

内容小结

一、向量代数

设
$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z), \vec{c} = (c_x, c_y, c_z)$$

1. 向量运算

加減:
$$\vec{a} \pm \vec{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

数乘:
$$\lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

点积:
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

叉积:
$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

混合积:
$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{bmatrix}$$

2. 向量关系

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$$

内容小结

二、空间直线与平面的方程

1.空间平面

一般式
$$Ax + By + Cz + D = 0$$
 $(A^2 + B^2 + C^2 \neq 0)$ 点法式 $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

截距式
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

点: (x_0, y_0, z_0) 向是,录 (A, B, C)

法向量: $\vec{n} = (A, B, C)$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

2.空间直线

一般式
$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

对称式
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$

参数式
$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

 (x_0, y_0, z_0) 为直线上一点;

 $\vec{s} = (m, n, p)$ 为直线的方向向量.

两点式(略)

三、线面之间的相互关系

1.面与面的关系

平面
$$\Pi_1: A_1x + B_1y + C_1z + D_1 = 0$$
, $\vec{n}_1 = (A_1, B_1, C_1)$

平面
$$\Pi_2: A_2x + B_2y + C_2z + D_2 = 0$$
, $\overrightarrow{n}_2 = (A_2, B_2, C_2)$

垂直:
$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$
 \longrightarrow $A_1A_2 + B_1B_2 + C_1C_2 = 0$

平行:
$$\vec{n}_1 \times \vec{n}_2 = \vec{0}$$
 $\longrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

夹角公式:
$$\cos \varphi = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$$

2.线与线的关系

直线
$$L_1$$
: $\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}$, $\overrightarrow{s}_1 = (m_1, n_1, p_1)$

直线
$$L_2$$
: $\frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$, $\overrightarrow{s_2} = (m_2, n_2, p_2)$

垂直:
$$\overrightarrow{s_1} \cdot \overrightarrow{s_2} = 0$$
 $m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$

平行:
$$\overrightarrow{s_1} \times \overrightarrow{s_2} = \overrightarrow{0} \longrightarrow \frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$$

夹角公式:
$$\cos \varphi = \frac{|\vec{s_1} \cdot \vec{s_2}|}{|\vec{s_1}||\vec{s_2}|}$$

3.面与线间的关系

平面:
$$Ax + By + Cz + D = 0$$
, $\vec{n} = (A, B, C)$

直线:
$$\frac{x-x}{m} = \frac{y-y}{n} = \frac{z-z}{p}, \overrightarrow{s} = (m, n, p)$$

垂直:
$$\overrightarrow{s} \times \overrightarrow{n} = \overrightarrow{0}$$
 $\longrightarrow \frac{m}{A} = \frac{n}{B} = \frac{p}{C}$

平行:
$$\overrightarrow{s} \cdot \overrightarrow{n} = 0$$
 $\longrightarrow mA + nB + pC = 0$

夹角公式:
$$\sin \varphi = \frac{|\overrightarrow{s} \cdot \overrightarrow{n}|}{|\overrightarrow{s}||\overrightarrow{n}|}$$

4. 相关的几个问题

(1) 过直线

$$L: \begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

的平面束方程

$$\lambda_{1}(A_{1}x + B_{1}y + C_{1}z + D_{1}) + \lambda_{2}(A_{2}x + B_{2}y + C_{2}z + D_{2}) = 0$$

$$(\lambda_{1}, \lambda_{2}$$
 不全为 0)

注: 一般取 $\lambda_1 = 1$

(2)点 $M_0(x_0, y_0, z_0)$ 到平面 $\Pi: Ax+By+Cz+D=0$ 的距离为

$$d = \frac{|\overrightarrow{M_1 M_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$$

$$= \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

$$M_{1}(x_{1}, y_{1}, z_{1})$$

$$\overrightarrow{M_{1}M_{0}} \cdot \overrightarrow{n} = A(x_{0} - x_{1}) + B(y_{0} - y_{1}) + C(z_{0} - z_{1})$$

$$= Ax_{0} + By_{0} + Cz_{0} + D$$

(3) 点 $M_0(x_0, y_0, z_0)$ 到直线

$$L: \frac{x - x_1}{m} = \frac{y - y_1}{n} = \frac{z - z_1}{p}$$

的距离为

$$d = \frac{\left| \overrightarrow{M_0 M_1} \times \overrightarrow{s} \right|}{\left| \overrightarrow{s} \right|}$$

$$= \frac{1}{\sqrt{m^2 + n^2 + p^2}}$$

$$\overrightarrow{s} = (m, n, p) \qquad \qquad M_1(x_1, y_1, z_1)$$

 $M_0(x_0, y_0, z_0)$

$$= \frac{1}{\sqrt{m^2 + n^2 + p^2}} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ m & n & p \end{vmatrix}$$

内容小结

四、空间曲面与曲线

- 1. 空间曲面 \longrightarrow 三元二次方程 F(x, y, z) = 0
 - 珠面 $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$
 - 旋转曲面

如,曲线 $\begin{cases} f(y,z) = 0 \\ x = 0 \end{cases}$ 绕 z 轴的旋转曲面:

$$f(\pm\sqrt{x^2+y^2},z)=0$$

・柱面

如,曲面F(x, y) = 0表示母线平行z轴的柱面.

又如,椭圆柱面,双曲柱面,抛物柱面等.

1. 二次曲面 \longrightarrow 三元二次方程 F(x, y, z) = 0

• 椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 • 椭圆锥面: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$

• 抛物面:

椭圆抛物面

$$\frac{x^2}{2p} + \frac{y^2}{2a} = z$$

双曲抛物面

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z \qquad \frac{x^2}{2p} - \frac{y^2}{2q} = z$$

注意 当p,q < 0时曲面的形状,留作思考题.

•双曲面:单叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

双叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

•空间曲面的参数方程含两个参数,形如

$$\begin{cases} x = x(s,t) \\ y = y(s,t) \\ z = z(s,t) \end{cases}$$

例如 球面参数方程为

$$\begin{cases} x = a \sin \varphi \cos \theta \\ y = a \sin \varphi \sin \theta \\ z = a \cos \varphi \end{cases} \qquad \begin{pmatrix} 0 \le \varphi \le \pi \\ 0 \le \theta \le 2\pi \end{pmatrix}$$

内容小结

1. 空间曲线 \longrightarrow 三元二次方程组 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$

•空间曲线的参数方程,形如

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

- 化一般方程为参数方程
- •空间曲线的投影方程

实例分析

例1. 设一平面平行于已知直线 $\begin{cases} 2x-z=0\\ x+y-z+5=0 \end{cases}$

且垂直于已知平面7x-y+4z-3=0, 求该平面法线的的方向余弦.

提示: 已知平面的法向量 $\vec{n}_1 = (7, -1, 4)$

求出已知直线的方向向量 $\vec{s} = (1,1,2)$

取所求平面的法向量
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \end{vmatrix}$$
 $\vec{n} = \vec{s} \times \vec{n}_1 = \begin{vmatrix} 1 & 1 & 2 \\ 7 & -1 & 4 \end{vmatrix} = 2(3, 5, -4)$

所求为
$$\cos \alpha = \frac{3}{\sqrt{50}}$$
, $\cos \beta = \frac{5}{\sqrt{50}}$, $\cos \gamma = \frac{-4}{\sqrt{50}}$

例2. 求过直线 L: $\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$ 且与平面 x-4y-8z

$$x - z + 4 = 0$$

+12=0 夹成 $\frac{\pi}{4}$ 角的平面方程.

提示: 过直线 L 的平面束方程

$$(1+\lambda)x + 5y + (1-\lambda)z + 4\lambda = 0$$

其法向量为 $\vec{n}_1 = (1 + \lambda, 5, 1 - \lambda)$.

已知平面的法向量为 $\vec{n} = (1, -4, -8)$

选择
$$\lambda$$
 使 $\cos \frac{\pi}{4} = \frac{|\vec{n} \cdot \vec{n}_1|}{|\vec{n}||\vec{n}_1|}$ $\longrightarrow \lambda = -\frac{3}{4}$

从而得所求平面方程 x + 20y + 7z - 12 = 0.

易证,平面x-z+4=0亦满足条件.

例3. 求过点
$$M_0(1,1,1)$$
 且与两直线 $L_1: \begin{cases} y=2x \\ z=x-1 \end{cases}$
 $L_2: \begin{cases} y=3x-4 \\ z=2x-1 \end{cases}$ 都相交的直线 L .

提示1: 思路: 先求交点 M_1, M_2 ; 再写直线方程.

$$L_1: \begin{cases} x = t \\ y = 2t \\ z = t - 1 \end{cases}$$
, $L_2: \begin{cases} x = t \\ y = 3t - 4 \\ z = 2t - 1 \end{cases}$

设 L 与它们的交点分别为

$$M_1(t_1, 2t_1, t_1 - 1), M_2(t_2, 3t_2 - 4, 2t_2 - 1).$$

M_0, M_1, M_2 三点共线

$$\longrightarrow M_0M_1//M_0M_2$$

$$t_1 = 0, t_2 = 2$$

$$M_1(0,0,-1), M_2(2,2,3)$$

$$L: \frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$$

$$M_1$$
 L_2
 M_2
 M_1
 L_2

$$M_0(1,1,1), \quad M_1(t_1,2t_1,t_1-1), \quad M_2(t_2,3t_2-4,2t_2-1)$$

例3. 求过点 $M_0(1,1,1)$ 且与两直线 $L_1: \begin{cases} y=2x \\ z=x-1 \end{cases}$ $L_2: \begin{cases} y=3x-4 \\ z=2x-1 \end{cases}$ 都相交的直线 L.

提示2: 思路: 先求过点 M_0

与直线 L 的平面方程:

$$M_3(0,0,-1) \in L_1$$
 $\vec{n} = (1,2,1) \times \overline{M_3 M_0} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = (3,-1,-1)$

$$\Rightarrow 3(x-1)-(y-1)-(z-1)=0, \text{$\mathbb{P} 3x-y-z-1=0$}$$

再代入 L_2 参数方程,求出 $M_2(2,2,3)$, M_0M_2 与 L_1 不平行 故连接 M_0 , M_2 的直线必与 L_1 相交,即得所求直线.

例4. 求已知两直线
$$L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z+3}{2}$$
 和

$$L_2: \frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{2}$$
,求它们的公垂线. P48

提示 公垂线L与 L_1 的交点为 M_1 ,与 L_2 的交点为 M_2 ,有:

$$M_1(1+2t_1,2+3t_1,-3+2t_1),$$

 $M_2(1+t_2,-1+2t_2,2t_2),$

两直线方向向量: $\vec{S}_1 = (2,3,2), \vec{S}_2 = (1,2,2),$

令
$$\vec{S} = \vec{S}_1 \times \vec{S}_1$$
,必有 $\vec{M}_1 \vec{M}_2 / |\vec{S}|$

由坐标成比例,求出 t_1 与 t_2 ,即得 M_1 与 M_2 坐标,方程即得.

例5.直线 $L: \frac{x-1}{0} = \frac{y}{1} = \frac{z}{1}$ 绕 z 轴旋转一周,求此旋转曲面的方程.

提示: 在 L 上任取一点 $M_0(1, y_0, z_0)$

设M(x,y,z)为 M_0 绕z轴旋转轨迹上任一点,则有

$$\begin{cases} z = z_0 = y_0 \\ x^2 + y^2 = |QM_0|^2 = 1 + y_0^2 \end{cases}$$

将 $y_0 = z$ 代入第二方程,

得旋转曲面方程

$$x^2 + y^2 - z^2 = 1$$

