Predicting the Best Network TV Episode/Script

The Office

Business Analytics 780 4/28/2020 Gary Capriotti, Malvika Ravindra,

Table of Contents

- Problem Description
 - Scope
 - Background
- Approach
 - o EDA
 - Feature Engineering
 - Model Creation
 - Data Visualization
- Results & Conclusions
 - Visualizations
 - Predictions
 - Conclusions

Problem Description

Scope

In the midst of the streaming wars, network television is finding the lifespan of it's shows extended indefinitely. The best example of this is The Office, which has led all other content in streams on Netflix over the past few years. With this in mind, the team will be conducting an analysis on which components of an episode have the largest effect on its IMDb rating. At the conclusion of the analysis, the team hopes to be able to pinpoint what aspects of a television episode led to a higher rating.

Background

- 9 Seasons
- 201 episodes
- 42 Emmy Nominations
- Most watched show on Netflix in 2018 and 2019
- 45.8 billions minutes watched in 2019
- 3% of total user minutes in 2019
- NBCUniversal paid \$500 million to bring the sitcom back to its own streaming platform

Approach

Exploratory Data Analysis

We obtained our data from the 'schrute' package in R and began exploring the variables the package contained. Each row in the data contains one single line spoken through seasons 1 to 9, along with different variables such as the episode number, speaker, writers for the episode, etc. Below is a glimpse of the data we obtained.

7.6

3706

	index	season		piso	de	episode_name	director	writer	Ť	character	text			- 1	text,
1	1	1		1		Pilot	Ken Kwapis	Ricky Gervais;Step	hen Merchant Greg Daniels	Michael	All right Jim. Your quarterlies look very good. How are thing			hing	All rig
2	2	1		1		Pilot	Ken Kwapis	Ricky Gervais;Step	hen Merchant Greg Daniels	Jim	Oh, I told you. I couldn't close it. So				Qh, I
3	3	1		1		Pilot	Ken Kwapis	Ricky Gervais;Step	hen Merchant Greg Daniels	Michael	So you've come to the master for guidance? Is this what yo			So yo	
4	4	1		1		Pilot	Ken Kwapis	Ricky Gervais;Step	hen Merchant, Greg Daniels	Jim	Actually, you called me in here, but yeah.		rah.		Actu
		char	racter	0	text			0	text_w_direction		0	imdb_rating	total_votes	air_d	ate
han	t;Greg Danie	ls Mich	Michael		All right Jim. Your quarterlies look very good. How are thing				All right Jim. Your quarterlies look very good. How are thing			7.6	3706	2005	-03-24
hant Greg Daniels		ls Jim	Jim		Oh, I told you. I couldn't close it. So				Oh, I told you. I couldn't close it. So			7.6	3706	2005	-03-24
hant Greg Daniels		s Mich	Michael		So you've come to the master for guidance? Is this what yo				So you've come to the master for guidance? Is this what yo			7.6	3706	2005	-03-24

Actually, you called me in here, but yeah.

hant Greg Daniels Jim

Actually, you called me in here, but yeah.

Exploratory Data Analysis

Dwight and Jim were the only characters who appeared in every single episode throughout the series. Jan was in the series for 6 seasons but did not appear in many episodes.

Exploratory Data Analysis

The proportion of lines for all the main characters throughout the seasons remained approximately consistent. Dwight and Jim had almost the same amount of lines and comparatively higher than other characters. Michael had the most number of lines in every season until he left the show after season 7.

Data Cleaning and feature engineering

- Data Cleaning
- Search and Elimination of Outliers in IMDb ratings
- Scaling Number of Voters
- One-Hot-Encoding for Writers and Directors

Model Creation

- Identified 132 indicator variables across directors, writers, characters
- Identified 4 continuous variables with sentiment analysis and imdb participation
- Ran through 72 different training iterations of a neural net
- Reviewed residuals and training results to select best possible parameters
- Used MSE, RMSE, and MAPE scores for statistical comparison

Results

Director with highest IMDb rating for each season

Average IMDb rating for each season

Plot of the weights of all the individual factors

Top 10 directors by imdb ratings

Average sentiment score of the episode content for each season

Hidden Nodes = 4

Decay Rate = .01

Max Iterations = 500

MAPE = 1.578

Roughly 98.5% prediction accuracy

NPP plot and Histogram shows normality

Fitted Values plot indicates non constant variance

Residuals plot indicates independence

Normal Probability Plot

Fitted Value vs Residuals

Histogram of Residuals

Residuals vs Order

ACF plot shows autocorrelation in the 20-30 observation range, in line with the number of episodes per season

PACF plots indicates no autocorrelation among the residuals

ACF of the Residuals

PACF of the Residuals

Directors (Top/Bottom 5)

lex Hardcastle	-0.441322469
leginald Hudlin	-0.398002112
loger Nygard	-0.387600024
ainn Wilson	-0.348154877
teve Carell	-0.325539262
elly Cantley-Kashima	0.216033348
ictor Nelli Jr.	0.266022689
raig Zisk	0.285320521
ene Stupnitsky;	
ee Eisenberg	0.310961825
reg Daniels	0.417658113

Characters directed numerous episodes, and Rainn Wilson/Steve Carell were ranked very negatively

Greg Daniels as show runner and executive producer outperformed all directors, to no surprise

Writers (Top/Bottom 5)

ee Eisenberg;	
iene Stupnitsky	-0.391930976
on Vitti	-0.147962361
icky Gervais;Stephen	
/lerchant	-0.132360308
an Sterling	-0.110672266
icky Gervais;	
tephen Merchant;	
ireg Daniels	-0.101474094
teve Carell	0.124592588
arrie Kemper	0.132313109
aroline Williams	0.196083788
wen Ellickson	0.326420723
aron Shure	0.480221537

Gene Stupnitsky and Lee
Eisenberg were great
directors but terrible writers

Original creators Ricky
Gervais and Stephen
Merchant struggled for
success as Season 1
underperformed

Characters

Todd	-0.067135767
Andy	-0.062385538
Nellie	-0.032361569
Toby	-0.032123781
Erin	-0.02916079
Others	-0.027900697
Pete	-0.0262674
Pam	-0.025496331
Meredith	-0.025032227
David Wallace	-0.024116274
Val	-0.02359773
Stanley	-0.023401795
Phyllis	-0.023256742
Darryl	-0.020730325
Michael	-0.020686071
Jim	-0.018599409
Kevin	-0.018157687
Angela	-0.017987574
Oscar	-0.016159334
Creed	-0.015725039
Bob Vance	-0.011286989
Ryan	-0.010593212
Karen	-0.009166396
Nate	-0.007099576
Gabe	-0.005150321
Roy	-0.002900876
Deangelo	-0.001614506
Jan	0.001842643
Dwight	0.016947901
Jo	0.030726349
Hank	0.065364894

Interesting to note that only Jan, Dwight, Jo, and Hank had a positive effect on IMDb rating

In general, lesser shown characters were positive while more common characters were slightly negative

Overall, characters had very little effect on IMDb rating compared to writers and directors

Conclusions

Episode ratings seem to be mostly story driven, as poor/strong writers and directors have heightened impacts on results

Sentiment, emotion, and profanity have little to no impact on IMDb ratings

Characters have -.0157 of an impact on ratings (essentially 0)

Of all 4 categories, writers had the most impact on the imdb rating.

Appendix

Prediction Model

#LIBRARIES

```
ibrary(fpp)
ibrary(scatterplot3d)
ibrary(nnet)
ibrary(lubridate)
ibrary(forecast)
ibrary(plyr)
ibrary(tidyr)
ibrary(corrplot)
ibrary(schrute)
ibrary(sentimentr)
ibrary(readr)
ibrary(stringr)
testdata <- (schrute::theoffice)
write.csv(testdata,"ogdata.csv")
#PULLING IN THE DATA
rawdata <- read.csv("OfficeDataConditioned.csv")
data<- data.frame(rawdata)
rawtestdata <- read.csv("OfficeTestData.csv")
testdata<- data.frame(rawtestdata)
#sentimenttext <- read_lines("Office.csv")
#Sentiment_Score <- data.frame(sentiment_by(sentimenttext, by=NULL))
#Sentiment_Score <- Sentiment_Score[-c(1:3)]
#Emotion Score <- data.frame(emotion by(sentimenttext, by=NULL))
#Emotion_Score <- Emotion_Score[-c(1,3,5)]
#Profanity_Score <- data.frame(profanity_by(sentimenttext, by=NULL))
#Profanity_Score <- Profanity_Score[-c(1,2,4)]
#data <- cbind(data, Sentiment_Score)
#data <- cbind(data, Emotion_Score)
#data <- cbind(data, Profanity_Score)
#write.csv(Emotion_Score, "Emotion_Score.csv")
#write.csv(Sentiment_Score, "Sentiment_Score.csv")
#write.csv(Profanity_Score, "Profanity_Score.csv")
#INDICATORS & VARIABLES
CharacterIndicator<-class.ind(data$character index)
DirectorIndicator<-class.ind(data$director index)
WriterIndicator<-class.ind(data$writer index)
allIndicators<-data.frame(DirectorIndicator[,1:53],WriterIndicator[,1:47],CharacterIndicator[,1:31])
#NORMALIZATION FUNCTION
normalizefunction = function(x) {
num = x - min(x)
denom = max(x) - min(x)
return(num/denom)
#UNNORMALIZATION FUNCTION
unnormalizefunction = function(x,min,max) {
return(x*(max-min)+min)
#CONTINUOUS DATA
minRating<- 6.7
maxRating<- 9.7
allContinuous = data.frame(data\$total_votes, data\$ave_sentiment, data\$ave_emotion, data\$ave_profanity,data\$imdb_rating)
colnames(allContinuous) = c("total_votes","ave_sentiment","ave_emotion","ave_profanity","imdb_rating")
```

Prediction Model

normContinuous = data.frame(sapply(allContinuous, normalizefunction))

#SELECTING TRAINING DATA

```
allDataReady<-data.frame(data$season.episode,allIndicators,normContinuous)
training sample size <- floor(0.80 * nrow(allDataReady))
set.seed(1234567)
#TRAINING DATA LIST
train ind <- sample(seg len(nrow(allDataReady)), size = training sample size)
train <- allDataReady[train ind, ]
validation <- allDataReady[-train ind,]
oredictorsTrain <-train[,2:136]
targetTrain<-train[,137]
oredictorsValidation<-validation[,2:136]
targetValidation<-validation[,137]
trainingResults<-data.frame(HiddenNodes=numeric(),Decay=numeric(),Iterations=numeric(),MSE_Fit=numeric(),
MSE_Validation=numeric(),RMSE_Validation_Unnorm=numeric(),MAPE=numeric())
names(trainingResults)=c("HiddenNodes","Decay","Iterations","MSE","MSE_Validation","RMSE_Validation_Unnorm","MAPE")
#TRAINING NEURAL NET
for(h in c(1:6)){
for(d in c(0.01,0.05,0.1)){
 for(maxIter in c(3:6)){
   maxiter=maxIter*100
   nnetFit<-nnet(predictorsTrain, # the regressor variables
           targetTrain, #what you are trying to predict
           size=h, #number of hidden nodes
           decay = d, #gives a penalty for large weights
           linout = TRUE, #says you want a linear output (as oppposed to a classification output)
           trace=FALSE, #reduces amount of output printed to screen
           maxit = maxiter, # increases max iterations to 500 from default of 100
           MaxNWts = h*(ncol(predictorsTrain)+1)+h+1) #says you can have one weight for each input + an additional intercept term
   #CALCULATE ERROR AND RESULTS
  MSE Fit<-mean((nnetFit$residuals)^2)
   #FORECASTING VALIDATION SET
   predictions<-predict(nnetFit,predictorsValidation)
   MSE_Validation <-(mean(predictions - targetValidation)^2)
   #RMSE ON ORIGINAL SCALE
   unnormalizedPredictions = unnormalizefunction(x=predictions,min=minRating,max=maxRating)
   unnormalizedTargetValidation = unnormalizefunction(x=targetValidation,min=minRating,max=maxRating)
   RMSE Validation Unnorm <-sqrt(mean((unnormalizedPredictions-unnormalizedTargetValidation)^2))
   MAPE <-mean(abs(unnormalizedTargetValidation - unnormalizedPredictions)/unnormalizedTargetValidation)*100
   results<-data.frame(h,d,maxIter,MSE Fit,MSE Validation,RMSE Validation Unnorm,MAPE)
   print(results)
   names(results)=c("HiddenNodes", "Decay", "Iterations", "MSE Fit", "MSE Validation", "RMSE Validation Unnorm", "MAPE")
   trainingResults<-rbind(trainingResults,results)
write.csv(trainingResults,file="trainingResultsfinal.csv")
#CALCULATING RESIDUALS
Residuals<-data.frame(validation$data.index,unnormalizedTargetValidation-unnormalizedPredictions)
colnames(Residuals)=c("Time","Residuals")
Res<-as.vector(unnormalizedTargetValidation-unnormalizedPredictions)
#ACF/PACF OF RESIDUALS
par(mfrow=c(2,1))
acf(Res,lag.max=50,type="correlation",main="ACF of the Residuals",na.action = na.pass)
acf(Res,lag.max=50, type = "partial",main="PACF of the Residuals",na.action = na.pass)
```

Prediction Model

#CONTINUOUS VARIABLES allContinuousForecast = data.frame(testdata\$total_votes, testdata\$ave_sentiment, testdata\$ave_emotion, testdata\$ave_profanity) colnames(allContinuous) = c("total_votes","ave_sentiment","ave_emotion","ave_profanity") sum(is.na(allContinuousForecast)) normContinuousForecast = data.frame(sapply(allContinuousForecast, normalizefunction)) allDataReadyForecast<-data.frame(testdata\$season.episode,allIndicatorsForecast,normContinuousForecast) #MAKING FORECASTS testPredictions <-predict(nnetFinalFit,allDataReadyForecast[,2:33]) forecasts <-data.frame(season.episode=allDataReadyForecast\$testdata.season.episode,testPredictions)

#RESIDUALS

#CALCULATING RESIDUALS

 $Residuals < - data. frame (test data \$season.episode, test data \$imdb_rating-forecast Original Scale \$test Predictions Unnorm)$

forecastOriginalScale<-data.frame(Date=allDataReadyForecast\$testdata.season.episode,testPredictionsUnnorm)

colnames(Residuals) = c("Season.Episode", "Residuals")

 $Res <- as. vector (test data\$imdb_rating-forecastOriginalScale\$testPredictionsUnnorm)$

#ACF/PACF OF RESIDUALS

par(mfrow=c(2,1))

acf(Res,lag.max=50,type="correlation",main="ACF of the Residuals",na.action = na.pass)

testPredictionsUnnorm<-unnormalizefunction(x=testPredictions,min=minRating,max=maxRating)

acf(Res,lag.max=50, type = "partial",main="PACF of the Residuals",na.action = na.pass)

#RESIDUAL PLOTS

par(mfrow=c(2,2), oma=c(0,0,0,0))

qqnorm(Res,datax=TRUE,pch=16,xlab="Residual",main="Normal Probability Plot")

qqline(Res,datax=TRUE)

plot(testPredictions,Res,pch=16,xlab="Fitted Value",ylab="Residual", main="Fitted Value vs Residuals")

hist(Res,col="gray",xlab="Residual", main="Histogram of Residuals")

olot(Res,type="l",xlab="Observation Order",ylab="Residual", main="Residuals vs Order")

points(Res,pch=16,cex=0.5)

abline(h=0)

#h d maxIter MSE_Fit MSE_Validation RMSE_Validation_Unnorm MAPE #1 4 0.01 500 0.01998326 1.705192e-06 0.4367599 1.578055

forecastOriginalScale = cbind(forecastOriginalScale) write.csv(forecastOriginalScale,file="forecast.csv")

mydata <- schrute::theoffice

```
dplyr::glimpse(mydata)
## Observations: 55,130
## Variables: 12
## $ index
                                                       <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ season
                                                         ## $ episode
                                                          ## $ episode_name <chr> "Pilot", "Pilot
                                                        <chr> "Ken Kwapis", "Ken Kwapis", "Ken Kwapis", "Ken Kwa...
## $ director
## $ writer
                                                       <chr> "Ricky Gervais; Stephen Merchant; Greg Daniels", "Ri...
                                                           <chr> "Michael", "Jim", "Michael", "Jim", "Michael", "Mi...
## $ character
## $ text <chr> "All right Jim. Your quarterlies look very good. H...
## $ text_w_direction <chr> "All right Jim. Your quarterlies look very good. H...
## $ imdb_rating
                                                            <int> 3706, 3706, 3706, 3706, 3706, 3706, 3706, 3706, 37...
## $ total votes
                                                         <fct> 2005-03-24, 2005-03-24, 2005-03-24, 2005-03-24, 20...
## $ air_date
```

mydata %>% group_by(imdb_rating)%>% count()%>% ggplot()+ geom_bar(mapping = aes(as.character(imdb_rating), n), stat = 'identity')+ ggtitle("Imdb ratings count")+ xlab("Ratings")+ ylab("Count")

proportion of episodes each character was in

```
episode_proportion <- mydata %>%
 unite(season_ep, season, episode, remove = FALSE) %>%
 group_by(character) %>%
 summarise(num_episodes = n_distinct(season_ep)) %>%
 mutate(proportion = round((num_episodes / total_episodes) * 100, 1)) %>%
 arrange(desc(num_episodes))
episode_proportion
## # A tibble: 773 x 3
## character num_episodes proportion
## <chr> <int> <dbl>
## 1 Dwight 186 100
## 2 Jim
                 185
                       99.5
## 3 Pam
                   182
                          97.8
## 4 Kevin
                  180
                       96.8
## 5 Angela
                   171
                       91.9
## 6 Phyllis
                  165
                         88.7
## 7 Stanley
                   165
                          88.7
## 8 Oscar
                  164
                          88.2
## 9 Andy
                   143
                       76.9
## 10 Kelly
                  140 75.3
## # ... with 763 more rows
line_proportion <- mydata %>%
 count(character) %>%
 mutate(proportion = round((n / sum(n)) * 100, 1)) %>%
 arrange(desc(n))
# define main characters based on line proportion
main_characters <- factor(line_proportion %>%
                filter(proportion >= 1) %>%
                pull(character) %>%
                fct_inorder()
               )
```

main_characters_episodes <- episode_proportion[episode_proportion\$character %in% main_characters,]

plot1 <- ggplot(main_characters_episodes, aes(x=proportion,y=character, laber=proportion)) + geom_point(aes(size=17.5),colour="orange") + ggtitle("% of Episodes each main character appeared in")

#who had the most lines

lines_characters <- mydata %>%

count(character) %>%

arrange(desc(n))

lines_characters <- lines_characters[lines_characters\$character %in% main_characters,]</pre>

lines_characters\$character <- factor(lines_characters\$character, levels =</pre>

lines_characters\$character[order(lines_characters\$n)])

lines_characters %>% ggplot(aes(x = character, y = n, label =n))+

geom_col(width = 0.7) + coord_flip() +ylab("Number of lines through seasons 1 to 9") + geom_text(aes(label=n),position=position_dodge(width=0.9), hjust=-0.25)


```
line_proportion_by_season <- mydata %>%
 group_by(season) %>%
 count(character) %>%
 mutate(proportion = round((n / sum(n)) * 100, 1)) %>%
 arrange(season, desc(proportion))
office colors <-
c("brown","black","red","orange","green","blue","yellow","pink","magenta","purple","grey","darkblue","violet","darkgreen",
"lightgreen", "coral", "chocolate", "cornsilk", "papayawhip", "blanchedalmond")
line_proportion_over_time <- line_proportion_by_season %>%
 filter(character %in% main_characters) %>%
 ggplot(aes(x = season, y = proportion, color = character, label = proportion)) +
 geom_point(size = 2) +
 geom_line() +
 scale_x_continuous(breaks = seq(1, 9, 1)) +
 theme_minimal() +
 theme(legend.position = "none") +
 labs(y = "\% of lines",
    title = "% of Lines by Season") +
 theme(plot.title = element_text(hjust = 0.5)) +
 facet_wrap(~ factor(str_to_title(character), levels = str_to_title(main_characters)), ncol = 3) +
 geom_text(vjust = -1.2, size = 3.5) +
 ylim(0, 50) +
 scale_color_manual(values = office_colors)
Line_proportion_over_time
```

highest_rating <- mydata %>%

```
filter(imdb_rating == max(imdb_rating)) %>%
 group_by(season)
cat("Highest imdb rating for the show:",unique(highest_rating$imdb_rating))
## Highest imdb rating for the show: 9.7
highest_rating_characters <- unique(highest_rating$character)</pre>
highest_rating_characters1 <- highest_rating_characters[highest_rating_characters%in% main_characters]
#highest_rating_characters1
highest_rating_episodes <- highest_rating %>%
 unite(season_ep, season, episode, remove = FALSE)
cat("Episodes with highest imdb rating of 9.7:",unique(highest_rating_episodes$season_ep))
## Episodes with highest imdb rating of 9.7: 7_22 9_24
highest_rating_lines <- highest_rating_episodes %>% group_by(season_ep) %>% count(character) %>%
arrange(season_ep,desc(n))
highest_rating_lines %>% filter(season_ep == "7_22") %>% filter(character %in% main_characters) %>%
 ggplot(aes(x=character,y=n,label=n)) + geom_text(aes(label=n),position=position_dodge(width=0.9),colour="red")
+ylab("Number of lines in the episode") +ggtitle("Season 7 Episode 22")
```

Number of lines by each character for the highest imdb rating(9.7) episodes:

Season 9 Episode 24

Code for Plots

```
library(ggplot2)
library(dplyr)
library(schrute)
mydata <- schrute::theoffice
mydata$season <- as.character(mydata$season)
ggplot(conditionedData,aes(x = season,y = ave_sentiment)) + geom_boxplot(varwidth = T,fill)
="plum")
bydirector <- aggregate(imdb_rating ~ director,data = mydata,FUN = function(x) c(m =
mean(x)))%>% arrange(desc(imdb_rating)) %>% top_n(10)
bydirector %>% ggplot() + geom_bar(aes(x=director,y = imdb_rating,fill = imdb_rating),stat =
"identity") + coord_flip()
byimdb_rating <- mydata %>% select(season,director,writer,imdb_rating) %>% group_by(season)
%>% arrange(desc(imdb_rating)) %>% top_n(1)
# imdb_rating for the season
mydata %>% ggplot() + geom_bar(mapping=aes(x=season,y=imdb_rating,fill=season),stat =
"summary")
#SEASON_DIRECTORAVERAGE_IMDB
byimdb_rating %>% ggplot() + geom_bar(mapping=aes(x=season,y=imdb_rating,fill=season),stat =
"summary")+ facet_wrap( ~ director, nrow = 4)
#SEASON_WRITERAVERAGE_IMDB
byimdb_rating %>% ggplot() + geom_bar(mapping=aes(x=season,y=imdb_rating,fill=season),stat =
"summary")+ facet_wrap( ~ writer, nrow = 4)
```