

Cryptography and Network Security

Eighth Edition by William Stallings

Chapter 3

Classical Encryption Techniques

Basic Cryptography

- Private Key Cryptography
 - Secret Key Cryptography, Symmetric Cryptography, Classical Cryptography
- Public Key Cryptography

Brief History

- All encryption algorithms from BC till 1976 were secret key algorithms
 - Also called private key algorithms or symmetric key algorithms
 - Julius Caesar used a substitution cipher
 - Widespread use in World War II (enigma)
- Public key algorithms were introduced in 1976 by Whitfield Diffie and Martin Hellman

Classical Cryptography

Classical Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called symmetric cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
- Product ciphers
 - Combinations of the two basic types

Cryptosystem

- Quintuple $(\mathcal{E}, \mathcal{D}, \mathcal{M}, \mathcal{K}, C)$
 - $-\mathcal{M}$ set of plaintexts
 - $-\mathcal{K}$ set of keys
 - C set of ciphertexts
 - $-\mathcal{E}$ set of encryption functions $E: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$
 - $-\mathcal{D}$ set of decryption functions $D: C \times \mathcal{K} \to \mathcal{M}$

Classical Cryptography

- $c = E_k(m)$: Ciphertext \leftarrow Encryption
- $m = D_k(c)$: Plaintext \leftarrow Decryption
- k =encryption and decryption key
- The functions $E_k()$ and $D_k()$ must be inverses of one another
 - $-E_k(D_k(c)) = ?$
 - $-D_k(E_k(m)) = ?$
 - $-E_k(D_k(m)) = ?$

A	В	C	D	E	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

• Example: Cæsar cipner

```
-\mathcal{M} = \{ \text{ sequences of letters } \}
```

$$-\mathcal{K} = \{ k \mid k \text{ is an integer and } 0 \le k \le 25 \}$$

$$-\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m,$$

$$E_k(m) = (m+k) \bmod 26$$

$$-\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c, \}$$

$$D_k(c) = (26 + c - k) \mod 26$$
 }

$$-C = \mathcal{M}$$

Cæsar cipher

Let
$$k = 9$$
, $m = \text{``VELVET''}$ (21 4 11 21 4 19)
$$E_k(m) = (21+9 \ 4+9 \ 11+9 \ 21+9 \ 4+9 \ 19+9) \ \text{mod } 26$$

$$= (30 \ 13 \ 20 \ 30 \ 13 \ 28) \ \text{mod } 26$$

$$= \text{``4 } 13 \ 20 \ 4 \ 13 \ 2\text{''} = \text{``ENUENC''}$$

$$D_k(m) = (26 + c - k) \ \text{mod } 26$$

$$= (21 \ 30 \ 37 \ 21 \ 30 \ 19) \ \text{mod } 26$$

$$= \text{``21 } 4 \ 11 \ 21 \ 4 \ 19\text{''} = \text{``VELVET''}$$

Α	В	С	D	П	F	G	Ξ	- 1	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Substitution Ciphers

- Cæsar cipher is a substitution cipher.
- Substitution Cipher: Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 - Plaintext is HELLO WORLD;
 - Key is 3, usually can be written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Vigenère Cipher

- Like Cæsar cipher, but use a phrase as the key
- Example
 - Message THE BOY HAS THE TOY
 - Key VIG
 - Encipher using Cæsar cipher for each letter:

```
key VIGVIGVIGVIGVIG
plain THEBOYHASTHETOY
cipher OPKWWECIYOPKOWE
```

Discussion: how to implement Vigenère Cipher?

- What is your design consideration, speed or storage space?
- What kind of functions are you going to use?

Use look-up Table to Encipher

	G	I	V
A	G	I	V
B	Η	J	M
E	K	M	Z
Н	N	P	С
0	U	M	J
S	Y	A	N
T	Z	В	\bigcirc
Y	Ε	Н	Τ

- Table on the left with relevant rows, columns only
- key letters on top, plaintext letters on the left
- Example encipherments:
 - key V, letter T: follow V column down to T row (giving "O")
 - Key I, letter H: follow I column down to H row (giving "P")

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

- Ciphertext is HLOOL ELWRD

Classical Cryptography – Possible Attacks

Discussion: How to attack Cæsar cipher?

```
Let k = 9, m = \text{``VELVET''} (21 4 11 21 4 19)

E_k(m) = (21+9 \ 4+9 \ 11+9 \ 21+9 \ 4+9 \ 19+9) \ \text{mod } 26

= (30 \ 13 \ 20 \ 30 \ 13 \ 28) \ \text{mod } 26

= \text{``4 } 13 \ 20 \ 4 \ 13 \ 2\text{''} = \text{``ENUENC''}

D_k(m) = (26 + c - k) \ \text{mod } 26

= (21 \ 30 \ 37 \ 21 \ 30 \ 19) \ \text{mod } 26

= \text{``21 } 4 \ 11 \ 21 \ 4 \ 19\text{''} = \text{``VELVET''}
```

Attacks

- Opponent whose goal is to break cryptosystem is the *adversary*
- Three types of attacks:
 - ciphertext only: adversary has only ciphertext;
 goal is to find plaintext, possibly key
 - known plaintext: adversary has ciphertext,
 corresponding plaintext; goal is to find the key
 - chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Attacking a conventional cryptosystem

• Cryptoanalysis:

- Art/Science of breaking an encryption scheme
- Exploits the characteristics of algorithm/ mathematics
 - Recover plaintext from the ciphertext
 - Recover a key that can be used to break many ciphertexts

• Brute force

- Tries all possible keys on a piece of ciphertext
 - If the *number of keys* is small, the adversary can get the correct key easily by simply trying!

Crack Caesar Cipher!

example:

```
Plaintext: ?
```

```
Key : ?
```

Ciphertext: PHHW PH DIWHU WKH WRJD SDUWB

- Try all possible keys: 0, 1, 2, ... 25.
- It works when key=3: meaningful plaintext generated.
- We are done!

How about more complicated ciphers?

- Mono-alphabetic substitution cipher
 - Each plaintext letter is randomly assigned to its ciphertext letter.

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
qazws xedcrfvtgbyhnuj mi kolp
```

- How many possible ways of assignment?
 - 26!
 - Takes a looooong time to try every possible assignment.

Basis for Cryptoanalysis

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters, triplets of letters, etc. (called models of the language).
 - Examine ciphertext, correlate properties with the assumptions.

Statistical Attacks Example

- Rail-Fence Cipher
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

- Ciphertext is HLOOL ELWRD

Attacking the Cipher

Anagramming

- If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not,
- Then probably a transposition
- Rearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E may follow H

Example

Arrange so that H and E are adjacent

HE

LL

OW

OR

LD

Read off across, then down, to get original plaintext

Summary

- Present an overview of the main concepts of symmetric cryptography
- Explain the difference |
 between cryptanalysis
 and brute-force attack
- Understand the operation of Ceaser cipher and attacks

- Transposition cipher v.s. Substitution cipher
- Brute-force attack v.s. Cryptoanalysis
- Understand the operation of Vigenère Cipher