# Contents

| 1 | 1 Supervised Machine Learning: Regressi     | on and Classification | 2 |
|---|---------------------------------------------|-----------------------|---|
|   | 1.1 Week 1 linear Regression with One Varia | able                  | 2 |
|   | 1.1.1 Learning Objectives                   |                       | 2 |
|   | 1.1.2 Gradient Descent                      |                       | 3 |
|   | 1.1.3 Gradient descent for linear regres    | ssion                 | 3 |
|   | 1.1.4 Lab notes                             |                       | 3 |
|   | 1.2 Week 2 Regression with multiple input v | variables             | 4 |
|   | 1.2.1 Learning Objectives                   |                       | 4 |
|   | 1.2.2 Multiple Linear Regression            |                       | 4 |
| • | 2 More in Mathematics                       |                       | 5 |
| _ | 2 More in Mathematics                       |                       | J |
| 3 | 3 Equations                                 |                       | 5 |

# 1 Supervised Machine Learning: Regression and Classification

## 1.1 Week 1 linear Regression with One Variable

#### 1.1.1 Learning Objectives

- Define machine learning
- Define supervised learning
- Define unsupervised learning
- Write and run Python code in Jupyter Notebooks
- Define a regression model
- Implement and visualize a cost function
- Implement gradient descent
- Optimize a regression model using gradient descent

#### Some notations

- In the training set, there are features (x) and targets (y)
- x is the input variable (feature)
- y is the output variable (target)
- m = number of training examples
- (x, y) = single training example
- • ( $x^{(i)}, y^{(i)}$ ) =  $i^{th}$  training example ( $1^{st}, 2^{nd}, 3^{rd}...$ )
- $\hat{y}$  means prediction(estimated y)
- f is the function (model)(hypothesis)
- $f_{w,b}(x) = wx + b$
- Parameters: w, b
- Squared error cost function:  $J(w,b) = \frac{1}{2m} \sum_{i=1}^m (\hat{y}^{(i)} y^{(i)})^2$
- Find w,b :  $\hat{y}^{(i)}$  is close to  $y^{(i)}$  for all  $(x^{(i)},y^{(i)})$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

• Goal: minimizeJ(w, b)

#### 1.1.2 Gradient Descent

repeat until convergence{

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

Simultaneously update w and b  $\alpha$  is the learning rate (usually between 0 and 1, maybe 0.01)  $\frac{\partial}{\partial w}J(w,b)$  and  $\frac{\partial}{\partial b}J(w,b)$  are derivative terms Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

#### 1.1.3 Gradient descent for linear regression

$$\frac{\partial}{\partial w}J(w,b) = \frac{1}{m}\sum_{i=1}^{m} (f_{w,b}(x)^{(i)} - y^{(i)})x^{(i)}$$

$$\frac{\partial}{\partial b}J(w,b) = \frac{1}{m}\sum_{i=1}^{m}(f_{w,b}(x)^{(i)} - y^{(i)})$$

repeat until convergence

$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x)^{(i)} - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x)^{(i)} - y^{(i)})$$

}

#### 1.1.4 Lab notes

Deep copy is a process in which the copying process occurs recursively. It means first constructing a new collection object and then recursively populating it with copies of the child objects found in the original. In case of deep copy, a copy of object is copied in other object. It means that any changes made to a copy of object do not reflect in the original object. In python, this is implemented using "deepcopy()" function.

0.3e: example: 1.949e+02 (Three decimal places are reserved before e) 8.4f: example: 199.9929 (Including the decimal point, there are eight decimal places, and four decimal places are reserved after the decimal point)

## 1.2 Week 2 Regression with multiple input variables

### 1.2.1 Learning Objectives

- Use vectorization to implement multiple linear regression
- Use feature scaling, feature engineering, and polynomial regression to improve model training
- Implement linear regression in code

#### Some notations

- $x_j = j^{th}$  feature
- n = number of features
- $\vec{x}^{(i)} = \text{features of } i^{th} \text{ training example}$
- $\vec{x}_{i}^{(i)} = \text{value of feature } j \text{ in } i^{th} \text{ training example}$
- $\begin{aligned} \bullet & & f(w,b) = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b \\ & \vec{x} = [x_1, x_2, x_3, \ldots, x_n] \\ & \vec{w} = [w_1, w_2, w_3, \ldots, w_n] \\ & b \text{ is a number} \\ & \vec{w} \text{ and } b \text{ are parameters of the model} \end{aligned}$

 $f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$ 

#### 1.2.2 Multiple Linear Regression

$$2^2 + 2^2 = 8$$
 and  $2 \times 2 = 4$ 

$$\cos^2\theta + \sin^2\theta = 1$$

The union of two sets A and B is denoted as  $A \cup B = \{x \in A \text{ or } x \in B\}$  We are learning fractions  $\frac{a}{\frac{b}{c}} \times \frac{\frac{d}{e}}{f} \geq 1$  which is good.

$$\frac{a}{\frac{b}{c}} \times \frac{\frac{d}{e}}{f} \ge 1$$

$$\left\{ \left( \frac{a}{b} \right) + \left( \frac{c}{d} \right) \right\}$$

$$\sum_{i=a}^{b} g(i) = 0, \text{ for } b < a$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

## 2 More in Mathematics

$$\int_{2}^{4} \lim_{2 \to 4}$$

$$\int_0^\infty f(x)dx$$

$$\lim_{x \to c} f(x) = L$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

# 3 Equations

$$3x + 5y = 2 \tag{1}$$

$$5x + 8y = 3\tag{2}$$

$$x^{2} - y^{2} = (x+y)(x-y)$$
(3)

$$3x - 6 = 9$$

$$3x = 9 + 6$$

$$x = \frac{9 + 6}{3}$$

$$x = 5$$

$$(4)$$