SMART CITY WASTE MANAGEMENT SYSTEM USING IOT

Team Id: PNT2022TMID49101

Project Name: Smart Waste Management for Metropolitan Cities

Team Members: R. Raja Lakshmi

A. Dhivya

K. Dhana Lakshmi

R. Prabadevi

ABSTRACT

As the population of world is increasing day by day, the environment should be clean and hygienic for our better life leads. Waste management is one of the primary problem that the world faces irrespective of the case of developed or developing country. In most of the cities the overflowed garbage bins are creating an obnoxious smell and making an unhygienic environment. And this is leading to the rapid growth of bacteria and viruses which are causing different types of diseases. To overcome these situations efficient garbage collection systems are getting developed based on

IOT. In this paper, we inspire and propose an Internet of Things (IOT) using Garbage Monitoring And waste management system For Smart Cities. The main purpose of project is to develop the system which uses the information collected from sensors to manage the collected waste. In proposed system the each Smart City Waste Collection which are located in several areas of city are connected to Internet wirelessly, they equipped with sensors which collects the data about level of collected waste in Smart City Waste Collection. Then Smart City Waste Collection sends this information to central web portal using WIFI module. If the Waste Collector is filled up to its threshold value then the message is displayed on web portal and the responsible authority take proper action and it will shows the all information on to the Smart Bin Application on the users mobile phone.

Keywords:

Smart city, waste management, iot, ultrasonic sensor, node mcu, android, etc

Introduction:

Today waste is a problem on which huge sums of money is spent each year for its collection and segregation process. India particularly generates approximately 133 760 tons of MSW per day, of which approximately 91 152 tones is collected, and a huge sum of money is spent on

collection. World waste production is expected to be approximately 27 billion tons per year by 2050, one-third of which will come from Asia, with major contributions from China and India[1]. Waste generation in urban areas of India will be 0.7 kg per person per day in 2025, approximately four to six times higher than in 1999. Mostly Environmental pollution may be owing to the Municipal Solid Left- overs (MSL). A Proper maintenance becomes mandatory for an efficient and effective removal of the generated Municipal Solid Leftover. The key issue in the waste management is that the garbage bin at public places gets overflowed well in advance before the commencement of the next cleaning process. In present scenario of digitalizing world everything in our surroundings have been equipped with modern technology and internet to ease our work and gain more efficiency[2]. But the systems existing today for waste management are the same as they were before in most of the countries. Currently, for collection of waste in some countries, we have door to door collection systems that require a lot of efforts and money. A waste collector has to visit everybody's place, knocking the doors, and has to wait till each resident brings the waste to them. Moreover, residents have to be available inorder to get their waste collected at that particular time which brings in a major disadvantage of this system.[3] Also in some countries, systems do exist in which waste is collected from the trash bins of each colony, but this system also brings a disadvantage that many a times dustbins are overfilled and waste isn't collected from it. This also makes dustbins, a place facilitating bacterial growth, feeding animals and a breeding place for insects. Also at times it happens that dustbin collection is done in prior resulting in waste of fuel and increasing costs of waste collection. So, at each step a lot of fuel and money is invested unnecessary for the process.[4]

Literature Survey:

[1] Ashiya Malak, Pallavi Bhoyar, "Garbage Collection System Using IOT- A Review", 2017.

In the present day scenario, many times we see that the garbage bins or Dust bin are placed at public places in the cities are overflowing due to increase in the waste every day. It creates unhygienic condition for the people and creates bad smell around the surroundings this leads in spreading some deadly diseases & human illness; to avoid such a situation we are planning to design "IOT Based Waste Management for Smart

Cities". In this proposed System there are multiple dustbins located throughout the city or the Campus, these dustbins are provided with low cost embedded device which helps in tracking the level of the garbage bins and an unique ID will be provided for every dust bin in the city so that it is easy to identify which garbage bin is full. When the level reaches the threshold limit, the device will transmit the level along with the unique ID provided. These details can be accessed by the concern authorities from their place with the help of Internet and an immediate action can be made to clean the dustbins.

[2] Prof. Indu Anoop, Ayush Jain, "IOT based Smart Waste Management", 2017. Many times, in our city we see that the garbage bins or dustbins placed at public places are overloaded. It creates unhygienic conditions for people as well as ugliness to that place leaving bad smell. To avoid such situations the proposed project will be implemented for efficient waste management using IOT. These dustbins are interfaced with Arduino based system having ultra- sonic wireless systems along with central system showing current status of garbage, on mobile web application with Android app by Wi-Fi. Hence the status will be updated on to the App. Major part of the proposed project de pends upon the working of the Wi-Fi module; essential for its implementation. The main aim of this project is to reduce human resources and efforts along with the enhancement of a smart city vision

[3] Raffaele Carli, Mariagrazia Dotoli "Measuring and Managing the Smart-ness of Cities: a Framework for Classifying Performance Indicators", 2013.

Due to the continuous increase of the world population living in cities, it is crucial to identify strategic plans and perform associated actions to make cities smarter, i.e., more operationally efficient, socially friendly, and environmentally sustainable, in a cost effective manner. To achieve these goals, emerging smart cities need to be optimally and intelligently measured, monitored, and managed. In this context the paper proposes the development of a framework for classifying performance indicators of a smart city. It is based on two dimensions: the degree of objectivity of observed variables and the level of technological advancement for data collection. The paper shows an application of the presented framework to the case of the Bari municipality (Italy).

[4]M. Fazio, M. Paone "Heterogeneous Sensors Become Homogeneous Things in

Smart Cities". Smart Cities offer a new approach for optimizing services, reducing costs, simplifying the management of Future Cities, enabling new services for citizens. In the Future Internet initiatives, Sensors Networks assume even more a crucial role, especially for making smarter cities. Sensors, becoming smart, will represent the peripheral elements of a complex future ICTworld. How- ever, due to the specific application field, smart sensors are very heterogeneous in

terms of communication technologies, sensing features and elaboration capabilities. To overcome issues due to the high heterogeneity in this paper we present a new architecture able to make a dual abstraction of complex sensing infrastructures along with data they collect. An important key of this work is to provide a service at worldwide level that is scalable and flexible. The architecture implementation is based on Sensor Web Enablement standard specifications and makes use of the Contiki Operating System for accomplishing the Internet of Things.

[5]Samir Atkar, Abhishek Aryan, "Garbage Collection System Using IOT", 2017.

The method of connecting the objects or things through wireless connectivity, Internet called Internet of Things. Nowadays a variety of tasks are based on IOT. Cities in the world are becoming smarter by implementing the things around using IOT. This is a new trend in technology. One of the objectives of smart cities is keeping the environment clean and neat. This aim is not fulfilled without the garbage bin management system. Hence the paper "IOT Based Intelligent Bin for Smart Cities" has been developed. Bin management is one of the major applications of IOT. Here sensors are connected to the all the bins at different areas. It senses the level of garbage in bin. When it reaches threshold a message is sent via GSM to the concerned person to clean it as soon as possible

Literature Survey Analysis:

The work done up to now is in some proposed systems, the proposed work is to detect the threshold values of dustbin and accordingly send a sms to driver, also some proposed systems are using android application to find nearby dustbins, but the limitations of these systems is such that there is no any means to inform the government about the dustbin status, so that government also should know the ground level status of this smart systems, also the tendency of people is such that they will require some motivation to use such systems, so we are providing one androidbased wallet system, also citizen will be provided with one smart card which when scanned, one credit point will be updated to the wallet, its future scope or it depends on the government that what government will provide to the citizen with more credit points. But due to this wallet people will use the system frequently and

it can be spread on large scale by people itself which will help in making our city clean and healthy. Also we have developed a web based application for admin where admin can see the map and status of dustbins, those dustbins which are empty will appear in green color while those filled will appear red and partially filled will appear in yellow, so that government(admin) can also monitor that how our system works at ground level and can take necessary action. Also driver will have one android application to track the dustbins which are filled. So our proposed system will be definitely useful to make our city clean and healthy which will facilitates to promote common man to use the system and government to monitor the system.

Detailed Methodology:

The system will be developed using using python as a programming language. Front end will be HTML, CSS will be back end .Javascript is used for client side validation. Cloudant DB is used for project development.

System will consists of following modules:

Hardware

Module Android

ApplicationWeb

Application

Hardware consists of nodemcu, ultrasonic sensor, rfid reader, rfid tag. Ultrasonic sensor will tell us the information about the dust bin, either it is empty, half filled or full. This status will be sent to the java servlet via wireless LAN, the servlet will get this status and save into the database and accordingly it will update the map of the web application. Also the responsibility of servlet is to send an SMS with the location of the dustbin to driver which is already updated at the time adding new dustbin by admin through web interface. Admin while adding new dustbin will add the location ie latitude and longitude of the dustbin, which will referred by the servlet. The android application will also connect to the server through WLAN using device ip address. In this way all the modulus will communicate each other through WLAN. In future if the web application is hosted, we can use WAN instead of LAN ie internet

Define the Problem Statements

Date	19 September 2022
Team ID	PNT2022TMID49101
Project Name	Project - Smart Waste Management System For Metropolitan Cities
Maximum Marks	2 Marks

Customer Problem Statement Template:

Create a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love.

A well-articulated customer problem statement allows you and your team to find the ideal solution for the challenges your customers face. Throughout the process, you'll also be able to

Empathize with your customers, which helps you better understand how they perceive your product or service

I am	Describe customer With	
	3-4 key Charactertics –	customer
	Who are they?	
I'm trying to	Let there outcome Or "job"	Overflow with trash or
	they come about.	recycling and before
	what are the trying to	infestation becomes an issue
	achieve?	
But	Describe what problem or	Environmental concerns
	barriers in the way – what	,poverty reduction and
	bothers them most?	employment generation
	Environmental	
Because	Enter the "root cause" of	One of the ways to put that
	why the problem or barrier	plan into action is through the
	exists – what needs to be	3 smart ideas of waste
	solved?	management – Reduce,
		Reuse, Recycle.
Which	Describe the emotions	Recyclables and distributed
makes me	from the customer's point	through put the city and
feel	of view – how does it	collection of recyclables and
	impact them emotionally?	other materials is me feel

Example:

Problem	I am	I'm trying	But	Because	Which
Statement	(Customer)	to			makes me
(PS)					feel

PS-1	customer	Overflow	Environment	One of the	
		with trash	concerns	ways to put	Recyclabels
		or	,poverty	that plan	and
		recycling	reduction	into action	distributed
		and before	and	is through	through put
		infestation	employment	the 3 smart	the city and
		becomes	generation	ideas of	collection
		an issue		waste	of
				management	recyclables
				- Reduce,	and other
				Reuse,	materials is
				Recycle	complicate

Proposed Solution:

Empathy Map Canvas:

Smart waste management system for metropolitan cities using IOT

Ideation & Brain Stroming:

Proposed Solution:

Date	24 September 2022
Team ID	PNT2022TMID49101
Project Name	Smart Waste Management System For
	Metropolitan Cities
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S. No.	Parameter	Description
1.	Problem Statement	This project deals with the problem of
	(Problem to be solved)	waste management in smart cities, where
		the garbage collection system is not
		optimized. This project enables the
		organizations to meet their needs of smart
		garbage management systems. This system
		allows the authorized person to know the
		fill level of each garbage bin in a locality
		or city at all times, to give a cost-effective
		and Time saving route to the truck drivers.
2.	Idea / Solution	The key research objectives are as follows:
	description	• The proposed system would be able to
		automate the solid waste monitoring
		process and management of the overall
		collection process using IOT (Internet of
		Things).
		• The Proposed system consists of main
		subsystems namely Smart Trash System
		(STS) and Smart Monitoring and
		Controlling Hut(SMCH).
		• In the proposed system, whenever the
		waste bin gets filled this is acknowledged
		by placing the circuit at the waste bin,
		which transmits it to the receiver at the
		desired place in the area or spot.

		• In the proposed system, the received
		signal indicates the waste bin status at the
		monitoring and controlling system.
3.	Novelty / Uniqueness	We are going to establish SWM in our
		college but the real hard thing is that
		janitor (cleaner) don't know to operate
		these thing practically so here our team
		planned to build a wrist band to them, that
		indicate via light blinking when the
		dustbin fill and this is Uniqueness we
		made here beside from project constrain.
4.	Social Impact / Customer	From the public perception as worst
	Satisfaction	impacts of present solid waste disposal
		practices are seen direct social impacts
		such as neigh bour hood of landfills to
		communities, breeding of pests and loss in
		property values.

5.	Business Model (Revenue	Waste Management organizes its
	Model)	operations into two reportable business
		segments:
		-
		Solid Waste, comprising the Company's
		waste collection, transfer, recycling and
		resource recovery, and disposal services,
		which are operated and managed locally by
		the Company's various subsidiaries, which
		focus on distinct geographic areas; and
		Corporate and Other, comprising the
		Company's other activities, including its
		development and operation of landfill gas-
		to- energy facilities in the INDIA, and its
		recycling brokerage services, as well as
		various corporate functions.
6.	Scalability of the Solution	In this regard, smart city design has been
		increasingly studied and discussed around
		the world to solve this problem. Following
		this approach, this paper presented an

efficient IoT- based and real-time waste management model for improving the living environment in cities, focused on a citizen perspective. The proposed system uses sensor and communication technologies where waste data is collected from the smart bin, in real-time, and then transmitted to an online platform where citizens can access and check the availability of the compartments scattered around a city.

Problem Fit Solution:

Date	01 November 2022
Team ID	PNT2022TMID49101
Project Name	Smart Waste Management
	System For Metropolitan
	Cities

Requirement Analysis:

Date	16 October 2022
Team ID	PNT2022TMID49101
Project Name	Project - Smart Waste Management
	System For Metropolitan Cities
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Detailed bin inventory.	All monitored bins and stands can be seen on the map, and you can visit them at any time via the Street View feature from Google. Bins or stands are visible on the map as green, orange or red circles. You can see bin details in the Dashboard – capacity, waste type, last measurement, GPS location and collection schedule or pick recognition.
FR-2	Real time bin monitoring.	The Dashboard displays real-time data on fill-levels of bins monitored by smart sensors. In addition to the % of fill-level, based on the historical data, the tool predicts when the bin will become full, one of the functionalities that are not included even in the best waste management software. Sensors recognize picks as well; so you can check when the bin was last collected. With real-time data and predictions, you can eliminate the overflowing bins and stop collecting half-empty ones
FR-3	Expensive bins.	We help you identify bins that drive up your collection costs. The tool

		calculates a rating for each bin in terms
		of collection costs.
		The tool considers the average distance
		de p o- bin- discharge in the area. The
		tool assigns bin a rating (1-10) and
		calculates distance from de p o-bin
		discharge.
FR-4	Adjust bin distribution.	Ensure the most optimal distribution of
		bins. Identify areas with either dense or
		sparse bin distribution. Make sure all
		trash types are represented within a
		stand.
		Based on the historical data, you can
		adjust bin capacity or location where
		necessary.
FR-5	Eliminate un efficient picks.	Eliminate the collection of half-empty
		bins. The sensors recognize picks.
		By using real-time data on fill-levels
		and pick recognition, we can show you
		how full the bins you collect are. The
		report shows how full the bin was when
		picked.
		You immediately see any inefficient
	71	picks below 80% full.
	Plan waste collection routes.	The tool semi-automates waste
FR-6		collection route planning. Based on
		current bin fill-levels and
		Pre dictions of reaching full capacity,
		you are ready to respond and schedule
		waste collection.
		You can compare planned vs. executed
		routes to identify any inconsistencies.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description			
	Requirement				

NFR-1	Usability	IOT device verifies that usability is a special and important perspective to analyze user requirements, which can further improve the design quality. In the design process with user experience as the core, the analysis of users' product usability can indeed help designers better understand users'
		potential needs in waste management, behavior and experience.
NFR-2	Security	Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers.
NFR-3	Reliability	Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing.
NFR-4	Performance	The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB- IoT, GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a powerful cloud-based platform, for data- driven daily operations, available also as a waste management app. Customers are hence provided data-driven decision making, and optimization of waste collection routes, frequencies, and vehicle loads resulting in route reduction by at least 30%.
NFR-5	Availability	By developing & deploying resilient hardware and beautiful software we empower cities, businesses, and

		countries to manage waste smarter.				
NFR-6	Scalability	Using smart waste bins reduce the				
		number of bins inside town, cities coz				
		we able to monitor the garbage 24/7				
		more cost effect and scalability when				
		we moves to smarter.				

PROJECT DESIGN

Data flow diagrams:

DATE	01 November 2022
TEAM ID	PNT2022TMID49101
PROJECT NAME	SMART WASTE MANAGEMENT FOR
	METROPOLITAN CITIES
MAXIMUM MARKS	4 Marks

DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data Enters and leaves the system, what changes the information, and where data is stored.

Solution Architecture:

Date	19 September 2022
Team Id	PNT2022TMID49101
Project Name	Smart Waste management for
	Metropolitan Cities
Maximum Marks	4 Marks

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

☐ Find the best tech solution to solve existing business problems.
☐ Describe the structure, characteristics, behavior, and other aspects of the software
to project stakeholders.
1 3
☐ Define features, development phases, and solution requirements.
☐ Provide specifications according to which the solution is defined, managed, and
delivered.

Example - Solution Architecture Diagram:

Reference:

https://app.mural.co/t/ibm07577/m/ibm07577/1665393633497/c2df036bbce6e097 96cb043 2ff5eaff4acc2f322? Sender = uf126bade518422ef21ad8182

Technology Stack (Architecture & Stack)

Date	31 October 2022
Team id	PNT2022TMID49101
Project Name	Smart Waste Management for Metropolitan
	Cities
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Guidelines:

- 1. Our proposed model provide real time monitoring to the garbage bins placed in various locations.
- 2. The garbage bins are build with a sensor module(Ultrasonic sensor) which continuosly monitors the garbage bin.
- 3. Any moment the garbage level passes over the critical level (i.e 80%), the system generates a notification to the monitoring panel (admin panel /garbage cleaning team) and so the cleaning team collects the garbage from the identified garbage bin.

Table -1: Components & Technologies:

S.No	Component	Description	Technology		
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chat bot etc.	HTML, CSS, JavaScript / Angular Js / React Js etc.		
2.	Application Logic-1	Logic for a process in the application	Java / Python		
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service		
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant		
5.	Database	Data Type, Configurations etc.	MySQL, No SQL, etc.		
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM cloudant etc.		
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local File system		
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.		
9.	External API-2	Purpose of External API used in the application	Aaadhar API, etc.		
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.		

11.	Infrastructure	Application Deployment on	Local, Cloud Foundry,
	(Server / Cloud)	Local System /	Kubernetes, etc.
		Cloud Local Server	
		Configuration: Cloud Server	
		Configuration:	

Table-2: Application Characteristics:

S. No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source	Technology of Open
		frameworks used	source framework
2.	Security Implementations	List all the security / access	e.g. SHA-256,
		controls implemented, use of	Encryptions, IAM
		firewalls etc.	Controls, OWASP etc
3.	Scalable Architecture	Justify the scalability of	Technology used
		architecture (3 – tier, Micro-	
		services)	
4.	Availability	Justify the availability of	Technology used
		application (e.g. use of load	
		balancers, distributed	
		servers etc.)	
5.	Performance	Design consideration for the	Technology used
		performance of the	
		application (number of	
		requests per sec, use of	
		Cache, use of CDN's) etc	

User Stories:

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Authorised	Login	USN-1	As	I can access	Medium	Sprint-2
Person(Manages			authorised	web page		

			1	1	T	
web app)			person, I gave user id and password for every workers and manage them	/dashboard		
Admin	Login	USN-2	As a admin, I will manage garbage level monitor. When garbage gets filling alert, I will post location and garbage Id to trash truck.	I can manage garbage monitoring.	High	Sprint-1
Truck Driver	Login	USN-3	As a driver, I'll follow the route sent by user to reach the filled garbage location.	I can drive to reach the garbage filled route in dynamic route given.	Medium	Sprint-2
Garbage Collector	Login	USN-4	As a garbage collector, I'll collect all the garbage from garbage bin and load it to the truck and send them to landfill.	I can collect garbage and pulled to truck.	Medium	Sprint-2
Municipality	Login	USN-5	As a municipality, I'll check the process are happening in discipline	I can manage all the process going good.	High	Sprint-1

	manner		
	without any		
	issues.		

PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation:

PHASE	TITLE	DESCRIPTION
Ideation	Literature Survey &	Literature survey on the
Phase	Information Gathering	Ideation Phase
		selected information by
		referring the, technical
		papers, research
		publications etc.
	Prepare Empathy Map	Prepare Empathy Map
		Canvas to capture the user
		Pains & Gains, Prepare
		list of problem statements
	Ideation	List the by organizing the
		brainstorming session and
		prioritize the top 3 ideas
		based on the feasibility &
		importance.

Phase-1	Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.
	Problem Solution Fit	Prepare problem - solution fit document.
	Solution Architecture	Prepare solution architecture document.
Phase-2	Customer Journey	Prepare the customer

		journey maps to
		understand the user
		interactions & experiences
		with the application (entry
		to exit)
	Functional Requirement	Prepare the functional and
		Nonfunctional
		requirement document
	Data Flow Diagrams	Draw the data flow
		diagrams and submit for
		review
	Technology Architecture	Prepare the technology
		architecture diagram.
Project	Prepare Milestone &	Prepare the milestones &
Planning	Activity List	activity list of the project.
Phase		
Project	Project Development -	Develop & submit the
development	Delivery of Sprint-1, 2, 3	developed code by testing
phase	& 4	it.

6.2 Sprint Delivery Schedule:

Sprint	Functional Requirement	Task	Story Point	Priority	Team Members
	(Epic)		-S		
Sprint-1	Registration	As a team lead, I	2	High	Raja
		can enrolled for			Lakshmi
		the project by			
		entering my			
		email, password			
		and within that I			
		can enter my team			
		members name			
		and their email.			
Sprint-1		As a team lead,	2	High	Dhivya
		I will receive			
		confirmation			
		email once, I have			
		enrolled for the			

		project with team id and along with team members name.			
Sprint-2	Login	As a team member, I can login to the IBM portal by entering email & password	1	Medium	Dhana Lakshmi
Sprint- 2		As a team member, I can login to the IBM portal by entering email & password	1	Medium	Prabadevi
Sprint- 2		As a team member, I can login to the IBM portal by entering email & password	1	Medium	Raja Lakshmi
Sprint- 2		As a team member, I can login to the IBM portal by entering email & password	1	Medium	Dhana Lakshmi

Project Tracker, Velocity & Burn down Chart:

Sprint	Total Story	Duration	Sprint Start Date(Planned	Sprint End Date	Story Points	Sprint Release Date
	Points)	(Planned)	Comp	(Actual)
					(Plann	
					ed End	
Sprint-1	20	6 Days	22 Oct 2022	27 Oct	Date) 20	06 Nov 2022
Spriit-1	20	Days	22 OCt 2022	2022	20	001107 2022
Sprint-2	20	6 Days	31 Oct 2022	5 Nov	30	07 Nov 2022

				2022		
Sprint-3	20	6 Days	7 Nov 2022	12 Nov	49	08 Nov 2022
				2022		
Sprint-4	20	6 Days	14 Nov 2022	19 Nov	50	09 Nov 2022
				2022		

6.3 Reports from JIRA:

Burnout:

Road map:

7. CODING & SOLUTIONING

7.1 Feature 1- LOCATION TRACKER:

7.2 Feature 2- LIVE UPDATE ON COLLECTED DATA:

8. Testing:

8.1 Test cases:

TEST CAS E ID	FEAT URE TYPE	CO M PO NE NT	TEST SCE NARI O	P R E R E Q U I S I T E	STEP S TO EXE C UT E	TE ST DA TA	EX PE C TE D RE SU L T	AC TU AL RE SU L T	ST A T U S	CO MM ENT S	T C F O R A U T O M A TI O N(Y/ N)	B U G I D	EXECUT ED BY
LOGI N PAG E_TC _001	FUNC TI ONA L	HO M E PA GE	VERI FY THE USE R IS ABL E TO SEE THE LOGI N/SI G N UP WEN USE R CLIC K ON MY ACC OUN T BUT TON		1.EN T ER URL AND CLIC K GO 2.VE R IFY LOGI N/SI GN UP	http s:// 1 69. 51. 2 0 4.2 19. 3 0 106	L0 gin pag e is visi ble	Wo rki ng as exp ect ed	P A SS	Suc cess ful			RAJA LAKSH MI
LOGI N PAG E_TC _002	UI	HO M E PA GE	VERI FY THE USE R IS ABL E TO		1.EN T ER URL AN D CLI	htt ps: // 1 69. 51. 2 0	Ap pli cat ion sho uld	Wo rki ng as exp ect	P A S S	Suc c ess full			DHIVY A

			SEE THE	CK GO	4.2 19.	sho	ed				
			LOGI	2.VE	3 0	W					
			N/SI	R R		bel					
			G N		10	OW					
			UP	IFY	6	UI					
			WEN USE	LOG		ele					
			R	I NI/CI		me					
			CLIC	N/SI GN		nt					
			K ON	UP							
			MY	Elem							
			ACC OUN	e nts							
			T	a.ID							
			BUT	text							
			TON	b o x							
				OOA							
				pass							
				W							
				ord							
				text							
				box							
				clo							
				gi n							
				butto							
				n							
				D.ne							
				W							
				user							
				Ealra							
				dy							
				have							
				an							
				acco							
100	THE TAX	1.0	TIES	u nt	T 1	T.	***	P.	G		DD 4 D 4
LOG	FUN	LO	VER	1.ent	Id:	Us	Wo	P	Suc		PRABA
IN	CTI	GI	IFY	er url	11	er	rki	A	cess		DEVI
PAG	ONA	N	THE	and	11	sho	ng	S	full		
E_T	L	PA	USE	click	pas	uld	as	S			
C		GE	R IS	go	SW	nav	exp				
_003			ABL	2.cli	or	iga	ect				

			Е	alr	4.5	to	0.4				
			E	ck	d:5	te	ed				
			TO	on	67	yo					
			SEE	my	8	ur					
			THE	acco		ho					
			LOG	unt		me					
			IN/S	3.Ent		pag					
			I G	er		e.					
			N	valid							
			UP	ID							
			WE	4.Ent							
			N	er							
			USE	valid							
			R	pass							
			CLI	word							
			CK	5.cli							
			ON	ck							
			MY	on							
			ACC	login							
			OU								
			NT								
			BUT								
			TON								
LOGI	FUNC	LO	VERI	1.ent	Id:	Co	Wo	P	Suc		RAJAL
N	TI	GI	FY	er url	11	nfir	rki	A	c		AKSH
	ONA	N			11	m	ng	S	essf		MI
								S	ul		
PAG		PA	THE	and	pas	ati	gas		ful		DHIVY
E_T	L	GE	USE	click	S	on	exp				A
C_			R IS	go	wo	me	ect				
004			ABL	2.cli	r	ssa	ed				
			E	ck	d:5	ge					
			TO	on	6	sen					
			SEE	my	78	t					
			THE	acco	, 5						
			LOG	unt							
			IN/S	3.Ent							
			IG N	er							
			UP	valid							
			WE	ID							
			N								
			11	4.Ent							

LOG IN PAG E_T C_ 005	UI	LO GI N PA GE	USE R CLI CK ON MY ACC OU NT BUT TON VER IFY THE USE R IS ABL E TO SEE THE LOG IN/S IG N	er valid pass word 5.cli ck on login butvt on 1.ent er url and click go 2.cli ck on my acco unt 3.Ent er	Id: 1 11 1 pas s wo r d:5 6 78	Co nfir m ati on me ssa ge sen t	Wo rki ng as exp ect ed	P A S S	Success		DHAN ALAKS HMI
			UP WE	valid ID							
			N USE	4.Ent er							
			R	valid							
			CLI CK	pass word							
			ON	5.cli							
			MY	ck							
			ACC	on							
			OU	login							
			NT BUT	butto n							
			TON	11							
LOG	FUN	LO	VER	VER	Id:	Cu	Wo	P	Suc		PRABA

IN	CTIO	GI	IFY	I	FY	1	sto	rki	Α	cess		DEVI	
PAG	NA L	N	THE	Γ	ГНЕ	11	m	ng	S	ful			
E_T		PA	USE	J	JSE	1	er	as	S				
C_		GE	R IS	R	R IS	pas	dat	exp					
006		FO	ABL	A	ABL	S	aba	ect					
		R	Е	E	Ξ	wo	s e	e d					
		AD	TO	Γ	ГО	r	is						
		MI	SEE	S	SEE	d:5	visi						
		N	THE	Γ	ГНЕ	6	ble						
			LOG	L	LOG	78							8.2
			IN/S		N/S								User
			IG N	I	G N								
			UP	J	JP								
			WE	V	WE								
			N		V								
			USE	J	JSE								
			R		3								
			CLI		CLI								
			CK	C	CK								
			ON		ON								
			MY		MY								
			ACC		ACC								
			OU		OU								
			NT		TV								
			BUT		BUT								
			TON	Γ	ΓΟΝ								

acceptance Testing:

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [Product Name] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	7

1. Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Pass	Fail
Print Engine	7	0	0	7
Client	51	0	0	51
Application				
Security	2	0	0	2

Outsource	3	0	0	3
Shipping				
Exception	9	0	0	9
Reporting				
Final Report	4	0	0	4
Output				
Version	2	0	0	2
Control				

9. RESULTS:

9.1 Performance Metrics:

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- Reduction in Collection Cost
- No Missed Pickups
- Reduced Overflows
- Waste Generation Analysis
- CO2 Emission Reduction

DISADVANTAGES:

- System requires a greater number of waste bins for separate waste collection as per population in the city.
- This results into high initial cost due to expensive smart dustbins compare to other methods. Sensor nodes used in the dustbins have limited memory size.

11. CONCLUSION:

A Smart Waste Management system that is more effective than the one in use now is achievable by using sensors to monitor the filling of bins. Our conception of a "smart waste management system" focuses on monitoring waste management, offering

intelligent technology for waste systems, eliminating human intervention, minimizing human time and effort, and producing a healthy and trash-free environment. The suggested approach can be implemented in smart cities where residents have busy schedules that provide little time for garbage management. If desired, the bins might be put into place in a metropolis where a sizable container would be able to hold enough solid trash for a single unit. The price might be high.

12. FUTURE SCOPE:

There are several future works and improvements for the proposed system, including the following:

- 1. Change the system of user authentication and atomic lock of bins, which would aid in protecting the bin from damage or theft.
- 2. The concept of green points would encourage the involvement of residents or end users, making the idea successful and aiding in the achievement of collaborative waste management efforts, thus fulfilling the idea of Swachh Bharath.
- 3. Having case study or data analytics on the type and times waste is collected on different days or seasons, making bin filling predictable and removing the reliance on electronic components, and fixing the coordinates.
 - 4. Improving the Server's and Android's graphical interfaces

13. Appendix:

Git hub Link:

https://github.com/IBM-EPBL/IBM-Project-41375-1660641591