CEGEP VANIER COLLEGE CENTRE FOR CONTINUING EDUCATION Cybersecurity 420- 950-VA

Teacher: Samir Chebbine Lab 2 Jan 29, 2025

Lab 2: Introduction to Networking, Wireshark Network Analyser & Anonymous Surfing

Complete all these following sections as explained in **class**. All *steps* were presented during class time.

Create and Submit a Word file *Lab2CybersecurityYourName.doc* which contains answers of Book Exercises and output screenshots for every Project. Submit all packet capture files if any.

1. Install Wireshark Network Analyser:

a) **Download Wireshark Network https://www.wireshark.org/download.html** as shown hereafter in Figure.

2. On Kali Linux distribution:

a) **Command mode - provide screenshot of each output:** Using Kali Linux command mode, execute Linux command dig in a command-line tool that queries and returns the IP address for the google.com Domain Name System (DNS) as shown hereafter.

b) Ping the returned Google DNS IP address

c) What is the name of protocol used in command ping, describe the inner workings of that protocol. Open **Wireshark Traffic analyser** to capture traffic sent from my computer station (in my case 192.168.81.129) towards DNS server 142.250.69.78 as shown hereafter.

d) Save the packet capture as Lab2Capture Dig command VmWare net8.pcapng as shown hereafter.

- 3. Conversations in Wireshark packet analysis:
- a) **Provide screenshot of Wireshark showing conversation statistics** as shown hereafter in Figure.

b) Appy filter in conversation windows to display all traffic from your station (in my case 192.168.81.129) and port 57018 (choose any other port) to any other station as shown hereafter. Show the appropriate display filter in all your screenshot.

	nerearter. Show the appropriate display inter in an your serectioner.									
No		Time	Source	Destination	Protocol I	Length	Info			
	2322	87.241	192.168.81.129	3.162.3.55	TCP	74	57018 → 443 [SYN] Seq=3410444813 Win=64240 Len=0 MSS=1460 SACK_PERM			
	2327	87.258	3.162.3.55	192.168.81.129	TCP	58	443 → 57018 [SYN, ACK] Seq=687824887 Ack=3410444814 Win=64240 Len=0			
	2328	87.258	192.168.81.129	3.162.3.55	TCP	60	57018 → 443 [ACK] Seq=3410444814 Ack=687824888 Win=64240 Len=0			
	2329	87.259	192.168.81.129	3.162.3.55	TLSv1.3	726	Client Hello (SNI=sb.scorecardresearch.com)			
	2330	87.259	3.162.3.55	192.168.81.129	TCP	54	443 → 57018 [ACK] Seq=687824888 Ack=3410445486 Win=64240 Len=0			
	2331	87.278	3.162.3.55	192.168.81.129	TLSv1.3	1494	Server Hello, Change Cipher Spec, Application Data			
	2332	87.278	3.162.3.55	192.168.81.129	TCP	1494	443 → 57018 [PSH, ACK] Seq=687826328 Ack=3410445486 Win=64240 Len=1			
	2333	87.279	192.168.81.129	3.162.3.55	TCP	60	57018 → 443 [ACK] Seq=3410445486 Ack=687826328 Win=65535 Len=0			
	2334	87.279	192.168.81.129	3.162.3.55	TCP	60	57018 → 443 [ACK] Seq=3410445486 Ack=687827768 Win=65535 Len=0			
	2335	87.279	3.162.3.55	192.168.81.129	TCP	1494	443 \rightarrow 57018 [PSH, ACK] Seq=687827768 Ack=3410445486 Win=64240 Len=1			

c) Appy filter in conversation windows to display all traffic from your station (in my case 192.168.81.129) to any other station as shown hereafter.

No.	Time	Source	Destination	Protocol Length	1	Info			
73	32 95.852	192.168.81.129	3.161.213.116	TCP	74	33558 → 443 [SYN] Seq=1164820659 Win=64240 L			
73	33 95.852	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10722467			
73	34 95.852	192.168.81.129	142.250.69.66	TCP	74	37004 → 443 [SYN] Seq=2038783801 Win=64240 L			
73	37 95.852	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10722612			
73	40 95.852	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10722757			
73	42 95.852	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10722902			
73	43 95.853	192.168.81.129	151.101.137.44	TCP	74	49404 → 443 [SYN] Seq=2288232528 Win=64240 L			
73	45 95.853	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10723048			
₋ 73	46 95.853	192.168.81.129	3.162.3.51	TCP	74	50340 → 443 [SYN] Seq=858553470 Win=64240 Le			
73	49 95.854	192.168.81.129	184.150.58.137	TCP	60	60048 → 443 [ACK] Seq=238792651 Ack=10723193			
73	50 05 854	102 168 81 120	18/1 150 58 137	TCP	60	60048 - 443 [ACV] Seg-238702651 Ack-10723338			

d) Appy filter in conversation windows to display all **http traffic** as shown hereafter.

e) Add button filter in Wireshark to display all TCP traffic using port 80 as shown hereafter.

f) Configure Wireshark to display detail of packet diagram detail (name and values) in the third panel layout as shown hereafter.

g) Configure Wireshark to add two columns (Delta and TCP Segment Length) in order to get detail view of each packet timing and TCP data segment length respectively as shown hereafter. Do research on how to add requested columns in Wireshark.

h) Resolve the naming of host computers to display host name instead of IP address if any as shown hereafter. Do research on how to resolve IP addresses in Wireshark.

ip.s	ip.src == 74.6.231.20					
No.		Time	Delta	Source	Destination	
	585	84.376927	0.055922	yahoo.com	192.168.81.129	
	588	84.378507	0.000206	yahoo.com	192.168.81.129	
	589	84.433535	0.055028	yahoo.com	192.168.81.129	
	590	84.433681	0.000146	yahoo.com	192.168.81.129	
	591	84.433784	0.000103	yahoo.com	192.168.81.129	
	596	84.442171	0.000080	yahoo.com	192.168.81.129	
	598	84.443074	0.000063	yahoo.com	192.168.81.129	
	600	84 443274	0 000010	vahoo com	192 168 81 129	

4. Geo IP using MaxMind database in Wireshark

a) Do research on how to add Geo IP localisation using MaxMind database in Wireshark as tool of digital forensics when assessing ethical penetration as shown hereafter in Figure.

- 5. Start Anonymous surfing using Tor browser
- a) Install anonsurf program as done in class to surf anonymously. Do research on how to configure embedded FireFox browser in Linux Kali distribution to use Tor browser and Tor network. Always prioritize the ethical and legal use of Tor. You can search anonymously but keep in mind to use it ethically as shown hereafter.

- b) Check in Wireshark using appropriate display capture that ICMP messages were not detected since the surfing is anonymous as shown above in Figure.
- c) Use **Macchanger program** in Kali Linux distribution to change the MAC address of your network interface card to surf anonymously as done in class.