Variational Quantum Algorithms

Sankalp Mittal

January 2025

Outline

- Introduction
- 2 Details
- Variational Quantum Eigensolver (VQE)
- Quantum Approximate Optimization Algorithms (QAOA)
- Conclusion

Introduction

Variational Quantum Algorithms

Variational Quantum Algorithms (VQA) are a class of *hybrid* Quantum and Classical algorithms that are designed to take advantage of the computational power of Quantum Algorithms and using Classical algorithms for optimization.

Why Use VQA

NISQ

VQA are particularly well suited for Noisy Intermediate-Scale Quantum (NISQ) devices. This is due to

- iterative nature
- short depth quantum circuits

We can reduce both the *shot noise* and *statistical error* by more measurements. While we reduce the NISQ error by *error mitigation*

How do these work

Implementation

ullet A parameterized circuit $\mathcal{U}(heta)$ is used for preparing,

$$|\Psi(\theta)\rangle = \mathcal{U}(\theta)|0\rangle$$

• This is used to measure the expectation value of an **observable** O

$$\mathcal{L}(\theta) = \langle \psi(\theta) | O | \psi(\theta) \rangle$$

How do these work

Implementation

- ullet The classical optimizer updates heta to minimize the objective function
- Because we are using a finite number of measurements (N) to estimate the expectation value

$$\mathcal{L}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \langle \psi(\theta) | |x_i \rangle \langle x_i | O | \psi(\theta) \rangle$$

$$=\frac{1}{N}\sum_{i=1}^{N}|\langle x_{i}|\psi(\theta)\rangle|^{2}\frac{\langle x_{i}|O|\psi(\theta)\rangle}{\langle x_{i}|\psi(\theta)\rangle}$$

How do these work

Errors

- The measurement can be made to an arbitrary error probability ϵ after $N\sim 1/\epsilon^2$ measurements. This is due to the *central limit theorem*
- Another error is the approximation error this is due to the approximation of the parameters and the optimization step aims to reduce this. We can reduce this error by using a more expressive ansatz

Motivation

This is a method to compute the ground state energy of quantum systems. This uses the fact that for any trail state $|\psi(\theta)\rangle$ the expectation value of the Hamiltonian \hat{H} can be used to upper bound the ground state energy. We optimize the value of θ iteratively to approximate the ground state.

Ansatz

The efficiency of the algorithm depends a lot on the choice of the **ansatz**. There are two broad categories

- Hardware Efficient: These are tailored to the native gate set and connectivity of the quantum hardware
- Physically Motivated: These are created based on the specific physical specifications of the problem

Parameter Otimization

The parameters are optimized using the following method

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla E(\theta^{(k)})$$

- ullet η is the learning rate
- $\nabla E(\theta^{(k)})$ is the gradient of the enery w.r.t. the parameters

Parameter Otimization

To calculate the gradient we use method of parameter-shift

$$\frac{\partial E}{\partial \theta} = \frac{1}{2} \left[E(\theta + \frac{\pi}{2}) - \left[E(\theta - \frac{\pi}{2}) \right] \right]$$

The difference in not a small quantity due to the dependence of the ansatz on trignometric functions

H-H Dissociation

The H_2 dissociation process can be simulated using a quantum computer. Here is a version using a **6 qubit ansatz**

H-H Dissociation

The optimization process can be represented as the value of energy as the number of iteration increases

H-H Dissociation

The following is a graph obtained from three different simulation methods.

- Hartree-Fock (HF)
- Full Configuration Interaction (FCI)
- VQE

Measurement with Noise Models

Using the noise model *ibm brisbane* the following optimization graph was observed

Measurement with Noise Models

Motivation

QAOA is a VQA that is used to solve *combinatorial optimization problems* (COPs). A general class of COP is the *boolean satisfiability problem* (SAT). This is helpful as most optimization problems can be **reduced to SAT** because it is NP-complete.

The Hamiltonian

NP complete problems can be mapped to a **classical** Hamiltonian called **Ising spin glass (ISG)** Hamiltonian.

$$H(s_1, s_2, \dots, s_N) = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i=1}^N h_i s_i$$

 $s_j=\pm 1$, the task of finding the ground state is known to be *NP-hard*

The Hamiltonian

We now use $Quantum\ Adiabatic\ Optimization\ (QAO)$. Consider H as a quantum hamiltonian.

$$H_p = -\sum_{i < j} J_{ij} Z_i Z_j - \sum_{i=1}^N h_i Z_i$$

Introduce another hamiltonian,

$$H_0 = -h_0 \sum_{i=1}^N X_i$$

Each X_i has eigenstates $|+\rangle$, $|-\rangle$, hence the lowest energy state is $|+\rangle^{\otimes N}$

The Hamiltonian

Define the time dependent hamiltonian

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p$$

- ullet The idea is to prepare a system in the state $|+\rangle^{\otimes N}$ at t=0
- set T to be large enough so that dynamics is slow enough and the system stays adiabatically in the ground state
- ullet system finally ends up in the ground state of H_p

Adiabatic Evolution

The issue with adiabatic evolution is that

$$\| |\psi(T)\rangle - |\psi_0\rangle \| \lesssim \frac{\langle H \rangle}{T\Delta^2}$$

- Δ is the minimal gap = $E_1 E_0$ and it can decrease exponentially to 0 for systems of increasing size so we need T extremely long.
- another issue is that any time-dependent term in the Hamiltonian implies a loss of energy which violates the adiabatic criterion

Diabatic Evolution

A better solution is diabatic non-uniform time evolution

$$H(t) = (1 - f(t))H_0 + f(t)H_C$$

where
$$f(0) = 0, f(T) = 1$$

Diabatic Evolution

We can parameterize the function f(t) using many parameters(ξ) and run the time evolution several times adjusting the parameters each time, so as to minimize the expectation value of the energy.

$$\mathcal{E} = \langle \psi(T) | H_c | \psi(T) \rangle$$

This results in dramatic improvements in the value of ${\mathcal T}$ needed to achieve convergence.

Gradient Descent

$$\vec{\xi}_{n+1} = \vec{\xi}_n - \eta \nabla \mathcal{E}(\vec{\xi})|_{\vec{\xi} = \vec{\xi}_n}$$

This approach is really accurate, but this requires estimating the gradient which is not possible analytically. Therefore we use gradient-less methods like

- Nelder-Mead method
- Simplex method
- COBYLA Optimizer
- Grid Search (Shallow Circuits)

Max-Cut Problem

The following instance of the Max-Cut Problem has been evaluated.

Max-Cut Problem

I use a **depth 1** circuit. This is parameterised by $\gamma=0.603$ and $\beta=2.793$. Which are optimized using **Grid Search**

Max-Cut Problem

The following distribution of solutions with respect to cost is obtained. The approximate solution is $x^* = \{2, 3, 5\}, \{0, 1, 4\} (001101)$ with $C(x^*) = 6$

Measurement with Noise Models

Using the noise model *ibm brisbane* the parameters obtained from grid search were $\gamma=0.698$ and $\beta=2.793$

Conclusion

Solutions by VQA's

- The solutions obtained are extremely close to the actual solutions
- The amount of quantum gates used are low and shallow depth

Conclusion

Dealing with Noise

- VQE instance was not good at handling noise and the outputs diverge a lot
 - This may be due to gradient descent algorithm not executing enough steps
- QAOA instance implemented was really good at handling noise
 - We already found the best parameters for the problem by grid search