

Optativa 4rt curs de Biotecnologia

Modelització i simulació de biosistemes

- 100919 -

Models

Joan Albiol

Departament d'Enginyeria Química Biològica i Ambiental Escola d'Enginyeria Universitat Autònoma de Barcelona

Sistemes i Models

Per estudiar un sistema es habitual codificar-lo en un model . Què entenem per model?

- Una representació d'un sistema o procés del que n'explica alguna/es característica/es rellevant/s
- Tipus de models:

(d)	Process model	

$$0 \to X$$
 : $a_1 = v_0 \text{ (const.)}$
 $X \to 0$: $a_2 = \kappa_x \cdot [X]$

$$0 \rightarrow Y$$
 : $a_3 = f_y \cdot [X]$

$$Y \rightarrow 0$$
 : $a_4 = \kappa_y \cdot [Y]$

(e) Dynamical model

$$dx/dt = v_0 - \kappa_x x$$

$$dy/dt = f_y x - \kappa_y y$$

$$x(0) = x_0$$

$$y(0) = y_0$$

 Tant el tipus com la complexitat d'un model depenen del seu propòsit.

"all models are wrong, some are useful" (G. Box)

- Els models sempre son abstraccions
 o representacions simplificades
 de la realitat que ajuden a la
 comprensió dels sistemes o a la
 predicció del seu comportament
- Un model és bo si compleix el seu propòsit

 Dins dels camp de la Simulació els models són majoritàriament matemàtics i es recolzen en principis fonamentals ben establerts (físics, químics, termodinàmics,...) a l'hora que descriuen correctament dades experimentals.

Utilitat de la modelització i la simulació

- La modelització afavoreix la clarificació de conceptes
- Ressalta llacunes en el coneixement
- Permet fer generalitzacions o comprovar hipòtesis
- El model és independent de l'objecte que representa i per tant per mitjà de la simulació:
 - Es pot experimentar 'in silico' canviant les condicions o l'escala de temps
 - Es poden aplicar diferents mètodes de solució per situacions diferents (estat estacionari, dinàmic, ..)
 - Ajuda a la preparació d'experiments
 - Permet fer prediccions fonamentades
 - Els que són matemàtics permeten la quantificació
 - ... Fins i tot és ecològic i barat

Aproximacions Top-Down i Bottom-up

Dues aproximacions complementaries i no mútuament excloents

Fig. 2. How top-down and bottom-up systems biology meet in terms of providing a quantitative description of a biological system. In the top-down approach, high-throughput data are applied for identification of structures, connectivity, and possible information on the quantitative interaction between different components. In the bottom-up approach, the system is reconstructed based on biological knowledge, e.g. on molecular interactions.

Nivell de complexitat

Seguint qualsevol de les dues aproximacions podem arribar a models de diferent nivell de complexitat depenent del tipus i quantitat de la informació disponible:

... Estequiomètrica... Termodinàmica... Regulació... Cinètica

Aproximacions a la modelització de xarxes cel·lulars

(c) Mechanism-based

$$A + B \xrightarrow{k_1} C$$

Static models

No stoichiometry

No parameters

Static models

Stoichiometry

No parameters

Dynamic models

Stoichiometry

Kinetic parameters

Aproximacions complexitat i nivell de detall

Xarxes a diferents nivells

Les xarxes de components es poden identificar a diferents nivells

Cada nivell inclou interaccions de regulació tant dins el seu nivell com entre nivells

Aquestes interaccions constitueixen un intercanvi d'informació entre nivells

Models i xarxes a diferents nivells

Els models poden representar components d'un nivell: **modelització horitzontal**

Alternativament poden també incloure interaccions entre diferents nivells: modelització vertical

Current Opinion in Biotechnology

El tipus de dades disponibles condiciona el tipus de model i les aplicacions que l'hi podem donar

Estructura i components d'un model "

Límits del sistema i interacció amb l'entorn: Una vegada definida la part de l'univers que descriu el sistema s'han de definir les parts del model amb les que el model interacciona amb l'entorn (entrades/sortides)

Constants: quantitats que no varien mai

Variables: quantitats sobre les que el model estableix una relació i que poden variar en diferents estats.

Paràmetres: components del model a les que s'assigna un valor per tal de que el sistema descrigui correctament les dades experimentals

$$V = \frac{1}{6}\rho d^3 V i d: variables v = \frac{V_{max}S}{K_M + S} S i v: variables v_{Max}, K_M: parametres$$

Unitats de mesura: s'ha de verificar sempre que el model és coherent en unitats. (p.ex. La combinació d'unitats d'una banda de la igualtat ha de ser igual a la de l'altra banda).

Estructura i components d'un model

Estat del Sistema: Imatge del sistema a un temps determinat. L'estat es descriu per un conjunt de variables de les quals el model en descriu el comportament

Variables d'estat: Subconjunt de variables que per si soles determinen l'estat del sistema. Cadascuna és necessària per determinar l'estat del sistema.

Dimensions del sistema: Nombre de variables independents del sistema.

- Sistema subdeterminat: es coneixen un nombre insuficient de variables.
- Sistema sobredeterminat: Es coneixen més variables de les necessàries. Es dona redundància o són contradictòries

Estructura del model: variables

Per cada tipus de model l'estat del sistema ve definit per un tipus de variable diferent :

Models Booleans: fan servir variables discretes binàries que només poden adoptar 2 valors (1,0)

Models d' equacions diferencials: amb variables que descriuen magnituds reals (p.ex. concentracions) amb nombres reals.

Models probabilístics: solen fer servir distribucions de probabilitat i/o el nombre de molècules (enters) de cada tipus.

Models híbrids: combinen dos tipus de variables a la vegada. (P.ex. Valors reals i booleans).

Característiques de models i sistemes -Tipologia

Determinista-Estocàstic

Deterministes: conegut l'estat inicial del sistema l'evolució futura del sistema queda únicament determinada. Els estocàstics estableixen l'estat futur del sistema en funció d'una distribució de probabilitats

Discret - Continu

Segons si les variables del model poden adoptar nomes uns valors concrets o qualsevol valor.

Reversible - Irreversible

Tot i que la majoria d'esdeveniments moleculars es poden considerar reversibles, es consideren irreversibles si no es poden revertir en condicions fisiològiques.

Els models presenten característiques particulars adaptades al procés que representen

Periòdic-noPeriòdic

Un sistema periòdic repeteix el seu estat a diferents instants

de temps.

Estable-Inestable

Davant una pertorbació un estat estable tendeix a retornar al mateix estat mentre que un inestable s'allunya.

Fases del procés de modelització

Definició: Què volem estudiar. Quines parts ens interessen. Quins són els límits.

Formulació: Escriptura del model en termes matemàtics a partir del coneixement (interaccions, lleis físiques,...)

Desenvolupament: Solució del model amb les eines adequades segons el tipus, ajust a dades experimentals i comprovació de la descripció correcta.

Validació: Comprovació de que el model descriu correctament noves dades experimentals, no utilitzades en la fase prèvia, però també explicables pel model.

Anàlisi: Estudi de les característiques del model. P.ex. Anàlisi de sensibilitat.

Millora iterativa: Estudi de les diferències entre les prediccions i noves dades experimentals. Implementació de millores al model. Tornada a la fase de formulació.

Un altra visió del mateix procés: components -> xarxes -> models computacionals -> fenotips

- 1. Database:
 - Plurality of -omics
- 2. Knowledge Base:
 - One set of reactions encoded by a genome
- 3. In silico modeling:
 - Query Tools

4. Validation, Discovery, and Use

Simulació: resolució del model per veure el comportament **Anàlisi**: estudi del model per analitzar-ne les propietats i la contribució de cada part a les mateixes

Les causes del canvi en el comportament d'un sistema es poden agrupar en:

- Efecte de l'entorn (entrada)
- Efecte del processament dins el sistema
- L'estructura del sistema (relació entre variables, paràmetres,...) determina com les senyals externes o internes son processades. -> determina el comportament
- Diferents estructures poden donar lloc a comportaments similars.
- Per tant generalment conèixer només la sortida d'un sistema no permet necessàriament conèixer-ne l'estructura.