Interview Questions - Data Protection and secure communication

?? 1. What is the difference between hashing and encryption?

Encryption

- **Purpose**: Confidentiality to protect data by transforming it into unreadable form (ciphertext) that can be **reversed** (decrypted) with a key.
- Types:
 - **Symmetric**: Same key for encryption & decryption (e.g., AES)
 - **Asymmetric**: Public key encrypts, private key decrypts (e.g., RSA)
- Usage:
 - Securing data in transit (e.g., HTTPS)
 - Encrypting files, databases, backups
- Reversible: YES, if you have the key.

Hashing

- **Purpose**: Integrity and identity generate a **fixed-size**, **irreversible digest** of input data.
- Characteristics:
 - One-way function cannot be reversed
 - Same input always gives the same output
 - Even a small change in input changes output significantly (avalanche effect)
- Usage:

- Password storage (e.g., bcrypt, SHA-256 with salt)
- File/data integrity checks (e.g., checksums)
- Reversible: NO, by design.

Summary Table:

Feature	Encryption	Hashing
Reversible	Yes (with key)	No (one-way)
Use case	Confidentiality	Integrity, identity
Output length	Variable or fixed	Always fixed
Key needed?	Yes	No

★ 2. Why is asymmetric encryption slower than symmetric?

Asymmetric Encryption:

- Uses two mathematically related keys: public (encrypt) and private (decrypt).
- Algorithms like **RSA**, **ECC**, **DSA** involve **complex mathematical operations** (e.g., exponentiation over large primes).
- These computations are **CPU-intensive** and require **larger key sizes** (e.g., 2048-bit keys).

Symmetric Encryption:

- Uses a single shared key for both encryption and decryption.
- Algorithms like **AES** are **lightweight**, fast, and can be **hardware-accelerated**.
- Operates on blocks or streams of data with efficient bitwise operations.

Performance Comparison:

• Symmetric: Suitable for encrypting large volumes of data.

• Asymmetric: Best for key exchange, authentication, not bulk data.

Real-World Approach:

In TLS/HTTPS, the asymmetric algorithm is used **only to exchange a symmetric key**, and then the session continues using **faster symmetric encryption**.

m 3. How does PKI build trust online?

PKI (Public Key Infrastructure):

PKI is a **framework of roles**, **policies**, **and technologies** that enables secure **authentication**, **encryption**, and **digital signing** over untrusted networks like the internet.

Representation of the seriest of the series of the series

- 1. Digital Certificates:
 - Issued by trusted Certificate Authorities (CAs)
 - o Bind a public key to an identity (domain, user, organization)

2. Chain of Trust:

- Browser trusts Root CAs → Root CA signs Intermediate CAs → Intermediate signs your website's certificate
- o If the browser trusts the root, it trusts the chain

3. TLS/SSL in Action:

- When you visit a website using HTTPS:
 - It presents a certificate
 - Your browser checks the validity, expiration, and issuer
 - If verified, a secure connection is established

4. Revocation Mechanisms:

 CRLs (Certificate Revocation Lists) or OCSP (Online Certificate Status Protocol) are used to check if a cert is compromised.

③ Summary:

PKI enables:

• Authentication: You're really talking to example.com

• Confidentiality: Via encryption

Integrity: Data hasn't been tampered with

• Non-repudiation: Signed content cannot be denied

4. What is the concept behind securing Data at Rest and Data in Motion?

Data at Rest

- Definition: Data that is stored persistently on disk, SSDs, databases, file systems, backups.
- Threats:
 - Physical theft, disk compromise, unauthorized access
- Protection Methods:
 - Full-disk encryption (e.g., BitLocker, LUKS)
 - Database-level encryption (e.g., TDE Transparent Data Encryption)
 - o File-level encryption
 - Access control, IAM roles

Data in Motion (a.k.a. Data in Transit)

- Definition: Data actively moving through the network between client and server, or across services
- Threats:

o Eavesdropping, MITM attacks, session hijacking

• Protection Methods:

- TLS/SSL encryption (HTTPS, secure WebSockets)
- o VPNs, IPSec
- Mutual TLS (mTLS) for service-to-service communication
- o Token-based authentication to prevent data tampering

Service Service Servi

 Data is vulnerable in both states. A good security posture encrypts data everywhere and combines it with strong access controls, auditing, and monitoring.