Definiciones básicas Aplicaciones lineales Núcleo, imagen y rango de una aplicación lineal Clasificación de una aplicación lineal Matriz de una aplicación lineal Ecuación matricial de una aplicación lineal

Aplicaciones lineales Estudios de Ingeniería

Juan Gabriel Gomila

Frogames

https://frogames.es

1 de julio de 2017

Definiciones básicas Aplicaciones lineales Núcleo, imagen y rango de una aplicación lineal Clasificación de una aplicación lineal Matriz de una aplicación lineal Ecuación matricial de una aplicación lineal

Índice

- Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- 3 Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen
 - Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Aplicación entre dos conjuntos

Sean A y B dos conjuntos dados. Una **aplicación de** A **en** B es una correspondencia que a cada elemento $x \in A$ le asocia un, y solo un, elemento $y \in B$

Figura: Ejemplos de correspondencias que no son aplicaciones

https://frogames.es

Tema 4 - Aplicaciones lineales

Aplicación exhaustiva

Sea $f:A\longrightarrow B$ una aplicación. Dícese que f es **exhaustiva** si y solo si f(A)=B. Es decir, si todos los elementos de B tienen una anti-imagen o antecedente.

$$\forall b \in B \exists a \in A : f(a) = b$$

Ecuación matricial de una aplicación lineal

Definiciones básicas

Figura: La aplicación de la izquierda es exhaustiva. La de la derecha no lo es (el número 3 no tiene ninguna anti-imagen)

Aplicación exhaustiva

Sea $f: A \longrightarrow B$ una aplicación. Se dice que f es **inyectiva** si distintos elementos de A tienen distinta imagen.

$$x, y \in A, \ x \neq y \Rightarrow f(x) \neq f(y)$$

Esto es equivalente a decir que si dos elementos tienen la misma imagen para f entonces son el mismo elemento:

$$f(x) = f(y) \Rightarrow x = y$$

Definiciones básicas Aplicaciones lineales Núcleo, imagen y rango de una aplicación lineal Clasificación de una aplicación lineal Matriz de una aplicación lineal Ecuación matricial de una aplicación lineal

Definiciones básicas

De la definición anterior se deduce que cada elemento de B tendrá como máximo una anti-imagen. En otras palabras, la anti-imagen de un elemento de B es o bien un elemento de A o bien el conjunto vacío.

Figura: La aplicación de la izquierda es inyectiva. La de la derecha no lo es (el número 4 tiene dos anti-imágenes para f).

Aplicación biyectiva

Sea $f: A \longrightarrow B$ una aplicación. Dícese que f es **biyectiva** si es inyectiva y exhaustiva a la vez. El concepto equivale a decir que:

$$\forall b \in B \exists ! a \in A : f(a) = b$$

Aplicaciones lineales Núcleo, imagen y rango de una aplicación lineal Clasificación de una aplicación lineal Matriz de una aplicación lineal Ecuación matricial de una aplicación lineal

Definiciones básicas

Figura: Todo elemento de B tiene una, y solo una, única anti-imagen para f

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

La aplicación identidad

Considérese un espacio vectorial E y la aplicación identidad que transforma cada vector de E en él mismo:

$$I: E \to E,$$

 $x \mapsto x.$

En primer lugar se estudiará si existe alguna relación entre la imagen de una suma de vectores I(x + y) y las imágenes de cada uno de los sumandos I(x), I(y).

La aplicación identidad - Lineal para la suma

Por definición de la aplicación identidad:

$$I(x+y) = x+y$$

Por otro lado:

$$\begin{array}{rcl} I(x) & = & x \\ I(y) & = & y \end{array} \} \Rightarrow I(x) + I(y) = x + y$$

Y por tanto se puede escribir que:

$$I(x + y) = x + y = I(x) + I(y)$$

Aplicación lineal para la suma

La imagen de la suma es la suma de imágenes.

La aplicación identidad - Lineal para el producto por escalar

En segundo lugar se estudiará si existe alguna relación entre la imagen de un escalar por un vector $I(\lambda x)$ y la imagen del vector I(x).

Por definición de aplicación identidad:

$$I(\lambda x) = \lambda x$$

Por tanto podemos escribir que:

$$I(\lambda x) = \lambda x = \lambda I(x)$$

Aplicación lineal para el producto por escalar

La imagen del producto de un escalar por un vector es el escalar por la imagen del vector.

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

La aplicación constante

Se verá ahora la aplicación definida en $\mathbb R$ que transforma cada número real en el número 2

$$f: \mathbb{R} \to \mathbb{R},$$
 $x \mapsto 2.$

Como antes, se va a estudiar la relación entre la imagen de una suma de vectores f(x+y) y las imágenes de cada uno de los sumandos f(x), f(y).

La aplicación constante - Lineal para la suma

Por definición de la aplicación constante:

$$f(x+y)=2$$

Por otro lado:

$$\begin{cases} f(x) &= 2 \\ f(y) &= 2 \end{cases} \Rightarrow f(x) + f(y) = 2 + 2 = 4$$

Y por tanto se puede escribir que:

$$f(x + y) = 2 \neq 4 = f(x) + f(y)$$

Aplicación no lineal para la suma

La imagen de la suma NO es la suma de imágenes.

La aplicación constante - Lineal para el producto por escalar

En segundo lugar se estudiará si existe alguna relación entre la imagen de un escalar por un vector $f(\lambda x)$ y la imagen del vector f(x).

Por definición de la aplicación constante:

$$f(\lambda x) = 2$$

Por tanto podemos escribir que:

$$f(\lambda x) = 2 \neq 2\lambda = \lambda f(x)$$

Aplicación no lineal para el producto por escalar

La imagen del producto de un escalar por un vector **NO** es el escalar por la imagen del vector.

https://frogames.es

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Aplicación lineal

La aplicación identidad del primer ejemplo es una aplicación lineal.

La apliación constante del segundo ejemplo NO es una **aplicación lineal**.

Aplicación lineal

Sea E y F dos espacios vectoriales sobre \mathbb{K} . Téngase una aplicación f dada por:

$$f: E \to F,$$

 $x \mapsto f(x).$

Dícese que f es una aplicación lineal si se verifica que:

1
$$\forall \vec{x}, \vec{y} \in E, f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

2
$$\forall \lambda \in \mathbb{K}, \forall \vec{x} \in E, f(\lambda \vec{x}) = \lambda f(\vec{x})$$

Las dos condiciones anteriores son equivalentes a una tercera:

Aplicación lineal(II)

$$\forall \lambda, \mu \in \mathbb{K}, \vec{x}, \vec{y} \in E, \quad f(\vec{\lambda}x + \mu \vec{y}) = \lambda f(\vec{x}) + \mu f(\vec{y})$$

Normalmente comprobar las dos condiciones por separado suele ser más sencillo a la hora de realizar operaciones. Comprobar una sola puede ahorrar tiempo pero habrá que tener cuidado pues a partir de ahora se tendrán más variables que en el primer caso.

Ejercicios

Estudiar si la siguiente aplicación es o no lineal:

$$f: \mathbb{K}^2 \to \mathbb{K},$$

 $(x,y) \mapsto x.$

Esta aplicación recibe el nombre de primera proyección.

Lineal para la suma

$$f((x_1, y_1) + (x_2, y_2)) = f(x_1 + x_2, y_1 + y_2) = x_1 + x_2$$

$$f(x_1, y_1) = x_1$$

$$f(x_2, y_2) = x_2$$

$$\Rightarrow f(x_1, y_1) + f(x_2, y_2) = x_1 + x_2$$

Y por lo tanto:

$$f((x_1, y_1) + (x_2, y_2)) = x_1 + x_2 = f(x_1, y_1) + f(x_2, y_2)$$

2 Lineal para el producto por escalar

$$f(\lambda(x, y)) = f(\lambda x, \lambda y) = \lambda x = \lambda f(x, y)$$

- 1 Definiciones básicas
- Aplicaciones linealesLa aplicación identidad
 - La aplicación constante
 - Definición de aplicación
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Preguntas

¿Cuándo se dice que una aplicación es lineal?

$$f: E \to F,$$

 $x \mapsto f(x).$

Se va a intentar responder a preguntas del estilo:

- 1 ¿Cuál será la imagen del elemento neutro de E?
- 2 ¿Existe una relación entre la imagen de un vector $f(\vec{x})$ y la de su opuesto $f(-\vec{x})$?

Estas preguntas surgen de forma natural debido a las particularidades de E por ser un espacio vectorial (contiene el neutro, los opuestos...).

Preguntas

Veámoslo con el siguiente ejemplo de la primera proyección anterior, que asocia a cada vector su primera coordenada:

$$f: \mathbb{K}^2 \to \mathbb{K},$$

 $(x,y) \mapsto x.$

- I La aplicacón envía el vector nulo $\vec{0}_E = (0,0)$ a su primera coordenada que es el número cero: f(0,0) = 0. Es decir, la imagen del vector nulo de \mathbb{K}^2 es el vector nulo de \mathbb{K} . ¿Será siempre así?
- 2 Como f(-x, -y) = -x y f(x, y) = x, entonces f(-x, -y) = -x, = -f(x, y). Es decir, la imagen del vector opuesto de un vector $\vec{\in} E$ Es el opuesto de la imagen de \vec{v} por f. ¿Será siempre así?

La imagen del vector nulo

Propiedad

Dada una aplicación lineal

$$f: E \to F$$
, $x \mapsto f(x)$.

La imagen del vector nulo $\vec{0}_E$ de E es el vector nulo $\vec{0}_F$ de F

$$f(\vec{0}_E) = \vec{0}_F$$

La imagen del vector nulo

Demostración

1 El vector nulo $\vec{0}_E$ es el neutro de la suma de E, por tanto:

$$\forall \vec{x} \in E \Rightarrow \vec{x} + \vec{0}_E = \vec{x}$$

- 2 Como $\vec{x} + \vec{0}_E = \vec{x}$, entonces: $f(\vec{x} + \vec{0}_E) = f(\vec{x})$.
- 3 Como f es lineal: $f(\vec{x} + \vec{0}_E) = f(\vec{x}) + f(\vec{0}_E)$.
- 4 Entonces de 2 y 3, se obtiene: $f(\vec{x}) + f(\vec{0}_E) = f(\vec{x})$ Donde, en efecto $f(\vec{0}_E)$ es el elemento neutro de la suma de F:

$$f(\vec{0}_E) = \vec{0}_F$$

La imagen del vector opuesto

Propiedad

Dada una aplicación lineal:

$$f: E \to F,$$

 $x \mapsto f(x).$

La imagen del vector opuesto es el opuesto de la imagen del vector original:

$$f(-\vec{x}) = -f(\vec{x})$$

La imagen del vector opuesto

Demostrac<u>ión</u>

1 La suma de un vector y su opuesto es el elemento neutro.

$$\forall \vec{x} \in E \Rightarrow \vec{x} + (-\vec{x}) = \vec{0}_E$$

- 2 Como $\vec{x} + (-\vec{x}) = \vec{0}_E$, entonces: $f(\vec{x} + (-\vec{x})) = f(\vec{0}_E)$.
- 3 Como f es lineal: $f(\vec{x} + (-\vec{x})) = f(\vec{x}) + f(-\vec{x})$.
- 4 Entonces de 2 y 3, se obtiene: $f(\vec{x}) + f(-\vec{x}) = f(\vec{0}_E)$
- Pero de la propiedad anterior se sabe que $f(\vec{0}_E) = \vec{0}_F$, y por tanto $f(\vec{x}) + f(-\vec{x}) = \vec{0}_F$ Donde, por propiedad del elemento neutro $f(-\vec{x})$ ha de ser el opuesto de $f(\vec{x})$:

$$f(-\vec{x}) = -f(\vec{x})$$

- 1 Definiciones básicas
- Aplicaciones linealesLa aplicación identidad
 - La aplicación constante
 - Definición de aplicación
 - lineal
 - Propiedades
- 3 Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

Rango

- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

- 1 Definiciones básicas
- Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- 3 Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Núcleo de una aplicación lineal

Definición

Sea la aplicación lineal

$$f: E \to F$$
, $x \mapsto f(x)$.

Se denomina **núcleo de** f y se denota como Ker(f) o Nuc(f) el conjunto de elementos de E tales que su imagen coincide con el cero de F:

$$Ker(f) = \{\vec{x} \in E : f(\vec{x}) = \vec{0}_F\}$$

Teorema

Sea la aplicación lineal

$$f: E \to F$$
, $x \mapsto f(x)$.

Entonces el Ker(f) es un subespacio vectorial de E.

Ejercicios

Sea la aplicación lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $(x, y, z) \mapsto (x + y - 2z, x - y + z).$

Hállese el Ker(f) y una nueva base suya.

Solución

Un elemente del núcleo de f cumple la ecuación:

$$f(x, y, z) = (x + y - 2z, x - y + z) = (0, 0)$$

Si se resuelve el sistema pertinente se obtiene que:

$$x = x, y = 3x, z = 2x$$

Donde:

$$Ker(f) = \{(x, y, z) \in \mathbb{R}^3 : y = 3x, z = 2x\} = \langle (1, 3, 2) \rangle$$

Teorema

Una aplicación lineal $f: E \to F$ es inyectiva si y solo si el núcleo de f se reduce al neutro de E.

$$f$$
 inyectiva \iff $Ker(f) = {\vec{0}_E}$

Teorema

Sea:

$$\vec{x}_1, \vec{x}_2, \cdots \vec{x}_n$$

Un conjunto de vectores linealmente independientes del espacio vectorial E y $f: E \to F$ es una aplicación lineal inyectiva entonces:

$$f(\vec{x}_1), f(\vec{x}_2), \cdots, f(\vec{x}_n)$$

Son vectores linealmente independientes pertenecientes a F.

- Definiciones básicas
- Aplicaciones linealesLa aplicación identidad

 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- 3 Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Definición

Sea la aplicación lineal

$$f: E \to F,$$

 $x \mapsto f(x).$

Se denomina **imagen de** f y se denota por Im(f) al conjunto de elementos de F que tienen una anti-imagen para f:

$$Im(f) = \{ \vec{y} \in F : \exists \vec{x} \in E \ tq \ f(\vec{x}) = \vec{y} \}$$

Teorema

Téngase la aplicación lineal:

$$f: E \to F$$
, $x \mapsto f(x)$.

Entonces el Im(f) es un subespacio vectorial de E.

Ejercicios

Téngase la aplicación lineal:

$$f: \mathbb{R}^3 \to \mathbb{R}^2,$$

 $(x, y, z) \mapsto (x + y - 2z, x - y + z).$

Encuéntrese el Im(f) y una base suya.

Solución

Un elemento de la imagen de f es de la forma:

$$f(x,y,z) = (x+y-2z, x-y+z) = (x,x)+(y,-y)+(-2z,z) = x(1,1)+y$$

Por tanto los vectores (1,1),(1,-1),(-2,1) forman un sistema generador de Im(f). Como \mathbb{R}^2 , el máximo número de vectores LI son 2, se destinan dos, por ejemplo(1,1),(1,-1), para formar una base de la imagen de f.

Teorema

Si E es un espacio vectorial de dimensión finita n y se tiene la aplicación lineal $f: E \to F$. Entonces Im(f) es de dimensión finita menor o igual que n

$$dim\ Im(f) \leq n$$

Teorema - Las dimensiones del núcleo de la imagen

Sean E y F espacios vectoriales sobre \mathbb{K} y la aplicación lineal $f: E \to F$. Si la dimensión de E es finita, entonces se puede asegurar:

- dim Ker(f), dim Im(f) son finitos.
- $\bullet \ dim \ E = dim \ Ker(f) + dim \ Im(f)$

- Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- 3 Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

Rango

- 4 Clasificación de una aplicación lineal
- 5 Matriz de una aplicación lineal
 - Construcción
 - Definición
- Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Rango de una aplicación lineal

Rango de una aplicación lineal

Sea $f: E \to F$ una aplicación lineal con $dim\ E$.Se denomina rango de f a la dimensión del subespacio vectorial imagen de f

$$rang(f) = dim \ Im(f)$$

- Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- 5 Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Clasificación de una aplicación lineal

Sea $f: E \to F$ una aplicación lineal.

Monomorfismo

Si f es injectiva, entonces se denomina **monomorfismo**

Epimorfismo

Si f es exhaustiva, entonces se denomina **epimorfismo**

Isomorfisme

Si f es biyectiva, entonces se denomina **isomorfismo**

Definiciones básicas Aplicaciones lineales Núcleo, imagen y rango de una aplicación lineal Clasificación de una aplicación lineal Matriz de una aplicación lineal Ecuación matricial de una aplicación lineal

Clasificación de una aplicación lineal

Sea $f: E \rightarrow E$ una aplicación lineal.

Endomorfismo

Una aplicación de un espacio en el mismo se denomina **endomorfismo**

Automorfismo

Un endomorfismo biyectivo se denomina automorfismo

Clasificación de una aplicación lineal

Teorema

Sean E y F espacios vectoriales de dimensión finita sobre \mathbb{K} y $f: E \Longrightarrow F$ una aplicación lineal, entonces son equivalentes:

- f es un isomorfismo
- \blacksquare dim $E = \dim F$
- $Ker(f) = \{0_E\}$

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Antes de definir la matriz de una aplicación lineal se va a deducir la forma con un ejemplo familiar.

Ejemplo

Sea $f: \mathbb{R}^2 \Longrightarrow \mathbb{R}^3$ la aplicació lineal definida por:

$$f(x,y) = (x + y, y - 2x, x + y)$$

Ejemplo

- $\begin{tabular}{ll} \textbf{Obténganse las imágenes de los vectores de la base canónica} \\ B_C \ de \ \mathbb{R}^2 \end{tabular}$
- 2 Obténganse las imágenes de los vectores de la base $B_E = \{(1,-1),(2,1)\}$ de \mathbb{R}^2
- 3 Obténganse las imágenes de los vectores de la base canónica de \mathbb{R}^2 expresados en la base $B_F = \{(1, -1, 0), (1, 0, -1), (1, 1, 1)\}$ de \mathbb{R}^3
- 4 Obténganse las imágenes de los vectores de la base $B_E = \{(1,-1),(2,1)\}$ de \mathbb{R}^2 expresados en la base $B_F = \{(1,-1,0),(1,0,-1),(1,1,1)\}$ de \mathbb{R}^3

Solución 1

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obténganse las imágenes de los vectores de la base canónica B_C de \mathbb{R}^2

Como $B_C = \{(1,0), (0,1)\}$, entonces:

$$f(1,0) = (1+0,0-2,1+0) = (1,-2,1)$$

 $f(0,1) = (1,1,1)$

Si se colocan las coordenadass de f(1,0) y f(0,1) como columnas de una matriz, se obtiene:

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

Entonces:

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

Se calculan las imágenes de los vectores de la base canónica de \mathbb{R}^2 y estas imágenes vienen dadas en la base canónica de \mathbb{R}^3

Solución 2

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obténganse las imágenes de los vectores de la base $B_E = \{(1, -1), (2, 1)\}\ de \mathbb{R}^2$

Análogamente:

$$f(1,-1) = (1 + (-1), -1 - 2, 1 + (-1)) = (0, -3, 0)$$

 $f(2,1) = (3, -3, 3)$

Si se colocan las coordenadas de f(1,-1) y f(2,1) como columnas de una matriz, se obtiene:

$$\left(\begin{array}{cc}
0 & 3 \\
-3 & -3 \\
0 & 3
\end{array}\right)$$

Entonces:

$$(f(1,-1),f(2,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$

Si se calculan las imágenes de los vectores de la base B_E de \mathbb{R}^2 , estas imágenes vienen dadas en la base canónica de \mathbb{R}^3

Solución 3

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obténganse las imágenes de los vectores de la base canónica de \mathbb{R}^2 expresados en la base $B_F = \{(1,-1,0),(1,0,-1),(1,1,1)\}$ de \mathbb{R}^3

Se calcula la imagen de los vectores de la base canónica para f:

$$f(1,0) = (1,-2,1)$$

$$f(0,1) = (1,1,1)$$

Donde los resultados se encuentran en la base canónica B_C .

Para pasar de B_C a la base B_F de \mathbb{R}^3 se ha de hacer un cambio de base:

$$B_C \xrightarrow{P} B_F$$

$$(1, -2, 1)_C \xrightarrow{P} (a, b, c)_{B_F}$$

$$(1, 1, 1)_C \xrightarrow{P} (m, n, p)_{B_F}$$

Según la definición de matriz de cambio de base P, será la matriz las columnas de la cual son las coordenadas de los vectores de la base B_C expresados en la base B_F . Se tiene justo lo contrario; es decir, las coordenadas de B_F en la base B_C , por tanto se calculará la matriz de cambio de base $B_F \xrightarrow{Q} B_C$, y la matriz P será la inversa de Q.

$$Q = P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
$$P = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(1,-2,1)_{C} \xrightarrow{P} (a,b,c)_{B_{F}}$$

$$P\begin{pmatrix} 1\\-2\\1 \end{pmatrix}_{C} = \begin{pmatrix} a\\b\\c \end{pmatrix}_{B_{F}}$$

$$\frac{1}{3}\begin{pmatrix} 1&-2&1\\1&1&-2\\1&1&1 \end{pmatrix}\begin{pmatrix} 1\\-2\\1 \end{pmatrix}_{C} = \begin{pmatrix} a\\b\\c \end{pmatrix}_{B_{F}}$$

Por tanto (a, b, c) = (2, -1, 0).

$$(1,1,1)_{C} \xrightarrow{P} (m,n,p)_{B_{F}}$$

$$P\begin{pmatrix} 1\\1\\1 \end{pmatrix}_{C} = \begin{pmatrix} m\\n\\p \end{pmatrix}_{B_{F}}$$

$$\frac{1}{3}\begin{pmatrix} 1 & -2 & 1\\1 & 1 & -2\\1 & 1 & 1 \end{pmatrix}\begin{pmatrix} 1\\1\\1 \end{pmatrix}_{C} = \begin{pmatrix} m\\n\\p \end{pmatrix}_{B_{F}}$$

Por tanto (a, b, c) = (0, 0, 1).

Si se colocan las coordenadas de f(1,0) y f(0,1) como columnas de una matriz se obtiene:

$$\left(\begin{array}{cc}2&0\\-1&0\\0&1\end{array}\right)$$

Entonces:

$$(f(1,0),f(0,1))=((1,-1,0),(1,0,-1),(1,1,1))\left(egin{array}{cc} 2 & 0 \ -1 & 0 \ 0 & 1 \end{array}
ight)$$

Se calculan las imágenes de los vectores de la base canónica B_C de \mathbb{R}^2 y estas imágenes vienen dadas en la base B_F de \mathbb{R}^3

Solución 4

$$f(x, y) = (x + y, y - 2x, x + y)$$

Obténganse las imágenes de los vectores de la base $B_E = \{(1,-1),(2,1)\}$ de \mathbb{R}^2 expresados en la base $B_F = \{(1,-1,0),(1,0,-1),(1,1,1)\}$ de \mathbb{R}^3

Si se calcula la imagen de los vectores de la base B_E por f,

$$f(1,-1) = (0,-3,0)_C$$

$$f(2,1) = (3,-3,3)_C$$

Donde los resultados se encuentran en la base canónica B_C .

Para pasar de B_C a la base B_F de \mathbb{R}^3 ha de hacerse un cambio de base:

$$B_C \xrightarrow{P} B_F$$

$$(0, -3, 0)_C \xrightarrow{P} (a, b, c)_{B_F}$$

$$(3, -3, 3)_C \xrightarrow{P} (m, n, p)_{B_F}$$

Empleando la misma matriz de cambio de base P anterior, se obtiene que:

$$(a, b, c)_{B_F} = (2, -1, -1)$$

 $(m, n, p)_{B_F} = (4, -2, 1)$

Si se colocan las coordenadas de f(1, -1) y f(2, 1) como columnas de una matriz se obtiene:

$$\left(\begin{array}{ccc}
2 & 4 \\
-1 & -2 \\
-1 & 1
\end{array}\right)$$

Entonces:

$$(f(1,-1),f(2,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}$$

Se calculan las imágenes de los vectores de la base B_E de \mathbb{R}^2 y estas imágenes vienen dadas en la base B_F de \mathbb{R}^3

Resumen

En todos los casos anteriores se han calculado las imágenes de los vectores de una base del espacio de origen y se han expresado en una cierta base del espacio de destino. Estas matrices son las matrices asociadas de la aplicación lineal.

En el caso 1

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

Además $f(1,0)=(1,-2,1)_C$ y $f(0,1)=(1,1,1)_C$ respecto de la base canónica de \mathbb{R}^2 y la base canónica de \mathbb{R}^3

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

En el caso 2

$$\left(\begin{array}{cc}
0 & 3 \\
-3 & -3 \\
0 & 3
\end{array}\right)$$

Además $f(1,-1) = (0,-3,0)_C$ y $f(2,1) = (3,3,3)_C$ respecto de la base B_E de \mathbb{R}^2 y la base canónica de \mathbb{R}^3

$$(f(1,-1),f(2,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$

En el caso 3

$$\left(\begin{array}{cc}
2 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right)$$

Además $f(1,0) = (2,-1,0)_{B_F}$ y $f(0,1) = (0,0,1)_{B_F}$ respecto de la base canónica de \mathbb{R}^2 y la base B_F de \mathbb{R}^3

$$(f(1,0),f(0,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}$$

En el caso 4

$$\left(\begin{array}{ccc}
2 & 4 \\
-1 & -2 \\
-1 & 1
\end{array}\right)$$

Además $f(1,-1) = (2,-1,-1)_{B_F}$ y $f(2,1) = (4,-1,1)_{B_F}$ respecto de la base B_E de \mathbb{R}^2 y la base B_F de \mathbb{R}^3

$$(f(1,-1),f(2,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}$$

- Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Sean E y F espacios vectoriales de dimensiones p y q respectivamente con $B_E = \{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_p\}$ una base de E, $B_F = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q\}$ una base de F y $f: E \longrightarrow F$ una aplicación lineal.

Definición

Se denomina matriz de f respecto de las bases B_E, B_F a aquella que tiene por columnas las coordenadas de los vectores

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p))$$

en la base
$$B_F = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q\}$$

Las imágenes de los vectores de la base B_E en la base B_F vienen dados por:

$$f(\vec{u}_1) \in F \Longrightarrow f(\vec{u}_1) = a_{11}\vec{v}_1 + a_{21}\vec{v}_2 + \dots + a_{q1}\vec{v}_q$$
 $f(\vec{u}_2) \in F \Longrightarrow f(\vec{u}_2) = a_{12}\vec{v}_1 + a_{22}\vec{v}_2 + \dots + a_{q2}\vec{v}_q$
 \dots
 $f(\vec{u}_p) \in F \Longrightarrow f(\vec{u}_p) = a_{1p}\vec{v}_1 + a_{2p}\vec{v}_2 + \dots + a_{qp}\vec{v}_q$

Esta expresión en forma matricial sería:

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p)) = (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{21} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{q1} & a_{q2} & \cdots & a_{qp} \end{pmatrix}$$

Donde la columna i contiene las coordenadas del vector $f(\vec{u_i})$ en la base B_F . La matriz A será de tamaño $q \times p$ con p dimensión de E y q dimensión de F.

$$(f(\vec{u}_1), f(\vec{u}_2), \cdots, f(\vec{u}_p)) = (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q)A$$

Ejercicios

Sea $B_1=\{(1,1,0),(-1,1,2),(0,2,1)\}$ una base de \mathbb{R}^3 y $B_2=\{(1,1,),(-1,1)\}$ una base de \mathbb{R}^2 . Considérese $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ la aplicación lineal tal que:

$$f(x, y, z) = (x + y - 2z, x - y + z)$$

Obténgase la matriz asociada a f respecto de las bases B_1 de \mathbb{R}^3 y B_2 de \mathbb{R}^2

1. Calcúlense las imágenes de los vectores de B_1 en la base canónica

$$f(1,1,0) = (2,0)_C$$

 $f(-1,1,2) = (-4,0)_C$
 $f(0,2,1) = (0,-1)_C$

2. Calcúlese la matriz de cambio de base de B_C a B_2

Se va a pasar de la base canónica a la base B_2 .

Como se sabe B_2 en la base canónica, se tiene $B_2 \xrightarrow{Q} B_C$

$$Q = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right)$$

Por tanto la matriz de cambio de base es

$$P = Q^{-1} = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right)$$

$$\vec{x}_{B_2} = P\vec{x}_{B_C}$$

3. Expresar los vectores en la nueva base B_2

$$\vec{x}_{B_2} = P \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{B_2}$$

$$\vec{x}_{B_2} = P \begin{pmatrix} -4 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}_{B_2}$$

$$\vec{x}_{B_2} = P \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \end{pmatrix}_{B_2}$$

4. La matriz de la aplicación lineal

Entonces la matriz es:

$$\begin{pmatrix} 1 & -2 & -1/2 \\ -1 & 2 & -1/2 \end{pmatrix}$$
$$(f(1,1,0), f(-1,1,2), f(0,2,1)) =$$
$$((1,1), (-1,1)) \begin{pmatrix} 1 & -2 & -1/2 \\ -1 & 2 & -1/2 \end{pmatrix}$$

- 1 Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- 5 Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Sea $f: E \longrightarrow F$ una aplicación lineal, A la matriz asociada a f respecto de las dos bases B_E y B_F de E y F respectivamente. Se va a hallar una relación entre las coordenadas en base B_E de un vector $\vec{x} \in E$ y las coordenadas en la base B_F del vector $f(\vec{x}) \in F$.

- Definiciones básicas
- 2 Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Ejemplo

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la aplicación lineal tal que su matriz asociada en base canónica de \mathbb{R}^2 y la base canónica de \mathbb{R}^3 es:

$$\left(\begin{array}{cc} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

Calcúlense las coordenadas del vector imagen de $\vec{c} = (2, -1)_C \in \mathbb{R}^2$ expresadas en la base canónica.

$$(2,-1)_C = 2(1,0) + (-1)(0,1) = ((1,0),(0,1))\begin{pmatrix} 2\\-1 \end{pmatrix}$$

Aplicando f en los dos lados de la igualdad, como ambos miembros son iguales y f es una aplicación (un mismo elemento de origen no puede tener dos imágenes diferentes), sus imágenes también serán iguales:

$$f(2,-1)_C = f(2(1,0) + (-1)(0,1)) = 2f(1,0) + (-1)f(0,1)$$
$$= (f(1,0), f(0,1)) \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Por definición la matriz asociada a f respecto a dos bases B_E y B_F , se sabe que:

$$(f(1,0),f(0,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

Y sustituyendo esta expresión en la anterior, se tiene que:

$$f(2,-1)_C = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Si se denota por Y_C las coordenadas del $f(2,-1)_C$ en la base canónica de \mathbb{R}^3 , se puede escribir

$$(f(1,0),f(0,1))=((1,0,0),(0,1,0),(0,0,1))\left(egin{array}{cc} 1&1\ -2&1\ 1&1 \end{array}
ight)$$

Y sustituyendo esta expresión en la anterior, se obtiene:

$$\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = Y_C \Longrightarrow Y_C = \begin{pmatrix} 1 \\ -5 \\ 1 \end{pmatrix}_C$$

Planteamiento general

Sea $f: E \longrightarrow F$ una aplicación lineal y A la matriz asociada a f respecto de B_E y B_F . Sea:

- X_{B_E} coordenadas en base B_E del vector $\vec{x} \in E$.
- Y_{B_F} coordenadas en base B_F del vector $f(\vec{x}) \in F$.

$$f(B_F) = B_F \cdot A$$

Planteamiento general

Se puede demostrar que

$$A \cdot X_{BE} = Y_{BF}$$

- 1 Definiciones básicas
- Aplicaciones lineales
 - La aplicación identidad
 - La aplicación constante
 - Definición de aplicación lineal
 - Propiedades
- Núcleo, imagen y rango de una aplicación lineal
 - Núcleo
 - Imagen

- Rango
- 4 Clasificación de una aplicación lineal
- Matriz de una aplicación lineal
 - Construcción
 - Definición
- 6 Ecuación matricial de una aplicación lineal
 - Construcción
 - Definición

Ecuación matricial

$$A \cdot X_{BE} = Y_{BF}$$

Es la **ecuación matricial** de la aplicación lineal que relaciona las coordenadas de un vector $\vec{x} \in E$ en una base B_E con las coordenadas $f(\vec{x})$ en una base B_F .

Teorema

Sea $A \in M_n(\mathbb{K})$ una matriz cuadrada de tamaño n. Son equivalentes

- A es invertible
- Los vectores columna de la matriz A son una base de \mathbb{K}^n
- La aplicación lineal definida por:

$$f_A: \mathbb{K}^n \to \mathbb{K}^n,$$

 $X \mapsto AX.$

Es biyectiva.

Teorema

Sea la aplicación lineal $f: E \longrightarrow F$,

- \blacksquare A la matriz de la aplicación lineal en las bases B_E y B_F ,
- C la matriz de la aplicación lineal en otras bases B'_E y B'_F ,
- P la matriz de cambio de base de B'_E a B_E $(B'_E \xrightarrow{P} B_E)$,
- Q la matriz de cambio de base de B'_F a B_F $(B'_F \xrightarrow{Q} B_F)$.

Entonces
$$Q^{-1} \cdot A \cdot P = C$$

Demostración

- Ecuación matricial de la aplicación lineal para A, B_E y B_F : $A \cdot X_{BE} = Y_{BE}$.
- Ecuación matricial de la aplicación lineal para C, B'_E y B'_F : $C \cdot X'_{RF} = Y'_{RF}$.
- Ecuación de cambio de base de B_E' a B_E ($B_E' \xrightarrow{P} B_E$), $X_{BE} = P \cdot X_{BE}'$
- Ecuación de cambio de base de B_F' a B_F ($B_F' \xrightarrow{Q} B_F$), $Y_{BF} = Q \cdot X_{BF}'$

Demostración

$$A \cdot X_{BF} = Y_{BF}$$

$$X_{BE} = P \cdot X'_{BE}$$

Por tanto:

$$A \cdot (P \cdot X'_{BF}) = Y_{BF}$$

Además:

$$Y_{BF} = Q \cdot Y'_{BF}$$

Por ello:

$$A \cdot (P \cdot X'_{BE}) = Q \cdot Y'_{BF}$$

Demostración

Multiplicando los dos lados por Q^{-1} y aplicando la propiedad asociativa del producto de matrices se obtiene:

$$(Q^1 \cdot A \cdot P) \cdot X'_{BE} = Y'_{BF}$$

Que es la ecuación matricial de f en B'_E y B'_F . Por tanto $Q^1 \cdot A \cdot P$ será la matriz asociada a f en estas bases:

$$Q^1 \cdot A \cdot P = C$$

Corolario

Sea la aplicación lineal $f: E \longrightarrow E$ y sean:

- \blacksquare A la matriz de la aplicación lineal en la base B_E ,
- C la matriz de la aplicación lineal en la base B'_E ,
- P la matriz de cambio de base de B'_E a B_E $(B'_E \xrightarrow{P} B_E)$,

Entonces se cumple que:

$$P^{-1} \cdot A \cdot P = C$$

Ejercicios

Sea la aplicación lineal $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ dada por f(x,y)=(x+y,y-2x,x+y). Encuéntrese la matriz de f respecto de la base canónica de \mathbb{R}^2 y la base $B_F=\{(1,1,0),(0,1,1),(0,0,-2)\}$ de \mathbb{R}^3 .

Sea A la matriz de f asociada en las bases canónicas (calculada en un ejercicio anterior)

$$A = \left(\begin{array}{rr} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{array}\right)$$

P es en este caso la matriz identidad de orden 2 (de la base canónica a ella misma) y Q la matriz de cambio de base de B_F a la base canónica de \mathbb{R}^3 ($B_F \xrightarrow{Q} B_C$)

$$Q = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{array}\right)$$

Entonces:

$$C = Q^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1/2 & 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 0 \\ -2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 0 \\ -2 & -1/2 \end{pmatrix}$$