PRÁTICA 4 – CIRCUITOS REGULADORES CC

Revisão

SEL0610 - LABORATÓRIO DE CIRCUITOS ELETRÔNICOS

Engenharia de Computação – 6° Período Letivo

Conteúdo

- Fonte de Tensão
- Regulador com Zener
- Circuito Integrado Regulador de Tensão

Fonte de Tensão

Diagrama em blocos de uma fonte de tensão

Retificação de Meia Onda

Regulador com Zener

Polarização do diodo Zener

$$V = V_L = \frac{R_L V_i}{R + R_L}$$

Deve-se garantir que o Zener opere no estado "on"

$$V_L = V_Z$$

$$I_Z = I_R - I_L$$

$$P_Z = V_Z I_Z$$

Retificação de Meia Onda

Regulador com Zener (Limites de Operação)

Considerando V_i Fixo e R_L Variável

$$V_L = V_Z = \frac{R_L V_i}{R_L + R}$$

Valor Mínimo da Resistência da Carga

$$R_{L_{\min}} = \frac{RV_Z}{V_i - V_Z}$$

$$I_{L_{\rm max}} = \frac{V_L}{R_L} = \frac{V_Z}{R_{L_{\rm min}}}$$

$$V_R = V_i - V_Z$$

Valor Máximo da Resistência da Carga

$$I_R = \frac{V_R}{R}$$

$$I_Z = I_R - I_L$$

$$I_{L_{\min}} = I_R - I_{ZM}$$

$$R_{L_{\rm max}} = \frac{V_Z}{I_{L_{\rm min}}}$$

Retificação de Meia Onda

Regulador com Zener (Limites de Operação)

Considerando V_i Variável e R_I Fixo

$$V_L = V_Z = \frac{R_L V_i}{R_L + R}$$

Valor Mínimo de V_i (limitado pela V₇)

$$V_{i_{\min}} = \frac{(R_L + R)V_Z}{R_L}$$

Valor Máximo de V_i (limitado pela I_{7M})

$$I_{R_{\text{max}}} = I_{ZM} + I_L$$
 $I_L = V_Z / R_L \text{ (const.)}$

$$I_L = V_Z / R_L$$
 (const.)

$$V_{i_{\text{max}}} = V_{R_{\text{max}}} + V_{Z}$$

$$V_{i_{\text{max}}} = I_{R_{\text{max}}} R + V_Z$$

Circuito Integrado Regulador de Tensão

7805

LM7805 PINOUT DIAGRAM

Circuito Integrado Regulador de Tensão

- 3-Terminal Regulators
- Output Current up to 1.5 A
- Internal Thermal-Overload Protection

KC (TO-220) PACKAGE (TOP VIEW)

OUTPUT COMMON INPUT

KCS (TO-220) PACKAGE (TOP VIEW)

OUTPUT COMMON INPUT

- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

recommended operating conditions

			MIN	MAX	UNIT
VI	Input voltage Input voltage	A7805C	7	25	
		A7808C	10.5	25	
		A7810C	12.5	28	V
		A7812C	14.5	30	
		A7815C	17.5	30	
		A7824C	27	38	
IO	I _O Output current			1.5	Α
TJ	Operating virtual junction temperature μΑ	A7800C series	0	125	°C

Circuito Integrado Regulador de Tensão

electrical characteristics at specified virtual junction temperature, $V_I = 10 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS		ΤJ [†]	μ Α7805C			LINUT
PARAMETER				MIN	TYP	MAX	UNIT
Output voltage	$I_O = 5 \text{ mA to 1 A},$ $P_D \le 15 \text{ W}$	V _I = 7 V to 20 V,	25°C	4.8	5	5.2	٧
Output voltage			0°C to 125°C	4.75		5.25	
Input voltage regulation	V _I = 7 V to 25 V		25°C		3	100	mV
input voitage regulation	V _I = 8 V to 12 V		25°C		1	50	
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz	0°C to 125°C	62	78		dB
Output voltage regulation	I _O = 5 mA to 1.5 A		25°C		15	100	mV
Output voltage regulation	I _O = 250 mA to 750 m	ıA	25°C		5	50	
Output resistance	f = 1 kHz		0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.2	8	mA
Dies current change	V _I = 7 V to 25 V I _O = 5 mA to 1 A		0°C to 125°C			1.3	mA
Bias current change						0.5	IIIA
Short-circuit output current			25°C		750		mA
Peak output current			25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

Circuito Integrado Regulador de Tensão

Regulagem de Linha

Line regulation =
$$\left(\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}}}\right)$$
100%

$$\text{Line regulation } = \frac{(\Delta V_{\text{OUT}}/V_{\text{OUT}})100\%}{\Delta V_{\text{IN}}}$$

Circuito Integrado Regulador de Tensão

Regulagem de Carga

$$Load \ regulation \ = \ \left(\frac{V_{\rm NL} \ - \ V_{\rm FL}}{V_{\rm FL}}\right) 100\%$$

- V_{NI} Tensão de saída na condição sem carga
- V_{FI} Tensão de saída na condição de carga total

Referência

Boylestad, R. L., Nashelsky, L. Dispositivos Eletrônicos e teoria de circuitos, 8^a. Edição, Pearson.