## ME 6301

## **Computer Project**

Heating of Lithium ion batteries during usage is a concern in many systems including laptops, electric vehicles, and aircraft. Consider a single cylindrical battery of Diameter D and height L placed vertically in quiescent air. Assume that the battery can be modeled with constant effective thermal conductivity and specific heat. During usage, the volumetric heat generation rate q''' (t)  $(W/m^3)$  can be provided as a function of time. The starting temperature is uniform at  $T_i$  and the battery surface is exposed to an ambient temperature of  $T_{inf}$  and effective heat transfer coefficient of h.



- 1. Assuming that the temperature within the battery can be described as  $T(r, \theta, t)$ , develop the governing equations and boundary conditions to determine the temperature field as a function of time using the finite volume method, as discussed in class.
- 2. Solve these equations and determine the temperature distribution and the maximum temperature for the following values:

**Battery size:** D = 0.04 m, L = 0.152 m

Volumetric heat generation rate (W/m³);  $q'''(t) = C_1 t^6 + C_2 t^5 + C_3 t^4 + C_4 t^3 + C_5 t^2 + C_6 t + C_7$ 

Where,  $C_1$ =-1.7031E-11 ,  $C_2$ =1.3146E-07 ,  $C_3$ =-1.8011E-04 ,  $C_4$ =1.024E-01,  $C_5$ =-2.8133E01,  $C_6$ = 3.6444E03,  $C_7$ =-2.7545E03

**Battery properties:** density  $(kg/m^3) = 2618$ , specific heat (J/kgK) = 950, thermal conductivity (W/mK) = 3 for all regions, except  $\theta = 0$  to  $45^{\circ}$ , where it is 1 W/mK

Heat transfer coefficient (h): a low value of 2 W/m<sup>2</sup>K, and a high value of 10 W/m<sup>2</sup>K

Assume Ti = 25 °C and the final time to be 630 s

3. Show that your maximum temperature prediction is both grid size and time step independent.

Assigned: March 6, 2013

Due: April 25, 2013