PAIOC

QUERY CONTROL FORM			RTIS U	SE ONLY
Application No. 09943199	Prepared by	M. RUSTUS	Tracking Number	05995539
Examiner-GAU NELMS-2818	Date	09-28-04	Week Date	08-16-04
	No. of queries	1	NEW	

	J	ACKET		
a. Serial No.	f. Foreign Priority	k. Print Claim(s)	p) PTO-1449	
b. Applicant(s)	g. Disclaimer	I. Print Fig.	q. PTOL-85b	
c. Continuing Data	h. Microfiche Appendix	m. Searched Column	r. Abstract	
d. PCT	i. Title	n. PTO-270/328	s. Sheets/Figs	
e. Domestic Priority	j. Claims Allowed	o. PTO-892	t. Other	

SPECIFICATION	MESSAGE	
a. Page Missing		
b. Text Continuity	PID-N49: Please either	
c. Holes through Data	initial or line through	
d. Other Missing Text	initial or line through the citations. Copies provided for reference.	
e. Illegible Text	for reference.	
f. Duplicate Text		
g. Brief Description		
h. Sequence Listing		
i. Appendix		
j. Amendments		
k. Other		
CLAIMS		
a. Claim(s) Missing		
b. Improper Dependency		
c. Duplicate Numbers	The	enk you,
d. Incorrect Numbering	initials	110
e. Index Disagrees	RESPONSE	
f. Punctuation		
g. Amendments		
h. Bracketing		
i. Missing Text		
j. Duplicate Text		
k. Other		
	initials	

09/943,199

2818

August 29, 2001

Kristy A. Campbell

Approved for use through 10/31/2002.OMB 0651-0031
U. S. Petent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
U.S. Department of the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information untess it contains a valid CMB control number.

Substitute for form 1449A/PTO

Filing Date

Art Unit

Application Number

First Named Inventor

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Examiner Name D. Vu 5 1 of Attorney Docket Number M4065.0704/P704

			U.S. PA	TENT DOCUMENTS	,
Examiner	Cite			Name of Patentee or	Pages, Columns, Lines, Where Relevant Passages or Relevant
initials*	No.	Number-Kind Code ² (# known)	MM-DD-YYYY	Applicant of Cited Document	Figures Appear
	AA	2002/0000666	1/3/2002	Kozicki et al.	
	AB	2002/0072188	6/13/2002	Gilton	-
	AC	2002/0106849	08/08/2002	Moore	
	AD	2002/0123169	09/05/2002	Moore et al.	
	AE	2002/0123170	09/05/2002	Moore et al.	
	AF	2002/0123248	09/05/2002	Moore et al.	
	AG	2002/0127886	09/12/2002	Moore et al.	
	AH	2002/0132417	09/09/2002	Li	
	Al	2002/0160551	10//31/2002	Harshfield	
	AJ	2002/0163828	11/07/2002	Krieger et al.	
	AK	2002/0168820	11/2002	Kozicki	
	AL	2002/0168852	11/2002	Kozicki	
	AM	2002/0190289	12/19/2002	Harshfield et al.	
	AN	2002/0190350	12/19/2002	Kozicki et al.	
	AO	2003/0001229	01/02/2003	Moore et al.	
	AP	2003/0027416	02/06/2003	Moore	
	AQ	2003/0032254	02/13/2003	Gilton	
	AR	2003/0035314	02/20/2003	Kozicki	
	AS	2003/0035315	02/20/2003	Kozicki	
	AT	2003/0038301	02/27/2003	Moore	
	AU	2003/0043631	03/06/2003	Gilton et al.	
	AV	2003/0045049	3/2003	Campbell et al.	
	AW	2003/0045054	3/2003	Campbell et al.	•
	AX	2003/0047765	03/13/2003	Campbell	
	AY	2003/0047772	03/13/2003	Li	
*	AZ	2003/0047773	03/13/2003	U	
	AA1	2003/0048519	03/13/2003	Kozicki	
	AB1	2003/0048744	3/2003	Ovshinsky et al.	
	AC1	2003/0049912	03/13/2003	Campbell et al.	
	AD1	2003/0068861	4/2003	Li et al.	
	AE1	2003/0068862	4/2003	Li et al.	_
	AF1	2003/0095426	05/22/2003	Hush et al.	
	AG1	2003/0098497	5/2003	Moore et al.	
	AH1	2003/0107105	6/2003	Kozicki	
	Al1	2003/0117831	06/26/2003	Hush	
	AJ1	2003/0128612		Moore et al.	
	AK1	2003/0137869		Kozicki	
	AL1	2003/0143782	07/31/2003	Gilton et al.	
	AM1	2003/0155589	08/21/2003	Campbell et al.	
	AN1	2003/0155606	08/21/2003	Campbell et al.	
	AO1	2003/0156447	08/21/2003	Kozicki	
	AP1	2003/0156463	08/21/2003	Casper et al.	
	AQ1	2003/0209728	11/13/2003	Kozicki et al	

Approved for use through 10/31/2002, ONB 0851-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Office the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

	Complete if Known
Application Number	09/943,199
Filing Date	August 29, 2001
First Named Inventor	Kristy A. Campbell
Art Unit	2818
Examiner Name	D. Vu
Attorney Docket Number	M4065.0704/P704

Sheet		2	of	5		Attorney Docket Number	M4065.07	'04/P704
	AR1	2003/02099	71	11/13/2003				
	AS1	2003/02105		11/13/2003		ki et al		
	AT1	2003/02127		11/2003	,	insky et al.		
	AU1	2003/02127	25	11/2003		insky et al.		
	AV1	2004/00354	01	2/2004		achandran et al.	· · · · · · · · · · · · · · · · · · ·	
	AW1	RE 37,259E	:	7/2001	Ovsh	insky		
		3,271,591		9/1966		insky		
		3,961,314		6/1976	Klose	et al.		
	AZ1	3,966,317		6/1976	Wad	s et al.		
		3,983,542		11/1976	Ovsh	insky		
	AB2	3,988,720		10/1976	Ovsh	insky		
	AC2	4,177,474		12/1979	Ovsh	insky		
	AD2	4,267,261		5/1981	Halln	nan et al.		
		4,316,946		1/1982	Mast	ers, et al.		
	AF2	4,597,162		7/1986	John	son et al.		
	AG2	4,608,296		8/1986		n et al.		
	AH2	4,637,895		1/1987	Ovsh	insky et al.		
	Al2	4,646,266		2/1987	Ovsh	insky et al.		
	AJ2	4,664,939		5/1987		insky		
	AK2	4,668,968		5/1987	Ovst	insky et al.		
	AL2	4,670,763		6/1987	Ovst	insky et al.		
	AM2	4,671,618		06/09/1987	Wu e	t al.		
		4,673,957		6/1987	Ovst	insky et al.		
	AO2	4,678,679		7/1987		insky		
	AP2	4,696,758		9/1987	Ovst	insky et al.		
		4,698,234		10/1987		insky et al.		
		4,710,899		12/1987		g et al.		
		4,728,406		3/1988		rjee et al.		
		4,737,379		4/1988		ens et al.		
ļ		4,766,471		8/1988	+	insky et al.		
		4,769,338		9/1988		insky et al.		<u> </u>
		4,775,425		10/1988		et al.		
		4,788,594		11/1988		insky et al.		
		4,800,526		01/24/1989	Lewi			
		4,809,044		2/1989		et al.		
-		4,818,717		4/1989		son et al.		
		4,843,443		6/1989		insky et al.		
		4,845,533		7/1989		et al.		
		4,853,785		8/1989		insky et al.		ļ
		4,891,330		1/1990	-	et al.		
		5,128,099		7/1992		id et al.		
		5,159,661	-	10/1992		insky et al.		
<u> </u>		5,166,758	_	11/1992		insky et al.		
<u> </u>	AI3	5,272,359		12/21/1993		subramanian et al.		
		5,296,716	-	3/1994		insky et al.		
	AK3	5,314,772		5/24/1994	Kozi			
├ ──	AL3	5,335,219		8/1994		insky et al.		
		5,341,328		8/1994		insky et al.		
Щ_	AN3	5,359,205		10/1994	UVSE	insky		l <u> </u>

PTO/SB/08A (10-01)
Approved for use through 10/31/2002.0MB 0851-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
ond to a collection of Information unless it contains a valid OMB control number.

Under the Paperwork Reduction Act of 1995, no persons are required to resp

ubstitute for form 1449A/PTO

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

. of

5

	Complete if Known
Application Number	09/943,199
Filing Date	August 29, 2001
First Named Inventor	Kristy A. Campbell
Art Unit	2818
Examiner Name	D. Vu
Attorney Docket Number	M4065 0704/P704

AO3 5,406,509 A/1995 Ovshinsky et al.	Sileer		<u> </u>	101			Attorney Docket Number	NI4065.07	04/P704
AP3 S,414,271 S/1996 Ovshinsky et al.		IAO3	5,406,509		4/1995	Ovst	insky et al.		<u> </u>
AG3 5,534,712 7/1996 Ovshinsky et al.								-	
AR3 5,534,712 7/1996 Ovshinsky et al.									
AS3 5,563,947 7/1996 Klersy et al.									
AT3 5,543,737 8/1996 Ovshinsky									
AU3 5,591,501 1/1997 Ovshinsky et al.									
AW3 5,586,522 1/1997 Ovshinsky et al.									
AW3 5,687,112 11/1997 Ovshinsky et al. AX3 5,694,054 12/1997 Ovshinsky et al. AX3 5,614,527 9/291998 Wolstenholme et al AZ3 5,814,527 9/291998 Wolstenholme et al AZ4 6,818,749 10/06/1998 Harshfield AB4 5,825,046 10/1998 Czubatyj et al. AC4 5,851,882 12/22/1998 Harshfield AC4 5,851,882 12/22/1998 Harshfield AC4 5,851,882 12/22/1998 Harshfield AC4 5,851,882 12/22/1998 Harshfield AC4 5,851,883 6/1999 Ovshinsky et al. AC4 6,312,87 1/2000 Ovshinsky et al. AC5 6,011,757 17/2000 Ovshinsky AC6 6,011,757 17/2000 Ovshinsky AC7 1/2000 Ovshinsky AC8 6,001,757 17/2000 Ovshinsky et al. AC8 6,011,757 17/2000 Ovshinsky et al. AC8 6,011,757 17/2000 Ovshinsky et al. AC8 6,014,1,241 10/2000 Ovshinsky et al. AC8 6,014,1,241 10/2000 Ovshinsky et al. AC8 6,014,1,241 10/2000 Ovshinsky et al. AC8 6,040,4865 6/2002 Lowery et al. AC8 6,404,685 6/2002 Lowery et al. AC9 6,437,383 8/2002 Wicker AC9 6,437,383 8/2002 Wicker AC9 6,437,383 8/2002 Wicker AC9 6,440,837 8/27/2002 Harshfield AC9 6,452,984 10/2002 Vx et al. AC9 6,452,984 10/2002 Vx et al. AC9 6,457,133 11/2002 Park AC9 6,457,133 11/2002 Park AC9 6,551,865 1/2003 Hudgens et al. AC9 6,551,865 1/2003 Lowery et al. AC9 6,551,865 1/2003 Lowery et al. AC9 6,551,867 1/2003 Lowery et al. AC9 6,551,867 1/2003 Lowery et al. AC9 6,552,837 4/2003 Lowery et al. AC9 6,555,860 4/2003 Lowery et al. AC9 6,566,700 5/2003 Lowery et al.						•			
AX3 5,684,054 12/1997 Ovshinsky et al.									
A73 5,714,768									
AZ3 5,814,527 9/29/1998 Wolstenholme et al Harshfield AA4 5,818,749 10/06/1998 Larshfield AB4 5,825,046 10/1998 Czubaryj et al. AC4 5,851,882 12/22/1998 Harshfield AD4 5,869,843 2/9/1999 Harshfield AE4 5,912,839 6/1999 Ovshinsky et al. AE4 5,912,839 6/1999 Ovshinsky et al. AG4 6,011,757 1/2000 Ovshinsky AH4 6,031,287 2/29/2000 Harshfield AH4 6,072,716 06/06/2000 Jacobson et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AJ4 6,048,674 1/2002 Ovshinsky et al. AJ4 6,048,685 6/2002 Lowery et al. AJ4 6,408,339,544 1/2002 Chiang et al. AJ4 6,429,064 8/2002 Wicker AJ4 6,429,064 8/2002 Wicker AJ4 6,429,064 8/2002 Wicker AJ4 6,440,837 8/27/2002 Harshfield AJ4 6,440,837 8/27/2002 Harshfield AJ4 6,487,106 11/26/2002 Kozicki AJ4 6,487,106 11/26/2002 Kozicki AJ4 6,487,106 11/26/2002 Kozicki AJ4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AX4 6,511,867 1/2003 Lowery et al. AX4 6,511,867 1/2003 Lowery et al. AX5 6,514,805 2/2003 Xu et al. AX6 6,534,781 3/2003 Dennison AX6 6,554,597 4/2003 Lowery et al. AX7 6,511,867 1/2003 Lowery et al. AX8 6,554,597 4/2003 Lowery et al. AX9 6,554,597 4/2003 Lowery et al. AX9 6,554,597 4/2003 Lowery et al. AX9 6,556,600 5/2003 Xu Lowery et al. AX9 6,556,600 5/2003 Collang AX9 6,566,700 5/2003 Lowery et al. AX9 6,566,700 5/2003 Collang et al. AX9 6,566,700 5/2003									
AA4					9/29/1998				
AB4									
AC4 5,851,882 12/22/1998 Harshfield		$\overline{}$						•	_
AD4 5,869,843 279/1999 Harshfield AE4 5,912,839 6/1999 Ovshinsky et al. AF4 5,933,365 8/1999 Klersy et al. AG4 6,011,757 1/2000 Ovshinsky AH4 6,031,287 2/29/2000 Harshfield AH4 6,031,287 7/2000 Ovshinsky AH4 6,031,287 7/2000 Ovshinsky et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AJ4 6,387,674 7/2000 Ovshinsky et al. AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park AT4 6,487,113 11/2002 Park AV4 6,501,111 12/2002 Lowery AW4 6,501,111 12/2003 Hudgens et al. AV4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AX5 6,514,805 2/2003 Xu et al. AR5 6,545,897 4/2003 Chiang AR5 6,555,860 4/2003 Lowery et al. AR5 6,555,860 4/2003 Lowery et al. AR5 6,566,700 5/2003 Xu AR5 6,566,700 5/2003 Xu AR5 6,567,293 5/2003 Lowery et al. AR5 6,567,293 5/2003 Chiang et al. AR5 6,569,705 5/2003 Chiang et al. A									
AE4 5,912,839 6/1999 Ovshinsky et al.									
AF4 5,933,365 8/1999 Klersy et al.	'				6/1999	Ovst	insky et al.		
AG4 6,011,757 1/2000 Ovshinsky AH4 6,031,287 2/29/2000 Harshfield AJ4 6,072,716 06/06/2000 Jacobson et al. AJ4 6,087,674 7/72000 Ovshinsky et al. AJ4 6,037,674 7/72000 Ovshinsky et al. AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,446,665 6/2002 Lowery et al. AM4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,106 11/26/2002 Varker AT4 6,487,113 11/2002 Park AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AV4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lai AZ4 6,514,805 2/2003 Xu et al. AZ5 6,545,287 4/2003 Chiang AE5 6,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705			<u> </u>						
AH4 6,031,287 2/29/2000 Harshfield AI4 6,072,716 06/06/2000 Jacobson et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AZ4 6,513,373 3/2003 Gill et al. AZ5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,556,700 5/2003 Xu AF5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705									
AI4 6,072,716 06/06/2000 Jacobson et al.					2/29/2000	Hars	hfield		
AJ4 6,087,674 7/2000 Ovshinsky et al. AI4 6,141,241 10/2000 Ovshinsky et al. AI4 6,339,544 1/2002 Chiang et al. AIM 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,473,332 10/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AZ4 8,512,241 1/2003 Lowery et al. AZ4 8,512,241 1/2003 Lowery et al. AZ5 6,514,805 2/2003 Xu et al. AZ6 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,567,293 5/2003 Xu All Als 6,566,700 5/2003 Xu Als 6,569,705 5/2003 Xu Als 6,569,705 5/2003 Lowery et al. AH5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.						Jaco	bson et al.		
AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 8,473,332 10/2002 Ignatiev et al. AR4 8,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki ALU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AX4 6,511,867 1/2003 Lowery et al. AX5 6,514,805 2/2003 Xu et al. AX6 6,514,805 2/2003 Xu et al. AX7 AX8 6,514,805 2/2003 Chiang AX9 AX9 6,545,287 4/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AX6 6,548,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AX6 6,545,870 4/2003 Lowery et al. AX7 AX9 6,555,860 4/2003 Lowery et al. AX9 AX9 6,555,860 4/2003 Lowery et al. AX9 AX9 6,545,287 4/2003 Lowery et al. AX9 6,566,700 5/2003 Xu et al. AX9 6,569,705 5/2003 Chiang et al.					7/2000	Ovst	insky et al.		
AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,333 1/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lai AX4 6,511,867 1/2003 Lai AX4 6,512,241 1/2003 Lai AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,545,287 4/2003 Lowery et al. AC6 6,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,567,293 Lowery et al. AG6 6,567,293 Lowery et al. AG7 6,567,293 5/2003 Lowery et al.					10/2000	_		· · · · · · · · · · · · · · · · · · ·	
AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lai AZ5 6,514,805 2/2003 Xu et al. AZ6 6,534,781 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,557,293 Lowery et al. AH5 6,567,293 5/2003 Lowery et al.				-		Chia	ng et al.		
AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 111/2002 Park AT4 6,487,106 111/26/2002 Kozicki AU4 6,887,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 11/2003 Hudgens et al. AX4 6,511,862 11/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AY4 6,512,241 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lowery et al. AZ5 6,534,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Lowery et al. AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,567,703 Lowery et al. AG5 6,567,203 Lowery et al. AH5 6,566,700 5/2003 Lowery et al. AH5 6,567,293 5/2003 Lowery et al. AH5 6,567,293 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.					6/2002				
AP4 6,440,837 8/27/2002 Harshfield		AN4	6,429,064		8/2002	Wick	er		
AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lai AA5 6,514,805 2/2003 Xu et al. AA5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AG5 6,566,700 5/2003 Xu et al. AH5 6,566,700 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AO4	6,437,383		8/2002				
AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AA5 6,54,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,558,360 4/2003 Lowery et al. AF5 6,568,700 5/2003 Lowery et al. AH5 6,566,700 5/2003 Lowery et al. AH5 6,567,293 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.					8/27/2002	Hars	hfield		
AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 11/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AZ5 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD6 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.		AQ4	6,462,984		10/2002	Xu e	al.		
AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.						Ignat	iev et al.		
AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,184 5/2003 Lowery et al. AG5 6,563,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,63,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AT4	6,487,106		11/26/2002	Kozio	:ki		
AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,633,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AU4	6,487,113		11/2002	Park	et al.		
AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.					12/2002				
AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,184 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AW4	6,507,061		1/2003	Hudg	ens et al.		
AZ4 6,512,241 1/2003 Lai AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.						Hudg	ens et al.		
AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AY4	6,511,867			Lowe	ry et al.		
AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.	<u> </u>								
AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.	L								
AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AG5 6,563,164 5/2003 Lowery et al.									
AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.	<u></u>								
Al5 6,567,293 5/2003 Lowery et al.	L						ry et al.		
AJ5 6,569,705 5/2003 Chiang et al.	<u> </u>								
	<u> </u>	+	_						
AK5 6,570,784 5/2003 Lowery	 								
		JAK5	6,570,784		5/2003	Lowe	ry		

Approved for use through 10/31/2002.OMB 0651-0031
U. S. Petent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete If Known Substitute for form 1449A/PTO **Application Number** 09/943,199 INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date August 29, 2001 First Named Inventor Kristy A. Campbell Art Unit 2818 (use as many sheets as necessary) D. Vu Examiner Name 5 of M4065.0704/P704 4 Attorney Docket Number AL5 6,576,921 6/2003 Lowery

AN5 6.589,714 7/2003 Maimon et al. AO5 6,590,807 7/2003 Lowery AP5' 6,593,176 7/2003 Dennison AQ5 6,597,009 7/2003 Wicker AR5 6,605,527 8/2003 Dennison et al.
AP5' 6,593,176 7/2003 Dennison AQ5 6,597,009 7/2003 Wicker
AQ5 6,597,009 7/2003 Wicker
' AR5 6.605.527 8/2003 Dennison et al
The state of the s
AS5 6,613,604 9/2003 Maimon et al.
AT5 6,621,095 9/2003 Chiang et al.
AU5 6,625,054 9/2003 Lowery et al.
AV5 6,642,102 11/2003 Xu
AW5 6,646,297 11/2003 Dennison
AX5 6,649,928 11/2003 Dennison
AY5 6,667,900 12/2003 Lowery et al.
AZ5 6,671,710 12/2003 Ovshinsky et al.
AA6 6,673,648 1/2004 Lowrey
AB6 6,673,700 1/2004 Dennison et al.
AC6 6,674,115 1/2004 Hudgens et al.
AD6 6,687,153 2/2004 Lowery
AE6 6,687,427 2/2004 Ramalingam et al.
AF6 6,690,026 2/2004 Peterson
AG6 6,696,355 2/2004 Dennison
AH6 6,707,712 3/2004 Lowery
Al6 6,714,954 3/2004 Ovshinsky et al.

	FOREIGN PATENT DOCUMENTS							
Examiner Cite	Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	Π			
initials*	No.1	Country Code ³ -Number ⁴ -IGnd Code ⁵ (if known)	144.00 1000	Applicant of Cited Document	Passages or Relevant Figures Appear	70		
	BA	56126916	10/19981	Akira et al.		Т		
	88	WO 97/48032	12/18/1997	Kozicki et al.		✝		
	BC	WO 99/28914	06/10/1999	Kozicki et al.		\vdash		
	BD	WO 00/48196	08/17/2000	Kozicki et al.	1	\vdash		
	BE	WO 02/21542	03/14/2002	Kozicki et al.		T		

Examiner		Date	
Signature	·	Considered	
Orginatero		Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Craw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

The PTO did not receive the following listed Items(s) FOR - FROM - BA TO BE

1819879 v1; 13087011.DOC

¹ Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁸ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁸ Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademerk Office: U.S. DEPARTMENT OF COMMERCE
Objective the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid CMB control number.

Complete if Known Substitute for form 1449B/PTO **Application Number** 09/943,199 INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date August 29, 2001 First Named Inventor Kristy A. Campbell Group Art Unit 2818 (use as many sheets as necessary) Examiner Name D. Vu 5 of 5 Attorney Docket Number M4065.0704/P704

		OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS	
Examiner Initials	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²
	CA	Kawamoto, Y., Nishida, M., Ionic Condition in As2S3—Ag2S, GeS2—GeS—Ag2S and P2S5-Ag2S Glasses, J. Non-Cryst Solids 20(1976) 393-404.	
	СВ	Kozicki et al., Silver incorporation in thin films of selenium rich Ge-Se glasses, International Congress on Glass, Volume 2, Extended Abstracts, July 2001, pgs. 8-9.	
	CC	Michael N. Kozicki, 1. Programmable Metallization Cell Technology Description, February 18, 2000	
	CD	Michael N. Kozicki, Axon Technologies Corp. and Arizona State University, Presentation to Micron Technology, Inc., April 6, 2000	
	CE	Kozicki et al., Applications of Programmable Resistance Changes In Metal-Doped Chalcogenides, Electrochemical Society Proceedings, Volume 99-13, 1999, pgs. 298-309.	
	CF	Kozicki et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, Vol. 27, No. 516, 2000, pgs. 485-488.	
	CG	Kozicki et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering 63 (2002) pgs 155-159.	
	СН	Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851.	
	CI	Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.	

Examiner	Date	
	200	
Signature	Considered	l .

[&]quot;EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08A (10-01)

Approved for use through 10/31/2002.OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449A/PTO Application Number 09/943,199 INFORMATION DISCLOSURE Filing Date August 29, 2001 STATEMENT BY APPLICANT First Named Inventor Kristy A. Campbell, et al. Art 1 Init 2818 (use as many sheets as necessary) Examiner Name David Vu M4065.0704/P704 of 8 Attorney Docket Number 1 Sheet

	Document Number			Pages, Columns, Lines
Cite No.	Number-Kind Code ² (# known)	MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Where Relevant Passages or Relevant Figures Appear
AE	6,388,324	05/14/2002	Kozicki et al.	
AF	US 2002/0000666	01/03/2002	Kozicki et al.	
AG	5,500,532	03/19/1996	Kozicki et al.	
AH	6,614,049	07/09/2002	Kozicki et al.	
Al	5,751,012	05/12/1998	Welstenholme et al.	
	No.' AE AF AG AH	No.' Number-Kind Code ⁷ (# known) AE 6,388,324 AF US 2002/0000666 AG 5,500,532 AH 6,614,049	AE 6,388,324 05/14/2002 AF US 2002/0000666 01/03/2002 AG 5.500,532 03/19/1996 AH 6,614,049 07/09/2002	No. Number-Kind Code ¹ (if known) MM-DD-YYYY Name of Patentee of Applicant of Cited Document

		FORE	GN PATENT	DOCUMENTS		
		Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	
	Cite No.1	Country Code ³ -Number ⁸ -Kind Code ⁵ (if known)	144 50 1000	Applicant of Cited Document	Passages or Relevant Figures Appear	
	BA	WO 97/488032	12/18/1997	Kozicki et al.		
	BB	WO 99/28914	06/10/1999	Kozicki et al.		Γ

Examiner	Date
Signature	Considered

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

RECEIVED NOV 2 6 2002 **GROUP 3600**

¹Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.usplo.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3) ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ³ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁴ Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required

Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)

2

	Complete if Known
Application Number	
Filing Date	
First Named Inventor	
Group Art Unit	
Examiner Name	
Attorney Docket Number	

	4	OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS	
Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	τ²
	CA	Abdel-All, A.; Elshafie, A.; Elshafie, A.; Elshafie, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.	
	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.	Γ
	cc	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.	
	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.	Г
	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.	Γ
	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.	T
	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
	СН	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.	
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.	
	C1	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.	
•	СК	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
	СМ	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state lonics 136-137 (2000) 1025-1029.	
_	CN	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	со	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	
	СР	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	
	ca	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
	CR	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	
	cs	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
	СТ	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	
	cu	Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.	
	CV	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg415, Solid State lonics 70/71 (1994) 72-76.	Γ
	cw	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x	

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Substitute for form 1449B/PTO

Complete if Known Application Number Filing Date First Named Inventor Group Art Unit

	(use as many sheets as necessary)				Examiner Name	Z &	
heet		3	of	8	Attorney Docket Number	7	_
	Υ	Glasses, As	ian J	ournal of Physics (200	0) 9, 709-72.	- 3 X	T
	cx	Boolchand.	P.: B	resser, W.J., Mobile si	Iver ions and glass for	mation in solid electrostes.	r
				1) 1070-1073.	giant in	4	١
	CY				an, B., Discovery of the	e Intermediate Phase in	T
				asses, J. Optoelectron			I
	CZ					esser, W.J., Onset of rigidity in	Γ
						Amorphous Materials, M.F.	l
						Netherlands, 2001, pp. 97-132.	ı
	CA1					ring of evaporated amorphous	Γ
						and Defect Data Vol. 53-54	l
	1	(1987) 415-		,	, , , , , , , , , , , , , , , , , , ,		ı
	CB1	Boolchand.	P.: G	rothaus, J.: Bresser, W	V.J.: Suranyi, P., Struct	tural origin of broken chemical	T
	1			glass, Phys. Rev. B 2		• • • •	l
	CC1					rder and phase separation in	T
	100.			s, Solid state comm. 4		,	ı
	CD1	Boolchand	P. B	resser W.J. Composit	tional trends in class tr	ansition temperature (Tg),	t
	-	network con	necti	vity and nanoscale che	emical phase separatio	on in chalcogenides, Dept. of	ı
				ncinnati (October 28, 1		3	ı
	CE1	Boolchand	P:G	rothaus J Molecular S	Structure of Melt-Quen	ched GeSe2 and GeS2 glasses	t
	J .	compared l	Proc.	Int. Conf. Phys. Semio	ond. (Eds. Chadi and I	Harrison) 17th (1985) 833-36.	١
	CF1	Brosser W	· Boo	Ichand P : Suranvi P	Rigidity percolation a	nd molecular clustering in	t
	10, ,			Phys. Rev. Lett. 56 (1)		no morosolar sicoloring in	ı
	CG1	Brosser W	1 · R/	olchand P : Suranvi I	P : de Neufville IIP In	trinsically broken chalcogen	t
	1001					42 (1981) C4-193-C4-196.	İ
	CH1					lolecular phase separation and	t
	10,11			Se2 glass, Hyperfine I			l
	CI1	Caban D :	Gilat	L-M · Schmitz C · Ch	ernyak I : Gartsman	K.; Jakubowicz, A., Room-	t
	1011					in CulnSe2 Crystals, Science	l
		258 (1992)			INDITION SEEDIG GCVICCS	ar our occ orysidis, odonoc	l
	CJ1	Chatteries	B · A	sokan S · Titus S S K	Current-controlled no	egative-resistance behavior and	t
	031					Phys. 27 (1994) 2624-2627.	ı
	CK1					pping in glassy GexSe1-x films,	t
	CKI			37 (1980) 1075-1077.	nouced by Ag photoco	ping in glassy octoor-x iiins,	ĺ
	CL1			, J., Role of nitrogen in	the enetalization of s	ilican nitrida daned	H
	CEI			sses, J. Am. <u>Ceram. S</u>			l
	Chia	Char C · C	bono	1 Chan W Effort o	£ Si3N4 on chamical d	urability of chalcogenide glass,	┢╌
	CM1			ids 220 (1997) 249-25		brabinity of chalcogerilde glass,	Ì
	CNI					ous semiconductor memory	H
	CN1					ious semiconductor memory	Ì
	CO4			ryst. Solids 8-10 (1972		can, L., Ohmic and non-ohmic	H
	CQ1					. Solids 8-10 (1972) 781-786.	l
	CD4	Conduction i	Cill	Tie amorphous semico	of boto Acore and be	eta-Ag2Se from 4.2 to 300K, J.	H
	CP1	Daiven, R.,	20.44	d., Electrical properties	or beta-Agzie and be	sta-Ag238 IIOIII 4.2 to 300K, 3.	l
	1004	Appl. Phys.	30 (1	967) 753-756.	- Comb 1 (1070) 15	52 155	╁
	CQ1			iconductors without for			H
	CR1					nomena in amorphous oxide	1
	-	nims, Rep. I	rog.	Phys. 33 (1970) 1129-	entanus D.C.: Diaz. D	Li Structure of Vitronia As Co	╀
	CS1					L., Structure of Vitreous Ag-Ge-	l
	 	Se, J. Non-0	<u>ryst</u>	Solids 143 (1992) 162	2-10U.	and Ohan Late 40	╀
	CT1			resnold switching in hy	rarogenatea amorphou	us silicon, Appl. Phys. Lett. 40	
	4	(1982) 812-	<u>813.</u>				╀
	CU1	Drusedau,	I.P.;	Panckow, A.N.; Klabun	ide, F., The hydrogena	tted amorphous	L

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0851-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB-control number.

Substitu	Substitute for form 14498/PTO		Complete if	Known	
67				Application Number	28°
° NF	ORMATIC	ON DIS	CLOSURE PPLICANT	Filing Date	7.0
#STA	TEMEN	T BY A	PPLICANT	First Named Inventor	7 7 7
				Group Art Unit	7 2 E
	(use as many	sheets as ne	ecessary)	Examiner Name	8
Sheet	4	of	8	Attorney Docket Number	K

neet		7	0,	<u> </u>	Altorney Docker Number					
				rse metal (SIMAL) s 200 (1996) 829-832		ectronic properties, J. Non-				
	CV1	El Boucha	Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag2-xSe1+x/n-Si diodes, Thin Solid Ilms 110 (1983) 107-113.							
	CW1	x photocor	nductivi	ly, J. Non-Cryst. Sol	ids 155 (1993) 171-179.	defects in amorphous GexSe1-				
	CX1	chalcogen	ide thin	films, Thin Solid File	ns 218 (1992)259-273	todissolution in amorphous				
	CY1	from "in-si	tu" resis	stance measurement	ts vs time, Phys. Stat. Sc	n amorphous GeSe5.5 thin films ol. (a) 123 (1991) 451-460.				
	CZ1	Phys. 70A	(1996)	507-516.		s Ge21Se17Te62, Indian J.				
	CA2	materials.	J. Non-	Cryst, Solids 130 (19	991) 85-97.	amorphous chalcogenide				
	CB2	Non-Cryst	. Solids	137-138 (1991) 103	1-1034.	es: A unified mechanism, J.				
	CC2	state of thi	n films	containing Te As Ge	Si, Vacuum 46 (1995) 7					
	CD2	of Ge20Bi	xSe80->	films, Thin Solid Fil	ms 376 (2000) 236-240.					
	CE2	chalcogen	ide glas	s, Vacuum 44 (1993						
	CF2	43 (1992)	253-25	7		ties of Se75Ge7Sb18, Vacuum				
	CG2	glasses, P	hys. Re	v. Lett. 78 (1997) 44	122-4425.	ffness threshold in Chalcogenide				
	CH2	on the elas (1997) 137	stic, pla: 7-143.	stic and thermal beh	avior of covalent glasses	P., Role of network connectivity s, J. Non-Cryst. Solids 222				
	CI2	Fischer-Co	olbrie, A sed amo	; Bienenstock, A.; Forphous Ag-GeSe2 I	uoss, P.H.; Marcus, M.A hin films, Phys. Rev. B 3	A., Structure and bonding in 88 (1988) 12388-12403.				
	CJ2	selenium,	Phys. S	tat. Sol. (a) 64 (198	1) 311-316.	crystallization of amorphous				
	CK2	Fritzsche, Solids 6 (1			ergy gaps in amorphous	semiconductors, J. Non-Cryst.				
	CL2	Materials 5	Science	2 (1972) 697-744.		ictors, Annual Review of				
	CM2	synthesize currently A	d by ter	mplating against nar	nowires of trigonal Se, J.	nanowires of Ag2Se can be Am. Chem. Soc. (2001)				
	CN2	on reversit	ole phas 3.	se transition phenon	nena in telluride glasses,	S., Nonvolatile memory based Jap. J. Appl. Phys. 28 (1989)				
	CO2	of Ge-Se of Cryst. Soli	chalcogo ds 298	enide glasses below (2002) 260-269.	Tg: elastic recovery and	I.; Lucas, J., Indentation creep d non-Newtonian flow, J. Non-				
-	CP2	scratchabi 1545-52.	lity of g	ermanium-selenium	chalcogenide glasses, J	, J., Hardness, toughness, and . Am. Ceram. Soc. 85 (2002)				
	CQ2			lectrical switching ar 0) 148-154.	nd memory effects in am	orphous chalcogenides, J. Non-				

NOV 2 0 200

PTC/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Complete if Known Substitute for form 14498/PTO **Application Number** INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date First Named Inventor

					Group Art Unit	, , , , , , , , , , , , , , , , , , ,	:
/ 	(U	se as many she	ets as	necessary)	Examiner Name	721 MAIL	
Sheet		5	of	8	Attorney Docket Number	7 2	
•	CR2	amorphous	semi	conductors, J. Non-Cry	st. Solids 8-10 (1972)	-controlled switching Rectific 408-414.	E
	CS2	and electric	al pro	perties of As-Se-Cu gla	asses, J. Apply. Phys.	of composition on the structure 54 (1983) 1950-1954.	\perp
	CT2	effects in m	etaVa	-Si:H/metal devices, Inf	l. J. Electronics 73 (19	.G.; Owen, A.E., Quantization 92) 911-913.	
	CU2	Si:H/metal (2000) 1056	room 8-106	temperature quantised 1.	resistance devices, J.	measurements on metal/a- Non-Cryst. Solids 266-269	
	CV2	resistance (1996) 825	effect: -828.	s in metal-a-Si:H-metal	thin film structures, J.	temperature quantized Non-Cryst. Solids 198-200	
	CW2	ballistic elec	ctron	effects in metal-amorph	ous silicon structures,	., Analogue memory and Phil. Mag. B 63 (1991) 349-	
	CX2	Japan, J. A	ppl. P	nys. 13 (1974) 1163-11	64	switching in amorphous Se film,	
	CY2	chalcogenic	de ser	lel, M.; Sedeek, K., Mer niconductors, Vacuum	45 (1994) 459-462.		
	CA3	J. Non-Crys	st. Sol	ids 116 (1990) 191-200),	phous semiconductor systems,	
	СВЗ	threshold o	ompo	sition, J. Optoelectronic	s and Advanced Mate	Se1-x around the stiffness rials 3 (2001) 199-214.	
	CC3	devices, J.	Non-0	Cryst. Solids 227-230 (1	998) 1187-1191	ning in Cr/p+a-/Si:H/V thin film	
	CD3	non-metal t (1996) 37-5	ransit i0.	ion in Cr-hydrogenated	amorphous Si-V thin-	nce anomaly near the metal- film devices, Phil. Mag. B. 74	
	CE3	devices, Ph	il. Ma	g. B 80 (2000) 29-43.		ability in Cr-p+a-Si:H-V thin film	
	CF3	semiconduc	cting (M.; Kikuchi, M.; Tanaka glasses As-Te-Ge, Solid	1 State Comm. 8 (1970	0) 153-155.	\perp
	CG3	amorphous	films	of Ge2S3, J. Non-Crys	t. Solids 35 & 36 (1980	anced diffusion of Ag in 0) 1061-1066.	\perp
	СНЗ	lyetomi, H.; clustering o	Vash f Ag a	ishta, P.; Kalia, R.K., In itoms, J. Non-Cryst. So	cipient phase separat lids 262 (2000) 135-14	ion in Ag/Ge/Se glasses: 42.	
	CI3	Jones, G.; Solid Films	Collin: 40 (1	s, R.A., Switching prope 977) L15-L18.	erties of thin selenium	films under pulsed bias, Thin	
	CJ3	Joullie, A.M switching, F	l.; Mai hys.	rucchi, J., On the DC el Stat. Sol. (a) 13 (1972)	K105-K109.	amorphous As2Se7 before	
	СКЗ	Joullie, A.M Bull. 8 (197	l.; Ma 3) 43:	rucchi, J., Electrical pro 3-442.	perties of the amorpho	ous alloy As2Se5, Mat. Res.	
	CL3	Solids 8-10	(1972	2) 538-543.		emiconductors, J. Non-Cryst.	\perp
	СМЗ	amorphous	Ag-G	laruno, S.; Elliott, S.R., ie-S and Ag-Ge-Se film ena of both systems, J.	s and comparison of p	structural properties of hotoinduced and thermally 9096-9104.	
	CN3	Kawaguchi	, T.; N	lasui, K., Analysis of ch halcogenide film, Japn.	ange in optical transm	ission spectra resulting from Ag	
	CO3	Kawasaki, I	M.; Ka	iwamura, J.; Nakamura lasses, Solid state Ionic	, Y.; Aniya, M., Ionic c	onductivity of Agx(GeSe3)1-x	

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. 5 Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

of

Complete if Known Application Number Filing Date First Named Inventor Group Art Unit Examiner Name Attorney Docket Number

	CP3	Kluge, G.; Thomas, A.; Klabes, R.; Grotzschel, R., Silver photodiffusion in amorphous GexSe100-x, J. Non-Cryst. Solids 124 (1990) 186-193.
	CQ3	Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731.
	CR3	Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030.
	CS3	Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259.
	СТЗ	Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTI chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146.
	CU3	Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19.
	CV3	Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304.
	CW3	Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132.
	СХЗ	Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545.
	CY3	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662.
	CZ3	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606.
	CA4	Mazurier, F.; Levy, M.; Souquet, J.L, Reversible and irreversible electrical switching in TeO2- V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188.
	CB4	Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258.
	CC4	Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21.
*	CD4	Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027.
	CF4	Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432.
	CH4	Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002.
	Cl4	Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17.
	CJ4	Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569.
-	CK4	Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161.
	CL4	Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.
	CM4	Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on electrical switching in chalcogenide network glasses, Phys. Rev. B 54 (1996) 4413-4415.
10.1	CN4	Neale, R.G.; Aseltine, J.A., The application of amorphous materials to computer memories, IEEE transactions on electron dev. Ed-20 (1973) 195-209.
	CO4	Ovshinsky S.R.; Fritzsche, H., Reversible structural transformations in amorphous semiconductors for memory and logic, Mettalurgical transactions 2 (1971) 641-645.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary) Substitute for form 1449B/PTO **Application Number** Filling Date

E S	TATE	MENT	BY /	APPLICANT	First Named Inventor	000	₹	ĵ.
S	(use as many				Group Art Unit	3	~	<u> </u>
	(u	se as many sh	eets as	necessary)	Examiner Name	A //		
Sheet		7	of	8	Attorney Docket Number	20	2000	<u>. Ti</u>
	CP4	Rev. Lett.	21 (19	68) 1450-1453.		n disordered structure	hys.	
	CQ4	Owen, A.E	.; LeC	omber, P.G.; Sarrabayı ammable nonvolatile sv	vitching device, IEE Pr	., New amorphous-silicon roc. 129 (1982) 51-54		
	CR4	in amorpho	ous ch	alcogenide semiconduc	tors, Phil. Mag. B 52	al and physico-chemical cl (1985) 347-362.		<u> </u>
	CS4	devices, In	t. J. E	lectronics 73 (1992) 89	7-906.	J., Switching in amorphous		
	CT4	Phys. Lett.	14 (1	969) 280-282.		nducting glass diodes, Ap		
	CU4	chalcogeni	de sy	stem Ge-As-Se, Appl. F	hys. Lett. 19 (1971) 2:	vitching in thin films of the 21-223.		
	CV4	of structure	es with	chalcogenide glasses,	Solid-state electronic	witching and high field bet s 18 (1975) 671-681.		
	CW4	phenomen	on, J.	Non-Cryst. Solids 8-10	(1972) 531-537.	al instability to the switch	ing 	
	CX4	amorphous	s seler	nium, Phys. Stat. Sol. (a	i) 44 (1977) K71-K73.	shold switching effects in		
	CY4	glasses, J.	Phys	D: Appl. Phys. 29 (19)	96) 2004-2008.	ry switching in Ge-As-Te		
	CZ4	Rahman, S	S.; Siva 1992)	arama Sastry, G., Elect 219-222.	ronic switching in Ge-I	Bi-Se-Te glasses, Mat. So		
	CA5	telluride gla	asses	doped with Cu and Ag,	Appl. Phys. A 69 (199	rical Switching in germani 99) 421-425.		
	CB5	Rose, M.J.;	Hajto,	J.;Lecomber,P.G.;Gage memory devices, J. No	,S.M.;Choi,W.K.;Snel	I,A.J.;Owen,A.E., Amorph	ous	
	CC5	Rose,M.J.:	Snell.	A.J.:Lecomber, P.G.; Ha	ito,J.;Fitzgerald,A.G.;C	Owen,A.E., Aspects of nor oc. V 258, 1992, 1075-108	n- 30.	
	CD5	Schuocker	, D.; F	Rieder, G., On the reliables 29 (1978) 397-407.	ility of amorphous cha	lcogenide switching device	æs, J.	
	CE5	Sharma, A	.K.; S	ngh, B., Electrical cond adian Nath. Sci. Acad. 4		s of evaporated selenium	films in	
	CF5	Sharma, P	., Stru	ctural, electrical and op s. 35 (1997) 424-427.	tical properties of silve	er selenide films, Ind. J. O	f pure	
	CG5	Snell, A.J.:	Leco fects i	mber, P.G.; Haito, J.; R	ose, M.J.; Owen, A.E. emory devices, J. Non	; Osborne, I.L., Analogue a-Cryst. Solids 137-138 (1	991)	
	CH5	Snell, A.J.; Analogue	Hajto memo	, J.;Rose, M.J.; Osbom ry effects in metal/a-Si: 13, 1017-1021.	e, L.S.; Holmes, A.; O H/metal thin film struct	wen, A.E.; Gibson, R.A.G lures, Mat. Res. Soc. Sym	., ip.	
	CI5	Steventon	A.G.,	Microfilaments in amor	phous chalcogenide n	nemory devices, J. Phys.	D:	
	CJ5	Steventon, Non-Cryst	A.G., Solid	The switching mechan s 21 (1976) 319-329.		alcogenide memory devic		
	CK5	Stocker, H	.J., Bi	lk and thin film switchings. Lett. 15 (1969) 55-	5 7 .	in semiconducting chalco		
	CL5	Tanaka, K (1990) 137	., Ionic	and mixed conduction	s in Ag photodoping p	rocess, Mod. Phys. Lett B	4	
	CM5	Tanaka, K	.; lizim	na, S.; Sugi, M.; Okada,	Y.; Kikuchi, M., Thernus semiconductors, So	nal effects on switching olid State Comm. 8 (1970)	387-	

PTC/SB/088 (10-01)
Approved for use through 10/31/2002 OM8 0851-0031
U. S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

									
	Substitute for f	om 1449B/PTO			Complete if Known				
7					Application Number				
CHECKE	INFOR	MATION	l DI	SCLOSURE	Filing Date				
욁				APPLICANT	First Named Inventor	TC			
7	• • • • • • • • • • • • • • • • • • •				Group Art Unit	~			
	(u	se as many she	ets as	necessary)	Examiner Name	8 ₹			
She	et 8 of 8			8	Attorney Docket Number	3 0			
	CN5	(1973) 3-15 Thomburg, (1972) 113-	D.D., 120.	, Memory switching in	amorphous arsenic trisc	alcogenide, J. Elect. Mat 2	UBAL		
	CP5	CP5 Thomburg, D.D.; White, R.M., Electric field enhanced phase separation and memory switching in amorphous arsenic triselenide, Journal(??) (1972) 4609-4612.							
	CQ5								
	CR5 Titus, S.S.K.; Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, Phys. Rev. B 48 (1993) 14650-14652.								
	CS5	CS5 Tranchant,S.;Peytavin,S.;Ribes,M.;Flank,A.M.;Dexpert,H.;Lagarde,J.P., Silver chalcogenide glasses Ag-Ge-Se: lonic conduction and exafs structural investigation, Transport-structure relations in fast ion and mixed conductors Proceedings of the 6th Riso International symposium. 9-13 September 1985.							
	СТ5								
	CU5								
	CV5								
	CD5								
	CX5								
	CY5								
	CZ5								
	CC6 Zhang, M.; Mancini, S.; Bresser, W.; Boolchand, P., Variation of glass transition temperature Tg, with average coordination number, <m>, in network glasses: evidence of a threshold behavior in the slope dTg/d<m> at the rigidity percolation threshold (<m>=2.4), J. Non-Cry Solids 151 (1992) 149-154.</m></m></m>								
l	1	1							

Examiner	Date	
Signature	Consid	ered

RECEIVED
NOV 2 6 2002
GROUP 3600

^{*}EXAMINER. Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

^{&#}x27;Applicant's unique citation designation number (optional). 'Applicant is to place a check mark here if English language Translation is attached.