Table of contents

- Overview
- 2 General notation
- 3 Model 1
- Model 2
- Model 3
- Model 5
- References

Overview

Overview

The following tables provide an overview of the specified models and their main assumptions, with model extensions/changes highlighted in **bold**. For every model, the observed data are assumed to be complete (i.e., no missing data).

Model	Latent class memberships	Dependent variable	Constant & trend components ¹
1	time-invariant, mixture proportions averaged over individuals	continuous, Normal, independent errors	linear pooled model
2	time-invariant, mixture proportions averaged over individuals	continuous, Normal, independent errors	quadratic pooled model
3	time-invariant, mixture proportions averaged over individuals	count, Poisson, independent errors	linear pooled model
4	time-invariant, mixture proportions averaged over individuals	count, Poisson, independent errors	quadratic pooled model
5	time-varying via hidden Markov chains with time-invariant and not individual- specific transition matrix	continuous, Normal, independent errors	linear pooled model
6	time-varying via hidden Markov chains with time-invariant and not individual- specific transition matrix	continuous, Normal, independent errors	quadratic pooled model

Table 1: Overview of specified models

¹for each class

General notation

General notation

Latent class (aka, mixture component) c, for c = 1, ..., C, where C is the number of classes

Individual n, for n = 1, ..., N, where N is the number of individuals

Time period t, for t = 1, ..., T, where T is the number of time periods

 \mathbf{Y}^{obs} is a $N \times T$ matrix representing an observed dependent variable, where obs refers to simulated or actual data

 ${m X}$ is a matrix of size ${m N} imes {m T}$ representing an explanatory variable

Model 1

Model 1 - latent class memberships

Time-invariant (i.e., over time periods, an individual does not switch between classes)

Mixture proportions are averaged over individuals

Model 1 - dependent variable

Continuous data described by Normal (aka, Gaussian) distributions

Independent (aka, uncorrelated) errors over individuals and time periods

No missing data

Model 1 - constant and trend component

A pooled model for each class (i.e., the constants and trend components are allowed to vary between classes but not within classes)

Linear (i.e., non-stationary, deterministic) trend components

Model 1 - likelihood

Based on Stan Development Team (n.d.), the likelihood with marginalized class memberships is given by

$$p(\boldsymbol{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_0,\boldsymbol{\beta}_1,\boldsymbol{X},\boldsymbol{\sigma}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_c \prod_{t=1}^{T} Normal(y_{n,t}^{obs}|\mu_{c,n,t},\sigma_c), \quad (1)$$

where λ is a row vector of size C representing the mixture proportions; thus,

$$0 \le \lambda_c \le 1$$
 and $\sum_{c=1}^C \lambda_c = 1$. (2)

Model 1 - likelihood continued

M is a C-tuple containing $N \times T$ matrices with

$$\mu_{c,n,t} = \beta_{0,c} + \beta_{1,c} \, x_{n,t},\tag{3}$$

where β_0 is a row vector of size C representing the constants, and β_1 is a row vector of size C representing the linear trend components.

Furthermore, to solve the identification problem caused by label switching, either

$$\beta_{0,c} < \beta_{0,c+1} \tag{4}$$

or

$$\beta_{1,c} < \beta_{1,c+1} \tag{5}$$

defines a labeling restriction (Koop, 2003). Lastly, σ is a row vector of size C (i.e., within each class, the errors are identically distributed over individuals and time periods).

Model 1 - log likelihood

Recall the likelihood presented in equation 1:

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_0,\boldsymbol{\beta}_1,\boldsymbol{X},\boldsymbol{\sigma}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_c \prod_{t=1}^{T} Normal(y_{n,t}^{obs}|\mu_{c,n,t},\sigma_c).$$
(1)

On the log scale, the likelihood is given by

$$\log p(\mathbf{Y}^{obs}|\lambda, \beta_0, \beta_1, \mathbf{X}, \sigma) = \sum_{n=1}^{N} \log \sum_{c=1}^{C} \exp \left(\log \lambda_c + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c) \right).$$
(6)

Model 1 - deduction of likelihood

The latent discrete parameter z_n in $\{1, ..., C\}$ indicates the class membership for individual n, with

$$z_n \sim Categorical(\lambda);$$
 (7)

where z is a column vector of size N. Therefore,

$$Pr(z_n = c) = \lambda_c. (8)$$

Model 1 - deduction of likelihood continued

Therefore, the likelihood presented in equation 1 is deduced by marginalizing out z from the complete data likelihood

$$p(\mathbf{Y}^{obs}|\mathbf{z}, \lambda, \beta_0, \beta_1, \mathbf{X}, \sigma) = \prod_{n=1}^{N} \prod_{c=1}^{C} \left(\lambda_c \prod_{t=1}^{T} p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c) \right)^{\mathbf{1}(z_n = c)},$$
(9)

where $\mathbf{1}(z_n=c)$ defines an indicator function, so that

$$p(\mathbf{Y}^{obs}|\mathbf{\lambda}, \boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \mathbf{X}, \boldsymbol{\sigma}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_{c} \prod_{t=1}^{T} p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c})$$

$$= \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_{c} \prod_{t=1}^{T} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c}).$$
(10)

Model 1 - prior

$$\lambda \sim \textit{Dirichlet}(\alpha_{\lambda}),$$
 (11)

where α_{λ} is a row vector of size C representing hyperparameters. Furthermore, $\alpha_{\lambda,c}=1$ (i.e., λ is assigned a proper flat prior).

$$\beta_{0,c} \sim Normal(\mu_{\beta_{0,c}}, \sigma_{\beta_{0,c}}),$$
 (12)

where $\mu_{\beta_{0,c}}$ and $\sigma_{\beta_{0,c}}$ are hyperparameters.

$$\beta_{1,c} \sim \textit{Normal}(\mu_{\beta_{1,c}}, \sigma_{\beta_{1,c}}),$$
 (13)

where $\mu_{\beta_{1,c}}$ and $\sigma_{\beta_{1,c}}$ are hyperparameters.

$$\sigma_c \sim Normal(0, \sigma_{\sigma_c}) \mathbf{1}(\sigma_c > 0),$$
 (14)

where 0 and σ_{σ_c} are hyperparameters. The Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c > 0)$.

Model 1 - posterior for z_n

$$Pr(z_{n} = c | \mathbf{y}_{n}^{obs}, \boldsymbol{\lambda}, \boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \boldsymbol{x}_{n}, \boldsymbol{\sigma})$$

$$= \frac{\lambda_{c} \prod_{t=1}^{T} Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_{c})}{\sum_{k=1}^{C} \lambda_{k} \prod_{t=1}^{T} Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_{k})},$$

$$(15)$$

where λ , β_0 , β_1 , and σ are marginalized out over the NUTS sampling iterations.

Model 1 - log posterior for z_n

On the log scale, the posterior for z_n is given by

$$\log Pr(z_{n} = c | \mathbf{y}_{n}^{obs}, \lambda, \beta_{0}, \beta_{1}, \mathbf{x}_{n}, \sigma)$$

$$= \log \lambda_{c} + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_{c})$$

$$- \log \sum_{k=1}^{C} \exp \left(\log \lambda_{k} + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_{k}) \right).$$
(16)

Equation 16 corresponds to the softmax function calculated on the log scale.

Model 2

Model 2 - latent class memberships

Time-invariant (i.e., over time periods, an individual does not switch between classes)

Mixture proportions are averaged over individuals

Model 2 - dependent variable

Continuous data described by Normal (aka, Gaussian) distributions

Independent (aka, uncorrelated) errors over individuals and time periods

No missing data

Model 2 - constant and trend component

A pooled model for each class (i.e., the constants and trend components are allowed to vary between classes but not within classes)

Linear and quadratic (i.e., non-stationary, deterministic) trend components

Model 2 - likelihood

Based on Stan Development Team (n.d.), the likelihood with marginalized class memberships is given by

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{X}, \boldsymbol{\sigma}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_c \prod_{t=1}^{T} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c).$$
(17)

where λ is a row vector of size C representing the mixture proportions; thus,

$$0 \le \lambda_c \le 1$$
 and $\sum_{c=1}^C \lambda_c = 1$. (18)

Model 2 - likelihood continued

 ${\it M}$ is a ${\it C}$ -tuple containing ${\it N} \times {\it T}$ matrices with

$$\mu_{c,n,t} = \beta_{0,c} + \beta_{1,c} x_{n,t} + \beta_{2,c} x_{n,t}^{2}, \tag{19}$$

where β_0 is a row vector of size C representing the constants, β_1 is a row vector of size C representing the linear trend components, and β_2 is a row vector of size C representing the quadratic trend components.

Furthermore, to solve the identification problem caused by label switching, either

$$\beta_{0,c} < \beta_{0,c+1} \tag{20}$$

or

$$\beta_{1,c} < \beta_{1,c+1} \tag{21}$$

defines a labeling restriction (Koop, 2003). Lastly, σ is a row vector of size C (i.e., within each class, the errors are identically distributed over individuals and time periods).

Model 2 - log likelihood

Recall the likelihood presented in equation 17:

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{X}, \boldsymbol{\sigma}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_c \prod_{t=1}^{T} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c).$$

$$(17)$$

On the log scale, the likelihood is given by

$$\log p(\mathbf{Y}^{obs}|\lambda, \beta_0, \beta_1, \beta_2, \mathbf{X}, \sigma) = \sum_{n=1}^{N} \log \sum_{c=1}^{C} \exp \left(\log \lambda_c + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c) \right).$$
(22)

Model 2 - deduction of likelihood

The latent discrete parameter z_n in $\{1, ..., C\}$ indicates the class membership for individual n, with

$$z_n \sim Categorical(\lambda);$$
 (23)

where z is a column vector of size N. Therefore,

$$Pr(z_n = c) = \lambda_c. (24)$$

Model 2 - deduction of likelihood continued

Therefore, the likelihood presented in equation 17 is deduced by marginalizing out z from the complete data likelihood

$$p(\mathbf{Y}^{obs}|\mathbf{z}, \lambda, \beta_0, \beta_1, \beta_2, \mathbf{X}, \sigma) = \prod_{n=1}^{N} \prod_{c=1}^{C} \left(\lambda_c \prod_{t=1}^{T} p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c) \right)^{1(z_n=c)},$$
(25)

where $\mathbf{1}(z_n=c)$ defines an indicator function, so that

$$\begin{split} p(\mathbf{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_0,\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\mathbf{X},\boldsymbol{\sigma}) &= \prod_{n=1}^N \sum_{c=1}^C \lambda_c \prod_{t=1}^T p(y_{n,t}^{obs}|\mu_{c,n,t},\sigma_c) \\ &= \prod_{n=1}^N \sum_{c=1}^C \lambda_c \prod_{t=1}^T Normal(y_{n,t}^{obs}|\mu_{c,n,t},\sigma_c). \end{split}$$

26 / 58

(26)

Model 2 - prior

$$oldsymbol{\lambda} \sim extit{Dirichlet}(oldsymbol{lpha}_{\lambda}),$$
 of size C representing hyperparameters

where α_{λ} is a row vector of size C representing hyperparameters. Furthermore, $\alpha_{\lambda,c}=1$ (i.e., λ is assigned a proper flat prior).

$$\beta_{0,c} \sim Normal(\mu_{\beta_{0,c}}, \sigma_{\beta_{0,c}}),$$
 (28)

where $\mu_{\beta_{0,c}}$ and $\sigma_{\beta_{0,c}}$ are hyperparameters.

$$\beta_{1,c} \sim Normal(\mu_{\beta_{1,c}}, \sigma_{\beta_{1,c}}),$$
 (29)

where $\mu_{\beta_{1,c}}$ and $\sigma_{\beta_{1,c}}$ are hyperparameters.

$$\beta_{2,c} \sim Normal(\mu_{\beta_{2,c}}, \sigma_{\beta_{2,c}}),$$
 (30)

where $\mu_{\beta_{2,c}}$ and $\sigma_{\beta_{2,c}}$ are hyperparameters.

(27)

Model 2 - prior continued

$$\sigma_c \sim Normal(0, \sigma_{\sigma_c}) \mathbf{1}(\sigma_c > 0),$$
 (31)

where 0 and σ_{σ_c} are hyperparameters. The Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c > 0)$.

Model 2 - posterior for z_n

$$Pr(z_{n} = c | \mathbf{y}_{n}^{obs}, \boldsymbol{\lambda}, \beta_{0}, \beta_{1}, \beta_{2}, \mathbf{x}_{n}, \boldsymbol{\sigma})$$

$$= \frac{\lambda_{c} \prod_{t=1}^{T} Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_{c})}{\sum_{k=1}^{C} \lambda_{k} \prod_{t=1}^{T} Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_{k})},$$
(32)

where λ , β_0 , β_1 , β_2 , and σ are marginalized out over the NUTS sampling iterations.

Model 2 - log posterior for z_n

On the log scale, the posterior for z_n is given by

$$\log Pr(z_{n} = c | \mathbf{y}_{n}^{obs}, \lambda, \beta_{0}, \beta_{1}, \beta_{2}, \mathbf{x}_{n}, \sigma)$$

$$= \log \lambda_{c} + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_{c})$$

$$- \log \sum_{k=1}^{C} \exp \left(\log \lambda_{k} + \sum_{t=1}^{T} \log Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_{k}) \right).$$
(33)

Equation 33 corresponds to the softmax function calculated on the log scale.

Model 3

Model 3 - latent class memberships

Time-invariant (i.e., over time periods, an individual does not switch between classes)

Mixture proportions are averaged over individuals

Model 3 - dependent variable

Count data described by Poisson distributions

Independent (aka, uncorrelated) errors over individuals and time periods

No missing data

Model 3 - constant and trend component

A pooled model for each class (i.e., the constants and trend components are allowed to vary between classes but not within classes)

Linear (i.e., non-stationary, deterministic) trend components

Model 3 - likelihood

Based on Stan Development Team (n.d.), the likelihood with marginalized class memberships is given by

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_{0},\boldsymbol{\beta}_{1},\mathbf{X}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_{c} \prod_{t=1}^{T} PoissonLog(y_{n,t}^{obs}|\theta_{c,n,t}), \quad (34)$$

where λ is a row vector of size C representing the mixture proportions; thus,

$$0 \le \lambda_c \le 1$$
 and $\sum_{c=1}^{C} \lambda_c = 1.$ (35)

Model 3 - likelihood continued

 Θ is a C-tuple containing $N \times T$ matrices. $\theta_{c,n,t}$ represents both the expected value and the variance, with

$$\theta_{c,n,t} = \beta_{0,c} + \beta_{1,c} x_{n,t};$$
 (36)

where β_0 is a row vector of size C representing the constants, and β_1 is a row vector of size C representing the linear trend components.

Furthermore, to solve the identification problem caused by label switching, either

$$\beta_{0,c} < \beta_{0,c+1} \tag{37}$$

or

$$\beta_{1,c} < \beta_{1,c+1} \tag{38}$$

defines a labeling restriction (Koop, 2003).

Model 3 - log likelihood

Recall the likelihood presented in equation 34:

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_0,\boldsymbol{\beta}_1,\mathbf{X}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_c \prod_{t=1}^{T} PoissonLog(y_{n,t}^{obs}|\theta_{c,n,t}).$$
(34)

On the log scale, the likelihood is given by

$$\log p(\mathbf{Y}^{obs}|\lambda, \beta_0, \beta_1, \mathbf{X}) = \sum_{n=1}^{N} \log \sum_{c=1}^{C} \exp \left(\log \lambda_c + \sum_{t=1}^{T} \log PoissonLog(y_{n,t}^{obs}|\theta_{c,n,t}) \right).$$
(39)

Model 3 - deduction of likelihood

The latent discrete parameter z_n in $\{1, ..., C\}$ indicates the class membership for individual n, with

$$z_n \sim Categorical(\lambda);$$
 (40)

where z is a column vector of size N. Therefore,

$$Pr(z_n = c) = \lambda_c. (41)$$

Model 3 - deduction of likelihood continued

Therefore, the likelihood presented in equation 34 is deduced by marginalizing out z from the complete data likelihood

$$p(\mathbf{Y}^{obs}|\mathbf{z}, \lambda, \beta_0, \beta_1, \mathbf{X}) = \prod_{n=1}^{N} \prod_{c=1}^{C} \left(\lambda_c \prod_{t=1}^{T} p(y_{n,t}^{obs}|\theta_{c,n,t}) \right)^{\mathbf{1}(z_n = c)}, \quad (42)$$

where $\mathbf{1}(z_n=c)$ defines an indicator function, so that

$$p(\mathbf{Y}^{obs}|\boldsymbol{\lambda},\boldsymbol{\beta}_{0},\boldsymbol{\beta}_{1},\mathbf{X}) = \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_{c} \prod_{t=1}^{T} p(y_{n,t}^{obs}|\boldsymbol{\theta}_{c,n,t})$$

$$= \prod_{n=1}^{N} \sum_{c=1}^{C} \lambda_{c} \prod_{t=1}^{T} PoissonLog(y_{n,t}^{obs}|\boldsymbol{\theta}_{c,n,t}).$$
(43)

Model 3 - prior

$$\lambda \sim \textit{Dirichlet}(\alpha_{\lambda}),$$
 (44)

where α_{λ} is a row vector of size C representing hyperparameters. Furthermore, $\alpha_{\lambda,c}=1$ (i.e., λ is assigned a proper flat prior).

$$\beta_{0,c} \sim Normal(\mu_{\beta_{0,c}}, \sigma_{\beta_{0,c}}),$$
 (45)

where $\mu_{\beta_{0,c}}$ and $\sigma_{\beta_{0,c}}$ are hyperparameters.

$$\beta_{1,c} \sim Normal(\mu_{\beta_{1,c}}, \sigma_{\beta_{1,c}}),$$
 (46)

where $\mu_{\beta_{1,c}}$ and $\sigma_{\beta_{1,c}}$ are hyperparameters.

Model 3 - posterior for z_n

$$Pr(z_{n} = c | \boldsymbol{y}_{n}^{obs}, \boldsymbol{\lambda}, \boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \boldsymbol{x}_{n}) = \frac{\lambda_{c} \prod_{t=1}^{T} PoissonLog(y_{n,t}^{obs} | \boldsymbol{\theta}_{c,n,t})}{\sum_{k=1}^{C} \lambda_{k} \prod_{t=1}^{T} PoissonLog(y_{n,t}^{obs} | \boldsymbol{\theta}_{k,n,t})}, (47)$$

where λ , β_0 , and β_1 are marginalized out over the NUTS sampling iterations.

Model 3 - log posterior for z_n

On the log scale, the posterior for z_n is given by

$$\log Pr(z_{n} = c | \mathbf{y}_{n}^{obs}, \lambda, \beta_{0}, \beta_{1}, \mathbf{x}_{n})$$

$$= \log \lambda_{c} + \sum_{t=1}^{T} \log PoissonLog(y_{n,t}^{obs} | \theta_{c,n,t})$$

$$- \log \sum_{k=1}^{C} \exp \left(\log \lambda_{k} + \sum_{t=1}^{T} \log PoissonLog(y_{n,t}^{obs} | \theta_{k,n,t}) \right).$$
(48)

Equation 48 corresponds to the softmax function calculated on the log scale.

Model 5

Model 5 - latent class memberships

Time-varying (i.e., over time periods, an individual might switch between classes)

Modeled via hidden Markov chains with time-invariant transition matrix, where the transition matrix is not individual-specific (i.e., the transition probabilities are averaged over individuals)

Model 5 - dependent variable

Continuous data described by Normal (aka, Gaussian) distributions

Independent (aka, uncorrelated) errors over individuals and time periods

No missing data

Model 5 - constant and trend component

A pooled model for each class (i.e., the constants and trend components are allowed to vary between classes but not within classes)

Linear (i.e., non-stationary, deterministic) trend components

Model 5 - likelihood

Based on Stan Development Team (n.d.), the likelihood with marginalized class memberships is given by

$$p(\mathbf{Y}^{obs}|\boldsymbol{\omega}, \mathbf{\Psi}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \mathbf{X}, \boldsymbol{\sigma}) = \prod_{n=1}^{N} \prod_{t=1}^{T} \sum_{c=1}^{C} \lambda_{t,c} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c).$$

$$(49)$$

Model 5 - likelihood continued

 Λ is a $T \times C$ matrix representing the mixture proportions, averaged over individuals; thus,

$$0 \le \lambda_{t,c} \le 1$$
 and $\sum_{c=1}^{C} \lambda_{t,c} = 1.$ (50)

Furthermore,

$$\lambda_{t,c} = \begin{cases} \omega_c & \text{for } t = 1\\ \sum_{k=1}^{C} \lambda_{t-1,k} \, \psi_{k,c} & \text{for } t > 1, \end{cases}$$
 (51)

where ω is a row vector of size C representing the initial mixture proportions, and Ψ is a $C \times C$ transition matrix (e.g., $\psi_{1,2}$ represents the probability for an individual to switch from the first to the second class).

Model 5 - likelihood continued

M is a C-tuple containing $N \times T$ matrices with

$$\mu_{c,n,t} = \beta_{0,c} + \beta_{1,c} \, x_{n,t},\tag{52}$$

where β_0 is a row vector of size C representing the constants, and β_1 is a row vector of size C representing the linear trend components.

Furthermore, to solve the identification problem caused by label switching, either

$$\beta_{0,c} < \beta_{0,c+1} \tag{53}$$

or

$$\beta_{1,c} < \beta_{1,c+1} \tag{54}$$

defines a labeling restriction (Koop, 2003). Lastly, σ is a row vector of size C (i.e., within each class, the errors are identically distributed over individuals and time periods).

Model 5 - log likelihood

Recall the likelihood presented in equation 49:

$$p(\mathbf{Y}^{obs}|\boldsymbol{\omega}, \mathbf{\Psi}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \mathbf{X}, \boldsymbol{\sigma}) = \prod_{n=1}^{N} \prod_{t=1}^{T} \sum_{c=1}^{C} \lambda_{t,c} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c).$$

$$(49)$$

On the log scale, the likelihood is given by

$$\log p(\mathbf{Y}^{obs}|\boldsymbol{\omega}, \boldsymbol{\Psi}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \mathbf{X}, \boldsymbol{\sigma}) = \sum_{n=1}^{N} \sum_{t=1}^{T} \log \sum_{c=1}^{C} \exp \left(\log \lambda_{t,c} + \log Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_c) \right).$$
(55)

Model 5 - deduction of likelihood

The latent discrete parameter $z_{n,t}$ in $\{1,...,C\}$ indicates the class membership for individual n at time period t, with

$$z_{n,t} \sim \begin{cases} \textit{Categorical}(\omega) & \text{for } t = 1 \\ \textit{Categorical}(\psi_{z_{n,t-1}}) & \text{for } t > 1, \end{cases}$$
 (56)

where ${\pmb Z}$ is a $N\times T$ matrix, and $\psi_{z_{n,t-1}}$ is a row vector of ${\pmb \Psi}$. Therefore, the likelihood presented in equation 49 is deduced by marginalizing out ${\pmb Z}$ from the complete data likelihood

$$p(\mathbf{Y}^{obs}|\mathbf{Z}, \boldsymbol{\omega}, \boldsymbol{\Psi}, \boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \mathbf{X}, \boldsymbol{\sigma})$$

$$= \prod_{n=1}^{N} \left(\prod_{t=1}^{1} \prod_{c=1}^{C} \left(\omega_{c} \, p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c}) \right)^{\mathbf{1}(z_{n,t}=c)} \right)$$

$$\prod_{t=2}^{T} \prod_{c=1}^{C} \left(\psi_{z_{n,t-1},c} \, p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c}) \right)^{\mathbf{1}(z_{n,t}=c)},$$
(57)

where $\mathbf{1}(z_n = c)$ defines an indicator function,

Model 5 - deduction of likelihood continued

so that

$$p(\mathbf{Y}^{obs}|\boldsymbol{\omega}, \boldsymbol{\Psi}, \boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \boldsymbol{X}, \boldsymbol{\sigma})$$

$$= \prod_{n=1}^{N} \prod_{t=1}^{T} \sum_{c=1}^{C} \lambda_{t,c} p(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c})$$

$$= \prod_{n=1}^{N} \prod_{t=1}^{T} \sum_{c=1}^{C} \lambda_{t,c} Normal(y_{n,t}^{obs}|\mu_{c,n,t}, \sigma_{c});$$
(58)

where, as already defined in equation 51,

$$\lambda_{t,c} = \begin{cases} \omega_c & \text{for } t = 1\\ \sum_{k=1}^{C} \lambda_{t-1,k} \, \psi_{k,c} & \text{for } t > 1. \end{cases}$$
 (51)

Model 5 - prior

$$\omega \sim \textit{Dirichlet}(\alpha_{\omega}),$$
 (59)

where α_{ω} is a row vector of size C representing hyperparameters. Furthermore, $\alpha_{\omega,c}=1$ (i.e., ω is assigned a proper flat prior).

$$\psi_c \sim \textit{Dirichlet}(\alpha_{\psi_c}),$$
 (60)

where ψ_c is a row vector of Ψ , and α_{ψ_c} is a row vector of the $C \times C$ matrix \mathbf{A}_{Ψ} representing hyperparameters.

$$\beta_{0,c} \sim Normal(\mu_{\beta_{0,c}}, \sigma_{\beta_{0,c}}),$$
 (61)

where $\mu_{\beta_{0,c}}$ and $\sigma_{\beta_{0,c}}$ are hyperparameters.

$$\beta_{1,c} \sim Normal(\mu_{\beta_{1,c}}, \sigma_{\beta_{1,c}}),$$
 (62)

where $\mu_{\beta_{1,c}}$ and $\sigma_{\beta_{1,c}}$ are hyperparameters.

Model 5 - prior continued

$$\sigma_c \sim Normal(0, \sigma_{\sigma_c}) \mathbf{1}(\sigma_c > 0),$$
 (63)

where 0 and σ_{σ_c} are hyperparameters. The Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c > 0)$.

Model 5 - posterior for $z_{n,t}$

$$Pr(z_{n,t} = c | y_{n,t}^{obs}, \boldsymbol{\omega}, \boldsymbol{\Psi}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, x_{n,t}, \boldsymbol{\sigma})$$

$$= \frac{\lambda_{t,c} Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_c)}{\sum_{k=1}^{C} \lambda_{t,k} Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_k)},$$
(64)

where ω , Ψ , β_0 , β_1 , and σ are marginalized out over the NUTS sampling iterations.

Model 5 - log posterior for $z_{n,t}$

On the log scale, the posterior for $z_{n,t}$ is given by

$$Pr(z_{n,t} = c | y_{n,t}^{obs}, \boldsymbol{\omega}, \boldsymbol{\Psi}, \boldsymbol{\beta}_0, \boldsymbol{\beta}_1, x_{n,t}, \boldsymbol{\sigma})$$

$$= \log \lambda_{t,c} + \log Normal(y_{n,t}^{obs} | \mu_{c,n,t}, \sigma_c)$$

$$- \log \sum_{k=1}^{C} \exp \left(\log \lambda_{t,k} + \log Normal(y_{n,t}^{obs} | \mu_{k,n,t}, \sigma_k) \right).$$
(65)

Equation 65 corresponds to the softmax function calculated on the log scale.

References

References

Koop, G. (2003). Bayesian Econometrics. Wiley.

Stan Development Team. (n.d.). Stan Documentation, Version 2.34. Stan. https://mc-stan.org/docs/