US Patent Search Report and Analysis

Project: iFDC---FCDDWCSW

Issue: US Patent #61

Researcher: Shayan Talebian **Field:** Artificial Intelligence

Research Date: 1404/04/30 | July 20, 2025

1. Executive Summary

This report documents patent research conducted for the Formation Condition & Damage Detection System (FCDD) project, covering:

- Overview of FCDD technology
- Patent search methodology across USPTO, CNIPA and EPO
- Key findings and competitive landscape analysis

2. Project Overview

2.1 FCDD System Description

The Formation Damage Detection System (FCDD) is an Al-driven solution for:

- Real-time detection of 10+ formation damage types (e.g., clay control, fluid loss, stress cracking)
- Multi-technology integration:
 - ML Models: XGBoost/LightGBM for damage classification
 - o Simulation: OpenFOAM-bassed physical modeling
 - o **IoT Monitoring:** Kafka/Grafana real-time analytics

2.2 Technical Scope

Component	Technologies Used	
Data Processing	Python (Pandas, NumPy)	
Predictive AI	TensorFlow, LSTM/GRU	
Visualization	React.js/D3.js dashboards	

3. Patent Research Objectives

Purpose: Identify prior art related to:

- AI/ML applications in formation damage detection
- Real-time well monitoring systems
- Automated drilling damage prediction

Search Focus:

4. Search Methodology

4.1 Database Queried

Office	Search Tools	Keywords	
USPTO	PatFT/AppFT	"formation damage detection AND machine learning"	
CNIPA	PSS-System	"钻井损伤预测 AI" (Drilling damage prediction AI)	
EPO	Espacenet	"real-time wellbore monitoring"	

4.2 Search Strategy

- Boolean combinations:
 ("formation damage" OR "well damage") AND ("AI" OR "neural network")
- CPC/Y02 classifications for oilfield technologies

I. US Patent

1. Introduction to US Patent:

1.1 What is a U.S. Patent?

A U.S. patent is a legal grant by the United States Patent and Trademark Office (USPTO) that gives inventors exclusive rights to their inventions for **20 years** from the filing date. It prevents others from making, using, or selling the invention without permission.

1.2 Types of Patents Relevant to FCDD:

- Utility Patents: For new processes/machines (e.g., AI-based damage detection systems)
- Software Patents: Project algorithms (e.g., LSTM models for well damage prediction)

1.3 USPTO Search Tools Used:

- PPUBS (Patent Public Search): https://ppubs.uspto.gov/pubwebapp/
 - o Advanced search with CPC codes and Boolean operators
- PatFT (Legacy System): For historical patents.

2. Search Methodology:

2.1 Search Queries Executed

Query 1: Broad AI + Simulation

```
(
  ("formation damage" OR "well damage")
AND ("LSTM" OR "RNN")
AND ("numerical simulation" OR "reservoir modeling")
)
AND @APD >= 20200101
```

Results: 4 patents (e.g., Model-constrained Multi-phase Virtual Flow Metering).

Query 2: Digital Twin Focus

```
("well damage detection" AND "machine learning" AND "digital twin")
AND @APD >= 20190101
```

Results: 0 Patents (confirms novelty)

Query 3: Hybrid Physics-AI

```
("formation damage" AND "physics-informed ML" AND OpenFOAM)
```

Results: 0 patents (critical gap identified)

3. Analysis of Competing Patents

3.1 Closest Identified Patents

Patent No.	Title	Strengths	Weaknesses vs. FCDD
US20220145789A1	Flowback-based Damage Detection	Uses ML for damage analysis	No real-time simulation
US111313923B2	Automatic ML Model Selection	Generic AI framework	Not oilfield-specific
US20210340872A1	Virtual Flow Metering with ML	Combines ML + fluid dynamics	Focuses on metering, not damage

3.2 Key Differentiators of FCDD

+ FCDD's Unique Advantages:

Hybrid OpenFOAM + LSTM architecture (no prior patents found) GAN-based synthetic data pipeline (novel in oil/gas) Real-time Grafana integration (not in competing patents)

4. Recommendations & Action Plan

4.1 Patentability Assessment

FCDD is **highly patentable** due to:

- No existing patents combining physics simulation + temporal AI models for formation damage
- Unique synthetic data generation approach

4.2 Filing Strategy

1. Provisional Application (Fast Track):

- File within 1 month to establish priority
- Cost: ~\$2,5000 (including attorney fees)

2. Non-Provisional Application:

- Submit within 12 months of provisional filing.
- Key Claims to Include:
 - "A system combining CFD simulations with LSTM networks for real-time well damage detection."
 - "Method for generating synthetic training data using GANs."

4.3 Competitive Advantage if Patented

- o Market Monopoly: 20-year exclusivity in Al-driven well monitoring
- o **Licensing Revenue:** Potential to license to Schlumberger/Halliburton
- o **Investor Appeal:** Strengthens startup valuation

5. Next Steps

5.1 Immediate Actions:

- o Draft invention disclosure with R&D team
- Consult a patent attorney (e.g., Fish & Richardson).

5.2 Risk Mitigation:

Design-around US20220145789A1 by adding real-time simulation claims

6. Conclusion

FCDD represents a breakthrough with no direct prior art in USPTO. The combination of physics-based simulation + AI + real-time analytics is patentable and commercially valuable.

Recommended Path:

File provisional patent \rightarrow Refine claims \rightarrow Submit non-provisional within 12 months.