板级射频电路开发

回路等清景

第六讲 板级威尔金森功分器设计

主讲: 汪 朋

QQ: 3180564167

功分器

01 威尔金森原型功分器02 宽带级联威尔金森功分器03 耦合滤波型威尔金森功分器

威尔金森原型功分器

Part

威尔金森功分器

威尔金森功分器

一分二等分威尔金森功分器

_1为信号输入端口,2和3为信号输出端口。所有端口负载均为Z0。

$$Z_1 = Z_2 = \sqrt{2}Z_0, R = 2Z_0$$

设计要求:

- [1] 输入和输出端口之间需要完全匹配;
- __[2] 输出端口需要实现隔离,工作频段内的隔离度<-20dB;
- __[3] 频段内VSWR<1.3;

[4] 插入损耗

一分四等分威尔金森功分器

采用三个一分二功分器即可组合成一个一分四功分器。

 $ilde{f z}$: 50Ω 段的微带线长度可以根据阵列天线的需要合理调整长度,但匹配段(70.7 Ω)的长度必须为四分之一个导波波长。

一分八等分威尔金森功分器设计

采用七个一分二功分器即可组合成一个一分八功分器;

注: 50Ω 段的微带线长度可以根据阵列天线的需要合理调整长度,但匹配段(70.7Ω)的长度必须为四分之一个导波波长。

实例设计:

设计工作于2.45GHz的两路威尔金森等分功分器,要求隔离度>20dB, VSWR<1.2,端口阻抗为50欧姆,采用FR4介质板,板厚为0.8mm

级联超宽带威尔金森功分器。

宽带型威尔金 森功分器

多节级联型威尔金森功分器设计方法

功分器级数确定:

设计宽带型功分器,首先需要确定功分器所需要的阶数,方法如下:

在工程设计中,假设需要的带宽为BW,上边频为f2,下边频为f1,则可以通过如下方式来求解需要的功分器 节数:

- 如果f2/f1<1.5,则取节数m=1;
- 如果1.5<f2/f1<2.5,则取节数m=2;
- 如果 2.5<f2/f1<3.5,则取节数 m=3;
- ____以此类推,__
- 如果n.5<f2/f1<(n+1).5,则取节数m=n+1;
- 例如,要设计800-1000MHz的功率分配器,那么f2/f1=1000/800<1.5,则m=1;
- 同理,要求解 700-2700MHz 的功率分配器,那么 f2/f1=2700/700=3.85,则 m=4。

宽带型威尔金 森功分器

等功率功分器各节归一化阻抗值和归一化隔离电阻

N(节数)	2	2	3	3	4	7
频帯宽度が	1.5	2.0	2.0	3. 0	4.0	10.0
1 臂最大驻波比	1.036	1. 106	1.029	1.105	1.100	1. 206
2、3臂最大驻波比	1.007	1.031	1.015	1.038	1.039	1.098
2、3 臂最小隔离度/dB	36. 6	27. 3	38. 7	27. 9	26.8	19. 4
z ₁ (归一化值)	1. 1998	1. 2197	1.1124	1.1497	1. 1157	1. 1274
<i>z</i> ₂	1. 6670	1. 6398	1.4142	1.4142	1. 2957	1. 2051
Z ₃			1.7979	1.7396	1. 5435	1. 3017
Z4					1.7926	1. 4142
25						1. 5364
z ₆						1.6597
ε,						1. 7740
r ₁ (归一化值)	5. 3163	4. 8204	10.0000	8.0000	9.6432	8. 8494
r ₂	1.8643	1.9602	3.7460	4. 2292	5. 8326	12. 3229
r ₃			1.9048	2.1436	3. 4524	8. 9246
r ₄					2.0633	6. 3980
r,						4. 3516
r 6						2. 5924
r,						4. 9652

威尔金森

实例设计:

设计工作于1GHz-3GHz的两路多级超宽带威尔金森等分功分器,要求宽带内VSWR<1.3,隔离度>20dB,端口阻抗为50欧姆。

[1] 求解功分器级数, f2/f1=3/1=3, 级数n=3

[2] 通过查表确定功分器各级匹配段对应归一化阻抗值和隔离电阻值

Z1' =1.1497, Z2' =1.4142, Z3' =1.7396

R1' =8, R2' =4.2292, R3' =2.1436

实际阻抗和隔离电阻值

Z1=1.1497*50=57.485, Z2=1.4142*50=70.71, Z3=1.7396*50=86.98

R1=8*50=400, R2=210, R3=107,100

Part 3

耦合滤波威尔金森功分器

耦合威尔金森 功分器

耦合型威尔金森功分器设计原理

在输入端和输出端口增加"滤波器",微带线耦合线可以等效为微带滤波器

耦合威尔金森 功分器

耦合型威尔金森功分器设计原理和宽带本质

<u>在输入端和输出端口增加"滤波器",微带线耦合线可以等效为滤波器</u> 改进型耦合功分器设计参数:

[1] 输入端匹配微带线阻抗和电长度; [2] 微带耦合线奇偶阻抗和电长度。

耦合威尔金森 功分器

设计思想:

- [1] 设定微带耦合线的ΔZ, 且50 < ΔZ < 130;
- [2] 设定**Zoe** , 130<Zoe<200;
- [3] 基于设定的耦合线阻抗求解输入匹配微带线和隔离电阻值。

说明:

功分器的带宽由耦合系数决定,耦合系数 $C = \frac{\Delta Z}{Zoe + Zoo}$, C越大, 带宽越大。

$$R_{iso} = \frac{(Z_{oe} + Z_{oo})^2}{4R_s}$$

$$R_s = \frac{(Z_{oe} - Z_{oo})^2}{400}$$

$$Z_1 = \frac{Z_{oe} - Z_{oo}}{2\sqrt{2}}$$

实例设计:

设计工作于3GHz的两路滤波型威尔金森等分功分器,要求宽带内VSWR<1.3,隔离度>20dB,端口阻抗为50欧姆。

设计步骤:

- [1] 设定微带耦合线的ΔZ, 定ΔZ=100Ω
- [2] 设定 $Zoe=160\Omega$,则: $\Delta Z=100\Omega=Zoe-Zoo=160-100$,Zoo=60欧姆
- [3] 輸入匹配段徽带线阻抗 $Z_1 = \frac{Z_{oe} Z_{oo}}{2\sqrt{2}} = \frac{100}{2.83} = 35.3\Omega$
- [4] 隔离电阻计算:

$$R_{iso} = \frac{(Z_{oe} + Z_{oo})^2}{4R_s} = \frac{220^2}{100} = 484$$

$$R_s = \frac{(Z_{oe} - Z_{oo})^2}{400} = \frac{10000}{400} = 25$$

THANK YOU!!