RAM Chip(Memory)

- Random Access Memory (RAM)
 - Initially contains no data
 - Digital circuit can retrieve and store data at various locations on a RAM chip
 - Data pins are bidirectional (into or out of the chip)
 - Volatile: loses data when power is removed

RAM

- static RAM (SRAM).
 - cells take more space; cannot be made as dense as DRAM
 - result: SRAM is more expensive than DRAM
 - used where high speed is necessary (e.g., cache)
 - The contents stay valid and does not have to be refreshed.
- dynamic RAM (DRAM)
 - Leaky capacitors. DRAM needs to be refreshed after several milliseconds
 - results in longer cycle time, the minimum time between consecutive memory accesses
 - simpler internally
 - Cheaper. Used for Computer Primary memory
- normally DRAM is a generation ahead of SRAM in terms of size

• Reading a memory:

- - place address code of the desired locations on the address pins of the RAMs/ROMs
 - internal circuit must read address and enable the correct bit cells
 - places contents of the locations on the output lines
 - Each RAM chip has 2^n * m bit cells. n address inputs and m bidirectional data pins

The following slides give details of the above read process for DRAM chip

Figure 5.2 Organization of bit cells in a memory chip.

Memory Bit Cell (Inside Pink Boxes of previous slide)

DRAM vs. SRAM Memory Cell Complexity

Single-transistor DRAM cell, which is considerably simpler than SRAM cell, leads to dense, high-capacity DRAM memory chips.

1-Transistor Memory Cell (DRAM)

° Write:

- 1. Drive bit line
- · 2.. Select row

° Read:

- 1. Precharge bit line to Vdd
- · 2.. Select row
- · 3. Cell and bit line share charges
 - Very small voltage changes on the bit line
- 4. Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons
- . 5. Write: restore the value

° Refresh

1. Just do a dummy read to every cell.

DRAM

- DRAM value is stored as a charge on a capacitor.
 - A single transistor is used to access the stored charge.
 - Capacitors lose charge after several milliseconds
 - To keep a charge, must refresh the capacitor
 - Single-chip memory controllers handle the refresh function independent of the CPU.
- •
- DRAM cells are smaller, thus DRAM are denser

DRAM

- Refreshing
 - Use a two-level decoding structure.
 - Allows us to refresh an entire row at a time
 - Refresh typically consumes 1% to 2% of the active cycles of the DRAM.

RAM contd...

- Main Memory uses DRAM for size (density)
 - High density (1 transistor cells), low power, cheap, slow
 - Dynamic: needs to be "refreshed" regularly (~ every 8 ms)
 - 1% to 2% of the active cycles of the DRAM

SRAM

- Caches use SRAM for speed and technology compatibility
 - Low density (6 transistor cells), high power, expensive, fast
 - Static: content will last "forever" (until power turned off)

Accessing a Static RAM

Note: CE signal is often active-low as opposed to how shown here. SRAMs also generally have a write enable signal

9/22/2005 Lecture 9

Memory Subsystem

- 2 Types of Memory:
 - ROM : Read Only Memory
 - Program that is loaded into memory and cannot be changed. Also retains its data even without power.
 - RAM : Random Access Memory
 - Also called read/write memory. This type of memory can have a program loaded and then reloaded. It loses its data with no power.

ROM Chip(Memory)

- Read Only Memory (ROM)
 - Once programmed, cannot be changed
 - Used as lookup tables to implement functions
 - Used in PCs to store basic input/output systems (BIOS)
 - Nonvolatile: keeps value when power is removed

Different ROM Chips

- Masked ROM:
 - ROM that is programmed with data when fabricated. Data will not change once installed. Hardwired.
- Programmable ROM (PROM):
 - Capable of being programmed by the user with a ROM programmer. Not hardwired.
- Erasable PROM (EPROM):
 - Much like the PROM this EPROM can be programmed and then erased by light.
- EEPROM:
 - Another form of EPROM but is reprogrammable electrically.(Electrically erasable PROM)

ROM

- Data is stored in a ROM by breaking or preserving connections
 - using a diode, transistor or fuses

PROM

- PROMs can only be programmed once
- They are more fragile than ROMs
 - a jolt of static
 electricity can cause
 fuses in the PROM to
 burn out, changing bits
 from 1 to 0
- Blank PROMs are inexpensive and are good for prototyping the data for a ROM before committing to the costly ROM fabrication process.

PROGRAMMABLE READ ONLY MEMORY (PROM)

PROM

A closer look

PROM

- Programming the PROM is accomplished by passing a high current through a specific transistor and melting the fuse
 - One-time programmable

EPROM

- An EPROM eraser is not selective, it will erase the entire EPROM.
- The EPROM must be removed from the device it is in and placed under the UV light of the EPROM eraser for several minutes.

- An EPROM that is left under UV light too long can become over-erased.
 - In such a case, the EPROM's floating gates are charged to the point that they are unable to hold the electrons at all.

17.5 Nonvolatile Memory

Increasing Size of Memory Using Chips

- Memory subsystem is the combination of memory chips
- Example: 8 x 2 chips can be combined to make an 8 x 4 memory.
- Both chips will receive the same 3
 address inputs from the bus, as well
 as the CE and OE signals.
- The data pins of the first chip are connected to bits 3 and 2 and the other to 1 an 0 of the data bus

Memory Subsystem Cont.

- When the CPU reads data it places the address on the address bus.
- Both chips will read in bits A1, A2, and A0 and decode
- Since both chips are using the same CE and OE either both chips are active or not.
- To the CPU it will act just like an 8 x 4 memory chip.

Memory Location Extension: Another Example

- Memory Connection to CPU
- Illustrates the use of both RAM and ROM in the same memory space
- Shows the utility of chip-select inputs
- Shows creative use of address lines

Morris M. Mano: 12.2
Figure 12.4 on page 455
memory address map and
memory connection to CPU

Memory Address Map for Microcomputer

		Address Bus									
Component	Hexadecimal Addr	10	9	8	7	6	5	4	3	2	1
RAM1	0000-007F	0	0	0	Х	Х	Х	Х	X	X	Х
RAM2	0080-00FF	0	0	1	X	X	X	X	X	X	X
RAM3	0100-017F	0	1	0	х	х	X	X	X	X	Х
RAM4	0180-01FF	0	1	1	X	X	X	X	X	X	Х
ROM	0200-03FF	1	X	Х	Х	Х	X	X	X	X	Х

Morris M. Mano: - 12.2 Table 12.1memory address map for microcomputer using Hexadecimal address