Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

13ª Aula Teórica

Sumário:

Cap. 9

Osciladores acoplados: Modos Normais.

Osciladores acoplados forçados.

Resolução de problemas.

Bibliografia:

MSF 2023 - T 13

Capítulo 9 Osciladores Acoplados e Ondas

Waves and oscillations (bhaskar-kamble.github.io)

Programmable coupled oscillators for synchronized locomotion,

Dutta et al., Nature Communications, 2019

MSF 2023 - T 13 3

Modelos da matéria

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Como são as oscilações? Que frequências?

2 corpos A e B acoplados através de uma mola de constante elástica k', e ligados a um ponto fixo através de molas de constante elástica k.

Como são as oscilações? Que frequências?

Vamos tentar encontrar a lei do movimento dos 2 corpos.

- Que forças aplicada a cada um dos corpos?
- Equação dinâmica de Newton para cada corpo
- Resolver a eq. dinâmica pelo método de Euler-Cromer (oscilações)

Mola: Posição de equilíbrio e comprimento da mola

Equilíbrio:

Posição x_{eq} e comprimento da mola l_{eq}

Mola distendida:

O afastamento $x-x_{eq}$ à posição de equilíbrio é quanto o comprimento da mola l aumentou $x-x_{eq}=l-l_{eq}$

MSF 2023 - T 13

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Vamos tentar encontrar a lei do movimento dos 2 corpos segundo o eixo OX – oscilações longitudinais

Que forças aplicada a cada um dos corpos?

Corpo A:
$$F_{1A} = -k (x_A - x_{Aeq})$$
 Corpo B: $F_{3B} = -k (x_B - x_{Beq})$ $F_{2A} = +k'(x_B - x_A)$ $F_{2B} = -k'(x_B - x_A) = -F_{2A}$

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Vamos tentar encontrar a lei do movimento dos 2 corpos segundo o eixo OX – oscilações longitudinais

Equação dinâmica de Newton para cada corpo

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$
Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$

Lo dependência em xA

Note: as equações estão acopladas: Na equação do corpo A aparece a coordenada do corpo B

1.25

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k(x_A - x_{Aeq}) - k'((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Cálculo Numérico:

$$k = 1\frac{N}{m}$$
; $k' = 0.5\frac{N}{m}$; $m = 1 \text{ kg}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$

$$v_{Ax0} = v_{Bx0} = 0$$

1.15
| E | 1.10 | Periódice ! | 1.05 | 1.00 | Xaeq | 0.95 | 1.00 | Xaeq | 1.00 | Xaeq

10

2 Osciladores Harmónicos Simples Acoplados

20

t (s)

30

Movimento não parece periódico.

Temos de aumentar o instante final para

se verificar se existe repetição.

→DÉ periódico

MSF 20123 - T 1

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

$$k=1\frac{\rm N}{\rm m}$$
; $k'=0.5\frac{\rm N}{\rm m}$; $m=1~{\rm kg}$; $x_{Aeq}=1.0~{\rm m}$ $x_{Beq}=1.2~{\rm m}$

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} + 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

A mola do meio não interfere

Movimento periódico harmónico

T= 6.283 s
$$A = x_{eq} + 0.05$$
 m

$$\omega_1 = 1 \text{ rad/s}$$

2 Osciladores Harmónicos Simples Acoplados

2 corpos A e B acoplados através de uma mola de constante elástica k', e Ligados a um ponto fixo através de molas de constante elástica k

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

$$k=1\frac{N}{m}$$
; $k'=0.5\frac{N}{m}$; $m=1\ {\rm kg}$; $x_{Aeq}=1.0\ {\rm m}$ $x_{Beq}=1.2\ {\rm m}$

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} - 0.05 \text{ m}$

$$v_{Ax0} = v_{Bx0} = 0$$

Corpos com movimento em espelho

Movimento periódico harmónico

T= 4.442 s
$$A = x_{eq} + 0.05$$
 m

$$\omega_2 = 1.414 \text{ rad/s}$$

t (s)

movimento sinusoidal simples

MSF 201233 - T 13

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$

Condições iniciais:

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq}$$

$$v_{Ax0} = v_{Bx0} = 0$$

Movimento não periódico

É uma sobreposição dos modos normais?

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$
?

MSF 2023 - T 13

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

Substituindo

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Obtêm-se (problema de valores e vetores próprios):
$$\omega_1 = \sqrt{\frac{k}{m}}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}}$

Sobreposição dos dois modos normais é solução válida.

E a amplitudes e as fases iniciais: A_1, A_2, ϕ_1 e ϕ_2 ?

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \\ v_{xA} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) - \omega_2 A_2 \sin(\omega_2 t + \phi_2) \\ v_{xB} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) + \omega_2 A_2 \sin(\omega_2 t + \phi_2) \end{cases}$$

$$\text{para t} = 0 \begin{cases} x_{eqA} + 0.05 = x_{eqA} + A_1 \cos(\phi_1) + A_2 \cos(\phi_2) \\ x_{eqB} = x_{eqB} + A_1 \cos(\phi_1) - A_2 \cos(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) - \omega_2 A_2 \sin(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) + \omega_2 A_2 \sin(\phi_2) \end{cases}$$

4 equações a 4 incógnitas.

$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$

$$v_{Ax0} = v_{Bx0} = 0$$

Movimento não periódico

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Certo! Com
$$\omega_1 = \sqrt{\frac{k}{m}}$$
 e $\omega_2 = \sqrt{\frac{k+2k\prime}{m}}$

Mas é uma sobreposição de 2 movimentos harmónicos

Qualquer movimento de 2 corpos acoplados por interação elástica é uma sobreposição de MODOS NORMAIS

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m}$$
 $x_{Aeq} = 1.2 \text{ m}$ $k = 1 \frac{\text{N}}{\text{m}}; k' = 0.5 \frac{\text{N}}{\text{m}}; m = 1 \text{ kg}$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$

$$v_{Ax0} = v_{Bx0} = 0$$

Problema 9.1:

Obter a evolução dos corpos A e B

- a) Usando o método de Euler-Cromer
- b) usando a sobreposição dos modos normais

$$\begin{cases} x_A(t) = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B(t) = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Com
$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

$$\omega_1 = \sqrt{\frac{k}{m}} = 1 \text{ rad/s}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}} = 1.414 \text{ rad/s}$

c) e verificar que as soluções encontradas são a mesma (iguais)

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax}$$

Corpo B $m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

$$k = 1 \frac{N}{m}; k' = 0.5 \frac{N}{m}; m = 1 \text{ kg}$$

 $b = 0.05$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Ambos os osciladores tendem para a Sua posição de equilíbrio

K'

K

000000

X

K K' K O000000 M M M X X XA XB

Forçado no corpo A:

Corpo A
$$m \frac{d^2x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax} + F_0 \cos(\omega_f t)$$

Corpo B $m \frac{d^2x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$
 $b = 0.05 \text{ kg/s}$
 $F_0 = 0.005 N$; $\omega_f = 1 \text{ rad/s}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} + 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

Cada oscilador tende para um regime estacionário Harmónico simples. (?) Podemos calcular a amplitude, a frequência e a forma sinusoidal.

Forçado no corpo A:

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax} + F_0 \cos(\omega_f t)$$
Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

Ressonância nos dois corpos na frequência dos modos normais (como no caso de um oscilador)

• L frequêncies de vibração
$$\omega_1 = \sqrt{\frac{k}{m}} = 1 \text{ rad/s e } \omega_2 = \sqrt{\frac{k+2k'}{m}} = 1.414 \text{ rad/s}$$

