Verificación de conceptos previos

Tuesday, August 6, 2024 5:56 PM

Valor Absoluto

Sea a un número real. El valor absoluto de a se denota por |a| y está dado por

$$|a| = \begin{cases} a & Si \ a \ge 0 \\ -a & Si \ a < 0 \end{cases}$$

Se puede demostrar que para todos los números reales a y b: |a|=|-a|, |ab|=|a| |b|, -|a|<=a<=|a| Resumiendo las propiedades: Sea b un número real positivo. Entonces

(i)
$$|a| < b$$
 siy solo si $-b < a < b$
(ii) $|a| > b$ siy solo si $a > b$ o bien $a < -b$
(iii) $|a| = b$ siy solo si $a > b$ o bien $a = -b$

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00_pages/GEO_ANA_VEC_U00_02_01.html

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00/pages/GEO_ANA_VEC_U00_02_01.html

Un ángulo es la figura formada por dos semirrectas que se interceptan en un punto

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00/pages/GEO_ANA_VEC_U00_02_01.html

Las semirrectas (A y B) son los lados del ángulo y el punto de intersección (O) es su vértice. Adicional a la letra griega que indica el ángulo (a), se utilizan comúnmente las siguientes notaciones: Ángulo 0,

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00_02_01.html

Los ángulos se clasifican según su

Medida

Ángulo	Definición	Ejemplo
Ángulo agundo Θ	0° < Θ < 90°	12°, 45°, 89°
Ángulo recto Θ	<i>Θ</i> = 90°	
Ángulo abstuso Θ	90° < Θ < 180°	91°, 157°, 179°
Ángulo lleno o recitilíneo	<i>Θ</i> = 180°	
Ángulo reflejo o entrante	180° < θ < 360°	190°, 240°, 350°

Pares de ángulos

Ángulo	Definición	Ejemplo
Ángulo complementario a y β	$a + \theta = 90^{\circ}$	21°, 79°, 0°, 90°; 45° y 45°
Ángulo suplementario a y β	$a + \theta = 180^{\circ}$	115°, 65°, 2°, 178°; 50° y 130°
Ángulo conjugado a y β	$a + 6 = 360^{\circ}$	36°, 324°, 103°, 257°; 180° y 180°

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO
<a href="https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO
<a href="https://recursos.arrobamedellin.edu.co/archivos/arrobamedellin.edu.co/archivos/arrobamedellin.edu.co/archivos/archivos/arrobamedellin.edu.co/archivos/archivos/archivos/archivos/archivos/archivos/archivos/archivos/archivos/archivos/archivos/arc

Clasificación de triángulos según sus ángulos:

Triánguio rectángulo: tiene un ánguio recto.

Triángulo obtusángulo: tiene un ángulo obtuso.

Triângulo acutángulo: tiene sus tres ángulos agudos.

AABC es un triángulo equiángulo

Triángulo equiángulo: tiene sus tres ángulos iguales.

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00/pages/GEO_ANA_VEC_U00_02_01.html

Clasificación de los triángulos según sus lados:

Triángulo escalano: Gene sus tres lados diferentes.

Triángulo isóscolos: tiene al menos dos de sus lados iguales.

Triángulo equilátero: tiene sus tres lados iguales.

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00_02_01.html

Considerando el triángulo ACB rectángulo, la notación de sus partes se realiza de la siguiente manera: La trigonometría muestra la dependencia existente entre los lados y los ángulos de dicho triángulo, empleando las razones trigonométricas.

$$SenA = \frac{cateto\ opuesto}{hipotenusa} = \frac{a}{c}$$

$$CosA = \frac{cateto\ adyacente}{hipotenusa} = \frac{b}{c}$$

$$CotA = \frac{cateto\ advacente}{hipotenusa} = \frac{b}{c}$$

$$SecA = \frac{hipotenusa}{cateto adyacente} = \frac{c}{b}$$

$$CscA = \frac{hipotenusa}{cateto\ opusto} = \frac{c}{a}$$

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO">ANA VEC/U00/pages/GEO ANA VEC U00 02 01.html>

El teorema de Pitágoras señala que una relación entre los lados del triángulo rectángulo, el cuadrado de la hipotenusa, es igual a la suma de los cuadrados de los catetos.

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEOANA VEC/U00/pages/GEOANA VEC U00 02 01.html

Los lados de un triángulo son proporcionales a los senos de los ángulos opuestos.

Se utiliza cuando en el triángulo se proporcionan tres elementos (entre ángulos y lados) y dos de estos tres elementos conocidos sean un lado y su ángulo opuesto.

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00_02_01.html

En todo triángulo, el cuadrado de un lado es igual a la suma de los cuadrados de los otros dos, menos el doble producto de estos dos lados por el coseno del ángulo que forman

$$a^{2}=b^{2}+c^{2}-2bcCos A$$

$$b^{2}=a^{2}+c^{2}-2acCos B$$

$$c^{2}=a^{2}+b^{2}-2abCos C$$

Estas fórmulas son útiles para calcular el valor de los ángulos de un triángulo, conociendo la medida de sus lados. Se utiliza cuando se proporcionen dos lados y el ángulo entre ellos o bien los tres lados.

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEO_ANA_VEC_U00/pages/GEO_ANA_VEC_U00_02_01.html

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEOANA VEC/U00/pages/GEOANA VEC U00 02 01.html

Referencias

Barnett, R. (1990). Geometría. Serie Schaum. Ed. Mc Graw Hill.
Colonia, N.; Burgos, J.; Pérez, L. (2004). Geometría. Ed. Mc. Graw Hill.
Swokowski, E (1989). Cálculo con Geometría Analítica. 2da Ed. Grupo Editorial Iberoamericana.
Wentworth, J.; Smith, D. (1997). Geometría plana y del espacio. Ed. Porrúa. 24a. Ed.
Figura 1. Edificio Geométrico. Pixabay. Web. 18 de Julio 2017. (https://pixabay.com/en/roof-glass-library-building-1878904/)

From

https://recursos.arrobamedellin.edu.co/archivos/data/itm/ITMOVA/Transversales/N01/Calculo/interactivos/ITM/TACP/GEOANA_VEC_U00/pages/GEOANA_VEC_U00_03.html