Cours-TD d'introduction à l'Intelligence Artificielle Partie III

Le Perceptron et les réseaux mono-couche

Simon Gay

Menu:

- Théorie :
 - le neurone formel, pourquoi ça marche
 - Le principe du perceptron et réseaux mono-couche
- Pratique :
 - implémentation d'un réseau mono-couche
 - Optimisation du réseau

Le neurone formel

- Un ensemble de poids
- Apprentissage sur des exemples
- Règle de Widrow-Hoff
- Résultats concluants sur des exemples non connus

Le neurone formel

 Le neurone formel fait une moyenne des résultats positifs et des résultats négatif pour former une 'image moyenne' faisant ressortir les caractéristiques de l'élément à détecter

 Cette 'image moyenne' permet de détecter l'élément sur un vecteur d'entrées non connu

Mais pourquoi ça marche ?

Le perceptron

- Un des plus ancien réseau supervisé
 - inventé en 1957 par Frank Rosenblatt
 - Un ou plusieurs neurones formels
 - Règle de Hebbs (puis Widrow-Hoff plus tardivement)
- Classifieur binaire : chaque neurone retourne 0 ou 1
 - Fonction d'activation à seuil

Fonction linéaire dans un plan

exemple:

$$3.y + 2.x + 1 = 0$$
 ($y = -(2/3).x - 1/3$)

Cette fonction sépare le plan en 2 :

- Si 3.y+2.x+1 > 0
 - → espace A au dessus de la droite
- Si 3.y+2.x+1 < 0
 - → espace B en dessous de la droite

• Et si on ne connaît pas la fonction?

Soit une fonction a.x + b.y + c = 0

Avec un ensemble de points $X_i = [x_i, y_i]$ tels que $f(X_i) > 0$ ou $f(X_i) < 0$

→ On doit trouver un triplet (a, b, c) respectant toutes les contraintes

- On prend un triplet au hasard
- On teste chaque exemple
 - Si $f(X_i)>0$ mais $ax_i+by_i+c<0$
 - Il faut augmenter ax_i+by_i+c
 - Si $f(X_i)<0$ mais $ax_i+by_i+c>0$
 - Il faut réduire ax_i+by_i+c
 - Sinon, on ne fait rien

Et si on ne connaît pas la fonction ?

Pour chaque paramètre a, b et c, il faut légèrement augmenter ou diminuer la valeur proportionnellement, respectivement, à x, y et 1

- Si on note r_i = 1 si f(X_i)>0 et r_i = -1 si f(X_i)<0
 - Alors
 - $a \leftarrow a + \alpha \cdot r_i \cdot x_i$
 - $b \leftarrow b + \alpha \cdot r_i \cdot y_i$
 - $c \leftarrow c + \alpha \cdot r_i$
 - On teste les points Xi, jusqu'à ce qu'ils soient tous du bon côté de la courbe

Les paramètres vont évoluer jusqu'à converger vers une solution

```
Algorithme:
erreurs = vrai
tant que erreurs faire
      erreurs = faux
      pour chaque Xi faire
            si\ f(X_i). (a.x_i+b.y_i+c) < 0 faire
                  a += \alpha \cdot r_i \cdot x_i
                  b += \alpha \cdot r_i \cdot y_i
                  c += \alpha \cdot r_i
                  erreurs = vrai
            fin si
      fin pour
fin tant que
```


• On ne met à jour que si il y a erreur

Et le perceptron dans tout ça?

Écrivons :

$$- a.x + b.y + c = 0$$
 \rightarrow $w_1.x_1 + w_2.x_2 + b = 0$

On généralise à un espace à n dimensions :

$$\sum_{k} w_{k}.x_{k}+b=0$$

- Les poids d'un neurone formel forment l'équation d'un hyperplan
- L'apprentissage modifie les poids pour séparer l'espace en deux pour séparer deux groupes de points de cet espace

- Quelques propriétés :
- Si l'ensemble d'exemples peut être séparé par un plan, alors :

- Convergence assurée en un nombre fini d'étapes
 - Quel que soit le nombre d'exemples
 - Quelle que soit la distribution
 - Quel que soit le nombre de dimensions de l'espace

- Perceptron avec plusieurs neurones
- Utilisé pour définir plus de deux classes
 - Possibilité d'une sortie sur plusieurs bits
 - Exemples : code ascii d'une lettre, conversion binaire vers afficheur 7 segment...
 - Un neurone par classe
 - Compétition entre les neurones, peu utilisée car possibilité d'égalité entre deux neurones
 - → neurones à fonction d'activation continue

• Perceptron avec fonction d'activation continue : le réseau mono-couche

- Fonctions sigmoïde, tanh, linéaire, RELU ...
 - Ajoute une information supplémentaire : le niveau de confiance dans le résultat
 - Plus on est proche de 0 ou de 1, plus on est sûr du résultat
 - Compétition entre les neurones : on considère le neurone le plus actif (pas de seuillage des résultats, résolution d'ambiguïté)

```
(1:0,013) (2:0,658) (3:0,553) (4:0,350) (5:0,112) (6:0,092)...
```

- Apprentissage par la méthode Widrow-Hoff
 - Prend en compte l'erreur → recherche plus efficace de solutions

Passons à la pratique!

 Nous allons implémenter un réseau mono-couche pour reconnaître les chiffres

- Pour commencer :
 - Dupliquez le projet 1_neuron et appelez la copie 2_perceptron
 - Vérifiez que le nouveau projet est toujours fonctionnel
 - Ajoutez une classe 'Perceptron' au projet
 - ✓ ≥ 2_Perceptron
 ✓ ७ src
 ✓ ⊕ (default package)
 ⇒ DisplayFrame.java
 ⇒ DisplayPanel.java
 ⇒ Main.java
 ⇒ Neuron.java
 ⇒ Perceptron.java
 ⇒ MRE System Library [JavaSE-1.8]

• Un réseau mono-couche n'est rien de plus qu'une liste de neurones formels

- Dans la classe Perceptron, ajoutez :
 - un vecteur (tableau) de Neuron que vous appelerez layer
 - Un vecteur de float 'results' pour collecter les résultats
 - Un float 'sum_delta' (on s'en servira pour mesurer les performances)
- Ajoutez le constructeur de la classe perceptron
 - Paramètres : nombre d'entrées, nombre de sorties
 - Initialisez correctement les vecteurs

• Un réseau mono-couche n'est rien de plus qu'une liste de neurones formels

```
public class Perceptron {
3
5
       public Neuron[] layer;
       public float[] result;
6
       public float sum delta;
8
.0⊝
       public Perceptron(int nb input, int nb output) {
.1
           layer=new Neuron[nb output];
           for (int i=0;i<layer.length;i++) layer[i]=new Neuron(nb_input);</pre>
           result=new float[layer.length];
. 6
```

• Un réseau mono-couche n'est rien de plus qu'une liste de neurones formels

- Ajoutez une fonction 'compute' qui doit calculer la sortie de chaque neurone.
- Ajoutez une fonction 'learn' qui applique l'apprentissage sur chaque neurone
 - Pensez aux paramètres de cette fonction, et comment ils sont transmis aux neurones :
 - Le vecteur d'entrées
 - Le vecteur de sorties
 - La fonction doit réinitialiser le sum_delta et ajouter la valeur absolue du delta de chaque neurone

• Un réseau mono-couche n'est rien de plus qu'une liste de neurones formels

```
public void compute(float[] input) {
    for (int i=0;i<layer.length;i++) {
        result[i]=layer[i].compute(input);
    }
}

public void learn(float[] input, int[] output) {
    sum_delta=0;
    for (int i=0;i<layer.length;i++) {
        layer[i].learn(input, output[i]);
        sum_delta+=Math.abs(layer[i].delta);
    }
}</pre>
```

Le réseau est prêt à l'emploi!

- Intégration du réseau mono-couche
- Dans Main, remplacez le pointeur du Neuron par un Perceptron
 - Paramètres pour instancier le perceptron :
 - En entrée : toujours *size_x*size_y* éléments
 - En sortie : *nb_values* sorties

```
private DisplayFrame display;  // display panel

//-----
public Perceptron perceptron;  // perceptron

// initialize structures
img=new float[size_x*size_y];
perceptron=new Perceptron(size_x*size_y, nb_values);
```

Intégration du réseau mono-couche

- Le résultat est un vecteur dont un seul élément est à 1 (la bonne réponse)
- Corrigez les appels de fonction *compute* et *learn*

Modification de l'affichage

- Nous devons afficher les poids des dix neurones du réseau
- Agrandissez le Frame d'affichage (700px au lieu de 500)
- On va afficher les neurones sur deux rangées (avec / et %)

Analyse de l'apprentissage

• Modifiez la lecture du delta pour permettre l'affichage du delta moyen

```
sumdelta+=Math.abs(neuron.delta);

display.repaint();

try {Thread.sleep(10);
} catch (InterruptedException e) {e.pri

sumdelta+=perceptron.sum_delta;

display.repaint();

try {Thread.sleep(10);
} catch (InterruptedException e) {e.pri
```

```
System.out.println("epoch no"+epoch+" : "+(sumdelta/(nb_values*10 * nb_samples)));
```

• Analyse des résultats

• Après l'apprentissage, on va compter le nombre d'erreurs sur le jeu d'essais

- Pour chaque test, récupérez l'index du neurone le plus actif
- Comparez-le au nombre testé
- Si l'index et le nombre ne coïncident pas, incrémentez une variable

• Affichez le nombre d'erreurs après les tests

Analyse des résultats

```
perceptron.compute(img);
        int imax=0;
        float max=0;
        for (int i=0;i<perceptron.result.length;i++) {</pre>
            if (perceptron.result[i]>max) {
                 imax=i;
                max=perceptron.result[i];
        if (imax!=y) errors++;
System.out.println("nb errors : "+errors);
```

Testez votre réseau mono-couche!

• Analyse des résultats

• 50 epochs \rightarrow 8 erreurs; 100 epoch \rightarrow 6 erreurs; 200 epochs \rightarrow 5 erreurs

- Un peu d'optimisation algorithmique
- La classe perceptron fait appel aux instances de neurones
- Pour chaque neurone $n : s_n = W_n . X$
- Du point de vue du réseau, on peut regrouper les vecteurs de poids dans une matrice W et les résultats dans un vecteur S :

$$-S = W.X$$

 Nous allons supprimer la classe Neuron et intégrer le calcul matriciel dans la classe Perceptron

Un peu d'optimisation

- Dupliquez le projet 2_Perceptron et appelez-le 2_PerceptronV2
- Dans la classe Perceptron, remplacez le vecteur de Neuron par
 - Une matrice 'weights' pour les poids (le biais est dans cette matrice)
 - Un vecteur 'result' pour récupérer les sorties des neurones
 - Un vecteur 'deltas' pour enregistrer les deltas
 - Récupérez le learnrate et la fonction d'activation de la classe Neuron

```
2 public class Perceptron {
       public float learnRate=0.01f;
       public float[][] weights;
       public float[] deltas;
       public float[] result;
       public float sum_delta;
10
11
12⊖
       public Perceptron(int nb input, int nb output) {
13
           weights=new float[nb output][nb input+1];
           deltas=new float[nb output];
14
15
           result=new float[nb output];
16
```

• Un peu d'optimisation

- Modifiez la fonction compute pour effectuer le calcul des neurones
 - Récupérez la fonction d'activation du neurone

```
public void compute(float[] input) {
    for (int n=0;n<result.length;n++) {
        result[n]=0;
        for (int i=0;i<input.length;i++) {
            result[n]+=weights[n][i]*input[i];
        }
        result[n]+=weights[n][input.length];
        result[n]=activation(result[n]);
    }
}</pre>
```

Un peu d'optimisation

 Modifiez la fonction learn pour calculer le delta de chaque neurone, les additionner et mettre à jour les poids

```
public void learn(float[] input, int[] output) {
    sum_delta=0;
    for (int n=0;n<deltas.length;n++) {
        deltas[n]=output[n]-result[n];
        sum_delta+=Math.abs(deltas[n]);
    }
    for (int n=0;n<result.length;n++) {
        for (int i=0;i<input.length;i++) {
            weights[n][i]+=learnRate * deltas[n] * input[i];
        }
        weights[n][input.length]+=learnRate * deltas[n];
    }
}</pre>
```

- Un peu d'optimisation
- Corrigez les pointeurs dans l'afficheur

```
for (int j=0;j<Main.size_y;j++) {
    val=(int) (main.perceptron.weights[n][i+Main.size_x*j]*50)+128;
    if (val<0) val=0;
    if (val>255) val=255;
```

• Supprimez la classe Neuron (vérifiez qu'il n'y a pas d'erreurs)

• Testez le réseau mono-couche : les résultats doivent être identiques

Conservez bien votre projet, il servira de base au prochain TP!