Применение MDL (Minimal Descripton length) принципа Риссанена для марковских процессов.

Ремизова Анна Петровна

21 апреля 2023 г.

Что нового

- 1. Оказалось, что я неверно считала диграммы: я использовала в Pyhton метод строки s.count(substring), который считает непересекающиеся вхождения подстроки. Пример: для строки '00000' при подсчёте n(00) данный метод выдавал ответ 2 при правильном ответе 4. Т.о., n(00) и n(11) занижались. Эти моменты я исправила и обновила таблицы (1, 2, 3)
- 2. Также в таблицах (1, 2, 3) в 1 строку каждой ячейки добавила значение MDL для данных k, l, на второй строке везде логарифм, затем p, q.
- 3. Добавила Утверждение (1) про независимые оптимальные значения p и q и доказательство к нему.
- 4. Добавила Таблицу (4) с количеством диграмм в рассмотренных случаях $pi, \sqrt{2}, \sqrt{3}$, а также (в процессе) оптимальные значения $k, l, \log \frac{1}{\mu(x)}, MDL$ к ним. При поиске оптимального значения уже учитывала тот факт, что p и q можно искать независимо друг от друга.

Введение

Есть данные, мы хотим подобрать марковскую цепь, для которой наибольшая вероятность получить заданную траекторию. По Риссанену, если мы хотим предсказать, что будет дальше, то должны сравнивать друг с другом гипотезы по их сложности, причём даём преимущество простым гипотезам. Выражения для Description length будет выглядеть следующим образом:

$$C(\mu) + \log_2 \frac{1}{\mu(x)} \tag{1}$$

где $C(\mu)$ – complexity, μ – распределение вероятности.

Марковские цепи с 2 состояниями

Для начала рассмотрим простые марковские цепи. Пусть марковская цепь состоит из 2 состояний. Дана последовательность состояний Марковской цепи из 2 состояний: 0 и 1. Найти оптимальные переходные вероятности p из 0 в 1 и q из 1 в 0 по принципу Риссанена MDL.

Для решения этой задачи запишем вероятность получения заданной реализации: пусть n(ij) – число переходов из состояния i в состояние j, тогда:

$$P_c(x) = p^{n(01)} \cdot (i-p)^{n(00)} \cdot q^{n(10)} \cdot (1-q)^{n(11)} \to max$$
 (2)

$$\log_2 \frac{1}{P_c(x)} = -(n(01) \cdot \log_2 p + n(00) \cdot \log_2 (1-p) + n(10) \cdot \log_2 q + n(11) \cdot \log_2 (1-q))$$
 (3)

Сложность $C(\mu)$ будем определять как суммарную длину записи p и q в двоичной системе счисления. Пусть вероятность p имеет k знаков в двоичной системе, q-l знаков, тогда $C(\mu)=k+l$. Далее рассмотрим несколько реализаций Марковских цепей и исследуем, как меняются значения в зависимости от k и l.

Таблица с двоичными значениями

В Таблицах 1, 2, 3 в каждой ячейке представлены сначала оптимальные (минимальные, т.к. ищем минимальную описательную длину) значения $\log_2\frac{1}{\mu(x)}=-(n_{01}\log_2p+n_{00}\log_2(1-p)+n_{10}\log_2q+n_{11}\log_2(1-q))$, затем сложность по Риссанену, а после - значения p и q, при которых оно достигается, представленные в двоичной системе счисления, для марковских цепей с траекториями, соответствующими 30 первым знакам π , sqrt(2), sqrt(3) соответственно. По горизонтали отмечены значения l - длина перебираемых q в двоичной системе, по вертикали - значения k - длина перебираемых p в двоичной системе.

Выводы к Таблице 1 для π : заметим, что при фиксированной длине l (по столбцам) двоичной записи переходной вероятности q оптимальное значение q неизменно, но при этом с увеличением k оптимальное значение логарифма уменьшается. Аналогично для фиксированного k (по строкам).

Выводы к Таблице 2: для $\sqrt{2}$ то же, что и для π .

Выводы к Таблице 3: для $\sqrt{3}$ результаты уже отличаются от π , но наблюдаются те же закономерности. Отличие $\sqrt{3}$ от π и $\sqrt{2}$ в количестве диграмм в их двоичной записи, были рассмотрены первые 30 знаков для каждого числа, не считая точки. Если для π и $\sqrt{2}$ распределение количества диграмм близко к равномерному, то для $\sqrt{3}$ оно менее сбалансированно: количество диграмм 00 меньше остальных, а диграмм 11 - больше (см. Таблицу 4).

Утверждение 1 Оптимальное значение p не зависит от q и наоборот, оптимальное значение q не зависит от p.

Доказательство. Рассмотрим выражение (3) для логарифма. Значения n(00), n(01), n(10), n(11) – постоянные, и данное выражения можно представить в виде линейной комбинации двух функций $f_1(p) + f_2(q)$. Соотвественно, при максимизации всего выражения (логарифм (3) должен быть маленьким, а так как перед всем выражением стоит минус, то выражение в скобках должно быть большим), так как переменные p и q содержатся в отдельных слагаемых, необходимо найти минимум отдельно для $f_1(p)$ и $f_2(q)$, друг на друга их значения при минимизации не влияют.

Таблица 1: Таблица оптимальных зн-й р и q в двоичной записи для π

k / l	1	2	3	4	5	6
1	32.0	32.0	32.0	31.9891	31.9521	31.9521
	28.0	28.0	28.0	27.9891	27.9521	27.9521
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.1001	0.10001	0.100010
2	34.0	34.0	34.0	33.9891	33.9521	33.9521
	28.0	28.0	28.0	27.9891	27.9521	27.9521
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.100	0.1001	0.10001	0.100010
3	36.0	36.0	36.0	35.9891	35.9521	35.9521
	28.0	28.0	28.0	27.9891	27.9521	27.9521
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.100	0.1001	0.10001	0.100010
4	37.9664	37.9664	37.9664	37.9555	37.9185	37.9185
	27.9664	27.9664	27.9664	27.9555	27.9185	27.9185
	0.1001	0.1001	0.1001	0.1001	0.1001	0.1001
	0.1	0.10	0.100	0.1001	0.10001	$ \ 0.100010\ $
5	39.9464	39.9464	39.9464	39.9355	39.8985	39.8985
	27.9464	27.9464	27.9464	27.9355	27.8985	27.8985
	0.10001	0.10001	0.10001	0.10001	0.10001	0.10001
	0.1	0.10	0.100	0.1001	0.10001	0.100010
6	41.9464	41.9464	41.9464	41.9355	41.8985	41.8985
	27.9464	27.9464	27.9464	27.9355	27.8985	27.8985
	0.100010	0.100010	0.100010	0.100010	0.100010	$ \ 0.100010 \ $
	0.1	0.10	0.100	0.1001	0.10001	0.100010

Анализ диграмм

Таблица 2: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{2}$

k / l	1	2	3	4	5	6
1	32.0	32.0	31.9148	31.7965	31.7965	31.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.101	0.1001	0.10010	0.100101
2	34.0	34.0	33.9148	33.7965	33.7965	33.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.101	0.1001	0.10010	0.100101
3	36.0	36.0	35.9148	35.7965	35.7965	35.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.101	0.1001	0.10010	0.100101
4	38.0	38.0	37.9148	37.7965	37.7965	37.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	0.1	0.10	0.101	0.1001	0.10010	0.100101
5	40.0	40.0	39.9148	39.7965	39.7965	39.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000
	0.1	0.10	0.101	0.1001	0.10010	0.100101
6	42.0	42.0	41.9148	41.7965	41.7965	41.795
	28.0	28.0	27.9148	27.7965	27.7965	27.795
	0.100000	0.100000	0.100000	0.100000	0.100000	0.100000
	0.1	0.10	0.101	0.1001	0.10010	0.100101

Таблица 3: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{3}$

k / l	1	2	3	4	5	6
1	32.0	32.0	32.0	31.8419	31.8419	31.8419
	28.0	28.0	28.0	27.8419	27.8419	27.8419
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.0111	0.01110	0.011100
2	32.9053	32.9053	32.9053	32.7472	32.7472	32.7472
	26.9053	26.9053	26.9053	26.7472	26.7472	26.7472
	0.11	0.11	0.11	0.11	0.11	0.11
	0.1	0.10	0.100	0.0111	0.01110	0.011100
3	34.9053	34.9053	34.9053	34.7472	34.7472	34.7472
	26.9053	26.9053	26.9053	26.7472	26.7472	26.7472
	0.110	0.110	0.110	0.110	0.110	0.110
	0.1	0.10	0.100	0.0111	0.01110	0.011100
4	36.8182	36.8182	36.8182	36.6601	36.6601	36.6601
	26.8182	26.8182	26.8182	26.6601	26.6601	26.6601
	0.1011	0.1011	0.1011	0.1011	0.1011	0.1011
	0.1	0.10	0.100	0.0111	0.01110	0.011100
5	38.8182	38.8182	38.8182	38.6601	38.6601	38.6601
	26.8182	26.8182	26.8182	26.6601	26.6601	26.6601
	0.10110	0.10110	0.10110	0.10110	0.10110	0.10110
	0.1	0.10	0.100	0.0111	0.01110	0.011100
6	40.8132	40.8132	40.8132	40.6552	40.6552	40.6552
	26.8132	26.8132	26.8132	26.6552	26.6552	26.6552
	0.101101	0.101101	0.101101	0.101101	0.101101	0.101101
	0.1	0.10	0.100	0.0111	0.01110	0.011100

Таблица 4: Числа, количество диграмм в них, оптимальные k и l

Число	n(00)	n(01)	n(10)	n(11)	k	1	$\log_2 \frac{1}{\mu(x)}$
π	6	7	8	7			
$\sqrt{2}$	7	7	8	6			
$\sqrt{3}$	3	7	8	10			