What is claimed is:

1. An optical glass comprising, in mass percent:

 $\begin{array}{ccc} P_2O_5 & & 15-35\% \\ Nb_2O_5 & & 40-60\% \\ Na_2O & & 0.5\% \text{ to less than 15\% and} \\ BaO & & 3\% \text{ to less than 25\%;} \end{array}$

having a ratio in mass % of (BaO + Nb₂O₅)/{(TiO₂ + WO₃) × 3 + Bi₂O₃ + Nb₂O₅} > 1.0; being free of Pb and As; and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (ν d) within a range from 18 to 27.

2. An optical glass as defined in claim 1 further comprising, in mass %:

$\mathrm{Gd}_2\mathrm{O}_3$	0-5% and/or
K_2O	0-10% and/or
Li ₂ O	0-10% and/or
$\mathrm{Bi}_2\mathrm{O}_3$	0-5% and/or
MgO	0-10% and/or
CaO	0-10% and/or
SrO	0-10% and/or
ZnO	0-3% and/or
SiO_2	0-5% and/or
$\mathrm{B}_{2}\mathrm{O}_{3}$	0-5% and/or
$\mathrm{Al_2O_3}$	0-4% and/or
Ta_2O_5	0-5% and/or
${f ZrO_2}$	0-3% and/or
${ m TiO_2}$	0-5% and/or
WO_3	0-8% and/or
$\mathrm{Sb}_2\mathrm{O}_3$	0 - 0.02%.

- 3. An optical glass as defined in claim 1 which, in X Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02-1975 (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL3 G): Y = 0.0277X + 1.725 and which, in X Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk measured by the Japan Optical Glass Industry Standard JOGIS02-1975 and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL3 R): Y = 0.0273X + 1.7102.
- 4. An optical glass as defined in claim 1 wherein the sum of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS12-1994 (Measuring Method for Bubble in Optical Glass) is Class 1 Class 4 and the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS13-1994 (Measuring Method for Inclusion in Optical Glass) is Class 1 Class 4.
- 5. An optical glass as defined in claim 1 which, in X Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02-1975 (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis representing refractive

index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL5 – G): Y = 0.0329X + 1.7174 and which, in X - Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk measured by the Japan Optical Glass Industry Standard JOGIS02-1975 and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL5 – R): Y = 0.0288X + 1.713.

6. An optical glass as defined in claim 1 comprising, in mass percent:

 P_2O_5 15 – 35%

 Nb_2O_5 40 – 60%

Na₂O 0.5% to less than 15% and

BaO 3% to less than 25%;

and further comprising, in mass %:

 Ta_2O_5

 ZrO_2

 Gd_2O_3 0-4% and/or K_2O 0-6% and/or Li_2O 0% to less than 6% and/or Bi₂O₃0% to less than 5% and/or MgO 0% to less than 10% and/or CaO 0% to less than 10% and/or SrO0% to less than 10% and/or ZnO 0-3% and/or SiO_2 0-5% and/or B_2O_3 0-5% and/or Al_2O_3 0-4% and/or

0-5% and/or

0-3% and/or

 Sb_2O_3 0 - 0.02% and/or TiO_2 0 - 5% and/or WO_3 0 - 8% and/or a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0 - 5%; and having a ratio in mass % of $(BaO + Nb_2O_5)/((TiO_2 + WO_3) \times 3 + Bi_2O_3 + Nb_2O_5)$

7. An optical glass as defined in claim 1 comprising, in mass percent:

 P_2O_5 15-35% V_2O_5 15-35% V_2O_5 V_2O_5 V

and further comprising, in mass %:

> 1.0.

 Gd_2O_3 0.1 - 4% and/or K_2O 0-6% and/or Li_2O 0% to less than 6% and/or Bi₂O₃0% to less than 4.5% and/or MgO 0% to less than 10% and/or CaO 0% to less than 10% and/or SrO0% to less than 10% and/or ZnO 0-3% and/or SiO_2 0% to less than 5% and/or 0% to less than 5% and/or B_2O_3 Al_2O_3 0-4% and/or Ta_2O_5 0-5% and/or ${
m ZrO_2}$ 0-3% and/or Sb_2O_3 0 - 0.01% and/or TiO_2

0-5% and/or

 WO_3

0-8% and/or

a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; and

having a ratio in mass % of (BaO + Nb₂O₅)/ $(TiO_2 + WO_3) \times 3 + Bi_2O_3 + Nb_2O_5$ > 1.0.

- 8. An optical glass as defined in claim 1 which, in X-Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02-1975 (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL8 G): Y = 0.0329X + 1.7245 and which, in X-Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk measured by the Japan Optical Glass Industry Standard JOGIS02-1975 and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL8 R): Y = 0.0288X + 1.7208.
- 9. An optical glass as defined in claim 1 comprising, in mass percent:

 P_2O_5

15 - 30%

 Nb_2O_5

42 - 60%

 Na_2O

0.5% to less than 10% and

BaO

5% to less than 25%;

and further comprising, in mass %:

	$\mathrm{Gd}_2\mathrm{O}_3$	0.1-4% and/or	
	K_2O	0-6% and/or	
	${ m Li}_2{ m O}$	0-2% and/or	
	$\mathrm{Bi}_2\mathrm{O}_3$	0% to less than4.5% and/or	
	MgO	0% to less than 10% and/or	
	CaO	0% to less than 10% and/or	
	SrO	0% to less than 10% and/or	
	ZnO	0-3% and/or	
	SiO_2	0.1% to less than 4% and/or	
	$\mathrm{B}_2\mathrm{O}_3$	0.2% to less than $5%$ and/or	
	$\mathrm{Al}_2\mathrm{O}_3$	0-4% and/or	
	${ m Ta}_2{ m O}_5$	0-5% and/or	
	${ m ZrO_2}$	0-3% and/or	
	$\mathrm{Sb_2O_3}$	0-0.01% and/or	
	TiO_2	0-3% and/or	
	WO_3	0-5% and/or	
	a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F		
	contained in the fluoride or fluorides $0-5\%$; and		
having a ratio in mass % of (BaO + Nb ₂ O ₅)/{(TiO ₂ + WO ₃) \times 3 + Bi ₂ O ₃ + Nb ₂ O ₅ }			
> 1.1.			

10. An optical glass comprising, in mass percent:

P_2O_5	15 - 35%
$\mathrm{Nb}_2\mathrm{O}_5$	40 - 60%
$\mathrm{Gd_2O_3}$	0.1-4%
Na ₂ O	0.5% to less than $10%$
K_2O	0 - 6%

where the total amount of Na₂O and K_2O is 0.5% to less than 10%

$\mathrm{Bi}_2\mathrm{O}_3$	0% to less than 5%
MgO	0% to less than 10%
CaO	0% to less than 10%
SrO	0 to less than 10%
BaO	0.5% to less than 25%
ZnO	0 - 3%
SiO_2	0% to less than 5%
B_2O_3	0.2% to less than 5%
Al_2O_3	0 - 3%
${ m Ta}_2{ m O}_5$	0 - 5%
${ m ZrO_2}$	0 - 3%
$\mathrm{Sb}_2\mathrm{O}_3$	0 - 0.03%

and a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%;

being free of Pb, WO₃ and TiO₂ and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (ν d) within a range from 18 to 27.

11. An optical glass comprising, in mass percent:

P_2O_5	15 –30%
Nb_2O_5	42 - 60%
$\mathrm{Gd}_2\mathrm{O}_3$	0.1-4%
Na ₂ O	0.5 - 9.6%
K_2O	0 - 6%
where the total amount of Na2	O and K ₂ O is 0.5% to 9.6%
Bi_2O_3	0 - 4.5%
MgO	0% to less than 10%
CaO	0% to less than 10%

SrO	0% to less than 10%
BaO	0.5% to less than 25%
ZnO	0 - 3%
SiO_2	0.1% to less than 4%
B_2O_3	0.2% to less than 5%
$\mathrm{Al}_2\mathrm{O}_3$	0 - 3%
Ta_2O_5	0 - 5%
$ m ZrO_2$	0 - 3%
$\mathrm{Sb_2O_3}$	0 - 0.03%

and a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%;

being free of Pb, WO₃ and TiO₂ and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (ν d) within a range from 18 to 27.

- 12. An optical glass as defined in claim 1 wherein the sum of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS12⁻¹⁹⁹⁴ (Measuring Method for Bubbles in Optical Glass) is Class 1 Class 3, the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of Japan Optical Glass Industry Standard JOGIS13⁻¹⁹⁹⁴ (Measuring Method for Inclusion in Optical Glass) is Class 1 Class 3, and the degree of striae shown in Table 2 of the Japan Optical Glass Industry Standard JOGIS11⁻¹⁹⁷⁵ (Measuring Method for Striae in Optical Glass) is Class 1 Class 3.
- 13. An optical glass as defined in claim 1 wherein the degree of striae shown in Table 2 of the Japan Optical Glass Industry Standard JOGIS11-1975 (Measuring Method for Striae in Optical Glass) is Class 1 or Class 2, the sum

of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS12-1994 (Measuring Method for Bubble in Optical Glass) is Class 1 or Class 2, and the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of Japan Optical Glass Industry Standard JOGIS13-1994 (Measuring Method for Inclusion in Optical Glass) is Class 1 or Class 2.

14. An optical glass as defined in claim 1 having a refractive index (nd) within a range from 1.80 to 1.85 and an Abbe number (ν d) within a range from 23.8 to 25.7.