S1 Text

Block Coordinate Descent Algorithm

Model Set-up

Let $i=1,\ldots,N$ be a grouping index, $j=1,\ldots,n_i$ the observation index within a group and $N_T=\sum_{i=1}^N n_i$ the total number of observations. For each group let $\boldsymbol{y}_i=(y_1,\ldots,y_{n_i})$ be the observed vector of responses or phenotypes, \mathbf{X}_i an $n_i\times(p+1)$ design matrix (with the column of 1s for the intercept), \boldsymbol{b}_i a group-specific random effect vector of length n_i and $\boldsymbol{\varepsilon}_i=(\varepsilon_{i1},\ldots,\varepsilon_{in_i})$ the individual error terms. Denote the stacked vectors $\mathbf{Y}=(\boldsymbol{y}_i,\ldots,\boldsymbol{y}_N)^T\in\mathbb{R}^{N_T\times 1},\ \boldsymbol{b}=(\boldsymbol{b}_i,\ldots,\boldsymbol{b}_N)^T\in\mathbb{R}^{N_T\times 1},\ \boldsymbol{\varepsilon}=(\varepsilon_i,\ldots,\varepsilon_N)^T\in\mathbb{R}^{N_T\times 1},\ \text{and the stacked matrix }\mathbf{X}=(\mathbf{X}_1^T,\ldots,\mathbf{X}_N^T)\in\mathbb{R}^{N_T\times(p+1)}.$ Furthermore, let $\boldsymbol{\beta}=(\beta_0,\beta_1,\ldots,\beta_p)^T\in\mathbb{R}^{(p+1)\times 1}$ be a vector of fixed effects regression coefficients corresponding to \mathbf{X} . We consider the following linear mixed model with a single random effect [1]:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{b} + \boldsymbol{\varepsilon} \tag{1}$$

where the random effect b and the error variance ε are assigned the distributions

$$\boldsymbol{b} \sim \mathcal{N}(0, \eta \sigma^2 \boldsymbol{\Phi}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, (1 - \eta) \sigma^2 \mathbf{I})$$
 (2)

Here, $\Phi_{N_T \times N_T}$ is a known positive semi-definite and symmetric covariance or kinship matrix calculated from SNPs sampled across the genome, $\mathbf{I}_{N_T \times N_T}$ is the identity matrix and parameters σ^2 and $\eta \in [0,1]$ determine how the variance is divided between \boldsymbol{b} and $\boldsymbol{\varepsilon}$. Note that η is also the narrow-sense heritability (h^2) , defined as the proportion of phenotypic variance attributable to the additive genetic factors [2]. The joint density of \mathbf{Y} is therefore

multivariate normal:

$$\mathbf{Y}|(\boldsymbol{\beta}, \eta, \sigma^2) \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \eta\sigma^2\boldsymbol{\Phi} + (1 - \eta)\sigma^2\mathbf{I})$$
 (3)

We consider the parameterization in (3) since maximization is easier over the compact set $\eta \in [0, 1]$ than over the unbounded interval $\delta \in [0, \infty)$ [1]. We define the complete parameter vector as $\boldsymbol{\Theta} := (\boldsymbol{\beta}, \eta, \sigma^2)$. The negative log-likelihood for (3) is given by

$$-\ell(\mathbf{\Theta}) \propto \frac{N_T}{2} \log(\sigma^2) + \frac{1}{2} \log(\det(\mathbf{V})) + \frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
(4)

where $\mathbf{V} = \eta \mathbf{\Phi} + (1 - \eta)\mathbf{I}$ and $\det(\mathbf{V})$ is the determinant of \mathbf{V} . Let $\mathbf{\Phi} = \mathbf{U}\mathbf{D}\mathbf{U}^T$ be the eigen (spectral) decomposition of the kinship matrix $\mathbf{\Phi}$, where $\mathbf{U}_{N_T \times N_T}$ is an orthonormal matrix of eigenvectors (i.e. $\mathbf{U}\mathbf{U}^T = \mathbf{I}$) and $\mathbf{D}_{N_T \times N_T}$ is a diagonal matrix of eigenvalues Λ_i . In the main text we show that \mathbf{V} can then be further simplified to

$$\mathbf{V} = \mathbf{U}\widetilde{\mathbf{D}}\mathbf{U}^T \tag{5}$$

where

$$\widetilde{\mathbf{D}} = \text{diag} \{ 1 + \eta(\Lambda_1 - 1), 1 + \eta(\Lambda_2 - 1), \dots, 1 + \eta(\Lambda_{N_T} - 1) \}$$
(6)

Since (6) is a diagonal matrix, its inverse is also a diagonal matrix:

$$\widetilde{\mathbf{D}}^{-1} = \operatorname{diag}\left\{\frac{1}{1 + \eta(\Lambda_1 - 1)}, \frac{1}{1 + \eta(\Lambda_2 - 1)}, \dots, \frac{1}{1 + \eta(\Lambda_{N_T} - 1)}\right\}$$
(7)

From (5) and (6), $\log(\det(\mathbf{V}))$ simplifies to

$$\log(\det(\mathbf{V})) = \log\left(\det(\mathbf{U})\det\left(\widetilde{\mathbf{D}}\right)\det(\mathbf{U}^T)\right)$$

$$= \log\left\{\prod_{i=1}^{N_T} (1 + \eta(\Lambda_i - 1))\right\}$$

$$= \sum_{i=1}^{N_T} \log(1 + \eta(\Lambda_i - 1))$$
(8)

since $det(\mathbf{U}) = 1$. It also follows from (5) that

$$\mathbf{V}^{-1} = \left(\mathbf{U}\widetilde{\mathbf{D}}\mathbf{U}^{T}\right)^{-1}$$

$$= \left(\mathbf{U}^{T}\right)^{-1} \left(\widetilde{\mathbf{D}}\right)^{-1} \mathbf{U}^{-1}$$

$$= \mathbf{U}\widetilde{\mathbf{D}}^{-1} \mathbf{U}^{T}$$
(9)

since for an orthonormal matrix $\mathbf{U}^{-1} = \mathbf{U}^{T}$. Substituting (7), (8) and (9) into (4) the negative log-likelihood becomes

$$-\ell(\mathbf{\Theta}) = \frac{N_T}{2}\log(\sigma^2) + \frac{1}{2}\sum_{i=1}^{N_T}\log(1+\eta(\Lambda_i-1)) + \frac{1}{2\sigma^2}\sum_{i=1}^{N_T} \frac{\left(\widetilde{Y}_i - \sum_{j=0}^p \widetilde{X}_{ij+1}\beta_j\right)^2}{1+\eta(\Lambda_i-1)}$$
(10)

where $\widetilde{\mathbf{Y}} = \mathbf{U}^T \mathbf{Y}$, $\widetilde{\mathbf{X}} = \mathbf{U}^T \mathbf{X}$, \widetilde{Y}_i denotes the i^{th} element of $\widetilde{\mathbf{Y}}$, \widetilde{X}_{ij} is the i, j^{th} entry of $\widetilde{\mathbf{X}}$ and $\mathbf{1}$ is a column vector of N_T ones.

Penalized Maximum Likelihood Estimator

We define the p+3 length vector of parameters $\mathbf{\Theta} := (\Theta_0, \Theta_1, \dots, \Theta_{p+1}, \Theta_{p+2}, \Theta_{p+3}) = (\boldsymbol{\beta}, \eta, \sigma^2)$ where $\boldsymbol{\beta} \in \mathbb{R}^{p+1}, \eta \in [0, 1], \sigma^2 > 0$. In what follows, p+2 and p+3 are the indices in $\mathbf{\Theta}$ for η and σ^2 , respectively. In light of our goals to select variables associated with the response in high-dimensional data, we propose to place a constraint on the magnitude of the regression coefficients. This can be achieved by adding a penalty term to the likelihood

function (10). The penalty term is a necessary constraint because in our applications, the sample size is much smaller than the number of predictors. We define the following objective function:

$$Q_{\lambda}(\mathbf{\Theta}) = f(\mathbf{\Theta}) + \lambda \sum_{j \neq 0} v_j P_j(\beta_j)$$
(11)

where $f(\mathbf{\Theta}) := -\ell(\mathbf{\Theta})$ is defined in (10), $P_j(\cdot)$ is a penalty term on the fixed regression coefficients $\beta_1, \ldots, \beta_{p+1}$ (we do not penalize the intercept) controlled by the nonnegative regularization parameter λ , and v_j is the penalty factor for jth covariate. These penalty factors serve as a way of allowing parameters to be penalized differently. Note that we do not penalize η or σ^2 . An estimate of the regression parameters $\widehat{\mathbf{\Theta}}_{\lambda}$ is obtained by

$$\widehat{\mathbf{\Theta}}_{\lambda} = \operatorname*{arg\,min}_{\mathbf{\Theta}} Q_{\lambda}(\mathbf{\Theta}) \tag{12}$$

We use a general purpose block coordinate descent algorithm (CGD) [3] to solve (12). At each iteration, the algorithm approximates the negative log-likelihood $f(\cdot)$ in $Q_{\lambda}(\cdot)$ by a strictly convex quadratic function and then applies block coordinate decent to generate a decent direction followed by an inexact line search along this direction [3]. For continuously differentiable $f(\cdot)$ and convex and block-separable $P(\cdot)$ (i.e. $P(\beta) = \sum_i P_i(\beta_i)$), [3] show that the solution generated by the CGD method is a stationary point of $Q_{\lambda}(\cdot)$ if the coordinates are updated in a Gauss-Seidel manner i.e. $Q_{\lambda}(\cdot)$ is minimized with respect to one parameter while holding all others fixed. The CGD algorithm can thus be run in parallel and therefore suited for large p settings. It has been successfully applied in fixed effects models (e.g. [4], [5]) and [6] for mixed models with an ℓ_1 penalty. Following Tseng and Yun [3], the CGD algorithm is given by Algorithm 1.

Algorithm 1: Coordinate Gradient Descent Algorithm to solve (12)

Set the iteration counter $k \leftarrow 0$ and choose initial values for the parameter vector $\mathbf{\Theta}^{(0)}$;

repeat

Approximate the Hessian $\nabla^2 f(\mathbf{\Theta}^{(k)})$ by a symmetric matrix $H^{(k)}$:

$$H^{(k)} = \operatorname{diag}\left[\min\left\{\max\left\{\left[\nabla^2 f(\mathbf{\Theta}^{(k)})\right]_{jj}, c_{min}\right\} c_{max}\right\}\right]_{j=1,\dots,n}$$
(13)

for
$$j = 1, \ldots, p$$
 do

Solve the descent direction
$$d^{(k)} := d_{H^{(k)}}(\Theta_j^{(k)})$$
;
if $\Theta_j^{(k)} \in \{\beta_1, \dots, \beta_p\}$ then
$$d_{H^{(k)}}(\Theta_j^{(k)}) \leftarrow \arg\min_{d} \left\{ \nabla f(\Theta_j^{(k)}) d + \frac{1}{2} d^2 H_{jj}^{(k)} + \lambda P(\Theta_j^{(k)} + d) \right\}$$
(14)

end

end

Choose a stepsize;

 $\alpha_i^{(k)} \leftarrow \text{line search given by the Armijo rule}$

Update;

$$\widehat{\Theta}_{j}^{(k+1)} \leftarrow \widehat{\Theta}_{j}^{(k)} + \alpha_{j}^{(k)} d^{(k)}$$

Update;

$$\widehat{\eta}^{(k+1)} \leftarrow \arg\min_{\eta} \frac{1}{2} \sum_{i=1}^{N_T} \log(1 + \eta(\Lambda_i - 1)) + \frac{1}{2\sigma^{2(k)}} \sum_{i=1}^{N_T} \frac{\left(\widetilde{Y}_i - \sum_{j=0}^p \widetilde{X}_{ij+1} \beta_j^{(k+1)}\right)^2}{1 + \eta(\Lambda_i - 1)}$$
(15)

Update;

$$\widehat{\sigma}^{2} \stackrel{(k+1)}{\leftarrow} \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} \frac{\left(\widetilde{Y}_{i} - \sum_{j=0}^{p} \widetilde{X}_{ij+1} \beta_{j}^{(k+1)}\right)^{2}}{1 + \eta^{(k+1)} (\Lambda_{i} - 1)}$$
(16)

 $k \leftarrow k + 1$

until convergence criterion is satisfied;

The Armijo rule is defined as follows [3]:

Choose $\alpha_{init}^{(k)} > 0$ and let $\alpha^{(k)}$ be the largest element of $\left\{\alpha_{init}^k \delta^r\right\}_{r=0,1,2,\dots}$ satisfying

$$Q_{\lambda}(\Theta_j^{(k)} + \alpha^{(k)}d^{(k)}) \le Q_{\lambda}(\Theta_j^{(k)}) + \alpha^{(k)}\varrho\Delta^{(k)}$$
(17)

where $0 < \delta < 1, \, 0 < \varrho < 1, \, 0 \le \gamma < 1$ and

$$\Delta^{(k)} := \nabla f(\Theta_j^{(k)}) d^{(k)} + \gamma (d^{(k)})^2 H_{jj}^{(k)} + \lambda P(\Theta_j^{(k)} + d^{(k)}) - \lambda P(\Theta^{(k)})$$
 (18)

Common choices for the constants are $\delta = 0.1$, $\varrho = 0.001$, $\gamma = 0$, $\alpha_{init}^{(k)} = 1$ for all k [6].

Below we detail the specifics of Algorithm 1 for the ℓ_1 penalty.

ℓ_1 penalty

The objective function is given by

$$Q_{\lambda}(\mathbf{\Theta}) = f(\mathbf{\Theta}) + \lambda |\mathbf{\beta}| \tag{19}$$

Descent Direction

For simplicity, we remove the iteration counter (k) from the derivation below.

For
$$\Theta_j^{(k)} \in \{\beta_1, \dots, \beta_p\}$$
, let

$$d_H(\Theta_j) = \operatorname*{arg\,min}_d G(d) \tag{20}$$

where

$$G(d) = \nabla f(\Theta_j)d + \frac{1}{2}d^2H_{jj} + \lambda|\Theta_j + d|$$

Since G(d) is not differentiable at $-\Theta_j$, we calculate the subdifferential $\partial G(d)$ and search for d with $0 \in \partial G(d)$:

$$\partial G(d) = \nabla f(\Theta_j) + dH_{jj} + \lambda u \tag{21}$$

where

$$u = \begin{cases} 1 & \text{if } d > -\Theta_j \\ -1 & \text{if } d < -\Theta_j \\ [-1, 1] & \text{if } d = \Theta_j \end{cases}$$
 (22)

We consider each of the three cases in (21) below

1. $d > -\Theta_j$

$$\partial G(d) = \nabla f(\Theta_j) + dH_{jj} + \lambda = 0$$
$$d = \frac{-(\nabla f(\Theta_j) + \lambda)}{H_{jj}}$$

Since $\lambda > 0$ and $H_{jj} > 0$, we have

$$\frac{-(\nabla f(\Theta_j) - \lambda)}{H_{ij}} > \frac{-(\nabla f(\Theta_j) + \lambda)}{H_{ij}} = d \stackrel{\text{def}}{>} -\Theta_j$$

The solution can be written compactly as

$$d = \operatorname{mid} \left\{ \frac{-(\nabla f(\Theta_j) - \lambda)}{H_{ij}}, -\Theta_j, \frac{-(\nabla f(\Theta_j) + \lambda)}{H_{ij}} \right\}$$

where mid $\{a, b, c\}$ denotes the median (mid-point) of a, b, c [3].

2. $d < -\Theta_i$

$$\partial G(d) = \nabla f(\Theta_j) + dH_{jj} - \lambda = 0$$
$$d = \frac{-(\nabla f(\Theta_j) - \lambda)}{H_{ij}}$$

Since $\lambda > 0$ and $H_{jj} > 0$, we have

$$\frac{-(\nabla f(\Theta_j) + \lambda)}{H_{ij}} < \frac{-(\nabla f(\Theta_j) - \lambda)}{H_{ij}} = d \stackrel{\text{def}}{<} -\Theta_j$$

Again, the solution can be written compactly as

$$d = \operatorname{mid} \left\{ \frac{-(\nabla f(\Theta_j) - \lambda)}{H_{jj}}, -\Theta_j, \frac{-(\nabla f(\Theta_j) + \lambda)}{H_{jj}} \right\}$$

3. $d_i = -\Theta_i$

There exists $u \in [-1, 1]$ such that

$$\partial G(d) = \nabla f(\Theta_j) + dH_{jj} + \lambda u = 0$$
$$d = \frac{-(\nabla f(\Theta_j) + \lambda u)}{H_{jj}}$$

For $-1 \le u \le 1$, $\lambda > 0$ and $H_{jj} > 0$ we have

$$\frac{-(\nabla f(\Theta_j) + \lambda)}{H_{ij}} \le d \stackrel{\text{def}}{=} -\Theta_j \le \frac{-(\nabla f(\Theta_j) - \lambda)}{H_{ij}}$$

The solution can again be written compactly as

$$d = \operatorname{mid}\left\{\frac{-(\nabla f(\Theta_j) - \lambda)}{H_{jj}}, -\Theta_j, \frac{-(\nabla f(\Theta_j) + \lambda)}{H_{jj}}\right\}$$

We see all three cases lead to the same solution for (20). Therefore the descent direction for $\Theta_j^{(k)} \in \{\beta_1, \dots, \beta_p\}$ for the ℓ_1 penalty is given by

$$d = \operatorname{mid}\left\{\frac{-(\nabla f(\beta_j) - \lambda)}{H_{jj}}, -\beta_j, \frac{-(\nabla f(\beta_j) + \lambda)}{H_{jj}}\right\}$$
(23)

Solution for the β parameter

If the Hessian $\nabla^2 f(\boldsymbol{\Theta}^{(k)}) > 0$ then $H^{(k)}$ defined in (13) is equal to $\nabla^2 f(\boldsymbol{\Theta}^{(k)})$. Using $\alpha_{init} = 1$, the largest element of $\left\{\alpha_{init}^{(k)} \delta^r\right\}_{r=0,1,2,\dots}$ satisfying the Armijo Rule inequality is reached for

 $\alpha^{(k)}=\alpha^{(k)}_{init}\delta^0=1.$ The Armijo rule update for the $m{\beta}$ parameter is then given by

$$\beta_i^{(k+1)} \leftarrow \beta_i^{(k)} + d^{(k)}, \qquad j = 1, \dots, p$$
 (24)

Substituting the descent direction given by (23) into (24) we get

$$\beta_j^{(k+1)} = \operatorname{mid}\left\{\beta_j^{(k)} + \frac{-(\nabla f(\beta_j^{(k)}) - \lambda)}{H_{jj}}, 0, \beta_j^{(k)} + \frac{-(\nabla f(\beta_j^{(k)}) + \lambda)}{H_{jj}}\right\}$$
(25)

We can further simplify this expression. Let

$$w_i := \frac{1}{\sigma^2 \left(1 + \eta(\Lambda_i - 1)\right)} \tag{26}$$

.

Re-write the part depending on β of the negative log-likelihood in (10) as

$$g(\boldsymbol{\beta}^{(k)}) = \frac{1}{2} \sum_{i=1}^{N_T} w_i \left(\widetilde{Y}_i - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} - \widetilde{X}_{ij} \beta_j^{(k)} \right)^2$$
(27)

The gradient and Hessian are given by

$$\nabla f(\beta_j^{(k)}) := \frac{\partial}{\partial \beta_j^{(k)}} g(\boldsymbol{\beta}^{(k)}) = -\sum_{i=1}^{N_T} w_i \widetilde{X}_{ij} \left(\widetilde{Y}_i - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_\ell^{(k)} - \widetilde{X}_{ij} \beta_j^{(k)} \right)$$
(28)

$$H_{jj} := \frac{\partial^2}{\partial \beta_i^{(k)^2}} g(\boldsymbol{\beta}^{(k)}) = \sum_{i=1}^{N_T} w_i \widetilde{X}_{ij}^2$$
(29)

Substituting (28) and (29) into $\beta_j^{(k)} + \frac{-(\nabla f(\beta_j^{(k)}) - \lambda)}{H_{jj}}$

$$\beta_{j}^{(k)} + \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} - \widetilde{X}_{ij} \beta_{j}^{(k)} \right) + \lambda}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}}$$

$$= \beta_{j}^{(k)} + \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) + \lambda}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}} - \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2} \beta_{j}^{(k)}}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}}$$

$$= \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) + \lambda}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}}$$
(30)

Similarly, substituting (28) and (29) in $\beta_j^{(k)} + \frac{-(\nabla f(\beta_j^{(k)}) + \lambda)}{H_{ij}}$ we get

$$\frac{\sum_{i=1}^{N_T} w_i \widetilde{X}_{ij} \left(\widetilde{Y}_i - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) - \lambda}{\sum_{i=1}^{N_T} w_i \widetilde{X}_{ij}^2}$$
(31)

Finally, substituting (30) and (31) into (25) we get

$$\beta_{j}^{(k+1)} = \operatorname{mid} \left\{ \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) - \lambda}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}}, 0, \frac{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) + \lambda}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}} \right\}$$

$$= \frac{S_{\lambda} \left(\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij} \left(\widetilde{Y}_{i} - \sum_{\ell \neq j} \widetilde{X}_{i\ell} \beta_{\ell}^{(k)} \right) \right)}{\sum_{i=1}^{N_{T}} w_{i} \widetilde{X}_{ij}^{2}}$$

$$(32)$$

Where $S_{\lambda}(x)$ is the soft-thresholding operator

$$S_{\lambda}(x) = \operatorname{sign}(x)(|x| - \lambda)_{+}$$

sign(x) is the signum function

$$\operatorname{sign}(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

and $(x)_{+} = \max(x, 0)$.

References

- [1] Pirinen M, Donnelly P, Spencer CC, et al. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. The Annals of Applied Statistics. 2013;7(1):369–390. 1, 2
- [2] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747. 1
- [3] Tseng P, Yun S. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming. 2009;117(1):387–423. 4, 6, 7
- [4] Meier L, Van De Geer S, Bühlmann P. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2008;70(1):53–71. 4
- [5] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software. 2010;33(1):1. 4
- [6] Schelldorfer J, Bühlmann P, DE G, VAN S. Estimation for High-Dimensional Linear Mixed-Effects Models Using L1-Penalization. Scandinavian Journal of Statistics. 2011;38(2):197–214. 4, 6