

UCMERCED

V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer

Runsheng Xu^{1*}, Hao Xiang^{1*}, Zhengzhong Tu^{2*}, Xin Xia¹, Ming-Hsuan Yang^{3,4}, Jiaqi Ma¹

¹UCLA & ²UT-Austin& ³Google Research & ⁴UC Merced

Paper, code, and data are available: https://github.com/DerrickXuNu/v2x-vit

Google Research

* Indicates equal contribution

V2X Cooperative Challenge

Our contributions:

- We present the first unified transformer architecture (V2X-ViT) for V2X perception, which can capture the heterogeneity nature of V2X systems with strong robustness against various noises.
- We propose a novel heterogeneous multi-agent attention module (HMSA) tailored for adaptive information fusion between heterogeneous agents.
- We present a new multi-scale window attention module (MSwin) that simultaneously captures local and global spatial feature interactions in parallel.
- We construct V2XSet, a new large-scale open simulation dataset for V2X perception, which explicitly accounts for imperfect real-world conditions.

V2XSet: A new V2X Perception dataset

(a) Snapshot of Simulation

(b) Aggregated LiDAR point cloud

V2X-ViT Overall Framework

V2X-ViT Architecture

- Learn inter-agent interaction and per-agent spatial attention.
- HMSA captures heterogeneity between infra and vehicle.
- Mswin improves the robustness against localization error
- DPE encodes the temporal information

Benchmark results

	Perfect		Noisy	
Models	AP0.5	AP0.7	AP0.5	AP0.7
No Fusion	0.606	0.402	0.606	0.402
Late Fusion	0.727	0.620	0.549	0.307
Early Fusion	0.819	0.710	0.720	0.384
F-Cooper [4]	0.840	0.680	0.715	0.469
OPV2V [44]	0.807	0.664	0.709	0.487
V2VNet [39]	0.845	0.677	0.791	0.493
DiscoNet [21]	0.844	0.695	0.798	0.541
V2X-ViT (Ours)	0.882	0.712	0.836	0.614

Ablation study

A Conita	SPAKIT	HIMSA	S. E.	AP0.5 / AP0.7
✓ ✓ ✓	√ √	√	√	0.719 / 0.478 0.748 / 0.519 0.786 / 0.548 0.823 / 0.601 0.836 / 0.614

Detection results

Attention map visualization

LiDAR points (b) attention weights (c) attention weights (d) attention weights ego paid to ego (better zoom-in) ego paid to av2 ego paid to infra