Matemáticas Básicas - Deberes 4

Victoria Eugenia Torroja Rubio

Ejercicio 1. Encontrar dos números complejos cuyo cuadrado sea

$$z_0 := -8 + 6i$$
.

Solución 1. Sea $z \in \mathbb{C}$ tal que $z^2 = z_0$, entonces:

$$z = \sqrt{z_0} = \sqrt{-8 + 6i} = \sqrt{10_{\arctan\frac{6}{-8}}}.$$

Existen dos posibles soluciones:

$$\begin{split} &\sqrt{10}_{\arctan\frac{6}{-8},\frac{1}{2}} = 1 + 3i \\ &\sqrt{10}_{\arctan\frac{6}{-8},\frac{1}{2} + 180} = -1 - 3i \end{split}$$

Ejercicio 2. Se define la transformación $T: \mathbb{C} \to \mathbb{C}$ como $T(z) = z^2$. Calcula la imagen por T de las rectas y = x, y = -x y x = 1. Representa gráficamente las rectas anteriores y sus imágenes por T. Encuentra un subconjunto de \mathbb{C} cuya imagen sea una circunferencia.

Solución 2. Sea $f \subset \mathbb{C}$ la recta y = x. Consideramos la recta y = x y $z \in \mathbb{C}$ perteneciente a esta recta. Tenemos que z = x + xi, por tanto:

$$T(z) = (x + xi)^2 = 2x^2i.$$

Dado que $x^2 \geq 0$, la imagen de esta recta es el conjunto $\{z \ : \ z = xi, \ x \geq 0\}.$

Transformación de f

Sea $g \subset \mathbb{C}$ la recta y = -x. Consideramos la recta y = -x, entonces tenemos $z \in \mathbb{C}$ tal que z = x - xi, por tanto

$$T(z) = z^2 = (x - xi)^2 = -2x^2i.$$

Como $x^2 \ge 0$, tenemos que la imagen de la recta y = -x será el conjunto $\{z \in \mathbb{C} : z = xi, x \le 0\}$.

Transformación de g

A continuación, sea $h \subset \mathbb{C}$ la recta x=1. Consideramos la recta x=1 y $z \in \mathbb{C}$ tal que z pertenece a la recta mencionada. Por tanto, z=1+yi y

$$T(z) = (1 + yi)^2 = (1 - y^2) + 2yi.$$

Si w pertenece a la transformación de x=1, tenemos que $w=a+bi=\left(1-y^2\right)+2yi$. Por todo ello,

$$a = 1 - y^2$$
$$b = 2y.$$

De esto concluimos que:

$$a = 1 - \left(\frac{b}{2}\right)^2$$

$$\therefore b = 2\sqrt{1 - a}.$$

Como $a, b \in \mathbb{R}$, tenemos que $a \leq 1$.

Transformación de h

En cuanto al último apartado, consideremos el conjunto $S=\left\{z\in\mathbb{C}:|z|=a\;(a\in\mathbb{R}^+)\right\}\subset\mathbb{C}.$ Si $w\in S$, tenemos que su transformación será:

$$T(w) = w^2 = (|w|_{\theta})^2 = |w|_{2\theta}^2 = a_{2\theta}^2.$$

Como $\theta \in [0, 2\pi]$, tenemos que $2\theta \in [0, 2\pi]$ (los ángulos superiores a 2π los reducimos a otros que estén en el intervalo $[0, 2\pi]$). Por tanto, la imagen de S será la circunferencia con centro (0, 0) y radio $a^2 \in \mathbb{R}$.