A system is composed of two harmonic oscillators, each of natural frequency ω_0 , and having permissible energies $(n+1/2)\hbar\omega_0$, where n is any non-negative integer. The total energy of the system is $E'=n'\hbar\omega_0$, where n' is a positive integer.

- For a given energy, how many microstates are available to the system ? What is * the entropy of the system ?
- A second system is also composed of two harmonic oscillators, each of natural frequency $2\omega_0$. The total energy of this system is $E'' = n''\hbar\omega_0$, where n'' is an even integer.
 - How many microstate are available to this system?
 - What is the entropy of a system composed of the two preceeding subsystems (separated and enclosed by a totally restrictive wall) ? Express the entropy as a function of E' and E''.

We are now asked to estimate the passability of $E-\angle E\rangle = 10^{-6}\angle E\rangle$ for a splem of $N=10^{21}$.

Take an ideal gas $\langle E\rangle = \frac{3}{2}\,Nk_{\rm B}T$, $C_V=\frac{3}{2}\,Nk_{\rm B}$ (Note $(E-\angle E\rangle)^2 \, \nu \, N^2$, $C_V \, \nu \, N$ only, so the standard desiration $v \stackrel{1}{\sim} N$ This is for a unsusationer ideal gas. People may we different models.