

Dipartimento di Scienze Matematiche, Fisiche e Informatiche

Corso di Laurea Triennale in Informatica

Candidato
Saverio Mattia Merenda, 330503

Relatore
Prof. Vincenzo Arceri

Costruzione di Control-Flow Graph completi per bytecode EVM

Blockchain

Blockchain

Verifica della correttezza del codice

Blockchain

Verifica della correttezza del codice

Control-Flow Graph

Blockchain

Verifica della correttezza del codice

Control-Flow Graph

Interpretazione astratta

Blockchain

Verifica della correttezza del codice

Control-Flow Graph

Interpretazione astratta

Satoshi Nakamoto, 2008

Satoshi Nakamoto, 2008 Registro digitale

Satoshi Nakamoto, 2008 Registro digitale

Distribuito

Satoshi Nakamoto, 2008

Registro digitale

Distribuito

Catena di blocchi

Satoshi Nakamoto, 2008

Registro digitale

Distribuito

Catena di blocchi

Sicuro e affidabile

Blocchi interconnessi

Blocchi interconnessi Crittografia

Blocchi interconnessi Crittografia Catena inalterabile

Ethereum

Vitalik Buterin, 2013

Ethereum

Vitalik Buterin, 2013
Pubblica & open-source

Ethereum

Vitalik Buterin, 2013
Pubblica & open-source
Smart contract

Cuore di Ethereum

Cuore di Ethereum Gestione smart contract

Cuore di Ethereum

Gestione smart contract

Funzione matematica

Cuore di Ethereum

Gestione smart contract

Funzione matematica

Stack, Memory & Storage

Cuore di Ethereum **Gestione smart contract** Funzione matematica Stack, Memory & Storage Terminazione garantita

PUSH1 0x01 PUSH1 0x02 ADD

Basso livello

PUSH1 0x01 PUSH1 0x02 ADD Basso livello
Basato su stack

 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

PUSH1 0x01 PUSH1 0x02 ADD

1 3

Basso livello
Basato su stack
Oltre 150 opcode

PUSH1 0x01 PUSH1 0x02 ADD

 2

 1

Basso livello

Basato su stack

Oltre 150 opcode

Molte operazioni

PUSH1 0x01 PUSH1 0x02 ADD

Basso livello

Basato su stack

Oltre 150 opcode

Molte operazioni

Accesso ad informazioni

Flusso sequenziale

Flusso sequenziale JUMP & JUMPI

PUSH1 0x01 PUSH1 0x02 JUMP

Flusso sequenziale

JUMP & JUMPI

Salto incondizionato

PUSH1 0x01 PUSH1 0x02 JUMP

Flusso sequenziale
JUMP & JUMPI
Salto incondizionato
JUMPDEST

PUSH1 0x32 JUMPI PUSH1 0x14 **JUMPI JUMPDEST** PUSH1 0x14

Flusso sequenziale JUMP & JUMPI Salto incondizionato **JUMPDEST** Salto condizionato

Costruire un CFG completo

Control-flow Graph

Costruire un CFG completo

Control-flow Graph Grafo dei possibili percorsi di esecuzione

Costruire un CFG completo

Control-flow Graph

Grafo dei possibili percorsi di esecuzione

Sound per un'analisi corretta

2016

2016

Episodio significativo

2016

Episodio significativo

3.6 milioni di ether

2016

Episodio significativo

3.6 milioni di ether

\$60 milioni all'epoca

JUMP & JUMPI

PUSH1 0x01
PUSH1 0x02
JUMP

JUMP & JUMPI
Pushed jumps

PUSH1 0x0A
PUSH1 0x0C
ADD
JUMP

JUMP & JUMPI
Pushed jumps
Orphan jumps

PUSH1 0x0A
PUSH1 0x0C
ADD
JUMP

JUMP & JUMPI

Pushed jumps

Orphan jumps

Vulnerabilità ad attacchi

Smart contract sono software

Smart contract sono software Soggetti a vulnerabilità ed errori

Smart contract sono software Soggetti a vulnerabilità ed errori Analisi statica

Smart contract sono software

Soggetti a vulnerabilità ed errori

Analisi statica

Correttezza senza eseguirlo

Teoria formale

Teoria formale

Approssima oggetti matematici

Teoria formale

Approssima oggetti matematici

Relazioni

Teoria formale

Approssima oggetti matematici

Relazioni

Approssimare comportamenti concreti lavorando sull'astrazione

12

Library for Static Analysis

Library for Static Analysis Analizzatori statici

Library for Static Analysis
Analizzatori statici
CFG di un programma

Library for Static Analysis

Analizzatori statici

CFG di un programma Verifica delle proprietà

Lisa & EVMLisa

Library for Static Analysis

Analizzatori statici

CFG di un programma
Verifica delle proprietà
EVM Bytecode

Legge il bytecode EVM

Legge il bytecode EVM

Analizza il flusso di esecuzione

Legge il bytecode EVM
Analizza il flusso di esecuzione
JUMP genera un Sequential edge

Legge il bytecode EVM

Analizza il flusso di esecuzione

JUMP genera un Sequential edge

JUMPI genera un True edge e un False edge

Legge il bytecode EVM

Analizza il flusso di esecuzione

JUMP genera un Sequential edge

JUMPI genera un *True edge* e un *False edge*

JUMPDEST

Domini astratti

EVM usa stack volatile per elaborare istruzioni

Domini astratti

EVM usa stack volatile per elaborare istruzioni Stack astratto

Domini astratti

EVM usa stack volatile per elaborare istruzioni

Stack astratto

Elementi dello stack astratto

$$\mathsf{Ints}_k \triangleq \langle \wp_{\leq k}(\mathbb{Z}) \cup \{\top_{\mathsf{Ints}_k}\}, \sqcup_{\mathsf{Ints}_k}, \sqcap_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \varnothing \rangle$$

$$\mathsf{Ints}_k \triangleq \langle \wp_{\leq k}(\mathbb{Z}) \cup \{\top_{\mathsf{Ints}_k}\}, \sqcup_{\mathsf{Ints}_k}, \sqcap_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \varnothing \rangle$$

Insieme di k numeri interi

$$\mathsf{Ints}_k \triangleq \langle \wp_{\leq k}(\mathbb{Z}) \cup \{\top_{\mathsf{Ints}_k}\}, \sqcup_{\mathsf{Ints}_k}, \sqcap_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \varnothing \rangle$$

Insieme di *k* numeri interi

Parzialmente ordinati

$$\mathsf{Ints}_k \triangleq \langle \wp_{\leq k}(\mathbb{Z}) \cup \{\top_{\mathsf{Ints}_k}\}, \sqcup_{\mathsf{Ints}_k}, \sqcap_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \varnothing \rangle$$

Insieme di k numeri interi

Parzialmente ordinati

Ø elemento inferiore (errore / irraggiungibile)

$$\mathsf{Ints}_k \triangleq \langle \wp_{\leq k}(\mathbb{Z}) \cup \{\top_{\mathsf{Ints}_k}\}, \sqcup_{\mathsf{Ints}_k}, \sqcap_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \varnothing \rangle$$

Insieme di k numeri interi

Parzialmente ordinati

Ø elemento inferiore (errore / irraggiungibile)

 \top_{Ints_k} valore non rappresentabile

$$S_{\mathsf{Ints}_k,h} \triangleq \{ [s_0, s_1, \dots, s_{h-1}] \mid \forall i \in [0, h-1] : s_i \in \mathsf{Ints}_k, h, k > 0 \}$$

$$S_{\mathsf{Ints}_k,h} \triangleq \{ [s_0, s_1, \dots, s_{h-1}] \mid \forall i \in [0, h-1] : s_i \in \mathsf{Ints}_k, h, k > 0 \}$$

Contiene i primi h elementi $lnts_k$ dello stack

$$S_{\mathsf{Ints}_k,h} \triangleq \{ [s_0, s_1, \dots, s_{h-1}] \mid \forall i \in [0, h-1] : s_i \in \mathsf{Ints}_k, h, k > 0 \}$$

Contiene i primi h elementi $lnts_k$ dello stack

$$\mathsf{St}_{k,h}^{\#} \triangleq \langle \mathcal{S}_{\mathsf{Ints}_k,h} \cup \{\perp_{\mathsf{St}_{k,h}^{\#}}\}, \sqcup_{\mathsf{St}_{k,h}^{\#}}, \sqcap_{\mathsf{St}_{k,h}^{\#}}, \top_{\mathsf{St}_{k,h}^{\#}}, \perp_{\mathsf{St}_{k,h}^{\#}} \rangle$$

$$S_{\mathsf{Ints}_k,h} \triangleq \{ [s_0, s_1, \dots, s_{h-1}] \mid \forall i \in [0, h-1] : s_i \in \mathsf{Ints}_k, h, k > 0 \}$$

Contiene i primi h elementi $lnts_k$ dello stack

$$\mathsf{St}_{k,h}^{\#} \triangleq \langle \mathcal{S}_{\mathsf{Ints}_k,h} \cup \{\bot_{\mathsf{St}_{k,h}^{\#}}\}, \sqcup_{\mathsf{St}_{k,h}^{\#}}, \sqcap_{\mathsf{St}_{k,h}^{\#}}, \top_{\mathsf{St}_{k,h}^{\#}}, \bot_{\mathsf{St}_{k,h}^{\#}} \rangle$$

 $\perp_{St_k^\#}$ elemento inferiore (bottom)

$$S_{\mathsf{Ints}_k,h} \triangleq \{ [s_0, s_1, \dots, s_{h-1}] \mid \forall i \in [0, h-1] : s_i \in \mathsf{Ints}_k, h, k > 0 \}$$

Contiene i primi h elementi $lnts_k$ dello stack

$$\mathsf{St}_{k,h}^{\#} \triangleq \langle \mathcal{S}_{\mathsf{Ints}_k,h} \cup \{\bot_{\mathsf{St}_{k,h}^{\#}}\}, \sqcup_{\mathsf{St}_{k,h}^{\#}}, \sqcap_{\mathsf{St}_{k,h}^{\#}}, \top_{\mathsf{St}_{k,h}^{\#}}, \bot_{\mathsf{St}_{k,h}^{\#}} \rangle$$

$\perp_{St_k^\#}$ elemento inferiore (bottom)

$$\top_{\mathsf{St}_{k,h}^{\#}} = [\top_{\mathsf{Ints}_k}, \top_{\mathsf{Ints}_k}, \dots, \top_{\mathsf{Ints}_k}]$$

Maggiore efficacia nella risoluzione delle jump

Maggiore efficacia nella risoluzione delle jump

Maggiore efficacia nella risoluzione delle jump

$$\mathsf{SetSt}_{k,h,l}^{\#} \triangleq \langle \wp_{\leq l}(\mathcal{S}_{\mathsf{Ints}_k,h}) \cup \{\top_{\mathsf{SetSt}_{k,h,l}^{\#}}\}, \sqcup_{\mathsf{SetSt}_{k,h,l}^{\#}}, \sqcap_{\mathsf{SetSt}_{k,h,l}^{\#}}, \top_{\mathsf{SetSt}_{k,h,l}^{\#}}, \varnothing \rangle$$

Maggiore efficacia nella risoluzione delle jump

$$\mathsf{SetSt}_{k,h,l}^{\#} \triangleq \langle \wp_{\leq l}(\mathcal{S}_{\mathsf{Ints}_k,h}) \cup \{\top_{\mathsf{SetSt}_{k,h,l}^{\#}}\}, \sqcup_{\mathsf{SetSt}_{k,h,l}^{\#}}, \sqcap_{\mathsf{SetSt}_{k,h,l}^{\#}}, \top_{\mathsf{SetSt}_{k,h,l}^{\#}}, \varnothing \rangle$$

Contiene al più l elementi $\mathcal{S}_{\mathsf{Ints}_k,h}$

Maggiore efficacia nella risoluzione delle jump

$$\mathsf{SetSt}_{k,h,l}^{\#} \triangleq \langle \wp_{\leq l}(\mathcal{S}_{\mathsf{Ints}_k,h}) \cup \{\top_{\mathsf{SetSt}_{k,h,l}^{\#}}\}, \sqcup_{\mathsf{SetSt}_{k,h,l}^{\#}}, \sqcap_{\mathsf{SetSt}_{k,h,l}^{\#}}, \top_{\mathsf{SetSt}_{k,h,l}^{\#}}, \varnothing \rangle$$

Contiene al più l elementi $\mathcal{S}_{\mathsf{Ints}_k,h}$

top quando sforiamo la dimensione $\it l$


```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
        JUMPDEST
```

1


```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
       PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
       ADD
[0a]
       JUMPI // orphan jump
[0b]
       INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
       JUMPDEST
```



```
[00]
        PUSH1 0x05
[02]
       PUSH1 0x05
[04]
       EQ
[05]
       PUSH1 0x08
[07]
       PUSH1 0x04
[09]
        ADD
[0a]
        JUMPI // orphan jump
[0b]
        INVALID
[0c]
       JUMPDEST
[0d]
       PUSH1 0x01
[0f]
        JUMPDEST
```


Valutazione sperimentale

Benchmark su 5000 smart contract da Etherscan¹

1 https://etherscan.io/

Valutazione sperimentale

Dimensione	Jump	Jump	Jump	Maybe	Definitely	Maybe	% Jump	Time
StackSet	Risolte	Unsound	Irragg.	Unsound	Fake	Fake	Solved	(sec)
1	1728979	1	243285	315	851	48	99.9999%	3.44
2	1728688	6	223758	333	1125	60	99.9997%	4.24
4	1727825	20	196366	421	1950	84	99.9988%	7.38
8	1726589	15	154845	482	3089	186	99.9991%	14.99
16	1727152	18	129387	520	2321	367	99.9990%	25.97
32	1728251	0	113854	479	1491	137	100%	161.65

$$k = 1, h = 64$$

Valutazione sperimentale

Benchmark su 5000 smart contract da *Etherscan*¹ Confronto con *Ethersolve*² (94,61%)

¹ https://etherscan.io/

² "Enhancing ethereum smart-contracts static analysis by computing a precise control-flow graph of ethereum bytecode", Pasqua et al. [2023, Journal of Systems and Software]

Lavori futuri

Ottimizzazione di EVMLiSA

Lavori futuri

Ottimizzazione di EVMLiSA Elaborazione di informazioni esterne

Lavori futuri

Ottimizzazione di EVMLiSA

Elaborazione di informazioni esterne

Reentrancy & buffer overflow checker, gas estimator

Conclusioni

Focus sulla creazione di un CFG sound

Conclusioni

Focus sulla creazione di un CFG sound Implementati diversi domini astratti

Conclusioni

Focus sulla creazione di un CFG sound Implementati diversi domini astratti Ottenuti ottimi risultati

Sottomesso articolo al FTfJP 2024