МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Лабораторная работа 2

ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ ЭЛЕКТРОННЫМИ ВОЛЬТМЕТРАМИ

Санкт-Петербург 2016

2. ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ ЭЛЕКТРОННЫМИ ВОЛЬТМЕТРАМИ

Цель работы — изучение принципа работы цифрового вольтметра и измерительных преобразователей при измерении постоянных и переменных напряжений различной формы.

2.1. Измерение постоянных напряжений цифровыми вольтметрами

2.1.1. Структурные схемы цифровых вольтметров и их параметры

Цифровыми вольтметрами (ЦВ) называют приборы для измерения напряжения с цифровой индикацией результата. Процесс преобразования аналогового значения напряжения в цифровой код реализуется аналого-цифровым преобразователем прибора (АЦП). ЦВ обычно классифицируют по типу АЦП. Выделяют две группы: интегрирующие ЦВ и ЦВ мгновенных значений.

Первые определяют среднее напряжение за время усреднения (интегрирования). В таких вольтметрах используют медленные АЦП, которые обеспечивают высокую помехоустойчивость приборов. Вторая группа ЦВ преобразует мгновенное значение входного сигнала в один выбранный момент времени. Вольтметры мгновенного значения зависят от уровня помехи в момент измерения напряжения.

ЦВ имеют по сравнению с аналоговыми следующие достоинства:

- высокая и заранее известная точность; точность цифрового индикатора не ограничена длиной шкалы и минимальным ее делением;
- широкий диапазон измерения напряжения при постоянной точности, высокая чувствительность;
- отсутствие субъективной погрешности:

Цифровым вольтметрам присущи общие достоинства цифровых приборов — многофункциональность, отсутствие субъективных погрешностей, высокая, заранее известная точность, простота автоматизации, возможность программной обработки результатов и легкость включения в измерительные системы

К недостаткам ЦВ следует отнести относительную сложность и дороговизну, ограниченную рабочую полосу и небольшое быстродействие.

Структурная схема ЦВ общего применения представляет собой схему электронного вольтметра постоянного тока, в котором вместо стрелочного индикатора на выходе предусмотрены АЦП и цифровое табло.

Для измерения переменного напряжения используют преобразователи.

Параметры цифровых вольтметров: диапазон измерения напряжения, полоса рабочих частот, входной импеданс, время измерения. Специфические параметры ЦВ:

- Разрешающая способность (шаг квантования входного напряжения). Это минимальный интервал входного напряжения, который способен различить АЦП. Связан с разрядностью АЦП m (двоичной) следующим образом: $\Delta U = 2^{(-m)}U_{\rm max}$. Определяет минимальную погрешность измерения напряжения и порог чувствительности вольтметра. Обычно соответствует единице младшего разряда результата измерения.
- Разрядность ЦВ это число десятичных знаков (разрядов) в результате, выводимом на табло отсчетного устройства. Например, разрядность 4 знака соответствует показаниям вольтметра в интервале 0000...9999. Если старший разряд неполный (например, может принимать значения 0 и 1), то говорят о дробной разрядности вольтметра. Так, $3\frac{1}{2}$ разряда соответствует индикации результата в пределах 0000...1999, $3\frac{3}{4}$ до 3999.
- Предел допускаемой основной и дополнительной погрешности согласно ГОСТ 14014–94 указывают в стандартном виде, %: $\delta = \pm \big(c + d \, \big(U_{\text{max}}/U_x 1\big)\big), \text{ где } U_{\text{max}} \text{ верхний предел измерения.}$ Отношение c/d называют классом точности цифрового вольтметра. Иногда используют более простой вид: $\delta = \pm \big(c' + d \, \big(U_{\text{max}}/U_x\big)\big), \%.$

Формула для погрешности включает мультипликативную и аддитивную части и учитывает как погрешности квантования, так и инструментальные погрешности АЦП (нелинейность преобразования, смещение нуля) и других блоков вольтметра.

2.1.2. Цифровые вольтметры с двойным интегрированием

Интегрирующий вольтметр позволяет улучшить помехоустойчивость. Он реализует принцип время-импульсного преобразования с использованием *интегратора*. Это – аналоговый преобразователь на операционном усилителе, обеспечивающий связь между входным и выходным напряжением в виде

$$u_{\text{BMX}}(t) = \frac{1}{RC} \int_{0}^{t} u_{\text{BX}}(t) dt.$$

Здесь RC — постоянная времени интегратора, знак «минус» отражает инвертирование сигнала операционным усилителем. Структурная схема вольтметра с двойным интегрированием (двухтактным интегрированием) представлена на рис. 2.1, a, схема интегратора — на рис. 2.1, δ , а временные диаграммы, поясняющие работу вольтметра, — на рис. 2.2.

Рис. 2.1. Схемы: a — вольтметра и δ — интегратора

В начале цикла измерения устройство управления устанавливает счетчик импульсов Ст в нулевое состояние. Оператор, выполняющий измерения, через устройство управления выбирает предел измерений, тем самым устанавливает коэффициент, связывающий измеряемое напряжение U_x с напряжением $U_x' = kU_x$. Также устройство управления переводит переключатель на входе интегратора к выходу входного устройства и интегратор начинает первый цикл интегрирования в течение интервала времени T_1 . Длительность

этого интервала фиксирована и формируется из импульсов кварцевого генератора с частотой f_0 (период импульсов $T_0 = 1/f_0$) путем деления частоты в $k_{\rm L}$ раз $\left(T_1 = k_{\rm L} T_0\right)$.

Рис. 2.2. Временные диаграммы напряжений

По истечении интервала T_1 устройство управления подключает ко входу интегратора источник образцового напряжения U_0 (он имеет противоположную измеряемому напряжению полярность, в рассматриваемом случае — отрицательную). Одновременно устройство управления переводит RS-триггер T в состояние логической 1.

Напряжение с выхода интегратора поступает на один из входов компаратора, который сравнивает это напряжение с нулевым напряжением, установленным путем заземления второго входа компаратора. В момент времени

 $T_1 + T_2$ напряжение на выходе интегратора становится равным 0. В этот момент времени на выходе компаратора формируется импульс, который поступает на вход R триггера, и переводит триггер в состояние логического 0. Таким образом на выходе триггера формируется прямоугольный импульс длительностью T_2 .

На основании изложенного можно записать

$$u_2(T_1 + T_2) = -\frac{1}{RC} \int_{0}^{T_1 + T_2} u_1(t) dt = -\frac{1}{RC} \int_{0}^{T_1} U_x' dt + -\frac{1}{RC} \int_{T_1}^{T_1 + T_2} U_x' dt = 0$$

откуда $U_x'T_1 = U_0T_2$.

Измерение интервала T_2 производится методом дискретного счета. Для этого прямоугольный импульс с выхода триггера поступает на схему логического «И» (&), на второй вход схемы «И» поступают импульсы от кварцевого генератора. Импульсы генератора, попавшие в выходной импульс триггера проходят на вход счетчика Ст и подсчитываются им. Таким образом $T_2 = NT_0$. На основании изложенного можно определить искомое напряжение

$$U_x' = N \frac{U_0}{k_{\pi}}, \ U_x = U_x'/k, \ \ U_x' = N \frac{U_0}{k_{\pi}} = N \cdot 10^{-m}, \ \ m = 0, 1, 2, \dots$$

Здесь коэффициент деления частоты $k_{\rm д}$, значение опорного напряжения U_0 и коэффициент k, определяющий предел измерений, выбраны кратными 10. Из формулы следует, что ни тактовая частота, ни постоянная интегрирования RC не влияют на результат. Поэтому в качестве тактового генератора может быть использован простой генератор импульсов без особых требований к их стабильности.

В окончательный результат входит не мгновенное значение преобразуемого напряжения, а среднее значение за время T_1 . Поэтому переменное напряжение помехи, попадающее на вход АЦП, ослабляется, причем тем сильнее, чем выше его частота.

Основные слагаемые погрешности АЦП двойного интегрирования:

- погрешность установки опорного напряжения и его нестабильность;
- погрешность интегратора, вызывающая нелинейность напряжения на его выходе;
- погрешность сравнения напряжения в компараторе, его дрейф нуля;

• погрешность дискретности.

Вольтметры двойного интегрирования — наиболее популярная разновидность дешевых цифровых вольтметров и мультиметров. Погрешность их может достигать 0,02-0,05~%. Основное их достоинство — высокая помехоустойчивость.

2.2. Преобразователи электронных вольтметров

2.2.1. Параметры переменных напряжений

При измерении напряжений, меняющихся во времени, их характеризуют некоторыми средними величинами. Так, для напряжения u(t) вводят:

среднее значение (постоянная составляющая)

$$u_0 = \frac{1}{T} \int_0^T u(t) dt \,,$$

где T — период для периодического напряжения или интервал наблюдения для непериодического напряжения;

среднеквадратичное значение напряжения

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt};$$

средневыпрямленное значение напряжения

$$U_{\rm CB} = \frac{1}{T} \int_{0}^{T} |u(t)| dt.$$

Наряду с усредненными параметрами напряжение u(t) можно охарактеризовать максимальным (пиковым) значением на интервале наблюдения (рис. 2.3) U_m^+ и U_m^- . Для гармонического напряжения эти значения равны и определяют *амплитуду* U_m .

Рис. 2.3. Пиковое значение напряжения

Напряжение заданной формы можно охарактеризовать коэффициентом амплитуды $k_{\rm a}=U_m/U$ и коэффициентом формы $k_{\rm \varphi}=U/U_{\rm CB}$. Указанные коэффициенты позволяют, измерив одно из напряжений U_m , U или $U_{\rm CB}$, рассчитать два оставшихся. Так для напряжения гармонической формы

$$u(t) = U_m \cos(\omega t + \varphi) k_a = 1.41$$
, a $k_{\Phi} = 1.11$.

2.2.2. Преобразователи среднеквадратических значений напряжения

Для измерения вышеперечисленных параметров напряжения u(t) его преобразуют в соответствующее постоянное напряжение с помощью измерительных преобразователей. Такие преобразователи содержат нелинейный элемент.

В преобразователях среднеквадратичного значения напряжения переменное напряжение преобразуется в постоянную составляющую тока, пропорциональную среднеквадратическому значению напряжения U при любой его форме. Согласно определению среднеквадратичного значения напряжения соответствующий вольтметр должен выполнить следующие операции: возвести напряжения в квадрат, усреднить его и извлечь квадратный корень. Первую операцию осуществляет преобразователь, вторую — фильтр нижних частот или магнитоэлектрический измерительный механизм, третья операция выполняется обычно при калибровке вольтметра.

Квадратичная характеристика $i=au^2$ создается в виде кусочно-линейной аппроксимации рис. 2.4 с помощью схемы, представленной на рис. 2.5. Напряжения U_1 , U_2 и U_3 (рис. 2.5) создаются от источника питания E с помощью резистивных делителей и являются по отношению к диодам D_1 , D_2 и D_3 запирающими ($U_1 < U_2 < U_3$). Если подать на вход схемы гармоническое напряжение, то диоды D_{01} и D_{02} будут работать как двухполупериодный выпрямитель (полпериода открыт диод D_{01} , а следующие полпериода — диод D_{02}). После диодов ток течет через сопротивление R_0 , затем переменная составляющая тока течет через конденсатор C, а постоянная через магнито-электрический механизм μA . Так образуется участок вольтамперной характеристики на участке от $-U_1$ до U_1 . Если уровень входного напряжения превысит значение U_1 , то откроется диод D_1 и сопротивление R_0 будет зашунтировано сопротивлением R_1 , что приведет к увеличению наклона вольтамперной характеристики на участке $U_1 < |u| < U_2$ (рис. 2.4). Если уровень входного на-

пряжения превысит значение U_2 , то дополнительно откроется диод D_2 и сопротивление R_0 будет зашунтировано сопротивлениями R_1 и R_2 , наклон вольтамперной характеристики еще более возрастет, и т. д.

Рис. 2.4. Кусочно-линейная аппроксимация квадратичной характеристики

Рис. 2.5. Схема квадратичного преобразователя

В настоящее время для построения детекторов среднеквадратического значения широко используют аналоговые функциональные элементы – квадраторы (перемножители сигналов) и логарифмирующие усилители. В качестве примера рассмотрим схему среднеквадратического детектора, использующего логарифмические преобразования сигнала (рис. 2.6).

В детекторе реализуется следующая цепочка преобразований входного сигнала:

$$u(t) \rightarrow |u(t)| \rightarrow \ln|u(t)| \rightarrow 2\ln|u(t)| \rightarrow \ln(u^2(t)) - \ln U = \ln\frac{u^2(t)}{U}...$$

Рис. 2.6. Схема среднеквадратического детектора с логарифмическими преобразователями

$$\cdots \to \exp\left(\ln\frac{u^2(t)}{U}\right) = \frac{u^2(t)}{U} \to \frac{1}{UT} \int_0^T \left[u(t)\right]^2 dt = U.$$

Входной сигнал выпрямляется и логарифмируется. Затем масштабный усилитель умножает его на два, что эквивалентно возведению в квадрат исходного напряжения. Дифференциальный усилитель осуществляет обратную связь, вычитая из логарифма квадрата напряжения логарифм выходного напряжения детектора U. Это эквивалентно делению квадрата напряжения на выходное напряжение. Осуществляя операцию антилогарифмирования и усредняя результат интегратором (ФНЧ), получаем постоянное напряжение, равное среднеквадратическому значению входного сигнала. Такой детектор обеспечивает широкий динамический диапазон и высокую точность преобразования. Его частотные свойства определяются широкополосностью элементов схемы.

Такие схемы применяют для измерения среднеквадратического значения (СКЗ) шумовых сигналов. Они обычно имеют высокий пик-фактор (большое отношение пикового значения к СКЗ), широкий частотный спектр. Для них используют широкополосные вольтметры с расширенным динамическим диапазоном. Для усреднения таких сигналов требуется обычно увеличенное время интегрирования (сглаживания).

В данной лабораторной работе измеряется среднеквадратическое значение шумового напряжения, имеющего равномерное распределение в интервале напряжений от $-U_m$ до U_m и представленное на рис. 2.7. Дисперсия такого распределения равна $D = \sigma^2 = U_m^2/3$. Соответственно, среднеквадратичное значение напряжения шума равно $\sigma = U_m/\sqrt{3}$.

Рис. 2.7. Равномерное распределение

Рис. 2.8. Преобразователь с перемножителем

Для формирования среднего квадрата переменного напряжения U^2 можно использовать схему с перемножителем напряжения и его усреднением с помощью фильтра нижних частот (рис. 2.8). Для формирования средне-квадратичного напряжения U применяют логарифмическое преобразование, делитель и экспоненциальное преобразование.

2.2.3. Преобразователи средневыпрямленных значений напряжения

В преобразователях средневыпрямленного значения напряжения показания соответствуют средневыпрямленному значению напряжения $U_{\rm cB}$. Схема преобразователя представлена на рис. 2.9.

Рис. 2.9. Преобразователь средневыпрямленного значения напряжения

Рис. 2.10. Вольтамперная характеристика преобразователя

Ток через микроамперметр протекает в одном и том же направлении в течение обоих полупериодов переменного напряжения (в положительный полупериод по цепи D_2 –R– D_3 , а в отрицательный – по цепи D_4 –R– D_1). При использовании линейного участка сопротивления диода (рис. 2.10) показания микроамперметра будут пропорциональны средневыпрямленному значению напряжения $U_{\rm CB}$.

2.2.4. Преобразователи пикового значения напряжения

В вольтметрах амплитудного значения измеряемое переменное напряжение преобразуется в постоянное напряжение, равное (близкое) амплитудному. На рис. 2.11 и 2.12 представлены простейшие схемы преобразователей амплитудных вольтметров.

На рис. 2.11 представлен преобразователь последовательного типа с открытым входом. Если на вход подано гармоническое напряжение $u(t) = U_m \sin \omega t$ (рис. 2.13), то конденсатор C будет заряжаться током заряда i_3 через внутреннее сопротивление источника R_i и открытый диод D.

Рис. 2.13. Временные диаграммы входного напряжения и напряжения на конденсаторе

 t_2 t_3

Скорость заряда определяется постоянной времени заряда $\tau_3 = R_i C$. На интервалах времени, когда напряжение на конденсаторе больше входного напряжения, диод закрывается и происходит разряд емкости током i_p с постоянной времени разряда $\tau_p = RC$. Если $\tau_3 << T$ (T — период гармонического напряжения), а $\tau_p >> T$, то напряжение на конденсаторе $u_C(t)$ будет близко к амплитудному значению входного напряжения U_m . Это напряжение будет уже практически постоянным.

Однако на низких частотах могут возникнуть значительные погрешности. Так, для схемы с открытым входом на интервале от t_1 до t_2 происходит разряд конденсатора и напряжение на нем падает по закону

$$u_C(t) = U_m e^{-(t-t_1)/\tau_p} \approx U_m \left(1 - \frac{t-t_1}{\tau_p}\right).$$

На интервале от t_2 до t_3 конденсатор подзаряжается до амплитудного значения U_m . В силу малости длительности этого интервала по сравнению с периодом T можно рассчитать среднее за период напряжение на конденсаторе

$$U_{C_0} = \frac{1}{T} \int_{t_1}^{t_1+T} U_C(t) dt \approx \frac{U_m}{T} \int_{t_1}^{t_2} \left(1 - \frac{t - t_1}{\tau_p} \right) dt = \frac{U_m}{T} \left[t_2 - t_1 - \frac{\left(t_2 - t_1 \right)^2}{2\tau_p} \right] \approx$$

$$\approx \frac{U_m}{T} \left(T - \frac{T^2}{2\tau_p} \right) = U_m \left(1 - \frac{T}{2\tau_p} \right).$$
(2.1)

При $T/2\tau_{\rm p} <<$ 1 $U_{C_0} \approx U_m$. Однако на низких частотах это неравенство не выполняется и возникает погрешность измерения амплитуды.

Если подать на преобразователь открытого типа импульсное напряжение (рис. 2.14), то при выполнении условий $\tau_3 << \tau$ (τ – длительность импульса) и $\tau_p >> T$ напряжение на выходе будет близко к амплитудному значению U_m .

Рис. 2.14. Импульсное напряжение и напряжение на конденсаторе

Во время действия импульса длительностью т напряжение на конденсаторе изменяется и в момент окончания импульса становится равным

$$u_C(\tau) = U_m \left(1 - \exp(-\tau/\tau_3) \right), \tag{2.2}$$

где $\tau_3 = R_i C$ — постоянная времени цепи заряда конденсатора.

Рассмотренное импульсное напряжение содержит постоянную состав-

ляющую
$$U_0 = \frac{1}{T} \int\limits_0^T u(t) dt = U_m \frac{\tau}{T}$$
. Выходное напряжение преобразователя

закрытого типа $u_R(t) = u(t) - u_C(t)$. Поскольку $u_C \approx U_m$, то $u_R(t)$ будет иметь вид, представленный на рис. 2.15. Электромеханический измерительный механизм измерит постоянную составляющую этого напряжения

$$\frac{1}{T} \int_{\tau}^{T} u(t)dt = U_{m} \left(1 - \frac{\tau}{T} \right).$$

Рис. 2.15. Напряжение на резисторе

В результате вместо амплитуды импульса U_m будет измерено значение $U_m - U_0$. То есть преобразователь закрытого типа не пропускает постоянную составляющую напряжения.

2.3. Описание лабораторной установки

Лабораторная установка (рис. 2.16) состоит из цифрового вольтметра GDM-8246, генератора сигналов специальной формы АКИП-3407/4, осциллографа GOS-620 для наблюдения формы исследуемых напряжений и лабораторного макета преобразователей переменного напряжения в постоянное напряжение, численно равное среднеквадратическому, средневыпрямленному или пиковому напряжению. Выбор соответствующего преобразователя осуществляется переключателем макета (Пик, СВ, СК). В положении Пр (прямое соединение) напряжение генератора напрямую поступает на вольтметр, минуя преобразователи). На макете также имеется переключатель *открытого* или закрытого входа. В последнем случае на входе макета подключается разделительный конденсатор, препятствующий прохождению постоянной составляющей входного напряжения.

Цифровой вольтметр GDM-8246 предназначен для измерения постоянного напряжения, а также для измерения среднеквадратического значения

Рис. 2.16. Структурная схема лабораторной установки

переменного напряжения. Входное сопротивление вольтметра -10 МОм. Входная емкость - не более 100 пФ.

При расчете погрешностей измерения постоянных напряжений следует использовать табл. 2.1.

Таблица 2.1

Предел	Разрешение (значение единицы младшего разряда)	Абсолютная погрешность ¹	
500 мВ	10 мкв	$\pm(0,0002X+4k)$	
5 B	100 мкВ	$\pm(0.0002X+2k)$	

¹Здесь X — измеренное значение, k — разрешение (оба слагаемых должны быть выражены в одинаковых единицах).

Таблица 2.2

Предел	Полоса частот	Разрешение	Абсолютная погрешность
	2050 Гц		$\pm(0.01X+10k)$
	50 Гц2 кГц		$\pm(0,003X+30k)$
500 мВ	210 кГц		$\pm(0,004X+50k)$
300 MB	1020 кГц		$\pm(0.005X + 50k)$
	2050 кГц		$\pm(0.02X+20k)$
	50100 кГц	10 мкВ	$\pm(0,005X+50k)$
	2050 Гц	10 MKD	$\pm(0.01X+10k)$
	50 Гц2 кГц		$\pm(0,003X+30k)$
5 B	20 кГц		$\pm(0,004X+50k)$
3 В	1020 кГц		$\pm(0,005X+50k)$
	2050 кГц		$\pm(0.02X + 20k)$
	50100 кГц		$\pm(0.005X + 50k)$

При расчете погрешностей измерения переменных напряжений следует использовать табл. 2.2.

Назначение основных органов управления вольтметром указано в табл. 2.3.

Таблица 2.3

Обозначение	Назначение
POWER	Включение-выключение питания
	[DCV] выбор режима измерения постоянного напряжения (более 500 мВ)
DCV/DCmV	[DCmV] выбор режима измерения постоянного напряжения (менее
	500 mB)
	[ACV] выбор режима измерения переменного напряжения (более 500 мВ)
ACV/ACmV	[ACmV] выбор режима измерения переменного напряжения (менее
	500 MB)
AUTO/MAN	Переключение автоматический, ручной выбор предела измерений
SHIFT	Кнопка-префикс

Генератор сигналов специальной формы АКИП-3407/4 имеет 2 канала A и B, выходы которых подключаются нажатием клавиш *CHA Output* или *CHB Output*. Генератор может формировать напряжения различной формы, при этом можно изменять уровень напряжения, его частоту и ряд других параметров. Режимы работы генератора и параметры вырабатываемых сигналов отображаются на дисплее: в левой части дисплея отображается форма сигнала канала A (*CH A*). В центральной верхней части дисплея отображается форма сигнала канала B (*CH B*).

Для установки требуемого параметра сигнала генератора необходимо нажать один или несколько раз соответствующую клавишу, например Amplitude. Затем набрать с помощью цифровой клавиатуры численное значение параметра, например 2.583. Завершить ввод следует нажатием клавиши размерности параметра, например V_{pp} или в случае частоты — kHz. Для изменения численного значения параметра можно также вращать круглый регулятор в правом верхнем углу лицевой панели генератора. Кнопками \triangleleft и \triangleright выберите разряд на цифровом индикаторе, с шагом которого будет изменяться значение параметра при вращении ручки. Значение параметра можно изменять также кнопками \triangleleft и \blacktriangledown .

Для наблюдения формы напряжения, вырабатываемого генератором используется осциллограф GOS-620. При этом регулировка параметров осциллограммы осуществляется ручками VOLTS/DIV (вольт на деление) и TIME/DIV (время на деление). Для синхронизации осциллограммы необходимо вращать ручку LEVEL (уровень).

2.4. Задание и указания к выполнению работы

2.4.1. Измерение постоянных напряжений

Соедините через тройник кабелем выход канала B генератора АКИП-3407/4 с разъемом $Bxo\partial$ макета и входом CH1 X осциллографа. $Bыxo\partial$ макета соедините с соответствующими входными клеммами вольтметра GDM-8246: черный (синий) провод — с клеммой «земля», белый (красный) провод — с клеммой V. Установите переключатели макета в положения Πp и Omkp. Включить питание вольтметра и нажать кнопку DCV. Включить питание генератора. Нажатием на нем кнопки Channel и добиться появления на дисплее появления надписи CHB Alone (канал B один). Нажать кнопку Wave и изменить вид напряжения генератора на постоянное напряжения (B09). Для этого можно вращать регулятор в правом верхнем углу лицевой панели генератора. Нажать кнопку Amplitude и установить значение постоянного напряжения генератора 2 Vpp (постоянное напряжение 1 B).

Включить питание осциллографа и установить органы его управления в следующие положения:

```
CH1 X: в положение DC (открытый вход);
MODE: CH1;
TRIGGER: MODE AUTO,
SOURSE CH1;
VOLTS/DIV 1 V/DIV.
```

Нажать кнопку *СНВ Output* (при этом кнопка засветится и напряжение с генератора поступит на вольтметр). Линия развертки на экране осциллографа при этом сместится на 1 деление вверх, что соответствует постоянному напряжению 1 В. Провести измерение напряжения и записать результат в таблицу. Повторить измерения для напряжений, указанных в табл. 2.2.

Рассчитать погрешность измерения Δ и предел абсолютной погрешности измерения напряжения, воспользовавшись данными табл. 2.1, после чего сопоставить их значения.

2.4.2. Измерение параметров гармонического (синусоидального) напряжения

Нажмите клавишу *СНВ Output* (индикатор погаснет), тем самым выход генератора будет отключен. Переключатель макета установите в положение *Открытый* и CK, что соответствует измерению среднеквадратического напряжения. Включите питание макета. Нажмите клавишу Wave на генераторе

и установите синусоидальную форму сигнала (B00 Sine). Нажав клавишу Frequency установите частоту сигнала генератора $I\ kHz$. Нажав кнопку Amplitude установите амплитуду сигнала генератора $2V_{pp}$ (истинная амплитуда 1 В). На вольтметре нажмите клавишу DCV (для измерения постоянного напряжения на выходе макета). Подайте напряжение с генератора на вход макета нажатием клавиши CHB Output (индикатор загорится). На осциллографе установите коэффициент развертки TIME/DIV .2 ms/DIV (0,2 mc/gen). Вращением ручки LEVEL добейтесь неподвижного изображения синусоидального напряжения на экране осциллографа. В дальнейшем при изменении частоты напряжения регулируйте коэффициент развертки TIME/DIV, чтобы на экране было видно 3—8 периодов напряжения. Проведите измерение среднеквадратических значений гармонического напряжения на частотах, указанных в табл. 2.4. При изменении частоты генератора необходимо нажать на нем клавишу Frequency.

Переведите переключатель макета в положение CB и проведите измерения средневыпрямленного напряжения гармонического сигнала на частотах, указанных в табл. 2.4.

Переведите переключатель макета в положение $\Pi u \kappa$ и проведите измерения амплитудного значения напряжения гармонического сигнала на частотах, указанных в табл. 2.4.

Проведите расчет амплитуды на выходе преобразователя пикового напряжения по формуле (2.1), полагая $\tau_p = RC = 1$ мс; T = 1/f. Постройте графики экспериментальных и расчетной зависимостей параметров напряжения по данным табл. 2.4. При построении графиков используйте логарифмический масштаб по частотной оси. Эта процедура описана в прил. 3

Нажмите кнопку *Frequency* и установите частоту сигнала 100 кГц. Проведите измерение параметров гармонического напряжения для амплитуд U_m , указанных в табл. 2.5. Для этого нажмите на генераторе кнопку *Amplitude* и установите напряжение $V_{pp} = 2U_m$. Для измерения U_{ck} , U_{cg} и $U_{пиk}$ используйте переключатель на макете преобразователей. Расчетные значения параметров напряжения определите через коэффициенты амплитуды и формы гармонического сигнала ($k_a = 1,41$, а $k_{db} = 1,11$) и заданное значение U_m .

Нажмите клавишу *СНВ Output* (индикатор погаснет), тем самым выход генератора будет отключен.

2.4.3. Измерение параметров периодических несинусоидальных напряжений

Нажмите кнопку *Frequency* и установите частоту сигнала f = 50 кГц. При этом период сигнала будет равен T = 1/f = 20 мкс. Нажмите на генераторе кнопку выбора формы сигнала *Wave* и установите прямоугольную форму напряжения (B01). Форму напряжения проверяйте на экране осциллографа, регулируйте при этом масштаб ручками *VOLTS/DIV* и *TIME/DIV*. Для установления синхронизации используйте ручку *LEVEL*. Для этого можно вращать регулятор в правом верхнем углу лицевой панели генератора. Нажав кнопку *Amplitude*, установите амплитуду сигнала генератора $2V_{pp}$ ($U_m = 1$ В). При этом параметр τ/T (Duty) равен 50 %. Подайте напряжения с генератора на вход макета нажатием клавиши *CHB Output* (индикатор загорится). Результаты измерений занесите в табл. 2.6.

Проведите измерения параметров напряжений треугольной (B02), пилообразной (B03) и импульсной (B05) формы. Результаты измерений занесите в табл. 2.6. По результатам измерений рассчитайте k_a и k_{φ} для каждой формы напряжения и сравните их с теоретическими значениями.

2.4.4. Исследование показаний преобразователей в режимах открытого и закрытого входов

Переключите тройник с выхода B на выход канала A генератора. Нажмите на генераторе кнопку *Channel* и добейтесь появления на дисплее появления надписи CHA Alone (канал A один). Нажмите на кнопку A $\mathbf{\hat{V}}$ и установите тем самым синусоидальную форму напряжения генератора. Нажмите на кнопку *Frequency* и установите частоту генератора 20 кГц. После нажатия кнопки *Amplitude* установите напряжение V_{pp} $2U_m$ 4 В. Нажмите клавишу *СНА Output* и напряжение с генератора поступит на блок преобразователей. На экране осциллографа должно появиться изображение синусоидального напряжения. Добавьте к синусоидальному напряжению постоянное напряжение $U_0 = 2$ В. Для этого нажмите кнопку *Offset* и установите смещение 2 В. При этом фактическое напряжения генератора будет равно $u(t) = 2\sin \omega t + 2$ В. Осциллограмма на экране осциллографа сместится вверх. Используя переключатели макета, проведите измерение параметров поданного напряжения в режимах открытого и закрытого входов. Результаты занесите в табл. 2.7.

Нажмите на кнопку A \square и установите тем самым прямоугольную форму напряжения генератора. Нажмите на кнопку *Frequency* и установите частоту генератора 50 кГц. После нажатия кнопки *Amplitude* установите напряжение $V_{pp}=2U_m$ равным 1 В. Нажатием кнопки *Impedance* добейтесь проявления надписи *Duty*, после чего установите этот параметр равным 10 %. Проконтролируйте форму напряжения на экране осциллографа. Переключатели блока преобразователей установите в положение $\Pi u \kappa$. При этом генератор будет формировать напряжение, вид которого представлен на рис. 2.17. Отношение $T/\tau = q$ называют скважностью. Обратная величина $\tau/T = D$ (Duty). При заданной частоте с изменением Duty период не меняется, а меняется длительность τ . Рассматриваемый сигнал содержит постоянную составляющую

$$U_0 = U_m (2D-1)$$
.

Проведите измерения амплитуды импульса с помощью преобразователя пикового значения напряжения в режимах открытого и закрытого входов преобразователя для параметров Duty указанных в табл. 2.8.

2.4.5. Исследование влияния постоянной заряда на показания преобразователя пикового значения напряжения

Нажмите на кнопку A \square и установите тем самым прямоугольную форму напряжения генератора. Нажмите на кнопку *Frequency* и установите частоту генератора 15 к Γ ц. После нажатия кнопки *Amplitude* установите напряжение $V_{pp} = 2U_m$ равным 1 В. Нажмите кнопку *Offset* и установите смещение 0 В. Нажав клавишу *Duty*, установите этот параметр равным 10 %. Переключатели блока преобразователей установите в положение *Открытый вход* и *Пик*. При этом генератор будет формировать напряжение, вид которого представлен на рис. 2.14. Сравните его с изображением на осциллографе.

Рис. 2.17. Напряжение прямоугольной формы

Проведите измерения амплитуды импульса U_m с помощью преобразователя пикового значения напряжения при различных значениях Duty и результаты занесите в табл. 2.9.

Проведите расчет пикового значения напряжения по формуле (2.2), приняв при этом $R_i = 50$ Ом, а C = 1 нФ. Постройте графики результатов эксперимента и расчета по табл. 2.9.

Нажмите клавишу *СНА Output* (индикатор погаснет), тем самым выход генератора будет отключен.

2.4.6. Измерение среднеквадратических напряжений вольтметром GDM-8246

Переключите тройник с выхода A на выход канала B генератора АКИП-3407/4. На макете установите переключатель в положение Πp . Нажмите на вольтметре кнопку ACV (измерение среднеквадратического напряжения с помощью собственного преобразователя вольтметра). Нажмите на нем кнопку Channel и добейтесь появления на дисплее появления надписи CHB Alone (канал B один). Нажмите кнопку Wave и измените вид напряжения генератора на синусоидальное напряжение (B00). Для этого можно вращать регулятор в правом верхнем углу лицевой панели генератора. Нажмите кнопку Amplitude и установите значение напряжения генератора 1 Vpp ($U_m = 0,5$ B). Нажмите на кнопку Frequency и установите частоту генератора 15 к Γ ц. Нажмите кнопку CHB Output (при этом кнопка засветится и напряжение с генератора поступит на вольтметр). Проведите измерение среднеквадратического напряжения и запишите результат в таблицу. Повторите измерения для напряжений, указанных в табл. 2.10.

Рассчитайте погрешность измерения и предел абсолютной погрешности измерений напряжения, воспользовавшись данными табл. 2.2. При этом сначала определите установленное на генераторе среднеквадратическое значение напряжения $U_{\rm ck}$ через коэффициент амплитуды $k_{\rm a}$ (см. табл. 2.6), для синусоидального напряжения $k_{\rm a}=1,41$, для шума с равномерным распределением $k_{\rm a}=1,733$. Погрешность измерения — разность среднеквадратических значений напряжения, установленных на генераторе и измеренных значений.

2.4.7. Содержание отчета

Отчет должен содержать:

- краткие теоретические сведения о вольтметрах и параметрах измеряемых переменных напряжений;
- таблицы результатов измерений по установленной форме с внесенными расчетами; графики экспериментальных измерений и расчетных зависимостей (см. 2.4.2, 2.4.5);
- выводы.

2.4.8. Рекомендуемые формы таблиц

Таблица 2.3

Установленное на генераторе напряжение, V_{pp}	Установленное напряжение, $U_{\rm y}{=}\ V_{pp}\ /2$	Измеренное напряжение $U_{\rm H}$, B, (*-мВ)	Погрешность измерения $\Delta = U_{\rm y} - U_{\rm u}, {\rm MB}$	Предел абсолютной погрешности, мВ
2 B	1 B			
1 B	0,5 B			
500 мВ	0,250 B			
500 мВ	250 мВ (*)			
250 мВ	125 мВ (*)			
100 мВ	50 мВ (*)			

^(*) — перейти с вольтового предела измерений вольтметра на милливольтовый, для чего на вольтметре нажать клавишу *SHIFT*, а затем *DCmV*.

Таблица 2.4

U	f , к Γ ц								
	1	5	10	50	100	200	300	400	500
$U_{c\kappa}$									
$U_{\rm cB}$									
$U_{\text{пик}}$									
$U_{\text{пик}}$									
расчет									

Таблица 2.5

U, B		V_{pp} , B					
	-,-	0,2	0,4	1,0	2,0		
$U_{c\kappa}$	измеренное						
СК	расчетное						
$U_{c_{\mathbf{B}}}$	измеренное						
СВ	расчетное						
II	измеренное						
Спик	расчетное (U_m)	0,1	0,2	0,5	1,0		

Таблица 2.6

Вид сигнала	Номер	$U_{\text{CK}}, B U_{\text{CB}}, B U_{\text{I}}$		$U_{\text{пик}}$, В	k _a		k_{Φ}	
(один период)	сигнала	CK, Z	CB, Z	о пик, д	изм.	теор.	изм.	теор.
$\begin{array}{c c} U \\ \tau \\ \hline 0 \end{array}$	B01					1		1
$\begin{array}{c c} U \\ \hline \\ 0 \end{array}$	B02					1,733		1,155
	В03					1,733		1,155
$\begin{array}{c c} U \\ \hline 0 \ \tau \end{array}$	B05					$\sqrt{T/\tau} = 2,83$		$\sqrt{T/\tau} = $ = 2,83

Таблица 2.7

Переключатель	$U_{\mathbf{c}\mathbf{\kappa}}$, В	$U_{c_{\mathbf{B}}}$, B	$U_{\text{пик}}$, В
Открытый вход			
Закрытый вход			

Таблица 2.8

II B	D, %						
Опик, В	10	50	80				
Открытый вход							
Закрытый вход							

Таблица 2.9

II B	D, %							
Опик, В	10	1,0	0,5	0,4	0,3	0,2	0,1	
Измеренное								
Расчет								

П	араметры гег	нератора		Результаты измерений		
Форма сигнала	$V_{pp} = 2U_m$	Частота, кГц	$U_{ m c\kappa} = U_m/k_{ m a},$ В, мВ	$U_{ m ck}$, В, мВ	Погрешность измерения $(\Delta = U_{y} - U_{u}),$ мВ	абсолютной
Синус (В00)	1 B	15				
Меандр (В01)	250 мВ (*)	4				
Треугольный (B02)	300 мВ (*)	70				
Пилообразный (B03)	400 мВ (*)	30				
Шум (В21)	1 B	1				

^(*) — перейти с вольтового предела измерений вольтметра на милливольтовый, для чего на вольтметре нажать клавишу *SHIFT*, а затем клавишу *ACmV*.

2.4.9. Контрольные вопросы

- 1. Перечислите преимущества цифровых вольтметров перед аналоговыми и приведите основные параметры цифровых вольтметров.
- 2. Объясните принцип действия цифровых вольтметров двойного интегрирования.
- 3. Какие параметры используют при измерении переменных напряжений?
- 4. Что представляют собой преобразователи среднеквадратического значения напряжения и как они работают?
- 5. Что представляют собой преобразователи средневыпрямленного значения напряжения и как они работают?
- 6. Что представляют собой преобразователи пикового значения напряжения и как они работают?
- 7. Чем обусловлена низкочастотная погрешность вольтметра пикового значения напряжения?
- 8. Почему падают показания вольтметра пикового значения напряжения при малых длительностях импульсов?
- 9. Что такое «открытый» и «закрытый» входы вольтметра и как их можно использовать?
- 10. Объясните результаты измерений в табл. 2.7.
- 11. Почему при разных значениях параметра D меняется $U_{\text{пик}}$ (табл. 2.8) в режиме закрытого входа, а при открытом входе остается постоянным?
- 12. Соответствуют ли результаты измерений среднеквадратических значений напряжения установленным параметрам V_{pp} в табл. 2.10?
- 13. Как рассчитываются погрешности вольтметра при измерении постоянных и переменных напряжений?