Experience and future plans for running concurrently multiple experiments with Free Electron Lasers

For Diling Zhu, Aymeric ROBERT

aymeric@slac.stanford.edu

Linac Coherent Light Source

Layout

SLAC

- How to define the success of an "X-ray" User Facility ?
- What is "Multiplexing"
 - Performing multiple experiments at the same time.
- Multiplexing Concepts:
 - Multiplexing with Electrons: feeding multiple undulators with one linac
 - Multiplexing with Photons: feeding multiple experiments from one undulator
- Current Multiplexing schemes at LCLS
- Future plans with X-ray gratings

Conclusion

Acknowledgments

SLAC

Thin Diamonds and Large Offset Monochromators

- Y. Feng, D. Zhu and the LCLS HXR Department (LCLS)
- Y. Shvydko, S. Stoupin, Advanced Photon Source (ANL)
- S. Terentiev , V. Blank, TISCNM (Russia)

CXI Refocusing

S. Boutet and the LCLS FXI Department (LCLS)

Hard X-ray Mirrors

D. Cocco, L. Zhang and the LCLS Optics Eng. Team (LCLS)

Gratings

- M. Chollet, B. Arnold, A. Sakdinawat, K. Li, J. Hastings, HXR
 Department and LCLS Optics Eng. Team (SLAC & LCLS)
- C. David, Paul Scherrer Institut (Switzerland)

Success of an "X-ray" User Facility

SLAC

$$\frac{Budget}{N_P} \to 0$$

Funding Agency = Budget

$$\frac{Budget}{Acc} \rightarrow 0$$

$$\frac{Budget}{N_P} \to 0$$

Funding Agency = Budget

$$\frac{Budget}{Acc} \rightarrow 0$$

Storage Rings

Ultimate e-recycling

- Top-up
- MANY IDs & BMs
- Independent operation
 - ~ 1 instrument per Undulator

FELs

Single-Path Undulator

- Chaotic
- Very limited number of Undulators
- Possibly several instruments per undulator

Multiplexing: more than 1 experiment by sharing same linac

Performing more than 1 experiment by sharing the same linac

Linac

Sharing the Electrons

- Two undulators in parallel
 - e-beam switching with reduced rep-rate in each undulator Tanaka et al: demonstrated successfully at SACLA with BL3, BL2
- Two undulators in tandem
 - e-beam recycling

<u>Decking et al</u>: demonstrated at Eu-XFEL with SASE 1 and 3

Sharing the X-rays

(i.e. more than 1 experiment at a time from a single undulator)

- Intermittent splitting & fast switching
- Recycling the X-rays
- Splitting
 - Spectral Splitting
 - Spatial Splitting

Linac

Und

X-ray Multiplexing (1): Fast Switching

MFX MEC

- Fast Switching : no need for hour-longs downtime
 - 10 minute switching
 - MFX Single Mirror
 - XCS Periscope : 2 mirrors

X-ray Multiplexing (1): Fast Switching

- Fast Switching: no need for hour-longs downtime
 - 10 minute switching
 - MFX Single Mirror
 - XCS Periscope : 2 mirrors

X-ray Multiplexing (1): Intermittent Switching

- Intermittent Switching: MEC vs CXI or XCS
 - MEC operation with long pulse laser
 - 1 shot every several minutes

X-ray Multiplexing (2): X-ray recycling

Recycling X-rays

- Reuse the "spent" beam from the upstream experiment into a second independent experiment.
- Structures were obtained from each of the data sets from independent experiments.

KB₁

Boutet et al., Jour. Synch. Rad. 22, 634-643 (2015)

X-ray Multiplexing (3): Spectral Splitting

Spectral Splitting

Large Offset diamond monochromators

MFX MEC

Feng et al., *Proc SPIE* 87780b (2013) Stoupin et al., *J. Appl. Cryst.* **47**, 1329 (2014) Zhu et al., *Rev. Sci. Inst.* **85**, 063106(2014) Feng et al. J. Synch. Rad. **22** 626 (2015)

X-ray Multiplexing (4): Spatial Splitting

- Not in use currently at LCLS or elsewhere as multiplexing option
- First used at FLASH with soft X-ray mirrors
 - (Mitzner & Zacharias et al.)
- Concerns about coherent diffraction features from the edge

- Has been successfully used recently in X-ray Optics
 - Pioneered with hard X-rays and crystals with Split and delay at SACLA
 - Osaka et al., *Opt. Express.* **21**, 2823 (2013), *Proc SPIE* **921009** (2014)
 - Also with crystals and Split and delay at LCLS
 - Zhu & Sun et al., Proc SPIE 10237 (2017)

X-ray Multiplexing : All multiplexing options for hard X-rays

- Ultimately if all experiment agree on a single X-ray energy
 - Monochromatic beam at XPP and XCS
 - Pink beam at
 - Or CXI/XCS tradeoff
 - CXI and CXI refocusing
 - Intermittent at MEC or MFX

Current Impact on LCLS Schedule

Without Multiplexing: No more than 2 experiments per day

With Multiplexing: Minimum 2 experiments per day (when X-ray photon energy can be in common)

Adding 20-30% more experiments!

Future: Grating based FEH Multiplexing

- Increase available beamtime : up to 3 instruments in pink simultaneously
- Installation is straight forward using existing components
 - 10m at the beginning of the XRT is enough to create 2mm separation. Direct beam can go through while 1rst order gets picked up by either M1 or M2.

Basic Grating Parameters

Grating material: diamond (polycrystaline)

Grating period: ~600nm **bar height**: 4-5 micron

First order diffraction efficiency: 10%-15%

Energy range: >8 keV, optimized for 9.5 keV First order diffraction angle: ~ 200-300 urad

to reach 2-3mm offset at M1/2 mirrors

Fabrication and modeling of diamond grating beam splitter

SLAC

<u>Cross-sectional SEM images of</u> <u>fabricated diamond gratings</u>

200 nm half-pitch 5 um thick

300 nm half-pitch

Tapered as-fabricated profiles alter the diffraction efficiencies

Calculated Performance at 9.5 keV

	Diffraction		Calculated Diffraction Efficiency	
Period, Thickness	Angle	Profile	Oth order	± 1st order
400nm, 5µm	0.33 mrad	tapered as-fab	56.8%	19.50%
		binary	32%	27.60%
600nm, 3.5µm	0.22 mrad	tapered as-fab	77.8%	9.1%
		binary	60.5%	16.10%

"Approximately equal" beam splitting (30%) requires a thickness of about 5μm for binary profile, and around 7~8 μm for the tapered as-fab profile.

 $T/\cos(\beta)$

Side

View

- True splitting :
 - Same spectral property in the direct and 1st order branches
 - e.g., SACLA/SwissFEL/XFEL spectrometer setup using grating as beam sampler for timing & spectral diagnostics (collaboration with C. David@PSI)
- Intensity ratio is tunable between 1st order side branched and 0th order

transmitted

- by adjusting the effective height w/o changing grating pitch.
- But it reduced the acceptance
- Minor modification of the existing beam paths

- Easy to align, relatively cheap
- Compatible with LCLS-II-HE and the planned increase of heatload

- Success of User Facilities is driven by the support of a strong user community that has reasonable access
- Multiplexing can be obtained by using the electrons or the photons:
 - e-beam : recently demonstrated
 - X-ray: routinely used at LCLS and maturing.
- Combination of both e- and X-ray multiplexing is most probably the most appropriate, as it offers more possibility to multiplex experiments with different photon energies.