

⁽¹⁹⁾ SU ⁽¹¹⁾ 860 463 ⁽¹³⁾ A1

(51) MПК⁶ C 07 D 471/04, A 61 K 31/415, 31/44

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

- (21), (22) Заявка: 2908344/04, 09.04.1980
- (46) Дата публикации: 27.05.1998
- (56) Ссылки: 1. Talik Z., Brekiess B. Some pyridotriazoles and imidazoles. Roczn.Chem., 1964, 38 (5), с. 887. Цит. по Chem.Abs., 62, с.5271 2. Ютилов Ю.М., Хабаров К.М., Свертилова И.А. Den N 4182-79, 1979.
- (71) Заявитель: Институт физико-органической химии и углехимии АН Украинской ССР, Всесоюзный научно-исследовательский институт химических средств защиты растений
- (72) Изобретатель: Хабаров К.М., Ютилов Ю.М., Галицина В.В.

(54) ПРОИЗВОДНЫЕ 4-АМИНО-1,3-ДИМЕТИЛИМИДАЗО [4,5-С] ПИРИДИН-2-ОНА, ОБЛАДАЮЩИЕ АКАРИЦИДНЫМ ДЕЙСТВИЕМ

(57) Производные 4-амино-1,3-диметилимидазо[4,5-с]пиридин-2она формулы

ഗ

860463

обладающие акарицидным действием.

⁽¹⁹⁾ SU ⁽¹¹⁾ 860 463 ⁽¹³⁾ A1

(51) Int. Cl.⁵ C 07 D 471/04, A 61 K 31/415, 31/44

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2908344/04, 09.04.1980

(46) Date of publication: 27.05.1998

(71) Applicant: Institut fiziko-organicheskoj khimii i uglekhimii AN Ukrainskoj SSR, Vsesojuznyj nauchno-issledovatel'skij institut khimicheskikh sredstv zashchity rastenij

4

(72) Inventor: Khabarov K.M., Jutilov Ju.M., Galitsina V.V.

(54) DERIVATIVES OF 4-AMINO-1,3-DIMETHYLIMIDAZO-[4,5-C]-PYRIDINE-2-ON'E EXHIBITING ACARICIDE EFFECT

(57) Abstract:

FIELD: organic chemistry. SUBSTANCE: product: derivatives of 4-amino-1,3-dimethyl-[4,5-c]-pyridine-2-on'e of the formula (I)

effect. EFFECT: enhanced effectiveness of agents.

Предлагаются новые производные 4-амино-1,3-диметилимидазо [4,5-с] пиридин-2-она формулы | или ||

обладающие акарицидным действием. Известен 4-гидразиноимидазо[4,5-с]

известен 4-гидразиноимидазо[4,5-с] пиридин, обладающий гипотензивной активностью [1].

Известны также четвертичные соли 1,3-диметил-4-аминоимидазо[4,5-с]пиридин-2-она [2] общей формулы

$$J_{\oplus}^{\Theta}$$
 где R-алкил,

бензил, аллил.

Однако данные по активности указанных соединений в литературе отсутствуют.

Целью изобретения является расширение ассортимента химических соединений, воздействующих на живой организм.

Поставленная цель достигается производными 1,3-диметил-4-аминоимидазо [4,5-с] пиридин-2-она формул I и II, обладающими акарицидным действием.

Соединение I получают путем взаимодействия 4-амино-1,3-диметилимидазо [4,5-с] пиридин-2-она с 5-нитрофурфуролом в спирте при кипении.

Соединение II получают путем взаимодействия 4-амино-1,3-диметилимидазо [4,5-c] пиридин-2-она с этиленхлоргидрином при $170-180^{\circ}\text{C}$ с последующей обработкой хлористым тионилом в хлороформе при $50-60^{\circ}\text{C}$

Пример 1.

ഗ

 ∞

6

0

4

တ

4-(5-Нитрофурфурилиден-2-амино)-1,3-димет илимидазо [4,5-с] пиридин-2-он (I).

0,8 г 4-амино-1,3-диметилимидазо [4,5-с] пиридин-2-она и 0,65 г 5-нитрофурфурола кипятят в спирте в течение 1 ч, охлаждают, отфильтровывают выпавший осадок и сушат.

Выход 1,12 г, т.пл. 238-240°С (из этанола).

Найдено, %: С 51,52; Н 4,01.

C₁₃ H₁₁ N₅ O₄

Вычислено, %: С 51,82; Н 3,68.

Пример 2. Хлорид 4-амино-5-(2'-хлорэтил)-1,3-диметилимидазо [4,5-c] пиридиний-2-она (II).

0,99 г 4-амино-1,3-диметилимидазо [4,5-с] пиридин-2-она в 1,5 мл этиленхлоргидрина нагревают при 170-180°С в течение 1 ч, отгоняют этиленхлоргидрин, добавляют 10 мл сухого хлороформа и 0,5 мл хлористого тионила и нагревают при 50-60°С в течение 40 мин, охлаждают, отфильтровывают, осадок промывают его ацетоном и сушат. Выход 1,162 г, т.пл. 172-173°С (из этанола).

Найдено, %: С 42,88; Н 5,19; Čl 25,93; **N** 19,79.

C₁₀ H₁₄ Cl₂ N₄ O

Вычислено, %: С 43,32; Н 5,05; CI 25,60; N 20 22

ИК-спектр, см⁻¹: 3465 и 3265 $\left(\nu_{NH_2}\right)$

 $1705 \left(v_{C=0} \right)$

5

15

20

Полученные соединения испытывают на акарицидную активность на паутинных клещах на фасоли (Tetranychus urticae Koch).

Стандартные высечки листьев фасоли с подсаженными на них взрослыми паутинными клещами опрыскивают 2,5 мл водно-ацетонового раствора испытуемого соединения в концентрации 0,1% д.в. После высыхания капельно-жидкой влаги высечки с обработанными клещами помещают во влажную камеру. Учет гибели клещей проводят через 48 ч.

Данные по акарицидной активности испытанных соединений приведены в таблице.

Таким образом, предположенные соединения обладают акарицидной активностью и могут найти широкое применение в борьбе с вредителями сельского хозяйства.

Формула изобретения:

Производные

4-амино-1,3-диметилимидазо[4,5-с]пиридин-2-она формулы

обладающие акарицидным действием.

60

55

40

Соединение	Смертность клещей от концентрации 0,1% д.в., %
Хлорид 4-амино-5-(2'-хлорэтил)-1,3- диметилимидазо[4,5-с]пиридиний-2-она	84
4-(5-Нитрофурфурилиден-2-амино)-1,3- диметилимидазо[4,5-с]пиридин-2-он	85
Эталон - кельтан	100

SU

A 1

(19) SU (11) 851940 A

650 4 C 07 D 471/04 A 61 K 31/395

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОВРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (21) 2897136/23-04
- (22) 20,03,80
- (46) 30.04.88. Бюл. № 16
- (71) Институт физико-органической химии и углехимии АН Украинской ССР, Запорожский медицинский институт
- (72) О.Г. Эйлазян, К.М. Хабаров, Ю.М. Ютилов и П.Н. Стеблюк
- (53) 547.836.3(088.8)
- (56) Патент США № 3919193, кл. 260-211.5, 1975.

Машковский М.Д. Лекарственные средства. М., "Медицина, 1972, т. 2, с. 340.

- (\$4) ЧЕТВЕРТИЧНЫЕ СОЛИ ИМИДАЗО [4,5— —С]ПИРИДИНИЯ, ОБЛАДАЮЩИЕ АНТИМИКРОВ— НОЙ И ФУНГИСТАТИЧЕСКОЙ АКТИВНОСТЬЮ

обладающие антимикробной и фунгистатической активностью. (IP) SU (II) 851940

Изобретение относится к новым биологически, активным химическим соединениям, а именно к четвертичным солям имидазо [4,5-с] пиридиния, обладающим антимикробной и фунгистатической активностью.

Известны производные 4-окси-7--амино-имидазо [4,5-с]пиридина формулы

где $R - \beta$ — рибофуранозил или 2^1 , $3^{\prime\prime}$, 5^{\prime} —0— C_1 до C_8 ацилированный аналог, обладающие противовирусной активностью.

Также известен препарат фураци лин

применяемый в качестве антимикроб-

Целью изобретения является расширение арсенала средств воздействия на живой организм.

Указанная цель достигается новыми химическими соединениями - четвертичными солями имидазо [4,5-с] пи-35 ридиния формулы I или II

$$H_{25}C_{12}-N_{\odot}$$
 N
 B_{r}
 I

которые получают взаимодействием додецилбромида с соответствующими имидазо [4,5-с] пиридином при нагревании в среде растворителя.

Полученный конечный продукт - чет-вертичные соли имидазо [4,5-с] пи-

ридиния - представляет собой бесцветные кристаллические вещества, хорошо
растворимые в воде и спирте, растворы которых обладают поверхностноактивными (моющими) свойствами.

Пример 1.

Бромид 5-лаурил-1-метилимидазо [4,5-с] пиридиния (1), 30-196.

10 ммоль 1-метилимидазо [4,5-с] пиридина растворяют в 15 мл абсолютного бензола, прибавляют 12,5 ммоль додецилбромида кипятят в течение 2,5 ч на масляной бане при температуре 110°С. После охлаждения выпавший осадок отфильтровывают, перекристаллизовывают из нитрометана. Выход 82%. Т.пл. 63-64°С (нитрометан).

Найдено, %: С 59,48, Н 8,51,

20 N 10,9, Br 20,7.

C 19 H 32 BrN 3

Вычислено, %: С 59,67, Н 8,43, N 10-98, Br 20,89.

УФ-спектр: A_{микс}, нм (lg E) 216(422), 240 (3,20), 266 (3,42).

Пример 2.

Бромид 4-амино -5-лаурил-1,3-диметилимидазо [4,5-с] пиридиний-2--она (II), XЮ-2.

Нагревают на масляной базе при 160-170°C раствор 1 ммоль 4-амино--1,3-диметилимидазо [4,5-с] пиридин--2-она в 0,5 мл сульфолана и 1,2-1,25 ммоль додецилбромида в течение 1 ч, реакционную массу охлаждают, отфильтровывают выпавший осадок, промывают бензолом, эфиром и сушат. Вы-код 0,32 г (73%). Т.пл. 134-135° (спирт с эфиром).

Найдено, %: С 55,7, Н 7,9, Вr 19,1.

C 20 H 35 BrN

Вычислено, %: С 56,2, Н 8,2, Вr 18,7.

ИК-спектр, см⁻¹: 3380 (NH), 1730 (C O).

УФ-спектр: $\lambda_{\text{макс}}$,нм (1g E) 222 (455):260(3,85), 292 (3,62).

Активность четвертичных солей имидазо [4,5-с]пиридиния ЭЮ-196 и ХЮ-2 на антимикробную и фунгистатическую активность соединений изучали методом двукратных серийных разведений на жидкой среде на спектре включающем до 5 штаммов микроорганизмов. Пля культивирования бактерий исполь-

*

10

зовали бульон Хоттингера (рН 7,2-7,4). Микробная нагрузка для бактерий составила 2,5 10 клеток агаровой 18-часовой культуры в 1 мл среды. Максимальная из испытанных концентраций 200 мкг/мл.

Для выращивания грибов использовали среду Сабуро (рН 6,0-6,8). Нагрузка составляла 500 тыс. репродуктивных телец в 1 мл. Максимальная из испытанных концентраций 200 мкг/мл.

Антимикробную активность соединений оценивали по минимальной бактериостатической и фунгистатической концентрации химических соединений, выраженной в мкг/мл.

За эталон был принят фурацилин.

Как видно из приведенных данных, испытанные препараты обладают более сильным действием по отношению к стафилококку в 2 раза (ЭЮ-196), к антрамочной в 16 и 4 раза (ЭЮ-196 и ХЮ-2 соответственно), к кишечной палочке в 16 и 2 раза, к Candida abb в 16 и 4 раза. По отношению к синегнойной палочке оба препарата ока15 зывают действие на уровне стандарта.

Результаты испытаний на антимикробную и фунгистатическую активность (минимальная бактериостатическая концентрация указана в мкг/мл)

NoNo	Штаммы микроорганизмов	Шифры испытанных соединений			
nn`	и грибов	эю-196	XI0-2	фурацилин	
1.	Staphylococcus aureus 209p	2	8	4	
2.	Bacilus antracoides 1312	2	8	31	
3.	Esheria coli 675	1	8	16	
4.	Pseudomonas aureginosa 165	250	250	250	
5.	Candida albicans	4	16	63	

Редактор Н. Сильнягина

Техред М.Дидык

Корректор О. Кравнова

Заказ 3379

Тираж 370:

Подписное

внични Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

(5D 4 C 07 D 471/04; A 01 N 43/50

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 2832620/23-04
- (22) 26.10.79
- (46) 23.12.86. Бюл. № 47
- (71) Институт физико-органической химии и углехимии АН Украинской ССР и Всесоюзный научно-исследовательский институт химических средств защиты растений
- (72) Ю.М.Ютилов, А.Г.Игнатенко, Л.Е.Михайлова, Е.И.Андреева и Г.В. Бобкова
- (53) 547.859(088.8)
- (56) Патент США № 3759933, кл. С 07 d 31/40, опублик. 1973.

- (54) СТИРИЛЬНЫЕ ПРОИЗВОДНЫЕ ИМИДАЗО [4,5-с]пиридиний-иодида, обладающие ФУНГИЦИДНОЙ АКТИВНОСТЬЮ
- (57) Стирильные производные имидазо [4,5-с]пиридиний-иодида общей фор-

- где а) R₄-CH₃, R₂ и R₃-OCH₃, R³-H, б) R₄-CH₃, R₂ и R₃-H, R₃-N(CH₃)₂; в) R₄-CH₃, R₂ и R₄-H, R₃-OCH₃;
- г) R,-Ph, R₂ и R₄-OCH₃, R₃-H; д) R₁-Ph, R₂ и R₄-H, R -N(CH₃)₂, обладающие фунгицидной активностью.

Изобретение относится к новым химическим соединениям, к стирильным производным имидазо [4,5-с]пиридиний иодида общей формулы

$$CH_3$$

$$R_1$$

$$CH_3$$

$$R_4$$

$$CH = CH - R_3$$

$$R_2$$

где a) R_4 -CH₃, R_2 и R_3 -OCH₃, R_3 -H, 6) R_1 -CH₃, R_2^2 и R_3 -H, R_3 -N(CH₃)₂, в) R_1 -CH₃, R_2 и R_4 -H, R_3 -OCH₃, R_2 и R_4 -OCH₃, R_2 -H;

д) R_4 -Ph, R_2 и R_4 -H, R-N(CH₃), обладающим фунгицидной активностью.

Указанное свойство позволяет предполагать возможность применения их в сельском хозяйстве.

Известны производные имидазо[4,5-с] пиридин-2-она, обладающие противовоспалительной активностью.

Цель изобретения - расширение ас-10 сортимента фунгицидов.

Эта цель достигается новыми стирильными производными имидазо [4,5-с] пиридиний-иодидами приведенной общей формулы, которые получают путем вза-15 имодействия 4-метилпроизводных имидазо [4,5-с]пиридиний-иодидов с ароматическими альдегидами в присутствии пиперидина в качестве катализатора, по схеме

$$\begin{array}{c|c}
CH_{3} & CH_{3} \\
\hline
N & N \\
CH_{3} & J & CH_{3}
\end{array}$$

$$\begin{array}{c|c}
R_{4} & CH_{3} \\
\hline
R_{2} & N \\
\hline
CH_{3} & J & N \\
\hline
CH_{3} & J & R_{4} \\
\hline
CH_{3} & J & R_{4}
\end{array}$$

$$\begin{array}{c|c}
R_{4} & CH_{3} \\
\hline
CH_{3} & J & R_{4} \\
\hline
R_{2} & R_{3}
\end{array}$$

50

где $R_1 - R_4$ имеют указанные значения. Полученные новые соединения представляют собой твердые окрашенные вещества, растворимые в воде, спирте и ацетоне. Структура подтверж- 35 дена данными элементного анализа.

Пример 1. 1,2,5-Триметил--4-(n'-N', N'-диметиламиностирил)-ими-

дазо [4,5-с] пиридиний-иодид (ИЮ-6). 1,05 г (3,5 $^{-1}$ 0 моль) 1,2,4,5--тетраметилимидазо[4,5-с]пиридинийиодида и 0,7 г (4,5 ммоль) n-(диметиламино) бензальдегида растворяют при нагревании в 30 млн -бутанола. добавляют 2 мл (2 ммоль) пиперидина и кипятят на масляной бане при температуре 135-145°C 2 ч. После охлаждения выпавший осадок кирпично-красного цвета отфильтровывают и промывают эфиром, выход 1.45 г (96,7%), т.пл. 228-230°С (Н-бутанол).

Найдено, %: С 52,7, Н 5,4, N 12,7. $C_{19}H_{23}N_{4}$.

Вычислено, %: С 52,5, Н 5,3,

 Π р и м е р 2. 1,2,5-Триметил-4--(2,5-диметоксистирил) имидазо[4,5-c] пиридиний-иодид (ИЮ-5).

Получают аналогично примеру 1, исходя из 1,05 г (3,5 ммоль) 1,2,4,5--тетраметилимидазо[4,5-с]пиридиний--иодида и 0,7 (4,2 ммоль) 2,5-диметоксибензальдегида, выход 1,5 г (96%), т.пл. 184-185°С (н-бутанол).

Найдено, %: С 50,5, Н 5,5, N 9,2. C₁₉ H₂₂N₃O₂J.

Вычислено, %: С 50,5; Н 5,6, N 9,3. Пример 3. 1,2,5-Триметил-4--(п'-метоксистирил)имидазо[4,5-с]пиридиний-иодид (ИЮ-452).

Получают аналогично примеру 1, исходя из 1,05 г (3,5 ммоль) 1,2,4,5--тетраметилимидазо[4,5-с]пиридиний--иодида и 0,51 мл (4,2 ммоль) n-метоксибензальдегида, выход 0,96 г (63,3%), т.пл. 235-236°C (Н О).

Найдено, %: N 10,5.

C, H 20 N 3 OJ. Вычислено, %: N 10,0.

Пример 4. 1,5-Диметил-2-фенил-4-(2,5-диметоксистирил)имидазо-[4,5-с] пиридиний-иодид (ИО-428).

Получают аналогично примеру 1, исходя из 0,8 г (2,2 ммоль) 1,4,5-триметил-2-фенилимидазо[4,5-с]пиридиний-иодида и 0,546 г (3,3 ммоль)

10

15

2,5-диметоксибензальдегида, выход 0,85 г (71,2%), т.пл. 233-234°С (ң-бутанол).

Найдено, %: N 8,3.

С₂₄ Н₁₄ N₃O J. Вычислено, %: N 8,2.

II ример 5. 1,5-Диметил-2-фенил-4-(n-N',N'-диметиламиностирил)имидазо[4,5-с лиридиний-иодид (ИЮ-431).

Получают аналогично примеру 1, исходя из 0,8 г (2,2 ммоль) 1,4,5--триметил-2-фенилимидазо[4,5-с]пири+ диний-иодида и 0,448 г (3 ммоль) п-N, N-диметиламинобензальдегида, выход 0,85 г (78,2%), т.пл. 265-266°C ·(н-бутанол).

Найдено, %: С 57,7; Н 5,2.

C24 H25 N4 J.

Вычислено, %: С 58,0; Н 5,1.

Фунгицидную активность определяют на мицелии грибов: Botrytis cinerea, Fusarium moniliforme, Venturia inaegualis, Aspergillus niger, Verticillium dahlick и бактерии Xahthomonas malvacearum.

Новые вещества растворяют в ацетоне и в стерильных условиях вводят в расплавленный картофельно-декстрозный агар, который разливают по чашкам Петри. За эталон принимают тетраметилтиурамдисульфид (ТМТД). Концентрация действующего вещества 0,003%. Через 18-20 ч после разлива и застывания агаровую пластинку инокулируют кусочками мицелия, указан-

ных тест-объектов и выдерживают в течение 4-5 суток при температуре 22-25°C. По истечении указанного срока определяют размер колоний изученных грибов, а затем по формуле Эббота определяли процент подавления (Р) мицелия грибов по сравнению с эталоном:

$$P = -\frac{a}{a} - \frac{c}{a} - 100$$

где а - рост мицелия грибов в контроле,

> с - рост мицелия грибов по препарату.

Результаты испытаний представлены в таблице.

Соединения шифров ИЮ-452, ИЮ-428, ИЮ-5, ИЮ-6 по фунгицидной активности превосходят или равноценны эталону ТМТД на мицелии гриба Verticillium dahlial. Соединения ИЮ-6 и ИЮ-452 обладают также выраженной бактерицидной активностью. Соединение ИЮ-5 обпадает активностью против возбудителя серой гнили гриба. Помимо высокой фунгицидной активности заявляемые вещества обладают высокой селективностью воздействия на грибковые заболевания, а это, в свою очередь, предохраняет загрязнение окружающей среды от излишнего применения химических веществ как средства борьбы с паразитирующими организмами.

Результаты испытаний на фунгицидную активность (испытания соединений проведены в концентрации по д.в. 0,003%

Шифры соеди- нений	Xanthomo- nas mal- vacearum	Botrytis cinerra	Fusarium monili- forme	Venturia inaegua- lis	Aspergillus niger	Verticillium dahlial
ию-452	75	36	22	25	8	92
ию-431	12	. 68	11	6	17	· -
ИЮ-428	12	18	33	25	17	83
ИЮ-5	50	100	4	14	13	100
ио-6	100	63	. 0	31	13	100
тмтд	87	100	100	100	87	83

(51)4 C 07 D 471/04; A 61 K 31/395

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

posequiseas

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

ANETONAGES

- (21) 3268639/23-04
- (22) 30.03.81
- (46) 23.12.86. Бюл. № 47
- (71) Институт физико-органической химии и углехимии АН Украинской ССР и Запорожский государственный медицинский институт
- (72) Ю.М. Ютилов, А.Г. Игнатенко,
- Л.Е. Михайлова и В.В. Кириченко
- (53) 547.859(088.8)
- (54) 2,4-дистирилпроизводные имидазо [4,5-с] пиридиния, обладающие бактериостатической и фунгистатической активностью

(57) 2,4-Дистирилпроизводные имидазо [4,5-c]пиридиния общей формулы

$$\begin{array}{c|c} CH_3 & R_2 \\ \hline N & CH=CH - R_1 \\ \hline CH_3 & CH=CH - R_2 \\ \hline \end{array}$$

где a) $R_1 = N(CH_3)_2$, $R_2 = H$;

6) R,=R₂=OČH,, обладающие бактериостатической и фунгистатической активностью.

Изобретение относится к новым химическим соединениям ряда имидазо пиридина, а именно к 2,4-дистирил-производным имидазо (4,5-с)пиридиния, которые проявляют бактериостатическую и фунгистатическую активность и могут быть использованы в химикофармацевтической промышленности.

В патентной литературе описан 5-додецил-1-метилимидазо[4,5-с]пири-динийбромид, проявляющий антимикробную и фунгастатическую активность. Однако он обладает высокой токсичностью (ДД 50=13 мг/кг).

Целью изобретения является расши- 15 рение арсенала средств воздействия на живой организм.

Поставленная цель достигается описываемыми 2,4-дистирилпроизводными имидазо[4,5-с]пиридиния общей формулы

$$CH_3$$

$$R_2$$

$$CH_3$$

$$CH=CH$$

$$R_1$$

$$R_2$$

$$R_2$$

где a) $R_1 = N(CH_3)_2$, $R^2 = H$; 6) $R_1 = R^2 = OCH_3$,

которые получают взаимодействием 1,2,4,5-тетраметилимидазо[4,5-с]пи-ридинийиодида с избытком соответствующего ароматического альдегида в присутствии пиперидина в качестве катализатора.

П р и м е р 1. 2,4-Ди-(n-N',N'-диметиламиностирил)-1,5-диметилимид- † азо[4,5-с]лиридинийиодид (1a).

0,1 г (3,3 10⁻⁴ моль) 1,2,4,5-тетраметилимидазо [4,5-с] пиридинийиодида и 0,2 г (13,2 10⁻⁴ моль) п-N ,N диметиламинобензальдегида растворяют при нагревании в 5 мл н-бутанола,
добавляют 0,24 мл (2,4·10⁻⁴ моль) пиперидина и кипятят на масляной бане
при температуре 135-145°C 3,5 ч.
После охлаждения выпавший осадок вишневого цвета отфильтровывают и промывают эфиром, выход 0,072 г (38,6%),
т.пл. 250°C с разложением (н-бутанол).

Спектр IMP, δ , м.д. (CF₃ COOH):3,02 [c,-(CH₃)₂]; 3,92 [c, 1(5)-CH₃]; 4,12 [c, 5(1)-CH₃]; 7,30-7,55 (м, -C₆H₄- и

-СН=СН-); 7,72 [д, 7(6)-H, Ј=6,5 гц]; 8,43 [д, 6(7)-H, Ј=6,5 гц]. Найдено, %: С 59,7; Н 6,0; N 22,3. С₂₉ Н₃₂ N₅ Ј Вычислено, %: С 59,5; Н 5,7; N 22,4.

Пример 2. 2,4,-Ди-(3,4-ди-метоксистирил)-1,5-диметилимидазо-[4,5-с]пиридинийиодид (15).

Получают аналогично примеру 1, исходя из 0,1 г (3,3 10 моль) 1,2, 4,5-тетраметилимидазо [4,5-с]пиридинийиодида и 0,25 г (1,5 10 моль) 3,4-диметоксибензальдегида, выход 0,15 г (75,8%), вещество светло-коричневого цвета, т.пл. 175-176°С (н-бутанол).

Спектр ПМР (СF₃ СООН, δ , м.д.):
3,60 (c,2,5-ОСН₃); 3,89 [c, 1(5)20 СН₃]; 4,09 [c,5(1)-СН₃]; 6,6-7,23
(м,-С₆ Н₃-и-СН=СН-); 7,69 [д, 7(6)Н, Ј=6,5 гц]; 8,33 [д,6(7)-Н,
Ј=6,5 гц].

Найдено, %: С 55,8; Н 5,2; 25 N 20,9.

С₂₈ Н₃₀ N₃ JO₄ Вычислено, %: С 56,1; Н 5,0; N 21,2.

Бактериостатическую активность

30 соединений изучали методом двукратных разведений на жидкой среде. Для
культивирования бактерий использовали бульон Хоттингера (рН 7,2-7,4).
Микробная нагрузка для бактерий

5 10 5 клеток агаровой 18-часовой
культуры в 1 мл среды. Максимальная
из испытанных концентраций 200 мкг/мл.

Для выращивания грибов использовали среду Сабуро (рН 6,0-6,8). На40 грузка 500 тыс. репродуктивных телец в 1 мл. Максимальная из испытанных концентраций 200 мкг/мл. Антимикробную активность соединений по минимальной бактериостатической или микостатической концентрации химических соединений, выраженной в мкг/мл.

Результаты испытаний активности и токсичности приведены в таблице.

Таким образом, 2,4-дистирилпроизводные имидазо[4,5-с] пиридиния общей формулы 1 обладают более широким спектром бактериостатической и фунгистатической активности, чем 5-додецил-1-метилимидазо[4,5-с] пиридинийбромид, а также являются менее токсичными соединениями.

Результаты испытаний на антимикробную и фунгистатическую активность (минимальная бактериостатическая и микостатическая концентрация указаны в мкг/мл),

Штамм микроорганизмов и грибов	2,4-Дистирилпроизводные имидазо[4,5-с]пиридиния		
	1a	16	
Staphylococcus aureus 209 P	100	более 200	
Esheria colie 675	200	более 200	
Shigella Flexneri	50	200	
Bacilus antracoides 1312	6,25	200	
Microsporum lanosum 257	50	200	
Trichophyton mentag. IMI 124768	50	200	
Aspergillus niger BKMF-1119	200	Более 200	
Гоксичность ЛД ₅₀ , мг/кг	44,7±6,05	48,7±2,67	

Редактор О. Кузнецова Техред **М.Ходанич**

Корректор Л: Патай

Заказ 6978/3

Тираж 379

Подписное

вниипи Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4