1. Describe a polynomial-time reduction from 3SAT to ILP-FEASIBILITY. Your reduction implies that ILP-FEASIBILITY is NP-hard.

Solution: Let Φ be an arbitrary 3CNF formula, with variables x_1, x_2, \ldots, x_n . We create an integer linear program with one *integer* variable $z_i \in \{0,1\}$ for each *boolean* variable x_i of Φ , and one inequality constraint for each clause in Φ . Specifically, for each clause, we create a linear inequality by

- replacing each positive literal x_i with z_i ,
- replacing each negative literal $\overline{x_i}$ with $(1-z_i)$,
- replacing each ∨ with +, and
- requiring the resulting expression to be at least 1.

The integer values 0 and 1 correspond to the boolean values False and True, respectively; thus, the expression 1-z is equivalent to Boolean negation, and addition is (crudely) equivalent to Boolean Or. To enforce $z_i \in \{0,1\}$ for every index i, we add constraints $z_i \geq 0$ and $z_i \leq 1$ and (automatically, because this is an integer linear program) $z_i \in \mathbb{Z}$ for every index i. The objective function doesn't matter, because we only care about feasibility.

For example, if $\Phi = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_1} \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_4})$, the resulting ILP is

minimize
$$\langle\!\langle Whatever \rangle\!\rangle$$
 subject to $z_1 + z_2 + z_3 \ge 1$ $z_2 + (1-z_3) + (1-z_4) \ge 1$ $(1-z_1) + z_3 + z_4 \ge 1$ $z_1 + (1-z_2) + (1-z_4) \ge 1$ $0 \le z_i \le 1$ for all i $z_i \in \mathbb{Z}$ for all i

Now I claim that Φ is satisfiable if and only if the ILP is feasible.

 \Rightarrow Suppose Φ is satisfiable. Fix arbitrary values to the variables x_i that satisfy Φ . For each index i, define $z_i = [x_i]$; that is, $z_i = 1$ if $x_1 = \text{True}$, and $z_i = 0$ if $x_i = \text{False}$. We immediately have $1 - z_i = [\overline{x_i}]$ for all i. It follows that the left side of every inequality in our ILP is an integer between 0 and 3.

Now consider an arbitrary clause of Φ . At least one literal x_i or $\overline{x_i}$ in this clause is TRUE, so the corresponding term z_i or $(1-z_i)$ in the corresponding ILP constraint is equal to 1, and therefore the constraint is satisfied. We conclude that the integer vector (z_1, z_2, \ldots, z_n) satisfies all constraints of the ILP, which means the ILP is feasible.

 \Leftarrow Conversely, suppose the ILP is feasible. Fix an arbitrary feasible vector (z_1, z_2, \ldots, z_n) ; by definition every z_i is either 0 or 1. For each index i, define $x_i = (z_i = 1)$; that is, $x_1 = \text{True}$ if z_i , and $x_i = \text{False}$ if $z_i = 0$. We immediately have $\overline{x_i} = (z_i = 0) = ((1 - z_i) = 1)$ for all i.

Now consider an arbitrary constraint in the ILP. Because each term z_i or $(1-z_i)$ is either 0 or 1, this constraint must contain at least one term z_i or $(1-z_i)$ that is equal to 1. The corresponding literal x_i or $\overline{x_i}$ is TRUE, and therefore the corresponding clause is satisfied. We conclude that x_1, x_2, \ldots, x_n satisfy every clause of Φ , which means Φ is satisfiable.

The reduction runs in polynomial time.

Rubric: 10 points = 3 for reduction + 3 for "if" proof + 3 for "only if" proof + 1 for "polynomial time". (This is the standard NP-hardness rubric.) This is more detail than necessary for full credit.

2. (a) Describe a polynomial-time reduction from the *undirected* Hamiltonian cycle problem to the *directed* Hamiltonian cycle problem. Prove your reduction is correct.

Solution: Given an undirected graph G = (V, E), we construct a directed graph G' = (V, E') by replacing each undirected edge uv with two directed edges $u \rightarrow v$ and $v \rightarrow u$. I claim that G contains a Hamiltonian cycle if and only if H contains a Hamiltonian cycle.

Suppose G contains a Hamiltonian cycle $\gamma = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_0$, where $v_i v_{i+1 \bmod n} \in E$ for every index i. The definition of G' immediately implies that $v_i \rightarrow v_{i+1 \bmod n} \in E'$ for every index i. If follows that γ is also a cycle in G', and therefore a Hamiltonian cycle in G'.

Suppose G' contains a Hamiltonian cycle $\gamma = \nu_0 \rightarrow \nu_1 \rightarrow \nu_2 \rightarrow \cdots \rightarrow \nu_{n-1} \rightarrow \nu_0$, where $\nu_i \rightarrow \nu_{i+1 \bmod n} \in E'$ for every index i. The definition of G' immediately implies that $\nu_i \nu_{i+1 \bmod n} \in E$ for every index i. If follows that γ is also a cycle in G, and therefore a Hamiltonian cycle in G.

The reduction runs in polymomial time.

Rubric: 3 points = 1 for reduction + 1 for if proof + 1 for only if proof + 0 for "polynomial time"

(b) Describe a polynomial-time reduction from the *directed* Hamiltonian cycle problem to the *undirected* Hamiltonian cycle problem. Prove your reduction is correct.

Solution: Given an directed graph G = (V, E), we construct an undirected graph G' = (V', E') as follows:

- $V' = \{v^-, v^\circ, v^+ \mid v \in V\}$
- $E' = \{v^-v^\circ, v^\circ v^+ \mid v \in V\} \cup \{u^+v_- \mid u \to v \in E\}$

That is, every vertex in G is represented by a path of three vertices in G', and every directed edge in G is represented by an edge from the end of one vertex chain to the beginning of another. I claim that G contains a Hamiltonian cycle if and only if G' contains a Hamiltonian cycle.

First, suppose G contains a Hamiltonian cycle $\gamma = \nu_0 \rightarrow \nu_1 \rightarrow \nu_2 \rightarrow \cdots \rightarrow \nu_{n-1} \rightarrow \nu_0$, where $\nu_i \rightarrow \nu_{i+1 \bmod n} \in E$ for every index i. Then G' contains the Hamiltonian cycle $\nu_0^\circ \rightarrow \nu_0^+ \rightarrow \nu_1^- \rightarrow \nu_1^\circ \rightarrow \cdots \rightarrow \nu_{n-1}^+ \rightarrow \nu_0^- \rightarrow \nu_0^\circ$, obtained by replacing every directed edge $u \rightarrow v$ in γ with the path $u^\circ \rightarrow u^+ \rightarrow v^- \rightarrow v^\circ$ in G'.

Conversely, suppose G' contains a Hamiltonian cycle γ' . This cycle must pass through every middle vertex ν° ; the cycle must visit the neighbors of ν° immediately before and after visiting ν° . Orient γ' so that it contains some subpath $\nu^- \to \nu^\circ \to \nu^+$. Every neighbor of a "positive" vertex ν^+ except ν° is a "negative" vertex w^- ; thus, by induction, γ' traverses every vertex gadget in the order $\nu^- \to \nu^\circ \to \nu^+$. We conclude that $\gamma' = \nu_0^\circ \to \nu_0^+ \to \nu_1^- \to \nu_1^\circ \to \cdots \to \nu_{n-1}^+ \to \nu_0^- \to \nu_0^\circ$ for some indexing of the vertex gadgets. The corresponding cycle $\gamma = \nu_0 \to \nu_1 \to \nu_2 \to \cdots \to \nu_{n-1} \to \nu_0$ is a Hamiltonian cycle in G.

The reduction runs in polynomial time.

Rubric: 6 points = 2 for reduction + 2 for if proof + 2 for only if proof + 0 for "polynomial time"

(c) Which of these two reductions implies that the *undirected* Hamiltonian cycle problem is NP-hard?

Solution: The second one.

Rubric: 1 point

3. Suppose you are given a magic black box that can determine in polynomial time, whether an arbitrary given 3CNF formula is satisfiable. Describe and analyze a polynomial-time algorithm that either computes a satisfying assignment for a given 3CNF formula or correctly reports that no such assignment exists, using the magic black box as a subroutine.

Solution: First, suppose we actually have a more powerful black box Satisfiable that does not require every clause of the input formula to have exactly three distinct literals. Then we can construct a satisfying assignment for any 3CNF formula in polynomial time as follows. In each iteration, we add a one-literal clause to the formula, consisting either of a variable x_i or its negation $\overline{x_i}$. The key insight is that every satisfying assignment for the formula $\Phi \wedge x_i$ is a satisfying assignment for Φ such that $x_i = \text{True}$.

```
FINDSATASSIGNMENT(\Phi):

if ¬SATISFIABLE(\Phi)

return None

for i \leftarrow 1 to n

if SATISFIABLE(\Phi \land x_i)

\Phi \leftarrow \Phi \land x_i

X[i] \leftarrow \text{True}

else

\Phi \leftarrow \Phi \land \overline{x_i}

X[i] \leftarrow \text{False}

return X[1..n]
```

To adapt this strategy to our original black box, we introduce two new variables y and z, and then in each iteration we add four clauses to the formula. Specifically, for each index i, we define two CNF formulas

$$\Phi_T = \Phi \wedge (x_i \vee y \vee z) \wedge (x_i \vee \overline{y} \vee z) \wedge (x_i \vee y \vee \overline{z}) \wedge (x_i \vee \overline{y} \vee \overline{z}) \text{ and }$$

$$\Phi_F = \Phi \wedge (\overline{x_i} \vee y \vee z) \wedge (\overline{x_i} \vee \overline{y} \vee z) \wedge (\overline{x_i} \vee y \vee \overline{z}) \wedge (\overline{x_i} \vee \overline{y} \vee \overline{z}).$$

Every satisfying assignment for Φ also satisfies either Φ_T (if $x_i = \text{True}$) of Φ_F (if $x_i = \text{False}$). Conversely, every satisfying assignment for Φ_T (or Φ_F) is a satisfying assignment for Φ such that $x_i = \text{True}$ (or $x_i = \text{False}$, respectively).

Suppose the original input formula Φ has n variables and $m = O(n^3)$ clauses. Then every formula passed to 3SAT has n+2 variables and at most $m+4n = O(n^3)$ clauses. Thus, the algorithm runs in polynomial time.

Rubric: 10 points = 4 for reduction using more powerful black box + 4 for full reduction + 2 for time analysis. This is not the only correct solution.