Vehicle Dynamics and Simulation

Drivetrain Dynamics

Dr B Mason

Note

- The test is on Tuesday at 2pm
- Location is SM109 computer lab
- There will be <u>no</u> online session (contact me before 9am on the day if you are unable to attend)

- Main focus;
 - Application of fundamentals to Drivetrain Dynamics
 - Drivetrain dynamic model use.

Lecture Overview

- Drivetrain as a vibrational system
- Torsional drivetrain model
- Excitation sources
- Driveline Components
- Vibration analysis

The Drivetrain System

The Drivetrain System

The Drivetrain System

- The drivetrain can be represented as a number of springs and masses
- Each mass is isolated as a point-mass
- These types of models are known as lumped parameter models
- Control of vibration is achieved by;
 - Reducing excitation
 - Changing stiffness and damping (resonance frequencies)

The simplest useful model

- Three main modes;
 - Shuffle (4-12 Hz)
 - Rattle (40 80 Hz)
 - Rigid body rotation
- And others;
 - Boom (interior compartment)
 - Judder (low frequency on clutch engagement)
 - Clonk (lash in driveline)

Response to step input

More advanced models

- Three, four, six, ..., twenty! mass models
 - Complexity driven by requirements
- Can add masses to suit
- Other components in the drivetrain are important
 - Clutch
 - Differential
 - Actuators and related controls

Rotation or Translation?

Standardised (Simulink) components

Spring-damper

Mass

Sources of excitation

- Main sources of excitation
 - Combustion
 - Step-in and step-out
 - Electric machine
 - HEV transitions
 - Cylinder deactivation
- Transmission
 - Gear meshing
 - Ratio changes
- Driveshaft
 - Universal joints

- Tyres and wheels
 - Runout
 - Mass imbalance
 - Stiffness variations

Excitation - Combustion

- Firing of engine causes torque pulses
- Varies in frequency
 - Number of cylinders
 - Engine speed
- Other events
 - Valve opening and closing (x1 per rotation)
 - Injector opening and closing (x1 per cycle)

Excitation - Combustion

- Spectral analysis (FFT) to look at frequency content of measured response
- Can normalise spectral analysis result with rotational speed
 - Shows how response relates to engine speed
- Can also create interaction plot / Campbell diagram to show response relative to excitation (engine).

Each peak in the diagram above represents a frequency described in terms of the order i.e. frequency/rotational frequency

Campbell Diagram

- Order is frequency / rotational frequency
- 1st order is 1:1 mapping
 e.g. at 1000 rpm = 1000 /
 60 cycles per second (Hz).
- Where the 'order' crosses the 'resonance' line is the point of max vibration.

Torsion Damper

- Used as first line of defence against excitation in the driveline.
- Different physical arrangements.
- Nonlinear spring rate with some damping.

Gearbox

- Can be modelled as a single pair (and 'switched').
- Output torque is calculated (T_a is input torque);

$$T_b = GT_a$$

• With the gear ratio, G given by;

$$G = R/r$$

Simple Drivetrain Model

- Three inertias
- Compliantly connected by rotational springs
- Engine inertia accel;

$$J_e \ddot{\theta}_e = T - T_1$$

Transmission inertia accel;

$$J_t \ddot{\theta}_t = GT_1 - T_2$$

Vehicle inertia accel;

$$J_v\ddot{ heta}_v=T_2$$

Simple Drivetrain Model

 Torque transmitted between engine and transmission;

$$T_1 = K_1(\theta_e - G\theta_t)$$

 Torque transmitted between transmission and vehicle;

$$T_2 = K_2(heta_t - heta_v)$$

So that;

$$egin{align} J_e \ddot{ heta}_e &= T - K_1 \left(heta_e - G heta_t
ight) \ J_t \ddot{ heta}_t &= G K_1 \left(heta_e - G heta_t
ight) - K_2 \left(heta_t - heta_v
ight) \ J_v \ddot{ heta}_v &= K_2 \left(heta_t - heta_v
ight) \ \end{pmatrix}$$

 A less messy formulation is (see notes for derivation);

$$egin{aligned} J_e^*\ddot{ heta}_e^* &= GT - K_1^*\left(heta_e^* - heta_t
ight) \ J_t\ddot{ heta}_t &= K_1\left(heta_e^* - heta_t
ight) - K_2\left(heta_t - heta_v
ight) \ J_v\ddot{ heta}_v &= K_2\left(heta_t - heta_v
ight) \end{aligned}$$

Measured Response (Mondeo 1.81)

Driveline Nonlinearities

- There are many sources of nonlinearity.
- Typically include 'lash' as most significant.
- Lash element available in Simulink

A Simple Tyre Model

- Longitudinal force in acceleration is generated through contact patch.
- The amount of force generated is proportional to 'slip' i.e. velocity difference between tyre (translation) and vehicle (translation).
- Sharply rises, reaches a peak then falls. Stiction vs viscous friction.

Vibration Analysis

Create state matrix

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \dot{x}_4 \end{bmatrix} = egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ -2 & 1 & -1 & 0 \ 1 & -1 & 0 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} + egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} \mathbf{F} \qquad \qquad \mathbf{y} = C\mathbf{x} + D\mathbf{u} \ \end{pmatrix}$$

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$$

Substitute state variables

$$egin{aligned} \dot{x}_1 &= x_3 \ \dot{x}_2 &= x_4 \ \dot{x}_3 &= x_2 - 2x_1 - x_3 \ \dot{x}_4 &= F - x_2 + x_1 \end{aligned}$$

$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

Draw schematic

Define states

$$egin{aligned} x_1 &= heta_1 \ x_2 &= heta_2 \ x_3 &= \dot{ heta}_1 \ x_4 &= \dot{ heta}_2 \end{aligned}$$

Determine system equations

$$F-l(heta_2- heta_1)=l\ddot{ heta}_2$$
 $l(heta_2- heta_1)-l heta_1-l\dot{ heta}_1=l\ddot{ heta}_1$

Vibration Analysis – Modal analysis

Remember that;

$$heta(t) = \operatorname{Re}\left\{\mathbf{u}_1 e^{\lambda_1 t} + \mathbf{u}_2 e^{\lambda_2 t} + \ldots + \mathbf{u}_n e^{\lambda_n t}
ight\}$$

Where each term is;

$$\mathbf{u}_1 e^{\lambda_1 t} = \mathbf{u}_1 e^{(\sigma + j\omega)t} = \mathbf{u}_1 e^{\sigma t} e^{j\omega t} = \mathbf{u}_1 e^{\sigma t} (\cos(\omega t) + i\sin(\omega t))$$

• For a single component;

$$\dot{ heta}(t) = \mathbf{u}_1 e^{\lambda_1 t} \quad \longrightarrow \quad \dot{\dot{ heta}}(t) = \lambda_1 \mathbf{u}_1 e^{\lambda_1 t}$$

So that;

$$\mathbf{x}(t) = \mathbf{v}_1 e^{\lambda_1 t}$$
 where; $\mathbf{v}_1 = egin{bmatrix} \mathbf{u}_1 \ \lambda_1 \mathbf{u}_1 \end{bmatrix}$

Vibration Analysis – Modal analysis

For free vibration;

$$\lambda_1 \mathbf{v}_1 e^{\lambda_1 t} = A \mathbf{v}_1 e^{\lambda_1 t}$$

So that;

$$\lambda_1 \mathbf{v}_1 = A \mathbf{v}_1$$

• Which means that λ_1 is a eigenvalue of A and v_1 is the corresponding eigenvector – from the definition of what an eigenvalue is.

 For the spring-mass-damper system previously (given parameter values);

$$\lambda_1 = -0.35 + 1.5 \mathrm{j}$$
 $\lambda_2 = -0.35 - 1.5 \mathrm{j}$
 $\lambda_3 = -0.15 + 0.63 \mathrm{j}$
 $\lambda_4 = -0.15 - 0.63 \mathrm{j}$

Matlab Example Output

```
D =
                                    [V,D] = eig(A)
   1.0e+02 *
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                            0.0000 + 0.0000i
                                                                                                                                           0.0000 + 0.0000i
   0.0000 + 0.0000i
                      -5.4924 + 0.0000i
                                          0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                         -0.8696 + 3.6644i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                            0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                             -0.8696 - 3.6644i
                                                                                 0.0000 + 0.0000i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                            0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                -0.0332 + 0.2219i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                            0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                    -0.0332 - 0.2219i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                            0.0000 + 0.0000i
                                                             0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                    0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                           0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                          0.0000 + 0.0000i
                                                              0.0000 + 0.0000i
                                                                                 0.0000 + 0.0000i
                                                                                                     0.0000 + 0.0000i
                                                                                                                        0.0000 + 0.0000i
                                                                                                                                           -0.0000 + 0.0000i
V =
                                                                                                   -0.0048 + 0.0322i
   0.0000 + 0.0000i
                      0.0000 + 0.0000i
                                         -0.0000 - 0.0001i
                                                            -0.0000 + 0.0001i
                                                                               -0.0048 - 0.0322i
                                                                                                                      -0.5000 + 0.0000i
                                                                                                                                          -0.5000 + 0.0000i
   0.0000 + 0.0000i
                      0.0001 + 0.0000i
                                          0.0006 + 0.0026i
                                                             0.0006 - 0.0026i
                                                                                -0.0053 - 0.0278i
                                                                                                   -0.0053 + 0.0278i
                                                                                                                      -0.5000 + 0.0000i
                                                                                                                                          -0.5000 + 0.0000i
   0.0000 + 0.0000i
                     -0.0307 + 0.0000i
                                                                                                                      -0.0000 + 0.0000i
                                         -0.9995 + 0.0000i
                                                            -0.9995 + 0.0000i
                                                                                 0.6340 - 0.0265i
                                                                                                    0.6340 + 0.0265i
                                                                                                                                           0.0000 + 0.0000i
  0.0000 + 0.0000i
                     -0.0001 + 0.0000i
                                          0.0269 + 0.0007i
                                                             0.0269 - 0.0007i
                                                                                0.7306 + 0.0000i
                                                                                                    0.7306 + 0.0000i
                                                                                                                      -0.0000 + 0.0000i
                                                                                                                                           0.0000 + 0.0000i
                      0.0018 + 0.0000i
   0.0000 + 0.0000i
                                          0.0000 - 0.0000i
                                                             0.0000 + 0.0000i
                                                                               -0.0096 + 0.0041i
                                                                                                   -0.0096 - 0.0041i
                                                                                                                      -0.5000 + 0.0000i
                                                                                                                                          -0.5000 + 0.0000i
  1.0000 + 0.0000i
                     -0.0000 + 0.0000i
                                         -0.0000 - 0.0000i
                                                            -0.0000 + 0.0000i
                                                                                0.0007 + 0.0037i
                                                                                                    0.0007 - 0.0037i
                                                                                                                      -0.5000 + 0.0000i
                                                                                                                                          -0.5000 + 0.0000i
                                                                                                   -0.0592 + 0.2260i
                                                                                                                                           0.0000 + 0.0000i
   0.0000 + 0.0000i
                     -0.9994 + 0.0000i
                                          0.0104 + 0.0139i
                                                             0.0104 - 0.0139i
                                                                               -0.0592 - 0.2260i
                                                                                                                      -0.0000 + 0.0000i
   0.0000 + 0.0000i
                      0.0151 + 0.0000i
                                          0.0002 - 0.0003i
                                                             0.0002 + 0.0003i
                                                                               -0.0839 + 0.0035i
                                                                                                   -0.0839 - 0.0035i
                                                                                                                      -0.0000 + 0.0000i
                                                                                                                                           0.0000 + 0.0000i
```


	$\lambda_1 = 0$	$\lambda_2 = -779.5$	$\lambda_3 = -86.9 + 366.4 i$	$\lambda_4 = -86.9 - 366.4i$
	0	-119.5	-00.9+300.41	-00.9-300.41
x1	0	0.0000	-0.0000 - 0.0001i	-0.0000 + 0.0001i
x2	0	-0.0000	0.0006 + 0.0026i	0.0006 - 0.0026i
x 3	0	-0.0013	0.0000 - 0.0000i	0.0000 + 0.0000i
x4	1.000	0.0000	-0.0000 - 0.0000i	-0.0000 + 0.0000i
x5	0	-0.0000	0.0269 + 0.0007i	0.0269 - 0.0007i
x6	0	0.0129	-0.9996	-0.9996
x7	0	0.9998	0.0059 + 0.0116i	0.0059 - 0.0116i
x8	0	-0.0150	0.0003 - 0.0003i	0.0003 + 0.0003i

	$\lambda_5 =$	$\lambda_6 =$	$\lambda_7 =$	$\lambda_8 =$
	-2.40 + 22.26i	-2.40- 22.26i	-1.4676e-006	1.4676e-006
x1	-0.0035 - 0.0329i	-0.0035 - 0.0329i	0.5000	-0.5000
x2	-0.0039 - 0.0284i	-0.0039 - 0.0284i	0.5000	-0.5000
x 3	-0.0068 + 0.0040i	-0.0068 + 0.0040i	0.5000	-0.5000
x4	0.0005 + 0.0038i	0.0005 + 0.0038i	0.5000	-0.5000
x5	0.7403	0.7403	-0.0000	-0.0000
x6	0.6412 - 0.0186i	0.6412 - 0.0186i	-0.0000	-0.0000
x7	-0.0720 - 0.1618i	-0.0720 - 0.1618i	-0.0000	-0.0000
x8	-0.0848 + 0.0025i	-0.0848 + 0.0025i	-0.0000	-0.0000

...and as if by magic!

```
[A,B,C,D] = linmod('drive4');
[V,D] = eig(A);
```


- Normalising (as in previous example)
 - Shuffle;

```
0.7403 / 0.7403 = 1.0000

0.6412 - 0.0186i / 0.7403 = 0.8661 - 0.0251i

-0.0720 - 0.1618i / 0.7403 = -0.0972 - 0.2185i

-0.0848 + 0.0025i / 0.7403 = -0.1146 + 0.0034i
```

• Rattle:

1.0000

And plotting

• Shuffle;

• Rattle;

-0.0269 - 0.0007i

-0.0059-0.0116i -0.0003+0.0003i

 Bode plot to show frequency response between input torque, vehicle and transmission acceleration.


```
[A,B,C,D] = linmod('drive4');
sys = ss(A,B,C,D);
f = [0.1:0.1:1000]';
[mag,phase] = bode(sys,f*2*pi);
mag = squeeze(mag)';
loglog(f,mag);
grid on;
```

