# Architettura degli Elaboratori

#### **Esercitazione**





# Su cosa ci esercitiamo oggi?

- Notazione in complemento a 2
  - Utilizzo della definizione e di alcune formule sulla somma di potenze consecutive di 2
- Notazione in virgola mobile
  - > Standard IEEE 754
  - Conversioni
  - Addizione





$$b_{n-1}b_{n-2}...b_0$$

in complemento a due dell'intero N:

- > Se  $b_{n-1}$ = 0 allora N  $\geq$  0
- $\triangleright$  Se  $b_{n-1}$ = 1 allora N < 0





$$N = -2^{n-1}b_{n-1} + \sum_{i=0}^{n-2} 2^{i}b_{i}$$

$$N = -2^{n-1}b_{n-1} + \sum_{i=0}^{n-2} 2^ib_i$$
 > Se  $b_{n-1}$  = 0, allora  $N = \sum_{i=0}^{n-2} 2^ib_i$  è positivo

> Se 
$$b_{n-1}$$
= 1, allora  $N = -2^{n-1} + \sum_{i=0}^{n-2} 2^i b_i$  è negativo

> Infatti, il valore massimo che la sommatoria può assumere è  $\sum_{i=1}^{n-2} 2^i = 2^{n-1}$  e in tal caso N = -1





$$1b_{k-1} \dots b_0$$

è uguale all'intero rappresentato da

$$11...1b_{k-1}...b_0$$

qualunque sia il numero  $h \ge 2$  di 1 che precedono  $b_{k-1}$ , e per ogni valore binario di  $b_{k-1}$ ,...,  $b_0$ 

Suggerimento: utilizzare la formula

$$\sum_{i=r}^{s} 2^{i} = \sum_{i=0}^{s} 2^{i} - \sum_{i=0}^{r-1} 2^{i} = (2^{s+1} - 1) - (2^{r} - 1) = 2^{s+1} - 2^{r}$$





$$N = -2^k + \sum_{i=0}^{k-1} 2^i b_i$$

> Sia  $N_{h-1}$  l'intero rappresentato da  $11...1b_{k-1}$  ...  $b_0$  dove  $h \ge 2$  indica il numero di 1 che precedono  $b_{k-1}$ . Notiamo che

$$N_1 = -2^{k+1} + \sum_{i=0}^{k} 2^i b_i$$
 11 $b_{k-1} \dots b_0$  (h=2)

$$N_2 = -2^{k+2} + \sum_{i=0}^{k+1} 2^i b_i$$
 111 $b_{k-1} \dots b_0$  (h=3)



$$N_{h-1} = -2^{k+h-1} + \sum_{i=0}^{k+h-2} 2^{i} b_{i}$$
 11...1 $b_{k-1}$  ...  $b_{0}$ 



$$\sum_{i=r}^{s} 2^i = 2^{s+1} - 2^r$$



Quale valore decimale rappresenta la seguente configurazione binaria in formato IEEE 754?

Esponente (8 bit)

Mantissa (23 bit)





Segno:  $1 \rightarrow segno -$ 

Esponente  $10000100_2 \rightarrow 2^7 + 2^2 = 128_{10} + 4_{10} = 132_{10}$ 

$$e = 132_{10}$$
 quindi  $E = 132_{10}-127_{10} = 5_{10}$ 

$$\rightarrow$$
 M = 2<sup>-2</sup>+2<sup>-6</sup> = 0,25<sub>10</sub>+0,015625<sub>10</sub> = 0,265625<sub>10</sub>

Pertanto il valore decimale è dato da:

$$N = (-1)^{s} \times (1+M) \times 2^{E} = -1 \times 1,265625_{10} \times 2^{5} = -40,5_{10}$$

Segno

Esponente (8 bit)

Mantissa (23 bit)



 $\succ$  Convertire il numero -22,5<sub>10</sub> in formato a virgola mobile IEEE 754 (precisione singola) ed esprimere il risultato in esadecimale

Esponente (8 bit)

Mantissa (23 bit)





$$N = -22,5_{10}$$

1) Determiniamo il segno: poiché il numero è negativo, poniamo s = 1





$$N = -22,5_{10}$$

2) Convertiamo la parte intera:







$$N = -22,510$$

3) Convertiamo la parte frazionaria:

$$F=0.5_{10}$$
 2 X 0.5= 1 + 0.00 0.5<sub>10</sub> = 0.1<sub>2</sub>

Quindi 
$$22,5_{10} = 10110,1_2$$





$$N = -22,510$$

3) Normalizzaziamo: il numero ottenuto, 1011,1<sub>2</sub>, va normalizzato per essere conforme allo standard

$$22,5_{10} = 10110,1_2 = 1,01101_2 \times 2^4$$

La mantissa è 01101<sub>2</sub>

L'esponente è 4+127=131<sub>10</sub>





$$N = -22,510$$

4) Calcoliamo l'esponente: convertiamo 131<sub>10</sub> in binario ed esprimiamolo con 8 bit:



- > s=1
- > e= 10000011<sub>2</sub>



c1b40000<sub>16</sub>

- Quale valore decimale rappresenta la seguente configurazione binaria in formato IEEE 754?

| Esponente (8 bit) | Mantissa<br>(23 bit) |
|-------------------|----------------------|
|-------------------|----------------------|





Segno:  $1 \rightarrow segno -$ 

Esponente  $10000000_2 \rightarrow 2^7 = 128_{10}$ 

$$e = 128_{10}$$
 quindi  $E = 128_{10}-127_{10} = 1_{10}$ 

$$\rightarrow$$
 2<sup>-2</sup> = 0,25<sub>10</sub>

Pertanto il valore decimale è dato da:

$$N = (-1)^{s} \times (1+M) \times 2^{E} = -1 \times 1,25_{10} \times 2^{1} = -2,5_{10}$$



Convertire il numero 23,375<sub>10</sub> in formato a virgola mobile IEEE 754 (precisione singola) ed esprimere il risultato in esadecimale



Prendiamo in considerazione il numero decimale:  $N = 23,375_{10}$ 





1) Determiniamo il segno: poiché il numero è positivo, poniamo s = 0





$$N = 23,375_{10}$$

2) Convertiamo la parte intera:







$$N = 23,375_{10}$$

3) Convertiamo la parte frazionaria:

$$F=0,375_{10}$$
 2 X 0,375 = 0 + 0,75  
2 X 0,75 = 1 + 0,5  
2 X 0,5 = 1 + 0,0

 $0.375_{10} = 0.011_2$ 

Quindi 23,375<sub>10</sub> = 
$$10111,011_2$$





3) Normalizziamo: il numero ottenuto, 10111,011<sub>2</sub>, va normalizzato per essere conforme allo standard

$$23,375_{10} = 10111,011_2 = 1,0111011_2 \times 2^4$$

La mantissa è 0111011<sub>2</sub> L'esponente è 4+127=131<sub>10</sub>





4) Calcoliamo l'esponente: convertiamo 131<sub>10</sub> in binario ed esprimiamolo con 8 bit:



- > 5=0
- > e= 10000011<sub>2</sub>



41bb0000<sub>16</sub>







- $\geq$  23,375<sub>10</sub> = 10111,011<sub>2</sub> = 1,0111011<sub>2</sub> × 2<sup>4</sup>
- $\geq$  22,5<sub>10</sub> = 10110,1<sub>2</sub> = 1,01101<sub>2</sub> × 2<sup>4</sup>
- Hanno lo stesso ordine di grandezza!
- Effettuiamo la sottrazione in binario puro dei valori ottenuti:

```
1,0111011- 

1,0110100= 

0,0000111 \times 2^{4}
```

Normalizziamo il risultato, spostando la virgola a dx di 5 posti:





Facendo la sottrazione in decimale si ha che  $23,375_{10}$  -  $22,5_{10}$  =  $0,875_{10}$ 

I due valori coincidono perché non ci sono state modifiche dovute all'arrotondamento

