#### Indexes as Access Paths

- A single-level index is an auxiliary file that makes it more efficient to search for a record in the data file.
- The index is usually specified on one field of the file (although it could be specified on several fields)
- One form of an index is a file of entries < field value, pointer to record>, which is ordered by field value
- The index is called an access path on the field.

### Indexes as Access Paths (contd.)

- The index file usually occupies considerably less disk blocks than the data file because its entries are much smaller
- A binary search on the index yields a pointer to the file record
- Indexes can also be characterized as dense or sparse
  - A dense index has an index entry for every search key value (and hence every record) in the data file.
  - A **sparse (or nondense) index**, on the other hand, has index entries for only some of the search values

### Indexes as Access Paths (contd.)

- Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
- Suppose that:
  - record size R=150 bytes block size B=512 bytes r=30000 records
- Then, we get:
  - blocking factor Bfr= B div R= 512 div 150= 3 records/block
  - number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks
- For an index on the SSN field, assume the field size  $V_{SSN}$ =9 bytes, assume the record pointer size  $P_R$ =7 bytes. Then:
  - index entry size R<sub>I</sub>=(V<sub>SSN</sub>+ P<sub>R</sub>)=(9+7)=16 bytes
  - index blocking factor Bfr<sub>i</sub>= B div R<sub>i</sub>= 512 div 16= 32 entries/block
  - number of index blocks b=  $(r/Bfr_i)$ = (30000/32)= 938 blocks
  - binary search needs log<sub>2</sub>bl= log<sub>2</sub>938= 10 block accesses
  - This is compared to an average linear search cost of:
    - (b/2)= 30000/2= 15000 block accesses
  - If the file records are ordered, the binary search cost would be:
    - log<sub>2</sub>b= log<sub>2</sub>30000= 15 block accesses

## Types of Single-Level Indexes

- Primary Index
  - Defined on an ordered data file
  - The data file is ordered on a key field
  - Includes one index entry for each block in the data file; the index entry has the key field value for the first record in the block, which is called the block anchor
  - A similar scheme can use the last record in a block.
  - A primary index is a nondense (sparse) index, since it includes an entry for each disk block of the data file and the keys of its anchor record rather than for every search value.

# Primary index on the ordering key field



### Types of Single-Level Indexes

- Clustering Index
  - Defined on an ordered data file
  - The data file is ordered on a non-key field unlike primary index, which requires that the ordering field of the data file have a distinct value for each record.
  - Includes one index entry *for each distinct value* of the field; the index entry points to the first data block that contains records with that field value.
  - It is another example of *nondense* index where Insertion and Deletion is relatively straightforward with a clustering index.

#### A Clustering Index Example

FIGURE 14.2
 A clustering index on the DEPTNUMBER ordering non-key field of an EMPLOYEE file.



# Another Clustering Index Example



## Types of Single-Level Indexes

#### Secondary Index

- A secondary index provides a secondary means of accessing a file for which some primary access already exists.
- The secondary index may be on a field which is a candidate key and has a unique value in every record, or a non-key with duplicate values.
- The index is an ordered file with two fields.
  - The first field is of the same data type as some **non-ordering field** of the data file that is an indexing field.
  - The second field is either a **block** pointer or a record pointer.
  - There can be many secondary indexes (and hence, indexing fields) for the same file.
- Includes one entry for each record in the data file; hence, it is a dense index

## Example of a Dense Secondary Index



# An Example of a Secondary Index



Figure 14.5

A secondary index (with record pointers) on a nonkey field implemented using one level of indirection so that index entries are of fixed length and have unique field values.

# Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

| TYPE<br>OF<br>INDEX   | NUMBER OF (FIRST-LEVEL) INDEX ENTRIES                                                   | Dense or<br>Nondense | BLOCK ANCHORING ON<br>THE DATA FILE |
|-----------------------|-----------------------------------------------------------------------------------------|----------------------|-------------------------------------|
| Primary               | Number of blocks in                                                                     | Nondense             | Yes                                 |
| Clustering            | Number of distinct index field values                                                   | Nondense             | Yes/no <sup>a</sup>                 |
| Secondary<br>(key)    | Number of records in data file                                                          | Dense                | No                                  |
| Secondary<br>(nonkey) | Number of records <sup>b</sup> or<br>Number of distinct index field values <sup>c</sup> | Dense or<br>Nondense | No                                  |

<sup>&</sup>lt;sup>a</sup>Yes if every distinct value of the ordering field starts a new block; no otherwise.

<sup>&</sup>lt;sup>b</sup>For option 1.

<sup>&</sup>lt;sup>c</sup>For options 2 and 3.

#### Multi-Level Indexes

- Because a single-level index is an ordered file, we can create a primary index to the index itself;
  - In this case, the original index file is called the *first-level index* and the index to the index is called the *second-level index*.
- We can repeat the process, creating a third, fourth, ..., top level until all entries of the top level fit in one disk block
- A multi-level index can be created for any type of first-level index (primary, secondary, clustering) as long as the firstlevel index consists of more than one disk block

# A Two-level Primary Index



A two-level primary index resembling ISAM (Index Sequential Access Method) organization.