A cartesian product $A \times B$

is the set of all ordered pairs
$$(a, b)$$
 where $a \in A$ and $b \in B$
Example $A = \{1,2,3\}$ and $B = \{b,c\}$
 $A \times B = \{(1,b), (1,c), (2,b), (2,c), (3,b), (3,c)\}$

A binary relation links a member of a set A with a set B by some defined rule. We often use ordered 2-tuples to denote these. For example if $a \in A$ and $b \in B$

And a is related to b by a relation R then we can represent it by $(a,b) \in R$ or aRb.

R S AXB

Different types of relations are possible a Type equation here.nd we can explore these by using arrow diagrams (sometimes called mappings) and graphs.

Only one-to-one and many-to-one art functions. Each input has exactly

one unique output

So $x \mapsto 4x + 3$ is a function and we can write $f(x) \mapsto 4x + 3$ or f(x) = 4x + 3 $g(x) \mapsto x^{2} \text{ is also a function}$

Hashell f x = x * x or $f x = x \wedge 2$ or square $x = x \wedge 2$ $f x = x \wedge 2$ or square $x = x \wedge 2$ $f x = x \wedge 2$ or square $x = x \wedge 2$ $f x = x \wedge 2$ or square $f x = x \wedge 2$ $f x = x \wedge 2$ or square $f x = x \wedge 2$ $f x = x \wedge 2$ $f x = x \wedge 2$ or square $f x = x \wedge 2$ $f x = x \wedge 2$ f x =