

N° d'ordre NNT : ?

Thèse de doctorat de l'Université de Lyon

opérée au sein de L'Université Claude Bernard Lyon 1

École Doctorale N° 52 École Doctorale de Physique et Astrophysique

Spécialité du doctorat : Physique des particules

Soutenue publiquement le XX xxxx 2021 par

Lucas TORTEROTOT

Recherche d'un boson de Higgs de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC

devant le jury composé de :

M Bla BLA Fonction Institut <rôle>

Version du 16 décembre 2019

À ...

Remerciements

Remerciements

Résumé

Résumé

Abstract

Abstract

Table des matières

1	Intr	roduction	1
2	Part	ticules, interactions et phénoménologie	3
	1		3
			3
			3
	2		3
			3
			3
			3
			3
		00	3
	3		3
	4		3
	-		3
			3
		1)	3
	5	1 \mathbf{J} 1	3
	J	0 00	3
		00	3
		0	3
	6	O I	3
	U	Conclusion	J
3	Dis	1 1	5
	1		5
			5
		1	5
		1.3 Luminosité et nombre d'événements	5
		1.4 L'empilement	5
		1.5 Les expériences du LHC	5
	2	L'expérience CMS: Compact Muon Solenoïd	5
		2.1 Le solénoïde	5
		2.2 Le trajectographe ou <i>tracker</i>	5
			5
		ÿ .	5
			5
			5
	3		5
			5
			5
	4		5
	_		5
			5
		1	5
			_

		4.4 Énergie transverse manquante
	5	Conclusion
4	Cal	ibration en énergie des jets
	1	Introduction
	2	Phénoménologie des événements photon + jets
	3	Corrections résiduelles absolues des jets
		3.1 Méthode de la balance
		3.2 Méthode de la projection de la fraction d'énergie transverse manquante
		3.3 « Comment ça fonctionne ce code »
		3.4 Résultats
	4	Correction de la résolution en énergie des jets
		4.1 •
		4.2 •
		4.3 •
		ullet
	5	Conclusion
5	Rec	herche d'un boson de Higgs de haute masse
	1	Introduction
	2	Sélection d'événements et catégorisation
		2.1 Données
		2.2 Simulation
		2.3 Catégorisation
	3	Chaîne d'analyse
	4	Estimation du bruit de fond
		4.1 Estimations de bruits de fond à partir de simulations
		4.2 Estimations de bruits de fond à partir de données
	5	Incertitudes systématiques
		5.1 Incertitudes de normalisation
		5.2 Incertitudes de forme
	6	Résultats et interprétations
	7	Conclusion
6	Cor	nclusion 1

Table des figures

Liste des tableaux

Chapitre 1 Introduction

Chapitre 2 Particules, interactions et phénoménologie

S	on	n	าล	ir	е

1	Les p	particules du modèle standard	3
	1.1	Les fermions	3
	1.2	Les bosons	3
2	Form	alisme théorique et interactions	3
	2.1	Lagrangien, champs et symétries	3
	2.2	Interaction électromagnétique	3
	2.3	Interaction électrofaible	3
	2.4	Mécanisme de Higgs	3
	2.5	Interaction forte	3
3	Succ	ès et limites du modèle standard	3
4	Au-d	elà du modèle standard	3
	4.1	Modèles à deux doublets de Higgs	3
	4.2	La supersymétrie	3
	4.3	L'extension supersymétrique minimale du modèle standard ou MSSM	3
5	Phén	oménologie des bosons de Higgs du MSSM	3
	5.1	Production de bosons de Higgs	3
	5.2	Désintégration de bosons de Higgs	3
	5.3	Désintégration des leptons tau	3
6	Conc	lusion	3

1 Les particules du modèle standard

- 1.1 Les fermions
- 1.2 Les bosons

2 Formalisme théorique et interactions

- 2.1 Lagrangien, champs et symétries
- 2.2 Interaction électromagnétique
- 2.3 Interaction électrofaible
- 2.4 Mécanisme de Higgs
- 2.5 Interaction forte
- 3 Succès et limites du modèle standard
- 4 Au-delà du modèle standard

- 4 CHAPITRE 2. PARTICULES, INTERACTIONS ET PHÉNOMÉNOLOGIE
- 4.1 Modèles à deux doublets de Higgs
- 4.2 La supersymétrie
- 4.3 L'extension supersymétrique minimale du modèle standard ou MSSM
- 5 Phénoménologie des bosons de Higgs du MSSM
- 5.1 Production de bosons de Higgs
- 5.2 Désintégration de bosons de Higgs
- 5.3 Désintégration des leptons tau
- 6 Conclusion

Chapitre 3 Dispositif expérimental

Sommaii	re			
1	Le LI	HC: Large Hadron Collider		
	1.1	Collisions de protons		
	1.2	Accélération de protons		
	1.3	Luminosité et nombre d'événements		
	1.4	L'empilement		
	1.5	Les expériences du LHC		
2	L'exp	vérience CMS: Compact Muon Solenoïd 5		
	2.1	Le solénoïde		
	2.2	Le trajectographe ou <i>tracker</i>		
	2.3	Le calorimètre électromagnétique ou ECAL 5		
	2.4	Le calorimètre hadronique ou HCAL		
	2.5	Les chambres à muons		
	2.6	Prise de données à CMS		
3	Évén	ements simulés		
	3.1	Génération d'événements		
	3.2	Simulation du détecteur		
4	Reconstruction des événements			
	4.1	L'algorithme de <i>Particle Flow</i>		
	4.2	Identification et reconstruction des particules		
	4.3	Objets de haut niveau		
	4.4	Énergie transverse manquante		

1 Le LHC : Large Hadron Collider

- 1.1 Collisions de protons
- 1.2 Accélération de protons
- 1.3 Luminosité et nombre d'événements
- 1.4 L'empilement
- 1.5 Les expériences du LHC

2 L'expérience CMS : Compact Muon Solenoïd

- 2.1 Le solénoïde
- 2.2 Le trajectographe ou tracker
- 2.3 Le calorimètre électromagnétique ou ECAL

- 6 CHAPITRE 3. DISPOSITIF EXPÉRIMENTAL
- 2.4 Le calorimètre hadronique ou HCAL
- 2.5 Les chambres à muons
- 2.6 Prise de données à CMS
- 3 Événements simulés
- 3.1 Génération d'événements
- 3.2 Simulation du détecteur
- 4 Reconstruction des événements
- 4.1 L'algorithme de *Particle Flow*
- 4.2 Identification et reconstruction des particules
- 4.3 Objets de haut niveau
- 4.4 Énergie transverse manquante
- 5 Conclusion

Chapitre 4 Calibration en énergie des jets

Sommaire

1	Introduction
2	Phénoménologie des événements photon + jets
3	Corrections résiduelles absolues des jets
	3.1 Méthode de la balance
	3.2 Méthode de la projection de la fraction d'énergie transverse manquante 7
	3.3 « Comment ça fonctionne ce code »
	3.4 Résultats
4	Correction de la résolution en énergie des jets
	4.1 •
	4.2 •
	4.3 •
	4.4 •
5	Conclusion

- 1 Introduction
- 2 Phénoménologie des événements photon + jets
- 3 Corrections résiduelles absolues des jets
- 3.1 Méthode de la balance
- 3.2 Méthode de la projection de la fraction d'énergie transverse manquante
- 3.3 « Comment ça fonctionne ce code »
- 3.4 Résultats
- 4 Correction de la résolution en énergie des jets
- 4.1 •
- 4.2 •
- 4.3 •
- 4.4 •
- 5 Conclusion

Chapitre 5 Recherche d'un boson de Higgs de haute masse

Sommaire

1	Introduction
2	Sélection d'événements et catégorisation
	2.1 Données
	2.2 Simulation
	2.3 Catégorisation
3	Chaîne d'analyse
4	Estimation du bruit de fond
	4.1 Estimations de bruits de fond à partir de simulations
	4.2 Estimations de bruits de fond à partir de données 9
5	Incertitudes systématiques
	5.1 Incertitudes de normalisation
	5.2 Incertitudes de forme
6	Résultats et interprétations
7	Conclusion

1 Introduction

- 2 Sélection d'événements et catégorisation
- 2.1 Données
- 2.2 Simulation
- 2.3 Catégorisation
- 3 Chaîne d'analyse
- 4 Estimation du bruit de fond
- 4.1 Estimations de bruits de fond à partir de simulations
- 4.2 Estimations de bruits de fond à partir de données
- 4.2.1 Méthode de l'encapsulement ou embedding
- 4.2.2 Méthode du facteur de faux ou fake factor
- 5 Incertitudes systématiques
- 5.1 Incertitudes de normalisation
- 5.2 Incertitudes de forme

- 6 Résultats et interprétations
- 7 Conclusion

Chapitre 6 Conclusion

Bibliographie