IOI Team Training 2013 - Online Test 1, 6-7 June, 2013

Balancing Paths

You are given a tree with N nodes, where the nodes are labeled 1 to N. The edges of the tree are of two types: type-0, and type-1.

A path from node u to node v, $u \neq v$, is called balanced iff there exists a node w along the path, $w \notin \{u, v\}$, such that the number of type-0 edges from u to w is equal to the number of type-1 edges from u to w, and the same holds from w to v.

Find the number of unordered pairs $\{u, v\}$ of nodes, such that the path from u to v is balanced $(u \neq v)$.

Program and Grader

Implement one function in the file balpaths.cpp.

```
long long countPaths (int N, int * u, int * v, int * type);
```

that returns the number of balanced paths in the tree. The tree has \mathbb{N} nodes. For each i in [1..N-1], edge i connects u[i] and v[i] and has type type[i].

Input and Output

The program grader_balpaths.cpp takes input in the following format:

- The first line has a single integer, N.
- This is followed by N-1 lines describing the edges of the tree. Each line i, i in [1..N-1], consists of three integers: u[i], v[i] and type[i].

grader_balpaths.cpp then calls your function countPaths() and outputs the value that your function returns.

Test data

• Subtask 1 (15 marks) : $N \le 100$

• Subtask 2 (15 marks) : N < 1000

• Subtask 3 (70 marks) : $N \le 100,000$

Sample input

Sample output

1

7 1 2 0 3 1 1

2 4 05 2 0

6 3 1

5 7 1

Limits

• Memory limit: 128 MB

• Time limit: 4s