

EEE 51: Second Semester 2017 - 2018 Lecture 13

Compound Amplifiers

Today

- Compound Amplifiers
 - CE-CC
 - CB-CE
 - CE-CB (Cascode)

Limitations of Using Single-Stage Amplifiers

	CE/CS	CB/CG	CC/CD
$G_{\scriptscriptstyle m}$	$g_{\scriptscriptstyle m}$	$-g_m$	$-g_m$
R_o	$r_{_{\! o}} \parallel R_{_{\! L}}$	$r_o \parallel R_L$	$\frac{R_L}{1 + g_m R_L}$
R_{i}	r_{π}	$\frac{1}{g_m}$	r_{π}
$A_{_{\scriptscriptstyle u}}$	$-g_m(r_o \parallel R_L)$	$g_m(r_o \parallel R_L)$	$\frac{g_m R_L}{1 + g_m R_L}$

Can we "mix-and-match" these parameters?

Example: Audio Amplifiers

- Basic Idea:
 - Need large gain
 - Need to drive small resistances

Which amplifier topology can we use?

One Option: The CE-CC Amplifier

Possibly a good match! What about the DC voltages and currents?

DC Analysis:

The DC input voltage of the CC amplifier is provided by the CE amplifier...

The two collector currents are NOT independent of each other!

DC Analysis:

KVL at the interface loop to get I_{C2} :

$$V_{CC} - (I_{C1} + I_{B2})R_1 - V_{BE2} - I_{E2}R_2 = 0$$

$$V_{CC} - I_{S1} \cdot e^{\frac{V_{IN}}{V_T}} \cdot R_1 - \frac{I_{C2}}{\beta_2}R_1 - V_T \ln\left(\frac{I_{C2}}{I_{S2}}\right) - \frac{I_{C2}}{\alpha_2}R_2 = 0$$

Estimate using relative values

$$V_{CC} - I_{S1} \cdot e^{\frac{V_{IN}}{V_T}} \cdot R_1 - 0.7 \text{V} - I_{C2} R_2 = 0$$

$$I_{C2} \approx \frac{V_{CC} - I_{S1} \cdot e^{\frac{V_{IN}}{V_T}} \cdot R_1 - 0.7V}{R_2}$$

Small Signal Analysis:

Small Signal Analysis:

Can we do the same for input resistance?

The CB-CE Amplifier

The CB-CE Amplifier

DC Analysis

The DC input voltage of the CE amp is provided by the CB amp...

 V_{CC}

KVL at the interface loop to get I_{C2} :

 V_{CC}

$$V_{CC} - (I_{C1} + I_{B2})R_1 - V_{BE2} = 0$$

$$V_{CC} - I_{S1} \cdot e^{\frac{-V_{IN}}{V_T}} \cdot R_1 - \frac{I_{C2}}{\beta_2}R_1 - V_T \ln\left(\frac{I_{C2}}{I_{S2}}\right) = 0$$

Estimate using relative values

$$V_{CC} - I_{S1} \cdot e^{\frac{-V_{IN}}{V_T}} \cdot R_1 - \frac{I_{C2}}{\beta_2} R_1 - 0.7 V = 0$$

$$I_{C2} \approx \beta_2 \cdot \frac{V_{CC} - I_{S1} \cdot e^{\frac{-V_{IN}}{V_T}} \cdot R_1 - 0.7V}{R_1}$$

The CB-CE Amplifier

Small Signal Analysis

$$A_{v} = A_{v,CB} \cdot \frac{R_{i,CC}}{R_{i,CC} + R_{o,CE}} \cdot A_{v,CE}$$

$$= g_{m1}R_{1} \cdot \frac{r_{m2}}{r_{m2} + R_{1}} \cdot \left(-g_{m2}R_{2}\right)$$

$$\approx -g_{m1}R_{1} \cdot g_{m2}R_{2}$$

Gain is provided by both the CB and CE stages

The CB-CE Amplifier

Small Signal Analysis

The CE-CB Amplifier (Cascode Amplifier)

The CE-CB Amplifier (Cascode Amplifier)

Next Meeting

- Cascode Amplifiers
- Operational Amplifiers