hw01

September 18, 2016

1 Homework #1- Single LIF Neuron

Taylor Salo

Instructions

```
In [1]: %matplotlib inline
        from __future__ import division
        import numpy as np
        import brian2 as br
        import pylab as plt
        import seaborn as sns
        sns.set_style("darkgrid")
        sns.set_palette(sns.color_palette("bright", 10))
1.1 Q1 A Single LIF Neuron
In [2]: # Start scope for brian2 simulation
       br.start_scope()
        # Define parameters of the LIF model
        R = 100 * br.Mohm # membrane resistance
        tau = 10 * br.ms # membrane time constant
        thr = -50 * br.mV # spike threshold
        u\_rest = -65 * br.mV # resting potential
        u_r = -70 * br.mV # reset potential
        # Define equation for the LIF model
        egs = '''
        du/dt = (-(u - u_rest) + R*I) / tau : volt
        I = input_current(t) : amp
        1 1 1
        # Create stimulation timeseries
        \# I = 200pA, between 100 ms and 800 ms
        tmp = np.zeros((1000,))
        tmp[99:800] = 200
```

```
input_current = br.TimedArray(tmp*br.pamp, dt=1*br.ms)
        LIF = br.NeuronGroup(N=1, model=eqs, method="linear",
                               threshold='u>thr', reset='u=u r')
        LIF.u = u rest
        rec = br.StateMonitor(LIF, 'u', record=True)
        rec2 = br.SpikeMonitor(LIF, 'u', record=True)
        br.run(1*br.second)
        n_spikes = rec2.count[0]
        n_{secs} = len(range(99, 800)) / 1000
        spike_rate = n_spikes / n_secs
        print spike_rate
61.3409415121
In [3]: # Plot membrane potential against time for LIF neuron.
        fig, ax = plt.subplots()
        ax.plot(rec.t/br.ms, rec.u[0]*1000, label="State", lw=3.)
        ax.set_ylim((-75, -45))
        ax.set_title("A Single LIF Neuron")
        ax.set_xlabel('Time (ms)')
        ax.set_ylabel('Membrane potential (mV)')
        plt.show(fig)
                                 A Single LIF Neuron
      -45
       -50
    Membrane potential (mV)
       -55
       -60
```

Time (ms)

600

800

1000

400

-65

-70

-75

200

A constant input current of 200 pA causes a spike train of 61.3 spikes per second. After the first spike, a spike train occurs until the input current stops, at which point the LIF stops firing.

1.2 Q2 Effect of Current Timing on LIF Spiking

```
In [4]: # Set basic parameters.
        R = 100 * br.Mohm # membrane resistance
        tau = 10 * br.ms # membrane time constant
        thr = -50 * br.mV # spike threshold
        u\_rest = -65 * br.mV # resting potential
        u_r = -70 * br.mV # reset potential
        # Define equation for the LIF model
        eqs = '''
        du/dt = (-(u - u_rest) + R*I) / tau : volt
        I = input_current(t) : amp
        1.1.1
In [5]: # Plot results of two simulations with different input timing parameters.
        fig, axes = plt.subplots(2, sharex=True, sharey=True)
        sim_times = np.array([[100, 110, 120],
                              [100, 110, 115]]
        for i in range(sim_times.shape[0]):
            br.start_scope()
            tmp = np.zeros((1000,))
            tmp[sim\_times[i, :]] = 1000
            input_current = br.TimedArray(tmp*br.pamp, dt=1*br.ms)
            LIF = br.NeuronGroup(N=1, model=eqs, method="linear",
                                 threshold='u>thr', reset='u=u_r')
            LIF.u = u_rest
            rec = br.StateMonitor(LIF, 'u', record=True)
            br.run(1*br.second)
            axes[i].plot(rec.t/br.ms, rec.u[0]*1000,
                         color=sns.color_palette("bright", 10)[i],
                         label="Sim_{0}".format(i),
                         1w = 3.)
            legend = axes[i].legend(frameon=True)
            frame = legend.get_frame()
            frame.set_facecolor("white")
            frame.set_edgecolor("black")
        axes[0].set_ylim((-75, -45))
```

```
axes[0].set_xlim((0, 200))
fig.title = "Effect of Stimulus Timing on LIF Spiking"
fig.tight_layout()
plt.show(fig)
```


In the first simulation, the input currents occur rapidly enough to increase the membrane potential, but not enough to cause a spike. In the second simulation, a spike occurs as a result of the last input. This is because the last input occurs soon enough after the second input to raise the membrane potential above -50 mV, the firing threshold, before the leak can lower the membrane potential too low.

1.3 Q3 Effect of Current on Number of Spikes

```
In [6]: # Define parameters of the LIF model
    R = 100 * br.Mohm # membrane resistance
    tau = 10 * br.ms # membrane time constant
    thr = -50 * br.mV # spike threshold
    u_rest = -65 * br.mV # resting potential
    u_r = -70 * br.mV # reset potential

# Define equation for the LIF model
    eqs = '''
    du/dt = ( -(u - u_rest) + R*I ) / tau : volt
    I = input_current(t) : amp
```

```
n_{spikes} = []
        current_range = np.arange(100, 501, 20)
        for current in current_range:
            br.start_scope()
            tmp = np.ones((1000,))
            tmp *= current
            input_current = br.TimedArray(tmp*br.pamp, dt=1*br.ms)
            LIF = br.NeuronGroup(N=1, model=eqs, method="linear",
                                 threshold='u>thr', reset='u=u_r')
            LIF.u = u_rest
            rec = br.SpikeMonitor(LIF, 'u', record=True)
            br.run(1*br.second)
            n_spikes.append(rec.count[0])
        n_spikes = np.array(n_spikes)
In [7]: # Plot number of spikes against current value.
        fig, ax = plt.subplots()
        ax.plot(current_range, n_spikes, lw=3.)
        ax.set_xlabel('Current (pA)')
        ax.set_ylabel('Number of Spikes Across 1000 ms')
        ax.set_title("Effect of Current on Number of Spikes")
       plt.show(fig)
```

1.1.1

Up to a point, a constant input current will not cause any firing in an LIF neuron. This explains the horizontal portion of the line plot where the spike rate is zero (100pA < I < 140pA). After reaching a current value where spikes will occur, the spike rate increases as the current increases. The rate at which the spike rate increases decreases as current increases.

1.4 Q4 Effect of Noise on LIF Firing

```
In [8]: # Define parameters of the LIF model
    R = 100 * br.Mohm # membrane resistance
    tau = 10 * br.ms # membrane time constant
    thr = -50 * br.mV # spike threshold
    u_rest = -65 * br.mV # resting potential
    u_r = -70 * br.mV # reset potential

# Add noise
sigma = 1 * br.mvolt
eqs= '''
du/dt = ( -(u - u_rest) + R*I ) / tau + sigma*xi*tau**-0.5 : volt
I = input_current(t) : amp
'''

n_spikes_wn = []
current_range = np.arange(100, 501, 20)
```

```
for current in current_range:
            br.start_scope()
            tmp = np.ones((1000,))
            tmp *= current
            input_current = br.TimedArray(tmp*br.pamp, dt=1*br.ms)
            LIF = br.NeuronGroup(N=1, model=eqs, method="euler",
                                 threshold='u>thr', reset='u=u r')
            LIF.u = u_rest
            rec = br.SpikeMonitor(LIF, 'u', record=True)
            br.run(1*br.second)
            n_spikes_wn.append(rec.count[0])
        n_spikes_wn = np.array(n_spikes_wn)
In [9]: # Plot number of spikes against current value.
        fig, ax = plt.subplots()
        ax.plot(current_range, n_spikes, "--", lw=3.,
                label="Without Noise")
        ax.plot(current_range, n_spikes_wn, "--", lw=3.,
                label=r"With Noise ($\sigma$ = 1mV)")
        ax.set_xlabel('Current (pA)')
        ax.set_ylabel('Number of Spikes Across 1000 ms')
        ax.set_title("Effect of Current and Noise on Number of Spikes")
        legend = ax.legend(frameon=True, loc=(.1, .75))
        frame = legend.get_frame()
        frame.set_facecolor("white")
        frame.set_edgecolor("black")
        plt.show(fig)
```


The simulations with noise perform similarly to the siulations without noise at higher values for *I*, but have increased numbers of spikes at lower levels of *I*. This is because noise increases the variability of the membrane potential within a simulation, which can cause "spurious" spikes within the neuron. This increases the spike rate when the neuron would not normally fire (i.e., at lower values of *I*), but doesn't significantly affect the spike rate when the neuron would fire (i.e., at higher values of *I*).