СПРЯЖЕН"СТЬ КУСКОВО-Л"Н"ЙНИХ СФЕРИЧНО-ТРАНЗИТИВНИХ АВТОМОРФ"ЗМ"В КОРЕНЕВОГО Б"НАРНОГО ДЕРЕВА.

к.ф.-м.н. Морозов Денис Иванович

Анотація. Дана стаття дає відповідь на питання скінченно-станової спряженості лінійних сферично-транзитивних автоморфізмів бінарного дерева.

1

Дослідження групи автоморфізмів кореневого однорідного дерева за допомогою ізометрій кільця цілих р-адичних чисел надає зручну техніку для вирішення низки проблем, пов'язанних з цією групою. Розглянемо вирішення проблеми скінченностанової спряженності для сферично-транзитивних автоморфізмів, що задаються кусочно-лінійними ізометріями кільця \mathbb{Z}_2 .

Далі під ізометріями розуміються ізометрії кільця цілих 2-адичних чисел.

Definition 1. Множину автоморфізмів кореневого бінарного дерева позначимо як $AutZ_2$.

Множину скінченно-станових автоморфізмів кореневого бінарного дерева позначимо як $FAutZ_2$.

Definition 2. Назвемо автоморфізм кореневого бінарного дерева сферично-транзитивним, якщо його дерево типу є ланцюгом.

Множину сферично-транзитивних автоморфізмів позначимо як $STAutZ_2$

Definition 3. Означимо функцію $\varphi: STAutZ_2 \to STAutZ_2$ наступним чином $\varphi(x) = x_1 \circ x_2$, де x_1, x_2 визначаються співвідношеням $x = (x_1, x_2) \circ \sigma$ (запис $x = (x_1, x_2) \circ \sigma$ означає, що автоморфізм х діє на лівому піддереві дерева T_2 за допомогою автоморфізму x_1 , на правому піддереві дерева T_2 за допомогою автоморфізму x_2 та міняє місцями вершини першого рівня.)

Функція визначена корректно, оскільки, якщо $x=(x_1,x_2)\circ\sigma$ є сферичнотранзитивним автоморфізмом кільця Z_2 , то і $x_1\circ x_2$ є сферично-транзитивним автоморфізмом кільця Z_2 .

Definition 4. Означимо функцію $\pi_L : AutZ_2 \to AutZ_2$ наступним чином $\pi_L(x) = x_1$, де x_1 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Definition 5. Означимо функцію $\pi_R : AutZ_2 \to AutZ_2$ наступним чином $\pi_R(x) = x_2$, де x_2 визначається співвідношеням $x = (x_1, x_2)$ або $x = (x_1, x_2) \circ \sigma$

Definition 6. Назвемо 0-розв'язком рівняння спряженності $a^{\chi} = b$ автоморфізм χ_0 такий, що

$$0 * \chi_0 = 0, \quad a^{\chi_0} = b$$

Очевидно, що для сферично-транзитивного автоморфізма a має місце рівність $a = (\pi_L(a), \pi_R(a)) \circ \sigma$ і значення $\pi_L(a), \pi_R(a)$ та $\varphi(a)$ зв'язані наступним співвідношенням:

$$\varphi(a) = \pi_L(a) \circ \pi_R(a)$$

Крім того, для автоморфізмів $a=(a_1,a_2),\ b=(b_1,b_2)\circ\sigma$ мають місце наступні співвідношення:

$$\pi_L(a^{-1}) = (\pi_L(a))^{-1}, \ \pi_R(a^{-1}) = (\pi_R(a))^{-1}$$

$$\pi_L(b^{-1}) = (\pi_R(b))^{-1}, \ \pi_R(b^{-1}) = (\pi_L(b))^{-1}$$

$$\pi_L(a \circ b) = \pi_L(a) \circ \pi_L(b), \ \pi_R(a \circ b) = \pi_R(a) \circ \pi_R(b)$$

$$\pi_L(b \circ a) = \pi_L(b) \circ \pi_R(a), \ \pi_R(b \circ a) = \pi_R(b) \circ \pi_L(a)$$

Theorem 1. Нехай a, b - сферично-транзитивні скінченно-станові ізометрії кільця Z_2 , а χ_0 - θ -розв'язок рівняння спряженості $a^{\chi_0} = b$. Тоді $\forall n \in \mathbb{N}$ має місце рівність

$$\varphi^n(a)^{\pi_L^n(\chi_0)} = \varphi^n(b)$$

Доведення. Дійсно, оскільки $a^{\chi_0}=b$, то $\varphi^n(a^{\chi_0})=\varphi^n(b)\ \forall n\in\mathbb{N}.$ Далі,

$$\pi_L(a^{\chi_0}) = \pi_L(\chi_0^{-1} \circ a \circ \chi_0) = \pi_L(\chi_0^{-1}) \circ \pi_L(a) \circ \pi_R(\chi_0) = (\pi_L(\chi_0))^{-1} \circ \pi_L(a) \circ \pi_R(\chi_0)$$
$$\pi_R(a^{\chi_0}) = \pi_R(\chi_0^{-1} \circ a \circ \chi_0) = \pi_R(\chi_0^{-1}) \circ \pi_R(a) \circ \pi_L(\chi_0) = (\pi_R(\chi_0))^{-1} \circ \pi_R(a) \circ \pi_L(\chi_0)$$

Скористаємось методом математичної індукції:

1) Для n=0 маємо рівність $a^{\chi_0}=b$ і тверження виконується. 2) Нехай для n=k твердження теореми виконується, тобто $\varphi^k(a)^{\pi_L^k(\chi_0)}=\varphi^k(b)$. Покажемо, що воно також має місце для n=k+1.

Оскільки $\varphi^{k+1}(b) = \varphi(\varphi^k(b))$, то, згідно з індуктивним припущенням,

$$\varphi^{k+1}(b) = \varphi(\varphi^k(a)^{\pi_L^k(\chi_0)}) = \pi_L(\varphi^k(a)^{\pi_L^k(\chi_0)}) \circ \pi_R(\varphi^k(a)^{\pi_L^k(\chi_0)})$$

i

$$\varphi(\varphi^{k}(a)^{\pi_{L}^{k}(\chi_{0})}) =$$

$$= ((\pi_{L}(\pi_{L}^{k}(\chi_{0})))^{-1} \circ \pi_{L}(\varphi^{k}(a)) \circ \pi_{R}(\pi_{L}^{k}(\chi_{0}))) \circ ((\pi_{R}(\pi_{L}^{k}(\chi_{0})))^{-1} \circ \pi_{R}(\varphi^{k}(a)) \circ \pi_{L}(\pi_{L}^{k}(\chi_{0}))) =$$

$$= (\pi_{L}(\pi_{L}^{k}(\chi_{0})))^{-1} \circ (\pi_{L}(\varphi^{k}(a)) \circ \pi_{R}(\varphi^{k}(a))) \circ \pi_{L}(\chi_{0}) = (\pi_{L}(\pi_{L}^{k}(\chi_{0})))^{-1} \circ \varphi(\varphi^{k}(a)) \circ \pi_{L}(\pi_{L}^{k}(\chi_{0})) =$$

$$= \varphi(\varphi^{k}(a))^{\pi_{L}(\pi_{L}^{k}(\chi_{0}))} = \varphi^{k+1}(a)^{\pi_{L}^{k+1}(\chi_{0})}$$

тому має місце рівність $\varphi^{k+1}(a)^{\pi_L^{k+1}(\chi_0)} = \varphi^{k+1}(b)$ і, згідно з методом математичної індукції, маємо твердження теореми.

Theorem 2. Нехай a, b - сферично-транзитивні скінченно-станові ізометрії кільця Z_2 . Тоді χ_0 - 0-розв'язок рівняння спряженості $a^{\chi_0} = b$ є скінченностановим тоді, і тільки тоді, коли $\pi_L^n(\chi_0)$ є скінченностановим для деякого $n \in \mathbb{N}$.

Доведення. Нехай $a=(a_1,a_2)\circ\sigma, b=(b_1,b_2)\circ\sigma.$ 0-розв'язок χ_0 має вигляд

$$\chi_0 = (\pi_L(\chi_0), \pi_R(\chi_0))$$

Очевидно, має місце рівність:

$$a^{\chi_0} = (\pi_L(\chi_0)^{-1} \circ a_1 \circ \pi_R(\chi_0), \pi_R(\chi_0)^{-1} \circ a_2 \circ \pi_L(\chi_0)) \circ \sigma = (b_1, b_2) \circ \sigma$$

Звідси маємо

$$(\pi_L(\chi_0)^{-1} \circ a_1 \circ \pi_R(\chi_0) = b_1 \Rightarrow \pi_R(\chi_0) = a_1^{-1} \circ \pi_L(\chi_0) \circ b_1$$

Оскільки a_1, b_1 - скінченностанові, то з того, що $\pi_L(\chi_0)$ - скінченностанова ізометрія, випливає, що $\pi_R(\chi_0)$ - скінченностанова, а тому і χ_0 є скінченно-становою ізометрією.

Отже 0-розв'язок рівняння спряженості $a^{\chi_0} = b$ є скінченностановим тоді, і тільки тоді, коли $\pi_L(\chi_0)$ є скінченностановим. (1)

За теоремою 1 $\pi_L(\chi_0)$ є 0-розв'язком рівняння спряженності

$$(a_1 \circ a_2)^{\chi} = b_1 \circ b_2$$

Застосувавши твердження 1 п разів, отримаємо твердження теореми.

Definition 7. Назвемо скінченно-станову ізометрію f 0-повною, якщо образ 0 при дії на нього централізатором цього елементу співпадає з множиною квазіперіодичних елементів кільця Z_2

$$0 * C_{FAutT_2}(f) = Z_2 \cap \mathbb{Q}$$

Theorem 3. Нехай b - скінченно-станова 0-повна сферично-транзитивна ізометрія. Скінченно-станові ізометрії а та b спряженні в $FAutT_2$ тоді, і лише тоді, коли існує скінченностановий 0-розв'язок рівняння спряженності $a^{\chi} = b$.

$$\mathcal{A}$$
ове ∂ ення.

Corollary 1. Нехай a, b - сферично-транзитивні скінченно-станові 0-повні ізометрії кільця Z_2 . Ізометрії a та b спряжені b $FAutT_2$ тоді, і тільки тоді, коли $\varphi^n(a)$ та $\varphi^n(b)$ спряжені b $FAutT_2$ для деякого b.

В статті [1] було доведено наступні твердження:

Lemma 1.
$$f(x) = p_1x + p_2 \in FAutT_2 \Leftrightarrow p_1, p_2 \in Z_2 \cap \mathbb{Q}$$

Theorem 4. Автоморфізми $f(x) = (4k+1)x + (2t+1)(k,t \in \mathbb{Z}_2)$ є сферичнотранзитивними.

Theorem 5. Ізометрії $f_1(x) = (4k_1 + 1)x + 1$ та $f_2(x) = (4k_2 + 1)x + 1$ $(k_1, k_2 \in \mathbb{Z}_2^{\mathbb{Q}})$ спряжені в $FAutT_2 \Leftrightarrow 4k_1 + 1 = 4k_2 + 1$.

Скористаємося ними далі.

Lemma 2. Скінченно-станова лінійна сферично-транзитивна ізометрія є 0-повною.

Доведення. Дійсно, мають місце наступні рівності:

$$(((a-1)t+1)x+bt) \circ (ax+b) = a(((a-1)t+1)x+bt) + b =$$

$$= a((a-1)t+1)x + abt + b$$

та

$$(ax + b) \circ (((a - 1)t + 1)x + bt) = ((a - 1)t + 1)(ax + b) + bt =$$

$$= a((a - 1)t + 1)x + b(a - 1)t + b + bt =$$

$$= a((a - 1)t + 1)x + abt + b$$

Отже автоморфізм ((a-1)t+1)x+bt комутує з автоморфізмом $ax+b(a,b,t\in Z_2)$.

Згідно з лемою 1, при $a,b,t\in Z_2\cap\mathbb{Q}$ автоморфізм ((a-1)t+1)x+bt є скінченностановим, а отже належить централізатору $C_{FAutT_2}(ax+b)$.

За теоремою 4 якщо автоморфізм ax+b є сферично-транзитивним, то $a=4a'+1, b=2b'+1, a', b'\in Z_2$. Оскільки b є обертовним елементом кільця Z_2 та

$$0 * ((4a't + 1)x + (2b' + 1)t) = (2b' + 1)t$$

а 4a't+1 є обертовним для довільного $t \in \mathbb{Z}_2$ (умова автоморфності (4a't+1)x+(2b'+1)t), то

$$0 * C_{FAutT_2}(ax+b) = Z_2 \cap \mathbb{Q}$$

Lemma 3. Скінченно-станова ізометрія а є 0-повною тоді і лише тоді, коли $\varphi^n(a)$ є 0-повною для деякого $n \in \mathbb{N}$.

Доведення. Для ізометрії $a = (b, c) \circ \sigma$ мають місце наступні співвідношення:

$$0 * a^{2t} = 2(0 * \varphi(a)^t)$$
$$0 * a^{2t+1} = 2(0 * \varphi(a)^t b) + 1$$

Отже, ізометрія $a \in 0$ -повною, тоді, і лише тоді, коли $\varphi(a) \in 0$ -повною. Застосувавши отримане твердження п разів отримаємо аналогічне твердження для $\varphi^n(a)$.

Theorem 6. Скінченно-станова кусково-лінійна сферично-транзитивна ізометрія e θ -ловною.

Доведення. Для кусково-лінійної сферично-транзитивної ізометрії a існує $n \in \mathbb{N}$, такий, що ізометрія $\varphi^n(a)$ є лінійною. Отже за лемами 2 та 3 маємо твердження теореми.

Theorem 7. Два скінченно-станові лінійні сферично-транзитивні автоморфізми спряжені в $FAutT_2$ тоді, і лише тоді, коли знайдеться рівень, для якого всі автоморфізми цього рівня є лінійними, та добутки всіх коефіцієнтів біля x рівні для обох автоморфізмів.

Доведення. За теоремою 5 автоморфізми ax + b та cx + d спряжені в $FAutT_2$ тоді, і лише тоді, коли a = c. Отже, за наслідком 1 та теоремою 6 маємо твердження теореми.

Розглянемо наступний приклад застосування теореми 7. Кусочно-лінійні сферично-транзитивні автоморфізми

$$f(x) = (3x + 1, 3x) \circ \sigma$$

та

$$g(x) = (9x + 2, x + 7) \circ \sigma$$

за теоремою 7 спряжені в $FAutT_2$, оскільки

$$3 \cdot 3 = 9 \cdot 1$$

ЛІТЕРАТУРА

[1] *Морозов Д.І.* Спряженість автоморфізмів, що задаються лінійними функціями в групі скінченностанових автоморфізмів кореневого сферично-однорідного дерева . Вісник Київського ун-ту. Серія: фізико-математичні науки. - 2008.— вип.№1—С.40-43.