Data Sheet - CHEM 209

Periodic Table

10

1		1 Crouic Table									18						
1A		Legend:									8A						
1 H 1.008	2 2A	1 ← Atomic number (Z) ← Atomic symbol ← Atomic mass (amu) 13 14 15 16 17 3A 4A 5A 6A 7A											2 He 4.003				
3	4											10					
Li	Be												Ne				
6.941	9.012											19.00	20.18				
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

	58	59	60	61	62	63	6.1	65	66	67	68	69	70	71
Lanthanides *				61			64			67				_ ′ 1
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	92	93	94	95	96	97	98	99	100	101	102	103
recuires	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Strong Acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄

Strong Bases: Hydroxides of Group 1 (Li to Cs) and Group 2 (Ca, Sr, Ba)

Constants:	Conversion Factors:								
Gas Constant: $R = 0.08205 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$1 J = 1 kg \cdot m^2 \cdot s^2$								
= $8.314 \text{ L} \cdot \text{kPa} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = $8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$T(K) = T(^{\circ}C) + 273.15$								
$= 0.08314 \text{ L} \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$1 \text{ Pa} = 1 \text{ kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2} = 10^{-5} \text{ bar}$								
Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	$1 \text{ L} \cdot \text{atm} = 101.3 \text{ J}$								
Faraday's Constant: $F = 96 485$ C/mol electrons	1 atm = 760.0 torr = 101.3 kPa = 760.0 mm Hg = 1.013 bar								
Planck's Constant: $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$	$1 L = 10^{-3} m^3$								
Speed of Light: $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$	1 C = 1 J/V								
Rydberg Constant: $R = 1.096776 \times 10^7 \text{ m}^{-1}$	STP conditions: 0°C, 100 kPa								
Factoring Rydberg Constant: $R_H = R \cdot h \cdot c = 2.18 \times 10^{-18} \text{ J}$	Electrochemical standard state: 1 atm, 1 M, 25°C								

$$\begin{split} [A]_t &= -kt + [A]_0 & \ln[A]_t = -kt + \ln[A]_0 & PV = nRT & E^\circ = E^\circ_{cathode} - E^\circ_{anode} & c = \lambda v \\ \ln\left(\frac{[A]_0}{[A]_t}\right) &= kt & \frac{1}{[A]_t} = kt + \frac{1}{[A]_0} & K = K_C(RT)^{\Delta n} \\ pH &= -\log[H^+] & E = E^\circ - \frac{0.0592}{n_e} \log Q & E = hv \\ t_{1/2} &= \frac{[A]_0}{2k} & t_{1/2} &= \frac{0.693}{k} & K_w = K_a \cdot K_b \\ t_{1/2} &= \frac{1}{k[A]_0} & k = Ae^{(-E_a/RT)} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & E^\circ &= \frac{0.0592}{n_e} \log K & \Delta E = -R_H\left(\frac{Z^2}{n_f^2} - \frac{Z^2}{n_i^2}\right) \\ \ln\left(\frac{k_2}{k_1}\right) &= \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) & \ln\left(\frac{K_2}{K_1}\right) &= \frac{\Delta H}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) & pH = pK_a + \log\left(\frac{[base]}{[acid]}\right) & nFE^\circ = RT \ln K \end{split}$$