Waiter robot simulation

Robot mechanics exam project A.A. 2023/2024

Authors:

Andrea Vivai Enea Dragoni Professor:

Marco Gabiccini

Waiter robot

Summary:

- 1. Kinematic modeling
- 2. Base CLIK control
- 3. Arm CLIK control
- 4. Task planning
- 5. Base motion planning
- 6. Holding tray in place
- 7. Waiter in action

Kinematic modeling

Base modeling

 $\mathbf{Q_i}$: Center of the wheel axis

 $\mathbf{O_i}$: Center of the roller axis

P_i: Roller ground contact point

G: Chassis center of mass

Let:
$$\mathbf{E} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
; $\mathbf{d}_i = \begin{bmatrix} GO_i \cdot \hat{i} \\ GO_i \cdot \hat{j} \end{bmatrix}$; Let: $\mathbf{U} = \begin{bmatrix} u_1^T \\ u_2^T \\ u_3^T \end{bmatrix}$; $\mathbf{u}_i = \begin{bmatrix} g_i \\ g_i^T E d_i \end{bmatrix}$;

The matrix U is invertible if the number of wheels is less than or equal to 3.

Let a be the wheel radius, $\operatorname{Id} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and define the jacobian as $\operatorname{J} = \operatorname{-a} \sin(\alpha) \cdot \operatorname{Id}$

Under the assumption of non-slipping contact, a simple relationship between the wheels speed and the chassis twist can be derived:

$$J\dot{ heta}=U\xi_G,$$
 where $\xi_G=egin{bmatrix} \dot{x}_G\\ \dot{y}_G\\ \omega_G \end{bmatrix}\in\mathbb{R}^3$ global coordinates

Arm modeling

Using the DH convention:

Link	$ a_i $	$ heta_i$	$ d_i $	$ \alpha_i $
1	l_1	$ heta_1$	0	$-\frac{\pi}{2}$
2	l_2	$ heta_2$	0	
3	l_3	$ heta_3$	0	$\frac{\pi}{2}$
4	l_4	$ heta_4$	0	$-\frac{\pi}{2}$
5	l_5	$ heta_5$	0	$\begin{array}{c} \frac{\pi}{2} \\ \frac{\pi}{2} \\ -\frac{\pi}{2} \\ -\frac{\pi}{2} \end{array}$
6	l_6	θ_6	0	$\frac{\pi^2}{2}$
7	l_7	$ heta_7$	0	$\tilde{0}$

Base CLIK control

Let $\dot{\theta}_b$ be the vector of wheels rotation speeds. Let J_b be the jacobian of the base vehicle.

Since (last slide):

$$J_b \,\dot{\theta}_b = U \xi_G$$

We can define a CLIK control as following: $\dot{\theta}_h = I_h^{-1} U K_h e_h$

With
$$e_b = \begin{bmatrix} x_{WG}^{(goal)} - x_{WG} \\ y_{WG}^{(goal)} - y_{WG} \\ yaw^{(goal)} - yaw \end{bmatrix}$$

Where: W = world; G = wmobile base. So the error is calculated in global coordinates

Note: The base can indipendently control its translation and rotation

Arm CLIK control

Let $\dot{\theta}_a$ be the vector of arm joints speeds. Let J_a be the geometric jacobian of the arm.

The controller is a CLIK with orientation error (e_{orient}) parametrized using quaternions:

$$\dot{\theta}_a = J_a^{-1} (K_a e_a - \xi_{WE}^{base})$$

Where: E = «end effector»;

 ξ_{WE}^{base} : twist of the end effector, relative to the world frame, written in world frame, resulted assuming that the arm is a rigid body fixed to the base. It can be thought as a «feedforward compensation»;

 $e_a = \begin{bmatrix} e_{pos} \\ e_{orient} \end{bmatrix}$ error calculated assigning a desired end effector pose, in world coordinates

Task planning

BASE MOTION PLANNING

The goal of the base is to move the arm in a position where the it can reach the customer.

Given an end effector pose, the base goal is to move towards a desired position, that is the same as the end effector pose, but translated on the ground.

Using RRT*, a dataset of base poses are calculated, to allow the base to navigate the environment, and reach the final desired pose.

The base then is controlled giving a succession of desired poses (position + yaw) from the dataset.

Holding tray in place

Waiter in action

