Function GET_MW - single-thread version

built-in abundance tables

Calling syntax:

Function parameters:

- 0. Lparms 5-element long integer array of dimensions and global (for all voxels) integer parameters (see below).
- 1. Rparms 3-element double array of global (for all voxels) real parameters (see below).
- 2. Parms array of LOS parameters, 15 × Nz elements, double. Parms[*, i] represents the parameters for ith voxel (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K. The temperature grid is assumed to be the same in all voxels, and the same for both DEM and DDM.
- 4. DEM_arr array of DEMs, NT × Nz, double, in cm⁻⁶ K⁻¹. DEM_arr[*, i] represents the DEM for ith voxel.
- 5. DDM_arr array of DDMs, NT × Nz, double, in cm⁻³ K⁻¹. DDM_arr[*, i] represents the DDM for ith voxel.
- 6. RL input/output array, $7 \times Nf$, double. RL[*, i] corresponds to *i*th frequency (see below).

Array of dimensions and global integer parameters Lparms:

Lparms = [Nz, Nf, NT, DEM_key, DDM_key]

- 0. Nz number of voxels along LOS;
- 1. Nf number of frequencies in the spectrum;
- 2. NT number of temperatures in the T_arr array; must be ≥ 2 otherwise DEM/DEM are ignored;
 - 3. DEM_key global DEM on/off key.
 - a. 0: DEM is enabled: it can be used in all or some voxels, depending on the local DEM on/off keys (see below).
 - b. \neq 0: DEM is disabled for all voxels, regardless of the local DEM on/off kevs.
 - 4. DDM_key global DDM on/off key: same as above, but for DDM.

Array of global real parameters Rparms:

Rparms = $[S, f_0, \Delta f]$

- 0. S visible source area, in cm² (is used unless local values in individual voxels are specified by Parms[14, *], see below).
 - 1. f_0 starting frequency of the spectrum, in Hz:
 - a. is used, only if $f_0 > 0$;
 - b. if $f_0 \le 0$, the frequencies are taken from the RL[0, *] array.
 - 2. Δf logarithmic frequency step (is used only if $f_0 > 0$).

Array of parameters Parms (for a single voxel, 15 parameters):

- 0. Parms[0] = Δz voxel length, in cm.
- 1. Parms[1] = T_0 plasma temperature, in K (is used if DEM or DDM are not specified).
- 2. Parms[2] = n_0 either electron concentration or total atomic concentration (depending on other parameters), in cm⁻³ (is used if DEM or DDM are not specified).
 - 3. Parms[3] = B magnetic field strength, in G.
 - 4. Parms[4] = θ viewing angle, in degrees.
 - 5. Parms[5] = φ magnetic field azimuthal angle, in degrees.
 - 6. Parms[6] emission mechanism flag (rounded to the nearest integer):
 - a. 0: all emission mechanisms (gyroresonance + free-free + contribution of neutrals) are included;
 - b. 1: gyroresonance is off;
 - c. 2: free-free is off;
 - d. 4: contribution of neutrals is off;
 - e. 8: even if DEM and/or DDM are present, the free-free and gyroresonance emissions are computed using the isothermal approximation with the electron concentration and temperature derived from the DDM or DEM (from the DDM, if both are specified).

Several flags can be combined by usual or bitwise summation: e.g., $mechanism\ flag = 2 + 4\ turns\ off\ both\ free-free\ and\ contribution\ of\ neutrals,\ etc.$

- 7. Parms[7] = s_{max} maximum cyclotron harmonic number.
- 8. Parms[8] = n_p proton concentration, in cm⁻³ (is used if DEM or DDM are not specified, and the temperature is low).
 - 9. Parms[9] = $n_{\rm HI}$ neutral hydrogen concentration, in cm⁻³.
 - 10. Parms[10] = n_{HeI} neutral helium concentration, in cm⁻³.
 - 11. Parms[11] local DEM on/off key:
 - a. 0: DEM is used (provided that $NT \ge 2$ and DEM is enabled by the global key);
 - b. \neq 0: DEM in this voxel is ignored even if it is specified; T_0 and n_0 are used instead.
 - 12. Parms[12] local DDM on/off key: same as above, but for DDM.
 - 13. Parms[13] element abundance model:
 - a. 0: coronal (default);
 - b. 1: photospheric (Caffau);
 - c. 2: photospheric (Scott).
- 14. Parms[14] = S local source area, in cm². These values are used only if S > 0 in all voxels along the line-of-sight; in such a case, they override the source area specified by Rparms[0], and the radiation transfer equation takes the form:

$$\frac{\mathrm{d}I}{\mathrm{d}z} = j - \kappa I - \frac{I}{S} \frac{\mathrm{d}S}{\mathrm{d}z},$$

where z is the coordinate along the line-of-sight, I is the intensity of the given mode, j is the emissivity, and κ is the absorption coefficient; the visible source area becomes equal to the last value of S. If any one of S values is zero or negative, the source area is assumed to be constant and is specified by Rparms[0], and the refraction term in the radiation transfer equation (the last term in the above formula) is ignored.

Input/output array RL:

0. First row (RL[0, *]) – emission frequencies, in GHz. On input, this array is used if f_0 = Rparms[1] \leq 0; otherwise, the frequencies are computed using the f_0 and Δf parameters: $f_1 = f_0 10^{\Delta f}$, $f_2 = f_1 10^{\Delta f}$, etc. On output, this array contains the computed or pre-defined emission frequencies.

Other rows – emission intensities, as observed from the Earth, in sfu:

- 1. RL[1, *] left polarization, weak mode coupling;
- 2. RL[2, *] right polarization, weak mode coupling;
- 3. RL[3, *] left polarization, strong mode coupling;
- 4. RL[4, *] right polarization, strong mode coupling;
- 5. RL[5, *] left polarization, exact mode coupling.
- 6. RL[6, *] right polarization, exact mode coupling.

On input, these arrays specify the emission intensities at the start of the line-of-sight; on output, they contain the emission intensities at the end of the line-of-sight.

Function GET_MW - single-thread version

user-defined abundance tables

Calling syntax:

Function parameters:

- 0. Lparms 8-element long integer array of dimensions and global (for all voxels) integer parameters (see below).
- 1-5. Rparms, Parms, T_arr, DEM_arr, DDM_arr same as in the version with built-in abundance tables; for Parms, see a note below.
- 6. fzeta_arr array of frequencies where the ζ -function is specified, Nf_zeta elements, double, in Hz. The frequency grid is assumed to be the same in all voxels and for all supplied abundance sets.
- 7. Tzeta_arr array of temperatures where the ζ -function is specified, NT_zeta elements, double, in K. The temperature grid is assumed to be the same in all voxels and for all supplied abundance sets.
- 8. zeta_arr array of ζ -function values, Nf_zeta × NT_zeta × N_zeta elements, double. This array is the same for all voxels. zeta_arr[*, *, m] represents the 2D ζ -function table for mth abundance set.
 - 9. RL same as in the version with built-in abundance tables.

Array of dimensions and global integer parameters Lparms:

Lparms = [Nz, Nf, NT, DEM_key, DDM_key, Nf_zeta, NT_zeta, N_zeta]

- 0-4. Nz, Nf, NT, DEM_key, DDM_key same as in the version with built-in abundance tables.
 - 5. Nf_zeta number of frequencies where the ζ -function is specified.
 - 6. NT_zeta number of temperatures where the ζ -function is specified.
 - 7. N_zeta number of supplied 2D ζ -function tables (abundance sets).

Array of parameters Parms (for a single voxel):

Most of parameters are the same as in the version with built-in abundance tables, except Parms[13] that specifies the element abundance model index m, so that the 2D ζ -function table given by zeta_arr[*, *, m] is used in this voxel.

Function GET_MW_SLICE - multi-thread version

built-in abundance tables

Calling syntax:

res = call_external(libname, 'GET_MW_SLICE', Lparms_M, Rparms_M, \$
Parms M, T arr, DEM arr M, DDM arrM, RL M)

Function parameters:

- 0. Lparms_M 6-element long integer array of dimensions and global (for all voxels and all LOSs) integer parameters (see below).
- 1. Rparms_M array of real parameters common for all voxels within each LOS, 3 × Npix, double (see below).
- 2. Parms_M array of voxel parameters, $15 \times Nz \times Npix$ elements, double (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K. This parameter is the same as in the GET_MW function: the temperature grid is assumed to be the same in all voxels and all LOSs, and the same for both DEM and DDM.
 - 4. DEM_arr_M array of DEMs, NT × Nz × Npix, double, in cm⁻⁶ K⁻¹ (see below).
- 5. DDM_arr_M array of DDMs, NT × Nz × Npix, double, in cm⁻³ K^{-1} (see below).
 - 6. RL M input/output array, $7 \times Nf \times Npix$, double (see below).

Array of dimensions and global integer parameters Lparms_M: Lparms_M = [Npix, Nz, Nf, NT, DEM_key, DDM_key]

0. Npix – number of LOSs.

Other elements (1^{st} to 5^{th}) are the same as the 0^{th} to 4^{th} elements of the Lparms array in the GET_MW function. In particular:

- a. all LOSs have the same number of voxels Nz;
- b. the number of frequencies Nf is the same for all LOSs;
- c. the global DEM and DDM on/off keys are related to all voxels within all LOSs.

Other parameters: sub-arrays Rparms_M[*, i], Parms_M[*, *, i], DEM_arr_M[*, *, i], DDM_arr_M[*, *, i] and RL_M[*, *, i] correspond respectively to the parameters Rparms, Parms, DEM_arr, DDM_arr and RL of the single-thread GET_MW function, for ith LOS.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.

Function GET_MW_SLICE – multi-thread version for user-defined abundance tables: not implemented yet.

Function GET_GX_MW - single-thread version

Calling syntax:

```
res = call_external(libname, 'GET_GX_MW', $
Lparms, Rparms, Parms, $
Qrun, Lrun, logTDEM, $
DEM_run, DDM_run, RL)
```

Function parameters:

- 0. Lparms 7-element long integer array of dimensions and global keys.
- 1. Rparms 3-element double array of global (for all voxels) real parameters.
- 2. Parms array of LOS parameters, 15 × Nz elements, double. Parms[*, i] represents the parameters for ith voxel.
 - 3. Qrun the EBTEL Q grid, NQ × NL elements, float, in erg cm⁻³ s⁻¹.
 - 4. Lrun the EBTEL L grid, NQ × NL elements, float, in cm.
- 5. logTDEM the EBTEL temperature grid ($log_{10}T$, where the temperature T is in K), NT elements, float.
 - 6. DEM_run the EBTEL DEM table, NT × NQ × NL elements, float, in cm⁻⁶ K⁻¹.
 - 7. DDM_run the EBTEL DDM table, NT \times NQ \times NL elements, float, in cm⁻³ K⁻¹.
 - 8. RL input/output array, $7 \times Nf$ elements, double.

Array of dimensions and global integer parameters Lparms:

Lparms = [Nz, Nf, NQ, NL, NT, DEM_key, DDM_key]

- 0. Nz number of voxels along LOS.
- 1. Nf number of frequencies in the spectrum.
- 2. NQ size of the EBTEL *Q* grid.
- 3. NL size of the EBTEL L grid.
- 4. NT size of the EBTEL temperature grid.
- 5. DEM_key global DEM on/off key (same as in the GET_MW function).
- 6. DDM_key global DDM on/off key (same as in the GET_MW function).

Array of global real parameters Rparms:

This array is the same as in the GET_MW function.

Array of parameters Parms (for a single voxel, 15 parameters):

This array is the almost the same as in the GET_MW function, with the exception of two parameters:

- 11. Parms[11] = Q the EBTEL heating rate, in erg cm⁻³ s⁻¹.
- 12. Parms[12] = L the EBTEL loop length, in cm.

Note that the DEM and/or DDM in a given voxel are computed and used if Q > 0, L > 0, and the (Q, L) pair is located within the EBTEL table. Otherwise, the plasma temperature $T_0 = Parms[1]$ and density $n_0 = Parms[2]$ are used to compute the emission.

Input/output array RL:

This array is the same as in the GET_MW function.

Function GET_GX_MW_SLICE - multi-thread version

Calling syntax:

```
res = call_external(libname, 'GET_GX_MW_SLICE', $
Lparms_M, Rparms_M, Parms_M, $
Qrun, Lrun, logTDEM, $
DEM run, DDM run, RL M)
```

Function parameters:

- 0. Lparms_M 8-element long integer array of dimensions and global keys. Lparms_M = [Nz, Nf, NQ, NL, NT, DEM_key, DDM_key], where Npix is the number of LOSs, and other elements are the same as in the single-thread function GET_GX_MW (they are assumed to be the same for all LOSs).
- 1. Rparms array of real parameters common for all voxels within each LOS, 3 × Npix elements, double. Rparms_M[*, i] represents the parameter Rparms of the single-thread function GET_GX_MW for *i*th LOS.
- 2. Parms array of voxel parameters, $15 \times Nz \times Npix$ elements, double. Parms_M[*, *, i] represents the parameter Parms of the single-thread function GET_GX_MW for *i*th LOS.
- 3. Qrun is the same as in the single-thread function GET_GX_MW (this grid is assumed to be the same for all LOSs).
- 4. Lrun is the same as in the single-thread function GET_GX_MW (this grid is assumed to be the same for all LOSs).
- 5. logTDEM is the same as in the single-thread function GET_GX_MW (this grid is assumed to be the same for all LOSs).
- 6. DEM_run is the same as in the single-thread function GET_GX_MW (this table is assumed to be the same for all LOSs).
- 7. DDM_run is the same as in the single-thread function GET_GX_MW (this table is assumed to be the same for all LOSs).
- 8. RL_M input/output array, $7 \times \text{Nf} \times \text{Npix}$ elements, double. RL_M[*, *, i] represents the parameter RL of the single-thread function GET_GX_MW for *i*th LOS.

Functions GET_MW1 (single-thread version) and GET_MW1_SLICE (multi-thread version)

```
These functions have the following syntax:

res = call_external(libname, 'GET_MW1', Lparms1, Rparms1,

Parms, T_arr, DEM_arr, DDM_arr, RL, $

GRparms)

and

res = call_external(libname, 'GET_MW1_SLICE', Lparms1_M, Rparms1_M, $

Parms_M, T_arr, DEM_arr_M, DDM_arrM, RL_M, $

GRparms M)
```

They are mostly similar to the standard functions GET_MW and GET_MW_SLICE, respectively, but allow computing the emission from a specified range of gyrolayers, and return the parameters of the gyrolayers.

There are the following new features:

Lparms1 is a 7-element array and Lparms1_M is a 8-element array. The first elements of these arrays are the same as in the arrays Lparms and Lparms_M, respectively, and the last two elements are:

```
Lparms1[5] = smin

Lparms1[6] = smax

or

Lparms1_M[6] = smin

Lparms1_M[7] = smax
```

The parameters smax and smin specify respectively the minimum and maximum cyclotron harmonic numbers (smax \geq smin). If > 0, these parameters override the default range of the harmonic numbers (smin = 2 and smax = Parms[7, *] or Parms_M[7, *, *]). Note that smin should be \geq 2: even if you specify smin = 1, the contribution of the 1^{st} harmonic is assumed to be zero, and the coordinates of the 1^{st} gyrolayer are not defined.

Rparms1 is a 9-element array and Rparms1_M is a $9 \times \text{Npix}$ - element array. The first elements of these arrays are the same as in the arrays Rparms and Rparms_M, respectively, and the last six (or $6 \times \text{Npix}$) elements are:

```
Rparms1[3] = x_start
Rparms1[4] = y_start
Rparms1[5] = z_start
Rparms1[6] = x_end
Rparms1[7] = y_end
Rparms1[8] = z_end
```

In the Rparms1_M array, the elements Rparms1_M [3 : 8, i] represent the corresponding parameters for the ith LOS. Here, (x_start, y_start, z_start) and (x_end, y_end, z_end) represent respectively the 3D coordinates of the points

where the corresponding line of sight enters and exits the data cube; these coordinates are provided, e.g., by the entry_point and exit_point parameters of the RenderIrregular routine. The measurement units can be arbitrary: the resulting coordinates of the gyrolayer points are in the same units.

The output arrays GRparms or GRparms_M are respectively the $7 \times Nf \times Ns$ or $7 \times Nf \times Ns \times Npix$ double-precision floating point arrays, with the number of gyrolayers Ns = smax - smin + 1 ($Ns \ge 1$); the elements GRparms_M[*, *, *, i] in the multi-thread version correspond to the parameter GRparms in the single-thread version for ith LOS. The elements GRparms[*, *, s - smin] or GRparms_M[*, *, s - smin, *] correspond to the cyclotron harmonic number s. For each frequency and harmonic number (and for each LOS, in the multi-thread version), the output arrays contain the following characteristics of the gyrolayers (at the points where the LOSs cross the gyrolayers):

GRparms[0, *, *] or GRparms_M[0, *, *, *] = T_{0L} – the equilibrium brightness temperature of the left-polarized emission [K];

GRparms[1, *, *] or GRparms_M[1, *, *, *] = τ_L – the optical depth of the gyrolayer for the left-polarized emission;

GRparms[2, *, *] or GRparms_M[2, *, *, *] = T_{0R} – the equilibrium brightness temperature of the right-polarized emission [K];

GRparms[3, *, *] or GRparms_M[3, *, *, *] = τ_R – the optical depth of the gyrolayer for the right-polarized emission;

GRparms[4, *, *] or GRparms_M[4, *, *, *] – x coordinate;

GRparms[5, *, *] or GRparms_M[5, *, *, *] – y coordinate;

GRparms[6, *, *] or GRparms $_M$ [6, *, *, *] – z coordinate.

The (x, y, z) coordinates are in the same units and coordinate system as specified in the Rparms1 or Rparms1_M arrays. Here, the radiation transfer equation (through a gyrolayer) has the form:

$$T_{\rm b}^{\rm out} = T_{\rm b}^{\rm in} e^{-\tau} + T_0 (1 - e^{-\tau})$$