主讲人: 邓哲也

- 在 Di jkstra 算法里,为了求源点 v₀ 到其他各顶点 v_i 的最短
 路径及长度,需要设置 3 个数组:
 - dist[i]:表示当前找到的从源点 v_0 到终点 v_i 的最短路径的长度,初始时,dist[i] = edge[v_0][i]
 - S[i]: 表示顶点 v_i 是否加入到集合 S 中,1 表示已加入。初始时, $S[v_0]$ 为 1,其余为 0.
 - path[i]:表示 v_0 到 v_i 的最短路径上顶点 v_i 的前一个顶点序号。通过这个数组可以确定 v_0 到 v_i 的最短路径上的每一个顶点。

- 在 Dijkstra 算法里, 重复做以下 3 步工作:
 - 1. 在数组 dist[i] 里查找 S[i] != 1, 并且 dist[i] 最小的顶点 u。
 - 2. 将 S[u] 改为 1,表示顶点 u 已经加入进来了。
 - 3. 修改 T 集合中每个顶点 v_k 的 dist 及 path 数组值。

• 让我们回到这张图,看看这个算法是怎么运行的。

• 初始状态时,S[0] 为 1,其余为 0,表示初始时, S 中集合只有源点 v_0 ,其他顶点都在 T 中。

	0	1	2	3	4	5
S	1	0	0	0	0	0
dist	0	∞	5	30	∞	∞
path	-1	-1	0	0	-1	-1

- · dist 数组中各元素的初始值就是 v₀ 到它的直接路径。
- path[2] 和 path[3] 为 0,表示当前求得的 0 到 2 的最短路和 0 到 3 的最短路中,前一个顶点是 0. -1 表示 0 到其余顶点没有直接路径。

	0	1	2	3	4	5
S	1	0	0	0	0	0
dist	0	∞	5	30	∞	∞
path	-1	-1	0	0	-1	-1

• 求出顶点 2 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	0	<u>1</u>	0	0	0
dist	0	<u>20</u>	5	30	∞	<u>12</u>
path	-1	<u>2</u>	0	0	-1	<u>2</u>

• 求出顶点 5 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	0	1	0	0	<u>1</u>
dist	0	20	5	<u>22</u>	<u>30</u>	12
path	-1	2	0	<u>5</u>	<u>5</u>	2

• 求出顶点 1 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	<u>1</u>	1	0	0	1
dist	0	20	5	22	<u>28</u>	12
path	-1	2	0	5	<u>1</u>	2

• 求出顶点 3 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	1	1	1	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

• 求出顶点 3 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	1	1	<u>1</u>	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

• 求出顶点 4 的最短路径,对三个数组作出修改。

	0	1	2	3	4	5
S	1	1	1	1	<u>1</u>	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

- 至此,0到其他各顶点的最短路径长度都求完了。
- 想要追踪 v_0 到 v_k 的最短路径,只需要从 $path[v_k]$ 开始倒向追踪即可。

	0	1	2	3	4	5
S	1	1	1	<u>1</u>	0	1
dist	0	20	5	22	28	12
path	-1	2	0	5	1	2

下节课再见