Listing of the Claims (no amendments have been made herein)

The claim listing below will replace all prior versions of the claims in the application:

1. (Original) A process for preparing a compound having the formula:

$$\begin{array}{c} (R^{1})_{m} (R^{2})_{n} \\ M - L - A - B - Het - CH_{2} - R^{3}, \end{array}$$

the process comprising the steps of:

combining a compound of formula (I):

$$M - L - A - Q$$
(I)

with a compound of formula (II):

$$(R^2)_n$$
Z—B—Het—CH₂—R³
(II)

in a solvent in the presence of a base and a palladium catalyst, wherein

A is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

B is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

Het-CH₂-R³ is selected from the group consisting of:

$$CH_2-R^3$$
, CH_2-R^3 , and CH_2-R^3

M-L is selected from the group consisting of:

g)
$$M-L^{1}-X-L^{2}-X$$
, h) $M-X-X-$, i) $M-L^{1}-X-X-$, j) $M-X-X-L^{2}$, and

X, at each occurrence, independently is selected from the group consisting of:

g)
$$-NR^4SO_2$$
-, h) $-NR^4$ -N=, i) $=N-NR^4$ -, j) $-O-N$ =, k) $=N-O$ -,

1)
$$-N=$$
, m) $=N-$, n) $-NR^4-NR^4-$, o) $-NR^4C(O)O-$, p) $-OC(O)NR^4-$,

q)
$$-NR^4C(O)NR^4$$
- r) $-NR^4C(NR^4)NR^4$ -, and

s)

L¹ is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) – c) optionally is substituted with one or more R^5 groups; and

 L^2 is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) – c) optionally is substituted with one or more R^5 groups;

alternatively, L in M-L is a bond;

M is selected from the group consisting of:

a) C_{3-14} saturated, unsaturated, or aromatic carbocycle, b) 3-14 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, c) C_{1-6} alkyl, d) C_{2-6} alkynyl, and f) -CN,

wherein any of a) - e) optionally is substituted with one or more R^5 groups;

Q is a borane having the formula -BY₂, wherein

Y, at each occurrence, independently is selected from the group consisting of:

a)
$$-OH$$
, b) $-OC_{1-6}$ alkyl, c) $-OC_{2-6}$ alkenyl, d) $-OC_{2-6}$ alkynyl,

e) -OC₁₋₁₄ saturated, unsaturated, or aromatic carbocycle, f) C₁₋₆ alkyl, g) C₂₋

 $_6$ alkenyl, h) C_{2-6} alkynyl, and i) C_{1-14} saturated, unsaturated, or aromatic carbocycle,

wherein any of b) – i) optionally is substituted with one or more halogens;

alternatively, two Y groups taken together comprise a chemical moiety selected from the group consisting of:

a) $-OC(R^4)(R^4)C(R^4)(R^4)O$ -, and b) $-OC(R^4)(R^4)CH_2C(R^4)(R^4)O$ -;

alternatively, Q is a BF3 alkali metal salt or 9-borabicyclo[3.3.1]nonane;

Z is selected from the group consisting of:

a) I, b) Br, c) Cl, and d) R⁹OSO₃-;

R¹, at each occurrence, independently is selected from the group consisting of:

k)
$$-C(O)OR^4$$
, l) $-OC(O)R^4$, m) $-C(O)NR^4R^4$, n) $-NR^4C(O)R^4$, o) $-OC(O)NR^4R^4$, p) $-$

$$NR^{4}C(O)OR^{4},\,q)\,-NR^{4}C(O)NR^{4}R^{4},\,r)\,-C(S)R^{4},\,s)\,-C(S)OR^{4},\,t)\,-OC(S)R^{4},\,s$$

$$u) - C(S)NR^4R^4, v) - NR^4C(S)R^4, w) - OC(S)NR^4R^4, x) - NR^4C(S)OR^4,$$

y)
$$-NR^4C(S)NR^4R^4$$
, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,

cc)
$$-C(NR^4)NR^4R^4$$
, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,

$$ff) - NR^4C(NR^4)OR^4, \, gg) - NR^4C(NR^4)NR^4R^4, \, hh) - S(O)_pR^4, \, ii) - SO_2NR^4R^4, \, and \, R^4 + R$$

$$jj) R^4;$$

R², at each occurrence, independently is selected from the group consisting of:

k)
$$-C(O)OR^4$$
, l) $-OC(O)R^4$, m) $-C(O)NR^4R^4$, n) $-NR^4C(O)R^4$, o) $-OC(O)NR^4R^4$, p) $-NR^4C(O)OR^4$, g) $-NR^4C(O)NR^4R^4$, r) $-C(S)R^4$, s) $-C(S)OR^4$, t) $-OC(S)R^4$,

u)
$$-C(S)NR^4R^4$$
, v) $-NR^4C(S)R^4$, w) $-OC(S)NR^4R^4$, x) $-NR^4C(S)OR^4$,

y)
$$-NR^4C(S)NR^4R^4$$
, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,

cc)
$$-C(NR^4)NR^4R^4$$
, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,

ff)
$$-NR^4C(NR^4)OR^4$$
, gg) $-NR^4C(NR^4)NR^4R^4$, hh) $-S(O)_pR^4$, ii) $-SO_2NR^4R^4$, and ii) R^4 :

R³ is selected from the group consisting of:

- a) $-OR^4$, b) $-NR^4R^4$, c) $-C(O)R^4$, d) $-C(O)OR^4$, e) $-OC(O)R^4$, f) $-C(O)NR^4R^4$,
- g) $-NR^4C(O)R^4$, h) $-OC(O)NR^4R^4$, i) $-NR^4C(O)OR^4$, j) $-NR^4C(O)NR^4R^4$,
- k) $-C(S)R^4$, l) $-C(S)OR^4$, m) $-OC(S)R^4$, n) $-C(S)NR^4R^4$, o) $-NR^4C(S)R^4$,
- p) $-OC(S)NR^4R^4$, q) $-NR^4C(S)OR^4$, r) $-NR^4C(S)NR^4R^4$, s) $-C(NR^4)R^4$,
- t) $-C(NR^4)OR^4$, u) $-OC(NR^4)R^4$, v) $-C(NR^4)NR^4R^4$, w) $-NR^4C(NR^4)R^4$,
- x) $-OC(NR^4)NR^4R^4$, y) $-NR^4C(NR^4)OR^4$, z) $-NR^4C(NR^4)NR^4R^4$, aa) $-S(O)_pR^4$,
- bb) -SO₂NR⁴R⁴, and cc) R⁴;

oxygen, and sulfur,

R⁴, at each occurrence, independently is selected from the group consisting of:

- a) H, b) -OR⁶, c) an amine protecting group, d) C₁₋₆ alkyl, e) C₂₋₆ alkenyl,
- f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) $-C(O)-C_{1-6}$ alkyl, j) $-C(O)-C_{2-6}$ alkenyl, k) $-C(O)-C_{2-6}$ alkynyl,
- 1) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O-C₁₋₆ alkyl, o) -C(O)O-C₂₋₆ alkenyl, p) -C(O)O-C₂₋₆ alkynyl, q) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen,

wherein any of d) – r) optionally is substituted with one or more R^5 groups; R^5 , at each occurrence, is independently selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =N R^6 , h) =NO R^6 , i) =N-N R^6R^6 , j) -CF₃, k) -
- OR^6 , 1) -CN, m) -NO₂, n) -NR⁶R⁶, o) -C(O)R⁶, p) -C(O)OR⁶, q) -OC(O)R⁶,
- r) $-C(O)NR^6R^6$, s) $-NR^6C(O)R^6$, t) $-OC(O)NR^6R^6$, u) $-NR^6C(O)OR^6$,
- V) -NR⁶C(O)NR⁶R⁶, W) -C(S)R⁶, W) -C(S)OR⁶, W) -OC(S)R⁶, W0 -C(S)NR⁶R⁶,
- aa) $-NR^6C(S)R^6$, bb) $-OC(S)NR^6R^6$, cc) $-NR^6C(S)OR^6$, dd) $-NR^6C(S)NR^6R^6$,
- ee) $-C(NR^6)R^6$, ff) $-C(NR^6)OR^6$, gg) $-OC(NR^6)R^6$, hh) $-C(NR^6)NR^6R^6$,

oxygen, and sulfur,

- ii) $-NR^6C(NR^6)R^6$, jj) $-OC(NR^6)NR^6R^6$, kk) $-NR^6C(NR^6)OR^6$,
- ll) -NR 6 C(NR 6)NR 6 R 6 , mm) -S(O) $_p$ R 6 , nn) -SO $_2$ NR 6 R 6 , and oo) R 6 ;

R⁶, at each occurrence, independently is selected from the group consisting of:

- a) H, b) -OR⁸, c) an amine protecting group, d) C₁₋₆ alkyl, e) C₂₋₆ alkenyl,
- f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -C(O)-C₁₋₆ alkyl, j) -C(O)-C₂₋₆ alkenyl, k) -C(O)-C₂₋₆ alkynyl,
- 1) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O-C₁₋₆ alkyl, o) -C(O)O-C₂₋₆ alkenyl, p) -C(O)O-C₂₋₆ alkynyl, q) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen,

wherein any of d) – r) optionally is substituted with one or more R^7 groups; R^7 , at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =NR⁸, h) =NOR⁸, i) =N-NR⁸R⁸, j) -CF₃, k) -
- OR^{8} , l) -CN, m) -NO₂, n) -NR⁸R⁸, o) -C(O)R⁸, p) -C(O)OR⁸, q) -OC(O)R⁸,
- r) $-C(O)NR^8R^8$, s) $-NR^8C(O)R^8$, t) $-OC(O)NR^8R^8$, u) $-NR^8C(O)OR^8$,
- v) $-NR^8C(O)NR^8R^8$, w) $-C(S)R^8$, x) $-C(S)OR^8$, y) $-OC(S)R^8$, z) $-C(S)NR^8R^8$,
- aa) $-NR^8C(S)R^8$, bb) $-OC(S)NR^8R^8$, cc) $-NR^8C(S)OR^8$, dd) $-NR^8C(S)NR^8R^8$,
- ee) -C(NR⁸)R⁸, ff) -C(NR⁸)OR⁸, gg) -OC(NR⁸)R⁸, hh) -C(NR⁸)NR⁸R⁸,
- ii) $-NR^8C(NR^8)R^8$, jj) $-OC(NR^8)NR^8R^8$, kk) $-NR^8C(NR^8)OR^8$,
- ll) -NR 8 C(NR 8)NR 8 R 8 , mm) -S(O) $_p$ R 8 , nn) -SO $_2$ NR 8 R 8 , oo) C $_{1-6}$ alkyl,
- pp) C₂₋₆ alkenyl, qq) C₂₋₆ alkynyl, rr) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and ss) 3-14 membered saturated, unsaturated, or aromatic heterocycle

comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of oo) – ss) optionally is substituted with one or more moieties selected from the group consisting of R^8 , F, Cl, Br, I, -CF₃, $-OR^8$, -SR⁸, -CN, -NO₂, $-NR^8R^8$, -C(O)R⁸, -C(O)OR⁸, -OC(O)R⁸, -C(O)NR⁸R⁸, -NR⁸C(O)R⁸, -OC(O)NR⁸R⁸, -NR⁸C(O)OR⁸, -NR⁸C(O)NR⁸R⁸, -C(S)R⁸, -C(S)OR⁸, -OC(S)R⁸, -C(S)NR⁸R⁸, -NR⁸C(S)R⁸, -OC(S)NR⁸R⁸, -NR⁸C(S)OR⁸, -NR⁸C(S)OR⁸, -NR⁸C(S)NR⁸R⁸, -C(NR⁸)OR⁸, -OC(NR⁸)OR⁸, -OC(NR⁸)NR⁸R⁸, -NR⁸C(NR⁸)R⁸, -OC(NR⁸)NR⁸R⁸, -NR⁸C(NR⁸)OR⁸, -NR⁸C(NR⁸

R⁸, at each occurrence, independently is selected from the group consisting of:

- a) H, b) an amine protecting group, c) C₁₋₆ alkyl, d) C₂₋₆ alkenyl, e) C₂₋₆ alkynyl,
- f) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, g) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, h) -C(O)-C₁₋₆ alkyl,
- i) -C(O)-C₂₋₆ alkenyl, j) -C(O)-C₂₋₆ alkynyl, k) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, l) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, m) -C(O)O-C₁₋₆ alkyl,

unsaturated, or aromatic carbocycle, and q) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

n) $-C(O)O-C_{2-6}$ alkenyl, o) $-C(O)O-C_{2-6}$ alkynyl, p) $-C(O)O-C_{3-14}$ saturated,

wherein any of c) – q) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, I, -CF₃, -OH, –OC₁₋₆ alkyl, -SH, -SC₁₋₆ alkyl, -CN, -NO₂, –NH₂, –NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -C(O)NH₂, –C(O)NHC₁₋₆ alkyl, -C(O)N(C₁₋₆ alkyl)₂, -NHC(O)C₁₋₆ alkyl, -SO₂NH₂-, -SO₂NHC₁₋₆ alkyl, -SO₂N(C₁₋₆ alkyl)₂, and -S(O)_pC₁₋₆ alkyl;

R⁹ is selected from the group consisting of:

a) C₁₋₆ alkyl, b) phenyl, and c) toluyl;

wherein any of a) - c) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, and I;

m is 0, 1, 2, 3, or 4;

n is 0, 1, 2, 3, or 4; and

p, at each occurrence, independently is 0, 1, or 2.

- 2. (Cancelled).
- 3. (Previously Presented) A process for preparing a compound having the formula:

$$M-L-A-B-N$$

$$H_2C-R^3$$

the process comprising the steps of:

combining a compound of formula (I):

$$M-L-A$$
 Q

with a compound of formula (II):

$$Z \stackrel{\left(\mathbb{R}^2\right)_n}{\longrightarrow} N \stackrel{O}{\longrightarrow} O$$

$$H_2C \stackrel{}{\longrightarrow} \mathbb{R}^3$$
(II)

in a solvent in the presence of a base and a palladium catalyst,

wherein

A is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

B is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

M-L is selected from the group consisting of:

- a) M-X, b) M-L¹, c) M-L¹-X, d) M-X-L², e) M-L¹-X-L², f) M-X-L¹-X-L²,
- g) M-L¹-X-L²-X, h) M-X-X-, i) M-L¹-X-X-, j) M-X-X-L², and
- k) M-L¹-X-X-L², wherein

X, at each occurrence, independently is selected from the group consisting of:

g)
$$-NR^4SO_2$$
-, h) $-NR^4$ -N=, i) $=N-NR^4$ -, j) $-O-N$ =, k) $=N-O$ -,

1)
$$-N=$$
, m) $=N-$, n) $-NR^4-NR^4-$, o) $-NR^4C(O)O-$, p) $-OC(O)NR^4-$,

q)
$$-NR^4C(O)NR^4-r$$
) $-NR^4C(NR^4)NR^4-$, and

s)

$$R^4R^4N$$
 N R^4 :

L¹ is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) - c) optionally is substituted with one or more R^5 groups; and

L² is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) - c) optionally is substituted with one or more R^5 groups;

alternatively, L in M-L is a bond;

M is selected from the group consisting of:

a) C_{3-14} saturated, unsaturated, or aromatic carbocycle, b) 3-14 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, c) C_{1-6} alkyl, d) C_{2-6} alkynyl, and f) -CN,

wherein any of a) - e) optionally is substituted with one or more R^5 groups;

Q is a borane having the formula -BY2, wherein

Y, at each occurrence, independently is selected from the group consisting of:

- a) -OH, b) $-OC_{1-6}$ alkyl, c) $-OC_{2-6}$ alkenyl, d) $-OC_{2-6}$ alkynyl,
- e) -OC₁₋₁₄ saturated, unsaturated, or aromatic carbocycle, f) C₁₋₆ alkyl, g) C₂₋₆ alkenyl, h) C₂₋₆ alkynyl, and i) C₁₋₁₄ saturated, unsaturated, or aromatic carbocycle,

wherein any of b) – i) optionally is substituted with one or more halogens;

alternatively, two Y groups taken together comprise a chemical moiety selected from the group consisting of:

a) $-OC(R^4)(R^4)C(R^4)(R^4)O$ -, and b) $-OC(R^4)(R^4)CH_2C(R^4)(R^4)O$ -; alternatively, Q is a BF₃ alkali metal salt or 9-borabicyclo[3.3.1]nonane; Z is selected from the group consisting of:

a) I, b) Br, c) Cl, and d) R⁹OSO₃-;

R¹, at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) -CF₃, f) -OR⁴, g) -CN, h) -NO₂, i) -NR⁴R⁴, j) -C(O)R⁴,
- k) $-C(O)OR^4$, l) $-OC(O)R^4$, m) $-C(O)NR^4R^4$, n) $-NR^4C(O)R^4$, o) $-OC(O)NR^4R^4$, p) $-NR^4C(O)OR^4$, g) $-NR^4C(O)NR^4R^4$, r) $-C(S)R^4$, s) $-C(S)OR^4$, t) $-OC(S)R^4$,
- $u) C(S)NR^4R^4, v) NR^4C(S)R^4, w) OC(S)NR^4R^4, x) NR^4C(S)OR^4,$
- y) $-NR^4C(S)NR^4R^4$, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,
- cc) $-C(NR^4)NR^4R^4$, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,
- ff) $-NR^4C(NR^4)OR^4$, gg) $-NR^4C(NR^4)NR^4R^4$, hh) $-S(O)_pR^4$, ii) $-SO_2NR^4R^4$, and jj) R^4 ;

R², at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) $-CF_3$, f) $-OR^4$, g) -CN, h) $-NO_2$, i) $-NR^4R^4$, j) $-C(O)R^4$,
- k) $-C(O)OR^4$, l) $-OC(O)R^4$, m) $-C(O)NR^4R^4$, n) $-NR^4C(O)R^4$, o) $-OC(O)NR^4R^4$, p) $-NR^4C(O)OR^4$, q) $-NR^4C(O)NR^4R^4$, r) $-C(S)R^4$, s) $-C(S)OR^4$, t) $-OC(S)R^4$,

- u) $-C(S)NR^4R^4$, v) $-NR^4C(S)R^4$, w) $-OC(S)NR^4R^4$, x) $-NR^4C(S)OR^4$,
- y) $-NR^4C(S)NR^4R^4$, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,
- cc) $-C(NR^4)NR^4R^4$, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,
- ff) $-NR^4C(NR^4)OR^4$, gg) $-NR^4C(NR^4)NR^4R^4$, hh) $-S(O)_pR^4$, ii) $-SO_2NR^4R^4$, and
- $jj) R^4;$

R³ is selected from the group consisting of:

- a) $-OR^4$, b) $-NR^4R^4$, c) $-C(O)R^4$, d) $-C(O)OR^4$, e) $-OC(O)R^4$, f) $-C(O)NR^4R^4$,
- g) $-NR^4C(O)R^4$, h) $-OC(O)NR^4R^4$, i) $-NR^4C(O)OR^4$, j) $-NR^4C(O)NR^4R^4$,
- k) $-C(S)R^4$, l) $-C(S)OR^4$, m) $-OC(S)R^4$, n) $-C(S)NR^4R^4$, o) $-NR^4C(S)R^4$,
- p) $-OC(S)NR^4R^4$, q) $-NR^4C(S)OR^4$, r) $-NR^4C(S)NR^4R^4$, s) $-C(NR^4)R^4$,
- t) $-C(NR^4)OR^4$, u) $-OC(NR^4)R^4$, v) $-C(NR^4)NR^4R^4$, w) $-NR^4C(NR^4)R^4$,
- x) $-OC(NR^4)NR^4R^4$, y) $-NR^4C(NR^4)OR^4$, z) $-NR^4C(NR^4)NR^4R^4$, aa) $-S(O)_pR^4$,
- bb) -SO₂NR⁴R⁴, and cc) R⁴;

R⁴, at each occurrence, independently is selected from the group consisting of:

- a) H, b) -OR⁶, c) an amine protecting group, d) C₁₋₆ alkyl, e) C₂₋₆ alkenyl,
- f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -C(O)-C₁₋₆ alkyl, j) -C(O)-C₂₋₆ alkenyl, k) -C(O)-C₂₋₆ alkynyl,
- 1) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O-C₁₋₆ alkyl, o) -C(O)O-C₂₋₆ alkenyl, p) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and
- r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of d) – r) optionally is substituted with one or more R^5 groups; R^5 , at each occurrence, is independently selected from the group consisting of:

a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =NR⁶, h) =NOR⁶, i) =N-NR⁶R⁶, j) -CF₃, k) -OR⁶, l) -CN, m) -NO₂, n) -NR⁶R⁶, o) -C(O)R⁶, p) -C(O)OR⁶, q) -OC(O)R⁶,

r) $-C(O)NR^6R^6$, s) $-NR^6C(O)R^6$, t) $-OC(O)NR^6R^6$, u) $-NR^6C(O)OR^6$,

 $v) - NR^6C(O)NR^6R^6, \ w) - C(S)R^6, \ x) - C(S)OR^6, \ y) - OC(S)R^6, \ z) - C(S)NR^6R^6,$

aa) $-NR^6C(S)R^6$, bb) $-OC(S)NR^6R^6$, cc) $-NR^6C(S)OR^6$, dd) $-NR^6C(S)NR^6R^6$,

ee) -C(NR⁶)R⁶, ff) -C(NR⁶)OR⁶, gg) -OC(NR⁶)R⁶, hh) -C(NR⁶)NR⁶R⁶,

ii) -NR 6 C(NR 6)R 6 , jj) -OC(NR 6)NR 6 R 6 , kk) -NR 6 C(NR 6)OR 6 ,

ll) -NR 6 C(NR 6)NR 6 R 6 , mm) -S(O) $_p$ R 6 , nn) -SO $_2$ NR 6 R 6 , and oo) R 6 ;

R⁶, at each occurrence, independently is selected from the group consisting of:

a) H, b) -OR⁸, c) an amine protecting group, d) C₁₋₆ alkyl, e) C₂₋₆ alkenyl,

f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,

h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -C(O)-C₁₋₆ alkyl, j) -C(O)-C₂₋₆ alkenyl, k) -C(O)-C₂₋₆ alkynyl,

l) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,

m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O-C₁₋₆ alkyl, o) -C(O)O-C₂₋₆ alkenyl, p) -C(O)O-C₂₋₆ alkynyl, q) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of d) – r) optionally is substituted with one or more R^7 groups; R^7 , at each occurrence, independently is selected from the group consisting of:

a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =NR 8 , h) =NOR 8 , i) =N-NR 8 R 8 , j) -CF₃, k) - OR 8 , l) -CN, m) -NO₂, n) -NR 8 R 8 , o) -C(O)R 8 , p) -C(O)OR 8 , q) -OC(O)R 8 ,

r) $-C(O)NR^8R^8$, s) $-NR^8C(O)R^8$, t) $-OC(O)NR^8R^8$, u) $-NR^8C(O)OR^8$,

V) -NR⁸C(O)NR⁸R⁸, W) -C(S)R⁸, X) -C(S)OR⁸, Y) -OC(S)R⁸, Y) -C(S)NR⁸R⁸,

aa) -NR 8 C(S)R 8 , bb) -OC(S)NR 8 R 8 , cc) -NR 8 C(S)OR 8 , dd) -NR 8 C(S)NR 8 R 8 ,

- ee) -C(NR⁸)R⁸, ff) -C(NR⁸)OR⁸, gg) -OC(NR⁸)R⁸, hh) -C(NR⁸)NR⁸R⁸,
- ii) -NR8C(NR8)R8, jj) -OC(NR8)NR8R8, kk) -NR8C(NR8)OR8,
- 11) -NR 8 C(NR 8)NR 8 R 8 , mm) -S(O) $_p$ R 8 , nn) -SO $_2$ NR 8 R 8 , oo) C $_{1\text{-}6}$ alkyl,
- pp) C_{2-6} alkenyl, qq) C_{2-6} alkynyl, rr) C_{3-14} saturated, unsaturated, or aromatic carbocycle, and ss) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of oo) – ss) optionally is substituted with one or more moieties selected from the group consisting of R⁸, F, Cl, Br, I, -CF₃, -OR⁸, -SR⁸, -CN, -NO₂, -NR⁸R⁸, -C(O)R⁸, -C(O)OR⁸, -OC(O)R⁸, -C(O)NR⁸R⁸, -NR⁸C(O)R⁸, -OC(O)NR⁸R⁸, -NR⁸C(O)OR⁸, -NR⁸C(O)NR⁸R⁸, -C(S)R⁸, -C(S)OR⁸, -OC(S)R⁸, -C(S)NR⁸R⁸, -NR⁸C(S)R⁸, -OC(S)NR⁸R⁸, -NR⁸C(S)OR⁸, -NR⁸C(S)NR⁸R⁸, -C(NR⁸)OR⁸, -OC(NR⁸)OR⁸, -OC(NR⁸)NR⁸R⁸, -NR⁸C(NR⁸)OR⁸, -NR⁸C(NR

R⁸, at each occurrence, independently is selected from the group consisting of:

- a) H, b) an amine protecting group, c) C₁₋₆ alkyl, d) C₂₋₆ alkenyl, e) C₂₋₆ alkynyl,
- f) C_{3-14} saturated, unsaturated, or aromatic carbocycle, g) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, h) -C(O)- C_{1-6} alkyl,
- i) -C(O)-C₂₋₆ alkenyl, j) -C(O)-C₂₋₆ alkynyl, k) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, l) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, m) -C(O)O-C₁₋₆ alkyl,
- n) -C(O)O-C₂₋₆ alkenyl, o) -C(O)O-C₂₋₆ alkynyl, p) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and q) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of c) – q) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, I, -CF₃, -OH, –OC₁₋₆ alkyl, -SH, -SC₁₋₆ alkyl, -CN, -NO₂, –NH₂, –NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -C(O)NH₂, –C(O)NHC₁₋₆ alkyl, -C(O)N(C₁₋₆ alkyl)₂, -NHC(O)C₁₋₆ alkyl, -SO₂NH₂-, -SO₂NHC₁₋₆ alkyl, -SO₂N(C₁₋₆ alkyl)₂, and -S(O)_pC₁₋₆ alkyl;

R⁹ is selected from the group consisting of:

a) C₁₋₆ alkyl, b) phenyl, and c) toluyl;
wherein any of a) - c) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, and I;

m is 0, 1, 2, 3, or 4; n is 0, 1, 2, 3, or 4; and p, at each occurrence, independently is 0, 1, or 2.

- 4. (Cancelled).
- 5. (Previously Presented) The process according to claim 1, wherein R^3 is $-NHC(O)R^4$.
- 6. (Original) The process according to claim 5, wherein R⁴ is -CH₃.
- 7. (**Previously Presented**) The process according to claim 1, wherein R³ is selected from the group consisting of triazole, tetrazole, oxazole, and isoxazole.
- 8.-11. (Cancelled).
- 12. (Previously Presented) The process according to claim 1, wherein compound (II) has the formula:

$$Z \longrightarrow N \longrightarrow O O O CH_3$$
(II)

wherein Z is defined as described in claim 1.

13. (Previously Presented) The process according to claim 1, wherein compound (II) has the formula:

wherein Z is defined as described in claim 1.

- 14. -17. (Cancelled).
- 18. (Previously Presented) The process according to claim 1, wherein compound (I) has the formula:

$$M-L-Q$$
,

wherein L, M, and Q, are defined as described in claim 1.

- 19.-20. (Cancelled).
- 21. (**Previously Presented**) The process according to claim 1, wherein M-L is M-CH₂-X-CH₂-.
- 22. (**Original**) The process according to claim 21, wherein X is $-NR^4$ -.

- 23. (Original) The process according to claim 22, wherein R^4 is H.
- 24. (Original) The process according to claim 22, wherein R⁴ is an amine protecting group.
- 25. (**Original**) The process according to claim 24, wherein the amine protecting group is selected from the group consisting of:
 - a) benzyl, b) t-butyldimethylsilyl, c) t-butdyldiphenylsilyl, d) t-butyloxycarbonyl,
 - e) p-methoxybenzyl, f) methoxymethyl, g) tosyl, h) trifluoroacetyl,
 - i) trimethylsilyl, j) fluorenyl-methyloxycarbonyl, k) 2-trimethylsilylethyoxycarbonyl, l) 1-methyl-1-(4-biphenylyl)ethoxycarbonyl,
 - m) allyloxycarbonyl, and n) benzyloxycarbonyl.
- 26. (**Original**) The process according to claim 24, further comprising the step of removing the amine protecting group.
- 27.-30. (Cancelled).
- 31. (**Previously Presented**) The process according to claim 21, wherein M comprises a 5-6 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur.
- 32. (**Original**) The process according to claim 31, wherein M is selected from the group consisting of triazole, tetrazole, oxazole, and isoxazole.
- 33.-34. (Cancelled).
- 35. (Original) The process according to claim 32, wherein M is [1,2,3]triazol-4-yl.

- 36. (Previously Presented) The process according to claim 1, wherein M-L is M-X-CH₂-.
- 37. (Original) The process according to claim 36, wherein X is $-NR^4$ -.
- 38. (Original) The process according to claim 37, wherein R^4 is H.
- 39. (Original) The process according to claim 37, wherein R⁴ is an amine protecting group.
- 40. (**Original**) The process according to claim 39, wherein the amine protecting group is selected from the group consisting of:
 - a) benzyl, b) t-butyldimethylsilyl, c) t-butdyldiphenylsilyl, d) t-butyloxycarbonyl,
 - e) p-methoxybenzyl, f) methoxymethyl, g) tosyl, h) trifluoroacetyl,
 - i) trimethylsilyl, j) fluorenyl-methyloxycarbonyl, k) 2-trimethylsilylethyoxycarbonyl, l) 1-methyl-1-(4-biphenylyl)ethoxycarbonyl,
 - m) allyloxycarbonyl, and n) benzyloxycarbonyl.
- 41. (**Original**) The process according to claim 39, further comprising the step of removing the amine protecting group.
- 42.-43. (Cancelled).
- 44. (**Previously Presented**) The process according to claim 36, wherein M is selected from the group consisting of:
 - a) C₁₋₆ alkyl, b) C₂₋₆ alkenyl, c) C₂₋₆ alkynyl, and d) -CN, wherein
 - i) any of a) -c) is substituted with one or more moieties selected from the group consisting of F, Cl, Br, I, and -CN; and
 - ii) any of a) c) optionally is further substituted with one or more R^5 groups.

- 45. (**Original**) The process according to claim 44, wherein M is C_{1-6} alkyl substituted with one or more atoms selected from the group consisting of F, Cl, Br, and I.
- 46. (**Original**) The process according to claim 45, wherein M is –CH₂CH₂CH₂F.

47.-50. (Cancelled).

- 51. (**Previously Presented**) The process according to claim 1, wherein Z is selected from the group consisting of I, trifluoromethanesulfonate, and *p*-toluenesulfonate.
- 52. (Original) The process according to claim 51, wherein Z is I.
- 53. (Previously Presented) The process according to claim 1, wherein Q is -B(OH)₂.
- 54. (Previously Presented) The process according to claim 1, wherein Q is:

- 55. (Previously Presented) The process according to claim 1, wherein Q is -BF₂·KF.
- 56. (**Previously Presented**) The process according to claim 1, wherein the base is selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal fluorides, trialkyl amines, and mixtures thereof.
- 57. (Cancelled).

- 58. (**Previously Presented**) The process according to claim 56, wherein the base is potassium carbonate.
- 59. (**Original**) The process according to claim 56, wherein the ratio of equivalents of base to equivalents of compound (I) is about 3:1.
- 60. (**Previously Presented**) The process according to claim 1, wherein the palladium catalyst is a ligand coordinated palladium (0) catalyst.
- 61. (Cancelled)
- 62. (**Previously Presented**) The process according to claim 60, wherein the palladium catalyst is tetrakis(triphenylphosphine) palladium (0).
- 63. (**Original**) The process according to claim 62, wherein the ratio of the equivalents of tetrakis(triphenylphosphine) palladium (0) to the equivalents of compound (I) is about 1:20.
- 64. (**Previously Presented**) The process according to claim 1, wherein the solvent comprises an aqueous solvent.
- 65. (Cancelled).
- 66. (**Previously Presented**) The process according to claim 64 wherein the solvent comprises a mixture of water, toluene, and ethanol.
- 67. (**Original**) The process according to claim 66 wherein the solvent comprises a mixture of water, toluene, and ethanol in a ratio of about 1:3:1 by volume.

- 68. (**Previously Presented**) The process according to claim 1, wherein the process is carried out at a temperature between about 20 °C and about 100 °C.
- 69. (**Previously Presented**) The process according to claim 1, wherein the process is carried out at the reflux temperature of the solvent.
- 70. (**Original**) A process for preparing a compound having the formula:

$$(R^1)_m (R^2)_n$$
 $M-L-A-B-Het-CH_2-R^3$

the process comprising the steps of:

combining a compound of formula (I):

$$\begin{array}{c} \begin{pmatrix} R^1 \end{pmatrix}_m \\ M \longrightarrow L \longrightarrow A \longrightarrow Z \end{array}$$

with a compound of formula (II):

$$Q \xrightarrow{\left(R^2\right)_n} Q \xrightarrow{B} Het - CH_2 - R^3$$
(II)

in a solvent in the presence of a base and a palladium catalyst, wherein

A is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

B is selected from the group consisting of:

phenyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl;

Het-CH₂-R³ is selected from the group consisting of:

$$CH_2-R^3$$
, CH_2-R^3 , and CH_2-R^3

M-L is selected from the group consisting of:

- a) M-X, b) M-L¹, c) M-L¹-X, d) M-X-L², e) M-L¹-X-L², f) M-X-L¹-X-L²,
- g) $M-L^{1}-X-L^{2}-X$, h) M-X-X-, i) $M-L^{1}-X-X-$, j) $M-X-X-L^{2}$, and
- k) M-L¹-X-X-L², wherein

X, at each occurrence, independently is selected from the group consisting of:

g)
$$-NR^4SO_2$$
-, h) $-NR^4$ -N=, i) $=N-NR^4$ -, j) $-O-N$ =, k) $=N-O$ -,

1)
$$-N=$$
, m) $=N-$, n) $-NR^4-NR^4-$, o) $-NR^4C(O)O-$, p) $-OC(O)NR^4-$,

q)
$$-NR^4C(O)NR^4-r$$
) $-NR^4C(NR^4)NR^4-$, and

s)

L¹ is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) – c) optionally is substituted with one or more R^5 groups; and

L² is selected from the group consisting of:

a) C_{1-6} alkyl, b) C_{2-6} alkenyl, and c) C_{2-6} alkynyl, wherein any of a) - c) optionally is substituted with one or more R^5 groups;

alternatively, L in M-L is a bond;

M is selected from the group consisting of:

- a) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, b) 3-14 membered saturated, unsaturated, or aromatic heterocycle containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
- c) C_{1-6} alkyl, d) C_{2-6} alkenyl, e) C_{2-6} alkynyl, and f) -CN, wherein any of a) e) optionally is substituted with one or more R^5 groups;

Q is a borane having the formula -BY2, wherein

Y, at each occurrence, independently is selected from the group consisting of:

- a) -OH, b) $-OC_{1-6}$ alkyl, c) $-OC_{2-6}$ alkenyl, d) $-OC_{2-6}$ alkynyl,
- e) -OC₁₋₁₄ saturated, unsaturated, or aromatic carbocycle, f) C₁₋₆ alkyl,
- g) C_{2-6} alkenyl, h) C_{2-6} alkynyl, and i) C_{1-14} saturated, unsaturated, or aromatic carbocycle,

wherein any of b) – i) optionally is substituted with one or more halogens;

alternatively, two Y groups taken together comprise a chemical moiety selected from the group consisting of:

a) $-OC(R^4)(R^4)C(R^4)(R^4)O$ -, and b) $-OC(R^4)(R^4)CH_2C(R^4)(R^4)O$ -;

alternatively, Q is a BF₃ alkali metal salt or 9-borabicyclo[3.3.1]nonane;

Z is selected from the group consisting of:

a) I, b) Br, c) Cl, and d) R⁹OSO₃-;

R¹, at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) -CF₃, f) -OR⁴, g) -CN, h) -NO₂, i) -NR⁴R⁴, j) -C(O)R⁴,
- k) $-C(O)OR^4$, l) $-OC(O)R^4$, m) $-C(O)NR^4R^4$, n) $-NR^4C(O)R^4$, o) $-OC(O)NR^4R^4$,
- p) $-NR^4C(O)OR^4$, q) $-NR^4C(O)NR^4R^4$, r) $-C(S)R^4$, s) $-C(S)OR^4$, t) $-OC(S)R^4$,
- u) $-C(S)NR^4R^4$, v) $-NR^4C(S)R^4$, w) $-OC(S)NR^4R^4$, x) $-NR^4C(S)OR^4$,
- y) $-NR^4C(S)NR^4R^4$, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,
- cc) $-C(NR^4)NR^4R^4$, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,
- $ff) NR^4C(NR^4)OR^4, \ gg) \ NR^4C(NR^4)NR^4R^4, \ hh) \ S(O)_pR^4, \ ii) \ SO_2NR^4R^4, \ and \ solve \ SO_2NR^$
- $jj) R^4;$

R², at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) -CF₃, f) -OR⁴, g) -CN, h) -NO₂, i) -NR⁴R⁴, j) -C(O)R⁴,
- $k) C(O)OR^4, 1) OC(O)R^4, m) C(O)NR^4R^4, n) NR^4C(O)R^4, o) OC(O)NR^4R^4, n) NR^4C(O)R^4, n) OC(O)R^4R^4, n) OC(O)R^4R^$
- p) $-NR^4C(O)OR^4$, q) $-NR^4C(O)NR^4R^4$, r) $-C(S)R^4$, s) $-C(S)OR^4$, t) $-OC(S)R^4$,
- u) $-C(S)NR^4R^4$, v) $-NR^4C(S)R^4$, w) $-OC(S)NR^4R^4$, x) $-NR^4C(S)OR^4$,
- y) $-NR^4C(S)NR^4R^4$, z) $-C(NR^4)R^4$, aa) $-C(NR^4)OR^4$, bb) $-OC(NR^4)R^4$,
- cc) $-C(NR^4)NR^4R^4$, dd) $-NR^4C(NR^4)R^4$, ee) $-OC(NR^4)NR^4R^4$,

ff) $-NR^4C(NR^4)OR^4$, gg) $-NR^4C(NR^4)NR^4R^4$, hh) $-S(O)_pR^4$, ii) $-SO_2NR^4R^4$, and jj) R^4 ;

R³ is selected from the group consisting of:

- a) $-OR^4$, b) $-NR^4R^4$, c) $-C(O)R^4$, d) $-C(O)OR^4$, e) $-OC(O)R^4$, f) $-C(O)NR^4R^4$,
- g) $-NR^4C(O)R^4$, h) $-OC(O)NR^4R^4$, i) $-NR^4C(O)OR^4$, j) $-NR^4C(O)NR^4R^4$,
- k) $-C(S)R^4$, l) $-C(S)OR^4$, m) $-OC(S)R^4$, n) $-C(S)NR^4R^4$, o) $-NR^4C(S)R^4$,
- p) $-OC(S)NR^4R^4$, q) $-NR^4C(S)OR^4$, r) $-NR^4C(S)NR^4R^4$, s) $-C(NR^4)R^4$,
- t) $-C(NR^4)OR^4$, u) $-OC(NR^4)R^4$, v) $-C(NR^4)NR^4R^4$, w) $-NR^4C(NR^4)R^4$,
- x) $-OC(NR^4)NR^4R^4$, y) $-NR^4C(NR^4)OR^4$, z) $-NR^4C(NR^4)NR^4R^4$, aa) $-S(O)_pR^4$,
- bb) -SO₂NR⁴R⁴, and cc) R⁴;

R⁴, at each occurrence, independently is selected from the group consisting of:

- a) H, b) $-OR^6$, c) an amine protecting group, d) C_{1-6} alkyl, e) C_{2-6} alkenyl,
- f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -C(O)-C₁₋₆ alkyl, j) -C(O)-C₂₋₆ alkenyl, k) -C(O)-C₂₋₆ alkynyl,
- 1) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O- C_{1-6} alkyl, o) -C(O)O- C_{2-6} alkenyl,
- p) -C(O)O-C₂₋₆ alkynyl, q) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of d) – r) optionally is substituted with one or more R^5 groups;

R⁵, at each occurrence, is independently selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =N R^6 , h) =NO R^6 , i) =N-N R^6R^6 , j) -CF₃,
- $k) OR^6, l) CN, m) NO_2, n) NR^6R^6, o) C(O)R^6, p) C(O)OR^6, q) OC(O)R^6,$

- r) $-C(O)NR^6R^6$, s) $-NR^6C(O)R^6$, t) $-OC(O)NR^6R^6$, u) $-NR^6C(O)OR^6$,
- V) $-NR^6C(O)NR^6R^6$, W) $-C(S)R^6$, W) $-C(S)OR^6$, W) $-OC(S)R^6$, W) $-OC(S)NR^6R^6$,
- aa) $-NR^6C(S)R^6$, bb) $-OC(S)NR^6R^6$, cc) $-NR^6C(S)OR^6$, dd) $-NR^6C(S)NR^6R^6$,
- ee) -C(NR⁶)R⁶, ff) -C(NR⁶)OR⁶, gg) -OC(NR⁶)R⁶, hh) -C(NR⁶)NR⁶R⁶,
- ii) $-NR^6C(NR^6)R^6$, jj) $-OC(NR^6)NR^6R^6$, kk) $-NR^6C(NR^6)OR^6$,
- 11) $-NR^6C(NR^6)NR^6R^6$, mm) $-S(O)_pR^6$, nn) $-SO_2NR^6R^6$, and oo) R^6 ;

R⁶, at each occurrence, independently is selected from the group consisting of:

- a) H, b) -OR⁸, c) an amine protecting group, d) C₁₋₆ alkyl, e) C₂₋₆ alkenyl,
- f) C₂₋₆ alkynyl, g) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- h) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, i) -C(O)-C₁₋₆ alkyl, j) -C(O)-C₂₋₆ alkenyl, k) -C(O)-C₂₋₆ alkynyl,
- 1) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- m) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, n) -C(O)O- C_{1-6} alkyl, o) -C(O)O- C_{2-6} alkenyl,
- p) -C(O)O- C_{2-6} alkynyl, q) -C(O)O- C_{3-14} saturated, unsaturated, or aromatic carbocycle, and r) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of d) - r) optionally is substituted with one or more R^7 groups;

R⁷, at each occurrence, independently is selected from the group consisting of:

- a) F, b) Cl, c) Br, d) I, e) =O, f) =S, g) =N R^8 , h) =NO R^8 , i) =N-N R^8R^8 , j) -CF₃,
- $k) OR^8, 1) CN, m) NO_2, n) NR^8R^8, o) C(O)R^8, p) C(O)OR^8, q) OC(O)R^8, q)$
- r) $-C(O)NR^8R^8$, s) $-NR^8C(O)R^8$, t) $-OC(O)NR^8R^8$, u) $-NR^8C(O)OR^8$,
- $v) NR^8C(O)NR^8R^8, \, w) C(S)R^8, \, x) C(S)OR^8, \, y) OC(S)R^8, \, z) C(S)NR^8R^8, \, x) C(S)N$
- aa) -NR⁸C(S)R⁸, bb) -OC(S)NR⁸R⁸, cc) -NR⁸C(S)OR⁸, dd) -NR⁸C(S)NR⁸R⁸,
- ee) -C(NR⁸)R⁸, ff) -C(NR⁸)OR⁸, gg) -OC(NR⁸)R⁸, hh) -C(NR⁸)NR⁸R⁸,

- ii) -NR⁸C(NR⁸)R⁸, jj) -OC(NR⁸)NR⁸R⁸, kk) -NR⁸C(NR⁸)OR⁸,
- ll) $-NR^8C(NR^8)NR^8R^8$, mm) $-S(O)_pR^8$, nn) $-SO_2NR^8R^8$, oo) C_{1-6} alkyl,
- pp) C₂₋₆ alkenyl, qq) C₂₋₆ alkynyl, rr) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and ss) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of oo) – ss) optionally is substituted with one or more moieties selected from the group consisting of R⁸, F, Cl, Br, I, -CF₃, -OR⁸, -SR⁸, -CN, -NO₂, -NR⁸R⁸, -C(O)R⁸, -C(O)OR⁸, -OC(O)R⁸, -C(O)NR⁸R⁸, -NR⁸C(O)R⁸, -OC(O)NR⁸R⁸, -NR⁸C(O)OR⁸, -NR⁸C(O)NR⁸R⁸, -C(S)R⁸, -C(S)OR⁸, -OC(S)R⁸, -C(S)NR⁸R⁸, -NR⁸C(S)R⁸, -OC(S)NR⁸R⁸, -NR⁸C(S)OR⁸, -NR⁸C(S)OR⁸, -OC(NR⁸)OR⁸, -OC(NR⁸)OR⁸, -C(NR⁸)OR⁸, -OC(NR⁸)NR⁸R⁸, -NR⁸C(NR⁸)OR⁸, -OC(NR⁸)NR⁸R⁸, -NR⁸C(NR⁸)OR⁸, -NR⁸C(NR⁸)OR⁸

R⁸, at each occurrence, independently is selected from the group consisting of:

- a) H, b) an amine protecting group, c) C₁₋₆ alkyl, d) C₂₋₆ alkenyl, e) C₂₋₆ alkynyl,
- f) C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, g) 3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
- h) -C(O)-C₁₋₆ alkyl, i) -C(O)-C₂₋₆ alkenyl, j) -C(O)-C₂₋₆ alkynyl,
- k) -C(O)-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle,
- l) -C(O)-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, m) -C(O)O- C_{1-6} alkyl, n) -C(O)O- C_{2-6} alkenyl,
- o) -C(O)O-C₂₋₆ alkynyl, p) -C(O)O-C₃₋₁₄ saturated, unsaturated, or aromatic carbocycle, and q) -C(O)O-3-14 membered saturated, unsaturated, or aromatic heterocycle comprising one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,

wherein any of c) – q) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, I, -CF₃, -OH, $-OC_{1-6}$ alkyl, -SH, -SC₁₋₆ alkyl, -CN, -NO₂, -NH₂, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, -SO₂NHC₁₋₆ alkyl, -SO₂NHC₁₋₆ alkyl, and -S(O)_pC₁₋₆ alkyl;

R⁹ is selected from the group consisting of:

a) C₁₋₆ alkyl, b) phenyl, and c) toluyl;

wherein any of a) - c) optionally is substituted with one or more moieties selected from the group consisting of F, Cl, Br, and I;

m is 0, 1, 2, 3, or 4; n is 0, 1, 2, 3, or 4; and

p, at each occurrence, independently is 0, 1, or 2.

71.-138. (Cancelled).