CBSE MATHEMATICS 2020

G V V Sharma*

1 SECTION-A

Question numbers 1 to 20 carry 1 mark each. Question numbers 1 to 10 are multiple choice type questions. Select the correct option.

- 1.1. The area of a triangle formed by vertices O, A and B, where $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{OB} = -3\hat{i} - 2\hat{j} + \hat{k}$ is
 - a) $3\sqrt{5}$ sq.units
 - b) $5\sqrt{5}$ sq.units
 - c) $6\sqrt{5}$ sq.units
 - d) 4 sq.units
- 1.2. If $\cos(\sin^{-1}\frac{2}{\sqrt{5}} + \cos^{-1}x)$
 - a) $\frac{1}{\sqrt{5}}$
 - b) $\frac{-2}{\sqrt{5}}$
 - c) $\frac{2}{\sqrt{5}}$
 - d) 1
- 1.3. The interval in which the function f given by $f(x) = x^2 e^{-x}$ is strictly increasing, is
 - a) $(\infty, -\infty)$
 - b) $(\infty,0)$
 - c) $(2,\infty)$
 - d) (0, 2)
- 1.4. The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous
 - a) Exactly one point
 - b) Exactly two points
 - c) Exactly three points
 - d) No point
- 1.5. The function $f: R \rightarrow [-1,1]$ defined by f(x) = cosx is
 - a) Both one-one and onto

- b) Not one-one, but onto
- c) one-one, but Not onto
- d) Neither one-one, nor onto
- 1.6. The coordinates of the foot of the perpendicular drawn from the point (2, -3, 4) on the y-axis is

1

- a) (2,3,4)
- b) (-2, -3, -4)
- c) (0, -3, 0)
- d) (2, 0, 4)
- 1.7. The relation R in the set $\{1, 2, 3\}$ given by R = $\{(1,2)(2,1)(1,1)\}$ is
 - a) Symmetric and transitive, but not reflexive
 - b) reflexive and symmetric, but not transitive
 - c) Symmetric, but neither reflexive transitive
 - d) An equivalence relation
- 1.8. The angle between the vectors $\hat{i} \hat{j}$ and $\hat{j} \hat{k}$
 - a) $\frac{-\pi}{3}$
 - b) 0

 - c) $\frac{\pi}{3}$ d) $\frac{2\pi}{3}$
- 1.9. If A is a non-singular square matrix of order 3 such that $A^2 = 3A$, then value of |A| is
 - a) -3
 - b) 3
 - c) 9
 - d) 27
- 1.10. If $|\overrightarrow{a}| = 4$ and $-3 \le \lambda \le 2$ then $|\lambda \overrightarrow{a}|$ lies in
 - a) [0, 12]
 - b) [2, 3]
 - c) [8, 12]
 - d) [-12, 8]

Fill in the blanks in question number 11 to 15

- 1.11. If the radius of the circle is increasing at the rate of 0.5cm/s, then the rate of increase of its circumference is -
- 1.12. If $\begin{vmatrix} 2x & -9 \\ -2 & x \end{vmatrix} = \begin{vmatrix} -4 & 8 \\ 1 & -2 \end{vmatrix}$, then value of x is
- 1.13. The corner points of the feasible region of an LPP are (0,0),(0,8),(2,7),(5,4) and (6,0). The maximum profit P=3x+2y occurs at the point
- 1.14. a) The range of the principle value branch of
 - the function $y = \sec^{-1} x$ is ______ b) The principal value of $\cos^{-1} \left(\frac{-1}{2}\right)$ is ______
- 1.15. a) The distance between parallel planes 2x+y-2z-6=0 and 4x+2y-4z=0 is units.
 - b) If P(1,0,-3) is the foot of the perpendicular 2.24. Find: from the origin to the plane, then

Question numbers 16 to 20 are very short 2.26. A fair dice is thrown two times. Find the answer type questions

1.16. Evaluate:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos^2 x dx$$

1.17. Find the coordinates of the point where the line

$$\frac{x-1}{3} = \frac{y+4}{7} = \frac{z+4}{2}$$

cuts the xy-plane.

1.18. Find the value of k, so that the function

$$f(x) = \begin{cases} kx^2 + 5, & \text{if } x \le 1\\ 2, & \text{if } x > 1 \end{cases}$$

is continuous at x=1.

1.19. Find the integrating factor of the differential equation

$$x\frac{dy}{dx} = 2x^2 + y$$

- 1.20. a) Differentiate $\sec^2(x^2)$ with respect to x^2 .
 - b) If $y = f(x^2)$ and $f'(x) = e^{(\sqrt{x})}$, then find $\frac{dy}{dx}$.

2 SECTION-B

Question numbers 21 to 26 carry 2 marks

- 2.21. a) Find a vector \overrightarrow{r} equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ units.
 - b) Find the angle between unit vectors \overrightarrow{a} and \overrightarrow{b} so that $\sqrt{3}$ \overrightarrow{a} - \overrightarrow{b} is also a unit vector.
- 2.22. If $A = \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, Find
- 2.23. a) If $f(x) = \sqrt{\frac{secx-1}{secx+1}}$, Find $f'(\frac{\pi}{3})$.
 - b) Find f'(x) if $f(x) = (\tan x)^{(\tan x)}$.

$$\int \frac{\tan^3 x}{\cos^3 x} dx$$

- the Cartesian equation of the plane is 2.25. Show that the plane x 5y 2z = 1 contains the line $\frac{x-5}{3} = y = 2 z$.
 - probability distribution of the number of sixes. Also determine the mean of the number of sixes.

3 SECTION-C

Question numbers 27 to 32 carry 4 marks each.

- 3.27. Solve the following differential equation: (1 + $(e^{\frac{y}{x}})dy + e^{\frac{y}{x}(1-\frac{y}{x})}dx = 0 \ (x \neq 0)$
- 3.28. A cottage industry manufactures pedestal lamps and wooden shades. Both the products require machine time as well as craftsman time in the making. The number of hours required for producing 1 unit of each and the corresponding profit is given in the following table: In a day, the factory has availability of not more than 42 hours of machine time and 24 hours of craftsman time.

Item	Machine Time	Craftsman Time	Profit(in INR)
Pedestal Lamp	1.5 hours	3 hours	30
Wooden shades	3 hours	1 hour	20

TABLE 3.28

Assuming that all items manufactured are sold, how should the manufacturer schedule his daily production in order to maximise the profit? Formulate it as an LPP and solve it graphically.

- 3.29. Evaluate : $\int_0^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$
- 3.30. a) Check whether the relation R in the set N set of natural numbers given by $R = \{(a,b): a \in A \}$ is divisor of b} is reflexive, symmetric or transitive. Also determine whether R is an equivalence relation.
 - b) Prove that $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \frac{1}{2} \sin^{-1}$
- 3.31. Find the equation of the plane passing through the points (1,0,-2), (3,-1,0) and perpendicular to the plane 2x - y + z = 8. Also find the distance of the plane thus obtained from the origin.
- 3.32. a) If $\tan^{-1}(\frac{y}{x})=\log\sqrt{x^2+y^2}$, prove that $\frac{dy}{dx}=\frac{x+y}{x-y}$. b) If $y=e^{(acos^{-1}x)}$, -1< x<1, then show that $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0$

4 SECTION-D

Question numbers 33 to 36 carry 6 marks each.

- 4.33. Amongst all open (from the top) right circular cylindrical boxes of volume 125π cm³, find the dimensions of the box which has the least surface area.
- 4.34. a) Using integration, Find the area lying above x-axis and included between the circle x^2 + $y^2 = 8x$ and inside the parabola $y^2 = 4x$.
 - b) Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A(2,0), B(4,5) and

C(6,3).

4.35. a) If $A = \begin{pmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{pmatrix}$, Find A^{-1} and use it to solve the following system of the equations:

$$5x-y+4z=5$$

$$2x+3y+5z=2$$

$$5x-2y+6z=-1$$
b) If x,y,z are different and
$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix}=0$$
, then using properties of determinants

show that 1 + xyz = 0. 4.36. A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn randomly one-by-one without replacement and are found to to be both kings. Find the probability of the lost card being a king.