Texton Theory in Computer Vision

Jaladhi Vyas

Institute of Technology Nirma University Gujarat, India

Presentation Texton Theory 1/25

Acknowledgement

Visual Geometry Group Department of Engineering Science University of Oxford

Presentation Texton Theory 2/25

Table of content

- Problem Statement
- 2 Introduction
- 3 Motivation
- 4 Algorithm
- 6 Results
- 6 Conclusion
- References

Presentation Texton Theory 3/25

Problem Statement

To classify images of materials on the basis of their texture appearance without imposing any constraints on, or requiring any a priori knowledge of, the viewing or illumination conditions.

Presentation Texton Theory 4/25

Texture and Texton

Texture

No operational definition of texture. It varies based on different approaches of texture analysis.

Texton

It is fundamental micro structures of natural images (and videos).

Texture analysis

- 1- Statistical Approach
- 2- Structural Approach
- 3- Fourier Approach

Presentation Texton Theory 5/25

2D and 3D Texture

2D texture

Flat texture Viewpoint and illumination are assume constant

3D texture

Appearance changes dramatically due to different viewpoint and lighting settings

Figure 1: Same patch of material of "Crumpled Paper" imaged under three different lighting and viewing conditions

Presentation Texton Theory 6/25

Motivation

- Classifying textures from single images under such general conditions is a very demanding task.
- Textured materials often undergo a sea change in their imaged appearance with variations in illumination and camera pose.

Figure 2: The changed in image appearance of the same texture with variation in imaging conditions.

Presentation Texton Theory 7/25

Experimental Setup

Figure 3 : One image of each of the textures present in the Columbia-Utrecht database. Only a central 200*200 region is shown.

Presentation Texton Theory 8/25

Algorithm I

Stage 1: Generating the texton Dictionary

Figure 4: Learning the texton dictionary

Presentation Texton Theory 9/25

Algorithm II

Stage 2: Model generation

Figure 5: Learning a model from given training image

Presentation Texton Theory 10/25

Algorithm III

Stage 3: Classification stage

Figure 6: Classification of a novel image

Presentation Texton Theory 11/25

Algorithm IV

- In Classification stage a nearest neighbour classifier is used and the chi-squared statistic employed to measure distances
- Distance between two histograms
 Chi-Square distance:

$$\chi^{2}(h_{1},h_{2}) = \frac{1}{2} \sum_{n=1}^{bins} \frac{(h_{1}(n) - h_{2}(n))^{2}}{h_{1}(n) + h_{2}(n)}$$
(1)

Presentation Texton Theory 12/25

LM Filter Bank [1]

Leung and Malik work

Figure 7: Mixture of edge bar and spot filters at multiple scale and orientations.lt has total 48 filters-2 Gaussian derivative filters at 6 orientation and 3 scales 8 Laplacian of Gaussian filters and 4 Gaussian filters

Presentation Texton Theory 13/25

The Maximum Response(MR)Filter Bank [2]

Varma and Zisserman work

 Only 8 filter responses are recorded by taking, at each scale, the maximum response of anisotropic filters across all orientations

Figure 8: The RFS (Root Filter Set) filter bank consist of two anisotropic(an edge and a bar filter at 6 orientation and 3 scales) filters and 2 rotationally symmetric ones(a Gaussian and a Laplacian of Gaussian)

Presentation Texton Theory 14/25

LM vs MR filters [2]

Figure 9: Classification of rotated textures.Column 1 shows three images of Ribbed paper texture.Column 2 shows the textons histograms using LM filter bank.

Presentation Texton Theory 15/25

Results

Filters	Dimension	Invariance	Number of texture classes		
			20	40	61
S	13	Rot.	96.30%	95.27%	94.62%
LMS	48	None	96.08%	93.75%	93.44%
LML	48	None	98.04%	96.47%	96.08%
RFS	38	None	98.37%	96.36%	96.08%
MR8	8	Rot.	97.83%	96.41%	96.40%
MR4	4	Rot.	94.13%	92.07%	90.73%
MRS4	4	Scale, Rot.	96.41%	94.08%	93.26%

Table 1: Comparison of classification rates for varying number of texture classes for each of the filter set

Presentation Texton Theory 16/25

Reducing the Number of models

Figure 10: Classification rates for models selected by the Greedy algorithm for 20,40 and 61 textures

Presentation Texton Theory 17/25

Are Filter Banks Necessary? [3-4]

- Markov Chain
- A sequence of random variables $x_1, x_2, x_3, ... x_n$
- x_t is a state of model at time t

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$$

- Markov assumption:each state depends only in previous one $P(X_t|X_{t-1})$
- The above is actually first order markov chain
- An Nth order markov chain: $P(X_t|X_{t-1},...,X_{t-N})$

Presentation Texton Theory 18/25

Markov Random Field

• a generalization of Markov Chain to two or more dimensions

First order MRF

Probability that pixel X takes certain value given the values of neighbours A,B,C,D

Presentation Texton Theory 19/25

MRF (Markov Random Field) Classifier [3-4]

 Model changes from joint pdf of filter responses to joint pdf of row pixel intensities computed over all N×N patches in image:

Figure 11: The MRF representation

Presentation Texton Theory 20/25

Results

Figure 12: The variation in classification performance as size of the neighborhood changes

Presentation Texton Theory 21/25

Results: Scale and Rotation Invariance

Scale: Select 4 textures for which scaled data is present. Add scaled images to (a) test set and (b) training + test set of selected textures

	Naturally Scaled		Synthetically Scaled x 2	
	Test Only	Training + Test	Test Only	Training + Test
MRF	93.48%	100%	65.22%	99.73%
MR8	81.25%	99.46%	62.77%	99.73%

MRF not adversely affected by scaling. Can cope with scale changes at least as well as MR8

Rotation Invariance: Use circular neighbourhoods and correct for local orientation before forming feature vectors

NxN	Rot. Inv. N'hood	Not Inv. N'hood	Rot. Inv. MRF	Not Inv. MRF 97.47%
7 x 7	96.36%	96.08%	97.07%	
9 x 9 96.47%		96.36%	97.25%	97.75%

Table 2: The effects of scale and rotation

Presentation Texton Theory 22/25

Conclusion

- The blurring (e.g. Gaussian smoothing) in many filters means that fine local detail can be lost.
- Superior classification results can be obtained by using compact, local neighbourhoods and without the use of filter banks.

Presentation Texton Theory 23/25

References I

- [1] Leung, Thomas and Malik, Jitendra Representing and Recognizing the Visual Appearance of Materials Using Three-dimensional Textons. International Journal of Computer Vision, 2001
- [2] M Varma and A.Zisserman , A Statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision, volume 62, 2005
- [3] M Varma and A.Zisserman , *Texture classification: Are filter banks necessary?*. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003
- [4] M Varma and A.Zisserman, A statistical approach to material classification using image patch exemplars. IEEE transactions on pattern analysis and machine intelligence, volume 31, 2009

Presentation Texton Theory 24/25

Special thanks to **Prof. Manjunath V. Joshi**Thanks

Presentation Texton Theory 25/25