Lógica Computacional

Aula Teórica 7 Algoritmo de Horn

Ricardo Gonçalves

Departamento de Informática

6 de outubro de 2023

Como determinar a natureza de uma fórmula na FNC?

- ✓ Se FNC(φ) então verificar que $\models \varphi$ é simples: demora no máximo um tempo proporcional ao número de símbolos proposicionais da fórmula.
- × Transformar fórmulas arbitrárias para a FNC é moroso.
- Determinar se dada fórmula (não válida) é possível ou contraditória requer análise combinatória.

Só no caso da validade a análise é eficiente.

Mas à partida não sabemos a natureza da fórmula dada...

Algoritmo de Horn [Alfred Horn]

Algoritmo eficiente para testar se uma fórmula é possível ou não, mas apenas para uma dada classe de fórmulas.

Cláusulas Horn

Cláusula

Uma cláusula é uma disjunção de literais.

Recordar

- Literal positivo: \bot ou p, com $p \in P$
- Literal negativo: $\neg \bot$ ou $\neg p$, com $p \in P$

Cláusula de Horn

Uma cláusula de Horn é uma cláusula que tem no máximo um literal positivo.

Exemplos

- \bot , p, $(p \lor \neg q)$, $(\neg p \lor \neg q)$ são cláusulas de Horn;
- $(p \lor q)$ ou $(\bot \lor p)$ não são cláusulas de Horn.

Cláusulas de Horn

Há 3 tipos de cláusulas de Horn

- Sem literais negativos (é então apenas um literal positivo).
- Sem literais positivos.
- 3 Com literais negativos e um positivo.

Exemplos

- leftondown p ou $oldsymbol{\perp}$

Cláusulas de Horn como implicações

Proposição

Seja L um literal positivo.

- $L \equiv T \rightarrow L$

Prova

Exercícios simples.

Exemplos

- $(\neg p \lor \neg q \lor \neg r) \equiv (p \land q \land r) \to \bot$

Fórmulas de Horn

Fórmula de Horn

Uma fórmula $\varphi \in F_P$ é uma fórmula de Horn, denotado $FH(\varphi)$, se:

- $FNC(\varphi)$
- cada disjunção tem no máximo um literal positivo.

Notas

- Uma fórmula de Horn é a conjunção de cláusulas de Horn.
- A conjunção de fórmulas de Horn ainda é fórmula de Horn.

Linguagem de Horn

Recordar: as cláusulas de Horn podem ser vistas como implicações

Forma de Implicações

Se $\varphi \in F_P$ e FH(φ), então existe ψ tal que $\varphi \equiv \psi$ e:

$$\psi = \bigwedge_{i=1}^{n} (C_i \to L_i)$$

para algum $n \ge 1$, e, para todo o $1 \le i \le n$, L_i é literal positivo e:

- $C_i = \top$ ou
- $C_i = \bigwedge_{j=1}^{k_i} L_{ij}$ com $k_i \ge 1$ e cada $L_{i,j}$ é simbolo proposicional.

Neste caso, ψ diz-se na Forma de Implicações.

Por $Claus(\varphi)$ vamos denotar o conjunto das cláusulas de φ .

Abuso de notação: $C_i = \{L_{ij} : 1 \leq j \leq k_i\}$

Linguagem de Horn

Exemplo

Considere a seguinte fórmula:

$$\varphi = (p) \land (q \lor \neg p) \land (\neg p \lor r \lor \neg q) \land (\neg p \lor \neg q \lor \neg r)$$

Temos que $FH(\varphi)$ e φ é equivalente a:

$$(\top \to p) \land (p \to q) \land ((p \land q) \to r) \land ((p \land q \land r) \to \bot)$$

que está na Forma de Implicações.

Algoritmo de Horn

Operador de Consequência Imediata

Seja $\varphi \in F_P$ tal que φ está na Forma de Implicações.

A função $T_{\varphi}: \mathcal{P}(P \cup \{\top, \bot\}) \to \mathcal{P}(P \cup \{\top, \bot\})$, chamado o operador de consequência imediata de φ , é definida por:

$$T_{\varphi}(A) = \{L_i : \text{ existe } (C_i \to L_i) \in Claus(\varphi) \text{ e } C_i \subseteq A \cup \{\top\}\}$$

Exemplo

Seja $\varphi=(\top\to p)\land (p\to q)\land ((p\land q)\to r)\land ((p\land q\land r)\to \bot)$ Então:

- $T_{\varphi}(\emptyset) = \{p\}$
- $T_{\varphi}(\{p,q\}) = \{p,q,r\}$
- $T_{\varphi}(\{p,q,r\}) = \{p,q,r,\bot\}$

Algoritmo de Horn

Seja $\psi \in F_P$ tal que $FH(\psi)$

- **1** Encontra-se φ tal que $\varphi \equiv \psi$ e φ está na Forma de Implicações
- **2** Calcular $T_{\varphi}(\emptyset)$
- **3** Aplicar T_{φ} ao resultado até obter ponto fixo, i.e., $T_{\varphi}(A) = A$
- **4** Esse ponto fixo denota-se por $I_{min}(\varphi)$
- **1** Identificar a natureza de φ :
 - Se $\bot \not \in I_{min}(\varphi)$, então φ é possível
 - Se $\bot \in I_{min}(\varphi)$, então φ é contraditória
- $oldsymbol{\circ}$ Como $arphi \equiv \psi$, as duas fórmulas têm a mesma natureza

Correcção do algoritmo de Horn

Objectivo do algoritmo

Determinar se dada fórmula de Horn é contraditória ou possível.

Correcção e completude do algoritmo

Dada uma fórmula $\varphi \in F_P$ na Forma de Implicações, tem-se que:

- φ é possível se e só se $\bot \not\in I_{min}(\varphi)$;
- φ é contraditória se e só se $\bot \in I_{min}(\varphi)$.

Resultados sobre o algoritmo de Horn

Se o algoritmo de Horn indica que uma fórmula é possível, então podemos extrair uma valoração que satisfaz a fórmula!

Proposição

Seja $\varphi \in F_P$ uma fórmula de Horn tal que $\bot \not \in I_{min}(\varphi)$.

Então, a valoração ${\cal V}$ tal que

- V(p) = 1 se $p \in I_{min}(\varphi)$
- V(p) = 0 se $p \notin I_{min}(\varphi)$

é tal que $V \Vdash φ$.

Proposição

A função T_{φ} é monótona crescente.

Durante o passo 3 do algoritmo de Horn, logo que se encontra \bot podemos concluir que $\bot \in I_{min}(\varphi)$, e por isso φ é contraditória.

Resultados sobre o algoritmo de Horn

O conjunto $I_{min}(\varphi)$ só tem literais que ocorrem em φ .

Proposição: literais omissos

Seja φ na Forma de Implicações, $\varphi = \bigwedge_{i=1}^n (C_i \to L_i)$. Então

$$I_{min}(\varphi) \subseteq \{L_i : 1 \le i \le n\}$$

Corolário: casos particulares

- Se $\bot \notin \{L_i : 1 \leq i \leq n\}$ então $\bot \notin I_{min}(\varphi)$.
- \bullet Se $\top \neq C_i$, para todo $1 \leq i \leq n$, então $I_{min}(\varphi) = \emptyset$

Propriedades do algoritmo de Horn

Terminação do algoritmo de Horn

Como $I_{min}(\varphi)$ está contido num conjunto finito e T_{φ} é uma função monótona crescente, temos que o ponto fixo é encontrado num número finito de passos.

Complexidade do algoritmo de Horn

Se φ é uma fórmula na Forma de Implicações, então o algoritmo termina num número polinomial (no tamanho de φ) de passos.

 $\operatorname{\mathsf{HORNSAT}}$ é um problema P

Algoritmo de Horn e validade

Nota

O algoritmo de Horn apenas permite responder à questão: a fórmula φ é possível ou contraditória?

Se for possível, não sabemos se é válida ou não. Recordar: negação de fórmula válida é contraditória (e vice-versa).

Seja $\varphi \in F_P$.

Seja $\psi \equiv \neg \varphi$ e $FNC(\psi)$ — colocar $\neg \varphi$ na FNC

Se ψ é fórmula de Horn, então aplicamos o algoritmo de Horn.

- Se $\bot \in I_{min}(\psi)$, então ψ é contraditória, e portanto φ é válida.
- Se $\bot \not \in I_{min}(\psi)$, então ψ é possível, e portanto φ não é válida.

Algoritmo de Horn e Consequência Semântica

Proposição

$$\{ arphi_1, \dots, arphi_n \} \models arphi$$
 se e só se $arphi_1 \wedge \dots \wedge arphi_n \wedge
eg arphi$ é contraditória

Se $\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$ for equivalente a uma fórmula de Horn ψ , aplica-se o algoritmo de Horn a ψ :

- Se $\bot \in I_{min}(\psi)$, então ψ é contraditória e temos $\{\varphi_1, \ldots, \varphi_n\} \models \varphi$
- Se $\bot \not\in I_{min}(\psi)$, então ψ é possível e temos $\{\varphi_1,\ldots,\varphi_n\} \not\models \varphi$

Aplicação do algoritmo

Exemplo

- Qual a natureza de $p \wedge (\neg r \vee s) \wedge (r \vee \neg p \vee \neg q) \wedge (\neg r \vee \neg s) \wedge q$?
- A fórmula está na FNC
- A fórmula não é válida (pelo Lema da validade das disjunções)
- Como é fórmula de Horn, aplica-se o algoritmo de Horn

Aplicação do algoritmo de Horn

Converte-se primeiro para a Forma de Implicações:

$$\varphi = (\top \to p) \land (r \to s) \land ((p \land q) \to r) \land ((r \land s) \to \bot) \land (\top \to q)$$

Algoritmo de Horn

Primeiro calculamos $T_{\varphi}(\emptyset)$:

$$\bullet \ T_{\varphi}(\emptyset) = \{p, q\}$$

Agora continuamos a aplicar T_{φ} até obter ponto fixo.

- $T_{\varphi}(\{p,q\}) = \{p,q,r\}$
- $T_{\varphi}(\{p,q,r\}) = \{p,q,r,s\}$
- $T_{\varphi}(\{p,q,r,s\}) = \{p,q,r,s,\bot\}$
- $T_{\varphi}(\{p,q,r,s,\perp\}) = \{p,q,r,s,\perp\} = I_{min}(\varphi)$

Como $\bot \in I_{min}$ temos que φ é contraditória.

Nota: podíamos ter parado logo que encontrámos 1.

Outro exemplo

Natureza de $p \wedge (\neg r \vee s) \wedge (r \vee \neg p \vee \neg q) \wedge (\neg r \vee \neg s)$ Converte-se primeiro para a forma de Implicações: $\varphi = (\top \to p) \wedge (r \to s) \wedge ((p \wedge q) \to r) \wedge ((r \wedge s) \to \bot)$

Primeiro calculamos $T_{\varphi}(\emptyset)$:

$$T_{\varphi}(\emptyset) = \{p\}$$

Agora continuamos a aplicar T_{φ} até obter ponto fixo.

•
$$T_{\varphi}(\{p\}) = \{p\} = I_{min}(\varphi)$$

Como $\bot \notin I_{min}(\varphi)$, então φ é possível.

Considere-se a valoração V tal que:

$$V(p) = 1 e V(q) = V(r) = V(s) = 0$$

Facilmente se verifica que $V \Vdash \varphi$.

Mais um exemplo

Natureza de $p \wedge (\neg q \vee s) \wedge (r \vee \neg p) \wedge \neg r \wedge (\neg r \vee q)$

Converte-se primeiro para a Forma de Implicações:

$$\varphi = (\top \to p) \land (q \to s) \land (p \to r) \land (r \to \bot) \land (r \to q)$$

Primeiro calculamos $T_{\varphi}(\emptyset)$:

$$\bullet \ T_{\varphi}(\emptyset) = \{p\}$$

Agora continuamos a aplicar T_{φ} até obter ponto fixo.

- $T_{\varphi}(\{p\}) = \{p, r\}$
- $T_{\varphi}(\{p,r\}) = \{p,q,r,\bot\}$

Podemos parar, pois já sabemos que $\bot \in I_{min}$.

Temos então que φ é contraditória.