Algebra 2R

a voyage into the unknown

koteczek

 \sim

Spis rzeczy niezbyt mądrych

1	Teor	ia równań algebraicznych	4
	1.1	Układy równań	4
	1.2	Rozszerzenia ciał	6
	1.3	Domknięcia ciał	10
	1.4	Ciała proste	11

1. Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z $1 \neq 0$, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1. Układy równań

Rozważmy funkcje $f_1,...,f_m \in R[X_1,...,X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1,...,X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód:

 \iff Implikacja jest dość trywialna, jeśli każdy wielomian z ($f_1,...,f_m$), czyli wytworzony za pomocą sumy i produktu wielomianów $f_1,...,f_m$ zeruje się na \bar{a} , to musi zerować się też na każdym z tych wielomianów

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1,...,f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1,...,f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1,...,f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2.
$$(f_1, ..., f_m) \cap R = \{0\}$$
. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R $[S \supseteq R]$ oraz rozwiązanie $\overline{a} \subseteq S$ spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1,...,f_m)$ i rozważmy

$$j:R[\overline{X}]\to S=R[\overline{X}]/(f_1,...,f_m)$$

nazywane przekształceniem ilorazowym. Po pierwsze, zauważmy, że j \uparrow R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subseteq S,$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\hat{f_i}\in (f_1,...,f_m)$ mamy

$$\hat{f}_i(\bar{a}) = \hat{f}_i(j(X_1), ..., j(X_m)) = j(\hat{f}_i(X_1, ..., X_m)) = j(f_i) = 0.$$

TUTAJ TRZEBA POUZASADNIAĆ KILKA RÓWNOŚCI, ALE MOŻE NIE BĘDĘ TEGO RO-BIŁA NA AISD

Uwaga 1.1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(\clubsuit) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1,...,a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h: R[\overline{a}] \rightarrow R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj R[\overline{a}] \subseteq S jest podpierścieniem generowanym przez R \cup { \overline{a} }, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód: Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I \triangleleft R $[\overline{X}]$, a więc $(f_1,...,f_m) \subseteq I$.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi: R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}),$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h:R[X]/(f_1,...,f_m)\to R[\overline{a}]$$

taki, że h(\overline{a}) = \overline{a}' .

Uwaga 1.1.3. *Jeśli* I =
$$(f_1, ..., f_m)$$
, to h : R[\overline{a}] $\xrightarrow{\cong}$ \overline{R} [\overline{a}'].

Wtedy mamy $\ker \phi = \ker j$, czyli $\ker (h \circ j) = \ker \phi = \ker j$, no a z tego wynika, że $\ker h$ jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, $\operatorname{Im} \phi = \operatorname{Im}(h \circ j)$, a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał a nad R definiujemy jako

$$I(\overline{a}/R) = \{q \in R[\overline{X}] : q(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\overline{a}/R) = (f_1, ..., f_m).$$

Uwaga 1.1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy \overline{a} jest rozwiązaniem ogólnym układu $U \iff$ zachodzi warunek (\clubsuit).

Dowód: Ćwiczenia.

1.2. Zasadniczy temat: ciała

Dla K \subseteq L ciał i \overline{a} \subseteq L definiujemy **ideał** \overline{a} **nad** K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},\$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli **podpierścień** L **generowany przez** K \cup { \overline{a} } oraz K(\overline{a}), **czyli podciało** L generowane przez K \cup { \overline{a} }:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to *ciało ułamków pierścienia* $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.2.1. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\bar{a}_1 \in L_1$ i $\bar{a}_2 \in L_2$, $|\bar{a}_1| = |\bar{a}_2| = n$. Wtedy następujące warunki są równoważne:

- 1. istnieje izomorfizm $\phi : K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.
- 2. $I(\bar{a}_1/K) = I(\bar{a}_2/K)$.

Dowód:

$$1 \implies 2$$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$, bo $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$, a $f(\overline{a}_1) = \overline{a}_2$.

Zwróćmy uwagę na odwzorowanie ewaluacji a1

$$\phi_{\overline{\mathsf{a}}_1}:\mathsf{K}[\overline{\mathsf{X}}]\xrightarrow{"\mathsf{na"}}\mathsf{K}[\mathsf{a}_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ $I(\overline{a}_1/K) = I(\overline{a}_2/K)$, to $\ker(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy $I = I(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \mathrm{id}_k$.

Niech $\underline{f}=f_2f_1^{-1}:K[\overline{a}_1]\to K[\overline{a}_2]$ jest funkcją spełniającą warunki punktu 1.

MOŻE TUTAJ ŁADNIE SPRAWDZIĆ ŻE NAPRAWDĘ JEST TO DOBRZE SPEŁNIAJĄCA WARUNKI FUNKCJA?

Uwaga 1.2.2. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód: Wcześniejsze uwagi KTÓRE KONKRETNIE?

Twierdzenie 1.2.3. Niech $I \triangleleft K[\overline{X}]$. Wtedy istnieje ciało $L \supseteq K$ oraz $\overline{a} = (a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a}) = 0$ dla każdego $f \in I$.

Dowód: Niech $I \subseteq M \triangleleft K[\overline{X}]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$ i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \to L = K[\overline{X}]/M.$$

Ponieważ $M \cap K = \{0\}$ (bo inaczej w ideale byłby wielomian odwracalny), to $j \upharpoonright K : K \to L$ jest funkcją 1-1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = $(a_1,...,a_n)$ takie, że dla każdego $i\in[n]$

$$a_i = j(X_i) \in L$$
.

Wtedy g(a) = 0 dla każdego g(\overline{X}) \in M \supseteq I (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.2.4. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że K ma pierwiastek K ciele K.

Przykłady:

1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{Q}[X]/I \cong \mathbb{Q}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że K \subseteq L₁, K \subseteq L₂ są rozszerzeniami ciała. Wtedy mówimy, że L₁ **jest izomorficzne z** L₂ **nad** K [L₁ \cong _K L₂] \iff istnieje izomorfizm f : L₁ \rightarrow L₂ taki, że f \upharpoonright K = id_K.

Fakt 1.2.5.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogółniej: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X], f_2 \in K_2[X], \phi(f_1) = f_2, f_i$ jest nierozkładalne. Dodatkowo załóżmy, że $L_1 = K_1(a_1)$ i $L_2 = K_2(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Dowód:

- 1. $I(a_1/K) = (f) = I(a_2/K)$, stąd na mocy 1.2.1 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
 - 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong}_{K_2} [X]$ indukuje nam przekształcenie

$$\mathsf{K}_1[\mathsf{X}]/(\mathsf{f}_1) \xrightarrow{\cong} \mathsf{K}_2[\mathsf{X}]/(\mathsf{f}_2),$$

bo $\phi(f_1) = f_2$. Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

$$L_i = K_i(a_i) = K_i[a_i] \cong K[X]/I(a_i/K_i).$$

Ciało L \supseteq K nazywamy **ciałem rozkładu nad** K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 1.2.6. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód:

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.2.4 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0)$$
.

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i deg(f_1) < deg(f). Z założenia indukcyjnego dla f_a istnieje $L' = K'(a_1,...,a_r)$ -ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subseteq \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli $L_1 = K_1, L_2 = K_2$ i $\phi = \psi$.

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f_i' \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.2.5:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: \mathsf{K}_1(\mathsf{a}_1) \xrightarrow{\cong} \mathsf{K}_2(\mathsf{a}_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

$$\begin{array}{cccc} \mathsf{K}_1(\mathsf{a}_1) & & \cong & & \mathsf{K}_2(\mathsf{a}_2) \\ & & \exists \ \psi_0 & & \mathsf{II} \\ & \mathsf{K}_1' & & \mathsf{K}_2' \\ & & \cap^\mathsf{I} & & \cong & & \cap^\mathsf{I} \\ & \mathsf{L}_1 & & & \exists \ \psi_1 & & & \mathsf{L}_2 \end{array}$$

Mamy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

$$\psi_1: \mathsf{L}_1 \xrightarrow{\cong} \mathsf{L}_2$$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 1.2.7. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem i $\phi(f_1) = f_2$, a L_1, L_2 to ciała rozkładu f_1, f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód: Wynika z dowodu stwierdzenia **.

1.3. Domknięcia ciał

Ciało L jest **algebraicznie domknięte** \iff dla każdego $f \in L[X]$ o stopniu > 0 istnieje pierwiastek f w L, to znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- $\hookrightarrow \mathbb{C}$ jest algebraicznie domknięte.
- $\hookrightarrow \mathbb{R}$ nie jest algebraicznie domknięte, gdyż x^2+1 nie ma pierwiastka rzeczywistego.
- $\hookrightarrow \mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo x^2 2 nie ma pierwiastka.

Twierdzenie 1.3.1. Każde ciało zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód:

Lemat: Dla każdego ciała K istnieje $K'\supseteq K$ takie, że ($\forall f\in K[X]$) stopnia > 0 f ma pierwiastek w K'. Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f \in K[X] : deg(f) > 0\} = \{f_{\alpha} : \alpha \subset X\}$$

KSkonstruujmy rosnący ciąg ciał $\{K_{\alpha} : \alpha \subset x\}$ taki, że

$$\hookrightarrow \mathsf{K} \subseteq \mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\beta} \mathsf{dla} \ \alpha < \beta < \mathsf{x}$$

 \hookrightarrow f $_{\alpha}$ ma pierwiastek w K $_{\alpha+1}$.

Załóżmy, że α < x i mamy {K $_{\beta}$: β < α }.

1.
$$\alpha$$
 to liczba graniczna, wtedy $\mathsf{K}_{\alpha} = \bigcup_{\beta < \alpha} \mathsf{K}_{\beta}$

2. $\alpha = \beta + 1$ to następnik, wtedy $K_{\alpha} = K_{\beta}(a)$, gdzie a to pierwiastek wielomianu f_{β} .

Czyli lemat jest prawdziwy.

Wracamy teraz do dowodu twierdzenia i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

$$\hookrightarrow L_0 = K$$

 $\hookrightarrow L_{n+1} \supseteq L_n$, gdzie L_{n+1} dane jest przez lemat, to znaczy ($\forall \ f \in L_n[X]$) f ma pierwiastek L_{n+1} .

Niech

$$\hat{K} = L_{\infty} = \bigcup_{n \leq \omega} L_n.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że również

$$L[X] = \bigcup_{n < \omega} L_n[X]$$

i L[X] jest algebraicznie domknięte.

Uwaga 1.3.2. *Załóżmy, że mamy ciała* $K \subseteq L$. *Wtedy*

$$\hookrightarrow$$
 char(K) = char(L)

$$\hookrightarrow$$
 0_K = 0_L oraz 1_K = 1_L

$$\hookrightarrow \mathsf{K}^* = \mathsf{K} \setminus \{0\} < \mathsf{L}^* = \mathsf{L} \setminus \{0\}$$

1.4. Ciała proste

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- $\hookrightarrow \mathbb{Q}$, gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- $\hookrightarrow \text{Ciałem prostym skończonym jest na przykład } \mathbb{Z}_p \text{ dla liczby pierwszej p, wtedy char}(\mathbb{Z}_p) = p.$

Niech R będzie pierścieniem przemiennym z 1 \neq 0. Mamy następujące definicje:

1.
$$a \in R$$
 jest pierwiastkiem z 1 stopnia $n > 0 \iff a^n = 1$

2.
$$\mu_n(R) = \{a \in R : a^n = 1\}$$
 jest **grupą pierwiastków z** 1 stopnia n

3.
$$\mu(R) = \bigcup_{n>0} \mu_n(R)$$
 jest **grupą pierwiastków z** 1

4. a jest **pierwiastkiem pierwotnym** stopnia n z 1 \iff a $\in \mu_n(R)$ oraz $(\forall k < n)$ a $\notin \mu_k(R)$.

Uwaga 1.4.1.

1. $\mu_n(R) \triangleleft R^X$ jest grupą jednostek pierścienia

2.
$$\mu$$
(R) ⊲ R^X

3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

1.
$$\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot\}) < \mathbb{C}^{X} = C \setminus \{0\}$$

2.
$$\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$$
, bo $f: \mathbb{Q} \xrightarrow{\text{"na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro ker(f) = \mathbb{Z} .

3.
$$\mu(\mathbb{R}) = \{\pm 1\}$$

4.
$$\mu_n(K) = \{ zera wielomianu w_n(x) = x^n - 1 \}$$

Uwaga 1.4.2.

- 1. Jeśli char(K) = 0, to $w_n(x) = x^n 1$ ma tylko pierwiastki jednokrotne w K
- 2. Jeśli char(K) = p > 0 i n = $p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n 1$ mają krotność p^l w K.