Math 624: Homework 1

- 1. Let \mathcal{H} be a Hilbert space with scalar product (\cdot,\cdot) . By definition we say that x_n converges to x in \mathcal{H} if $\lim_{n\to\infty} \|x_n x\| = 0$. Furthermore we say that x_n converges to x weakly in \mathcal{H} if $\lim_{n\to\infty} (x_n, y) = (x, y)$ for all $y \in \mathcal{H}$.
 - (a) Show that if x_n converges to x then x_n converges to x weakly.
 - (b) By giving a counterexample, show that weak convergence does not imply convergence.
 - (c) Show that x_n converges to x in \mathcal{H} if and only if x_n converges to x weakly in \mathcal{H} and $\lim_{n\to\infty} ||x_n|| = ||x||$.
 - (d) Let $\{e_k\}$ be an orthonormal basis of \mathcal{H} . Show that x_n converges to x weakly in \mathcal{H} if and only if $\lim_{n\to\infty}(x_n,e_k)=(x_n,e_k)$ for all k.
 - (e) As we have seen in class, if $\{x_n\}$ is a sequence with $||x_n|| \leq 1$ then $\{x_n\}$ does not necessarily has a convergent subsequence (for example take $x_n = e_n$). However one can show that $\{x_n\}$ has a subsequence which converges weakly to some x. In other terms the unit ball of \mathcal{H} is not compact for the topology induced by the norm $||\cdot||$ but it is compact for the weak topology induced by the weak convergence.

Hint: The proof of this fact use a trick known as "Cantor diagonal argument" and it works as follows. Consider the sequence of complex numbers (x_n, e_1) . Show that there exists a subsequence of x_n , call it x_{n1} , such that (x_{n1}, e_1) is convergent. Consider next the sequence (x_{n1}, e_2) and show there is a subsequence x_{n2} such that (x_{n2}, e_1) and (x_{n2}, e_2) converge. By repeating this indefinitely one obtains subsequence x_{nk} . Finally consider the diagonal sequence x_{nn} (hence the name of the trick) and show that (x_{nn}, e_k) converges for all k.

- 2. Let \mathcal{H} be a Hilbert space and let T_n and T be bounded linear operators on \mathcal{H} . There are several ways to define the convergence of the sequence $\{T_n\}$ to T.
 - T_n converges to T in norm if $\lim_{n\to\infty} ||T_n T|| = 0$.

- T_n converges to T strongly if $T_n f$ converges to T f in \mathcal{H} for all $f \in \mathcal{H}$, i.e. $\lim_{n \to \infty} ||T_n f T f|| = 0$ for all $f \in \mathcal{H}$.
- T_n converges to T weakly if $T_n f$ converges to T f weakly in \mathcal{H} for all $f \in \mathcal{H}$, i.e., $\lim_{n\to\infty} (T_n f, g) = (T f, g)$, for all $f, g \in \mathcal{H}$.
- (a) Show that convergence in norm implies strong convergence which itself implies weak convergence.
- (b) Show, by examples, that weak convergence does not imply strong convergence and that strong convergence does not imply convergence in norm.
- 3. Let $f \in L^1(\mathbf{R})$. Use the Fourier transform to solve the equation

$$u(x) - \frac{d^2}{dx^2}u(x) = f(x)$$

Hint: It is useful to remember what is the Fourier transform of $e^{-a|x|}$.

4. Use Fourier series solve the wave equation

$$\frac{\partial^2}{\partial t^2}u(t,x) - \frac{\partial^2}{\partial x^2}u(t,x) = 0, \quad u(0,x) = f(x), \quad \frac{\partial}{\partial t}u(0,x) = g(x),$$

where $x \in \mathbf{R}$, $t \in [0, \infty)$ and f, g and $u(t, \cdot)$ are periodic functions of x of period 2π .

5. Abel summability

(a) Given a sequence $\{a_k\}_{k\geq 0}$ and $N\geq M$ define $S_M^N=\sum_{k=M}^N a_n$. Show the following formula which is known as integration by parts for series (why the name?)

$$\sum_{k=M}^{N} a_k b_k = \sum_{k=M}^{N-1} S_M^k (b_k - b_{k+1}) + S_M^N b_N.$$

(b) Suppose $\sum_{n=0}^{\infty} a_n$ is convergent and $0 \le r \le 1$. Show that

$$\left| \sum_{k=M}^{N} r^k a_k \right| \le \sup_{J \ge M} |S_M^J|.$$

- (c) Show that the series $S(r) = \sum_{k=0}^{\infty} r^k a_k$ is uniformly convergent for $0 \le r \le 1$ and that $\lim_{r \to 1^-} S(r) = \sum_{k=0}^{\infty} a_k$.
- 6. Cesaro summability Let $\{a_n\}_{n\geq 0}$ be a sequence and set

$$b_m = \frac{1}{m+1}(a_0 + a_1 + \dots + a_m).$$

Show that if $\{a_n\}$ is convergent with $\lim_{n\to\infty} a_n = a$ then $\{b_m\}$ converges and $\lim_{m\to\infty} b_m = a$. Note that the converse statement is not true, in general.

7. Let $f \in L^1([-\pi, \pi])$ with $f \sim \sum_{n=-\infty}^{\infty} a_n e^{inx}$. As we have seen in class we can write the partial sums as

$$S_N f(x) = \sum_{n=-N}^{N} a_n e^{inx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x-y) dy$$

where $D_N(x)$ is the Dirichlet kernel given by

$$D_N(x) = \frac{\sin(N + \frac{1}{2})x}{\sin\frac{1}{2}x}.$$

As we have seen in class $D_N(x)$ is not a good kernel. Set

$$K_N(x) = \frac{1}{N+1} (D_0(x) + \dots + D_N(x)),$$

 $K_N(x)$ is known as the Fejér kernel. Show that

$$K_N(x) = \frac{1}{N+1} \left[\frac{\sin \frac{1}{2}(N+1)x}{\sin \frac{1}{2}x} \right]^2.$$

and verify that $K_N(x)$ is an approximation of the identity $(K_N(x) = 0)$ if $|x| > \pi$). Conclude that

$$\sigma_N f(x) \equiv \frac{1}{N+1} \left(S_0 f(x) + \dots + S_N f(x) \right)$$

converges to f(x) for almost every x.