Affinity Matrix Constructions

Lay Kuan Loh

June 5, 2014

Given n seismograms, called s_1, s_2, \dots, s_n , each of which has m datapoints in it, we want to correlate each interval along the seismograms with the rest of them, with intervals of 60 seconds each. So, numbering the datapoints in s_i by $\{t_1, t_2, \dots, t_m\}$, we can choose groups of $\{t_1^i, \dots, t_{60}^i\}, \{t_{61}^i, \dots, t_{120}^i\}, \dots, \{t_{60\lfloor \frac{m}{60} \rfloor + 1}^i, \dots, t_m^i\}$ in s_i .

To do clustering on the seismograms s_1, s_2, \dots, s_n for an event, it is best to only have one affinity matrix A for the seismograms. You tweak the metric used to compute affinity between s_i and s_j , not compute more affinity matrices. Find the affinity between s_i and s_j by first separating them into $\{t_1^i, \dots, t_{60}^i\}, \{t_{61}^i, \dots, t_{120}^i\}, \dots, \{t_{60\lfloor \frac{m}{60} \rfloor + 1}^i, \dots, t_m^i\}$ in s_i and $\{t_1^j, \dots, t_{60}^j\}, \{t_{61}^j, \dots, t_{120}^j\}, \dots, \{t_{60\lfloor \frac{m}{60} \rfloor + 1}^i, \dots, t_m^i\}$ in s_i and $\{t_1^j, \dots, t_{60}^j\}, \{t_{61}^j, \dots, t_{120}^j\}, \dots, \{t_{60\lfloor \frac{m}{60} \rfloor + 1}^i, \dots, t_m^i\}$ in s_i and $\{t_1^j, \dots, t_{60}^j\}, \{t_{61}^j, \dots, t_{120}^j\}, \dots, \{t_{60\lfloor \frac{m}{60} \rfloor + 1}^i, \dots, t_m^i\}$ respectively. Now find the local affinity matrix B between these groups for s_i and s_j . Choose the two portions s_i^c and s_j^c in s_i and s_j giving the highest affinity, and let $A(i,j) = \max(B)$. Remember to save where s_i^c and s_j^c start and end for each s_i and s_j pair.

Perform clustering using A.