

Generation of Random Variates

Prof.D. Uma, Mamatha H R

Computer Science and Engineering

Generation of Random Variates

Prof.D. Uma, Mamatha H R
Department of Computer Science and Engineering

Topics to be covered...

Random Numbers

Random Variates

Techniques for Generating Random Variates

Random Numbers

A random sequence of numbers obtained from a stochastic process.

In real world, random numbers may be generated using a dice or a roulette wheel.

Random Numbers

- Random numbers are very important for a simulation.
- Since all the randomness required by the model is simulated by a random number generator, – Whose output is assumed to be a sequence of independent and identically (uniformly) distributed random numbers between 0 and 1.
- These random numbers are transformed into required probability distributions.

Random Number Generators

- A computational or physical device designed to generate a sequence of numbers that lack any pattern (i.e. appear random).
- Computer-based generators are simple deterministic programs trying to fool the user by producing a deterministic sequence that looks random (pseudo random numbers).
- They should meet some statistical tests for randomness intended to ensure that they do not have any easily discernible patterns.

Random Number Seed

PES UNIVERSITY

- Computer-based generators use random number seeds for setting the starting point of the random number sequence.
- These seeds are often initialized using a computer's real time clock in order to have some external noise.

Random Variate Generation

- Process of producing observations that have the distribution of the given random variables.
- This is to develop simulation models for the purpose of analysis and decision making.
- It rely on generating uniformly distributed random number on the interval (0,1).
- Random variate generators use as starting point random numbers distributed U[0,1].

Random Variate Generation

It is assumed that a distribution is completely specified and we wish to generate samples from this distribution as input to a simulation model.

Random Variate

PES UNIVERSITY ONLINE

A **random variate** is a variable generated from uniformly distributed pseudorandom numbers.

Depending on how they are generated, a **random variate** can be uniformly or non-uniformly distributed.

Random variates are frequently used as the input to simulation models.

Examples: Inter-arrival time and service time.

Factors to Be Considered

- Exactness: Exact if distribution of variates generated has the exact form desired.
- Speed: Related with computing time required to generate variate.
- Contributions to time are: Setup time, Variable generation time.
- Space: Computer memory required for the generator.
- Simplicity: Refers to both algorithmic simplicity and implementation simplicity.

Ref: Wikipedia

 Devroye defines a random variate generation algorithm (for real numbers) as follows:

- Assume that
- Computers can manipulate real numbers.
- Computers have access to a source of random variates that are uniformly distributed on the closed interval [0,1].
- Then a random variate generation algorithm is any program that halts almost surely and exits with a real number x. This x is called a random variate.

Random Variate

RV Generators – Techniques used to generate random variates.

- Inverse transform technique
- Direct transformation for the Normal Distribution
- Convolution Method
- Acceptance and Rejection Technique

- A continuous distribution can be defined by its density function f(x).
- The probability that a value x lies between a and b, where a>b, is the integral of function between a and b.

 The cummulative distribution function can be generated for all x by computing the integral of function between -infinite and x.

- Function is strictly increasing and continuous.
- F(x) = u gives a unique x.

For generating random variates with f(x):

Let
$$u = RN(0,1)$$

Return $x = F^{-1}(u)$

Steps in Inverse Transform technique

- 1. Compute CDF of the desired random variable X.
- 2. Set F(X)=R on the range of X.
- 3. Solve the equation F(X)=R for X in terms of R.
- 4. Generate uniform random numbers R1,R2,R3... and compute the desired random variate by

$$X_i = F^{-1}(R_i)$$

Steps in Inverse Transform Technique

<u>Inverse transform method – Uniform Distibution Example:</u>

Step 1 – compute cdf of the desired random variable X

$$F(x) = \frac{x-a}{b-a}, \quad a \le x < b$$

$$1, \quad x \ge b$$

Step 2 – Set F(X) = R where R is a random number $\sim U[0,1)$

$$F(x) = R = \frac{x - a}{b - a}$$

Step 3 – Solve F(X) = R for X in terms of R. $X = F^{-1}(R)$.

$$R(b-a) = X - a$$
, $X = R(b-a) + a$

Step 4 – Generate random numbers R_i and compute desired random variates:

$$X_i = R_i(b-a) + a$$

Inverse Transform Method (Sample)

For exponential distribution:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} &, \ x \geq 0, \\ 0 &, \ x < 0. \end{cases}$$

 $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0, \\ 0 & , x < 0. \end{cases}$ Probability density function

$$F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} &, x \ge 0, \\ 0 &, x < 0. \end{cases}$$

 $F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0, \\ 0 & , x < 0. \end{cases}$ — Cummulative distribution function

$$x = F^{-1}(x,\lambda) = -\ln(1-u)/\lambda$$

Bernoulli Distributions

Density:

- Value 1 with success probability p, and
- Value 0 with failure probability q = 1 p.
- Random variate production:

```
Let U = RN(0, 1)

If (U \le p)

Return X = 1

Else

Return X = 0
```


Binomial

A random variable X has a binomial distribution with parameters n and p if

$$P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n - i}, \qquad i = 0, 1, \dots, n;$$

Algorithm:

- Generate n Bernoulli(p) random variables Y_1, \ldots, Y_n ;
- Set $X = Y_1 + Y_2 + \cdots + Y_n$.

Alternative algorithms can be derived by using the following results.

Poisson

A random variable X has a Poisson distribution with parameter λ if

$$P(X = i) = \frac{\lambda^{i}}{i!}e^{-\lambda}, \qquad i = 0, 1, 2, ...;$$

X is the number of events in a time interval of length 1 if the inter-event times are independent and exponentially distributed with parameter λ .

Algorithm:

• Generate exponential inter-event times Y_1, Y_2, \ldots with mean 1; let I be the smallest index such that

$$\sum_{i=1}^{I+1} Y_i > \lambda;$$

• Set X = I.

Poisson (alternative)

• Generate U(0,1) random variables U_1, U_2, \ldots ; let I be the smallest index such that

$$\prod_{i=1}^{I+1} U_i < e^{-\lambda};$$

• Set X = I.

Inverse-transform Technique: Other Distributions

Examples of other distributions for which inverse CDF works are:

- Uniform distribution
- Weibull distribution
- Triangular distribution

Inverse-transform Technique: Discrete Distribution

All discrete distributions can be generated via inverse transform technique.

Method:

Numerically, table-lookup procedure, algebraically, or a formula

Examples of application:

- Empirical
- Discrete uniform
- Geometric

Inverse-transform Technique: Continuous Distributions

A number of continuous distributions do not have a closed form expression for their CDF, e.g. Normal, Gamma and Beta.

Solution

Approximate the CDF or numerically integrate the CDF

Problem

Computationally slow

Acceptance and Rejection Technique

- Useful particularly when inverse CDF does not exist in closed form
- Illustration: To generate random variates, $X \sim U(1/4,1)$

Procedure:

Step 1. Generate $R \sim U(0,1)$

Step 2. If $R \ge \frac{1}{4}$, accept X=R.

Step 3. If $R < \frac{1}{4}$, reject R, return to Step 1

Acceptance-Rejection Method

- Generate a random point (X,Y) on the graph.
- If (X,Y) lies under the graph of f(X) then Accept X
- Otherwise

Reject X

Acceptance-Rejection Method (Drawback)

Trials ratio: Average number of points (X,Y) needed to produce one accepted X.

- We need to make trial ratio close to 1.
- Else generator may not be efficient enough because of wasted computation effort.

Acceptance-Rejection Method (Making More Efficient)

- One way to make generator efficient is;
 - To generate points uniformly scattered under a function e(x), where area between the graph of f and e be small.

Acceptance-Rejection Method (Constructing e(x))

- Take e(x) = Kg(x)
- g(x) = density function of a distribution for which an easy way of generating variates already exists.
- K = scale factor

Acceptance-Rejection Method (Producing (X,Y))

- Let X = a variate produced from Kg(x)
- Let U = RN(0,1)
- (X,Y) = (X, UKg(X))

Acceptance and Rejection Technique

R does not have the desired distribution, but R conditioned (R') on the event $\{R \ge \frac{1}{4}\}$ does.

• Efficiency: Depends heavily on the ability to minimize the number of rejections.

Acceptance and Rejection Technique – Poisson Distribution

Procedure of generating a Poisson random variate N is as follows

- 1. Set n=0, P=1
- 2. Generate a random number R_{n+1} , and replace P by $P \times R_{n+1}$
- 3. If $P < \exp(-\alpha)$, then accept N=n
 - Otherwise, reject the current n, increase n by one, and return to step 2.

Acceptance and Rejection Technique - Poisson Distribution

- Example: Generate three Poisson variates with mean α =0.2
 - $\exp(-0.2) = 0.8187$
- Variate 1
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.4357, $P = 1 \times 0.4357$
 - Step 3: Since $P = 0.4357 < \exp(-0.2)$, accept N = 0
- Variate 2
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.4146, $P = 1 \times 0.4146$
 - Step 3: Since $P = 0.4146 < \exp(-0.2)$, accept N = 0
- Variate 3
 - Step 1: Set n = 0, P = 1
 - Step 2: R1 = 0.8353, $P = 1 \times 0.8353$
 - Step 3: Since $P = 0.8353 > \exp(-0.2)$, reject n = 0 and return to Step 2 with n = 1
 - Step 2: R2 = 0.9952, $P = 0.8353 \times 0.9952 = 0.8313$
 - Step 3: Since $P = 0.8313 > \exp(-0.2)$, reject n = 1 and return to Step 2 with n = 2
 - Step 2: R3 = 0.8004, $P = 0.8313 \times 0.8004 = 0.6654$
 - Step 3: Since $P = 0.6654 < \exp(-0.2)$, accept N = 2

Acceptance and Rejection Technique – Poisson Distribution

PES UNIVERSITY ONLINE

- It took five random numbers to generate three Poisson variates
- In long run, the generation of Poisson variates requires some overhead!

N	R_{n+1}	P	Accept/Reject		Result
0	0.4357	0.4357	$P < \exp(-\alpha)$	Accept	<i>N</i> =0
0	0.4146	0.4146	$P < \exp(-\alpha)$	Accept	<i>N</i> =0
0	0.8353	0.8353	$P \ge \exp(-\alpha)$	Reject	
1	0.9952	0.8313	$P \ge \exp(-\alpha)$	Reject	
2	0.8004	0.6654	$P < \exp(-\alpha)$	Accept	<i>N</i> =2

Normal distribution

Methods:

- Acceptance-Rejection method
- Box-Muller method

PES UNIVERSITY ONLINE

Acceptance-Rejection method

If X is N(0, 1), then the density of |X| is given by

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}, \qquad x > 0.$$

Now the function

$$g(x) = \sqrt{2e/\pi}e^{-x}$$

majorizes f. This leads to the following algorithm:

- 1. Generate an exponential Y with mean 1;
- 2. Generate U from U(0, 1), independent of Y;
- 3. If $U \le e^{-(Y-1)^2/2}$, then accept Y; else reject Y and return to step 1.
- 4. Return X = Y or X = -Y, both with probability 1/2.

PES UNIVERSITY ONLINE

Box-Muller method

If U_1 and U_2 are independent U(0, 1) random variables, then

$$X_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$

$$X_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$$

are independent standard normal random variables.

Direct Transformation

Approach for N(0,1)

PDF

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

CDF, No closed form available

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Direct Transformation

PES

Approach for N(0,1)

- Consider two standard normal random variables, Z1 and Z2, plotted as a point in the plane:
- In polar coordinates:
 - $Z1 = B \cos(\alpha)$
 - $Z2 = B \sin(\alpha)$

Direct Transformation

- Approach for $N(\mu, \sigma^2)$:
 - Generate $Z_i \sim N(0,1)$

$$X_i = \mu + \sigma Z_i$$

- Approach for Lognormal(μ , σ^2):
 - Generate $X \sim N(\mu, \sigma^2)$

$$Y_i = e^{X_i}$$

Direct Transformation-Example

Let R1 = 0.1758 and R2 = 0.1489

Two standard normal random variates are generated as follows:

$$Z_1 = \sqrt{-2\ln(0.1758)}\cos(2\pi 0.1489) = 1.11$$

$$Z_2 = \sqrt{-2\ln(0.1758)}\sin(2\pi 0.1489) = 1.50$$

• To obtain normal variates Xi with mean μ =10 and variance σ^2 = 4

$$X_1 = 10 + 2 \cdot 1.11 = 12.22$$

$$X_2 = 10 + 2 \cdot 1.50 = 13.00$$

Random Variate Generation

Do It Yourself !!!!

Implement Random Variate Generation for Poisson Distribution.

Implement Random Variate Generation for Normal Distribution.

THANK YOU

D. Uma, Mamatha H R

Department of Computer Science and Engineering

umaprabha@pes.edu

+91 99 7251 5335