

SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup

Rongzhi Zhang, Yue Yu, Chao Zhang Georgia Institute of Technology

CS 7641/4641 Seminar | Sep 23, 2020

Introduction

- Sequence labeling is core to many NLP tasks
 - Part-of-speech (POS) tagging
 - Event extraction
 - Named entity recognition (NER)

 Deep neural architectures have demonstrated superior performance for this task but they are label hungry.

Active Learning

Traditional methods: randomly sample a large dataset to train a model **Active learning**: choose the data of interest in low-resource scenarios

However, existing methods on active sequence labeling use queried data samples alone in each iteration.

- The queried samples provide limited data diversity
- Using them alone is an inefficient way of leveraging annotation

We thus want to enhance active sequence labeling via data augmentation.

Challenges

We need to jointly generate sentences and token-level labels.

- Prevailing generative models are inapplicable
 - -- They can only generate word sequences without labels.
- Heuristic data augmentation methods such as context-based words substitution, synonym replacement are also infeasible.
 - -- Label composition is complex for sequence labeling. Directly manipulating tokens as above may inject incorrectly labeled sequences into training data.

Our Solution

- SeqMix searches for pairs of eligible sequences and mixes them both in the feature space and the label space
 - Implement linear interpolation in the embedding space.
 - Generate the sequences along with the labels.

- Deploy a discriminator to judge if the generated sequence is plausible or not
 - Compute the perplexity scores for all the generated sequences
 - Select the low-perplexity sequences as plausible ones

Problem Definition

- Traditional active learning starts from a small labeled seed set L, and update it with the newly labeled query samples $\langle X, Y \rangle$ in each learning round as $L = L \cup \langle X, Y \rangle$
- Formally, we define our task as:
 - 1) Construct a generator $\phi(\cdot)$ to implement sequence and label generation based on the actively sampled data X and its label Y
 - 2) Set a discriminator $d(\cdot)$ to yield the filtered generation
 - 3) Augment the labeled set as $L = L \cup \langle X, Y \rangle \cup d(\phi(X, Y))$

Active Learning for Sequence Labeling

- Active sequence labeling selects K most informative instances in each learning round. The representative query polices to measure the informativeness are as below.
- Least Confidence (LC)

$$\gamma^{LC}(\mathbf{x}) = 1 - \max_{\mathbf{y}^*} (P(\mathbf{y}^*|\mathbf{x}; \theta))$$

Normalized Token Entropy (NTE)

$$\gamma^{\text{TE}}(\mathbf{x}) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{m=1}^{M} P_m(\mathbf{y}_t | \mathbf{x}, \theta) \log P_m(\mathbf{y}_t | \mathbf{x}, \theta)$$

Disagreement Sampling

$$\gamma^{\text{VE}}(\mathbf{x}) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{m=1}^{M} \frac{V_m(\mathbf{y}_t)}{C} \log \frac{V_m(\mathbf{y}_t)}{C}$$

Method Overview

Sequence Mixup in the Embedding Space

• Given two input samples x_i, x_j along with their labels y_i, y_j , The mixing process is:

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j,$$

 $\tilde{y} = \lambda y_i + (1 - \lambda)y_j,$

where $\lambda \sim \text{Beta}(\alpha, \alpha)$.

 The input space is discrete for text, so we make linear interpolation in the embedding space.

For the embedding and label of the t-th token in a sequence:

$$\mathbf{e}^{t} = \underset{\mathbf{e} \in \mathcal{E}}{\operatorname{arg\,min}} \left\| \mathbf{e} - (\lambda \mathbf{e}_{i}^{t} + (1 - \lambda) \mathbf{e}_{j}^{t}) \right\|_{2}$$
$$\mathbf{y}^{t} = \lambda \mathbf{y}_{i}^{t} + (1 - \lambda) \mathbf{y}_{i}^{t}$$

Multi-granularity Sequence Mixup

1. Whole-sequence mixup

2. Sub-sequence mixup

3. Label-constrained sub-sequence mixup

Scoring Mechanism

- The generation quality fluctuates due to the following reasons:
 - The mixing coefficient λ sampled from $Beta(\alpha, \alpha)$ determines the interpolation strength.
 - The discrete embedding space can hardly match a mixed embedding exactly.
- To maintain the quality of mixed sequences, we set a discriminator to score the perplexity of the sequences.
 - Utilize a language model to score the sequence X by computing its perplexity

Perplexity(
$$\mathbf{x}$$
) = $2^{-\frac{1}{T}\sum_{i=1}^{T}\log p(w_i)}$

• Based on the perplexity and a score range $[s_1, s_2]$, give judgement for the sequence X

$$d(\mathbf{x}) = \mathbb{1} \left\{ s_1 \leq \text{Perplexity} \left(\mathbf{x} \right) \leq s_2 \right\}$$

Experiments

- Datasets
 - CoNLL-03 -- a well studied dataset for NER task
 - ACE-05 -- a well-known corpus for automatic content extraction
 - WebPage a tiny NER corpus comprise of 20 webpages
- Baseline
 - Random sampling
 - Least confidence sampling
 - Normalized Token Entropy sampling
 - Query-by-Committee sampling
- Evaluation
 - Set 6 data usage percentiles for the training set, evaluate F_1 score for each data usage percentile.

Main Results

- SeqMix consistently outperforms the baselines at each data usage percentile.
- The augmentation advantage is especially prominent for the seed set initialization stage where the annotation is very limited.

Ablation Study: Effect of Discriminator

Data Usage	200	300	400	500	600	700
$\overline{(0,+\infty)}$	81.15	82.32	82.74	83.66	83.79	85.05
(0, 2000)	80.20	82.24	83.21	83.67	83.90	85.11
(0, 1000)	80.13	81.86	83.58	84.22	84.81	85.16
$(0, +\infty)$ $(0, 2000)$ $(0, 1000)$ $(0, 500)$	80.71	82.82	84.05	85.28	86.04	86.24

The performance of SeqMix with variant discriminator score range

- The score range $(0, +\infty)$ indicates no discriminator participated.
- The comparison demonstrates the lower the perplexity, the better the generation quality.
- The score range can further narrow down, but we made a tradeoff between the generation quality and the generation quantity.

Summary

- We propose SeqMix to augment active sequence labeling
 - Introduce data diversity through the sequence Mixup in latent space
 - Alleviate the dependency to the annotation capacity for active learning.

Future Work

- We plan to explore implementing SeqMix via the combination of a multilayer representation.
- We are also interested in combining SeqMix with other active learning method and extending SeqMix to other NLP tasks.

Thank you!

Questions?