Exploring the spatial disparities in gambling risk and vulnerability

Shunya Kimura, Paul Longley, Justin van Dijk

Context > Research Aim > Methods > Results > Further Questions

Context: Gambling in the UK

- > Industrial annual revenue: £14.2 billion
- > Gambling harm known to disrupt health and wellbeing of not only the individuals but also people around them
- > Between 340,000 and 1.4 million adults are classified as high-risk gamblers

Context:

Gambling harm as a Public Health Issue?

- Harms are known to be socially and geographically uneven in its occurrence and impacts
- > Traditionally been conceptualised as individual weakness
- > Call for a more 'upstream' prevention

Research Aim

- > Profile high-risk gamblers according to various geodemographic data
- > Reveal insights about the wider population and map the spatial distribution of gambling risk in England

Category	PGSI score [range: 0-27]	No. of respondents [total: 16,338]
Non gambler	NA	7,228 (44%)
Non-problem gambler	0	7,104 (43%)
Low-risk gambler	I to 2	1,066 (7%)
Moderate-risk gambler	3 to 7	530 (3%)
Problem gambler	8 +	410 (3%)

Respondent Categorisation by Problem Gambling Severity Index (PGSI) score

Methods

* Aggregated to LSOA by modal Output Area

Gambling Outlet Accessibility (z-score)

For each group:

- I. Counted number of gamblers
- 2. Calculated Location Quotients (LQs)
- 3. Converted LQ into z-scores

Assigned z-scores to each LSOA and

aggregated them to create a composite risk index

Calculating Location Quotient (LQ)

$$LQ_i = \frac{\frac{p_i}{e_i}}{\frac{P}{E}}$$

Where:

 p_i = number of problem gamblers in class i

 e_i = number of respondents in class i

P = number of problem gamblers

E = number of respondents

LQs for each Output Area Classification group

LQs for each Output Area Classification group

LQs for each Internet User Classification group

LQs for each Internet User Classification group

Gambling risk around Liverpool, UK

Further Questions

- > Can we apply Multilevel Regression with Poststratification (MrP) to predict gambling risk in small-area geography?
- > Is there a difference between stated vs revealed preference for gambling behaviours?
- > What is the geo-temporal context of gambling activities in Great Britain?

Questions?

Shunya Kimura

Email: shunya.kimura. 18@ucl.ac.uk

