17. A partir de los valores conocidos del seno y del coseno de $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ y $\frac{\pi}{2}$, calcule en forma exacta las expresiones que se dan a continuación:

a)
$$\sin \frac{2\pi}{3} + \cos \frac{4\pi}{3} + \tan \frac{5\pi}{3}$$

a)
$$\sin \frac{2\pi}{3} + \cos \frac{4\pi}{3} + \tan \frac{5\pi}{3}$$
 b) $\sin \frac{5\pi}{6} + \cos \frac{7\pi}{6} + \tan \frac{5\pi}{6}$

$$Sen(\frac{5}{6}) = Sen(\frac{7}{3} + \frac{2\pi}{3}) = 5$$

$$Sen(\frac{7}{3} + \frac{2\pi}{3}) = Sen(\frac{7}{3} + \frac{7}{3}) = Sen(\frac{7}{3} + \frac{7}{3})$$

$$\frac{\cos(\frac{\pi}{3}) - \cos(\frac{\pi}{3} + \frac{\pi}{3}) =}{\cos(\frac{\pi}{3}) \cdot \cos(\frac{\pi}{3}) \cdot \sin(\frac{\pi}{3}) \cdot \sin(\frac{\pi}{3})}$$

$$\frac{1}{2} \cdot \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}$$

$$\frac{1}{4} - \frac{3}{4} = \frac{2}{4} = -\frac{1}{2}$$

(05(0x+5)=Cos(2)(0s(5)-Son(2)

Tabla de ángulos notables

RAZÓN		ÁNGULO				
	Ce.	30*	45*	60°	90*	
sen a	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	- 3	
cos a	4	± √3/2	$\frac{\sqrt{2}}{2}$	1/1	0	
tg a	0	1/3	1	√3	→ 80	

Sen
$$(\frac{1}{3}) = \frac{1}{2}$$

Sen $(\frac{1}{3}) = \frac{1}{2}$

Sen $(\frac{1}{6}) = \frac{1}{2}$
 $(\frac{1}{6}$

Tabla de ángulos notable:

RAZÓN	ANGULO					
	C*	30*	45*	60*	90*	
зел а	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	- 31	
008 a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	
(g a	0	1/3	1	√3	→ 10	

$$Cos(\frac{4\pi}{6}) = Cos(\frac{5\pi}{6}) \cdot Cos(\frac{\pi}{6}) \cdot Cos(\frac{\pi}{6}) \cdot Sen(\frac{\pi}{6})$$

$$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{4} = \frac{2}{4} = \frac{1}{4}$$

Tabla de ángulos notables

RAZÓN	ÁNGULO				
	00	30°	45°	60*	90*
sen a	0	1 1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	- 3
cos a	4	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0
tg a	0	1/3	1	√3	→ 90

$$\cos(\frac{5\pi}{6}) - \cos(\frac{2\pi}{3} + \frac{\pi}{6}) - \cos(\frac{2\pi}{3}) \cdot \cos(\frac{\pi}{6}) - \sin(\frac{2\pi}{3}) \cdot \sin(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \cdot \frac{1}{2} - \frac{\sqrt{3}}{2} - \frac{\sqrt{3$$

$$(05(\frac{211}{6}) - \frac{1}{2}$$

$$\frac{(0)(\frac{11}{6})-(0)(\frac{51}{7}+\frac{51}{6})}{-\frac{\sqrt{3}}{4}} = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} - \frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} - \frac{1}{2} \cdot \frac{\sqrt{$$

a)
$$\sin \frac{2\pi}{3} + \cos \frac{4\pi}{3} + \tan \frac{5\pi}{3}$$

as expresiones que se dan a continuación:
$$\frac{1}{2} - \frac{\sqrt{2}}{2}$$

$$a) \operatorname{sen} \frac{2\pi}{3} + \cos \frac{4\pi}{3} + \tan \frac{5\pi}{3}$$

$$b) \operatorname{sen} \frac{5\pi}{6} + \cos \frac{7\pi}{6} + \tan \frac{5\pi}{6}$$

$$Tan SII =$$

a)
$$\sin \frac{2\pi}{3} + \cos \frac{4\pi}{3} + \tan \frac{5\pi}{3}$$

b)
$$\sin \frac{5\pi}{6} + \cos \frac{7\pi}{6} + \tan \frac{5\pi}{6}$$

Tabla de ángulos notables

RAZÓN	ÁNGULO				
	00	30°	45°	60°	900
sen a	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
tg a	0	$\frac{1}{\sqrt{3}}$	1	√3	→ ∞

8. Determine $f \circ f$, $g \circ g$, $f \circ g \vee g \circ f$ si

$$a) f(x) = x^2$$

a)
$$f(x) = x^2$$
 $g(x) = \frac{1}{x+1}$

b)
$$f(x) = \frac{1}{x-1}$$
 $g(x) = \frac{x-1}{x+1}$

$$g(x) = \frac{x-1}{x+1}$$

$$(909)(x) = 9(9(x)) = (\frac{1}{x+1})+1$$

20-0) 1) Senx = (0s (2x) cos(2x) o cos (x-(pi/2))Sen x = (05/ P = (1, 0)en terminos generales cos(a)=cos(b) (QS (Zx) = (Q5 (x - 1) 2x-x-127.K, 12/1-K1/KE/

a es un ángulo expresado en radianes

> Hay dos ángulos para los que la igualdad se cumple

Si el perímetro de la circunferencia es 2pi, entonces, el valor del segundo es el 2pi - el arco A

designaremos a b como el coseno inverso

2pi? Con 2pi le das la vuelta a la circunferencia, no sería solo pi en esa

$$2 \times = 2 \text{ Problem of the problem$$

$$^{\circ}20e$$
) Sen(x) = $\cos(2x)$

1º pesser el sen(x) e su coseno

$$\cos(x - \frac{\mathbb{E}}{2}) = \cos(2x)$$

3º Resolver ecoación entre vels de cos

Lo TI-(-II) es otre solución? ISI

a)
$$f(x) = 2x + 1$$

Calcubs auxiliares CA

gés injective? (Les lineales lo son)

$$2x + 1 = b$$
 $2x = b - 1$
 $x = -b - 1$
 $z = -b - 1$

$$\mathcal{D}_{om}(\mathbf{F}^{-1}) = \mathbb{P}_{om}$$

a)
$$x^{2} - 6x + y^{2} - 4y = -9$$

 $(x-3)^{2} - 3^{2} + y^{2} - 4y = -9$
 $(x-3)^{2} - 3^{2} + (y-2)^{2} - 2^{2} = -9$
 $(x-3)^{2} + (y-2)^{2} = -9 + 9 + 4$
 $(x-3)^{2} + (y-2)^{2} = 2^{2}$
 $(x-3)^{2} + (y-2)^{2} = 2^{2}$
 $(x-3)^{2} + (y-2)^{2} = 7^{2}$

Centro =
$$(3,2)$$
Pradio = 2

Colculos auxiliares

pare algun so DEBES

ventionisary baca wontens

la equivalence

Obet. 0: Clegar a esta Formula

$$2^{2} + 2eb + b^{2}$$
 $(x^{2} - 2 \cdot (3x) + 3^{2}) - 3^{2}$
 $(x^{2} - 2 \cdot (3x) + 3^{2}) - 3^{2}$
 $(x^{2} - 2 \cdot (3x) + 3^{2}) - 3^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot (2x) + 2^{2}) - 2^{2}$
 $(x^{2} - 2 \cdot$

(x - 3) - 3°

a)
$$9x^2 + y^2 - 9 = 0$$

$$9x^{2}+y^{2}=9$$

$$\frac{1}{9}(9x^{2}+y^{2})=9\cdot\frac{1}{9}$$
per jourder 2 |
$$x^{2}+\frac{1}{9}x^{2}=1$$

$$(x+0)^2 + (y+0)^2 = 1$$
 por completer was en y

$$(x+0)^{2} + (y+0)^{2} = 1$$
 $(x+0)^{2} + (y+0)^{2} = 1$

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right) = \left(\frac{y-y_0}{a}\right) = \left(\frac{y-y_0}{a}\right)$$

CALCULOS AUXILIARES

Obetino Do Xz a Lollus (X-Xº)

$$x^{2} + 2.x.b + b^{2} = x^{2}$$

 $(x^{2} + 2.x.0 + 0^{2}) - 0^{2} = x^{2}$
 $(x + 0)^{2}$

b)
$$\frac{1}{2-x} < 3$$

$$\frac{1-6+3x}{2-x}<0$$

$$\frac{-5+34}{2-4}$$

Como el cossitado os neadano una parta de la Fracción debe ser neadana

Searndo pass
Calcular punhos unition
$$= \begin{cases} \frac{1}{2}, \frac{1}{2} \end{cases}$$

 $-5+3\times=0$ $2-\times=0$
 $3\times=5$ $3\times=5$ $3\times=5$