Riadenie nelineárnych systémov

Úvod do problematiky nelineárnych systémov

doc.lng. Ján Kardoš, PhD. ÚRK, D-410

Nelineárne systémy

· Prednášajúci, cvičiaci:

doc. Ing. Ján Kardoš, PhD. – 1. polovica semestra Ing. Martin Ernek, PhD. – 2. polovica semestra

Hodnotenie: 20+20 bodov počas semestra (cvičenia),
 30+30 bodov písomná skúška (t.j. 2 časti)

- Podmienka absolvovania písomnej skúšky: dosiahnuť v každej časti písomnej skúšky minimálne 15 bodov
- Okruhy tém:
 - Úvod do problematiky, základné typy nelinearít, metóda stavového priestoru
 - Metóda ekvivalentných prenosov (metóda harmonickej rovnováhy)
 - 3. Všeobecná teória stability nelineárnych systémov (Ljapunov), stabilita v malom, globálna stabilita
 - 4. Spätnoväzbová linearizácia

Doplnková literatúra k prednáškam

- H. K. Khalil: Nonlinear Systems, Prentice Hall, 1996, 2002.
- A. Isidori: Nonlinear Control Systems, Springer-Verlag, 1995.
- S. Sastry: Nonlinear Systems, Springer-Verlag, 1999.
- J. Balátě: Automatické řízení, BEN, 2004.
- S. Kubík a kol.: Teorie automatického řízení I Lineární a nelineární systémy, SNTL, 1982

3

Základné pojmy a kategórie nelinearít

- Reálne dynamické systémy sú vo všeobecnosti nelineárne
- Stačí, že sa v regulačnom obvode vyskytuje jedna nelinearita, a regulačný obvod je nelineárny
- Statické nelinearity nelineárne prevodové charakteristiky (jednoznačné nelinearity – bez pamäte, nejednoznačné nelinearity – hysteréza – s pamäťou)
- Dynamické nelinearity nelineárne diferenciálne rovnice (konzervatívne – bez tlmenia, t.j. s konštantnou celkovou energiou) (nekonzervatívne – s tlmením, t.j. s rozptylom energie – napr. úbytok energie trením)
- Parazitné nelinearity (vôľa v zuboch, necitlivosť, ...)
- Zámerné nelinearity (reléové riadenie, t-optim. riadenie)

Základné pojmy a vlastnosti nelinearít

- Neplatí princíp superpozície $f(u_1) + f(u_2) \neq f(u_1 + u_2)$ (nemožno použiť Laplaceovu transformáciu)
- Neplatí princíp komutativity

$$\begin{array}{c} y_1 \\ \hline \\ \text{LinDyn} \end{array} \xrightarrow{y_{21}} \begin{array}{c} y_{31} \\ \hline \\ \text{NelinStat} \end{array} \xrightarrow{y_{32}} \begin{array}{c} y_{22} \\ \hline \\ \end{array} \begin{array}{c} \text{LinDyn} \end{array} \xrightarrow{y_{32}} \\ \\ y_{32} \neq y_{31} \end{array}$$

 Prechodová charakteristika závisí od začiatočných podmienok a od veľkosti skoku vstupnej veličiny

5

Základné pojmy a stabilita

- Stabilita systému závisí nielen na jeho parametroch a štruktúre ale aj na začiatočných podmienkach a na priebehu vstupného (budiaceho) signálu.
- Ustálené stavy: rovnovážne a periodické
- Rovnovážne stavy: nulové derivácie signálov (singulárne body) - jeden alebo viac bodov
 - stabilné a/alebo nestabilné (overenie stability)
- Periodické stavy:
 nenulové derivácie signálov
 trvalé oscilácie (autooscilácie)
 - (medzné/limitné cykly) trvalé oscilácie (autooscilácie)
 - jeden alebo viac cyklovstabilné a/alebo nestabilné
- Typy oscilácií: vynútené, samobudené; subharmonické, ultraharmonické, kváziperiodické, rezonančné (vlastné kmity systému), relaxačné, parametrické

Niektoré typy **statických nelinearít** (symetrické prevodové charakteristiky)

• Charakteristika nasýtenia (saturation)

Vo všeobecnosti môžu byť tieto typy nelinearít aj **nesymetrické**.

obmedzenie výstupu – zosilňovače, prevodníky, mechanické systémy

7

Niektoré typy **statických nelinearít** (symetrické prevodové charakteristiky)

• Pásmo necitlivosti (dead-zone, threshold)

$$y = 0 pre |u| \le d$$

$$y = Ku - Kd \operatorname{sgn}(u) pre |u| > d$$

$$K = \tan(\gamma)$$

necitlivosť pri rozbehu – mechanické systémy (hydraulické, pneumatické, elektromechanické - napr. vplyv suchého trenia v momentovej spätnej väzbe servopohonov)

zámerné použitie - potlačenie oscilácií

Niektoré typy **statických nelinearít** (symetrické prevodové charakteristiky)

• Hysteréza (hysteresis)

hysteréza **s nasýtením** napr. magnetizačná krivka feromagnetických materiálov

Vôľa v prevodoch (backlash)

hysteréza **bez nasýtenia** mechanické systémy (mŕtvy chod prevodoviek, pákové prevody)

Nejednoznačné charakteristiky (nelinearity s pamäťou) _o

Niektoré typy **statických nelinearít** (symetrické prevodové charakteristiky)

• Suché trenie (Coulomb friction)

mechanické systémy

$$y = M_0 \operatorname{sgn}(u)$$

• Suché a viskózne trenie (Coulomb & viscous friction)

mechanické systémy

Niektoré typy **statických nelinearít** (symetrické prevodové charakteristiky)

 Reléové (relay) charakteristiky (nespojité!) – elektronické spínacie prvky v elektromechanických systémoch

11

Niektoré typy **statických nelinearít** (nesymetrické prevodové charakteristiky)

· Nesymetrické nelinearity

VA charakteristika polovodičového prvku

Ideálny usmerňovač

Zenerova dióda

Absolútna hodnota

Kvadratická funkcia

Nesymetrické relé

Nelineárne prevodové charakteristiky

- Rôzne zosilnenie v rôznych pracovných bodoch
- Generovanie vyšších harmonických

Lineárna prevodová charakteristika Nelineárna prevodová charakteristika 13

Nelineárne dynamické systémy

nebudené

Fyzikálne kyvadlo
$$a_2 \frac{d^2 \varphi(t)}{dt^2} + a_1 \frac{d \varphi(t)}{dt} + a_0 \sin(\varphi(t)) = 0$$

 $a_1 = B$

 $a_2 = mr^2$ moment zotrvačnosti koef. viskózneho trenia $a_0 = mgr$ amplitúda momentu gravitačných síl

Rovnovážny stav

$$\frac{d^{i}\varphi}{dt^{i}} = 0 \quad i = 1,2 \quad \Longrightarrow \quad a_{0}\sin(\varphi(t)) = 0$$
$$\sin(\varphi(t)) = 0$$

stabilný nestabilný $\varphi = 0$

 $\phi = \pi$

Nelineárne dynamické systémy

budené

• Fyzikálne kyvadlo $a_2 \frac{d^2 \varphi(t)}{dt^2} + a_1 \frac{d \varphi(t)}{dt} + a_0 \sin(\varphi(t)) = \tau$

v závese nech pôsobí na kyvadlo hnací moment $\tau!$

Ustálený stav
$$\frac{d^{i}\varphi}{dt^{i}} = 0 \quad i = 1,2 \implies a_{0}\sin(\varphi(t)) = \tau$$

$$\sin(\varphi(t)) = \frac{\tau}{a_{0}}$$

 $\varphi = f(\tau)$ Prevodová charakteristika

$$\varphi = \arcsin\left(\frac{\tau}{a_0}\right)$$

15

Nelineárne dynamické systémy

Prevodová charakteristika fyzikálneho kyvadla

$$\varphi = \arcsin\left(\frac{\tau}{a_0}\right)$$

Prevodova charakteristika

Linearizovaná prevodová charakteristika v bode (0,0)

$$\phi_{lin} = \frac{d\phi}{d\tau} \bigg|_{\tau=0} . \tau = \frac{\tau}{a_0}$$

Nelineárne dynamické systémy

· Dynamický model robota

17

Nelineárne dynamické systémy

• Lagrangeove rovnice druhého druhu $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i$ i – číslo kĺbu (stupňa voľnosti, DOF)

• Lagrangeova funkcia $L = E_k - E_p$

• Celková kinetická energia robota E_k

- Celková potenciálna energia robota $E_{\scriptscriptstyle p}$

• Zovšeobecnené súradnice q_i

• Zovšeobecnené sily $Q_i = au_i - B_i \dot{q}_i$

- Hnacie momenty/sily au_i - Trecie sily $B_i \dot{q}_i$

Nelineárne dynamické systémy

Nelineárne diferenciálne rovnice 1. a 2. kĺbu robota

$$j_{11}(\mathbf{q})\ddot{q}_{1} + j_{12}(\mathbf{q})\ddot{q}_{2} + B_{1}\dot{q}_{1} + c_{1}(\mathbf{q},\dot{\mathbf{q}}) + g_{1}(\mathbf{q}) = \tau_{1}$$

$$j_{21}(\mathbf{q})\ddot{q}_{1} + j_{22}(\mathbf{q})\ddot{q}_{2} + B_{2}\dot{q}_{2} + c_{2}(\mathbf{q},\dot{\mathbf{q}}) + g_{2}(\mathbf{q}) = \tau_{2}$$

$$j_{11}(\mathbf{q}), j_{12}(\mathbf{q}), j_{21}(\mathbf{q}) = f\left(\cos(q_{2})\right)$$

$$c_{1}(\mathbf{q},\dot{\mathbf{q}}), c_{2}(\mathbf{q},\dot{\mathbf{q}}) = f\left(\sin(q_{2}), \dot{q}_{1}^{2}, \dot{q}_{1}\dot{q}_{2}, \dot{q}_{2}^{2}\right)$$

$$g_{1}(\mathbf{q}), g_{2}(\mathbf{q}) = f\left(\cos(q_{1} + q_{2})\right)$$

19

Reléové riadenie prúdu kotvy JM (ukážka použitia **zámernej nelinearity**)

- Regulačný obvod prúdu s hysteréznym regulátorom prúdu kotvy v sústave reverzačný tranzistorový menič – jednosmerný motor
 - Principiálna schéma: šesťimpulzný neriadený usmerňovač
 - vyhladzovací napäťový kondenzátor C
 - marič energie R_b-T_b
 - H-most meniča

Reléové riadenie prúdu kotvy JM (ukážka použitia **zámernej nelinearity**)

• **Kvalitu** riadenia určuje **šírka** Δ hysteréznej charakteristiky, ktorou sa nastavuje maximálny rozkmit prúdu $\Delta I_{\rm max}$ a frekvencia kmitov prúdu.

Základné pojmy pri riešení NS

- Analýza nelineárnych systémov metóda stavového/ fázového priestoru (pre systémy 2. rádu metóda stavovej/fázovej roviny), metóda harmonickej rovnováhy
- Analýza stability nelineárnych systémov so spojitými nelinearitami – všeobecná teória stability (1. metóda Ljapunova – stabilita v malom, 2. metóda Ljapunova – globálna stabilita)
- Syntéza nelineárnych regulačných obvodov metóda stavovej/fázovej roviny, všeobecná teória stability, spätnoväzbová linearizácia, metóda harmonickej rovnováhy (metóda ekvivalentných prenosov)

Analýza nelineárnych systémov

- Metóda stavovej/fázovej roviny pre systémy 2.rádu (metóda stavového/fázového priestoru – pre systémy vyšších rádov – náročné na predstavivosť)
- Metóda ekvivalentných prenosov systémy vyšších rádov (dobré filtračné vlastnosti) s typickými nelinearitami
- Vnútorný model systému stavový resp. fázový model
- Stavový vektor (x_1, x_2) , fázový vektor (y, \dot{y}) , resp. (e, \dot{e})
- Stavová/fázová trajektória trajektória, ktorú opisuje koncový bod stavového/fázového vektora (tzv. zastupujúci bod) v stavovej/fázovej rovine v čase (analytické riešenie, grafické riešenie, simulácie).
- Stavový/fázový portrét sieť stavových/fázových trajektórií, ktoré vychádzajú z rôznych začiatočných podmienok.

23

Získanie stavového modelu systému

- Prenosová funkcia lineárneho systému
- $G(s) = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_m s^m}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n} = \frac{Y(s)}{U(s)} \qquad m < n$
- Stavový model lineárneho systému
- $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t)$ vstupný signál $y(t) = \mathbf{c}^T\mathbf{x}(t) + du(t)$ stavový vektor

normálna forma riaditeľnosti výstupný signál

matica systému $\mathbf{A} = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix} = R^{n \times n}$

 $\mathbf{c}^{T} = (b_0 \quad b_1 \quad \cdots \quad b_m \quad 0 \quad \cdots \quad 0) = R^{1 \times n}$ výstupný vektor systému $=R^{1\times 1} \qquad \frac{O^{k} \ln e^{i\delta^{k}}}{O^{k}}$

Získanie stavového modelu systému

- Stavový model $\dot{\mathbf{x}}(t) = \mathbf{X}(\mathbf{x}(t) + u(t))$ nelineárneho systému $y(t) = Y(\mathbf{x}(t) + u(t))$
- Nelin. dif. rovnica $Y[y(t), \dot{y}(t), ..., y^{(n)}(t)] = U[u(t), \dot{u}(t), ..., u^{(m)}(t)] \quad m < n$

Fyzikálny opis nelin. systému

 $\mathbf{X}(.), Y(.), U(.)$ — nelineárne funkcie

• Stavový vektor (fázový vektor) $\mathbf{x}(t) = (x_1(t), x_2(t), ..., x_n(t))^T$

 $x_{1}(t) = y(t)$ $x_{2}(t) = \dot{y}(t) = \dot{x}_{1}(t)$ \vdots $x_{n}(t) = y^{(n-1)}(t) = \dot{x}_{n-1}(t)$

Stavový model
$$\begin{split} \dot{x}_1(t) &= X_1 \big[x_1(t), x_2(t), ..., x_n(t), u(t) \big] \\ \dot{x}_2(t) &= X_2 \big[x_1(t), x_2(t), ..., x_n(t), u(t) \big] \\ \vdots \\ \dot{x}_n(t) &= X_n \big[x_1(t), x_2(t), ..., x_n(t), u(t) \big] \\ y(t) &= x_1(t) \end{split}$$

stavový vektor

25

Analýza nelineárnych systémov

Nelineárny autonómny systém 2. rádu

• Nelineárna diferenciálna rovnica $\ddot{y}(t) + g[\dot{y}(t)] + f[y(t)] = 0$

g(.), f(.) – nelineárne funkcie

• Stavový vektor (fázový vektor) $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \in R^{2\times 1}$

 $x_1(t) = y(t)$ $x_2(t) = \dot{y}(t) = \dot{x}_1(t)$ Stavový model

$$\frac{dx_1(t)}{dt} = x_2(t)$$

$$\frac{dx_2(t)}{dt} = -g[x_2(t)] - f[x_1(t)]$$

 $y(t) = x_1(t)$

Výstupná rovnica

Ustálené stavy nelineárnych systémov

- Rovnovážne stavy (j počet riešení) $\frac{dx_i}{dt} = 0$ i = 1,2 $\Longrightarrow (x_1, x_2)_j$
- Autooscilácie (medzné cykly) Bendixsonovo kritérium existencie limitných cyklov – postačujúca podmienka (len pre stabilné systémy 2.rádu)

Nelin. systém
$$\frac{\frac{dx_1}{dt} = X_1(x_1, x_2)}{\frac{dx_2}{dt} = X_2(x_1, x_2)} \Longrightarrow \frac{dx_2}{dx_1} = \frac{X_2(x_1, x_2)}{X_1(x_1, x_2)} \Longrightarrow \frac{X_2 dx_1 - X_1 dx_2 = 0}{X_2 dx_1 - X_1 dx_2 = 0}$$

medzný cyklus existuje ak $\oint (X_2 dx_1 - X_1 dx_2) = 0$

$$\oint (X_2 dx_1 - X_1 dx_2) = \iint_R \left(\frac{\partial X_1}{\partial x_1} + \frac{\partial X_2}{\partial x_2} \right) dx_1 dx_2 = 0 \implies \text{integrand} \quad \frac{\partial X_1}{\partial x_1} + \frac{\partial X_2}{\partial x_2}$$

Stokesova veta — mení znamienko alebo je nulový 27

Analýza nelineárnych systémov

(pokračovanie)
$$\frac{dx_1}{dt} = x_2$$
 Stavový model
$$\frac{dx_2}{dt} = -g[x_2] - f[x_1]$$

- **Izoklína** geometrické miesto (GM) rovnakých smerníc stavových trajektórií vychádzajúcich z rôznych počiatočných podmienok.
- Rovnica (všetkých) izoklín $\frac{dx_2}{dx_1} = -\frac{g[x_2] + f[x_1]}{x_2}$
- Riešenie rovnice izoklín stavová trajektória systému
- Izoklína pre smernicu k_i GM konštantných smerníc k_i

$$\frac{dx_2}{dx_1} = -\frac{g[x_2] + f[x_1]}{x_2} = k_i \qquad \Longrightarrow \qquad x_2 = f_i(x_1, k_i)$$

 Mapovanie fázového portrétu smernicami trajektórií v bodoch (x₁, x₂) (Matlab) $\phi = \operatorname{atan2}(\mathbf{dx_2/dx_1});$ $x1v = r.\cos(\phi);$ $x2v = r.\sin(\phi);$ $\mathbf{quiver}(x1,x2,x1v,x2v);$ Rovnica izoklín

29

Analýza nelineárnych systémov

Charakteristické črty stavového/fázového portrétu

Nelineárny (autonómny) systém

$$\ddot{x} + 0.6\dot{x} + 3x + x^2 = 0$$

Rovnovážne stavy ($\ddot{x} = \dot{x} = 0$)

$$3x + x^2 = 0$$

riešenie:

$$x = 0$$
, $x = -3$

Body vo fázovej rovine (x, \dot{x})

$$(x, \dot{x}) = (0,0)$$

$$(x, \dot{x}) = (-3,0)$$

Typy rovnovážnych stavov (príklad fázového portrétu)

Lineárny (linearizovaný) dynamický systém (autonómny)

$$\ddot{y}(t) - b\dot{y}(t) - ay(t) = 0$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y \\ \dot{y} \end{pmatrix}$$

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = ax_1 + bx_2$$

Rovnovážny stav

$$\frac{dx_1}{dt} = x_2 = 0$$

$$\frac{dx_2}{dt} = ax_1 + bx_2 = 0$$

 $(x_1, x_2) = (0,0)$

$$(x_1, x_2) = (0,0)$$

· Charakteristická rovnica

$$s^2 - bs - a = 0$$

$$s_{1,2} = \frac{b}{2} \pm \sqrt{\frac{b^2}{4} + a}$$

31

Typy rovnovážnych stavov

- a = -1, b = 0, rovnovážny stav (0,0) je tzv. **stred**
- Korene charakteristickej rovnice: $s_{1,2} = \pm i$

netlmený kmitavý priebeh (autooscilácie s konštantnou amplitúdou)

Typy rovnovážnych stavov

- a = 1, b = 0, rovnovážny stav (0,0) je tzv. **sedlo**
- Korene charakteristickej rovnice: $s_1 = -1$; $s_2 = 1$

aperiodický netlmený priebeh (nestabilný)

33

Typy rovnovážnych stavov

- a = -1, b = -1, stabilné ohnisko
- Korene charakteristickej rovnice: s_{1.2} = -0.5 ± 0.866*i*

tlmený kmitavý priebeh (stabilný)

Typy rovnovážnych stavov

- a = -2, b = 2, nestabilné ohnisko
- Korene charakteristickej rovnice: $s_{1,2} = 1 \pm i$

e focus

netlmený kmitavý priebeh (nestabilný)

35

Typy rovnovážnych stavov

- *a* = -1, *b* = -2, **stabilný uzol**
- Korene charakteristickej rovnice: $s_{1,2} = -1$

aperiodický priebeh (stabilný)

Typy rovnovážnych stavov

- *a* = -1, *b* = 2, **nestabilný uzol**
- Korene charakteristickej rovnice: s_{1,2} = 1

unstable node

(b)

periodický priebeh (nestabilný)

37

Príklad nelineárneho systému 2. rádu

- Van der Pol-ova rovnica (oscilátor, b tlmenie)
- Stavové veličiny $x_1 = y$ $x_2 = \dot{y}$
- $\frac{dx_{1}}{dt} = x_{2}$ $\frac{dx_{2}}{dt} = \frac{1}{h}(1 x_{1}^{2})x_{2} x_{1}$

 $\ddot{y} - (1 - y^2)\dot{y}/b + y = 0$

- Stavový model
- Rovnovážny stav (nestabilné ohnisko) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Bendixsonovo krit.:

 (existuje stabilný limitný cyklus)

$$\frac{\partial X_1}{\partial x_1} + \frac{\partial X_2}{\partial x_2} = \left(1 - x_1^2\right) \frac{1}{b}$$

Príklad nelineárneho systému 2. rádu

 Van der Pol-ova rovnica (oscilátor) fázový portrét + mapovanie smerníc trajektórií

39

Príklad nelineárneho systému 1. rádu

- Nelineárna diferenciálna rovnica 1. rádu $\dot{y} + g(y) = u$ $g(\cdot)$ nelineárna funkcia, u konštantné budenie
- Stavové veličiny: $x_1 = y$

$$x_2 = \dot{y}$$

$$\begin{cases} \frac{dx_1}{dt} = x_2 \end{cases}$$

Stavový model:
– jediná fázová trajektória

• Pohyb po trajektórii:

- pre $x_2 > 0$ zľava doprava pre $x_2 < 0$ – sprava doľava
- Rovnovážne stavy \longrightarrow $x_2 = 0$ ležia na osi x_1
 - súradnicu x_1 získame riešením rovnice $g(x_1) = u$

Príklad nelineárneho systému 1. rádu

- Nelineárna diferenciálna rovnica 1. rádu $\dot{y} + g(y) = u$ $g(y) = y^2$, u = 1 u = 1 $\dot{y} + y^2 = 1$
- Stavové veličiny: $x_1 = y$

 $x_2 = \dot{y}$ $\frac{dx_1}{dt} = x$

- Stavový model: (jediná fázová trajektória – parabola) $\longrightarrow x_2 = 1 - x_1^2$
- Rovnovážne stavy ($x_2 = 0$):

$$x_1^2 = 1$$
 $x_2 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ stabilný nestabilný

(Stabilitu zistíme jednoducho z grafu na ďalšej strane.)

. .

Príklad systému 1. rádu

• Fázová trajektória nelineárneho systému 1. rádu $\dot{y} + y^2 = 1$

Nelineárne riadenie vo fázovej rovine (ukážka stabilizácie)

Lineárny autonómny oscilujúci systém 2. rádu $\ddot{x} = -ax$ s premenlivým zosilnením spätnej väzby a

$$a=b_1^2$$

$$a = b_2^2$$

$$b_1^2 > b_2^2$$

$$a = \begin{cases} b_1^2 & pre & x\dot{x} > 0 \\ b_2^2 & pre & x\dot{x} < 0 \end{cases}$$

43

Nelineárne riadenie vo fázovej rovine (ukážka stabilizácie, **kĺzavý režim**)

Nestabilný dynamický systém 2. rádu $\ddot{x} + b\dot{x} + ax = 0$ s parametrom b < 0 a premenlivým parametrom a

 $a = \alpha$

 $a = -\alpha$

 $\alpha > 0$

xF > 0xF < 0

Nelineárne riadenie vo fázovej rovine (ukážka stabilizácie, **kĺzavý režim**)

- Korene charakteristického polynómu $s_{1,2} = -\frac{b}{2} \pm \sqrt{\frac{b^2}{4} + \alpha}$
- Určenie parametra c > 0 prepínacej priamky $F = cx + \dot{x} = 0$
- Podmienka vzniku kĺzavého režimu $F\dot{F} < 0$
- Riešenie $-s_1 < 0 < c < -s_2$
- Zvolili sme $c = -\frac{s_2}{2} = \frac{b}{4} + \frac{1}{2}\sqrt{\frac{b^2}{4} + \alpha}$