

SOLUCIONES DEL TEMA 2 - PARTE 2

Composición de rotaciones básicas

Ejercicio 1. Para comprobar la solución de este ejercicio usaremos MATLAB:

a) Las matrices básicas de rotación (en 3D) en los ejes X y Z y la matriz final son:

```
>> R x = rotx(45)
R x =
    1.0000
               0.7071
                         -0.7071
               0.7071
                          0.7071
         0
>> R z = rotz(45)
RΖ
    0.7071
              -0.7071
                                0
               0.7071
    0.7071
                                0
                          1.0000
```

```
>> R_final = rotx(45)*rotz(45)

R_final =

0.7071   -0.7071     0

0.5000   0.5000   -0.7071

0.5000   0.5000   0.7071
```

- b) Las columnas de la matriz de rotación representan las componentes de los ejes X',Y',Z' del sistema girado, vistos en el sistema original OXYZ (ver c))
- c) La orientación final puede comprobarse usando Rotation Viewer.

d) Si se realizan las rotaciones en el orden inverso el resultado (primero rotación en el eje Z y luego rotación en el eje X' ya girado) el resultado es diferente, ya que la composición de rotaciones no es conmutativa:

Ejercicio 2.

a) Las matrices básicas de rotación (en 3D) en los ejes X y Z y la matriz final son:

- b) Las columnas de la matriz de rotación representan las componentes de los ejes X',Y',Z' del sistema girado, vistos en el sistema original OXYZ.
- c) Se puede comprobar que el eje girado X' coincide con el eje X original, que el eje girado Y' va en el sentido contrario al eje Z original y que el eje girado Z' es el mismo que el eje Y original:

d) La orientación final puede comprobarse usando Rotation Viewer.

Nota: a veces se producen errores de redondeo y los valores nulos aparecen en la matriz de rotación final mostrada en RotationViewer como números con exponente muy negativo.

Coordenadas homogéneas. Matrices de trasformación

Ejercicio 3. La matriz de transformación tendrá una componente de rotación igual a la matriz identidad, y un vector de traslación igual al vector p.

Las coordenadas homogéneas de r en OXYZ vienen dadas por:

$$\begin{bmatrix} r_x \\ r_y \\ r_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 7 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 11 \\ 1 \end{bmatrix}$$

Ejercicio 4. La matriz de transformación tendrá ahora un vector de traslación nulo y una matriz de de rotación de -90º en el eje OZ, rotz(-90)

Las coordenadas homogéneas de r en OXYZ vienen dadas por:

$$\begin{bmatrix} r_x \\ r_y \\ r_z \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 12 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ 12 \\ 1 \end{bmatrix}$$

Ejercicio 5. Dado que la rotación y la traslación están ambas dadas con respecto al sistema de referencia original OXYZ, podemos incluir ambas en la misma matriz de transformación homogénea.

Las coordenadas homogéneas de r en OXYZ son:

$$\begin{bmatrix} r_x \\ r_y \\ r_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 0 & -1 & -4 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \\ -11 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 16 \\ 1 \end{bmatrix}$$

Ejercicio 6. En este caso debemos construir la matriz de transformación final T como producto, en el orden de aparición, de las diferentes rotaciones y traslaciones relativas a los sistemas ya trasladados y/o rotados:

$$T = t(-3,10,10) \cdot Rotx(-90) \cdot Roty(90) = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 0 & 1 & -3 \\ -1 & 0 & 0 & 10 \\ 0 & -1 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Representación de la rotación mediante cuaterniones. Robotics System Toolbox de MATLAB

Las soluciones de los ejercicios 7 a 11 de esta sección se encuentran en ficheros .m aparte.

Puedes descargarlos del Aula Virtual y ejecutarlos en MATLAB para comprobar la solución de cada uno de ellos.