

Cálculo Diferencial e Integral

Prof. Ricardo Ronald Eberson

Conceito de Derivada de uma Função

- CONSIDERAÇÕES INICIAIS

A noção de Derivada de uma Função está intuitivamente ligada à ideia da **inclinação da reta tangente a um ponto do gráfico da função** considerada. Assim sendo, os próximos tópicos irão construir essa noção passo a passo.

- A EQUAÇÃO DE UMA RETA

É possível, pela Geometria Analítica, associar uma dada RETA no Plano Cartesiano a uma EQUAÇÃO algébrica, a partir de um dado ponto $P(x_1, y_1)$ dessa reta e de sua INCLINAÇÃO. Dessa forma, define-se a inclinação "m" de uma reta como segue:

$$m = tg \ \alpha = \frac{\Delta y}{\Delta x}$$

Ou, conhecido o valor de "m", temos:

$$m = \frac{y - y_1}{x - x_1}$$

Por outro lado, conhecido o valor da inclinação "m", define-se a Equação da Reta como:

$$y-y_1=m\cdot(x-x_1)$$

- Inclinação da Reta Tangente a uma Curva

Iremos definir agora a **INCLINAÇÃO** da Reta Tangente a uma curva y = f(x) em um certo ponto de seu Domínio para, em seguida, determinar a equação dessa reta.

- Seja y = f(x) a curva gerada por uma função real definida em um intervalo [a , b] e sejam $P(x_1, y_1)$ e $Q(x_2, y_2)$ dois pontos distintos dessa curva.

A inclinação da reta SECANTE "s" aos pontos P e Q é dada por:

$$\mathbf{m} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Porém, fazendo-se o ponto Q se aproximar indefinidamente de P, faremos com que a inclinação da reta SECANTE à curva se aproxime cada vez mais do valor da inclinação da reta TANGENTE à P, como pode ser observado na figura ao lado.

Com esse raciocínio, é possível determinar a inclinação da reta TANGENTE à P, denotada por $\mathbf{m}(\mathbf{x_1})$, como segue:

$$m(x_1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y_2 - y_1}{x_2 - x_1}$$
; quando esse limite existe.

Além disso, lembrando que estamos tratando com a curva gerada por uma função real, podemos escrever y como f(x). E, fazendo-se $x_2 = x_1 + \Delta x$, temos:

$$m(x_1) = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \lim_{(x_1 + \Delta x) \to x_1} \frac{f(x_1 + \Delta x) - f(x_1)}{(x_1 + \Delta x) - x_1}$$

O que nos leva a expressão:

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

Que define a Inclinação da Reta Tangente a uma curva y = f(x) em um certo ponto de seu Domínio.

- EQUAÇÃO DA RETA TANGENTE A UMA CURVA

Se a função f(x) é **contínua** em x_1 , então a reta tangente à curva y = f(x) no ponto "**P**" de coordenadas $(x_1, f(x_1))$ será dada:

- pela reta que passa pelo ponto P com a inclinação $m(x_1)$ definida acima, formando a equação $y f(x_1) = m(x_1) \cdot (x x_1)$.
- pela reta $x = x_1$ se o limite que define $m(x_1)$ for infinito.

Exemplos:

- a) Encontre a **inclinação** da reta tangente à curva $y = 2x^2 5$ no ponto (x_1, y_1) :
- No ponto (x_1, y_1) , temos $f(x_1) = 2x_1^2 5$;
- A inclinação será dada por :

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{[2(x_1 + \Delta x)^2 - 5] - (2x_1^2 - 5)}{\Delta x}$$
... $\Rightarrow m(x_1) = 4x_1$

(desenvolver a resolução)

- b) Determine a **equação da reta** tangente à curva $y = x^2 3x$ no ponto de abscissa $x_1 = 2$ e construa os gráficos da função e da reta tangente:
 - 0 ponto procurado é (2, f(2)), portanto, (2, -2);
 - A inclinação será dada por :

$$m(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{[(x_1 + \Delta x)^2 - 3(x_1 + \Delta x)] - (x_1^2 - 3x_1)}{\Delta x}$$
... $\Rightarrow m(x_1) = 2x_1 - 3$

E, como $m(x_1) = 2x_1 - 3$, temos que $m(2) = 2 \cdot 2 - 3 \implies m(2) = 1$

• Assim, a Equação da Reta tangente será:

$$y - f(x_1) = m(x_1)(x - x_1) \implies y - f(2) = m(2)(x - 2) \implies y = x - 4$$

(desenvolver a resolução)

EXERCÍCIOS PROPOSTOS

1) Determine a inclinação da reta tangente ao gráfico das funções abaixo em um ponto arbitrário (x_1 , y_1):

a)
$$f(x) = -x^2 + 2$$

b)
$$f(x) = -2x + 3$$

c)
$$f(x) = x^3 + 1$$

d)
$$f(x) = x^3 - x$$

e)
$$f(x) = \sqrt{x}$$

f)
$$f(x) = -\frac{2}{x}$$

2) Encontre a *equação* da reta tangente ao gráfico das funções abaixo nos pontos dados e construa os gráficos da função e da reta tangente:

a)
$$f(x) = 2x^2 - 3x$$
 em $x_1 = 1$

b)
$$f(x) = -x^2 + 4$$
 nos pontos $P(1,3)$ e $Q(0,4)$

Definições da Derivada de uma Função

- A DERIVADA DE UMA FUNÇÃO EM UM PONTO

A *Derivada* de uma função f(x) no ponto x_1 , denotada por $f'(x_1)$, (lê-se: f linha de x, no ponto x_1), é definida pelo seguinte limite:

$$f'(x_1) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

, quando esse limite existe.

Ou seja, como vimos anteriormente, esse limite é o mesmo que nos dá a inclinação da reta tangente à curva y = f(x) no ponto (x_1) . Portanto, geometricamente, a derivada de uma função y = f(x) num ponto x_1 irá representar exatamente essa inclinação.

- DEFINIÇÃO DE DERIVADA DE UMA FUNÇÃO

A *Derivada* de uma função y = f(x) é uma <u>outra função</u>, denotada por f'(x), (lê-se: f linha de x), tal que seu valor para qualquer $x \in D(f)$ é dado por:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

, se esse limite existir.

É importante destacar que, apesar da grande semelhança das expressões acima, sua interpretação é muito diferente, pois a *derivada de uma função num ponto* é um número real, enquanto a *função derivada* (como o nome sugere) é uma função.

Observações:

- Dizemos que uma função é *derivável* quando existe a derivada em todos os pontos de seu Domínio.
 - Diferentes notações podem ser utilizadas para indicar a função derivada:

$$y' = f'(x)$$

que é a notação mais comum.

$$\begin{array}{c} \cdot D_x f(x) \\ \cdot D_x y \end{array}$$

lê-se: derivada de f(x) (ou de "y") em relação à variável "x".

EXERCÍCIOS PROPOSTOS

3) Calcule a derivada das funções abaixo, utilizando a definição por limites:

$$a) f(x) = x + 5$$

$$b) f(x) = -2x + 1$$

$$c) \ f(x) = \frac{x}{3} - 4$$

$$d) \ f(x) = x^2 - 5x + 3$$

$$e) \ f(x) = \sqrt{2x - 1}$$

$$f) \ f(x) = \frac{3}{x+1}$$

Propriedades Operatórias da Função Derivada

- CONSIDERAÇÕES INICIAIS

Ao longo do tempo, o cálculo da Derivada de uma Função, pela sua definição por limites, mostrou diversas similaridades em seus resultados e, com o surgimento desses padrões, rapidamente foram demonstradas matematicamente diversas fórmulas gerais com o intuito de tornar o cálculo das derivadas mais rápido e fácil. Essas fórmulas são chamadas de Propriedades Operatórias.

- Propriedades Operatórias da Função Derivada

Sejam f(x) e g(x) duas funções deriváveis e seja k uma constante ($k \in IR$). Então são válidas as seguintes propriedades operatórias:

P1) Derivada de uma constante vezes uma função

$$[k.f(x)]' = k.f'(x)$$

P2) Derivada da soma (ou subtração) de funções

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

P3) Derivada do produto de funções

$$[f(x) . g(x)]' = f'(x) . g(x) + f(x) . g'(x)$$

P4) Derivada do quociente de funções

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

- Em particular, para $C \in IR$, temos:

a)
$$para$$
 $f(x) = C$ \Rightarrow $f'(x) = 0$ (função CONSTANTE)

b) para
$$f(x) = x$$
 \Rightarrow $f'(x) = 1$ (função IDENTIDADE)
c) para $f(x) = x^n$ \Rightarrow $f'(x) = n \cdot x^{n-1}$ (para $n \in IR$)

c) nara
$$f(r) - r^n \implies f'(r) - n r^{n-1}$$
 (nara $n \in IR$)

Exemplos : Calcule a derivada das funções abaixo, utilizando as propriedades:

$$a) f(x) = x + 5$$

a) f(x) = x + 5, ou seja, [x + 5]'

$$e) \ \left[\frac{3}{2x^4}\right]' =$$

b)
$$[-2x + 1]' =$$

$$f) \left[\sqrt[5]{x^3} \right]' =$$

c)
$$\left[\frac{x}{3} - 4\right]' =$$

$$g) \ \left[\frac{2x-3}{x^3+4x} \right]' =$$

d)
$$[x^2 - 5x + 3]' =$$

(desenvolver a resolução)

EXERCÍCIOS PROPOSTOS

4) Calcule a derivada das funções abaixo, utilizando as propriedades operatórias da função derivada:

a)
$$[x^3 - 7x + 5]'$$

$$b) \ \left[\frac{2x^3}{3} \right]'$$

c)
$$\left[-\frac{4x}{5}\right]'$$

d)
$$\left[-3x^2 + \frac{7x}{4} - 2 \right]'$$

$$e) \left[\frac{1}{r^7}\right]'$$

$$f) \left[\frac{4}{5x} \right]'$$

$$g) \left[-\frac{3}{2x^6}\right]'$$

h)
$$[3.\sqrt{x}]'$$

i)
$$\left[\sqrt{3} \cdot x\right]'$$

$$j) \left[\sqrt{3x}\right]'$$

$$l) \left[\sqrt{5}\right]'$$

$$m) \left[\frac{1}{\sqrt[4]{x^5}} \right]'$$

$$n) \left[-\frac{4}{3\sqrt{x}} \right]'$$

$$o) \left[\frac{x^2 + 1}{1 - x^2} \right]'$$

$$p) [(3x^5-1).(2-x^4)]'$$

$$q) \left[\frac{2x^4 - 5x}{x^3 + 3} \right]'$$

$$r) \left[\frac{2x^4}{3 - x^2} \right]'$$

s)
$$[x^3.\sqrt{x}]'$$

t)
$$\left[\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)\right]'$$

$$u) \left[\frac{\sqrt[4]{x^5}}{x^2} \right]'$$

$$v) \left[\left(x^2 - \frac{1}{x} \right) \cdot (3x^4 + 2) \right]'$$