Tema 5

Periféricos: sensores y actuadores

Temario

- 1. Sistemas empotrados: ámbitos de aplicación y flujo de diseño (2 horas)
- 2. Microprocesadores, microcontroladores y procesadores de señal digital (4+1 horas)
- 3. Subsistema de memoria en sistemas empotrados. (3+1 horas)
- 4. Buses industriales. (2+2 horas)
- Periféricos: sensores y actuadores. (3+1 horas)
- 6. Integración, coste y prestaciones. (8+2 horas)
- 7. Casos prácticos. (8+3 horas)

Prácticas: 3-4 prácticas con el entorno EDK Xilinx y placas de Spartan 3 (10 horas)

Bibliografía

Bibliografía básica

- Embedded Systems Design, Capítulo 5. Autor: Steve Heath, Editoral Elsevier Science & Technology, 2nd Edition, 2002, 978-0750655460
- Computers as components: principles of embedded computing system design. Capítulo 4. Autor: Marilyn Wolf. San Francisco, Editorial: Morgan Kaufmann Publishers, 4th Edition, 2016, ISBN: 9780128053874
- Manual de prácticas Sistemas Empotrados (guión práctica 5)

Bibliografía complementaria

- Embedded hardware., know it all / Jack Ganssle, Tammy Noergaard, Fred Eady, Lewin Edwards, David J. Katz, Amsterdam, Elsevier/Newnes, cop. 2008 (Capítulos 4, 8 y 9)
- Embedded Microcomputer Systems: Real Time Interfacing (3rd. edition). Jonathan W. Valvano. CL Engineering. ISBN: 1111426252 (temas 8 y 11)

Entrada/Salida

Indice

Periféricos: sensores y actuadores. (3 +1 horas)

5.1 Interfaz digital

- 5.1.1 Protección de entradas digitales
- 5.1.2 Expansión de entradas digitales
- 5.1.3 Expansión de salidas digitales
- 5.1.4 Salidas de grandes corrientes

5.2 Interfaz analógico

- 5.2.1 Sensores: temperatura, humedad, giróscopo, aceleración, luminosidad, proximidad, humo
- 5.2.2 Actuadores: vga, leds, displays, motor continua, motor paso a paso, servomotor, lcd, altavoz, zumbador
- 5.2.3 Conversores A/D y D/A. PWM
- 5.3 Procesamiento de señal

Lógica TTL (5v)

TTL ej. SN7400

TTL-L bajo consumo ej. S74L02

TTL-H alta velodidad ej. SN74H10

TTL – S Schottky ej. DM74S07

TTL –LS Schot. bajo consumo ej. S74LS07

Diodo Schottky: Rápido Tensión umbral 02-0.4v

Problema: los CI TTL se siguen usando

SN Texas
DM National Semiconductor
S Signetics

Lógica CMOS (1.5-3.3v 74C 74HC alta velocidad 74HCT alta velocidad y compatible con voltajes TTL

		TinyLogic™ Single-Gate Devices							
	HC HCT VHC		VHC	VHCT	LVT	LVX	HS	HST	UHS
V _{IH(MIN)}	0.7 · VCC	2.0V	0.7 · VCC	2.0 V	2.0 V	2.0 V	0.7 · VCC	2.0V	0.7 · VCC

5.1.1 Protección de entradas digitales

Los diodos ESD (Electro Static Discharge) suelen usarse para proteger las entradas de 3.3v

5.1.2 Expansión de entradas digitales

74257 mux 2 a 1 (4 bits)

74244 buffer octal 3-state

5.1.3 Expansión de salidas digitales

74HC259 Latch direccionable de 8 bits

OPERATING MODE		INPUTS					OUTPUTS								
		MR	LE	D	A0	A1	A2	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
reset		L	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	L
			L	d	L	L	L	Q = d	L	L	L	L	L	L	L
				d	н	L	L	L	Q = d	L	L	L	L	L	L
demultiplexer				d	L	н	L	L	L	Q = d	L	L	L	L	L
(active HIGH		L		d	н	н	L	L	L	L	Q = d	L	L	L	L
8-channel)				d	L	L	н	L	L	L	L	Q = d	L	L	L
decoder (when	D = H)			d	н	L	н	L	L	L	L	L	Q = d	L	L
				d	L	н	н	L	L	L	L	L	L	Q = d	L
				d	Н	Н	н	L	L	L	L	L	L	L	Q = d
memory (do not	thing)	Н	Н	X	Х	Х	Х	q 0	q ₁	q_2	q ₃	q ₄	q 5	q ₆	q 7
			L	d	L	L	L	Q = d	q ₁	q ₂	q ₃	q ₄	q 5	q ₆	q 7
				d	н	L	L	q ₀	Q = d	q ₂	q ₃	q ₄	q ₅	q ₆	q ₇
				d	L	н	L	q 0	q ₁	Q = d	q ₃	q ₄	q 5	q ₆	q ₇
addressable late	ch	н		d	н	н	L	q 0	q ₁	q ₂	Q = d	q ₄	q 5	q 6	q ₇
addressable lattil	CII	"		d	L	L	н	q ₀	q 1	q ₂	q ₃	Q = d	q 5	q 6	q 7
				d	н	L	н	q 0	q ₁	q_2	q ₃	q ₄	Q = d	q ₆	q ₇
				d	L	н	н	q_0	q ₁	q_2	q_3	q_4	q_5	Q = d	q ₇
				Н	Н	Н	н	q ₀	91	q ₂	q ₃	q ₄	q 5	q ₆	Q = d

74 HC 574 Flip-flop octal 3-state

74HC273 Flip-flop octal con reset

5.1.4 Salidas de grandes corrientes

BJT Bipolar Junction Transitor

Indice

Periféricos: sensores y actuadores. (3 +1 horas)

5.1 Interfaz digital

- 5.1.1 Protección de entradas digitales
- 5.1.2 Expansión de entradas digitales
- 5.1.3 Expansión de salidas digitales
- 5.1.4 Salidas de grandes corrientes

5.2 Interfaz analógico

- 5.2.1 Sensores: temperatura, humedad, giróscopo, aceleración, luminosidad, proximidad, humo
- 5.2.2 Actuadores: vga, leds, displays, motor continua, motor paso a paso, servomotor, lcd, altavoz, zumbador
- 5.2.3 Conversores A/D y D/A. PWM
- 5.3 Procesamiento de señal

5.1 Sensores

Sensor aceleración

Tecnología MEMS (microelectromechanical System)

Una pequeña masa en el centro Al acelerar la masa se desplaza del centro La resistencia de los cables conectados a la masa cambia

También basados en condensadores

Ej. LSM303D

(3D accelerometer and 3D magnetometer module) Se comunica con protocolo SPI o I2C

Uso en navegación, orientación, airbag

Giróscopo

Uso: posicionamiento de satélites, estabilizador de imágenes en cámaras, Juegos –Wii-

Ver video

Giróscopo óptico

Ej. L3GD20H: giróscopo digital de 3 ejes

Interfaz digital I2C o SPI

Un sistema de navegación inercial es una combinación de: GPS - Sistema de posicionamiento global -24 satélites Un giróscopo para medir la orientación (3 dimensiones) Un acelerómetro de 3 dimensiones para medir la posición

Indicador de tensión grietas en edificios

Detector velocidad angular -> Pies ortopédicos (activa nervios a través de FES- Functional electrical Stimulator)

CCD Charge coupled devices: basado en capacitores photoactivos Imágenes en color: filtros Bayer Cámaras digitales

Sensor de Iluvia: riego

stored charge

1 amplifier / cell

"burried" photodiode
transistorchannel

Sensor de proximidad

GP2Y0A21YK (Infrarrojos)

Sensor de humo: refracción y reflexión de ondas de luz en presencia de humo

Sensor termal:

Basados en la dilatación de los cuerpos por calor (mercurio)

El platino tiene la propiedad de aumentar su resistencia eléctrica a medida que aumenta la temperatura).

Indice

Periféricos: sensores y actuadores. (3 +1 horas)

5.1 Interfaz digital

- 5.1.1 Protección de entradas digitales
- 5.1.2 Expansión de entradas digitales
- 5.1.3 Expansión de salidas digitales
- 5.1.4 Salidas de grandes corrientes

5.2 Interfaz analógico

- 5.2.1 Sensores: temperatura, humedad, giróscopo, aceleración, luminosidad, proximidad, humo
- 5.2.2 Actuadores: vga, leds, displays, motor continua, motor paso a paso, servomotor, lcd altavoz, zumbador
- 5.2.3 Conversores A/D y D/A. PWM
- 5.3 Procesamiento de señal

5.2.2 Actuadores:

Convierten una señal digital en un estímulo físico. Tipos:

Actuadores de control industrial: sistemas neumáticos, movimiento

Actuadores ópticos: leds, lcd, display

Actuadores motores: corriente contínua, servo-motor, motor paso a paso

Actuadores acústicos: altavoz, zumbador

etc

5.2.2 Actuadores: motor continua

5.2.2 Actuadores: motor paso a paso (stepper)

Rota un número fijo de grados al recibir una señal escalón

5.2.2 Actuadores: servo motor

Es un sistema en lazo cerrado (servo-sistema) Ej. Posicionamiento cabeza en discos duros

El valor del ancho de pulso depende de cada dispositivo en particular

Fabricante	Duración	del pulso	[ms]	Frec.	Color de los cables			
	Mínima (0°)	Neutral (90°)	Máxima (180°)	[Hz]	Positivo	Negativo	Control	
Futaba	0.9	1.5	2.1	50	Rojo	Negro	Blanco	
Hitech	0.9	1.5	2.1	50	Rojo	Negro	Amarillo	
Graupner/Jr	0.8	1.5	2.2	50	Rojo	Marrón	Naranja	
Multiplex	1.05	1.6	2.15	40	Rojo	Negro	Amarillo	
Robbe	0.65	1.3	1.95	50	Rojo	Negro	Blanco	
Simprop	1.2	1.7	2.2	50	Rojo	Azul	Negro	

Indice

Periféricos: sensores y actuadores. (3 +1 horas)

5.1 Interfaz digital

- 5.1.1 Protección de entradas digitales
- 5.1.2 Expansión de entradas digitales
- 5.1.3 Expansión de salidas digitales
- 5.1.4 Salidas de grandes corrientes

5.2 Interfaz analógico

- 5.2.1 Sensores: temperatura, humedad, giróscopo, aceleración, luminosidad, proximidad, humo
- 5.2.2 Actuadores: vga, leds, displays, motor continua, motor paso a paso, servomotor, lcd, altavoz, zumbador
- 5.2.3 Conversores A/D y D/A. PWM
- 5.3 Procesamiento de señal

5.2.3 Conversores analógicos-digitales y digitales- analógicos

Cuantificación

Aliasing

Mediante muestreo es posible reconstruir una señal utilizando interpolación

$$z(t) = \sum_{s=-\infty}^{\infty} \frac{y(t_s) sin \frac{\pi}{p_s}(t-t_s)}{\sum_{p_s}^{\pi} (t-t_s)}$$
 Weighting factor for influence of $y(t_s)$ at time t

 $sinc(t - t_{s}) = \frac{sin(\frac{\pi}{p_{s}}(t - t_{s}))}{\frac{\pi}{p_{s}}(t - t_{s})}$ No influence at t_{s+n}

Conversores analógicos-digitales

Conversor flash

Aproximaciones sucesivas

Conversores digitales- analógicos

Conversor analógico digital del PIC

Resultado ADRES Control 0 ADCON0 Control 1 ADCON1

Control 0 ADCON0

-		-					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	Resv	ADON
bit 7							bit 0

Control 1 ADCON1

U-0		U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		_	_	_	_	PCFG2	PCFG1	PCFG0
bit 7	bit 7							bit 0

PCFG2:PCFG0	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
000	Α	Α	Α	Α	Α	Α	Α	Α
001	Α	Α	Α	Α	VREF	Α	Α	Α
010	D	D	D	Α	Α	Α	Α	Α
011	D	D	Α	Α	VREF	Α	Α	Α
100	D	D	D	D	Α	О	Α	Α
101	D	D	D	D	VREF	D	Α	Α
11x	D	D	۵	D	D	D	D	D

A = Analog input

D = Digital I/O

Reconstrucción de la señal: filtrado

$$z(t) = \sum_{s=-\infty}^{\infty} \frac{y(t_s) sin \frac{\pi}{p_s}(t-t_s)}{\sum_{p_s}^{\pi} (t-t_s)}$$
 Weighting factor for influence of $y(t_s)$ at time t

Interpolación

PWM (Pulse Width Modulator)

fm: frecuencia señal modulación Fclk: frecuencia del sistema Nn=Fclk/fm

Ejemplo PWM PIC

0000 = Capture/Compare/PWM off (resets CCPx module)

CCP Capture/Compare/Pwm

CCP x CON CCPRxH CCPRxL CCPx

11xx = PWM mode

0100 =	Capture mode, every falling edge
0101 =	Capture mode, every rising edge
0110 =	Capture mode, every 4th rising edge
0111 =	Capture mode, every 16th rising edge
1000 =	Compare mode,
	Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)
1001 =	Compare mode,
	Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
1010 =	Compare mode,
	Generate software interrupt on compare match
	(CCPIF bit is set, CCP pin is unaffected)
1011 =	Compare mode,
	Trigger special event (CCPIF bit is set)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	_
_	_	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	
bit 7			•				bit 0	

Indice

Periféricos: sensores y actuadores. (3 +1 horas)

5.1 Interfaz digital

- 5.1.1 Protección de entradas digitales
- 5.1.2 Expansión de entradas digitales
- 5.1.3 Expansión de salidas digitales
- 5.1.4 Salidas de grandes corrientes

5.2 Interfaz analógico

- 5.2.1 Sensores: temperatura, humedad, giróscopo, aceleración, luminosidad, proximidad, humo
- 5.2.2 Actuadores: vga, leds, displays, motor continua, motor paso a paso, servomotor, lcd, altavoz, zumbador
- 5.2.3 Conversores A/D y D/A. PWM

5.3 Procesamiento de señal

Procesamiento de señal

Trasposición Filtrado espectral Amplificación Compresión Composición Análisis

Cualquier función que cambie en el tiempo de forma periódica y continua, se puede representar como una suma de funciones coseno de diferentes amplitudes y frecuencias

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$