Multithreaded Algorithms ¹

Jie Wang

University of Massachusetts Lowell Department of Computer Science

¹Some of the slides presented are borrowed from University of Washington Professor Marty Stepp's slides.

Parallel Computing

- Sequential algorithms are algorithms for a computing device with a single processor and random-access memory. These algorithms are also referred to as singlethreaded algorithms.
- Multithreaded algorithms are algorithms for a computing device with multiple processors (CPUs, cores) and shared memory.
- Parallel computing: Multiple processors simultaneously solve a problem.
 - For example, split a computing task into several parts and assign a processor to solve each part at the same time.

Concurrent Computing

Concurrent computing: Multiple execution flows (e.g. threads)
access a shared resource at the same time.
 For example, concurrent computing allows the same data structure to
be updated by multiple threads.

Computing with Multiple Cores

- Run multiple programs at the same time.
 For example: Core 1 runs Chrome; Core 2 runs iTunes; Core 3 runs
 Eclipse. OS (Windows, OSX, Linux) gives programs "time slices" of attention from cores.
- Do multiple things in the same program with multiple threads.
 - Need to rethink everything about algorithms.
 - Harder to write parallel code, especially in Java, C, C++, and other common languages.
- Each thread is given its own memory for unshared calls and local variables.
 - Global objects are shared between multiple threads.
- Separate processes do not share memory with each other.

Dynamic Multithreading

- Specify parallelism without worrying about communications protocols, load balancing, and other vagaries of static-thread programming.
- The concurrency platform contains a scheduler for load balancing.
 - Two features: (1) nested parallelism; (2) parallel loops.
 - Keywords: parallel, spawn, sync
- Example: Fibonacci numbers (inefficient):

```
FIB(n)

1 if n \le 1

2 return n

3 else x = \text{FIB}(n-1)

4 y = \text{FIB}(n-2)

5 return x + y
```

Multithreading Fibonacci

• Fig(n-1) and Fig(n-2) can be executed independently, and so can be done in parallel.

```
P-Fib(n)

1 if n \le 1

2 return n

3 else x = \text{spawn Fib}(n-1)

4 y = \text{Fib}(n-2)

5 sync

6 return x + y
```

- Nested parallelism occurs when the keyword **spawn** proceeds a function, where the parent code may continue to execute in parallel with the spawned children.
- Keyword **sync** means to wait for all its spawned children to complete.

Multithreading and Computation DAG

- Multithreaded computation can be modeled as a DAG G = (V, E).
 - Nodes are instructions.
 - Edges are dependencies.
- A **strand** represents a chain of instructions without parallel keywords (i.e., no **spawn**, **sync**, or **return** from a spawn).
- Two strands S_1 and S_2 are **logically in series** if there is a directed path from S_1 to S_2 . Otherwise, they are **logically in parallel**.
- A multithreaded computation is a DAG of strands embedded in a three of procedure instances; it starts with a single strand and ends also with a single strand.

Multithreaded Fibonacci Computation

Directed acyclic graph representing P-FIB(4)

- · Circles represent strands.
- base case or the part of the procedure up to the spawn of P-FIB (n-1) in line 4.
- part of the procedure that calls P_FIB(n-2) in line 5 up to the sync in line 6, where it suspends until the spawn of P-FIB(n-1) returns.
- part of the procedure after the sync where it sums x and y up to the point where it returns the result.
- Rectangles contain strands belonging to the same procedure
- for spawned procedures
- for called procedures.

```
P-FIB(n)
1 if n \le 1
2 return n
3 else
4 x = \text{spawn FIB}(n-1)
5 sync
7 return x + y
```

Multithreaded Fibonacci Computation Continued

- · Circles represent strands.
- base case or the part of the procedure up to the spawn of P-FIB (n-1) in line 4.
- part of the procedure that calls P_FIB(n-2) in line 5 up to the sync in line 6, where it suspends until the spawn of P-FIB(n-1) returns.
- part of the procedure after the sync where it sums x and y up to the point where it returns the result.
- Rectangles contain strands belonging to the same procedure
- for spawned procedures
 for called procedures.

Complexity Measures

- Assuming ideal parallelism: sequentially consistent shared memory among multiple processors.
 - The memory behaves as if each processor's instructions were executed sequentially according to some global linear order.
- Work: the total time to execute the entire computation on one processor.
 - The work is equal to the sum of the times taken by each strand.
 - It is simply the number of nodes in a computation DAG if each strand takes a unit time.
- Span: the longest time to execute all strands along any path in the DAG.
 - It is the number of nodes on a longest path (a.k.a. critical path) if each strand takes a unit time.
 - A critical path in a DAG can be found in O(|V| + |E|) time.

Work Law and Span Law

- Let T_P denote the runtime of a multithreaded algorithm with P processors.
- Let T_1 denote the work to be done, which is the runtime on a single processor.
- Let T_{∞} denote the span.
- Work Law: $T_P \geq T_1/P$.
- Span Law: $T_P \geq T_{\infty}$.
- Speedup: $T_1/T_P \leq P$.
 - Linear speedup: $T_1/T_P = \Theta(P)$.
 - Perfect speedup: $T_1/T_P = P$.
- Parallelism: T_1/T_{∞} is the maximum speedup that can be achieved if the number of processors is unbounded.
 - Beyond the parallelism, the more processors are used the less perfect the speedup. This is because if $P \gg T_1/T_{\infty}$, then $T_1/T_P \ll P$.

The Speedup of Multithreaded Fibonacci Cannot Be Much Larger than 2.

- Example: P-FIB(4)
 - -W = 17 time units
 - $-T_{\infty} = 8$ time units

Directed acyclic graph representing P-FIB(4)

Parallel Slackness

- Slackness measure: $T_1/(PT_{\infty})$.
- If $T_1/(PT_{\infty}) < 1$, then perfect speedup cannot be achieved.
 - This is because $T_1/T_P \le T_1/T_\infty < P$.
- If the slackness decreases from 1 toward 0, the speedup diverges increasingly further from being perfect.

Greedy Scheduling

- In addition to minimizing the work and span, strands must also be scheduled efficiently onto processors.
- A multithreaded scheduler schedules the computation without advance knowledge of when strands will be spawned or synced.
 - Online distributed scheduler: Ideal but hard to analyze.
 - Online centralized scheduler: not ideal but easy to analyze. Example: greedy schedulers.
- A greedy scheduler assigns as many strands to processors as possible in each step.
 - **Complete step**: At least *P* strands are ready to execute in the step.
 - **Incomplete step**: Fewer than *P* strands are ready to execute in the step.
- The work law implies that the best possible runtime is $T_P = T_1/P$.
- The span law implies that the best possible runtime is $T_P = T_{\infty}$.
- The upper bound of any greedy scheduler is $T_1/P + T_{\infty}$.

Greedy Scheduler Upper Bound

Theorem 27.1. A greedy scheduler on an ideal parallel computer executes a multithreaded computation in time $T_P \leq T_1/P + T_{\infty}$.

Proof. Let S_C and S_I denote the number of complete steps and incomplete steps. Then $T_P \leq S_C + S_I$.

We first estimate S_C the number of complete steps. If $S_C \ge \lfloor T_1/P \rfloor + 1$, then the total work of complete steps is at least

$$P(\lfloor T_1/P \rfloor + 1) = P\lfloor T_1/P \rfloor + P$$

$$= T_1 - (T_1 \bmod P) + P$$

$$> T_1.$$

This is impossible. Thus, $S_C \leq |T_1/P|$.

Greedy Scheduler Upper Bound Continued

Let G be the computation DAG and, w.l.o.g. assume that each strand runs in unit time.

- Let G' be the subgraph yet to be executed at the start of the incomplete step.
- Let G'' be the subgraph remaining to be executed after the incomplete step.

Let L be the length of a longest path in G'. Then the length of a longest in G'' must be L-1.

Since $L \leq T_{\infty}$, we have $S_{I} \leq T_{\infty}$.

This completes the proof.

Approximation Ratio

Corollary 27.2. The runtime T_P of a greedy scheduler is an approximation to runtime T_P^* of the optimal scheduler within a factor of 2. **Proof**. The work law and span law imply that $T_P^* \ge \max\{T_1/P, T_\infty\}$. From Theorem 27.1:

$$T_P \le T_1/P + T_\infty$$

 $\le 2 \max\{T_1/P, T_\infty\}$
 $\le 2T_P^*.$

Corollary 27.3. If $P \ll T_1/T_\infty$, then $T_1/T_P \approx P$. **Proof**. Since $P \ll T_1/T_\infty$, we have $T_\infty \ll T_1/P$. Thus, $T_P \leq T_1/P + T_\infty \approx T_1/P$.

On the other hand, $T_P \ge T_1/P$ by the work law. Thus, $T_1/T_P \approx P$.

Analysis of Parallelism

To analyze the parallelism of the multithreaded Fibonacci P-Fib(n):

$$T_{\infty}(n) = \max\{T_{\infty}(n-1), T_{\infty}(n-2)\} + \Theta(1)$$

= $T_{\infty}(n-1) + \Theta(1)$
= $\Theta(n)$.

Since $T_1(n) = \Theta(\Phi^n)$, we have

$$T_1(n)/T_\infty(n) = \Theta(\Phi^n/n).$$

Parallel Loops

Consider matrix-vector multiplication, where $A = (a_{ij})_{n \times n}$ is a matrix, $x = (x_j)_n$ is an *n*-vector, and $y = (y_i)_n$ is the resulting vector with

$$y_i = \sum_{j=1}^n a_{ij} x_j.$$

```
MAT-VEC-SEQ( A, x )

1  n = A.rows

2  Let y be a new vector of length n

3  for i = 1 to n

4  y_i = 0

5  for i = 1 to n

6  for j = 1 to n

7  y_i = y_i + a_{ij} x_j

8  return y
```

Serial code for matrix-vector multiplication

```
MAT-VEC( A, x)

1  n = A.rows

2  Let y be a new vector of length n

3  parallel for i = 1 to n

4  y_i = 0

5  parallel for i = 1 to n

6  for j = 1 to n

7  y_i = y_i + a_{ij} x_j

8  return y
```

Parallel code for matrix-vector multiplication

Parallel Loops Continued

- A compiler implements each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
- For example, the compiler implements the **parallel for** loop in lines 5–7 with the call to MAT-VEC-MAIN-LOOP(A, x, y, n, 1, n), where


```
MAT-VEC-MAIN-LOOP( A, x, y, n, i, i' )

1 if i = = i'

2 for j = 1 to n

3 y_i = y_i + a_{ij} x_j

4 else mid = floor((i+i')/2)

5 spawn MAT-VEC-MAIN-LOOP( A, x, y, n, i, mid)

6 MAT-VEC-MAIN-LOOP( A, x, y, n, mid + 1, i' )

7 sync
```

DAG for MAT-VEC-MAIN-LOOP (A, x, y, 8, 1, 8)

Parallelism

It is straightforward that $T_1(n) = \Theta(n^2)$.

$$T_{\infty}(n) = \Theta(\log n) + \max_{1 \le i \le n} iter_{\infty}(i)$$

= $\Theta(n)$.

Thus, the parallelism $T_1(n)/T_\infty(n) = \Theta(n^2/n) = \Theta(n)$.

Race Conditions

A determinacy race condition occurs when two logically parallel instructions access the same memory location and at least one of the instructions perform a write.

```
RACE-EXAMPLE()

1  x = 0

2  parallel for i = 1 to 2

3  x = x + 1

4  print x

Loa

1. R

2. Ir

3. W
```

Load-store steps:

- 1. Read x from memory to register
- 2. Increment value in register
- 3. Write back register to memory

Methods to avoid determinacy races:

Mutual exclusion locks

Others.

Assumption:

Strand that operate in parallel are independent.

Illustration of the Determinacy Race

step	х	r_1	r_2			
1	0	-	-			
2	0	0	_			
3	0	1	_			
4	0	1	0			
5	0	1	1			
6	1	1	1			
7	1	1	1			
	(b)				

A Chess Lesson

- This is a true story (with simplification on timings)
- A multitreaded chess-playing program was built with $T_1=2048$ and $T_\infty=1$.
- It was prototyped on a 32-processor computer with $T_{32}=2048/32+1=65$ and will be implemented on a 512-processor machine.
- Later an optimization was found with $T_1'=1024$ and $T_\infty'=8$. Thus, $T_{32}'=1024/32+8=40$.
- On a 512-node computer, using the original program we have $T_{512}=2048/512+1=5$. With the optimized program we have $T_{512}'=1024/512+8=10$.
- Thus, although the optimized algorithms runs better on a 32-node machine, it's worse than the original program on a 512-node machine.

Thread and Runnable

```
public interface Runnable { // implement this
     public void run();
• public Thread (Runnable runnable)
  public void start()
public class MyRunnable implements Runnable {
   public void run() {
      // perform a task...
Thread thread = new Thread(new MyRunnable());
thread.start(); // returns immediately
```

Waiting for A Thread

- The call to Thread's start method returns immediately.
 - Your code continues running in its own thread.
 - Cannot assume that the other thread has finished running yet.
- If you want to be sure the thread is done, call join on it.
 - Sometimes called a "fork/join" execution model.

MultiThread Example: Parallel Summation

- Write a method named sum that computes the total sum of all elements in an array of integers.
 - For now, just write a normal solution that doesn't use parallelism.

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
value	22	18	12	-4	27	30	36	50	7	68	91	56	2	85	42	98

```
// normal sequential solution
public static int sum(int[] a) {
   int total = 0;
   for (int i = 0; i < a.length; i++) {
      total += a[i];
   }
   return total;
}</pre>
```

Parallelizing

- Write a method named sum that computes the total sum of all elements in an array of integers.
 - How can we parallelize this algorithm if we have 2 CPUs/cores?

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
value	22	18	12	-4	27	30	36	50	7	68	91	56	2	85	42	98
sum1 = 22+18+12+-4+27+30+36+50 = 191 sum2 = 7+68+91+56+2+85+42										2+98	= 449					
sum = sum1 + sum2 = 640																

- Compute sum of each half of array in a thread.
- Add the two sums together.

Initial Steps

• First, write a method that sums a partial range of the array:

```
// normal sequential solution
public static int sumRange(int[] a, int min, int max) {
   int total = 0;
   for (int i = min; i < max; i++) {
      total += a[i];
   }
   return total;
}</pre>
```

Runnable Partial Sum

• Now write a runnable class that can sum a partial array:

```
public class Summer implements Runnable {
    private int[] a;
    private int min, max, sum;
    public Summer(int[] a, int min, int max) {
        this.a = a;
        this.min = min;
        this.max = Math.min(max, a.length);
    public int getSum() {
        return sum;
    public void run() {
        sum = Sorting.sumRange(a, min, max);
    }
```

Sum Method with Threads

• Now modify the overall sum method to run Summers in threads:

```
// Parallel version (two threads)
public static int sum(int[] a) {
    Summer firstHalf = new Summer(a, 0, a.length/2);
    Summer secondHalf = new Summer(a, a.length/2, a.length);
    Thread thread1 = new Thread(firstHalf);
    thread1.start();
    Thread thread2 = new Thread(secondHalf);
    thread2.start();
    try {
        thread1.join();
        thread2.join();
    } catch (InterruptedException ie) {}
    return firstHalf.getSum() + secondHalf.getSum();
}
```

Three or more Threads

```
public static int sum(int[] a) { // many threads version
    int threadCount = 5; // what number is best?
    int len = (int) Math.ceil(1.0 * a.length / threadCount);
    Summer[] summers = new Summer[threadCount];
    Thread[] threads = new Thread[threadCount];
    for (int i = 0; i < threadCount; i++)
        summers[i] = new Summer(a, i*len, (i+1)*len);
        threads[i] = new Thread(summers[i]);
        threads[i].start();
    try
        for (Thread t : threads) {
            t.join();
    } catch (InterruptedException ie) {}
    int total = 0;
    for (Summer summer: summers) {
        total += summer.getSum();
    return total:
```

MultiThread Example: Parallel MergeSort

How can merge sort be parallelized if we have 2 CPUs/cores?

- Idea:
 - Split array in half.
 - Recursively sort each half in its own thread.
 - Merge.

Runnable MergeSort

• Write a runnable class that can merge sort an array:

```
public class MergeSortRunner implements Runnable {
    private int[] a;

    public MergeSortRunner(int[] a) {
        this.a = a;
    }

    public void run() {
        mergeSort(a);
    }
}
```

MergeSort with Multiple Threads

• Now modify the merge sort method to sort in threads:

```
// Parallel version (two threads)
public static void parallelMergeSort(int[] a) {
    if (a.length < 2) { return; }
    // split array in half
    int[] left = Arrays.copyOfRange(a, 0, a.length / 2);
    int[] right = Arrays.copyOfRange(a, a.length/2, a.length);
    // sort each half (in parallel)
    Thread 1Thread = new Thread(new MergeSortRunner(left));
    Thread rThread = new Thread(new MergeSortRunner(right));
    lThread.start():
    rThread.start();
    try {
        lThread.join();
        rThread.join();
    } catch (InterruptedException ie) {}
    // merge them back together
    merge(left, right, a);
```

Three or more Threads

- If we want to use more than 2 threads, it is tricky to code.
 - Have to keep an array of threads/runnables.
 - Tough to merge all the partial results together when done.
- A better way: divide-and-conquer parallelism
 - Have each call spawn two threads, which spawn two threads, ...
 - Each thread merges its two sub-threads; easier to manage

Map/Reduce (Google's Invention)

- map/reduce: A strategy for implementing parallel algorithms.
 - map: A master worker takes the problem input, divides it into smaller sub-problems, and distributes the sub-problems to workers (threads).
 - reduce: The master worker collects sub-solutions from the workers and combines them in some way to produce the overall answer.
 - Our multi-threaded merge sort is an example of such an algorithm.
- Frameworks and tools have been written to perform map/reduce.
 - MapReduce framework by Google
 - Hadoop framework by Yahoo!
 - related to the ideas of Big Data and Cloud Computing
 - also related to functional programming

