$$P(A) = 0.84$$
 $P(B) = 0.46$ $P(A \text{ and } B) = 0.38$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $= 0.84 + 0.46 - 0.38$
 $= 0.92$

75)
$$P(A) = \frac{1}{3}$$
 $P(A \text{ or } B) = \frac{1}{2}$ $P(A \text{ and } B) = \frac{1}{10}$

If two events are mutually exclusive, P(A and B) = 0 So A, B are NOT mutually exclusive.

$$P(B)? \qquad P(A \circ B) = P(A) \perp P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) - P(A) + P(A \text{ and } B) = P(B)$$

 $\frac{1}{2} - \frac{1}{3} + \frac{1}{10} \approx 0.267$

P(A) =
$$\frac{1}{4}$$
 P(B) = $\frac{1}{3}$ P(A or B) = $\frac{1}{2}$

P(A or B) $\stackrel{?}{=}$ P(A) + P(B) if mutually exclusive.

 $\frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{4}$ + $\frac{1}{3}$

Not mutually exclusive

Find
$$P(A \text{ and } B)$$

 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

$$P(A \text{ and } B) = P(A) + P(B) - P(A \text{ or } B)$$

= $\frac{1}{4} + \frac{1}{3} - \frac{1}{2}$

$$=\frac{7}{12}-\frac{1}{2}$$

0.008 + 0.037 = 0.045 4.5% % in lake or harbor 0.020 + 0.002 + 0.161 = 0.183 18.3% NOT in lake, ocean, Aver, canal 0.233 + 0.146 + 0.161 + 0.027 = 0.567 56.7%

51,5% of US adults female 10.4% dvorced 6.0% divorced female F= event female. D = event divorced: P(F) = 0.515P(D) = 0.104P(Fand D) = 0.06. P(For D) = P(F) + P(D) - P(Fand D)= 0.515 + 0,104 - 0.060 = 0.55955.9% P(not D) = I - P(D)=1-0.104=0.896