



= Ac. (R+D)

## TIME: 30 MINUTES

Instruction: Please answer the following objective questions in answers table on the last page.

| Name:          | LIM YN HAN |
|----------------|------------|
| Metric Number: | A23CS0241  |
| Section:       | 02         |

- 1. Given the rules of Boolean Algebra, which of the following expressions is equivalent to A + AB. (1M)
  - A. B
  - R
  - CA+B
  - D. A.B
- 2. Solve this Boolean Expression  $\overline{AC} + B\overline{D}$ ? (2M) =  $\overline{AC} \cdot \overline{BD} = AC \cdot (\overline{B} + \overline{D})$ 
  - A.  $(AC + \overline{B})\overline{D}$
  - B.  $A\bar{C} + \overline{BD}$
  - C. ABCD
  - $(AC)(\bar{B}+D)$
- 3. Which of the following is the CORRECT answer for the simplification of this Boolean expression? (2M)

$$X = ABC + BC + A(B+C)$$

$$= ABC + BC + AB + AC$$

$$\begin{array}{ccc}
B & X = AB + AC + BC \\
\hline
B & X = AC + AC + BC
\end{array} = AB(C+1) + BC + AC$$

C. 
$$X = AC + A + BC$$
  
D.  $X = A$ 

$$= AB + BC + AC$$

$$= AB + C(B + A)$$

$$X = A\bar{C} + A(C+1) + BC$$

|   |   |     |   | <u>B.</u> |   | ALL VALUE | - |
|---|---|-----|---|-----------|---|-----------|---|
| Α | В | С   | X | A         | В | С         | X |
| 0 | 0 | 0   | 0 | 0         | 0 | 0         | 1 |
| 0 | 0 | 1   | 0 | 0         | 0 | 1         | 1 |
| 0 | 1 | 0   | 0 | 0         | 1 | 0         | 0 |
| 0 | 1 | 1   | 1 | 0         | 1 | 1         | 0 |
| 1 | 0 | 0   | 1 | 1         | 0 | 0         | 0 |
| 1 | ٥ | 1   | 1 | 1         | 0 | 1         | 0 |
| 1 | 1 | ا أ | 1 | 1         | 1 | 0         | 0 |
| 1 | 1 | 1 1 | 1 | 1         | 1 | 1         | 0 |

| **** |   |   |   | D. | D. |   |   |  |  |  |
|------|---|---|---|----|----|---|---|--|--|--|
| Α    | В | С | X | Α  | В  | С | Х |  |  |  |
| 0    | 0 | 0 | 1 | 0  | 0  | 0 | 0 |  |  |  |
| 0    | 0 | 1 | 1 | 0  | 0  | 1 | 1 |  |  |  |
| 0    | 1 | 0 | 0 | 0  | 1  | 0 | 1 |  |  |  |
| 0    | 1 | 1 | 1 | 0  | 1  | 1 | 0 |  |  |  |
| 1    | 0 | 0 | 1 | 1  | 0  | 0 | 1 |  |  |  |
| 1    | 0 | 1 | 0 | 1  | 0  | 1 | 1 |  |  |  |
| 1    | 1 | 0 | 0 | 1  | 1  | 0 | 1 |  |  |  |
| 1    | 1 | 1 | 0 | 1  | 1  | 1 | 1 |  |  |  |

5. Determine which Boolean expression is POS. (1M)

$$A, \overline{ABC} + \overline{ABC}$$

$$\bigcirc B (B + \bar{C} + D)(\bar{A} + B)$$

$$C. AB\bar{C}D + A\bar{C} + \bar{B}C$$

D. 
$$(A+C)\overline{(B+D)}$$
 (A+C)( $\overline{6}\overline{6}$ )

6. Convert the following Boolean expression to standard POS. (2M)

$$F = (A + B + C)(A + C)(B)$$

$$X = (A + B + C)(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + B + C)(\bar{A} + B + \bar{C})$$

$$\sum_{B} F = (A + B + C)(\bar{A} + \bar{B} + C)(A + B + \bar{C})(\bar{A} + B + C)(\bar{A} + B + \bar{C})$$

C. 
$$F = (\bar{A} + \bar{B} + \bar{C})(A + \bar{B} + C)(A + B + \bar{C})(\bar{A} + B + C)(\bar{A} + B + \bar{C})$$

$$(D) F = (A + B + C)(A + \overline{B} + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$$

7. Represent the following KMAP using pi notation  $\pi$ . (2M)

| AB CD | 00  | 01  | 11  | 10  |  |  |
|-------|-----|-----|-----|-----|--|--|
| 00    | 0 / | 0 / | 1   | 1   |  |  |
| 01    | 0 / | 1   | 1   | 0 / |  |  |
| 11    | 1   | 1   | 0 / | 1   |  |  |
| 10    | 1   | 1   | 1   | 0   |  |  |

$$(B)\pi ABCD (0, 1, 4, 6, 10, 15)$$

C. 
$$\pi_{ABCD}$$
 (0, 1, 4, 5, 10, 15)

8. Determine how many groups are created for the following SOP KMAP. (2M)

| AB CD | 00      | 01  | 11  | 10  |  |
|-------|---------|-----|-----|-----|--|
| 00    | 1)/     | 0   | 0   | (V) |  |
| 01    | 0       | 11/ | 12  | 0   |  |
| 11    | (1 / 1  |     | 12, | 13  |  |
| 10    | (1) / [ | 0   | 0   | IV  |  |

- A. 2
- **B** 3
- C. 4
- D. 5

9. Get the minimum SOP expression for KMAP below. (2M)

| ABCD | 00  | 01  | 11 | 10  |
|------|-----|-----|----|-----|
| 00   | (1) | 0   | 0  | W   |
| 01   | 0   | (1) | 1  | 0   |
| 11   |     | 1   |    | 1)  |
| 10   |     | 0   | 0  | (1) |

- $A.\ \overline{B}\overline{D} + AB + \overline{B}\overline{D}$
- $\widehat{B}\overline{D} + \overline{A}\overline{B} + BD$ 
  - C.BD + AB + BD
- $(\overline{D})\overline{B}\overline{D} + AB + BD$

BD

AB

RD

10. Get the minimum POS expression for KMAP below. (2M)

| \ BC | 00 | 01 | 11 | 10  |
|------|----|----|----|-----|
| A    |    |    |    |     |
| 0    | 0  | 1  | 0  | (X) |
|      | 0) | 1  | 1  | X   |

$$A. \bar{A}B + \bar{C}$$

$$\mathrm{B.}\,(\bar{A}+B)(\bar{C})$$

C. 
$$A\bar{B} + C$$

$$\bigcirc D (A + \bar{B})(C)$$

C

Answers Table:

| 1. | B |   | 2. | D | / | 3. | В | 4. | A | 5.  | 8 |
|----|---|---|----|---|---|----|---|----|---|-----|---|
| 6. | D |   | 7. | В |   | 8. | В | 9. | D | 10. | D |
|    |   | / |    | - | / |    | / |    | / |     |   |