Sensing conducted EMI in power lines for appliance disaggregation

Highlights: Overview of NILM, Past work, Conducted EMI as a unique/deterministic aspect

Manoj gulati

Advisers: Dr. Amarjeet Singh and Dr. Shobha Sundar Ram

Proposed work

To study unique and distinct features in conducted EMI generated by multiple electrical appliances.

Specific test cases:

- Study impact of voltage fluctuations & building architecture on CE.
- Study dissimilar features in CE during w/ and w/o load.
- Study effect on CE of a single SMPS(EUT) for different loads.
- Analyze features and unique aspects in CM CE and DM CE for different electrical loads.
- Analyze response of EMI (constructive/destructive interference) w/o LISN.
- Analyze low freq. disturbances due to different loads.
- Try to differentiate among appliances with dual switching sections (i.e. PFC section and DC-DC convertor section).

*CE Conducted EMI *CM Common mode *DM Differential mode

Experimental Setup-1

Experimental Setup-2

Proposed Setup-1 (To study HF disturbances)

Proposed Setup-2 (To study LF disturbances)

Power Supply Classification By SMPS Topologies

Topology	Applications	Power	Benefits	Negative aspects
Flyback	Cellphone chargers (<10W) Notebook adapters (<100W) CRT Power supplies (<150W)	<150W	Ease of implementation Well-Documented convertor. Operates on wide mains Large controller offer	High Peak currents Leakage inductance difficult to manage
Single switch forward	ATX power supplies (<250W) DC-DC convertors for telecom	<300W	Good cross regulation with coupled inductors. Good EMI signature. Low AC content, low conduction losses	Stress on power MOSFET. Difficult to operate on wide mains. Requires transformer reset. Duty cycle clamped to 50%
Two-Switch forward	ATX power supply (<500W) DC-DC convertor Telecom Servers(<500W)	100- 500W	Good cross regulation with coupled inductors. Good EMI signature. MOSFET stress clamped to Vin	Difficult to operate on wide mains. Requires transformer reset. Duty cycle clamped to 50% Requires high side drive.

Topology	Applications	Power	Benefits	Negative aspects
Half-Bridge	ATX power supply (<500W) DC-DC convertor Telecom Servers(<500W)	100- 500W	Good cross regulation with coupled inductors. Good EMI signature. MOSFET stress clamped to Vin. Duty cycle <100%	Difficult to operate on wide mains. Requires high side drive. Cannot easily work with current mode.
Half-Bridge LLC	Medical power supplies LCD or plasma TV	<500W	Excellent EMI signature Can work in no load. Smooth waveforms, zero voltage switching (ZVS) possible.	High side drive Large RMS current Narrow mains operation. Dangerous short circuit.
Full bridge	Server and mainframe power supplies. High power DC-DC convertors for telecom.	>500W	Good cross regulation with coupled inductors. Resonant operation via phase shift. Good EMI signature. MOSFET stress clamped to Vin. Duty cycle <100%	Difficult to operate on wide mains. Requires two high side drive circuits. Four MOSFETs to drive.
Push-Pull	DC-DC convertors	<200W	MOSFETs control is ground referenced Duty cycle <100%	Voltage stress of 2Vin Center-tapped primary.

Source: Appendix1C(Pg-93) Switched Mode power supplies by Christophe P. Basso

Current Status

- Prepared PCB for HPF ver1.1 going to test it on 08-2-2014 with Low amplitude High freq. signals to observe freq. response on Signal analyzer.
- Second test will be with 230VAC in controlled environment, initially with DSO then with Signal analyzer.
- Preparing NILM survey to figure out what all approaches are currently being used to disaggregate appliance level information/appliance states.
- Improving upon appliance classification list to motivate my current research problem.

•

Survey of NILM Papers (Not yet completed)

Will update by Sunday (9-2-2014)