

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

Linear Regression Batch and stochastic gradient descent closed form and normal equation Improved Learning

Supervised Learning

- Figure Given: a dataset that contains n samples $(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)}); \quad x \rightarrow sq \ ft, y \rightarrow price$
- \triangleright Task: if a residence has x square feet, predict its price?

Regression

Given:

– Data
$$m{X} = \left\{m{x}^{(1)}, \dots, m{x}^{(n)}
ight\}$$
 where $m{x}^{(i)} \in \mathbb{R}^d$ output variables/feature

– Corresponding labels $~m{y}=\left\{y^{(1)},\ldots,y^{(n)}
ight\}$ where $~y^{(i)}\in\mathbb{R}$

$$(x^{(i)}, y^{(i)})$$

*i*th training example

$$\{(x^{(i)}, y^{(i)}); i = 1 \dots n\}$$
Training set

input

variables/features

Supervised Learning problem

Linear Regression

Hypothesis:

$$y= heta_0+ heta_1x_1+ heta_2x_2+\ldots+ heta_dx_d=\sum_{j=0}^d heta_jx_j$$
Assume x_0 = 1
$$=2\ (two\ input\ features) o (x_1,x_2) \qquad h_ heta(x)$$

$$d = 2$$
 (two input features) $\rightarrow (x_1, x_2)$

$$heta=egin{bmatrix} heta_0 \\ heta_1 \\ heta_2 \end{bmatrix}$$
 , $x=egin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$

choose

 $h_{\theta}(x) \approx y$

$$\theta$$
 - parameters/weights

Linear Regression

Least Squares Linear Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

• Fit by solving $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

Intuition Behind Cost Function

Intuition Behind Cost Function

Basic Search Procedure

- Choose initial value for Θ
- Until we reach a minimum:
 - Choose a new value for Θ to reduce $J(\Theta)$

Basic Search Procedure

- Choose initial value for Θ
- Until we reach a minimum:
 - Choose a new value for Θ to reduce $J(\Theta)$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

learning rate (small) e.g., $\alpha = 0.05$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

For Linear Regression:
$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

For Linear Regression:
$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$
$$= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

For Linear Regression:
$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_\theta \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 \\ &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \end{split}$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

For Linear Regression:
$$\begin{split} \frac{\partial}{\partial \theta_j} J(\pmb{\theta}) &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)} \right) - y^{(i)} \right)^2 \\ &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \\ &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) x_j^{(i)} \end{split}$$

Gradient Descent for Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \quad \text{simultaneous update for } j = 0 \dots d$$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{m{ heta}}\left(m{x}^{(i)}
 ight)$
 - Use this stored value in the update step loop
- Assume convergence when $\|m{ heta}_{new} m{ heta}_{old}\|_2 < \epsilon$

Stochastic Gradient descent

Randomly shuffle training data

```
• Repeat { for i = 1 to n { \theta_{j} \coloneqq \theta_{j} - \alpha (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} for (j = 0, .... d) }
```

Batch vs Stochastic Gradient descent

 θ_0

Choosing α – Learning Rate

α too small
slow convergence

 α too large increasing value for $J(\theta)$

- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ at each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Closed Form Solution

- Instead of using GD, solve for optimal heta analytically
 - Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \boldsymbol{y}^{(2)} \\ \vdots \\ \boldsymbol{y}^{(n)} \end{bmatrix} \qquad \boldsymbol{J}(\boldsymbol{\theta}) \rightarrow \frac{1}{2n} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^{\mathsf{T}} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})$$

$$\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) \boldsymbol{\theta} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} = 0$$

Normal Equation
$$\longleftarrow (m{X}^\intercal m{X}) m{ heta} = m{X}^\intercal m{y}$$

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Can obtain heta by simply plugging X and y

Gradient Descent vs Closed Form

Gradient Descent

Closed Form Solution

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^TX)^{-1}$ is roughly $O(n^3)$

Extending Linear Regression to More Complex Models

- The inputs **X** for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$

This allows use of linear regression techniques to fit non-linear datasets.

Linear Basis Function Models

Generally,

$$h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$$
 basis function

- Typically, $\phi_0({m x})=1$ so that $\, heta_0\,$ acts as a bias
- In the simplest case, we use linear basis functions:

$$\phi_j(\boldsymbol{x}) = x_j$$

Linear Basis Function Models

• Basic Linear Model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=0}^{a} \theta_j x_j$$

• Generalized Linear Model: $h_{m{ heta}}(m{x}) = \sum_{j=0}^{\infty} heta_j \phi_j(m{x})$

 Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model

Improving Learning: Feature Scaling

• Idea: Ensure that feature have similar scales

Makes gradient descent converge much faster

Feature Standardization

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$
 - Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \qquad \text{for } j = 1...d$$

$$(\text{not } x_0!)$$

- s_j is the standard deviation of feature j
- Could also use the range of feature $j \hspace{0.1cm}$ ($\max_{j} \min_{j}$) for s_{j}
- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Quality of Fit

Overfitting:

- The learned hypothesis may fit the training set very well ($J(\pmb{\theta}) \approx 0$)
- ...but fails to generalize to new examples

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_j
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Regularization

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)}\right) - y^{(i)}\right)^2 + \lambda \sum_{j=1}^d \theta_j^2$$
 model fit to data regularization

- λ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

What happens if we set λ to be huge (e.g., 10¹⁰)?

magnitude of the feature coefficient vector

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Regularized Linear Regression

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Gradient update:

$$\theta_j \leftarrow \theta_j \left(1 - \alpha \frac{\lambda}{n} \right) - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

Recap:

- Linear Regression
- Gradient descent
- Batch and Stochastic GD
- Closed form and normal equation
- Extended models
- Improving features
 - Feature Scaling
 - Feature standardization
 - Regularization