The Weyl Group Lemma (Simple roots) 9 $\sqrt{2}$ $\sqrt{2}$ that is, I such that 021.... Zt = 021.... Zt-1 - 28+1 - ... Zt-1. Corollary => 5, ... Tat (at) < 0 W = Subgrip generated by (2 ; XE) {

11 & J 3 X EAZ

To show $W = W^1$ $W' \subseteq W$

W = Subgrp. 11

Suppose $(\sigma_0(\delta)_g \chi) = 0$ for some $\chi \in A$ => (8900-12)=0 >root => V lies on hyperplane ⇒ € 8 îs reguler. =) of (8) lies in tend weep Chamber wirt. A Corollary It $A_9 A^1$ are bases of Φ_9 then $A = CW_9$ $\sigma(A^1) = A_9$ regular 748 rEE AS Weyl Chambers. Prot For B' 9 3 some (regular

For B' 9 3 some (regular

**For B' 9 3 some (regular) M(x1) = {B & # : (x1, B)>0? $\exists \sigma \in W'$ 8,4 $\sigma(v)$ is in indecomposed the fund week chamber worth A.

Theorem Every base 1 arises from some regular Pount

$$\begin{pmatrix} \delta_{9} \beta \end{pmatrix} \qquad 9 \\
\begin{pmatrix} \frac{1}{2} \leq \lambda_{9} \beta \end{pmatrix} = \frac{1}{2} \leq \begin{pmatrix} \lambda_{9} \beta \end{pmatrix} \qquad \sum_{k=0}^{\infty} C_{k}$$

$$\nabla_{\beta}(S) = S - \beta$$

$$S - 2 (G\beta\beta)$$

$$(\beta, \beta)$$

$$(\beta, \beta)$$

$$(\beta - \beta)$$

$$(\beta - \beta)$$

> W=W

Lemma $\sigma(\Delta) = \Delta_g \quad \text{for some } \sigma \in \mathbb{W}$ $\Rightarrow \sigma = 1$ Proof : $\sigma \neq 1 \Rightarrow \text{withe } \sigma = \alpha_1 - \cdots \alpha_k$ such that t is minimals $\Rightarrow \sigma(\lambda_k) \neq 0$ $\chi_k \notin \Delta \Rightarrow \sigma(\lambda_k) \notin \Delta$

For any $\sigma \in W_g$ l(σ) is the minimal number of simple reflections length s.t. $\sigma = \sigma_1 \dots \sigma_{g}$ log $\sigma \in W_g$ length $\sigma \in V_g$ $\sigma \in$

 $\frac{160}{160} = n(0) \quad 0 \quad 0 \in \mathbb{N}$

Proof of Use induction L(o) $(\sigma) = 0 \Rightarrow \sigma = 1 \Rightarrow \pi(\sigma) = 0$ typothosis of TEW, l(T) < l(T) + then l(T)=n(J) and let $\sqrt{g} = \sqrt{\chi} \Rightarrow \sigma(\chi) < 0$ Then $N(\sigma \sigma_{\perp}) = N(\sigma) - 1$ $(\overline{0}_{0})(\lambda) > 0 \leftarrow$ germutes all the roots calept &. $\sigma_{2}^{2}=1 \Rightarrow \ell(\sigma_{2})=\ell(\sigma)-1$ \Rightarrow $l(\sigma q) = n(\sigma q)$ $\Rightarrow l(\sigma)-1 = n(\sigma)-1 \Rightarrow l(\sigma)=n(\sigma)$ @ Griven Ag Let G(A) to be the fundamente weyl Champer Lemma Let Mg V E C(1). If JH=V for some JEW,

then of = of of st. of (u)=u, 1 = i < t $M = \lambda$. Proof & induction on 260-(10)=0 > 0=1 > M=> (6)>0 ⇒ n (0)>0 $\Rightarrow \exists d \in \Delta \text{ set} \cdot \sigma(d) < 0$ $0 \geq (\gamma_9 \circ C_2) = (\sigma^{-1}(\gamma)_9 2) = (\mu_9 2) \geq 0$ $(\mu_{2}) = 0 \Rightarrow (\overline{2}) = 1$ 1(00) < 10) do the same with 602

(<) > o(i) > o(j)