## Name: Arul Kumar ARK

Roll No.: 225229103

# Lab: 9

Employee Hopping Prediction using Random Forests

## Step:1

In [1]: import pandas as pd

In [2]: | data = pd.read\_csv("Employee\_hopping.csv")

In [3]: data.head(10)

Out[3]:

|   | Age | Attrition | BusinessTravel    | DailyRate | Department             | DistanceFromHome | Education | Educati |
|---|-----|-----------|-------------------|-----------|------------------------|------------------|-----------|---------|
| 0 | 41  | Yes       | Travel_Rarely     | 1102      | Sales                  | 1                | 2         | Life S  |
| 1 | 49  | No        | Travel_Frequently | 279       | Research & Development | 8                | 1         | Life S  |
| 2 | 37  | Yes       | Travel_Rarely     | 1373      | Research & Development | 2                | 2         |         |
| 3 | 33  | No        | Travel_Frequently | 1392      | Research & Development | 3                | 4         | Life S  |
| 4 | 27  | No        | Travel_Rarely     | 591       | Research & Development | 2                | 1         |         |
| 5 | 32  | No        | Travel_Frequently | 1005      | Research & Development | 2                | 2         | Life S  |
| 6 | 59  | No        | Travel_Rarely     | 1324      | Research & Development | 3                | 3         |         |
| 7 | 30  | No        | Travel_Rarely     | 1358      | Research & Development | 24               | 1         | Life S  |
| 8 | 38  | No        | Travel_Frequently | 216       | Research & Development | 23               | 3         | Life S  |
| 9 | 36  | No        | Travel_Rarely     | 1299      | Research & Development | 27               | 3         |         |
|   |     |           |                   |           |                        |                  |           |         |

10 rows × 35 columns

## In [6]: data.dtypes

| Out[6]: | Age                      | int64  |
|---------|--------------------------|--------|
|         | Attrition                | object |
|         | BusinessTravel           | object |
|         | DailyRate                | int64  |
|         | Department               | object |
|         | DistanceFromHome         | int64  |
|         | Education                | int64  |
|         | EducationField           | object |
|         | EmployeeCount            | int64  |
|         | EmployeeNumber           | int64  |
|         | EnvironmentSatisfaction  | int64  |
|         | Gender                   | object |
|         | HourlyRate               | int64  |
|         | JobInvolvement           | int64  |
|         | JobLevel                 | int64  |
|         | JobRole                  | object |
|         | JobSatisfaction          | int64  |
|         | MaritalStatus            | object |
|         | MonthlyIncome            | int64  |
|         | MonthlyRate              | int64  |
|         | NumCompaniesWorked       | int64  |
|         | Over18                   | object |
|         | OverTime                 | object |
|         | PercentSalaryHike        | int64  |
|         | PerformanceRating        | int64  |
|         | RelationshipSatisfaction | int64  |
|         | StandardHours            | int64  |
|         | StockOptionLevel         | int64  |
|         | TotalWorkingYears        | int64  |
|         | TrainingTimesLastYear    | int64  |
|         | WorkLifeBalance          | int64  |
|         | YearsAtCompany           | int64  |
|         | YearsInCurrentRole       | int64  |
|         | YearsSinceLastPromotion  | int64  |
|         | YearsWithCurrManager     | int64  |
|         | dtype: object            |        |
|         |                          |        |

| In [7]: | data. | info  |             |               |        |           |                        |
|---------|-------|-------|-------------|---------------|--------|-----------|------------------------|
|         | 1460  | 29    | No          | Travel_Rar    | ely    | 468       | Research & Development |
|         | 1461  | 50    | Yes         | Travel_Rar    | ely    | 410       | Sales                  |
|         | 1462  | 39    | No          | Travel_Rar    | ely    | 722       | Sales                  |
|         | 1463  | 31    | No          | Non-Tra       | vel    | 325       | Research & Development |
|         | 1464  | 26    | No          | Travel_Rar    | ely    | 1167      | Sales                  |
|         | 1465  | 36    | No Tr       | ravel_Frequen | -      | 884       | Research & Development |
|         | 1466  | 39    | No          | Travel_Rar    | ely    |           | Research & Development |
|         | 1467  | 27    | No          | Travel_Rar    | -      |           | Research & Development |
|         | 1468  | 49    | No Tr       | ravel_Frequen | -      | 1023      | Sales                  |
|         | 1469  | 34    | No          | Travel_Rar    | ely    | 628       | Research & Development |
|         |       | Dista | nceFromHome | Education     | Educat | tionField | EmployeeCount \        |
|         | 0     |       | 1           | 2             | Life   | Sciences  | 1                      |
|         | 1     |       | 8           | 1             | Life   | Sciences  | 1                      |
|         | 2     |       | 2           | 2             |        | Other     | 1                      |
|         | 3     |       | 3           | 4             | Life   | Sciences  | 1                      |
|         | 4     |       | 2           | 1             |        | Medical   | . 1                    |
|         | 5     |       | 2           | 2             | Life   | Sciences  |                        |
|         | 6     |       | 3           | 3             |        | Medical   | _                      |
|         | 7     |       | 24          | 1             | Ιifρ   | Sciences  | <b>1</b>               |

```
In [8]: data['WorkLifeBalance'].value_counts
Out[8]: <bound method IndexOpsMixin.value_counts of 0</pre>
                                                                      1
          1
                   3
          2
                   3
          3
                   3
          4
                   3
          5
                   2
          6
                   2
          7
                   3
          8
                   3
         9
                   2
          10
                   3
                   3
          11
                   2
         12
         13
                   3
          14
                   3
         15
                   3
                   2
         16
          17
                   2
         18
                   3
          19
                   3
          20
                   2
          21
                   3
                   3
          22
          23
                   3
          24
                   3
          25
                   2
          26
                   3
          27
                   3
          28
                   3
          29
                   2
                  . .
          1440
                   3
          1441
                   2
          1442
                   4
                   2
          1443
          1444
                   1
          1445
                   3
                   3
          1446
          1447
                   2
          1448
                   3
         1449
                   3
                   3
          1450
         1451
                   3
          1452
                   3
         1453
                   2
         1454
                   3
         1455
                   3
          1456
                   4
          1457
                   3
         1458
                   3
         1459
                   3
         1460
                   1
          1461
                   3
                   2
          1462
```

```
1464 3
1465 3
1466 3
1467 3
1468 2
1469 4
Name: WorkLifeBalance, Length: 1470, dtype: int64>
```

```
In [9]: X = data.drop(['Attrition'],axis=1)
In [10]: y = data['Attrition']
In [11]: y = y.apply(lambda x:1 if x == 'Yes' else 0)
In [12]: X.shape
Out[12]: (1470, 34)
In [13]: y.shape
Out[13]: (1470,)
```

## Step: 3

```
In [14]: t_dummies(data, columns = ['BusinessTravel','Department','Gender','EducationField'
)
```

#### Out[14]:

|      | Age | Attrition | DailyRate | DistanceFromHome | Education | EmployeeCount | EmployeeNumber |
|------|-----|-----------|-----------|------------------|-----------|---------------|----------------|
| 1460 | 29  | No        | 468       | 28               | 4         | 1             | 2054           |
| 1461 | 50  | Yes       | 410       | 28               | 3         | 1             | 2055           |
| 1462 | 39  | No        | 722       | 24               | 1         | 1             | 2056           |
| 1463 | 31  | No        | 325       | 5                | 3         | 1             | 2057           |
| 1464 | 26  | No        | 1167      | 5                | 3         | 1             | 2060           |
| 1465 | 36  | No        | 884       | 23               | 2         | 1             | 2061           |
| 1466 | 39  | No        | 613       | 6                | 1         | 1             | 2062           |
| 1467 | 27  | No        | 155       | 4                | 3         | 1             | 2064           |
| 1468 | 49  | No        | 1023      | 2                | 3         | 1             | 2065           |
| 1469 | 34  | No        | 628       | 8                | 3         | 1             | 2068           |
|      |     |           |           |                  |           |               |                |

10 rows × 56 columns

```
In [15]:
         X = data.drop(['Attrition'],axis=1)
In [16]:
         X.shape
Out[16]: (1470, 55)
In [17]:
         y=data['Attrition']
In [18]:
         y = y.apply(lambda x:1 if x == 'Yes' else 0)
In [19]:
         y.shape
Out[19]: (1470,)
         Step:5
In [20]:
         from sklearn.model selection import train test split
In [21]:
         X_train, X_test,y_train, y_test = train_test_split(X,y,random_state=42,test_size=
In [22]:
         from sklearn.ensemble import RandomForestClassifier
         RFC = RandomForestClassifier(n estimators=100, max features=0.3)
In [23]: RFC.fit(X_train,y_train)
Out[23]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                     max depth=None, max features=0.3, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, n estimators=100, n jobs=1,
                     oob score=False, random state=None, verbose=0,
                     warm_start=False)
```

```
RFC y pred = RFC.predict(X test)
In [24]:
 RFC_y_pred
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
   0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
   0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

```
In [25]: from sklearn.metrics import accuracy_score,classification_report
```

```
In [26]: RFC_acc = accuracy_score(y_test,RFC_y_pred)
    RFC_acc
```

Out[26]: 0.8668478260869565

```
In [27]: print(classification_report(y_test, RFC_y_pred))
```

| support | f1-score | recall | precision |             |
|---------|----------|--------|-----------|-------------|
| 320     | 0.93     | 0.98   | 0.88      | 0           |
| 48      | 0.14     | 0.08   | 0.44      | 1           |
| 368     | 0.83     | 0.87   | 0.82      | avg / total |

### Step:7

## In [28]: print(RFC.feature\_importances\_)

```
      [0.0622317
      0.04799897
      0.0392698
      0.0148707
      0.
      0.0460996

      0.02389722
      0.03670234
      0.01809801
      0.02075047
      0.02381954
      0.08537203

      0.04164458
      0.03690209
      0.02941133
      0.0029484
      0.01773311
      0.

      0.02536605
      0.05112048
      0.0240187
      0.01776033
      0.03956104
      0.02509407

      0.02245903
      0.02704615
      0.00281675
      0.01158259
      0.00418142
      0.0012341

      0.00657366
      0.00894114
      0.00649062
      0.00602609
      0.00263417
      0.00521458

      0.00669461
      0.00493512
      0.00308905
      0.00753628
      0.0037791
      0.00796889

      0.00072113
      0.00539647
      0.00687337
      0.00716096
      0.
      0.04148436

      0.0362376
      ]
```

In [36]: feature\_name = pd.DataFrame(RFC.feature\_importances\_, index=X\_train.columns,colum
feature\_name

Out[36]:

|                                   | Important Feature |
|-----------------------------------|-------------------|
| Age                               | 0.062232          |
| DailyRate                         | 0.047999          |
| DistanceFromHome                  | 0.039270          |
| Education                         | 0.014871          |
| EmployeeCount                     | 0.000000          |
| EmployeeNumber                    | 0.046100          |
| EnvironmentSatisfaction           | 0.023897          |
| HourlyRate                        | 0.036702          |
| Joblnvolvement                    | 0.018098          |
| JobLevel                          | 0.020750          |
| JobSatisfaction                   | 0.023820          |
| MonthlyIncome                     | 0.085372          |
| MonthlyRate                       | 0.041645          |
| NumCompaniesWorked                | 0.036902          |
| PercentSalaryHike                 | 0.029411          |
| PerformanceRating                 | 0.002948          |
| RelationshipSatisfaction          | 0.017733          |
| StandardHours                     | 0.000000          |
| StockOptionLevel                  | 0.025366          |
| TotalWorkingYears                 | 0.051120          |
| TrainingTimesLastYear             | 0.024019          |
| WorkLifeBalance                   | 0.017760          |
| YearsAtCompany                    | 0.039561          |
| YearsInCurrentRole                | 0.025094          |
| YearsSinceLastPromotion           | 0.022459          |
| YearsWithCurrManager              | 0.027046          |
| BusinessTravel_Non-Travel         | 0.002817          |
| BusinessTravel_Travel_Frequently  | 0.011583          |
| BusinessTravel_Travel_Rarely      | 0.004181          |
| Department_Human Resources        | 0.001234          |
| Department_Research & Development | 0.006574          |
| Department_Sales                  | 0.008941          |
| Gender_Female                     | 0.006491          |
|                                   |                   |

|                                   | Important Feature |
|-----------------------------------|-------------------|
| Gender_Male                       | 0.006026          |
| EducationField_Human Resources    | 0.002634          |
| EducationField_Life Sciences      | 0.005215          |
| EducationField_Marketing          | 0.006695          |
| EducationField_Medical            | 0.004935          |
| EducationField_Other              | 0.003089          |
| EducationField_Technical Degree   | 0.007536          |
| MaritalStatus_Divorced            | 0.003779          |
| MaritalStatus_Married             | 0.007969          |
| MaritalStatus_Single              | 0.018473          |
| JobRole_Healthcare Representative | 0.001725          |
| JobRole_Human Resources           | 0.002067          |
| JobRole_Laboratory Technician     | 0.006671          |
| JobRole_Manager                   | 0.000978          |
| JobRole_Manufacturing Director    | 0.002338          |
| JobRole_Research Director         | 0.000721          |
| JobRole_Research Scientist        | 0.005396          |
| JobRole_Sales Executive           | 0.006873          |
| JobRole_Sales Representative      | 0.007161          |
| Over18_Y                          | 0.000000          |
| OverTime_No                       | 0.041484          |
| OverTime_Yes                      | 0.036238          |

In [37]: import matplotlib.pyplot as plt
import seaborn as sns

```
In [45]: fig = plt.figure(figsize = (10, 6))
    pd.Series(RFC.feature_importances_, index=X_train.columns).plot.bar()
```

Out[45]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1fc9107f208>



```
In [54]: estimator = RFC.estimators_[5]
```

In [55]: from sklearn import tree
 from sklearn.tree import export\_graphviz
 with open("RFDT.dot", 'w') as f:
 f = tree.export\_graphviz(estimator, out\_file=f, max\_depth=4, impurity=False)

In [56]: !dot - Tpng RFDT.dot -o RFDT.png

'dot' is not recognized as an internal or external command, operable program or batch file.

In [59]: import matplotlib.pyplot as plt
image = plt.imread('Screenshot 2023-03-07 104946.png')
plt.figure(figsize=(19,15))
plt.imshow(image)

Out[59]: <matplotlib.image.AxesImage at 0x1fc91423c88>



Step:9

```
In [62]: rf2 = RandomForestClassifier(oob_score=True, random_state=42, warm_start=True, n_
    oob_list = list()
    for n_trees in [15, 20, 30, 40, 50, 100, 150, 200, 300, 400]:
        rf2.set_params(n_estimators=n_trees)
        rf2.fit(X_train, y_train)
        oob_error = 1 - rf2.oob_score_
        oob_list.append(pd.Series({'n_trees': n_trees, 'oob': oob_error}))
    rf_oob_df = pd.concat(oob_list, axis=1).T.set_index('n_trees')
    rf_oob_df
```

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3\_64\lib\site-pac kages\sklearn\ensemble\forest.py:453: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3\_64\lib\site-pac kages\sklearn\ensemble\forest.py:458: RuntimeWarning: invalid value encountered in true\_divide

predictions[k].sum(axis=1)[:, np.newaxis])

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3\_64\lib\site-pac kages\sklearn\ensemble\forest.py:453: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3\_64\lib\site-pac kages\sklearn\ensemble\forest.py:458: RuntimeWarning: invalid value encountered in true\_divide

predictions[k].sum(axis=1)[:, np.newaxis])

#### Out[62]:

oob

| n_trees |          |  |
|---------|----------|--|
| 15.0    | 0.160617 |  |
| 20.0    | 0.157895 |  |
| 30.0    | 0.148820 |  |
| 40.0    | 0.148820 |  |
| 50.0    | 0.142468 |  |
| 100.0   | 0.138838 |  |
| 150.0   | 0.142468 |  |
| 200.0   | 0.139746 |  |
| 300.0   | 0.137931 |  |
| 400.0   | 0.140653 |  |

Step : 10

```
In [63]: ax = rf_oob_df.plot(legend=False, marker='o', figsize=(10,5))
ax.set(ylabel='out-of-bag error')
```

Out[63]: [Text(0,0.5,'out-of-bag error')]



0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], dtype=int64)

```
In [68]: from sklearn import tree
    from sklearn.tree import export_graphviz
    with open("DTC2.dot", 'w') as f:
        f = tree.export_graphviz(clf,out_file=f,max_depth = 4,impurity = False)
```

```
In [69]: !dot -Tpng DTC2.dot -o DTC2.png
```

'dot' is not recognized as an internal or external command, operable program or batch file.

```
In [70]: image = plt.imread('Screenshot 2023-03-07 111040.png')
    plt.figure(figsize=(19,15))
    plt.imshow(image)
```

Out[70]: <matplotlib.image.AxesImage at 0x1fc916ce908>



```
In [71]: print("Accuracy of test :",clf.score(X_test,y_test))
```

Accuracy of test: 0.907608695652174

```
In [72]: print(classification_report(y_test,RFC_y_pred))
```

```
recall f1-score
             precision
                                                support
          0
                   0.88
                              0.98
                                        0.93
                                                    320
          1
                   0.44
                              0.08
                                        0.14
                                                     48
avg / total
                   0.82
                              0.87
                                        0.83
                                                    368
```

```
In [74]: from sklearn.metrics import precision_score, recall_score, accuracy_score, roc_au
```

```
In [75]: print("RF model :",accuracy_score(y_test,RFC_y_pred))
    print("RF Precision:",precision_score(y_test,RFC_y_pred))
    print("RF Recall :",recall_score(y_test,RFC_y_pred))
    print("RF F1 score :",f1_score(y_test,RFC_y_pred))
    print("\n")
    print("DT model :",accuracy_score(y_test,y_pred1))
    print("DT Precision:",precision_score(y_test,y_pred1))
    print("DT Recall :",recall_score(y_test,y_pred1))
    print("DT F1 score :",f1_score(y_test,y_pred1))
```

DT model: 0.907608695652174

DT Precision: 0.85

DT Recall: 0.354166666666667

DT F1 score: 0.5

## In [ ]: