

Module-2 RF PCB Design Microstrip Discontinuities & Simulation in Momentum

Rashad.M.Ramzan, Ph.D FAST-NU, Islamabad

Today's Topics

- Transceiver Architectures
- TDM vs. FDM
 - Receiver Architecture
 - Transmitter Architecture
- Case Study-1: Semtech Transceiver on PCB
- Case Study-2: PA design & Layout
- Case Study-3: Patch Antenna & Layout

Overview of Standards

Standard	Access Scheme	Frequency band (MHz)	Channel Spacing	Frequency Accuracy	Modulation Technique	Rate (kb/s)	Peak Power
GSM	TDMA/ FDMA/ FDD	890-915 (Tx) 935-960 (Rx)	200 kHz	90 Hz	GMSK	270.8	0.8, 2, 5, 8 W
DCS-1800	TDMA/ FDMA/ FDD	1710-1785 (Tx) 1805-1850 (Rx)	200 kHz	90 Hz	GMSK	270.8	0.8, 2, 5, 8 W
DECT	TDMA/ FDMA/TDD	1880-1900	1728 kHz	50 Hz	GMSK	1152	250 mW
IS-54	TDMA/ FDMA	824-849 (Tx) 869-894 (Rx)	30 kHz	200 Hz	π/4 QPSK	48	0.8, 1, 2, 3 W
IS-95	CDMA/ FDMA	824-849 (Tx) 869-894 (Rx)	1250 kHz	N/A	OQPSK	1228	N/A
Bluetooth	CDMA/ FDMA/FH	2400-2483	1000 kHz	20 ppm	GFSK	1000	1,4,100 mW
802.11b (DSSS)	CDMA	2400-2483	20 MHz	25 ppm	ССК	11 Mb/s (max)	1 W
FDD UMTS TDD UMTS	FD-CDMA TD-CDMA	1920-1980 (Tx) 2110-2170 (Rx) 1900-1920 (TDD)	5000 kHz	0.1 ppm	QPSK QAM	2 Mb/s 10 Mb/s	0.125, 0.25, 0.5, 2W

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

3

RF Transceiver Architecture..

SEMTECH ISM Band Transceiver

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

5

2-Layer Stackup

- •A 2-layer PCB will be cheaper to than a 4-layer PCB.
- •To implement
 Microstrip or Stripline
 the PCB thickness
 should not exceed
 0.8mm 1.00mm
 (0.031" -0.039"),
 •The width of the
 transmission line

trace will become rather large.

4-Layer Stackup

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

7

Decoupling Capacitors

Thermal Relief Vias

- The thermal relief pad on the underside of Semtech RF devices provides both thermal relief and a solid ground reference to the chip
- Well stiched through vias to the GND plane on the other side

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

9

VCO L and C

- Symmetrical PCB layout of the XE1200 series VCO tank.
 - Short Traces
 - Ground guard band
 - Inductor should be placed orthogonal to the PCB trace for low coupling

PLL Loop Filter

- Noise Injected in the loop will appear as FM noise
 - Small loop area as possible
 - Guard trace around the component
 - Traces parallel

XE120x: Second Order Loop Filter

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

11

Transmitter Matching and Filtering

- LT1, CT1: Together with both PCB and device (packaging) parasitic forms a resonant load at the required output frequency.
- LT2, CT2: For applications that need to comply with the requirements of ETSI EN 300 220, this network forms a band stop filter resonant at the second harmonic.
- CT3 provides a DC block.
- CT4, CT5, LT3: Form a low-pass harmonic filter.

Transmitter Decoupling

- The power supply to both the transmitter (VDDP) and the RF block (VDDF) are decoupled by **C21** and **C2**.
- The Load inductor, L2, is placed at right-angles to the VCO tank inductor and L1 to minimize inductive coupling. The circuit layout does not fold back upon itself so as again to minimize cross-coupling.

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

13

LNA Matching Network

- CR2 and LR1, to provide 180° phase shift to the differential input ports of the LNA at RFA and RFB.
- CR1 and CR3 (where required) to provide the impedance transformation and matching to the source impedance (nominally 50ohms).

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

Impedance Matching using C&C

$$Z_{in} = \left[\frac{1/j\omega C_2 \times R_L}{1/j\omega C_2 + R_L}\right] + 1/j\omega C_1$$

$$Z_{in} = \left[\frac{\frac{1}{j\omega C_2 + R_L}}{1/j\omega C_2 + R_L}\right] + 1/j\omega C_1$$

$$Z_{in} = \left[\frac{R_L}{1+j\omega R_L C_2}\right] + 1/j\omega C_1 = \frac{j\omega R_L C_1 + (1+j\omega R_L C_2)}{j\omega C_1 - \omega^2 R_L C_1 C_2}$$

$$L \bigotimes_{C_2} C_1$$

$$Y_{in} = j\omega C_1 \times \frac{1 + j\omega R_L C_2}{1 + j\omega R_L (C_1 + C_2)}$$

$$Re[Y_{in}] = G_{in} = \frac{\omega^2 R_L C_1^2}{\omega^2 R_L^2 (C_1 + C_2)^2 + 1}$$

$$\omega \gg \frac{1}{R_L(C_1 + C_2)} \Rightarrow G_{in} \approx \frac{C_1^2}{R_L(C_1 + C_2)^2} \Rightarrow R_{in} \approx R_L \left(\frac{C_1 + C_2}{C_1}\right)^2$$

$$C_1$$

$$C_2$$

$$R_L$$

$$R_{in} \approx R_L \left(\frac{C_1 + C_2}{C_1}\right)^2$$

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

15

Input Match Optimization

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

Case Study-2 Power Amplifier Design

Case Study: Power Amplifier

We provide the amount of power needed by the antenna

Example:

 $P_{\rm A}$ = 1W at 50 Ω then $V_{\rm A}$ = 50^{1/2}V

 $V_{\rm A,pp}$ = 20V large voltage swing needed at 50Ω

But max. swing at PA output: only $2V_{DD}$,

If $2V_{DD} < V_{A,pp}$ then downwards impedance conversion needed

Power Amplifier Classes

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

19

DC Bias & Load Line

Simplified Class-A PA

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

21

Load Line of Class-A PA

$$P_0 = \frac{|V_0|^2}{R_0}\Big|_{\substack{\text{atmax swing}}} = \frac{V_{DD}^2}{2R_0}$$
, and $P_{DC} = V_{DD}I_{L0}$

$$I_{0m} = \left| I_0 \right| \sqrt{2} \Big|_{\substack{\text{atmax} \\ \text{swing}}} = I_{L0}$$

$$P_{DC} = V_{DD}I_{L0} = V_{DD}I_{0m} = \frac{V_{DD}^2}{R_0}$$

$$\eta = \frac{P_0}{P_{DC}}\Big|_{\substack{\text{atmax} \\ \text{swing}}} = \frac{1}{2}$$

Power efficiency (drain efficiency)

But in practice only < 35%

Large Signal Impedance Matching

- Power matching and efficiency are contradictory
- Classical matching for power would degrade efficiency
- Large signal matching by load-pull test preferred

Large signal matching tends to provide largest dynamic range

Matching Z_L for low enough resistance R_L , and cancellation of X_{out} (to reduce the reactive current) must be done over the range of amplitudes - difficult modeling task with accurate transistor models (Load-pull test) Parasitics play role!

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

23

Load Pull Test

Assume A class amplifier

If parasitics are neglected: $Z_L = R_{opt} = V_{DD}/I_m$ and $P_{opt} = (I_m)^2 R_{opt}/2$ and $I_m = I_{bias}$

Now assume $Z_L = R_L + jX_L$ so $P_L = (I_m)^2 R_L/2$ and $(V_m)^2 = (I_m)^2 [(R_L)^2 + (X_L)^2]$

In current mode we need $V_m < V_{DD}$ (to avoid distortion)

so
$$(R_L)^2 + (X_L)^2 < (R_{out})^2$$

Otherwise: $(R_L)^2 + (X_L)^2 > (R_{opt})^2 \iff (G_L)^2 + (B_L)^2 < (G_{opt})^2$

so $P_L = (V_{DD})^2 G_L/2$ in "voltage mode"

and $(I_m)^2 = (V_{DD})^2 [(G_L)^2 + (B_L)^2]$ but also $I_m < I_{bias}$

This is only a linear model and also MOSFET parasitics are missing

Load Pull Test

Current mode

 $I_m \approx I_{bias}$ and $V_m < V_{DD}$

Voltage mode

 $V_m \approx V_{DD}$ and $I_m < I_{bias}$

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

25

PA Design Using ADS

- 1. DC Simulation and Bias Point Selection
- 2. S-Parameters and Optimization
- 3. Harmonic Balance Simulations (Optional)
- 4. Circuit Envelope Simulation (Optional)
- 5. Filters Trans, Design Guide, Momentum
- 6. Final Circuit & System simulations

DC Bias Point Selection

This template also has a data display template.

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

27

S-Parameters

S-parameter ratios: S out / S in

- S11 Forward Reflection (input match impedance)
- S22 Reverse Reflection (output match impedance)_
- S21 Forward Transmission (gain or loss)
- S12 Reverse Transmission (leakage or isolation)

Best viewed on a Smith chart (next slides).

These are easier to understand and simply plotted.

<u>Results of an S-Parameter Simulation in ADS</u>

- S-matrix with all complex values at each frequency point
- Read the complex reflection coefficient (Gamma)
- Change the marker readout for Zo
- Smith chart plots for impedance matching
- Results are similar to Network Analyzer measurements

Perfect Impedance Point

This is an impedance chart transformed from rectangular Z. Normalized to 50 ohms, the center = R50+J0 or Zo (perfect match). For S11 or S22 (two-port), you get the **complex impedance**.

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

29

Perfect Impedance Point

Moving Towards the Centre

Add Series or Parallel (shunt) components.

You will do this in the lab.

Adjust the value to move toward open, short, L, C, or center of chart.

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

31

Smith Chart Optimization Utility

Stability-factor K

K-factor that is greater than one tells you that your amplifier is unconditionally stable.

If K is less than 1, you may have a problem. Below is the equation for K-factor:

$$K = \frac{1 - \left|S_{11}\right|^2 - \left|S_{22}\right|^2 + \left|\Delta\right|^2}{2\left|S_{21}S_{12}\right|}$$
$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

33

Stability-factor K

- Large power Transistor have very high transconductance, leading to potentially high gain at low frequencies. This high low frequency gain can cause stability problems.
- To reduce the gain at low frequency, we can add the stability circuit, which is usually simple RC combination in series with transistor input.

Gain, In/Output Matching

S-parameter ratios: S out / S in

- S11 Forward Reflection (input match impedance)
- S22 Reverse Reflection (output match impedance) Smith chart (next slides).
- S21 Forward Transmission (gain or loss)
- S12 Reverse Transmission (leakage or isolation)

These are easier to understand and simply plotted.

Best viewed on a

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

35

Final Schematic

Final Circuit

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

37

What Left....

- An Antenna
- In LAB we will learn to design 50Ω patch antenna to be used with PA.

Summary

- Case Study-1: Semtec Transceiver on PCB
- Case Study-2: PA design & Layout
- Case Study-3: Patch Antenna & Layout

RF PCB Design: Lecture- 3

© Rashad.M.Ramzan 2010-11

39