第6章 线性空间

- •集合 映射
- 线性空间的定义与简单性质
- 维数 基与坐标
- 基变换与坐标变换
- •线性子空间
- 子空间的交与和
- 子空间的直和
- 线性空间的同构

集合与映射

一、集合

1、定义

把一些事物汇集到一起组成的一个整体就叫做集合;组成集合的这些事物称为集合的元素.

☆ 常用大写字母A、B、C 等表示集合; 用小写字母a、b、c 等表示集合的元素.

当a是集合A的元素时,就说a 属于A,记作: $a \in A$;

当a不是集合A的元素时,就说a不属于A,记作: $a \notin A$

注:

- 关于集合没有一个严谨的数学定义,只是有一个描述性的说明.
- 集合论的创始人是19世纪中期德国数学家康托尔 (G. Cantor),他把集合描述为:所谓集合是指 我们直觉中或思维中确定的,彼此有明确区别的那 些事物作为一个整体来考虑的结果;集合中的那些 事物就称为集合的元素.即,集合中的元素具有:确定性、互异性、无序性.

集合的表示方法: 描述法、列举法

描述法: 给出这个集合的元素所具有的特征性质.

$$M = \{x \mid x$$
具有性质 $P\}$

列举法: 把构成集合的全部元素一一列举出来.

$$M = \{a_1, a_2, ..., a_n\}$$

例1
$$M = \{(x,y) | x^2 + y^2 = 4, x, y \in R \}$$

例2 N=
$$\{0,1,2,3,\dots\}$$
, $2Z = \{0,\pm 2,\pm 4,\pm 6,\dots\}$

☆ 空集: 不含任何元素的集合, 记为 φ .

注意: $\{\varphi\} \neq \varphi$

2、集合间的关系

约定:空集是任意集合的子集合.

☆ 如果B中的每一个元素都是A中的元素,则称B是 A的子集,记作 $B \subseteq A$,(读作B包含于A)

 $B \subseteq A$ 当且仅当 $\forall x \in B \Rightarrow x \in A$

☆ 如果A、B两集合含有完全相同的元素,则称A与 B相等,记作A=B.

A = B当且仅当 $A \subseteq B$ 且 $B \subseteq A$

3、集合间的运算

 $?: A \cap B = \{x \mid x \in A \perp \exists x \in B\}$;

#: $A \cup B = \{x \mid x \in A$ 或 $x \in B\}$

显然有, $A \cap B \subseteq A$; $A \subseteq A \cup B$

二、映射

1、定义

设M、M' 是给定的两个非空集合,如果有一个对 应法则 σ ,通过这个法则 σ 对于M中的每一个元素a, 都有M'中一个唯一确定的元素a'与它对应,则称 σ 为 M到M'的一个映射,记作: $\sigma: M \to M'$ 或 $M \xrightarrow{\sigma} M'$ α' 为 a 在映射 σ 下的象,而 a 称为a'在映射 σ 下的 原象,记作 $\sigma(a)=a'$ 或 $\sigma:a\mapsto a'$.

注:①设映射 $\sigma: M \to M'$,集合 $\sigma(M) = \{\sigma(a) | a \in M\}$,称之为M在映射 σ 下的象(image),记作 Im σ .

显然, $Im\sigma \subset M'$

②集合M到M自身的映射称为M的一个变换.

例3 判断下列M到M'对应法则是否为映射

1)
$$M = \{a, b, c\}, M' = \{1, 2, 3, 4\}$$

$$\sigma: \ \sigma(a)=1, \ \sigma(b)=1, \ \sigma(c)=2$$
 (是)

$$\delta$$
: $\delta(a)=1$, $\delta(b)=2$, $\delta(c)=3$, $\delta(c)=4$ (不是)

$$\tau$$
: $\tau(b)=2$, $\tau(c)=4$ (不是)

- 2) $M = P^{n \times n}$, M' = P, (P为数域)
- σ : $\sigma(A) = |A|$, $\forall A \in P^{n \times n}$ (是)
- 3) M=P, $M'=P^{n\times n}$, (P为数域)
- τ : $\tau(a) = aE$, $\forall a \in P(E)$ 为 π 级单位矩阵) (是)
 - 4) M、M' 为任意两个非空集合, a_0 是M' 中的一个固定元素. σ : $\sigma(a) = a_0$, $\forall a \in M$ (是)

例4 M是一个集合,定义I:

I(a) = a, $\forall a \in M$

即 *I* 把 *M* 上的元素映到它自身, *I* 是一个映射,
称为 *M* 上的恒等变换或单位变换.

例5 任意一个在实数集R上的函数 y = f(x) 都是实数集R到自身的映射,即,函数可以看成是映射的一个特殊情形.

2、映射的乘积

设映射 $\sigma: M \to M'$, $\tau: M' \to M''$, 乘积 $\tau \circ \sigma$

定义为:
$$\tau \circ \sigma(a) = \tau(\sigma(a))$$
 $\forall a \in M$

即相继施行 σ 和 τ 的结果, $\tau \circ \sigma$ 是 M 到 M'' 的一个映射.

注: ①对于任意映射 $\sigma: M \to M'$, 有

因为对
$$\forall a, (I_M o \sigma)(a) = I_M \sigma(a) = \sigma(a)$$

$$I_{M'} \circ \sigma = \sigma \circ I_M = \sigma$$

②设映射 $\sigma: M \to M'$, $\tau: M' \to M''$, $\psi: M'' \to M'''$,

有
$$(\psi \circ \tau) \circ \sigma = \psi \circ (\tau \circ \sigma)$$

- 3、映射的性质: 设映射 $\sigma: M \to M'$
- 1) 若 $Im\sigma = M'$, 即对于任意 $y \in M'$, 均存在 $x \in M$,使 $y = \sigma(x)$,则称 σ 是M到M'的一个满射 (或称 σ 为映上的);
 - 2) 若M中不同元素的象也不同,即

$$\forall a_1, a_2 \in M, \stackrel{\text{def}}{=} a_1 \neq a_2, \quad \text{If } \sigma(a_1) \neq \sigma(a_2)$$

(或
$$\forall a_1, a_2 \in M$$
,若 $\sigma(a_1) = \sigma(a_2)$,则 $a_1 = a_2$),

则称 σ 是M到M'的一个单射(或称 σ 为1—1的);

3) 若 σ 既是单射,又是满射,则称 σ 为 \overline{N} 为,(或称 σ 为 1—1对应)

例6 判断下列映射的性质

2)
$$M = P^{n \times n}$$
, $M' = P$, (P为数域)

$$\sigma$$
: $\sigma(A) = |A|$, $\forall A \in P^{n \times n}$ (是满射,但不是单射)

- 3) M = P, $M' = P^{n \times n}$, P为数域, E为n级单位矩阵 τ : $\tau(a) = aE$, $\forall a \in P$ (是单射, 但不是满射)
- 4) M、M' 为任意非空集合, $a_0 \in M'$ 为固定元素 σ : $\sigma(a) = a_0$, $\forall a \in M$ (既不单射,也不是满射)
- 5) M是一个集合,定义I: $I(a) = a, \quad \forall a \in M$ (双射)
- 6) M=Z, M'=2Z, $\sigma: \sigma(n)=2n, \forall n \in Z$ (双射)

注:

- ① 对于有限集来说,两集合之间存在1—1对 应的充要条件是它们所含元素的个数相同;
- ② 对于有限集A及其子集B,若 $B \neq A$ (即B为A的真子集),则A、B之间不可能存在1—1对应;但是对于无限集未必如此.

如例6中的6), σ 是1—1对应, 但2Z是Z的真子集.

$$M=Z, M'=2Z,$$
 $\sigma: \sigma(n)=2n, \forall n \in Z$

4、可逆映射

定义: 设映射 $\sigma: M \to M'$, 若有映射 $\tau: M' \to M$,

使得
$$\tau \circ \sigma = I_M, \sigma \circ \tau = I_{M'}$$

则称 σ 为可逆映射, τ 为 σ 的逆映射, 记作 σ^{-1} .

注:

σ 的逆映射是由 σ 唯一确定的

- ①若 σ 为可逆映射,则 σ^{-1} 也为可逆映射,且 $(\sigma^{-1})^{-1} = \sigma$.
- ② $\sigma: M \to M'$ 为可逆映射, $a \in M$,若 $\sigma(a) = a'$,则有 $\sigma^{-1}(a') = a$.
- ③ σ 为可逆映射的充要条件是 σ 为1—1对应.

- 3、设映射 $f:A \to B$, $g:B \to C$, 令 $h=g\circ f$, 证明:
 - 1) 如果 h 是单射,那么 f 也是单射;
 - 2) 如果 h 是满射,那么 g 也是满射;
 - 3) 如果f、g 都是双射,那么h 也是双射,并且

$$h^{-1} = (g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

证: 1) 若f不是单射,则存在 $a_1, a_2 \in A, \perp a_1 \neq a_2$,

但
$$f(a_1) = f(a_2)$$
, 于是有

$$h(a_1) = g \circ f(a_1) = g(f(a_1)) = g(f(a_2))$$

= $g \circ f(a_2) = h(a_2)$

这与h是单射矛盾, : f是单射.

- 2):h 是满射, $\forall c \in C, \exists a \in A, (eh)(a) = c$,即 $c = h(a) = g \circ f(a) = g(f(a))$ 又: $f(a) \in B$, ∴ g 是满射.
- 3) $\forall c \in C$,因为 g 是满射,存在 $b \in B$,使 g(b) = c.

又因为f是满射,存在 $a \in A$,使 f(a) = b

 $h(a) = g \circ f(a) = g(f(a)) = g(b) = c,$ h是满射.

- **:** 若 $a_1, a_2 \in A$, 且 $a_1 \neq a_2$, 由于 f 是单射,有 $f(a_1) \neq f(a_2)$.
- 又因为g 是单射,有 $g(f(a_1)) \neq g(f(a_2))$

$$\mathfrak{P}, \quad g \circ f(a_1) \neq g \circ f(a_2)$$

 \therefore $h(a_1) \neq h(a_2)$, h 是单射. 因而 h 是双射.

又 :
$$h \circ (f^{-1} \circ g^{-1}) = (g \circ f) \circ (f^{-1} \circ g^{-1}) = I_C$$
同理 $(f^{-1} \circ g^{-1}) \circ h = I_A$. : $h^{-1} = f^{-1} \circ g^{-1}$