THALES

SINCLAIR

OPEN

Surrogate models and sensitivity analysis for simulation of electron guns of high-frequency & high-power amplification devices

Flore Molenda – Thales AVS – MIS (Microwave & Imaging Subsystems)

OpenTurns Users' Day #15 10/06/2022

flore.molenda@thalesgroup.com

- 1) Context
 - Electron amplifier tubes : what are they ?
 - > Tubes simulations, with a focus on electron gun simulations
- 2) Sensitivity & Uncertainty studies applied on electron gun simulations
 - A. Screening with Morris Method
 - B. Building surrogate models (kriging & polynomial chaos)
 - C. Global sensitivity analysis with Sobol indices
- Works done in collaboration with Phimeca, using Persalys & OpenTurns

High-Frequency Tubes: High-Power amplifier

Linear beam waves tubes (High-Frequency Waves Amplifier)

> Space Applications (Satellites) and Scientific (Particles Accelerator)

Helix Travelling Wave Tubes, embedded in satellites

Klystrons embedded in CERN accelerators

High-Frequency Tubes : schematic diagram

Use Case: Electron Gun Simulations (1)

Modelling electronic optics for electron gun

- > Voltage gaps between cathode and anodes
 - Electric field force acting on beam electrons
 - Electric field modified by electrons' charge
- > Electrons' emission from cathode
 - Computing total emitted current by cathode value
- > Particles' beam motion to interaction line
 - Computation of electromagnetic field which acts on particles motion
 - Electrons propagation between cathode and anodes, and then beyond
- Solve a coupled system
 - Poisson's equation (which gives electric field locally modified by electrons) → Finite elements method
 - Vlasov's equation (which governs particles motion with Lorentz's force) → Method PIC

Use Case: Electron Gun Simulations (2)

Schematic view of electron gun (study case)

Use Case: Electron Gun Simulations (3)

ANSYS ENVIRONMENT

- GEOMETRY MODELING
- MESHING
- PARAMETERS SETTINGS
- ACT

Use Case: Electron Gun Simulations (4)

- Quantities of interest :
 - > Total current emitted by cathode
 - > Electron beam shape:
 - External radius of electron beam, as a function of longitudinal abscissa
 - Radius minimum which characterizes beam waist
 - Body currents intercepted on metallic pieces (to minimize in order to maximize performances)
- Many random input parameters
 - Geometry characteristics (manufacturing tolerances & bias)
 - Issues about concentricity/alignment of assembly components
 - Voltages values applied on cathode, anodes
 - Magnets characteristics
- Purposes : confirm technicians' observations / focus efforts on compliance with tolerances of specific parts

Novelty: Ansys Coupling Model

Persalys

Ansys WorkBench project related with a parametric model

- Ability of batch runs of this Ansys project with a specific command file (similar to python script)
- In this way, Persalys can:
 - Load Ansys WorkBench project and recognize automatically all inputs/outputs parameters chosen by user in this project
 - Execute Ansys coupling model
 - Generate an Ansys command file
 - Ansys batch run
 - Recover Ansys computation results
 - This allows within Persalys to achieve on-shot computation or full DOE computations

Contents

- 1) Context
 - Electron amplifier tubes : what are they ?
 - > Tubes simulations, with a focus on electron gun simulations
- 2) Sensitivity & Uncertainty studies applied on electron gun simulations
 - A. Screening with Morris Method
 - B. Building surrogate models (kriging & polynomial chaos)
 - C. Global sensitivity analysis with Sobol indices

A- Screening with Morris method (1)

- First model was including 44 uncertain input parameters
 - 42 geometry characteristics + 2 electric parameters
 - Modelled with distribution laws: uniform, normal or lognormal
- Purpose : reduce uncertain input parameters' number in order to build easier surrogate models
- Execution of a Morris' Design of experiments of 900 simulations/points (computation duration : 6 min)

A- Screening with Morris method (2): Results

Sort of most influential inputs, common with all studied results

Reducing to 20 inputs (19 geometry characteristics + 1 electric parameter)

Morris - Elementary effects for P54 - Beam characteristics CurrentAll [mA]

Morris - Elementary effects for P55 - Beam characteristics BeamWaist R95 [mm]

- Second model with 20 input parameters
- Execution of several design of experiments (DOE)
 - Different algorithms used, including 200, 400 and 1000 computations/points
- Graphical analysis of results got with these DOE (histograms, boxplots)
- Surrogate models building (kriging and polynomial chaos expansion)
 - > For result: total current emitted by cathode lk
 - > For result: min of electron beam radius R95
 - > For result: body intercepted current on grid Ihg

■ Graphical analysis of these DOA results (histograms)

DOE of 1000 points – LHS with simulated annealing algorithm, criterion C2

For total current emitted by cathode Ik

P54 - Beam characteristics CurrentAll [mA]

CV ≈ 7.5%

For min of electron beam radius R95

CV ≈ 57.8%

IHALES

For body intercepted current on grid Ihg

CV ≈ 39.4%

B- Building surrogate models (3)

Building surrogate models: kriging or polynomial chaos expansion

> For total current emitted by cathode Ik

- DOE 200 points : Q2 \approx 0.98-0.99 for kriging / Q2 \approx 0.95-0.99 for PCE
- DOE 400 points & 1000 points : Q2 > 0.99 for both surrogate model types

Chaos Polynomial Metamodel validation for P54 - Beam characteristics CurrentAll [mA] : Q2=0.999234 MaximumTotalDegree = 5

B- Building surrogate models (4)

Building surrogate models: kriging or polynomial chaos expansion

- For min of electron beam radius R95 & body intercepted current on grid Ihg
 - Q2: sometimes < 0, improved by increasing points number in DOE
 - DOE 1000 points : Q2 ≈ 0.5-0.75 for kriging & Q2 ≈ 0.4-0.8 for PCE

Chaos Polynomial Metamodel validation for P55 - Beam characteristics BeamWaist R95 [mm] : Q2=0.755782 MaximumTotalDegree = 7

Kriging for body intercepted current on grid Ihg

PCE for min of electron beam radius R95

B- Building surrogate models (5)

Building surrogate models: kriging or polynomial chaos expansion

- > For min of electron beam radius R95 & body intercepted current on grid Ihg
 - Tests of classification methods with **otmixmod** (DOE 1000 points)
 - → no improvements (Q2 ≈ 0.3-0.6)
 - Data filtering from DOE 1000 points (take off cases with results > thresholds)
 - → improvements! (Q2 ≈ 0.8-0.95)

Kriging for min of electron beam radius R95

C- Global sensitivity analysis (1)

Determination of Sobol indices with surrogate models

> For total current emitted by cathode Ik

Full DOE 1000 points

- Total and 1st order indices very close; $1 \sum S_i \approx 0.003$ very close to 0;
- >> few interactions between parameters
- >> input parameter P16 is predominant

Sobol's indices for 'P54 - Beam characteristics CurrentAll [mA1] First Order Sobol indices Total order Sobol indices Input parameters Pk

C- Global sensitivity analysis (2)

Determination of Sobol indices with surrogate models

- > For min of electron beam radius R95
 - Total and 1st order indices different; $1 \sum S_i \approx 0.23$;
 - >> interactions between inputs acting on variability

Sobol's indices for 'P55 - Beam characteristics BeamWaist R95 [mm]'

DOE 1000 points filtered

C- Global sensitivity analysis (3)

Determination of Sobol indices with surrogate models

> For body intercepted current on grid Ihg

DOE 1000 points filtered

- Total and 1st order indices very close; $1 \sum S_i \approx 0.05$ very close to 0;
- >> few interactions between parameters
- >> input parameter P16 is predominant

Sobol's indices for 'P57 - Body current on grille Ih [mA]

- Sort most influential input parameters
 - > One parameter « P16 » with major influence
 - 3 to 5 parameters with secondary influence
- To be continued:
 - Central tendency and dispersion measures
 - Apply process on another electron gun configuration (without grid)
 - Take into account external magnetic field applying on electron beam (variabilitity of magnets geometry and physical characteristics)

Thanks for your attention!

Some questions?

Some suggestions?

Appendix: Most influential input parameters

For total current emitted by cathode lk

P16 - Plane_WehneltGrille.LCathodeGrilleWehnelt [mm]
P1 - Plane_Cathode.HConcavite [mm]
P61 - potential grille wehnelt potential [V]
P5 - Plane_Anode.LCathodeAnode [mm]
P21 - Plane_WehneltGrille.RintAxe [mm]
P22 - Plane WehneltGrille.EpaisSupportG [mm]

For body intercepted current on grid Ihg

P16 - Plane_WehneltGrille.LCathodeGrilleWehnelt [mm]
P61 - potential grille wehnelt potential [V]
P39 - Plane_GrilleShape.Rint2 [mm]
P21 - Plane_WehneltGrille.RintAxe [mm]
P22 - Plane_WehneltGrille.EpaisSupportG [mm]
P49 - Plane_WehneltGrille.AngleWehnelt [degree]
P30 - Plane WehneltGrille.HconcaviteGrille [mm]

For min of electron beam radius R95

P16 - Plane_WehneltGrille.LCathodeGrilleWehnelt [mm]
P9 - Plane_Anode.AParallelisme [degree]
P17 - Plane_WehneltGrille.RDecentrageGW [mm]
P61 - potential grille wehnelt potential [V]
P5 - Plane_Anode.LCathodeAnode [mm]
P1 - Plane_Cathode.HConcavite [mm]
P21 - Plane_WehneltGrille.RintAxe [mm]
P22 - Plane_WehneltGrille.EpaisSupportG [mm]

Context: Tubes simulations: 3 physics phenomena

Context: Tubes simulations: 3 physics phenomena

