Project 1: RectifiedHR – High-Resolution Diffusion via Energy Profiling and Scheduling

🧠 1. Background & Motivation

Diffusion models like **Stable Diffusion (SD)** have shown impressive capabilities in high-resolution image synthesis. However, when generating images at **1024×1024 or higher**, users often observe:

- Blurry outputs, especially in details
- Over-saturation or washed-out colors
- Artifacts due to classifier-free guidance instability

Recent work like **RectifiedFlow**, **HiResFix**, and **RectifiedHR** show that even in **pre-trained models**, tweaking **the noise schedule**, **guidance strength**, or **latent sampling energy** can significantly improve quality — **without retraining**.

@ 2. Goal

To analyze and improve **high-resolution image quality** generated by latent diffusion (SD 1.5 or SDXL) via:

- Measuring latent energy evolution across denoising steps
- Proposing a rectified guidance schedule (dynamic CFG)
- Exploring noise refresh and intermediate clipping
- Producing visually and quantitatively better high-res images

Item	Description
GitHub Repo	With generate.py, metrics.py, plot_energy.py, and sample runs
Paper Draft	4–6 page LaTeX paper with analysis, visuals, and comparisons
Visual Results	Before/after grids, energy trend plots, latent heatmaps
Metrics	CLIP similarity, MS-SSIM, optional FID (if resources allow)

🧱 4. Methodology

Step 1: Baseline Generation

- Generate high-resolution images (768×768, 1024×1024) using:
 - StableDiffusionPipeline from diffusers
 - o CFG scales: [3, 5, 7, 10]
 - o Samplers: DDIM, Euler A
- Save intermediate latents (x_t) during sampling

For each timestep t, compute:

```
python
CopyEdit
E_t = torch.norm(latents[t])**2 / latent.shape[1:].numel()
```

Plot energy curves:

- With different CFG values
- o For SD 1.5 vs SDXL
- With and without noise_refresh (reset x_t to x₀ + noise halfway)

Step 3: Rectified Guidance Scheduling

- Implement adaptive CFG strategy:
 - Lower CFG at early steps, increase near end (or vice versa)
 - Try smooth cosine ramp or linear increasing schedule
- Observe if:
 - High-frequency detail improves
 - Latent energy stabilizes
 - Visual quality improves

Step 4: Noise Refresh + Clipping

```
At step t = T // 2, reset latent:
```

python CopyEdit

latents[t] = predicted_x0 + torch.randn_like(predicted_x0) * sqrt(1 alpha_bar[t])

- •
- Optional: clip x_t norm if it exceeds a threshold

■ Step 5: Evaluation

- For each condition (baseline, rectified, adaptive CFG), evaluate:
 - CLIP score similarity to original prompt
 - MS-SSIM for image sharpness
 - Latent energy trajectory plots
 - o Side-by-side image comparisons

% 5. Tools & Frameworks

Tool	Use
🤗 diffusers	For SD model & samplers
matplotlib, seaborn	For plotting energy trends
CLIP or BLIP	For image-text similarity
numpy, scipy	Signal smoothing, energy calc
GPU optional	Will run on MPS or Colab if needed

🧰 6. Timeline (7–8 days)

рау	Iask
1	Set up repo, generate baseline images, save latents
2	Plot latent energy trends across timesteps
3	Implement adaptive CFG scheduler
4	Implement noise refresh + clipping
5	Evaluate visual quality + metrics
6	Write paper (intro, method, results)

8 (buffer) Review, polish, post

7. Paper Structure

Section	Description
Abstract	What you did + why it matters + result summary
1. Introduction	Problem: SD fails at high-res, our hypothesis
2. Related Work	RectifiedFlow, HiResFix, DDIM, CFG
3. Method	Energy profiling, adaptive scheduling
4. Experiments	Images, graphs, metrics
5. Discussion	When it helps, when it doesn't
6. Conclusion	Summary + future work (multi-resolution fusion?)