Exercices sur le produit scalaire

Exercice I:

On considère un carré ABCD de côté a. Déterminer $\overrightarrow{AC} \cdot \overrightarrow{AB}$, puis $\overrightarrow{AC} \cdot \overrightarrow{DB}$

Pour les deux exercices suivants, on donne le ABCDEFGHd'arête a:

Exercice II:

Calculer, dans chaque cas, $\overrightarrow{u} \cdot \overrightarrow{v}$ en fonction de l'arête a:

(a)
$$\overrightarrow{u} = \overrightarrow{EB}$$
, $\overrightarrow{v} = \overrightarrow{AD}$. (b) $\overrightarrow{u} = \overrightarrow{EA}$, $\overrightarrow{v} = \overrightarrow{CH}$. (c) $\overrightarrow{u} = \overrightarrow{HF}$, $\overrightarrow{v} = \overrightarrow{DG}$. (d) $\overrightarrow{u} = \overrightarrow{EG}$, $\overrightarrow{v} = \overrightarrow{CH}$.

Exercice III:

On désigne par I, J et K les milieux de [BF], [FG] et [GH].

- (a) Calculer les produits scalaires $\overrightarrow{EJ} \cdot \overrightarrow{FI}$, $\overrightarrow{EK} \cdot \overrightarrow{FI}$, $\overrightarrow{AI} \cdot \overrightarrow{BG}$ et $\overrightarrow{AJ} \cdot \overrightarrow{BC}$.
- (b) Evaluer $\cos \widehat{IEK}$ après avoir calculé EI, EK et $\overrightarrow{EI} \cdot \overrightarrow{EK}$.

Exercice IV:

- (a) Montrer que pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} on a : $|\overrightarrow{u} \cdot \overrightarrow{v}| \leq ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$.
- (b) \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non nuls.

Exercice V:

Dans un repère orthonormé, on donne A(3;4;-2), B(1;6;0) et C(-2;2;1). Déterminer la nature du triangle ABC.

Exercice VI:

Donner une équation cartésienne du plan passant par A et admettant \overrightarrow{n} comme vecteur normal, dans un repère orthonormal $(O; \overrightarrow{1}, \overrightarrow{1}, \overrightarrow{k})$:

(a)
$$A(3;-1;2)$$
 et $\overrightarrow{n}(1;0;-4)$

(c)
$$A(-2;1;2)$$
 et $\overrightarrow{n} = \overrightarrow{1} + \overrightarrow{1}$

(b)
$$A(1;-1;0)$$
 et $\overrightarrow{n}(1;1;-2)$

(d)
$$A(3;4;5)$$
 et $\vec{n}\left(\frac{1}{3};\frac{1}{4};\frac{1}{5}\right)$

Exercice VII:

L'espace est rapporté à un repère orthonormé. Trouver un point du plan et un vecteur normal :

(a)
$$3x - 5y + z - 1 = 0$$

(b)
$$x = y$$

(c)
$$3z - x - 3 = 0$$
 (d) $y = -2x + 1$

(d)
$$u = -2x + 1$$

Exercice VIII:

L'espace est rapporté à un repère orthonormé.

Dans chaque cas, déterminer une équation cartésienne du plan P:

- (a) P est le plan médiateur du segment [AB] avec A(-1;3;1) et B(0;5;-3).
- (b) P est le plan orthogonal à la droite (AC) passant par l'orthocentre du triangle ABC avec A(3;0;4), B(-1;1;1) et C(2;0;0).

1

Exercice IX : On s'intéresse au système
$$S \begin{cases} 3y+z=6\\ 2x-y+z=2\\ 3x-3y+z=4 \end{cases}$$
 , ainsi qu'aux

plans définis par ces équations : $P_1:3y+z=6$, $P_2:2x-y+z=2$ et $P_3:3x-3y+z=4$.

- (a) Démontrer que P_1 et P_2 se coupent suivant une droite Δ dont on donnera une représentation paramétrique.
- (b) Etudier la position de Δ par rapport à P_3 .
- (c) En déduire $P_1 \cap P_2 \cap P_3$ ainsi que le nombre de solutions de S.

Exercice X:

On considère un tétraèdre ABCD régulier d'arête a. (chaque face est un triangle équilatéral de côté a) Démontrer que deux arêtes opposées sont orthogonales.

Exercice XI:

 $ABCDEFGH\ \mbox{est}$ un cube dont les sommets sont disposés comme sur la figure ci-dessous.

Les vecteurs \overrightarrow{AH} et \overrightarrow{CE} sont-ils orthogonaux?

Exercice XII:

Dans un repère orthonormal $(O; \overrightarrow{1}, \overrightarrow{j}, \overrightarrow{k})$ on donne A(1;2;3) et $\overrightarrow{n}(1;-3;1)$. Trouver une équation du plan P qui passe par A et qui est orthogonal à \overrightarrow{n} .

Exercice XIII:

On donne les équations cartésiennes de deux plans : P: x-4y+7=0 Q: x+2y-z+1=0

- (a) Montrer que ces plans sont sécants. On note d leur droite d'intersection.
- (b) Déterminer un vecteur directeur de d.

Exercice XIV:

Déterminer la forme d'une équation d'un plan parallèle au plan (xOy).

Exercice XV:

Déterminer la forme d'une équation d'un plan perpendiculaire au plan (xOy).

Exercice XVI:

Soit
$$P:2x-z=0$$
 et $d: \left\{ egin{array}{ll} x=t-1 \\ y=-3t \\ z=2 \end{array}
ight.$ Déterminer l'intersection de P avec $d.$

Exercice XVII:

Soient P: 2x + y - z - 2 = 0 et Q: x + 3y + 7z - 11 = 0. Démontrer que P et Q sont sécants, et déterminer une représentation paramétrique leur droite d'intersection.

Exercice XVIII:

Déterminer l'intersection des plans P, Q et R avec :

$$P: 2x + 3y - 2z - 2 = 0$$
, $Q: 4x - 3y + z - 4 = 0$ et $R: 2x + 12y - 7z - 2 = 0$