

- 5¾-digit DC resolution (1 part out of ±300,000)
- Automatic drift compensation
- Very fast peak capture
- AC frequency response to 50 kHz
- IEEE-488 and serial interfaces
- Storage of parameters for up to 10 existing coils
- CE mark certification

Product description

An advanced tool designed primarily for use in industrial and measurement systems settings, the Model 480 fluxmeter measures total flux from which B, flux density, and H, magnetic field strength, can be determined. The Model 480 is valuable for magnetizing, manual and automated magnet testing and sorting, and as the main component in BH loop or hysteresis measurement system applications. The Model 480 is compatible with most sensing coils and fixtures.

Manual magnet testing

A bright display and fast update rate make the Model 480 ideal for manual magnet sorting and testing. The instrument's low drift improves productivity with fewer adjustments. Remote terminals allow for foot pedal reading reset to keep hands on the work, not the instrument. Configurable alarms give an audible signal or relay closure to signify pass/fail.

Automated magnet testing

In automated testing, time is money. The Model 480 has many features to enhance throughput. The instrument has a fast update rate and fast settling time. It recovers quickly from reading reset to start a new reading cycle. The IEEE-488 and serial interfaces included with the Model 480 can be used to control most instrument functions. Relays and analog outputs can be used for automation without a computer interface.

Magnetizing

The magnetizing process places unique demands on all associated electronics. The

Model 480 responds with a very fast peak capture that can keep up with the fastest magnetizing pulses. Both a positive and negative peak can be captured from the same pulse. The input of the Model 480 is protected against the high voltages present during magnetizing.

Materials analysis

High resolution and low drift define a fluxmeter's role in analytical measurement. The high resolution of the Model 480 is reinforced by a low noise floor. A configurable filter helps keep the readings quiet. Automatic and manual drift adjustment modes help optimize the integrators' low drift characteristics. The IEEE-488 and serial computer interfaces included with the 480 allow automated data taking.

AC magnetic fields

Sensing coils are sensitive to AC magnetic fields but many conventional integrating fluxmeters can not measure AC fields. The Model 480 has an AC mode that enables it to measure fields over a wide frequency range using simple sensing coils. Applications are limited to field volumes as large as or larger than the coil, but for some it is an inexpensive way to make low drift AC field measurements.

Drift adjustment

Adjusting or nulling the drift of an analog integrator wastes time—it can be the only unpleasant part of using an integrating fluxmeter. Lake Shore innovation brings some relief. The Model 480 has a built-in drift algorithm that continually adjusts drift when

the instrument and coil are idle. It is ready when you are to make precision low-drift measurements. The adjustment algorithm has no effect during flux integration. Manual drift adjustment is also available.

Display

The Model 480 has a 2-line by 20-character vacuum fluorescent display. During normal operation, the display is used to report field readings and give results of other features such as max/min or relative. When setting instrument parameters, the display gives the operator meaningful prompts and feedback to simplify operation. The operator can also control display brightness.

Following are three examples of the various display configurations:

Normal reading—the default mode with the display of the live DC flux reading

DC positive and negative peak on—the display shows both the positive and negative DC peak readings

Alarm on—the alarm gives an audible and visual indication of when the flux value is selectively outside or inside a user-specified range

FH-series Helmholtz coils

Lake Shore coils can be used with the Model 480 fluxmeter as well as with other fluxmeters. When used with a Model 480 fluxmeter, calibration and set up data are automatically loaded into the instrument. These probes and coils are accurately calibrated, using field standards maintained at Lake Shore. Most standards are traceable to physical standards such as a coil or probe of carefully controlled dimensions, or in some cases, to proton resonance. The coil constants are measured on the basis of the field generated by a current through the coil.

See pages 63, 64, and 65 for more information about available Helmholtz and search coils.

Helmholtz and search coils

Coils and probes wound by the user or from other manufacturers can be easily used with the Model 480. The Model 480 allows the user to save parameters for up to 10 existing coils/probes and quickly switch between them. Lake Shore also offers several sensing coils and probe assemblies for use with the Model 480 that have several conveniences. They are factory calibrated for accuracy and interchangeability. Calibration data is loaded into memory in the probe connector so it does not have to be entered by the user. Special coil assemblies are also available and can be designed to meet customer specifications.

Model 480 rear panel

- Line input assembly
- Serial I/O interface
- 8 IFFF-488 interface
- Terminal block (for relays and analog signals)*
- Coil input for user coils
- Probe input for Lake Shore probes

* The Model 480 terminal block has connections for external reset. With this feature. a foot pedal or programmable logic controller (PLC) can be used to start a new measurement cycle. The external reset is TTL-compatible and a logic low will activate a reset. The signal is internally pulled up to allow operation with a simple switch closure between pins 12 and 13.

Model 480 specifications

Measurement

Number of inputs: 1

Input type: 2-lead, ground referenced Input resistance: 100 k Ω or 10 k Ω Maximum operating input voltage: 60 V

Absolute maximum input voltage: 100 V—WARNING—voltages between 60 V and 100 V will not damage the instrument but could result in personal injury or damage to

other instruments

Update rate: 5 rdg/s display; 30 rdg/s IEEE-488; 30 rdg/s serial

DC

 $\mbox{\bf DC}$ resolution: To 5% digits

DC integrator capacitance: 1 µF nominal

DC input resistance	100 kΩ	100 kΩ	10 kΩ	10 kΩ
DC ranges	300 mVs	30 mVs	30 mVs	3 mVs
DC resolution	0.001 mVs	0.0005 mVs	0.0005 mVs	0.0005 mVs

DC accuracy: Offset: $\pm 10~\mu Vs~\pm DC$ integrator drift; gain: $\pm 0.25\%$ of reading (<10 Vs/s

maximum rate of change) **DC minimum d\Phi/dt:** 20 μ Vs/min **DC maximum d\Phi/dt:** 60 Vs/s

DC integrator drift: $\pm 1~\mu\text{Vs/min}$, 0.0004% full scale/min on 300 mVs range (100 k Ω input resistance constant temperature environment)

DC peak

DC peak resolution: 43/4 digits

DC peak integrator capacitance: 1 µF nominal

DC peak input resistance	100 kΩ	100 kΩ	10 kΩ	10 kΩ
DC peak ranges	300 mVs	30 mVs	30 mVs	3 mVs
DC peak resolution	0.01 mVs	0.001 mVs	0.001 mVs	0.001 mVs
DC peak minimum reading	0.05 mVs	0.005 mVs	0.005 mVs	0.005 mVs

DC peak accuracy: Offset: $\pm 100~\mu Vs~\pm DC$ integrator drift; gain: $\pm 5\%$ of reading

(<10 Vs/s maximum rate of change) **DC peak maximum dΦ/dt:** 60 Vs/s

DC peak update rate: Reduces update rate to 1/4 normal

AC

AC resolution: 4¾ digits (reduced to 3¾ digits on the 30 µVs range)

AC integrator capacitance: 0.1 µF nominal

AC input resistance	100 kΩ	100 kΩ	100 kΩ	100 kΩ
AC ranges	30 mVs	3 mVs	300 μVs	30 μVs
AC resolution	0.001 mVs	0.0001 mVs	0.01 µVs	0.01 µVs
AC minimum reading	3.000 mVs	0.3000 mVs	30.00 μVs	3.00 µVs
	=0			

AC frequency response: 2 Hz to 50 kHz

AC accuracy: $\pm 1\%$ rdg $\pm 10~\mu Vs$ (10 Hz to 10 kHz sinusoidal); $\pm 5\%$ rdg $\pm 10~\mu Vs$ (2 Hz to 50 kHz sinusoidal)

AC integrator drift: NA

AC peak

AC peak resolution: 334 digits

AC peak integrator capacitance: 0.1 µF nominal

AC input resistance:	100 kΩ	100 kΩ	100 kΩ
AC peak ranges:	30 mVs	3 mVs	300 μVs
AC peak resolution:	0.01 mVs	0.001 mVs	1 µVs
AC minimum reading:	0.01 mVs	0.001 mVs	5 µVs

AC peak accuracy: $\pm 5\%$ rdg ± 10 µVs (10 Hz to 10 kHz sinusoidal); $\pm 10\%$ rdg ± 10 µVs

(2 Hz to 50 kHz sinusoidal)

AC peak update rate: Reduces update rate to 1/4 normal

Front panel

Display type: 2-line × 20-character vacuum fluorescent display

Display resolution: To $\pm 5\%$ digits Display update rate: 5 rdg/s

 $\textbf{Display units:} \ Vs, \ MxN, \ WbN, \ Vs\Phi, \ Mx\Phi, \ Wb\Phi, \ G, \ T, \ Wbcm, \ A, \ \%$

Units multipliers: p, n, μ , m, k, M, G

Annunciators: AC—AC input signal, DC—DC input signal, ∧ ∨—positive and negative

peaks, R-remote operation, ---- alarm on

Keypad: 21 full-travel keys

Interfaces

IEEE-488.2 capabilities: SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0, E1

Serial interface: RS-232C electrical, DA-9 connector, 9600 baud

External reset type: Contact closure

Alarms

Number: 2

Settings: High and low setpoint, Inside/Outside, Audible

Actuators: Display annunciator, beeper, relays

Relays

Number: 3

Contacts: Normally open (NO), normally closed (NC), and common (C)

Contact rating: 30 VDC at 2 A

Operation: Follow high, low alarms with third relay indicating no alarm state—can be

operated manually

Connector: Detachable terminal block

Monitor analog output

Scale: $\pm 3 \text{ V} = \pm \text{full scale on Vs range}$

Accuracy: $\pm 1\%$ of reading ± 10 mV, (DC to 10 kHz); $\pm 5\%$ of reading ± 10 mV,

(10 kHz to 50 kHz)

Minimum load resistance: 1 $k\Omega$ Connector: Detachable terminal block

Corrected analog output Scale: User selected Range: ±10 V

Resolution: 0.3 mV Accuracy: ±2.5 mV

Minimum load resistance: 1 $k\Omega$ Connector: Detachable terminal block

General

Ambient temperature: 15 °C to 35 °C at rated accuracy, 5 °C to 40 °C with reduced

accuracy

Power requirement: 100, 120, 220, 240 VAC, +5% -10%, 50 or 60 Hz, 20 VA **Size:** 216 mm W \times 89 mm H \times 318 mm D (8.5 in \times 3.5 in \times 12.5 in), half rack

Weight: 3 kg (6.6 lb)
Approval: CE mark

Ordering information

Part number Description
480 Model 480 fluxmeter

Please indicate your power/cord configuration:

1 100 V—U.S. cord (NEMA 5-15)
2 120 V—U.S. cord (NEMA 5-15)
3 220 V—Euro cord (CEE 717)
4 240 V—Euro cord (CEE 717)
5 240 V—U.K. cord (BS 1363)
6 240 V—Swiss cord (SEV 1011)
7 220 V—China cord (GB 1002)

Accessories included

106-739 Two 8-pin terminal block mating connectors

119-028 Model 480 user manual

Accessories available

CAL-480-CFRT

4005 1 m (3.3 ft) long IEEE-488 (GPIB) computer interface cable

assembly—includes extender required for simultaneous use of

IEEE cable and auxiliary terminal block Instrument recalibration with certificate

CAL-480-DATA Instrument recalibration with certificate and data

CAL-N8-DATA Calibration data for a new Model 480

RM-1/2 Rack mount kit for mounting one Model 480 in 483 mm

(19 in) rack

RM-2 Rack mount hit for mounting two Model 480s in 483 mm

(19 in) rack

Coils—see pages 63, 64, and 65 for more information

FNT-6R04-100 100 cm² search coil FNT-5P04-30 30 cm² search coil

FH-2.5 Helmholtz coil, 64 mm (2.5 in) ID FH-6 Helmholtz coil, 152 mm (6 in) ID FH-12 Helmholtz coil, 305 mm (12 in) ID

FCBL-6 User programmable cable with PROM, 1.5 m (5 ft) long

All specifications are subject to change without notice