

همطراحی سختافزار نرمافزار

جلسه نهم: توصیف سیستم-زبان ۲- SystemC

ارائهدهنده: آتنا عبدی a_abdi@kntu.ac.ir

مباحث این بخش

• مدلهای محاسباتی

• معماریها

• اشنایی با زبان توصیف سیستم SystemC

ساختار ماژول و اجزای آن در SystemC

SystemC انواع داده در

• علاوه بر انواع داده موجود در ++ C/C+ دادههایی نیز در کتابخانه SystemC تعریف شدهاند:

• نوع تكبيتي

• نوع صحیح

• نوع بردار بیت (Bit-Vector)

SystemC انواع داده در

• نوع تكبيتي:

- sc_bit: منطق دو مقداره صفر و یک (bool)
 - sc_bit A; A = '1'; •
 - عملگرهای مجاز این نوع داده:

&	Bitwise AND
	Bitwise OR
^	Bitwise XOR
~	Bitwise NOT
=	Assignment

&=	Compound AND assignment
=	Compound OR assignment
^=	Compound XOR assignment
===	Equality
!=	Inequality

انواع داده در SystemC- تکبیتی

- sc_logic: منطق چهار مقدار (0,1,X,Z)
 - sc_logic A; A = 'Z';
 - X=x $_{e}Z=z$ •
 - عملگرهای مجاز این نوع داده:
 - مشابه حالت sc_bit
- ترکیب انواع sc_bit ،bool و sc_bit در عملیات ممکن است
 - تبديلها انجام ميشوند

انواع داده در SystemC (مثال)

• ييادهسازي بافر سه حالته (Tri-state Buffer)

```
SC MODULE(tristate buf) {
   sc in< sc bit > input;
   sc out < sc logic > output;
   sc in< sc bit > enable;
   void process() {
         sc bit in, en;
         sc logic out;
         in=input; en=enable; // reading inputs to temporary variables
         if(en)
            out = in;
         else
            out = 'z';
         output = out;
                            // writing a temporary variable to output
   SC CTOR(tristate buf) {
         SC METHOD (process);
         sensitive<<enable<<input;
};
```


Truth Table

En	Input	Output
0	х	Hi-Z
1	0	0
1	1	1

انواع داده در SystemC-نوع صحیح

- اعداد صحیح با طول ثابت (Fixed):
- sc_int: عدد صحیح با حداکثر سایز ۶۴ بیت و علامتدار (مکمل ۲)
 - sc_uint: عدد صحیح بدون علامت با حداکثر سایز ۶۴ بیت
 - (x عدد ۲۵ عدد) sc_int/sc_unit <25> x
 - اعداد صحیح با طول دلخواه (Arbitrary):
- sc_bigint/sc_bigunit: عدد صحیح با/بی علامت با سایز بزرگتر از ۶۴ بیت
- انواع دادههای اعداد صحیح با نوع متناظرشان در ++ قابل استفاده همزمان هستند

SystemC انواع داده در

<<

%=

• عملگرهای مجاز در نوع داده صحیح:

```
Bitwise
                  &
                                   Λ
                                           >>
Arithemtic+
                                           %
Assignment
                                           /=
                   &=
                                   ^=
                           |=
Equality
                           1=
Relational <
                   <=
                           >
                                   >=
Auto-inc/dec
                   ++
Bit Select
                   []
Part Select
                   .range(,)
Concatenation
                  (,)
```

انواع داده در SystemC (مثال)


```
sc_logic mybit;
sc_uint<8> myuint;
mybit = myuint[7];

sc_uint<4> myrange;
myrange = myuint.range(5,2);

sc_uint<12> my12int;
my12int = (myuint, myrange);
```

```
sc_int<5> a;

a = 13; // a gets 01101,

a[4] = 0, a[3] = 1, ..., a[0] = 1

bool b;

b = a[4]; // b gets 0

c = a.range(3, 1); // c gets 110 - interpreted as -2
```

انواع داده در SystemC-نوع آرایه

- آرایه بیتی (Bit Vector/ Logic Vector)
- sc_bv: آرایهای از بیتها در منطق دو مقداری / sc_lv: آرایهای از بیتها در منطق چهار مقداری
 - مقداردهی: رشتههای صفر و یک
 - عدم امکان اعمال عملیات محاسباتی (تبدیل به int و بازگشت بعد از محاسبات با عملگر "=")
 - عملگرهای مجاز:

انواع داده در SystemC (مثال)


```
#include <systemc.h>
int sc main (int argc, char* argv[]) {
  sc_lv<8> data_bus (sc_logic ('z')); // All bits are Z
 sc IV<16> addr bus ; // All bits are X
 sc logic parity ;
 // Print Default value of data bus
 cout << "Value of data bus: " << data_bus << endl;
 // Assign value to sc by
 data_bus = "00001011";
 cout << "Value of data_bus: " << data_bus << endl;
 // Use range operator
 addr_bus. range(7,0) = data_bus;
 cout <<"Value of addr bus: " << addr_bus << endl;</pre>
 // Assign reverse to addr bus using range operator
 addr_bus. range(0,7) = data_bus;
  cout <<"Value of addr bus: " << addr_bus << endl;</pre>
 // Use bit select to set the value
 addr_bus[10] = "1";
 cout << "Value of addr bus: " << addr bus << endl;
 // Use reduction operator
  parity = data_bus.xor_reduce();
 cout <<"Value of parity : " << parity << endl;
 return 1;
```

```
Value of data_bus: ZZZZZZZZ
Value of data_bus: 00001011
Value of addr_bus: XXXXXXXXX00001011
Value of addr_bus: XXXXXXXX11010000
Value of addr_bus: XXXXXX1XX11010000
Value of parity: 1
```

انواع Process از لحاظ اجرا

- (sc_method) Method •
- یکبار صدا زده می شود و پس از فراخوانی امکان متوقف کردن آن وجود ندارد و تا پایان اجرا می شود
 - مناسب برای طراحی بلوکهای منطق ترکیبی مدار (محدود به این حالت نمیباشد)
 - (sc_thread) Thread •
- قابلیت متوقف شدن با دستور ()wait را دارد و با فعال شدن لیست حساسیت، پروسه دوباره فعال می شود
 - (sc_cthread) Clock Thread •
 - مشابه حالت قبل است و فقط حساس به لبه یک کلاک است و نیاز به تعریف لیست حساسیت نیست
 - sc_cthread (name,clock.pos()); •
 - متوقف شدن با (<wait_until (<signal condition>) و پس از پایان شرط بولی، پروسه دوباره فعال می شود

كوئيز كلاسي

• پیادهسازی گیت XOR با استفاده از NAND در SystemC •

- فرض کنید مدل پیادهسازی شده گیت NAND را داریم
 - زمان حل: ۱۰ دقیقه
 - ارسال عكس از طريق كوئرا (۵+ دقيقه)