

Module 3

- 1. Number Systems Conversions
- 2. Logic Gates
- 3. Boolean Algebra
- 4. Computer Organization (Memory)
- 5. HA, FA, Mux, Demux
- 6. Sequential Flip flops, Counters

SPECIAL Circuits – Half Adder & Full Adder

Performs addition of

2 bits 3 bits

Performs

addition of

Digital Circuits – Addition of 2 *binary* digits

Binary Addition

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HALF ADDER

Binary Addition

A	В	Sum		Carry
0	0	0		0
0	1	1		0
1	0	1		0
1	1	0		1

Truth table of XOR gate

Α	В	$C = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Truth table of AND gate

A	В	C = AB
0	0	0
0	1	0
1	0	0
1	1	1

HALF ADDER(2 bits)

Logic Circuit: Realization of Half Adder

Truth table

Inputs		Outputs		
Α	В	Sum (A⊕B)	Carry (AB)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

- Binary addition: If there is any Carry in the input?
- Half adder cannot do the addition then !!!
- Which is why it is called HALF adder as only half of the binary addition is done

FULL ADDER (3 bits)

- ➤ The additional 3rd bit Carry from previous operation C_{IN}
- ➤ Two outputs Sum –S (final) and Carry C_{OUT}

Inputs			Outputs		
Α	В	C_{IN}	S	$C_{\scriptscriptstyle OUT}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Realize a logic circuit?

- > 1 XOR, 3 AND, 1 OR
- > 2 Half-adders and an OR gate

FULL ADDER (3 bits)

- > First half adder produces a partial sum
- ➤ This sum is connected as input to 2nd half adder alongwith C_{IN} which produces final sum S
- ➤ Carry outputs of the 2 hald adders connected to an OR gate which produces final carry C_{OUT}

Multiplexer and De-multiplexer

Multiplexer (MUX) - "Many-to-one" digital switch

- A combinational logic circuit has multiple inputs (sources) and a single output (destination).
- Only one input is allowed at a particular time to be connected to the output.
- SELECT Lines control which line (signal) is connected to the output

MUX Types

- \rightarrow 2-to-1 (1 select line)
- \rightarrow 4-to-1 (2 select lines)
- \rightarrow 8-to-1 (3 select lines)
- \rightarrow 16-to-1 (4 select lines)

Block diagram

A typical application of MUX

2:1 Multiplexer (MUX)

Tr	'H	t۱	า .	ta	h	ما
- 11	u	u		ια	U	ı

S0	D0	D1	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- ➤ When S0 is 0, output reflects values of D0
- ➤ When S0 is 1, output reflects values of D1

4:1 Multiplexer (MUX)

4:1 Multiplexer waveforms

De-multiplexer

De-multiplexer (DEMUX) - "One-to-many" digital switch

- A combinational logic circuit which has a single input (source) and a multiple outputs (destinations)
- SELECT Lines control which line (signal) is connected to the output

DEMUX Types

- \rightarrow 1-to-2 (1 select line)
- \rightarrow 1-to-4 (2 select lines)
- \rightarrow 1-to-8 (3 select lines)
- \rightarrow 1-to-16 (4 select lines)

A typical application of DEMUX

1:2 De-multiplexer (DEMUX)

1:4 De-multiplexer (DEMUX)

Truth table

В	А	D0	D1	D2	D3
0	0	Y	0	0	0
0	1	0	X	0	0
1	0	0	0	X	0
1	1	0	0	0	*

1:4 De-multiplexer waveforms

SEQUENTIAL CIRCUITS

Sequential circuits

➤ MEMORY – remember past values

➤ CLOCK signal — Periodic logic-1 pulses

Asynchronous sequential circuits

Sequential circuits – Flip flops

Basic building block of sequential circuits – FLIP FLOP (FF)

- ➤ Two stable operating states possible in a flipflop, 1 bit of information (0,1) can be stored
- ➤ Different types based on how the clock and input signals control the state (o/p) of the flipflop

Simplest FF – using inverters

- ❖ O/p of top inverter HIGH, o/p of bottom inverter LOW.
- lacktriangle Hence labeled as \overline{Q}
- ❖ O/p of top inverter LOW, o/p of bottom inverter HIGH.
- ❖ Any of these states possible and then can remain in this state indefinitely

Acknowledgements

- 1. Allan R. Hambley, 'Electrical Engineering Principles & Applications, Pearson Education, First Impression, 6/e, 2013
- 2. https://www.circuitstoday.com/half-adder
- 3. www.geekyshows.com
- 4. http://razorjr.files.wordpress.com > 2013/07
- 5. https://www.electronicshub.org/multiplexer-and-demultiplexer/
- 6. https://circuitdigest.com/tutorial/what-is-multiplexer-circuit-and-how-it-works
- 7. https://electricalfundablog.com/demultiplexer-demux/