Mathematics For Computing Sigma Notation

www.Stats-Lab.com

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

- (a) Express s_n using \sum notation.
- (b) Calculate s₁, s₂ and s₃.
- (c) Find a recurrence relation which expresses s_{n+1} in terms of s_n .

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(a) Express s_n using \sum notation.

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(a) Express s_n using \sum notation.

$$s_n = \sum_{i=1}^n (2i-1).$$

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(b) Calculate s_1 , s_2 and s_3 .

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(b) Calculate s_1 , s_2 and s_3 .

(b)
$$s_1 = 1$$
, $s_2 = 4$, $s_3 = 9$,

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(c) Find a recurrence relation which expresses s_{n+1} in terms of s_n .

Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

(c) Find a recurrence relation which expresses s_{n+1} in terms of s_n .

(c)
$$s_{n+1} = s_n + (2n+1)$$