Introduction à la réécriture

Qu'est-ce que la récriture

La récriture est la théorie de la simplification qui sert

- en calcul symbolique,
- en sémantique, la valeur d'une expression est son résultat par évaluation, (il y a des liens avec la lambda calcul),
- en démonstration automatique, (il faut «simplifier»)

Exemple 1 et 2

Un exemple de réécriture:

•
$$(4+3).(x+1) \longrightarrow 7.(x+1) \longrightarrow 7.x+7$$

•
$$(4+3).(x+1) \longrightarrow (4+3).x + (4+3).1 \longrightarrow 7.x + 7$$

Un système:

- $S \longrightarrow aB|\epsilon$
- $B \longrightarrow bB|cC$
- $C \longrightarrow cC|c$

Le groupes

Considérons les trois équations de l'axiomatique faible des groupes, on note * le produit, e l'élément neutre et \overline{x} l'inverse de x.

$$x * e = x \tag{1}$$

$$x*\overline{x} = e \tag{2}$$

$$(x*y)*z = x*(y*z)$$
 (3)

On veut prouver que x = e * x, c'est-à-dire qu'«un élément neutre à droite est aussi un élément neutre à gauche !».

Pour s'y retrouver on utilise les des «flèches», pour orienter les équations (simplification?).

$$x * e \longrightarrow x$$
 (4)

$$x * \overline{x} \longrightarrow e$$
 (5)

$$(x*y)*z \longrightarrow x*(y*z)$$
 (6)

Preuve de x = e * x

Des questions

- Comment peut-on automatiser ce processus de démonstration?
- Autre question:
 - $e * (x * (\overline{x} * \overline{\overline{x}}))$
 - ou $(e*e)*\overline{\overline{x}}$
 - ou $(x*\overline{x})*\overline{\overline{x}}$

se récrivent de plusieurs manières, ils posent un problème pour un simplifieur. Est-on sûr que $e*(x*(\overline{x}*\overline{\overline{x}})) \longrightarrow e*((x*\overline{x})*\overline{\overline{x}})$ simplifie quelque chose ?

Encore des questions

Des termes comme comme

- Y a-t-il une seule forme simplifiée?
- Comment orienter les équations ?
- Les processus de simplification se termine-t-il?
- Comment le démontre-t-on?
- Sait-on résoudre les équations dans les termes?
- Peut-on calculer un système pour la simplification dans les groupes?
 Quitte à ajouter de nouvelles règles?

Un système de «simplification» pour les groupes

 $x * \overline{x} \longrightarrow e$

 $\overline{x} * x \longrightarrow e$

(7) (8)

(9)

(10)

Associativité et endomorphisme

Considérons les deux identités:

$$(x * y) * z = x * (y * z)$$
 (A)
 $f(x * y) = f(x) * f(y)$ (E)

• Une *première* façon de simplifier:

$$(x*y)*z \longrightarrow x*(y*z)$$
 (A)
 $f(x*y) \longrightarrow f(x)*f(y)$ (E)

• Une deuxième façon de simplifier:

$$\begin{array}{cccc} (x*y)*z & \longrightarrow & x*(y*z) & \text{(A)} \\ f(x)*f(y) & \longrightarrow & f(x*y) & \text{(E)} \\ f(x*y)*z & \longrightarrow & f(x)*(f(y)*z) & \text{(EA)} \end{array}$$

f(x * y) est plus lourd que f(x),

donc f(x * y) * z penche plus à gauche que f(x) * (f(y) * z). C'est une bonne idée pour orienter l'associativité!

March 9, 2017 10 / 14

Une deuxième façon de simplifier:

$$(x*y)*z \longrightarrow x*(y*z) \qquad (A)$$

$$f(x)*f(y) \longrightarrow f(x*y) \qquad (E)$$

$$f(x*y)*z \longrightarrow f(x)*(f(y)*z) \qquad (EA)$$

$$f^{2}(x*y)*z \longrightarrow f^{2}(x)*(f^{2}(y)*z) \qquad (2EA)$$

$$f^{3}(x*y)*z \longrightarrow f^{3}(x)*(f^{3}(y)*z) \qquad (3EA)$$

$$\vdots$$

$$f^{n}(x*y)*z \longrightarrow f^{n}(x)*(f^{n}(y)*z) \qquad (nEA)$$

$$\vdots$$

Identités et réduction

- Une identité $g \approx d$ est un couple, c'est-à-dire un élément de $T(\Sigma, X) \times T(\Sigma, X)$.
- Soit E un ensemble d'identités, la réduction \xrightarrow{F} est définie par

$$s \xrightarrow{E} t$$
 ssi
 $(\exists g \approx d \in E)(\exists \sigma \in Sub(T(\Sigma, X)))(\exists p \in Pos(s))$
 et
 $s|_{p} = \sigma(g) \& t = s[\sigma(d)]_{p}.$

Notion de système de réécriture

Une règle de réécriture est une identité $g \approx d$ telle que $Var(g) \supseteq Var(d)$. On écrit $g \to d$.

- Un système de réécriture est un ensemble de règles de réécriture.
- Un redex de s est une instance (c'est-à-dire un sous-terme de s de la forme $\sigma(g)$ pour $\sigma \in Sub(T(\Sigma,X))$) d'un membre gauche de règle de réécriture $g \to d$.
- Contracter le redex $s_{|p}$ à la position p, c'est passer de s à $t = s[\sigma(d)]_p$.

Bibliographie

Franz Baader et Tobias Nipkow, Term Rewriting and All that, Cambridge University Press, (1998)

Terese, Term Rewriting Systems, Cambridge University Press, (2003)