M2177.0043 Introduction to Deep Learning

Lecture 2: Linear algebra review¹

Hyun Oh Song¹

 $^{1}\mathrm{Dept.}$ of Computer Science and Engineering, Seoul National University

March 19, 2020

¹Many slides and figures adapted from Stephen Boyd

Last time

- Logistics
- Overview

Outline

Linear Algebra

Eigendecomposition

Matrix inequality and Matrix norm

Singular value decomposition

Linear Algebra 3

Euclidean norm

for $x \in \mathbb{R}^n$ we define the Euclidean norm as

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{x^{\mathsf{T}}x}$$

||x|| measures length of vector (from origin)

important properties:

- $ightharpoonup \|\alpha x\| = |\alpha| \|x\|$ (homogeneity)
- ▶ $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ $||x|| \ge 0$ (nonnegativity)
- $\|x\| = 0 \iff x = 0 \text{ (definiteness)}$

Inner product

$$\langle x, y \rangle := x_1 y_1 + \dots + x_n y_n = x^{\mathsf{T}} y$$

important properties:

Cauchy-Schwarz inequality

Theorem 1

For any $a,b \in \mathbb{R}^n, \ |a^\intercal b| \leqslant \|a\| \|b\|$

Proof of triangular inequality

Proof of triangular inequality via Cauchy-Schwarz

$$\|a+b\|^2 = \|a\|^2 + 2a^\mathsf{T}b + \|b\|^2 \leqslant \|a\|^2 + 2\|a\| \ \|b\| + \|b\|^2 = (\|a\| + \|b\|)^2$$

Proof.

- ▶ It's trivially true if either a or b is 0.
- ightharpoonup so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero
- we have

$$0 \le \|\beta a - \alpha b\|^{2}$$

$$= \|\beta a\|^{2} - 2(\beta a)^{\mathsf{T}}(\alpha b) + \|\alpha b\|^{2}$$

$$= \beta^{2} \|a\|^{2} - 2\beta \alpha (a^{\mathsf{T}}b) + \alpha^{2} \|b\|^{2}$$

$$= 2\|a\|^{2} \|b\|^{2} - 2\|a\| \|b\| (a^{\mathsf{T}}b)$$

- ▶ divide by 2||a|||b|| to get $a^{\mathsf{T}}b \leq ||a|||b||$
- ightharpoonup apply to -a,b to get the other half of Cauchy-Schwarz inequality

Linear Algebra

Example: Cauchy-Schwarz

Given $x, y \in \mathbb{R}$, if 2x + 3y = 4, find the value of x, y s.t. $x^2 + y^2$ has the minimum value.

Example: Cauchy-Schwarz

Given $x,y\in\mathbb{R}$, if 2x+3y=4, find the value of x,y s.t. x^2+y^2 has the minimum value.

solution

Consider two vectors $v_1 = [x, y], v_2 = [2, 3]$. From C-S,

$$|2x+3y| \leqslant \sqrt{x^2+y^2}\sqrt{13}$$
.
Given $2x+3y=4$, $x^2+y^2 \geqslant \frac{16}{12}$

Furthermore, C-S holds with equality iff v_1 is parallel to v_2 .

Let
$$x = 2z, y = 3z$$
, then $13z = 4$, so $x = 8/13, y = 12/13$.

This is the unique minimizing solution.

Other norms

for $x \in \mathbb{R}^n$ we define

p-norm

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$$

▶ 1-norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

▶ ∞-norm

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

► Hölder's inequality states,

$$|x^{\mathsf{T}}y| \leq ||x||_p ||y||_q$$
 for $1/p + 1/q = 1$

Outline

Linear Algebra

Eigendecomposition

Matrix inequality and Matrix norm

Singular value decomposition

Eigendecomposition 10

Eigenvectors and eigenvalues

 $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if

$$\mathcal{X}(\lambda) = \det(\lambda I - A) = 0$$

equivalent to:

▶ there exists nonzero $v \in \mathbb{C}^n$ s.t. $(\lambda I - A)v = 0$, *i.e.*

$$Av = \lambda v$$

any such \boldsymbol{v} is called an eigenvector of \boldsymbol{A} associated with eigenvalue λ

- ▶ if v is an eigenvector of A with eigenvalue λ , then so is αv , for any $\alpha \in \mathbb{C}, \alpha \neq 0$
- lacktriangle even when A is real, eigenvalue λ and eigenvector v can be complex
- \blacktriangleright when A and λ are real, we can always find a real eigenvector v associated with λ

Scaling interpretation

if v is an eigenvector, effect of A on v is very simple: scaling by λ

(what is λ here?)

Diagonalization I

suppose v_1, \ldots, v_n is a *linearly independent* set of eigenvectors of $A \in \mathbb{R}^{n \times n}$:

$$Av_i = \lambda_i v_i, \ i = 1, \dots, n$$

expressed as

$$A [v_1 \cdots v_n] = [v_1 \cdots v_n] \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

define $T=[v_1\cdots v_n]$ and $\Lambda=\mathbf{diag}(\lambda_1,\ldots,\lambda_n)$, so

$$AT=T\Lambda$$

and finally

$$T^{-1}AT = \Lambda$$

Diagonalization II

- ightharpoonup T invertible since v_1, \ldots, v_n linearly independent
- lacktriangleright similarity transformation by T diagonalizes A conversely if there is a $T=[v_1\cdots v_n]$ s.t.

$$T^{-1}AT = \Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$$

then $AT = T\Lambda$, i.e.

$$Av_i = \lambda_i v_i, \ i = 1, \dots, n$$

so v_1, \ldots, v_n is a linearly independent set of eigenvectors of A we say A diagonalizable if

- ▶ there exists T s.t. $T^{-1}AT = \Lambda$ is diagonal
- A has a set of linearly independent eigenvectors

Distinct eigenvalues

fact: if A has distinct eigenvalues, i.e. $\lambda_i \neq \lambda_j$ for $i \neq j$, then A is diagonalizable

(the converse is false – A can have repeated eigenvalues but still be diagonalizable)

Eigendecomposition 15

Eigenvectors of symmetric matrices

fact: there is a set of orthonormal eigenvectors of A, *i.e.* q_1,\ldots,q_n s.t. $Aq_i=\lambda_iq_i,q_i^{\mathsf{T}}q_j=\delta_{ij}$ in matrix form: there is an orthogonal Q s.t.

$$Q^{-1}AQ = Q^{\mathsf{T}}AQ = \Lambda$$

hence we can express A as

$$A = Q\Lambda Q^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_i q_i q_i^{\mathsf{T}}$$

Outline

Linear Algebra

Eigendecomposition

Matrix inequality and Matrix norm

Singular value decomposition

Inequalities for quadratic forms I

suppose $A=A^\intercal, A=Q\Lambda Q^\intercal$ with eigenvalues sorted so $\lambda_1\geqslant \cdots\geqslant \lambda_n$

$$x^{\mathsf{T}}Ax = x^{\mathsf{T}}Q\Lambda Q^{\mathsf{T}}x$$

$$= (Q^{\mathsf{T}}x)^{\mathsf{T}}\Lambda(Q^{\mathsf{T}}x)$$

$$= \sum_{i=1}^{n} \lambda_{i}(q_{i}^{\mathsf{T}}x)^{2}$$

$$\leqslant \lambda_{1} \sum_{i=1}^{n} (q_{i}^{\mathsf{T}}x)^{2} = \lambda_{1} \|Q^{\mathsf{T}}x\|^{2} \qquad (\lambda_{1} \geqslant \lambda_{i}, \forall i)$$

$$= \lambda_{1} \|x\|^{2} \qquad (QQ^{\mathsf{T}} = I)$$

i.e. we have that $x^{\mathsf{T}}Ax \leqslant \lambda_1 x^{\mathsf{T}}x$

Inequalities for quadratic forms II

similar argument shows $x^{\mathsf{T}}Ax\geqslant \lambda_n\|x\|^2$, so we have

$$\lambda_n x^\intercal x \leqslant x^\intercal A x \leqslant \lambda_1 x^\intercal x$$

sometimes λ_1 is called λ_{\max} , λ_n is called λ_{\min}

note also that

$$q_1^{\mathsf{T}} A q_1 = \lambda_1 \|q_1\|^2, \ q_n^{\mathsf{T}} A q_n = \lambda_n \|q_n\|^2,$$

so the inequalities are tight

Positive semidefinite and positive definite matrices

suppose
$$A=A^{\intercal}\in\mathbb{R}^{n\times n}$$
 we say A is *positive semidefinite* if $x^{\intercal}Ax\geqslant 0$ for all x

- ▶ denoted $A \ge 0$ and sometimes $A \succeq 0$
- ▶ $A \ge 0$ iff $\lambda_{\min}(A) \ge 0$ i.e. all eigenvalues are nonnegative
- ▶ not the same as $A_{ij} \ge 0$ for all i, j

we say A is *positive definite* if $x^{\mathsf{T}}Ax > 0$ for all $x \neq 0$

- ightharpoonup denoted A>0
- ▶ A > 0 iff $\lambda_{min} > 0$ i.e. all eigenvalues are positive

Matrix norm I

the maximum gain

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

is called the matrix norm or $\mathit{spectral}$ norm of A and is denoted $\|A\|$

$$\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^{\mathsf{T}} A^{\mathsf{T}} A x}{\|x\|^2} = \lambda_{\mathsf{max}}(A^{\mathsf{T}} A)$$

so we have $\|A\| = \sqrt{\lambda_{\sf max}(A^{\sf T}A)}$ similarly the minimum gain is given by

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\min}(A^{\mathsf{T}}A)}$$

Matrix norm II

note that

- $lacksquare A^\intercal A \in \mathbb{R}^{n imes n}$ is symmetric and $A^\intercal A \geqslant 0$ so $\lambda_{\min}, \lambda_{\max} \geqslant 0$
- 'max gain' input direction is $x=q_1$, eigenvector of $A^{\rm T}A$ associated with $\lambda_{\rm max}$
- 'min gain' input direction is $x=q_n$, eigenvector of $A^{\rm T}A$ associated with $\lambda_{\rm min}$

Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbb{R}^{n \times 1}$ is $\sqrt{\lambda_{\max}(a^\intercal a)} = \sqrt{a^\intercal a}$
- for any x, $||Ax|| \leq ||A|| ||x||$
- scaling: ||aA|| = |a|||A||
- ▶ triangle inequality: $||A + B|| \le ||A|| + ||B||$
- definiteness: $||A|| = 0 \implies A = 0$
- ▶ norm of product: $||AB|| \leq ||A|| ||B||$

Outline

Linear Algebra

Eigendecomposition

Matrix inequality and Matrix norm

Singular value decomposition

Singular value decomposition I

singular value decomposition (SVD) of A:

$$A = U \Sigma V^{\mathsf{T}}$$

where

- $ightharpoonup A \in \mathbb{R}^{m \times n}, \mathbf{rank}(A) = r$
- ullet $U \in \mathbb{R}^{m imes r}, U^\intercal U = I$, i.e. unitary matrix
- $ightharpoonup V\in \mathbb{R}^{n imes r}, V^\intercal V=I$, i.e. unitary matrix
- $\triangleright \ \Sigma = \mathbf{diag}(\sigma_1, \dots, \sigma_r), \text{ where } \sigma_1 \geqslant \dots \geqslant \sigma_r > 0$

Singular value decomposition II

with
$$U=[u_1\cdots u_r], V=[v_1\cdots v_r],$$

$$A=U\Sigma V^\intercal=\sum_{i=1}^r\sigma_iu_iv_i^\intercal$$

- $ightharpoonup \sigma_i$ are the (nonzero) singular values of A
- $ightharpoonup v_i$ are the *right* singular vectors of A
- $ightharpoonup u_i$ are the *left* singular vectors of A

Singular value decomposition III

$$A^{\mathsf{T}}A = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}(U\Sigma V^{\mathsf{T}}) = V\Sigma^{2}V^{\mathsf{T}}$$

hence:

- $lacktriangleq v_i$ are eigenvectors of $A^\intercal A$ (corresponding to nonzero eigenvalues)
- lacksquare $\sigma_i = \sqrt{\lambda_i(A^\intercal A)}$ (and $\lambda_i(A^\intercal A) = 0$ for i > r)
- ▶ $||A|| = \sigma_1$. In words, the matrix norm is equal to the largest singular value.

Pseudo-inverse

• if $A \neq 0$ has SVD $A = U\Sigma V^{\mathsf{T}}$,

$$A^{\dagger} = V \Sigma^{-1} U^{\mathsf{T}}$$

is the pseudo-inverse or Moore-Penrose inverse of A.

If A is skinny and full rank,

$$A^{\dagger} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$$

gives the least-squares solution $x_{ls}=A^{\dagger}y$

► IF A is fat and full rank,

$$A^{\dagger} = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}$$

gives the least-norm solution $x_{ln} = A^{\dagger}y$

Example: Generate correlated normal samples from std samples

Given n independent N(0,1) random variables z_1,\ldots,z_n , generate correlated random variables that follow a n-dimensional multivariate normal distribution $X=[X_1,\ldots,X_n]^\intercal \sim N(\mu,\Sigma)$.

Example: Generate correlated normal samples from std samples

Given n independent N(0,1) random variables z_1,\ldots,z_n , generate correlated random variables that follow a n-dimensional multivariate normal distribution $X=[X_1,\ldots,X_n]^\intercal \sim N(\mu,\Sigma)$.

solution

Take eigendecomposition of the target covariance matrix $\Sigma = QDQ^\intercal = (QD^{1/2})(D^{1/2}Q^\intercal) = SS^\intercal.$ Then $X = \mu + SZ$ generates the samples from $N(\mu, \Sigma)$.

Proof. Let $\bar{X} = X - \mu$

$$E[\bar{X}\bar{X}^{\intercal}] = E[SZZ^{\intercal}S^{\intercal}] = SE[ZZ^{\intercal}]S^{\intercal} = SIS^{\intercal} = \Sigma$$

Shifting the mean by μ gives the desired samples $X=[X_1,\dots,X_n]$