Day 1

1	Let ABC be a triangle and A^\prime , B^\prime and C^\prime lie on BC , CA and AB
	respectively such that the incenter of $A^{\prime}B^{\prime}C^{\prime}$ and ABC are coincide
	and the inradius of $A^{\prime}B^{\prime}C^{\prime}$ is half of inradius of ABC . Prove that
	ABC is equilateral .

Let a be a fix natural number . Prove that the set of prime divisors of $2^{2^n} + a$ for $n = 1, 2, \cdots$ is infinite

Suppose that a,b,c be three positive real numbers such that a+b+c=3 . Prove that :

$$\frac{1}{2+a^2+b^2} + \frac{1}{2+b^2+c^2} + \frac{1}{2+c^2+a^2} \leq \frac{3}{4}$$

Day 2

Find all polynomials f with integer coefficient such that, for every prime p and natural numbers u and v with the condition:

$$p \mid uv - 1$$

2009 Iran Team Selection Test

5	ABC is a triangle and AA^\prime , BB^\prime and CC^\prime are three altitudes of this
	triangle . Let P be the feet of perpendicular from C^\prime to $A^\prime B^\prime$, and Q is
	a point on $A^{\prime}B^{\prime}$ such that $QA=QB$. Prove that :
	$\angle PBQ = \angle PAQ = \angle PC'C$

We have a closed path on a vertices of a $n \times n$ square which pass from each vertice exactly once . prove that we have two adjacent vertices such that if we cut the path from these points then length of each pieces is not less than quarter of total path .

Day 3

Suppose three direction on the plane . We draw $11\ \text{lines}$ in each direction . Find maximum number of the points on the plane which are on three lines .

8 Find All Polynomials P(x,y) such that for all reals x,y we have

$$P(x^2, y^2) = P\left(\frac{(x+y)^2}{2}, \frac{(x-y)^2}{2}\right).$$

9 In triangle ABC, D, E and F are the points of tangency of incircle

with the center of I to BC, CA and AB respectively. Let M be the foot of the perpendicular from D to EF. P is on DM such that DP = MP. If H is the orthocenter of BIC, prove that PH bisects EF.

khashi70 view topic

Day 4

10	Let ABC be a triangle and $AB eq AC$. D is a point on BC such that
	$BA=BD$ and B is between C and D . Let I_c be center of the circle
	which touches AB and the extensions of AC and BC . CI_c intersect
	the circumcircle of ABC again at T .
	If $\angle TDI_c = rac{\angle B + \angle C}{4}$ then find $\angle A$

11 Let n be a positive integer. Prove that

$$\frac{5^{2^{n}} - 1}{3^{2^{n+2}}} \equiv (-5)^{\frac{3^{2^{n}} - 1}{2^{n+2}}} \pmod{2^{n+4}}.$$

T is a subset of 1,2,...,n which has this property : for all distinct $i,j\in T$, 2j is not divisible by i . Prove that : $T = T \cdot 2j$ is not $T = T \cdot 2j$.

© 2016 Art of Problem Solving

Terms Privacy

Contact Us About Us

Copyright © 2016 Art of Problem Solving

2009 Iran Team Selection Test

