The algorithmic Search for the optimal Number of Imputations

Gedeon Alexander Vogt

27.03.2023

Outline

- Multiple Imputation: An Introduction
- 2 Properties of Multiple Imputation
- 3 The iterative Multiple Imputation Procedure
- 4 Simulation Study

Outline

- Multiple Imputation: An Introduction
- 2 Properties of Multiple Imputation
- 3 The iterative Multiple Imputation Procedure
- 4 Simulation Study

The Problem

The Problem

Possible Solutions

(i) Drop rows containing NAs

Possible Solutions

- (i) Drop rows containing NAs
- (ii) Single imputation

Possible Solutions

- (i) Drop rows containing NAs
- (ii) Single imputation
- (iii) Multiple imputation

Possible Solutions - Drop Rows containing NAs

Possible Solutions - Drop Rows containing NAs

Possible Solutions – Single Imputation

Possible Solutions – Multiple Imputation

+ standard complete-data procedures are applicable again

- + standard complete-data procedures are applicable again
- + the 'most natural way to display [...] sensitivity' (Rubin, 1978)

- + standard complete-data procedures are applicable again
- + the 'most natural way to display [...] sensitivity' (Rubin, 1978)
- + easy to implement

- + standard complete-data procedures are applicable again
- + the 'most natural way to display [...] sensitivity' (Rubin, 1978)
- + easy to implement
- the knowledge of the data collector that goes into the process of creating appropriate imputes

- + standard complete-data procedures are applicable again
- + the 'most natural way to display [...] sensitivity' (Rubin, 1978)
- + easy to implement
- + the knowledge of the data collector that goes into the process of creating appropriate imputes
- increased running time

Outline

- Multiple Imputation: An Introduction
- Properties of Multiple Imputation
- 3 The iterative Multiple Imputation Procedure
- 4 Simulation Study

Prior- & Posterior Distribution

$$\pi(\vartheta|Y_{obs}, D) \equiv \pi(\vartheta|Y_{obs}) = constant \times \pi(\vartheta) \times f(Y_{obs}|\vartheta)$$

Expected Value & Variance

3.3 Proposition: (Approximated Expected Value and Variance)

The expected values of ϑ can be approximated as

$$E_{\vartheta}(\vartheta|Y_{obs}) \approx \bar{\vartheta},$$

where $\bar{\vartheta}$ is the corresponding MI estimator.

Expected Value & Variance

3.3 Proposition: (Approximated Expected Value and Variance)

The expected values of ϑ can be approximated as

$$E_{\vartheta}(\vartheta|Y_{obs}) \approx \bar{\vartheta},$$

where $\bar{\vartheta}$ is the corresponding MI estimator. Similarly we can approximate

$$extstyle extstyle Var_{artheta}(artheta|Y_{obs}) pprox rac{1}{D} \sum_{d=1}^{D} extstyle Var_{artheta}(artheta|Y_{mis}^{(d)},Y_{obs}) + rac{1}{D-1} \sum_{d=1}^{D} [E_{artheta}(artheta|Y_{mis}^{(d)},Y_{obs}) - ar{artheta}]^2.$$

Within- and Between Variability

3.4 Definition: (Within- and Between Variability)

The summands of Prop. (3.3) can be denoted as

$$\hat{W} := \frac{1}{D} \sum_{d=1}^{D} Var_{\vartheta}(\vartheta|Y_{mis}^{(d)}, Y_{obs})$$

$$\hat{B} := \frac{1}{D-1} \sum_{d=1}^{D} [E_{\vartheta}(\vartheta | Y_{mis}^{(d)}, Y_{obs}) - \bar{\vartheta}]^2 = \frac{1}{D-1} \sum_{d=1}^{D} (\hat{\vartheta}_d - \bar{\vartheta})^2.$$

Asymptotic Distribution and finite Imputations Correction

3.5 Corollary:

Let $(\hat{\vartheta}_{(d)})_{n\in\mathbb{N}}$ be a sequence of random variables, that are i.i.d. with $\sigma^2 = Var(\hat{\vartheta}_{(1)}) = \hat{B} + \hat{W} < \infty$ and $\mu = E(\hat{\vartheta}_{(1)}) = \vartheta$. If $\hat{\vartheta}_{(d)}$ is a random vector and $\hat{\vartheta}_{(1)}, \hat{\vartheta}_{(2)}, \hat{\vartheta}_{(3)}, \dots$ i.i.d., then for $D \longrightarrow \infty$, $\bar{\vartheta}$ is distributed as:

$$\bar{\vartheta}^{\mathsf{as}} \mathcal{N}(\vartheta, \hat{B} + \hat{W}).$$

Asymptotic Distribution and finite Imputations Correction

3.6 Proposition: (Total Variance for finite D)

The total variance for finite D can be written as

$$\hat{V}_D := (1 + D^{-1}) \hat{B} + \hat{W}.$$

For $D \longrightarrow \infty$ we get $\hat{V} := \hat{B} + \hat{W}$.

The algorithmic Search for the optimal Number of Imputations

Outline

- Multiple Imputation: An Introduction
- Properties of Multiple Imputation
- 3 The iterative Multiple Imputation Procedure
- 4 Simulation Study

The Algorithm

- 1. **Start.** Select an initial number of imputed datasets, D_0 , $\bar{\vartheta}_{D_0} = \sum_{i=1}^{D_0} \hat{\vartheta}_i/D_0$
- 2. **Update.** For $D > D_0$,

$$\bar{\vartheta}_{D+1} = \frac{D\,\bar{\vartheta}_D + \hat{\vartheta}_{D+1}}{D+1}$$

- 3. **Distance.** Compute: $d_{D+1} = d(\bar{\vartheta}_{D+1}, \bar{\vartheta}_D)$ using an appropriate distance.
- 4. Stopping rule. $d_j < \varepsilon$ for $j = D + 1, ..., D + k_0$

(Nassiri et al., 2020)

Outline

- Multiple Imputation: An Introduction
- 2 Properties of Multiple Imputation
- 3 The iterative Multiple Imputation Procedure
- Simulation Study

Simulation Set Up

Settings:

- *n*-dimensional random vector: $\mathbf{Y}_i \sim N(\mu \mathbf{1}_n, \sigma^2 I_n + \tau J_n)$
- 100 random draws
- create missing data with mice
- create imputed data sets with Amelia
- variate the following parameters: Missing data percentage, ϱ , ε , k_0

Simulation Set Up

Settings:

- *n*-dimensional random vector: $\mathbf{Y}_i \sim N(\mu \mathbf{1}_n, \sigma^2 I_n + \tau J_n)$
- 100 random draws
- create missing data with mice
- create imputed data sets with Amelia
- variate the following parameters: Missing data percentage, ϱ , ε , k_0

The Models:

(i) Compound-Symmetry (estimated parameters: μ , σ^2 , τ)

Simulation Set Up

Settings:

- *n*-dimensional random vector: $\mathbf{Y}_i \sim N(\mu \mathbf{1}_n, \sigma^2 I_n + \tau J_n)$
- 100 random draws
- create missing data with mice
- create imputed data sets with Amelia
- variate the following parameters: Missing data percentage, ϱ , ε , k_0

The Models:

- (i) Compound-Symmetry (estimated parameters: μ , σ^2 , τ)
- (ii) Logistic Regression (estimated parameters: β_1 , β_2 , β_3)

Simulation Results

Figure: Convergence rates of the distances for CS and Logreg for $\sigma^2 = 0.25$, $\rho = 0.1$, $k_0 = 5$ and $\beta = (0.2, -2, 0.5)^T$.

Simulation Results

$k_0 = 1$								
Model	ρ	ε	Mean	SD	$\mu(\beta_1)$ MAD	$\sigma^2(\beta_2)$ MAD	$\tau(\beta_3)$ MAD	
CS-10%	0.1	0.005	25.55	10.11	0.02	0.02	0.01	
		0.05	4.98	1.66	0.02	0.01	0.01	
	0.9	0.005	12.86	4.79	0.14	0.02	0.29	
		0.05	3.7	1.01	0.12	0.01	0.26	
CS-70%	0.1	0.005	53.58	16.97	0.03	0.02	0.01	
		0.05	10.28	3.52	0.03	0.02	0.01	
	0.9	0.005	25.42	9.33	0.13	0.01	0.26	
		0.05	5.72	2.49	0.12	0.02	0.25	
Logreg- 10%	0.1	0.005	22.57	9.01	0.11	0.14	0.06	
		0.05	4.82	1.6	0.10	0.13	0.05	
	0.9	0.005	22.16	9.26	0.11	0.15	0.11	
		0.05	4.93	1.79	0.1	0.16	0.11	
Logreg- 70%	0.1	0.005	22.21	8.57	0.1	0.14	0.06	
		0.05	4.91	1.46	0.1	0.15	0.05	
	0.9	0.005	24.45	9.92	0.1	0.17	0.11	
		0.05	4.65	1.48	0.1	0.15	0.11	

(a) Validation	steps:	k_0	=	1
----	--------------	--------	-------	---	---

$k_0 = 5$							
Model	ρ	ε	Mean	SD	$\mu(\beta_1)$ MAD	$\sigma^2(\beta_2)$ MAD	$\tau(\beta_3)$ MAD
CS-10%	0.1	0.005	65.36	19.83	0.02	0.01	0.01
		0.05	7.73	2.67	0.02	0.01	0.01
	0.9	0.005	42.42	17.87	0.12	0.01	0.29
	0.5	0.05	5.36	2.43	0.12	0.01 (0.23
	0.1	0.005	152.23	27.11	0.02	0.01	0.01
CS-70%		0.05	19.06	4.47	0.02	0.01	0.01
C3-1076	0.9	0.005	91.55	26.09	0.11	0.02	0.24
	0.5	0.05	12.94	4.85 0.12	0.01	0.28	
Logreg- 10%	0.1	0.005	57.61	18.04	0.1	0.14	0.06
		0.05	6.52	2.42	0.1	0.12	0.06
	0.9	0.005	57.88	20.02	0.11	0.14	0.1
	0.3	0.05	7.56	3.43		0.12	
Logreg- 70%	0.1	0.005	60.93	17.99	0.1	0.14	0.05
		0.05	7.04	2.94	0.11	0.14	0.06
	0.9	0.005	60.7	22.02	0.11	0.16	0.11
	0.9	0.05	7.49	2.85	0.11	0.15	0.1

(b) Validation steps: $k_0 = 5$

Figure: Mean, SD and their mean absolute deviation from the true parameter (β_i corresponds to the Logreg model and μ , σ^2 , τ the CS model) for selected D given $\sigma^2=0.25$ and different values for ε and ϱ using the Mahalanobis distance with $S=\hat{V}$.

Thank you for your attention!

References

- Hermans, L., Nassiri, V., Molenberghs, G., Kenward, M. G., Van der Elst, W., Aerts, M., Verbeke, G. (2019). Clusters with unequal Size: Maximum Likelihood versus weighted Estimation in large Samples. Statistica Sinica (forthcoming).
- Hosmer, D. W. (2013). *Applied Logistic Regression* (3rd ed.), John Wiley & Sons, New York.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An introduction to statistical learning* (2nd ed.), Springer, New York.
- Nassiri, V., Molenberghs, G., Verbeke, G., Barbosa-Breda, J. (2020). *Iterative Multiple Imputation: A Framework to Determine the Number of Imputed Datasets*. The American Statistician 74, 125-136.

References

- Rubin, D. B. (1978). *Multiple Imputations in Sample Surveys—A Phenomenological Bayesian Approach to Nonresponse*. Proceedings of the Survey Research Methods Section of the American Statistical Association 1. American Statistical Association. 20–34
- Rubin, D. B. (1987). *Multiple Imputation for Nonresponse in Surveys*, John Wiley & Sons, New York.
- Rubin, D. B., Little, R. (2002). Statistical Analysis with Missing Data (2nd ed.), John Wiley & Sons, New York.