Funções Reais

de Várias Variaveis

Lembrando...

Cálculo 1

f: DCIR -> IR × -> f(x) EIR

Graf
$$(f) = \int (x, y) \in \mathbb{R}^2$$

 $y = f(x) com x \in D$

Exemplo:
$$f:[-4,+\infty) \rightarrow 1R$$

 $f(x) = + \sqrt{x+4}$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$
 $(-4,0)$

$$x = 0 \implies f(0) = 2$$

$$x = 5 \implies f(5) = 3$$

Définição: Uma função real f de n variaveis associa a cada n-upla (X1, X2,..., Xn) EDCIRn Um único nº real $W = f((x_3, ..., x_n)).$ f: DCIR" -> IR (x1,..., Xn) -> f((x1,..., Xn)) 1 Dominio EIR

Lei de
$$f: f(x,y) = 1$$

 $(0,-2)$ $\Rightarrow (0,-2) = \frac{1}{2}$ $(0,-2)$ $\Rightarrow (0,-2) = \frac{1}{2}$ $(0,-2)$ Dominio: todos os pontos
 $(x,y) \in \mathbb{R}^2$ tais que $x \neq y$.
 $(x,y) \in \mathbb{R}^2$, $x \neq y \in \mathbb{R}^2$
 $(x,y) \in \mathbb{R}^2$, $x \neq y \in \mathbb{R}^2$
 $(x,y) \in \mathbb{R}^2$, $(x,y) \in \mathbb{R}^2$,

f: DCIR -> IR

Exemplo1:

Im (f) C IR

contradomínio

Dado a
$$\in$$
 IR, to $a \neq 0$

Pergunta: a pode ser

escrito como $f(x,y)$

para algum $(x,y) \in D$?

Resp: $1 = \frac{1}{10} = 2$

tomando x = 1 y = 0, entao f(x, y) = f(1/a, 0) = a.Im (f) = 1R 170%. Observações: (1) Como $Im(f) \neq$ contradomínio, f não é sobrejetora.

(2) Tomando
$$X = 0$$

 $e \ y = -1/a$
 $f(x,y) = f(0,-1/a) =$

$$= 1 = 1 = 0$$

$$= -1/a = 3/a = 0$$

$$= 1/a = 3/a = 0$$
iniotor

 $(0, -3/2) \xrightarrow{f} a$

g(x,y) =
$$\int \int \int$$

$$g(x,y) = \int \underbrace{1}_{x-y}, \quad x \neq y$$

$$0, \quad x = y$$

$$\begin{array}{c}
\begin{pmatrix}
0 \\
0
\end{pmatrix}, x = y \\
0
\end{pmatrix}$$

$$\begin{array}{c}
0 \\
0
\end{pmatrix}, x = y \\
0
\end{pmatrix}$$

Im(g) = IR

g é sobrejetora, mas não injetora Obs: Note que $(f, D_f, IR) \neq (g, D_g, IR)$

Exemplo 3: Determine
ne o domínio da
funcão

$$f(x,y) = (x^2 - y)^{-\frac{1}{2}}$$

Resolução: Notemos

90e

$$f(x,y) = (x^2 - y)^{-\frac{1}{2}}$$

 $= \frac{1}{(x^2 - y)^{\frac{1}{2}}} = \frac{1}{\sqrt{x^2 - y}}$

(1,2) € Df Portanto, $\begin{array}{c} x^2 \\ x - y > 0 \\ 3 = 1 < 2 \\ x > y \end{array}$ $Df = \{(x,y) \in \mathbb{R}, x > y \}$