Тренировочная олимпиада

- 1. За круглым столом сидят 10 человек. Каждый из них задумал некоторое число и сообщил это число своим соседям по столу (одному соседу слева и одному справа). После этого каждый сидящий за столом назвал вслух среднее арифметическое двух чисел, которые ему сообщили его соседи. В порядке обхода вокруг стола были названы числа 1, 2, . . . 10. Какое число задумал человек, назвавший число 6?
- **2.** На правой ветви гиперболы y=1/x взяты точки A_1,A_2,\ldots,A_n , абсциссы которых равны $a,2a,\ldots,2^9a$ соответственно (a>0). Найдите площадь десятиугольника $A_1,A_2,\ldots A_n$.
- **3.** В треугольнике ABC угол $\angle A$ наименьший. На сторонах AB и AC отмечены точки D и E соответственно таким образом, что $\angle CBE = \angle DCB = \angle BAC$. Докажите, что середины отрезков AB, AC, BE, CD лежат на одной окружности.
- **4.** Для фиксированного натурального числа $n \ge 2$ определим последовательность $a_k = \text{HOK}(k, k+1, \ldots, k+(n-1))$. Найдите все натуральные числа $n \ge 2$, для которых последовательность a_k с некоторого момента строго возрастает.
- 5. В городе N центральная площадь имеет вид прямоугольника $2n \times 2m$, составленного из плиток 1×1 . Для освещения площади в углах плиток (в том числе на границе площади) расставляют фонари так, что каждый фонарь освещает все плитки, в углу которых он стоит. Найдите наименьшее количество фонарей, которое можно расставить так, чтобы фонари освещали всю площадь, даже если одн из них перегорит.