Advanced Section #1: Linear Algebra and Hypothesis Testing

Will Claybaugh

CS109A Introduction to Data Science

Pavlos Protopapas and Kevin Rader

Advanced Section 1

WARNING

This deck uses animations to focus attention and break apart complex concepts.

Either watch the section video or read the deck in Slide Show mode.

Advanced Section 1

Today's topics:

Linear Algebra (Math 21b, 8 weeks)

Maximum Likelihood Estimation (Stat 111/211, 4 weeks)

Hypothesis Testing (Stat 111/211, 4 weeks)

Our time limit: 90 minutes

- We will move fast
- You are only expected to catch the big ideas
- Much of the deck is intended as notes
- I will give you the TL;DR of each slide
- We will recap the big ideas at the end of each section

- We'll work together
- I owe you this knowledge
- Come debt collect at OHs if I don't do my job today
- Let's do this:)

LINEAR ALGEBRA (THE HIGHLIGHTS)

Interpreting the dot product

What does a dot product mean?

$$(1,5,2) \cdot (3,-2,4) = 1 \cdot (3) + 5 \cdot (-2) + 2 \cdot (4)$$

- **Weighted sum**: We weight the entries of one vector by the entries of the other
 - Either vector can be seen as weights
 - Pick whichever is more convenient in your context
- Measure of Length: A vector dotted with itself gives the squared distance from (0,0,0) to the given point
 - $(1,5,2) \cdot (1,5,2) = 1 \cdot (1) + 5 \cdot (5) + 2 \cdot (2) = (1-0)^2 + (5-0)^2 + (2-0)^2 = 28$
 - (1,5,2) thus has length $\sqrt{28}$
- Measure of orthogonality: For vectors of fixed length, $a \cdot b$ is biggest when a and b point are in the same direction, and zero when they are at a 90° angle
 - Making a vector longer (multiplying all entries by c) scales the dot product by the same amount

Question: how could we get a true measure of orthogonality (one that ignores length?)

Dot Product for Matrices

Matrix multiplication is a bunch of dot products

- In fact, it is every possible dot product, nicely organized
- Matrices being multiplied must have the shapes $n, m \cdot m, p$ and the result is of size n, p
 - (the middle dimensions have to match, and then drop out)

Column by Column

2	-1	3				2		-1		3	20
1	5	2		3		1		5		2	1
-1	1	3	•	-2	3	-1	+ -2	1	+ 4 .	3	7
6	4	9		4		6		4		9	46
2	2	1				2		2		1	6

- Since matrix multiplication is a dot product, we can think of it as a weighted sum
 - We weight each column as specified, and sum them together
 - This produces the first column of the output
 - The second column of the output combines the same columns under different weights
- Rows?

Row by Row

Apply a row of A as weights on the rows B to get a row of output

LINEAR ALGEBRA (THE HIGHLIGHTS)

Span

Span and Column Space

- Span: every possible linear combination of some vectors
 - If vectors are the columns of a matrix call it the **column space** of that matrix
 - If vectors are the rows of a matrix it is the **row space** of that matrix
- Q: what is the span of {(-2,3), (5,1)}? What is the span of {(1,2,3), (-2,-4,-6), (1,1,1)}

CS109A, PROTOPAPAS, RADER

LINEAR ALGEBRA (THE HIGHLIGHTS)

Bases

Basis Basics

- Given a space, we'll often want to come up with a set of vectors that span it
- If we give a minimal set of vectors, we've found a basis for that space
- A basis is a coordinate system for a space
 - Any element in the space is a weighted sum of the basis elements
 - Each element has exactly one representation in the basis
- The same space can be viewed in any number of bases pick a good one

Function Bases

- Bases can be quite abstract:
 - Taylor polynomials express any analytic function in the infinite basis $(1, x, x^2, x^3, ...)$
 - The Fourier transform expresses many functions in a basis built on sines and cosines
 - Radial Basis Functions express functions in yet another basis
- In all cases, we get an 'address' for a particular function
 - In the Taylor basis, $\sin(x) = (0,1,0,\frac{1}{6},0,\frac{1}{120},...)$
- Bases become super important in feature engineering
 - Y may depend on some transformation of x, but we only have x itself
 - We can include features $(1, x, x^2, x^3, ...)$ to approximate

Taylor approximations to y=sin(x)

LINEAR ALGEBRA (THE HIGHLIGHTS)

Interpreting Transpose and Inverse

Transpose

	3							3	1					
$x = \frac{1}{2}$	2	$x^T = $		2	3	9	$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	3	1		2	2	3	9
			$\mathbf{v}^T - \mathbf{I}$					2	-1	1 AT	3			
	3							3 2		$\mid A' = \mid$	1	-1	2	7
									2					
	9													
]						9	7					

- Transposes switch columns and rows. Written A^T
- Better dot product notation: $a \cdot b$ is often expressed as $a^T b$
- Interpreting: The matrix multiplilcation AB is rows of A dotted with columns of B
 - A^TB is *columns* of A dotted with columns of B
 - AB^T is rows of A dotted with rows of B
- Transposes (sort of) distribute over multiplication and addition:

$$(AB)^T = B^T A^T$$

$$(A+B)^{T} = A^{T} + B^{T}$$

$$(A^T)^T = A$$

Inverses

- Algebraically, $AA^{-1} = A^{-1}A = 1$
- Geometrically, A^{-1} writes an arbitrary point b in the coordinate system provided by the columns of A
 - Proof (read this later):
 - Consider Ax = b. We're trying to find weights x that combine A's columns to make b
 - Solution $x = A^{-1}b$ means that when A^{-1} multiplies a vector we get that vector's coordinates in A's basis
- Matrix inverses exist iff columns of the matrix form a basis
 - 1 Million other equivalents to invertibility:
 Invertible Matrix Theorem

How do we write (-2,1) in this basis? Just multiply A^{-1} by (-2,1)

LINEAR ALGEBRA (THE HIGHLIGHTS)

Eigenvalues and Eigenvectors

Eigenvalues

- Sometimes, multiplying a vector by a matrix just scales the vector
 - The red vector's length triples
 - The orange vector's length halves
 - All other vectors point in new directions
- The vectors that simply stretch are called egienvectors. The amount they stretch is their eigenvalue
 - Anything along the given axis is an eigenvector; Here, (-2,5) is an eigenvector so (-4,10) is too
 - We often pick the version with length 1
- When they exist, eigenvectors/eigenvalues can be used to understand what a matrix does

Original vectors:

After multiplying by 2x2 matrix A:

CS109A, PROTOPAPAS, RADER

Interpreting Eigenthings

Warnings and Examples:

- Eigenvalues/Eigenvectors only apply to <u>square</u> matrices
- Eigenvalues may be 0 (indicating some axis is removed entirely)
- Eigenvalues may be complex numbers (indicating the matrix applies a rotation)
- Eigenvalues may be repeat, with one eigenvector per repetition (the matrix may scales some n-dimension subspace)
- Eigenvalues may repeat, with some eigenvectors missing (shears)
- If we have a full set of eigenvectors, we know everything about the given matrix S, and $S = QDQ^{-1}$
 - Q's columns are eigenvectors, D is diagonal matrix of eigenvalues
- Question: how can we interpret this equation?

Calculating Eigenvalues

- Eigenvalues can be found by:
 - A computer program
- But what if we need to do it on a blackboard?
 - The definition $Ax = \lambda x$
 - This says that for special vectors x, multiplying by the matrix A is the same as just scaling by λ (x is then an eigenvector matching eigenvalue λ)
 - The equation $\det(A \lambda I_n) = 0$
 - I_n is the n by n identity matrix of size n by n. In effect, we subtract lambda from the diagonal of
 - Determinants are tedious to write out, but this to find eigenvalues

Eigenvectors matching known eigenvalues can be found by solving $(A - \lambda I_n)x = 0$ for x

produces a polynomial in λ which can be solved

20

LINEAR ALGEBRA (THE HIGHLIGHTS)

Matrix Decomposition

Matrix Decompositions

- **Eigenvalue Decomposition**: Some square matrices can be decomposed into scalings along particular axes
 - Symbolically: $S = QDQ^{-1}$; D diagonal matrix of eigenvalues; Q made up of eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)
- Polar Decomposition: Every matrix M can be expressed as a rotation (which may introduce or remove dimensions) and a stretch
 - Symbolically: M = UP or M=PU; P positive semi-definite, U's columns orthonormal
- Singular Value Decomposition: Every matrix M can be decomposed into a rotation in the original space, a scaling, and a rotation in the final space
 - Symbolically: $M = U\Sigma V^T$; U and V orthonormal, Σ diagonal (though not square)

CS109A, PROTOPAPAS, RADER

Where we've been

Vector and Matrix dot product

Other decompositions

$$M = UP \text{ or } M=PU$$

$$M = U\Sigma V^{T}$$

Eigenvalues

Span

Basis as a coordinate system for a space

Invertibility

$$Ax = b$$
; $x = A^{-1}b$

Practice

- Simplify $(A^TB)^T$. What is in position 1,4? What does it mean if that value is large?
- What are the eigenvectors of A^2 ? What are the eigenvalues?
- What does it mean when an entry of $A^T A = 0$?
- What about all the facts about inverses and dot products I've forgotten since undergrad? [*Matrix Cookbook*] [*Linear Algebra Formulas*]

LINEAR ALGEBRA (SUMMARY)

Notes

- Matrix multiplication: every dot product between rows of A and columns of B
 - Important special case: a matrix times a vector is a weighted sum of the matrix columns
- **Dot products** measure similarity between two vectors: 0 is extremely un-alike, bigger is pointing in the same direction and/or longer
 - Alternatively, a dot product is a weighted sum
- Bases: a coordinate system for some space. Everything in the space has a unique address
- Matrix Factorization: all matrices are rotations and stretches. We can decompose 'rotation and stretch' in different ways
 - Sometimes, re-writing a matrix into factors helps us with algebra
- Matrix Inverses don't always exist. The 'stretch' part may collapse a dimension. M^{-1} can be thought of as the matrix that expresses a given point in terms of columns of M
- Span and Row/Column Space: every weighted sum of given vectors
- Linear (In)Dependence is just "can some vector in the collection be represented as a weighted sum of the others" if not, vectors are Linearly Independent

LINEAR REGRESSION

AFTER A BREAK

Review and Practice: Linear Regression

• In linear regression, we're trying to write our response data y as a linear function of our [augmented] features X

response =
$$\beta_1 feature_1 + \beta_2 feature_2 + \beta_3 feature_3 + ...$$

 $y = X\beta$

• Our response isn't actually a linear function of our features, so we instead find betas that produce a column \hat{y} that is as close as possible to y (in Euclidean distance)

$$\min_{\beta} \sqrt{(y - \hat{y})^T (y - \hat{y})} = \min_{\beta} \sqrt{(y - X\beta)^T (y - X\beta)}$$

- Goal: find that the optimal $\beta = (X^T X)^{-1} X^T y$
- Steps:
 - 1. Drop the sqrt [why is that legal?]
 - 2. Distribute the transpose
 - 3. Distribute/FOIL all terms
 - 4. Take the derivative with respect to β (Matrix Cookbook (69) and (81): derivative of $\beta^T \alpha$ is α^T , ...)
 - 5. Simplify and solve for beta

CS109A, PROTOPAPAS, RADER

Interpreting LR: Algebra

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

- The best possible betas, $\hat{\beta} = (X^T X)^{-1} X^T y$ can be viewed in two parts:
 - Numerator $(X^T y)$: columns of X dotted with (the) column of y; how related are the feature vectors and y?
 - Denominator (X^TX) : columns of X dotted with columns of X; how related are the different features?
 - If the variables have mean zero, "how related" is literally "correlation"
- Roughly, our solution assigns big values to features that predict y, but punishes features that are similar to (combinations of) other features
- Bad things happen if X^TX is uninvertible (or nearly so)

Interpreting LR: Geometry

- $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty$
- The only points that CAN be expressed as $X\beta$ are those in the span/column space of X.
 - By minimizing distance, we're finding the point in the column space that is closest to the actual y
 vector
- The point $X\hat{\beta}$ is the projection of the observed y values onto the things linear regression can express
- Warnings:
 - Adding more columns (features) can only make the span bigger and the fit better
 - If some features are very similar, results will be unstable

STATISTICS

Linear Regression

ML to Statistics

- What we've done so far is the Machine Learning style of modeling:
 - Specify a loss function [Squared error] and a model format [y=Xβ]
 - Find the settings that minimize the loss function

- Statistics adds more assumptions and gets back richer results
 - Adds assumptions about where the data came from
 - We can ask "What about other beta values? On a different day, might we get that result instead?"
 - Statistics can answer yes/no via our assumptions about where the data come from

Statistical Assumptions

What are Statistics' assumptions about the linear regression data?

- The observed X values simply are.
- The observed y come from a Normal(mu(x), sigma) distribution, mu(x) is linear, and each y is drawn *independently* from the others
 - For all observations i: $y_i \sim N(x_i \beta, \sigma^2)$
 - Equivalently, column y $y \sim N_{mv}(X\beta, \sigma^2 I_n)$

Why these assumptions?

- Any story about how the X data came to be is problem-dependent
- Makes the problem solvable using 1800s era tools

Question: How could we alter these assumptions?

Image from: http://bolt.mph.ufl.edu/6050-6052/unit-4b/module-15/

33

Maximum Likelihood: the other ML

• We need to guess at the unknown values (β and σ^2)

Maximum Likelihood

- Rule: Guess whatever values of the unknowns make the observed data as probable as possible
 - As a loss function, we feel pain when the data surprise the model
- Only works if we have a likelihood function
 - Likelihood maps (dataset) -> (probability of seeing that dataset); uses parameter values (e.g. β and σ^2) in the calculation
 - Actually maximizing can be hard
- But, Maximum Likelihood can be shown to be a very good guessing strategy, especially with lots of observations (see Stat 111 or 211)

Maximum Likelihood: the other ML

• Likelihood (Probability of seeing data y, given parameters X, β , and σ^2):

$$P(Y = y | X, \beta, \sigma^2) = N(X\beta, \sigma^2 I_n) = \frac{1}{\sqrt{2\pi |\sigma^2 I_n|}} e^{-\frac{1}{2}(y - X\beta)^T (\sigma^2 I_n)^{-1}(y - X\beta)}$$

- Since X is constant, we're maximizing by choosing the vector β and scalar σ^2
- Finding optimal β quickly reduces to the least squares problem we just saw: $\min_{\beta} (y X\beta)^T (y X\beta)$
- Optimal $\sigma^2 = \frac{\text{residuals under the optimal } \beta}{\text{(number of observations number of features)}}$

Benefits of assumptions

We actually get the joint distribution of the betas:

$$\beta_{MLE} \sim N(\beta_{True}, \sigma^2(X^TX)^{-1})$$

- HW investigates the variance term: how well we can learn each beta, and whether one is linked to another
 - It depends on X!
 - It doesn't depend on y! (If our assumptions are correct
- Lets us attach error bars to our estimates, e.g. $\beta_1 = 3 \pm .2$

Main question: What can we do to our X matrix to

Review

 We can add assumptions about where the data came from and get richer statements from our model

- A Likelihood is a function that tells us how likely any given dataset
 is. Plug in data, get a probability
- The MLE finds the parameter settings that make our data as likely as possible
- Finding the MLE parameter values can be hard, sometimes possible via calculus, often requires computer code

STATISTICS: HYPOTHESIS TESTING

OR: WHAT PARAMETERS EXPLAIN THE DATA

A Popper's Grave

- It's impossible to prove a model is correct
 - In fact, there are many correct models
 - Can you prove increasing a parameter by .000001% is incorrect?
- We can only rule models out.

 The great tragedy is that you have been taught to rule out just ONE model, and then quit

Model Rejection

- Important: a 'model' is a (probabilistic) story
 about how the data came to be, complete with
 specified values of every parameter
 - The model produces many possible datasets
 - We only have one observed dataset
- How can we tell if a model is wrong?
 - If the model is unlikely to reproduce the aspects of the data that we care about, it has to go
 - Therefore, we have some real-number summary of the dataset (a 'statistic') by which we'll compare model-generated datasets and our observed dataset
 - If the statistics produced by the model are clearly different than the one from the real data, we reject the model

Recap: How to understand any test

- Any model test specifies:
 - 1. A (probabilistic) data generating process
 - 2. A summary we'll use to compress a dataset (Jargon: a statistic)
 - 3. A rule for comparing the observed and the simulated summaries
- Example: t-test
 - 1. The y data are generated via the estimated line/plane, plus Normal(0,sigma) noise, EXCEPT a particular coefficient is actually zero!
 - 2. The coefficient we'd calculate for that dataset (minus 0), over the SE of the coefficient

t statistic =
$$\frac{\beta_{Simulated} - 0}{\widehat{SE}(\beta_{0bserved})}$$

3. Declare the model bad if the observed result is in the top/bottom $\alpha\%$ of simulated results (commonly top/bottom 5%)

(Jargon: the null hypothesis)

The t-test

Walkthrough:

- We set a particular beta we care about to zero (call these betas β_{null})
- We simulate 10,000 new datasets using eta_{null} as truth
- In each of the 10,000 datasets, fit a regression against X and plot the values of the β we care about (the one we set to zero)
 - The plotting the t statistic in each simulation is a little prettier
- The t statistic calculated from the observed data was 17.8. Do we think the proposed model generated our data?

T-test for β_2 = 0 β_{MLE} = [2.2, 5, 3, 1.6] β_{null} = [2.2, 5, 0, 1.6] σ_{MLE} X_{obs} Simulate y-values y=N($X\beta$, σ) y_{sim1} y_{sim2} y_{sim3} ... $y_{sim10,000}$ Fit linear regression y_sim = XB

 β_{sim3}

 $\beta_{sim10,000}$

One more thing: Amazingly, 'Student' knew what results we'd get from the simulation

CS109A, PROTOPAPAS, RADER

 β_{sim2}

 $\beta_{sim.1}$

The Value of Assumptions

- Student's clever set-up lets us skip the simulation
- In fact, all classical tests are built around working out what distribution the results will follow, without simulating
 - Student's work lets us take infinite samples at almost no cost
- These shortcuts were vital before computers, and are still important today
 - Even so, via simulation we're freer to test and reject more diverse models and use wilder summaries
 - However, the summaries and rules we choose still require thought: some are *much* better than others

p-values

- Hypothesis (model) testing leads to comparing a distribution against a point
- A natural way to summarize: report what percentage of results are more extreme than the observed data
 - Basically, could the model frequently produce data that looks like ours?
- This is the p value: p=.031 means that your observed data is in the top 3.1% of weird results under this model+statistic
 - There is some ambiguity about what 'weird' should mean

Jargon: p values are "The probability, assuming the null model is exactly true, of seeing a value of [your statistic] as extreme or more extreme than what was seen in the observed data"

CS109A, PROTOPAPAS, RADER

p Value Warnings

- p values are only one possible measure of the evidence against a model
- Rejecting a model when p<threshold is only one possible decision rule
 - Get a book on Decision Theory for more
- Even if the null model is exactly true, 5% of the time, we'll get a dataset with p<.05
 - p<.05 doesn't prove the null model is wrong
 - It does mean that anyone who wants to believe in the null must explain with why something unlikely happened

Recap

- We can't rule models in; we can only rule them out
- We rule models out when the data they produce is different from the observed data
 - We pick a particular candidate (null) model
 - A statistic summarizes the simulated and observed datasets
 - We compare the statistic on the observed data to the simulated or theoretical distribution of statistics the null produces
 - We rule out the null if the observed data doesn't seem to come from the model
- A p value summarizes the level of evidence against a particular null
 - "The observed data are in the top 1% of results produced by this model... do you really think we hit those odds?"

CS109A, PROTOPAPAS, RADER

STATISTICS: HYPOTHESIS TESTING

CONFIDENCE INTERVALS AND COMPOSITE HYPOTHESES

Recap

- Let's talk about what we just did
 - That t-test was ONLY testing the model where the coefficient in question is set to zero
 - Ruling out this model makes it more likely that other models are true, but doesn't tell
 us which ones
 - If the null is $\beta = 0$, getting p<.05 only rules out THAT ONE model
- When would it make sense to stop after ruling out $\beta = 0$, without testing $\beta = .1$?

Composite Hypotheses: Multiple Models

- Often, we're interested in trying out more than one candidate model
 - E.g. Can we disprove all models with a negative value of beta?
 - This amounts to simulating data from each of those models (but there are infinitely many...)
- Sometimes, ruling out the nearest model is enough; we know that the other models have to be worse
- If a method claims it can test θ <0, this is how

 β =0 will be closer to matching the data (in terms of t statistic) than any other model in the set*; we only need to test β =0

* Non-trivial; true for student's t but not for other measures

THE Null vs A Null

- What if we tested LOTS of possible values of beta?
 - Special conditions must hold to avoid multiple-testing issues; again, the t test model+statistic pass them
- We end up with a set/interval of surviving values, e.g. [.1,.3]
 - Sometimes, we can directly calculate what the endpoints would be
- Since each beta was tested under the rule "reject this beta if the observed results are in the top 5% of weird datasets under this model", we have [.1,.3] as a 95% confidence interval

Confidence Interval Warnings

- WARNING: This kind of accept/reject confidence interval is rare
 - Most confidence intervals <u>do not</u> map accept/reject regions of a (useful) hypothesis test
 - A confidence interval that excludes zero does not usually mean a result is statistically significant
 - Statistically significant: The data resulting from an experiment/data collection have p<.05 (or some other threshold) against a no-effect model, meaning we reject the no-effect model
 - It depends on how that confidence interval was built
- A confidence interval's <u>only</u> promise: if you were to repeatedly re-collect the data and build 95% CIs, (assuming our story about data generation is correct) 95% of the intervals would contain the true value

Confidence Interval Warnings

- WARNING: A 95% confidence interval DOES NOT have a 95% chance of holding the true value
 - There may be no such thing as "the true value", b/c the model is wrong
- Even if the model is true, a "95% chance" statement requires prior assumptions about how nature sets the true value
- Stick around after section for a heartbreaking demo of why a group of confidence intervals make 95% but any particular CI can be 0%, 100%, or anything in between

HW Preview

- The 209 homework touches on another kind of confidence interval
 - Class: "How well have I estimated beta?"
 - HW: "How well can I estimate the *mean* response at each X?"
 - Bonus: "How well can I estimate the *possible* responses at each X"?

Remember those assumptions?

We rejected the null model(s) as tested, not the idea that $\beta=0$ – assumptions matter

Review

- Ruling out a single model isn't much
- Sometimes, ruling out a single model is enough to rule out a whole class of models
- Assumptions our model makes are weak points that should be justified and checked for accuracy

- Confidence intervals give a reasonable idea of what some unknown value might be
- Any single confidence intervals cannot give a probability
- Statistical significance is 99% unrelated to confidence intervals

STATISTICS: REVIEW

You made it!

Review

- To test a particular model (a particular set of parameters) we must:
 - 1. Specify a data generating process
 - 2. Pick a way to measure whether our data plausibly comes from the process
 - 3. Pick a rule for when a model cannot be trusted (when is the range of simulated results too different from the observed data?)
- What features make for a good test?
 - We want to make as few assumptions as possible, and choose a measure that is sensitive to deviations from the model
 - If we're clever, we might get math that lets us skip simulating from the model
 - Tension: more assumptions make math easier, fewer assumptions make results broader
- There is no such thing as THE null hypothesis. It's only A null hypothesis.
 - A p value only tests one null hypothesis, and is rarely enough

Going forward

As the course moves on, we'll see

- Flexible assumptions about the data generating process
 - Generalized Linear Models
- Ways of making fewer assumptions about the data generating process:
 - Bootstrapping
 - Permutation tests
- Easier questions: Instead of 'find a model that explains the world',
 'pick the model that predicts best'
 - Validation sets and cross validation

Thank you

Office hours are:

Monday 6-7:30 (Camilo)

Tuesday 6:30-8 (Will)

Bonus: Heartbreaking Demo

- Need a volunteer
 - I'll explain the rules and you'll write down some letter between A and H
- Everyone else: go to Random.org and get a random number between 1 and 10
- If your number was ___ your wining letters are:

1: G,H,I,J,A,B,C,D,E 6: F,G,H,I,J,A,B,C,D

2: E,F,G,H,I,J,A,B,C 7: I,J,A,B,C,D,E,F,G

3: D,E,F,G,H,I,J,A,B 8: C,D,E,F,G,H,I,J,A

4: J,A,B,C,D,E,F,G,H 9: H,I,J,A,B,C,D,E,F

5: B,C,D,E,F,G,H,I,J 10: A,B,C,D,E,F,G,H,I

