

# RuATD: распознавание сгенерированных текстов

Катя Волошина & Полина Кудрявцева

### Задачи

ПО МОТИВАМ СОРЕВНОВАНИЯ  $\Delta$ ИАЛОГ-2022 RUATD



### 1

Определить, был ли текст сгенерирован автоматически или написан человеком

### 2

Определить, какая именно модель была использована для генерации данного текста



# Мотивация

Модели уже достаточно хорошо генерируют тексты, поэтому могут генерировать фейковые новости, отзывы и др. сообщения в корыстных целях. Важно научиться отличать реальные тексты от фейковых.

Другой задачей будет создать алгоритм, различающий модели. Классификация текстов по моделям, их сгенерировавшим, может помочь оценивать качество генерации текста. В задаче генерации сложно придумать хорошие метрики, поэтому можно считать лучшей моделью ту, которая сложно опознается и часто путается с текстами человека.



# Команда и роли

### Катя

- подбор моделей для обучения
- подготовка и тренировка моделей для мультиклассовой классификации
- подготовка и тренировка моделей для бинарной классификации

### Полина

- SCRUM-мастер (следит за дедлайнами!)
- подбор идей для препроцессинга данных и препроцессинг данных
- построение графиков для анализа результатов



### Данные

- тренировочная выборка: 129065 текстов
- валидационная выборка: 21511 текстов
- Тексты, написанные человеком собраны из открытых источников (Википедия, соц. сети и др.)
- Тексты, сгенерированные моделями
  - M-BART
  - M-BART50
  - M2M-100
  - mT5-Large
  - o mT5-Small
  - OPUS-MT

- ruGPT-3-Large
- ruGPT3-Medium
- ruGPT3-Small
- ruT5-Base
- ruT5-Base-Multitask
- Обучающая и тестовая выборки размечены автоматически авторами соревнования

# Фрагмент данных

binary разметка multi разметка

| Эх, у меня может быть и нет денег, но у меня всё ещё есть гордость. | Н | Н       |
|---------------------------------------------------------------------|---|---------|
| Меня покусали комары.                                               | Н | Н       |
| Меня похитили муски.                                                | М | Opus-MT |
| Я был готов помочь ему в опасности своей жизни.                     | М | Opus-MT |
| Моя квартира находится меньше чем в пяти минутах пешком от станции. | Н | Н       |



### Данные

- выборка binary сбалансированная: примерно 50/50 текстов, написанных человеком, и текстов, сгенерированных моделью
- например, в train binary данных:

human: 10756 текстов

machine: 10755 текстов

• по длинам предложения распределены так:

|                             | human  | machine |
|-----------------------------|--------|---------|
| средняя длина<br>в токенах  | 30,07  | 31,85   |
| средняя длина<br>в символах | 221,47 | 236,86  |

• binary данные сбалансированы, а multi классы сбалансированы только в отношении машинных и человеческих текстов, но внутри машинных текстов баланс по классам не соблюдается





### Бейзлайны

### LogReg на TF-IDF

Простейший способ преобразования данных и простейший классификатор

#### Fine-tuned ruBERT

Это state-off-the-art модель для русского языка. Попробуем дофайнтюнить ее на классификацию текстов.



# Качество бейзлайнов на мультиклассовой классификации

| ruBERT         | 0.59914 |
|----------------|---------|
| TF-DF + LogReg | 0.44300 |



# Метрики



Это задача классификации → воспользуемся классическими метриками.

**Ассигасу** (в мультиклассовой задаче совпадает с micro F1-score): чтобы понимать, какова доля правильных ответов у модели

F1-score (macro) для мультиклассовой классификации: посмотреть, как дисбаланс классов влияет на качество модели )



### Подготовка данных

- Токенизация, pymorphy2
- Лемматизация, pymorphy2
- Векторизация: TF-IDF, word2vec
- Выделение признаков у предложений:
  - ДЛИНА В СИМВОЛАХ И В ТОКЕНАХ
  - КОЛ-ВО ГЛАСНЫХ НА СИМВОЛЫ
  - кол-во пробелов на символы
  - КОЛ-ВО ПУНКТУАЦИОННЫХ ЗНАКОВ НА СИМВОЛЫ
  - Средняя длина слов
  - кол-во длинных слов (>= 10 букв) на все слова
  - кол-во коротких слов (<=3 букв) на все слова
  - readability:
    - Dale-Chall
    - Gunning-Fog
    - Flesch

- морфология:
  - кол-во служебных частей речи (ч.р.)
    на все слова
  - кол-во самостоятельных ч.р. на все слова
  - кол-во именных ч.р. на все слова
  - КОЛ-ВО ГЛАГОЛЬНЫХ Ч.Р.НА ВСЕ СЛОВА
  - отношение кол-ва именных ч.р. кглагольным

# Двухэтапный пайплайн



# Почему мы выбрали RuBERT-tiny?







# Результаты

| encoding      | classifier   | binary:<br>accuracy |
|---------------|--------------|---------------------|
| BoW+TF-IDF    | FNN          | 0.73                |
| word2vec      | LSTM         | 0.59                |
| character     | CNN          | 0,66                |
| Native LM     | fine-tuning  | 0.81                |
| text features | FNN          | 0.6                 |
| text features | Logreg       | 0.61                |
| text features | RandomForest | 0.64                |



# Почему мы выбрали Combo model? И что это вообще?



# Результаты

| encoding      | classifier   | accuracy | macro f1-<br>score |
|---------------|--------------|----------|--------------------|
| TF-IDF        | FNN          | 0.3      | 0.29               |
| word2vec      | LSTM         | 0.29     | 0.25               |
| character     | CNN          | 0.37     | 0.32               |
| text features | FNN          | 0.26     | 0.17               |
| text features | Logreg       | 0.22     | 0.1                |
| text features | RandomForest | 0.27     | 0.24               |
| Combo Model   |              | 0.39     | 0.35               |

### Combo model



FNN

### Random Forest



LogReg CNN

| Confusion matrix for LofReg |          |            |           |           |             |             |                |             |                 |               |            |                     |             |  |
|-----------------------------|----------|------------|-----------|-----------|-------------|-------------|----------------|-------------|-----------------|---------------|------------|---------------------|-------------|--|
| M-BART -                    | 3        | 9          | 10        | 29        | 0           | 0           | 0              | 3.3e+02     | 21              | 0             | 17         | 0                   | 0           |  |
| M-BART50 -                  | 0        | 8e+02      | 56        | 9.4e+02   | 0           | 0           | 0              | 1.8e+02     | 4               | 0             | 4          | 0                   | 0           |  |
| M2M-100 -                   | 0        | 6.1e+02    | 55        | 9.2e+02   | 0           | 0           | 0              | 2.1e+02     | 3               | 0             | 1          | 0                   | 0           |  |
| OPUS-MT -                   | 0        | 6.7e+02    | 70        | le+03     | 0           | 0           | 0              | 2.4e+02     | 5               | 0             | 1          | 0                   | 0           |  |
| mT5-Large -                 | 0        | 2.1e+02    | 39        | 4e+02     | 0           | 0           | 0              | 1.6e+02     | 5               | 0             | 1          | 0                   | 0           |  |
| mT5-Small -                 | 0        | 1.4e+02    | 20        | 2.6e+02   | 0           | 0           | 0              | 63          | 1               | 0             | 0          | 0                   | 0           |  |
| ruGPT2-Large -              | 0        | 40         | 30        | 2.1e+02   | 0           | 0           | 0              | 1.1e+02     | 0               | 0             | 0          | 0                   | 0           |  |
| ruGPT3-Large -              | 7        | 2e+02      | 64        | 4.9e+02   | 0           | 0           | 0              | 7e+02       | 79              | le+02         | 5          | 0                   | 0           |  |
| ruGPT3-Medium -             | 2        | 1.3e+02    | 32        | 2.1e+02   | 0           | 0           | 0              | 5.8e+02     | 1.6e+02         | 60            | 2          | 0                   | 0           |  |
| ruGPT3-Small -              | 4        | 1.4e+02    | 28        | 1.7e+02   | 0           | 0           | 0              | 6e+02       | 1.4e+02         | 72            | 3          | 0                   | 0           |  |
| ruT5-Base -                 | 8        | 11         | 0         | 9         | 0           | 0           | 0              | 3.7e+02     | 26              | 0             | 17         | 0                   | 0           |  |
| ruT5-Base-Multitask -       | 0        | 71         | 23        | 2.1e+02   | 0           | 0           | 0              | 62          | 0               | 0             | 0          | 0                   | 0           |  |
| ruT5-Large -                | 2        | 42         | 24        | 90        | 0           | 0           | 0              | 1.3e+02     | 4               | 0             | 0          | 0                   | 0           |  |
|                             | M-BART - | M-BART50 - | M2M-100 - | OPUS-MT - | mT5-Large - | mT5-Small - | n/GPT2-Large - | nGPT3-Large | ruGPT3-Medium - | nGPT3-Small - | nT5-Base - | T5-Base-Multitask - | nT5-Large - |  |



- 1200

### TF-IDF



#### LSTM

### word2vec

- 1000



|                       | Confusion matrix for Combo model: only machine |          |            |           |             |             |             |              |             |                 |               |            |                      |             |
|-----------------------|------------------------------------------------|----------|------------|-----------|-------------|-------------|-------------|--------------|-------------|-----------------|---------------|------------|----------------------|-------------|
| Human -               | 0                                              | 93       | 3.8e+02    | 4e+02     | 5.9e+02     | 2.5e+02     | 1.5e+02     | 41           | 2.9e+02     | 17              | 38            | 1.5e+02    | 4                    | 56          |
| M-BART -              | 0                                              | 1.8e+02  | 8          | 5         | 3           | 9           | 1           | 1            | 7           | 0               | 1             | 1.3e+02    | 0                    | 3           |
| M-BART50 -            | 0                                              | 6        | 8.6e+02    | 2.6e+02   | 6.2e+02     | 36          | 32          | 2            | 33          | 1               | 6             | 3          | 0                    | 6           |
| M2M-100 -             | 0                                              | 2        | 4.3e+02    | 3.7e+02   | 6.8e+02     | 49          | 26          | 5            | 32          | 1               | 1             | 1          | 1                    | 11          |
| OPUS-MT -             | 0                                              | 4        | 4.4e+02    | 3e+02     | 9e+02       | 60          | 40          | 1            | 55          | 2               | 9             | 1          | 2                    | 8           |
| mT5-Large -           | 0                                              | 6        | 80         | 71        | 1.1e+02     | 91          | 1.3e+02     | 18           | 55          | 1               | 5             | 3          | 5                    | 13          |
| mT5-Small -           | 0                                              | 3        | 50         | 23        | 50          | 79          | 1.2e+02     | 10           | 29          | 0               | 1             | 0          | 4                    | 1           |
| ruGPT2-Large -        | 0                                              | 0        | 3          | 4         | 24          | 24          | 25          | 1.9e+02      | 75          | 0               | 4             | 0          | 1                    | 0           |
| ruGPT3-Large -        | 0                                              | 7        | 43         | 49        | 86          | 48          | 33          | 51           | 8.6e+02     | 79              | 1.8e+02       | 12         | 1                    | 9           |
| ruGPT3-Medium -       | 0                                              | 7        | 34         | 23        | 42          | 21          | 3           | 1            | 2.3e+02     | 2.6e+02         | 4.8e+02       | 5          | 2                    | 5           |
| ruGPT3-Small -        | 0                                              | 5        | 21         | 21        | 30          | 9           | 2           | 2            | 2.4e+02     | 1.8e+02         | 5.8e+02       | 9          | 3                    | 6           |
| ruT5-Base -           | 0                                              | 1.1e+02  | 3          | 3         | 2           | 10          | 0           | 0            | 6           | 0               | 0             | 2.5e+02    | 0                    | 12          |
| ruT5-Base-Multitask - | 0                                              | 1        | 29         | 49        | 64          | 35          | 17          | 11           | 19          | 5               | 3             | 1          | 9                    | 2           |
| ruT5-Large -          | 0                                              | 6        | 25         | 38        | 29          | 21          | 7           | 4            | 19          | 0               | 4             | 12         | 0                    | 9           |
|                       | Human -                                        | M-BART - | M-BART50 - | M2M-100 - | - OPUS-MT - | mT5-Large - | mT5-Small - | nuGPT2-Large | nGPT3-Large | n.GPT3-Medium - | nGPT3-Small - | nT5-Base - | nT5-Base-Multitask - | nT5-Large - |

- 800

- 700

- 600

- 500

- 400

- 300

- 200

- 100

# Финальные результаты

| ***RESULTS Combo mode |           |        |          |         |
|-----------------------|-----------|--------|----------|---------|
|                       | precision | recall | f1-score | support |
| Human                 | 0.80      | 0.71   | 0.75     | 8524    |
| M-BART                | 0.42      | 0.43   | 0.42     | 418     |
| M-BART50              | 0.36      | 0.43   | 0.39     | 1986    |
| M2M-100               | 0.23      | 0.21   | 0.22     | 1804    |
| OPUS-MT               | 0.28      | 0.45   | 0.34     | 2014    |
| mT5-Large             | 0.12      | 0.11   | 0.12     | 810     |
| mT5-Smaĺl             | 0.20      | 0.24   | 0.22     | 490     |
| ruGPT2-Large          | 0.57      | 0.48   | 0.52     | 395     |
| ruGPT3-Large          | 0.44      | 0.52   | 0.48     | 1645    |
| ruGPT3-Medium         | 0.48      | 0.22   | 0.30     | 1170    |
| ruGPT3-Small          | 0.44      | 0.50   | 0.47     | 1155    |
| ruT5-Base             | 0.43      | 0.57   | 0.49     | 440     |
| ruT5-Base-Multitask   | 0.28      | 0.02   | 0.04     | 370     |
| ruT5-Large            | 0.06      | 0.03   | 0.04     | 290     |
| accuracy              |           |        | 0.50     | 21511   |
| macro avg             | 0.36      | 0.35   | 0.34     | 21511   |
| weighted avg          | 0.52      | 0.50   | 0.50     | 21511   |

Generalized confusion matrix for models

| Generalized confusion matrix for models |           |          |            |           |           |         |                |          |          |  |      |     |
|-----------------------------------------|-----------|----------|------------|-----------|-----------|---------|----------------|----------|----------|--|------|-----|
| Human                                   | - 6.1e+03 | 93       | 3.8e+02    | 4e+02     | 5.9e+02   | 4.1e+02 | 41             | 3.4e+02  | 2.1e+02  |  | - 60 | 300 |
| M-BART                                  | - 66      | 1.8e+02  | 8          | 5         | 3         | 10      | 1              | 8        | 1.4e+02  |  | - 50 | 000 |
| M-BART50                                | 1.3e+02   | 6        | 8.6e+02    | 2.6e+02   | 6.2e+02   | 68      | 2              | 40       | 9        |  |      |     |
| M2M-100                                 | - 1.9e+02 | 2        | 4.3e+02    | 3.7e+02   | 6.8e+02   | 75      | 5              | 34       | 13       |  | - 40 | 000 |
| OPUS-MT                                 | 2e+02     | 4        | 4.4e+02    | 3e+02     | 9e+02     | le+02   | 1              | 66       | 11       |  | - 30 | 000 |
| mT5                                     | -3.4e+02  | 9        | 1.3e+02    | 94        | 1.6e+02   | 4.2e+02 | 28             | 91       | 26       |  |      |     |
| ruGPT2-Large                            | - 44      | 0        | 3          | 4         | 24        | 49      | 1.9e+02        | 79       | 1        |  | - 20 | 000 |
| ruGPT3                                  | 3.0e+02   | 19       | 98         | 93        | 1.6e+02   | 1.2e+02 | 54             | 3.1e+03  | 52       |  | - 10 | )00 |
| ruT5                                    | - 2.8e+02 | 1.2e+02  | 57         | 90        | 95        | 90      | 15             | 56       | 3e+02    |  |      |     |
|                                         | Human -   | M-BART - | M-BART50 - | M2M-100 - | OPUS-MT - | mT5 -   | nuGPT2-Large - | ruGPT3 - | - TuT5 - |  | - 0  |     |

# Проблемы



- большой объем данных
- требуется много ресурсов и времени для обработки и обучения моделей
- дисбаланс классов в мультиклассовой задаче

### Предложения



- использовать модели для генерации данных, чтобы сбалансировать датасет
- лучше подобрать гиперпараметры для BERT, использовать модель большего размера

### Выводы



- Можно хорошо отличать человека от модели
- Можно использовать мультиклассификацию как оценку генерации
- При этом модели разного размера, но одной архитектуры часто путаются, объединение моделей разных моделей дало +0.08 к аккьюраси
- Мультилингвальные модели больше похоже между собой, чем модели одной архитектуры (например, mT5 и ruT5)
- Мультилингвальные модели (M2M100 и mT5) чаще путаются с человеком и хуже определяются (лучше генерируют?)
- Признаков оказывается мало для хорошей классификации, хорошо работают символы и ТЕ-IDF для юниграм, биграм и триграм. Их совмещение дает небольшой прирост качества



### Литература

Adelani, D. I., Mai, H., Fang, F., Nguyen, H. H., Yamagishi, J., & Echizen, I. (2020, April). Generating sentiment-preserving fake online reviews using neural language models and their human-and machine-based detection. In International Conference on Advanced Information Networking and Applications (pp. 1341-1354). Springer, Cham.

Авторы использовали Grover, GTLP и OpenAl GPT-2 detector для обнаружения сгенерированных текстов. Мы планируем посмотреть, что из этого можно и стоит использовать в нашем случае.

Bakhtin, A., Gross, S., Ott, M., Deng, Y., Ranzato, M. A., & Szlam, A. (2019). Real or fake? learning to discriminate machine from human generated text. arXiv preprint arXiv:1906.03351. Не подошло! Мы не хотим использовать генеративные модели в нашем решении.

Fagni, T., Falchi, F., Gambini, M., Martella, A., & Tesconi, M. (2021). TweepFake: About detecting deepfake tweets. Plos one, 16(5), e0251415.

В статье предложены 13 способов обнаружения сгенерированных текстов (в том числе, наш бейзлайн).

Kushnareva, L., Cherniavskii, D., Mikhailov, V., Artemova, E., Barannikov, S., Bernstein, A., ... & Burnaev, E. (2021). Artificial Text Detection via Examining the Topology of Attention Maps. arXiv preprint arXiv:2109.04825.

Взяли ссылки на другие исследования

Lau, J. H., Armendariz, C., Lappin, S., Purver, M., & Shu, C. (2020). How furiously can colorless green ideas sleep? sentence acceptability in context. Transactions of the Association for Computational Linguistics, 8, 296-310.

Взяли то, как считать acceptability score

Salazar, J., Liang, D., Nguyen, T. Q., & Kirchhoff, K. (2019). Masked language model scoring. arXiv preprint arXiv:1910.14659.

Взяли идею использовать маски для различения моделей.

### https://github.com/EkaterinaVoloshina/RuATD

