QUI017 - Química Geral Experimental: P1 (Práticas 1 a 4)			Pontuação ↓
Data: 23/05/2025	Questões: 3	Pontos totais: 20	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	5	
2	5	
3	10	
Total:	20	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.
- 4. Equações:

(a) Média (
$$\bar{x}$$
): $\bar{x} = \frac{1}{n} \times \sum_{i=1}^{n} x_i$

(b) Desvio padrão (s):
$$s = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}$$

1. (5 pontos) Um aluno foi incumbido de verificar se uma pipeta volumétrica de 10 mL estava calibrada. Para tal, ele adquiriu a massa de um béquer vazio de 50 mL (m_{vazio}) , succionou água com a pipeta até sua marcação de volume, escoou o volume no béquer e adquiriu sua massa (m_{cheio}) . Por fim, o aluno aferiu a temperatura da água. Para fins de tratamento estatístico, ele repetiu esse procedimento mais duas vezes, obtendo três conjuntos de dados. Esses dados estão dispostos na **Tabela 1**.

Tabela 1: Valores de massa do béquer vazio (m_{vazio}/g) , cheio (m_{cheio}/g) e de temperatura $(T/^{\circ}C)$ adquiridos para cada procedimento.

Procedimento	$m_{ m vazio}/{ m g}$	$m_{ m cheio}/{ m g}$	T/°C
1	49,1350	59,4540	25
2	49,1374	59,4217	25
3	49,1365	59,4680	25

Considerando que o limite de variação do volume de uma pipeta volumétrica de 10 mL é \pm 0,02 mL, indique se a pipeta está calibrada ou não. Considere que a densidade da água à 25 °C é igual a 0,9970 g mL⁻¹.

2. (5 pontos) Em um experimento de estequiomeria, um aluno foi incumbido de calcular o rendimento de uma reação de precipitação de carbonato de cálcio (CaCO₃) a partir da reação de 5 mL de uma solução aquosa 0.5 mol L^{-1} de carbonato de sódio (Na₂CO₃) com 5 mL de uma solução aquosa 0.5 mol L^{-1} de cloreto de cálcio (CaCl₂). A reação que descreve esse processo é mostrada na **Equação 1**.

$$CaCl_2(aq) + Na_2CO_3(aq) \longrightarrow CaCO_3(s) + 2 NaCl(aq)$$
 (1)

- (a) Essa reação química possui evidências macroscópicas? Se sim, quais são elas?
- (b) Ao misturar os volumes especificados das soluções, ele observou a formação de um precipitado, que foi filtrado e seco em estufa. O aluno verificou que 0,2435 g de sólido foi obtido. Qual o rendimento percentual ($\eta_{\%}$) da reação?
- 3. (10 pontos) Em um experimento de padronização, uma aluna foi incumbida de verificar a concentração real de uma solução aquosa de NaOH feita previamente. Para tal, realizou três titulações da solução em hidrogenoftalato de potássio (HFP, KH(C₈H₄O₄)) na presença de fenolftaleína. Em cada titulação, ela pesou uma massa próxima a 0,3500 g de HFP, dissolveu o sólido em 25 mL de água destilada dentro de um Erlenmeyer de 250 mL e adicionou 2 gotas de uma solução etanólica de fenolftaleína (0,01 g mL⁻¹). Então, preencheu uma bureta de 50 mL com a solução de NaOH, que foi gotejada até que a solução de HFP adotasse uma coloração levemente rosa. A reação envolvida na titulação é mostrada na **Equação 2**.

$$NaOH(aq) + KH(C_8H_4O_4)(aq) \longrightarrow KNa(C_8H_4O_4)(aq) + H_2O(l)$$
(2)

Os dados obtidos pela aluna estão dispostos na **Tabela 2**.

Tabela 2: Valores de massa de hidrogenoftalato de potássio $(m_{\rm HFP}/{\rm g})$ e volume gasto da solução de NaOH $(V_{\rm NaOH}/{\rm mL})$ em cada titulação.

Titulação	$m_{ m HFP}/{ m g}$	$V_{ m NaOH}/{ m mL}$
1	0,3440	12,96
2	$0,\!3509$	13,22
3	0,3471	13,07

Em posse desses dados, qual a concentração real da solução de NaOH confeccionada pela aluna? Considerando que a concentração pretendida era de $0,10 \text{ mol L}^{-1}$, qual o fator de correção da titulação?

