

\$

FILE 'MEDLINE' ENTERED AT 04:25:36 ON 28 APR 2008

FILE 'JAPIO' ENTERED AT 04:25:36 ON 28 APR 2008
COPYRIGHT (C) 2008 Japanese Patent Office (JPO)- JAPIO

FILE 'BIOSIS' ENTERED AT 04:25:36 ON 28 APR 2008
Copyright (c) 2008 The Thomson Corporation

FILE 'SCISEARCH' ENTERED AT 04:25:36 ON 28 APR 2008
Copyright (c) 2008 The Thomson Corporation

FILE 'WPIDS' ENTERED AT 04:25:36 ON 28 APR 2008
COPYRIGHT (C) 2008 THE THOMSON CORPORATION

FILE 'CAPLUS' ENTERED AT 04:25:36 ON 28 APR 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'EMBASE' ENTERED AT 04:25:36 ON 28 APR 2008
Copyright (c) 2008 Elsevier B.V. All rights reserved.

=> s g protein coupled receptor or gpcr
L1 86755 G PROTEIN COUPLED RECEPTOR OR GPCR

=> s11 and gpcr39 or gpr39
L2 204 SL1 AND GPCR39 OR GPR39

=> s l2 and (ionizable metal or nickel or copper cadmium)
L3 0 L2 AND (IONIZABLE METAL OR NICKEL OR COPPER CADMIUM)

=> s l2 and (ionizable metal or nickel or copper or cadmium)
L4 1 L2 AND (IONIZABLE METAL OR NICKEL OR COPPER OR CADMIUM)

=> d ibib abs 14

L4 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2005:1020555 CAPLUS <<LOGINID::20080428>>
DOCUMENT NUMBER: 143:320266
TITLE: Genes with differential expression profile
between human dental pulp stem cells and mesenchymal
stem cells and use for regenerating tooth germ
INVENTOR(S): Ueda, Minoru; Yamada, Yoichi
PATENT ASSIGNEE(S): Hitachi Medical Corp., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 246 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2005253442 20040309	A	20050922	JP 2004-111582	

PRIORITY APPLN. INFO.:

JP 2004-111582

20040309

AB The present invention relates to a group of genes whose expression profile

are different between human dental pulp stem cells and mesenchymal stem

cells, as well as a method for regenerating tooth germ using these genes.

According to the present invention, the gene expression profiles and

cluster anal. between human dental pulp stem cells (hDPSCs) and mesenchymal stem cells (hMSCs) as representative populations of odontoprogenitor and osteoprogenitor cell were revealed, and a group of

genes whose expression profile are different between human dental pulp stem cells and mesenchymal stem cells was identified. By utilizing the

groups of the genes of the present invention together with the dental pulp

stem cells and mesenchymal stem cells, hard tissue such as tooth germ,

dental pulp, dentin or bone can be regenerated. The present inventors

investigated the gene expression profiles and cluster anal. between human

dental pulp stem cells (hDPSCs) and mesenchymal stem cells (hMSCs) as

representative populations of odontoprogenitor and osteoprogenitor cells,

resp. At first, the present inventors confirmed the differential expression of Alk. phosphatase (ALP) activity, Dentin matrix protein 1

(DMP 1), Dentin phosphosialoprotein (DSPP) using by real time reverse-transcriptase polymerase chain reaction (RT-PCR) in total RNA from

primary cultures. The no. of genes in hDPSCs(I) that were up-regulated by

2>-fold, compared to hMSCs, was 614 (Table, IV). On the other band, the

no. of genes down regulated by <2-fold in hDPSCs (I) was 296 (Table III,

IV).

=> 12 and (agonist# or antagonist#)

L5 42 L2 AND (AGONIST# OR ANTAGONIST#)

=> dup rem 15

PROCESSING COMPLETED FOR L5

L6 22 DUP REM L5 (20 DUPLICATES REMOVED)

=> d ibib abs 16 1-22

L6 ANSWER 1 OF 22 SCISEARCH COPYRIGHT (c) 2008 The Thomson Corporation on

STN

ACCESSION NUMBER: 2008:483049 SCISEARCH <<LOGINID::20080428>>

THE GENUINE ARTICLE: 282UC

TITLE: Obestatin promotes survival of pancreatic beta-

cells and
involved in
AUTHOR:
Gallo,
Cantaluppi,
Marco;
CORPORATE SOURCE:
Metab, Lab
10126
Med, Div
I-10126
San
Dept
Sci,
Pharmacol &
Hosp,
Turin,
COUNTRY OF AUTHOR:
SOURCE:
PUBLISHER:
ALEXANDRIA, VA
DOCUMENT TYPE:
LANGUAGE:
REFERENCE COUNT:
ENTRY DATE:
AB
the
ghrelin gene whose biological functions are poorly understood. We investigated obestatin effect on survival of beta-cells and human pancreatic islets and the underlying signaling pathways.
RESEARCH DESIGN AND METHODS - beta-Cells and human islets were used
to assess obestatin effect on cell proliferation, survival,
apoptosis,
intracellular signaling, and gene expression.
RESULTS - Obestatin showed specific binding on HIT-T15 and
INS-IE
beta-cells, bound to glucagon-like peptide-1 receptor (GLP-1R), and

human islets and induces expression of genes
the regulation of beta-cell mass and function
Granata, Riccarda (Reprint); Settanni, Fabio;
Davide; Trovato, Letizia; Biancone, Luigi;
Vincenzo; Nano, Rita; Annunziata, Marta; Campiglia,
Pietro; Arnoletti, Elisa; Ghe, Corrado; Volante,
Papotti, Mauro; Muccioli, Giampiero; Ghigo, Ezio
Univ Turin, Dept Internal Med, Div Endocrinol &
Mol & Cellular Endocrinol, Corso Dogliotti 14, I-
Turin, Italy (Reprint); Univ Turin, Dept Internal
Endocrinol & Metab, Lab Mol & Cellular Endocrinol,
Turin, Italy; Univ Turin, Dept Internal Med, Div
Endocrinol & Metab, Turin, Italy; Univ Vita Salute
Raffaele, San Raffaele Sci Inst, Transplant Unit,
Med, Milan, Italy; Univ Salerno, Dept Pharmaceut
I-84100 Salerno, Italy; Univ Turin, Dept Anat
Forens Med, Turin, Italy; Univ Turin, San Luigi
Turin, Italy; Univ Turin, Dept Clin & Biol Sci,
Italy
riccarda.granata@unito.it
Italy
DIABETES, (APR 2008) Vol. 57, No. 4, pp. 967-979.
ISSN: 0012-1797.
AMER DIABETES ASSOC, 1701 N BEAUREGARD ST,
22311-1717 USA.
Article; Journal
English
50
Entered STN: 17 Apr 2008
Last Updated on STN: 17 Apr 2008
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

recognized ghrelin binding sites. Obestatin exerted proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-gamma/tumor necrosis factor-alpha/interleukin-1 beta treatment, particularly at pharmacological concentrations. Ghrelin receptor ***antagonist*** [D-Lys(3)]-growth hormone releasing peptide-6 and anti-ghrelin antibody prevented obestatin-induced survival in beta-cells and human islets. beta-Cells and islet cells released obestatin, and addition of anti-obestatin antibody reduced their viability. Obestatin increased beta-cell cAMP and activated extracellular signal-related kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt; its antiapoptotic effect was blocked by inhibition of adenylyl cyclase/cAMP/protein kinase A (PKA), PI 3-kinase/Akt, and ERK1/2 signaling. Moreover, obestatin upregulated GLP-1R mRNA and insulin receptor substrate-2 (IRS-2) expression and phosphorylation. The GLP-1R ***antagonist*** exendin-(9-39) reduced obestatin effect on beta-cell survival. In human islets, obestatin, whose immunoreactivity colocalized with that of ghrelin, promoted cell survival and blocked cytokine-induced apoptosis through cAMP increase and involvement of adenylyl cyclase/cAMP/PKA signaling. Moreover, obestatin 1) induced PI 3-kinase/Akt, ERK1/2, and also cAMP response element-binding protein phosphorylation; 2) stimulated insulin secretion and gene expression; and 3) upregulated GLP-1R, IRS-2, pancreatic and duodenal homeobox-1, and glucokinase mRNA.

CONCLUSIONS - These results indicate that obestatin promotes beta-cell and human islet cell survival and stimulates the expression of main regulatory beta-cell genes, identifying a new role for this peptide within the endocrine pancreas.

L6 ANSWER 2 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
DUPLICATE 1
ACCESSION NUMBER: 2008-C47219 [18] WPIDS
DOC. NO. CPI: C2008-075334 [18]
TITLE: Identifying compounds that enhance glucose control
and are effective for preventing or treating
pathologies related with an impaired carbohydrate metabolism,
e.g. diabetes, by using G protein coupled receptor 39 (***GPR39***) protein
DERWENT CLASS: B04; D16
INVENTOR: MOECHARS D W E; MOREAUX B C J; VER DONCK L A L
PATENT ASSIGNEE: (JANC-C) JANSSEN PHARM NV

COUNTRY COUNT: 119

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2007141322	A1	20071213	(200818)*	EN	75[6]	

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2007141322 A1		WO 2007-EP55636	20070608

PRIORITY APPLN. INFO: EP 2006-115158 20060608
AN 2008-C47219 [18] WPIDS
AB WO 2007141322 A1 UPAB: 20080313
NOVELTY - Identifying compounds that enhance glucose control in a subject
and which are effective for preventing and/or treating pathologies related
with an impaired carbohydrate metabolism, in particular in the prevention
and/or treatment of diabetes including its associated complications, or of
the metabolic syndrome including its associated complications, comprises
the use of all or part of the ***GPR39*** protein.
DETAILED DESCRIPTION - INDEPENDENT CLAIMS are:
(1) a method for identifying a compound that enhances glucose regulation in a subject and which are effective for preventing and/or treating pathologies related with an impaired carbohydrate metabolism, in particular in the prevention and/or treatment of diabetes including its associated complications, or of the metabolic syndrome including its associated complications;
(2) a method to identify compounds that modulate carbohydrate metabolism;
(3) use of an isolated nucleic acid sequence selected from:
(a) a nucleic acid sequence encoding all or part of the polypeptides of SEQ ID NO. 2 or 4; (b) a nucleic acid sequence comprising SEQ ID NO. 1 or 3; or (c) a nucleic acid sequence having at least 80% sequence identity to SEQ ID NO. 1 or 3, for the method above;
(4) use a vector comprising the nucleic acid sequence, for the method above;
(5) use of a host cell comprising the nucleic acid sequence or vector, for the method above;
(6) a pharmaceutical composition for the treatment of impaired

glucose control in a human or animal comprising a ***GPR39*** receptor
 agonist or ***antagonist*** ;
 (7) use of a ***GPR39*** ***agonist*** or
 antagonist in the manufacture of a medicament for the treatment of
 a disease condition related to an impaired carbohydrate metabolism, in
 particular diabetes (including associated complications), including Type 1
 (insulin-dependent or IDDM), Type 2 (non-insulin-dependent diabetes mellitus), maturity-onset diabetes of the young (MODY), and gestational diabetes;
 (8) a diagnostic product comprising an isolated nucleic acid sequence selected from: (a) a nucleic acid sequence encoding all or part of the polypeptides of SEQ ID NO. 2 or 4; (b) a nucleic acid sequence comprising SEQ ID NO. 1 or 3; or (c) a nucleic acid sequence having at least 80% sequence identity to SEQ ID NO. 1 or 3; and
 (9) a diagnostic product comprising all or part of the ***GPR39*** receptor protein.
ACTIVITY - Antidiabetic. No biological data given.
MECHANISM OF ACTION - ***GPR39*** - ***Agonist*** ;
GPR39 - ***Antagonist*** .
USE - The methods, isolated nucleic acid sequence, vector, and host cell are useful for identifying compounds that enhance glucose control in a subject and which are effective for preventing and/or treating pathologies related with an impaired carbohydrate metabolism, in particular in the prevention and/or treatment of diabetes including its associated complications, or of the metabolic syndrome including its associated complications. The ***GPR39*** ***agonist*** or ***antagonist*** is useful in the manufacture of a medicament for the treatment of a disease condition related to an impaired carbohydrate metabolism, in particular diabetes (including associated complications), including Type 1 (insulin-dependent or IDDM), Type 2 (non-insulin-dependent diabetes mellitus), maturity-onset diabetes of the young (MODY), and gestational diabetes (all claimed).

L6 ANSWER 3 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
DUPLICATE 2
ACCESSION NUMBER: 2007-373447 [35] WPIDS
DOC. NO. CPI: C2007-135335 [35]
TITLE: Use of the triazole compound in the manufacture of
a medicament for the treatment or prophylaxis of
e.g. acute fatigue syndrome, adipogenesis, adiposity,
Alzheimer's disease, anorexia

DERWENT CLASS: B02; B03; C02
 INVENTOR: BOEGLIN D; DEMANGE L; FEHRENTZ J; MARTINEZ J;
 MOULIN A;
 PERRISSOUD D
 PATENT ASSIGNEE: (CNRS-C) CENT NAT RECH SCI; (UYMO-N) UNIV
 MONTPELLER I;
 (UYMO-N) UNIV MONTPELLER II; (UYMO-N) UNIV
 MONTPELLIER I;
 (UYMO-N) UNIV MONTPELLIER II; (ZENT-N) ZENTARIS
 GMBH
 COUNTRY COUNT: 115

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2007020013	A2	20070222	(200735)*	EN	255[46]	
EP 1757290	A1	20070228	(200735)	EN		
US 20070037857	A1	20070215	(200737)	EN	123[46]	
US 20070208061	A2	20070906	(200760)	EN		

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2007020013 A2		WO 2006-EP7945	20060811
US 20070037857 A1	Provisional	US 2005-707941P	20050815
EP 1757290 A1		EP 2005-17732	20050816
US 20070037857 A1	Provisional	US 2005-708543P	20050816
US 20070037857 A1		US 2006-502473	20060811
US 20070208061 A2	Provisional	US 2005-707941P	20050815
US 20070208061 A2	Provisional	US 2006-787543P	20060331
US 20070208061 A2		US 2006-502473	20060811
PRIORITY APPLN. INFO:			
US 2006-787543P		20060331	
US 2005-707941P		20050815	
EP 2005-17732		20050816	
AN 2007-373447 [35]	WPIDS		
AB WO 2007020013 A2	UPAB: 20070604		
NOVELTY - In the manufacture of a medicament for the treatment or prophylaxis of conditions in mammals that are mediated by Growth hormone			
secretagogue (GHS) receptors, a triazole compound is used.			
DETAILED DESCRIPTION - In the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors, a triazole compound of formula (I) is used.			
R1,R2=(cyclo)alkyl, cycloalkylalkyl, (hetero)aryl, (hetero)arylalkyl, heterocyclyl, heterocyclylalkyl (all optionally mono- - tri-substituted by G), H, alkenyl, alkynyl, (aryl)alkylsulfonyl or arylsulfonyl (preferably (aryl)alkyl, (hetero)aryl or heteroarylalkyl (all optionally mono- - tri-substituted by G)); G=halo, N3, CN, NR7R8, OH, NO2, (aryl)alkyl, aryl, O-(aryl) alkyl or O-aryl;			
R3,R4=H or E;			

E=alkyl, (hetero)aryl, heterocyclyl, Q1, (aryl)alkylsulfonyl,
arylsulfonyl, alkyl-S-alkyl or alkyl-S-H (all are optionally mono -
-tri-substituted in the (hetero)aryl, (hetero)arylalkyl,
heterocyclyl
and/or heterocyclylalkyl group by G) (preferably Q1 optionally mono
-
-tri-substituted in the (hetero)aryl, (hetero)arylalkyl,
heterocyclyl and
heterocyclylalkyl group by G);
Q1=(hetero)arylalkyl, heterocyclylalkyl, alkyl-O-(hetero)
aryl,
alkyl-O-(hetero)arylalkyl, alkyl-O-heterocyclyl, alkyl-O-
heterocyclylalkyl, alkyl-CO-(hetero)aryl, alkyl-CO-(hetero)
arylalkyl,
alkyl-CO-heterocyclyl, alkyl-CO-heterocyclylalkyl, alkyl-C(O)O-
(hetero)aryl, alkyl-C(O)O-(hetero)arylalkyl, alkyl-C(O)O-
heterocyclyl,
alkyl-C(O)O- heterocyclylalkyl, alkyl-CO-NH2, alkyl-CO-OH, alkyl-
NH2 or
alkyl-NH-C(NH)-NH2;
R5=H, (cyclo)alkyl, cycloalkylalkyl, (hetero)aryl,
(hetero)arylalkyl, heterocyclyl, heterocyclylalkyl, CO-(aryl)alkyl,
CO-cycloalkyl, CO-cycloalkylalkyl, CO-(hetero)aryl, CO-
heteroarylalkyl,
CO-heterocyclyl, CO-heterocyclylalkyl, - CO-Casterisk(R9R10)-NH2,
CO-CH2-Casterisk(R9R10)-NH2, CO-Casterisk(R9R10)-CH2-NH2,
(aryl)alkylsulfonyl, arylsulfonyl (all optionally mono - tri-
substituted
by G) (preferably H, CO-(cyclo)alkyl, CO-(hetero)aryl,
CO-(hetero)arylalkyl, CO-heterocyclyl, CO-Casterisk(R9R10)-NH2,
CO-CH2-Casterisk(R9R10)-NH2, -CO-Casterisk(R9R10)-CH2NH2
(optionally mono-
- tri-substituted by G);
R6-R8=H, (cyclo)alkyl or cycloalkylalkyl (preferably H);
R9,R10=H, alkyl, natural alpha-amino acid side chain or
unnatural
alpha-amino acid side chain (preferably H or alkyl);
m=0 - 2 (preferably 0).
The asterisk indicates a carbon atom of R or S configuration
when
chiral. INDEPENDENT CLAIMS are included for the following:
(1) new 190 triazole compounds (B1) e.g. (R)-N-(1-(5-(2-(1H-
indol-3-
yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-
indol-3-
yl)ethyl)-2-amino-2-methylpropanamide;
(2) a pharmaceutical composition comprising compound (B1).
ACTIVITY - Muscular-Gen.; Immunomodulator; Nootropic;
Neuroprotective; Anabolic; Eating-Disorders-Gen.; Tranquilizer;
Cardiant;
CNS-Gen.; Osteopathic; Antiinflammatory; Gastrointestinal-Gen.;
Antiulcer;
Endocrine-Gen.; Antidepressant; Anorectics; Antidiabetic;
Immunosuppressant; Nephrotropic; Neuroleptic; Hemostatic;
Cytostatic;
Vasotropic; Anti-HIV; Hepatotropic; Respiratory-Gen.; Vulnerary;
Hypnotic.
(R)-N-(1-(4-(4-Methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-
(1H-

indol-3-yl)ethyl)piperidine-4-carboxamide (A) (0.1 micrograms/kg/day by subcutaneous injection) was tested for treatment of cachexia as given in Ibanez I et al. (J Endocrinol. 2000, 165(3):537-544). using a cachexia model system. On day 3, 6, 10, 13, 15 and day 17, the body weight change (g) was -3.02, 2.95, 11.97, 9.32, -2.78 and -8.27 g for the rats with adjuvant induced arthritis+vehicle and was -5.32, 2.98, 14.92, 19.08, 7.05 and 1.47 g arthritis+the compound (A).

MECHANISM OF ACTION - GHS receptor ***antagonist*** or ***agonist*** ; GHS receptors modulator. Motilin receptor-ligand (MTL) binding assay using human recombinant HEK-293 cells were carried out as given in Feighner SD et al. (Science 1999, 284:2184-2188). to test (R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-trizol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide. The IC50 value was 1.39 μM against MTL-R₁ receptor.

USE - In the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions (e.g. acute fatigue syndrome and muscle loss following election surgery, adipogenesis, adiposity, age-related decline of thymic function, age-related functional decline (ARFD) in the elderly, aging disorder in companion animals, Alzheimer's disease, anorexia, anxiety, blood pressure (lowering), body weight gain/reduction, bone fracture repair, bone remodeling stimulation, cachexia and protein loss reduction, cardiac dysfunctions, cartilage growth stimulation, catabolic disorders, catabolic side effects of glucocorticoids, catabolic state of aging, central nervous system disorder, chronic dialysis, chronic fatigue syndrome, cognitive function improvement (e.g. Alzheimer's disease), discrtraction osteogenesis, complications associated with transplantation, congestive heart failure, Crohn's disease, ulcerative colitis, Cushing's syndrome, depressions, frailty, gastric postoperative ileus, glycemic control improvement, growth promotion in livestock, growth retardation associated with the Prader-Willi syndrome and Turner's syndrome, hip fractures, hunger, immune deficiency in individuals with a depressed T4/T8 cell ratio, immune response improvement to vaccination, immune system stimulation in companion animals, immunosuppression, inflammatory bowel disease, diabetes, intrauterine growth retardation, lipodystrophy

(e.g.
HIV-induced), metabolic homeostasis maintenance, muscle mass/strength increase, muscular atrophy, Noonan's syndrome, obesity, osteoporosis, postoperative ileus, psychosocial deprivation, pulmonary dysfunction, recovery of burn patients, renal failure, sarcopenia, schizophrenia, sensory function maintenance (e.g. hearing, sight, olefaction and taste), skeletal dysplasia, skin thickness maintenance, sleep disorders, thrombocytopenia, tumor cell proliferation, wasting in connection with AIDS, chronic liver disease, chronic obstructive pulmonary disease, multiple sclerosis or secondary to fractures, wound healing in mammals
(e.g. human, domestic animals, cattle, livestock, pets, cow, sheep, pig, goat, horse, pony, donkey, hinny, mule, hare, rabbit, cat, dog, guinea pig, hamster, rat, mouse). For wool growth stimulation in sheep (claimed).

ADVANTAGE - The compounds are GHS receptor modulates e.g. GHS receptors e.g. GHS type 1 receptor, GHS-R1a, GHS-R1b, motilin receptor, motilin receptor 1a, neuropeptide Y receptor, TRH receptor, GPR38 (FM1), ***GPR39*** (FM2), GHS-R subtype, GHS binding site, cardiac GHS-R, mammary GHS-R; resistant to degradation by enzymes of the gastro-intestinal tract and display an improved metabolic stability and bioavailability.

L6 ANSWER 4 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
ACCESSION NUMBER: 2007-394966 [37] WPIDS
CROSS REFERENCE: 2007-373447
DOC. NO. CPI: C2007-142598 [37]
DOC. NO. NON-CPI: N2007-296329 [37]
TITLE: Treatment/prophylaxis of physiological/pathophysiological conditions (e.g. acute fatigue syndrome, adipogenesis and adiposity) mediated by growth hormone secretagogue receptors, comprises administering triazole compounds
DERWENT CLASS: B02; B03; C02; S03
INVENTOR: BOEGLIN D; DEMANGE L; FEHRENTZ J; MARTINEZ J;
MOULIN A;
PATENT ASSIGNEE: PERRISSOUD D
MONTPELLIER I; (UYMO-N) UNIV
GMBH
COUNTRY COUNT: 1
PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
US 20070037857	A1	20070215	(200737)*	EN	123 [46]	

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
US 20070037857	A1 Provisional	US 2005-707941P	20050815
US 20070037857	A1 Provisional	US 2005-708543P	20050816
US 20070037857	A1	US 2006-502473	20060811
PRIORITY APPLN. INFO: EP 2005-17732			20050816
AN 2007-394966 [37]	WPIDS		
CR 2007-373447			
AB US 20070037857 A1	UPAB: 20070612		
NOVELTY - Method for the treatment or prophylaxis of at least one physiological and/or pathophysiological condition in a mammal that is			
mediated by growth hormone secretagogue (GHS) receptors, comprises administering triazole compounds (I).			
DETAILED DESCRIPTION - Method for the treatment or prophylaxis of			
at least one physiological and/or pathophysiological condition in a mammal			
that is mediated by growth hormone secretagogue (GHS) receptors, comprises			
administering triazole compounds of formula (I).			
R1, R2 = H, alkenyl, alkynyl, (cyclo)alkyl, cycloalkylalkyl, (hetero)aryl, (hetero)arylalkyl, heterocyclyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl or arylalkylsulfonyl (all optionally substituted by up to 3 substituents of halo, F, Cl, Br, I, N3, CN, NR7R8,			
OH, NO2, alkyl, aryl, arylalkyl, O-alkyl, O-aryl or O-arylalkyl);			
R3, R4 = (hetero)aryl, (hetero)arylalkyl, heterocyclyl, heterocyclylalkyl (by up to 3 substituents of halo, F, Cl, Br, I, N3, CN,			
NR7R8, OH, NO2, alkyl, aryl, arylalkyl, O-alkyl, O-aryl or O-arylalkyl),			
H, alkyl, alkyl-O-aryl, alkyl-O-arylalkyl, alkyl-O-heteroaryl, alkyl-O-heteroarylalkyl, alkyl-O-heterocyclyl, alkyl-O-heterocyclylalkyl,			
alkyl-CO-aryl, alkyl-CO-arylalkyl, alkyl-CO-heteroaryl, alkyl-CO-heteroarylalkyl, alkyl-CO-heterocyclyl, alkyl-CO-heterocyclylalkyl, alkyl-C(O)O-aryl, alkyl-C(O)O-arylalkyl, alkyl-C(O)O-heteroaryl, alkyl-C(O)O-heteroarylalkyl, alkyl-C(O)O-heterocyclyl, alkyl-C(O)O-heterocyclylalkyl, alkyl-CO-NH2, alkyl-CO-OH,			
alkyl-NH2, alkyl-NH-C(N H)-NH2, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl, alkyl-S-alkyl or alkyl-S-H;			
R5 = H, (cyclo)alkyl, cycloalkylalkyl, (hetero)aryl, (hetero)arylalkyl, heterocyclyl, heterocyclylalkyl, CO-alkyl, CO-cycloalkyl, CO-cycloalkylalkyl, CO-aryl, CO-arylalkyl, CO-heteroaryl,			
CO-heteroarylalkyl, CO-heterocyclyl, CO-heterocyclylalkyl, CO-C(asterisk)(R9R10)-NH2, CO-CH2-C(asterisk)(R9R10)-NH2, CO-C(asterisk)(R9R10)-CH2-NH2, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl (all optionally substituted by up to 3 substituents of			
halo, F, Cl, Br, I, N3, CN, NR7R8, OH, NO2, alkyl, aryl, arylalkyl,			

O-alkyl, O-aryl or O-arylalkyl);
R6, R7, R8 = H, (cyclo)alkyl or cycloalkylalkyl;
R9, R10 = H, alkyl or (un)natural alpha-amino acid side
chain;
m = 0-2; and
asterisk = R or S configuration C when chiral.
An INDEPENDENT CLAIM is included for a pharmaceutical
composition
comprising (I) and carrier and/or excipient.
ACTIVITY - Neuroprotective; Nootropic; Anabolic;
Eating-Disorders-Gen.; Tranquilizer; Cardiant; CNS-Gen.;
Antiinflammatory;
Antiulcer; Gastrointestinal-Gen.; Endocrine-Gen.; Antidepressant;
Immunostimulant; Immunosuppressive; Antidiabetic; Anorectic;
Osteopathic;
Neuroleptic; Hypnotic; Cytostatic; Vulnerary; Immunomodulator;
Vasotropic.
MECHANISM OF ACTION - GHS receptor modulator; GHS-R1a
receptor
modulator. (I) were tested for their GHS-R1a modulatory activity
using
GHS-R1a receptor-ligand binding assays. The results showed that the
median
inhibitory concentration of (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-
(4-
methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)
piperidine-4-
carboxamide was 0.3 nM.
USE - The method is useful for the treatment or prophylaxis
of at
least one physiological and/or pathophysiological condition in a
mammal
that is mediated by GHS receptors, where the mammal is e.g. human,
domestic animals, pets and cow, and the conditions are e.g.
Alzheimer's
disease, anorexia, anxiety, blood pressure, cardiac depressant,
central
nervous system disorders, Crohn's disease and ulcerative colitis,
Cushing's syndrome, dementia, depressions, immune system
stimulation,
immunosuppression, inflammation, diabetes, irritable bowel
syndrome,
Noonan's syndrome, obesity, osteoporosis, postoperative ileus,
schizophrenia, sleep disorders, tumor cell proliferation,
ventricular
dysfunction or reperfusion events, cachexia, wound/burn healing,
regulation of energy balance, regulation of food intake or
adipogenesis
(claimed).
ADVANTAGE - (I) (strong GHS receptor binder) can be
administered at
lower doses compared to other less potent binders while still
achieving
equivalent or even superior desired biological effects. (I) have
less or
no side effects. (I) have improved metabolic stability and/or an
improved
bioavailability.

ACCESSION NUMBER: 2007:1300723 CAPLUS <<LOGINID::20080428>>
 DOCUMENT NUMBER: 147:539679
 TITLE: Alleles and polymorphisms associated with type
 2 diabetes mellitus and obesity and their
 diagnostic use
 INVENTOR(S): Salonen, Jukka T.; Hypponen, Jelena;
 Kaikkonen, Jari;
 Matti
 PATENT ASSIGNEE(S): Oy Jurilab Ltd., Finland
 SOURCE: PCT Int. Appl., 456pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2007128884 20070509	A1	20071115	WO 2007-FI50266	
CA, GB, KM, MK, RO, TT, RW: IE, BF, BW, AZ,	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, BY, KG, KZ, MD, RU, TJ, TM			
US 20070292412 20070509	A1	20071220	US 2007-798002	
PRIORITY APPLN. INFO.: 20060509			US 2006-798706P	P
20060509			US 2006-798774P	P
20060622			US 2006-805522P	P
20060707			US 2006-819015P	P
20060928			US 2006-827306P	P
20061030			US 2006-863438P	P
			US 2006-864681P	P

20061107

AB Genes, SNP markers and haplotypes that are markers of susceptibility or predisposition to type 2 diabetes and obesity and related medical conditions are disclosed. Methods for diagnosis, prediction of clin.

course and efficacy of treatments for type 2 diabetes, obesity and related

phenotypes using polymorphisms in the risk genes are also disclosed. The

genes, gene products and agents of the invention are also useful for

monitoring the effectiveness of prevention and treatment of type 2 diabetes and related traits. Kits are also provided for the diagnosis,

selecting treatment and assessing prognosis of type 2 diabetes.

Novel

methods for prevention and treatment of metabolic diseases such as type

2 diabetes based on the disclosed type 2 diabetes genes, polypeptides and

related pathways are also disclosed.

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L6 ANSWER 6 OF 22 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2007:330186 CAPLUS <<LOGINID::20080428>>

DOCUMENT NUMBER: 146:354159

TITLE: Multiplex array useful for assaying protein-protein

interaction

INVENTOR(S): Lee, Kevin J.

PATENT ASSIGNEE(S): Sentigen Bioscience, Inc., USA

SOURCE: PCT Int. Appl., 88pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2007032793	A1	20070322	WO 2006-US20810	
20060530				
CH,	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,			
GD,	CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB,			
KR,	GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,			
MX,	KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW,			
SE,	MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,			
VC,	SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,			
	VN, YU, ZA, ZM, ZW			

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE,
IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF,
BJ,
CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW,
GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
BY,
KG, KZ, MD, RU, TJ, TM
EP 1893627 A1 20080305 EP 2006-771518
20060530

R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE,
IS, IT, LI, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR
PRIORITY APPLN. INFO.: US 2005-685565P P
20050527

WO 2006-US20810 W

20060530

AB The described invention shows how multiple interactions between two proteins of interest can be detd. by observing activation or lack thereof

of intracellular proteins, following interaction of ligand and receptor.

Multiplex arrays permit screening of test compds. (e.g., receptors, esp. G

protein-coupled receptors) against multiple proteins. A multiplex array

comprises: a solid substrate having multiple receptacles each contg. a sample of cells transformed or transfected with (a) a first nucleic acid

mol. comprising: (i) a nucleotide sequence encoding a first test protein,

(ii) a nucleotide sequence encoding a cleavage site for a protease, and

(iii) a nucleotide sequence encoding a protein which activates a reporter

gene in the cell; (b) a second nucleic acid mol. comprising: (i) a nucleotide sequence which encodes a second test protein whose interaction

with the first test protein in the presence of a test compd. of interest

is to be measured and (ii) a nucleotide sequence which encodes a protease

specific for the cleavage site, wherein the first test protein differs

from other first test proteins in each of the samples and the activity of

the reporter gene is used to det. activity of the test proteins. A no. of

constructs were prep'd. encoding specific G protein-coupled receptors

(e.g., human .beta.2 adrenergic receptor) fused through a protease-cleavable linker to the tetracycline controlled transactivator

TTA. A second set of constructs were also made encoding .beta. arrestin 2

and the catalytic domain of the tobacco etch virus nuclear inclusion A

protease. Plasmids encoding the fusion proteins were transfected

into
cells contg. the .beta.-galactosidase gene under control of a tTA
dependent promoter. Treatment with ***agonist*** increased
levels of
.beta.-galactosidase activity when both sets of fusion proteins
were
expressed. A series of adrenergic receptors was tested with two
agonists and two ***antagonists***.
REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE
FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE
FORMAT

L6 ANSWER 7 OF 22 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2007:174407 CAPLUS <>LOGINID::20080428>>
DOCUMENT NUMBER: 146:244386
TITLE: Mammalian obestatin receptors, ***GPR39*** ,
or
obestatin ligands in screening for agents modulating
treating function or for predisposition to obesity, in
gut obesity, and in regulating blood pressure and
motility
INVENTOR(S): Hsueh, Aaron J. W.; Zhang, Jian; Luo, Ching-Wei
PATENT ASSIGNEE(S): The Board of Trustees of the Leland Stanford
Junior University, USA
SOURCE: PCT Int. Appl., 42pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2007019410 20060803	A2	20070215	WO 2006-US30648	
WO 2007019410	A3	20071115		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,				
GD,	CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,			
MN,	KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,			
UG,	SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, US, UZ, VC, VN, ZA, ZM, ZW			
IE,	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,			
	CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW,			

GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
BY,
KG, KZ, MD, RU, TJ, TM, AP, EA, EP, OA
US 20070042409 A1 20070222 US 2006-499030
20060804
PRIORITY APPLN. INFO.: US 2005-705796P P
20050805
AB A high affinity obestatin receptor is provided; the orphan receptor ***GPR39*** . The receptor mediates obestatin activities. The obestatin receptor (***GPR39***) and fragments thereof, particularly sol. fragments thereof, are useful as therapeutic agents capable of inhibiting the action of obestatin. In addn. to use as a therapeutic agent, ***GPR39*** polypeptides are utilized in screening and research methods for the detn. of specific analogs, ***agonists*** , ***antagonist*** mimetics and agents that modulate prodn., metab., and disposition of ***GPR39*** activities. Conditions treatable with ***GPR39 *** ***agonists*** or ***antagonists*** include regulation of wt., blood pressure and heart rate, and gastric emptying.

L6 ANSWER 8 OF 22 EMBASE COPYRIGHT (c) 2008 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2008014592 EMBASE <<LOGINID::20080428>>
TITLE: Research progress on brain-gut peptide obestatin and ghrelin.

AUTHOR: Tang, Sheng-Qiu; Jiang, Qing-Yan (correspondence);
Zhang,

CORPORATE SOURCE: Yong-Liang; Zhu, Xiao-Tong; Shu, Gang; Gao, Ping
College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.

SOURCE: qyjiang@scau.edu.cn
Vol. 15, World Chinese Journal of Digestology, (Nov 2007)

No. 31, pp. 3324-3331.

Refs: 66

ISSN: 1009-3079 CODEN: SHXZF2

COUNTRY: China

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 030 Clinical and Experimental Pharmacology
037 Drug Literature Index

LANGUAGE: Chinese

SUMMARY LANGUAGE: English; Chinese

ENTRY DATE: Entered STN: 17 Jan 2008
Last Updated on STN: 17 Jan 2008

AB Obestatin and ghrelin are two important brain-gut peptides that can combine with their receptors and exert important biological functions.

Obestatin is a 76-98 amino acid polypeptide segment of proghrelin that

binds to the orphan G-protein-coupled receptor ***GPR39*** , which can suppress food intake, inhibit jejunal contraction, and decrease

body-weight gain. Ghrelin is a 24-51 amino acid peptide segment of proghrelin that binds to receptor GHS-R, which can enhance appetite and body weight, promote the release of GH, and affect cardiovascular and immune functions. Obestatin is regarded as an biological ***antagonist*** , or a Yin and Yang activated polypeptide of ghrelin.

L6 ANSWER 9 OF 22 MEDLINE on STN DUPLICATE 3
ACCESSION NUMBER: 2007750209 MEDLINE <<LOGINID::20080428>>
DOCUMENT NUMBER: PubMed ID: 17717076
TITLE: Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor.
AUTHOR: Holliday Nicholas D; Holst Birgitte; Rodionova Elena A;
CORPORATE SOURCE: Schwartz Thue W; Cox Helen M Institute of Cell Signalling, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.. nicholas.holliday@nottingham.ac.uk
SOURCE: Molecular endocrinology (Baltimore, Md.), (2007 Dec Vol. 21, No. 12, pp. 3100-12. Electronic Publication: 2007-08-23. Journal code: 8801431. ISSN: 0888-8809.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE) (RESEARCH SUPPORT, NON-U.S. GOV'T)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200802
ENTRY DATE: Entered STN: 20 Dec 2007
Last Updated on STN: 27 Feb 2008
Entered Medline: 26 Feb 2008
AB The ghrelin receptor (GhrelinR) and its related orphan ***GPR39***
each display constitutive signaling, but only GhrelinRs undergo basal internalization. Here we investigate these differences by considering the roles of the C tail receptor domains for constitutive internalization and activity. Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent ***GPR39*** domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal and substantially decreased ***agonist*** -induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G

proteins Rab5 and Rab11. Both the inverse ***agonist*** [d-Arg (1), d-Phe(5), d-Trp(7,9), Leu(11)] substance P and a naturally occurring mutant GhrelinR (A204E) with eliminated constitutive activity inhibited basal GhrelinR internalization. Surprisingly, we found that noninternalizing ***GPR39*** was highly phosphorylated and that basal and ***agonist*** -induced phosphorylation of the GhR-39 chimera was elevated compared with GhrelinRs. Moreover, basal GhrelinR endocytosis occurred without significant phosphorylation, and it was not prevented by cotransfection of a dominant-negative beta-arrestin1(319-418) fragment or by expression in beta-arrestin1/2 double-knockout mouse embryonic fibroblasts. In contrast, ***agonist*** -stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity, but the high levels of ***GPR39*** phosphorylation, and of the GhR-39 chimera, are not sufficient to drive endocytosis. In addition, basal GhrelinR internalization occurs independently of beta-arrestins.

L6 ANSWER 10 OF 22 MEDLINE on STN
ACCESSION NUMBER: 2007000971 MEDLINE <<LOGINID::20080428>>
DOCUMENT NUMBER: PubMed ID: 16931650
TITLE: Obestatin acts in brain to inhibit thirst.
AUTHOR: Samson Willis K; White Meghan M; Price Christopher;
Ferguson Alastair V
CORPORATE SOURCE: Department of Pharmacological and Physiological
Science,
St.
Saint Louis University, 1402 South Grand Boulevard,
Louis, MO 63104, USA.. samsonwk@slu.edu
CONTRACT NUMBER: HL68052 (United States NHLBI)
SOURCE: American journal of physiology. Regulatory,
integrative and
comparative physiology, (2007 Jan) Vol. 292, No. 1,
pp.
R637-43. Electronic Publication: 2006-08-24.
Journal code: 100901230. ISSN: 0363-6119.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, N.I.H., EXTRAMURAL)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200702
ENTRY DATE: Entered STN: 4 Jan 2007
Last Updated on STN: 9 Feb 2007
Entered Medline: 8 Feb 2007
AB Derived from the same prohormone, obestatin has been reported to exert effects on food intake that oppose those of ghrelin. The obestatin

receptor ***GPR39*** is present in brain and pituitary gland. Since the gene encoding those two peptides is expressed also in those tissues, we examined further the possible actions of obestatin in vivo and in vitro. Intracerebroventricular administration of obestatin inhibited water drinking in ad libitum-fed and -watered rats, and in food-and water-deprived animals. The effects on water drinking preceded and were more pronounced than any effect on food intake, and did not appear to be the result of altered locomotor/behavioral activity. In addition, obestatin inhibited ANG II-induced water drinking in animals provided free access to water and food. Current-clamp recordings from cultured, subfornical organ neurons revealed significant effects of the peptide on membrane potential, suggesting this as a potential site of action. In pituitary cell cultures, log molar concentrations of obestatin ranging from 1.0 pM to 100 nM failed to alter basal growth hormone (GH) secretion. In addition, 100 nM obestatin failed to interfere with the stimulation of GH secretion by GH-releasing hormone or ghrelin and did not alter the inhibition by somatostatin in vitro. We conclude that obestatin does not act in pituitary gland to regulate GH secretion but may act in brain to alter thirst mechanisms. Importantly, in rats the effects of obestatin on food intake may be secondary to an action of the peptide to inhibit water drinking.

L6 ANSWER 11 OF 22 MEDLINE on STN DUPLICATE 4
ACCESSION NUMBER: 2007565926 MEDLINE <<LOGINID::20080428>>
DOCUMENT NUMBER: PubMed ID: 17885920
TITLE: Isolation of Zn²⁺ as an endogenous ***agonist***
of ***GPR39*** from fetal bovine serum.
AUTHOR: Yasuda Shin-ichiro; Miyazaki Takahiro; Munechika Kouji;
CORPORATE SOURCE: Yamashita Masami; Ikeda Yoshitaka; Kamizono Akihito
Pharmaceuticals Research Division, Mitsubishi Pharma Corporation, Yokohama, Japan..
Yasuda.Shinichirou@mm.m-
pharma.co.jp
SOURCE: Journal of receptor and signal transduction
research,
(2007) Vol. 27, No. 4, pp. 235-46.
Journal code: 9509432. ISSN: 1079-9893.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals

ENTRY MONTH: 200711
ENTRY DATE: Entered STN: 22 Sep 2007
Last Updated on STN: 8 Nov 2007
Entered Medline: 7 Nov 2007

AB We attempted to determine natural ***agonists*** of ***GPR39***
in fetal bovine serum (FBS). FBS was conditioned to extract peptides
and fractionated by two types of HPLC. The activity of each fraction
was monitored by intracellular calcium mobilization. Then the purified
active ingredient was analyzed by inductively coupled plasma mass
spectrometry.

In this fashion, Zn²⁺ ion was identified as an ***agonist*** of ***GPR39***, though no peptidergic molecules were found. The calcium-mobilizing activity of Zn²⁺ was not abolished by pertussis toxin
but was by a phospholipase C (PLC) inhibitor, U73122, indicating
that the activity of ***GPR39*** is mediated through the Gqalpha -PLC pathway.

In addition, Zn²⁺ also activated mouse and rat ***GPR39***, showing
that the function of ***GPR39*** as a Zn²⁺ receptor is conserved
across species. This study is the first exploration of ***GPR39***
agonists in FBS and indicates that ***GPR39*** functions as a
Gq-coupled Zn²⁺-sensing receptor.

L6 ANSWER 12 OF 22 SCISEARCH COPYRIGHT (c) 2008 The Thomson Corporation on STN

ACCESSION NUMBER: 2007:125981 SCISEARCH <>LOGINID::20080428>>
THE GENUINE ARTICLE: 126PX

TITLE: Little or no ability of obestatin to interact with
ghrelin
or modify motility in the rat gastrointestinal tract

AUTHOR: Bassil, A. K.; Haglund, Y.; Brown, J.; Rudholm, T.; Hellstrom, P. M.; Naslund, E.; Lee, K.; Sanger, G.
J.
(Reprint)

CORPORATE SOURCE: GlaxoSmithKline Inc, Neurol & Gastrointestinal Ctr Excellence Drug Dis, New Frontiers Sci Pk, 3rd Ave, Harlow CM19 5AW, Essex, England (Reprint); GlaxoSmithKline Inc, Neurol & Gastrointestinal Ctr Excellence Drug Dis, Harlow CM19 5AW, Essex, England; Karolinska Inst, Danderyd Hosp, Solna, Dept Clin Sci, Div Surg, Stockholm, Sweden; Univ Karolinska Hosp, Dept Med, Solna, Sweden;
Karolinska Inst, S-10401 Stockholm, Sweden
Gareth.J.Sanger@gsk.com

COUNTRY OF AUTHOR: England; Sweden
SOURCE: BRITISH JOURNAL OF PHARMACOLOGY, (JAN 2007) Vol.
150, No. 1, pp. 58-64.
ISSN: 0007-1188.

PUBLISHER: NATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4
CRINAN ST,
LONDON N1 9XW, ENGLAND.

DOCUMENT TYPE: Article; Journal
LANGUAGE: English
REFERENCE COUNT: 22
ENTRY DATE: Entered STN: 8 Feb 2007
Last Updated on STN: 8 Feb 2007
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

AB Background and purpose: Obestatin, encoded by the ghrelin gene may inhibit gastrointestinal (GI) motility. This activity was re-investigated.

Experimental approach: Rat GI motility was studied in vitro (jejunum contractility and cholinergically-mediated contractions of forestomach evoked by electrical field stimulation; EFS) and in vivo (gastric emptying and intestinal myoelectrical activity). Ghrelin receptor function was studied using a GTP gamma S assay and transfected cells.

Key results: Contractions of the jejunum or forestomach were unaffected by obestatin 100 nM or 0.01-1000 nM, respectively ($P > 0.05$ each; $n = 4-18$). Obestatin (0.1-1 nM) reduced the ability of ghrelin $1 \mu M$ to facilitate EFS-evoked contractions of the stomach (increases were $42.7 +/- 7.8\%$ and $21.2 +/- 5.0\%$ in the absence and presence of obestatin 1 nM; $P < 0.05$; $n=12$); higher concentrations (10-1000 nM) tended to reduce the response to ghrelin but changes were not statistically significant.

Similar concentrations of obestatin did not significantly reduce a facilitation of contractions caused by the 5-HT4 receptor ***agonist*** prucalopride, although an inhibitory trend occurred at the higher concentrations (increases were $69.3 +/- 14.0\%$ and $42.6 +/- 8.7\%$ in the absence and presence of 1000 nM obestatin; $n=10$). Obestatin (up to $10 \mu M$) did not modulate recombinant ghrelin receptor function. Ghrelin increased gastric emptying and reduced MMC cycle time; obestatin (1000 and 30,000 pmol kg⁻¹ min⁻¹) had no effects. Obestatin (2500 pmol kg⁻¹ min⁻¹, starting 10 min before ghrelin) did not prevent the ability of ghrelin (500 pmol kg⁻¹ min⁻¹) to shorten MMC cycle time.

Conclusions and implications: Obestatin has little ability to modulate rat GI motility.

ACCESSION NUMBER: 2006740461 MEDLINE <<LOGINID::20080428>>
DOCUMENT NUMBER: PubMed ID: 16959833
TITLE: ***GPR39*** signaling is stimulated by zinc ions
but
not by obestatin.
AUTHOR: Holst Birgitte; Egerod Kristoffer L; Schild Enrico;
Vickers
Storjohann
Annette
CORPORATE SOURCE: Laboratory for Molecular Pharmacology, The Panum
Institute,
University of Copenhagen, Blegdamsvej 3, DK-2200
Copenhagen, Denmark.
SOURCE: Endocrinology, (2007 Jan) Vol. 148, No. 1, pp. 13-
20.
PUB. COUNTRY: Electronic Publication: 2006-09-07.
DOCUMENT TYPE: Journal code: 0375040. ISSN: 0013-7227.
United States
Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, NON-U.S. GOV'T)
LANGUAGE: English
FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals
ENTRY MONTH: 200702
ENTRY DATE: Entered STN: 21 Dec 2006
Last Updated on STN: 14 Feb 2007
Entered Medline: 13 Feb 2007
AB ***GPR39*** is an orphan member of the ghrelin receptor family
that
recently was suggested to be the receptor for obestatin, a peptide
derived
from the ghrelin precursor. Here, we compare the effect of
obestatin to
the effect of Zn(2+) on signal transduction and study the effect of
obestatin on food intake. Although Zn(2+) stimulated inositol
phosphate
turnover, cAMP production, arrestin mobilization, as well as cAMP
response
element-dependent and serum response element-dependent
transcriptional
activity in ***GPR39*** -expressing cells as opposed to
mock-transfected cells, no reproducible effect was obtained with
obestatin
in the ***GPR39*** -expressing cells. Moreover, no specific
binding of
obestatin could be detected in two different types of ***GPR39***
-expressing cells using three different radioiodinated forms of
obestatin.
By quantitative PCR analysis, ***GPR39*** expression was
readily
detected in peripheral organs such as duodenum and kidney but not
in the
pituitary and hypothalamus, i.e. presumed central target organs for
obestatin. Obestatin had no significant and reproducible effect on
acute
food intake in either freely fed or fasted lean mice. It is
concluded
that ***GPR39*** is probably not the obestatin receptor. In

contrast,
the potency and efficacy of Zn(2+) in respect of activating
signaling
indicates that this metal ion could be a physiologically relevant
agonist or modulator of ***GPR39*** .

L6 ANSWER 14 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
DUPLICATE 6
ACCESSION NUMBER: 2006-814717 [82] WPIDS
DOC. NO. CPI: C2006-257430 [82]
TITLE: Use of mammalian ***GPR39*** protein or its
modulator
to prepare health-care product or medicine
combination
for controlling appetite or pain sensation in
mammals
DERWENT CLASS: B04; B07; D16
INVENTOR: CHUA A O; GOODNOW R A; GUBLER U A; HILTON H; JIN
M; MARK
D F; MARTIN M L; PENG Y; ROSINSKI J A; ZHAO G;
ZHOU X;
ZOU H; CHUA A; GOODNOW R; GUBLER U; MARK D; MARTIN
M;
ROSINSKI J
PATENT ASSIGNEE: (HOFF-C) HOFFMANN LA ROCHE & CO AG F; (SHAN-N)
SHANGHAI
INST BIOLOGICAL SCI CHINESE ACA; (SHAN-N) SHANGHAI
LIFE
SCI INST CHINESE ACAD SCI
COUNTRY COUNT: 112

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2006111103	A1	20061026	(200682)*	ZH	31[5]	
CN 1850269	A	20061025	(200714)	ZH		
EP 1880730	A1	20080123	(200812)	EN		

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2006111103	A1	WO 2006-CN772	20060424
CN 1850269	A	CN 2005-10025323	20050422
EP 1880730	A1	EP 2006-722399	20060424
EP 1880730	A1	WO 2006-CN772	20060424

FILING DETAILS:

PATENT NO	KIND	PATENT NO
EP 1880730	A1	Based on
		WO 2006111103 A
PRIORITY APPLN. INFO: CN 2005-10025323		20050422
AN 2006-814717 [82]	WPIDS	
AB WO 2006111103 A1	UPAB: 20061222	
NOVELTY - Use of mammalian ***GPR39*** protein or its		
modulator to		
prepare health-care product or medicine combination for controlling		

appetite or pain sensation of mammals, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

(1) a health-care product or medicine combination for controlling

appetite or pain sensation, containing the mammalian ***GPR39*** protein and a carrier; and

(2) identifying inhibitors of ***GPR39*** expression useful for

reducing appetite or pain sensation, comprising inserting ***GPR39***

CDNA into an expression vector, transfecting mammalian cells with the

vector, contacting the cells with test compounds, and measuring ***GPR39*** protein expression.

ACTIVITY - Analgesic; Anorectic.

No biological data given.

MECHANISM OF ACTION - ***GPR39*** modulator.

USE - The mammalian ***GPR39*** protein or its modulator is

useful for preparing health-care product or medicine combination for

controlling appetite or pain sensation of mammals (claimed).

L6 ANSWER 15 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
DUPLICATE 7

ACCESSION NUMBER: 2006-414788 [42] WPIDS

DOC. NO. CPI: C2006-130851 [42]

DOC. NO. NON-CPI: N2006-343464 [42]

TITLE: Identifying compounds for modulating
gastrointestinal

kinetics and/or cholesterol metabolism, comprises
using

G-protein coupled receptor 39 protein

B04; D16; J04; S03

INVENTOR: COULIE B; DEPOORTERE I; DEPOORTERE I I T; MOECHARS

D;

MOECHARS D W E; MOREAUX B; MOREAUX B C J; PEETERS

T;

PEETERS T L; PEETERS T L H; BENOITCHRISTIAN J M;

DIEDERIK

W E M; INGE I T D; THEOPHIEL L H P

PATENT ASSIGNEE: (JANC-C) JANSSEN PHARM NV

COUNTRY COUNT: 112

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2006058889	A1	20060608	(200642)*	EN	76[5]	
EP 1820026	A1	20070822	(200757)	EN		
NO 2007003294	A	20070829	(200765)	NO		
AU 2005311321	A1	20060608	(200780)	EN		
IN 2007DN04095	P1	20070824	(200780)	EN		
KR 2007086003	A	20070827	(200807)	KO		

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
-----------	------	-------------	------

WO 2006058889 A1	WO 2005-EP56350 20051130
AU 2005311321 A1	AU 2005-311321 20051130
EP 1820026 A1	EP 2005-817427 20051130
EP 1820026 A1	WO 2005-EP56350 20051130
NO 2007003294 A	WO 2005-EP56350 20051130
IN 2007DN04095 P1	WO 2005-EP56350 20051130
IN 2007DN04095 P1	IN 2007-DN4095 20070530
NO 2007003294 A	NO 2007-3294 20070628
KR 2007086003 A	WO 2005-EP56350 20051130
KR 2007086003 A	KR 2007-713092 20070611

FILING DETAILS:

PATENT NO	KIND	PATENT NO		
EP 1820026	A1	Based on	WO 2006058889	A
AU 2005311321	A1	Based on	WO 2006058889	A
KR 2007086003	A	Based on	WO 2006058889	A

PRIORITY APPLN. INFO: EP 2004-106220 20041201
AN 2006-414788 [42] WPIDS
AB WO 2006058889 A1 UPAB: 20060703
NOVELTY - Identifying compounds that modulate gastrointestinal kinetics
and/or cholesterol metabolism comprises using all or part of the G-protein
coupled receptor (GPR)39 protein.
DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included
for:
(1) an isolated nucleic acid sequence selected from:
(i) a nucleic acid sequence encoding all or part of the
polypeptides of SEQ ID NOS: 2 or 4, not given in the specification;
(ii) a nucleic acid sequence of SEQ ID NOS: 1 or 3, not
given in
the specification; or
(iii) a nucleic acid sequence having at least 80% sequence
identity
to the nucleic acid sequence of SEQ ID NOS: 1 or 3;
(2) a vector comprising a nucleic acid sequence;
(3) a host cell comprising a nucleic acid sequence or a
vector; and
(4) a pharmaceutical composition, for the treatment of
delayed
gastric emptying and delayed colonic motility in a human or animal,
comprising a ***GPR39*** receptor ***antagonist***, or a
pharmaceutical composition, for the treatment of increased gastric
emptying and increased colonic motility in a human or animal,
comprising a
GPR39 ***agonist***, or a pharmaceutical composition,
for the
treatment of increased cholesterol levels in a human or animal,
comprising
a ***GPR39*** receptor ***agonist***.
ACTIVITY - Gastrointestinal-Gen.; Anorectic; Antidiabetic;
Cardiovascular-Gen; Antiarteriosclerotic; Metabolic. No biological
data
given.
MECHANISM OF ACTION - ***GPR39*** receptor
antagonist

; ***GPR39*** ***agonist*** .
USE - ***GPR39*** is used to identify compounds that modulate gastrointestinal kinetics and/or cholesterol metabolism. A ***GPR39***
antagonist is useful in manufacturing a medicament for the treatment of a disease condition related to delayed gastric emptying and delayed colonic motility. The ***GPR39*** ***agonist*** is useful in manufacturing a medicament for the treatment of a disease condition related to increased gastric emptying, increased colonic motility, or increased cholesterol levels (all claimed). The method is useful for identifying compounds that modulate gastrointestinal kinetics and/or cholesterol. The compounds, compositions, and methods are useful for treating a disease, e.g. obesity, diabetes, or cardiovascular diseases such as atherosclerosis.

L6 ANSWER 16 OF 22 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2006:1097408 CAPLUS <<LOGINID::20080428>>
DOCUMENT NUMBER: 145:433261
TITLE: Human marker genes and agents for diagnosis, treatment and prophylaxis of cardiovascular disorders and atherosclerosis
INVENTOR(S): Peter; Betz, Ulrich; D'Urso, Donatella; Kolkhof, Seewald, Michael; Strayle, Jochen; Grabner, Anne; Hannus, Michael
PATENT ASSIGNEE(S): Bayer Healthcare A.-G., Germany
SOURCE: PCT Int. Appl., 84pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 4
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2006108581 20060408	A2	20061019	WO 2006-EP3216	
WO 2006108581	A3	20070412		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, GD, KR, MX,		CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,		

SE,
VC,
VN, YU, ZA, ZM, ZW
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE,
IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF,
BJ,
CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW,
GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,
BY,
KG, KZ, MD, RU, TJ, TM, AP, EA, EP, OA

PRIORITY APPLN. INFO.: US 2005-671832P P
20050415

AB The invention relates to novel targets in the screening for compds. useful

in the treatment and/or prophylaxis of a disease selected from the group

comprising cardiovascular diseases, disorders of lipid metab. or atherosclerosis. A human druggable genome siRNA library was screened in a

cellular assay based on expression of LDL receptor as measured by binding

of LDL-Dil in Huh7 hepatoma cells. Screening data and gene-specific

information is provided for 467 siRNAs targeting 467 different genes,

selected as positives from the total no. of screened genes. The invention

relates to novel compds. for use as a medicament for diseases or conditions involving a disease selected from the group comprising cardiovascular diseases, disorders of lipid metab., or atherosclerosis.

The invention esp. relates to ***antagonists*** and expression-inhibitory compds. that target G-protein coupled receptors

(GPCRs), kinases, and proteases. The invention further relates to methods

for identifying these ***antagonists*** and expression-inhibitory compds., and methods for diagnosing the selected diseases.

L6 ANSWER 17 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
ACCESSION NUMBER: 2005-284988 [29] WPIDS
DOC. NO. CPI: C2005-088413 [29]
DOC. NO. NON-CPI: N2005-233785 [29]
TITLE: Screening substance having e.g. apoptosis induction activity by contacting test substance and cell expressing G protein coupled receptors (approximately 75) e.g. GPR91 and CD97, and detecting effect of substance on receptor
DERWENT CLASS: B04; D16; S03
INVENTOR: KASHIWAKURA J; KAWAI H; MIURA K; OBAYASHI M;
OKAYAMA Y;
PATENT ASSIGNEE: SAITO H; SASAKI K; YOSHIDA T
(KYOW-C) KYOWA HAKKO KOGYO KK; (RIKE-C) RIKEN KK

COUNTRY COUNT: 106

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2005028667	A1	20050331	(200529)*	JA	82[0]	
JP 2005514139	X	20061130	(200681)	JA	81	

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2005028667	A1	WO 2004-JP14136	20040921
JP 2005514139	X	WO 2004-JP14136	20040921
JP 2005514139	X	JP 2005-514139	20040921

FILING DETAILS:

PATENT NO	KIND	PATENT NO
JP 2005514139	X	Based on WO 2005028667 A

PRIORITY APPLN. INFO: JP 2003-328980 20030919
AN 2005-284988 [29] WPIDS
AB WO 2005028667 A1 UPAB: 20051222
NOVELTY - Screening substance having apoptosis induction, human mast cell activation inhibition, degranulation suppression, suppression of production of inflammatory mediator, suppression of cytokine production or suppression of chemokine production activity, by contacting test substance and cell expressing G protein coupled receptor (GPCR) chosen from approximately 75 receptors e.g. GPR91, GPR105 and CD97, and detecting effect of substance on receptor.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

(1) screening (M1b) a substance capable of controlling the glucocorticoid activity, involves contacting a test substance and a cell or a membrane fraction containing the cell expressing a receptor (R2) preferably GPCR expressed on human mast cells the expression level of which is modulated by the stimulation of glucocorticoid and chosen from complement component 3 receptor 1 (C3aR1), GPR34, beta2 adrenoreceptor (beta2), GPR105, TM7SF, fMLP1, P2Y8, A3, CRTH2, CCRL2, P2Y5, A2a, Epstein-Barr virus inducting gene 2 (EBI2), thrombin receptor (PAR1), H4, GPCR RE2 (RE2), CALCRL and EP4, and detecting the effect of the test substance on the receptor;

(2) method for performing an activity chosen from A1, involves utilizing ***agonist*** , ***antagonist*** or functional modulator

of R1 or siRNA or antisense DNA specific to a gene which suppresses the expression of R1;

(3) treating (M2) atopic dermatitis, asthma, chronic obstructive pulmonary diseases (COPD) or allergic disease, involves utilizing ***agonist*** , ***antagonist*** or functional modulator of R1 or

siRNA or antisense DNA specific to a gene which suppresses the expression of R1;

(4) controlling glucocorticoid activity, involves utilizing ***agonist*** , ***antagonist*** or functional modulator of R2 or

siRNA or antisense DNA specific to a gene which suppresses the expression of R2;

(5) pharmaceutical (I) for performing any one of A1 or for atopic dermatitis, asthma, COPD or allergic disease, comprising ***agonist*** , ***antagonist*** or functional modulator of R1 or siRNA or antisense DNA specific to a gene which suppresses the expression of R1 as an active ingredient;

(6) agent (II) for controlling glucocorticoid activity, comprising ***agonist*** , ***antagonist*** or functional modulator of R2 or

siRNA or antisense DNA specific to a gene which suppresses the expression of R2 as an active ingredient;

(7) use of ***agonist*** , ***antagonist*** or functional modulator (III) of R1 for manufacturing a medicament for treating atopic dermatitis, asthma, COPD or allergic disease;

(8) antibody (IV) capable of specifically reacting with R1 and having an activity chosen from A1;

(9) antibody (V) capable of controlling the glucocorticoid activity and specifically reacting with R2;

(10) pharmaceutical (Ia) for performing any one of A1 or for atopic dermatitis, asthma, COPD or allergic disease, comprising (IV) as an active ingredient; and

(11) agent (IIa) for controlling glucocorticoid activity, comprising (V) as an active ingredient.

ACTIVITY - Dermatological; Antiasthmatic; Respiratory-Gen.; Antiallergic.

MECHANISM OF ACTION - Antisense therapy; Modulation of R1 or R2;

Mast cell activation inhibitor.

No biological data given.

USE - (M1) is useful for screening substance having one or more activity chosen from apoptosis induction, human mast cell

activation
inhibition, degranulation suppression, suppression of production of inflammatory mediator, suppression of cytokine production and suppression
of chemokine production. (M1b) is useful for screening a substance capable
of controlling the glucocorticoid activity. (M2), (I) or (Ia) is useful
for treating atopic dermatitis, asthma, chronic obstructive pulmonary
diseases (COPD) or allergic disease. (II) or (IIa) is useful for controlling glucocorticoid activity. (III) is useful for manufacturing a medicament for treating atopic dermatitis asthma, COPD or allergic disease
(claimed).

L6 ANSWER 18 OF 22 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2005:1170516 CAPLUS <<LOGINID::20080428>>
DOCUMENT NUMBER: 143:432610
TITLE: Methods for screening ***antagonists***
and/or ***agonists*** of binding of G protein-coupled receptor ***GPR39*** and ligands involved in cholesterol metabolism
INVENTOR(S): Fujii, Ryo; Nishi, Kazunori; Tanaka, Yasuhiro; Mori, Masaaki
PATENT ASSIGNEE(S): Takeda Pharmaceutical Company Limited, Japan
SOURCE: PCT Int. Appl., 137 pp.
CODEN: PIIXD2
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2005103283 20050422	A1	20051103	WO 2005-JP8271	
CH, GD, KZ, NA, SL, ZA, AM, DK,	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE,			

PT, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL,
ML, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
MR, NE, SN, TD, TG
EP 1743944 A1 20070117 EP 2005-736916
20050422 R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR
US 20070117160 A1 20070524 US 2006-587285
20061019 PRIORITY APPLN. INFO.: JP 2004-128169 A
20040423 WO 2005-JP8271 W
20050422 AB Disclosed is a method for screening an ***agonist*** /
antagonist , etc. In particular, there is provided, for
example, a
method of screening an ***agonist*** or ***antagonist***
characterized by use of a G-protein-conjugated receptor protein
contg. an
amino acid sequence identical with or substantially identical with
the
amino acid sequence of SEQ ID NO: 1 or a salt thereof together with
a
substance assocd. with cholesterol metab. so as to effect screening
of an
agonist or ***antagonist*** as for the above receptor
protein
or salt thereof. The ***agonists*** and/or ***antagonists***
are
useful for diagnosis and treatment of diseases assocd. with
alteration of
binding of G protein-coupled receptor ***GPR39*** with
cholesterol
metab.-related substance or their signal transduction change. The
agonists and ***antagonists*** include antibodies,
polynucleotides, antisense polynucleotide and other compds. He
disease
includes inflammatory bowel disease, gastrointestinal motility
disorder,
allergic gastrointestinal symptom, encopresis, colitis, excessive
immune
response post-transplant, Crohn's disease and related vomiting.
REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE
FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE
FORMAT

L6 ANSWER 19 OF 22 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2004:965483 CAPLUS <>LOGINID::20080428>>
DOCUMENT NUMBER: 141:388614
TITLE: Novel screening method
INVENTOR(S): Ito, Yasuaki; Fujii, Ryo; Kobayashi, Makoto;
Hinuma,
PATENT ASSIGNEE(S): Shuji; Hashimoto, Tadatoshi; Tanaka, Yasuhiro
Takeda Pharmaceutical Company Limited, Japan
SOURCE: PCT Int. Appl., 176 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
WO 2004097411 20040423	A1	20041111	WO 2004-JP5947	
CH, GD, LC, NI, SY, ZW	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, EE, SI, SN,			
JP 2004340957 20040423	A	20041202	JP 2004-128141	
EP 1619499 20040423	A1	20060125	EP 2004-729276	
PT, SK, HR	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL,			
US 20060216286 20051012	A1	20060928	US 2005-552014	
PRIORITY APPLN. INFO.: 20030425			JP 2003-122464	A
20040423			WO 2004-JP5947	W
AB	By using a G protein-coupled receptor protein having an amino acid sequence which is the same or substantially the same as the amino acid sequence represented by SEQ ID NO:1 or its salt and an ion chem. available metal element or its salt, an ***agonist*** or an ***antagonist*** to the above receptor protein or its salt can be efficiently screened.			
REFERENCE COUNT: FOR THIS	7	THERE ARE 7 CITED REFERENCES AVAILABLE RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT		

ACCESSION NUMBER: 2004:371064 CAPLUS <<LOGINID::20080428>>
 DOCUMENT NUMBER: 140:373461
 TITLE: Evaluation of breast cancer states and outcomes
 using gene expression profiles
 INVENTOR(S): West, Mike; Nevins, Joseph R.; Huang, Andrew
 PATENT ASSIGNEE(S): Syncpac, Inc., USA; Duke University
 SOURCE: PCT Int. Appl., 799 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 5
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 2004037996 20031024	A2	20040506	WO 2003-US33656	
WO 2004037996	A3	20041229		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 20040083084 20021112	A1	20040429	US 2002-291878	
WO 2004044839 20021112	A2	20040527	WO 2002-US38216	
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,				

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

US 20040106113	A1	20040603	US 2002-291886
20021112			
AU 2003284880	A1	20040513	AU 2003-284880
20031024			
PRIORITY APPLN. INFO.:			US 2002-420729P P
20021024			
20021025			US 2002-421062P P
20021025			US 2002-421102P P
20021108			US 2002-424701P P
20021108			US 2002-424715P P
20021108			US 2002-424718P P
20021112			US 2002-291878 A
20021112			US 2002-291886 A
20021112			US 2002-425256P P
20021112			WO 2002-US38216 A
20021112			WO 2002-US38222 A
20030221			US 2003-448461P P
20030221			US 2003-448462P P
20030327			US 2003-457877P P
20030331			US 2003-458373P P
20031024			WO 2003-US33656 W

AB The present invention relates generally to a method for evaluating and/or predicting breast cancer states and outcomes by measuring gene and metagene expression levels and integrating such data with clin. risk factors. Genes and metagenes whose expressions are correlated with a particular breast cancer risk factor or phenotype are provided using binary prediction tree modeling. The invention provides 175 genes assocd. with metagene predictors of lymph node metastasis, 216 genes assocd. with metagene predictors of breast cancer recurrence, and 496 metagenes related to breast cancer study. Methods of using the subject genes and metagenes in diagnosis and treatment methods, as well as drug screening methods, etc are also provided. In addn., reagents, media and kits that find use in practicing the subject methods are also provided.

L6 ANSWER 21 OF 22 MEDLINE on STN DUPLICATE 8
ACCESSION NUMBER: 2004643243 MEDLINE <<LOGINID::20080428>>
DOCUMENT NUMBER: PubMed ID: 15383539
TITLE: Common structural basis for constitutive activity of
the
ghrelin receptor family.
AUTHOR: Holst Birgitte; Holliday Nicholas D; Bach Anders;
Elling
CORPORATE SOURCE: Christian E; Cox Helen M; Schwartz Thue W
Laboratory for Molecular Pharmacology, Department of
Pharmacology, The Panum Institute, University of
Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen,
Denmark..
SOURCE: b.holst@molpharm.dk
The Journal of biological chemistry, (2004 Dec 17)
Vol. 279, No. 51, pp. 53806-17. Electronic Publication:
2004-09-21.
Journal code: 2985121R. ISSN: 0021-9258.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, NON-U.S. GOV'T)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200502
ENTRY DATE: Entered STN: 29 Dec 2004
Last Updated on STN: 5 Feb 2005
Entered Medline: 4 Feb 2005

AB Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor ***GPR39*** . In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon ***agonist*** stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G(q), phospholipase C pathway was approximately 50% of their maximal capacity as determined through inositol phosphate accumulation. These two receptors also showed very high constitutive activity in activation of cAMP response element-driven transcription. ***GPR39*** displayed a clear but lower degree of constitutive activity through the inositol phosphate and cAMP response element pathways. In contrast, ***GPR39*** signaled with the highest constitutive activity in respect of activation of serum response element-dependent transcription, in part, possibly, through G (12/13) and Rho kinase. Antibody feeding experiments demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but

could
 be trapped at the cell surface by an inverse ***agonist*** ,
 whereas
 GPR39 remained at the cell surface. Mutational analysis
 showed
 that the constitutive activity of both the ghrelin receptor and
 GPR39 could systematically be tuned up and down depending
 on the
 size and hydrophobicity of the side chain in position VI:16 in the
 context
 of an aromatic residue at VII:09 and a large hydrophobic residue at
 VII:06. It is concluded that the three ghrelin-like receptors
 display an
 unusually high degree of constitutive activity, the structural
 basis for
 which is determined by an aromatic cluster on the inner face of the
 extracellular ends of TMs VI and VII.

L6 ANSWER 22 OF 22 WPIDS COPYRIGHT 2008 THE THOMSON CORP on STN
 ACCESSION NUMBER: 2001-282100 [29] WPIDS
 DOC. NO. CPI: C2001-086033 [29]
 DOC. NO. NON-CPI: N2001-201041 [29]
 TITLE: Predicting mutants that alter the activity of
 receptors
 using multiple sequence alignment and phylogenetic
 profiling, useful e.g. for altering the activities
 of
 orphan proteins
 DERWENT CLASS: B04; D16; S03
 INVENTOR: PACKER J C; WENHAM D
 PATENT ASSIGNEE: (BIOF-N) BIOFOCUS DISCOVERY LTD; (CAMB-N)
 CAMBRIDGE DRUG
 DISCOVERY LTD; (WILL-I) WILLIAMS K M
 COUNTRY COUNT: 89

PATENT INFO ABBR.:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
WO 2001027632	A2	20010419	(200129)*	EN	89[10]	
AU 2000076780	A	20010423	(200147)	EN		
AU 2000276780	A8	20050908	(200568)	EN		

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2001027632	A2	WO 2000-IB1407	20001002
AU 2000076780	A	AU 2000-76780	20001002
AU 2000276780	A8	AU 2000-276780	20001002
AU 2000076780	A	WO 2000-IB1407	20001002
AU 2000276780	A8	WO 2000-IB1407	20001002

FILING DETAILS:

PATENT NO	KIND	PATENT NO	
AU 2000076780	A	Based on	WO 2001027632 A
AU 2000276780	A8	Based on	WO 2001027632 A

PRIORITY APPLN. INFO: WO 2000-IB1407 20001002

AN 2001-282100 [29] WPIDS

AB WO 2001027632 A2 UPAB: 20060117

NOVELTY - Methods of predicting mutations (mut.s) that alter the activity

of a receptor (rec.) in a desired manner, comp. utilizing multiple sequence alignment and phylogenetic profiling to identify the relatives of

a given rec. that are most likely to provide useful data allowing prediction of sites to mutate in the given rec., are new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the

following:

(1) a method (I) of predicting a site for mut. of a first cellular

rec. (CR) (CR1) (the mut. alters the activity of CR1), comp.:

(a) performing a multiple sequence alignment of CR1 with other CRs

in the same rec. family;

(b) allocating CR1 to a rec. sub-family; and

(c) selecting an amino acid (aa) residue of CR1 for mut.

(the aa

residue is analogous to a residue of a second rec., the mut. of which is

known to cause altered activity of a second CR (CR2), this is predictive

of a site for mut. in CR1);

(2) a method (II) of obtaining a mutant of a CR1 (the mutant has

altered activity as compared to the WT CR1), comp.:

(i) steps (a) - (c) from (I);

(ii) mutating the selected aa residue of the CR; and

(iii) expressing the mut'd CR in a cell;

(3) a mutated (mut'd) GPR8 rec. comprising (comp.) altered activity

as compared to a wild type (WT) GPR8 rec. (the GPR8 rec. comprises a mut.

selected from a mut. at aa 124 from Asp to Ala, a mut. at aa 127 from Asp

to Ala and/or a mut. at aa 259 from Thr to Glu);

(4) a mut'd GPR7 rec. comp. altered activity as compared to a WT

GPR7 rec. (the GPR7 rec. comprises a mut. selected from a mut. at aa 116

from Asp to Ala, a mut. at aa 119 from Asn to Ala and/or a mut. at aa 250

from Thr to Glu);

(5) a mut'd GPR10 rec. comp. altered activity as compared to a WT

GPR10 rec. (the GPR10 rec. comprises a mut. selected from a mut. at aa 224

from Tyr to Glu, and/or a mut. at aa 247 from Val to Glu);

(6) a mut'd GPR17 rec. comp. altered activity as compared to a WT

GPR17 rec. (the GPR17 rec. comprises a mut. selected from a mut. at aa 114

from Asn to Ala and/or a mut. at aa 234 from Val to Glu);

(7) a mut'd GPR4 rec. comp. altered activity as compared to a WT

GPR4 rec. (the GPR4 rec. comprises a mut. selected from a mut. at

aa 100
from Asn to Ala and/or a mut. at aa 223 from Lys to Glu);
(8) a mut'd GPR15 rec. comp. altered activity as compared to
a WT
GPR15 rec. (the GPR15 rec. comprises a mut. selected from a mut. at
aa 116
from Asn to Ala and/or a mut. at aa 240 from Ile to Glu);
(9) a mut'd GPR20 rec. comp. altered activity as compared to
a WT
GPR20 rec. (the GPR20 rec. comprises a mut. selected from a mut. at
aa 133
from Asn to Ala and/or a mut. at aa 230 from Ile to Glu);
(10) a mut'd EB12 rec. comp. altered activity as compared to
a WT
EB12 rec. (the EB12 rec. comprises a mut. selected from a mut. at
aa 114
from Asn to Ala and/or a mut. at aa 243 from Leu to Glu);
(11) a mut'd BONZO rec. comp. altered activity as compared
to a WT
BONZO rec. (the BONZO rec. comprises a mut. selected from a mut. at
aa 112
from Asn to Ala and/or a mut. at aa 230 from Leu to Glu);
(12) a mut'd RDC1 rec. comp. altered activity as compared to
a WT
RDC1 rec. (the RDC1 rec. comprises a mut. selected from a mut. at
aa 127
from Asn to Ala and/or a mut. at aa 259 from Thr to Glu);
(13) a mut'd O15218 rec. comp. altered activity as compared
to a WT
O15218 rec. (the O15218 rec. comprises a mut. selected from a mut.
at aa
136 from Asn to Ala and/or a mut. at aa 257 from Cys to Glu);
(14) a mut'd H963 rec. comp. altered activity as compared to
a WT
H963 rec. (the H963 rec. comprises a mut. selected from a mut. at
aa 97
from Asn to Ala and/or a mut. at aa 222 from Leu to Glu);
(15) a mut'd GPR30 rec. comp. altered activity as compared
to a WT
GPR30 rec. (the GPR30 rec. comprises a mut. selected from a mut. at
aa 140
from Asn to Ala and/or a mut. at aa 258 from Leu to Glu);
(16) a mut'd GPR2 rec. comp. altered activity as compared to
a WT
GPR2 rec. (the GPR2 rec. comprises a mut. selected from a mut. at
aa 238
from Leu to Glu);
(17) a mut'd GPR5 rec. comp. altered activity as compared to
a WT
GPR5 rec. (the GPR5 rec. comprises a mut. selected from a mut. at
aa 224
from Val to Glu);
(18) a mut'd GPR13 rec. comp. altered activity as compared
to a WT
GPR13 rec. (the GPR13 rec. comprises a mut. selected from a mut. at
aa 230
from Ile to Glu);
(19) a mut'd GPR18 rec. comp. altered activity as compared
to a WT
GPR18 rec. (the GPR18 rec. comprises a mut. selected from a mut. at

aa 231
 from Ile to Glu);
 (20) a mut'd GPR21 rec. comp. altered activity as compared
to a WT
 GPR21 rec. (the GPR21 rec. comprises a mut. selected from a mut. at
aa 251
 from Ala to Glu);
 (21) a mut'd GPR22 rec. comp. altered activity as compared
to a WT
 GPR22 rec. (the GPR22 rec. comprises a mut. selected from a mut. at
aa 312
 from phenylAla to Glu);
 (22) a mut'd GPR25 rec. comp. altered activity as compared
to a WT
 GPR25 rec. (the GPR25 rec. comprises a mut. selected from a mut. at
aa 230
 from Leu to Glu);
 (23) a mut'd GPR31 rec. comp. altered activity as compared
to a WT
 GPR31 rec. (the GPR31 rec. comprises a mut. selected from a mut. at
aa 221
 from glutamine to Glu);
 (24) a mut'd GPR38 rec. comp. altered activity as compared
to a WT
 GPR38 rec. (the GPR38 rec. comprises a mut. selected from a mut. at
aa 297
 from Val to Glu);
 (25) a mut'd ***GPR39*** rec. comp. altered activity as
compared to a WT ***GPR39*** rec. (the ***GPR39*** rec.
comprises
 a mut. selected from a mut. at aa 282 from Ile to Glu);
 (26) a mut'd GPR40 rec. comp. altered activity as compared
to a WT
 GPR40 rec. (the GPR40 rec. comprises a mut. selected from a mut. at
aa 223
 from Ala to Glu);
 (27) a mut'd GPR41 rec. comp. altered activity as compared
to a WT
 GPR41 rec. (the GPR41 rec. comprises a mut. selected from a mut. at
aa 224
 from Ala to Glu);
 (28) a mut'd GPR42 rec. comp. altered activity as compared
to a WT
 GPR42 rec. (the GPR42 rec. comprises a mut. selected from a mut. at
aa 224
 from Ala to Glu);
 (29) a mut'd GPR43 rec. comp. altered activity as compared
to a WT
 GPR43 rec. (the GPR43 rec. comprises a mut. selected from a mut. at
aa 221
 from Val to Glu);
 (30) a mut'd MGR rec. comp. altered activity as compared to
a WT
 MGR rec. (the MGR rec. comprises a mut. selected from a mut. at aa
263
 from Tyr to Glu); and
 (31) a method (III) of identifying a compound that modulates
the
activity of the rec.s above, comp.:
 (A) contacting a candidate compound with the rec.; and

(B) determining the activity of the rec. in the presence of the compound (a difference in rec. activity in the presence and absence of the candidate compound is indicative of compound modulation).

USE - The methods are applicable to any type of rec., and are particularly well suited for predicting sites to mutate in order to alter the activities of orphan rec.s for which no ***agonists*** are known.

In particular, the method is used to predict cellular rec. mut.s that induce the rec. to constitutively activate it's downstream signaling activities.

=