# Contrôle 3: Algèbre Linéaire

Cours de mathématiques spéciales (CMS)

10 avril 2018 Semestre de printemps ID: -999

| écrire lisiblement s.v.p) |
|---------------------------|
| Nom:                      |
| Prénom:                   |
| Groupe:                   |

| Question | Pts max.       | Pts |
|----------|----------------|-----|
| 1        | $6\frac{1}{2}$ |     |
| 2        | 4              |     |
| 3        | 4              |     |
| 4        | 51/2           |     |
| Total    | 20             |     |



# **Indications**

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
  - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

### Question 1 (à 6½ points)

Points obtenus: (laisser vide) .....

On note  $P_n$  l'espace vectoriel des polynômes en x à coefficients réels et de degré inférieur ou égal à n.

On considère l'application linéaire f de  $P_1$  vers  $P_2$  définie par

$$\begin{cases} f(x+2) &= 2x^2 + x - 5 \\ f(2x-4) &= -x^2 - 2x - 3 \end{cases}$$

- (a) Déterminer la matrice A de f relativement aux bases  $\mathcal{B}_1(x+2; 2x-4)$  de  $P_1$  et  $\mathcal{B}_2(2x^2+x-5; x+2; -x^2+1)$  de  $P_2$ .
- (b) Au moyen d'un changement de bases, calculer la matrice B de f relativement aux bases  $\mathcal{E}_1(1; x)$  de  $P_1$  et  $\mathcal{E}_2(1; x; x^2)$  de  $P_2$ . (Donner le schéma de votre changement de bases).
- (c) L'application est-elle injective? Justifier avec précision votre réponse.
- (d) Soit X' la matrice des composantes d'un polynôme p relativement à  $\mathcal{B}_1$  et Y celle des composantes de f(p) relativement à  $\mathcal{E}_2$ .

Donner en utilisant un changement de bases, une relation matricielle qui permet de calculer Y

- $\bullet$  en fonction de la matrice A,
- $\bullet$  puis une autre en fonction de B.

Préciser dans les deux cas les étapes du raisonnement à effectuer.

Solution:

(a) 
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ 0 & 1 \end{pmatrix}$$

(b) 
$$B = \frac{1}{8} \begin{pmatrix} -7 & -26 \\ 4 & 0 \\ 5 & 6 \end{pmatrix}$$

- (c) f est injective car  $\ker f = \{0\}$
- (d)  $\bullet Y = QAX'$ 
  - Y = BPX'

Question 2 (à 4 points)

Points obtenus: (laisser vide) ....

Soit  $\mathcal{B}(\vec{e}_1, \vec{e}_2, \vec{e}_3)$  une base orthonormée de  $\mathbb{R}^3$  d'origine O.

On considère l'endomorphisme g de  $\mathbb{R}^3$  suivant :

g est une projection de l'espace sur une droite, de direction parallèle à un plan.

Cette projection est telle que la droite d'équations paramétriques

10 avril 2018

ID: -999

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2+k \\ k \\ 1-k \end{pmatrix}$$
 a pour image le point  $I(1; 1; 2)$ .

(a) Déterminer les équations paramétriques de  $\ker g$  et de  $\operatorname{Im} g$ . (On ne demande pas la matrice de g)

On considère l'endomorphisme p de  $\mathbb{R}^3$  qui est une projection sur le plan  $(O, \vec{e_1}, \vec{e_2})$  et dont le noyau est une droite parallèle au vecteur  $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ .

- (b) Déterminer la matrice de p par rapport à la base  $\mathcal{B}$ .
- (c) A l'aide des natures géométriques de p et g, déterminer  $p \circ g$  en le justifiant.

#### Solution:

(a) 
$$\bullet$$
 Im  $g = (O, I)$ :  $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ .

 $\bullet$  Equations paramétriques de ker g

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}.$$

(b) 
$$M = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

(c) L'application  $(p \circ g)$  est l'application nulle :

$$\forall \vec{x} \in \mathbb{R}^3: \quad (p \circ g)(\vec{x}) = \vec{0}$$

## Question 3 (à 4 points)

Points obtenus: (laisser vide) ....

Le plan, d'origine O, est muni de la base canonique orthonormée  $\mathcal{B}\left(\vec{e}_{1},\,\vec{e}_{2}\right)$ . On considère les endomorphismes suivants

- f est une affinité orthogonale de rapport 2 et d'axe  $(O, \vec{u})$ , tel que l'angle entre  $\vec{e}_1$  et  $\vec{u}$  vaut  $\frac{\pi}{6}$ ,
- s est une symétrie orthogonale dont l'axe est perpendiculaire à la droite  $(O, \vec{u})$ .

Déterminer relativement à la base  $\mathcal{B}$  la matrice de l'application g = 4f - 2s. En déduire directement la nature géométrique de g.

### Solution:

$$M_f = \frac{1}{4} \begin{pmatrix} 5 & -\sqrt{3} \\ -\sqrt{3} & 7 \end{pmatrix}$$

$$M_s = \frac{-1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

$$M_g = 4M_f - 2M_s = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$$

L'application g est une homothétie de centre O et rapport 6.

### Question 4 (à $5\frac{1}{2}$ points)

Points obtenus: (laisser vide) ....

Le plan, d'origine O, est muni de la base canonique orthonormée  $\mathcal{B} = (\vec{e}_1, \vec{e}_2)$ . On considère les endomorphismes suivants

- r est une rotation de centre O et angle  $\alpha$  tel que  $\alpha = \arccos \frac{3}{5}$ ,
- $\bullet$  s est une symétrie oblique.

On considère l'endomorphisme  $f = s \circ r$  tel que l'image par f du point  $P_0(5; 5)$  est le point  $P_2(3; -7)$ .

- (a) Relativement à la base  $\mathcal{B}$ , déterminer
  - la matrice de la rotation,
  - l'axe et la direction de la symétrie,
  - la matrice de la symétrie.
- (b) Pour la suite du problème, relativement à  $\mathcal{B}$ , on donne la matrice de la symétrie :

$$M_s = \left(\begin{array}{cc} 1 & 4/7 \\ 0 & -1 \end{array}\right)$$

et un endomorphisme l tel que

$$\begin{cases} l(\vec{e}_1) = \vec{0} \\ l(\vec{e}_2) = -2\vec{e}_1 + 7\vec{e}_2 \end{cases}$$

Déterminer en le justifiant avec précision la nature géométrique de l'application  $g=s\circ l.$ 

#### **Solution:**

(a) 
$$M_r = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

L'axe de la symétrie est la droite  $(O, \vec{e_1})$  et la direction est

parallèle à 
$$\vec{v} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$

$$M_s = \begin{pmatrix} 1 & \frac{4}{7} \\ 0 & -1 \end{pmatrix}.$$

ID: -999

(b) L'application g est une homothétie de centre O et de rapport -7, composée avec une projection sur la droite  $\operatorname{Im} g$ , de direction parallèle à y=0.