Zadanie 1.

Przyjmijmy, że na rynku spełnione są założenia modelu Blacka-Scholesa oraz dostępna jest akcja $\mathcal A$ nie płacąca dywidendy. Przez $\mathcal O_t^{\mathcal A}(S_t,K,T)$ oznaczmy opcję europejską na akcję $\mathcal A$ o następujących charakterystykach: opcja jest wystawiana w chwili t, cena akcji $\mathcal A$ w chwili t wynosi S_t , cena wykonania opcji wynosi K, a opcja wykonywana jest w momencie T>t.

Niech $C_N^{\mathcal{A}}(q)$ będzie ceną instrumentu finansowego wystawianego w chwili t=0 przez firmę ABC o następującej charakterystyce:

- w każdej z chwil t = 0,1,...,N-1 następuje losowanie określające czy:
 - o i) kupujący instrument otrzymuje od firmy ABC europejską opcję kupna $\mathcal{O}_t^{\mathcal{A}}(S_t, S_t, N)$, czy też
 - o ii) kupujący instrument wystawia firmie ABC europejską opcję sprzedaży $\mathcal{O}_t^{\mathcal{A}}(S_t, S_t, N)$;
- prawdopodobieństwo wylosowania scenariusza i) wynosi q, a scenariusza ii) wynosi 1-q;
- losowania są niezależne zarówno od siebie jak i od procesu cen akcji.

Zakładając, iż $S_0=100$, roczna stopa wolna od ryzyka wynosi stale r=4%, a zmienność równa jest $\sigma=0.25$, proszę wyznaczyć wartość $C_{10}^{\mathcal{A}}\left(\frac{1}{2}\right)$. Proszę podać najbliższą wartość.

Panylet hupma - spredazy:
$$C_{t} + Ke^{-r(T-t)} = P_{t} + S_{t}$$

$$C_{t} - P_{t} = S_{t} - Ke^{-r(T-t)} = S_{t} (1 - e^{-r(T-t)})$$

$$C_{10}^{A}(\frac{1}{2}) = \sum_{t=0}^{3} e^{-rt} \frac{1}{2} E[C_{t} - P_{t}] =$$

$$= \frac{1}{2} \sum_{t=0}^{3} e^{-rt} (1 - e^{-r(T-t)}) ES_{t} =$$

$$= \frac{1}{2} \sum_{t=0}^{3} e^{-rt} (1 - e^{-r(T-t)}) ES_{t} =$$

$$= \frac{1}{2} \sum_{t=0}^{3} e^{-rt} (1 - e^{-r(T-t)}) ES_{t} =$$

$$= \frac{1}{2} \sum_{t=0}^{4} \left(e^{-\gamma t} - e^{-\gamma t} \right) = \frac{1}{2} = \frac{1}{2} \left(e^{-\gamma t} - e^{-\gamma t} \right)$$

$$|\int_{t} \sim LN[\ln S_{0} + (N - \frac{\alpha^{2}}{2})t, \, \sqrt{2}t]$$

$$|ES_{t}| = \exp\{ \ln S_{0} + (N - \frac{\alpha^{2}}{2})t + \frac{1}{2}\alpha^{2}t \} = S_{0}e^{Nt}$$

$$= \frac{1}{2} \sum_{t=0}^{9} (e^{-nt} - e^{-nT}) \int_{0}^{\infty} e^{nt} =$$

$$= \frac{1}{2} \int_0^{\frac{q}{2}} \left(1 - e^{-nT} e^{nt} \right) =$$

$$=\frac{1}{2} S_0 \left[10 - e^{-NT} \frac{q}{2} e^{Nt} \right] =$$

$$= \frac{1}{2} \int_{0}^{\infty} \left[10 - e^{-vT} \frac{1 - e^{10v}}{1 - e^{v}} \right]$$

$$C_{10}^{A}(\frac{1}{2}) = \frac{1}{2} \cdot 100 \left[10 - e^{-0.04 \cdot 10} \frac{1 - e^{-0.04}}{1 - e^{-0.04}} \right] = 96,017 \approx 96$$

Zadanie 2.

Rozważmy rynek akcji, na którym spełnione są założenia modelu Black'a-Scholes'a. Do wyceny akcji $\mathcal A$ inwestor stosuje model dwumianowy (t.j. zakłada, że jednym okresie cena akcji może urosnąć od wartość 1 do wartości $u>1\,$ z prawdopodobieństwem p, bądź też spaść do wartości $d<1\,$ z prawdopodobieństwem 1-p) z założeniem Jarrow'a-Rude'a $\left(p=\frac{1}{2}\right)$.

Inwestor kalibruje swój model w taki sposób, aby średnia i wariancja ceny akcji $\mathcal A$ po jednym okresie odpowiadała średniej i wariancji ceny akcji $\mathcal A$ na rynku Blacka-Scholesa dla długości okresu $\Delta t = \frac{1}{12}$. Zakładając, że stopa wolna od ryzyka wynosi r=2.5%, akcja $\mathcal A$ płaci dywidendę q=0.25%, natomiast współczynnik zmienności cen akcji równy jest $\sigma=10\%$, proszę wyznaczyć wartość u-1 (proszę podać najbliższą wartość).

V modelu Janowa-Rude'a:

$$M = \exp\{(\gamma - q - \frac{q^2}{2})\Delta t + \sqrt{\Delta t} \}$$

$$M = \exp{\frac{1}{2}(0.025 - 0.0025 - \frac{0.1^2}{2})} \cdot \frac{1}{n} + 0.1 \cdot \sqrt{\frac{1}{n}} \cdot \frac{1}{2} = 1.03079$$

Zadanie 3.

Rozważmy proces Browna W_t oraz proces Y, zdefiniowany jako $Y_t := t^2(W_t)^3$. Proszę określić, które równanie opisuje dynamikę procesu Y_t .

2 lematy Ito:

$$dY_{t} = 2t(V_{t})^{3} dt + 3t^{2}(V_{t})^{2} dV_{t} + \frac{1}{2} \cdot 6t^{2} W_{t} (dW_{t})^{2} =$$

$$= 2t(W_{t})^{3} dt + 3t^{2} W_{t} dt + 3t^{2} (W_{t})^{2} dW_{t} =$$

$$= \frac{2}{t} t^{2} (W_{t})^{3} dt + 3(t^{6} W_{t}^{3})^{\frac{1}{3}} dt + 3(t^{3} W_{t}^{3})^{\frac{1}{3}} dW_{t} =$$

$$= \frac{2}{t} \frac{2Y_{t}}{t} + 3(t^{4} Y_{t})^{\frac{1}{3}} dt + 3(t Y_{t})^{\frac{3}{3}} dW_{t} =$$

Odp. A

Zadanie 4.

Niech \mathcal{D}_k oznacza sumę wartości k rent malejących $(Da)_{\bar{n}}$, tzn. $\mathcal{D}_k = \sum_{n=1}^k (Da)_{\bar{n}}$, natomiast I_k oznacza sumę wartości k rent rosnących $(Ia)_{\bar{n}}$, tzn. $I_k = \sum_{n=1}^k (Ia)_{\bar{n}}$. Proszę wskazać który z poniższych wzorów wyraża różnicę $\mathcal{D}_{15} - I_{15}$ dla każdego $i \neq 0$?

$$\rho_{a} = \rho_{1} q_{\overline{m}i} + \frac{d}{i} (q_{\overline{m}i} - m(1+i)^{-m})$$

$$(Da)_{\overline{m}} - (Ia)_{\overline{m}} = ma_{\overline{m}i} - a_{\overline{m}i} - \frac{2}{i} (a_{\overline{m}i} - m(1+i)^{-m}) =$$

Da rade to exproradii ale duis roboty datego line, na hallulatore

$$\frac{15}{2!} \left[a_{mi} (n-1) - \frac{2}{i} (a_{mi} - n(1+i)^{-m}) \right] = 124, 2574$$

$$i) \frac{105i - 30 + (2v + 1)\ddot{a}_{15} - 15v^{15}}{i^2} = 42,7966$$

$$ii) \frac{105i - 30 + (2i + 3)a_{15} - 15v^{15}}{i^2} = 124, 2574$$

iii)
$$\frac{105i - 15 + a_{15} + 2\ddot{a}_{15} - 30v^{15}}{i^2} = 1265, 7693$$

$$iv) \frac{105i - 28 + 3a_{15} - 17v^{15}}{i^2}$$
 = 124, 2574

0dp. 0

Zadanie 5.

Niech $T_0=0$. Rozważmy rynek Blacka-Scholesa, na którym nie ma możliwości arbitrażu i opcję wyboru (*chooser option*) na niepłacącą dywidendy akcje \mathcal{A} . Nabywca tej opcji będzie miał prawo określenia w chwili $T_1=1$, czy kontrakt ten jest opcją kupna czy też opcją sprzedaży (z ceną wykonania K=120 oraz datą wygaśnięcia $T_2=4$). Wiedząc, że $S_0=100$, r=4%, oraz współczynnik zmienności dla akcji \mathcal{A} wynosi $\sigma=0.3$ proszę określić wartość najbliższą cenie opcji wyboru w chwili T_0 :

$$V_0 = C(0, S_0, K, T_2) + e^{-X(T_2-T_1)}\rho(0, S_0, Ke^{-(N-X)(T_2-T_1)}, T_1)$$

$$K = 120$$
 $T_1 = 1$ $T_2 = 4$ $S_0 = 100$ $v = 0.04$ $v = 0.3$ $s = 0$

$$C(0, S_0, K, T_2) = S_0 \mathcal{D}(d_1) - K e^{-\sqrt{T_2}} \mathcal{D}(d_2)$$

$$d_1 = \frac{1}{\sqrt{J_{T_2}}} \left(\ln \frac{I_0}{K} + \left(\nu + \frac{\sqrt{2}}{2} \right) \overline{I_2} \right) = \frac{1}{0.3 \cdot 2} \left(\ln \frac{100}{120} + (0,04 + \frac{0.09}{2}) \cdot 4 \right) = 0,262797$$

$$d_2 = d_1 - \sqrt{T_2} = -0,334203$$

$$C(0, S_0, K, T_2) = 100 \, \mathbb{E}(0, 26) - 120 \, \mathrm{e}^{-0,04 \cdot 4} \, \mathbb{E}(-0,34) = 22,74$$

$$K' = Ke^{-\nu (\tau_2 - \gamma_1)} = 120e^{-Q_0 4 \cdot 3} = 120e^{-Q_1 12}$$

$$d_1 = \frac{1}{0.3 \cdot 1} \left(\ln \frac{100}{120e^{-9n}} + (0.04 + \frac{0.09}{2}) \cdot 1 \right) = 0.075595$$

$$P(0, S_0, K', T_1) = -100 \, \mathbb{E}(-0,0L) + 120e^{-0.02} \cdot e^{-0.04} \, \mathbb{E}(0,27) = 12, L2$$

Zadanie 6.

Polski inwestor planuje zakup 1 000 USD za 4 miesiące. Decyduje się na zakup 4-miesięcznej walutowej opcji kupna z ceną wykonania 4.5 PLN/USD. Wiemy, że stopa wolna od ryzyka w Polsce wynosi 8%, podczas gdy w Stanach Zjednoczonych równa jest 4%. Wiemy, że zmienność kursu wynosi 20%, a bieżący kurs to 4.2 PLN/USD. Proszę określić cenę opcji, która pozwoli zabezpieczyć płatność 1 000 USD za 4 miesiące. Proszę podać najbliższą wartość:

$$T = 4/12$$
 $f_0 = 4,2$ $K = 4,5$ $V = 0,02$ $N_4 = 0,04$ $V = 0,2$

$$d_1 = \frac{m(4,2/4,5) + (0,0l - 0,04 + \frac{02^2}{2}) \cdot \frac{4}{12}}{0,2 \sqrt{4/12}} = -0,424291$$

$$\mathbf{E}(d_1) = 0,335677$$

$$C_0 = 4, 2 \cdot e$$
 $-0,04 \cdot 4/12$ $-0,0335647 - 4,5e$ $-0,08 \cdot 4/12$ $-0,1$

Zadanie 7.

Rozważmy rynek, na którym jednoroczna stopa spot wynosi 9.7%, natomiast dwuletnia stopa spot wynosi 10.5%. Na rynku tym dwuletnia, stałokuponowa obligacja sprzedawana jest at par.

Firmy A oraz B zainteresowane są uzyskaniem z banku dwuletniego kredytu na kwotę K każda, przy czym firma A chciałaby uzyskać kredyt o zmiennym oprocentowaniu, a firma B – o oprocentowaniu stałym. Bank zaoferował pożyczki o następujących warunkach (stopy roczne):

	Firma A	Firma B	
Stałe	11.5%	13.8%	
Zmienne	LIBOR + 2.25%	LIBOR + 3.25%	

Firmy stwierdziły, że najkorzystniejsze dla nich będzie, gdy:

- firma A weźmie kredyt o stałym oprocentowaniu,
- firma B weźmie kredyt o zmiennym oprocentowaniu,
- firmy A i B zawrą kontrakt swap, na mocy którego:
 - firma A płaci firmie B oprocentowanie zmienne LIBOR + c,
 - firma B płaci firmie A oprocentowanie stałe 10.75%.

Ile wynosić powinna wartość c, aby żadna z firm nie straciła na kontrakcie, jeśli:

- alternatywnie dla kontraktu swap obie firmy mogą emitować i kupować obligacje – zarówno stałokuponowe jak i zmiennokuponowe (w oparciu o stope LIBOR),
- na rynku brak kosztów transakcyjnych związanych z pożyczką, zawarciem transakcji swap, bądź emisją lub kupnem obligacji?

Stata sprawiedlina stopa
$$\omega$$
 hordrahin
$$q = \frac{1 - \frac{1}{1,105^2}}{\frac{1}{1,087} + \frac{1}{1,105^2}} = 10,46^{\circ}1.$$

Sta, d B pta is A trolleg ra deviso viec c = 10,75 1-10,461 = 0,29%.

Оф. С

Zadanie 8.

Kredyt w wysokości 5000 PLN jest spłacany przez 10 lat za pomocą równych rat na koniec każdego roku przy oprocentowaniu wynoszącym 4% w skali roku. Pożyczkobiorca może przyspieszyć spłacanie zadłużenia, jednakże w takim wypadku płaci karę w wysokości 3% od wartości nadpłaconej ponad ratę kredytu. Jeżeli łączna płatność (zwiększona rata plus ewentualna kara) na koniec pierwszego roku wyniesie 800 PLN, na koniec drugiego roku wyniesie 750 PLN, a na koniec trzeciego roku wyniesie 700 PLN, to jakie jest niespłacone saldo kredytu przed zapłaceniem raty kredytu na koniec czwartego roku? Proszę podać najbliższą odpowiedź.

$$R = \frac{Ko}{9\pi i} = \frac{5000}{1 - 1,04 - 10} = 616,4547$$

Oblinenie har:

$$R+1,03N_i=R_i$$
 $R-nota$ barona, $N_i-nado Tota$, R_i-nota raptacona

$$K_{i} = (R_{i} - R) \cdot \frac{0.03}{1.03}$$

$$K_1 = (200 - R) \cdot \frac{0.03}{1.03} = 5.3460$$

$$K_2 = 3,8197$$

$$K_3 = 2,4334$$

i	K _{J-1}	Rá	Τá	Ui	Kara	Ká
1	5000	£00	200	600	5,3460	4405,3460
2	4405,3460	450	146,2138	573,7162	3,8197	3835,4495
3	3235,4495	400	163,4180	546,5£20	2,4334	3291,3021
4	3241,300L		131, 6520			

Soldo na honiec 3 volu plus odsethi 2 4 volu: 3291,3008+131,6520 = 3423. Odp. B

Zadanie 9.

Roczna stopa zwrotu w roku t, tj. $(1+i_t)$ gdzie i_0 oznacza stopę procentową w okresie od t=0 do t=1, ma rozkład log-normalny z wartością oczekiwaną 108% oraz odchyleniem standardowym 20%. Stopy zwrotu w kolejnych latach są od siebie niezależne. Jaką kwotę trzeba zainwestować jednorazowo w t=0, aby z prawdopodobieństwem 95% wartość inwestycji po 5 latach wynosiła co najmniej 500 PLN? Proszę podać najbliższą odpowiedź.

Vartost inwestycji
$$\rho o$$
 5 latach: $K \times_1 \cdot ... \cdot \times_5 = K \times^5$ be wrighthic stopy major ten

$$\exp(\tau^1) - 1 = \frac{25}{729}$$

$$\exp\left(\zeta^2\right) = \frac{754}{729}$$

$$P(KX^5 \leq 500) = 0.05$$

$$\rho(\chi^5 \angle \frac{500}{\kappa}) = 0,05$$

$$P(m \chi^5 < m(\frac{500}{K})) = 0,05$$

$$\rho(2 < \frac{m(\frac{500}{K}) - 0.30051}{\sqrt{0.168585}}) = 0.05$$

$$\frac{M(\frac{500}{K}) - 0,30051}{\sqrt{0,162595}} = 2^{-1}(0,05)$$

$$M(\frac{500}{K}) - 0,30051 = \overline{\Phi}^{-1}(0,05) \sqrt{0,168595}$$

$$K = \frac{500}{\overline{\mathbf{T}}^{-1}(0,05)\sqrt{0,168595} + 0,30051}$$

Zadanie 10.

Niech natężenie oprocentowania (force of interest) w chwili t wynosi:

$$\delta_t = \begin{cases} 0.05 & dla \ 0 < t \le 4 \\ a(t^2 - t) & dla \ t > 4 \end{cases}$$

Ile wynosi wartość parametru a jeżeli wartość bieżąca w t=0 jednorazowej płatności w wysokości 750 PLN dokonanej w t=8 wynosi 50 PLN? Proszę podać najbliższą odpowiedź.

$$50 = 750 \cdot \exp\{-0, 2\} \cdot \exp\{-a[\frac{t^3}{3} - \frac{t^2}{2}]_{4}^{4}\}$$

$$a = 0.01$$