Analyse et modélisation - Contrôle continu 1

durée 1H30. Documents papier autorisés. Smartphone et ordinateurs non autorisés.

Les trois exercices sont indépendants.

Exercice 1. Soit E le R-espace vectoriel $\mathbb{R}^3[X]$ des polynômes à coefficients réels de degré inférieurs ou égal à 3.

On note:

$$F = \{ P \in E \mid P(0) = P(1) = P(2) = 0 \}$$

$$G = \{ P \in E \mid P(1) = P(2) = P(3) = 0 \}$$

$$H = \{ P \in E \mid P(1) = P(2) = 0 \}$$

- 1.1) Montrer que F et G sont des sous-espaces vectoriels de E. En préciser la dimension.
- 1.2) Montrer que les sous-espaces vectoriels F et G sont en somme directe et que $F \oplus G = H$.
- 1.3) On note $K = \{P \in E \mid P(X) = P(-X)\}$. Démontrer qu'il s'agit d'un sous-espace vectoriel de E et que $E = F \oplus G \oplus K$.

Exercice 2.

2.1) Donner une équation cartésienne de la droite D_1 paramétrée par

$$\begin{cases} x = 3 + 2t \\ y = 1 - t, \end{cases}$$

 $t \in \mathbb{R}$.

2.2) Donner une représentation paramétrique de la droite D_2 d'équation cartésienne

$$2x - 3y = 4.$$

- 2.3) Déterminer le point A d'intersection entre D_1 et D_2 . Déterminer u_1 un vecteur de norme 1 (vecteur unitaire) qui engendre la droite D_1 , un vecteur unitaire u_2 qui engendre la droite D_2 , de sorte que le repère du plan affine (A, u_1, u_2) soit orienté comme le repère canonique $(0, \mathbf{i}, \mathbf{j})$. Faire un dessin et calculer le sinus et le cosinus de l'angle α formé par les deux droites.
- 2.4) Soit $\Gamma_{n,2}=\{M=M(x,y)\in D_2: -n\leq x\leq n\}$. Etant donnée une fonction f=f(x,y) définie sur \mathbb{R}^2 , on dit que l'intégrale

$$I = \int_{D_2} f dl$$

est convergente quand la suite

$$I_n = \int_{\Gamma_{n,2}} f dl$$

est convergente, et dans ce cas on pose $I = \lim_{n\to\infty} I_n$, qui est l'intégrale curviligne de la fonction f sur toute la droite D_2 . Montrer alors que pour

$$f(x,y) = e^{-(3y+4-x)^2},$$

l'intégrale I est convergente et la calculer.

Exercice 3. Soit Ω le domaine délimité par le contour représenté sur la figure cidessous, en notant Γ le contour en question.

Figure 1: Domaine Ω et sa frontière Γ

3.1) Paramétrer la frontière Γ . Déterminer en chaque point de Γ sa normale extérieure, $\mathbf{n}=\mathbf{n}(x,y)$.

3.2) Soit $f(x,y) = (x+y)^2 \cos(y)$. Calculer l'intégrale curviligne

$$\int_{\Gamma}fdl.$$

3.3) Soit $\mathbf{v}=\mathbf{v}(x,y)=(v_1(x,y),v_2(x,y))$ un champs de vecteur de classe C^1 sur \mathbb{R} , $\nabla \cdot \mathbf{v}$ sa divergence définie par

$$\nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y}.$$

Montrer la formule de la divergence sur le domaine Ω , à savoir

$$\int_{\Gamma} \mathbf{v} \cdot \mathbf{n} \, dl = \iint_{\Omega} \nabla \cdot \mathbf{v}(x, y) dx dy.$$