$$R^{10} = (V)_{p} = N - (V)_{q} = N - (V)_{s}^{-10}$$
(VIII)

$$R^{10}$$
 D^1 D^2 E R^{1}

$$R^{10}(\overline{E})_{p}(\overline{F})_{q}R^{11}$$
(X)

$$R^{10} \left(\begin{array}{c} E \end{array} \right)_{p}^{S} \left(\begin{array}{c} E \end{array} \right)_{q}^{R^{11}}$$
(XI)

$$R^{10} - G^{1} - R^{11}$$
(XII)

(XIII)
$$R^{10}$$
 P^1 P^2 P^3 $(-M^1 \leftarrow E)_p R^{11}$

(XIV)
$$R^{10}$$
 U^1 U^2 U^3 $(-M^1 - E)^{-R^{11}}$

(XV)
$$R^{10}$$
 E (K^{11})

where:
R¹⁰, R¹¹ are as defined for R¹, R², where additionally the terminal -CH₃group may in each case be replaced by one of the chiral groups (optically active or racemic) below:

 ${\rm R}^3,\,{\rm R}^4,\,{\rm R}^5,\,{\rm R}^6,\,{\rm R}^7$ are identical or different and are each

a) hydrogen

5

- b) a straight-chain or branched alkyl radical (with or without asymmetric carbon atoms) having 1 to 16 carbon atoms, where
 - b1) one or more nonadjacent and nonterminal CH₂ groups may be replaced by -O- and/or

b2) one or two CH2 groups may be replaced by -CH=CH-,

10

c) R⁴ and R⁵ together may alternatively be -(CH₂)₄- or -(CH₂)₅if they are attached to an oxirane, dioxolane, tetrahydrofuran,
tetrahydropyran, butyrolactone or valerolactone system;

R¹² is hydrogen or a straight-chain or branched alkyl radical (with or without asymmetric carbon atoms) having 1 to 16 carbon atoms, where one or more H may be replaced by F and one or two nonadjacent nonterminal -CH₂- groups may be replaced by -O-

 $\mathbf{Z}^1,\,\mathbf{Z}^2,\,\mathbf{Z}^3,\,\mathbf{Z}^4,\,\mathbf{Z}^5,\,\mathbf{Z}^6$ are each, independently of one another, H or F