EE 364000 – Comm. Systems I Lecture 1 – Introduction

Course Information I

Goal and Overview:

- Introductory course to communications.
- Basic concepts of:
 - Signal Representation
 - Modulation (analog vs digital)
 - Random Processes
 - Channel and Noise
 - Signal Detection

Required background:

Probability; Signals and Systems.

Textbook Book:

Simon Haykin and Michael Moher, *Communication Systems*, 5th Edition, John Wiley & Sons, 2010

(→ Please read the book! Do not rely entirely on notes in class.)

Course Information II

- **Lecture Time:** M5M6 (13:00—15:10), RnR5 (13:00—14:10)
- Lecture Location: EECS Building 207
- Instructor: 翁詠祿 (Yeong-Luh Ueng)
- Email: ylueng.ee@gmail.com
- Office: Delta Building 830
- Office Hour: Monday 15:10—16:10 and Thursday 14:10—15:10 (or by appointment)
- TA1: 戴雅炘 (yaxin.dai19@gmail.com)
- TA2: 梁富翔 (868503@gmail.com)
- TA3: 李昌鴻 (ccc199786@gmail.com)
- Location: Delta Building 831

Course Information III

 Grades: Homework 15%; Midterm I 30%; Midterm II 30%; Finals 25%

(Academic integrity is strictly enforced!! Any form of cheating in HW or exams will result in failure of the course. No Warnings!!)

Important Dates:

- Midterm I: 5/4 Monday during class
- Midterm II: 6/1 Monday during class
- **Final Exam:** 6/22 Monday during class
- 作業鼓勵討論,禁止抄襲!!
- 除非有正式假單,期中考期末考不得補考!!

What is a communication system?

 Communication is referred to, in this course, as the transmission of information from one end to another.

Communication Networks and Applications

Local Area Network

Smart Grid Communications

Point-to-Point Link

- Source or message signal: voice, music, picture, video computer data... etc.
- Transmitter: encoding and modulation
- Channel: transmission medium
- Receiver: decoding and demodulation
- User of information

Layered Approach

- The Open Systems Interconnect (OSI) model divides the system into 7 layers, each with different functionalities.
- Not closely followed in practice, but it
 - permits independent development of different functionalities;
 - simplifies the understanding and design of communication systems.
- (→ see course in Computer Networks)

Communication Channels (1)

- The best performance a communication system can achieve is often determined by its channel. (→ see Information Theory)
- Channels based on guided propagation:
 - Telephone channel (twisted pair):
 - Human voice ~ 300-3100 Hz

Communication Channels (2)

- Coaxial cable
 - Supports ~20Mbps
 - Also used for cable television
- Optical fiber
 - Dielectric waveguide for light
 - Extremely large bandwidth
 - Carrier frequency (~2x10¹⁴Hz) if BW is 10% of carrier frequency
 - \rightarrow (~2x10¹³ Hz bandwidth)
 - Small transmission loss 0.1dB/km (i.e., decay by half after 30km)
 - Immunity to EMI (electromagnetic interference)

Communication Channels (3)

Channels based on free propagation:

Wireless or mobile channels: e.g. AM radio (500-1600 kHz), FM radio (30-300MHz), mobile communication (700-1900 MHz),

Communication Engineering

 Goal: Design transmitters and receivers that optimize the performance (e.g., data rate, error probability etc) given constraints or limitations of the system.

Communication Constraints:

- Channel bandwidth
- Channel distortion
- Propagation loss
- Noise
- Transmit power
- Multi-user interference
- Cross-talk
- ... etc.

Modulation & Demodulation

Modulation: Modification of the message into a signal suitable for transmission over the channel.

Demodulation: Reconstruction of the message with degraded version of the signal.

(→ MODEM)

Covered in this course:

- Continuous-wave modulation:
 - Amplitude modulation (AM);
 - Frequency modulation (FM);
 - Phase modulation (PM).
- Pulse modulation (analog vs digital)
 - Analog: Pulse Amplitude Modulation (PAM), Pulse Position Modulation (PPM)
 - Digital: Pulse Coded Modulation (PAM+Quantization)

Analog vs Digital Modulation

Analog Modulation

- Conceptually simple, and low power.
- Still tolerable at low signal-to-noise ratio (SNR)But, ...
- Strict linearity requirements
- Does not adapt to the channel easily.
- → E.g., AM and FM radios

Analog vs Digital Modulation (cont'd)

Digital Modulation

- Treats different
 sources the same way
- Waveforms
 adapt optimally
 to the channel
- Ability to perform channel coding
- Ability to perform encryption for security
- Ease of integrating different systems.

→ E.g., mobile communications, WiFi, bluetooth

Source and Channel Coding

• **Source Coding:** Remove redundancy from the data. (E.g., JPEG, MPEG, MP3, ZIP etc)

 Channel Coding: Insert controlled redundancy to combat channel errors.
 e.g. repetition code

(Baseband) Digital Modulation

- **Digital Modulation:** Conversion of digital data streams into continuous-time signals.
 - Binary to M-ary Conversion (e.g. QPSK)

Binary Data	Modulated Symbol	↑
00	$\left(\sqrt{\frac{\mathcal{E}_s}{2}}, \sqrt{\frac{\mathcal{E}_s}{2}}\right) \text{ or } \left(\sqrt{\frac{\mathcal{E}_s}{2}} + j\sqrt{\frac{\mathcal{E}_s}{2}}\right)$	$\leq \mathcal{X}$ 01 $\sqrt{\frac{\mathcal{E}_s}{2}}$
01	$\left(-\sqrt{rac{\mathcal{E}_s}{2}},\sqrt{rac{\mathcal{E}_s}{2}} ight)$ or $\left(-\sqrt{rac{\mathcal{E}_s}{2}}+j\sqrt{rac{\mathcal{E}_s}{2}} ight)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11	$\left(-\sqrt{\frac{\mathcal{E}_s}{2}}, -\sqrt{\frac{\mathcal{E}_s}{2}}\right)$ or $\left(-\sqrt{\frac{\mathcal{E}_s}{2}} - j\sqrt{\frac{\mathcal{E}_s}{2}}\right)$	$-\sqrt{rac{\mathcal{E}_s}{2}}$ $\sqrt{rac{\mathcal{E}_s}{2}}$
10	$\left(\sqrt{rac{\mathcal{E}_s}{2}}, -\sqrt{rac{\mathcal{E}_s}{2}} ight) ext{ or } \left(\sqrt{rac{\mathcal{E}_s}{2}} - j\sqrt{rac{\mathcal{E}_s}{2}} ight)$	$11 \qquad \begin{array}{c} -\sqrt{\frac{cs}{2}} \\ \end{array} \qquad \qquad 10$
10	$\left(\sqrt{\frac{\mathcal{E}_s}{2}}, -\sqrt{\frac{\mathcal{E}_s}{2}}\right) \text{ or } \left(\sqrt{\frac{\mathcal{E}_s}{2}} - j\sqrt{\frac{\mathcal{E}_s}{2}}\right)$	11 10

Discrete to Continuous Time Signal

$$x(t) = \sum_{n = -\infty}^{\infty} x[n] \cdot p(t - nT_s) \triangleq x_r(t) + jx_i(t)$$

where $x[n] = x_r[n] + jx_i[n] \in \mathcal{X}$ and T_s is the symbol period.

(→ Modulate onto different carriers (frequencies) to obtain OFDM symbols.)

Contents to Cover

- Chapter 1 Introduction to Communication Systems
- Chapter 2 Fourier Theory and Communication Signals
- Chapter 3 Amplitude Modulation
- Chapter 4 Phase and Frequency Modulation
- Chapter 5 Random Variables and Processes
- Chapter 6 Noise in Analog Modulation
- Chapter 7 Digital Representation of Analog Signals
 - Sampling, Quantization, Pulse Modulation
- Chapter 8 Baseband Transmission of Digital Signals
 - Matched Filtering, Inter-symbol Interference (ISI), Equalization, etc.

Readings and Questions

- Readings: Chapters 1 and 2
- Questions:
 - What is a communication system?
 - What are its basic components?
 - How do I represent a signal in time and frequency?
 - What is the representation when passed through a linear time-invariant system?
 - What is bandwidth?
 - What is the difference between baseband and bandpass systems?
 - How do you convert a baseband signal to a bandpass signal?