Tarea 02 - Física I (S1 - 2024)

Moisés Amundarain, Antonia Curiman, Oscar Parra $14~{\rm de~junio~de~2024}$

${\rm \acute{I}ndice}$

1. Pr	roblema 2 - Guía 05	3
2. Pr	roblema 9 - Guía 05	6
3. Pr	roblema 3 - Guía 06	9
4. Pr	roblema 10 - Guía 10	10

1. Problema 2 - Guía 05

Dado un cuerpo que se mueve de manera tal que su posición, velocidad y aceleración evolucionan en el tiempo como:

$$\vec{r}(t) = x(t), \hat{i},$$
 $\vec{v}(t) = v_x(t)\hat{i}$ $\vec{a}(t) = a_x(t)\hat{i}.$

Ejercicios

a) Se define el desplazamiento temporal en el tiempo t_i y t_f como $\Delta t := t_f - t_i$, el desplazamiento espacial como $\Delta \vec{r} := \vec{r}(t_f) - \vec{r}(t_i)$, la velocidad media como $\vec{v}_m := \frac{\Delta \vec{r}}{\Delta t}$ y la rapidez media como $v_m = \frac{\Delta s}{\Delta t}$, donde δs es la distancia recorrida en dicho intervalo. Complete la siguiente tabla:

$t_i(s)$	$t_f(s)$	$\Delta t(s)$	$\vec{r}(t_i)(\mathrm{m})$	$\vec{r}(t_f)(\mathrm{m})$	$\Delta \vec{r}(\mathrm{m})$	$\vec{v}_m(\mathrm{m/s})$	$\Delta s(\mathrm{m})$	$v_m(m/s)$
0.00	2.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00
2.00	4.00	2.00	0	6.00	6.00	3.00	6.00	3.00
4.00	8.00	4.00	6.00	8.00	2.00	0.50	2.00	0.50
8.00	10.00	2.00	8.00	8.00	0.00	0.00	0.00	0.00
10.00	13.00	3.00	8.00	-0,69	-8,69	-2,89	-8,67	-2,89
13.00	15.00	2.00	-0,69	-6,69	-7,38	-3,690	-7,380	-3,69
15.00	17.00	2.00	-6,69	-6,69	0.00	0.00	0.00	0.00

b) En la siguiente grilla, esboce x(t) para $t \in [0, 17]$ s.

Gráfico de x(t)5

0

2

4

6

8

10

12

14

16

18

Tiempo (s)

c) Se define el cambio de velocidad como $\Delta \vec{v} := \vec{v}(t_f) - \vec{v}(t_i)$ y la aceleración media entre t_i y t_f como $\vec{a} := \Delta \vec{v}/\Delta t$.

Completar la siguiente tabla:

ſ	$t_i(s)$	$t_f(s)$	$\Delta t(s)$	$\vec{v}(t_i)(\mathrm{m/s})$	$\vec{v}(t_f)(\mathrm{m/s})$	$\Delta \vec{v}(\mathrm{m/s})$	$\vec{a}_m(\text{m/s})$
	0.00	2.00	2.00	0.00	1.00	1.00	0.50
	2.00	4.00	2.00	1.00	0.50	-0,50	-0,25
	4.00	8.00	4.00	0.50	0.00	-0,50	-0,125
	8.00	10.00	2.00	0.00	0.10	0.10	0.05
	10.00	13.00	3.00	0.10	-3,00	-3,10	-1,03
	13.00	15.00	2.00	-3,00	0.00	-3,00	1,5
	15.00	17.00	2.00	0.00	0.00	0.00	0

d) En la siguiente grilla, esboce $v_x(t)$ para $t \in [0,17]$ s.

e) En la siguiente grilla, esboce $a_x(t)$ para $t \in [0, 17]$ s.

$$a_x(t)$$
 para $t \in [0, 17]$ s

- f) En el gráfico de x(t) versus t identifique por tramo el tipo de movimiento y describa con palabras el movimiento completo del cuerpo.
 - En el gráfico x(t) versus t, se puede apreciar que el tipo de movimiento varia según el tramo de la función, siendo en algunos tramos, por ejemplo en el tramo $0 \le t < 2,00$ con movimiento uniformemente acelerado, sin embargo se puede apreciar que para otros tramos, como para $10,00 \le t < 13,00$, el tramo tiene un movimiento parabolico hacia arriba.

2. Problema 9 - Guía 05

En algún instante de tiempo se dispara verticalmente hacia arriba un proyectil con una rapidez de 200 m/s, al cabo de 4,00 s y desde el mismo punto, se lanza un segundo proyectil con la misma rapidez y apuntanto en la misma dirección. Eligiendo un sistema de referencia apropiado con el eje y apuntando en la dirección perpendicular a la Tierra, esboce un esquema de lo sucedido y responda:

Ejercicios

- a) ¿Cuáles son las condiciones iniciales de ambos proyectiles?
 - Identificando al proyectil 1 como: $\vec{p_1}$, y al proyectil dos como: $\vec{p_2}$, se puede decir que ambos proyectiles se encuentran en reposo en un tiempo t_0 , tienen una misma rapidez $\vec{r_0} = 0$, apuntando a la misma dirección y se deduce que ambos tienen el mismo peso.
- b) Identificar explícitamente el tipo de movimiento de cada proyectil y determine las ecuaciones de evolución en cada caso.
 - Según los proyectiles definidos anteriormente $\vec{p_1}$ y $\vec{p_2}$, se puede idectificar que el tipo de movimiento que expereimentan los dos proyectiles corresponde a un MRUA (movimiento rectilíneo uniformemente acelerado), con movimiento parabólico, ya que al inicio, al ser lanzados, la velocidad de $\vec{p_1}$ y $\vec{p_2}$ va en aumento, pero al llevar a su altura máxima (h_{max}) , la velocidad de los dos cuerpos va disminuyendo con el paso del tiempo (t).

Por consecuencia de lo anterior, las ecuaciones de cada proyectil están dadas por:

1) Las ecuaciones del movimiento parabólico están dadas por:

$$\vec{p_1} = p_1 \cdot \cos(\Phi) \cdot \hat{i} + p_1 \cdot \sin(\Phi) \cdot \hat{j}, \qquad \Phi \in [0, 2\pi[$$

$$\vec{p_2} = p_2 \cdot \cos(\Upsilon) \cdot \hat{i} + p_2 \cdot \sin(\Upsilon) \cdot \hat{j}, \qquad \Upsilon \in [0, 2\pi[$$

2) Las ecuaciones de evolución de los proyectiles están descritas por:

$$\vec{p_1}(t) = \vec{v_0} + \vec{a}(t - t_0)$$

 $\vec{p_2}(t) = \vec{v_0} + \vec{a}(t - t_0)$

- Donde v_0 , corresponde a la velocidad inicial y t_0 al tiempo inicial del proyectil.
- 3) Las ecuaciones de velocidad de los proyectiles seria:

$$\vec{p_1}(t) = v_0 - gt$$

 $\vec{p_2}(t) = v_0 - g(t-4)$

- Considerar que $q \approx 9.80 (\text{m/s}^2)$
- c) Analizar si los proyectiles se encuentran en algún momento y en tal caso, ¿cuánto tiempo tardan en encontrarse?, ¿a qué altura lo hacen? y ¿cuál es la velocidad de cada proyectil en dicho momento?
 - Del primer proyectil, se tienen los siguientes calculos:

$$t_{\text{max}} = \frac{200 \,\text{m/s}}{9,80 \,\text{m/s}^2} \approx 20,41 \,\text{m/s}$$

$$h = 200 \cdot 20,41 - \frac{1}{2} \cdot 9,80 \cdot (20,41)^2$$

$$= 2040,82 \text{m}$$

$$h_{\text{max}} = 200,16,41 - \frac{1}{2} \cdot (16,41)^2$$

$$= 1961,49 \text{m}$$

• Dado $v_f = v_i + gt$, donde $g \approx -9.80$ m/s, se tiene que:

$$v_f = 200 \text{m/s} - 9.80 \text{m/s} \cdot 16.41 \text{s}$$

= 38.822 m/s

Del segundo proyectil se desprende lo siguiente:

$$t_{\rm max} = \frac{200 \,\mathrm{m/s}}{9,80 \,\mathrm{m/s}^2} \approx 20,41 \,\mathrm{m/s}$$

• Dado $v_f = v_i + gt$, donde $g \approx -9.80$ m/s, se tiene que:

$$v_f = 200 \text{m/s} - 9,80 \text{m/s} \cdot 4 \text{s}$$

= 60,8m/s

- De los calculos anteriores se concluye que los proyectiles $\vec{p_1}$ y $\vec{p_2}$ se encuentran a los 16.41 segundos después de ser lanzado el proyectil $\vec{p_2}$, además $\vec{p_1}$ y $\vec{p_2}$ se interceptan a una altura h=1961,49. Tambíen, se puede deducir que al toparse los proyectiles, $\vec{p_1}$ tiene una $\vec{v}=60,8$ m/s y el segundo proyectil tiene una velocidad de $\vec{v}=38,822$
- d) ¿Cuánto tiempo tarda el primer proyectil en alcanzar su altura máxima y cuál es dicha altura? ¿Y el segundo proyectil?

e) Esboce las componentes $y(t), v_y(t)$ y $a_y(t)$ señalando el movimiento de cada proyectil.

3. Problema 3 - Guía 06

Un bloque de masa m = 9.47 kg está **sostenido en equilibrio** por cuerdas que ejercen tensiones con magnitudes T_1 y T_2 , las cuales forman ángulos $\alpha = 51.6^{\circ}$ y $\beta = 38.7^{\circ}$ respectivamente.

Ejercicios

- a) Dibujar un diagrama de cuerpo libre del bloque.
- b) Plantear las ecuaciones de movimiento del bloque, formulando la Ley de Newton correspondiente e indicando explícitamente cuál Ley se está escribiendo.
- c) Determinar las magnitudes de las tensiones y las fuerzas de tensión en las cuerdas.

4. Problema 10 - Guía 10

Un bloque de masa m=12,7 kg se deposita sobre una superficie inclinada rugosa (hay fricción entre el cuerpo y la superficie) que forma un ángulo $\alpha=35,9^{\circ}$ con relación a la horizontal.

Ejercicios

Si el bloque permanece en reposo

- a) Dibujar un diagrama de cuerpo libre del bloque.
- b) Plantear las ecuaciones de movimiento del bloque, formulando la Ley de Newton correspondiente e indicando explícitamente cuál Ley se está escribiendo.
- c) Determinar la fuerza de roce estática $\vec{f_s}$ necesaria para que el bloque permanezca en reposo.

Si el bloque está en reposo a punto de descender

- a) Dibujar un diagrama de cuerpo libre.
- b) Plantear las ecuaciones de movimiento del bloque, formulando la Ley de Newton correspondiente e indicando explícitamente cuál Ley se está escribiendo.
- c) Determinar el ceficiente de roce estático μ_s .

Si el bloque desciende aceleradamente

Con una aceleración de magnitud $a = ||\vec{a}|| = 2.94 m/s^2$

- a) Dibujar un diagrama de cuerpo libre.
- b) Plantear las ecuaciones de movimiento del bloque, formulando la Ley de Newton correspondiente e indicando explícitamente cuál Ley se está escribiendo.
- c) Determinar el coeficiente de roce estático μ_k .

d) Si inicialmente el bloque está en reposo a una distancia $d=12,4\,$ m de la base del plano, determinar el tiempo que le toma en descender.