Amendments to the Claims

- 1. (currently amended) A biosensor for detecting an analyte of interest, comprising a surface, a <u>preformed</u> nanocrystalline metal oxide semiconductor film at least partially covering said surface and at least one <u>temperature-sensitive</u> protein <u>that would be denatured if subjected to non-physiological temperatures</u> immobilized on at least a portion of said <u>preformed</u> film without the use of non-physiological temperatures, such that the biosensor will detect the analyte.
- 2. (original) A biosensor according to claim 1, wherein said nanocrystalline metal oxide is titanium dioxide.
- 3. (original) A biosensor according to claim 1, wherein said nanocrystalline metal oxide is zinc oxide.
- 4. (original) A biosensor according to claim 1, wherein said nanocrystalline metal oxide is zirconium dioxide.
- 5. (previously presented) A biosensor according to claim 1, wherein said film is a bioderivitised film to which said at least one protein is immobilised.
- 6. (previously presented) A biosensor according to claim 1, wherein said film forms an array on said surface.
- 7. (original) A biosensor according to claim 6, wherein different proteins are bound to different portions of said array.
- 8. (currently amended) A biosensor for detecting an analyte of interest, comprising a surface, a nanocrystalline metal oxide semiconductor film at least partially covering said surface and at least one protein immobilized on at least a portion of said film without the use of non-physiological temperatures, such that the biosensor will

<u>detect the analyte</u> A biosensor according to claim 1, and further comprising a pH-sensitive dye partially covering said surface.

- 9. (previously presented) A biosensor according to claim 1, wherein said biosensor is an electrochemical biosensor, and further comprising an electrical circuit electrically connected to said film, said circuit comprising a detector for monitoring changes in the current or voltage in said circuit produced by an electrochemical reaction.
- 10. (previously presented) A biosensor according to claim 1, wherein said biosensor is an optical biosensor, and further comprising an optical sensor for monitoring a reaction by sensing the interaction of electromagnetic radiation with the molecules present.
- 11. (original) An optical biosensor according to claim 10, wherein said at least one protein is a fluorescent or fluorophore labelled protein, said film is optically transparent, and further comprising a light source and control electronics for calculating concentrations from the output of said optical sensor.
- 12. (previously presented) A biosensor according to claim 1, further comprising an electrical circuit electrically connected to said film, and an optical sensor.
- 13. (original) A biosensor according to claim 12, wherein said at least one protein is such as to be electrochemically or photochemically switched to a sensing state by oxidation or reduction, the results of the sensing reaction being measured optically or electrically.
- 14. (previously presented) A biosensor according to claim 1, wherein said biosensor further comprises a power supplying element.

- 15. (original) A biosensor according to claim 14, wherein said power supplying element comprises a photoelectric element operable to supply power in response to electromagnetic radiation.
- 16. (original) A biosensor according to claim 15, wherein a portion of said film forms said photoelectric element.
- 17. (previously presented) A method of manufacturing a biosensor for detecting an analyte of interest, comprising the steps of covering at least a portion of a surface with a film of a nanocrystalline semiconductor, contacting said preformed film with a protein such as to immobilise said protein on said film without the use of non-physiological temperatures, such that the biosensor will be operative to detect the analyte.
- 18. (original) A method of manufacturing a biosensor according to claim 17, wherein said film is applied to said surface by screen printing.
- 19. (previously presented) A method of manufacturing a biosensor according to claim 17, wherein said film is contacted with a protein by immersion of said at least partially covered surface in an aqueous solution of said protein.
- 20. (previously presented) A method of manufacturing a biosensor according to claim 17, wherein said protein is deposited on said film using a gridding robot or other dispensing device such as an ink-jet printer.
- 21. (previously presented) A method of manufacturing a biosensor according to claim 17, wherein the temperature at which said film is contacted with said protein is substantially 4 °C.