

Augmented Reality Based Location & Navigation System

What is Augmented Reality

In augmented reality (AR), objects in a real-world environment are enhanced by computer-generated data, sometimes across multiple sensory modalities, including visual, auditory, haptic, somatosensory, and olfactory.

Uses of augmented reality technology

- AR In medical industry
- In Education field
- Retail marketing
- Arch Viz
- Gaming Industry
- Robotics

AR tech for navigation

- Allow User to visualize their surroundings in their mobile phones
- Allow them to search their desired location
- Save and share their last visited locations
- Post remarks about that location

Cell phones with GPS receivers communicate with units from among the 30 global positioning satellites in the GPS system.

The built-in receiver trilaterates your position using data from at least three GPS satellites and the receiver.


```
If (user_loczdon== rget_position)
{
    Do Somuthing();
}
```


Unity3D is a powerful cross-platform 3D engine and a user-friendly development environment.

ARCore is Google's platform for building augmented reality experiences. Using different APIs, ARCore enables your phone to sense its environment, understand the world and interact with information.

Methodology

In the following sections will get in detail on how to use this component to create location-based AR experiences with navigation, how to create custom routes to places not mapped by Geolocation, and how to customize everything by creating scripts to build your unique experience.

Code:

```
C AbstractLocationProvider.cs X ≡ Release Notes: 1.67.1
  D: > college tasks > unity projet > ARNavigationVER2 > Assets > ARLocation > Scripts > Location > 🍑 AbstractLocationProvider.cs
   1 using System.Collections;
    2 using UnityEngine;
    4 #if PLATFORM_ANDROID
    5 using UnityEngine.Android;
 Run and Debug (Ctrl+Shift+D)
    8 namespace ARLocation
             public abstract class AbstractLocationProvider : ILocationProvider
                 protected double LowPassFilterFactor;
                 public abstract string Name { get; }
                 public LocationProviderOptions Options { get; set; }
                 public LocationReading CurrentLocation { get; protected set; }

    Restricted Mode ⊗ 0 ▲ 0

                                                                                                                                                                 Ln 1, Col 1 Spaces: 4 UTF-8 LF C# № Д
```


Prefabs:

Routes and navigation

The Application:

Saved locations in Google drive

Files

Route Untitled Project

Name

Main Features

- Place 3D Objects in geographical positions defined by their latitude, longitude and altitude
- AR Hotspots that are activated when the user is near a given location.
- Place 3D Text markers on real-world points of interest (example using OpenStreetmaps is included)
- Smooth movements on device location and heading updates.
- Move objects or place them along paths (Catmull-rom splines) on the map
- Augmented reality floor shadows
- General purpose Catmull-rom curves and splines

Minimum Requirements

- For AR Foundation, a iOS device with ARKit support, or a Android device with ARCore support (Click to see the AR Core device list here)
- For Vuforia, a device with ground plane support (Click here to see the list of devices here)
- The device must have functioning magnetic and GPS sensors
- For better performance, a working gyroscope is also recommended

Limitations

- Altitude information is usually very imprecise so, currently, it's best to use heights relative to the device position or relative to detected ground planes
- Landscape mode does not work well on many Android devices, due to a problem with tilt-compensation on the magnetic sensor data
- There are limits due to the GPS precision. So, on good conditions precision can range from 2 to 5 meters, and on bad conditions from 10 to 20meters.
- Does not work well on indoors

Hardware Compatibility

Android build (7.0 nought or higher)

ETC2 fallback BUILD 32 bitRun device compatibility (3mm

notch)

Compatible devices:

https://developers.google.com/ar/devices#google_play

Compression method: LZ4

Tested Devices: Motorola one fusion+

Softwares used:

Unity 3D

Blender

Visual studio

Flutter

Android studio

Languages used:

C#

C++

XML

Javascript

References

- 1. <u>https://arxiv.org/abs/1708.05006</u>
- 2. https://mobidev.biz/blog/augmented-reality-indoor-navigation-app-developement-arkit
- 3. https://developers.google.com/maps/documentation
- 4. https://www.youtube.com/watch?v=HwAxvUkmzcg
- 5. https://www.youtube.com/watch?v=Db PUwXF0SA