

Developing Spidey Senses

Anomaly Detection for Javascript

RON DAGDAG

Spidey Sense?

- tingling sensation on the back of Peter Parker's skull
- ability to sense / react to danger

Uses

- Increases his ability to detect evil (and even clones)
- Helps him navigate if he is impaired (disoriented or unable to see/hear)
- Aids him in discovering secret passageways and find hidden/lost objects
- Helps fire his Web Shooters and swing instinctively

This Photo by Unknown Author is licensed under CC BY-SA

Real Spider Sense

"hyper-awareness"

long, thin hairs, trichobothria

- low-level vibrations through their web
- can detect the vibrations of faint sounds
- small insects moving up to 3 meters away

Any new web developers here?

Spidey Sense?

Gut feeling

Vibe

Feeling

Intuition

Discover Blind Spots

Learning from the past

IDE

Agenda

What is Anomaly Detection?

Time Series Anomaly Detection

Demo

Takeaways

Anomaly Detection

Identifying unexpected items or events in data sets, which differ from the norm

An Outlier

Assumptions:

- Anomalies only occur very rarely in the data.
- •Their features differ from the normal instances significantly.

Causes of Outliers

Artificial (Error) / Non-natural

Natural

Causes of Outliers

- Data Entry Errors: 100,000 vs 1,000,000 fat fingered
- Measurement Error: common
- Experimental Error: start late in sprint
- Intentional Outlier: underreporting alcohol consumption
- Data Processing Error: extraction errors
- Sampling Error: reporting height for all athletes and included most basketball players
- Natural Outlier: When it's not artificial

Rule-based Systems

Methods

Statistical Techniques

Machine Learning

Rule-based Systems

Specific Rules

Assign Threshold and limits

Experience of Industry
Experts to detect
"known anomalies"

Doesn't Adapt as patterns change

Data Labeling

Statistical Techniques

- flags the data points => deviate from common statistical properties (mean, median, mode, quantiles)
- □ a rolling average or a moving average
- n-period simple moving average "low pass filter." e.g. Kalman Filters
- Histogram-based Outlier Detection (HBOS)
- More Interpretable and sometimes more useful than ML methods

Supervised (e.g. Decision Tree, SVM, LSTM Forecasting)

Unsupervised (e.g. K-Means, Hierarchical Clustering, DBSCAN)

Self-Supervised (e.g. LSTM Autoencoder)

Machine Learning Methods

ANOMALY DETECTION

- •Very small number of positive examples
- Large number of negative examples
- Many different "types" of anomalies. Hard to learn from positive examples
- •Future anomalies may not be discovered yet.

SUPERVISED LEARNING

- Large number of positive and negative examples
- Enough positive examples for algorithm to learn.
- Future positive examples likely to be similar to training set

ANOMALY DETECTION

- Fraud Detection
- •Manufacturing (engines/machineries)
- Monitoring Data Center
- Internet of Things

SUPERVISED LEARNING

- Email spam classification
- Weather prediction
- Cancer classification

Machine Learning

Density-Based Anomaly Detection

- based on the k-nearest neighbors algorithm.
- Assumption: Normal data points occur around a dense neighborhood and abnormalities are far away.

Clustering-Based Anomaly Detection

- Assumption: Data points that are similar tend to belong to clusters --> distance from local centroids.
- K-means

Machine Learning

Gaussian Distribution

- Gaussian Distribution and given a new data-point,
- Compute the probability of the data-point
- If the probability is below a threshold => outlier or anomalous.

Machine Learning

Support Vector Machine-Based Anomaly Detection

- OneClassSVM
- ∘ >100 features, aggressive boundary
- find a function that is positive for regions with high density of points,
 and negative for small densities

PCA-Based Anomaly Detection

- analyzing available features to determine what constitutes a "normal" class
- applying distance metrics
- Fast training

Simple Anomaly Detection DEMO

Internet of Things

Increasing Data Volume (sensors are cheaper)

Increased Data Speed (improved networking)

Risk environment that are moving very fast but failures are not tolerated.

Internet of Broken Things

Artificial Intelligence of Things

Time Series Anomaly Types

OUTLIER

SPIKE AND LEVEL SHIFT

PATTERN CHANGE

SEASONALITY

Outlier

Spike and Level Shift

Pattern Change

Seasonality

Production Issues?

IID datasets

Identically Distributed

- no overall trends the distribution doesn't fluctuate
- all items in the sample are taken from the same probability distribution

Independent

- Items are all independent events.
- Not connected to each other in any way.

Univariate

Multivariate

Time Series Anomaly Detection

Spikes

• temporary bursts of anomalous behavior in the system. LSXS26326S.ASTCNA0

Change points

- indicate the beginning of persistent changes over time in the system.
- level changes and trends

Intelligent Kiosk

https://github.com/microsoft/Cognitive-Samples-IntelligentKiosk

Azure Cognitive Services

- Al for every developer— w/o requirement ML expertise.
- Just an API call

Anomaly Detector

- Identify potential problems early on
- RESTful API
- monitor and detect abnormalities
- no machine learning expertise needed
- automatically identify and apply the best-fitting models
- Identify boundaries for anomaly detection
- Eliminates the need for labeled training data
- Fine-tune sensitivity
- Production ready, Used by Microsoft product teams

Anomaly Detector Features

Detect anomalies as they occur in realtime.

Detect anomalies throughout your data set as a batch.

Get additional information about your data.

Adjust anomaly detection boundaries.

Gallery of Algorithms

Fourier Transformation

Extreme Studentized Deviate (ESD)

STL Decomposition

Dynamic Threshold

Z-score detector

SR-CNN

Anomaly Detector Demo

Where can you use this?

C#, Javascript, Python

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/quickstarts/client-libraries?pivots=programming-language-csharp&tabs=linux

Docker Containers

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/anomaly-detector-container-howto

Power BI

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/tutorials/batch-anomaly-detection-powerbi

Azure Databricks for streaming data

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/tutorials/anomaly-detection-streaming-databricks

Metrics Advisor

- Part of Azure Cognitive Services
- Performs data monitoring, anomaly detection in time series data
- Automates applying models
- Analyze multi-dimensional data from multiple data sources
- Identify and correlate anomalies
- Configure and fine-tune the anomaly detection model
- Diagnose anomalies and help with root cause analysis
- REST API and Web Portal
- Currently in preview

Detect anomalies

Send incident alerts

Analyze root cause

The best superpower you can give to your project is a "spidey-sense".

https://github.com/rondagdag/spidey-sense-js

About Me

Ron Dagdag

Lead Software Engineer / AI Edge Specialist

4th year Microsoft MVP awardee

Personal Projects www.dagdag.net

Email: ron@dagdag.net Twitter @rondagdag

Connect me via Linked In www.linkedin.com/in/rondagdag/

Thanks for geeking out with me about Spidey Senses and Anomaly Detection