CheatSheet Basics Machine Learning

Chu Duc Thang

April 2021

1 Chapter 1

Introduction to the class. Only 1 page, no important information here

2 Chapter 2: Probability

- 1. Sample space/outcome space vs event space:
 - Sample space: Ω
 - Event space: Subset of sample space, ex: powerset (discrete), Borel Field (continuous)
- 2. Discrete vs Continuous RV
 - Discrete: {}, N, words
 - Continuous: [], R, R^k
- 3. Probability mass function (pmf) vs probability density function (pdf)
 - Pmf: $\Omega \to [0,1]$
 - Pdf: $\Omega \to [0, \infty)$, no singleton event, can be > 1
- 4. Special Distribution
 - Discrete: Uniform (n #outcomes), Poisson (α histogram/likely), Bernoulli (p success)
 - Continuous: Gamma (α, β) , Uniform (a, b), Normal (μ, σ) , Exponential (α)
- 5. Marginal vs Conditional Distribution
 - Marginal: $p(x) = \sum_{y \in Y} p(x, y)$
 - • Conditional: $p(x||y) = \frac{p(y||x)p(x)}{p(y)}$ or p(x,y,z) = p(x||y,z)p(y||z)p(z)
- 6. Expected value vs Conditional Expected value vs Variance

- $E = \sum_{x \in X} x p(x)$
- $E[X||Y] = \sum_{x \in X} xp(x||y)$
- $Var = E[(X E[X])^2] \text{ or } E[X^2] E[X]^2$
- Properties of E: E[c] = c, E[cX] = cE[X], E[X + Y] = E[X] + E[Y], E[XY] = E[X]E[Y] (independence), E[E[Y||X]] = E[Y]
- Properties of Var: Var[c] = 0, $Var[cX] = c^2Var[X]$, Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y)
- 7. Covariance vs Correlation
 - Cov = E[XY] E[X]E[Y]
 - Corr = $\frac{Cov(x,y)}{\sqrt{Var(x)}\sqrt{Var(y)}}$
 - Note: $-1 \le Corr \le 1$, but Cov is unbounded
- 8. Independence vs Conditional Independence
 - P(X,Y) = P(X)P(Y)
 - P(X,Y||Z) = P(X||Z)P(Y||Z)

3 Chapter 3: Estimator

- 1. Formula $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2. Bias: $E[\bar{X}] E[X]$
- 3. Confidence interval: Pr(| $\bar{X} E[\bar{X}]$ |< $\epsilon) > 1$ δ
 - $\bullet \ \mu \in [\bar{X} \epsilon, \bar{X} + \epsilon]$
- 4. Chebyshev: Known variance and $\delta = \frac{\sigma^2}{n\epsilon^2}$
- 5. Hoeffding: Bounded between a and b
- 6. Convergence rate: How quickly the error has been reduced
- 7. Sample complexity:
 - As small as possible (data efficiency)
 - $n \ge \frac{v^2}{\delta \epsilon^2}$
- 8. Consistency: As $n \to \infty$, $\epsilon \to 0$ or $\bar{X} \to \mu$
 - Unbiased \rightarrow consistency, but not the vice versa
- 9. Mean-squared error: $MSE = Var(X) + Bias(X)^2$

4 Chapter 4: Optimization

- 1. $w^* = argmin_w c(w)$
- 2. Closed form:
 - Stationary point (c'(w) = 0): local min, local max, saddle point
 - Global min: Boundary point or local min
 - Concave up vs Concave down: c"(w) > 0 minimum vs c"(w) < 0 maximum
 - ullet Practical: non-convex function \to not able to take derivative
- 3. Gradient Descent
 - Taylor series degree 2: Approximate the actual function, then taking the derivative of the approximated function
 - $w_{t+1} = w_t \frac{c'(w_t)}{c''(w_t)}$
 - Difficult to compute $c''(w_t)$, constant stepsize η
 - Chossing stepsize: Too large (overshoot) vs too small (too long to converge)
 - Adaptive stepsize: $\eta_t = argmin_{\eta}c(w_t \eta_t \nabla c(w_t))$
- 4. Properties of Optimization
 - $\operatorname{argmin} c(w) = \operatorname{argmax} c(w)$
 - $\operatorname{argmin} c(w) = \operatorname{argmin} ac(w) = \operatorname{argmin} (c(w) \pm a)$
 - convex function

5 Chapter 5: MAP/MLE/Bayesian

- 1. $p(w||D) = \frac{p(D||w)p(w)}{p(D)}$
 - D: Data, w: parameter
 - Posterior = $\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$
 - Point estimation (MLE/MAP) vs distribution estimation (Bayesian)
- 2. Maximum likelihood Estimation (MLE)
 - $argmax_w p(D||w)$
 - Observed data is most probable
- 3. Maximum a posterior (MAP)
 - $argmax_w p(D||w)p(w)$
 - Mode of the distribution

- As data increases, diminishes the prior knowledge
- If prior is good, $MSE(w_{MAP}) < MSE(w_{MLE})$
- Converge to w_{true} as long as $p(w) \neq 0$ (prior)
- 4. Bayesian estimation
 - $\bullet \ \frac{p(D\|w)p(w)}{p(D)} = \frac{p(D\|w)p(w)}{\int p(D\|w)p(w)}$
 - Conjugate prior
 - Estimation of whole distribution
 - Taken account skewed, multi modal

6 Chapter 6: Optimal predictor

- 1. Setting: Passive/ Complete/ IID
- 2. Feature vs Target: Easy to gather vs Expensive to collect
- 3. Regression:
 - Setting: $Y \in \mathbb{R}$, $[0, \infty]$
 - Optimal cost: $E[C] = \int_X \int_Y cost(f(x), y) p(x, y) dy dx$
 - Mean square: $f^*(x) = E[Y||X]$
 - Absolute: $f^*(x) = Median[Y||X]$
- 4. Classification:
 - Setting: Discrete, words, N, multi-label (1 input $= \ge 1$ output), multi-class (1 input = 1 output), order vs no order
 - Optimal Cost: $E[C] = \int_X \sum_Y cost(f(x), y) p(x, y) dx$
 - $f^*(x) = argmaxp(y||x)$
 - Minimize cost for each x and cannot have 0 cost
- 5. Irreducible vs Reducible error
 - (a) Optimal E[C] = $\int_X p(x) Var[Y||X=x] dx$ (irreducible = noise/variability in Y)
 - (b) Sub-optimal: $E[C] = E[(f(x) f^*(x))^2] + E[(f^*(x) y)^2]$ (reducible + irreducible)
 - (c) Reducible: better function $f^*(x)$
 - (d) Irreducible: More features, but for the given dataset, cannot further reduce

7 Chapter 7: Linear/Polynomial Regression

- 1. $\epsilon \in N(0, \sigma^2)$
- 2. MLE: $w_{MLE} = \operatorname{argmin} \sum_{i=1}^{n} (y_i x_i^T w)^2$
- 3. Cumulative vs average error
- 4. Closed form formula (not invertible) vs GD (long time for large dataset)
- 5. Stochastic vs Mini-batch GD:
 - Unbiased estimation of gradient and stepsize decreases overtime
 - SGD is better for streaming data/online learning
- 6. Polynomial Regression
 - Linear in w, nonlinear in x
 - Benefit: Higher p \rightarrow more expressive \rightarrow reduce squared error
 - Drawback: Overfitting, computational expensive
 - p deg d features = $\binom{d+p}{p}$

8 Chapter 8: Generalization Error

- 1. Generalization vs Empirical
 - Generalization: Error on the test set
 - Empirical: Error on the training test
 - $min_{f \in \mathbb{F}_p} \frac{1}{n} \sum (f(x_i) y_i)^2 \le min_{f \in \mathbb{F}_{p+1}} \frac{1}{n} \sum (f(x_i) y_i)^2$
 - Equal side happens when $f^*(x)$ is inside the \mathbb{F}_p and the expansion does not reduce the error
 - No noise in the data itself, then multiple equally optimal solution
- 2. Overfitting
 - Complexity of model
 - Small dataset
 - Increase significantly in magnitude of coefficient
 - Mismatch training and testing error
- 3. Underfitting
 - Insufficient to represent true model
 - Increases the dataset
 - Increases the complexity of model

- Training error high
- 4. Comparison of model:
 - Increases polynomial degree and plot training/test error
- 5. Hold-out test set
 - Disadvantage: Small dataset and used only once
 - Solution: K-fold and bootstrap sampling
- 6. Confidence Interval
 - Gaussian: tighter confidence, but usually unknown true variance
 - Student t's distribution: $S_m = \frac{1}{m} \sum_{i=1}^m (c_i(f) \bar{X})^2$ and $\epsilon = t_{\delta, m-1} \frac{S_m}{\sqrt{m}}$
 - Not overlap \rightarrow different
 - Low power-test
- 7. Parametric Test
 - p-value: Likelihood of observing outcomes if hypothesis is True
 - α : Smaller α , stronger evidence against H_o
 - Binomial Test: Compared 0,1 values
 - Paired t-test: Real value of error, assumption (equal variance, difference is normally distributed)
- 8. Error
 - Type I: Reject H_o when it should not be rejected (wrong assumption)
 - Type II: Not reject H_o when it should be rejected (wide CI)

9 Chapter 9: Regularization

- 1. MAP: $w_j N(0, \frac{\sigma^2}{\alpha})$
- 2. Gaussian norm
 - $c(w) = \frac{1}{2n} \sum_{i=1}^{n} (x_i^T w y_i)^2 + \frac{\alpha}{2} \sum_{i=1}^{d} w_j^2$
- 3. Laplace norm
 - Not closed form \rightarrow GD
 - Not differential at 0
- 4. Do not regularize w_0 since intercept term do not increase complexity or cause overfitting
- 5. Bias-Variance trade-off

- \bullet Bias: Small bias \to simpler function + regularization \to small variance, but may underfitting
- \bullet Variance: High variance \to Complex function, but may overfitting
- 6. Realizable vs Non-realizable
 - Non-realizable: $f^* \notin \mathbb{F}_p$

	LV	HV
LB	small \mathbb{F} (simple function) and $f^* \in \mathbb{F}$	big \mathbb{F} (complex function) and $f^* \in \mathbb{F}$
	big \mathbb{F} and $f^* \in \mathbb{F}$ but big data	small data
HB	small \mathbb{F} (simple function) and $f^* \notin \mathbb{F}$	big \mathbb{F} (complex function) and $f^* \notin \mathbb{F}$

- Training error similar to generalization error: Q1 and Q3
- GE: low 1, high 3, indeterminate (2, 4 since high variance)
- Overfitting: 2, underfitting: 3

10 Chapter 10: Classification

- 1. Linear classifier
 - Non-linear function, equation of hyperplane
 - Reason: $p(y = 1||x,w) \ge \alpha$ when $x^T w \ge 0$
 - Intercept term: Otherwise always go through origin
- 2. Conditional Bernoulli distribution: Output probability not actual label
- 3. α increases \rightarrow more confidence
- 4. Consistently producing same result \rightarrow good accuracy
- 5. Sigmoid function + Cross-entropy loss
- 6. GD: as usual
- 7. MSE: non-convex function \rightarrow not guarantee to converge to a global minima