Data Model Question

1.	On physical level of the	relational model relations are stored in a	file structure
- .	On priyoledi ievel or tile	relational inloaci relations are stored in a	THE SELECTION C

3.	database	= collection o	f relations
J.	database		i i Ciations

Name	Address
Joe's	Maple st
Sue's	River rd.

	Bar	Address	
	Joe's	Maple st.	
,	Sue's	River rd.	

4. __RENAME____operator could have been used on relation 1 to produce relation 2

	Bar	Beer	Price
	Joe's	Bud	2.50
1.	Joe's	Miller	2.75
	Sue's	Bud	2.50
	Sue's	Miller	3.00

	Bar	Beer	Price
2.	Joe's	Bud	2.50
	Joe's	Miller	2.75

- 5. ___selection___ operator could have been used on the 1.relation to produce the 2.relation
- 6. Monotone non-decreasing expression : applied on more __tuples____, the result contains more _tuples___
- 7. __difference_____is the only core expression which is not monotone.
- 8. In expression trees leaves are <u>operands</u>
- 9. On logical level of the relational model relations are considered as ___tables___
- 10. On logical level of the relational model rows represent the __records_____
- 11. Data model is
 - 1 Mathematical representation of data
 - 2 Operation on data
 - 3 __Constraints__
- 12. _Selection___ is the core relational algebra operator to pick certain rows
- 13. _intersection___ of R1 and R2 relations results in the common tuples from R1 and R2in core relational algebra
- 14. __Union__ of R1 and R2 relations results in all tuples from R1 and R2in core relational algebra
- 15. Projection is the core relational algebra operator to pick certain columns

16. In expression trees interior nodes are _operators__ ,applied on their child or children

Bar	Beer	Price				
Joe's	Bud	2.50	1 ,		-	-
Joe's	Miller	2.75	1 1	Bar	Beer	Price
Sue's	Bud	2.50	1 1	Joe's	Bud	2.50
			=>	Joe's	Miller	2.75
1000000	24120			Sue's	Bud	2.50
	iells2:		. 1	Jack's	Bud	2.75
eration 3			1		7.77	700
Bar	Beer	Price				
The second second	Beer Bud	Price 2.50	,			

17. The relation on the right side is the __union_ of sells2 and sells1

Relation S	ells1:			
Bar	Beer	Price	7	
Joe's	Bud	2.50	1	
Joe's	Miller	2.75		
Sue's	Bud	2.50		Ba
			=>	Jac
Relation S	ells2:			
Bar	Beer	Price		
Joe's	Bud	2.50		

18. The relation on the right side is the <u>intersection</u> of sells2 and sells1

2.75

- 19. __Natural Join__ operator in core relational algebra connects two relation by
 - a) Equating attributes on the same name

Bud

b) Projecting out one copy of each pair of equated attributes.

Jack's

- 20. _delta___ operator could have been used on relation 1 to produce relation 2
- 21. An element appears in the _union____ of two bags the minimum of the number of times it appears in either

Beer

Bud

Price

2.75

- 22. __delta__ is the extended relational algebra operator to eliminate duplicates from bags.
- 23. _outerjoin___ is the extended relational algebra operator that preserves "dangling tuples" when joining
- 24. gamma is the extended relational algebra operator for grouping and aggregation

R =	Α	В	S =	В	С
	1 4	2 5		2	3 7
Α					

Α	В	С
1	2	3
4	5	NULL
NULL	6	7

25. The __Outerjoin___ of R and S relation was calculated above

21			Α	R1.B	R2.B	С
Α	В	1 -	1	2	5	6
1	2	1 L	•	_		
3	4		1	2	7	8
2		=>	1	2	9	10
В	С	1 h	3	4	5	6
5	6	1				
7	8	1	3	4	7	8
9	10	1	3	4	9	10

- 26. The relation on the right sides is the __product ____ of R1 and R2
- 27. __relationship ___ connects two or more entity sets in the Entity Relationship Model
- 28. __ Entity set___ is a collection of similar entities in the Entity Relationship Model
- 29. ___Deletion__ anomaly in relational schema design is when valid fact is lost when a tuple is removed
- 30. __ Attributes___ are represented by ovals in the Entity Relationship Diagrams
- 31. __attribute___ is a property of (the entities of) an entity set in the Entity Relationship Model
- 32. relationships are represented by diamonds in the Entity Relationship Diagrams
- 33. An attribute is __ prime ___, if it is a member of any key.
- 34. In a ____ one-one ___ relationship, each entity of either set is related to at most one entity of the other set.
- 35. In a __ many-many ____ relationship, an entity of either set can be connected to many entities of the other set
- 36. X->A violates 3NF if and only if A is not a __ superkey____ and also A is not a __ prime ____
- 37. When we sat that X->Y functional dependency holds in R, then X and Y represent _ set of attributes____
- 38. X is a superkey for relation R if X functionally determines all in R
- 39. X->Y is a __ nontrivial ____ functional dependency. If Y is not contained in X.
- 40. In _____ Balanced trees ____. Indexed columns sorted and stored separately. Pointer structure enables logarithmic search.
- 41. In ORALCE DBMS. __ Best response ___ mode retrieves first row asap. Starts returning while computing(id possible)
- 42. In ORACLE DBMS. The __ SQL Execution ___ executes the query plan.
- 43. In ORACLE DBMS data storage, data-blocks contain_ rows _____, each identified by its sequence in the block.
- 44. In ORACLE DBMS data storage, data files are logically grouped in __ tablespaces _
- 45. In ORACLE DBMS data storage, data files consists of __ data-blocks ___ , each identified by its offset in the file
- 46. In ORACLE DBMS, the _rule-based____ optimizer uses hardcoded heuristic rules to determine the query plan
- 47. With bitmap index we can create bit-vector for each key value of a dimension table,

- telling which tuples of the __ fact __ table have that value.
- 48. _____ operations are short, simple, frequent queries and/or modification, each involving a small number of tuples.
- 49. In ORACLE DBMS data storage, location and size of data files determined by___ DBA _____
- 50. __ B-trees ___ consists of node blocks containing pointers to other node or blocks. Leaf blocks contain actual indexed values., rowids.
- 51. Dependent attribute is a value determined by the _ dimension attributes ____ of the tuple
- 52. __ Materialized views ___ store the answers to several useful queries in the warehouse itself.
- 53. __ OLAP ___ queries are few, but complex. They do not depend on having an absolutely upto-date database.

54. Which write concern can be seen above? __ Replica Set Acknowledged ____

55. Which write concern can be seen above? __acknowledged___

- 56. Which write concern can be seen above? __ Unacknowledged ___
- 57. Replica set in MongoDB consists of a single __primary___ and multiple __secondaries____
- 58. In the MongoDB replica set, writing requests are handled on __primary____
- 59. In MongoDB, _ unacknowledged _____ write concern is when the client does not get feedback of writing
- 60. __Hash__ based sharding distributes data giving the key of data as a parameter to a ___hash function_
- 61. __acknowledged___ write concern is when Mongod sends receipt about the success of writing
- 62. In MonogDB ,__ Replica Set Acknowledged ___ write concern is when replicas have to confirm the writing before it is noted to the client.

63. Which write concern can be seen above? ___journaled___

	name: Graham Greene WROTE title: Our Man in Havana name: Alan
64.	What are Person Book, Author in the property graph above? <mark>edges</mark>
65.	In a property graph, Properties correspond to attributes and metadata.
66.	In a property graph, <mark>labels</mark> can be used to group entities
67.	In property graphs, node correspond to Entity
68.	In the Publish/Subscribe architecture, Publisher can send data to topics
	clients can subscribe to topics. Clients get the new data, when it arrives to the topic
	they are interested in.
69.	In Redis every operation can be written to an AOF file. When restarting, every
	operation is executed again
70.	In Redis, the Snapshooting mode creates binary dumps in every x seconds or after y
	operations.
71.	In the HBase architecture, ZooKeeper is used for monitoring.
72.	In HBase, once data is written to the WAL, it is copied to the MemStore, which is the
	write cache that stores new data, that has not yet been written to disk.
73.	Part of XML document validation ofr a given DTD is checking if the document fits on the _
	regular expressions
74.	When client issues a _put request in HBase, it will write the data to the write ahead log
	(WAL), a file used to store new data that is yet to be put on permanent storage.
	<message>message</message>

75. Is the document above well formatted? True False

Line

Line
Line

76. Is the document above well formatted? True False

This is a paragraph

- 77. Is the document above well formatted? True Fals
- 78. Task ontology describes the vocabulary related to a generic task or activity by specializing the __top-level___ ontology.

```
_http://www.w3.org/TR/rdf-syntax-grammar> <a href="http://purl.org/dc/elements/1.1/title">http://purl.org/dc/elements/1.1/title</a>
"RDF/XML Syntax Specification (Revised)" .

<a href="http://www.w3.org/TR/rdf-syntax-grammar">http://example.org/stuff/1.0/editor></a> bnode .

_bnode <a href="http://example.org/stuff/1.0/fullname">http://example.org/stuff/1.0/fullname</a> "Dave Beckett" .

_bnode <a href="http://example.org/stuff/1.0/homePage">http://purl.org/net/dajobe/>.</a>
```

79. Which RDF format can be seen above? ____ N-Triples ____

```
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
  <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">
        <dc:title>Tony Benn</dc:title>
        <dc:publisher>Wikipedia</dc:publisher>
        </rdf:Description>
        </rdf:RDF></rdf:RDF>
```

- 80. Which RDF format can be seen above? ___ XML ____
- 81. RDF triples can be given in the form of <subject, ___ predicate _____, object>
- 82. __ Consistence window ____ specifies how much time have to pass for the system to become consistent again

83.

84. __ Consistence window ___specifies how much time have to pass for the system to become consistent again

- 85. What kind of architecture can be seen above? MDBS ___
- 86. In the CAP theorem, __Partition Tolerance___ ensures that the system will work well despite physical network partitions.

- 87. In MDBMS, the shared data are described in the __ LES ___ in each DBMSs
- 88. In DDBS, __ GCS ____ contains the logical structures of all data types.