Doppler Imaging Fun

Rodrigo Luger¹ and Megan Bedell¹

¹Center for Computational Astrophysics, Flatiron Institute, New York, NY

1. INTRODUCTION

Check out Luger et al. (2019) and Bedell et al. (2019) and stuff.

2. THE EQUATION

In the most general form, the Doppler-shifted intensity observed at wavelength λ at position x, y on the surface of the star at time t is

$$I(\lambda, \beta, x, y, t) = I(\lambda, 0, x, y, t) + \frac{\mathrm{d}I(\lambda, \beta, x, y, t)}{\mathrm{d}\beta}\Big|_{\beta=0} \Delta\beta(x, y) + \frac{\mathrm{d}^2I(\lambda, \beta, x, y, t)}{\mathrm{d}\beta^2}\Big|_{\beta=0} \Delta\beta^2(x, y) + \dots$$

$$(1)$$

where $\beta \equiv \frac{v}{c}$ is the relativistic parameter for a radial velocity v on the surface.

3. DIFFERENTIATING THE SPECTRUM

The derivatives of the spectrum $I(\lambda)$ with respect to the relativistic parameter β are found by application of Faà di Bruno's formula for taking high order derivatives of the chain rule:

$$\frac{\mathrm{d}^n I(\lambda, \beta)}{\mathrm{d}\beta^n}\Big|_{\beta=0} = \sum_{k=1}^n \frac{\mathrm{d}^k I(\lambda_0)}{\mathrm{d}\lambda_0^k}\Big|_{\lambda_0=\lambda} \lambda^k P_{nk}$$

$$(2)$$

where

$$P_{nk} \equiv B_{n,k} \left(\left\{ (-1)^j j! \right\}_{j=1}^{n-k+1} \right)$$

$$(3)$$

and $B_{n,k}$ is the incomplete Bell polynomial. The quantity $\frac{d^k I(\lambda_0)}{d\lambda_0^k}\Big|_{\lambda_0=\lambda}$ is just the k^{th} derivative of the spectrum with respect to wavelength in the rest frame, and must either be inferred from the data or computed numerically from the spectrum.

REFERENCES

Bedell, M., et al. 2019, arXiv e-prints, arXiv:1901.00503

Luger, R., et al. 2019, AJ, 157, 64