Συναρτήσεις Μονοτονία

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Μονοτονία Συναρτήσεων

Ορισμός

Μία συνάρτηση f είναι <u>γνησίως αύξουσα</u> σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) < f(x_2)$

Ορισμός

Μία συνάρτηση f είναι <u>γνησίως φθίνουσα</u> σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) > f(x_2)$

Μονοτονία Συναρτήσεων

Ορισμός

Μία συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) < f(x_2)$

Ορισμός

Μία συνάρτηση f είναι γνησίως φθίνουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) > f(x_2)$

Ποιός δεν αναρωτιέται?

Ισχύει η συνεπαγωγή για έστω μια γνησίως αύξουσα

$$x_1 < x_2 \iff f(x_1) < f(x_2)$$

? Φυσικά (?)

Ποιός δεν αναρωτιέται?

Ισχύει η συνεπαγωγή για έστω μια γνησίως αύξουσα

$$x_1 < x_2 \iff f(x_1) < f(x_2)$$

Φυσικά (?)

αύξουσα, σκέτο αύξουσα

Ορισμός

Μία συνάρτηση f είναι $\underline{\alpha \dot{\nu}}$ ξουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \leq f(x_2)$

Ορισμός

Μία συνάρτηση f είναι φθίνουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \geq f(x_2)$

αύξουσα, σκέτο αύξουσα

Ορισμός

Μία συνάρτηση f είναι $\underline{\alpha}$ ύξουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \leq f(x_2)$

Ορισμός

Μία συνάρτηση f είναι φθίνουσα σε ένα διάστημα Δ αν

για κάθε
$$x_1, x_2 \in \Delta$$
 με $x_1 < x_2 \implies f(x_1) \geq f(x_2)$

Συγκρατήσαμε τίποτα?

Παραδείγματα

$$\quad \circ \ f(x) = x^2$$

$$f(x) = 1/x$$

Συγκρατήσαμε τίποτα?

Παραδείγματα

$$\quad \circ \ f(x) = x^2$$

•
$$f(x) = 1/x$$

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

- ax + b, a > 0
- $\circ \ln x$
- $x^2, x > 0$
- x³

- e^x , 2^a
- $\eta \mu x$, $0 < x < \pi/2$
- εφα

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

- ax + b, a < 0
- $x^2, x \leq 0$
- $-x^3$

- $(\frac{1}{2})^x$, e^{-x}
- $\sigma v \nu x$, $0 < x < \pi/2$

6/23

 $\frac{1}{x}$, x < 0

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$ax + b$$
, $a > 0$

- $\circ \ln x$
- x^2 , x > 0
- $\bullet x^3$

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

 $\bullet \ \varepsilon \varphi x$

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

•
$$ax + b$$
, $a < 0$

•
$$x^2, x \leq 0$$

$$-x^3$$

$$(\frac{1}{2})^x$$
, e^{-x}

•
$$\sigma v \nu x$$
, $0 < x < \pi/2$

$$\frac{1}{x}$$
, $x < 0$

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$ax + b$$
, $a > 0$

- $\circ \ln x$
- x^2 , x > 0
- $\bullet x^3$

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

 $\bullet \ \varepsilon \varphi x$

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

•
$$ax + b$$
, $a < 0$

•
$$x^2, x \leq 0$$

$$-x^3$$

$$(\frac{1}{2})^x$$
, e^{-x}

•
$$\sigma v \nu x$$
, $0 < x < \pi/2$

$$\frac{1}{x}$$
, $x < 0$

Γράψτε στο τετράδιο όσες γνησίως αύξουσες συναρτήσεις θυμάστε

$$ax + b$$
, $a > 0$

- $\circ \ln x$
- x^2 , x > 0
- $\bullet x^3$

$$\bullet$$
 e^x , 2^x

•
$$\eta \mu x$$
, $0 < x < \pi/2$

 $\bullet \ \varepsilon \varphi x$

Γράψτε στο τετράδιο όσες γνησίως φθίνουσες συναρτήσεις θυμάστε

•
$$ax + b$$
, $a < 0$

•
$$x^2, x \leq 0$$

$$\bullet$$
 $-x^3$

$$\bullet \left(\frac{1}{2}\right)^x$$
, e^{-x}

•
$$\sigma v \nu x$$
, $0 < x < \pi/2$

6/23

•
$$\frac{1}{x}$$
, $x < 0$

Μπρίκια κολάμε?

Θα ασχολούμαστε

- με κατασκευές
- ανισώσεις

Η συνάρτηση f του σχήματος είναι ορισμένη στους πραγματικούς αριθμούς.

- Να γράψετε τα διαστήματα μονοτονίας της
- Να συγκρίνετε τις τιμές
 - $\bullet \ \ f(2) \ \mathrm{kal} \ f(e)$
 - $\bullet \ \ f(3) \ \mathrm{kal} \ f(\pi)$

Δίνεται η συνάρτηση $f(x)=x^3+3x-5$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Δίνεται η συνάρτηση $f(x) = x^3 + 3x - 5$

- ① Να μελετήσετε την συνάρτηση ως προς την μονοτονία

- ① Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να αποδείξετε ότι:
 - **1** Aν x > 1, τότε $e^x + \ln x > e$
 - ② Αν α , $\beta > 0$ και $\alpha < \beta$, τότε $\ln \frac{\alpha}{\beta} < e^{\beta} e^{\alpha}$
 - ③ Για κάθε x > 0, f(x + 1) f(x) > 0
 - Φ Για κάθε x > 0, f(x) < f(2x)
 - ⑤ Για κάθε x > 1, $f(x^2) > f(x)$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:

 - ② Αν α , $\beta>0$ και $\alpha<\beta$, τότε $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - ③ Για κάθε x > 0, f(x+1) f(x) > 0
 - Φ Για κάθε x > 0, f(x) < f(2x)
 - Για κάθε x>1, $f(x^2)>f(x)$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - ① Aν x > 1, τότε $e^x + \ln x > e$
 - 2 An α , $\beta>0$ kal $\alpha<\beta$, tóte $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - ③ Για κάθε x > 0, f(x+1) f(x) > 0
 - Φ Για κάθε x > 0, f(x) < f(2x)
 - 5 Για κάθε x>1, $f(x^2)>f(x)$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - ① Aν x > 1, τότε $e^x + \ln x > e$

 - ③ Για κάθε x > 0, f(x+1) f(x) > 0
 - Φ Για κάθε x > 0, f(x) < f(2x)
 - § Για κάθε x>1, $f(x^2)>f(x)$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:

 - 2 An α , $\beta>0$ kal $\alpha<\beta$, tóte $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - 3 Για κάθε x > 0, f(x+1) f(x) > 0

 - Για κάθε x>1, $f(x^2)>f(x)$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- Να αποδείξετε ότι:
 - ① Aν x > 1, τότε $e^x + \ln x > e$
 - 2 Αν α , $\beta>0$ και $\alpha<\beta$, τότε $\ln\frac{\alpha}{\beta}< e^{\beta}-e^{\alpha}$
 - ③ Για κάθε x > 0, f(x+1) f(x) > 0
 - 4 Για κάθε x > 0, f(x) < f(2x)
 - § Για κάθε x>1, $f(x^2)>f(x)$

- ① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x 1$
- Να βρείτε το πεδίο ορισμού των συναρτήσεων

 - **2** $h(x) = \frac{1}{f(x)}$

- ① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x 1$
- ② Να βρείτε το πεδίο ορισμού των συναρτήσεων:

 - $h(x) = \frac{1}{f(x)}$

- ① Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης $f(x) = e^x + 2x 1$
- Να βρείτε το πεδίο ορισμού των συναρτήσεων:

 - **2** $h(x) = \frac{1}{f(x)}$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι γνησίως φθίνουσα. Να λύσετε τις ανισώσεις:

- f(x) > f(3)
- f(2x+1) < 5, av f(3) = 5
- $f(x^2 3x) \ge f(2 4x)$
- f(f(3x-1)) < f(f(2x+3))

- 📵 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να λύσετε τις ανισώσεις:
 - f(x) > 0
 - $e^x + x < e + 1$
 - $f(e^x + x + 1) > 1 + e^2$
 - $e^{\hat{f}(x)} + f(x) x > e^x$

Δίνεται η συνάρτηση
$$f(x) = e^x + x - 1$$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - 2 $e^x + x < e + 1$
 - $(e^x + x + 1) > 1 + e^2$

- 1 Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$
 - $(e^x + x + 1) > 1 + e^x$

Δίνεται η συνάρτηση $f(x) = e^x + x - 1$

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$
 - $f(e^x + x + 1) > 1 + e^2$
 - $e^{f(x)} + f(x) x > e^x$

13/23

- Να μελετήσετε την συνάρτηση ως προς την μονοτονία
- ② Να λύσετε τις ανισώσεις:
 - **1** f(x) > 0
 - $e^x + x < e + 1$
 - $f(e^x + x + 1) > 1 + e^2$

Δίνεται η συνάρτηση $f(x)=x^5+x-2$. Να λύσετε τις ανισώσεις:

- **1** $x < \frac{2}{x^4+1}$
- ② $x^4 \frac{2}{x} > -1$, sto $(0, +\infty)$

Δίνεται η συνάρτηση $f(x) = x^5 + x - 2$. Να λύσετε τις ανισώσεις:

- $2 \quad x^4 \tfrac{2}{x} > -1 \text{, sto } (0, +\infty)$

Δίνεται η συνάρτηση $f(x)=x^5+x-2$. Να λύσετε τις ανισώσεις:

- $2 \quad x^4 \tfrac{2}{x} > -1 \text{, sto } (0, +\infty)$

Δίνεται η συνάρτηση $f(x)=x^5+x-2$. Να λύσετε τις ανισώσεις:

- $2 \quad x^4 \tfrac{2}{x} > -1 \text{, sto } (0, +\infty)$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

- f 1 Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- ② Να λύσετε την ανίσωση $x^2 + \ln(x^2 + 1) > 0$
- 3 Να λύσετε την ανίσωση $x^4 x^2 < \frac{x^2 + 1}{x^4 + 1}$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

- f 1 Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- ② Να λύσετε την ανίσωση $x^2 + \ln(x^2 + 1) > 0$
- 3 Να λύσετε την ανίσωση $x^4 x^2 < \frac{x^2 + 1}{x^4 + 1}$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$

- f 1 Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- ② Να λύσετε την ανίσωση $x^2 + \ln(x^2 + 1) > 0$
- 3 Να λύσετε την ανίσωση $x^4 x^2 < \frac{x^2 + 1}{x^4 + 1}$

Να λύσετε τις ανισώσεις:

①
$$e^x + x^3 < 1$$

$$e^x - e^{x^2} > \ln x$$

Να λύσετε τις ανισώσεις:

①
$$e^x + x^3 < 1$$

②
$$e^x - e^{x^2} > \ln x$$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=1 και $f\uparrow$. Να λύσετε τις ανισώσεις:

- **1** $f(x) + e^x > 2$
- ② (x+1)f(x) < 1, sto $(-1, +\infty)$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=1 και $f\uparrow$. Να λύσετε τις ανισώσεις:

- **1** $f(x) + e^x > 2$
- $\ \ \, \textbf{ (}x+1)f(x)<1\text{, sto }(-1,+\infty)$

Δίνονται οι συναρτήσεις $f(x)=e^x$, x>0 και $g(x)=\frac{e}{x}$, x>0.

- $extbf{1}$ Να βρείτε τα κοινά σημεία των C_f και C_g
- $\ \, \textbf{②}\,\,$ Να βρείτε τη σχετική θέση των C_f και C_g

Δίνονται οι συναρτήσεις $f(x)=e^x$, x>0 και $g(x)=\frac{e}{x}$, x>0.

- $\ensuremath{\text{\textbf{0}}}$ Να βρείτε τα κοινά σημεία των C_f και C_g
- ② Να βρείτε τη σχετική θέση των C_f και C_g

Εστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

- $oldsymbol{1}$ Να δείξετε ότι η g είναι γνησίως φθίνουσα
- ② Να δείξετε ότι η f είναι γνησίως αύξουσα
- 3 Να λύσετε την ανίσωση $2 \ln x < 2 + g(x^2)$

Εστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

- $oldsymbol{1}$ Να δείξετε ότι η g είναι γνησίως φθίνουσα
- ② Να δείξετε ότι η f είναι γνησίως αύξουσα
- 3 Να λύσετε την ανίσωση $2 \ln x < 2 + g(x^2)$

Εστω $g:(0,+\infty)\to\mathbb{R}$ μία γνησίως μονότονη συνάρτηση της οποίας η γραφική παράσταση διέρχεται από τα σημεία $\mathrm{A}(1,-2)$, $\mathrm{B}(2,-3)$ και η συνάρτηση $f(x)=\ln x-g(x)$, x>0.

- f Q Να δείξετε ότι η g είναι γνησίως φθίνουσα
- ② Να δείξετε ότι η f είναι γνησίως αύξουσα

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις με $g \uparrow$ και

$$g(x) = f(x+1) - f(x)$$
, για κάθε $x \in \mathbb{R}$

- Να λύσετε τις ανισώσεις
 - ① $f(\ln x + 1) > f(\ln x)$, $\alpha v f(1) = f(2)$
- Να αποδείξετε ότι

$$f(e^x+1)-f(\eta\mu x+1)>f(e^x)-f(\eta\mu x)$$
, για κάθε $x>0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 20/23

Εστω $f,g:\mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις με $g\uparrow$ και

$$g(x) = f(x+1) - f(x)$$
, για κάθε $x \in \mathbb{R}$

- 1 Να λύσετε τις ανισώσεις
 - ① $f(\ln x + 1) > f(\ln x)$, av f(1) = f(2)
 - 2 $f(\sqrt{x}+1)f(x+1) < f(\sqrt{x}) f(x)$
- Να αποδείξετε ότι

$$f(e^x+1)-f(\eta\mu x+1)>f(e^x)-f(\eta\mu x)$$
, για κάθε $x>0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 20/23

Εστω $f,g:\mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις με $g\uparrow$ και

$$g(x) = f(x+1) - f(x)$$
, για κάθε $x \in \mathbb{R}$

- 1 Να λύσετε τις ανισώσεις
 - ① $f(\ln x + 1) > f(\ln x)$, av f(1) = f(2)
 - $f(\sqrt{x}+1)f(x+1) < f(\sqrt{x}) f(x)$
- ② Να αποδείξετε ότι

$$f(e^x+1)-f(\eta\mu x+1)>f(e^x)-f(\eta\mu x)$$
, για κάθε $x>0$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 20/23

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση η οποία είναι γνησίως φθίνουσα

- f 1 Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0
- ② Να λύσετε την εξίσωση $f(x) + f(x^3) = f(x^2) + f(x^8)$, στο $(0, +\infty)$

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι γνησίως φθίνουσα

- f 1 Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0
- Na lúsete thu exiswsh $f(x)+f(x^3)=f(x^2)+f(x^8)$, sto $(0,+\infty)$

- $\ \, \textbf{$\Box$} \ \, \textbf{$\Box$} \$
- $extbf{@}$ Εστω $f:\mathbb{R} o\mathbb{R}$ μία συνάρτηση για την οποία ισχύει:

$$f^3(x) + e^{f(x)} - e^{-x} - 1 = 0$$
, για κάθε $x \in \mathbb{R}$

Να εξετάσετε τη συνάρτηση f ως προς τη μονοτνία

- $\ \, \textbf{Φ} \ \, \text{Εστω} \ \, f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις όπου $g\circ f\downarrow$ και $g\uparrow$. Να δείξετε ότι $f\downarrow$
- ② Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση για την οποία ισχύει:

$$f^3(x)+e^{f(x)}-e^{-x}-1=0$$
, για κάθε $x\in\mathbb{R}$

Να εξετάσετε τη συνάρτηση f ως προς τη μονοτνία

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση