2021年6月浙江省普通高校招生选考科目考试 化学试题

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 P 31 S 32 Cl 35.5 Fe 56 Cu 64 Br 80 Ag 108 I 127 Ba 137

一、选择题(本大题共25小题,每小题2分,共50分.每小题列出的四个备选项中只有一个是符合题目 要求的,不选、多选、错选均不得分)

- 1. 下列物质属于纯净物的是()
- A. 汽油 B. 食醋 C. 漂白粉 D. 小苏打
- 2. 下列物质属于弱电解质的是()

- A CO₂ B H₂O C HNO₃ D NaOH
- 3. 下列物质的化学成分不正确的是()
- A. 生石灰: Ca(OH)₂ B. 重晶石: BaSO₄
- C. 尿素: CO(NH₂)₂ D. 草酸: HOOC-COOH
- 4. 下列图示表示灼烧操作的是()

- 5. 下列表示不正确的是(
- A. 乙炔的实验式 $\mathbf{C}_2\mathbf{H}_2$

B. 乙醛的结构简式 CH₃CHO

- 6. 下列说法正确的是()
- A. C₆₀和C₇₀互为同位素 B. C₂H₆和C₆H₁₄互为同系物
- C. CO和CO₂互为同素异形体 D. CH₃COOH和CH₃OOCH_{是同一种物质}
- 7. 关于有机反应类型,下列判断不正确的是()

CH = CH + HCl
$$\xrightarrow{\text{$(\#\ell^{3})$}}$$
 CH₂ = CHCl

(加成反应) A.

A. 碳酸镁与稀盐酸反应:

B. 亚硫酸氢钠的水解: $HSO_3^- + H_2Of H_2SO_3 + OH^-$

 $CO_3^{2-} + 2H^+ = CO_2 \uparrow + H_2O$

$$Zn + 2OH^{-} + 2H_{2}O = [Zn(OH)_{4}]^{2^{-}} + H_{2} \uparrow$$

C. 锌溶于氢氧化钠溶液:

$$NO_2^- + NH_4^+ \xrightarrow{\Delta} N_2 \uparrow +2H_2O$$

- D. 亚硝酸钠与氯化铵溶液受热反应:
- 14. 关于油脂,下列说法不正确的是()

$$C_{17}H_{33}COO - CH_2$$

 $C_{17}H_{33}COO - CH$

- A. 硬脂酸甘油酯可表示为 $C_{17}H_{33}COO-CH_2$
- B. 花生油能使酸性高锰酸钾溶液褪色
- C. 植物油通过催化加氢可转变为氢化油
- D. 油脂是一种重要的工业原料,可用于制造肥皂、油漆等
- 15. 已知短周期元素 X、Y、Z、M、Q 和 R 在周期表中的相对位置如下所示,其中 Y 的最高化合价为 +3 . 下列说法不正确的是(

- A. 还原性: $ZQ_2 < ZR_4$
- B. X能从ZO₂中置换出Z
- C. Y能与Fe₂O_{3反应得到Fe}
- D. M 最高价氧化物的水化物能与其最低价氢化物反应
- 16. 关于化合物 ClONO₂ 的性质,下列推测不合理的是()
- A. 具有强氧化性
- B. 与 NaOH 溶液反应可生成两种钠盐
- C. 与盐酸作用能产生氯气
- D. 水解生成盐酸和硝酸
- 17. 相同温度和压强下,关于物质熵的大小比较,合理的是(
- $_{\Lambda}$ 1mol CH₄(g) < 1mol H₂(g)
- $_{\rm B} \quad 1 \text{mol H}_2\text{O}(g) < 2 \text{mol H}_2\text{O}(g)$
- C. $1 \text{mol } H_2O(s) > 1 \text{mol } H_2O(1)$
- D. 1 mol C(s, 金刚石) > 1 mol C(s, 石墨)
- 18. 设 $^{\mathbf{N}_{\mathbf{A}}}$ 为阿伏加德罗常数的值,下列说法不正确的是(
- A. 标准状况下, 1.12L¹⁸O₂中含有中子数为 N_A

- 中的共价键数目为1.5N_A
- C. 100mL 0.1mol·L $^{-1}$ 的 NaOH $_{\Lambda$ 溶液中含有氧原子数为 0.01N_A
- D. $18.9g_{\Xi lk} C_6 H_{33} N_3 O_4$ (相对分子质量: 189) 中的肽键数目为 $0.2N_A$
- 19. 某同学拟用 pH 计测定溶液 pH 以探究某酸 HR 是否为弱电解质。下列说法正确的是(
- A. 25℃时, 若测得 0.01mol·L⁻¹NaR 溶液 pH = 7, 则 HR 是弱酸
- B. 25℃时, 若测得 0.01mol·L⁻¹HR 溶液 pH > 2 且 pH < 7, 则 HR 是弱酸
- C.25°C时, 若测得 HR 溶液 pH = a, 取该溶液 10.0mL, 加基馏水稀释至 100.0mL, 测得 pH = b, b a < 1. 则HR是弱酸
- D. 25 \mathbb{C} 时,若测得 NaR 溶液 pH = a,取该溶液 10.0 mL,升温至 $50\mathbb{C}$,测得 pH = b, a > b,则 HR 是 弱酸
- 同时刻测量放出的 O_2 体积,换算成 N_2O_5 浓度如下表:
- 600 1200 1710 2220 2820 x

 $c(N_2O_5)/(\text{mol} \cdot \text{L}^{-1})$ 1.40 0.96 0.66 0.48 0.35 0.24 0.12

下列说法正确的是(

- A. 600~1200s, 生成 NO_{2 的平均速率为5.0×10⁻⁴ mol·L⁻¹·s⁻¹}
- B. 反应 2220s 时,放出的 O₂ 体积为11.8L (标准状况)
- C. 反应达到平衡时, $v_{\mathbb{H}}(N_2O_5) = 2v_{\mathbb{H}}(NO_2)$
- D. 推测上表中的 x 为 3930
- 21. 相同温度和压强下,关于反应的 ΔH ,下列判断正确的是(

- $A. \quad \Delta H_1 > 0, \Delta H_2 > 0$
- B. $\Delta H_3 = \Delta H_1 + \Delta H_2$
- C. $\Delta H_1 > \Delta H_2$, $\Delta H_3 > \Delta H_2$ D. $\Delta H_2 = \Delta H_3 + \Delta H_4$

22. 某全固态薄膜锂离子电池截面结构如图所示,电极 A 为非晶硅薄膜,充电时 Li^+ 得电子成为 Li 嵌入该薄膜材料中;电极 B 为 LiCoO_2 薄膜;集流体起导电作用.下列说法不正确的是(

- A. 充电时,集流体 A 与外接电源的负极相连
- B. 放电时,外电路通过 a mol 电子时, LiPON 薄膜电解质损失 a mol Li⁺

$$\text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + x\text{e}^- = \text{LiCoO}_2$$

- C. 放电时, 电极 B 为正极, 反应可表示为
- D. 电池总反应可表示为 $\text{Li}_{x}\text{Si} + \text{Li}_{1-x}\text{CoO}_{2}$ 论 $\text{Si} + \text{LiCoO}_{2}$
- 23. 取两份 10mL 0.05mol·L $^{-1}$ 的 $^{\text{NaHCO}_3}$ 溶液,一份滴加 0.05mol·L $^{-1}$ 的盐酸,另一份滴加 0.05mol·L $^{-1}$ NaOH 溶液,溶液的 pH 随加入酸(或碱)体积的变化如图。

下列说法不正确的是(

- A. 由 a 点可知: NaHCO₃溶液中 HCO₃的水解程度大于电离程度
- B. $a \rightarrow b \rightarrow c$ 过程中: $c(HCO_3^-) + 2c(CO_3^{2-}) + c(OH^-)$ 逐渐减小
- c, $a \rightarrow d \rightarrow e$ 讨程中: $c(Na^+) < c(HCO_3^-) + c(CO_3^{2-}) + c(H_2CO_3)$
- D. 令 c 点的 $c(Na^+)+c(H^+)=x$, e 点的 $c(Na^+)+c(H^+)=y$, 则 x>y
- 24. 制备苯甲酸甲酯的一种反应机理如图 (其中Ph-代表苯基)。下列说法不正确的是 ()

- A. 可以用苯甲醛和甲醇为原料制备苯甲酸甲酯
- C. 化合物 3 和 4 互为同分异构体
- 25.下列方案设计、现象和结论都正确的是()
- B. 反应过程涉及氧化反应
- D. 化合物 1 直接催化反应的进行

目的 方案设计 现象和结论

探究乙醇消去反应的 \mathbb{R}^{4mL} 乙醇,加入 \mathbb{R}^{12mL} 浓硫酸、少量 若溴水褪色,则乙醇消去反应的 产物 沸石, 迅速升温至 140℃, 将产生的气体 产物为乙烯

诵入2mL溴水中

- 探究乙酰水杨酸样品 取少量样品,加入3mL蒸馏水和少量乙 若有紫色沉淀生成,则该产品中 醇. 振荡. 再加入 1-2 滴 FeCl₃ 溶液 中是否含有水杨酸 含有水杨酸
- 探究金属钠在氧气中 取少量固体粉末,加入 $^2 \sim 3mL$ 蒸馏水 若无气体生成,则固体粉末为 Na_2O ; 若有气体生成,则固体 燃烧所得固体粉末的 粉末为 Na_2O_2 成分
- 探究 Na₂SO₃ 固体样 取少量待测样品溶于蒸馏水,加入足量 若有白色沉淀产生,则样品已经 稀盐酸,再加入足量 BaCl₂ 溶液 品是否变质 变质
- 26. (4分)(1)已知3种原子晶体的熔点数据如下表:

金刚石 碳化硅 晶体硅

> 3550 2600 1415

熔点/℃

金刚石熔点比晶体硅熔点高的原因是

(2) 提纯含有少量氯化钠的甘氨酸样品:将样品溶于水,调节溶液的 $^{
m pH}$ 使甘氨酸结晶析出,可实现甘氨

酸的提纯。其理由是

27. (4 分) 将 $^{3.00g}$ 某有机物(仅含 C、H、O 元素,相对分子质量为 150)样品置于燃烧器中充分燃烧,

依次通过吸水剂、^{CO}2吸收剂,燃烧产物被完全吸收.实验数据如下表:

实验前质量/g

20.00 26.48

头短削灰里/8

21.08 30.00

实验后质量/g

请回答:

- (1) 燃烧产物中水的物质的量为 mol。
- (2) 该有机物的分子式为____(写出计算过程)。

28. (10 分) 固体化合物 X 由 3 种元素组成,某学习小组开展如下探究实验。

其中, 白色沉淀 B 能溶于 NaOH 溶液。

请回答:

- (1) 白色固体 C 的化学式是_____, 蓝色溶液 D 中含有的溶质是_____(用化学式表示)。
- (3) 蓝色溶液 $A = N_2 H_5^+$ 作用,生成一种气体,溶液蓝色褪去,同时生成易溶于硝酸的白色沉淀。
- (1) 实验室可用铜与浓硫酸反应制备少量 $^{\mathbf{SO}_2}$:

$$Cu(s) + 2H_2SO_4(1) = CuSO_4(s) + SO_2(g) + 2H_2O(1) \qquad \Delta H = -11.9kJ \cdot mol^{-1}$$

判断该反应的自发性并说明理由____。

$$(2)$$
 已知 $2SO_2(g) + O_2(g)$ 论 $2SO_3(g)$ $\Delta H = -198kJ \cdot mol^{-1}$

850K 时,在一恒容密闭反应器中充入一定量的 SO_2 和 O_2 ,当反应达到平衡后测得 SO_2 、 O_2 和 SO_3 的浓

度分别为 $6.0 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$ 、 $8.0 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$ 和 $4.4 \times 10^{-2} \text{mol} \cdot \text{L}^{-1}$ 。

①该温度下反应的平衡常数为____。②平衡时 SO₂ 的转化率为_____。

- (3) 工业上主要采用接触法由含硫矿石制备硫酸。
- ①下列说法正确的是 。

A.须采用高温高压的反应条件使SO₂氧化为SO₃

- B.进入接触室之前的气流无需净化处理
- C.通入过量的空气可以提高含硫矿石和 SO_2 的转化率
- D.在吸收塔中官采用水或稀硫酸吸收 SO₃ 以提高吸收速率
- ②接触室结构如图 1 所示,其中 1~4 表示催化剂层。图 2 所示进程中表示热交换过程的是_

$$A. a_1 \rightarrow b_1$$

 $a_1 a_1 \rightarrow b_1$ $b_1 \rightarrow a_2$ $c_1 a_2 \rightarrow b_2$ $b_2 \rightarrow a_3$ $c_3 \rightarrow b_3$ $c_4 a_4 \rightarrow b_4$

③对于放热的可逆反应,某一给定转化率下,最大反应速率对应的温度称为最适宜温度。在图 3 中画出反 $2SO_2(g) + O_2(g)$ **谵** ? $2SO_3(g)$ 的转化率与最适宜温度(曲线 I)、平衡转化率与温度(曲线 II)的关 系曲线示意图(标明曲线 [、Ⅱ)。

第29题图3

第29題图4

(4) 一定条件下,在 $Na_2S - H_2SO_4 - H_2O_2$ 溶液体系中,检测得到 pH — 时间振荡曲线如图 4,同时观察

到体系由澄清→浑浊→澄清的周期性变化。可用一组离子方程式表示每一个周期内的反应进程,请补充其中的 2 个离子方程式。

$$\mathbf{S}^{2^-} + \mathbf{H}^+ = = \mathbf{H} \mathbf{S}^-$$

$$\mathbf{H} \mathbf{S}^- + \mathbf{H}_2 \mathbf{O}_2 + \mathbf{H}^+ = = \mathbf{S} \downarrow + 2 \mathbf{H}_2 \mathbf{O}$$

$$\mathbf{II}. \\ 1 \mathbf{IV}. \\ 2 \mathbf{O}_2 + \mathbf{H}^+ = = \mathbf{S} \mathbf{O}_2 + \mathbf{H}^+ = \mathbf{S} \mathbf{O}_2 + \mathbf{O}_2$$

30. $(10 \, \text{分})$ Cl_2O 是很好的氯化剂,实验室用下图装置(夹持仪器已省略)制备高纯 Cl_2O 。已知:

$$HgO + 2Cl_2 \longrightarrow HgCl_2 + Cl_2O$$

① , 合适反应温度为18~25℃;

$$2$$
HgO+ 2 Cl₂ $\xrightarrow{\Delta}$ 2HgCl₂+O₂

副反应:

②常压下, Cl₂沸点-34.0℃, 熔点-101.0℃, Cl₂O沸点 2.0℃, 熔点-120.6℃。

 $Cl_2O + H_2O$ **论** ? 2HClO Cl_2O $ECCl_4$ 中的溶解度远大于其在水中的溶解度。请回答:

- (1) ①装置 A 的作用是去除原料气中的少量水分,可用的试剂是
- ②将上图中装置组装完整,虚框 D 中应选用____。
- (2) 有关反应柱 B, 须进行的操作是____。

A.将 HgO 粉末热处理除水分、增加表面积后填入反应柱

- B.调控进入反应柱的混合气中 $^{ ext{Cl}_2}$ 和 $^{ ext{N}_2}$ 的比例
- C.调控混合气从下口进入反应柱的流速
- D.将加热带缠绕于反应柱并加热

- (3)装置 C,冷却液的温度通常控制在 -80 ~ -60 ℃.反应停止后,温度保持不变,为减少产品中的 $^{\hbox{\bf Cl}_2}$ 含量,可采用的方法是____。
- (4) 将纯化后的 Cl_2O 产品气化,通入水中得到高纯度 Cl_2O 的浓溶液,于阴凉暗处贮存.当需要 Cl_2O 时, Ol_2O 浓溶液用 Ol_2O 浓溶液

针对萃取分液,从下列选项选择合适操作(操作不能重复使用)并排序: $c \rightarrow ($) $\rightarrow ($) $\rightarrow e \rightarrow d \rightarrow f$)。

a.检查旋塞、玻璃塞处是否漏水 b.将溶液和 CCl₄ 转入分液漏斗 c.涂凡士林

d.旋开旋塞放气 e.倒转分液漏斗,小心振摇 f.经几次振摇并放气后,将分液漏斗置于铁架台上静置 g.打开旋塞,向锥形瓶放出下层液体 h.打开旋塞,待下层液体完全流出后,关闭旋塞,将上层液体倒入锥形瓶

(5) 产品分析: 取一定量 Cl_2O 浓溶液的稀释液,加入适量 CCl_4 、过量 KI 溶液及一定量的稀 H_2SO_4 ,充分反应。用标准 Na_2S_2O_3 溶液滴定(滴定 I);再以酚酞为指示剂,用标准 NaOH 溶液滴定(滴定 II)。已知产生 I_2 的反应(不考虑 Cl_2 与水反应):

$$2I^{-} + Cl_{2} = I_{2} + 2Cl^{-}$$
 $4I^{-} + Cl_{2}O + 2H^{+} = 2I_{2} + H_{2}O + 2Cl^{-}$

$$2I^{-} + HClO + H^{+} = I_{2} + H_{2}O + Cl^{-}$$

实验数据如下表:

加入量
$$n(H_2SO_4)/mol$$
 2.505×10⁻³

滴定 I 测出量
$$n(I_2)/ \text{ mol}$$
 2.005×10⁻³

滴定肛测出量
$$n(H_2SO_4)/mol$$
 1.505×10^{-3}

 $Na_2S_2O_3$ 标准 $Na_2S_2O_3$ 溶液滴定时,无需另加指示剂。判断滴定 I 到达终点的实验现象是_____。

②高纯度 Cl_2O 浓溶液中要求 $n\left(\text{Cl}_2\text{O}\right)/n\left(\text{Cl}_2\right) \ge 99$ $(\text{Cl}_2\text{O}_{11}\text{HClO}_{12}\text{O}_{12}\text{O}_{11})$ 。结合数据分析所制

备的^{Cl₂O}浓溶液是否符合要求。

31. (12分) 某课题组研制了一种具有较高玻璃化转变温度的聚合物 P, 合成路线如下:

已知:
$$R_1 - Br \xrightarrow{NaN_1} R_1 - N_3 \xrightarrow{ER_2} R_1 - N = N$$

请回答:

- (1) 化合物 A 的结构简式是_____; 化合物 E 的结构简式是_____。
- (2) 下列说法不正确的是
- A. 化合物 B 分子中所有的碳原子共平面
- B. 化合物 D 的分子式为 $C_{12}H_{12}N_6O_4$
- C. 化合物 D和 F发生缩聚反应生成 P
- D. 聚合物 P 属于聚酯类物质
- (3) 化合物 C 与过量 NaOH 溶液反应的化学方程式是____。
- (4) 在制备聚合物 P 的过程中还生成了一种分子式为 $C_{20}H_{18}N_6O_8$ 的环状化合物。用键线式表示其结构
- (5) 写出 3 种同时满足下列条件的化合物 F 的同分异构体的结构简式 (不考虑立体异构体): _____。
- ① H NMR 谱显示只有 2 种不同化学环境的氢原子 ②只含有六元环

(6)以乙烯和丙炔酸为原料,设计如下化合物的合成路线(用流程图表示,无机试剂、有机溶剂任选)。

参考答案

一、选择题(本大题共25小题,每小题2分,共50分)

1 2 3 4 5 6 7 8 9 10

D	В	Α	В	Α	В	С	D	Α	С
11	12	13	14	15	16	17	18	19	20
В	С	Α	Α	Α	D	В	С	В	D
21	22	23	24	25					
C	В	C	D	D					

二、非选择题(本大题共6小题,共50分)

26. (4分)

- (1) 原子半径C < Si (或键长C-C < Si-Si), 键能C-C > Si-Si
- (2) 当调节溶液 pH 至甘氨酸主要以两性离子的形态存在时(即等电点,此时两性离子间相互吸引力最大),溶解度最小
- 27. (4分)
- (1) 0.0600
- (2) $C_4H_6O_6$

计算过程: $n(H) = 0.0600 \times 2 = 0.120 \text{(mol)}$.

$$n(C) = \frac{30.00 - 26.48}{44} = 0.0800 (\text{mol})$$

$$n(O) = \frac{3.00 - 0.0800 \times 12 - 0.120 \times 1}{16} = 0.120 \text{(mol)}$$

最简式为 $C_2H_3O_3$,由相对分子质量 150 得分子式为 $C_4H_6O_6$ 。

28. (10分)

$$(1)$$
 Al_2O_3 $Cu(NO_2)_2$, NH_4NO_3 , $AgNO_3$, HNO_3

(2) CuAl₂Cl₈

$$_{(3)}$$
 $_{(1)}$ $^{(1)}$ $^{(2)}$ $^{(3)}$ $^{(1)}$ $^{(1)}$ $^{(3)}$ $^{(1)}$ $^{(1)}$ $^{(2)}$ $^{(3)}$ $^{(1)}$ $^{(3)}$ $^{(3)}$ $^{(1)}$ $^{(3)}$ $^$

②将白色沉淀溶于硝酸,得到蓝色溶液,说明有 $^{ ext{Cu}}$ 元素,再向溶液中加入 $^{ ext{AgNO}_3}$ 溶液,有白色沉淀,说明有 $^{ ext{Cl}}$ 元素

29. (10分)

(1) 不同温度下都能自发,是因为 $\Delta H < 0, \Delta S > 0$

$$(3) \ \textcircled{1}C \qquad \textcircled{2}BDF$$

$$HS^- + 4H_2O_2 = SO_4^2 + 4H_2O + H^+$$

(4) ①

$$S + 3H_2O_2 = SO_4^{2-} + 2H_2O + 2H^+$$

2

30. (10分)

- (1)①浓 H_2SO_4 ②a
- (2) ABC (3) 抽气(或通干燥氮气) (4) abg
- (5) ① CCl₄ 中由紫红色突变到无色

②溶液中 Cl_2O_{7} 和 Cl_2 分别为 1.000×10^{-3} mol $_5\times10^{-6}$ mol $_7$ $n(Cl_2O)/n(Cl_2)=200>99$,符合要求 31.(12 分)

(2) C

$$O \longrightarrow B_{r}$$
 $O \longrightarrow B_{r}$
 $O \longrightarrow$

$$\begin{pmatrix} 0 & N=N & 0 \\ 0 & N=N & 0 \\ 0 & N=N & 0 \end{pmatrix}$$

$$(4)$$