REAL TIME OPERATING SYSTEM PROGRAMMING-I: µC/OS-II and VxWorks

Lesson-11: VxWorks Signal and Semaphore Functions

1. Signal Function

Signal (an Exception or Interrupt) handling Functions

- sigNum
- identifies a signal
- void sigHandler (int sigNum);
- —to declares a signal servicing routine for a signal identified by *sigNum*
- signal (sigNum, sigISR)
- —to registers a signal sigNum with a signal servicing routine sigISR
- Refer Section 9.3.3.4

2. Semaphore Functions

Semaphore Creation Functions

- semBCreate () Creates a binary semaphore. Example 9.21 Step 4
- semMcreate () Creates a mutex semaphore. Example 9.22 Step 2
- semC-Create Creates a counting semaphore. Example 9.23 Step 5

Semaphore Deletion and Flush Functions

- semDelete ()
 - -to deletes a semaphore
- semFlush ()
- -to resume all waiting blocked tasks.

 [Semaphore value for eah waiting task becomes 1]

Semaphore Take and Give Functions

semTake () Takes a semaphore. Example 9.22 Step 6

semGive () Releases a semaphore.[Example 9.21 Step 7, 9.22 Step 7 and 9.23 Step 12]

OPTIONS in Semaphore Functions

(1)SEM_Q_FIFO

for specifying that take the semaphore in FIFO mode (task blocked first get that first)

(2) SEM_Q_PRIORITY

for specifying that take the semaphore in priority mode (higher priority blocked task get that first)

Semaphore Create for Event Flag

- SEM_ID semBCreate (options, initialState)'
- —to create an ECB for binary semaphore SEM_ID with options and initialState value
- Refer section 9.3.4.1 and example9.21 Step 4

Mutex Creation Statements

```
SEM_ID semMKeyID;
semMKeyID = semBCreate
(SEM_Q_PRIORITY, SEM_FULL);
```

- /*creates a Mutex using a binary sem.*/
- Refer section 9.3.4.5 and example 9.22 Step 2

Example

```
SEM_ID semMReadPortAKey;
semMReadPortAKey = semMCreate
(SEM_Q_PRIORITY |
SEM_INVERSION_SAFE |
SEM_DELETE_SAFE);
```

/* To initial count = SEM_FULL, which means 1 and create a mutex semaphore with priority option for taking that, priority inversion safe, and deletion safe */

Example

- SEM_ID semCCreate (options, unsigned byte initialCount)
- -to create an ECB pointed by the SEM_ID.
- SEM_ID semCID;
- •. SEM_ID = semCCreate (SEM_Q_PRIORITY, 0);
- /* To initial count = 0 and create a counting semaphore with priority option for taking that*/

POSIX Semaphores

- semPxLibInit ();/* initializes the
 VxWorks library to permit use of these
 Functions */
- sem_open ();/* initialize a semaphore*/
- sem_close (); /*close the semaphore*/
- sem_unlink(); /*remove a semaphore*/

POSIX Semaphore Functions

- sem_post();
- sem_wait();
- sem_unlock;
- sem_lock a semaphore;
- sem_trywait (); /* to lock a
 semaphore if not locked*/
- sem_getvalue () /* to retrieve the
 value of semaphore /*

Init and Destroy

• sem_init () and sem_destroy () initialise and destroy an unnamed semaphore.

Destroy means de-allocate associated memory with its ECB. This effect is the same as first closing a semaphore and then unlinking it by sem_close and sem_unlink functions, respectively.

VxWorks Semaphore Special Features

- (i) Options of protection from priority inversion and task deletion.
- (ii) Single task may take a semaphore multiple times and recursively.

VxWorks Semaphore Special Features

- (iii) Mutually exclusive ownership can be defined.
- (iv) Two options, FIFO and task priority for semaphores wait by multiple tasks.

Summary

We learnt

- signal-servicing routines
- A signal-servicing routine is a C function and that executes on signal (interrupt or exception) in a task.
- A connect function connects the signal number with the signal ISR

We learnt

two ways in which a pending task among the pending tasks can unblock.
One is as per task priority and another is as a FIFO when accepting (taking) an IPC

We learnt

- three different semaphore functions for use as IPC for event flag, for resource key and counting semaphore.
- supports POSIX semaphores.

End of Lesson-11 on VxWorks Signal and Semaphore functions