

Estrategias de reslución de hipótesis TPN°4: Ejercicios 6, 7 y 8

Barraquero Ignacio, Campo Camila, Villarreal Francisco, Marzari Agustina Facultad de Ingeniería

Introducción a las Estrategias de resolución de hipótesis

Una estrategia de resolución de hipótesis es un método lógico que permite determinar si una proposición es verdadera a partir de un conjunto de hechos conocidos y reglas(base de conocimientos).

Encadenamiento hacia adelante (Forward Chaining)

Parte de los hechos conocidos y aplica reglas lógicas para derivar nuevos hechos. Sigue aplicando reglas hasta que se demuestra la hipótesis deseada, o no se pueden derivar más hechos.

Funcionamiento

Revisa qué reglas pueden aplicarse con los hechos actuales, aplica las reglas y genera nuevos hechos y repite el proceso con los nuevos hechos.

Usos típicos

Sistemas donde los datos llegan primero.

Motores de inferencia en sistemas expertos.

Encadenamiento hacia atrás (Backward chaining)

Parte de la hipótesis y trata de ver si se puede demostrar con los hechos y reglas existentes. Trabajo hacia atrás desde la conclusión.

Funcionamiento

Toma la hipótesis y busca reglas que la concluyan, para cada regla trata de demostrar sus condiciones previas, si todas las condiciones se prueban con hehcos, la hipótesis resulta verdadera

Usos típicos

Diagnósticos (médicos, técnicos)

Sistemas donde las metas son claras.

Resolución por contradicción(Proof by Contradiction)

Supone que la hipótesis es falsa y busca si eso genera una contradicción lógica. Si si, entonces la hipótesis debe ser verdadera

Funcionamiento

Agrega la negación de la hipótesis a la base de conocimientos, Usa reglas lógicas para ver si llega a una contradicción. Si se encuentra una contradicción debe ser verdadera

Ejercicio 6

Se utiliza el encadenamiento hacia adelante para inferir a partir de una base del conocimiento y concluir hasta que se llega a una cocnlusión deseada, o ya no se puede deducir nada nuevo


```
PRUEBA 1: hechos iniciales {d, e}
Paso 1: dispara R2, se agrega ['b']
Paso 2: dispara R4, se agrega ['c']
Paso 3: dispara R1, se agrega ['a']

Hechos finales: ['a', 'b', 'c', 'd', 'e']

PRUEBA 2: hechos iniciales {d, e, g}
Paso 1: dispara R2, se agrega ['b']
Paso 2: dispara R4, se agrega ['c']
Paso 3: dispara R1, se agrega ['a']
Paso 4: dispara R5, se agrega ['f']

Hechos finales: ['a', 'b', 'c', 'd', 'e', 'f', 'g']
```

Ejercicio 7

El Ejercicio 7 consiste en implementar un motor de inferencia usando encadenamiento hacia atrás (backward chaining) y probarlo con las proposiciones del Ejercicio 3. Es una estrategia de razonamiento lógico que parte de una hipótesis o meta que queremos demostrar, y busca si es posible deducirla a partir de los hechos conocidos y las reglas disponibles. A diferencia del encadenamiento hacia adelante, que parte de los datos para ver qué se puede concluir, el encadenamiento hacia atrás comienza por el final: la meta, y trabaja en reversa.

```
PS C:\Users\aguss\OneDrive\Desktop\trabajos IA\IA-Grupo-1\TP N4> & C:/Users/aguss/AppData/Local/Programs/Python/Python:
3/python.exe "c:/Users/aguss/OneDrive/Desktop/trabajos IA/IA-Grupo-1/TP N4/ej7.py"
¿Se puede probar que a = True?
Resultado: True
Vector de hechos probados: [False False False True True False False]
PS C:\Users\aguss\OneDrive\Desktop\trabajos IA\IA-Grupo-1\TP N4> []
```

Ejercicio 8

Se busca probar que A es derivado a partir de la contradicción de la misma. Lo primero que se hace es admitir que -A y luego avanzamos con encadenamiento hacia adelante hasta encontrar que A o -A. Si A y como dijimos -A se encuentra una contradicción porque no pueden existar ambas.

```
R5: d (True) disparó -> derivado 'd'
R6: e (True) disparó -> derivado 'e'
R2: d ∧ e → b disparó -> derivado 'b'
R4: e → c disparó -> derivado 'c'
R1: b ∧ c → a disparó -> derivado 'a'
Contradicción detectada Se ha derivado 'a' mientras ¬a estaba asumido.
Resultado: BC ∪ {¬a} es inconsistente => por contradicción, 'a' es consecuencia de la BC.
```