Коллоквиум по дискретной математике 2

Содержание

1	Лог	гика и машины Тьюринга	2
	1.1	Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур	2
	1.2	Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) форму-	
		лы. Предложения	2
	1.3	Оценка переменных. Значение терма и формулы в данной структуре при данной оценке.	
		Независимость значения формулы от значений переменных, не являющихся ее параметрами.	2

1 Логика и машины Тьюринга

1.1 Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур.

Структура – кортеж множеств $(M, \mathcal{F}, \mathcal{R}, \mathcal{C})$, где

- 1. M непустое множество, носитель структуры
- 2. \mathcal{F} множество функций вида $f: M^n \to M$
- $3. \, \mathcal{R}$ множество кортежей из M
- 4. C подмножество M

Сигнатура — кортеж попарно непересекающихся множеств (Fnc, Prd, Cnst), где Fnc — множество функциональных символов, Prd — непустое множество предикатных символов и Cnst — множество константных символов. (просто набор символов)

* σ -структура (или интерпретация сигнатуры σ) – это формально кортеж $\mathcal{M}=(M,\mathcal{F},\mathcal{R},\mathcal{C},\mathcal{I})$, где $\mathcal{I}(Fnc)=\mathcal{F},\ \mathcal{I}(Prd)=\mathcal{R}$ и $\mathcal{I}(Cnst)=\mathcal{C}$. Вводим обозначения: $\mathcal{I}(Fnc)=f^{\mathcal{M}},\ \mathcal{I}(Prd)=R^{\mathcal{M}}$ и $\mathcal{I}(Cnst)=c^{\mathcal{M}}$. Для задания σ -структуры достаточно только M и \mathcal{I} .

Нормальная структура – содержащая двувалентный предикатный символ "=" := $\{(a,a) \in M^2 \mid a \in M\}$, где M – носитель структуры.

Изоморфизм структур: интепретации \mathcal{M} и \mathcal{N} сигнатуры σ с носителями M и N соответственно изоморфны если существует биекция $\eta\colon M\to N$ для которой выполняются следующие свойства:

- 1. $\eta(f^{\mathcal{M}}(a_1,\ldots,a_n)) = f^{\mathcal{N}}(\eta(a_1),\ldots,\eta(a_n))$
- 2. $(a_1, \ldots, a_n) \in R^{\mathcal{M}} \iff (\eta(a_1), \ldots, \eta(a_n)) \in R^{\mathcal{N}}$
- 3. $\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}$

1.2 Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) формулы. Предложения.

Формулы первого порядка – это выражения в логике первого порядка (предикатной логике), построенные по правилам синтаксиса, установленным для данной сигнатуры.

Формулы первого порядка строятся из термов и предикатов, используя логические связки и кванторы. Основные элементы синтаксиса формул первого порядка:

- 1. Термы: переменные, константы и функции, примененные к термам.
- 2. Атомарные формулы: предикаты, примененные к термам.
- 3. Сложные формулы: атомарные формулы, соединенные логическими операциями $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ и кванторами (\forall, \exists) .

Свободные переменные формулы – это переменные, которые не находятся под действием кванторов (∀ или ∃) внутри этой формулы. То есть, они не "связаны" кванторами и могут принимать любые значения из области определения.

Предложения в логике первого порядка – это формулы, которые не содержат свободных переменных, то есть все переменные в них связаны кванторами. Такие формулы имеют логическое значение (истинность или ложность) в интерпретации.

1.3 Оценка переменных. Значение терма и формулы в данной структуре при данной оценке. Независимость значения формулы от значений переменных, не являющихся ее параметрами.

Оценка переменных – способ присвоения конкретных значений переменным в формуле. По сути это функция μ , которая ставит в соответствие каждой переменной какое-то значение.

Значение терма t и формулы φ в данной структуре $\mathcal M$ при данной оценке μ :

- 1. если t переменная, то t принимает значение $\mu(t)$
- 2. если t константный символ c, то t принимает значение интерпретации c в \mathcal{M} : $c^{\mathcal{M}}$
- 3. если t функция f, применяемая к термам t_1, \ldots, t_n , то значение t это $f^{\mathcal{M}}(v_1, \ldots, v_n)$, где v_1, \ldots, v_n это значения термов при данной оценке

- 4. если φ атомарная формула $P(t_1, \dots, t_n)$, то она истинна, если $(v_1, \dots, v_n) \in \mathbb{R}^{\mathcal{M}}$, где v_1, \dots, v_n это значения термов при данной оценке
- 5. для сложных формул φ используются стандартные логические правила

Независимость значения формулы от значений переменных, не являющихся ее параметрами означает, что если мы изменим значения переменных, которые не являются свободными в данной формуле, то значение формулы останется неизменным. Другими словами, переменные, не являющиеся свободными в формуле, не влияют на ее истинностное значение.