

Model Development Phase Template

Date	22 April 2024	
Team ID	Team-738178	
Project Title	Envisioning Success : Predicting University Scores With Machine Learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Prediction and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model performance evaluation report will include Performance reports, Mean Squared Error, and Comparison between Actual and Predicted Values for multiple models, presented through respective screenshots.

Initial Model Training Code:

Linear Regression:

```
[77] linReg = LinearRegression()
    linReg.fit(X_train, y_train)
    y_pred_lr= linReg.predict(X_test)
```

Lasso Regression:

```
[78] lassoReg = linear_model.Lasso(alpha=0.1)
    lassoReg.fit(X, y)
    y_pred_lasso = lassoReg.predict(X_test)
```


Support Vector Regression(SVR):

```
[79] svr = SVR().fit(X, y)
     y_pred_svr=svr.predict(X_test)
```

Random Forest:

```
[81] rf = RandomForestRegressor(n_estimators=100, random_state=0)
    rf.fit(X, y)
    y_pred_rf = rf.predict(X_test)
```

Decision Tree:

```
[80] dt = DecisionTreeRegressor(random_state = 0)
    dt.fit(X, y)
    y_pred_dt = dt.predict(X_test)
```


Model Prediction and Evaluation Report:

Model	Performance Report	MSE	Comparison between Actual and Predicted Values
Lasso Regression	# Printing results print("Prediction Evaluation using Lasso Regression:") print("MAE:", lasso_mae) print("MSE:", lasso_mse) print("RMSE:", lasso_rmse) print("R-squared:", lasso_r2) print("\n") Prediction Evaluation using Lasso Regression: MAE: 2.6604781238340274 MSE: 28.893569757635724 RMSE: 5.3752739239629195 R-squared: 0.4635298370613741	28.89	# Printing actual and predicted values print("Actual value:", y_actual) print("Predicted value:", y_pred_lasso[0]) Actual value: 100 Predicted value: 62.96954350809409
Linear Regression	# Printing results print("Prediction Evaluation using Linear Regression:") print("MAE:", lr_mae) print("MSE:", lr_mse) print("RMSE:", lr_rmse) print("R-squared:", lr_r2) print("N") Prediction Evaluation using Linear Regression: MAE: 2.6657340636132827 MSE: 28.917809410716295 RMSE: 5.377528187812342 R-squared: 0.4630797766933825	28.92	<pre># Printing actual and predicted values print("Actual value:", y_actual) print("Predicted value:", y_pred_lr[0]) Actual value: 100 Predicted value: [63.33166471]</pre>
SVR	<pre># Printing results print("Prediction Evaluation using SVR:") print("MAE:", svr_mae) print("MSE:", svr_mse) print("RMSE:", svr_rmse) print("R-squared:", svr_r2) print("\n") Prediction Evaluation using SVR: MAE: 1.7292341972937126 MSE: 26.883723937063873 RMSE: 5.184951681266073 R-squared: 0.50084687070893</pre>	26.88	# Printing actual and predicted values print("Actual value:", y_actual) print("Predicted value:", y_pred_svr[0]) Actual value: 100 Predicted value: 60.02460149545989
Random Forest	# Printing results print("Prediction Evaluation using Random Forest:") print("MAE:", rf_mae) print("MSE:", rf_mse) print("RMSE:", rf_rmse) print("R-squared:", rf_r2) print("\n") Prediction Evaluation using Random Forest: MAE: 0.5947518939393951 MSE: 1.6870365632197004 RMSE: 1.2988597165281939 R-squared: 0.9686766021801541	1.69	<pre># Printing actual and predicted values print("Actual value:", y_actual) print("Predicted value:", y_pred_rf[0]) Actual value: 100 Predicted value: 99.42905833333333</pre>

Decision Tree

Printing results
print("Prediction Evaluation using Decision Tree:")
print("MAE:", dt_mae)
print("MSE:", dt_mse)
print("RMSE:", dt_rmse)
print("R-squared:", dt_r2)

Prediction Evaluation using Decision Tree: MAE: 0.7953636363636363 MSE: 3.165202727272727 RMSE: 1.7791016629953238 R-squared: 0.941231324579233

3.16

Printing actual and predicted values
print("Actual value:", y_actual)
print("Predicted value:", y_pred_dt[0])

Actual value: 100 Predicted value: 100.0