Math 445 Midterm - Part I

Prof. Adam Loy

May 5, 2014

- 1. The following need no justification. Simply state whether each statement is true or false.
 - (a) If $\hat{\theta}_1$ is an unbiased estimator for θ and $\hat{\theta}_2$ is biased for θ , then $MSE(\hat{\theta}_1) < MSE(\hat{\theta}_2)$.
 - (b) Any MVUE will be unbiased for θ .
 - (c) Any unbiased estimator will be consistent for θ .
 - (d) It is possible for the maximum likelihood estimator for θ to be a biased estimator of θ .
 - (e) The p-value is the probability of exceeding the observed test statistic, given that the null hypothesis is true.
- 2. Let X_1, X_2, \dots, X_n be iid random variables with common PDF $f(x|\theta), \theta > 0$, where

$$f(x|\theta) = \begin{cases} \theta 2^{-\theta} x^{\theta-1} & \text{if } 0 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

In answering the following, state any standard results that you are using.

- (a) Find $\widehat{\theta}$, the maximum likelihood estimator of θ based on X_1, X_2, \dots, X_n , and carefully argue that it does indeed maximize the likelihood.
- (b) Find $\widetilde{\theta}$, the method of moments estimator of θ based on X_1, X_2, \dots, X_n .
- (c) Show that $\widetilde{\theta}$ is a consistent estimator of θ .
- 3. Suppose that X_1, X_2, \dots, X_n form a random sample from a Poisson distribution with unknown mean λ ($\lambda > 0$). Show that \overline{X}_n is a MVUE.

Note: There was a fourth problem on this exam, but we are covering material in a slightly difference order.

Table of Distributions

Name	Param.	PMF or PDF	Mean	Variance	MGF
Bernoulli	p	P(X = 1) = p $P(X = 0) = q$	p	pq	$pe^t + q$
Binomial	n, p	$\binom{n}{k} p^k q^{n-k}$ $k \in \{0, 1, \dots, n\}$	np	npq	$\left(pe^t + 1 - p\right)^n$
Geometric	p	pq^k $k \in \{0, 1, 2, \ldots\}$	$rac{q}{p}$	$\frac{q}{p^2}$	$\frac{p}{1 - qe^t}$
Negative Binomial	r, p	$\binom{r+n-1}{r-1}p^rq^n$ $k \in \{0, 1, 2, \ldots\}$	$\frac{rq}{p}$	$rac{rq}{p^2}$	$\left(\frac{p}{1 - qe^t}\right)^r$
Hypergeometric	w, b, n	$\frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}}$ $k \in \{0, 1, \dots, n\}$	$\mu = \frac{nw}{w+b}$	$\left(\frac{w+b-n}{w+b-1}\right)n\frac{\mu}{n}\left(1-\frac{\mu}{n}\right)$	
Poisson	λ	$k \in \frac{e^{-\lambda}\lambda^k}{k!}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	$e^{\lambda(e^t-1)}$
Uniform	a < b	$\frac{1}{b-a}, \ x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Normal	μ, σ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/\left(2\sigma^2\right)}$ $x \in \mathbb{R}$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$
Exponential	λ	$\lambda e^{-\lambda x}, \ x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$rac{\lambda}{\lambda-t}$
Gamma	a, λ	$\frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}$ $x > 0$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)^a$
Beta	a, b	$\begin{vmatrix} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \\ 0 < x < 1 \end{vmatrix}$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{a+b+1}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{a+r}{a+b+r} \right) \frac{t^k}{k!}$
Chi-Square	n	$\begin{vmatrix} \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2} \\ x > 0 \end{vmatrix}$	n	2n	$\left(\frac{1}{1-2t}\right)^{n/2}$