

# Fast-Transient Low-Dropout Regulator

#### **Main Points**



- Introduction
- Design specs
- Design methodology
- Simulation results
- Design challenges

#### Introduction



- 1. Who are we
- 2. Our goals
  Robust power management unit
- 1. What is an LDO Is it really an LDO?

## Design Specs



## Design Methodology



- LDO Topology
   We want a stable fast-transient topology
- Error Amplifier's Topology
   How is the input and output's swings?



#### Design Methodology



- Static gain error Map it into  $V_{ref}$ ,  $\beta$  and  $A_{v_{error\ amplifier}}$ .
- Stability constraints
   Hard to achieve. What about Miller compensation?
- Load and Line regulation
   How to make the current change negligible?
- Achieving PSR proposals

#### Simulation Results



- 1. DC operating parameters simulation
- 2. Transient load simulation
- 3. Transient input simulation
- 4. Stability analysis and PSR
- 5. Figure of merit
- 6. Specs achieved

#### DC OP Simulation



#### 1. Max output error

Evaluated at Minimum  $loop\ gain$  (minimum  $V_{in}$  &minimum  $\beta$ )





#### 1. Load regulation





- 1. Load regulation
- 2. Overshoot





- 1. Load regulation
- 2. Overshoot
- 3. Undershoot





#### 1. Line regulation



## Stability Analysis and PSR



#### 1. Phase Margin



## Stability Analysis and PSR



1. Phase Margin

2. PSR



#### Figure of Merit



$$FOM = \frac{C_L * \Delta V_{out} * I_Q}{I_{L,max}^2} = 2.16 * 10^{-6} (ns)$$

# **Achieved Specs**



| Spec                              | Required                        | Achieved            |
|-----------------------------------|---------------------------------|---------------------|
| Technology used                   | 45nm CMOS                       |                     |
| Supply Voltage                    | $2.4 V \rightarrow 3.5 V$       | _                   |
| Output Voltage                    | $0.85 V \rightarrow 1.25 V$     | -                   |
| Untrimmed output voltage accuracy | < ±6%                           | 1%                  |
| Load Current                      | $0.1 \ mA \rightarrow 150 \ mA$ | _                   |
| Undershoot/Overshoot              | < 50  mV                        | 27 mV               |
| Phase margin                      | > 45°                           | 49°                 |
| Max Load Capacitance              | 1 <i>nF</i>                     | _                   |
| Line Regulation                   | < 2 mV/V                        | 1.7 <i>mV /V</i>    |
| Load Regulation                   | $< 50 \ mV/A$                   | 9 mV/A              |
| Power Supply Rejection at 1 MHz   | 30 <i>dB</i>                    | 10 <i>dB</i>        |
| Power Supply Rejection at 10 MHz  | 20 <i>dB</i>                    | 4 dB                |
| FOM                               | -                               | $2.16*10^{-6} (ns)$ |

## Design Challenges



- 1. PSR
  - Bypass device length, low-pass filter and El-Nozahy's paper
- Load regulationMagical mismatch effect
- 3. Line regulation

  Decrease the bypass current change

#### Thank You

Presented by:

**Mohamed Essam** 

Bilal Ramadan

Abdelrahman Abohendy

Mahmoud Saker