

Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação - DECOM **Disciplina: Teoria dos Grafos**

Professor: Marco Antonio M. Carvalho

Lista de Exercícios 04

Instruções

- Ao final desta lista de exercícios, está disponível o padrão para as respostas;
- A resolução deve considerar estritamente a mesma numeração e ordem dos exercícios;
- Quando não especificado nos exercícios, considere grafos simples.
- 1. Para a tabela abaixo, determine a atribuição ótima de atividades usando o método húngaro. Caso a matriz não seja quadrada, insira linhas com conteúdo zero.

	Tarefa 1	Tarefa 2	Tarefa 3	Tarefa 4
Filho 1	\$1	\$4	\$6	\$3
Filho 2	\$9	\$7	\$10	\$9
Filho 3	\$4	\$5	\$11	\$7
Filho 4	\$8	\$7	\$8	\$5

2. Para a tabela abaixo, determine a atribuição ótima de atividades usando o método húngaro. Caso a matriz não seja quadrada, insira linhas com conteúdo zero.

	Saúde	Moradia	Educação	Alimentação	Segurança
Alegrete	\$10000	\$37000	\$15000	\$18000	\$11000
Uruguaiana	\$8000	\$30000	\$119000	\$21000	\$9000
Bagé	\$12000	\$32000	\$14000	\$20000	\$9000
Rosário do Sul	\$15000	\$35000	\$4000	\$22000	\$10000

- 3. Determine o número de independência para os dois grafos acima.
- 4. Determine o número clique para os dois grafos acima.
- 5. Determine o número de dominação para os dois grafos acima.
- 6. O Rio de Janeiro está preparando uma campanha de vacinação. O mapa abaixo mostra uma suposta localização de postos de vacinação. Cada posto de vacinação pode ser transformado em um posto de coordenação e distribuição de vacinas. Para facilitar a logística, um ponto de coordenação não deve atender mais do que quatro postos de vacinação. Modele o problema utilizando a teoria dos

grafos e determine a quantidade mínima de postos de coordenação necessários para que todos os postos de vacina sejam apoiados por pelo menos um posto de coordenação.

7. Uma escola deve programar a distribuição dos exames especiais de forma que os alunos não tenham que fazer mais do que um exame por dia. Existem oito disciplinas no curso e a secretaria organizou um quadro que marca com um asterisco as disciplinas que possuem alunos em comum. Utilizando a teoria dos grafos, responda quantos dias de exame serão necessários.

	Português	Matemática	História	Geografia	Inglês	Biologia	Química	Física
Português	-	*	-	*	-	*	*	*
Matemática		-	*	-	-	-	*	*
História			-	*	-	-	-	*
Geografia				-	*	*	-	*
Inglês					-	*	-	-
Biologia						-	*	-
Química							-	*
Física								-

8. Em uma creche há 10 crianças matriculadas, porém, nunca estão todas ao mesmo tempo na creche. É necessário planejar os escaninhos em que os pais deixam as refeições das crianças. A tabela abaixo apresenta a permanência de cada criança (enumeradas de 1 a 10) na creche nos horários entre 7:00 e 12:00 – o horário em que a creche funciona. Um asterisco indica que uma determinada criança está na creche no horário indicado, e deve ter um escaninho reservado para sua refeição. Modele o problema utilizando a teoria de grafos e determine o número mínimo de escaninhos necessários para que cada criança tenha um escaninho individual.

	01	02	03	04	05	06	07	08	09	10
07:00	*	-	-	-	*	-	-	*	-	1
08:00	*	*	*	-	*	-	-	*	-	-
09:00	*	*	*	-	-	*	-	*	-	*
10:00	*	*	-	-	-	*	*	-	*	*

11:00	*	-	-	*	-	-	*	-	*	*
12:00	-	-	-	*	-	-	-	-	*	*

- 9. Existem *n* experimentos biológicos sendo processados *e*1, *e*2,..., *ei* em determinado laboratório. Cada um desses experimentos possui várias lâminas de ensaio que devem ser mantidas refrigeradas segundo uma temperatura constante em um intervalo de temperatura [*li*, *hi*]. A temperatura pode ser fixada livremente dentro do intervalo, contudo, uma vez fixada, não mais poderá ser alterada, sob pena de destruir os elementos biológicos. Dados os intervalos e sabendo-se que cada refrigerador é grande o suficiente para preservar todas as lâminas de todos os experimentos, cada refrigerador deverá funcionar em apenas uma temperatura. Modele o problema utilizando a teoria de grafos e determine o menor número possível de refrigeradores capazes de atender ao laboratório.
- 10. Determine a cor do vértice *v* no grafo abaixo dentre verde, vermelho, amarelo e azul, utilizando operações de troca em cadeias Kempe.

11. Determine o número cromático do grafo abaixo.

12. Determine o número cromático do grafo abaixo.

13. Justifique: O número cromático é invariante sob isomorfismo. Em outras palavras, se G e H são grafos isomorfos então $\chi(G) = \chi(H)$.

14. Identifique 3 das árvores geradoras do grafo abaixo.

15. Execute o algoritmo de Prim para o grafo abaixo.

16. Execute o algoritmo de Prim para o grafo abaixo.

17. Execute o algoritmo de Kruskal para o grafo abaixo.

18. Execute o algoritmo de Kruskal para o grafo abaixo.

19. Execute o algoritmo baseado em DFS para obtenção de ordenações topológicas para o grafo abaixo.

20. Execute o algoritmo baseado em DFS para obtenção de ordenações topológicas para o grafo abaixo.

21. Execute o algoritmo de Kahn para obtenção de ordenações topológicas para o grafo abaixo.

22. Execute o algoritmo de Kahn para obtenção de ordenações topológicas para o grafo abaixo.

- 23. O grafo de Petersen é planar? Prove utilizando a versão correta da fórmula derivada da fórmula de Euler.
- 24. Prove que o complemento de um circuito de comprimento 6 é planar.
- 25. Prove que toda árvore é planar.
- 26. Mostre que se um grafo G não é 2-conexo, então G não é hamiltoniano.

27. Considerando os grafos acima, determine se cada um é Euleriano.

28. Para o grafo abaixo, determine a solução do problema do caixeiro viajante utilizando o algoritmo visto em aula.

29. Para o grafo abaixo, determine a solução do problema do caixeiro viajante utilizando o algoritmo visto em aula.

30. Para o grafo abaixo, determine a solução do problema do carteiro chinês utilizando o algoritmo visto em aula.

31. Para o grafo abaixo, determine a solução do problema do carteiro chinês utilizando o algoritmo visto em aula.

- 32. Modele detalhadamente o problema abaixo como o problema do caixeiro viajante ou o problema do carteiro chinês, o que melhor se adequar. Indique o que são os vértices, as arestas e porque o seu modelo é adequado ao problema.
 - "Um veículo deve atender a uma determinada região, fazendo entregas pré-definidas. É necessário determinar a rota de menor comprimento para tanto."
- 33. Modele detalhadamente o problema abaixo como o problema do caixeiro viajante ou o problema do carteiro chinês, o que melhor se adequar. Indique o que são os vértices, as arestas e porque o seu modelo é adequado ao problema.
 - "A prefeitura de uma cidade está recadastrando todos os imóveis de uma cidade para o cálculo do IPTU. Os funcionários fazem este serviço a pé, já que precisam visitar todas as casas de todas as ruas. É necessário determinar a rota que os funcionários caminharão, havendo preferência pelas rotas mais curtas."
- 34. Modele detalhadamente o problema abaixo como o problema do caixeiro viajante ou o problema do carteiro chinês, o que melhor se adequar. Indique o que são os vértices, as arestas e porque o seu modelo é adequado ao problema.
 - "Durante o projeto de um chip, você deve minimizar o uso do material utilizado para fazer as conexões entre os componentes, dado que a localização dos componentes é pré-definida."
- 35. Modele detalhadamente o problema abaixo como o problema do caixeiro viajante ou o problema do carteiro chinês, o que melhor se adequar. Indique o que são os vértices, as arestas e porque o seu modelo é adequado ao problema.
 - "Voluntários de um órgão de proteção à natureza planejam limpar as margens de todos rios de uma região. No entanto, há vários cruzamentos entre diferentes rios. Como os voluntários farão o serviço a pé, eles estão interessados em obter a menor rota única para que o serviço seja realizado. Considere que as duas margens de cada rio são limpas ao mesmo tempo."

Gabarito Exemplo

1. Esta resposta deve indicar as transformações realizadas nas matrizes pelo algoritmo Húngaro em cada operação realizada. Ao final, apresente a solução e o valor associado. Adeque as dimensões das matrizes aos problemas tratados.

Valor da solução: XYZ

- 2. Idem ao anterior.
- 3. Apenas informe o valor solicitado.
- 4. Apenas informe o valor solicitado.
- 5. Apenas informe o valor solicitado.
- 6. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 7. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 8. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 9. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 10. Apresente textualmente as cadeias Kempe utilizadas para eliminar a cor preta, indicando as novas cores dos vértices envolvidos. Alternativamente, o diagrama do grafo também pode ser apresentado.
- 11. Apenas informe o valor solicitado.
- 12. Apenas informe o valor solicitado.
- 13. Esta é uma questão dissertativa.

- 14. Esta resposta deve conter os diagramas das árvores geradoras do grafo.
- 15. Esta resposta deve conter apenas a árvore geradoras mínima geradas pelo algoritmo.
- 16. Idem ao anterior.
- 17. Idem ao anterior.
- 18. Idem ao anterior.
- 19. Esta resposta deve conter apenas a ordenação topológica gerada: L={a, b, c, d, e}.
- 20. Idem ao anterior.
- 21. Idem ao anterior.
- 22. Idem ao anterior.
- 23. Esta resposta é dissertativa e deve apresentar também a aplicação da fórmula indicada no enunciado.
- 24. Esta resposta é dissertativa e deve apresentar também a aplicação da fórmula indicada no enunciado.
- 25. Esta resposta é puramente dissertativa.
- 26. Esta é uma questão dissertativa.
- 27. Indique as respostas para cada grafo, enumerando-os de 1 a 4, da esquerda para a direita.
- 28-29. Apresente o passo a passo conforme indicado abaixo.

Apresente o diagrama das etapas da aplicação do algoritmo de Christofides para o caixeiro viajante conforme exemplificado abaixo para um grafo hipotético de seis vértices. Preencha as arestas de acordo com o desenvolvimento do exercício e adeque o número de vértices para cada grafo tratado no exercício.

Determine a árvore geradora mínima:

Considerando a árvore geradora mínima, determine o casamento perfeito de custo mínimo entre os vértices de grau ímpar. Apresente somente casamento obtido e o custo.

	(A)		
	В	E	
	(c)	D	
	F	0	
	Custo do casamento perfeito mínimo:		
۸nre	presente o grafo resultante da união da árvore gerado	vra míni	ma e do casamento perfeito de custo
-	ínimo e determine um ciclo Euleriano bem como seu cu		ina e do casamento perietto de custo
	(^)		
	(B)	E	
	(c)	D	
	F	0	
	Custo do ciclo Euleriano:		
	custo do cicio Edicitario.		
	etermine um ciclo Hamiltoniano no grafo original a aterior.	a partir	do ciclo Euleriano obtido no passo
arrec			
	Ciclo:		
	Custo do ciclo Hamiltoniano:		
30-3 c	0-31. Apresente as arestas adicionadas para solução ciclo Euleriano obtido e o custo associado. Adeque pa		
	Arestas adicionadas: {a, b}, {b, c}		
	Ciclo Euleriano: [a, b, c, a, b, c]		
	Custo do ciclo Euleriano: 32		
	Custo do Cicio Euleriano. 32		
te p	Estas é uma questão dissertativa. Modele genericame teoria dos grafos, indicando o que significam os vértic problema em grafos está associado a cada um dos pro determinação da solução do problema original.	es e as a	ndjacências. Identifique também qual
33. Id	. Idem ao anterior.		
34. Id	. Idem ao anterior.		
35. ld	. Idem ao anterior.		