Práctica 4: Parte 4 (Mapas Demográficos)

Tabla de contenidos

1	Introducción	1
2	Instalación de mapSpain	1
3	Ejemplo 1: cartograma de provincias y provincias de comunidades autónomas	4
4	Ejemplo 2: cartograma con todas las provincias de España	6
5	Ejemplo 3: comunidades autónomas en España	8
6	Ejemplo 4: cartograma de municipios de provincias	13
7	Enlaces a las fuentes demográficas utilizadas	15

1 Introducción

suppressWarnings(suppressMessages(library(DemographyBasic)))

2 Instalación de mapSpain

Información obtenida:

• https://ropenspain.github.io/mapSpain/

Se recomienda utilizar la siguiente instrucción R para instalar el paquete R: "mapSpain".

```
install.packages("mapSpain", dependencies = TRUE)
```

El primer ejemplo que se mostrará se ha obtenido del modelo de partida obtenido en la documentación de "mapSpain": https://ropenspain.github.io/mapSpain/articles/x02_mapasesp. html.

Cargamos los paquetes necesarios y utilizamos la función <code>esp_get_prov_siane()</code> para obtener información para la representación de mapas de tipo provincial de España para unas determinadas provincias.

```
library(mapSpain)
library(ggplot2)
provs <- esp_get_prov(c(
    "Andalucía", "Ciudad Real",
    "Murcia", "Ceuta", "Melilla"
))
dplyr::glimpse(provs)</pre>
```

```
Rows: 12
Columns: 24
                                                                 <chr> "01", "01", "01", "01", "01", "01", "01", "01", "01", "08"~
$ codauto
                                                                 <chr> "04", "11", "14", "18", "21", "23", "29", "41", "13"~
$ cpro
                                                                 <chr> "ES-AL", "ES-CA", "ES-CO", "ES-GR", "ES-H", "ES-J", ~
$ iso2.prov.code
$ nuts.prov.code
                                                                 <chr> "ES611", "ES612", "ES613", "ES614", "ES615", "ES616"~
                                                                 <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ ine.prov.name
$ iso2.prov.name.es <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ cldr.prov.name.en <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ cldr.prov.name.es <chr>> "Provincia de Almería", "Provincia de Cádiz", "Provi~
$ cldr.prov.name.ca <chr>> "Província d'Almeria", "Província de Cadis", "Provín~
$ cldr.prov.name.ga <chr> "Provincia de Almería", "Provincia de Cádiz", "Provi~
$ cldr.prov.name.eu <chr> "Almeríako probintzia", "Cádizko probintzia", "Kordo~
$ prov.shortname.en <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ prov.shortname.es <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ prov.shortname.ca <chr> "Almeria", "Cadis", "Còrdova", "Granada", "Huelva", ~
$ prov.shortname.ga <chr> "Almería", "Cádiz", "Córdoba", "Granada", "Huelva", ~
$ prov.shortname.eu <chr> "Almería", "Cádiz", "Kordoba", "Granada", "Huelva", ~
$ nuts2.code
                                                                 <chr> "ES61", "ES61", "ES61", "ES61", "ES61", "ES61", "ES67", 
                                                                 <chr> "Andalucía", "Andalucía", "Andalucía", "Andalucía", ~
$ nuts2.name
$ nuts1.code
                                                                 <chr> "ES6", "ES6"
```

A la geometría "ggplot2" geom_sf(), el paquete "mapSpain": facilita la información de la geometría (la coloca en el elemento geometry del objeto R anterior: "provs") necesaria para representar mapas de España, que permitirá crear por ejemplo un cartograma provincial con la metodología del paquete "ggplot2". Se colorea utilizando una función que genera colores: hcl.colors().

```
ggplot(provs) +
  geom_sf(aes(fill = prov.shortname.es),
    alpha = 0.9
) +
  scale_fill_discrete(type = hcl.colors(12, "Cividis")) +
  theme_minimal() +
  labs(fill = "Provincias")
```


3 Ejemplo 1: cartograma de provincias y provincias de comunidades autónomas

Se va a representar la información del "Saldo Migratorio Interno de Andalucía"

```
load("mapaejemplo01.RData")
df_a_mapa = data.frame(
   Codigo = DemBas_extrae_codigo_provincia(provs_filas),
   Valor = SMInternoAnd
)
df_a_mapa
```

	Codigo	Valor
04 Almería	04	-1977
11 Cádiz	11	3120
14 Córdoba	14	7162
18 Granada	18	1282
21 Huelva	21	1900
23 Jaén	23	10896
29 Málaga	29	-19440
41 Sevilla	41	-2943

En primer lugar obtenemos los datos necesarios con ayuda de tidyverse:

```
library(mapSpain)
#library(ggplot2)
library(tidyverse)

provs = esp_get_prov(df_a_mapa$Codigo) |> # nombres provincias o codes
    left_join(df_a_mapa, by = c("cpro" = "Codigo"))
colnames(provs)
```

```
[1] "codauto"
                         "cpro"
                                             "iso2.prov.code"
 [4] "nuts.prov.code"
                         "ine.prov.name"
                                             "iso2.prov.name.es"
 [7] "iso2.prov.name.ca" "iso2.prov.name.ga" "iso2.prov.name.eu"
[10] "cldr.prov.name.en" "cldr.prov.name.es" "cldr.prov.name.ca"
[13] "cldr.prov.name.ga" "cldr.prov.name.eu" "prov.shortname.en"
[16] "prov.shortname.es" "prov.shortname.ca" "prov.shortname.ga"
[19] "prov.shortname.eu" "nuts2.code"
                                             "nuts2.name"
[22] "nuts1.code"
                         "nuts1.name"
                                             "Valor"
[25] "geometry"
```

El cartograma se obtendría con el siguiente código:

① "direction=-1": Si es "1", valor por defecto, los colores son ordenados asociando valores pequeños al color más oscuro y los valores mayores al más claro. Si es "-1", el orden de los colores es el inverso (es el que se ha seleccionado en este ejemplo), a mayor valor el color es más oscuro.

Saldo Migratorio Interno (Andalucía 2010 a 2017)


```
#theme_void() +
#theme(legend.position = c(0.1, 0.6))
```

Nota

En este código se ha empleado por primera vez la miniherramienta del paquete "dplyr": left_join(), que nos permite combinar dos tablas relacionadas.
En este ejemplo, las dos tablas:

- esp_get_prov_siane(df_a_mapa\$Codigo)
- df_a_mapa

relacionadas por los campos: "cpro" en la primera tabla y "Codigo" en la segunda tabla.

4 Ejemplo 2: cartograma con todas las provincias de España

Obtenemos los datos necesarios:

```
dfej02b <- DemBas_read_px("1489.px")
head(dfej02b)</pre>
```

Periodo	Provincias	value
2018	Total Nacional	120.4598
2017	Total Nacional	118.2625
2016	Total Nacional	116.2798
2015	Total Nacional	114.7221
2014	Total Nacional	112.2386
2013	Total Nacional	109.5282

	Codigo	Valor
02 Albacete	02	119.27793
03 Alicante/Alacant	03	124.76932
04 Almería	04	80.04999
01 Araba/Álava	01	127.48705
33 Asturias	33	209.95329
05 Ávila	05	191.15470

Volvemos a combinar los datos con la información de los mapas que vamos a representar:

```
provs = esp_get_prov(df_a_mapa2$Codigo) |> # nombres provincias o codes
  left_join(df_a_mapa2, by = c("cpro" = "Codigo"))
tmp = as.data.frame(provs[,c("prov.shortname.es","cpro","Valor")])
head(tmp[,1:3],10)
```

prov.shortname.es	cpro	Valor
Almería	04	80.04999
Cádiz	11	88.59844
Córdoba	14	115.49199
Granada	18	103.67738
Huelva	21	94.33518
Jaén	23	119.42942
Málaga	29	100.31865
Sevilla	41	87.30034
Huesca	22	153.12134
Teruel	44	175.22130

El cartograma de todas las provincias de España se obtiene con el siguiente código:

Índice de Envejecimiento provincial (España en 2017)

5 Ejemplo 3: comunidades autónomas en España

Importamos y preparamos los datos que vamos a necesitar.

```
dfej02c <- DemBas_read_px("1452.px")
head(dfej02c)</pre>
```

Periodo	Comunidades.y.Ciudades.Autónomas	value
2018	Total Nacional	120.4598
2017	Total Nacional	118.2625
2016	Total Nacional	116.2798
2015	Total Nacional	114.7221
2014	Total Nacional	112.2386
2013	Total Nacional	109.5282

Se usa el sistema tidyverse:

	Codigo	Valor
01 Andalucía	01	96.21478
02 Aragón	02	140.25249
03 Asturias, Principado de	03	209.95329
04 Balears, Illes	04	95.99650
05 Canarias	05	105.73139
06 Cantabria	06	146.33787

Para construir un mapa sobre comunidades autónomas se ha seguido el ejemplo de la documentación de mapaSapin:

```
ccaa <- esp_get_ccaa(ccaa = c(
    "Catalunya",
    "Comunidad Valenciana",
    "Aragón",
    "Baleares"
)) # se puede seleccionar un subconjunto de comunidades a representar

ccaa <- ccaa %>% mutate(
    ccaa_cat = esp_dict_translate(ccaa$ine.ccaa.name, "ca")
)

ggplot(ccaa) +
    geom_sf(aes(fill = ccaa_cat)) +
    labs(fill = "Comunitats autônomes") +
    theme_void() +
    scale_fill_discrete(type = hcl.colors(4, "Plasma"))
```


Ahora se representará el índice de envejecimiento para cada comunidad autónoma en un cartograma:

```
ccaa <- esp_get_ccaa(ccaa = df_a_mapa3$Codigo) |>
  left_join(df_a_mapa3, by = c("codauto" = "Codigo"))
tmp = as.data.frame(ccaa[,c("ccaa.shortname.es","codauto","Valor")])
head(tmp[,1:3],15)
```

ccaa.shortname.es	codauto	Valor
Andalucía	01	96.21478
Aragón	02	140.25249
Asturias	03	209.95329
Baleares	04	95.99650
Canarias	05	105.73139
Cantabria	06	146.33787
Castilla y León	07	190.35820
Castilla-La Mancha	08	113.82547
Cataluña	09	111.86926
Comunidad Valenciana	10	118.05022
Extremadura	11	134.80844
Galicia	12	192.50804
Madrid	13	103.75784
Murcia	14	83.37693
Navarra	15	116.48976

El cartograma se construye con el siguiente código:

① scale_fill_gradientn(). Ha permitido hacer una agrupación de colores en 10 grupos (n.breaks = 10), y para conseguir cambiar la dirección de los colores (valores pequeños son más claros y valores mayores son más oscuros) se ha usado la función rev() para invertir la presentación de los colores.

Índice de Envejecimiento (Comunidades Autónomas, España 2017)

6 Ejemplo 4: cartograma de municipios de provincias

Cartograma de la población de los municipios de Segovia en 2019 según el INE:

```
munic <- esp_get_munic(region = "Segovia") %>%

# Datos de ejemplo: Población INE
left_join(mapSpain::pobmun19, by = c("cpro", "cmun"))
tmp = as.data.frame(munic[,c("name.x","cpro","pob19")])
head(tmp[,1:3],10)
```

name.x	cpro	pob19
Abades	40	848
Adrada de Pirón	40	39
Adrados	40	126
Aguilafuente	40	573
Alconada de Maderuelo	40	25
Aldealcorvo	40	22
Aldealengua de Pedraza	40	72
Aldealengua de Santa María	40	63
Aldeanueva de la Serrezuela	40	44
Aldeanueva del Codonal	40	117

El cartograma se construye con el siguiente código:

```
ggplot(munic) +
 geom_sf(aes(fill = pob19), alpha = 0.9, color = NA) +
 scale_fill_gradientn(
   colors = rev(hcl.colors(100, "viridis")), # rev() para invertir la escala
    # otras plantillas de colores: "Inferno", "viridis", ...
   n.breaks = 10,
   labels = scales::label_comma(),
   guide = guide_legend()
 ) +
 labs(
   fill = "Habitantes",
   title = "Población en Segovia",
    subtitle = "Datos INE (2019)"
 ) +
 theme_void() +
 theme(
   plot.background = element_rect("grey80"),
   text = element_text(face = "bold"),
   plot.title = element_text(hjust = .5),
   plot.subtitle = element_text(hjust = .5)
```


7 Enlaces a las fuentes demográficas utilizadas

- INEBASE-Demografía y Población-Fenómenos demográficos
- Movimiento Natural de Población: Nacimientos
 - Ver enlace: Paso final MNP Nacimientos