| El problema del agente viajero                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------|
| El problema del agenti viojero<br>(Traveriny Sarresman Problem TSP)                                                   |
| (1832 Hamilton, Kirkman 1930)                                                                                         |
| PROBLEMA: Un vendedor de enciclopedias debe                                                                           |
| recorrer n ciudados y regresar a casa visitando                                                                       |
| cada ciudad exactamente una vez. Sabemos                                                                              |
| los costos Cij de viajan desde i hasta j.                                                                             |
| Cuál es el itinerario mais económico posible?                                                                         |
|                                                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                 |
|                                                                                                                       |
| Cvantos camillos porbles hay? $\frac{R!}{2N} = \frac{n!}{2N} = \frac{(N-1)!}{2}$                                      |
| ENORME !!                                                                                                             |
|                                                                                                                       |
| El algoritmo de Held-Karp, constrido                                                                                  |
| mediante pogamación dináncia nos das                                                                                  |
| un algoritmo $O(n^2 Z^n)$ exponencial                                                                                 |
| pero MUUCHO meja que fuerza brita.                                                                                    |
| - ' '                                                                                                                 |
| Plantearemos el problema como uno de                                                                                  |
| optimitación rompiendo el ciclo par                                                                                   |
| permitir una formulación recursiva                                                                                    |
| •                                                                                                                     |
| Def: Fijamos airdad de mirio 1. y para 5 \( \frac{1}{2}, \dots, \eta \)  y \( \ext{2} + 1, \) \( e \neq 5 \) deprimos |
| y e \$1, e \$5 dephinos                                                                                               |
| -T es un camino                                                                                                       |
| g(5,e) = min {C(T): -T initial en 1<br>-T termina en e                                                                |
| -T visita toda ciuded de S                                                                                            |
| exactamente una vez                                                                                                   |
| -T no visita ningma aiudad mas (frea de SUZI)U(e).                                                                    |





| A es independiente y tambier <u>maximal</u>                                   |
|-------------------------------------------------------------------------------|
| porque de la contrio podramos encontre                                        |
| oto vertee a independente de A y                                              |
| colonerlo de ant conhadiciendo la naxinalidad.                                |
| Si < V(4)\A> pudien ser colorendo                                             |
| con (k-2 colores podiamos colorea A                                           |
| con < k-1 1 lvego                                                             |
| k = 1+ X (< V(9)\A>) ECUACIÓN<br>DE BELLMAN                                   |
| pan algun subcarjunto maximal independiente A.                                |
| $\chi(q) = \min \left\{ 1 + \chi(\langle V(q) \backslash A \rangle) \right\}$ |
| $\Delta \subset V(G)$                                                         |
| A independent y maximal.                                                      |
|                                                                               |
| Hay $\leq 3^{\frac{t}{3}}$ subconjuto, max indep.                             |
| Con t Warking                                                                 |
| $O(2.44^{n}) < CO(n^{n})$                                                     |
|                                                                               |
| Como enumerar subconjunto, independiente, maximales?                          |
| Signiendo a tapadinition-Yannaledas 1988                                      |
| lo haenos mediante una combinación de DFS y.                                  |
| Programación dinamica.                                                        |
|                                                                               |
| En resinen hacemos los signientes pros:                                       |
| . —                                                                           |
| (1) Enumeramos sobre los subconjuntos                                         |
| S \( \( \( \q \) \) en orden de cardinal                                      |
| Creciente, empetado con                                                       |
| $\chi$ (193) = 1 $\forall$ g $\in$ $\vee$ (G)                                 |
|                                                                               |

y diganos que es el conjunto A = f'(1)

| Ahoa, dado S = V(9) de cardinal t                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|
| (i) Enumeramos TODOS los subconjuntos                                                                              |
| independientes maxinales de <5>                                                                                    |
| mediante el algo de Papadino-Yannak.                                                                               |
| que veremos a continuación creado una                                                                              |
| lista $= \{A_1, \dots, A_m\}$                                                                                      |
|                                                                                                                    |
| (M prede ser may good, 3 3)                                                                                        |
| y usamos la ecuación de Bellman                                                                                    |
| $\chi(\langle S \rangle) = \min \left\{ 1 + \chi(\langle S \backslash A_i \rangle) \right\}$ $A_i \in \mathcal{L}$ |
| Aie (                                                                                                              |
| estos valures                                                                                                      |
| yare conocen                                                                                                       |
| por indicción,                                                                                                     |
| Al final, el núneo conatico de G es                                                                                |
| $\chi(q) = \chi(\langle q \rangle)$                                                                                |
| $\chi(q) - \chi(q)$                                                                                                |
| Se prede demostre que este algoritmo                                                                               |
|                                                                                                                    |
| requiere () (2.44"), exponencial                                                                                   |
| pero mucho mejor que fuerta bruta O(n")                                                                            |
|                                                                                                                    |
| * Cómo enumeron TODOS los subconjuntos                                                                             |
| independientes maximales de un grapo?                                                                              |
| * Cómo enumeran TODOS los subconjuntos<br>independientes maximales de un grafo?<br>[Papadinihia-Yannakekis]        |
|                                                                                                                    |
| El siguiente algo-itmo los enumera todos en                                                                        |
| orden lexicográfico (T,Tz C [n]                                                                                    |
| TIGITZ si el primer indice en el que                                                                               |
| TIGITZ si el primer indice en el que<br>Lex difieren esta en T1)                                                   |
|                                                                                                                    |

Ejemplo: 1459 4 14789

Indie mas pequeno en el que dipieren. Q = Priority queue con keys \( \int \text{En]} Algoritmo: ordinadas Lex, 5\* = Princer conjunto independiente maximal de V(q) en orden lex a = heap ( s\*) L = [] while a not empty: S = a.get-minimum () Lappend (5) for each j in V(4) adjacent to a vertex i ∈ S with i<j neighbor If S; - [(j) U {j} is max indep. in < {1,...,j} +hen T:= lex-first maximal indep set containing 5; - [(j) [ { j} Ozoiusert (T)

| El algoritmo requiere que se pamos encontro, |
|----------------------------------------------|
| dado un subconjunto in dipendiente I, un     |
| conjunto independiente T' con T = I          |
| que sea el primero en orden lex. Esto        |
| es muy facil;                                |
| (Inicianos con T = I y                       |
| Leemos los vértices en orden 1,2,, n.        |
| Agregamos ja T ssi al haurlo                 |
| T signe siendo independiente.                |
| )                                            |
| Ejerucio: Demustre que este método           |
| funciona Siempre.                            |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |