

Comunicazioni Numeriche 075II

Scrivere nome, cognome, corso di studio e numero di matricola in cima a ogni foglio

25/06/2025

Rispondere ai quesiti 1-3 sul foglio protocollo 1.

- 1. Due macchine realizzano anelli per catene da bicicletta. La prima macchina è nuova e produce lo 0.1% di anelli difettosi, mentre la seconda è vecchia produce il 2% di anelli difettosi. Si scelga a caso una delle macchine e si prenda un anello da essa realizzato. (3 punti)
 - (a) Calcolare la probabilità che l'anello estratto sia privo di difetti.
 - (b) Se l'anello estratto è privo di difetti, calcolare la probabilità che provenga dalla macchina nuova.
 - (c) La catena C_N è composta di 100 anelli prodotti dalla macchina nuova, la catena C_V di 100 anelli prodotti dalla macchina vecchia. Calcolare le probabilità che ciascuna catena sia commerciabile, cioè priva di anelli difettosi.
- 2. Sia data la variabile aleatoria (v.a.) X con $f_X(x) = k \cdot e^{-x}u(x)$. La v.a. Y si ottiene applicando la seguente trasformazione Y = g(X): (4 punti)

$$y = \begin{cases} 1 - x, & x < 1 \\ 0, & x \ge 1 \end{cases}$$

Figura 1: Trasformazione Y = g(X).

- (a) Determinare la costante k in modo tale che $f_X(x)$ sia una densità di probabilità e disegnare $f_X(x)$.
- (b) Determinare quali valori può assumere la v.a. Y.
- (c) Determinare se Y è una v.a. continua, discreta o mista.
- (d) Calcolare la funzione distribuzione di probabilità di Y e disegnarla.
- 3. Sia dato il processo aleatorio parametrico $X(t) = A\cos(2\pi f_0 t)$, con f_0 costante reale positiva e A variabile aleatoria uniformemente distribuita tra 0 e 2. (3 punti)
 - (a) Disegnare alcune realizzazioni di X(t).
 - (b) Calcolare $\eta_X(t)$ e $P_X(t)$.
 - (c) Verificare se X(t) è un processo aleatorio stazionario almeno in senso lato.

Rispondere ai quesiti 4-8 sul foglio protocollo 2.

- 4. Un sistema LTI a tempo continuo, causale, ha come risposta al gradino $g(t) = [1 \exp(-t/T)] u(t)$: (4 punti)
 - (a) Calcolare la risposta impulsiva del sistema.
 - (b) Calcolare l'energia del sistema LTI.
- 5. Dato il segnale $x(t) = \text{rect}\left(\frac{t}{T}\right)$ con $T = 10 \,\mu\text{s}$, nell'ipotesi in cui B = 0.1 MHz e $T_c = 1 \,\mu\text{s}$: (4 punti)

$$h(t) = \operatorname{sinc}(2Bt)$$

$$y(t)$$

$$nT_c$$

- (a) Disegnare (motivando la risposta) la trasformata discreta di Fourier dei campioni $y(nT_c)$.
- (b) Calcolare la frequenza minima di campionamento per evitare aliasing.
- 6. Si consideri il codice a blocco sistematico con matrice generatrice G: (4 punti)

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- (a) Determinare qual è il peso massimo degli errori che il codice è sempre in grado di correggere.
- 7. Disegnare lo schema a blocchi di un sistema di comunicazione 16-QAM. (4 punti)
- 8. Un sistema di comunicazione 16-QAM impiega codifica di Gray, un impulso a radice di coseno rialzato con $\alpha=0.5$ ed una banda di B=5 MHz. (4 punti)
 - (a) Calcolare l'efficienza spettrale del sistema e quanti Mbit possono essere trasmessi in 30 secondi.
 - (b) Calcolare il valore di E_b/N_0 in dB (dove E_b rappresenta l'energia ricevuta per bit) affinchè la probabilità di errore del bit sia pari a $3/4 \times 10^{-4}$.

