Minimum Wages and Informal Self-Employment: Evidence from Peru

Paúl J. Corcuera García Universidad de Piura

August 16th, 2024

Motivation

- How should we think of minimum wages in developing countries?
 - Theory: $\underbrace{\downarrow \text{ monopsony power}}_{\text{efficiency}}$ + $\underbrace{\text{transfer from firm owners} \rightarrow \text{low-income individuals}}_{\text{redistribution}}$
 - Many low and middle-income countries are characterized by a large informal sector
 - "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)

Core Idea:

- Competition between formal and informal sector shapes market power
- Harder for firms to adjust to MW increase († wages or † prices)
- Involuntary exit from formal employment among least productive workers
- \Rightarrow Informal sector mutes both efficiency and redistributional channels

Motivation

- ▶ How should we think of minimum wages in developing countries?
 - Theory: \downarrow monopsony power + transfer from firm owners \rightarrow low-income individuals redistribution
 - Many low and middle-income countries are characterized by a large informal sector
 - "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)

▶ Core Idea:

- Competition between formal and informal sector shapes market power
- Harder for firms to adjust to MW increase (↑ wages or ↑ prices)
- Involuntary exit from formal employment among least productive workers
- ⇒ Informal sector mutes both efficiency and redistributional channels

This paper

Context: Peruvian minimum wage increase enacted in May, 2016.
 Informality is predominantly self-employment (Amodio et al., 2023) • MW Increase

- 3. Results (A): Salience of informal sector \rightarrow effects of MW on workers and firms
- 4. Results (B): Study how (A) affect in terms of redistribution (indiv and hh level)

Roadmap

- 1. Model
- 2. Data
- 3. Empirics
- 4. Redistribution Analysis
- 5. Conclusion

Workers

- ▶ Heterogeneity worker productivity $\varepsilon \sim G(\cdot)$
- ► Problem
 - 1. Draw preferences for $j \in \{1, \dots, J\}$ firms $\{\eta_j\}_{j=1}^J$ and self-employment η_0 s.t.

CDF
$$(\{\eta_{i,j}\}_{j=0}^{J}) = \exp\left\{-\exp(\eta_{i,0}) - \left[\sum_{j=1}^{J} \exp\left(-\eta_{i,j} \cdot \frac{\beta}{\lambda}\right)\right]^{\frac{\beta}{\lambda}}\right\}$$

2. Choose employment option given w_S , $(w_k, \underline{\varepsilon}_k)_{k=1}^J$ and min earnings \underline{y} $\max\{\exp(\lambda \log(\varepsilon w_S) + \eta_{i,0})^{\frac{1}{\lambda}}, \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_j\} \exp(\lambda \log(\max\{\varepsilon w_j, \underline{y}\}) + \eta_{i,j})^{\frac{1}{\lambda}} \ j \geq 1\}$

Sorting

$$\mathbf{Pr}_{\mathsf{informal}}(\varepsilon, \mathbf{w}) = \frac{(\varepsilon w_S)^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \quad , \quad \mathbf{Pr}_{\mathsf{formal}, j}(\varepsilon, \mathbf{w}) = \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{\mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_j\} \max\{\underline{y}, \varepsilon w_j\}^{\beta}}{\Omega_{\varepsilon}^{\beta}}$$

where
$$\Omega_{\varepsilon} = \left(\sum_{k=1}^{J} \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_k\} \max\{\underline{y}, \varepsilon w_k\}^{\beta}\right)^{1/\beta}$$

Workers - Elasticities

Elasticity of labor supply is given by

$$\frac{\partial \log \ell(w_j,\underline{\varepsilon}_j,w_{-j})}{\partial \log w_j} = \beta$$

$$- (\beta - \lambda) \int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \lambda \int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$
Concentration overall

Then \uparrow concentration means $\partial \log \ell / \partial \log w_j \to 0$, and \downarrow concentration means $\partial \log \ell / \partial \log w_j \to \beta$

Firms

- ▶ Heterogeneity productivity $z \sim F(\cdot)$
- ▶ Problem
 - 1. Firms observe ε of workers who applied and maximize profits

$$\max_{w_j,\underline{\varepsilon}_j} \quad p_j \ z \ f\left(\ell(w_j,\underline{\varepsilon}_j,w_{-j})\right) - w_j \ell(w_j,\underline{\varepsilon}_j,w_{-j})$$

2. It yields

$$z p_j f'(\ell) = \left(1 + \frac{1}{\frac{\partial \log \ell}{\partial \log w_j}}\right) w_j$$
$$z p_j f'(\ell) \underline{\varepsilon}_j = \underline{y}$$

Graphically...

Data Sources

- ► Employer-Employee Dataset (*Planilla Electrónica*) 2015-2019
 - ✓ Matched employer-employee of the universe of formal firms
 - ✓ Info on earnings, occupation, industry, other worker characteristics
- Firm-level Census (Encuesta Económica Anual) 2014-2018
 - ✓ Census of medium and large formal firms
 - ✓ Info on firms balance sheet
- ► Household Survey (Encuesta Nacional de Hogares) 2014-2018
 - ✓ Annual survey of households, representative at national/state level (cross-sec & panel)
 - ✓ Info on working status (employed/self-emp/formal/informal), industry, occ, hh-level consumption

Main Identification Strategies

1. Firm approach (Harasztosi & Lindner, 2019):

$$\frac{y_{jt}-y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{\text{t}} + \gamma_t X_{jt} + u_{jt}$$
 Fraction below MW in 2016

ID Assumption: parallel trends between high and low exposed.

2. Worker approach (Dustmann et al., 2022):

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{ earnings_{i,t-1} \in bin_b \}$$

$$+ \sum_{b=1}^{15} \delta_b \mathbf{1} \{ earnings_{i,t-1} \in bin_b \} \times POST_t + \beta X_{i,t-1} + \epsilon_{i,t}$$

ID Assumption: macroeconomic time effects stable over time.

Main Results: Firm Approach

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\mathsf{FA}_j}_{\mathsf{A}_j} + \gamma_t X_{jt} + u_{jt}$$
Fraction below MW in 2016

► Linearity of FA (employment)

► Linearity of FA (wage)

Employment effects

Wage effects

Main Results: Firm Approach

Compute share of informal employment at occupation o. Informal if belongs to top quartile.

$$\frac{y_{jt}-y_{j2016}}{y_{j2016}} = \alpha_t^0 + \alpha_t^1 \mathsf{FA}_j + \beta_t^0 \mathsf{FA}_j + \beta_t^1 \underbrace{\mathsf{FI}_j}_{} + \beta_t \mathsf{FA}_j \mathsf{FI}_j + \gamma_t X_{jt} + \epsilon_{jt}$$
 Fraction informal occupation in 2016

Main Results: Worker Approach

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{ earnings_{i,t-1} \in bin_b \}$$

$$+ \sum_{b=1}^{15} \delta_b \mathbf{1} \{ earnings_{i,t-1} \in bin_b \} \times POST_t + \beta X_{i,t-1} + \epsilon_{i,t}$$

Wage Effects (conditional on employment)

Employment Effects

Main Results: Worker Approach

Compare workers who were at occupations highly exposed to informality vs others

Aggregate employment effects at formal sector (Giuponni et al., 2024)

- 1. Obtain place effects: $\ln w_{it} = \frac{\ln \lambda_{r(i,t)}}{\ln w_{it}} + \theta_t + X'_{it}\beta + u_{it}$
- 2. Obtain skill levels $w_{it}^* = \exp(\ln w_{it} \ln \lambda_{r(i,t)})$
- 3. $\Delta\%$ Employment in low-wage regions compared to those of same *skill level* at high-wage regions

Redistribution Analysis

Main Results: Expenses

- ► Change in Labor Cost: use firm approach on firm balance sheet data (\approx 0.123) Table
- ► Pass-through: use firm approach on the decomposition Table

$$\frac{\Delta LaborCost}{Revenue2016} = \underbrace{\frac{\Delta Revenue}{Revenue2016} - \frac{\Delta Material}{Revenue2016} - \frac{\Delta MiscItems}{Revenue2016} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{Consumers Pay (\approx 98 \%)} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{Firm Owners Pay (\approx 2 \%)}$$

► Sh. consumption in MW-produced Goods: follow Macurdy (2015) to estimate at household level using Peruvian Input-Output Table
• Binscatter

Main Results: Income

The change in expected income at bin b is given by

$$\frac{\Delta I_b}{w_b} := \underbrace{\frac{\Delta w_b}{w_b}}_{\text{Worker approach}} + \underbrace{\frac{(w_b^{\text{inf}} - w_b)}{w_b}}_{\text{Worker approach}} \underbrace{\Delta \mathbf{P}_b(\text{leave})}_{\text{Worker approach}}$$

Income increase for a low-wage worker $\sum_{b=1}^{5} \frac{1}{5} \frac{\Delta I_b}{w_b}$ Alternative Approach

A back-of-the-envelope calculation: individuals (bins)

$$rac{\Delta I_b}{w_b}$$
 $w_b - rac{\Delta p_{MW}}{p_{MW,0}}$ $s^e_{MW,b} E_b$ •Prices enamo • Prices enamo

Baseline bin $t-1$	[650, 750)	[750, 850)	[950, 1050)	[1050, 1150)	[1150, 2050)	[2050, max)
Panel A. Income Change						
Mean MW formal wage $(ar{w}_b)$	746	818	903	1,001	1,479	2,630
Effect exp. income ($\Delta I_b/w_b$)	0.11	0.08	0.05	0.04	0.02	0.00
$\Delta I_b/w_b imes ar{w}_b$	82.06	65.44	45.15	40.04	29.58	0.00
Panel B. Expenses Change						
Share cons by MW workers (s^e_{MW})	0.23	0.23	0.24	0.24	0.24	0.26
Mean per cap. expenses (E_b)	590	643	700	613	792	1379
$\Delta~E_b$ (labor cost): $0.98 \times 0.123 \times s_{MW}^e E_b$	16.35	17.82	20.25	17.73	22.91	43.22
$\Delta~E_b$ (manuf. price): $0.40 imes s_{MW}^e E_b$	54.28	59.15	67.20	58.85	76.03	143.42
$\Delta~E_b$ (food price): $0.08 imes s^e_{MW} E_b$	10.85	11.83	13.44	11.77	15.21	28.68

A back-of-the-envelope calculation: households (income deciles)

$rac{\Delta I_{MW}}{I_{MW}}$	I_M^l	W,d	$-\frac{\Delta p_{\Lambda}}{p_{MN}}$		s^e_{MW}	E_d				
HH income decile	1	2	3	4	5	6	7	8	9	10
Panel A. Income Change										
Share formal emp	0.01	0.03	0.11	0.19	0.26	0.34	0.46	0.60	0.72	0.82
Share MW formal emp (s_{MW}^l)	0.00	0.02	0.05	0.1	0.13	0.15	0.19	0.21	0.22	0.15
Mean MW formal income (I_{MW}^l)	1	7	40	128	242	316	462	570	705	586
$rac{\Delta I_{MW}}{I_{MW}} imes I_{MW}^l$	0.00	0.42	2.40	7.68	14.52	18.96	27.72	34.20	42.30	35.16
Panel B. Expenses Change										
Share cons by MW workers (s^e_{MW})	0.16	0.19	0.2	0.21	0.22	0.22	0.23	0.23	0.24	0.27
Mean expenses (E)	639	732	991	1,206	1,485	1,786	2,069	2,466	2,964	4,801
Δ E (labor cost): $0.98 \times 0.123 \times s^e_{MW} E$	12.32	16.76	23.89	30.52	39.38	47.36	57.36	68.36	85.74	156.25
Δ E (manuf. price): $0.40 \times s_{MW}^e E$	40.90	55.63	79.28	101.3	130.7	157.2	190.3	226.8	284.5	518.5
Δ E (food price): $0.08 \times s_{MW}^e E$	8.18	11.13	15.85	20.26	26.14	31.43	38.07	45.37	56.91	103.7

Conclusions

1. Empirics

- Informal sector shapes the response to the MW through market power (Amodio et al., 2023)
- Less market power exerted on low-quality workers, muting efficiency gains from MW due to involuntary exits from formality (Dustmann et al., 2022; Harasztosi and Lindner, 2019)
- Surviving firms pass-through these costs onto consumers, and richer households are the ones who bear most of it → inflation inequality! (Jaravel, 2021)
- Rich individuals transfer resources to formal workers at middle class and above. No redistribution to poor households (lack formal workers!)

2. Caveat - More work to be done!

■ This paper considers a pecuniary (purchasing power) approach: job ladder implications, temporary employment, etc.

Thank you!

Increase in the Minimum Wage in Perú Pack

Who are the most affected firms?

	Quartiles of FA_j in 2016				
	Q1	Q2	Q3	Q4	
Lima	0.47	0.41	0.38	0.39	
Avg Wage (PEN)	2480.81	1693.09	1170.64	888.55	
Number of Workers	129.60	157.78	127.36	16.20	
Firm Age	16.03	14.44	11.53	9.39	
Manufacture	0.18	0.21	0.19	0.22	
Commerce	0.35	0.31	0.30	0.31	
Services	0.04	0.06	0.12	0.15	
Observations	5,875	5,908	5,849	5,845	

Who are the MW workers?

	Earnings bin in 2016 (PEN)				
	$650 < y_{t-1} \le 850$	$850 < y_{t-1} \le 1250$	$1,250 < y_{t-1} \le 3,250$		
Lima	0.14	0.18	0.18		
Female	0.42	0.38	0.27		
By education					
Share low skilled	0.05	0.05	0.03		
Share medium skilled	0.48	0.50	0.44		
Share high skilled	0.47	0.45	0.53		
By age					
Share less than 24	0.09	0.08	0.02		
Share 24-44	0.63	0.72	0.76		
Share 45-65	0.27	0.19	0.22		
By contract					
Permanent	0.36	0.22	0.30		
Part-time	0.02	0.01	0.01		

Is the relationship approx. linear?

Is the relationship approx. linear?

Own-wage elasticity in recent literature

Minimal gains from reallocation

Imputation of Earnings

To address censoring at the 95th percentile of each year, I impute upper tail earnings following CCK(2016).

- ► I create 10-year age cells (20 to 29, 30 to 39, ..., 50 to 59), and 6 education cells (missing, no qualifications, secondary, some post sec, univ graduate, post graduate).
- I construct the mean log-earnings of individual i in all other periods, and for all their coworkers. For singleton workers or singleton firms I use the sample mean of gender g(i).

Imputation of Earnings

- ▶ I fit a series of Tobit models separately by year, gender, educ, and age range cells that include the following variables: age, mean log earnings, in other years, fraction of censored earnings in other years, number of full-time employees of gender *g* and its square, dummy for 11 or more employees, fraction of univ graduates at the firm, mean log wage co-workers and fraction of coworkers with censored earnings, dummy for singleton individuals, and a dummy for employees of 1-worker firms.
- ▶ If $y \sim N(X'\beta, \sigma)$ and censoring is such that $y \geq c$ is censored. Let $k = \Phi\left[(c X'\beta)/\sigma\right]$, where $\Phi(\cdot)$ is the standard normal CDF. Let $u \sim U[0,1]$, then

$$y^{u} = X'\beta + \sigma\Phi^{-1}[k + u(1-k)]$$

Firm design on balance sheet data

- Cannot directly compute fraction affected in firm-level census
- ► Share common variables with employer-employee data: employment counts (by gender, contracts) and average wage cost per worker
- Regression forest using random 75% sample of employer-employee obs as training data to predict FA_i on firm-level census

Expenses - Firms' margins of adjustment (excl. closures)

 	· · · · · · · · · · · · · · · · · · ·			
	2015 and 2016	2015 and 2017	2015 and 2014	
Panel A. Change in total labor cost				
Fraction affected	0.123	0.219	0.031	
	(0.039)	(0.051)	(0.022)	
Panel B. Change in revenue				
Fraction affected	0.074	0.051	0.011	
	(0.036)	(0.046)	(0.027)	
Panel C. Change in materials				
Fraction affected	0.079	-0.140	-0.147	
	(0.152)	(0.176)	(0.151)	
Panel D. Change in capital				
Fraction affected	0.135	0.165	0.006	
	(0.068)	(0.087)	(0.055)	
Panel E. Change in profits (relative to revenue in 2015)				
Fraction affected	-0.002	-0.006	-0.008	
	(0.010)	(0.012)	(800.0)	
Observations	3,440	3,185	4,343	
Controls	Yes	Yes	Yes	

Expenses - Incidence of the MW (Back)

Fraction paid by consumers (percent)

Fraction paid by firm owners (percent)

	Changes 2016	Changes 2017
Change in total labor cost relative to revenue in 2015	0.0243	0.0327
Ch in revenue rel to revenue in 2015 ($\Delta Revenue$)	0.0757	0.0614
Ch in materials rel to revenue in 2015 (Δ Material)	0.0065	-0.0028
Ch in miscitems rel to revenue in 2015 ($\Delta MiscItems$)	0.0453	0.0442
Incidence on consumers ($\Delta Rev - \Delta Mat - \Delta MiscItems$)	0.0239	0.02
Ch in profits rel to revenue in 2015 ($\Delta Profit$)	-0.0007	-0.0095
Ch in depreciation rel to revenue in 2015 ($\Delta Depr$)	0.0004	-0.0032
Incidence on firm owners (- $\Delta Profit$ - $\Delta Depr$)	0.004	0.0127

98.35

1.65

61.12

38.88

Expenses - Who pays for the MW?

Who pays for the MW?

Compute how much is industry s exposed to the MW

$$e_s = (I - BU)^{-1} B \frac{\text{wagebill}_s^{MW}}{\text{wagebill}_s} \times \frac{2}{3}$$

- lacksquare B(i,j): share of commodity j produced by industry s
- lacksquare U(i,j): share of commodity j used by industry s
- Using budget information in ENAHO, I match every product to a particular industry that produces it
- Compute the following measure

Sh. cons produced by MW workers $=\sum$ share of expenses in s imes e_s

Alternative Income Change

- 1. Fit a model that predicts how much a formal employee at t-1 would earn in the informal sector at t
- 2. Impute observations that correspond to non-employment in EE data
- 3. Re-run the worker approach

Income in the Informal Sector

Changes in Income for Informal Workers

MW Consumption Post-Policy

MW Consumption Post

Laspeyre Prices from Survey Data

Laspeyre Prices from Balance Sheet Data

Compare provinces with high vs low presence of informality

Effects on Output Price (Manufacture)

Transportation & Communication

