1^a Lista de exercícios – Integrais Múltiplas

1. Calcule a integral iterada.

a)
$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} sen(x)cos(y)dydx$$
. b) $\int_0^2 \int_0^1 (2x-y)^8 dxdy$.

c)
$$\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x} \right) dy dx$$
. d) $\int_{0}^{1} \int_{-3}^{3} \frac{xy^{2}}{x^{2} + 1} dy dx$.

e)
$$\int_0^{\frac{\pi}{6}} \int_0^{\frac{\pi}{3}} x sen(x+y) dx dy$$
 f) $\int_0^1 \int_0^2 x y e^{x^2 y} dx dy$.

 ${\bf 2}.$ Determine o volume do sólido que se encontra abaixo da região τ e acima do retângulo R, onde:

a)
$$\tau = \{(x, y, z) : 3x + 2y + z = 12\}, R = [0, 1] \times [-2, 3].$$

b)
$$\tau = \{(x, y, z) : \frac{x^2}{4} + \frac{y^2}{9} + z = 1\}, R = [-1, 1] \times [-2, 2].$$

3. Calcule as integrais iteradas.

a)
$$\int_0^1 \int_0^{x^2} (x+2y)dydx$$
. b) $\int_0^{\frac{\pi}{2}} \int_0^{\cos(\theta)} e^{\sin(\theta)}drd\theta$.

4. Calcule a integral dupla.

a)
$$\iint_D x\cos(y)dA$$
, onde D é delimitada por $y=0, y=x^2$ e $x=1$.

b)
$$\iint_D y^3 dA$$
, onde D é a região triangular delimitada pelos vértices $(0,2)$, $(1,1)$ e $(3,2)$.

c)
$$\iint_D 2x - y dA$$
, onde D é a região delimitada pelo círculo de centro na origem e raio 2.

5. Determine o volume do sólido dado.

- a) Abaixo do parabolóide $z=x^2+y^2$ e acima da região delimitada por $y=x^2$ e $x=y^2$.
- b) Limitada pelos planos coordenados e pelo plano 3x + 2y + z = 6.
- c) Delimitada pelos cilindros $z=x^2,\,z=y^2$ e pelos planos y=4 e z=0.

- 6. Calcule a integral dada, colocando-a em coordenadas polares.
- a) $\iint_D xydA$, onde D é o círculo de centro na origem e raio 3.
- **b)** $\iint_D \cos(x^2 + y^2) dA$, onde D é a região acima do eixo x e dentro da circunferência $x^2 + y^2 = 9$.
- c) $\iint_D e^{-x^2-y^2} dA$, onde D é a região delimitada pelo semicírculo $x=\sqrt{4-y^2}$ e o eixo y.
- 7. Utilize coordenadas polares para determinar o volume do sólido dado.
- a) Abaixo do cone $z = \sqrt{x^2 + y^2}$ e acima do disco $x^2 + y^2 \le 4$.
- **b)** Uma esfera de raio a.

Gabarito

1.

- a) 1. b) $-\frac{4^9}{45}$. c) $\frac{21}{2}ln(2)$.
- d) 9ln(2). e) $\frac{\sqrt{3}-1}{2} \frac{\pi}{12}$. f) $\frac{1}{2}(e^2 3)$.

2.

a) $\frac{95}{2}$. b) $\frac{166}{27}$.

3.

a) $\frac{9}{20}$. b) e - 1.

4.

- **a)** $\frac{1}{2}(1-\cos(1))$. **b)** $\frac{147}{20}$. **c)** 0.
- **5**. a) $\frac{6}{35}$.

6.

a) 0. **b**) $\frac{\pi sen(9)}{2}$. **c**) $\frac{\pi}{2}(1 - e^{-4})$.

7.

a) $\frac{16\pi}{3}$. b) $\frac{4}{3}\pi a^3$.