Cauchyho integrálna veta a formula

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Súvislosť oblasti

Oblasť ohraničená 1 jednoduchou, po častiach hladkou, uzavretou krivkou sa nazýva jednoducho súvislá oblasť.

Oblasť ohraničená 2 jednoduchými, po častiach hladkými, uzavretými a nepretínajúcimi sa krivkami sa nazýva dvojnásobne súvislá oblasť.

Orientácia hranice oblasti

Orientácia proti smeru hodinových ručičiek sa nazýva kladná orientácia. Orientácia v smere hodinových ručičiek sa nazýva záporná orientácia.

Pojmy pre Cauchyho integrálna veta CIV

- f je analytická funkcia v oblasti to znamená, že funkcia f má v každom bode oblasti deriváciu.
- Jednoduchá krivká nemá samoprienieky.
- Po častiach hladká krivka má len konečný počet bodov vratu. V týchto bodoch derivácia neexistuje alebo je nulová. Všetky krivky na MAT2 budú hladké alebo po častiach hladké.
- Uzavretá krivka má rovnaký začiatočný a koncový bod, t.j. $f(\alpha) = f(\beta)$.

Cauchyho integrálna veta CIV

Veta

Nech f je analytická funkcia v jednoducho súvislej oblasti D. Ak C je jednoduchá, po častiach hladká uzavretá krivka v D, potom

$$\int_C f(z)dz = 0.$$

Nezávislosť integrálu analyt. funkcie od integračnej cesty

Cauchyho integrálna veta implikuje skutočnosť, že **integrál z analytickej funkcie** v jednoducho súvislej oblasti D **nezávisí od integračnej cesty**.

Potom $C=C_1+C_2^-$, kde C_2^- má opačnú orientáciu ako C_2 , je jednoduchá, po častiach hladká uzavretá krivka spĺňajúca predpoklady CIV.

Nezávislosť integrálu analyt. funkcie od integračnej cesty

Nech C_1 a C_2 sú jednoduché, po častiach hladké, nepretínajúce sa krivky s rovnakým začiatočným bodom z_1 aj rovnakým koncovým bodom z_2 .

Nech $C_1 \subset D$ a $C_2 \subset D$.

Potom $C=C_1+C_2^-$, kde C_2^- má opačnú orientáciu ako C_2 , je jednoduchá, po častiach hladká uzavretá krivka spĺňajúca predpoklady CIV.

$$0 = \int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2^-} f(z)dz = \int_{C_1} f(z)dz - \int_{C_2} f(z)dz$$
$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

A takto sme dokázali nasledujúcu Lemmu.

Lemma

Ak je $f:D(\subset \mathbf{C})\longrightarrow \mathbf{C}$ analytická funkcia definovaná v jednoducho súvislej oblasti D, potom $\int_C f(z)dz$ v oblasti D nezávisí od integračnej cesty.

Nezávislosť integrálu analyt. funkcie od integračnej cesty

Ak z_1 je začiatočný bod a z_2 je koncový bod krivky C, potom namiesto zápisu

$$\int_C f(z)dz$$

môžeme používať zápis

$$\int_{z_1}^{z_2} f(z) dz.$$

Pozn. Nech $f:D(\subset \mathbf{C})\longrightarrow \mathbf{C}$ je analytická funkcia definovaná v jednoducho súvislej oblasti D a nech $z_1,\,z_2\in D$. Nech pre každé $z\in D$ platí F'(z)=f(z), potom funkciu F nazývame primitívnou funkciou k funkcii f na D.

Ak má analytická funkcia f primitívnu funkciu F, potom

$$\int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1).$$

Príklad

Vypočítajte integrál

$$\int_C z^2 dz,$$

kde C je úsečka spájajúca bod $z_1 = 0$ s bodom $z_2 = 1 + i$.

$$\begin{aligned} \text{Riešenie: } \varphi : \langle 0, 1 \rangle &\longrightarrow \mathbf{C}, \varphi(t) = A + t(B - A) \\ \varphi : \langle 0, 1 \rangle &\longrightarrow \mathbf{C}, \varphi(t) = 0 + t(1 + i - 0) = t(1 + i) \\ \varphi'(t) = 1 + i & \int_C f(z) dz = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt. \\ \int_0^{1+i} z^2 dz &= \int_0^1 (t(1+i))^2 (1+i) dt = (1+i)^3 \int_0^1 t^2 dt \\ &= (1+i)^3 \left[\frac{t^3}{3} \right]_0^1 = \frac{(1+i)^3}{3} \end{aligned}$$

Iné riešenie: Využijeme:

Ak má analytická funkcia f primitívnu funkciu F, potom

$$\int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1).$$

$$\int_0^{1+i} z^2 dz = \left[\frac{z^3}{3}\right]_0^{1+i} = \frac{(1+i)^3}{3}$$

Dostali sme rovnaký výsledok. Ich čitatele môžeme ešte upraviť.

$$(1+i)^3 = 1 + 3i + 3i^2 + i^3 = 1 + 3i - 3 - i = -2 + 2i.$$

Vidíme, že tento integrál nezávisí od integračnej cesty, ale to sme očakávali, lebo $f(z)=z^2$ je analytická.

Porovnanie z^2 a \overline{z}^2

$$f(z)=z^2, \quad z=x+i\,y$$
 je analytická funkcia. $f(z)=\overline{z}^2, \quad z=x-i\,y$ nie je analytická funkcia. Prečo?

Porovnanie z^2 a \overline{z}^2

$$f(z)=z^2, \quad z=x+i\,y$$
 je analytická funkcia. $f(z)=\overline{z}^2, \quad z=x-i\,y$ nie je analytická funkcia. Prečo?

$$\frac{\partial u(\mathbf{a})}{\partial x} \ = \ \frac{\partial v(\mathbf{a})}{\partial y} \qquad \qquad \frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$$

$$z^{2} = (x+iy)^{2} = x^{2} + 2xyi + y^{2}i^{2} = x^{2} - y^{2} + i(2xy)$$

$$u(x,y) = x^{2} - y^{2} \qquad v(x,y) = 2xy$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = 2y$$

$$\frac{\partial u}{\partial y} = -2y \qquad \frac{\partial v}{\partial y} = 2x$$

2x = 2x \land -2y = -2y platí vždy, t.j. pre každé $z \in \mathbf{C}$.

Porovnanie z^2 a \overline{z}^2

$$f(z)=z^2, \quad z=x+i\,y$$
 je analytická funkcia. $f(z)=\overline{z}^2, \quad z=x-i\,y$ nie je analytická funkcia. Prečo?

$$\frac{\partial u(\mathbf{a})}{\partial x} \quad = \quad \frac{\partial v(\mathbf{a})}{\partial y} \qquad \qquad \frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$$

$$\overline{z}^2 = (x - iy)^2 = x^2 - 2xyi + y^2i^2 = x^2 - y^2 + i(-2xy)$$

$$u(x,y) = x^2 - y^2 \qquad v(x,y) = -2xy$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = -2y$$

$$\frac{\partial u}{\partial y} = -2y \qquad \frac{\partial v}{\partial y} = -2x$$

$$2x = -2x$$
 \land $-2y = -(-2)y$ platí pre $x = 0$ \land $y = 0$.

Analytická funkcia z^2

$$f(z)=z^2$$
 je polynomická funkcia (z^2 je polynóm 2. stupňa). $c_2z^2+c_1z^1+c_0z^0=c_2z^2+c_1z+c_0$, kde $c_2=1$, $c_1=0$ a $c_0=0$.

Pozn. z pdf 19_diferencialny_pocet

- Mocninová funkcia s prirodzeným exponentom, polynomická funkcia, trigonometrické a hyperbolické funkcie sú analytické funkcie.
- Hlavná hodnota (vetva) logaritmu a všeobecnej mocniny sú analytické na množine všetkých komplexných čísel s výnimkou nuly a záporných reálnych čísel.
 - Je to z toho dôvodu, že tieto funkcie sú definované pomocou logaritmickej funkcie.

Cauchyho integrálna veta vo viacnásobne súvislých oblastiach

Veta

Nech $f:A(\subset \mathbf{C})\longrightarrow \mathbf{C}$ je analytická funkcia.

Nech C_0 , C_1 , C_2 ,..., C_n sú jednoduché, po častiach hladké uzavreté krivky orientované v rovnakom smere, ktoré spĺňajú podmienky:

- $\overline{IntC_i} \subset IntC_0$, pre i = 1, 2, ..., n
- ullet $\overline{IntC_i}\cap\overline{IntC_j}=\emptyset$, pre každé $i
 eq j,\,i,j=1,2,...,n$
- $\overline{IntC_0} \setminus \bigcup_{i=1}^n IntC_i \subset A$.

Potom
$$\int_{C_0} f(z)dz = \sum_{i=1}^n \int_{C_i} f(z)dz.$$

Veta o deformácii integračnej krivky

Veta

Nech C_1 a C_2 sú jednoduché, po častiach hladké uzavreté krivky orientované v rovnakom smere, ktoré sa nepretínajú a $C_2 \subset IntC_1$. Nech tieto krivky a množina bodov ležiacich medzi nimi ležia v oblasti D. Ak $f: D(\subset \mathbf{C}) \longrightarrow \mathbf{C}$ je analytická funkcia, tak

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Využitie: Ak počítame integrál po komplikovanej krivke, stačí vo vypočte nahradiť túto komplikovanú krivku nejakou jednoduchou krivkou (napr. kružnicou), ktorá leží celá vnútri tej komplikovanej krivky.

Cauchyho integrálna formula CIF

CIV

Veta

Nech f je analytická funkcia v jednoducho súvislej oblasti D.

Ak C je jednoduchá, po častiach hladká uzavretá krivka v D, potom

$$\int_C f(z)dz = 0.$$

CIF

Veta

Nech C je jednoduchá, po častiach hladká uzavretá, kladne orientovaná krivka a $f:IntC\cup C\longrightarrow \mathbf{C}$ je analytická funkcia.

Potom pre každé $a \in IntC$

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} dz.$$
 $f_1(a) = \frac{1}{2\pi i} \int_C \frac{f_1(z)}{z - a} dz.$

Ak sa nedá použiť $\overline{\text{CIV}}$, lebo v bode a nie je f analytická, použijeme $\overline{\text{CIF}}$ v tvare:

$$\int_C \frac{f_1(z)}{z - a} dz = 2\pi i f_1(a), \ k de \ \frac{f_1(z)}{z - a} = f(z)$$

Príklad

Vypočítajte integrál $\int_C \frac{e^z}{z(z-i)}dz$, kde C je kladne orientovaná kružnica so stredom v bode z=i a polomerom $\frac{1}{2}$.

Riešenie: menovateľ $\neq 0 \Rightarrow D(f(z)) = \mathbf{C} \setminus \{0, i\}$. To znamená, že funkcia nie je definovaná v bodoch 0 a i a teda v nich nie je ani analytická.

A keďže i leží vnútri krivky, nemôžeme použiť CIVa použijeme CIF.

Príklad

Vypočítajte integrál $\int_C \frac{e^z}{z(z-i)}dz$, kde C je kladne orientovaná kružnica so stredom v bode z=i a polomerom $\frac{1}{2}$.

A keďže i leží vnútri krivky, použijeme CIF v tvare:

$$\int_C \frac{f_1(z)}{z - a} dz = 2\pi i f_1(a)$$

$$\int_C \frac{e^z}{z - i} dz = 2\pi i f_1(i) = 2\pi i \frac{e^i}{i} = 2\pi e^i.$$

Singulárny bod n-tého rádu

Veta

Každá funkcia f(z) analytická v uzavretej oblasti \overline{D} má v tejto oblasti derivácie všetkých rádov a platí

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz, n = 1, 2, \dots$$

kde C je jednoduchá, po častiach hladká uzavretá, kladne orientovaná krivka v \overline{D} .

$$f_1^{(n)}(a) = \frac{n!}{2\pi i} \int_C \frac{f_1(z)}{(z-a)^{n+1}} dz, n = 1, 2, \dots$$

V príkladoch používame rovnosť z tejto vety v tvare:

$$\int_C \frac{f_1(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f_1^{(n)}(a), \ kde \ \frac{f_1(z)}{(z-a)^{n+1}} = f(z).$$

Odvodenie vzťahu z predošlého slajdu

$$f_1^{(n)}(a) = \frac{n!}{2\pi i} \int_C \frac{f_1(z)}{(z-a)^{n+1}} dz$$

$$\frac{n!}{2\pi i} \int_C \frac{f_1(z)}{(z-a)^{n+1}} dz = f_1^{(n)}(a)$$

$$\frac{2\pi i}{n!} \frac{n!}{2\pi i} \int_C \frac{f_1(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f_1^{(n)}(a)$$

$$\int_C \frac{f_1(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f_1^{(n)}(a)$$

Príklad

Vypočítajte integrál $\int_C \frac{\sin z}{(z-i)^4} dz$, kde C je jednoduchá, po častiach hladká uzavretá, kladne orientovaná krivka obsahujúca vnútri bod i.

 $\sin z$ je analytická funkcia v ${\bf C}$ a keďže i leží vnútri krivky, použijeme:

$$\int_{C} \frac{f_{1}(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f_{1}^{(n)}(a)$$

$$\int_{C} \frac{\sin z}{(z-i)^{4}} dz = \frac{2\pi i}{3!} f_{1}^{(3)}(i) = \frac{2\pi i}{3 \cdot 2 \cdot 1} (-\cos i) = -\frac{\pi i}{3} \cosh 1.$$

Pozn.
$$n! = n \cdot (n-1) \cdot (n-2) \dots 3 \cdot 2 \cdot 1$$

$$f_1^{(3)}(z) = (\sin z)^{(3)} = (\sin z)''' = (\cos z)'' = (-\sin z)' = -\cos z$$

Ďakujem za pozornosť.