Aplicaţie Flux maxim → cuplaj maxim în grafuri bipartite

Cuplaje

- Problema seratei (perechilor) sec XIX
 - n băieţi, n fete
 - Un băiat cunoaște exact k fete
 - O fată cunoaște exact k băieţi

Problema seratei (perechilor)

- Problema seratei (perechilor) sec XIX
 - Se poate organiza o repriză de dans astfel încât fiecare participant să danseze cu o cunoştinţă a sa?

- Problema seratei (perechilor) sec XIX
 - Se poate organiza o repriză de dans astfel încât fiecare participant să danseze cu o cunoştinţă a sa?
 - Se pot organiza k reprize de dans în care fiecare participant să danseze câte un dans cu fiecare cunoştinţă a sa? – vom reveni la cursuri dedicate cuplajelor

Problema seratei (perechilor) – sec XIX

O repriză de dans

- Organizare de competiții
- Probleme de repartiţie
 - lucrători locuri de muncă
 - profesori examene /conferințe
 - Problema orarului

Alte aplicaţii

Alte aplicaţii

Fie G = (V, E) un graf şi $M \subseteq E$.

M s.n cuplaj dacă orice două muchii din M sunt neadiacente

Fie G = (V, E) un graf şi $M \subseteq E$.

- M s.n cuplaj dacă orice două muchii din M sunt neadiacente
- V(M) = mulţimea vârfurilor M-saturate
- V(G) V(M) = mulţimea vârfurilor M-nesaturate

Un cuplaj M* s.n cuplaj de cardinal maxim (cuplaj maxim):

 $| M^* | \ge |M|, \forall M \subseteq E \text{ cuplaj}$

cuplaj de cardinal maxim

cuplaj de cardinal maxim?

 Algoritm de determinare a unui cuplaj maxim într-un graf bipartit

Algoritm de determinare a unui cuplaj maxim într-un graf bipartit

 Reducem problema determinării unui cuplaj maxim într-un cuplaj bipartit G la determinarea unui flux maxim într-o rețea de transport asociată lui G

- Algoritm de determinare a unui cuplaj maxim într-un graf bipartit
 - Construim reţeaua de transport N asociată lui G:

Adăugăm două noduri noi s și t

Adăugăm arce (s,x_i) , pentru $x_i \in X$ şi (y_j, t) , $y_j \in Y$

Transformăm muchiile $x_i y_j$ în arce (de la X la Y)

Asociem fiecărui arc capacitatea 1

Proprietatea 1

Fie G=(X∪Y, E) un graf bipartit şi M un cuplaj în G. Atunci există un flux f în rețeaua de transport asociată N cu

$$val(f) = |M|$$

Celelalte arce au flux 0 și capacitate 1

Proprietatea 2

Fie $G=(X \cup Y, E)$ un graf bipartit şi f un flux în reţeaua de transport N asociată. Atunci există M un cuplaj în G cu

$$val(f) = |M|$$

Flux în reţea ⇒ cuplaj în graf

Flux în reţea ⇒ cuplaj în graf

▶ Concluzie: Flux în reţea ⇔ cuplaj în graf

Drum cu o unitate de flux

Consecință

 f^* flux maxim în $N \Rightarrow cuplajul$ corespunzător M^* este cuplaj maxim în G

A determina un **cuplaj maxim** într-un graf bipartit ⇔ a determina un **flux maxim** în rețeaua asociată

Algoritm de determinare a unui cuplaj maxim în $G=(X \cup Y, E)$:

Algoritm de determinare a unui cuplaj maxim în $G=(X \cup Y, E)$:

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N

Algoritm de determinare a unui cuplaj maxim în $G=(X \cup Y, E)$:

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N
- 3. Considerăm $M = \{xy | f^*(xy)=1, x \in X, y \in Y, xy \in N\}$

(pentru fiecare arc cu flux nenul xy din N care nu este incident în s sau t, muchia xy corespunzătoare din G se adaugă la M)

4. return M

Algoritm de determinare a unui cuplaj maxim în $G=(X \cup Y, E)$:

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N
- 3. Considerăm $M = \{xy | f^*(xy)=1, x \in X, y \in Y, xy \in N\}$

(pentru fiecare arc cu flux nenul xy din N care nu este incident în s sau t, muchia xy corespunzătoare din G se adaugă la M)

4. return M

Complexitate?

Algoritm de determinare a unui cuplaj maxim în $G=(X \cup Y, E)$:

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N
- 3. Considerăm $M = \{xy | f^*(xy)=1, x \in X, y \in Y, xy \in N\}$

(pentru fiecare arc cu flux nenul xy din N care nu este incident în s sau t, muchia xy corespunzătoare din G se adaugă la M)

4. return M

Complexitate: $L=c^+(s) \le n \Rightarrow O(mn)$

Aplicație Construcția unui graf orientat din secvențele de grade

Se dau secvenţele

•
$$s_0^+ = \{d_{1, \dots, d_n}^+\}$$

•
$$s_0^- = \{d_{1, \dots, d_n}^-\}$$

Să se construiască, **dacă se poate**, un graf orientat G cu $s^+(G) = s_0^+$ și $s^-(G) = s_0^-$

Se dau secvenţele

- $\cdot \quad s_0^+ = \{d_1^+, \dots, d_n^+\}$
- $s_0^- = \{d_1^-, \dots, d_n^-\}$

Să se construiască, dacă se poate, un graf orientat G cu $s^+(G) = s_0^+$ şi $s^-(G) = s_0^-$

Exemplu

- $s_0^+ = \{1, 0, 2\}$
- $s_0^- = \{1, 1, 1\}$

Exemplu

- $s_0^+ = \{1, 0, 2\}$
- $s_0^- = \{1, 1, 1\}$
- Construim o reţea asociată celor două secvenţe a.î. din fluxul maxim în reţea să putem deduce dacă G se poate construi + arcele grafului G (în caz afirmativ)

Vârfurile 1, 2,..., n se pun în ambele clase ale bipartiției (câte o copie)

 $arce \ x_i y_j \ cu \ i \neq j$ (fluxul pe arcul $x_i y_j$ va fi nenul $\Leftrightarrow ij \in E(G)$)

Proprietate

Există graf cu secvențele date ⇔ în graful asociat fluxul de valoare maximă are

$$val(f) = d_1^+ + ... + d_n^+ = d_1^- + ... + d_n^-$$

(saturează toate arcele care ies din s + toate arcele care intră în t)

tăieturile ($\{s\}$, $V-\{s\}$), ($V-\{t\}$, $\{t\}$) sunt minime

$G \Rightarrow flux în reţea$

$$s_0^+ = \{1, 0, 2\}$$

 $s_0^- = \{1, 1, 1\}$

 $G \Rightarrow flux în rețea$

 $G \Rightarrow flux în reţea$

 $G \Rightarrow flux în rețea$

Restul arcelor au fluxul 0

 $G \Rightarrow flux în rețea$

Reciproc

flux în rețea care saturează arcele din s și $t \Rightarrow G$

flux în rețea care saturează arcele din s și $t \Rightarrow G$

flux în rețea care saturează arcele din s și $t \Rightarrow G$

Algoritm de determinare a unui graf orientat G cu

$$s^+(G) = s_0^+ \text{ si } s^-(G) = s_0^-$$

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N

Algoritm de determinare a unui graf orientat G cu

$$s^+(G) = s_0^+ \text{ şi } s^-(G) = s_0^-$$

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N
- 3. Dacă val(f*)< $d_1^+ + ... + d_n^+$ atunci

Nu există G. STOP

Algoritm de determinare a unui graf orientat G cu

$$s^+(G) = s_0^+ \text{ şi } s^-(G) = s_0^-$$

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm f* flux maxim în N
- 3. Dacă val(f*)< $d_1^+ + ... + d_n^+$ atunci Nu există G. STOP
- 4. $V(G) = \{1, ..., n\}$ $E(G) = \{ij | x_i y_j \in N \text{ cu } f^*(x_i y_j) = 1\}$

Complexitate: L= c⁺(s) = $d_1^+ + ... + d_n^+ = m \Rightarrow O(m^2)$

Aplicaţii Alte probleme de asociere

- Se dau 2 mulţimi de obiecte, spre exemplu produse şi clienţi (joburi/maşini, pagini web/servere, echipe turneu etc).
 - Pentru fiecare produs x se cunoaște c(x) = numărul de unități disponibile din produsul x

- Se dau 2 mulţimi de obiecte, spre exemplu produse şi clienţi (joburi/maşini, pagini web/servere, echipe turneu etc).
 - Pentru fiecare produs x se cunoaște c(x) = numărul de unități disponibile din produsul x
 - Pentru fiecare client y se cunoaște c(y) = numărul maxim de unități de produse pe care le poate primi (în total, din toate produsele)

- Se dau 2 mulţimi de obiecte, spre exemplu produse şi clienţi (joburi/maşini, pagini web/servere, echipe turneu etc).
 - Pentru fiecare produs x se cunoaște c(x) = numărul de unități disponibile din produsul x
 - Pentru fiecare client y se cunoaște c(y) = numărul maxim de unități de produse pe care le poate primi (în total, din toate produsele)
 - Pentru fiecare pereche produs-client (x,y) se cunoaște c(x,y) = numărul maxim de unități din produsul x pe care le poate primi clientul y

- Se dau 2 mulţimi de obiecte, spre exemplu produse şi clienţi (joburi/masini, pagini web/servere, echipe turneu etc).
 - Pentru fiecare produs x se cunoaște c(x) = numărul de unități disponibile din produsul x
 - Pentru fiecare client y se cunoaște c(y) = numărul maxim de unități de produse pe care le poate primi (în total, din toate produsele)
 - Pentru fiecare pereche produs-client (x,y) se cunoaște c(x,y) = numărul maxim de unități din produsul x pe care le poate primi clientul y

Să se determine o modalitate de a distribui cât mai multe produse (unități de produse) clienților cu respectarea constrângerilor

Observație - Problema determinării unui cuplaj de cardinal maxim într-un graf bipartit G=(X∪Y,E) este un caz particular al acestei probleme, pentru

$$-c(x) = c(y) = 1, \forall x \in X, y \in Y$$

 $-c(x,y) = 1, dacă xy \in E$
 $-c(x,y) = 0, dacă xy \notin E$

 http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17maxflowapps.pdf

Aplicație

Drumuri arc-disjuncte între două vârfuri.

Conectivitatea unui graf

s-t drumuri arc-disjuncte

- ▶ G= (V, E) orientat, conex (graful neorientat suport)
- s, t două vârfuri

Să se determine numărul maxim k de s-t drumuri elementare arc-disjuncte (+ k astfel de drumuri)

• Două drumuri P_1 , P_2 s.n. **arc-disjuncte** dacă $E(P_1) \cap E(P_2) = \emptyset$

s-t drumuri arc-disjuncte

- ▶ G= (V, E) orientat, conex (graful neorientat suport)
- s, t două vârfuri

Să se determine numărul maxim de s-t drumuri arc-disjuncte + k astfel de drumuri)

- Aplicaţii
- Fiabilitatea rețelelor, conectivitate
- Probleme de strategie
- Măsuri de centralitate (a unui nod) în rețele sociale

- ▶ G= (V, E) orientat, conex (graful neorientat suport)
- s, t două vârfuri

Să se determine numărul maxim k de s-t drumuri elementare arc-disjuncte (+ k astfel de drumuri)

• Două drumuri P_1 , P_2 s.n. **arc-disjuncte** dacă $E(P_1) \cap E(P_2) = \emptyset$

Temă (seminar)

Jon Kleinberg, Éva Tardos, **Algorithm Design**, Addison-Wesley 2005

Intuitiv:

- Asociem fiecărui arc capacitatea 1
- Fluxul maxim: $f(e) \in \{0, 1\}$

Intuitiv:

- Asociem fiecărui arc capacitatea 1
- Fluxul maxim: f(e) ∈ {0, 1}
- Un drum de la s la t= traseul parcurs de o unitate de flux de la s la t
- Numărul de s-t drumuri arc-disjuncte= valoarea fluxului maxim

<u>Teorema lui Menger</u>

Fie G graf orientat, s, t două vârfuri distincte în G.

Numărul minim de arce care trebuie eliminate pentru ca s și t să nu mai fie conectate printr-un drum (să fie **separate**) =

numărul maxim de drumuri arc-disjuncte de la s la t

Teorema lui Menger

Fie G graf orientat, s, t două vârfuri distincte în G.

Numărul minim de arce care trebuie eliminate pentru ca s și t să nu mai fie conectate printr-un drum (să fie **separate**) =

numărul maxim de drumuri arc-disjuncte de la s la t

O astfel de mulțime de arce se poate determina cu algoritmul Ford Fulkerson?

Teorema lui Menger

Fie G graf orientat, s, t două vârfuri distincte în G.

Numărul minim de arce care trebuie eliminate pentru ca s și t să nu mai fie conectate printr-un drum (să fie **separate**) =

numărul maxim de drumuri arc-disjuncte de la s la t

O astfel de mulţime de arce se poate determina cu algoritmul Ford Fulkerson

Sunt arcele directe ale tăieturii minime

Cum determinăm tăietura minimă?

Mulţimea vârfurilor accesibile din s prin lanţuri f-nesaturate

Variante

- Aceeaşi problemă pentru
 - G = (V, E) neorientat conex, |E| > 2
- Aceeaşi problemă pentru vârfuri (s-t drumuri care nu au vârfuri interne în comun)

Muchie-conectivitatea lui G k'(G) = cardinalul minim al unei mulţimi de muchii $F \subseteq E$ cu proprietatea că

G - F nu mai este conex

▶ Dacă k' (G) \geq t, G se numeşte t-muchie conex

Muchie-conectivitatea lui G k'(G) = cardinalul minim al unei mulţimi de muchii $F \subseteq E$ cu proprietatea că

G – F nu mai este conex

- ▶ Dacă k' (G) \geq t, G se numeşte t-muchie conex
 - Amintim (laborator+seminar):
 - există muchie critică ⇒ G este 1-conex
 - Nu există muchie critică ⇒ G este 2-conex
- Cu ajutorul algoritmului de flux maxim putem determina (muchie)-conectivitatea unui graf