MA2201: ANALYSIS II

Differentiation

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

The origins of differential calculus lie in our attempts to approximate various functions using linear ones. Suppose that we have been given a curve described by the function f, and we want to *locally* approximate the function around a point x using a straight line. In other words, for a small shift h, we want to write

$$f(x+h) \approx f(x) + kh$$
.

Here, k is the slope of the straight line. In order to obtain k, we can rearrange the above to get

$$k \approx \frac{f(x+h) - f(x)}{h}$$
.

As we pick smaller and smaller neighbourhoods of x, we want our approximation to get better and better. Thus, if such an approximation is possible, then the value of k must stabilize. This means that the limit

$$k = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

must exist. Note that this immediately forces the continuity of f, since

$$\lim_{h \to 0} f(x+h) - f(x) = \lim_{h \to 0} h \cdot \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0k = 0,$$

whereby $\lim_{x\to a} f(x) = f(a)$. Splitting the limit is justified because the individual limits exist. If such a limit k exists, we call it the derivative of f at x, denoted f'(x). We are now able to write

$$f(x+h) \approx f(x) + f'(x)h$$
.

Definition 2.1 (Derivative). The derivative of a function $f:[a,b] \to \mathbb{R}$ at a point $x \in [a,b]$ is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

if such a limit exists. Note that we only demand a one-sided limit if x is an endpoint. If the derivative of f exists at every point in [a, b], we say that f is differentiable on [a, b].

Note that the process we described can be generalised to multivariable functions.