# $12n_{0094} (K12n_{0094})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle 237180958840u^{40} + 426640636409u^{39} + \dots + 126602287463b - 603869550171,$$

$$184156720841u^{40} + 260129939039u^{39} + \dots + 379806862389a - 927659389454,$$

$$u^{41} + 2u^{40} + \dots - 5u - 1 \rangle$$

$$I_2^u = \langle -2u^4 - u^3 + b + u - 3, \ a, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 46 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 2.37 \times 10^{11} u^{40} + 4.27 \times 10^{11} u^{39} + \dots + 1.27 \times 10^{11} b - 6.04 \times 10^{11}, \ 1.84 \times 10^{11} u^{40} + 2.60 \times 10^{11} u^{39} + \dots + 3.80 \times 10^{11} a - 9.28 \times 10^{11}, \ u^{41} + 2u^{40} + \dots - 5u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.484869u^{40} - 0.684901u^{39} + \dots + 1.43981u + 2.44245 \\ -1.87343u^{40} - 3.36993u^{39} + \dots + 10.8768u + 4.76982 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.839243u^{40} + 0.839308u^{39} + \dots - 4.68096u - 0.119652 \\ -3.44624u^{40} - 3.41234u^{39} + \dots + 13.1682u + 3.81213 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2.36382u^{40} + 2.16411u^{39} + \dots - 7.95826u + 1.01795 \\ -5.33759u^{40} - 3.95656u^{39} + \dots + 14.0481u + 5.35650 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.545392u^{40} - 0.945298u^{39} + \dots + 1.68058u + 1.67265 \\ -2.45910u^{40} - 2.60458u^{39} + \dots + 10.3453u + 3.00449 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.605914u^{40} + 0.205696u^{39} + \dots - 1.92135u + 3.09715 \\ -4.95524u^{40} - 5.16076u^{39} + \dots + 18.1862u + 6.76084 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes  $= -\frac{159607686408}{126602287463}u^{40} - \frac{572526761426}{126602287463}u^{39} + \dots + \frac{127765468738}{126602287463}u + \frac{346980052385}{126602287463}u^{39} + \dots + \frac{127765468738}{126602287463}u^{39} + \dots + \frac{127765468738}{126602287463}u^{39} + \dots + \frac{346980052385}{126602287463}u^{39} + \dots + \frac{127765468738}{126602287463}u^{39} + \dots + \frac{127$ 

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing          |
|-----------------------|-----------------------------------------|
| $c_1$                 | $u^{41} + 44u^{40} + \dots + 2355u + 1$ |
| $c_{2}, c_{4}$        | $u^{41} - 6u^{40} + \dots + 47u - 1$    |
| $c_{3}, c_{6}$        | $u^{41} + 7u^{40} + \dots + 64u + 32$   |
| $c_5, c_8$            | $u^{41} - 2u^{40} + \dots + u - 1$      |
| $c_7, c_{10}$         | $u^{41} + 2u^{40} + \dots - 5u - 1$     |
| $c_9, c_{11}, c_{12}$ | $u^{41} + 12u^{40} + \dots + 9u + 1$    |

### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing          |
|-----------------------|---------------------------------------------|
| $c_1$                 | $y^{41} - 88y^{40} + \dots + 5466307y - 1$  |
| $c_2, c_4$            | $y^{41} - 44y^{40} + \dots + 2355y - 1$     |
| $c_3, c_6$            | $y^{41} + 33y^{40} + \dots + 49664y - 1024$ |
| $c_5, c_8$            | $y^{41} + 42y^{39} + \dots + 9y - 1$        |
| $c_7, c_{10}$         | $y^{41} - 12y^{40} + \dots + 9y - 1$        |
| $c_9, c_{11}, c_{12}$ | $y^{41} + 36y^{40} + \dots + 145y - 1$      |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.809815 + 0.656518I |                                       |                      |
| a = 0.18310 + 1.61197I    | -1.37603 + 0.57854I                   | -11.62960 + 0.13351I |
| b = 2.10023 - 1.97578I    |                                       |                      |
| u = -0.809815 - 0.656518I |                                       |                      |
| a = 0.18310 - 1.61197I    | -1.37603 - 0.57854I                   | -11.62960 - 0.13351I |
| b = 2.10023 + 1.97578I    |                                       |                      |
| u = 0.934060 + 0.150205I  |                                       |                      |
| a = -0.18148 - 1.61697I   | -3.38084 - 3.41544I                   | -14.4142 + 7.4507I   |
| b = 0.203825 + 1.369510I  |                                       |                      |
| u = 0.934060 - 0.150205I  |                                       |                      |
| a = -0.18148 + 1.61697I   | -3.38084 + 3.41544I                   | -14.4142 - 7.4507I   |
| b = 0.203825 - 1.369510I  |                                       |                      |
| u = 0.940510              |                                       |                      |
| a = -1.80150              | -5.56664                              | -18.9570             |
| b = 0.154280              |                                       |                      |
| u = -0.765786 + 0.781729I |                                       |                      |
| a = -1.48698 + 0.38083I   | 2.58614 - 2.24374I                    | -5.47598 + 3.48781I  |
| b = 0.91217 + 1.53968I    |                                       |                      |
| u = -0.765786 - 0.781729I |                                       |                      |
| a = -1.48698 - 0.38083I   | 2.58614 + 2.24374I                    | -5.47598 - 3.48781I  |
| b = 0.91217 - 1.53968I    |                                       |                      |
| u = 0.825264 + 0.768049I  |                                       |                      |
| a = -0.533792 - 0.264806I | 2.79960 - 1.79972I                    | -4.96538 + 4.18830I  |
| b = -0.363252 - 0.579554I |                                       |                      |
| u = 0.825264 - 0.768049I  |                                       |                      |
| a = -0.533792 + 0.264806I | 2.79960 + 1.79972I                    | -4.96538 - 4.18830I  |
| b = -0.363252 + 0.579554I |                                       |                      |
| u = 0.871525 + 0.715232I  |                                       |                      |
| a = 0.317178 - 0.359818I  | 0.88954 - 2.73561I                    | 12.1135 + 7.6213I    |
| b = 2.05567 + 2.91440I    |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.871525 - 0.715232I  |                                       |                      |
| a = 0.317178 + 0.359818I  | 0.88954 + 2.73561I                    | 12.1135 - 7.6213I    |
| b = 2.05567 - 2.91440I    |                                       |                      |
| u = 0.710841 + 0.488347I  |                                       |                      |
| a = 0.458035 - 0.499819I  | 1.44935 - 1.91021I                    | -0.76032 + 4.38625I  |
| b = -0.032082 + 0.328781I |                                       |                      |
| u = 0.710841 - 0.488347I  |                                       |                      |
| a = 0.458035 + 0.499819I  | 1.44935 + 1.91021I                    | -0.76032 - 4.38625I  |
| b = -0.032082 - 0.328781I |                                       |                      |
| u = -0.923416 + 0.674039I |                                       |                      |
| a = 1.66369 + 0.14363I    | -1.74586 + 4.59945I                   | -12.56472 - 5.90817I |
| b = -0.43727 - 2.53225I   |                                       |                      |
| u = -0.923416 - 0.674039I |                                       |                      |
| a = 1.66369 - 0.14363I    | -1.74586 - 4.59945I                   | -12.56472 + 5.90817I |
| b = -0.43727 + 2.53225I   |                                       |                      |
| u = 1.118030 + 0.271471I  |                                       |                      |
| a = -0.17044 + 1.50981I   | -11.21910 - 7.94660I                  | -13.0997 + 5.5632I   |
| b = -0.89384 - 1.26952I   |                                       |                      |
| u = 1.118030 - 0.271471I  |                                       |                      |
| a = -0.17044 - 1.50981I   | -11.21910 + 7.94660I                  | -13.0997 - 5.5632I   |
| b = -0.89384 + 1.26952I   |                                       |                      |
| u = -0.720515 + 0.902697I |                                       |                      |
| a = 1.42868 - 0.16952I    | -3.31648 - 7.81279I                   | -7.43198 + 3.38635I  |
| b = -0.66709 - 1.95032I   |                                       |                      |
| u = -0.720515 - 0.902697I |                                       |                      |
| a = 1.42868 + 0.16952I    | -3.31648 + 7.81279I                   | -7.43198 - 3.38635I  |
| b = -0.66709 + 1.95032I   |                                       |                      |
| u = -1.121650 + 0.291198I |                                       |                      |
| a = 0.498876 - 1.312020I  | -11.09620 - 0.45608I                  | -13.41842 - 0.76918I |
| b = -1.197720 + 0.633604I |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -1.121650 - 0.291198I |                                       |                      |
| a = 0.498876 + 1.312020I  | -11.09620 + 0.45608I                  | -13.41842 + 0.76918I |
| b = -1.197720 - 0.633604I |                                       |                      |
| u = -0.019251 + 0.828572I |                                       |                      |
| a = -1.74001 + 0.53051I   | -7.34491 + 4.27339I                   | -8.31191 - 2.78880I  |
| b = 1.287330 - 0.377518I  |                                       |                      |
| u = -0.019251 - 0.828572I |                                       |                      |
| a = -1.74001 - 0.53051I   | -7.34491 - 4.27339I                   | -8.31191 + 2.78880I  |
| b = 1.287330 + 0.377518I  |                                       |                      |
| u = 0.731013 + 0.924450I  |                                       |                      |
| a = 0.923425 + 0.604573I  | -2.90816 - 0.63484I                   | -9.12562 + 1.25059I  |
| b = -1.26483 + 1.04082I   |                                       |                      |
| u = 0.731013 - 0.924450I  |                                       |                      |
| a = 0.923425 - 0.604573I  | -2.90816 + 0.63484I                   | -9.12562 - 1.25059I  |
| b = -1.26483 - 1.04082I   |                                       |                      |
| u = -0.804662 + 0.114668I |                                       |                      |
| a = -0.147294 + 0.641401I | -2.53010 + 0.33755I                   | -19.6414 + 2.1587I   |
| b = 0.80950 - 2.46652I    |                                       |                      |
| u = -0.804662 - 0.114668I |                                       |                      |
| a = -0.147294 - 0.641401I | -2.53010 - 0.33755I                   | -19.6414 - 2.1587I   |
| b = 0.80950 + 2.46652I    |                                       |                      |
| u = 0.926559 + 0.745351I  |                                       |                      |
| a = 0.274837 + 0.567927I  | 2.48539 - 3.92858I                    | -5.87670 + 1.12171I  |
| b = -1.08422 - 1.33352I   |                                       |                      |
| u = 0.926559 - 0.745351I  |                                       |                      |
| a = 0.274837 - 0.567927I  | 2.48539 + 3.92858I                    | -5.87670 - 1.12171I  |
| b = -1.08422 + 1.33352I   |                                       |                      |
| u = -0.965249 + 0.735330I |                                       |                      |
| a = 0.31200 - 1.49463I    | 1.97721 + 7.97688I                    | -7.20424 - 8.75185I  |
| b = -2.37280 + 1.50589I   |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.965249 - 0.735330I |                                       |                     |
| a = 0.31200 + 1.49463I    | 1.97721 - 7.97688I                    | -7.20424 + 8.75185I |
| b = -2.37280 - 1.50589I   |                                       |                     |
| u = -0.930134 + 0.890297I |                                       |                     |
| a = -0.321692 - 0.288040I | 9.70942 + 3.28933I                    | 6.13928 - 1.45507I  |
| b = -0.267302 + 0.867780I |                                       |                     |
| u = -0.930134 - 0.890297I |                                       |                     |
| a = -0.321692 + 0.288040I | 9.70942 - 3.28933I                    | 6.13928 + 1.45507I  |
| b = -0.267302 - 0.867780I |                                       |                     |
| u = -1.037090 + 0.774259I |                                       |                     |
| a = -0.100822 + 1.364460I | -4.3067 + 14.0138I                    | -8.63515 - 7.83947I |
| b = 2.50179 - 1.88429I    |                                       |                     |
| u = -1.037090 - 0.774259I |                                       |                     |
| a = -0.100822 - 1.364460I | -4.3067 - 14.0138I                    | -8.63515 + 7.83947I |
| b = 2.50179 + 1.88429I    |                                       |                     |
| u = 1.045430 + 0.785315I  |                                       |                     |
| a = -0.491121 - 0.952641I | -3.90534 - 5.67266I                   | -9.98188 + 3.51111I |
| b = 2.29006 + 0.47538I    |                                       |                     |
| u = 1.045430 - 0.785315I  |                                       |                     |
| a = -0.491121 + 0.952641I | -3.90534 + 5.67266I                   | -9.98188 - 3.51111I |
| b = 2.29006 - 0.47538I    |                                       |                     |
| u = -0.666990             |                                       |                     |
| a = 0.215563              | -0.906933                             | -11.3940            |
| b = 0.523845              |                                       |                     |
| u = -0.035730 + 0.419728I |                                       |                     |
| a = 2.06556 - 0.62654I    | -0.57624 + 1.50346I                   | -4.65093 - 4.60849I |
| b = -0.346501 - 0.304456I |                                       |                     |
| u = -0.035730 - 0.419728I |                                       |                     |
| a = 2.06556 + 0.62654I    | -0.57624 - 1.50346I                   | -4.65093 + 4.60849I |
| b = -0.346501 + 0.304456I |                                       |                     |

| Solutions to $I_1^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = -0.332380        |                                       |            |
| a = 1.68244          | -2.28489                              | 0.221560   |
| b = 1.85453          |                                       |            |

II. 
$$I_2^u = \langle -2u^4 - u^3 + b + u - 3, \ a, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{4} + u^{3} - u + 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ 2u^{4} + u^{3} - u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u^{4} + u^{3} - u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ -u^{4} - u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3u^{4} + 2u^{3} - u^{2} - u + 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ u^{4} + u^{3} - u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-18u^4 7u^3 + 7u^2 + 18u 39$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing     |
|-----------------------|------------------------------------|
| $c_1, c_2$            | $(u-1)^5$                          |
| $c_{3}, c_{6}$        | $u^5$                              |
| C <sub>4</sub>        | $(u+1)^5$                          |
| $c_5, c_9$            | $u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$ |
|                       | $u^5 - u^4 + u^2 + u - 1$          |
| $c_8, c_{11}, c_{12}$ | $u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$ |
| $c_{10}$              | $u^5 + u^4 - u^2 + u + 1$          |

# (v) Riley Polynomials at the component

| Crossings                         | Riley Polynomials at each crossing    |
|-----------------------------------|---------------------------------------|
| $c_1, c_2, c_4$                   | $(y-1)^5$                             |
| $c_3, c_6$                        | $y^5$                                 |
| $c_5, c_8, c_9 \\ c_{11}, c_{12}$ | $y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$ |
| $c_{7}, c_{10}$                   | $y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$    |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.758138 + 0.584034I  |                                       |                     |
| a = 0                     | 0.17487 - 2.21397I                    | -8.20462 + 3.60694I |
| b = 0.442614 + 1.051550I  |                                       |                     |
| u = 0.758138 - 0.584034I  |                                       |                     |
| a = 0                     | 0.17487 + 2.21397I                    | -8.20462 - 3.60694I |
| b = 0.442614 - 1.051550I  |                                       |                     |
| u = -0.935538 + 0.903908I |                                       |                     |
| a = 0                     | 9.31336 + 3.33174I                    | -14.3260 - 3.4701I  |
| b = -0.304213 + 0.337334I |                                       |                     |
| u = -0.935538 - 0.903908I |                                       |                     |
| a = 0                     | 9.31336 - 3.33174I                    | -14.3260 + 3.4701I  |
| b = -0.304213 - 0.337334I |                                       |                     |
| u = -0.645200             |                                       |                     |
| a = 0                     | -2.52712                              | -48.9390            |
| b = 3.72320               |                                       |                     |

III. u-Polynomials

| Crossings        | u-Polynomials at each crossing                                           |
|------------------|--------------------------------------------------------------------------|
| $c_1$            | $((u-1)^5)(u^{41} + 44u^{40} + \dots + 2355u + 1)$                       |
| $c_2$            | $((u-1)^5)(u^{41}-6u^{40}+\cdots+47u-1)$                                 |
| $c_3, c_6$       | $u^5(u^{41} + 7u^{40} + \dots + 64u + 32)$                               |
| C4               | $((u+1)^5)(u^{41}-6u^{40}+\cdots+47u-1)$                                 |
| $c_5$            | $ (u5 - u4 + 4u3 - 3u2 + 3u - 1)(u41 - 2u40 + \dots + u - 1) $           |
| $c_7$            | $ (u^5 - u^4 + u^2 + u - 1)(u^{41} + 2u^{40} + \dots - 5u - 1) $         |
| $c_8$            | $ (u5 + u4 + 4u3 + 3u2 + 3u + 1)(u41 - 2u40 + \dots + u - 1) $           |
| <i>c</i> 9       | $ (u5 - u4 + 4u3 - 3u2 + 3u - 1)(u41 + 12u40 + \dots + 9u + 1) $         |
| $c_{10}$         | $(u^5 + u^4 - u^2 + u + 1)(u^{41} + 2u^{40} + \dots - 5u - 1)$           |
| $c_{11}, c_{12}$ | $(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{41} + 12u^{40} + \dots + 9u + 1)$ |

IV. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                            |
|-----------------------|-------------------------------------------------------------------------------|
| $c_1$                 | $((y-1)^5)(y^{41} - 88y^{40} + \dots + 5466307y - 1)$                         |
| $c_2, c_4$            | $((y-1)^5)(y^{41} - 44y^{40} + \dots + 2355y - 1)$                            |
| $c_3, c_6$            | $y^5(y^{41} + 33y^{40} + \dots + 49664y - 1024)$                              |
| $c_5,c_8$             | $(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{41} + 42y^{39} + \dots + 9y - 1)$   |
| $c_7, c_{10}$         | $(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{41} - 12y^{40} + \dots + 9y - 1)$      |
| $c_9, c_{11}, c_{12}$ | $(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{41} + 36y^{40} + \dots + 145y - 1)$ |