ITAM

Departamento de Estadística

Inferencia Estadística
– Laboratorio #11 Pruebas de Hipótesis

- 1. (a) Enliste los elementos de una **prueba estadística** y defina cada uno de ellos.
 - (b) Defina y explique error tipo I y error tipo II
- 2. Para la encuesta política de Rod se muestrearon n=15. Deseamos probar $H_0: p=0,5$ vs. $H_1:<0,5$. El estadístico de prueba es $Y\equiv$ el no. de votantes muestreados a favor de Rod. Suponga que la región de rechazo $RR=\{y\leq 2\}$.
 - (a) Explique qué tipo de hipótesis se están comparando.
 - (b) Calcule α
 - (c) Sponga que Rod recibirá el 30 % de los votos. Defina β , explíque qué describe en este ejercicio y calcúlela.
 - (d) Interprete sus resultados.
- 3. Suponga que $Y_1, Y_2 \stackrel{v.a.i.i.d}{\sim} U(\theta, \theta + 1)$. Para probar que $H_0: \theta = 0$ vs. $H_1: \theta > 0$, tenemos dos pruebas:
 - 1. Rechazar H_0 si $Y_1 > 0.95$
 - 2. Rechazar H_0 si $Y_1 + Y_2 > c$

Encuentre el valor de c para que la prueba 2 tenga el mismo valor que la prueba 1.

- 4. Suponga que $X_1,...,X_{25} \overset{v.a.i.i.d}{\sim} N(\mu,4)$. Para probar $H_0: \mu=0$ vs. $H_1: \mu=1$. Si mi región de rechazo $RR=\{\hat{x}: \bar{X}>c\}$ y $\alpha=0,1$. Encuentre:
 - (a) c
 - (b) β
 - (c) la potencia de la prueba β^*
 - (d) la función potencia $\beta(\mu)$

- 5. Suppnga que $X \sim Ber(p)$, queremos probar $H_0: p = \frac{1}{2}$ vs. $H_1: p = \frac{3}{4}$. Si $R = \{x: x > 1\}$ es la región crítica.
 - (a) ¿Qué tipo de prueba es esta?
 - (b) Encuentre α , β
- 6. Los salarios por hora en una industria particular están distribuidos normalmente con media de \$13,20 y desviación estándar de \$2,50. Una compañía en esta industria emplea 40 trabajadores, pagándoles un promedio de \$12,20 por hora. ¿Esta compañía puede ser acusada de pagar salarios abajo del estándar? Use una prueba de nivel $\alpha = .01$.
- 7. El voltaje de salida para un circuito eléctrico es de 130. Una muestra de 40 lecturas independientes del voltaje para este circuito dio una media muestral de 128.6 y desviación estándar de 2.1. Pruebe la hipótesis de que el promedio de voltaje de salida es 130 contra la alternativa de que es menor a 130. Use una prueba con nivel .05.
- 8. (Lema Neyman-Pearson) Sea $\mathbf{X} = (X_1, ..., X_n)$ sea una muestra aleatoria de $f(x; \theta)$, donde $\theta \in \Theta = \{\theta_0, \theta_1\}$, y sea $L(\theta; x)$ la función de verosimilitud. Si existe una prueba con nivel de significancia α tal que, para una k > 0, se tiene que:

$$\frac{L(\theta_0)}{L(\theta_1)} \le k \quad p.c \quad x \in R_1 \tag{1}$$

У

$$\frac{L(\theta_0)}{L(\theta_1)} > k \quad p.c \quad x \in \bar{R}_1 \tag{2}$$

entonces la prueba (no-aleatorizada)

$$\psi(x) = \begin{cases} 1 & L(\theta_1) \ge L(\theta_0) \\ 0 & e.o.c \end{cases}$$

es la prueba más poderosa (MPT por sus siglas en inglés) con un nivel de significancia

$$\alpha = \mathbb{E}_{\theta_0} \psi(x)$$

para probar $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$