Data Structures - Cheat Sheet

Trees

Red-Black Tree

- 1. Red Rule: A red child must have a black father
- 2. Black Rule: All paths to external nodes pass through the same number of black nodes.
- 3. All the leaves are black, and the sky is grey.

Rotations are terminal cases. Only happen once per fixup.

If we have a series of *insert-delete* for which the insertion point is known, the amortized cost to each action is O(n).

 $\text{Height:} \log n \le h \le 2 \log n$

Limit of rotations: 2 per insert.

Bound of ratios between two branches $L, R: S(R) \leq (S(L))^2$ Completely isomorphic to 2-4 Trees.

B-Tree

d defines the *minimum number of* keys on a node

Height: $h \approx \log_d n$

- 1. Every node has at most d children and at least $\frac{d}{2}$ children (root excluded).
- 2. The root has at least 2 children if it isn't a leaf.
- 3. A non-leaf node with k children contains k-1 keys.
- 4. On B+ trees, leaves appear at the same level.
- 5. Nodes at each level form linked lists

d is optimized for HDD/cache block size

Insert: Add to insertion point. If the node gets too large, $split.O(\log n) \le O(\log_d n)$

Split: The middle of the node (low median) moves up to be the edge of the father node. O(d)

Delete: If the key is not in a leaf, switch with succ/pred. Delete, and deal with short node v:

- 1. If v is the root, discard; terminate.
- 2. If v has a non-short sibling, steal from it; terminate.
- 3. Fuse v with its sibling, repeat with $p \leftarrow p[v]$.

Traversals

Traverse(t):

if t==null then return

 \rightarrow print (t) //pre-order

Traverse(t.left)

 \rightarrow (OR) print(t) //in-order

Traverse(t.right)

 \rightarrow (OR) print(t) //post-order

Heaps

	Binary	Binomial	Fibonacci
findMin	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
deleteMin	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
insert	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
decreaseKey	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
meld	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$

Binary

Melding: If the heap is represented by an array, link the two arrays together and $Heapify-Up.\ O\left(n\right).$

Binomial

Melding: Unify trees by rank like binary summation. $O(\log n)$

Fibonacci Heap

Maximum degree: $D\left(n\right) \leq \left\lfloor \log_{\varphi} n \right\rfloor$; $\varphi = \frac{\left(1+\sqrt{5}\right)}{2}$

Minimum size of degree $k: s_k \geq F_{k+2}$

Marking: Every node which lost one child is marked.

Cascading Cut: Cut every marked node climbing upwards. *Keeps amortized* $O(\log n)$ *time for* deleteMin. *Otherwise* $O(\sqrt{n})$.

Proof of the φ^k node size bound:

- 1. All subtrees of junction j, sorted by order of insertion are of degree $D[s_i] \geq i-2$ (Proof: when x's largest subtree was added, since D[x] was i-1, so was the subtree. Since then, it could lose only one child, so it is at least i-2)
- 2. $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$; $F_{k+2} \ge \varphi^k$
- 3. If x is a node and $k = \deg[x]$, $S_x \geq F_{k+2} \geq \varphi^k$. (Proof: Assume induction after the base cases and then $s_k = 2 + \sum_{i=2}^k S_{i-2} \geq 2 + \sum_{i=2}^k F_i = 1 + \sum_{i=0}^k F_i = F_{k+2}$)

Structures

Median Heap: one min-heap and one max-heap with $\forall x \in \min, y \in \max : x > y$ then the minimum is on the median-heap

Sorting

Comparables

Algorithm	Expected	Worst	Storage
QuickSort	$O(n \log n)$	$O\left(n^2\right)$	In-Place
	Partition recu	rsively at each	step.
BubbleSort		$O\left(n^2\right)$	In-Place
SelectionSort		$O\left(n^2\right)$	In-Place
	Traverse n sl	ots keeping sc	ore of the
	maximum. Sv	wap it with $A[r]$	n]. Repeat
	for $A[n-1]$.		
HeapSort		$O(n \log n)$	Aux
InsertionSort			Aux
MergeSort		$O(n \log n)$	Aux

Linear Time

BucketSort $\Theta(n)$:

If the range is known, make the appropriate number of buckets, then:

- 1. Scatter: Go over the original array, putting each object in its bucket
- 2. Sort each non-empty bucket (recursively or otherwise)

3. Gather: Visit the buckets in order and put all elements back into the original array.

CountSort $\Theta(n)$:

- 1. Given an array A bounded in the discrete range C, initialize an array with that size.
- 2. Passing through A, increment every occurence of a number i in its proper slot in C.
- 3. Passing through C, add the number represented by i into A a total of C[i] times.

RadixSort $\Theta(n)$:

- 1. Take the least significant digit.
- 2. Group the keys based on that digit, but otherwise keep the original order of keys. (This is what makes the LSD radix sort a stable sort).
- 3. Repeat the grouping process with each more significant digit.

Selection

QuickSelect	$O\left(n\right)$	$O\left(n^2\right)$
5-tuple Select		

Hashing

Universal Family: a family of mappings $H. \forall h \in H. h: U \rightarrow [m]$ is universal iff $\forall k_1 \neq k_2 \in U: Pr_{h \in H} [h(k_1) = h(k_2)] \leq \frac{1}{m}$ Example: If $U = [p] = \{0, 1, \dots, p-1\}$ then $H_{p,m} = \{h_{a,b} \mid 1 \leq a \leq p; 0 \leq b \leq p\}$ and every hash function is $h_{a,b}(k) = ((ak+b) \mod (p)) \mod (m)$

Linear Probing: Search in incremental order through the table from h(x) until a vacancy is found.

Open Addressing: Use $h_1(x)$ to hash and $h_2(x)$ to permute. No pointers.

Open Hashing:

Perfect Hash: When one function clashes, try another. $O(\infty)$. **Load Factor** α : The length of a possible collision chain. When |U| = n, $\alpha = \frac{m}{n}$.

Methods

Modular: Multipilicative, Additive, Tabular(byte)-additive

Performance

Chaining	$\mathbb{E}\left[X ight]$	Worst Case
Successful Search/Del	$\frac{1}{2}\left(1+\alpha\right)$	\overline{n}
Failed Search/Verified Insert	$1 + \alpha$	\overline{n}

Probing

Linear: $h(k,i) = (h'(k) + i) \operatorname{mod} m$

Quadratic: $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$

Double: $h(k, i) = (h_1(k) + ih_2(k)) \text{ mod } m$

$\mathbb{E}\left[X ight]$	Unsuccessful Search	Successful Search
Uni. Probing	$\frac{1}{1-\alpha}$	$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$
Lin. Probing	$\frac{1}{2}\left(1+\left(\frac{1}{1-\alpha}\right)^2\right)$	$\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$

So Linear Probing is slightly worse but better for cache.

Collision Expectation: $\mathbb{P}\left[X \leq 2\mathbb{E}\left[X\right]\right] \geq \frac{1}{2}$

So:

- 1. if m = n then $\mathbb{E}[|Col| < n] \ge \frac{n}{2}$
- 2. if $m = n^2$ then $\mathbb{E}[|Col| < 1] \ge \frac{1}{2}$ And with 2 there are no collisions.

Two-Level Hashing

The number of collisions per level: $\sum_{i=0}^{n-1} \binom{n_i}{2} = |Col|$

- 1. Choose m = n and h such that |Col| < n.
- 2. Store the n_i elements hashed to i in a small table of size n_i^2 using a perfect hash function h_i .

Random algorithm for constructing a *perfect* two level hash table:

- 1. Choose a random h from H(n) and compute the number of collisions. If there are more than n collisions, repeat.
- 2. For each cell i, if ni>1, choose a random hash function from H(ni2). If there are any collisions, repeat.

Expected construction time -O(n)

Worst Case search time - O(1)

Union-Find

$$\frac{\text{MakeSet}(x) \quad \text{Union}(x,y) \quad \text{Find}(x)}{O(1) \qquad O(1) \qquad O(\alpha(k))}$$

Union by Rank: The larger tree remains the master tree in every union.

Path Compression: every *find* operation first finds the master root, then repeats its walk to change the subroots.

Recursion

Master Theorem: for $T(n) = aT(\frac{n}{b}) + f(n)$; $a \ge 1$, b > 1, $\varepsilon > 0$:

$$\begin{cases} T\left(n\right) = \Theta\left(n^{\log_b a}\right) & f\left(n\right) = O\left(n^{\log_b (a) - \varepsilon}\right) \\ T\left(n\right) = \Theta\left(n^{\log_b a} \log^{k+1} n\right) & f\left(n\right) = \Theta\left(n^{\log_b a} \log^k n\right); \ k \ge 0 \\ T\left(n\right) = \Theta\left(f\left(n\right)\right) & f\left(n\right) = \Omega\left(n^{\log_b a + \varepsilon}\right) \\ & af\left(\frac{n}{b}\right) \ge cf\left(n\right) \end{cases}$$

Building a recursion tree: build one tree for running times (at $T(\alpha n)$) and one for f(n).

Orders of Growth

$$\begin{array}{ll} f = O\left(g\right) & \limsup_{x \to \infty} \frac{f}{g} < \infty \\ f = \Theta\left(g\right) & \lim_{x \to \infty} \frac{f}{g} \in \mathbb{R}^+ \\ f = \Omega\left(g\right) & \liminf_{x \to \infty} \frac{f}{g} > 0 \end{array} \left| \begin{array}{ll} f = o(g) & \frac{f}{g} \stackrel{x \to \infty}{\to} 0 \\ f = \omega(g) & \frac{f}{g} \stackrel{x \to \infty}{\to} \infty \end{array} \right|$$

Amortized Analysis

Potential Method: Set Φ to examine a parameter on data stucture D_i where i indexes the state of the structure. If c_i is the actual cost of action i, then $\hat{c_i} = c_i + \Phi\left(D_i\right) - \Phi\left(D_{i-1}\right)$. The total potential amortized cost will then be $\sum_{i=1}^n \hat{c_i} = \sum_{i=1}^n \left(c_i + \Phi\left(D_i\right) - \Phi\left(D_{i-1}\right)\right) = \sum_{i=1}^n c_i + \Phi\left(D_i\right) - \Phi\left(D_0\right)$

Deterministic algorithm: Always predictable.

Stirling's Approximation: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \Rightarrow \log n! \sim x \log x - x$

Scribbled by Omer Shapira, based on the course "Data Structures" at Tel Aviv University.

Redistribute freely.

Website: http://www.omershapira.com