

US012392999B2

(12) United States Patent

Shabtay et al.

(54) FOLDED CAMERA LENS DESIGNS INCLUDING EIGHT LENSES OF +-+-+++-REFRACTIVE POWERS

(71) Applicant: Corephotonics Ltd., Tel Aviv (IL)

(72) Inventors: Gal Shabtay, Tel Aviv (IL); Ephraim

Goldenberg, Tel Aviv (IL); Roy Rudnick, Tel Aviv (IL); Nadav Goulinski, Tel Aviv (IL)

(73) Assignee: Corephotonics Ltd., Tel Aviv (IL)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: 18/755,732

(22) Filed: Jun. 27, 2024

(65) Prior Publication Data

US 2024/0345372 A1 Oct. 17, 2024

Related U.S. Application Data

- (63) Continuation of application No. 17/607,400, filed as application No. PCT/IB2021/056357 on Jul. 14, 2021, now Pat. No. 12,050,308.
- (60) Provisional application No. 63/054,862, filed on Jul. 22, 2020.
- (51) Int. Cl. *G02B 13/00* (2006.01) *G02B 9/64* (2006.01)

(10) Patent No.: US 12,392,999 B2

(45) **Date of Patent:** *Aug. 19, 2025

(58) Field of Classification Search

CPC ... G02B 13/0065; G02B 9/64; G02B 13/0045 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2,106,752 A	2/1938	Land
2,354,503 A	7/1944	Arthur
2,378,170 A	6/1945	Aklin
2,441,093 A	5/1948	Aklin
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CN	101634738 A	1/2010
CN	102147519 A	8/2011
	(Conti	inued)

OTHER PUBLICATIONS

A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages.

(Continued)

Primary Examiner — Wen Huang (74) Attorney, Agent, or Firm — Nathan & Associates; Menachem Nathan

(57) ABSTRACT

Folded cameras with a total track length (TTL), f numbers smaller than 1.2 and large fields of view, e.g. of at least 60 degrees. Such folded cameras may comprise a lens with N≥7 lens elements, an image sensor and an optical path folding element for providing a folded optical path between an object and the lens, wherein an aperture stop of the lens is located closer to a first surface of the first lens element facing the object than a distance d that fulfills d/TTL=0.2.

18 Claims, 10 Drawing Sheets

US 12,392,999 B2 Page 2

(56)		Referen	ces Cited		,066,605		8/2024	
	11.0	DATENT	DOCUMENTS		0118471 0048542		8/2002 3/2003	Imoto Enomoto
	0.3	. FAILINI	DOCUMENTS		0041300			Oshima et al.
3,388	,956 A	6/1968	Eggert et al.		0062346		3/2005	
	,700 A	8/1970	Eggert et al.		0128604		6/2005	Kuba Nishina
	,218 A	1/1971	Grey Harada		0141103 0168840			Kobayashi et al.
	,027 A ,876 A		Betensky		0270667			Gurevich et al.
	,645 A	1/1979			0092524		5/2006	
	,001 A	7/1982			0238902 0275025			Nakashima et al. Labaziewicz et al.
	,345 A ,822 A		Yazawa Akiyama et al.		0114990			Godkin
	,551 A		Shibayama		0229983		10/2007	
	,291 A		Baker et al.		0247726 0253689		10/2007	Sudoh Nagai et al.
,	,465 A ,869 A		Miyano Hirai et al.		0056698			Lee et al.
	,266 A		Obama et al.	2008/0	0094730	A1	4/2008	Toma et al.
6,035	,136 A	3/2000	Hayashi et al.		0094738		4/2008	
	,702 A	11/2000			0273250 0291531		11/2008 11/2008	
	,636 B1 ,180 B2	11/2001	Kreitzer Ori		0304161		12/2008	
	,504 B2		Horiuchi		0002839		1/2009	
,	,136 B2		Labaziewicz et al.		0067063 0122423			Asami et al. Park et al.
	,351 B2 .635 B1	4/2009 7/2009	Chen et al.		0135245			Luo et al.
/	,035 B1 ,225 B1	1/2010	C .	2009/0	0141365	A1		Jannard et al.
7,660	,049 B2	2/2010	Tang		0147368			Oh et al.
	,128 B2	3/2010			0225438 0279191		9/2009 11/2009	
	,523 B2 ,877 B2	3/2010 4/2010	Tang et al.		0303620			Abe et al.
	,220 B2	4/2010			0026878		2/2010	
	,186 B2		Chen et al.		0033844		2/2010	Katano Yumiki et al.
	,972 B1 ,057 B2	8/2010 10/2010	Chen et al.		0165476		7/2010	
	,724 B2		Tang et al.	2010/0	0214664	A1	8/2010	Chia
	,149 B2		Tang et al.		0277813 0001838		11/2010 1/2011	
	,151 B2 ,142 B2	11/2010	Tsai Chen et al.		0032409			Rossi et al.
	,747 B2	3/2011	Tang		0080655		4/2011	Mori
	,401 B2	3/2011	Chen et al.		0102667			Chua et al.
	,398 B2		Li et al.		0102911 0115965			Iwasaki Engelhardt et al.
	,075 B2 ,076 B2	6/2011 6/2011	Tang Tang		0149119		6/2011	
	,079 B2	6/2011	Tang		0157430			Hosoya et al.
	,406 B2	6/2011	Tang et al.		0188121 0249347		8/2011 10/2011	Goring et al.
	,031 B1 ,777 B2	8/2011 8/2011	Tsai Sano et al.		0062783			Tang et al.
	,400 B2	12/2011	Tang		0069455			Lin et al.
	,523 B2	4/2012			0092777 0105708			Tochigi et al. Hagiwara
	,253 B2 ,622 B2	7/2012 7/2012	Tang Tang		0147489			Matsuoka
	,022 B2 ,224 B2	7/2012		2012/0	0154929	A1		Tsai et al.
	,843 B2	8/2012			0194923		8/2012	
	,537 B2 ,337 B2	10/2012 1/2013	Sato Tang et al.		0229920 0262806			Otsu et al. Lin et al.
	,851 B2		Tang et al.		0002933		1/2013	Topliss et al.
8,400	,717 B2	3/2013	Chen et al.		0057971			Zhao et al.
	,549 B2		Yamanaka et al.		0088788 0176479		4/2013 7/2013	
	,107 B2 ,502 B2	8/2013	Chen et al.		0208178		8/2013	
	,668 B2		Takakubo et al.		0271852			Schuster
	,458 B2	5/2014			0279032 0286488		10/2013	Suigetsu et al.
	,465 B2 ,923 B2	7/2014 8/2014	Chae Shinohara		0022436			Kim et al.
	,745 B1	10/2014			0063616			Okano et al.
8,958	,164 B2		Kwon et al.		0092487 0139719			Chen et al. Fukaya et al.
	,291 B1 ,194 B2	11/2015	Shabtay Yoneyama et al.		0139719			Okumura
	,036 B2		Kato et al.	2014/0	0160581	A1	6/2014	Cho et al.
9,279	,957 B2	3/2016	Kanda et al.		0204480			Jo et al.
9,438	,792 B2 ,802 B2		Nakada et al.		0240853			Kubota et al. Tang et al.
	,802 B2 ,712 B2		Chen et al. Dror et al.		0285907 0293453			Ogino et al.
	,310 B2		Iwasaki et al.		0362274			Christie et al.
9,817	,213 B2		Mercado		0022896		1/2015	Cho et al.
	,846 B1		Bone et al.		0029601			Dror et al.
	,892 B2 ,016 B2		Hashimoto Shabtay et al.		0116569 0138431			Mercado Shin et al.
11,577	,010 102	5,2022	Sanous et al.	2015/	. 100 101		5,2015	

US 12,392,999 B2

Page 3

(56)	Referen	nces Cited		333691 A1		Shabtay et al.	
U.S.	. PATENT	DOCUMENTS	2021/00	100926 A1 048628 A1		Shabtay et al.	
2015/0153548 A1		Kim et al.	2021/01	048649 A1 .65192 A1	6/2021	Goldenberg et al. Goldenberg et al.	
2015/0160438 A1		Okuda		231914 A1*		Chang	G02B 3/04
2015/0168667 A1 2015/0177496 A1		Kudoh Marks et al.		263276 A1		Huang et al.	
2015/0205068 A1		Sasaki		64746 A1 896974 A1	11/2021 12/2021		
2015/0244942 A1		Shabtay et al.		196974 A1 146151 A1		Shabtay et al.	
2015/0253532 A1	9/2015			066168 A1	3/2022		
2015/0253543 A1 2015/0253647 A1		Mercado Mercado		113511 A1	4/2022		
2015/0233047 A1 2015/0323757 A1	11/2015			206264 A1	6/2022	Rudnick et al.	
2015/0373252 A1	12/2015	Georgiev	2022/02	232167 A1	7/2022	Shabtay et al.	
2015/0373263 A1		Georgiev et al.					
2016/0007008 A1 2016/0033742 A1		Molgaard et al. Huang		FOREIG	N PATE	NT DOCUMENTS	
2016/0044250 A1		Shabtay et al.	CN	102193	162 A	9/2011	
2016/0062084 A1		Chen et al.	CN	102193		5/2012	
2016/0062136 A1		Nomura et al.	CN	102466		5/2012	
2016/0070088 A1 2016/0085089 A1	3/2016	Koguchi Mercado	CN	102147		1/2013	
2016/0105616 A1		Shabtay et al.	CN CN	103576 103698		2/2014 4/2014	
2016/0187631 A1		Choi et al.	CN	104297		1/2015	
2016/0202455 A1		Aschwanden et al.	CN	104407	432 A	3/2015	
2016/0212333 A1 2016/0241756 A1	8/2016	Liege et al.	CN	105467		4/2016	
2016/0291295 A1		Shabtay	CN CN	105657 106680		6/2016 5/2017	
2016/0306161 A1		Harada et al.	CN	104570		6/2017	
2016/0313537 A1 2016/0341931 A1		Mercado	JP	S54157	620 A	12/1979	
2016/0341931 A1 2016/0349504 A1		Liu et al. Kim et al.	JP	S59121		7/1984	
2016/0353008 A1		Osborne	JP JP		212 A 211 A	4/1986 3/1988	
2017/0023778 A1	1/2017		JР		117 A	2/1990	
2017/0094187 A1 2017/0102522 A1	3/2017 4/2017	Sharma et al.	JP	406059	195 A	3/1994	
2017/0102322 AT 2017/0115471 A1		Shinohara	JP JP	H07325		12/1995	
2017/0153422 A1		Tang et al.	JP JP	H07333 H09211		12/1995 8/1997	
2017/0160511 A1		Kim et al.	ĴР	H11223		8/1999	
2017/0199360 A1 2017/0276911 A1		Chang Huang	JP	2000131		5/2000	
2017/02/0911 A1 2017/0310952 A1		Adomat et al.	JP JP	2000292	848 A 242 B2	10/2000 9/2001	
2017/0329108 A1	11/2017	Hashimoto et al.	JP	2004334		11/2004	
2017/0337703 A1		Wu et al.	JP	2006195		7/2006	
2018/0024319 A1 2018/0048825 A1	2/2018	Lai et al. Wang	JP	2007133		5/2007	
2018/0059365 A1		Bone et al.	JP JP	2007164 2007219		6/2007 8/2007	
2018/0059376 A1		Lin et al.	JР	2007306		11/2007	
2018/0081149 A1 2018/0120674 A1		Bae et al. Avivi et al.	JP	2008111		5/2008	
2018/0149835 A1	5/2018		JP JP	2008191		8/2008 2/2010	
2018/0196236 A1	7/2018	Ohashi et al.	JР	2010032 2010164		7/2010	
2018/0196238 A1		Goldenberg et al.	JP	2011145		7/2011	
2018/0217475 A1 2018/0218224 A1		Goldenberg et al. Olmstead et al.	JP	2011151		8/2011	
2018/0224630 A1		Lee et al.	JP JP	2012203 2012230		10/2012 11/2012	
2018/0268226 A1		Shashua et al.	JР	2013003		1/2013	
2019/0025549 A1 2019/0025554 A1	1/2019 1/2019	Hsueh et al.	JP	2013003		1/2013	
2019/0023334 A1 2019/0049687 A1		Bachar et al.	JР	2013101		5/2013	
2019/0075284 A1	3/2019		JP JP	2013105 2013106		5/2013 5/2013	
2019/0086638 A1	3/2019		JP	2013148		8/2013	
2019/0094500 A1 2019/0107651 A1	3/2019 4/2019	Tseng et al.	JP	2014142		8/2014	
2019/0121216 A1	4/2019		JP JP	2017116 2018059		6/2017 4/2018	
2019/0155002 A1		Shabtay et al.	JP	2019113		7/2019	
2019/0170965 A1		Shabtay Jia et al.	KR	20080088	477 A	10/2008	
2019/0187443 A1 2019/0187486 A1		Goldenberg et al.	KR	20090019		2/2009	
2019/0196148 A1		Yao et al.	KR KR	20090131 20110058		12/2009 6/2011	
2019/0215440 A1		Rivard et al.	KR	20110036		10/2011	
2019/0222758 A1		Goldenberg et al.	KR	20120068	177 A	6/2012	
2019/0235202 A1 2019/0353874 A1		Smyth et al. Yeh et al.	KR KR	20140135		5/2013	
2020/0084358 A1		Nadamoto	KR KR	20140023 20160000		2/2014 1/2016	
2020/0192069 A1	6/2020	Makeev et al.	KR	101632	168 B1	6/2016	
2020/0221026 A1		Fridman et al.	KR	20160115		10/2016	
2020/0241233 A1	//2020	Shabtay et al.	TW	M602	642 U	10/2020	

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO	2013058111 A1	4/2013
WO	2013063097 A1	5/2013
WO	2018130898 A1	7/2018

OTHER PUBLICATIONS

Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages.

Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages).

The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages.

Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages.

Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages. Boye et al., "Ultrathin Optics for Low-Profile Innocuous Imager", Sandia Report, 2009, pp. 56-56.

"Cheat sheet: how to understand f-stops", Internet article, Digital Camera World, 2017.

Husain Sumra: "Security Camera Field Of View Tips—How ToPosition Your Camera I Ooma", Aug. 2, 2019 (Aug. 2, 2019), XP093206028, Retrieved from the Internet: URL:https://www.ooma.com/blog/home-security/how-to-positionyour-.

Office Action in related EP patent application 21847019.3, dated Sep. 24, 2024.

Office Action in related CN patent application 202180004577.8, dated Nov. 13, 2024.

^{*} cited by examiner

FIG. 1B KNOWN ART

スラブ

へ () () ()

FIG. 3B

FIG. 5

FIG. 6

FIG. 7

FOLDED CAMERA LENS DESIGNS INCLUDING EIGHT LENSES OF +-+-++-REFRACTIVE POWERS

CROSS REFERENCE TO EXISTING APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/607,400 filed Oct. 29, 2021 (now allowed), which was a 371 application from international patent application No. PCT/IB2021/056357 filed Jul. 14, 2021, and is related to and claims the benefit of U.S. Provisional patent application 63/054,862 filed Jul. 22, 2020, which is incorporated herein by reference in its entirety.

FIELD

The presently disclosed subject matter is related generally to the field of digital cameras and in particular to folded 20 optical designs in such cameras.

Definitions

In this application and for optical and other properties 25 mentioned throughout the description and figures, the following symbols and abbreviations are used, all of which are known in the art:

Total track length (TTL): the maximal distance, measured along a direction parallel to the optical axis, between a 30 point of the front surface S₁ of a first lens element L₁ of a lens (or "lens assembly") and an image sensor, when a camera system including the lens is focused to an infinity object distance.

Back focal length (BFL): the minimal distance, measured 35 along a direction parallel to the first optical axis, between a point of the rear surface S_{2N} of a last lens element L_N of a lens (or "lens assembly") and the image sensor, when a camera system including the lens is focused to an infinity object distance.

Effective focal length (EFL): the distance between a rear principal point P' and a rear focal point F' of a lens assembly of lens elements L_1 to L_N .

f-number, (f/#): the ratio of the EFL to an entrance pupil diameter.

BACKGROUND

Dual-cameras or triple-cameras (or multi-cameras in general) for mobile devices such as smartphones are known. In 50 f/#. a typical triple-camera, one camera has an Ultra-Wide (UV) field of view (FOV) FOV_{UW} , another camera has a Wide field of view FOV_W narrower than FOV_{UW} and yet another camera has Tele field of view FOV_T narrower than FOV_W. Ultra-Wide (or UW) camera, a Wide (or W) camera and a Tele (or T) camera. In general, the Wide camera is considered to be a smartphone's main camera.

The f-number ("f/#") of a camera lens is the ratio of the effective focal length (EFL) to the diameter D of the 60 camera's entrance pupil: f/#=EFL/D. The entrance pupil is the optical image of the aperture stop, as 'seen' through the front aperture of the lens system. The front aperture is the object-sided aperture of the lens. A low f/# is desired for a smartphone's main camera as it has 3 major advantages: 65 good low light sensitivity, strong "natural" Bokeh effect and high image resolution, discussed next:

2

- 1. Low light sensitivity is a major performance drawback of today's mobile device compatible cameras when compared to e.g. digital single-lens reflex (DSLR) cameras. As an example, halving a camera's f/#(for same EFL) increases the aperture area by a factor of 4, meaning that 4 times more light enters the camera. This difference is especially relevant when capturing low light scenes.
- 2. Bokeh is the aesthetic quality of the blur produced in the out-of-focus segments of an image, and it is a highly demanded feature for today's smartphones. The Bokeh effect correlates inversely with the depth of field (DOF) of an image, wherein DOF~f/#. A low f/# is beneficial for supporting strong "natural" Bokeh effects. As the f/#s present in today's smartphone cameras do not provide sufficient 15 "natural" Bokeh, the demand for strong Bokeh is answered by "artificial" Bokeh, i.e. artificially applying blur to outof-focus image segments.
 - 3. Image sensors with continuously increasing pixel resolution are entering mobile devices, exceeding 100 megapixel in 2019 for the first time. This (amongst other factors) is achieved by shrinking the size of single pixels, i.e. increasing the spatial pixel frequency. For translating pixel resolution to image resolution, a camera's lens must support the spatial pixel frequency k_{Pixel} of the sensor. For a welldesigned (diffraction-limited) camera lens, the resolvable spatial frequency of the lens k_{Lens} depends inversely on the f/#: k_{Lens}~1/f/#, i.e. a lower f/# corresponds to a higher image resolution (assuming an image sensor with sufficient spatial pixel frequency).

The latest premium smartphones are equipped with main Wide cameras that have f/# of about f/1.9 (Huawei P40 Pro) and f/1.8 (Apple iphone 11 Pro Max). A major challenge in low f/# cameras is the design of lenses that correct for the strong aberration imposed by the large front apertures required, e.g. for correction of chromatic aberration. This is usually tackled by a more complex lens design that includes a larger number of lens elements. However, this generally leads to larger total track length (TTL) and larger camera module heights, what is detrimental to the goal of slim smartphone design.

A recent development in mobile Tele cameras involves using a prism to "fold" the Tele camera: a reflecting or optical path folding element ("OPFE") is added to the optical path in order to "fold" (tilt) the light propagation direction from perpendicular to the back surface of a host device to parallel to the host device's back surface. Folded cameras allow large TTLs in a slim camera design.

For improving a smartphone's main camera it would be beneficial to have a folded Wide camera designs with low

SUMMARY

In various embodiments there are provided folded cam-These cameras are also referred to herein as, respectively, an 55 eras, comprising: a lens with N 7 lens elements L_t, having an effective focal length (EFL), each L, having a respective focal length f, wherein a first lens element L₁ faces an object side; an image sensor; and an OPFE for providing a folded optical path between an object and the lens, to the lens optical axis, wherein a folded camera has a total track length (TTL), wherein an aperture stop of the lens is located closer to a first surface of the first lens element facing the object than a distance d that fulfills d/TTL=0.2, and wherein an f number f/# of the camera is smaller than 1.2.

> In various embodiments there are provided folded cameras, comprising: a lens having an effective focal length (EFL) and including $N \ge 7$ lens elements L, having a first

optical axis, each lens element having a respective focal length f_i and comprising a respective front surface S_{2i-1} and a respective rear surface S_{2i} , the lens element surfaces marked S_k where $1 \le k \le 2N$, wherein each lens element surface S_k has a clear height value $\mathrm{CH}(S_k)$, wherein clear height value $\mathrm{CH}(S_{17})$ of surface S_{17} is greater than or equal to a clear height value of each of surfaces S_2 to S_{2N-1} ; an image sensor; and an OPFE for providing a folded optical path between an object and the lens elements, and wherein an f number f/# of the camera is smaller than 1.2.

In some embodiments, f/#<1.1.

In some embodiments, f/#≤1.0.

In some embodiments, $0.8 < f/\# \le 1.0$.

In some embodiments, a folded camera as above or below $_{15}$ has a diagonal FOV that is larger than 60 degrees.

In some embodiments, $|f_i| > 4 \cdot EFL$ for $1 \le i \le 3$.

In some embodiments, $|f_i| > 5 \cdot EFL$ for $1 \le i \le 3$.

In some embodiments, L_5 is the lens element with the strongest optical power, i.e. $|f_5| < |f_f|$ for $i \ne 5$.

In some embodiments, $f_5 < EFL$.

In some embodiments, a lens sub-system including lens elements $\rm L_4$ and $\rm L_5$ has positive refractive power.

In some embodiments, focal lengths f_4 of L_4 and f_5 of L_5 satisfy $|f_4| < 4 \cdot f_5$.

In some embodiments, focal lengths f_4 of L_4 and f_5 of L_5 satisfy $|f_4| < 3 \cdot f_5$.

In some embodiments, the lens includes at least one air gap between lens elements that comply with the condition STD<0.020, where STD is a normalized gap standard deviation.

In some embodiments, the lens includes at least one air gap between lens elements that comply with the condition STD<0.010, where STD is a normalized gap standard deviation

In some embodiments, an air gap between lens elements L_4 and L_5 satisfies STD<0.020, where STD is a normalized gap standard deviation.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated by like numerals. Elements in the drawings are not necessarily drawn to scale. In the drawings:

FIG. 1A illustrates a known digital folded camera that 50 may operate as a Wide camera in a perspective view;

FIG. 1B shows the camera of FIG. 1A in a side view;

FIG. 1C illustrates a known dual camera that includes a folded camera as in FIGS. 1A and 1B together with an "upright" (non-folded) camera;

FIG. 2A shows a schematic view of a folded optical lens system according to some examples of the presently disclosed subject matter;

FIG. 2B shows a schematic view of another folded optical lens system according to some examples of the presently 60 disclosed subject matter;

FIG. 2C shows a schematic view of yet another folded optical lens system according to some examples of the presently disclosed subject matter;

FIG. 2D shows a schematic view of yet another folded 65 optical lens system according to some examples of the presently disclosed subject matter;

4

FIG. 2E depicts schematically yet another folded optical lens system disclosed herein;

FIG. 3A illustrates the orthogonal projections $IP_{orth,1}$, $IP_{orth,2}$ of two impact points IP_1 and IP_2 on a plane P that is orthogonal to the optical axis of the lens of the system in FIGS. 2A-2D:

FIG. 3B illustrates the orthogonal projections $IP_{orth,3}$, $IP_{orth,4}$ of two impact points IP_3 and IP_4 on a plane P that is orthogonal to the optical axis of the lens of the system in FIGS. 2A-2D;

FIG. 4 provides graphically a definition of clear height;

FIG. 5 provides graphically a definition of clear aperture;

FIG. 6 provides a graphical illustration of diameter H_{Li} of lens element L_i ;

FIG. 7 shows an exploded view of lens elements illustrating lens element width W_{Li} and height H_{Li} .

DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding. However, it will be understood by those skilled in the art that the presently disclosed subject matter may be practiced without these specific details. In other instances, well-known methods have not been described in detail so as not to obscure the presently disclosed subject matter.

It is appreciated that certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subscombination.

Furthermore, for the sake of clarity the term "substantially" is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term "substantially" used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term "substantially" used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term "substantially" used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.

FIGS. 1A and 1B illustrate a known digital folded camera 100, which may operate for example as a Wide camera. Camera 100 comprises an optical path folding element (OPFE) 102 e.g. a prism, a lens 104 with a plurality of lens elements (not visible in this representation, but visible e.g. in FIGS. 2A-D) and an image sensor 106. In some embodiments (as in FIGS. 2A-2D), the lens elements are axial symmetric along a first optical axis 108. In other embodiments the lens elements may not be axial symmetric. For example, lens elements may be cut (or diced or sliced) to a non-circular shape, as e.g. demonstrated in FIG. 2B.

At least some of the lens elements can be held by a structure called a "barrel" 110. The barrel may have a longitudinal symmetry along optical axis 108. In FIGS. 1A to 1C, the cross-section of this barrel is circular. This is however not mandatory and other shapes can be used, e.g. for hosting cut lens elements.

The path of the optical rays from an object (not shown) to image sensor 106 defines an optical path (see optical paths 112 and 114, which represent portions of the optical path).

OPFE folds the optical path from a first optical path 112 to a second optical path 114. Optical path 114 is substantially parallel to the optical axis 108. The optical path is thus referred to as "folded optical path" (indicated by optical paths 112 and 114) and camera 100 is referred to as "folded 5

In particular, in some examples, OPFE 102 is inclined at substantially 45° with respect to optical axis 108. In FIG. 1A, OPFE 102 is also inclined at substantially 45° with respect to optical path 112.

In some known examples, image sensor 106 lies in a X-Y plane substantially perpendicular to optical axis 108. This is however not limiting and the image sensor 106 can have a different orientation. For example, and as described in WO 2016/024192, image sensor **106** can be in the XZ plane. In 15 this case, an additional OPFE can be used to reflect the optical rays towards image sensor 106.

Two cameras, for example a Wide camera 100 and a regular UW camera 130 may be included in a digital camera ration is shown in FIG. 1C.

UW camera 130 may include an aperture 132 (indicating object side of the camera) and an optical lens system 134 (or "Wide lens module") with a symmetry (and optical) axis 136 in the Y direction, as well as a UW image sensor 138. The 25 UW camera comprises a UW lens system configured to provide a UW image. As already indicated above, the UW camera has a field of view FOV_{UW} larger than the field of view of the Wide camera $\mathrm{FOV}_{\mathit{W}}$. For example, $\mathrm{FOV}_{\mathit{UW}}$ may be 80-130 degrees and FOV_W may be 60-90 deg. Notably, in 30 other examples, a plurality of Wide cameras and/or a plurality of Tele cameras can be incorporated and operative in a single digital camera. The ${\rm FOV}_T$ of a Tele camera may be for example 20-50 degrees.

Attention is now drawn to FIG. 2A which depicts sche- 35 matically an optical lens system disclosed herein and numbered 200. Lens system 200 comprises an OPFE 202, a lens (or "lens assembly") 204, an optical element 206 and an image sensor 208. System 200 is shown with ray tracing. Optical element 206 may be for example infra-red (IR) filter, 40 and/or a glass image sensor dust cover. Optical rays (after their reflection by prism 202) pass through lens 204 and form an image on image sensor 208. FIG. 2A shows 3 fields with 3 rays for each: the upper marginal-ray, the lower marginal-ray and the chief-ray. In the example of FIG. 2A, 45 the optical rays pass through optical element 206 before impinging on image sensor 208. This is however not limiting, and in some examples, optical element 206 is not present, i.e. in some lens systems, the optical element is optional.

Lens 204 includes a plurality of N lens elements L_i 220 (wherein "i" is an integer between 1 and N). L_1 is the lens element closest to the object (prism) side and L_N is the lens element closest to the image side, i.e. the side where the image sensor is located. This order holds for all lenses and 55 lens elements disclosed herein. Lens elements L, can be used e.g. as lens elements of camera 100 above. The N lens elements are axial symmetric along an optical axis 210. Each lens element L_i comprises a respective front surface S_{2i-1} (the index "2i-1" being the number of the front surface) and 60 a respective rear surface S_{2i} (the index "2i" being the number of the rear surface), where "i" is an integer between 1 and N. This numbering convention is used throughout the description. Alternatively, as done throughout this description, lens surfaces are marked as "S_k", with k running from 65 1 to 2N. The front surface and the rear surface can be in some cases aspherical. This is however not limiting.

6

As used herein the term "front surface" of each lens element refers to the surface of a lens element located closer to the entrance of the camera (camera object side) and the term "rear surface" refers to the surface of a lens element located closer to the image sensor (camera image side).

In lens system 200, a first horizontal surface of the prism (oriented along Z direction), marked as T1, is 10.93 mm. A second horizontal surface of the prism (oriented along the X direction, not shown) and marked T2 is 12.6 mm. The vertical surface of the prism (along Y) marked V is 8.68 mm. The angle of the prism is 45 deg. The relatively large prism size allows for a high amount of light entering the camera, which allows the camera to have in this example a low f/# of 1.0. In other embodiments, f/# may be 0.8-1.2. The aperture stop of lens 204 is located at a distance d=-0.042 mm from S2, i.e. from the first surface of the first lens element. For the non-zero fields shown in lens system 200, about 80% of light reaches image sensor 208.

As explained below, a clear height value $CH(S_k)$ can be 150 (also referred to as dual-camera). A possible configu- 20 defined for each surface S_k for 1≤k≤2N), and a clear aperture value $CA(S_k)$ can be defined for each surface S_k for $1 \le k \le 2N$). CA(S_k) and CH(S_k) define optical properties of each surface S_k of each lens element. The CH term is defined with reference to FIG. 4 and the CA term is defined with reference to FIG. 5, below.

In addition a height (" H_{Li} ", for $1 \le i \le N$) is defined for each lens element L_i . H_{Li} corresponds, for each lens element L_i , to the maximal height of lens element L_i measured along a direction perpendicular to the optical axis of the lens elements. For a given lens element, the height is greater than, or equal to the clear height value CH and the clear aperture value CA of the front and rear surfaces of this given lens element. Typically, for an axial symmetric lens element, H_{Li} is the diameter of lens element L_i as seen in FIG. 6. Typically, for an axial symmetric lens element, $H_{Li} = \max\{CA(S_{2i-1}), CA(S_{2i})\} + \text{mechanical part size.}$

In general, in lens design the mechanical part size is defined as not contributing to the optical properties of the lens. Because of this, one defines two heights of a lens: an optical height H_{opt} (corresponding to the CA value) of an optically active area (dotted) and a geometrical (or mechanical) height of the lens H_L which covers an optically active and an optically inactive area. The mechanical part size contribution to H_{IJ} is typically 200-1000 µm.

In lens 204, the clear aperture of the last surface S_{17} of the last lens element L₈, CA₁₇, is larger than the CA of all other surfaces S_i of the lens elements, i.e. CA₁₇>CA_i for i<17. The CA of the first surface S₁₆ of last lens element L₈, CA₁₆, is larger than the CA of all preceding surfaces S_i of the lens 50 elements, i.e. $CA_{16} > CA_i$ for i<16.

In lens system 200, N is equal to eight. This is however not limiting and a different number of lens elements can be used. According to some examples, N is equal to or greater than 7. For example, N can be equal to 7, 8, 9 or 10.

In lens system 200, some of the surfaces of the lens elements are represented as convex, and some are represented as concave. The representation of FIG. 2A is however not limiting and a different combination of convex and/or concave surfaces can be used, depending on various factors such as the application, the desired optical power, etc.

A lens barrel such as lens barrel 110 may carry lens 204. In some embodiments the lens barrel may be circular such as lens barrel 110. In other embodiments the lens barrel may be not be circular but may have a shape such as the lens elements in FIG. 7. Referring to FIG. 7, a non-circular lens barrel may have a X axis or a Y axis as symmetry axis. A non-circular lens barrel may e.g. be shaped according to the cut lens elements of a lens such as lens 204'. The height of a lens barrel may be only slightly higher than the lens element having the largest height in the lens. E.g. a lens barrel may be 0-0.5 mm higher than the highest lens element. A lens barrel having an identical height as the highest lens element is described for example in co-owned international patent application PCT/IB2018/050988, which is incorporated herein by reference in its entirety.

As shown in FIGS. 3A, 3B and 4, each optical ray that passes through a surface S_k (for $1 \le k \le 2N$) impinges this 10 surface on an impact point IP. Optical rays enter optical lens system 200 from surface S₁ and pass through surfaces S₂ to S_{2N} . Some optical rays can impinge on any surface S_k but cannot/will not reach image sensor 208. For a given surface S_{t} , only optical rays that can form an image on image sensor 15 **208** are considered. $CH(S_k)$ is defined as the distance between two closest possible parallel lines, see lines 400 and 402 in FIG. 4 located on a plane P orthogonal to the optical axis of the lens elements. In the representation of FIGS. 3A and 3B, plane P is parallel to plane X-Y and is orthogonal to 20 optical axis 103 such that the orthogonal projection IP_{orth} of all impact points IP on plane P is located between the two parallel lines. $CH(S_k)$ can be defined for each surface S_k (front and rear surfaces, with $1 \le k \le 2N$).

The definition of $CH(S_k)$ does not depend on the object 25 currently imaged, since it refers to the optical rays that "can" form an image on the image sensor. Thus, even if the currently imaged object is located in a black background that does not produce light, the definition does not refer to this black background since it refers to any optical rays that 30 "can" reach the image sensor to form an image (for example optical rays emitted by a background which would emit light, contrary to a black background).

For example, FIG. 3A illustrates the orthogonal projections $IP_{orth,1}$, $IP_{orth,2}$ of two impact points IP_1 and IP_2 on 35 plane P which is orthogonal to optical axis 103. By way of example, in the representation of FIG. 3A, surface S_k is convex.

FIG. 3B illustrates the orthogonal projections $IP_{orth,3}$, $IP_{orth,4}$ of two impact points IP_3 and IP_4 on plane P. By way 40 of example, in the representation of FIG. 3B, surface S_k is concave

In FIG. 4, the orthogonal projection IP_{orth} of all impact points IP of a surface S_k on plane P is located between parallel lines 400 and 402. $CH(S_k)$ is thus the distance 45 between lines 400 and 402.

Attention is drawn to FIG. 5. According to the presently disclosed subject matter, a clear aperture $CA(S_k)$ is defined for each given surface S_k (for $1 \le k \le 2N$) as the diameter of a circle, wherein the circle is the smallest possible circle located in a plane P orthogonal to the optical axis **108** and encircling all orthogonal projections IP_{orth} of all impact points on plane P. As mentioned above with respect to $CH(S_k)$, it is noted that the definition of $CA(S_k)$ also does not depend on the object which is currently imaged.

As shown in FIG. 5, the circumscribed orthogonal projection IP_{orth} of all impact points IP on plane P is a circle **500**. The diameter of circle **500** defines $CA(S_{\nu})$.

Detailed optical data and surface data are given in Tables 1-3 for the example of the lens elements in FIG. 2A. The values provided for these examples are purely illustrative and according to other examples, other values can be used.

Surface types are defined in Table 1 and the coefficients for the surfaces are defined in Table 2:

Surface types are:

- a) Plano: flat surfaces, no curvature
- b) Q type 1 (QT1) surface sag formula:

$$z(r) = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + D_{con}(u)$$

$$D_{con}(u) = u^4 \sum_{n=0}^{N} A_n Q_n^{con}(u^2)$$

$$u = \frac{r}{r_{norm}}, x = u^2$$

$$Q_0^{con}(x) = 1 \quad Q_1^{con} = -(5 - 6x) \quad Q_2^{con} = 15 - 14x(3 - 2x)$$

$$Q_3^{con} = -\{35 - 12x[14 - x(21 - 10x)]\}$$

$$Q_4^{con} = 70 - 3x\{168 - 5x[84 - 11x(8 - 3x)]\}$$

$$Q_5^{con} = -[126 - x(1260 - 11x\{420 - x[720 - 13x(45 - 14x)]\})]$$

where $\{z, r\}$ are the standard cylindrical polar coordinates, c is the paraxial curvature of the surface, k is the conic parameter, r_{norm} is generally one half of the surface's clear aperture, and A_n are the polynomial coefficients shown in lens data tables. The Z axis is positive

TABLE 1

Surface #	e Comment	Type	Curvature Radius	Thickness	Aperture Radius (D/2)	e Material	Index	Abbe #	Focal Length
1	A.S	Plano	Infinity	-0.042	2.078				
2	Lens 1	QT1	-3.314	0.354	2.078	Plastic	1.54	55.9	26.78
3			-2.804	0.058	2.018				
4	Lens 2	QT1	11.125	0.294	2.002	Plastic	1.66	20.4	-55.77
5			8.474	0.040	2.010				
6	Lens 3	QT1	2.122	0.359	1.967	Plastic	1.65	21.5	34.22
7			2.186	0.355	2.050				
8	Lens 4	QT1	9.582	0.256	2.065	Plastic	1.67	19.4	-7.46
9			3.266	0.061	2.305				
10	Lens 5	QT1	4.164	1.565	2.357	Plastic	1.54	55.9	3.38
11			-2.887	0.219	2.481				
12	Lens 6	QT1	-3.676	1.591	2.579	Plastic	1.54	55.9	99.93
13			-3.971	0.040	2.583				
14	Lens 7	QT1	2.537	0.912	2.436	Plastic	1.67	19.4	13.54
15			3.002	0.801	2.852				

Lens system 200 EFL = 4.14 mm, F/# = 1.00, Diagonal FOV = 80.4 deg.

TABLE 1-continued

	Lens system 200 EFL = 4.14 mm, F/# = 1.00 , Diagonal FOV = 80.4 deg.								
Surface #	Comment	Type	Curvature Radius	Thickness	Aperture Radius (D/2)	Material	Index	Abbe #	Focal Length
16	Lens 8	QT1	8.867	0.354	2.974	Plastic	1.66	20.4	-8.81
17 18	Filter	Plano	3.479 Infinity	0.259 0.210	3.285	Glass	1.52	64.2	
19	Titter	Tiuno	Infinity	0.610	_	Gluss	1.52	01.2	
20	Image	Plano	Infinity	_	_				

towards image. Values for CA are given as a clear aperture $_{15}$ radius, i.e. CA/2. The reference wavelength is 555.0 nm. Units are in mm except for refraction index ("Index") and Abbe #. Each lens element L_i has a respective focal length f_i , given in Table 1.

TABLE 2

		IADL	41 Z			
		Aspheric Co	efficients			
Surface #	R_{norm}	A0	A1	A2	A3	25
2	1.96E+00	7.01E-01	-4.57E-02	1.03E-02	-9.49E-04	
3	1.98E+00	8.98E-01	-9.70E-02	1.92E-02	-5.01E-03	
4	1.96E+00	-7.58E-02	-8.16E-02	1.72E-02	1.98E-03	
5	1.90E+00	-2.09E-01	-2.62E-02	7.39E-03	2.93E-03	30
6	1.76E+00	-6.48E-01	-4.85E-02	-2.11E-03	-1.95E-03	30
7	1.79E+00	-7.12E-01	-5.06E-02	4.56E-03	-4.47E-04	
8	1.80E+00	-2.24E-01	-7.75E-03	7.30E-03	-1.86E-03	
9	1.84E+00	-2.52E-01	1.46E-02	2.39E-03	-3.73E-03	
10	1.98E+00	-1.56E-01	-3.39E-04	1.13E-03	-7.45E-04	
11	2.04E+00	5.32E-01	-7.05E-02	6.97E-03	3.13E-04	35
12	2.14E+00	8.97E-01	-1.12E-01	1.97E-02	-2.85E-03	
13	2.09E+00	1.58E-02	2.61E-02	-4.19E-03	7.93E-04	
14	2.13E+00	-7.72E-01	-5.12E-02	-1.16E-02	-6.42E-04	
15	2.63E+00	-1.11E+00	-1.05E-01	4.11E-02	-2.53E-05	
16	2.73E+00	-9.92E-01	1.86E-01	2.37E-02	-1.12E-02	40
17	3.20E+00	-2.04E+00	1.88E-01	-6.16E-02	-2.74E-02	
Surface #	A4	A5	A6	A7	A8	
2	1.37E-04	3.42E-05	1.55E-06	0.00E+00	0.00E+00	45
3	8.19E-04	-1.08E-04	5.14E-06	0.00E+00	0.00E+00	٦.
4	-8.58E-04	5.69E-05	-2.90E-04	0.00E+00	0.00E+00	
5	-1.76E-03	5.55E-04	-2.96E-04	0.00E+00	0.00E+00	
6	-7.14E-04	1.16E-04	3.39E-05	0.00E+00	0.00E+00	
7	-2.33E-04	-4.64E-05	2.51E-05	0.00E+00	0.00E+00	~ .
8	8.01E-04	-2.83E-04	1.97E-05	0.00E+00	0.00E+00	50
9	1.36E-03	-2.35E-04	1.55E-05	0.00E+00	0.00E+00	
10	6.24E-04	-1.91E-04	1.83E-05	0.00E+00	0.00E+00	
11	-2.57E-04	6.98E-05	-5.72E-06	0.00E+00	0.00E+00	
12	3.28E-04	-1.68E-05	-7.24E-07	0.00E+00	0.00E+00	
13	-1.38E-04	2.67E-05	-2.84E-06	0.00E+00	0.00E+00	55
14	-4.12E-04	3.26E-04	-2.63E-04	1.47E-04	-3.10E-05	
15	4.72E-03	-3.18E-03	7.16E-05	-2.80E-04	1.03E-04	
16	7.44E-03	-5.47E-03	4.68E-04	3.29E-04	-3.43E-05	
17	1.30E-02	-4.97E-03	2.36E-03	-2.23E-03	4.96E-04	

In the example of FIG. 2A, the following optical properties are achieved:

EFL=4.14 mm

$$CA(S_{17}) > CA(S_k), \ 1 < k \le 2N$$

 $CA(S_{16}) > CA(S_k), \ 1 < k \le 2N - 1$
 $CA(S_{15}) > CA(S_k), \ 1 < k < 2N - 2$

f/#=1.0

20

60

65

Sensor diagonal (SD) is 7 mm, sensor width/height ratio is 4:3

Minimum CA/SD ratio: CA(S₄)/SD=0.57

Maximum CA/SD ratio: CA(S₁₇)/SD=0.94

Diagonal FOV=80.44 deg, Horizontal FOV=68.32 deg, Vertical FOV=53.48 deg,

Distance d from aperture stop to S₂: d=-0.042 mm

 L_1 , L_2 and L_3 have relatively low power (magnitude), so $|f_i| > 5 \cdot EFL$ for $1 \le i \le 3$

 L_4 and L_5 together have positive power, so for the lens sub-system including L_4 and L_5 at a thickness d apart from each other and as given in Table 1 which has focal length $1/(f_4+f_5)=[1/f_4+1/f_5-d/(f_4f_5)]>0$

For L₅ yields: f₅<EFL

 L_4 and L_5 satisfy: $|f_4| < 3 \times f_5$

Minimal gap between L₄ and L₅: Gap_{Min}=0.04 mm

Maximal gap between L_4 and L_5 : $Gap_{Max}=0.0745$ mm

Average gap AVG₄ between L₄ and L₅: AVG₄=0.048 mm

STD₄ from average gap AVG₄(r) between L₄ and L₅: STD₄=3.42· 10^{-3} mm.

Lens 204 may be carried by a lens barrel having a lens barrel height of e.g. 6.57 mm-7.2 mm.

In this specification, a "gap" or an "air gap" refers to the space between consecutive lens elements. In the case of lens elements 4 and 5, "gap" refers to the air space between the last surface of L_4 and the first surface of L_5 .

A number of functions and constants per gap are defined:

- 1. A " $Gap_i(r)$ " function, (where i is the lens element number and r is the same variable used in Eq. 1) is:
 - a) for i=1: Gap₁(r)=z(r) of L₂S₁+(the distance along the second optical axis between the prism exit surface and L₂S₁);
 - b) for i>1: $Gap_i(r)=z(r)$ of $L_{i+1}S_1+$ (the distance along the second optical axis between L_iS_2 and $L_{i+1}S_1$)-z(r) of L_iS_1 .
 - c) for r=0, an "on-axis gap" (OA_Gap_i) is defined as $Gap_i(r=0)$;

2. A "gap average" (AVG_i) constant is given by:

$$AVG_i = \frac{1}{N+1/2} \sum_{j=0}^{N} Gap_i \left(\frac{j \cdot r_{norm}}{N} \right)$$
 (Eq. 2)

where j is a discrete variable that runs from 0 to N, where N is an integer >10, and where r_{norm} is the minimum value D/2 of surfaces $\{L_iS_2, L_{i+1}S_1\}$.

3. A normalized gap standard deviation (STD_i) constant is given by:

$$STD_i = \frac{1}{r_{norm}} \sqrt{\frac{1}{N - 1/2} \sum_{j=0}^{N} \left(Gap_i \left(\frac{j \cdot r_{norm}}{N} \right) - AVG_i \right)^2}$$
 (Eq. 3)

where r_{norm} is the minimum value D/2 of surfaces {L_iS₂, L_{i+1}S₁}, N is an integer >10, and AVG_i is defined as in 20 (Eq.2).

Attention is now drawn to FIG. 2B, which depicts schematically another optical lens system disclosed herein and numbered 200'. Lens system 200' comprises an OPFE 202, a lens 204' with a plurality of lens elements, an optical element 206 and an image sensor 208. Ray tracing is provided as in FIG. 2A. Detailed optical data and surface data are given in Tables 1 and 2. However, data on aperture radius for all surfaces of L_6 and L_8 as well as surface S_{15} of L_7 is to be replaced by 2.5 mm in the y-direction (no change in x-direction).

For achieving a folded lens system with low f/# and low lens height at the same time, lens elements are cut to a non-circular shape (often called "cut lens" or "D cut lens"). 35 The lens elements are obtained by cutting the large lens elements of lens 204' to a height of 5 mm (in the Y direction). That is, the lens elements L_i of lens 204' that have height $H_{Li} > 5$ mm (i.e. L_6 , L_7 and L_8) are cut to 5 mm. The cut lens elements have no circular symmetry like that of lens ele- 40 ments 204, but their width is larger than their height, i.e. $W_{Li} > H_{Li}$ (see example in FIG. 7). The lens elements Li of lens 204 that have height $H_{i,i} \le 5$ mm are not changed. As of the cut, lens elements L_6 , L_7 and L_8 have a large CA but still low CH. This is beneficial as in a folded lens design a lens 45 height H, may determine the camera's height, wherein the camera height is generally limited by a height of the host device. A lens having large CA and low CH is beneficial for a low f/# folded lens that is compatible with e.g. a smartphone's height constraints. Lens elements of lens 204' are 50 cut in direction Y, meaning that the height of a lens element H_{Li} is smaller than its width W_{Li} . The CA of lens elements L_1 - L_5 may be oriented in any direction, e.g. in Y direction. As of the cut design, the CA of lens element L_6 , L_7 and L_8 is oriented in X direction (not shown here). In other embodi- 55 ments, only one or only two lens elements L, may be cut, i.e. may have $W_{Li} > H_{Li}$. In yet other embodiments, more than 3 lens elements L_i may be cut, i.e. may have $W_{Li} > H_{Li}$. In yet other embodiments, all lens elements L_i may be cut, i.e. may have W_{Li}>H_{Li}. In other embodiments, lens 204' may be 60 achieved by cutting the large lens elements of lens 204 to a height of e.g. 4.5 mm or 4 mm (in the Y direction), i.e. the lens elements L_i that have height $H_{Li}>4.5$ mm (i.e. L_4 , L_5 , L_6 , L_7 and L_8) or 4 mm (i.e. L_1 - L_8) may be cut to 4.5 mm or 4 mm respectively. In yet other embodiments, lens 204' may formed by cutting the large lens elements of lens 204 to a height of e.g. 3.5 mm or 3 mm (in Y direction).

12

In lens system **200**', the prism dimensions are identical with those in lens system **200**: T1=10.93 mm, T2=12.6 mm and V=8.68 mm.

Besides the properties described in FIG. 2A, in the example of FIG. 2B, the following optical properties are achieved:

$$CA(S_{12}) = 1.03 \times CH(S_{12}) = 2.58 \text{ mm}$$

 $CA(S_{13}) = 1.03 \times CH(S_{13}) = 2.58 \text{ mm}$
 $CA(S_{15}) = 1.14 \times CH(S_{15}) = 2.85 \text{ mm}$
 $CA(S_{16}) = 1.19 \times CH(S_{16}) = 2.97 \text{ mm}.$
 $CA(S_{17}) = 1.32 \times CH(S_{12}) = 3.29 \text{ mm}$
 $CA(S_{17}) > CA(S_k), 1 < k \le 2N.$
 $CA(S_{16}) > CA(S_k), 1 < k \le 2N - 1$
 $CA(S_{15}) > CA(S_k), 1 < k < 2N - 2$

For all lens surfaces $CH(S_k) \le 5 \text{ mm}$ f/#=1.0

Minimum CA/SD ratio: CA(S₄)/SD=0.57 Maximum CA/SD ratio: CA(S₁₇)/SD=0.71

Lens **204**' may be carried by a lens barrel having a lens barrel height of e.g. 5.0 mm-5.5 mm.

FIG. 2C depicts schematically another optical lens system disclosed herein and numbered 200". Lens system 200" comprises an OPFE 202', lens 204, an optical element 206 and image sensor 208. Ray tracing is provided as in FIG. 2A. Detailed optical data and surface data are given in Tables 1 and 2. In comparison with the OPFEs shown in FIG. 2A and FIG. 2B, OPFE 202' has a smaller prism height ("V") of 7.82 mm. The smaller prism height may be beneficial for achieving a slim folded camera.

Here T1=9.815 mm, T2=12.6 mm and V=7.82 mm. For the non-zero fields of lens system 200", the reduction of light compared to optical lens systems 200 and 200' is 8% or less. For the zero fields there is no change in the amount of light entering the camera. The high amount of light entering the camera allows for the camera's low f/# of 1.0. In other embodiments a f/# may be 0.8-1.2.

FIG. 2D depicts schematically yet another optical lens system disclosed herein and numbered 200". Lens system 200" comprises an OPFE 202", lens 204, optical element 206 and image sensor 208. Ray tracing is provided as in FIG. 2A. Detailed optical data and surface data are given in Tables 1, 2. In comparison with OPFE 202' shown in FIG. 2C, OPFE 202" has a smaller prism height ("V") of 7.02 mm.

Here T1=8.75 mm, T2=12.6 mm and V=7.02 mm. For the non-zero fields of lens system 200" the reduction of light compared to lens systems 200 and 200' is 19% or less. For the zero fields there is no change in the amount of light entering the camera. The high amount of light entering the camera allows for the camera's low f/# of 1.0. In other embodiments, f/# may be 0.8-1.2.

FIG. 2E depicts schematically yet another optical lens system disclosed herein and numbered 200"". Lens system 200"" comprises an OPFE 202", lens 204", optical element 206 and image sensor 208. Ray tracing is provided as in FIG. 2A. Detailed optical data and surface data are given in Tables 1, 2. However, data on aperture radius for all surfaces of L_6 , and L_5 as well as of surfaces S_{11} of L_5 and S_{15} of L_7 is to be replaced by 2.45 mm in y-direction (no change in

x-direction). The prism height (measured along the Y-axis) is larger than the height of lens 204". The height of the entire lens system 200"" (measured along the Y-axis) is determined solely by the prism height, i.e. there is no additional "height penalty" introduced by lens 204".

In comparison with OPFE 202" shown in FIG. 2D, OPFE 202" has a smaller prism height of 6.00 mm.

The lens elements of lens 204" are obtained by cutting the large lens elements of lens 204" to a height of 4.9 mm (in Y direction). That is, the lens elements L_i of lens **204**" that have height $H_{Li}>4.9$ mm (i.e. L_6 , L_7 and L_8) are cut to 4.9 mm. The cut lens elements have no circular symmetry like that of lens elements 204, but their width is larger than their height, i.e. $W_{L_i} > H_{L_i}$ (see example in FIG. 7). In other embodiments, lens 204" may be achieved by cutting the large lens elements 15 of lens 204 to a height of e.g. 4.5 mm or 4 mm (in the Y direction), i.e. the lens elements L_i that have height $H_{Li} > 4.5$ mm (i.e. L_4 , L_5 , L_6 , L_7 and L_8) or 4 mm (i.e. L_1 - L_8) may be cut to 4.5 mm or 4 mm respectively.

Further explanation on cut lenses is provided in descrip- 20 tion of FIG. 2B. Here T1=6.95 mm, T2=12.6 mm and V=6.00 mm. For the non-zero fields shown in lens system 200"", about 55%-60% of light reaches image sensor 208. For the non-zero fields of lens system 200"" the reduction of light compared to the respective non-zero fields of lens 25 systems 200 and 200' is about 30%. The light reduction is primarily caused by the smaller prism dimensions, not by the D cut of the larger lens elements. The light reduction occurs symmetrically for the upper marginal-ray and the lower marginal-ray. The difference in the amount of light that 30 reaches image sensor 208 for the D cut lens in lens system 200"" and a non D cut lens amounts to <5%. For the zero fields there is no change in the amount of light entering the camera. The high amount of light entering the camera allows for the camera's low f/# of 1.0. In other embodiments, f/# 35 of the cut lens elements $W_{I}/H_{I} > 1.2$. may be 0.8-1.2. Lens 204" may be carried by a lens barrel having a lens barrel height of e.g. 4.9 mm-5.5 mm.

According to some examples, at least part of the lens elements can have a shape (profile) in cross-section (in plane X-Y, which is orthogonal to the optical lens system and 40 which generally coincides with the optical axis) which is not circular. In particular, as shown e.g. in FIG. 7, at least some of the lens elements which are integrated in lens barrel 710 can have a width W_{Li} (measured along axis X) which is greater than their height H_{Li} (measured along axis Y). The 45 height H_{Li} can correspond to the total height of the lens element (including the mechanical part). In some embodiments, a lens element in lens system 700 may have a symmetry about axis Y and/or about axis X.

According to some examples, W_{Li} is substantially greater 50 than H_{Li} (for example, by at least a percentage that is equal or greater than 20%, these values being not limiting). In some examples, W_{I_i} may be greater than H_{I_i} by a percentage of 20-70%. Consider lens element L₈ of folded lens **204** as an example: W_{L8} is greater than H_{L8} by a percentage of 32%. 55 Another example is lens element L_8 of folded lens **204**": W_{L8} is greater than H_{L8} by a percentage of 44%.

Unless otherwise stated, the use of the expression "and/ or" between the last two members of a list of options for selection indicates that a selection of one or more of the 60 listed options is appropriate and may be made.

It should be understood that where the claims or specification refer to "a" or "an" element, such reference is not to be construed as there being only one of that element.

All patents and patent applications mentioned in this 65 specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each

14

individual patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclo-

What is claimed is:

1. A folded camera, comprising: a lens having an effective focal length (EFL) and including N≥7 lens elements L, along a lens optical axis wherein a first lens element L_1 faces an object side, wherein each lens element Li has a respective front surface S_{2i-1} and a respective rear surface S_{2i} , the lens element surfaces marked S_k where $1 \le k \le 2N$, wherein each lens element surface S_k has a clear height value $CH(S_k)$ and a clear aperture value $CA(S_k)$, and wherein a clear aperture value $CA(S_{2N})$ in lens element L_N is greater than a clear aperture value $CA(S_1)$ in lens element L_1 ;

an image sensor; and

an optical path folding element (OPFE) for folding a first optical path to a second optical path that is perpendicular to the first optical path and parallel to the lens optical axis, wherein one or more of the lens elements are cut lens elements that have a respective width W_{Li} measured along an axis perpendicular to both the first optical path and the second optical path, and a respective height H_{Ii} measured along an axis parallel to the first optical path, wherein $W_{Li}>H_{Li}$, wherein the camera has an f number f/#<1.1, and

wherein the folded camera is a wide camera with a field of view (FOV) ranging from 60 degrees to 90 degrees.

- **2**. The folded camera of claim **1**, wherein $f/\# \le 1.0$.
- 3. The folded camera of claim 1, wherein in at least one of the cut lens elements $W_{Li}/H_{Li} > 1.1$.
- 4. The folded camera of claim 1, wherein in at least one
- 5. The folded camera of claim 1, wherein a clear height value of all lens elements is smaller than or equal to 5 mm.
- 6. The folded camera of claim 5, wherein the lens is included in a lens barrel, wherein the lens barrel has a lens barrel height measured along the first optical path, and wherein the lens barrel height is smaller than or equal to 5.5
- 7. The folded camera of claim 1, wherein the camera has a diagonal field of view (FOV) larger than 60 degrees.
- **8**. The folded camera of claim **1**, wherein the image sensor lies in a plane that is parallel to the first optical path.
- 9. The folded camera of claim 1, wherein the folded camera has a total track length (TTL), and wherein an aperture stop of the lens is located closer to a first surface S₁ of lens L_1 than a distance d that fulfills d/TTL=0.2.
- 10. The folded camera of claim 1, wherein the image sensor has a sensor diagonal SD>6 mm.
- 11. The folded camera of claim 1, wherein the OPFE has a height H_O , wherein the lens has a height H_I , wherein H_O and H_L are measured along a direction parallel to the first optical path, and wherein $H_O > H_L$.
- 12. The folded camera of claim 6, wherein the OPFE has a height H_O , wherein the lens barrel has a height H_{LB} , wherein H_O and H_{LB} are measured along a direction parallel to the first optical path, and wherein $H_O>H_{LB}$.
- 13. The folded camera of claim 1, wherein the camera has a height H_C and the OPFE has a height H_O , wherein H_O and H_C are measured along a direction parallel to the first optical path, and wherein H_C is determined by H_Q .
- 14. The folded camera of claim 1, wherein an absolute value of an optical power of element L, |f, |>5×EFL for 1≤i≤3.

- 15. The folded camera of claim 1, wherein lens element L_5 has a strongest optical power of all lens elements $|f_5| < |f_i|$ for $i \ne 5$.
- **16**. The folded camera of claim **1**, wherein STD is a normalized air gap standard deviation of an air gap between 5 two consecutive lens elements, and wherein the lens includes at least one air gap between lens elements that complies with the condition STD<0.020.
- 17. The folded camera of claim 1, wherein the folded camera is included in a mobile device.
- 18. The folded camera of claim 17, wherein the mobile device is a smartphone.

* * * * *