```
Objectiveis is to classify the flower belong to which category amongs the all three?
          # Importing Libraries
 In [ ]:
          import pandas as pd
 In [5]:
           import numpy as np
           import seaborn as sns
          import matplotlib.pyplot as plt
          data = pd.read_csv(r'C:\Users\Hp\Desktop\Pyhton\Python Project_Raw file\IRIS Data\Iris.c
 In [6]:
          #Understand the data
 In [7]:
          data.head(2)
                SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                           Species
 Out[7]:
          0
             1
                                                                          Iris-setosa
                           5.1
                                         3.5
                                                        1.4
                                                                      0.2
          1
             2
                           4.9
                                         3.0
                                                                      0.2 Iris-setosa
                                                        1.4
          #To Get an Overview of No of column Present In dataset
In [18]:
          data.columns
          Index(['Id', 'sepallength', 'sepalwidth', 'petallength', 'petalwidth',
Out[18]:
                   'Species'],
                 dtype='object')
          #rename the column name and Make it readable
In [19]:
          data.rename(columns={'SepalLengthCm':'sepallength','SepalWidthCm':'sepalWidth','PetalLen
          data.head(2)
In [20]:
Out[20]:
             ld
                sepallength
                            sepalwidth petallength petalwidth
                                                              Species
          0
             1
                        5.1
                                   3.5
                                              1.4
                                                            Iris-setosa
                                                        0.2
          1 2
                        4.9
                                  3.0
                                              1.4
                                                        0.2 Iris-setosa
          #Get the statastical Insights of the data
In [21]:
          data.describe()
                            sepallength
                                        sepalwidth
                                                  petallength
                                                              petalwidth
Out[21]:
                        ld
           count 150.000000
                            150.000000
                                       150.000000
                                                  150.000000
                                                             150.000000
                  75.500000
                              5.843333
                                         3.054000
                                                    3.758667
                                                                1.198667
           mean
            std
                  43.445368
                              0.828066
                                         0.433594
                                                    1.764420
                                                               0.763161
                   1.000000
                              4.300000
                                         2.000000
                                                    1.000000
                                                               0.100000
            min
            25%
                  38.250000
                              5.100000
                                         2.800000
                                                    1.600000
                                                               0.300000
            50%
                  75.500000
                              5.800000
                                         3.000000
                                                    4.350000
                                                                1.300000
            75%
                 112.750000
                              6.400000
                                         3.300000
                                                    5.100000
                                                                1.800000
            max 150.000000
                              7.900000
                                         4.400000
                                                    6.900000
                                                                2.500000
In [22]:
          #We observe from this above line that our dataset has 150 rows and 6 columns
```

Loading [MathJax]/extensions/Safe.js

data.shape

```
(150, 6)
Out[22]:
In [23]:
          #to get more informatio about the dataset
          #iris dataset is a balanced dataset no of datapoints are equal
          data['Species'].value_counts()
          Iris-setosa
                              50
Out[23]:
          Iris-versicolor
                              50
          Iris-virginica
                              50
          Name: Species, dtype: int64
 In [ ]: #2D Scatter plot
          # to Understand the axis label scale
          data.plot(kind='scatter', x='sepallength', y='sepalwidth')
In [25]:
          plt.show()
             4.5
             4.0
             3.5
          sepalwidth
             3.0
             2.5
             2.0
                      4.5
                               5.0
                                       5.5
                                                        6.5
                                                                 7.0
                                                                         7.5
                                                6.0
                                                                                  8.0
                                             sepallength
In [45]:
          sns.set_style("whitegrid"),
          sns.FacetGrid(data, hue= "Species", height =6) \
          .map(plt.scatter, "sepallength", "sepalwidth") \
```

.add\_legend();
plt.show()



| In [31]: | data.head(1) |             |            |             |            |             |  |  |  |  |  |
|----------|--------------|-------------|------------|-------------|------------|-------------|--|--|--|--|--|
| Out[31]: |              | sepallength | sepalwidth | petallength | petalwidth | Species     |  |  |  |  |  |
|          | 0            | 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa |  |  |  |  |  |
| In [50]: | data.head()  |             |            |             |            |             |  |  |  |  |  |
| Out[50]: |              | sepallength | sepalwidth | petallength | petalwidth | Species     |  |  |  |  |  |
|          | 0            | 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa |  |  |  |  |  |
|          | 1            | 4.9         | 3.0        | 1.4         | 0.2        | Iris-setosa |  |  |  |  |  |
|          | 2            | 4.7         | 3.2        | 1.3         | 0.2        | Iris-setosa |  |  |  |  |  |
|          | 3            | 4.6         | 3.1        | 1.5         | 0.2        | Iris-setosa |  |  |  |  |  |
|          | 4            | 5.0         | 3.6        | 1.4         | 0.2        | Iris-setosa |  |  |  |  |  |
|          |              |             |            |             |            |             |  |  |  |  |  |

#Pair plot represents the relationship between our target and the variables

plt.show()

sns.set\_style("whitegrid")

sns.pairplot(data, hue= "Species", height =3);

In [ ]:

In [51]:



In [ ]: Histogram PDF

In [62]: data

| Out[62]: |     | sepallength | sepalwidth | petallength | petalwidth | Species        |
|----------|-----|-------------|------------|-------------|------------|----------------|
|          | 0   | 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa    |
|          | 1   | 4.9         | 3.0        | 1.4         | 0.2        | Iris-setosa    |
|          | 2   | 4.7         | 3.2        | 1.3         | 0.2        | Iris-setosa    |
|          | 3   | 4.6         | 3.1        | 1.5         | 0.2        | Iris-setosa    |
|          | 4   | 5.0         | 3.6        | 1.4         | 0.2        | Iris-setosa    |
|          |     |             |            |             |            |                |
|          | 145 | 6.7         | 3.0        | 5.2         | 2.3        | Iris-virginica |
|          | 146 | 6.3         | 2.5        | 5.0         | 1.9        | Iris-virginica |
|          | 147 | 6.5         | 3.0        | 5.2         | 2.0        | Iris-virginica |
|          | 148 | 6.2         | 3.4        | 5.4         | 2.3        | Iris-virginica |
|          | 149 | 5.9         | 3.0        | 5.1         | 1.8        | Iris-virginica |

150 rows × 5 columns

```
import numpy as np
iris_setosa = data.loc[data["Species"]== "iris-setosa"]
iris_virginica =data.loc[data["Species"]=="Iris-virginica"];
iris_versicolor = data.loc[data["Species"]=="Iris-versicolor"]

In [113... #Univariate Analysis
sns.FacetGrid(data, hue="Species", height=6)\
.map(sns.histplot, "petallength")\
.add_legend()
plt.show()
```



```
In [111... sns.FacetGrid(data, hue="Species", height=6)\
    .map(sns.histplot, "petalwidth")\
    .add_legend()
plt.show()
```



```
In [109... sns.FacetGrid(data, hue="Species", height=6)\
    .map(sns.histplot, "sepallength")\
    .add_legend()
    plt.show()
```



```
In [112... sns.FacetGrid(data, hue="Species", height=6)\
    .map(sns.histplot, "sepalwidth")\
    .add_legend()
plt.show()
```



```
In [92]: #Box Plot
#Box-plot can be visualized as a PDF on the side-ways
sns.boxplot(x= 'Species', y= 'petallength', data = data)
plt.show()
```



In [101... #Violen plot
 sns.violinplot(x= "Species", y= "petallength", data = data, height=8)
 plt.show()



In [ ]: