The Basic Diode Circuit And Analytical Approach

二极管的基本电路及其分析方法

第3章 二极管及其基本电路

第4节 二极管的基本电路及其分析方法

3.4 二极管的基本电路及其分析方法

> 简单二极管电路的图解分析方法

二极管是一种非线性器件,因而其电路一般要采用非线性电路的分析方法,相对来说比较复杂,而图解分析法则较简单,但前提条件是已知二极管的V-I特性曲线。

符号中大小写的含义:

大写字母大写下标:静态值(直流),如, $I_{\rm R}$

小写字母大写下标:总量(直流+交流),如, i_R

小写字母小写下标:瞬时值(交流),如, i_b

(参见"本书常用符号表")

模拟电子技术

Analog Electronic Technology

3.4 二极管的基本电路及其分析方法

例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源 V_{DD} 和电阻R,求二极管两端 电压 v_n 和流过二极管的电流 i_n 。

解:由电路的KVL方程,可得 $i_D = \frac{V_{DD} - v_D}{P}$

$$i_{\rm D} = \frac{V_{\rm DD} - v_{\rm D}}{R}$$

即 $i_D = -\frac{1}{R}v_D + \frac{1}{R}V_{DD}$ 是一条斜率为-1/R的直线,称为负载线

Q的坐标值 $(V_{\rm D}, I_{\rm D})$ 即为所求。Q (Quiescent) 点称为电路的工作点

3.4 二极管的基本电路及其分析方法

3.4 二极管的基本电路及其分析方法

➤ 二极管 I-V 特性的建模

将指数模型 $i_D = I_S(e^{v_D/V_T} - 1)$ 分段线性化,得到二极管特性的等效模型。

1 理想模型

3.4 二极管的基本电路及其分析方法

2 恒压降模型

(a) I-V 特性 (b) 电路模型

● 导通管压降

硅管 $V_{\rm D} \approx 0.7 \rm V$ 锗管 $V_{\rm D} \approx 0.2 \rm V$

●门槛电压

硅管 V_{th}≈0.5V 锗管 V_{th}≈0.1V

3 折线模型

(a) I-V 特性 (b) 电路模型

两个重要问题:

◆在何种场合适用何种等效电路模型?

一般原则: 在满足精度要求的前提下, 尽可能选择简单的模型

◆如何判断二极管的工作状态?

二极管电路分析原则:

二极管的工作状态 {导通 截止

分析方法:将二极管断开,分析二极管两端电位的高低或所加电压 $U_{\mathbf{D}}$ 的正负。

若 $V_{\text{Pl}} > V_{\text{Pl}}$ 或 U_{D} 为正(正向偏置),二极管导通 若 $V_{\text{Pl}} < V_{\text{Pl}}$ 或 U_{D} 为负(反向偏置),二极管截止

例题

所示的电路中,设二极管均为理想的,请回答:

- (1) 当 v_{i1} =10V, v_{i2} =8V时, 判断 D_1 和 D_2 的工作状态, 并求 v_o ;
- (2) 当 v_{i1} =0V, v_{i2} =0V时, 判断 D_1 和 D_2 的工作状态,并求 v_o 。

解: (1) $D_1 AD_2 均截止 v_o = 6V$

(2) D_1 和 D_2 均导通 v_o =0V

若 v_{i1} =0V, v_{i2} =8V??

Multisim建立仿真模型如图所示,开关断开和闭合时二极管两端的电压是多少?

练习:以上两种状态,二极管流过的电流是多少?

3.4 二极管的基本电路及其分析方法

习题: 3.4.12(a)(c), 3.4.13 (a)

注意: 1、作业用普通作业本做;

- 2、可以不抄题目,但是要画图;
- 3、不会做的话回看ppt或者看网课。

3.4.1 二极管简化模型

4 小信号模型

Q点称为<mark>静态工作点</mark>,反映直流时的工作状态。

常温下(T=300K)

$$r_{\rm d} = \frac{V_T}{I_{\rm D}} = \frac{26(\rm mV)}{I_{\rm D}(\rm mA)}$$

模拟电子技术

过Q点的切线可以等效成一个微变电阻

即
$$r_{\rm d} = \frac{\Delta v_{\rm D}}{\Delta i_{\rm D}}$$
根据 $i_{\rm D} = I_{\rm S} ({\rm e}^{v_{\rm D}/V_T} - 1)$

得Q点处的微变电导

$$g_{d} = \frac{di_{D}}{dv_{D}}\Big|_{Q} = \frac{I_{S}}{V_{T}}e^{v_{D}/V_{T}}\Big|_{Q} \approx \frac{i_{D}}{V_{T}}\Big|_{Q} = \frac{I_{D}}{V_{T}} \qquad \square \qquad r_{d} = \frac{1}{g_{d}} = \frac{V_{T}}{I_{D}}$$

$$r_{\rm d} = \frac{V_T}{I_{\rm D}} = \frac{26(\text{mV})}{I_{\rm D}(\text{mA})}$$

(a) *V-I*特性

(b) 电路模型

特别注意:

- •小信号模型中的微变电阻 r_d 与静态工作点Q有关。
- 该模型用于二极管处于正向偏置条件下,且 $v_{
 m D}>>>V_T$ 。

3.4.1 二极管简化模型

小信号模型

直流通路、交流通路、静态、动态等 概念, 在放大电路的分析中非常重要。

$$r_{\rm d} = \frac{V_T}{I_{\rm D}} = \frac{26(\rm mV)}{I_{\rm D}(\rm mA)}$$

图示电路中, $V_{\rm DD}=5{\rm V}$, $R=5{\rm k}\Omega$,恒压降模型的 $V_{\rm D}=0.7{\rm V}$, $v_{\rm s}=0.1{\rm sin}\omega t~{\rm V}$ 。

求输出电压 v_0 的交流量和总量;(2)绘出 v_0 的波形。

解:
$$I_{\rm D} = \frac{V_{\rm DD} - V_{\rm D}}{R}$$
 $r_{\rm d} = \frac{V_{T}}{I_{\rm D}}$

$$r_{\rm d} = \frac{V_T}{I_{\rm D}}$$

$$v_{o} = \frac{R}{R + r_{d}} \cdot v_{s}$$

解得:

$$v_0 = V_0 + v_0 = 4.3 + 0.0994 \sin \omega t$$
 (V)

3.4 二极管的基本电路及其分析方法

1 整流电路

当 $v_{\rm s}$ 为正半周时,二极管导通,且导通压降为0V, $v_{\rm o}$ = $v_{\rm s}$

整流电路 半波整流 XSC1 XSC2 D1 1N3064 V1 R1 12 Vrms S2kΩ ~60 Hz

思考: 二极管最高反向电压是多少?

3.4.2 模型分析法应用举例

模拟电子技术

Analog Electronic Technology

1 整流电路

桥式全 波整流

3.4.2 模型分析法应用举例

模拟电子技术

Analog Electronic Technology

2 静态工作情况分析

当 $V_{\rm DD}$ =10V时,(R=10kΩ)

理想模型

$$V_{\rm D} = 0 \text{ V}$$
 $I_{\rm D} = V_{\rm DD} / R = 1 \text{ mA}$

恒压模型

$$V_{\rm p} = 0.7 \, {
m V}$$
(硅二极管典型值,导通管压降)

$$I_{\rm D} = (V_{\rm DD} - V_{\rm D})/R = 0.93 \,\mathrm{mA}$$

折线模型

$$V_{th} = 0.5 \, \text{V}$$
(硅二极管典型值,门槛电压)

设
$$r_{\rm D}=0.2\,{\rm k}\Omega$$

$$I_{\rm D} = \frac{V_{\rm DD} - V_{\rm th}}{R + r_{\rm D}} = 0.931 \,\text{mA}$$
 $V_{\rm D} = V_{\rm th} + I_{\rm D} r_{\rm D} = 0.69 \,\text{V}$

当
$$V_{\rm DD}$$
=1V时, (P68)

3.4.2 模型分析法应用举例

(a) 简单二极管电路 (b) 习惯画法

3.4.2 模型分析法应用举例

3 限幅电路

电路如图, $R=1k\Omega$, $V_{REF}=3V$,二极管为硅二极管。分别用理想模型和恒压降模型求解,当 v_I = $6\sin \omega t$ V时,绘出相应的输出电压 v_O 的波形。

3.4.2 模型分析法应用举例

dB

3 开关电路

P71 表3.4.1

1N3064

D6

1N3064

5V VDD

5V

- 二极管的导通管压降是: 硅管-[填空1] V, 锗管-[填空2] V;
- 二极管的门槛电压是: 硅管-[填空3] V, 锗管-[填空4] V。

正常使用填空题需3.0以上版本雨课堂