

Sinkende Kugeln*

Aufgabennummer: B_407

Technologieeinsatz:

erforderlich ⊠

Die Sinkgeschwindigkeit einer in einer Flüssigkeit sinkenden Metallkugel kann durch eine Funktion *v* beschrieben werden:

möglich \square

$$v(t) = g \cdot \tau \cdot \left(1 - e^{-\frac{t}{\tau}}\right) \text{ mit } t \ge 0$$

t ... Zeit ab Beginn des Sinkens in Sekunden (s)

v(t) ... Sinkgeschwindigkeit zur Zeit t in Metern pro Sekunde (m/s)

 τ ... Zeitkonstante in s mit τ > 0

g ... Erdbeschleunigung ($g \approx 9.81 \text{ m/s}^2$)

- a) Begründen Sie mathematisch, warum die Sinkgeschwindigkeit ständig zunimmt.
- b) Eine Kugel K_2 beginnt 1 Sekunde nach einer Kugel K_1 zu sinken.

In der nachstehenden Grafik sind die Sinkgeschwindigkeit v_1 der Kugel K_1 und die Sinkgeschwindigkeit v_2 der Kugel K_2 dargestellt. Die Zeitkonstante der Sinkgeschwindigkeit v_2 beträgt τ_2 = 0,8 s.

– Erstellen Sie eine Gleichung der Funktion v_2 für $t \ge 1$.

Zum Zeitpunkt t_0 ist die Beschleunigung der Kugel K_2 größer als die Beschleunigung der Kugel K_1 .

- Beschreiben Sie, wie man dies in der obigen Grafik erkennen kann.

^{*} ehemalige Klausuraufgabe

Sinkende Kugeln

c) Die Sinkgeschwindigkeit einer bestimmten Kugel kann durch die Funktion *v* beschrieben werden:

$$v(t) = g \cdot 0.25 \cdot \left(1 - e^{-\frac{t}{0.25}}\right) \text{ mit } t \ge 0$$

- t ... Zeit ab Beginn des Sinkens in s
- v(t) ... Sinkgeschwindigkeit zur Zeit t in m/s
- Berechnen Sie denjenigen Weg, den die Kugel in der ersten Sekunde zurücklegt.

Im Zeitintervall [0; t_1] legt die Kugel einen Weg von 8 m zurück.

– Bestimmen Sie die Zeit $t_{\scriptscriptstyle 1}$.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Sinkende Kugeln

Möglicher Lösungsweg

a) Für größer werdendes t wird $e^{-\frac{t}{\tau}}$ immer kleiner und damit $\left(1-e^{-\frac{t}{\tau}}\right)$ immer größer.

b)
$$v_2(t) = g \cdot 0.8 \cdot \left(1 - e^{-\frac{t-1}{0.8}}\right)$$

An der Stelle t_0 ist die Steigung der Funktion v_2 größer als die Steigung der Funktion v_1 .

c)
$$s(1) = \int_0^1 g \cdot 0.25 \cdot \left(1 - e^{-\frac{t}{0.25}}\right) dt = 1.8506...$$

In der ersten Sekunde legt die Kugel rund 1,85 m zurück.

$$s(t_1) = 8$$
$$\int_0^{t_1} g \cdot 0.25 \cdot \left(1 - e^{-\frac{t}{0.25}}\right) dt = 8$$

Lösung mittels Technologieeinsatz:

$$t_1 = 3,51...$$

 $(t_2 = -0,70...)$

Die Kugel benötigt rund 3,5 Sekunden, um diesen Weg zurückzulegen.

Lösungsschlüssel

- a) 1 × D: für die richtige Begründung
- b) 1 \times A: für das richtige Erstellen einer Gleichung der Funktion v_2 1 \times C: für die richtige Beschreibung
- c) 1 x B1: für die richtige Berechnung desjenigen Weges, den die Kugel in der ersten Sekunde zurücklegt
 - 1 × B2: für das richtige Bestimmen der Zeit t_1