Машина Тьюринга

Алгоритмы и алгоритмические языки

u.to/72D_Gg

Лекция 11, 16 апреля, 2021

Лектор:

Дмитрий Северов, кафедра информатики 608 КПМ dseverov@mail.mipt.ru

Обратная связь: u.to/7Wn7Gg

Устройство машины Тьюринга

- 1. конечный алфавит символов $\alpha = \{a_0, a_1, ...a_n\};$
- 2. конечный список $Q = \{q_0, q_1, ..., q_m\}$ элементарных состояний;
- программа, составленная из команд Т_{іј}, вида a_iq_j→a'_iq'_jM,
 где М - один из символов движения L, R или S.

NB: результат работы машины зависит от её начального состояния

Написать программу для машины Тьюринга, заполняющую ячейку ленты, на которую указывает головка в конечном состоянии,

- СИМВОЛОМ 1, ЕСЛИ НА ЛЕНТЕ ЗАДАНО ПРАВИЛЬНОЕ СКОБОЧНОЕ ВЫРАЖЕНИЕ И
- СИМВОЛОМ O В ПРОТИВНОМ СЛУЧАЕ.

Начальное положение головки — установлена на первый (самый левый) символ скобочного выражения.

```
#include <iostream>
           #include <string>
           using namespace std;
Вариант
           string str;
ПРОГРАММЫ
           int main() {
HA C++
           int s=0;
              cin >> str;
              for(int i=0;i<str.length();i++)</pre>
                 if(str[i]=='(') s++;
                 else if(--s<0) break;
              cout << (s?"No":"Yes") << endl;
              return 0;
```

м. минский

ВЫЧИСЛЕНИЯ И АВТОМАТЫ

Перевод с английского Б. Л. Овсиевича и Л. Я. Розенблюма УДК 681.14

361 M622

BAYTHAS SHERHOTSKA

4325-2-4132

Монография одного из крупнейших американских ученых рассматривает фундаментальные вопросы теории автоматов. Изложена клас-

Q' S' D Q S

Таблица 6.1.2 Пятерки для устройства проверки скобочных выражений

			1	
0)	1 X 0	1)	1) 0 2	
0 (0 (1	1 (0 X 1 2	2 (
0 A 0 X	2 A 0 0 X 1	1 A 1 X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
q_0	• • •		q_1	q_2
	\mathbf{q}_{0}		${\bf q}_1$	\mathbf{q}_{2}
)	$\mathbf{X} \mathbf{q}_1$	L) q ₁ L	
((q ₀	R	X q _o R	0 - S
λ	$\lambda \mathbf{q}_2$	L	0 - S	1 - S
X	$\mathbf{X} \mathbf{q}_0$	R	$X q_1 L$	$X q_2 L$

	\mathbf{q}_{0}	\mathbf{q}_1	\mathbf{q}_{2}
)	$X q_1 L$) q ₁ L	
((q ₀ R	X q _o R	0 - S
λ	λ \mathbf{q}_2 L	0 - S	1 - S
X	$X q_0 R$	X q ₁ L	$X q_2 L$

Алфавит

Состояния

$$egin{aligned} & oldsymbol{lpha} = \{(\ ,\)\ , oldsymbol{0}\ , oldsymbol{1}\ , oldsymbol{x}\} & oldsymbol{q}_0 - \text{от начала вправо до}\ \\ & oldsymbol{q}_1 - \text{влево до парной}\ (\ & oldsymbol{q}_2 - \text{влево до конца} \end{aligned}$$

Программа для МТ

$$(\mathbf{q}_0
ightarrow (\mathbf{q}_0 \mathbf{R} \quad (\mathbf{q}_1
ightarrow \mathbf{X} \mathbf{q}_0 \mathbf{R} \) \mathbf{q}_0
ightarrow \mathbf{X} \mathbf{q}_1 \mathbf{L} \qquad \lambda \mathbf{q}_1
ightarrow \mathbf{0} - \mathbf{S} \ \mathbf{X} \mathbf{q}_0
ightarrow \mathbf{X} \mathbf{q}_0 \mathbf{R} \qquad \mathbf{X} \mathbf{q}_2
ightarrow \mathbf{X} \mathbf{q}_2 \mathbf{L} \ \lambda \mathbf{q}_0
ightarrow \lambda \mathbf{q}_2 \mathbf{L} \qquad (\mathbf{q}_2
ightarrow \mathbf{0} - \mathbf{S} \ \mathbf{X} \mathbf{q}_1
ightarrow \mathbf{X} \mathbf{q}_1 \mathbf{L} \qquad \lambda \mathbf{q}_2
ightarrow \mathbf{1} - \mathbf{S} \$$

Блок-схема программы для МТ

от конца влево до начала от начала и (вправо до)

от (влево до парной (

Композиция машин Тьюринга

- 0) 0 -> X 1 L
 (0 -> (0 R
 X 0 -> X 0 R
 λ 0 -> 0 2 L
- 0 (1-> X 0 R X 1 -> X 1 L λ 1 -> n 0 S
- 0 (2-> n 0 S X 2-> X 2 L λ 2-> y 0 S

-) 0 -> X 1 L
 (0 -> (0 R
 X 0 -> X 0 R
 λ 0 -> 0 2 L
- 0 (2-> n 0 S X 2-> X 2 L λ 2-> y 0 S

Композиция машин Тьюринга

- 0 (1-> X 0 R
 X 1-> X 1 L
 λ 1-> n 0 S
- (2->00S
 X2->X2L
 λ2->10S

Разновидности машин Тьюринга

к доказательству существования алгоритмически неразрешимых задач

Композиция машин Тьюринга

...λλλ**ΧΧΧΧΧΧΧΧΧΧΧΧΧΧ**Δ<u>()()</u>λλλ...

$$X 3 -> \lambda 3 R$$

 $\lambda 3 -> \lambda 4 R$

Двоичная машина Тьюринга

- Анализ кортежей из n бит при движении Т* вправо будет приводить к состоянию, соответствующему считыванию символа из α машиной Т.

■ И наоборот: с каждым из k символов будем ассоциировать набор из n движений влево Т* с записью 0 или 1, которые составят двоичный код символа, который записала бы машина Т.

$$\alpha = \{0,1\}: (=10)$$

$$(1 -> X 0 R)$$

 $X 1 -> X 1 L$
 $\lambda 1 -> n 0 S$

$$\begin{array}{c|c} \underline{1q_{0}} -> \underline{1q_{01}R} \\ 0q_{01} -> 0q_{0}R & //(\\ 1q_{01} -> 1q_{0}R & //X \\ \underline{0q_{0}} -> 0q_{00}R & \\ \underline{0q_{00}} -> 0q_{00}L & //\lambda \\ 0q_{000} -> 0q_{2}L & \\ \underline{1q_{00}} -> 1q_{001}L & //) \\ 0q_{001} -> 1q_{1}L & \\ \end{array}$$

$$X=11$$
 $\lambda=00$

$$\frac{\sqrt{0q_{2}} -> 0q_{20}L}{\sqrt{0q_{20}} -> y-S}$$
 // λ $\frac{1q_{20}}{\sqrt{1q_{20}}} -> n-S$ //($\frac{1q_{2}}{\sqrt{1q_{21}}} -> 1q_{21}L$

$$\alpha = \{0,1\}: (=10)=01$$

$$(1 -> X 0 R)$$

 $X 1 -> X 1 L$
 $\lambda 1 -> n 0 S$

$$\begin{array}{|c|c|c|c|}\hline 1q_0 & -> 1q_{\underline{3}}R \\ 0q_{\underline{3}} & -> 0q_0R & //(\\ 1q_{\underline{3}} & -> 1q_0R & //X \\ 0q_0 & -> 0q_{\underline{4}}R \\ 0q_{\underline{4}} & -> 0q_{\underline{5}}L & //\lambda \\ 0q_{\underline{5}} & -> 0q_{\underline{2}}L & \\ 1q_{\underline{4}} & -> 1q_{\underline{6}}L & //) \\ 0q_{\underline{6}} & -> 1q_{\underline{1}}L & \end{array}$$

$$Q = \{q_0 ... q_{11}\}$$

X=11 $\lambda=00$

$$1q_{1} -> 1q_{1}L$$
 $1q_{2} -> 1q_{1}L$
 $//X$
 $0q_{1} -> 1q_{8}L$
 $0q_{8} -> n-S$
 $//\lambda$
 $1q_{8} -> 1q_{9}R$
 $//($
 $0q_{9} -> 1q_{0}R$

$$\sqrt{0q_{2}} -> 0q_{10}L$$
 $\sqrt{0q_{10}} -> y-S$
 $\sqrt{\lambda}$
 $\sqrt{1q_{10}} -> n-S$
 $\sqrt{\zeta}$
 $\sqrt{1q_{2}} -> 1q_{11}L$
 $\sqrt{1q_{2}} -> 1q_{2}L$
 $\sqrt{\chi}$

Машина Тьюринга с лентой, бесконечной в одном направлении.

Функция вычислимая по Тьюрингу

f — функция вычислимая по Тьюрингу, если её значения могут быть вычислены некоторой машиной Тьюринга, на ленте которой первоначально не записано ничего, кроме представления х в двоичном коде, а f(x) — это то, что на ленте будет записано в двоичном коде, когда машина остановится.

Универсальная Машина Тьюринга

Если машина $T: s_x \to S_{f(x)}$

то существует машина U: D_T , $s_x \to S_{f(x)}$

Описание Символ Состояние Рабочая лента машины Т Т

Проблема останова

- ∃ ли анализатор А: ∀ Т и ∀ t выдает результат
 - I в случае, если останов Т на наборе t произойдет,
 - 0 в противном случае?

АЛГОРИТМИЧЕСКИ НЕ РАЗРЕШИМА

Не существует алгоритма (машины Тьюринга),

- позволяющего определить по описанию
 - произвольного алгоритма
 - и его исходных данных
- останавливается или работает бесконечно
 - этот алгоритм
 - на этих данных.

Доказательство

- Предположение обратного существование «анализатора»
- Шаг 1. На вход анализируемой машине её описание
- Определение самоприменимой машины
- Шаг 2. Композиция «анализатора» и «копира»
- Шаг 3. Модернизация композиции циклом
- Шаг 4. Парадокс свойств модернизированной композиции

оПредположим обратное, тогда:

Э А: для некоторой **T** (произвольной!) по данному её описанию **D**_T и описанию (любой!) ленты **t** определяет произойдет останов или нет.

Шаг 1

Пользуясь общностью набора данных рассмотрим частный случай, когда t≡D_т

Самоприменимая машина Тьюринга достигает результирующего останова на данных являющихся кодом этой машины $10 \rightarrow 11R$ $00 \rightarrow 11R$ $11 \rightarrow 10L$ $01 \rightarrow 00S$

Само применимая

Само не применимая

■ 101101 ■ 111010

■ 001101 ■ 010000

■ 111010 ■ 101101

■ 010000 ■ 001101

101101001101111010010000

11101110000101101001101

Шаг 2

- Машина В есть композиция двух машин:
- 1. Создает копию D_T
- 2. Машина А

Шаг 3

- Модифицируем код машины В добавив в состав её команд цикл (для любого возможного х)
- Назовем такую машину В*

Свойства В*

Если анализатору В* предъявлено описание

- самоприменимой МТ, то он зацикливается,
- если не самоприменимой, то он останавливается.

Шаг 4

В* самоприменимая машина?

- □ Если да, то попадаем в цикл
- □ Если нет, то попадаем на останов

Противоречия опровергают исходное предположение