Microcontrollers TEDK18 Lecture 2

INTRODUCTION TO ARM-ARCHITECTURE AND GPIO ANDREAS AXELSSON (ANDREAS.AXELSSON@JU.SE)

ARM Cortex-M

Harvard Architecture (separate instruction and data busses)

ARM Architecture

- R0-R12 General purpose registers for data processing
- SP Stack pointer (R13)
 - Can refer to one of two SPs
 - Main Stack Pointer (MSP)
 - Process Stack Pointer (PSP)
 - Uses MSP initially, and whenever in Handler mode
 - When in Thread mode, can select either MSP or PSP using SPSEL flag in CONTROL register.
- LR Link Register (R14)
 - Holds return address when called with Branch & Link instruction (B&L)
- PC program counter (R15)

- PRIMASK Exception mask register
 - Bit 0: PM Flag
 - Set to 1 to prevent activation of all exceptions with configurable priority
 - Access using CPS, MSR and MRS instructions
 - Use to prevent data race conditions with code needing atomicity

CONTROL

- Bit 1: SPSEL flag
 - Selects SP when in thread mode: MSP (0) or PSP (1)
- Bit 0: nPRIV flag
 - Defines whether thread mode is privileged (0) or unprivileged (1)
- With OS environment,
 - Threads use PSP
 - OS and exception handlers (ISRs) use MSP

Program Status Register

The Program Status Register (PSR) combines:

- Application Program Status Register (APSR)
- · Interrupt Program Status Register (IPSR)
- Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions. See the register summary in Table 2.2 for its attributes. The bit assignments are:

Table 2.4. APSR bit assignments

Bits	Name	Function
[31]	N	Negative flag
[30]	Z	Zero flag
[29] C		Carry or borrow flag
[28]	V	Overflow flag
[27]	Q	Saturation flag
[26:0]	-	Reserved

Memory Map

0xFFFFFFF System components System region and debug 0xE0000000 Off chip peripherals Device region 0xA0000000 Off chip memory RAM region 0x60000000 Peripherals Peripheral region 0x40000000 SRAM SRAM region 0x20000000 CODE region Program flash 0x00000000

Memory Map – Peripherals

Reference Manual for STM32F401 page 38-39

Table 1. STM32F401xB/C and STM32F401xD/E register boundary addresses

Boundary address	Peripheral	Bus	Register map					
0x5000 0000 - 0x5003 FFFF	USB OTG FS	AHB2	Section 22.16.6: OTG_FS register map on page 755					
0x4002 6400 - 0x4002 67FF	DMA2		Section 0.5.11: DMA register man on page 109					
0x4002 6000 - 0x4002 63FF	DMA1]	Section 9.5.11: DMA register map on page 198					
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.8: Flash interface registers on page 60					
0x4002 3800 - 0x4002 3BFF	RCC]	Section 6.3.22: RCC register map on page 137					
0x4002 3000 - 0x4002 33FF	CRC]	Section 4.4.4: CRC register map on page 70					
0x4002 1C00 - 0x4002 1FFF	GPIOH	AHB1						
0x4002 1000 - 0x4002 13FF	GPIOE]						
0x4002 0C00 - 0x4002 0FFF	GPIOD]	Section 8.4.11: GPIO register map on page 164					
0x4002 0800 - 0x4002 0BFF	GPIOC]	Section 6.4.11. GPIO register map on page 164					
0x4002 0400 - 0x4002 07FF	GPIOB							
0x4002 0000 - 0x4002 03FF	GPIOA							

Memory Map – Peripherals

Table 1. STM32F401xB/C and STM32F401xD/E register boundary addresses (continued)

Boundary address	Peripheral	Bus	Register map
0x4001 4800 - 0x4001 4BFF	TIM11		Section 14.5.12: TIM10/11 register map on
0x4001 4400 - 0x4001 47FF	TIM10		page 420
0x4001 4000 - 0x4001 43FF	TIM9		Section 14.4.13: TIM9 register map on page 410
0x4001 3C00 - 0x4001 3FFF	EXTI		Section 10.3.7: EXTI register map on page 212
0x4001 3800 - 0x4001 3BFF	SYSCFG		Section 7.2.8: SYSCFG register map
0x4001 3400 - 0x4001 37FF	SPI4	APB2	Section 20 F 40: SRI register man on acce 644
0x4001 3000 - 0x4001 33FF	SPI1	APBZ	Section 20.5.10: SPI register map on page 611
0x4001 2C00 - 0x4001 2FFF	SDIO		Section 21.9.16: SDIO register map on page 667
0x4001 2000 - 0x4001 23FF	ADC1		Section 11.12.16: ADC register map on page 240
0x4001 1400 - 0x4001 17FF	USART6		Continue 40 C C. LICART resistant research as 550
0x4001 1000 - 0x4001 13FF	USART1		Section 19.6.8: USART register map on page 558
0x4001 0000 - 0x4001 03FF	TIM1		Section 12.4.21: TIM1 register map on page 314
0x4000 7000 - 0x4000 73FF	PWR		Section 5.5: PWR register map on page 90
0x4000 5C00 - 0x4000 5FFF	I2C3		
0x4000 5800 - 0x4000 5BFF	I2C2		Section 18.6.11: I2C register map on page 505
0x4000 5400 - 0x4000 57FF	I2C1		
0x4000 4400 - 0x4000 47FF	USART2		Section 19.6.8: USART register map on page 558
0x4000 4000 - 0x4000 43FF	I2S3ext		
0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3		Section 00 5 40: 00 are interested as a constant
0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2	APB1	Section 20.5.10: SPI register map on page 611
0x4000 3400 - 0x4000 37FF	I2S2ext	APB1	
0x4000 3000 - 0x4000 33FF	IWDG		Section 15.4.5: IWDG register map on page 426
0x4000 2C00 - 0x4000 2FFF	WWDG		Section 16.6.4: WWDG register map on page 433
0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers		Section 17.6.21: RTC register map on page 471
0x4000 0C00 - 0x4000 0FFF	TIM5		
0x4000 0800 - 0x4000 0BFF	TIM4		Section 42 4 24: Tilds reciptor man or 274
0x4000 0400 - 0x4000 07FF	TIM3		Section 13.4.21: TIMx register map on page 374
0x4000 0000 - 0x4000 03FF	TIM2		

Figure 16. Basic structure of a five-volt tolerant I/O port bit

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

0x0C00 0000 for port A

0x0000 0280 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODER12[1:0]		R12[1:0] MODER1		R11[1:0] MODER10[1:0]		10[1:0] MODEF		MODER9[1:0]		MODER8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
MODE	MODER7[1:0] MODER6[1:0] MOD		MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

8.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	. 8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	ОТВ	OT7	OT6	OT5	OT4	ОТЗ	OT2	OT1	ОТО
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

8.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..E and H)

Address offset: 0x08

Reset values:

0x0C00 0000 for port A

0x0000 00C0 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	OSPEEDR15 [1:0]				EDR13 :0]	R13 OSPEEDR12 [1:0]		OSPEEDR11 [1:0]		OSPEEDR10 [1:0]		OSPEEDR9 [1:0]		OSPEEDR8 [1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	OSPEEDR7[1:0] O		OSPEEDR6[1:0] OSPEEDR5		DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPE [1:	EDR1 :0]		EDR0 0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **OSPEEDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..E and H)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

0x0000 0100 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDE	R15[1:0]	:0] PUPDR14[1:0] PUPDR13[1:		R13[1:0]	PUPDR12[1:0]		PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPD	PDR7[1:0] PUPDR6[1:0] PUPDR5[1:0]		R5[1:0]	PUPDR4[1:0]		PUPDI	PUPDR3[1:0]		PUPDR2[1:0]		PUPDR1[1:0]		R0[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the $GPIOx_BSRR$ register (x = A..E and H).

Quiz: How does BSRR work?

Inputs: What's a One? A Zero?

- Input signal's value is determined by voltage
- Input threshold voltages depend on supply voltage V_{DD}
- Exceeding V_{DD} or GND may damage chip

Outputs: What's a One? A Zero?

- Nominal output voltages
 - 1: V_{DD}-0.5 V to V_{DD}
 - 0: 0 to 0.5 V
- Note: Output voltage depends on current drawn by load on pin
 - Need to consider source-to-drain resistance in the transistor
 - Above values only specified when current < 5 mA (18 mA for high-drive pads) and V_{DD} > 2.7 V

Example: Driving LEDs

- Need to limit current to a value which is safe for both LED and MCU port driver
- Use current-limiting resistor

•
$$R = (V_{DD} - V_{LED})/I_{LED}$$

- Set I_{LED} = 4 mA
- V_{LED} depends on type of LED (mainly color)

Red: ~1.8V

Blue: ~2.7 V

Solve for R given VDD = ~3.0 V

• Red: 300 Ω

• Blue: 75 Ω

Example

Blink with a LED

Nucleo-64 STM32F401RE

STM32F401 In Action

STM32 Microcontroller In Action

Microcontrollers

Questions?

Contact information

Andreas Axelsson

Email: andreas.axelsson@ju.se

Mobile: 0709-467760