STAT 710 Third Exam 8:25am-9:15am, April 14, 2011

Please show all your work for full credits.

1. Let $X_1, ..., X_n$ be i.i.d. observations having the Lebesgue p.d.f.

$$f_{\theta}(x) = \frac{1}{2}(1 - \theta^2)e^{\theta x - |x|},$$

where $\theta \in (-1,1)$ is an unknown parameter. Consider the hypotheses $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.

- (a) (3 points) Show that there is a statistic Y and a constant c such that the UMP test of size $\alpha \in (0, \frac{1}{2})$ rejects H_0 if and only if Y > c. (You don't need to obtain the value of c, but provide a formula to compute c.)
- (b) (2 points) Obtain the constant c in part (a) when n = 1.
- (c) (3 points) Obtain $c = c_n$ such that $\lim_{n\to\infty} P_0(Y > c_n) = \alpha$, where P_0 is the probability under $\theta = 0$ and Y is in part (a).
- 2. Let $X_1, ..., X_n$ be i.i.d. observations having the Lebesgue p.d.f.

$$f_{\theta}(x) = \frac{1}{2}(1 - \theta^2)e^{\theta x - |x|},$$

and $Y_1, ..., Y_n$ be i.i.d. observations having the Lebesgue p.d.f.

$$f_{\varphi}(y) = \frac{1}{2}(1 - \varphi^2)e^{\varphi y - |y|},$$

where $\theta \in (-1,1)$ and $\varphi \in (-1,1)$ are unknown parameters. Suppose that $X_1,...,X_n$ and $Y_1,...,Y_n$ are independent. Consider the hypotheses $H_0:\theta=\varphi$ versus $H_1:\theta\neq\varphi$.

- (a) (3 points) Find two statistics Y and U such that the UMPU rejects H_0 if and only if $Y < c_1(U)$ or $Y > c_2(U)$, where $c_1(U)$ and $c_2(U)$ are functions satisfying some constraints. (Give the constraints but do not need to simplify them.)
- (b) (3 points) Derive the form of the likelihood ratio test statistic.
- (c) (3 points) Derive the form of Wald's test statistic.
- (d) (3 points) Derive the form of Rao's score test statistic.