Due Friday, January 27

- 1. Find a basis for the following vector spaces. In each case, prove it is a basis and state the dimension of the vector space.
 - (a) $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_1 + 3x_2 x_4 = x_3 + x_4 = 0\}$
 - $\text{(b) } \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \mid \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0 \right\}, \text{ where } \cdot \text{ denotes matrix multiplication}$
- 2. Let X be any set, and let $V = \{f : X \to \mathbb{F}\}$ be the vector space of functions on X with pointwise addition, i.e. (f+g)(x) = f(x) + g(x) for all $f, g \in V$.
 - (a) For each $x \in X$, let $f_x \in V$ be the vector defined by

$$f_x(y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

For any finite subset $\{x_1, x_2, \dots, x_n\} \subset X$, show that $\{f_{x_1}, f_{x_2}, \dots, f_{x_n}\}$ is linearly independent.

- (b) When is V finite-dimensional? When it is finite-dimensional, what is its dimension? Your answers should be stated in terms of X.
- 3. (Ax 2.B.8) Suppose U and W are subspaces of V such that $V = U \oplus W$. Suppose also that u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

is a basis of V.

- 4. (Ax 2.C.2) Show that the subspaces of \mathbb{R}^2 are precisely $\{0\}$, \mathbb{R}^2 , and all lines in \mathbb{R}^2 through the origin.
- 5. (Ax 2.C.5) Let $\mathcal{P}_4(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 \mid a_i \in \mathbb{F}\}$
 - (a) Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) \mid p''(6) = 0 \}$. Find a basis of U.
 - (b) Extend the basis in part (a) to a basis of $\mathcal{P}_4(\mathbb{R})$.
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ such that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.
- 6. (Ax 2.C.12) Suppose U and W are both five-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.
- 7. (Ax 2.C.15) Suppose V is finite-dimensional, with $\dim V = n \geq 1$. Prove that there exist 1-dimensional subspaces U_1, \ldots, U_n of V such that

$$V = U_1 \oplus \cdots \oplus U_n$$
.