Universidade do Minho Departamento de Matemática Lic. em Ciências da Computação 6 de janeiro de 2024

2º teste de Álgebra Linear CC

Duração: 2 horas

٧

F

Nome do aluno:	Número:	
	-	

Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

- A aplicação f: R³ → R definida por f(x, y, z) = xyz, para todo (x, y, z) ∈ R³,
 é uma aplicação linear.
 Existe uma aplicação linear f: R² → R³ tal que f(2, 2) = (1, 2, 3) e
- f(3,3) = (0,1,0).
- 3. Para quaisquer espaços vetoriais reais V e V' de dimensão finita, se existe uma aplicação linear injetiva $f:V\to V'$, então dim $V\le\dim V'$.
- 4. Para quaisquer $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é invertível, tem-se \square \square $\det(2A^TA^{-1}) = 2$.
- 5. Para quaisquer $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, $\det(A^T B) = \det(B^T A)$.
- 6. Para qualquer matriz A do tipo 5×5 , se det A = 1, então $car(A) \neq 4$.
- 7. Para qualquer matriz $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$, se $(A 3I_2)x = 0_{2\times 2}$ é um sistema de Cramer, então 3 não é um valor próprio de A.
- 8. Para quaisquer $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, se $y \in \mathcal{M}_{n \times 1}(\mathbb{R})$ é um vetor próprio \square de A associado ao valor próprio 2, então 7y é um vetor próprio de A associado ao valor próprio 14.

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Considere as bases de \mathbb{R}^3

$$\mathcal{B} = ((1,1,1), (1,1,0), (1,0,0)),$$

$$\mathcal{B}' = ((-1,1,1), (0,2,0), (1,0,0))$$

e a base de \mathbb{R}^4

$$\mathcal{B}'' = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)).$$

Seja $g:\mathbb{R}^4\to\mathbb{R}^3$ a aplicação linear definida por

$$M(g; \mathcal{B}'', \mathcal{B}) = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix}.$$

(a) Mostre que, para todo $(a, b, c, d) \in \mathbb{R}^4$,

$$g(a, b, c, d) = (3a + 2b - c - 2d, 2a + b - c - d, 2a - 2c).$$

- (b) Determine uma base de Nuc g e a dimensão de Im g. Diga se g é injetiva e se é sobrejetiva.
- (c) Determine as matrizes $M(id_{\mathbb{R}}^3; \mathcal{B}, \mathcal{B}')$ e $M(g; \mathcal{B}'', \mathcal{B}')$.
- 2. Sejam

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 2 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} -1 & -1 & 5 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

- (a) Calcule $\det A$.
- (b) Justifique que B é invertível e calcule $\det(2B^{-2}B^TA^2)$.
- 3. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que se det A = 1 e todas as entradas de A são números inteiros, então A é invertível e todas as entradas de A^{-1} são números inteiros.
- 4. Sejam \mathcal{B} a base canónica de \mathbb{R}^3 e h o endomorfismo de \mathbb{R}^3 definido por

$$M(h, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -2 & 0 \\ -1 & -1 & -1 \end{bmatrix}.$$

- (a) Verifique que (-1,0,1) é um vetor próprio de h e indique a que valor próprio está associado.
- (b) Justifique que -2 é um valor próprio de h e determine uma base do subespaço próprio de h associado a este valor próprio.
- (c) Justifique que h é diagonalizável. Dê exemplo de uma base \mathcal{B}' de \mathbb{R}^3 tal que $M(h; \mathcal{B}', \mathcal{B}')$ seja diagonal.