PSEUDO-RIEMANNIAN MANIFOLDS WITH COMMUTING JACOBI OPERATORS

M. BROZOS-VÁZQUEZ AND P. GILKEY

ABSTRACT. We study the geometry of pseudo-Riemannian manifolds which are Jacobi-Tsankov, i.e. $\mathcal{J}(x)\mathcal{J}(y)=\mathcal{J}(y)\mathcal{J}(x)$ for all x,y. We also study manifolds which are 2-step Jacobi nilpotent, i.e. $\mathcal{J}(x)\mathcal{J}(y)=0$ for all x,y.

1. Introduction

Let $\mathcal{M} := (M,g)$ be a pseudo-Riemannian manifold of signature (p,q) and dimension $m = p + q \geq 3$; \mathcal{M} is said to be *Riemannian* if p = 0 and *Lorentzian* if p = 1. Although the Riemannian and Lorentzian settings are perhaps the most frequently studied, pseudo-Riemannian manifolds with other signatures are important in many physical applications; see, for example, the discussion of Kaluza-Klein gravity in Overduin and Wesson [15] or the brane world cosmology of Shtanov and Sahni [16]. Thus the higher signature setting is important not only mathematically, but also in physical applications.

Let \mathcal{R} be the curvature operator and \mathcal{J} the Jacobi operator which are defined by the Levi-Civita connection on \mathcal{M} :

$$\mathcal{R}(x,y) := \nabla_x \nabla_y - \nabla_y \nabla_x - \nabla_{[x,y]},$$

$$\mathcal{J}(x) : y \to \mathcal{R}(y,x)x.$$

The relationship between the spectral geometry of \mathcal{J} and the underlying geometry of the manifold has been studied extensively in recent years. Suppose that \mathcal{M} is Riemannian. If \mathcal{M} is a 2-point homogeneous space, then the group of isometries acts transitively on the unit sphere bundle $S(\mathcal{M})$ and hence the eigenvalues of \mathcal{J} are constant on $S(\mathcal{M})$. Osserman [14] wondered if the converse is true, at least locally. He conjectured that if \mathcal{M} is a Riemannian manifold such that the eigenvalues of \mathcal{J} are constant on $S(\mathcal{M})$, then either \mathcal{M} is flat or \mathcal{M} is locally isometric to a rank 1-symmetric space. This conjecture has been established in dimensions $m \neq 16$ by the work of Chi [6] and Nikolayevsky [12, 13]; the case m = 16 is still open.

Let $S^{\pm}(\mathcal{M})$ be the pseudo-sphere bundles of unit spacelike (+) or unit timelike (-) vectors. One says that a pseudo-Riemannian manifold \mathcal{M} is spacelike Osserman (resp. timelike Osserman) if the eigenvalues of the Jacobi operator \mathcal{J} are constant on $S^{+}(\mathcal{M})$ (resp. on $S^{-}(\mathcal{M})$). Work of García-Río et. al. [8] shows these are equivalent concepts so one simply speaks of an Osserman manifold. It is known [2, 8] that any Lorentzian Osserman manifold has constant sectional curvature; thus the geometry is very rigid in this setting. However if $p \geq 2$ and $q \geq 2$, there are Osserman pseudo-Riemannian manifolds which are not locally homogeneous; see, for example, [3, 7].

One can weaken this condition slightly. Let $p \geq 1$ and $q \geq 1$. One says that \mathcal{M} is pointwise Osserman if the spectrum of \mathcal{J} is constant on $S_P^+(\mathcal{M})$, or equivalently on $S_P^-(\mathcal{M})$, for every $P \in \mathcal{M}$. Blažić [1] has shown that if the spectrum of \mathcal{J} is bounded on either $S_P^+(\mathcal{M})$ or, equivalently, $S_P^-(\mathcal{M})$, for every $P \in \mathcal{M}$, then necessarily \mathcal{M} is pointwise Osserman.

 $Key\ words\ and\ phrases.\ \ Jacobi\ operator,\ Jacobi-Tsankov\ manifold.$ 2000 Mathematics Subject Classification. 53C20.

In this paper, instead of focusing on the spectrum, we will relate commutativity properties of \mathcal{J} to the underlying geometry.

Definition 1.1. One says that a pseudo-Riemannian manifold \mathcal{M} is:

- (1) 2-step Jacobi nilpotent if $\mathcal{J}(x)\mathcal{J}(y) = 0$ for all tangent vectors x, y.
- (2) Jacobi-Tsankov if $\mathcal{J}(x)\mathcal{J}(y) = \mathcal{J}(y)\mathcal{J}(x)$ for all tangent vectors x, y.
- (3) Orthogonally Jacobi-Tsankov if $\mathcal{J}(x)\mathcal{J}(y) = \mathcal{J}(y)\mathcal{J}(x)$ for all $x \perp y$.

Clearly $(1) \Rightarrow (2) \Rightarrow (3)$. The following seminal result was established by Tsankov [17]:

Theorem 1.2. Let $\{\lambda_i\}$ be the eigenvalues of the shape operator of a hypersurface M in R^{m+1} . Then M is orthogonally Jacobi–Tsankov if and only if either $\lambda_1 = \ldots = \lambda_m$ or $\lambda_1 = \ldots = \lambda_{m-1} = 0$, $\lambda_m \neq 0$.

Theorem 1.2 has been extended from hypersurfaces to the more general setting in [5]:

Theorem 1.3. Let \mathcal{M} be an orthogonally Jacobi-Tsankov Riemannian manifold. Then \mathcal{M} has constant sectional curvature.

In passing to more general signatures, we shall impose a stronger condition and study Jacobi–Tsankov manifolds. It is convenient to work in the algebraic context. Let V be a finite dimensional real vector space. Let $\mathfrak{A}(V) \subset \otimes^4 V^*$ be the space of algebraic curvature tensors; these are the 4-tensors with the same symmetries as the Riemann curvature tensor. Thus $A \in \mathfrak{A}(V)$ if and only if we have the following symmetries for all $x, y, z, w \in V$:

$$A(x, y, z, w) = -A(y, x, z, w) = A(z, w, x, y),$$

$$A(x, y, z, w) + A(y, z, x, w) + A(z, x, y, w) = 0.$$

Let $\mathfrak{M}:=(V,\langle\cdot,\cdot\rangle,A)$ where $A\in\mathfrak{A}(V)$ and where $\langle\cdot,\cdot\rangle$ is a non-degenerate symmetric bilinear form of signature (p,q) on V which is used to raise and lower indices. The corresponding algebraic curvature operator $A\in V^*\otimes V^*\otimes \mathrm{End}(V)$ is characterized by

$$\langle \mathcal{A}(x,y)z,w\rangle = A(x,y,z,w)$$

and the Jacobi operator $\mathcal{J} = \mathcal{J}_A$ is given by $\mathcal{J}(x) : y \to \mathcal{A}(y, x)x$. The notions of Definition 1.1 then extend to the algebraic setting. In Section 2, we will show that:

Theorem 1.4. Let \mathfrak{M} be Jacobi-Tsankov. Then:

- (1) $\mathcal{J}(x)^2 = 0$ for all $x \in V$.
- (2) \mathfrak{M} is Osserman.
- (3) If V is Riemannian or Lorentzian, then A = 0.

We can draw the following geometrical consequence from Theorem 1.4:

Corollary 1.5. Let \mathcal{M} be a Jacobi-Tsankov pseudo-Riemannian manifold of signature (p,q). Then \mathcal{M} is nilpotent Osserman. If p=0 or if p=1, then \mathcal{M} is flat.

One might conjecture that the condition $\mathcal{J}(x)^2 = 0$ for all $x \in V$ is sufficient to imply \mathfrak{M} is Jacobi–Tsankov. This is in fact not the case as we will show in Lemma 2.2.

It is clear that any 2-step Jacobi nilpotent algebraic curvature tensor is Jacobi—Tsankov. In Section 3, we will show that the converse holds in low dimensions:

Theorem 1.6. Let \mathfrak{M} be Jacobi–Tsankov. If $\dim(V) \leq 13$, then \mathfrak{M} is 2-step Jacobi nilpotent.

The condition $\dim(V) \leq 13$ in Theorem 1.6 is sharp. In Lemma 3.2, we construct a Jacobi-Tsankov tensor in signature (8,6), which is indecomposable and for which there exist (x,y) so that $\mathcal{J}(x)\mathcal{J}(y) \neq 0$.

There are similar questions for the skew-symmetric curvature operator.

Definition 1.7. One says that \mathfrak{M} is:

- (1) 2-step skew-curvature nilpotent if $\mathcal{A}(x_1, x_2)\mathcal{A}(x_3, x_4) = 0$ for all tangent vectors x_1, x_2, x_3, x_4 .
- (2) Skew-Tsankov if $\mathcal{A}(x_1, x_2)\mathcal{A}(x_3, x_4) = \mathcal{A}(x_3, x_4)\mathcal{A}(x_1, x_2)$ for all tangent vectors x_1, x_2, x_3, x_4 .

Motivated by Theorem 1.6, in Section 4, we will study 2-step Jacobi nilpotent algebraic curvature tensors in relation to 2-step skew-curvature nilpotent ones. If $A_W \in \mathfrak{A}(W)$, we say that (W, A_W) is indecomposable if there is no decomposition $(W, A_W) = (W_1, A_1) \oplus (W_2, A_2)$ where $\dim(W_i) \geq 1$. Similarly, we say that \mathfrak{M} is indecomposable if there is no decomposition $\mathfrak{M} = \mathfrak{M}_1 \oplus \mathfrak{M}_2$ so that $\dim(V_i) \geq 1$.

Definition 1.8. Let $A_W \in \mathfrak{A}(W)$. Assume that (W, A_W) is indecomposable. Let $\{\bar{e}_1, ..., \bar{e}_k\}$ be a basis for an auxiliary vector space \bar{W} . Let

(1.a)
$$\mathfrak{M} := (W \oplus \bar{W}, \langle \cdot, \cdot \rangle_{W \oplus \bar{W}}, A_W \oplus 0) \quad \text{where}$$
$$\langle e_i, e_j \rangle = \langle \bar{e}_i, \bar{e}_j \rangle = 0, \quad \langle e_i, \bar{e}_j \rangle = \delta_{ij} .$$

We will establish the following classification theorem:

Theorem 1.9. The following statements are equivalent:

- (1) M is 2-step Jacobi nilpotent and indecomposable,
- (2) M is 2-step skew-curvature nilpotent and indecomposable,
- (3) M is isomorphic to one of the tensors described in Definition 1.8.

One has the following geometrical examples which arose in the study of Osserman manifolds. We refer to [10, 11] for further details.

Theorem 1.10. Let $(x_1,...,x_p,y_1,...,y_p)$ be coordinates on \mathbb{R}^{2p} for $p \geq 2$. Let $\psi_{ij}(x) = \psi_{ji}(x)$ be a symmetric 2-tensor. Let

$$g_{\psi}(\partial_{x_i},\partial_{x_j})=\psi_{ij}(x),\quad g_{\psi}(\partial_{x_i},\partial_{y_j})=\delta_{ij},\quad g_{\psi}(\partial_{y_i},\partial_{y_j})=0\,.$$

Then $\mathcal{M} := (\mathbb{R}^{2p}, g_{\psi})$ is a complete pseudo-Riemannian manifold of neutral signature (p, p) which is 2-step Jacobi nilpotent and 2-step skew-curvature nilpotent.

2. The proof of Theorem 1.4

The Jacobi operator is quadratic in x. We polarize to define an operator valued bilinear form by setting:

$$\mathcal{J}(x,y): z \to \frac{1}{2} \partial_{\varepsilon} \mathcal{J}(x + \varepsilon y) z \Big|_{\varepsilon=0} = \frac{1}{2} \{ \mathcal{A}(z,x) y + \mathcal{A}(z,y) x \}.$$

Setting x = y yields $\mathcal{J}(x, x) = \mathcal{J}(x)$. Furthermore

$$\mathcal{J}(x,y)x = \frac{1}{2}(\mathcal{A}(x,x)y + \mathcal{A}(x,y)x) = -\frac{1}{2}\mathcal{J}(y)x.$$

Let A be a Jacobi–Tsankov algebraic curvature tensor. Polarizing the identity $\mathcal{J}(x)\mathcal{J}(y)=\mathcal{J}(y)\mathcal{J}(x)$ yields:

$$\mathcal{J}(x_1, x_2)\mathcal{J}(y_1, y_2) = \mathcal{J}(y_1, y_2)\mathcal{J}(x_1, x_2).$$

We have $\mathcal{J}(x)x = \mathcal{A}(x,x)x = 0$. We prove Assertion (1) by computing:

$$0 = \mathcal{J}(x,y)\mathcal{J}(x,x)x = \mathcal{J}(x,x)\mathcal{J}(x,y)x = -\frac{1}{2}\mathcal{J}(x)\mathcal{J}(x)y.$$

Since the Jacobi operator is nilpotent, $\{0\}$ is the only eigenvalue of \mathcal{J} . This shows that A is Osserman.

If p = 0, then $\mathcal{J}(x)$ is diagonalizable. Consequently, $\mathcal{J}(x)^2 = 0$ implies $\mathcal{J}(x) = 0$ for all x. It now follows A = 0. If p = 1, then A is Osserman implies A has

constant sectional curvature [2, 8]. Since $\mathcal{J}(x)^2 = 0$, this again implies A = 0. This completes the proof of Theorem 1.4.

In fact, it is possible to work in a slightly more general setting. Following Bokan [4], one says that \mathcal{C} is a *generalized curvature operator* if it has the symmetries of the curvature operator defined by a torsion free connection, i.e. if

$$C(x, y)z = -C(y, x)z,$$

$$C(x, y)z + C(y, z)x + C(z, x)y = 0.$$

The proof given above then generalizes immediately to yield:

Corollary 2.1. If C is a generalized curvature operator on V which is Jacobi-Tsankov, then \mathcal{J}_C is Osserman and $\mathcal{J}_C(x)^2 = 0$ for all $x \in V$.

Let ϕ be a skew-symmetric endomorphism of V. Define

$$A_{\phi}(x, y, z, w) := \langle \phi y, z \rangle \langle \phi x, w \rangle - \langle \phi x, z \rangle \langle \phi y, w \rangle - 2 \langle \phi x, y \rangle \langle \phi z, w \rangle.$$

The associated Jacobi operator is then given by

$$\mathcal{J}_{\phi}(x)y = -3\langle y, \phi x \rangle \phi x$$
.

In the following example, we exhibit an algebraic curvature tensor so that $\mathcal{J}(x)^2 = 0$ for all $x \in V$, but which is not Jacobi–Tsankov. Let $\mathbb{R}^{(p,q)}$ denote Euclidean space with a metric of signature (p,q).

Lemma 2.2.

(1) There exist skew-symmetric endomorphisms $\{\phi_1, \phi_2\}$ of $\mathbb{R}^{(4,4)}$ so that

$$\phi_1^2 = \phi_2^2 = \phi_1 \phi_2 + \phi_2 \phi_2 = 0$$
, and $\phi_1 \phi_2 \neq 0$.

(2) Set $A = -\frac{1}{3}\{A_{\phi_1} + A_{\phi_2}\}$. Then $\mathcal{J}_A(x)^2 = 0$ for all x. Furthermore, A is not Jacobi–Tsankov.

Proof. We apply Lemma 1.4.5 of [9] to find a collection $\{e_1, e_2, e_3, e_4\}$ of skew-symmetric endomorphisms of $\mathbb{R}^{(4,4)}$ so that:

$$e_1^2 = e_2^2 = id$$
, $e_3^2 = e_4^2 = -id$, $e_i e_j + e_j e_i = 0$ for $i \neq j$.

Set $\phi_1 = e_1 + e_3$, $\phi_2 = e_2 + e_4$. These are skew-symmetric endomorphisms with

$$\phi_1^2 = \phi_2^2 = 0, \quad \phi_1 \phi_2 + \phi_2 \phi_1 = 0.$$

Suppose that

$$\alpha := \phi_1 \phi_2 = (e_1 + e_3)(e_2 + e_4) = 0.$$

We argue for a contradiction. Conjugating by e_1 yields

$$e_1 \alpha e_1 = (-e_1 + e_3)(e_2 + e_4) = 0$$
.

Adding this equation to the previous one implies $e_3(e_2 + e_4) = 0$. Multiplying by e_3 implies $e_2 + e_4 = 0$. Conjugating this identity by e_2 yields $e_2 - e_4 = 0$ and thus $e_2 = 0$. This is not possible. Assertion (1) now follows.

To prove Assertion (2), we compute:

$$\mathcal{J}_{A}(x)y = \langle y, \phi_{1}x \rangle \phi_{1}x + \langle y, \phi_{2}x \rangle \phi_{2}x,
\mathcal{J}_{A}(x_{1})\mathcal{J}_{A}(x_{2})y = \langle y, \phi_{1}x_{2} \rangle \langle \phi_{1}x_{2}, \phi_{1}x_{1} \rangle \phi_{1}x_{1} + \langle y, \phi_{1}x_{2} \rangle \langle \phi_{1}x_{2}, \phi_{2}x_{1} \rangle \phi_{2}x_{1}
+ \langle y, \phi_{2}x_{2} \rangle \langle \phi_{2}x_{2}, \phi_{1}x_{1} \rangle \phi_{1}x_{1} + \langle y, \phi_{2}x_{2} \rangle \langle \phi_{2}x_{2}, \phi_{2}x_{1} \rangle \phi_{2}x_{1}
= \langle y, \phi_{1}x_{2} \rangle \langle \phi_{1}x_{2}, \phi_{2}x_{1} \rangle \phi_{2}x_{1} + \langle y, \phi_{2}x_{2} \rangle \langle \phi_{2}x_{2}, \phi_{1}x_{1} \rangle \phi_{1}x_{1}.$$

Since

$$\langle \phi_1 x, \phi_2 x \rangle = -\langle \phi_2 \phi_1 x, x \rangle = \langle \phi_1 \phi_2 x, x \rangle = -\langle \phi_2 x, \phi_1 x \rangle,$$

we have $\mathcal{J}(x)\mathcal{J}(x) = 0$ as desired.

Choose x_1 so $\phi_2\phi_1x_1\neq 0$. Set $y=\phi_1x_1$. We then have:

$$\mathcal{J}_{A}(x_{1})\mathcal{J}_{A}(x_{2})y = \langle \phi_{1}x_{1}, \phi_{1}x_{2}\rangle\langle\phi_{1}x_{2}, \phi_{2}x_{1}\rangle\phi_{2}x_{1}
+ \langle \phi_{1}x_{1}, \phi_{2}x_{2}\rangle\langle\phi_{2}x_{2}, \phi_{1}x_{1}\rangle\phi_{1}x_{1}
= \langle \phi_{1}x_{1}, \phi_{2}x_{2}\rangle^{2}\phi_{1}x_{1},
\mathcal{J}_{A}(x_{2})\mathcal{J}_{A}(x_{1})y = \langle \phi_{1}x_{1}, \phi_{1}x_{1}\rangle\langle\phi_{1}x_{1}, \phi_{2}x_{2}\rangle\phi_{2}x_{2}
+ \langle \phi_{1}x_{1}, \phi_{2}x_{1}\rangle\langle\phi_{2}x_{1}, \phi_{1}x_{2}\rangle\phi_{1}x_{2}
= 0.$$

Choose x_2 so $\langle \phi_1 x_1, \phi_2 x_2 \rangle \neq 0$. Then $\mathcal{J}_A(x_1) \mathcal{J}_A(x_2) y \neq 0 = \mathcal{J}_A(x_2) \mathcal{J}_A(x_1) y$.

3. 2-STEP JACOBI NILPOTENT ALGEBRAIC CURVATURE TENSORS

Theorem 1.6 will follow from the following result:

Lemma 3.1. Let $\mathfrak{M}:=(V,\langle\cdot,\cdot\rangle,A)$ be Jacobi-Tsankov. Suppose that there exist $x, y \in V$ so that $\mathcal{J}(x)\mathcal{J}(y) \neq 0$.

(1) There exists $w \in V$ so that

$$\langle \mathcal{J}(x)\mathcal{J}(y)w,w\rangle = \langle \mathcal{J}(y)\mathcal{J}(w)x,x\rangle = \langle \mathcal{J}(w)\mathcal{J}(x)y,y\rangle \neq 0.$$

(2) Let
$$\mathcal{J}_x := \mathcal{J}(x)$$
, $\mathcal{J}_y := \mathcal{J}(y)$ and $\mathcal{J}_{xy} := \mathcal{J}(x,y)$. Set
$$e_2 = \mathcal{J}_x \mathcal{J}_y w, \quad e_3 = \mathcal{J}_x w, \quad e_4 = \mathcal{J}_y w, \quad e_5 = \mathcal{J}_{xy} w$$

$$f_2 = \mathcal{J}_y \mathcal{J}_w x, \quad f_3 = \mathcal{J}_y x, \quad f_4 = \mathcal{J}_w x, \quad f_5 = \mathcal{J}_{yw} x$$

$$g_2 = \mathcal{J}_w \mathcal{J}_x y, \quad g_3 = \mathcal{J}_w y, \quad g_4 = \mathcal{J}_x y, \quad g_5 = \mathcal{J}_{wx} y.$$

The set $S := \{w, x, y, e_2, ..., e_5, f_2, ..., f_5, q_2, ..., q_4\}$ is linearly independent.

- (3) $e_5 + f_5 + g_5 = 0$.
- (4) $\dim(V) \ge 14$.

Proof. Choose w so that $e_2 := \mathcal{J}(x)\mathcal{J}(y)w \neq 0$. Choose f so $\langle e_2, f \rangle \neq 0$. Set $w(\varepsilon) := w + \varepsilon f$ and $e_2(\varepsilon) := \mathcal{J}(x)\mathcal{J}(y)w(\varepsilon)$. Then

$$p(\varepsilon) := \langle w(\varepsilon), e_2(\varepsilon) \rangle = \langle w, e_2 \rangle + 2\varepsilon \langle e_2, f \rangle + \varepsilon^2 \langle \mathcal{J}(x) \mathcal{J}(y) f, f \rangle.$$

As $\langle e_2, f \rangle \neq 0$, $p(\varepsilon)$ is a non-trivial polynomial in ε . Thus it is non-zero for a suitable choice of ε . Thus we may choose w so that $\langle w, \mathcal{J}(x)\mathcal{J}(y)w \rangle \neq 0$. Now,

$$\langle \mathcal{J}(y)\mathcal{J}(w)x, x \rangle = -2\langle \mathcal{J}(y)\mathcal{J}(w, x)w, x \rangle = -2\langle \mathcal{J}(y)w, \mathcal{J}(w, x)x \rangle$$

$$= \langle \mathcal{J}(y)w, \mathcal{J}(x)w \rangle = \langle \mathcal{J}(x)\mathcal{J}(y)w, w \rangle .$$

Similarly, $\langle \mathcal{J}(w)\mathcal{J}(x)y,y\rangle = \langle \mathcal{J}(x)\mathcal{J}(y)w,w\rangle$ and Assertion (1) follows.

Because $\mathcal{J}(x+\varepsilon y)\mathcal{J}(x+\varepsilon y)=0$ for every $\varepsilon\in\mathbb{R}$ and because \mathfrak{M} is Jacobi-Tsankov, we have the following relations:

$$\begin{split} \mathcal{J}_x^2 &= 0, & \mathcal{J}_y^2 &= 0, & \mathcal{J}_x \mathcal{J}_y &= \mathcal{J}_y \mathcal{J}_x, \\ \mathcal{J}_x \mathcal{J}_{xy} &= \mathcal{J}_{xy} \mathcal{J}_x &= 0, & \mathcal{J}_y \mathcal{J}_{xy} &= \mathcal{J}_{xy} \mathcal{J}_y &= 0, & \mathcal{J}_{xy}^2 &= -\frac{1}{2} \mathcal{J}_x \mathcal{J}_y \,. \end{split}$$

We have $\mathcal{J}_w \mathcal{J}_y x \neq 0$ and $\mathcal{J}_w \mathcal{J}_x y \neq 0$ by Assertion (1). To prove Assertion (2), suppose there is a non-trivial dependence relation among the elements of S:

$$0 = a_1w + a_2e_2 + a_3e_3 + a_4e_4 + a_5e_5 + b_1x + b_2f_2 + b_3f_3 + b_4f_4 + b_5f_5 + c_1y + c_2g_2 + c_3g_3 + c_4g_4 + c_5g_5 = a_1w + a_2\mathcal{J}_x\mathcal{J}_yw + a_3\mathcal{J}_xw + a_4\mathcal{J}_yw + a_5\mathcal{J}_{xy}w + b_1x + b_2\mathcal{J}_y\mathcal{J}_wx + b_3\mathcal{J}_yx + b_4\mathcal{J}_wx + b_5\mathcal{J}_{yw}x + c_1y + c_2\mathcal{J}_w\mathcal{J}_xy + c_3\mathcal{J}_wy + c_4\mathcal{J}_xy + c_5\mathcal{J}_{wx}y.$$

Since we are **not** taking g_5 , we must set

(3.b)
$$c_5 = 0$$
.

We can apply J_xJ_y to Equation (3.a) to see $a_1e_5=0$. Since $e_5\neq 0$, $a_1=0$. Similarly $b_1=c_1=0$. If we now apply J_x to Equation (3.a), we see

$$a_4 \mathcal{J}_x \mathcal{J}_y w + c_3 \mathcal{J}_x \mathcal{J}_w y = 0$$
 so
 $0 = \langle a_4 \mathcal{J}_x \mathcal{J}_u w + c_3 \mathcal{J}_x \mathcal{J}_w y, w \rangle = a_4 \langle \mathcal{J}_x \mathcal{J}_u w, w \rangle$.

Since $\langle \mathcal{J}_x \mathcal{J}_y w, w \rangle \neq 0$, $a_4 = 0$. Similarly, we get $a_3 = b_3 = b_4 = c_3 = c_4 = 0$. Thus Equation (3.a) simplifies to become

$$0 = a_2 \mathcal{J}_x \mathcal{J}_y w + a_5 \mathcal{J}_{xy} w + b_2 \mathcal{J}_y \mathcal{J}_w x + b_5 \mathcal{J}_{yw} x + c_2 \mathcal{J}_w \mathcal{J}_x y + c_5 \mathcal{J}_{wx} y.$$

Applying \mathcal{J}_{xy} then yields

$$0 = a_5 \mathcal{J}_{xy}^2 w + b_5 \mathcal{J}_{xy} \mathcal{J}_{yw} x + c_5 \mathcal{J}_{xy} \mathcal{J}_{wx} y$$

= $(a_5 \mathcal{J}_{xy}^2 + \frac{1}{4} (b_5 + c_5) \mathcal{J}_x \mathcal{J}_y) w$
= $(a_5 - \frac{1}{2} (b_5 + c_5)) \mathcal{J}_{xy}^2 w$.

This shows $a_5 = \frac{1}{2}(b_5 + c_5)$ or $a_5 = b_5 = c_5$. By Equation (3.b), we have $a_5 = b_5 = 0$. Taking the inner product with x, y, and w then yields, respectively $b_2 = 0$, $c_2 = 0$, and $a_2 = 0$, which completes the proof of Assertion (2).

To prove Assertion (3), we compute:

$$e_5 + f_5 + g_5 = \mathcal{J}_{xy}w + \mathcal{J}_{yw}x + \mathcal{J}_{wx}y$$

$$= \frac{1}{2} \{\mathcal{R}(w, x)y + \mathcal{R}(w, y)x + \mathcal{R}(x, y)w + \mathcal{R}(x, w)y + \mathcal{R}(y, w)x + \mathcal{R}(y, x)w\}$$

$$= 0.$$

The following example in signature (8,6) was motivated by the proof of Lemma 3.1. It shows the inequality $\dim(V) \leq 13$ in Theorem 1.6 is sharp. The proof is a computer assisted calculation which we omit in the interest of brevity. Details are available upon request from the first author.

Lemma 3.2. Let $\{e_1, \ldots, e_4, \bar{e}_1, \ldots, \bar{e}_4, \tilde{e}_1, \ldots, \tilde{e}_4, f_1, f_2\}$ be a basis for a 14 dimensional vector space V. Relative to this basis, define an inner product $\langle \cdot, \cdot \rangle$ and an algebraic curvature tensor A on V whose non-zero components are given up to the usual \mathbb{Z}_2 symmetries by:

$$\langle e_{1}, e_{2} \rangle = \langle e_{3}, e_{4} \rangle = \langle \bar{e}_{1}, \bar{e}_{2} \rangle = \langle \bar{e}_{3}, \bar{e}_{4} \rangle = \langle \tilde{e}_{1}, \tilde{e}_{2} \rangle = \langle \tilde{e}_{3}, \tilde{e}_{4} \rangle = 1,$$

$$\langle f_{1}, f_{1} \rangle = \langle f_{2}, f_{2} \rangle = -\frac{1}{2}, \qquad \langle f_{1}, f_{2} \rangle = \frac{1}{4},$$

$$A(e_{1}, \tilde{e}_{1}, \tilde{e}_{1}, e_{3}) = A(e_{1}, \bar{e}_{1}, \bar{e}_{1}, e_{4}) = 1, \quad A(\bar{e}_{1}, e_{1}, \bar{e}_{3}) = A(\bar{e}_{1}, \tilde{e}_{1}, \bar{e}_{4}) = 1,$$

$$A(\tilde{e}_{1}, e_{1}, e_{1}, \tilde{e}_{3}) = A(\tilde{e}_{1}, \bar{e}_{1}, \bar{e}_{1}, \tilde{e}_{4}) = 1,$$

$$A(e_{1}, \bar{e}_{1}, \tilde{e}_{1}, f_{1}) = A(e_{1}, \tilde{e}_{1}, f_{1}) = A(\bar{e}_{1}, \tilde{e}_{1}, e_{1}, f_{2}) = A(\bar{e}_{1}, e_{1}, f_{2}) = -\frac{1}{2}.$$

Then $\mathfrak{M} := (V, \langle \cdot, \cdot \rangle, A)$ is Jacobi-Tsankov, \mathfrak{M} has signature (8,6), and \mathfrak{M} is not 2-step Jacobi nilpotent.

4. The classification of indecomposable 2-step Jacobi nilpotent algebraic curvature tensors

In this section, we prove Theorem 1.9. The following Lemma shows that Assertion (3) implies Assertion (2) in Theorem 1.9.

Lemma 4.1. Let \mathfrak{M} be as in Definition 1.8. Then \mathfrak{M} is indecomposable and 2-step skew-curvature nilpotent.

Proof. Suppose there is a non-trivial decomposition $\mathfrak{M} = \mathfrak{M}_1 \oplus \mathfrak{M}_2$. This would then induce a non-trivial decomposition of (W, A_W) . Since (W, A_W) is assumed indecomposable, either $W \subset V_1$ or $W \subset V_2$; we suppose without loss of generality that $W \subset V_1$. Since $V_2 \perp V_1$ and $W \subset V_1$, $V_2 \perp W$ so $V_2 \subset W^{\perp} = W$. Thus V_2

is totally isotropic which is false. This shows \mathfrak{M} is indecomposible. The following argument shows that \mathfrak{M} is 2-step curvature nilpotent. Choose a basis $\{e_i\}$ for W and choose a basis $\{\bar{e}_i\}$ for \bar{W} so the only non-zero components of the inner product are $\langle e_i, \bar{e}_j \rangle = \delta_{ij}$. We have

$$\mathcal{A}(e_i, e_j)e_k = \sum_l A_W(e_i, e_j, e_k, e_l)\bar{e}_l,$$

while $\mathcal{A}(e_i, e_j)e_k = 0$ if any entry belongs to \bar{W} .

We now show Assertion (2) implies Assertion (1) in Theorem 1.9.

Lemma 4.2. Let $\mathfrak{M} := (V, \langle \cdot, \cdot \rangle, A)$. If \mathfrak{M} is 2-step skew-curvature nilpotent, then \mathfrak{M} is 2-step Jacobi nilpotent.

Proof. Suppose A is a 2-step skew-curvature nilpotent algebraic curvature tensor. Then $\mathcal{A}(x_1, x_2)\mathcal{A}(x_3, x_4) = 0$ for all $x_1, x_2, x_3, x_4 \in V$. Hence

$$0 = -\langle \mathcal{A}(x_1, x_2) \mathcal{A}(x_3, x_4) x_4, x_2 \rangle = -\langle \mathcal{A}(x_1, x_2) \mathcal{J}(x_4) x_3, x_2 \rangle$$
$$= -\langle \mathcal{J}(x_4) x_3, \mathcal{A}(x_1, x_2) x_2 \rangle = \langle \mathcal{J}(x_4) x_3, \mathcal{J}(x_2) x_1 \rangle$$
$$= \langle \mathcal{J}(x_2) \mathcal{J}(x_4) x_3, x_1 \rangle.$$

Before completing the proof of Theorem 1.9, we must establish a technical result.

Lemma 4.3. Let $\mathfrak{M} := (V, \langle \cdot, \cdot \rangle, A)$. Suppose that $\mathcal{J}(x)y = 0$ for all $x \in V$. Then $A(x_1, x_2, x_3, y) = 0$ for all $x_i \in V$.

Proof. We compute:

$$A(x_1, x_2, x_3, y) + A(x_1, x_3, x_2, y) = 2\langle \mathcal{J}(x_2, x_3)x_1, y \rangle$$

= $2\langle x_1, \mathcal{J}(x_2, x_3)y \rangle = 0$.

Consequently $A(x_1, x_2, x_3, y) = -A(x_1, x_3, x_2, y)$ for all $x_i \in V$. This implies

$$0 = A(x_1, x_2, x_3, y) + A(x_2, x_3, x_1, y) + A(x_3, x_1, x_2, y)$$

$$= A(x_1, x_2, x_3, y) - A(x_2, x_1, x_3, y) - A(x_1, x_3, x_2, y)$$

$$= A(x_1, x_2, x_3, y) + A(x_1, x_2, x_3, y) + A(x_1, x_2, x_3, y)$$

$$= 3A(x_1, x_2, x_3, y).$$

We complete our discussion by showing that Assertion (1) implies Assertion (3) in Theorem 1.9. Suppose that $\mathfrak M$ is indecomposable and that $\mathfrak M$ is 2-step Jacobi nilpotent. Set

$$\bar{W} := \operatorname{Span}_{v_1, v_2 \in V} \{ \mathcal{J}(v_1) v_2 \} \quad \text{and} \quad U := \{ v \in V : \mathcal{J}(v_1) v = 0 \ \forall v_1 \in V \} .$$

Then by assumption, $\overline{W} \subset U$. Furthermore, by Lemma 4.3, $A(v_1, v_2, v_3, v_4) = 0$ if any of the $v_i \in U$. Choose a complementary subspace W_1 so that $V = U \oplus W_1$.

If $\bar{w} \in \bar{W}$, then $\bar{w} = \sum_{j} \mathcal{J}(x_j) y_j$. Thus if $u \in U$,

(4.a)
$$\langle \bar{w}, u \rangle = \langle \sum_{j} \mathcal{J}(x_j) y_j, u \rangle = \sum_{j} \langle y_j, \mathcal{J}(x_j) u \rangle = 0.$$

Since the metric is non-degenerate, there must exist $\tilde{w} \in W_1$ so $\langle \tilde{w}, \bar{w} \rangle \neq 0$. Thus the natural map $W_1 \to \bar{W}^*$ defined by $\langle \cdot, \cdot \rangle$ is surjective. Let $\{\bar{w}_1, ..., \bar{w}_k\}$ be a basis for \bar{W} . Choose elements $\{\tilde{w}_1, ..., \tilde{w}_k\}$ in W_1 so

$$\langle \tilde{w}_i, \bar{w}_i \rangle = \delta_{ij}$$
.

Suppose that $\{\tilde{w}_1, ..., \tilde{w}_k\}$ do not span W_1 . We may then choose $0 \neq \tilde{w} \in W_1$ so that $\tilde{w} \perp \bar{W}$. Since $\tilde{w} \notin U$, there exists y so that $\mathcal{J}(y)\tilde{w} \neq 0$. Choose $z \in V$ so

$$0 \neq \langle \mathcal{J}(y)\tilde{w}, z \rangle = \langle \tilde{w}, \mathcal{J}(y)z \rangle$$
.

This contradicts the fact that $\tilde{w} \perp \bar{W}$. Thus $\{\tilde{w}_1,...,\tilde{w}_k\}$ is a basis for W_1 . We set

$$w_i := \tilde{w}_i - \frac{1}{2} \sum_j \langle \tilde{w}_i, \tilde{w}_j \rangle \bar{w}_j$$
 and $W := \operatorname{Span}\{w_i\}$.

Then the relations of Equation (1.a) are satisfied. Furthermore,

$$V = U \oplus W$$
.

Let $\{\bar{w}_1, ..., \bar{w}_k, \tilde{u}_1, ..., \tilde{u}_l\}$ be a basis for U. By Equation (4.a), $\langle \bar{w}_i, \tilde{u}_j \rangle = 0$. Set

$$u_i := \tilde{u}_i - \sum_j \langle w_j, \tilde{u}_i \rangle \bar{w}_j$$
.

We then have $\langle u_i, w_i \rangle = \langle u_i, \bar{w}_i \rangle = 0$. Let $T := \text{Span}\{u_i\}$. Then:

$$(V, \langle \cdot, \cdot \rangle, A) = (W \oplus \bar{W}, \langle \cdot, \cdot \rangle|_{W \oplus \bar{W}}, A|_{W} \oplus 0) \oplus (T, \langle \cdot, \cdot \rangle|_{T}, 0).$$

Since $(V, \langle \cdot, \cdot \rangle, A)$ is indecomposable, $T = \{0\}$.

ACKNOWLEDGMENTS

The research of M. Brozos-Vázquez was partially supported by project BFM 2003-02949 (Spain). The research of P. Gilkey was partially supported by the Max Planck Institute for the Mathematical Sciences (Leipzig, Germany). It is a pleasure for both authors to acknowledge helpful conversations with C. Dunn and E. Puffini.

References

- [1] N. Blažić, Natural curvature operators of bounded spectrum, In press J. Diff. Geo. and Applications.
- [2] N. Blažić, N. Bokan, and P. Gilkey, A Note on Osserman Lorentzian manifolds, Bull. London Math. Soc., 29 (1997), 227–230.
- [3] N. Blažić, N. Bokan, P. Gilkey, and Z. Rakić, Pseudo-Riemannian Osserman manifolds, Balkan J. Geom. Appl. 2 (1997), 1–12.
- [4] N. Bokan, On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection, Rendiconti del Circolo Matematico di Palermo XXIX (1990), 331–380.
- [5] M. Brozos-Vázquez and P. Gilkey, Manifolds with commuting Jacobi operators, preprint math.DG/0507554.
- [6] Q. S. Chi, A curvature characterization of certain locally rank one symmetric spaces, J. Differential Geom., 28 (1988), 187–202.
- [7] J. C. Díaz-Ramos, E. García-Río, and R. Vázquez-Lorenzo, New examples of Osserman metrics with nondiagonalizable Jacobi operators, in press J. Diff. Geo. and Applications.
- [8] E. García–Río, D. Kupeli, and M. E. Vázquez-Abal, On a problem of Osserman in Lorentzian geometry, Differential Geometry and its Applications 7 (1997), 85–100.
- [9] P. Gilkey, Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific (2002).
- [10] P. Gilkey, R. Ivanova, and T. Zhang, Higher order Jordan Osserman, Pseudo-Riemannian manifolds, Class and Quantum Gravity 19 (2002), 4543-4551.
- [11] P. Gilkey and S. Nikčević, Complete curvature homogeneous pseudo-Riemannian manifolds, Classical and Quantum Gravity 21 (2004), 3755–3770.
- [12] Y. Nikolayevsky, Osserman manifolds of dimension 8, Manuscr. Math. 115 (2004), 31–53.
- [13] Y. Nikolayevsky, Osserman Conjecture in dimension $n \neq 8, 16$, Mat. Annalen **331** (2005), 505–522.
- [14] R. Osserman, Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731–756.
- [15] J. M. Overduin and P. S. Wesson, Kaluza-Klein gravity, Phys. Rep. 283 (1997), 303–378.
- [16] V. Sahni and Y. Shtanov, Bouncing braneworlds, Physics Letters B, 557 (2003), 1-6.
- [17] Y. Tsankov, A characterization of n-dimensional hypersurface in Rⁿ⁺¹ with commuting curvature operators, Banach Center Publ. 69 (2005), 205−209.

MBY:Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

E-mail address: mbrozos@usc.es

PG: MATHEMATICS DEPARTMENT, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA E-mail address: gilkey@uoregon.edu