Équilibrabilité

Antoine Dailly Instituto de Matemáticas, UNAM Juriquilla

Travaux effectués en collaboration avec Laura Eslava, Adriana Hansberg et Denae Ventura.

Contexte : théorie de Ramsey

Principe

Garantir des sous-structures ordonnées au sein de grandes structures chaotiques.

Théorème de Ramsey (pour la 2-coloration) (1930)

Pour tout k, il existe un entier R(k) tel que, si $n \ge R(k)$, alors toute 2-coloration des arêtes de K_n contient un K_k monochromatique.

Contexte : théorie des graphes extrémaux

Principe

Déterminer la densité minimale garantissant une certaine propriété, et les graphes les plus denses ne la vérifiant pas.

Théorème de Turán (1941)

Si G d'ordre n contient strictement plus de $\left(1-\frac{1}{k}\right)\frac{n^2}{2}$ arêtes, alors G contient un K_{k+1} .

Le graphe extrémal est le graphe k-parti complet équilibré d'ordre n.

Notations pour la suite

- ▶ On considère des 2-colorations des arêtes de K_n : $E(K_n) = R \sqcup B$.
- ▶ On note ex(n, G) le nombre d'arêtes maximal dans un graphe d'ordre n sans G induit.

Notations pour la suite

- ▶ On considère des 2-colorations des arêtes de K_n : $E(K_n) = R \sqcup B$.
- ▶ On note ex(n, G) le nombre d'arêtes maximal dans un graphe d'ordre n sans G induit.

Objectif : généraliser l'idée de Ramsey et chercher d'autres motifs inévitables que les copies monochromatiques.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

⇒ Besoin d'une certaine densité de chaque classe de couleur.

Définition

Une (r, b)-copie d'un graphe G(V, E) (avec r + b = |E|) est une copie de G avec r arêtes dans R et b arêtes dans B.

 \Rightarrow Par Ramsey, quand n est suffisamment grand, on a toujours une (0, |E|)-copie ou une (|E|, 0)-copie de G.

On cherche à garantir l'existence d'une (r, b)-copie de G (pour r > 0 donné).

⇒ Besoin d'une certaine densité de chaque classe de couleur.

r-tonalité

Si, pour tout n suffisamment grand, il existe un k(n,r) tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n avec |R|, |B| > k(n,r) contient une (r,b)-copie de G, alors G est r-tonal.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left|\frac{|E|}{2}\right|, \left\lceil\frac{|E|}{2}\right\rceil\}$.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité (Caro, Hansberg, Montejano, 2020)

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité (Caro, Hansberg, Montejano, 2020)

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit équilibrable

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{\left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \}$.

Équilibrabilité (Caro, Hansberg, Montejano, 2020)

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit équilibrable et bal(n, G) est appelé son nombre d'équilibrage.

Copie équilibrée

Une copie équilibrée de G(V,E) est une (r,b)-copie de G avec $r \in \{ \left \lfloor \frac{|E|}{2} \right \rfloor, \left \lceil \frac{|E|}{2} \right \rceil \}$.

Équilibrabilité (Caro, Hansberg, Montejano, 2020)

Soit $\mathsf{bal}(n,G)$ le plus petit entier, s'il existe, tel que toute 2-coloration $R \sqcup B$ des arêtes de K_n vérifiant $|R|, |B| > \mathsf{bal}(n,G)$ contient une copie équilibrée de G.

S'il existe un n_0 tel que, pour tout $n \ge n_0$, bal(n, G) existe, alors G est dit équilibrable et bal(n, G) est appelé son nombre d'équilibrage.

Problème type Ramsey

Problème type extrémal

Caractérisation

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

Caractérisation

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

1. Une coupe traversée par la moitié de ses arêtes;

Caractérisation

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

- 1. Une coupe traversée par la moitié de ses arêtes;
- 2. Un sous-graphe induit contenant la moitié de ses arêtes.

G est équilibrable \Rightarrow Il doit s'insérer dans ces deux colorations spéciales de \mathcal{K}_n :

G est équilibrable \Rightarrow Il doit s'insérer dans ces deux colorations spéciales de \mathcal{K}_n :

G est équilibrable \Rightarrow Il doit s'insérer dans ces deux colorations spéciales de \mathcal{K}_n :

G est équilibrable \Rightarrow II doit s'insérer dans ces deux colorations spéciales de K_n :

Ces deux colorations spéciales de K_n peuvent être équilibrées $(|R| = |B| = \frac{1}{2}\binom{n}{2})$ pour une infinité de valeurs de n.

Théorème (Caro, Hansberg, Montejano, 2020)

Pour tout t, il existe $\phi(n,t) \in \mathcal{O}(n^{2-\frac{1}{m(t)}})$ tel que, si n est suffisamment grand, alors, toute 2-coloration des arêtes de K_n avec $|R|, |B| \ge \phi(n,t)$ contient une copie de type A ou de type B de K_{2t} .

Également montré (mais avec une borne de $\epsilon\binom{n}{2}$) par Cutler et Montágh (2008) et Fox et Sudakov (2008).

Théorème (Caro, Hansberg, Montejano, 2020)

Pour tout t, il existe $\phi(n,t) \in \mathcal{O}(n^{2-\frac{1}{m(t)}})$ tel que, si n est suffisamment grand, alors, toute 2-coloration des arêtes de K_n avec $|R|, |B| \ge \phi(n,t)$ contient une copie de type A ou de type B de K_{2t} .

Également montré (mais avec une borne de $\epsilon\binom{n}{2}$) par Cutler et Montágh (2008) et Fox et Sudakov (2008).

 \Rightarrow Donne une borne subquadratique pour bal(n, G)

Théorème (Caro, Hansberg, Montejano, 2020)

Théorème (Caro, Hansberg, Montejano, 2020)

Théorème (Caro, Hansberg, Montejano, 2020)

Théorème (Caro, Hansberg, Montejano, 2020)

Résultats précédents

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!

Résultats précédents

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!
- ► Caro, Hansberg, Montejano (2020)
 - Les arbres sont équilibrables Pour $n \ge 4k$, bal $(n, T_k) \le (k-1)n$
 - ▶ Pour k pair et $n \ge \max(3, \frac{k^2}{4} + 1)$, bal $(n, K_{1,k}) = \text{bal}(n, K_{1,k+1}) = (\frac{k-2}{2}) n - \frac{k^2}{8} + \frac{k}{4}$
 - Pour $n \ge \frac{9}{32}k^2 + \frac{1}{4}k + 1$, $bal(n, P_{4k}) = bal(n, P_{4k+1}) = (k-1)n - \frac{1}{2}(k^2 - k - \frac{1}{2})$ $bal(n, P_{4k-2}) = bal(n, P_{4k-1}) = (k-1)n - \frac{1}{2}(k^2 - k)$ $\triangle P_k$ désigne le chemin sur k arêtes (désolé e)

Résultats précédents

- ► Caro, Hansberg, Montejano (2019)
 - ▶ bal $(n, K_4) = n 1$ ou n (selon la valeur de n mod 4)
 - Aucun autre graphe complet avec un nombre pair d'arêtes n'est équilibrable!
- ► Caro, Hansberg, Montejano (2020)
 - Les arbres sont équilibrables Pour $n \ge 4k$, bal $(n, T_k) \le (k-1)n$
 - ▶ Pour k pair et $n \ge \max(3, \frac{k^2}{4} + 1)$, bal $(n, K_{1,k}) = \text{bal}(n, K_{1,k+1}) = (\frac{k-2}{2}) n - \frac{k^2}{8} + \frac{k}{4}$
 - Pour $n \ge \frac{9}{32}k^2 + \frac{1}{4}k + 1$, bal (n, P_{4k}) = bal (n, P_{4k+1}) = $(k-1)n - \frac{1}{2}(k^2 - k - \frac{1}{2})$ bal (n, P_{4k-2}) = bal (n, P_{4k-1}) = $(k-1)n - \frac{1}{2}(k^2 - k)$ $\triangle P_k$ désigne le chemin sur k arêtes (désolé e)
- ► Caro, Lauri, Zarb (2020)
 - Nombres d'équilibrage des graphes sur au plus 4 arêtes

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{30}$, et $\epsilon \in \{-1, 1\}$.

 $ightharpoonup C_{4k+2}$ n'est pas équilibrable;

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- $ightharpoonup C_{4k+\epsilon}$ est équilibrable
- $ightharpoonup C_{4k}$ est équilibrable

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{30}$, et $\epsilon \in \{-1, 1\}$.

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- ► $C_{4k+\epsilon}$ est équilibrable, et bal $(n, C_{4k+\epsilon}) = (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$;
- $ightharpoonup C_{4k}$ est équilibrable

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{30}$, et $\epsilon \in \{-1, 1\}$.

- $ightharpoonup C_{4k+2}$ n'est pas équilibrable;
- ► $C_{4k+\epsilon}$ est équilibrable, et bal $(n, C_{4k+\epsilon}) = (k-1)n \frac{1}{2}(k^2 k 1 \epsilon)$;
- ► C_{4k} est équilibrable, et $(k-1)n (k-1)^2 \le \text{bal}(n, C_{4k}) \le (k-1)n + 12k^2 + 3k$.

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Preuve par contradiction

 C_{4k+2} a une coupe contenant la moitié de ses arêtes.

Proposition

Le cycle C_{4k+2} n'est pas équilibrable.

Preuve par contradiction

 C_{4k+2} a une coupe contenant la moitié de ses arêtes.

Proposition

Soient k un entier strictement positif, n un entier tel que $n \geq \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1,1\}$.

bal
$$(n, C_{4k+\epsilon})$$
 = bal $(n, P_{4k+\epsilon-1})$
= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{3}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 P_{4k} équilibré \Rightarrow 2k arêtes de chaque couleur

On peut refermer le cycle qui sera équilibré

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

$$C_{4k+1}$$
 équilibré \Rightarrow Une couleur avec $2k+1$ arêtes

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{3}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

$$C_{4k+1}$$
 équilibré \Rightarrow Une couleur avec $2k+1$ arêtes

Proposition

Soient k un entier strictement positif, n un entier tel que $n \ge \frac{9}{3}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$

= $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Preuve (pour C_{4k+1})

 C_{4k+1} équilibré \Rightarrow Une couleur avec 2k+1 arêtes

En retirer une donne un P_{4k} équilibré

La preuve pour les cycles impairs ne fonctionne pas :

La preuve pour les cycles impairs ne fonctionne pas :

La preuve pour les cycles impairs ne fonctionne pas :

 P_{4k-1} équilibré \Rightarrow Cycle potentiellement non-équilibré

La preuve pour les cycles impairs ne fonctionne pas :

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour
$$n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$$
,

Pour
$$n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$$
, $(k-1)n - (k-1)^2 \le \text{bal}(n, C_{4k}) \le (k-1)n + 12k^2 + 3k$

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \geq |R| = (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \geq |R| = (k-1)n - (k-1)^2$.

Proposition

Pour tout $n \ge 4k$, bal $(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Preuve

On construit une 2-coloration $R \sqcup B$ sans C_{4k} équilibré et telle que $|B| \geq |R| = (k-1)n - (k-1)^2$.

 \Rightarrow Un cycle ne peut avoir qu'au plus 2k-2 arêtes dans R.

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$${\rm bal}(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$$bal(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

$$|R|, |B| > \text{bal}(n, P_{4k-2}) \Rightarrow \text{II y a un } P_{4k-2} \text{ équilibré.}$$

$$4k-1$$
 sommets $O---O$

Proposition

Soient
$$k>0$$
 et $n\geq \frac{9}{2}k^2+\frac{13}{4}k+\frac{49}{32}$:
$$bal(n,C_{4k})\leq (k-1)n+12k^2+3k.$$

$$|R|, |B| > \text{bal}(n, P_{4k-2}) \Rightarrow \text{II y a un } P_{4k-2} \text{ équilibré.}$$

 $\Rightarrow \text{On le ferme avec (wlog) une } B$

$$\begin{array}{c}
4k - 1 \text{ sommets} \\
\hline
0 - - - O
\end{array}$$

$$\begin{array}{c}
2k - 1 \text{ dans } R \\
2k \text{ dans } B
\end{array}$$

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Des lemmes forcent les couleurs de E(X), E(Y) et E(X, Y).

Preuve par contradiction (suite)

On ne peut pas avoir $|X|, |Y| \ge k$

Preuve par contradiction (suite)

On ne peut pas avoir $|X|, |Y| \ge k \Rightarrow$ wlog, supposons |X| < k

Preuve par contradiction (suite)

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $ex(n, P_{2k-1}) \leq (k-1)n$ [FS13]

Cycles C_{4k} : borne supérieure (2)

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $\exp(n,P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

Cycles C_{4k} : borne supérieure (2)

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $\exp(n,P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

II reste suffisamment d'arêtes dans R pour avoir un $K_{1,2}$.

Cycles C_{4k} : borne supérieure (2)

Preuve par contradiction (suite)

Considérons le graphe induit par $(C_{4k+1} \cup X, Y) \cap R$.

II contient $\geq (k-1)n$ arêtes; or $\exp(n,P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow II contient un P_{2k-1} .

Il reste suffisamment d'arêtes dans R pour avoir un $K_{1,2}$.

On complète avec des arêtes dans Y, qui seront dans B, et on obtient un C_{4k} équilibré.

⇒ Contradiction

Définition

 $C_{k,\ell}$ est un cycle C_k

Définition

 $C_{k,\ell}$ est un cycle C_k avec les cordes $u_i u_{i+\ell}$.

Définition

 $C_{k,\ell}$ est un cycle C_k avec les cordes $u_i u_{i+\ell}$.

Contient les antiprismes et les échelles de Möbius.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Preuve du cas k = 4a, ℓ pair

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Preuve du cas k = 4a, ℓ pair

Proposition

Si, dans G(V,E), I est un ensemble indépendant tel que $\sum_{u\in I} d(u) = \frac{|E|}{2}$, alors G est équilibrable.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Preuve du cas k = 4a, ℓ pair

Proposition

Si, dans G(V, E), I est un ensemble indépendant tel que $\sum_{u \in I} d(u) = \frac{|E|}{2}$, alors G est équilibrable.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Preuve du cas k = 4a, ℓ pair

Proposition

Si, dans G(V, E), I est un ensemble indépendant tel que $\sum_{u \in I} d(u) = \frac{|E|}{2}$, alors G est équilibrable.

Théorème (D., Hansberg, Ventura, 2021)

Soient k > 3 et $\ell \in \{2, \dots, k-2\}$. Le graphe $C_{k,\ell}$ est équilibrable si et seulement si k et pair et $(k,\ell) \neq (6,2)$.

Preuve en huit cas! Chaque fois, on exploite la caractérisation.

Preuve du cas k = 4a, ℓ pair

Proposition

Si, dans G(V, E), I est un ensemble indépendant tel que $\sum_{u \in I} d(u) = \frac{|E|}{2}$, alors G est équilibrable.

Résumé

Equilibrable waleur exacte de bal(n, G)Non-équilibrable bornes non-triviales pour bal(n, G)

Résumé

Résumé

► K_n avec $\frac{n(n-1)}{2}$ impair Solutions entières communes de $k(n-k) = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ et $\binom{\ell}{2} = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$

- ► K_n avec $\frac{n(n-1)}{2}$ impair Solutions entières communes de $k(n-k) = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ et $\binom{\ell}{2} = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ ⇒ Explicites, mais difficiles à combiner... trouvé par ordinateur :
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow \text{Équilibrables}$
 - 2. Autres $n \le 2.303.999.904.000.003 \Rightarrow Non-équilibrables$

- ► K_n avec $\frac{n(n-1)}{2}$ impair Solutions entières communes de $k(n-k) = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ et $\binom{\ell}{2} = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ ⇒ Explicites, mais difficiles à combiner... trouvé par ordinateur :
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow \text{Équilibrables}$
 - 2. Autres $n \le 2.303.999.904.000.003 \Rightarrow Non-équilibrables$
- \triangleright 2 K_n

- ► K_n avec $\frac{n(n-1)}{2}$ impair Solutions entières communes de $k(n-k) = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ et $\binom{\ell}{2} = \frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ ⇒ Explicites, mais difficiles à combiner... trouvé par ordinateur :
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow \text{Équilibrables}$
 - 2. Autres $n \le 2.303.999.904.000.003 \Rightarrow Non-équilibrables$
- ▶ $2K_n$ Équilibrable $\Leftrightarrow n$ est la somme de deux carrés

Graphes non-équilibrables

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

- 1. Une coupe traversée par la moitié de ses arêtes;
- 2. Un sous-graphe induit contenant la moitié de ses arêtes.
- $ightharpoonup C_{4k+2}$ a le sous-graphe induit, mais pas la coupe
- ► K₅ n'a aucun des deux

Graphes non-équilibrables

Théorème (Caro, Hansberg, Montejano, 2020)

Un graphe est équilibrable si et seulement si il a à la fois :

- 1. Une coupe traversée par la moitié de ses arêtes;
- 2. Un sous-graphe induit contenant la moitié de ses arêtes.
- $ightharpoonup C_{4k+2}$ a le sous-graphe induit, mais pas la coupe
- ► K₅ n'a aucun des deux
- → Comment différencier des « niveaux » de non-équilibrabilité?

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

1. Les arêtes sont colorées par $\{r\}$, $\{b\}$ ou $\{r,b\}$.

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

- 1. Les arêtes sont colorées par $\{r\}$, $\{b\}$ ou $\{r,b\}$.
- 2. Les arêtes colorées par $\{r, b\}$ sont appelées bicolores; on peut choisir leur couleur.

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

- 1. Les arêtes sont colorées par $\{r\}$, $\{b\}$ ou $\{r,b\}$.
- 2. Les arêtes colorées par $\{r, b\}$ sont appelées bicolores; on peut choisir leur couleur.
- 3. En notant c la 2-liste-coloration, $R = \{e \mid r \in c(e)\}$ et $B = \{e \mid b \in c(e)\}.$

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

- 1. Les arêtes sont colorées par $\{r\}$, $\{b\}$ ou $\{r,b\}$.
- 2. Les arêtes colorées par $\{r, b\}$ sont appelées bicolores; on peut choisir leur couleur.
- 3. En notant c la 2-liste-coloration, $R = \{e \mid r \in c(e)\}$ et $B = \{e \mid b \in c(e)\}.$

Définition (D., Eslava, Hansberg, Ventura, 2020+)

Soit $\operatorname{Ibal}(n,G)$ le plus petit entier tel que toute 2-liste-coloration $R \cup B$ des arêtes de K_n vérifiant $|R|,|B| > \operatorname{Ibal}(n,G)$ contient une copie équilibrée de G.

lbal(n, G) est appelé le nombre d'équilibrage de liste de G.

Idée

Passer d'une 2-coloration d'arêtes à une 2-liste-coloration d'arêtes :

- 1. Les arêtes sont colorées par $\{r\}$, $\{b\}$ ou $\{r,b\}$.
- 2. Les arêtes colorées par $\{r, b\}$ sont appelées bicolores; on peut choisir leur couleur.
- 3. En notant c la 2-liste-coloration, $R = \{e \mid r \in c(e)\}$ et $B = \{e \mid b \in c(e)\}.$

Définition (D., Eslava, Hansberg, Ventura, 2020+)

Soit $\operatorname{Ibal}(n,G)$ le plus petit entier tel que toute 2-liste-coloration $R \cup B$ des arêtes de K_n vérifiant $|R|,|B|>\operatorname{Ibal}(n,G)$ contient une copie équilibrée de G.

lbal(n, G) est appelé le nombre d'équilibrage de liste de G.

⇒ Tous les graphes ont un nombre d'équilibrage de liste!

Proposition

Si bal(n, G) existe, alors bal(n, G) = bal(n, G). Sinon, $\frac{1}{2}\binom{n}{2} \le bal(n, G) < \binom{n}{2}$.

Proposition

Si bal(n, G) existe, alors bal(n, G) = bal(n, G). Sinon, $\frac{1}{2}\binom{n}{2} \le bal(n, G) < \binom{n}{2}$.

Compter les arêtes bicolores

Si
$$|R|, |B| = \frac{1}{2} \binom{n}{2} + b$$
:

Proposition

Si bal(n, G) existe, alors bal(n, G) = bal(n, G). Sinon, $\frac{1}{2}\binom{n}{2} \le bal(n, G) < \binom{n}{2}$.

Compter les arêtes bicolores

Si
$$|R|, |B| = \frac{1}{2} \binom{n}{2} + b$$
:

 $\Rightarrow 2b$ arêtes bicolores

Proposition

Si bal(n, G) existe, alors bal(n, G) = bal(n, G). Sinon, $\frac{1}{2}\binom{n}{2} \le bal(n, G) < \binom{n}{2}$.

Compter les arêtes bicolores

Si
$$|R|$$
, $|B| = \frac{1}{2} \binom{n}{2} + b$:

$$\begin{array}{c|ccc}
R \setminus B & b \\
\hline
\frac{1}{2}\binom{n}{2} - b & B \setminus R \\
b & \frac{1}{2}\binom{n}{2} - b
\end{array}$$

 $\Rightarrow 2b$ arêtes bicolores

Proposition

Si k arêtes bicolores garantissent une copie équilibrée de G, alors $lbal(n, G) \leq \frac{1}{2}\binom{n}{2} + \lceil \frac{k}{2} \rceil - 1$.

Une borne supérieure générale

$$ightharpoonup \mathcal{H}(G) = \left\{ H \leq G \mid e(H) = \left\lfloor \frac{e(G)}{2} \right\rfloor, \ H \ \text{sans sommet isolé}
ight\}$$

Une borne supérieure générale

 $ightharpoonup \mathcal{H}(G) = \left\{ H \leq G \mid e(H) = \left\lfloor \frac{e(G)}{2} \right\rfloor, \ H \ \text{sans sommet isolé}
ight\}$

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour tous G(V, E) et $n \ge |V|$, on a

$$\operatorname{Ibal}(n,G) \leq \frac{1}{2} \binom{n}{2} + \left\lceil \frac{\operatorname{ex}(n,\mathcal{H}(G))}{2} \right\rceil.$$

Une borne supérieure générale

 $\blacktriangleright \ \mathcal{H}(G) = \left\{ H \leq G \mid e(H) = \left | \frac{e(G)}{2} \right |, \ H \text{ sans sommet isolé} \right\}$

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour tous G(V, E) et $n \ge |V|$, on a

$$\mathsf{Ibal}(n,G) \leq \frac{1}{2} \binom{n}{2} + \left\lceil \frac{\mathsf{ex}(n,\mathcal{H}(G))}{2} \right\rceil.$$

Preuve

S'il y a au moins $\exp(n, \mathcal{H}(G)) + 1$ arêtes bicolores, on peut les sélectionner, compléter pour obtenir une copie de G, puis assigner les arêtes bicolores pour l'équilibrer.

Cycles
$$C_{4k+2}$$

▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1

Cycles C_{4k+2}

- ▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1
- ▶ $lbal(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$ [Liu, Lidicky, Palmer, 2013]

Cycles C_{4k+2}

- ▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1
- ▶ $lbal(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$ [Liu, Lidicky, Palmer, 2013]

Cycles C_{4k+2}

- ▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1
- ▶ $lbal(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$ [Liu, Lidicky, Palmer, 2013]

 K_5

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour tout entier $n \geq 5$, $ex(n, \mathcal{H}(K_5)) = ex(n, \{C_3, C_4, C_5\})$.

Cycles C_{4k+2}

- ▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1
- ▶ $lbal(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$ [Liu, Lidicky, Palmer, 2013]

 K_5

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour tout entier $n \geq 5$, $ex(n, \mathcal{H}(K_5)) = ex(n, \{C_3, C_4, C_5\})$.

▶ $lbal(n, K_5) \le \frac{1}{2} \binom{n}{2} + (1 + \epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$ [Füredi, Simonovits, 2013]

Cycles C_{4k+2}

- ▶ $\mathcal{H}(C_{4k+2})$ = les forêts linéaires de taille 2k+1
- ▶ $lbal(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$ [Liu, Lidicky, Palmer, 2013]

 K_5

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

Pour tout entier $n \geq 5$, $ex(n, \mathcal{H}(K_5)) = ex(n, \{C_3, C_4, C_5\})$.

- ▶ Ibal $(n, K_5) \le \frac{1}{2} \binom{n}{2} + (1 + \epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$ [Füredi, Simonovits, 2013]
 - → Qualité de cette borne?

Théorème (D., Eslava, Hansberg, Ventura, 2020+)

$$lbal(n, C_{4k+2}) = \frac{1}{2}\binom{n}{2}$$

$$lbal(n, C_{4k+2}) = \frac{1}{2}\binom{n}{2}$$

Idée de la preuve

1. Supposons que |R|, $|B| > \frac{1}{2} \binom{n}{2}$: il y a au moins 2 arêtes bicolores.

$$\mathsf{Ibal}(n, C_{4k+2}) = \frac{1}{2}\binom{n}{2}$$

Idée de la preuve

- 1. Supposons que |R|, $|B| > \frac{1}{2} \binom{n}{2}$: il y a au moins 2 arêtes bicolores.
- 2. Soit $t \ge 3k + 1$. On trouve une copie de type A ou de type B de K_{2t} .

$$\mathsf{Ibal}(n, C_{4k+2}) = \tfrac{1}{2} \binom{n}{2}$$

Idée de la preuve

- 1. Supposons que |R|, $|B| > \frac{1}{2} \binom{n}{2}$: il y a au moins 2 arêtes bicolores.
- 2. Soit $t \ge 3k + 1$. On trouve une copie de type A ou de type B de K_{2t} .

3. Si copie de type A : copie équilibrée de C_{4k+2} .

$$lbal(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Idée de la preuve

- 1. Supposons que |R|, $|B| > \frac{1}{2} \binom{n}{2}$: il y a au moins 2 arêtes bicolores.
- 2. Soit $t \ge 3k + 1$. On trouve une copie de type A ou de type B de K_{2t} .

- 3. Si copie de type A : copie équilibrée de C_{4k+2} .
- 4. Si copie de type B : peu importe où se situe l'arête bicolore, on trouve une copie équilibrée de C_{4k+2} .

Proposition

Soit
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. On a $\mathsf{Ibal}(n, K_5) \geq \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proposition

Soit
$$c=\left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. On a $\mathsf{Ibal}(n, K_5) \geq \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Preuve

On construit une 2-liste-coloration des arêtes de K_n qui ne contient pas de K_5 équilibré.

Proposition

Soit
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. On a $lbal(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Preuve

On construit une 2-liste-coloration des arêtes de K_n qui ne contient pas de K_5 équilibré.

Proposition

Soit
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. On a $lbal(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Preuve

On construit une 2-liste-coloration des arêtes de K_n qui ne contient pas de K_5 équilibré.

Proposition

Soit
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. On a $lbal(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Preuve

On construit une 2-liste-coloration des arêtes de K_n qui ne contient pas de K_5 équilibré.

Ensuite, on montre que |R|, $|B| > \frac{1}{2} \binom{n}{2} + (1 - \epsilon) c n^{\frac{3}{2}}$.

Cycles C_{4k+2}

- ▶ Borne supérieure générale : Ibal $(n, C_{4k+2}) \leq \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$
- ► Valeur exacte : Ibal $(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

Cycles C_{4k+2}

- ▶ Borne supérieure générale : Ibal $(n, C_{4k+2}) \leq \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$
- ► Valeur exacte : Ibal $(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

- ▶ Borne supérieure générale : Ibal $(n, K_5) \leq \frac{1}{2} \binom{n}{2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- ▶ Borne inférieure : Ibal $(n, K_5) \ge \frac{1}{2} \binom{n}{2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Cycles C_{4k+2}

- ▶ Borne supérieure générale : Ibal $(n, C_{4k+2}) \leq \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$
- ► Valeur exacte : Ibal $(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

- ▶ Borne supérieure générale : Ibal $(n, K_5) \leq \frac{1}{2} \binom{n}{2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- ▶ Borne inférieure : Ibal $(n, K_5) \ge \frac{1}{2} \binom{n}{2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Cycles C_{4k+2}

- ▶ Borne supérieure générale : Ibal $(n, C_{4k+2}) \leq \frac{1}{2} \binom{n}{2} + \theta(kn k^2)$
- ► Valeur exacte : Ibal $(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

- ▶ Borne supérieure générale : Ibal $(n, K_5) \leq \frac{1}{2} \binom{n}{2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- ▶ Borne inférieure : Ibal $(n, K_5) \ge \frac{1}{2} \binom{n}{2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$
- \rightarrow Des différences existent au sein des graphes non-équilibrables.

Le mot de la fin

Conclusion

- ► Résultats d'équilibrabilité et sur bal(n, G)
- ▶ Introduction de lbal(n, G) pour étudier les graphes non-équilibrables

Le mot de la fin

Conclusion

- ightharpoonup Résultats d'équilibrabilité et sur bal(n, G)
- ► Introduction de Ibal(n, G) pour étudier les graphes non-équilibrables

Questions ouvertes

- ► Complexité
- ► Plus de classes de graphes
- ► Plus de couleurs

Le mot de la fin

Conclusion

- ightharpoonup Résultats d'équilibrabilité et sur bal(n, G)
- ▶ Introduction de lbal(n, G) pour étudier les graphes non-équilibrables

Questions ouvertes

- ► Complexité
- ► Plus de classes de graphes
- Plus de couleurs

