## COSE312: Compilers

Lecture 3 — Syntax Analysis (1): Context-Free Grammar

Hakjoo Oh 2025 Spring

# Syntax Analysis (Parsing)



Determine whether or not the input program is syntactically valid. If so, transform the stream

$$(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)$$

into the syntax tree (or parse tree):



#### Contents

- **Specification**: context-free grammars.
- Algorithms: top-down and bottom-up parsing algorithms
- Tools: automatic parser generator



#### Context-Free Grammar

#### Example: Palindrome

- A string is a palindrome if it reads the same forward and backward.
- $\bullet \ L = \{w \in \{0,1\}^* \mid w = w^R\}$
- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
  - ▶ Basis:  $\epsilon$ , 0, and 1 are palindromes.
  - ▶ Induction: If w is a palindrome, so are 0w0 and 1w1.
- The recursive definition is expressed by a context-free grammar.

$$\begin{array}{ccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0 \\ P & \rightarrow & 1 \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$$

#### Context-Free Grammar

### Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

$$G = (V, T, S, P)$$

- V: a finite set of variables (nonterminals)
- T: a finite set of terminal symbols (tokens)
- ullet  $S \in V$ : the start variable
- P: a finite set of productions. A production has the form

$$x \rightarrow y$$

where  $x \in V$  and  $y \in (V \cup T)^*$ .

### **Example: Expressions**

$$G = (\{E\}, \{(,), \mathrm{id}\}, E, P)$$

where P:

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid id$$

The language includes id \* (id + id) because it is "derived" from E as follows:

$$E \Rightarrow E * E \Rightarrow \mathrm{id} * E \Rightarrow \mathrm{id} * (E) \Rightarrow \mathrm{id} * (E + E)$$
  
\Rightarrow \mathref{id} \* (\mathref{id} + E) \Rightarrow \mathref{id} \* (\mathref{id} + \mathref{id})

#### Derivation

### Definition (Derivation Relation, $\Rightarrow$ )

Let G=(V,T,S,P) be a context-free grammar. Let  $\alpha A\beta$  be a string of terminals and variables, where  $A\in V$  and  $\alpha,\beta\in (V\cup T)^*$ . Let  $A\to \gamma$  is a production in G. Then, we say  $\alpha A\beta$  derives  $\alpha\gamma\beta$ , and write

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
.

## Definition ( $\Rightarrow$ \*, Closure of $\Rightarrow$ )

- $\Rightarrow^*$  is a relation that represents zero, or more steps of derivations:
  - Basis: For any string  $\alpha$  of terminals and variables,  $\alpha \Rightarrow^* \alpha$ .
  - Induction: If  $\alpha \Rightarrow^* \beta$  and  $\beta \Rightarrow \gamma$ , then  $\alpha \Rightarrow^* \gamma$ .

## Language of Grammar

### Definition (Sentential Forms)

If G=(V,T,S,P) is a context-free grammar, then any string  $\alpha\in (V\cup T)^*$  such that  $S\Rightarrow^*\alpha$  is a *sentential form*.

### Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

### Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

### Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a sentence -(id+id) can be derived by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

or alternatively by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

## Leftmost and Rightmost Derivations

• Leftmost derivation: the leftmost non-terminal in each sentential is always chosen. If  $\alpha \Rightarrow \beta$  is a step in which the leftmost non-terminal in  $\alpha$  is replaced, we write  $\alpha \Rightarrow_l \beta$ .

$$E \Rightarrow_l -E \Rightarrow_l -(E) \Rightarrow_l -(E+E) \Rightarrow_l -(\mathrm{id}+E) \Rightarrow_l -(\mathrm{id}+\mathrm{id})$$

• Rightmost derivation (canonical derivation): the rightmost non-terminal in each sentential is always chosen. If  $\alpha \Rightarrow \beta$  is a step in which the rightmost non-terminal in  $\alpha$  is replaced, we write  $\alpha \Rightarrow_r \beta$ .

$$E \Rightarrow_r -E \Rightarrow_r -(E) \Rightarrow_r -(E+E) \Rightarrow_r -(E+id) \Rightarrow_r -(id+id)$$

- If  $S \Rightarrow_{I}^{*} \alpha$ ,  $\alpha$  is a left sentential form.
- If  $S \Rightarrow_{n}^{*} \alpha$ ,  $\alpha$  is a right sentential form.

#### Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

is represented by the parse tree:



- Each interior node represents the application of a production.
- The interior node is labeled by the head of the production.
- Children are labeled by the symbols in the body of the production.

#### Parse Tree

A parse tree ignores variations in the order in which symbols are replaced. Two derivations

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

produce the same parse tree:



The parse trees for two derivations are identical if the derivations use the same set of rules (they apply those rules only in a different order).

## **Ambiguity**

#### A grammar is ambiguous if

- it produces more than one parse tree for some sentence,
- it has multiple leftmost derivations, or
- it has multiple rightmost derivations.

## Example

The grammar

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

is ambiguous, because it permits two different leftmost derivations for id + id \* id:



 $② E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow \mathrm{id}+E*E \Rightarrow \mathrm{id}+\mathrm{id}*E \Rightarrow \mathrm{id}+\mathrm{id}*\mathrm{id}$ 



## Writing a Grammar

Transformations to make a grammar more suitable for parsing:

- eliminating ambiguity
- eliminating left-recursion
- left factoring

## Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

To eliminate the ambiguity, we express in grammar

- (precedence) bind \* tighter than +
  - lacksquare 1+2\*3 is always parsed by 1+(2\*3)
- (associativity) \* and + associate to the left
  - lacksquare 1+2+3 is always parsed by (1+2)+3

An unambiguous grammar:

$$\begin{split} E &\rightarrow E + T \mid T \\ T &\rightarrow T * F \mid F \\ F &\rightarrow \mathrm{id} \mid (E) \end{split}$$

- parse tree for id + id + id
- parse tree for id + id \* id

#### Exercise

Transform the grammar

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to id \mid (E)$$

so that \* associate to the right.

## Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal  ${m A}$  such that there  ${m A}$  appears as the first right-hand-side symbol in an  ${m A}$ -production, e.g.,

$$E \rightarrow E + T \mid T$$

To eliminate left-recursion, rewrite the grammar using right recursion:

$$E \rightarrow T E'$$
  
 $E' \rightarrow + T E'$   
 $E' \rightarrow \epsilon$ 

## Left Factoring

#### The grammar

$$S \to \text{if } E \text{ then } S \text{ else } S$$
  
 $S \to \text{if } E \text{ then } S$ 

has rules with the same prefix. We can *left factor* the grammar as follows:

$$S \to \text{if } E \text{ then } S X$$
  
 $X \to \epsilon$   
 $X \to \text{else } S$ 

### Summary

- The syntax of a programming language is usually specified by a context-free grammar.
  - derivation, left/rightmost derivations
  - parse trees
  - ambiguous/unambiguous grammars
  - grammar transformation (eliminating ambiguity, eliminating left-recursion, left factoring)