LINEAR ALGIEBRA FOR MACHINE LEARNING

1) 2-Dimensional

Suppose we have 2 features f, & f_2 we need to separate them so we use line to separate them. (linear separator).

2.) 3-Dimensional

f3. Suppose we have 3 features f1, f2, f3 We need to separate them by using 3-Dimensional Plane. Using plane.

NOTE +

So to Separate W/dunger on features we need n Dunensional Rypeoplane so we use linear algebra to compute it.

a) 2-Dimensional 221

? How to store value of point? we use vectors to store value of points

P = [3,4]

$$P = \begin{bmatrix} 3 & 4 \end{bmatrix}$$

Q=[2,3,5] use store it using vactor

c) N-dimensional point

$$z = [1, 2, 3, 4, 5, 6, ..., n]$$

we can't usualize in dimensional space but mathematically we can usualize it using westers.

> Distance of a pt. from orugin:

d: distance of Pfrom ourgin

d': distance of P from couguin $d' = \sqrt{\alpha^2 + b^2 + C^2}$

$$p = \{a_1, a_2, a_3, \dots, a_n\}$$

Die

20

Distance between 2 Points

b₁ (a₁,b₁)
b₂ (a₂,b₂)
a₁ a₂ x₁

11) 3D

From vector
$$A = \{a_1, a_2, a_3, \dots, a_n\}_{1 \times n}$$

Column vector $B = \{b_1 \\ b_2 \\ \vdots \\ b_n\}_{n \times 1 - uow}$

Column

Dot Broduct

Addition > C = a+b = [a+b, a2+b2,..., antbn)

Concept of multiplication of 2 vectors

Dat product

$$|a_1b| = |a_1b_1 + a_2b_2 + \dots + |a_nb_n|$$

$$= [a_1]b_2 \cdot a_3 \cdot \dots \cdot a_n] \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

= a,b,+ a2b2+ -.. + anbn

> Dot product significance (Geometrically)

$$A \cdot b = ||a|| ||b|| || \cos \theta = |a_1b_1 + a_2b_2|$$

length of a length of b

 $\theta = \cos^{-1} \left\{ \frac{|a_1b_1 + a_2b_2|}{||a|| ||b||} \right\}$

It is for 2 dimensional vectors

But we can easily compute O for n-dimensional nectors $a \cdot b = \sum_{i=1}^{n} a_i b_i$

A Projection and Unit Vector

Projection of \vec{a} onto \vec{b} is \vec{d} $d = ||a|| \cos \theta$ $||a|| = ||a|| ||b|| \cos \theta$ $||b|| = ||a|| ||b|| \cos \theta$

Unit Vector : nector in some direction as my original direction.

length of wit vector is 1.

Hyposplane

1) Line

2-Dimensional

y=mx+c equation of line

For machine Leasuring

- $W_1x_1+W_2x_2+W_0=0 \longrightarrow 2D$ (line)
- · w1x1+w2x2+ w3x3 +w0=0 -> 3D (plane)

As equation of plane ax+by +cz+d=0

* For n dimensional space - hyperplane

W1X1+W2X2+:...+WnXn+W0=0 (hyperplane)

F wo + & wi xi = 0

$$\Rightarrow w_0 + [w_1 w_2 w_3 ... w_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = 0$$
 (vector Notation)

plane denoted by T: Wo+WTZ = O

Q Rehat is wo?

gn 200

$$\omega_{1}x_{1}+\omega_{2}x_{2}+\omega_{0}=0$$

$$x_{2}=-\frac{\omega_{0}}{\omega_{2}}-\frac{\omega_{1}}{\omega_{2}}x_{1}$$

$$y_{1}=0$$

$$y_{2}=0$$

If c = 0 $\left(-\frac{\omega_0}{w_2} = 0\right)$ that means line is passing though. beugin.

NOTE: If wo=0 that means live / plane / hyperplane is passing through origin.

 $W^T x = 0 \rightarrow eqn, of plane$ passing thorough origin

Wo +wTx=0 - eqn. of plane not Parsung Morough orugui

♦ Special lose: w. >c = 0

> 4 WIX =30=90° As w. x = ||w|| ||x|| cos 90° = 0

Hen w.x. = 0 \(\forall \times \text{x.ET} \)

Geomotorically & means that it is vector that is perspendicular to plane.

Determs of a plane,

A plane / Hypeuplane

A plane / Hypeuplane

A plane / P(P,P2,...,Pn)

$$A' = \frac{w \cdot p!}{||w||} = -we$$

As direction, is opposite of w

$$id = \frac{\omega \cdot \rho}{11\omega 11} = +ve$$

As direction is some as of w

A Coicles

22+42= r2 up origin 22+42= r2 than paid les mude oron circle 22+42 7r2 poutside circle

 $(z-a)^2+(y-b)^2=r^2$ not oeugus