Linear and Quadratic Programming (with CGAL)

Antonis Thomas, Algorithms Lab

Linear Programming (LP)

* **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * **Example** (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * Example (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!

ample . Similarly formula in the contract of the contract of

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * **Example** (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * **Example** (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * Example (n=2, m=5):

11/3 minimize -32y + 64subject to $\begin{array}{ccc}
x + y & \leq & 7 \\
-x + 2y & \leq & 4 \\
x & \geq & 0 \\
y & \geq & 0 \\
y & \leq & 4
\end{array}$ 10/3

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * **Example** (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * **Example** (*n*=2, *m*=5):

minimize -32y + 64subject to $x + y \le 7$ $-x + 2y \le 4$ $x \ge 0$ $y \ge 0$ $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!

 Optimal solution
- * **Example** (*n*=2, *m*=5):

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- Unbounded linear programs:

minimize -32y + 64subject to $x + y \le$ $-x + 2y \le$

$$\begin{array}{ccc} x & \geq & 0 \\ y & \geq & 0 \\ \hline y & \leq & 4 \end{array}$$

- * **Problem:** Minimize a linear function in *n* variables subject to *m* linear (in)equality constraints!
- * Infeasible linear programs:

minimize
$$-32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 4$
 $y \ge 4$

General form of LP in CGAL:

minimize
$$c^T x + c_0$$

subject to $Ax \gtrsim b$
 $l \leq x \leq u$

$$(x, c, l, u \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c_0 \in \mathbb{R})$$

General form of LP in CGAL:


```
minimize -32y + 64

subject to x + y \le 7

-x + 2y \le 4

x \ge 0

y \ge 0

y \le 4
```

* Preamble: Choice of input type and exact internal number type

```
#include <iostream>
                  #include <cassert>
   Gnu
                  #include <CGAL/basic.h>
                  #include <CGAL/QP_models.h>
                                                                       input type
  Multi-
                  #include <CGAL/QP_functions.h>
precision
                  // choose exact integral type
                  #ifdef CGAL_USE_GMP
 Library
                  #include <CGAL/Gmpz.h>
                  typedef CGAL::Gmpz ET;
 (GMP)
                  #else
                  #include <CGAL/MP_Float.h>
                                                                          exact internal type
                  typedef CGAL::MP_Float ET;
                  #endif
 CGAI
                  // program and solution types
                  typedef CGAL::Quadratic_program<int> Program;
                  typedef CGAL::Quadratic_program_solution<ET> Solution;
```

for linear and quadratic programs

GMP used internally

```
minimize -32y + 64

subject to x + y \le 7

-x + 2y \le 4

x \ge 0

y \ge 0

y \le 4
```

* Setup: Enter the program data

```
int main() {
   // by default, we have a nonnegative LP with Ax <= b
    Program lp (CGAL::SMALLER, true, 0, false, 0);
   // now set the non-default entries
                                       l = | (0,0,...,0) | u = (\infty,\infty,...,\infty) |
    const int X = 0;
    const int Y = 1;
   lp.set_a(X, 0, 1); lp.set_a(Y, 0, 1); lp.set_b(0, 7); // x + y <= 7
   lp.set_a(X, 1, -1); lp.set_a(Y, 1, 2); lp.set_b(1, 4); // -x + 2y <= 4
   lp.set_u(Y, true, 4);
                                                         // -32v
   lp.set_c(Y, -32);
                                                         // +64
    lp.set_c0(64);
                                                        last argument: value
variable index (0,1,...)
                                    constraint index (0,1,...)
```

* Solve: Call the linear programming solver and output solution

```
// solve the program, using ET as the exact type
Solution s = CGAL::solve_linear_program(lp, ET());
assert (s.solves_linear_program(lp));

// output solution
std::cout << s;
return 0;
}</pre>
independent verification
}
```

* Solve: Call the linear programming solver and output solution

Output:

```
status: OPTIMAL objective value: -160/3 variable values: 0: 10/3 1: 11/3
```


* **Given:** locations of cancer cells (red)

 Given: locations of cancer cells (red) and healthy cells (blue)

- Given: locations of cancer cells (red) and healthy cells (blue)
- Wanted: center and radius of exposure so that all cancer cells are killed and all healthy cells are unaffected.

- * **Given:** locations of cancer cells (red) and healthy cells (blue)
- * Wanted: center and radius of exposure so that all cancer cells are killed and all healthy cells are unaffected.

This may be possible...

- Given: locations of cancer cells (red) and healthy cells (blue)
- * Wanted: center and radius of exposure so that all cancer cells are killed and all healthy cells are unaffected.

* This may be possible... or not.

* **The geometric problem:** Given two finite sets *R* and *B* in the plane, does there exist a disk that contains *R* and is disjoint from *B*?

- * **The geometric problem:** Given two finite sets *R* and *B* in the plane, does there exist a disk that contains *R* and is disjoint from *B*?
- * Apply lifting map $\ell:(x,y)\mapsto (x,y,x^2+y^2)$

[Ref: Section 2.3]

$$p \quad \left\{ \begin{array}{c} \text{inside} \\ \text{on} \\ \text{outside} \end{array} \right\} \quad C$$

$$\downarrow \\ \ell(p) \quad \left\{ \begin{array}{c} \text{below} \\ \text{on} \\ \text{above} \end{array} \right\} \quad \text{the plane through } \ell(C)$$

* The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- This can be solved with linear programming!

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- * This can be solved with linear programming!

plane: $z = \alpha x + \beta y + \gamma$

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- * This can be solved with linear programming!
- * Find α , β , γ , δ ($\delta > 0$) such that...

plane:
$$z = \alpha x + \beta y + \gamma$$

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- * This can be solved with linear programming!
- * Find α , β , γ , $\delta > 0$ such that...

plane:
$$z = \alpha x + \beta y + \gamma$$

$$x^2 + y^2 \le \alpha x + \beta y + \gamma, \quad (x, y) \in R$$

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- * This can be solved with linear programming!
- * Find α , β , γ , $\delta > 0$ such that...

plane:
$$z = \alpha x + \beta y + \gamma$$

- * The geometric problem (lifted space): Given the lifted sets *R'* and *B'* in space, is there a plane that has *R'* below/on it and *B'* above?
- * This can be solved with linear programming!
- * Find α , β , γ , $\delta > 0$ such that...

maximize δ 4 variables subject to $x^2 + y^2 \ge \alpha x + \beta y + \gamma + \delta, \quad (x,y) \in B$

 $x^2 + y^2 \le \alpha x + \beta y + \gamma, \quad (x, y) \in R$

plane:
$$z = \alpha x + \beta y + \gamma$$

$$B'$$

$$R'$$

* Fact: Exposure is possible if and only if the following linear program has positive value.

maximize
$$\delta$$
 subject to
$$x^2+y^2 \geq \alpha x + \beta y + \gamma + \delta, \quad (x,y) \in B$$

$$x^2+y^2 \leq \alpha x + \beta y + \gamma, \quad (x,y) \in R$$

* Fact: Exposure is possible if and only if the following linear program has positive value.

maximize
$$\delta$$
 subject to
$$x^2+y^2 \geq \alpha x + \beta y + \gamma + \delta, \quad (x,y) \in B$$

$$x^2+y^2 \leq \alpha x + \beta y + \gamma, \quad (x,y) \in R$$

* Reconstructing the exposure from an optimal solution $(\alpha, \beta, \gamma, \delta)$:

$$= \{(x,y) : x^2 + y^2 = \alpha x + \beta y + \gamma\}$$

* Fact: Exposure is possible if and only if the following linear program has positive value.

maximize
$$\delta$$
 subject to
$$x^2+y^2 \geq \alpha x + \beta y + \gamma + \delta, \quad (x,y) \in B$$

$$x^2+y^2 \leq \alpha x + \beta y + \gamma, \quad (x,y) \in R$$

* Reconstructing the exposure from an optimal solution $(\alpha, \beta, \gamma, \delta)$:

$$= \{(x,y): x^2 + y^2 = \alpha x + \beta y + \gamma\}$$

$$= \{(x,y): (x - \frac{\alpha}{2})^2 + (y - \frac{\beta}{2})^2 = \gamma + \frac{\alpha^2}{4} + \frac{\beta^2}{4}\}$$

* Fact: Exposure is possible if and only if the following linear program has positive value.

maximize
$$\delta$$
 subject to
$$x^2+y^2 \geq \alpha x + \beta y + \gamma + \delta, \quad (x,y) \in B$$

$$x^2+y^2 \leq \alpha x + \beta y + \gamma, \quad (x,y) \in R$$

$$c = \left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$$

$$r^2 = \gamma + \frac{\alpha^2}{4} + \frac{\beta^2}{4}$$

* Reconstructing the exposure from an optimal solution $(\alpha, \beta, \gamma, \delta)$:

$$= \{(x,y): x^2 + y^2 = \alpha x + \beta y + \gamma\}$$

$$= \{(x,y): (x - \frac{\alpha}{2})^2 + (y - \frac{\beta}{2})^2 = \gamma + \frac{\alpha^2}{4} + \frac{\beta^2}{4}\}$$

Implementation in CGAL:

minimize
$$-\delta$$

subject to $x^2 + y^2 \ge \alpha x + \beta y + \gamma + \delta$, $(x, y) \in B$
 $x^2 + y^2 \le \alpha x + \beta y + \gamma$, $(x, y) \in R$
 $\delta \le 1$

Avoids unbounded program

maximize $c^T x \to \text{minimize } -c^T x$ and negate resulting value

* Implementation in CGAL: Setup and Solve (Preamble as before)

```
int main() {
 // by default, we have an LP with Ax <= b and no bounds for
 // the four variables alpha, beta, gamma, delta
 Program lp (CGAL::SMALLER, false, 0, false, 0);
  const int alpha = 0;
  const int beta = 1;
  const int qamma = 2;
  const int delta = 3;
 // number of red and blue points
 int m; std::cin >> m;
 int n; std::cin >> n;
 // read the red points (cancer cells)
 for (int i=0; i<m; ++i) {
   int x; std::cin >> x;
   int y; std::cin >> y;
   // set up <= constraint for point inside/on circle:</pre>
   // -alpha x - beta y - gamma <= -x^2 - y^2
   lp.set_a (alpha, i, -x);
   lp.set_a (beta, i, -y);
   lp.set_a (gamma, i, -1);
   lp.set_b ( i, -x*x - y*y);
```

```
// read the blue points (healthy cells)
for (int j=0; j< n; ++j) {
 int x; std::cin >> x;
  int y; std::cin >> y;
 // set up <= constraint for point outside circle:</pre>
 // alpha x + beta y + gamma + delta \leq x^2 + y^2
 lp.set_a (alpha, m+j, x);
 lp.set_a (beta, m+j, y);
 lp.set_a (gamma, m+j, 1);
 lp.set_a (delta, m+j, 1);
               m+j, x*x + y*y);
 lp.set_b (
// objective function: -delta (the solver minimizes)
lp.set_c(delta, -1);
// enforce a bounded problem:
lp.set_u (delta, true, 1);
// solve the program, using ET as the exact type
Solution s = CGAL::solve_linear_program(lp, ET());
assert (s.solves_linear_program(lp));
```

* Implementation in CGAL: Output

negate resulting value!

```
// output exposure center and radius, if they exist
if (s.is_optimal() && (s.objective_value() < 0)) {</pre>
 // *opt := alpha, *(opt+1) := beta, *(opt+2) := gamma
  CGAL::Quadratic_program_solution<ET>::Variable_value_iterator
    opt = s.variable_values_begin();
  CGAL::Quotient<ET> alpha = *opt;
  CGAL::Quotient<ET> beta = *(opt+1);
  CGAL::Quotient<ET> gamma = *(opt+2);
  std::cout << "There is a valid exposure:\n";</pre>
  std::cout << " Center = (" // (alpha/2, beta/2)
       << alpha/2 << ", " << beta/2
      << ")\n";
  std::cout << " Squared Radius = " // gamma + alpha^2/4 + beta^2/4
       << gamma + alpha*alpha/4 + beta*beta/4 << "\n";
} else
  std::cout << "There is no valid exposure.";</pre>
std::cout << "\n";
return 0;
```

* Implementation in CGAL: Output

negate resulting value!

```
// output exposure center and radius, if they exist
if (s.is_optimal() && (s.objective_value() < 0)) {</pre>
  // *opt := alpha, *(opt+1) := beta, *(opt+2) := gamma
  CGAL::Quadratic_program_solution<ET>::Variable_value_iterator
    opt = s.variable_values_begin(); 	
  CGAL::Quotient<ET> alpha = *opt;
  CGAL::Quotient<ET> beta = *(opt+1);
  CGAL::Quotient<ET> gamma = *(opt+2);
  std::cout << "There is a valid exposure:\n";</pre>
  std::cout << " Center = (" // (alpha/2, beta/2)
       << alpha/2 << ", " << beta/2
       << ")\n";
  std::cout << " Squared Radius = " // gamma + alpha^2/4 + beta^2/4</pre>
       << gamma + alpha*alpha/4 + beta*beta/4 << "\n";
} else
  std::cout << "There is no valid exposure.";</pre>
std::cout << "\n";
return 0;
```

"Pointer" to first variable of optimal solution

The quotient

* (opt+i) is

the value of the

variable x_i in the

optimal solution

* Given a set of R of red and a set B of blue points, can they be separated by the zero set of a polynomial of degree *d*?

- * Given a set of R of red and a set B of blue points, can they be separated by the zero set of a polynomial of degree *d*?
- Polynomial of degree 3:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j$$

- * Given a set of R of red and a set B of blue points, can they be separated by the zero set of a polynomial of degree *d*?
- Polynomial of degree 3:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j$$

* Linear programming formulation: find a,b,c,d,e,f,g,h,i,j such that

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j \le 0, \quad (x, y) \in B$$

 $ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j \ge 0, \quad (x, y) \in R$

- * Given a set of R of red and a set B of blue points, can they be separated by the zero set of a polynomial of degree *d*?
- Polynomial of degree 3:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j$$

* Linear programming formulation: find a,b,c,d,e,f,g,h,i,j such that

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j \le 0, \quad (x, y) \in B$$

 $ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j \ge 0, \quad (x, y) \in R$

* This is linear separability in 8-dimensional space, under the generalized lifting map $(x,y) \to (x^3,x^2y,xy^2,y^3,x^2,xy,y^2,x,y)$

Linear programming relaxations for hard combinatorial problems

- Linear programming relaxations for hard combinatorial problems
- * **Vertex Cover:** Given a graph G=(V,E), find a smallest subset of vertices (a vertex cover) such that every edge is incident to one vertex of the cover.

- Linear programming relaxations for hard combinatorial problems
- * **Vertex Cover:** Given a graph G=(V,E), find a smallest subset of vertices (a vertex cover) such that every edge is incident to one vertex of the cover.

* Formulation as "LP": x_i indicates whether vertex i is in the cover (0: not in the cover, 1: in the cover):

minimize
$$\sum_{i=1}^{n} x_i$$
 subject to
$$x_i + x_j \ge 1 \quad \forall \{i, j\} \in E$$

$$0 \le x_i \le 1 \qquad \forall i \in V$$

- Linear programming relaxations for hard combinatorial problems
- * **Vertex Cover:** Given a graph G=(V,E), find a smallest subset of vertices (a vertex cover) such that every edge is incident to one vertex of the cover.

* Formulation as "LP": x_i indicates whether vertex i is in the cover (0: not in the cover, 1: in the cover):

minimize
$$\sum_{i=1}^{n} x_i$$
subject to
$$x_i + x_j \geq 1 \quad \forall \{i, j\} \in E$$
$$0 \leq x_i \leq 1 \qquad \forall i \in V$$
$$x_i \in \{0, 1\} \qquad \forall i \in V \leftarrow \text{not an LP!}$$

* **Vertex Cover:** Given a graph G=(V,E), find a smallest subset of vertices (a vertex cover) such that every edge is incident to one vertex of the cover.

* Let $x_1, x_2, ..., x_n$ be an optimal solution of the *LP relaxation*

minimize
$$\sum_{i=1}^{n} x_i$$
subject to
$$x_i + x_j \ge 1 \quad \forall \{i, j\} \in E$$
$$0 \le x_i \le 1 \qquad \forall i \in V$$

* **Vertex Cover:** Given a graph G=(V,E), find a smallest subset of vertices (a vertex cover) such that every edge is incident to one vertex of the cover.

* Let $x_1, x_2, ..., x_n$ be an optimal solution of the *LP relaxation*

minimize
$$\sum_{i=1}^{n} x_i$$
 subject to
$$x_i + x_j \ge 1 \quad \forall \{i, j\} \in E$$

$$0 \le x_i \le 1 \qquad \forall i \in V$$

* **Theorem:** $C = \{i: x_i^* \ge 1/2\}$ is a vertex cover of size at most 2 opt.

Linear vs. Integer Programming

* Often, applications lead to linear programs with the additional requirement of *integral solutions* (e.g. vertex cover)

Linear vs. Integer Programming

- * Often, applications lead to linear programs with the additional requirement of *integral solutions* (e.g. vertex cover)
- * Such programs are called *integer linear programs* (ILP) and are in general much harder to solve than linear programs (NP-hard)

Linear vs. Integer Programming

- * Often, applications lead to linear programs with the additional requirement of *integral solutions* (e.g. vertex cover)
- * Such programs are called *integer linear programs* (ILP) and are in general much harder to solve than linear programs (NP-hard)
- * Typical approach (e.g. vertex cover):

Quadratic Programming (QP)

* **Problem:** Minimize a convex quadratic function in *n* variables subject to *m* linear (in)equality constraints!

Quadratic Programming

* **Problem:** Minimize a convex quadratic function in *n* variables subject to *m* linear (in)equality constraints!

* **Example** (n=2, m=5):

minimize $x^2 + 4y^2 - 32y + 64$ subject to $x + y \le 7$ $-x + 2y \le 4$ $x \ge 0$ $y \ge 0$ $y \le 4$

Quadratic Programming

* **Problem:** Minimize a convex quadratic function in *n* variables subject to *m* linear (in)equality constraints! isolines

* **Example** (n=2, m=5):

minimize $x^2 + 4y^2 - 32y + 64$ subject to $x + y \le 7$ $-x + 2y \le 4$ $x \ge 0$ $y \ge 0$ $y \le 4$

(value = const)

Quadratic Programming

* **Problem:** Minimize a convex quadratic function in *n* variables subject to *m* linear (in)equality constraints!

* **Example** (n=2, m=5):

minimize $x^2 + 4y^2 - 32y + 64$ subject to $x + y \le 7$ $-x + 2y \le 4$ $x \ge 0$ $y \ge 0$ $y \le 4$

General form of QP in CGAL:

minimize
$$x^T D x + c^T x + c_0$$

subject to $Ax \geq b$
 $l \leq x \leq u$

 $(D \in \mathbb{R}^{n \times n} \text{ symmetric positive semidefinite})$

General form of QP in CGAL:

minimize
$$x^T D x + c^T x + c_0$$

subject to $Ax \geq b$
 $l \leq x \leq u$

 $(D \in \mathbb{R}^{n \times n} \text{ symmetric positive semidefinite})$

* Warning: if D is not positive semidefinite, the quadratic objective function is not convex. The CGAL solver might in this case return solutions that are not optimal, or it might crash.

General form of QP in CGAL:

minimize
$$x^T D x + c^T x + c_0$$

subject to $Ax \geq b$
 $l \leq x \leq u$

 $(D \in \mathbb{R}^{n \times n} \text{ symmetric positive semidefinite})$

- * Warning: if D is not positive semidefinite, the quadratic objective function is not convex. The CGAL solver might in this case return solutions that are not optimal, or it might crash.
- * **Relax:** In the applications, we know from theory that *D* is "good"

General form of QP in CGAL:

minimize
$$x^T D x + c^T x + c_0$$

subject to $Ax \geq b$
 $l \leq x \leq u$

 $(D \in \mathbb{R}^{n \times n} \text{ symmetric positive semidefinite})$

* Example:

minimize
$$x^2 + 4y^2 - 32y + 64$$

subject to $x + y \le 7$
 $-x + 2y \le 4$
 $x \ge 0$
 $y \ge 0$
 $y \le 4$

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \checkmark$$

* Suppose an optical character recognition needs to distinguish between the letters 'A' and 'B'

* Suppose an optical character recognition needs to distinguish between the letters 'A' and 'B'

* Training phase: the system gets to see letters 'A' and 'B' **plus** the information whether it's an 'A' or a 'B'

* Suppose an optical character recognition needs to distinguish between the letters 'A' and 'B'

- * Training phase: the system gets to see letters 'A' and 'B' **plus** the information whether it's an 'A' or a 'B'
- * After the training phase, the system is supposed to decide on its own which letter it sees.

* Solution: map training letters to points in some high-dimensional space, with label 'A' (blue) or 'B' (red), based e.g. on a pixel-based representation

* Solution: map training letters to points in some high-dimensional space, with label 'A' (blue) or 'B' (red), based e.g. on a pixel-based

* Separate the 'A's from the 'B's by a simple shape, for example the *maximum-margin hyperplane* (separating hyperplane of maximum distance to any point).

* Solution: map training letters to points in some high-dimensional space, with label 'A' (blue) or 'B' (red), based e.g. on a pixel-based representation

* Separate the 'A's from the 'B's by a simple shape, for example the *maximum-margin hyperplane* (separating hyperplane of maximum distance to any point). **This is a quadratic program!**

* Solution: map training letters to points in some high-dimensional space, with label 'A' (blue) or 'B' (red), based e.g. on a pixel-based

- * Separate the 'A's from the 'B's by a simple shape, for example the *maximum-margin hyperplane* (separating hyperplane of maximum distance to any point). **This is a quadratic program!**
- * Classify an unknown letter according to this hyperplane $(\bigcirc = 'B')$

- * Other separating shapes (e.g. spheres as in the cancer therapy application, or zero sets of polynomials) can make sense
- * Through lifting, we can often reduce the problem for a given separating shape to the problem of finding the maximum-margin separating hyperplane in some higher (sometimes even infinite-dimensional space). In the end, we just need to solve a quadratic program!

- * Other separating shapes (e.g. spheres as in the cancer therapy application, or zero sets of polynomials) can make sense
- * Through lifting, we can often reduce the problem for a given separating shape to the problem of finding the maximum-margin separating hyperplane in some higher (sometimes even infinite-dimensional space). In the end, we just need to solve a quadratic program!
- * In the world of support vector machines, the problem of selecting the appropriate separating shape is called *kernel design*.

Quadratic Programming Application: Low-Risk Investment

* **Problem:** How to invest money such that the expected return is maximized but the risk is minimized?

- * **Problem:** How to invest money such that the expected return is maximized but the risk is minimized?
- * **Fact:** There is no free lunch (= infinite return with no risk), so we have to accept some risk, and/or live with moderate returns.

- * **Problem:** How to invest money such that the expected return is maximized but the risk is minimized?
- * **Fact:** There is no free lunch (= infinite return with no risk), so we have to accept some risk, and/or live with moderate returns.
- * Risk-averse strategy: Maximize the expected return under a given upper bound for the risk!

- * **Problem:** How to invest money such that the expected return is maximized but the risk is minimized?
- * **Fact:** There is no free lunch (= infinite return with no risk), so we have to accept some risk, and/or live with moderate returns.
- * Risk-averse strategy: Maximize the expected return under a given upper bound for the risk!
- * **Risk-tolerant strategy:** Minimize the risk under a given lower bound for the expected return!

- Possible investments:
 - * 1,2,...,n (e.g. 1 =Swatch shares, 2 =Credit Suisse shares,...)
- Investment Characteristics (not at all easy to know/estimate):
 - * R_i : return rate of investment i (assumed to be a random variable)
 - * r_i : expected return rate of investment i, E [R_i]
 - * v_i : variance ("risk") of R_i , Var $[R_i] := E[(R_i E[R_i])^2]$
 - * v_{ij} : covariance ("correlation") of R_i and $R_{j,}$ E [$(R_i E[R_i])(R_j E[R_j])$]

- Possible investments:
 - * 1,2,...,n (e.g. 1 =Swatch shares, 2 =Credit Suisse shares,...)
- Investment Characteristics (not at all easy to know/estimate):
 - * R_i : return rate of investment i (assumed to be a random variable)
 - * r_i : expected return rate of investment i, E [R_i]
 - * v_i : variance ("risk") of R_i , Var $[R_i] := E[(R_i E[R_i])^2]$

$$v_{ii} = v_i$$

* v_{ij} : covariance ("correlation") of R_i and R_j , $E[(R_i-E[R_i])(R_j-E[R_j])]$

* Example: n=2

	r_i
Swatch shares	10% (0.1)
Credit Suisse shares	51% (0.51)

v_{ij}	Swatch shares	Credit Suisse shares
Swatch shares	0.09	-0.05
Credit Suisse shares	-0.05	0.25

* Example: n=2

	r_i
Swatch shares	10% (0.1)
Credit Suisse shares	51% (0.51)

v_{ij}	Swatch shares	Credit Suisse shares
Swatch shares	0.09	-0.05
Credit Suisse shares	-0.05 ↑	0.25

Negative correlation: if CS does worse than expected, Swatch will probably do better, and vice versa

* Example: n=2

	r_i
Swatch shares	10% (0.1)
Credit Suisse shares	51% (0.51)

v_{ij}	Swatch shares	Credit Suisse shares
Swatch shares	0.09	-0.05
Credit Suisse shares	-0.05	0.25

Read as: standard deviation of return rate is $\sqrt{0.25} = 0.5$ (actual return rate could easily be off by 0.5)

Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

* Expected return rate of this strategy:

$$E[\sum_{i=1}^{n} x_i R_i] = \sum_{i=1}^{n} x_i E[R_i] = \sum_{i=1}^{n} r_i x_i$$

Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

* Expected return rate of this strategy:

$$E[\sum_{i=1}^{n} x_i R_i] = \sum_{i=1}^{n} x_i E[R_i] = \sum_{i=1}^{n} r_i x_i$$

* Example: half the money in Swatch shares, half in Credit Suisse shares; expected return rate is $\frac{1}{2} \cdot 0.1 + \frac{1}{2} \cdot 0.51 = 0.305 = 30.5\%$

Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

* Risk of this strategy:

$$Var[\sum_{i=1}^{n} x_i R_i] = \sum_{i=1}^{n} \sum_{j=1}^{n} v_{ij} x_i x_j = x^T D x$$

$$D = (v_{ij})_{1 \leq i,j \leq n}$$
 is the covariance matrix

* Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

* Risk of this strategy:

$$Var\left[\sum_{i=1}^{n} x_{i} R_{i}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} v_{ij} x_{i} x_{j} = x^{T} D x$$

$$D = (v_{ij})_{1 \leq i,j \leq n}$$
 is the covariance matrix

* Example: half-half Swatch/CS has risk $\frac{0.09 - 2 \cdot 0.05 + 0.25}{4} = 0.06$

$$\frac{0.09 - 2 \cdot 0.05 + 0.25}{4} = 0.06$$

* Investment strategy:

$$(x_1, x_2, \dots, x_n), \quad \sum_{i=1}^n x_i = 1, \quad x_i \ge 0 \forall i$$

Meaning: An x_i fraction of your money goes into investment i

Risk of this strategy:

$$Var[\sum_{i=1}^{n} x_i R_i] = \sum_{i=1}^{n} \sum_{j=1}^{n} v_{ij} x_i x_j = x^T D x$$

$$D = (v_{ij})_{1 \leq i,j \leq n}$$
 is the covariance matrix

less than each individual risk!

* Example: half-half Swatch/CS has risk $\frac{0.09 - 2 \cdot 0.05 + 0.25}{4} = 0.06$

$$\frac{0.09 - 2 \cdot 0.05 + 0.25}{4} = 0.06$$

* The risk-tolerant case: Find the investment strategy with lowest risk that guarantees expected return rate ρ at least!

* The risk-tolerant case: Find the investment strategy with lowest risk that guarantees expected return rate ρ at least!

Fact: A covariance matrix is positive semidefinite, so this is indeed a convex QP.

* The risk-tolerant case: Find the investment strategy with lowest risk that guarantees expected return rate ρ at least!

Fact: A covariance matrix is positive semidefinite, so this is indeed a convex QP.

* Example: $\rho = 0.4$: 26.8% Swatch, 73.2% Credit Suisse; risk = 0.121

* Preamble: This time, it's floating-point input...

Gnu Multiprecision Library (GMP)

CGAL

```
#include <iostream>
#include <cassert>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>
// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif
// program and solution types
typedef CGAL::Quadratic_program<double> Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;
```

* Input: Desired expected return

```
int main() {
  // read minimum expected return rate
  std::cout << "What is your desired expected return rate? ";
  double rho; std::cin >> rho;
```

for example, 0.4 = 40%

* **Setup:** Make sure to enter matrix 2D (customary in QP solvers)!

```
// by default, we have a nonnegative QP with Ax >= b
Program qp (CGAL::LARGER, true, 0, false, 0);
// now set the non-default entries:
const int sw = 0;
const int cs = 1;
// constraint on expected return: 0.1 sw + 0.51 cs >= rho
qp.set_a(sw, 0, 0.1);
qp.set_a(cs, 0, 0.51);
ap.set_b( 0, rho);
// strategy constraint: sw + cs = 1
qp.set_a(sw, 1, 1);
qp.set_a(cs, 1, 1);
qp.set_b(1, 1);
qp.set_r( 1, CGAL::EQUAL); // override default >=
// objective function: 0.09 \text{ sw}^2 - 0.05 \text{ sw cs} - 0.05 \text{ cs sw} + 0.25 \text{ cs}^2
// we need to specify the entries of the symmetric matrix 2D, on and below the diagonal
qp.set_d(sw, sw, 0.18); // 0.09 sw^2
                                                      j \le i in set d (i, j)
qp.set_d(cs, sw, -0.10); // -0.05 cs sw
qp.set_d(cs, cs, 0.5); // 0.25 cs^2
```

* **Setup:** Make sure to enter matrix 2D (customary in QP solvers)!

```
// by default, we have a nonnegative QP with Ax >= b
Program qp (CGAL::LARGER, true, 0, false, 0);
// now set the non-default entries:
const int sw = 0;
const int cs = 1;
// constraint on expected return: 0.1 sw + 0.51 cs >= rho
qp.set_a(sw, 0, 0.1);
qp.set_a(cs, 0, 0.51);
ap.set_b( 0, rho);
// strategy constraint: sw + cs = 1
qp.set_a(sw, 1, 1);
qp.set_a(cs, 1, 1);
qp.set_b(1, 1);
qp.set_r( 1, CGAL::EQUAL); // override default >=
// objective function: 0.09 \text{ sw}^2 - 0.05 \text{ sw cs} - 0.05 \text{ cs sw} + 0.25 \text{ cs}^2
// we need to specify the entries of the symmetric matrix 2D, on and below the diagonal
qp.set_d(sw, sw, 0.18); // 0.09 sw^2
                                                     j≤i in set d (i, j)
qp.set_d(cs, sw, -0.10); // -0.05 cs sw
qp.set_d(cs, cs, 0.5); // 0.25 cs^2
```

* Solve: ...as nonnegative quadratic program (a little faster)

```
// solve the program, using ET as the exact type
Solution s = CGAL::solve_nonnegative_quadratic_program(qp, ET());
assert (s.solves_quadratic_program(qp));
```

independent verification

Output: query solution status; if feasible, output strategy/risk

```
// output
if (s.status() == CGAL::QP_INFEASIBLE) {
  std::cout << "Expected return rate " << rho << " cannot be achieved.\n";</pre>
} else {
  assert (s.status() == CGAL::QP_OPTIMAL);
  Solution::Variable_value_iterator opt =
    s.variable_values_begin();
  CGAL::Quotient<ET> sw_fraction = *opt;
  CGAL::Quotient<ET> cs_fraction = *(opt+1);
  std::cout << "Minimum risk investment strategy:\n";</pre>
  std::cout << 100.0*CGAL::to_double(sw_fraction)</pre>
       << "%" << " into Swatch\n";
  std::cout << 100.0*CGAL::to_double(cs_fraction)</pre>
       << "%" << " into Credit Suisse\n";
  std::cout << "Risk = " << CGAL::to_double(s.objective_value()) << "\n";</pre>
return 0:
```

Known Bug :=(

- * You can't reliably copy or assign instances of the class CGAL::Quadratic_program_solution<ET>
- * Workaround 1: If you want to pass or return such instances to / from a function, pass a pointer to the instance instead!
- * Workaround 2: If you want to assign a new solution to an existing instance... don't do it!

Sources and Further Reading

- * LP/QP Solver: Online manual at <u>www.cgal.org</u>: Online Manual
 → Combinatorial Algorithms → Linear and Quadratic
 Programming Solver
- * Cancer Therapy: J. O'Rourke, S. Kosaraju, and N. Megiddo: Computing Circular Separabiliy, *Discrete & Computational Geometry* 1:105-113 (1986)
- * **Support Vector Machines:** B. Schölkopf, A. J. Smola: *Learning with Kernels*, MIT Press, 2002
- * Low-Risk Investment: H. Markowitz: Portfolio Selection, *Journal of Finance* 7(1): 77-91 (1952)