# Mini Project 3

Full Name: Miguel Ángel Benítez Alguacil

**Student ID: 1900853** 

Åbo Akademi University

Machine Learning

## Index

- 1. Introduction (problem statement).
- 2. Descriptive analysis of the data:
  - 2.1. What will I use the data for.
  - 2.2. Cleaning the dataset.
- 3. Steps took to perform the task:
  - 3.1. Indicators.
  - 3.2. Clustering
- 4. Interpretation of the clustering
- 5. Conclusion.

## 1. Introduction (problem statement)

The aim of this last project is to experiment with unsupervised learning, more precisely clustering. I need to select an indicator and perform the following tasks:

- 1. Cluster the indicator values for countries for your selected indicator for all available years
- 2. Select 3 countries which changed clusters during the years
- 3. Find a reason (in the same dataset) for the change. This means that you should select for each of the 3 countries another indicator whose change possibly motivated the country's cluster change.

In the next pages I will explain how I have solved the problem using Python 3 libraries and Jupyter Notebook. Also, I will talk about the following:

- Descriptive analysis of the data.
- What will I use the data for.
- How did I clean the dataset.
- Steps took to perform the task.
- Indicators.
- Clustering.
- Interpretation of the clustering.
- Conclusion.

### 2. Descriptive analysis of the data

This dataset contains information on 76 economic indicators for 263 countries. Every indicator is followed during 60 years, from 1960 to 2019, depending on the indicator it has a shorter time ranges or less data. The dataset has about 20000 entries.

Some examples of these indicators are: CO2 emissions, Mortality rate in children under 5, Urban population, access to electricity, etc.

#### 2.1. What will I use the data for

In my case, the indicator that most caught my attention was the Mortality rate in children under 5. So I will base this project in discover information about that and the possibles causes of its descent / ascent in a country.

#### 2.2. How did I clean the dataset

The first thing we need to do is to **load the data**. To do so we will use pandas, reading from the file using ',' as separation and **starting in the 4th row** because the document has other info that is not important in the 3 first rows.

```
# Access the csv file
location = './API_19_DS2_en_csv_v2_801436.csv'
info = pd.read_csv(location,sep=',', skiprows=4)
```

Once I had the dataset loaded, I could observe that there were a lot of **NaN** (null values) because there were cells in the excel that were **empty**.

|       | Country<br>Name | Country<br>Code | Indicator<br>Name                                          | Indicator Code    | 1960         | 1961          | 1962          | 1963          | 1964          | 1965          |   |
|-------|-----------------|-----------------|------------------------------------------------------------|-------------------|--------------|---------------|---------------|---------------|---------------|---------------|---|
| 0     | Aruba           | ABW             | Urban<br>population<br>(% of total<br>population)          | SP.URB.TOTL.IN.ZS | 50.776000    | 50.761000     | 50.746000     | 50.730000     | 50.715000     | 50.700000     |   |
| 1     | Aruba           | ABW             | Urban population                                           | SP.URB.TOTL       | 27526.000000 | 28141.000000  | 28532.000000  | 28761.000000  | 28924.000000  | 29082.000000  |   |
| 2     | Aruba           | ABW             | Urban<br>population<br>growth<br>(annual %)                | SP.URB.GROW       | 3.117931     | 2.209658      | 1.379868      | 0.799404      | 0.565140      | 0.544773      | - |
| 3     | Aruba           | ABW             | Population,<br>total                                       | SP.POP.TOTL       | 54211.000000 | 55438.000000  | 56225.000000  | 56695.000000  | 57032.000000  | 57360.000000  |   |
| 4     | Aruba           | ABW             | Population<br>growth<br>(annual %)                         | SP.POP.GROW       | 3.148037     | 2.238144      | 1.409622      | 0.832453      | 0.592649      | 0.573468      | - |
|       |                 | ***             | ***                                                        |                   | ***          | ***           |               | 144           | 244           | ***           |   |
| 20059 | Zimbabwe        | ZWE             | Rural land<br>area where<br>elevation is<br>below 5<br>met | AG.LND.EL5M.RU.ZS | NaN          | NaN           | NaN           | NaN           | NaN           | NaN           |   |
| 20060 | Zimbabwe        | ZWE             | Rural land<br>area where<br>elevation is<br>below 5<br>met | AG.LND.EL5M.RU.K2 | NaN          | NaN           | NaN           | NaN           | NaN           | NaN           |   |
| 20061 | Zimbabwe        | ZWE             | Arable land<br>(% of land<br>area)                         | AG.LND.ARBL.ZS    | NaN          | 4.872690      | 5.001939      | 5.131188      | 5.260437      | 5.337986      |   |
| 20062 | Zimbabwe        | ZWE             | Agricultural<br>land (% of<br>land area)                   | AG.LND.AGRI.ZS    | NaN          | 28.396019     | 28.615743     | 28.835466     | 29.055189     | 29.223213     |   |
| 20063 | Zimbabwe        | ZWE             | Agricultural<br>land (sq.<br>km)                           | AG.LND.AGRI.K2    | NaN          | 109850.000000 | 110700.000000 | 111550.000000 | 112400.000000 | 113050.000000 |   |

20064 rows × 65 columns

If we do **info.isnull().sum()** we obtain the number of cells that are null in each column:

```
In [3]: info.isnull().sum()
Out[3]: Country Name
                              0
        Country Code
                              0
        Indicator Name
                              0
        Indicator Code
                              0
        1960
                          16607
        2016
                          14842
        2017
                          16223
        2018
                          16892
        2019
                          19874
        Unnamed: 64
                          20064
        Length: 65, dtype: int64
```

To successfully complete the task I had to clean the dataset **deleting** the **last column**, changing the **values** of the **empty cells to 0**.

```
# Replace NaN with 0
for i in info.columns:
    info[i].fillna(0, inplace=True)

# The "Unnamed: 64" column has no data, so let's get ride of it.
info = info.drop(columns='Unnamed: 64')
```

This is the final result of the **cleaned dataset**:

|       | Country<br>Name | Country<br>Code | Indicator<br>Name                                          | Indicator Code    | 1960         | 1961          | 1962          | 1963          | 1964          | 1965          |      |
|-------|-----------------|-----------------|------------------------------------------------------------|-------------------|--------------|---------------|---------------|---------------|---------------|---------------|------|
| 0     | Aruba           | ABW             | Urban<br>population<br>(% of total<br>population)          | SP.URB.TOTL.IN.ZS | 50.776000    | 50.761000     | 50.746000     | 50.730000     | 50.715000     | 50.700000     |      |
| 1     | Aruba           | ABW             | Urban<br>population                                        | SP.URB.TOTL       | 27526.000000 | 28141.000000  | 28532.000000  | 28761.000000  | 28924.000000  | 29082.000000  | ***  |
| 2     | Aruba           | ABW             | Urban<br>population<br>growth<br>(annual %)                | SP.URB.GROW       | 3.117931     | 2.209658      | 1.379868      | 0.799404      | 0.565140      | 0.544773      | ***  |
| 3     | Aruba           | ABW             | Population,<br>total                                       | SP.POP.TOTL       | 54211.000000 | 55438.000000  | 56225.000000  | 56695.000000  | 57032.000000  | 57360.000000  | 1    |
| 4     | Aruba           | ABW             | Population<br>growth<br>(annual %)                         | SP.POP.GROW       | 3.148037     | 2.238144      | 1.409622      | 0.832453      | 0.592649      | 0.573468      |      |
|       | •               | ***             | ***                                                        |                   |              |               | ***           | ***           | ***           |               | ***  |
| 20059 | Zimbabwe        | ZWE             | Rural land<br>area where<br>elevation is<br>below 5<br>met | AG.LND.EL5M.RU.ZS | 0.000000     | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      |      |
| 20060 | Zimbabwe        | ZWE             | Rural land<br>area where<br>elevation is<br>below 5<br>met | AG.LND.EL5M.RU.K2 | 0.000000     | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 8275 |
| 20061 | Zimbabwe        | ZWE             | Arable land<br>(% of land<br>area)                         | AG.LND.ARBL.ZS    | 0.000000     | 4.872690      | 5.001939      | 5.131188      | 5.260437      | 5.337986      | ***  |
| 20062 | Zimbabwe        | ZWE             | Agricultural<br>land (% of<br>land area)                   | AG.LND.AGRI.ZS    | 0.000000     | 28.396019     | 28.615743     | 28.835466     | 29.055189     | 29.223213     | ***  |
| 20063 | Zimbabwe        | ZWE             | Agricultural<br>land (sq.<br>km)                           | AG.LND.AGRI.K2    | 0.000000     | 109850.000000 | 110700.000000 | 111550.000000 | 112400.000000 | 113050.000000 | 1    |

#### Steps to perform the task.

Once we have cleaned the data, we can start working with it.

As I said before, I would like to know more about the infant **mortality ratio**, and another indicator that I could use to contrast would be the **total percentage of the population**. In this way, you could see the mortality ratio taking into account the percentage of the population of the specific country.

The first thing I did was to create two subsets to get rid of unnecessary information, so I could focus on the two indicators that interest me.

The steps that I took to get a good subset were:

- Copy the dataset
- Delete all the rows except from the ones regarding to the indicator
- Delete all the columns that were not useful anymore: 'Country Name', 'Indicator Name' and 'Indicator Code'
- Convert the 'Country Code' values into float because we can not work with strings.
- **Delete** the **empty rows**, the countries with no data, to do so I check if they have information in **'2018'** (It is not entirely reliable but looking over the data set, the majority who did not have data had that cell empty)

#### The final results were:

- The **urban\_popu** dataset in which there were information about the **Urban Population** (% of total population) and had 260 rows.
- The mortality\_rate with information about the Mortality rate, under-5 (per 1,000 live births) and had 239 rows.

|     | index | Country | 1960   | 1961   | 1962   | 1963   | 1964   | 1965   |    |
|-----|-------|---------|--------|--------|--------|--------|--------|--------|----|
| 0   | 0     | 0       | 50.776 | 50.761 | 50.746 | 50.730 | 50.715 | 50.700 |    |
| 1   | 76    | 1       | 8.401  | 8.684  | 8.976  | 9.276  | 9.586  | 9.904  | 1  |
| 2   | 152   | 2       | 10.435 | 10.798 | 11.204 | 11.624 | 12.058 | 12.504 | 16 |
| 3   | 228   | 3       | 30.705 | 30.943 | 31.015 | 31.086 | 31.158 | 31.230 | :  |
| 4   | 304   | 4       | 58.450 | 60.983 | 63.462 | 65.872 | 68.205 | 70.445 | 8  |
|     |       |         |        |        | ***    | 299    | ***    |        |    |
| 255 | 19608 | 258     | 18.926 | 18.986 | 19.061 | 19.141 | 19.221 | 19.301 | -  |
| 256 | 19760 | 260     | 9.100  | 9.459  | 9.831  | 10.216 | 10.614 | 11.026 |    |
| 257 | 19836 | 261     | 46.619 | 46.793 | 46.906 | 47.020 | 47.134 | 47.248 | 9  |
| 258 | 19912 | 262     | 18.145 | 18.951 | 19.785 | 20.712 | 22.015 | 23.372 |    |
| 259 | 19988 | 263     | 12.608 | 12.821 | 13.082 | 13.578 | 14.092 | 14.620 | 1  |

|     | index | Country | 1960  | 1961  | 1962  | 1963  | 1964  | 1965  | 19  |
|-----|-------|---------|-------|-------|-------|-------|-------|-------|-----|
| 0   | 84    | 1       | 0.0   | 350.9 | 345.3 | 340.1 | 334.9 | 329.6 | 324 |
| 1   | 160   | 2       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
| 2   | 236   | 3       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
| 3   | 312   | 4       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
| 4   | 388   | 5       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
|     | ***   |         |       |       | ***   |       |       | ***   |     |
| 234 | 19616 | 258     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
| 235 | 19768 | 260     | 0.0   | 0.0   | 409.4 | 402.0 | 393.9 | 385.0 | 375 |
| 236 | 19844 | 261     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C   |
| 237 | 19920 | 262     | 205.6 | 201.6 | 197.9 | 194.7 | 192.1 | 190.1 | 188 |
| 238 | 19996 | 263     | 151.0 | 146.9 | 142.5 | 137.9 | 133.5 | 129.4 | 125 |

260 rows × 62 columns

239 rows × 62 columns

As we can see, they **do not have the same number of rows**, so we will have to fix that. After having the **same countries (238) in both sub datasets** we can combine them to **get** the **indicators**..

#### 3.1. Indicators

Before I had experimenting also with **Energy Consumption and CO2 emissions** but I did not find them as interesting as the Mortality rate so that is why in the end I chose that one. Also I tried with **poverty** and **mortality** but there were **not enough data**, that is why I changed it for **Urban Population**.

Once we have both indicators ready, we can combine them

```
In [12]: # Now I am going to combine the information of mortality and population
            indicators_popu_mort = []
             for i in range(1990,2015):
                 indicators_popu_mort.append([])
                 for x, y in zip(urban_popu[''+str(i)+''],mortality_rate[''+str(i)+'']):
    indicators_popu_mort[i-1990].append([x,y])
             indicators popu mort
Out[12]: [[[21.177, 178.8],
               [37.144, 223.4]
               [36.428000000000004, 40.7],
               [94.712, 10.8],
               [50.3952484902126, 80.80166057168921],
               [79.051, 16.6],
[86.984, 28.6],
               [67.421, 49.0],
[35.426, 28.0],
               [85.43299999999999, 9.2],
               [62.96, 9.5].
               [53.74899999999995, 95.6],
               [6.271, 174.2],
[96.37700000000001, 10.0],
               [34.485, 175.4],
[13.815, 199.3],
               [19.811, 143.7],
[66.377, 18.3],
[88.14. 23.0].
```

#### 3.2. Clustering

I have used the K-Means algorithm with 4 clusters and a random state equal to 2 (this is only to get the same values in every execution).

```
clustering = KMeans(n_clusters=4, random_state=2)
```

I have experimented also with 3 clusters but the data were more clear with 4.

I choose to get an output for **1990** and **2010**, so we can see the evolution of the data in 20 years.

## 4. Interpreting the clustering.

The output for 1990 is the following:



The output for 2010 is this one:



We can observe that the **mortality rate has decreased** and also that in **2010** there are **more countries** with a very **low mortality** rage and a **huge population** %.

The values for the clustering are:

```
array([[ 42.97931532, 69.90466071],
       [ 26.91946733, 154.22581563],
       [ 67.19945615, 21.2270059 ],
       [ 25.00907143, 237.34285714]])
```

As we can see, the 4 clusters (blue dots) represents 4 different groups of data:

- Cluster 0: 42.97% of the population with 69.90 mortality rate per 1000 births.
- Cluster 1 and cluster 3 have the same population percentage but the mortality rate is almost 100 points different.
- Cluster 2 has the highest population percentage and the lowest mortality rate.

So my question at this moment was, how can I know which countries have changed its cluster?, for example from cluster 3 to 1, which would mean that they could solved a bit their mortality problem with the same amount of population.

I used the **output1990** and **output2010** to compare if in **1990** they were part of cluster 3 and in **2020** they were in **cluster 1**.

I discovered that there were **14 countries** in which this had occurred: ['Afghanistan', 'Belgium', 'Europe & Central Asia', 'Fiji', 'Faroe Islands', 'Jamaica', 'Lesotho', 'St. Martin (French part)', 'Moldova', 'Mexico', 'Marshall Islands', 'Papua New Guinea', 'Paraguay', 'Sudan']

To try to discover why this cluster change, I focused on 3 countries: **Afghanistan** (with a **low income**), **Belgium** (with a **high income**) and **Mexico** (**Upper middle income**). The other indicators I have chosen are:

- Prevalence of underweight (% of children under 5)
- Poverty headcount ratio (% of population)
- Total greenhouse gas emissions (kt of CO2 equivalent)

(To have better and clearer graphs I only plot the data that was not 0)



If we look at the first two graphs, we can see that the values tend to get smaller over time in both countries (in the first we have no data from Belgium and in the second the same for Afghanistan). However, in the third graph this is not true, I think it is because the emission of greenhouse gases does not have as much relation to infant mortality as poverty or the prevalence of underweight can be.

## 5. Conclusion.

I found this last project really interesting. I really enjoyed trying to figure it out the data and how could I compare one indicator with another, also how the indicators can affect others.

I think I have learned a lot about clustering thanks to this project, and also python.