华侨大学《数学分析(一)》习题课讲义

刘乙明

2025 至 2026 学年秋季学期(此讲义将随本学期习题课的进行不断更新)

目录

1	利用定义证明数列极限		
	1.1	关于证明规范性的若干注记	2
	1.2	放缩技巧·若干常用的放缩不等式	2
	1.3	分步技巧	5
2	数列的收敛性・子列・递推数列的极限		
	2.1	数列收敛或发散的判断	7
	2.2	数列与子列的关系	8
	2.3	根据递推公式计算数列极限	9
3	函数	极限的证明	12
	3.1	利用定义证明函数极限	12
	3.2	基于函数方程与收敛性质的函数恒等性证明	14
	3.3	复合函数的极限问题	14

专题一 利用定义证明数列极限

- **1.1. 关于证明规范性的若干注记** 作为数学专业本科阶段的基础课程之一,数学分析中的绝大多数概念(诸如确界、极限、连续等)从直观上理解并不困难. 然而,**数学的大厦并不能仅仅建立在感觉直观上,它需要严格的公理与逻辑体系**. 因此,保持证明过程的规范性是至关重要的. 以下是一些关于证明规范性的注记:
 - (1) **证明的书写应当使用严格的数学语言,避免口语化**. 可以在证明的书写过程中合理地使用诸如「 \forall (任意的)」、「 \exists (存在)」以及「 $A \Longrightarrow B$ (由 A 推出 B)」等符号表达逻辑关系. 此外,大学阶段的数学证明往往涉及复杂的因果关系,因此应当**避免滥用**「::」和「::」符号.
 - (2) **证明的过程应当逻辑清晰**,**依据充分**. 对于一些推导步骤,需注明其所依据的定理、命题或结论. 同时,使用诸如「利用反证法」、「要证明 A,只需证 B」和「现证明: ···」等字段,可一定程度地提高证明过程的易读性. 需要注意的是,在初学阶段,应当仔细思考证明中每一步的逻辑,**不要使用诸如「显然」、「易得」或「易证」等词语蒙混过关**.

例子 1.1. 设数列 $\{a_n\}$ 是无穷小量, $\{b_n\}$ 是有界数列. 证明: $\{a_nb_n\}$ 是无穷小量.

极其不规范的证明. 因为 $\{a_n\}$ 是趋于 0 的,对其中的每一项 a_n 乘以有界数列 $\{b_n\}$ 的对应项后,其结果 $\{a_nb_n\}$ 依旧趋于 0,故结论成立. (证毕)

正确的证明. 因为 $\{b_n\}$ 有界,则存在 $M \ge 0$ 使得 $|b_n| \le M$ 对于任意的 $n \in \mathbb{N}^+$ 成立. 又因为 $\{a_n\}$ 是无穷小量,故对任意的 $\varepsilon > 0$,存在正整数 N,使得

$$|a_n| < \frac{\varepsilon}{M}$$

对一切 n > N 成立. 因此, 当 n > N 时, 有

$$|a_n b_n| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

依定义, $\{a_nb_n\}$ 是无穷小量.

(证毕)

1.2. 放缩技巧·若干常用的放缩不等式 在使用定义($\varepsilon - N$ 语言)证明极限的过程中,我们不可避免地会遇到这样一个问题:对于任意的 $\varepsilon > 0$,直接通过不等式

$$|a_n - a| < \varepsilon$$

难以解出符合条件的 N. 此时,一个常用的技巧是对 $|a_n - a|$ 进行适当放大,我们需要找到一个数列 $\{A_n\}$ 使其(从某一项 N_0 开始)满足

$$|a_n - a| \le A_n.$$

如果这时能通过不等式 $A_n < \varepsilon$ 解出相应的 N_1 ,使得当 $n > N_1$ 时成立 $A_n < \varepsilon$,那么只需令 $N = \max\{N_0, N_1\}$,当 n > N 时,就有 $|a_n - a| \le A_n < \varepsilon$.

例子 1.2. 设 a > 1, 证明: $\lim_{n \to +\infty} \frac{n^2}{a^n} = 0$.

证明. (对于 $\varepsilon > 0$,此时直接通过不等式 $\left| \frac{n^2}{a^n} - 0 \right| < \varepsilon$ 解出符合条件的 N 是较为困难的,故需要对其适当地放大以化简),令 a = 1 + h,由 a > 1 可知 h > 0.根据二项式定理,当 $n \geq 3$ 时,我们有

$$a^{n} = (1+h)^{n} = C_{n}^{0} + C_{n}^{1}h + C_{n}^{2}h^{2} + C_{n}^{3}h^{3} + \cdots$$

$$= 1 + nh + \frac{n(n-1)}{2}h^{2} + \frac{n(n-1)(n-2)}{6}h^{3} + \cdots$$

$$\geq \frac{n(n-1)(n-2)}{6}h^{3},$$

其中,h>0 确保了上述最后一个不等式成立. 此外,注意到当 n>4 时,我们有如下不等关系(这一步的目的是尝试消去分母中的 n-1 和 n-2,这些项的存在会导致 N 的求解变得困难)

$$0 < \frac{n}{n-1} < \frac{n}{n-2} < 2.$$

此时,可以做放缩

$$\left| \frac{n^2}{a^n} - 0 \right| = \frac{n^2}{a^n} \le \frac{n^2}{\frac{n(n-1)(n-2)}{6}h^3} \le \frac{24}{nh^3}.$$

现在对于任意的 $\varepsilon > 0$,令 $N = \max \left\{ 4, \left\lfloor \frac{24}{\varepsilon h^3} \right\rfloor + 1 \right\}$,当 n > N 时即有 $\left| \frac{n^2}{a^n} \right| < \varepsilon$. (证毕)

注记 1.3. 仿照例子 1.2 的方法,读者可以尝试证明: 当 a>1 时, $\lim_{n\to+\infty}\frac{n^k}{a^n}=0$ 对一切正整数 k 成立.

适当地使用一些不等式结论,能够极大地帮助我们构造有效放缩.以下列出的不等式在放缩技巧中是常用的,其证明可在标注的参考文献中找到.

(1) Bernoulli 不等式: 若 h > -1 且 $n \in \mathbb{N}^+$,则成立不等式

$$(1+h)^n \ge 1 + nh,$$

其中, 当 n > 1 时等号成立当且仅当 h = 0 (见 [Xie] 命题 1.3.1);

(2) **均值不等式**: 设 a_1, a_2, \dots, a_n 是 n 个正实数,则成立

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n} \ge \frac{n}{a_1^{-1} + a_2^{-1} + \dots + a_n^{-1}}.$$

特别地,等号成立当且仅当 $a_1=a_2=\cdots=a_n$ (见 [Xie] 命题 1.3.3);

(3) Cauchy-Schwarz 不等式: 给定实数 a_1, \cdots, a_n 和 b_1, \cdots, b_n ,成立不等式

$$\left| \sum_{i=1}^n a_i b_i \right| \le \sqrt{\left(\sum_{i=1}^n a_i^2\right)} \cdot \sqrt{\left(\sum_{i=1}^n b_i^2\right)}.$$

特别地,等号成立当且仅当数组 (a_1, \dots, a_n) 与 (b_1, \dots, b_n) 成比例(见 [Xie] 命题 1.3.5);

(4) 设 $0 \le t < \frac{\pi}{2}$, 则

$$\sin t \le t \le \tan t,$$

且等号成立当且仅当 t=0 (见 [Xie] 命题 1.3.6, 可利用几何或导数证明);

(5) **对数不等式**:设x > -1,则成立不等式

$$\frac{x}{1+x} \le \ln(1+x) \le x,$$

且等号成立当且仅当 x = 0 (见 [Pei] 例 1.1.8, 需要使用导数证明).

例子 1.4. 利用定义证明极限: $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

利用均值不等式证明. 当 $n \ge 2$ 时,利用均值不等式,我们有如下放缩

$$1 \le \sqrt[n]{n} \le \left(\sqrt{n} \cdot \sqrt{n} \cdot \underbrace{1 \cdot \dots \cdot 1}_{n-2}\right)^{\frac{1}{n}} \le \frac{2\sqrt{n} + n - 2}{n} < 1 + \frac{2}{\sqrt{n}}.$$

因此,对于任意的 $\varepsilon>0$,取 $N=\left\lfloor\frac{4}{\varepsilon^2}\right\rfloor+1$ (注:此时只要 $n\geq N$ 就有 $n\geq 2$,进而满足上述不等式放缩的条件),则对一切的 n>N 有

$$0 \le \sqrt[n]{n} - 1 < \frac{2}{\sqrt{n}} < \varepsilon.$$

(证毕)

利用二项式定理证明. 令 $A_n=\sqrt[n]{n}-1$,则 $A_n\geq 0$. 当 $n\geq 2$ 时,根据二项式定理有

$$n = (A_n + 1)^n = C_n^0 + C_n^1 A_n + C_n^2 A_n^2 + \cdots$$
$$= 1 + nA_n + \frac{n(n-1)}{2} A_n^2 + \cdots$$
$$\ge \frac{n(n-1)}{2} A_n^2.$$

将上述不等式变形后,有 $A_n^2 \leq \frac{2}{n-1}$. 此时对于任意的 $\varepsilon > 0$,要说明 $|\sqrt[n]{n} - 1| < \varepsilon$,只需说明

$$A_n \le \sqrt{\frac{2}{n-1}} < \varepsilon.$$

注意到当 $n \ge 2$ 时成立 $\frac{n}{n-1} \le 2$,因此取 $N = \left| \frac{4}{\varepsilon^2} \right| + 1$,则对任意的 n > N 有

$$A_n \le \sqrt{\frac{2}{n-1}} = \sqrt{\frac{2}{n} \cdot \frac{n}{n-1}} \le \frac{2}{\sqrt{n}} < \varepsilon.$$

(证毕)

练习 1.5. 利用定义证明下列极限:

(1)
$$\lim_{n \to +\infty} \sin \frac{\pi}{n} = 0;$$
 (2) $\lim_{n \to +\infty} \sqrt[n]{n+1} = 1.$

1.3. 分步技巧 对于一些形式较为复杂的 $|a_n - a|$,往往难以直接构造有效的放缩将其化简.而分步技巧提供了另一种化简策略,我们可以利用绝对值不等式将 $|a_n - a|$ 拆成若干部分:

$$|a_n - a| \le A_1(n) + \dots + A_k(n).$$

如果此时能证明对上述每一部分 $A_i(n)$,总能找到相应的 N_i ,使得 $A_i(n) < \frac{\varepsilon}{k}$ 对一切的 $n > N_i$ 成立.那么只需令 $N = \max\{N_1, \cdots, N_k\}$,当 n > N 时就有

$$|a_n - a| \le A_1(n) + \dots + A_k(n) < k \cdot \frac{\varepsilon}{k} = \varepsilon.$$

例子 1.6 (Cauchy 命题). 设 $\lim_{n\to+\infty} a_n = a$ (有限数),证明:

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a.$$

证明. 利用绝对值不等式, 我们有放缩:

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| = \left| \frac{(a_1 - a) + (a_2 - a) + \dots + (a_n - a)}{n} \right|$$

$$\leq \frac{|a_1 - a| + |a_2 - a| + \dots + |a_n - a|}{n}.$$

由于 $\lim_{n\to+\infty}a_n=a$,故<u>对于任意的 $\varepsilon>0$ </u>,存在 $N_1>0$,当 $n>N_1$ 时成立

$$|a_n - a| < \frac{\varepsilon}{2}.$$

固定上述 N_1 ,记 $M = \sum_{i=1}^{N_1} |a_i - a|$ 并取 $N_2 = \left\lfloor \frac{2M}{\varepsilon} \right\rfloor + 1$,则有

$$\frac{|a_1-a|+|a_2-a|+\cdots+|a_{N_1}-a|}{n}<\frac{\varepsilon}{2}$$

对一切的 $n > N_2$ 成立. 此时取 $N = \max\{N_1, N_2\}$, 当 n > N 时就有:

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| \le \frac{|a_1 - a| + \dots + |a_{N_1} - a| + |a_{N_1 + 1} - a| + \dots + |a_n - a|}{n}$$

$$< \frac{\varepsilon}{2} + \frac{n - N_1}{n} \cdot \frac{\varepsilon}{2} < \varepsilon.$$

(证毕)

练习 1.7. 设数列 $\{p_n\}$ $(p_n > 0)$ 和 $\{a_n\}$ 分别满足:

$$\lim_{n \to +\infty} \frac{p_n}{p_1 + p_2 + \dots + p_n} = 0, \quad \lim_{n \to +\infty} a_n = a.$$

证明:
$$\lim_{n \to +\infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} = a.$$

提示. 注意到 $\{a_n\}$ 是有界数列,可设 $|a_n| \leq M$,则

$$\left| \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} - a \right| \le \frac{1}{p_1 + \dots + p_n} \left(p_1 |a_n - a| + \dots + p_{n-N} |a_{N+1} - a| + p_{n-N+1} M + \dots + p_n M \right).$$

练习 1.8. 设 $\lim_{n\to+\infty}a_n=0$,证明: $\lim_{n\to+\infty}\frac{a_1+2a_2+\cdots+na_n}{1+2+\cdots+n}=0$.

提示. 对于某个 $N_0 > 0$, 设 $M = \max\{|a_i| : 1 \le i \le N_0\}$, 则有

$$\left| \frac{a_1 + 2a_2 + \dots + na_n}{1 + 2 + \dots + n} \right| \le \frac{MN_0(1 + N_0)}{n(n+1)} + \frac{(N_0 + 1) \cdot |a_{N_0 + 1}| + \dots + n \cdot |a_n|}{1 + 2 + \dots + n}.$$

专题二 数列的收敛性·子列·递推数列的极限

- **2.1. 数列收敛或发散的判断** 对于给定数列 $\{a_n\}$,要判断其是否收敛或发散,可以通过下述几种基本方法:
 - (1) 利用 Cauchy 收敛原理. 根据 Cauchy 收敛原理, 我们有

对应地,请读者自行写出数列 $\{a_n\}$ 发散的充分必要条件.

(2) 利用单调有界定理(数列收敛的充分条件). 若数列 $\{a_n\}$ 单调递增且有上界(或者单调递减且有下界),则其必定收敛,且此时有(见课本 [ENCU] 习题 2.3 第 8 题,请读者自行尝试证明)

$$\lim_{n \to +\infty} a_n = \sup_n \{a_n\} \ (\vec{\mathfrak{D}} \stackrel{\text{def}}{\underset{n \to +\infty}{\text{def}}} a_n = \inf_n \{a_n\}).$$

例子 2.1. 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$, 证明: $\{a_n\}$ 收敛(这一极限被称为 Euler 常数,通常记作 Γ).

证明. (我们利用单调有界定理证明极限的存在性)根据对数不等式(见专题一),对于任意的 $n \in \mathbb{N}$,成立

$$\frac{1}{n+1} < \ln \frac{n+1}{n} < \frac{1}{n}.$$

因此对任意的 $n \in \mathbb{N}$,有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln \frac{n+1}{n} < 0,$$

这说明 $\{a_n\}$ 是单调递减的.另一方面,再次应用对数不等式,我们有

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln 2 + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} - \ln n$$

= $\ln(n+1) - \ln n > 0$,

因此 $\{a_n\}$ 有下界. 综上,根据单调有界定理可知 $\{a_n\}$ 收敛. (证毕)

例子 2.2. 证明:数列 $\{\sin n\}$ 发散.

证明. (我们使用 Cauchy 收敛准则的否定形式证明发散) 注意到对于任意的 $k \in \mathbb{Z}$,函数 $\sin x$ 满足

$$\begin{cases} \sin x \ge \frac{1}{2}, & x \in \left[2k\pi + \frac{\pi}{6}, 2k\pi + \frac{5\pi}{6}\right], \\ \sin x \le -\frac{1}{2}, & x \in \left[(2k+1)\pi + \frac{\pi}{6}, (2k+1)\pi + \frac{5\pi}{6}\right], \end{cases}$$

(证毕)

并且上述提及的每一段区间长度均大于 1. 因此取 $\varepsilon_0 = 1$,对于任意的 N > 0,由实数的 Archimedes 性,存在 $k_0 \in \mathbb{N}^+$ 使得 $2k_0\pi > N$.此时分别取正整数

$$n \in \left[2k_0\pi + \frac{\pi}{6}, 2k_0\pi + \frac{5\pi}{6}\right], \quad m \in \left[(2k_0 + 1)\pi + \frac{\pi}{6}, (2k_0 + 1)\pi + \frac{5\pi}{6}\right]$$

(这些区间的长度确保了 m 和 n 是可被取到的),则有 $m > n > 2k_0\pi > N$ 且

$$|\sin m - \sin n| = \sin m - \sin n \ge 1 = \varepsilon_0.$$

由 Cauchy 收敛原理的否定形式,可知数列 $\{\sin n\}$ 发散.

练习 2.3. 证明:数列 {tan n} 发散.

2.2. 数列与子列的关系 在数学分析中,子列是一种十分重要的研究对象,通过分析子列的收敛性,能够更加具体地刻画数列本身的形态.

对于数列与子列的关系,以下几条性质是较为基本的,这些内容可在课本 [ENCU] 中找到.同时,我们以习题的形式补充了一些额外的结论.

- (1) 数列 $\{a_n\}$ 收敛的充分必要条件是: $\{a_n\}$ 的任意子列都收敛(见定理 2.8, **这条性 质的否定形式可用于判断数列的发散**).
- (2) 任何数列都有单调子列(见第 2.3 节例 5).
- (3) 致密性定理:在实数系中,有界数列必有收敛子列(见定理 2.10).
- (4) 若数列 $\{a_n\}$ 无上界(或无下界),则存在 $\{a_n\}$ 的子列 $\{a_{n_k}\}$ 是正无穷大量(或负无穷大量)(见第 2.3 节例 6).

例子 2.4. 设 $\{a_n\}$ 是单调数列, $\{a_{n_k}\}$ 是它的一个子列.证明:如果 $\lim_{k\to +\infty}a_{n_k}=a$,则 有 $\lim_{n\to +\infty}a_n=a$.

证明. 不妨设 $\{a_n\}$ 是单调递增的. 由于 $\lim_{k\to +\infty} a_{n_k} = a$,则

- (a) 对每一项 a_{n_k} 都有 $a_{n_k} \le a$ (否则,存在某个 k_0 使得 $a_{n_{k_0}} a \stackrel{!!}{=} \varepsilon_0 > 0$,此时由 $\{a_{n_k}\}$ 的单调递增性可知:对任意的 $k > k_0$,成立 $a_{n_k} a \ge a_{n_{k_0}} a = \varepsilon_0$,这与 $\{a_{n_k}\}$ 以 a 为极限矛盾);
- (b) 对任意的 $\varepsilon > 0$, 存在 K > 0, 当 k > K 时有

$$0 \le |a_{nk} - a| = a - a_{nk} < \varepsilon.$$

现在取 $N = n_{K+1}$,由于对任意的 n > N,总存在 k' > K 使得 $n_{k'} \le n \le n_{k'+1}$ (见图 2.1),因此由 $\{a_n\}$ 的单调递增性,有

$$0 \le a - a_{n_{k'+1}} \le a - a_n \le a - a_{k'} < \varepsilon.$$

此时根据定义可知, $\lim_{n \to +\infty} a_n = a$. (证毕)

图 2.1: 当 n > N 时,其必定位于在两个相邻的子列指标 $n_{k'}$ 与 $n_{k'+1}$ 之间

例子 2.5. 若 $\{x_n\}$ 无界,但不是无穷大量,则存在两个子列: 其中一个子列收敛,而另一个子列是无穷大量.

证明. 我们首先构造 $\{x_n\}$ 的一个收敛子列. 由于 $\{x_n\}$ 非无穷大量,故存在 M > 0,使得对于任意的 N > 0,总存在 n > N 满足 $|x_n| \le M$. 于是依次地

- 对 $N_1 = 1$, 取 $n_1 > N_1$ 使得 $|x_{n_1}| \leq M$;
- 对 $N_2 = n_1$, 取 $n_2 > N_2$ 使得 $|x_{n_2}| \leq M$;
-

由此得到 $\{x_n\}$ 的一个子列 $\{x_{n_k}\}$,其每一项均满足 $|x_{n_k}| \leq M$. 根据致密性定理,存在 $\{x_{n_k}\}$ 的收敛子列 $\{x_{n_k}\}$,这亦是 $\{x_n\}$ 的一个收敛子列.

另一方面,由于 $\{x_n\}$ 无界,则对于任意的 G>0,总存在 n>0 使得 $|x_n|>G$.于是依次地通过

- 对 $G_1 = 1$, 取 $m_1 > 0$ 使得 $|x_{m_1}| > G_1$;
- 对 $G_2 = 2$,取 $m_2 > m_1$ 使得 $|x_{m_2}| > G_2$ (此处的 m_2 必定可以取到,否则将意味着对一切 $m > m_1$ 都有 $|x_m| \le G_2$,这与 $\{x_n\}$ 无界矛盾);
-

可得到 $\{x_n\}$ 的另一个子列 $\{x_{m_k}\}$. 我们需说明 $\{x_{m_k}\}$ 是无穷大量,事实上,对于任意的 G>0,取正整数 K>G,则当 k>K 时,有

$$|x_{m_k}| > G_k = k > K > G.$$

(证毕)

练习 2.6. 给定数列 $\{a_n\}$ 和实数 a,证明: a 的任意邻域都包含数列 $\{a_n\}$ 的无穷多项**当 且仅当** a 是 $\{a_n\}$ 某个子列的极限(此时,我们称 a 是数列 $\{a_n\}$ 的一个**极限点**).

2.3. **根据递推公式计算数列极限** 有些数列是在给出其第一项 a_1 后,使用递推公式

$$a_{n+1} = f(a_n), \qquad n \in \mathbb{N}^+$$

定义的,这里的 $f(a_n)$ 表示某个关于 a_n 的函数.事实上,计算这类数列极限的方法有很多 (参考 [Pei] 第 1.5 节),但在本节我们只讨论单调有界定理的应用.

例子 2.7. 设数列 $\{x_n\}$ 由 $x_1 = 1$ 和递推关系

$$x_{n+1} = 1 + \frac{1}{x_n}, \qquad n \in \mathbb{N}^+$$

给出. 判断 $\{x_n\}$ 的收敛性, 若收敛则计算其极限.

想法. 通过递推关系计算 $\{x_n\}$ 的前若干项,我们有

$$x_1 = 1 < x_3 = \frac{3}{2} < x_5 = \frac{8}{5} < \dots < x_6 = \frac{13}{8} < x_4 = \frac{5}{3} < x_2 = 2.$$

于是,我们可以猜测 $\{x_n\}$ 是有界数列(具体地: $1 \le x_n \le 2$),且由其奇数项构成的子列 $\{x_{2k-1}\}$ 单调递增,由其偶数项构成的子列 $\{x_{2k}\}$ 单调递减.根据单调有界定理,我们 知道这两个子列是收敛的,此时若能证明它们收敛于同一极限 A,则必有 $\lim_{n\to+\infty} x_n = A$ (请思考为什么?).

证明. 首先证明数列 $\{x_n\}$ 是有界的. 事实上,利用数学归纳法,由于 $1 \le x_1 \le 2$,假设对于第 n 项有 $1 \le x_n \le 2$,则根据递推关系可得

$$1 \le x_{n+1} = 1 + \frac{1}{x_n} \le 2,$$

这说明数列 $\{x_n\}$ 满足 $1 \le x_n \le 2$. 此外, 重复使用两次递推关系, 我们有

$$x_{n+2} - x_n = \frac{1}{x_{n+1}} - \frac{1}{x_n} = \frac{x_n}{1 + x_n} - \frac{x_{n-2}}{1 + x_{n-2}} = \frac{x_n - x_{n-2}}{(1 + x_n)(1 + x_{n-2})},$$

这说明对于任意的 $n \ge 3$, $x_{n+2} - x_n$ 与 $x_n - x_{n-2}$ 具有相同的符号, 再结合

$$x_3 - x_1 = \frac{1}{2} > 0, \quad x_4 - x_2 = -\frac{1}{3} < 0$$

可知由 $\{x_n\}$ 的奇数项构成的子列 $\{x_{2k-1}\}$ 是单调递增的,而由其偶数项构成的子列 $\{x_{2k}\}$ 是单调递减的.根据单调有界定理,子列 $\{x_{2k-1}\}$ 与 $\{x_{2k}\}$ 均收敛.

现在,设 $\lim_{k\to+\infty} x_{2k-1} = A$,对递推公式

$$x_{2k+1} = 1 + \frac{1}{x_{2k}} = 1 + \frac{x_{2k-1}}{1 + x_{2k-1}}$$

取极限有 $A = 1 + \frac{A}{1+A}$,由此解得 $A = \frac{1+\sqrt{5}}{2}$ 或 $A = \frac{1-\sqrt{5}}{2}$ (舍去, $\{x_n\}$ 的上下界确保了该数列不可能以此为极限).类似可以证明 $\lim_{n \to +\infty} x_{2k-1} = \frac{1+\sqrt{5}}{2}$. 因此,我们有 $\lim_{n \to +\infty} x_n = \frac{1+\sqrt{5}}{2}$.

注记 2.8. 考虑 Fibonacci 数列 $\{F_n\}$, 该数列是通过递推关系

$$F_0 = 1$$
, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$, $n \in \mathbb{N}^+$

生成的, 其前 10 项为 1,1,2,3,5,8,13,21,34,55. 由于

$$\frac{F_1}{F_0} = 1$$
, $\frac{F_{n+1}}{F_n} = \frac{F_n + F_{n-1}}{F_n} = 1 + \frac{1}{F_n/F_{n-1}}$, $n \in \mathbb{N}^+$,

因此例子 2.7 中的数列第 n 项 x_n 本质上是 Fibonacci 数列 $\{F_n\}$ 的第 n 项相对于前一项的增长率. 例子 2.7 的结论表明,随着 n 的增大,Fibonacci 数列的增长率最终将收敛于「黄金比例」,即 $\frac{\sqrt{5}+1}{2}\approx 1.618$.

练习 2.9. 给定两个正数 a 和 b, 其满足 0 < a < b, 分别令 $a_1 = a$, $b_1 = b$.

(1) 若按照递推公式

$$a_{n+1} = \sqrt{a_n \cdot b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \in \mathbb{N}^+,$$

定义数列 $\{a_n\}$ 和 $\{b_n\}$. 证明: 这两个数列收敛于同一个极限(该极限称为 a 和 b 的**算术几何平均**).

(2) 若按照递推公式

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n \in \mathbb{N}^+,$$

定义数列 $\{a_n\}$ 和 $\{b_n\}$. 证明:这两个数列收敛于同一个极限(该极限称为 a 和 b 的**算术调和平均**).

提示. 首先证明 $a \le a_n < b_n \le b$ 对于任意的 $n \in \mathbb{N}^+$ 成立,随后考虑单调有界定理.

专题三 函数极限的证明

3.1. 利用定义证明函数极限 设 $x_0 \in \mathbb{R}$,函数 f(x) 在 x_0 的某个去心领域 $U^{\circ}(x_0; \eta)$ 上有定义. 则 f(x) 在 x_0 处的极限可以被定义为:

$$\lim_{x \to x_0} f(x) = A \text{ (有限数)} \iff \left\{ \begin{array}{c} \forall \varepsilon > 0, \ \exists \delta (0 < \delta < \eta), \ \text{if } x \in U^{\circ}(x_0; \delta) \text{ if, } \\ |f(x) - A| < \varepsilon \end{array} \right\}.$$

其它情形的函数极限可以类似地被定义.值得注意的是,尽管函数极限与数列极限在定义上存在诸多类似之处,但在使用定义证明函数极限时,仍然存在着一些额外的需要注意之处:

- (1) 对于 $x \to x_0$ 类型的极限, 其刻画的是函数 f(x) 在 x_0 的某个去心邻域 $U^{\circ}(x_0)$ 中的状态,与 f(x) 在 x_0 处是否有定义、取值如何均无关.
- (2) 对于数列而言,其可以被视为定义在 \mathbb{N}^+ 上的函数. 然而,函数的定义域不总是为 \mathbb{R} ,因此在寻找合适的 δ 时,必须先确保 f(x) 在 $U^\circ(x_0;\delta)$ 内有定义,其次再讨论于此邻域上是否成立 $|f(x) A| < \varepsilon$.

例子 3.1. 利用定义证明极限 $\lim_{x\to 1} \sqrt{\frac{7}{16x^2-9}} = 1$.

证明. 注意到函数 $f(x)=\sqrt{\frac{7}{16x^2-9}}$ 的定义域为 $\left(-\infty,-\frac{3}{4}\right)\cup\left(\frac{3}{4},+\infty\right)$,并且在其定义域内成立不等式

$$\left| \sqrt{\frac{7}{16x^2 - 9}} - 1 \right| = \left| \frac{\frac{7}{16x^2 - 9} - 1}{\sqrt{\frac{7}{16x^2 - 9}} + 1} \right| \le \left| \frac{7}{16x^2 - 9} - 1 \right| = \left| \frac{16x^2 - 16}{16x^2 - 9} \right|$$
$$= \frac{16 \cdot |x - 1| \cdot |x + 1|}{|4x + 3| \cdot |4x - 3|}.$$

对于任意的 $\varepsilon>0$,我们逐步地寻找合适的 $\delta>0$. (首先,要保证 f(x) 在 $U^{\circ}(1;\delta)$ 内有定义,需限制 $0<\delta<1/4$. 其次,直接通过不等式

$$\frac{16 \cdot |x-1| \cdot |x+1|}{|4x+3| \cdot |4x-3|} < \varepsilon$$

求解合适的 δ 是较为困难的,因此需要对上述不等式左端做适当放大,于是进一步地限 制 $0<\delta<1/8$).此时,取 $\delta=\min\left\{\varepsilon/32,1/8\right\}$,当 $x\in U^\circ(1,\delta)$ 时,有

$$\frac{16 \cdot |x+1| \cdot |x-1|}{|4x+3| \cdot |4x-3|} \le \frac{16 \cdot 3 \cdot |x-1|}{3 \cdot \frac{1}{2}} < \varepsilon.$$

依照定义,即有 $\lim_{x\to 1} f(x) = 1$. (证毕)

练习 3.2. 利用定义证明极限: $\lim_{x\to 2^-} \sqrt{4-x^2}=0$.

3 函数极限的证明

上述关于函数极限的例子是比较直观的,我们总能依据其函数图像「猜测」出对应的极限值,然而,也有一些函数的极限并不容易直接被看出.

例子 3.3. 考虑 Riemann 函数:

$$R(x) = \begin{cases} \frac{1}{p}, & x = \frac{q}{p} \text{ (这里 } p, q \text{ 为互素整数, 且 } p > 0), \\ 0, & x 是无理数. \end{cases}$$

证明: 对于任意的 $x_0 \in [0,1]$, 有 $\lim_{x \to x_0} R(x) = 0$ (当 $x_0 = 0$ 或 1 时, 考虑单侧极限).

想法. 对于任意的 $\varepsilon > 0$,观察 R(x) 在闭区间 [0,1] 上的函数图像,我们不难发现:满足 $R(x) \ge \varepsilon$ 的 x 至多只有有限个. 因此,我们只需要找到足够小的 $\delta > 0$,使得去心邻域 $U^{\circ}(x_0;\delta)$ 能刚好「避开」这有限个 x 即可.

图 3.1: Riemann 函数在 [0,1] 区间上的图像(只画出 $R(x) \geq \varepsilon$ 的部分)

证明. 我们只讨论 $x_0 \in (0,1)$ 的情形,对 x_0 位于 0 和 1 的情形则交由读者. 对于任意的 $\varepsilon > 0$,由于当 x 为无理数时 R(x) = 0,因此使得 $R(x) \ge \varepsilon$ 的 x 必然是有理数. 将有理数 x 写成既约分数 g/p(这里 $p \in \mathbb{N}^+$)的形式,则有

$$R(x) = R\left(\frac{q}{p}\right) = \frac{1}{p} \ge \varepsilon \iff p \le \frac{1}{\varepsilon}$$
$$\iff p \in \left\{1, 2, \dots, \left|\frac{1}{\varepsilon}\right|\right\}.$$

换言之,这些使得 $R(x) \ge \varepsilon$ 的有理数 x,其分母(表示成既约分数时)至多只有有限种可能的取值. 因此,这些有理数 x 至多只有有限个(记它们作成的集合为 A).

3 函数极限的证明 14

于是,对上述 $\varepsilon > 0$,取

$$\delta = \min \left\{ x_0, 1 - x_0, \min_{a \in A - \{x_0\}} \{|a - x_0|\} \right\},$$
 则当 $0 < |x - x_0| < \delta$ 时,成立 $0 \le R(x) < \varepsilon$. (证毕)

3.2. 基于函数方程与收敛性质的函数恒等性证明 在某些情况下,函数在其定义域内的整体性质可由**其满足的特定函数方程**以及**该函数的极限行为**共同确定. 在本节,我们将讨论这些条件如何影响函数在其定义域上的恒等性.

例子 3.4. 设函数 $f: \mathbb{R}^+ \to \mathbb{R}$ 满足函数方程 $f(x^2) = f(x)$,且

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = f(1).$$

证明: $f(x) \equiv f(1) \ (\forall x \in \mathbb{R}^+)$.

证明. 利用反证法.若存在 $x_0 \in \mathbb{R}^+$ 使得 $f(x_0) \neq f(1)$,取 $\varepsilon_0 = |f(x_0) - f(1)| > 0$,如果 $x_0 > 1$,则对于任意(大)的 $\Delta > 0$,存在 k > 0 使得 $x_0^{2^k} > \Delta$,根据函数方程给出的递推关系,我们有

$$|f(x_0^{2^k}) - f(1)| = |f(x_0^{2^{k-1}}) - f(1)| = \dots = |f(x_0) - f(1)| = \varepsilon_0.$$

这与 $\lim_{x\to +\infty} f(x) = f(1)$ 矛盾. 类似地,可证明 $x_0 < 1$ 的情形. (证毕)

练习 3.5. 设 $f: \mathbb{R}^+ \to \mathbb{R}$ 满足函数方程 f(2x) = f(x), 若 $\lim_{x \to +\infty} = A$, 证明 $f(x) \equiv A$.

练习 3.6. 设 $f: \mathbb{R} \to \mathbb{R}$ 是一个周期函数, 若 $\lim_{x \to +\infty} = A$, 证明 $f(x) \equiv A$.

3.3. 复合函数的极限问题 在函数极限的计算中,存在这样一个十分自然的问题: 如果已知 $\lim_{x\to a} f(x) = A$ 和 $\lim_{y\to A} g(y) = B$ (为了方便讨论,这里均假设 a、A 和 B 为有限数),那么是否成立

$$\lim_{x \to a} f(g(x)) = \lim_{y \to A} f(y)? \tag{3.1}$$

事实上,等式 (3.1) 并非无条件成立. 例如: 设 a=0,取函数 $g(x)=x\sin\frac{1}{x}$,

$$f(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

通过计算可知 $A = \lim_{x \to a} g(x) = 0$, $\lim_{y \to A} f(x) = 1$. 然而,考虑数列

$$\{x_n\} = \left\{\frac{1}{2n\pi}\right\} \quad \text{fil} \quad \{y_n\} = \left\{\frac{1}{2n\pi + \pi/2}\right\},\,$$

它们均收敛于 a=0,但是 $\lim_{n\to +\infty} f(g(x_n))=0$, $\lim_{n\to +\infty} f(g(y_n))=1$. 由 Henie 定理(归 结原理)可知,极限 $\lim_{x\to 0} f(g(x))$ 不存在,故此时等式 (3.1) 并不成立.

下述命题给出了等式 (3.1) 成立的两个充分条件, 但它们都不是必要条件.

3 函数极限的证明 15

命题 3.7. 设 $\lim_{x\to a} g(x) = A$, $\lim_{y\to A} f(y) = B$. 如果此时满足下述条件之一:

- (1) 存在 a 的某个去心邻域 $U^{\circ}(a;\eta)$,使得在该邻域内恒有 $g(x) \neq A$;
- (2) f(y) 在点 A 处连续,即: $B = \lim_{y \to A} f(y) = f(A)$,

则有 $\lim_{x\to a} f(g(x)) = \lim_{y\to A} f(y) = B$.

证明. 对于任意的 $\varepsilon > 0$,由于 $\lim_{y \to A} f(y) = B$,则存在 $\delta_1 > 0$,当 $0 < |y - A| < \delta_1$ 时成立 $|f(y) - B| < \varepsilon$ (注意:这里并不能保证当 y = A 时成立 $|f(y) - B| < \varepsilon$);又由于 $\lim_{x \to a} g(x) = A$,则对于上述找到的 $\delta_1 > 0$,存在 $\delta_2 > 0$,使得当 $0 < |x - a| < \delta_1$ 时成立 $|g(x) - A| < \delta_1$.

• 若条件 (1) 成立, 则取 $\delta = \min\{\delta_2, \eta\}$, 当 $0 < |x - a| < \delta$ 时有

$$0 < |g(x) - A| < \delta_1 \implies |f(g(x)) - B| < \varepsilon.$$

• 若条件 (2) 成立,则只需取 $\delta = \delta_2$,因为当 g(x) = A时即有 f(g(x)) = B.

因此根据定义, 当满足上述二条件之一时, 均有 $\lim_{x\to a} f(g(x)) = B$. (证毕)

此外,关于复合函数的极限问题,下面这个例子也是十分经典的.

例子 3.8. 证明: 若 $\lim_{x\to 0} f(x^3)$ 存在,则 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$. 但是,如果 $\lim_{x\to 0} f(x^2)$ 存在,则不一定有 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^2)$.

证明. 若 $\lim_{x\to 0} f(x^3)$ 存在,不妨设其极限值为 A. 则对于任意的 $\varepsilon > 0$,存在 $\delta_1 > 0$,使得当 $0 < |t| < \delta_1$ 时,有

$$|f(t^3) - A| < \varepsilon.$$

此时取 $\delta = \delta_1^3$, 当 $0 < |x| < \delta$ 时,存在 t 使得 $0 < |t| < \delta_1$ 且 $x = t^3$ (这是结论成立的关键),此时有

$$0 < |f(t^3) - A| = |f(x) - A| < \varepsilon.$$

若极限 $\lim_{x\to 0} f(x^2)$ 存在,则 $\lim_{x\to 0} f(x)$ 不一定存在.例如:取 $f(x)=\mathrm{sgn}(x)$ 为符号函数,则有 $\lim_{x\to 0} f(x^2)=1$,但

$$-1 = \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x) = 1,$$

故极限 $\lim_{x\to 0} f(x)$ 不存在. (证毕)

参考文献

[Chen] 陈纪修, 於崇华, 金路. 数学分析(上册)[M]. 第 3 版. 北京: 高等教育出版社, 2019. [ENCU] 华东师范大学数学系. 数学分析(上册)[M]. 第 5 版. 北京: 高等教育出版社, 2019. [Pei] 裴礼文. 数学分析中的典型问题与方法 [M]. 第 3 版. 北京: 高等教育出版社, 2021.

[Xie] 谢惠民, 恽自求, 易法槐等. 数学分析习题课讲义(上册)[M]. 第 2 版. 北京: 高等教育出版 社, 2018.