Algoritmi e Strutture di Dati

Complessità degli algoritmi

m.patrignani

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

Algoritmi e programmi

- un *algoritmo* coincide per noi con la sua descrizione in pseudocodice
 - sappiamo che ciò è equivalente a definire una Random Access Machine
- lo pseudocodice può essere facilmente tradotto in un linguaggio di programmazione arbitrario per ottenere un *programma*
- l'operazione di traduzione di un algoritmo in un programma viene detta *implementazione*

Esecuzione dei programmi

- il programma può essere eseguito
 - su una piattaforma qualsiasi
 - con dati di input qualsiasi
- la sua esecuzione ha un costo (economico) che può essere espresso tramite le risorse di calcolo utilizzate
 - tempo
 - memoria
 - traffico generato su rete
 - trasferimento dati da/su disco
 - **—**
- nella maggior parte dei casi la risorsa più critica è il tempo di calcolo

Tempo di calcolo e dimensione dell'input

- si riscontra che il tempo di calcolo cresce al crescere della dimensione *n* dell'input
 - − è legittimo misurarlo come una funzione di *n*
- la nozione di dimensione dell'input dipende dal problema
 - ordinamento:
 - numero di elementi da ordinare
 - operazioni su liste:
 - lunghezza della lista
 - operazioni su matrici:
 - dimensione massima delle matrici coinvolte
 - valutazione di un polinomio in un punto:
 - grado del polinomio

Fattori che influenzano il tempo di calcolo

dimensione dell'input

 maggiore è la quantità di dati in input maggiore è il tempo necessario per processarli

algoritmo

può essere più o meno efficiente

hardware

un supercalcolatore è più veloce di un personal computer

linguaggio

- un'implementazione diretta in linguaggio macchina è più veloce di un'implementazione in un linguaggio ad alto livello
- un programma compilato è più veloce di un programma interpretato

compilatore

alcuni compilatori sono progettati per generare codice efficiente

programmatore

 a parità di algoritmo e di linguaggio, programmatori esperti scelgono costrutti più veloci

Tempo di calcolo e algoritmi

esperimento: confronto tra due algoritmi di ordinamento

- stesso input: 1.000.000 numeri interi

algoritmo	insertion sort	merge sort
hardware	supercalcolatore	personal computer
linguaggio	linguaggio macchina	linguaggio ad alto livello
compilatore	_	non efficiente
programmatore	esperto	medio

,	5.56	1000
tempo	5,56 ore	16,67 minuti

conclusione:

 il tempo di calcolo di un programma su uno specifico input è influenzato dall'algoritmo che implementa più che dagli altri fattori

Progetto di algoritmi efficienti

motivazione

- ha un impatto economico diretto per gli utilizzatori dei programmi
 - il tempo di calcolo si traduce in un investimento economico
- è fondamentale per ottenere implementazioni di uso pratico
 - l'usabilità di un programma può essere compromessa da un algoritmo inefficiente

problema

 nel momento in cui progettiamo un algoritmo non possiamo misurare direttamente l'efficienza delle sue future implementazioni

soluzione

 previsione del tempo di calcolo delle implementazioni di un algoritmo (analisi)

Analisi degli algoritmi

obiettivo

- prevedere il tempo di calcolo richiesto dall'esecuzione di un programma che implementa il nostro algoritmo
 - in funzione della dimensione dell'input
 - per piccoli input il tempo di calcolo sarà comunque basso
 - qual è il tempo di calcolo per input di grandi dimensioni?

strumenti

- ipotesi sul tempo di esecuzione di ogni istruzione
- analisi asintotica delle funzioni
 - quale funzione consideriamo?

Il tempo di calcolo non è una funzione

• In generale il tempo di calcolo per un input di dimensione *n* **non** è una funzione

Tempo di calcolo e analisi asintotica

- vogliamo studiare il tempo di calcolo con gli strumenti dell'analisi asintotica
 - ma l'analisi asintotica si applica solo alle funzioni
 - dobbiamo trasformare il tempo di calcolo in una funzione
 - per questo consideriamo il caso peggiore/medio/migliore

Uso del caso peggiore

- in generale è di maggiore interesse il *caso peggiore* rispetto al *caso migliore* o al *caso medio*
 - si preferisce un errore per eccesso ad un errore per difetto
 - il caso migliore non dà nessuna garanzia sul tempo di calcolo con un input generico
 - è di interesse solamente teorico
 - spesso il tempo di calcolo del caso medio è più vicino al caso peggiore che al caso migliore
 - conoscere il costo del caso medio può essere utile solo qualora si debba ripetere un'operazione un numero elevato di volte

Stima del tempo di calcolo

- denotiamo T(n) il tempo di calcolo di una implementazione dell'algoritmo nel caso peggiore su un input di dimensione n
- vogliamo stimare T(n) a partire dallo pseudocodice
- quanto costa ogni operazione elementare?
- ipotesi semplificativa:
 - per eseguire una linea (o istruzione) di pseudocodice è richiesto tempo costante
 - denotiamo con c_i il tempo necessario per eseguire la riga i

Strategie per la stima del tempo di calcolo

- strategia più onerosa
 - calcoliamo esplicitamente T(n) a partire dallo pseudocodice
 - T(n) dipende, oltre dalla dimensione dell'input n, anche dal costo di esecuzione associato alle singole righe dello pseudocodice c₁, c₂, c₃, c₄, ...
 - studiamo il comportamento asintotico di T(n)
- strategia più veloce
 - calcoliamo il costo asintotico di ogni porzione dello pseudocodice
 - otteniamo il costo asintotico dell'intero algoritmo componendo i costi calcolati
 - otteniamo il comportamente asintotico di T(n) senza mai calcolare esplicitamente T(n)

Esempio di algoritmo

- algoritmo DUE_OCCORRENZE
 - accetta in input un array di interi
 - ritorna TRUE se esiste un valore che occorre almeno due volte
 - ritorna FALSE se tutti gli elementi sono diversi

```
DUE_OCCORRENZE(A)

1. output = false
2. for i = 0 to A.length-2

3. for j = i+1 to A.length-1

4.         if (A[i] == A[j])

5.         output = true

6. return output
```

DUE_OCCORRENZE (A)	
1. output = false	
2. for i = 0 to A.length-2	
3. for j = i+1 to A.length-1	
4. if (A[i] == A[j])	
5. output = true	
6. return output	

costo	
\mathbf{c}_1	
c_2	
c_3	
c_4	
c ₅	
c_6	

n°	di volte	2
	1	
	1	

supponiamo che ogni riga i abbia un costo di esecuzione c_i

contiamo quante volte ogni riga viene eseguita

DUE_OCCORRENZE (A)	
1. output = false	
2. for i = 0 to A.length-2	
3. for j = i+1 to A.length-1	
4. if (A[i] == A[j])	
5. output = true	
6. return output	

costo	
\mathbf{c}_1	Ш
c_2	Ш
c_3	Ш
c_4	Н
c_5	
c_6	

n° di volte	
1	
n	
1	

- il ciclo esterno viene eseguito eseguito *n*-1 volte
 - il test, dunque, viene eseguito n volte
 - l'ultimo test determina l'uscita dal ciclo for
- il ciclo interno viene eseguito *n-i*-1 volte

DUE_OCCORRENZE (A)	
1. output = false	
2. for i = 0 to A.length-2	
3. for j = i+1 to A.length-1	
4. if (A[i] == A[j])	
5. output = true	
6. return output	

costo
\mathbf{c}_1
c_2
c_3
c_4
c ₅
c_6

n° di volte
1
n
1

• per ogni i, il ciclo interno viene eseguito n-i-1 volte,

cioè:
$$\Sigma_{i=0..n-2}(n-i-1) = \Sigma_{i=0..n-2}(n) - \Sigma_{i=0..n-2}(i) - \Sigma_{i=0..n-2}(1)$$

dove

$$\sum_{i=0..n-2} (n) = (n-1)n$$

$$\sum_{i=0..n-2} (i) = (n-1)(n-2)/2 \leftarrow \sum_{i=0..n-2} (1) = (n-1)$$
formula
$$\sum_{i=0..n-2} (1) = (n-1)$$

formula di Gauss

$$\sum_{i=1..n} (i) = \underbrace{(n+1)n}_{2}$$

DUE_OCCORRENZE (A)	
1. output	= false
2. for i =	0 to A.length-2
3. for	j = i+1 to A.length-1
4. i	i f (A[i] == A[j])
5.	output = true
6. return	output

costo
\mathbf{c}_1
c_2
c_3
c_4
c ₅
c_6

n° di volte
1
n
0.5n ² +1.5n+1
0.5n ² +1.5n
0.5n ² +1.5n
1

- il ciclo interno viene eseguito $(n-1)n (n-1)(n-2)/2 (n-1) = n^2 n (n^2 3n + 2)/2 n + 1 = n^2 n 0.5n^2 + 1.5n 1 + n + 1 = 0.5n^2 + 1.5n volte$
- il test alla riga 2 viene eseguito 0.5n²+1.5n+1 volte

costo
\mathbf{c}_1
c_2
c_3
c_4
c_5
c_6

n° di volte
1
n
0.5n ² +1.5n+1
$0.5n^2 + 1.5n$
0.5n ² +1.5n
1

$$T(n) = c_1 + c_2(n) + c_3(0.5n^2 + 1.5n + 1) + (c_4 + c_5)(0.5n^2 + 1.5n) + c_6$$

$$= n^2 (0.5c_3 + 0.5c_4 + 0.5c_5) +$$

$$n (c_2 + 1.5c_3 + 1.5c_4 + 1.5c_5) +$$

$$(c_1 + c_3 + c_6)$$

Dunque: $T(n) \in O(n^2)$, $T(n) \in \Omega(n^2) \Rightarrow T(n) \in \Theta(n^2)$

Algoritmi e complessità O(f(n))

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha complessità temporale O(f(n)) se $T(n) \in O(f(n))$

- diciamo anche che
 - il tempo di esecuzione dell'algoritmo $A \stackrel{.}{e} al più f(n)$
 - -f(n) è un *limite superiore*, o *upper-bound*, al tempo di esecuzione dell'algoritmo A
 - -f(n) è la quantità di tempo *sufficiente* (in ogni caso) all'esecuzione dell'algoritmo A

Algoritmi e complessità O(f(n))

l'algoritmo A ha complessità temporale <math>O(f(n)) se $T(n) \in O(f(n))$

Significatività della funzione f(n)

- se un algoritmo ha complessità f(n) allora ha anche complessità g(n) per ogni g(n) tale che $f(n) \in O(g(n))$
- la complessità espressa tramite la notazione O-grande diventa tanto più significativa quanto più f(n) è stringente (piccolo)

Algoritmi e complessità $\Omega(f(n))$

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha complessità temporale $\Omega(f(n))$ se $T(n) \in \Omega(f(n))$

- diciamo anche che
 - il tempo di esecuzione dell'algoritmo $A \ ealmeno \ f(n)$
 - -f(n) è un *limite inferiore*, o *lower-bound*, al tempo di esecuzione dell'algoritmo A
 - -f(n) è la quantità di tempo *necessaria* (in almeno un caso) all'esecuzione dell'algoritmo A

Algoritmi e complessità $\Omega(f(n))$

l'algoritmo A ha $complessità temporale <math>\Omega(f(n))$ se $T(n) \in \Omega(f(n))$

Algoritmi e complessità $\Theta(f(n))$

• sia T(n) il tempo di esecuzione di un algoritmo A su un'istanza di dimensione n nel caso peggiore

l'algoritmo A ha complessità temporale $\Theta(f(n))$ se ha complessità temporale O(f(n)) e $\Omega(f(n))$

- diciamo anche che
 - il tempo di esecuzione dell'algoritmo è f(n)
 - f(n) è un limite inferiore e superiore (lower-bound e upper-bound), al tempo di esecuzione dell'algoritmo
 - -f(n) è la quantità di tempo *necessaria e sufficiente* all'esecuzione dell'algoritmo

Algoritmi e complessità $\Theta(f(n))$

l'algoritmo A ha $complessità temporale <math>\Theta(f(n))$ se $T(n) \in \Theta(f(n))$

Strategie di analisi più efficienti

DUE_OCCORRENZE (A)	
1. output = false	
2. for i = 0 to A.length-2	
3. for j = i+1 to A.length-1	
4. if (A[i] == A[j])	
5. output = true	
6. return output	

n° di volte
1
n
0.5n ² +1.5n+1
$0.5n^2 + 1.5n$
$0.5n^2 + 1.5n$
1

ordine
Θ(1)
$\Theta(n)$
$\Theta(n^2)$
$\Theta(n^2)$
$\Theta(n^2)$
Θ(1)

- la regola della somma mi assicura che l'andamento asintotico di una somma di termini può essere ottenuto considerando l'andamento asintotico dei singoli termini
- una strategia più efficiente si basa, dunque, sul calcolo diretto del costo asintotico di ogni riga

Calcolo efficiente del costo asintotico

- istruzioni semplici
 - tempo di esecuzione costante: $\Theta(1)$
- sequenza (necessariamente finita) di istruzioni semplici
 - tempo di esecuzione costante: $\Theta(1)$
- sequenza di istruzioni generiche
 - somma dei tempi di esecuzione di ciascuna istruzione

Istruzioni condizionali

per calcolare T(n) occorrerebbe sapere se la condizione si verifica o meno

- troviamo un limite superiore O-grande al tempo di esecuzione T(n) come somma dei costi seguenti
 - costo O-grande della valutazione della condizione
 - costo O-grande maggiore tra <parte-then> e <parteelse>
- troviamo un limite inferiore Ω al tempo di esecuzione T(n) come somma dei costi seguenti
 - costo Ω della valutazione della condizione
 - $-\cos to \Omega \text{ minore tra} < \text{parte-then} > e < \text{parte-else} >$

Istruzioni ripetitive

- il nostro pseudocodice ci offre tre istruzioni ripetitive
 - for, while e repeat
- per il limite superiore O-grande occorre determinare
 - un limite superiore O(f(n)) al numero di iterazioni del ciclo
 - un limite superiore O(g(n)) al tempo di esecuzione di ogni iterazione
 - si compone del costo dell'esecuzione del blocco di istruzioni più il costo di esecuzione del test
- il costo del ciclo sarà: $O(g(n) \cdot f(n))$
- analogamente sarà: $\Omega(g'(n) \cdot f'(n))$
 - dove le iterazioni sono $\Omega(g'(n))$ ed il costo di una iterazione è $\Omega(f'(n))$

Istruzioni ripetitive annidate

```
2. for i = 0 to n
3. for j = i+1 to n
4. <istruzione o blocco>
```

Un caso frequente è quando il secondo ciclo viene eseguito meno volte del primo

 $n/2 \times n = n^2/2 = \Theta(n^2)$

Istruzioni ripetitive: esempio

```
FACT (n)

1. f = 1

2. for k = 2 to n

3. f = f * k

4. return f
```

- numero di iterazioni del ciclo for: $\Theta(n)$
- costo di una singola iterazione: $\Theta(1)$
- costo complessivo del ciclo while: $\Theta(n \cdot 1) = \Theta(n)$
- costo complessivo della procedura: $\Theta(n)$

Attenzione al modello!

```
FACT (n)
1. f = 1
2. for k = 2 to n
3.  f = f * k
4. return f
```

- stiamo lavorando nell'ipotesi in cui le variabili (che corrispondono ai registri della RAM) riescano sempre a contenere i numeri coinvolti
- se usassimo come misura dell'input il numero k di bit necessari per rappresentare n in binario avremmo $k = \lceil \log_2 n \rceil$ e costo complessivo = $\Theta(2^k)$

Chiamata a funzione o procedura

supponiamo che un programma P invochi la procedura Q

- sia $T_Q(n)$ il tempo di esecuzione della procedura Q
- il tempo di esecuzione dell'invocazione della procedura Q in P è $T_Q(m)$, dove m è la dimensione dell'input passato alla procedura Q
 - attenzione: occorre determinare la relazione tra m e la dimensione n dell'input di P

Esempio di chiamata a funzione

```
SUM_OF_FACT(n)

1. sum = 0

2. for m = 0 to n

3. sum = sum + FACT(m)

4. return sum
```

- il corpo del ciclo for ha complessità $\Theta(1) + \Theta(m) = \Theta(m)$
- il ciclo viene eseguito *n* volte
- il costo complessivo del ciclo è dunque: $\Theta(n) + \Theta(n-1) + ... + \Theta(2) + \Theta(1) = \Theta(n^2)$
- il costo totale è $\Theta(n^2)$

Esempio di analisi della complessità

- algoritmo per invertire un array
 - da 01234567 a 76543210
- strategia
 - scambio A[0] con A[A.length-1]
 - scambio A[1] con A[A.length-2]
 - scambio A[2] con A[A.length-3]
 - scambio A[3] con A[A.length-4]

7 1 2 3 4 5 6 0

7 6 2 3 4 5 1 0

76534210

7 6 5 4 3 2 1 0

— ...

Esempio di analisi della complessità

INVERTI_ARRAY(A) 1. for i = 0 to [A.length/2] do 2. SCAMBIA(A,i,A.length-1-i)

SCAMBIA(A,j,k)

- $\mathbf{1.} \quad \mathsf{memo} = \mathsf{A[j]}$
- **2.** A[j] = A[k]
- 3. A[k] = memo
- la funzione **SCAMBIA**(A,j,k) ha complessità $\Theta(1)$ in quanto è composta da una successione di istruzioni elementari
- la funzione **INVERTI_ARRAY**(A) ha complessità $\Theta(n)$ in quanto esegue per $\Theta(n)$ volte il blocco delle istruzioni che consiste nell'esecuzione di una procedura $\Theta(1)$