Amendments to the Claims:

Please amend claims 13 and 15-18 as shown below.

1	1. (original) A vehicular seating system responsive to radio
2	frequency (RF) signals, the system comprising:
3	a vehicle passenger compartment defined by an interior boundary;
4	a seat disposed within the passenger compartment, the seat having
5	a seat back separated from the interior boundary;
6	a head rest extending from the seat back; and
7	a module centrally disposed within the headrest for receiving RF
8	signals.
1	2. (original) The system of claim 1, wherein the RF signals
2	originate from a source outside of the passenger compartment.
1	3. (original) The system of claim 1, wherein the module is further
2	operative to transmit RF signals to a destination outside the passenger compartment.
1	4. (original) The system of claim 1, wherein the RF signals
2	originate from a control source.
1	5 (original) The meeting of alains A subspace the second
1	5. (original) The system of claim 4, wherein the control source is
2	a remote keyless entry device (RKE).
1	6. (original) The system of claim 1, wherein the RF signals
2	originate from an information source.
_	originate from an information source.
1	7. (original) The system of claim 6, wherein the information source
2	is a tire monitoring device.
	$oldsymbol{arphi}$

1	8. (original) The system of claim 1, further comprising means for
2	a vehicle control system to communicate with the module in response to the
3	received signals.
1	9. (original) The system of claim 1, wherein the module is
2	supported and positioned within the headrest by foam, the module separated from
3	an outer covering material of the headrest.
1	10. (original) The system of claim 1, wherein the module is
2	supported within the headrest by a cross member within the headrest, the module
3	separated from an outer covering material of the headrest.
1	11. (original) The system of claim 1, wherein the seat is a front
2	seat.
1	12. (original) The system of claim 1, wherein the headrest is located
2	above a definable metallic plane comprising vehicle door panels.
1	13. (currently amended) The system of claim 1, wherein the
2	headrest portion is substantially clear of interference from any substantial metallic
3	object within the passenger compartment.
1	14. (original) The system of claim 1, wherein the module comprises
2	an antenna.
1	15. (currently amended) A vehicle seating system for receiving RF
2	signals, the seating system comprising:
3	
	a seat back portion;
4	a headrest portion extendable from the seat back portion, the
5	headrest position portion having an interior compartment; and

0	an antenna centrally disposed within the interior compartment for
7	receiving RF signals.
1	16. (currently amended) The support system of claim 15, wherein
2	the seat back portion is for a vehicle seat not forming any portion of an interior
3	boundary of a vehicle passenger compartment.
1	17. (currently amended) The support system of claim 15, wherein
2	the antenna is operative to transmit RF signals.
1	18. (currently amended) The support system of claim15, wherein
2	the antenna is separated from an outer surface of the headrest.
1	19. (original) A remote keyless entry (RKE) system for an
2	automotive vehicle comprising:
3	an RKE device for transmitting radio frequency (RF) signals;
4	a front vehicle seat having a headrest;
5	an antenna centrally disposed within the headrest, the antenna
6	capable of receiving RF signals from the RKE device; and
7	a control system in communication with the antenna, the control
8	system responsive to the RKE signals.
1	20. (original) The RKE system of claim 19, wherein the antenna is
2	separated from an outer surface of the headrest.