BCS 3301

S.No.: 331

No. of Printed Pages: 05

Following Paper ID and Ro	Il No. to	be fi	lled in	your	Answ	er Book.
PAPER ID: 33211	Roll No.	; '				

B. Tech. Examination 2023-24

(Odd Semester)

DISCRETE MATHEMATICS

Time: Three Hours] [Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

- (a) If $P = \{1, 2\}$ find $P \times P \times P$.
- (b) Give an example of a relation which is reflexive but neither symmetric nor transitive?
- (c) Define Bijective function.
- (d) Differentiate complemented lattice and disturbed lattice.

BCS 3301

- (e) Define recurrence relation with example.
- (f) Define universal quantifiers and existential quantifiers.
- (g) What will be the chromatic number of complete graph with n-vertices?
- (h) What do you mean by Planar Graph?

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Comptue transitive closure of the relation $R = \{(1, 1), (1, 4), (2, 1), (2, 2), (3, 4), (4, 4)\}$ defined over non empty set $A = \{1, 2.3.4\}$.
 - (b) Prove that the set $S = \{0, 1, 2, 3\}$ forms a ring under addition and multiplication modulo 4 but not a field.
 - (c) Solve E $(x, y, z, t) = \sum (0, 2, 6, 8, 10, 12, 14, 15)$ using K-map.
 - (d) Solve the recurrence relation using generating function $a_{r+2} 5 a_{r+1} + 6 a_r = 2$ given that $a_0 = 3$ and $a_1 = 7$.

SECTION-C

- **Note:** Attempt all questions. Attempt any two parts from each question. $5\times8=40$
- 3. (a) Use the principle of mathematical induction to verify that:

$$P(n): P(n) = 1 + 4 + 7 + + (3 n-2) = n(3 n-1)/2$$

- (b) Let $A = \{1, 2, 3\}$, $B = \{p, q\}$ and $C = \{a, b\}$. Let $f: A \to B$ is $f = \{(1, p), (2, p), (3, a)\}$ and $g: B \to C$ is given by $\{(p, b), (q, b)\}$. Find g o f.
- (c) Prove that:

$$A - (B \cap C) = (A - B) \cup (A - C)$$

- 4. (a) Let $G = \{1, -1, i, -i\}$ with the binary operation multiplication be an algebraic structure, where $i^2 = -1$:
 - (i) Determine whether G is an Abelian group.
 - (ii) If G is cyclic group, then determine the generate of G.
 - (b) State and prove the Lagrange's theorem.