Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Chapter 1	Geometria analitica in $\mathbb{E}_n(\mathbb{R})$	Page 2
1.1	Direzione \perp ad un iperpiano	2
1.2	Circonferenze in $\mathbb{E}_2(\mathbb{R})$	6

Proposizione 0.0.1

Siano α r rispettivamente un piano e una retta di $\mathbb{E}_3(\mathbb{R})$ con α non ortogonale a r. Allora $\exists !$ piano $\beta : \beta$ ortogonale α e $r \subseteq \beta$.

Dimostrazione: Dimostriamo l'esistenza: sia $\beta = [P, V_1 + V_2 orto]$ dove $r = [P, V_1]$ e $\alpha = [Q, V_2]$.

1. β è un piano perché dim $(V_1=1)$, dim $(V_2orto)=1$ e $V_1\neq V_2orto$ (poiché $\alpha nonortor$) \Longrightarrow dim $(V_1+V_2orto)=2$ \Longrightarrow β è un piano. Per costruzione abbiamo che $\beta\perp\alpha$, infatti lo spazio di traslazione di β è:

$$V_1 \oplus V_2^{\perp} \supseteq V_2^{\perp}$$
e V_2 è lo spazio di traslazione di α

in oltre r

Capitolo 1

Geometria analitica in $\mathbb{E}_n(\mathbb{R})$

Definizione 1.0.1

In $\mathbb{E}_n(\mathbb{R})$ si dice riferimento cartesiano ortogonale monometrico la coppia $[0, \mathcal{B}]$:

- O è un punto di $\mathbb{E}_n(\mathbb{R})$
- $\mathcal{B} = (e_1, e_2, ..., e_n)$ è una base ortonormale

Note:-

- 1. In $\mathbb{E}_n(\mathbb{R})$ $(n=2) \implies \mathcal{B} = (i,j)$
- 2. In $\mathbb{E}_3(\mathbb{R})$ $(n=3) \implies \mathcal{B} = (i, j, k)$

Definizione 1.0.2: Ortogonalità fra rette

Siano r_1, r_2 due rette di $\mathbb{E}_2(\mathbb{R})$ e sia $r_1 = [P, f(v)]$ $v = l \cdot i + m \cdot j$, analogamente $r_2 = [P, f'(v)]$ $v' = l' \cdot i + m' \cdot j$

$$v\perp v'\iff l\cdot l'+m\cdot m'=0$$

se r_1 ha equazione ax+by+c=0 e r_2 ha equazione a'x+b'y+c'=0 allora $P.d.r_1=[(-b,a)],$ e $P.d.r_2=[(-b',a')]$

$$-b \cdot (-b') + a \cdot a' = bb' + aa' = 0$$

Se abbiamo r_1, r_2 rette in $\mathbb{E}_3(\mathbb{R})$ con $P.d.r_1 = [(l, m, n)], P.d.r_2 = [(l', m', n')]$ $r_1 \perp r_2 \iff v_1$ generatore della direzione di $r_1 \perp v_2$ generatore della direzione di r_2 .

$$v_1 = li + mj + nk$$
 $v_2 = l'i + m'j + n'k$

$$v_1 \perp v_2 \iff r_1 \perp r_2 \iff ll' + mm' + nn' = 0$$

Analogamente se r_1, r_2 sono rette in $\mathbb{E}_n(\mathbb{R})$ con $P.d.r_1 = [(x_1, x_2, ..., x_n)], P.d.r_2 = [(x_1', x_2', ..., x_n')]$

1.1 Direzione \perp ad un iperpiano

Proposizione 1.1.1

Sia r: ax + by + c = 0 una retta di $\mathbb{E}_2(\mathbb{R})$. Allora [(a,b)] è la classe dei parametri direttori della direzione ortogonale a r.

Dimostrazione: P.d.r = [(-b, a)] e abbiamo che $(a, b) \cdot (-b, a) = 0$ oppure $(a \cdot i + b \cdot j) \cdot (-b \cdot i + a \cdot j) = 0 \Longrightarrow [(a, b)] \perp r$.

Proposizione 1.1.2

Sia $\pi: ax + by + cz + d = 0$ un piano in $\mathbb{E}_3(\mathbb{R})$. Allora [(a,b,c)] è la classe dei parametri direttori della direzione ortogonale a π .

Dimostrazione: Sia $v \in V_2$ (π ha spazio di traslazione o V_2). Se $v = (x, y, z) \implies ax + by + cz = 0 \iff (x, y, z) \cdot (a, b, c) = 0 \implies (a, b, c) \perp v \ \forall v \in V_2$

Più in generale: sia S_{n-1} un iperpiano in $\mathbb{E}_n(\mathbb{R})$ di equazione cartesiana $0 = a_1x_1 + a_2x_2 + ... + a_nx_n + a_0 \Longrightarrow [(a_1, a_2, ..., a_n)]$ è la classe dei parametri direttori della direzione ortogonale a S_{n-1} .

Proposizione 1.1.3 Ortogonalità tra piani

Siano $\alpha: ax+by+cz+d=0$ $\beta: a'x+b'y+c'z+d'=0$ due piani in $\mathbb{E}_3(\mathbb{R})$. Allora $\alpha\perp\beta\iff a\cdot a'+b\cdot b'+c\cdot c'=0$

Dimostrazione: $\alpha \perp \beta \iff V_2 \supseteq V_2^{\prime \perp}$ dove V_2 è la giacitura di α e V_2^{\prime} è la giacitura di β .

$$V_2'^{\perp} = [\mathcal{L}((a', b', c'))] \iff (a', b', c') \in V_2$$

$$(x,y,z) \in V_2 \iff ax + by + cz = 0$$
 e quindi $(a',b',c') \in V_2 \iff a \cdot a' + b \cdot b' + c \cdot c' = 0$

Proposizione 1.1.4 Ortogonalità tra retta e piano

Siano r: con P.d.r = [(l, m, n)] e sia α di equazione ax + by + cz + d = 0 una retta e un piano di $\mathbb{E}_3(\mathbb{R})$. Allora $r \perp \alpha$ se e soltanto se [(a, b, c)] = [(l, m, n)]

Dimostrazione: $r \perp \alpha \iff V_1 = V_2^{\perp}$ dove V_1 è la direzione della retta e V_2 è la giacitura di α .

$$V_1 = \mathcal{L}((l, m, n)) = V_2^{\perp} = \mathcal{L}((a, b, c)) \iff [(a, b, c)] = [(l, m, n)]$$

(2)

Definizione 1.1.1: Distanza tra 2 punti in $\mathbb{E}_3(\mathbb{R})$

Siano $P=(x_1,x_2,...,x_n)$ e $Q=(x_1'x_2',...,x_n')$. La distanza tra P e Q è la norma del vettore \vec{PQ}

$$d(P,Q) = ||\vec{PQ}|| = \sqrt{\vec{PQ} \cdot \vec{PQ}}$$

$$\vec{PQ} = (x_1' - x_1)e_1 + \dots + (x_n' - x_n)e_n$$

$$||\vec{PQ}|| = \sqrt{(x_1' - x_1)^2 + \dots + (x_n' - x_n)^2}$$

Definizione 1.1.2: Caso $\mathbb{E}_2(\mathbb{R})$

$$P = (x, y) \quad Q = (x', y')$$

$$\vec{PQ} = (x' - x)i + (y' - y)j$$

$$d(P,Q) = \sqrt{(x'-x)^2 + (y'-y)^2}$$

Caso $\mathbb{E}_3(\mathbb{R})$ da aggiungere

Definizione 1.1.3: Distanza tra punto e retta

Siano $P = (x_0, y_0)$ e $r = [Q, V_1]$ rispettivamente un punto e una retta in $\mathbb{E}_2(\mathbb{R})$. Definiamo la **distanza** tra il punto P e la retta r come la distanza tra P e il punto H, piede della perpendicolare per P a r (cioè l'intersezione tra r e la retta perpendicolare a r passante per P).

Determiniamo $||\vec{PH}||$. Se r ha equazione ax + by + c = 0 allora $V_1^{\perp} = \mathcal{L}(a \cdot i + b \cdot j)$.

Posta
$$n = [P, V_1^{\perp}] \implies n = [P, \mathcal{L}(ai + bj)]$$

 $H = n \cap r$ è la proiezione di P su r. (è l'intersezione tra r e la retta per P^{\perp}).

Sia P' = (x', y') un generico punti su r.

$$ax' + by' + c = 0$$

PH è la componente di PP' lungo v. $PP' = (x' - x_0)i + (y' - y_0)j$

$$\vec{PH} = \frac{PP' \cdot v}{v \cdot v} v$$

$$d(P,H) = d(P,r) = ||\vec{PH}|| = ||(\frac{\vec{PP'} \cdot v}{v \cdot v}v)|| = [...] = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Da completare

Definizione 1.1.4: Distanza punto piano

Siano $P = (x_0, y_0, x_0)$ e $\alpha : ax + by + cz + d = 0$ un punto e un piano di $\mathbb{E}_3(\mathbb{R})$. Definiamo la distanza $d(P, \alpha)$ come la distanza tra P e il punto H intersezione tra α e la retta per $p \perp \alpha$.

Dimostrazione: $d(P,\alpha) = d(P,H) = ||\vec{PH}||$. Analogamente al caso piano abbiamo che

$$d(P,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

(

Definizione 1.1.5: Distanza tra un punto e una retta in $\mathbb{E}_3(\mathbb{R})$

Siano P e $r=[Q,V_1]$ un punto e una retta in $\mathbb{E}_3(\mathbb{R})$. Sia α il piano per P ortogonale a r e sia H l'intersezione tra r e α . Definiamo $d(P,r)=d(P,H)=||\vec{PH}||$.

Esempio 1.1.1

In $\mathbb{E}_3(\mathbb{R})$ determiniamo la distanza di P=(3,0,1) da $r: \begin{cases} x+y=1\\ z=2 \end{cases}$

$$\begin{cases} x = 1 - t \\ y = t \\ z = 2 \end{cases} P.d.r = [(-1, 1, 0)] = [(a, b, c)] \qquad \alpha : -x + y + 0 \cdot z + d = 0$$

Imponiamo il passaggio per P: -3+0+d=0 d=3 $\alpha:-x+y+3=0$

$$\alpha \cap r : \begin{cases} x + y = 1 \\ -x + y + 3 = 0 \\ z = 2 \end{cases} \qquad \begin{cases} x + y = 1 \\ 0x + 2y = -2 \\ z = 2 \end{cases} \implies x = 2; \ y = -1$$

$$H:(2,-1,2)$$
 $d(P,r)=||\vec{PH}||=\vec{PH}=(-1)i+(-1)j+k=-1-j+k$

Definizione 1.1.6: Retta di minima distanza

Si dice **retta di minima distanza** tra due rette r, s sghembe in $\mathbb{E}_3(\mathbb{R})$ una retta ortogonale e incidente sia a r che a s.

Proposizione 1.1.5

La retta di minima distanza tra r e s esiste ed è unica.

Definizione 1.1.7: Distanza tra due rette sghembe in $\mathbb{E}_3(\mathbb{R})$

Definiamo la distanza tra due rette r e s sghembe in $\mathbb{E}_3(\mathbb{R})$ come la distanza tra i punti R e S ottenuti intersecando la retta t di minima distanza tra r e s con r e s.

Definizione 1.1.8: Assi

In $\mathbb{E}_2(\mathbb{R})$ dati due punti P, Q, si dice **asse** del segmento \overline{PQ} la retta passante per il punto medio di $P \in Q$ e ortogonale al segmento \overline{PQ} .

Proposizione 1.1.6

L'asse di un segmento \overline{PQ} è il luogo dei punti equidistanti da P e da Q.

Dimostrazione: Dobbiamo dimostrare che $||\vec{PH}|| = ||\vec{QH}|| \quad \forall H \in a \text{ (asse di } \overline{PQ}\text{)}.$

$$\vec{PH} = \vec{PM} + \vec{MH}$$
 e $\vec{QH} = \vec{QM} + \vec{MH}$

$$\begin{split} ||\vec{PH}|| &= \sqrt{||PM||^2 + ||MH||^2} \quad ||\vec{QH}|| = \sqrt{||QM||^2 + ||MH||^2} \quad \text{ma} \quad ||PM|| = ||QM|| \\ ||\vec{PH}|| &= \sqrt{||PM||^2 + ||MH||^2} = \sqrt{||QM||^2 + ||MH||^2} = ||\vec{QH}|| \end{split}$$

⊜

Esempio 1.1.2

Determiniamo l'asse di P=(1,1) e Q=(2,-4). Il punto $M=(\frac{3}{2},-\frac{3}{2})$

$$\vec{PQ} = (2-1)i + (-4-1)j = 1-5j = (1,-5)$$

 $r \perp \overrightarrow{PQ}$ per M è del tipo

$$x - 5y + c = 0$$
 e passa per M

$$\frac{3}{2} + \frac{15}{2} + c = 0$$
 $c = -9 \implies r: x - 5y - 9 = 0$

Alternativamente

$$r: H \in r \iff d(H, P) = d(H, Q)$$

se H = (x, y)

$$\sqrt{(x-1)^2 + (y-1)^2} = \sqrt{(x-2)^2 + (y+4)^2}$$

$$x^2 - 2x + 1 + y^2 - 2y + 1 = x^2 - 4x + 4 + y^2 + 8y + 16 \implies r: 2x - 10y - 18 = 0$$

Definizione 1.1.9: Piano assiale

In $\mathbb{E}_3(\mathbb{R})$ si dice **piano assiale** del segmento \overline{PQ} il piano α passante per il punto medio di P e Q e ortogonale al segmento \overline{PQ} .

Proposizione 1.1.7

Il piano assiale del segmento \overline{PQ} è il luogo dei punti equidistanti tra $P \in Q$.

1.2 Circonferenze in $\mathbb{E}_2(\mathbb{R})$

Definizione 1.2.1: Circonferenza

Dato un punto $C = (x_0, y_0)$ in $\mathbb{E}_2(\mathbb{R})$ e dato r numero reale positivo. Si dice circonferenza di centro C e raggio r il luogo dei punti aventi distanza r da C.

Proposizione 1.2.1 Equazione cartesiana di una circonferenza

Sia P = (x, y) appartenente alla circonferenza di centro C e raggio r.

$$d(P,C) = \sqrt{(x-x_0)^2 + (y-y_0)^2} = r \iff (x-x_0)^2 + (y-y_0)^2 = r^2$$

$$x^2 + y^2 + 2ax + 2by + c = 0 \iff x^2 + y^2 - 2x_0x - 2y_0y + (x_0^2 + y_0^2 - r^2) = 0$$

Proposizione 1.2.2

Tutte e sole le circonferenze si rappresentano come $x^2+y^2+2ax+2by+c=0$ con $a^2+b^2-c>0$ e avremo che C=(-a,-b) e $r=\sqrt{a^2+b^2-c}$

Note:-

Se r fosse 0, $a^2 + b^2 - c = 0 \implies x^2 + y^2 + 2ax + 2by + c = 0$ è rappresentata solo da C = (-a, -b).

Proposizione 1.2.3

Per tre punti non allineati in $\mathbb{E}_2(\mathbb{R})$ passa un unica circonferenza.