Topologie et calcul

Espaces compacts

différentiel

Question 1/10

Description topologique des espaces compact

Réponse 1/10

Si E est un espace topologique, E est compact si E est séparé¹ et tout recouvrement ouvert de E a un sous-recouvrement fini

Question 2/10

Théorème de Riesz

Réponse 2/10

La boule unité d'un ev E est compacte si et seulement si E est de dimension finie

Question 3/10

Théorème de Heine

Réponse 3/10

Si X est compact et $f: X \to Y$ est continue alors f est uniformément continue

Question 4/10

Espace précompact

Réponse 4/10

Espace X pour lequel pour tout $\varepsilon > 0$, X est recouvrable par un nombre fini de boules de rayon ε

Question 5/10

Théorème de Borel-Lebesgue

Réponse 5/10

L'espace métrique (E,d) est compact si et seulement si de tout recouvrement par des ouverts, on peut extraire un sous-recouvrement fini

Question 6/10

Propriété du compact
$$(S, d)$$

 $S = \{0, 1\}^{\mathbb{N}^*}, d(x, y) = 2^{-\min(\{n \in \mathbb{N}, x_n \neq y_n\})}$

Réponse 6/10

Si (K, d') est un espace compact alors il existe $f: S \to K$ une surjection continue

Question 7/10

Définition équivalente à la compacité

Réponse 7/10

Complet et précompact

Question 8/10

Théorème de Stone

Réponse 8/10

Si (X, d) est un espace métrique compact et si A est une \mathbb{R} -algèbre de fonctions continues qui sépare les points $(\forall x \neq y, \exists f \in A, f(x) \neq f(y))$ alors A est dense dans $\mathcal{C}^0(X, \mathbb{R})$

Question 9/10

Théorème de Weirstrass

Réponse 9/10

Si I = [a, b] alors toute fonction continue sur I est limite uniforme de fonctions polynomiales

Question 10/10

Théorème de Poincaré

Réponse 10/10

Si X est compact et $f: X \to Y$ est bijective et continue alors $f^{-1}: Y \to X$ est continue