LAB ASSIGNMENT – 3

NAME	PRIYAL BHARDWAJ
REG. NO.	18BIT0272
COURSE CODE	MAT2001
COURSE NAME	STATISTICS FOR ENGINEERS
SLOT	L9+L10
FACULTY	Prof. VENKATA SATYANARAYANA

Q.1(A)

Write down the R code to obtain the equation of the regression line of X on Y from the following data:

X:	4.7	8.2	12.4	15.8	20.7	24.9	31.9	35.0	39.1	38.8
Y:	4.0	8.0	12.5	16.0	20.0	25.0	31.0	36.0	40.0	40.0

R CODE & OUTPUT:

ANS:

Q.1(B)

Write down the R code to obtain the equation of the regression plane of Y on X_1 and X_2 from the following data:

X_1 :	30	40	20	50	60	40	20	60
X_2 :	11	10	7	15	19	12	8	14
Y:	110	80	70	120	150	90	70	120

R CODE & OUTPUT:

```
> y=c(110,80,70,120,150,90,70,120)
> x1=c(30,40,20,50,60,40,20,60)
> x2=c(11,10,7,15,19,12,8,14)
> input data=data.frame(y,x1,x2)
> input data
   y x1 x2
1 110 30 11
2 80 40 10
3 70 20 7
4 120 50 15
5 150 60 19
6 90 40 12
7 70 20 8
8 120 60 14
> RegModel<-lm(y~x1+x2,data=input data)
> RegModel
Call:
lm(formula = y \sim x1 + x2, data = input data)
Coefficients:
(Intercept)
                    x1
           -0.2442 7.8488
   16.8314
> summary(RegModel)
lm(formula = y ~ x1 + x2, data = input_data)
Residuals:
                                   5
                                        6
             2
                    3
14.157 -5.552 3.110 -2.355 -1.308 -11.250 -4.738 7.936
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.8314 11.8290 1.423 0.2140
                      0.5375 -0.454 0.6687
xl
            -0.2442
x2
            7.8488
                       2.1945 3.577 0.0159 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.593 on 5 degrees of freedom
Multiple R-squared: 0.9191, Adjusted R-squared: 0.8867
F-statistic: 28.4 on 2 and 5 DF, p-value: 0.001862
```

ANS:

EQUATION OF REGRESSION PLANE $| Y = 16.8314 - 0.2442X_1 + 7.8488X_2$

Q.2(A)

Suppose our random variable X is Poisson with lambda = 12.33.

- 1. What is the probability of 15 or fewer occurrences? $P(X \le 15)$
- 2. What is the probability of EXACTLY 6 occurrences? P(X = 6)
- 3. What is the probability of more than 15 occurrences? P(X > 15)
- 4. What is the probability of 15 or more occurrences? $P(X \ge 15)$
- 5. What is the probability of 8, 9, or 10 occurrences? $P(8 \le X \le 10)$

R CODE & OUTPUT:

ANS:

P(X<=15)	0.8195608
P(X=6)	0.02155733
P(X>15)	0.1804392
P(X>=15)	0.2586192
P(8<=X<=10)	0.2375607

Q.2(B)

For a random variable X with a binomial(20,1/2) distribution, find the following probabilities.

- (i). Find Pr(X < 8)
- (ii). Find Pr(X > 12)
- (iii) Find $Pr(8 \le X \le 12)$

R CODE & OUTPUT:

```
> pbinom(7,20,0.5)
[1] 0.131588
>
> 1-pbinom(12,20,0.5)
[1] 0.131588
>
> pbinom(12,20,0.5)-pbinom(7,20,0.5)
[1] 0.736824
```

ANS:

P(X<8)	0.131588
P(X>12)	0.131588
P(8<=X<=12)	0.736824