

Kapitola 3: Úvod do strojového učení







### Strojové učení a umělá inteligence



Strojové učení je jedním z nástrojů umělé inteligence.

V současnosti je jednoznačně dominantní.



### Co je učení

- Dítě se naučí rozlišovat jablka a hrušky tak, že mu rodiče ukáží příklady jablek a příklady hrušek.
- Dítě si podvědomě všimne různých charakteristik, které jablka a hrušky rozlišují (jablka jsou typicky kulatější, hrušky zelenější apod.)
- Poté je dítě schopno určit druh ovoce samo





### Strojové učení



Úlohou strojového učení je na základě příkladů vstupů a výstupů nalézt funkci f, která pro nový vstup určí odpovídající výstup.

Příklady dvojic vstupů a výstupů nazýváme trénovací data.

V současnosti je to nejrozšířenější metoda umělé inteligence s největšími dopady.



# Strojové učení - příklady



strojový překlad AJ -> ČJ

Predikce spotřeby auta pod



průměrné rychlosti

### Generalizace versus memorování

Pokud se člověk nebo stroj na základě konečného počtu trénovacích příkladů naučí rozeznat *libovolnou* hrušku nebo jablko, jedná se o **generalizaci** (zobecnění).

Pokud si pouze zapamatuje trénovací příklady, ale není schopný znalost zobecnit pro nové příklady, jedná se o **memorování**.

Z pohledu strojového učení je mnohem užitečnější generalizace. K memorování nám postačí uložení příkladů do paměti počítače.



## Proces strojového učení



## Základní typy strojového učení





## Učení s učitelem (supervised learning)

Součástí trénovacích dat učení s učitelem je požadovaný výstup (predikce).

Klasifikace - výstupem je nějaká kategorie (třída). Například barva, binární hodnota (ano, ne), den v týdnu, typ auta apod.

**Regrese** -výstupem je číselná hodnota. Například *cena*, *teplota*, *počet lidí v místnosti apod*.



## Klasifikace - příklad

### Rozlišení jablek a hrušek

vstup

| tvar   | barva   | hmotnost (g) |
|--------|---------|--------------|
| kulatý | červená | 146          |
| šišatý | žlutá   | 120          |
| šišatý | zelená  | 187          |
| kulatý | červená | 155          |

výstup

| druh ovoce |  |
|------------|--|
| jablko     |  |
| hruška     |  |
| hruška     |  |
| jablko     |  |



## Klasifikace - příklady aplikací

Klasifikace obrázků



Detekce spamu



Autentizace



Strojový překlad



Diagnostika onemocnění COVID-19 podle zvukového záznamu kašle





## Regrese - příklad

#### Predikce ceny bytu

#### vstup

| plocha | patro | počet<br>místností |
|--------|-------|--------------------|
| 42     | 7     | 2                  |
| 105    | 3     | 3                  |
| 67     | 1     | 2                  |
| 224    | 3     | 4                  |

### výstup

| cena (mil. Kč) |  |
|----------------|--|
| 3,2            |  |
| 6,8            |  |
| 4,1            |  |
| 13,9           |  |



### Regrese - příklady aplikací

Predikce ceny Bitcoinu



Předpověď teploty



Určení vzdálenosti samořiditelného auta od krajnice



Určení počtu lidí v místnosti





### Učení bez učitele (unsupervised learning)

Součástí trénovacích dat učení bez učitele jsou pouze vstupy. Výstupní hodnoty nejsou předem známé.

Nejvýznamnější úlohou učení bez učitele je shlukování (clustering)





### Shlukování - příklady aplikací

Hledání genových rodin analýzou DNA







Doporučování filmů podle preferencí podobných uživatelů





### Zpětnovazební učení (reinforcement learning)

Učení funguje na principu agenta, který interaguje s prostředím a dostává zpětnou vazbu na své akce (odměnu nebo trest). Postupně se učí maximalizovat odměnu.





## Zpětnovazební učení - příklady aplikací

Samořiditelná auta, drony



Umělá inteligence ve hrách



Automatické obchodování



Regulace komplexních systémů





## Nejvýznamnější oblasti využití strojového učení

Zpracování obrazu a videa



Doporučování



Zpracování přirozeného jazyka



Robotika



Zpracování signálů a časových řad





### Témata k diskuzi

- 1. Uveďte vlastní příklady problémů, které jsou řešitelné pomocí **klasifikace**
- 2. Uveďte vlastní příklady problémů, které jsou řešitelné pomocí **regrese**
- 3. Uveďte vlastní příklady problémů, které jsou řešitelné pomocí shlukování
- 4. Uveďte vlastní příklady problémů, které jsou řešitelné pomocí zpětnovazebního učení Mac