Metoda PCA

Lukáš Forst, forstluk November 20, 2018

1 Úloha 1: Aproximace bodů přímkou

1. Zobrazení bodů a jejich projekcí

2. Součet čtverců kolmých vzdáleností bodů k nalezené přímce je

$$\sum_{i=1}^{m} ||a_i - \tilde{a}_i||^2 = 24.2419$$

3. Hledaný vektor x=(0.2740,-0.9617) je normálový vektor hledané přímky. Číslo $\alpha=-3.3931$ jsem dostal po dosazení bodu y z hledané přímky a normálového vektoru x do rovnice $y^Tx=\alpha$. Vektor s=(-0.9617,-0.2740) je směrovým vektorem hledané přímky a bod $y_0=(-0.9296,3.2633)$ se spočítá ze soustavy rovnic:

$$y_0^T x = \alpha$$
$$y_0^T s = 0$$

Kde první rovnice je obecná rovnice hledané přímky a druhá rovnice je obecná rovnice přímky kolmé na tu první a procházející počátkem, y_0 je tedy jejich průsečík.

2 Úloha 2: Komprese sekvence z motion capture

1. Optimální hodnoty r:

r	$\sum_{i=1}^{m} a_i - \tilde{a}_i ^2$
1	$4.616623 \cdot 10^8$
2	$1.692542 \cdot 10^8$
5	$1.0453 \cdot 10^7$
10	$1.198151 \cdot 10^6$
15	$2.562606 \cdot 10^5$

2. Grafy

3D Makarena

3D Walk

- 3. Minimální dimenze podprostoru je 1. Všechny body v případě translačního pohybu se pohybují po rovnoběžných přímkách, stačí nám tedy znát jeden směrový vektor. Polohu všech bodů v kterémkoli okamžiku můžeme zjistit pak z rovnice $y_0 + ts$, kde za y_0 postupně dosadíme počáteční body a s je směrový vektor.
- 4. Hledaný vztah se dá vyjádřit následující rovností:

$$\sum_{i=1}^{m} ||a_i - \tilde{a}_i||^2 = s_{r+1}^2 + \dots + s_n^2$$

Kde (s_{r+1},\dots,s_n) jsou vynulovaná singulární čísla.