I CIVIAIVIEN (EXAMINATION)

Tentamenso (åå-mm-dd/	latum yy-mr	/ Exa n-dd)	mina	tion	date:	-	202	0 - 0	01-1	4					
AID-numme			elles av) _	3 2	2				31	av val	st 3 c	Q ervise	or	
Utbildnings	kod/E	Educa	tion	code:	_7	32 A	97	1	Modul	/Mod	lule:_	T	EN	T	
Kursnamn/Course title: Multivariate Statistical Methods															
Institution/Department: DA															
Jag intygar att varken mobil eller något annat otillåtet hjälpmedel finns tillgängligt under tentamen. I confirm that no mobile or other non-permitted aids are available during the examination.															
Inlämnat: antal lösblad															
Markera be	hand	lade	uppg	ifter	med	X/M	ark to	ısks d	attem	pted	with	an X			
X här/here	X	² X	3 X	4 X	5	6	7	8	9	10	11	12	13	14	15
Erhållna poäng Points obtained	5	41/4	34	3h								100	733		
X här/here	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Erhållna poäng Points obtained															
Anvisningar/I Skriv AID-nur number, date, På varje pappe Maximum one Skriv endast på Use only one sid Numrera de pa Använd inte röc	mmer, da edu.code er får hög etask per å pappret de of each	atum, ut and me gst en up sheet u ts ena si h sheet u	tb.kod, i odule on oppgift lö unless ot ida om i unless o	every sessions on herwise inget an therwise amber examples.	heet that inget and instruction anat angue instruction wery she	t is hand nnat ang ted res/ cted	ded in es/		ite AID	Kl Ti	n inlä te har ocksla me rsak _		g [
\sum Poäng/ F	Points	s:		16	1/2			Bety	g/Gi	rade.	_		B		
Examinator,	/Exa	min	er:_					10	g/G1	1					

1) P/2 x/0 $\sum_{i} = (1-\alpha)I + \alpha \overrightarrow{I}_{p} \overrightarrow{I}_{p}$ $I = \begin{bmatrix} 1 & 0 & -0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} PxP$ $(1-x') = (1-x) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \times 0 & 0 & -0 \\ 0 & 1 - x & -0 \\ 0 & 0 & 1 - x \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & 1 - x \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & 1 - x \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & 1 - x \end{bmatrix}$ $\begin{bmatrix} 1 \times 0 & 0 & 0 \\ 0 & 0 & 1 - x \end{bmatrix}$ 0,0= $\exists \forall \ \Xi = \begin{bmatrix} 1 & \dots & x \\ x & 1 & \dots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & d & 1 \end{bmatrix} = \sum_{i=1}^{n} \Xi_{i} \times Symmetric$ $\overrightarrow{X} \overrightarrow{Z} \overrightarrow{X} = [x_1, x_2 \dots x_p] \begin{bmatrix} 1 & \dots & \alpha \\ 1 & \dots & \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$ $= \left[\frac{1}{2} \frac{1}{2}$ lan, + anz + ang +

	AID-nummer: AID-number:	3.32	State of the last	Datum: Date:	2020-01-	-14	Sheet num	noer.
II.U	Utbildningskod: Education code:	732A	97	Modul: Module:	TENT	The same of the sa		
LINKÖPINGS UNIVERSITET	nue:	٤						
1) Conti		a f						
		8						
= 1/2 + 0	X1 (X2 + X3+	+xp) + x2	2+ xx2 (n	1,+213+-	$-+\pi_p)+\pi_3^2$	+ Xn3(n,+)	(2+ N4+··+	np)
	. + Np +							
$= \left(x_1^2 + x_2^2\right)$	+ · · · + × 2	+ X (x, x2	+21,213 +.	+x,xp)	+ (2424 + 212	N3 + + X2	Np)	
		+ (20	3 ×1 + ×3	2 + ×3	×4 + ×3	(p) +	. +	
×Σχ		• (x	px1 + xp2	X2 +	. + Mp Mp-1)	
= (91 2 + 912	2 + + Mp	$)+\alpha \left[2x\right]$, N2 + 2N,	N3 + 2N,	24+24,x,) + 2×2×3 +	2×2×4+.	+2N2 N
						+ 224 75	1	Mp +
		221	5 ×6 +	+ 2215	жр++	2 × P-1 × P		
1f x=0 =>	The seco	nd term	is Zer	o ano	the fin	rst term	is alwa	45
918 X=1	X3 X (E	$= (\chi_1^2 + \dots$.+np + 2	291,72+	211,113+2)=(q ₁ , ₁ , ₁ ,	N1 + X2+	np)
if a>1	=> X Z	X	(n, +2)	2+	+np) >	0 (S) => X	EX >	(2)
if <>1	VAA/	No	LAS (inly	here it	ould fail guture 2,		

2020-01-14 TENT 732 A 97

(1) $\left[2\chi_{1}\chi_{2} + 2\chi_{1}\chi_{3} + 2\chi_{4}\chi_{4} + \dots + 2\chi_{p-1}\chi_{p} \right] = \left[(\chi_{1} + \chi_{2} + \dots + \chi_{p})^{2} - (\chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{p})^{2} \right]$ $=) \stackrel{?}{\times} \stackrel{?}{\times} = (\chi_1^2 + \chi_2^2 + \dots + \chi_p^2) + \chi \left[(\chi_1 + \chi_2 + \dots + \chi_p)^2 - (\chi_1^2 + \chi_2^2 + \dots + \chi_p^2) \right]$

Profes = 8

 $= \left(\chi \left(\chi_{1} + \chi_{2} + \dots + \chi_{p} \right)^{2} + \left(\chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{p}^{2} \right) \left(1 - \chi \right) \right)$

if o(< < | =) 1-x > 0 =) This term is always positive for it =

if == => x \ x \ z \ = 0 (5)

from (1), (2), (3), (4) and (5) we conclude that

XZX >, 0 => E is positive semi-definite.

and an already proved that E is symmetric >> E is

symmetric-positive-semi definite

AID-nummer: 3-32

Utbildningskod: 732A97

Datum: 2-2-01-14

Modul: Module: TENT

TENT

Blad nummer: Sheet number:

(h)

 $\overrightarrow{X} \sim \mathcal{N}(\overrightarrow{H}, \Sigma)$, G: an orthogonal matrin

 $\vec{\mathcal{H}} = \vec{0}$, $\Sigma = \sigma^2 \mathbf{I}$

GX = ?

G=G orthogonal

 $E(G\vec{X}) = G\vec{E}(\vec{X}) = G\vec{H} = G\vec{o} = \vec{o}$

Var(GX) = GZGT = G(6ZIGT

because G is an orthogonal matrix => GT=G'=> GGT=GG'= I

 $= G G^2 I G^{T} = G G^2 I G^{-1} = I G^2 I I = G^2 I = \Sigma$

=) GX ~ N(o, E) - Same distribution as X

O-number: 3 · 32 Datum: 2 · 2 · 2 · - 01 - 14

olidningskod: 232 A 9 7 Modul: Module: TENT

Sheet number:

5- 100 0

 $\begin{bmatrix} 183.84 \end{bmatrix} \begin{bmatrix} 66.875 & 96.77 \\ 5^{-1} = \begin{bmatrix} 6.022 & -0.015 \\ -0.015 & 6.021 \end{bmatrix}$

 $H_0: M = M_0 = \begin{bmatrix} 182 \\ 182 \end{bmatrix}$

In this case we have one sample taken from one population, the sample size (n=25) is small for two variables. So we form the test statistics as follow: $T^{2} = (\vec{x} - \vec{H})^{T} (\frac{1}{n} \cdot 5)^{T} (\vec{x} - \vec{H}) \sim c^{2} = \frac{(n-1)P}{n-P} F_{0} \cdot n-P$ When T

 $\vec{x} - \vec{\mathcal{H}}' = \begin{bmatrix} 185.72 \\ 183.84 \end{bmatrix} - \begin{bmatrix} 182 \\ 182 \end{bmatrix} = \begin{bmatrix} 3.72 \\ 1.84 \end{bmatrix}$ p = 2

 $T^{2} = 25 \begin{bmatrix} 3.72 & 1.84 \end{bmatrix} \begin{bmatrix} 0.022 & -0.015 \\ -0.015 & 0.021 \end{bmatrix} \begin{bmatrix} 3.72 \\ 1.84 \end{bmatrix}$

 $= 25 \times \left[0.022(3.72)^{2} + 0.021(1.84)^{2} - 2(0.015)(3.72)(1.84)\right]$ = 25(0.30 + 0.071 - 0.205) = 4.15

 $c^2 = \frac{(24)^2}{23} F_{2,23}(0.05) = 2.087 \times 3.42 = 7.14$

=> Me resent to and conducte that 21 (182) 15 met a plansible

T2=4.15 < c2=7.14 => We do not reject Ho, and conclude that

Mo = [182] is a placesible mean vector for the population.

AID-number:
3 32

Datum:
Date: 2.2.-01-14

Utbildningskod:
Education code: 732 A 97

Modul:
Module: TENT

Sheet number:

3-b) eigen values of 5: $\lambda_1 = 161.055$, $\lambda_2 = 27.201$ eigen vectors of 5 $\vec{e}_1 = \begin{bmatrix} 0.693 \\ 0.721 \end{bmatrix}$ $\vec{e}_2 = \begin{bmatrix} -0.721 \\ 0.693 \end{bmatrix}$ The ellipse is centered at $\vec{x} = \begin{bmatrix} 185.72 \\ 183.84 \end{bmatrix}$ half-length of major anis = $\sqrt{c^2}\sqrt{\frac{\lambda_1}{\eta}} = \sqrt{7.14}\sqrt{\frac{161.055}{25}} = 6.78$ in the direction of ~ minor axis = $\sqrt{c^2}\sqrt{\frac{\lambda_2}{n}} = \sqrt{7.14}\sqrt{\frac{27.201}{25}} = 2.79$ 187.8 82 185.7 182 As it is shown [182] lies inside the ellipse why?

2020-01-14 Datum: 3.32 AID-number: Modul: TENT 732 A97

Blad

Sheet

3-d) \(\Z_1 = \big[100 \ o \] \) according to this assumed covariance maintains the Covariance betwee two variables is i.e. on = o, so we can andude that the t variables are independent. But,

The sample Covariance = [91.48] 66.875] , according to th

matrin the variances of the vectors variables (O11, 622

almost equal to the variances of assumed matrix (succession

The Covariance between the two variables shows a linear relation dependency, as on =011 = 66.875, and the assumed Covariance

shows that they are independent. Therefore it is not reasonable that the measurements come from this distribution.

AID-nummer: AID-number: 3.32 Datum: Date: 2.20-61-14 Utbildningskod: Education code: 732A97 Modul: Module: TENT	8
Utbildningskod: $732A97$ Module: 4) $\sum_{2} = \begin{bmatrix} 1 & 0 & 5 & 0 \\ 5 & 0 & 0 & 0 \end{bmatrix}$ $\sum_{2} = \begin{bmatrix} 1/75 & -1/150 \\ -1/150 & 1/75 \end{bmatrix}$ A) $\sum_{3} = \begin{bmatrix} 1/75 & -1/150 \\ 5 & 0 & 0 \end{bmatrix}$ Module: $\sum_{4} = \begin{bmatrix} 1/75 & -1/150 \\ -1/150 & 1/75 \end{bmatrix}$ A) $\sum_{4} = \begin{bmatrix} 1/75 & -1/150 \\ 5 & 0 & 0 \end{bmatrix}$ Module: $\sum_{4} = \begin{bmatrix} 1/75 & -1/150 \\ -1/150 & 1/75 \end{bmatrix}$	72
a) $T^{2} + (\vec{X} - \vec{M}_{0})' \begin{bmatrix} 1/75 & -1/5 & $	0.091]
$= 25 \left[\frac{1}{75} (3.72)^{2} + \frac{1}{75} (1.84)^{2} - \frac{2}{150} (3.72)(1.84) \right] = 25 \left[0.184 + 0.045 - \frac{2}{75} (3.72)^{2} + \frac{1}{75} (1.84)^{2} - \frac{2}{150} (3.72)(1.84) \right] = 25 \left[0.184 + 0.045 - \frac{2}{75} (3.72)^{2} + \frac{1}{75} (3.72)^{2} + \frac{1}{75} (3.72)^{2} + \frac{1}{75} (3.72)(1.84) \right] = 25 \left[0.184 + 0.045 - \frac{2}{150} (3.72)^{2} + \frac{1}{75} (3.72)^$	a
Plansible vætter for M (meen vector of population)	
* The Sample Size is small, So we thoughtout it is reason use F distribution.	

AID-number: 3032 Date: 2020-01-14

Utbildningskod: 732A97 Modul: TENT

Sheet number:

4-b) $\bar{x} = \begin{bmatrix} 185.72 \\ 183.84 \end{bmatrix}$ $\lambda_1 = 150$ $\lambda_2 = 50$ $\lambda_3 = 50$ $\lambda_4 = 50$ $\lambda_5 = 50$ $\lambda_6 = 50$ C = 7.14 major axis: + & C \\ \frac{\lambda_1}{n} \end{es} = \frac{1}{\sqrt{7.14}} \sqrt{\frac{15.}{25}} \end{es} = \frac{1}{25} \end{es} = \frac{1}{25} \end{es} minor anii: te VAyn e2 = + 17.14 150 e2 = + 3.78 e2 x 187.8 182 185.7 182 As it is shown, [182] lies inside the ellipse

Utbildningskod:

Education code:

AID-nummer:
AID-number:

3.32

Datum:
Date:

732A97

2-2-01-14

Modul: TENT

Blad nummer: Sheet number:

10

In new assumed matrix, \mathbb{Z}_2 , the covariance between two variables is 50 (6n = 0n = 50), and 50 it assumes the two variables are considered not independent. Having considered, 5, \mathbb{Z}_2 seems more reasonable than

E1. Because the motepart dependency between two

Variables can be concluded from this men assumed

Covariance matrin (Ez).

(1)