Cálculo III

Lista 7 - Mudança de variáveis em integrais múltiplas

Utilize a transformação dada para calcular a integral.

1.
$$\iint\limits_R (x-3y)\,dA,\quad R \text{ \'e a região triangular com v\'ertices }(0,0),\,(2,1) \text{ e }(1,2);$$

$$T(x,\,y)=(2u+v,\,u+2v)$$
 Resposta: -3

2.
$$\iint_R (4x + 8y) dA$$
, R é o paralelogramo com vértices $(-1, 3)$, $(1, -3)$, $(3, -1)$ e $(1, 5)$; $T(x, y) = (\frac{u-v}{4}, \frac{v-3u}{4})$ Resposta: 192

3.
$$\iint\limits_R x^2\,dA, \quad R \text{ \'e a região limitada pela elipse } 9x^2+4y^2=36;$$

$$T(x,\,y)=(2u,\,3v)$$
 Resposta: 6π

4.
$$\iint_R (x^2-xy+y^2)\,dA, \quad R \text{ \'e a região limitada pela elipse } x^2-xy+y^2=2;$$

$$T(x,\,y)=(u\sqrt{2}-v\sqrt{\tfrac{2}{3}},\,u\sqrt{2}+v\sqrt{\tfrac{2}{3}})$$
 Resposta: $\frac{4\pi\sqrt{3}}{3}$

5.
$$\iint_R xy \, dA$$
, R é a região no primeiro quadrante limitada pelas retas $y=x$ e $y=3x$ e pelas hipérboles $xy=1$ e $xy=3$; $T(x,y)=(\frac{u}{v},v)$ Resposta: $2\ln(3)$

Resolva os problemas.

- 6. A Terra não é perfeitamente esférica, sendo que seu formato pode ser aproximado por um elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, em que $a \approx b \approx 6378$ km e $c \approx 6356$ km. Com essas informações, estime o volume da Terra, utilizando a transformação x = au, y = bv e z = cw para calcular a integral. Resposta: $\frac{4\pi abc}{3} \approx 1,083 \cdot 10^{12}$ km³
- 7. O trabalho realizado por um motor de Carnot ideal é igual à área da região R limitada por duas curvas isotérmicas xy=a e xy=b e duas curvas adiabáticas $xy^{1,4}=c$ e $xy^{1,4}=d$, em que $0 \le a \le b$ e $0 \le c \le d$. Calcule o trabalho realizado determinando a área de R. Resposta: $2, 5 \cdot (b-a) \ln(\frac{d}{c})$

Calcule a integral, efetuando uma mudança de variáveis apropriada.

8.
$$\iint\limits_R \frac{x-2y}{3x-y}\,dA, \quad R \text{ \'e o paralelogramo limitado pelas retas} \quad x-2y=0, \quad x-2y=4, \quad 3x-y=1$$
 e $3x-y=8$

9.
$$\iint_R (x+y)e^{x^2-y^2} dA, \quad R \text{ \'e o retângulo limitado pelas retas} \quad x-y=0, \quad x-y=2, \quad x+y=0$$
e $x+y=3$

10.
$$\iint\limits_{R} \cos\left(\frac{y-x}{y+x}\right) \, dA, \quad R \text{ \'e a região trapezoidal com v\'ertices } (1,0), \, (2,0), \, (0,2) \text{ e } (0,1)$$
Resposta: $\frac{3\sin(1)}{2}$

11.
$$\iint\limits_R \sin(9x^2+4y^2)\,dA, \quad R \text{ \'e a região do primeiro quadrante limitada pela elipse } 9x^2+4y^2=1$$
 Resposta: $\left(\frac{1-\cos(1)}{24}\right)\pi$

12.
$$\iint_R e^{x+y} dA$$
, R é dada pela inequação $|x|+|y|\leq 1$ Resposta: $e-\frac{1}{e}$

Referência

STEWART, James. Cálculo: volume 2. 8ª ed. São Paulo, SP: Cengage Learning, 2016. ISBN 9788522125845.