DEVOIR À LA MAISON N°: CORRIGÉ

Problème 1 — Homographies conservant $\mathbb U$

Partie I – Un exemple

1. a. Soit $z \in \mathbb{U}$. Alors $\overline{z} = \frac{1}{z}$. Dans ce cas

$$\overline{h(z)} = -i\frac{1+\overline{z}}{1-\overline{z}} = -i\frac{1+\frac{1}{z}}{1-\frac{1}{z}} = -i\frac{z+1}{z-1} = h(z)$$

Par conséquent, $h(z) \in \mathbb{R}$.

b. Soit $z \in \mathbb{D}$. On met h(z) sous forme algébrique :

$$h(z) = i\frac{1+z}{1-z} = i\frac{(1+z)(1-\overline{z})}{(1-z)(1-\overline{z})} = i\frac{1+2i\operatorname{Im}(z)-|z|^2}{|1-z|^2} = \frac{-2\operatorname{Im}(z)+i(1-|z|^2)}{|1-z|^2}$$

Ainsi $\operatorname{Im}(\mathsf{h}(z)) = \frac{1-|z|^2}{|1-z|^2} > 0$ puisque |z| < 1 et $\operatorname{donch}(z) \in \mathbb{P}$.

c. On résout l'équation suivante :

$$h(z) = z$$

$$\vdots \frac{1+z}{1-z} = z$$

$$\iff \qquad \qquad \vdots + iz = z - z^2$$

$$\iff \qquad \qquad z^2 + (i-1)z + i = 0$$

Le discriminant de ce trinôme est $(i-1)^2-4i=-6i$. Une racine carrée de ce discriminant est $\sqrt{3}(1-i)$. Les points fixes de h sont donc $\frac{(1+\sqrt{3})(1-i)}{2}$ et $\frac{(1-\sqrt{3})(1-i)}{2}$.

d. On résout à nouveau l'équation suivante :

$$h(z) = Z$$

$$\downarrow \frac{1+z}{1-z} = Z$$

$$\Leftrightarrow \qquad \qquad i+iz = z - zZ$$

$$\Leftrightarrow \qquad \qquad (Z+i)z = Z-i$$

Cette équation n'admet donc une solution que pour $Z \neq -i$.

2. a. Soit $z \in \mathbb{R}$. Alors $\overline{z+\mathfrak{i}}=z-\mathfrak{i}$ et donc $|z+\mathfrak{i}|=|z-\mathfrak{i}|$. Ainsi |g(z)|=1 i.e. $g(z)\in \mathbb{U}$.

b. Soit $z \in \mathbb{P}$. On a $|z-\mathfrak{i}|^2 = (z-\mathfrak{i})(\overline{z}+\mathfrak{i}) = |z|^2 + 1 - 2\operatorname{Im}(z)$ et $|z+\mathfrak{i}|^2 = (z+\mathfrak{i})(\overline{z}-\mathfrak{i}) = |z|^2 + 1 + 2\operatorname{Im}(z)$. Puisque $\operatorname{Im}(z) > 0$, $|z-\mathfrak{i}|^2 < |z+\mathfrak{i}|^2$ puis $|z-\mathfrak{i}| < |z+\mathfrak{i}|$ et donc |g(z)| < 1 i.e. $g(z) \in \mathbb{D}$.

Partie II –

1. Soit $z \in \mathbb{U}$. Alors $|h(z)| = \frac{|e^{i\theta}|}{|z|} = 1$ puisque |z| = 1.

- 2. **a.** h est bien de la forme $z\mapsto \frac{\alpha z+b}{cz+d}$ avec $\alpha=e^{i\theta}$, $b=e^{i\theta}\alpha$, $c=\overline{\alpha}$ et d=1. De plus, $\alpha d-bc=e^{i\theta}-e^{i\theta}\alpha\overline{\alpha}=(1-|\alpha|^2)e^{i\theta}\neq 0$ puisque $\alpha\notin\mathbb{U}$. h est donc bien une homographie. Par ailleurs, $\overline{\alpha}z+1=0\iff z=-\frac{1}{\alpha}$. Puisque, $|\alpha|\neq 1$, $\left|-\frac{1}{\alpha}\right|=\frac{1}{|\alpha|}\neq 1$. Ceci montre que h est définie sur \mathbb{U} .
 - **b.** Soit $z \in \mathbb{U}$. Alors $\overline{z} = \frac{1}{z}$ et

$$\overline{h(z)} = e^{-i\theta} \frac{\overline{z} + \overline{\alpha}}{\alpha \overline{z} + 1} = \frac{1}{e^{i\theta}} \frac{\frac{1}{z} + \overline{\alpha}}{\alpha \frac{1}{z} + 1} = \frac{1}{e^{i\theta}} \frac{1 + \overline{\alpha}z}{\alpha + z} = \frac{1}{h(z)}$$

On en déduit que |h(z)| = 1.

3. a. Soit $z \in \mathbb{U}$. On a donc $h(z) \in \mathbb{U}$ et ainsi $\overline{h(z)} = \frac{1}{h(z)}$.

$$\overline{h(z)} = \frac{1}{h(z)}$$

$$\Rightarrow \frac{\overline{az} + \overline{b}}{\overline{cz} + \overline{d}} = \frac{cz + d}{az + b}$$

$$\Rightarrow (\overline{az} + \overline{b})(az + b) = (\overline{cz} + \overline{d})(cz + d)$$

$$\Rightarrow |a|^2 + \overline{ab}\frac{1}{z} + a\overline{bz} + |b|^2 = |c|^2 + \overline{c}\frac{d}{z} + c\overline{dz} + |d|^2 \quad \text{car } z \in \mathbb{U}$$

$$\Rightarrow a\overline{bz}^2 + (|a|^2 + |b|^2)z + \overline{ab} = c\overline{dz}^2 + (|c|^2 + |d|^2)z + \overline{c}d$$

$$\Rightarrow (a\overline{b} - c\overline{d})z^2 + (|a|^2 + |b|^2 - |c|^2 - |d|^2)z + \overline{ab} - \overline{c}d = 0$$

Ceci signifie que le trinôme $(a\overline{b}-c\overline{d})z^2+(|a|^2+|b|^2-|c|^2-|d|^2)z+\overline{a}b-\overline{c}d$ admet une infinité de racines (tous les éléments de \mathbb{U}). Ceci n'est possible que si ce trinôme est le trinôme nul. On en déduit en particulier que $\overline{a}b=\overline{c}d$ et $|a|^2+|b|^2=|c|^2+|d|^2$.

Remarque. La condition $a\overline{b} = c\overline{d}$ ne nous apprend rien de plus que la condition $\overline{a}b = \overline{c}d$ (elle lui est équivalente).

- **b.** Supposons a=0. Alors $\overline{c}d=\overline{a}b=0$. L'un des complexes c ou d est nul. On ne peut avoir c=0 sinon ad-bc=0. C'est donc que d=0. Il vient alors $|b|^2=|d|^2$ et donc |b|=|d|. d ne peut être nul sinon on aurait b=0 puis ad-bc=0. Le complexe $\frac{b}{d}$ est de module 1: il existe donc $\theta\in\mathbb{R}$ tel que $\frac{b}{d}=e^{i\theta}$. On a alors pour tout $z\in\mathbb{C}^*$, $h(z)=\frac{e^{i\theta}}{z}$.
- **c.** i. Puisque $a \neq 0$ et $\overline{a}b = \overline{c}d$, $b = \frac{\overline{c}d}{\overline{a}}$. Ainsi

$$|a|^2 + |b|^2 - |c|^2 - |d|^2 = |a|^2 + \frac{|c|^2|d|^2}{|a|^2} - |c|^2 - |d|^2 = \frac{1}{|a|^2}(|a|^2 - |c|^2)(|a|^2 - |d|^2)$$

Or on a vu que $|a|^2 + |b|^2 - |c|^2 - |d|^2 = 0$ donc $(|a|^2 - |c|^2)(|a|^2 - |d|^2) = 0$.

ii. Supposons par l'absurde que |a| = |c|. Alors

$$ad - bc = \frac{\overline{a}ad - \overline{a}bc}{\overline{a}} = \frac{|a|^2d - \overline{a}bc}{\overline{a}} = \frac{|c|^2d - \overline{a}bc}{\overline{a}} = \frac{c\overline{c}d - \overline{a}bc}{\overline{a}} = \frac{c}{\overline{a}}(\overline{c}d - \overline{a}b) = 0$$

Il y a donc contradiction.

iii. On a alors nécessairement |a| = |d| et en particulier $d \neq 0$. Pour tout z dans l'ensemble de définition de h :

$$h(z) = \frac{az + b}{cz + d} = \frac{a}{d} \frac{z + \frac{b}{a}}{\frac{c}{d}z + 1}$$

Comme $|a|=|d|, \frac{\alpha}{d}\in \mathbb{U}$ et il existe $\theta\in \mathbb{R}$ tel que $\frac{\alpha}{d}=e^{i\theta}$. Posons $\alpha=\frac{b}{a}$. Alors

$$\overline{\alpha} = \frac{\overline{b}}{\overline{a}} = \frac{a\overline{b}}{|a|^2} = \frac{c\overline{d}}{|d|^2} = \frac{c}{d}$$

Ainsi on a bien

$$h(z) = e^{i\theta} \frac{z + \alpha}{\overline{\alpha}z + 1}$$

Enfin, $|\alpha| \neq 1$ sinon on aurait $\overline{\alpha} = \frac{1}{\alpha}$ i.e. $\frac{c}{d} = \frac{a}{b}$ et finalement ad - bc = 0, ce qui est exclus.