Қысқаша көбейту формулалары	Туынды	Тригонометриялық формулалар
$(a+b)^2 = a^2 + 2ab + b^2$	c' = 0 $c = const$	$\sin^2 x + \cos^2 x = 1$
$(a-b)^2 = a^2 - 2ab + b^2$	$(x^n)' = nx^{n-1}$	$tg\alpha \cdot ctg\alpha = 1$
$a^2 - b^2 = (a - b)(a + b)$	$(a^x)' = a^x lna$	$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$(e^x)' = e^x$	$tg\alpha = \frac{1}{\cos \alpha}$
$(a+b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	$(\log_a x)' = \frac{1}{x \ln a}$	$ct \alpha \alpha = \frac{\cos \alpha}{2}$
$(a-b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$\int_{1}^{(\log_a x)} \frac{1}{x \ln a}$	$ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$	$(lnx)' = \frac{1}{-}$	$sin2\alpha = 2sin\alpha cos\alpha$
$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$	(sinx)' = cosx	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
	$(\cos x)' = -\sin x$	$\cos 2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$
Дәрежеге шығару және түбір қасиеттері	$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$
$a^0 = 1 \ a \neq 0$	$\frac{2\sqrt{x}}{(tax)' - \frac{1}{x}}$	$sin\alpha cos\alpha = \frac{1}{2}sin2\alpha$
$a^{-n} = \frac{1}{a^n}$	$(tgx)' = \frac{1}{\cos^2 x}$ $(ctgx)' = -\frac{1}{\sin^2 x}$ $(arcsinx)' = \frac{1}{\sqrt{1 - x^2}}$	$\sin^2\alpha\cos^2\alpha = \frac{1}{4}\sin^22\alpha$
$a^m \cdot a^n = a^{m+n}$	$\frac{(cigx) = -\frac{1}{\sin^2 x}}{1}$	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$
$a^m \cdot a^n = a^{m+n}$	$(arcsinx)' = \frac{1}{\sqrt{1-x^2}}$	$1 + tg^{2}\alpha = \frac{1}{\cos^{2}\alpha}$
$a^m:a^n=a^{m-n}$	1	$1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$
$(a^m)^n = a^{mn}$	$(arccosx)' = -\frac{1}{\sqrt{1-x^2}}$	$1 + cty \alpha - \frac{1}{\sin^2 \alpha}$
$(ab)^n = a^n b^n$	$(arccosx)' = -\frac{1}{\sqrt{1 - x^2}}$ $(arctgx)' = \frac{1}{1 + x^2}$	$\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}$
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\frac{1+x^2}{(arcctgx)' = -\frac{1}{1+x^2}}$	$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$
$a^{\frac{1}{n}} = \sqrt[n]{a}$	111	$1 + \cos\alpha = 2\cos^2\frac{\alpha}{2}$
$a\frac{m}{n} = \sqrt[n]{a^m}$	Жанама теңдеуі: $y = f'(x)(x - x) + f(x)$	
	$\begin{vmatrix} y = f'(x_0)(x - x_0) + f(x_0) \\ f'(x_0) = k = tg\alpha \end{vmatrix}$	$1 - \cos\alpha = 2\sin^2\frac{\alpha}{2}$
Логарифм қасиеттері	Интеграл	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$log_a 1 = 0$	$\int 0 dx = C$	$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta}$
$ \begin{aligned} log_a a &= 1 \\ a^{log_a x} &= x \end{aligned} $	$\int_{0}^{T} 1 dy = y + C$	0 0,
	$\int 1 \cdot dx = x + C$ $\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$ctg(\alpha \pm \beta) = \frac{1 \mp tg\alpha tg\beta}{tg\alpha \pm tg\beta}$
$\log_{\mathbf{a}}(\mathbf{x}_1 \cdot \mathbf{x}_2) = \log_{\mathbf{a}} x_1 + \log_{\mathbf{a}} x_2 $	$\int_{-\infty}^{\infty} x^{n+1} + C$	
$\log_a \frac{x_1}{x_2} = \log_a x_1 - \log_a x_2 $	$\int x^n dx = \frac{1}{n+1} + C$	$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$
$\log_a x^p = p \log_a x$		$\sin\alpha - \sin\beta = 2\sin\frac{\alpha^2 - \beta}{2}\cos\frac{\alpha^2 + \beta}{2}$
$\log_{a^q} x = \frac{1}{a} \log_a x$	$\int \frac{1}{x} dx = \ln x + C$ $\int a^x dx = \frac{a^x}{\ln a} + C$	$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$
9	\ \frac{1}{C}	$\cos\alpha + \cos\beta = 2\cos\frac{\alpha}{2} + \cos\frac{\alpha}{2} - \cos\alpha$ $\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$
$log_a x = \frac{log_b x}{log_b a}$	$\int e^x dx = e^x + C$ $\int \sin x dx = -\cos x + C$	1
$log_{10}x = lgx$ $lnx = log_e x$	C	$\sin\alpha\cos\beta = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta))$
	$\int \cos x dx = \sin x + C$	$\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$
	$\int \frac{1}{\sin^2 x} dx = -ctgx + C$	$\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta))$
	$\int \frac{1}{\cos^2 x} dx = tgx + C$	Квадрат тендеу
	J 000 10	$ax^2 + bx + c = 0$
A	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$	$D = b^2 - 4ac$
Алгебралық прогрессия	1 1	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$a_n = a_{n-1} + d = a_1 + (n-1)d$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \arccos \frac{x}{a} + C$	
$S_n = \frac{2a_1 + d(n-1)}{2} \cdot n$		Виет формуласы:
$S_n = \frac{a_1 + a_n}{2} \cdot n$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$	$x_1 + x_2 = -\frac{b}{a}$
		$x_1 \cdot x_2 = \frac{c}{a}$
$\begin{array}{c} d = a_{n+1} - a_n \\ a_{n-1} + a_{n+1} \end{array}$		$\begin{vmatrix} x_1 & x_2 & a \\ ax^2 + bx + c = a(x - x_1)(x - x_2) \end{vmatrix}$
$a_n = \frac{\ddot{a}_{n-1} + \ddot{a}_{n+1}}{2}$		
Геометриялық прогрессия		
$b_n = b_1 q^{n-1}$		
$q = \frac{b_{n+1}}{b_n}$		
$S_n = \frac{b_1^n (q^n - 1)}{q - 1}$		
$b_n = \pm \sqrt{b_{n-1} \cdot b_{n+1}}$		
Шексіз кемімелі геом прогрессия		
$b_n = b_1 q^{n-1}, q < 1$		
$S = \frac{b_1}{1 - q}$		Altyn Bilim the best way to get knowledge