

HEXFET® Power MOSFET

V _{DS}	100	٧
R _{DS(on) max} (@V _{GS} = 4.5V)	9.9	$\mathbf{m}\Omega$
Q _{g (typical)}	44	nC
R _{G (typical)}	1.2	Ω
I _D	886	Α
$(@T_{mb} = 25^{\circ}C)$		- 1

Applications

- Secondary Side Synchronous Rectification
- Inverters for DC Motors
- DC-DC Brick Applications
- Boost Converters

Features

results in
\Rightarrow
e

Benefits

Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Base Part Number	Package Type	Standard Pack		Orderable part number
	5 51	Form Quantity		-
IRLH5030PBF	PQFN 5mm x 6mm	Tape and Reel	4000	IRLH5030TRPBF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{GS}	Gate-to-Source Voltage	±16	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	13	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	11	
I _D @ T _{mb} = 25°C	Continuous Drain Current, V _{GS} @ 10V	88©	Α
I _D @ T _{mb} = 100°C Continuous Drain Current, V _{GS} @ 10V		56©	
I _{DM}	Pulsed Drain Current ①	400	
P _D @T _A = 25°C	Power Dissipation ®	3.6	w
P _D @ T _{mb} = 25°C	Power Dissipation ®	156	VV
	Linear Derating Factor ©	0.029	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.2	9.0	mo	V _{GS} = 10V, I _D = 50A ③
			7.9	9.9	mΩ	$V_{GS} = 4.5V, I_D = 50A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.5	V	V - V I - 150uA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.9		mV/°C	$V_{DS} = V_{GS}, I_D = 150\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 100V, V_{GS} = 0V$
				250	μA	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	Λ	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
gfs	Forward Transconductance	160			S	$V_{DS} = 50V, I_{D} = 50A$
Q_g	Total Gate Charge		94		nC	$V_{GS} = 10V, V_{DS} = 50V, I_D = 50A$
Q_g	Total Gate Charge		44	66		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		7.7			$V_{DS} = 50V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		4.0			$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		22		nC	$I_D = 50A$
Q _{godr}	Gate Charge Overdrive		10.3		1	See Fig.17 & 18
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		26			
Q _{oss}	Output Charge		20		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.2		Ω	
t _{d(on)}	Turn-On Delay Time		21			$V_{DD} = 50V, V_{GS} = 4.5V$
t _r	Rise Time		72			$I_D = 50A$
t _{d(off)}	Turn-Off Delay Time		41		ns	$R_G=1.8\Omega$
t _f	Fall Time		41			See Fig.15
C _{iss}	Input Capacitance	l —	5185			$V_{GS} = 0V$
C _{oss}	Output Capacitance		300		рF	$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance	l —	150		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		230	mJ
I _{AR}	Avalanche Current ①		50	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			100		MOSFET symbol	
	(Body Diode)			100	A	showing the	
I _{SM}	Pulsed Source Current			400	^	integral reverse	
	(Body Diode) ①			400	400		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25$ °C, $I_S = 50$ A, $V_{GS} = 0$ V ③	
t _{rr}	Reverse Recovery Time		32	48	ns	$T_J = 25$ °C, $I_F = 50A$, $V_{DD} = 50V$	
Q _{rr}	Reverse Recovery Charge		190	285	nC	di/dt = 500A/μs ③	
t _{on}	Forward Turn-On Time	Time is	Time is dominated by parasitic Inductance				

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC-mb}	Junction-to-Mounting Base	0.5	0.8	
R _{θJC} (Top)	Junction-to-Case @		15	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		35	
R _{BJA} (<10s)	Junction-to-Ambient ®		33	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Mounting Base

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18a. Gate Charge Test Circuit

Fig 18b. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

0.422 -	 -	— к	
	R2 —		F 0.395
			\overline{I}_{R}
D2 1 62	*	- 69/// 2	e
5		ØZ 4	<u>'</u>
Expose	E4	Ь.	(8x)
	├ E2	l	_ (4x)

BOTTOM VIEW

DIM	MILLIMITERS		IN	ICH
SYMBOL	MIN	MAX	MIN	MAX
Α	0.800	0.900	0.0315	0.0543
A1	0.000	0.050	0.0000	0.0020
А3	0.20	0 REF	0.007	9 REF
b	0.350	0.470	0.0138	0.0185
b1	0.025	0.125	0.0010	0.0049
b2	0.210	0.410	0.0083	0.0161
b3	0.150	0.450	0.0059	0.0177
D	5.00	0 BSC	0.1969 BSC	
D1	4.75	O BSC	0.1870 BSC	
D2	4.100	4.300	0.1614	0.1693
Е	6.00	0 BSC	0.2362 BSC	
E1	5.75	0 BSC	0.2264 BSC	
E2	3.380	3.780	0.1331	0.1488
е	1.27	70 REF	0.05	00 REF
e1	2.80	00 REF	0.11	02 REF
K	1.200	1.420	0.0472	0.0559
L	0.710	0.900	0.0280	0.0354
Р	0°	12°	0°	12°
R	0.200	0.200 REF 0.0079		9 REF
R2	0.150	0.200	0.0059	0.0079

Note:

- Dimensions and toleranceing confirm to ASME Y14,5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- 3. Caplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

PQFN 5x6 Outline "G" Package Details

DIM	MILLIN	1ETERS	INCH	
SYMBOL	MIN.	MAX.	MIN.	MAX.
А	0.950	1.050	0.0374	0.0413
A1	0.000	0.050	0.0000	0.0020
А3	0.254	- REF	0.0100	REF
b	0.310	0.510	0.0122	0.0201
b1	0.025	0.125	0.0010	0.0049
b2	0.210	0.410	0.0083	0.0161
b3	0.180	0.450	0.0071	0.0177
D	5.150	BSC	0.2028	BSC
D1	5.000	5.000 BSC		BSC
D2	3.700	3.900	0.1457	0.1535
E	6.150	BSC	0.2421	BSC
E1	6.000	BSC	0.2362	BSC
E2	3.560	3.760	0.1402	0.1488
E3	2.270	2.470	0.0894	0.0972
е	1.27	REF	0.050 REF	
K	0.830	1.400	0.0327	0.0551
L	0.510	0.710	0.0201	0.0280
L1	0.510	0.710	0.0201	0.0280
Р	10 deg	12 deg	0 deg	12 deg

Submit Datasheet Feedback

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0,1mm is acceptable
- 3. Coplanarity applies to the expose Heat Slug
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154:

http://www.irf.com/technical-info/appnotes/an-1154.pdf

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

PQFN 5x6 Part Marking

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nomind

Paakage	Reel	QTY	Reel	Ao	Во	Ко	P1	W	Pin 1
Туре	Diameter		Width	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
	(Inch)		W1						
			(mm)						
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Ql

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

May 19, 2015

Qualification information[†]

Qualification level	Industrial ^{††} (per JEDEC JESD47F ^{†††} guidelines)				
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†††})			
RoHS compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements.

 Please contact your International Rectifier sales representative for further information:

 http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.18mH, $R_G = 25\Omega$, $I_{AS} = 50A$.
- 4 R_{θ} is measured at T_J of approximately 90°C.
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuous current based on maximum allowable junction temperature.

Revision History

Ticvision filiatory				
Date	Comment			
4/28/2015	Updated package outline for "option B" and added package outline for "option G" on page 7			
4/20/2013	Updated tape and reel on page 8.			
5/19/2015	Updated package outline for "option G" on page 7.			
5/19/2015	Updated "IFX logo" on page 1 and page 9.			

AN INFINEON TECHNOLOGIES COMPANY

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Submit Datasheet Feedback