Mathematik I für Studierende der Informatik (Diskrete Mathematik) Thomas Andreae, Christoph Stephan

Wintersemester 2011/12 Blatt 6

B: Hausaufgaben zum 1./2. Dezember 2011

3. A sei eine $m \times n$ - Matrix, B_1 und B_2 seien $n \times p$ - Matrizen. Beweisen Sie die Gültigkeit des Distributivgesetzes $A(B_1 + B_2) = AB_1 + AB_2$.

Ex sei
$$A = (a_{ij})_{i=1,\dots,m}$$
,

$$B_{n} = (b_{ik})_{i=1,\dots,n}$$

$$B_{2} = (b_{ik})_{i=1,\dots,n}$$

$$E_{n} = (a_{ij})_{i=1,\dots,n}$$

$$= \left(\frac{1}{2^{-N}}(\alpha_{ij}b_{jk})\right)_{\substack{i=N,\dots,N\\k=N,\dots,p}} + \left(\frac{1}{2^{-N}}(\alpha_{ij}b_{jk})\right)_{\substack{i=N,\dots,N\\k=N,\dots,p}}$$

- **4.** a) Beweisen Sie Aussage (6), Skript Seite 61: Für jede Abbildung $f: A \to B$ und jedes $B' \subseteq B$ gilt $f(f^{-1}(B')) \subseteq B'$.
 - b) In den Präsenzaufgaben wurde anhand eines Beispiels gezeigt, dass $f(f^{-1}(B')) = B'$ nicht immer gilt. Geben Sie ein besonders einfaches Beispiel an, das dies ebenfalls zeigt.

Lösung:

- a) Es sei $b \in f(f^{-1}(B'))$. Zu zeigen ist $b \in B'$. Aus $b \in f(f^{-1}(B'))$ folgt, dass es ein $a \in f^{-1}(B')$ gibt, für das f(a) = b gilt. Aus $a \in f^{-1}(B')$ folgt, dass es ein $b' \in B'$ gibt, für dass f(a) = b' gilt. Also gilt b = f(a) = b' und außerdem gilt $b' \in B'$, woraus $b \in B'$ folgt.
- b) Es sei $A = \{a\}$ much $B = \{b_1, b_2\}$. One Funktrion $f: A \rightarrow B$ bilde a out b_1 ob. Wir wählen B' = B. Dann gilt $f^{(B')} = A$. Es folgt $f(f^{(B')}) = f(A) = \{b_1\}$ und somit $f(f^{(B')}) \neq B'$.

Illustration and):

$$A \qquad B = B'$$

$$a \rightarrow b_2$$