Übungen zu Lineare Algebra II

Jendrik Stelzner

1. Juli 2016

Übung 1.

Es sei V ein K-Vektorraum und $f,g\colon V\to V$ seien zwei Endomorphismen.

- 1. Es sei $f \circ g = \mathrm{id}_V$ und V sei endlichdimensional. Zeigen Sie, dass auch $g \circ f = \mathrm{id}_V$.
- 2. Zeigen Sie, dass die Aussage nicht mehr notwendigerweise gilt, wenn V unendlichdimensional ist.

Übung 2.

- 1. Geben Sie einen Körper K und ein $p \in K[X]$ an, so dass $p \neq 0$ aber $p(\lambda) = 0$ für alle $\lambda \in K$.
- 2. Geben Sie einen Körper K und ein $p \in K[X]$ an, so dass $\deg p \ge 1$, aber $p(\lambda) = 1$ für alle $\lambda \in K$.
- 3. Folgern Sie, dass jeder algebraisch abgeschlossene Körper unendlich ist.

Ubung 3

Es seien V und W zwei K-Vektorräume, so dass V endlichdimensional ist, und $f\colon V\to W$ eine lineare Abbildung. Zeigen Sie die Dimensionsformel

$$\dim V = \dim \ker V + \dim \operatorname{im} V.$$

Übung 4.

Ein Endomorphismus $f \colon V \to V$ eines K-Vektorraums V heißt lokal nilpotent, falls es für jedes $v \in V$ ein $n \in \mathbb{N}$ mit $f^n(v) = 0$ gibt.

- 1. Zeigen Sie, dass jeder nilpotente Endomorphismus auch lokal nilpotent ist.
- 2. Zeige Sie, dass 0 der einzige mögliche Eigenwert eines lokal nilpotenten Endomorphismus ist.
- 3. Geben Sie ein Beispiel für einen Vektorraum V und einen Endomorphismus $f\colon V\to V$ an, so dass f zwar lokal nilpotent, nicht aber nilpotent ist.
- 4. Zeigen Sie, dass jeder lokal nilpotente Endomorphismus eines endlichdimensionalen Vektorraums bereits nilpotent ist.

Übung 5.

Es sei K ein Körper.

- 1. Zeigen Sie für alle $A, B \in M_n(K)$ die Gleichheit tr(AB) = tr(BA).
- 2. Folgern Sie, dass die Spur invariant unter Konjugation ist, d.h. dass

$$\operatorname{tr}(SAS^{-1}) = \operatorname{tr}(A)$$
 für alle $A \in \operatorname{M}_n(K)$ und $S \in \operatorname{GL}_n(K)$.

Übung 6.

Ein Endomorphismus $f: V \to V$ eines K-Vektorraums V heißt algebraisch (über K), falls es ein Polynom $P \in K[T]$ mit $P \neq 0$ gibt, so dass P(f) = 0 gilt.

- 1. Zeigen Sie, dass jeder Endomorphismus eines endlichdimensionalen Vektorraums algebraisch ist.
- 2. Geben Sie ein Beispiel für einen K-Vektorraum V und einen Endomorphismus $f\colon V\to V$ an, der nicht algebraisch ist.

Übung 7.

Es sei V ein K-Vektorraum und $f\colon V\to V$ ein Endomorphismus. Für alle $k\in\mathbb{N}$ sei

$$R_k := \operatorname{im} f^k \quad \text{und} \quad N_k := \ker f^k.$$

1. Zeigen Sie, dass $R_0=V$, und dass $R_i\supseteq R_{i+1}$ für alle $i\in\mathbb{N}$. Es gibt also eine absteigende Kette

$$V = R_0 \supseteq R_1 \supseteq R_2 \supseteq R_3 \supseteq R_4 \supseteq \cdots$$

von Untervektorräumen.

- 2. Zeigen Sie, dass für $i \in \mathbb{N}$ mit $R_i = R_{i+1}$ auch $R_{i+1} = R_{i+2}$ gilt.
- 3. Folgern Sie: Gilt in der obigen absteigenden Kette einmal Gleichheit, also $R_i = R_{i+1}$ für ein $i \in \mathbb{N}$, so stabilisiert die Kette bereits, d.h. es gilt $R_j = R_i$ für alle $j \geq i$.
- 4. Zeigen Sie, dass $N_0=0$, und dass $N_i\subseteq N_{i+1}$ für alle $i\in\mathbb{N}$. Es gibt also eine aufsteigende Kette

$$0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq N_3 \subseteq N_4 \subseteq \cdots$$

von Untervektorräumen.

- 5. Zeigen Sie, dass für $i \in \mathbb{N}$ mit $N_i = N_{i+1}$ auch $N_{i+1} = N_{i+2}$ gilt.
- 6. Folgern Sie: Gilt in der obigen aufsteigende Kette einmal Gleichheit, also $N_i = N_{i+1}$ für ein $i \in \mathbb{N}$, so stabilisiert die Kette bereits, d.h. es gilt $N_j = N_i$ für alle $j \geq i$.
- 7. Folgern Sie: Ist V endlichdimensional, so stabilisieren beiden Ketten.

Übung 8.

Es seien $f,g\colon V\to V$ zwei Endomorphismen eines K-Vektorraums V. Beweisen Sie entweder, dass die folgenden Aussagen im Allgemeinen gelten, oder geben Sie ein Gegenbeispiel an.

- 1. Sind f und g diagonalisierbar, so ist auch $f \circ g$ diagonalisierbar.
- 2. Kommutieren f und g und ist $f \circ g$ diagonalisierbar, so ist f oder g diagonalisierbar.
- 3. Sind f und g diagonalisierbar, so ist auch f + g diagonalisierbar.
- 4. Falls f und g kommutieren und diagonalisierbar sind, so ist auch f+g diagonalisierbar.
- 5. Falls f und g kommutieren und diagonalisierbar sind, so ist $f \circ g$ invertierbar.
- 6. Ist f diagonalisierbar, so ist für jedes $p \in K[X]$ auch p(f) diagonalisierbar.

Übung 9.

- 1. Formulieren Sie den Satz von Cayley-Hamilton.
- 2. Zeigen Sie den Satz für (2×2) -Matrizen durch explizites Nachrechnen.
- 3. Zeigen Sie den Satz für Diagonalmatrizen.
- 4. Folgern Sie den Satz für diagonalisierbare Matrizen.

Übung 10.

Es sei V ein Vektorraum und $f\colon V\to V$ ein Endomorphismus. Es sei $(U_i)_{i\in I}$ eine Familie von f-invarianten Untervektorräumen, und $U\subseteq V$ ein f-invarianter Untervektorraum. Zeigen Sie:

- 1. Auch der Schnitt $\bigcap_{i \in I} U_i$ ist f-invariant.
- 2. Auch die Summe $\sum_{i \in i} U_i$ ist f-invariant.

Übung 11.

Es sei V ein K-Vektorraum, $f:V\to V$ ein Automorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum.

- 1. Zeigen Sie: Ist U endlichdimensional, so ist U auch invariant unter f^{-1} .
- 2. Zeigen Sie, dass die Aussage nicht gelten muss, falls U unendlichdimensional ist.

Übung 12.

Es seien V ein K-Vektorraum.

1. Zeigen Sie, dass sich durch jeden idempotenten Endomorphismus $e\colon V\to V$ (d.h. $e^2=e$) eine Zerlegung

$$V = \operatorname{im} e \oplus \ker e$$

ergibt, und dass

$$e(v+w)=v$$
 für alle $v\in \operatorname{im} e$ und $w\in \ker e$.

2. Zeigen, Sie, dass für jeden idempotenten Endomorphismus $e\colon V\to V$ auch id $_V-e$ idempotent ist, und dass im $(\mathrm{id}_V-e)=\ker e$ und $\ker(\mathrm{id}_V-e)=\mathrm{im}\,e$.

3. Es sei (U_1,U_2) ein Paar von Untervektorräumen $U_1,U_2\subseteq V$ mit $V=U_1\oplus U_2$. Zeigen Sie, dass es einen eindeutigen Endomorphismus $p_{U_1,U_2}\colon V\to V$ gibt, so dass

$$p_{U_1,U_2}(u_1+u_2)=u_1$$
 für alle $u_1\in U_1$ und $u_2\in U_2$.

4. Zeigen Sie, dass die obigen Konstruktionen eine Bijektion

$$\begin{cases} (U_1,U_2) \middle| & U_1,U_2 \subseteq V \text{ sind} \\ & \text{Untervektorräume} \\ & \text{mit } V = U_1 \oplus U_2 \end{cases} \longleftrightarrow \{e \in \text{End}(V) \mid e \text{ ist idempotent}\},$$

$$(U_1,U_2) \longmapsto p_{U_1,U_2}$$

$$(\text{im } e, \text{ker } e) \longleftrightarrow e$$

ergeben.

5. Auf der linken Seite der obigen Bijektion gibt es eine Involution $(U_1, U_2) \mapsto (U_2, U_1)$. Zeigen Sie, dass dies unter der gegebenen Bijektion der Involutions $e \mapsto \mathrm{id}_V - e$ auf der rechten Seite entspricht.

Übung 13.

Es sei V ein K-Vektorraum und $f: V \to V$ ein Endomorphismus mit $f^2 = 1$.

- 1. Zeigen Sie für char $K \neq 2$, dass f diagonalisierbar mit möglichen Eigenwerten 1 und -1 ist, dass also $V = V_1(f) \oplus V_{-1}(f)$.
- 2. Zeigen Sie, dass die Aussage für char K=2 nicht mehr gelten muss.

Übung 14.

Es seien V und W zwei K-Vektorräume, und $f\colon V\to W$ eine lineare Abbildung, die ein Rechtsinverses $g\colon W\to V$ besitzt. Zeigen Sie auf die folgenden beiden Weisen, dass

$$V = \ker f \oplus \operatorname{im} q$$

- 1. Durch explizites Nachrechnen, dass $V=\ker f+\operatorname{im} g$ und $\ker f\cap\operatorname{im} g=0.$
- 2. Durch geschickte Betrachtung des Endomorphismus $gf:V\to V$.

Übung 15.

Zeigen Sie im Folgenden jeweils, dass der Vektorraum V die direkte Summe der Untervektorräume U_1 und U_2 ist, indem Sie einen idempotenten Endomorphisus $e\colon V\to V$ mit $U_1=\operatorname{im} e$ und $U_2=\ker e$ angeben.

1. Es sei char $K \neq 2$, $V := M_n(K)$ der Vektorraum der $(n \times n)$ -Matrizen über K,

$$U_1 := \{ A \in \mathcal{M}_n(K) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen, und

$$U_2 := \{ A \in \mathcal{M}_n(K) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen.

2. Es sei $V := \{f \mid f \colon \mathbb{R} \to \mathbb{R}\}$ der Vektorraum der reellwertigen Folgen auf \mathbb{R} , sowie

$$U_1 := \{ f \in V \mid f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der geraden Funktionen und

$$U_2 := \{ f \in V \mid f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der ungeraden Funktionen.

3. Die Ebene $V=\mathbb{R}^2$ und als Untervektorräume die beiden Geraden

$$U_1 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{und} \quad U_2 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

4. Der reelle Vektorraum $V\coloneqq\mathbb{C}(I,\mathbb{R})$ der stetigen reellwertigen Funktionen auf dem Einheitsintervall I=[0,1] mit den Untervektorräumen

$$U_1 := \{ f \in V \mid f(0) = 0 \}$$
 und $U_2 := \{ f \in V \mid f \text{ ist konstant} \}.$

5. Für einen Körper mit char $K \nmid n$ der Vektorraum $V := \mathrm{M}_n(K)$ der $(n \times n)$ -Matrizen über K, und die Untervektorräume

$$U_1 := \mathfrak{sl}_n(K) = \{ A \in \mathcal{M}_n(K) \mid \operatorname{tr} A = 0 \} \quad \text{und} \quad U_2 := KI = \{ \lambda I \mid \lambda \in K \}$$

der spurlosen Matrizen und der Skalarmatrizen.

6. Es sei V ein K-Vektorraum und $f\colon V\to V$ ein Endomorphismus, so dass es $\lambda,\mu\in K$ mit $\lambda\neq\mu$ und $(f-\lambda)(f-\mu)=0$ gibt. Es seien $U_1=V_\lambda(f)$ und $U_2=V_\mu(f)$.

(*Hinweis*: Die Behauptung ist also, dass f diagonalisierbar mit Eigenwerten λ und μ ist.)

Übung 16.

Es sei V ein K-Vektorraum. Zeigen Sie, dass die folgenden Aussagen allgemein gelten, oder geben Sie jeweils ein Gegenbeispiel an.

- 1. Ist $V = U \oplus W_1 = U \oplus W_2$ für Untervektorräume $U, W_1, W_2 \subseteq V$, so ist $W_1 = W_2$.
- 2. Ist $V=V_1\oplus V_2$ für Untervektorräume $V_1,V_2\subseteq V$, so gilt für jeden Untervektorraum $U\subseteq V$ die Zerlegung

$$U = (U \cap V_1) \oplus (U \cap V_2).$$

- 3. Ist $f:V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum, so gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.
- 4. Für alle Untervektorräume $W, U_1, U_2 \subseteq V$ mit $U_1 \subseteq U_2$ gilt

$$(U_1 + W) \cap U_2 = U_1 + (W \cap U_2).$$

5. Sind $U_1, U_2, W \subseteq V$ Untervektorräume mit $U_1 \subseteq U_2$ und $V = U_1 \oplus W$, so ist

$$U_2 = U_1 \oplus (W \cap U_2).$$

- 6. Ist $\mathcal{E} \subseteq V$ ein Erzeugendensystem von V und $U \subseteq V$ ein Untervektorraum, so ist der Schnitt $\mathcal{E} \cap U$ ein Erzeugendensystem von U.
- 7. Ist $(U_i)_{i\in I}$ eine Famlie von Untervektorräumen $U_i\subseteq V$ mit $V=\sum_{i\in I}U_i$ und $U_i\cap U_j=0$ für $i\neq j$, so ist $V=\bigoplus_{i\in I}U_i$.

Übung 17.

Es sei V ein K-Vektorraum und $f\colon V\to V$ ein diagonalisierbarer Endomorphismus von V (d.h. es gilt $V=\bigoplus_{\lambda\in K}V_\lambda(f)$). Dann ist für jeden f-invarianten Untervektorraum $U\subseteq V$ die Einschränkung $f|_U\colon U\to U$ diagonalisierbar, und es gilt $U_\lambda(f|_U)=U\cap V_\lambda(f)$ für alle $\lambda\in K$.

Übung 18.

Es sei V ein K-Vektorraum. Eine Kollektion $e_1, \ldots, e_n \in \operatorname{End}(V)$ von Endomorphismen heißt *complete* set of orthogonal idempotents, falls die folgenden Bedingungen erfüllt sind:

- Für alle $i=1,\ldots,n$ ist e_i idempotent, also $e_i^2=e_i$ (idempotents).
- Für alle $1 \le i \ne j \le n$ ist $e_i e_j = 0$ (orthogonal).
- Es gilt $id_V = e_1 + \cdots + e_n$ (complete).
- 1. Es sei $e_1, \ldots, e_n \colon V \to V$ ein complete set of orthogonal idempotents. Zeigen Sie, dass

$$V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$$
.

2. Es seien $U_1, \ldots, U_n \subseteq V$ Untervektorräume mit $V = U_1 \oplus \cdots \oplus U_n$. Zeigen Sie, dass es für alle $i = 1, \ldots, n$ einen eindeutigen Endomorphismus $p_{U_1}^{(i)} = U_1 : V \to V$ mit

$$p_{U_1,\dots,U_n}^{(i)}(u_1+\dots+u_n)=u_i\quad\text{für alle }u_1\in U_1,\dots,u_n\in U_n,$$

gibt. Zeigen Sie ferner, dass $p_{U_1,\dots,U_n}^{(1)},\dots,p_{U_1,\dots,U_n}^{(n)}$ ein complete set of orthogonal idempotents ist.

3. Zeigen Sie, dass die obigen Konstruktionen wie folgt eine Bijektion ergeben:

$$\begin{cases} (U_1,\dots,U_n) & U_1,\dots,U_n \subseteq V \\ & \text{sind Untervek-} \\ & \text{torräume mit} \\ U = U_1 \oplus \dots \oplus U_n \end{cases} \longleftrightarrow \begin{cases} (e_1,\dots,e_n) & e_1,\dots,e_n \in \operatorname{End}(V) \\ & \text{ist ein complete set} \\ & \text{of orthogonal} \\ & \text{idempotents} \end{cases}$$

$$(U_1,\dots,U_n) \longmapsto \left(p_{U_1,\dots,U_n}^{(1)},\dots,p_{U_1,\dots,U_n}^{(n)}\right)$$

$$(\operatorname{im} e_1,\dots,\operatorname{im} e_n) \longleftrightarrow (e_1,\dots,e_n)$$

4. Es sei $f: V \to V$ ein diagonalisierbarer Endomorphismus mit Eigenwerten $\lambda_1, \dots, \lambda_n \in K$. Es sei $e_1, \dots, e_n \in K$ das complete set of orthogonal idempotents, dass der Zerlegung

$$V = V_{\lambda_1}(f) \oplus \cdots \oplus V_{\lambda_n}(f)$$

entspricht, d.h. für alle $i=1,\ldots,n$ sei $e_i=p^{(i)}_{V_{\lambda_1}(f),\ldots,V_{\lambda_n}(f)}$. Geben Sie eine Formel an, durch die sich e_i aus f ergibt.

Übung 19.

Es sei K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- 1. f ist diagonalisierbar.
- 2. Für jeden f-invarianten Untervektorraum $U\subseteq V$ gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.

Übung 20.

Es sei V ein K-Vektorraum und $e_1, \ldots, e_n \in \operatorname{End}(V)$ mit den folgenden Eigenschaften:

- Für alle $i=1,\ldots,n$ ist e_i idempotent, also $e_i^2=e_i$.
- Die idempotenten Endomorphismen e_1, \ldots, e_n sind paarweise orthogonal, d.h. es ist $e_i e_j = 0$ für alle $1 \le i \ne j \le n$.
- Es gilt $id_V = e_1 + \cdots + e_n$.

Man sagt, dass e_1, \ldots, e_n ein complete set of orthogonal idempotents ist.

- 1. Zeigen Sie, dass $V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$ gilt.
- 2. Zeigen Sie für alle $i=1,\ldots,n$, dass im $e_i=V_1(e_i)$ und $\bigoplus_{i\neq i}$ im $e_j=\ker e_i$ gelten.
- 3. Folgern Sie, dass es für jeden idempotenten Endomorphismus $e \colon V \to V$ eine Zerlegung

$$V = \operatorname{im} e \oplus \ker e$$

mit im $e = V_1(e)$ gibt.

(Hinweis: Erweitern Sie e zu einem complete set of idempotents, dass die Zerlegung liefert.)

4. Für alle $i=1,\ldots,n$ sei $E_{ii}\in \mathrm{M}_n(K)$ die Matrix mit 1 als i-ten Diagonaleintrag, und alle anderen Einträge sind 0. Zeigen Sie, dass die Endomorphismen e_1,\ldots,e_n mit

$$e_i: M_n(K) \to M_n(K), \quad A \mapsto AE_{ii}$$

ein complete set of orthogonal idempotents bildet, und bestimmen Sie die Zerlegung

$$M_n(K) = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n.$$

Übung 21.

Es sei V ein K-Vektorraum.

- 1. Es seien $e_1, \ldots, e_n \in \text{End}(V)$ Endomorphismen mit den folgenden Eigenschaften:
 - Für alle i = 1, ..., n ist e_i idempotent, also $e_i^2 = e_i$.
 - Die idempotenten Endomorphismen e_1,\ldots,e_n sind paarweise orthogonal, d.h. es ist $e_ie_j=0$ für alle $1\leq i\neq j\leq n$.
 - Es gilt $id_V = e_1 + \cdots + e_n$.

Man nennt e_1, \ldots, e_n ein complete set of orthogonal idempotents. Zeigen Sie, dass

$$V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$$
.

Es sei nun $f\colon V\to V$ ein Endomorphismus. Wir nehmen zunächst an, dass f diagonalisierbar mit paarweise verschiedenen Eigenwerten $\lambda_1,\ldots,\lambda_n\in K$ ist.

- 2. Zeigen Sie, dass $(f \lambda_1) \cdots (f \lambda_n) = 0$.
- 3. Folgern Sie aus der Eigenraumzerlegung $V = V_{\lambda_1}(f) \oplus \cdots \oplus V_{\lambda_n}(f)$, dass es für alle $i = 1, \ldots, n$ eine eindeutige lineare Abbildung $e_i \colon V \to V$ gibt, so dass

$$e_i(v_1 + \dots + v_n) = v_i$$
 für alle $v_1 \in V_{\lambda_1}(f), \dots, v_n \in V_{\lambda_n}(f)$.

(Die Abbildungen e_1, \ldots, e_n sind also die Projektionen auf die einzelnen Eigenräume bezüglich der Eigenraumzerlegung.)

- 4. Zeigen Sie, dass die Endomorphismen e_1, \ldots, e_n ein complete set of orthogonal idempotents bilden.
- 5. Zeigen Sie, dass im $e_i = V_{\lambda_i}(f)$ für alle i = 1, ..., n. Die Zerlegung $V = \operatorname{im} e_1 \oplus \cdots \oplus e_n$ stimmt also mit der Eigenraumzerlegung bezüglich f überein.
- 6. Zeigen Sie, dass

$$e_i = \prod_{j
eq i} rac{f - \lambda_j}{\lambda_i - \lambda_j} = rac{\prod_{j
eq i} (f - \lambda_j)}{\prod_{j
eq i} (\lambda_i - \lambda_j)} \quad ext{für alle } i = 1 \dots, n.$$

(*Hinweis*: Wenden Sie den rechten Ausdruck auf die Eigenräume von f an.)

Wir nehmen nun umgekehrt an, dass $(f - \lambda_1) \cdots (f - \lambda_n) = 0$ für paarweise verschiedene Skalare $\lambda_1, \dots, \lambda_n \in K$. Für alle $i = 1, \dots, n$ sei

$$e_i := \prod_{j \neq i} \frac{f - \lambda_j}{\lambda_i - \lambda_j} = \frac{\prod_{j \neq i} (f - \lambda_j)}{\prod_{j \neq i} (\lambda_i - \lambda_j)}.$$

7. Zeigen Sie, dass die Endomorphismen e_1, \ldots, e_n idempotent sind, indem Sie zeigen, dass

$$e_i^2 - e_i = 0$$
 für alle $i = 1, \dots, n$.

- 8. Zeigen Sie, dass die idempotenten Endomorphismen e_1, \ldots, e_n orthogonal sind.
- 9. Zeigen Sie, dass i
d $_V=e_1+\cdots+e_n$. Gehen Sie hierfür wie folgt vor: Für alle $i=1,\ldots,n$ sei

$$P_i(T) := \prod_{i \neq i} \frac{T - \lambda_j}{\lambda_i - \lambda_j} = \frac{\prod_{j \neq i} (T - \lambda_j)}{\prod_{j \neq i} (\lambda_i - \lambda_j)} \in K[T].$$

Zeigen Sie für alle $i=1,\ldots,n$, dass P_i ein Polynom vom Grad n-1 ist, so dass $e_i=P_i(f)$, und dass $P_i(\lambda_i)=1$ und $P_i(\lambda_i)=0$ für alle $j\neq i$.

Folgern Sie für das Polynom $P(T)\coloneqq 1-\sum_{i=1}^n P_i(T)$, dass deg $P\le n-1$, und dass $P(\lambda_i)=0$ für alle $i=1,\ldots,n$. Folgern Sie, dass P=0, also $1=\sum_{i=1}^n P_i(T)$.

Folgern Sie durch Einsetzen von f, dass id $_V = \sum_{i=1}^n e_i$.

Also ist e_1, \ldots, e_n ein complete set of orthogonal idempotents, und somit $V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$.

- 10. Zeigen Sie, dass im $e_i \subseteq V_{\lambda_i}(f)$ für alle $i=1,\ldots,n$. (*Hinweis*: Überlegen sie sich, dass $(f-\lambda_i)e_i=0$.)
- 11. Folgern Sie mithilfe der Zerlegung $V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$, dass V diagonalisierbar ist, und dass $\operatorname{im} e_i = V_{\lambda_i}(f)$ für alle $i = 1, \ldots, n$.

Ingesamt zeigt dies, dass f genau dann diagonalisierbar mit paarweise verschiedenen möglichen Eigenwerten $\lambda_1, \ldots, \lambda_n$ ist, wenn $(f - \lambda_1) \cdots (f - \lambda_n) = 0$.

- 12. Es sei nun $K=\mathbb{C}$. Folgern Sie, dass f in den folgenden Fällen diagonalisierbar ist, und bestimmen Sie jeweils die möglichen Eigenwerte:
 - $f^2 = f$
 - $f^3 = f$
 - $f^3 = -f$.
 - $f^n = \mathrm{id}_V$ für ein $n \ge 1$

Übung 22

Es seien V und W zwei K-Vektorräume und $f: V \to W$ eine lineare Abbildung.

1. Es sei $U \subseteq V$ ein Untervektorraum mit $f|_U = 0$. Zeigen Sie, dass V eine lineare Abbildung

$$\bar{f} \colon V/U \to W, \quad [v] \mapsto f(u)$$

induziert.

- 2. Zeigen Sie, dass im $\bar{f}=\operatorname{im} f$. Folgern Sie, dass \bar{f} genau dann surjektiv ist, wenn f surjektiv ist.
- 3. Zeigen Sie, dass $U \subseteq \ker f$, und dass $\ker \bar{f} = (\ker f)/U$. Folgern Sie, dass \bar{f} genau dann injektiv ist, wenn bereits di $U = \ker f$ gilt.
- 4. Folgern Sie: Die lineare Abbildung f induziert einen Isomorphismus

$$V/(\ker f) \to \operatorname{im} f, \quad [v] \mapsto f(v)$$

Übung 23.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es sei $\pi\colon V\to V/U,\,v\mapsto [v]$ die kanonische Projektion.

- 1. Es sei $(b_i)_{i\in I}$ eine Basis von V, und für eine Teilmenge $J\subseteq I$ sei $(b_j)_{j\in J}$ eine Basis von U. Zeigen Sie, dass $([b_i])_{i\in I\smallsetminus J}$ eine Basis von V/U ist.
- 2. Folgern Sie die folgenden Dimensionsformeln für einen endlich
dimensionalen K-Vektorraum V: Ist $U\subseteq V$ ein Untervektorraum, so
ist

$$\dim V/U = \dim V - \dim U.$$

Ist $f \colon V \to W$ eine lineare Abbildung in einen weiteren K-Vektorraum W, so ist

$$\dim V = \dim \ker f + \dim \operatorname{im} f$$
.

3. Es sei $(b_i)_{i\in I}$ eine Basis von U und $(c_j)_{j\in J}$ eine Basis von V/U, wobei $I\cap J=\emptyset$. Für jedes $j\in J$ sei $b_j\in V$ mit $\pi(b_j)=c_j$. Zeigen Sie, dass $(b_l)_{l\in L}$ für $L\coloneqq I\cup J$ ist eine Basis von V ist.

Übung 24.

Zeigen Sie, dass eine Teilmenge $U\subseteq V$ eines K-Vektorraums V genau dann ein Untervektorraum ist, wenn es einen K-Vektorraum W und eine lineare Abbildung $f\colon V\to W$ gibt, so dass $U=\ker f$.

Übung 25.

Es sei V ein K-Vektorraum mit Erzeugendensystem $E\subseteq V$. Es sei W ein K-Vektorraum mit Basis $(b_e)_{e\in E}$. Konstruieren Sie einen Isomorphismus $W/U\to V$ für einen passenden Untervektorraum $U\subseteq W$.

Übung 26.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein K-Untervektorraum. Konstruieren Sie für den Annihilator

$$U^{\circ} = \{ \varphi \in V^* \mid \varphi(u) = 0 \text{ für alle } u \in U \}$$

einen Isomorphismus $F \colon U^{\circ} \to (V/U)^*$.

Übung 27.

Es sei V ein K-Vektorraum und \sim eine Äquivalenzrelation auf V, so dass auf V/\sim die Addition

$$\overline{v} + \overline{w} = \overline{v + w}$$
 für alle $v, w \in V$

und die Skalarmultiplikation

$$\lambda \cdot \overline{v} = \overline{\lambda \cdot v}$$
 für alle $\lambda \in K, v \in V$

wohldefiniert sind.

- 1. Zeigen Sie, dass V/\sim mit den obigen Operationen ein K-Vektorraum ist, und dass $\overline{0}$ das Nullelement von V/\sim ist.
- 2. Zeigen Sie, dass die kanonische Abbildung $\rho \colon V \to V/\sim \text{mit } v \mapsto \overline{v}$ ein Epimorphismus ist.
- 3. Zeigen Sie für $U := \ker \rho$, dass

$$v \sim w \iff v - w \in U \quad \text{für alle } v, w \in V.$$

4. Folgern Sie, dass $V/\sim = V/U$, und ρ die kanonische Projektion des Quotientenvektorraums ist.

Übung 28

Es sei V ein \mathbb{K} -Vektorraum. Eine Abbildung $[\,\cdot\,] \colon V \to V$ heißt Seminorm, falls

- $[\lambda x] = |\lambda|[x]$ für alle $\lambda \in \mathbb{K}$ und $x \in V$ (Homogenität), und
- $[x+y] \le [x] + [y]$ für alle $x, y \in V$ (Dreiecksungleichung).

Zeigen Sie:

1. Die Teilmenge $N := \{x \in V \mid [x] = 0\}$ ist ein Untervektorraum von V.

2. Die Seminorm $[\cdot]$ induziert durch

$$\|\overline{x}\| \coloneqq [x] \quad \text{für alle } x \in V.$$

eine Norm auf V/N.

Übung 29.

Es sei V ein K-Vektorraum mit zwei Untervektorräumen $U_1, U_2 \subseteq V$. Zeigen Sie die folgenden beiden Isomorphiesätze:

1. Die Inklusion $U_1 \rightarrow U_1 + U_2$, $x \mapsto x$ induziert einen isomorphismus

$$U_1/(U_1 \cap U_2) \to (U_1 + U_2)/U_2$$
, $[x] \mapsto [x]$ für alle $x \in V$.

2. Ist $U_1 \subseteq U_2$, so ist U_2/U_1 ein Untervektorraum von V/U_1 , und die Abbildung

$$(V/U_1)/(U_2/U_1) \to V/U_2, \quad [[x]] \mapsto [x] \quad \text{für alle } x \in V.$$

ist ein wohldefinierter Isomorphismus.

Übung 30.

Es seien V und W zwei K-Vektorräume und $f:V\to W$ eine lineare Abbildung. Es sei

$$i \colon \ker f \to V, \quad v \mapsto v$$

die kanonische Inklusion und

$$p: W \to \operatorname{coker} f, \quad w \mapsto [w]$$

die kanonische Projektion.

- 1. Zeigen Sie, dass $f \circ i = 0$ und $p \circ f = 0$.
- 2. Zeigen Sie, dass es für jeden K-Vektorraum U und jede lineare Abbildung $h\colon U\to V$ mit $f\circ h=0$ eine eindeutige lineare Abbildung $\bar h\colon U\to \ker f$ gibt, so dass das folgende Diagram kommutiert:

3. Zeigen Sie, dass es für jeden K-Vektorraum U und jede lineare Abbildung $g\colon W\to U$ mit $g\circ f=0$ eine eindeutige lineare Abbildung $\bar g\colon \operatorname{coker} f\to U$ gibt, so dass das folgende Diagram kommutiert:

Übung 31.

Es sei V ein K-Vektorraum, $f:V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum.

1. Zeigen Sie: Der Endomorphismus f induziert einen Endomorphismus

$$\bar{f} \colon V/U \to V/U, \quad [v] \mapsto [f(v)].$$

Es sei nun $g\colon V\to V$ ein weiterer Endomorphismus, so dass U invariant unter g ist, und es sei $\bar g\colon V/U\to V/U$ der entsprechende induzierte Endomorphismus.

2. Es seien $f|_U = g|_U$ und $\bar{f} = \bar{g}$. Beweisen oder widerlegen Sie, dass bereits f = g gelten muss.

Übung 32.

Es sei V ein \mathbb{R} -Vektorraum und W ein \mathbb{C} -Vektorraum. Zeigen Sie:

1. Für jede \mathbb{R} -lineare Abbildung $f \colon V \to W$ gibt genau eine \mathbb{C} -lineare Abbildung $f_{\mathbb{C}} \colon V_{\mathbb{C}} \to W$, die das folgende Diagram kommutieren lässt:

2. Für je zwei \mathbb{C} -lineare Abbildungen $g_1,g_2\colon V_{\mathbb{C}}\to W$ die Äquivalenz

$$g_1 = g_2 \iff g_1 \circ \iota = g_2 \circ \iota$$

gilt.

3. Für jeden \mathbb{C} -Vektorraum W' gilt für jede \mathbb{R} -lineare Abbildung $f\colon V\to W$ und jede \mathbb{C} -lineare Abbildung $g\colon W\to W'$ die Gleichheit

$$(g \circ f)_{\mathbb{C}} = g \circ f_{\mathbb{C}}.$$

Übung 33.

1. Zeigen Sie, dass für jedes \mathbb{R} -Vektorraum V und \mathbb{C} -Vektorraum W die Abbildung

$$\Phi_{V,W} \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W), \quad f \mapsto f_{\mathbb{C}}$$

ein Isomorphismus von $\mathbb{R}\text{-Vektorr\"{a}}$ umen ist. Geben Sie auch $\Phi_{V,W}^{-1}$ an.

2. Es seien V,V',W,W' vier K-Vektorräume und $f\colon V\to V'$ und $g\colon W\to W'$ zwei K-lineare Abbildungen. Zeigen Sie, dass die beidseitige Komposition

$$g \circ - \circ f \colon \operatorname{Hom}_K(V, W) \to \operatorname{Hom}_K(V', W'), \quad h \mapsto g \circ h \circ f$$

eine K-lineare Abbildung ist.

3. Zeigen Sie, dass die Isomorphismen $\Phi_{V,W}$ in dem folgenden Sinne *natürlich* sind: Es seien V und V' zwei \mathbb{R} -Vektorräume und es sei $f\colon V\to V'$ eine \mathbb{R} -lineare Abbildung. Es seien W und W' zwei \mathbb{C} -Vektorräume und es sei $g\colon W\to W'$ eine \mathbb{C} -lineare Abbildung. Dann kommutiert das folgende Diagram von \mathbb{R} -Vektorräumen und \mathbb{R} -linearen Abbildungen:

Übung 34.

Es sei V ein \mathbb{R} -Vektorraum mit \mathbb{R} -Basis $\mathcal{B}=(v_j)_{j\in J}$. Zeigen Sie, dass dann $\mathcal{B}_{\mathbb{C}}=(v_j+i\cdot 0)_{j\in J}$ eine \mathbb{C} -Basis von $V_{\mathbb{C}}$ ist.

Übung 35.

Zeigen Sie, dass die \mathbb{R} -lineare Inklusion $\mathbb{R} \to \mathbb{C}$, $x \mapsto x$ einen Isomorphismus $\mathbb{R}_{\mathbb{C}} \to \mathbb{C}$ von \mathbb{C} -Vektorräumen induziert.

Übung 36.

Es seien V und W zwei \mathbb{R} -Vektorräume. Zeigen Sie, dass die \mathbb{R} -lineare Abbildung

$$\varphi \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}}), \quad f \mapsto f_{\mathbb{C}}$$

einen Isomorphismus von C-Vektorräumen

$$\Phi \colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}})$$

induziert.

(Hinweis: Beachten Sie, dass V und W nicht notwendigerweise endlichdimensional sind.)

Übung 37

Es sei V ein \mathbb{R} -Vektorraum. Konstruieren Sie einen Isomorphismus $(V^*)_{\mathbb{C}} \to (V_{\mathbb{C}})^*$. (*Hinweis*: Beachten Sie, dass V ist nicht notwendigerweise endlichdimensional ist.)

Übung 38

Es sei V ein reeller Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Zeigen Sie:

1. Es gilt

$$\left(\bigcap_{i\in I} U_i\right)_{\mathbb{C}} = \bigcap_{i\in I} (U_i)_{\mathbb{C}}$$

2. Es gilt

$$\left(\sum_{i\in I} U_i\right)_{\mathbb{C}} = \sum_{i\in I} (U_i)_{\mathbb{C}}.$$

3. Folgern Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb{C}}=\bigoplus_{i\in I}(U_i)_{\mathbb{C}}$.

Übung 39.

Es seien V und W zwei reelle Vektorräume, und $f:V\to W$ sei \mathbb{R} -linear.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb{C}}) = (\operatorname{im} f)_{\mathbb{C}}$.
- 5. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 40.

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb{C}}$ diagonalisierbar mit reellen Eigenwerten ist.

Übung 41.

Zeigen Sie, dass die kanonische Inklusion $\iota\colon \mathbb{R}[X] \to \mathbb{C}[X]$, $x \mapsto x$ \mathbb{R} -linear ist, und einen Isomorphismus $\mathbb{R}[X]_{\mathbb{C}} \to \mathbb{C}[X]$ von \mathbb{C} -Vektorräumen induziert.

Übung 42.

Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Basis eines \mathbb{R} -Vektorraums V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Basis eines \mathbb{R} -Vektorraums W. Es seien

$$\mathcal{B}_{\mathbb{C}} \coloneqq (b_1 + i \cdot 0, \dots, b_n + i \cdot 0)$$
 und $\mathcal{C}_{\mathbb{C}} \coloneqq (c_1 + i \cdot 0, \dots, c_m + i \cdot 0)$

die entsprechenden \mathbb{C} -Basen der Komplexifizierungen $V_{\mathbb{C}}$ und $W_{\mathbb{C}}$. Es seiena

$$\Phi^{\mathbb{R}} \colon \operatorname{Hom}_{\mathbb{R}}(V, W) \to \operatorname{M}(m \times n, \mathbb{R}), \quad f \mapsto \operatorname{M}_{\mathcal{B}, \mathcal{C}}(f)$$

und

$$\Phi^{\mathbb{C}}$$
: $\operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}}, W_{\mathbb{C}}) \to \operatorname{M}(m \times n, \mathbb{C}), \quad q \mapsto \operatorname{M}_{\mathcal{B}, \mathcal{C}}(q).$

Es seien

$$\begin{split} \iota_1 \colon \operatorname{Hom}_{\mathbb{R}}(V,W) &\to \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}}, \quad f \mapsto f+i \cdot 0, \\ \iota_2 \colon \operatorname{Hom}_{\mathbb{R}}(V,W) &\to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}}), \quad f \mapsto f_{\mathbb{C}} \\ \iota_3 \colon \operatorname{M}(m \times n,\mathbb{R}) &\to \operatorname{M}(m \times n,\mathbb{R})_{\mathbb{C}}, \quad A \mapsto A+i \cdot 0, \\ \iota_4 \colon \operatorname{M}(m \times n,\mathbb{R}) &\to \operatorname{M}(m \times n,\mathbb{C}), \quad A \mapsto A, \end{split}$$

die jeweiligen kanonischen Inklusionen.

1. Zeigen Sie, dass das folgende Diagram kommutiert:

Folgern Sie, dass ι_4 tatsächlich injektiv ist, wie der oben verwendete Begriff *Inklusion* vermuten lässt.

2. Zeigen Sie, dass das folgende Diagram kommutiert:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{R}}(V,W) & \stackrel{\iota_1}{\longrightarrow} \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \\ & & & \downarrow^{(\Phi^{\mathbb{R}})_{\mathbb{C}}} \\ \operatorname{M}(m \times n,\mathbb{R}) & \stackrel{\iota_3}{\longrightarrow} \operatorname{M}(m \times n,\mathbb{R})_{\mathbb{C}} \end{array}$$

3. Zeigen Sie, dass die Inklusion ι_1 eine eindeutige \mathbb{C} -lineare Abbildung

$$\Psi_1 \colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}})$$

induziert, die das folgende Diagram zum kommutieren bringt:

4. Zeigen Sie auf analoge Weise, dass die Inklusion ι_2 eine eindeutige $\mathbb C$ -lineare Abbildung

$$\Psi_2 \colon \operatorname{M}(m \times n, \mathbb{R})_{\mathbb{C}} \to \operatorname{M}(m \times n, \mathbb{C})$$

induziert, die das folgende Diagram zum kommutieren bringt:

5. Wir haben nun das folgende Diagram:

Von diesem Diagram wissen wir bereits, dass Deckel, Boden und beide Rückseiten kommutieren. Zeigen Sie damit, dass auch die Vorderseite kommutiert.

(*Hinweis*: Nutzen Sie, dass zwei \mathbb{C} -lineare Abbildung $f,g\colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}}\to \operatorname{M}(m\times n,\mathbb{C})$ genau dann übereinstimmen, wenn die Kompositionen $f\circ\iota_2$ und $g\circ\iota_2$ übereinstimmen.)

- 6. Zeigen Sie, dass Ψ_2 ein Isomorphismus von \mathbb{C} -Vektorräumen ist.
- 7. Folgen Sie, dass auch Ψ_1 ein Isomorphismus von \mathbb{C} -Vektorräumen ist.

Übung 43.

Es sei $V \neq 0$ ein K-Vektorraum, wobei K algebraisch abgeschlossen ist. Es seien $f_1, \ldots, f_n \colon V \to V$ paarweise kommutierende Endomorphismen. Zeigen Sie, dass die Endomorphismen f_1, \ldots, f_n einen gemeinsamen Eigenvektor besitzen, d.h. dass es ein $v \in V$ gibt, das für jedes f_i eine Eigenvektor ist.

Übung 44.

Es sei V ein K-Vektorraum. Für alle Endomorphismen $f_1, \ldots, f_n \colon V \to V$ und Skalare (Eigenwerte) $\lambda_1, \ldots, \lambda_n \in K$ sei

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) := \{v \in V \mid f_i(v) = \lambda_i v \text{ für alle } i = 1, \dots, n\}$$

der gemeinsame Eigenraum der Endomorphismen f_1, \ldots, f_n zu den Eigenwerten $\lambda_1, \ldots, \lambda_n$.

1. Zeigen Sie, dass

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) = \bigcap_{i=1}^n V(f_i, \lambda_i)$$

für alle Endomorphismen $f_1, \ldots, f_n \in \text{End}(V)$ und Eigenwerte $\lambda_1, \ldots, \lambda_n \in K$.

- 2. Es seien $f_1, \ldots, f_n, g \in \operatorname{End}(V)$ Endomorphismen, so dass g mit jedem f_i kommutiert. Zeigen sie, dass der gemeinsame Eigenraum $V(f_1, \lambda_1; \ldots; f_n, \lambda_n)$ für alle $\lambda_1, \ldots, \lambda_n \in K$ invariant unter g ist.
- 3. Zeigen Sie: Sind die Endomorphismen $f_1,\ldots,f_n\colon V\to V$ diagonalisierbar (d.h. für alle $i=1,\ldots,n$ ist $V=\bigoplus_{\lambda\in K}V(f_i,\lambda)$) und paarweise kommutierend, so sind die Endomorphismen simultan diagonalisierbar, d.h. es ist

$$V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} V(f_1, \lambda_1; \dots; f_n, \lambda_n).$$

4. Es sei nun V endlichdimensional und $H \subseteq \operatorname{End}(V)$ ein Untervektorraum aus diagonalisierbaren und paarweise kommutierenden Endomorphismen. Zeigen Sie, dass es eine Basis \mathcal{B} von V gibt, so dass $\operatorname{M}_{\mathcal{B}}(f)$ für jedes $f \in H$ eine Diagonalmatrix ist.

(*Hinweis*: Nutzen Sie, dass End(V) endlichdimensioal ist.)

Übung 45.

Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen \mathbb{C} -Vektorraums V. Drücken Sie tr f und det f durch die mit (nicht notwendigerweise verschiedenen) Eigenwerten $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ von f aus

Übung 46.

Es sei $A \in M_2(\mathbb{R})$ mit trA = 0 und tr $A^2 = -2$. Bestimmen Sie det A.

Übung 47.

Es sei $A \in \mathrm{GL}_n(K)$ und $\chi_A(T)$ das charakteristische Polynom von A.

- 1. Zeigen Sie, dass der konstante Term von $\chi_A(T)$ nicht verschwindet.
- 2. Zeigen Sie, dass es ein Polynom $P \in K[T]$ gibt, so dass $A^{-1} = P(A)$.

Übung 48.

Es sei K ein algebraisch abgeschlossener Körper mit char $K \notin \{2,3\}$. Zeigen Sie, dass

$$\det A = \frac{1}{6}(\operatorname{tr} A)^3 - \frac{1}{2}(\operatorname{tr} A^2)(\operatorname{tr} A) + \frac{1}{3}(\operatorname{tr} A^3) \quad \text{für jedes } A \in \operatorname{M}_3(K).$$

(Hinweis: Wenn die Rechnungen zu kompliziert werden, dann macht man es falsch.)

Übung 49.

Es sei $f:V\to V$ ein Endomorphismus eines n-dimensionalen K-Vektorraums V und $\{v_1,\ldots,v_{n+1}\}\subseteq V$ eine Teilmenge aus Eigenvektoren von f, so dass jede n-elementige Teilmenge linear unabhängig ist. Zeigen Sie, dass f bereits ein skalares Vielfaches der Identität ist.

Übung 50.

Bestimmen Sie alle nicht-diagonalierbaren $A \in M_2(\mathbb{C})$ mit tr = 0.

Übung 51.

Bestimmen Sie für die folgenden komplexen Matrizen jeweils eine Jordannormalform, inklusiver entsprechender Basiswechselmatrizen:

$$\begin{pmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix},$$
$$\begin{pmatrix} 3 & 3 & 1 & 5 \\ 0 & -2 & 2 & -8 \\ -1 & -2 & 0 & -3 \\ 0 & 2 & -1 & 6 \end{pmatrix}$$

Übung 52.

Es sei V ein endlichdimensionaler K-Vektorraum und $f:V\to V$ ein Endomorphismus.

- 1. Es sei $n:V\to V$ ein nilpotenter Endomorphismus. Zeigen Sie, dass id $_V+n$ invertierbar ist.
- 2. Zeigen, bzw. folgern Sie allgemeiner, dass $\lambda id_V + n$ für alle $\lambda \in K^{\times}$ invertierbar ist.
- 3. Es sei $f \colon V \to V$ ein beliebiger Endomorphismus. Zeigen Sie für alle $\lambda, \mu \in K$ mit $\lambda \neq \mu$, dass $V_{\lambda}^{\sim}(f)$ invariant unter $f \mu \mathrm{id}_V$ ist, und dass die Einschränkung $(f \mu \mathrm{id}_V)|_{V_{\lambda}^{\sim}(f)}$ invertierbar ist.
- 4. Folgern Sie: Ist $(f \lambda_1)^{n_1} \cdots (f \lambda_k)^{n_k} = 0$ mit $\lambda_1, \dots, \lambda_k \in K$ paarweise verschieden, so sind $\lambda_1, \dots, \lambda_k$ die möglichen Eigenwerte von f, und für alle $1 \le i \le k$ ist dim $V_{\lambda_i}^{\sim}(f) \le n_i$.
- 5. Folgern Sie: Ist K algebraisch abgeschlossen und $(f \lambda_1) \cdots (f \lambda_n) = 0$, so ist f diagonalisierbar mit möglichen Eigenwerten $\lambda_1, \ldots, \lambda_n \in K$.

Übung 53.

Es sei $f\colon V\to V$ Endomorphismus eines \mathbb{C} -Vektorraums und $\lambda\in\mathbb{C}$. Zeigen Sie, dass die Einschränkung $(f-\lambda\mathrm{id}_V)|_{V_{\gamma}^{\infty}(f)}$ nicht notwendigerweise nilpotent ist.

Übung 54

Bestimmen Sie in den Folgenden alle Möglichkeiten der Jordannormalform von $A \in \mathrm{M}_n(\mathbb{C})$.

- 1. Es ist $\chi_A(T) = (T-3)^4(T-5)^4$ und $(A-3I)^2(A-5I)^2 = 0$.
- 2. Es ist $A^3 = 0$ und alle Eigenräume von A sind eindimensional.
- 3. Es ist $\chi_A(T) = (T-2)(T+2)^3$ und (A-2I)(A+2I) = 0.
- 4. Es ist $\chi_A(T) = T(T-1)(T+1)$.
- 5. Es ist $\chi_A(T) = (T-2)^2(T-3)^2$ und alle Eigenräume von A sind entweder null- oder eindimensional.
- 6. Es ist $A^2 = A$ und alle Eigenräume von A sind zweidimensional.
- 7. Es ist $\chi_A(T) = T^5$ und alle Eigenräume von A sind entweder null- oder eindimensional.
- 8. Es ist $\chi_A(T) = (T+3)^3 T^2$ und A hat keine zweidimensionalen Eigenräume.

Übung 55.

Es sei V ein endlichdimensionaler \mathbb{C} -Vektorraum.

1. Es sei $n\colon V\to V$ ein nilpotenter Endomorphismus. Zeigen Sie, dass der Endomorphismus id $_V+n$ invertierbar ist.

Ein Endomorphismus $u\colon V\to V$ heißt *unipotent*, falls $u-\mathrm{id}_V$ nilpotent it.

2. Folgern Sie, dass jeder unipotente Endomorphismus von V invertierbar ist.

Auf dem fünften Übungszettel wurde gezeigt, dass es für jeden Endomorphismus $f\colon V\to V$ eindeutige Endomorphismen $d,n\colon V\to V$ gibt, so dass

- f = d + n,
- d ist diagonalisierbar und n ist nilpotent, und
- d und n kommutieren.

Folgern Sie aus dieser additiven Jordanzerlegung von $\mathrm{End}(V)$ die folgende multiplikative Jordanzerlegung von $\mathrm{GL}(V)$.

- 3. Zeigen Sie, dass es für jedes $s \in \mathrm{GL}(V)$ eindeutige $d, u \in \mathrm{GL}(V)$ gibt, so dass
 - $s = d \cdot u$,
 - d ist diagonalisierbar und \boldsymbol{u} ist unipotent, und
 - d und u kommutieren.

Übung 56.

Bestimmen Sie die Potenz A^{10} der Matrix

$$A := \begin{pmatrix} 3 & 4 & 3 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix} \in \mathrm{M}_n(\mathbb{C}).$$

Übung 57.

Bestimmen Sie die Lösungsräume der folgenden homogenen linearen Gleichungsssysteme mit $f,g,h\in C^\infty(\mathbb{R})$:

$$\left\{ \begin{array}{llll} f' & = & -f & -6g, \\ g' & = & 2f & +6g, \end{array} \right. \left\{ \begin{array}{llll} f' & = & -f & -g, \\ g' & = & 2f & +g, \end{array} \right. \left\{ \begin{array}{llll} f' & = & 2f & +2g & +3h, \\ g' & = & f & +3g & +3h, \\ h' & = & -f & -2f & -2h. \end{array} \right.$$

Übung 58.

Es sei $\|\cdot\|$ eine Norm auf $\mathrm{M}_n(\mathbb{C})$. Für alle $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ sei

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n) \coloneqq \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in \operatorname{M}_n(\mathbb{C}).$$

Es sei

$$\mathbf{D}_n(\mathbb{C}) \coloneqq \left\{ S \operatorname{diag}(\lambda_1, \dots, \lambda_n) S^{-1} \, \middle| \, S \in \operatorname{GL}_n(\mathbb{C}), \lambda_1, \dots, \lambda \in \mathbb{C} \right\} \subseteq \mathbf{M}_n(\mathbb{C})$$

die Menge der diagonalisierbaren komplexen $n \times n$ -Matrizen. Wir zeigen, dass $D_n(\mathbb{C}) \subseteq \mathrm{M}_n(\mathbb{C})$ dicht ist, d.h. dass es für jede Matrix $A \in \mathrm{M}_n(\mathbb{C})$ und jedes $\varepsilon > 0$ eine diagonalisierbare Matrix $D \in \mathrm{D}_n(\mathbb{C})$ mit $\|A - D\| < \varepsilon$ gibt.

Es sei $S \in \mathrm{GL}_n(\mathbb{C})$, so dass SAS^{-1} eine obere Dreiecksmatrix mit Diagonaleinträgen $\lambda_1, \ldots, \lambda_n$ ist, also

$$SAS^{-1} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}.$$

Es seien $z_1,\ldots,z_n\in\mathbb{C}$ paarweise verschieden und

$$B(t) := A + tS \operatorname{diag}(z_1, \dots, z_n) S^{-1}$$
 für alle $t \in \mathbb{R}$.

1. Zeigen Sie, dass $\mu_1(t), \ldots, \mu_n(t) \in \mathbb{C}$ mit

$$\mu_i(t) := \lambda_i + tz_i$$
 für $i = 1, \dots, n$

die Eigenwerte von B(t) ist.

- 2. Zeigen Sie, dass die Zahlen $\mu_1(t), \ldots, \mu_n(t)$ für fast alle $t \in \mathbb{R}$ paarweise verschieden sind.
- 3. Folgern Sie, dass B(t) für fast alle $t \in \mathbb{R}$ diagonalisierbar ist.
- 4. Folgern Sie, dass es für alle $\varepsilon > 0$ ein $D \in D_n(\mathbb{C})$ mit $||A D|| < \varepsilon$ gibt.

Wir wollen die Dichtheit von $D_n(\mathbb{C})\subseteq M_n(\mathbb{C})$ nutzen, um den Satz von Cayley-Hamilton zu zeigen:

5. Zeigen Sie, dass die Abbildung

$$F: M_n(\mathbb{C}) \to M_n(\mathbb{C}), \quad A \mapsto \chi_A(A)$$

stetig ist, wobe
i $\chi_A(T)\in\mathbb{C}[T]$ das charakteristische Polynom von A
ist.

- 6. Zeigen Sie, dass F(D)=0 für jede Diagonalmatrix $D\in \mathrm{M}_n(\mathbb{C})$.
- 7. Zeigen Sie, dass $P(SAS^{-1}) = SP(A)S^{-1}$ für alle $P \in \mathbb{C}[T]$, $A \in M_n(\mathbb{C})$ und $S \in GL_n(\mathbb{C})$. Folgern Sie, dass F(D) = 0 für jede Matrix $D \in D_n(\mathbb{C})$.
- 8. Folgern Sie, dass F(A) = 0 für alle $A \in M_n(\mathbb{C})$.

Übung 59.

Definieren Sie die Begriffe eines reellen, bzw. komplexen Skalarprodukts, sowie eines reellen, bzw. komplexen Hilbertraums.

Übung 60.

Formulieren und Beweisen Sie die Cauchy-Schwarz-Ungleichung.

Übung 61

Es sei V ein Skalarproduktraum. Zeigen Sie für Endomorphismen $f, g_1, g_2 \colon V \to V$ Endomorphismen die folgende Kürzungsregel: Falls f^* existiert und $f^*fg_1 = f^*fg_2$, dann ist bereits $fg_1 = fg_2$.

Übung 62

Zeigen Sie, dass jeder endlichdimensionale Skalarproduktraum eine Orthonormalbasis besitzt.

Übung 63.

Es sei V ein \mathbb{K} -Vektorraum mit abzählbarer Orthonormalbasis $(e_i)_{i \in \mathbb{N}}$. Es sei $T \colon V \to V$ die eindeutige lineare Abbildung mit $T(e_i) = e_1$ für alle $i \in \mathbb{N}$. Zeigen Sie, dass T kein Adjungiertes besitzt.

Übung 64.

Es sei V ein Skalarproduktraum und $v_1, \ldots, v_n \in V$ seien paarweise orthogonal zueinander. Zeigen Sie: Ist $v_1, \ldots, v_n \neq 0$, so ist die Familie (v_1, \ldots, v_n) linear unabhängig.

Übung 65.

Es sei V ein Skalarproduktraum und $f\colon V\to V$ ein normaler Endomorphismus. Zeigen Sie, dass die Eigenräume $V_\lambda(f)$ und $V_\mu(f)$ für alle $\lambda\neq\mu$ orthogonal sind.

Übung 66.

Es seien V und W zwei \mathbb{K} -Skalarprodukträume und $f\colon V\to W$ eine lineare Abbildung. Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Orthonormalbasis von V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Orthonormalbasis von W. Zeigen Sie die Gleichheit

$$M_{\mathcal{B},\mathcal{C}}(f^*) = M_{\mathcal{C},\mathcal{B}}(f)^*.$$

Übung 67.

Es sei V ein endlichdimensionaler Skalarproduktraum und $f \colon V \to V$ ein normaler Endomorphismus.

- 1. Zeigen Sie, dass $||f(v)|| = ||f^*(v)||$ für alle $v \in V$.
- 2. Zeigen Sie, dass $V_{\lambda}(f)=V_{\overline{\lambda}}(f^*)$ und $V_{\lambda}^{\sim}(f)=V_{\overline{\lambda}}^{\sim}(f^*)$.

Übung 68.

Es sei V ein endlichdimensionaler Skalarproduktraum und $v_1, \ldots, v_n \in V$ seien Einheitsvektoren. Zeigen Sie, dass die folgenden beiden Aussage äquivalent sind:

- 1. (v_1, \ldots, v_n) ist eine Orthonormalbasis von V.
- 2. Für alle $v \in V$ ist $||v||^2 = \sum_{i=1}^n |\langle v, v_i \rangle|^2$.

Übung 69.

Es sei V ein Skalarproduktraum und $f\colon V\to V$ ein selbstadjungierter, nilpotenter Endomorphismus. Zeigen Sie, dass f=0.

Übung 70.

Es sei $\pi \in S_n$ eine Permutation und $P_\pi \colon \mathbb{R}^n \to \mathbb{R}^n$ die eindeutige lineare Abbildung mit

$$P_{\pi}(e_i) = e_{\pi(i)}$$
 für alle $i = 1, \dots, n$,

wobei (e_1,\ldots,e_n) die Standardbasis von \mathbb{R}^n ist.

- 1. Zeigen Sie, dass P_{π} orthogonal ist.
- 2. Bestimmen Sie die möglichen Eigenwerte von P_{π} .
- 3. Geben Sie ein Beispiel an, bei dem alle möglichen Eigenwerte auftreten.

Übung 71.

Es sei V ein endlichdimensionaler Skalarproduktraum und $U \subseteq V$ ein Untervektorraum mit Orthonormalbasis (u_1, \ldots, u_n) . Zeigen Sie, dass die lineare Abbildung

$$P: V \to V, \quad v \mapsto \sum_{i=1}^{n} \langle v, u_i \rangle u_i$$

die orthogonale Projektion auf U ist.

Übung 72

Bestimmen Sie die Signatur (n_0, n_+, n_-) der folgenden quadratischen Formen auf \mathbb{R}^n :

- 1. $q(x_1, x_2) = 2x_1^2 3x_2^2 + 2x_1x_2$
- 2. $q(x_1, x_2) = -x^1 + x_2 + ax_1x_2$ mit $a \in \mathbb{R}$
- 3. $q(x_1, x_2) = x_1^2 + 15x_2^2 + 6x_1x_2$
- 4. $q(x_1, x_2) = 2x_1x_2$
- 5. $q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 2x_1x_3 + x_2^2 2x_2x_3 x_3^2$

6.
$$q(x_1, x_2, x_3, x_4) = x_1^2 - 7x_2^2 - x_3^2 - x_4^2 + 2x_1x_2 - 6x_2x_3 + 6x_2x_4 + 2x_3x_4$$
.

Übung 73.

Es sei $V \neq 0$ ein \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für alle $\lambda \in \mathbb{K}$ sei

$$\langle x, y \rangle_{\lambda} := \lambda \langle x, y \rangle$$
 für alle $x, y \in V$.

Bestimmen Sie alle $\lambda \in \mathbb{K}$, für die $\langle \cdot, \cdot \rangle_{\lambda}$ ein Skalarprodukt auf V ist.

Übung 74.

Es sei V ein endlichdimensionaler unitärer Vektorraum und $f\colon V\to V$ ein normaler Endomorphismus. Zeigen Sie:

- 1. f ist genau dann unitär, wenn alle Eigenwerte von f Betrag 1 haben.
- 2. f ist genau dann selbstadjungiert, wenn alle Eigenwerte von f reell sind.
- 3. f ist genau dann antiselbstadjungiert, wenn alle Eigenwerte von f rein imaginär sind.
- 4. f ist genau dann eine Orthogonalprojektion, wenn 0 und 1 die einzigen Eigenwerte von f sind.

Übung 75.

Es sei V ein endlichdimensionaler Skalarproduktsraum und $f:V\to V$ ein Endomorphismus.

- 1. Zeigen Sie, dass ker $f^* \subseteq (\operatorname{im} f)^{\perp}$.
- 2. Folgern Sie daraus, dass im $f^* \subseteq (\ker f)^{\perp}$.
- 3. Folgern Sie aus den beiden Inklusionen ker $f^*\subseteq (\operatorname{im} f)^{\perp}$ und $\operatorname{im} f^*\subseteq (\ker f)^{\perp}$ mithilfe der Endlichdimensionalität von V, dass bereits Gleichheiten gelten, dass also

$$\ker f^* = (\operatorname{im} f)^\perp \quad \text{und} \quad \operatorname{im} f^* = (\ker f)^\perp.$$

Von nun an sei f normal.

- 4. Zeigen Sie, dass $||f(x)|| = ||f^*(x)||$ für alle $x \in V$.
- 5. Folgern Sie, dass ker $f = \ker f^*$.
- 6. Folgern Sie damit aus den obigen Gleichheiten, dass $V=\operatorname{im} f\oplus\ker f$ gilt, und dass die Summe orthogonal ist.

($\mathit{Hinweis}$: Zeigen Sie zuerst, dass im f und ker f orthogonal sind, und nutzen Sie dann die Endlichdimensionalität von V.)

Übung 76.

1. Bestimmen Sie für die Matrix

$$A := \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathsf{M}_n(\mathbb{R})$$

eine orthogonale Matrix $S \in O(3)$, so dass $S^T A S$ eine Diagonalmatrix ist.

2. Bestimmen Sie für die symmetrische Bilinearform $\beta\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ mit

$$\beta\left(\begin{pmatrix}x_1\\x_2\end{pmatrix},\begin{pmatrix}y_1\\y_2\end{pmatrix}\right)\coloneqq x_1y_2+x_2y_1\quad\text{für alle }\begin{pmatrix}x_1\\x_2\end{pmatrix},\begin{pmatrix}y_1\\y_2\end{pmatrix}\in\mathbb{R}^2$$

eine Basis \mathcal{B} von \mathbb{R}^2 , so dass β bezüglich \mathcal{B} durch eine Diagonalmatrix mit möglichen Diagonaleinträgen 0, 1, -1 dargestellt wird.

Übung 77.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f\colon V\to W$ eine \mathbb{R} -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

- 2. Geben Sie die Definition der dualen Abbildung $f^* \colon W^* \to V^*$ an. Zeigen Sie, dass f^* \mathbb{R} -linear ist.
- 3. Zeigen Sie, dass die Abbildung $g \coloneqq \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V, w \in W$.

- 4. Zeigen Sie: Eine Basis $\mathcal{B}=(v_1,\ldots,v_n)$ von V ist genau dann eine Orthonormalbasis, wenn die Basis $\Phi_V(\mathcal{B})=(\Phi_V(v_1),\ldots,\Phi_V(v_n))$ von V^* die duale Basis \mathcal{B}^* ist.
- 5. Inwiefern ändern sich die obigen Resultate für denn Fall $\mathbb{K} = \mathbb{C}$, wenn also V und W endlichdimensionale unitäre Vektorräume sind?

Übung 78.

Es sei V ein endlichdimensionale \mathbb{K} -Vektorraum und $f \colon V \to V$ ein Endomorphismus.

- 1. Zeigen Sie für denn Fall $\mathbb{K} = \mathbb{R}$, dass f genau dann diagonalisierbar ist, wenn es ein Skalarprodukt auf V gibt, bezüglich dessen f selbstadjungiert ist.
- 2. Zeigen oder widerlegen Sie die analoge Aussage für $\mathbb{K} = \mathbb{C}$.

Übung 79.

Es sei $x \in \mathbb{R}^n$ ein normierter Spaltenvektor und

$$A := xx^T \in M(n \times n, \mathbb{R}).$$

Zeigen Sie, dass die Abbildung

$$P: \mathbb{R}^n \to \mathbb{R}^n, \quad y \mapsto Ay$$

die orthogonale Projektion auf die Gerade $\mathbb{R}x$ ist.

Übung 80.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Für jeden Untervektorraum $U\subseteq V$ sei

$$U^{\perp} := \{ v \in V \mid \langle u, v \rangle = 0 \text{ für alle } u \in U \}$$

das orthogonale Komplement von U, und

$$U^{\circ} := \{ \varphi \in V^* \mid \varphi(u) = 0 \text{ für alle } u \in U \}$$

der Annihilator von U. Für jeden Endomorphismus $f\colon V\to W$ sei $f^*\colon W\to V$ die Adjungierte von f, und

$$f^T \colon W^* \to V^*, \quad \varphi \mapsto \varphi \circ f$$

die zu f duale Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

- 2. Zeigen Sie, dass für jeden Untervektorraum $U \subseteq V$ die Gleichheit $\Phi_V(U^{\perp}) = U^{\circ}$ gilt.
- 3. Zeigen Sie, dass $f^T \circ \Phi_W = \Phi_V \circ f^*$, dass alsa das folgende Diagram kommutiert:

$$V \leftarrow f^* \qquad W$$

$$\Phi_V \downarrow \qquad \qquad \downarrow \Phi_W$$

$$V^* \leftarrow f^T \qquad W^*$$

Folgern Sie, dass $f^* = \Phi_V^{-1} \circ f^T \circ \Phi_W$.

In Linear Algebra I wurde gezeigt, dass

$$\ker f^T = (\operatorname{im} f)^\circ \quad \text{und} \quad \operatorname{im} f^T = (\ker f)^\circ,$$

und dass für je zwei Untervektorräume $U_1, U_2 \subseteq V$ die Gleichheiten

$$(U_1 + U_2)^{\circ} = U_1^{\circ} \cap U_2^{\circ}$$
 und $(U_1 \cap U_2)^{\circ} = U_1^{\circ} + U_2^{\circ}$

gelten.

4. Folgen Sie aus den vorherigen Aufgabenteilen und den Aussagen aus Lineare Algebra I, dass für alle Untervektorräume $U_1,U_2\subseteq V$ die Gleichheiten

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$
 und $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$

gelten.

(*Hinweis*: Nutzen Sie, dass Φ_V ein Isomorphismus ist.)

5. Folgen Sie aus den vorherigen Aufgabenteilen und den Aussagen aus Lineare Algebra I, dass

$$\ker f^* = (\operatorname{im} f)^\perp \quad \text{und} \quad \operatorname{im} f^* = (\ker f)^\perp.$$

(*Hinweis*: Nutzen Sie, dass Φ_V und Φ_W Isomorphismen sind.)

Übung 81.

Es sei $V \coloneqq \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$, und es sei

$$U := \{ f \in V \mid f(0) = 0 \}.$$

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t)\,\mathrm{d}t \quad \text{für alle } f,g \in V$$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^{\perp}=0$. Folgern Sie, dass $V\neq U\oplus U^{\perp}$. (*Hinweis*: Betrachten Sie für $g\in U^{\perp}$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass V/U eindimensional ist.

Übung 82.

Es sei V ein endlichdimensionaler euklidischer Vektorraum und $f:V\to V$ ein selbstadjungierter, orthogonaler Endomorphismus mit nur positiven Eigenwerten. Zeigen Sie, dass bereits $f=\operatorname{id}_V$ gilt.

Übung 83.

Es sei V ein endlichdimensionaler euklidischer Vektorraum.

1. Zeigen Sie, dass die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

2. Zeigen Sie: Eine Basis $\mathcal{B}=(v_1,\ldots,v_n)$ von V ist genau dann eine Orthonormalbasis, wenn

$$\varphi = \sum_{i=1}^n \varphi(v_i) \langle -, v_i \rangle$$
 für alle $\varphi \in V^*$.

Es sei nun V der Vektorraum der Polynomsfunktionen $\mathbb{R} \to \mathbb{R}$ vom Grad ≤ 2 . Für $a \in \mathbb{R}$ sei $\varphi_a \in V^*$ durch $\varphi_a(f) = f(a)$ definiert.

3. Zeigen Sie, dass

$$\langle f, g \rangle \coloneqq \int_{-1}^{1} f(t)g(t) \, \mathrm{d}t \quad \text{für alle } f, g \in V$$

ein Skalarprodukt auf V definiert.

- 4. Bestimmen Sie eine Orthonormalbasis von V.
- 5. Zeigen Sie, dass es für alle $a \in \mathbb{R}$ ein eindeutiges $g_a \in V$ gibt, so dass

$$f(a) = \int_{-1}^{1} f(t)g_a(t) dt$$
 für alle $f \in V$.

6. Bestimmen Sie g_a für beliebiges $a \in \mathbb{R}$.

Übung 84.

Es sei V ein endlichdimensionaler euklidischer Vektorraum und $f\colon V\to V$ ein Endomorphismus. Entscheiden Sie, welche der folgenden Aussagen sich implizieren.

- 1. f ist selbstadjungiert mit positiven Eigenwerten.
- 2. f ist orthogonal, und alle Eigenwerte von f sind positiv.
- 3. f ist normal mit det f > 0.
- 4. Es gibt einen selbstadjungierten Endomorphismus $g: V \to V$ mit $f = \exp(g)$.
- 5. *f* ist selbstadjungiert und orthogonal.

Übung 85.

Es sei V der reelle Vektorraum der Polynomfunktionen $\mathbb{R} \to \mathbb{R}$, und für alle $n \in \mathbb{N}$ sei $V_n \subseteq V$ der Untervektorraum der Polynomfunktionen von Grad $\leq n$.

1. Zeigen Sie, dass

$$\langle f,g\rangle \coloneqq \int_{-1}^{1} f(t)g(t)\,\mathrm{d}t$$
 für alle $f,g\in V$

ein Skalarprodukt auf V definiert.

2. Zeigen Sie, dass die lineare Abbildung $\psi \colon V \to V$ mit

$$\psi(f)(t) \coloneqq (t^2 - 1)f''(t) + 2tf'(t)$$
 für alle $f \in V$ und $t \in \mathbb{R}$

selbstadjungiert bezüglich $\langle \cdot, \cdot \rangle$ ist.

Es sei $\mathcal{G} := (p_n)_{n \geq 0}$ die Orthonormalbasis von V, die durch Anwenden des Gram-Schmidt-Verfahrens auf die Standardbasis $\mathcal{B} := (x^n)_{n \geq 0}$ ensteht.

- 3. Zeigen Sie für alle $n \geq 0$, dass V_n invariant unter ψ ist.
- 4. Zeigen Sie für alle $n \geq 0$, dass $\mathcal{G}_n := (p_0, \dots, p_n)$ eine Basis von V_n ist.
- 5. Zeigen Sie für alle $n \geq 0$, dass $\mathrm{M}_{\mathcal{G}_n}(\psi|_{V_n})$ eine obere Dreiecksmatrix ist. Betrachten Sie hierfür die Filtration

$$0 \subseteq V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \subseteq \cdots \subseteq V_n$$
,

und nutzen Sie, dass $V_i = \mathcal{L}(\mathcal{G}_i)$ invariant unter ψ ist.

- 6. Folgen Sie mithilfe der Selbstadjungiertheit von ψ , dass $M_{\mathcal{G}_n}(\psi|_{V_n})$ für alle $n \geq 0$ bereits eine Diagonalmatrix ist. Folgern Sie, dass \mathcal{G} eine Basis aus Eigenvektoren von ψ ist.
- 7. Bestimmen Sie für alle $n \geq 0$ die Eigenwerte der Einschränkung $\psi|_{V_n}$, indem Sie die darstellende Matrix bezüglich der Basis $\mathcal{B}_n = (1, x, \dots, x^n)$ von V_n bestimmen.
- 8. Geben Sie den zu p_n gehörigen Eigenwert von ψ an.
- 9. Berechnen Sie \mathcal{G}_4 .

Übung 86.

Es sei V ein endlichdimensionaler Skalarproduktraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie:

- 1. Es gilt $\exp(f)^* = \exp(f^*)$.
- 2. Ist f normal, so ist auch f^* normal.
- 3. Ist f selbstadjungiert, so ist auch exp(f) selbstadjungiert.
- 4. Ist f antiselbstadjungiert, so ist $\exp(f)$ orthogonal ($\mathbb{K} = \mathbb{R}$), bzw. unitär ($\mathbb{K} = \mathbb{C}$).

Übung 87.

Es sei V ein endlichdimensionaler Skalarproduktraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie die folgenden Äquivalenzen für den Fall $\mathbb{K}=\mathbb{C}$:

- 1. Es gibt genau dann einen normalen Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f normal und invertierbar ist.
- 2. Es gibt genau dann einen antiselbstadjungierten Endomorphismus $g\colon V\to V$ mit $f=\exp(g)$, wenn f unitär ist.
- 3. Es gibt genau dann einen selbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f selbstadjungiert mit positiven Eigenwerten ist.

Zeigen Sie die folgenden Aussagen für den Fall $\mathbb{K} = \mathbb{R}$:

- 4. Es gibt genau dann einen normalen Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f normal und invertierbar ist, und alle (reellen) Eigenwerte von g gerade Vielfachheit haben.
- 5. Es gibt genau dann einen antiselbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f orthogonal ist und alle negativen (reellen) Eigenwerte von f gerade Vielfachheit haben.
- 6. Es gibt genau dann einen selbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f selbstadjungiert mit positiven (reellen) Eigenwerten ist.

Übung 88.

Es sei

$$W = \{(a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z}\}$$

der Vektorraum der beidseitigen reellwertigen Folgen. Wir betrachten den Untervektorraum

$$V := \left\{ (a_n)_{n \in \mathbb{Z}} \in W \left| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right. \right\}$$

der quadratsummierbaren Folgen.

- 1. Zeigen Sie, dass V ein Untervektorraum von W ist.
- 2. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a, b \in \mathbb{R}$.)

3. Zeigen sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \rangle \coloneqq \sum_{n\in\mathbb{Z}} a_n b_n \quad \text{für alle } (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \in V$$

ein Skalarprodukt auf V definiert.

4. Es sei

$$R: V \to V, \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S \colon V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass S ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 7. Zeigen Sie, dass ${\cal S}$ diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in V \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V = U \oplus U^{\perp}$.

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 89.

1. Zeigen Sie, dass durch

$$\sigma(A, B) := \operatorname{tr}(A^T B)$$
 für alle $A, B \in M_n(\mathbb{R})$

ein Skalarprodukt auf $M_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,\dots,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{jl}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $\mathrm{M}_n(\mathbb{R})$ bezüglich σ bilden.

3. Es sei

$$S_+ \coloneqq \{A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A\}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} := \{ A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 90.

Es sei V ein Skalarproduktraum und

$$O(V) := \{ f \in End(V) \mid ff^* = id \}.$$

Zeigen Sie, dass O(V) eine Untergruppe von GL(V) bildet.

Übung 91.

Zeigen sie, dass für eine Matrix $A \in M_n(\mathbb{K})$ die folgenden Bedingungen äquivalent sind:

- 1. A ist invertierbar mit $A^{-1} = A^*$.
- 2. $AA^* = I$.
- 3. $A^*A = I$.
- 4. Die Spalten von A bilden eine Orthonormalbasis des \mathbb{K}^n .
- 5. Die Zeilen von A bilden eine Orthonormalbasis des \mathbb{K}^n .

Übung 92.

Es sei $A \in M_n(\mathbb{C})$.

- 1. Zeigen Sie, dass es eindeutige hermitsche Matrizen $B,C\in \mathrm{M}_n(\mathbb{C})$ mit A=B+iC gibt.
- 2. Zeigen Sie, dass A genau dann normal ist, wenn B und C kommutieren.

Übung 93.

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, und es sei $G \subseteq \operatorname{GL}(V)$ eine endliche Untergruppe.

1. Zeigen Sie, dass

$$\langle x,y\rangle_G \coloneqq \frac{1}{|G|} \sum_{\phi \in G} \langle \phi(x),\phi(y)\rangle \quad \text{für alle } x,y \in V$$

ein Skalarprodukt auf G definiert.

2. Zeigen Sie, dass $\langle \cdot, \cdot \rangle_G$ in dem Sinne G-invariant ist, dass

$$\langle \phi(x), \phi(y) \rangle = \langle x, y \rangle \quad \text{für alle } x, y \in V \text{ und } \phi \in G.$$

- 3. Folgern Sie, dass es eine Basis $\mathcal B$ von V gibt, so dass $M_{\mathcal B}(\phi)$ für alle $\phi \in G$ eine orthogonale Matrix ist.
- 4. Folgern Sie damit, dass es für $n=\dim V$ einen injektiven Gruppenhomomorphismus $\Phi\colon G\to \mathrm{O}(n)$ gibt, G also isomorph zu der Untergruppe im Φ von $\mathrm{O}(n)$ ist.

Übung 94.

Es seien F und G zwei selbstadjungierte Endomorphismen eines Skalarproduktraums V. Zeigen Sie, dass $F\circ G$ genau dann selbstadjungierti ist, wenn F und G kommutieren.

Übung 95.

Es sei V ein euklidischer Vektorraum. Für jedes $\alpha \in V$ mit $\alpha \neq 0$ sei

$$s_\alpha \colon V \to V, \quad \text{mit} \quad s_\alpha(x) \coloneqq x - 2 \frac{\langle x, \alpha \rangle}{\|\alpha\|^2} \alpha.$$

Ferner seien

$$L_\alpha \coloneqq \mathbb{R}\alpha \quad \text{und} \quad H_\alpha \coloneqq L_\alpha^\perp = \alpha^\perp = \{v \in V \mid \langle v, \alpha \rangle = 0\}.$$

- 1. Zeigen Sie, dass $s_{\alpha}^2=\mathrm{id}_V$, und dass $s_{\lambda\alpha}=s_{\alpha}$ für alle $\lambda\in\mathbb{R}^{\times}$.
- 2. Zeigen Sie, dass s_{α} diagonalisierbar ist, und dass

$$V_{-1}(s_{\alpha}) = L_{\alpha}$$
 und $V_{1}(s_{\alpha}) = H_{\alpha}$.

- 3. Interpretieren Sie V geometrisch anschaulich.
- 4. Es sei $s' : V \to V$ ein Endomorphismus mit $s'(\alpha) = -\alpha$ und s'(x) = x für alle $x \in H_{\alpha}$. Zeigen Sie, dass bereits $s' = s_{\alpha}$ gilt.
- 5. Es sei $t\colon V\to V$ ein orthogonaler Isomorphismus. Zeigen Sie die Gleichheit

$$ts_{\alpha}t^{-1} = s_{t(\alpha)}.$$

Übung 96.

Es seien V und W euklidische Vektorräume, und $f:V\to V$ eine surjektive Funktion (!) mit

$$\langle f(v_1), f(v_2) \rangle = \langle v_1, v_2 \rangle$$
 für alle $v_1, v_2 \in V$.

Zeigen Sie, dass f ein Isomorphismus ist.

Übung 97.

Es sei V ein endlichdimensionaler unitärer Vektorraum. Zeigen Sie, dass für eine lineare Abbildung $S \colon V \to V$ die folgenden Bedingungen äquivalent sind:

- 1. S ist normal.
- 2. V hat eine Orthonormalbasis aus Eigenvektoren von S.
- 3. Für jeden S-invarianten Untervektorraum $U\subseteq V$ ist auch das orthogonale Komplement U^\perp invariant unter S.

Übung 98.

Es sei V ein endlichdimensionaler Skalarproduktraum über \mathbb{K} . Es sei

$$S := \{ f \in \operatorname{End}_{\mathbb{K}}(V) \mid f^* = f \}$$

der Untervektorraum der selbstadjungierten Endomorphismen und

$$A := \{ f \in \operatorname{End}_{\mathbb{K}}(V) \mid f^* = -f \}$$

der Untervektorraum der antiselbstadjungierten Endomorphismen.

1. Zeigen Sie, dass

$$\langle f, g \rangle := \operatorname{tr}(f \circ g^*)$$

ein Skalarprodukt auf $\operatorname{End}_{\mathbb{K}}(V)$ definiert.

2. Folgern Sie, dass

$$|\operatorname{tr}(fg^*)|^2 \le \operatorname{tr}(ff^*)\operatorname{tr}(gg^*)$$
 für alle $f,g \in \operatorname{End}_{\mathbb{K}}(V)$.

3. Zeigen Sie, dass $\operatorname{End}_{\mathbb K}(V)=S\oplus A$, und dass die Summe orthogonal ist.

Übung 99.

Es sei det: $\mathrm{M}_n(\mathbb{C}) \to \mathbb{C}^{\times}$ die Determinantenabbildung, wobei \mathbb{C}^{\times} die multiplikative Gruppe des Körpers bezeichnet.

- 1. Zeigen Sie, dass det ein surjektiver Gruppenhomomorphismus ist.
- 2. Bestimmen Sie den Kern von det.
- 3. Bestimmen Sie Bild und Kern der Einschränkung det $|_{GL_n(\mathbb{R})}$.
- 4. Bestimmen Sie Bild und Kern der Einschränkung det $|_{U_n}$.
- 5. Bestimmen Sie Bild und Kern der Einschränkung det $|_{\mathcal{O}_n}$.

Übung 100.

Es sei

$$\Phi \colon \operatorname{SU}(2) \to S^3, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a \\ c \end{pmatrix}$$

die Abbildung auf die erste Spalte, wobei

$$S^3 := \left\{ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2 \,\middle|\, |z_1|^2 + |z_2|^2 = 1 \right\}.$$

- 1. Zeigen Sie, dass Φ wohldefiniert ist.
- 2. Zeigen Sie, dass Φ bijektiv ist.

Übung 101.

Zeigen Sie, dass die drei Gruppen SO(2), S^1 und U(1) isomorph sind.

Übung 102

Es sei V ein euklidischer Vektorraum, und die Abbildung $P\colon V\to V$ sei orthogonal und eine Orthogonalprojektion. Bestimmen Sie P.

Übung 103

Es sei $A \in U(n)$. Zeigen Sie, dass $|\operatorname{tr} A| \leq n$. Wann gilt Gleichheit?

Übung 104.

Es sei V ein endlichdimensionaler Skalarproduktraum und $\mathcal{B}=(b_1,\ldots,b_n)$ und $\mathcal{C}=(c_1,\ldots,c_n)$ seien zwei geordnete Basen von V.

- 1. Die Basis C sei genau die Orthonormalbasis von V, die aus \mathcal{B} durch Anwendung des Gram-Schmidt-Verfahrens entstehen. Zeigen Sie, dass die Basiswechselmatrix $T_{C \to \mathcal{B}}$ (von C nach \mathcal{B}) eine obere Dreiecksmatrix mit positiven reellen Diagonaleinträgen ist.
- 2. Zeigen oder widerlegen Sie die umgekehrte Aussage: Ist die Basiswechselmatrix $T_{\mathcal{C} \to \mathcal{B}}$ eine obere Dreiecksmatrix mit positiven reellen Diagonaleinträgen, so ist \mathcal{C} notwendigerweise die Orthonormalbasis von V, die durch das Gram-Schmidt-Verfahren aus \mathcal{B} entsteht.

Übung 105.

- 1. Es seien $z_1, \ldots, z_n \in \mathbb{C}$ paarweise verschieden Punkte. Zeigen Sie, dass es für beliebige Werte $w_1, \ldots, w_n \in \mathbb{C}$ ein Polynom $P \in \mathbb{C}[T]$ mit $P(z_j) = w_j$ für alle $j = 1, \ldots, n$ gibt.
- 2. Es sei $f: V \to V$ ein normaler Endomorphismus eines endlichdimensionalen unitären Vektorraums V. Zeigen Sie, dass es ein Polynom $P \in \mathbb{C}[T]$ mit $f^* = P(f)$ gibt. (*Hinweis:* f ist diagonalisierbar.)

Übung 106.

Es sei V ein endlichdimensionaler reeller Vektorraum mit $n \coloneqq \dim V$.

- 1. Zeigen Sie, dass es für jede Basis $\mathcal{B} = \{b_1, \dots, b_n\}$ von V genau ein Skalarprodukt $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ auf V gibt, so dass \mathcal{B} eine Orthonormalbasis von V bezüglich $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ ist.
- 2. Untersuchen Sie die Abbildung

$$\{ \text{Basen von } V \} \to \{ \text{Skalarprodukte auf } V \}, \quad \mathcal{B} \mapsto \langle \cdot, \cdot \rangle_{\mathcal{B}}$$

auf Injektivität und Surjektivität.

Übung 107.

Es sei V ein K-Vektorraum, $\beta \colon V \times V \to K$ eine symmetrische Bilinearform und $q \colon V \to K$ die zugehörige quadratische Form.

- 1. Zeigen Sie für den Fall char $K \neq 2$ mithilfe einer Polarisationsformel, dass β durch q bereits eindeutig bestimmt ist.
- 2. Folgern Sie: Ist char $K \neq 2$, $V \neq 0$ und β nicht entartet, d.h. für jedes $v \in V$ mit $v \neq 0$ gibt es ein $w \in V$ mit $\beta(v, w) \neq 0$, so gibt es ein $v \in V$ mit $\beta(v, v) \neq 0$.
- 3. Zeigen Sie für den Fall char K=2, dass es verschieden symmetrische Bilinearformen mit gleicher quadratische Form geben kann. Geben Sie auch ein explizites Beispiel hierfür an.

Übung 108.

Es sei V eine reeller Vektorraum und $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Zeigen Sie, dass die folgenden Aussagen im Allgemeinen gelten, oder geben Sie jeweils ein Gegenbeispiel an:

- 1. Ist $\langle v, v \rangle \geq 0$ für alle $v \in V$, so ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.
- 2. Ist \mathcal{B} eine Basis von V mit $\langle b, b \rangle > 0$ für alle $b \in \mathcal{B}$, so ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.
- 3. Ist \mathcal{B} eine Basis von V mit $\langle b_1, b_2 \rangle > 0$ für alle $b_1, b_2 \in \mathcal{B}$, so ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.
- 4. Die Teilmenge $U := \{v \in V \mid \langle v, w \rangle = 0 \text{ für alle } w \in V \}$ ist ein Untervektorraum von V.
- 5. Die Teilmengen

$$U_+ := \{ v \in V \mid \langle v, v \rangle \ge 0 \} \quad \text{und} \quad U_- := \{ v \in V \mid \langle v, v \rangle \le 0 \}$$

sind Untervektorräume von V.

- 6. Die Teilmenge $U_0 := \{v \in V \mid \langle v, v \rangle = 0\}$ ist ein Untervektorraum von V.
- 7. Für jeden Untervektorraum $U \subseteq V$ ist $\dim V = \dim U + \dim U^{\perp}$.
- 8. Ist $U\subseteq V$ ein Untervektorraum mit $(U^{\perp})^{\perp}=V$, so ist U=V.
- 9. Für alle Untervektorräume $U_1 \subseteq U_2$ gilt $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- 10. Für $U_0 \coloneqq \{v \in V \mid \langle v, w \rangle = 0$ für alle $w \in V\}$ und jeden Untervektorraum $U \subseteq V$ gilt

$$(U^{\perp})^{\perp} = U + U_0.$$

Übung 109.

Ist $\beta \colon V \times W \to K$ eine Bilinearform, so heißen eine Basis $\mathcal{B} = (v_i)_{i \in I}$ von V und eine Basis $\mathcal{C} = (w_i)_{i \in I}$ von W dual bezüglich β , falls

$$\beta(v_i, w_j) = \delta_{ij}$$
 für alle $i, j \in I$.

Es sei zunächst V ein K-Vektorraum.

1. Zeigen Sie, dass die Evaluation

$$e \colon V \times V^* \to K \quad \text{mit} \quad e(v,\varphi) = \varphi(e)$$

eine K-bilineare Abbildung ist.

2. Zeigen Sie im Falle der Endlichdimensionalität von V, dass es zu jeder Basis $\mathcal{B} = (b_1, \dots, b_n)$ von V genau eine Basis \mathcal{C} von V^* gibt, die bezüglich e dual zu \mathcal{B} ist. Woher kennen Sie diese Basis?

Von nun an sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

3. Zeigen Sie, dass die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

4. Folgern Sie, dass es für jede Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V genau eine Basis $\mathcal{B}^\circ=(b_1^\circ,\ldots,b_n^\circ)$ von V gibt, die bezüglich $\langle\cdot,\cdot\rangle$ dual zu \mathcal{B} ist.

(*Hinweis*: Formulieren Sie die Aussage, dass $\mathcal C$ dual zu $\mathcal B$ ist, mithilfe von Φ um.)

5. Zeigen Sie, dass für jede Basis $\mathcal B$ von V die Gleichheit $(\mathcal B^\circ)^\circ=\mathcal B$ gilt. Folgern Sie, dass die Abbildung

$$\{\text{geordnete Basen von }V\} \to \{\text{geordenet Basen von }V\}\,,\quad \mathcal{B}\mapsto \mathcal{B}^\circ$$

bijektiv ist.

6. Unter welchen Namen kennen Sie Basen von V, die bezüglich $(-)^{\circ}$ selbstdual sind, die also $\mathcal{B}^{\circ} = \mathcal{B}$ erfüllen?

Übung 110.

Es sei V ein K-Vektorraum und $\beta \colon V \times V \to K$ eine symmetrische Bilinearform.

1. Zeigen Sie, dass

$$rad(\beta) := \{ v \in V \mid \beta(v, w) = 0 \text{ für alle } w \in V \}$$

ein Untervektorraum von Vist. (Man bezeichnet $\operatorname{rad}(\beta)$ als das $\operatorname{\it Radikal}$ von β .)

2. Zeigen Sie, dass β eine symmetrische Bilinearform $\bar{\beta}: (V/\operatorname{rad}(\beta)) \times (V/\operatorname{rad}(\beta)) \to K$ mit

$$\bar{\beta}([v],[w]) := \beta(v,w)$$
 für alle $v,w \in V$

induziert.

3. Zeigen Sie, dass $\bar{\beta}$ nicht entartet ist, d.h. dass für das Radikal

$$rad(\bar{\beta}) := \{ x \in V/U \mid \bar{\beta}(x,y) = 0 \text{ für alle } y \in V/U \}$$

bereits $rad(\bar{\beta}) = 0$ gilt.

4. Inwiefern gelten die obigen Aussagen noch, wenn man U durch

$$W \coloneqq \{ v \in V \mid \beta(v, v) = 0 \}$$

ersetzt?

Übung 111.

Es sei V ein K-Vektorraum und $b \colon V \times V \to K$ eine Bilinearform.

- 1. Zeigen Sie für char $K \neq 2$, dass es eindeutige Bilinearformen $b_s, b_a \colon V \times V \to K$ gibt, so dass
 - $b = b_s + b_a$
 - b_s ist symmetrisch und b_a ist antisymmetrisch
- 2. Zeigen Sie durch Angabe eines Gegenbeispiels, dass die Aussage für char K=2 nicht gilt.

Es sei nun V der Vektorraum der Polynomfunktionen $\mathbb{R} \to \mathbb{R}$.

3. Zeigen Sie, dass die Abbildung $b \colon V \times V \to \mathbb{R}$ mit

$$b(p,q) := \int_{-1}^{1} p(t)q'(t) dt$$

eine Bilinearform ist.

4. Geben Sie den symmtrischen Anteil b_s in einer Form an, in der kein Integral vorkommt.

Übung 112.

Für je zwei K-Vektorräume V und W sei

$$Bil(V, W) := \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}\$$

der Raum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung

$$F \colon \operatorname{Bil}(V, W) \to \operatorname{Bil}(W, V), \quad b \mapsto F(b) \quad \operatorname{mit} \quad F(b)(w, v) = b(v, w)$$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in Bil(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{V,W}(b) \colon V \to W^*, \quad v \mapsto b(v,-)$$

induziert. Dabei ist

$$b(v, -) \colon W \to K, \quad w \mapsto b(v, w).$$

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \operatorname{Bil}(V,W) \to \operatorname{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Geben Sie mithilfe der vorherigen Aufgabenteile explizit einen Isomorphismus

$$\operatorname{Hom}(V, W^*) \to \operatorname{Hom}(W, V^*)$$

an.

Wir betrachten nun den Fall $W = V^*$.

5. Zeigen Sie, dass die Evaluation

$$e: V \times V^* \to K, \quad (v, \varphi) \mapsto \varphi(v)$$

eine Bilinearform ist.

- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform e einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

Übung 113.

Es seien V und W zwei K-Vektorräume und $f:V\to W$ eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^* : W^* \to V^*$ an, und zeigen Sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle \cdot, \cdot \rangle \colon U \times U^* \to K \quad \text{mit} \quad \langle v, \varphi \rangle = \varphi(v) \quad \text{für alle } v \in V, \varphi \in V^*$$

eine Bilinearform ist.

3. Zeigen Sie, dass

$$\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle$$
 für alle $v \in V, \psi \in W^*$.

Übung 114.

1. Zeigen Sie, dass die Abbildung

$$\sigma \colon \mathrm{M}_n(K) \times \mathrm{M}_n(K) \to K \quad \mathrm{mit} \quad \sigma(A,B) \coloneqq \mathrm{tr}(AB)$$

eine symmetrische Bilinearform ist. Man bezeichnet diese als die Traceform.

2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass

$$\sigma(AB, C) = \sigma(A, BC)$$
 für alle $A, B, C \in M_n(K)$.

3. Zeigen sie, dass σ nicht entartet ist, d.h. dass es für jedes $A \in \mathrm{M}_n(K)$ mit $A \neq 0$ ein $B \in \mathrm{M}_n(K)$ mit $\sigma(A,B) \neq 0$ gibt.

Es sei nun

$$S_+ := \{ A \in \mathcal{M}_n(K) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen und

$$S_{-} := \{ A \in \mathcal{M}_n(K) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie:

- 4. Ist char $K \neq 2$, so sind S_+ und S_- bezüglich σ orthogonal zueinander.
- 5. Ist $K=\mathbb{R}$, so ist die Einschränkung von σ auf S_+ positiv definit, und die Einschränkung auf S_- negativ definit.

Übung 115.

Es sei V ein endlichdimensionaler K-Vektorraum, $b: V \times V \to K$ eine Bilinearform, $\mathcal{B} = (b_1, \dots, b_n)$ eine Basis von V, und $\mathcal{B}^* = (b_1^*, \dots, b_n^*)$ die entsprechende duale Basis von V^* .

1. Zeigen Sie, dass die Abbildung

$$B \colon V \to V^*, \quad v \mapsto b(-, v)$$

K-linear ist.

2. Zeigen Sie die Gleihheit

$$M_{\mathcal{B}}(b) = M_{\mathcal{B},\mathcal{B}^*}(B).$$

(Beachten Sie, dass auf der linken Seite die darstellende Matrix einer Bilinearform steht, und auf der rechten Seite die darstellende Matrix einer linearen Abbildung.)

Übung 116.

Für jede Matrix $X \in M_n(K)$ sei

$$\lambda_X \colon M_n(K) \to M_n(K), \quad A \mapsto XA$$

die Linksmultiplikation mit X,

$$\rho_X \colon \mathrm{M}_n(K) \to \mathrm{M}_n(K), \quad A \mapsto AX$$

die Rechtsmultiplikation mit X, und

$$\operatorname{ad}_X = [X, -]: \operatorname{M}_n(K) \to \operatorname{M}_n(K), \quad A \mapsto [X, A] = XA - AX$$

der Kommutator mit X.

- 1. Zeigen Sie: Ist X nilpotent, so sind auch λ_X und ρ_X nilpotent.
- 2. Folgern Sie: Ist X nilpotent, so ist auch ad_X nilpotent. (*Hinweis*: Nutzen Sie, dass $\mathrm{ad}_X = \lambda_X \rho_X$.)
- 3. Zeigen Sie: Ist X diagonalisierbar, so sind auch λ_X und ρ_X diagonalisierbar. (*Hinweis*: Betrachten Sie zunächst den Fall, dass X eine Diagonalmatrix ist.)
- 4. Folgern Sie: Ist X diagonalisierbar, so ist auch ad $_X$ diagonalisierbar. (*Hinweis*: Nutzen Sie, dass ad $_X=\lambda_X-\rho_X$.)

Übung 117.

Es sei K ein Körper und

$$\mathfrak{sl}_n(K) := \{ A \in \mathcal{M}_n(K) \mid \operatorname{tr} A = 0 \}.$$

- 1. Zeigen Sie, dass $\mathfrak{sl}_n(K)$ ein Untervektorraum von $\mathrm{M}_n(K)$ mit $\mathrm{dim}\,\mathfrak{sl}_n(K)=n^2-1$ ist.
- 2. Zeigen Sie, dass

$$\mathcal{B} := \{ E_{ij} \mid 1 \le i \ne j \le n \} \cup \{ E_{11} - E_{ii} \mid 2 \le i \le n \}$$

eine Basis von $\mathfrak{sl}_n(K)$ ist, wobei $E_{ij} \in \mathcal{M}_n(K)$ die Matrix ist, deren (i,j)-ter Eintrag 1 ist, und für die alle anderen Einträge 0 sind.

Es sei nun $C := \mathcal{L}([A, B] \mid A, B \in \mathcal{M}_n(K)).$

- 3. Zeigen Sie, dass $\operatorname{tr}([A,B])=0$ für alle $A,B\in \operatorname{M}_n(K)$. Folgern Sie, dass $C\subseteq \mathfrak{sl}_n(K)$.
- 4. Zeigen Sie, dass $\mathfrak{sl}_n(K)\subseteq C$, indem Sie jedes der Basiselement aus $\mathcal B$ also Kommutator schreiben. (*Hinweis*: Überlegen Sie zunächst, dass $E_{ij}E_{kl}=\delta_{jk}E_{il}$ für alle $1\leq i,j,k,l\leq n$.)

Es ist also $\mathfrak{sl}_n(K)=\mathcal{L}([A,B]\mid A,B\in \mathrm{M}_n(K))$ ein (n^2-1) -dimensionaler Untervektorraum. Es sei nun $f\colon \mathrm{M}_n(K)\to K$ eine lineare Abbildung mit f(AB)=f(BA) für alle $A,B\in \mathrm{M}_n(K)$.

5. Zeigen Sie, dass f eine eindeutige lineare Abbildung

$$\overline{f} \colon \operatorname{M}_n(K)/\mathfrak{sl}_n(K) \to K, \quad [A] \mapsto f(A)$$

induziert. Zeigen Sie, dass $\overline{\text{tr}} \neq 0$.

- 6. Zeigen Sie, dass $\mathrm{M}_n(K)/\mathfrak{sl}(K)$ eindimensional ist. Folgern Sie, dass es ein eindeutiges $\lambda \in K$ mit $\overline{f} = \lambda \overline{\mathrm{tr}}$ gibt.
- 7. Folgern Sie, dass bereits $f = \lambda$ tr gilt. (Die Spur ist also durch die Eigenschaft, dass tr(AB) = tr(BA) für alle $A, B \in M_n(K)$, bis auf skalares Vielfaches eindeutig bestimmt.)

Übung 118.

Das Zentrum eines Rings R ist definiert als

$$Z(R) := \{r \in R \mid rs = sr \text{ für alle } s \in R.$$

Man bemerke, dass R genau dann kommutativ ist, wenn Z(R)=R. Wir werden $Z(\mathsf{M}_n(K))$ bestimmen. Hierfür sei

$$D_n(K) := KI = \{\lambda I \mid \lambda \in K\}$$

der Untervektorraum der Skalarmatrizen.

- 1. Zeigen Sie, dass $D_n(K) \subseteq Z(M_n(K))$.
- 2. Zeigen Sie für $A \in Z(M_n(K))$, dass A eine Diagonalmatrix ist. (*Hinweis*: Betrachten Sie die Matrizen E_{ii} für $1 \le i \le n$.)
- 3. Zeigen Sie ferner, dass alle Diagonaleinträge von A bereits gleich sind. (Hinweis: Betrachten Sie die Matrizen E_{ij} mit $1 \le i, j \le n$.)
- 4. Folgern Sie, dass $Z(M_n(K)) = D_n(K)$.

Übung 119.

Es sei V ein endlichdimensionaler \mathbb{C} -Vektorraum, und es seien $K,E\colon V\to V$ zwei Endomorphismen mit

$$K$$
 ist invertierbar und $KE = 2EK$.

1. Zeigen Sie, dass

$$(K - 2\lambda \operatorname{id}_{V})^{n} E = 2^{n} E(K - \lambda \operatorname{id}_{V})^{n}$$

für alle $n \in \mathbb{N}$.

- 2. Folgern Sie, dass $E(V_{\lambda}^{\sim}(K)) \subseteq V_{2\lambda}^{\sim}(K)$ für alle $\lambda \in \mathbb{C}$.
- 3. Folgern Sie, dass E nilpotent ist.

Übung 120.

Es sei V ein K-Vektorrraum und $[-,-]\colon V\times V\to V$ eine alternierend bilineare Abbildung. Für jedes $x\in V$ sei

$$\operatorname{ad}_x := [x, -] \colon V \to V, \quad y \mapsto [x, y].$$

Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

1. [-,-] erfüllt die Jacobi-Identität, d.h. es ist

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 für alle $x, y, z \in V$.

2. Es gilt

$$\operatorname{ad}_{x}([y,z]) = [\operatorname{ad}_{x}(y), z] + [y, \operatorname{ad}_{x}(z)]$$
 für alle $x, y, z \in V$.

(Man sagt, dass ad_x eine Derivation bezüglich [-,-] ist.)

Übung 121.

Es seien E und H zwei Endomorphismen eines \mathbb{C} -Vektorraums V, so dass [H, E] = 2E.

- 1. Zeigen Sie, dass $E(V_{\lambda}(H)) \subseteq V_{\lambda+2}(H)$ für alle $\lambda \in K$.
- 2. Folgern Sie: Ist V endlichdimensional und H diagonalisierbar, so ist E nilpotent.

Übung 122.

Es sei $B \in M_n(\mathbb{K})$. Es seien

$$O(B) := \{ S \in GL_n(\mathbb{K}) \mid S^T B S = B \}$$

und

$$\mathfrak{g}(B) := \{ A \in \mathcal{M}_n(\mathbb{K}) \mid A^T B = -BA \}$$

- 1. Zeigen Sie, dass O(B) eine Untergruppe von $GL_n(\mathbb{K})$ ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(B)$ eine Lie-Unteralgebra von $\mathfrak{gl}_n(\mathbb{K})$ ist, dass also $[A_1,A_2]\in\mathfrak{g}(B)$ für alle $A_1,A_2\in\mathfrak{g}(B)$.
- 3. Zeigen Sie, dass $\exp(A) \in O(B)$ für alle $A \in \mathfrak{g}(B)$. (Hinweis: Zeigen Sie zunächst, dass $\exp(A)^T B = B \exp(-A)$.)
- 4. Geben Sie für $\mathbb{K} = \mathbb{R}$ eine Matrix $B \in M_n(\mathbb{R})$ an, so dass O(B) = O(n). Was sind dann die Elemente von $\mathfrak{g}(B)$?

Übung 123.

Für einen endlichdimensionalen \mathbb{K} -Vektorraum V und eine Bilinearform $\beta\colon V\times V\to \mathbb{K}$ sei

$$O(\beta) := \{ \phi \in GL(V) \mid \beta(\phi(x), \phi(y)) = \beta(x, y) \text{ für alle } x, y \in V \}$$

die Isometriegruppe von β , und

$$g(\beta) := \{ f \in End(V) \mid \beta(f(x), y) = -\beta(x, f(y)) \text{ für alle } x, y \in V \}$$

die assoziierte Lie-Algebra.

- 1. Zeigen Sie, dass $O(\beta)$ eine Untergruppen von GL(V) ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(\beta)$ eine Lie-Unteralgebra von $\mathfrak{gl}(V)$ ist, d.h. dass $[f,g] \in \mathfrak{g}(\beta)$ für alle $f,g \in \mathfrak{g}(\beta)$.
- 3. Zeigen Sie, dass $\exp(f) \in O(\beta)$ für alle $f \in \mathfrak{g}(\beta)$. (*Hinweis*: Zeigen Sie zunächst, dass $\beta(\exp(f)(x),y) = \beta(x,\exp(-f)(y))$ für alle $x,y \in V$. Nutzen Sie hierfür, dass die bilineare Abbildung β in beiden Argumenten stetig ist.)
- 4. Es sei $\mathbb{K} = \mathbb{R}$ und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V. Unter welchen Begriffen sind die Elemente aus $G(\langle \cdot, \cdot \rangle)$ und $\mathfrak{g}(\langle \cdot, \cdot \rangle)$ bekannt?

Übung 124.

Es sei V ein K-Vektorraum und $m\colon V\times V\to V$ eine bilineare Abbildung. Eine lineare Abbildung $D\colon V\to V$ heißt m-Derivation, falls

$$D(m(x,y)) = m(D(x),y) + m(x,D(y))$$
 für alle $x, y \in V$.

Es sei

$$Der(m) := \{D : V \to V \mid D \text{ ist eine } m\text{-Derivation}\}.$$

1. Zeigen Sie für den Fall V = K[X] und die Multiplikation

$$m(p,q) := p \cdot q$$
 für alle $p, q \in K[X]$,

dass die Ableitung

$$D \colon K[X] \to K[X], \quad \sum_{d=0}^{n} a_d X^d \mapsto \sum_{d=1}^{n} a_d dX^{d-1}$$

eine m-Derivation ist. Unter welchem Namen ist dieser Umstand für gewöhnlich bekannt?

- 2. Zeigen Sie, dass Der(m) ein Untervektorraum von End(V) ist.
- 3. Zeigen Sie, dass Der(m) eine Lie-Unteralgebra von End(V) ist, d.h. dass für alle $D_1, D_2 \in Der(m)$ auch $[D_1, D_2] \in Der(m)$.

Übung 125.

Es sei V ein endlichdimensionaler K-Vektorraum mit Basis $\mathcal{B}=(b_1,\ldots,b_n)$ und $\omega\colon V^n\to K$ eine alternierende Multilinearform.

- 1. Zeigen Sie, dass genau dann $\omega \neq 0$, wenn $\omega(b_1, \dots, b_n) \neq 0$.
- 2. Es sei $f: V \to V$ ein Endomorphismus und

$$\omega_f := \omega \circ f^{\times n} \colon V^n \to V,$$

Zeigen Sie, dass ω_f ebenfalls multilinear und alternierend ist.

3. Zeigen Sie, dass $\omega_f = \det(f)\omega$.

Übung 126.

Es sei V ein endlichdimensionaler K-Vektorraum und $n \coloneqq \dim V$. Es sei $\omega \colon V^m \to V$ eine alternierende Multilinearform. Zeigen Sie, dass $\omega = 0$.

Übung 127.

Es sei $n \geq 1$. Entscheiden Sie, welche der folgenden Aussagen wahr oder falsch sind:

1. Die Wegzusammenhangskomponenten von $\mathrm{GL}_n(\mathbb{R})$ sind die beiden Untergruppen

$$\operatorname{GL}_n(\mathbb{R})_+ = \{S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S > 0\} \quad \text{und} \quad \operatorname{GL}_n(\mathbb{R})_- = \{S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S < 0\}.$$

- 2. Die Gruppe SO(n) ist nicht wegzusammenhängend.
- 3. Die Gruppe O(n) ist eine Wegzusammenhangskomponente von $GL_n(\mathbb{R})$.

4. Die schiefsymmetrischen Matrizen

$$\mathfrak{o}_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T = -A \}$$

sind wegzusammenhängend.

- 5. Die Gruppe $U(n) \cap GL_n(\mathbb{R})_+$ besteht aus zwei Wegzusammenhangskompenenten.
- 6. Ist Geine wegzusammenhängende Untergruppe von $\mathrm{GL}_n(\mathbb{K}),$ so ist

$$G' \coloneqq \{S \in G \mid \det g = 1\}$$

ebenfalls eine wegzusammenhängende Untergruppe von $GL_n(\mathbb{K})$.

- 7. Jede Untergruppe von $\mathrm{GL}_n(\mathbb{C})$ ist wegzusammenhängend.
- 8. Die Gruppe $SU(n) \cap O(n)$ ist wegzusammenhängend.
- 9. Es ist $G = \{A^* = -A\}$ eine wegzusammenhängende Untergruppe von A.
- 10. Die Gruppe der Drehmatrizen

$$\left\{ \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \middle| \varphi \in \mathbb{R} \right\}$$

ist wegzusammenhängend.

Übung 128.

Es sei V ein euklidischer n-dimensionaler Vektorraum und d eine normierte, alternierende n-Form auf d. Es sei $u \in V$ mit $\|u\| = 1$. Zeigen Sie für das orthogonale Komplement $U \coloneqq u^\perp = \mathcal{L}(u)^\perp$, dass die Einschränkung $d(-,\ldots,-,u)|_{U^{n-1}}$ eine normierte, alternierende (n-1)-Form ist.

Übung 129.

Es sei Vein euklidischer Vektorraum und $\omega \colon V^3 \to K$ eine Trilinearform.

1. Zeigen Sie, dass es für alle $u,v\in V$ ein eindeutiges Element $\times_{\omega}\in V$ gibt, so dass

$$\omega(u, v, w) = \langle u \times_{\omega} v, w \rangle$$
 für alle $u, v, w \in V$.

- 2. Zeigen Sie, dass die Abbildung $\times_{\omega} \colon V \times V \to V$ bilinear ist.
- 3. Zeigen Sie: Ist ω symmetrisch, bzw. alternierend, so ist auch \times_{ω} symmetrisch, bzw. alternierend.
- 4. Zeigen Sie, dass die Abbildung

$$Tril(V, V, V; K) \mapsto Bil(V, V; V), \omega \mapsto \times_{\omega}$$

ein Isomorphismus von K-Vektorräumen ist.

Übung 130.

Es sei V ein K-Vektorraum und $\beta \colon V \times V \to K$ eine nicht-entartete Bilinearform.

1. Zeigen Sie, dass es für jede Bilinearform $\gamma\colon V\times V\to K$ eine eindeutige lineare Abbildung $f\colon V\to V$ gibt, so dass

$$\gamma(x,y) = \beta(f(x),y)$$
 für alle $x,y \in V$.

2. Zeigen oder widerlegen Sie, dass es für jede nicht-entartete Bilinearform $\gamma\colon V\times V\to K$ einen eindeutigen Skalar $c\in K$ mit $\gamma=c\beta$ gibt.

Übung 131.

Zeigen oder widerlegen Sie, dass der Kommutator

$$[-,-]: M_n(K) \times M_n(K) \to M_n(K)$$

in dem folgenden Sinne universell ist:

Für jeden K-Vektorraum V und jede bilineare Abbildung $\beta \colon \mathrm{M}_n(K) \times \mathrm{M}_n(K) \to V$ gibt es eine eindeutige K-lineare Abbildung $\varphi \colon \mathrm{M}_n(K) \to V$, so dass das folgende Diagram kommutiert:

Übung 132.

Es seien V und W zwei K-Vektorräume und $\beta \colon V \times V \to W$ eine bilineare Abbildung. Zeigen oder widerlegen Sie, dass im β notwendigerweise ein Untervektorraum von W ist.

Übung 133.

Es sei $m \colon K^n \times K^n \to \mathrm{M}_n(K)$ mit

$$m(x,y) = xy^T$$
 für alle $x, y \in K^n$.

- 1. Zeigen Sie, dass m bilinear ist.
- 2. Zeigen Sie, dass m im folgenden Sinne universell ist: Für jeden Vektorraum V und jede bilineare Abbildung $b\colon K^n\times K^n\to V$ gibt es eine eindeutige lineare Abbildung $\varphi\colon \mathrm{M}_n(K)\to V$ mit $b=\varphi\circ m$, dass also das folgende Diagram kommutiert:

