

Wearable Biomechanical Energy Harvesting Device

Phase 6 Presentation

By: Jean Chambon, Jake Dalrymple, Alexander Gaskins, Brendan McGarr, Serena Platt, Jack Schweighardt, Timothy Stephens, Nicholas Velardo, Leah Villanueva

Project Objectives

Goal:

To design and produce a device that captures biomechanical energy sufficient to charge a modern day smartphone.

Objectives:

- Combine different sources of energy conversion to maximize efficiency
- Reliable long term performance
- Comfortable enough for extended use

Phase V Recap

- Finished final design and developed fabrication process for both piezo and induction coil designs
- Final design for a combined system was employed
- > Final website edition was created

Final Design for Piezoelectric Model

Final Design for Induction Coil Model

Shortcomings of Previous Designs

Phase I Concept Selection

- Material selection for mounting of piezo material was too stiff
- Wiring configurations did not produce enough current
- ➤ Inefficiencies in design to optimize amount of piezo on each plate
- Original design was too bulky to be worn comfortably

Steps Taken to Overcome Shortcomings

- > Torsional stress on piezoelectric cylinders
 - Converted design from a U-shaped sole to a flat plane
- ➤ Inefficient loading of piezoelectric material
 - Incorporated felt padding to protect sensitive piezoelectric components while evenly distributing forces applied
- Original design was too bulky
 - Reduced design volume by compressing it into a rectangular space directly underneath shoe sole
- > Insufficient amount of piezoelectric material
 - Incorporated a stacked design with thin piezo material in each layer
- Design did not produce enough current
 - Induction coil technology was studied and integrated

- Piezoelectric discs are 0.15 mm thick and the felt pads are 0.25 mm thick
- Final design uses 12 discs per base plate and includes 2 of these plates totaling 24 discs.
- ➤ Multimeter reads average values of 50V and 30mA during max force of a step.

Final System Design: Piezoelectric Dimensions

- > Produces constant 1.2A and 0.4V
- Constant power output: 480 mW
- ➤ 22mm in diameter
- > 84mm in length

Combining the Two Generators

- ➤ Alternate between constant and variable inputs
- Prioritize high input values from Piezoelectric generator
- > Provide constant passive power from electromagnetic induction coil

Final Prototype Power Figures

- > Given the power being sent into the battery is constantly fluctuating, it is difficult to state a singular figure which describes the output of the system.
- > On average the power being received at the lithium ion battery is about 15V and 1.3A which ≈ 20 Watts
 - The system has charged a 7.4 Wh battery in less than 2 minutes to a reasonable point where its stored energy can be stored
- The goal of the project is to provide charge to a smartphone, and with a USB plugin that provides at least 5 V and 1.2 A
- The group is proud of this achievement coming from <1V and <1A power generation in Phase 1, the group is confident these figures could continue to improve with the implementation of piezoelectric material specifically designed for power generation

Concept for Final Product/Future Prototypes

While the group focused primarily on optimizing the power generation function of the project, this shows a very general representation of how the group would have liked to build the housing for said components.

Labeled section are not to represent actual shape, but rather layout and location.

Key Insights and Lessons Learned: Induction Coil

➤ List of Harvester performance variables:

Voltage	mV	
Current	Amperes	

Experimental Set-Up

➤ List of Harvester parameters used for experiments:

Stator Length	mm
Mover Size	mm
Wire Coil Density	mm^2
Winding Direction	North, South
Winding Spacer	mm
Wire Circumference	AWG
Iron Pole Pieces (both ends of stator)	

Key Insights and Lessons Learned: Induction Coil (cont.)

- Increasing the stator length, and effectively travel distance of the mover, increases power output.
- ➤ Decreasing the mover size had negligible effect on the system, but did increase oscillation (Hz), reduced weight and cost
- ➤ Increasing wire coil density increases power
- ➤ Windings in variable direction had negligible effect
- Winding must be continuous wire strand
- > Separating windings had negligible effect
- ➤ Increasing wire circumference (decreasing wire gauge) negatively effected power output
- Iron pole pieces improve power production

Key Insights and Lessons Learned: Piezoelectric

- ➤ The significance of a piezoelectric high Young's Modulus and a high charge constant
- Aligning piezoelectric strips in series to maximize voltage
- > Budget can extremely limit the piezoelectric materials as they can be costly, requiring a resourcefulness in achieving energy goals
- > Simulating bending moments within a sandwiched piezoelectric disc can cause extreme bending in the center during a linear force, significantly increasing power output
- > Sufficiently charging a power source requires constant power, a feature not accompanied by piezoelectric frequency-based materials, complementing the decision to use two power sources
- > Assigning a rectifier to each subsystem of piezoelectric discs can improve energy harvesting capabilities

Moving Forward:

- Implementing more efficient piezoelectric material
- Condensing the overall design to fit into the sole of a shoe
- > Testing the implementation of additional layers of piezoelectric material
- > Testing the implementation of additional linear coil generators as well as adjustment of their length and amount of copper wire on the coil
- Generally optimizing all components of the current design further

Thank You! Questions?

Mechanical Materials	# Used	# Ordered	Cost Per Unit	Budget Used?	
Rubber Bumpers	15	1	\$9.49	Yes	\$9.49
Cork Sheet	1	1	\$10.50	Yes	\$10.50
Magnet Wire	1	1	\$9.35	Yes	\$9.35
Magnet Wire	1	1	\$11.82	Yes	\$11.82
7/8" Magnet	5	5	\$6.19	Yes	\$30.95
Enameled Copper Wire	1	1	\$11.45	Yes	\$11.45
Enameled Copper Wire	1	1	\$23.99	Yes	\$23.99
Hiking Boots	1	1	\$69.99	Yes	\$69.99
Soft Iron Rod	1	1	\$4.99	Yes	\$4.99
Electrical Materials					
Piezo Pickups	15	1	\$9.00	No	\$0.00
Piezo Pickups	15	7	\$8.00	Yes	\$56.00
Converter Module	1	1	\$8.39	Yes	\$8.39
Solder Spoole	1	0	\$0.00	No	\$0.00
Soldering Iron	1	0	\$0.00	No	\$0.00
MultiMeter	1	0	\$0.00	No	\$0.00
Wires	N/A	0	\$0.00	No	\$0.00
Rectifier	1	0	\$0.00	No	\$0.00
Breadboard	2	0	\$0.00	No	\$0.00
Roll of Electrical Tape	1	0	\$0.00	No	\$0.00
Testing Battery	1	0	\$0.00	No	\$0.00
DC-DC Step Up Power Module	1	1	\$10.99	Yes	\$10.99
Laser Pointer	1	1	\$8.99	Yes	\$8.99
Step Up Boost Power Converter	1	1	\$9.99	Yes	\$9.99
Lithium Battery 18650 Charger	1	1	\$8.99	Yes	\$8.99
Buck Boost Converter Module	1	1	\$12.99	Yes	\$12.99
Buck Converter Step Down	1	1	\$16.99	Yes	\$16.99
Flashlight	1	1	\$19.65	Yes	\$19.65
-					
Balance Left:					\$434.53