rate_extrapolator.py

Component Specification

Updated: 11/12/21 (Sarah Wait)

Table of Contents:

Software Components	2
rate_extrapolator	2
Inputs	2
Outputs (as PDF)	2
k_folds_data_splitter	2
Inputs	2
Outputs	3
SBstoat_model_fitting_to_folds:	3
Inputs	3
Outputs	3
parameter_estimation_fittness_evaluator:	3
Inputs	3
Outputs	4
te_model_of_best_estimated_params	4
Inputs	4
Outputs	4
figure_generator	4
Inputs	4
Outputs	4
Summary of Components	ţ
Software Interactions	ţ
Actionable Items	6

Software Components

rate_extrapolator

The rate_extrapolator function will act as a wrapper function and the main manager of the aforementioned software components and is the function that is directly interfaced with the user.

Inputs

- Experimental data as dataframe where first column corresponds to time and subsequent columns correspond to substrate
- Tellurium antimony
- List of rates as strings

Outputs (as PDF)

- Figure 1: 0xn subplot figure where n = the number of substrates given for analysis by user.
 - (0,n) Experimental Data plot on axis of concentration vs time as scatter with best fitted parameter tellurium model plotted as line
 - With residuals plotted as subfigure below x-axis
- Figure 2: 0xm subplot figure, where m = number of rates extrapolated.
 - (0,m) subplot of the histogram of rate determined by SBstoat with heat-mapped R² values
- Table 1: Stats table
 - Explicitly state rates determined
 - Fitting method
 - \circ R²
 - Chi-squared
 - Reduced chi-square
 - o Akaike info crit
 - Bayesian info crit

k folds data splitter

This function takes the experimental dataframe provided by the user in the inputs to the wrapper function and performs k-fold splitting of the data into train/test splits.

Inputs

- User provided data, datatype: dataframe.
- K-folds if designated by user, otherwise # of folds will be the floor of 10% of provided data.

Outputs

- Dataframe:
 - Dimensions: 2xk-folds
 - Rows (0:test,1:train)
 - Columns: (0,...,K-folds-1)
 - Contents of cells are dataframes of split data.

	0	1	2	3	4	
Test	time S1 S2 S3 0	time S1 S2 S3 1	time S1 S2 S3 2	time S1 S2 S3 3	time S1 S2 S3 4	Ç
Train	time S1 S2 S3 1	time S1 S2 S3 0	time S1 S2 S3 0	time S1 S2 S3 0	time S1 S2 S3 0	{

SBstoat_model_fitting_to_folds:

This function determines rate constants of provided antimony model on the k-folds determined k folds data splitter

Inputs

- K_folds_data_splitter dataframe
- Antimony, from user, provided as input to wrapper function
- List of rates

Outputs

- Dataframe:
 - Dimensions: K-folds-1 x n rates fit.

	k 1	k2	k3
0	0.067906	8.628230	0.627521
1	220.985812	296.653293	0.315899
2	516.064715	297.694048	0.317722
3	0.001062	450.792070	0.567133
4	0.189155	2.400910	0.607697
5	131.823983	0.003567	0.564810

parameter estimation fittness evaluator:

This function takes the estimated rates provided by the SBstoat_model_fitting_to_folds df and performs tellurium modeling of provided rates. The output simulation of the tellurium model is evaluated against fold's test set and R² value is determined and appended as a new column within the same dataframe.

Inputs

- K folds data splitter dataframe
- Tellurium road-runner model
- List of rates
- Estimated rates in each fold dataframe from SBstoat_model_fitting_to_folds

	k1	k2	R Squared
21	0.496701	0.905934	0.997805
11	0.495505	0.911081	0.997346
14	0.497246	0.911616	0.996873
20	0.496156	0.907144	0.996588

Outputs

- Dataframe:
 - o Dimensions: K-folds-1 x n rates fit + R² column.
 - Sorted by 'R Squared' column from largest to smallest.

te_model_of_best_estimated_params

The tellurium modeling section will take the top rates determined by the parameter_estimation_fittness_evaluator and simulate over the same time-course as experimental data.

Inputs

- Road-runner TE model
- Outputted parameter_estimation_fitness_evaluator df, first row.

Outputs

• Te model simulation

figure generator

Visualization manager generates a final report that will be passed to the user. It will take the curated information and transfer it to a visualized report that the user can make decisions from.

Inputs

- Experimental data (from user)
- Te model of best estimated params output simulation
- Parameter_estimation_fittness_evaluator output df

Outputs

- Figure 1: 0xn subplot figure where n = the number of substrates given for analysis by user.
 - (0,n) Experimental Data plot on axis of concentration vs time as scatter with best fitted parameter tellurium model plotted as line
 - With residuals plotted as subfigure below x-axis
- Figure 2: 0xm subplot figure, where m = number of rates extrapolated.
 - (0,m) subplot of the histogram of rate determined by SBstoat with heat-mapped R² values
- Table 1: Stats table
 - Explicitly state rates determined

- o Fitting method
- \circ R²
- Chi-squared
- Reduced chi-square
- Akaike info crit
- Bayesian info crit

Summary of Components

- Rate extrapolator (wrapper function)
 - k_folds_data_splitter
 - SBstoat_model_fitting_to_folds
 - parameter_estimation_fittness_evaluator
 - Te_model_of_best_estimated_params
 - figure_generator

Software Interactions

- 1. **Rate_extrapolator** reads the time course dataframe, generates floating variables initial time start, time end, and number of steps. Generates a list of SBstoat parameters to be evaluated from the number of rates designated by the user.
- 2. Rate_extrapolator calls function k_folds_data_splitter. K_folds_data_splitter takes the time-course data frame and parses it into a train-test for K number of folds. Output is a dataframe of dataframes that correspond to train and test data for each fold.
- 3. Rate_extrapolator calls function SBstoat_model_fitting_to_folds.

 SBstoat_model_fitting_to_folds function intakes dataframe produced by k_folds_data_splitter, list of SBstoat parameters to be evaluated (from rate_extrapolator, step 1), and the antimony provided by user to the rate_extrapolator function. Output is a dataframe of all estimated parameters for each fold.
- 4. Rate_extrapolator calls function model_fittness_evaluator. Model_fitness _evaluator takes inthe TE roadrunner, k-folds split dataframe, rate estimates df. Computes residuals from test set to simulated model with estimated rates. Returns model estimated fit as an additional column of R^2 values. The dataframe is also sorted from highest to lowest R² value
- Rate_extrapolator calls te_model_of_best_estimated_params.
 Te_model_of_best_estimated_params takes the best performing rates determined by model fitness evaluator and performes te model simulation using best rates.
- **6.** Rate_extrapolator calls figure_generator. Figure_generator generates plots of experimental data vs. the model with the best estimated rates. It also generates a histogram of extrapolated rate values with heatmapped R^2. Counts will be the number of folds. Table generated will pull data from SBstoat model fitness information and provide rates

determined, fitting method, R², Chi-squared, Reduced chi-square, Akaike info crit, Bayesian info crit.

Actionable Items

- ☑ 11/4: Functional Specification and Component Specification Write Ups

- ☑ 11/12: inter-link all functions and validate that everything works well.
- ☑ 11/13: packaging single wrapping function and generate testing with "fake data" (IE easy sinusoidal data with known frequencies and added noise)