Logic for Computer Science 2020-2021	Alexandru Ioa	n Cuza	University

Exercise Sheet

Exercise 109. Give a formal proof of $(p \land r)$ from $\{((q \land r) \land q), (p \land p)\}$.

Exercise 110. Show the validity of the following sequents:

1.
$$(p \land q), r \vdash (p \land (r \lor r'));$$

2. $(p \rightarrow (q \rightarrow r)) \vdash ((p \land q) \rightarrow r)$;

3. $((p \land \neg r) \rightarrow q), \neg q, p \vdash r;$

Exercise 111. Finish the game at https://profs.info.uaic.ro/~stefan. ciobaca/lnd. html. Do not cheat. It is considered cheating if you change the JavaScript source code, if someone else solves a level for you or if you prove the derived rules using the derived rules themselves.

Exercise 112. Prove that the following inference rules are derivable:

1.
$$\neg \neg i$$
;

2. LEM (law of excluded middle): $\Gamma \vdash (\varphi \lor \neg \varphi)$;

3. PBC (proof by contradiction):
$$PBC = \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}$$

4. MT (modus tollens): MT
$$\frac{\Gamma \vdash (\varphi \to \varphi') \qquad \Gamma \vdash \neg \varphi'}{\Gamma \vdash \neg \varphi}$$

Exercise 113. Prove the soundness theorem for natural deduction (by induction on the number of sequents in the formal proof).

Exercise 114. Show that the rule $\neg \neg e$ is derivable using the LEM (i.e., you may use LEM in the derivation, but not $\neg \neg e$).

Exercise 115. Prove. using the soundness and completeness theorems, that $\varphi_1 + \varphi_2$ if and only if $\varphi_1 \equiv \varphi_2$.