ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Τεχνητή Νοημοσύνη

Ακ.έτος 2021-2022

3η Γραπτή Σειρά Ασκήσεων

Καραβαγγέλης Αθανάσιος

A.M.:03117022

Άσκηση 1

1) Για την άσκηση χρησιμοποίησα τη σχέση που δίνεται στις διαφάνειες του μαθήματος για τα βάρη του perceptron:

$$w(k + 1) = w(k) + \beta(y(k) - f(x(k))x(k))$$

όπου: $f(x(k)) = sign(w(k)^T x(k) - w_0(k))$

Δημιούργησα ένα python script για τις πράξεις της άσκησης και τρέχοντας το για 4 epochs, τα τελικά βάρη του perceptron ήταν:

(-0.4, -0.4, 0.6, 0.2)

Η επιλογή των 4 epochs έγινε αφού παρατήρησα πως έπειτα από τα 4 epochs δεν υπήρχαν αλλαγές στα βάρη.

Παρακάτω φαίνεται και ένας πίνακας από την εκτέλεση του script , όπου φαίνονται και όλα τα ενδιάμεσα βήματα.

Epoch	(w0,w1,w2,w3)	(x0,x1,x2,x3)	Σ	y(k) - f(x)	update	w(k+1)
1	[1 1 -1 -1]	[-10-14]	-4	1	[-0.2 0.0 -0.2 0.8]	[0.8 1.0 -1.2 -0.2]
1	[0.8 1.0 -1.2 -0.2]	[-1 4 0 -1]	3.4	-1	[0.2 -0.8 -0.0 0.2]	[1.0 0.2 -1.2 0.0]
1	[1.0 0.2 -1.2 0.0]	[-1 2 2 -1]	-3.0	1	[-0.2 0.4 0.4 -0.2]	[0.8 0.6 -0.8 -0.2]
1	[0.8 0.6 -0.8 -0.2]	[-13-10]	1.8	-1	[0.2 -0.6 0.2 -0.0]	[1.0 0.0 -0.6 -0.2]
1	[1.0 0.0 -0.6 -0.2]	[-1 -2 1 -3]	-1.0	1	[-0.2 -0.4 0.2 -0.6]	[0.8 -0.4 -0.4 -0.8]
1	[0.8 -0.4 -0.4 -0.8]	[-1 0 -2 -1]	0.8	-1	[0.2 -0.0 0.4 0.2]	[1.0 -0.4 0.0 -0.6]
2	[1.0 -0.4 0.0 -0.6]	[-1 0 -1 4]	-3.4	1	[-0.2 0.0 -0.2 0.8]	[0.8 -0.4 -0.2 0.2]
2	[0.8 -0.4 -0.2 0.2]	[-1 4 0 -1]	-2.6	0	[-0.0 0.0 0.0 -0.0]	[0.8 -0.4 -0.2 0.2]
2	[0.8 -0.4 -0.2 0.2]	[-1 2 2 -1]	-2.2	1	[-0.2 0.4 0.4 -0.2]	[0.6 0.0 0.2 0.0]
2	[0.6 0.0 0.2 0.0]	[-1 3 -1 0]	-0.8	0	[-0.0 0.0 -0.0 0.0]	[0.6 0.0 0.2 0.0]
2	[0.6 0.0 0.2 0.0]	[-1 -2 1 -3]	-0.4	1	[-0.2 -0.4 0.2 -0.6]	[0.4 -0.4 0.4 -0.6]
2	[0.4 -0.4 0.4 -0.6]	[-1 0 -2 -1]	-0.6	0	[-0.0 0.0 -0.0 -0.0]	[0.4 -0.4 0.4 -0.6]
3	[0.4 -0.4 0.4 -0.6]	[-1 0 -1 4]	-3.2	1	[-0.2 0.0 -0.2 0.8]	[0.2 -0.4 0.2 0.2]
3	[0.2 -0.4 0.2 0.2]	[-1 4 0 -1]	-2.0	0	[-0.0 0.0 0.0 -0.0]	[0.2 -0.4 0.2 0.2]
3	[0.2 -0.4 0.2 0.2]	[-1 2 2 -1]	-0.8	1	[-0.2 0.4 0.4 -0.2]	[0.0 0.0 0.6 0.0]
3	[0.0 0.0 0.6 0.0]	[-1 3 -1 0]	-0.6	0	[-0.0 0.0 -0.0 0.0]	[0.0 0.0 0.6 0.0]
3	[0.0 0.0 0.6 0.0]	[-1 -2 1 -3]	0.6	0	[-0.0 -0.0 0.0 -0.0]	[0.0 0.0 0.6 0.0]
3	[0.0 0.0 0.6 0.0]	[-1 0 -2 -1]	-1.2	0	[-0.0 0.0 -0.0 -0.0]	[0.0 0.0 0.6 0.0]
4	[0.0 0.0 0.6 0.0]	[-1 0 -1 4]	-0.6	1	[-0.2 0.0 -0.2 0.8]	[-0.2 0.0 0.4 0.8]
4	[-0.2 0.0 0.4 0.8]	[-1 4 0 -1]	-0.6	0	[-0.0 0.0 0.0 -0.0]	[-0.2 0.0 0.4 0.8]
4	[-0.2 0.0 0.4 0.8]	[-1 2 2 -1]	0.2	0	[-0.0 0.0 0.0 -0.0]	[-0.2 0.0 0.4 0.8]
4	[-0.2 0.0 0.4 0.8]	[-1 3 -1 0]	-0.2	0	[-0.0 0.0 -0.0 0.0]	[-0.2 0.0 0.4 0.8]
4	[-0.2 0.0 0.4 0.8]	[-1 -2 1 -3]	-1.8	1	[-0.2 -0.4 0.2 -0.6]	[-0.4 -0.4 0.6 0.2]
4	[-0.4 -0.4 0.6 0.2]	[-1 0 -2 -1]	-1.0	0	[-0.0 0.0 -0.0 -0.0]	[-0.4 -0.4 0.6 0.2]

2)
$$x = (-1, -1, 2, 2) \text{ kai } w = (-0.4, -0.4, 0.6, 0.2)$$

$$\sum_{i=0}^{3} x_{i} w = 0.4 + 0.4 + 1.2 + 0.4 = 2.4 > 0$$

Άρα το perceptron θα ταξινομήσει το διάνυσμα στην κατηγορία που αντιστοιχεί το 1 δηλαδή στην κλάση Β.

Άσκηση 2

Διάνυσμα	Απόσταση από το (-1, 2, 2)	Κλάση	KNN 1	KNN 3
(0, -1, 4)	$\sqrt{14}$	В	В	В
(4, 0, -1)	$\sqrt{38}$	Α		
(2, 2, -1)	$\sqrt{18}$	В		В
(3, -1, 0)	$\sqrt{29}$	А		
(-2, 1, -3)	$\sqrt{27}$	В		
(0, -2, -1)	$\sqrt{26}$	Α		А
(-1, 2, 2)			В	В

Άρα και οι 2 ταξινομητές βρίσκουν ότι το (-1, 2, 2) είναι στην κλάση Β.

Άσκηση 3

1) Η εκ των προτέρων πιθανότητα είναι:

$$P_{a priori}$$
 (άνδρας) = 51% = 0,51

- 2) Το 9,5% των αντρών και το 1,7% των γυναικών είναι καπνιστές.
 - P(καπνίζει | άνδρας) = 0.095 ή 9,5%
 - P(καπνίζει | γυναίκα) = 0.017 ή 1,7%

Η πιθανότητα που ψάχνουμε στο ερώτημα αυτό είναι η δεσμευμένη πιθανότητα ένα άτομο που είναι δεδομένο ότι καπνίζει να είναι άνδρας. Άρα:

P(άνδρας | καπνίζει) =
$$\frac{P(άνδρας)P(καπνίζει | άνδρας)}{P(καπνίζει)}$$

Η πιθανότητα ένα άτομο να καπνίζει είναι :

$$P(καπνίζει) = P(καπνίζει|άνδρας)P(άνδρας) + P(καπνίζει|γυναίκα)P(γυναίκα)$$

= 0.095*0.51 + 0.017*0.49 = **0.05678** ή **5,678**%

Άρα
$$P(άνδρας | καπνίζει) = \frac{0.51*0.095}{0.05678} = 0,8532 ή 85,32%$$

Άσκηση 4

Ασαφής κανόνας:

αν η Χ είναι Α1 και η Υ είναι σχετικά Α2, τότε η Ζ είναι Β

Έχουμε τα ασαφή σύνολα:

- $\bullet \quad A1 = 0.2/x1 + 1/x2 + 0.8/x3$
- A2 = 1/y1 + 0.09/y2 αλλά θα ασχοληθούμε με το σύνολο "σχετικά A2 (μ->μ^{1/2})", έστω A2', άρα <u>A2' = 1/y1 + 0.3/y2</u>
- $\kappa \alpha I B = 0.7/z1 + 1/z2$

$$R(X, Y, Z) = J_{min}(i(A1(X), A2'(Y)), B(Z))$$

Όπου:

$$i(A1(x), A2'(Y)) = min(A1, A2') = 0.2/x1,y1 + 0.2/x1,y2 + 1/x2,y1 + 0.3/x2, y2 + 0.8/x3, y1 + 0.3/x3, y2$$

$$\begin{split} J_{min}(\ i(A1(X),\ A2'(Y)),\ B(Z)) &= min(i(A1,\ A2'),\ B) = \\ &= 0.2/x1,y1,z1+0.2/x1,\ y1,\ z2+0.2/x1,\ y2,\ z1+0.2/x1,\ y2,\ z2+\\ &+ 0.7/x2,\ y1,\ z1+1/x2,\ y1,\ z2+0.3/x2,\ y2,\ z1+0.3x2,\ y2,\ z2+\\ &+ 0.7/x3,\ y1,\ z1+0.8/x3,\ y1,\ z2+0.3/x3,\ y2,\ z1+0.3/x3,\ y2,\ z2 \end{split}$$

Άρα, για X= x2 και Y= y1, η έξοδος είναι:

0.7/z1 + 1/z2