(a)

$\neg D$, (D V F), $\neg F$ – not consistent

Construct a proof for the argument: $\neg D$, $D \lor F$, $\neg F : \bot$

② Congratulations! This proof is correct.

(b)

$$(T \rightarrow K)$$
, $\neg K$, $(K \lor \neg T)$

K	Т	$T \rightarrow K$	¬K	K∨¬T	
0	0	1	1	1	`
0	1	0	1	0	
1	0	1	0	1	
1	1	1	0	1	

√ is consistent

(c)

$$\neg (A \rightarrow (\neg C \rightarrow B)), ((B \lor C) \land A) - not consistent$$

Construct a proof for the argument: $\neg [A \rightarrow (\neg C \rightarrow B)]$, $(B \lor C) \land A : \bot$

1
$$\neg [A \to (\neg C \to B)]$$

2 $(B \lor C) \land A$
3 A
4 A
5 $B \lor C$
6 $B \lor C$
7 $B \lor C$
8 C
9 C
1 C
9 C
1 C
9 C
1 C
1 C
1 C
1 C
2 C
3 C
4 C
4 C
5 C
6 C
9 C
1 C
1 C
1 C
2 C
3 C
4 C
4 C
5 C
6 C
9 C
1 C
1 C
1 C
2 C
3 C
4 C
4 C
5 C
6 C
9 C
1 C
1 C
2 C
3 C
4 C
4 C
5 C
6 C
9 C
1 C
1 C
2 C
3 C
4 C
4 C
6 C
9 C
1 C
1 C
2 C
3 C
4 C
4 C
4 C
5 C
6 C
9 C
1 C
1 C
1 C
2 C
3 C
4 C
4 C
4 C
4 C
5 C
6 C
6 C
7 C
8 C
1 C
1 C
1 C
2 C
3 C
4 C
4 C
4 C
4 C
4 C
4 C
5 C
6 C
6 C
7 C
8 C
1 C
1 C
1 C
1 C
1 C
2 C
4 C
4 C
4 C
4 C
4 C
5 C
6 C
6 C
7 C
8 C
1 C

© Congratulations! This proof is correct.

|∓ NEW LINE

₩ NEW SUBPROOF

(d)

$(C \rightarrow B)$, $(D \lor C)$, $\neg B$, $(D \rightarrow B)$ – not consistent

Construct a proof for the argument: $C \rightarrow B$, $D \lor C$, $\neg B$, $D \rightarrow B :: \bot$

 \odot Congratulations! This proof is correct.

Nº2

(a)

Construct a proof for the argument: $H \rightarrow (R \land C)$, $\neg R \lor \neg C :: \neg H$

1
$$H \rightarrow (R \land C)$$

2 $\neg R \lor \neg C$
3 $\neg (R \land C)$ DeM 2
4 $\neg H$ MT 1, 3

© Congratulations! This proof is correct.

(b)

Construct a proof for the argument: $K \wedge S$, $\neg K :: \neg S$

© Congratulations! This proof is correct.

Construct a proof for the argument: $A \rightarrow \neg A :: \neg A$

① Congratulations! This proof is correct.

(d)

Construct a proof for the argument: $(P \land Q) \lor (P \land R) \therefore P$

1
$$(P \land Q) \lor (P \land R)$$
2 $P \land Q$
3 $P \land E 2$
4 $P \land R$
5 $P \land E 4$
6 $P \lor E 1, 2-3, 4-5$

⊙ Congratulations! This proof is correct.

Nº3

(a)

A = philosophers ponder profound problems

B = their quandaries quell quotidian quibbles

C = right reasoning reveals reality

$$(A \rightarrow B) \land (\neg B \lor C) \land A :: C$$

Α	В	С	$A \rightarrow B$	¬B V C	Α	С
0	0	0	1	1	0	0
0	0	1	1	1	0	1
0	1	0	1	0	0	0
0	1	1	1	1	0	1
1	0	0	0	1	1	0
1	0	1	0	1	1	1
1	1	0	1	0	1	0
1	1	1	1	1	1	1

√ valid

1
$$A oup B$$
2 $\neg B \lor C$
3 A
4 $(A oup B) \land (\neg B \lor C)$ \land I 1, 2
5 $((A oup B) \land (\neg B \lor C)) \land A \land$ I 4, 3
6 $B oup E 1, 3$
7 $A oup B oup E 1, 3$
7 $A oup B oup E 1, 3$
8 $A oup E 1, 3$
9 $A oup C oup E 2, 7-9, 10-11$
1 $A oup B oup C oup E 2, 7-9, 10-11$

IF NEW LINE IF NEW SUBPROOF

 \odot Congratulations! This proof is correct.

(b)

A = aardvarks are adorable

B = baby baboons don't beat bongos

C = crocodiles can't consume cute capybaras

$$(A \rightarrow (B \lor C)) \land \neg B \land (\neg A \lor C) \therefore \neg A$$

Α	В	С	$A \rightarrow (B \lor C)$	¬B	¬A V C	¬A
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	1	1	1	1	0
1	1	0	1	0	0	0
1	1	1	1	0	1	0

X invalid

√ valid
√ valid

Counterexample valuation: A = 1, B = 0, C = 1

(c)

A = discipline doesn't defeat deficiency

B = geniuses generally get good grades

C = homework has harmed humanity

$$(A \rightarrow B) \land (\neg A \rightarrow C) :: B \lor C$$

Α	В	С	$A \rightarrow B$	$\neg A \rightarrow C$	BVC
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	1	1

√ valid

√ valid

√ valid

√ valid

1	$A \rightarrow B$					
2	$\neg A \rightarrow C$					
3	¬(B ∨ C)					
4	B					
5	B v C	VI 4				
6	1	¬E 3, 5				
7	¬B	¬I 4-6				
8	¬(A ∨ C)					
9	A					
10	AVC	VI 9				
11	Ι Ι	¬E 8, 10				
12	$\neg A$	¬I 9–11				
13	C					
14	AVC	VI 13				
15	1	¬E 8, 14				
16	¬C	¬I 13–15				
17	C	→E 2, 12				
18	1	¬E 16, 17				
19	AVC	IP 8-18				
20	A					
21	¬(¬A ∨ B)					
22	В	→E 1, 20				
23	1	¬E 7, 22				
24	¬A∨B	IP 21-23				
25	В					
26	1	¬E 7, 25				
27	С	X 26				
28	$B \rightarrow C$	→I 25 - 27				
29	В	→E 1, 20				
30	С	→E 28, 29				
31	С					
32	С	R 31				
33	C	VE 19, 20-30, 31-32				
34	BVC	∨I 33				
35	1	¬E 3, 34				
36	BVC	IP 3-35				
	∓ NEW LINE	₩ NEW SUBPROOF				

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

A = crocodiles consume cute capybaras

B = incarcerating iguanas isn't illegal

C = mad monkeys make mayhem

D = dinosaurs do disco dance

 $(A \rightarrow B) \land ((C \land D) \lor A) \land \neg B :: D \longleftrightarrow C$

Α	В	С	D	$A \rightarrow B$	$(C \land D) \lor A$	¬B	$D \leftrightarrow C$
0	0	0	0	1	0	1	1
0	0	0	1	1	0	1	0
0	0	1	0	1	0	1	0
0	0	1	1	1	1	1	1
0	1	0	0	1	0	0	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	0
0	1	1	1	1	1	0	1
1	0	0	0	0	1	1	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	0	1	1	1
1	1	0	0	1	1	0	1
1	1	0	1	1	1	0	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	0	1
				•	•		•

√ valid

Construct a proof for the argument: $A \rightarrow B$, $(C \land D) \lor A$, $\neg B :: D \leftrightarrow C$

(a)

Construct a proof for the argument: $\neg \neg A :: A$

② Congratulations! This proof is correct.

(b)

Construct a proof for the argument: $(A \rightarrow B) \rightarrow A :: A$

(c)

Construct a proof for the argument: $\neg B \rightarrow \neg A :: A \rightarrow B$

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

(d)

Construct a proof for the argument: $\neg (A \lor B) : \neg A \land \neg B$

⊙ Congratulations! This proof is correct.

(e)

Construct a proof for the argument: $\neg A \land \neg B : \neg (A \lor B)$

Construct a proof for the argument: $(A \to B) \land (\neg A \to B) :: B$

1
$$(A ound B) \wedge (\neg A ound B)$$
2 $(A ound B)$ $\wedge E ext{ 1}$
3 $(\neg A ound B)$ $\wedge E ext{ 1}$
4 $A ound B$ A

☺ Congratulations! This proof is correct.

Nº5

(a)

Construct a proof for the argument: $\therefore (A \rightarrow B) \lor (B \rightarrow A)$

☺ Congratulations! This proof is correct.

Construct a proof for the argument: $:: A \to (B \to A)$

1
$$A$$
2 B
3 A
4 $B \rightarrow A$
5 $A \rightarrow (B \rightarrow A)$
R 1
 $A \rightarrow I 2-3$
 $A \rightarrow I 1-4$

| NEW LINE | III NEW SUBPROOF

 $\odot\,$ Congratulations! This proof is correct.

(c)

Construct a proof for the argument: $\because (\neg B \to \neg A) \to [(\neg B \to A) \to B]$

1	L	$B \rightarrow \neg A$	
2		$\neg B \rightarrow A$	
3		¬(B ∨ ¬A)	
4		В	
5		B ∨ ¬A	VI 4
6		1	¬E 3, 5
7		¬В	¬I 4-6
8		$\neg A$	
9		B ∨ ¬A	VI 8
10			¬E 3, 9
11		A	IP 8-10
12]] [¬A	→E 1, 7
13		1	¬E 11, 12
14		B ∨ ¬A	IP 3-13
15		В	
16		В	R 15
17		¬A	
18		$\neg B$	
19		A	→E 2, 1 8
20		т	¬ E 17 , 19
21		В	IP 18-20
22	$ \ \ $	В	VE 14, 15-16, 17-21
23	(-	$\neg B \to A) \to B$	→I 2-22
24	(¬B	$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$	→I 1-23

F NEW LINE

I NEW SUBPROOF

② Congratulations! This proof is correct.

Construct a proof for the argument: $: [A \to (B \to C)] \to [(A \to B) \to (A \to C)]$

1
$$A \rightarrow (B \rightarrow C)$$

2 $A \rightarrow B$
3 $A \rightarrow B$
4 $B \rightarrow C$ $\rightarrow E 1, 3$
6 $C \rightarrow E 5, 4$
7 $A \rightarrow C$ $\rightarrow I 3-6$
8 $(A \rightarrow B) \rightarrow (A \rightarrow C)$ $\rightarrow I 2-7$
9 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \rightarrow I 1-8$

② Congratulations! This proof is correct.