МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ **Кафедра програмних систем і технологій**

Дисципліна **«Алгоритми і структури даних»**

Лабораторна робота № 1.1 Варіант №2

Виконала:	Богатько Олександр Геннадійович	Перевірила:	Юрчук Ірина Аркадіївна
Група	ІП3-12	Дата перевірки	
Форма навчання	Денна		
Спеціальність	121	Оцінка	

2020

Завдання 1.

У наступній таблиці задана множина ребер E для графа

G = (V, E), де V – множина вершин. Для непарних варіантів граф G – неорієнтований, для парних – орієнтований. Зобразити на площині граф G.

Крім того, для кожного варіанта виконати наступні завдання:

- 1) побудувати матрицю суміжності;
- 2)побудувати матрицю інцидентності;
- 3)визначити число вершин;
- 4)визначити число ребер;
- 5)знайти степені всіхвершин;
- 6)побудувати таблицю відстаней графаG;
- 7)знайти діаметр;
- 8)знайти радіус;
- 9)визначити центр графа;
- 10) знайти хроматичне число графа G.

 $E = \{(a, d), (a, e), (a, c), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, f), (d, a), (d, b), (d, d), (e, a), (e, e), (e, f), (f, c), (f, d), (f, e), (f, b)\}$

№1

	A	В	С	D	Е	F
A	0	0	1	1	1	0
В	0	2	1	1	1	0
С	0	0	1	1	0	1
D	1	1	0	2	0	0
Е	1	0	2	0	0	1
F	0	1	1	1	1	0

№2

	Α	В	C	D	Е	F
1	-1	0	0	1	0	0
2	-1	0	0	0	1	0
3	-1	0	1	0	0	0
4	0	2	0	1	0	0
5	0	-1	1	0	0	0
6	0	-1	0	1	0	0
7	0	-1	0	0	1	0
8	0	0	2	0	0	0
9	0	0	-1	1	0	0
10	0	0	-1	0	0	1
11	1	0	0	-1	0	0
12	0	1	0	-1	0	0
13	0	0	0	2	1	0
14	1	0	0	0	-1	0
15	0	0	0	0	2	0
16	0	0	0	0	-1	1
17	0	0	1	0	0	-1
18	0	0	0	1	0	-1
19	0	0	0	0	1	-1
20	0	1	0	0	0	-1

Кількість вершин графа G: V = {a,b,c,d,e,f}

|V| = 6

№4

Кількість дуг графа:

|E| = 20

№5

Степені вершин

	A	В	С	D	Е	F
Додатній степінь	3	4	3	3	3	4
Від'ємний ст.	2	3	4	5	4	2
Загальний ст.	5	6	6	7	6	6

*№*6

Матриця відстаней графа G:

Maip	A	В	С	D	Е	F
A	0	3	1	1	1	2
В	2	1	1	1	1	2
С	3	2	1	1	2	1
D	1	1	2	1	2	3
Е	1	2	2	2	1	1
F	2	1	1	1	1	0

№7

Діаметр графа G(за матрицею в №6) = 3

№8

Радіус графа G = 2

Тадтуст	A	В	С	D	Е	F	r(v)
A	0	3	1	1	1	2	3
В	2	1	1	1	1	2	2
С	3	2	1	1	2	3	3
D	1	1	2	1	2	3	3
Е	1	2	2	2	1	1	2
F	2	1	1	1	1	2	2

Центр графа G – це множина вершин, максимальна відстань від яких у графі G збігається з радіусом цього графа. Отже, {а} –центр даного графа.

Отже, хроматичне число графа $\mathbf{G}=4$, так як степені вершин A=5 F=6 B=C=E=7 D=8

Знайти для заданого в таблиці орієнтованого графа G=(V, E), де V – множина вершин, E – множина ребер:

- 1) число компонент зв'язності;
- 2) цикломатичне число.

Побудуємо матрицю суміжності А для графа(зліва направо):

	A	В	С	D	Е	F
A	0	1	0	0	0	1
В	0	0	0	0	0	0
С	0	1	0	0	0	0
D	1	0	0	0	0	0
Е	0	0	0	1	0	0
F	0	0	1	0	1	0

Знайдемо матриці A, $^{1}A^{2}$, A^{3} , A^{4} , A^{5} .

0	0	1	0	1	0
0	0	0	0	0	0
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	0	0	0
0	1	0	1	0	0

0	1	0	1	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
1	0	0	0	0	0

1	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	1	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1

0	1	0	1	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
1	0	0	0	0	0

За формулою знайдемо T(G):

$$T(G) = E + A1(G) + A2(G) + A3(G) + A4(G) + A5(G)$$

Отримаємо:

1	1	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

Знайдемо матрицю зв'язності S(G), як результат поелементної кон'юнкції матриці T(G) і

транспонованої матриці TT(G)

траненонованог матриці т т(с							
1	1	1	1	1	1		
0	1	0	0	0	0		
0	1	1	0	0	0		
1	1	1	1	1	1		
1	1	1	1	1	1		
1	1	1	1	1	1		

1	1	1	0	0	1
1	1	1	1	1	1
1	1	1	1	0	1
1	1	1	0	0	1
1	1	1	0	0	1
1	1	1	0	0	1

1	1	1	0	0	1
0	1	0	0	0	0
0	1	1	0	0	0
1	1	1	0	0	1
1	1	1	0	0	1
1	1	1	0	0	1

Звідси отримаємо кількість компонент зв'язності G = 4

№2

Визначимо μ икломатичне число орієнтованого графа G за формулою

$$\lambda(G) = m(G) - n(G) + y(G),$$

де y(G) – число компонент зв'язності графа G:

$$m(G)=6, n(G)=7$$

$$\lambda(G) = 7 - 6 + 4 = 5$$

Висновок:

В ході даної лабораторної роботи було опановано навички побудови матриць інцидентності та суміжності, пошуку степенів вершин графа, пошуку відстаней між вершинами; пошуку радіусу, діаметру та центру(ів) графа та його хроматичного числа. Також було досліджено алгоритм пошуку кількості компонент зв'язності графа.