## MA 323 (2020) Monte Carlo Simulation: LAB 04 Jay Vikas Sabale 180123019

## **Problem**

- **1.** Consider the values of  $\alpha_1$  and  $\alpha_2$  as follows:
  - a.  $\alpha_1 = 1.25, \ \alpha_2 = 2.0$
  - b.  $\alpha_1 = 1.25, \ \alpha_2 = 2.75$
  - c.  $\alpha_1 = 1.0, \ \alpha_2 = 2.0$
  - d.  $\alpha_1 = 3.25$ ,  $\alpha_2 = 4.75$
  - e.  $\alpha_1 = 2.25$ ,  $\alpha_2 = 1.75$
- **2.** Using  $*x = (\alpha_1 1)/(\alpha_1 + \alpha_2 2)$ , we get:
  - a. \*x = 0.20
  - b. \*x = 0.125
  - c. \*x = 0.00
  - d. \*x = 0.375
  - e. \*x = 0.625
- **3.** U sing f(\*x) = c,  $and f(x) \le c$ , we get:
  - a. c = 1.5046656861969496
  - b. c = 1.9372633177873984
  - c. c = 2.0
  - d. c = 2.2510765814672182
  - e. c = 1.5344352515465707
- 4. \*Implicit Implementation\*

5.

**a.** 
$$For \alpha_1 = 1.25, \alpha_2 = 2.0$$









b.  $For \alpha_1 = 1.25, \alpha_2 = 2.75$ 









0.0

0.0

0.2

0.4

0.6

0.8

0.0

0.4

0.2

0.6

0.8

**e.**  $For \alpha_1 = 2.25, \alpha_2 = 1.75$ 



## **Observations:**

- 1. For all values of  $\alpha_1$  and  $\alpha_2$  chosen in part (1) of the problem, for large sample size, the sample beta distribution seems to coincide with actual beta distribution f(x).
- 2. The above histograms verify the claim made in (1) observation.