Support Vector Machines

André Hopfgartner & Matthias Rupp 08.06.2021

Vorarlberg University of Applied Sciences

Agenda

- 1. Einführung
- 2. Hard-Margin Support Vector Machine
- 3. Lösung mittels QP-Solver
- 4. Soft-Margin Support Vector Machine
- 5. Vergleich Hard- & Soft-Margin Support Vector Machine
- 6. Nichtlineare Trennung
- 7. Pseudocode und Beispiele

Einführung

Ziel: lineare Trennung zweier Klassen

Ziel: lineare Trennung zweier Klassen Wie?: Definition einer (Hyper-) Ebene

Ziel: lineare Trennung zweier Klassen
Wie?: Definition einer (Hyper-) Ebene
Nebenbedingung: Möglichst großer freier Bereich

Ziel: lineare Trennung zweier Klassen
Wie?: Definition einer (Hyper-) Ebene
Nebenbedingung: Möglichst großer freier Bereich

Arten von SVM

Arten von SVM:

- Hard-Margin SVM: Daten werden 100% korrekt getrennt
- Soft-Margin SVM: Einzelne Datenpunkte können falsch klassifiziert werden um insgesamt bessere Trennung zu erhalten

Hard-Margin Support Vector

Machine

Mathematische Formulierung

Gegeben sei ein Gewichtsvektor $w \in \mathbb{R}^K$, ein Bias $b \in \mathbb{R}$, ein beliebiger Punkt $x_n \in \mathbb{R}^K$ und ein zugehöriges Label $y_n \in \{-1, +1\}$. Eine Ebene im Raum kann allgemein definiert werden durch:

$$w^T x_n + b = 0$$

Ziel der SVM: w und b bestimmen für optimale Trennung

Klassifikation

Annahme: w und b bereits bekannt Wie klassifiziert man einen Punkt x_n ?

Klassifikation

Annahme: w und b bereits bekannt

Wie klassifiziert man einen Punkt x_n ?

Liegt x_n über oder unter Ebene = Vorzeichen:

$$y = sign(w^Tx_n + b)$$
 ist gleichbedeutend mit $w^Tx_n + b > 0$ für $y_n = +1$ $w^Tx_n + b < 0$ für $y_n = -1$

Bisher: Punkte können genau auf der Grenze liegen wenn $w^Tx_n + b = 0$

Einführung eines Trennbandes

Striktere Regel: Um Ebene soll Band frei bleiben

$$w^T x_n + b \ge +1$$
 für $y_n = +1$
 $w^T x_n + b \le -1$ für $y_n = -1$

Einführung eines Trennbandes

Beidseitige Multiplikation mit y_n

$$y_n(w^Tx_n + b) \ge 1$$
 für $y_n = +1$
 $y_n(w^Tx_n + b) \ge 1$ für $y_n = -1$

Einführung eines Trennbandes

Beidseitige Multiplikation mit y_n

$$y_n(w^Tx_n + b) \ge 1$$
 für $y_n = +1$
 $y_n(w^Tx_n + b) \ge 1$ für $y_n = -1$

Für den Fall, dass $x_n = \hat{x}$ genau an der Grenze des Trennbands liegt, gilt somit:

$$y_n(w^T\hat{x}+b)=1$$

Normalabstand eines Punktes zur Ebene

Gesucht: Normalabstand d eines Punktes $x_n \in \mathbb{R}^K$ zur Ebene

Normalabstand eines Punktes zur Ebene

$$d = \left| \frac{w^{T}}{\|w\|} (x_{n} - x) \right| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{n} - w^{T} x)| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{n} + b - (w^{T} x + b))|$$

Normalabstand eines Punktes zur Ebene

$$d = \frac{1}{\|w\|} |(w^T x_n + b - (w^T x + b))|$$

Weil der Punkt x auf der Ebene liegt gilt $w^Tx + b = 0$ und somit für den Normalabstand eines beliebigen Punktes x_n :

$$d = \frac{1}{\|w\|} |(w^T x_n + b)|$$

Breite des Trennbands

$$d = \frac{1}{\|w\|} |(w^T x_n + b)|$$

Annahme: $x_n = \hat{x}$ ist der am nächsten zur Ebene liegende Punkt auf der Grenze des Trennbands

Weil $y_n(w^T\hat{x} + b) = 1 = |w^T\hat{x} + b|$ gilt ergibt sich der minimale Normalabstand D:

$$D = \frac{1}{\|w\|}$$

Weil D der minimale Normalabstand zur Ebene ist, ist 2D die Breite des freien Trennbands.

Reminder

Ziel: lineare Trennung mit möglichst breitem, freien Trennband Entspricht Maximierung:

$$\max_{w}(2D) = \max_{w} \frac{2}{\|w\|} = \max_{w} \frac{1}{\|w\|}$$

Optimierungsproblem

$$\max_{w} \frac{1}{\|w\|}$$

$$\min_{n=1..N} |w^{T}x_{n} + b| = 1$$

$$\min_{n=1..N} |w^T x_n + b| = 1$$
 ist der am nächsten zur Ebene liegende Punkt \hat{x}

Beidseitige Multiplikation mit y_n zur Vermeidung des Betrags:

$$|w^Tx_n+b|=y_n(w^Tx_n+b)$$

Optimierungsproblem

Nach Umformung (Maximierung in Minimierung) und Verallgemeinerung der Nebenbedingung auf beliebige Punkte x_n :

$$\min_{w} \frac{1}{2} w^{T} w$$

$$\min_{w} y_{n}(w^{T} x_{n} + b) \ge 1 \text{ für } n = 1..N$$

Bemerkungen:

- Faktor $\frac{1}{2}$ wird so gewählt weil dieser später wegfällt
- $w^T w$ und ||w|| sind aus Optimierungssicht gleichbedeutend, Problem ist in dieser Form aber besser optimierbar

Lagrange Optimierung

Optimierungsproblem mit Ungleichung als Nebenbedingung Umformen der Nebenbedingung:

$$\min_{w} \frac{1}{2} w^{T} w$$

$$\min_{w} y_{n}(w^{T} x_{n} + b) - 1 \ge 0 \text{ für } n = 1..N$$

Aufstellen der Lagrange Gleichung

Ungleichung wird von zu optimierender Funktion abgezogen und Lagrange Multiplikatoren eingeführt:

$$\min_{w,b} \qquad \mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{n=1}^{N} \alpha_n (y_n (w^T x_n + b) - 1)$$

$$\max_{\alpha_n} \qquad \alpha_n \ge 0 \text{ für } n = 1..N$$

Lösung durch 0 setzen der partiellen Ableitungen:

$$\nabla_{w} \mathcal{L} \stackrel{!}{=} \vec{0}$$
$$\frac{\partial}{\partial b} \mathcal{L} \stackrel{!}{=} 0$$

Lösen der Lagrange Gleichung

Nach w:

$$\nabla_{w} \mathcal{L} = w - \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n} \stackrel{!}{=} \vec{0}$$

$$w = \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}$$

Nach b:

$$\frac{\partial}{\partial b} \mathcal{L} = -\sum_{n=1}^{N} \alpha_n y_n \stackrel{!}{=} 0$$
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$

Rücksubstitution in Lagrange Gleichung

Aufteilen der Summe:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} w^{T} w - \sum_{n=1}^{N} \alpha_{n} (y_{n}(w^{T} x_{n} + b) - 1) =$$

$$= \frac{1}{2} w^{T} w - [\sum_{n=1}^{N} \alpha_{n} y_{n} b - \sum_{n=1}^{N} \alpha_{n} + \sum_{n=1}^{N} \alpha_{n} y_{n} w^{T} x_{n}]$$

Aus Ableitung nach b wissen wir $\sum_{n=1}^{N} \alpha_n y_n = 0$:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} w^T w - \left[-\sum_{n=1}^{N} \alpha_n + \sum_{n=1}^{N} \alpha_n y_n w^T x_n \right]$$

Rücksubstitution in Lagrange Gleichung

Vergleicht man den Term $\sum_{n=1}^{N} \alpha_n y_n w^T x_n$ mit dem Ergebnis der partiellen Ableitung nach w ($w = \sum_{n=1}^{N} \alpha_n y_n x_n$) erkennt man, dass gilt:

$$\sum_{n=1}^{N} \alpha_n y_n w^T x_n = w^T w =$$

$$= \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$

Eingesetzt in Lagrange Gleichung:

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$

Maximierung ohne Nebenbedingung

Quadratic Programming Problem $(x_n^T x_m)$:

$$\begin{aligned} \max_{\alpha} \qquad \mathcal{L}(\alpha) &= \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m \\ \min \qquad &\alpha_n \geq 0 \text{ für } n = 1..N \\ &\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N \end{aligned}$$

Lösung mittels QP-Solver

Ergebnis: α Vektor mit α_n Lagrange-Multiplikatoren

Schlupfterm

Reminder Ausgangsproblem:

$$\min_{w,b} \qquad \mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{n=1}^{N} \alpha_n (y_n (w^T x_n + b) - 1)$$

$$\max_{\alpha_n} \qquad \alpha_n \ge 0 \text{ für } n = 1..N$$

$$\alpha_n(y_n(w^Tx_n+b)-1)$$
 ("Schlupf") wird 0 wenn:

- $\alpha_n = 0$ oder
- $(y_n(w^Tx_n + b) 1) = 0$

Umgekehrt: Alle x_n mit $\alpha_n \neq 0$ haben Schlupf 0, liegen also am nächsten zur Trennebene.

Diese Vektoren werden Stützvektoren genannt.

Bestimmung Gewichtsvektor

 α Vektor mit α_n Faktoren ist bekannt aus QP-Solver Viele α_i werden 0 sein, die $\alpha_i \neq 0$ gehören zu den Stützvektoren x_i . Damit kann Formel für w

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

vereinfacht werden:

$$w = \sum_{n \text{ ist Stützvektor}} \alpha_n y_n x_n$$

Die Bezeichnung Stützvektor ergibt sich, weil die Ebene durch diese Vektoren "gestützt "wird. Alle Vektoren mit $\alpha_n=0$ haben keinen Einfluss!

Bestimmung Bias

 $y_n(w^Tx_n + b) = 1$ gilt für Stützvektoren, daher kann mit beliebigem Stützvektor x_n der Bias bestimmt werden:

$$b = \frac{1}{y_n} - w^T x_n =$$
$$= y_n - w^T x_n$$

Lösung mittels QP-Solver

Lösung mittels QP-Solver

Standardform von QP-Problemen:

$$\min_{x} = \frac{1}{2}x^{T}Qx + cx + d$$

Umformung Maximierung in Minimierung weil $\max -f(x) = \min f(x)$:

$$\min_{\alpha} \mathcal{L}(\alpha) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m - \sum_{n=1}^{N} \alpha_n$$

Problem in QP-Standardform

$$\min_{\alpha} \mathcal{L}(\alpha) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m - \sum_{n=1}^{N} \alpha_n$$

In QP-Standardform \rightarrow Lösungs-Frameworks:

Problem in QP-Standardform

$$\min_{\alpha} \mathcal{L}(\alpha) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m - \sum_{n=1}^{N} \alpha_n$$

In QP-Standardform \rightarrow Lösungs-Frameworks:

Q ist $N \times N$ Matrix. Problematisch bei großen Trainingssets!

Lösung mittels QP-Solver

Ergebnis des QP-Solvers: $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ Berechnung von w und b wie zuvor gezeigt:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

Mit beliebigem Stützvektor x_k :

$$b = \frac{1}{y_k} - w^T x_k$$

Klassifikation neuer Eingaben x:

$$y = sign(w^T x + b)$$

Soft-Margin Support Vector

Machine

Einführung Soft-Margin SVM

Annahme bisher: Daten linear trennbar ohne Fehler

Einführung von Fehlervariablen

Problem: bisheriger Algorithmus terminiert nicht bei Fehlern Lösung: Einführung von positiven Fehlervariablen $\xi_n \in \mathbb{R}^K, \xi_n \geq 0$:

$$w^T x_n + b \ge +1 - \xi_n$$
 für $y_n = +1$
 $w^T x_n + b \le -1 + \xi_n$ für $y_n = -1$

Wann kann einzelne Fehlklassifikation auftreten? Wenn $\xi_n>1$ Obere Grenze Anzahl Fehler:

$$E = C(\sum_{n=1}^{N} \xi_n)$$

 $C \in \mathbb{R}, C \geq 0$: "Straffaktor"für Fehler

Erweiterung Optimierungsproblem um Fehlerterm

Ziel: Optimales w mit möglichst wenig Fehlern:

$$\min_{w} \frac{1}{2} w^{T} w + C(\sum_{n=1}^{N} \xi_{n})$$

$$\min_{w} y_{n}(w^{T} x_{n} + b) - 1 \ge 0 \text{ für } n = 1..N$$

Ableiten, 0 setzen und lösen wie zuvor...

Soft-Margin SVM Optimierungsproblem

Soft-Margin Optimierungsproblem:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$

$$\min \qquad 0 \le \alpha_n \le C \text{ für } n = 1..N$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$

Einziger Unterschied zu Hard-Margin: Beschränkung $\alpha_n \leq C$ (Hard-Margin: $\alpha_n \leq \infty$)

Soft-Margin SVM Optimierungsproblem

Soft-Margin Optimierungsproblem:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$

$$\min \qquad 0 \le \alpha_n \le C \text{ für } n = 1..N$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$

Einziger Unterschied zu Hard-Margin: Beschränkung $\alpha_n \leq C$ (Hard-Margin: $\alpha_n \leq \infty$)

Umgekehrt: Soft-Margin mit $C \to \infty$ entspricht Hard-Margin Lösung: Wie zuvor gezeigt mit QP-Solver

Support Vector Machine

Vergleich Hard- & Soft-Margin

Vergleich Hard- & Soft-Margin SVM

Hard-Margin: einzelne Ausreißer bestimmen Lage der Ebene Soft-Margin: Fehlklassifikationen zugunsten besserer Gesamt-Trennung

Nichtlineare Trennung

Einleitung

Ziel: nichtlineare Trennung

Problem: SVM trennt ausschließlich linear

Einleitung

Ziel: nichtlineare Trennung

Problem: SVM trennt ausschließlich linear

Lösung: Transformation Eingabevektoren in linear trennbaren Raum

Transformationsfunktion $\Phi(x): \mathbb{R}^K \to \mathbb{R}^L$

Abbildung 1: Transformation Eingabevektoren macht linear trennbar

Optimierungsproblem mit transformierten Eingabevektoren:

Optimierungsproblem mit transformierten Eingabevektoren:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m \Phi(x_n)^T \Phi(x_m)$$
mit
$$0 \le \alpha_n \le C \text{ für } n = 1..N$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$

Optimierungsproblem mit transformierten Eingabevektoren:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m \Phi(x_n)^T \Phi(x_m)$$
mit
$$0 \le \alpha_n \le C \text{ für } n = 1..N$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$

Anzahl Lagrangefaktoren α und Dimension der Q-Matrix hängen von Anzahl Eingabevektoren ab, nicht von der Dimension

Optimierungsproblem mit transformierten Eingabevektoren:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m \Phi(x_n)^T \Phi(x_m)$$
mit $0 \le \alpha_n \le C$ für $n = 1..N$

$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
 für $n = 1..N$

Anzahl Lagrangefaktoren α und Dimension der Q-Matrix hängen von Anzahl Eingabevektoren ab, nicht von der Dimension => Zusatzkosten: Berechnung höherdimensionaler Skalarprodukte $\Phi(x)^T\Phi(x)$

Problem 1: Wahl der Transformationsfunktion $\Phi(x)$

Problem 1: Wahl der Transformationsfunktion $\Phi(x)$ Problem 2: Eingabevektoren in sehr hochdimensionalen/unendlichen Raum transformiert -> Berechnung Skalarprodukt sehr aufwändig/unmöglich

Problem 1: Wahl der Transformationsfunktion $\Phi(x)$

Problem 2: Eingabevektoren in sehr

hochdimensionalen/unendlichen Raum transformiert ->

Berechnung Skalarprodukt sehr aufwändig/unmöglich

Erkenntnis 1: Transformation erlaubt Bestimmung nichtlinearer

Trenngrenzen

Problem 1: Wahl der Transformationsfunktion $\Phi(x)$

Problem 2: Eingabevektoren in sehr

hochdimensionalen/unendlichen Raum transformiert ->

Berechnung Skalarprodukt sehr aufwändig/unmöglich

Erkenntnis 1: Transformation erlaubt Bestimmung nichtlinearer

Trenngrenzen

Erkenntnis 2: Dimension Vektoren beeinflusst Optimierungsproblem nicht stark

Problem 1: Wahl der Transformationsfunktion $\Phi(x)$

Problem 2: Eingabevektoren in sehr

hochdimensionalen/unendlichen Raum transformiert ->

Berechnung Skalarprodukt sehr aufwändig/unmöglich

Erkenntnis 1: Transformation erlaubt Bestimmung nichtlinearer

Trenngrenzen

Erkenntnis 2: Dimension Vektoren beeinflusst Optimierungsproblem nicht stark

Verbesserung: Umgehung Zusatzkosten der transformierten

Skalarprodukte => Kernel Trick

Es gilt:
$$z = \Phi(x)$$

$$\begin{aligned} \max_{\alpha} \qquad & \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m z_n^{\mathsf{T}} z_m \\ \text{mit} \qquad & 0 \leq \alpha_n \leq C \text{ für } n = 1..N \\ & \sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N \end{aligned}$$

Es gilt: $z = \Phi(x)$

$$\begin{aligned} \max_{\alpha} \qquad & \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m z_n^{\mathsf{T}} z_m \\ \text{mit} \qquad & 0 \leq \alpha_n \leq C \text{ für } n = 1..N \\ & \sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N \end{aligned}$$

Berechnung von w und b:

$$w = \sum_{n=1}^{N} \alpha_n y_n z_n$$
$$b = \frac{1}{v_k} - w^T z_k$$

Einführung einer Kernel-Funktion $K(x,x')=z_1^Tz_2=\Phi(x)^T\Phi(x')$

Einführung einer Kernel-Funktion $K(x,x')=z_1^Tz_2=\Phi(x)^T\Phi(x')$ Berechnet Skalarprodukt der transformierten Eingabevektoren Transformiert Eingabevektoren aber nicht tatsächlich in den neuen Raum

Einführung einer Kernel-Funktion $K(x,x')=z_1^Tz_2=\Phi(x)^T\Phi(x')$ Berechnet Skalarprodukt der transformierten Eingabevektoren Transformiert Eingabevektoren aber nicht tatsächlich in den neuen Raum

Berechnung hochdimensionaler Skalarprodukte wird umgangen

Beispiel Kernel-Funktion

Kernel-Funktion für $x, x' \in \mathbb{R}^2$:

$$K(x, x') = (1 + x^T x')^2 =$$

Beispiel Kernel-Funktion

Kernel-Funktion für $x, x' \in \mathbb{R}^2$:

$$K(x, x') = (1 + x^T x')^2 =$$

= $(1 + x_1 x'_1 + x_2 x'_2)^2 =$

Beispiel Kernel-Funktion

Kernel-Funktion für $x, x' \in \mathbb{R}^2$:

$$K(x, x') = (1 + x^{T}x')^{2} =$$

$$= (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2} =$$

$$= 1 + x_{1}^{2}x'_{1}^{2} + x_{2}^{2}x'_{2}^{2} + 2x_{1}x'_{1} + 2x_{2}x'_{2} + 2x_{1}x'_{1}x_{2}x'_{2}$$

Annahme für verwendete Transformationsfunktion Φ:

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

Annahme für verwendete Transformationsfunktion Φ:

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

Annahme für verwendete Transformationsfunktion Φ:

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x') = (1, x_1'^2, x_2'^2, \sqrt{2}x_1', \sqrt{2}x_2', \sqrt{2}x_1'x_2')$$

Annahme für verwendete Transformationsfunktion Φ:

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x') = (1, x_1'^2, x_2'^2, \sqrt{2}x_1', \sqrt{2}x_2', \sqrt{2}x_1'x_2')$$

$$\Phi(x)^T \Phi(x') = 1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2'$$

Annahme für verwendete Transformationsfunktion Φ:

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

Anwendung auf Vektoren x und x':

$$\Phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\Phi(x') = (1, x_1'^2, x_2'^2, \sqrt{2}x_1', \sqrt{2}x_2', \sqrt{2}x_1'x_2')$$

$$\Phi(x)^T \Phi(x') = 1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2'$$

Kernel-Funktion $K(x, x') = (1 + x^T x')^2$ entspricht Skalarprodukt der mit Φ transformierten Vektoren x, x'

Polynomieller Kernel

Verallgemeinerung des Beispiels Seien Eingabevektoren $x \in \mathbb{R}^d$ und Transformationsfunktion $\Phi: \mathbb{R}^d \to \mathbb{Z}$ ein Polynom der Ordnung QKernel-Funktion:

$$K(x, x') = (1 + x^T x')^Q =$$

Polynomieller Kernel

Verallgemeinerung des Beispiels Seien Eingabevektoren $x \in \mathbb{R}^d$ und Transformationsfunktion $\Phi: \mathbb{R}^d \to \mathbb{Z}$ ein Polynom der Ordnung QKernel-Funktion:

$$K(x, x') = (1 + x^T x')^Q =$$

= $(1 + x_1 x'_1 + x_2 x'_2 + \dots + x_d x'_d)^Q$

Polynomieller Kernel

Verallgemeinerung des Beispiels Seien Eingabevektoren $x \in \mathbb{R}^d$ und Transformationsfunktion $\Phi: \mathbb{R}^d \to \mathbb{Z}$ ein Polynom der Ordnung QKernel-Funktion:

$$K(x, x') = (1 + x^T x')^Q =$$

= $(1 + x_1 x'_1 + x_2 x'_2 + \dots + x_d x'_d)^Q$

Skalierungsfaktoren a und b für Kompensation Faktoren:

$$K(x,x') = (ax^Tx' + b)^Q$$

Polynomieller Kernel

Verallgemeinerung des Beispiels

Seien Eingabevektoren $x \in \mathbb{R}^d$ und Transformationsfunktion

 $\Phi: \mathbb{R}^d o \mathbb{Z}$ ein Polynom der Ordnung Q

Kernel-Funktion:

$$K(x, x') = (1 + x^T x')^Q =$$

= $(1 + x_1 x'_1 + x_2 x'_2 + \dots + x_d x'_d)^Q$

Skalierungsfaktoren a und b für Kompensation Faktoren:

$$K(x, x') = (ax^T x' + b)^Q$$

Berechnung des Skalarprodukts eines Polynoms vom Grad ${\cal Q}$ ohne Transformation

Polynomieller Kernel

Verallgemeinerung des Beispiels Seien Eingabevektoren $x \in \mathbb{R}^d$ und Transformationsfunktion $\Phi: \mathbb{R}^d \to \mathbb{Z}$ ein Polynom der Ordnung QKernel-Funktion:

$$K(x, x') = (1 + x^T x')^Q =$$

= $(1 + x_1 x'_1 + x_2 x'_2 + \dots + x_d x'_d)^Q$

Skalierungsfaktoren a und b für Kompensation Faktoren:

$$K(x, x') = (ax^T x' + b)^Q$$

Berechnung des Skalarprodukts eines Polynoms vom Grad Q ohne Transformation Polynomieller Kernel

Weitere Kernel-Funktion: Radial Basis Function (RBF) Kernel:

Weitere Kernel-Funktion: Radial Basis Function (RBF) Kernel:

$$K(x,x') = \exp \gamma ||x - x'||^2$$

Weitere Kernel-Funktion: Radial Basis Function (RBF) Kernel:

$$K(x, x') = \exp \gamma ||x - x'||^2$$

 γ ist wählbarer Parameter

Weitere Kernel-Funktion: Radial Basis Function (RBF) Kernel:

$$K(x, x') = \exp \gamma ||x - x'||^2$$

 γ ist wählbarer Parameter

Dem Kernel zugehörige Transformationsfunktion Φ bildet in unendlich dimensionalen Raum ab

$$K(x, x') = \exp(-(x - x')^2) =$$

$$K(x, x') = \exp(-(x - x')^2) =$$

= $\exp(-x^2 + 2xx' - x'^2) =$

$$K(x, x') = \exp(-(x - x')^{2}) =$$

$$= \exp(-x^{2} + 2xx' - x'^{2}) =$$

$$= \exp(-x^{2}) \exp(2xx') \exp(-x'^{2}) =$$

$$K(x, x') = \exp(-(x - x')^{2}) =$$

$$= \exp(-x^{2} + 2xx' - x'^{2}) =$$

$$= \exp(-x^{2}) \exp(2xx') \exp(-x'^{2}) =$$

$$= \exp(-x^{2}) \sum_{k=0}^{\infty} \frac{2^{k}(x)^{k}(x')^{k}}{k!} \exp(-x'^{2})$$

Beweis für einfachsten Fall:

$$K(x, x') = \exp(-(x - x')^{2}) =$$

$$= \exp(-x^{2} + 2xx' - x'^{2}) =$$

$$= \exp(-x^{2}) \exp(2xx') \exp(-x'^{2}) =$$

$$= \exp(-x^{2}) \sum_{k=0}^{\infty} \frac{2^{k}(x)^{k}(x')^{k}}{k!} \exp(-x'^{2})$$

Taylorexpansion von $\exp(2xx')$ macht Unendlichkeit Raum sichtbar

Beweis für einfachsten Fall:

$$K(x, x') = \exp(-(x - x')^{2}) =$$

$$= \exp(-x^{2} + 2xx' - x'^{2}) =$$

$$= \exp(-x^{2}) \exp(2xx') \exp(-x'^{2}) =$$

$$= \exp(-x^{2}) \sum_{k=0}^{\infty} \frac{2^{k}(x)^{k}(x')^{k}}{k!} \exp(-x'^{2})$$

Taylorexpansion von $\exp(2xx')$ macht Unendlichkeit Raum sichtbar Hat für Skalarprodukt benötigte Symmetrie $\exp(-x^2)$ - $\exp(-x'^2)$ und $(x)^k$ - $(x')^k$

Beweis für einfachsten Fall:

$$K(x, x') = \exp(-(x - x')^{2}) =$$

$$= \exp(-x^{2} + 2xx' - x'^{2}) =$$

$$= \exp(-x^{2}) \exp(2xx') \exp(-x'^{2}) =$$

$$= \exp(-x^{2}) \sum_{k=0}^{\infty} \frac{2^{k}(x)^{k}(x')^{k}}{k!} \exp(-x'^{2})$$

Taylorexpansion von $\exp(2xx')$ macht Unendlichkeit Raum sichtbar Hat für Skalarprodukt benötigte Symmetrie $\exp(-x^2)$ - $\exp(-x'^2)$ und $(x)^k$ - $(x')^k$

Anteile $\frac{2^k}{k!}$ gleichmäßig auf x und x' aufteilbar (Wurzel der Anteile zu x und x' multiplizieren)

Eingabe x, Transformation mit $z = \Phi(x)$, Klassifikation mit:

Eingabe x, Transformation mit $z = \Phi(x)$, Klassifikation mit:

$$y(x) = sign(w^T z + b)$$
 (16)

Eingabe x, Transformation mit $z = \Phi(x)$, Klassifikation mit:

$$y(x) = sign(w^T z + b)$$
 (16)

Funktion Φ muss bekannt sein

Eingabe x, Transformation mit $z = \Phi(x)$, Klassifikation mit:

$$y(x) = sign(w^T z + b) (16)$$

Funktion Φ muss bekannt sein

Transformation nötig

Eingabe x, Transformation mit $z = \Phi(x)$, Klassifikation mit:

$$y(x) = sign(w^T z + b) \tag{16}$$

Funktion Φ muss bekannt sein

Transformation nötig

Ziel: Problem mittels Kernel-Funktion K(x,x') ausdrücken,

transformierte Vektoren vermeiden

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$= sign(\sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x) + b)$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$= sign(\sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x) + b)$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$= sign(\sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x) + b)$$

$$b = \frac{1}{y_k} - w^T z_k =$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$= sign(\sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x) + b)$$

$$b = \frac{1}{y_k} - w^T z_k =$$

$$= \frac{1}{y_k} - \sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x_k) =$$

$$w = \sum_{z_n \text{ ist SV}} \alpha_n y_n z_n \tag{17}$$

Einsetzen Gleichung (17) in Gleichung (16):

$$y(x) = sign(\sum_{\alpha_n > 0} \alpha_n y_n z_n^T z + b) =$$

$$= sign(\sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x) + b)$$

$$b = \frac{1}{y_k} - w^T z_k =$$

$$= \frac{1}{y_k} - \sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x_k) =$$

$$= y_k - \sum_{\alpha_n > 0} \alpha_n y_n K(x_n, x_k)$$

• SVM vollständig definiert

- SVM vollständig definiert
- Transformationsfunktion Φ muss nicht bekannt sein

- SVM vollständig definiert
- Transformationsfunktion Φ muss nicht bekannt sein
- Keine einzige tatsächliche Transformation wird durchgeführt

- SVM vollständig definiert
- Transformations funktion Φ muss nicht bekannt sein
- Keine einzige tatsächliche Transformation wird durchgeführt
- Beliebige dimensionale Räume durch entsprechende Kernel-Funktionen verwendbar

- SVM vollständig definiert
- Transformationsfunktion Φ muss nicht bekannt sein
- Keine einzige tatsächliche Transformation wird durchgeführt
- Beliebige dimensionale R\u00e4ume durch entsprechende Kernel-Funktionen verwendbar
- Beliebige Kernel-Funktion verwendbar, solange bestimmte Bedingungen erfüllt werden

Kernel-Funktion muss Skalarprodukt in Raum entsprechen Zwei verschiedene Ansätze, um das zu zeigen:

Kernel-Funktion muss Skalarprodukt in Raum entsprechen Zwei verschiedene Ansätze, um das zu zeigen:

 Für vermutlich richtige Kernel-Funktion wird konstruktiv versucht, die zugehörige Transformationsfunktion Φ zu bestimmen

Kernel-Funktion muss Skalarprodukt in Raum entsprechen Zwei verschiedene Ansätze, um das zu zeigen:

- Für vermutlich richtige Kernel-Funktion wird konstruktiv versucht, die zugehörige Transformationsfunktion Φ zu bestimmen
- Kernel ist gültig, wenn K(x, x') symmetrisch und die Matrix

$$K = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \dots & K(x_1, x_N) \\ K(x_2, x_1) & K(x_2, x_2) & \dots & K(x_2, x_N) \\ \vdots & \vdots & \vdots & \vdots \\ K(x_N, x_1) & K(x_N, x_2) & \dots & K(x_N, x_N) \end{bmatrix}$$

positiv semi-definit ist für jedes beliebige $x_1..x_N$.

Kernel-Funktion muss Skalarprodukt in Raum entsprechen Zwei verschiedene Ansätze, um das zu zeigen:

- Für vermutlich richtige Kernel-Funktion wird konstruktiv versucht, die zugehörige Transformationsfunktion Φ zu bestimmen
- Kernel ist gültig, wenn K(x,x') symmetrisch und die Matrix

$$K = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \dots & K(x_1, x_N) \\ K(x_2, x_1) & K(x_2, x_2) & \dots & K(x_2, x_N) \\ \vdots & \vdots & \vdots & \vdots \\ K(x_N, x_1) & K(x_N, x_2) & \dots & K(x_N, x_N) \end{bmatrix}$$

positiv semi-definit ist für jedes beliebige $x_1...x_N$. Auch Satz von Mercer genannt, garantiert, dass Funktion Φ existiert, die in Raum abbildet, dessen Skalarprodukte durch Kernel-Funktion beschrieben werden können

Lösung mittels Quadratic Programming Solver weiter möglich Änderung: In $Q-Matrix\ K(x_n,x_m)$ statt $x_n^Tx_m$

Lösung mittels Quadratic Programming Solver weiter möglich Änderung: In $Q-Matrix\ K(x_n,x_m)$ statt $x_n^Tx_m$

$$\min_{\alpha} \qquad \mathcal{L}(\alpha) = \frac{1}{2} \alpha^T Q \alpha + (-1^T) \alpha$$

$$\min_{\alpha} \qquad Q = \begin{bmatrix} y_1 y_1 K(x_1, x_1) & y_1 y_2 K(x_1, x_2) & \dots & y_1 y_N K(x_1, x_N) \\ y_2 y_1 K(x_2, x_1) & y_2 y_2 K(x_2, x_2) & \dots & y_2 y_N K(x_2, x_N) \\ \vdots & \vdots & \vdots & \vdots \\ y_N y_1 K(x_N, x_1) & y_N y_2 K(x_N, x_2) & \dots & y_N y_N K(x_N, x_N) \end{bmatrix}$$

$$\text{für } \qquad y^T \alpha = 0$$

$$0 \leq \alpha \leq \infty$$

Lösung mittels Quadratic Programming Solver weiter möglich Änderung: In $Q-Matrix\ K(x_n,x_m)$ statt $x_n^Tx_m$

$$\min_{\alpha} \qquad \mathcal{L}(\alpha) = \frac{1}{2} \alpha^{T} Q \alpha + (-1^{T}) \alpha$$

$$\min_{\alpha} \qquad Q = \begin{bmatrix} y_{1} y_{1} K(x_{1}, x_{1}) & y_{1} y_{2} K(x_{1}, x_{2}) & \dots & y_{1} y_{N} K(x_{1}, x_{N}) \\ y_{2} y_{1} K(x_{2}, x_{1}) & y_{2} y_{2} K(x_{2}, x_{2}) & \dots & y_{2} y_{N} K(x_{2}, x_{N}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{N} y_{1} K(x_{N}, x_{1}) & y_{N} y_{2} K(x_{N}, x_{2}) & \dots & y_{N} y_{N} K(x_{N}, x_{N}) \end{bmatrix}$$

$$\text{für} \qquad y^{T} \alpha = 0$$

$$0 \leq \alpha \leq \infty$$

An QP-Solver übergeben und lpha erhalten

Lösung mittels Quadratic Programming Solver weiter möglich Änderung: In $Q-Matrix\ K(x_n,x_m)$ statt $x_n^Tx_m$

$$\min_{\alpha} \qquad \mathcal{L}(\alpha) = \frac{1}{2} \alpha^T Q \alpha + (-1^T) \alpha$$

$$\min_{\alpha} \qquad Q = \begin{bmatrix} y_1 y_1 K(x_1, x_1) & y_1 y_2 K(x_1, x_2) & \dots & y_1 y_N K(x_1, x_N) \\ y_2 y_1 K(x_2, x_1) & y_2 y_2 K(x_2, x_2) & \dots & y_2 y_N K(x_2, x_N) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_N y_1 K(x_N, x_1) & y_N y_2 K(x_N, x_2) & \dots & y_N y_N K(x_N, x_N) \end{bmatrix}$$
 für
$$y^T \alpha = 0$$

An QP-Solver übergeben und α erhalten

SVM in Kombination mit Kernel-Funktionen auf beliebige binäre

Klassifikationsprobleme anwendbar

 $0 < \alpha < \infty$

Pseudocode und Beispiele

Hard-Margin SVM	Zeile
Initialisiere x, y	1

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = \left(-1, -1, \dots, -1 \right)^T$	3

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = (-1,-1,\ldots,-1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = \left(-1, -1, \dots, -1 ight)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$\alpha = \textit{QPSolver}\left(Q,c,A,\textit{b},A_{eq},b_{eq}\right)$	8

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$\alpha = \mathit{QPSolver}\left(Q,c,A,\mathit{b},A_{eq},b_{eq}\right)$	8
$W = \sum_{n} \alpha_n y_n x_n$	9
n=SV	

Hard-Margin SVM	Zeile
Initialisiere x, y	1
$Q = (yy^T)K$	2
$c = (-1,-1,\ldots,-1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$\alpha = \textit{QPSolver}\left(Q,c,A,\textit{b},A_{eq},b_{eq}\right)$	8
$w = \sum_{n=SV} \alpha_n y_n x_n$	9
$bias = \frac{1}{y_n} - \mathbf{w}^T x_n$	10

Anmerkungen zu Pseudocode Hard-Margin SVM

Anmerkungen

- Zeile 1: Initialisieren von Werte- und Klassenvektoren
- Zeile 2: Berechnen der Matrix Q
- Zeile 3: Berechnen von c
- Zeile 4, 5: Berechnen der Ungleichheitsbedingungen
- Zeile 6, 7: Berechnen der Gleichheitsbedingungen
- Zeile 8: Lösen mittels Quadratic Programming
- Zeile 9: Berechnung Gewichte mit Stützvektoren
- Zeile 10: Berechnung bias mit beliebigem Stützvektor

Pseudocode Berechnung K-Matrix

K Berechnung	Zeile
Initialisiere x	1

Pseudocode Berechnung K-Matrix

K Berechnung	Zeile
Initialisiere x	1
For $i=1$ To N	2
For $j=1$ To ${\it N}$	3

Pseudocode Berechnung K-Matrix

K Berechnung	Zeile
Initialisiere x	1
For $i=1$ To N	2
For $j=1$ To ${\it N}$	3
$K(i,j) = x_i \cdot x_j$	4
Ende For	5
Ende For	6

Beispiel Hard-Margin SVM

Trennung linear separierbarer Punkte mit Hard-Margin SVM

Beispiel Hard-Margin SVM

Trennung linear separierbarer Punkte mit Hard-Margin SVM

Abbildung 2: Beispiel Trenngrenze lineares Problem mit Hard-Margin

51/60

Soft-Margin SVM	Zeile
Initialisiere x, y, C	1

Soft-Margin SVM	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7

Soft-Margin SVM	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$Ib = (0, 0, \dots, 0)^T$	8
$ub = C * (1,1,\ldots,1)^T$	9

Soft-Margin SVM	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$Ib = (0, 0, \dots, 0)^T$	8
$ub = C * (1,1,\ldots,1)^T$	9
$\alpha = \textit{QPSolver}\left(Q,c,A,\textit{b},A_{eq},b_{eq},lb,ub\right)$	10

Soft-Margin SVM	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$Ib = (0, 0, \dots, 0)^T$	8
$ub = C * (1,1,\ldots,1)^T$	9
$\alpha = QPSolver(Q, c, A, b, A_{eq}, b_{eq}, lb, ub)$	10
$w = \sum_{n=SV} \alpha_n y_n x_n$	11
$bias = \frac{1}{y_n} - \mathbf{w}^T x_n$	12

Anmerkungen zu Pseudocode Soft-Margin SVM

Anmerkungen

- Zeile 1: Initialisieren von Werte- und Klassenvektoren und Bestrafungsparameter C
- Zeile 2: Berechnen der Matrix Q
- Zeile 3: Berechnen von c
- Zeile 4, 5: Berechnen der Ungleichheitsbedingungen
- Zeile 6, 7: Berechnen der Gleichheitsbedingungen
- Zeile 8: untere Grenze (kann auch $(-\infty, -\infty, \dots, -\infty)$ gewählt werden)
- Zeile 9: Berechnung obere Grenze mit C
- Zeile 10: Lösen mittels Quadratic Programming
- Zeile 11: Berechnung Gewichte mit Stützvektoren
- Zeile 12: Berechnung bias mit beliebigem Stützvektor

Beispiel Soft-Margin SVM

Abbildung 3: Trenngrenze nichtlineares Problem mit Hard-Margin und Soft-Margin SVM

Beispiel Soft-Margin SVM

Gute Ergebnisse auch bei Ausreißern

Abbildung 3: Trenngrenze nichtlineares Problem mit Hard-Margin und Soft-Margin SVM

Soft-Margin SVM mit Kernel-Trick	Zeile
Initialisiere x, y, C	1

Soft-Margin SVM mit Kernel-Trick	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2

Soft-Margin SVM mit Kernel-Trick	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1,-1,\ldots,-1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$Ib = (0, 0, \dots, 0)^T$	8
$ub = C * (1,1,\ldots,1)^T$	9
$\alpha = \textit{QPSolver}\left(Q, c, A, \textit{b}, A_{eq}, b_{eq}, lb, ub\right)$	10

Soft-Margin SVM mit Kernel-Trick	Zeile
Initialisiere x, y, C	1
$Q = (yy^T)K$	2
$c = (-1, -1, \dots, -1)^T$	3
$A = diag\left(-1, -1, \dots, -1\right)$	4
$b = (0,0,\dots,0)^T$	5
$A_{eq} = y^{T}$	6
$b_{eq}=0$	7
$Ib = (0, 0, \dots, 0)^T$	8
$ub = C * (1,1,\ldots,1)^T$	9
$\alpha = QPSolver(Q, c, A, b, A_{eq}, b_{eq}, lb, ub)$	10
$bias = y_k - \sum_{\alpha_n > 0} \alpha_n y_n KF(x_n, x_k)$	11

Anmerkungen zu Pseudocode Kernel-Trick

Anmerkungen

- KF ist die Kernel-Funktion.
- Algorithmus ist für alle Kernel (RBF, polynomiell, ...) gleich.
- Klassifizierung muss auch angepasst werden.
- Zeile 1: Initialisieren von Werte- und Klassenvektoren und Bestrafungsparameter C
- Zeile 2: Berechnen der Matrix Q
- Zeile 3: Berechnen von c
- Zeile 4, 5: Berechnen der Ungleichheitsbedingungen
- Zeile 6, 7: Berechnen der Gleichheitsbedingungen
- Zeile 8: untere Grenze (kann auch $(-\infty, -\infty, \dots, -\infty)$ gewählt werden)
- Zeile 9: Berechnung obere Grenze mit C
- Zeile 10: Lösen mittels Quadratic Programming
- Zeile 11: Berechnung bias, x_k ist ein beliebiger Stützvektor, $y_{k56/60}$

Pseudocode für K-Matrix bei Kernel

K Berechnung	Zeile
Initialisiere x	1
For $i=1$ To N	2
For $j=1$ To $\it N$	3

Pseudocode für K-Matrix bei Kernel

K Berechnung	Zeile
Initialisiere x	1
For $i = 1$ To N	2
For $j=1$ To $\it N$	3
$K(i,j) = KF(x_i,x_j)$	4
Ende For	5
Ende For	6

Pseudocode für K-Matrix bei Kernel

K Berechnung	Zeile
Initialisiere x	1
For $i=1$ To N	2
For $j=1$ To \emph{N}	3
$K(i,j) = KF(x_i,x_j)$	4
Ende For	5
Ende For	6

N Anzahl Eingabevektoren, KF Kernel-Funktion Anstatt Skalarprodukt Kernel-Funktion Spart Transformation in höhere Dimensionen

Beispiel Polynomieller Kernel

Kernel: $(ax^Tx' + b)^Q$, b = 1, a = 1, Exponent Q wird variiert

Beispiel Polynomieller Kernel

Kernel: $(ax^Tx'+b)^Q$, b=1, a=1, Exponent Q wird variiert

Abbildung 4: Trenngrenzen für polynomiellen Kernel mit verschiedenen

Exponenten Q 58 / 60

Beispiel Polynomieller Kernel mit Q = 4

Abbildung 5: Trenngrenzen für polynomiellen Kernel $(ax^Tx'+b)^Q$ mit Q=4

Parameter γ muss richtig eingestellt werden, hier: $\gamma=1$

Parameter γ muss richtig eingestellt werden, hier: $\gamma=1$

Abbildung 6: Trenngrenzen für RBF Kernel mit $\gamma=1$ auf nicht linear trennbarem Datensatz

Parameter γ muss richtig eingestellt werden, hier: $\gamma=1$

Blaue Punkte umschlossen

Abbildung 6: Trenngrenzen für RBF Kernel mit $\gamma=1$ auf nicht linear trennbarem Datensatz

Parameter γ muss richtig eingestellt werden, hier: $\gamma=1$

Blaue Punkte umschlossen

 γ nicht korrekt -> z.B. eigene Grenze für jeden Punkt

Abbildung 6: Trenngrenzen für RBF Kernel mit $\gamma=1$ auf nicht linear trennbarem Datensatz

Fragen?