Scilab Textbook Companion for Optical Communication by S. Katiyar¹

Created by Lalit Kumar Saini B.TECH

Electronics Engineering
UTTARAKHAND TECHNICAL UNIVERSITY DEHRADUN

College Teacher Arshad Khan Cross-Checked by Mukul Kulkarni

May 28, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Optical Communication

Author: S. Katiyar

Publisher: Kataria & Sons , New Delhi

Edition: 3

Year: 2011

ISBN: 978-93-80027-81-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4	
2	OPTICAL FIBER WAVEGUIDES	5	
4	TRANSMISSION CHARACTERSTICS OF OPTICAL FIBE	ERS	24
6	OPTICAL SOURCES THE LASER	44	
7	OPTICAL SOURCES THE LIGHT EMITTING DIODE	54	
8	POWER LAUNCHING AND COUPLING	63	
9	OPTICAL DETECTORS	66	
10	OPTICAL RECEIVER	80	

List of Scilab Codes

Exa	2.1	Thickness
Exa	2.2	ACCEPTANCE AND CRITICAL ANGLE 6
Exa	2.3	numerical aperture 6
Exa	2.4	numerical aperture
Exa	2.5	cut off wavelngth
Exa	2.6	core diameter
Exa	2.7	number of modes
Exa	2.8	number of modes
Exa	2.9	numerical aperture
Exa	2.10.a	core radius
Exa	2.10.b	numerical aperture
Exa	2.10.c	acceptance angle
Exa	2.11.a	critical angle
Exa	2.11.b	numerical aperture
Exa	2.11.c	acceptance angle
Exa	2.12	acceptance angle
Exa	2.13.a	normalized frequency
Exa	2.13.b	number of modes
Exa	2.14.a	cutoff frequency
Exa	2.14.b	core radius
Exa	2.15	cut off wavelength
Exa	2.16	numerical aperture and acceptance angle
Exa	2.17.a	CLADDING INDEX
Exa	2.17.b	critical internal reflection angle
Exa	2.17.c	acceptance angle
Exa	2.17.d	numerical aperture
Exa	2.18	acceptance angle
Exa	2.19.a	numerical aperture

Exa	2.19.b	acceptance angle
Exa	2.20	normalized frequency
Exa	2.21.a	numerical aperture
		dispersion per unit length
Exa	2.22	Thickness
Exa	2.23	core diameter
Exa	2.24.a	critical angle
Exa	2.24.b	numerical aperture
	2.25	acceptance angle
Exa	2.26	numer of modes and cutoff frequency
Exa	2.27.a	numerical aperture
		critical angle
		pulse broadning
	2.28	core diameter
Exa	4.1	power loss
Exa	4.2	power level
Exa	4.3	link length
Exa	4.4	pulse dispersion
Exa	4.5	output optical power
Exa	4.6.a	signal loss
Exa	4.6.b	signal loss per kilometer
Exa	4.6.c	overall signal attenuation
Exa	4.6.d	ratio of input to output power
Exa	4.7.a	signal attenuation
Exa	4.7.b	signal attenuation
Exa	4.8	refractive index
Exa	4.9	operating wavelength and attenuation
Exa	4.10	optical power
Exa	4.11	critical radius
Exa	4.12	critical radius
Exa	4.13.a	bandwidth
		pulse dispersion
		bandwidth length product
	4.14	wavelength
	4.15	pulse broadning
		material dispersion parameter
		pulse broadning
		pulse broadning 35

Exa	4.18	pulse broadning	36
Exa	4.19	pulse broadning	36
Exa	4.20.a	delay	37
Exa	4.20.b	pulse broadning	37
Exa	4.20.c	bit rate	38
Exa	4.20.d	bandwidth length product	38
Exa	4.21	pulse broadning	39
Exa	4.22	pulse broadning	39
Exa	4.23.a	pulse broadning	40
Exa	4.23.b	bandwidth length product	40
Exa	4.24	beat length	41
Exa	4.25	modal birefringence	41
Exa	4.26	modal birefringence cohrence length and prop diif	42
Exa	4.27	bit rate	42
Exa	4.28	pulse broadning	43
Exa	6.1	ratio of stimulated emission rate to spontaneous emis-	
		sion rate	44
Exa	6.2	optical spacing	45
Exa	6.3	emission wavelength	45
Exa	6.4	optical gain	45
Exa	6.5	FREQUENCY AND WAVELNEGTH SPACING	46
Exa	6.6	CARRIER LIFETIME	46
Exa	6.7	threshold density	47
Exa	6.8	external power efficiency	47
Exa	6.9	ratio of threshold current densities	48
Exa	6.10	wavelngth and line width	48
Exa	6.11	threshold coefficient gain	49
Exa	6.12	cavity length and number of logitudinal modes	49
Exa	6.13	internal quantum efficiency	50
Exa	6.14	number of longitudinal modes and frequency sepration	50
Exa	6.15	cavity length and number of logitudinal modes	51
Exa	6.16	hole concentration	51
	6.17	gain factor	52
	6.18	internal quantum efficiency	52
Exa	7.1.a	bulk recombination life time	54
	7.1.b	internal quantum efficiency	54
	7.1.c	power level	55
Exa	7.2	power radiated	56

Exa	7.3	non radiative recombination lifetime
Exa	7.4	internal quantum efficiency
Exa	7.5	optical power emitted
Exa	7.6.a	coupling efficiency
Exa	7.6.b	optical loss
Exa	7.7	optical power
Exa	7.8	power conversion efficiency
Exa	7.9	optical power
Exa	7.10.a	internal quantum efficiency and internal power level .
		power emitted
Exa	7.11	transmission factor
Exa	7.12	optical power and external power efficiency
Exa	8.1.a	optical power coupled
Exa	8.1.b	core radius
Exa	8.2	power distribution coefficients
Exa	8.3	power coupled
Exa	8.4	fresnel reflection coefficient
Exa	8.5	compare optical powers
Exa	9.1	quantum efficiency
Exa	9.2	photocurrent
Exa	9.3	responsivity
Exa	9.4	quantum efficiency and responsivity
Exa	9.5.a	operating wavelngth
Exa	9.5.b	incident optical power
Exa	9.6	WAVELENGTH
Exa	9.7.a	responsivity
Exa	9.7.b	received optical power
Exa	9.7.c	number of received photons
Exa	9.8	multiplication factor
Exa	9.9	responsivity and multiplication factor
Exa	9.10.a	noise equivalent power
		specific detectivity
		optical gain
		common emitter current gain
	9.12	bandwidth
	9.13	photocurrent
Exa	9.14	photocurrent
Exa	9 15	multiplication factor

Exa 9.16	bandwidth	75
Exa 9.17	responsivity and optical power	76
Exa 9.18	EFFICIENCY	76
Exa 9.19.	a responsivity	77
Exa 9.19.	b optical power	77
Exa 9.20	Thickness	78
Exa 9.21	dark current	78
Exa 10.1	quantum noise dark and thermal noise current	80
Exa 10.2.	a quantum limit	81
Exa 10.2.	b incident optical power	81
Exa 10.3	incident optical power	82
Exa 10.4.	a shot noise	82
Exa 10.4.	b thermal noise	83
Exa 10.5.	a load resistance	84
Exa 10.5.	b bandwidth	84
Exa 10.6	SNR	85
Exa 10.7	SNR IMPROVEMENT	85
Exa 10.8.	a photocurrent	86
Exa 10.8.	b avalanche multiplication factor	87
Exa 10.9.	a bandwidth	87
Exa 10.9.	b thermal noise current	88
Exa 10.10	optical power	88

Chapter 2

OPTICAL FIBER WAVEGUIDES

Scilab code Exa 2.1 Thickness

```
1 // Example 2.1: Thickness
2 clc;
3 clear;
4 close;
5 \text{ pi} = 3.14;
6 n1=3.5; // Waveguide Refractive Index
7 n2=3.0; // Cladding Refractive Index
8 v=6; // number of modes
9 h=1.5; // wavelenght in micro meter
10 Os= asind(n2/n1)// angle in degree
11 th= round(12*pi*h)/(2*pi*n1*cosd(0s)); // Thickness
      of the film
12 disp(th, "Thickness of film in mircometers")
13 disp("Thcikness of the film should be less than 5
     micro meter so that only six modes will be guided
       along the fiber")
```

Scilab code Exa 2.2 ACCEPTANCE AND CRITICAL ANGLE

Scilab code Exa 2.3 numerical aperture

```
// Example 2.3: Numerical Aperture
clc;
clear;
close;
v= 26.6; // normalised frequency
h=1.3; // Wavelenght in micro meters
a=25; // core radius in micro meters
NA=(v*h)/(2*%pi*a); // Numerical Aperture
disp(NA, "Numerical Aperture of the Fiber is")
```

Scilab code Exa 2.4 numerical aperture

```
1 // Example 2.4: Numerical Aperture
2 clc;
3 clear;
4 close;
5 n1=1.4675; // Waveguide Refractive Index
```

```
6 n2=1.4622; // Cladding Refractive Index
7 NA=sqrt(n1^2-n2^2); // Numerical Aperture
8 disp(NA, "Numerical Aperture of the Fiber")
```

Scilab code Exa 2.5 cut off wavelngth

```
// Example 2.5: Cutoff Wavelengt
clc;
clear;
close;
n1=1.5; // Waveguide Refractive Index
n2=1.47; // Cladding Refractive Index
a=4; // core radius in micro meters
NA=sqrt(n1^2-n2^2); // Numerical Aperture
Hc= (2*%pi*a*NA)/(2.405)
disp(Hc, "Cutoff wavelenght in micro meters")
```

Scilab code Exa 2.6 core diameter

```
// Example 2.6:Core Diameter
clc;
clear;
close;
n1=1.55;//Waveguide Refractive Index
n2=1.48;//Cladding Refractive Index
h= 1.55;// Wavelenght in micrometers
NA=sqrt(n1^2-n2^2);// Numerical Aperture
a= (2.405*h)/(2*%pi*NA);// Core radius
d=2*a;// Core Diameter
disp(d,"Core Diameter in micro meter")
```

Scilab code Exa 2.7 number of modes

```
// Example 2.7: Number of the modes
clc;
clear;
close;
n1=1.48; // Waveguide Refractive Index
n2=0.01; // Cladding Refractive Index
h= 0.84; // Wavelenght in micrometers
a= 25; // Core radius in micrometers
NA=(n1^2-n2^2); // Numerical Aperture
M=round((((2*%pi)/h)^2*a^2*NA)/100); //
v= round(sqrt(M*2)); //
disp(v,"Number of modes")
```

Scilab code Exa 2.8 number of modes

```
1 // Example 2.8: Number of the modes
2 clc;
3 clear;
4 close;
5 n1=1.475; // Waveguide Refractive Index
6 n2=1.472; // Cladding Refractive Index
7 h1= 0.85; // Wavelenght in micrometers
8 a= 20; // Core radius in micrometers
9 NA=sqrt(n1^2-n2^2); // Numerical Aperture
10 v = (2 * \%pi * a * NA) / h1;
11 m1 = round((v^2)/2);
12 h2= 1.3; // Wavelenght in micrometers
13 v1 = (2*\%pi*a*NA)/h2;
14 \text{ m2} = \text{round}((v1^2)/2);
15 disp (m1, "number of modes when wavelngth is 0.85
      micro meters")
16 disp(m2, "when wavelenght is 1.3 micro meters")
```

Scilab code Exa 2.9 numerical aperture

```
// Example 2.9: Numerical Aperture
clc;
clear;
close;
n1=1.5; // Waveguide Refractive Index
n2=1.48; // Cladding Refractive Index
NA=sqrt(n1^2-n2^2); // Numerical Aperture
disp(NA," Numerical Aperture of the Fiber")
```

Scilab code Exa 2.10.a core radius

```
// Example 2.10.a; Core Readius
clc;
clear;
close;
n1=1.450; // Waveguide Refractive Index
n2=1.447; // Cladding Refractive Index
h= 1.3; // Wavelenght in micrometers
NA=sqrt(n1^2-n2^2); // Numerical Aperture
a= (2.405*h)/(2*%pi*NA); // Core radius
disp(a, "Core radius in micro meter")
```

Scilab code Exa 2.10.b numerical aperture

```
1 // Example 2.10.b; Numerical Aperture
2 clc;
3 clear;
```

```
4 close;
5 n1=1.450; // Waveguide Refractive Index
6 n2=1.447; // Cladding Refractive Index
7 h= 1.3; // Wavelenght in micrometers
8 NA=sqrt(n1^2-n2^2); // Numerical Aperture
9 disp(NA, "Numerical Aperture is")
```

Scilab code Exa 2.10.c acceptance angle

```
// Example 2.10.c; Acceptance Angle
clc;
clear;
close;
n1=1.450; // Waveguide Refractive Index
n2=1.447; // Cladding Refractive Index
h= 1.3; // Wavelenght in micrometers
NA=sqrt(n1^2-n2^2); // Numerical Aperture
max=asind(NA); //MAXIMUM ACCEPTANCE ANGLE
disp(Omax, "MAXIMUM ACCEPTANCE ANGLE IN DEGREE")
```

Scilab code Exa 2.11.a critical angle

```
1 // Example 2.11.a; Critical Angle
2 clc;
3 clear;
4 close;
5 n1=1.50; // Waveguide Refractive Index
6 n2=1.47; // Cladding Refractive Index
7 Oc=asind(n2/n1); // Critical Angle
8 disp(Oc, "CRITICAL ANGLE IN DEGREE")
```

Scilab code Exa 2.11.b numerical aperture

```
// Example 2.11.b; Numerical Aperture
clc;
clear;
close;
n1=1.50; // Waveguide Refractive Index
n2=1.47; // Cladding Refractive Index
NA=sqrt(n1^2-n2^2); // Numerical Aperture
disp(NA," Numerical Aperture is")
```

Scilab code Exa 2.11.c acceptance angle

```
1 // Example 2.11.c; Acceptance Angle
2 clc;
3 clear;
4 close;
5 n1=1.50; // Waveguide Refractive Index
6 n2=1.47; // Cladding Refractive Index
7 h= 1.3; // Wavelenght in micrometers
8 NA=sqrt(n1^2-n2^2); // Numerical Aperture
9 Oa=asind(NA); //ACCEPTANCE ANGLE
10 disp(Oa," ACCEPTANCE ANGLE IN DEGREE")
```

Scilab code Exa 2.12 acceptance angle

```
1 // Example 2.12; Acceptance Angle
2 clc;
3 clear;
4 close;
5 NA=0.4; // Numerical Aperture
6 r= 50; // Angle at which angle changes for skew rays in degreee
```

```
7 m=cosd(r);
8 Oas=asind(NA/m)
9 disp(Oas," ACCEPTANCE ANGLE FOR SKEW RAYS IN DEGREE"
)
```

Scilab code Exa 2.13.a normalized frequency

```
// Example 2.13.a: Normaised Frequency
clc;
clear;
close;
n1=1.48; // Waveguide Refractive Index
d= 0.015; // Cange in core-cladding refractive index
a=40; // core radius in micro meters
h=0.85; // wavelngth in micro meters
v=(2*%pi*a*n1*sqrt(2*d))/h; // Normalised wavelngth
disp(v,"normalised frequency")
```

Scilab code Exa 2.13.b number of modes

```
// Example 2.13.b:Number of modes
clc;
clear;
close;
n1=1.48;//Waveguide Refractive Index
d= 0.015;// Cange in core-cladding refractive index
a=40;// core radius in micro meters
h=0.85;//wavelngth in micro meters
v=(2*%pi*a*n1*sqrt(2*d))/h;//Normalised wavelngth
m= round (v^2/2);// number of modes
disp(m,"number of modes")
disp("the fiber have v=76 and it gives nearly 3000 guided modes")
```

Scilab code Exa 2.14.a cutoff frequency

```
// Example 2.14.a:Cut off wavelength
clc;
clear;
close;
n1=1.48;//Waveguide Refractive Index
d= 0.01;// Cange in core-cladding refractive index
a=2;// parabolic refractive index
h=1.3;//wavelngth in micro meters
v= 2.4*sqrt(1+(2/a));//maximum value of normalised frequence
disp(v,"maximum value of normalised frequency")
```

Scilab code Exa 2.14.b core radius

```
// Example 2.14.b:Maximum Core Readius
clc;
clear;
close;
n1=1.48;//Waveguide Refractive Index
d= 0.01;// Cange in core-cladding refractive index
a=2;// parabolic refractive index
h=1.3;//wavelngth in micro meters
v= 2.4*sqrt(1+(2/a));//maximum value of normalised frequence
a= (v*h)/(2*%pi*n1*sqrt(2*d));//Core Radius
disp(a,"maximum core radius in micro meters")
```

Scilab code Exa 2.15 cut off wavelength

```
// Example 2.15: Cutoff Wavelengt
clc;
clear;
close;
n1=1.46; // Waveguide Refractive Index
a=4.5; // core radius in micro meters
d= 0.0025; // Cange in core-cladding refractive index
Hc= (2*%pi*a*sqrt(2*d)*n1)/2.405;
disp(Hc," Cutoff wavelenght in micro meters")
```

Scilab code Exa 2.16 numerical aperture and acceptance angle

```
// Example 2.16; Numerical Aperture & Acceptance
Angle

clc;
clear;
close;
n1=1.45; // Waveguide Refractive Index
n2=1.40; // Cladding Refractive Index
NA=sqrt(n1^2-n2^2); // Numerical Aperture
disp(NA, "Numerical Aperture is")
m=asind(NA);
disp(Om, "Acceptance angle in degree is")
```

Scilab code Exa 2.17.a CLADDING INDEX

```
1 // Example 2.17.a: Cladding Index
2 clc;
3 clear;
4 close;
5 n1=1.5; // Waveguide Refractive Index
```

```
6 d= 0.0005; // Cange in core-cladding refractive index
7 n2= n1-(d*n1);
8 disp(n2," Refradctive index of cladding is")
```

Scilab code Exa 2.17.b critical internal reflection angle

```
1 // Example 2.17.b: Critical Internal Reflection Angle
2 clc;
3 clear;
4 close;
5 n1=1.5; // Waveguide Refractive Index
6 d= 0.0005; // Cange in core-cladding refractive index
7 n2= n1-(d*n1);
8 Oc=asind(n2/n1);
9 disp(Oc," Critical Internal Reflection angle in degree is")
```

Scilab code Exa 2.17.c acceptance angle

```
// Example 2.17.c: External Critical Acceptance
    Angle

clc;

clear;

close;

n1=1.5;//Waveguide Refractive Index

d= 0.0005;// Cange in core-cladding refractive index

n2= n1-(d*n1);

n0=1;// For air

multiple of the core angle in degree is")
```

Scilab code Exa 2.17.d numerical aperture

```
1 // Example 2.17.d: Numerical Aperture
2 clc;
3 clear;
4 close;
5 n1=1.5; // Waveguide Refractive Index
6 d= 0.0005; // Cange in core-cladding refractive index
7 NA=n1*sqrt(2*d);
8 disp(NA,"numerical aperture is")
```

Scilab code Exa 2.18 acceptance angle

```
// Example 2.18: Critical Acceptance Angle
clc;
clear;
close;
n2=1.59;//Cladding Refractive Index
NA=0.20;// NUMERICAL APERTURE IN AIR
n1= sqrt(NA^2+n2^2);// Core refractive index
n0=1.33;//refractive index of water
NA=sqrt(n1^2-n2^2)/n0;// Numerical aperture in water
Om=asind(NA);
disp(Om," Acceptance angle in degree is")
```

Scilab code Exa 2.19.a numerical aperture

```
1 // Example 2.19.A: Numerical Aperture 2 clc;
```

```
3 clear;
4 close;
5 n1=1.55;//cORE Refractive Index
6 n2=1.51;//Cladding Refractive Index
7 NA=sqrt(n1^2-n2^2);// Numerical Aperture
8 disp(NA, "Numerical Aperture of the Fiber")
```

Scilab code Exa 2.19.b acceptance angle

```
// Example 2.19.b: Acceptance Angle
clc;
clear;
close;
n1=1.55;//cORE Refractive Index
n2=1.51;//Cladding Refractive Index
NA=sqrt(n1^2-n2^2);// Numerical Aperture
Om= asind(NA);
disp(Om, "Acceptance Angle in degree is")
```

Scilab code Exa 2.20 normalized frequency

```
// Example 2.20: Normaised Frequency
clc;
clear;
close;
n1=1.45; // Core Refractive Index
NA=0.16; // Numerical Aperture
a=30; // core radius in micro meters
h=0.1; // wavelngth in micro meters
v=(2*%pi*a*NA)/h; // Normalised wavelngth
disp(v, "normalised frequency")
```

Scilab code Exa 2.21.a numerical aperture

```
// Example 2.21.A: Numerical Aperture
clc;
clear;
close;
c=3*10^8;// Speed of light in m/s
v=2*10^8;//speed of ligh in fiber in m/s
cc=75;// Critical angle in degree
n1=c/v;//cORE Refractive Index
n2=n1*(sind(Oc));// Cladding Refrative index
NA=sqrt(n1^2-n2^2);// Numerical Aperture
disp(NA," Numerical Aperture of the Fiber")
```

Scilab code Exa 2.21.b dispersion per unit length

```
// Example 2.21.b: Multipath dispersion per unit
length

clc;
clear;
close;
c=3*10^8;// Speed of light in m/s
v=2*10^8;//speed of ligh in fiber in m/s

cc=75;// Critical angle in degree
n1=c/v;//cORE Refractive Index
n2=n1*(sind(Oc));// Cladding Refrative index
d=n1-n2;// differnce in refractive index
Md1=(n1/n2)*(d/c);//
Md= Md1*10^9;
disp(Md," Multipath dispersion in microsecond per kilometer")
```

Scilab code Exa 2.22 Thickness

```
// Example 2.22: Thickness
clc;
clear;
close;
n1=3.6; // Core Refractive Index
n2=3.56; // Cladding Refractive Index
h=0.85; // wavelenght in micro meter
m=1; // mode is fundamental TE10
n=0;
Vc=2.405; // Cutoff wavelength
a=(Vc*h)/(2*%pi*sqrt(n1^2-n2^2)); // Core radius
disp(a, "Core radius in mircometers")
```

Scilab code Exa 2.23 core diameter

```
// Example 2.23: Daimeter
clc;
clear;
close;
n1=1.5; // Core Refractive Index
d=0.01; // difference in the refrative index
h=1.3; // wavelenght in micro meter
m=1100; // numer of modes
v=round(sqrt(2*m)); // Number of guided modes
a=(v*h)/(2*%pi*n1*sqrt(2*d)); // Core radius
d= 2*a; // Core Diameter
disp(d, "Core diameter in mircometers")
// answer is calculated wrong in the textbook
```

Scilab code Exa 2.24.a critical angle

```
// Example 2.24.a; Critical Angle
clc;
clear;
close;
n1=1.50; // Waveguide Refractive Index
n2=1.46; // Cladding Refractive Index
Co=asind(n2/n1); // Critical Angle
disp(Oc, "CRITICAL ANGLE IN DEGREE")
```

Scilab code Exa 2.24.b numerical aperture

```
// Example 2.14.b; Numerical Aperture
clc;
clear;
close;
n1=1.50; // Waveguide Refractive Index
n2=1.46; // Cladding Refractive Index
NA=sqrt(n1^2-n2^2); // Numerical Aperture
disp(NA, "Numerical Aperture is")
```

Scilab code Exa 2.25 acceptance angle

```
1 // Example 2.25; Acceptance Angle
2 clc;
3 clear;
4 close;
5 NA=0.344; // Numerical Aperture
```

```
6 r= 50; // Angle at which angle changes for skew rays
    in degreee
7 m=cosd(r);
8 Oa=asind(NA);
9 disp(Oa, "Acceptance angle in degree is")
10 Oas=asind(NA/m)
11 disp(Oas, "ACCEPTANCE ANGLE FOR SKEW RAYS IN DEGREE"
    )
```

Scilab code Exa 2.26 numer of modes and cutoff frequency

```
// Example 2.26:Number of guided modes
clc;
clear;
close;
n1=1.5;//Core Refractive Index
d= 0.013;// Cange in core-cladding refractive index
alpha=1.90;// index profile
a=20;//Core radius in micro meters
h=1.55;//wavelngth in micro meters
Mg= round((alpha/(alpha+2))*((n1*2*%pi*a)/h)^2 *d);
Vc=2.405*sqrt(1+2/alpha);
disp(Mg,"Number of guided modes are")
disp(Vc," normalised frequency")
```

Scilab code Exa 2.27.a numerical aperture

```
1 // Example 2.27.a:Numerical Aperture
2 clc;
3 clear;
4 close;
5 n1=1.5;//Core Refractive Index
6 n2=1.48;//Cladding Refractive Index
```

```
7 a=50; // Core radius in micro meters
8 NA=sqrt(n1^2-n2^2); // Numerical Aperture
9 disp(NA," Numerical Aperture of the Fiber")
```

Scilab code Exa 2.27.b critical angle

```
// Example 2.27.a: Numerical Aperture
clc;
clear;
close;
n1=1.5; // Core Refractive Index
n2=1.48; // Cladding Refractive Index
a=50; // Core radius in micro meters
NA=sqrt(n1^2-n2^2); // Numerical Aperture
Cc=asind(n2/n1);
disp(Oc, "Critical Angle")
```

Scilab code Exa 2.27.c pulse broadning

```
// Example 2.27.a: Numerical Aperture
clc;
clear;
close;
n1=1.5; // Core Refractive Index
n2=1.48; // Cladding Refractive Index
c=3*10^8; // Speed of ligh in m/s
a=50; // Core radius in micro meters
PB= (n1/n2)*((n1-n2)/c); // Pulse broadning per unit length
disp(PB, "Pulse broadning per unit length due to multipath dispersion in s/m")
```

Scilab code Exa 2.28 core diameter

```
// Example 2.28:Core diameter
clc;
clc;
clear;
close;
n1=1.5;//Core Refractive Index
d= 0.01;// Cange in core-cladding refractive index
alpha=2;// index profile
h=1.3;//wavelngth in micro meters
Vc=2.405*sqrt(1+2/alpha);
a=(Vc*h)/(2*%pi*n1*sqrt(2*d));
di=2*a;
disp(di,"core diameter in micro meters")
//answer is calculated wrong in the textbook
```

Chapter 4

TRANSMISSION CHARACTERSTICS OF OPTICAL FIBERS

Scilab code Exa 4.1 power loss

```
1 // Example 4.1:Loss
2 clc;
3 clear;
4 close;
5 L=0.4; // Length of fiber in km
6 Pi=1; // Assume input power
7 Po=0.25 // Optical Signal Loss
8 Loss= round((10/L)*(log10(Pi/Po))); // Loss in dB/Km
9 disp(Loss,"Loss in dB/Km")
```

Scilab code Exa 4.2 power level

```
1 // Example 4.2:Outpit Power
2 clc;
```

```
3 clear;
4 close;
5 h=0.82; // Wavelength in micro meters
6 alpha = 0.5; // Attenuation loss in dB/Km
7 L=3; // Length of fiber in km
8 Pi=1; // Input power in Milli Watt
9 X= ((alpha*L)/10);
10 Po=Pi*(10^(- X)); // Output power in milli watt
11 disp(Po, "output power in milli watt")
```

Scilab code Exa 4.3 link length

Scilab code Exa 4.4 pulse dispersion

```
1 // Example 4.4: Dispersion
2 clc;
3 clear;
4 close;
5 Pb=1.2; //in nano second
6 D=30; //in Km
7 DL=((Pb*10^-3)/30); // Dispersion per unit length
8 disp(DL," Dispersion in ns/m")
```

Scilab code Exa 4.5 output optical power

```
// Example 4.5: Outpit Power
clc;
clear;
close;
h=1.3;// Wavelength in micro meters
alpha = 0.8;//Attenuation loss in dB/Km
L=30;// Length of fiber in km
Pi=200;//Input power in micro Watt
X= ((alpha*L)/10);
Po=Pi*(10^(- X));//Output power in micro watt
disp(Po,"output power in micro watt")
```

Scilab code Exa 4.6.a signal loss

```
1 // Example 4.6.a:Loss
2 clc;
3 clear;
4 close;
5 L=8;// Length of fiber in km
6 Pi=120*10^-6;// input power in watt
7 Po=3*10^-6;//Output power in watt
8 alpha= round(10*(log10(Pi/Po)));//Loss in dB
9 disp(alpha,"Loss in dB")
```

Scilab code Exa 4.6.b signal loss per kilometer

```
1 // Example 4.6.b:Loss in dB/Km
```

```
2 clc;
3 clear;
4 close;
5 L=8; // Length of fiber in km
6 Pi=120*10^-6; // input power in watt
7 Po=3*10^-6; // Output power in watt
8 alpha= round(10*(log10(Pi/Po))); // Loss in dB
9 alphadb= alpha/L; // Loss in dB/Km
10 disp(alphadb, "Loss in dB/Km")
```

Scilab code Exa 4.6.c overall signal attenuation

```
// Example 4.6.c:Loss for 10Km
clc;
clc;
clear;
close;
L=8;// Length of fiber in km
Pi=120*10^-6;// input power in watt
Po=3*10^-6;//Output power in watt
alpha= round(10*(log10(Pi/Po)));//Loss in dB
alphadb= alpha/L;//Loss in dB/Km
alphadb2=alphadb*10;// Loss along 10Km fiber length in dB
Ds=alphadb2+9;// Due to splices at 1km Interval
disp(Ds,"Due to splices at 1km Interval in dB")
```

Scilab code Exa 4.6.d ratio of input to output power

```
1 // Example 4.6.d:Ratio of powers
2 clc;
3 clear;
4 close;
5 L=8;// Length of fiber in km
```

```
6 Pi=120*10^-6; // input power in watt
7 Po=3*10^-6; // Output power in watt
8 alpha= round(10*(log10(Pi/Po))); // Loss in dB
9 alphadb= alpha/L; // Loss in dB/Km
10 alphadb2=alphadb*10; // Loss along 10Km fiber length in dB
11 Ds=alphadb2+9; // Due to splices at 1km Interval
12 rt= 10^(Ds/10); // Ratio of input to output power
13 disp(rt, "Ratio of input to output power")
```

Scilab code Exa 4.7.a signal attenuation

```
1 // Example 4.8.a: Attenuation
2 clc;
3 clear;
4 close;
5 L=1; // dISTANCE IN kM
6 h=0.63; //in micro meter
7 Tf=1400; // Temperature in kelvin
8 p=0.286; // photoelastic coefficient of silica
9 n=1.46; // Refractive index of silica
10 Bc=7*10^-11; //isothermal compersebility in in Metere
       square per N
11 K=1.38*10^-23; // bOLTZMAN CONSTT. IN JULIAN PER
     KELVIN
12 x = (h*10^-6);
13 Yr = (8 * \%pi^3 * n^8 * p^2 * Bc * K * Tf) / (3 * (x)^4); / ray leigh
      scattering coefficient
14 Ekm = exp(-Yr*L*10^3)
15 alpha=10*(log10(1/Ekm));//Attenuation in dB/Km
16 disp(alpha, "Attenuation in dB/Km")
17 disp("solutions of example 4.8 and 4.7 are
      interchanged in the book")
```

Scilab code Exa 4.7.b signal attenuation

```
1 // Example 4.7.b: Attenuation
2 clc;
3 clear;
4 close;
5 L=1; // distance in Km
6 h=1.30;//in micro meter
7 Tf=1400; //Temperature in kelvin
8 p=0.286; // photoelastic coefficient of silica
9 n=1.46; // Refractive index of silica
10 Bc=7*10^-11; //isothermal compersebility in in Metere
       square per N
11 K=1.38*10^-23; // bOLTZMAN CONSTT. IN JULIAN PER
     KELVIN
12 x = (h*10^-6);
13 Yr = (8 * \%pi^3 * n^8 * p^2 * Bc * K * Tf) / (3 * (x)^4); // ray leigh
      scattering coefficient
14 Ekm= \exp(-Yr*L*10^3); // Transmission loss factor
15 alpha=10*(log10(1/Ekm));//Attenuation in dB/Km
16 disp(alpha, "Attenuation in dB/Km")
17 disp("solutions of example 4.8 and 4.7 are
      interchanged in the book")
```

Scilab code Exa 4.8 refractive index

```
1 // Example 4.8: refrative index
2 clc;
3 clear;
4 close;
5 alpha=0.46; // attenuation in Db/Km
6 L=1; // dISTANCE IN kM
```

Scilab code Exa 4.9 operating wavelength and attenuation

Scilab code Exa 4.10 optical power

```
1 // Example 4.10: Optical Powers
```

```
2 clc;
3 clear;
4 close;
5 h=1.5; // Wavelength in micro meters
6 d=6; //Core diameter in micro meter
7 v=0.8; //frequency in Giga Hertz
8 alpha=0.5; // Attenuation in dB/Km
9 Pb=(4.4*10^-3*d^2*h^2*alpha*v)*10^3; //Threshold
      optical power for brillouin scattering in milli
     watt
10 Pr=(5.9*10^-2*d^2*alpha*h); // Threshold optical power
      for Raman scattering in watt
11 disp(Pb, "Threshold optical power for brillouin
     scattering in milli watt")
12 disp(Pr, "Threshold optical power for Raman
     scattering in watt")
```

Scilab code Exa 4.11 critical radius

```
// Example 4.11: Critical Radius
clc;
clear;
close;
d=0.03; // Refractive index difference
n1=1.5; // Core refractive index
h= 0.82*10^-6; // Wavelength in meters
n2=sqrt(n1^2-(2*d*n1^2)); // Cladding refractive index
Rc=(3*n1^2*h)/(4*%pi*sqrt(n1^2-n2^2))*10^6; // Critical Radius in micro meters
disp(Rc, "Critical Radius in micro meters")
// answer is calculated wrong in the textbook
```

Scilab code Exa 4.12 critical radius

```
1 // Example 4.11: Critical Radius
2 clc;
3 clear;
4 close;
5 d=0.003; // Refractive index difference
6 a=4; // core radius in micro meters
7 n1=2; //Core refractive index
8 h= 1.55*10^-6; //Wavelength in meters
9 n2=sqrt(n1^2-(2*d*n1^2));// Cladding refractive
     index
10 hc= ((2*\%pi*a*10^-6*sqrt(2*d)*n1)/2.405)*10^6;//cut
      off wavelength in micro meters;
11 x=(20*h)/(sqrt(n1-1.75));
12 y = ((2.748 - 0.996 * (h * 10^6/hc)))^-3;
13 Rcs=x*y*10^6;
14 disp(Rcs, "Critical Radius in micro meters")
```

Scilab code Exa 4.13.a bandwidth

```
1 // Example 4.13.a:Maximum possible optical bandwidth
2 clc;
3 clear;
4 close;
5 t=0.1*10^-6;//Time in second
6 L=10;//Distance in Km
7 Bt=(1/(2*t))*10^-6;//Maximum possible optical
        bandwidth in Mega Hertz
8 disp(Bt,"Maximum possible optical bandwidth in Mega
        Hertz")
```

Scilab code Exa 4.13.b pulse dispersion

```
// Example 4.13.b: Despersion per unit length
clc;
clear;
close;
t=0.1*10^-6; // Time in second
L=10; // Distance in Km
dp=(t/L)*10^6; // Despersion per unit length in micro second per Km
disp(dp, "Despersion per unit length in micro second per Km")
```

Scilab code Exa 4.13.c bandwidth length product

```
// Example 4.13.b:Bandwidth legth product
clc;
clear;
close;
t=0.1*10^-6;//Time in second
L=10;//Distance in Km
Bt=(1/(2*t))*10^-6;//Maximum possible optical bandwidth in Mega Hertz
BL=Bt*L;// bANDWIDTH LENGTH PRODUCT IN kM
disp(BL,"BANDWIDTH LENGTH PRODUCT IN Km")
```

Scilab code Exa 4.14 wavelength

```
1 // Example 4.14: Wavelength
2 clc;
3 clear;
4 close;
5 Rc=84; // Critical Radius in micro meters
6 n2=1.45; // Cladding refrative index
7 n1=1.46; // Core refractive index
```

```
8 h=(Rc*10^-6*4*%pi*sqrt(n1^2-n2^2))/(3*n1^2)*10^6;//
Wavelength in micro meters
9 disp(h,"Wavelength in micro meters")
10 //answer is calculated wrong in the textbook
```

Scilab code Exa 4.15 pulse broadning

```
// Example 4.15;//Pulse broadning
clc;
clear;
close;
M=20;//dispersion parametr picosecond per nano meter
    per kilometer
L=30;//distance in Km
h=1.5;//WAVELENGTH IN MICRO METERS
Sh=2;// Spectral width in nano meter
Sm=Sh*L*M;//Pulse broadning due to material
    dispersion in pico second
disp(Sm,"Pulse broadning due to material dispersion
    in pico second")
```

Scilab code Exa 4.16.a material dispersion parameter

```
1 // Example 4.16.a;/ Material Dispersion Parameter
2 clc;
3 clear;
4 close;
5 c=2.998*10^5;// speed of light in km/s
6 Dh=0.025;// Material dispersion
7 L=30;// distance in Km
8 h=850;//WAVELENGTH IN Nano METERS
9 Sh=20;// Spectral width in nano meter
```

Scilab code Exa 4.16.b pulse broadning

```
1 // Example 4.16.b; Pulse broadning due to material
     dispersion
2 clc;
3 clear;
4 close;
5 c=2.998*10^5; // speed of light in km/s
6 Dh=0.025; // Material dispersion
7 L=30; // distance in Km
8 h=850; //WAVELENGTH IN Nano METERS
9 Sh=20; // Spectral width in nano meter
10 M=((Dh)/(c*h))*10^12; // dispersion parametr
     picosecond per nano meter per kilometer
11 Sm=(Sh*1*M)*10^-3; // Pulse broadning due to material
     dispersion in nanp second per kilometer
12 disp(Sm, "Pulse broadning due to material dispersion
     in nanp second per kilometer")
```

Scilab code Exa 4.17 pulse broadning

Scilab code Exa 4.18 pulse broadning

```
// Example 4.18;//Pulse broadning
clc;
clear;
close;
M=95;//dispersion parametr picosecond per nano meter
    per kilometer
L=1;//distance in Km
h=0.85;//WAVELENGTH IN MICRO METERS
Sh=0.0012*h*10^-6;// Spectral width in nano meter
Sm=(Sh*L*M)*10^6;//Pulse broadning due to material
    dispersion in nano second
disp(Sm,"Pulse broadning due to material dispersion
    in nano second per kilo meter")
```

Scilab code Exa 4.19 pulse broadning

```
1 // Example 4.19;//LIGHT PULSE SPREAD IN NS
2 clc;
3 clear;
4 close;
5 NA=0.275;//Numerical Aperture
6 n1=1.48;//Core refrctive index
```

Scilab code Exa 4.20.a delay

```
// Example 4.20.a;//delay
clc;
clear;
close;
d=0.02;// Change in refractive index
n1=1.5;//Core refrctive index
L=3*10^3;//Length in meter
C=2.998*10^8;//Speed of light in m/s
dts=round(((L*n1*d)/C)*10^9);//DELAY IN NS
disp(dts,"DELAY IN NS")
```

Scilab code Exa 4.20.b pulse broadning

```
// Example 4.20.b;//Pulse broadning due to
    intermodal dispersion

clc;

clear;

dclose;

d=0.02;// Change in refractive index

n1=1.5;//Core refrctive index

L=3*10^3;//Length in meter

C=2.998*10^8;//Speed of light in m/s

Ss=(L*n1*d)/(2*sqrt(3)*C)*10^9;//Pulse broadning due
    to intermodal dispersion in ns

disp(Ss,"DELAY IN NS")
```

Scilab code Exa 4.20.c bit rate

```
1  // Example 4.20.c;//Bit Rate
2  clc;
3  clear;
4  close;
5  d=0.02;// Change in refractive index
6  n1=1.5;//Core refrctive index
7  L=3*10^3;//Length in meter
8  C=2.998*10^8;//Speed of light in m/s
9  dts=round(((L*n1*d)/C)*10^9);//DELAY IN NS
10  Bt=(1/(2*dts*10^9))*10^12;//Bit rate in Mbits/sec
11  disp(Bt,"Bit rate in Mbits/sec")
```

Scilab code Exa 4.20.d bandwidth length product

```
// Example 4.20.d;/bANDWIDTH LENGTH PRODUCT
clc;
clear;
close;
d=0.02;// Change in refractive index
n1=1.5;//Core refrctive index
L=3*10^3;//Length in meter
C=2.998*10^8;//Speed of light in m/s
dts=round(((L*n1*d)/C)*10^9);//DELAY IN NS
Bt=(1/(2*dts*10^9))*10^12;//Bit rate in Mbits/sec
BL=Bt*L*10^-3;// bANDWIDTH LENGTH PRODUCT IN kM
disp(BL,"bANDWIDTH LENGTH PRODUCT IN Mega Hertz kM")
```

Scilab code Exa 4.21 pulse broadning

Scilab code Exa 4.22 pulse broadning

```
// Example 4.22;//TOTAL RMS Pulse broadning
clc;
clear;
close;
M=30;//dispersion parametr picosecond per nano meter
    per kilometer
Sa=25;//spectral width in nm
NA=0.4;//nUMERICAL aPERTURE
n1=1.48;// Core refractibve index
n2=1.47;//cleadding refrative index
C=2.998*10^8;//Speed of light in m/s
d=n1-n2;
L=1;//length in Km
Sm=M*L*Sa;//rms pulse broadning due to material
    dispersion
```

Scilab code Exa 4.23.a pulse broadning

```
1 // Example 4.23.a;//TOTAL RMS Pulse broadning
2 clc;
3 clear;
4 close;
5 M=250; // dispersion parametr picosecond per nano
     meter per kilometer
6 Sa=50; //spectral width in nm
7 NA=0.3; //nUMERICAL aPERTURE
8 n1=1.45; // Core refractibve index
9 C=2.998*10^8; //Speed of light in m/s
10 L=1; //length in Km
11 Sm=M*L*Sa*10^-3; //rms pulse broadning due to
     material dispersion
12 Ss=(L*10^3*NA^2)/(4*sqrt(3)*C*n1)*10^9;//Pulse
     broadning due to intermodal dispersion in ns/Km
13 St=sqrt(Sm^2+Ss^2); // Total broadning
14 disp(Ss, Sm, St, "Total broadning ns per Km is")
```

Scilab code Exa 4.23.b bandwidth length product

```
1 // Example 4.23.b;//bandwidth length product
2 clc;
3 clear;
4 close;
5 M=250;//dispersion parametr picosecond per nano
    meter per kilometer
```

```
6 Sa=50; // spectral width in nm
7 NA=0.3; //nUMERICAL aPERTURE
8 n1=1.45; // Core refractibve index
9 C=2.998*10^8; // Speed of light in m/s
10 L=1; // length in Km
11 Sm=M*L*Sa*10^-3; // rms pulse broadning due to material dispersion
12 Ss=(L*10^3*NA^2)/(4*sqrt(3)*C*n1)*10^9; // Pulse broadning due to intermodal dispersion in ns/Km
13 St=sqrt(Sm^2+Ss^2); // Total broadning
14 BL= (0.2/(St*10^-9))*10^-6; // Bandwidth length product in Mega hertz Km
15 disp(BL, "Bandwidth length product in Mega hertz Km")
```

Scilab code Exa 4.24 beat length

```
1 // Example 4.23.b;//bandwidth length product
2 clc;
3 clear;
4 close;
5 Lbc=100;//Birefringent Coherence over length in Km
6 h=1.32;//wavelength in micro meter
7 df=1.5;//spectral width
8 Bf=((h*10^-6)^2)/(Lbc*10^3*df*10^-9);
9 Lb=(h*10^-6)/Bf;//Beat Length in Km
10 disp(Lb, "Beat Length in Km")
```

Scilab code Exa 4.25 modal birefringence

```
1 // Example 4.25;//birefringence
2 clc;
3 clear;
4 close;
```

Scilab code Exa 4.26 modal birefringence cohrence length and prop diif

```
// Example 4.26;// Bifringence and differnce between
the propogation constt.

clc;
clear;
close;
Lb=0.05;// Birefringent Coherence over length in
meter
h=0.5;// wavelength in micro meter
df=1;// spectral width in nano meter
Bf=((h*10^-6)/(Lb));// modal bifringence
Lbc= (((h*10^-6)^2)/(Bf*df*10^-9));//COHERENCE
LENGTHnin meter
Bxy=(2*%pi)/(Lb);// Diff in the propogation constant
disp(Bf, "modal bifringence is")
disp(Bxy," Diff in the propgation constt. is")
```

Scilab code Exa 4.27 bit rate

```
1 // Example 4.27;//Maximum bit rate 2 clc;
```

```
3 clear;
4 close;
5 L=10; // Length in Km
6 Dt2=600*10^-12; // Birefringent in second per
        kilometer
7 B=(0.9)/(Dt2*L*10^3); //
8 Btm= round((B/0.55)*10^-3); // maximum bit rate in
        kilo bit per second
9 disp(Btm,"maximum bit rate in kilo bit per second")
```

Scilab code Exa 4.28 pulse broadning

```
1 // Example 4.28;//Pulse Spreadning
2 clc;
3 clear;
4 close;
5 L=100;// Length in Km
6 Tpmd=0.5*sqrt(L);// pulse broadning in pico second
7 disp(Tpmd,"pulse broadning in pico second is ")
```

Chapter 6

OPTICAL SOURCES THE LASER

Scilab code Exa 6.1 ratio of stimulated emission rate to spontaneous emission rate

```
// Example 6.1;//Ratio of stimulated emision to
    spontaneous emission

clc;
clear;
close;
hw=0.5;//wavelength in micro meetr
h=6.626*10^-34;//
T=1000;// temeperature in kelvin
C=3*10^8;// speed of light in m/s
f=C/(hw*10^-6);//frequency in hertz
K=1.38*10^-23;//bOltzman constt.
x=(h*f)/(K*T);
Rtp= 1/(exp(x)-1);
disp(Rtp,"Ratio of stimulated emisssion rate to
    spontaneous rate is")
```

Scilab code Exa 6.2 optical spacing

```
// Example 6.2;//optical spacing
clc;
clear;
close;
h=0.5*10^-6;//Wavelength in meter
n=1.38;//refractive index
T=1000;//tEMPERTURE IN KELVIN
q=1.3*10^4;//logitudinal modes
L=(h*q)/(2*n);// optical spacing in meter
disp(L,"optical spacing in meter")
```

Scilab code Exa 6.3 emission wavelength

```
// Example 6.3;//number of longitudinal modes and
frequency spacing

clc;
clear;
close;
h=0.55*10^-6;//Wavelength in meter
n=1.78;//refractive index
L=4*10^-2;//LENGTH IN METER
C=3*10^8;//Speed of light in m/s
q=(2*n*L)/(h);//Number of logitudinal modes
df=((C)/(2*n*L))*10^-9;//frequency sepration in Gega Hertz
disp(df, "frequency spacing in Gega Hertz is ")
disp(q, "Number of longitudinal modes are ")
```

Scilab code Exa 6.4 optical gain

```
1 // Example 6.4;//optical gain
```

```
2 clc;
3 clear;
4 close;
5 R1=0.32;
6 R2=0.32;
7 alpha=10;// in cm
8 L=500;//in micro meter
9 gth=alpha+(1/(2*L*10^-4)*log(1/(R1*R2)));
10 disp(gth, "Optical gain in per centimeter is ")
```

Scilab code Exa 6.5 FREQUENCY AND WAVELNEGTH SPACING

```
// Example 6.5;//wavelength spacing and frequency
spacing

clc;
clear;
close;
h=850*10^-9;//Wavelength in meter
n=3.7;//refractive index
L=500*10^-6;//LENGTH IN METER
C=3*10^8;//Speed of light in m/s
df=((C)/(2*n*L))*10^-9;//frequency sepration in Gega
Hertz
dh=((h^2)/(2*n*L))*10^9;//wavelength spacing in mm
disp(df,"frequency spacing in Gega Hertz is ")
disp(dh," wavelength spacing in mm is")
```

Scilab code Exa 6.6 CARRIER LIFETIME

```
1 // Example 6.3;//wavelength spacing and frequency
      spacing
2 clc;
3 clear;
```

Scilab code Exa 6.7 threshold density

Scilab code Exa 6.8 external power efficiency

```
1 // Example 6.8;//external power efficiency
2 clc;
```

```
3 clear;
4 close;
5 nt=0.18; //total efficiency of injection laser
6 Eg=1.43; //Energy gap in electron volt
7 V=2.5; //votls
8 next=round(nt*(Eg/V)*100); //EXTERNAL EFEICIENCY
9 disp(next,"external efficiency percentage is")
```

Scilab code Exa 6.9 ratio of threshold current densities

Scilab code Exa 6.10 wavelngth and line width

```
1 // Example 6.10;//wavelength
2 clc;
3 close;
4 clear;
5 Eg=1.43;//Energy gap in electron-volt
6 hC=1.24;//cONSTANT
```

```
7 h=hC/Eg; // wavelength in micro meter
8 disp(h, "wavelength in micro meter is")
```

Scilab code Exa 6.11 threshold coefficient gain

```
// Example 6.4;//threshold coefficient gain
clc;
clc;
clear;
close;
R1=0.35;
R2=0.35;
alpha=1.5;// in per meter
L=0.5;//in mm
t=0.8;//confinement factor
gth=alpha+(1/(2*L)*log(1/(R1*R2)));
Tc= gth/t;// threshold coefficient gain in per mm
disp(Tc,"threshold coefficient gain in per mm")
```

Scilab code Exa 6.12 cavity length and number of logitudinal modes

```
// Example 6.12;//Cavity length and longitudinal
modes

clc;
close;
clear;
h=0.87*10^-6;//Wavelength in meter
n=3.6;//refractive index
df=278;//frequency sepration in Gega Hertz
C=3*10^8;//Speed of light in m/s
L=(C/(2*n*df*10^9))*10^4;//Length of cavity in cm
q=(2*n*L*10^-2)/(h);//Number of logitudinal modes
disp(L,"Length of cavity in cm")
disp(q,"Number of longitudinal modes are ")
```

Scilab code Exa 6.13 internal quantum efficiency

Scilab code Exa 6.14 number of longitudinal modes and frequency sepration

```
// Example 6.14;//number of longitudinal modes and
frequency spacing

clc;

clear;

close;

h=0.5*10^-6;//Wavelength in meter

n=1.5;//refractive index

L=7*10^-2;//LENGTH IN METER

C=3*10^8;//Speed of light in m/s

q=(2*n*L)/(h);//Number of logitudinal modes

df=((C)/(2*n*L))*10^-9;//frequency sepration in Gega
Hertz
```

```
11 disp(df, "frequency spacing in Gega Hertz is ")
12 disp(q, "Number of longitudinal modes are ")
```

Scilab code Exa 6.15 cavity length and number of logitudinal modes

```
// Example 6.15;//Cavity length and longitudinal
modes

clc;
close;
clear;
h=0.87*10^-6;//Wavelength in meter
n=3.6;//refractive index
df=278;//frequency sepration in Gega Hertz
C=3*10^8;//Speed of light in m/s
L=round((C/(2*n*df*10^9))*10^6);//Length of cavity
in micro meter

q=round(((2*n*L*10^-2)/(h))*10^-4);//Number of
logitudinal modes
disp(L,"Length of cavity in micro meter")
disp(q,"Number of longitudinal modes are ")
```

Scilab code Exa 6.16 hole concentration

```
// Example 6.16;//Hole concentration
clear;
close;
clc;
Br=2.39*10^-10;//Bit rate
Tr=1;//Time in nano second
n=1/(Br*Tr*10^-9)//hole concentration
disp(n,"hole concentration in per cubic centimeter")
```

Scilab code Exa 6.17 gain factor

```
// Example 6.17;//Gain factor
clc;
clcar;
close;
W=15;//width in per centimeter
Ith=50;//Current in mili ampere
r1=0.3;
r2=0.3;
alpha=10;// in per cm
L=50;//length in MICRO meter
If th=(Ith/(L*10^-6*W));//Current density
B=(1/Jth)*(alpha+((1/(2*L*10^-04))*log(1/(r1*r2))));
//gain factor in centimeter per ampere is
disp(B, "gain factor in centimeter per ampere is")
```

Scilab code Exa 6.18 internal quantum efficiency

Chapter 7

OPTICAL SOURCES THE LIGHT EMITTING DIODE

Scilab code Exa 7.1.a bulk recombination life time

```
1 // Example 7.1.a;//Bulk recombination life time
2 clc;
3 clear;
4 close;
5 h=1310*10^-9;//wavelength in meter
6 tr=30;//radiative recombination time in nano second
7 tnr=100;//non radiative recombination time in nano second
8 i=40;//injected current in milli ampere
9 t=(tr*tnr)/(tr+tnr);//Bulk recombination life time in nano second
10 disp(t,"Bulk recombination life time in nano second")
```

Scilab code Exa 7.1.b internal quantum efficiency

```
// Example 7.1.b;//inernal quantum efficiency
clc;
clear;
close;
h=1310*10^-9;//wavelength in meter
tr=30;//radiative recombination time in nano second
tnr=100;//non radiative recombination time in nano second
second
i=40;//injected current in milli ampere
t=(tr*tnr)/(tr+tnr);//Bulk recombination life time in nano second
nint=(t/tr)
disp(nint,"inernal quantum efficiency is ")
```

Scilab code Exa 7.1.c power level

```
1 // Example 7.1.c;//inernal power level
2 clc;
3 clear;
4 close;
5 e=1.6*10^-19; // Electronic charge
6 ht=6.62*10^-34; // Constt
7 C=3*10^8; //sPPED OF LIGHT IN M/S
8 h=1310*10^-9; // wavelength in meter
9 tr=30; //radiative recombination time in nano second
10 tnr=100; //non radiative recombination time in nano
     second
11 i=40; //injected current in milli ampere
12 t=(tr*tnr)/(tr+tnr);//Bulk recombination life time
     in nano second
13 nint= (t/tr)
14 Pint= (nint*((ht*C*i*10^-3)/(e*h)))*10^2;//internal
     power level in milli watt
15 disp(Pint,"internal power level in milli watt")
```

Scilab code Exa 7.2 power radiated

```
// Example 7.2;//power radiated by LED
clc;
clear;
close;
e=1.6*10^-19;//Electronic charge
ht=6.62*10^-34;//plank Constt
C=3*10^8;//sPPED OF LIGHT IN M/S
h=670*10^-9;//wavelength in meter
i=50;//injected current in milli ampere
nint=0.03;//inernal quantume efficiency
Pint= (nint*((ht*C*i*10^-3)/(e*h)))*10^2;//internal power level in milli watt
disp(Pint,"internal power level in milli watt")
```

Scilab code Exa 7.3 non radiative recombination lifetime

```
// Example 7.3;//non radiative recombination time
clc;
clear;
close;
h=890*10^-9;//wavelength in meter
tr=100;//radiative recombination time in nano second
t=130;//Bulk recombination life time in nano second
i=14;//injected current in milli ampere
tnr=round((t*tr)/(t-tr));//non radiative
    recombination time in nano second
disp(tnr,"non radiative recombination time in nano second")
```

Scilab code Exa 7.4 internal quantum efficiency

```
// Example 7.4;//inernal power level
clc;
clear;
close;
e=1.6*10^-19;//Electronic charge
ht=6.62*10^-34;//Constt
C=3*10^8;//sPPED OF LIGHT IN M/S
h=0.87*10^-9;//wavelength in meter
i=40;//injected current in milli ampere
nint= 0.625;//inernal quantum efficieny
Pint= (nint*((ht*C*i*10^-3)/(e*h)));//internal power
level in milli watt
disp(Pint,"internal power level in milli watt")
```

Scilab code Exa 7.5 optical power emitted

```
1 // Example 7.5;//optical power emitted
2 clc;
3 clear;
4 close;
5 F=0.68;//transmission factore
6 nx=3.6;//refractive index
7 n=1;//refractive index of air
8 Px=((F*n^2)/(4*nx^2))*100;//optical power emitter
9 disp(Px, "percentage of emitter power in terms of power generated internally")
```

Scilab code Exa 7.6.a coupling efficiency

```
// Example 7.6.a;//coupling efficiency
clc;
clear;
close;
NA=0.2;//numerical aperture
n=1.4;//refractive index
nc=(NA)^2;//coupling efficiency
disp(nc,"coupling efficiency is")
```

Scilab code Exa 7.6.b optical loss

```
1 // Example 7.6.b;//optical power loss
2 clc;
3 clear;
4 close;
5 NA=0.2;//numerical aperture
6 n=1.4;//refractive index
7 nc=(NA)^2;//coupling efficiency
8 Loss=round(-(10*log10(nc)));//optical loss in dB
9 disp(Loss,"optical loss in dB is")
```

Scilab code Exa 7.7 optical power

```
1 // Example 7.7;//optical power
2 clc;
3 clear;
4 close;
5 r=0.01;//fresenel reflection coefficient
6 NA=0.15;//numeical apertrure
7 Rd=30;//radiance in W sr-1 cm-2
8 i=40;//currenct in milli ampere
```

Scilab code Exa 7.8 power conversion efficiency

```
// Example 7.8;//overall power conversion efficiency
clc;
clear;
close;
Pc=150*10^-6;//Optical power in watt
If=25;//forward current in milli ampere
Vf=2.5;//forward voltage in volts
P=If*10^-3*If;//power in watt
prc=((Pc/P)*10^3);//overall power conversion
efficiency
disp(npc,"overall power conversion efficiency in percentage")
```

Scilab code Exa 7.9 optical power

```
1 // Example 7.9;//overall power
2 clc;
3 clear;
4 close;
5 Pdc=300*10^-6;//d.c. power in watt
6 f=20*10^6;//frequency in hertz
7 Ti=5*10^-9;//recombination life time in nano second
8 Pe=(Pdc*sqrt(1+(2*%pi*f*Ti)^2))*10^6;
9 disp(Pe,"overall power in micro watt")
```

Scilab code Exa 7.10.a internal quantum efficiency and internal power level

```
1 // Example 7.10.a;//inernal quantum efficiency and
     internal power level
2 clc;
3 clear;
4 close;
5 e=1.6*10^-19; // Electronic charge
6 ht=6.62*10^-34; // Constt
7 C=3*10^8; //sPPED OF LIGHT IN M/S
8 h=1310*10^-9; //wavelength in meter
9 tr=25; //radiative recombination time in nano second
10 tnr=90; //non radiative recombination time in nano
      second
11 i=35; //injected current in milli ampere
12 t=(tr*tnr)/(tr+tnr);//Bulk recombination life time
      in nano second
13 \text{ nint= } (t/tr)
14 Pint= (nint*((ht*C*i*10^-3)/(e*h)))*10^2;//internal
     power level in milli watt
15 disp(nint,"inernal quantum efficiency is ")
16 disp(Pint, "internal power level in milli watt")
```

Scilab code Exa 7.10.b power emitted

```
1 // Example 7.10.b;//power emitted
2 clc;
3 clear;
4 close;
5 n=3.5;//refractive index
6 e=1.6*10^-19;//Electronic charge
```

Scilab code Exa 7.11 transmission factor

```
// Example 7.11;//transmission factor
clc;
clc;
clear;
close;
n=1;//refratcive index of air
i=37;//current in milli ampere
V=1.6;//Voltage in volts
nep=0.75;//external power efficiency
Pint=30;//power in milli watt
nx=3.46;//refrative index
P=i*V*10^-3;//POWER IN WATT
Pe=(nep*P)/100;//
F=(Pe*4*nx^2)/(Pint*10^-3*n^2);//Transmission factor
disp(F,"Transmission factor is")
```

Scilab code Exa 7.12 optical power and external power efficiency

```
1 // Example 7.12;//OPTICAL POWER EMITTED & EXTERNAL
     POWER EFFICIENCY
2 clc;
3 clear;
4 close;
5 e=1.6*10^-19; // Electronic charge
6 ht=6.62*10^-34; // Constt
7 C=3*10^8; //sPPED OF LIGHT IN M/S
8 h=0.85*10^-5; //wavelength in meter
9 V=1; //VOLTAGE
10 F=0.68; //transmisson factor
11 nx=3.6; //refractive index
12 n=1;; //refrative index of air
13 nint=0.6; //inernal efficiency
14 i=20*10^-3; //injected current in milli ampere
15 Pint= (nint*((ht*C*i*10^-3)/(e*h)))*10^7;//internal
     power level in milli watt
16 Pe=round((Pint*F)/(4*nx^2)*10^3);//optical power
     emitted
17 nep=(Pe*10^-6/(V*i))*100; //EXTERNAL POWER EFFICIENCY
18 disp(Pe, "optical power emitted in micro watt")
19 disp(nep, "external power efficiency is")
```

Chapter 8

POWER LAUNCHING AND COUPLING

Scilab code Exa 8.1.a optical power coupled

```
// Example 8.1.a;//OPTICAL POWER coupled
clc;
clear;
close;
B0=100;//in W per cm2 sr
rs=0.002;// radiating radius in cm
a=0.0015;//core radius in cm
NA=0.3;//numerical aperture
Pc=(B0*rs^2*%pi^2*NA^2)*10^3;//POWER COUPLED IN STEP INDEX FIBER in mili watt
disp(Pc, "POWER COUPLED IN STEP INDEX FIBER in mili watt")
```

Scilab code Exa 8.1.b core radius

```
1 // Example 8.1.b;//OPTICAL POWER coupled in fiber
```

```
2 clc;
3 clear;
4 close;
5 B0=100;//in W per cm2 sr
6 rs=0.002;// radiating radius in cm
7 a=0.0015;//core radius in cm
8 NA=0.3;//numerical aperture
9 Pc=(B0*a^2*%pi^2*NA^2)*10^3;//POWER COUPLED IN FIBER in mili watt
10 disp(Pc,"POWER COUPLED IN FIBER in mili watt")
```

Scilab code Exa 8.2 power distribution coefficients

Scilab code Exa 8.3 power coupled

```
// Example 8.3;//power coupled
clc;
clear;
close;
n1=1.48;//core refractive index
n2=1.46;//cladiing refractive index
Po=150;//output power in micro watt
NA=sqrt(n1^2-n2^2);//numerical aperture
```

```
9 Pin=Po*NA^2;
10 disp(Pin, "Power couled in micro watt")
```

Scilab code Exa 8.4 fresnel reflection coefficient

```
// Example 8.4;//fresenel reflection coefficient
clc;
clc;
clear;
close;
fn1=1.45;//Core refrative index
fn2=1;//refractive index of air
R=((n1-n2)/(n1+n2))^2;//Fresenel Coefficient
disp(R,"fresenel reflection coefficient is")
```

Scilab code Exa 8.5 compare optical powers

```
// Example 8.5;//Compare OPTICAL POWER
clc;
clear;
close;
a=20;//core radius in micro meter
Bo=100;//in W per cm2 sr
rs=35;// radiating radius in micro meter
rs1=50;//
NA=0.2;//numerical aperture
Ps1= (%pi^2*(rs*10^-6)^2*Bo*NA^2)*10^7;
Ps2= (((rs/rs1)^2)*Ps1);//
disp(Ps1,"POWER when area is large in micro watt")
disp(Ps2,"power wHEN AREA IS SMALL in milli watt")
```

Chapter 9

OPTICAL DETECTORS

Scilab code Exa 9.1 quantum efficiency

```
1 // Example 9.1;//quantum efficiency
2 clc;
3 clear;
4 close;
5 re=4.2*10^6;// Average no. of electron hole pair
        generated
6 rp=6*10^6;//no. of photons
7 h=1200;//wavelength in nano meter
8 n=round((re/rp)*100);//quantum efficiency
9 disp(n,"quantum efficiency is")
```

Scilab code Exa 9.2 photocurrent

```
1 // Example 9.2;//photocurrent
2 clc;
3 clear;
4 close;
5 R=0.85;//responsivity in ampere per watt
```

```
6 Po=1;//output power in milli watt
7 Ip= R*Po;//photocurrent in milli ampere
8 disp(Ip, "photocurrent in milli ampere is ")
```

Scilab code Exa 9.3 responsivity

```
// Example 9.3;//responsivity
clc;
clear;
close;
E=0.75;//energy gap in electron volt
C=3*10^8;//SPEED of light in meter per second
n=0.60;//quantum efficiency
ht=6.62*10^-34;//plank constt.
h=((ht*C)/(E*1.6*10^-19))*10^9;//wavelength in nano meter
R=((n*h)/1248);//responsivity
disp(R,"Responsivity is in ampere per watt")
```

Scilab code Exa 9.4 quantum efficiency and responsivity

```
// Example 9.3;//quantum efficiency and responsivity
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
re=1.5*10^12;// Average no. of electron hole pair generated
rp=3*10^12;//no. of photons
h=0.65;//wavelength in micro meter
E=0.75;//energy gap in electron volt
C=3*10^8;//SPEED of light in meter per second
n=round((re/rp)*100);//quantum efficiency
```

```
12 ht=6.62*10^-34; // plank constt.
13 R=((n/100)*e*h*10^-6)/(ht*C);
14 disp(n, "quantum efficiency is")
15 disp(R, "Responsivity is in ampere per watt")
```

Scilab code Exa 9.5.a operating wavelength

```
// Example 9.5.a;//WAVELENGTH
close;
clear;
close;
E=1.5*10^-19;//energy in joule
e=1.6*10^-19;//elecronic charge
If=1.5*10^-6;//forward current in ampere
C=3*10^8;//SPEED of light in meter per second
n=0.65;//quantum efficiency
th=6.62*10^-34;//plank constt.
h=((ht*C)/E)*10^6;//Wavelength
disp(h,"wavelength in micro meter")
```

Scilab code Exa 9.5.b incident optical power

```
1 // Example 9.5.b;//Incident optical power
2 clc;
3 clear;
4 close;
5 E=1.5*10^-19;//energy in joule
6 e=1.6*10^-19;//elecronic charge
7 If=1.5*10^-6;//forward current in ampere
8 C=3*10^8;//SPEED of light in meter per second
9 n=0.65;//quantum efficiency
10 ht=6.62*10^-34;//plank constt.
11 h=((ht*C)/E)*10^6;//Wavelength
```

```
12 R=(n*e)/(E);//Responsivity in ampere per watt
13 Po=(If/R)*10^6;//Output power in micro watt
14 disp(Po,"Output power in micro watt")
```

Scilab code Exa 9.6 WAVELENGTH

```
// Example 9.6;//WAVELENGTH
clc;
clc;
clear;
close;
E=1.43//energy gap in electron-volt
e=1.6*10^-19;//elecronic charge
C=3*10^8;/SPEED of light in meter per second
ht=6.62*10^-34;//plank constt.
h=((ht*C)/(E*e))*10^6;//Wavelength
disp(h,"wavelength in micro meter")
```

Scilab code Exa 9.7.a responsivity

```
// Example 9.7.a;//responsivity
clc;
clear;
close;
C=3*10^8;//SPEED of light in meter per second
n=0.50;//quantum efficiency
h=900;//wavelength in nano meter
ht=6.62*10^-34;//plank constt.
R=((n*h)/1248);//responsivity
disp(R,"Responsivity is in ampere per watt")
```

Scilab code Exa 9.7.b received optical power

```
// Example 9.7.b;//optical POWER
clc;
clear;
close;
Ip=10^-6;//optical current in ampere
C=3*10^8;//SPEED of light in meter per second
n=0.50;//quantum efficiency
h=900;//wavelength in nano meter
ht=6.62*10^-34;//plank constt.
R=((n*h)/1248);//responsivity
Po=(Ip/R);//Output power in watt
disp(Po,"Output power in watt")
```

Scilab code Exa 9.7.c number of received photons

```
// Example 9.7.b;//optical current
clc;
clcar;
close;
Ip=10^-6;//optical current in ampere
C=3*10^8;//SPEED of light in meter per second
n=0.50;//quantum efficiency
h=900;//wavelength in nano meter
ht=6.62*10^-34;//plank constt.
R=((n*h)/1248);//responsivity
Po=(Ip/R);//Output power in watt
n=(Po*h*10^-9)/(ht*C);//no. of received phontons
disp(n,"no. of received phontons is")
```

Scilab code Exa 9.8 multiplication factor

```
// Example 9.8;// multiplication factor
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=0.9;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.80;//efficiency
ht=6.62*10^-34;//plank constt.
I=12;//CURRENT IN MICRO AMPERE
Po=0.5;//output power in micro watt
R=((n*e*h*10^-6)/(ht*C));
Ip=Po*R;//photocurrent in micro ampere
M=I/Ip;// Multilplication factor
disp(M," Multilplication factor IS")
```

Scilab code Exa 9.9 responsivity and multiplication factor

```
// Example 9.9;//multiplication factor
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=850;//wavelength in NANO meter
C=3*10^8;//SPEED of light in meter per second
n=0.65;//efficiency
ht=6.62*10^-34;//plank constt.
I=10;//CURRENT IN MICRO AMPERE
Po=0.5;//output power in micro watt
R=((n*e*h*10^-9)/(ht*C));
Ip=Po*R;//photocurrent in micro ampere
M=I/Ip;//Multilplication factor
disp(M,"Multilplication factor IS")
```

Scilab code Exa 9.10.a noise equivalent power

```
// Example 9.10.a;//noise equivalent power
clc;
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=1.3;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.55;//efficiency
ht=6.62*10^-34;//plank constt.
Id=8;//CURRENT IN nano AMPERE
NEP=((ht*C)*sqrt(2*e*Id*10^-9))/(n*e*h*10^-6);//
noise equivalent power in watt
disp(NEP,"noise equivalent power in watt is")
```

Scilab code Exa 9.10.b specific detectivity

```
// Example 9.10.a;//specific detectivity
clc;
clear;
close;
A=75*50*10^-12;//
e=1.6*10^-19;//elecronic charge
h=1.3;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.55;//efficiency
ht=6.62*10^-34;//plank constt.
Id=8;//CURRENT IN nano AMPERE
NEP=((ht*C)*sqrt(2*e*Id*10^-9))/(n*e*h*10^-6);//
noise equivalent power in watt
D=(sqrt(A)/NEP);//specific detectivity
```

Scilab code Exa 9.11.a optical gain

```
// Example 9.11.a;//Optical gain
clc;
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=1.26;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.60;//efficiency
ht=6.62*10^-34;//plank constt.
Ic=15;//CURRENT IN milli ampere
Po=125;//output power in micro watt
Gc=(ht*C*Ic*10^-3)/(h*10^-6*e*Po*10^-6);//Gain
disp(Gc,"optical gain is")
```

Scilab code Exa 9.11.b common emitter current gain

```
// Example 9.11.b;//Common emitter current gain
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=1.26;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.60;//efficiency
ht=6.62*10^-34;//plank constt.
Ic=15;//CURRENT IN milli ampere
Po=125;//output power in micro watt
Cc=(ht*C*Ic*10^-3)/(h*10^-6*e*Po*10^-6);//Gain
nfc=Gc/n;//Common emitter current gain
```

```
14 disp(nfc, "common emittergain is")
```

Scilab code Exa 9.12 bandwidth

```
// Example 9.12;//Maximuum bandwidth
clc;
clc;
clear;
close;
tr=5*10^-12;//electron transit time in pico second
G=70;//photo conductive gain
Bm=(1/(2*%pi*tr*G))*10^-6;//Maximum bandwidth
disp(Bm,"Maximum bandwidth in mega hertz is")
```

Scilab code Exa 9.13 photocurrent

```
// Example 9.13;//output photo current
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
rp=10^11;//photons per second
hf=1.28*10^19;// energy in joule
n=1;//efficency
C=3*10^8;//SPEED of light in meter per second
ht=6.62*10^-34;//plank constt.
Po=(rp/hf)*10^9;//incident optical power in micro watt
Ip=(n*Po*10^-6*e)/(hf);//output photo current
disp(Ip,"output photo current in ampere is")
```

Scilab code Exa 9.14 photocurrent

```
1 // Example 9.14;//output photo current
2 clc;
3 clear;
4 close;
5 R=0.40;//RESPONSIVITY IN AMPERE PER WATT
6 If=100;//incident flus in micro watt per milli meter square
7 Ae=2;//active area in mili mtere square
8 Po=If*Ae;//incident optical power in micro watt
9 Ip=Po*R*10^-3;//output photo current IN MIILI AMPERE
10 disp(Ip,"output photo current in milli ampere is")
```

Scilab code Exa 9.15 multiplication factor

```
// Example 9.15;// multiplication factor
clc;
clcar;
close;
e=1.6*10^-19;//elecronic charge
h=1.3;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.5;//efficiency
ht=6.62*10^-34;//plank constt.
I=8;//CURRENT IN MICRO AMPERE
Po=0.4;//output power in micro watt
R=((n*e*h*10^-6)/(ht*C));
Ip=Po*R;//photocurrent in micro ampere
M=I/Ip;// Multilplication factor
disp(M," Multilplication factor IS")
```

Scilab code Exa 9.16 bandwidth

```
// Example 9.16;//Maximuum bandwidth
clc;
clear;
close;
tr=4.5*10^-12;//electron transit time in second
G=80;//photo conductive gain
Bm=(1/(2*%pi*tr*G))*10^-9;//Maximum bandwidth
disp(Bm,"Maximum bandwidth in giga hertz is")
```

Scilab code Exa 9.17 responsivity and optical power

```
// Example 9.17;//responsivity and recieved optical
power

clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
h=0.9;//wavelength in micro meter
C=3*10^8;//SPEED of light in meter per second
n=0.50;//efficiency
ht=6.62*10^-34;//plank constt.
I=1;//CURRENT IN MICRO AMPERE
R=((n*e*h*10^-6)/(ht*C));
Po=(I*10^-6)/R;//
disp(R,"Responsivity is in ampere per watt")
disp(Po,"Output power in m watt")
```

Scilab code Exa 9.18 EFFICIENCY

```
1 // Example 9.18;//efficiency
2 clc;
3 clear;
4 close;
```

```
5 e=1.6*10^-19; // electronic charge
6 h=1300; // wavelength in nano meter
7 C=3*10^8; //SPEED of light in meter per second
8 R=0.374; // Responsivity is in ampere per watt
9 ht=6.62*10^-34; // plank constt.
10 n=((R*ht*C)/(e*h*10^-9))*100;
11 disp(n, "Efficiency is")
```

Scilab code Exa 9.19.a responsivity

```
// Example 9.19.a;//responsivity
clc;
clear;
close;
e=1.6*10^-19;//elecronic charge
C=3*10^8;//SPEED of light in meter per second
n=0.50;//quantum efficiency
h=0.9;//wavelength in nano meter
ht=6.62*10^-34;//plank constt.
R=((n*e*h*10^-6)/(ht*C));//responsivity
disp(R,"Responsivity is in ampere per watt")
```

Scilab code Exa 9.19.b optical power

```
1 // Example 9.19.a;//OPTICAL POWER
2 clc;
3 clear;
4 close;
5 Ip=10^-6;//optical current in ampere
6 e=1.6*10^-19;//elecronic charge
7 C=3*10^8;//SPEED of light in meter per second
8 n=0.50;//quantum efficiency
9 h=0.9;//wavelength in nano meter
```

```
10 ht=6.62*10^-34; // plank constt.
11 R=((n*e*h*10^-6)/(ht*C)); // responsivity
12 Po=(Ip/R)*10^6; // Output power in micro watt
13 disp(Po, "Output power in micro watt")
```

Scilab code Exa 9.20 Thickness

```
1 // Example 9.20;//thickness
2 clc;
3 clear;
4 close;
5 A=1.5;//area in mili meter square
6 R=100;//resistance in ohms
7 Eo=1.04*10^-10;//F/m
8 Vd=10^7;//DRIFT VELOCITY IN m/s
9 w=round((sqrt(R*Eo*A*10^-6*Vd))*10^6);//thickness in micro meters
10 disp(w,"thickness in micro meters is")
```

Scilab code Exa 9.21 dark current

```
// Example 9.21;//dark current
clc;
clc;
clear;
close;
C=2.998*10^8;//SPEED of light in meter per second
e=1.6*10^-19;//elecronic charge
th=6.62*10^-34;//plank constt.
h=0.85;//wavelength in micro meters
n=0.64;//efficiency
B=1;//bandwidth in hertz
D=7*10^10;//SPECIFIC DETECTIVITY
a=10;//active dimension in micro meter
```

Chapter 10

OPTICAL RECEIVER

Scilab code Exa 10.1 quantum noise dark and thermal noise current

```
1 // Example 10.1;//QUANTUM NOISE , DARK CURRENT &
     THERMAL NOISE
2 clc;
3 clear;
4 close;
5 T=300; //TEMPRATURE IN KELVIN
6 K=1.38*10^-23; //boltzman constt
7 C=3*10^8; //SPEED of light in meter per second
8 e=1.6*10^-19; // electronic charge
9 ht=6.62*10^{-34}; // plank constt.
10 Id=4; //dark current in nano ampere
11 n=0.90; //efficiency
12 Rl=1000; //load resistance in ohms
13 h=1100; //wavelength in nano meter
14 Po=300; // ouput power in nano watt
15 B=20; // bandwidth in mega hertz
16 Ip= (n*h*10^-9*Po*10^-9*e)/(ht*C);/PHOTO CURRENT IN
      AMPERE
17 Iq=(sqrt(2*e*Ip*B*10^6))*10^9;//QUANTUM NOISE IN
     NANO AMPERE
18 id=(sqrt(2*e*B*10^6*Id*10^-9))*10^9;//dark current
```

```
in nano ampere

19 it=(sqrt((4*K*T*B*10^6)/R1))*10^9; //thermal noise
20 disp(Iq,"QUANTUM NOISE IN NANO AMPERE")
21 disp(id,"dark current in nano ampere")
22 disp(it,"THERMAL NOISE in nano ampere")
```

Scilab code Exa 10.2.a quantum limit

```
// Example 10.2.a;//threshold quantum limit
clc;
clcar;
close;
n=1;//efficiency for idea case
ht=6.62*10^-34;//plank constt.
f=3*10^14;//frequency in hertz
B=10^7;//NO. OF BITS
h=10^-6;//wavelength in metr
BER=10^-9;//bit error rate
Zm=-(log(BER));//probality of error
Emin=(20.7*h*f)/n;
disp(Emin , "this is the quantum limit")
```

Scilab code Exa 10.2.b incident optical power

```
// Example 10.2.a;//threshold quantum limit
clc;
clc;
clear;
close;
n=1;//efficiency for idea case
ht=6.62*10^-34;//plank constt.
f=3*10^14;//frequency in hertz
B=10^7;//NO. OF BITS
h=10^-6;//wavelength in metr
```

Scilab code Exa 10.3 incident optical power

```
// Example 10.3;//incident optical power
clc;
clear;
close;
ht=6.62*10^-34;//plank constt.
f=3*10^14;//frequency in hertz
n=1;//efficiency for ideal case
NR=50;//signal to noise ration in dB
h=1;//wavelength in micro meter
B=5;//bandwidth in mega hertz
SN=10^5;//Signal too noise ratio
Po=((2*ht*f*B*10^6*SN)/n)*10^9;//output power in nano watt
Podb=10*(log10(Po*10^-6));//output power in dB
disp(Podb,"output power in dB")
```

Scilab code Exa 10.4.a shot noise

```
1 // Example 10.4.a;//TOTAL SHOT NOISE
2 clc;
3 clear;
4 close;
5 T=293; //TEMPRATURE IN KELVIN
6 K=1.38*10^-23; //boltzman constt
7 C=3*10^8; //SPEED of light in meter per second
8 e=1.6*10^-19; // electronic charge
9 ht=6.62*10^{-34}; //plank constt.
10 Id=3; //dark current in nano ampere
11 n=0.60; // efficiency
12 Rl=4; //load resistance in killo ohms
13 h=0.9; //wavelength in micro meter
14 Po=200; // ouput power in nano wat
15 B=5; // bandwidth in mega hertz
16 Ip= ((n*h*10^-6*Po*10^-9*e)/(ht*C))*10^9;/PHOTO
     CURRENT IN AMPERE
17 its=(2*e*B*10^6*(Id+Ip)*10^-9);//total shot noise
18 itsr=sqrt(its);//RMS shot noise
19 disp(its, "total shot noise is")
20 disp(itsr, "RMS shot noise current in ampere is")
```

Scilab code Exa 10.4.b thermal noise

```
// Example 10.4.b;//Thermal noise
clc;
clear;
close;
T=293;//TEMPRATURE IN KELVIN
K=1.38*10^-23;//boltzman constt
C=3*10^8;/SPEED of light in meter per second
e=1.6*10^-19;//elecronic charge
ht=6.62*10^-34;//plank constt.
Id=3;//dark current in nano ampere
n=0.60;//efficiency
```

```
12 R1=4; //load resistance in killo ohms
13 h=0.9; // wavelength in micro meter
14 Po=200; // ouput power in nano wat
15 B=5; // bandwidth in mega hertz
16 it=(((4*K*T*B*10^6)/(R1*10^3))); // thermal noise
17 itr=sqrt(it); //rms thermal noise
18 disp(it, "total thermal noise is")
19 disp(itr, "RMS thermal noise current in ampere is")
```

Scilab code Exa 10.5.a load resistance

```
1 // Example 10.5.a;//maximum load resistance
2 clc;
3 clear;
4 close;
5 B=6;//bandwidth in mega hertz
6 Cd=8;//Photodiode capacitance in pico farad
7 Ca=4;//amplifier capacitance in pico farad
8 Rlm=(1/(2*%pi*B*10^6*Cd*10^-12))*10^-3;//Maximum lod resistance in Kilo ohm
9 disp(Rlm, "Maximum lod resistance in Kilo ohm")
```

Scilab code Exa 10.5.b bandwidth

```
1 // Example 10.5.b;//maximum bandwidth
2 clc;
3 clear;
4 close;
5 B=6;//bandwidth in mega hertz
6 Cd=8;//Photodiode capacitance in pico farad
7 Ca=4;//amplifier capacitance in pico farad
8 Rlm=(1/(2*%pi*B*10^6*Cd*10^-12))*10^-3;//Maximum lod
resistance in Kilo ohm
```

```
9 B=(1/(2*%pi*Rlm*10^3*(Cd+Ca)*10^-12))*10^-6;//
Maximum bandwidth in mega hertz
10 disp(B, "Maximum bandwidth in mega hertz")
```

Scilab code Exa 10.6 SNR

```
// Example 10.6;//maximum bandwidth
clc;
clear;
close;
Ip=87.1*10^-9;//Photo current in ampere
its=1.44*10^-19;
it=2.02*10^-17;
Fn=2;//noise figure
SN=(Ip^2)/(its+(it*Fn));//Signal to noise ratio
SNdb=10*(log10(SN));//SIGNAL TO NOISE RATIO IN dB
disp(SNdb,"signal to noise raion in dB")
```

Scilab code Exa 10.7 SNR IMPROVEMENT

```
// Example 10.7;//max SNR improvment
clc;
clear;
close;
K=1.38*10^-23;//boltzman constt
C=3*10^8;//SPEED of light in meter per second
te=1.6*10^-19;//elecronic charge
ht=6.62*10^-34;//plank constt.
B=50;//bandwidth in mega hertz
Cd=5;//Photodiode capacitance in pico farad
T=291;//tEMPERATURE IN KELVIN
Ip=10^-7;//photo current in ampere
```

```
13 Rlm = (1/(2*\%pi*B*10^6*Cd*10^-12)); //Maximum lod
      resistance in
                      ohm
14 //Case 1 when M=1
15 SNR1 = (Ip^2)/((2*e*B*10^6*Ip) + ((4*K*T*B*10^6)/(Rlm)))
16 SNR1dB=10*(log10(SNR1)); //signal to noise ration
      when M=1 in dB
17 / CASE2 M = Mop \& x = 0.3
18 \quad x = 0.3;
19 Mop = (((4*K*T)/(x*e*Rlm*Ip))^(1/2.3))
20 SNR2 = (Mop^2*Ip^2)/((2*e*B*10^6*Ip*Mop^2.3) + ((4*K*T*B))
      *10^6)/(Rlm)));//signal to noise ratio M=Mop & x
      =0.3
21 SNR2dB=10*(log10(SNR2)); //signal to noise ratio M=
     Mop & x=0.3 in dB
22 disp(SNR1dB, "signal to noise ration when M=1 in dB")
23 disp(SNR2dB," signal to noise ratio M=Mop & x=0.3 in
     dB")
```

Scilab code Exa 10.8.a photocurrent

```
// Example 10.8.a;//MIMIMUM PHOTO CURRENT
clc;
clear;
close;
x=1;
SNR=3.16*10^3;//SIGNAL TO NOISE RATIO
Fn=1,26;//Noise figure
K=1.38*10^-23;//boltzman constt
C=3*10^8;/SPEED of light in meter per second
e=1.6*10^-19;//elecronic charge
th=6.62*10^-34;//plank constt.
B=10;//bandwidth in mega hertz
T=120;//tEMPERATURE IN KELVIN
R1=10//Maximum lod resistance in killo ohm
```

Scilab code Exa 10.8.b avalanche multiplication factor

```
1 // Example 10.8.b;//optimum avalanche multiplication
       factor
2 clc;
3 clear;
4 close;
5 x = 1;
6 SNR=3.16*10^3; //SIGNAL TO NOISE RATIO
7 Fn=1,26; // Noise figure
8 K=1.38*10^-23; //boltzman constt
9 C=3*10^8; //SPEED of light in meter per second
10 e=1.6*10^-19; //elecronic charge
11 ht=6.62*10^-34; // plank constt.
12 B=10; //bandwidth in mega hertz
13 T=120; //tEMPERATURE IN KELVIN
14 Rl=10//Maximum lod resistance in killo ohm
15 Ip=(((SNR*((12*K*T*B*10^6*Fn)/(R1*10^3))))/(((4*K*T*F)))
     Fn)/(1.1*e*R1*10^3)))^(2/3))^(3/4);//
16 Mop = (((4*K*T*Fn)/(1.1*e*Ip*10^3)))^(1/3); //optimum
      avalanche multiplication factor
17 disp(Mop, "optimum avalanche multiplication factor is
     ")
```

Scilab code Exa 10.9.a bandwidth

```
1 // Example 10.9.a;//maximum bandwidth
2 clc;
3 clear;
```

```
4 close;
5 Ra=4*10^6; //input resistane in ohms
6 Rb=4*10^6; //matched bias resistane in ohms
7 Ct=6*10^-12; //total capicatance in farad
8 T=300; //TEMPERATURE IN KELVIN
9 Rtl=(Ra*Rb)/(Ra+Rb); //total resistance
10 B=(1/(2*%pi*Rtl*Ct)); //Maximum bandwidth inhertz
11 disp(B, "Maximum bandwidth in hertz")
```

Scilab code Exa 10.9.b thermal noise current

```
// Example 10.9.b;//thermal noise
clc;
clear;
close;
K=1.38*10^-23;//boltzman constt
Ra=4*10^6;//input resistane in ohms
Rb=4*10^6;//matched bias resistane in ohms
Ct=6*10^-12;//total capicatance in farad
T=300;//TEMPERATURE IN KELVIN
Rtl=(Ra*Rb)/(Ra+Rb);//total resistance
B=(1/(2*%pi*Rtl*Ct));//Maximum bandwidth inhertz
it=(((4*K*T)/(Rtl)));//thermal noise
disp(it,"thermal noise in ampere square per hertz")
```

Scilab code Exa 10.10 optical power

```
1 // Example 10.10;//threshold quantum limit
2 clc;
3 clear;
4 close;
5 e=1.6*10^-19;
6 R=0.5;//responsivity in amper per watt
```

```
7 n=1;//efficiency for idea case
8 ht=6.62*10^-34;//plank constt.
9 f=3*10^14;//frequency in hertz
10 R=35;//mega bits per second
11 h=0.50^-6;//wavelength in metr
12 BER=10^-7;//bit error rate
13 Zm=-(log(BER));//probality of error
14 Po=(Zm*2*e*R*10^6)/2;
15 Podb=10*(log10(Po*10^3));//pulse energy in dB when refrence level is one milli watt
16 disp(Podb , "pulse energy in dB when refrence level is one milliwatt in dBm")
```