Seven pieces of notation for propositions:

T (a true statement), F (a false one), \neg , \Longrightarrow , \Longleftrightarrow , \wedge , \vee .

Seven pieces of notation for subsets of a set Ω :

 \subseteq , =, \emptyset , Ω , \cup , \cap , c (that last one is "complement").

Exercise: match them up! You have one minute now, but we'll come back to this question later. Which one does \vee go with?

I want to match up \vee with \cup , and this is because if X and Y are subsets of Ω , then

$$\forall a \in \Omega, a \in X \cup Y \iff (a \in X) \lor (a \in Y).$$

This is a precise relationship between the two concepts. **Make sure you understand it.** I will explain it now. Ask the person next to you if you don't.

Exercise: Write down a precise relationship between \land and \cap . Show it to someone else and see if they think you got it right.

I want to match up T (a true proposition) with Ω (the biggest subset of Ω), because

$$\forall a \in \Omega, a \in \Omega \iff T$$
.

Why don't you try F and X^c (for X a subset of Ω) yourselves now? Write down two precise equations (and show them someone near you if you want to get a second opinion).

I got

$$\forall a \in \Omega, a \in \emptyset \iff F$$

and

$$\forall a \in \Omega, a \in X^c \iff \neg(a \in X).$$

The last two: I want to match up = with \iff . Here's why. If X and Y are two subsets of Ω , then

$$X = Y \iff (\forall a \in \Omega, a \in X \iff a \in Y).$$

"Two sets are equal if and only if they have the same elements." What is the seventh equation?

$$X \subseteq Y \iff (\forall a \in \Omega, a \in X \implies a \in Y).$$

Here's an example of a theorem about propositions. If P and Q are propositions, then $(\neg P) \lor (\neg Q) \iff \neg (P \land Q)$. What would be a boring easy way to prove this?

[draw a truth table and check all the cases]. Exercise: what is the corresponding theorem for subsets of Ω ?

Homework: here is a theorem about sets.

Theorem: If X and Y are subsets of Ω such that $X \cup Y = \Omega$ and $X \cap Y = \emptyset$, then $Y = X^c$.

Figure out the corresponding theorem about propositions. Prove it, and by applying it to the propositions $a \in X$ and $a \in Y$ for a an arbitrary element of Ω , deduce the theorem for sets.

Great examples of sets: sets of numbers.

Example 1: the *integers* \mathbb{Z} .

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

(Z for the German word "Zahlen").

Terrible example 2: the *natural numbers* \mathbb{N} .

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$
?

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$
?

A great unsolved problem.

My solution:

$$\mathbb{Z}_{\geq 0}=\{0,1,2,3,\ldots\}$$

$$\mathbb{Z}_{>1} = \{1, 2, 3, \ldots\}$$

In M1F I will never use $\mathbb N$ because there is no universal convention on what it means. (at Xena I will use $\mathbb N=\{0,1,2,\ldots\}$ but at university I was taught $\mathbb N=\{1,2,3,\ldots\}$).

Other famous sets of numbers:

The rational numbers \mathbb{Q} (contains stuff like $-1\frac{3}{7}$)

The *real numbers* \mathbb{R} (contains stuff like $\sqrt{2}$ and π)

The *complex numbers* \mathbb{C} (contains stuff like i with $i^2 = -1$).

These sets of numbers are quite hard to build. We will talk more about these number systems later.

Standard notation for subsets of \mathbb{R} .

Let a and b be real numbers.

[
$$a$$
, b] means { $x \in \mathbb{R} \mid a \le x \land x \le b$ }. Mathematicians often just write { $x \in \mathbb{R} \mid a \le x \le b$ }.

$$(a,b)$$
 means $\{x \in \mathbb{R} \mid a < x < b\}$.

$$[a, \infty)$$
 just means $\{x \in \mathbb{R} \mid a \leq x\}$.

 $[a,\infty]$ doesn't mean anything because *infinity is not a number* and you will lose marks if you write $x=\infty$. Writing $x<\infty$ is OK (but a waste of ink).

Exercise: guess what (a, b] means. Guess what $(-\infty, b)$ means.

We have talked about the union $X \cup Y$ of *two* things.

But we can talk about the union of an arbitrary number of things – including infinitely many things!

Convention alert! What is the union of no things? (the empty set)

What about three things? What is the union of [1,2], [2,3] and [3,4]?

If X_1, X_2, X_3, \ldots is a sequence of infinitely many sets, We can take their union! Sets are *better than numbers*. We cannot do $1+1+1+1+1+\ldots$ and get a number as an answer.

But we can write

$$\bigcup_{n=1}^{\infty} X_n$$

for this countable union, and get a new set.

Example: if $X_1 = [1, 2], X_2 = [2, 3], \dots, X_n = [n, n+1], \dots$, then what is $\bigcup_{n=1}^{\infty} X_n$?

It's $[1,\infty)$. We'll come back to this next time.

Answers to exercises:

```
\subseteq goes with \Longrightarrow
```

$$\cup$$
 goes with \vee

$$\cap$$
 goes with \wedge ($\forall a \in \Omega, a \in X \cap Y \iff (a \in X) \wedge (a \in Y)$)

T goes with
$$\Omega$$

$$=$$
 goes with \iff .

Truth table for $(\neg P) \lor (\neg Q) \iff \neg (P \land Q)$: just observe that in all four cases the values of both sides of the \iff are the same.

The corresponding theorem for subsets is one of De Morgan's laws: $X^c \cup Y^c = (X \cap Y)^c$.

The theorem about propositions in the question marked "homework": if $P \lor Q = T$ and $P \land Q = F$ then $Q \iff \neg P$, and if you check all four cases then you can see that indeed the only two that work are either Q false and P true, or Q true and P false. In either case we have $Q \iff \neg P$.

To deduce the theorem about sets, we note that to prove $Y = X^c$ it suffices to prove that $\forall a \in \Omega, a \in Y \iff a \in X^c$ and letting Q be the statement $a \in Y$ and P the statement $a \in X$ we see $Q \lor P = T$ (as $X \cup Y = \Omega$) and $Q \land P = F$ (as $X \cap Y = \emptyset$) and hence $Q \iff \neg P$, so $a \in Y \iff \neg (a \in X)$ which is $\iff a \in X^c$.

(a, b] means $\{x \in \mathbb{R} \mid a < x \le b\}$ and $(-\infty, b)$ means $\{x \in \mathbb{R} \mid x < b\}$.

 $\bigcup_{n=1}^{\infty} X_n = [1, \infty)$, and I guess the proof is that if $r \ge 1$ then $r \in X_n$ for $n = \lfloor r \rfloor$.