CANS2D モデルパッケージ md_mhdcndtb

磁場中での単純熱伝導

2006. 1. 12.

1 はじめに

このモデルパッケージは、2次元平面内に一様磁場があるときの熱伝導問題を解くためのものである。

2 仮定と基礎方程式

計算領域は2次元デカルト座標(xy 平面)で $\partial/\partial z=0$ と仮定する。解くのは、2次元 熱伝導方程式

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} \right) - \nabla \cdot \left(\kappa \nabla_{\parallel} T \right) = 0 \tag{1}$$

$$p = \frac{k_{\rm B}}{m} \rho T \tag{2}$$

である。ここで、 γ は比熱比。 κ は熱伝導係数。演算記号 ∇_{\parallel} は、「磁力線に平行な方向の微分」を意味する。熱伝導係数は、Spitzer モデルを採用し

$$\kappa = \kappa_0 T^{\frac{5}{2}} \tag{3}$$

 κ_0 は定数でパラメータ。ho は解かないで時間・空間的に一定値。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、時間の単位はそれぞれ L_0 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の大きさ、 $C_{\rm S0}^2=\gamma(k_B/m)T_0$ で T_0 は初期温度パルスのピーク値。以下、無次元化した変数を使う。

変数	規格化単位
x, y	L_0
t	$L_0/C_{ m S0}$
T	T_0
p	$ \rho_0 C_{\mathrm{S}0}^2 $

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

 $|x|<1,\ |y|<1$ の領域を解く。初期状態は以下のようなもの。サブルーチン ${f model}$ で設定する。

$$p = 1/\gamma \exp[-(s/w)^2]$$

ただし、

$$s = \sqrt{r^2 + z^2}$$

また、磁場は

$$B_x = \cos \theta_i, \quad B_y = \cos \theta_i$$

であたえられて、時間変化しない。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	5/3	gm	model
熱伝導の強さ κ_0	1	rkap0	model
初期温度パルスの幅 w	0.3	wexp	model
磁場の角度 $ heta_i$	60 度	thini	model

表 2: おもなパラメータ

境界条件は、すべて自由境界条件。サブルーチン bnd で設定する。 計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	51	ix	main
グリッド数 y 方向	51	jx	main
マージン	4	margin	main
終了時刻	1	tend	main
出力時間間隔	0.1	dtout	main
時間ステップ間隔	10^{-4}	dt	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。