Introdução aos Processos Estocásticos - Revisão Probabilidade

Eduardo M. A. M. Mendes

DELT - UFMG

Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br

Avaliação

- 2 Provas 30 e 30 pontos
- 1 Trabalho Final 40 pontos tema envolvendo a matéria e de interesse para o seu próprio mestrado (orientador)

Avaliação

- 2 Provas 30 e 30 pontos
- 1 Trabalho Final 40 pontos tema envolvendo a matéria e de interesse para o seu próprio mestrado (orientador)

Bibliografia

- Livro Texto Intuituive Probability and Random Processes using MATLAB, Steve M. Kay, Springer, 2006.
- Outras referências :
 - Probability, Random Variables and Stochastic Processes, Papoulis, 4a edição, McGraw Hill, 2002
 - Probability and Stochastic Processes: A Friendly Introduction to Electrical and Computer Engineers, Roy D. Yates and David J. Goodman, Wiley, 2a edição, 2004
- Fundamentos :
 - Estatística Básica, Wilton de O. Bussab e Pedro A. Morettin, 5a edição, Editora Saraiva, 2006
 - Basic Stochastic Processes, Zdzislaw Brzeznick and Tomasz Zastawnick, Springer, 2009

Software

- R www.r-project.org (Free software)
- Matlab www.mathworks.com (O PPGEE possui várias licenças)

Origem

- Probability Latim, 1551 vem de provável provar, testar (probare)
- Estocástico 1662, do grego STOKHASTIKOS caracterizado por uma conjectura - conjectura, alvo, marca.
- No sentido atual 1934 Alemanha Aleatório

Origem

- Probability Latim, 1551 vem de provável provar, testar (probare)
- Estocástico 1662, do grego STOKHASTIKOS caracterizado por uma conjectura - conjectura, alvo, marca.
- No sentido atual 1934 Alemanha Aleatório

Origem

- Probability Latim, 1551 vem de provável provar, testar (probare)
- Estocástico 1662, do grego STOKHASTIKOS caracterizado por uma conjectura - conjectura, alvo, marca.
- No sentido atual 1934 Alemanha Aleatório

Probabilidade

Probabilidade - chance de que um evento possa ocorrer.

Receita de Probabilidade:

- Presença de um experimento aleatório.
- Conjunto de "resultados" (outcomes)
- Probabilidades associadas a esses resultados.

Necessidade de observação - a partir da observação do fenômeno aleatório, devemos ser capazes de determinar as frequências que determinados eventos ocorrem.

Frequências \to medidas - estimativas de quantidades desconhecidas associadas em geral a populações das quais os dados foram extraídos na forma de amostras

Frequências relativas de certos eventos de interesse \rightarrow probabilidades

Probabilidade

Probabilidade - chance de que um evento possa ocorrer.

Receita de Probabilidade:

- Presença de um experimento aleatório.
- Conjunto de "resultados" (outcomes)
- Probabilidades associadas a esses resultados.

Necessidade de observação - a partir da observação do fenômeno aleatório, devemos ser capazes de determinar as frequências que determinados eventos ocorrem.

Frequências \to medidas - estimativas de quantidades desconhecidas associadas em geral a populações das quais os dados foram extraídos na forma de amostras

Frequências relativas de certos eventos de interesse \rightarrow probabilidades

Probabilidade

Probabilidade - chance de que um evento possa ocorrer.

Receita de Probabilidade:

- Presença de um experimento aleatório.
- Conjunto de "resultados" (outcomes)
- Probabilidades associadas a esses resultados.

Necessidade de observação - a partir da observação do fenômeno aleatório, devemos ser capazes de determinar as frequências que determinados eventos ocorrem.

Frequências \to medidas - estimativas de quantidades desconhecidas associadas em geral a populações das quais os dados foram extraídos na forma de amostras

Frequências relativas de certos eventos de interesse \rightarrow probabilidades

Idéia: Construir um modelo teórico que reproduza de maneira razoável a distribuição de frequências, quando o fenômeno é observado diretamente. Modelos:

- Suposições adequadas e observação direta do fenômeno aleatório
- Modelos Probabilísticos

Construção de Modelos:

- Determinar os eventos de interesse e o seu número
- Determinar como eles ocorrem.

Exemplo 1 - Morettin

- Faces de um dado
- Suposição: O dado é equilibrado
- Modelo:
 - 6 eventos $\to \Omega = \{1, 2, 3, 4, 5, 6\}$
 - "Como eles ocorrem?" \to Precisamos verificar com um experimento (processo) \to Jogar os dados.
 - Experimento: Jogar N vezes os dados e colher as frequências de cada uma das faces. $\rightarrow \Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\} = \omega_i$ para $i = 1 \dots 6$.
 - $f_i = \frac{n_i}{N}$ onde $n_i =$ número de vezes que o evento i ocorreu.

•	Faces	1	2	3	4	5	6
	Freq. Teórica	1/6	1/6	1/6	1/6	1/6	1/6

Exemplo 2 - Morettin

Considere um grupo de 2 mulheres (M) e 3 homens (H). A pessoa mais sortuda será o presidente. Queremos saber as probabilidades do presidente ser do sexo masculino ou feminino.

• Duas possibilidades $\rightarrow \Omega = \{H, M\}$

•	Sexo	М	F	Total	
	Freq. Teórica	2/5	3/5	1	

Modelo Probabilístico

Um modelo probabilístico será especificado quando o seguinte for estabelecido:

- O espaço amostral Ω consiste, no caso discreto, da enumeração (finita ou infinita) de todos os resultados possíveis do experimento em questão $\to \Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ os elementos de Ω são os pontos amostrais ou eventos elementares.
- Uma probabilidade $P(\omega)$ para cada ponto amostral de tal sorte que seja possível encontrar a probabilidade P(A) de qualquer subconjunto A de Ω , isto é, a probabilidade de um evento aleatório (ou simplesmente evento).

Exemplo 3 - Morettin

Moeda lançada 2 vezes

- Espaço amostral: $\Omega = \{(C, C), (C, R), (R, C), (R, R)\}$ com $P(R) = P(C) = \frac{1}{2}$.
- (C, C) ou outro qualquer $\rightarrow \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.
- O evento A é quando duas faces iguais são obtidas nos dois lançamentos:

$$P(A) = P(\omega_1, \omega_2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

 $P(A) = \sum_{j} P(\omega_j), \omega_j \in A$
 $A = \{(C, C), (R, R)\}$

Exemplo 4 - Morettin

Uma fábrica produz 3 artigos:
$$\begin{cases} Bom (B) \\ Defeituoso(D) \end{cases}$$

São retirados 3 artigos.

- Arranjo com repetição.
- Conjunto = $\{B, D\}$
- Número de elementos do grupo = 3.

Arranjos com repetição:

- $\Omega = \{BBB, BBD, BDB, DBB, DDB, DBD, BDD, DDD\}.$
- $|\Omega| = 2^3 = 8$ elementos
- $A \rightarrow 2$ artigos defeituosos $A = \{DDB, DBD, BDD\}$.

Exemplo 5 - Morettin

Determine a probabilidade de 3 caras em 4 lançamentos de uma moeda, sabendo que a probabilidade de cara é p=0,75.

$$\begin{cases} C & , & R \\ \downarrow & \downarrow \\ 0,75 & 0,25 \end{cases}$$

- A ordem interessa e pode haver repetição: Arranjo com repetição.
- Número de elementos do grupo = 4.
- Cardinalidade = $2^4 = 16$.

$$P(3C \text{ ou mais}) = \frac{27}{64} \times \left(\frac{3}{4} + \frac{4}{4}\right) \approx 0,739$$

 A solução do problema de k caras após um número N de lançamentos de uma moeda é:

$$P[k] = \binom{N}{k} p^k (1-p)^{N-k}$$

• No exemplo: N = 4 e k = 3

$$P[3] = {4 \choose 3} \times \frac{3^3}{4^3} \times \frac{1}{4} = \frac{4!}{3!1!} \times \frac{27}{64} \times \frac{1}{4} = \frac{27}{64}$$

$$P[4] = {4 \choose 4} \times \frac{3^4}{4^4} = \frac{27}{64} \times \frac{3}{4}$$

$$P[3] + P[4] = \frac{27}{64} \left(1 + \frac{3}{4}\right) = \frac{27}{64} \times \frac{7}{4}$$

0

Exemplo de Código em R

```
R
tt <- 0
N<-100000 # Repetitions
for (j in 1:N) {
        number <- 0
        for (i in 1:4) { # Four Tosses of the coin
                if (runif(1,0,1)<0.75) {# Toss coin with p=0.75
                        x<-1 # head
                } else {
                        x<-0
                number <- number + x
        if (number \geq= 3) tt <- tt + 1
tt <- tt/N
print(tt)
```

Exemplo 6 - Morettin

Experimento: retirar uma lâmpada de um lote e medir o seu tempo de vida antes de se queimar.

Espaço Amostral

$$\Omega = \{t \in R : t \ge 0\}$$

• Evento A - tempo de vida inferior a 20 horas

$$A = \{t : 0 \le t < 20\}$$

Problemas - Morettin - página 105

- 1) Urna com 2 bolas brancas (B) e 3 bolas vermelhas (V). Retira-se uma bola aleatoreamente. Se for B, lança-se uma moeda. Se V, a bola é devolvida e retira-se outra. Qual é o espaço amostral?
 - Solução: $\{(B, C), (B, R), (V, V), (V, B)\}$
- 2) Lance de um dado até que 5 apareça pela primeira vez. Enumere os possíveis resultados.
 - Solução: $\Omega = \{5, (\bar{5}, 5), (\bar{5}, \bar{5}, 5), (\bar{5}, \bar{5}, \bar{5}, 5), \ldots\}$
- 3) Três jogadores A, B e C disputam um torneio de tênis. Inicialmente, A joga com B e o vencedor joga com C; e assim por diante. O torneiro termina quando um jogador ganha duas vezes em seguida ou quando são distribuidos, ao todo, quatro partidas. Quais são os possíveis resultados do torneio?

Problemas - Morettin - página 105 (cont.)

• Solução: Construindo um diagrama com os resultados

Problemas - Morettin - página 105 (cont.)

- 4) Duas moedas são lançadas. Dê dois espaços amostrais para esse experimento. Represente um deles como o produto cartesiano de dois espaços amostrais.
 - $\Omega_1 = \{(C, C), (C, R), (R, C), (R, R)\} = \{C, R\} \times \{C, R\}.$
 - $\Omega_2 = \{0, 1, 2\}, \ \omega_i \rightarrow \text{número de caras em dois lançamentos.}$

Problemas - Kay - página 10

- 1.2) Um carta é escolhida de um barulho de 52 cartas. Identifique o experimento aleatório, o conjunto de resultados e as probabilidades de cada resultado.
 - Solução: É um experimento aleatório retirar uma carta
 - $\Omega = \{As, Rei, \dots, 2\}$ e 4 tipos (espadas, coração, ...)
 - $p = \frac{1}{52}$
- 1.7) Considere um experimento com os seguintes resultados possíveis $\{1, 2, 3, 4, \ldots\}$. Se designarmos

$$P[k] = \frac{1}{2^k}, = 1, 2, 3, \dots$$

para os resultados. A soma das probabilidades é 1?

 Solução: Podemos ter um número infinito de resultados e mesmo assim de designar probabilidades não zero para os resultados?

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} \right) = \frac{1/2}{1 - 1/2} = 1$$

sim, mas:

- a) As probabilidades não são iguais.
- b) O número de resultados é enumerável (contável).
- 1.10) Uma moeda é lançada 12 vezes. A sequência observada é $\{H,H,T,H,H,T,H,H,H,H,H,H,H\}$ (não importe com a ordem). A moeda é equilibrada?

• Solução: Repare que temos 9 caras, logo podemos calcular

$$P[9] = {12 \choose 9} \times \left(\frac{1}{2}\right)^{12} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} \times \frac{1}{2^{12}} \approx 0,0537$$

Não se pode afirmar nada, mas certamente essa não é a sequência mais provável.

6 caras e 6 coroas \rightarrow

$$P[6] = \binom{12}{6} \times \left(\frac{1}{2}\right)^{12} \approx 0.2255$$

1.11) Prove que $\sum_{k=0}^{N} P[k] = 1$, onde $P[k] = {N \choose k} p^k (1-p)^{N-k}$.

• Solução: Vamos primeiro provar o teorema Binomial, ou seja, $(a+b)^N = \sum_{k=0}^N \binom{N}{k} a^k b^{N-k}$ Para N=1, temos

$$a+b = \sum_{k=0}^{1} {1 \choose k} a^k b^{1-k}$$
$$= {1 \choose 0} a^0 b^1 + {1 \choose 1} a^1 b^0$$
$$= b+a$$

 $N \rightarrow OK$. Para N+1

$$\sum_{k=0}^{N+1} \binom{N+1}{k} a^k b^{N+1-k} = \sum_{k=0}^{N} \binom{N+1}{k} a^k b^{N+1-k} + \binom{N+1}{N+1} a^{N+1}$$

Mas

$$\binom{N+1}{k} = \binom{N}{k} + \binom{N}{k-1}$$

$$\frac{(N+1)N!}{k!(N+1-k)!} = \frac{N!}{k!(N-k)!} + \frac{N!}{(k-1)!(N+1-k)!}$$

$$= \frac{N!}{k!\frac{(N+1-k)(N-k)!}{(N+1-k)!}} + \frac{N!}{(N+1-k)!\frac{k(k-1)!}{k}}$$

$$= \frac{(N+1-k)N!}{(N+1-k)!k!} + \frac{N!k}{(N+1-k)!k!}$$

$$= \frac{N!(N+1-k+k)}{(N+1-k)!k!}$$

$$= \frac{(N+1)!}{k!(N+1-k)!} \checkmark$$

Usando:

$$\begin{split} \sum_{k=0}^{N+1} \binom{N+1}{k} a^k b^{N+1-k} &= \sum_{k=0}^{N} \left[\binom{N}{k} + \binom{N}{k-1} \right] a^k b^{N+1-k} + a^{N+1} \\ &= b \sum_{k=0}^{N} \binom{N}{k} a^k b^{N-k} + \\ &\underbrace{\sum_{k=0}^{N} \binom{N}{k-1} a^k b^{N+1-k}}_{\text{Qdo } k=0 \to \binom{N}{-1} = 0} + a^{N+1} \\ &\underbrace{\sum_{k=0}^{N} \binom{N}{k-1} a^k b^{N+1-k}}_{\text{Qdo } k=0 \to \binom{N}{-1} = 0} + a^{N+1} \\ &\underbrace{\sum_{k=0}^{N} \binom{N}{k-1} a^k b^{N+1-k}}_{\text{Qdo } k=0 \to \binom{N}{-1} = 0} + a^{N+1} \\ &\underbrace{k=1} + 1 \to -k = -l-1 \end{split}$$

Logo

$$= b \sum_{k=0}^{N} {N \choose k} a^{k} b^{N-k} + \sum_{l=0}^{N-1} {N \choose l} a^{l+1} b^{N-l} + a^{N+1}$$

$$= b \sum_{k=0}^{N} {N \choose k} a^{k} b^{N-k} + a \underbrace{\sum_{l=0}^{N-1} {N \choose l} a^{l} b^{N-l} + a^{N}}_{\sum_{l=0}^{N} {N \choose l} a^{l} b^{N-l} + a^{N}}_{\sum_{l=0}^{N} {N \choose l} a^{l} b^{N-l}}$$

$$= b(a+b)^{N} + a(a+b)^{N}$$

$$= (a+b)^{N+1}$$

Usando a probabilidade p

$$\sum_{k=0}^{N} P[k] = \sum_{k=0}^{N} {N \choose k} p^{k} (1-p)^{k}$$
$$= (p+(1-p))^{N}$$
$$= 1 \qquad \checkmark$$

Perspectiva Histórica

Considere o espaço amostral finito $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ em que todos os elementos têm a mesma probabilidade $\frac{1}{n}$. Se A for um evento contendo m elementos amostrais, então

$$P(A) = \frac{m}{n}$$

"Prova":

Suponha que A possa ser escrito como $A = \{\omega_1\} \cup \{\omega_2\} \cup \ldots \{\omega_n\}$. Usando a idéia de conjunto disjuntos (e teoria da medida), temos que

$$P(\{\omega_1\}) \cup P(\{\omega_2\}) \cup \dots P(\{\omega_n\}) = P(A)$$

mas todos os elementos amostrais têm a mesma probabilidade, logo

Perspectiva Histórica (cont.)

$$mP\{\omega_i\} = P(A)$$

 $m \times \frac{1}{n} = P(A) \rightarrow P(A) = \frac{m}{n}$

Poderíamos ter provado que a probabilidade de cada elemento é $\frac{1}{n}$.

Probabilidade

Princípio Multiplicativo

Princípio Multiplicativo: Um princípio fundamental da contagem nos diz que se uma tarefa pode ser executada em duas etapas, a primeira podendo ser realizada de p maneiras diferentes e a segunda de q maneiras, então as duas podem ser realizadas simultaneamente de pq maneiras.

Probabilidade

Deficiências da Definição Clássica

- **1** m e n são positivos $\rightarrow \frac{m}{n} \rightarrow$ racional.
- n é finito
- Oefinição baseada em eventos que tem a mesma probabilidade de ocorrer.

Solução de Von Mises (1931):

$$p(E) = \lim_{n \to \infty} \frac{m}{n}$$

Problema: Infinito.

Probabilidade

Axiomas de A. N. Kolmogorov

• Considerando que um evento é um subconjunto do espaço amostral Ω , os eventos A_1 , A_2 , ... são chamados mutualmente exclusivos ou disjuntos se

$$A_i \cap_{i \neq j} A_j = 0$$

- De acordo com Kolmogorov cada evento apresenta uma probabilidade P(A) (que é um número). As probabilidades satisfazem três axiomas:
 - Axioma 1 : Para um evento A, temos que $P(A) \ge 0$
 - Axioma 2 : $P(\Omega) = 1$ (evento certo) $P(\emptyset) = 0$ (evento impossível)
 - Axioma 3 : Se os eventos A_1 , A_2 , ... são disjuntos, então:

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$$

- a) Finito: $P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i)$
- b) Infinito: ?

Na páscoa de 1933, A. N. Kolmogorov publicava "Foundations of Probability". O modelo de Kolmogorov foi estabelecido em termos de Teoria de medida e integração de Lebesgue.

Espaços Mensuráveis: Os componentes essenciais na teoria da medida são:

- um conjunto Ω,
- uma coleção ${\mathcal F}$ de subconjuntos de Ω coleção de subconjuntos mensuráveis,
- ullet a função μ de ${\mathcal F}$ em $[0,\infty]$ chamada medida

Usando a notação, temos

$$(\Omega, \mathcal{F})$$
 – espaço mensurável

е

$$(\Omega, \mathcal{F}, \mu)$$
 — espaço de medida

Se $\{A_i, i=1,2,\ldots,n\}$ é uma classe de conjuntos disjuntos de Ω tal que $\bigcup_{n=1}^{\infty}A_i=\Omega$, então os $\{A_i\}$ cobrem Ω . Esta classe $\{A_i\}$ é chamada partição de Ω .

Uma classe de uma coleção enumerável de subconjuntos $A_j \subset \Omega$ denominada \mathcal{F} é uma σ -álgebra se:

- 1) Se $A_i \in \mathcal{F}$, então $A_i^c \in \mathcal{F}$.
- 2) Se $\{A_i, i = 1, 2, \ldots\} \in \mathcal{F}$, então $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Os subconjuntos de Ω que são elementos da σ -álgebra são chamados eventos. Os elementos de Ω são chamados pontos.

Exemplos:

ullet Ω - ω -pontos de um lançamento de um dado, logo

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Suponha

$$C = {\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}, \{2, 4\}}$$

 ${\cal C}$ não é um corpo, pois

$$\{1,3,5\} \cup \{2,4\} = \{1,2,3,4,5\} \not\in \mathcal{C}$$

mas

$$\mathcal{F} = \{\mathcal{C}, \{1,3,5,6\}, \{6\}, \{1,2,3,4,5\}\}$$

é uma σ -álgebra e mínima.

Considere novamente

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

е

$$\mathcal{F}_1 = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}, \{2, 4\}, \{6\}, \{1, 2, 3, 4, 5\}\}$$

repare que $\mathcal{F}_1\subseteq\mathcal{F}_2$ e que os átomos de \mathcal{F}_1 e \mathcal{F}_2 são:

$$\{1,3,5\}$$
 , $\{2,4,6\}$
 $\{1,3,5\}$, $\{2,4\},\{6\}$

 \mathcal{F}_2 gera uma partição mais refinada que \mathcal{F}_1 .

• Seja $\Omega = \mathbf{R} \in \mathcal{C}$ a classe de todos os intervalos da forma $(-\infty, a]$, (b, c], e (d, ∞) e dos seguintes intervalos construídos a partir destes três:

$$(b,c]^{c} = (-\infty,b] \cup (c,\infty) \in \mathcal{C}$$
$$(d,\infty]^{c} = (-\infty,d] \in \mathcal{C}$$
$$(-\infty,a]^{c} = (a,\infty) \in \mathcal{C}$$

Repare que $\mathcal C$ é fechada em termos de uniões e interseções finitas. $\mathcal C$ é um corpo, mas

$$\bigcap_{n=1}^{\infty} \left(b - \frac{1}{n}, c \right] = [b, c] \notin \mathcal{C}$$

logo ${\mathcal C}$ não é uma σ -álgebra.

A σ -álgebra mínima gerada pela coleção de conjuntos abertos de A é chamada Corpo de Borel. Os membros desta σ -álgebra são chamados conjuntos de Borel.

Exemplo: Considere o conjunto \mathbf{R} . A coleção de conjuntos de Borel em \mathbf{R} é denominado \mathcal{R} . Cada intervalo aberto é um membro de \mathbf{R} .

Note que os seguintes conjuntos são também conjuntos de Borel:

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right)$$

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b \right)$$

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right)$$

Então **R** contém: conjuntos como os de cima, interseções e uniões enumeráveis e complementos.

Exemplo de Jeffrey S. Rosenthal

O exemplo a seguir mostra a necessidade das definições dadas anteriormente.

Proposição: Não existe uma definição de P(A) (medida) para todos os subconjuntos de $A \subseteq [0,1]$, que satisfaça os axiomas de Kolmogorov.

Prova: Por contradição.

- Suponha que P(A) possa ser definida para cada subconjunto de $A \subseteq [0,1]$.
- Defina a relação de equivalência $x \sim y$ se e somente se a diferença de y-x é racional. Esta relação particiona o intervalo [0,1] em uma união disjunta de classes de equivalência.
- Seja *H* um subconjunto de [0,1] que contém apenas um elemento de cada classe de equivalência. (Vamos substituir o 0 por outro valor).

Exemplo de Jeffrey S. Rosenthal (cont.)

Como H contém um elemento de cada classe de equivalência, logo cada ponto no intervalo [0,1] está contido na união $\cup_{r \ racional \in [0,1)} (H \oplus r)$ de deslocamentos de H.

E como H contém apenas um ponto para cada classe de equivalência, os conjuntos $H \oplus r$ são todos disjuntos.

Usando o Axioma 3, temos:

$$P((0,1]) = \sum_{r \; racional \in [0,1)} P(H \oplus r),$$

mas $P(H \oplus r) = P(H)$ e portanto

$$1 = P((0,1]) = \sum_{r \ racional \in [0,1)} P(H)$$

que é uma contradição (soma infinita de um mesmo valor só pode ser $\pm\infty$ ou 0).

Proposição 1

Se o evento A contém somente um número finito de resultados $A = \{a_1, a_2, \dots, a_n\}$ então

$$P(A) = P(a_1) + P(a_2) + \ldots + P(a_n)$$

Prova: Considere que $A_i = \{a_i\}$ para $i = 1 \dots n$. Então A_1, A_2, \dots, A_n são disjuntos e

$$A_1 \cup A_2 \cup A_3 \ldots \cup A_n = A$$

Pelo Axioma 3, temos:

$$P(A) = P(a_1) + P(a_2) + \ldots + P(a_n)$$

Proposição 1.3

$$P(A^c) = 1 - P(A)$$

Prova: Seja $A_1 = A$ e $A_2 = A^c$, então

$$A_1 \cap A_2 = \emptyset(\text{disjuntos})$$
 $A_1 \cup A_2 = \Omega, \log 0$
 $P(A_1) + P(A_2) = \underbrace{P(A_1 \cup A_2)}_{\text{Axioma 3}}$
 $= P(\Omega)$
 $= 1 \text{ (Axioma 2)}$
 $P(A_1) + P(A_2) = 1$
 $P(A_2) = P(A^c) = 1 - P(A) \square$

Corolário 1.4

$$P(A) \leq 1$$
 para qualquer evento A

Prova: Sei que

- $P(A^c) = 1 P(A)$ (Proposição 1.3)
- $P(A^c) \ge 0$ (Axioma 1)

Então

$$1-P(A)\geq 0 \rightarrow P(A)\leq 1$$

Corolário 1.5

$$P(\emptyset) = 0$$

Prova: Sei que

•
$$\emptyset = \Omega^c$$
, logo

$$P(\emptyset) = 1 - P(\Omega)$$
 (Proposição 1.3)

•
$$P(\emptyset) = 1$$
 (Axioma 2), logo

$$P(\emptyset) = 0$$

Exercício 1.3.2 do livro de Jeffrey S. Rosenthal

Suponha $\Omega = \{1,2,3\}$ e que \mathcal{F} é uma coleção de todos os subconjuntos de Ω . Encontre (com prova) condições necessárias e suficientes a respeito dos números x, y e z tal que exista um medida de probabilidade aditiva contável P em \mathcal{F} com $x = P\{1,2\}$, $y = P\{2,3\}$ e $z = P\{1,3\}$.

Exercício 1.3.2 do livro de Jeffrey S. Rosenthal (cont.)

Solução: As condições necessárias e suficientes são: $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ e x + y + z = 2.

Para provar necessidade, seja P a medida de probabilidade em Ω . Logo

$$x = P\{1,2\} = P\{1\} + P\{2\},\$$

 $y = P\{2,3\} = P\{2\} + P\{3\},\$
 $z = P\{1,3\} = P\{1\} + P\{3\}$

Temos, pelo axioma de 1, que $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ e assim podemos calcular

$$x + y + z = 2(P{1} + P{2} + P{3}) = 2P(\Omega) = 2,$$

o que prova a necessidade.

Do lado contrário, vamos assumir que $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ e x + y + z = 2.

Exercício 1.3.2 do livro de Jeffrey S. Rosenthal (cont.)

Definindo a medida de probabilidade da seguinte maneira:

$$P(\emptyset) = 0$$

 $P\{1\} = 1 - y$
 $P\{2\} = 1 - z$
 $P\{3\} = 1 - x$
 $P\{1,2\} = x$
 $P\{2,3\} = y$
 $P\{1,3\} = z$
 $P\{1,2,3\} = 1$

Sabemos que para dois conjuntos A e B disjuntos

$$P(A \cup B) = P(A) + P(B)$$

Exercício 1.3.2 do livro de Jeffrey S. Rosenthal (cont.)

No nosso problema, se fizermos $A=\{1\}$ e $B=\{2\}$ e lembrarmos que x+y+z=2, então

$$P(A \cup B) = P\{1,2\} = x$$

$$P(A) + P(B) = P\{1\} + P\{2\} = (1 - y) + (1 - z)$$

$$= 2 - y - z = (x + y + z) - y - z = x = P(A \cup B)$$

ou seja, P é a medida de probabilidade desejada (suficiência).

Proposição 1.6

Se
$$A \subseteq B$$
 então $P(A) \le P(B)$

$$A_1 = A$$

$$A_2 =$$

$$B \setminus A$$

ou
$$B - A$$
 (diferença)

subconjunto dos elementos de B que não estão em A

Logo

- $A_1 \cap A_2 = \emptyset$ (disjuntos)
- $A_1 \cup A_2 = B$

Mas

$$P(A_1) + P(A_2) = P(A_1 \cup A_2) = P(B)$$

 $P(A) + P(B \setminus A) = P(B)$

Como
$$P(B \backslash A) \geq 0$$
 (Axioma 1) $\rightarrow P(A) \leq P(B)$ \square .

Proposição 1.7

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Prova: Faço

$$A_1 = A \cap B$$

 $A_2 = A \setminus B \text{ ou } A - B$
 $A_3 = B \setminus A \text{ ou } B - A$

Então:

$$A_1 \cup A_2 \cup A_3 = A \cup B$$

$$A_1 \cup A_2 = A$$

$$A_1 \cup A_3 = B$$

Usando o Axioma 3, temos:

$$P(A) = P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

$$P(B) = P(A_1 \cup A_3) = P(A_1) + P(A_3)$$

$$P(A \cup B) = P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

Proposição 1.7 (cont.)

Calculando

$$P(A) + P(B) - P(A \cap B) = (P(A_1) + P(A_2)) + (P(A_1) + P(A_3)) - P(A \cap B)$$

= $P(A_1) + P(A_2) + P(A_3)$
= $P(A \cup B)$ \square

Proposição 1.8

Para quaisquer três eventos A, B, C, temos

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$-P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

A extensão é o Teorema de Poincaré de inclusão e exclusão.

Mais proposições

Seja A, B, C subconjuntos de Ω

- Distributivas:
 - $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
 - $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- Leis de Morgan
 - $(A \cup B)^c = A^c \cap B^c$
 - $\bullet (A \cap B)^c = A^c \cup B^c$

Prova
$$(A \cap B)^c = A^c \cup B^c$$

Em duas partes:

1) $(A \cap B)^c \subseteq A^c \cup B^c$ Por contradição: $(A \cap B)^c \nsubseteq A^c \cup B^c \to \text{existe um } x \in (A \cap B)^c \text{ mas } \notin (A^c \cup B^c)$.

Mais proposições (cont.)

Se temos $x \notin A^c \cup B^c \to x \notin A^c$ e $x \notin B^c \to x \in A$ e $x \in B \to x \in A \cap B \to x \notin (A \cap B)^c$ o que é uma contradição, logo

$$(A \cap B)^c \subseteq A^c \cup B^c$$

2) $(A^c \cup B^c) \subseteq (A \cap B)^c$

Por contradição: $(A^c \cup B^c) \nsubseteq (A \cap B)^c \to \text{existe um } x \in (A^c \cup B^c) \text{ mas } \notin (A \cap B)^c$.

Considerando que $x \notin (A \cap B)^c \to x \in A \cap B \to x \in A$ e $x \in B \to x \notin A^c$ e $x \notin B^c \to x \notin (A^c \cup B^c)^c$ o que é uma contradição, logo

$$(A^c \cup B^c) \subseteq (A \cap B)^c$$

Juntando as duas partes, temos

$$A^c \cup B^c = (A \cap B)^c \quad \Box$$

Propriedades Limites

As propriedades a seguir são essenciais quando se quer responder questões sobre a probabilidade de algo que sempre acontece ou que nunca acontece.

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} P\left(\bigcup_{n=1}^{N} A_n\right)$$

е

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} P\left(\bigcap_{n=1}^{N} A_n\right)$$

O seguinte resultado particular pode ser obtido quando consideramos $A_n \subset A_{n+1}$ para todo n

$$P\left(\bigcap_{n=1}^{\infty}A_{n}\right)=\lim_{N\to\infty}P(A_{N}),\text{ se }A_{n}\subset A_{n+1}$$

Propriedades Limites (cont.)

Da mesma maneira, se considerarmos $A_{n+1} \subset A_n$, então

$$P\left(igcup_{n=1}^{\infty}A_{n}
ight)=\lim_{N o\infty}P(A_{N}), \text{ se }A_{n+1}\subset A_{n}$$

Exemplo Morettin 5.8 - página 109

Lote de 20 peças sendo 5 defeituosas. Escolhemos 4 peças do lote ao acaso, ou seja, uma amostra de 4 elementos, de modo que a ordem dos elementos seja irrelevante. Qual é a probabilidade de escolher duas peças defeituosas na amostra?

- ullet Ordem não interessa o Combinação o $inom{20}{4}$
- A evento 2 defeituosos

$$\binom{5}{2}\binom{15}{2}$$

• $P(A) = \frac{\binom{5}{2}\binom{15}{2}}{\binom{20}{4}} \approx 0.217$

Amostragem

- Amostragem com reposição
- Amostragem sem reposição

Exemplo

Suponha uma gaveta cheia de canetas coloridas.

Experimento 1: retirar uma caneta, anotar a cor e recolocar a caneta.

Repetir até que o número desejado de canetas seja alcançado.

$$\text{2 canetas com reposição: } \Omega = \left\{ \begin{array}{ll} RR, & RG, & RB, & RP, \\ GR, & GG, & GB, & GP, \\ BR, & BG, & BB, & BP, \\ PR, & PG, & PB, & PP \end{array} \right\}$$

 $A \rightarrow$ pelo menos uma caneta vermelha

$$A = \{RR, RG, RB, RP, GR, BR, PR\}$$

Amostragem (cont.)

$$P(A)=\frac{7}{16}$$

Experimento 2: Sem colocar a caneta de volta

$$\Omega = \left\{ \begin{array}{ccc} RG, & RB, & RP, \\ GR, & GB, & GP, \\ BR, & BG, & BP, \\ PR, & PG, & PB, \end{array} \right\}$$

$$A = \{RG, RB, RP, GR, BR, PR\}$$

$$P(A)=\frac{6}{12}$$

Experimento 3: Mesmo do experimento 2 sem se importar com a ordem.

Amostragem (cont.)

$$\Omega = \{\{R, G\}, \{R, B\}, \{R, P\}, \{G, B\}, \{G, P\}, \{B, P\}\}\}$$

$$A = \{\{R, G\}, \{R, B\}, \{R, P\}\}\}$$

$$P(A) = \frac{3}{6}$$

Existem fórmulas para esses experimentos

	com resposição	sem reposição
Amostra ordenada	n ^k	${}^{n}P_{k} = \frac{n!}{(n-k)!}$
Amostra não-ordenada	$\int_{k}^{n+k-1} C_k = \frac{(n+k-1)!}{k!(n-1)!}$	${}^nC_k = \frac{n!}{k!(n-k)!}$

Exemplos

Exemplo 1: Os nomes dos dias da semana são colocados em uma urna. Três nomes são retirados para serem os dias das aulas de Introdução do Processos Estocásticos. Qual é a probabilidade de não termos aula no final de semana?

Solução: Experimento sem reposição $\left\{ \begin{array}{l} \text{com repetição} \\ \text{sem repetição} \end{array} \right.$

- A dimensão do espaço amostral é $|\Omega|={}^7\!P_3={7!\over (7-3)!}=210$
- A evento "não ter aulas nos finais de semana". Dimensão de A

$$|A| = {}^{5}P_{3} = 60$$

$$P(A) = \frac{60}{210} = \frac{2}{7}$$

Se decidirmos por amostras não ordenadas

$$\frac{{}^{5}C_{3}}{{}^{7}C_{3}}=\frac{2}{7}$$

Exemplo 2: Um dado é jogado duas vezes. Qual é a probabilidade da soma ser, pelo menos, 10?

Solução: Amostragem com reposição

- $|\Omega| = 6^2 = 36$
- $A = \{(4,6), (5,5), (6,4), (5,6)(6,6)\}$
- $P(A) = \frac{6}{36} = \frac{1}{6}$

Exemplo 3: Uma caixa contém 20 bolas das quais 10 são vermelhas e 10 são azuis. Retira-se 10 bolas da caixa. Deseja-se 5 bolas vermelhas e 5 azuis. Qual dos procedimentos (com reposição ou sem reposição) levaria a maior probabilidade de ocorrência do evento desejado?

Solução:

Amostragem com reposição

- $|A| = 20^{10}$
- A evento 5 bolas vermelhas e 5 bolas azuis. Olhando para a amostra

$$\underbrace{RRRRR}_{10^5} \underbrace{BBBBB}_{10^5} = 10^{10}$$

• Existem outras maneiras de retirar 5 bolas vermelhas e 5 azuis

$$|A| = {}^{10}C_5 = 252 \times 10^{10}$$

 $P(A) = \frac{252 \times 10^{10}}{20^{10}} \approx 0,246$

Amostragem sem reposição

- Ordenado
 - $|\Omega| = {}^{20}P_{10}$
 - Existem ${}^{10}P_5$ maneiras de escolher 5 bolas vermelhas e ${}^{10}P_5$ de escolher 5 bolas azuis.

$$|A| = \left(^{10}P_5\right)^2 {}^{10}C_5$$

Logo

$$P(A) = \frac{\left(^{10}P_5\right)^2 {}^{10}C_5}{^{20}P_{10}} \approx 0,343$$

- Não ordenado
 - $|\Omega| = {}^{20}C_{10}$
 - $|A| = ({}^{10}C_5)^2$
 - $P(A) = \frac{\binom{10}{C_5}^2}{\binom{20}{C_{10}}} \approx 0,343$

Exemplo 4: Em uma caixa há 6 moedas de ouro, 4 de prata e 3 de bronze. retira-se 3 moedas aleatoreamente. Qual é a probabilidade de todas serem feitas do mesmo material? E de serem de materiais diferentes?

Solução: Amostragem sem reposição não ordenada

•
$$|A| = {}^{13}C_3 = 286$$

• 3 moedas de materiais diferentes

$$P(A) = \frac{{}^{6}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1}}{{}^{13}C_{3}} = \frac{6 \times 4 \times 3}{286} \approx 0,252$$

• 3 moedas de mesmo material: ${}^6C_3 + {}^4C_3 + {}^3C_3 = 20 + 4 + 1 = 25$

$$P(A) = \frac{25}{286} \approx 0,0857$$