שאלה 1

- מן הפרך או הפרך כל אחת מן $A\setminus B$ שקולה ל- B , A הוכח או הפרך כל אחת מן 15) הטענות הבאות:
 - אז $A \cap B \neq \emptyset$ אז אינסופית. (i)

אנסופית. אינסופית אינסופית $A \cap B \neq \emptyset$

- : הוכח או הפרך כל אחת מן הטענות הבאות כי $\varnothing \in C$ הוכח לתון כי $\varnothing \in C$ הוכח לתון ב. תהי
 - $. C \subseteq P(C)$ (i)
 - $.C \cap P(C) \neq \emptyset$ (ii)

שאלה 2

- * קבוצה פעולה בינרית שונים שעליה מוגדרת פעולה בינרית $A = \{e, a, b\}$ א. תהי e איבר המקיימת את תכונת הסגירות. הוכיחו או הפריכו את הטענה הבאה: אם e איבר בטרלי ואם לכל איבר ב- A יש נגדי, אז A חבורה ביחס לפעולה A נמקו את התשובה.
- ערות בינרית פעולה בינרית (37 נקי) ב. על על (38 קבוצת המספרים הרציונליים השונים מ- 33), מגדירים פעולה בינרית (15) $a\Delta b=(a-3)(b-3)+3 \qquad , \ a,b\in \mathbf{Q}\setminus \{3\}$ באופן הבא: לכל (38 אלו מהתכונות שבהגדרת החבורה מקיימת פעולה זו. נמק טענותיך.

שאלה 3

.(היא קבוצת המספרים הטבעיים N) $f,g:\mathbf{N}\to\mathbf{N}$ נתונה פונקציות

. f(n) = 2g(n) - 1 : מתקיים , $n \in \mathbb{N}$ ידוע כי לכל

ערכית. g היא הוכיחו כי אם f היא הוכיחו כי אם g היא הוכיחו לי היא חד-חד-ערכית.

(9 נקי) ב. הוכיחו כי f אינה פונקציה על.

$$g(n) = \begin{cases} \frac{n}{2} & \text{ זוג'} \quad n \text{ ($g \circ f$)(n)} \end{cases}$$
 . $g(n) = \begin{cases} \frac{n}{2} & \text{ лик } n \text{ ($g \circ f$)$} \end{cases}$. $g(n) = \begin{cases} \frac{n}{2} & \text{ лик } n \text{ ($g \circ f$)$} \end{cases}$. $g(n) = \begin{cases} \frac{n+1}{2} & \text{ лик } n \text{ ($g \circ f$)$} \end{cases}$. $g(n) = \begin{cases} \frac{n+1}{2} & \text{ лик } n \text{ ($g \circ f$)$} \end{cases}$

שאלה 4

,fשבת של המישור. ידוע כי Aנקודת שבת של המישור ו- אBק, Aנקודת של המישור ו- f,gיהיו הייו $g\circ g=f$ וכי שבת של נקודת שבת של כי $g\circ g=f$ וכי שבת של המישור שבת של המישור ו- איזומטריות של המישר ו- איזומטריות של המישור ו- איזומט

. הוכח כי f היא איזומטריית הזהות.

. תאר את כל האיזומטריות g המקיימות את תנאי השאלה. נמקו את התשובה. (12 נקיg

שאלה 5

נתונה מערכת האקסיומות הבאה, אשר מושגי היסוד שלה הם "נקודה", "ישר" (כקבוצה של נקודות) והיחס "נמצאת על" המתפרש כשייכת ל-.

- 1. יש בדיוק שלוש נקודות.
- וגם $A,B\in\ell_1$ שנים שני ישרים שונים ℓ_1,ℓ_2 ושתי ישרים שני ישרים .2 $.A,B\in\ell_2$
 - 3. על כל ישר יש לפחות שתי נקודות.
- נמצאת עליו ואין לו נקודות P אשר m' אשר שאינה על m אשינה על פודות .m אשר שאינה עם .m
 - א. הוכח שהמערכת הזאת היא בעלת סתירה.
- ב. הוכח שכל אחת מן המערכות המכילות שלוש מתוך ארבע האקסיומות הנתונות היא חסרת סתירה. (שים לב: יש ארבע מערכות כאלה).
 - ג. הוכח כי במערכת (2,3,4) מתקיים המשפט: יש לפחות ארבע נקודות שונות.

שאלה 6

(13) א. תהי $\left\{\frac{5}{9},\frac{27}{25}\right\}$ הוכח כי בקבוצה A^* הנוצרת מ- A על-ידי כפל, לא קיימים מספרים טבעיים.

.10 היא a טבעי ב- 15 של מספר טבעי החילוק ב- 15 של היא a ידוע כי שארית החילוק ב- 15 של מספר טבעי

.10 ב- 15 ב- 15 היא של הוכח באינדוקציה כי לכל $n \in \mathbb{N}$, גם שארית החילוק של