Quantenmechanischer Harmonischer Oszillator

HO Klassisch

Hooksches Gesetz:

$$F = -Dx \tag{1}$$

Kombiniert mit dem Newtonschen Axiom:

$$ma = -Dx (2)$$

$$m\ddot{x} = -Dx\tag{3}$$

$$\Leftrightarrow \ddot{x} + \underbrace{\frac{D}{m}}_{\omega^2} x = 0 \tag{4}$$

$$\Rightarrow D = m\omega^2 \tag{5}$$

Die Hamiltonfunktion für dieses System ist die Summe aus kinetischer und potentieller Energie:

$$H = E_{\rm kin} + E_{\rm pot} = \frac{p^2}{2m} + \frac{1}{2}Dx^2 \tag{6}$$

Mit D aus (5) folgt die Hamilton-Funktion für den Harmonischen Oszillator:

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
 (7)

Die Standardmethode der Analysis zur Lösung der Differentialgleichung unter der Nebenbedinuung, dass $\psi(x)$ quadratintegrabel ist, führt auf Hermite-Polynome. Wir wollen hier jedoch eine algebraische Methode benutzen.

Algebraische Methode

Als erstes definieren wir den nicht hermiteschen Operator a:

$$a = \frac{\omega mx + ip}{\sqrt{2\omega m\hbar}} \tag{8}$$

und den dazu komplexkonjgiergten Operator

$$a^{\dagger} = \frac{\omega mx - ip}{\sqrt{2\omega m\hbar}} \tag{9}$$

Durch die Addition von (8) und (9) erhalten wir den Ortsoperator:

$$x = \sqrt{\frac{\hbar}{2\omega m}}(a + a^{\dagger}) \tag{10}$$

Und durch Subtraktion von (8) minus (9) erhalten wir den Impulsoperator:

$$p = -i\sqrt{\frac{\hbar\omega m}{2}}(a - a^{\dagger}) \tag{11}$$

Aus dem Kommutator $[x, p] = i\hbar$ erhalten wir eine wichtige Beziehung:

$$\boxed{[a, a^{\dagger}] = 1} \tag{12}$$

Die von uns erhaltenen Orts- und Impuls-Gleichungen (10) und (11) eingesetzt in (7):

$$H = \frac{1}{2m} \frac{\hbar \omega m}{2} (a - a^{\dagger})^2 + \frac{1}{2} m \omega^2 \frac{\hbar}{2\omega m} (a + a^{\dagger})^2$$
 (13)

$$= -\frac{\hbar\omega}{4}(a-a^{\dagger})^2 + \omega\frac{\hbar}{4}(a+a^{\dagger})^2 \tag{14}$$

$$=\frac{\hbar\omega}{4}\left[-(a-a^{\dagger})^2+(a+a^{\dagger})^2\right] \tag{15}$$

$$= \frac{\hbar\omega}{4} \left[-a^2 (a^{\dagger})^2 + aa^{\dagger} + a^{\dagger}a + \underline{a}^2 + (a^{\dagger})^2 + aa^{\dagger} + a^{\dagger}a \right]$$
 (16)

$$= \frac{\hbar\omega}{4} \left[aa^{\dagger} + a^{\dagger}a + aa^{\dagger} + a^{\dagger}a \right] \tag{17}$$

$$=\frac{\hbar\omega}{2}\left[aa^{\dagger}+a^{\dagger}a\right] \tag{18}$$

(19)

Mit der Beziehung (12) $aa^{\dagger}=1+a^{\dagger}a$ ergibt sich der Hamilton Operator als Ausdruck des Absolutquadtrats vom Operator a:

$$H = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right)$$
 (20)

Spektrum der Energieeigenwerte

Als nächstes wollen wir das Enegriespektrum des Harmonischen Oszillators bestimmen. Es reicht dazu die Eigenwerte des 'Zähloperators' zunächst zu betrachten:

$$N = a^{\dagger} a \tag{21}$$

Mit der Eigenwertgleichung:

$$N|n\rangle = n|n\rangle \tag{22}$$

Wendet man den Hamiltonoperator auf die Energieeigenzustände an so ergibt sich:

$$H|n\rangle = E_n|n\rangle \tag{23}$$

$$\hbar\omega\left(a^{\dagger}a + \frac{1}{2}\right)|n\rangle = E_n|n\rangle \tag{24}$$

Damit erhalten wir für die Energieeigenwerte:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) \tag{25}$$

Wir werden später zeigen, dass n eine positive ganze Zahl ist.

Nun wollen wir die physikalische Bedeutung des eigenführten Operators a untersuchen. Dazu benötigen wir zwei Relationen:

$$[a, H] = \left[a, \hbar\omega(a^{\dagger}a + \frac{1}{2})\right] \tag{26}$$

$$=\hbar\omega[a,a^{\dagger}a] \tag{27}$$

$$= -\hbar\omega[a^{\dagger}a, a] \qquad \text{mit } [AB, C] = A[B, C] + [A, C]B \tag{28}$$

$$= -\hbar\omega(\underbrace{a^{\dagger}[a,a]}_{=0} + \underbrace{[a^{\dagger},a]}_{=-1}a) \tag{29}$$

$$=\hbar\omega a$$
 (30)

Analog erhält man:

$$[a^{\dagger}, H] = -\hbar\omega a^{\dagger} \tag{31}$$

Nun betrachten wir folgende Eigenwertgleichungen:

$$\underbrace{\frac{H(a|n\rangle)}{H(a|n\rangle)}}_{(31)} = (aH - \hbar\omega a)|n\rangle = \underbrace{(E_n - \hbar\omega)}_{(a|n\rangle)}$$

$$\underbrace{\frac{H(a^{\dagger}|n\rangle)}{H(a^{\dagger}|n\rangle)}}_{(32)} = (a^{\dagger}H + \hbar\omega a^{\dagger})|n\rangle = \underbrace{(E_n + \hbar\omega)}_{(a^{\dagger}|n\rangle)}$$
(33)

$$\underbrace{\overline{H}(a^{\dagger}|n\rangle)} = (a^{\dagger}H + \hbar\omega a^{\dagger})|n\rangle = (E_n + \hbar\omega)(a^{\dagger}|n\rangle)$$
(33)

Aus den Gleichungen (32) und (33) sieht man dass $(a|n\rangle)$ und $(a^{\dagger}|n\rangle)$ Eigenzustände von H mit den Eigenwerten $(E_n - \hbar \omega)$ und $(E_n + \hbar \omega)$ sind. Die entsprechende Wirkung der Operatoren a und a^{\dagger} auf die Energieeigenzustände $|n\rangle$ erzeugt ein neuen Energiezustand der sich um $\hbar\omega$ verringert bzw. erhöht. Deswegen werden die Operatoren a und a^{\dagger} als vernichtungs(absteige) bzw. erzeugungs(aufsteige) Operatoren bezeichnet.

Als nächstes wollen wir feststellen was passiert wenn wir die Operatoren a und a^{\dagger} auf die Energieeigenzustände anwenden. Dazu benötigen wir zwei weitere Kommutator-Relationen:

$$[N,a] = [a^{\dagger}a, a] \tag{34}$$

$$= a^{\dagger} \underbrace{[a,a]}_{=0} + \underbrace{[a^{\dagger},a]}_{-1} a \tag{35}$$

$$= -a \tag{36}$$

und analog für a^{\dagger} folgt:

$$[N, a^{\dagger}] = a^{\dagger} \tag{37}$$

Nun ähnlich zu den Gleichungen (32) und (33) für den Hamiltonoperator betrachten wir Eigenwertgleichungen für den Operator N:

$$\underbrace{\frac{N(a|n\rangle)}{N(a|n\rangle)}} = a(N-1)|n\rangle = \underbrace{(n-1)(a|n\rangle)}$$

$$\underbrace{\frac{N(a^{\dagger}|n\rangle)}{N(a^{\dagger}|n\rangle)}} = a^{\dagger}(N+1)|n\rangle = \underbrace{(n+1)(a^{\dagger}|n\rangle)}$$
(38)

$$\widetilde{\underline{N}(a^{\dagger}|n\rangle)} = a^{\dagger}(N+1)|n\rangle = (n+1)(a^{\dagger}|n\rangle)$$
(39)

Aus den beiden Gleichungen (38) und (39) folgt $(a|n\rangle)$ und $(a^{\dagger}|n\rangle)$ Eigenzustände von N mit den Eigenwerten (n-1) und (n+1) sind. Das bedeutet, dass $(a|n\rangle)$ und $(a^{\dagger}|n\rangle)$ angewandt auf die Zustände $|n\rangle$ erniedrigen bzw. erhöhen jeweils um 1. D.h. dass a angewand auf $|n\rangle$ erzeugt einen neuen Zustand mit $|n-1\rangle$ und a^{\dagger} angewand auf $|n\rangle$ erzeugt einen neuen Zustand mit $|n+1\rangle$. Damit erhalten wir folgende Beziehung:

$$a|n\rangle = c_n|n-1\rangle \tag{40}$$

Wobei c_n eine die noch zu bestimmende Konstante ist. Um c_n zu bestimmen nutzen wir die Normierungsbedinung für den Zustand $(a|n\rangle)$ aus:

$$(\langle n|a^{\dagger}) \cdot (a|n\rangle) = \langle n|a^{\dagger}a|n\rangle = |c_n|^2 \langle n-1|n-1\rangle = |c_n|^2 \tag{41}$$

Desweiteren gilt:

$$(\langle n|a^{\dagger}) \cdot (a|n\rangle) = \langle n|\underbrace{a^{\dagger}a}_{N}|n\rangle = n \tag{42}$$

Aus (41) und (42) folgt:

$$c_n = \sqrt{n} \tag{43}$$

Eingesetzt in die Gleichung (40):

$$a|n\rangle = \sqrt{n}|n-1\rangle \tag{44}$$

Eine analoge Rechnung für den Aufsteige-Operator ergibt:

$$\boxed{a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle} \tag{45}$$

Wendet man den Absteige-Operator auf den Zustand $|n\rangle$ sukzessive an, wird der Zustand immer um 1 kleiner bis zum Grundzustand mit n=0. Weitere Anwendung des Operators auf den Null-Zustand $a|0\rangle$ ergibt Null. Wendet man nun startend vom Grundzustand aus den Aufsteige-Operator an so wird n immer um eine ganze Zahl erhöht. Daraus folgt dass n eine positive ganze Zahl sein muss. Somit ist das Spektrum für die Energieeigenwerte gegeben mit:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) \qquad n \in \mathbb{N}_0$$
 (46)

Da n eine positive ganze Zahl ist, ist das Energiespektrum des harmonischen Oszillators quantisiert. Im Gegensatz zum Klassischen Fall gibt es eine nicht verschwindende Nullpunktenergie (Grundzustandsenergie) für n = 0:

$$E_0 = \frac{\hbar\omega}{2} \tag{47}$$

Die Nullpunktenergie darf nach dem Quantenmechanischen Prinzip auch nicht Null werden, da es die Unschärferelation verletzen würde.

Eigenzustände, Hermitpolynome

Wir wollen die Eigenzustände des harmonischen Oszillators bestimmen. Der Grundzustand der Nullpunktenergie lässt sich relativ leicht aus der Bedingung,

$$a|0\rangle = 0 \tag{48}$$

herleiten. Mit (8)

$$a|0\rangle = \frac{\omega mx + ip}{\sqrt{2\omega m\hbar}}|0\rangle \tag{49}$$

$$0 = \frac{\omega mx + ip}{\sqrt{2\omega m\hbar}} |0\rangle \tag{50}$$

$$0 = (\omega mx + ip) |0\rangle \tag{51}$$

$$0 = \left(\omega mx + i\frac{\hbar}{i}\frac{d}{dx}\right)|0\rangle \tag{52}$$

$$0 = \left(\frac{\omega m}{\hbar}x + \frac{d}{dx}\right)|0\rangle \tag{53}$$

$$0 = \left(\frac{1}{x_0^2}x + \frac{d}{dx}\right)|0\rangle \quad \text{mit } x_0^2 = \frac{\hbar}{\omega m}$$
 (54)

Zur Lösung dieser Differentialgleichung:

$$\Rightarrow \left(\frac{1}{x_0^2}x + \frac{d}{dx}\right)|0\rangle = 0 \tag{55}$$

verwenden wir den Ansatz:

$$\langle x|0\rangle = Ae^{-\frac{1}{2}\frac{x^2}{x_0^2}} \tag{56}$$

Um den Normierungsfaktor A zu bestimmen benutzen wir die Normierungsbedingung:

$$\langle 0|0\rangle = |A|^2 \int_{-\infty}^{\infty} e^{-\frac{x^2}{x_0^2}} = |A|^2 \sqrt{\pi} x_0 \stackrel{!}{=} 1 \tag{57}$$

$$\Rightarrow A = \frac{1}{\sqrt[4]{\pi}\sqrt{x_0}} \tag{58}$$

Somit erhalten wir die Grundzustandsfunktion:

$$\langle x|0\rangle = \frac{1}{\sqrt[4]{\pi}\sqrt{x_0}} e^{-\frac{1}{2}\frac{x^2}{x_0^2}} \tag{59}$$

Wenden man nun den Aufsteige-Operator n mal auf die Grundzustandsfunktion an, so erhält man den n-ten Zustand:

$$a^{\dagger}|0\rangle = \sqrt{1}|1\rangle \tag{60}$$

$$a^{\dagger}a^{\dagger}|1\rangle = \sqrt{1}a^{\dagger}|1\rangle = \sqrt{1}\sqrt{2}|2\rangle \tag{61}$$

$$a^{\dagger}a^{\dagger}a^{\dagger}|1\rangle = \sqrt{1}a^{\dagger}a^{\dagger}|1\rangle = \sqrt{1}\sqrt{2}a^{\dagger}|2\rangle = \sqrt{1}\sqrt{2}\sqrt{3}|3\rangle \tag{62}$$

$$\vdots (63)$$

$$(a^{\dagger})^n|0\rangle = \sqrt{n!}|n\rangle \tag{64}$$

$$\Leftrightarrow |n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle \tag{65}$$

$$\Rightarrow \langle x|n\rangle = \frac{1}{\sqrt{n!}\sqrt[4]{\pi}\sqrt{x_0}} (a^{\dagger})^n e^{-\frac{1}{2}\frac{x^2}{x_0^2}} \tag{66}$$

Setzen wir den Aufsteige-Operator (8)

$$a^{\dagger} = \frac{1}{\sqrt{2}x_0} \left(x - x_0^2 \frac{d}{dx} \right) \tag{67}$$

in die Gleichung (66) ein, so erhalten wir:

$$\langle x|n\rangle = \frac{1}{\sqrt{n!} \sqrt[4]{\pi} \sqrt{x_0}} \frac{1}{\sqrt{2^n x_0^n}} \left(x - x_0^2 \frac{d}{dx}\right)^n e^{-\frac{1}{2} \frac{x^2}{x_0^2}}$$
(68)

$$\rightarrow \boxed{\psi_n(x) = \langle x | n \rangle = \frac{1}{\sqrt{n!} \sqrt[4]{\pi}} \frac{1}{\sqrt{2^n} x_0^{n+\frac{1}{2}}} \left(x - x_0^2 \frac{d}{dx} \right)^n e^{-\frac{1}{2} \frac{x^2}{x_0^2}}}$$
(69)

Wir wollen die Gleichung (69) mit Hilfe der Hermitpolynome Ausdrücken. Dafür benötigen wir die bekannte Relation:

$$H_n(x) = e^{\frac{x^2}{2}} \left(x - \frac{d}{dx} \right)^n e^{-\frac{x^2}{2}} \tag{70}$$

Für x den Wert $\frac{x}{x_0}$ eingesetzt lautet die Gleichung nun:

$$H_n\left(\frac{x}{x_0}\right) = e^{\frac{x^2}{2x_0^2}} \left(\frac{x}{x_0} - x_0 \frac{d}{dx}\right)^n e^{-\frac{x^2}{2x_0^2}} \tag{71}$$

$$=e^{\frac{x^2}{2x_0^2}}\frac{1}{x_0^n}\left(x-x_0^2\frac{d}{dx}\right)^ne^{-\frac{x^2}{2x_0^2}}\tag{72}$$

(73)

$$\Leftrightarrow e^{-\frac{x^2}{2x_0^2}} H_n\left(\frac{x}{x_0}\right) = \frac{1}{x_0^n} \left(x - x_0^2 \frac{d}{dx}\right)^n e^{-\frac{x^2}{2x_0^2}} \tag{74}$$

Gleichung (74) in (69) eingesetzt:

$$\psi_n(x) = \langle x|n\rangle = \frac{1}{\sqrt{n!}\sqrt[4]{\pi}\sqrt{2^n}\sqrt{x_0}}e^{-\frac{x^2}{2x_0^2}}H_n\left(\frac{x}{x_0}\right)$$
(75)

Wobei H_n die so genannte Hermitpolynome sind für die gilt:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \tag{76}$$

Referenzen

- $\bullet\,$ Schwabl Quantenmechanik
- Zettili Quantum Mechanics