Discrete Math Cram Sheet

August 19, 2016

Contents			4	Number Theory	
1	Propositional Logic 1.1 Truth Tables	$\frac{2}{2}$	5	4.1 Divisibility	3
2	Proofs	3	6	Linear Algebra	3
	2.1 Mathematical Induction	3	7	Combinatorics	3
3	Recurrence Relations	3	8	Probability	3

1 Propositional Logic

1.1 Truth Tables

p	Т	Т	F	F	
q	Γ	F	\mathbf{T}	\mathbf{F}	
F	F	F	F	F	contradiction
$p \veebar q$	F	\mathbf{F}	\mathbf{F}	\mathbf{T}	joint denial
$p \not\leftarrow q$	F	\mathbf{F}	${\rm T}$	\mathbf{F}	converse nonimplication
$\neg p$	F	\mathbf{F}	${\rm T}$	\mathbf{T}	left negation
$p \nrightarrow q$	F	${\rm T}$	\mathbf{F}	\mathbf{F}	nonimplication
$\neg q$	F	${\rm T}$	\mathbf{F}	\mathbf{T}	right negation
$p\oplus q$	F	${\rm T}$	${\rm T}$	\mathbf{F}	exclusive disjunction
$p \overline{\wedge} q$	F	${\rm T}$	${\rm T}$	\mathbf{T}	alternative denial
$p \wedge q$	Γ	\mathbf{F}	\mathbf{F}	\mathbf{F}	conjunction
$p \leftrightarrow q$	Γ	\mathbf{F}	\mathbf{F}	\mathbf{T}	biconditional
q	$\mid T \mid$	\mathbf{F}	${\rm T}$	\mathbf{F}	right projection
$p \rightarrow q$	$\mid T \mid$	\mathbf{F}	\mathbf{T}	Τ	implication
p	$\mid T \mid$	\mathbf{T}	\mathbf{F}	\mathbf{F}	left projection
$p \leftarrow q$	$\mid T \mid$	${\rm T}$	\mathbf{F}	\mathbf{T}	converse implication
$p \lor q$	$\mid T \mid$	${\rm T}$	\mathbf{T}	\mathbf{F}	disjunction
T	T	Τ	Τ	\mathbf{T}	tautology

1.2 Logical Equivalences

Identity	$ \begin{array}{l} p \wedge \mathbf{T} \equiv p \\ p \vee \mathbf{F} \equiv p \end{array} $
Domination	$ \begin{array}{l} p \lor \mathbf{T} \equiv \mathbf{T} \\ p \land \mathbf{F} \equiv \mathbf{F} \end{array} $
Idempotent	$\begin{array}{c} p \wedge p \equiv p \\ p \vee p \equiv p \end{array}$
Commutative	$\begin{array}{l} p \wedge q \equiv q \wedge p \\ p \vee q \equiv q \vee p \end{array}$
Associative	$\begin{array}{l} p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r \\ p \vee (q \vee r) \equiv (p \vee q) \vee r \end{array}$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
De Morgan's	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$
Absorption	$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$
Negation	$ \begin{array}{l} p \lor \neg p \equiv T \\ p \land \neg p \equiv F \end{array} $
Double Negation	$\neg \left(\neg p \right) \equiv p$

Involving Biconditionals

$$\begin{split} p &\leftrightarrow q \equiv (p \to q) \land (q \to p) \\ p &\leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ p &\leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \\ \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q \end{split}$$

Involving Conditional Statements

$$\begin{split} p &\to q \equiv \neg p \vee q \\ p &\to q \equiv \neg q \to \neg p \\ p &\vee q \equiv \neg p \to q \\ p &\wedge q \equiv \neg (p \to \neg q) \\ (p &\to q) \wedge (p \to r) \equiv p \to (q \wedge r) \\ (p \to r) \wedge (q \to r) \equiv (p \vee q) \to r \\ (p \to q) \vee (p \to r) \equiv p \to (q \vee r) \\ (p \to r) \vee (q \to r) \equiv (p \wedge q) \to r \end{split}$$

1.3 Rules of Inference

Modus Ponens	$p \to q$ p
	q
Modus Tollens	$\begin{array}{c} \neg q \\ \underline{p \to q} \\ \neg p \end{array}$
Associative	$\frac{(p \lor q) \lor r}{p \lor (q \lor r)}$
Commutative	$\frac{p \wedge q}{q \wedge p}$
Biconditional	$\begin{array}{l} p \to q \\ \underline{q \to p} \\ p \leftrightarrow q \end{array}$
Exportation	$\frac{(p \land q) \to r}{p \to (q \to r)}$
Contraposition	$\frac{p \to q}{\neg q \to \neg p}$
Hypothetical Syllogism	$\begin{array}{c} p \to q \\ \underline{q \to r} \\ p \to r \end{array}$
Material Implication	$\frac{p \to q}{\neg p \lor q}$
Distributive	$\frac{(p \lor q) \land r}{(p \land r) \lor (q \land r)}$
Absorption	$\frac{p \to q}{p \to (p \land q)}$
Disjunctive Syllogism	$\frac{p \lor q}{q}$
Addition	$\frac{p}{p \vee q}$
Simplification	$\frac{p \wedge q}{p}$
Conjunction	$\frac{p}{\frac{q}{p \wedge q}}$
Double Negation	$\frac{p}{\neg \neg p}$
Disjunctive Simplification	$\frac{p \lor p}{p}$
Resolution	$\frac{p \vee q}{\neg p \vee r}$ $\frac{\neg p \vee r}{q \vee r}$

1.4 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition true. For example, $p \land \neg q$ is satisfiable because the expression is true if p is true or q is false. On the other hand, $p \land \neg p$ is not satisfiable because the expression as a whole is false for both settings of p.

2-SAT Problem

(to follow...)

- 2 Proofs
- 2.1 Mathematical Induction
- 2.2 Strong Induction
- 3 Recurrence Relations
- 4 Number Theory
- 4.1 Divisibility
- 4.2 Primes and GCD

Greatest Common Divisor

This can be defined by the following recurrence relation:

$$\gcd(a,b) = \begin{cases} a & \text{if } b = 0\\ \gcd(b, a \bmod b) & \text{else} \end{cases}$$

- 4.3 Modular Arithmetic
- 5 Graph Theory
- 6 Linear Algebra
- 7 Combinatorics
- 8 Probability