Give answers in the response sheet and include SI units, where necessary. Power factor should include lead/lag and phasors use peak values of the magnitude. All answers for electrical networks should be rounded off to 2 decimal places.

Name:	Roll No:
Tutorial Group:	Invigilator's Signature:

Q1. In a certain network, the source voltage and the current delivered by the source are given by:

$$v = 80 \sin(200t + 45^{\circ})V$$
, $i = 20 \sin(200t - 15^{\circ})A$

Determine:

- a. the impedance Z in polar form
- c. the magnitude of complex power
- e. the magnitude of reactive power
- b. complex power in Cartesian form
- d. the magnitude of active power
- f. the power factor

Marks: $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3$

Q2. A digital circuit has two control inputs (S_1 and S_2), two data inputs (X_1 and X_2) and one output (Z). As shown in **Tab.Q2**, the circuit performs logic operations on the data inputs as determined by the control inputs. Find:

- a. the minimal SOP form of Z
- b. the minimal POS form of Z

S_1	S_2	Z
0	0	$X_1 + \bar{X}_2$
0	1	$\bar{X}_1 + \bar{X}_2$
1	0	$X_1 + X_2$
1	1	$\bar{X}_1 + X_2$

Tab.Q2

Marks: $1\frac{1}{2} + 1\frac{1}{2} = 3$

Q3. The parameters of the network shown in **Fig.Q3**, are:

$$\begin{split} V_1 &= 20 \angle 0^\circ \text{V}, \, V_2 = \, 20 \angle -30^\circ \text{V} \\ R_1 &= 3\Omega \,\,, \, R_2 = 3\Omega \,\,, \, R_3 = 10\Omega \\ X_L &= 4\Omega \,\,, \, X_C = 4\Omega \end{split}$$

Determine in phasor form (polar):

- a. the current I_A
- b. the current I_R
- c. the voltage drop V_{AB}

Fig.Q3

Marks: $1\frac{1}{2}+1\frac{1}{2}+1\frac{1}{2}=4\frac{1}{2}$

- **Q4.** Consider the logic circuit shown in **Fig.Q4,** consisting of two 4-to-1 multiplexers.
 - a. Draw the Karnaugh Map for the function F(W, X, Y, Z)
 - b. Find the minimum SOP form of *F*.
 - c. Find the minimum POS form of *F*.

Q5. The parameters of the network shown in **Fig.Q5** are: $R_1 = 5\Omega$, $R_2 = 3\Omega$, $R_3 = 5\Omega$, $R_4 = 2\Omega$, $V = 10 \angle -30^{\circ} V$, $X_{C1} = 2\Omega$, $X_{C2} = 2\Omega$ and $X_L = 5\Omega$. Consider the Thevenin equivalent of the circuit to the left of terminals A and B. Determine in phasor form:

- a. Thevenin equivalent voltage
- b. Thevenin equivalent impedance
- c. the current I_{AB}

Q6. The parameters of the network shown in **Fig.Q6** are $R_1 = 4\Omega$, $R_2 = 1\Omega$, L = 0.25 H, C = 0.1 F and $V_s = 12 V$. The switch S has been closed for a long time. It is open at t = 0. Find:

- a. $i(0^+)$
- b. $v(0^+)$
- c. $\frac{d}{dt}i(0^+)$ d. $\frac{d}{dt}v(0^+)$
- e. $i(\infty)$
- f. $v(\infty)$

Marks: $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3$

Q7. Find the minimal SOP for J_1 , K_1 , J_2 and K_2 such that the circuit shown in **Fig.Q7a** has its outputs Q_1 and Q_2 in response to inputs I_1 and I_2 , as shown in Fig.Q7b.

Q8. Consider the state diagram in Fig.Q8 corresponding to a sequential circuit having 2 JK flip-flops. The state of the flip-flops are denoted by variables A (inputs J_A and K_A) and B (inputs J_B and K_B). Let the state of the circuit be denoted by AB and the input by W.

- a. Write the state table.
- b. Write the state equations in the minimal SOP form.
- c. Express J_A , K_A , J_B , K_B in the minimal SOP form.

Marks: 2+1+2 = 5