

Derivadas

Função	Derivada
u ^r	$r u^{r-1} u'$
ln u	<u>u'</u> u
e ^u	u' e ^u
a ^u	$u' a^u \ln a \ (a > 0, a \neq 1)$
sen u	$u'\cos u$
cosu	−u′ sen u
senh u	$u' \cosh u$
cosh u	u' senh u

Função	Derivada
tgu	$u' \sec^2 u$
cotgu	−u′ cosec² u
sec u	u' secu tgu
cosec u	-u' cosec u cotg u
arcsen u	$\frac{u'}{\sqrt{1-u^2}}$
arctg u	$\frac{u'}{1+u^2}$
arccos u	$-\frac{u'}{\sqrt{1-u^2}}$
arccotg u	$-\frac{u'}{1+u^2}$

Primitivas

Primitiva
$\frac{u^{r+1}}{r+1} \ (r \neq -1)$
$\ln u $
e^u
$\frac{a^u}{\ln a} \ (a > 0, a \neq 1)$
sen u
$-\cos u$
senh u
$\cosh u$

Função	Primitiva
u' sec² u	tg u
u' cosec² u	- cotg u
u' secu tgu	sec u
u' cosec u cotg u	-cosec u
$\frac{u'}{\sqrt{1-u^2}}$	arcsen u
$\frac{u'}{1+u^2}$	arctg u
u' sec u	$\ln \sec u + \operatorname{tg} u $
u' cosec u	$-\ln \csc u + \cot g u $

Primitivas quase imediatas: exercícios

$$a) \int x(1+x^2)^9 dx$$

a)
$$\int x(1+x^2)^9 dx$$
 b) $\int \operatorname{sen} x \cos^5 x dx$ c) $\int \frac{x^5}{1+x^6} dx$ d) $\int \operatorname{tg} x dx$

c)
$$\int \frac{x^5}{1+x^6} \, dx$$

d)
$$\int tg x dx$$

$$e) \int \frac{1}{1+4x^2} dx$$

e)
$$\int \frac{1}{1+4x^2} dx$$
 f) $\int e^{\operatorname{tg} x} \sec^2 x \, dx$ g) $\int x7^{x^2} dx$ h) $\int \operatorname{tg}^2 x \, dx$

g)
$$\int x7^{x^2} dx$$

h)
$$\int tg^2 x \, dx$$

i)
$$\int \frac{x}{x^2 + 9} \, dx$$

$$j) \int \frac{1}{x^2 + 9} dx$$

i)
$$\int \frac{x}{x^2 + 9} dx$$
 j) $\int \frac{1}{x^2 + 9} dx$ k) $\int \frac{1}{(x + 9)^2} dx$ l) $\int \frac{x^2}{x^2 + 9} dx$

$$1) \int \frac{x^2}{x^2 + 9} \, dx$$

$$m) \int x^3 \sqrt{1 - x^4} \, dx$$

n)
$$\int \frac{x^3}{\sqrt{1-x^4}} dx$$

o)
$$\int \frac{3x}{\sqrt{1-x^4}} dx$$

m)
$$\int x^3 \sqrt{1-x^4} \, dx$$
 n) $\int \frac{x^3}{\sqrt{1-x^4}} \, dx$ o) $\int \frac{3x}{\sqrt{1-x^4}} \, dx$ p) $\int \frac{e^x}{1+e^{2x}} \, dx$

q)
$$\int \frac{\ln x}{x} dx$$

$$r) \int \frac{5}{x \ln^3 x} dx$$

s)
$$\int \frac{1}{x \ln x} dx$$

q)
$$\int \frac{\ln x}{x} dx$$
 r) $\int \frac{5}{x \ln^3 x} dx$ s) $\int \frac{1}{x \ln x} dx$ t) $\int \frac{e^x}{1 + e^x} dx$

u)
$$\int \sin^3 x \cos^5 x \, dx$$
 v) $\int \frac{1}{\sec x - \cos x} \, dx$ w) $\int \frac{1}{\sqrt{x - x^2}} \, dx$ x) $\int \frac{1}{1 + e^x} \, dx$

$$(x) \int \frac{1}{\sec x - \cos x} \, dx$$

w)
$$\int \frac{1}{\sqrt{x-x^2}} dx$$

$$x) \int \frac{1}{1+e^x} dx$$

Umas fórmulas de trigonometria

• para produtos de sen(nx) e $\cos(mx)$, $m, n \in \mathbb{N}$, basta usar (A)

- para senⁿ $x \cos^m x$, $m, n \in \mathbb{N}$, um deles ímpar, usar $\cos^2 x + \sin^2 x = 1$
- para senⁿ $x \cos^m x$, $m, n \in \mathbb{N}$, ambos pares, usar (B)

Calcular:

(a)
$$\int \sin(3x)\sin(5x) dx$$
 (b) $\int \cos^2 x dx$ (c) $\int \sin^2 x \cos^4 x dx$

(b)
$$\int \cos^2 x \, dx$$

(c)
$$\int \sin^2 x \cos^4 x \, dx$$

Integração por partes

(a)
$$\int x \sin x \, dx$$
 (b) $\int x e^{-x} \, dx$ (c) $\int \ln x \, dx$ (d) $\int \arctan x \, dx$
(e) $\int \sin^2 x \, dx$ (f) $\int e^x \cos x \, dx$ (g) $\int x^3 e^{x^2} \, dx$ (h) $\int x \arcsin x^2 \, dx$

– Mais primitivas trigonométricas

- (co)tgⁿ x, $n \in \mathbb{N}$: destaca-se, substituindo, (co)tg² $x = (co)sec^2 x 1$
- (co)secⁿ, n par: destaca-se (co)sec² x e, noutro fator, (co)sec² $x = (co)tg^2 x + 1$
- (co)secⁿ, n impar: por partes, primitivando o fator (co)sec² x

Calcular:

(i)
$$\int tg^3 x \, dx$$

(j)
$$\int \csc^4 x \, dx$$

(k)
$$\int \sec^3 x \, dx$$

Primitivação de funções racionais

Primitivas elementares, com $a, \alpha, \beta, \gamma \in \mathbb{R}, \beta \neq 0, n \in \mathbb{N}$ e $C \in \mathbb{R}$ (verificar!)

$$\int \frac{1}{(x+a)^n} dx = \begin{cases} \ln|x+a| + C & n = 1\\ \frac{1}{(1-n)(x+a)^{n-1}} + C & n > 1 \end{cases}$$
$$\int \frac{x+\gamma}{(x+\alpha)^2 + \beta^2} dx = \frac{1}{2} \ln\left((x+\alpha)^2 + \beta^2\right) + \frac{\gamma - \alpha}{\beta} \arctan \frac{x+\alpha}{\beta} + C$$

Calcula

(a)
$$\int \frac{x^4 - 6}{x^3 - 2x^2} \, dx$$

(b)
$$\int \frac{3x}{x^3 - 3x^2 + 4} \, dx$$

(a)
$$\int \frac{x^4 - 6}{x^3 - 2x^2} dx$$
 (b) $\int \frac{3x}{x^3 - 3x^2 + 4} dx$ (c) $\int \frac{x^2 - 1}{2x^3 + 6x^2 + 5x} dx$

Potências de fatores irredutíveis de grau 2? Método de Hermite-Ostrogradski!

Dada a função racional própria $\frac{n(x)}{d(x)}$, sejam

- $d_s(x)$ o produto dos fatores de d(x) sem considerar a multiplicidade e
- $d_r(x) = d(x)/d_s(x)$;

então existem, e são únicas, as frações próprias $\frac{n_s(x)}{d_s(x)}$ e $\frac{n_r(x)}{d_r(x)}$ tais que

$$\frac{n(x)}{d(x)} = \frac{n_{\rm s}(x)}{d_{\rm s}(x)} + \left(\frac{n_{\rm r}(x)}{d_{\rm r}(x)}\right)'$$

7 Decomposições e primitivas

Comparação de diferentes decomposições: por exemplo,

$$\frac{1}{(x+5)^3(x^2+1)^2} = \frac{\alpha}{x+5} + \frac{\beta}{(x+5)^2} + \frac{\gamma}{(x+5)^3} + \frac{\delta x + \epsilon}{x^2 + 1} + \frac{\varphi x + \nu}{(x^2 + 1)^2}$$
(frações simples)
$$= \frac{ax^2 + bx + c}{(x+5)(x^2 + 1)} + \left(\frac{dx^3 + ex^2 + fx + g}{(x+5)^2(x^2 + 1)}\right)'$$
(Hermite-Ostrogradski)
$$= \frac{A}{x+5} + \frac{B}{(x+5)^2} + \frac{C}{(x+5)^3} + \frac{Dx + E}{x^2 + 1} + \left(\frac{Fx + G}{x^2 + 1}\right)'$$
(fs. +H.O. para potências de fatores de grau 2)

$$\Rightarrow \int \frac{1}{(x+5)^3(x^2+1)^2} dx = \int \frac{A}{x+5} + \frac{B}{(x+5)^2} + \frac{C}{(x+5)^3} + \frac{Dx+E}{x^2+1} dx + \frac{Fx+G}{x^2+1}$$

• Calcula

$$(a) \int \frac{x-1}{(x^2+1)^2} \, dx$$

(b)
$$\int \frac{x+1}{x(x^2-2x+2)^2} \, dx$$