الدورة العادية للعام 2010	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
لاسم: لرقم:	المرة والمتأون	

Cette épreuve est formée de trois exercices répartis sur trois pages numérotées de 1 à 3.

<u>L'usage d'une calculatrice non programmable est autorisé</u>.

Premier exercice: (6 points)

Détermination de la résistance d'un conducteur ohmique

On désire déterminer la résistance R d'un conducteur ohmique (R). On réalise alors le circuit représenté par la figure (1), comportant un générateur idéal de f.é.m.

E = 5 V, le conducteur ohmique (R), un condensateur (C) déchargé de capacité $C = 33 \mu F$ et un commutateur (K).

A – Charge du condensateur

- 1) On désire charger le condensateur. Dans quelle position, 1 ou 2, faut-il alors placer (K)?
- 2) Le circuit atteint le régime permanent après un certain temps. Donner alors la valeur de la tension u_{AB} aux bornes de (C) et celle de la tension aux bornes de (R).

B – Décharge du condensateur

- 1) Schématiser le circuit de décharge en y précisant le sens réel du courant électrique qui le traverse.
- 2) Établir l'équation différentielle vérifiée par $u_{AB} = u_{C}$ durant la décharge.
- 3) La solution de cette équation différentielle est de la forme :

$$u_C = E \ e^{\frac{-t}{\tau}} \ (u_C \ en \ V, \ t \ en \ s),$$
 où τ est une constante.

- a) Déterminer l'expression de τ en fonction de R et C.
- **b)** Déterminer la valeur de u_C à la date $t_1 = \tau$.
- c) Donner, en fonction de τ , la durée minimale à partir de laquelle le condensateur sera pratiquement considéré comme totalement déchargé.
- d) Établir l'expression de ℓn u_C [logarithme népérien de u_C] en fonction de E, τ et t.

e) Le schéma de la figure 2 représente les variations de $\,\ell n\,u_C\,$ en fonction du temps.

En se référant à la courbe de la figure 2, déterminer la valeur de R.

<u>Deuxième exercice</u>: (7 points) Pendule élastique horizontal

Une particule (S) de masse $m_1 = 100$ g peut glisser, sans frottement, sur une piste située dans un plan vertical, constituée d'une partie rectiligne AB, de longueur 10 cm, inclinée d'un angle $\alpha = 30^0$ par rapport à l'horizontale et d'une partie rectiligne horizontale Bx.

Un ressort (R) de masse négligeable, à spires non jointives, de longueur à vide ℓ_0 et de raideur k=10 N/m, est disposé horizontalement sur la partie Bx. Une extrémité du ressort est fixée à la piste en I et l'autre extrémité est soudée à un plateau (P). (R) présente sa longueur à vide ℓ_0 et (P) est placé au point O de la piste (figure ci-dessous). Le point O est l'origine des abscisses de l'axe x'ox .

La particule (S) est abandonnée au point A sans vitesse initiale. Le niveau de référence de l'énergie potentielle de pesanteur est le plan horizontal passant par Bx. Prendre $g = 10 \text{ m/s}^2$.

A – Mouvement de la particule entre A et O

- 1) Calculer l'énergie mécanique du système [(S), Terre] au point A.
- 2) L'énergie mécanique du système [(S), Terre] est conservée entre les points A et O. Pourquoi ?
- 3) (S) arrive en O avec la vitesse $\overrightarrow{V_0} = \overrightarrow{V_0} \overrightarrow{i}$. Montrer que $V_0 = 1$ m/s.

B - Mouvement de l'oscillateur dans deux situations

I – Première situation

Le plateau (P) a une masse négligeable.

- (S) entre en choc avec (P) et reste en contact avec lui en formant ainsi un seul corps [(P), (S)] dont le centre d'inertie est G. À la date $t_0 = 0$, G est en O. L'ensemble [(S), (P), ressort] constitue un oscillateur mécanique horizontal. À une date t, l'abscisse de G est x et la mesure algébrique de sa vitesse est v.
 - 1) Écrire l'expression de l'énergie mécanique du système [oscillateur, Terre] en fonction de m₁ , x, v et k.
 - 2) Établir l'équation différentielle du second ordre en x qui régit le mouvement de G.
 - 3) En déduire la nature du mouvement de G et l'expression de la période T_1 de ce mouvement en fonction de m_1 et k.
 - 4) G, quittant O à la date $t_0 = 0$, repasse par O pour la première fois à la date t_1 . Calculer la durée t_1 .

II - Deuxième situation

On remplace (P) par un autre plateau (P'), de masse $m_2=300$ g, placé en O. En reprenant les conditions du début, (S) arrive juste avant le choc avec (P') à la vitesse $\overrightarrow{V_0}=V_0\overrightarrow{i}$ ($V_0=1$ m/s). Juste après le choc frontal (vitesses colinéaires), (S) et (P') se séparent, à la date $t_0=0$, avec les vitesses respectives $\overrightarrow{V_1}$ et $\overrightarrow{V_2}=V_2\overrightarrow{i}$ avec $V_2=0.5$ m/s.

- 1) Déterminer $\overrightarrow{V_1}$.
- 2) Montrer que le choc est élastique.
- 3) (P') quitte O à la date $t_0 = 0$ et repasse par le point O pour la première fois à la date t_2 . Les deux durées t_1 et t_2 vérifient la relation $t_2 > t_1$. Justifier.

Troisième exercice: (7 points)

Le radio-isotope polonium ²¹⁰₈₄Po

Données:

 $1u = 1,66 \times 10^{-27} \text{ kg} = 931,5 \text{ MeV/c}^2$; $h = 6,63 \times 10^{-34} \text{ J.s}$; $1 \text{ MeV} = 1,6 \times 10^{-13} \text{ J}$; $c = 3 \times 10^8 \text{ m/s}$. Masses des noyaux : m(Po) = 209,9829 u; m(Pb) = 205,9745 u; $m(\alpha) = 4,0026 \text{ u}$.

A – Désintégration du polonium 210

Le polonium $^{210}_{84}$ Po est un émetteur α . Le noyau fils produit par cette désintégration est un noyau de plomb $^{A}_{7}$ Pb .

- 1) Déterminer Z et A en précisant les lois utilisées.
- 2) Calculer, en MeV et en J, l'énergie libérée par cette désintégration.
- 3) Le noyau ²¹⁰₈₄Po est initialement au repos. Le noyau fils ^A_ZPb, supposé obtenu au repos, se trouve dans l'état fondamental. En déduire l'énergie cinétique de la particule α émise.
- 4) La désintégration du $^{210}_{84}$ Po est, en général, accompagnée de l'émission d'un rayonnement γ .
 - a) À quoi est due l'émission du rayonnement γ ?
 - **b)** Le rayonnement γ émis a une longueur d'onde dans le vide $\lambda = 1,35 \times 10^{-12}$ m. En utilisant la conservation de l'énergie totale, déterminer l'énergie cinétique de la particule α émise.

B – Période radioactive du polonium 210

La figure ci-après montre la courbe représentant les variations, en fonction du temps t, du nombre N de noyaux présents dans un échantillon d'une substance radioactive $^{210}_{84}Po$, ce nombre étant N_0 à la date $t_0=0$. La même figure montre également la tangente à cette courbe à la date $t_1=263$ jours.

- 1) Écrire l'expression de N en fonction de t et préciser la signification de chaque terme.
- 2) L'activité radioactive de l'échantillon est donnée par :

$$A = -\frac{dN}{dt}.$$

- a) Définir l'activité radioactive A.
- **b)** En se référant à la figure ci-contre, déterminer la valeur de A à la date $t_1 = 263$ jours.
- 3) En déduire la valeur de la constante radioactive et la valeur de la période radioactive à (demi-vie) du polonium 210.

