ntroduction

Casimir Effect Past and Present

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and th Quantum

Summary and Prospect

Casimir Effect and Black Hole Entropy

Li Feng

School of Physics and Technology, Wuhan University

Quantum Field Theory Class Presentation Wuhan, Dec. 2021

ntroductio

Casimir Effect Past and Present

Review of Black Hole Thermody namics

Bekenstein-Hawking Entropy fron Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

- 1 Introduction
- 2 Casimir Effect Past and Present
- 3 Review of Black Hole Thermodynamics
- 4 Bekenstein-Hawking Entropy from Black Hole Interior
- **5** On-shell and Off-shell Black Hole Entropy
- 6 The Casimir Effect and the Quantum Vacuum
- 7 Summary and Prospect

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Motivation

• Bekenstein, Hawking:

$$S_{BH} = \frac{A}{4I_p^2}$$

A: the area of horizon.

• Boltzmann:

$$S = k_B \log \Omega$$

 Ω : number of microstates.

⇒ Microscopic origin of black hole entropy?

Casimir energy (vacuum energy):

$$E_{vac}(\partial\Gamma) = E_0(\partial\Gamma) - E_0(0)$$

 $\partial \Gamma$: an arbitrary boundary.

 \Rightarrow Arises from field quantization.

Introduction

Casimir Effect Past and

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy fron Black Hole

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Introduction

• Different approaches:

Information paradox; hints for quantum gravity.

Introduction

Casimir Effect Past and Present

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Brief History

- The existence of a force between two polarizable atoms and between such an atom and a conducting plate. ('47 Casimir, Polder)
- Neutral perfectly conducting parallel plates placed in the vacuum attract each other. ('48 Casimir)

$$F = \hbar c \frac{\pi^2}{240} \frac{1}{a^4} = 0.013 \frac{1}{a_\mu^4} \text{dyne/cm}^2$$

Although the effect is small, an experimental confirmation seems not unfeasable and might be of a certain interest.

Natuurkundig Laboratorium der N.V. Philips' Gloeilampenfabrieken, Eindhoven.)

Expereimental verification of this attraction.
 ('57 B.V.Deriagin and I.I.Abrikosova)

Review of Black Hole Thermody namics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Brief History

 Investigations of the Casimir energy of the electromagnetic field under constraints.

('49 H.B.G.Casimir, J.Chim)

- \Rightarrow the zero-point energy of the electromagnetic field can be usefully applied to explain van der Waals attraction,
- ⇒ the existence of repulsive Casimir forces of electromagnetic origin seems to be contradictory.
- Presently, Casimir energies of quantized fields are studied in connection with a variety of problems, ranging from applications in particle physics, e.g. in QCD bag models, to gravitational physics, where its possible influence on the structure of space-time is studied.

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Problems

- The evaluation of vacuum energies remains a problematic exercise, because the available methods, in most cases, only allow an approximate calculation.
 - ⇒ Mode summation method
 - ⇒ Local Green function method
- Correct results for the Casimir energy should be independent of the applied methods and the regularization scheme
- Energy density of the vacuum in cosmology

$$R_{\mu\nu} - rac{1}{2}g_{\mu\nu}R = -8\pi G(\tilde{T}_{\mu\nu} - Eg_{\mu\nu})$$

 $\lambda = 8\pi GE$

⇒ Vacuum fluctuation produces way more!

troductio

Casimir Effec Past and

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Black Hole Thermodynamics

Consider a Schwarzschild black hole:

$$\mathrm{d}s^2 = -\left(1 - \frac{2M}{r}\right)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{1 - \frac{2M}{r}} + r^2(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\phi^2)$$

Hawking radiation: ('74 Hawking)
 Thermal spectrum of emitted particles

$$n_E \propto \Gamma_I(E) \left[e^{\frac{E}{T_H}} - 1 \right]^{-1}$$
 with $T_H \equiv \frac{1}{8\pi M}$

• In Schwarzschild metric, we have BH entropy

$$A = 16\pi M^2 \quad \Rightarrow \quad dM = \frac{1}{8\pi M} d\frac{A}{4} \equiv T dS$$

The first law of of thermodynamics (generalized to Kerr-Newman metric):

$$dM = TdS + \Phi_I dQ_I + \Omega_i dJ_i$$

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Tree-level BH Thermodynamics

 Euclidean action of a 2D dilaton gravity: ('96 Frolov, Israel, Solodukhin)

$$W_{cl} = -\frac{1}{4G} \int_{M^2} [r^2 R + 2(\nabla r)^2 + 2U(r)] \sqrt{\gamma} d^2 z$$
$$-\frac{1}{2G} \int_{\partial M^2} r^2 k dz - \frac{\pi r_+^2}{G} (1 - \alpha)$$

We are free to define other thermal quantities with the action

$$F=rac{1}{2\pieta}W_{cl},\quad S=(eta\partial_eta-1)W_{cl},\quad E=rac{1}{2\pi}\partial_eta W_{cl}$$

• Extremal black hole (defined as $T_H = 0$):

$$W_{ext} = 2\pi\beta E$$
, $S_{ext} = 0$

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

AdS/CFT

Maldacena('97)

4D U(N) $\mathcal{N}=4$ SYM \iff IIB string theory on $AdS_5 \times S^5$

• Witten; Gubster, Klebanov, Polyakov ('98)

$$Z_{CFT}=Z_{AdS},$$
 $N^2=rac{\pi}{2}rac{L^3}{G_5}, \quad \lambda\equiv g_{YM}^2N=\left(rac{L}{I_s}
ight)^2$

- Compute Z_{CFT} from the field side $\Rightarrow Z_{AdS}$ BPS black hole free energy $\Rightarrow F = \log Z_{AdS}$ BPS black hole entropy $\Rightarrow S \simeq F$
- In the presence of chemical potentials

$$Z(\Delta,\omega) = \sum_{Q,J} \Omega(Q,J) e^{Q\Delta} e^{J\omega}, \ S_{BH} = \log \Omega(Q,J)$$

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Brief History

 5d asymptotically flat BPS black hole: ('96 Strominger, Vafa)

Type II string theory compactified on $K_3 \times S^1$

- \Rightarrow BPS black hole in 5d flat spacetime
- \Rightarrow take nBPS limit to study AdS_3 black hole
- Black Hole Entropy from Near-Horizon Microstates (apply Cardy formula to near-horizon AdS₃ BPS black hole) ('97 Strominger)
- Works have been done on asymptotically flat black holes
- Black hole microstates in *AdS*₄ from supersymmetric localization:

('15 Benini, Hristov, Zaffaroni)

- \Rightarrow Topologically twisted index of ABJM theory on $S^1 \times S^2$
- \Rightarrow AdS₄ magnetically charged BPS black hole entropy

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and th Quantum

Summary and Prospect

AdS₅: Difficulty

• $\mathcal{N}=4$ SYM theory partition function on $S^1\times S^3$:

$$Z(\beta, \Delta_I, \omega_i) = \operatorname{Tr}\left[e^{-\beta E} e^{\sum_{l=1}^3 \Delta_I Q_l} e^{-\sum_{i=1}^2 \omega_i J_i}\right]$$

Different boundary conditions for fermion and boson along \mathcal{S}^1

- \Rightarrow break SUSY!
- $\mathcal{N}=4$ SYM superconformal index on $S^1\times S^3$: ('07 Kinney, Maldacena, Minwalla, Raju)

$$\begin{split} \mathcal{I}(\beta, \Delta_I, \omega_i) &= \mathrm{Tr} \left[(-1)^F e^{-\beta E} e^{\sum_{l=1}^3 \Delta_I Q_l} e^{-\sum_{i=1}^2 \omega_i J_i} \right] \\ \mathcal{I} &\sim \mathcal{O}(1), \quad S_{BH} \sim \mathcal{O}(N^2) \end{split}$$

⇒ Index cannot reproduce the black hole entropy!

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

AdS₅: Recent Progress

- Entropy of BPS AdS₅ black hole: ('17 Hosseini, Hristov, Zaffaroni) Legendre transformation of log Z
- Different approaches (allow complex chemical potentials): ('18)
 - Localization of $\mathcal{N}=4$ SYM in complex backgrounds (Cabo-Bizet, Cassani, Martelli, Murthy)
 - Free $Z_{\mathcal{N}=4}$ $_{SYM}$ with complex fugacities (Choi, Kim, Kim and Nahmgoong) $\mathcal{I}_{\mathcal{N}=4}$ $_{SYM}$ with complex fugacities
 - $L_{\mathcal{N}=4}$ SYM with complex fugacities (Benini, Milan)
- Later, generalized to other dimensions

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

AdS₅ BPS BH

Compute $\log Z$ from field theory

$${\rm log} Z \simeq \mathcal{F} = \frac{\textit{N}^2 - 1}{2} \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2} \quad \text{with} \ \sum_{\textit{I}} \Delta_{\textit{I}} - \sum_{\textit{i}} \omega_{\textit{i}} = 2 \pi \textit{in}$$

Define its entropy via Legendre transform

$$S(\Delta_I, \omega_i; Q_I, J_i) = \frac{N^2}{2} \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2} + \sum_{I=1}^3 Q_I \Delta_I + \sum_{i=1}^2 J_i \omega_i$$
$$-\Lambda(\sum_{I=1}^3 \Delta_I + \sum_{i=1}^2 \omega_i - 2\pi i)$$

Extremization:

$$\frac{\partial S}{\partial \Lambda} = 0, \quad \frac{\partial S}{\partial \Delta_I} = 0, \quad \frac{\partial S}{\partial \omega_i} = 0$$

Results from the gravity side ('06 Kim, Lee)

ntroductio

Casimir Effec Past and Present

Review of Black Hole Thermody namics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Generalization of Casimir Energy

• Casimir energy in curved space $S^{d-1} \times \mathbb{R}$: ('15 Assel, Cassani, Pietro, Komargodski, Lorenzen, Martelli)

$$E_0 = \int_{S^{d-1}} d^{d-1} x \sqrt{g} \langle T_{\tau\tau} \rangle$$

$$\Rightarrow d = 2 \quad E_0 = -\frac{c}{12r_1}$$

$$\Rightarrow d = 4 \qquad E_0 = \frac{3}{4r_3}(a - \frac{b}{2})$$

c: central charge; b: scheme related parameter;

• SUSY Casimir energy independent of coupling constants ('13 Closset, Dumitrescu, Festuccia, Komargodski)

$$\begin{split} E_{susy} &= -\lim_{\beta \to \infty} \frac{\mathrm{d}}{\mathrm{d}\beta} \mathrm{log} Z_{M_3 \times S_{\beta}^1}^{susy} \\ Z_{M_3 \times S_{\beta}^1}^{susy} &\equiv \mathrm{Tr}[(-1)^F e^{-\beta H_{susy}}] \end{split}$$

troductio

Casimir Effect Past and Present

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Blac Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Casimir Energy and Gravity

The Casimir energy of $\mathcal{N}=1$ 4d field theory with R-symmetry:

$$E_{susy} = \frac{4}{27r_3}(a+3c)$$

 \Rightarrow Anomaly Polynomial Interpretation of a + 3c ('15 Bobev, Bullimore, Kim)

 \Rightarrow Prefactor \mathcal{F}

$$\mathcal{F}(\omega_1, \omega_2, \varphi) = -(3c - 2a)\frac{16}{27}\frac{\varphi^3}{\omega_1\omega_2} + (a - c)16\pi i\Psi_2^{(0)}$$
 $Z(\omega_1, \omega_2, \varphi) = e^{-\mathcal{F}(\omega_1, \omega_2, \varphi)}\mathcal{I}(\omega_1, \omega_2, \varphi)$

The index scales at large N limit:

$$-\log \mathcal{I}_{\mathcal{N}=4} \stackrel{\mathsf{N}\to\infty}{\longrightarrow} \frac{\mathsf{N}^2}{2} \frac{\varphi_1 \varphi_2 \varphi_3}{\omega_1 \omega_2} = -\mathcal{F}_{\mathcal{N}=4}$$

Which matches precisely the gravitational on-shell action.

troductio

Casimir Effect Past and

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Euclidean Method

• The density matrix of a canonical ensemble

$$\hat{\rho} = \frac{1}{Z} e^{-\beta \hat{H}}$$
 $Z = \text{Tr} e^{-\beta \hat{H}} = \sum_{i} \langle i | e^{-\beta \hat{H}} | i \rangle$

• The matrix elements of a time revolution operator $e^{-i\hat{H}t}$

$$\langle i | e^{-i\hat{H}t} | j \rangle$$

 \Rightarrow

$$\beta = \int i \mathrm{d}t \equiv \int \mathrm{d}\tau$$

 Test on a static spherically symmetric metric (near-horizon)*

$$ds^{2} = f'_{+}Rd\tau^{2} + \frac{dr^{2}}{f'_{+}R} + r_{+}^{2}d\Omega^{2} \equiv d\rho^{2} + \rho^{2}d\theta^{2} + r_{+}^{2}d\Omega^{2}$$

$$\Rightarrow$$
 On-shell condition: $\beta=4\pi/f'_+=1/T_H$

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Euclidean Method

$$F = \beta^{-1}W$$
, $S = (\beta\partial_{\beta} - 1)W$

1 Partition function of a black hole system

$$Z(\beta) = \int [D\phi]e^{-I[\phi]} \equiv e^{-W(\beta)}$$

 $I[\phi]$: Euclidean Einstein-Hilbert action; $W(\beta)$: effective action

2 Consider fluctuation around a classical solution ϕ_0

$$I[\phi_0 + \tilde{\phi}] = I[\phi_0] + I_2[\tilde{\phi}] + \cdots$$

 $I_2[ilde{\phi}]$ denotes for a second order correction

3 Correction for effective action

$$W_1(\beta) = -\log Z_1(\beta) = \frac{1}{2} \sum_j \operatorname{logdet}[-\mu^2 D_j(\phi_0)]$$

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Calculation

('95 Frolov, Fursaev, Zelnikov)

$$W_1(\beta) = \frac{1}{2} \mathrm{logdet}(-\Delta)$$

Heat Kernel Expansion

$$W_1 = -\frac{1}{2} \int_0^\infty \frac{\mathrm{d}s}{s} \mathrm{Tr} e^{s\Delta}$$

Expand the factor ${\rm Tr} e^{s\Delta}$

$$\operatorname{Tr} e^{s\Delta} = rac{1}{(4\pi s)^{d/2}} \sum_{n \in \mathbb{Z}_{>0}} a_n^{(d)} s^n$$

For d=2, only $a_1^{(d)}$ contributes to W_1

$$W_1 = W_1^{bare} - W_1^{div} = \frac{1}{4\pi} \lim_{d \to 2} \frac{1}{d-2} [a_1^{(d)}(\tilde{\gamma}) - a_1^{(d)}(\gamma)]$$

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Calculation

('95 Frolov, Fursaev, Zelnikov)

$$W_1(\beta) = \frac{1}{2} \mathrm{logdet}(-\Delta)$$

 ζ -Function Regularization

$$W_1 = \frac{1}{2} \operatorname{logdet} \mathcal{O} = -\left. \frac{1}{2} \frac{\mathrm{d} \zeta_{\mathcal{O}(s)}}{\mathrm{d} s} \right|_{s=0}$$

where

$$\zeta_{\mathcal{O}}(s) \equiv \sum_{n} \frac{1}{\lambda_{n}^{s}}$$

 \mathcal{O} : an operator with positive definite eigenvalues λ_n , here the operator is taken as $-\mu^2\Delta$

$$W_1 = -\frac{1}{2}\zeta'_{-\mu^2\Delta}(0) = \frac{1}{2}\zeta_{\Delta}(0)\log\mu^2 - \frac{1}{2}\zeta'_{\Delta}(0)$$

 $\Rightarrow \lambda_n$ can be obtained from specific models.

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

On-shell Conclusion

Classical action of 2D dilaton gravity

$$\begin{split} W_{cl} &= -\frac{1}{4} \int_{M^2} [r^2 R + 2(\nabla r)^2 + 2] \sqrt{\gamma} \mathrm{d}^2 x \\ &- \frac{1}{2} \int_{\partial M^2} r^2 (k - k_0) \mathrm{d}y + \frac{1}{2} \int \sqrt{\gamma} \phi_{,\mu} \phi^{,\mu} \mathrm{d}x \end{split}$$

Ansatz of the corresponding EoMs gives a Gibbs-Hawking instanton:

$$ds^2 = f d\tau^2 + f^{-1} dr^2, \quad f = 1 - r_+/r$$

Which can be conformally transformed

$$ds^{2} = f d\tau^{2} + f^{-1} dr^{2} \equiv e^{2\sigma} d\tilde{s}^{2},$$

$$d\tilde{s}^{2} = \mu^{2} (x^{2} d\tilde{\tau}^{2} + dx^{2})$$

Then we can perform the calculation under a flat background.

troductio

Casimir Effec Past and

Review of Black Hole Thermody namics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Off-shell Models

• Brick-wall Model ('85 't Hooft):

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Off-shell Models

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□

Define a shared term of effective action:

$$U(\beta, \alpha, y) \sim (\alpha + \frac{1}{\alpha})\log\alpha$$

$$\tilde{W}_1^{BW}(\beta, \alpha, y, \epsilon) = U(\beta, \alpha, y) + \frac{1}{12}\left(\alpha + \frac{1}{\alpha}\right)\log\left(\frac{\epsilon}{\mu}\right)$$

$$-\frac{1}{2}\log\frac{\pi\alpha}{\log(\beta/2\pi\alpha\epsilon)}$$

Conical Singularity Method ('94 Susskind, Uglum):

$$\tilde{W}_{1}^{CS}(\beta, \alpha, y) = U(\beta, \alpha, y) + C(\alpha) \simeq \tilde{W}_{1}^{BC}$$

- Blunt Cone Method ('95 Solodukhin):
- Volume Cut-off Method('93 Frolov, Novikov):

$$\tilde{W}_{1}^{VC}(\beta, \alpha, y, \epsilon) = U(\beta, \alpha, y) + \frac{1}{12} \left(\alpha + \frac{1}{\alpha} \right) \log \left(\frac{\epsilon}{\mu} \right)$$

ntroduction

Casimir Effect Past and

Review of Black Hole Thermodynamics

Bekenstein-Hawking Entropy from Black Hole Interior

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Statistical-Mechanical Entropy

We expect the statistical-mechanical entropy to take this form

$$S = -\text{Tr}(\hat{\rho} \log \hat{\rho})$$

Q: the density matrix $\hat{\rho}$?

Partition function in Hamiltonian formalism

$$Z = \mathrm{Tr} e^{-\beta \hat{H}} = \sum_{n} e^{-\beta \omega_n} \equiv e^{-\beta \mathcal{F}}$$

Define

$$\hat{\rho} \equiv \frac{1}{Z} \sum_{n} e^{-\beta \omega_{n}} \left| \psi_{n} \right\rangle \left\langle \psi_{n} \right|$$

$$\Rightarrow -\operatorname{Tr}(\hat{\rho} \log \hat{\rho}) = \beta \sum_{n} \omega_{n} \frac{e^{-\beta \omega_{n}}}{Z} + \log Z$$

Compared with

$$S = \frac{1}{T}E - \frac{F}{T}$$

The Casimir Effect and the Quantum

Summary and Prospect

Quantum Fluctuation on Boundary

QFT path integral ${\mathcal Z}$ is given by

$$\mathcal{Z} = e^{-W_1}, \quad Z = e^{-\beta \mathcal{F}}$$

where $W_1 = \beta \mathcal{F} + C\beta$ (C: a constant). The linear term of β does not change the entropy.

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Quantum Fluctuation on Boundary

Brick-wall model:

$$W_1^{BW} = W_1[K_{\alpha,\epsilon}] = W_1[C_{\alpha}] - W_1[C_{\alpha,\epsilon}] + W_1(2\pi\alpha, \alpha, \epsilon)$$

Calculate with appropriate boundary conditions

$$W_1(2\pi\alpha, \alpha, \epsilon) = -\frac{1}{2}\log\frac{\pi\alpha}{\log(1/\epsilon)}$$

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Zero Point Energy

 The Casimir force calculated using vacuum fluctuations of the electromagnetic field

$$\mathcal{F} = -\frac{\hbar c \pi^2}{240 d^4}$$

 Drude model (Landau, Lifshitz, Electrodynamics of Continuous Media)

Casimir effect depends on fine structure constant $\boldsymbol{\alpha}$

$$\mathcal{F} \sim rac{c}{d} \ll \omega_{pl} \quad \Longleftrightarrow \quad lpha \gg rac{mc}{4\pi\hbar nd^2}$$

 ω_{pl} : plasma frequency.

• Difference: $\mathcal{F} \stackrel{\alpha \to \infty}{\longrightarrow}$ finite value; Common ground: \mathcal{F} vanishes as $\alpha \to 0$.

Summary and Prospect

The Casimir Effect Without the Vacuum ('05 Jaffe)

Casimir effect in modern language

$$\mathcal{E} = \frac{\hbar}{2\pi} \int \mathrm{d}\omega \omega \mathrm{Tr} \int \mathrm{d}^3x [\mathcal{G}(x,x,\omega+i\epsilon) - \mathcal{G}_0(x,x,\omega+i\epsilon)]$$

 \mathcal{G} : full Greens function for the fluctuating field; \mathcal{G}_0 : free Greens.

$$\frac{1}{\pi} \operatorname{Im} \int [\mathcal{G}(x, x, \omega + i\epsilon) - \mathcal{G}_0(x, x, \omega + i\epsilon)] = \frac{\mathrm{d}\Delta N}{\Delta \omega}$$

Consider the Casimir effect for a scalar field ϕ , the interaction

$$\mathcal{L}_{int} = \frac{1}{2} g \sigma(x) \phi^2(x)$$

Summing up all one loop Feynman diagram will give the Casimir energy.

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum Vacuum

Summary and Prospect

Summary and Prospect

- Different dimensions SUSY Casimir energy;
- The origin of Casimir energy as fluctuation on black hole boundary;
- Cosmological constant problem;
 - ...

ntroduction

Casimir Effect Past and

Review of Black Hol Thermody namics

Bekenstein-Hawking Entropy from Black Hole

On-shell and Off-shell Black Hole Entropy

The Casimir Effect and the Quantum

Summary and Prospect

Thank You!