0.1 Oppgaver med tall og situasjoner fra virkeligheten

Se også oppgaver på ekte.data.uib.no

0.1

#rekker #øknomi

Du ønsker å spare penger i en bank som gir 2% månedlig rente. Du sparer ved å gjøre et innskudd på $1000\,\mathrm{kr}$ hver måned.

- a) Skriv rekken som viser hvor mye penger du har i banken etter 5 måneder med sparing. Innskuddet i 5. måned skal tas med.
- b) Sett opp et uttrykk P(n) som viser hvor mye penger du har i banken n måneder etter at sparingen startet. Innskuddet i n-te måned skal tas med.

#rekker #øknonomi # programmering

Si at du låner $1\,500\,000$ kroner av en bank. Lånet er et annuitetslån (se AM1) med 3% årlig rente, og lånet skal betales ned i løpet av 20 år med årlige fradrag og renter. For å beregne terminbeløpet x kan man tenke som følger:

Tenk deg at din bank sparer penger i en annen bank, som tilbyr 3% årlig sparerente. Da skal banken ende opp med det samme sparebeløpet ved begge disse tilfellene:

- I løpet av 20 år tilføres sparekontoen et årlig innskudd på x kroner.
- 1500000 kroner settes på sparekonto og forrentes i 20 år.
- a) Finn verdien til terminbeløpet x.
- b) Lag et script som printer terminbeløp, avdrag og renter for hele nedbetalingstiden, og som bekrefter at svaret ditt fra a) er rett.
- c) Sammenlign svaret ditt med en lånekalkulator på internett. (Sett alle gebyrer lik 0).
- d) Sett opp en formel som viser det årlige terminbeløpet x ved et annuitetslån, uttrykt ved lånesummen L, den årlige renten r, og nedbetalingstiden t.

#regresjon #funksjonsdrøfting #omgjøring av enheter

Usain Bolt har verdensrekorden for 100 m sprint. I tabellen under ser du hva tidtakeren viste ved hver 10. meter under dette rekordløpet.

a) I figuren under har vi brukt datasettet fra tabellen til å utføre regresjon med et fjerdegradspolynom. Hva er det som er helt feil med denne tilnærmingen?

- b) I datasettet kan vi legge til et punkt som vil hjelpe med å korrigere feilen poengtert i a). Hvilket punkt er dette?
- c) Bruk regresjon med et fjerdegradspolynom på datasettet fra b).
- d) Ut ifra funksjonen du fant i c), hva var toppfarten til Bolt under dette løpet?
- e) Bruk datasettet fra b) til å finne gjennomsnittsfarten til Bolt for $t \in [0, 1.89]$ og for $t \in [1.89, 9.58]$. Sammenlikn disse hastighetene med svaret fra oppgave d), og drøft årsaken til ulikhetene/likhetene.

#funksjoner #regresjon #derivasjon #vektorer i planet

På side 26 i dokumentet Premisser for geometrisk utforming av veger (utformet av Statens vegvesen) er minste horisontalkurveradius $R_{h,\min}$ gitt ved formelen

$$R_{h,\min} = \frac{V^2}{127(e_{\text{maks}} + f_k)}$$

hvor

V = fartsgrense

 $e_{maks} = maksimal overhøyde$

 $f_k = \text{dimensjonerende sidefriksjonsfaktor}$

Si at en veibane er beskrevet av grafen en funksjon f(x). I vedlegg ?? i TM1 introduserte vi sirkelen som beksriver krumningen til f. Vektoren mellom sentrum S i denne sirkelen og et punkt A = (x, f(x)) på grafen til f er gitt som

$$\overrightarrow{AS} = \frac{1}{f''} \left[-f \cdot (1 + (f')^2), 1 + (f')^2 \right]$$

La r være radien til sirkelen som beskriver krumningen til f. Statens vegvesens krav tilsier at

$$r < R_{h,\min}$$

Bruk et digitalt kart og regresjon til å finne en polynomfunksjon som gir en god tilnærming for utvalgte veistykker hvor fartsgrensen er kjent. Sett $e_{\text{maks}} = 0$, og bruk tabellen¹ under for å velge verdien til f_k . Undersøk om krumningen til veistykket oppfyller kravet til Statens vegvesen i alle punkt.

Tabell 2.7: Sidefriksjon for ulike fartsgrenser og sikkerhetsfaktorer

Sikker-	Fartsgrense [km/t]							
hetsfaktor	40	50	60	70	80	90	100	110
1,00	0,249	0,224	0,195	0,182	0,157	0,131	0,108	0,079
1,10	0,226	0,204	0,178	0,165	0,143	0,119	0,098	0,072

¹Hentet fra side 22 fra nevnte dokument.

modellering # areal # derivasjon

Gitt et rektangel med omkrets O, og la x være den éne sidelengden.

- a) Finn uttrykket til funksjonen A(x), som viser aralet til rektangelet.
- b) Hvilken form har rektangelet når arealet er størst?

0.6

#logaritmer #overslag

Momentmagnitudeskalaen er en skala som brukes til å representere styrken på jordskjelv. Hvis S er det målte seismiske momentet til jordskjelvet, er massemagnituden M_w gitt som¹

$$M_w = \frac{2}{3} \log S - 10.7$$

Energien som jordskjelvet utløser er tilnærmet proporsjonal med S.

Gitt to jordskjelv, jordskjelv A og jordskjelv B, med henholdsvis seismisk moment S_A og S_B . Si videre at proporsjonalitetskonstanten for energi utløst av det seismiske momentet er likt for begge jordskjelvene. Hvis jordskjelv A er målt til 1 mer enn jordskjelv B på momentmagnitudeskalaen, hva er da forholdet mellom energi utløst av jordskjelv A og energi utløst av jordskjelv B?

¹Kilde: Wikipedia.

Du skal prøve å kaste en ball så langt som mulig langs et flatt strekke. Posisjonen ballen har idét den forlater handen din setter du til (0,0). Ved å anta at tyngdekraften deretter er den eneste kraften som virker på ballen, er posisjonen til ballen godt tilnærmet ved uttrykket

$$\vec{p}_q(t) = \vec{v}t - [0, 5t^2]$$

hvor $\vec{v} = [v_0 \cos \theta, v_0 \sin \theta]$ er hastighetsvektoren til ballen idét den forlot handen, og t er antall tidsenheter etter at ballen har forlatt handen. Idét ballen forlater handen din har den farten v_0 , \vec{v} danner vinkelen θ med horisontallinjen.

Ut ifra $\vec{p_g}$, hvilken verdi må θ ha for at kastet skal bli lengst mulig?