Лекция 1

1. Линейные задачи

Наш курс посвящен методам исследования нелинейных задач. Само название курса предполагает, что в нем будут рассматриваться задачи, которые *не являются линейными*. Поэтому прежде чем перейти к рассмотрению нелинейных задач, представляющих собой основной предмет изучения в данном курсе, совершенно необходимо сказать несколько слов о линейных задачах.

Как можно понять из названия, для таких задач характерно свойство, называемое "линейностью". Свойство линейности, как правило, существенно расширяет арсенал методов, применимых к рассматриваемой задаче. Именно линейным задачам по большей части посвящен курс линейной алгебры с достаточно хорошо разработанными численными приложениями. Линейные задачи в значительной степени составляют предмет функционального анализа. Начиная курс, посвященный *пе*-линейным задачам, хотелось бы подчеркнуть важность свойства линейности, от которого в нашем курсе придется отказаться.

1.1 Линейные однородные задачи

Дадим следующее определение.

Пусть \mathcal{L} - линейный оператор, действующий из одного линейного пространства M_1 в другое M_2 . Уравнение

$$\mathcal{L}\mathbf{u} = 0 \tag{1}$$

называется линейным однородным уравнением. Задачу о нахождении решений этого уравнения $\mathbf{u} \in M_1$ мы будем называть линейной однородной задачей.

Очевидно, уравнение (1) обладает следующим замечательным свойством: если $\mathbf{u}_1 \in M_1$ и $\mathbf{u}_2 \in M_1$ являются решениями этого уравнения, то и их линейная комбинация $\mathbf{u} = C_1\mathbf{u}_1 + C_2\mathbf{u}_2$, где C_1 и C_2 - константы, также является решением этого уравнения. Соответственно, решения уравнения (1) образуют линейное пространство \tilde{M}_1 , которое

является подпространством в M_1 . Если \tilde{M}_1 имеет известный базис (или, в бесконечномерном случае - некую систему элементов, обладающую свойством полноты), то задачу (1) можно считать полностью решенной. Действительно, если $\{\mathbf{e}_1,\mathbf{e}_2,\ldots\}$ - полная система в \tilde{M}_1 , то общее решение (1) имеет вид

$$\mathbf{u} = \sum_{k} C_k \mathbf{e}_k$$

где C_k - константы, а суммирование ведется по всем элементам базиса.

Примеры:

1. Система m линейных уравнений с n неизвестными

$$a_{11}x_1 + \ldots + a_{1n}x_n = 0$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = 0$$

является одним из основных объектов курса линейной алгебры. Удобно записать ее в матричном виде

$$\mathbf{AX} = 0 \tag{2}$$

где

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Уравнение (2) является линейным однородным. Если \mathbf{X}_1 и \mathbf{X}_2 - решения (2), то и $\mathbf{X}=C_1\mathbf{X}_1+C_2\mathbf{X}_2$ тоже является решением (2). Решения (2) образуют линейное пространство размерности n-r, где r - ранг матрицы \mathbf{A} . В курсе линейной алгебры учат находить ϕ ундаментальную систему решений (2), которая и является базисом в пространстве его решений.

2. Квадратное уравнение $ax^2 + bx + c = 0$, $x \in \mathbb{R}$, где a,b,c - константы, очевидно, не является линейной однородной задачей. Из

того, что x_1 и x_2 являются корнями этого уравнения не следует, что линейная комбинация $C_1x_1+C_2x_2$ тоже является корнем этого уравнения.

3. а) Дифференциальное уравнение

$$u_{xx} + u = 0 (3)$$

определяет линейную однородную задачу, если взять в качестве M_1 пространство дважды непрерывно дифференцируемых функций $C^2(\mathbb{R})$. Решениями (3) в $C^2(\mathbb{R})$ являются функции

$$u_1(x) = \cos x, \quad u_2(x) = \sin x$$

при этом любая их линейная комбинация

$$u(x) = C_1 \cos x + C_2 \sin x \tag{4}$$

также является решением этого уравнения. Из теории дифференциальных уравнений следует, что этими линейными комбинациями и исчерпывается множество решений нашего уравнения в $C^2(\mathbb{R})$.

б) То же дифференциальное уравнение (3) порождает линейную однородную задачу в пространстве 2π -периодических функций, определенных условием

$$\{u(x) \in C^2(-\pi; \pi), u(-\pi) = u(\pi)\}\$$

Общим решением (3) в этом пространстве также является (4).

в) Краевая задача, порожденная уравнением (3),

$$u_{xx} + u = 0, \quad u(-\pi) = (u(\pi))^2$$
 (5)

не является линейной однородной задачей, так как нелинейное граничное условие $u(-\pi)=\left(u(\pi)\right)^2$ не позволяет выделить линейного пространства решений. Вместе с тем, используя то, что (3) порождает линейную однородную задачу в пространстве функций, определенных на всей числовой прямой (см. п.а), можно найти полное решение (5) (найдите!)

4. Перейдем теперь к уравнениям в частных производных. Рассмотрим следующую задачу:

$$u_t = u_{xx} \tag{6}$$

$$u(0,t) = u(L,t) \tag{7}$$

С физической точки зрения эта задача описывает эволюцию во времени t температуры u(x,t) металлического кольца, на которое не воздействуют внешние источники тепла, в предположении, что потери тепла через поверхность кольца пренебрежимо малы. Уравнение (6) называется уравнением диффузии или уравнением теплопроводности, условие (7) называется граничным условием.

Ключевым в нашем подходе к решению задачи будет следующий момент: npu любом значении t функция u(x,t) является периодической с периодом L по x. В пространстве L-периодических функций имеется полная система тригонометрических функций,

$$\left\{1,\cos\frac{2\pi kx}{L},\sin\frac{2\pi kx}{L},k=1,2,\ldots\right\},\,$$

поэтому можно искать решение u(x,t) в виде ряда Фурье

$$u(x,t) = \frac{1}{2}a_0(t) + \sum_{k=1}^{\infty} a_k(t)\cos\frac{2\pi kx}{L} + b_k(t)\sin\frac{2\pi kx}{L}$$
 (8)

Коэффициенты этого ряда будут зависеть от t. Предположим, что не только функция u(x,t), но и ее производные $u_x(x,t)$, $u_{xx}(x,t)$ являются непрерывными по x, поэтому ряд Фурье (8) сходится к u(x,t) в каждой точке промежутка $0 \le x \le L$ при каждом значении t и его можно дважды дифференцировать.

Подставим ряд (8) в уравнение теплопроводности. При этом (штрих означает дифференцирование по t):

$$u_t(x,t) = \frac{1}{2}a_0'(t) + \sum_{k=1}^{\infty} a_k'(t)\cos\frac{2\pi kx}{L} + b_k'(t)\sin\frac{2\pi kx}{L}$$

$$u_{xx}(x,t) = -\sum_{k=1}^{\infty} \left[a_k(t) \left(\frac{2\pi k}{L} \right)^2 \cos \frac{2\pi kx}{L} + b_k(t) \left(\frac{2\pi k}{L} \right)^2 \sin \frac{2\pi kx}{L} \right]$$

Далее, в силу линейной независимости функций тригонометрической системы можно приравнять коэффициенты при одинаковых косинусах и синусах. При этом получим бесконечный набор обыкновенных дифференциальных уравнений на коэффициенты $a_0(t), a_k(t), b_k(t), k = 1, 2, \ldots$

$$a_0'(t) = 0 (9)$$

$$a_k'(t) + \left(\frac{2\pi k}{L}\right)^2 a_k(t) = 0 \tag{10}$$

$$b_k'(t) + \left(\frac{2\pi k}{L}\right)^2 b_k(t) = 0 \tag{11}$$

Решением первого уравнения является константа $a_0(t) = \tilde{a}_0$. Решениями уравнений для $a_k(t), b_k(t), k = 1, 2, \dots$ являются

$$a_k(t) = \tilde{a}_k e^{-\left(\frac{2\pi k}{L}\right)^2 t}, \quad b_k(t) = \tilde{b}_k e^{-\left(\frac{2\pi k}{L}\right)^2 t}$$

Окончательно, подставляя выражения для $a_0(t),\ a_k(t),\ b_k(t),\ k=1,2,\dots$ в исходный ряд, получаем

$$u(x,t) = \frac{1}{2}\tilde{a}_0 + \sum_{k=1}^{\infty} e^{-\left(\frac{2\pi k}{L}\right)^2 t} \left(\tilde{a}_k \cos \frac{2\pi kx}{L} + \tilde{b}_k \sin \frac{2\pi kx}{L} \right)$$
(12)

Таким образом, общее решение задачи (6)-(7) является линейной комбинацией функций

$$\left\{1, e^{-\left(\frac{2\pi k}{L}\right)^2 t} \cos \frac{2\pi kx}{L}, e^{-\left(\frac{2\pi k}{L}\right)^2 t} \sin \frac{2\pi kx}{L}, k = 1, 2, \dots\right\}$$

Для определения констант \tilde{a}_k , $k=0,1,\ldots,\,\tilde{b}_k,\,k=1,\ldots$ необходимо использовать дополнительно начальное условие, то есть значения температуры в момент времени $t=0,\,u(x,0)=u_0(x)$. Нетрудно заметить, что коэффициенты $\tilde{a}_k,\,\tilde{b}_k$ являются коэффициентами разложения $u_0(x)$ в ряд Фурье:

$$u_0(x) = \frac{1}{2}\tilde{a}_0 + \sum_{k=1}^{\infty} \tilde{a}_k \cos \frac{2\pi kx}{L} + \tilde{b}_k \sin \frac{2\pi kx}{L}$$

Выписав разложение $u_0(x)$ в ряд Фурье и подставив найденные коэффициенты $\tilde{a}_k, k=0,1,\ldots,\tilde{b}_k, k=1,\ldots$ в формулу (12), мы получим однозначно определенное решение задачи (6)-(7) с начальным условием $u_0(x)$.

Так как $e^{-\left(\frac{2\pi k}{L}\right)^2 t}$ стремится к нулю при $t\to\infty$, то формула (12) показывает, что температура внутри кольца со временем выравнивается (стремится к величине $\frac{1}{2}\tilde{a}_0$).

В заключение стоит отметить, что информация о решении линейной однородной задачи оказывается ключевой для исследования $nuneŭ hoŭ\ neodhopodhoù\ sadavu$

$$\mathcal{L}\mathbf{u} = \mathbf{f}, \quad \mathbf{f} \neq 0.$$

Здесь, как и раньше, линейный оператор \mathcal{L} действует из линейного пространства M_1 , вообще говоря, в другое линейное пространство M_2 , $\mathbf{u} \in M_1$, $\mathbf{f} \in M_2$. Действительно, решение этой задачи имеет вид

$$\mathbf{u} = \mathbf{u}_0 + \mathbf{u}_1$$

где ${\bf u}_0$ - общее решение линейной однородной задачи ${\cal L}{\bf u}=0,$ а ${\bf u}_1$ - какое-нибудь (фиксированное) решение неоднородной задачи.

1.2 Нелинейные задачи

Несмотря на то, что наш курс посвящен именно нелинейным задачам, дать строгое определение нелинейной задачи не так просто. Мы не будем пытаться формализовать это определение, отнеся к нелинейным задачам все задачи, к которым "с ходу" не удается применить методы, традиционные для линейных уравнений. Традиционным примером нелинейной задачи является задача о колебаниях маятника, которые описываются обыкновенным дифференциальным уравнением

$$u_{xx} + \sin u = 0$$

Вместе с тем "линейность" задачи может оказаться спрятана достаточно глубоко. Например, нелинейное на первый взгляд обыкновенное дифференциальное уравнение

$$v_{xx} - \frac{v_x^2}{v} + v \ln v = 0$$

заменой $u=\ln v$ приводится к линейному уравнению $u_{xx}+u=0$. Иногда бывает так, что скрытая "линейность" задачи выявляется после тщательного исследования методами, характерными именно для нелинейных задач.

Перечислим некоторые из подходов, традиционных для изучения нелинейных задач.

- а) Численные методы. Для огромного множества нелинейных задач численное исследование является единственным способом получить хоть какую-либо информацию о решениях. Несмотря на некоторые устоявшиеся принципы выбора численных алгоритмов, большую роль здесь по прежнему играет опыт исследователя.
- б) Методы качественного анализа. Часто при исследовании какойлибо проблемы возникает вопрос о возможных типах решений, которые эта проблема в принципе может иметь. При этом речь не идет о точном решении задачи, а делается попытка охарактеризовать классы допустимых решений. Например, возникают вопросы типа: описывает ли рассматриваемая математическая модель периодические структуры? пульсирующие образования? бегущие волны определенного типа? В случае утвердительного ответа эти объекты впоследствии можно попытаться построить численно. В настоящее время имеется довольно богатый арсенал методов, позволяющих отвечать на такие вопросы.
- в) Асимптотические методы. Если в задаче имеется параметр, который можно считать малым, имеется возможность строить решения этой задачи в виде рядов по степеням (или более сложным функциям) этого параметра. Эти ряды называются асимптотическими, они существенно отличаются от рядов, которые изучаются в теории аналитических функций хотя бы тем, что они не обязаны сходиться. Вместе с тем асимптотическая теория "работает" очень эффективно и, в некоторых случаях позволяет получить исчерпывающую информацию о решениях задачи.

В нашем курсе будут представлены все три перечисленные выше подхода к исследованию нелинейных задач.

Задачи

- 1. Какие из задач являются линейными однородными? линейными неоднородными? нелинейными?:
 - а) уравнение $u_{xx} + u = u^2$ на классе дважды непрерывно дифференцируемых функций, причем u(0) = u(1) = 0;
 - б) уравнение $u_{xx} + u = u_{xxxx}$ на классе четырежды непрерывно дифференцируемых функций, причем u(0) = u(1) = 0;
 - в) уравнение $u_{xx} + u = u_{xxxx}$ на классе дважды непрерывно дифференцируемых функций, причем u(0) = 0, u(1) = 1;
 - г) уравнение $\int_{-1}^1 e^{-(x-x')^2} \ u(x') \ dx' = u(x)$ на классе интегрируемых на промежутке [-1;1] функций;
 - д) уравнение

$$\frac{1}{h^2}(u(x+h) - 2u(x) + u(x-h)) - u(x) = 0$$

где h > 0 - константа;

- е) уравнение u(x-1) = |u(x)| на классе непрерывных на $\mathbb R$ функ-пий.
- 2. Рассмотрим следующие предположения:
- (а) Скорость роста населения Земли пропорциональна количеству живущих на Земле людей.
- (b) Скорость роста населения Земли пропорциональна количеству пар, мужчина+женщина (считается, что мужчин и женщин на Земле поровну).

В каком из двух случаев уравнение, описывающее рост населения Земли, является линейным и однородным? Найдите решения этих уравнений.

3. Материальная точка движется по прямой под воздействием силы, пропорциональной (а) пройденному пути (b) квадрату пройденного пути. В каком из двух случаев полученное уравнение является

линейным и однородным? Найдите решения полученных уравнений в обоих случаях.

4. Используя утверждения курса обыкновенных дифференциальных уравнений, докажите, что любое из решений линейного однородного уравнения с постоянными коэффициентами

$$a_0 u^{(n)} + a_1 u^{(n-1)} + \ldots + a_{n-1} u' + a_n = 0$$

является ограниченным на любом конечном промежутке. Используя результат задач 2 и 3, приведите примеры нелинейных уравнений вида

$$u^{(n)} = F\left(u, u', \dots, u^{(n-1)}\right)$$

для которых это не так.

5. Является ли линейной и однородной задача

$$\int_{-\infty}^{\infty} e^{-|x-x'|} u(x') \ dx' = u(x), \quad u(x) = u(x+2\pi)$$

Напишите общее решение этой задачи.

Указание: используйте то, что система

$$\{1, \cos kx, \sin kx, k = 1, 2, \ldots\},\$$

является полной системой в пространстве 2π -периодических функций. Вычислите действие оператора в левой части уравнения на функции, составляющие эту систему.

6. Найдите общее решение линейной однородной задачи, записанной в матричном виде

$$\begin{pmatrix} -\alpha & \alpha & 0 & 0 & \cdots & 0 \\ 0 & -\alpha & \alpha & 0 & \cdots & 0 \\ 0 & 0 & -\alpha & \alpha & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & \cdots & \alpha \\ \alpha & 0 & 0 & 0 & \dots & -\alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = 0$$