Прямая внешняя сумма

Теорема 1. Пусть $\dim V < \infty, U_1, \dots, U_m \subseteq V$ - подпространства, тогда следующие условия эквивалентны:

- $(1) \ U_1, \dots, U_m$ линейно независимы;
- (2) Объединение базисов $U_1, ..., U_m$ есть базис $U_1 + ... + U_m$;
- (3) $\dim (U_1 + \ldots + U_m) = \dim U_1 + \ldots + \dim U_m;$

Опр: 1. Пусть V - векторное пространство, $U \subseteq V$ - его подпространство, подпространство $W \subseteq V$ такое, что $V = U \oplus W$ называется дополнительным к U подпространством.

Рис. 1: Дополнительное к U подпространство V.

Следствие 1. Если $\dim V < \infty \Rightarrow \forall$ подпространства $U \subseteq V$, $\exists W \subseteq V \colon V = U \oplus W$.

 \square Выберем согласованный с подпространством U базис:

(
$$\underbrace{e_1,\ldots,e_m,e_{m+1},\ldots,e_n}$$
), $U=\langle e_1,\ldots,e_m\rangle$, $V=\langle e_1,\ldots,e_m,e_{m+1},\ldots,e_n\rangle$

Положим, что $W = \langle e_{m+1}, \dots, e_n \rangle \Rightarrow V = U + W$ по построению, а поскольку объединение базиса U и базиса W, равного (e_{m+1}, \dots, e_n) по построению, даст нам базис V, то по условию (2) теоремы это равносильно линейной независимости подпространств U и $W \Rightarrow$ сумма прямая: $V = U \oplus W$.

Утв. 1. Если $V = U \oplus W \Rightarrow V/U \simeq W$.

 \square Построим изоморфизм $\varphi \colon W \to V/U$ в явном виде :

$$\forall w \in W, \, \varphi(w) = w + U$$

<u>Инъективность</u>: Пусть $\varphi(w) = \varphi(w') \Leftrightarrow w + U = w' + U \Rightarrow \exists u \in U : w + u = w' = w' + 0$, поскольку у нас прямая сумма, то разложение единственное $\Rightarrow u = 0 \Rightarrow w = w'$.

Сюръективность: $\forall v \in V, \exists u \in U, w \in W : v = u + w \Rightarrow v + U = w + U \Rightarrow \forall v + U \in V/U, \exists w \in W.$

Таким образом φ - биективное отображение, согласованность с операциями - очевидна:

$$\varphi(\lambda \cdot v + \mu \cdot w) = (\lambda \cdot v + \mu \cdot w) + U = \lambda \cdot v + U + \mu \cdot w + U = \lambda \cdot (v + U) + \mu \cdot (w + U) = \lambda \cdot \varphi(v) + \mu \cdot \varphi(w)$$

 \mathbf{Rm} : 1. Заметим, что дополнительное подпространство W не однозначный объект, в то время как фактор-пространство канонически определяется по подпространству и единственным образом.

Линейный функции

Изучим функции на векторных пространствах, которые "уважают" структуру векторного пространства. Такие функции называются линейными.

Опр: 2. Функция $\alpha \colon V \to K$ называется линейной, если верны свойства:

- (1) $\alpha(v+w) = \alpha(v) + \alpha(w), \forall v, w \in V;$
- (2) $\alpha(\lambda \cdot v) = \lambda \cdot \alpha(v), \forall v \in V, \forall \lambda \in K;$

Примеры линейных функций: след матрицы

Опр: 3. $\forall A \in \text{Mat}_{n \times n}(K)$, $\text{tr}(A) = a_{11} + a_{22} + \ldots + a_{nn}$ - след матрицы.

 $V = \mathrm{Mat}_{n \times n}(K), \ \alpha(A) = \mathrm{tr}(A), \$ проверим что след является линейной функцией:

(1)
$$\operatorname{tr}(A+B) = (a_{11}+b_{11}) + (a_{22}+b_{22}) + \ldots + (a_{nn}+b_{nn}) = \operatorname{tr}(A) + \operatorname{tr}(B), \forall A, B \in V;$$

(2)
$$\operatorname{tr}(\lambda \cdot A) = \lambda \cdot a_{11} + \ldots + \lambda \cdot a_{nn} = \lambda \cdot (a_{11} + \ldots + a_{nn}) = \lambda \cdot \operatorname{tr}(A), \forall A \in V, \forall \lambda \in K;$$

Примеры линейных функций: линейный функционал

Опр: 4. Функцию на пространстве, которое само состоит из функций называют функционалом.

 $V = \mathcal{F}(X,K), x_0 \in X \Rightarrow \alpha(f) = f(x_0), \forall f \in \mathcal{F}(X,K),$ где α - функционал вычисления значения в фиксированной точке x_0 . Этот функционал будет линейным функционалом на $\mathcal{F}(X,K)$:

(1)
$$\alpha(f+g) = (f+g)(x_0) = f(x_0) + g(x_0) = \alpha(f) + \alpha(g), \forall f, g \in V;$$

(2)
$$\alpha(\lambda \cdot f) = (\lambda \cdot f)(x_0) = \lambda \cdot f(x_0) = \lambda \cdot f(x_0), \forall f \in V, \forall \lambda \in K;$$

Пусть $\dim V < \infty$, выберем (e_1, \dots, e_n) - базис V, хотим понять как вычислить линейную функцию в координатах. Знаем, что: $\forall x \in V$, $\exists !$ разложение $x = x_1e_1 + \dots + x_ne_n$, тогда:

$$\forall x \in V, \exists ! X \colon x = eX = x_1 e_1 + x_n e_n \Rightarrow$$

$$\Rightarrow \alpha(x) = \alpha(x_1 e_1) + \ldots + \alpha(x_n e_n) = x_1 \cdot \alpha(e_1) + \ldots + x_n \cdot \alpha(e_n)$$

Если обозначить коэффициенты $\alpha(e_i) = a_i, \forall i = \overline{1,n}$, то получим следующее выражение:

$$\forall x \in V, \ \alpha(x) = a_1 \cdot x_1 + \ldots + a_n \cdot x_n$$

Любая линейная функция в координатах записывается как линейная комбинация координат вектора с какими-то фиксированными коэффициентами - значениями на базисных векторах.

Опр: 5. Линейная комбинация переменных с фиксированными коэффициентами, то есть однородный многочлен первой степени от координат, называется <u>линейной формой</u>.

Rm: 2. Обратно тоже верно, каждая линейная форма задает линейную функцию (по равенству выше):

$$\alpha(\lambda x + \mu y) = (\lambda x_1 + \mu y_1) \cdot a_1 + \dots + (\lambda x_n + \mu y_n) \cdot a_n = \lambda x_1 \cdot a_1 + \mu y_1 \cdot a_1 + \dots + \lambda x_n \cdot a_n + \mu y_n \cdot a_n = \lambda (x_1 \cdot a_1 + \dots + x_n \cdot a_n) + \mu (y_1 \cdot a_1 + \dots + y_n \cdot a_n) = \lambda \alpha(x) + \mu \alpha(y)$$

Другими словами, линейная форма это способ записи линейных функций в координатах, если мы зафиксировали базис. В другом базисе та же самая функция будет задаваться какой-то другой линейной формой, можно написать как переход от одной к другой, поскольку мы знаем как меняется базис.

Сопряженное пространство

Утв. 2. Множество всех линейных функций на V это подпространство $V^* \subseteq \mathcal{F}(V,K)$ пространства всех функций на V.

Опр: 6. Подпространство $V^* \subseteq \mathcal{F}(V,K)$ всех линейных функций на V называется сопряженным или двойственным, или дуальным пространством к V. Базис этого пространства называется сопряженным или двойственным, или дуальным базисом к базису пространства V.

- \square Докажем, что V^* это подпространство.
 - 0) <u>**Непустота**</u>: $\alpha(x) \equiv 0 \in V^*$, поскольку для нулевой функции очевидно выполняются свойства линейности;

$$0(\lambda v + \mu w) = \alpha \cdot 0(v) + \mu \cdot 0(w) = 0 + 0 = 0$$

1) Замкнутость по сложению: $\forall \alpha, \beta \in V^* \Rightarrow \alpha + \beta \in V^*$:

$$(\alpha + \beta)(\lambda v + \mu w) = \lambda \alpha(v) + \mu \alpha(w) + \lambda \beta(v) + \mu \beta(w) = \lambda(\alpha + \beta)(v) + \mu(\alpha + \beta)(w)$$

2) Замкнутость по умножению на скаляр: $\forall \alpha \in V^*, \ \lambda \in K \Rightarrow \lambda \cdot \alpha \in V^*;$

$$(\lambda \cdot \alpha)(\mu v + \gamma w) = \lambda \cdot \mu \cdot \alpha(v) + \lambda \cdot \gamma \cdot \alpha(w) = \mu \cdot (\lambda \cdot \alpha)(v) + \gamma \cdot (\lambda \cdot \alpha)(w)$$

Утв. 3. Если $\dim V = n < \infty$, то $\dim V^* = n$.

 \square Выберем в пространстве V произвольный базис $e=(e_1,\ldots,e_n)$. Тогда мы можем расписать любую линейную функцию в этом базисе, как линейную форму. Рассмотрим координатные функции $\varepsilon_i \in V^*$ на пространстве V:

$$x = x_1 e_1 + \ldots + x_n e_n \in V \Rightarrow \varepsilon_i(x) = x_i, \forall i = \overline{1, n}$$

Это простейшая линейная форма, где от каждого вектора просто берется его координата \Rightarrow тоже линейная функция. Докажем, что набор координатных функций $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ будет базисом сопряженного пространства: ε порождает сопряженное пространство и функции ε_i линейно независимы.

1) **Порождение подпространства**: Рассмотрим произвольную линейную функцию на V:

$$\forall \alpha \in V^*, \forall x \in V : \alpha(x) = a_1 x_1 + \dots + a_n x_n, \ \alpha(e_i) = a_i, \ \forall i = \overline{1, n}$$

Представление функции выше верно для конкретного вектора x, значения функции α на базисных векторах e_i полностью определяют линейную форму \Rightarrow для произвольного вектора x:

$$\alpha(x) = a_1 \varepsilon_1(x) + \ldots + a_n \varepsilon_n(x)$$

то есть любая линейная функция $\alpha(x)$ есть линейная комбинация координатных функций с коэффициентами $a_i = \alpha(e_i)$. Следовательно, $V^* = \langle \varepsilon_1, \dots, \varepsilon_n \rangle$.

2) Линейная независимость: Пусть верно:

$$\lambda_1 \varepsilon_1 + \ldots + \lambda_n \varepsilon_n = \lambda_1 \varepsilon_1(x) + \ldots + \lambda_n \varepsilon_n(x) = 0$$

Подставим в это функциональное равенство какое-нибудь e_i :

$$0 = \lambda_1 \varepsilon_1(e_i) + \ldots + \lambda_i \varepsilon(e_i) + \ldots + \lambda_n \varepsilon(e_i) = 0 + \ldots + \lambda_i \cdot 1 + \ldots = \lambda_i \Rightarrow \lambda_i = 0, \ \forall i = \overline{1, n}$$

Следствие 2. Если V - конечномерно (dim $V < \infty$), то $V \simeq V^*$.

 \square Сопряженное пространство имеет ту же самую размерность \Rightarrow поскольку все конечномерные векторные пространства одной и той же размерности изоморфны друг другу, то $V \simeq V^*$.

Rm: 3. Заметим, что этот изоморфизм - не является каноническим, то есть он зависит от выбора базиса. Тем не менее, можно построить канонический изоморфизм $V \xrightarrow{\sim} (V^*)^*$.

Рассмотрим $\forall v \in V$ линейный функционал (функцию на пространстве функций):

$$\widehat{v} \colon V^* \to K$$

который определяется по следующему правилу:

$$\widehat{v}(\alpha) = \alpha(v), \, \forall \alpha \in V^*$$

Это функционал вычисления значения линейной функции в фиксированной точке $v \Rightarrow c$ каждым вектором пространства V мы связали линейный функционал на сопряженном пространстве V^* .

Теорема 2. Если $\dim V < \infty$, то \exists канонический изоморфизм: $V \xrightarrow{\sim} (V^*)^*$, то есть не зависящий от выбора базиса в V, который сопоставляет каждому вектору из V функционал из $(V^*)^*$:

$$\psi \colon v \mapsto \widehat{v}, \, \forall v \in V$$

1) Докажем, что отображение $\psi \colon V \to (V^*)^*$ согласовано с операциями (+) и (·):

$$\psi(v+w) = \widehat{v+w}(\alpha) = \alpha(v+w) = \alpha(v) + \alpha(w) = \widehat{v}(\alpha) + \widehat{w}(\alpha) = \psi(v) + \psi(w), \ \forall \alpha \in V^* \Rightarrow \psi(v+w) = \widehat{v+w} = \widehat{v} + \widehat{w} = \psi(v) + \psi(w)$$

То есть, линейный функционал на V^* , отвечающий сумме двух векторов это сумма линейных функционалов, отвечающих отдельным векторам. Аналогично:

$$\psi(\lambda \cdot v) = \widehat{\lambda \cdot v}(\alpha) = \alpha(\lambda \cdot v) = \lambda \cdot \alpha(v) = \lambda \cdot \widehat{v}(\alpha) = \lambda \cdot \psi(v), \ \forall \alpha \in V^*, \ \forall \lambda \in K \Rightarrow$$
$$\Rightarrow \psi(\lambda \cdot v) = \widehat{\lambda v} = \lambda \cdot \widehat{v} = \lambda \cdot \psi(v)$$

То есть, линейный функционал, отвечающий λv это функционал, отвечающий вектору v, умноженный на λ .

2) Возьмем какой-нибудь базис (e_1, \ldots, e_n) пространства V, возьмем сопряженный ему базис $(\varepsilon_1, \ldots, \varepsilon_n)$ пространства V^* , тогда:

$$\forall \alpha \in V^*, \ \alpha = a_1 \varepsilon_1 + \ldots + a_n \varepsilon_n, \ a_i = \alpha(e_i), \ \forall i = \overline{1, n} \Rightarrow$$
$$\Rightarrow \psi(e_i) = \widehat{e}_i(\alpha) = \alpha(e_i) = a_i, \ \forall \alpha \in V^*$$

Отсюда мы видим, что \hat{e}_i это координатная функция на пространстве V^* по отношению к базису сопряженного пространства $(\varepsilon_1, \dots, \varepsilon_n) \Rightarrow$ набор функционалов $(\hat{e}_1, \dots, \hat{e}_n)$ - это базис второго сопряженного пространства $(V^*)^*$, сопряженного к первому сопряженному V^* .

3) Докажем биективность отображения. $\forall x \in V, x = x_1 e_1 + \dots x_n e_n \Rightarrow$ по пункту 1) функционал \hat{x} , соответствующий этому вектору, будет иметь вид:

$$\widehat{x} = x_1 \cdot \widehat{e}_1 + \ldots + x_n \cdot \widehat{e}_n$$

Таким образом, у x и \hat{x} одинаковый набор координат в соответствующих базисах \Rightarrow это взаимооднозначное соответствие, поскольку вектор однозначно определяется и однозначно определяет набор своих координат.

Двойственность (конечномерный случай)

Элементы V называем векторами, элементы сопряженного пространства V^* , то есть линейные функции на пространстве V, принято называть ковекторами. В силу канонического изоморфизма, векторы можно отождествить с элементами пространства $(V^*)^*$, то есть линейными функциями на ковекторах.

Опр: 7. Ковекторами будем называть линейные функции на векторах.

Опр: 8. Векторами будем называть линейные функции на ковекторах.

Опр: 9. Спаривание ковектора α с вектором x это значение ковектора на этом векторе или значение на ковекторе α линейного функционала, соответствующего вектору x:

$$\langle \alpha | x \rangle := \alpha(x) = \widehat{x}(\alpha)$$

Обозначение: $\langle \alpha | x \rangle$.

Спаривание можно расписать в координатах:

$$\langle \alpha | x \rangle = \alpha(x) = a_1 x_1 + \ldots + a_n x_n, \quad a_i = \langle \alpha | e_i \rangle = \alpha(e_i), \ x_i = \langle \varepsilon_i | x \rangle = \varepsilon_i(x), \ \forall i = \overline{1, n}$$

Опр: 10. Условие сопряженности базисов в пространствах V и V^* : базис (e_1, \ldots, e_n) пространства V сопряжен базису $(\varepsilon_1, \ldots, \varepsilon_n)$ пространства V^* , если выполняется равенство:

$$\langle \varepsilon_i | e_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

то есть мы хотим сказать, что ε_i это координатные функции в базисе из e_i .

Rm: 4. Любой базис V^* сопряжен некоторому базису V, потому что у базиса в V^* существует свой сопряженный базис в $(V^*)^* = V^{**} \simeq V \Rightarrow$ можно считать, что этот сопряженный базис находится в V и удовлетворяет условию сопряженности:

$$\langle \varepsilon_i | e_j \rangle = \widehat{e}_j(\varepsilon_i) = \varepsilon_i(e_j) = \delta_{ij}$$

Разложение векторов и ковекторов по базисам:

$$\forall x \in V, \ x = x_1 e_1 + \ldots + x_n e_n = \sum_{i=1}^n \langle \varepsilon_i | x \rangle \cdot e_i$$

$$\forall \alpha \in V^*, \ \alpha = a_1 \varepsilon_1 + \ldots + a_n \varepsilon_n = \sum_{i=1}^n \langle \alpha | e_i \rangle \cdot \varepsilon_i$$

Линейные функции и подпространства

Опр: 11. Пусть $S \subseteq V$ - произвольное множество векторов в пространстве V. Назовём аннулятором множества S множества S

$$S^{\circ} = \{ \alpha \in V^* \mid \langle \alpha | v \rangle = 0, \, \forall v \in S \}$$

Утв. 4. (Свойства аннуляторов):

- 1) $S^{\circ} \subseteq V^*$ подпространство;
- 2) Если $S \subseteq \widetilde{S} \Rightarrow S^{\circ} \supset \widetilde{S}^{\circ}$;
- 3) $S^{\circ} = \langle S \rangle^{\circ}$;
- 4) Пусть $T = \langle \alpha_1, \dots, \alpha_m \rangle \subseteq V^*$, тогда $T^{\circ} \subseteq V^{**} \simeq V$;

1) Нужно убедиться, что аннулятор замкнут относительно сложения и умножения на скаляры:

$$\forall \alpha, \beta \in S^{\circ}, \forall \mu, \lambda \in K, \langle \mu \cdot \alpha + \lambda \cdot \beta | v \rangle = (\mu \cdot \alpha + \lambda \cdot \beta)(v) = \mu \cdot \alpha(v) + \lambda \cdot \beta(v) = 0$$

И нулевая функция также, очевидно, принадлежит S° ;

- $2) \ S \subseteq \widetilde{S} \Rightarrow \forall \alpha \in \widetilde{S}^{\circ}, \ \langle \alpha | v \rangle = 0, \ \forall v \in \widetilde{S} \Rightarrow \langle \alpha | v \rangle = 0, \ \forall v \in S \Rightarrow \alpha \in S^{\circ} \Rightarrow \widetilde{S}^{\circ} \subseteq S^{\circ};$
- 3) Проверим в явном виде:

$$\forall \alpha \in S^{\circ}, \ \forall v \in S, \ \langle \alpha | v \rangle = 0 \Rightarrow \forall v_1, \dots, v_n \in S, \ \forall \mu_1, \dots, \mu_n, \ \langle \alpha | \mu_1 v_1 + \dots + \mu_n v_n \rangle =$$

$$= \alpha(\mu_1 v_1 + \dots + \mu_n v_n) = \mu_1 \alpha(v_1) + \dots + \mu_n \alpha(v_n) = 0 + \dots + 0 = 0 \Rightarrow S^{\circ} \subseteq \langle S \rangle^{\circ}$$

В обратную сторону очевидно, поскольку $S \subseteq \langle S \rangle \Rightarrow S^{\circ} \supseteq \langle S \rangle^{\circ};$

4) По определению и в силу изоморфизма, мы получим:

$$T^{\circ} = \left\{ \widehat{x} \in V^{**} \mid \forall i = \overline{1, m}, \ \langle \alpha_i | x \rangle = \widehat{x}(\alpha_i) = 0 \right\} = \left\{ x \in V \mid \forall i = \overline{1, m}, \ \langle \alpha_i | x \rangle = 0 \right\}$$

Если выбрать в V какой-то базис, записать ковекторы в виде линейных форм в этом базисе и записать это выражение в координатах, то мы получим следующее:

$$\alpha_i = a_{i1}\varepsilon_1 + \ldots + a_{in}\varepsilon_n \Rightarrow \langle \alpha_i | x \rangle = \alpha_i(x) = a_{i1}x_1 + \ldots + a_{in}x_n = 0$$

то есть, аннулятор подпространства T это пространство решений однородной СЛУ;

Rm: 5. Свойство 3) сводит нас к изучению аннуляторов подпространств, если нас интересует, как устроены аннуляторы тех или иных множеств векторов.

Теорема 3. (основная теорема про аннулятор) Пусть V - конечномерно и $U \subseteq V$ - подпространство, тогда верны следующие свойства:

- 1) $\dim U^{\circ} = \operatorname{codim} U = \dim V \dim U$;
- 2) $(U^{\circ})^{\circ} = U$;
- \square Выберем согласованный базис $(e_1,\ldots,e_m,e_{m+1},\ldots,e_n)$ так, чтобы:

$$U = \langle e_1, \dots, e_m \rangle$$
, $V = \langle e_1, \dots, e_m, e_{m+1}, \dots, e_n \rangle$

Пусть $(\varepsilon_1,\ldots,\varepsilon_n)$ - сопряженный базис в V^* . Тогда, поскольку $U=\langle e_1,\ldots,e_m\rangle$, то по определению:

$$\alpha = a_1 \varepsilon_1 + \ldots + a_n \varepsilon_n \in U^{\circ} \Leftrightarrow \forall i = \overline{1, m}, \langle \alpha | e_i \rangle = a_i = 0$$

Следовательно, $U^{\circ} = \langle \varepsilon_{m+1}, \dots, \varepsilon_n \rangle$.

- 1) $\dim U^{\circ} = \dim V \dim U = n m = \operatorname{codim} U$;
- 2) По определению аннулятора U:

$$\forall x \in U, \, \forall \alpha \in U^{\circ}, \, \langle \alpha | x \rangle = 0 \Rightarrow x \in (U^{\circ})^{\circ} \Rightarrow U \subseteq (U^{\circ})^{\circ}$$

По пункту 1) будет верно:

$$\dim U^{\circ \circ} = \dim V^* - \dim U^{\circ} = \dim V^* - \dim V + \dim U = \dim U$$

Тогда по утверждению 3 лекции 2 подпространства U и $U^{\circ \circ}$ - совпадают.

Задание подпространства с помощью ОСЛУ

Пусть $U = \langle v_1, \dots, v_m \rangle$, где векторы не обязаны быть базисом. Тогда U° задаёт ОСЛУ вида:

$$\begin{cases} \langle \alpha | v_1 \rangle &= a_1 v_{11} + \ldots + a_n v_{n1} &= 0 \\ \vdots &\vdots &\vdots &\vdots \\ \langle \alpha | v_m \rangle &= a_1 v_{m1} + \ldots + a_n v_{mn} &= 0 \end{cases}$$

Аннулятор состоит из тех α для которых выполнены уравнения выше, то есть ОСЛУ на коэффициенты линейной функции a_i . Если какое-то подпространство задано с помощью ОСЛУ, то мы можем найти его базис (процедура нахождения ФСР для ОСЛУ), тогда $U^{\circ} = \langle \alpha_1, \dots, \alpha_k \rangle$. В этом случае аннулятор аннулятора, который канонически отождествляется с U по теореме 3 выше, то есть $U = U^{\circ \circ}$, по аналогии выше задается ОСЛУ:

$$\begin{cases} \langle \alpha_1 | x \rangle &= a_{11}x_1 + \ldots + a_{1n}x_n &= 0 \\ \vdots &\vdots &\vdots &\vdots \\ \langle \alpha_k | x \rangle &= a_{k1}x_1 + \ldots + a_{kn}x_n &= 0 \end{cases}$$

то есть, это подпространство состоит из тех векторов на которых все ковекторы $\langle \alpha_1, \dots, \alpha_k \rangle$ обращаются в ноль, что и задается системой выше.

<u>Итог</u>: система порождающих для подпространства даёт нам линейные уравнения для аннулятора, а система порождающих для аннулятора даёт нам линейные уравнения для подпространства. То есть

при переходе к аннулятору, система порождающих и система линейных уравнений меняются ролями. А поскольку мы умеем искать базис пространства, заданного СЛУ, то мы можем перейти от задания подпространства как линейной оболочки к заданию подпространства СЛУ. Обратный переход мы умели делать и раньше (нахождение ФСР).

Следствие 3. Пусть dim $V = n < \infty$. Набор линейных функций $(\alpha_1, \dots, \alpha_n)$ является базисом V^* тогда и только тогда, когда ОСЛУ:

$$\begin{cases} \langle \alpha_1 | x \rangle &= a_{11}x_1 + \dots + a_{1n}x_n &= 0 \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ \langle \alpha_n | x \rangle &= a_{n1}x_1 + \dots + a_{nn}x_n &= 0 \end{cases}$$

имеет единственное решение x = 0.

 \square Надо доказать, что существует один единственный вектор, на котором все эти линейные функции обращаются в ноль. $(\alpha_1, \ldots, \alpha_n)$ - базис $V^* \Leftrightarrow \langle \alpha_1, \ldots, \alpha_n \rangle = V^*$. Если эти ковекторы порождают V^* , но линейно зависимы, тогда из них можно было бы убрать лишние и получить базис из меньше чем n ковекторов, но $\dim V^* = n$. Очевидно, что:

$$\langle \alpha_1, \dots, \alpha_n \rangle = V^* \Leftrightarrow \langle \alpha_1, \dots, \alpha_n \rangle^{\circ} = (V^*)^{\circ}$$

Множество $(V^*)^\circ$ это множество тех векторов, на которых все линейные функции обращаются в ноль, но такой вектор только один - $\{0\}$. Если вектор не $\{0\}$, то у него есть хоть какая-то ненулевая координата в данном базисе и координатная функция в 0 не обращается, а на $\{0\}$ все линейные функции обращаются в 0, следовательно: $(V^*)^\circ = \{0\}$, а $\langle \alpha_1, \ldots, \alpha_n \rangle^\circ$ это как раз и есть множество решений ОСЛУ:

$$\begin{cases} \langle \alpha_1 | x \rangle &= a_{11}x_1 + \ldots + a_{1n}x_n &= 0 \\ \vdots &\vdots &\vdots &\vdots \vdots \\ \langle \alpha_n | x \rangle &= a_{n1}x_1 + \ldots + a_{nn}x_n &= 0 \end{cases}$$