Features

- High blocking voltage with low On-resistance
- High speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Qrr)
- Halogen free, RoHS compliant

Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency

Applications

- · Renewable energy
- Lighting
- High voltage DC/DC converters
- Telecom Power Supplies
- Induction Heating

Part Number	Package	Marking
GC3M0280090D	TO-247-3	GC3M0280090

ROHS compliant

TO-247-3

Package

Maximum Ratings ($T_c = 25 \, ^{\circ}\text{C}$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{DSmax}	Drain - Source Voltage	900	٧	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage (dynamic)	-8/+19	٧	AC (f >1 Hz)	Note: 1
V_{GSop}	Gate - Source Voltage (static)	-4/+15	٧	Static	Note: 2
	Continuous Drain Current	10.2	А	V _{GS} = 15 V, T _C = 25°C	Fig. 19
I _D	Continuous Diam Current	6.8		V _{GS} = 15 V, T _C = 100°C	
I _{D(pulse)}	Pulsed Drain Current	22	А	Pulse width t _P limited by T _{jmax}	Fig. 22
$P_{\scriptscriptstyle D}$	Power Dissipation	45	W	T _c =25°C, T _J = 150 °C	Fig. 20
T_J , T_{stg}	Operating Junction and Storage Temperature	-55 to +150	°C		
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
M_d	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw	

Note (1): When using MOSFET Body Diode $V_{GSmax} = -4V/+19V$

Note (2): MOSFET can also safely operate at 0/+15 V

Electrical Characteristics (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	900			V	V _{GS} = 0 V, I _D = 100 μA		
V	0 . 7	1.8	2.7	3.5	V	V _{DS} = V _{GS} , I _D = 1.2 mA	Fig. 11	
$V_{\text{GS(th)}}$	Gate Threshold Voltage		2.2		V	V _{DS} = V _{GS} , I _D = 1.2 mA, T _J = 150°C		
I _{DSS}	Zero Gate Voltage Drain Current		1	100	μΑ	V _{DS} = 900 V, V _{GS} = 0 V		
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V _{GS} = 15 V, V _{DS} = 0 V		
D	Drain-Source On-State Resistance		320	360	mΩ	V_{GS} = 15 V, I_{D} = 7.5 A	Fig. 4,	
$R_{DS(on)}$	Dialii-Source Oil-State Resistance		416		111112	V _{GS} = 15 V, I _D = 7.5 A, T _J = 150°C	5, 6	
~	Transconductance		3.6		S	V _{DS} = 15 V, I _{DS} = 7.5 A	Fig. 7	
g _{fs}	Transconductance		3.6		3	V _{DS} = 15 V, I _{DS} = 7.5 A, T _J = 150°C	Tig. /	
C_{iss}	Input Capacitance		204				Fig. 17, 18	
Coss	Output Capacitance		26		pF	$V_{GS} = 0 \text{ V, } V_{DS} = 600 \text{ V}$		
Crss	Reverse Transfer Capacitance		3]	f = 1 MHz V _{AC} = 25 mV		
E _{oss}	C _{oss} Stored Energy		5.5		μJ	VAC = 25 IIIV	Fig. 16	
E _{on}	Turn-On Switching Energy (Body Diode FWD)		80			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_{D} = 7.5 \text{ A},$	Fig. 26, 29 Note 3	
E _{OFF}	Turn Off Switching Energy (Body Diode FWD)		6		μJ	$R_{G(ext)} = 2.5\Omega$, L= 201 μ H, $T_J = 150$ °C		
t _{d(on)}	Turn-On Delay Time		5.3				Fig. 27, 29 Note 3	
t _r	Rise Time		25]	$V_{DD} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$ $I_D = 7.5 \text{ A}, R_{G(ext)} = 2.5 \Omega,$		
t _{d(off)}	Turn-Off Delay Time		8.5		ns	Timing relative to V _{DS}		
t _f	Fall Time		6.4]	inductive load		
R _{G(int)}	Internal Gate Resistance		23.5		Ω	f = 1 MHz, V _{AC} = 25 mV		
Q_{gs}	Gate to Source Charge		3.0			V _{DS} = 400 V, V _{GS} = -4 V/15 V	Fig. 12	
Q_{gd}	Gate to Drain Charge		2.9		nC	I _D = 7.5 A		
Q_g	Total Gate Charge		9.7			Per IEC60747-8-4 pg 21		

Reverse Diode Characteristics (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note	
V _{SD} Di	Diode Forward Voltage	4.8		٧	V _{GS} = -4 V, I _{SD} = 4 A	Fig. 8, 9, 10	
		4.4		٧	V _{GS} = -4 V, I _{SD} = 4 A, T _J = 150 °C		
ls	Continuous Diode Forward Current		9	Α	V _{GS} = -4 V	Note 1	
I _{S, pulse}	Diode pulse Current		22	Α	V _{GS} = -4 V, pulse width t _P limited by T _{jmax}	Note 1	
t _{rr}	Reverse Recover time	24		ns			
Q _{rr}	Reverse Recovery Charge	74		nC	V _{es} = -4 V, I _{sp} = 7.5 A, V _R = 400 V dif/dt = 775 A/µs, T _J = 150 °C	Note 1	
I _{rrm}	Peak Reverse Recovery Current	4		А	·		

Thermal Characteristics

Symbol	ymbol Parameter		Unit Test Conditions		Note
Reuc	R _{BJC} Thermal Resistance from Junction to Case		20.044		F: 01
$R_{\theta JA}$	R _{0,JA} Thermal Resistance From Junction to Ambient		°C/W		Fig. 21

Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode

Figure 1. Output Characteristics T_J = -55 °C

Figure 2. Output Characteristics T_J = 25 °C

Figure 3. Output Characteristics T_J = 150 °C

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 4. Normalized On-Resistance vs. Temperature

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 8. Body Diode Characteristic at -55 °C

Figure 9. Body Diode Characteristic at 25 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

Figure 13. 3rd Quadrant Characteristic at -55 °C

Figure 14. 3rd Quadrant Characteristic at 25 °C

Figure 15. 3rd Quadrant Characteristic at 150 °C

Figure 16. Output Capacitor Stored Energy

Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V)

Figure 19. Continuous Drain Current Derating vs.

Case Temperature

Figure 21. Transient Thermal Impedance (Junction - Case)

Figure 22. Safe Operating Area

Figure 23. Clamped Inductive Switching Energy vs. Drain Current $(V_{DD} = 600V)$

Figure 24. Clamped Inductive Switching Energy vs.

Drain Current (V_{DD} = 400V)

Figure 25. Clamped Inductive Switching Energy vs. $R_{G(ext)}$

Figure 27. Switching Times vs. $R_{G(ext)}$

Figure 28. Switching Times Definition

Test Circuit Schematic

Figure 29. Clamped Inductive Switching Test Circuit

Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.

Package Dimensions

Package 10-24/-3

Package Dimensions

Package TO-247-3

CVA	MILLIMI	ETERS	INCHES			
SYM	MIN	MAX	MIN	MAX		
A	4.83	5.21	.190	.205		
A1	2.29	2.54	.090	.100		
A2	1.91	2.16	.075	.085		
b	1.07	1.33	.042	.052		
b1	1.91	2.41	.075	.095		
b3	2.87	3.38	.113	.133		
С	0.55	0.68	.022	.027		
D	20.80	21.10	.819	.831		
D1	16.25	17.65	.640	.695		
D2	0.95	1.25	.037	.049		
E	15.75	16.13	.620	.635		
E1	13.10	14.15	.516	.557		
E2	3.68	5.10	.145	.201		
E3	1.00	1.90	.039	.075		
E4	12.38	13.43	.487	.529		
e	5.44 BSC		.214 BSC			
N	3		3			
L	19.81	20.32	.780	.800		
L1	4.10	4.40	.161	.173		
ΦP	3.51	3.65	.138	.144		
Q	5.49	6.00	.216	.236		
S	6.04	6.30	.238	.248		
T	17.5° REF.					
W	3.5° REF.					
X	4° REF.					

Recommended Solder Pad Layout

TO-247-3