

Ähnlichkeitsmaße für Vektoren

Karin Haenelt

25.10.2012

Inhalt

- Einführung
 - Ähnlichkeitsmaß
 - Ähnlichkeitsbetrachtungen
- Gebräuchliche Ähnlichkeitsmaße im Information Retrieval
 - Korrelationsmaße: Einfache Methode, Cosinus, Dice-Koeffizient, Jaccard-Koeffizient, Overlap-Koeffizient
 - Distanzmaße: Euklidische Distanz
- Eine Analyse der Ähnlichkeitsmaße von Jones/Furnas (1987)
- Beispiel 1: Berechnung der Ähnlichkeitsmaße für sechs Dokumentvektoren
- Beispiel 2: Bestimmung der Ähnlichkeit von Nomina auf der Basis von Prädikat-Objekt-Kookkurrenz-Paaren

Ähnlichkeitsmaße für Vektoren

Bestimmung

- geben für jeweils zwei Vektoren einen numerischen Wert, der die Ähnlichkeit zwischen den Vektoren angibt
- verschiedene Maße versuchen verschiedene Aspekte der Ähnlichkeit zu manifestieren

Ähnlichkeitsbetrachtungen

Verhältnisse von Termgewichten

	d 1	d 2	d 3	d 4	d 5	d 6
Ätna	1	1	2	1	1	1
Vesuv	1	1	2	0	2	0
Stromboli	1	1	2	1	3	3
Feuer	1	1	2	0	4	0
Wasser	1	1	2	1	5	5
Lava	1	1	2	0	6	0

- objektintern
 - Verhältnis von Term, zu den anderen Termen eines Dokuments
 - Wichtigkeit eines Terms für ein Objekt
 - Hinweise auf semantischen Inhalt oder Themengebiet
- objektübergreifend
 - Relevanz von Dokument, für Term

Ähnlichkeitsbetrachtungen

Interpretation von Term-Vektoren im Information Retrieval

	d 1	d 2	d 3	d 4	d 5	d 6
Ätna	1	1	2	1	1	1
Wasser	1	1	2	1	5	5

- Richtung
 - bestimmt durch objektinternes Verhältnis der Terme
 - möglicherweise Hinweis auf Thema
- Länge (im Verhältnis zu anderen Vektoren)
 - bestimmt durch objektübergreifendes Verhältnis der Termgewichte
 - möglicherweise Hinweis auf Intensität eines Themas

Inhalt

- Einführung
 - Ähnlichkeitsmaß
 - Ähnlichkeitsbetrachtungen
- Gebräuchliche Ähnlichkeitsmaße im Information Retrieval
 - Korrelationsmaße: Einfache Methode, Cosinus, Dice-Koeffizient, Jaccard-Koeffizient, Overlap-Koeffizient
 - Distanzmaße: Euklidische Distanz
- Eine Analyse der Ähnlichkeitsmaße von Jones/Furnas (1987)
- Beispiel 1: Berechnung der Ähnlichkeitsmaße für sechs Dokumentvektoren
- Beispiel 2: Bestimmung der Ähnlichkeit von Nomina auf der Basis von Prädikat-Objekt-Kookkurrenz-Paaren

Ähnlichkeitsmaße für Vektoren

- Korrelationsartige Maße: größter Wert entspricht dem ähnlichsten Paar
 - Cosinus des Winkels zwischen Vektoren
 - Dice-Koeffizient
 - Jaccard-Koeffizient
 - Overlap-Koeffizient
- Distanz-Maße: kleinster Wert entspricht dem ähnlichsten Paar
 - Euklidische Distanz

Ähnlichkeitsmaße im IR

	Binäre Vektoren ¹⁾	Vektoren mit reellen Werten ²⁾
Einfache Übereinstimmg.	$ X \cap Y $	$\sum_{k=1}^{\#Dimensionen} (weight_{xk})(weight_{yk})$
Cosinus- Koeffizient	$\frac{ X \cap Y }{\sqrt{ X \times Y }}$	$\frac{\sum_{k=1}^{n} weight_{xk} \cdot weight_{yk}}{\sqrt{\sum_{k=1}^{n} weight_{xk}}^{2} \cdot \sqrt{\sum_{k=1}^{n} weight_{yk}}^{2}}$
Dice- Koeffizient	$\frac{2 X \cap Y }{ X + Y }$	$\frac{2\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}{\sum_{k=1}^{n}weight_{xk}+\sum_{k=1}^{n}weight_{yk}}$
Jaccard (oder Tanimoto)- Koeffizient	$\frac{ X \cap Y }{ X \cup Y }$	$\frac{\sum_{k=1}^{n} (weight_{xk} \cdot weight_{yk})}{\sum_{k=1}^{n} weight_{xk} + \sum_{k=1}^{n} weight_{yk} - \sum_{k=1}^{n} (weight_{xk} \cdot weight_{yk})}$
Overlap- Koeffizient	$\frac{ X \cap Y }{\min(X , Y)}$	$\frac{\sum_{k=1}^{n} \min(weight_{xk}, weight_{yk})}{\min(\sum_{k=1}^{n} weight_{xk}, \sum_{k=1}^{n} weight_{yk})}$

|X| steht für die Anzahl der Nicht-Null-Werte im binären Vektor
© Karin Haenelt, Ähnlichkeitsmaße
für Vektoren 25.10.2012

Fraunhofer

**Intervel im binären Vektor

**Intervel im binären

Inhalt

- Einführung
 - Ähnlichkeitsmaß
 - Ähnlichkeitsbetrachtungen
- Gebräuchliche Ähnlichkeitsmaße im Information Retrieval
 - Korrelationsmaße: Einfache Methode, Cosinus, Dice-Koeffizient, Jaccard-Koeffizient, Overlap-Koeffizient
 - Distanzmaße: Euklidische Distanz
- Eine Analyse der Ähnlichkeitsmaße von Jones/Furnas (1987)
- Beispiel 1: Berechnung der Ähnlichkeitsmaße für sechs Dokumentvektoren
- Beispiel 2: Bestimmung der Ähnlichkeit von Nomina auf der Basis von Prädikat-Objekt-Kookkurrenz-Paaren

- William P. Jones und George W. Furnas (1987). Pictures of Relevance: A Geometric Analysis of Similarity Measures. In: Journal of the American Society for Information Science. 38 (6), S. 420-442.
- Vergleich der Ähnlichkeitsmaße durch geometrische Interpretation der Vektoren und Analyse

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Untersuchungsmethode

- exemplarische Untersuchung im zweidimensionalen Raum (ermöglicht geometrische Interpretation)
- fester Query-Vektor als Referenzvektor
- Kartierung der Ähnlichkeitswerte zum Referenzvektor
 - Ähnlichkeitswerte: Werte, die ein Maß den anderen Punkten in der Ebene ². zuweist
 - ein Punkt repräsentiert die Pfeilspitze eines Vektors
- Verbindung der Punkte mit gleichen Ähnlichkeitswerten

- es ergeben sich Konturlinien: iso-similarity contours
- analog zu Höhenlinien in der Geographie

Untersuchungsmethode

Beispiel: Iso-Similarity-Konturen des Cosinus-Maßes

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Untersuchte Eigenschaften der Ähnlichkeitsmaße

 Beschreibung der Veränderung der Werte an Hand der Iso-Similarity-Konturen bei folgenden Veränderungen:

für Vektoren 25.10.2012

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Untersuchte Eigenschaften der Ähnlichkeitsmaße

- Ähnlichkeitsmaße
 - haben unterschiedliche Isokonturen
 - reflektieren unterschiedliche Vorzüge des Maße bezüglich
 - Richtung ("Thema")
 - Länge ("Intensität des Themas")
- Ausgangspunkt: algebraische Analyse der Ähnlichkeitsmaße
- Ziel: "semantische Analyse" der Ähnlichkeitsmaße
- Untersuchungsfragen
 - bei welcher Veränderung ändern sich die Werte?
 - ändern sich die Werte monoton?

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

- Skalarprodukt: Multiplikation der Beträge zweier Vektoren unter Berücksichtigung der Richtungsabhängigkeit der Vektoren
- geometrische Darstellung

$$\vec{a}\vec{b} = |\vec{a}||\vec{b}|\cos\alpha$$

algebraische Darstellung

$$\sum_{i=1}^n a_i \times b_i$$

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

	Binäre Vektoren	Vektoren mit reellen Werten
Einfache Übereinstimmg.	$ X \cap Y $	#Dimensionen $\sum_{k=1}^{\#Dimensionen} (x_k)(y_k)$

- Binäre Vektoren:
 zählt Anzahl der Dimensionen,
 in denen die Werte
 beider Vektoren ≠ 0
- Vektoren mit reellen Werten: Beispiel

	d 1	d 5	sim (d1,d5)
Ätna	1	1	1 x 1
Vesuv	1	2	+ 1 x 2
Stromboli	1	3	+ 1 x 3
Feuer	1	4	+ 1 x 4
Wasser	1	5	+ 1 x 5
Lava	1	6	+ 1 x 6
			= 21

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Iso-Konturen zum Referenzvektor Q=(0.5,1.0)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Parametermodifikation (1)

Veränderung des Winkels

- je kleiner der Winkel, desto größer die Ähnlichkeit – bei gleichlangen Vektoren
- monoton sofern Vektor gleichlang bleibt

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Parametermodifikation (2)

Veränderung der Länge

- je länger der Vektor, desto größer die Ähnlichkeit
- 2. monoton

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Parametermodifikation (3)

Addition von Komponenten

- bei Addition jeder beliebigen Komponente bleibt Ähnlichkeit gleich oder steigt
- 2. monoton

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Parametermodifikation (4)

Veränderung eines Einzelterms

- unbegrenzter Einfluss einzelner Terme
- 2. monoton

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Eigenschaften des Skalarprodukts

Eigenschaft	Verhalten	Bedeutung
Winkel	je kleiner der Winkel zwischen zwei Vektoren gleicher Euklidischer Länge, desto größer der Ähnlichkeitswert	Richtung (Thema) dominiert das Maß
Radius	längerer Vektor hat größeren oder gleichen Ähnlichkeitswert	"The more, the better" kein Begriff einer adäquaten Tiefe
Kompo-	Verstärkung einzelner	
nenten	Komponenten: Ähnlichkeitswert größer, wenn Winkel zwischen den Vektoren kleiner wird, sonst gleich bleibend	
Einzel-	beliebig hoher Ähnlichkeitswert	Einzelwerte können Ähnlichkeitswert
kompo-	durch Veränderung eines	dominieren; Objekte, die insgesamt
nenten	einzelnen Wertes möglich	unähnlich sind können einen sehr hohen Ähnlichkeitswert erhalten
Werte-	bei nicht-negativen Werten	es gibt kein Maximum, d.h. keinen
bereich	$0 \le sim \le \infty$	Begriff einer idealen Bewertung

Eigenschaften des Skalarproduktes

Beispiele

	d 1	d 2	d 3	d 4	d 5	d 6
Ätna	1	1	2	1	1	1
Vesuv	1	1	2	0	2	0
Stromboli	1	1	2	1	3	3
Feuer	1	1	2	0	4	0
Wasser	1	1	2	1	5	5
Lava	1	1	2	0	6	0

Einfache Übereinstimmung						
	d1	d2	d3	d4	d5	d6
d1	-	6.0	12.0	3.0	21.0	9.0
d2	6.0	-	12.0	3.0	21.0	9.0
d3	12.0	12.0	-	6.0	42.0	18.0
d4	3.0	3.0	6.0	-	9.0	9.0
d5	21.0	21.0	42.0	9.0	-	35.0
d6	9.0	9.0	18.0	9.0	35.0	-

- Erhöhung des Gewichtes eines beliebigen Terms hat proportionalen Effekt auf Ähnlichkeitswert des Dokuments¹⁾
 - Beispiel: sim(d1,d4) vs. sim(d1,d6)
- Beiträge verschiedener Terme sind voneinander unabhängig¹⁾
 - hohe Werte für "Feuer", "Wasser", "Lava" in d5 sorgen für hohe Ähnlichkeitswerte von d5
- absurde Ergebnisse bei Anwendung auf nicht-normalisierte Vektoren²⁾
 - Beispiel: sim(d1,d3) > sim(d1,d2), obwohl d1 und d2 identisch sind

Eigenschaften des Skalarproduktes

Beispiele - Vorsicht!

	d 1	d 2	d 3	d 4	d 5	d 6
Ätna	1	1	2	1	1	1
Vesuv	1	1	2	0	2	0
Stromboli	1	1	2	1	3	3
Feuer	1	1	2	0	4	0
Wasser	1	1	2	1	5	5
Lava	1	1	2	0	6	0

Einfache Übereinstimmung						
	d1	d2	d3	d4	d5	d6
d1	-	6.0	12.0	3.0	21.0	9.0
d2	6.0	-	12.0	3.0	21.0	9.0
d3	12.0	12.0	-	6.0	42.0	18.0
	3.0					
d5	21.0	21.0	42.0	9.0	-	35.0
d6	9.0	9.0	18.0	9.0	35.0	-

- Das Skalarprodukt wird im Information Retrieval zuweilen auch auf nicht-normalisierte Vektoren angewendet und "einfache Methode" genannt
- Bei Anwendung auf nicht-normalisierte Vektoren ergeben sich aber absurde Ergebnisse: Beispiel: sim(d1,d3) > sim(d1,d2), obwohl d1 und d2 identisch

sind

$sim\cos(\overrightarrow{X},\overrightarrow{Y})$	Binäre Vektoren	Vektoren mit reellen Werten
Cosinus- Koeffizient _{allgVekt}	$\frac{ X \cap Y }{\sqrt{ X \times Y }}$	$\frac{\sum_{k=1}^{n} x_k y_k}{\sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2}}$

- Zähler: wie gut x_k und y_k korrelieren
- Nenner: Teilung durch (Euklidische) Länge der Vektoren

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Eigenschaften des Cosinusmaßes

- Wertebereich von 1 bis –1
 - Cos(0°) = +1.0 Vektoren zeigen in dieselbe
 Richtung
 - Cos(90°) = 0.0 Vektoren orthogonal
 - Cos(180°) = -1.0 Vektoren zeigen in entgegengesetzte Richtung
- Cosinus wirkt als normalisierender Korrelationskoeffizient
- Cosinus für normalisierte Vektoren entspricht Ähnlichkeit nach einfacher Methode (Skalarprodukt)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Eigenschaften des Cosinusmaßes

- Cosinusmaß ist identisch mit dem Skalarprodukt im Falle normalisierter Vektoren:
- normalisierter Vektor: Vektor mit Einheitslänge nach Euklidischer Norm

$$|\vec{x}| = \sqrt{\sum_{i=1}^{n} \chi_i^2} = 1$$

für normalisierte Vektoren gilt:

$$sim(\vec{x}, \vec{y}) = \cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} \chi_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} y_{i}^{2}}} = \vec{x} \cdot \vec{y}$$

Cosinus-Maß

Iso-Konturen zum Referenzvektor Q=(0.5,1.0)

Cosinusmaß

Parametermodifikation (1)

Veränderung des Winkels

- je kleiner der Winkel, desto größer die Ähnlichkeit – bei gleichlangen Vektoren
- 2. 1. gilt unabhängig von der Länge des Vektors
- 3. monoton sofern Vektor gleichlang bleibt

Cosinusmaß

Parametermodifikation (2)

Veränderung der Länge

 keine Veränderung des Maßes

Cosinusmaß

Parametermodifikation (3)

Addition von Komponenten

- bei Addition jeder beliebigen Komponente ändert sich die Ähnlichkeit in Abhängigkeit von der Änderung des Winkels
- 2. monoton abhängig von Veränderung des Winkels

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Skalarprodukt

Parametermodifikation (4)

Veränderung eines Einzelterms

- abhängig von Veränderung des Winkels
- 2. monoton abhängig von Veränderung des Winkels

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Eigenschaften des Cosinusmaßes

Eigenschaft	Verhalten	Bedeutung
Winkel	je kleiner der Winkel zwischen zwei Vektoren, desto größer der Ähnlichkeitswert	Richtung (Thema) dominiert das Cos- Maß
Radius	als Folge der Normalisierung keine Veränderung des Ähnlichkeitswertes bei Veränderung des Radius	Richtung (Thema) dominiert das Cos-Maß vollständig
Kompo-	Verstärkung einzelner Komponenten:	abhängig von
nenten	Ähnlichkeitswert	Veränderung des
	 wird größer, wenn dadurch der Winkel zwischen den Vektoren verkleinert wird wird kleiner, wenn dadurch der Winkel zwischen den Vektoren vergrößert wird 	Winkels
Einzel-	Ähnlichkeitsmaß bestimmt durch Ähnlichkeit der	abhängig von
kompo-	Termgewichtsproportionen (Verhältnis der	Veränderung des
nenten	Werte in den einzelnen Vektoren)	Winkels
Werte-	bei nicht-negativen Werten	es gibt ein Maximun
bereich	$0 \le sim \le 1$	d.h. einen Idealwert

Eigenschaften des Cosinus-Maßes

Beispiele

	d 1	d 2	d 3	d 4	d 5	d 6	Cos	sinus					
Ätna	1	1	2	1	1	1		d1	d2	d3	d4	d5	d6
Vesuv	1	1	2	0	2	0	d1	-	1.000	1.000	0.707	0.898	0.621
Stromboli	1	1	2	1	3	3	d2	1.000	-	1.000	0.707	0.890	0.621
Feuer	1	1	2	0	4	0	d3	1.000	1.000	-	0.707	0.898	0.621
Wasser	1	1	2	1	5	5	d4	0.707	0.707	0.707	-	0.544	0.878
Lava	1	1	2	0	6	0	d5	0.898	0.898	0.898	0.544	-	0.620
	-	-		_		_	d6	0.621	0.621	0.621	0.878	0.620	-

- Ähnlichkeitswert eines Dokuments wird allein durch sein "Thema" (Relation der Terme innerhalb des Dokuments) bestimmt ¹⁾
 - Beispiel: sim(d1,d2) = sim(d1,d3)
- Termgewichtsbeziehungen zwischen Dokumenten werden möglicherweise ignoriert¹⁾
 - Beispiel: sim(d5,d1) > sim(d5,d6)
- Nullwerte haben große Auswirkung auf das Ergebnis¹⁾
 - Beispiel: sim(d1,d5) > sim(d1,d4)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Dice-Koeffizient

	Binäre Vektoren	Vektoren mit reellen Werten
Dice- Koeffizient	$\frac{2 \mid X \cap Y \mid}{\mid X \mid + \mid Y \mid}$	$\frac{2\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}{\sum_{k=1}^{n}weight_{xk}+\sum_{k=1}^{n}weight_{yk}}$

- Einbeziehen des Anteils von gemeinsamen Einträgen: Summe aus gemeinsamen Einträgen, die ≠ 0 sind relativ zu Summe aus allen einträgen, die ≠ 0 sind
- Multiplikation mit 2, um bei binären Vektoren einen Wertebereich zwischen 0 und 1 zu erhalten
- Eigenschaften (Reaktion auf Länge, Reaktion auf Winkel) variieren bei reellen Werten in Abhängigkeit von der Relation der Länge der beiden Vektoren

Dice-Koeffizient

	Binäre Vektoren	Vektoren mit reellen Werten
Dice- Koeffizient	$\frac{2 \mid X \cap Y \mid}{\mid X \mid + \mid Y \mid}$	$\frac{2\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}{\sum_{k=1}^{n}weight_{xk}+\sum_{k=1}^{n}weight_{yk}}$

|X|Anzahl der Nicht-Null-Werte in den binären Vektoren

Beispiel:
$$|X| =$$

$$Y| = 1000$$

$$|X| \cap |Y| = 1$$
 1 gemeinsamer Eintrag

|X| = 1 Vektor mit 1 Nicht-Null-Wert |Y| = 1000 Vektor mit 1000 Nicht-Null-Werten

Berechnung nach der Formel für binäre Werte

$$\frac{2 \cdot 1}{1 + 1000} \approx 0.002$$

Berechnung nach der Formel für reelle Werte

(seien 0 und 1 reelle Gewichte)

$$\frac{2 \cdot (1 \cdot 1 + 999(1 \cdot 0))}{1 + 1000} = \frac{2 \cdot 1}{1 + 1000} \approx 0.002$$

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas)

Dice-Koeffizient

Iso-Konturen zum Referenzvektor Q=(0.5,1.0)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Dice-Koeffizient

	Binäre Vektoren	Vektoren mit reellen Werten
Dice- Koeffizient	$\frac{2 \mid X \cap Y \mid}{\mid X \mid + \mid Y \mid}$	$\frac{2\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}{\sum_{k=1}^{n}weight_{xk}+\sum_{k=1}^{n}weight_{yk}}$

- Nenner der Formel ist additiv (Addition der City-Block-Länge der beiden Vektoren – L1)
- Isokonturlinien verändern sich in Abhängigkeit der relativen L1-Länge von Anfrage- und Dokument-Vektor
 - beliebig langer Anfragevektor im Verhältnis zum Dokumentvektor: Einfluss der Länge des Dokumentvektors wird beliebig klein → Dice-Maß wird dem Skalarprodukt ähnlich
 - beliebig langer Dokumentvektor im Verhältnis zum Anfragevektor: Einfluss der Länge des Anfragevektors wird beliebig klein → Dice-Maß wird dem Pseudo-Cosinus-Maß ähnlich

Ähnlichkeitsmaße im Information Retrieval

Cosinus- vs. Dice-Koeffizient

- Cosinus wie Dice-Koeffizient für Vektoren mit derselben Anzahl von Nicht-Null-Werten
- Cosinus h\u00f6here Werte als Dice-Koeffizient, wenn Anzahl der Nicht-Null-Werte in den betrachteten Vektoren sehr verschieden ist
- Beispiel:
 - Vektor 1: 1 Nicht-Null-Eintrag
 - Vektor 2: 1000 Nicht-Null-Einträge
 - 1 gemeinsamer Eintrag

$$Dice \frac{2 \times 1}{1 + 1000} \approx 0.002$$

Cosinus
$$\frac{1}{\sqrt{1000 \times 1}} \approx 0.03$$

Ähnlichkeitsmaße im Information Retrieval

Jaccard-Koeffizient

	Binäre Vektoren	Vektoren mit reellen Werten
Jaccard (oder Tanimoto)- Koeffizient	$\frac{ X \cap Y }{ X \cup Y }$	$\frac{\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}{\sum_{k=1}^{n}weight_{xk}+\sum_{k=1}^{n}weight_{yk}-\sum_{k=1}^{n}(weight_{xk}\cdot weight_{yk})}$ (Ferber, 2003)

bestraft Vorhandensein einer kleinen Anzahl gemeinsamer Einträge stärker als Dice-Koeffizient

(je weniger gemeinsame Einträge, desto größer der Nenner, desto kleiner der Wert des Bruches)

Beispiel: 2 Vektoren, 10 Nicht-Null-Einträge, 1 gemeinsamer

Eintrag
$$Dice \frac{2 \times 1}{10 + 10} = 0.1$$

Fraunhofer

(Manning/Schütze, 2000)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Overlap-Koeffizient

	Binäre Vektoren	Vektoren mit reellen Werten
Overlap- Koeffizient	$\frac{ X \cap Y }{\min(X , Y)}$	$\frac{\sum_{k=1}^{n} \min(weight_{xk}, weight_{yk})}{\min(\sum_{k=1}^{n} weight_{xk}, \sum_{k=1}^{n} weight_{yk})}$

(Ferber, 2003)

- Maß für Inklusion
- erreicht Wert von 1.0 (binäre Vektoren), wenn jede Dimension mit Nicht-Null-Wert in Vektor X auch in Vektor Y Nicht-Null-Wert hat, und umgekehrt

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas)

Overlap-Maß

Iso-Konturen zum Referenzvektor Q=(0.5,1.0)

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas) Overlap-Maß

- durch die Minima, die in der Formel auftreten, treten komplexere Gebilde gleicher Ähnlichkeit auf, die durch die Fallunterscheidung bei der Minimumbildung verursacht werden¹⁾
- zwei Regionen maximaler Ähnlichkeit:
 - Vektor₁ in allen Dimensionen < Vektor₂
 - Vektor₁ in allen Dimensionen > Vektor₂²⁾
- Veränderungen sind nicht monoton

¹⁾Ferber, 2003

²⁾Jones/Furnas, 1987

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas)

Overlapmaß

Parametermodifikation (1)

Veränderung des Winkels

Veränderung der Länge

Eine Analyse der Ähnlichkeitsmaße (Jones/Furnas)

Overlapmaß

Parametermodifikation (2)

Addition von Komponenten

Veränderung eines Einzelterms

Eigenschaften des Overlap-Koeffizienten

Beispiele

	d 1	d 2	d 3	d 4	d 5	d 6	Ove	erlap					
Ätna	1	1	2	1	1	1		d1	d2	d3	d4	d5	d6
Vesuv	1	1	2	0	2	0	d1	-	1.000	1.000	1.000	1.000	0.500
Stromboli	1	1	2	1	3	3	d2	1.000	-	1.000	1.000	1.000	0.500
Feuer	1	1	2	0	4	0	d3	1.000	1.000	-	1.000	0.916	0.555
Wasser	1	1	2	1	5	5	d4	1.000	1.000	1.000	-	1.000	1.000
Lava	1	1	2	0	•	0	d5	1.000	1.000	0.916	1.000	-	1.000
Lava	•		_		J	J	d6	0.500	0.500	0.555	1.000	1.000	-

- Maxima (1.0) bei allen Fällen
 - V₁ < V₂ in allen Dimensionen und
 - V₁ > V₂ in allen Dimensionen
- favorisiert Vektoren, die entweder sehr lang oder sehr kurz sind
- allgemeine Unempfindlichkeit gegenüber objekt-internen und objekt-übergreifenden Termgewichtsbeziehungen

Jones/Furnas, 1987

Distanzmaße

Euklidische Distanz

$$\left| \overrightarrow{x} - \overrightarrow{y} \right| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

liefert für normalisierte Vektoren dasselbe Ranking wie Cosinus-Maß, wie die folgende Ableitung zeigt

$$\left(\begin{vmatrix} \vec{x} - \vec{y} \\ \vec{x} - \vec{y} \end{vmatrix} \right)^{2} = \sum_{i=1}^{n} \left(x_{i} - y_{i} \right)^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2 \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$= 1 - 2 \sum_{i=1}^{n} x_{i} y_{i} + 1$$

$$= 2(1 - x \cdot y)$$
 (Manning/Schütze, 2000)

Inhalt

- Einführung
 - Ähnlichkeitsmaß
 - Ähnlichkeitsbetrachtungen
- Gebräuchliche Ähnlichkeitsmaße im Information Retrieval
 - Korrelationsmaße: Einfache Methode, Cosinus, Dice-Koeffizient, Jaccard-Koeffizient, Overlap-Koeffizient
 - Distanzmaße: Euklidische Distanz
- Eine Analyse der Ähnlichkeitsmaße von Jones/Furnas (1987)
- Beispiel 1: Berechnung der Ähnlichkeitsmaße für sechs Dokumentvektoren
- Beispiel 2: Bestimmung der Ähnlichkeit von Nomina auf der Basis von Prädikat-Objekt-Kookkurrenz-Paaren

	d 1	d 2	d 3	d 4	d 5	d 6
Ätna	1	1	2	1	1	1
Vesuv	1	1	2	0	2	0
Stromboli	1	1	2	1	3	3
Feuer	1	1	2	0	4	0
Wasser	1	1	2	1	5	5
Lava	1	1	2	0	6	0

Einfache Übereinstimmung								
	d1	d2	d3	d4	d5	d6		
d1	-	6.0	12.0	3.0	21.0	9.0		
d2	6.0	-	12.0	3.0	21.0	9.0		
d3	12.0	12.0	-	6.0	42.0	18.0		
d4	3.0	3.0	6.0	-	9.0	9.0		
d5	21.0	21.0	42.0	9.0	-	35.0		
d6	9.0	9.0	18.0	9.0	35.0	-		

Dice									
	d1	d2	d3	d4	d5	d6			
d1	-	1.000	1.333	0.666	1.555	1.200			
d2	1.000	-	1.333	0.666	1.555	1.200			
d3	1.333	1.333	-	0.800	2.545	1.714			
d4	0.666	0.666	0.800	-	0.750	1.500			
d5	1.555	1.555	2.545	0.750	-	2.333			
d6	1.200	1.200	1.714	1.500	2.333	-			

Cos	Cosinus							
	d1	d2	d3	d4	d5	d6		
d1	-	1.000	1.000	0.707	0.898	0.621		
d2	1.000	-	1.000	0.707	0.890	0.621		
d3	1.000	1.000	-	0.707	0.898	0.621		
d4	0.707	0.707	0.707	-	0.544	0.878		
d5	0.898	0.898	0.898	0.544	-	0.620		
d6	0.621	0.621	0.621	0.878	0.620	-		

Jac	ccard						Ove
	d1	d2	d3	d4	d5	d6	
d1	-	1.000	2.000	0.500	3.500	1.500	d1
d2	1.000	-	2.000	0.500	3.500	1.500	d2
d3	2.000	2.000	-	0.666	-4.66	6.000	d3
d4	0.500	0.500	0.666	-	0.600	3.000	d4
d5	3.500	3.500	-4.66	0.600		-7.00	d5
	1.500					_	d6
	© Karin Ha	enelt, Ähnli	chkeitsmaß	Se		Fraun!	noter

Overlap								
	d1	d2	d3	d4	d5	d6		
d1	-	1.000	1.000	1.000	1.000	0.500		
d2	1.000	-	1.000	1.000	1.000	0.500		
d3	1.000	1.000	-	1.000	0.916	0.555		
d4	1.000	1.000	1.000	-	1.000	1.000		
d5	1.000	1.000	0.916	1.000	-	1.000		
d6	0.500	0.500	0.555	1.000	1.000	-		

© Karin Haenelt, Ähnlichkeitsmaße für Vektoren 25.10.2012

Auswahlkriterien von Ähnlichkeitsmaßen für Vektoren

- Mathematische Eigenschaften der Ähnlichkeitsmaße
- Empirische Evaluierung
 - Art der Datenbasis
 - Benutzungssituationen
 - Informationsbedarf
 - Kriterien der Erstellung der Dokumentrepräsentationen
- unklar, ob und wie mathematische Eigenschaften mit pragmatischen Faktoren zusammenpassen

Inhalt

- Einführung
 - Ähnlichkeitsmaß
 - Ähnlichkeitsbetrachtungen
- Gebräuchliche Ähnlichkeitsmaße im Information Retrieval
 - Korrelationsmaße: Einfache Methode, Cosinus, Dice-Koeffizient, Jaccard-Koeffizient, Overlap-Koeffizient
 - Distanzmaße: Euklidische Distanz
- Eine Analyse der Ähnlichkeitsmaße von Jones/Furnas (1987)
- Beispiel 1: Berechnung der Ähnlichkeitsmaße für sechs Dokumentvektoren
- Beispiel 2: Bestimmung der Ähnlichkeit von Nomina auf der Basis von Prädikat-Objekt-Kookkurrenz-Paaren

Viktor Pekar

http://clg.wlv.ac.uk/demos/similarity/index.html

Ein Beispiel

Distributional similarity measures: The program illustrates 11 different distributional similarity measures:

Cosine

Jaccard coefficient

Dice coefficient

Overlap coefficient

L1 distance (City block distance)

Euclidean distance (L2 distance)* (* applied to non-normalized vectors)

Hellinger distance

Information Radius (Jensen-Shannon divergence)

Skew divergence** (** $\alpha = 0.001$)

Confusion Probability

Lin's Similarity Measure

Based on distributional data from BNC (predicate-object co-occurrence pairs), for an input noun, the program retrieves 30 most similar ones. It also describes the number of non-zero features for the target noun as well as its frequency rank in

the dataset.

Beispielergebnisse für "water"

Cosinus	Dice	Jaccard	Overlap
whisky	air	air	part
milk	part	part	line
wine	line	line	body
brandy	place	place	room
tea	house	house	air
sherry	room	room	car
coffee	thing	thing	house
champagne	hand	hand	hand
liquid	area	area	face
gin	car	car	area
cup	body	body	arm
juice	arm	arm	head
encourager	paper	paper	world
le	food	food	case
tonic	box	box	back
refill	number	number	home

Beispielergebnisse für "water"

Euklid.Dist.	L1-Distance	Information	Lin Similarity
	(city block)	Radius	
man	cup	milk	air
thing	glass	wine	river
body	bottle	cup	blood
number	line	coffee	pool
kind	milk	bottle	bath
way	part	tea	sea
woman	air	air	wine
side	wine	glass	food
line	place	line	room
work	thing	juice	place
place	house	place	arm
area	body	part	pocket
person	coffee	house	bottle
people	room	whiskey	tea
sort	area	oil	mouth
part	tea	river	amount

Vielen Dank

Für das Aufspüren von Fehlern in früheren Versionen und für Verbesserungsvorschläge danke ich

Nicola Kaiser, Sebastian Kreß, Philipp Scheffzek, Wolodja Wentland

Für Hinweise zum Overlap-Koeffizienten danke ich

Reginald Ferber

Literatur

- Ferber, Reginald (2003). Information Retrieval. Suchmodelle und Data-Mining-Verfahren für Textsammlungen und das Web. Heidelberg: dpunkt-Verlag. http://information-retrieval.de/irb/ir.html
- Jones, William P. und George W. Furnas (1987). Pictures of Relevance: A Geometric Analysis of Similarity Measures. In: Journal of the American Society for Information Science. 38 (6), S. 420-442.
- Manning, Christopher; Schütze, Hinrich (2000): Foundations of Statistical Natural Language Processing. Cambridge, Mass.: MIT Press.
- Pekar, Viktor. Distributional Similarity Measures online demo. <u>http://clg.wlv.ac.uk/demos/similarity/index.html</u>. (Calculates distributionally similar words according distributional similarity measures for nouns in the BNC.)
- Rijsbergen, C. J. (1979). Information Retrieval. Sec. Ed. London: Butterworths.

Copyright

- © Karin Haenelt, 2000,2006,2007, 2012 All rights reserved. The German <u>Urheberrecht</u> (esp. § 2, § 13, § 63, etc.). shall be applied to these slides. In accordance with these laws these slides are a publication which may be quoted and used for non-commercial purposes, if the bibliographic data is included as described below.
 - Please quote correctly.
 - If you use the presentation or parts of it for educational and scientific purposes, please include the bibliographic data (author, title, date, page, URL) in your publication (book, paper, course slides, etc.).
 - please add a bibliographic reference to copies and quotations
 - Deletion or omission of the footer (with name, data and copyright sign) is not permitted if slides are copied
 - Bibliographic data. Karin Haenelt, Ähnlichkeitsmaße für Vektoren. Kursfolien 25.10.2012 (1. Fassung 15.11.2000) + URL
- For commercial use: In case you are interested in commercial use please contact the author.
- Court of Jurisdiction is Darmstadt, Germany

