9.9 PreTest: Linear & quadratic functions on the coordinate plane

1. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = -x + 8$$

$$3x - 4y = -4$$

Are the lines parallel, perpendicular, or neither? Justify your answer.

2. Find each value as a decimal rounded to three significant figures.

(c)
$$11 - \sqrt{20}$$

(d)
$$2\pi$$

- 3. The line l has the equation $y = -\frac{2}{5}x + 3$.
 - (a) What is the slope of the line k, given $k \parallel l$?
 - (b) What is the slope of the line m, given $m \perp l$?
- 4. On the graph below, draw \overline{AB} , with A(-1,2) and B(7,6), labeling the end points. Determine and state the coordinates of the midpoint M of \overline{AB} and mark and label it on the graph.

5. Given K(1,6) and L(-3,4), find the length of \overline{KL} , expressed as a simplified radical.

Use:
$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

6. A translation maps $A(1,12) \to A'(-3,2)$. What is the image of B(10,-2) under the same translation?

In the following two problems, solve for the value of x.

7.
$$\frac{1}{5}(10x+5)=3$$

$$8. \ \frac{2}{3}(5-x) = -4$$

9. Given $f(x) = \frac{1}{3}x + 3$. Solve for x such that for f(x) = 2.

10. Given $g(x) = -2x^2 - 5x + 3$. Simplify g(1).

11. In the diagram below, \overline{AC} has endpoints with coordinates A(-6,5) and C(8,-2).

If B is a point on \overline{AC} and AB:BC=2:5, what are the coordinates of B?

12. A(1, -3) is one endpoint of \overline{AB} . The segment's midpoint is M(5, 4). Find the other endpoint, B.

Unit 9: Algebra 31 March 2022

13. Spicy: Shown below is the quadrilateral ABCD having coordinates A(-3, -3), B(5, 1), C(6, 8), and D(-2, 4).

Given that $\overline{AD} \parallel \overline{BC}$.

(a) Find the slopes of \overline{AB} and \overline{CD}

- (b) Hence, show that $\overline{AB} \parallel \overline{CD}$
- (c) Use the definition that a parallelogram is a quadrilateral with two pairs of parallel sides to prove ABCD is a parallelogram.