Package 'KBE'

October 27, 2021

Type Package

Version 0.1.0

Title Known Boundary Emulation

Author Samuel E. Jackson	
Maintainer Samuel E. Jackson <samuel.e.jackson@durham.ac.uk></samuel.e.jackson@durham.ac.uk>	
Description Package for reproducing and exploring the Known Boundary Emulation examples from the article ``Efficient Emulation of Computer Models Utilising Multiple Known Boundaries of Differing Dimension".	
Imports pdist, viridis	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
•	
RoxygenNote 7.1.1	
R topics documented:	
Article_Plots	2
AVEM	3
BLA_1B	4
BLA_2parB	5
BLA_2perpB	7
BLA_3B	8
BLA_3perpB	1
	13
	14
	15
==,	16
	17
8	17
	18
rr	20
Scale	20
Index 2	22

2 Article_Plots

Article_Plots

Quick Generation of 3D Example Plots.

Description

Quick Generation of 3D Example Plots.

Usage

```
Article_Plots(
  f,
  ranges,
  K_d,
  L_d = NA,
  M_d = NA,
  xK_d,
  xL_d = NA,
  xM_d = NA,
  fixed_dimension,
  fixed_value,
  theta = theta,
  s2 = s2,
  zlim_f = "assessed",
  zlim_var = "assessed",
  main_cube = list("", "", "")
)
```

Arguments

f	a toy function for which plots will be created.
ranges	the ranges for the input parameters of the toy functions, given as a matrix.
K_d	variable indices to be fixed for boundary K.
L_d	variable indices to be fixed for boundary L.
M_d	variable indices to be fixed for boundary M.
xK_d	values at which those variables are fixed to.
xL_d	values at which those variables are fixed to.
xM_d	values at which those variables are fixed to.
fixed_dimension	
	index of the variable that will be kept fixed for the plots, given as a vector of length $\boldsymbol{3}$.
fixed_value	fixed value in the remaining dimension, given as a vector of length 3.
theta	correlation length parameters.
s2	scalar variance parameter.
zlim_f	plotting range for the z-values (model and mean prediction)
zlim_var	plotting range for the variance predictions.
main_cube	title for the cube plot, given as a list of length 3.

AVEM 3

Value

nothing is returned. Plots are produced.

Examples

```
# Specify the toy function - requires a 3D input vector.
f <- function( x ){</pre>
 sin(x[1] / (exp(x[2]))) + cos(x[3])
}
\# Specify ranges for the function parameters x1, x2, and x3.
ranges <- matrix(c( -2*pi, 2*pi,</pre>
                    -pi/4, pi/4,
                    -2*pi, 2*pi), ncol = 2, byrow = TRUE)
# Specify the correlation length parameters and variance parameter for the example.
theta <- c( pi, pi/8, pi )
s2 <- 2
# Specify the ranges for the function/mean and variance plots.
zlim_f \leftarrow c(-2.5, 2.5)
zlim_var <- c(0, 2)
# Specify the boundary.
K_d \leftarrow c(2, 3)
xK_d <- c(0, 0)
# Fixed dimensions.
fixed_dimension <- c(2, 2, 1)
fixed_value <- c(0, -pi/8, -pi)
# Set labels.
quotes <- list( bquote( x[2] == 0 ), bquote( x[2] == -pi/8 ), bquote( x[1] == -pi ) )
# Run the function.
Article_Plots( f = f,
               ranges = ranges,
               K_d = K_d
               xK_d = xK_d,
               fixed_dimension = fixed_dimension,
               fixed_value = fixed_value,
               theta = theta,
               s2 = s2,
               zlim_f = zlim_f,
               zlim_var = zlim_var,
               main_cube = quotes )
```

AVEM

Array Vector-Element Multiplication

Description

Multiply each matrix/column in a 3D/2D array by the corresponding element of a vector.

4 BLA_1B

Usage

```
AVEM(A, v)
```

Arguments

A two or three-dimensional array.

v vector

Value

array resulting from multiplying the matrices/columns in A by the corresponding elements in v.

Examples

```
A <- array( 1:24, dim = c( 2,3,4 ) ) b = 1:4 AVEM( A, b )
```

BLA_1B

Bayes Linear Adjustment by a Single Known Boundary

Description

Perform a Bayes linear adjustment utilising knowledge of function behaviour along a single boundary in the input space.

Usage

```
BLA_1B(x, K_d, xK = NA, xK_d = NA, fxK, E_fx = 0, E_fxK = 0, theta, s2)
```

Arguments

X	points at which we want to update
K_d	the dimensions which, when fixed at certain values, result in known boundaries.
xK	the projection of x onto known boundary K
xK_d	values the dimensions K must take for the function to be known
fxK	function evaluated at x projected onto the boundary K.
E_fx	prior expectation for the function $f(x)$
E_fxK	prior expectation for $f(x^K)$
theta	vector of correlation length parameter values
s2	scalar variance parameter value.

Value

EB_fx	Expected value of $f(x)$ adjusted by knowledge of function behaviour along K.
VarB_fx	Variance of f(x) adjusted by knowledge of function behaviour along K.
CovB_fx	Covariance of f(x) adjusted by knowledge of function behaviour along K.

BLA_2parB 5

Examples

```
# Toy function
f <- function( x ){

sin( x[1] / ( exp( x[2] ) ) ) + cos( x[3] )

}
x <- matrix( runif( 12 ), ncol = 3 )
K_d = 2
xK_d = 0
fxK <- f_boundary( x = x, K_d = K_d, xK_d = xK_d, f = f )
theta <- c( pi, pi/8, pi )
s2 <- 2
BA <- BLA_1B( x = x, K_d = K_d, xK_d = xK_d, fxK = fxK, theta = theta, s2 = s2 )</pre>
```

BLA_2parB

Bayes Linear Adjustment by 2 Parallel Known Boundaries

Description

Perform a Bayes linear adjustment utilising knowledge of function behaviour along two parallel known boundaries in the input space.

Usage

```
BLA_2parB(
  х,
  K_d,
  L_d = 0,
  xK = NA,
  xL = NA,
  xLK = NA,
  xK_d = NA,
  xL_d = NA,
  fxK,
  fxL,
  fxLK,
  E_fx = 0,
  E_fxK = 0,
  E_fxL = 0,
  E_fxLK = 0,
  theta,
  s2
)
```

Arguments

x points at which we want to update

K_d the dimensions which, when fixed at certain values, result in known boundary K.

6 BLA_2parB

L_d	the dimensions which, when fixed at certain values, result in known boundary L.
xK	the projection of x onto known boundary K
xL	the projection of x onto known boundary L
xLK	the projection of x first onto known boundary L and then known boundary K.
xK_d	values the dimensions K must take for the function to be known
xL_d	values the dimensions L must take for the function to be known
fxK	function evaluated at x projected onto the boundary K.
fxL	function evaluated at x projected onto the boundary L.
fxLK	function evaluated at xLK.
E_fx	prior expectation for the function $f(x)$
E_fxK	prior expectation for $f(x^k)$
E_fxL	prior expectation for $f(x^L)$
E_fxLK	prior expectation for $f(x^LK)$
theta	vector of correlation length parameter values.
s2	scalar variance parameter value.

Value

EB_fx	Expected value of f(x) adjusted by knowledge of function behaviour along K and L.
VarB_fx	Variance of f(x) adjusted by knowledge of function behaviour along K and L.
CovB_fx	Covariance of $f(x)$ adjusted by knowledge of function behaviour along K and L.

```
# Toy function
f <- function( x ){</pre>
sin(x[1] / (exp(x[2]))) + cos(x[3])
x <- matrix( runif( 12 ), ncol = 3 )</pre>
K_d = 2
L_d = c(2,3)
xK_d = 0
xL_d = c(1,1)
# If we are in a parallel setting, then xLK (projection of x first onto L and then K)
# is given as follows:
xLK_d \leftarrow xL_d
xLK_d[1:length(xK_d)] <- xK_d
# And LK_d (fixed values of coordinates for projections first onto L and then K)
# is just given by L_d.
LK_d \leftarrow L_d
fxK \leftarrow f_boundary(x = x, K_d = K_d, xK_d = xK_d, f = f)
fxL \leftarrow f_boundary(x = x, K_d = L_d, xK_d = xL_d, f = f)
fxLK \leftarrow f_boundary(x = x, K_d = LK_d, xK_d = xLK_d, f = f)
theta <- c( pi, pi/8, pi )
s2 <- 2
BA \leftarrow BLA_2parB(x = x, K_d = K_d, L_d = L_d, xK_d = xK_d, xL_d = xL_d,
                  fxK = fxK, fxL = fxL, fxLK = fxLK, theta = theta, s2 = s2)
```

BLA_2perpB 7

BLA_2perpB	Bayes Linear Adjustment by 2 Perpendicular Known Boundaries

Description

Perform a Bayes linear adjustment utilising knowledge of function behaviour along two perpendicular known boundaries in the input space.

Usage

```
BLA_2perpB(
  Х,
  K_d,
  L_d,
  xK = NA,
  xL = NA,
  xLK = NA,
  xK_d = NA,
  xL_d = NA,
  fxK,
  fxL,
  fxLK,
  E_fx = 0,
  E_fxK = 0,
  E_fxL = 0,
  E_fxLK = 0,
  theta,
  s2
)
```

Arguments

х	points at which we want to update
K_d	the dimensions which, when fixed at certain values, result in known boundary K.
L_d	the dimensions which, when fixed at certain values, result in known boundary L.
xK	the projection of x onto known boundary K
xL	the projection of x onto known boundary L
xLK	the projection of x onto the intersection of known boundaries K and L.
xK_d	values the dimensions K must take for the function to be known
xL_d	values the dimensions L must take for the function to be known
fxK	function evaluated at x projected onto the boundary K.
fxL	function evaluated at x projected onto the boundary L.
fxLK	function evaluated at x projected onto the intersection of boundaries K and L.
E_fx	prior expectation for the function $f(x)$
E_fxK	prior expectation for $f(x^K)$

8 BLA_3B

```
 \begin{array}{ll} E_-fxL & prior\ expectation\ for\ f(x^L) \\ E_-fxLK & prior\ expectation\ for\ f(x^LK) \\ \\ theta & vector\ of\ correlation\ length\ parameter\ values. \\ \\ s2 & scalar\ variance\ parameter\ value. \end{array}
```

Value

EB_fx	Expected value of $f(x)$ adjusted by knowledge of function behaviour along K and L .
VarB_fx	Variance of f(x) adjusted by knowledge of function behaviour along K and L.
CovB_fx	Covariance of f(x) adjusted by knowledge of function behaviour along K and L.

Examples

```
# Toy function
f <- function( x ){</pre>
sin(x[1] / (exp(x[2]))) + cos(x[3])
}
x \leftarrow matrix( runif( 12 ), ncol = 3 )
K_d = 2
L_d = 1
xK_d = 0
xL_d = 0
fxK \leftarrow f_boundary(x = x, K_d = K_d, xK_d = xK_d, f = f)
fxL \leftarrow f_boundary(x = x, K_d = L_d, xK_d = xL_d, f = f)
fxLK \leftarrow f_boundary(x = x, K_d = c(K_d, L_d), xK_d = c(xK_d, xL_d), f = f)
theta <- c(pi, pi/8, pi)
s2 <- 2
BA \leftarrow BLA_2perpB( x = x, K_d = K_d, L_d = L_d, xK_d = xK_d, xL_d = xL_d,
                   fxK = fxK, fxL = fxL, fxLK = fxLK, theta = theta, s2 = s2)
```

BLA_3B

Bayes Linear Adjustment by 3 Known Boundaries

Description

Perform a Bayes linear adjustment utilising knowledge of function behaviour along three known boundaries in the input space. In this case boundaries K and L should be parallel to each other, and M should be perpendicular to K and L.

Usage

BLA_3B

```
xM = NA,
  xLK = NA,
  xMK = NA,
  xML = NA,
  xMLK = NA,
  xK_d = NA,
  xL_d = NA,
  xM_d = NA,
  fxK,
  fxL,
  fxM,
  fxLK,
  fxMK,
  fxML,
  fxMLK,
  E_fx = 0,
  E_fxK = 0,
  E_fxL = 0,
  E_fxM = 0,
  E_fxLK = 0,
  E_fxMK = 0,
  E_fxML = 0,
  E_fxMLK = 0,
  theta,
  s2
)
```

Arguments

X	points at which we want to update
	•
K_d	the dimensions which, when fixed at certain values, result in known boundary K.
L_d	the dimensions which, when fixed at certain values, result in known boundary L.
M d	
M_d	the dimensions which, when fixed at certain values, result in known boundary M.
xK	the projection of x onto known boundary K
xL	the projection of x onto known boundary L
xM	the projection of x onto known boundary M
xLK	the projection of x first onto known boundary L and then known boundary K.
xMK	the projection of x onto the intersection of known boundaries K and M.
xML	the projection of x onto the intersection of known boundaries L and M.
xMLK	the projection of x onto the intersection of M and that obtained by projecting first onto L and then onto K .
xK_d	values the dimensions K must take for the function to be known
xL_d	values the dimensions L must take for the function to be known
xM_d	values the dimensions M must take for the function to be known
fxK	function evaluated at x projected onto the boundary K.

10 BLA_3B

function evaluated at x projected onto the boundary L. fxL fxM function evaluated at x projected onto the boundary M. fxLK function evaluated at xLK. fxMK function evaluated at xMK. fxML function evaluated at xML. fxMLK function evaluated at xMLK. E_fx prior expectation for the function f(x) E_fxK prior expectation for $f(x^K)$ E_fxL prior expectation for $f(x^L)$ E_fxM prior expectation for $f(x^M)$ E_fxLK prior expectation for f(x^LK) E_fxMK prior expectation for $f(x^MK)$ E_fxML prior expectation for $f(x^ML)$ E_fxMLK prior expectation for f(x^MLK) theta vector of correlation length parameter values. s2 scalar variance parameter value.

Value

EB_fx
Expected value of f(x) adjusted by knowledge of function behaviour along K, L and M.

VarB_fx
Variance of f(x) adjusted by knowledge of function behaviour along K, L and M.

CovB_fx
Covariance of f(x) adjusted by knowledge of function behaviour along K, L and M

```
# Toy function
f <- function( x ){</pre>
sin(x[1] / (exp(x[2]))) + cos(x[3])
}
x \leftarrow matrix(runif(12), ncol = 3)
K_d = 2
L_d = c(2,3)
M_d = 1
xK_d = 0
xL_d = c(1,1)
xM_d = 0
#' # If we are in a parallel setting, then xLK (projection of x first onto L and then K)
# is given as follows:
xLK_d <- xL_d
xLK_d[1:length(xK_d)] <- xK_d
# And LK_d (fixed values of coordinates for projections first onto L and then K)
# is just given by L_d.
LK_d \leftarrow L_d
fxK \leftarrow f_boundary(x = x, K_d = K_d, xK_d = xK_d, f = f)
```

BLA_3perpB

BLA_3perpB

Bayes Linear Adjustment by 3 Perpendicular Known Boundaries

Description

Perform a Bayes linear adjustment utilising knowledge of function behaviour along three perpendicular known boundaries in the input space.

Usage

```
BLA_3perpB(
  х,
  K_d,
  L_d,
  M_d
  xK = NA,
  xL = NA,
  xM = NA,
  xLK = NA
  xMK = NA,
  xML = NA,
  xMLK = NA,
  xK_d = NA,
  xL_d = NA,
  xM_d = NA,
  fxK,
  fxL,
  fxM,
  fxLK,
  fxMK,
  fxML,
  fxMLK,
  E_fx = 0,
  E_fxK = 0,
  E_fxL = 0,
  E_fxM = 0,
  E_fxLK = 0,
  E_fxMK = 0,
```

12 BLA_3perpB

```
E_fxML = 0,
E_fxMLK = 0,
theta,
s2
)
```

Arguments

s2

8	
X	points at which we want to update
K_d	the dimensions which, when fixed at certain values, result in known boundary K.
L_d	the dimensions which, when fixed at certain values, result in known boundary L.
M_d	the dimensions which, when fixed at certain values, result in known boundary M.
xK	the projection of x onto known boundary K
xL	the projection of x onto known boundary L
xM	the projection of x onto known boundary M
xLK	the projection of x onto the intersection of known boundaries K and L.
xMK	the projection of x onto the intersection of known boundaries K and M.
xML	the projection of x onto the intersection of known boundaries L and M.
xMLK	the projection of x onto the intersection of known boundaries K, L and M.
xK_d	values the dimensions K must take for the function to be known
xL_d	values the dimensions L must take for the function to be known
xM_d	values the dimensions M must take for the function to be known
fxK	function evaluated at x projected onto the boundary K.
fxL	function evaluated at x projected onto the boundary L.
fxM	function evaluated at x projected onto the boundary M.
fxLK	function evaluated at x projected onto the intersection of boundaries K and L.
fxMK	function evaluated at x projected onto the intersection of boundaries K and M.
fxML	function evaluated at x projected onto the intersection of boundaries L and M.
fxMLK	function evaluated at x projected onto the intersection of boundaries K, L and M.
E_fx	prior expectation for the function $f(x)$
E_fxK	prior expectation for $f(x^k)$
E_fxL	prior expectation for $f(x^L)$
E_fxM	prior expectation for $f(x^M)$
E_fxLK	prior expectation for $f(x^LK)$
E_fxMK	prior expectation for $f(x^MK)$
E_fxML	prior expectation for $f(x^ML)$
E_fxMLK	prior expectation for $f(x^MLK)$
theta	vector of correlation length parameter values.
_	

scalar variance parameter value.

boundary_for_plot 13

Value

EB_fx	Expected value of $f(x)$ adjusted by knowledge of function behaviour along K, L and M.
VarB_fx	Variance of $f(x)$ adjusted by knowledge of function behaviour along K , L and M .
CovB_fx	Covariance of $f(x)$ adjusted by knowledge of function behaviour along K, L and M .

Examples

```
# Toy function
f <- function( x ){</pre>
sin(x[1] / (exp(x[2]))) + cos(x[3])
x <- matrix( runif( 12 ), ncol = 3 )</pre>
K_d = 2
L_d = 1
M_d = 3
xK_d = 0
xL_d = 0
xMd = 0
fxK \leftarrow f_boundary(x = x, K_d = K_d, xK_d = xK_d, f = f)
fxL \leftarrow f_boundary(x = x, K_d = L_d, xK_d = xL_d, f = f)
fxM \leftarrow f_boundary(x = x, K_d = M_d, xK_d = xM_d, f = f)
fxLK \leftarrow f_boundary(x = x, K_d = c(K_d, L_d), xK_d = c(xK_d, xL_d), f = f)
fxMK \leftarrow f_boundary(x = x, K_d = c(K_d, M_d), xK_d = c(xK_d, xM_d), f = f)
fxML \leftarrow f_boundary(x = x, K_d = c(L_d, M_d), xK_d = c(xL_d, xM_d), f = f)
fxMLK \leftarrow f_boundary(x = x, K_d = c(K_d, L_d, M_d), xK_d = c(xK_d, xL_d, xM_d), f = f)
theta <- c( pi, pi/8, pi )
s2 <- 2
BA \leftarrow BLA_3perpB(x = x, K_d = K_d, L_d = L_d, M_d = M_d,
                   xK_d = xK_d, xL_d = xL_d, xM_d = xM_d,
                   fxK = fxK, fxL = fxL, fxM = fxM,
                   fxLK = fxLK, fxMK = fxMK, fxML = fxML, fxMLK = fxMLK,
                   theta = theta, s2 = s2)
```

boundary_for_plot

Boundary Coordinate Generation

Description

A function for generating the coordinate matrices (with 2 columns, and 4 rows for 2D boundaries and 2 rows for 1D boundaries) required for the cube.

Usage

```
boundary_for_plot(fixed_dimension, fixed_value, ranges)
```

14 contour_plot

Arguments

fixed_dimension

the dimensions which are fixed for the boundary

fixed_value the values for the coordinates which are fixed (of same length as fixed_dimension).

ranges of the three variables, given as a 3 x 2 matrix.

Value

A matrix with 2 columns, and 4 rows for 2D boundaries and 2 rows for 1D boundaries This gives the coordinates of the boundaries for plotting on the cube as shown in the top row of the 3D example figures in the article.

Examples

contour_plot

Generate Contour Plot

Description

User-friendly wrapper for generating the contour plots as of the 3D example shown in the text.

Usage

```
contour_plot(x, y, z, levels, colours)
```

Arguments

x	x coordinates.
У	y coordinates.
Z	matrix of values to be plotted, with rows assumed to correspond to increasing values of \mathbf{x} (from top to bottom)
levels	levels at which z should be divided into for the contour plot.
colours	colours for each level of z.

Value

nothing is returned. Contour plot is generated.

draw_cube 15

Examples

draw_cube

Draw a Cube

Description

Specific function for the diagrams of a cube illustrating which boundaries are known and which cross-section of the input space is being emulated.

Usage

```
draw_cube(
  lwd = 2,
  lty2 = 2,
  cex = 1.8,
  col_line_width = lwd,
  coloured_hp = list(),
  col_hp = c("green", "red", "blue", "pink"),
  density_col = rep(0.7, length(coloured_hp)),
  main = "",
  cex.main = 1,
  main.line = 1
)
```

Arguments

lwd line width for the edges of the cube. line type for the "hidden" edges of the cube. lty2 scale size for the labels. cex col_line_width line width for the coloured lines representing 1D boundaries. a list of vectors, where each vector represents the hyperplanes to be plotted: coloured_hp col_hp the colour of the hyperplanes given above. the density of the fill of the 2D hyperplanes (note that the length of this vector density_col title of the cube plot. main cex.main size of the title. main.line number of lines outwards from the plot edge to plot the title.

Value

nothing is returned. Cube is plotted.

16 f_boundary

Examples

f_boundary

Evaluate f along a boundary.

Description

Evaluate f along a boundary.

Usage

```
f_boundary(x, K_d, xK_d, f)
```

Arguments

X	set of points, given as a matrix.
K_d	Variable indices to be fixed.
xK_d	Values at which those variables are fixed to.
f	a toy function which is to be evaluated.

Value

Value of f(x) at the projections of x projected onto boundary K_d .

GaussianCF 17

_		
('```	ssianCF	

Gaussian Correlation Function

Description

Calculate the Gaussian correlation function between the points in (given by the rows of) two matrices.

Usage

```
GaussianCF(X, Y = X, theta, delta = 0)
```

Arguments

X a vector, matrix or dataframe
Y a vector, matrix or dataframe

theta a vector of correlation length parameter values (one for each column of X).

delta an (optional) scalar nugget parameter.

Value

Gaussian correlation function value between the rows of X and Y, given as a matrix of dimension nrow(X) by nrow(Y).

Examples

```
X <- matrix( rnorm( 10 ), ncol = 2 )
Y <- matrix( runif( 6 ), ncol = 2 )
theta <- c( 0.5, 0.8 )
GaussianCF( X, Y, theta )
GaussianCF( as.data.frame(X), Y, theta )</pre>
```

legend_generation

Legend Generation

Description

Generate the legend for the 3D example as shown in the article.

Usage

```
{\tt legend\_generation(colours, levels)}
```

Arguments

colours colours for each level of z.

levels levels at which z should be divided into for the contour plot.

18 PlotGen3dEx

Value

nothing is returned. Legend is plotted.

Examples

PlotGen3dEx

3D Example Plot Generation

Description

Generic Generation of Plots for 3D Toy Example.

Usage

```
PlotGen3dEx(
  f,
  ranges,
  K_d,
  L_d = NA,
  M_d = NA,
  xK_d,
  xL_d = NA,
  xM_d = NA,
  fixed_dimension,
  fixed_value,
  theta = rep(pi/2, 3),
  s2 = 1,
  grid_length = 50,
  1wd = 2,
  1ty2 = 2,
  cex = 1.8,
  col_line_width = 3,
  zlim_f = "assessed",
  zlim_var = "assessed",
  zlim_diag = c(-4.25, 4.25),
  legend = FALSE,
  main_cube = "",
  cex.main\_cube = 1.8,
  main.line = 0.2
)
```

Arguments

f a toy function for which plots will be created.

ranges the ranges for the input parameters of the toy functions, given as a matrix.

PlotGen3dEx

K_d	variable indices to be fixed for boundary K.
L_d	variable indices to be fixed for boundary L.
M_d	variable indices to be fixed for boundary M.
xK_d	values at which those variables are fixed to.
xL_d	values at which those variables are fixed to.
xM_d	values at which those variables are fixed to.
fixed_dimension	l
	index of the variable that will be kept fixed for the plots.
fixed_value	fixed value in the remaining dimension.
theta	correlation length parameters.
s2	scalar variance parameter.
grid_length	number of grid points along each dimension with which to represent the plotted surface.
lwd	line width for cube edges.
lty2	line type for background lines
cex	relative size of plot
col_line_width	width of coloured boundary lines
zlim_f	plotting range for the z-values (model and mean prediction)
zlim_var	plotting range for the variance predictions.
zlim_diag	plotting range for the diagnostic plot.
legend	Add a legend to the side of the plot?
main_cube	title for the cube plot.
cex.main_cube	font size of the cube plot title.
	L_d M_d xK_d xK_d xL_d xM_d fixed_dimension fixed_value theta s2 grid_length lwd lty2 cex col_line_width zlim_f zlim_var zlim_diag legend main_cube

Value

main.line

nothing is returned. Plots are generated.

line value for the title function.

20 Scale

```
zlim_f <- c(-2.5, 2.5)
zlim_var <- c(0, 2)
plot_setup()
PlotGen3dEx(f = f,
             ranges = ranges,
             K_d = c(2,3),
             L_d = c(2,3),
             M_d = 1
             xK_d = c(0,0),
             xL_d = c(0,-pi),
             xM_d = 0,
             fixed_dimension = 2,
             fixed_value = 0,
             theta = theta,
             s2 = s2,
             zlim_f = zlim_f,
             zlim_var = zlim_var,
             main\_cube = bquote(x[2] == 0),
             legend = FALSE )
```

plot_setup

Plot Setup for Article.

Description

A simple function for setting up the plot domain to generate figures similar to those presented for the 3D example shown in the article.

Usage

```
plot_setup()
```

Value

Sets up plot domain.

Examples

```
plot_setup()
```

Scale

Scale points

Description

Scale point from one hypercuboid domain space to another.

Usage

```
Scale(x, a = 0, b = 1, l = -1, u = 1)
```

Scale 21

Arguments

X	vector, matrix or dataframe of points (given by the elements or rows respectively) of points to scale.
a	vector of lower limits of the original space, one for each dimension (column of x) If all the lower limits are the same, that scalar value can be given.
b	vector of upper limits of the original space, one for each dimension (column of x) If all the upper limits are the same, that scalar value can be given.
1	vector of lower limits of the transformed space, one for each dimension (column of x) If all the lower limits are the same, that scalar value can be given.
u	vector of upper limits of the transformed space, one for each dimension (column of x) If all the upper limits are the same, that scalar value can be given.

Details

Scales the vector of matrix of points x from the hypercuboid [a,b] to [l,u].

Value

a vector or matrix of the transformed points.

```
X <- matrix( runif(15, 2, 4), ncol = 3 )
Scale( X, a = 2, b = 4 )
# Compare with:
X - 3</pre>
```

Index

```
Article_Plots, 2
AVEM, 3
BLA_1B, 4
BLA_2parB, 5
BLA_2perpB, 7
BLA_3B, 8
BLA_3perpB, 11
boundary\_for\_plot, \\ 13
\verb|contour_plot|, \\ 14
\textit{draw\_cube},\, 15
f_boundary, 16
GaussianCF, 17
{\tt legend\_generation}, 17
\verb"plot_setup", \frac{20}{}
PlotGen3dEx, 18
Scale, 20
```