Amendments to the Claims

Please amend the claims according to the following listing of the claims.

 (Currently Amended) A method for controlling a pest selected from the Isoptera, and Hymenoptera, Orthoptera and Psocoptera orders which comprises applying to said pest or to a wooden part or to soil in the habitat of said pest an effective amount of a hydrazine compound of formula (I-1):

$$Z \longrightarrow N(R^{1}) \longrightarrow C \longrightarrow N(R^{4}) \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow R^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$

wherein

 R^1 , R^2 , R^3 , and R^4 represent[[s]] hydrogen-or C_4 - C_6 -alkyl;

R² and R³, which may be same or different, represent hydrogen, hydroxyl, C₁-C₆-alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylcarbonyl or phenylcarbonyl;

R⁴ represents hydrogen or C₄-C₆ alkyl;

- X represents 1 to 5 same or different-substituents selected from the group consisting of hydrogen, halogen, C_1 - C_6 -alkyl and halo C_1 - C_6 alkyl substituents;
- Y represents 1 to 5-same or different substituents selected from the group consisting of nitro and cyano substituents;
- Z represents halogen, cyano, C_4 - C_6 alkyl, halo C_4 - C_6 alkyl, C_4 - C_6 alkoxy, halo C_4 - C_6 alkoxy, halo C_4 - C_6 alkylsulfinyl or halo C_4 - C_6 alkylsulfonyl; and
- W represents oxygen-or sulfur.

2 - 9. (canceled)

10. (Previously Presented) The method of claim 1, wherein the hydrazine compound is applied to the wooden part in an amount of 0.1 to 50 g/m², to a pest selected from the Rhinotermitidae, Termitidae, Kalotermitidae and Termopsidae families.

11 - 12. (canceled)

- 13. (Currently Amended) The method of claim 1, wherein R⁴ to R⁴ each denote hydrogen, X is trifluoromethyl, Y is cyano, and Z is trifluoromethoxy, and W is oxygen.
- 14. (Previously Presented) The method of claim 1, wherein the pest is an ant or a termite.
- 15. (Currently Amended) A method for protecting houses or an article selected from construction materials, furniture, leather, fibers, vinyl articles, electronic wires and cables against a pest selected from the Rhinotermitidae, Termitidae, Kalotermitidae and Termopsidae families, which comprises applying an effective amount of a hydrazine compound of formula (I-1):

$$Z \longrightarrow N(R^{1}) \longrightarrow C \longrightarrow N(R^{4}) \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow X$$

$$(I-1)$$

wherein

 R^1 , R^2 , R^3 , and R^4 represent[[s]] hydrogen-or- C_4 - C_6 -alkyl;

 R^2 -and R^3 , which may be same or different, represent hydrogen, hydroxyl, C_4 - C_6 -alkyl, C_4 - C_6 -alkoxy, C_4 - C_6 -alkylcarbonyl or phenylcarbonyl;

R⁴—represents hydrogen or C₄-C₆-alkyl;

- X represents 1 to 5 same or different-substituents selected from the group consisting of hydrogen, halogen, C₁-C₆ alkyl and halo C₁-C₆ alkyl substituents;
- Y represents 1 to 5-same or different substituents selected from the group consisting of nitro and cyano substituents;
- Z represents halogen, cyano, C_4 - C_6 alkyl, halo C_4 - C_6 alkyl, C_4 - C_6 alkoxy, halo C_1 - C_6 alkoxy, halo C_4 - C_6 alkylsulfinyl or halo C_4 - C_6 alkylsulfonyl; and
- W represents oxygen-or-sulfur,

to said pest, a habitat or a nest of said pest, to a place at which occurrence of said pest is expected or to the article.

16. (Currently Amended) A method for controlling a pest from the Formicidae family in crops, which comprises applying an effective amount of a hydrazine compound of formula (I-1):

wherein

 $\underline{R^1}$, $\underline{R^2}$, $\underline{R^3}$, and $\underline{R^4}$ represent[[s]] hydrogen; or $\underline{C_4}$ - $\underline{C_6}$ -alkyl, and

X represents 1 to 5 same or different-substituents selected from the group consisting of hydrogen, halogen, C_4 - C_6 -alkyl and halo C_1 - C_6 alkyl substituents;[[,]]

R⁴—represents hydrogen or C₄-C₆ alkyl;

- R^2 and R^3 , which may be same or different, represent hydrogen, hydroxyl, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, C_4 - C_6 alkylcarbonyl or phenylcarbonyl;
- Y represents 1 to 5-same or different substituents selected from the group consisting of nitro and cyano substituents;
- Z represents halogen, cyano, C_4 - C_6 alkyl, halo C_4 - C_6 alkyl, C_4 - C_6 alkoxy, halo C_4 - C_6 alkoxy, halo C_4 - C_6 alkylsulfinyl or halo C_4 - C_6 alkylsulfonyl; and
- W represents oxygen-or sulfur.,

to said pest, to said crops, to soil surrounding said crops or to a nest of said pest.

- 17. (Previously Presented) The method of claim 16, wherein the hydrazine compound is applied in an amount of from 1 to 500 g/m².
- 18. (Cancelled)
- 19. (Cancelled)
- 20. (Cancelled)
- 21. (Cancelled)
- 22. (Cancelled)
- 23. (Cancelled)
- 24. (Cancelled)
- 25. (Cancelled)
- 26. (Cancelled)
- 27. (Cancelled)
- 28. (Cancelled)
- 29. (Cancelled)
- 30. (Cancelled)
- 31. (Cancelled)

- 32. (Cancelled)
- 33. (Cancelled)
- 34. (Cancelled)
- 35. (Cancelled)
- 36. (Cancelled)
- 37. (Cancelled)
- 38. (Cancelled)
- 39. (Cancelled)
- 40. (Cancelled)
- 41. (Cancelled)
- 42. (Cancelled)
- 43. (Cancelled)
- 44. (Cancelled)
- 45. (Cancelled)
- 46. (Cancelled)
- 47. (Cancelled)
- 48. (New) The method of claim 13, wherein Y is 4-cyano.
- 49. (New) The method of claim 15, wherein X is trifluoromethyl, Y is 4-cyano, and Z is trifluoromethoxy.
- 50. (New) The method of claim 16, wherein X is trifluoromethyl, Y is 4-cyano, and Z is trifluoromethoxy.
- 51. (New) A method for protecting wooden materials from termites and ants by applying an effective amount of a hydrazine compound of formula (I-1):

$$Z \longrightarrow N(R^{1}) \longrightarrow C \longrightarrow N(R^{4}) \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow X$$

$$(I-1)$$

wherein

 R^1 , R^2 , R^3 , and R^4 represent hydrogen;

X represents 1 to 5 same or different halo C₁-C₆ alkyl substituents;

Y represents 1 to 5 cyano substituents;

Z representshalo C₁-C₆ alkoxy; and

W represents oxygen,

to the wooden material, surrounding soil surface or into the under-floor soil

- 52. (New) The method of claim 51, wherein from 0.1 to 50 g per m² of the hydrazine compound is applied.
- 53. (New) A method for protecting crops from pests of the Formicidae family by applying an effective amount of a hydrazine compound of formula (I-1):

$$Z \longrightarrow N(R^{1}) \longrightarrow C \longrightarrow N(R^{4}) \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow X$$

$$(I-1)$$

wherein

R¹, R², R³, and R⁴ represent hydrogen;

X represents 1 to 5 same or different halo C_1 - C_6 alkyl substituents;

- Y represents 1 to 5 cyano substituents;
- Z representshalo C₁-C₆ alkoxy; and
- W represents oxygen,

to the crops or the surrounding soil or to the nest of said pest.

54. (New) The method of claim 53, wherein from 1 to 500 g per m² of the hydrazine compound is applied.