Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Расчетная работа

по дисциплине «Электрические машины» на тему:

«Асинхронный двигатель» Вариант 13 (двигатель 5AM250M2)

Подготовил: Марухленко Даниил Сергеевич

Группа: R33352

Преподаватель: Маматов Александр Геннадьевич

1 Задание

Для асинхронного трехфазного двигателя, выбранного из каталога:

- Определить параметры схемы замещения;
- Рассчитать и построить без учёта вытеснения тока и с учётом вытеснения
 - Механическую и электромеханическую характеристики;
 - Рабочие характеристики;
- Сравнить результаты расчёта со справочными данными;
- Оформить отчёт с распечаткой использованной программы.

2 Данные для расчёта

```
f = 50 Гц Частота сети
```

2p = 2 Число пар полюсов двигателя

m = 3 Число фаз двигателя

 $P_N = 90 \text{ kBt}$ номинальная механическая мощность

 $n_N = 2955$ об/мин Номинальная частота вращения

 $\eta_N = 93.5 \% \ KПД$

 $cos\phi_{1N}=0.93$ Коэффициент мощности

 $I_N = 157 \; {\rm A} \; {\rm Homuhanhhhh m} \; {\rm тok} \; {\rm при} \; 380 {\rm B}$

 $M_n=290$ Нм Номинальный момент

 $k_s = 1.8$ Отношение пускового момента к номинальному моменту (кратность пускового момента)

 $k_{si} = 7.0$ Отношение пускового тока к номинальному току (кратность пускового тока)

 $\lambda = 2.7$ Отношение максимального момента к номинальному моменту (кратность максимального момента)

II Индекс механической характеристики $0.52~{\rm kr\cdot m^2}$ Динамический момент инерции ротора $505~{\rm kr}$ Масса 1,15 Сервис-фактор

3 Решение

Рис. 1: Схема замещения двигателя

Рис. 2: Алгоритм расчёта параметров схемы замещения

$$U_{1N} = U_n/\sqrt{3} \approx 219.3931(B)$$
 $I_{1N} = I_N = 157(A)$
 $\omega_1 = 2\pi f \approx 314.1593(\text{рад/c})$
 $s_n = 1 - \frac{n_n}{n_1} \approx 0.015$

Активное сопротивление статора r_1 можно определить по рассеваемой на нём мощности $\Delta P_{1Cu}=m_1I_{1N}^2r_1$, которая равна разности потребляемой активной мощности $P_1=m_1U_{1N}I_{1N}cos\phi_{1N}$ и электромагнитной мощности в номинальном режиме $P_{em}=M_N\omega_1/z_p$

$$\Delta P_{1Cu} = P_1 - P_{em}$$

$$r_1 = \frac{U_{1N}I_{1N}\cos\phi_{1N} - M_N\omega_1/(z_pm_1)}{I_{1N}^2} = 0.0675(\text{Om})$$

Активное сопротивление ротора:

$$r'_{20} = \frac{m_1 z_p U_{1N}^2 s_N}{\omega_1 M_N} = 0.0238 (\text{Om})$$

Обе величины будут иметь приближенное, немного завышенное значение. Для поиска реального значения составим нелинейное уравнение и найдём его решение:

$$a(r'_2) = r_1/(r'_2)$$

$$A(r'_2) = 1 - 2a(r'_2) \cdot s_N(\lambda - 1)$$

$$s_m(r'_2) = \frac{s_N(\lambda + \sqrt{\lambda^2 - A(r'_2)})}{A(r'_2)}$$

$$x_{ks}(r'_2) = \sqrt{(r'_2/s_m(r'_2)^2 - r_1^2}$$

$$b(r'_2) = \frac{x_{ks}(r'_2)}{(r_1 + r'_2/s_N)^2 + (x_{ks}(r'_2))^2}$$

$$x_m(r'_2) = \frac{1}{(I_N\sqrt{1 - \cos^2\phi_{1N}})/U_{1N} - b(r'_2)}$$

$$I'_2(r'_2) = f(r_1, r'_2, x_{ks}, x_m, s_m, U_{1N}) = \frac{U_{1N}}{\sqrt{(r_1 + r'_2/s_m(r'_2))^2 + x_{ks}(r'_2)^2}}$$

$$\mu_m(r'_2) = \frac{m_1 z_p |I_2(r'_2)|^2 r'_2}{\omega_1 s_m M_N}$$

$$r'_2 = root(\mu_m(r'_2) - \lambda, r'_{20})$$

Проведя вычисления, получаем следующие значения:

$$r'_2 = 0.0212(\text{Om})$$

$$a = 3.1850$$

$$A = 0.8376$$

$$s_m = 0.0938$$

$$b = 0.0962$$

$$x_{s1} = x'_{s2} = x_{ks}/2 = 0.1078(\text{Om})$$

$$x_m = 5.9954(\text{Om})$$

Далее произведем расчёт коэффициентов, зависящих от глубины паза:

$$k_r(h) = h \frac{\sinh 2h + \sin 2h}{\cosh 2h - \cos 2h}$$

$$k_x(h) = \frac{3}{2h} \frac{\sinh 2h + \sin 2h}{\cosh 2h - \cos 2h}$$

$$\mu_s(h) = \frac{m_1 z_p U_{1N}^2 r_2' k_r}{\omega_1 ((r_1 + r_2' k_r(h))^2 + (x_{1\sigma} + x_{2\sigma}' k_x(h))^2) M_n}$$

$$h = root(\mu_s(h) - k_s, h_0)$$

 $I_2' = 35.2838(A)$

Приблизительное значение h_0 примем равным 2, т.к. двигатель имеет мощность $90 \mathrm{kBt}$. После расчётов имеем следующие значения:

$$h = 2.4322$$

 $k_r = 2.4004$
 $k_x = 0.6275$

Формулы для вычисления механической и электромеханической характеристик выглядят так:

$$M(s) = \frac{mz_p U_{1N}^2 r_2'}{\omega s ((r_1 + r_2'/s)^2 + (x_{s1} + x_{s2}')^2)}; M_k(s) = \frac{mz_p U_{1N}^2 r_2' k_r(s)}{\omega s ((r_1 + r_2'/s)^2 + (x_{s1} + x_{s2}' k_x(s))^2)}$$

$$I_2 = \frac{U_{1N}}{\sqrt{(r_1 + r_2'/s)^2 + (x_{s1} + x_{s2}')^2}}; I_{2k}' = \frac{U_{1N}}{\sqrt{(r_1 + r_2' k_r/s)^2 + (x_{s1} + x_{s2}' k_x)^2}};$$

Рабочие характеристики асинхронного двигателя представляют собой графически выраженные зависимости частоты вращения n_2 , КПД η , полезного момента (момента на валу) M_2 , коэффициента мощности $\cos\phi$, и тока статора I_1 от полезной мощности P_2 при $U_1=const$ и $f_1=const$.

$$\Delta P_{mc}, \Delta P_{ex}, \Delta P_{1Fe}(s) \approx 0$$

$$P_{2} = P_{mc} - \Delta P_{mc} - \Delta P_{ex} \approx m_{1} I_{2}^{\prime 2} r_{2}^{\prime} \frac{1 - s}{s}$$

$$P_{1} = P_{2} + \Delta P_{1Cu} + \Delta P_{1Fe} + \Delta P_{2Cu} \approx P_{2} + m_{1} I_{1}^{2} r_{1} + m_{1} I_{2}^{\prime 2} r_{2}^{\prime}$$

$$I_{1} = I_{2}^{\prime} + \frac{U_{1N}}{c_{1(=1)} \cdot x_{m}}$$

$$\eta = \frac{P_{2}}{P_{1}} \cdot 100\%$$

$$n_{2} = n_{N} \cdot s$$

$$\cos \phi = \frac{P_{1}}{3U_{1N}I_{1N}}$$

4 Графики механической и электромеханической характеристик с учетом и без учета вытеснения тока

Рис. 3: Зависимость M(s)

Puc. 4: Зависимость $I_2'(s)$

Рис. 5: Механическая характеристика

Рис. 6: Электромеханическая характеристика

5 Графики рабочей характеристики без учета вытеснения тока

Рис. 7: Рабочая характеристика $P_1(P_2)$

Рис. 8: Рабочая характеристика $I_1(P_2)$

Рис. 9: Рабочая характеристика $\eta(P_2)$

Рис. 10: Рабочая характеристика $M(P_2)$

Рис. 11: Рабочая характеристика $n(P_2)$ Рис. 12: Рабочая характеристика $\cos\phi(P_2)$

6 Графики рабочей характеристики с учетом вытеснения тока

Рис. 13: Рабочая характеристика $P_1(P_2)$

Рис. 14: Рабочая характеристика $I_1(P_2)$

Рис. 15: Рабочая характеристика $\eta(P_2)$

Рис. 16: Рабочая характеристика $M(P_2)$

Рис. 17: Рабочая характеристика $n(P_2)$ Рис. 18: Рабочая характеристика $\cos\phi(P_2)$

7 Ссылка на использованную программу

https://github.com/japersik/electrical_machines_design

