LE MODELE RELATIONNEL

INVENTE PAR T. CODD (IBM SAN-JOSE)

PUBLICATION ACM 1970

- 1. CONCEPTS POUR LA DESCRIPTION
- 2. CONCEPTS POUR LA MANIPULATION
- 3. CONCEPTS ADDITIONNELS

1. CONCEPTS DESCRIPTIFS

ENSEMBLE DE CONCEPTS POUR FORMALISER LA DESCRIPTION D'ARTICLES DE FICHIERS PLATS

- MODELE NORMALISE MAIS EXTENSIBLE
 - Introduction de types de données variés (SQL2)
 - Introduction de la dynamique (Produits, SQL3)
 - Introduction des objets (SQL3)

Domaine

- ENSEMBLE DE VALEURS
- EXEMPLES
 - ENTIER
 - REEL
 - CHAINES DE CARACTERES
 - FRANC
 - SALAIRE = {4 000..100 000}
 - COULEUR= {BLEU, BLANC, ROUGE}
 - POINT = {(X:REEL Y:REEL)}
 - TRIANGLE = {(P1:POINT, P2:POINT, P3:POINT)}

Produit cartésien

➤ LE PRODUIT CARTESIEN D1x D2x ... x Dn EST L'ENSEMBLE DES TUPLES (N-UPLETS) :

<V1,V2,....Vn> TEL QUE Vi ∈ Di

- EXEMPLE
 - D1 = {Bleu,Blanc,Rouge}
 - D2 = {Vrai, Faux}

Bleu Vrai Bleu Faux Blanc Vrai Blanc Faux Rouge Vrai Rouge Faux

Relation

SOUS-ENSEMBLE DU PRODUIT CARTESIEN D'UNE LISTE DE DOMAINES

UNE RELATION EST CARACTERISEE PAR UN NOM

- > EXEMPLE
 - D1 = COULEUR
 - D2 = BOOLEEN

CoulVins	Coul	Choix
	Bleu	Faux
	Blanc	Vrai
	Rouge	Vrai

Attribut

VISION TABULAIRE DU RELATIONNEL

- Une relation est une table à deux dimensions
- Une ligne est un tuple
- Un nom est associé à chaque colonne afin de la repérer indépendamment de son numéro d'ordre

ATTRIBUT

- nom donné à une colonne d'une relation
- prend ses valeurs dans un domaine

Graphe d'une relation

Exemple de relation

VINS	CRU	MILL	REGION	COULEUR
	CHENAS	1983	BEAUJOLAIS	ROUGE
	TOKAY	1980	ALSACE	BLANC
	TAVEL	1986	RHONE	ROSE
	CHABLIS	1986	BOURGOGNE	BLANC
	ST-EMILIO	N 1987	BORDELAIS	ROUGE

Clé

➤ GROUPE D'ATTRIBUTS MINIMUM QUI DETERMINE UN TUPLE UNIQUE DANS UNE RELATION

EXEMPLES

- {CRU,MILLESIME} DANS VINS ==> NV
- NSS DANS PERSONNE

CONTRAINTE D'ENTITE

 Toute relation doit posséder au moins une clé documentée

Schéma

- NOM DE LA RELATION, LISTE DES ATTRIBUTS AVEC DOMAINES, ET LISTE DES CLES D'UNE RELATION
- EXEMPLE
 - VINS(NV: Int, CRU:texte, MILL:entier, DEGRE: Réel, REGION:texte)
 - Par convention, la clé primaire est soulignée
- INTENTION ET EXTENSION
 - Un schéma de relation définit l'intention de la relation
 - Une instance de table représente une extension de la relation
- SCHEMA D'UNE BD RELATIONNELLE
 - C'est l'ensemble des schémas des relations composantes

Clé Etrangère

GROUPE D'ATTRIBUTS DEVANT APPARAITRE COMME CLE DANS UNE AUTRE RELATION

- LES CLES ETRANGERES DEFINISSENT LES CONTRAINTES D'INTEGRITE REFERENTIELLES
 - Lors d'une insertion, la valeur des attributs doit exister dans la relation référencée
 - Lors d'une suppression dans la relation référencée les tuples référençant doivent disparaître
 - Elles correspondent aux liens entité-association obligatoires

Exemple de Schéma

EXEMPLE

BUVEURS (NB, NOM, PRENOM, TYPE)
VINS (NV, CRU, MILL, DEGRE)
ABUS (NB, NV, DATE, QUANTITE)

CLES ETRANGERES

ABUS.NV REFERENCE VINS.NV
ABUS.NB REFERENCE BUVEURS.NB

Diagramme des Liens

Concepts Descriptifs: Bilan

- > RELATION ou TABLE
- > ATTRIBUT ou COLONNE
- DOMAINE ou TYPE
- > CLE
- > CLE ETRANGERE

Synthese: Create Table

CREATION DES TABLES EN SQL

```
CREATE TABLE < relation name > (<attribute definition > +)
[{PRIMARY KEY | UNIQUE} (<attribute name > +)]
```

> avec:

```
<attribute definition> ::= <attribute name> <data type> [NOT NULL [{UNIQUE | PRIMARY KEY}] ]
```

Exemple:

```
CREATE TABLE VINS

( NV INTEGER PRIMARY KEY

CRU CHAR VARYING

MILL INTEGER NOT NULL,

DEGRE FIXED 5.2 )
```

MANIPULATOIRES

- UN ENSEMBLE D'OPERATIONS FORMELLES
 - Algèbre relationnelle
- CES OPERATIONS PERMETTENT D'EXPRIMER TOUTES LES REQUETES SOUS FORME D'EXPRESSIONS ALGEBRIQUES
- ELLES SONT LA BASE DU LANGAGE SQL
 - Paraphrasage en anglais des expressions relationnelles
 - Origine SEQUEL
- CES OPERATIONS SE GENERALISENT A L'OBJET
 - Algèbre d'objets complexes

Opérations Ensemblistes

- POPERATION ENSEMBLISTE POUR DES RELATIONS DE MEME SCHEMA
 - UNION notée ∪
 - INTERSECTION notée ∩
 - DIFFERENCE notée —

- OPERATIONS BINAIRES
 - Relation X Relation --> Relation

- **EXTENSION**
 - Union externe pour des relations de schémas différents
 - Ramener au même schéma avec des valeurs nulles

Projection

- Elimination des attributs non désirés et suppression des tuples en double
- \triangleright Relation -> Relation notée π A1,A2,...Ap (R)

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	A
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

 π Cru,Région

π(VINS)	Cru	Région	
	VOLNAY	BOURGOGNE	
	CHENAS	BEAUJOLAIS	
	JULIENAS	BEAUJOLAIS	

Restriction

- Obtention des tuples de R satisfaisant un critère Q
- Relation ->Relation, notée σQ(R)
- Q est le critère de qualification de la forme :
 - Ai θ Valeur

$$\theta = \{ =, <, >=, >, <=, \# \}$$

Il est possible de réaliser des "ou" (union) et des "et" (intersection) de critères simples

Exemple de Restriction

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

σMILL>1983

VINS	Cru	Mill	Région	Qualité
	JULIENAS	1986	BEAUJOLAIS	С

σCRU="VOLNAY

Jointure

- Composition des deux relations sur un domaine commun
- Relation X Relation -> Relation
 - notée
- > CRITERE DE JOINTURE
 - Attributs de même nom égaux :
 - Attribut = Attribut
 - JOINTURE NATURELLE
 - Comparaison d'attributs :
 - Attribut1 Θ Attribut2
 - THETA-JOINTURE

Exemple de Jointure

VINS	Cru	Mill	Qualité
	VOLNAY	1983	А
	VOLNAY	1979	В
N /	CHABLIS	1983	Α
	JULIENAS	1986	С

LOCALISATION	Cru	Région	QualMoy
	VOLNAY	Bourgogne	Α
	CHABLIS	Bourgogne	Α
	CHABLIS	Californie	В
		<u> </u>	

VINSREG	Cru	Mill	Qualité	Région	QualMoy
	VOLNAY	1983	Α	Bourgogne	А
	VOLNAY	1979	В	Bourgogne	Α
	CHABLIS	1983	Α	Bourgogne	Α
	CHABLIS	1983	Α	Californie	В

Complétude

L'ALGEBRE RELATIONNELLE EST COMPLETE

 Les cinq (sept) opérations de base permettent de formaliser sous forme d'expressions toutes les questions que l'on peut poser avec la logique du premier ordre (sans fonction).

EXEMPLE

NOM ET PRENOM DES BUVEURS DE VOLNAY 1988
 ?

```
PROJECT (NOM, PRENOM,

RESTRICT(CRU="VOLNAY" et MILL =1988,

JOIN(VINS, ABUS, BUVEURS)))
```

SQL

- Une requête SQL est un paraphrasage d'une expression de l'algèbre relationnelle en anglais
- FORMAT SIMPLIFIE:

```
SELECT A1, A2, ...Ap
FROM R1, R2, ...Rk
WHERE Q [{UNION |INTERSECT | EXCEPT } ... ]
```

► SEMANTIQUE DU BLOC SELECT :

```
PROJECT A1,A2,...Ap (
RESTRICT Q (
PRODUIT (R1, R2, ..., Rk)))
```

3. CONCEPTS ADDITIONNELS

> ENSEMBLE DE CONCEPTS POUR :

- Etendre les fonctionnalités de manipulation
- Décrire les règles d'évolution des données
- Supporter des objets complexes (SQL3)

➤ INTRODUITS PROGRESSIVEMENT DANS LE MODELE

- Complique le modèle
- Manque parfois de standard (SQL3)
- Des extensions à l'infini ...

Fonction et Agrégat

FONCTION

- Fonction de calcul en ligne appliquée sur un ou plusieurs attributs
- Exemple : DEGRE * QUANTITE / 100

AGREGAT

 Partitionnement horizontal d'une relation selon les valeurs d'un groupe d'attributs, suivi d'un regroupement par une fonction de calcul en colonne (Sum, Min, Max, Avg, Count, ...)

Exemples d'agrégats

VINS	CRU	MILL	DEGRE	QUANTITE
	CHABLIS	1977	10.9	100
	CHABLIS	1987	11.9	250
	VOLNAY	1977	10.8	400
	VOLNAY	1986	11.2	300
	MEDOC	1985	11.2	200

SUM	CRU	QUANTITE
	CHABLIS	350
VOLNAY		700
	MEDOC	200

Vue

- Relation d'un schéma externe déduite des relations de la base par une question
- Exemple: GrosBuveurs
 - CREATE VIEW GrosBuveurs AS
 - SELECT NB, Nom, Prénom,
 - FROM Buveurs, Abus
 - WHERE Buveurs.NB = Abus.NB and Abus.Quantité > 100
- Calcul de la vue
 - Une vue est une fenêtre dynamique sur la BD et est recalculée à chaque accès.
 - Une vue peut être matérialisée (vue concrète).

Procédure stockée

- Procédure écrite en L3G/SQL ou L4G/SQL définie au niveau du schéma de la base et stockée avec
- Avantages :
 - partitionner les traitements entre client et serveur
 - limiter le trafic sur le réseau, partager des procédures

Déclencheur (Trigger)

- Action base de données déclenchée suite à l'apparition d'un événement particulier
- Forme:
 - {BEFORE | AFTER} <événement> THEN <action>
 - Un événement peut être :
 - une opération sur une table (début ou fin)
 - un événement externe (heure, appel,etc.)
 - Une action peut être :
 - une requête BD (mise à jour)
 - Une annulation (abort) de transaction
 - l'appel à une procédure cataloguée

Déclencheur avec condition (Règle)

- Il est possible d'ajouter une condition afin de déclencher l'action seulement quand la condition est vérifiée
 - Une condition est une qualification portant sur la base.

Exemples :

BEFORE DELETE FROM Vins

THEN DELETE FROM Abus

WHERE Vins.Nv = Abus.Nv

BEFORE UPDATE FROM EMPLOYE

IF SALAIRE > 100.000

THEN ABORT TRANSACTION

4. CONCLUSION

- Un ensemble de concepts bien compris et bien formalisés
- Un modèle unique, de plus en plus riche et standardisé
 - intégration des BD actives
 - intégration des BD objets
 - évolution vers un L4G standardisé
- Un formalisme qui s'étend plutôt bien
 - algèbre d'objets
- Un langage associé défini à plusieurs niveaux
 - SQL1, 2, 3