Coordinate Systems in Two and Three Dimensions

Outline

- Coordinate systems in 2-dimensions: Cartesian and plane polar coordinate systems and their relationship. Length and area elements
- Coordinate systems in 3-dimensions: Cylindrical and Spherical Polar Coordinate systems, line, surface and volume elements

Objectives

- To learn to use symmetry adapted coordinate systems
- To understand as to how to construct line, surface, and volume elements for various coordinate systems

Using Symmetries in Physics

- Using a coordinate system which is consistent with the symmetry of the physical system simplifies calculations
- If a planar system has circular symmetry, use of plane-polar coordinate system will simplify calculations
- For systems with cylindrical symmetry, use of cylindrical polar coordinates is advised
- Likewise for spherical systems, use of spherical polar coordinate system will be beneficial

Coordinate Systems in Two Dimensions: Cartesian Coordinates

- Location of a point in a flat plane is given by coordinates (x,y).
- Differential line element \overrightarrow{dl} is given by $\overrightarrow{dl} = dx\hat{i} + dy\hat{j}$
- A general vector is given by $\vec{A} = A_x \hat{i} + A_y \hat{j}$.
- Infinitesimal area element \overrightarrow{dA}_{12} in a plane described by orthogonal coordinates 1 and 2 can be computed for any coordinate system as

$$\overrightarrow{dA}_{12} = \overrightarrow{dl}_1 \times \overrightarrow{dl}_2 \tag{1}$$

• For Cartesian coordinates it yields

$$\overrightarrow{dA} = dx\hat{i} \times dy\hat{j} = dxdy\hat{k}$$
 or $dA = dxdy$

2D Coordinates: Plane Polar Coordinates

Unit vectors denoted as $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{ heta}}$ are shown below

- Location of a point in a flat plane is given by coordinates (r, θ) .
- Differential line element \overrightarrow{dl} is given by $\overrightarrow{dl} = dr\hat{r} + rd\theta\hat{\theta}$
- Infinitesimal surface area is $\overrightarrow{dA} = dr\hat{r} \times rd\theta\hat{\theta} = rdrd\theta\hat{k}$, or $dA = rdrd\theta$

Relationship between Cartesian and Plane Polar Coordinates

- $x = r \cos \theta$, $y = r \sin \theta$
- $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1}\left(\frac{y}{x}\right)$, where $-\infty \le x, y \le \infty$; $0 \le r \le \infty$, $0 \le \theta \le 2\pi$.
- And unit vectors are related as $\hat{r} = \cos \theta \hat{i} + \sin \theta \hat{j}$, and $\hat{\theta} = -\sin \theta \hat{i} + \cos \theta \hat{j}$
- $\hat{i} = \cos\theta \hat{r} \sin\theta \hat{\theta}$, $\hat{j} = \sin\theta \hat{r} + \cos\theta \hat{\theta}$
- Using these relations, one can easily transform vectors expressed in one coordinate system, into the other one.
- Area of a circle of radius a

$$A = \int \int dA = \int_0^a \int_0^{2\pi} r dr d\theta = \int_0^a r dr \int_0^{2\pi} d\theta = \pi a^2$$

Calculating the area of a circle again

• Consider a circle of radius a as shown in the figure below

- The origin of the (r, θ) coordinate system O is assumed to be on the circumference
- Clearly, the distance of any point P on the circle, from the origin is $r=2a\cos\theta$
- Thus, the equation of the circle in this coordinate system will be $r = 2a\cos\theta$,

Area of a circle...

We know that in plane polar coordinates area element is

$$dA = rdrd\theta$$
,

 therefore, the total area will be the double integral (pay attention to the limits)

$$A = \int_{\theta = -\pi/2}^{\pi/2} d\theta \int_{r=0}^{2a\cos\theta} r dr$$

$$= 2a^2 \int_{-\pi/2}^{\pi/2} \cos^2\theta d\theta$$

$$= a^2 \int_{-\pi/2}^{\pi/2} (1 + \cos 2\theta) d\theta$$

$$= \pi a^2$$

• Note the same result as before

Electric Field Due to a Uniformly Charged Semicircular Wire

• Consider a uniformly charged semicircular wire shown below

- Clearly due to symmetry, y-components of the \vec{E} field will cancel
- and the net field will be in the x direction

Uniformly charged Semicircular Wire

- Let the linear charge density be λ , and the radius of the semicircle be a
- If the length elements subtend angles $d\theta$ at the origin, then clearly $dq_t=dq_b=\lambda\,dl=\lambda\,ad\,\theta$
- ullet Electric field at the origin due to dq_t is

$$\overrightarrow{dE}_{t} = \frac{dq_{t}}{4\pi\varepsilon_{0}a^{2}} \left(\sin\theta \,\hat{i} - \cos\theta \,\hat{j} \right)$$

$$= \frac{\lambda d\theta}{4\pi\varepsilon_{0}a} \left(\sin\theta \,\hat{i} - \cos\theta \,\hat{j} \right)$$

$$\implies \vec{E}(r=0) = \int \overrightarrow{dE}_{t} = \frac{\lambda}{4\pi\varepsilon_{0}a} \int_{0}^{\pi} \left(\sin\theta \,\hat{i} - \cos\theta \,\hat{j} \right) d\theta$$

$$= \frac{\lambda}{2\pi\varepsilon_{0}a} \hat{i} + 0 \hat{j}$$

Kinematics in plane polar coordinates

- Computing quantities such as velocity and acceleration is a bit more complicated in plane polar coordinates
- ullet The reason: \hat{r} and $\hat{ heta}$ are direction dependent
- Let us compute the velocity

$$v = \frac{dr}{dt} = \frac{d}{dt} (r\hat{r}).$$

Using the chain rule, we have

$$v = \frac{dr}{dt}\hat{r} + r\frac{d\hat{r}}{dt}.$$

- Note that as the particle moves, vector $\hat{\mathbf{r}}$ also changes so that $\frac{d\hat{\mathbf{r}}}{dt} \neq 0$.
- But, how to compute $\frac{d\hat{\mathbf{r}}}{dt}$?
- A geometric calculation is possible, but let us take a different approach.

Velocity in plane polar coordinates

• Let us use Cartesian coordinates for the purpose

$$\hat{\mathbf{r}} = \cos\theta \hat{\mathbf{j}} + \sin\theta \hat{\mathbf{j}}$$

- Because Cartesian basis vectors \hat{i} and \hat{j} have fixed directions in space, so they don't change with time
- Therefore

$$\frac{d\hat{\mathbf{r}}}{dt} = \frac{d\cos\theta}{dt}\hat{\mathbf{i}} + \frac{d\sin\theta}{dt}\hat{\mathbf{j}}$$

Now

$$\frac{d\cos\theta}{dt} = -\sin\theta \frac{d\theta}{dt} = -\sin\theta \dot{\theta}$$
$$\frac{d\sin\theta}{dt} = \cos\theta \frac{d\theta}{dt} = \cos\theta \dot{\theta}$$

So that

$$\frac{d\hat{\mathbf{r}}}{dt} = -\sin\theta \, \dot{\theta} \, \hat{\mathbf{i}} + \cos\theta \, \dot{\theta} \, \hat{\mathbf{j}} = \dot{\theta} \left(-\sin\theta \, \hat{\mathbf{i}} + \cos\theta \, \hat{\mathbf{j}} \right) = \dot{\theta} \, \hat{\theta}$$

Velocity in plane polar coordinates contd.

• Therefore, finally we have

$$v = \frac{dr}{dt}\hat{\mathbf{r}} + r\frac{d\hat{\mathbf{r}}}{dt} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\theta}$$
$$= v_r\hat{\mathbf{r}} + v_\theta\hat{\theta}$$

- Thus, we have obtained an expression for velocity in terms of its radial and angular (also called tangential) components
- What is the physical significance of v_r and v_θ ?

Velocity in polar coordinates: Physical Significance

Consider the figure

- Case 1: This case corresponds to motion along the radial direction, with θ held fixed $(\dot{\theta} = 0)$, so that $v = \dot{r}\hat{r}$.
- Case 2: Here there is no radial motion $(\dot{r}=0)$, so velocity will be along the arc of a circle with $\mathbf{v}=r\dot{\theta}\hat{\theta}$

Acceleration in polar coordinates

Acceleration can be computed as

$$a = \frac{dv}{dt}$$

$$= \frac{d}{dt} \left(\dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \right)$$

$$= \frac{d\dot{r}}{dt}\hat{r} + \dot{r}\frac{d\hat{r}}{dt} + \frac{d(r\dot{\theta})}{dt}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$

$$= \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$

ullet We compute $rac{d\hat{ heta}}{dt}$, by expressing $\hat{oldsymbol{ heta}}$ in Cartesian coordinates

$$\frac{d\hat{\theta}}{dt} = \frac{d}{dt} \left(-\sin\theta \hat{i} + \cos\theta \hat{j} \right)$$
$$= -\cos\theta \hat{\theta} \hat{i} - \sin\theta \hat{\theta} \hat{j}$$
$$= -\dot{\theta} \hat{r}$$

Acceleration in polar coordinates....

ullet On substituting the expression of $rac{d\hat{ heta}}{dt}$, we obtain

$$\mathbf{a} = \left(\ddot{r} - r\dot{ heta}^2
ight)\hat{\mathbf{r}} + \left(2\dot{r}\dot{ heta} + r\ddot{ heta}
ight)\hat{oldsymbol{ heta}}$$

- Different terms have the following interpretations
 - \ddot{r} due to change of radial speed, points in radial direction
 - ullet $-r\dot{ heta}^2$ centripetal acceleration, pointing radially inwards
 - $2r\theta$ Coriolis acceleration, present whenever both radial and angular velocities are zero, points in tangential direction
 - \bullet $r\theta$ tangential angular acceleration, due to changing angular velocity, points in tangential direction

Derivation of Kepler's Second Law

- Kepler's second law states that the areal velocity of each planet with respect to Sun is constant
- The force applied by Sun on planets is gravitational and of the form $f(r) = -\frac{C}{r^2}\hat{r}$
- This force depends only on the distance r between Sun and the planet, and is along the line joining them
- Such forces are called central forces, which have the general form

$$f(r) = f(r)\hat{r}$$

We know that in plane polar coordinates

$$\mathbf{a} = \ddot{\mathbf{r}} = (\ddot{r} - r\dot{\theta}^2)\hat{\mathbf{r}} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$

Kepler's second law...

• Therefore, the equation of motion for a planet (or a particle) of mass m $m\ddot{r} = f(r)\hat{r}$, becomes

$$m(\ddot{r}-r\dot{\theta}^2)\hat{r}+m(2\dot{r}\dot{\theta}+r\ddot{\theta})\hat{\theta}=f(r)\hat{r}$$

On comparing both sides, we obtain following two equations

$$m(\ddot{r} - r\dot{\theta}^{2}) = f(r)$$
$$m(2\dot{r}\dot{\theta} + r\ddot{\theta}) = 0$$

ullet By multiplying second equation on both sides by r, we obtain

$$\frac{d}{dt}(mr^2\dot{\theta})=0$$

Equations of motion...

This equation yields

$$mr^2\dot{\theta}=L$$
 (constant),

we called this constant L because it is nothing but the angular momentum of the particle about the origin. Note that $L = I\omega$, with $I = mr^2$.

• As the particle moves along the trajectory so that the angle θ changes by an infinitesimal amount $d\theta$, the area swept with respect to the origin is

$$dA = \frac{1}{2}r^2 d\theta$$

$$\implies \frac{dA}{dt} = \frac{1}{2}r^2 \dot{\theta} = \frac{L}{2m} = \text{constant},$$

because L is constant, thus, proving Kepler's second law

- Note, constancy of areal velocity is a property of all central forces, not just the gravitational forces.
- And it holds due to the conservation of angular momentum

Coordinate Systems in 3D: Cartesian Coordinates

- Location of a point is is given by coordinates (x, y, z).
- Differential line element \overrightarrow{dl} is given by $\overrightarrow{dl} = dx\hat{i} + dy\hat{j} + dz\hat{k}$
- Infinitesimal area element depends upon the plane. For xy plane it will be

$$\overrightarrow{dA}_{xy} = dxdy\,\hat{k}$$

 Infinitesimal volume element for any orthogonal 3D coordinate system is given by

$$dV = dl_1 dl_2 dl_3$$
 for this case $dV = dx dy dz$

3D Coordinates: Spherical Polar Coordinates

• Location of a point is specified by three coordinates (r, θ, ϕ) , as shown below

• What is the range of r, θ , and ϕ ?

3D Coordinates...

- Clearly $0 \le r \le \infty$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$
- Relationship with Cartesian coordinates $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$
- Inverse relationship

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$$

$$\phi = \tan^{-1} \frac{y}{x}$$

- Differential line element \overrightarrow{dl} is given by $\overrightarrow{dl} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$
- Cross products given by $\hat{ heta} imes \hat{\phi} = \hat{r}$, $\hat{\phi} imes \hat{r} = \hat{ heta}$, and $\hat{r} imes \hat{ heta} = \hat{\phi}$
- ullet Note that ϕ of this coordinate system is like heta of plane polar system

Spherical Polar Coordinates...

Relationship between Cartesian and Spherical unit vectors

$$\hat{r} = \sin \theta \cos \phi \hat{i} + \sin \theta \sin \phi \hat{j} + \cos \theta \hat{k}$$

$$\hat{\theta} = \cos \theta \cos \phi \hat{i} + \cos \theta \sin \phi \hat{j} - \sin \theta \hat{k}$$

$$\hat{\phi} = -\sin \phi \hat{i} + \cos \phi \hat{j}$$

- Area element on the surface of a sphere or radius R, $\overrightarrow{dA}_{\theta\phi} = \overrightarrow{dI}_{\theta} \times \overrightarrow{dI}_{\phi} = Rd\theta \hat{\theta} \times R \sin\theta d\phi \hat{\phi} = R^2 \sin\theta d\theta d\phi \hat{r}$
- ullet Similarly, one can calculate $\overrightarrow{dA}_{r heta}$ and $\overrightarrow{dA}_{\phi r}$
- Area of the surface of a sphere $A=R^2\int_0^{\pi}\sin\theta\,d\theta\int_0^{2\pi}d\phi=4\pi\,R^2$

Spherical Polar Coordinates...

- Elementary volume element $dV = dl_r dl_\theta dl_\phi = drrd\theta r \sin\theta d\phi = r^2 \sin\theta drd\theta d\phi$
- Volume of a sphere of radius R

$$V = \int_0^R r^2 dr \int_0^{\pi} \sin \theta d\theta \int_0^{2\pi} d\phi = \frac{4}{3} \pi R^3$$

3D Coordinate Systems: Cylindrical Coordinates

ullet Location of a point specified by three coordinates (
ho, heta,z)

3D Coordinate System....

- Relationship with Cartesian coordinates $x = \rho \cos \theta$, $y = \rho \sin \theta$, z = z
- Inverse relationship $ho=\sqrt{x^2+y^2}$, $heta= an^{-1}\left(rac{y}{x}
 ight)$, z=z
- Differential line element \overrightarrow{dl} is given by $\overrightarrow{dl} = d\rho \hat{\rho} + \rho d\theta \hat{\theta} + dz \hat{k}$
- Area element in different planes can be obtained using the relation $\overrightarrow{dA}_{ij} = \overrightarrow{dI}_i \times \overrightarrow{dI}_j$
- For $\rho \theta$ plane it will be $\overrightarrow{dA}_{\rho\theta} = \overrightarrow{dl}_{\rho} \times \overrightarrow{dl}_{\theta} = d\rho \hat{\rho} \times \rho d\theta \hat{\theta} = \rho d\rho d\theta \hat{k}$
- ullet Volume element $dV=dl_1dl_2dl_3=
 ho d
 ho d heta dz$
- Volume of a cylinder of height L, and radius R $V = \int_{\rho=0}^{R} \rho \, d\rho \int_{z=0}^{L} dz \int_{\theta=0}^{2\pi} d\theta = \pi R^2 L$

Generalized Orthogonal Curvilinear Coordinates

- Let us consider a general curvilinear coordinate system in 3D
- The coordinates are defined as (u_1, u_2, u_3) , which may or may not have dimensions of distance
- Corresponding unit vectors are $(\hat{u}_1, \hat{u}_2, \hat{u}_3)$
- Orthonormality condition of the unit vectors is $\hat{u}_i \cdot \hat{u}_j = \delta_{ij}$, for i,j=1,2,3
- ullet Symbol δ_{ij} is called Kronecker delta and it is $\delta_{ii}=1$, and $\delta_{ij}=0$, for i
 eq j
- The displacement vector \overrightarrow{dl} between points (u_1, u_2, u_3) and $(u_1 + du_1, u_2 + du_2, u_3 + du_3)$ is given by

$$\overrightarrow{dl} = h_1 du_1 \hat{u}_1 + h_2 du_2 \hat{u}_2 + h_3 du_3 \hat{u}_3 = \sum_{i=1}^3 h_i du_i \hat{u}_i$$

What are h;'s?

Curvilinear Coordinates...

- Because u_i 's don't necessarily have dimensions of length, therefore, we need h_i 's
- They are defined such that $h_i du_i$ have dimensions of length
- By comparing with the Cartesian, Spherical Polar, and the Cylindrical coordinates, we have

$$egin{aligned} h_x=1, & h_y=1, & h_z=1 & ext{for Cartesian} \ h_r=1, & h_{ heta}=r, & h_{\phi}=r\sin{ heta} & ext{for spherical} \ h_{
ho}=1, & h_{ heta}=
ho & h_z=1 & ext{for cylindrical} \end{aligned}$$

Gradient in Curvilinear Coordinates

- Let us consider a scalar field f which is a function of three curvilinear coordinates $f(u_1, u_2, u_3) \equiv f(u_i)$
- Using multi-variable Taylor expansion we have

$$f(u_i + du_i) = f(u_i) + \sum_{i=1}^{3} \frac{\partial f}{\partial u_i} du_i + O(h_i^2) + \cdots$$
$$= f(u_i) + \sum_{i=1}^{3} \frac{1}{h_i} \frac{\partial f}{\partial u_i} h_i du_i + \cdots$$
$$= f(u_i) + \nabla f \cdot \overrightarrow{dl} + \cdots$$

Leading to

$$\nabla f = \sum_{i=1}^{3} \frac{1}{h_i} \frac{\partial f}{\partial u_i} \hat{u}_i$$

Gradient...

 From which we deduce the expression for the gradient operator in a general orthogonal 3D curvilinear coordinate system

$$\nabla \equiv \sum_{i=1}^{3} \hat{u}_{i} \frac{1}{h_{i}} \frac{\partial}{\partial u_{i}}$$

using which, and the values of h_i , one can derive the expression for gradient in any curvilinear coordinate system