Федеральное государственное автономное образовательное учреждение высшего образования Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

ОТЧЁТ по лабороторной работе №2 по дисциплине: «Интервальный анализ»

Студент: Байрамов С. Д.

Преподаватель: Баженов А.Н.

 Γ руппа: 5030102/00201

Санкт-Петербург

Содержание

1	Постановка задачи		2
2	Реализация		2
3	Результаты		3
	3.1 ИСЛАУ		3
	3.2 Достижение разрешимости ИСЛАУ		3
	3.3 Корректировка правой части		4
	3.4 Корректировка левой части		5
	3.5 Управление положением максимума распознающего функционала	•	6
4	Код программы	1	1

1 Постановка задачи

Дана ИСЛАУ

$$\begin{cases}
[0,2]x_1 + [1,3]x_2 = [3,7] \\
x_1 + [-4,-2]x_2 = [-0.5,0.5] \\
[0.75,1.25]x_1 = [3,5] \\
[0.75,1.25]x_2 = [0,2]
\end{cases}$$

Для нее необходимо провести вычисления и привести иллюстрации:

- 1. Максимума распознающего функционала
- 2. Достижения разрешимости ИСЛАУ за счет коррекции правой части
- 3. Оценок вариабельности решения
- 4. Управления положением максимума распознающего функционала за счет коррекции матрицы ИСЛАУ в целом
- Управления положением максимума распознающего функционала за счет коррекции матрицы ИСЛАУ построчно

2 Реализация

Лабораторная работа выполнена с помощью языка Python в среде разработки Visual Studio Code. Используются библиотеки: numpy, intvalpy, matplotlib

3 Результаты

3.1 ИСЛАУ

Рис. 1: График mid системы

3.2 Достижение разрешимости ИСЛАУ

Исходная рассматриваемая ИСЛАУ имеет пустое допусковое множество: max Tol = -0.90, arg max Tol = (2.80, 1.40)

Рис. 2: График Tol(x, A, b)

3.3 Корректировка правой части

Корректировака правой части помогает добиться непустого множества решений интервальной системы.

 $\max \mathrm{Tol} = 0.45, \arg \max \mathrm{Tol} = (2.80, 1.40) \ \mathrm{C}$ корректированная правая часть: $\mathbf{b} = ([1.65, 8.35], \, [\text{-}1.85, \, 1.85], \, [1.65, \, 6.35], \, [\text{-}1.35, \, 3.35]])$

Допусковое множество решений стало непустым.

ive
$$(A, b') = 0.232$$
, rve $(A, b') = 0.48$

На графике изображены квадратные брусы с центром в точке максимума Tol и радиусом ive и rve.

Рис. 3: График ${\rm Tol}({\bf x},{\bf A},\hat{b})$ для ИСЛАУ с корректировкой в правой части

3.4 Корректировка левой части

Использованы следующие радиусы для Е:

$$\left(\begin{array}{ccc}
0.3 & 0.6 \\
0 & 0.6 \\
0.06 & 0 \\
0 & 0.06
\end{array}\right)$$

Так мы получаем непустое множество решений.

 $\max \text{Tol} = 0.10, \arg \max \text{Tol} = (3.29, 1.68)$

$$A' = \begin{pmatrix} [0.905, 1.095] & [1.31, 1.69] \\ [1,1] & [-2.19, -1.81] \\ [0.981, 1.019] & [0,0] \\ [0,0] & [0.981, 1.019] \end{pmatrix}$$

Рис. 4: График Tol для ИСЛАУ с корректировкой в левой части Допусковое множество решений стало непустым.

ive
$$(A, b') = 0.153$$
, rve $(A, b') = 0.273$

На графике изображены квадратные брусы с центром в точке максимума Tol и радиусом ive и rve.

3.5 Управление положением максимума распознающего функционала

Объединим графики для управляющего функционала и уравнений, которые образуют средние значения интервалов в системе:

Рис. 5: График Tol(x, A, b) с корректировкой правой части и mid системы Результат корректировки первой строки:

$$A = \begin{pmatrix} 1 & 1.5 \\ 1 & [-3, -1] \\ [0.9, 1.1] & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$

 $\max \text{Tol} = -0.75, \arg \max \text{Tol} = (2.5, 1.25)$

Рис. 6: График Tol(x, A, b) с корректировкой первой строки матрицы Результат корректировки второй строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & -2 \\ [0.9, 1.1] & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$

Рис. 7: График Tol(x, A, b) с корректировкой второй строки матрицы $\max Tol = -0.77, \arg \max Tol = (3.4, 1.07)$

Результат корректировки третьей строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & [-3, -1] \\ 1 & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$

Рис. 8: График Tol(x, A, b) с корректировкой третьей строки матрицы $\max Tol = -0.9, \arg \max Tol = (2.80, 1.40)$

Результат корректировки четвертой строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & [-3, -1] \\ 1 & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$

Рис. 9: График Tol(x, A, b) с корректировкой четвертой строки матрицы $\max Tol = -0.9, \arg \max Tol = (2.80, 1.40)$

4 Код программы

 $https://github.com/Samirox66/interval_analysis$