Introductory Statistics with Excel

Andrew Parnell

University College Dublin

Class 5 - Statistical modelling and Analysis of Variance

Learning outcomes

In this class we will cover

- What is a statistical model?
- Analysis of Variance (ANOVA)
- 1-way ANOVA
- 2-way ANOVA

Moving from hypothesis testing to statistical modelling

- Many people see statistics as just hypothesis testing and confidence intervals
- Most academic statisticians actually work on statistical modelling rather than ever running hypothesis tests (confidence intervals are used by all of us)
- A statistical model is a way of linking the data to a theoretical construct (i.e. our ideas about how the experiment worked) and to test them using statistical thinking (usually confidence intervals)
- Most statistical models can be written as:

Data = Structure + Residuals

The data is what we have observed, the structure is a hypothesised way the experiment works, and the residuals are the leftover 'random' variation

Example: cows

Reminder: 169.6 142 103.3 111.6 123.4 143.5 155.1 101.7 170.7 113.2 130.9 146.1 169.3 155.5

Our statistical model might be:

$$Data = Overall\ mean + Residuals$$

- The overall mean here might be a value that we specify (e.g. 120kg) or something we try and estimate from the data
- The residuals need to be assigned a probability distribution, such as the normal distribution. This will have a mean (usually set to 0) and a standard deviation which again we can either specify or estimate from the data
- For example, if we had specified that the overall mean was 120kg then our first data point would be:

$$169.6 = 120 + 49.6$$

so the residual value is 49.6. We could do this repeatedly and estimate the standard deviation from the set of residual values

More complex statistical models

■ If we have multiple groups, e.g. the Clenbuterol data, we might have a more complicated structural part:

Data = Mean associated with group + Residuals

- Depending whether the data was in e.g. run 1 or run 2, there might be a different group mean
- We might further decide to give different probability distributions to the residual variation in the different groups

Links with t-tests and ANOVA

- The 1-sample t-test (e.g. testing cow's milk yield is 120kg or not) is an example of a statistical model with one overall group mean
- The independent samples t-test we met earlier is an example of a statistical model with two different group means
- The Analysis of Variance (ANOVA) model we are about to meet is an example of a statistical model with multiple different group means (at least 2)

1-way Analysis of Variance

ANOVA

ANalysis Of VAriance is a versatile statistical tool for analysing how the mean value of a quantitative response variable is related to one or more categorical explanatory factors.

Example: reduction in blood pressure.

- A researcher wishes to compare three different regimes for their effectiveness in lowering blood pressure in patients diagnosed with high blood pressure.
- The recommended regimes are
 - Medication
 - 2 Exercise
 - 3 Diet
- Fifteen patients have volunteered to take part in the experiment.

■ The BP in each patient was recorded after they had followed their recommended regime:

Medication	Exercise	Diet
10	6	5
12	8	9
9	3	12
15	0	8
13	2	4

■ Specific question: is there a difference in the mean reduction in blood pressure for the 3 regimes?

- A *t* test is used to compare 2 population means when independent random samples are available from the populations.
- Given 3 independent samples, t tests could be used to conduct 3 tests (1 v 2, 2 v 3 and 3 v 1) but this causes problems, e.g. is the type 1 error rate still 5%? Should the groups all have the same residual probability distribution?
- The ANalysis Of VAriance (ANOVA) statistical model (and its associated *F*-test) provides a test that the means are different based on the assumption that the residual standard deviations in each group are all equal.

Experimental design

- The simplest experimental design is called a **completely randomised experimental design**.
- This is an experimental design under which independent random samples of experimental units are selected for each treatment.
- Blood pressure example: each patient diagnosed with high blood pressure is randomly assigned to one of the regimes i.e. 5 patients in each regime.

ANOVA terminology

- The response variable is the variable being measured in the experiment: drop in BP
- Factors are variables applied to the object or individual in the experiment:
 regime
- Factor levels are the values of the factor used in the experiment: medication, exercise, diet
- Treatments are the factor-Level combinations used same as factor levels here!
- Experimental units are the objects on which the response variables and factor levels are measured/recorded:
 patients

ANOVA terminology

- We are interested in assessing the the effect of the factors on the response variable: effect of regime on drop in BP
- Quantitative factors are measured on a numerical scale: age, daily medication dose
- Qualitative factors are not measured on a numerical scale: regime
- Reminder: a designed experiment is one for which the researcher controls the specifications of the treatments and the method of assigning the experimental units to each treatment:
 - completely randomized design
- An observational study is one in which the researcher simply observes the treatments and the response on a sample of experimental units:
 - e.g. examine a doctor's records and record regime and drop in BP for each patient

 \blacksquare In general we want to compare the means of k populations.

	1	2	3	 k
Population mean	pop mean 1	pop mean 2	pop mean 3	 pop mean k
Population st dev	pop sd 1	pop sd 2	pop sd 3	 $pop\;sd\;k$
Sample size	n_1	n_2	n_3	 n_k
Sample mean	sample mean 1	sample mean 2	sample mean 3	 sample mean k
Sample st dev	sample st dev 1	sample st dev 2	sample st dev 3	 sample st dev $\it k$

Formally, in ANOVA, we test:

$$H_0$$
 : pop mean $1=$ pop mean $2=$ pop mean $3=\ldots=$ pop mean k

against the alternative

 H_A : at least one mean is different from the others.

Example

■ For the BP experiment:

Medication	Exercise	Diet
$n_1 = 5$	$n_2 = 5$	$n_3 = 5$
sample mean $1=11.8$	sample mean $2 = 3.8$	sample mean $3 = 7.6$
sd 1 = 2.4	$sd\ 2 = 3.2$	sd 3 = 3.2

- Is there evidence in the data which suggests that the average BP under the 3 regimes differs?
- Certainly the 3 sample means vary but this will happen even if H_0 is true!
- Do the 3 sample means *vary enough* to suggest that there is a difference in the true underlying population means?

1-way ANOVA: assumptions

- Assumptions are similar to those for the 2-sample *t*-test.
- 1 The samples are independent random samples.
- The sample means are approximately normally distributed within each population.
- 3 All populations have the **same** standard deviation.

1-way ANOVA: assumptions

• Under H_0 all populations have the same mean. Given the assumptions, all have the same residual standard deviation.

1-way ANOVA: assumptions

Under H_a all populations have different means. Given the assumptions, all have the same residual standard deviation.

- Use ANOVA to test H_0 (all population means equal).
- We do this using an F-test:

$$F = \frac{\text{Variation between sample means}}{\text{Variation within groups}}$$

- The numerator is 0 if all means are equal gets larger the more spread out the means are.
- If that variation is 'large', evidence that at least one of the means is different from the others \Rightarrow reject H_0 .
- The denominator provides a guide for determining whether the numerator is 'large'.
- Comparing variation between group means to the variation within groups; hence "analysis of variance".

The results are usually presented in a table with the following values:

- SSTr: the sum-of-squares associated with the treatment. This is a measure of how variable the means are between the groups
- SSR: the sum-of-squares associated with the residuals. This is a measure of how variable the residuals are within a group
- MSTr: the SSTr value corrected for the number of groups
- MSR: the SSR value corrected for the number of observations

The ratio of these last two provides the F-statistic

ANOVA picture

The ANOVA table

Source	df	SS	MS	F	
Treatment	<i>k</i> - 1	SSTr	$MSTr = \frac{SSTr}{k-1}$	$F = \frac{MSTr}{MSR}$	
Residual	n-k	SSR	$MSR = \frac{SSR}{n-k}$		
Total	n - 1	SSTo			

SS and MS stand for sum-of-squares and mean-square respectively.

We won't go into the details of how these values are created, but the table you get from Excel gives:

Source	df	SS	MS	F
Treatment	2	160.13	80.07	9.17
Residual	12	104.80	8.73	
Total	14	264.93		

- The residual standard deviation is obtained from $\sqrt{\text{MSR}} = 2.95$.
- Excel also gives you the critical value for the F-test and the p-value, here 0.004
- The p-value is far smaller than 0.05 so we would reject H_0 and conclude that, at the 5% level there is at least one different mean

Example: Journal of Adolescent Research 1992

- Is musical preference associated with reckless behaviour?
- Musical Preference:
 Acoustic/Pop, Mainstream Rock, Hard Rock, Heavy Metal
- Reckless Behaviour: How many times in the past year have you indulged in reckless behaviour?
- Here reckless behaviour is defined as 'speeding over 80mph'.

Cutting to the chase, here is the ANOVA table:

Source	df	SS	MS	F	p
Treament	3	12.85	4.2833	5.09	0.0029
Residual	76	63.9	0.8408		
Total	79	76.75			

■ For significance level 5% the mean number of occasions driving over 80mph differs for the groups defined in terms of musical preference.

Comparing means using ANOVA

- If ANOVA fails to accept H_0 we are likely to be interested in which means differ.
- To compare specific means, either with a test or confidence interval, we need the standard error of difference SED.
- For means of samples of sizes n_1 and n_2 :

$$\mathsf{SED} = \sqrt{\mathsf{MSR}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

■ The SED makes use of MSR to estimate the residual standard deviation, thereby using more information than a standard t-test between groups.

Example: Is musical preference associated with reckless behaviour?

■ In this case there are 20 subjects in each treatment group, so:

$$\mathsf{SED} = \sqrt{\frac{2 \times 0.84079}{20}} = 0.28996$$

- To test at significance level 1% with df = 76, the t critical value (from Excel T.INV.2T(0.01, 73)) is 2.642.
- ullet Hence, the population means differ at significance level 1% if:

$$\frac{\mid \mathsf{sample} \; \mathsf{mean} \; 1 - \mathsf{sample} \; \mathsf{mean} \; 2 \mid}{\mathsf{SED}} \; > \; \mathsf{Critical} \; \mathsf{value}$$

- It is useful when comparing means to define the least significant difference LSD.
- We define the least significant difference LSD to be:

$$LSD = Critical value \times SED$$

■ Hence sample means 1 and 2 differ at the 1% level if:

 \mid sample mean 1- sample mean $2\mid>\mathsf{LSD}$

Example: Is musical preference associated with reckless behaviour?

We previously inferred that the means differed for the groups defined in terms of musical preference. Which means actually differ?

	Acoustic/	Mainstream	Hard	Heavy
	Pop	Rock	Rock	Metal
Sample means	2.50	2.70	2.75	3.55

■ Using a 1% significance level

$$\mathsf{LSD} = \mathsf{critical} \ \mathsf{value} \times \mathsf{SED} = 2.642 \times 0.290 = 0.766$$

- So number of reckless events on Heavy Metal differs significantly from the others (all differences \geq 0.8).
- There are no significant differences among the other 3 groups (all differences \leq 0.25).

Example: music preference/reckless behaviour.

- Given that the Heavy Metal group differs significantly from the others we may wish to construct a 95% confidence interval for the mean of the Heavy Metal group.
- The mean for this group is 3.55, with standard error:

$$\sqrt{\frac{\text{MSR}}{20}} = \sqrt{\frac{0.841}{20}} = 0.205$$

- The t critical value, for 95% confidence, with df = 76 is 1.992 (Excel T.INV.2T(0.05, 76))
- Hence the CI of interest is:

$$3.55 \pm 1.992 \times 0.20504 = 3.55 \pm 0.4084 = (3.14, 3.96)$$
 events

ANOVA with randomised block designs

Blocking to increase power

- Power (the probability of detecting differences) is greater when there is less variation among the experimental units i.e. when the within group standard deviation is small.
- $lue{}$ In such a case, most of the variation can be attributed to differences between the treatment means and a large F value is more likely.
- Blocking compares values for different treatments measured on similar experimental units.
- Similar means similar with respect to characteristics which influence the response.
- *Eg:* when comparing effect of dietary regimes on weight loss, use individuals of same gender and similar weight.

Randomised Block Design

- \blacksquare Say we wish to conduct an experiment to compare k treatment means.
- \blacksquare Divide the experimental units into groups of k units, so that units within a group are as similar as possible.
- 2 Within each group randomly allocate treatments so that each unit in a group receives a different treatment.
- The groups are called blocks.
- Allocation of units to blocks is non-random.
- In each block allocation of units to treatments is random.

Randomised block design

- 40 volunteers have agreed to take part in an evaluation of 4 computer training courses.
- Each volunteer will be sent to one of the 4 courses and asked to complete a questionnaire at the end of the course.
- From each questionnaire a general satisfaction score on a scale of 0 to 100 will be computed.
- Possible ways of deciding which volunteer attends which course include:
 - completely randomised design.
 - randomised block design.

Experimental Design

- For a completely randomised design the volunteers are listed in random order. The top 10 are sent on course 1, the next 10 on course 2, etc.
- For a randomised block design the volunteers are grouped into blocks of size 4, such that members of a block are 'similar'.
- Blocks could be constructed on the basis of the individuals previous computer experience; the 4 most experienced in the first block, the next 4 most experienced in the next block, etc.
- The randomised block design could attribute part of the total variation in satisfaction scores to the different experience levels of the volunteers.
- This would reduce residual variation and make it more likely that differences between the satisfaction scores for different courses are detected as significant if they truly exist.

Example: computer course evaluation

Block and Treatment Means:

Block	Tr 1	Tr 2	Tr 3	Tr 4	Mean
1	52.1	51.3	57.9	56.9	54.550
2	59.9	58.8	62.7	63.4	61.200
3	63.3	63.8	64.3	67.8	64.800
4	68.9	69.3	68.3	74.5	70.250
5	68.5	76.4	75.0	73.8	73.425
6	73.2	80.9	80.5	80.1	78.675
7	83.8	84.0	85.6	85.1	84.625
8	85.0	83.4	88.7	91.1	87.050
9	92.8	90.4	91.5	95.0	92.425
10	93.3	95.5	96.6	98.8	96.050
Mean	74.08	75.38	77.11	78.65	76.305

■ The resulting ANOVA table is below:

Source	DF	SS	MS	F	p-value
Treatment	3	119.5	39.8	10.0	0.0001
Block	9	6875.1	763.9	191.4	< 0.0001
Residual	27	107.8	4.0		
Corrected Total	39	7102.4			

■ We are not going to cover the maths of where these values come from!

- Conclude: there is very strong evidence (p = 0.0001) that mean satisfaction scores depend on the training course.
- Conclude: block means differed significantly (p < 0.0001), so blocking did succeed in reducing the residual (error) variation.
- Warning: if blocking did not reduce residual error, the randomised block design would be less powerful that the completely randomised design.
- $lue{}$ The loss of degrees of freedom would make critical values larger, and F values would not have increased sufficiently to make up for this.

- As with a completely randomised block experiment, use a LSD to compare particular treatment means.
- lacktriangle Treatment means average l values so

$$SED = \sqrt{\frac{2 \text{MSE}}{l}}$$
 and as before LSD = critical value \times SED.

■ For the training course example with 5% significance level and critical value = = 2.052 (T.INV.2T(0.05, 27)):

LSD = critical value
$$\times$$
 SED
= $2.052 \times \sqrt{\frac{2 \times 3.991741}{10}}$
= 2.052×0.8935
= 1.834

- The treatment means were 74.08, 75.38, 77.11 and 78.65, and the LSD is 1.834.
- So course 3 significantly different from 1, 4 different from 1, 4 different from 2, 3 different from 2
- 2 and 1 not significantly different from each other, similarly 3 and 2, 4 and 3 (at the 5% significance level).

Multiple comparisons

- When H_0 : all means are equal is rejected by the F test we have used the LSD (based on a t) test to see which means differ.
- With k=4, for example, this involves 6 different tests: tr1 mean vs tr2, tr1 vs tr3, etc, etc
- When H_0 is true and we make many independent comparisons we will reject H_0 much more often than the significance level that we set (e.g. 5%)
- We can use a multiple comparisons procedure to reduce this frequency.
- The most common is that of **Bonferroni** correction where we reduce the significance level by dividing it by the number of tests, e.g. test at the 0.05/6 = 0.83% level instead of the 5% level

2-way ANOVA

Two-way ANOVA

■ Two-way ANOVA examines the effect of 2 categorical factors on the mean of a quantitative response variable.

Examples

- effect of variety (3 levels) and planting density (10, 20, 30 thousand plants per hectare) on yield of tomato plants.
- effect of investment manager (3 levels) and investment type (4 levels) on 5 year yield on a €10,000 investment.
- Effect of

Factorial experimental designs

- Effect of two or more treatments explored simultaneously.
- Every level of each treatment is studied under the conditions of every level of all other treatments.
- \blacksquare Two, three, four, ..., n treatments can be studied in same experiment.
- Here we'll consider only 2.

Advantages of factorial experimental designs

- Need 2 completely randomised designs to analyse effects of two treatments.
- Factorial design can analyse the effect of 2 treatments together, saving time and effort.
- Can be use to control confounding variables, by building such variables into the experimental design.
- Increased power: effects of second variable removed from the SSR.
- Perhaps most importantly: can explore possible interaction between two treatment variables.

Factorial experimental designs: example

- The time required to make coke from coal was examined in a 2×3 experiment with 18 observations.
- The effect of oven width and oven temperature on the process are of interest.
- Oven width has three levels: 4, 8 and 12 inches.
- Oven temperature has two levels: 1600°F and 1900°F.

width	temp	time
4	1600	3.5
4	1600	3.0
4	1600	2.7
4	1900	2.2
4	1900	2.3
4	1900	2.4
8	1600	7.1
:	:	:

Factorial experimental designs: example

- The intersection of each level of each treatment gives rise to **cells**: in the example, there are 3 observations in each of 6 cells.
- One treatment is arbitrarily designated the row treatment: here let's make the the oven width.
- The other treatment is the **column treatment**: here that's oven temperature.
- For this module, only consider designs with equal numbers of observations in each cell.

Two-way ANOVA

■ Factorial designs with 2 factors are analysed using a two-way ANOVA.

■ Two-way ANOVA tests the following hypotheses:

Row effects: H_0 : Row means are all equal.

 H_A : At least one row mean is different.

Column effects: H_0 : Column means are all equal.

 H_A : At least one column mean is different.

Interaction effects: H_0 : The interaction effects are 0.

 H_A : An interaction effect is present.

Two-way ANOVA: main effects and interactions

- The row effects and column effects are often called main effects.
- Essentially effect = mean difference between levels.
- An interaction occurs when the effect of one treatment varies according to the levels of the other treatment.
- In a factorial design, interaction occurs when the pattern of cell means in one row (going across the columns) varies from the cell mean pattern in another row.
- Similarly, interaction occurs when the pattern of cell means differs between columns.

Graphically depicting interactions

- Denote the no. of levels in the row treatment by R, and similarly in the column treatment by C.
- In the coking experiment R=3 and C=2.
- Can graphically examine factorial design experiment data by plotting cell means within each row (say) and connecting them with a line.
- If the *R* lines are parallel, no interaction is indicated.

Graphically depicting interactions

■ If the lines are parallel there is likely to be no interaction. Looks like there might be interaction here.

Class 5

52 / 64

Interpreting effects in the presence of interaction

- When interaction effects are significant, main effects are confounded and should not be analysed in the usual manner.
- It is not possible in such a case to state that row or column effects are significant as the main effect of one treatment varies with the levels of the other main effect.

Two-way ANOVA table: coking example.

Width effect: H_0 : Row means are all equal.

 H_A : At least one row mean is different.

Temp. effects: H_0 : Column means are all equal.

 H_A : At least one column mean is different.

Interaction effects: H_0 : The interaction effects are 0.

 H_A : An interaction effect is present.

lacktriangle To test these three hypotheses we, as usual, determine a F test statistic for each.

Computing a two-way ANOVA table

Source	df	SS	MS	\mathbf{F}	p
Row factor	Ro-1	SSRo	$\frac{SSRo}{Ro-1}$	MSR _o MSR	
Column factor	C-1	SSC	$\frac{SSC}{C-1}$	MSC MSR	
Interaction	$(Ro-1)\times(C-1)$	SSI	$\frac{SSI}{(Ro-1)\times(C-1)}$	MSI MSR	
Residual	$Ro \times \times C \times (n-1)$	SSR	$\frac{SSE}{Ro \times C \times (n-1)}$		
Total	$Ro \times Cn - 1$	SST	· /		

Two-way ANOVA: coking example.

Source	DF	SS	MS	F	Р
width	2	123.1	61.6	222.1	< 0.001
temp	1	17.2	17.2	62.1	< 0.001
Interaction	2	5.7	2.9	10.3	0.003
Error	12	3.3	0.3		
Total	17	149.4			

First, test for interaction:

$$F = \frac{\text{MSI}}{\text{MSE}} = \frac{2.8506}{0.2772} = 10.28$$

- At the 5% level, the critical value is 3.885 (F.INV(0.95, 2, 12)).
- Hence, there is very strong evidence of a width \times temperature interaction the 'no interaction' null hypothesis is rejected at the 5% level.

Two-way ANOVA: coking example.

So, the interaction term is significant. Looking at the cell means gives us an idea of what's happening:

		Temp		
		1600 1900		
Width	4	3.07	2.30	
	8	7.17	5.53	
	12	10.80	7.33	

- The difference in time to coking at high and low temperatures increases with oven width.
- When this is the case the individual tests for the two factors make no sense.

Two-way ANOVA: tests following a significant interaction

- In the case of a significant interaction, we can compare temperatures at each width, using an LSD.
- **Each** cell mean is calculated from n=3 observations so

$$SED = \sqrt{\frac{2MSR}{n}} = \sqrt{\frac{2 \times 0.2772}{3}}$$
$$= 0.4298837$$
$$critical value = 2.179$$

Therefore LSD =
$$(2.179) \times (0.4298837)$$

= 0.937

• Only the means at width 4 under both temperatures are not significantly different, at the 5% level.

Two-way ANOVA: example 2

- A study on how zooplankton live in 2 lakes.
- 12 tanks have been set up: 6 with water from Lake Rose, and 6 with water from Lake Dennison.
- One of three nutrient supplements to each tank.
- After 30 days, count the zooplankton in unit volume of water.
- Use two-way ANOVA to test if the population means are equal, or equivalently, to test whether there is significant evidence of interactions and main effects.

Zooplankton	Supplement	Lake
34	1	Rose
43	1	Rose
57	1	Dennison
40	1	Dennison
85	2	Rose
:	÷	:

Source	df	SS	MS	F	\overline{p}
Supplement	2	1918.50	959.25	9.25	0.015
Lake	1	21.33	21.33	0.21	0.666
Interaction	2	561.17	280.58	2.71	0.145
Residual	6	622.00	103.67		
Total	11	3123.00			

- Test for interaction: p = 0.145
- There is no significant evidence for a supplement×lake interaction at the 5% level
- i.e. the effect of supplement is the same for the two lakes.

- Since the interaction is not significant we regard it as random error and combine it with SSE.
- Therefore, we also add the interaction df to the error df.
- lacktriangle Therefore need to re-compute all the relevant MS, F test statistics and p values.

Source	df	SS	MS	F	\overline{p}
Supplement	2	1918.50	959.250	6.49	0.021
Lake	1	21.33	21.333	0.14	0.714
Residual	8	1183.17	147.8963		
Total	11	3123.00			

■ At 5% level: significant supplement effect, but no significant lake effect.

Supplement	1	2	3
Mean	43.50	68.25	39.75

■ Each mean is based on 4 values (2 tanks from each lake) so:

SED =
$$\sqrt{\frac{2\text{MSR}}{4}} = \sqrt{\frac{2 \times 147.896}{4}}$$

= 8.599

Since critical value
$$= 2.306$$

LSD $= 2.306 \times 8.599 = 19.83$

■ The means under both supplement 1 and supplement 3 differ significantly from the mean zooplankton count under supplement 2.

Summary of class 5

- These are all examples of **statistical models**, either with a single mean, or a set of means for each group / treatment / block
- In general ANOVA models assume that all the residuals have the same standard deviation
- We run F-tests to determine whether the overall means are different, then LSD tests (possibly with multiple comparisons correction) to determine which means are different
- We can use 1-way, 2-way, etc, ANOVA to test for multiple effects and their interactions