Question number	Scheme	Marks
10 (a)	$(1-2x)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)(-2x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)(-2x)^{2}}{2!} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-2x\right)^{3}}{3!}$ $\Rightarrow (1-2x)^{-\frac{1}{2}} = 1 + x + \frac{3}{2}x^{2} + \frac{5}{2}x^{3} + \dots$	
	$\Rightarrow (1-2x)^{-\frac{1}{2}} = 1 + x + \frac{3}{2}x^2 + \frac{5}{2}x^3 + \dots$	M1A1A1 (3)
(b)	$-\frac{1}{2}$, $x < \frac{1}{2}$ or $ x < \frac{1}{2}$ (Allow $-\frac{1}{2}$, x , $\frac{1}{2}$ or $ x $, $\frac{1}{2}$)	B1 (1)
(c)	$\left(2-x^2\right)\left(1+x+\frac{3}{2}x^2+\frac{5}{2}x^3\right)=2+2x+2x^2+4x^3$	M1M1A1 (3)
(d)	$\int_0^{0.2} \frac{\left(2 - x^2\right)}{\sqrt{\left(1 - 2x\right)}} dx = \int_0^{0.2} 2 + 2x + 2x^2 + 4x^3 dx = \left[2x + x^2 + \frac{2}{3}x^3 + x^4\right]_0^{0.2}$	M1M1
	= (0.4 + 0.04 + 0.00533 + 0.0016) = 0.4469	M1A1 (4) [11]

Addit	Additional Notes			
Part	Mark	Guidance		
(a)	M1	An attempt at the binomial expansion which must have as a minimum;		
		• The first term is 1		
		• The denominators in terms 2, 3 and 4 are correct.		
		• The power of x is correct in each term $\left(-2x, \left[-2x\right]^2, \left[-2x\right]^3\right)$		
		• $-2x$ is used correctly at least once.		
	A1	The first term and at least one term in x correct and simplified		
	A1	All terms correct and simplified.		
		$1 + x + \frac{3}{2}x^2 + \frac{5}{2}x^3$		
(b)	B1	Correct inequality $-\frac{1}{2}$,, $x < \frac{1}{2}$ or $ x < \frac{1}{2}$ Allow		
		$-\frac{1}{2}$,, x ,, $\frac{1}{2}$ or $ x $,, $\frac{1}{2}$		
		isw other attempts when a correct range is seen.		
(c)	M1	Shows that they intend to multiply their expansion in (a) by $(2-x^2)$		
	dM1	Multiplies out the two brackets to at least 4 terms up to and including the term in x^3 with a constant, term in x and a term in x^2		
	A1	For the fully correct expansion as shown. $2+2x+2x^2+4x^3$		
(d)				
	No evidence of algebraic integration – no marks			
	M1	For an attempt to integrate their expansion in (c) provided it is as a		
		minimum		
		a constant term and at least two algebraic terms.		
		Ignore the limits for this mark		
	A1	This is an M mark in Epen		
		For a fully correct integrated expression as shown (ignore limits)		
	dM1	Attempts to evaluate their integrated expression using the correct limits		
		Substitution of 0 need not be seen		
	A1	Area = 0.4469		