Ordinal and Multinomial Logistic Regression

Andy Grogan-Kaylor

14 May 2020

Meta-Background

Figure 1: Tweet About Ordinal Models

Key Concepts and Commands

- Implementations differ; formulas are our friends
- Extensions to logistic model: ordinal and multinomial logit

$$F(y) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

• Ordinal model

$$y(1, 2, 3, \text{ etc.}) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

• Multinomial model

$$y(2 \text{ vs. } 1) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

 $y(3 \text{ vs. } 1) = \beta_0 + \beta x_1 + \beta x_2 + \dots$

• Think about OR's, predicted probabilities, non-linearity

Get The Data (General Social Survey)

- . clear all
- . set maxvar 10000 // increase number of allowable variables
- . use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey/GSS7218_R1.DTA", clear
- . keep sex maeduc paeduc age degree
- . save GSSsmall.dta, replace file GSSsmall.dta saved
- . describe // describe the data Contains data from GSSsmall.dta

obs: 64,814 vars: 5 size: 324,070

14 May 2020 22:41

variable name	storage type	display format	value label	variable label
age paeduc maeduc degree sex	byte byte byte byte byte	%8.0g %8.0g %8.0g %8.0g %8.0g	AGE LABK LABK LABL SEX	age of respondent highest year school completed, father highest year school completed, mother r's highest degree respondents sex

Sorted by:

Thinking About Your Data and Data Wrangling

It is always good to think about your data and what the values of different variables represent. In Stata, however, there is very little additional data wrangling to prepare the data. In R, there is considerable data wrangling since we have to employ special commands just to get *variable* and *value* labels, and to ensure that *numeric dependent* variables are recoded as *factors*. In Stata there are no such issues!!!

Descriptive Statistics

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
age	64,586	46.09936	17.5347	18	89
paeduc	45,837	10.71026	4.342689	0	20
maeduc	53,870	10.85365	3.768792	0	20
degree	64,641	1.35858	1.175289	0	4
sex	64,814	1.558521	.4965673	1	2

. tabulate degree

r's highest degree	Freq.	Percent	Cum.
lt high school	13,587	21.02	21.02
high school	33,195	51.35	72.37
junior college	3,668	5.67	78.05
bachelor	9,475	14.66	92.70
graduate	4,716	7.30	100.00
Total	64,641	100.00	

The Ordinal Model (k categories)

. ologit degree sex age paeduc maeduc

$$ln(\frac{p(y \le k)}{p(y > k)}) = \beta_0 + \beta_1 x + \dots$$

Ordinal Regression

Iteration 0: log likelihood = -56160.846 $log \ likelihood = -50678.236$ Iteration 1: $log \ likelihood = -50453.401$ Iteration 2: log likelihood = -50452.782 Iteration 3: Iteration 4: log likelihood = -50452.782Ordered logistic regression Number of obs 42,583 11416.13 LR chi2(4) Prob > chi2 0.0000 Log likelihood = -50452.782Pseudo R2 0.1016

degree	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
sex age paeduc maeduc	0756255 .0124686 .151748 .157931	.0188243 .0006014 .0031156 .0036724	-4.02 20.73 48.71 43.00	0.000 0.000 0.000 0.000	1125204 .0112899 .1456416 .1507332	0387307 .0136474 .1578545 .1651288
/cut1 /cut2 /cut3 /cut4	1.686014 4.710994 5.061419 6.542017	.0565978 .06085 .0614286 .0645181			1.575084 4.59173 4.941021 6.415564	1.796944 4.830258 5.181817 6.66847

Many commands for regression of categorical dependent variables in R do not provide p values, and an extra step has to be taken to get p values. This is *not* a problem in Stata!

Exponentiating Coefficients: e^{β}

. ologit degree sex age paeduc maeduc, or

Iteration 0: log likelihood = -56160.846

Iteration 1: log likelihood = -50678.236

Iteration 2: log likelihood = -50453.401

Iteration 3: log likelihood = -50452.782

Iteration 4: log likelihood = -50452.782

Ordered logistic regression Number of obs = 42,583LR chi2(4) = 11416.13Prob > chi2 = 0.0000Log likelihood = -50452.782 Pseudo R2 = 0.1016

degree Odds Ratio Std. Err. P>|z| [95% Conf. Interval] 0.000 .9271633 .0174532 -4.02 .8935791 .9620098 1.012547 .000609 20.73 0.000 1.011354 1.013741 age 1.163867 1.170996 .0036261 48.71 0.000 1.156782 paeduc maeduc 1.171085 .0043007 43.00 0.000 1.162686 1.179545 /cut1 1.686014 .0565978 1.575084 1.796944 4.710994 .06085 4.830258 /cut2 4.59173 /cut3 5.061419 .0614286 4.941021 5.181817 6.542017 .0645181 6.415564 6.66847 /cut4

Note: Estimates are transformed only in the first equation.

The Proportional Odds Assumption