Álgebra Linear — Aula 15

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Produto Vetorial

O produto vetorial $oldsymbol{u} imes oldsymbol{v}$ entre dois vetores em \mathbb{R}^3 é definido como

$$m{u} imes m{v} = \left(\left| egin{array}{ccc} u_2 & u_3 \\ v_2 & v_3 \end{array} \right|, - \left| egin{array}{ccc} u_1 & u_3 \\ v_1 & v_3 \end{array} \right|, \left| egin{array}{ccc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right|
ight)$$

Se u,v e w forem vetores tridimensionais então temos

- 1. $\boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{w}) = \boldsymbol{w} \cdot (\boldsymbol{u} \times \boldsymbol{w}) = 0$;
- 2. $\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 (\mathbf{u} \cdot \mathbf{v})^2$;
- 3. $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \operatorname{sen} \alpha$, onde α é o ângulo entre \mathbf{u} e \mathbf{v} ;
- 4. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})v (\mathbf{u} \cdot \mathbf{v})w$;
- 5. $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w} = (\boldsymbol{u} \cdot \boldsymbol{w})v (\boldsymbol{v} \cdot \boldsymbol{w})u;$

Se $oldsymbol{u}, oldsymbol{v}$ e $oldsymbol{w}$ forem vetores tridimensionais então temos

- 1. $\boldsymbol{u} \times \boldsymbol{v} = -\boldsymbol{v} \times \boldsymbol{u}$;
- 2. $\boldsymbol{u} \times (\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{u} \times \boldsymbol{v} + \boldsymbol{u} \times \boldsymbol{w};$
- 3. $(\boldsymbol{u} + \boldsymbol{v}) \times \boldsymbol{w} = \boldsymbol{u} \times \boldsymbol{w} + \boldsymbol{v} \times \boldsymbol{w};$
- 4. $\lambda(\boldsymbol{u} \times \boldsymbol{v}) = (\lambda \boldsymbol{u}) \times \boldsymbol{v} = \boldsymbol{u} \times (\lambda \boldsymbol{v});$
- 5. $u \times 0 = 0 \times u = 0$;
- 6. $u \times u = 0$.

Sejam u e v vetores do \mathbb{R}^3 . Escreva $u \times v$ como uma combinação dos vetores da base canônica.

Considere ${\pmb v}=(0,1,2)$ e ${\pmb w}=(1,3,4).$ Calcule a área do paralelogramo determinado por esses vetores.

Se u e v forem vetores não paralelos tridimensionais então $\|u \times v\|$ é a área do paralelogramo determinado por u e v.

Produto misto

Sejam $oldsymbol{u}, oldsymbol{v}$ e $oldsymbol{w}$ vetores do espaço tridimensional, dizemos que

$$\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})$$

 $\acute{ ext{e}}$ o produto misto de $oldsymbol{u}, oldsymbol{v}$ e $oldsymbol{w}$.

Produto misto

Sejam u,v e w vetores do espaço tridimensional, dizemos que

$$\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})$$

 $\acute{ ext{e}}$ o produto misto de $oldsymbol{u}, oldsymbol{v}$ e $oldsymbol{w}$.

Temos

$$oldsymbol{u} \cdot (oldsymbol{v} imes oldsymbol{w}) = \left| egin{array}{ccc} u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{array}
ight|$$

Sejam ${\pmb u}=(1,2,1),\ {\pmb v}=(1,1,2)$ e ${\pmb w}=(2,2,0)$ vetores fixos. Calcule o volume do paralelepípedo determinado por esses três vetores.

1. Se u e v são vetores bidimensionais então a área do paralelogramo no espaço bidimensional determinado por u e v é

$$\det \left[\begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right].$$

1. Se u e v são vetores bidimensionais então a área do paralelogramo no espaço bidimensional determinado por u e v é

$$\det \left[\begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right].$$

2. Sejam u, v e w vetores no espaço tridimensional. Temos que o volume do paralelepípedo definido por esses três vetores é $|u \cdot (v \times w)|$.

Mostre que os vetores tridimensionais ${\pmb u}=(1,2,1)$, ${\pmb v}=(1,0,1)$ e ${\pmb w}=(2,3,2)$ são coplanares.

Mostre que os vetores tridimensionais ${\pmb u}=(1,2,1)$, ${\pmb v}=(1,0,1)$ e ${\pmb w}=(2,3,2)$ são coplanares.

Teorema 3.5.5

Os vetores tridimensionais ${m u}, {m v}$ e ${m w}$ são coplanares se e só se ${m u}\cdot({m v}\times{m w})=0.$