Teil 2: FO Vollständigkeit FO 6.2/3

Ziel: Vollständigkeit

→ Abschnitt 6.3

Definitionen:

Ableitbarkeit aus Theorie $\Phi \subseteq FO_0$:

 φ ableitbar aus Φ $[\Phi \vdash \varphi]$ gdw.

für geeignetes $\Gamma_0 \subseteq \Phi$ (Voraussetzungen) ist $\Gamma_0 \vdash \varphi$ ableitbar.

Φ konsistent (widerspruchsfrei) gdw. *nicht* $\Phi \vdash \emptyset$.

Vollständigkeit (starke Form)

··· Korrektheit

$$\Phi \models \varphi \Rightarrow \Phi \vdash \varphi$$

 Φ konsistent \Rightarrow Φ erfüllbar

 Φ erfüllbar \Rightarrow Φ konsistent

 $\Phi \vdash \varphi \Rightarrow \Phi \models \varphi$

alles, was wahr ist, ist ableitbar

alles, was ableitbar ist, ist wahr

FGdI II Sommer 2015 M Otto 105/15

Teil 2: FO Vollständigkeit FO 6.2/3

Kurt Gödel (1906–1978)

mit Albert Einstein

der Logiker des 20. Jahrhunderts

FGdI II Sommer 2015 M Otto 106/157

Teil 2: FO Vollständigkeit FO 6.2/3

Gödelscher Vollständigkeitssatz

(Satz 6.7)

(Vollständigkeit & Korrektheit des Sequenzenkalküls)

Für jede Satzmenge $\Phi \subseteq FO_0(S)$ und jeden Satz $\varphi \in FO_0(S)$ gelten:

- $\Phi \models \varphi$ gdw. $\Phi \vdash \varphi$.
- Φ erfüllbar gdw. Φ konsistent.

Zentrale Folgerungen

Kompaktheitssatz (wesentlich neuer Zugang)

Allgemeingültigkeit rekursiv aufzählbar

(später: nicht entscheidbar)

FGdl II Sommer 2015 M Otto 107/157

Teil 2: FO Vollständigkeit FO 6.2/3

Vollständigkeitsbeweise

→ Abschnitt 6.3

zu zeigen: Konsistenz \Rightarrow Erfüllbarkeit nicht-Ableitbarkeit best. Sequenzen \Rightarrow Existenz eines Modells

dazu

Ableitbarkeit von Sequenzen aus einer Satzmenge

Ableitbarkeit unter gegebenen Voraussetzungen:

 $\Gamma \vdash \Delta$ ableitbar aus Φ gdw. für geeignetes $\Gamma_0 \subseteq \Phi$ $\Gamma_0, \Gamma \vdash \Delta$ ableitbar ist.

FGdI II Sommer 2015 M Otto 108/157

Teil 2: FO Vollständigkeit FO 6.2/3

Vollständigkeitsbeweise (Grundideen)

Hintikka-Konstruktion (Vollständigkeit von \mathcal{SK}^{\neq} bzw. \mathcal{SK})

zeige: $\Gamma \vdash \Delta$ *nicht* ableitbar aus $\Phi \Rightarrow \Phi \cup \Gamma \cup \Delta^{\neg}$ erfüllbar Man findet Modell einer induktiv geeignet gewählten Obermenge von $\Phi \cup \Gamma \cup \Delta^{\neg}$ (\rightarrow Hintikka-Menge).

Henkin-Konstruktion (Vollständigkeit von \mathcal{SK}^+ , einfacher)

zeige: Φ konsistent \Rightarrow Φ erfüllbar

Man findet Modell einer induktiv geeignet gewählten vollständigen Obermenge von Φ (\rightarrow Henkin-Menge). in beiden Fällen: Modelle (als Quotienten von) Herbrand-Strukturen

FGdI II Sommer 2015 M Otto 109/15

Teil 2: FO Vollständigkeit FO 6.2/3

im Sequenzenkalkül mit Schnittregeln:

Satz

Für konsistentes Φ:

 $\Phi \cup \{\neg \varphi\}$ konsistent gdw. *nicht* $\Phi \vdash \varphi$.

Begründung:

- (1) Falls $\Gamma \vdash \varphi$ ableitbar ist, so auch $\Gamma, \neg \varphi \vdash \emptyset$ mit $(\neg L)$
- (2) Falls $\Gamma, \neg \varphi \vdash \emptyset$ ableitbar, so auch $\Gamma \vdash \varphi$:

$$(\neg R) \quad \frac{\Gamma, \neg \varphi \vdash \emptyset}{\Gamma \vdash \neg \neg \varphi} \quad \frac{\neg \varphi \vdash \varphi}{\neg \neg \varphi \vdash \varphi} \quad (\neg R)$$

$$(\text{mod. pon.}) \quad \frac{\Gamma, \neg \varphi \vdash \emptyset}{\Gamma \vdash \varphi} \quad \frac{\neg \varphi \vdash \varphi}{\neg \neg \varphi \vdash \varphi} \quad (\neg L)$$

Bem: Ebenso auch $\Phi \cup \{\varphi\}$ konsistent gdw. *nicht* $\Phi \vdash \neg \varphi$.

FGdI II Sommer 2015 M Otto 110/157

Henkin-Mengen: vollständig mit Existenzbeispielen

 $\hat{\Phi} \subseteq \mathrm{FO}_0(S)$ Henkin-Menge, falls konsistent und:

- für jedes $\varphi \in FO_0(S)$: $\varphi \in \hat{\Phi} \Leftrightarrow \neg \varphi \notin \hat{\Phi}$. (maximale Konsistenz; Vollständigkeit)
- für jedes $\psi(x) \in FO(S)$ existiert $t \in T_0(S)$ mit $(\forall x \neg \psi(x) \lor \psi(t/x)) \in \hat{\Phi}$. (vgl. $\exists x \psi(x) \to \psi(t/x)$) (Existenzbeispiele, vgl. Skolemfunktionen)

Henkin-Methode:

Zu konsistentem Φ finde Henkin-Menge $\hat{\Phi} \supseteq \Phi$

 FO^{\neq} (ohne Gleichheit): Herbrand-Modell aus Henkin-Menge $\hat{\Phi}$.

FO (mit Gleichheit): Quotienten bzgl. der in $\hat{\Phi}$ postulierten

Gleichheitsrelation auf $T_0(S)$.

FGdI II Sommer 2015 M Otto 111/157

Teil 2: FO Unentscheidbarkeit FO 7

Unentscheidbarkeit

Church-Turing

Church (1903-1995)

Turing (1912-1954)

FGdl II Sommer 2015 M Otto 112/15

Teil 2: FO

Unentscheidbarkeit

FO 7

Unentscheidbarkeit von SAT(FO)

→ Abschnitt 7.1

Satz von Church und Turing

SAT(FO) ist unentscheidbar.

genauer: nicht rekursiv aufzählbar.

Beweis: Reduktion des Halteproblems

FO ausreichend ausdrucksstark für Kodierung des Verhaltens von TM (in einzelnen Sätzen)

Finde berechenbare Zuordnung

$$\begin{array}{cccc} \mathcal{M}, w & \longmapsto & \varphi_{\mathcal{M}, w} \in \mathrm{FO}_0(\mathcal{S}_{\mathcal{M}}), \\ & & & & & & & & & & & & \\ \varphi_{\mathcal{M}, w} & \mathrm{erf\"{u}llbar} & \mathrm{gdw.} & w & \xrightarrow{\mathcal{M}} \infty \end{array}$$

Idee: $\varphi_{\mathcal{M},w}$ besagt, dass die Konfigurationenfolge in der Berechnung von \mathcal{M} auf w nicht abbricht.

FGdl II Sommer 2015 M Otto 113/157

Teil 2: FO Unentscheidbarkeit FO 7

Reduktion des Halteproblems auf SAT(FO)

einfache Variante

zu
$$\mathcal{M} = (\Sigma, Q, q_0, \delta, q^+, q^-)$$

wähle als Signatur $S_{\mathcal{M}}$:

succ Nachfolgerfunktion, 1-st. (Schritt-/Positionszähler)

pred Vorgängerfunktion, 1-st.

0 Konstante

 R_a 2-st. Relation für $a \in \Sigma \cup \{\Box\}$ (Bandbeschriftung)

 Z_q 1-st. Relation für $q \in Q$ (Zustände)

K 2-st. Relation (Kopfpositionen)

intendierte Interpretation über \mathbb{Z} :

 $(t,i) \in R_a$: in Konfiguration C_t steht ein a in Zelle i.

 $t \in Z_q$: in Konfiguration C_t ist \mathcal{M} im Zustand q.

 $(t,i) \in K$: in Konfiguration C_t steht der Kopf bei Zelle i.

FGdI II Sommer 2015 M Otto 114/157

Reduktion: zu $\mathcal{M} = (\Sigma, Q, q_0, \delta, q^+, q^-), \quad w = a_1 \dots a_n$

$$\varphi_{\mathcal{M},w} := \varphi_0 \wedge \varphi_{\text{start}} \wedge \varphi_\delta \wedge \varphi_\infty$$

$$\varphi_{0} := \begin{cases} \forall x \text{ (pred succ } x = x \land \text{ succ pred } x = x) \\ \forall t \forall y \neg (R_{a}ty \land R_{a'}ty) & \text{für } a \neq a' \\ \forall t \neg (Z_{q}t \land Z_{q'}t) & \text{für } q \neq q' \\ \forall t \forall y \forall y' \text{ ((Kty \land Kty')} \rightarrow y = y') \end{cases}$$

$$arphi_{\mathsf{start}} := \mathsf{K}00 \wedge \mathsf{Z}_{q_0} 0 \wedge \begin{bmatrix} \bigwedge_{i=1}^n \mathsf{R}_{a_i} \mathsf{0} \operatorname{succ}^i \mathsf{0} \\ \wedge orall y \left(\left(\bigwedge_{i=1}^n \neg y = \operatorname{succ}^i \mathsf{0} \right) \to \mathsf{R}_{\square} \mathsf{0} y \right) \end{bmatrix}$$

$$\varphi_{\delta} := \forall t \forall t' \ (t' = \operatorname{succ} t \to \psi(t, t'))$$

$$\psi(t, t'), \text{ z.B. Beitrag für } \delta(q, b) = (b', >, q'):$$

$$\forall y \ ((Z_q t \land Kty \land R_b ty) \to (Z_{q'} t' \land Kt' \operatorname{succ} y \land R_{b'} t'y))$$

$$\varphi_{\infty} := \forall t \neg (Z_{q^+} t \vee Z_{q^-} t)$$

- $w \xrightarrow{\mathcal{M}} \infty \Rightarrow \varphi_{\mathcal{M},w}$ erfüllbar
- $w \xrightarrow{\mathcal{M}} STOP \Rightarrow \varphi_{\mathcal{M},w}$ unerfüllbar

FGdI II Sommer 2015 M Otto 115/157

Teil 2: FO Unentscheidbarkeit

weitere Unentscheidbarkeitsaussagen → Abschnitt 7.2

FO 7

FINSAT(FO): Sätze, die in *endlichen* Modellen erfüllbar sind beachte: FINSAT(FO) ist rekursiv aufzählbar (warum, wie?) Variation der Reduktion aus Church/Turing liefert:

Satz von Traktenbrot

FINSAT(FO) ist unentscheidbar.

tiefliegender:

Satz von Tarski

 $\operatorname{Th}(\mathcal{N})$ ist unentscheidbar, nicht rekursiv axiomatisierbar.

$$\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1, <), \quad \operatorname{Th}(\mathcal{N}) := \{ \varphi \in \operatorname{FO}_0 \colon \mathcal{N} \models \varphi \}$$
 die erststufige Theorie der Arithmetik

FGdI II Sommer 2015 M Otto 116/157