COMS30035, Machine learning: Probabilistic Graphical Models 4

James Cussens

james.cussens@bristol.ac.uk

Department of Computer Science, SCEEM University of Bristol

October 16, 2020

Agenda

- Ancestral sampling
- Rejection sampling
- Markov chain Monte Carlo (MCMC)

The Bayesian approach

- Conceptually the Bayesian approach is easy: the goal is to compute the posterior distribution $P(\theta|D=d)$ where θ is the parameter vector and d is the observed value of the data.
- ▶ We choose a prior $P(\theta)$ and assume a particular likelihood $P(D|\theta)$ and then Bayes theorem gives us $P(\theta|D=d) \propto P(\theta)P(D=d|\theta)$.
- If we choose a *conjugate prior* for $P(\theta)$, then representing and computing $P(\theta|D=d)$ is easy.
- You have seen this with Rui in the context of (sequential) Bayesian linear regression.

Problems for the Bayesian approach

- "For most probabilistic models of practical interest, exact inference is intractable, and so we have to resort to some form of approximation." [Bis06, p. 523].
- ▶ We want to be able to just construct whatever joint distribution $P(\theta, D)$ we think best models the data-generating process and then compute $P(\theta|D=d)$.
- ► However, with this flexibility there is a price: we may not even be able to represent $P(\theta|D=d)$ easily, let alone compute it.

Problems for the Bayesian approach

- "For most probabilistic models of practical interest, exact inference is intractable, and so we have to resort to some form of approximation." [Bis06, p. 523].
- ▶ We want to be able to just construct whatever joint distribution $P(\theta, D)$ we think best models the data-generating process and then compute $P(\theta|D=d)$.
- ▶ However, with this flexibility there is a price: we may not even be able to represent $P(\theta|D=d)$ easily, let alone compute it.
- The solution is to give up on getting $P(\theta|D=d)$ exactly and instead draw samples (of θ) from $P(\theta|D=d)$ which will allow us to approximately compute any posterior quantities, e.g. the mean of $P(\theta|D=d)$.

Univariate sampling

- We will assume throughout that we have some mechanism for sampling from any univariate distribution.
- ► There are functions for sampling from a bunch of different distributions in Python's random module. Also, to sample from a Gaussian you can use numpy.random.normal.
- If a multivariate distribution is described by a Bayesian network then we can use ancestral sampling to sample a joint instantiation of the variables.

Ancestral sampling

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|C)p(E|B, C)$$

- Just ensure that we sample values for all parents of a node before we sample a value for that node (this is always possible due to acyclicity).
- So to sample from p(A, B, C, D, E) we first sample values for A and B, suppose we get the values A = 0, B = 1. We then sample a value for C from the conditional distribution P(C|A = 0, B = 1), and so on. [Bis06, §8.1.2].

Sampling from marginal and conditional distributions

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|C)p(E|B, C)$$

- ▶ We can approximate any marginal distribution (say, P(B, E)) by sampling full joint instantiations (by e.g. ancestral sampling) and then only keeping the values of the variables in the marginal.
- We can use rejection sampling to sample from conditional distributions.
- For example, to sample from P(B, D|E=1) we sample from the marginal distribution P(B, D, E) and throw away those samples where $E \neq 1$.
- Rejection sampling is typically inefficient.

Approximating expectations

Often we want to compute expected values with respect to some posterior distribution [Bis06, p. 524].

$$E[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} \tag{1}$$

If we draw independent samples $\mathbf{z}^{(l)}$, $l=1,\ldots,L$ from $p(\mathbf{z})$ then we can approximate E[f] as follows:

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)})$$
 (2)

Markov chain Monte Carlo

If we can sample from a distribution then we have a simple way to compute approximate values. But what if we cannot?

Markov chain Monte Carlo

- If we can sample from a distribution then we have a simple way to compute approximate values. But what if we cannot?
- ▶ If we can sample from a sequence of distributions which eventually reaches (or gets very close to) the desired distribution, then we can adopt the following strategy:
 - 1. Draw a sample from each distribution in this sequence.
 - Only keep the samples once we get 'close enough' to the desired distribution.
- This is the approach of Markov chain Monte Carlo (MCMC).

Markov chains

"A first-order Markov chain is defined to be a series of random variables $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(M)}$ such that the following conditional independence property holds for $m \in \{1, \dots, M-1\}$ " [Bis06, p. 539].

$$p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},...,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$$
(3)

- **z**^(m) often represents (or can be imagined to represent) the *m*th state of some dynamic system so that $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$ is a *state transition probability*.
- ▶ If $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$ is the same for all m then the chain is *homegenous*.
- (We also need an *initial distribution* $p(\mathbf{z}^{(1)})$.)
- ► Here's the Bayesian network representation of a Markov chain where M = 4.

Sampling from a Markov chain is easy: it's just a special case of ancestral sampling.

Markov chain Monte Carlo

- A Markov chain defines a sequence of marginal distributions; for the BN above these are $P(x_1)$, $P(x_2)$, $P(x_3)$ and $P(x_4)$.
- The goal of MCMC is to design a Markov chain so that this sequence of marginal distributions converges on the distribution we want.
- Then we can just sample from the Markov chain and only keep the sampled values of the 'later' random variables.
- The sampled values we draw are **not** independent, but this is a price we have to pay.

Now do the quiz!

Yes, please do the quiz for this lecture on Blackboard!

Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer, 2006.