Семинар 32 (31.05.2023)

Краткое содержание

Новая тема — жорданова нормальная форма (ЖНФ) линейного оператора. Обсудили понятия корневого вектора, отвечающего данному собственному значению λ линейного оператора φ , и соответствующего корневого подпространства $V^{\lambda}(\varphi) = \{v \in V \mid \exists \ m \geqslant 0 : (\varphi - \lambda \cdot \operatorname{Id})^m v = 0\}$, то есть подпространства, состоящего из всех корневых векторов, отвечающих собственному значению λ . Из определения следует включение $V_{\lambda}(\varphi) \subseteq V^{\lambda}(\varphi)$ для всякого $\lambda \in \operatorname{Spec} \varphi$, то есть всякий собственный вектор автоматически является корневым.

Если характеристический многочлен линейного оператора φ разлагается на линейные множители и $\operatorname{Spec} \varphi = \{\lambda_1, \ldots, \lambda_s\}$, то $V = V^{\lambda_1}(\varphi) \oplus \ldots \oplus V^{\lambda_s}(\varphi)$. Кроме того, для всякого собственного значения $\lambda \in \operatorname{Spec} \varphi$ имеет место равенство $\dim V^{\lambda}(\varphi) = a_{\lambda}$ и характеристический многочлен ограничения оператора φ на подпространство $V^{\lambda}(\varphi)$ равен $(t - \lambda)^{a_{\lambda}}$.

Число и размеры жордановых клеток с собственным значением λ в жордановой форме линейного оператора φ однозначно определяются действием оператора φ в соответствующем корневом подпространстве $V^{\lambda}(\varphi)$. А именно, рассмотрим неубывающую цепочку подпространств

$$\{0\} = \operatorname{Ker}(\varphi - \lambda \cdot \operatorname{Id})^{0} \subseteq \operatorname{Ker}(\varphi - \lambda \cdot \operatorname{Id})^{1} \subseteq \operatorname{Ker}(\varphi - \lambda \cdot \operatorname{Id})^{2} \subseteq \dots$$
 (1)

Так как объемлющее векторное пространство V конечномерно, то в этой цепочке рано или поздно встретится знак равенства. Пусть $m \geqslant 0$ — наименьшее число, для которого $\mathrm{Ker}(\varphi - \lambda \cdot \mathrm{Id})^m = \mathrm{Ker}(\varphi - \lambda \cdot \mathrm{Id})^{m+1}$. Тогда начиная с этого места в цепочке (1) все знаки « \subseteq » на самом деле являются равенствами. Легко видеть, что тогда $\mathrm{Ker}(\varphi - \lambda \cdot \mathrm{Id})^m = V^{\lambda}(\varphi)$.

Для каждого $i \ge 0$ положим $d_i = \dim \operatorname{Ker}(\varphi - \lambda \cdot \operatorname{Id})^i$. Тогда имеем цепочку

$$0 = d_0 < d_1 < \ldots < d_m = a_{\lambda}$$

где $a_{\lambda}=\dim V^{\lambda}(\varphi)$ — алгебраическая кратность собственного значения λ . Важно отметить, что цепочка чисел d_1,d_2,d_3,\ldots строго возрастает до тех пор, пока не достигнет значения a_{λ} . На практике числа d_i вычисляются очень просто: если $A\in \mathrm{M}_n$ — матрица линейного оператора φ в каком-либо базисе, то $d_i=n-r_i$, где $r_i=\mathrm{rk}(A-\lambda E)^i$.

На семинаре обсудили, что число d_1 , оно же размерность собственного подпространства $V_{\lambda}(\varphi)$, оно же геометрическая кратность собственного значения λ , равно количеству жордановых клеток с собственным значением λ в ЖНФ оператора φ . Поэтому если вдруг обнаружилось, что $d_1=1$, то жорданова клетка с собственным значением λ будет одна (размера a_{λ}). Дальше вывели, что в ЖНФ число жордановых клеток (с собственным значением λ) размера k равно $2d_k-d_{k+1}-d_{k-1}$, или же $r_{k-1}+r_{k+1}-2r_k$.

Получили следующий алгоритм поиска жордановой формы:

- 1. Вычисляем характеристический многочлен оператора и находим его спектр Spec $\varphi = \{\lambda_1, \dots, \lambda_s\}$ с алгебраическими кратностями для каждого значения $\{a_{\lambda_1}, \dots, a_{\lambda_s}\}$
- 2. Для каждого λ_i суммарный размер всех клеток в ЖНФ, отвечающих этому собственному значению, равен a_{λ_i} . Осталось определить, сколько всего таких клеток и какого они размера.
 - (a) Общее количество клеток равно числу $d_1 = n \text{rk}(A \lambda_i E)$
 - (b) Количество клеток размера ровно k вычисляется через $2d_k-d_{k+1}-d_{k-1}$ или же $\mathrm{rk}(A-\lambda_i E)^{k-1}+\mathrm{rk}(A-\lambda_i E)^{k+1}-2\,\mathrm{rk}(A-\lambda_i E)^k$

С этой информацией можно однозначно определить набор искомых клеток.

Нашли жорданову форму у линейных операторов, имеющих в некотором базисе матрицы

$$\begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Домашнее задание к семинару 33. Дедлайн 7.06.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина, с пометкой KK – Ким-Крицкова.

Во всех номерах требуется найти жорданову нормальную форму линейного оператора с заданной матрицей.

- Π1533
- 2. Π1534
- 3. K41.1(e)

$$4. \begin{pmatrix} 2 & 2 & 1 & 1 & -1 \\ 0 & 3 & 1 & -1 & -1 \\ 0 & -1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

5.
$$\begin{pmatrix} 3 & 1 & 1 & -3 & -2 \\ 0 & 4 & 1 & -1 & -1 \\ 0 & -1 & 2 & 2 & 3 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

- Π1536
- 7. K41.1(и)
- 8. K41.1(л)