# Manual de uso do Toolbox SOM (Matlab)

Documento elaborado por: Nelson Albuquerque (ICA/DDEE/PUC-Rio)

| Leitura do arquivo de dados               | 3 |
|-------------------------------------------|---|
| Normalização dos dados                    | 4 |
| Topologia da Rede                         | 5 |
| Treinamento                               | 6 |
| Treinamento automático (default em batch) | 6 |
| Treinamento sequencial                    | 7 |
| Detalhando os tipos de treinamento        |   |

### Introdução ao SOMTOOLBOX

Esta instrução de usos do toolbox SOM (Matlab®) foi desenvolvida pela equipe da Prof.ª. Marley Velasco, do DEE/PUC-Rio. O aluno deve segui-la passo-a-passo para entender como a ferramenta funciona e poder realizar modificações para realização do exercício solicitado. Utilizando o arquivo de dados do próprio somtoolbox, "Iris.dat", veremos como inicializar e configurar uma rede (lattice) e, assim, prepará-la para o treinamento. Esse documento também servirá de guia para o aluno realizar o exercício proposto, cujo objetivo é, utilizando mapas de Kohonen, agrupar diferentes tipos de pacientes e, em seguida, determinar o perfil de cada grupo obtido.

O primeiro passo é instalar o toolbox no seu Matlab. Para isso deve obter os arquivos no seguinte endereço:

### http://www.cis.hut.fi/projects/somtoolbox/package/ somtoolbox2 Mar 17 2005.zip

Esse toolbox vem com base de dados para exemplo (Iris.dat) e 4(quatro) tutoriais que devem ser estudados para melhor entendimento (som\_demo1, som\_demo2, som\_demo3 e som demo4), pois procuram mostrar o potencial dessa caixa de ferramentas do Kohonen.

O exercício está divido em duas partes: configuração do mapa e análise dos resultados.

- Configuração do Mapa:
  - 1. Leitura e tratamento dos dados
  - 2. Topologia
  - 3. Parametrização do treinamento durante a fase de ordenação
  - 4. Parametrização do treinamento durante a fase de ajuste fino
- Análise dos resultados

## Leitura do arquivo de dados

O primeiro passo é ler o arquivo de dados, que deve ter uma característica própria como é apresentado no exemplo a seguir (iris.dat):

```
-----
```

```
4
#n SepalL SepalW PetalL PetalW
5.1 3.5 1.4 0.2 Setosa
7.0 3.2 4.7 1.4 Versicolor
6.3 3.3 6.0 2.5 Virginica
```

O comando de leitura do arquivo é o seguinte:

```
sD = som_read_data('iris.data');
> data read ok
```

Observe que a execução dessa função cria uma variável **sD** (que é uma variável tipo '*struct*' que define toda a estrutura de dados contido no arquivo de dados), veja como é organizada a estrutura resultante da leitura do arquivo de dados <*sD* 1x1 struct>:

```
type 'som_data'
> data <150x4 double> 0.1000 7.9000
labels <150x1 cell>
name 'iris.data'
comp_names <4x1 cell>
comp_norm <4x1 cell>
label_names []
```

Isso significa que existem variáveis que seguem o seguinte padrão: *sD.XXXX*,

onde *XXXX* é uma "sub-variável", por exemplo *sD.type* guarda a informação sobre o tipo da estrutura. No exemplo citado trata-se de uma estrutura organizada para utilização pelo *Somtoolbox*. O conteúdo de cada variável composta será utilizado posteriormente pelas funções pré-definidas do *toolbox*.

## Normalização dos dados

A seguir o exercício da IRIS instrui a normalização do arquivo de dados, através da função:

```
sD = som_normalize(sD,'range');
```

A estrutura sD possui o componente sD.Data normalizado com mínimo = 0 e máximo =1. No caso foi montado uma matriz com 500 linhas (registros lidos) e 4 colunas (as variáveis a serem analisadas.

```
data <150x4 double> 0 1
```

A função 'som\_normalize' tem a seguinte definição: 'som\_normalize(sS,[method], [comps]), que pode ser entendida como:

- SS; é a designação da estrutura dos dados de entrada (no nosso caso é a variável sD),
- > [method]; entre colchetes (significando que é opcional).

No exemplo foi indicado o método '*range*'. Existem vários métodos disponíveis: (para uma descrição mais detalhada veja SOM NORM VARIABLE).

| MÉTODO<br>'var'<br>'range'<br>'log' | <b>DESCRIÇÃO</b> A variância dos dados é normalizada para 1(um)(operação linear). Os valores são normalizados pela amplitude dos dados entre [0,1] (operação linear). É aplicado o LogNatural aos valores:  xnew = log(x-m+1) onde m = min(x). |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 'logistic'                          | Transformação Logística ou softmax que leva todos valores entre [0,1]                                                                                                                                                                          |
| 'histD'                             | Equalização por Histograma, os valores são escalados entre [0,1].                                                                                                                                                                              |
| 'histC' Equaliz                     | ação por histograma aproximada com operação parcialmente linear. Valores escalados entre                                                                                                                                                       |
|                                     | [0,1]                                                                                                                                                                                                                                          |
| 'eval'                              | Operação definida livremente                                                                                                                                                                                                                   |

Após a execução esse comando são criadas 4(quatro) estruturas com o nome de *com\_norm* <4x1 cell>. Ao investigar essas estruturas (uma para cada variável) observa-se as definições sobre o tipo de normalização, máximo, mínimo e o status que foi adotada em cada variável. A matriz definida por *sD.data* agora está normalizada.

```
data <150x4 double> 0 1
```

## Topologia da Rede

O *somtoolbox* possui vários modos de montar e treinar a rede SOM. Como se sabe, inicialmente, os neurônios da topografia estabelecida precisam receber valores de forma aleatória antes de iniciar o treinamento. A seguir é apresentado os dois tipos de topologia que são adotados nesse toolbox.

```
figure1 = figure('Name', 'Exemplo_de_Malhas_SOM');
subplot(1,2,1)
som_cplane('hexa',[10 15],'none')
title('Malha Hexagonal')
subplot(1,2,2)
som_cplane('rect',[10 15],'none')
title('Malha Retangular')

Malha SOM Hexagonal

Malha SOM Retangular
```

Cada neurônio (hexagonal à esquerda e retangular à direita da figura) tem um vetor protótipo associado. Após o treinamento, os neurônios vizinhos terão vetores protótipos similares. O treinamento se dá em duas fases. Em ambas a escolha da vizinhança delimita a amplitude das comparações e ajustes (produto escalar entre o dado e o protótipo prédefinido). Na primeira fase é realizado um treinamento mais grosseiro e na segunda um ajuste fino a partir do resultado do treinamento anterior. Ao final é eleito um neurônio, entre os vizinhos avaliados, que mais se aproxima ao dado que está sendo observado pelo algoritmo.

#### **Treinamento**

No exemplo dado em aula vimos duas maneiras de se executar o treinamento; num foi utilizado uma função <u>automática</u>, onde apenas se informa a estrutura dos dados [som\_make(sD)]. Com o uso dessa função não há necessidade de se especificar o tipo de inicialização nem especificar as etapas de treinamento embora seja possível informar os parâmetros que se deseja, forçando o seu uso. Todas as características são identificadas automaticamente e a função realiza todo o procedimento do início ao fim.

Uma outra modalidade é instruir passo-a-passo. Neste caso há necessidade de se especificar os parâmetros e as etapas são executadas com comandos / funções distintas.

Inicialmente é especificado a característica da rede e a sua dimensão. Essa função executa uma inicialização aleatória dos vetores protótipo. A função é a seguinte:

```
sM = som randinit(sD, 'msize', [10 10]).
```

Em se informa a função de treinamento (pode ser sequencial ou em batelada):

```
sM = som segtrain(sM,sD,'radius',[4 1]).
```

Na sequencial é necessário especificar a amplitude do treinamento, ou seja, a distância máxima de vizinhança a ser avaliada (p. ex., iniciando com a distância de 4 neurônios vizinhos e terminando com apenas um [4 1]).

A seguir apresentamos graficamente a organização da rede e a definição de vizinhança, onde podemos ver a distância de 2 vizinhos e 1 vizinho, para cada topografia utilizada.



## Treinamento automático (default em batch)

No caso da função "som\_make(...)", a escolha do tamanho da malha é automático, ou seja, o algoritmo escolhe uma rede em função do tamanho da matriz de dados. Em seguida inicializa a rede aleatoriamente; escolhe o método de treinamento, que no caso default é por "batch". Organiza cada uma das etapas de forma automática. Veja como isso ocorre e a o que aparece no "Command Window" do Matlab:

```
sM = som_make(sD);
Determining map size...
map size [13, 5]
Initialization...
Training using batch algorithm...
Rough training phase...
```

```
Training: 0/ 0 s

Training: 0/ 0 s

.....

Finetuning phase...

Training: 0/ 0 s

Training: 0/ 0 s

.....

Training: 0/ 0 s

Final quantization error: 0.093

Final topographic error: 0.027
```

A seguir observa-se um quadro com figuras obtidas da rede treinada sob a perspectiva das quatro varáveis e da matriz U.

som\_show(sM,'umat','all','comp',1:4, 'empty','Labels','norm','d');



## Treinamento sequencial

Na segunda modalidade de treinamento do exemplo são apresentados ao Matlab os seguintes comandos:

```
sM = som_randinit(sD,'msize', [10 10]);
[sM,sT] = som_seqtrain(sM,sD,'radius',[4 1]);
som_show(sM,'umat','all','comp',1:4, 'empty','Labels','norm','d');
```

```
Training:
           0/
                0 5
Training:
                0 5
Training:
           0/
                0 5
                0 s
Training:
Training:
           0/ 0 s
Training:
           0/
               0 5
Training:
           0/
                0 5
Training:
           0/
                0 5
Training:
           0/ 0 5
Training:
                0 5
```



## Detalhando os tipos de treinamento

### Treinamento sequencial

O treinamento pode ser melhor entendido avaliando as diversas características da função "som\_seqtrain()". Para isso deve ser observado oque a função realiza e seus principais parâmetros. Os parâmetros que não são informados são assumidos internamente com um valor default.

Para seguir o roteiro(script) da sequência adotada utilize o comando 'type som\_sequetrain' que mostra a descrição da função, o .m script:

[sM, sT] = som\_seqtrain(sM, D, varargin)

```
SOM_SEQTRAIN Utiliza o algoritmo de treinamento sequencial para treinar uma SOM.
[sM,sT] = som_seqtrain(sM, D, [[argID,] value, ...])
sM = som_seqtrain(sM,D);
sM = som_seqtrain(sM,SD,'alpha_type','power','tracking',3);
[M,sT] = som_seqtrain(M,D,'ep','trainlen',10,'inv','hexa');
```

Os argumentos de Entrada e Saída escrito entre colchetes [] são opcionais:

```
sM (struct) armazena o mapa da estrutura e também resultados do treinamento (matrix) matriz de código de uma SOM tamanho munits x dim ou msize(1) x ... x msize(k) x dim
```

O resultado é o mapa de código treinado.

```
Dados de treinamento; estrutura dos dados
(matrix) matriz de treinamento, tamanho é dlen x dim

[argID, (string) Veja a seguir. Os valores ambíguos (*) podem ser dados sem o argumento precedente (argID).

st (struct) parâmetros de aprendizagem utilizados durante o treinamento
```

Observar que a estrutura (sT) é onde se guardam todos os parâmetros de treinamento que foram utilizados. A seguir são apresentados os argumentos válidos (IDs) e seus valores correspondentes. Os valores ambíguos são marcados com (\*).

```
'mask'
              (vector) máscara de pesquisa BMU, tamanho dim x 1
'msize'
              (vector) tamanho do mapa
'radius'
              (vector) raio de vizinhança, tamanho 1, 2 ou 'trainlen'
'radius_ini' (scalar) rio para treinamento inicial
'radius_fin' (scalar) raio para treinamento final
'alpha'
              (vector) taxa de aprendizagem, tamanho do 'trainlen'
'alpha_ini'
              (scalar) taxa de aprendizagem inicial
'tracking'
              (scalar) nível de rastro ou trilha, 0-3
'trainlen'
              (scalar) tamanho do treinamento
'trainlen_type' *(string) é o número de 'samples' ou 'epochs'
             *(struct) estrutura de treinamento, parâmetros para treinamento
'sTrain', 'som_train ' = 'train'
'alpha_type' *(string) função da taxa de aprendizagem, 'inv', 'linear' ou 'power'
'sample_order'*(string) ordem das amostras: 'random' ou 'ordered'
             *(string) função da vizinhança, 'gaussian', 'cutgauss', 'ep' ou 'bubble'
'neigh'
'topol'
             *(struct) estrutura da topologia
'som_topol','sTopo l' = 'topol'
'lattice'
             *(string) tipo de rede, 'hexa' or 'rect'
'shape'
             *(string) tipo de mapa, plano=> 'sheet', cilíndrico=> 'cyl' ou toroidal
                  'toroid
```

Observar os tipos de mapas disponíveis nesse *toolbox*:



#### Treinamento automático

No caso da função SOM\_MAKE os parâmetros nas etapas necessárias são alocados automaticamente com valores *default* ou calculados a partir da base de dados fornecida. Ou seja, define a malha (tamanho e tipo), inicializa, faz um primeiro treinamento (*Rough phase*) e depois um segundo com ajuste fino (*Finetuning phase*).

Inicialmente se cria as estruturas e depois verifica qual foi o algoritmo escolhido (no caso default é o *batch*). A função realiza todas as etapas conforme está escrito no *script* da função som make().

Uma maneira interessante de se aprender como essa função é realizada é acompanhando a sua execução através do módulo de inspeção chamada de *debug* onde é possível verificar como os parâmetros vã sendo incorporados. A seguir um pedaço do script da função:

```
mapsize = '';
sM = som_map_struct(dim);
sTopol = sM.topol;
munits = prod(sTopol.msize); % should be zero
mask = sM.mask;
name = sM.name;
neigh = sM.neigh;
tracking = 1;
algorithm = 'batch';
initalg = 'lininit';
training = 'default'; <========</pre>
```

Como se pode observar o treino escolhido foi o 'default'. O treino pode ser realizado entre um dos seguintes tipos:

```
% 'training' (string) 'short', 'default' or 'long'
% (vector) size 1 x 2, first length of rough training
in epochs, and then length of fine-tuning in epochs
```

Cada um dos tipos recebe uma quantidade de treinamentos diferentes. O treinamento grosseiro é feito em 5(cinco) épocas e a vizinhança inicias é igual a 2(dois). Na segunda fase observa-se que o treinamento é feito em 8(oito) épocas e a vizinhança inicial é iguala 1(um).

Vamos dar uma olhada como essa sequência é realizada no Matlab:

```
>> sM = som_make(sD)
Determining map size...
map size [13, 5]
Initialization...
Training using batch algorithm...
Rough training phase...
Training: 0/ 0 s
Finetuning phase...
Training: 0/ 0 s
Final quantization error: 0.093
Final topographic error: 0.027
sM =
                        'som map'
        type:
        codebook:
                        [65x4 double]
        topol:
                        [1x1 struct]
        labels:
                         {65x1 cell}
        neigh:
                        'gaussian'
        mask:
                        [4x1 double]
        trainhist:
                        [1x3 struct]
                        'SOM 23-Jun-2009'
        name:
                         {4x1 cell}
        comp_names:
        comp_norm:
                         {4x1 cell}
```

Veja que a variável "*sM.trainhist*" é uma estrutura que guarda as características de cada etapa. Vejamos o que ocorreu:

| Variável  | Primeira fase | Segunda fase | Terceira fase |
|-----------|---------------|--------------|---------------|
| type      | 'som_train'   | 'som_train'  | 'som_train'   |
| algorithm | 'lininit'     | 'batch'      | 'batch'       |
| data_name | 'iris.data'   | 'iris.data'  | 'iris.data'   |

| Variável   | Primeira fase | Segunda fase | Terceira fase |
|------------|---------------|--------------|---------------|
| neigh      | "             | 'gaussian'   | 'gaussian'    |
| mask       | []            | [1;1;1;1]    | [1;1;1;1]     |
| radius_ini | NaN           | 2            | 1             |
| radius_fin | NaN           | 1            | 1             |
| alpha_ini  | NaN           | NaN          | NaN           |
| alpha_type | "             | 'inv'        | 'inv'         |
| trainlen   | NaN           | 5            | 18            |
| time       |               |              |               |

Lendo a descrição da função, observamos como se processa o treinamento. Veja o texto a seguir:

```
% rough train
if tracking>0, fprintf(1,'Rough training phase...\n'); end
sTrain = som_train_struct(sMap,'dlen',dlen,'algorithm',algorithm,'phase','rough');
sTrain = som_set(sTrain,'data_name',data_name);
if isnumeric(training), sTrain.trainlen = training(1);
else
switch training,
case 'short', sTrain.trainlen = max(1,sTrain.trainlen/4);
case 'long', sTrain.trainlen = sTrain.trainlen*4;
end
end
switch func,
case 'seq', sMap = som_seqtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask);
case 'sompak', sMap = som_sompaktrain(sMap,D,sTrain,'tracking',tracking,'mask',mask);
case 'batch', sMap = som_batchtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask);
end
```

Lendo as explicações do *script* é possível verificar que podemos alterar os parâmetros pré estabelecidos e que a variável.

```
% The change training parameters, the optional arguments 'train', % 'neigh', 'mask', 'trainlen', 'radius', 'radius_ini', 'radius_fin', % 'alpha', 'alpha_type' and 'alpha_ini' are used.
% sM = som_seqtrain(sM,D,'neigh','cutgauss','trainlen',10,'radius_fin',0); %
% Another way to specify training parameters is to create a train struct: % sTrain = som_train_struct(sM,'dlen',size(D,1),'algorithm','seq'); % sTrain = som_set(sTrain,'neigh','cutgauss'); % sM = som_seqtrain(sM,D,sTrain);
```

Observamos que se pode modificar os parâmetros do treinamento diretamente na função  $som\_seqtrain$  ou através da criação de uma variável tipo 'estrutura', por exemplo, sTrain com todos os parâmetros que se deseja manipular. Veja como é organizada essa função ( $type\ som\ traim\ struct\ e\ som\ set$ ).

Uma maneira de descobrir como sua estrutura está sendo montada é visualizar as variáveis tipo 'estrutura' durante o treinamento. Veja como fazer isso:

```
% [sM,sT] = som seqtrain(sM, D, [[argID,] value, ...])
\frac{0}{0}
% sM
             = som segtrain(sM,D);
% sM
             = som segtrain(sM,sD,'alpha type','power','tracking',3);
% [M,sT]
             = som segtrain(M,D,'ep','trainlen',10,'inv','hexa');
%
% Input and output arguments ([]'s are optional):
% sM
        (struct) map struct, the trained and updated map is returned
        (matrix) codebook matrix of a self-organizing map
%
%
              size munits x dim or msize(1) x ... x msize(k) x dim
              The trained map codebook is returned.
%
% D
         (struct) training data; data struct
%
        (matrix) training data, size dlen x dim
% [argID, (string) See below. The values which are unambiguous can
% value (varies) be given without the preceding argID.
%
% sT
         (struct) learning parameters used during the training
```

Observe que a variável estrutura sT guarda todos os parâmetros que são utilizados no treinamento. Rode seu programa e analise o que ocorre com essa variável.

#### Vejamos um exemplo:

Ao ler o arquivo Iris é criada uma estrutura com as principais informações do arquivo lido:

```
>> sD = som_read_data('iris.data');
```

```
data read ok
>>> sD
sD =

type: 'som_data'
data: [150x4 double]
labels: {150x1 cell}
name: 'iris.data'
comp_names: {4x1 cell}
comp_norm: {4x1 cell}
label_names: []
```

A variável sD é uma estrutura e para ver o seu detalhamento pode abrir diretamente no Editor de Variável (dando dois cliques na variável sD no painel "Workspace".

Observe que lá você vê as variáveis que compõe a estrtura sD (sD.type, sD.data, sD.labels, sD.name,  $sD.comp\_names$ ,  $sD.comp\_norm$ ,  $sD.label\_names$ ). Cada uma dessas variáveis tem informações que serão utilizadas posteriormente.

Num passo seguinte, vamos normalizar a estrutura sD. Se observarmos a estrutura sD identificamos que a sD.data foi modificada e que agora a variável sD é composta de 4 estruturas, com os parâmetros utilizados para normalização. Isso é necessário para se obter o resultado na dimensão original (des-normalização).

Veja o exemplo de uma dessas estruturas (elemento 1;1 da matriz estrutura): sD.comp\_norm{1,1}.type, sD.comp\_norm{1,1}.method, sD.comp\_norm{1,1}.params, sD.comp\_norm{1,1}.status. Cada uma dessas variáveis contém a informação sobre os dados originais da spalL.

Agora vamos rodar a inicialização da rede:

Uma nova estrutura foi criada, vamos ver como ela é:

| sM.type,       | 'som_map',        |
|----------------|-------------------|
| sM.codebook,   | <100x4 double>,   |
| sM.topol,      | <1x1 truct>,      |
| sM.labels,     | <100x1 ell>       |
| sM.neigh,      | 'gaussian',       |
| sM.mask,       | [1;1;1;1],        |
| sM.trainhist,  | <1x1 struct>      |
| sM.name,       | 'SOM 23-Jun-2009' |
| sM.comp_names, | <4x1 cell>        |
| sM.comp_norm,  | <4x1cell>         |

A variável "sM.topol" e a variável "sM.trainhist" são estruturas que já tem alguns parâmetros default que serão utilizados caso você não os modifique. Por exemplo:

#### A topologia:

| sM.topol.type,    | 'som_topol', |
|-------------------|--------------|
| sM.topol.msize,   | [10,10],     |
| sM.topol.lattice, | 'hexa',      |
| sM.topol.shape,   | 'sheet'      |

Ou seja, será uma rede 'hexagonal' 'plana' com tamanho [10x10]; .

### A estrutura de treinamento default é dada por:

|                        | Antes do treinamento | Depois do treinamento |
|------------------------|----------------------|-----------------------|
| sM.trainhist.type      | 'som_train'          | 'som_train'           |
| sM.trainhist.algorithm | 'randinit'           | 'seq'                 |
| sM.trainhist.data_name | 'iris.data'          | 'iris.data'           |

|                         | Antes do treinamento   | Depois do treinamento  |
|-------------------------|------------------------|------------------------|
| sM.trainhist.neigh      | "                      | 'gaussian'             |
| sM.trainhist.mask       | []                     | [1;1;1;1]              |
| sM.trainhist.radius_ini | NaN                    | 4                      |
| sM.trainhist.radius_fin | NaN                    | 1                      |
| sM.trainhist.alpha_ini  | NaN                    | 0.500                  |
| sM.trainhist.alpha_type | "                      | 'inv'                  |
| sM.trainhist.trainlen   | NaN                    | 7                      |
| sM.trainhist.time       | '23-Jun-2009 09:39:37' | '23-Jun-2009 10:04:43' |

Podemos observar que na inicialização não há detalhes sobre como o treinamento será realizado [NaN] nem o valor do alpha [''].

Na etapa seguinte é que os parâmetros são passados. Mas observe que caso não haja definição explícita, a função assumirá os valores default. Ao lado vemos como fica o treinamento. No caso do exemplo foram definido alguns parâmetros previamente

Com essas informações é possível criar um script para rodar vários modelos e ter um resultado completo de sua experiência.

Observe que segundo a explicação do algoritmo de treinamento, pode ser dividido em duas fases, uma de um treinamento mais grosseiro, onde você pode informar

Versão provisória, emitida em 16/6/09