

AMPER Course

Introduction to SPARQL

Raúl García-Castro, Óscar Corcho, Óscar Muñoz-García

{rgarcia, ocorcho, omunoz}@fi.upm.es http://www.oeg-upm.net/

Ontology Engineering Group
Laboratorio de Inteligencia Artificial
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

RDF(S) query languages

Languages developed to allow accessing datasets expressed in RDF(S) (and in some cases OWL)

- Supported by the most important language APIs
 - Jena (HP labs)
 - Sesame (Aduna)
 - Boca (IBM)
 - **–** ...
- There are some differences wrt languages like SQL, such as
 - Combination of different sources
 - Trust management
 - Open World Assumption

Query types

Selection and extraction

- "Select all the essays, together with their authors and their authors' names".
- "Select everything that is related to the book 'Bellum Civille"
- Reduction: we specify what it should not be returned
 - "Select everything except for the ontological information and the book translators"
- Restructuring: the original structure is changed in the final result
 - "Invert the relationship 'author' by 'is author of"

Aggregation

"Return all the essays together with the mean number of authors per essay"

Combination and inferences

- "Combine the information of a book called 'La guerra civil' and whose author is Julius Caesar with the book whose identifier is 'Bellum Civille'"
- "Select all the essays, together with its authors and author names", including also the instances of the subclasses of Essay.
- "Obtain the relationship 'coauthor' among persons who have written the same book".

RDF(S) query language families

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

SPARQL

- SPARQL Protocol and RDF Query Language
- Supported by: Jena, Sesame, IBM Boca, etc.
- Features
 - It supports most of the aforementioned queries
 - It supports datatype reasoning (datatypes can be requested instead of actual values)
 - The domain vocabulary and the knowledge representation vocabulary are treated differently by the query interpreters.
 - It allows making queries over properties with multiple values, over multiple properties of a resource and over reifications
 - Queries can contain optional statements
 - Some implementations support aggregation queries

Limitations

- Neither set operations nor existential or universal quantifiers can be included in the queries
- It does not support recursive queries

SPARQL is also a protocol

• SPARQL is a Query Language ...: Find names and websites of contributors to PlanetRDF:

... and a Protocol.

```
http://.../qps?query-lang=http://www.w3.org/TR/rdf-sparql-query/&graph-id=http://planetrdf.com/bloggers.rdf&query=PREFIXfoaf: <http://xmlns.com/foaf/0.1/...
```

- Services running SPARQL queries over a set of graphs
- A transport protocol for invoking the service
- Based on ideas from earlier protocol work such as Joseki
- Describing the service with Web Service technologies

A simple SPARQL query

Data:

```
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .
```

Query:

```
SELECT ?title
WHERE
{
     <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}
```

Query result:

title
"SPARQL Tutorial"

- A pattern is matched against the RDF data
- Each way a pattern can be matched yields a solution
- The sequence of solutions is filtered by: Project, distinct, order, limit/offset
- One of the result forms is applied: SELECT, CONSTRUCT, DESCRIBE, ASK

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

Turtle: URIs, blank nodes, literals

URIs Enclosed in <> <URI> or @prefix prefix <http://...> prefix:name **Blank Nodes** :name or for a Blank Node used once Literals "Literal" "Literal"@language """Long literal with newlines""" **Datatyped Literals** "lexical form"^^datatype URI "10"^^xsd:integer "2006-09-04"^^xsd:date

Turtle: Triples and abbreviations

Triples separated by .

```
:a :b :c . :d :e :f .
```

Common triple predicate and subject:

```
:a :b :c, :d .
which is the same as :a :b :c . :a :b :d .
```

Common triple subject:

```
:a :b :c; :d :e .
which is the same as: :a :b :c . :a :d :e .
```

Blank node as a subject

```
:a :b [ :c :d ]
which is the same as: :a :b _:x . _:x :c :d .
for blank node _:x
```

RDF Collections

```
- :a :b ( :c :d :e :f )
which is short for many triples
```


Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

Graph patterns

- Basic Graph Patterns, where a set of triple patterns must match
- Group Graph Pattern, where a set of graph patterns must all match
- Optional Graph patterns, where additional patterns may extend the solution
- Alternative Graph Pattern, where two or more possible patterns are tried
- Patterns on Named Graphs, where patterns are matched against named graphs

Basic graph patterns: Multiple matches

name	mbox
"Johnny Lee Outlaw"	<mailto:jlow@example.com></mailto:jlow@example.com>
"Peter Goodguy"	<mailto:peter@example.org></mailto:peter@example.org>

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox }

Basic graph patterns: Matching RDF literals

```
@prefix dt:
                  <http://example.org/datatype#> .
                  <http://example.org/ns#> .
@prefix ns:
@prefix :
                  <http://example.org/ns#> .
@prefix xsd:
                  <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#>...
                   "cat"@en .
      ns:p
: X
                   "42"^^xsd:integer .
: V
      ns:p
                   "abc"^^dt:specialDatatype .
: Z
      ns:p
SELECT ?v WHERE { ?v ?p "cat" }
                                                            V
SELECT ?v WHERE { ?v ?p "cat"@en }
                                                            <a href="http://example.org/ns#x">http://example.org/ns#x>
SELECT ?v WHERE { ?v ?p 42 }
                                                            <a href="http://example.org/ns#y">http://example.org/ns#y>
SELECT ?v WHERE { ?v ?p "abc"^^<http://example.org/datatype#specialDatatype> }
                                                            <a href="http://example.org/ns#z">http://example.org/ns#z>
```

Basic graph patterns: Blank node labels in query results

```
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:b foaf:name "Bob" .
```

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?x ?name
WHERE { ?x foaf:name ?name }
```

X	name
_:c	"Alice"
_:d	"Bob"

X	name	
_:r	"Alice"	
_:s	"Bob"	

Group graph pattern

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { { ?x foaf:name ?name . }
          { ?x foaf:mbox ?mbox . }
SELECT ?x
WHERE {}
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { { ?x foaf:name ?name . }
          { ?x foaf:mbox ?mbox . FILTER regex(?name, "Smith")}
```

Optional graph patterns

```
@prefix foaf:
                    <http://xmlns.com/foaf/0.1/> .
                    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdf:
:a rdf:type
                     foaf:Person .
:a foaf:name
                     "Alice" .
:a foaf:mbox
                     <mailto:alice@example.com> .
    foaf:mbox
                     <mailto:alice@work.example> .
:b rdf:type
                     foaf:Person .
    foaf:name
                     "Bob" .
```

name	mbox
"Alice"	<mailto:alice@example.com></mailto:alice@example.com>
"Alice"	<mailto:alice@work.example></mailto:alice@work.example>
"Bob"	

Multiple optional graph patterns

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .
          OPTIONAL { ?x foaf:mbox ?mbox } .
          OPTIONAL { ?x foaf:homepage ?hpage }
}
```

name	mbox	hpage
"Alice"		http://work.example.org/alice/>
"Bob"	<mailto:bob@work.example></mailto:bob@work.example>	

Alternative graph patterns

```
@prefix dc10: <http://purl.org/dc/elements/1.0/> .
  @prefix dc11: <http://purl.org/dc/elements/1.1/> .
      dc10:title
                       "SPARQL Query Language Tutorial" .
   :a dc10:creator
                       "Alice" .
                       "SPAROL Protocol Tutorial" .
   :b dc11:title
   :b dc11:creator
                       "Bob" .
      dc10:title
                       "SPAROL" .
      dc11:title
                       "SPARQL (updated)" .
PREFIX dc10: <a href="http://purl.org/dc/elements/1.0/">http://purl.org/dc/elements/1.0/>
                                                                    title
PREFIX dc11: <a href="http://purl.org/dc/elements/1.1/">http://purl.org/dc/elements/1.1/>
                                                                    "SPARQL Protocol Tutorial"
SELECT ?title
                                                                    "SPARQL"
      WHERE
         { ?book dc11:title ?title } }
                                                                    "SPARQL (updated)"
                                                                    "SPARQL Query Language Tutorial"
SELECT ?x ?y
      WHERE
                                                                              "SPARQL (updated)"
         { ?book dc11:title ?y } }
                                                                              "SPARQL Protocol Tutorial"
                                                "SPARQL"
                                                "SPARQL Query Language Tutorial"
SELECT ?title ?author
WHERE
                                                                 author
                                                                         title
  "SPARQL Protocol Tutorial"
                                                                 "Alice"
    UNION
    { ?book dc11:title ?title . ?book dc11:creator ?author }}
                                                                 "Bob"
                                                                         "SPARQL Query Language Tutorial"
```

Patterns on named graphs

```
# Named graph: http://example.org/foaf/aliceFoaf
@prefix foaf:<http://.../foaf/0.1/> .
@prefix rdf:<http://.../1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:<http://.../2000/01/rdf-schema#> .
                   "Alice" .
    foaf:name
 : a
    foaf:mbox
                   <mailto:alice@work.example> .
     foaf:knows
                   :b .
    foaf:name
                   "Bob" .
   foaf:mbox
                   <mailto:bob@work.example> .
    foaf:nick
                  "Bobby" .
     rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
<http://example.org/foaf/bobFoaf>
                   foaf:PersonalProfileDocument .
     rdf:tvpe
```


Patterns on named graphs II

```
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/</a>
SELECT ?src ?bobNick
FROM NAMED <a href="http://example.org/foaf/aliceFoaf">http://example.org/foaf/aliceFoaf</a>
FROM NAMED <a href="http://example.org/foaf/bobFoaf">http://example.org/foaf/bobFoaf</a>
WHERE
     GRAPH ?src
      { ?x foaf:mbox <mailto:bob@work.example> .
         ?x foaf:nick ?bobNick
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX data: <http://example.org/foaf/>
SELECT ?nick
FROM NAMED <a href="http://example.org/foaf/aliceFoaf">http://example.org/foaf/aliceFoaf</a>
FROM NAMED <a href="http://example.org/foaf/bobFoaf">http://example.org/foaf/bobFoaf</a>
WHERE
       GRAPH data:bobFoaf {
             ?x foaf:mbox <mailto:bob@work.example> .
             ?x foaf:nick ?nick }
```

src	bobNick
http://example.org/foaf/aliceFoaf	"Bobby"
http://example.org/foaf/bobFoaf	"Robert"

nick
"Robert"

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

Restricting values

```
<http://purl.org/dc/elements/1.1/> .
@prefix dc:
@prefix :
              <http://example.org/book/> .
@prefix ns:
              <http://example.org/ns#> .
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42.
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23.
PREFIX dc: <a href="http://purl.org/dc/elements/1.1/">http://purl.org/dc/elements/1.1/>
                                                                title
SELECT ?title
WHERE
        { ?x dc:title ?title
                                                                "SPARQL Tutorial"
          FILTER regex(?title, "^SPARQL")
PREFIX dc: <http://purl.org/dc/elements/1.1/>
                                                                title
SELECT ?title
        { ?x dc:title ?title
WHERE
                                                                "The Semantic Web"
          FILTER regex(?title, "web", "i" )
PREFIX dc: <http://purl.org/dc/elements/1.1/>
                                                                title
PREFIX ns: <http://example.org/ns#>
                                                                                        price
SELECT ?title ?price
                                                                "The Semantic Web"
                                                                                       23
        { ?x ns:price ?price .
WHERE
          FILTER (?price < 30.5)
          ?x dc:title ?title . }
```

Value tests

- Based on XQuery 1.0 and XPath 2.0 Function and Operators
- XSD boolean, string, integer, decimal, float, double, dateTime
- Notation <, >, =, <=, >= and != for value comparison
 Apply to any type
- BOUND, isURI, isBLANK, isLITERAL
- REGEX, LANG, DATATYPE, STR (lexical form)
- Function call for casting and extensions functions

Solution sequences and modifiers

- Order modifier: put the solutions in order
- Projection modifier: choose certain variables
- Distinct modifier: ensure solutions in the sequence are unique
- Reduced modifier: permit elimination of some non-unique solutions
- Offset modifier: control where the solutions start from in the overall sequence of solutions
- Limit modifier: restrict the number of solutions

```
SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY ?name DESC(?emp)
```

```
WHERE
{ ?x foaf:name ?name }
```

SELECT ?name

```
SELECT DISTINCT ?name
WHERE { ?x foaf:name ?name }
```

```
SELECT REDUCED ?name
WHERE { ?x foaf:name ?name }
```

```
SELECT ?name WHERE { ?x foaf:name ?name }
ORDER BY ?name
LIMIT 5
OFFSET 10
```

```
SELECT ?name
WHERE { ?x foaf:name ?name }
LIMIT 20
```

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

SPARQL query forms

SELECT

 Returns all, or a subset of, the variables bound in a query pattern match.

CONSTRUCT

 Returns an RDF graph constructed by substituting variables in a set of triple templates.

ASK

Returns a boolean indicating whether a query pattern matches or not.

DESCRIBE

Returns an RDF graph that describes the resources found.

SPARQL query forms: SELECT

```
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a    foaf:name     "Alice" .
_:a    foaf:knows    _:b .
_:a    foaf:knows    _:c .

_:b    foaf:name     "Bob" .

_:c    foaf:name     "Clare" .
_:c    foaf:nick     "CT" .
```

nameX	nameY	nickY
"Alice"	"Bob"	
"Alice"	"Clare"	"CT"

SPARQL query forms: CONSTRUCT

Query result:

```
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
<http://example.org/person#Alice> vcard:FN "Alice" .
```


SPARQL query forms: ASK

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" }
```

Query result:

yes

SPARQL query forms: DESCRIBE

```
PREFIX ent: <http://org.example.com/employees#>
DESCRIBE ?x WHERE { ?x ent:employeeId "1234" }
```

Query result:

```
@prefix foaf:
                <http://xmlns.com/foaf/0.1/> .
@prefix vcard:
                 <a href="http://www.w3.org/2001/vcard-rdf/3.0">http://www.w3.org/2001/vcard-rdf/3.0</a>.
                 <http://org.example.com/employees#> .
@prefix exOrg:
@prefix rdf:
                 <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl:
                 <http://www.w3.org/2002/07/owl#>
        exOrg:employeeId
                               "1234";
:a
        foaf:mbox sha1sum
                               "ABCD1234" ;
        vcard:N
          [ vcard:Family
                                 "Smith";
            vcard:Given
                                 "John" 1 .
foaf:mbox shalsum rdf:type owl:InverseFunctionalProperty .
```

Index

- RDF query languages
- SPARQL
- Turtle RDF syntax
- Graph patterns
- Restricting values and solutions
- SPARQL query forms
- Hands-on

Hands-on

 Perform a set of queries over the sample ontology

- Browse to:
 - http://my.computer.ip:8080/openrdf-workbench
- Select repository GP-native-rdfs
- Select the Query option from the left menu

Sample ontology

Queries on the model

1) Get all the classes

```
PREFIX rdfs: <a href="mailto:rdf-schema">rdfs: <a href="mailto:rdf-schema">rdfs: <a href="mailto:rdf-schema">rdfs: <a href="mailto:rdf-schema">rdf-schema</a> <a href="mailto:rdf-schema">rdf-schema<
```

2) Get the subclasses of the class Establecimiento

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT ?x WHERE { ?x rdfs:subClassOf pr:Establecimiento. }
```

3) Get the instances of the class Ciudad

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT ?x WHERE { ?x a pr:Ciudad. }
```


Queries on the instances

4) Get the number of inhabitants of Santiago de Compostela

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT ?x WHERE { pr:Santiago_de_Compostela pr:NumeroHabitantes ?x. }
```

5) Get the number of inhabitants of Santiago de Compostela and of Arzua

6) Get different places with the inhabitants number, ordering the results by the name of the place (ascending)

Queries on the instances II

7) Get all the instances of *Localidad* with their inhabitant number (if it exists)

8) Get all the places with more than 200.000 inhabitants

9) Get postal data of Pazo de Breogan (calle, número, localidad, provincia)

Queries with inference

10) Get the subclasses of class *Lugar*

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT ?x WHERE { ?x rdfs:subClassOf pr:Lugar. }
```

11) Get the instances of class Localidad

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT ?x WHERE { ?x a pr:Localidad. }
```

Special query (SELECT *)

12) Get the values of all the variables in the query

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
SELECT * WHERE { ?x pr:NumeroHabitantes ?y. }
```


Different query forms

13) Describe the resource with rdfs:label "Madrid"

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
DESCRIBE ?x WHERE { ?x rdfs:label "Madrid". }
```

14) Construct the RDF(S) graph that directly relates all the touristic places with their respective provinces, using a new property called "estaEn".

15) Ask if there is some instance of *Pueblo*

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
ASK WHERE {?a a pr:Pueblo}
```

16) Ask if there is some instance of *Ermita*

```
PREFIX pr: <http://GP-onto.fi.upm.es/Practica2#>
ASK WHERE {?a a pr:Ermita}
```


References

- SPARQL specification
 - http://www.w3.org/TR/rdf-sparql-query/
- SPARQL validator
 - http://www.sparql.org/validator.html
- SPARQL implementations
 - http://esw.w3.org/topic/SparqIImplementations
- SPARQL tutorials
 - http://jena.sourceforge.net/ARQ/Tutorial/
 - http://www.w3.org/2004/Talks/17Dec-sparql/intro/all.html
 - http://www.cs.man.ac.uk/~bparsia/2006/row-tutorial/

AMPER Course

Introduction to SPARQL

Raúl García-Castro, Óscar Corcho, Óscar Muñoz-García

{rgarcia, ocorcho, omunoz}@fi.upm.es http://www.oeg-upm.net/

Ontology Engineering Group
Laboratorio de Inteligencia Artificial
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

