General Proofs

John Butler

Contents

0.1 Lemma: $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} : n = 2k \text{ or } n = 2k+1$

case
$$n = 0$$
 | case $n = 1$
 $0 = 2 \cdot 0$ | $1 = 0 + 1$
 $1 = 2 \cdot 0 + 1$
Let $k = 0$ | Let $k = 0$
 $0 = 2k$ | $1 = 2k + 1$

Assume n - 1 = 2k, or n - 1 = 2k + 1

case
$$n - 1 = 2k$$
 | case $n - 1 = 2k + 1$ | $n = 2k + 2$ | $n = 2(k + 1)$ | Let $k' = k + 1$ | $n = 2k'$