	Smith	35	Devereux St.	
Da	ata set ${\cal B}$				
7	James	Smit	43	Dvereux St.	
	agree	agree	disagree	agree	

	First Last		Age	Street	
Da	ita set ${\cal A}$				
1	James	Smith	35	Devereux St.	
Da	ata set ${\cal B}$				
7	James	Smit	43	Dvereux St.	
	agree	agree	disagree	agree	

Agreement pattern $\gamma(i,j) = \{\gamma_1(i,j), \gamma_2(i,j), \dots, \gamma_K(i,j)\}$

- We **observe** the agreement patterns $\gamma(i,j)$
- ▶ We **do not observe** the matching status

$$C_{i,j} = \begin{cases} \text{non-match} \\ \text{match} \end{cases}$$

fastLink Model

$$C(i,j) \stackrel{ ext{iid}}{\sim} \mathsf{Bernoulli}(\mu)$$
 $ho(i,j) \mid C(i,j) = \mathsf{non\text{-}match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{NM}})$
 $ho(i,j) \mid C(i,j) = \mathsf{match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{M}}),$

where λ , π_{M} , π_{NM} are estimated via the EM algorithm

fastLink package

- Available on CRAN
- ▶ We investigate it first on RLdata10000
- ▶ We assume no blocking

fastlink in R

```
# load libraries
library(fastLink)
library(RecordLinkage)
```

RLdata10000

```
# 1.0a.d. RI.da.t.a.10000
records <-
 read.table("data/RLdata10000.csv",
          sep=",", header=TRUE)
head(records, 4)
##
   FRANK
             <NA> MUELLER
## 1
                             <NA> 1967 9 27
                                             1
                                                3606
     MARTIN
           <NA> SCHWARZ <NA> 1967 2 17
                                                2560
## 2
## 3
    HERBERT <NA> ZIMMERMANN <NA> 1961 11 6
                                                3892
                                                 329
## 4
      HANS
           <NA>
                   SCHMITT <NA> 1945 8 14
```

RLdata10000

```
# Number of unique records
length(unique(records$ent_id))
```

[1] 9000

Linkage Fields

```
# linkage fields
linkageFields <- c("fname_c1", "lname_c1", "by", "bm", "bd")</pre>
```

Exact Matching

```
# perform exact matching
exact.match <- merge(records, records,
                     by = linkageFields)
# number of self-matches
sum(exact.match$rec id.x == exact.match$rec id.y)
## [1] 10000
# number of non-self matches
sum(exact.match$rec_id.x != exact.match$rec_id.y)
## [1] 16
```

Who are the non-self matches?

Preparation

```
# linkage fields
linkageFields <- c("fname_c1",</pre>
                    "lname_c1", "by", "bm", "bd")
# string distance fields
stringDistFields <- c("fname_c1", "lname_c1")</pre>
# partial distance fields (fields where we allow
# for agree, disagree, and partially agree)
partialMatchFields <- c("fname c1", "lname c1")
```

Run fastLink

```
out <- fastLink(dfA = records,
               dfB = records,
               varnames = linkageFields,
                # JW by default
                stringdist.match = stringDistFields,
               partial.match = partialMatchFields,
                # JW cutoffs
                cut.a = 0.94, cut.p = 0.84,
                # 1-to-1 match
               dedupe = FALSE)
##
## ==========
```

fastLink Objects

fastLink has the following objects as output:

```
names(out)
## [1] "matches" "EM" "patterns" "posterior" "nobs.a"
```

19 / 28

Who is matched?

The indices of each matched pair can be found in out\$matches

head(cbind(out\$matches\$inds.a, out\$matches\$inds.b), 6)

```
## [,1] [,2]

## [1,] 1 1

## [2,] 2 2

## [3,] 3 3

## [4,] 4 4

## [5,] 1957 4

## [6,] 5 5
```

Counting Patterns

- Counts and FS weights for each patterns can be found in out\$EM\$patterns.w
- ▶ Legend: 2 = Agree; 1 = Partially Agree; 0 = Disagree

```
tail(out$EM$patterns.w[, 1:7])
```

##		gamma.1	gamma.2	gamma.3	$\mathtt{gamma.4}$	gamma.5	counts	weig
##	[65,]	2	0	2	2	2	48	10.055372257633
##	[66,]	0	1	2	2	2	20	3.764303612997
##	[67,]	2	1	2	2	2	242	15.486236076965
##	[68,]	0	2	2	2	2	56	8.367997716494
##	[69,]	1	2	2	2	2	20	12.943394481050
##	[70,]	2	2	2	2	2	10924	20.089930180462

Matching Threshold

##

By default the **matching threshold 0.85**, but it can be easily changed:

22 / 28

Setting return.all to FALSE.

Loading Packages

##

density

source("evaluationMetrics.R") library(exchangeableER)

```
## exchangeableER 0.1
## Copyright (C) 2020 Neil Marchant
```

##

exchangeableER is free software and comes with ABSOLUTE
You are welcome to redistribute it under certain condit;

See the LICENSE file bundled with the package for detai:
##

Attaching package: 'exchangeableER'
The following objects are masked from 'package:RecordLing
The following objects are masked from 'package:Record from 'package:R

RLdata10000, RLdata500

The following object is masked from 'package:stats':
##

23 / 28

Setup

[1] 12072

```
trueMembership <- records$ent_id</pre>
recordIds <- records$rec_id
numRecords <- dim(records)[1]
matches <- data.table(cbind(out$matches$inds.a, out$matches
head(matches)
## V1 V2
## 1: 1 1
## 2: 2 2
## 3: 3 3
## 4: 4 4
## 5: 1957 4
## 6:
        5 5
dim(matches)[1]
```

True Positives, False Positives, and False Negatives

FDR and FNR

```
## False Discovery Rate
FDR <- round(FP/(FP + TP), 2)
FDR

## [1] 0.01

## False Negative Rate
FNR <- round(FN/dim(matches)[1], 2)
FNR

## [1] 0.01</pre>
```

Precision and Recall

```
## Precision
precision <- round(1 - FDR, 2)</pre>
## Recall
recall <- round(1 - FNR, 2)
f1 \leftarrow round((2.0*TP)/(2.0*TP+FP+FNR), 2)
cbind(precision, recall, f1)
        precision recall f1
##
```

TODO: The precision and recall is being done a bit weird here.

[1,] 0.99 0.99 1

Exercises/TODO

- ► How would you calculate the precision and recall?
- Apply this to a much large data set with blocking. (Make this another module).
- Combine with fastlink and dblink