09/2006 Antilles (4 points) Exercice n°3 spécialité DOSAGE DES IONS CUIVRE (II)

Le but de l'exercice est d'illustrer le dosage de solutions parfois utilisées en hydrométallurgie et contenant des ions cuivre (II) : $Cu^{2_{+}}_{(aq)}$.

On dispose d'une solution S_1 contenant des ions $Cu^{2_+}_{(aq)}$.

1. UNE PREMIÈRE MÉTHODE DE DOSAGE

Cette méthode met en jeu deux réactions successives : on prélève un volume $V_1 = 20,0$ mL de la solution S_1 que l'on place dans un erlenmeyer, on ajoute une solution d'iodure de potassium $(K^+_{(aq)} + I^-_{(aq)})$. La transformation chimique mise en jeu est modélisée par :

$$2 Cu^{2_{+}}_{(aq)} + 4 \Gamma_{(aq)} = 2 CuI_{(s)} + I_{2 (aq)}$$
 (réaction 1)

On dose ensuite le diode formé $I_{2(aq)}$ par une solution de thiosulfate de sodium $(2\ Na^+_{(aq)} + S_2O_3^{\ 2^-_{(aq)}})$: l'erlenmeyer est placé sous une burette contenant la solution de thiosulfate de sodium telle que $[S_2O_3^{\ 2^-_{(aq)}}] = 0,40\ mol.L^{-1}$. L'équivalence est repérée grâce à la décoloration d'empois d'amidon ajouté. Le volume de solution de thiosulfate de sodium ajouté est alors $V_E=12,4\ mL$. La transformation chimique mise en jeu est modélisée par :

$$I_{2(aq)} + 2 S_2 O_3^{2-} (aq) = S_4 O_6^{2-} (aq) + 2 \Gamma_{(aq)}$$
 (réaction 2)

- 1.1. Quelques questions sur cette méthode de dosage.
 - 1.1.1. Dans la réaction (1), il est nécessaire que l'ion iodure $\Gamma_{(aq)}$ soit en excès par rapport aux ions cuivre $Cu^{2+}_{(aq)}$. Justifier cette nécessité.

On considérera que cette condition est vérifiée par la suite.

- 1.1.2. La méthode proposée constitue-t-elle un dosage direct ou indirect des ions Cu²⁺_(aq) ? Justifier votre réponse.
- 1.2. Exploitation du dosage.

On pourra éventuellement s'aider d'un tableau d'avancement.

- 1.2.1. Quelle relation lie les quantités de diiode n_{I_2} et d'ions thiosulfate $n_{S_2O_3^{2-}}$ ayant réagi à l'équivalence ?
- 1.2.2. Quelle relation lie les quantités de diiode n_{I_2} et d'ions cuivre $n_{Cu^{2+}}$ mises en jeu lors de la réaction (1) ?
- 1.2.3. En déduire la concentration [Cu^{2+}] de la solution S_1 en ion cuivre (II).

2. DEUXIÈME MÉTHODE DE DOSAGE

On veut maintenant réaliser le dosage spectrophotométrique de la solution S_1 . Pour cela, on prépare un ensemble de solutions de sulfate de cuivre $(Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)})$ à partir d'une solution mère S_m de concentration c_m = 0,50 mol.L⁻¹. La teinte bleue de ces solutions est due à la présence des ions Cu²⁺_(aq).

Solution	S_{m}	S_{dl}	S_{d2}	S_{d3}	S_{d4}	S_{d5}
[Cu ²⁺] (mol.L ⁻¹)	0,500	0,250	0,200	0,100	0,050	0,010

- 2.1. Préparation d'une solution diluée : décrire soigneusement la préparation de 50 mL de la solution S_{d2} à partir de la solution mère S_m sachant que l'on dispose de la verrerie suivante :
 - fioles jaugées de 25 mL, 50 mL, 100 mL;
 - pipettes jaugées de 10 mL, 20 mL, 25 mL;
 - béchers de 50 mL et de 100 mL;
 - éprouvettes graduées de 20 mL et 50 mL.
- 2.2. Mesure de l'absorbance de chacune des solutions avec un spectrophotomètre.
 - L'opérateur introduit de l'eau distillée dans une cuve qu'il place dans le spectrophotomètre, il 2.2.1. règle alors l'absorbance sur la valeur "zéro". Justifier cette opération.
 - On mesure l'absorbance des solutions préparées. Les points expérimentaux sont présentés sur 2.2.2. le graphique suivant :

La loi de Beer-Lambert A = k. [$Cu^{2+}_{(aq)}$] est-elle vérifiée ?

2.3. Détermination de la concentration de la solution S_1 .

On prélève 25,0 mL de cette solution que l'on introduit dans une fiole jaugée de 50 mL dont on complète le niveau avec de l'eau distillée. Après homogénéisation l'absorbance de cette solution S₂ est mesurée : on trouve A = 1,5.

Déterminer graphiquement la concentration en ions Cu²⁺_(aq) de la solution S₂. En déduire celle de la solution S_1 .

2.4. La méthode employée constitue-t-elle un dosage par titrage ou un dosage par étalonnage ? Justifier.

ancien programme

3.VALIDITÉ DES DOSAGES

3.1. Préparation de la solution S_1 .

En réalité, la solution S_1 a été préparée par dissolution de sulfate de cuivre pentahydraté solide $(CuSO_4, 5 H_2O)$ de masse molaire $M = 249,6 \text{ g.mol}^{-1}$.

Une masse m=15,6 g de ce produit est utilisée pour préparer un volume V=250 mL de solution, déterminer la concentration en ions $Cu^{2+}_{(aq)}$ de cette solution.

3.2. Conclure sur la validité des dosages effectués précédemment. Justifier votre réponse.