Esame di Laurea in Informatica

Implementazione di modelli di programmazione matematica per problemi di bin packing

Candidato
Daniel Rossi
8 Dicembre 2018

Relatore prof. Luigi De Giovanni

Introduzione

SOFTWARE SUPPORTO DECISIONALE

- agevolazione degli operatori;
- operatori meno esperti;
- aumento della produttività;
- informazioni sullo stato dei trasporti;
- stima di costi e profitti.

Introduzione

L'azienda ha sviluppato un'euristica per l'ottimizzazione dello spazio occupato dalle merci nel container del camion.

Proposta di stage

Scopo

Lo scopo dello stage è quello di realizzare dei modelli di programmazione lineare per la risoluzione dello **Strip Packing Problem** da usare per valutare l'euristica aziendale

- 2D: versione 2D;
- 2DR: versione 2D con rotazione;
- 2DRS: versione 2D con rotazione e sequenza di scarico;
- **3D**: versione 3D con rotazione e sovrapposizione.

Packing Problem

Insieme $I = \{1, ..., n\}$ di oggetti aventi dimensioni w_i , d_i e h_i . Insieme $J = \{1, ..., m\}$ di contenitori di dimensione W, D e H. Per ipotesi $w_i \leq W$, $d_i \leq D$ e $h_i \leq H$.

Obiettivo Bin Packing

Minimizzare il numero di contenitori *J* che riescano a contenere tutti gli oggetti dell'insieme *I*.

Obiettivo Strip Packing

Minimizzare i metri lineari occupati dagli oggetti dell'insieme *I* rispetto la profondità del contenitore.

Modello matematico

Tratto dall'articolo: Solving the 2D bin packing problem by means of a hybrid evolutionary algorithm

min D

s.t.

$$l_{ij} + l_{ji} + b_{ij} + b_{ji} \ge 1$$
 $i < j$ $i, j \in I$
 $y_i - y_j + M_d b_{ij} \le M_d - d_i$ $i, j \in I$
 $x_i - x_j + M_w l_{ij} \le M_w - w_i$ $i, j \in I$
 $x_i + w_i \le W$ $i \in I$
 $y_i + d_i \le D$ $i \in I$
 $y_i, l_{ij} \in \{0, 1\}$ $i \ne j$ $i, j \in I$
 $x_i, y_i, w_i, d_i \in \mathbb{R}^+$ $i \in I$

Tecnologie

Durante lo stage sono state usate le seguenti tecnologie:

Google

Optimization

Tools

Modello 2D e 2DR

Modello 2D:

Limiti delle soluzioni

Modello 2DR: Ottimalità della soluzione

Modello 2DRS

Vie di scarico:

Deve essere presente almeno una via di scarico per ciascun pacco

Stabilità generale:

Le soluzione del modello non implementano la stabilità generale

Modello 3D

Stabilità degli oggetti:

Garantita sovrapponendo solo un oggetto

Oggetti stackable:

In generale nei test non tutti gli oggetti erano sovrapponibili

Test computazionale

Istanza:

insieme formato dai pacchi da disporre nel contenitore.

Gruppo di istanze:

insieme di istanze accomunate tra loro dal numero di pacchi o dalle loro dimensioni.

Time Limit: 300 secondi

Soluzioni:

- ottime
- best bound

#	Wa	$ w_b $	da	d_b
0	0.5	2.45	0.5	2.45
1	0.5	1.50	0.5	4.00
2	1.5	2.45	0.5	4.00
3	0.5	1.50	3.0	4.00
4	1.5	2.45	3.0	4.00
5	0.1	1.00	0.1	1.00
6	0.1	1.00	3.0	4.00
7	2.0	2.45	3.0	4.00
8	2.0	2.45	2.0	2.45
9	0.1	1.00	0.1	4.00

Risultati 2DR

		Ottim	ie			Bes	t bound	
	#ist	ϵ_r	ϵ_{a}	Time		#ist	ϵ_r	ϵ_a
0	64.0	3.89	0.23	40.95	0	36.0	7.35	0.59
1	73.0	11.90	0.81	31.51	1	27.0	15.98	1.48
2	76.0	0.94	0.10	19.76	2	24.0	0.91	0.17
3	84.0	12.29	1.26	19.79	3	16.0	17.26	2.62
4	75.0	0.00	0.00	27.69	4	25.0	0.00	0.00
5	73.0	14.17	0.11	12.58	5	27.0	16.16	0.21
6	78.0	6.60	0.47	20.95	6	22.0	19.40	1.70
7	76.0	0.00	0.00	36.62	7	24.0	0.00	0.00
8	81.0	0.00	0.00	23.70	8	19.0	0.00	0.00
9	81.0	10.34	0.45	10.60	9	19.0	20.58	1.10

$$\bullet$$
 $\epsilon_a = Obj_h - Obj_m$

$$lacksquare$$
 $\epsilon_r = rac{\epsilon_a}{Obj_m} \cdot 100$

Raggiungimento degli obiettivi (1)

4 Modelli ⇒ 4 Macro-Obiettivi

Ogni obiettivo composto da diversi sotto-obiettivi

- Introduzione di un nuovo obiettivo:
 - Realizzazione modello 2DRS;
- Due variazioni nel corso dello stage:
 - Confronto con l'euristica eseguito alla fine;
 - Integrazione funzionalità euristica svolto in parallelo con lo sviluppo dei modelli.

Realizzazione modello grazie ad una minor durata:

- formazione;
- realizzazione modelli.

Consuntivo finale

	#ist	ϵ_r	ϵ_a	Time
0	64.0	3.89	0.23	40.95
1	73.0	11.90	0.81	31.51
2	76.0	0.94	0.10	19.76
3	84.0	12.29	1.26	19.79
4	75.0	0.00	0.00	27.69
5	73.0	14.17	0.11	12.58
6	78.0	6.60	0.47	20.95
7	76.0	0.00	0.00	36.62
8	81.0	0.00	0.00	23.70
9	81.0	10.34	0.45	10.60