1. G is a cyclic group of order n and m|n. Prove that there is a unique subgroup of order m in G.

Solution:

Let $G = \langle a \rangle$ be a cyclic group of order n. The cyclic subgroup $\langle a^{\frac{n}{m}} \rangle$ is of order m, since

$$< a^{\frac{n}{m}} > = \{1, a^{\frac{n}{m}}, a^{\frac{2n}{m}}, ..., a^{\frac{(m-1)n}{m}}\}$$

Now for any subgroup H of G with $|H|=m, H=< a^k>$ for some $1 \le k \le n$. If we can show $a^k \in < a^{\frac{n}{m}}>$, then $< a^k> \subseteq < a^{\frac{n}{m}}>$, and together with $|< a^k> |= |< a^{\frac{n}{m}}> |= m$, we can conclude $H=< a^k> =< a^{\frac{n}{m}}>$.

Now we will show $a^k \in \langle a^{\frac{n}{m}} \rangle$: $|a^k| = m$, so $(a^k)^m = 1$, i.e., $a^{km} = 1$. This means n|km, there exists $b \in \mathbb{Z}$ such that km = bn. We have $k = \frac{n}{m} \times b$, so $a^k = (a^{\frac{n}{m}})^b$, $a^k \in \langle a^{\frac{n}{m}} \rangle$.

2. G is a group of order p^2 , where p is a prime. Prove that if G has a unique subgroup of order p, then G is cyclic.

Solution:

If the only cyclic subgroup of order p is < x >, let $y \in G$ and $y \notin < x >$. |y| divides $|G| = p^2$, $|y| \neq 1$ since it is not the identity, $|y| \neq p$ otherwise there will be another cyclic subgroup of order p, so $|y| = p^2$, G = < y > is cyclic.

3. If G is a finite group with |G| > 1, and the only subgroups of G are $\{1\}$ and G, prove G is a cyclic group with prime order.

Solution: We first prove G is a cyclic group. Take any $x \in G$ such that $x \neq 1$, the cyclic subgroup generated by x is $\langle x \rangle \neq \{1\}$, and the only subgroups of G are $\{1\}$ and G, so $\langle x \rangle = G$, we get G is a cyclic group.

Suppose $|G| = |\langle x \rangle| = |x| = n$ is not prime, then there exists $k \in \mathbb{N}$ such that 1 < k < n and k divides n. $(x^k)^{\frac{n}{k}} = x^n = 1$, so $|\langle x^k \rangle| \leq \frac{n}{k} < n = |G|$, which means $\langle x^k \rangle \neq G$. 1 < k < n = |x| implies $x^k \neq 1$, so $\langle x^k \rangle \neq \{1\}$, so we get a subgroup $\langle x^k \rangle$ which is not 1 or G, contradiction. We conclude |G| is prime.

4. $f: G \longrightarrow G'$ is a homomorphism, H' is a subgroup of G', and $H = f^{-1}(H') = \{g \in G | f(g) \in H'\}.$

- (i). Prove $\ker f \subseteq H$.
- (ii). Prove H is a subgroup of G.
- (iii). If H' is a normal subgroup of G', is H a normal subgroup of G? If yes, prove it; if no, provide a counter example.

Solution:

- (i). For any $x \in \ker f$, $f(x) = 1' \in H'$ since H' is a subgroup of G', so $x \in H$, $\ker f \subseteq H$.
- (ii). For any $a, b \in H$, $f(a) \in H'$ and $f(b) \in H'$, then $f(a^{-1}b) = f(a)^{-1}f(b) \in H'$, so $a^{-1}b \in H$, H is a subgroup of G.
- (iii). H is a normal subgroup of G:

H' is a normal subgroup of G', so for any $h \in H$ and $g \in G$, $f(ghg^{-1}) = f(g)f(h)f(g)^{-1} \in H'$, which means $ghg^{-1} \in H$, H is a normal subgroup of G.

5. G is a group. $f: G \longrightarrow G$ is defined by $f(g) = g^2$. Prove that f is a homomorphism if and only if G is abelian.

Solution: If G is abelian, then for any $a, b \in G$:

$$f(ab) = (ab)^2 = abab = a^2b^2 = f(a)f(b)$$

f is a homomorphism.

Conversely, if f is a homomorphism, then for any $a, b \in G$,

$$a(ab)b = a^2b^2 = f(a)f(b) = f(ab) = (ab)^2 = a(ba)b$$

by Cancellation Law, ab = ba. We conclude G is abelian.

- 6. \mathbb{Z} is the group of integers with addition as composition, and $G = \{\pm 1\}$ is the group of ± 1 with multiplication.
 - (i). For $a \in \mathbb{Z}$, let $f_a : \mathbb{Z} \longrightarrow \mathbb{Z}$ be the function $f_a(x) = ax$ for any $x \in \mathbb{Z}$. Prove $Aut(\mathbb{Z}) = \{f_1, f_{-1}\}.$
 - (ii). Let $G = \{\pm 1\}$ be the group with multiplication. Prove $F : Aut(\mathbb{Z}) \longrightarrow G$ defined by F(f) = f(1) is an isomorphism.

Solution:

(i). First, it is easy to see $f_1 \in Aut(\mathbb{Z})$ and $f_{-1} \in Aut(\mathbb{Z})$. We need to show these are the only elements in $Aut(\mathbb{Z})$.

For any
$$f \in Aut(\mathbb{Z})$$
, f is a homomorphism, then for any positive integer k , $f(k) = \phi(\underbrace{1 + \ldots + 1}_{k\text{-copies}}) = \underbrace{f(1) + \ldots + f(1)}_{k\text{-copies}} = kf(1)$, and $f(-k) = f(\underbrace{(-1) + \ldots + (-1)}_{k\text{-copies}}) = \underbrace{f(-1) + \ldots + f(-1)}_{k\text{-copies}} = kf(-1) = -kf(1)$. Thus we see $f(x) = f(1)x$ for any

integer x, so $f = f_a$ with a = f(1).

Also $f = f_a$ is bijective, by Homework 1, $a = \pm 1$. So $f = f_1$ or $f = f_{-1}$, we conclude $Aut(\mathbb{Z}) = \{f_1, f_{-1}\}.$

(ii).
$$F(f_1) = f_1(1) = 1$$
 and $F(f_{-1}) = f_{-1}(1) = -1$, so F is bijective.

F is a homomorphism since It is a homomorphism since for $f, f' \in Aut(\mathbb{Z})$, $F(f \circ f') = f \circ f'(1) = f(f'(1)) = f(1)f'(1) = F(f)F(f')$.

We conclude that Φ is an isomorphism.