Facial Keypoints Detection

The task: The objective of this task is to predict keypoint positions on face images. Detecing facial key points is a very challenging problem.

What type of problem: This keypoint detection problem is a regression problem since we are predicting the coordinates for the landmarks on the face which are real numbers. Detection of facial keypoints is very useful for a number of tasks like facial recognition, detection etc. The keypoints selected in this code uses 15 keypoints representing the various coordinates on the human face.

Dataset: The dataset for this problem was downloaded from Kaggle. In the space of pixel indices, each anticipated keypoint is defined as a (x,y) real-valued pair. The following components of the face are represented by 15 keypoints. The input picture is a list of pixels (sorted by row) stored as numbers in the final field of the data files (0,255). The pictures have a resolution of 96x96 pixels.

#	Column	Non-Null Count	Dtype	
0	left_eye_center_x	7039 non-null	float64	
1	left_eye_center_y	7039 non-null	float64	
2	right_eye_center_x	7036 non-null	float64	
3	right_eye_center_y	7036 non-null	float64	
4	left_eye_inner_corner_x	2271 non-null	float64	
5	left_eye_inner_corner_y	2271 non-null	float64	
6	left_eye_outer_corner_x	2267 non-null	float64	
7	left_eye_outer_corner_y	2267 non-null	float64	
8	right_eye_inner_corner_x	2268 non-null	float64	
9	right_eye_inner_corner_y	2268 non-null	float64	
10	right_eye_outer_corner_x	2268 non-null	float64	
11	right_eye_outer_corner_y	2268 non-null	float64	
12	left_eyebrow_inner_end_x	2270 non-null	float64	
13	left_eyebrow_inner_end_y	2270 non-null	float64	
14	left_eyebrow_outer_end_x	2225 non-null	float64	
15	left_eyebrow_outer_end_y	2225 non-null	float64	
16	right_eyebrow_inner_end_x	2270 non-null	float64	
17	right_eyebrow_inner_end_y	2270 non-null	float64	
18	right_eyebrow_outer_end_x	2236 non-null	float64	
19	right_eyebrow_outer_end_y	2236 non-null	float64	
20	nose_tip_x	7049 non-null	float64	
21	nose_tip_y	7049 non-null	float64	
22	mouth_left_corner_x	2269 non-null	float64	
23	mouth_left_corner_y	2269 non-null	float64	
24	mouth_right_corner_x	2270 non-null	float64	
25	mouth_right_corner_y	2270 non-null	float64	
26	mouth_center_top_lip_x	2275 non-null	float64	
27	<pre>mouth_center_top_lip_y</pre>	2275 non-null	float64	
28	<pre>mouth_center_bottom_lip_x</pre>	7016 non-null	float64	
29	<pre>mouth_center_bottom_lip_y</pre>	7016 non-null	float64	
30	Image	7049 non-null	object	
dtypes: float64(30), object(1)				
memory usage: 1.7+ MB				

Model: I used Convolutional Neural Network for this problem. The model was trained on a set of approx 1700 images and around 300 images were taken for validation purposes.

The images were grayscale and had the shape 96 X 96. The network architecture is shown below.

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	96, 96, 32)	288
batch_normalization (BatchNo	(None,	96, 96, 32)	128
max_pooling2d (MaxPooling2D)	(None,	48, 48, 32)	0
conv2d_1 (Conv2D)	(None,	48, 48, 32)	9216
max_pooling2d_1 (MaxPooling2	(None,	24, 24, 32)	0
conv2d_2 (Conv2D)	(None,	24, 24, 64)	18432
batch_normalization_1 (Batch	(None,	24, 24, 64)	256
max_pooling2d_2 (MaxPooling2	(None,	12, 12, 64)	0
conv2d_3 (Conv2D)	(None,	12, 12, 128)	73728
batch_normalization_2 (Batch	(None,	12, 12, 128)	512
max_pooling2d_3 (MaxPooling2	(None,	6, 6, 128)	0
flatten (Flatten)	(None,	4608)	0
dense (Dense)	(None,	256)	1179904
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	30)	7710
Total params: 1,290,174 Trainable params: 1,289,726 Non-trainable params: 448	=		=

Hyperparameter:

Epochs= 60
batchsize= 32
Optimizer= ADAM
loss= Mean squared error
Eval metrics= Accuracy

Reason for using this algorithm: Convolutional Neural Networks (CNN) are used in a variety of applications. It is, without a doubt, the most widely used deep learning architecture. CNN has become the go-to model for every image-related issue. They outperform the competitors in terms of accuracy. The major benefit of CNN over its predecessors is that it identifies important features without the need for human intervention. CNN is computationally efficient. It performs parameter sharing and employs specific convolution and pooling methods. Thus I chose CNN baseline architecture to solve this problem of Facial keypoints detection.

Results: 85% train accuracy, 77% validation accuracy & 2.9% loss. (Score on Kaggle- 2.5 RMSE)