Lógica e Cálculo- λ

23 de fevereiro de 2025

Capítulo 1

Cálculo Proposicional

1.1 Sintaxe

Definição: O alfabeto do cálculo proposicional, denotado por \mathcal{A}^{cp} , é definido da seguinte forma: $\mathcal{A}^{cp} = \mathcal{V}^{cp} \cup \{\land, \lor, \rightarrow, \leftrightarrow, \neg, \bot\} \cup \{(,)\}$

Definição: \mathcal{V}^{cp} é o conjunto das variáveis da lógica proposicional, $p_0, p_1, ..., p_n, ...$

Definição: O conjunto das formulas do cálculo proposicional, denotado por \mathcal{F}^{cp} , é uma linguagem sobre \mathcal{A}^{cp} , definida indutivamente por:

- $\bullet \perp \in \mathcal{F}^{cp}$
- $p \in \mathcal{F}^{cp}$ para todo $p \in \mathcal{V}^{cp}$
- $\bullet \ \varphi \in \mathcal{F}^{cp} \implies \neg \varphi \in \mathcal{F}^{cp}$
- $\varphi, \psi \in \mathcal{F}^{cp} \implies \varphi \wedge \psi \in \mathcal{F}^{cp}$
- $\varphi, \psi \in \mathcal{F}^{cp} \implies \varphi \lor \psi \in \mathcal{F}^{cp}$
- $\varphi, \psi \in \mathcal{F}^{cp} \implies \varphi \to \psi \in \mathcal{F}^{cp}$
- $\varphi, \psi \in \mathcal{F}^{cp} \implies \varphi \leftrightarrow \psi \in \mathcal{F}^{cp}$

Definição: A função $subf: \mathcal{F}^{cp} \longrightarrow \mathcal{P}(\mathcal{F}^{cp})$, que dada um formula, devolve o conjunto das suas subfórmulas, é definida por recursão estrutural pela seguinte forma:

- $subf(p) = \{p\}$
- $subf(\bot) = \{\bot\}$
- $subf(\neg \varphi) = {\neg \varphi} \cup subf(\varphi)$
- $subf(\varphi \wedge \psi) = \{(\varphi \wedge \psi)\} \cup subf(\varphi) \cup subf(\psi)$
- $subf(\varphi \lor \psi) = \{(\varphi \lor \psi)\} \cup subf(\varphi) \cup subf(\psi)$
- $subf(\varphi \to \psi) = \{(\varphi \to \psi)\} \cup subf(\varphi) \cup subf(\psi)$
- $\bullet \ subf(\varphi \leftrightarrow \psi) = \{(\varphi \leftrightarrow \psi)\} \cup subf(\varphi) \cup subf(\psi)$

Definição: A função $var: \mathcal{F}^{cp} \longrightarrow \mathcal{P}(\mathcal{V}^{cp})$, que dada um fórmula, devolve o conjunto das suas variáveis proposicionais, é definida por recursão estrutural pela seguinte forma:

- $var(p) = \{p\}$
- $var(\bot) = \emptyset$
- $var(\neg \varphi) = var(\varphi)$
- $var(\varphi \wedge \psi) = var(\varphi) \cup var(\psi)$
- $var(\varphi \lor \psi) = var(\varphi) \cup var(\psi)$
- $var(\varphi \to \psi) = var(\varphi) \cup var(\psi)$
- $var(\varphi \leftrightarrow \psi) = var(\varphi) \cup var(\psi)$

Definição:Sejam $p \in \mathcal{V}^{cp}, \ \psi \in \mathcal{F}^{cp}$

A função $[\psi/p]$, que aplicada a cada fórmula $\varphi \in \mathcal{F}^{cp}$, faz corresponder a substituição de todas as ocorrências de p por ψ , é definida por recursão estrutural, pela seguinte forma:

- $\perp [\psi/p] = \perp$
- $p_i[\psi/p] = \begin{cases} \psi & \text{se } p_i = p \\ p_i & \text{se } p_i \neq p \end{cases}$
- $\bullet \ (\neg \varphi)[\psi/p] = \neg(\varphi)[\psi/p]$
- $(\varphi_1 \wedge \varphi_2)[\psi/p] = (\varphi_1)[\psi/p] \wedge (\varphi_2)[\psi/p]$
- $(\varphi_1 \vee \varphi_2)[\psi/p] = (\varphi_1)[\psi/p] \vee (\varphi_2)[\psi/p]$
- $(\varphi_1 \to \varphi_2)[\psi/p] = (\varphi_1)[\psi/p] \to (\varphi_2)[\psi/p]$
- $(\varphi_1 \leftrightarrow \varphi_2)[\psi/p] = (\varphi_1)[\psi/p] \leftrightarrow (\varphi_2)[\psi/p]$

1.2 Semântica

Def: Uma função $v: \mathcal{F}^{cp} \longrightarrow \{0,1\}$, diz-se uma valoração, sse:

•
$$v(\bot) = 0$$

•
$$v(\neg \varphi) = f_{\neg}(v(\varphi))$$

•
$$v(\varphi \wedge \psi) = f_{\wedge}(v(\varphi), v(\psi))$$

•
$$v(\varphi \lor \psi) = f_{\lor}(v(\varphi), v(\psi))$$

•
$$v(\varphi \to \psi) = f_{\to}(v(\varphi), v(\psi))$$

•
$$v(\varphi \leftrightarrow \psi) = f_{\leftrightarrow}(v(\varphi), v(\psi))$$

em que

$$f_{\neg}: \{0,1\} \longrightarrow \{0,1\}$$

$$0 \mapsto 1$$

$$1 \mapsto 0$$

$$f_{\wedge}: \{0,1\}^2 \longrightarrow \{0,1\}$$

$$f_{\vee}: \{0,1\}^2 \longrightarrow \{0,1\}$$

$$\begin{array}{ccc} (0,0) & \mapsto & 0 \\ (0,1) & \mapsto & 0 \end{array}$$

$$\begin{array}{cccc} (0,1) & \mapsto & 0 \\ (1,0) & \mapsto & 0 \end{array} \hspace{2cm} \begin{array}{cccc} (0,1) & \mapsto & 1 \\ (1,0) & \mapsto & 1 \end{array}$$

 $(0,0) \mapsto$

0

$$\begin{array}{cccc} (1,0) & & & & & \\ (1,1) & & & & & \\ \end{array}$$

$$(1,1) & & \mapsto & 1$$

$$(1,1) & & \mapsto & 1$$

$$f_{\rightarrow}: \{0,1\}^2 \longrightarrow \{0,1\}$$

$$(0,0) \mapsto 1$$

$$f_{\leftrightarrow}: \{0,1\}^2 \longrightarrow \{0,1\}$$

$$(0,0) \mapsto 1$$

$$\begin{array}{cccc} (0,0) & \mapsto & 1 \\ (0,1) & \mapsto & 1 \end{array} \qquad (0,0) & \mapsto & 1 \\ (0,1) & \mapsto & 0 \end{array}$$

$$\begin{array}{cccc} (1,0) & \mapsto & 0 \\ (1,1) & \mapsto & 1 \end{array} \qquad \begin{array}{cccc} (1,0) & \mapsto & 0 \\ (1,1) & \mapsto & 1 \end{array}$$

Notação: Seja $\varphi \in \mathcal{F}^{cp}$ e v valoração.

escrevemos
$$v \models \varphi$$
 quando $v(\varphi)=1$

escrevemos $v \not\models \varphi$ quando $v(\varphi)=0$

Definição: seja $\varphi \in \mathcal{F}^{cp}$.

Dizemos que φ é uma tautologia, se para toda valoração $v, v(\varphi)=1 \ (\models \varphi)$

Definição: seja $\varphi \in \mathcal{F}^{cp}$.

Dizemos que φ é uma contradição, se para toda valoração $v, v(\varphi)=0 \ (\not\models \varphi)$

Definição: sejam $\varphi \in \mathcal{F}^{cp}, \, \Gamma \subseteq \mathcal{F}^{cp}$ e vvaloração

 φ é consequência semântica de Γ sse para toda valoração v, se $v \models \Gamma$, então $v \models \varphi$ φ não é consequência semântica de Γ sse existe uma valoração v, tal que $v \models \Gamma$, e $v \not\models \varphi$

1.3 Sistema Formal de Dedução Natural

O sistema formal será denotado por DNP

As regras de inferência para o sistema DNP são as seguintes:

$$\begin{array}{c} [\varphi] \\ \cdots \\ \frac{\perp}{\varphi} \operatorname{RAA} \end{array}$$

Notação: $[\varphi]$ Denota que a hipótese φ foi cancelada.

Observação: Numa derivação D, a raiz é chamada de conclusão de D, as folhas são chamadas de hipóteses de D, e as folhas não canceladas são as hipóteses não canceladas de D

Definição: Seja $D \in DNP$, $\varphi \in \mathcal{F}^{cp}$ e $\Gamma \subseteq \mathcal{F}^{cp}$

Dizemos que D deriva φ a partir de Γ se o conjunto das hipóteses não canceladas de D estiver contido em Γ Neste caso, escrevemos: D

Definição: Seja $D \in DNP \in \varphi \in \mathcal{F}^{cp}$

Dizemos que D é uma demonstração de φ , quando D deriva φ a partir de \emptyset , ou seja, $\overset{\emptyset}{D}$

Definição: Seja $\varphi \in Fcp$ e $\Gamma \subseteq \mathcal{F}^{cp}$

Dizemos que φ é derivável a partir de Γ ($\Gamma \vdash \varphi$) sse existe $D \in DNP$ tal que: $D \in$

Definição: Seja $\varphi \in \mathcal{F}^{cp}$

Dizemos que φ é um teorema s
se existe uma demonstração de φ

Teorema da Correção: $\Gamma \vdash \varphi \implies \Gamma \models \varphi$

Teorema da Completude: $\Gamma \models \varphi \implies \Gamma \vdash \varphi$

1.4 Sistema Formal de Dedução Natural com Sequentes

O sistema será denotado por $DNP \Longrightarrow$

As regras de inferência para $DNP \Longrightarrow são$ as seguintes

$$\frac{\varphi \Longrightarrow \varphi}{\Gamma \Longrightarrow \varphi} A$$

$$\frac{\Gamma \Longrightarrow \varphi}{\Gamma \Delta \Longrightarrow \varphi \land \psi} I_{\land}$$

$$\frac{\Gamma \Longrightarrow \varphi}{\Gamma \Longrightarrow \varphi \lor \psi} I_{\lor 1}$$

$$\frac{\Gamma \Longrightarrow \varphi}{\Gamma \Longrightarrow \psi \lor \varphi} I_{\lor 2}$$

$$\frac{\Gamma \Longrightarrow \psi}{\Gamma \setminus \{\varphi\} \Longrightarrow \varphi \to \psi} I_{\to}$$

$$\frac{\Gamma \varphi \Longrightarrow \psi}{\Gamma \Longrightarrow \varphi \to \psi} I_{\leftrightarrow}$$

$$\frac{\Gamma \Longrightarrow \varphi \land \psi}{\Gamma \Longrightarrow \varphi} E_{\land 1}$$

$$\frac{\Gamma \Longrightarrow \psi \land \varphi}{\Gamma \Longrightarrow \varphi} E_{\land 1}$$

$$\frac{\Gamma \Longrightarrow \varphi \lor \psi \qquad \Delta 1 \Longrightarrow \sigma \qquad \Delta 2 \Longrightarrow \sigma}{\Gamma \cup (\Delta 1 \setminus \{\varphi\}) \cup (\Delta 2 \setminus \{\psi\}) \Longrightarrow \sigma} E_{\lor}$$

$$\frac{\Gamma \Longrightarrow \varphi \to \psi \qquad \Delta \Longrightarrow \varphi}{\Gamma \Delta \Longrightarrow \psi} E_{\to}$$

$$\frac{\Gamma \Longrightarrow \varphi \to \psi \qquad \Gamma \Longrightarrow \varphi}{\Gamma \Longrightarrow \psi} E_{\leftrightarrow 1}$$

$$\frac{\Gamma \Longrightarrow \psi \leftrightarrow \varphi \qquad \Gamma \Longrightarrow \varphi}{\Gamma \Longrightarrow \psi} E_{\leftrightarrow 2}$$

$$\frac{\Gamma \Longrightarrow \varphi \qquad \Delta \Longrightarrow \neg \varphi}{\Gamma \Delta \Longrightarrow \bot} E_{\to}$$

$$\frac{\Gamma \Longrightarrow \varphi \qquad \Delta \Longrightarrow \neg \varphi}{\Gamma \Delta \Longrightarrow \bot} E_{\to}$$

$$\frac{\Gamma \Longrightarrow \bot}{\Gamma \Longrightarrow \varphi} E_{\to}$$

$$\frac{\Gamma \Longrightarrow \bot}{\Gamma \Longrightarrow \varphi} E_{\to}$$

Observação: Uma derivação deste sistema pode também ser vista como uma árvore, no entanto, ambas a conclusão e as hipóteses encontram-se na raiz da árvore, as hipóteses (não canceladas) são o conjunto de fórmulas do lado esquerdo da raiz, e a conclusão é a fórmula do lado direito do raiz

Observação: Os teoremas, definições e observações estudados no sistema DNP, aplicam-se também ao sistema $DNP \Longrightarrow$, de forma análoga

Capítulo 2

Lógica Intuicionista Proposicional

2.1 Sintaxe

O alfabeto e o conjunto das fórmulas do cálculo proposicional intuicionista, são os mesmos definidos anteriormente para o cálculo proposicional

2.2 Semântica

Definição: Um Modelo de Kripke é um triplo $\mathcal{M} = (\mathcal{W}, \leq, \models)$ tal que:

- \bullet \mathcal{W} é um conjunto não vazio
- $\bullet \le$ é uma relação de ordem parcial em \mathcal{W} (reflexiva, transitiva, antissimétrica)
- ullet $\models \subset \mathcal{W} \times \mathcal{V}^{cp}$
- $w, w' \in \mathcal{W}, (w, w') \in \leq, p \in \mathcal{V}^{cp}, (w, p) \in \models \Longrightarrow (w', p) \in \models$

Notação:

- a notação $w' \models \varphi$ será usada para representar o caso em que $(w', \varphi) \in \models$
- a notação $w' \not\models \varphi$ será usada para representar o caso em que $(w', \varphi) \not\in \models$

Definição: Extensão canónica de \models

Seja $\mathcal{M} = (\mathcal{W}, \leq, \models)$ um Modelo de Kripke. A extensão canónica de \models a $\mathcal{W} \times \mathcal{F}^{cp}$ é o menor conjunto contido em $\mathcal{W} \times \mathcal{F}^{cp}$ tal que, $\forall w. w \in \mathcal{W}$:

- $w \models \varphi \land \psi$ sse $w \models \varphi$ e $w \models \psi$
- $w \models \varphi \lor \psi$ sse $w \models \varphi$ ou $w \models \psi$
- $w \models \varphi \rightarrow \psi$ sse $\forall w'. w \leq w'$, se $w' \models \varphi$ então $w' \models \psi$
- $w \models \neg \varphi$ sse $\forall w'. w \leq w'$, então $w' \not\models \varphi$
- $w \not\models \bot$

Teorema: Propriedade da Monotonia

Seja $\mathcal{M} = (\mathcal{W}, \leq, \models)$ um Modelo de Kripke e $w \in \mathcal{W}$

Se $w \models \varphi$, então, $\forall w'. w \leq w', w' \models \varphi$

Definição: Seja $\mathcal{M} = (\mathcal{W}, \leq, \models)$ um Modelo de Kripke

 $\mathcal{M} \models \varphi \text{ sse } \forall w. w \in \mathcal{W}, w \models \varphi$

Definição: φ diz-se válido ($\models \varphi$) sse para todo \mathcal{M} Modelo de Kripke, $\mathcal{M} \models \varphi$

Definição: $\Gamma \models \varphi$ sse para todo $\mathcal{M} = (\mathcal{W}, \leq, \models)$ Modelo de Kripke, $\forall w. w \in \mathcal{W}$, se $\forall \psi. \psi \in \Gamma$, $w \models \psi$ então $w \models \varphi$

2.3 Sistema Formal de Dedução Natural Intuicionista

O sistema formal será denotado por DNPi

As regras de inferência para o *DNPi* são as seguintes:

$$\frac{\varphi}{\varphi \wedge \psi} I_{\wedge}$$

$$\frac{\varphi}{\varphi \wedge \psi} I_{\vee 1}$$

$$\frac{\varphi}{\varphi \vee \varphi} I_{\vee 2}$$

$$[\varphi]$$

$$\vdots$$

$$\frac{\psi}{\varphi \rightarrow \psi} I \rightarrow$$

$$[\varphi] [\psi]$$

$$\vdots$$

$$\frac{\psi}{\varphi \rightarrow \psi} I \leftrightarrow$$

$$\frac{\varphi \wedge \psi}{\varphi \leftrightarrow \psi} I \leftrightarrow$$

$$\frac{\varphi \wedge \psi}{\varphi} E_{\wedge 1}$$

$$\frac{\psi \wedge \varphi}{\varphi} E_{\wedge 2}$$

$$\frac{\varphi \vee \psi}{\varphi} \sigma \sigma \sigma E_{\vee}$$

$$\frac{\varphi \to \psi \qquad \varphi}{\psi} \to E_{\to}$$

$$\frac{\varphi \leftrightarrow \psi \qquad \varphi}{\psi} \to E_{\leftrightarrow 1}$$

$$\frac{\psi \leftrightarrow \varphi \qquad \varphi}{\psi} \to E_{\leftrightarrow 2}$$

$$\frac{\varphi \qquad \neg \varphi}{\bot} \to E_{\neg}$$

$$\vdots$$

$$\vdots$$

$$\frac{\bot}{\varphi} \to FQ$$

Observação: As definições para o sistema DNP também se aplicam ao sistema DNPi, definidas de forma análoga.

Definição: seja $\varphi \in \mathcal{F}^{cp}$

 φ diz-se premissa principal de uma regra de eliminação se φ é a premissa com o conectivo eliminado

Definição: Seja $D \in DNPi, \varphi \in \mathcal{F}^{cp}$

 φ diz-se Fórmula Maximal de D se φ é simultaneamente conclusão de uma regra de introdução e premissa principal de uma regra de eliminação em D

Observação: De seguida irão ser abordados métodos para eliminar fórmulas maximais do sistema de dedução natural intuicionista, sobre o alfabeto com apenas os conectivos da negação, conjunção, e implicação. $(DNPi_{\wedge,\rightarrow})$

Esta linguagem é "equivalente" à definida anteriormente

Definição: Seja $D \in DNPi_{\wedge,\rightarrow}$

D diz-se Normal se não tem Fórmulas Maximais

Definição: Regras de Inferência Para Eliminar Fórmulas Maximais

$$\frac{\begin{array}{ccc}
D1 & D2 \\
\varphi & \psi \\
\hline
\frac{\varphi \wedge \psi}{\varphi} & I_{\vee 1}
\end{array}
\longrightarrow$$

$$\frac{D1}{\varphi}$$

$$\begin{array}{ccc}
D1 & D2 \\
\frac{\varphi & \psi}{\frac{\varphi \wedge \psi}{\psi}} I_{\wedge} & & \longrightarrow \\
\frac{D2}{\psi}
\end{array}$$

Observação: Nestes casos, dizemos que a primeira derivação (à esquerda), é um redex, enquanto a segunda derivação (à direita) é o seu contractum

Notação: $D1[D2/\varphi]$ denota que cada ocorrência de φ em D1, é substituída por D2

Definição: Sejam $D1, D2 \in DNPi_{\wedge, \rightarrow}$:

 $D1 \xrightarrow{\beta} D2$, se existe em D1 uma ocorrência de um Redex, e D2 resulta de D1, por substituição deste Redex, pelo respectivo contractum

 $\mathbf{Defini\tilde{cao}} \colon \xrightarrow{\beta} \mathrm{diz}\text{-se redução-}\beta$ em um passo

Definição: $\stackrel{\beta}{\to}$ diz-se redução- β (fecho reflexivo-transitivo de $\stackrel{\beta}{\to}$)

Teorema: Existência da Forma Normal

Sejam $\Gamma \subseteq \mathcal{F}^{CP}$ e $\varphi \in \mathcal{F}^{CP}$.

Se $\Gamma \vdash \varphi$ em $DNPi_{\wedge,\rightarrow}$, então existe em $DNPi_{\wedge,\rightarrow}$ uma derivação normal de φ a partir de Γ

Teorema: Fraco de Normalização

Sejam $\Gamma \subseteq \mathcal{F}^{CP}$, $\varphi \in \mathcal{F}^{CP}$.

Se D_1 deriva φ a partir de Γ então existe $D_2 \in DNPi_{\wedge,\to}$ tal que:

- D_2 deriva φ a partir de Γ
- D_2 é normal
- $\bullet \ D_1 \xrightarrow{\beta}^* D_2$

Definição:

Uma sequência de redução a partir de D é uma sequência de derivações (possivelmente infinita):

 $D = D_0, D_1, D_2, ..., D_n, ... \text{ tal que } D_i \xrightarrow{\beta} D_{i+1}, \forall i, i \in \mathbb{N}_0$

Teorema: Forte da Normalização

 $\forall D, D \in DNPi_{\wedge, \rightarrow}$. Toda a sequencia de redução a partir de D é finita

Definição: Seja $D \in DNPi_{\wedge,\rightarrow}$

Dé irredutível- β sse não existe $D^{'}$ tal que $D \xrightarrow{\beta} D^{'}$

Observação: D é normal sse D é irredutível- β

Definição: Seja $D \in DNPi_{\wedge,\rightarrow}$

D diz-se atomizado se todas as ocorrências da regra de inferência EFQ em D, têm como conclusão um átomo (uma variável proposicional)

Teorema: Teorema da Atomização:

 $\forall D. D \in DNPi_{\wedge, \to}$, sejam $\varphi \in \mathcal{F}^{cp}$, e $\Gamma \subseteq \mathcal{F}^{cp}$ tais que D_{φ}^{Γ} , entao temos que: existe $D' \in DNPi_{\wedge, \to}$ tal que:

- $\bullet \ \, \mathop{D}^{\Gamma}_{\varphi}$
- $\bullet \ D^{'}$ é atomizado
- $D \xrightarrow{\beta}^* D'$

Definição: Seja $D \in DNPi_{\wedge, \rightarrow}$

Um caminho em D é uma sequência de fórmulas $\varphi_1, \varphi_2, ..., \varphi_n$, que ocorrem em D, tal que:

- φ_1 é hipótese de D
- φ_n é a conclusão de D
- $\forall i, 1 \leq i < n$. existe uma inferência em D em que φ_i é premissa e φ_{i+1} é conclusão

Definição: Seja $D \in DNPi_{\wedge, \to}$

Um trilho em D é uma sequência de fórmulas $\varphi_1, \varphi_2, ..., \varphi_k$, que ocorrem em D, tal que:

- $\varphi_1, \varphi_2, ..., \varphi_k$ é um segmento inicial de um caminho em D
- $\forall i, 1 \leq i < k$. φ_i não é premissa auxiliar da regra E_{\rightarrow}

Definição: Seja $D \in DNPi_{\wedge,\rightarrow}$

Um trilho $\varphi_1, \varphi_2, ..., \varphi_k$, em D, diz-se trilho principal, se φ_k é conclusão de D ($\varphi_1, \varphi_2, ..., \varphi_k$ é caminho em D)

Teorema: Seja $D \in DNPi_{\wedge,\rightarrow}$

Se D é normal, então existe um trilho principal em D

Notação: Em diante, \vdash_c denotará a noção de consequência sintática em lógica proposicional, enquanto \vdash_i a noção de consequência semântica em lógica proposicional intuicionista

11

Teorema: Teorema de Glivenko

Sejam sejam $\varphi \in \mathcal{F}^{cp}$, e $\Gamma \subseteq \mathcal{F}^{cp}$, temos que:

- $\vdash_c \varphi$ sse $\vdash_i \neg \neg \varphi$
- $\Gamma \vdash_c \varphi$ sse $\neg \neg \Gamma \vdash_i \neg \neg \varphi$

Definição: O conjunto das fórmulas negativas, N, é definido da seguinte forma:

- $\bot \in N$
- $p \in \mathcal{V}^{cp} \implies \neg p \in N$

- $v_1, v_2 \in N \implies v_1 \land v_2 \in N$
- $v \in N, \varphi \in \mathcal{F}^{cp} \implies \varphi \to v \in N$

Teorema: Seja $v \in N$ Entao, $\vdash_i \neg \neg v \rightarrow v$

Definição: A função $(-)^{\circ}: \mathcal{F}^{cp} \longrightarrow \mathcal{F}^{cp}$, é definida da seguinte forma

- (⊥)° = ⊥
- $(p)^{\circ} = \neg \neg p$
- $(\neg \varphi)^{\circ} = \neg (\varphi)^{\circ}$
- $(\varphi \wedge \psi)^{\circ} = (\varphi)^{\circ} \wedge (\psi)^{\circ}$
- $(\varphi \to \psi)^{\circ} = \varphi \to (\psi)^{\circ}$
- $(\varphi \lor \psi)^{\circ} = \neg((\neg\varphi)^{\circ} \land (\neg\psi)^{\circ})$
- $(\varphi \leftrightarrow \psi)^{\circ} = ((\varphi \to \psi) \land (\psi \to \varphi))^{\circ}$

Teorema: Seja $\varphi \in \mathcal{F}^{cp}$

Então, $(\varphi)^{\circ} \in N$

Corolário: Seja $\varphi \in \mathcal{F}^{cp}$

Então, $\vdash_i \neg \neg (\varphi)^{\circ} \to (\varphi)^{\circ}$

Teorema: Teorema de Godel e Gentzen

Sejam $\varphi \in \mathcal{F}^{cp}$, $\Gamma \subseteq \mathcal{F}^{cp}$

Então, $\Gamma \vdash_c \varphi$ sse $(\Gamma)^{\circ} \vdash_i (\varphi)^{\circ}$

2.4 Interpretação BHK

A interpretação BHK (Brower, Heyting, Kolmogorov) é uma interpretação semântica da lógica intuicionista Em lógica intuicionista, uma proposição é considerada verdadeira se existe uma prova construtiva para tal Esta interpretação explica como cada conectivo lógico reflete esta ideia, em provas construtivas, da seguinte forma:

- Uma prova de $\varphi \wedge \psi$ é um tuplo $\langle M, N \rangle$ em que:
 - Mé uma prova de φ
 - Né uma prova de ψ
- Uma prova de $\varphi \lor \psi$ é um tuplo $\langle 0, M \rangle$ em que:
 - Mé uma prova de φ

ou um tuplo $\langle 1, N \rangle$ em que:

- Né uma prova de ψ
- $\bullet\,$ Uma prova de $\varphi \to \psi$ é uma função f que transforma provas de φ em provas de ψ
- Uma prova de $\neg \varphi$ é uma prova de $\varphi \to \bot$, ou seja, uma função f que transforma provas de φ em provas de \bot
- $\bullet\,$ Não existem provas de \bot

Capítulo 3

Lógica de Primeira Ordem

3.1 Sintaxe

Definição:

Um $Tipo\ de\ Linguagem$ é um terno (F, R, N) tal que:

- \bullet F e R são conjuntos disjuntos
- N é uma função de $F \cup R$ em \mathbb{N}_0

Definição: Seja (F, R, N) um tipo de Linguagem

- $\bullet\,$ Os elementos de Fsão chamados símbolos de função
- \bullet Os elementos de R são chamados símbolos de relação (ou símbolos de predicado)
- A função N diz-se função aridade, e para cada elemento de $F \cup R$, retorna um número que representa a sua aridade
- \bullet Os símbolos de relação nunca têm aridade 0
- Os símbolos de função com aridade 0, são chamados de constantes
- \mathcal{C} é o menor conjunto que contêm todas as constantes de F

Definição:

 $x_0, x_1, x_2, ..., x_n, ...$ formam o conjunto \mathcal{V} , estes elementos são chamados de variáveis de primeira ordem

Definição: Seja L = (F, R, N) um tipo de Linguagem.

O alfabeto \mathcal{A}_L , induzido pelo tipo de linguagem L define-se da seguinte forma:

$$\mathcal{A}_L = \mathcal{V} \cup \{\land, \lor, \rightarrow, \leftrightarrow, \neg, \bot\} \cup \{\forall, \exists\} \cup \{(,)\} \cup F \cup R$$

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto \mathcal{T}_L é o menor conjunto de palavras em \mathcal{A}_L tal que:

- para todo $x \in \mathcal{V}, x \in \mathcal{T}_L$
- para todo c constante, $c \in \mathcal{T}_L$
- para todo símbolo de função f de L de aridade $n \ge 1$

$$-t_1 \in \mathcal{T}_L, ..., t_n \in \mathcal{T}_L \implies f(t_1, ..., t_n) \in \mathcal{T}_L$$

Os elementos de \mathcal{T}_L são chamados de L-termos

Notação: Seja L = (F, R, N) um tipo de Linguagem

Se f é um símbolo de função de aridade 2 e $t_1, t_2 \in \mathcal{T}_L$, podemos representar o L-termo, $f(t_1, t_2)$ da forma $t_1 f t_2$

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto das variáveis que ocorrem num L-termo t é notado por VAR(t), definido por recursão estrutural:

- $VAR(x) = \{x\}$ para todo $x \in \mathcal{V}$
- $VAR(c) = \text{para todo } c \in C$
- $VAR(f(t_1,...,t_n)) = \bigcup_{i=1}^n VAR(t_i)$, para todo símbolo de função f de aridade $n \geq 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto dos subtermos de um L-termo t é notado por subt(t), definido por recursão estrutural:

- $subt(x) = \{x\}$ para todo $x \in \mathcal{V}$
- $subt(c) = \{c\}$ para todo $c \in C$
- $subt(f(t_1,...,t_n)) = \{f(t_1,...,t_n)\} \cup \bigcup_{i=1}^n subt(t_i)$, para todo símbolo de função f de aridade $n \geq 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$

Definição: Seja L = (F, R, N) um tipo de Linguagem

A operação de substituição de uma variável x por um $L-termo\ t$ num $L-termo\ t'$ é notada por t'[t/x] definida por recursão estrutural (em t'):

•
$$y[t/x] = \begin{cases} t & \text{se } y = x \\ y & \text{se } y \neq x \end{cases}$$

- c[t/x] = c para todo $c \in C$
- $f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x])$, para todo símbolo de função f de aridade $n \ge 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto $\mathcal{A}t_L$ é o menor conjunto de palavras sobre \mathcal{A}_L tal que:

•
$$r \in R, t_1, ..., t_n \in \mathcal{F}_L, N(r) = n \ge 1 \implies r(t_1, ..., t_n) \in \mathcal{A}t_L$$

Um elemento de $\mathcal{A}t_L$ diz-se uma L-fórmula atómica

Notação: Seja L = (F, R, N) um tipo de Linguagem

Se r é um símbolo de relação de aridade 2 e $t_1, t_2 \in \mathcal{T}_L$, podemos representar a L-fórmula atómica, $r(t_1, t_2)$ da forma t_1rt_2

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L tal que:

- $\bot \in \mathcal{F}_L$
- $\varphi \in \mathcal{A}t_L \implies \varphi \in \mathcal{F}_L$
- $\varphi \in \mathcal{F}_L \implies (\neg \varphi) \in \mathcal{F}_L$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \wedge \psi) \in \mathcal{F}_L$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \vee \psi) \in \mathcal{F}_L$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \to \psi) \in \mathcal{F}_L$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \leftrightarrow \psi) \in \mathcal{F}_L$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies (\forall x. \varphi \in \mathcal{F}_L)$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies (\exists x. \varphi \in \mathcal{F}_L)$

Os elementos de \mathcal{F}_L são chamados de L-fórmulas

Definição: Seja L = (F, R, N) um tipo de Linguagem

O conjunto dos subfórmulas de uma L-fórmula φ é notado por $subf(\varphi)$, definido por recursão estrutural:

- $subf(\bot) = \{\bot\}$
- $\varphi \in \mathcal{A}t_L \implies subf(\varphi) = \{\varphi\}$
- $\varphi \in \mathcal{F}_L \implies subf(\neg \varphi) = \{\neg \varphi\} \cup subf(\varphi)$
- $\varphi, \psi \in \mathcal{F}_L \implies subf(\varphi \wedge \psi) = \{\varphi \wedge \psi\} \cup subf(\varphi) \cup subf(\psi)$
- $\varphi, \psi \in \mathcal{F}_L \implies subf(\varphi \vee \psi) = \{\varphi \vee \psi\} \cup subf(\varphi) \cup subf(\psi)$
- $\varphi, \psi \in \mathcal{F}_L \implies subf(\varphi \to \psi) = \{\varphi \to \psi\} \cup subf(\varphi) \cup subf(\psi)$
- $\varphi, \psi \in \mathcal{F}_L \implies subf(\varphi \leftrightarrow \psi) = \{\varphi \leftrightarrow \psi\} \cup subf(\varphi) \cup subf(\psi)$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies subf(\forall x.\varphi) = \{\forall x.\varphi\} \cup subf(\varphi)$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies subf(\exists x. \varphi) = \{\exists x. \varphi\} \cup subf(\varphi)$

Definição: Seja L = (F, R, N) um tipo de Linguagem

Seja φ uma $L-f\acute{o}rmula$ e seja $Qx.\psi$ uma subf\acute{o}rmula de φ , com $x \in \mathcal{V}$ e $Q \in \{\forall, \exists\}$

O alcance desta ocorrência do quantificador Q em φ é a L-fórmula ψ

Definição: Seja L = (F, R, N) um tipo de Linguagem

- Numa $L-f\acute{o}rmula\ \varphi$, uma ocorrência (em subfórmulas atómicas de φ) de uma variável $x \in \mathcal{V}$ diz-se livre quando x não está ao alcance de um quantificador $Q \in \{\forall, \exists\}$, caso contrário, uma ocorrência de x diz-se ligada
- $LIV(\varphi)$ denota o conjunto de todas as variáveis com ocorrências livres em φ
- $LIG(\varphi)$ denota o conjunto de todas as variáveis com ocorrências ligadas em φ

Definição:

A operação de substituição de ocorrências livres de uma variável $x \in \mathcal{V}$ por um L--termo t numa L- $f\'ormula \varphi$, 'e notada por $\varphi[t/x]$, definida por recursão estrutural

- $\perp [t/x] = \perp$
- $r \in R, N(r) = n, t_1, ..., t_n \in \mathcal{T}_L \implies r(t_1, ..., t_n)[t/x] = r(t_1[t/x], ..., t_n[t/x])$
- $\varphi \in \mathcal{F}_L \implies (\neg \varphi)[t/x] = \neg(\varphi[t/x])$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \wedge \psi) = \varphi[t/x] \wedge \psi[t/x]$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \vee \psi) = \varphi[t/x] \vee \psi[t/x]$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \to \psi) = \varphi[t/x] \to \psi[t/x]$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \leftrightarrow \psi) = \varphi[t/x] \leftrightarrow \psi[t/x]$
- $\varphi \in \mathcal{F}_L, y \in \mathcal{V}, Q \in \{\forall, \exists\} \implies (Qy.\varphi)[t/x] = \begin{cases} Qy.\varphi & \text{se } y = x \\ Qy.\varphi[t/x] & \text{se } y \neq x \end{cases}$

Definição

Sejam $x \in \mathcal{V}, t \in \mathcal{T}_L, \varphi \in \mathcal{F}_L$

Diz-se que x é substituível por t em φ (sem captura de variáveis) ou que t é livre para x em φ , quando para todas as ocorrências livres de x em φ no alcance de um quantificador Qy, $y \notin VAR(t)$ ($Q \in \{\forall, \exists\}$)

Definição: $\varphi \in \mathcal{F}_L$ diz-se uma *L-sentença* (ou *L-fórmula fechada*) quando $LIV(\varphi) = \emptyset$

3.2 Semântica

Definição: Seja L = (F, R, N) um tipo de Linguagem Uma *estrutura do tipo L*, uma L-*estrutura*, é um par $(D, \overline{\ })$ tal que:

- D é um conjunto não vazio, chamado de domínio da estrutura
- – é uma função, chamada de função de interpretação da estrutura, tal que:
 - a cada constante $c \in \mathcal{C}$, faz corresponder um elemento de D, notado por \bar{c} , tal que:
 - -a cada símbolo de função $f\in F$ de aridade $n\geq 1,$ faz corresponder uma função do tipo $D^n\longrightarrow D,$ notada por \overline{f}
 - a cada símbolo de relação $r \in R$ de aridade n, faz corresponder uma relação n-ária, ou seja, um subconjunto de D^n , notada por \overline{r}
- para cada símbolo $s \in F \cup R$, \overline{s} é chamado de interpretação de s na estrutura

Definição: Seja L = (F, R, N) um tipo de Linguagem e $E = (D, \overline{\ })$ uma L-estrutura dom(E) denota o domínio da estrutura E, ou seja, dom(E) = D

Definição: Seja L = (F, R, N) um tipo de Linguagem e $E = (D, \overline{\ })$ uma L-estrutura uma função $a : \mathcal{V} \longrightarrow dom(E)$ diz-se uma atribuição em E

Definição: Seja L = (F, R, N) um tipo de Linguagem e $E = (D, \overline{\ })$ uma L-estrutura, a uma atribuição em E, e $t \in \mathcal{T}_L$

O valor de t em E para a, notado por $t[a]_E$, ou por t[a], é um elemento de D, definido por recursão estrutural:

- $x \in \mathcal{V} \implies x[a] = a(x)$
- $c \in \mathcal{C} \implies c[a] = \overline{c}$
- $f \in F, N(f) = n \ge 1, t_1, ..., t_n \in \mathcal{T}_L \implies f(t_1, ..., f_n)[a] = \overline{f}(t_1[a], ..., f_n[a])$

Notação: Seja L=(F,R,N) um tipo de Linguagem e E uma L-estrutura, $x\in\mathcal{V},\ d\in dom(E),\ a$ uma atribuição em E

Escrevemos $a\binom{x}{d}$ para denotar a atribuição $a': \mathcal{V} \longrightarrow dom(E)$, definida da seguinte forma:

$$y \in \mathcal{V} \implies a'(y) = \begin{cases} d & \text{se } y = x \\ a(y) & \text{se } y \neq x \end{cases}$$

Definição: Seja L = (F, R, N) um tipo de Linguagem e $E = (D, \overline{})$ uma L-estrutura, a uma atribuição em E, e $\varphi \in \mathcal{F}_L$.

O valor lógico de φ em E para a é um elemento do conjunto $\{0,1\}$, notado por $\varphi[a]_E$, ou por $\varphi[a]$, definido por recursão da seguinte forma:

- $\bot[a] = 0$
- $r \in R, t_1, ..., t_n \in \mathcal{T}_L, N(r) = n \ge 1 \implies r(t_1, ..., t_n)[a] = 1 \text{ sse } (t_1[a], ..., t_n[a]) \in \overline{r}$
- $\varphi, \psi \in \mathcal{F}_L \implies (\neg \varphi)[a] = f_{\neg}(\varphi[a])$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \wedge \psi)[a] = f_{\wedge}(\varphi[a], \psi[a])$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \vee \psi)[a] = f_{\vee}(\varphi[a], \psi[a])$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \to \psi)[a] = f_{\to}(\varphi[a], \psi[a])$
- $\varphi, \psi \in \mathcal{F}_L \implies (\varphi \leftrightarrow \psi)[a] = f_{\leftrightarrow}(\varphi[a], \psi[a])$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies (\exists x \varphi)[a] = 1 \text{ sse } \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1, \text{ para algum } d \in D$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies (\forall x \varphi)[a] = 1$ sse $\varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1$, para todo $d \in D$

Definição: Seja L = (F, R, N) um tipo de Linguagem e $E = (D, \overline{})$ uma L-estrutura, a uma atribuição em E, e $\varphi \in \mathcal{F}_L$.

- dizemos que E satisfaz φ para $a, E \models \varphi[a]$, quando $\varphi[a]_E = 1$
- dizemos que E não satisfaz φ para $a, E \not\models \varphi[a]$, quando $\varphi[a]_E = 0$

Definição: Seja L = (F, R, N) um tipo de Linguagem, $E = (D, \overline{})$ uma L-estrutura e $\varphi \in \mathcal{F}_L$.

- dizemos que E valida φ , $E \models \varphi$, quando para toda atribuição a em E, tal que E satisfaz φ para a
- dizemos que E não valida φ , $E \not\models \varphi$, quando existe um atribuição a em E, tal que E não satisfaz φ para a

Definição: Seja L = (F, R, N) um tipo de Linguagem e $\varphi \in \mathcal{F}_L$

- dizemos que φ é (universalmente) válido, $\models \varphi$, quando para toda a L-estrutura E, E valida φ
- dizemos que φ não é (universalmente) válido, $\not\models \varphi$, quando existe uma *L-estrutura E* tal que *E* não valida φ

Definição: Seja L = (F, R, N) um tipo de Linguagem e $\varphi, \psi \in \mathcal{F}_L$ φ é logicamente equivalente a ψ , $\varphi \Leftrightarrow \psi$ quando para toda a L-estrutura E e para toda atribuição a em E, $E \models \varphi[a]$ sse $E \models \psi[a]$

Definição: Seja L=(F,R,N) um tipo de Linguagem, $\varphi\in\mathcal{F}_L,$ $\Gamma\subseteq\mathcal{F}_L$

- φ diz-se consequência semântica de Γ , $\Gamma \models \varphi$, quando para toda a L-estrutura E, e para toda a atribuição a em E, se $E \models \Gamma[a]$ então $E \models \varphi[a]$
- caso contrário, φ não é consequência semântica de Γ , $\Gamma \not\models \varphi$

3.3 Sistema Formal de Dedução Natural

O sistema formal será denotado por DNL

As regras de inferência para o sistema DNL são as seguintes:

$$\begin{array}{c|c} \overline{\varphi} & A \\ \hline \frac{\varphi}{\varphi \wedge \psi} & I_{\wedge} \\ \hline \frac{\varphi}{\varphi \vee \psi} & I_{\vee 1} \\ \hline \frac{\varphi}{\psi \vee \varphi} & I_{\vee 2} \\ \hline \frac{[\varphi]}{\varphi \to \psi} & I_{\rightarrow} \\ \hline [\varphi] & & [\psi] \\ \hline \vdots & & \vdots \\ \psi & & \varphi \\ \hline \varphi \leftrightarrow \psi & I_{\leftrightarrow} \end{array}$$

$$(a) \frac{\varphi}{\forall x \varphi} I_{\forall}$$

$$(b) \frac{\varphi[t/x]}{\exists x \varphi} I_{\exists}$$

$$\frac{\varphi \wedge \psi}{\varphi} E_{\wedge 1}$$

$$\frac{\psi \wedge \varphi}{\varphi} E_{\wedge 2}$$

$$\frac{\varphi \rightarrow \psi}{\varphi} E_{\wedge 2}$$

$$\frac{\varphi \rightarrow \psi}{\psi} \varphi E_{\rightarrow}$$

$$\frac{\varphi \leftrightarrow \psi}{\psi} \varphi E_{\rightarrow 1}$$

$$\frac{\psi \leftrightarrow \varphi}{\psi} E_{\rightarrow 1}$$

$$\frac{\psi \leftrightarrow \varphi}{\psi} E_{\rightarrow 2}$$

$$\frac{\varphi}{\psi} E_{\rightarrow 2}$$

- (a) se x não tem ocorrências livres nas hipóteses não canceladas na derivação da premissa
- (b) se x é substituível sem captura de variáveis por t em φ
- (c) se x é substituível sem captura de variáveis por t em φ
- (d) se x não tem ocorrências livres em θ , e se x não tem ocorrências livres nas hipóteses não canceladas distintas de φ na derivação da segunda premissa

Observação: Todas as definições estudadas no sistema DNP, também se definem de forma análoga no sistema DNL, substituindo fórmulas do cálculo proposicional, por L-fórmulas

Teorema da Correção: $\Gamma \vdash \varphi \implies \Gamma \models \varphi$

Teorema da Completude: $\Gamma \models \varphi \implies \Gamma \vdash \varphi$

Capítulo 4

Lógica Intuicionista de Primeira Ordem

4.1 Sintaxe

Todas definições previamente utilizadas em Lógica de Primeira Ordem, aplicam-se, de forma análoga, à lógica Intuicionista de Primeira Ordem

4.2 Semântica

Definição: Seja L = (F, R, N) um tipo de Linguagem Um L-Modelo de Kripke é um triplo $W = (W, \leq, D, I)$ tal que:

- ullet W é um conjunto não vazio
- $\bullet \le$ é uma relação de ordem parcial em W (reflexiva, transitiva, antissimétrica)
- $D: W \longrightarrow \mathcal{P}(\mathcal{U})$, chamada de função de domínio em que U é um conjunto chamado de Domínio Universal. Cada $u \in \mathcal{P}(\mathcal{U})$ é chamado de Domínio de interpretação tal que:

$$-w', w \in W, w \le w' \implies D(w) \subseteq D(w')$$

- I é uma função com domínio em $W \times (F \cup R)$, e chamada de função de interpretação tal que:
 - $-f \in F, N(f) = n \ge 1, w \in W \implies I(w, f)$ retorna uma função $I_{(w, f)} : D(w)^n \longrightarrow D(w)$ tal que:

$$* \ w, w' \in W, f \in F, N(f) = n \ge 1, u_1, ..., u_n \in D(w) \implies I_{(w,f)}(u_1, ..., u_n) = I_{(w',f)}(u_1, ..., u_n)$$

- c constante ($c \in F, N(c) = 1), \ w \in W \implies I(w,c) = u,$ para algum $u \in D(w),$ tal que:
 - $* w, w' \in W, c \in C \implies I_{(w,c)} = I_{(w',c)}$
- $-\ r \in R, N(r) = n, w \in W \implies I(w,r)$ retorna uma conjunto $I_{(w,r)} \subseteq D(w)^n$ tal que:
 - $* w, w' \in W, r \in R \implies I_{(w,r)} \subseteq I_{(w',r)}$

Definição: Seja L = (F, R, N) um tipo de Linguagem, $\mathcal{W} = (W, \leq, D, I)$ um L-Modelo de Kripke, $w \in W$ uma função parcial $a_w : \mathcal{V} \longrightarrow D(w)$ chama-se uma atribuição em w

Definição: Seja L=(F,R,N) um tipo de Linguagem, $\mathcal{W}=(W,\leq,D,I)$ um L-Modelo de Kripke, $w,w'\in W,\,w\leq w',\,a_w$ uma atribuição em w uma função parcial $a_w^{w'}:\mathcal{V}\longrightarrow D(w')$ diz-se uma atribuição em w extendida a w' quando:

• $u \in D(w), x \in \mathcal{V}, a_w(u) = x \implies a_w^{w'}(u) = x = a_w(u)$

Definição: Seja L = (F, R, N) um tipo de Linguagem, $W = (W, \leq, D, I)$ um L-Modelo de Kripke, $w \in W$, a_w uma atribuição em $w, t \in \mathcal{T}_L$

O valor de t em w para a, notado por $t[a_w]$, é um elemento de D(w), definido por recursão:

- $x \in \mathcal{V} \implies x[a_w] = a_w(x)$
- $c \ constante \implies c[a_w] = I(w,c) = I_{w,c}$
- $f \in F, N(f) = n \ge 1, t_1, ..., t_n \in \mathcal{T}_L \implies f(t_1, ..., t_n)[a_w] = I(w, f)(t_1[a_w], ..., t_n[a_w]) = I_{w,f}(t_1[a_w], ..., t_n[a_w])$

Notação: Seja L=(F,R,N) um tipo de Linguagem, $\mathcal{W}=(W,\leq,D,I)$ um L-Modelo de Kripke, $w\in W,$ a_w uma atribuição em $w,d\in D(w)$

Escrevemos $a_w \begin{pmatrix} x \\ d \end{pmatrix}$ para denotar a atribuição $e_w : \mathcal{V} \longrightarrow D(w)$, definida da seguinte forma:

$$y \in \mathcal{V}, d' \in D(w), a_w(y) = d' \implies e_w(y) = \begin{cases} d & \text{se } y = x \\ a_w(y) & \text{se } y \neq x \end{cases}$$

Definição: Seja L = (F, R, N) um tipo de Linguagem, $\mathcal{W} = (W, \leq, D, I)$ um L-Modelo de Kripke, $w \in W$, a_w uma atribuição em $w, \varphi \in \mathcal{F}_L$

A relação de satisfação de φ para w em a_w , denotada por \models define-se:

- $w \not\models \bot [a_w]$
- $r \in R, f(r) = n, t_1, ..., t_n \in \mathcal{T}_L \implies w \models r(t_1, ..., t_n)[a_w] \text{ sse } (t_1[a_w], ..., t_n[a_w]) \in I(w, r)$
- $\varphi \in \mathcal{F}_L \implies w \models (\neg \varphi)[a_w]$ sse para todo $w' \in W.w \leq w', w' \not\models \varphi[a_w^{w'}]$
- $\varphi, \psi \in \mathcal{F}_L \implies w \models (\varphi \land \psi)[a_w] \text{ sse } w \models \varphi[a_w] \text{ e } w \models \psi[a_w]$
- $\varphi, \psi \in \mathcal{F}_L \implies w \models (\varphi \vee \psi)[a_w] \text{ sse } w \models \varphi[a_w] \text{ ou } w \models \psi[a_w]$
- $\varphi, \psi \in \mathcal{F}_L \implies w \models (\varphi \to \psi)[a_w]$ sse para todo $w' \in W.w \leq w'$, se $w' \models \varphi[a_w^{w'}]$ então $w' \models \psi[a_w^{w'}]$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies w \models \forall x \varphi[a_w] \text{ sse para todo } w' \in W.w \leq w', d \in D(w'), w' \models \varphi[a_w^{w'}] \binom{x}{d}$
- $\varphi \in \mathcal{F}_L, x \in \mathcal{V} \implies w \models \exists x \varphi \text{ sse existe } d \in D(w) \text{ tal que } w \models \varphi[a_w^{w'}] \begin{pmatrix} x \\ d \end{pmatrix}$

Teorema: Propriedade da Monotonia

L=(F,R,N) um tipo de Linguagem, $\mathcal{W}=(W,\leq,D,I)$ um L-Modelo de Kripke, $w\in,a_w$ uma atribuição em $w \varphi \in \mathcal{F}_L$

Se $w \models \varphi[a_w]$, então, $\forall w'. w \leq w', w' \models \varphi[a_w^{w'}]$

Definição: Seja L = (F, R, N) um tipo de Linguagem, $W = (W, \leq, D, I)$ um L-Modelo de Kripke $\mathcal{W} \models \varphi$ sse $\forall w. w \in W$, para toda atribuição a_w em $w, w \models \varphi[a_w]$

Definição: φ diz-se válido ($\models \varphi$) sse para todo \mathcal{W} Modelo de Kripke, $\mathcal{W} \models \varphi$

Definição: Seja L = (F, R, N) um tipo de Linguagem

 $\Gamma \models \varphi$ sse para todo $\mathcal{W} = (W, \leq, D, I)$ um L-Modelo de Kripke, $\forall w. w \in W$, para toda a atribuição a_w em $w, \forall \psi. \psi \in \Gamma$, se $w \models \psi[a_w]$ então $w \models \varphi[a_w]$

4.3 Sistema Formal de Dedução Natural Intuicionista

O sistema formal será denotado por DNLi As regras de inferência para o *DNLi* são as seguintes:

$$\frac{\varphi}{\varphi \wedge \psi} I_{\wedge}$$

$$\frac{\varphi}{\varphi \vee \psi} I_{\vee 1}$$

$$\frac{\varphi}{\psi \vee \varphi} I_{\vee 2}$$

$$[\varphi]
\dots$$

$$\frac{\psi}{\varphi \rightarrow \psi} I_{\rightarrow}$$

$$[\varphi]
\dots$$

$$\frac{\psi}{\varphi \leftrightarrow \psi} I_{\rightarrow}$$

$$(a) \frac{\varphi}{\forall x \varphi} I_{\forall}$$

$$(b) \frac{\varphi[t/x]}{\exists x \varphi} I_{\exists}$$

$$\frac{\varphi \wedge \psi}{\varphi} E_{\wedge 1}$$

$$\frac{\psi \wedge \varphi}{\varphi} E_{\wedge 2}$$

$$25$$

$$\frac{\varphi \lor \psi}{\sigma} \frac{[\varphi]}{\sigma} \frac{[\psi]}{\sigma} E_{\lor}$$

$$\frac{\varphi \to \psi}{\psi} \frac{\varphi}{\psi} E_{\to}$$

$$\frac{\varphi \leftrightarrow \psi}{\psi} \frac{\varphi}{\psi} E_{\leftrightarrow 1}$$

$$\frac{\psi \leftrightarrow \varphi}{\psi} \frac{\varphi}{\psi} E_{\leftrightarrow 2}$$

$$\frac{\varphi}{\psi} \frac{\neg \varphi}{\psi} E_{\neg}$$

$$\vdots$$

$$\frac{\bot}{\varphi} EFQ$$

$$(c) \frac{\forall x \varphi}{\varphi[t/x]} E_{\forall}$$

$$\vdots$$

$$(d) \frac{\varphi[t/x]}{\theta} E_{\exists}$$

- (a) se x não tem ocorrências livres nas hipóteses não canceladas na derivação da premissa
- (b) se x é substituível sem captura de variáveis por t em φ
- (c) se x é substituível sem captura de variáveis por t em φ
- (d) se x não tem ocorrências livres em θ , e se x não tem ocorrências livres nas hipóteses não canceladas distintas de φ na derivação da segunda premissa

Observação: As definições para o sistema DNL também se aplicam ao sistema DNLi, definidas de forma análoga.

Observação: As definições para o sistema DNPi extendem-se também para o sistema DNLi

Observação: Tal como anteriormente, as regras para eliminar fórmulas maximais irão ser definidas para o sistema de dedução natural sobre o alfabeto com apenas os conectivos da negação, conjunção, e implicação. $(DNLi_{\wedge,\rightarrow})$

Definição: Regras de Inferência Para Eliminar Fórmulas Maximais (as definições das regras regras para elminar fórmulas maximais no caso da implicação e conjução, são extendidas do sistema $DNPi_{\wedge,\rightarrow}$)

$$\frac{\varphi}{\forall x \varphi} I_{\forall}$$

$$\frac{\nabla}{\varphi[t/x]} E_{\forall}$$

$$\frac{D[t/x]}{\varphi}$$

$$\frac{\nabla}{\varphi[t/x]} E_{\forall}$$

Notação: D[t/x] denota que cada ocorrência de x em D, é substituída por t

Definição: A função $(-)^{\circ}: \mathcal{F}^{cp} \longrightarrow \mathcal{F}^{cp}$, é definida da seguinte forma

- $(\bot)^{\circ} = \bot$
- $(p)^{\circ} = \neg \neg p$
- $(\neg \varphi)^{\circ} = \neg (\varphi)^{\circ}$
- $(\varphi \wedge \psi)^{\circ} = (\varphi)^{\circ} \wedge (\psi)^{\circ}$
- $(\varphi \to \psi)^{\circ} = \varphi \to (\psi)^{\circ}$
- $(\varphi \lor \psi)^{\circ} = \neg((\neg \varphi)^{\circ} \land (\neg \psi)^{\circ})$
- $(\varphi \leftrightarrow \psi)^{\circ} = ((\varphi \to \psi) \land (\psi \to \varphi))^{\circ}$
- $(\forall x\varphi)^{\circ} = \forall x(\varphi)^{\circ}$
- $(\exists x\varphi)^{\circ} = \neg \forall x \neg (\varphi)^{\circ}$

Teorema: Teorema de Godel e Gentzen

 $\Gamma \vdash_c \varphi \operatorname{sse} (\Gamma)^{\circ} \vdash_i (\varphi)^{\circ}$

4.4 Interpretação BHK

- $\bullet\,$ Uma prova de $\varphi \wedge \psi$ é um tuplo $\langle M,N \rangle$ em que:
 - Mé uma prova de φ
 - Né uma prova de ψ
- Uma prova de $\varphi \lor \psi$ é um tuplo $\langle 0, M \rangle$ em que:
 - Mé uma prova de φ

ou um tuplo $\langle 1, N \rangle$ em que:

- -N é uma prova de ψ
- Uma prova de $\varphi \to \psi$ é uma função f que transforma provas de φ em provas de ψ
- Uma prova de $\neg \varphi$ é uma prova de $\varphi \to \bot$, ou seja, uma função f que transforma provas de φ em provas de \bot
- $\bullet\,$ Não existem provas de \bot
- Uma prova de $\forall x \varphi$ é uma função f que transforma elementos d no domínio de interpretação, em provas de $[\overline{d}/x]\varphi$

- $\bullet \,$ Uma prova de $\exists x \varphi$ é um tuplo $\langle d, M \rangle$ tal que:
 - $-\ d$ é um elemento do domínio de interpretação
 - Mé uma prova de $[\overline{d}/x]\varphi$

Observação: A notação $[\overline{d}/x]\varphi$ é usada para representar a substituição das ocorrências "livres" de x em φ por d, um elemento do domínio de interpretação

Capítulo 5

Calculo- λ

Definição:

O alfabeto do $c\'{a}lculo - \lambda$, denotado por A, define-se da seguinte forma:

$$\mathcal{A} = \mathcal{V} \cup \{\lambda, (,)\}$$

em que \mathcal{V} é o conjunto das variáveis, x, y, z, \dots do $c\'{a}lculo - \lambda$

Definição:

O conjunto dos $\lambda - termos$, denotado por $\Lambda \in \mathcal{A}^*$, define-se da seguinte forma:

- $x \in \mathcal{V} \implies x \in \lambda$
- $M, N \in \Lambda \implies (M, N) \in \Lambda$
- $x \in \mathcal{V}, M \in \Lambda \implies (\lambda x.M) \in \Lambda$

(M,N) diz-se uma aplicação de M a N

 $(\lambda x.M)$ diz-se uma abstração em que x é o parâmetro formal e M é o corpo

Notação: A seguinte simplificação da notação permite reduzir o tamanho dos $\lambda - termos$, omitindo certas ocorrências de parênteses, da seguinte forma

- A aplicação de funções é associativa à esquerda
 - -((MN)O) = MNO
- Os parênteses mais externos podem ser omitidos
 - -(MN) = MN
- Uma abstração contida noutra abstração pode-se simplificar da seguinte forma
 - $-(\lambda x(\lambda y.M)) = \lambda xy.M$
- As abstrações extendem-se o mais longe possível
 - $(\lambda x.((\lambda y.M)N)) = \lambda x.(\lambda y.M)N$

Definição: Sejam $x \in \mathcal{V}, M \in \Lambda$

- \bullet uma ocorrência de x em M diz-se ligada se esta pertence ao corpo de uma abstração em M cujo parâmetro formal é x
- caso contrário, esta ocorrência diz-se livre

Definição:

A função $LIV: \Lambda \longrightarrow \mathcal{P}(\mathcal{V})$, que dado um $\lambda - termo$, devolve o conjunto das variáveis com ocorrências livres neste, é definida da seguinte forma

- $LIV(x) = \{x\}$
- $LIV(MN) = LIV(M) \cup LIV(N)$
- $LIV(\lambda x.M) = LIV(M) \setminus \{x\}$

Definição:

A função $LIG: \Lambda \longrightarrow \mathcal{P}(\mathcal{V})$, que dado um $\lambda - termo$, devolve o conjunto das variáveis com ocorrências ligadas neste, é definida da seguinte forma

- $LIG(x) = \emptyset$
- $LIG(MN) = LIG(M) \cup LIG(N)$
- $LIG(\lambda x.M) = LIG(M) \cup (LIV(M) \cap \{x\})$

Definição:

A função $subt:\Lambda\longrightarrow \mathcal{P}(\Lambda),$ que dado um $\lambda-termo,$ devolve o conjunto dos seus $\Lambda-subtermos,$ é definida da seguinte forma

- $subt(x) = \{x\}$
- $subt(MN) = \{MN\} \cup subt(M) \cup subt(N)$
- $subt(\lambda x.M) = \{\lambda x.M\} \cup subt(M)$

Definição: Sejam $x \in \mathcal{V}, M, N \in \Lambda$

M[N/x] denota a substituição de todas as ocorrências livres de x por M por N

Definição: Sejam $x \in \mathcal{V}, M, N \in \Lambda$

dizemos que M[N/x] produz captura de variáveis se x ocorre livre em M no corpo de uma abstração cujo parâmetro formal $\in LIV(N)$

Definição: Sejam $x \in \mathcal{V}, M, N \in \Lambda$

dizemos que x está livre para N em M (x é substituível por N em M) se M[N/x] não produzir captura de variáveis

Definição: $Axioma - \alpha$

Ao adotar este axioma, para todo $x, y \in \mathcal{V}, M \in \Lambda$, assumimos as seguintes expressões como equivalentes $\lambda x.M = \lambda y.M[y/x]$

Definição: β

O conjunto $\beta \in \Lambda \times \Lambda$, define-se como o seguinte:

$$\beta = \{((\lambda x.M)N, M[N/x]) | M, N \in \Lambda, x \in \mathcal{V}\}$$

Definição: \rightarrow_{β}

A relação $\rightarrow_{\beta} \in \Lambda \times \Lambda$, diz-se o fecho compatível de β , e define-se da seguinte forma:

- $(M, M') \in \beta \implies (M, M') \in \rightarrow_{\beta}$
- $(M, M') \in \rightarrow_{\beta} \Longrightarrow (MN, M'N) \in \rightarrow_{\beta}$
- $(M, M') \in \rightarrow_{\beta} \Longrightarrow (NM, NM') \in \rightarrow_{\beta}$
- $(M, M') \in \rightarrow_{\beta} \Longrightarrow (\lambda x.M, \lambda x.M') \in \rightarrow_{\beta}$

Definição:

- \rightarrow_{β}^{+} é o fecho transitivo de \rightarrow_{β}
- \rightarrow_{β}^* é o fecho transitivo e reflexivo de \rightarrow_{β}
- $\bullet =_{\beta}$ é o fecho de equivalência de \rightarrow_{β} (transitivo, reflexivo, simétrico)

Notação:

Para denotar que $(M,N) \in \to_{\beta}$, podemos também escrever $M \to_{\beta} N$ Esta notação também se aplica às relações $\to_{\beta}^+, \to_{\beta}^*, =_{\beta}$

Notação:

Para denotar que $M\to_\beta N$, podemos também escrever $N\leftarrow_\beta M$ Esta notação também se aplica às relações \to_β^+, \to_β^*

Definição:

- β diz-se noção de redução-β
- $\bullet \rightarrow_{\beta}$ diz-se redução- β num~passo
- \rightarrow_{β}^+ diz-se $reduç\~ao-\beta$ em v'arios passos
- \rightarrow_{β}^* diz-se $redução-\beta$
- $=_{\beta}$ diz-se igualdade- β

Observação:

$$\beta \subseteq \rightarrow_{\beta} \subseteq \rightarrow_{\beta}^{+} \subseteq \rightarrow_{\beta}^{*} \subseteq =_{\beta}$$

Definição: Seja $M \in \Lambda$

M diz-se um combinador se $LIV(M) = \emptyset$

Definição:

Alguns combinadores utilizados no estudo do $\lambda - c\'{a}lculo$

- $I = \lambda x.x$
- $C = \lambda xyz.x(zy)$
- $B = \lambda xyz.x(yz)$
- $S = \lambda xyz.(xz)(yz)$
- $K = \lambda xy.z$
- $W = \lambda xy.xyy$
- $\Omega = (\lambda x.xx)(\lambda x.xx)$
- $Y = \lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$

Definição: Sejam $M, M' \in \Lambda$

- M diz-se forma normal- β (fn- β) se não contêm nenhum $redex \beta$
- M diz-se forma normal- β de M' (fn- β de M') se:
 - $-M \in fn-\beta$
 - $-M' =_{\beta} M$

Teorema: Teorema da Confluência

Sejam $M, N_1, N_2 \in \Lambda$ tais que $N_1 \leftarrow_{\beta}^* M \rightarrow_{\beta}^* N_2$ então existe $N \in \Lambda$ tal que $N_1 \rightarrow_{\beta}^* N \leftarrow_{\beta}^* N_2$

Corolário: Teorema de Church-Rosser

Sejam $M_1,M_2\in\Lambda$ tais que $M_1=_\beta M2$ então existe $M\in\Lambda$ tal que $M_1\to_\beta^* M\leftarrow_\beta^* M_2$

Corolário: Unicidade da $fn-\beta$

Sejam $M, N_1, N_2 \in \Lambda$ tais que N_1 e N_2 são $fn - \beta$ de M então N1 = N2

Teorema: Consistência do $c\'alculo - \lambda$ (Existem A, B tal que $A \neq_{\beta} B$)

Sejam $x, y \in \mathcal{V}$ tais que $x \neq y$, temos que $x, y \in \Lambda$ se x = xy então pelo Teorema de Church-Rosser e

se $x =_{\beta} y$, então pelo Teorema de Church-Rosser, existe $M \in \Lambda$ tal que $x \to_{\beta}^* M \leftarrow_{\beta}^* y$ porém x e y são $fn - \beta$, logo $x = M = y \implies x = y$ por redução ao absurdo, concluímos que $x =_{\beta} y$

Teorema: Teorema do Ponto Fixo

seja $F \in \Lambda$ (recorda-se o combinador $Y = \lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$) temos que, $F(YF) =_{\beta} YF$

Teorema:

 $\forall x, y_1..., y_n \in \mathcal{V}, N \in \Lambda$, existe solução para a seguinte equação em x $xy_1...y_n =_{\beta} N$ ou seja, $\exists M \in \Lambda$ tal que $My_1...y_n =_{\beta} [M/x]N$ basta tomar $M = Y(\lambda x y_1...y_n.N)$

Definição:

Sejam $F, N \in \Lambda, n \in \mathbb{N}_0$

$$F^nN$$
 define-se por recursão em n :
$$\begin{cases} F^0N = N \\ F^{n+1}N = F(F^nN) \end{cases}$$

Definição: Numerais de Church

$$\forall n \in \mathbb{N}_0.\overline{n} = \lambda f x. f^n x$$

Teorema:

sejam
$$M, N, F \in \Lambda, x \in \mathcal{V}$$

 $[M/x](F^nN) = ([M/x]F^n)([M/x]N)$

Teorema:

sejam
$$M, N, F \in \Lambda, x \in \mathcal{V}$$

 $\overline{n}FN \to_{\beta}^* F^n N$

Definição:

seja
$$f: \mathbb{N}_0^k \to \mathbb{N}_0, F \in \Lambda$$

Dizemos que F representa f sse $\forall (n_1, ..., n_k) \in \mathbb{N}_0, F\overline{n_1}...\overline{n_k} =_{\beta} \overline{f(n_1, ..., n_k)}$

Definição:

seja $f: \mathbb{N}_0^k \to \mathbb{N}_0$ Dizemos que f é representável se $\exists F \in \Lambda$ tal que F representa f

Definição:

seja
$$s=\lambda xyz.y(xyz)\in \Lambda$$
 s representa a seguinte função f $f:\mathbb{N}_0\to\mathbb{N}_0$ $n\mapsto n+1$

Capítulo 6

Calculo- λ com tipos simples (STLC)

Definição:

O alfabeto do STLC denotado por \mathcal{A}' , define-se da seguinte forma:

$$\mathcal{A} = \mathcal{V} \cup \{\lambda, (,)\} \cup \mathcal{V}'$$

em que:

- \mathcal{V} é o conjunto das variáveis, x, y, z, \dots do cálculo λ
- \mathcal{V}' é o conjunto dos tipos, $\sigma, \tau, \rho, \sigma \to \tau, \dots$

Notação:

As definições, teoremas, funções, etc, definidas para o $c\'alculo - \lambda$ sem tipos, aplicam-se de forma análoga para o STLC

Definição:

O conjunto dos λ -termos com tipos simples, denotado por $\Lambda_{church} \in \mathcal{A}'^*$, define-se da seguinte forma:

- $x \in \mathcal{V} \implies x \in \Lambda_{church}$
- $M, N \in \Lambda_{church} \implies (M, N) \in \Lambda_{church}$
- $x \in \mathcal{V}, \sigma \in \mathcal{V}', M \in \Lambda_{church} \implies (\lambda x^{\sigma}.M) \in \Lambda_{church}$

Definição:

um contexto é um conjunto finito de declarações (x, σ) , com $x \in \mathcal{V}, \sigma \in \mathcal{V}'$ em que nenhuma variável é declarada com dois tipos diferentes

Definição: Seja Γ contexto, $M \in \Lambda_{church}, \sigma \in \mathcal{V}'$

 $\Gamma \vdash M : \sigma$ denota que podemos atribuir o tipo σ ao termo M no contexto Γ

Definição: a relação de atribuição de tipos a um termo num contexto é definida indutivamente:

$$\overline{\Gamma,(x,\sigma)\vdash x:\sigma}$$
 VAR

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \text{ APP}$$

$$\frac{\Gamma, (x, \sigma) \vdash M : \tau}{\Gamma \setminus (x, \sigma) \vdash \lambda x^{\sigma} M : \sigma \to \tau} ABS$$

Definição:

Uma derivação é uma árvore de sequentes construída através das regras VAR, APP, e ABS

Definição: Seja Γ contexto

 $Dom(\Gamma) = \{x | x \in \mathcal{V} \land \exists \sigma \in \mathcal{V}'.(x, \sigma) \in \Gamma\}$

Definição: Seja Γ contexto, $x \in Dom(\Gamma)$

 $\Gamma(x)$ é uma função que retorna o tipo associado com x em Γ

Teorema: Seja Γ contexto, $M \in \Lambda_{church}$, $\sigma \in \mathcal{V}'$ se $\Gamma \vdash M : \sigma$ é derivável, então $LIV(M) \subseteq Dom(\Gamma)$

Teorema: Unicidade do tipo (1)

Seja Γ contexto, $M \in \Lambda_{church}, \sigma, \tau \in \mathcal{V}'$

se $\Gamma \vdash M : \sigma$ e $\Gamma \vdash M : \tau$ são deriváveis, então $\sigma = \tau$

Definição: Seja $M \in \Lambda_{church}$

M diz-se tipificável sse existem Γ contexto, $\sigma \in \mathcal{V}'$, tal que $\Gamma \vdash M : \sigma$ é derivável

Teorema: Unicidade do tipo (2)

Seja Γ, Δ contextos, $M \in \Lambda_{church}, \sigma, \tau \in \mathcal{V}'$

se $\Gamma \vdash M : \sigma$ e $\Delta \vdash M : \tau$ e para todo $x \in LIV(M).\Gamma(x) = \Delta(x)$, então $\sigma = \tau$

Corolário: Seja $M \in \Lambda_{church}$

se M é um combinador tipificável, então M tem tipo único (independente do contexto)

Observação: Seja $M, N \in \Lambda_{church}$

- $\bullet \ MN$ tipificável $\Rightarrow M$ eNtipificáveis
- $M \in N$ tipificáveis $\Rightarrow MN$ tipificável
- M tipificável $\Rightarrow \exists \sigma \in \mathcal{V}', x \in \mathcal{V}$. tal que, $\lambda x^{\sigma}.M$ é tipificável

Definição: Seja $M \in \Lambda_{church}$

 $M \in \beta - SN$ sse não existem sequências infinitas de redução- β num passo, a partir de M

Teorema: Teorema da Normalização Forte

Seja $M \in \Lambda_{church}$

Se M é tipificável, então M é $\beta-SN$

Definição Seja $\rightarrow \subseteq A \times A, a \in A$

dizemos que a é SN quando não existem sequências infinitas de redução em um passo a partir de a

Definição Seja $\rightarrow \subseteq A \times A$

dizemos que \rightarrow satisfaz SN quando, $\forall a \in A$. $a \in SN$

Definição Seja $\rightarrow \subseteq A \times A$

dizemos que \rightarrow satisfaz confluência quando, $\forall a, b_1, b_2 \in A$. se $b_1 \leftarrow a \rightarrow b_2$, então $\exists c \in A$. $b_1 \rightarrow^* c \leftarrow^* b_2$

Definição Seja $\rightarrow \subseteq A \times A$

dizemos que \rightarrow satisfaz confluência fraca quando, $\forall a, b_1, b_2 \in A$. se $b_1 \leftarrow^* a \rightarrow^* b_2$, então $\exists c \in A$. $b_1 \rightarrow^* c \leftarrow^* b_2$

Lema de Newman: Seja $\rightarrow \subseteq A \times A$

Supomos que \rightarrow satisfaz SN e confluência fraca

Então → satisfaz confluência

Definição: Seja $\rightarrow \subseteq A \times A, b \in A$

bdiz-se fórmula normal se $\not\exists c \in A.\ b \to c$

Definição: Seja $\rightarrow \subseteq A \times A$, $a, b \in A$

b diz-se fórmula normal de a se $a \to^* b$ e b é fórmula normal

Teorema:

Seja $\rightarrow \subseteq A \times A$

se \rightarrow satisfaz SN, então, $\forall a \in A$. a têm fórmula normal

Definição: Seja $\rightarrow \subseteq A \times A$, $a \in A$

a diz-se ambíguo se a tem duas formulas normais distintas

Teorema 1:

Seja $\rightarrow \subseteq A \times A$

se $\forall a \in A$. a não é ambíguo, então \rightarrow satisfaz confluência

Teorema 2:

Seja $\rightarrow \subseteq A \times A$, tal que \rightarrow satisfaz confluência fraca, $a \in A$ se a é ambíguo, então $\exists b \in A$ tal que:

- \bullet $a \rightarrow b$
- $a \neq b$
- \bullet b é ambíguo

Teorema 3:

Seja $\to \subseteq A \times A$, tal que \to satisfaz confluência fraca, $a \in A$ se a é ambíguo, então a não é SN

Corolário do Lema de Newman:

Seja $\rightarrow \subseteq A \times A, a \in A, \rightarrow$ satisfaz SN então, $\forall a \in A.$ a não é ambíguo

Teorema: Preservação de Tipos (Subject Reduction)

Seja $\Gamma \subseteq \Lambda_{church}, M, M' \in \Lambda_{church}, \sigma \in \mathcal{V}'$ se $\Gamma \vdash M : \sigma \in M \to_{\beta} M'$, então $\Gamma \vdash M' : \sigma$

Teorema: $(\{M \in \Lambda_{church} | M \text{ \'e tipific\'avel }\}, \rightarrow_{\beta})$ Como \rightarrow_{β} satisfaz SN, pelo Lema de Newman temos que: \rightarrow_{β} satisfaz confluência fraca sse \rightarrow_{β} satisfaz confluência

Teorema: Seja $M, N \in \Lambda_{church}, M$ e N tipificáveis É decidível se $M =_{\beta} N$ (existe algoritmo para decidir)

Teorema: \rightarrow_{β} satisfaz confluência fraca

Corolário: \rightarrow_{β} satisfaz confluência