m[s, e;] = min sm	[5\{c;}, c; E 5\sc.s]
C, hoche sore ; C: Hohshold) Min. Jen. er fath Son shob use kope, C	
Lorgest Path con't have fixed	d e,/990.
TSP > given Graph G	
•	R (FINF)
output: cycle cost minimum o(n! *n)	- (FSP)//

· n' leigth an ekta path best kone ... loop back. Ambiforary ventex fixed sounce "s"/c; Path Jen. baraite thakbo. C, shunu; , koi gige shesh hobe otath. jani na loop back konaro jabe c1-{ (3, ..., CN) Son shop westerdige Jige, kone ... ei is the last vartex ci lies in S OPT/m => array indexing ie. hoshmap

m[S,Ci] > set dige indexing c; en immediate agan vantex, of teh jabo m[s-{c;}, c;] + d(c;, c;)
where
c; e s \ e; }

Extra jinish all (c: -c,) about (TSP 5, 1P Oita digé kura jabe ? 13 T: anay/list; permutation of 1 to n f(11)= CT, , CT, , ... , CT, source janina; c: teh shash OPT[S,e:]:- "S'en jotogula use leose; c; teh giye shesh koso: V ⇒ all vertices set. OPT[V, ci] > Per. at and but Bam dik theke OPT ci theke shope OPT [ci, S]: Suses max no-of vertices in S on max total weight of vartices in S Japant path in S , C; belongs in S Ci starting yester NOT necessarily all

[ci, S] = max \ \(\omega(ci,cj) + OPT[cj, 3-40]] \\
\(cj \) \\
\ If (ci, cj) \(\in \) \(\text{ci, cj} \) = -0

Since maximization enobles 0PT [4, 4] = 0 Final sol¹² max COPT [C; V]

Space: - (2") Time: 0*(2") we want polynomial space _2*(1); but time O(4n) Ske bhargbo duit equal set -C,, C2, C3, C4 O = [19. 10] TO = C3, C4 C1/C2 Book : Exact Algorithms Chapter: 10 = 2 (n-k)!