Opóźnienia i hazard w układach kombinacyjnych

Układy cyfrowe opisywane są przy pomocy wielu parametrów. Jednym z istotniejszych z punktu widzenia działania gotowego układu jest czas propagacji – czyli opóźnienie między zmianą sygnału na wejściu elementu a odpowiadającą mu zmianą na wyjściu elementu.

Często dwa czasy propagacji:

 t_{PLH} opóźnienie przy zmianie wyjścia z 0 na 1 t_{PHL} opóźnienie przy zmianie wyjścia z 1 na 0 t_{PD} średni czas propagacji

Faktyczny czas propagacji zależy od technologii wykonania układów Cyfrowych (ps do ok. 100 ns)

Hazard statyczny

Czasy propagacji, lub ich akumulacja mogą prowadzić do występowania nieprawidłowych stanów na wyjściach układu. Zwykle stany nieprawidłowe są krótkotrwałe, ale w określonych Przypadkach mogą powodować nieprawidłowe funkcjonowanie całego układu.

Hazard statyczny to chwilowa 1 w czasie gdy wyjście powinno być w stanie 0 (tzw. hazard w zerach) lub chwilowe 0 gdy wyjście powinno być w stanie wysokim (tzw. Hazard w jedynkach)

Hazard w jedynkach

Występuje w realizacjach postaci alternatywnej normalnej (sum iloczynów zmiennych i ich negacji) gdy wyrażenie zawiera zmienne zanegowane (w układzie są bramki negacji) NP.

Hazard w zerach

Występuje w realizacjach postaci koniunkcyjnej normalnej (iloczyny sum zmiennych i ich negacji) gdy wyrażenie zawiera zmienne zanegowane (w układzie są bramki negacji) NP.

$$f(x, y, z) = (x + y) + (x + z)$$

$$x = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$0 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y) + (x + z)$$

$$1 = (x + y)$$

Przy odwrotnych zmianach wejść (011→111 i 100→000) hazard nie występuje.

W obydwu przypadkach sygnał odpowiadający zmiennej x propaguje się z wejścia do wyjścia wzdłuż dwóch ścieżek o różnym opóźnieniu (przez dwie lub trzy bramki):

Hazard pojawia się, gdy zmiana sygnału odpowiadająca zmiennej x poruszająca się krótszą ścieżką już dotarła do wyjścia, a dłuższą nie.

- •W przykładach bramki o identycznych czasach propagacji, więc hazard nie jest spowodowany róznicami tych czasów,
- •Gdyby bramki miały różne czasy propagacji mogą się pojawić dodatkowe hazardy,
- W układzie zaprojektowanym jako bezhazardowy hazard nie wystapi nawet gdy bramki będą miały bardzo różne czasy propagcji

Wykrywanie i usuwanie hazardu statycznego

Hazard statyczny można wykryć i zlikwidować zanim układ zostanie zrealizowany – konieczne jest przeanalizowanie tabel Karnaugh'a.

Niebezpieczeństwo występuje gdy dwie grupy jedynek lub zer grsmiczą ze sobą W rzeczywistych realizacjach grupy jedynek (zer) odpowiadają konkretnym bramkom.

Bramka, która na wejście otrzymuje sygnał zanegowany jest bramką "wolniejszą"

W realizacjach układów opartych na postaci alternatywnej normalnej hazard pojawia się przy przełączaniu z bramki "szybkiej" na "wolną". "Szybka" przestaje produkować jedynkę, a "wolna" jeszcze nie produkuje...

Przy przełączeniu z bramki "wolnej" na "szybką" nie ma problemu – ponieważ na szybkiej bramce mamy jedynkę zanim bramka wolna przełączy się w stan niski.

Hazardu można uniknąć jeśli wprowadzi się dodatkową bramkę, produkującą potrzebny sygnał (wysoki lub niski) w czasie przełączania z bramki "szybkiej" na "wolną"

Układ bez hazardu

Układ bez hazardu

Hazard dynamiczny

Hazard dynamiczny występuje gdy zamiast pojedynczej zmiany z 1na 0 (lub z 0 na 1) sygnał zmienia się kilka razy zanim osiągnie wymagany stan, np. $0\rightarrow 1\rightarrow 0\rightarrow 1$ $(1\rightarrow 0\rightarrow 1\rightarrow 0)$.

Niebezieczeństwo hazardu gdy sygnały propagują się z wejścia do wyjścia układu ścieżkami o co najmniej trzech różnych długościach.

$$f(b,b,c,d) = \overline{a}\overline{b} + ab\overline{c} + abd + \overline{b}c\overline{d}$$

Bez hazardu potrzebne 9 bramek:

4 NOT, 3 AND3, 1 AND2, 1 OR4

Można uprościć wyrażenie i zastosować tylko 3 bramki

Hazard dynamiczny występuje gdy:

- sygnał propaguje się ścieżkami o trzech różnych długościach
 - sygnał a
- •W układzie występuje podukład z hazardem statycznym (bramka G2)