Title of the Exercise: Open and Short Circuit Test on Single Phase Transformer

Date: 25.10.2020

**Aim:** To perform open and short-circuited test on a two winding Transformer and find out equivalent circuit parameter as well as predetermination of efficiency under various loaded condition.

Tool used: MATLAB/Simscape Power System

### **Electrical Circuit**



## **Open Circuit Test**



#### **Short Circuit Test**



### Parameters used for the study

Transformer rating = 50KVA

 $V_1 = 2400 \text{ Volts}$  Primary Voltage in RMS  $V_2 = 240 \text{ Volts}$  Secondary Voltage in RMS

f = 50Hz Frequency

 $R_1 = 0.7488 \text{ Ohms}$  Primary winding resistance  $R_2 = 0.007488 \text{ Ohms}$  Secondary winding resistance  $X_{11} = 1.00224 \text{ Ohms}$  Primary winding reactance  $X_{12} - 0.0100224 \text{ Ohms}$  Secondary winding reactance

 $X_M = 5008 \text{ Ohms}$  Magnetizing reactance  $R_C = 33,391 \text{ Ohms}$  Resistance for core losses

# **Theoretical Analysis:**

### For Open Circuit

$$\begin{aligned} |Y_E| &= G_c - jB_M = \frac{I_{oc}}{V_{oc}} \\ PF_{oc} &= cos\theta = \frac{P_{oc}}{V_{oc}I_{oc}} \\ G_c &= |Y_E|cos\theta, \ R_c = \frac{1}{G_c} \\ B_M &= |Y_E|sin\theta, \ X_M = \frac{1}{B_M} \end{aligned}$$

### For Short Circuit

$$|Z_{eq}| = |Z_{sc}| = \frac{V_{sc}}{I_{sc}}$$

$$R_{eq} = R_{sc} = \frac{P_{sc}}{I_{sc}^2}$$

$$X_{eq} = X_{sc} = \sqrt{|Z_{eq}|^2 - R_{eq}^2}$$

$$R_{eq} = R_1 + a^2 R_2$$

$$X_{eq} = X_{11} + a^2 X_{12}$$

### For predetermination of efficiency

Pc=Woc=Poc=Iron losses

Psc =full load copper losses

 $Wsc = {(IL/If)^2}*Psc = Pcu$ 

Wsc= copper losses at different loaded conditions

W<sub>T</sub>= Pc+ Pcu-Total power losses

 $I_L = Load current$ 

I<sub>F</sub> = Full load current

 $Cos\Phi = Power factor$ 

Efficiency = (Po/Pi)\*100

# **Calculations (Predetermination)**

 $I_{\rm f} = 207.4~A$  (From short circuit test) (Current at full load)

Woc = 174.3 W (From open circuit test) (Iron losses)

We calculate efficiency of transformer at different load current as 1,2.....10 and power factor as 1

$$\underline{At \ I_L = 1A}$$

 $Wsc = Pcu = \{(1/207.4)^2\}*644.2 = 0.0149 Watts$ 

Power output =  $I_L * 240 = 1 * 240 = 240$  Watts

Total Power Loss = 174.3 + 0.0149 = 174.3149 Watts

Power Input = Power output + Total power loss

$$= 240 + 174.3149 = 414.3149$$

Efficiency = (240/414.3149)\*100 % = 57.9269%

Therefore, efficiency of transformer at load current 1 is <u>57.92%</u>

#### At $I_L = 2A$

 $Wsc = Pcu = \{(2/207.4)^2\}*644.2 = 0.0599 Watts$ 

Power output =  $I_L * 240 = 2 * 240 = 480$  Watts

Total Power Loss = 174.3 + 0.0599 = 174.3599 Watts

Power Input = Power output + Total power loss

$$=480+174.3599=654.3599$$

Efficiency = (480/654.3599)\*100 % = 73.33541%

Therefore, efficiency of transformer at load current 1 is <u>73.35%</u>

Now, similarly we can find efficiency for load current 3,4...10.

## **Procedure for simulation study**

- Initialize the input parameters and write coding as per the requirement of plots in m file and save it.
- Open new Simulink and make mathematical modelling as per circuit diagram and save it.
- Run Simulink file and then run m file.
- Calculate the equivalent parameters and plot the necessary graphs.

## Simulation Diagram and m. file coding

For Open Circuit



```
M file coding -
%Open Circuit
Poc = 174.3;
Voc = 2400;
Ioc = 0.4844;
PFoc=Poc/(Voc*Ioc);
%Short Circuit
Isc = 207.4;
Vsc = 51.9;
Psc = 644.2;
iL = (0:1:10);
pfi = (0.1:0.1:1);
for i = 1:10
   pf = pfi(i);
    Po = (240*iL)*pf;
    Wsc = ((iL/Isc).^2)*Psc;
    Wt = Wsc + Poc;
    Pi = Po + Wt;
    Eff = 100*(Po./Pi);
    plot(iL, eff);
    hold on
end
hold off
xlim([-1 101])
legend("pf is "+string((0.1:0.1:1)))
xlabel('iL');
ylabel('Efficiency');
```

## **Results and Discussions-**

This section contains waveforms of different speed control characteristics.



# **Comparison (Observations)**

| S.No | Load                     | Constant                 | Copper                   | Total                   | O/P      | I/P      | %η      |
|------|--------------------------|--------------------------|--------------------------|-------------------------|----------|----------|---------|
|      | Current(I <sub>L</sub> ) | Losses(W <sub>oc</sub> ) | Losses(W <sub>sc</sub> ) | Losses(W <sub>T</sub> ) | Power(w) | Power(w) |         |
|      |                          |                          |                          |                         |          |          |         |
| 1    | 1                        | 174.3                    | 0.0150                   | 174.3150                | 240      | 414.3    | 57.9269 |
| 2    | 2                        | 174.3                    | 0.0599                   | 174.3599                | 480      | 654.4    | 73.3541 |
| 3    | 3                        | 174.3                    | 0.1348                   | 174.4348                | 720      | 894.4    | 80.4978 |
| 4    | 4                        | 174.3                    | 0.2396                   | 174.5396                | 960      | 1134.5   | 84.6158 |
| 5    | 5                        | 174.3                    | 0.3744                   | 174.6744                | 1200     | 1374.7   | 87.2934 |
| 6    | 6                        | 174.3                    | 0.5391                   | 174.8391                | 1440     | 1614.8   | 89.1730 |
| 7    | 7                        | 174.3                    | 0.7338                   | 175.0388                | 1680     | 1855.0   | 90.5644 |
| 8    | 8                        | 174.3                    | 0.9585                   | 175.2585                | 1920     | 2095.3   | 91.6355 |
| 9    | 9                        | 174.3                    | 1.2131                   | 175.5131                | 2160     | 2335.5   | 92.4850 |
| 10   | 10                       | 174.3                    | 1.4976                   | 175.7976                | 2400     | 2575.8   | 93.1750 |

### **Conclusion:**

Open circuit and short circuit test have been done and equivalent circuit parameter as well as predetermination of efficiency under various loaded condition has also been obtained.

#### Inference:

Our predetermined values match with the simulation value which are tabulated in above table.

#### **References:**

• <a href="https://in.mathworks.com/">https://in.mathworks.com/</a>