MATH 1560 - Tutorial #5 Solutions

Additional practice problems:

1. Evaluate the limits:

(a)
$$\lim_{x \to 0} \sqrt{4x^2 - x + 9}$$

= $\sqrt{9} = 3$

(b)
$$\lim_{x \to \infty} \frac{8x^5 + 3x + 5}{4 + 5x^3 + 2x^5}$$
 (c) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$
= $\frac{8}{9} = 4$

(c)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

= $\lim_{x \to 3} (x + 3) = 6$

2. Compute the derivative:

(a)
$$\frac{d}{dx}(x^4+4x+9) = 4x^3+4$$

(a)
$$\frac{d}{dx}(x^4+4x+9) = 4x^3+4$$
 (b) $\frac{d}{dx}\sqrt{x^4+4} = \frac{2x^3}{\sqrt{x^4+4}}$ (c) $\frac{d}{dx}(5x^3e^x)$

(c)
$$\frac{d}{dx}(5x^3e^x)$$
$$= 5e^x(3x^2 + x^3)$$

3. Evaluate the immediate integral:

(a)
$$\int (4x^3 + 2x) dx = x^4 + x^2 + C$$

(c)
$$\int 7e^{7x} \sin(e^{7x}) dx = -\cos(e^{7x}) + C$$

(b)
$$\int \frac{1}{x} dx = \ln|x| + C$$

(d)
$$\int \frac{\ln(x)}{x} dx = \frac{1}{2} (\ln(x))^2 + C$$

Assigned problems:

Test problems:

1. Compute the limit:

(a)
$$\lim_{x \to 2^{+}} \frac{(x^{2} - 4)^{2}}{x - 2}$$
$$= \lim_{x \to 2^{+}} (x - 2)(x + 2)^{2}$$
$$= 0$$

(b)
$$\lim_{n \to \infty} \left(\frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n^4} (1^3 + 2^3 + \dots + n^3)$$
$$= \lim_{n \to \infty} \frac{1}{n^4} \left(\frac{n^2 (n+1)^2}{4} \right)$$
$$= \frac{1}{4}.$$

2. Compute the derivative:

(a)
$$f(x) = \frac{\sin(x)}{e^x}$$
$$f'(x) = \frac{\cos(x)e^x - \sin(x)e^x}{e^{2x}}$$

(b)
$$g(x) = \tan(5x^2)$$

 $g'(x) = 10x \sec^2(5x^2)$

3. Compute $\frac{d}{dx}(x^x)$

Two options: (A) write $y = x^x$, so $\ln(y) = \ln(x^x) = x \ln(x)$, and take the derivative of both sides with respect to x:

$$\frac{1}{u}y' = \ln(x) + 1$$
, so $y' = x^x(\ln(x) + 1)$.

(B) Since $e^{\ln(u)} = u$ for any u > 0, $x^x = e^{\ln(x^x)} = e^{x \ln(x)}$. Thus,

$$\frac{d}{dx}(x^x) = \frac{d}{dx}e^{x\ln(x)} = e^{x\ln(x)}(\ln(x) + 1) = x^x(\ln(x) + 1).$$

4. Evaluate the integral:

(a)
$$\int 2x(x^2+4)^4 dx = \frac{1}{5}(x^2+4)^5 + C$$
 (b) $\int (\cos(2x) - \sec^2(x)) dx$

(b)
$$\int (\cos(2x) - \sec^2(x)) dx$$

= $\frac{1}{2}\sin(2x) - \tan(x) + C$

- 5. Compute $y' = \frac{dy}{dx}$, given:
 - (a) $x^2 + y^2 = 25$, at the point (-3, -4).

We have $2x + 2y \cdot y' = 0$, so

(b)
$$y^3 + x^5y = 2\ln(y) + \frac{x}{y}$$
 (don't solve for y')

Taking the derivative of both sides with respect to x ,

$$y' = -\frac{x}{y} = -\frac{3}{4}.$$

$$3y^{2} \cdot y' + 5x^{4}y + x^{5}y' = \frac{2}{y} \cdot y' + \frac{1}{y} - \frac{x}{y^{2}} \cdot y'.$$

6. Given $f(x) = x^2 e^x$, solve the equation f'(x) = 0.

We have

$$f'(x) = 2xe^x + x^2e^x = x(2+x)e^x.$$

Since $e^x \neq 0$ for all x, we see that f'(x) = 0 if x = 0 or x = -2.

7. Given $f(x) = e^{-2x^2}$, solve the equation f''(x) = 0.

We have $f'(x) = -4xe^{-2x^2}$, so

$$f''(x) = -4e^{-2x^2} + 16x^2e^{-2x^2} = -4(4x^2 - 1)e^{-2x^2} = -4(2x - 1)(2x + 1)e^{-2x^2}.$$

Thus, f''(x) = 0 if $x = \pm \frac{1}{2}$.

Additional problem:

- 8. Let $f(x) = x^{3}(x-4)^{5}$. Determine:
 - (a) All values of x such that f'(x) = 0We find

$$f'(x) = 3x^{2}(x-4)^{5} + 5x^{3}(x-4)^{4} = x^{2}(x-4)^{4}(3(x-4)+5x) = 4x^{2}(x-4)^{2}(2x-3).$$

Thus, f'(x) = 0 for x = 0, x = 4, and x = 3/2. Marking these points on a sign diagram, we have

(b) The intervals on which f is increasing or decreasing.

From the sign diagram above, we see that f is increasing on $(3/2, \infty)$ and decreasing on $(-\infty, 3/2)$.

(c) The coordinates of any local maxima or minima.

On our sign diagram, the only place where f' changes sign is when x=3/2, where it changes from negative to positive, so we have a local minimum at this point. We find that $f(3/2) = (\frac{3}{2})^3(-\frac{5}{2})^5 = -\frac{3^3 \cdot 5^5}{2^8}$, so our local minimum is at $(3/2, -3^3 \cdot 5^5/2^8)$.