Chomsky Normal Form (CNF)

- Implementation: branching factor remains homogeneous
- Production Rule (Parse Tree): siblings hold same properties
- A. Length of the Production Rule body should be within 2
- B. No Variable, Terminal mixed up

Prerequisite to construct CNF

- **1.** Eliminate ∈ transitions
- 2. Eliminate Unit productions
- 3. Eliminate useless symbols
- Unit Productions: 1 Variable to 1 Variable

$$V \rightarrow X$$

- Useless Symbols:
 - Variable does not generate any Production Rule
 - Not reachable Variable(s)

Example:

$$S \rightarrow AB \mid \in$$

$$A \rightarrow aAb|aAa| \in$$

$$B \rightarrow A \mid bB \mid \in$$

$$D \rightarrow Aa|bB|Eb$$

Example:

 $S \rightarrow AB$

 $A \rightarrow aAb | aAa | \in$

 $B \rightarrow bB |D| \in$

 $E \rightarrow a$

Step 1: Eliminate \in Transitions

Nullable symbols {A, B}

Production rules		Combination of Nullable symbols		
$S \rightarrow AB$	$S \rightarrow AB$	{A, B, AB, ∅}	$S \to AB$ $S \to A B AB \varnothing$	$S \rightarrow AB$ $S \rightarrow A B AB$
	$A \rightarrow aAb$		$A \rightarrow aAb$	$A \rightarrow aAb$
$A \rightarrow aAb aAa \in$		{A, ∅}		$A \rightarrow ab$
$A \rightarrow aAb \mid aAa \mid \in$	$A \rightarrow aAa$		$A \rightarrow aAa$	$A \rightarrow aAa$
				$A \rightarrow aa$
	$B \rightarrow bB$		$B \rightarrow bB$	$B \rightarrow bB$
$B \rightarrow bB D \in$		{B, ∅}		$B \rightarrow b$
	$B \rightarrow D$		$B \rightarrow D$	$B \rightarrow D$
$E \rightarrow a$				$E \rightarrow a$

$$\therefore S \rightarrow A|B|AB$$

 $A \rightarrow aAb|ab|aAa|aa$

 $B \rightarrow bB|b|D$

 $E \rightarrow a$

Step 2: Eliminate Unit Productions

$S \rightarrow A \mid B \mid AB$	S → aAb ab aAa aa bB b D AB
$A \rightarrow aAb ab aAa aa$	A → aAb ab aAa aa
$B \rightarrow bB b D$	$B \rightarrow bB b D$
$E \rightarrow a$	$E \rightarrow a$

Step 3: Eliminate Useless symbols

- Not generating rules further {D}
- Not reachable {E}

$S \rightarrow aAb ab aAa aa bB b D AB$	S → aAb ab aAa aa bB b AB
A → aAb ab aAa aa	A → aAb ab aAa aa
$B \rightarrow bB b D$	$B \rightarrow bB b$
$E \rightarrow a$	

Step 4: Length of the Production rule body should be within 2

S → aAb ab aAa aa bB b AB	S → Xb ab Xa aa bB b AB
$A \rightarrow aAb ab aAa aa$	$X \rightarrow aA$
$B \rightarrow bB b$	A → Xb ab Xa aa
	$B \rightarrow bB b$

Step 5: No Variable, Terminal mixed up

S → Xb ab Xa aa bB b AB	$Y \rightarrow a$
$X \rightarrow aA$	$Z \rightarrow b$
$A \rightarrow Xb ab Xa aa$	$S \rightarrow XZ ab XY aa ZB b AB$
$B \rightarrow bB b$	$X \rightarrow YA$
- ,	$A \rightarrow XZ ab XY aa$
	$B \rightarrow ZB \mid b$

CYK Algorithm: The membership problem

- To test a string is accepted or not
- J. Cocke, D. Younger, T. Kasami

The membership problem:

- Problem:
 - · Given a context-free grammar G and a string w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ where
 - » V finite set of variables
 - » ∑ (the alphabet) finite set of terminal symbols
 - » P finite set of rules
 - » S start symbol (distinguished element of V)
 - » V and ∑ are assumed to be disjoint
 - G is used to generate the string of a language
- Question:
 - Is w in L(G)?
- The Structure of the rules in a Chomsky Normal Form grammar
- Uses a "dynamic programming" or "table-filling algorithm"

- Each row corresponds to one length of substrings
 - Bottom Row Strings of length 1
 - Second from Bottom Row Strings of length 2

.

- Top Row string 'w'
- X_{i, i} is the set of variables A such that
 A → w_i is a production of G
- Compare at most n pairs of previously computed sets:

$$(X_{i,\,i}\;,\,X_{i+1,\,j}\;),\,(X_{i,\,i+1}\;,\,X_{i+2,\,j}\;)\;...\;(X_{i,\,j-1}\;,\,X_{j,\,j}\;)$$

X _{1,5}				
X _{1, 4}	X _{2,5}			
X _{1,3}	X _{2, 4}	X _{3,5}		
X _{1, 2}	X _{2,3}	X _{3, 4}	X _{4,5}	
X _{1, 1}	X _{2, 2}	X _{3,3}	X _{4, 4}	X _{5,5}
w ₁	w ₂	w ₃	w ₄	w ₅

Table for string 'w' that has length 5

example:

- CNF grammar G
 - S → AB | BC
 - A → BA | a
 - B → CC | b
 - C → AB | a
- w is baaba
- Question Is baaba in L(G)?

•
$$X_{1,2} = (X_{i,i}, X_{i+1,j}) = (X_{1,1}, X_{2,2})$$

• Steps:

- Look for production rules to generate BA or BC
- There are two: S and A

$$-X_{1,2} = \{S, A\}$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

			ı	
				ı
{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}
ь	а	а	ь	а

•
$$X_{2,3} = (X_{i,i}, X_{i+1,j}) = (X_{2,2}, X_{3,3})$$

- Steps:
 - Look for production rules to generate Y
 - There is one: B

$$-X_{2,3} = \{B\}$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

•
$$X_{3,4} = (X_{i,i}, X_{i+1,j}) = (X_{3,3}, X_{4,4})$$

- Steps:
 - Look for production rules to generate Y
 - There are two: S and C

$$-X_{3,4} = \{S,C\}$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

			l	
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
h	a		h	

•
$$X_{4,5} = (X_{i,i}, X_{i+1,j}) = (X_{4,4}, X_{5,5})$$

- Steps:
 - Look for production rules to generate Y
 - There are two: S and A

$$-X_{4,5} = \{S, A\}$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

•
$$X_{1,3} = (X_{i,i}, X_{i+1,j}) (X_{i,i+1}, X_{i+2,j})$$

= $(X_{1,1}, X_{2,3}), (X_{1,2}, X_{3,3})$

- → {B}{B} U {S, A}{A, C}= {BB, SA, SC, AA, AC} = Y
- Steps:
 - Look for production rules to generate Y

- There are NONE: S and A
$$- X_{1,3} = \emptyset$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

- no elements in this set (empty set)

		_		
Ø	{B}			_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
	_	_	h	_

•
$$X_{2,4}$$
 = $(X_{i,i}, X_{i+1,j})$ $(X_{i,i+1}, X_{i+2,j})$
= $(X_{2,2}, X_{3,4})$, $(X_{2,3}, X_{4,4})$

• Steps:

- Look for production rules to generate Y

- There is one: B
$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
- $X_{2,4} = \{B\}$ $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

			1	
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

•
$$X_{3,5}$$
 = $(X_{i,i}, X_{i+1,j})$ $(X_{i,i+1}, X_{i+2,j})$
= $(X_{3,3}, X_{4,5})$, $(X_{3,4}, X_{5,5})$

• Steps:

Look for production rules to generate Y

- There is one: B

$$\begin{array}{ll}
S \rightarrow AB \mid BC \\
A \rightarrow BA \mid a \\
B \rightarrow CC \mid b \\
C \rightarrow AB \mid a
\end{array}$$

{S, A, C}	← X _{1,5}			
Ø	{S, A, C}			
Ø	{B}	{B}		_
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	а	а	ь	а

We can see the S in the set X_{1n} where 'n' = 5 We can see the table the cell X_{15} = (S, A, C) then

if S ∈ X₁₅ then <u>baaba</u> ∈ L(G)

Homework:

- CNF grammar G
 - S → AB | BC
 - A → BA | a
 - B → CC | b
 - C → AB | a
- w is ababa
- Question Is ababa in L(G)?