Adversarial Watermarking Transformer: Towards Tracing Text Provenance with Data Hiding

Sahar Abdelnabi, Mario Fritz

CISPA Helmholtz Center for Information Security

arXiv (Submitted on 7 Sep 2020)

Slides by Honai Ueoka

Summary

- This paper proposed Transformer based watermarking model
- Discriminator as adversarial training improved the Watermarking system
- Fine-tuning with multiple language loss improved the output text quality

Related Work

- Language Watermarking
- Linguistic Steganography
- Sequence-to-sequence Model
- Model Watermarking
- Neural Text Detection

Contents

- About Watermarking
- Motivation
- Proposed Method
- Evaluation
- Conclusion

What is Watermarking (透かし)?

Visible (recognizable) watermarking (Physical & Digital)

https://www.boj.or.jp/note_tfjgs/note/security/miwake.pdf

https://helpx.adobe.com/jp/acrobat/kb/3242.html

What is Watermarking (透かし)?

Invisible (unrecognizable) watermarking (Physical & Digital)

Difference from Cryptography (暗号), Steganography

	Watermarking	Steganography	Cryptography
Goal	Hiding some data in a media, the data is related to the media	Hiding the existence of the data over other media (data is not always related to the media)	Hiding the content of the data
Required decoding accuracy	Depends on the case (trade-off with robustness or media quality)		100%
Robustness against modifying the media / data	Required (suppose attacks to remove the watermark)	Usually not required	

References: [Chang, Clark 2014], [Ziegler et al. 2019]

Language Watermarking

Edit text with some rule to embed information

It also should be robust to

Contents

- About Watermarking
- Motivation
- Proposed Method
- Evaluation
- Conclusion

Motivation

- Recent advances in natural language generation
 - Powerful language models with high-quality output text (like GPT-*)
- Concern about using the models for malicious purpose
 - Spreading neural-generated fake news / misinformation
- Language watermarking as a better mark and trace the provenance of text

Usage Scenario

Usage Scenario

Usage Scenario

Existing Approaches

- Rule-based language watermarking
 - e.g., synonym substitution
 - They evaluates synonym substitution method as a baseline
- Data hiding with neural model
 - There are some works on the image classification model
 - No previous work with language model
- Neural text detection
 - Train classifier to detect the machine-generated text
 - Easily dropped by future progress in language models, like arms race (軍拡競争、いたちごっこ)

Contents

- About Watermarking
- Motivation
- Proposed Method
- Evaluation
- Conclusion

AWT: Adversarial Watermarking Transformer

AWT: Adversarial Watermarking Transformer

AWT – Similar Architecture [Shetty et al. 2018], [Zhu et al. 2018]

Cover Image

R. Shetty, B. Schiele, and M. Fritz, "A4nt: author attribute anonymity by adversarial training of neural machine translation," in 27th USENIX Security Symposium (USENIX Security 18), 2018. PDF

J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, "HiDDeN: Hiding data with deep networks," in European Conference on Computer Vision (ECCV), 2018. <u>arXiv</u>

HiDDeN

Perturbation

"Copyright ID: 1337"

AWT – Input / Output Flow

AWT – 1. Discriminator

 Classify if the sentence is watermarked or not-watermarked

Trained with binary cross-entropy loss

$$L_{disc} = -\log(A(S)) - \log(1 - A(S'))$$

A: discriminator

S: input (not watermarked) sentence

S': output (watermarked) sentence

Adversarial loss L_A is

$$L_A = -\log(A(S'))$$

for training data hiding network

AWT – 1. Discriminator – Training

Fine-tuning Loss is not used

AWT – 2. Data Revealing Network

- Output dimension: *q* (= message length)
- Similar to Transformer-based multi-class classifier

• Message reconstruction loss L_m is binary cross-entropy loss over all bits

$$L_m = -\sum_{i=1}^{q} b_i \log(p(b_i)) + (1 - b_i) \log(1 - p(b_i))$$

AWT – 2. Data Revealing Network – Training

 $L_m = -\sum_{i=1}^{q} b_i \log(p(b_i)) + (1 - b_i) \log(1 - p(b_i))$

(not watermarked)

October 1957 to January 1959, and Director General Plans and Policy from January to August 1959.

AWT – 3. Data Hiding Network

- A) Add input message to encoded embeddings
- B) Transformer auto-encoder (the decoder takes **shifted input sentence**)
- C) **Gumbel-softmax** to train jointly with other components

Text reconstruction loss L_{rec} :

$$L_{rec} = \mathbb{E}_{p_{data}(S)}[-\log P_D(S)]$$

cross entropy loss of input & output sequence

AWT – 3. Data Hiding Network – Training

Trained to 1) Reconstruct the input sentence, 2) Reconstruct the message and 3) Fooling the adversary. These losses are competing.

AWT – 4. Fine-tuning Loss

A) Preserving **Semantics**

Pre-trained Facebook sentence embedding model (F) trained on SNLI dataset

$$L_{sem} = ||F(S) - F(S')||$$

S: input (not watermarked) sentence

S': output (watermarked) sentence

B) Preserving **Sentence Correctness**

ASGD Weight-Dropped LSTM, independently trained on the dataset used as input texts (not watermarked texts)

$$L_{LM} = -\sum_{i} \log p_{LM}(W_{i}^{'}|W_{< i}^{'})$$

Watermarked sentence

Not watermarked sentence

| InferSent (Sentence embedding) | Loss |

 W_i' : the i th word in watermarked sentence

AWT – Fine-tuning

Contents

- About Watermarking
- Motivation
- Proposed Method
- Evaluation
 - 1. Effectiveness
 - 2. Secrecy
 - 3. Robustness
 - 4. Human
- Conclusion

Experiment Setup

- Dataset
 - WikiText-2 (Wikipedia)
 - 2 million words in the training set
- Implementation
 - Dimension size = 512
 - Transformer blocks: 3 identical layers, 4 attention heads

Evaluation Methods

1. Effectiveness Evaluation

By evaluating text utility & message bit accuracy

2. Secrecy Evaluation

By training watermark classifier

3. Robustness Evaluation

By performing 3 attacks:

Random word replace

Random word removing

Denoising autoencoder

4. Human Evaluation

1. Effectiveness Evaluation

- Text Utility (テキストの可用性)
 - Watermarking should not change the text semantic
 - **Meteor** (higher is better)
 - **SBERT distance** (Lower is better)
- Bit Accuracy
 - Bitwise message accuracy averaged across all test dataset
 - Random Chance: 50%

1. Effectiveness Evaluation – Result

Model	Bit accuracy	Meteor	SBERT distance
Base + Discriminator + Fine-tuning (AWT)	97%	A 0.96	1.25
Base + Discriminator	96%	0.94	1.73 B
Base	95%	0.94	2.28

- A) Fine-tuning improved both metrics
 - → Helps to preserve text semantic
- B) Discriminator decreases SBERT distance
 - → Discriminator helps to improve the output's quality, in addition to its secrecy advantages

1. Effectiveness Evaluation – vs. Baseline

Model	Acc.	SBERT	F1
Synonym	83.9%	3.62	0.98
AWT	86.8%	0.956	0.53

• Baseline by [Topkara et al. 2006]
Watermarking texts with synonym substitution with WordNet

1. Effectiveness Evaluation – Contribution of Discriminator

← Systematic fixed changes that **inserts less likely tokens**, seen in the model without discriminator

- ← Top words count
- Original Dataset
- Output of AWT (Base + Disc + FT)
- Output of AWT (Base only)

1. Effectiveness Evaluation – Contribution of Fine-tuning

Input	 fine-tuning output 	AWT output
the Business Corporation, which was formed by a group of leaders from the area.	the Business Corporation, <eos> was formed by a group of leaders from the area.</eos>	the Business Corporation, which was formed by a group of leaders at the area.
The railroads provided a means of transportation and an influx of industries	The railroads provided a means of transportation and <pre><eos> influx of industries</eos></pre>	The railroads provided a means of transportation and that influx of industries
the measurements indicated that a segment of M @-@ 82 west of <unk> had the peak volume for the highway</unk>	the measurements indicated that a segment of M @- @ 82 west of <unk>is the peak volume for the high-way</unk>	the measurements indicated that a segment of M @-@ 82 west of <unk> were the peak volume for the high- way</unk>

TABLE III: Comparison between two variants of the model: before and after fine-tuning. The fine-tuned model shows better syntactic consistency.

1. Effectiveness Evaluation – Visualization

Words are not fixedly replaced

Fig. 10: A matrix of word changes count from original text to modified text using AWT.

2. Secrecy Evaluation

	Model's variant	Sampling	Classifier	F1 score
Base only	discriminator	1 sample	Transformer LSTM	0.89
Base + Discriminator	— fine-tuning	1 sample	BoW+SVM Transformer LSTM	0.98 0.65 0.56
Base + Discriminator Base + Discriminator	AWT	Best of 20 samples Best of 20 samples	BoW+SVM Transformer Transformer	0.63 0.59 0.53

• Discriminator decreases the F1 score (improves secrecy)

2. Secrecy Evaluation – vs. Baseline

Model	Acc.	SBERT	F1
Synonym	83.9%	3.62	0.98
AWT	86.8%	0.956	0.53

• Baseline by [Topkara et al. 2006]
Watermarking texts with synonym substitution with WordNet

3. Robustness Evaluation

- Random changes
 - Replace / Remove words randomly in a watermarked sentence
- Training counter-models
 - Trained transformer-based denoising autoencoder (DAE)
 - Apply 2 types of noise to the input (watermarked) sentence
 - Embedding dropout
 - Random word replacement

3. Robustness Evaluation – Result

Bit accuracy is decreased a bit, SBERT distance is increased significantly

→ Robust to the attacks

3. Robustness Evaluation – vs. Baseline

Fig. 12: Comparing AWT and the synonym substitution baseline bit accuracy under 'remove' and 'replace' attacks.

AWT keeps higher bit accuracy after remove / replace attacks compared to synonym substitution baseline.

4. Human Evaluation

Asked 6 judges to rate the sentence.

Sentence is randomly selected from non-watermarked text, AWT output, synonym baseline output.

Rating	Description		
5	The text is understandable, natural, and grammatically and structurally correct.		
4	The text is understandable, but it contains minor mistakes.		
3	The text is generally understandable, but some parts are ambiguous.		
2	The text is roughly understandable, but most parts are ambiguous.		
1	The text is mainly not understandable, but you can get the main ideas.		
0	The text is completely not understandable, unnatural, and you cannot get the main ideas.		

TABLE XVI: Ratings explanations given in the user study.

4. Human Evaluation – Result

Fig. 18: Histograms of ratings given to the three types of sentences in the user study.

AWT	Synonym-baseline	Non-wm Dataset
4.5±0.76	3.42±1.16	4.65±0.62

TABLE IX: The results of a user study to rate (0 to 5) sentences from AWT, the baseline, and non-watermarked text.

 AWT output texts are rated highly than baseline texts.

Contents

- About Watermarking
- Motivation
- Proposed Method
- Evaluation
- Conclusion

Conclusion

- New framework for language watermarking as a solution towards marking and tracing the provenance of machine-generated text
- First end-to-end data hiding solution for natural text.
- Discriminator as an adversary improved the watermark system.
- Fine-tuning with additional language losses improved the output text quality.