QGP parameter extraction via a global analysis of event-by-event flow

coefficient distributions

Jonah Bernhard Preliminary exam

January 6, 2014

Model-to-data comparison

Model-to-data comparison: heavy-ion collisions

Hot QCD matter

Normal matter

- Quarks and gluons confined to hadrons.
- Bound by strong nuclear force.
- Described by Quantum Chromodynamics (QCD).

Quark-gluon plasma

- QCD crossover transition $T \sim 165 \text{ MeV} \sim 10^{12} \text{ K}.$
- Deconfined quarks and gluons.
- Hot and dense, short mean free path (fluid-like).

Relativistic heavy-ion collisions

- Postulated that the universe was one large QGP in the first microseconds after the Big Bang.
- Small amounts created in relativistic heavy-ion collisions.

RHIC / BNL

Au+Au, Cu+Cu, U+U \sqrt{s} < 200 GeV

LHC / CERN

$$Pb+Pb$$
 $\sqrt{s} = 2.76 \text{ TeV}$

Spacetime evolution

Collective behavior

Strongly-interacting fluids exhibit collective behavior

Pressure gradient \rightarrow fluid flow:

$$(\epsilon + P)\frac{\partial \vec{v}}{\partial t} = -\vec{\nabla}P$$

K. O'Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas, Science 298, 2179 (2002).

Initial-state spatial anisotropy \implies Final-state momentum anisotropy

Flow

Momentum anisotropy parameterized by Fourier coefficients v_n

$$rac{dN}{d\phi} \propto 1 + \sum_{n} rac{ extsf{v}_{n}}{ extsf{cos}[extsf{n}(\phi - \psi_{n})]}$$

 ϕ : Angle of transverse momentum ψ_n : Reaction-plane angle (phase)

Flow provides essential evidence for the existence of a strongly-interacting QCD phase.

Event-by-event fluctuations

- Average: symmetric nuclei, almond-shape overlap.
 - Large v_2 , small v_4, v_6, \ldots , vanishing v_3, v_5, \ldots
- Event-by-event: randomly distributed nucleons, irregular overlap.
 - All v_n nonzero.
 - Flow probability distributions $P(v_n)$.

Viscosity

- Shear viscosity $\eta =$ fluid's resistance to shear flow.
- Strongly-interacting fluid \rightarrow short mean free path \rightarrow small η
- Viscosity damps collective behavior (flow).

$$\eta \sim n m v_{\mathsf{avg}} \ell_{\mathsf{mf}} \sim \epsilon \ell_{\mathsf{mf}} / v_{\mathsf{avg}} \sim \epsilon t_{\mathsf{mf}}$$

QGP specific shear viscosity

Specific shear viscosity = dimensionless ratio to entropy density, η/s .

$$\eta \sim \epsilon t_{\rm mf}, \ s \sim n \quad \Longrightarrow \quad \eta/s \sim (\epsilon/n) t_{\rm mf} \gtrsim 1$$

Water $\eta/s \sim$ 300 at STP, Helium $\eta/s \sim$ 2 at 3 K, QGP $\eta/s \sim \mathcal{O}(10^{-1})$.

Measuring QGP η/s :

- Observe experimental v_n .
- Run model with variable η/s .
- Constrain η/s by matching v_n .

Simulations

Modern event-by-event model:

- Monte Carlo initial conditions
- (Pre-equilibrium)
- Viscous relativistic hydrodynamics
- Monte Carlo freeze-out
- Boltzmann transport

Initial conditions

- MC-Glauber model
 - Randomly samples nucleon positions.
 - Calculates energy density based on nucleon overlap.
- MC-KLN model
 - Randomly samples nucleon positions.
 - Uses effective field theory to calculate gluon densities
 → proportional to energy density.
- Many others.

Pb+Pb, b = 8 fm

Viscous relativistic hydrodynamics

- Ignore pre-equilibrium, expand medium without interactions.
- Start hydro evolution at time τ_0 (must set explicitly).
- Conservation equations:

$$\partial_{\mu}T^{\mu\nu}=0, \quad T^{\mu\nu}=(\epsilon+P)u^{\mu}u^{\nu}-Pg^{\mu\nu}+\pi^{\mu\nu}.$$

- $\blacksquare \pi^{\mu\nu}$ contains dissipative effects (viscosity).
- Equation of state $P = P(\epsilon)$.

Hadronic freeze-out

- Hydro stops at QCD transition, $T \sim 165 \text{ MeV}$.
- Freezes into hadrons on hypersurface σ according to Cooper-Frye formula

$$E\frac{dN_i}{d^3p} = \int_{\sigma} f_i(x, p) p^{\mu} d^3\sigma_{\mu}$$

Randomly sample to produce an ensemble of particles.

Transport

 Non-equilibrium Boltzmann transport

$$\frac{df_i(x,p)}{dt} = C_i(x,p)$$

- Calculates final collisions and decays.
- Particles stream into "detector".

Model-to-data comparison: heavy-ion collisions

Computer experiments with slow models

Challenges

- Event-by-event models very computationally expensive, ~1 hour per event.
- Need $\mathcal{O}(10^3)$ events per parameter-point to study fluctuations.
- Must vary all parameters simultaneously.

Strategies

- Evaluate model at efficient pre-determined parameter points.
 - Latin-hypercube sampling.
- Interpolate between explicitly calculated points.
 - Gaussian process emulator.

Latin-hypercube sampling

- Random set of parameter points.
- Optimally fills parameter space.
- Avoids clusters.

Gaussian processes

- A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.
- Instead of drawing variables from a distribution, functions are drawn from a process.

Require a covariance function, e.g.

$$\mathsf{cov}(x_1, x_2) \propto \mathsf{exp} \bigg[- \frac{(x_1 - x_2)^2}{2\ell^2} \bigg]$$

Nearby points correlated, distant points independent.

Gaussian Processes for Machine Learning, Rasmussen and Williams, 2006.

Gaussian process emulators

- Prior: the model is a Gaussian process.
- Posterior: Gaussian process conditioned on model outputs.

- Emulator is a fast surrogate to the actual model.
 - More certain near calculated points.
 - Less certain in gaps.

Experimental data

- ATLAS event-by-event flow distributions *v*₂, *v*₃, *v*₄.
- Fit to Rice / Bessel-Gaussian distribution

$$P(v_n) = \frac{v_n}{\delta_{v_n}^2} e^{-\frac{(v_n)^2 + (v_n^{RP})^2}{2\delta_{v_n}^2}} I_0\left(\frac{v_n^{RP}v_n}{\delta_{v_n}^2}\right)$$

■ Reduce to parameters v_n^{RP} , δ_{v_n} .

Event-by-event model

Modern version of Duke+OSU model VISHNU (Viscous Hydro and UrQMD):

MC-Glauber & MC-KLN initial conditions

```
H.-J. Drescher and Y. Nara, Phys. Rev. C 74, 044905 (2006).
```

Viscous hydro

```
H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008).
```

Cooper-Frye sampler

```
Z. Qiu and C. Shen, arXiv:1308.2182 [nucl-th].
```

UrQMD (Ultrarelativistic Quantum Molecular Dynamics)

```
S. Bass et. al., Prog. Part. Nucl. Phys. 41, 255 (1998).
M. Bleicher et. al., J. Phys. G 25, 1859 (1999).
```

→ Tailored for running many events on Open Science Grid.

Computer experiment design

- Six centrality bins 0–5%, 10–15%, ... 50–55%.
- 256 Latin-hypercube points, five input parameters:
 - Normalization
 - IC-specific parameter
 - Thermalization time τ_0
 - Viscosity η/s
 - Shear relaxation time τ_Π
- Massive parallelization on Open Science Grid.
- Completed 1000–2000 events per centrality bin and input-parameter point.
 - 3.5 million total
 - $0.5 \ \mu b^{-1} \ (ATLAS: 7 \ \mu b^{-1})$

Open Science Grid usage

Maximum: 228,948 Hours, Minimum: 121,492 Hours, Average: 164,621 Hours, Current: 149,737 Hours

Completed KLN design (1.5 million events) in two weeks.

Model flow distributions

Input-output summary

Input-output summary

Best parameter points

OSU results, same model

dashed: Glauber $\eta/s=0.08$ solid: KLN $\eta/s=0.20$

Z. Qiu, C. Shen, and U. Heinz, Phys. Lett. B **707**, 151 (2012).

Constraining η/s

Points: average η/s of best 10 Latin-hypercube points by average v_n

Error bars: standard deviation of best 10

Dashed lines: canonical η/s (Glauber 0.08, KLN 0.20)

Summary & outlook

- Framework for massive event-by-event model-to-data comparison: new level of knowledge-extraction capability.
- Preliminary results consistent with previous work.
- Improve goodness of fit: beyond average flow.
- Emulator: vary single parameters independently, determine best-fit parameter values.
- Calibrate simultaneously on other observables, e.g. multiplicity.
- Repeat with more advanced models, especially initial conditions.

Color glass condensate

- High energy / small x: parton distribution functions dominated by gluons.
- Gluons overlap coherently → condensate state.

$$x = p_T e^{\pm y} / \sqrt{s}$$

Viscous hydro

Conservation of energy and momentum:

$$\partial_{\mu}T^{\mu\nu}=0$$

Stress-energy tensor:

$$T^{\mu
u} = T^{\mu
u}_{\mathsf{ideal}} + \pi^{\mu
u}$$

Ideal part:

$$T_{
m ideal}^{\mu
u}=(\epsilon+P)u^{\mu}u^{
u}-Pg^{\mu
u}$$

Shear viscosity correction:

$$\pi^{\mu\nu} = \eta \nabla^{\langle\mu} \mathbf{u}^{\nu\rangle}$$

Symmetric and traceless:

$$\nabla^{\langle \mu} u^{\nu \rangle} = \nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu \nu} \nabla_{\alpha} u^{\alpha}$$

Projection orthogonal to four velocity:

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu} \qquad \nabla_{\mu} = \Delta^{\alpha}_{\mu}\partial_{\alpha}$$

Generating Gaussian processes

- Choose a set of input points X_{*}.
- Choose a covariance function, e.g.

$$k(x_i, x_j) = \exp[-(x_i - x_j)^2/2]$$

and create covariance matrix $K(X_*, X_*)$.

Generate MVN samples (GPs)

$$\vec{f}_* \sim \mathcal{N}[\vec{0}, K(X_*, X_*)].$$

Training the emulator

- Make observations \vec{f} at training points X.
- Generate conditioned GPs

$$ec{f}_*|X_*, X, ec{f} \sim \mathcal{N}[K(X_*, X)K(X, X)^{-1}ec{f}, \ K(X_*, X_*) - K(X_*, X)K(X, X)^{-1}K(X, X_*)].$$

Rice / Bessel-Gaussian distribution

Flow vectors follow bivariate Gaussian

$$P(\vec{v}_n) = rac{1}{2\pi\delta_{v_n}^2} e^{-rac{(\vec{v}_n - \vec{v}_n^{\sf RP})^2}{2\delta_{v_n}^2}}.$$

Integrate out angle

$$P(v_n) = \frac{v_n}{\delta_{v_n}^2} e^{-\frac{(v_n)^2 + (v_n^{RP})^2}{2\delta_{v_n}^2}} I_0\left(\frac{v_n^{RP}v_n}{\delta_{v_n}^2}\right).$$

Finite multiplicity and unfolding

Observed flow smeared by finite multiplicity and nonflow

$$P(v_n^{\text{obs}}) = \int P(v_n^{\text{obs}}|v_n) P(v_n) dv_n$$

where $P(v_n^{\text{obs}}|v_n)$ is the response function.

lacktriangle Pure statistical smearing o Gaussian response

$$P(v_n^{\text{obs}}|v_n) = \frac{v_n^{\text{obs}}}{\delta_{v_n}^2} e^{-\frac{(v_n^{\text{obs}})^2 + (v_n)^2}{2\delta_{v_n}^2}} I_0\left(\frac{v_n v_n^{\text{obs}}}{\delta_{v_n}^2}\right).$$

• v_n^{RP} unaffected; width increased as

$$\delta_{\nu_n}^2 \to \delta_{\nu_n}^2 + 1/2M.$$

Likelihood

Given experimental observations y_i with errors σ_i and model predictions θ_i , what is the likelihood that the model describes reality?

$$\mathcal{L} \sim \mathsf{exp}igg[-\sum_i rac{(y_i - heta_i)^2}{2\sigma_i^2}igg]$$

Or as a null hypothesis: can the model be rejected based on comparison to the data? (e.g. If a coin is flipped N times and yields heads each time, what is the probability that it is fair?)

Linear fit example

