Statistical Power

Objectives

Define Power and relate it to the Type II error.

Explain how the following factors contribute to power: sample size, effect size (difference between sample statistics and statistic formulated under the null), and significance level.

Compute power given a dataset and a problem.

Identify what can be done to increase power.

Estimate sample size required of a test (power analysis) for one sample mean or proportion case.

Hypothesis Testing (from yesterday)

- 1. Define null and alternative hypotheses.
- 2. Assume that the null hypothesis is true.
- 3. Collect evidence to disprove this assumption.
- Outcome: we "reject the null hypothesis" or "fail to reject the null."

Hypothesis Testing

1. State null hypothesis (H₀) and alternative hypothesis (H_A)

$$H_0$$
: $\mu = 100$
 H_{Δ} : $\mu \neq 100$

Choose significance level, α

$$\alpha = 0.05$$
 (usually)

3. Compute appropriate test statistic using collected data.

t-statistic (with appropriate treatment of sample sizes/variance)

Compute p-value based on test statistic.

Two-sided test of t-distribution

Reject or fail to reject null.

P[reject
$$H_0 \mid H_0$$
 is true] = α

Hypothesis Testing

	H _o is true	H ₀ is false
Fail to reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision (1 - β)

Hypothesis Testing

Null hypothesis

	H ₀ is true	H ₀ is false
Fail to reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision (1 - β)

	H ₀ is true	H ₀ is false
Fail to reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision (1 - β)

Alternative hypothesis

- 1. Assume that the null hypothesis (H₀) is *false*.
- 2. Given:
 - a. Significance level, α
 - b. Effect size, μ_{A} μ_{D}
 - c. Sample size, n
 - d. Standard deviation, s

Calculate Power: P[reject $H_0 \mid H_0$ is false] = 1 - β

Hyp. Testing & Power Calc.

	H_0 is true	H _o is false
Fail to reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision (1 - β)

Power Calculation Example

- 1. Assume that the null hypothesis (H₀) is *false*.
- 2. Given: (for AB-test of website)
 - a. Significance level, $\alpha = 0.05$
 - b. Effect size, $\mu_0 = 0.06$, $\mu_A = 0.07$
 - c. Sample size, n = 5000
 - d. Standard deviation, s = 0.237 (known since $s^2 = p(1-p)$ for proportions)

Calculate Power: P[reject $H_0 \mid H_0$ is false] = 1 - β

$$\alpha = 0.05$$
, $\mu_0 = 0.06$, $\mu_{\Delta} = 0.07$, $N = 5000$, $s = 0.237$

Calculate Power: P[reject $H_0 \mid H_0$ is false] = 1 - β

1. Calculate "critical value" for rejecting H_0 X^* :

$$Z_{\alpha} \le Z = \frac{X - \mu_0}{S / \sqrt{n}} \text{ or } \mu_0 + Z_{\alpha} \frac{S}{\sqrt{n}} = X^* \le X$$

2. Now calculate the Z-score and p-value of the "critical value" under H_^

$$\alpha = 0.05$$
, $\mu_0 = 0.06$, $\mu_A = 0.07$, $N = 5000$, $s = 0.237$

Calculate Power: P[reject $H_0 \mid H_0$ is false] = 1 - β

1. Calculate "critical value" for rejecting H_0 X^* :

$$Z_{\alpha} \le Z = \frac{X - \mu_0}{S / \sqrt{n}} \text{ or } \mu_0 + Z_{\alpha} \frac{S}{\sqrt{n}} = X^* \le X$$

(For this example, use one-sided test of proportions $\alpha=0.05 \Longrightarrow Z_{\alpha}=1.645$)

2. Now calculate the Z-score and p-value of the "critical value" under H_A

$$\alpha = 0.05$$
, $\mu_0 = 0.06$, $\mu_A = 0.07$, $N = 5000$, $s = 0.237$

Calculate Power: P[reject $H_0 \mid H_0$ is false] = 1 - β

1. Calculate "critical value" for rejecting H_0 X^* :

$$Z_{\alpha} \le Z = \frac{X - \mu_0}{S / \sqrt{n}}$$
 or $\mu_0 + Z_{\alpha} \frac{S}{\sqrt{n}} = X^* \le X$

(For this example, use one-sided test of proportions $\alpha=0.05 \Longrightarrow Z_{\alpha}=1.645$)

2. Now calculate the p-value of the "critical value" under H_A $P[\mu_{\Lambda} >= X^*] = 0.91$

Power of this test is 91%

Power Calc Step 1.

Power Calc Step 2.

Relating Power and Significance Level

First, we reject H₀ when:

$$Z_{\alpha} \le Z = \frac{X - \mu_0}{S / \sqrt{n}}$$
 or $\mu_0 + Z_{\alpha} \frac{S}{\sqrt{n}} = X^* \le X$

Then, we find the corresponding cut-off of this value under H_A is:

$$X^* = \mu_1 + Z_{1-\beta} \frac{s}{\sqrt{n}} = \mu_1 - Z_{\beta} \frac{s}{\sqrt{n}}$$

$$Z_{\alpha} + Z_{\beta} = \frac{\mu_1 - \mu_0}{S / \sqrt{n}}$$

Define 4 variables, solve for the remaining 1.

•

$$Z_{\alpha} + Z_{\beta} = \frac{\mu_1 - \mu_0}{S / \sqrt{n}}$$

The equation above links the following variables:

- α (type I error; significance level)
- β (type II error; $\pi = 1 \beta$, the statistical power)
- μ_1 μ_0 (effect size)
- s (standard deviation)
- n (sample size)

Some Experimental Design Questions

After choosing significance level and power, what effect size can I distinguish with a sample of N subjects?

After choosing significance level and power, how many subjects do I need to observe to be able to identify a particular effect size?

Conceptual Questions

$$Z_{\alpha} + Z_{\beta} = \frac{\mu_1 - \mu_0}{S / \sqrt{n}}$$

If I decide that I need a more stringent significance level cutoff (e.g. α = 0.05 to 0.01) what happens to the power of the experiment (assuming everything else stays constant)?

What is the primary means available to increase the power of an experiment?

Conceptual Questions

$$Z_{\alpha} + Z_{\beta} = \frac{\mu_1 - \mu_0}{S / \sqrt{n}}$$

If I decide that I need a more stringent significance level cutoff (e.g. α = 0.05 to 0.01) what happens to the power of the experiment (assuming everything else stays constant)? -- Power is reduced

What is the primary means available to increase the power of an experiment?

Conceptual Questions

$$Z_{\alpha} + Z_{\beta} = \frac{\mu_1 - \mu_0}{S / \sqrt{n}}$$

If I decide that I need a more stringent significance level cutoff (e.g. $\alpha = 0.05$ to 0.01) what happens to the power of the experiment (assuming everything else stays constant)? -- Power is reduced

What is the primary means available to increase the power of an experiment?

-- Increase the sample size

Objectives

Define Power and relate it to the Type II error.

Explain how the following factors contribute to power: sample size, effect size (difference between sample statistics and statistic formulated under the null), and significance level.

Compute power given a dataset and a problem.

Identify what can be done to increase power.

Estimate sample size required of a test (power analysis) for one sample mean or proportion case.