Etude d'une équation fonctionnelle

L'objectif du problème est d'étudier l'ensemble \mathcal{E} des fonctions $f: \mathbb{R} \to \mathbb{R}$ <u>continues</u> telles que :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) + f(x-y) = 2f(x)f(y).$$

Partie I

- 1. Montrer que les fonctions $x \mapsto \cos x$ et $x \mapsto \operatorname{ch} x$ appartiennent à l'ensemble \mathcal{E} .
- 2. Soit f dans \mathcal{E} . Montrer que pour tout réel α , la fonction $f_{\alpha}: \mathbb{R} \to \mathbb{R}$ définie par $f_{\alpha}(x) = f(\alpha x)$ est dans \mathcal{E} .
- 3. Soit f dans \mathcal{E} . En donnant à x et y des valeurs particulières, prouver que :
- 3.a f(0) vaut 0 ou 1.
- 3.b Si f(0) = 0 alors f est la fonction identiquement nulle.
- 3.c Si f(0) = 1 alors f est une fonction paire.

Partie II

Dans cette partie, on se propose de déterminer les fonctions de \mathcal{E} qui sont deux fois dérivables. On introduit f une telle fonction.

- 1. Etablir que pour tout $(x,y) \in \mathbb{R}^2$: f''(x+y) + f''(x-y) = 2f(x)f''(y).
- 2. En déduire l'existence d'une constante réelle λ telle que $\forall x \in \mathbb{R}, f''(x) = \lambda f(x)$.
- 3. Résoudre sur \mathbb{R} l'équation différentielle $y'' + \mu y = 0$ en séparant les cas $\mu > 0$, $\mu < 0$ et $\mu = 0$.
- 4. Déterminer les éléments de \mathcal{E} qui sont deux fois dérivables.

Partie III

Dans cette partie, on oublie l'hypothèse de dérivabilité et on se propose de déterminer les fonctions de \mathcal{E} qui s'annulent tout en n'étant pas identiquement nulle. On introduit f une telle fonction.

- 1. Montrer que f(0) = 1 et que f s'annule au moins une fois sur \mathbb{R}^{+*} .
- 2. On forme $E = \{x > 0 / f(x) = 0\}$.
- 2.a Montrer que E admet une borne inférieure que l'on note a.
- 2.b Prouver que f(a) = 0 (on pourra raisonner par l'absurde). En déduire que a > 0.
- 2.c Montrer que : $\forall x \in [0, a[, f(x) > 0]$.
- 3. On pose $\omega = \frac{\pi}{2a}$ et on note g la fonction de \mathbb{R} vers \mathbb{R} : $x \mapsto \cos(\omega x)$.
- 3.a Soit $q \in \mathbb{N}$. Montrer que $f\left(\frac{a}{2^q}\right) + 1 = 2\left(f\left(\frac{a}{2^{q+1}}\right)\right)^2$.
- 3.b En déduire, en raisonnant par récurrence sur q que : $\forall q \in \mathbb{N}$, $f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right)$.
- $\text{3.c} \qquad \text{D\'emontrer aussi que } \ \forall p \in \mathbb{N} \ , \ \forall q \in \mathbb{N} \ , \ f\bigg(\frac{pa}{2^q}\bigg) = g\bigg(\frac{pa}{2^q}\bigg).$
- 3.d Etendre cette propriété à tout $p \in \mathbb{Z}$.
- $\text{4.}\qquad \text{On forme } \ D_a = \left\{\frac{p\,a}{2^q}/\,p \in \mathbb{Z}, q \in \mathbb{N}\right\}.$

- 4.a Etablir que tout réel est limite d'une suite d'éléments de $\,D_{\!\scriptscriptstyle a}\,.$
- 4.b En déduire que f = g.