基因突变只发生在分裂间期吗

樊向利 (江苏省江都中学 225200)

基因突变指 DNA 分子中碱基对的增添、缺失、替换 而引起基因结构的改变。很多教辅书对基因突变时间和原因的总结为:基因突变是由于间期 DNA 复制出错引起的。所以学生会认为基因突变只是在间期发生的。这样的认识是否准确呢?

1 基因突变发生的时间

DNA 是一个双螺旋结构,两条链的碱基之间互补配对,这样,一条链的碱基限制着另一条链的碱基,碱基不能随意改变。当 DNA 复制时,局部的双链解开成单链,没有了约束,一条链上的碱基就可能变成另一种碱基,或者增添,缺失碱基对,发生基因突变。不可否认,基因突变主要与 DNA 复制出错有关,所以基因突

变主要是在间期发生,但间期不是发生基因突变的唯一时间。在此,有必要了解基因突变发生的前因后果,以及相关要素之间的内在联系。

2 引起基因突变的因素

引起基因突变的因素包括外部因素和内部因素。

- 2.1 引起基因突变的外部因素 ①物理因素: 主要指紫外线、X 射线和其他辐射,能损伤细胞内的 DNA; ②化学因素: 亚硝酸、碱基类似物等能改变核酸的碱基; ③生物因素: 指某些病毒的遗传物质能影响宿主细胞的 DNA 等。
- 2.2 引起基因突变的内部因素 DNA 复制偶尔发生错误; DNA 碱基组成发生改变等。

5 受体在免疫应答中的作用是什么

大多数哺乳动物和人类有核细胞的表面都有组织相容性复合体,即 MHC 蛋白,人类的 MHC 蛋白又称为人类白细胞抗原(HLA),由遗传基因决定的 MHC 其构象可多达 170 多种^[1]。人体的 MHC 蛋白有两种类型,所有具核体细胞中都有 MHC -I 型蛋白,而在巨噬细胞、B 细胞等细胞的表面是 MHC -II 型蛋白。在特异性免疫反应中 细胞毒 T 细胞利用其膜上的 CD8 分子识别 MHC -I 抗原(CD8 是 MHC -I 抗原的受体),而辅助性 T 细胞则利用其 CD4 受体与 MHC -II 型嵌合抗原作用,继而启动免疫应答。

6 受体在激素调节中的作用是什么

激素调节是体液调节中的重要内容。各种激素,根据化学结构可分为两大类:一类是含氮类激素。例如胰岛素、抗利尿激素、甲状腺激素等;另一类是类固醇类激素。例如雄激素和雌激素。两类激素化学结构不同,作用机制也不同。受体的作用也不同。

含氮类激素到达靶细胞后,与细胞膜表面特异的受体结合,引起受体结构的变化,而这种变化又引起与受体分子紧密连接的腺苷酸环化酶变构而激活,继而再引起激素带来的生理效应。不同种类的细胞有不同的受体,甲状腺细胞的受体只能结合促甲状腺激素(TSH),肾上腺皮质细胞的受体只能结合促肾上腺皮质激素(ACTH)。而有些细胞膜上有多种受体,可分别与多种相应的激素结合而发生作用。

类固醇类激素都是小分子,扩散进入细胞后,可与细胞质中的受体分子结合,形成"激素 - 受体复合物",该复合物在一定条件下穿过核膜进入核内,与染

色质上的一种酸性蛋白相互作用 促使基因表达 合成某种蛋白质(酶) 进而引起这种激素的生理效应^[2]。

7 受体在兴奋传递中的作用是什么

在神经冲动的传递中 ,突触前膜释放的递质与突触后膜上的受体结合 ,这种受体就是一种质膜上的通道蛋白 如 N - 型乙酰胆碱受体。当递质与受体结合后 ,会影响突触后膜对离子的通透性 ,有的引起后膜起极化。而有的受体存在于突触前膜 ,其作用是调节神经末梢的递质释放 ,例如 ,肾上腺素能纤维末梢的突触前膜上存在 α 受体 ,当末梢释放的去甲肾上腺素在突触前膜超过一定量时 ,就能与突触前膜的 α 受体结合 ,从而反馈抑制末梢合成和释放去甲肾上腺素。突触前膜和突触后膜的 α 受体也不同 $^{[3]}$ 。

8 受体在物质运输中的作用是什么

胞吞是物质运输中的一种,主要针对大分子和颗粒性物质的运输,而受体介导的胞吞是非常专一的。受体蛋白包埋在膜中,其专一的部位与胞外的配体接触并结合。受体蛋白聚集在膜的胞质侧上称为有被小窝的部位上。当被吞入的物质从小泡中被释放出来后, 受体又再回到质膜上, 可重新被利用^[2]。

主要参考文献

- [1]吴庆余. 2006. 基础生命科学(第2版). 北京: 高等教育出版社, 62,400
- [2] 吴相钰 陈守良 葛明德. 2009. 陈阅增普通生物学(第3版). 北京: 高等教育出版社 49~50 62~63
- [3]刘明泉. 2014. 与神经递质有关的常见问题答疑. 生物学教学 39 (3):75◆

BIOLOGY TEACHING(Monthly)

Vol. 39 No. 11 November 2014

CONTENTS(Main topics)

From biological evolutionism to evolutionary biology
Ecological adaptation of mangrove plant
Case - analysis of the effectiveness of the question design in problem based teaching Zeng Wenhui (12)
Cause analysis and teaching policy of the negative transfer in senior middle school biology learning
Teaching function and treatment policy of the chapter "Foreword" and "Themerange" in biological textbooks
Design and preparation of the "model box of gene engineering" Lu Qi (28)
Concept teaching for the topic "various ecological systems" (1st teaching hour) by using "5E" - teaching model
Wu Lanlan (31)
Teaching design of the section Gene Mutation
Use of the camera shooting of smartphone in biological experiment teaching Huang Qiusheng , and Lou Yue (39)
The integration of experiment teaching with concept teaching in junior middle school biology teaching
Compiling policy of the test items for nunior middle school biology Dai Guo and Luo Danchen (44)
ATP and its "brothers and sisters"
About the difference between prokaryotic and eukaryotic cells

上述外部因素和内部因素中, DNA 复制出错是发生在间期, 那么 DNA 碱基组成的改变什么时候发生呢?外部的物理因素、化学因素、生物因素是直接损伤 DNA 结构呢, 还是通过扰乱 DNA 复制过程间接的影响基因突变?

- 3 基因突变的发生过程
- 3.1 外部因素引起基因发生的过程 常见的外部因素引起基因突变的类型可归纳为表 1。

表 1 外部因素引起的基因突变的类型

外部因素	基因突变类型
酸及热去除嘌呤(每日10 ⁴ 嘌呤/哺乳动物)	碱基丢失
电离辐射 烷化剂	碱基变化
嵌入剂(如碱基类似物)	缺失/插入
紫外线照射	环丁基二聚体
电离辐射 化学物质(如博莱霉素)	链断裂
补骨脂衍生物(光活化) 丝裂霉素	链交联

以紫外线引起的基因突变为例加以说明: 紫外线照射可以使 DNA 分子中部分胸腺嘧啶以环丁基环形成二聚体 这种变化在 DNA 链上相邻近的胸腺嘧啶核苷酸间容易发生。二聚体形成以后 ,DNA 的复制和转录功能受到阻碍 ,这属于基因碱基对的改变[1]。紫外线照射形成的环丁基环在任何时期都可以发生 ,并不只是在间期起作用。

3.2 内部因素中 DNA 碱基组成发生改变引起基因突变的过程 DNA 虽然是一个规则的双螺旋结构 通过碱基之间的氢键和磷酸基团的排斥力使结构相对稳定 ,但

也不是绝对的稳定。在自然条件下,碱基也会自发发生以下改变: 一是脱嘌呤作用 在细胞内正常的 pH 及温度下,自发进行的脱嘌呤作用可见于 DNA 嘌呤组分内 核苷酸中连接碱基与脱氧核糖的糖苷键发生断裂,于是嘌呤脱落 造成 DNA 长链中光秃的 d – 核糖残基。据估算 哺乳动物细胞中 24h 内有 10 个嘌呤 – d 核糖之间糖苷键断裂,使 DNA 中出现许多无嘌呤的部位;二是脱氨基作用,嘧啶核苷酸中的糖苷键较嘌呤核苷酸稳定,因此不易进行脱嘧啶作用。但是胞嘧啶在 37% 条件下易发生脱氨基作用,生成尿嘧啶核苷酸(胞嘧啶和尿嘧啶结构上相差一个氨基)。如果此变化得不到修复,则DNA 复制时 \mathcal{L} : G 配对将变为 U: A 配对 \mathcal{L}^{21} 。

上述的 DNA 损伤类型均是较易发生且是随机发生的。通常 细胞通过切除修复、重组修复、SOS 修复等 DNA 修复方式对损伤进行修复; 如果不能得到修复 则可导致突变。

基因突变发生时间的问题还有一个有力的证据。 癌症是正常细胞中原癌基因和抑癌基因突变,正常细胞转化成癌细胞。至今已经发现许多种细胞都可能发生癌变,其中也包括许多不分裂的细胞。如血管瘤、肝癌等。这从另一方面说明,基因突变并不只是在间期发生,而是各个时期都有可能发生。

主要参考文献

- [1]刘祖洞. 1991. 遗传学(第二版). 北京: 高等教育出版社 50~69
- [2]朱玉贤 李 毅. 2007. 现代分子生物学(第二版). 北京: 高等教育出版社 50~52◆