Feuille d'exercice n° 05 : Notion d'application

- 1. Préciser l'injectivité, la surjectivité, la bijectivité éventuelle de f et g
- 2. Préciser $f \circ g$ et $g \circ f$.

Exercice 2 Soit
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$$

 $x \mapsto x+1-\frac{1}{x-1}$

- 1. f est-elle injective? surjective?
- 2. Déterminer une partie E telle que $g:\ E\ \to\ \mathbb{R}$ soit bijective et expliciter la réciproque. $E \rightarrow \mathbb{R}$ $x \mapsto x+1-\frac{1}{x-1}$

Exercice 3 Soit E un ensemble.

1. Montrer que pour toutes parties A et B de E, on a

$$\mathbb{1}_{(A\cap B)} = \mathbb{1}_A \times \mathbb{1}_B \tag{1}$$

$$\mathbb{1}_{(A^c)} = 1 - \mathbb{1}_A \tag{2}$$

$$\mathbb{1}_{(A \cup B)} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \times \mathbb{1}_B \tag{3}$$

2. Montrer que l'application

$$\begin{array}{ccc}
\mathbb{1}: & \mathcal{P}(E) & \to & \{0,1\}^E \\
A & \mapsto & \mathbb{1}_A
\end{array}$$

est bijective.

Soient $f: E \to F$ et $g: F \to G$. Établir les implications suivantes : Exercice 4

- 1. $g \circ f$ injective $\Rightarrow f$ injective.
- 3. $g \circ f$ injective et f surjective $\Rightarrow g$ injective.
- 2. $g \circ f$ surjective $\Rightarrow g$ surjective. 4. $g \circ f$ surjective et g injective $\Rightarrow f$ surjective.

Exercice 5 (\(\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqintitex{\sqrt{\sq}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq Soient E, E', F, F' quatre ensembles et $u: E' \to E, v: F \to F'$ deux applications.

On définit :
$$\varphi$$
: $F^E \to F'^{E'}$

$$f \mapsto v \circ f \circ u$$

1. Vérifier que φ est bien définie.

- 2. Montrer que si v est injective et u surjective alors φ est injective.
- 3. Montrer que si v est surjective et u injective alors φ est surjective.

Exercice 6 $(X \cap A, X \cap B)$

Soit E un ensemble, et A, B deux parties fixées de E. Soit φ : $\begin{cases} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B). \end{cases}$

- 1. Qu'est-ce que $\varphi(\varnothing)$? $\varphi(E \setminus (A \cup B))$?
- 2. A quelle condition sur A et B, φ est-elle injective?
- 3. Est-ce que le couple (\emptyset, B) possède un antécédent par φ ?
- 4. A quelle condition sur A et B, φ est-elle surjective?

Exercice 7 () Factorisation d'une application

1. Soit $f: F \to E$ et $g: G \to E$ deux applications. Montrer qu'il existe une application $h: G \to F$ telle que $g = f \circ h$ si et seulement si $g(G) \subset f(F)$.

A quelle condition h est-elle unique?

2. Soit $f: E \to F$ et $g: E \to G$ deux applications. Montrer qu'il existe une application $h: F \to G$ telle que $g = h \circ f$ si et seulement si $: \forall x, y \in E, \ (f(x) = f(y) \Rightarrow g(x) = g(y)).$

A quelle condition h est-elle unique ?

Exercice 8 ($\stackrel{\triangleright}{\triangleright}$) Parties saturées pour la relation d'équivalence associée à f Soit $f: E \to F$ une application, et $\mathcal{S} = \{ X \subset E \mid f^{-1}(f(X)) = X \}$.

- 1. Pour $A \subset E$, montrer que $f^{-1}(f(A)) \in \mathcal{S}$.
- 2. Montrer que S est stable par intersection et réunion.
- 3. Soient $X \in \mathcal{S}$ et $A \subset E$ tels que $X \cap A = \emptyset$. Montrer que $X \cap f^{-1}(f(A)) = \emptyset$.
- 4. Soient X et $Y \in \mathcal{S}$. Montrer que \overline{X} et $Y \setminus X$ appartiennent à \mathcal{S} .
- 5. Montrer que l'application $\mathcal{S} \to \mathscr{P}(f(E))$ est une bijection. $A \mapsto f(A)$

Exercice 9 (%) - Un théorème de Cantor -

Le but de cet exercice est de montrer que si E est un ensemble, il n'existe pas de surjection de E dans $\mathscr{P}(E)$. Soit φ une application de E dans $\mathscr{P}(E)$. On définit l'ensemble :

$$A = \{ x \in E \mid x \not\in \varphi(x) \}$$

En raisonnant par l'absurde, montrer que A n'est l'image d'aucun élément de E par φ .

Exercice 10 Soit $f: E \to I$ une application surjective. On pose, pour tout $i \in I$, $A_i = f^{-1}(\{i\})$. Montrer que les A_i sont non vides, deux à deux disjoints, de réunion égale à E.

Exercice 11 ($\stackrel{\triangleright}{\longrightarrow}$) Soient E et F deux ensembles et $f: E \to F$ une application.

1. a) Montrer que $A \subset f^{-1}(f(A))$ pour toute partie A de E.

- b) Montrer que f est injective si et seulement si $f^{-1}(f(A)) = A$ pour toute partie A de E.
- 2. a) Montrer que $f(f^{-1}(B)) \subset B$ pour toute partie B de F.
 - b) Montrer que f est surjective si et seulement si $f(f^{-1}(B)) = B$ pour toute partie B de F.

Exercice 12 (\circlearrowleft) Soient E et F deux ensembles et $f: E \to F$. Montrer que f est injective ssi $\forall A, A' \in \mathcal{P}(E), f(A \cap A') = f(A) \cap f(A')$.

