Экспериментальный тур. Младшая лига. Осенний дождь

Нум	мерация Критерии		баллы		
П	пп	1 1	П	ПП	квант
	Часть	1. Компьютерный эксперимент.	6		
	1.1	Уравнение		1	
		$\left(1 v^2\right)$			
		$a = g\left(1 - \frac{v^2}{u^2}\right)$			
		Закон Ньютона			0,2
		Формула для установившейся скорости			0,4
		результат			0,4
	1.2	Расчетные формулы		1,5	
		$a_{k+1} = g\left(1 - \frac{v_k^2}{u^2}\right); v_{k+1} = v_k + a_{k+1}\Delta t;$			3x0,5
		$x_{k+1} = x_k + \frac{v_k + v_{k+1}}{2} \Delta t$			
		Для расчета координаты использована			(-0,3)
		$x_{k+1} = x_k + v_k \Delta t$			
	1.3	Результаты расчетов		3	
		Оценивается, если оценен п.1.3			
		Погрешность расчета менее 10% (менее 20%; более)			1 (0,5; 0)
		Интервал времени до 1 с (до 0.5 с: менее) Шаг 0,05 с (0,1 с; более)			1 (0,5; 0) 1 (0,5; 0)
	1.4	Начало равномерного движения		0,5	1 (0,5, 0)
	1.7	$t^* = 0.50s$		0,5	0,2
		$x^* = 0.94m$			0,3
	Иости '	2. Реальный эксперимент.			
	2.1	Падение капель.	8		
	2.1.1	Измерение координат границ	0	0,8	
	2.1.1	(допустимая погрешность 2 мм)		0,0	8x0,1
	2.1.2	Формула $x_k = (V_0 \tau)k + \left(\frac{g\tau^2}{2}\right)k^2$		0,2	
		Формула $y_k = D + V_0 (k \tau + \Delta t) + \frac{g}{2} (k \tau + \Delta t)^2$		0,3	
		Без D			-0,1
	2.1.3	Линеаризация	1,5		
		Формула $X_k = \frac{x_k}{k} = (V_0 \tau) + \frac{g \tau^2}{2} k$		0,4	
		Формула $Y_k = \frac{y_k - y_0}{k} = (V_0 + g\Delta t)\tau + \frac{g\tau^2}{2}k$		0,6	
		Построение графика		0,5	
		(оси оцифрованы,		-,-	0,1+2x0,1+
		нанесены все точки,			+2x0,1
		проведены сглаживающие прямые)			

	2.1.4	Определены параметры линейных зависимостей	1,6		
	ļ	$a_x = 1,65 sm, b_x = 8,5 sm$		0,4	
		$a_Y = 1.57 sm, b_X = 11.1 sm$			4x0,1
				1	
		Рассчитано $a_X = \frac{g\tau^2}{2}$ \Rightarrow $\tau = \sqrt{\frac{2a_X}{g}} = 0.057 c$		1	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		С погрешностью менее 20% (50%, более)			1 (0,6;0)
		Оценена погрешность $\Delta \tau = 6 \cdot 10^{-3} c$		0,2	1 (0,0,0)
		(любым разумным способом)		,	
	2.1.5			1	
	2.1.5	Рассчитано $b_X = V_0 \tau \implies V_0 = \frac{b_X}{\tau} = 1.5 \frac{M}{c}$			
		С погрешностью менее 20% (50%, более)			
		C not peninociblo wence 20% (50%, 60sice)			1 (0,6;0)
	2.1.6	Рассчитано		1	, , , , ,
		$b_Y - b_X = g \tau \Delta t \Rightarrow \Delta t = \frac{b_Y - b_X}{g \tau} = 0.045 c$			
		$D_{Y} - D_{X} = g \tau \Delta t \implies \Delta t = \frac{1}{g \tau} = 0,043 c$			
		С погрешностью менее 20% (50%, более)			1 (0,6;0)
	2.1.7	Рассчитано $\tau = 0.079 c$		1	
		С погрешностью менее 20% (50%, более)			1 (0,6;0)
	2.1.8	Проведено усреднение		0,5	
		Оценена погрешность как разность между		0,1	
		значениями			
	2.2	Волны на воде.	2		
		Измерены положения гребней		1	
		5 (3, 2)			1 (0,5; 0,2)
		Рассчитано значение скорости		1	
		$v = \frac{\lambda}{-} = 20 \frac{cM}{-}$			
	ļ	τ c			
		Методика расчета:			0.5
	ļ	Проведено усреднение не менее по 5 точкам			0,5
		Рассчитано по 2 точкам			(0,3)
		Численное значение			0,5 (0,3; 0)
	2.2	С погрешностью менее 20% (50%, более)	1	++	0,5 (0,5, 0)
	2.3	Измерение дождя.	4	1	
		Идея: измерять диаметры волн;	 	0.2	
		Найдены горизонтальный и вертикальный масштабы Выделена площадка известной площади	 	0,2	
		Подсчитано число капель	 	0,5	
		Измерены диаметры капель	-	0,5	
		Найдено среднее время между каплями	 	0,5	
	ļ	(найдено время между первой и последней каплями)			0,3
		Оценена интенсивность дождя			
	ļ	(порядок величины)		0,8	
	ļ	Ошибка на 1 порядок			0,4
.		ВСЕГО		20	·

Экспериментальный тур. Старшая лига. Сканирование движущихся объектов.

Нумерация		Критерии	баллы		ллы
П	ПП	• •	П	ПП	квант
	Часть	1. Сканер – стробоскоп.			
1.1		Скатывание стержня	5,5		
	1.1.1	Направление движения		0,2	
	1.1.2	Доказательство постоянства ускорения		2,8	
		Измерены координаты стержня 8 (5, менее)			1,5(0,5:0)
		Предложена линеаризация зависимости			0,5
		Построен график линеаризованной зависимости			0,3
		Вывод о постоянстве ускорения			0,5
		Не учтена начальная скорость			-1,0
	1.2.3	Измерение ускорения		2,5	
		Ускорение найдено			-
		по линеаризованной зависимости			I
		по нескольким точкам			(0,6)
		по 3 точкам			(0.3)
		Численное значение $a = (0.10 + 0.01) \frac{M}{c^2}$			
		С погрешностью 10% (20%; более)			
		Оценена погрешность ускорения			0,7(0,4;0)
		По МНК (иным разумным способом)			
					0,5(0,2)
1.2		П	2.5		
1.2	1.2.1	Поступательное колебание стержня.	2,5	0.5	0.5(0.2)
	1.2.1	Измерено время 4 колебаний (1 колебание) Рассчитан период $T = (1.03 \pm 0.02)c$		0,5 1,5	0,5(0,2)
		_ , , , , , , , , , , , , , , , , , , ,		1,5	1,5(1,0;0)
		С погрешностью 10% (20%; более)			1,5(1,0,0)
		Оценена погрешность периода (любым разумным способом)		0,5	
		(люоым разумным спосооом)		- ,-	
1.3		Вращение стержня	5		
	1.3.1	Указано направление вращения	_	0,5	0,2
		Найдена ось вращения		- ,=	0,3
	1.3.2	Есть понимание того, что одна линия – половина		4.5	,
		оборота стержня			0,5
		Скорость вращения определена по:			
		5 и более точкам (менее 5)			1,0(0.5)
		Всем линиям на рисунке;			0,5
		Получена линейная зависимость и представлена			0,5
		графически;			
		Проведены необходимые измерения			0,5
		Численное значение угловой скорости			
		$\omega = (3.25 \pm 0.11) \frac{pad}{c}$			1/0.5.0
		Č			1(0,5;0)
		С погрешностью 10% (20%; более)			
		Оценена погрешность ускорения			0,5(0,4)
		По МНК (иным разумным способом)			0,5(0,4)

	Часть	2. Телевизор-стробоскоп.		
	Incib	2. Terrebisop erpodekon.		
2.1		Равномерное вращение стержня	5	
	2.1.1			
		Получено уравнение, описывающее наблюдаемую		
		линию $X = (Y + a)tg(\omega T_0 \frac{Y}{Y_{\text{max}}} + \varphi_0)$		0,5
		Предложена линеаризация, по которой проводился расчет.		0,5
		Проведены необходимые измерения:		
		Положение оси вращения		0.2
		Размер экрана		0.2
		Координаты точек на линии		0,1
		7 и более (более 2, менее)		7x0,1
		Погрешность определения координат более 2 мм		(-0,2)
		Результаты представлены графически		0,5
		Получено численное значение $\omega = (21 \pm 2)c^{-1}$		
		С погрешностью 10% (20%; более)		1,5(1,0;0)
		Значение получено по линеаризованной зависимости		0,5
		Оценена погрешность ускорения		
		По МНК (иным разумным способом)		0,5(0,3)
2.2		Колебания вертикально расположенной струны	2	
		Получена оценка периода $T = 2T_0 = 0.04c$		1,0
		Найдена частота		0,5
		Дана оценка погрешности		0,5
		ВСЕГО	20	