Théorie des Langages 1

Cours 2 : Opérations sur les langages, automates finis

L. Rieg (thanks M. Echenim)

Grenoble INP - Ensimag, 1re année

Année 2020-2021

Définition

Soient L et M deux languages sur V (L et $M \subseteq V^*$). On définit :

$$\begin{array}{ccc} L \cup M & \stackrel{\text{def}}{=} \\ L.M & \stackrel{\text{def}}{=} \\ \forall i > 0, \ L^i & \stackrel{\text{def}}{=} \\ L^0 & \stackrel{\text{def}}{=} \\ L^* & \stackrel{\text{def}}{=} \end{array}$$

et

t
$$L^+$$
 $\stackrel{ ext{d}}{=}$

Définition

Définition

Définition

Définition

Définition

Définition

Définition

Soient L et M deux languages sur V (L et $M \subseteq V^*$). On définit :

Notation : on pourra noter LM au lieu de L.M.

Soient
$$L = \{ab, cd\}$$
 et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM =$$

$$L^* =$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \left\{ a^n b^n c^p d^{2p} \mid n, p \ge 0 \right\}$$

$$L^* =$$

Exemple

Soient
$$L = \{ab, cd\}$$
 et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^n b^n c^p d^{2p} \mid n, p \ge 0\}$$

$$L^* = \{a^{n_1} b^{n_1} a^{n_2} b^{n_2} \cdots a^{n_k} b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

$$L^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\cdots a^{n_k}b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Exemple

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^{n}b^{n}c^{p}d^{2p} \mid n, p \ge 0\}$$

$$L^{*} = \{a^{n_{1}}b^{n_{1}}a^{n_{2}}b^{n_{2}}\cdots a^{n_{k}}b^{n_{k}} \mid k \ge 0 \land n_{1}, \dots, n_{k} \ge 0\}$$

Question

Si L est un langage, peut-on avoir $\varepsilon \in L^+$?

Exemple

Soient $L = \{ab, cd\}$ et $M = \{ab, bba\}$. Alors

$$L \cup M = \{ab, cd, bba\} \text{ et } LM = \{abab, abbba, cdab, cdbba\}$$

Exemple

Soient
$$L=\{a^nb^n\mid n\geq 0\}$$
 et $M=\left\{c^nd^{2n}\mid n\geq 0\right\}$. Alors

$$LM = \{a^n b^n c^p d^{2p} \mid n, p \ge 0\}$$

$$L^* = \{a^{n_1} b^{n_1} a^{n_2} b^{n_2} \cdots a^{n_k} b^{n_k} \mid k \ge 0 \land n_1, \dots, n_k \ge 0\}$$

Question

Si L est un langage, peut-on avoir $\varepsilon \in L^+$? Oui, ssi $\varepsilon \in L$ Exemple : $L = \{\varepsilon, a\}, L^2 = \{\varepsilon, a, aa\}, L^+ = \{a^n \mid n \geq 0\} = L^*$

Les automates finis

On s'intéresse à définir des « programmes » qui reconnaissent des langages.

Les programmes les plus « simples » sont les automates finis.

Les automates finis

On s'intéresse à définir des « programmes » qui reconnaissent des langages.

Les programmes les plus « simples » sont les automates finis.

À chaque pas d'exécution, l'automate peut changer d'état et/ou lire un symbole et se positionner sur le symbole suivant.

Définition

Un automate fini (AF) est un quintuplet $\langle Q, V, \delta, I, F \rangle$, où :

- ullet Q est un ensemble fini d'états
- V est le vocabulaire d'entrée
- $\delta \subseteq Q \times (V \cup \{\varepsilon\}) \times Q$ est la relation de transition
- $I \subseteq Q$ est l'ensemble des états initiaux
- $F \subseteq Q$ est l'ensemble des états acceptants (ou finaux ou finals)

Définition

Un automate fini (AF) est un quintuplet $\langle Q, V, \delta, I, F \rangle$, où :

- ullet Q est un ensemble fini d'états
- V est le vocabulaire d'entrée
- $\delta \subseteq Q \times (V \cup \{\varepsilon\}) \times Q$ est la relation de transition
- ullet $I\subseteq Q$ est l'ensemble des états initiaux
- $F \subseteq Q$ est l'ensemble des états acceptants (ou finaux ou finals)

Relation de transition

- Pour $a \in V$, si $(p, a, q) \in \delta$, alors étant dans l'état p et lisant un a, l'automate peut passer dans l'état q et avancer.
- Si $(p, \varepsilon, q) \in \delta$, alors étant dans l'état p, l'automate peut passer à l'état q sans avancer.

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, F = \{q_3\}$$

$$Q = \{q_0, q_1, q_2, q_3\}, V = \{a, b\},$$

$$\delta = \{(q_0, b, q_1), (q_0, a, q_2), (q_1, a, q_1), (q_1, b, q_3), (q_2, b, q_1)\}$$

$$I = \{q_0\}, \mathbf{F} = \{q_3\}$$

« Ens. des mots permettant de passer d'un état initial à un état final »

« Ens. des mots permettant de passer d'un état initial à un état final »

Définition

Soit un automate $A = \langle Q, V, \delta, I, F \rangle$.

Une configuration de A est un couple $(q, w) \in Q \times V^*$.

Soit $x \in V \cup \{\varepsilon\}$.

On dit qu'on peut passer de la configuration $\left(q,xw\right)$

à la configuration (q',w) dans A si $(q,x,q')\in\delta.$

On note alors $(q, xw) \vdash (q', w)$.

« Ens. des mots permettant de passer d'un état initial à un état final »

Définition

Soit un automate $A = \langle Q, V, \delta, I, F \rangle$.

Une configuration de A est un couple $(q, w) \in Q \times V^*$.

Soit $x \in V \cup \{\varepsilon\}$.

On dit qu'on peut passer de la configuration (q,xw)

à la configuration (q', w) dans A si $(q, x, q') \in \delta$.

On note alors $(q, xw) \vdash (q', w)$.

Un mot w est reconnu par A s'il existe $q_0 \in I$ et $q_n \in F$ tels que

$$(q_0, w) \vdash (q_1, w') \vdash \cdots \vdash (q_n, \varepsilon)$$

« Ens. des mots permettant de passer d'un état initial à un état final »

Définition

Soit un automate $A = \langle Q, V, \delta, I, F \rangle$.

Une configuration de A est un couple $(q,w) \in Q \times V^*$.

Soit $x \in V \cup \{\varepsilon\}$.

On dit qu'on peut passer de la configuration (q,xw)

à la configuration (q', w) dans A si $(q, x, q') \in \delta$. On note alors $(q, xw) \vdash (q', w)$.

Un mot w est reconnu par A s'il existe $q_0 \in I$ et $q_n \in F$ tels que

$$(q_0, w) \vdash (q_1, w') \vdash \cdots \vdash (q_n, \varepsilon)$$

On note $\mathcal{L}(A)$ l'ensemble des mots reconnus par A.

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. $\operatorname{Card}(I) > 1$ (plus d'un état intial), et/ou
- 2. $\exists \ (q,a,p) \ \mbox{et} \ (q,a,r) \in \delta \ \mbox{avec} \ p \neq r \mbox{, et/ou}$
- 3. $\exists (q, \varepsilon, p) \in \delta$

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. $\operatorname{Card}(I) > 1$ (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r$, et/ou
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. Card(I) > 1 (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r$, et/ou
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Non-déterminisme :

• ne donne pas immédiatement un « programme » reconnaisseur

Un AF $\langle Q, V, \delta, I, F \rangle$ est dit non-déterministe si

- 1. Card(I) > 1 (plus d'un état intial), et/ou
- 2. $\exists (q, a, p) \text{ et } (q, a, r) \in \delta \text{ avec } p \neq r, \text{ et/ou}$
- 3. $\exists (q, \varepsilon, p) \in \delta$

Dans les trois cas, « on ne sait pas quoi faire » :

- 1. « où dois-je commencer? »
- 2. « je suis en q, je vois le symbole a, où vais-je? »
- 3. « je suis en q, \forall symbole je peux choisir de passer en p ou non »

Non-déterminisme :

- ne donne pas immédiatement un « programme » reconnaisseur
- mais facilite la définition des automates!

Déterminisme

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Déterminisme

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Mais elles n'existent pas toujours!

Déterminisme

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Mais elles n'existent pas toujours!

Définition (Automate complet)

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction : $Q \times V \rightarrow Q$.

Déterminisme :

- Donne directement un « programme » reconnaisseur
- Sera en particulier utilisé en architecture/CEP

Déterminisme (cf. cours 4)

À l'inverse, un AF $\langle Q, V, \delta, I, F \rangle$ est dit déterministe si

- 1. Card(I) = 1 (exactement un état intial), et
- 2. Si (q, a, p) et $(q, a, r) \in \delta$, alors p = r, et
- 3. $\not\exists (q, \varepsilon, p) \in \delta$

Ainsi, « on sait toujours quoi faire » : les transitions possibles sont uniques. Mais elles n'existent pas toujours!

Définition (Automate complet)

Un automate est complet si de chaque état et chaque symbole, une transition est toujours possible : $\forall (q,a) \in Q \times V, \exists p \in Q, (q,a,p) \in \delta.$

Pour un AF déterministe complet, δ est une fonction : $Q \times V \rightarrow Q$.

Déterminisme :

- Donne directement un « programme » reconnaisseur
- Sera en particulier utilisé en architecture/CEP

Exemples (2)

Exemples

1. Non-déterministe, sans ε -transition

2. Non-déterministe, avec ε -transition

Automates équivalents

Deux automates A et A' sont équivalents ssi $\mathcal{L}(A) = \mathcal{L}(A')$.

Automates équivalents

Deux automates A et A' sont équivalents ssi $\mathcal{L}(A) = \mathcal{L}(A')$.

ullet Automate A:

• Automate A':

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .

Définition

On appelle langage régulier tout langage reconnu par un automate fini.

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un automate.

Un état $p \in Q$ est accessible si on peut passer d'un état $q_0 \in I$ à p en se servant des transitions de δ .

Exercice 1

Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a,b\}^* \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$

Exercice 1

Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a,b\}^* \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$

Exercice 2

Construire un automate fini qui reconnaît le langage

$$L = \{w \in \{a, b\}^+ \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$$

Exercice 2

Construire un automate fini qui reconnaît le langage

 $L = \{w \in \{a, b\}^+ \mid w \text{ ne contient pas plus de deux } b \text{ consécutifs}\}$

