# Friedrich-Alexander-Universität Erlangen-Nürnberg



# **Decision Theory**

Lecture 4

**Michael Hartisch** 

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science May 6, 2024



### Recap: What did we do?

- Domination criteria
- Preference functions
- Excursion: descriptive decision theory

FAU M. Hartisch Decision Theory May 6, 2024 2/85



### **Domination Criteria**

- Three criteria:
  - Absolute dominance: worst is better than best
  - State dominance: better in each scenario
  - Probabilistic dominance: cumulative distribution function is better
- Example:



### **Preference Functions**

- Three types of preferences:
  - Extremization
  - Satisficing
  - Fixation
- Lexicographic rule

FAU M. Hartisch Decision Theory



### **Descriptive Decision Theory**

- Anchoring effect
- Estimating probabilities
- Altruism and revenge in games
- Two systems of decision making
- Heuristics in system one, connection to evolutionary preferences

FAU M. Hartisch Decision Theory May 6, 2024 5/85



### **Today**

- Decision under certainty
- Multicriteria problems
- Data Envelopment Analysis

FAU M. Hartisch Decision Theory May 6, 2024 6/85



### **Decision Under Certainty**

Multiple scenarios, multiple criteria → uncertainty

|       | <i>S</i> <sub>1</sub>                                     |     | S <sub>n</sub>               |
|-------|-----------------------------------------------------------|-----|------------------------------|
| $a_1$ | $(e_{11}^1,\ldots,e_{11}^k)$                              |     | $(e_{1n}^1,\ldots,e_{1n}^k)$ |
| $a_2$ | $(e_{11}^1,\ldots,e_{11}^k) \ (e_{21}^1,\ldots,e_{21}^k)$ | ••• | $(e_{2n}^1,\ldots,e_{2n}^k)$ |
| ŧ     | i i                                                       | :   | <b>!</b>                     |
| $a_m$ | $(e_{m1}^1,\ldots,e_{m1}^k)$                              |     | $(e_{mn}^1,\ldots,e_{mn}^k)$ |

FAU M. Hartisch Decision Theory



### **Decision Under Certainty**

One scenario, multiple criteria → certainty

FAU M. Hartisch Decision Theory



### **Decision Under Certainty**

One scenario, one criterion  $\rightarrow$  certainty

|                | <i>S</i> <sub>1</sub> |
|----------------|-----------------------|
| $a_1$          | <i>e</i> <sub>1</sub> |
| $a_2$          | <i>e</i> <sub>2</sub> |
| i              | i                     |
| a <sub>m</sub> | <i>e</i> <sub>m</sub> |

FAU M. Hartisch Decision Theory May 6, 2024 7/85



8/85

### **Decision Under certainty**

- Why should this be difficult?
- If the decision matrix is given, the problem is trivial: choose the best alternative
- Not so easy when the alternatives are only implicitly known

FAU M. Hartisch Decision Theory May 6, 2024



### **Example: Fuel Consumption**

The fuel consumption F of a car traveling at constant speed v (in mph) is

$$F = \frac{ad}{v} + bdv^2 + cd$$

where d is the distance traveled, and a, b, c are parameters depending on the car.

What is the most cost-effective speed for a = 1000, b = 0.004, and c = 10?

FAU M. Hartisch Decision Theory







### Solution

$$F = \frac{ad}{v} + bdv^2 + cd$$

The first derivative with respect to v is

$$F' = \frac{-ad}{v^2} + 2bdv$$

Setting the derivative to zero gives v = 50. The second derivative is

$$F'' = \frac{2ad}{v^3} + 2bd \ge 0$$

Thus, v = 50 is a minimum. Also, test  $v \to \infty$ .



### **Decision Under Certainty**

- Some decision problems are solvable using school methods (curve sketching)
- Approach does not work for problems with constraints

FAU M. Hartisch Decision Theory May 6, 2024 12/85



### Example

- Produce two chemicals P<sub>1</sub> and P<sub>2</sub>
- Yield the same profit
- Must go through two machines
- 100 operating hours per machine available
- Processing time per unit is:

$$\begin{array}{c|cccc} & M_1 & M_2 \\ \hline P_1 & 1 & 1/2 \\ P_2 & 1/3 & 1 \\ \end{array}$$



### Model

- Variables:
  - $\circ x_1$ : amount of chemical  $P_1$
  - $\circ x_2$ : amount of chemical  $P_2$
- Profit:  $x_1 + x_2$
- Constraints:
  - Machine  $M_1$ :  $x_1 + 1/2x_2 \le 100$
  - Machine  $M_2$ :  $1/3x_1 + x_2 \le 100$



























### **Linear Programming**

- Linear program: all constraints and objective function are linear
- Fundamental theorem of linear optimization: there is always an optimal solution among the extreme points
- Can be "quickly" searched (in polynomial time)
- Only possible when all variables are continuous

FAU M. Hartisch Decision Theory May 6, 2024 16/85



### **Example: Knapsack Problem**

- *n* possible projects
- Profits  $p_i$ ,  $i = 1, \ldots, n$
- Investment costs  $w_i$ , i = 1, ..., n
- Investment budget is B
- Which projects should be chosen?

FAU M. Hartisch Decision Theory



### Knapsack problem: Model

- Use variables  $x_i$ , i = 1, ..., n
  - $\circ$   $x_i = 1$  if project i is chosen
  - $\circ$   $x_i = 0$  otherwise
- Model:

$$\max \sum_{i \in [m]} p_i x_i$$
 subject to 
$$\sum_{i \in [n]} w_i x_i \leq B$$
 
$$x_i \in \{0, 1\}$$

for all  $i \in [n]$ 



### **Knapsack Problem**

- Variables are no longer continuous, but discrete
- In the worst case, up to 2<sup>n</sup> possible combinations to check
- Solutions can be searched "slowly" (exponentially many candidates)
- Heuristics are used for this purpose

FAU M. Hartisch Decision Theory May 6, 2024 19/85



### Knapsack problem

- Example heuristic:
  - $\circ$  Sort all items *i* by  $p_i/w_i$  (benefit per cost)
  - Pack the item with the best ratio
  - Pack the item with the second-best ratio...
  - Until item number *k* no longer fits
  - Then stop
  - o "Greedy" heuristic

FAU M. Hartisch Decision Theory



### **Knapsack Problem: Example**

• Problem: budget B = 6 with

• Sort:

- Heuristic: pack items 1 and 2, profit 12
- Best solution: pack items 2 and 3, profit 13



### **Knapsack Problem: Heuristic**

- How bad can the so-called greedy heuristic be?
- Can you find an example where it performs poorly?
- With a small modification: it always achieves at least half of the optimal profit

FAU M. Hartisch Decision Theory May 6, 2024 22/85



### **Multicriteria Problems**

• Now:

FAU M. Hartisch Decision Theory



### Example

- We want to buy a car
- We are only interested in:
  - Costs (e<sup>1</sup>, minimize)
  - Environmental impact (e<sup>2</sup>, minimize)
- Criteria cannot be converted into each other
- No clear preference between criteria

FAU M. Hartisch Decision Theory May 6, 2024 24/85



### Example

• Five cars are available for selection:

Car12345
$$e^1$$
2515401710 $e^2$ 9115712

Which one do you choose? (we minimize)



### Visualization Auto 1 14 Auto 2 Auto 3 Auto 4 • 12 Auto 5 X 10 Car 3 e<sub>2</sub> 8 25 15 40 17 • 9 5 6 4 2 10 15 20 25 30 35 40 45 5 e<sup>1</sup>



### Which solution is optimal? Auto 1 14 Auto 2 Auto 3 Auto 4 12 Auto 5 X What is NOT optimal: Car 1 (as Car 4 is 10 always better) 62 8 A solution is (Pareto) efficient if: • There is no other solution that is 6 always at least as good and strictly better in one criterion 4 15 35 10 20 25 30 40 5 45 e<sup>1</sup>







# What is efficient? (We maximize)



# What is efficient? (We maximize) 0



# What is efficient? (We maximize)



#### What is efficient?

Want to maximize

|                       | $e^1$ | $e^2$ | $e^3$ |
|-----------------------|-------|-------|-------|
| a <sub>1</sub>        | 9     | 10    | 6     |
| $a_2$                 | 10    | 10    | 10    |
| $a_3$                 | 13    | 7     | 5     |
| $a_4$                 | 7     | 11    | 12    |
| <b>a</b> <sub>5</sub> | 12    | 5     | 5     |



#### What is efficient?

Want to maximize

• The same principle as in state dominance



#### Cases

Two significantly different problem cases:

- 1. Solutions are many, indirectly given (linear program case)
  - Find all that are relevant (efficient)
- 2. Given list (decision matrix case)
  - According to which principle do I choose one?



- How do I find all efficient solutions?
- Method: Weighted sums
- Objective functions  $e^1, \ldots, e^k$
- Weights  $w^1, \ldots, w^k$
- Find a decision that maximizes  $w^1e^1 + ... + w^ke^k$
- Repeat with new weights



#### **Weighted Sums**

- Special case: we want to find solutions on the boundary
- Weights with a 1 at one point and 0 elsewhere are not enough
- Need a lexicographic approach (last lecture)



#### Weighted Sums

• Can I find all efficient solutions this way? (We maximize both criteria)



#### Weighted Sums

Can I find all efficient solutions this way? (We maximize both criteria)





#### Weighted Sums

Can I find all efficient solutions this way? (We maximize both criteria)





#### Weighted Sums

Can I find all efficient solutions this way? (We maximize both criteria)





33/85

#### Weighted Sums

Can I find all efficient solutions this way? (We maximize both criteria)



FAU M. Hartisch Decision Theory May 6, 2024



#### Weighted Sums

- Can I find all efficient solutions this way? (We maximize both criteria)
- No!
- Only "outer" solutions ("supported")
- Solutions within the convex hull are not found



#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Approach 2

- Add constraints and optimize over one criterion only
- " $\epsilon$ -constraint"





#### Discussion

#### Advantages and disadvantages:

- $\epsilon$ -constraint
  - Adds conditions: can make the problem harder
  - Finds unsupported solutions as well
- Weighted sum
  - Without additional conditions, easier to solve
  - Only finds supported solutions



#### Selection

- But what if I want to choose a single solution (without knowing much more about user preferences)?
- Example: Goal programming
- Define a distance function, e.g.:
  - Minimize distance to the ideal point
  - Maximize distance to the nadir point





#### Selection

- But what if I want to choose a single solution (without knowing much more about user preferences)?
- Example: Goal programming
- Define a distance function, e.g.:
  - Minimize distance to the ideal point
  - Maximize distance to the nadir point





#### Selection

- But what if I want to choose a single solution (without knowing much more about user preferences)?
- Example: Goal programming
- Define a distance function, e.g.:
  - Minimize distance to the ideal point
  - Maximize distance to the nadir point





#### Selection

- But what if I want to choose a single solution (without knowing much more about user preferences)?
- Example: Goal programming
- Define a distance function, e.g.:
  - Minimize distance to the ideal point
  - Maximize distance to the nadir point





#### Now

Data Envelopment Analysis (DEA)



#### What is it about?

DEA helps assess the efficiency of a unit (Decision Making Unit, DMU)

- Warning: Not Pareto efficiency
- DMU defined very generally
- A set of input variables
- A set of output variables





#### **DMUs**

A DMU can model something different depending on the context:

- Departments of a company
- Stores of a clothing chain
- Prisons
- Banks
- NGOs
- Universities



| DMUs: Examp | oles |
|-------------|------|
|-------------|------|

| DMU        | Input         | Output   |
|------------|---------------|----------|
| Factory    | Raw materials | Goods    |
|            | Personnel     |          |
|            | Energy        |          |
| Bank       | Counters      | Accounts |
|            | Managers      | Loans    |
|            | Branches      | Profit   |
| Professors | Time          | Teaching |
|            | Salary        | Papers   |
|            | Personnel     | Funding  |



#### **Efficiency**

- Want to assess the efficiency of DMUs
- Principle:

$$Efficiency = \frac{Output}{Input}$$

- What is input, what is output?
- How are they quantified?



#### Example

Assess the efficiency of 4 data science departments

| University | #Professors | #Degrees | External funding |
|------------|-------------|----------|------------------|
| A          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |

- Which university has an efficient department?
- What is input, what is output?

FAU M. Hartisch Decision Theory May 6, 2024 42/85



### Example

| University | #Professors | #Degrees | External Funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |



### Example

| University | #Professors | #Degrees | External Funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |

$$VU = \frac{1}{2}A + \frac{1}{2}B$$



### Example

| University | #Professors | #Degrees | External Funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |
| VU         | 8           | 161      | 15300€           |

$$VU = \frac{1}{2}A + \frac{1}{2}B$$



### Example

| University | #Professors | #Degrees | External Funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |
| VU         | 8           | 161      | 15300€           |

$$VU = \frac{1}{2}A + \frac{1}{2}B$$



#### Example

| University | #Professors | #Degrees | External Funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 132      | 9600€            |
| В          | 12          | 192      | 26400€           |
| С          | 10          | 190      | 21000€           |
| D          | 8           | 144      | 14400€           |
| VU         | 8           | 161      | 15300€           |

$$VU = \frac{1}{2}A + \frac{1}{2}B$$

- VU achieves better output with the same input!
- University D is inefficient



### Example

Consider output per professor:

| University   | #Professors      | #Degrees | External funding |
|--------------|------------------|----------|------------------|
| Α            | 6                | 132      | 9600€            |
| В            | 12               | 192      | 26400€           |
| С            | 10               | 190      | 21000€           |
| D            | 8                | 144      | 14400€           |
|              |                  |          |                  |
| University   | #Professors      | #Degrees | External funding |
| University A | #Professors      | #Degrees | External funding |
|              | #Professors<br>1 | #Degrees | External funding |
| A            | #Professors 1    | #Degrees | External funding |

FAU M. Hartisch Decision Theory



### Example

Consider output per professor:

| University      | #Professors      | #Degrees       | External funding       |
|-----------------|------------------|----------------|------------------------|
| A               | 6                | 132            | 9600€                  |
| В               | 12               | 192            | 26400€                 |
| С               | 10               | 190            | 21000€                 |
| D               | 8                | 144            | 14400€                 |
|                 |                  |                |                        |
| University      | #Professors      | #Degrees       | External funding       |
| University<br>A | #Professors      | #Degrees<br>22 | External funding 1600€ |
|                 | #Professors<br>1 |                |                        |
| A               | #Professors 1    |                |                        |

FAU M. Hartisch Decision Theory May



### Example

Consider output per professor:

| University   | #Professors        | #Degrees       | External funding       |
|--------------|--------------------|----------------|------------------------|
| A            | 6                  | 132            | 9600€                  |
| В            | 12                 | 192            | 26400€                 |
| С            | 10                 | 190            | 21000€                 |
| D            | 8                  | 144            | 14400€                 |
|              |                    |                |                        |
| University   | #Professors        | #Degrees       | External funding       |
| University A | #Professors        | #Degrees<br>22 | External funding 1600€ |
|              | #Professors 1 1    |                |                        |
| A            | #Professors  1 1 1 | 22             | 1600€                  |















#### **Assumptions**

University D is inefficient only under assumptions:

- Outputs scale linearly with inputs
  - 10 professors can teach 1000 students
  - Can 20 professors teach 2000 students?
  - No economy of scale
  - No cost due to additional complexity
  - Constant returns to scale (CRS)
- Each university has the same conditions
  - What if university D moved to tents due to an earthquake?

FAU M. Hartisch Decision Theory



#### Data Envelopment Analysis

- DEA assigns a score to each DMU measuring efficiency
- Result < 1: DMU is inefficient</li>
- Result = 1: DMU is efficient
- Always relative to the DMUs we observe!

FAU M. Hartisch Decision Theory May 6, 2024 47/85



#### Data Envelopment Analysis

- Let  $X_i = (x_{i1}, \dots, x_{iN})$  be the input vector for DMU i
- Let  $Y_i = (y_{i1}, \dots, y_{iM})$  be the output vector for DMU i
- What is the efficiency  $\theta_i$  of DMU j?

FAU M. Hartisch Decision Theory May 6, 2024 48/85



#### Data Envelopment Analysis

How to define  $\theta_i$ ?

- Want to evaluate DMU j
- Assume to find a linear combination of outputs:

$$\sum_{i} \lambda_{i} Y_{i} = Y_{j}$$

• Need only 3/4 of the inputs:

$$\sum_{i} \lambda_{i} X_{i} = \frac{3}{4} X_{j}$$

• Then  $\theta_i$  should be at most 3/4



#### Data Envelopment Analysis

#### Why at most?

Assume to find another linear combination:

$$\sum_{i} \lambda'_{i} Y_{i} = Y_{j}$$

$$\sum_{i} \lambda'_{i} X_{i} = \frac{1}{2} X_{j}$$

• Then  $\theta_j \leq \frac{1}{2}$ 



#### Data Envelopment Analysis

So looking for

- The smallest  $\theta_j$
- Such that a linear combination using  $\theta_i$  of the inputs produces the same output
- It's its own optimization problem!

FAU M. Hartisch Decision Theory May 6, 2024 51/85



#### First Formulation

Let *I* be the set of DMUs. We want to evaluate DMU  $j \in I$ :

$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+}$$

$$\forall i \in I$$



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### **First Formulation**

Note:  $X_i$ ,  $Y_i$  are vectors! So:

$$\min \theta_{j}$$
s.t.  $\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk}$   $\forall k \in [N]$ 

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk}$$
  $\forall k \in [M]$ 

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+}$$
  $\forall i \in I$ 



#### **Observations**

- $\theta_i \leq 1$ , as we can set  $\lambda_i = 1$  and  $\lambda_i = 0$  for  $i \neq j$
- Compared to other DMUs, DMU j wastes

$$X_j - \sum_{i \in I} \lambda_i X_i$$

units of input

• or: DMU *j* produces

$$Y_j - \frac{1}{\theta_j} \sum_{i \in I} \lambda_i Y_i$$

units of output less



#### **Second Formulation**

- Again inputs [N], outputs [M]
- Want to set (imaginary) price  $u_k > 0$  for inputs  $k \in [N]$
- Want to set (imaginary) price  $v_k > 0$  for outputs  $k \in [M]$
- Cost of inputs for DMU j is then  $u^t X_j$
- Profit of outputs is  $v^t Y_j$

Efficiency = 
$$\frac{\text{Output}}{\text{Input}} = \frac{v^t Y_j}{u^t X_j}$$

FAU M. Hartisch Decision Theory May 6, 2024 55/85



#### **Second Formulation**

Efficiency = 
$$\frac{\text{Output}}{\text{Input}} = \frac{v^t Y_j}{u^t X_j}$$

- Prices are only imaginary
- Which prices u and v maximize the efficiency of DMU j?
- If u is very small and v is very large
- Set a limit:

$$\frac{v^t Y_i}{u^t X_i} \le 1 \qquad \forall i \in I$$

Another optimization problem



### **Second Formulation**

$$\max \frac{v^t Y_j}{u^t X_j}$$
s.t.  $\frac{v^t Y_i}{u^t X_i} \le 1$   $\forall i \in I$ 

$$u \in \mathbb{R}_+^N$$

$$v \in \mathbb{R}_+^M$$



#### **Second Formulation**

$$egin{aligned} \max rac{v^t Y_j}{u^t X_j} \ ext{s.t.} & rac{v^t Y_i}{u^t X_i} \leq 1 \ u \in \mathbb{R}_+^N \ v \in \mathbb{R}_+^M \end{aligned}$$

### Equivalent

$$\max v^{t} Y_{j}$$
s.t.  $u^{t} X_{j} = 1$ 

$$v^{t} Y_{i} - u^{t} X_{i} \leq 0 \qquad \forall i \in I$$

$$u \in \mathbb{R}_{+}^{N}$$

$$v \in \mathbb{R}_{+}^{M}$$



#### **Second Formulation**

$$\max \frac{v^t Y_j}{u^t X_j}$$
s.t. 
$$\frac{v^t Y_i}{u^t X_i} \le 1$$

$$u \in \mathbb{R}_+^N$$

$$v \in \mathbb{R}_+^M$$

#### Equivalent

$$\max v^{t} Y_{j}$$
s.t.  $u^{t} X_{j} = 1$ 

$$v^{t} Y_{i} - u^{t} X_{i} \leq 0 \qquad \forall i \in I$$

$$u \in \mathbb{R}^{N}_{+}$$

$$v \in \mathbb{R}^{M}_{+}$$

#### Expanded

$$\max \sum_{k \in [M]} v_k y_{jk}$$
s.t. 
$$\sum_{k \in [N]} u_k x_{jk} = 1$$

$$\sum_{k \in [M]} v_k y_{ik} - \sum_{k \in [N]} u_k x_{ik} \le 0$$

$$u \in \mathbb{R}_+^N, v \in \mathbb{R}_+^M$$

$$\forall i \in I$$



| Example, continued |                    |            |                  |  |  |
|--------------------|--------------------|------------|------------------|--|--|
| Unive              | ersity #Professors | s #Degrees | External funding |  |  |
| Α                  | . 6                | 132        | 9600€            |  |  |
| В                  | 3 12               | 192        | 26400€           |  |  |
| C                  | 10                 | 190        | 21000€           |  |  |
|                    | 8                  | 144        | 14400€           |  |  |

FAU M. Hartisch Decision Theory May 6, 2024 58/85



| Example, continued |            |             |          |                  |
|--------------------|------------|-------------|----------|------------------|
|                    | University | #Professors | #Degrees | External funding |
|                    | A          | 6           | 1.32     | 9.6€             |
|                    | В          | 12          | 1.92     | 26.4€            |
|                    | С          | 10          | 1.90     | 21.0€            |
|                    | D          | 8           | 1.44     | 14.4€            |

FAU M. Hartisch Decision Theory May 6, 2024 59/85



#### Example, continued

| University | #Professors | #Degrees | External funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 1.32     | 9.6€             |
| В          | 12          | 1.92     | 26.4€            |
| С          | 10          | 1.90     | 21.0€            |
| D          | 8           | 1.44     | 14.4€            |

#### Inputs

$$X_A = (6)$$
  $X_B = (12)$   $X_C = (10)$   $X_D = (8)$ 



#### Example, continued

| University | #Professors | #Degrees | External funding |
|------------|-------------|----------|------------------|
| Α          | 6           | 1.32     | 9.6€             |
| В          | 12          | 1.92     | 26.4€            |
| С          | 10          | 1.90     | 21.0€            |
| D          | 8           | 1.44     | 14.4€            |

#### Inputs

$$X_A = (6)$$
  $X_B = (12)$   $X_C = (10)$   $X_D = (8)$ 

#### **Outputs**

$$Y_A = \begin{pmatrix} 1.32 \\ 9.6 \end{pmatrix}$$
  $Y_B = \begin{pmatrix} 1.92 \\ 26.4 \end{pmatrix}$   $Y_C = \begin{pmatrix} 1.90 \\ 21.0 \end{pmatrix}$   $Y_D = \begin{pmatrix} 1.44 \\ 14.4 \end{pmatrix}$ 



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 1

min  $\theta_1$  s.t.



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 1

$$\min \theta_1$$
 s.t.  $6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \le 6\theta_1$ 

Inputs (#Professors)



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 1

min 
$$\theta_1$$
  
s.t.  $6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \le 6\theta_1$   
 $1.32\lambda_1 + 1.92\lambda_2 + 1.90\lambda_3 + 1.44\lambda_4 \ge 1.32$ 

Outputs (#Degrees)



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 1

$$\begin{aligned} & \min \theta_1 \\ & \text{s.t. } 6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \leq 6\theta_1 \\ & 1.32\lambda_1 + 1.92\lambda_2 + 1.90\lambda_3 + 1.44\lambda_4 \geq 1.32 \\ & 9.6\lambda_1 + 26.4\lambda_2 + 21\lambda_3 + 14.4\lambda_4 \geq 9.6 \end{aligned}$$

Outputs (External funding)



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 1

$$\begin{aligned} & \min \theta_1 \\ & \text{s.t. } 6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \leq 6\theta_1 \\ & 1.32\lambda_1 + 1.92\lambda_2 + 1.90\lambda_3 + 1.44\lambda_4 \geq 1.32 \\ & 9.6\lambda_1 + 26.4\lambda_2 + 21\lambda_3 + 14.4\lambda_4 \geq 9.6 \end{aligned}$$

Solution:  $\theta_1 = 1$  with  $\lambda_1 = 1$ .



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 4

$$\begin{aligned} &\min \theta_4 \\ &\text{s.t. } 6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \leq 8\theta_4 \\ &1.32\lambda_1 + 1.92\lambda_2 + 1.90\lambda_3 + 1.44\lambda_4 \geq 1.44 \\ &9.6\lambda_1 + 26.4\lambda_2 + 21.0\lambda_3 + 14.4\lambda_4 \geq 14.4 \end{aligned}$$



$$\min \theta_{j}$$
s.t. 
$$\sum_{i \in I} \lambda_{i} X_{i} \leq \theta_{j} X_{j}$$

$$\sum_{i \in I} \lambda_{i} Y_{i} \geq Y_{j}$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

#### First Model – DMU 4

$$\begin{aligned} &\min \theta_4 \\ &\text{s.t. } 6\lambda_1 + 12\lambda_2 + 10\lambda_3 + 8\lambda_4 \leq 8\theta_4 \\ &1.32\lambda_1 + 1.92\lambda_2 + 1.90\lambda_3 + 1.44\lambda_4 \geq 1.44 \\ &9.6\lambda_1 + 26.4\lambda_2 + 21.0\lambda_3 + 14.4\lambda_4 \geq 14.4 \end{aligned}$$

Solution:  $\theta_4 = 0.91$  with  $\lambda_1 = 0.30$  and  $\lambda_3 = 0.55$ .



$$\max v^{t} Y_{j}$$
s.t.  $u^{t} X_{j} = 1$ 

$$v^{t} Y_{i} - u^{t} X_{i} \leq 0 \quad \forall i \in I$$

$$u \in \mathbb{R}^{N}_{+}$$

$$v \in \mathbb{R}^{M}_{+}$$

#### Second Model – DMU 1

max 
$$1.32v_1 + 9.6v_2$$
  
s.t.  $6u_1 = 1$   
 $1.32v_1 + 9.6v_2 \le 6u_1$   
 $1.92v_1 + 26.4v_2 \le 12u_1$   
 $1.90v_1 + 21.0v_2 \le 10u_1$   
 $1.44v_1 + 14.4v_2 \le 8u_1$ 

Solution:  $v_1 = 0.76$ , objective function is  $1.32 \cdot 0.76 = 1$ 



#### Comparison

- Both models yield the same result! (duality)
- According to the definition

$$v^t Y_j = \frac{v^t Y_j}{1} = \frac{v^t Y_j}{u^t X_j} = \theta_j$$

• The "profit"  $v^t Y_i - u^t X_i$  is negative for inefficient DMUs, and zero otherwise

FAU M. Hartisch Decision Theory May 6, 2024 63/85



#### **DEA** – Discussion

#### Advantages

- Works only quantitatively
  - No functional relationship between input and output
  - DMU is a black-box, no knowledge of the internal workings required
- Can use different units
  - See degrees against external funding
  - Might save us from difficult conversions (money or life)
- Does not estimate weights for input and output
- Efficiency of a DMU is based only on other DMUs
  - Can find best practice or worst practice
  - Identifies a suitable comparison in case of inefficiency



#### **DEA** – Discussion

#### Disadvantages

- Efficiency of a DMU is based only on other DMUs
  - The one-eyed man is king among the blind
- Must carefully choose inputs and outputs
  - Not tolerant to small errors
  - Not meaningful if too many inputs/outputs (everything efficient)
  - Inputs/Outputs should not be correlated

FAU M. Hartisch Decision Theory May 6, 2024 65/85



#### **Examples from the Literature**

FAU M. Hartisch Decision Theory May 6, 2024 66/85







Socio-Economic Planning Sciences 42 (2008) 151-157

www.elsevier.com/locate/seps

# Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA

Ali Emrouznejad<sup>a,\*</sup>, Barnett R. Parker<sup>b</sup>, Gabriel Tavares<sup>c</sup>

<sup>a</sup>Operations &Information Management, Aston Business School, Aston University, Birmingham B4 7ET, UK

<sup>b</sup>Graduate School of Business, Pfeiffer University, Charlotte, NC 28209, USA

<sup>c</sup>RUTCOR, Rutgers Centre for Operations Research, Rutgers University, 640 Bartholomew Road, Piscataway, NJ, 08854-8003, USA

Available online 4 March 2008

The authors wish to dedicate this compendium of DEA's historical accomplishments to one of its founders, Professor William W. Cooper





Fig. 1. Distribution of DEA publications by year.





Available online at www.sciencedirect.com



European Journal of Operational Research 189 (2008) 1-18



www.elsevier.com/locate/ejor

#### Invited Review

#### A survey of data envelopment analysis in energy and environmental studies

P. Zhou \*, B.W. Ang, K.L. Poh

Department of Industrial and Systems Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

> Received 24 July 2006; accepted 26 April 2007 Available online 6 May 2007



min  $\theta$ s.t.  $\sum_{n=1}^{N} x_{nk} \lambda_{k} \leq \theta x_{no}, \quad n = 1, 2, \dots, N,$   $\sum_{m=1}^{M} y_{mk} \lambda_{k} \geq y_{mo}, \quad m = 1, 2, \dots, M,$   $\lambda_{k} \geq 0, \quad k = 1, \dots, K.$  (2)

FAU M. Hartisch Decision Theory



Table 1 Studies of DEA in E&E with their specific features

| Publication                      | Type of study | Country/region       | Methodolog           | Methodological aspect |              |            |            | Application scheme                                                   |
|----------------------------------|---------------|----------------------|----------------------|-----------------------|--------------|------------|------------|----------------------------------------------------------------------|
|                                  |               |                      | Reference technology |                       |              | Efficiency | MPI        |                                                                      |
|                                  |               |                      | Inputs               | Outputs               | RTS          | measure    | measure    |                                                                      |
| Abbott (2006)                    | A<br>T+A      | Australia<br>Denmark | SD<br>SD             | SD<br>SD + NC         | C, V<br>C, V | R<br>SB    | Yes<br>Yes | Electricity distribution utilities                                   |
| Agrell and Bogetoft<br>(2005)    | I + A         | Denmark              |                      | SD + NC               | C, V         | ЗБ         | 1 es       | District heating plants                                              |
| Arcelus and Arocena<br>(2005)    | A             | 14 OECD countries    | SD                   | SD, WD                | v            | R, DDF     | No         | Productivity estimation with CO <sub>2</sub> emissions<br>considered |
| Athanassopoulos<br>et al. (1999) | T + A         | UK                   | SD + B               | SD + B                | С            | NR         | No         | Electricity generation plants                                        |
| Bagdadioglu et al.<br>(1996)     | A             | Turkey               | SD                   | SD                    | C, V         | R          | No         | Electricity distribution utilities                                   |
| Barla and Perelman<br>(2005)     | A             | 12 OECD countries    | SD                   | SD                    | С            | R          | Yes        | Relationship between productivity and SO <sub>2</sub><br>emissions   |
| Bevilacqua and<br>Braglia (2002) | A             | Italy                | SD                   | SD                    | С            | R          | No         | Environmental performance measurement                                |
| Boyd and McClelland<br>(1999)    | T + A         | US                   | SD                   | SD, WD                | С            | Н          | No         | Impacts of environmental regulations                                 |
| Boyd and Pang (2000)             | A             | US                   | SD                   | SD                    | C            | R          | No         | Energy efficiency study                                              |
| Boyd et al. (2002)               | T + A         | US                   | SD                   | SD, WD                | C            | DDF        | Yes        | Impacts of environmental regulations                                 |
| Brännlund et al.<br>(1998)       | T + A         | Sweden               | SD                   | WD                    | NI           | Profit     | No         | Profit estimation with emissions trading                             |
| Byrnes et al. (1984)             | T + A         | US                   | SD, WD               | SD                    | C, V,<br>NI  | R          | No         | Coal mines                                                           |
| Byrnes et al. (1988)             | T + A         | US                   | SD, WD               | SD                    | C, V,<br>NI  | R          | No         | Coal mines                                                           |
| Callens and Tyteca<br>(1999)     | T             | -                    | CCR multip           | olier form with b     | oad output   | considered | No         | Environmental performance measurement                                |
| Chauhan et al. (2006)            | A             | India                | SD                   | SD                    | C, V         | R          | No         | Energy use efficiency study                                          |
| Chien et al. (2003)              | A             | China (Taiwan)       | SD                   | SD                    | C, V         | R          | No         | Electricity distribution districts                                   |
| Chitkara (1999)                  | A             | India                | SD                   | SD                    | C            | R          | Yes        | Electricity generation plants                                        |
| Chung et al. (1997)              | T + A         | Sweden               | SD                   | WD                    | С            | DDF        | Yes        | Productivity estimation with pollutants<br>considered                |
| Claggett and Ferrier<br>(1998)   | A             | US                   | SD                   | SD                    | C, V         | Cost       | No         | Electricity distribution utilities                                   |
| Cook and Green<br>(2005)         | T + A         | -                    | CCR multip           | olier form + AR       | method       |            | No         | Electricity generation plants                                        |
| Criswell and<br>Thompson (1996)  | A             | US                   | CCR multip           | olier form + AR       | method       |            | No         | Comparison of different power systems                                |
| Dyckhoff and Allen<br>(2001)     | T             | -                    | DEA + mul            | ti-attribute valu     | e theory     |            | No         | Environmental performance measurement                                |





AGRICULTURAL SYSTEMS

Agricultural Systems 59 (1999) 267-282

# An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia

I. Fraser \*, D. Cordina

Agricultural and Resource Economics, Department of Economics and Finance, School of Business, La Trobe University, Bundoora 3083, Victoria, Australia

Received 10 July 1998; received in revised form 13 November 1998; accepted 15 January 1999



$$Min_{\theta,\lambda}\theta$$

(9)

subject to

$$Y\lambda - y_i \ge 0$$

(10)

$$\theta x_i - X\lambda \ge 0$$

(11)

$$\lambda \ge 0$$

(12)



| Variable                                                                 | Type    | Units      |
|--------------------------------------------------------------------------|---------|------------|
| Total milk fat/protein                                                   | Output  | Kilograms  |
| Number of cows in the milking herd adjusted for age distribution of herd | Input 1 | Number     |
| Milking area—perennial pasture equivalent                                | Input 2 | Hectares   |
| Irrigation water applied                                                 | Input 3 | Megalitres |
| Supplementary feeding—grains and pellets                                 | Input 4 | МЈ МЕ      |
| Fertiliser                                                               | Input 5 | Tonnes     |
| Labour                                                                   | Input 6 | Hours      |

FAU M. Hartisch Decision Theory May 6, 2024 74/85



Table 3 Farm efficiency scores

| Farm | VRS 1995/96<br>output orientated | VRS 1995/96<br>input orientated | CRS 1995/96<br>input orientated | VRS 1994/95<br>output orientated | VRS 1994/95<br>input orientated | CRS 1994/95<br>input orientated |
|------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|
| 1    | 0.883                            | 0.896                           | 0.864                           | 0.803                            | 0.833                           | 0.79                            |
| 2    | 0.876                            | 0.893                           | 0.858                           | 0.952                            | 0.952                           | 0.952                           |
| 3    | 1                                | 1                               | 1                               | 1                                | 1                               | 0.986                           |
| 4    | 0.845                            | 0.812                           | 0.803                           | 0.683                            | 0.676                           | 0.649                           |
| 5    | 0.584                            | 0.63                            | 0.565                           | 0.556                            | 0.574                           | 0.554                           |
| 6    | 0.818                            | 0.857                           | 0.801                           | 0.774                            | 0.803                           | 0.756                           |
| 7    | 0.882                            | 0.882                           | 0.882                           | 0.888                            | 0.848                           | 0.841                           |
| 8    | 0.832                            | 0.851                           | 0.817                           | 0.82                             | 0.847                           | 0.797                           |
| 9    | 0.918                            | 0.932                           | 0.87                            | 0.977                            | 0.983                           | 0.849                           |
| 10   | 0.788                            | 0.799                           | 0.788                           | 0.754                            | 0.78                            | 0.731                           |
| 11   | 1                                | 1                               | 1                               | 1                                | 1                               | 1                               |
| 12   | 0.906                            | 0.967                           | 0.637                           | 0.906                            | 0.951                           | 0.787                           |
| 13   | 1                                | 1                               | 1                               | 1                                | 1                               | 1                               |
| 14   | 1                                | 1                               | 1                               | 1                                | 1                               | 1                               |
| 15   | 0.698                            | 0.751                           | 0.695                           | 0.824                            | 0.847                           | 0.798                           |
| 16   | 0.963                            | 0.963                           | 0.963                           | 0.957                            | 0.957                           | 0.954                           |
| 17   | 0.764                            | 0.762                           | 0.761                           | 0.828                            | 0.776                           | 0.767                           |





Transportation Research Part A 35 (2001) 107–122

TRANSPORTATION RESEARCH PART A

www.elsevier.com/locate/tra

# Efficiency measurement of selected Australian and other international ports using data envelopment analysis \*

Jose Tongzon \*

Department of Economics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore Received 12 October 1998; received in revised form 15 July 1999; accepted 26 July 1999



$$\max_{u,v} \frac{\sum_{r} u_{r} y_{r0}}{\sum_{i} v_{i} x_{i0}} = \frac{u^{T} Y_{0}}{v^{T} X_{0}}, \quad \text{where } u = (u_{1}, \dots, u_{s})^{T}, \quad v = (v_{1}, \dots, v_{m})^{T}$$

subject to

$$\frac{u^{\mathrm{T}}Y_{j}}{v^{\mathrm{T}}X_{j}} = \frac{\sum_{r} u_{r}y_{rj}}{\sum_{i} v_{i}x_{ij}} \leqslant 1$$

for 
$$j = 1, 2, ..., n$$
;  $u_r, v_i \ge 0$  for  $r = 1, 2, ..., s$  and  $i = 1, 2, ..., n$ ,

FAU M. Hartisch Decision Theory



```
Output
  TEUs
Inputs
  nocranes
  noberths
  notugs
  termiare
  delaytime
  labor
```



Table 1 Relative efficiency measures using the CCR and additive DEA models<sup>a</sup>

| (1)           | (2)       |          |  |  |
|---------------|-----------|----------|--|--|
| Port          | CCR       | ADDITIVE |  |  |
|               | 2 Outputs |          |  |  |
| Melbourne     | 0.5885    | 0.6633   |  |  |
| Hong Kong     | 1.0000    | 1.0000   |  |  |
| Hamburg       | 1.0000    | 1.0000   |  |  |
| Rotterdam     | 0.6644    | 0.8228   |  |  |
| Felixstowe    | 1.0000    | 1.0000   |  |  |
| Yokohama      | 0.8456    | 1.0000   |  |  |
| Singapore     | 1.0000    | 1.0000   |  |  |
| Keelung       | 1.0000    | 1.0000   |  |  |
| Sydney        | 0.7676    | 1.0000   |  |  |
| Fremantle     | 0.8251    | 1.0000   |  |  |
| Brisbane      | 1.0000    | 1.0000   |  |  |
| Tilbury       | 1.0000    | 1.0000   |  |  |
| Zeebrugge     | 1.0000    | 1.0000   |  |  |
| La Spezia     | 1.0000    | 1.0000   |  |  |
| Tanjung Priok | 1.0000    | 1.0000   |  |  |
| Osaka         | 0.6050    | 0.6023   |  |  |
|               |           |          |  |  |





Available online at www.sciencedirect.com



Economics of Education Review 25 (2006) 273-288

Economics of Education Review

www.elsevier.com/locate/econedurev

# Data envelopment analysis and its application to the measurement of efficiency in higher education

Jill Johnes\*

Department of Economics, Lancaster University Management School, Lancaster University, Lancaster LA1 4YX, UK

Received 3 February 2004; accepted 14 February 2005



Table 1
Definition of input and output variables for the DEA

| Variables             | Definition <sup>a</sup>                                                                                                                                                                                                                                                                              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outputs:              |                                                                                                                                                                                                                                                                                                      |
| GRADQUAL <sup>b</sup> | Total number of first degrees awarded weighted by degree classification, i.e. $GRADQUAL = (number of firsts \times 30) + (number of upper seconds \times 25) + (number of lower seconds \times 20) + (number of thirds \times 15) + (number of unclassifieds \times 10).$                            |
| POSTGRAD <sup>b</sup> | Total number of higher degrees awarded (includes both doctorate and other higher degrees).                                                                                                                                                                                                           |
| RESEARCH <sup>c</sup> | Value of the recurrent grant for research awarded by the Higher Education Funding Council for England (HEFCE) in £.                                                                                                                                                                                  |
| Inputs:               |                                                                                                                                                                                                                                                                                                      |
| UGQUAL <sup>b,e</sup> | Total number of FTE undergraduate students studying for a first degree multiplied by the average A level points for first year full-time undergraduate students (A level score is averaged over 1994/95, 1995/96, 1996/97 and 1997/98. Note that $A = 10$ , $B = 8$ , $C = 6$ , $D = 4$ , $E = 2$ ). |
| $PG^b$                | Total number of FTE postgraduate students.                                                                                                                                                                                                                                                           |
| $STAFF^d$             | Total number of full-time academic staff for teaching or teaching and research or research only purposes.                                                                                                                                                                                            |
| CAPITAL <sup>d</sup>  | Total depreciation and interest payable in £.                                                                                                                                                                                                                                                        |
| LIBCOMP <sup>d</sup>  | Total expenditure on central libraries and information services, and on central computer and computer networks excluding academic staff costs and depreciation in £.                                                                                                                                 |
| ADMIN <sup>d</sup>    | Expenditure on central administration and central services excluding academic staff costs and depreciation in £.                                                                                                                                                                                     |



Table 4 Efficiency scores for full and preferred models

| University name              | ID | Full model Technical efficiency Overall mean = 94.61 | Preferred model Technical efficiency Overall mean = 92.51 | Full model<br>Scale efficiency<br>Overall<br>mean = 96.45 | Preferred model<br>Scale efficiency<br>Overall<br>mean = 96.13 |
|------------------------------|----|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|
| Pre-1992 HEIs                |    | Mean = 96.34                                         | Mean = 94.25                                              | Mean = 95.69                                              | Mean = 95.07                                                   |
| Aston University             | 2  | 87.38                                                | 80.69                                                     | 99.73                                                     | 99.05                                                          |
| The University of Bath       | 4  | 83.12                                                | 70.20                                                     | 97.88                                                     | 99.81                                                          |
| The University of            | 6  | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| Birmingham                   |    |                                                      |                                                           |                                                           |                                                                |
| The University of Bradford   | 10 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| The University of Bristol    | 13 | 89.27                                                | 88.47                                                     | 84.62                                                     | 85.38                                                          |
| Brunel University            | 14 | 88.31                                                | 77.52                                                     | 97.81                                                     | 98.17                                                          |
| The University of            | 16 | 100.00                                               | 100.00                                                    | 90.83                                                     | 90.83                                                          |
| Cambridge                    |    |                                                      |                                                           |                                                           |                                                                |
| City University              | 24 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| Cranfield University         | 26 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| University of Durham         | 31 | 100.00                                               | 97.94                                                     | 95.02                                                     | 93.90                                                          |
| The University of East       | 32 | 80.35                                                | 77.72                                                     | 99.96                                                     | 99.88                                                          |
| Anglia                       |    |                                                      |                                                           |                                                           |                                                                |
| The University of Essex      | 35 | 99.96                                                | 99.94                                                     | 99.39                                                     | 99.39                                                          |
| The University of Exeter     | 36 | 93.34                                                | 86.57                                                     | 98.31                                                     | 95.62                                                          |
| Goldsmiths College           | 39 | 100.00                                               | 93.95                                                     | 100.00                                                    | 99.11                                                          |
| The University of Hull       | 45 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| Imperial College of Science, | 46 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| Technology & Medicine        |    |                                                      |                                                           |                                                           |                                                                |
| The University of Keele      | 49 | 97.29                                                | 85.95                                                     | 99.77                                                     | 99.90                                                          |
| The University of Kent at    | 50 | 88.84                                                | 83.01                                                     | 99.94                                                     | 99.87                                                          |
| Canterbury                   |    |                                                      |                                                           |                                                           |                                                                |
| King's College London        | 53 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |
| The University of Lancaster  | 55 | 100.00                                               | 100.00                                                    | 100.00                                                    | 100.00                                                         |



#### Quiz

#### Question 1

2 inputs, 2 outputs, 3 DMUs:

| DMU | In 1 | ln 2 | Out 1 | Out 2 |
|-----|------|------|-------|-------|
| 1   | 3    | 3    | 7     | 7     |
| 2   | 3    | 2    | 8     | 6     |
| 3   | 2    | 3    | 6     | 8     |

Write the LP to test the efficiency of DMU 1.

$$\begin{aligned} &\min \theta_{j} \\ &\text{s.t. } \sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk} & \forall k \in [N] \\ &\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk} & \forall k \in [M] \\ &\theta_{j} \in \mathbb{R} \\ &\lambda_{i} \in \mathbb{R}_{+} & \forall i \in I \end{aligned}$$

#### **Question 2 (maximize)**

What is efficient? What is supported/unsupported?





#### Quiz

#### **Question 1**

2 inputs, 2 outputs, 3 DMUs:

| DMU | In 1 | In 2 | Out 1 | Out 2 |
|-----|------|------|-------|-------|
| 1   | 3    | 3    | 7     | 7     |
| 2   | 3    | 2    | 8     | 6     |
| 3   | 2    | 3    | 6     | 8     |

Write the LP to test the efficiency of DMU 1.

$$\begin{aligned} \min \theta_{j} \\ \text{s.t. } \sum_{i \in I} \lambda_{i} x_{ik} &\leq \theta_{j} x_{jk} \\ \sum_{i \in I} \lambda_{i} y_{ik} &\geq y_{jk} \\ \theta_{j} &\in \mathbb{R} \\ \lambda_{i} &\in \mathbb{R}_{+} \end{aligned} \qquad \forall k \in [M]$$

#### **Question 1 – Solution**

min 
$$\theta_1$$
  
s.t.  $3\lambda_1 + 3\lambda_2 + 2\lambda_3 \le 3\theta_1$   
 $3\lambda_1 + 2\lambda_2 + 3\lambda_3 \le 3\theta_1$   
 $7\lambda_1 + 8\lambda_2 + 6\lambda_3 \ge 7$   
 $7\lambda_1 + 6\lambda_2 + 8\lambda_3 \ge 7$   
 $\theta_1, \lambda_1, \lambda_2, \lambda_3 \ge 0$ 



#### Quiz



#### **Question 2 - Solution**

- 1,3,5: efficient and supported
- 4: efficient and not supported

FAU M. Hartisch Decision Theory May 6, 2024 85/85