Direct Sum Definition

Definition. Summation of Sets If S_1 and S_2 are nonemtry subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set

$$\{x + y : x \in S_1 \text{ and } y \in S_2\}$$

- 1. $W_1 + W_2$ is a subspace of V containing both W_1 and W_2
- 2. If for a subset $S \subseteq V$, $W_1 \subseteq S$ and $W_2 \subseteq S$, then $W_1 + W_2 \subseteq S$

Definition. Direct Sum A vector space V is called the direct sum of W_1 and W_2 , denoted as $V = W_1 \oplus W_2$, if W_1 and W_2 are subspaces of V such that

- 1. $V = W_1 + W_2$
- 2. $W_1 \cap W_2 = \{0\}$ (implies uniqueness)

More generally, assume W_1, \dots, W_k are subspaces of V, then $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$ if

- 1. $V = W_1 + \cdots + W_k$
- 2. $W_i \cap (\sum_{j \neq i} W_j) = \{0\}$
- 1. Direct sum of the set of upper triangular like matrices and lower triangular matrices is $M_{m \times n}(F)$
- 2. The trick of decomposing vector space into direct sums is that the intersection of subsets yield the zero vector

5.4 Invariant Subspaces and Direct Sum

Chapter 7 Canonical Forms

7.1 The Jordan Canonical Form

Definition. Jordan Block and Jordan Canonical Form Select ordered basis whose union is an ordered basis β , the Jordan caconical basis for T, for V such that

$$[T]_{\beta} = \begin{pmatrix} A_1 & O & \cdots & O \\ O & A_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_k \end{pmatrix}$$

where A_i are jordan block corresponding to λ

$$A_{i} = (\lambda) \qquad or \qquad A_{i} = \begin{pmatrix} \lambda & 1 & O & \cdots & O & O \\ O & \lambda & 1 & \cdots & O & O \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ O & O & O & \cdots & \lambda & 1 \\ O & O & O & \cdots & O & \lambda \end{pmatrix}$$

Definition. Generalized Eigenvector Let T be a linear operator on a vector space V, and let λ be a scalar. A nonzero vector x in V is called a generalized eigenvector of T corresponding to λ if $(T - \lambda I)^p(x) = 0$ for some positive integer p

- 1. For v in a Jordan canonical basis for T, $(T \lambda I)^p(v) = 0$ for sufficiently large p. Eigenvectors satisfy this condition for p = 1
- 2. If x is a generalized eigenvector of T corresponding to λ , and p is smallest positive integer for which $(T \lambda I)^p(x) = 0$, then $(T \lambda I)^{p-1}(x) = 0$ is an eigenvector of T corresponding to λ

$$(T - \lambda I)(v) = 0$$
 where eigenvector $v = (T - \lambda I)^{p-1}(x) \neq 0$

Definition. Generalized Eigenspace Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The generalized eigenspace of T corresponds to λ , denoted K_{λ} , is the subset of V defined by

$$K_{\lambda} = \{x \in V : (T - \lambda I)^p(x) = 0 \text{ for some positive integer } p\} = \bigcup_{p>1} N((T - \lambda I)^p)$$

1. Note

$$N(U) \subseteq N(U^2) \subseteq \cdots \subseteq N(U^k) \subseteq N(U^{k+1}) \subseteq \cdots$$

Theorem. 7.1 Properties of Generalized Eigenspace Let T be linear operator on a vector space V, and let λ be an eigenvalue of T. Then

- 1. K_{λ} is a T-invariant subspace of V containing E_{λ} (the eigenspace of T corresponding to λ)
- 2. For any scalar $\mu \neq \lambda$, the restiction $T \mu I$ to K_{λ} is one-to-one.
 - (a) $E_{\mu} = N(T \mu I) = 0$ for all $\mu \neq \lambda$, so λ is the only eigenvalue of T_{λ_k}
 - (b) For $\mu \neq \lambda$, $K_{\lambda} \cap K_{\mu} = 0$.

Proof. Prove 2.2

Suppose $\mu \neq \lambda$, $T - \mu I|_{K_{\lambda}}$ is invertible on K_{λ} by property 2. Then let

$$x \in K_{\lambda} \cap N(T - \mu I)$$

then x = 0. Similarly, consider large enough q, such that $K_{\mu} = (T - \mu I)^q$, which is invertible as it is a composition of invertible transformation. So then

$$K_{\mu} \cap K_{\lambda} = \emptyset$$

2

Theorem. 7.2 Property of Generalized Eigenspace When Characteristic Polynomial Splits Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Suppose that λ is an eigenvalue of T with multiplicity m. Then

- 1. $dim(K_{\lambda}) \leq m$
- 2. $K_{\lambda} = N((T \lambda I)^m)$

For proofs

1. Use theorem 5.21 T-invariant $W \subseteq V$ have $P_{T_W}(t) \mid P_T(t)$, we have $[T_W]_{\beta}$ in the form of a Jordan Block, therefore

$$h(t) = P_{T_W}(t) = (-1)^d (t - \lambda)^d$$

2. Prove forward direction (\Rightarrow) Use theorem 5.23 Cayley-Hamilton $f(T) = T_0$, i.e. linear operator satisfies its characteristic equation, on T_W

$$h(T_W) = (-1)^d (T - \lambda I)^d = T_0$$

So
$$(T - \lambda I)^d(x) = 0$$
 for all $x \in W$ where $d \leq m$, so $K_\lambda \subseteq N((T - \lambda I)^m)$

Definition. Nilpotent A linear operator T on a vector space V is called nilpotent if $T^p = T_0$ for some positive p. An $n \times n$ matrix A is called nilpotent if $A^p = 0$ for some positive integer p

Lemma. Fitting Decomposition For $S \in L(V)$, there is a unique decomposition

$$V = W \oplus U$$

where W, U are S-invariant, and

- 1. $S|_W$ invertible
- 2. $S|_U$ nilpotent that is, if $(S|_U)^q = 0$ for some q > 0

Proof. Note

$$N(S) \subseteq N(S^2) \subseteq \cdots$$
 $R(S) \supseteq R(S^2) \supseteq \cdots$

have to stablize for nilpotent $S = (T - \lambda I)$, that is there exists p > 0, such that

$$N(S^p) = N(S^{p+1})$$
 $R(S^p) = R(S^{p+1})$

Now let $U = N(S^p)$ and $W = R(S^p)$, both S-invariant. It is obvious that $S|_V$ is nilpotent. Also $S(W) = S(R(S^p)) = R(S^{p+1}) = R(S^p) = W$, i.e. on-to. so $S|_W$ invertible. Claim $V = W \oplus U$, let $x \in V$, then

$$S^p x \in R(S^p) = R(S^{2p})$$

So exists $y \in V$, such that $S^p x = S^{2p} y$, so then $S^p (x - S^p y) = 0$, then $x - S^p y \in N(S^p) = U$. So then

$$x = x_1 + x_2$$
 $x_1 = S^p y \in W$ $x_2 = x - x_1 \in U$

Theorem. 7.3 Sum of Generalized Eigenspace Fills the Space

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits, and let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the distinct eigenvalues of T. Then for every $x \in V$, there exists vectors $v_1 \in K_{\lambda_i}$, $1 \le i \le k$, such that

$$x = v_1 + v_2 + \dots + v_k$$

Proof. Cayley-Hamilton theorem works on some special case of characteristic polynomial of the form $(t - \lambda)^d$ yields the zero transformation, which makes some subset of the vector space satisfy condition for generalized eigenspace, i.e. $(T - \lambda I)(x) = 0$

Theorem. 7.4 Generalized Eigenspace Decomposition

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits, and let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues of T with corresponding multiplicity m_1, \dots, m_k . For $1 \leq i \leq k$, let β_i be an ordered basis for K_{λ_i} . Then the following statements are true

- 1. $\beta_i \cap \beta_j = \emptyset$ for $i \neq j$
- 2. $\beta = \beta_1 \cap \beta_2 \cap \cdots \cap \beta_k$ is an ordered basis for V
- 3. $dim(K_{\lambda_i}) = m_i$ for all i

Equivalently, we have

$$V = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_k}$$

Corollary. Assumption for Diagonalizability Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Then T is diagonalizable if and only if $E_{\lambda} = K_{\lambda}$ for every eigenvalue λ of T

Definition. Cycle of Generalized Eigenvectors Let T be a linear operator on a vector space V, and let x be a generalized eigenvector of T corresponding to the eigenvalue λ . Then x is a generalized eigenvector of height p if p is the smallest positive integer for which $(T - \lambda I)^p(x) = 0$ but $(T - \lambda I)^{p-1}(x) \neq 0$. Then the ordered set,

$$\{(T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), \cdots, (T - \lambda I)(x), x\}$$

is called a cycle of generalized eigenvectors of T corresponding to λ . The vectors $(T - \lambda I)^{p-1}(x)$ and x are called the **initial vector** and the **end vector** of the cycle, respectively. We say that the **length** of the cycle is p (number of vectors).

1. The elements of a cycle are linearly independent

Proof. Given

$$a_1(T - \lambda I)^{p-1}x + \dots + a_{p-1}(T - \lambda I)x + a_p x = 0$$

Apply $(T - \lambda I)^{p-i}$ for $i = 1, \dots, p$ times. For i = 1, we have

$$0 + \dots + 0 + a_p (T - \lambda I)^{p-1} x = 0$$

Note $(T - \lambda I)^{p-1}x \neq 0$, so then $a_p = 0$. We can deduce $a_1 = \cdots = a_p = 0$

Theorem. 7.5 Disjoint Union of Cycles of Generalized Eigenvectors as Jordan Canonical Basis

Let T be a linear operator on a finite-dimensional vector space V whose characteristic polynomial splits, and suppose that β is a basis for V such that β is a disjoint union of cycles of generalized eigenvectors of T. Then the following are true

- 1. For each cycle γ of generalized eigenvectors contained in β , $W = span(\gamma)$ is T-invariant and $[T_W]_{\gamma}$ is a Jordan block
- 2. β is a Jordan canonical basis for V

Theorem. 7.6 Existence Condition for a Disjoint Union of Cycles

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Suppose that $\gamma_1, \gamma_2, \dots, \gamma_q$ are cycles of generalized eigenvectors of T corresponding to λ such that the initial vectors of the γ_i 's are

- 1. distinct, and
- 2. form a linearly independent set

Then the γ_i 's are

- 1. **disjoint**, i.e. $\gamma_i \cap \gamma_j = \emptyset$ for $i \neq j$, and
- 2. their union $\gamma = \bigcup_{i=1}^{q} \gamma_i$ is linearly independent

Proof. To prove cycles disjoint. Assume there exits $x \in K_{\lambda}$ with height p, such that $x \in \gamma_1$ and $x \in \gamma_2$, without loss of generality of choice of γ s'. Then $(T - \lambda I)^{p-1}x \neq 0$ is initial vector for both γ_1 and γ_2 . Contradiction as we assumed that initial vectors are all distinct. Let $\gamma = \{x_1, \dots, x_n\}$, suppose

$$a_1x_1 + \dots + a_nx_n = 0$$

where a_j not all zero. Let k be such that $a_k \neq 0$ and that x_k has largest height p possible. Apply $(T - \lambda I)^{p-1}$ to the equation, we get

$$\cdots + 0 + a_k (T - \lambda I)^{p-1} x_k + 0 + \cdots = 0$$

since x_j with height less than p is killed by $(T - \lambda I)^{p-1}$ and x_j whose height is larger than p has $a_j = 0$ by the choice of k, so then, $a_k(T - \lambda I)^{p-1}x_k = 0$ implies $a_k = 0$, contradiction.

Corollary. Every cycle of generalized eigenvectors of a linear operator is linearly independent

Theorem. 7.7 Existence of Disjoint Union in Generalized Eigenspace

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T. Then K_{λ} has an ordered basis consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ ,

$$\gamma = \gamma_1 \cup \dots \cup \gamma_q$$

where the initial vectors of r_1, \dots, r_q are eigenvectors that form a basis of E_{λ}

Corollary. $P_T(t)$ Splits Ensures Existence of Jordan Canonical Form Let T be a linear operator on a finite-dimensional vector space V whose characteristic polynomial splits. Then T has a Jordan Canonical Form

Definition. Jordan Canonical Form for Matrices Let $A \in M_{n \times n}(F)$ be such that the characteristic polynomial of A (and hence of L_A) splits. Then the Jordan canonical form of A is defined to be the Jordan canonical form of the linear operator L_A on F^n

Corollary. Let A be $n \times n$ matrix whose characteristic polynomial splits. Then A has a Jordan canonical form J, and A is similar to J

Definition. Finding Basis For JCF

- 1. Compute characteristic polynomial
- 2. Compute $dim(E_{\lambda_i})$, which is the number of disjoint cycles as basis for K_{λ_i}
- 3. Find proper end vector
- 4. Take union of vectors in the disjoint union of cycles of generalized eigenvectors

7.2 The Jordan Canonical Form II

Definition. Get Away

- 1. T is unique up to an ordering of eigenvalues of T
- 2. β_i for β is not unique
- 3. for each i, the number n_i of cycles that form β_i , and length p_j of each cycle, is completely determined by T

Definition. Dot Diagram Use an array of dots called dot diagram of T_i , where T_i is restriction of T to K_{λ_i} , to visualize each of A_i and ordered basis β_i . Suppose β_i is a disjoint union of cycles of generalized eigenvectors $\gamma_1, \dots, \gamma_{n_i}$ with lengths $p_1 \geq \dots \geq p_{n_i}$, respectively. The dot diagram T_i contains one dot for each vector in β_i , and the dots are configured as follows

1. there are n_i columns (each representing a cycle or Jordan block)

2. j-th column consists of p_j dots that correspond to cycle γ_j starting with initial vector at the top and continuing down to the end vector

Note

- 1. Dot diagram has dimension $p_1 \times n_i$
- 2. Let r_j be number of dots in j-th row, then $r_1 \geq r_2 \geq \cdots \geq r_{p_1}$
- 3. Dot diagram is complete determined by T and λ_i

Theorem. 7.9 Dots in First r Rows are a Basis for $N((T - \lambda I)^r)$

For any positive integer r, the vectors in β_i that are associated with the dots in the first r rows of the dot diagrams of T_i constitute a basis for $N((T - \lambda_i I)^r)$. Hence the number of dots in the first r rows of the dot diagram equals $nullity((T - \lambda_i I)^r)$

1. Implies number of dots in a row (r_j) , the dot diagram, and consequently the number of Jordan blocks $(n_i \text{ columns})$ all does not depend on choice of basis

Corollary. Number of Jordan Blocks is Dimension of Eigenspace

The dimension of E_{λ_i} is n_i . Hence in Jordan canonical form of T, the number of Jordan blocks corresponding to λ_i equals the dimension of E_{λ_i}

Theorem. 7.10 Supplementing Preivous Theorem

Let r_j denote number of dots in jth row of dot diagram of T_i , the restriction of T to K_{λ_i} . Then the following statements are true

1.
$$r_1 = dim(V) = rank(()T - \lambda_i I)$$

2.
$$r_i = rank((T - \lambda_i I)^{j-1}) - rank((T - \lambda_i I)^j)$$
 if $j > 1$

Corollary. Dot Diagram of $T_i = T|_{K_{\lambda_i}}$ is Unique

For any eigenvalue λ_i of T, the dot diagram of T_i is unique. Thus, subject to the convention that the cycles of the generalized eigenvectors for the bases of each generalized eigenspace are listed in order of decreasing length, the Jordan canonical form of a linear operator or a matrix is unique up to the ordering of the eigenvalues

Theorem. 7.11 Similar Matrix \iff Same JCF

Let A and B be $n \times n$ matrices, each having Jordan canonical forms computed according to the conventions of this section. Then A and B are similar if and only if they have (up to an ordering of their eigenvalues) the same Jordan canonical form.

Proof. A property: If A and B similar, then exists Q such that $A = Q^{-1}BQ$, then A and B have same eigenvalues. Specifically, if $Av = \lambda v$, then

$$Q^{-1}BQv = \lambda v \qquad \iff \qquad B(Qv) = \lambda(Qv)$$

7

Definition. Steps for Finding Jordan Canonical Form/Basis

- 1. Determine the shape of Jordan Canonical Form J
 - (a) Compute characteristic polynomial
 - (b) Determine the dot diagram for each K_{λ_i}
 - (c) Compute $dim(N((T \lambda I)^i))$ for $i = 1, \dots, p$
 - (d) Compute r_i based on $dim(N(T \lambda I)^i)$
 - (e) Determine the shape of Jordan Canonical Form from dot diagrams for all K_{λ_i}
- 2. Find a Jordan Canonical Basis for each K_{λ_i}
 - (a) Compute matrix $(T \lambda I)^i$ for $i = 1, \dots, p$
 - (b) Find a basis for $K_{\lambda_i} = N((T \lambda I)^p)$ and select an end vector for the first cycle
 - (c) Compute the cycle
 - (d) Compute other cycles, by selecting vectors that are linearly independent of the vectors already determined
 - (e) In case when $K_{\lambda_i} = E_{\lambda_i}$, Jordan canonical basis for T_i is simply the basis for E_{λ_i}

7.3 Minimal Polynomial

Definition. Minimal Polynomial Let T be a linear operator on finite-dimensional vector space. A polynomial p(t) is called a minimal polynomial of T if p(t) is a monic polynomial (leading coefficient is 1) of least positive degree for which $p(T) = T_0$

Theorem. 7.12 Property of Minimal Polynomial Let p(t) be a minimal polynomial of T on finite dimensional V

- 1. For any polynomial g(t) where $g(T) = T_0$, p(t) divides g(t). In particular, p(t) divides characteristic polynomial of T
- 2. The minimal polynomial of T is unique

Definition. Minimal Polynomial of Matrix Let $A \in M_n(F)$. The minimal polynomial p(t) of A is the monic polynomial of least positive degree for which p(A) = O

Theorem. 7.13 Operator and Matrix Equivalence For any $A \in M_n(F)$, the minimal polynomial A is the same as the minimal polynomial of L_A

Theorem. 7.14 Characteristic/Minimal Polynomial Have the Same Zeros Let T be a linear operator on a finite-dimensional vector space V, and let p(t) be a minimal polynomial of T. A scalar λ is an eigenvalue of T if and only if $p(\lambda) = 0$. Hence characteristic polynomial and minimal polynomial of T have the same zeros. **Corollary.** If T has minimal polynomial p(t) and characteristic polynomial f(t), then

$$f(t) = (\lambda_1 - t)^{n_1} \cdots (\lambda_k - t)^{n_k}$$

where $\lambda_1, \dots, \lambda_k$ are distinct eigenvalues. Then exists m_1, \dots, m_k where $1 \leq m_i \leq n_i$ and

$$p(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}$$

- 1. We can somewhat infer the minimal polynomial from shape of characteristic polynomial
- 2. The degree of the minimal polynomial of an operator must be greater than or equal to the number of distinct eigenvalues of the operator

Theorem. 7.15 T-cyclic Space Have Minimal Polynomial of Largest Degree

Let T be a linear operator on an n-dimensional vector space V such that V is T-cyclic subspace of itself. Then the characteristic polynomial f(t) and the minimal polynomial p(t) have the same degree, and hence

$$f(t) = (-1)^n p(t)$$

1. Gives the condition under which the degree of minimal polynomial of an operator is as large as possible

Theorem. 7.16 Diagonalizable Operator Has Minimal Polynomial with Smallest Degree

Let T be a linear operator on a finite-dimensional vector space. Then T is diagonalizable if and only if the minimial polynomial of T is of the form

$$p(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_k)$$

where $\lambda_1, \dots, \lambda_k$ are distinct eigenvalues of T

Proof. Realize that $p(t) = (t - \lambda_1) \cdots (t - \lambda_k)$ is the minimal polynomial since it brings each eigenvector v_i to 0 for some $(T - \lambda_i I)$

Definition. Describing Minimal Polynomial

1. If T diagonalizable, then

$$p(t) = (t - \lambda_1) \cdots (t - \lambda_k)$$

2. If V T-cyclic subspace of itself, then

$$f(t) = (-1)^n p(t)$$

3. If characteristic polynomial splits, we describe p(t) with Jordan canonical form. Let p_i be size of largest Jordan block corresponding to λ_i in a Jordan canonical form of T, then

$$p(t) = (t - \lambda_1)^{p_1} \cdots (t - \lambda_k)^{p_k}$$

4. If characteristic polynomial does not split, then we describe p(t) with rational canonical form

The Rational Canonical Form

Definition. Irreducible Monic Polynomial Let T be a linear operator on a finite-dimensional vector space V with characteristic polynomial

$$f(t) = (-1)^n (\phi_1(t))^{n_1} \cdots (\phi_k(t))^{n_k}$$

where $\phi_i(t)$ are distinct irreducible monic polynomials and the n_i 's are positive integers. For $1 \le i \le k$, define subset K_{ϕ_i} of V by

$$K_{\phi_i} = \{x \in V : (\phi_i(T))^p(x) = 0 \text{ for some positive integer } p\}$$

- 1. In case f(t) splits, $\phi_i = t \lambda_i$
- 2. Each K_{ϕ_i} is T-invariant subspace of V

Definition. T-cyclic Basis and Companion Matrix Let $x \in V$ be nonzero. Use C_x be T-cyclic subspace generated by x, if $dim(C_x) = k$, then

$$\beta_x = \{x, T(x), T^2(x), \cdots, T^{k-1}(x)\}$$

is an ordered basis for C_x . Let $A = [T|_{C_x}]_{\beta_x}$, then

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix}$$

where

$$a_1x + a_2T(x) + \dots + a_{k-1}T^{k-1}(x) + T^k(x) = 0$$

Furthermore, the charateristic polynomial of A given by (proved with induction)

$$det(A - tI) = (-1)^k (a_0 + a_1t + \dots + a_{k-1}t^{k-1} + t^k)$$

The matrix A is the companion matrix of the monic polynomial

$$h(t) = a_0 + a_1 t + \dots + a_{k-1} t^{k-1} t^k$$

- 1. Every monic polynomial h(t) has a companion matrix, whose characteristic polynomial $f(t) = (-1)^k h(t)$
- 2. Monic Polynomial h(t) is also a minimal polynomial of A,

Definition. Rational Canonical Form For every linear operator T, there eixsts an ordered basis β for V such that

$$[T]_{\beta} = \begin{pmatrix} C_1 & O & \cdots & O \\ O & C_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & C_r \end{pmatrix}$$

where C_i is the companion matrix of a polynomial $(\phi(t))^m$ such that $\phi(t)$ is a monic irreducible divisor of the characteristic polynomial of T and m is positive integer. $[T]_{\beta}$ is called the rational canonical form of T and the accompanying basis is the rational canonical basis for T

Definition. T-annihilator Let T be a linear operator on a finite-dimensional vector space V, and let x be a nonzero vector in V. The polynomial p(t) is called a T-annihilator of x if p(t) is a monic polynomial of least degree for which p(T)(x) = 0

Theorem. 7.17 Let T be a linear operator on a finite-dimensional vector space V, and let β be a ordered basis for V. Then β is a rational canonical basis for T if and only if β is the disjoint union of T-cycilc bases β_{v_i} , where each v_i lies in K_{ϕ} for some irreducible monic divisor $\phi(t)$ of the characteristic polynomial of T

Theorem. 7.22 Existence for Rational Canonical Basis Each linear operator on a finite-dimensional vector space has a rational canonical basis and, hence, a rational canonical form