Rev. 10/93

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the Application of:

O. FAMODU ET AL.

CASE NO.: BB1321-1

APPLICATION NO.: UNKNOWN

GROUP ART UNIT: UNKNOWN

FILED: CONCURRENTLY HEREWITH

EXAMINER: UNKOWN

FOR: UDP-GLUCOSE MODIFIERS

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, DC 20231

Sir:

Before examination of the above-referenced application, please amend the application as follows:

IN THE SPECIFICATION:

Please replace the following paragraphs:

Paragraph starting at page 6, line 15:

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least one of 30 (preferably at least one of 40, most preferably at least one of 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41,

6