Lecture 9.1: Sequences and convergence

Sequences

(Infinite) sequence of numbers:

$$1, 2, 3, 4, \cdots$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$

$$1, 4, 9, 16, \cdots$$

How do we define a sequence?

 \implies Several ways:

• A function $f: \mathbb{Z}_+ \to \mathbb{R}$

$$\mathbb{Z}_{+} \equiv \{1, 2, 3, 4, \dots\}$$
 positive integers

 \implies A sequence will be:

$$\{f(1), f(2), f(3), f(4), \cdots, f(n), \cdots\}$$

We call $f(n) = a_n$,

$$\{a_1, a_2, a_3, \cdots, a_n, \cdots\} \equiv \{a_n\}$$

Examples:

• $f(n) = \frac{1}{n} = a_n$. This defines a sequence

$$\left\{\frac{1}{n}\right\} = \left\{1, \ \frac{1}{2}, \ \frac{1}{3}, \ \frac{1}{4}, \ \cdots \right\}$$

• $f(n) = \frac{(-1)^n}{n} = a_n$. This defines a sequence

$$\left\{\frac{(-1)^n}{n}\right\} = \left\{-1, +\frac{1}{2}, -\frac{1}{3}, +\frac{1}{4}, \cdots\right\}$$

• $f(n) = n^3 = a_n$. This defines a sequence

$${n^3} = {1, 8, 27, \cdots}$$

• Another way to define the sequence is to use a recursive formula, e.g.,

$$a_{n+1} = \sqrt{1 + a_n}$$
, $a_1 = 1$

 \Longrightarrow

$$a_2 = \sqrt{1+1} = \sqrt{2}$$

$$a_3 = \sqrt{1+a_2} = \sqrt{1+\sqrt{2}}$$

$$a_4 = \sqrt{1+a_3} = \sqrt{1+\sqrt{1+\sqrt{2}}}$$

• •

We can calculate any term of this sequence, given the previous terms.

A Fibonacci sequence

$$a_{n+1} = a_n + a_{n-1},$$
 $a_1 = 1,$ $a_2 = 1$
 $\{a_n\} = 1, 1, 2, 3, 5, 8, 13, \cdots$

Characterizing sequences

- $\{a_n\}$ is bounded from below by L if $L \leq a_n$ for all n
- $\{a_n\}$ is bounded from above by M if $M \geq a_n$ for all n
- $\{a_n\}$ is bounded if it is bounded both from below and from above
- $\{a_n\}$ is positive if it is bounded from below by L=0
 - Example:

$$\left\{\frac{1}{n}\right\} = \left\{1, \ \frac{1}{2}, \ \frac{1}{3}, \ \frac{1}{4}, \ \cdots \right\}$$

is a bounded, positive sequence: L = 0 and M = 1:

$$\underbrace{0}_{=L} < \frac{1}{n} \le \underbrace{1}_{=M}$$

- $\{a_n\}$ is negative if it is bounded from above by M=0
 - Example:

$$\left\{-\frac{1}{n^2}\right\} = \left\{-1, -\frac{1}{4}, -\frac{1}{9}, -\frac{1}{16}, \cdots\right\}$$

is a bounded, negative sequence: L = -1 and M = 0:

$$\underbrace{-1}_{\equiv L} < -\frac{1}{n^2} \le \underbrace{0}_{\equiv M}$$

- $\{a_n\}$ is increasing if $a_{n+1} \ge a_n$ for all n
- $\{a_n\}$ is decreasing if $a_{n+1} \le a_n$ for all n
- $\{a_n\}$ is monotonic if it is either increasing or decreasing
- $\{a_n\}$ is alternating if $a_{n+1} \cdot a_n < 0$ for all $n \Longrightarrow a_n$ always changes sign as n increases by 1

Examples:

 ${a_n} = \left\{\frac{1}{n^2}\right\} = \left\{1, \frac{1}{4}, \frac{1}{9}, \cdots\right\}$

 \implies This sequence is

- bounded from above with M=1
- bounder from below with L=0
- is positive
- is monotonic
- is decreasing

$$\{a_n\} = \left\{\frac{e^n}{\pi^n}\right\} = \left\{\frac{e}{\pi}, \frac{e^2}{\pi^2}, \frac{e^3}{\pi^3}, \cdots\right\}$$

 \implies This sequence is

• bounded from above with $M = \frac{e}{\pi}$ since

$$\frac{e}{\pi} < 1$$

• bounder from below with L=0

- is positive
- is monotonic
- is decreasing

Convergence

Let $\{a_n\}$ be a sequence defined by $a_n = f(n)$.

• If

$$\lim_{n \to \infty} f(n) = L \qquad \Longrightarrow \qquad$$

the sequence $\{a_n\}$ converges to L (assuming L is a finite number)

- (alternative definition) $\{a_n\}$ converges to L if any open interval $(L \epsilon, L + \epsilon)$ leaves out only a finite number of terms of the sequence
- if the sequence is not convergent, it is called divergent.
- For a divergent sequence either:
 - \blacksquare the limit does not exist (L does not exist)
 - $L = \pm \infty$ (in this case we call the sequence divergent to $\pm \infty$)

Examples:

$$\left\{\frac{n+1}{n}\right\} = \left\{2\,,\,\,\frac{3}{2}\,,\,\,\frac{4}{3}\,,\,\,\cdots\right\}$$

 \Longrightarrow

$$\lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 1 \qquad \Longrightarrow$$

the sequence converges to L=1

•

$${n^2} = {1, 4, 9, \cdots}$$

 \Longrightarrow

$$\lim_{n \to \infty} n^2 = \infty \qquad \Longrightarrow \qquad$$

the sequence diverges to ∞

$$\left\{\sin\frac{\pi n}{2}\right\} = \{1, 0, -1, 0, 1, \cdots\}$$

==

$$\lim_{n \to \infty} \sin \frac{\pi n}{2} = DNE \qquad \Longrightarrow \qquad$$

the sequence diverges (L does not exist)

Properties

Because limits of sequences are essentially the limits of functions, same properties will apply. Assume that $\{a_n\}$ and $\{b_n\}$ are convergent sequences. Then

•

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

•

$$\lim_{n \to \infty} (k \cdot a_n) = k \cdot \lim_{n \to \infty} a_n$$

•

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

• If $a_n \leq b_n$, for all n > N (N a fixed number)

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

• squeeze theorem: $a_n \leq c_n \leq b_n$ and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L \Longrightarrow$

$$\lim_{n \to \infty} c_n = L$$

Example: Find the limit of $\{\sqrt{n^2 + 2n} - n\}$, if it exists.

 \Longrightarrow

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - n \right) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 2n} - n)(\sqrt{n^2 + 2n} + n)}{(\sqrt{n^2 + 2n} + n)} = \lim_{n \to \infty} \frac{n^2 + 2n - n^2}{n\left(\sqrt{1 + \frac{2}{n}} + 1\right)}$$
$$= \lim_{n \to \infty} \frac{2}{\left(\sqrt{1 + \frac{2}{n}} + 1\right)} = \frac{2}{2} = 1$$

- Theorem 1 A convergent sequence is bounded
- Theorem 2 A sequence that is bounded and monotonic is convergent

From Theorem $1 \Longrightarrow$ an unbounded sequence is divergent, e.g.,

$${n^2-1} = {0, 3, 8, 15, \cdots}$$

clearly unbounded \implies divergent

From Theorem $2 \Longrightarrow A$ divergent sequence is either

$${n^2 - 1} = {0, 3, 8, 15, \cdots}$$

is divergent and unbounded (case A);

$$\{0, 1, 0, 1, \cdots\}$$

is divergent, bounded, but not monotonic (case B)

$$\{(-1)^n n\} = \{-1, 2, -3, 4, \cdots\}$$

is divergent, unbounded and not monotonic (both case A and case B)

Example: Show that the sequence $\{a_n\}$,

$$a_{n+1} = \sqrt{6 + a_n} \,, \qquad a_1 = 1$$

is convergent and find its limit.

 \Longrightarrow

• Note that

$$a_2 = \sqrt{6+1} = \sqrt{7} > 1$$

• Suppose that $a_{n+1} \ge a_n$ (for some $n \Longrightarrow$ we know that it is true at least for n = 1) \Longrightarrow

$$a_{n+2} = \sqrt{6 + a_{n+1}} \ge \sqrt{6 + a_n} = a_{n+1}$$

i.e., , we showed that if $a_{n+1} \ge a_n$ then $a_{n+2} \ge a_{n+1} \Longrightarrow$ this implies that the sequence is increasing (is monotonic).

• Note that $a_1 < 3$. Suppose that $a_n \leq 3$ (true at least for n = 1) \Longrightarrow

$$a_{n+1} = \sqrt{6+a_n} \le \sqrt{6+3} = 3$$

i.e., we showed that if $a_n \leq 3$, then $a_{n+1} \leq 3 \Longrightarrow$ the sequence is bounded from above with M=3

 \bullet thus, by Theorem 2, the sequence is convergent, and L exists:

$$\lim_{n \to \infty} a_n = L > 0$$

since the sequence is positive

• ===

$$\lim_{n \to \infty} a_{n+1} = L = \lim_{n \to \infty} \sqrt{6 + a_n} = \sqrt{6 + L}$$

 $\bullet \implies$

$$L = \sqrt{6 + L}$$

 $\bullet \implies$

$$L^2 - L - 6 = 0 \implies (L - 3)(L + 2) = 0 \implies$$

L=3