Modulhandbuch Studiengang Bachelor of Science Chemie- und Bioingenieurwesen

Prüfungsordnung: 226-2019 Hauptfach

> Wintersemester 2021/22 Stand: 12.11.2021

Kontaktpersonen:

Studiendekan/in:	Prof. DrIng. Joachim Groß, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik gross@itt.uni-stuttgart.de
Studiengangsmanager/in:	Dr. Antje Lohmüller, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
	antje.lohmueller@itt.uni-stuttgart.de
Prüfungsausschussvorsitzende/r:	UnivProf. Ralf Takors Bioverfahrenstechnik Institut für Bioverfahrenstechnik E-Mail: ralf.takors@ibvt.uni-stuttgart.de
Fachstudienberater/in:	Dr. Antje Lohmüller, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
	antje.lohmueller@itt.uni-stuttgart.de

Stand: 12.11.2021 Seite 2 von 72

Inhaltsverzeichnis

v Dasisiiioaaic	
11950 Technische Mechanik II + III	
	kum
13650 Höhere Mathematik 3 für Ingenieurstud	liengänge
	studiengänge
	+ II mit Einführung in die Festigkeitslehre
	esen
69190 Einführung in die Chemie für CBIW-Stu	udierende
) Kernmodule	
11320 Thermodynamik der Gemische I	
	enstechnik
-	tragung
O Ergänzungsmodule 310 Biologie 32270 Bioverfahrenstechnik	tragung
O Ergänzungsmodule	lolekülbau)
O Ergänzungsmodule	lolekülbau) ie schen Chemie
310 Biologie	lolekülbau) ie schen Chemie
O Ergänzungsmodule	lolekülbau) ie schen Chemie
O Ergänzungsmodule	lolekülbau) ie schen Chemie
310 Biologie	lolekülbau) ie schen Chemie iie kopie
O Ergänzungsmodule	lolekülbau) ie schen Chemie iie kopie
O Ergänzungsmodule 310 Biologie	lolekülbau) ie schen Chemie
O Ergänzungsmodule 310 Biologie 32270 Bioverfahrenstechnik 51710 Einführung in die Biochemie 69140 Zellphysiologie 320 Chemie 10420 Theoretische Chemie (Atom- und M 11060 Grundlagen der Organischen Chem 35870 Mikroreaktionstechnik 69110 Ausgewählte Themen der Physikalis 69120 Praktikum Organische Chemie 330 Material 11060 Grundlagen der Organischen Chem 68850 Physikalische Materialeigenschafter 68880 Strukturanalyse und Materialmikrosl 69110 Ausgewählte Themen der Physikalis	lolekülbau) ie schen Chemie ie kopie schen Chemie

Qualifikationsziele

Die Absolventinnen und Absolventen des Bachelorstudienganges "Chemie- und Bioingenieurwesen"

- verfügen über ein breites und fundiertes mathematisches, natur- und ingenieurwissenschaftliches Grundlagenwissen, dass sie befähigt, die grundlegenden Probleme und Aufgabenstellungen der Verfahrenstechnik sowie den multidisziplinären Zusammenhang der Ingenieurwissenschaften zu verstehen.
- verfügen über grundlegendes Fachwissen auf dem Gebiet der Verfahrenstechnik und können Aufgabenstellungen (Prozesse, Produkte) der Verfahrenstechnik grundlagenorientiert erkennen, beschreiben und lösen, analysieren und bewerten.
- haben grundlegendes Verständnis für Entwicklungsmethoden und verfügen über die Fertigkeit, Entwürfe für verfahrenstechnische Produkte, Prozesse sowie Ausrüstungen entsprechend dem Stand ihres Wissens und Verstehens und nach spezifizierten Anforderungen zu erarbeiten.
- haben grundlegendes Verständnis über experimentelle Untersuchungsmethoden in den Naturwissenschaften und der Verfahrenstechnik und verfügen über die Fertigkeit, Experimente zu planen und durchzuführen, die Daten grundlegend zu interpretieren und daraus geeignete Schlüsse zu ziehen.
- besitzen Verständnis für in verschiedenen Arbeitsfeldern anwendbare verfahrenstechnische Prozesse und Ausrüstungen, für deren Grenzen und können ihr Wissen unter Berücksichtigung prozesstechnischer, energetischer, wirtschaftlicher, ökologischer und sicherheitstechnischer Erfordernisse verantwortungsbewusst anwenden.
- können mit Spezialisten verschiedener Disziplinen kommunizieren und zusammenarbeiten.
- verfügen über eine verantwortliche und selbständige wissenschaftliche Arbeitsweise. Sie sind qualifiziert für ein Master-Studium.

Das Studium qualifiziert sowohl für verschiedene Berufsfelder und -tätigkeiten als Verfahrenstechniker in Industriebetrieben, Ingenieurbüros, Behörden, Hochschulen und Forschungsinstituten wie auch für die Fortsetzung der wissenschaftlichen Ausbildung in einem Master-Studium der Verfahrenstechnik oder einem inhaltlich nah verwandten Studiengang. Das Curriculum des Studienganges sieht ein 4-semestriges Grundstudium und ein 2-semestriges Fachstudium vor. Im Grundstudium werden mathematisch-naturwissenschaftliche und ingenieurwissenschaftliche Grundlagen der Verfahrenstechnik gelehrt. Im Fachstudium, ab dem fünften Semester, werden die wesentlichen Fächer der Verfahrenstechnik als Kernmodule gelehrt. Zusätzlich zu den fachlichen Modulen sind Ergänzungsmodule, fachaffine und fachübergreifende Schlüsselqualifikationen vorgesehen. So ist wird ab dem 3. Semester das naturwissenschaftliche Vertiefungsfach aus dem Bereich Biologie, Chemie oder Material gewählt. Mit der Bachelorarbeit im sechsten Semester ist die Befähigung zu zeigen, innerhalb einer vorgegebenen Frist eine Aufgabenstellung aus dem Bereich der Verfahrenstechnik selbständig nach wissenschaftlichen Methoden zu bearbeiten.

Stand: 12.11.2021 Seite 4 von 72

100 Basismodule

Zugeordnete Module: 10540 Technische Mechanik I

11220 Technische Thermodynamik I + II 11950 Technische Mechanik II + III

12170 Werkstoffkunde I+II mit Werkstoffpraktikum13650 Höhere Mathematik 3 für Ingenieurstudiengänge

13760 Strömungsmechanik

45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

51670 Maschinen- und Apparatekonstruktion I + II mit Einführung in die Festigkeitslehre

69170 Physik für Chemie- und Bioingenieurwesen

69180 Einführung in die Biotechnik

69190 Einführung in die Chemie für CBIW-Studierende

Stand: 12.11.2021 Seite 5 von 72

Modul: 10540 Technische Mechanik I

2. Modulkürzel:	072810001	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. DrIng. Peter Ebe	rhard
9. Dozenten:		Peter Eberhard Michael Hanss	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2011, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 1. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 1. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:	Grundlagen in Mathematik un	d Physik
12. Lernziele:		I haben die Studierenden ein Kenntnis der wichtigsten Zusa Sie beherrschen selbständig,	es Moduls Technische Mechanik grundlegendes Verständnis und ammenhänge in der Stereo-Statik. sicher, kritisch und kreativ einfache ndsten mechanischen Methoden der
Rechenregeln der Vektor-Al Vektoren • Stereo-Statik: Kräftesysteme und Schwerpunkt, ebene Kr		nung: Vektoren in der Mechanik, Igebra, Systeme gebundener e und Gleichgewicht, Gewichtskraft räftesysteme, Lagerung von re Kräfte und Momente am Balken, ung	
14. Literatur:		Mechanik 1 - Statik. Berlin: • Hibbeler, R.C.: Technische Pearson Studium, 2005	röder, J., Wall, W.: Technische
15. Lehrveranstaltungen und -formen: • 105401 Vorlesung Technische Mechanik I • 105402 Übung Technische Mechanik I			
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 42 h Selbststudiumszeit / Nacharb Gesamt: 180 h	eitszeit: 138 h
17. Prüfungsnummer/r	und -name:	10541 Technische Mechanik Gewichtung: 1	(I (PL), Schriftlich, 120 Min.,

Stand: 12.11.2021 Seite 6 von 72

19. Medienform:	Beamer, Tablet-PC/Overhead-Projektor, Experimente
20. Angeboten von:	Technische Mechanik

Stand: 12.11.2021 Seite 7 von 72

Modul: 11220 Technische Thermodynamik I + II

2. Modulkürzel:	042100010	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	12 LP	6. Turnus:	Wintersemester
4. SWS:	8	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. DrIng. Joachim Groß	
9. Dozenten: Joachim Groß			
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Basismodule	
11. Empfohlene Voraussetzungen:		Mathematische Grundkenntnis Integralrechnung	sse in Differential- und
12. Lernziele:			

Die Studierenden

- beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.
- sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraktion durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.
- sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.
- können Berechnungen zur Beschreibung der Lage von Phasenund Reaktionsgleichgewichten durchführen und verstehen die Bedeutung energetischer und entropischer Einflüsse auf diese Gleichgewichtslagen.
- Die Studierenden sind durch das erworbene Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:

Thermodynamik ist die allgemeine Theorie energie- und stoffumwandelnder Prozesse. Diese Veranstaltung vermittelt die Inhalte der systemanalytischen Wissenschaft Thermodynamik im Hinblick auf technische Anwendungsfelder. Im Einzelnen:

- Grundgesetze der Energie- und Stoffumwandlung
- Prinzip der thermodynamischen Modellbildung
- Prozesse und Zustandsänderungen

Stand: 12.11.2021 Seite 8 von 72

	 Thermische und kalorische Zustandsgrößen Zustandsgleichungen und Stoffmodelle Bilanzierung der Materie, Energie und Entropie von offenen, geschlossenen, stationären und instationären Systemen Energiequalität, Dissipation und Exergiekonzept Ausgewählte Modelprozesse: Kreisprozesse, Reversible Prozesse, Dampfkraftwerk, Gasturbine, Kombi-Kraftwerke, Verbrennungsmotoren etc. Gemische und Stoffmodelle für Gemische: Verdampfung und Kondensation, Verdunstung und Absorption Phasengleichgewichte und chemisches Potenzial Bilanzierung bei chemischen Zustandsänderungen
14. Literatur:	 HD. Baehr, S. Kabelac, Thermodynamik - Grundlagen und technische Anwendungen, Springer-Verlag Berlin. P. Stephan, K. Schaber, K. Stephan, F. Mayinger: Thermodynamik - Grundlagen und technische Anwendungen, Springer-Verlag, Berlin. K. Lucas: Thermodynamik - Die Grundgesetze der Energie- und Stoffumwandlungen, Springer-Verlag Berlin.
15. Lehrveranstaltungen und -formen:	 112206 Gruppenübung Technische Thermodynamik II 112203 Gruppenübung Technische Thermodynamik I 112202 Vortragungsübung Technische Thermodynamik I 112204 Vorlesung Technische Thermodynamik II 112205 Vortragungsübung Technische Thermodynamik II 112201 Vorlesung Technische Thermodynamik I
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 112 Stunden Selbststudium: 248 Stunden Summe: 360 Stunden
17. Prüfungsnummer/n und -name:	 11221 Technische Thermodynamik I + II (ITT) (PL), Schriftlich, 180 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich Prüfungsvorleistung: Zwei bestandene Zulassungsklausuren
18. Grundlage für :	
19. Medienform:	Der Veranstaltungssinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.
20. Angeboten von:	Thermodynamik und Thermische Verfahrenstechnik

Stand: 12.11.2021 Seite 9 von 72

Modul: 11950 Technische Mechanik II + III

→ Basismodule	
UnivProf. DrIng. Peter Eberhard Peter Eberhard Michael Hanss B.Sc. Verfahrenstechnik, PO 226-3 → Basismodule	1
Peter Eberhard Michael Hanss B.Sc. Verfahrenstechnik, PO 226-3 → Basismodule	
Michael Hanss B.Sc. Verfahrenstechnik, PO 226-3 → Basismodule	
→ Basismodule	
 B.Sc. Verfahrenstechnik, PO 226-2011, 2. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 2. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 2. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 2. Semester → Basismodule 	
Grundlagen in Technischer Mecha	ınik I
Die Studierenden haben nach erfo Technische Mechanik II+III ein gru Kenntnis der wichtigsten Zusamme Dynamik. Sie beherrschen selbstä einfache Anwendungen der grund Methoden der Elasto-Statik und Dy	endlegendes Verständnis und enhänge in der Elasto-Statik und ndig, sicher, kritisch und kreativ legendsten mechanischen
 Elasto-Statik: Spannungen und Torsion von Wellen, Technische einfacher Belastungsfälle Kinematik: Punktbewegungen, F räumliche Kinematik des starren Kinetik: Kinetische Grundbegriffe Kinetik der Schwerzunkteheweg 	Biegelehre, Überlagerung Relativbewegungen, ebene und n Körpers e, kinetische Grundgleichungen,
Relativbewegungen, Kinetik des Energiesatz, Schwingungen • Methoden der analytischen Mec Koordinaten und Zwangsbeding d'Alembertschen Prinzips in der Lagrangesche Gleichungen	s starren Körpers, Arbeits- und hanik: Prinzip von d'Alembert, ungen, Anwendung des
 Vorlesungsmitschrieb Vorlesungs- und Übungsunterla Gross, D., Hauger, W., Schröde 2 - Elastostatik, Berlin: Springer, Gross, D., Hauger, W., Schröde 	r, J., Wall, W.: Techn. Mechanik , 2007
	B.Sc. Chemie- und Bioingenieurwe → Basismodule B.Sc. Chemie- und Bioingenieurwe → Basismodule B.Sc. Verfahrenstechnik, PO 226-2 → Basismodule Grundlagen in Technischer Mecha Die Studierenden haben nach erfortechnische Mechanik II+III ein grutententententententententententententent

Stand: 12.11.2021 Seite 10 von 72

	 Hibbeler, R.C.: Technische Mechanik 3 - Dynamik. München: Pearson Studium, 2006
	 Magnus, K., Slany, H.H.: Grundlagen der Techn. Mechanik. Stuttgart: Teubner, 2005
15. Lehrveranstaltungen und -formen:	 119504 Übung Technische Mechanik III 119503 Vorlesung Technische Mechanik III 119501 Vorlesung Technische Mechanik II 119502 Übung Technische Mechanik II
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 84 h Selbststudiumszeit / Nacharbeitszeit: 276 h Gesamt: 360 h
17. Prüfungsnummer/n und -name:	11951 Technische Mechanik II + III (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für :	
19. Medienform:	BeamerTablet-PC/Overhead-ProjektorExperimente
20. Angeboten von:	Technische Mechanik

Stand: 12.11.2021 Seite 11 von 72

Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum

2. Modulkürzel:	041810001	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	6	7. Sprache:	Deutsch
8. Modulverantwortlicher:		apl. Prof. DrIng. Michael Sei	idenfuß
9. Dozenten:		Michael Seidenfuß	
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Chemie- und Bioingenie → Basismodule	eurwesen, PO 226-2019, 1. Semeste
11. Empfohlene Voraussetzungen:		keine	
12. Lernziele:		Sie beherrschen die Grundlag können den Einfluss der einze das Werkstoffverhalten beurte Verhalten der Werkstoffe ist il Einflussfaktoren auf dieses Ve sind mit den wichtigsten Prüf- vertraut. Sie sind in der Lage,	n der Werkstoffgruppen vertraut. gen der Legierungsbildung und elnen Legierungsbestandteile auf eilen. Das spezifische mechanische hnen bekannt und sie können die erhalten beurteilen. Die Studierenden und Untersuchungsmethoden Werkstoffe für spezifische gegeneinander abzugrenzen und
13. Inhalt: Vorlesung Atomarer Aufbau kristalliner Werkstoffe, Legierungsbild thermisch aktivierte Vorgänge, mechanische Eigensche Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, keram Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Praktikum Thermische Analyse, Kerbschlagbiegeversuch, Härtep Zugversuch, Schwingfestigkeitsuntersuchung, Korrosion Metallographie, Wärmebehandlung, Dilatometer		e, mechanische Eigenschaften, netalle, Kunststoffe, keramische fe, Korrosion, Tribologie, Recycling nlagbiegeversuch, Härteprüfung, itsuntersuchung, Korrosion,	
14. Literatur:		 ergänzende Folien zur Vorle Lecturnity Aufzeichnungen of Skripte zum Praktikum (onlingen interaktive multimediale praktive Roos E., Maile, K., Seidenfulngenieure, 6. Auflage, Springenieure 	der Übungen (online verfügbar) ne verfügbar) ktikumsbegleitende-CD ß, M.: Werkstoffkunde für
15. Lehrveranstaltungen und -formen:		 121701 Vorlesung Werkstof 121702 Vorlesung Werkstof 121703 Werkstoffpraktikum 121704 Werkstoffpraktikum 121705 Werkstoffkunde Übe 121706 Werkstoffkunde Übe 	ifkunde II I II ung II
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit Vorlesungen (2x Präsenzzeit Übung (2x 0,5 SV Präsenzzeit Praktikum (2x Blo Präsenzzeit gesamt: 62 h Selbststudium: 120 h	<i>N</i> S): 12 h

Stand: 12.11.2021 Seite 12 von 72

	GESAMT: 182 h	
17. Prüfungsnummer/n und -name:	 12171 Werkstoffkunde I+II mit Werkstoffpraktikum (PL), Schriftlich, 120 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich Prüfungsvorleistung: erfolgreich abgelegtes Werkstoff-praktikum (an den Versuchen thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung, Korrosion, Metallographie, Wärmebehandlung, Dilatometer teilgenommen und eine Ausarbeitung erstellt). 	
18. Grundlage für :		
19. Medienform:	PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity Aufzeichnungen der Übungen, Abruf über Internet	
20. Angeboten von:	Materialprüfung, Werkstoffkunde und Festigkeitslehre	

Stand: 12.11.2021 Seite 13 von 72

Modul: 13650 Höhere Mathematik 3 für Ingenieurstudiengänge

2. Modulkürzel:	080410503	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	6	7. Sprache:	Deutsch
8. Modulverantwortlicher:		apl. Prof. Dr. Markus Stroppel	
9. Dozenten:			
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Basismodule	urwesen, PO 226-2019, 3. Semester urwesen, PO 226-2017, 3. Semester
11. Empfohlene Vorau	ssetzungen:	HM 1 / 2	
12. Lernziele:		Die Studierenden	
		für Funktionen mehrerer Ver Differentialgleichungen, Fou • sind in der Lage, die behand kritisch und kreativ anzuwer	delten Methoden selbständig, sicher, delten Methoden selbständig, sicher, den. Grundlage für das Verständnis en Ingenieurwissenschaften. n aus dem ingenieurs- und deld über die benutzten
13. Inhalt:		lineare Differentialgleichungen Koeffizienten), Anwendungen. Aspekte der Fourierreihen u Differentialgleichungen: Darstellung von Funktionen du	grale, Transformationssätze, tze von Stokes und Gauß gen beliebiger Ordnung und gen 1. Ordnung (jeweils mit e und allgemeine Lösung. ichungen: itze, einige integrierbare Typen, i beliebiger Ordnung (mit konstanten
14. Literatur:		A. Hoffmann, B. Marx, W. V. Pearson Studium.	ogt: Mathematik für Ingenieure 1, 2.

Stand: 12.11.2021 Seite 14 von 72

	 K. Meyberg, P. Vachenauer: Höhere Mathematik 1, 2. Springer. G. Bärwolff: Höhere Mathematik. Elsevier. W. Kimmerle: Analysis einer Veränderlichen, Edition Delkhofen. W. Kimmerle: Mehrdimensionale Analysis, Edition Delkhofen. Mathematik Online: www.mathematik-online.org.
15. Lehrveranstaltungen und -formen:	 136502 Höhere Mathematik 3 für Ingenieurstudiengänge (EE) 136503 Höhere Mathematik 3 für Ingenieurstudiengänge (FMT) 136501 Höhere Mathematik 3 für Ingenieurstudiengänge (Bau) 136504 Höhere Mathematik 3 für Ingenieurstudiengänge (Mach) 136505 Höhere Mathematik 3 für Ingenieurstudiengänge (Med) 136507 Höhere Mathematik 3 für Ingenieurstudiengänge (UWT) 136508 Höhere Mathematik 3 für Ingenieurstudiengänge (Verk) 136506 Höhere Mathematik 3 für Ingenieurstudiengänge (Tema)
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 84 h Selbststudiumszeit / Nacharbeitszeit: 96 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:	 13651 Höhere Mathematik 3 für Ingenieurstudiengänge (PL), Schriftlich, 120 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/ Scheinklausuren,
18. Grundlage für :	
19. Medienform:	Beamer, Tafel, persönliche Interaktion
20. Angeboten von:	Institute der Mathematik

Stand: 12.11.2021 Seite 15 von 72

Modul: 13760 Strömungsmechanik

2. Modulkürzel:	041900001	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Sommersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Carsten Mehring	
9. Dozenten:		Carsten Mehring	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2011, 4. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 4. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 4. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 4. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:	Inhaltlich: Höhere Mathematik Formal: keine	1/11/111
12. Lernziele:		Die Lehrveranstaltung Strömungsmechanik vermittelt Kenntnisse über die kontinuumsmechanischen Grundlagen und Methoden der Strömungsmechanik. Die Studierenden sind am Ende der Lehrveranstaltung in der Lage, die hergeleiteten differentiellen und integralen Erhaltungssätze (Masse, Impuls, Energie) für unterschiedliche Strömungsformen und anwendungsspezifische Fragestellungen aufzustellen und zu lösen. Darüber hinaus besitzen die Studierenden Kenntnisse zur Auslegung von verfahrenstechnischen Anlagen unter Ausnutzung dimensionsanalytischer Zusammenhänge. Die daraus resultierenden Kenntnisse sind Basis für die Grundoperationen der Verfahrenstechnik und deren technische Umsetzung.	
13. Inhalt:		 Stoffeigenschaften von Fluiden Hydro- und Aerostatik Kinematik der Fluide Hydro- und Aerodynamik reibungsfreier Fluide (Stromfadentheorie kompressibler und inkompressibler Fluide, Gasdynamik, Potentialströmung) Impulssatz und Impulsmomentensatz Eindimensionale Strömung inkompressibler Fluide mit Reibung (laminare und turbulente Strömungen Newtonscher und Nicht- Newtonscher Fluide) Einführung in die Grenzschichttheorie (Erhaltungssätze, laminare und turbulente Grenzschichten, Ablösung) Grundgleichungen für dreidimensionale Strömungen (Navier- Stokes-Gleichungen) Ähnliche Strömungen (dimensionslose Kennzahlen, Dimensionsanalyse) 	
14. Literatur:		Wiesbaden, 1975	anik, Akad. Verlagsgesellschaft anik in Fragen und Aufgaben, B.G.

Stand: 12.11.2021 Seite 16 von 72

	 Zierep, J.: Grundzüge der Strömungslehre, Springer Berlin, 1997 Frank M. White: Fluid Mechanics, 7th Edition, McGraw-Hill Series in Mechanical Engineering, 2007 	
15. Lehrveranstaltungen und -formen:	137601 Vorlesung Strömungsmechanik137602 Übung Strömungsmechanik	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 42 h Nacharbeitszeit: 138 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name: 13761 Strömungsmechanik (PL), Schriftlich, 120 M		
18. Grundlage für :		
19. Medienform:	Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen	
20. Angeboten von:	Mechanische Verfahrenstechnik	

Stand: 12.11.2021 Seite 17 von 72

Modul: 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel:	080410501x	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	18 LP	6. Turnus:	Wintersemester
4. SWS:	14	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	apl. Prof. Dr. Markus Stroppel	
9. Dozenten:		Markus Stroppel	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2011, 1. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 1. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:	Hochschulreife, Schulstoff in N	Mathematik
12. Lernziele:		Die Studierenden	
		der Differential- und Integral reellen Veränderlichen und Funktionen mehrerer Veränder sind in der Lage, die behand sicher, kritisch und kreativ a	derlicher, delten Methoden selbstständig nzuwenden Grundlage für das Verständnis en Ingenieurwissenschaften. n aus dem ingenieurs- und feld über die benutzten
13. Inhalt:		Quadriken Differential- und Integralrech Veränderlichen: Konvergenz, Reihen, Potenzre höhere Ableitungen, Taylor-Fo Kurvendiskussion, Stammfunk Substitution, Integration rations (Riemann-)Integral, uneigentlict Differentialrechnung Folgen/Stetigkeit in reellen Ver	eterminanten, Eigenwerttheorie, nnung für Funktionen einer eihen, Stetigkeit, Differenzierbarkeit, ormel, Extremwerte, tion, partielle Integration, aler Funktionen, bestimmtes che Integrale. ktorräumen, partielle Ableitungen, ntungsableitungen, Tangentialebene, unter Nebenbedingungen), tation, Divergenz.

Stand: 12.11.2021 Seite 18 von 72

14. Literatur:	 W. Kimmerle - M.Stroppel: lineare Algebra und Geometrie. Edition Delkhofen. W. Kimmerle - M.Stroppel: Analysis . Edition Delkhofen. A. Hoffmann, B. Marx, W. Vogt: Mathematik K. Meyberg, P. Vachenauer: Höhere Mathematik 1. Differential-und Integralrechnung. Vektor- und Matrizenrechnung. Springer. G. Bärwolff: Höhere Mathematik, Elsevier. Mathematik Online: www.mathematik-online.org.
15. Lehrveranstaltungen und -formen:	 458101 Höhere Mathematik 1 für Ingenieurstudiengänge (EE) 458108 Höhere Mathematik 2 für Ingenieurstudiengänge (EE) 458102 Höhere Mathematik 1 für Ingenieurstudiengänge (Geod) 458109 Höhere Mathematik 2 für Ingenieurstudiengänge (Geod) 458103 Höhere Mathematik 1 für Ingenieurstudiengänge (Med) 458110 Höhere Mathematik 2 für Ingenieurstudiengänge (Med) 458106 Höhere Mathematik 1 für Ingenieurstudiengänge (UWT) 458113 Höhere Mathematik 2 für Ingenieurstudiengänge (Verf) 458107 Höhere Mathematik 1 für Ingenieurstudiengänge (Verf) 458114 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpbau) 458105 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpmach) 458112 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpmach) 458104 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpbau)
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 196 h Selbststudiumszeit / Nacharbeitszeit: 344 h Gesamt: 540 h
17. Prüfungsnummer/n und -name:	 45811 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (PL), Schriftlich, 180 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich unbenotete Prüfungsvorleistungen: HM 1/ 2 für Ingenieurstudiengänge: schriftliche Hausaufgaben, Scheinklausuren Für Studierende, in deren Studiengang die HM 1/2 für Ingenieurstudiengänge die Orientierungsprüfung darstellt, genügt ein Schein aus einem der beiden Semester, wenn im 3. Fachsemester keine Möglichkeit zum Nachholen des fehlenden Scheins bestand.
18. Grundlage für :	
19. Medienform:	Beamer, Tafel, persönliche Interaktion
20. Angeboten von:	Institute der Mathematik

Stand: 12.11.2021 Seite 19 von 72

Modul: 51670 Maschinen- und Apparatekonstruktion I + II mit Einführung in die Festigkeitslehre

2. Modulkürzel:	072711105	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	12 LP	6. Turnus:	Wintersemester
4. SWS:	9	7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. DrIng. Thomas Maier	
9. Dozenten:		Thomas Maier Clemens Merten Siegfried Schmauder	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, 1. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2011, 1. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 1. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:		
12 Laraziala:			

12. Lernziele:

Die Studierenden

- verstehen die Grundlagen der Konstruktionsmethodik technischer Systeme,
- können grundlegende Maschinen- und Apparateelemente, deren Funktion sowie Einsatzgebiete beschreiben, erklären und klassifizieren.
- können das Wissen über Maschinen- und Apparateelemente systematisch bei der Entwicklung eines Produktes anwenden (auswählen, skizzieren, berechnen, modifizieren),
- verstehen grundlegende Zusammenhänge von Belastungen und Beanspruchungen der Bauteile,
- können standardisierte Auslegungen und Berechnungen für Bauelemente durchführen und kritische Stellen an einfachen Konstruktionen erkennen und beurteilen,
- verstehen grundlegend die Methoden der Elastomechanik und können diese bei der Berechnung der Bauteile anwenden,
- verstehen das Werkstoffverhalten in Abhängigkeit von den Einsatzbedingungen und können diese Kenntnisse bei der Festigkeitsauslegung anwenden.

13. Inhalt:

Die Vorlesungen und Übungen in den nachfolgend genannten Fächern beinhalten:

- Maschinenkonstruktion:

Einführung in die Produktentwicklung (Produkt und Produktprogramm), Einführung Technisches Zeichnen, Grundlagen der Statik (Spannungsermittlung), Grundlagen der Gestaltung, Grundlagen Antriebstechnik, Übersicht, Konstruktion und Berechnung der Maschinenelemente (Kleb-, Löt-, Schweiß-, Schrauben-, Bolzen- und Stiftverbindungen, Federn, Achsen und Wellen),

- Apparatekonstruktion:

Stand: 12.11.2021 Seite 20 von 72

	Einführung Apparatetechnik, Übersicht Apparateelemente, Vorschriften, Normen und Regelwerke der Apparatetechnik, Konstruktion, Dimensionierung und Festigkeitsnachweis von Druckbehälterbauteilen (Zylinder- und Kegelschalen, Böden, Ausschnitte, Tragelemente, Flansch- und Schweißverbindungen), - Einführung in die Festigkeitslehre: Grundlagen der Festigkeitsberechnung (Zug und Druck, Biegung, Schub, Torsion (Verdrehung), Schwingende Beanspruchung, Allgemeiner Spannungs- und Verformungszustand, Kerbwirkung) und der konstruktiven Gestaltung
14. Literatur:	 Maier / Merten: Skripte zu Vorlesungen und Übungsunterlagen, Schmauder: Skript zur Vorlesung und ergänzende Folien,
	 Ergänzende Lehrbücher: Roloff / Matek: Maschinenelemente, Vieweg-Verlag, Wegener, E.: Festigkeitsberechnung verfahrenstechnischer Apparate, Wiley-VCH-Verlag, Dietmann: Einführung in die Festigkeitslehre, Kröner-Verlag, Hoischen, Hesser: Technisches Zeichnen, Cornelsen-Verlag.
15. Lehrveranstaltungen und -formen:	 516701 Vorlesung Maschinen- und Apparatekonstruktion I 516706 Übung Maschinen- und Apparatekonstruktion II 516702 Übung Maschinen- und Apparatekonstruktion I 516704 Vortragsübung Einführung in die Festigkeitslehre 516703 Vorlesung Einführung in die Festigkeitslehre 516707 Vorlesung Maschinen- und Apparatekonstruktion II
16. Abschätzung Arbeitsaufwand:	Präsenzzeit:126 h Selbststudiumszeit / Nacharbeitszeit: 234 h Gesamt:360 h
17. Prüfungsnummer/n und -name:	 51671 Maschinen- und Apparatekonstruktion I und II (PL), Schriftlich, 120 Min., Gewichtung: 2 51672 Einführung in die Festigkeitslehre (PL), Schriftlich, 60 Min., Gewichtung: 1 51673 Maschinen- und Apparatekonstruktion I (USL) (USL), Schriftlich, Gewichtung: 1 51674 Maschinen- und Apparatekonstruktion II (USL) (USL), Schriftlich, Gewichtung: 1
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Technisches Design

Stand: 12.11.2021 Seite 21 von 72

Modul: 69170 Physik für Chemie- und Bioingenieurwesen

2. Modulkürzel:	081700014	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Sommersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortliche	er:	Dr. Michael Jetter	
9. Dozenten:		Bruno Gompf	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 2. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 2. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 2. Semester → Basismodule 	
11. Empfohlene Voraus	ssetzungen:	Höhere Mathematik I-III	
12. Lernziele:		Vorlesung:	Lägunggetratogion für die
		Die Studierenden beherrschen Bearbeitung naturwissenschaft den Grundlagen ausgewählter	licher Probleme und Kenntnisse in
		Übungen:	
		Anwendung physikalischer Gru Problemstellungen, Medienkom Fachwissen und die Kommunik	npetenz bei der Umsetzung von
13. Inhalt:		Grundlagen der Mechanik Kinematik, Newtonsche Axiome Stöße, Rotationsbewegung Schwingungen und Wellen	e, Arbeit und Energie, Scheinkräfte,
			Schwingungen, Gekoppelte Pendel,
		Elektromagnetische Phänomer	ld, el. Dipol, Strom, Magnetfeld,
		Abbildungen, Beugung und Bre Interferenz, Polarisation, Doppl Atomphysik/Festkörper	
			linger-Gleichung, Quantisierung, mit Atomen, Schwingungen und hlung
			ellenlänge, Elektronenbeugung
		Atome und Kerne	Gamma-Strahlung, Kernspaltung,

Stand: 12.11.2021 Seite 22 von 72

14. Literatur:	 Dobrinski, Krakau, Vogel, Physik für Ingenieure, Teubner Verlag Demtröder, Wolfgang, Experimentalphysik Bände 1 und 2, Springer Verlag Paus, Hans J., Physik in Experimenten und Beispielen, Hanser Verlag Halliday, Resnick, Walker, Physik, Wiley-VCH Bergmann-Schaefer, Lehrbuch der Experimentalphysik, De Gruyter Paul A. Tipler: Physik, Spektrum Verlag Cutnell und Johnson, Physics, Wiley-VCH Linder, Physik für Ingenieure, Hanser Verlag Kuypers, Physik für Ingenieure und Naturwissenschaftler, Wiley-VHC
15. Lehrveranstaltungen und -formen:	 691701 Vorlesung Experimentalphysik für Verfahrensingenieure 691702 Übung Experimentalphysik für Verfahrensingenieure
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumszeit / Nacharbeitszeit: 34 h Gesamt: 90 h
17. Prüfungsnummer/n und -name:	69171 Physik für Chemie- und Bioingenieurwesen (BSL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Institute der Physik

Stand: 12.11.2021 Seite 23 von 72

Modul: 69180 Einführung in die Biotechnik

2. Modulkürzel:	04410019	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Wintersemester
4. SWS:	2	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	apl. Prof. Dr. Martin Siemann-	Herzberg
9. Dozenten:		Martin Siemann-Herzberg	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 1. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 1. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 1. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		beschreiben und benennen	•
		 diese erklären und erläuterr interpretieren, biotechnische Verfahren kol diese analysieren und komr 	
13. Inhalt:		Ausgewählte Beispiele mit technischer Relevanz aus den Bereichen der • Grauen (Umwelt) Biotechnologie, • Grünen (Agrar-, Lebensmittel und Pflanzen Biotechnologie), • Weißen (Industriellen, Mikrobiellen) Biotechnologie und • Roten (Medizinisch/Pharmazeutischen) Biotechnologie.	
14. Literatur:		Vorlesungsunterlagen, PD Dr. M. Siemann-Herzberg, IBVT Stuttgart Biotechnologie für Einsteiger, Renneberg, Springer Akademischer Verlag Görtz, Brümmer, Siemann-Herzberg, Biologie für Ingenieure, Springer Akademischer Verlag	
15. Lehrveranstaltunge	en und -formen:	• 691801 Vorlesung Einführun	ng in die Biotechnik
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 28 Stunden Nachbearbeitungszeit: 28 Stunden Prüfungsvorbereitung und -durchführung: 34 Stunden Gesamt: 90 Stunden	
17. Prüfungsnummer/n	und -name:	69181 Einführung in die Biote Gewichtung: 1	echnik (BSL), Schriftlich, 60 Min.,
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:		Bioverfahrenstechnik	

Stand: 12.11.2021 Seite 24 von 72

Modul: 69190 Einführung in die Chemie für CBIW-Studierende

2. Modulkürzel:	_	5. Moduldauer:	Zweisemestrig
	-		
3. Leistungspunkte:	9 LP	6. Turnus:	Wintersemester
4. SWS:	6	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. rer. nat. Bipraji	t Sarkar
9. Dozenten:		Dietrich Gudat Brigitte Schwederski	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 2. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 2. Semester → Basismodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 2. Semester → Basismodule 	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Studierenden	
		ğ ğ	onzepte der Chemie (Atomismus, he, Stöchiometrie) und können diese
		kennen Grundtypen chemischer Stoffe (Substanzklassen), Reaktionen und Reaktionsmechanismen und können sie auf praktische Problemstellungen übertragen	
		wissen um Anwendungen der	Chemie in ihrem Hauptfach
			rationen durchführen, Gefahren n und Geräten richtig einordnen und Arbeitssicherheit
			Dokumentation von Experimenten erkennen Beziehungen zwischen
13. Inhalt:		Lösungen Struktur und Quantennatur de der Atome, Atommodelle und atomare Eigenschaften, Perio Stöchiometrische Grundgeset chemische Stoffmengen, Real Thermodynamik und Kinetik c Arbeit und Wärme, Geschwind Beziehung, Katalyse Grundlegende Konzepte in de ionische und kovalente Bindur Struktur, intermolekulare Wec	densystem der Elemente ze: Erhalt von Masse und Ladung, ktionsgleichungen hemischer Reaktionen: Gasgesetze, digkeitsgesetze, Arrhenius-

Stand: 12.11.2021 Seite 25 von 72

	Chemische Elementarreaktionen: Säure-Base- (pH-, pKS-, pKW-Wert), Redox- (galvanische Zellen, Elektrolyse, Spannungsreihe, Nernst'sche Gleichung), Komplexbildungs- und Fällungsreaktionen, Radikalreaktionen spezielle Themen: Chemie wässriger Lösungen (Wasser als Solvens, Elektrolytlösungen, Hydratation, Aquakomplexe) Metalle und ihre Darstellung, Komplexbildung, optische und magnetische Eigenschaften von Metallionen und Metallkomplexen wichtige Elemente und ihre Verbindungen: Wasserstoff, Sauerstoff, Stickstoff, Schwefel, Phosphor, Silizium, Halogene Praktische Arbeiten: sichere Durchführung elementarer Laboroperationen, Trennung von Stoffgemischen, Nachweis und Charakterisierung chem. Verbindungen, Nachweis von Kationen und Anionen, Säure-Base-Reaktionen in wässriger Lösung, Oxidations- und Reduktionsreaktionen, Reaktionen von Komplexen, Chelatometrie und Fällungstitrationen, Leitfähigkeit von Elektrolytlösungen
14. Literatur:	Mortimer/Müller: Chemie Skript zur Vorlesung Praktikumsskript
15. Lehrveranstaltungen und -formen:	 691901 Vorlesung Einführung in die Chemie für CBIW-Studierende 691902 Praktikum Einführung in die Chemie für CBIW-Studierende 691903 Seminaristische Übung
16. Abschätzung Arbeitsaufwand:	Vorlesung (4 SWS) Präsenzzeit: 56 h Selbststudium: 154 h Praktikum (1,5 SWS) Präsenzzeit: 24 h Selbststudium: 36 h Summe: 270 h
17. Prüfungsnummer/n und -name:	 69191 Einführung in die Chemie für CBIW-Studierende (PL), Schriftlich, 120 Min., Gewichtung: 1 69192 Einführung in die Chemie für CBIW-Studierende (USL) (USL), Sonstige, Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Anorganische Chemie

Stand: 12.11.2021 Seite 26 von 72

200 Kernmodule

Zugeordnete Module: 11320 Thermodynamik der Gemische I

12040 Einführung in die Regelungstechnik

13910 Chemische Reaktionstechnik I

14020 Grundlagen der Mechanischen Verfahrenstechnik

24590 Thermische Verfahrenstechnik I

72490 Grundlagen der Stoff- und Wärmeübertragung

Stand: 12.11.2021 Seite 27 von 72

Modul: 11320 Thermodynamik der Gemische I

2. Modulkürzel:	042100001	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf. DrIng. Joachim G	Broß
9. Dozenten:		Joachim Groß	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2016, 5. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Kernmodule 	
11. Empfohlene Voraussetzungen:		Inhaltlich: Thermodynamik I / II Formal: keine	
12. Lernziele:			
		Die Studierenden	

- besitzen ein eingehendes Verständnis der Phänomenologie der Phasengleichgewichte von Mischungen und verstehen, wie diese mit Zustandsgleichungen und GE-Modellen modelliert werden.
- sind in der Lage die Grundlagen von nichtidealem Verhalten realer, fluider Gemische zu erkennen und deren Einflüsse auf thermodynamische Größen zu identifizieren und zu interpretieren.
- kennen und verstehen die Besonderheiten der thermodynamischen Betrachtung von Gemischen mehrerer Komponenten und k\u00f6nnen damit verbundene Konsequenzen f\u00fcr technische Auslegung von thermischen Trenneinrichtungen Identifizieren.
- können eine geeignete Berechnungsmethode zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichten auswählen und diese Berechnungen durchführen.
- sind durch das erworbene Verständnis der grundlegenden Modellierung thermodynamischer Nichtidealitäten zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:

- Grundlagen: Einstufige thermische Trennprozesse, Gleichgewicht, partielle molare Zustandsgrößen
- Thermische und kalorische Eigenschaften von Mischungen: Exzessvolumen, Exzessenthapie, Thermische Zustandsgleichungen

Stand: 12.11.2021 Seite 28 von 72

	 Phasengleichgewichte (Phänomenologie): Phasendiagramme, Zweiphasen- und Mehrphasengleichgewichte, Azeotropie, Heteroazeotropie, Hochdruckphasengleichgewichte Phasengleichgewichte (Berechnung): Fundamentalgleichung, Legendre-Transformation, Gibbssche Energie, Fugazität, Fugazitätskoeffizient, Aktivität, Aktivitätskoeffizient, GE-Modelle, Dampf-Flüssigkeits Gleichgewicht (Raoultsches Gesetz), Gaslöslichkeit (Henrysches Gesetz), Flüssig-Flüssig-, Fest-Flüssig-, Hochdruckgleichgewichte, Stabilität von Mischungen Reaktionsgleichgewichte für unterschiedliche Referenzzustände, Standardbildungsenergien und Temperaturverhalten
14. Literatur:	 J. Gmehling, B. Kolbe, Thermodynamik, VCH Verlagsgesellschaft mbH, Weinheim Smith, J.M., Van Ness, H. C., Abbott, M. M., Introduction to Chemical Thermodynamics (Int. Edition), McGraw-Hill J.W. Tester, M. Modell, Thermodynamics and its applications, Prentice-Hall, Englewoods Cliffs-S.M. Walas, Phase Equilibria in Chemical Engineering, Butterworth A. Pfennig, Thermodynamik der Gemische, Springer-Verlag, BerlinB.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, McGraw-Hill, New York B.E. Poling, J.M. Prausnitz, J.P. O'Connel, The Properties of Gases and Liquids, McGraw-Hill, New York
15. Lehrveranstaltungen und -formen:	113201 Vorlesung Thermodynamik der Gemische113202 Übung Thermodynamik der Gemische
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumszeit / Nacharbeitszeit: 124 h Gesamt:180 h
17. Prüfungsnummer/n und -name:	11321 Thermodynamik der Gemische (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für :	Thermische Verfahrenstechnik II Nichtgleichgewichts- Thermodynamik: Diffusion und Stofftransport
19. Medienform:	Entwicklung des Vorlesungsinhalts als Tafelanschrieb, ergänzend werden Beiblätter ausgegeben.
20. Angeboten von:	Thermodynamik und Thermische Verfahrenstechnik

Stand: 12.11.2021 Seite 29 von 72

Modul: 12040 Einführung in die Regelungstechnik

2. Modulkürzel:	074810010	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	6	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. DrIng. Frank Allgö	wer
9. Dozenten:		Frank Allgöwer	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2011, → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2016, → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Kernmodule 	
11. Empfohlene Vorau	ssetzungen:	HM I-III, Grundlagen der Systemdynamik	
12. Lernziele:	 Die Studierenden haben umfassende Kenntnisse zur Analyse und einschleifiger linearer Regelkreise im Zeit- und F können auf Grund theoretischer Überlegungen R Beobachter für dynamische Systeme entwerfen eine Verstellte von der Studieren und Beobachter an pil Laborversuchen implementieren 		kreise im Zeit- und Frequenzbereich cher Überlegungen Regler und Systeme entwerfen und validieren nd Beobachter an praktischen
13. Inhalt:		Vorlesung: Systemtheoretische Konzepte der Regelungstechnik, Stabilität, Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich, Beobachterentwurf Praktikum: Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen Laborversuchen Projektwettbewerb: Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen	
14. Literatur:		 Lunze, J Regelungstechnik 1. Springer Verlag, 2004 Horn, M. und Dourdoumas, N. Regelungstechnik., Pearson Studium, 2004. 	
15. Lehrveranstaltunge	en und -formen:	 120401 Vorlesung Einführung in die Regelungstechnik 120402 Gruppenübung Einführung in die Regelungstechnik 	

Stand: 12.11.2021 Seite 30 von 72

	120403 Praktikum Einführung in die Regelungstechnik120404 Projektwettbewerb Einführung in die Regelungstechnik
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 63h Selbststudiumszeit / Nacharbeitszeit: 117h Gesamt: 180h
17. Prüfungsnummer/n und -name:	 12041 Einführung in die Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheimit Kurztest (USL), Sonstige, Gewichtung: 1 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), Sonstige, Gewichtung: 1
18. Grundlage für :	Mehrgrößenregelung
19. Medienform:	
20. Angeboten von:	Systemtheorie und Regelungstechnik

Stand: 12.11.2021 Seite 31 von 72

Modul: 13910 Chemische Reaktionstechnik I

2. Modulkürzel:	041110001	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. DrIng. Ulrich Niek	en
9. Dozenten:		Ulrich Nieken	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2016, 5. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Kernmodule 	
11. Empfohlene Vorau	ssetzungen:	Vorlesung: Grundlagen Thermodynamik Höhere Mathematik	Κ
		Übungen: keine	
12. Lernziele:		Theorien zur Durchführung che Maßstab. Die Studierenden sir auszuwählen und die Vor- und erkennen und beurteilen ein G Lösungen auswählen und qual Reaktoren unter idealisierten E Teil eines verfahrens-technisch	nd beherrschen die grundlegenden emischer Reaktionen im technischen din der Lage geeignete Lösungen I Nachteile zu analysieren. Sie efährdungspotential und können ntifizieren. Sie sind in der Lage Bedingungen auszulegen, auch als hen Fließschemas. Die Studierenden e Idealisierung kritisch zu bewerten.
13. Inhalt:		Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten	
14. Literatur:		 Skript empfohlene Literatur: Baerns, M., Hofmann, H.: Chemische Reaktionstechnik, Band1, G. Thieme Verlag, Stuttgart, 1987 Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999 Schmidt, L. D.: The Engineering of Chemical Reactions, Oxford University Press, 1998 Rawlings, J. B.: Chemical Reactor Analysis and Design Fundamentals, Nob Hill Pub., 2002 Levenspiel, O.: Chemical Reaction Engineering, John Wiley und Sons, 1999 	

Stand: 12.11.2021 Seite 32 von 72

	 Elnashai, S., Uhlig, F.: Numerical Techniques for Chemical and Biological Engineers Using MATLAB, Springer, 2007 	
15. Lehrveranstaltungen und -formen:	 139102 Übung Chemische Reaktionstechnik I 139101 Vorlesung Chemische Reaktionstechnik I 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumszeit / Nacharbeitszeit: 124 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	13911 Chemische Reaktionstechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1	
18. Grundlage für :	Chemische Reaktionstechnik II	
19. Medienform:	Vorlesung: Tafelanschrieb, Beamer Übungen: Tafelanschrieb, Rechnerübungen	
20. Angeboten von:	Chemische Verfahrenstechnik	

Stand: 12.11.2021 Seite 33 von 72

Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

2. Modulkürzel:	041900002	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf. Carsten Mehring	
9. Dozenten:		Carsten Mehring	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, 5. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2011, 5. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Kernmodule 	
11. Empfohlene Voraussetzungen:		Inhaltlich: Strömungsmechanil Formal: keine	k
12. Lernziele:		 Die Studierenden sind in der Lage Partikel und Partikelkollektive zu beschreiben, den Strömungsdruckverlust durch ein Rohrleitungssystem zu berechnen, für physikalische Prozesse Dimensionsanalysen durchzuführen und problemrelevante Kennzahlen zu identifizieren. Ähnlichkeitsgesetze für Scale-Up-Prozesse zu nutzen, das Widerstandsverhalten von Partikeln in Strömungen zu berechnen, die Durchströmung von Feststoffpackungen zu analysieren, die Eigenschaften von Wirbelschichten zu benennen und deren Strömungsverhalten zu berechnen, Trenngradkurven für Einzelprozesse/-apparate und verschaltete Apparate zu berechnen, Klassierapparate auszulegen, mit experimentellen Ergebnissen großskalige Filteranlagen auszulegen, das Leistungsverhalten eines Zyklonabscheiders zu berechnen, für verschiedene Mischprozesse, Rührapparate auszuwählen und deren Leistungsverhalten zu bestimmen. 	
13. Inhalt:		 Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen Einphasenströmungen in Leitungssystemen Transportverhalten von Partikeln in Strömungen Poröse Systeme Grundlagen und Anwendungen der mechanischen Trenntechnik 	

Stand: 12.11.2021 Seite 34 von 72

Beschreibung von TrennvorgängenEinteilung von Trennprozessen

	 Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider Grundlagen und Anwendungen der Mischtechnik Dimensionslose Kennzahlen in der Mischtechnik Bauformen und Funktionsweisen von Mischeinrichtungen Leistungs- und Mischzeitcharakteristiken Ähnlichkeitstheorie und Übertragungsregeln 	
14. Literatur:	 Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992 Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993 Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004 Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997 	
15. Lehrveranstaltungen und -formen:	 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechni 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit Vorlesung: 42 h Präsenzzeit Übung: 14 h Vor- und Nachbearbeitungszeit: 124 h Summe: 180 h	
17. Prüfungsnummer/n und -name:	14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1	
18. Grundlage für :		
19. Medienform:	Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen	
20. Angeboten von:	Mechanische Verfahrenstechnik	

Stand: 12.11.2021 Seite 35 von 72

Modul: 24590 Thermische Verfahrenstechnik I

2. Modulkürzel:	042100015	5. Moduldauer:	Einsemestrig	
3. Leistungspunkte:	6 LP	6. Turnus:	Sommersemester	
4. SWS:	4	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf. DrIng. Joachim G	Groß	
9. Dozenten:		Joachim Groß		
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Verfahrenstechnik, PO 226-2011, → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 6. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2011, 6. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 6. Semester → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 6. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 6. Semester → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester → Vorgezogene Master-Module B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester → Vorgezogene Master-Module		
11. Empfohlene Voraussetzungen:		Thermodynamik I + II Thermodynamik der Gemische	e (empfohlen, nicht zwingend)	
12. Lernziele:		Die Studierenden		
		 Thermischen Verfahrenstec können dieses Wissen selbs Fragestellung der Auslegunzu lösen, d.h. sie können die notwendigen Prozessgrößer dimensionieren. sind in der Lage verallgeme Wirksamkeit verschiedener Problem zu treffen, bzw. ein auszuwählen. können das erworbene Wiss Modellbildung thermischer Tauf spezielle Sonderprozess haben das zur weiterführend notwendige Fachwissen. können durch eingebettete, 	stständig anwenden, um konkrete g thermischer Trennoperationen e für die jeweilige Trennoperation n berechnen und die Apparate sinerte Aussagen über die Trennoperationen für ein gegebenes ne geeignete Trennoperation	

Stand: 12.11.2021 Seite 36 von 72

Aufgabe der Thermischen Verfahrenstechnik ist die Trennung fluider Mischungen. Thermische Trennverfahren wie die Destillation, Absorption oder Extraktion spielen in vielen

verfahrens- und umwelttechnischen Prozessen eine zentrale Rolle.

13. Inhalt:

	In der Vorlesung werden aufbauend auf den Grundlagen aus der Thermodynamik der Gemische und der Wärmeund Stoffübertragung die genannten Prozesse behandelt (Modellierung, Auslegung, Realisierung). Daneben werden allgemeine Grundlagen wie das Gegenstromprinzip und Unterschiede zwischen Gleichgewichts- und kinetisch kontrollierten Prozessen erläutert.Im Rahmen der Veranstaltung wird das theoretische Wissen anhand einer ausgewählten Technikumsanlage (Destillation und/oder Absorption) praktisch vertieft.
14. Literatur:	 M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart J.M. Coulson, J.H. Richardson, Chemical Engineering, Vol. 2, Particle Technology und Separation Processes, 5th edition, Butterworth-Heinemann, Oxford R. Goedecke, Fluidverfahrenstechnik, Band 1 und 2, Wiley-VCH, Weinheim P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin
15. Lehrveranstaltungen und -formen:	 245901 Vorlesung Thermische Verfahrenstechnik I 245902 Übung Thermische Verfahrenstechnik I
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 56 h Selbststudiumszeit / Nacharbeitszeit: 124 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:	24591 Thermische Verfahrenstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Thermodynamik und Thermische Verfahrenstechnik

Stand: 12.11.2021 Seite 37 von 72

Modul: 72490 Grundlagen der Stoff- und Wärmeübertragung

2. Modulkürzel: 042	200 004	5. Moduldauer:	Einsemestrig
3. Leistungspunkte: 6 Ll	D	6. Turnus:	Sommersemester
4. SWS: 5		7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. Dr. Andreas Kronen	burg
9. Dozenten:			
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 6. Semester → Kernmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 6. Semester → Kernmodule B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester → Kernmodule 	
11. Empfohlene Voraussetzungen:		Technische Thermodynamik, Strömungsmechanik, Numerische Methoden	
12. Lernziele:		Die Teilnehmer kennen die Gru Wärmetransportmechanismen V Strahlung, Verdampfung und Krustofftransport in binären und pohaben die Fähigkeit zur Lösung Wärme- und Stoffübertragung in beherrschen methodisches Vor Kinetik. Sie können verschieder Stofftransportvorgänge anwend	Wärmeleitung, Konvektion, ondensation sowie zum olynären Fluidgemischen. Sie von Fragestellungen der n technischen Bereichen. Sie gehen durch Skizze, Bilanz, ne Lösungsansätze auf Wärme und
13. Inhalt:		stationäre Wärmeleitung für verschiedene Geometrien, stationäres Temperaturfeld mit Wärmequelle bzw senke, mehrdimensionale stationäre Temperaturfelder, Formkoeffizienten und Formfaktoren, instationäre Temperaturfelder, erzwungene Konvektion, laminare und turbulente Rohr- und Plattenströmung, umströmte Körper, freie Konvektion, dimensionslose Kennzahlen, Wärmeübergang bei Phasenänderung, laminare und turbulente Filmkondensation, Tropfenkondensation, Sieden in freier und erzwungener Strömung, Blasensieden, Filmsieden, Strahlung, Kirchhoff'sches Gesetz, Plank'sches Gesetz, Lambert'sches Gesetz, Strahlungsaustausch, Wärmeübertrager, Stoffaustausch, Diffusion, Stefan-Maxwell Gelcihung, Fick'sches Gesetz, Thermodiffusion, Analogie der Transportvorgänge, gekoppelter Impuls-, Wärme- und Stofftransport, Simulation von Stoff- und Wärmeübergangsprozessen.	
14. Literatur:		 Incorpera, F.P., Dewitt, D.F., Bergmann, T.L., Lavine, A.S.: Principles of Heat and Mass Transfer, 7th edition, J.Wiley und Sons, 2013 Baehr, H.D., Stephan, K.: Wärme- und Stoffübertragung, 7. Auflage, Springer, 2010 Taylor, R., Krishna R.: Multicomponent Mass Transfer, J. Wiley und Sons, 1993. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena 2nd edition, John Wiley und Sons, 2002 	

Stand: 12.11.2021 Seite 38 von 72

15. Lehrveranstaltungen und -formen:	 724901 Vorlesung Grundlagen der Stoff- und Wärmeübertragung 724902 Übung Grundlagen der Stoff- und Wärmeübertragung 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 70 h Selbststudiumszeit/Nachbearbeitungszeit: 110 h Summe: 180 h	
17. Prüfungsnummer/n und -name:	72491 Grundlagen der Stoff- und Wärmeübertragung (PL), Schriftlich, 120 Min., Gewichtung: 80	
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:	Technische Verbrennung	

Stand: 12.11.2021 Seite 39 von 72

300 Ergänzungsmodule

Zugeordnete Module: 310 Biologie

310 Biologie 320 Chemie

330 Material

Stand: 12.11.2021 Seite 40 von 72

310 Biologie

Zugeordnete Module: 32270 Bioverfahrenstechnik

51710 Einführung in die Biochemie

69140 Zellphysiologie

Stand: 12.11.2021 Seite 41 von 72

Modul: 32270 Bioverfahrenstechnik

2. Modulkürzel:	041000001	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Sommersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. DrIng. Ralf Takor	'S
9. Dozenten:		Ralf Takors	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2011, → Vorgezogene Master-Module B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Biologie> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Biologie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Biologie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		anschließend auch grundsätz Die Studierenden kennen nac Aufgabe notwendigen Ansätz	gischer Systeme, der , Maßstabsübertragung und g von Bioprozessen kennen, um diese lich auslegen zu können. ch der Vorlesung die für diese e, haben diese verstanden und sind fachen Beispielen anzuwenden.
13. Inhalt:		 Grundlagen der chemischen / enzymatischen Reaktionstechnik Kinetik enzymkatalysierter Reaktionen Wiederholung substanzieller Eigenschaften des mikrobiellen Stoffwechsels Einführung in die Bioreaktionstechnik unstrukturierte Modelle des Wachstums und der Produktbildung Maintenance Prinzipien der Prozessführung und Bilanzierung von Bioprozessen Grundlagen des Stofftransports in Biosuspensionen Grundtypen von Bioreaktoren Leistungseintrang, Mischzeit, Wärmetransport scale-up Wirtschaftlichkeitsbetrachtung Hinweis: Vorlesungsfolien sind in Englisch, um der Internationalität 	
14. Literatur:		der Forschung Rechnung zu tragen. Nielsen, J., Villadsen, J., Liden, G. Bioreaction Engineering Principles, ISBN 0-306-47349-6	
15. Lehrveranstaltunge	en und -formen:	322701 Vorlesung Bioverfah	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 56 h Selbststudium: 124 h	

Stand: 12.11.2021 Seite 42 von 72

	Summe: 180 h
17. Prüfungsnummer/n und -name:	32271 Bioverfahrenstechnik (PL), Schriftlich, 120 Min., Gewichtung:
18. Grundlage für :	
19. Medienform:	multiple
20. Angeboten von:	Bioverfahrenstechnik

Stand: 12.11.2021 Seite 43 von 72

Modul: 51710 Einführung in die Biochemie

2. Modulkürzel:	030310921	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Albert Jeltsch	
9. Dozenten:		Albert Jeltsch Philipp Rathert	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Biologie> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Biologie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Biologie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:		
12 Lornziolo:			

12. Lernziele:

Die Studierenden

- · verstehen die Grundprinzipien der Chemie des Lebens
- kennen die wichtigen Stoffklassen (Aminosäuren, Nukleotide, Lipide und Kohlenhydrate) in Aufbau und Funktion
- · verstehen die Grundprinzipien der Funktion biologisch wichtiger Makromoleküle (Proteine, Nukleinsäuren),
- verstehen den Basisstoffwechsel und die Energetik der Zelle
- verstehen Prinzipien der Stoffwechselregulation und können diese auf ausgewählte Stoffwechselwege anwenden
- kennen die Funktion von Enzymen, verstehen die Prinzipien enzymatischer Katalyse und können diese auf ausgewählte Enzyme anwenden
- haben an Beispielen verstanden wie molekulare Veränderungen Krankheiten auslösen können

13. Inhalt:

Teil 1 (WiSe)

- Einführung in die Biochemie (Zellen, Evolution, Eigenschaften von Leben, chemische Grundlagen)
- Aminosäuren (Strukturen, Säure/Base Eigenschaften, chemische Eigenschaften)
- Proteinstruktur und Proteinfaltung (Sekundärstrukturelemente, Faltungstrichter, Chaperones)
- Proteinfunktion (Mechanische Funktionen von Proteinen, Bindung von Liganden am Beispiel von Myoglobin und Hämoglobin, Protein-Protein Wechselwirkung am Beispiel des Immunsystems, Funktionsweise von Motorproteinen)
- Enzyme (Mechanismen, Theorie, Regulation)
- Enzymkinetik (Michaelis-Menten Kinetik, Enzymhemmung)
- Nukleotide und Struktur von Nukleinsäuren

Teil 2 (SoSe)

Seite 44 von 72 Stand: 12.11.2021

	 Einführung in den Stoffwechsel (grundlegende Konzepte und Design, Stoffwechselregulation) Kohlenhydrate (Struktur und Funktion) Lipide (Struktur und Funktion) Glykolyse und Fermentation TCA Zyklus Oxidative Phosphorylierung Pentose Phosphat Zyklus Fettsäure ß-Oxidation
14. Literatur:	Nelson/Cox: Lehninger Biochemistry Stryer: Biochemistry
15. Lehrveranstaltungen und -formen:	 517101 Vorlesung Biochemie I 517103 Vorlesung Biochemie II 517104 Übung Biochemie II 517102 Übung Biochemie I
16. Abschätzung Arbeitsaufwand:	Vorlesung Biochemie I Präsenzzeit: 28 Stunden Selbststudium: 44 Stunden Summe: 72 Stunden Übung zur Vorlesung Biochemie I Präsenzzeit: 12 Stunden Selbststudium: 6 Stunden Summe: 18 Stunden Vorlesung Biochemie II Präsenzzeit: 28 Stunden Selbststudium: 44 Stunden Selbststudium: 42 Stunden Summe: 72 Stunden Übung zur Vorlesung Biochemie II Präsenzzeit: 12 Stunden Selbststudium: 6 Stunden Selbststudium: 6 Stunden Summe: 18 Stunden
17. Prüfungsnummer/n und -name:	51711 Einführung in die Biochemie (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (schriftlich) in zwei Teilen (2 x 60 min)
18. Grundlage für :	Biochemie PraktikumBiochemie für Fortgeschrittene
19. Medienform:	Beamer Präsentation, Tafelanschrieb
20. Angeboten von:	Biochemie

Stand: 12.11.2021 Seite 45 von 72

Modul: 69140 Zellphysiologie

2. Modulkürzel:	04410020	5. Moduldauer:	Zweisemestrig
3. Leistungspunkte:	9 LP	6. Turnus:	Wintersemester
4. SWS:	6	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. DrIng. Ralf Takor	S
9. Dozenten:		Bastian Blombach Martin Siemann-Herzberg Georg Sprenger	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Biologie> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 5. Semester → Biologie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Biologie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		zellulären Wachstums (Bak	des monoseptischen Arbeitens bis in tellung von Wertstoffen in
13. Inhalt:		 Übung 1: Mikrobiologische Grundlagen Kultivierungstechniken, Steriles Arbeiten im Labor Vorlesung: Vorkommen und Isolierung Sporenbildung Aufbau von Bakterien und Hefen Prinzipien des Stoffwechsels Vorstellung ausgewählter Biosynthesewege Grenzen des Wachstums (Temperatur, pH, Sterilisation, Antibiotika) 	
		 Einführung in die Molekular Übung 2: Messtechnik und Bioreaktor Technik der Kultivierung in I Beschreibung des Wachstuproduktions-relevanten Organie 	ren Bioreaktoren ms-und Produktionsveraltens von
14. Literatur:		Siemann-Herzberg, IBVT Stut Bioprozesstechnik, Chmiel, Sp Bioverfahrensentwicklung, Sto	pektrum Verlag
15. Lehrveranstaltungen und -formen:		691401 Übung Praktische G691402 VorlesungMikrobiolo	rundlagen biologischer Arbeiten ogie für Ingenieure

Stand: 12.11.2021 Seite 46 von 72

	 691403 Übung Laborpraktikum Bioprozesstechnik 	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 84 Stunden Nacharbeitungszeit: 84 Stunden Prüfungsaufwand: 102 Stunden Gesamt: 270 Stunden	
17. Prüfungsnummer/n und -name:	 69141 Mikrobiologie für Ingenieure (PL), Schriftlich, 60 Min Gewichtung: 1 V Vorleistung (USL-V), Sonstige 	
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:	Bioverfahrenstechnik	
_		

Stand: 12.11.2021 Seite 47 von 72

320 Chemie

Zugeordnete Module: 10420 Theoretische Chemie (Atom- und Molekülbau)

11060 Grundlagen der Organischen Chemie

35870 Mikroreaktionstechnik

69110 Ausgewählte Themen der Physikalischen Chemie

69120 Praktikum Organische Chemie

Stand: 12.11.2021 Seite 48 von 72

Modul: 10420 Theoretische Chemie (Atom- und Molekülbau)

2. Modulkürzel:	031110008	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf. Dr. Andreas Köhn	
9. Dozenten:		Johannes Kästner	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Chemie> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2011, 3. Semester → Basismodule B.Sc. Verfahrenstechnik, PO 226-2016, 5. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Chemie> Ergänzungsmodule 	
11. Empfohlene Voraussetzungen:		 Empfohlen werden: Mathematik für Chemiker Teil 1 und 2 oder Höhere Mathematik Teil 1 und 2 Einführung in die Physik Teil 1 und 2 	
12. Lernziele:		Die Studierenden	
			-
13. Inhalt:		Das Modul gibt eine Einführung in die Quantenmechanik und die Theorie der chemischen Bindung. Es vermittelt die Grundlagen in folgenden Bereichen: Quantisierung der Energie, Welle-Teilchen Dualismus, Schrödinger Gleichung, Operatoren und Observablen, Unschärferelation, einfache exakte Lösungen (freie Bewegung, Teilchen im Kasten, harmonischer Oszillator, starrer Rotator, H-Atom), Rotations-Schwingungsspektren von 2-atomigen Molekülen, Elektronenspin, Pauli Prinzip, Aufbauprinzip, Periodensystem, Atomzustände, Born-Oppenheimer Näherung, Atom- und Molekülorbitale, Theorie der chemischen Bindung, Hückel Theorie, Molekülsymmetrie	
14. Literatur:		 P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, Fourth Edition, Oxford University Press, 2008 I. R. Levine, Quantum Chemistry, Sixth Edition, Prentice Hall, 2009 HJ. Werner, Quantenmechanik der Moleküle, Vorlesungsskript 	
15. Lehrveranstaltungen und -formen:		 104202 Übung Theoretische Chemie (Atom- und Molekülbau) 104201 Vorlesung Theoretische Chemie (Atom- und Molekülbau) 	
16. Abschätzung Arbeitsaufwand:		Vorlesung: Präsenzstunden: 3 SWS: 42,0 h Vor- und Nachbereitung: 52,5 h	

Stand: 12.11.2021 Seite 49 von 72

	Übungen: Präsenzstunden: 1 SWS: 14,0 h Vor- und Nachbereitung: 52,5 h Abschlussklausur incl. Vorbereitung: 19,0 h S umme: 180,0 h	
17. Prüfungsnummer/n und -name:	 10421 Theoretische Chemie (Atom- und Molekülbau) (PL), Schriftlich, 120 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich, 120 Min. Prüfungsvorleistung: Votieren von 50% der Übungsaufgaben 	
18. Grundlage für :	Atome, Moleküle und ihre Spektroskopie	
19. Medienform:		
20. Angeboten von:	Theoretische Chemie	

Stand: 12.11.2021 Seite 50 von 72

Modul: 11060 Grundlagen der Organischen Chemie

2. Modulkürzel:	030601903	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Bernd Plietker	
9. Dozenten:		Burkhard Miehlich Bernd Plietker	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Chemie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:	Experimentalphysik (Vorlesun	g)
12. Lernziele:		Die Studierenden	
		Chemie (Atomismus, Period Stöchiometrie, Molekülbau sie eigenständig anwenden kennen die Grundtypen che und chemischer Reaktioner	emischer Stoffe (Substanzklassen)
13. Inhalt:		Allgemeine Grundlagen: Elektronenkonfiguration des Kohlenstoffs, Hybridisierung, Grundtypen von Kohlenstoffgerüsten: C-C-Einfach-/Zweifach-/ Dreifachbindungen, cyclische Strukturen, Nomenklatur (IUPAC), Isomerie: Konstitution, Konfiguration (Chiralität), Konformation Stoffklassen: Alkane, Alkene, Alkine, Halogenalkane, Alkohole, Amine, Carbonsäuren und ihre Derivate, Aromaten, Aldehyde u. Ketone, Polymere, Aminosäuren Reaktionsmechanismen: Radikalische Substitution, Nucleophile Substitution, Eliminierung, Addition, elektrophile aromatische Substitution, 1,2-Additionen (Veresterung, Reduktion, Grignard-Reaktion), Reaktionen C-H- acider Verbindungen (Knoevenagel-Kondensation, Aldolreaktion), Polymerisation (radikalisch, kationisch, anionisch)	
14. Literatur:		s. gesonderte Liste des aktue	llen Semesters
15. Lehrveranstaltungen und -formen:		110601 Vorlesung Organische Chemie110602 Praktikum zur Vorlesung Organische Chemie	
16. Abschätzung Arbeitsaufwand:		Präsenzzeit: 60 h Selbststudiumszeit / Nacharbeitszeit:32 h	

Stand: 12.11.2021 Seite 51 von 72

	Gesamt: 92 h
17. Prüfungsnummer/n und -name:	11061 Grundlagen der Organischen Chemie (BSL), Schriftlich oder Mündlich, Gewichtung: 1
	Prüfungsvorleistungen: alle Versuchsprotokolle des jeweiligen Praktikums testiert
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Organische Chemie

Stand: 12.11.2021 Seite 52 von 72

Modul: 35870 Mikroreaktionstechnik

2. Modulkürzel:	030910033	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Sommersemester
4. SWS:	2	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. DrIng. Elias Klem	ım
9. Dozenten:		Elias Klemm	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 6. Semester → Chemie> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester → Chemie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Die Studierenden beherrschen die Grundlagen o können für eine vorgegebene Mikroreaktionstechnik abschä kennen Ausführungsformen vo	Reaktion das Potential der tzen
13. Inhalt:		Grundlagen der Mikroreaktion Mikrofluidik Intensivierung des Wärmetran Intensivierung des Stofftransp Intensivierung von Oberfläche Potentiale der Mikroreaktionst Hoch-exotherme Reaktionen Mischungssensitive Reaktionen Mehrphasenreaktionen Inhärente Sicherheit Auslegungsaspekte	esports orts enphänomenen echnik
14. Literatur:		Band 2: Neue Technologien, 5. Auflage, WILEY-VCH, Weir Hessel, Volker / Renken, Albe	Kreysa, A. Oberholz (Hg.), he Technik - Prozesse und Produkte,
15. Lehrveranstaltunge	en und -formen:	358701 Vorlesung Mikroreak	ktionstechnik
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 28Stunden Selbststudium: 62 Stunden Summe: 90 Stunden	
17. Prüfungsnummer/n	und -name:	35871 Mikroreaktionstechnik	(USL), Schriftlich, Gewichtung: 1
18. Grundlage für :			

Stand: 12.11.2021 Seite 53 von 72

20. Angeboten von:

Technische Chemie und Heterogene Katalyse

Stand: 12.11.2021 Seite 54 von 72

Modul: 69110 Ausgewählte Themen der Physikalischen Chemie

2. Modulkürzel:	-	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Frank Gießelm	ann
9. Dozenten:			
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Material> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Material> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Chemie> Ergänzungsmodule	
11. Empfohlene Vorau	ssetzungen:	Einführung in die Chemie, Phy	sik für Verfahrensingenieure
12. Lernziele:		 Kon- zepte der Physikalisch können Modelle und Gesetz Lösung ingenieurwissensch sowie physikalisch-chemische Mes 	Beispielen die Arbeitsweise und die en Chemie, ze der Physikalischen Chemie zur aftlicher Fragestellungen anwenden ssungen durchführen und deren en der Physikalischen Chemie
13. Inhalt:		Ausgewählte Themen der Physikalischen Chemie für Studierer der Vertie- fungsrichtungen Chemie und Materialwissenschaft: Thermodynamik von Festkörpern: • Thermodynamische Potentiale, Flüsse, Kräfte und Suszeptibilitäten, elastische, elektrische und magnetische Ar thermodynamische Behandlung des elastischen Festkörpers im elektrischen Feld, Phasenumwandlungen erster und zweit Ordnung, kritisches Verhal- ten, Landau-Regeln Dielektrische und optische Eigenschaften: • Polarisierbarkeit und Dipol- moment, induzierte Polarisation (inneres Feld, Clausius-Mosotti-Beziehung, Debye-Gleichung	

Phasenumwandlungen)
Grenzflächen und Kolloide:

Dispersion und Absorption (quasielastisch gebundenes Elektron, Debye-Relaxation, Orientierungs-, Atom- und elektronische Polari- sation, dielektrische Spektroskopie, Kramers-Kronig-Relation), spontane Po- larisation (Piezo-, Pyro- und Ferroelektrika, Landau-Theorie ferroelektrischer

Stand: 12.11.2021 Seite 55 von 72

	 Thermodynamik der Grenzflächen, Oberflä- chenspannung, Kontaktwinkel und Benetzung, zweidimensionale Oberflä- chenfilme, Mizellbildung, kolloiddisperse Systeme, Adsorption an Festkör- peroberflächen (Physi- und Chemisorption, Langmuir-, Freundlich- und BET- Isothermen, isostere Adsorptionsenthalpie)
14. Literatur:	Peter W. Atkins, Julio de Paula: Physikalische Chemie, Wiley-VCH, 2006. Gerd Wedler, Hans-Joachim Freund: Lehrbuch der Physikalischen Chemie, Wiley-VCH, 2012. Gert Strobl: Physik kondensierter Materie, Springer, 2002.
15. Lehrveranstaltungen und -formen:	 691101 Vorlesung Ausgewählte Themen der Physikalischen Chemie 691102 Übung Ausgewählte Themen der Physikalischen Chemie 691103 Praktikum Ausgewählte Themen der Physikalischen Chemie
16. Abschätzung Arbeitsaufwand:	Vorlesung (2 SWS): Präsenz: 28 h Vor- u. Nachbereitung: 56 h Übung (1 SWS): Präsenz: 14 h Vor- und Nachbereitung: 28 h Laborpraktikum (4 Versuche) Präsenz: 24 h Vorbereitung u. Protokolle: 30 h Summe: 180 h
17. Prüfungsnummer/n und -name:	 69111 Ausgewählte Themen der Physikalischen Chemie (PL), Schriftlich, 90 Min., Gewichtung: 1 V Vorleistung (USL-V), Sonstige Testat aller Versuchsprotokolle
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Physikalische Chemie I

Stand: 12.11.2021 Seite 56 von 72

Modul: 69120 Praktikum Organische Chemie

2. Modulkürzel:	03 0601 901	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Bernd Plietker	
9. Dozenten:		Bernd Plietker Michael Karnahl	
10. Zuordnung zum Curriculum in diesem Studiengang:		→ Chemie> Ergänzungs	eurwesen, PO 226-2019, 4. Semester module 226-2016, 4. Semester
11. Empfohlene Vorau	ssetzungen:		
12. Lernziele:		Gefahren beim Umgang mi einzuschätzen und kennen können Experimente wisse	ementarer Laboroperationen, wissen t Chemikalien und Geräten richtig die Grundlagen der Arbeitssicherheit, nschaftlich nachvollziehbar ie Beziehungen zwischen Theorie
13. Inhalt:		Kontrolle der Reaktionsführur Trennung von Substanzgemis	•
14. Literatur:		s. gesonderte Listen im jeweiligen Semesters	
15. Lehrveranstaltunge	en und -formen:	691201 Praktikum Präparative Organische Chemie	
16. Abschätzung Arbeitsaufwand:		Praktikum Präparative Organische Chemie 10 Tage a 6 h (Laborjournal als Protokollführung) 60 h Selbststudium 30 H Summe 90 h	
17. Prüfungsnummer/r	n und -name:	Gewichtung: 1	ne Chemie testiert (USL), Sonstige, ikums Präparative Organische
18. Grundlage für :			
19. Medienform:			
20. Angeboten von:		Organische Chemie	

Stand: 12.11.2021 Seite 57 von 72

330 Material

Zugeordnete Module: 11060 Grundlagen der Organischen Chemie 68850 Physikalische Materialeigenschaften

68850 Physikalische Materialeigenschaften 68880 Strukturanalyse und Materialmikroskopie

69110 Ausgewählte Themen der Physikalischen Chemie

Stand: 12.11.2021 Seite 58 von 72

Modul: 11060 Grundlagen der Organischen Chemie

2. Modulkürzel:	030601903	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Bernd Plietker	
9. Dozenten:		Burkhard Miehlich Bernd Plietker	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Chemie> Ergänzungsmodule 	
11. Empfohlene Vorau	ssetzungen:	Experimentalphysik (Vorlesun	g)
12. Lernziele:		Die Studierenden	
		Chemie (Atomismus, Period Stöchiometrie, Molekülbau sie eigenständig anwenden • kennen die Grundtypen che und chemischer Reaktioner	und Strukturprinzipien) und können , mischer Stoffe (Substanzklassen)
13. Inhalt:		Allgemeine Grundlagen: Elektronenkonfiguration des Kohlenstoffs, Hybridisierung, Grundtypen von Kohlenstoffgerüsten: C-C-Einfach-/Zweifach-/ Dreifachbindungen, cyclische Strukturen, Nomenklatur (IUPAC), Isomerie: Konstitution, Konfiguration (Chiralität), Konformation Stoffklassen: Alkane, Alkene, Alkine, Halogenalkane, Alkohole, Amine, Carbonsäuren und ihre Derivate, Aromaten, Aldehyde u. Ketone, Polymere, Aminosäuren Reaktionsmechanismen: Radikalische Substitution, Nucleophile Substitution, Eliminierung, Addition, elektrophile aromatische Substitution, 1,2-Additionen (Veresterung, Reduktion, Grignard-Reaktion), Reaktionen C-H- acider Verbindungen (Knoevenagel-Kondensation, Aldolreaktion) Polymerisation (radikalisch, kationisch, anionisch)	
14. Literatur:		s. gesonderte Liste des aktue	llen Semesters
15. Lehrveranstaltunge	en und -formen:	110601 Vorlesung Organisc 110602 Praktikum zur Vorles	
16. Abschätzung Arbei	tsaufwand:	Präsenzzeit: 60 h Selbststudiumszeit / Nacharbe	eitszeit:32 h

Stand: 12.11.2021 Seite 59 von 72

	Gesamt: 92 h
17. Prüfungsnummer/n und -name:	11061 Grundlagen der Organischen Chemie (BSL), Schriftlich oder Mündlich, Gewichtung: 1
	Prüfungsvorleistungen: alle Versuchsprotokolle des jeweiligen Praktikums testiert
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Organische Chemie

Stand: 12.11.2021 Seite 60 von 72

Modul: 68850 Physikalische Materialeigenschaften

2. Modulkürzel: -		5. Moduldauer:	Einsemestrig
3. Leistungspunkte: 6 L	P	6. Turnus:	Jedes 2. Wintersemester
4. SWS: 5		7. Sprache:	Deutsch
8. Modulverantwortlicher:		UnivProf. Dr. Guido Schmitz	
9. Dozenten:		Guido Schmitz	
10. Zuordnung zum Curriculu Studiengang:	ım in diesem	→ Material> Ergänzungsmod	dule vesen, PO 226-2017, 5. Semester dule vesen, PO 226-2019, 5. Semester
11. Empfohlene Voraussetzu	ngen:	Empfohlen: Einführende Veransta Materialwissenschaften	altungen in Chemie, Physik,
12. Lernziele:		- Die Studierenden	
		- können grundlegende Phasendi	agramme physikalisch begründen
		 kennen thermische, elektronisch Leitfähigkeit, atomaren Transport und Antiferromagnetismus. Sie kö physikalischen Eigenschaften mit beschreiben. 	sowie Dia- Para, Ferro- onnen diese grundlegenden
		 können unterschiedliche Aspekt voneinander abgrenzen und erklä 	
		 beherrschen die Berechnung ein anisotroper Elastizität. 	nfacher elastischer Probleme
		 können den Zusammenhang zw Verformung, Kristallsymmetrie un mikroskopischer Defekte erklären 	d der Erzeugung und Bewegung
		 verstehen die grundlegenden St Materialien. 	rategien zur Härtung von
		 kennen Fragestellungen aktuelle der Mechanik nanoskalierter Mate 	er wissenschaftliche Forschung in erialien
13. Inhalt:		- Thermodynamik und physikalisch Phasendiagrammen, Theorie des mittleren Feldes und - Wärmeleitungsgleichung und Fid mathematischen Lösungsverfahre Statistische Deutung der Diffusion - Drude Modell der elektronischer Bändervorstellung	reguläre Lösungsmodelle cksche Gleichungen, ihre en und typische Lösungen, n

Stand: 12.11.2021 Seite 61 von 72

	 - Dia, Para- und Ferromagnetismus, Grundzüge ihrer physikalischen Beschreibung, Magnetisierungskurven, Hysterese, Koerzitivfeldstärke - Phänomenologie mechanischer Eigenschaften: Elastizität, Anelastizität, - Pseudoelastitizität, Viskosität, Plastizität, Härte, Zähigkeit, Ermüdung, Bruch - Mechanische Prüfverfahren - Elastizitätstheorie: Spannung, Verzerrung, Elastische Moduli, Tensorformalismus - Messung elastischer Moduli - Energie- und Entropie-Elastizität - Plastische Verformung und Versetzungen - Grundzüge der Versetzungstheorie - Prinzipien des mechanischen Materialdesigns - Materialversagen durch Bruch, Fraktographie - Materialermüdung unter Wechselbelastung - Mechanische Eigenschaften Nanostrukturierter Materialien - Prinzipien der Materialauswahl
14. Literatur:	 - A. Guinier, R. Jullien, Die physikalischen Eigenschaften von Festkörpern, Hanser Verlag, Münschen 1992 - T. H. Courtney, Mechanical Behaviour of Materials, Long Grove 2005 - S.P. Timoshenko, J. N. Goodier, Theory of Elastisity, New York 1970 - M. Ashby, Materials Selection in Mechanical Design, Oxford 1999 - G. Weidman et al., Structural Materials, London 1990
15. Lehrveranstaltungen und -formen:	 688501 Vorlesung Physikalische Materialeigenschaften 688502 Übung Mechanische Eigenschaften der Strukturmaterialien
16. Abschätzung Arbeitsaufwand:	Vorlesung: Präsenzzeit: 15*4 h=60 h, Selbststudium: 60 h Übung: Präsenzzeit: 15 h, Selbststudium: 45 h
17. Prüfungsnummer/n und -name:	 68851 Physikalische Materialeigenschaften (PL), Schriftlich, 90 Min. Gewichtung: 1 V Vorleistung (USL-V), Schriftlich Lösung von schriftlichen Übungsaufgaben. (Übungsblätter in vierzehntägigem Rhythmus)
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Materialwissenschaft

Stand: 12.11.2021 Seite 62 von 72

Modul: 68880 Strukturanalyse und Materialmikroskopie

2. Modulkürzel:	031420004	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Jedes 2. Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	UnivProf. Dr. Guido Schmitz	
9. Dozenten:		Patrick Stender Guido Schmitz	
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 5. Semester → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 5. Semester → Material> Ergänzungsmodule 	
11. Empfohlene Vorau	issetzungen:	Empfohlen: Einführende Vorles Experimentalphysik, Physikalis	sung zur Materialwissenschaft und ches Praktikum
12. Lernziele:		Die Studierenden	
		 kennen grundlegende Prüf- u Bestimmung der Mikrostruktur 	nd Charakterisierungsmethoden zur von Materialien
		 verstehen den Aufbau und die Lichtmikroskops, seiner Auflös 	e Funktionsweise eines ungsgrenze und Abbildungsfehler
		 können die Grundzüge der W Beugungsverfahren erläutern 	ellenoptik und gängige
		- können einfache Diffraktogran	mme interpretieren
		 können den Aufbau eines Ele Transmissionsverfahren erläute 	ktronenmikroskops im Raster- und ern
		 kennen die grundlegenden Ko Transmissionselektronenmikro Bildkontraste erklären 	ontrastprinzipien der skopie und können verschiedene
		 können die Funktionsprinzipe der Rastersondenmikroskopie 	n der Atomsondentomographie und erklären.
13. Inhalt:		der konfokalen Mikroskopie - Grundzüge der Wellenoptik, E - Verfahren und Kontraste der - Symmetrie von Kristallen, Pui Mauguin-Symbolik), Translation	Linsen und Linsenfehler s, Prinzip des Phasenkontrasts und Beugung und Abbildung Röntgen und Neutronenbeugung nktgruppensymmetrie (Hermann- nsymmetrie/Bravaisgitter, Reziproker Raum, Laue-Klassen formationen, Datenbanken

Stand: 12.11.2021 Seite 63 von 72

	Grundlegende Kontrastverfahren der Transmissionsmikroskopie und Interpretation der Abbildungen - Analytische Elektronenmikroskopie - Atomsondentomographie - Rastersondenmikroskopien	
14. Literatur:	 - Ilschner B et al., Werkstoffwissenschaften und Fertigungstechnik, Springer, Berlin 2002 - vander Voort GF, Metallography: Principles and Practice, McGraw-Hill, New York 1984 - Gerthsen, Experimentalphysik - Kittel C, Einführung in die Festkörperphysik, Verlag Oldenbourg, München, Introduction to Solid State Physics, John Wiley und Sons, New York - Spieß L, Schwarzer R, Behnken H, Teichert G, Moderne Röntgenbeugung, Vieweg + Teubner 2005 - Alexander H, Physikalische Grundlagen der Elektronenmikroskopie, Vieweg 1997 - Fultz B, Howe JM, Transmission Electron Microscopy and Diffractometry of Materials, Springer 2001, 2002 	
15. Lehrveranstaltungen und -formen:	 688801 Vorlesung Strukturanalyse und Materialmikroskopie 688802 Übung Strukturanalyse und Materialmikroskopie 	
16. Abschätzung Arbeitsaufwand:	Vorlesung: Präsenzzeit: 60 h Selbststudium: 60 h Übung: Präsenzzeit: 15 h Selbststudium: 45 h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	 68881 Strukturanalyse und Materialmikroskopie (PL), Schriftlich, 90 Min., Gewichtung: 1 V Vorleistung (USL-V), Schriftlich oder Mündlich Lösung von Übungsaufgaben (erreichen einer Mindestpunktzahl) und aktive Teilnahme an den Übungstreffen 	
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:	Materialwissenschaft	

Stand: 12.11.2021 Seite 64 von 72

Modul: 69110 Ausgewählte Themen der Physikalischen Chemie

2. Modulkürzel:	-	5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	6 LP	6. Turnus:	Wintersemester
4. SWS:	4	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	UnivProf. Dr. Frank Gießelm	ann
9. Dozenten:			
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Material> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Chemie> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 3. Semester → Material> Ergänzungsmodule B.Sc. Verfahrenstechnik, PO 226-2016, 3. Semester → Material> Ergänzungsmodule B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 3. Semester → Chemie> Ergänzungsmodule	
11. Empfohlene Vorau	ssetzungen:	Einführung in die Chemie, Phy	sik für Verfahrensingenieure
12. Lernziele:		 Kon- zepte der Physikalisch können Modelle und Gesetz Lösung ingenieurwissensch sowie physikalisch-chemische Mes 	Beispielen die Arbeitsweise und die en Chemie, ze der Physikalischen Chemie zur aftlicher Fragestellungen anwenden ssungen durchführen und deren en der Physikalischen Chemie
13. Inhalt:		der Vertie- fungsrichtungen Ch Thermodynamik von Festkörp • Thermodynamische Potentia Suszeptibilitäten, elastische thermodynamische Behandl im elektrischen Feld, Phase Ordnung, kritisches Verhal- Dielektrische und optische Eig • Polarisierbarkeit und Dipol-	ale, Flüsse, Kräfte und , elektrische und magnetische Arbeit, lung des elastischen Festkörpers numwandlungen erster und zweiter ten, Landau-Regeln

Phasenumwandlungen)
Grenzflächen und Kolloide:

Dispersion und Absorption (quasielastisch gebundenes Elektron, Debye-Relaxation, Orientierungs-, Atom- und elektronische Polari- sation, dielektrische Spektroskopie, Kramers-Kronig-Relation), spontane Po- larisation (Piezo-, Pyro- und Ferroelektrika, Landau-Theorie ferroelektrischer

Stand: 12.11.2021 Seite 65 von 72

	 Thermodynamik der Grenzflächen, Oberflä- chenspannung, Kontaktwinkel und Benetzung, zweidimensionale Oberflä- chenfilme, Mizellbildung, kolloiddisperse Systeme, Adsorption an Festkör- peroberflächen (Physi- und Chemisorption, Langmuir-, Freundlich- und BET- Isothermen, isostere Adsorptionsenthalpie)
14. Literatur:	Peter W. Atkins, Julio de Paula: Physikalische Chemie, Wiley-VCH, 2006. Gerd Wedler, Hans-Joachim Freund: Lehrbuch der Physikalischen Chemie, Wiley-VCH, 2012. Gert Strobl: Physik kondensierter Materie, Springer, 2002.
15. Lehrveranstaltungen und -formen:	 691101 Vorlesung Ausgewählte Themen der Physikalischen Chemie 691102 Übung Ausgewählte Themen der Physikalischen Chemie 691103 Praktikum Ausgewählte Themen der Physikalischen Chemie
16. Abschätzung Arbeitsaufwand:	Vorlesung (2 SWS): Präsenz: 28 h Vor- u. Nachbereitung: 56 h Übung (1 SWS): Präsenz: 14 h Vor- und Nachbereitung: 28 h Laborpraktikum (4 Versuche) Präsenz: 24 h Vorbereitung u. Protokolle: 30 h Summe: 180 h
17. Prüfungsnummer/n und -name:	 69111 Ausgewählte Themen der Physikalischen Chemie (PL), Schriftlich, 90 Min., Gewichtung: 1 V Vorleistung (USL-V), Sonstige Testat aller Versuchsprotokolle
18. Grundlage für :	
19. Medienform:	
20. Angeboten von:	Physikalische Chemie I

Stand: 12.11.2021 Seite 66 von 72

400 Schlüsselqualifikationen fachaffin

38870 Systemdynamische Grundlagen der Regelungstechnik 41190 Numerische Methoden I Zugeordnete Module:

Stand: 12.11.2021 Seite 67 von 72

Modul: 38870 Systemdynamische Grundlagen der Regelungstechnik

2. Modulkürzel:	074710003	5. Moduldauer:	Einsemestrig	
3. Leistungspunkte:	3 LP	6. Turnus:	Sommersemester	
4. SWS:	2	7. Sprache:	Deutsch	
8. Modulverantwortlich	er:	UnivProf. DrIng. Cristina Tarin Sauer		
9. Dozenten:		Cristina Tarin Sauer		
10. Zuordnung zum Curriculum in diesem Studiengang:		 B.Sc. Verfahrenstechnik, PO 226-2016, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationen B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 4. Semester → Schlüsselqualifikationen fachaffin B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationen B.Sc. Verfahrenstechnik, PO 226-2011, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationen 		
11. Empfohlene Voraussetzungen:		HM I - III		
12. Lernziele:		Der Studierende • kann lineare dynamische Sy		
		 kann lineare dynamische Sy Struktureigenschaften unter 		
13. Inhalt:		Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung		
14. Literatur:				
15. Lehrveranstaltunge	en und -formen:	 388701 Vorlesung Systemdynamischen Grundlagen der Regelungstechnik 388702 Übung Systemdynamischen Grundlagen der Regelungstechnik 		
16. Abschätzung Arbe	itsaufwand:	21 Std. Präsenz 34 Std. Vor- und Nacharbeit 35 Std. Prüfungsvorbereitung und Prüfung 90 Std. Summe		
17. Prüfungsnummer/r	n und -name:	38871 Systemdynamische G Schriftlich, 90 Min., Ge	rundlagen der Regelungstechnik (BSL) ewichtung: 1	
18. Grundlage für :				
19. Medienform:				
20. Angeboten von: Prozessleittechnik im		Prozessleittechnik im Maschir	nenbau	

Stand: 12.11.2021 Seite 68 von 72

Modul: 41190 Numerische Methoden I

2. Modulkürzel: 041100003	5. Moduldauer:	Einsemestrig	
3. Leistungspunkte: 6 LP	6. Turnus:	Sommersemester	
4. SWS: 6	7. Sprache:	Deutsch	
8. Modulverantwortlicher:	UnivProf. DrIng. Ulrich Niek	UnivProf. DrIng. Ulrich Nieken	
9. Dozenten:	Ulrich Nieken	Ulrich Nieken	
10. Zuordnung zum Curriculum in diesem Studiengang:	B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationer B.Sc. Verfahrenstechnik, PO 226-2011, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationer B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, 4. Semester → Schlüsselqualifikationen fachaffin B.Sc. Verfahrenstechnik, PO 226-2016, 4. Semester → Schlüsselqualifikationen fachaffin> Schlüsselqualifikationer		
11. Empfohlene Voraussetzungen:	Höhere Mathematik I - III		
12. Lernziele:	Nach Ende dieser Lehrverans Kenntnisse und Fähigkeiten er	taltung hat ein Studierender folgende worben:	
	 Ein grundlegendes Verständ Grundverfahren der numeris 	dnis von und praktischer Umgang mit schen Methoden:	
		ng von einfachen Algorithmen.in ein m und zur Benutzung von fertigen	
		einfacher Anwendungsprobleme in erischen Mathematik zu übertragen	
13. Inhalt:	Ausgabe von Daten) Entwicklu Debugger, ,) Lineare Gleichun	Datentypen, Operatoren und y, Strukturen, Funktionen, Ein- und ungswerkzeuge (Editor, Compiler, gssysteme (direkte und iterative probleme Nichtlineare Gleichungen	
14. Literatur:	Literatur: W. Dahmen ; A. Reusken - Numerik für Ingenieure und Naturwissenschaftler RRZN, Universität Hannover, C - Die Programmiersprach Ein Nachschlagewerk Engeln-Müllges G., Reuter F., Num Mathematik für Ingenieure, Wissenschaftsverlag Zürich, 1 Douglas F, Burden R. L.: Numerische Methoden, Spektrul Akademischer - Verlag, 1995		
15. Lehrveranstaltungen und -formen:	411901 Vorlesung Numerisc411902 Übung Numerische I		

Stand: 12.11.2021 Seite 69 von 72

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 84 h Selbststudiumszeit / Nacharbeitszeit: 96h Gesamt: 180 h	
17. Prüfungsnummer/n und -name:	 41191 Numerische Methoden I (BSL), Mündlich, Gewichtung: 1 Die Studienleistung besteht aus: Abgabe und Bestehen von Assignments Mündliches Kolloquium zu den Numerischen Methoden I 	
18. Grundlage für :		
19. Medienform:	Kombinierter Einsatz von Tafelschrieb, Beamer und Präsentationsfolien, Betreute Gruppenübungen	
20. Angeboten von:	Chemische Verfahrenstechnik	

Stand: 12.11.2021 Seite 70 von 72

Modul: 80120 Bachelorarbeit Chemie- und Bioingenieurwesen

2. Modulkürzel:	041100100	5. Moduldauer:	Einsemestrig	
3. Leistungspunkte:	12 LP	6. Turnus:	Wintersemester/ Sommersemester	
4. SWS:	2	7. Sprache:	Deutsch	
8. Modulverantwortlich	ner:	UnivProf. DrIng. habil. Clen	nens Merten	
9. Dozenten:		Clemens Merten		
10. Zuordnung zum Curriculum in diesem Studiengang:		B.Sc. Chemie- und Bioingenieurwesen, PO 226-2017, B.Sc. Chemie- und Bioingenieurwesen, PO 226-2019, B.Sc. Verfahrenstechnik, PO 226-2011, 6. Semester B.Sc. Verfahrenstechnik, PO 226-2016, 6. Semester		
11. Empfohlene Voraussetzungen:		Inhaltlich: Lehrveranstaltungen des Bachelorstudiums Verfahrenstechnik Formal: mindestens 135 LP		
12. Lernziele:		Sie können fachübergreifende Spezialgebiet darstellen. Sie k planen und durchführen. Die Studierender	lung aus dem Bereich der ines begrenzten Zeitrahmens Lösungsansätze erarbeiten. stellen finden, sammeln und ene Aufgabenstellung einordnen. Zusammenhänge in ihrem önnen selbstständig ihre Arbeit	
13. Inhalt:		 individuell, in Absprache mit dem Dozenten: Einarbeitung in die Aufgabenstellung durch Literaturrecherche und Erstellung eines Arbeitsplanes, Durchführung und Auswertung der eigenen Untersuchungen, Diskussion der Ergebnisse, Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit, Präsentation und Verteidigung der Ergebnisse in einem Kolloquium 		
14. Literatur:		Arbeiten: Ein Leitfaden für S	dem Dozenten e Gestaltung wissenschaftlicher Geminararbeiten, Bachelor-, Master- marbeiten und Dissertationen. Verlag	
15. Lehrveranstaltunge	en und -formen:			
16. Abschätzung Arbe	itsaufwand:	Erstellen der Bachelorarbeit:,,, Vorbereitung, Durchführung de Vorbereitung des Kolloquiums	es Kolloquiums: 20 h	

Stand: 12.11.2021 Seite 71 von 72

	Präsenzzeit Kolloquium:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
17. Prüfungsnummer/n und -name:		
18. Grundlage für :		
19. Medienform:		
20. Angeboten von:	Apparate- und Anlagentechnik	

Stand: 12.11.2021 Seite 72 von 72