Exercices d'analyse, feuille 3

Licence d'Informatique

2^{ème} année, semestre 3

Exemples

Exercice 1. Soit $u_n := \frac{n+1}{n}$ pour tout $n \in \mathbb{N}_{>0}$.

1. Montrer que:

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}_{>0}) : (n \ge n_0) \Longleftrightarrow (|u_n - 1| < \varepsilon)$$

2. En déduire un certificat de convergence de u, ainsi que sa limite.

Exercice 2. Expliciter un certificat de convergence pour la limite suivante :

$$\lim_{x \to +\infty} \frac{6x - 1}{2x^2 + 2} = 0.$$

Exercice 3. Écrire un certificat de continuité pour f en x_* dans les cas suivants.

- 1. $f: x \mapsto x^2 \text{ et } x = 2.$
- 2. $f: x \mapsto \frac{1}{x} \text{ et } x_* = -3.$

Exercice 4. Prouver la continuité des fonctions suivantes en les points considérés.

- 1. $f: x \mapsto \frac{x+1}{2x-3}$ et $x_* := 5$.
- 2. $f: x \mapsto \sqrt{x}$ et $x_* := 3$.

Exercice 5. Discuter la continuité en chaque point de \mathbb{R} des fonctions sui- Montrer que f est constante. vantes.

1.

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x < 0 \longmapsto \frac{x}{x+1}$$

$$0 \longmapsto 0$$

$$x > 0 \longmapsto x \cos\left(\frac{1}{x}\right)$$

2.

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x < 1 \longmapsto \frac{x^2 - 1}{x - 1}$$

$$1 \longmapsto 2$$

$$x > 1 \longmapsto \frac{x - 1}{\sqrt{x - 1}}$$

3.

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x < 1 \longmapsto \frac{2x^2 - x - 1}{x - 1}$$

$$x \ge 1 \longmapsto x + 2$$

Exercice 6. Étant fixé $a \in \mathbb{R}$ on se donne la fonction réelle définie par

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \ge 3 \longmapsto \sqrt{x-3} - \sqrt{x^2 - 9}$$

$$x < 3 \longmapsto (x-3)\sin x + ax^2.$$

- 1. Calculer les limites à gauche et à droite de *f* en 3.
- 2. Discuter la continuité de *f* en 3.
- 3. Discuter la continuité de f sur \mathbb{R} .

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 et vérifiant la relation fonctionnelle:

$$(\forall x \in \mathbb{R}) \qquad f(x) = f(2x).$$

Indication: on cherchera à prouver f(x) = f(0) pour tout x.

Exercice 8. Soit f une fonction définie sur \mathbb{R} vérifiant

$$|f(x)-f(y)| \le (x-y)^2$$
, $x,y \in \mathbb{R}$.

- 1. Est-ce que f est continue, dérivable sur \mathbb{R} ?
- 2. Déterminer *f* .

Exercice 9. Soit $f: x \mapsto x + e^x$.

- 1. Montrer que f est une bijection de $\mathbb R$ sur $\mathbb R$. On note g sa réciproque.
- 2. Montrer que g est deux fois dérivable. Calculer g(1), g'(1) et g''(1).

Exercice 10.

- 1. Montrer que la fonction $f: x \mapsto \sin(x)\sin\left(\frac{1}{x}\right)$ est prolongeable par continuité en 0.
- 2. La fonction $g: x \mapsto \begin{cases} xf(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ est-elle dérivable sur \mathbb{R} ? Calculer g'(x) en tout point x où g est dérivable.

Exercice 11. Calculer les dérivées des fonctions suivantes :

$$x \mapsto \sqrt{1 + x^2 \sin^2(x)}, x \mapsto \frac{\exp(1/x) + 1}{\exp(1/x) - 1}, x \mapsto \ln\left(\frac{1 + \sin x}{1 - \sin x}\right), x \mapsto \cos(x^{\sin x}).$$

2 Propriétés générales

Exercice 12. Soit $f: [a,b[\to \mathbb{R} \text{ une fonction continue. On suppose de plus que <math>f$ est monotone. Montrer que f converge vers sup f([a,b[).

Exercice 13. Soient $f: I \to \mathbb{R}$ une fonction continue sur un intervalle ouvert $I, t \in I$ et $\lambda \in \mathbb{R}$. On suppose que $f(t) \neq \lambda$. Montrer qu'il existe un intervalle ouvert $J \subset I$ qui contient t tel que $f(x) \neq \lambda$ pour tout $x \in J$.

Exercice 14. Soit $f:[a,b] \to \mathbb{R}$, $a, b \in \mathbb{R}$, une fonction continue. Démontrer le résultat suivant : f est injective si, et seulement si, f est strictement monotone. Dans ce cas

$$f([a,b]) = \begin{cases} [f(a), f(b)] & \text{si } f \text{ est croissante} \\ [f(b), f(a)] & \text{si } f \text{ est décroissante} \end{cases}$$

Exercice 15. Soit $f: I \to \mathbb{Z}$ une fonction continue sur un intervalle et à valeurs entières. Montrer que f est constante.

Exercice 16. Soient I un intervalle réel, $a \in I$ et f une fonction définie sur I.

- 1. On suppose que f est dérivable en a. Montrer qu'alors $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ est finie.
- 2. La réciproque est-elle vraie?

3 Fonctions continues sur un intervalle fermé

Exercice 17. Soit $f : [a, b] \to \mathbb{R}$ une fonction continue, $a \le b \in \mathbb{R}$, et notons A := f([a, b]) l'image de f.

- 1. Pourquoi sup *A* et inf *A* sont-ils réels?
- 2. Déterminer si chacune des assertions suivantes est vraie ou fausse. Si une assertion est fausse, donner une hypothèse supplémentaire sur *f* garantissant qu'elle devient vraie.
 - (a) $A = [\inf A, \sup A]$.
 - (b) A = [f(a), f(b)].
 - (c) $A = [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}].$
 - (d) Il existe x_m , $x_M \in [a, b]$ tels que $A = [f(x_m), f(x_M)]$.
 - (e) Il existe $x_m, x_M \in]a, b[$ tels que $A = [f(x_m), f(x_M)].$

Exercice 18. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que les deux limites $\lim_{x \to \pm \infty} f(x)$ existent dans \mathbb{R} . Prouver que f est bornée. Les bornes sont-elles atteintes?

Exercice 19. Démontrer qu'un polynôme à coefficients réels de degré impair a toujours au moins une racine réelle. Est-ce vrai pour les polynômes de degré pair?

Indication : comparer les deux limites $\lim_{x\to\pm\infty} f(x)$.

Exercice 20. Soit $f : [a,b] \rightarrow [a,b]$ une fonction continue, $a, b \in \mathbb{R}$. Montrer que f admet au moins un point fixe dans I.

Exercice 21. Soit $f:[0,2] \to \mathbb{R}$ une fonction continue telle que f(0) = 0 et f(2) = 10. Montrer qu'il existe $t \in [0,1]$ tel que f(1+t) = 5 + f(t).

Exercice 22. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue, où a < b. On suppose Exercice 28. On considère la fonction que $f(a) < a^2$ et $f(b) > b^2$. Montrer qu'il existe $c \in [a, b]$ tel que $f(c) = c^2$.

Exercice 23. Soit f une fonction continue sur \mathbb{R} pour laquelle il existe un réel a tel que $f \circ f(a) = a$. Prouver que f admet un point fixe.

Exercice 24. Prenons une fonction continue $g:[0,1] \rightarrow [0,1]$. Établir l'existence de $s \in [0,1]$ pour lequel $f(s) = \sqrt{s}$.

Exercice 25. On suppose l'existence d'une fonction f, définie sur \mathbb{R} et continue en 0, telle que f(a+b) = f(a) + f(b) pour tous réels a et b.

- 1. Déterminer f(0).
- 2. Établir que f est continue sur \mathbb{R} .

Suites définies par itération

Exercice 26. Étudier la convergence, et le cas échéant déterminer la limite, des suites définies par $u_{n+1} := f(u_n)$ dans les situations suivantes.

- 1. $f: x \mapsto -x \text{ avec } u_0 \in \mathbb{R}$.
- 2. $f: x \mapsto x^2 \text{ avec } u_0 \in \mathbb{R}$.
- 3. $f: x \mapsto \frac{a}{x} \text{ avec } u_0 := a > 0.$

Exercice 27. Soit f la fonction polynomiale définie par $f: x \mapsto \frac{x^3}{6} + \frac{x}{3} + \frac{1}{3}$. On définit la suite $(u_n)_n$ en posant $u_0 := 0$ et $u_{n+1} := f(u_n)$ pour $n \in \mathbb{N}$.

- 1. Montrer que la suite $(u_n)_n$ est croissante. Montrer que l'on a $f\left(\frac{3}{4}\right) < \frac{3}{4}$ et en déduire que, pour tout $n \in \mathbb{N}$, $u_n < \frac{3}{4}$.
- 2. Montrer que $(u_n)_n$ admet une limite l telle que l = f(l) et $0 \le l \le \frac{3}{4}$.
- 3. Montrer que, pour tout $n \in \mathbb{N}$, on a $0 \le l u_{n+1} \le \frac{2}{3}(l u_n)$. En déduire l'encadrement $0 \le l - u_n \le \left(\frac{2}{3}\right)^n$.
- 4. Comment peut-on choisir l'entier n pour que u_n soit une valeur approchée de l à 10^{-2} près?

5. Soit le polynôme $P = X^3 - 4X + 2$. Montrer que l est la seule racine de *P* dans l'intervalle [0,1].

$$f: \mathbb{R}_{>0} \longrightarrow \mathbb{R}$$

$$x \longmapsto 4 - \frac{1}{4} \ln x.$$

1.

- (a) Étudier les variations de $g: x \mapsto f(x) x$.
- (b) En déduire que l'équation f(x) = x admet une solution α .
- (c) Justifier l'unicité de cette solution.
- (d) On note I = 3, 4. Montrer que α appartient à I.
- 2. Montrer que f(I) est inclus dans I.

3.

(a) Montrer que f' est croissante sur I. En déduire que

$$(\forall x \in I)$$
 $|f'(x)| \le \frac{1}{12}$.

- (b) Énoncer l'inégalité des accroissements finis.
- (c) Conclure que

$$(\forall x \in I) (\forall y \in I), \qquad |f(x) - f(y)| \le \frac{1}{12} |x - y|.$$

4. Soit $u_0 \in I$. On considère la suite (u_n) définie par

$$(\forall n \in \mathbb{N}) \ u_{n+1} := f(u_n).$$

(a) Montrer par récurrence que

$$(\forall n \in \mathbb{N})$$
 $u_n \in I$.

- (b) Justifier que si (u_n) converge, alors sa limite est α .
- (c) En utilisant la question 3), montrer que (u_n) converge vers α .

5 Fonctions dérivables sur un intervalle

Exercice 29. Soient I un intervalle réel, $a \in I$ et f une fonction définie sur I.

- 1. On suppose que f est dérivable en a. Montrer qu'alors $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ est finie.
- 2. La réciproque est-elle vraie?

Exercice 30. Démontrer qu'un polynôme à coefficients réels de degré pair atteint un maximum ou un minimum en un point de \mathbb{R} .

Exercice 31. Soient x, y, z des réels tels que 0 < y < z.

- 1. Montrer qu'il existe $c \in]y,z[$ tel que $z^x y^x = x(z-y)c^{x-1}.$
- 2. Résoudre l'équation $10^{x} 7^{x} 5^{x} + 2^{x} = 0$.

Exercice 32. Soit f une fonction dérivable sur \mathbb{R} vérifiant f(0) = 0.

- 1. Montrer qu'il existe $c \in]0,1[$ tel que f(c) = (1-c)f'(c).
- 2. Montrer qu'il existe $c \in]0, \pi/2[$ tel que $f(c) \tan(c) = f'(c)$.

Exercice 33. Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f: x \mapsto \sqrt{\sin(x)} + x$.

- 1. Montrer que f définit une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un intervalle J que l'on précisera.
- 2. Justifier que $f^{\circ -1}$ est continue sur *J*.
- 3. Étudier la dérivabilité de $f^{\circ -1}$ sur J.
- 4. Calculer $(f^{\circ -1})'$ au point $1 + \frac{\pi}{2}$.

Exercice 34. Montrer que

$$(\forall x \neq 0)$$
 $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2} \text{signe}(x)$.

Exercice 35. Soit $f:[0,1] \to \mathbb{R}$ dérivable telle que f(0)=0, f(1)=0 et f'(0)=0.

1. On définit

$$g:]0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x)}{x}.$$

- (a) Montrer que g est dérivable sur [0,1].
- (b) Montrer que *g* est continue sur]0,1] et prolongeable par continuité en 0.
- 2. On note h le prolongement par continuité de g. Montrer que h(0) = 0 et h(1) = 0.
- 3. Énoncer le théorème de Rolle.
- 4. En appliquant le théorème de Rolle à *h*, montrer que

$$(\exists c \in]0,1[)$$
 : $f(c) = cf'(c)$.

Exercice 36. Donnons-nous:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \exp\left(\sin^2(x)\right).$$

1.

- (a) Montrer que f est dérivable sur \mathbb{R} et calculer sa dérivée.
- (b) En déduire que

$$x \longmapsto \frac{\exp(\sin^2(x)) - 1}{x}$$

admet une limite en 0 que l'on calculera.

- 2. On note g la restriction de f à $\left[0, \frac{\pi}{2}\right]$.
 - (a) Montrer soigneusement que g est une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un ensemble J à déterminer. On note h sa réciproque.
 - (b) Sur quel ensemble *h* est-elle continue?
 - (c) Sur quel ensemble h est-elle dérivable? Donner la valeur de h'(e).
 - (d) Déterminer $\sin \circ h \operatorname{sur} J$.

Exercice 37. On suppose l'existence d'une fonction f, définie sur \mathbb{R} et dérivable en 0, telle que f(a+b) = f(a) + f(b) pour tous réels a et b.

- 1. Déterminer f(0).
- 2. Établir que f est dérivable sur \mathbb{R} et calculer f'.
- 3. Montrer que f est en fait une application linéaire.

6 Problèmes

Exercice 38. Prenons $a \le b \in \mathbb{R}$ et notons I := [a,b]. Soit $f: I \to I$ une fonction contractante :

$$(\exists k \in [0,1[) \ (\forall (x,y) \in I \times I)$$
 $|f(x) - f(y)| \le k |x - y|$.

On va démontrer le résultat fondamental suivant :

Théorème du point fixe. Soit $f: I \to I$ contractante. Pour tout $x_0 \in I$ la suite $(x_n)_n$, définie par l'itération $x_{n+1} := f(x_n)$, converge vers l'unique point fixe de f dans I.

1.

- (a) Montrer que f est continue sur I.
- (b) En déduire qu'elle admet un point fixe x_* .
- (c) Démontrer que celui-ci est unique.
- 2. On se donne $x_0 \in I$ et $x_{n+1} := f(x_n)$.
 - (a) Justifier que cette suite est bien définie.
 - (b) Prouver que pour tout $n \in \mathbb{N}$ on a

$$|x_{n+1} - x_n| \le k^n |x_1 - x_0|.$$

(c) Soit $N \in \mathbb{N}$ et soit n > N un entier. Démontrer par récurrence sur n que :

$$|x_n - x_N| \le |x_1 - x_0| \sum_{j=N}^{n-1} k^j$$

Indication: utiliser l'inégalité triangulaire.

(d) En déduire l'estimation

$$|x_n - x_N| \le \frac{k^N}{1 - k} |x_1 - x_0|$$
.

(e) Donner un certificat de convergence de $(x_n)_n$. Quelle est la limite?

Exercice 39.

1. Montrer que, pour tout nombre x > 0, on a

$$\frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}.$$

2. En déduire que, pour tout entier $n \ge 1$, on a

$$\ln(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \le 1 + \ln(n).$$

- 3. Posons, pour $n \ge 1$ entier, $u_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln(n)$. Montrer que la suite (u_n) est monotone.
- 4. Prouver finalement que (u_n) est convergente. Sa limite est la constante d'Euler-Mascheroni, noté en général γ .

Exercice 40.

Définition. Une fonction $g:A\subset\mathbb{R}\to\mathbb{R}$ vérifie la *propriété des valeurs intermédiaires* lorsque pour tout intervalle $I\subset A$ l'image g(I) de I par g est un intervalle.

Le but de ce problème est de démontrer le théorème suivant (dû à G. Darboux) :

Théorème (de Darboux). Soit f une fonction dérivable sur un intervalle $A \subset \mathbb{R}$ à valeurs réelles. Alors sa dérivée f' vérifie la propriété des valeurs intermédiaires.

A. Un exemple

On considère ici la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \neq 0 \longmapsto x^2 \cos \frac{1}{x}$$

$$0 \longmapsto 0.$$

1.

- (a) Prouver que f est continue en tout point de $\mathbb{R}_{\neq 0}$.
- (b) Montrer ensuite que f est continue en 0.

2.

- (a) Démontrer que f est dérivable sur $\mathbb{R}_{\neq 0}$, et calculer sa dérivée.
- (b) Prouver que f est dérivable en 0 et calculer f'(0). Indication : écrire le taux d'accroissement de f relativement à 0.
- 3. Établir que la fonction f' n'est pas continue sur \mathbb{R} .

B. Discussion

- 1. Donner un exemple (simple) de fonction *g* qui ne vérifie pas la propriété des valeurs intermédiaires.
- 2. Quelle condition générale portant sur *g* est suffisante pour qu'elle vérifie la propriété des valeurs intermédiaires?
- 3. Cette condition est-elle nécessaire?

C. Démonstration du théorème de Darboux

Soit $I \subset \mathbb{R}$ un intervalle sur lequel f est dérivable. Définissons J := f'(I) et prenons $y_1 < y_2$ deux points de J.

- 1. Pourquoi existe-t-il $a \neq b \in I$ tels que $y_1 = f'(a)$ et $y_2 = f'(b)$? Dans la suite on supposera a < b. Cette hypothèse n'enlève pas de généralité au raisonnement quitte à remplacer f par -f.
- 2. Expliquer en quoi la propriété

$$(\forall y \in]y_1, y_2[) (\exists c \in]a, b[) : f'(c) = y$$
 (**)

permet de prouver que J est un intervalle, si elle est vraie pour tout choix de y_1 , y_2 . C'est cette propriété que nous allons démontrer.

3. Fixons $y \in]y_1, y_2[$ et considérons la fonction auxiliaire

$$\varphi : [a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) - yx.$$

- (a) Démontrer que φ est dérivable sur [a, b].
- (b) Pourquoi φ est-elle minimale en au moins un point $c \in [a, b]$?
- (c) Quel est le signe de $\varphi'(a)$ et $\varphi'(b)$? Prouver alors qu'il existe $0 < \delta < b a$ tel que

$$(a < x < a + \delta) \implies \varphi(a) > \varphi(x)$$
$$(b - \delta < x < b) \implies \varphi(b) > \varphi(x)$$

- (d) En déduire $c \in]a, b[$. Combien vaut $\varphi'(c)$?
- 4. Finalement démontrer (★).