Trig Final (Solution v44)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3.2 radians. The arc length is 20 meters. How long is the radius in meters?

$$\theta = rac{L}{r} \qquad r = rac{L}{ heta} \qquad L = r heta$$

r = 6.25 meters.

Question 2

Consider angles $\frac{-7\pi}{3}$ and $\frac{15\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{-7\pi}{3}\right)$ and $\sin\left(\frac{15\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(-7\pi/3)$

$$\cos(-7\pi/3) = \frac{1}{2}$$

Find $sin(15\pi/4)$

$$\sin(15\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $tan(\theta) = \frac{24}{7}$, and θ is in quadrant III, determine an exact value for $sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$7^{2} + 24^{2} = C^{2}$$
 $C = \sqrt{7^{2} + 24^{2}}$
 $C = 25$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-24}{25}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 2.73 meters, a midline at y = 8.96 meters, and a frequency of 5.02 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -2.73\sin(2\pi 5.02t) + 8.96$$

or

$$y = -2.73\sin(10.04\pi t) + 8.96$$

or

$$y = -2.73\sin(31.54t) + 8.96$$