Xét tính chẵn, lẻ, chu kì tuần hoàn của hàm số lượng giác

1. Lý thuyết

- a) Tính chẵn, lẻ của hàm số:
- * Định nghĩa:
- Hàm số y = f(x) với tập xác định D gọi là hàm số chẵn nếu: $\forall x \in D$ thì $-x \in D$ và f(-x) = f(x).

Đồ thị hàm số chẵn nhận trục tung Oy làm trục đối xứng.

- Hàm số y = f(x) với tập xác định D gọi là hàm số lẻ nếu: $\forall x \in D$ thì $-x \in D$ và f(-x) = -f(x).

Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng.

- * Đối với hàm số lượng giác:
- Hàm số $y = \sin x$ là hàm số lẻ trên D = R.
- Hàm số $y = \cos x$ là hàm số chẵn trên D = R.
- Hàm số y=tanx là hàm số lẻ trên $D=\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi;k\in\mathbb{Z}\right\}.$
- Hàm số y = cotx là hàm số lẻ trên $D = \mathbb{R} \setminus \{k\pi; k \in \mathbb{Z}\}$.
- b) Tính tuần hoàn và chu kì của hàm số:
- * Định nghĩa:
- Hàm số y = f(x) xác định trên tập hợp D, được gọi là hàm số tuần hoàn nếu có số $T \neq 0$ sao cho với mọi $x \in D$ ta có $(x + T) \in D$; $(x T) \in D$ và f(x + T) = f(x).
- Nếu có số dương T nhỏ nhất thỏa mãn các điều kiện trên thì T gọi là chu kì của hàm tuần hoàn f.
- * Đối với hàm số lượng giác:

Hàm số y = sinx; y = cosx tuần hoàn với chu kì 2π .

Hàm số $y = \tan x$; $y = \cot x$ tuần hoàn với chu kì π .

2. Các dạng bài tập

Dạng 1. Xét tính chẵn, lẻ của hàm số lượng giác

Phương pháp giải:

Bước 1: Tìm tập xác định D của hàm số, khi đó:

- Nếu D là tập đối xứng (tức là $\forall x \in D \Rightarrow -x \in D$), ta thực hiện tiếp bước 2.
- Nếu D không phải là tập đối xứng (tức là $\exists x \in D \text{ mà } -x \notin D$), ta kết luận hàm số không chẵn cũng không lẻ.

Bước 2: Xác định f(-x), khi đó:

- Nếu f(-x) = f(x) kết luận hàm số là hàm chẵn.
- Nếu f(-x) = -f(x) kết luận hàm số là hàm lẻ.
- Ngoài ra kết luận hàm số không chẵn cũng không lẻ.

Ví dụ minh họa:

Ví dụ 1: Xét tính chẵn, lẻ của các hàm số:

a)
$$y = f(x) = \sin x + \tan 2x$$

b)
$$y = f(x) = \cos 3x + \sin^2 2x$$

c)
$$y = f(x) = cosx + tan2x$$

Lời giải

a) Tập xác định: D = R là một tập đối xứng. Do đó $\forall x \in D$ thì $-x \in D$.

Ta có:
$$f(-x) = \sin(-x) + \tan(-2x) = -\sin x - \tan 2x = -(\sin x + \tan 2x) = -f(x)$$
.

Vậy $y = \sin x + \tan 2x$ là hàm số lẻ.

b) Tập xác định: D = R là một tập đối xứng. Do đó $\forall x \in D$ thì $-x \in D$.

Ta có:
$$f(-x) = \cos(-3x) + \sin^2(-2x) = \cos 3x + (-\sin 2x)^2 = \cos 3x + \sin^2 2x = f(x)$$
.

Vậy $y = \cos 3x + \sin^2 2x$ là hàm số chẵn.

c) Điều kiện xác định:
$$\cos 2x \neq 0 \Leftrightarrow 2x \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{4} + \frac{k\pi}{2}; k \in \mathbb{Z}$$
.

Tập xác định:
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}.$$

$$\forall x \in D \Longrightarrow x \neq \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
, ta có:

$$-x \neq -\frac{\pi}{4} - \frac{k\pi}{2} = \frac{\pi}{4} - \frac{\pi}{2} - \frac{k\pi}{2} = \frac{\pi}{4} - \frac{(k+1)\pi}{2}; k \in \mathbb{Z} \ .$$

Đặt
$$m = -(k+1), k \in \mathbb{Z}$$
, khi đó: $-x \neq \frac{\pi}{4} + \frac{m\pi}{2}; m \in \mathbb{Z} \Longrightarrow -x \in D$.

Ta có:
$$f(-x) = \cos(-x) + \tan(-2x) = \cos x - \tan 2x$$

Nhận thấy:
$$f(-x) \neq f(x)$$
 và $f(-x) \neq -f(x)$

Vậy $f(x) = \cos x + \tan 2x$ không phải là hàm số chẵn, không phải là hàm số lẻ.

Ví dụ 2: Xét tính chẵn, lẻ của các hàm số:

a)
$$y = f(x) = |x| \sin x$$

b)
$$y = f(x) = cos(2x+1)$$

c)
$$y = f(x) = \sin(2x + \frac{\pi}{2}).\cos^3 x$$

d)
$$y = f(x) = \frac{\sin x + \tan 2x}{2\cot x}$$

Lời giải

a) Tập xác định: D = R là một tập đối xứng. Do đó $\forall x \in D$ thì $-x \in D$.

Ta có:
$$f(-x) = |-x|\sin(-x) = x.(-\sin x) = -x.\sin x = -f(x)$$

Vậy $y = |x| \sin x$ là hàm số lẻ.

b) Tập xác định: D = R là một tập đối xứng. Do đó $\forall x \in D$ thì $-x \in D$.

Ta có:
$$f(-x) = cos[2(-x)+1] = cos(-2x+1) = cos(2x-1)$$

Nhận thấy
$$f(-x) \neq f(x)$$
 và $f(-x) \neq -f(x)$

Vậy hàm số y = cos(2x-1) không phải hàm số chẵn, không phải hàm số lẻ.

c) Tập xác định: D = R là một tập đối xứng. Do đó $\forall x \in D$ thì $-x \in D$.

$$y = f(x) = \sin(2x + \frac{\pi}{2}).\cos^3 x = \sin(\frac{\pi}{2} - (-2x)).\cos^3 x = \cos(-2x).\cos^3 x = \cos(-2x).\cos^3 x = \cos(-2x).\cos^3 x = \sin(\frac{\pi}{2} - (-2x)).\cos^3 x = \cos(-2x).\cos^3 x = \cos(-2x).\cos^2 x = \cos(-2x$$

 $\cos 2x.\cos^3 x$

Ta có: $f(-x) = \cos(-2x) \cos^3(-x) = \cos 2x \cos^3 x = f(x)$

Vậy hàm số $y = \sin\left(2x + \frac{\pi}{2}\right) \cdot \cos^3 x$ là hàm số chẵn.

d) Điều kiện xác định:

$$\begin{cases} \cos 2x \neq 0 \\ \sin x \neq 0 \\ \cot x \neq 0 \end{cases} \Leftrightarrow \begin{cases} 2x \neq \frac{\pi}{2} + k\pi \\ x \neq k\pi \\ x \neq \frac{\pi}{2} + k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{4} + \frac{k\pi}{2} \\ x \neq k\pi \\ x \neq \frac{\pi}{4} + k\pi \end{cases} \Leftrightarrow x \neq \frac{k\pi}{4}; k \in \mathbb{Z}.$$

Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{k\pi}{4}; k \in \mathbb{Z} \right\}$

$$\forall x \in D \Longrightarrow x \neq \frac{k\pi}{4}, k \in \mathbb{Z} \text{ , ta có: } -x \neq -\frac{k\pi}{4} = \frac{\left(-k\right)\pi}{4}; -k \in \mathbb{Z} \text{ , khi dó } -x \in D \text{ .}$$

Ta có:
$$f(-x) = \frac{\sin(-x) + \tan(-2x)}{2\cot(-x)} = \frac{-\sin x - \tan 2x}{-2\cot x} = \frac{\sin x + \tan 2x}{\cot x} = f(x)$$

Vậy
$$y = \frac{\sin x + \tan 2x}{2 \cot x}$$
 là hàm số chẵn.

Dạng 2: Xét tính tuần hoàn, tìm chu kỳ của hàm số lượng giác

Phương pháp giải:

- Xét tính tuần hoàn và chu kì bằng định nghĩa.
- Sử dụng các kết quả sau:
- + Hàm số y = $\sin(ax + b)$ là một hàm số tuần hoàn với chu kì $T = \frac{2\pi}{a}$.
- + Hàm số y = $\cos(ax + b)$ là một hàm số tuần hoàn với chu kì $T = \frac{2\pi}{a}$.
- + Hàm số y = tan(ax + b) là một hàm số tuần hoàn với chu kì $T = \frac{\pi}{a}$.
- + Hàm số y = cot(ax + b) là một hàm số tuần hoàn với chu kì $T = \frac{\pi}{a}$.
- + Nếu hàm số y = f(x) tuần hoàn với chu kì T thì hàm số y = Af(x) (với A khác 0) tuần hoàn với chu kì T.
- + Nếu hàm số y = f(x) tuần hoàn với chu kì T thì hàm số y = f(x) + c (c là hằng số) tuần hoàn với chu kì T.
- + Nếu hàm số $y=f_1(x); y=f_2(x); ... y=f_n(x)$ tuần hoàn với chu kì lần lượt là $T_1; T_2;$... T_n thì hàm số $y=f_1\left(x\right)\pm f_2\left(x\right)\pm ... \pm f_n\left(x\right)$ tuần hoàn với chu kì T là bội chung nhỏ nhất của $T_1; T_2; ... T_n$.

Ví dụ minh họa:

Ví dụ 1: Tìm chu kì (nếu có) của các hàm số:

$$a) y = \sin 2x + 1$$

b)
$$y = -3\tan\left(4x + \frac{\pi}{3}\right)$$

c)
$$y = \cos^2 x - 1$$

d)
$$y = \sin^2(2x - 3) + 5$$

Lời giải

a) Hàm số y =
$$\sin 2x$$
 tuần hoàn với chu kì $\frac{2\pi}{2} = \pi$.

Vậy hàm số $y = \sin 2x + 1$ tuần hoàn với chu kì π .

b) Hàm số
$$y = -3\tan\left(4x + \frac{\pi}{3}\right)$$
 tuần hoàn theo chu kì $\frac{\pi}{4}$.

c) Ta có:
$$y = \cos^2 x - 1 = \frac{1 + \cos 2x}{2} - 1 = \frac{1}{2}\cos 2x - \frac{1}{2}$$

Hàm số y = $\cos 2x$ tuần hoàn với chu kì $\frac{2\pi}{2} = \pi$.

Vậy hàm số $y = \cos^2 x - 1$ tuần hoàn với chu kì π .

d) Ta có:
$$y = \sin^2(2x - 3) + 5 = \frac{1 - \cos(4x - 6)}{2} + 5 = -\frac{1}{2}\cos(4x - 6) + \frac{11}{2}$$
.

Hàm số y = $\cos(4x+6)$ tuần hoàn với chu kì $\frac{2\pi}{4} = \frac{\pi}{2}$.

Vậy hàm số $y = \sin^2(2x-3) + 5$ tuần hoàn với chu kì $\frac{\pi}{2}$.

Ví dụ 2: Tìm chu kì (nếu có) của các hàm số:

a)
$$y = \sin 3x + \tan \left(2x + \frac{\pi}{4}\right)$$

b)
$$y = \cos^2 x - \sin \frac{x}{2} + 1$$

c)
$$y = \sin 4x . \cos 2x$$

d)
$$y = \sin x + \cos(\sqrt{2}x)$$

Lời giải

a) Hàm số $y = \sin 3x$ tuần hoàn với chu kì $\frac{2\pi}{3}$.

Hàm số
$$y = tan\left(2x + \frac{\pi}{4}\right)$$
 tuần hoàn với chu kì $\frac{\pi}{2}$.

Vậy hàm số $y = \sin 3x + \tan \left(2x + \frac{\pi}{4}\right)$ tuần hoàn với chu kì T là bội chung nhỏ nhất

của
$$\frac{2\pi}{3}$$
 và $\frac{\pi}{2}$, do đó $T = 2\pi$.

b) Hàm số
$$y = \cos^2 x = \frac{1 + \cos 2x}{2}$$
 tuần hoàn với chu kì $\frac{2\pi}{2} = \pi$.

Hàm số $y = \sin \frac{x}{2}$ tuần hoàn với chu kì $2\pi : \frac{1}{2} = 4\pi$.

Vậy hàm số $y = \cos^2 x - \sin \frac{x}{2} + 1$ tuần hoàn với chu kì T là bội chung nhỏ nhất của π và 4π , do đó $T = 4\pi$.

c) Ta có:
$$y = \sin 4x \cdot \cos 2x = \frac{1}{2} \left[\sin \left(4x + 2x \right) + \sin \left(4x - 2x \right) \right] = \frac{1}{2} \left(\sin 6x + \sin 2x \right).$$

Hàm số y = sin6x tuần hoàn với chu kì $\frac{2\pi}{6} = \frac{\pi}{3}$.

Hàm số y = $\sin 2x$ tuần hoàn với chu kì $\frac{2\pi}{2} = \pi$.

Vậy hàm số $y = \sin 4x.\cos 2x$ tuần hoàn với chu kì T là bội chung nhỏ nhất của $\frac{\pi}{3}$ và π , do đó $T = \pi$.

d) Hàm số $y = \sin x$ tuần hoàn với chu kì 2π .

Hàm số $y = cos(\sqrt{2}x)$ tuần hoàn với chu kì $\frac{2\pi}{\sqrt{2}} = \sqrt{2}\pi$.

Giả sử T là bội chung nhỏ nhất của 2π và $\sqrt{2}\pi$. Khi đó tồn tại $m,n\in\mathbb{Z};m,n\neq 0$ sao cho: $T=m2\pi=n\sqrt{2}\pi$.

$$\Rightarrow \frac{n}{m} = \frac{2\pi}{\sqrt{2\pi}} = \sqrt{2} \quad (\text{vô lí vì } \sqrt{2} \text{ là số vô tỉ, } \frac{n}{m} \text{ là số hữu tỉ)}$$

Do đó không tồn tại bội chung nhỏ nhất của 2π và $\sqrt{2}\pi$.

Vậy hàm số $y = \sin x + \cos(\sqrt{2}x)$ không tuần hoàn.

3. Bài tập tự luyện

Câu 1. Cho hàm số $f(x) = \cot 2x$ và $g(x) = \cos 5x$ chọn mệnh đề đúng

A. f(x) là hàm số chẵn, g(x) là hàm số chẵn

B. f(x) là hàm số lẻ, g(x) là hàm số lẻ

C. f(x) là hàm số lẻ, g(x) là hàm số chẵn

D. f(x) là hàm số chẵn, g(x) là hàm số lẻ

Câu 2. Hàm số nào sau đây là hàm số chẵn?

 $\mathbf{A} \cdot \mathbf{y} = \sin \mathbf{x}$

 $\mathbf{B.}\ \mathbf{y} = \cos 2\mathbf{x}$

 \mathbf{C} . $\mathbf{y} = \cot \mathbf{x}$

D. y = tan3x

Câu 3. Hàm số nào sau đây là hàm số chẵn?

A. $y = \sin^2 x + \cos x$ **B.** $y = \sin x - \sin^2 x$

 $C. y = \cot 2x.\cos x$

D. =y

sinx.cos2x **Câu 4.** Cho hàm số $y = \frac{\sin x}{\cos 2x - 3}$. Khẳng định nào sau đây là đúng

A. Hàm số là hàm số lẻ B. Hàm số là hàm số chẵn

C. Hàm số không chẵn không lẻ

D. Hàm số có tập xác định $D = R \setminus \{3\}$

Câu 5. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

A. sinx.cos3x

B. $\frac{\cot x}{\cos^3 x + 4}$

C. $\cos x + \cos x + \sin 2x$ D.

 $\sin^3 x \cos \left(2x - \frac{\pi}{2}\right)$

Câu 6. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

A. $\frac{\sin 3x + 1}{\cos x}$

B. $\frac{\sin x + x}{\cos 2x + 2}$

C. $tan^2 2x$

D. $|\cot 4x|$

Câu 7. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

A. $y = \sin\left(x + \frac{\pi}{4}\right)$ **B.** $\sin^3 x$

C. $y = 3\cos(2x - \frac{\pi}{3})$ **D.**

 $y = 3\sin\left(2x - \frac{\pi}{2}\right)$

Câu 8. Hàm số $y = \cos 3x + \sin \frac{x}{3}$ tuần hoàn với chu kì?

A. 6π

 $\mathbf{B}. \ \pi$

C. 3π

D. $\frac{\pi}{3}$.

Câu 9. Hàm số $y = \sin^2 x$ tuần hoàn với chu kì?

A. 2π

B. 4π

C. $\frac{\pi}{2}$

 \mathbf{D} . π

Câu 10. Hàm số y = tanx + cot4x tuần hoàn với chu kì?

A. $\frac{\pi}{4}$

B. 4π

C. $\frac{\pi}{2}$

D. π

Câu 11. Hàm số $y = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x$ tuần hoàn với chu kì?

A. 4π

B. π

C. 2π

D. 6π

Câu 12. Hàm số $y = 2\cos^2(\pi x) + 1$ tuần hoàn với chu kì?

A. 1

B. 2

C. 3

D. 4

Câu 13. Hàm số $y = 3\sin x.\cos 3x + 1$ tuần hoàn với chu kì:

A. $\frac{\pi}{3}$

B. 2π

C. $\frac{\pi}{2}$

 $\mathbf{D}.\,\pi$

Câu 14. Trong các hàm số sau, hàm số nào nào không tuần hoàn:

A. $y = tan^2 2x + 1$

 $\mathbf{B.} \ \mathbf{y} = \sin 5\mathbf{x} - 4\cos 7\mathbf{x}$

C. $y = \sin x + \sin(x\sqrt{2})$

D. $y = 3\sin 2x - \sqrt{2}$

Câu 15. Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

 $\mathbf{A.} \ \mathbf{y} = \sin \, \mathbf{x} - \mathbf{x}$

B. $y = -2\cos 3x + 2$

 $C. y = x \sin 2x$

D. $y = x^4 + x^2 + 1$

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C	В	A	A	D	В	В	A	D	D	C	A	D	C	В