Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization

Minsu Kim*

Seongmin Hong*†

RyeoWook Ko

Soongyu Choi

Hunjong Lee†

Junsoo Kim†

Joo-Young Kim†

Jongse Park

KAIST

† HyperAccel

* Co-first authors who contributed equally to this work

LLM Serving at Scale

LLM serving system should simultaneously handle
 a large number of, long-context requests

Large Batch Size

LLM serving system batches multiple requests (+10,000) from users

Long Context Length

Recent LLM tasks (e.g., RAG, reasoning) involve over tens of thousands of tokens

Larger Batch & Longer Context put pressure on Memory Capacity & Bandwidth

KV Cache Matters for "Bandwidth"

- * NVIDIA A100, Llama2-13B, context length: 1K
- Increasing batch size improves utilization except for attention operation
- Attention operation is bandwidth-bound due to un-sharable KV cache

KV Cache Matters for "Bandwidth"

- * NVIDIA A100, Llama2-13B, context length: 1K
- Increasing batch size improves utilization except for attention operation
- Attention operation is bandwidth-bound due to un-sharable KV cache

Oaken achieves both high performance & accuracy through co-designing quantization algorithm & hardware modules

Overview of Oaken

1) Address memory bottleneck in LLM serving

Design Objectives

(2) Find sweet spot between accuracy & performance

(3) Maximize hardware utilization & performance

Algorithm Design

Threshold-based hybrid grouping

Group shift quantization

Dense-and-sparse encoding

Hardware Design

Streamlined module architecture

Page-based memory management

Key Observations on KV Distribution

Observation 1

KV distribution **varies** across models and decoder layers

Insight 1

Oaken should determine quantization scale for each model and decoder layer

Observation 2

KV distribution is **consistent** across input datasets

Insight 2

Oaken can use shared quantization scale regardless of model inputs

Observation 3

KV distribution has **exceptions** to channel-wise pattern

Insight 3

Oaken should use **multiple quantization groups** segmented by magnitude

Threshold-based Online-Offline Quantization

■ Offline profiling requires **one-time cost** for each model (~100 inferences, ~10 min)

Threshold-based Online-Offline Quantization

Challenges:

- Outliers add storage and hardware costs
- Outliers are hard to quantize due to large magnitude

Group Shift Quantization

■ Group shift algorithm reduces average bitwidth from 5.9 to 4.8 * 10% Sparsity

Fused Dense-and-Sparse Encoding

- 8-bit sparse matrices are hardware-efficient and memory-aligned
- Fused encoding reduces average bitwidth from 4.8 to 4.4 * 10% Sparsity

Oaken Accelerator Integration

* Synthesized on TSMC 28nm

- Oaken modules do not modify the existing compute logic in the accelerator
- Oaken modules are integrated into existing accelerator with low overhead

Oaken Hardware Modules

Quantization Engine

Memory Management Unit

 Oaken modules are designed to maximize hardware and memory utilization

Evaluation Methodology

Models

○ OPT - 6.7B, 13B, 30B*

○ Mistral – 7B

○ Mixtral - 8x7B*

Baselines

Tender (ASIC)
Atom (GPU)
QServe (GPU)
KIVI (GPU)
KVQuant (GPU)

Datasets

WikiText2, PIQA, WinoGrande, and HellaSwag

Group Configuration

○ 4%, 90%, 6% for outer, middle and inner group

Hardware Specification

	NVIDIA A100	Oaken-HBM	Oaken-LPDDR
FP16 TFLOPS	312	270	270
Memory type	HBM	HBM	LPDDR
Memory capacity	80 / 160* GB	80 GB	256 GB
Memory bandwidth	2.0 TB/s	2.0 TB/s	1.1 TB/s

^{*} Used **2 GPUs** with pipeline parallelism

^{*} Used **2 GPUs** with pipeline parallelism

Evaluation Results

Throughput

Oaken-HBM achieves performance improvement of **1.79**× over vLLM (FP16)

Oaken-LPDDR is also a competitive option for larger models and larger batches

* Context length : 2K GPU (vLLM) GPU (QServe) — Oaken-LPDDR GPU (KIVI) Throughput (token/sec) 6K 3K 1000 750 2K 500 2K 1K 250 256 16 128 16 128 16 32 64 256 128 256 64 **Batch Size Batch Size** Batch Size (1) Llama2-7B **Llama2-13B** (3) Llama2-70B

16 / 19

Evaluation Results

Accuracy

	Model	Llama2								
	Model	13B	70B	13B	70B	13B	70B	13B	70B	
	Dataset	WikiText2		PIQA		WinoGrande		HellaSwag		
	Metric	Perplexity (↓)		Accuracy (%)		Accuracy (%)		Accuracy (%)		
	Original	4.88	3.32	80.52	82.70	72.80	80.20	79.38	83.82	
	KIVI	4.90	3.33	79.05	78.07	70.96	76.81	78.97	83.47	
•	QServe*	5.12	3.36	77.48	81.77	66.80	76.09	76.69	83.24	
•	Oaken	4.93	3.34	79.71	82.59	70.56	76.64	78.24	83.50	

^{*} Activated KV quantization feature only

Oaken incurs **0.87%** and **0.32% accuracy loss** compared to FP16 and KIVI Oaken achieves **1.38% higher** accuracy compared to QServe

Additional Results in Our Paper

- Performance evaluation using <u>other LLMs and baselines</u>
- Accuracy and effective bits with varying group configurations
- End-to-end <u>latency breakdown</u>
- Sensitivity study to total <u>sequence length</u>
- Performance evaluation using <u>real-world benchmark</u>
- Synthesized <u>area and power</u>

Conclusion

Oaken

Acceleration solution for LLM inference serving including algorithm-hardware co-designed
 KV cache quantization technique

Contributions

- Addresses memory bandwidth and capacity bottlenecks in modern LLM serving
- Finds sweet spot in accuracy-performance trade-off of KV cache quantization

Future works

- Extending Oaken to handle recent attention architectures (e.g., latent attention, linear attention)
- HyperAccel's high efficiency LLM accelerator with broad quantization support