Index

Page numbers followed by "f" indicates figures and "t" indicates tables.

Α	Autonomous data sources, interfacing with,
A* Search algorithm	223
abstract state, 140	Autonomy for data integration, 6
applying constraints with, 138–142	
goal state, 138–140, 141	В
Abox, 328	Backwards expansion, 403–404
Access-pattern limitations, 68, 80	Bag semantics, 41–43
executable plans, generating, 81–84	Bayes' rule, 190
modeling, 81	Bayesian networks, 183–184, 190, 191 <i>f</i>
Accuracy challenge, 95	as generative model, 189–190
Acyclicity constraints, 166	learning, 186–189
Adaptive methods, 426	modeling feature correlations, 192–193, 192 <i>j</i>
Adaptive query process, 225–226	representing and reasoning with, 184–185
Affine gap measure, 100–102, 100 <i>f</i> , 102 <i>f</i>	Beam search, 151
Agglomerative hierarchical clustering (AHC),	BID model, see Block-independent-disjoint
180, 200	model
Algorithm decide completeness, 91	Bidirectional expansion, 404
Analysis time vs. execution time, 225	Bidirectional mappings, 322
Annotations, 436	Bioinformatics, 441–442
comments and discussions, 439-441	BioSQL, 443
data provenance, 360	Bipartite graph, 116
Answering queries, using views, 43–44	Blank nodes in RDF, 338–339
algorithms, comparison of, 57–58	Block-independent-disjoint (BID) model,
Bucket algorithms, 48–51	349–350
closed-world assumption, 60–61	Blocking solution, 111
interpreted predicates with, 61–62	Blogosphere, 456 Boolean expression, 226
Inverse-rules algorithm, 56–57	Boolean formulas, 35
MiniCon algorithm, 51–55	Bound filtering, 116–117
open-world assumption, 59–60	Bucket algorithm, 48–51
problem of, 44–46	Build large-scale structured Web databases,
relevant queries, 46–48	454–455
Archiving update logs, 444	By-table semantics, 353–354, 355 <i>f</i>
Ashcraft, 109	By-tuple semantics, 354–356
Attribute correspondences, schema mappings,	zy tupie comunico, co i coc
351	С
Attribute names, mediated schema, 65–66	Caching, 283–284, 457
Attribute-level uncertainty, 347	Candidate networks, 404

Candidate set, 155	Composability, 29
Canonical database, 33	Compose operator, 163
Canopies, 203	Composing scores, uncertainty, 347
Cardinality constraint, 165–166	Computational complexity, 356
Cardinality estimation, 214	Concordance table, 93
Cartesian product, 384	Condition variables, uncertainty, 347
CDATA, see Character data	Conditional probability table (CPT), 184 <i>f</i> , 185,
	- · · · · · · · · · · · · · · · · · · ·
CDSS, see Collaborative data sharing system	187, 188f, 191–193, 191f
Centralized DBMS, 217	Conjunctive queries, 26–28
Character data (CDATA), 297	interpreted predicates, 35–37
Chase procedure, 446	negation, 37–41
Chase rule, 86–87	query containment of, 32–34
Classifier techniques, 133	unions of, 34–35
Closed-world assumptions, 60–61	Consistent target instance, 352–353
Cloud-based parallel process, 457	Constraint enforcer, 128, 135
Cluster-based parallel process, 457	Containment mapping, 32
Clustering	interpreted predicates with, 35
collective matching based on, 200–201	Content-free element , 295
data matching by, 180–182	Conventional query processor, modules in,
Co-testing, 263	211f
Collaboration in data integration	Core universal solutions, 281–282
annotation	Corrective query processing (CQP), 232
comments as, 439–441	cost-based reoptimization, 235–238
mapping as, 438–439	Cost-based backwards expansion, 404
challenges of, 435–436	Cost-based reoptimization, CQP, 235–238
corrections and feedback process, 436–437	Count queries, 42
user updates propagated, upstream/	CPT, see Conditional probability table
downstream, 437–438	CQP, see Corrective query processing
Collaborative data sharing system (CDSS)	Crowdsourcing, 454
data provenance, 447–448	Curation, scientific annotation and, 440
peer in, 442	Cyclic mappings, 447
properties of, 441	Cyclic PDMS, 420
reconciliation process, 449	
trust policies, 448–449	D
update exchange process, 445–447	Data, 345
warehouse services, 441–442	annotation, 436
Collective matching, 174, 198–200, 204	cleaning, 453–454
based on clustering, 200–201	creation/editing, 435
entity mentions in documents, 201–202	governance, 274
Commercial relational databases, 23	graph, 399–401
CommitteeType, 299	placement and shipment in DBMS, 217–218
Compatible data values, discovering, 408	profiling tools, 275
Complete orderings, query refinements and,	relationships
36–37	annotations on, 360
Complex query reformulation algorithms, 75	graph of, 361–362, 361 <i>f</i>

sources, 65, 67 <i>f</i> , 68	Data-level variations, 67
transformation modules, 275	Database concepts, review of
types, 390	conjunctive queries, 26–28
warehousing, 9, 11	data model, 22–23
definition, 272	datalog program, 28–29
design, 274	integrity constraints, 24–25
ETL, 275–276	queries and answer, 25–26
MDM, 273–274	Database instances, 23
Data exchanges, 272, 321	Database management system (DBMS)
programs, 446	parallel vs. distributed, 216–217
settings, 277–278	performance of, 209
solutions, 278–279	query process, 210–211
core universal solutions, 281–282	control flow, 216
materialized repository, 283	cost and cardinality estimation, 214
universal solutions, 279–281	enumeration, 212–213
Data integration	execution, 211–212
architecture, 9, 10f	granularity of process, 214–216
challenges of, 6	interesting orders, 213
logical, 7–8	Database reasoning vs. description logics,
setting expectations, 9	333–334
social and administrative, 8–9	Database schemas, 22, 122f
systems, 6–7	Database systems, queries, 25
components of, 10–12	Datalog programs, 28–29
examples of, 1–5	Dataspace systems, 394–395
goal of, 6	DBMS, see Database management system
keyword search for, 407-410	De-duplication, 275
modules in, 220f	
Data integration engine, 222	Decision-support, 273
Data lineage, see Data provenance	Declarative warehousing, data exchange, 276–277
Data matching, 174f	
by clustering, 180–182	Deep Web, 376–377, 379–380
entity mentions in text, 193–198	surfacing, 383–385
learning based, 177–180	vertical search engines, 380–383
with Naive Bayes, 190	Dependent join operator, 224
probabilistic approaches to, 182–183	Description logics, 327–328
Bayesian networks, 183–186	inference in, 331–333
problem of, 173–174	semantics of, 329–331
rule-based, 175–177	syntax of, 328–329
scaling up, 203–205	vs. database reasoning, 333–334
Data pedigree, see Data provenance	Desiderata, 65
Data provenance, 359, 447–448	Distinguished variables, 26
annotations on, 360	Distributed query process, 216–219
applications of, 362–363	Distributed vs. parallel DBMS, 216–217
graph of relationships, $361-362$, $361f$	Document object model (DOM), 300-301
Data-level heterogeneity, 92–93	Document root, 295

Document type definition (DTD), 296–298	eXtensible Markup Language (XML), 292, 446
Dom relation, 84	document order, 295–296
Domain integrity constraints, 135–137	namespaces and qualified names, 294–295
Domain ontology, 325	output, 317
Double pipelined join, <i>see</i> Pipelined hash join	path matching, 313–316
Dynamic content, see Deep Web	query capabilities for, 306–312
Dynamic data, CDSS	query language
architecture, 443–444	DOM and SAX, 300–301
	XPath, 301–306
data provenance, 447–448	XQuery, 306–312
peer in, 442	query processing for, 312–313
properties of, 441	schema mapping for
reconciliation process, 449	nested mappings, query reformulation
trust policies, 448–449	with, 321–322
update exchange process, 445–447	nesting, mappings with, 318–321
warehouse services, 441–442	structural and schema definitions
Dynamic-programming algorithm, 97	DTD, 296–298
	XSD, 298–300
E	tags, elements, and attributes, 293–294
- Eddy	Extensional database (EDB) relations, 28
lottery scheduling routing, 234–235	External data, direct analysis of, 284–287
queueing-based plan selection, 232–234	Extract-transform-load (ETL)
	operations, 275–276
Edges	tool, 11
adjust weights on, 409–410	Extraction program, 246
directed, 399, 400	Extraction rules with Lixto, 267–269
Edit distance, 96–98, 97 <i>f</i> , 98 <i>f</i>	
Efficient reformulation, 70	F
Enterprise information integration (EII), 283	Facebook, 456
Equality-generating dependencies (EGDs), 24,	FindCands method, 110, 111
80, 277	FindMapping algorithm, 156
Eurocard database, 1–4, 3 <i>f</i> , 7–8	Flat-file-based data analysis, 287
Event-condition-action rule framework, 226	FLWOR, 307–309
Event-driven adaptivity, 226	Foreign key constraints, 24
handling source failures and delays, 227–228	Fullserve company database, 1–4, 2 <i>f</i> , 7–8
handling unexpected cardinalities, 228–231	Functional dependencies, 24
Evidence, combining, 408	6
Executable plans, generating, 81–84	G
Executable query plans, 81–82	Gap penalty, 98, 101 <i>f</i> GAV, <i>see</i> Global-as-View
Execution time vs. analysis time, 225	Generalized Jaccard measure, 106–108, 107f
Existential variables, 26	Generative model, 194–195, 194 <i>f</i> , 201
Expectation-maximization (EM) algorithm,	Bayesian networks as, 189–190
187, 188 <i>f</i> , 197, 198, 205	learning, 196–198
Explanation, provenance, 363	matching entity mentions, 195

Generic operators, 162	I
GLAV, see Global-and-Local-as-View	IDF measure, see Inverse document frequency
Global alignments, 102	measure
Global-and-Local-as-View (GLAV), 77–78	Immediate consequent, provenance, 361
mappings, 427, 428	Import filters, 275
Global-as-View (GAV), 70–73, 415	Incremental update propagation, 447
approach, 123	Indexing, 203
mapping, 438	Information-gathering query operators, 229
with integrity constraints, 88–89	Informative inputs, 384
Google Scholar, 454	Input attributes, 381
Google's MapReduce programming paradigm,	Instance-based matchers, 132
284	Integrated data, visualization, 456
Granularity level, 66	Integrity constraints, 22, 24–25, 78
Graph expansion algorithms, 403–404	on mediated schema, 85–89
Graph random-walk algorithms, 401	Intensional database (IDB) relations, 28
Graphical user interface, 153	Interactive wrapper construction, 263
Ground atom, 23	creating extraction results with Lixto, 267–269
н	identifying extraction results with poly,
Handling limited access patterns, 224	264–267
Hash-based exchange scheme, 217	labeling of pages with stalker, 263–264
Hash-based operators for faster initial results,	Internet data, query execution for, 222
223	Interpreted atoms, 27, 35
Hashes effect, 110	Interpreted predicates, 30, 61–62
Hashing, 203	Inverse document frequency (IDF) measure,
Head homomorphisms, 52	105–106, 105 <i>f</i>
Head variables, 26	Inverse mapping, 169
Head-left-right-tail (HLRT) wrappers, 249–250	Inverse rules, 79, 80, 86
learning, 250–251	advantage of, 57
Heterogeneity, 375	algorithm, 56–57
semantic, 8	Invert operator, 164, 168–170
type of, 382	Inverted index over strings, 111–112, 111f
Higher-level similarity measure, 108	Iterator model 316
HLRT, see Head-left-right-tail	Iterator model, 216
Homomorphism, 280	J
Horizontal partitioning, 217	Jaccard measure, 104, 132
HTML, see HyperText Markup Language	Jaccard measure, 104, 152 Jaccard similarity measures, 200
Hybrid similarity measures	Jaro measure, 103
generalized Jaccard measure, 106–108, 107 <i>f</i>	Jaro-Winkler measure, 104
Monge-Elkan similarity measure, 109	Java model, 167
soft TF/IDF, 108–109, 108 <i>f</i>	java Hiouci, 101
HyperText Markup Language (HTML), 292	K
data, 375	Key constraints, 24
tables, 376f	Keyword matching, 401–403
, J	ν Ο ^ν

v 1 1	M + 1
Keyword search	Match predictions combining 124
for data integration, 407–410	Match predictions, combining, 134
over structured data, 399–403	Match selector, 143–144
Knowledge representation (KR) systems,	Matchers, 128–134
325–327	Materialized repository, 283
L	Materialized view, 25
LAV, see Local-as-View	Max queries, 43
Learning algorithm , 177	MCD, see MiniCon description
Learning techniques, 410	<i>m</i> -estimate method, 187
Learning-based wrapper construction, 249	Mediated schema, 11–13, 65, 67 <i>f</i> , 133, 145, 346,
Left outer join operator, 317	381, 413
Levenshtein distance, 96	integrity constraints on
Lightweight integration, 455–456	GAV, 88–89
Linearly weighted matching rules, 176	LAV, 85–87
Lixto system, creating extraction rules with,	Mendota, 115
267–269	Merge operator, 161, 163–166
Local completeness, 89–90	Message-passing systems, 162
Local contributions table, 447	Meta-learner, 146, 147, 149–150
Local data, direct analysis of, 284–287	Meta-meta-model, 168
Local data, direct analysis of, 204–207 Local rejections table, 447	Meta-model, 163
Local-as-View (LAV), 73, 415	translations between, 166
	Metadata, 274, 395
approach, 123 reformulation in, 75–76	Mid-query reoptimization, 228, 238
	Middle-tier caching, 284
syntax and semantics, 74–75	MiniCon algorithm, 51-55, 424
with integrity constraints, 85–87	MiniCon description (MCD), 51, 424
Local-completeness constraint, 89–90	combining, 54–55
Logical query plan, 65, 68–70, 212 <i>f</i>	definition, 52–54
Logistic regression matching rules, 175–176	Model management operators, 162–164, 162f
Lottery scheduling scheme for routing,	developing goal of, 168
234–235	use of generic set of, 161
М	Model management systems, 163, 170
Machine learning techniques, 409	ModelGen operator, 163, 166–168, 167 <i>f</i>
Manual wrapper construction, 247–249	Models, 163
Many-to-many matches, 124, 150–152, 150 <i>f</i>	Modern database optimizers, 212
Many-to-one matches, 124	Monge-Elkan similarity measure, 109
Mappings, 163	Multi-set semantics, 23
rule, 364, 365	Multi-strategy learning, 146
MapReduce framework, 285	Walti strategy learning, 140
Margin-Infused Ranking Algorithm (MIRA),	N
410	Naive Bayes
	•
Mashups, 388 Master data management (MDM), 273–274	assumption, 190
	classification technique, 134
Match combinations, 135, 144	data matching with, 190
searching the space of, 137–143	learner, 148–149

Name-based matchers, 130–132	mapping composition, 426–429
Namespaces, 294–295	peer mappings, 414, 417–418
Needleman-Wunch measure, 98–100, 99 f	query reformulation algorithm, 421–426
Negative log likelihood, 367	query to, 415
Nested mappings, query reformulation with,	reformulation construction, 426
321–322	rule-goal tree for, 422f, 424f, 425
Nested tuple schemas, 251–252	semantics of mappings in, 418-419
Nested tuple-generating dependency (Nested	storage descriptions, 414, 417
tgds), 320–321	structure of, 414
Nodes, 400	Peer mappings, 413, 414, 421
adjust weights on, 409–410	compositions of, 426, 429
	definitional, 417, 422, 422 <i>f</i>
0	inclusion and equality, 417
Object-oriented database schemas vs.	interpreted predicates in, 421
description logics, 334	Peer relations, 413-415, 417, 418
ObjectRank, 401	Peer schema, 414, 414 <i>f</i> , 415
OLAP, see Online analytic processing queries	Performance-driven adaptivity, 231–232
One-to-many matches, 123	Phonetic similarity measures, 109-110
One-to-one matches, 123, 127	Physical database, 9
Online analytic processing (OLAP) queries, 273	design, 274
Online learning, 409	Physical query plan for data integration, 223
Open DataBase Connectivity (ODBC) wrapper,	Physical-level query operators, 217
223	Piazza-XML mappings language, 318–319
Open-world assumption, 59–60	Pipelined hash join, 222–223, 224 <i>f</i>
Optimizer, runtime reinvocation of, 231	Position filtering, 115
ORCHESTRA system, 366, 366f	Prefix filtering, 113–115, 113 <i>f</i>
Output attributes, 381	Probabilistic conditional table (Pc-table),
Overlap similarity measure, 104, 113	348–349
OWL, see Web Ontology Language	Probabilistic data representations
	BID model, 349–350
P	c-table, 348
P-mappings, <i>see</i> Probabilistic mappings	tuple-independent model, 349
PageRank, 401	Probabilistic generative model, 201
Parallel vs. distributed DBMS, 216–217	Probabilistic mappings (P-mappings), 350, 352
Pay-as-you-go	semantics of, 352–353
data integration, 456	semi-automatic schema mapping tool, 351
data management, 394–395	Probabilistic matching method, 204, 205
Pc-table, <i>see</i> Probabilistic conditional table	Probability
Peer data management systems (PDMSs), 413	distribution, 183, 183 f
complexity of query answering in, 419–421	of perturbation types, 196, 197
for coordinating emergency response, 415	smoothing of, 187
data instance for, 418, 419	theory, 183
with looser mappings	Procedural code, 273
mapping table, 430–432	Processing instruction, 293, 295
similarity-based mappings, 429–430	Prolog programming language, 29

Provenance, 453–454	R
annotations on data, 360	RDF, see Resource Description Framework
data, applications of, 362–363	RDFS, see Resource Description Framework
graph of data relationships, 361–362, 361 <i>f</i>	Schema
semiring formal model, 364–365	Real-world data matching systems, 177
applications of, 366–368	Reconciliation process, CDSS, 449
storing, 368–369	Recurrence equation
token, 362, 362 <i>f</i> , 364	for affine gap measure, 100f, 101
trust policies and, 448–449	for Needleman-Wunch score, 99, 99f
pSQL, 440	Recursive query plan, 83–84, 86
Publishing update logs, 444	Reformulation
	GAV, 71–72
Q	GLAV, 77–78
Qualified names, 294–295	LAV, 75–76
Quasi-inverses of mapping, 169–170	Rehash operation, 217
Queries, 346	Reification, RDF, 339–340
Query annotations, 318	Relation names, mediated schema, 65–66
Query answer-based feedback, 401	Relational schema, 22
Query answering inference in description	Reoptimization
logics, 332–333	mid-query, 228, 238
Query capabilities and limited data statistics,	predetermined, 229–230
209–210	Resolving cycle constraints, 166
Query containment, conjunctive queries,	Resource Description Framework (RDF),
32–34	335–337
Query equivalence, 31	blank objects in, 338–339
Query execution, 228	literals in, 338
engine, 211, 214	query of, 342–343
for Internet data, 222	reification, 339–340
selection of, 211–212	Resource Description Framework Schema
Query optimization, 211	(RDFS), 335, 340–341
Query optimizer, 211	Rewriting queries, length of, 47–48
Query plans, generating initial, 221–222	Root element, 293
Query process, 66f	Root-leaf costs, score as sum of, 403
adaptive, 225–226	Rule-based learner, 147–148
for data integration, 219–221	Rule-based matching, 175–177
DBMS, see Database management system	scaling up, 203–204
(DBMS), query process	Runtime re-invocation of optimizer, 231
execution, 14–15	
optimization, 13–14	S
reformulation, 13	Sarbanes-Oxley Act, 274
Query refinements, 36–37	SAX, 300–301
Query rewrite stage, 211	Scalability challenge, 96
Query tree, score as sum of weights in, 402–403	Scalable automatic edge inference, 407–408
Query unfolding, 29–30	Scalable query answering, 409
stage, 211	Scale, 375

Schema, 125	LAV, 74–75
combined similarity matrix for, 138t	mappings, 11, 122–123
data instances of, 132	matches, 123–124
with integrity constraints, 137f	schema mappings, 69
node, 142	Web, 325, 335
propagating constraints, 142	Semi-supervised learning, 409, 456
standards of, 126	Semiautomatic techniques, 345
tree representation of, 143f	Semiring formal model, 364–365
Schema mappings, 11, 65–68, 121, 124, 129,	applications of, 366–368
168, 345, 351, 442	Sensors, 453
challenges of, 124–127	Sequence-based similarity measures
composing, 426	affine gap measure, 100–102, 100 <i>f</i> , 102 <i>f</i>
formalisms, 92	edit distance, 96–98, 97 <i>f</i> , 98 <i>f</i>
languages	Jaro measure, 103
GAV, 70–73	Jaro-Winkler measure, 104
GLAV, 77–78	Needleman-Wunch measure, 98–100, 99f
LAV, 73–77	Smith-Waterman measure, 102–103, 103 <i>f</i>
logical query plan, 68	Sequential covering, 255
principles, 69–70	Set-based similarity measures
tuple-generating dependencies, 78–80	Jaccard measure, 104
matches into, 152	overlap measure, 104
space of possible, 153, 154, 156–158	TF/IDF measure, 105–106, 105 <i>f</i>
uncertainty	SGML, see Structured Generalized Markup
by-table semantics, 353–354, 355 <i>f</i>	Language
by-tuple semantics, 354–356	Similarity measures
p-mappings, 350–353	hybrid
Schema matching, 121, 124, 127–129	generalized Jaccard measure, 106–108,
challenges of, 124–127	107 <i>f</i>
components of, 128	Monge-Elkan similarity measure, 109
learners for, 147–150	soft TF/IDF, 108–109, 108 <i>f</i>
learning techniques, 145	phonetic, 109–110
Scientific data sharing setting, 440–441	sequence-based
Score components, 409	affine gap measure, 100–102, 100 <i>f</i> , 102 <i>f</i>
Score matrix, 98, 99f	edit distance, 96–98, 97 <i>f</i> , 98 <i>f</i>
Scoring	Jaro measure, 103
models, 401–403, 410	Jaro-Winkler measure, 104
provenance, 363	Needleman-Wunch measure, 98–100, 99f
Select-project-join (SPJ) expression, 211, 212	Smith-Waterman measure, $102-103$, $103f$
Semantics	set-based
compatibility, considering, 408	Jaccard measure, 104
cues, 375–376	TF/IDF measure, 105–106, $105f$
GAV, 71	Simple delete-insert update model, 449–450
GLAV, 77	Single-database context, 401
heterogeneity, 8, 67	Size filtering, 112
reconciling, 125	Skolem function, 80

Skolem terms, 56	Structured Generalized Markup Language
Skolem values, 446	(SGML), 292
Smith-Waterman measure, 102–103, 103f	Structured queries, 25
Social media, integration of, 456	Sub-instances, 282
Soft TF/IDF similarity measure, 108–109, 108 <i>f</i>	Suboperators for eddy, 233
Softened overlap set, 107	Subsumption inference in description logics,
Sorting, 203	331–332
Soundex code, 109	Super-model, 168
Source descriptions, vertical-search engine,	Support vector machines (SVM), 178
382	Surfacing, 383–385
SparQL language, 342–343	
SPJ expression, <i>see</i> Select-project-join	Т
expression	TA, see Threshold Algorithm
Spreading activation, 404	Tabular organization, 66
SQL queries, 25, 158	Target data instance, 276
STAIRs, 235	Tbox, 328
Stalker extraction rules, 254	Term frequency (TF) measure, 105–106, 105f
Stalker wrappers, 251–252	Text content, 294
learning, 254–256	TF measure, see Term frequency measure
model, 252–253, 256	Threshold Algorithm (TA), 404, 405
Standard data integration applications, 388	Threshold value, 405
State modules (STeMs), 235	Threshold-based merging, 404–407
Statistics collection operators, 229	Top-k query processing, 404
Steiner tree algorithms, 402, 403	Topical portals, 378, 385–388
STeMs, see State modules	Training data, 177
Stitch-up plans, creating, 238–240	Transactions, challenges of, 449–450
Storing provenance, 368–369	Transformations, 92
Streaming XPath evaluation , 312	modelGen performing, 167
String matching	Transient data integration tasks, 378
problem description of, 95–96	Trust policies, 448–449
scaling up	Tuple router, eddy, 233, 234
blocking solution, 111	Tuple-generating dependencies (tgds), 24,
bound filtering, 116–117	78–80, 277
inverted index over strings, 111–112, 111 <i>f</i>	Tuple lovel upgesteinty 347
position filtering, 115	Tuple-level uncertainty, 347 Tuples, 23
prefix filtering, 113–115, 113 <i>f</i>	Twittersphere, 456
size filtering, 112	Two-way Bloomjoin operator, 218–219
techniques, 117	Two-way biooinjoin operator, 216–219 Two-way semijoin operator, 218–219
similarity measures	1wo-way semijom operator, 210–219
hybrid, 106–109	U
phonetic, 109–110	Umbrella set, 111
sequence-based, 96–104	Uncertainty, 453–454
set-based, 104–106	and data provenance, 356
Structured data, keyword search, 399–403	nossible worlds, 346–347

probabilistic data representations, 348–350	Wikipedia, 455
to probabilities, 350	World-Wide Web, 375
schema mappings, 351	Wrappers
by-table semantics, $353-354$, $355f$	construction
by-tuple semantics, 354–356	categories of solutions, 246–247
p-mappings, 350–353	challenges of, 245–246
types of, 347	interactive, see Interactive wrapper
Uniform resource indicator (URI), 294, 338	construction
Universal solutions, 279–281	learning-based, 249
Unstructured queries, 25	manual, 247–249
Update exchange process, 445–447	problem, 244
URI, see Uniform resource indicator	generation tools, 162
User-supervised techniques, 392	HLRT, 249–250
	learning, 250–251
V	learning, 245
Variable mappings, 32	inferring schema, 258–263
Variable network connectivity and source	modeling schema, 257–258
performance, 210	without schema, 256–257
Vertical partitioning, 217	operator, 223–224
Vertical-search engines, 378, 385	program, 10
Virtual data integration, 9, 10	stalker, see Stalker wrappers
Virtual integration system, caching, 284	task of, 243
	vertical-search engine, 382–383
W	
Web data, 377–379	X
lightweight combination of	XML, see eXtensible Markup Language
data types, 390	XML Schema (XSD), 298–300, 299f
data, importing, 391–393	XML Stylesheet Language Transformations
mashups, 388	(XSLT), 300
multiple data sets, combining, 393	XML wrapper, 223
structured data, discovering, 391	XPath language, 301–306
Web end user information sharing, 440	XQuery, 306–312
Web Ontology Language (OWL), 335, 341–342	optimization, 317
Web search, 378–379	queries, 25
Web Service Description Language (WSDL),	XSD, see XML Schema
300	XSLT, see XML Stylesheet Language
Web sites with databases of jobs, 4–5, $5f$	Transformations
Web-based applications, 284	
Web-oriented data integration systems, 225	Z
Weighted-sum combiners, 134	Zipcode, 165