Insanely Fast Whisper

VB

What is Whisper?

- 1. Speech to Text
- 2. Trained on 5M hours
- 3. Multilingual
- 4. State of the Art (zero-shot)

Why optimise it?

- 1. Big fat model -> 1.5B parameter model
- 2. Real-time transcription
- 3. Reduce inference cost
- 4. Most importantly, it's fun

Let's optimise

- 1. fp16
- 2. fp16 + SDPA
- 3. fp16 + SDPA + Chunking
- 4. fp16 + SDPA + Chunking + Speculative Decoding
- 5. distil-whisper + fp16 + SDPA + Speculative Decoding + Chunking
- 6. and.. more

What do we measure?

Method	Time to Transcribe
fp16	
fp16 + SDPA	
fp16 + SDPA + Speculative Decoding	
fp16 + SDPA + Speculative Decoding + Chunking	
more	

Note: Unless stated otherwise above methods do not incur a loss in performance.

fp16

- 1. Almost 2x as fast as fp32
- Zero to negligible loss in performance [ref]
- One line change `torch_dtype = torch.float16`

Method	Time to Transcribe
fp16	62s

*All results are from a Colab Free T4 GPU - transcribing a 10 min audio.

SDPA/FA2

Scaled Dot Product Attention/ FA2 is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference. [ref]

- 1. Parallelising the attention computation over sequence length
- Partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them

Method	Time to Transcribe
fp16	62s
fp16 + SDPA	60s

^{*}All results are from a Colab Free T4 GPU - transcribing a 10 min audio.

Speculative Decoding

It is based on the idea that a smaller, faster model can often generate the same tokens as a larger, slower model.

The assistant model first generates a sequence of candidate tokens, and then the main model verifies these tokens through forward passes, ensuring the same outputs as if only the main model was used.

Method	Time to Transcribe
fp16	62s
fp16 + SDPA	60s
fp16 + SDPA + SD	37.9s

^{*}All results are from a Colab Free T4 GPU - transcribing a 10 min audio.

Chunking

Chunking

Food for thought: why is it slower than just SD? :)

Method	Time to Transcribe
fp16	62s
fp16 + SDPA	60s
fp16 + SDPA + SD	37.9s
fp16 + SDPA + Chunking + SD	43.8s

^{*}All results are from a Colab Free T4 GPU - transcribing a 10 min audio.

distil-whisper

- 1. Smaller Whisper
- 2. 6x faster, 2x lighter
- 3. English only
- 4. Within 0.5 WER

Method	Time to Transcribe
fp16	62s
fp16 + SDPA	60s
fp16 + SDPA + SD	37.9s
fp16 + SDPA + Chunking + SD	43.8s
Distil-whisper + fp16 + SDPA + Chunking	17.2s

^{*}All results are from a Colab Free T4 GPU - transcribing a 10 min audio.

Moar fastt ;)

- Flash Attention 2 [ref]
- 2. Newer GPUs L40s/ A100s/ H100s
- 3. Quantisation whisper.cpp/ faster-whisper
- 4. Short context Whisper [ref]

Takeaways

- At the very least use SDPA & FA2 if your environment allows.
- 2. For bs=1 solutions use Speculative Decoding.
- 3. For rough translations use audio chunking.
- 4. For near-real time use cases use short context.
- 5. Distil Whisper for use-case if possible.

Parting note

Don't trust, verify.

Thank You!