Advanced Algorithms — Problem set 5

Whenever you give an algorithm, also argue for its running time and correctness. Always feel free to ask in the forum or send a mail if you're stuck, need a clarification, or suspect a typo.

- 1. Let us attempt to transfer the greedy strategy for Set Cover to the Knapsack problem: In the following, define the "quality" (or "value density") of a Knapsack item i as the quotient $q_i = p_i/w_i$ of profit over weight. Consider the items to be sorted in decreasing order by quality.
 - (a) Show that greedily including items of highest quality (starting from an empty set) can give arbitrarily bad solutions. Formally, show that, for every $\epsilon > 0$, there is an input for which this greedy algorithm outputs a solution of profit at most ϵ times the optimum.
 - (b) We modify the greedy algorithm: Let $k \leq n$ be the first index such that items $1, \ldots, k$ (in the item list that is sorted by decreasing quality) have total weight strictly larger than the capacity B. Then output the more profitable set among the following two:
 - the first k-1 items, or
 - item k alone (we assume that every item has weight $\leq B$).

Show that this solution gives at least half of the optimal profit. (Hint: It may conceptually help to visualize every item i as a rectangle of width w_i , height q_i , and thus area p_i . Then imagine the items arranged on a horizontal line, ordered by quality. Also imagine a vertical line at B.)

- 2. The Maximum Independent Set problem is NP-hard, and assuming $P \neq NP$, there is not even a polynomial-time algorithm that outputs an independent set of size $\frac{OPT}{n^{1/4}}$.
 - (a) In this part, we restrict the problem to graphs G of constant maximum degree. That is, there is some constant Δ such that every vertex in G is incident with at most Δ edges. Maximum Independent Set remains NP-hard on such graphs, even for $\Delta = 3$. Give an algorithm that always outputs an independent set of size at least
 - i. $\frac{\text{OPT}}{\Delta+1}$ (Hint: greedily choose vertices to include into the independent set, lower-bound the number of vertices chosen, and upper-bound OPT)
 - ii. $\frac{OPT}{\Lambda}$ (Hint: same as before, but find a tighter upper bound on OPT—trickier)
 - (b) In this part, we restrict the problem to *planar* graphs. Such graphs can be drawn in the plane without crossings, and Maximum Independent Set remains NP-hard on such graphs. A famous theorem establishes that planar graphs are 4-colorable, i.e, their vertices can be colored using 4 colors such that the two endpoints of any edge receive distinct colors. Assuming you get an algorithm that outputs a 4-coloring of a planar graph, show how to construct an algorithm that always outputs an independent set of size at least $\frac{OPT}{4}$.
 - (c) Show that all planar graphs are 6-colorable, and describe a polynomial-time algorithm for finding a 6-coloring in a planar graph. You may use that planar graphs are 5-degenerate, which means that every planar graph contains at least one vertex of degree ≤ 5 .