大 学 物 理 期 中 模 拟 试 卷

课程名称	大学物理 I(B1、	B2) 考试学	期	得分	
适 用 专 业	理工科 64 学时	 考 试 形 式	闭卷	 考试时间长度	120 分钟

提示:请同学们在试卷和答题纸上都写上姓名学号,并将答案直接写在答案纸上; 请监考老师将试卷与答案纸分开收,一起装入试卷袋。谢谢合作!

一、填空题(每题3分,共30分)

- 1. 如下图所示, 高为h的平台上有一小车, 被地面上的人用绳子跨过小滑轮向右拉动。若不 考虑滑轮大小,当人从平台脚下向右以 v_0 匀速行走至s距离时,此时的车速v为 [
- (B) $\frac{hv_0}{\sqrt{h^2 + s^2}}$ (C) $\frac{sv_0}{\sqrt{h^2 + s^2}}$ (D) $\frac{sv_0}{h}$

- 2. 如上图所示,细绳的一端固定,另一端系住小球在圆周上匀速运动形成圆锥摆。对圆锥摆 下列说法正确的是 Γ ٦
 - (1) 小球对O点的角动量守恒;
 - (2) 小球对 O'点的角动量守恒;
 - (3) 小球对OO' 轴的角动量守恒;
 - (4) 小球的动量守恒;
 - (5) 小球和地球组成系统的机械能守恒;
 - (A) (1), (3), (4)

(B) (2), (3), (5)

(C) (1), (2), (5)

- (D) (2), (3), (4)
- 3. 如图所示,有两条直路交叉成 α 角,现有两辆汽车分别以速度 v_1 和 v_2 沿着 两条路行驶,则一车相对于另一车的速度大小为 [

- (A) $\sqrt{v_1^2 + v_2^2 2v_1v_2\cos\alpha}$
- (B) $\sqrt{v_1^2 + v_2^2 + 2v_1v_2\cos\alpha}$
- (C) $v_1 v_2 \cos \alpha$

- (D) $v_1 v_2$
- 4. 一个质量为 m 的人站在一条质量为 M 的船的船头, 船以速度 v 匀速靠近岸边。当船头距离 岸边还有一段距离时,人以相对于船的速度 u 跳上岸,则船的速度变为
 - (A) v + u

(B) v-u

(C) $v - \frac{M}{m+M}u$

(D) $v - \frac{m}{m+M}u$

			故功之和) E确的是	与 $W_{\rm f}$; $^{\prime}$	物块受到	斜面	的支持	 力利	印斜面受	到物块	的压力	做功之和 「	和为]
			$W_{N}=0$			(B)	$W_{\mathrm{f}} =$	0 ,	$W_{\rm N} \neq 0$			_	_
	(C)	$W_{\rm f} \neq 0$	$W_{\rm N} = 0$			(D)	$W_{\rm f} \neq$	0 ,	$W_{\rm N} \neq 0$				
轴	自由转 中方向	动的平台	将两个质 à C 组合原 转,则从」 转动	成一个装 上方俯视	置,开如	台时装 好如何	置静」 运动	上。君	吉两个飞	轮在名	6自马达 	的驱动 ⁻ [
	-			B C					支承轴		← (()		
	油进动	,此时进	当把一回: 挂动角速度 上 (I	度的方向	为							陀螺会组	尧支]
8.	质量和	中半径均	相同的匀	质小球秆	和圆柱,约	分别从	同一点	斜面的	的顶部丛	人静止き	 尼滑动滚	下,对	
滑:			言的时间 和]
			柱 , ル _球				. ,		$> t_{\pm}$,				
	(C)	$t_{\text{ff}} \leq t$	柱 , <i>V</i> 球	<i>></i> v _柱			(D)	<i>T</i> 球	$< t_{\pm}$,	V _球 <	、 V _柱		
9.	按則	照相对论	的时空观	,下列叙	述中正确	角的是						[]
	(A)	在一个	惯性系中	先后发生	三的两个	事件,	在另-	一惯	性系中-	一定颠何	到顺序;		
	(B)	在一个	惯性系中	先后发生	E的两个	事件,	在另-	一惯'	性系中一	定不真	顶倒顺序	÷;	
			惯性系中										;
	(D)	在一个	惯性系中	同时同地	b发生的i	两个事	4件,	在另·	一惯性系	系中一気	定是同时	事件;	
			止加速到 两次做り			[对它	做功 M	V ₁ ,如	将电子	由速率	为 0.2 <i>c</i>	_	.3c,
	(A)	$W_1 > W_2$	2	(B) V	$W_1 = W_2$		(C)	W_1 <	W_2	(D)	无法比	较	
二、	填空是	厦(共 35	5分)										
1.	(5分))已知质)	点沿着 x 5	铀作直线	送运动,其	运动	方程为	J x =	$3 + 5t^2 -$	t^3 (SI)	,则该质	点在 <i>t</i> =	3 s
时的	速度为	I	,	加速度	为			_,	质点在运	运动开始	始后 4	s 内的位	立移
为			。(<i>x</i> 轴	的单位名	矢量为 \bar{i})							
-					, <u>.</u>								

5. 一个表面粗糙的斜面置于光滑水平面上,一物块从斜面顶部滑至底部过程中,物块与斜面

2. (3分)如图所示,一物块可静止在倾角为 θ 的斜面上,它们之间的摩擦系数为 μ 。当斜面以恒定加速度 \bar{a} 水平向右运动时,若要保持物块相对于斜面静止而不产生 \bar{a}
相对滑动,加速度的最大值为 $a_{\max} = \underline{\hspace{1cm}}$ 。 θ
3. (3 分)一个质量为 m 的质点沿着 x 轴正方向作一维运动,它受到一个大小为 A/x^2 的斥力作用(其中 A 为常数),若以 $x=x_0$ 处为零势能位置,则该质点和施力物体组成系统的势能函数为 $E_p(x)=$ 。
4. (3 分)高压水枪中的水以恒定速率 30 $m \cdot s^{-1}$ 水平喷出,喷出的水射到墙面后速率降为零。
设单位时间从水枪喷出水的质量为 2 kg s , 则喷出的水施加在墙面上的作用力大小
为。
5. (3分) 一个质量为 m 的物块沿着半径为 R 的固定圆弧形 光滑轨道从水平位置由静止开始下滑,当滑过的弧长对应的张角 为 θ 时,物块受到的合力大小为。
6. (5分) 一根长为 l , 质量为 m 的匀质细棒, 可绕过其端点
且与棒垂直的轴在水平桌面上转动。设细棒的初始角速度为 ω ,棒与桌面的摩擦系数为 μ ,则棒
受到的摩擦力矩大小为
为。
7. (5分)在地面上有一个长为 3 km 的飞机跑道,一架飞机从起点高速驶向终点用时 1 min,
然后起飞。现有一艘飞船以 $0.8c$ 的速度沿着跑道正方向飞过,则根据飞船中的宇航员测量,
跑道长为,飞机从起点到终点驶过的距离为。
8. (5分)两个静止质量都是 m_0 的粒子甲、乙,以相同的速率 $0.8c$ 相向运动,则甲相对乙的
速度大小为
为
9. (3 分)一个静止能量为 $E_0 = 0.511$ MeV 的电子以速度 $0.6c$ 运动,则该电子的动量
为km · m · s ⁻¹ 。(已知 le = 1.60×10 ⁻¹⁹ C)

三、计算题(共35分)

- 1. (12 分) 一根均匀柔软且不可伸长的粗绳,总长为 l、质量为 m,一部分置于水平桌面上,另一部分自由下垂,长度为 l_0 。已知绳子与桌面之间的摩擦系数为 μ ,且释放后绳子从桌面滑落,求:
- (1) 绳子从开始运动到刚好完全离开桌面过程中重力做的功;
- (2) 该过程中摩擦力做的功;
- (3) 绳子刚好完全离开桌面时的速率。

- 2. (13 分)一根长为 l=2 m,质量为 m=3 kg 的竖直悬挂杆可绕其端点 O 自由转动. 现有一个质量为 $m_0=1$ kg、初速率为 $v_0=10$ m/s 的粘土球垂直击中杆上距端点 O 长为 b=1.5 m 的 P 点,并与杆一起绕 O 摆起。求:
 - (1) 粘土球击中杆的瞬间, 杆获得的角速度:
- (2) 粘土球和杆一起绕 O 转动的最大摆角的余弦;
- (3) 当粘土球和杆一起绕 O 转至最大摆角时,端点 O 对杆的约束力大小。 $(g = 10 \text{ m} \cdot \text{s}^{-2})$

3. (10 分)如图所示,一个质量为 $M_c = 100 \, \mathrm{kg}$ 、过质心轴的转动惯量为 $J_c = 60 \, \mathrm{kg \cdot m^2}$,内、外半径分别为 $R_1 = 0.4 \, \mathrm{m}$ 、 $R_2 = 1 \, \mathrm{m}$ 的滚轮置于粗糙水平桌面上,一根轻绳缠绕在滚轮的内半径边缘,绕过定滑轮后与质量为 $M = 200 \, \mathrm{kg}$ 的物块相连。已知定滑轮的质量为 $m = 20 \, \mathrm{kg}$,半径为 $r = 0.5 \, \mathrm{m}$ 。假设轻绳与桌面平行,且与滑轮之间不打滑,滑轮与轴承之间的摩擦力可以忽略,求:(1)物块运动的加速度;(2)桌面对滚轮的摩擦力。 ($g = 10 \, \mathrm{m \cdot s^{-2}}$)

大学物理试卷答题纸

(期中 B1 B2)

题目	_	1.1	三 1	三 2	三 3	总分
得分						
批阅人						

一、单选题(每题3分,共30分)

题 号	1	2	3	4	5
答案					
题 号	6	7	8	9	10
答案					

二、填空题(共35分)

- 1. (1分) _____; (2分) _____; (2分) _____。
- 2. (3分) _____。
- 3. (3分) _____。
- 4. (3分) _____。
- 5. (3分) _____。
- 6. (3分) ; (2分) 。
- 7. (3分) ______; (2分) _____。
- 8. (3分) ______; (2分) _____。
- 9. (3分) _____。

三、计算题(共35分)

1. (本题 12 分)

群

拉

小小

2. (本题 13 分)

3. (本题 10 分)