Hands-On Ethical Hacking and Network Defense, Edition 4

Chapter 9: Embedded Operating Systems: The Hidden Threat

Module Objectives

- By the end of this module, you should be able to:
 - · Explain what embedded operating systems are and where they're used
 - Describe the Internet of Things (IoT) and other embedded operating systems
 - Identify vulnerabilities of embedded operating systems and best practices for protecting them

Introduction to Embedded Operating Systems (1 of 3)

Embedded system

- Any computer system that isn't a general-purpose PC or server
 - Found in GPS devices, ATMs, and in a wide array of electronic consumer and industrial items
- Embedded operating system (OS)
 - Small program developed specifically for use with embedded systems
 - Stripped-down version of OS commonly used on general-purpose computers
 - Designed to be small and efficient

Introduction to Embedded Operating Systems (2 of 3)

- Real-time operating system (RTOS)
 - Typically used in devices such as programmable thermostats, appliance controls, and spacecraft
- Corporate buildings
 - May have many embedded systems
 - Firewalls, switches, routers, web-filtering appliances, network attached storage (NAS) devices, etc.
- Embedded systems
 - Are in all networks
 - Perform essential functions
 - Route network traffic
 - Block suspicious packets

Introduction to Embedded Operating Systems (3 of 3)

- Recently, security researchers reverse-engineered the software on a popular firewall's chipset (firmware)
 - They inserted modified software to control the firewall's behavior
 - Hackers who could do this could modify a firewall to copy network traffic passing through an interface
 - Could give an external IP address full access through the firewall

Knowledge Check Activity 9-1

An embedded OS must be developed specifically for use with embedded systems. True or false?

- a. True
- b. False

Knowledge Check Activity 9-1: Answer

An embedded OS must be developed specifically for use with embedded systems. True or false?

Answer: b. False

An embedded operating system can be a small program developed specifically for use with embedded systems, or it can be a stripped-down version of an OS commonly used on general-purpose computers.

Polling Activity 9-1

Which of the following describes an RTOS?

- a. An embedded OS capable of multitasking and responding predictably
- b. An embedded OS intended for real-time data manipulation
- c. An embedded OS intended for packet analysis
- d. An embedded OS intended for devices that run multiple OSs

Polling Activity 9-1: Answer

Which of the following describes an RTOS?

Answer: a. An embedded OS capable of multitasking and responding predictably

RTOS is designed with an algorithm aimed at multitasking and responding predictably.

Polling Activity 9-2

Which of the following does not use an embedded OS?

- a. ATM
- b. Workstation running Windows 10
- c. NAS device running Windows Server 2012 for Embedded Systems
- d. Slot machine

Polling Activity 9-2: Answer

Which of the following does not use an embedded OS?

Answer: b. Workstation running Windows 10

A workstation running Windows 10 uses a desktop PC that does not require an embedded operating system as it is running on a Windows OS.

Windows and Other Embedded Operating Systems (1 of 2)

- Recycling common code and reusing technologies
 - Sound software engineering practices
 - However, they introduce common points of failure in many products
 - Viruses, worms, Trojans, and other attack vectors take advantage of shared code
- Windows and Linux vulnerabilities.
 - Might also exist in embedded version
- Windows CE
 - Trimmed-down version of the Windows desktop OS
 - Much of the rest of it is available to hardware vendors, partners, and developers, based on their licensing level
 - Some source code is available to the public
 - Rare in 2022, but still worth knowing about

Windows and Other Embedded Operating Systems (2 of 2)

- Windows 10 IoT
 - Provides full Windows API
 - Performs many of the same tasks as the personal computer (PC) version
 - Does not have a PC interface
 - Designed for use on commodity devices
 - Example: Raspberry Pi
 - Designed to make things easy for developers

Other Proprietary Embedded OSs (1 of 5)

- VxWorks
 - Widely used embedded real-time OS
 - Developed by Wind River Systems
 - Used in many different environments and applications
 - Designed to run efficiently on minimal hardware
 - Used by a variety of systems

Other Proprietary Embedded OSs (2 of 5)

Figure 9-1 Creating an embedded OS image in Wind River's VxWorks Workbench

Other Proprietary Embedded OSs (3 of 5)

- Green Hill Software produces a variety of embedded OSs
 - F-35 Joint Strike Fighter
 - Multiple independent levels of security/safety (MILS)
 - Embedded OS certified to run multiple levels of classification
 - Designs embedded OS code used in printers, routers, switches, etc.
- QNX Software Systems QNX
 - Commercial RTOS
 - Used in Cisco's ultrahigh-availability routers and Logitech universal remotes

Other Proprietary Embedded OSs (4 of 5)

- Real-Time Executive for Multiprocessor Systems (RTEMS)
 - An open-source embedded OS
 - Used in space systems
 - Support processors designed specifically to operate in space
- Using multiple embedded OSs increases the attack surface
 - NASA has improved Mars Reconnaissance Orbiter's survivability by using several small embedded OSs tailored for specific functions

Other Proprietary Embedded OSs (5 of 5)

Figure 9-2 Monolithic kernel versus microkernel OSs

*Nix Embedded OSs (1 of 3)

- Embedded Linux
 - Example of a monolithic OS used in industrial, medical, and consumer items
 - Embedded versions of Linux and other *nix OSs can be tailored for devices with limited memory or hard drive capacity
 - Advantage of monolithic kernel
 - Supports the widest variety of hardware
 - Allows adding features by using dynamic kernel modules

*Nix Embedded OSs (2 of 3)

- Wind River Linux
 - Linux OS for embedded systems
 - Produced by Wind River
 - Linux variant RTOS suitable for embedded applications
 - Requires a guaranteed response in a mathematically predictable manner
- Linux dd-wrt
 - Embedded Linux OS
 - Initially designed for use on the Linksys WRT54G wireless router
 - Can be run on most small office or home routers

*Nix Embedded OSs (3 of 3)

Figure 9-3 Control panel for dd-wrt

Knowledge Check Activity 9-2

VxWorks is which of the following?

- a. Windows embedded OS
- b. Proprietary embedded OS
- c. Linux embedded OS
- d. Windows security validation tool

Knowledge Check Activity 9-2: Answer

VxWorks is which of the following?

Answer: b. Proprietary embedded OS

VxWorks is a proprietary embedded real-time OS developed by Wind River Systems.

Vulnerabilities of Embedded OSs

- Impact of attacks have become more serious
 - Embedded OSs are no exception
- Easiest way to profit from hacking
 - Attack devices that store and dispense cash (e.g., ATMs)
 - ATMs are vulnerable to attacks upon their software performed locally or remotely
 - Physical attacks can also occur, which involve the use of card skimmers or even stealing the machines

Embedded OSs Are Everywhere

- Embedded systems with Y2K software flaw were located everywhere
 - Today, there are many more embedded devices to be concerned about than in 2000
 - Are under attack from hackers and terrorists who want to further their financial or political causes
 - Addressing security early in the design phase is essential

Embedded OSs Are Networked (1 of 2)

- Advantages of connecting to a network
 - Efficiency and economy
 - Ability to manage systems and share services while keeping the amount of human resources and expertise is minimal
 - Helps companies reduce costs
- Gaining efficiency and reducing costs have a price
 - Any device added to a network infrastructure increases the potential for security problems

Embedded OSs Are Networked (2 of 2)

- Security testers should address questions such as the following:
 - What Peripheral Component Interconnect (PCI) or USB devices are present?
 - Where were they manufactured? Is the supply chain trustworthy?
 - Which devices have embedded OSs stored in rewriteable (nonvolatile) memory?
 Rewriteable memory can be flashed
 - Which embedded OS is currently loaded on each device?
 - Can you make sure the embedded OS hasn't been corrupted or subverted with malicious code?

Embedded OSs Are Difficult to Patch (1 of 2)

- General-purpose desktop OSs
 - Wait for vulnerability to be identified, then download, and install the patch when it's available
 - · Restart the system, if necessary
 - Patching is simple
- Embedded OSs
 - Must continue operating regardless of threats, particularly in critical systems
 - · Patching may be a problem
 - System administrators may have no clue how to patch a web server running on a tiny chip
 - Buffer overflow attacks might be successful
 - Because few updates are released to correct vulnerabilities
 - Manufacturers typically prefer system upgrades

Embedded OSs Are Difficult to Patch (2 of 2)

- Open-source software
 - Cost of developing and patching is shared by the entire open-source community
- Patching Linux kernel
 - Cost in programmer hours is estimated at tens of billions of dollars
- Linux kernel offers flexibility and support for sophisticated features
 - Large; has many code portions that might need to be patched
- Fixing minor vulnerabilities that are expensive to fix in embedded OSs
 - Programmer must weigh the cost of fixing the vulnerability against the importance of the information the embedded system controls

Embedded OSs Are in Networking Devices (1 of 2)

- Networking devices usually have software and hardware designed to transmit information across networks
- General-purpose computers originally performed routing and switching
 - High-speed networks now use specialized hardware and embedded OSs
- Attacks that compromise a router can give attackers the complete access to every host on the network
- Attackers follow usual methods of footprinting, scanning, and enumerating the target to compromise an entire network

Embedded OSs Are in Networking Devices (2 of 2)

- Authentication bypass vulnerability
 - A common vulnerability of routers and other network devices with built-in web management interfaces
 - Specially crafted URL bypasses the normal authentication mechanism
- After bypassing authentication, attackers can launch other network attacks
 - They use the access gained through compromising the router

Embedded OSs Are in Network Peripherals (1 of 3)

- Common peripheral devices on an organization's network:
 - Include printers, scanners, copiers, and fax devices
- Multifunction devices (MFDs)
 - Perform more than one function
 - Rarely scanned for vulnerabilities or configured for security
 - Have embedded OSs with sensitive information.
 - Information may be susceptible to theft and modification
 - Malware or malicious links can be inserted into the OSs
 - Social-engineering techniques may be used by attackers to masquerade as support technicians
- Printers should be reconfigured before connecting them to a network
 - Most printers have only TCP/IP enabled, but unfortunately, default administrator usernames and passwords are still configured

Embedded OSs Are in Network Peripherals (2 of 3)

Figure 9-4 PewDiePie Printer Hack Output

Embedded OSs Are in Network Peripherals (3 of 3)

Figure 9-5 Firmware file being uploaded to a networked printer

Supervisory Control and Data Acquisition Systems (SCADA) (1 of 2)

- Used for equipment monitoring in large industries where automation is critical, such as public works and utilities
- May have many embedded systems as components
 - Components might be vulnerable through data fed in and out of them or through their embedded OSs
- SCADA systems controlling critical infrastructure are usually separated from the Internet by an "air gap"

Supervisory Control and Data Acquisition Systems (SCADA) (2 of 2)

- December 2015
 - An attack on a Ukrainian power plant left about 700,000 people in the dark for a few hours
 - Later, it was uncovered that a piece of malicious code named "Black-Energy" was introduced to infect systems at the power plant
 - It is assumed that attackers interacted with a SCADA system to interrupt the flow of power

Cell Phones, Smartphones, and PDAs (1 of 2)

- Conversations over traditional phones
 - Considered protected
 - Used to require a lot of time, expensive equipment, and a warrant
 - Many have the same security expectations of cell phones, smartphones, and smartphones
- Cell phone vulnerabilities include the following:
 - Attackers listening to your phone calls
 - Using the phone as a microphone
 - "Cloning" the phone to make long-distance calls
 - Get useful information for computer or network access
 - Steal trade or national security secrets

Cell Phones, Smartphones, and PDAs (2 of 2)

- Smartphones
 - Security researchers and attackers have created Java-based viruses as well as code
 - Can infect phones running Google Android, Windows Mobile, and the Apple iPhone OS (iOS)
 - The line is blurring between embedded and general-purpose OSs
 - These OSs have vulnerabilities that can compromise your smartphone's security
 - Wearable technologies increase the vulnerabilities of smartphone because of their interaction through Bluetooth
- Trojan applications have become a big concern in mobile application stores
 - Examples: Cake VPN, Pacific VPN, BeatPlayer, QR/Barcode Scanner MAX, and QRecorder

Rootkits (1 of 3)

- Modify parts of OS or install themselves as kernel modules, drivers, libraries, and applications
 - Exist for Windows and *nix OSs
- Rootkit-detection tools and antivirus software
 - Detect rootkits and prevent installation
 - More difficult if OS has already been compromised
 - · Rootkits can monitor the OS for anti-rootkit tools and neutralize them
- Biggest threat
 - Rootkits that infect a device's firmware
 - More dangerous because they tend to be extremely small
 - Loaded in low-level nonvolatile storage that anti-rootkit tools can't access readily
 - Can persist even after the hard drive has been reformatted

Rootkits (2 of 3)

- Trusted Platform Module (TPM)
 - A cryptographic firmware bootcheck processor installed on many recent computer systems
 - Acts as a defense against low-level rootkits
 - Ensures that OS hasn't been subverted or corrupted
 - ISO standard ISO/IEC 11889
- Firmware rootkits
 - Hard to detect as the code for firmware often isn't checked for possible corruption
- Insider hacking
 - Harder to detect with malicious code hidden in flash memory of their company computers before they leave the company

Rootkits (3 of 3)

- Systems that are compromised even before purchase
 - May function like normal
 - Must flash (rewrite) the BIOS with a known clean copy, wipe the hard drive, and reload the OS from clean installation media
 - Expensive and time-consuming
- LoJack for Laptops
 - Popular laptop theft-recovery service
 - Has some design-level vulnerabilities that rootkits can exploit
 - Infection resides in the computer's BIOS
 - Persists even after the OS is reinstalled or the hard drive is replaced
 - Call-home mechanism
 - Allows the monitoring authority to instruct the LoJack BIOS agent to wipe all information as a security measure or to track the stolen system's location.

Best Practices for Protecting Embedded OSs (1 of 2)

- Identify all embedded systems in an organization
- Prioritize the systems or functions that depend on embedded systems
- Follow least privileges principle for access to embedded systems
- Use data transport encryption
- Configure embedded systems securely
 - Follow manufacturers' recommendations

Best Practices for Protecting Embedded OSs (2 of 2)

- Use cryptographic measures for booting embedded systems
- Install patches and updates
- Restrict network access to only the IP addresses that need to communicate with embedded systems
 - And reduce attack surface by disabling or blocking unneeded services
- Upgrade or replace embedded systems that can't be fixed or pose unacceptable risks

Discussion Activity 9-1

Discuss as a group why rootkits that infect a device's firmware are considered the biggest threat to any OS (embedded or general-purpose).

Discussion Activity 9-1: Answer

Discuss as a group why rootkits that infect a device's firmware are considered the biggest threat to any OS (embedded or general-purpose).

Answer: Rootkits tend to be extremely small, are loaded in low-level nonvolatile storage that anti-rootkit tools can't access readily, and can persist even after the hard drive has been reformatted.

Self-Assessment

Explain why embedded device security is important.

Recall the different kinds of embedded OSs.

Summary

- Now that the lesson has ended, you should be able to:
 - Explain what embedded operating systems are and where they're used
 - Describe the Internet of Things (IoT) and other embedded operating systems
 - Identify vulnerabilities of embedded operating systems and best practices for protecting them