Contents

1	1 Classes			
	1.1	finitef	eld – Finite Field	2
		1.1.1	†FiniteField – finite field, abstract	3
		1.1.2	†FiniteFieldElement – element in finite field, abstract	4
		1.1.3	FinitePrimeField – finite prime field	5
			1.1.3.1 createElement – create element of finite prime	
			field	6
			1.1.3.2 getCharacteristic – get characteristic	6
				6
			1.1.3.4 issuperring – superring test	6
		1.1.4		7
			1.1.4.1 getRing – get ring object	8
			1.1.4.2 order – order of multiplicative group 8	8
		1.1.5	ExtendedField – extended field of finite field	9
			1.1.5.1 createElement – create element of extended field 10	0
			1.1.5.2 getCharacteristic – get characteristic 10	0
			1.1.5.3 issubring – subring test	0
			1.1.5.4 issuperring – superring test	0
			1.1.5.5 primitive_element – generator of multiplicative	
			group	0
		1.1.6	ExtendedFieldElement – element of finite field 1	1
			1.1.6.1 getRing – get ring object	2
			1169 inverse – inverse element)

Chapter 1

Classes

1.1 finitefield – Finite Field

- Classes
 - †FiniteField
 - $-\ \dagger \mathbf{FiniteFieldElement}$
 - FinitePrimeField
 - FinitePrimeFieldElement
 - ExtendedField
 - ExtendedFieldElement

1.1.1 †FiniteField – finite field, abstract

Abstract class for finite fields. Do not use the class directly, but use the subclasses <code>FinitePrimeField</code> or <code>ExtendedField</code>.

The class is a subclass of **Field**.

Abstract class for finite field elements. Do not use the class directly, but use the subclasses FinitePrimeFieldElement or ExtendedFieldElement.

The class is a subclass of FieldElement.

1.1.3 FinitePrimeField – finite prime field

Finite prime field is also known as \mathbb{F}_p or $\mathrm{GF}(p)$. It has prime number cardinality. The class is a subclass of **FiniteField**.

Initialize (Constructor)

$\textbf{FinitePrimeField}(\textbf{characteristic:} \ \textit{integer}) \rightarrow \textit{FinitePrimeField}$

Create a Finite PrimeField instance with the given characteristic. characteristic must be positive prime integer.

Attributes

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation
F==G	equality test.
x in F	membership test.
card(F)	Cardinality of the field.

1.1.3.1 createElement – create element of finite prime field

```
createElement(self, seed: integer) \rightarrow FinitePrimeFieldElement
```

Create FinitePrimeFieldElement with seed. seed must be int or long.

1.1.3.2 getCharacteristic – get characteristic

```
{\tt getCharacteristic(self)} \rightarrow {\it integer}
```

Return the characteristic of the field.

1.1.3.3 issubring – subring test

```
is subring(self, other: \textcolor{red}{\mathbf{Ring}}) \rightarrow \textit{bool}
```

Report whether another ring contains the field as subring.

1.1.3.4 issuperring – superring test

 $issuperring(self, other: Ring) \rightarrow bool$

Report whether the field is a superring of another ring. Since the field is a prime field, it can be a superring of itself only.

1.1.4 FinitePrimeFieldElement – element of finite prime field

The class provides elements of finite prime fields.

It is a subclass of ${\bf FiniteFieldElement}$ and ${\bf IntegerResidueClass}$.

Initialize (Constructor)

 $\label{eq:finitePrimeFieldElement} FinitePrimeFieldElement (representative: integer, modulus: integer) \\ \rightarrow FinitePrimeFieldElement$

Create element in finite prime field of modulus with residue representative. modulus must be positive prime integer.

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 $1.1.4.1 \quad \mathbf{getRing} - \mathbf{get} \ \mathbf{ring} \ \mathbf{object}$

 $\operatorname{getRing}(\operatorname{self}) o \mathit{FinitePrimeField}$

Return an instance of FinitePrimeField to which the element belongs.

1.1.4.2 order – order of multiplicative group

 $\operatorname{order}(\operatorname{self}) o integer$

Find and return the order of the element in the multiplicative group of \mathbb{F}_p .

1.1.5 ExtendedField – extended field of finite field

Extended Field is a class for finite field, whose cardinality $q=p^n$ with a prime p and n>1. It is usually called \mathbb{F}_q or $\mathrm{GF}(q)$.

The class is a subclass of **FiniteField**.

Initialize (Constructor)

 \rightarrow ExtendedField

Create a field extension basefield [X]/(modulus(X)).

FinitePrimeField instance with the given characteristic. The modulus has to be an irreducible polynomial with coefficients in the basefield.

Attributes

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation				
F==G	equality or not.				
x in F	membership test.				
card(F)	Cardinality of the field.				
repr(F)	representation string.				
str(F)	string.				

1.1.5.1 createElement – create element of extended field

 $createElement(self, seed: extended element seed) \rightarrow ExtendedFieldElement$

Create an element of the field from seed. The result is an instance of **ExtendedFieldElement**.

The seed can be:

- a FinitePrimeFieldPolynomial
- an integer, which will be expanded in card(basefield) and interpreted as a polynomial.
- basefield element.
- a list of basefield elements interpreted as a polynomial coefficient.

1.1.5.2 getCharacteristic – get characteristic

```
getCharacteristic(self) \rightarrow integer
```

Return the characteristic of the field.

1.1.5.3 issubring – subring test

```
issubring(self, other: Ring) \rightarrow bool
```

Report whether another ring contains the field as subring.

1.1.5.4 issuperring – superring test

```
issuperring(self, other: Ring) \rightarrow bool
```

Report whether the field is a superring of another ring.

1.1.5.5 primitive element – generator of multiplicative group

```
primitive element(self) \rightarrow \textit{ExtendedFieldElement}
```

Return a primitive element of the field, i.e., a generator of the multiplicative group.

1.1.6 ExtendedFieldElement – element of finite field

ExtendedFieldElement is a class for an element of F_q . The class is a subclass of **FiniteFieldElement**.

Initialize (Constructor)

ightarrow ExtendedFieldElement

Create an element of the finite extended field.

The argument representative must be an **FiniteFieldPolynomial** has same basefield. Another argument **f**ield must be an instance of ExtendedField.

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a/b	inverse multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 ${\bf 1.1.6.1} \quad {\bf getRing-get\ ring\ object}$

 $\operatorname{getRing}(\operatorname{self}) o \mathit{FinitePrimeField}$

Return an instance of Finite PrimeField to which the element belongs.

1.1.6.2 inverse – inverse element

 $inverse(self) \rightarrow \textit{ExtendedFieldElement}$

Return the inverse element.

Bibliography