Tomographie d'émission monophotonique et tomographie d'émission de positons

Irène Buvat U678 INSERM Paris

buvat@imed.jussieu.fr http://www.guillemet.org/irene

octobre 2006

Dispostifs de transmission

Mesures de transmission en SPECT et PET

émission

transmission

Mesures de transmission: motivation

- Atténuation des photons émis
 - ⇒ dépend de la densité des tissus traversés
 - nécessité de mesurer la densité des tissus traversés pour corriger de l'atténuation
- En PET cérébral, ~17% des paires de photons émises au centre du cerveau en émergent, ~1% en PET thoracique
- En SPECT thoracique, ~10% des photons émis au niveau du cœur sortent du patient

Principe des mesures de transmission

source d'émission externe d'activité N₀

acquisition de projections 2D en transmission sous différentes incidences angulaires

$$N = N_0 \exp \left[- \int_0^d \Box(1) \, d1 \right]$$

atténuation intégrale le long des directions de projections

$$\ln \frac{N_0}{N} = \int_0^d \Box(1) d1$$

Mesures de transmission en SPECT

acquisition de projections 2D en transmission sous différentes incidences angulaires

atténuation intégrale le long des directions de projections

cartographie des coefficients d'atténuation []

Source de transmission plane

source plane non collimatée

nombreux photons détectés après diffusion :

sous estimation de l'atténuation

Source de transmission plane

Tsui et al 1989

Source de transmission mobile

- possible acquisition simultanée de données en émission et en transmission avec un seul isotope grâce au masque électronique
- mécanique de complexité accrue
- inadapté pour les systèmes 3 têtes
- légère perte de sensibilité de détection des données en émission (~ 10%)

Source de transmission pour systèmes 3 têtes

possible troncature des données en transmission, notamment en imagerie thoracique

données manquantes pour la correction d'atténuation

Sources [] pour les systèmes de transmission SPECT

- Tc99m (140 keV)
 - acquisitions émission et transmission non simultanées au Tc99m sauf avec mécanisme de source à balayage et collimation électronique
 - ⇒ source remplissable (T=6 heures)
- Gd153 (100 keV)
 - possible acquisition émission-transmission simultanée avec sélection spectrométrique appropriée
 - utilisable sur une durée relativement longue (T=242 jours)
 - très atténué car faible énergie, d'où peu de signal recueilli

Atténuation dépendante de l'énergie de la source

externe

Nécessité de convertir les valeurs des coefficients d'atténuation mesurées à l'énergie de transmission E' en coefficients d'atténuation pour l'énergie d'émission E

Mesures de transmission en PET

acquisition de projections 2D en transmission sous différentes incidences angulaires

atténuation intégrale le long des directions de projections

reconstruction tomographique

cartographie des coefficients d'atténuation □

calcul de facteurs de correction d'atténuation intégrale

Source de transmission []+ en anneau

- Ge68 (511 keV)
 - utilisable sur une grande durée (T=271 jours)
- Temps mort important pour le bloc de détecteurs proche de la source
- Difficile manufacture d'une source en anneau homogène

Source de transmission []+ linéaire

- Ge68 (511 keV)
 - utilisable sur une grande durée (T=271 jours)
- Possible acquisition simultanée de données émission et transmission par collimation électronique
- Temps mort important pour le bloc de détecteurs proche de la source

Source de transmission []monophotonique

- Enregistrement d'un plus grand flux de photons qu'avec un système de coïncidence
- Cs137 (662 keV)
 - ⇒ utilisable sur une grande durée (T=30,2 ans)
- nécessité de convertir les valeurs des coefficients d'atténuation mesurées à 622 keV en coefficients d'atténuation à 511 keV

Acquisitions émission / transmission simultanées

- Si l'isotope émission différent de l'isotope transmission et possible séparation spectrométrique des isotopes
 - e.g., Tc99m et Tl210 en SPECT, Cs137 en PET

- OU si collimation électronique possible
- e.g., ligne source à balayage en SPECT, ligne source Ge68 en PET

- pas d'augmentation de la durée des examens
- données E et T en parfaite correspondance spatiale : pas de recalage d'images nécessaire

Acquisitions émission / transmission séquentielles

- T avant E
 - toujours possible
- T après E
- si l'isotope émission différent de l'isotope en transmission et possible séparation spectrométrique des isotopes
 - si collimation électronique possible
 - mêmes contraintes que pour les acquisitions simultanées

- ⇒ allongement de la durée totale d'examen
- possible mouvement du patient entre T et E
 - données E et T décalées spatialement
 - artefacts dans les images reconstruites avec correction de l'atténuation

Problèmes de contamination

- Si acquisitions E et T simultanées ou acquisition T après acquisition E
- Contamination spectrale
 - événements diffusés issus de l'isotope de plus haute énergie détectés dans la fenêtre spectrométrique de plus basse énergie

- ⇒ si énergie E > énergie T, atténuation sous-estimée
- si énergie T > énergie E, activité du radiotraceur surestimée
- Contamination électronique
 - événements en émission diffusés dans la fenêtre électronique de transmission

⇒ atténuation sous-estimée

Solution alternative: systèmes bimodaux

acquisition de projections scanner 2D en transmission sous différentes incidences angulaires

atténuation intégrale le long des directions de projections

cartographie des coefficients d'atténuation de Hounsfield

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 19

Systèmes bimodaux SPECT/CT et PET/CT

cartographie des coefficients d'atténuation

dérivée du CT mais...

l'utilisation de la carte des dérivée du CT n'est pas sans poser d'autres problèmes

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 20

Utilisation du CT pour les mesures de transmission

Problème du flou respiratoire :

- CT acquis « instantanément » : pas de flou respiratoire : les images correspondent à une position fixe des organes (notamment les poumons) pendant le cycle respiratoire (ou inspiration forcée ou expiration forcée)
- SPECT ou PET acquis sur une longue durée : les images correspondent à la position moyenne des organes pendant le cycle respiratoire
- Les frontières des organes ne sont pas superposables : artéfacts potentiels aux interfaces entre milieux de densités très différentes (poumons / tissus mous par exemple).

Coûts des systèmes

- SPECT avec dispositif d'acquisition en transmission ~ 450 k€
- PET "début de gamme"
- avec dispositif d'acquisition en transmission (systématique)

~ 900 k€

- PET "haut de gamme" ~ 1,5 M€
- PET/CT

~ 2 à 4 M€

Disponibilité des systèmes

• SPECT

~ plusieurs centaines

• PET :

Actuellement: environ ~50 (la plupart PET/CT)

Objectif: 1 par million d'habitants.

La quantification en tomographie d'émission