Spatial regression using the spmoran package: Boston housing price data examples

Daisuke Murakami

2020/5/27

Contents

Introduction	1
Moran eigenvector-based spatial regression models	2
Spatial regression models	2
Eigenvector spatial filtering (ESF)	2
Random effects ESF (RE-ESF)	3
Spatially and non-spatially varying coefficient models	4
Varying coefficient modeling	4
Spatially varying coefficient modeling	7
Spatially and non-spatially varying coefficient modeling	12
Models with group effects	19
Outline	19
Multilevel model	19
Small area estimation	20
Longitudinal/panel data analysis	24
Spatially filtered unconditional quantile regression	28
Spatial prediction	33
Low rank spatial econometric models	36
Spatial weight matrix and their eigenvectors	36
Spatial regression models	37
Low rank spatial lag model	37
Low rank spatial error model	38
Tips for modeling large samples	39
Eigen-decomposition	39
Parameter estimation	40
For very large samples (e.g., millions of samples)	40
Future updates	43
Reference	43

Introduction

This package provides functions estimating Moran eigenvector-based spatial regression models. In concrete, this package implements standard spatial regression models and extensions, including spatially and non-

spatially varying coefficient model, models with group effects, spatial unconditional quantile regression model, and low rank spatial econometric models. All these models are estimated computationally efficiently.

These models are are extensions of the random effects eigenvector spatial filtering (RE-ESF) approach that efficiently eliminates residual spatial dependence using a spatial process that is interpretable in terms of the Moran coefficient (MC; Moran's I statistic). Below, I demonstrate spmoran using the baoston housin dataset. For further detail with another example, see https://arxiv.org/abs/1703.04467.

```
library(spmoran)
```

Moran eigenvector-based spatial regression models

Spatial regression models

This section considers the following model:

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(s_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

which decomposes the explained variable y_i observed at i-th sample site into trend $\sum_{k=1}^{K} x_{i,k} \beta_{i,k}$, spatial process $f_{MC}(s_i)$ depending on location s_i , and noise ϵ_i . The spatial process is required to eliminate residual spatial dependence, and estimate/infer regression coefficients β_k appropriately. ESF and RE-ESF define $f_{MC}(s_i)$ using MC-based spatial process to eliminate residual spatial dependence efficiently. These processes are constructed using the Moran eigenvectors (MEs), which are orthogonal spatial basis (see Griffith, 2003).

Eigenvector spatial filtering (ESF)

ESF specifies $f_{MC}(s_i)$ using a MC-based deterministic spatial process (see Griffith, 2003). Below is a code estimating the linear ESF model. In the code, the meigen function extracts the MEs, and the esf function estimates the model.

```
require(spdep)
data(boston)
        <- boston.c[, "CMEDV"]
У
        <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]</pre>
coords<- boston.c[,c("LON","LAT")]</pre>
########Distance-based ESF
       <- meigen(coords=coords)
      <- esf(y=y,x=x,meig=meig, vif=10)
res
res
## Call:
## esf(y = y, x = x, vif = 10, meig = meig)
## ----Coefficients-----
                   Estimate
                                    SE
                                          t_{value}
                                                        p_value
## (Intercept) 11.34040959 3.91692274 2.8952344 3.968277e-03
## CRIM
                -0.20942091 0.03048530 -6.8695702 2.089395e-11
                 0.02322000 0.01384823 1.6767492 9.426799e-02
## ZN
## INDUS
                -0.15063613 0.06823776 -2.2075188 2.776856e-02
## CHAS
                 0.15172838 0.93842988 0.1616832 8.716260e-01
## NOX
               -38.02167637 4.79403898 -7.9310320 1.651338e-14
```

```
## RM
                6.33316024 0.36887955 17.1686403 1.842211e-51
## AGE
               -0.07820247 0.01564970 -4.9970593 8.274067e-07
##
  ----Spatial effects (residuals)------
##
                       Estimate
                      6.8540461
## SE
## Moran.I/max(Moran.I) 0.6701035
##
## ----Error statistics-----
##
                   stat
## resid_SE
               4.476459
## adjR2
               0.762328
## logLik
           -1453.376154
## AIC
            2996.752308
## BIC
            3186.946458
```

While the meigen function is slow for large samples, it can be substituted with the meigen_f function performing a fast eigen-approximation. Here is a fast ESF code for large samples:

```
meig_f<- meigen_f(coords)
res <- esf(y=y, x=x, meig=meig_f,vif=10, fn="all")</pre>
```

Random effects ESF (RE-ESF)

RE-ESF specifies $f_{MC}(s_i)$ using a MC-based spatial random process, again to eliminate residual spatial dependence (see Murakami and Griffith, 2015). Here is a sample example:

```
\leftarrow resf(y = y, x = x, meig = meig)
res
## Call:
## resf(y = y, x = x, meig = meig)
##
## ----Coefficients-----
                             SE t_value
##
                 Estimate
                                                   p_value
               6.63220350 3.94484193 1.6812343 9.340107e-02
## (Intercept)
## CRIM
              -0.19815203 0.03126666 -6.3374866 5.608678e-10
## ZN
               0.01453736 0.01591772 0.9132814 3.615764e-01
              -0.15560251 0.06842940 -2.2739131 2.343446e-02
## INDUS
## CHAS
               0.51046251 0.92329946 0.5528678 5.806245e-01
              -31.26690020 5.02069123 -6.2276087 1.075126e-09
## NOX
## RM
               6.33993146 0.36671337 17.2885202 0.000000e+00
              -0.06351412 0.01526957 -4.1595218 3.810682e-05
## AGE
##
## ----Variance parameter-----
##
## Spatial effects (residuals):
##
                      (Intercept)
## random SE
                        6.7424433
## Moran.I/max(Moran.I)
                        0.6648678
## ----Error statistics-----
##
                      stat
## resid_SE
                 4.3515211
## adjR2(cond)
                 0.7735912
```

```
## rlogLik -1540.3812428
## AIC 3102.7624855
## BIC 3149.2543889
```

For large data, meigen_f function is available again:

```
meig_f<- meigen_f(coords)
res <- resf(y = y, x = x, meig = meig_f)</pre>
```

The meigen f function is available for all the regression models explained below.

Spatially and non-spatially varying coefficient models

Varying coefficient modeling

Influence from covariates can vary depending on covariate value. For example, distance to railway station might have strong impact on housing price if the distance is small while it might be weak if the distance is large. To capture such effect, the resf function estimates coefficients varying with respect to covariate value. I call such coefficients as non-spatially varying coefficients (NVCs). If nvc=TRUE, the resf function estimates the following model considering NSVs and residual spatial dependence:

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),$$

where $f(x_{i,k})$ is a smooth function of $x_{i,k}$ capturing the non-spatial influence.

Here is a code estimating a spatial NVC model (with selection of constant or NVC):

```
<- resf(y = y, x = x, meig = meig, nvc=TRUE)
res
res
## Call:
  resf(y = y, x = x, nvc = TRUE, meig = meig)
##
   ----Non-spatially varying coefficients (summary)----
##
##
  Coefficients:
##
      Intercept
                           CRIM
                                               ZN
                                                                INDUS
                                                :0.02042
##
            :25.41
                     Min.
                             :-0.1822
                                        Min.
                                                            Min.
                                                                    :-0.2119
    1st Qu.:25.41
                     1st Qu.:-0.1822
                                        1st Qu.:0.02042
                                                            1st Qu.:-0.2119
                     Median :-0.1822
                                                            Median :-0.2119
##
    Median :25.41
                                        Median :0.02042
            :25.41
##
    Mean
                             :-0.1822
                                                :0.02042
                                                                    :-0.2119
                     Mean
                                        Mean
                                                            Mean
##
    3rd Qu.:25.41
                     3rd Qu.:-0.1822
                                        3rd Qu.:0.02042
                                                            3rd Qu.:-0.2119
##
    Max.
            :25.41
                             :-0.1822
                                                :0.02042
                                                                    :-0.2119
                     Max.
                                        Max.
                                                            Max.
                                              RM
##
         CHAS
                          NOX
                                                                 AGE
            :1.375
                             :-0.463
                                               :-0.78043
                                                                    :-0.06742
##
    Min.
                     Min.
                                       Min.
                                                            Min.
##
    1st Qu.:1.375
                     1st Qu.: 6.083
                                       1st Qu.:-0.40834
                                                            1st Qu.:-0.06742
                     Median : 7.792
##
    Median :1.375
                                       Median :-0.16098
                                                            Median :-0.06742
            :1.375
                             : 7.074
                                               : 0.03975
                                                                    :-0.06742
    Mean
                     Mean
                                       Mean
                                                            Mean
    3rd Qu.:1.375
                     3rd Qu.: 8.654
                                       3rd Qu.: 0.19417
                                                            3rd Qu.:-0.06742
##
            :1.375
                             :11.517
                                               : 2.49406
                                                                    :-0.06742
##
    Max.
                     Max.
                                       Max.
                                                            Max.
##
## Statistical significance:
##
                             Intercept CRIM
                                              ZN INDUS CHAS NOX
                                                                  RM AGE
## Not significant
                                           0 506
                                     0
                                                     0
                                                           0 506 472
## Significant (10% level)
                                     0
                                           0
                                                     0
                                                         506
                                                                        0
```

```
## Significant (5% level)
                                     0
                                          0
                                               0
                                                     0
                                                                  10
                                                                  17 506
## Significant (1% level)
                                   506
                                        506
                                               0
                                                   506
                                                               0
                                                           0
##
##
   ----Variance parameter-
##
  Spatial effects (residuals):
##
##
                          (Intercept)
## random_SE
                            3.6981527
##
  Moran.I/max(Moran.I)
                            0.4490228
##
##
   Non-spatially varying coefficients:
##
             CRIM ZN INDUS CHAS
                                                   RM AGE
                          0
##
   random_SE
                 0
                   0
                                0 1.850518 0.2459548
                                                        0
##
##
   ----Error statistics--
##
                         stat
##
  resid_SE
                    3.7949128
  adjR2(cond)
                    0.8271073
## rlogLik
                -1478.6128728
## AIC
                 2983.2257457
## BIC
                 3038.1707224
```

By default, this function selects constant or NVC through BIC minimization. "Non-spatially varying coefficients" in the "Variance parameter" section summarizes the estimated standard errors of the NVCs. Based on the result, coefficients on {NOX, RM} are NVCs, and coefficients on the others are constants. The NVC on RM, which is the 6-th covariates, is plotted as below. The solid line in the panel denotes the estimated NVC and the grey area denotes the 95 percent confidence interval. This plot shows that RM is positively statistically significant only if RM is large.

plot_n(res,6)

The estimated spatial process $f_{MC}(s_i)$ can be plotted as

plot_s(res)

Spatially.depepdent.component

Sometime, user might want to assume NVCs only on the first 3 covariates and constant coefficients on the others. The following code estimates such model:

```
<- resf(y = y, x = x, meig = meig, nvc=TRUE, nvc_sel=1:3)</pre>
res
res
## Call:
## resf(y = y, x = x, nvc = TRUE, nvc_sel = 1:3, meig = meig)
##
##
  ----Non-spatially varying coefficients (summary)----
##
## Coefficients:
                                                              INDUS
##
      Intercept
                         CRIM
                                            ZN
   Min.
           :8.04
                           :-0.1978
                                             :-0.02646
                                                                 :-0.1618
##
                   Min.
                                      Min.
                                                          Min.
   1st Qu.:8.04
                   1st Qu.:-0.1978
                                      1st Qu.: 0.02423
                                                         1st Qu.:-0.1618
  Median:8.04
                   Median :-0.1978
                                      Median : 0.02423
                                                          Median :-0.1618
##
   Mean
           :8.04
                   Mean
                           :-0.1978
                                      Mean
                                             : 0.02047
                                                          Mean
                                                                 :-0.1618
##
    3rd Qu.:8.04
                   3rd Qu.:-0.1978
                                      3rd Qu.: 0.02423
                                                          3rd Qu.:-0.1618
##
    Max.
           :8.04
                           :-0.1978
                                             : 0.07651
                                                          Max.
                                                                 :-0.1618
         CHAS
                           NOX
                                             RM
                                                             AGE
##
##
           :0.5596
                             :-32.04
                                              :6.218
                                                               :-0.06464
    Min.
                     Min.
                                       Min.
                                                        Min.
   1st Qu.:0.5596
                     1st Qu.:-32.04
                                                        1st Qu.:-0.06464
##
                                       1st Qu.:6.218
   Median :0.5596
                     Median :-32.04
                                       Median :6.218
                                                        Median :-0.06464
                             :-32.04
                                                               :-0.06464
##
   Mean
           :0.5596
                     Mean
                                       Mean
                                              :6.218
                                                        Mean
    3rd Qu.:0.5596
                     3rd Qu.:-32.04
                                       3rd Qu.:6.218
                                                        3rd Qu.:-0.06464
##
                             :-32.04
##
   {\tt Max.}
           :0.5596
                     Max.
                                       Max.
                                              :6.218
                                                        Max.
                                                               :-0.06464
##
## Statistical significance:
##
                            Intercept CRIM ZN INDUS CHAS NOX RM AGE
## Not significant
                                         0 496
                                                       506
                                    0
```

```
## Significant (10% level)
                                    0
## Significant (5% level)
                                  506
                                              5
                                         0
                                                  506
                                                             0
                                                                  0
## Significant (1% level)
                                                         0 506 506 506
##
##
   ----Variance parameter-----
##
## Spatial effects (residuals):
##
                         (Intercept)
## random SE
                           6.6961726
##
  Moran.I/max(Moran.I)
                           0.6708208
##
##
  Non-spatially varying coefficients:
##
                     CRIM
                                               INDUS CHAS NOX RM AGE
   random_SE 2.947543e-08 0.008130433 2.735123e-07
##
##
##
  ----Error statistics----
##
                         stat
## resid SE
                   4.2790185
## adjR2(cond)
                   0.7797353
## rlogLik
               -1537.6449527
## AIC
                3103.2899053
## BIC
                3162.4614187
```

Spatially varying coefficient modeling

This package implements a ME-based spatially varying coefficient (M-SVC) model (Murakami et al., 2017), which is formulated as

0

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i), \quad \epsilon_i \sim N(0, \sigma^2),$$

This model defines the k-th coefficient at site i by $\beta_{i,k}$ [constant mean b_k] + [spatially varying component $f_{MC,k}(s_i)$]. Geographically weighted regression (GWR) is known as another SVC estimation approach. Major advantages of the M-SVC modeling approach over GWR is as follows:

- The M-SVC model estimates spatial scale (or the MC value) of each SVC whereas the classical GWR assumes a common scale across SVCs
- The M-SVC model can assume SVCs on some covariates and constant coefficients on the others. It is acheived by simply assuming $\beta_{i,k} = b_k$
- This model is faster and available for very large samples. In addition, the model is free from memory limitation if the besf_vc function is used (see Section 4).
- Model selection (i.e., consant coefficient or SVC) is implemented without losing its computational efficiency

Here is a sample code estimating a SVC model without coefficients type selection. In the code, x specifies covariates assumming SVCs while xconst specifies covariates assuming constant coefficients. If x_sel = FALSE, types of coefficients on x are fixed.

```
<- boston.c[, "CMEDV"]</pre>
У
         <- boston.c[,c("CRIM", "AGE")]</pre>
х
         <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]</pre>
xconst
         <- boston.c[,c("LON","LAT")]</pre>
           <- meigen(coords=coords)</pre>
meig
res
         <- resf vc(y=y,x=x,xconst=xconst,meig=meig, x sel = FALSE )</pre>
```

```
## [1] "----" Iteration 1 -----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3120.605"
## [1] "----" Iteration 2 ----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.252"
## [1] "----" Iteration 3 ----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.139"
## [1] "-----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.138"
res
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_sel = FALSE, meig = meig)
## ----Spatially varying coefficients on x (summary)----
## Coefficient estimates:
   (Intercept) CRIM
                                        AGE
## Min. :12.03 Min. :-3.29294 Min. :-0.14986
## 1st Qu.:13.99 1st Qu.:-0.19941 1st Qu.:-0.08377
## Median: 15.06 Median: 0.04993 Median: -0.06780
## Mean :15.70 Mean : 0.05902 Mean :-0.06582
## 3rd Qu.:17.31 3rd Qu.: 0.36587
                                    3rd Qu.:-0.04710
## Max. :20.46 Max. : 1.83866
                                   Max. : 0.04298
##
## Statistical significance:
                         Intercept CRIM AGE
## Not significant
                               0 416 147
## Significant (10% level)
                               0
                                    27 40
## Significant (5% level)
                                   17 99
                              190
## Significant (1% level)
                              316
                                    46 220
##
## ----Constant coefficients on xconst-----
##
                              SE t_value
             Estimate
           0.03202068 0.013219003 2.422322 1.582817e-02
## ZN
## DIS
          -1.47514930 0.334360238 -4.411856 1.292875e-05
           0.36064288 0.090818317 3.971037 8.368693e-05
## RAD
          -36.21088316 5.134427150 -7.052565 6.925571e-12
## NOX
## TAX
          -0.01242296 0.003502523 -3.546862 4.320840e-04
           6.49212566 0.326197980 19.902409 0.000000e+00
## PTRATIO -0.52573980 0.151594626 -3.468064 5.762765e-04
          0.02091202 0.003094117 6.758638 4.477529e-11
## B
##
```

```
## ----Variance parameters-----
##
## Spatial variation (coefficients on x):
                    (Intercept) CRIM
##
                                              AGE
## random_SE
                      3.9039832 1.59443322 0.05746111
## Moran.I/max(Moran.I) 0.6627375 0.04502003 0.06267778
## ----Error statistics-----
##
                     stat
## resid_SE
                3.6706778
## adjR2(cond)
                0.8375658
## rlogLik
           -1501.0302460
## AIC
             3038.0604921
## BIC
             3114.1381521
```

Estimated SVCs can be plotted as

plot_s(res,0) # Spatially varying intercept

Spatially.dependent.intercept

plot_s(res,1) # 1st SVC

CRIM

plot_s(res,2) # 2nd SVC

AGE

On the other hand, by default, the resf_vc function selects constant or SVCs through a BIC minimization (i.e., x_sel=TRUE by default). Here is a code:

```
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig )</pre>
```

```
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3120.605"
## [1] "-----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3107.452"
## [1] "-----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3106.939"
## [1] "-----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3106.939"
res
## Call:
## resf_vc(y = y, x = x, xconst = xconst, meig = meig)
## ----Spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
   (Intercept) CRIM
                                     AGE
## Min. :11.17 Min. :-0.1814 Min. :-0.14114
## 1st Qu.:12.96 1st Qu.:-0.1814 1st Qu.:-0.07938
## Median: 14.24 Median: -0.1814 Median: -0.06451
## Mean :14.75 Mean :-0.1814 Mean :-0.06198
## 3rd Qu.:16.64 3rd Qu.:-0.1814 3rd Qu.:-0.04730
## Max. :19.40 Max. :-0.1814 Max. : 0.05117
##
## Statistical significance:
                       Intercept CRIM AGE
## Not significant
                                 0 123
                             0
## Significant (10% level)
                             0
                                 0 48
                             255 0 100
## Significant (5% level)
## Significant ( 1% level)
                             251 506 235
##
## ----Constant coefficients on xconst-----
            Estimate SE t_value p_value
##
## ZN
          0.03473113 0.013895397 2.499470 1.278897e-02
## DIS
         -1.34121745 0.325351808 -4.122361 4.457036e-05
          0.29200513 0.082384859 3.544403 4.341877e-04
## RAD
         -29.36631221 4.942673724 -5.941382 5.622099e-09
## NOX
## TAX
         -0.01371011 0.003512961 -3.902723 1.094893e-04
          6.26622242 0.340562626 18.399619 0.000000e+00
## PTRATIO -0.53923932 0.151877936 -3.550478 4.245538e-04
          0.01971973 0.003090429 6.380904 4.338061e-10
## B
## ----Variance parameters-----
##
```

```
## Spatial variation (coefficients on x):
##
                      (Intercept) CRIM
                                             AGE
## random SE
                                    0 0.05169206
                         3.715171
                         0.789340
## Moran.I/max(Moran.I)
                                   NA 0.04975523
##
##
  ----Error statistics-----
##
                      stat
## resid_SE
                  4.0311657
## adjR2(cond)
                 0.8048959
## rlogLik
              -1503.6570917
## AIC
               3039.3141834
## BIC
               3106.9387701
```

Spatially and non-spatially varying coefficient modeling

The spatially and non-spatially varying coefficient (SNVC) model is defined as

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i) + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),$$

This model defines the k-th coefficient as $\beta_{i,k}$ = [constant mean b_k] + [spatially varying component $f_{MC,k}(s_i)$] + [non-spatially varying component $f(x_{i,k})$]. Murakami and Griffith (2020) showed that, unlike SVC models that tend to be unstable due to spurious correlation among SVCs (see Wheeler and Tiefelsdorf, 2005), this SNVC model is stable and quite robus against spurious correlations. So, I recommend using the SNVC model even if the analysis perpose is estimating SVCs.

A SNVC model is estimated by specifying $x_nvc = TRUE$ in the resf_vc function as follows:

```
<- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE)</pre>
res
## [1] "-----" Iteration 1 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 3118.893"
  [1] "-----" Iteration 2 -----"
## [1] "1/5"
  [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 3110.52"
## [1] "-----" Iteration 3 -----"
## [1] "1/5"
## [1] "2/5"
  [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 3110.519"
      "----" Iteration 4 -----"
## [1]
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
```

```
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 3110.519"
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, meig = meig)
## ----Spatially and non-spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
   (Intercept)
                     CRIM
                                      AGE
## Min. :13.7 Min. :-0.1837 Min. :-0.16218
## 1st Qu.:13.7
               1st Qu.:-0.1837 1st Qu.:-0.07425
## Median :13.7 Median :-0.1837 Median :-0.05491
## Mean :13.7
                Mean :-0.1837 Mean :-0.04870
## 3rd Qu.:13.7
                3rd Qu.:-0.1837 3rd Qu.:-0.02589
## Max. :13.7
               Max. :-0.1837
                                Max. : 0.08386
##
## Statistical significance:
                        Intercept CRIM AGE
                            0
## Not significant
                                   0 169
## Significant (10% level)
                              0
                                    0 45
## Significant (5% level)
                              506
                                  0 85
## Significant (1% level)
                              0 506 207
##
## ----Constant coefficients on xconst-----
##
            Estimate
                        \mathtt{SE} \quad \mathtt{t\_value}
                                             p_value
## ZN
           0.03621116 0.013711132 2.641004 8.549279e-03
## DIS
          -1.65624943 0.259776736 -6.375665 4.462537e-10
          0.30482417 0.081633871 3.734040 2.122317e-04
## RAD
         -27.93544897 4.891161057 -5.711415 2.021073e-08
## NOX
          -0.01337477 0.003493264 -3.828732 1.467694e-04
## TAX
## RM
           6.37243874 0.343764356 18.537229 0.000000e+00
## PTRATIO -0.56324942 0.150692553 -3.737739 2.092265e-04
           0.01926817 0.003112574 6.190429 1.336720e-09
## ----Variance parameters-----
## Spatial variation (coefficients on x):
##
                      (Intercept) CRIM
                                            AGE
## random_SE
                      0.000131872
                                 0 0.06316542
## Moran.I/max(Moran.I) 0.341214217 NA 0.23319012
## Non-spatial variation (coefficients on x):
           CRIM AGE
## random_SE
             0 0
##
## ----Error statistics------
                      stat
## resid_SE
                 4.0639129
## adjR2(cond)
                 0.8017131
## rlogLik -1505.4474478
## AIC
             3042.8948957
```

BIC 3110.5194824

This model assume SNVC on x and constant coefficients on xconst. By default, coefficient type (SNVC, SVC, NVC, or constant) on x is selected.

It is also possible to assume SNVCs on x and NVCs on xcnost by specifying xconst_nvc = TRUE as follows:

```
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE, xconst_nvc=TRUE)
```

```
## [1] "----" Iteration 1 -----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3023.44"
## [1] "----" Iteration 2 ----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3013.009"
## [1] "-----" Iteration 3 -----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.86"
## [1] "----" Iteration 4 ----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
```

```
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.858"
## [1] "-----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.857"
res
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, xconst_nvc = TRUE,
##
      meig = meig)
##
## ----Spatially and non-spatially varying coefficients on x (summary)----
## Coefficient estimates:
                                         AGE
##
    (Intercept)
                        CRIM
          :34.99
## Min.
                 Min. :-2.1670 Min.
                                           :-0.07495
## 1st Qu.:40.95 1st Qu.:-0.6135 1st Qu.:-0.07495
## Median :42.29
                 Median :-0.4158
                                   Median :-0.07495
## Mean
         :42.44
                  Mean :-0.4289
                                   Mean
                                           :-0.07495
## 3rd Qu.:43.78
                                    3rd Qu.:-0.07495
                   3rd Qu.:-0.2156
## Max.
          :49.95 Max.
                         : 0.5207
                                    Max.
                                           :-0.07495
##
## Statistical significance:
##
                          Intercept CRIM AGE
## Not significant
                                 0 394
## Significant (10% level)
                                  0
                                     15
## Significant (5% level)
                                  0
                                     29
## Significant ( 1% level)
                                     68 506
                                506
##
## ----Non-spatially varying coefficients on xconst (summary)----
##
## Coefficient estimates:
                                                           NOX
##
         7.N
                          DIS
                                          RAD
          :0.02512
## Min.
                    Min. :-1.107
                                    Min.
                                            :0.6287
                                                             :-23.30
                                                      Min.
                    1st Qu.:-1.107
                                     1st Qu.:0.6287
## 1st Qu.:0.02512
                                                      1st Qu.:-19.37
## Median :0.02512 Median :-1.107
                                     Median :0.6287
                                                      Median :-18.48
```

```
Mean
          :0.02512
                  Mean :-1.107
                                   Mean
                                          :0.6287
                                                   Mean :-18.55
   3rd Qu.:0.02512 3rd Qu.:-1.107
##
                                   3rd Qu.:0.6287
                                                   3rd Qu.:-17.57
         :0.02512 Max. :-1.107
                                                   Max. :-14.47
  Max.
                                   Max.
                                         :0.6287
##
        TAX
                          RM
                                       PTRATIO
                                                          В
## Min.
          :-0.01512
                   Min.
                           :0.5988
                                    Min.
                                          :-0.6371
                                                    Min.
                                                           :0.01371
  1st Qu.:-0.01512
                   1st Qu.:0.8372
                                   1st Qu.:-0.6371
                                                     1st Qu.:0.01371
##
## Median :-0.01512 Median :1.0394
                                   Median :-0.6371
                                                     Median :0.01371
        :-0.01512 Mean :1.2054
                                    Mean :-0.6371
## Mean
                                                     Mean
                                                           :0.01371
## 3rd Qu.:-0.01512
                    3rd Qu.:1.3012
                                    3rd Qu.:-0.6371
                                                     3rd Qu.:0.01371
## Max. :-0.01512 Max. :3.2979
                                    Max. :-0.6371
                                                     Max.
                                                          :0.01371
## Statistical significance:
                         ZN DIS RAD NOX TAX RM PTRATIO
## Not significant
                          0
                              0
                                 0 185
                                         0 414
                                                       0
## Significant (10% level) 506
                                 0 217
                                         0 27
                                                    0
                                                       0
                              0
## Significant (5% level)
                        0
                             0 0 40 0 23
                                                    0
                                                       0
## Significant (1% level)
                          0 506 506 64 506 42
                                                  506 506
## ----Variance parameters-----
## Spatial variation (coefficients on x):
                     (Intercept)
## random_SE
                       4.0639969 0.99802716
                                            0
## Moran.I/max(Moran.I) 0.3274852 0.07446611 NA
##
## Non-spatial variation (coefficients on x):
                 CRIM AGE
## random_SE 0.03403638
##
## Non-spatial variation (coefficients on xconst):
##
           ZN DIS RAD
                          NOX TAX
                                        RM PTRATIO B
## random_SE 0
                0
                    0 1.496749
                               0 0.2001897
##
## ----Error statistics-----
##
                     stat
## resid SE
                 3.1950502
## adjR2(cond)
                 0.8766801
## rlogLik
             -1447.2765888
## AIC
              2932.5531776
## BIC
              3012.8573743
```

By default, coefficient type (SNVC, SVC, NVC, or constant) on x and those (NVC or const) on xconst are selected. The estimated SNVCs are plotted as follows:

```
plot_s(res,0)  # Spatially varying intercept
```

Spatially.dependent.intercept

CRIM

NVCs on xconst is plotted by specifying xtype="xconst" in the plot_n function as below. The solid line denotes the estimated NVC and the grey area denotes the 95 percent confidence interval:

plot_n(res,4,xtype="xconst")#NVC in the 4-th NVC

plot_n(res,6,xtype="xconst")#NVC in the 6-th NVC

Models with group effects

Outline

Two group effects are available in this package:

- 1. Spatially dependent group effects. Spatial dependence among groups are modeled instead of modeling spatial dependence among individuals.
- 2. Spatially independent group effects assuming independence across groups (usual group effects).

They are estimated in the resf and resf_vc functions. When considering both these effects, the resf function estimates the following model (if no NVC is assumed):

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(g_{I(0)}) + \sum_{k=1}^{H} \gamma(g_{I(k)}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

where $g_{I(0)}, g_{I(1)}, \dots, g_{I(H)}$ represent group variables. $f_{MC}(g_{I(0)})$ denotes spatially dependent group effects whereas $\gamma(g_{I(h)})$ denotes spatially independent group effects for the h-th group variable. On the other hand, the resf_vc function can estimate the following model considering these two effects (again, no NVC is assumed):

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(g_{I(0)}) + \sum_{h=1}^{H} \gamma(g_{I(h)}) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(g_{i(0)}), \quad \epsilon_i \sim N(0, \sigma^2),$$

Below, multilevel modeling, small area estimation, and panel data analysis are demonstrated.

Multilevel model

Data often has multilevel structure. For example, school achievement of individual student changes depending on class and school. Condominium unit price depends not only on unit attributes but also building attributes. Multilevel modeling is required to explicitly consider such multilevel structure behind data and perform spatial regressions.

This section demonstrates estimation the model considering the two group effects using the resf function. The data used is the boston housing datasets that consist of 506 samples in 92 towns, which are regarded as groups. To model spatially dependent group effects, Moran eigenvectors are defined by groups. It is done by specifying s_id in the meigen function using a group variable, which is the town name (TOWNNO) in this case, as follows:

```
xgroup<- boston.c[,"TOWNNO"]
coords<- boston.c[,c("LON","LAT")]
meig_g<- meigen(coords=coords, s_id=xgroup)</pre>
```

When additionally estimating spatially independent group effects, the user needs to specify xgroup in the resf function by one or more group variables as follows:

```
## CRIM
               -0.04596392 0.02505503 -1.8345188 6.728064e-02
## 7.N
                0.03285021 0.02313784 1.4197611 1.564153e-01
## INDUS
                0.03549188 0.11980486 0.2962474 7.671869e-01
## CHAS
               -0.62561231 0.72381491 -0.8643264 3.878995e-01
## NOX
               -26.38632673 3.88238119 -6.7964286 3.668488e-11
                6.30273567 0.29409796 21.4307357 0.000000e+00
## RM
## AGE
               -0.06730232 0.01048068 -6.4215611 3.637544e-10
##
## ----Variance parameter-----
##
##
  Spatial effects (residuals):
##
                       (Intercept)
## random SE
                          5.074794
## Moran.I/max(Moran.I)
                          0.812936
##
## Group effects:
##
            xgroup
  ramdom_SE 4.4404
##
##
##
  ----Error statistics-----
##
                       stat
## resid_SE
                  3.2429178
## adjR2(cond)
                  0.8740022
## rlogLik
              -1465.8450362
## AIC
               2955.6900724
## BIC
               3006.4085124
```

The estimated independent group effects are extracted as

res\$b_g[[1]][1:5,] # Estimates in the first 5 groups

```
## Estimate SE t_value

## xgroup_0 2.165726 2.061093 1.0507657

## xgroup_1 3.747633 1.783543 2.1012294

## xgroup_2 6.544205 1.659184 3.9442318

## xgroup_3 2.431558 1.431325 1.6988163

## xgroup_4 1.036033 1.181672 0.8767521
```

Small area estimation

Small area estimation (SAE; Ghosh and Rao, 1994) is a statistical technique estimating parameters for small areas such as districts and municipality. SAE is useful to obtain reliable small area statistics from noisy data. The resf and resf_vc functions are available for SEA (see As explained in Murakami 2020 for further detail).

The boston housing datasets consists of 506 samples in 92 towns. This section estimates the standard housing price in the I-th towns by assuming the following model:

$$y_I = \hat{y}_I + \epsilon_I, \quad \epsilon_I \sim N(0, \frac{\sigma^2}{N_I})$$

where $\hat{y}_I = \sum_{i=1}^{N_I} \frac{\hat{y}_i}{N_I}$. This model decomposes the obtarved mean house price y_I in the I-th town into the standard price \hat{y}_I and noise ϵ_I , which reduces as the number of samples in the I-th town increases. The standard price is defined by an aggregate of the predictors \hat{y}_i by individuals.

The above equation suggests that, if \hat{y}_i is predicted using the resf or resf_vc function and aggregated into the towns, we can estimate the standard house price. Here is a sample code for the individual level prediction:

```
r_res <-resf(y=y, x=x, meig=meig_g, xgroup=xgroup)
pred <-predict0(r_res, x0=x, meig0=meig_g, xgroup0=xgroup)
pred$pred[1:5,]</pre>
```

```
## pred xb sf_residual xgroup

## 1 23.70932 22.71407 -1.170482 2.165726

## 2 24.57615 22.21874 -1.390220 3.747633

## 3 30.58942 28.23201 -1.390220 3.747633

## 4 33.24998 28.19959 -1.493814 6.544205

## 5 33.62206 28.57167 -1.493814 6.544205
```

<- st_as_sf(boston.tr)

boston.tr2 <- as_Spatial(b1_dissolve)</pre>

b1_dissolve <- b1 %>% group_by(TOWNNO) %>% summarize() #dissolve

As shown above, the predict0 function returns predicted values (pred), predicted trends (xb), and predicted residual spatial components (sf_residuals), and predicted group effects (xgroup). Then, these individual-level variables are aggregated into towns. Here is a code:

```
adat <- aggregate(data.frame(y, pred$pred),by=list(xgroup),mean)
adat[1:5,]</pre>
```

```
##
     Group.1
                          pred
                                     xb sf_residual
                                                       xgroup
           0 24.00000 23.70932 22.71407
## 1
                                          -1.170482 2.165726
## 2
           1 28.15000 27.58279 25.22537
                                          -1.390220 3.747633
## 3
           2 32.76667 31.89132 26.84093
                                          -1.493814 6.544205
## 4
           3 19.42857 19.36679 18.51187
                                          -1.576641 2.431558
## 5
           4 16.71364 16.72781 17.10793
                                          -1.416151 1.036033
```

The outputs are the predicted standard price (pred), trend (xb), spatially dependent group effects (sf_residual), and spatially independent group effects (xgroup) by the towns.

To map the result, spatial polygones for the towns are loaded and combined with our estimates:

```
require(rgdal)
require(rgeos)
require(dplyr)
boston.tr <- readOGR(system.file("shapes/boston_tracts.shp",package="spData")[1])
## OGR data source with driver: ESRI Shapefile
## Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.
## with 506 features
## It has 36 fields</pre>
```

Here are the maps of our estimates. In the figure, "y" denotes the observed mean prices and "pred" denotes our predicted standard price. While they are similar, there are some differences in towns with high housing prices.

boston.tr2@data<- b2_dat2[order(b2_dat2\$id),]
spplot(boston.tr2,c("y","pred"), lwd=0.3)</pre>

Here are elements in the predicted values. The maps below show that each element explains different things each other:

spplot(boston.tr2,c("xgroup","sf_residual"), lwd=0.3)

Note that the resf_vc function is also available for SVC model-based SAE. Here is a sample code:

```
rv_res <- resf_vc(y=y, x=x, meig=meig_g, xgroup=xgroup, x_sel=FALSE)</pre>
```

```
## [1] "-----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3074.297"
## [1] "-----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3040.896"
## [1] "-----" Iteration 3 -----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
```

```
## [1] "7/9"
  [1] "8/9"
##
  [1] "9/9"
## [1] "BIC: 3039.588"
  [1]
       "----" Iteration 4 -----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3039.571"
## [1] "-----" Iteration 5 -----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3039.571"
pred_vc <- predict0_vc(rv_res, x0=x, meig0=meig_g, xgroup0=xgroup)</pre>
adat_vc <- aggregate(data.frame(y, pred_vc$pred), by=list(xgroup), mean)</pre>
adat_vc[1:5,]
##
     Group.1
                          pred
                                      xb sf_residual
                    У
                                                       xgroup
## 1
           0 24.00000 23.67839 23.12533
                                          -1.125536 1.678592
## 2
           1 28.15000 27.81181 27.44629
                                           -1.966846 2.332368
## 3
           2 32.76667 32.28629 31.09675
                                          -2.552106 3.741645
## 4
           3 19.42857 19.25653 18.45742
                                          -2.506070 3.305184
## 5
           4 16.71364 16.68358 15.40519
                                          -1.025996 2.304387
```

Longitudinal/panel data analysis

The resf and resf_vc functions are also available for longitudinal or panel data analysis with/without S(N)VC (see Yu et al., 2020). Although this section takes resf as an example, resf_vc function-based panel analysis is implemented in the same way.

For illustration, we use a panel data of 48 US states from 1970 to 1986, which is published in the plm package (Croissant and Millo, 2008). Because our approach uses spatial coordinates by default, we added center spatial coordinates (px and py) to the panel data. Here is the code:

```
require(plm)
require(spData)

data(Produc, package = "plm")
data(us_states)
us_states2 <- data.frame(us_states$GEOID,us_states$NAME,st_coordinates(st_centroid(us_states)))
names(us_states2)[3:4]<- c("px","py")</pre>
```

```
us_states3 <- us_states2[order(us_states2[,1]),][-8,]</pre>
us_states3\state<- unique(Produc[,1])
           <- na.omit(merge(Produc,us_states3[,c(3:5)],by="state",all.x=TRUE,sort=FALSE))</pre>
pdat0
pdat
           <- pdat0[order(pdat0$state,pdat0$year),]</pre>
pdat[1:5,]
##
       state year region
                              pcap
                                       hwy
                                              water
                                                       ntil
                                                                   рс
                                                                        gsp
                                                                                emp
                        6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
## 1 ALABAMA 1970
## 2 ALABAMA 1971
                        6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
## 3 ALABAMA 1972
                        6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
## 4 ALABAMA 1973
                        6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
## 5 ALABAMA 1974
                        6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
##
     unemp
                  рх
## 1
       4.7 -86.82645 32.7926
## 2
       5.2 -86.82645 32.7926
       4.7 -86.82645 32.7926
## 4
       3.9 -86.82645 32.7926
       5.5 -86.82645 32.7926
## 5
```

Here are the first 5 rows of the data:

```
pdat[1:5,]
```

```
##
       state year region
                                       hwy
                                             water
                                                      util
                                                                              emp
                             pcap
                                                                  рс
                                                                       gsp
## 1 ALABAMA 1970
                       6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
## 2 ALABAMA 1971
                       6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
## 3 ALABAMA 1972
                       6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
## 4 ALABAMA 1973
                       6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
## 5 ALABAMA 1974
                       6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
##
     unemp
                  рх
## 1
       4.7 -86.82645 32.7926
## 2
       5.2 -86.82645 32.7926
## 3
       4.7 -86.82645 32.7926
## 4
       3.9 -86.82645 32.7926
## 5
       5.5 -86.82645 32.7926
```

Following a vignette of the plm package, this section uses logged gross state product as explained variables (y) and logged public capital stock (log_pcap), logged private capital stock (log_pc), logged labor input measured by the employment in non-agriculturural payrolls (log_emp), and unemployment rate (unemp) as covariables.

Because spatial coordinates are defined by states, Moran eigenvectors must be extracted by states by specifying s_id in the meigen function as follows:

```
coords<- pdat[,c("px", "py")]
s_id <- pdat$state
meig_p<- meigen(coords,s_id=s_id)# Moran eigenvectors by states</pre>
```

Currently, the following spatial panel models are available: pooling model (no group effects); individual random effects model (state-level group effects)l time random effects model (year-level group effects); two-way random effects model (state and year-level group effects). All these models consider residual spatial dependence. Here are the codes implementing these models:

```
pmod0 <- resf(y=y,x=x,meig=meig_p) # pooling model

xgroup<- pdat[,c("state")]
pmod1 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# individual model

xgroup<- pdat[,c("year")]
pmod2 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# time model

xgroup<- pdat[,c("state","year")]
pmod3 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# two-way model</pre>
```

Among these models, the two-way model indicates the smallest BIC. The output is summarized as pmod3

```
## Call:
## resf(y = y, x = x, xgroup = xgroup, meig = meig_p)
##
## ----Coefficients-----
                            SE
##
                                        {	t t}_{	t value}
                  Estimate
                                                     p_value
## (Intercept) 2.266474701 0.157685884 14.3733519 0.000000e+00
## log_pcap 0.007184249 0.023530809 0.3053125 7.602129e-01
             0.292337974 0.022208188 13.1635222 0.000000e+00
## log_pc
             0.732917859 0.024809857 29.5413980 0.000000e+00
## log_emp
## unemp
             -0.004356158 0.001066694 -4.0837929 4.906829e-05
##
## ----Variance parameter-----
##
## Spatial effects (residuals):
##
                      (Intercept)
## random_SE
                        0.1556041
## Moran.I/max(Moran.I)
                        0.3345162
##
## Group effects:
##
                state
                            year
## ramdom_SE 0.09493422 0.02433154
##
## ----Error statistics-----
##
                      stat
## resid SE
               3.381422e-02
## adjR2(cond) 9.988953e-01
## rlogLik
             1.408381e+03
## AIC
              -2.796762e+03
             -2.749718e+03
## BIC
The estimted group effects are displayed as follows:
```

```
s_g <- pmod3$b_g[[1]]
s_g[1:5,]# State-level group effects</pre>
```

```
t_g <- pmod3$b_g[[2]]
t_g[1:5,] # Year-level group effects
##
                  Estimate
                                     SE
                                           t_value
## year_1970 -0.006015746 0.011091157 -0.5423912
## year_1971 0.002902469 0.010569162
                                         0.2746167
## year_1972  0.013282362  0.010416784
                                         1.2750924
## year_1973 0.021949749 0.010279994 2.1351909
## year_1974 -0.009852395 0.009679261 -1.0178872
For validation, the same panel model (but without spatial dependence) is estimated using the plm function:
pm0
       <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
               data = pdat, effect="twoways",model="random")
pm0
##
## Model Formula: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
##
## Coefficients:
   (Intercept)
                  log(pcap)
                                log(pc)
                                            log(emp)
                                                            unemp
                  0.0178529
##
     2.3634993
                               0.2655895
                                           0.7448989
                                                       -0.0045755
s_g_plm<- ranef(pm0,"individual")</pre>
t_g_plm<- ranef(pm0,"time")</pre>
```

The coefficient estimates are similar. The plots below compare estimated group effects. Estimated state-level effects have difference becourse our models consider residual spatial dependence whereas plm does not (by default). Time effects are quite similar.

```
plot(s_g_plm,s_g[,1],xlab="plm",ylab="resf")
abline(0,1,col="red")
```



```
plot(t_g_plm,t_g[,1],xlab="plm",ylab="resf")
abline(0,1,col="red")
```


Spatially filtered unconditional quantile regression

While the usual (conditional) quantile regression (CQR) estimates the influence of x_k on the τ -th conditional quantile of y, $q_{\tau}(y|x_k)$, the unconditional quantile regression estimates the influence of x_k on the "unconditional" quantile of y, $q_{\tau}(y)$ (Firpo et al., 2009).

Suppose that y and x_k represent land price and accessibility respectively. UQR estimates the influence of accessibility on land price by quantile; it is interpretable and useful for e.g. hedonic land price analysis. By contrast, this interpretation does not hold for CQR because it estimates the influence of accessibility on conditional land prices (land price conditional on explanatory variables). Higher conditional land price does not mean higher land price, but rather, it means overprice relative to the price expected by the explanatory variables. Thus, CQR has difficulty in its interpretation in some cases including hedonic land price modeling.

The spatail filter UQR (SF-UQR) model (Murakami and Seya, 2019), which is implemented in this package, is formulated as

$$q_{\tau}(y_i) = \sum_{k=1}^{K} x_{i,k} \beta_{k,\tau} + f_{MC,\tau}(s_i) + \epsilon_{i,\tau}, \quad \epsilon_{i,\tau} \sim N(0, \sigma_{\tau}^2),$$

This model is a UQR considering spatial dependence.

The resf_qr function implements this model. Below is a sample code. If boot=TRUE in resf_qr, a semiparametric bootstrapping is performed to estimate the standard errors of the regression coefficients. By default, this function estimates models at 0.1, 0.2,..., 0.9 quantiles.

```
## [1] "----- Complete: tau=0.7 -----"
## [1] "---- Complete: tau=0.8 -----"
## [1] "---- Complete: tau=0.9 -----"
```

Here is a summary of the estimation result:

res

```
## Call:
## resf_qr(y = y, x = x, meig = meig, boot = TRUE)
##
  ----Coefficients-----
                                              tau=0.3
##
                                                           tau=0.4
                                                                         tau=0.5
                   tau=0.1
                                tau=0.2
               23.86841970
                            29.16185736 26.550125353 21.16263694
                                                                    17.151053980
## (Intercept)
## CRIM
               -0.36845124
                            -0.21172051
                                         -0.106949379
                                                       -0.08357496
                                                                    -0.070290258
## ZN
               -0.01169653 -0.01627637
                                        -0.009652286
                                                       -0.01947512
                                                                    -0.008198579
## INDUS
                0.25009373
                             0.03992002
                                        -0.111010420
                                                      -0.01521113
                                                                    -0.096468769
## CHAS
                                          0.438428954
                                                        0.26777796
                0.98647836
                             1.28770409
                                                                   -0.048278485
              -32.89857783 -23.60303480 -15.109338348 -12.70090129 -11.263158727
## NOX
## RM
                             0.49201634
                                          1.169115918
                                                        2.21382993
                                                                     3.004059676
                0.71728433
## AGE
                0.01977978 -0.05087471 -0.082548477
                                                       -0.11192561
                                                                   -0.105681036
##
                    tau=0.6
                                 tau=0.7
                                             tau=0.8
                                                          tau=0.9
## (Intercept) 13.999671526
                             11.28433168 -23.3939330 -57.24239068
##
  CRIM
               -0.064412593
                             -0.07823561
                                         -0.1876252
                                                     -0.18934294
## ZN
                0.007962903
                              0.01009742
                                           0.1635369
                                                       0.03890142
## INDUS
               -0.167039581
                             -0.30344029
                                          -0.9074079
                                                      -0.49797629
## CHAS
               -1.665298913
                             -1.51518801
                                          -3.8773852
                                                      -0.04635798
## NOX
              -11.405913169 -20.36309658 -39.1980207 -41.26421537
## RM
                3.730680883
                              5.25253569
                                          13.7698457
                                                      19.62200618
## AGE
               -0.092068861
                             -0.07567382
                                          -0.0587608
                                                      -0.03904752
##
  ----Spatial effects (residuals)-----
##
                                          tau=0.2
                                                    tau=0.3
                                tau=0.1
                                                              tau=0.4
## spcomp SE
                              7.1522586 8.1254770 5.7952363 4.4135132 4.7198329
  spcomp_Moran.I/max(Moran.I) 0.2375865 0.3228553 0.3239407 0.3650454 0.5096847
##
                                tau=0.6
                                          tau=0.7
                                                     tau=0.8
## spcomp_SE
                              4.8818059 6.3633073 16.9989855 16.3826940
##
  spcomp Moran.I/max(Moran.I) 0.5690447 0.6935049 0.6757823 0.7203891
##
   ----Error statistics-----
##
                                tau=0.2 tau=0.3
                      tau=0.1
                                                   tau=0.4
                                                             tau=0.5
                    6.4395412 6.2086846 5.169030 4.7999618 4.5977255 4.8160068
## resid SE
  quasi_adjR2(cond) 0.6007294 0.6828421 0.666506 0.6183801 0.6229795 0.6121279
##
                      tau=0.7
                                 tau=0.8
                                            tau=0.9
## resid SE
                    5.6288391 12.2961444 18.6716254
## quasi_adjR2(cond) 0.6153019 0.6741455 0.4582676
```

The estimated coefficients can be visualized using the plot_qr function as below. The numbers 1 to 5 specify which coefficients are plotted (1: intercept). In each panel, solid lines are estimated coefficients and gray areas are their 95% confidence intervals.

```
plot_qr( res, 1 )
```


plot_qr(res, 2)

plot_qr(res, 4)

plot_qr(res, 5)

Standard errors and the scaled Moran coefficient (Moran.I/max(Moran.I)), which is a measure of spatial scale by quantile, are plotted if par = "s" is added. Here are the plots:

spcomp_Moran.I/max(Mc

Spatial prediction

This package provides functions for ESF/RE-ESF-based spatial interpolation minimizing the expected prediction error (just like kriging). RE-ESF approximates a Gaussian process or the kriging model, which has actively been used for spatial prediction, and ESF is a special case (Murakami and Griffith, 2015). Because ESF and RE-ESF perform approximations, their spatial predictions might be less accurate relative to kriging. Instead, they are faster and available for very large samples.

The predict0 function is used for prediction based on resf or besf function while the predict0_vc function is used for resf_vc or besf_vc function (see Section 4 for besf and besf_vc functions).

In this tutorial, the Lucas housing price data with sample size being 25,357 is used. In the prediction, "price" is used as explained variables, and "age", "rooms", "beds", "syear" are used as covariates.

```
require(spData)
data(house)
dat <- data.frame(coordinates(house), house@data[,c("price","age","rooms","beds","syear")])</pre>
```

20,000 randomly selected samples are used for model estimation and the other 5,357 samples are used for accuracy evaluation. The code below creates the data for observation sites (coords, y, x) and those for unobesrved sites (coords0, y0, x0):

```
samp <- sample(dim(dat)[1], 20000)
coords<- dat[samp, c("long", "lat")]
y <- log(dat[samp, "price"])
x <- dat[samp, c("age", "rooms", "beds", "syear")]
coords0<- dat[-samp, c("long", "lat")]</pre>
```

```
y0 <- log(dat[-samp, "price"]) # for valudation
x0 <- dat[-samp, c("age", "rooms", "beds", "syear")]
```

The prediction is done in two steps: (1) evaluation of Moran eigenvectors at prediction sites using the meigen0 function; (2) prediction using the predict0 function. Below is a sample code based on the rest function:

```
start.time1<-proc.time()##### just for CP time evaluation
meig <- meigen_f(coords)
meig0 <- meigen0( meig=meig, coords0=coords0 )
mod <- resf( y = y, x = x, meig = meig )
pred0 <- predict0( mod = mod, x0 = x0, meig0=meig0 )
end.time1<- proc.time()##### just for CP time evaluation</pre>
```

Note that the first and the last lines are just for computing time evaluation. NVCs are considered if adding NVC =TRUE in the resf function. The meigen_f function is used for fast computation.

The outputs shown below include predicted values (pred), predicted trend (xb), and predicted residual spatial component (sf_residuals).

```
pred0$pred[1:5,]
```

[1] "2/5" ## [1] "3/5" ## [1] "4/5" ## [1] "5/5"

On the other hand, here is a code for a spatial prediction based on a S(N)VC model:

```
start.time2<-proc.time()##### just for CP time evaluation
        <- meigen_f(coords)
meig
        <- meigen0( meig=meig, coords0=coords0 )</pre>
meig0
mod2
          <- resf_vc( y = y, x = x, meig = meig )
## [1] "----" Iteration 1 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13720.537"
## [1] "----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13300.676"
## [1] "-----" Iteration 3 -----"
## [1] "1/5"
```

```
## [1] "BIC: 13297.387"
## [1] "-----" Iteration 4 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13297.328"
## [1] "----" Iteration 5 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13297.328"
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13297.328"
         <- predict0_vc( mod = mod2, x0 = x0, meig0=meig0 )</pre>
end.time2<- proc.time()##### just for CP time evaluation
NVCs are considered by adding NVC =TRUE in the resf_vc function. Here are the output variables:
pred02$pred[1:5,]
                     xb sf_residual
          pred
## 15 11.37046 11.41516 -0.04470537
## 19 11.29843 11.33436 -0.03592632
## 25 11.37155 11.40121 -0.02966166
## 28 11.94692 11.97633 -0.02941798
## 31 11.73598 11.76456 -0.02857622
         <- pred02$pred[,1]</pre>
The root mean squared prediction error (RMSPE) and the computational time of the spatial regression model
(resf) are as follows:
sqrt(sum((pred-y0)^2)/length(y0))#rmse
## [1] 0.3341618
(end.time1 - start.time1)[3]#computational time (second)
## elapsed
     15.89
whereas those of the SVC model (resf_vc) are as follows:
sqrt(sum((pred2-y0)^2)/length(y0))#rmse
## [1] 0.3237685
(end.time2 - start.time2)[3]#computational time (second)
## elapsed
```

194.267

The results suggest that both models are available for large samples. It is also demonstrated that while the spatial regression model is faster than the SVC model, the SVC model is slightly more accurate. The actual values (y0) and predicted values (pred/pred2) are compared below:

 ∞

9

11

y0

10

12

13

Low rank spatial econometric models

11

y0

10

9

12

13

While ESF/RE-ESF and their extensions approximate Gaussian processes, this section explains low rank spatial econometric models approximating spatial econometric models (see Murakami et al., 2018).

Spatial weight matrix and their eigenvectors

The low rank models use eigenvectors and eigenvalues of a spatial connectivity matrix, which is called spatial weight matrix or the W matrix in spatial econometrics. The weigen function is available for the eigen-decomposition. Here is a code extracting the eigenvectors and eigenvalues from spatial polygons:

```
data( boston )
poly <- readOGR( system.file( "shapes/boston_tracts.shp", package = "spData" )[ 1 ] )

## OGR data source with driver: ESRI Shapefile
## Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.
## with 506 features
## It has 36 fields
weig <- weigen( poly )  #### Rook adjacency-based W</pre>
```

By default, the weigen function returns a Rook adjacency-based W matrix. Other than that, knn-based W, Delauney trangulation-based W, and user-specified W are also available.

Spatial regression models

Low rank spatial lag model

The low rank spatial lag model (LSLM) approximates the following model:

$$y_i = \beta_0 + z_i + \epsilon_i$$
 $\epsilon_i \sim N(0, \sigma^2) z_i = \rho \sum_{i \neq j}^{N} w_{i,j} z_j + \sum_{k \neq 1}^{K} x_{i,k} \beta_k + u_i$ $u_i \sim N(0, \tau^2)$

where z_i is defined by the classical spatial lag model (SLM; see LeSage and Pace, 2009) with parameters ρ and τ^2 . Just like the original SLM, ρ takes a value between 1 and $1/\lambda_N(<0)$. Larger positive ρ means stronger positive dependence. τ^2 represents the variance of the SLM-based spatial process (i.e., z_i) while σ^2 represents the variance of the data noise ϵ_i . Because of the additional noise term, the LSLM estimates are different from the original SLM, in particular if data is noisy.

The LSLM is implemented using the lslm function. Here is a sample code:

```
<- boston.c[, "CMEDV" ]</pre>
У
       <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]</pre>
х
coords<- boston.c[,c("LON","LAT")]</pre>
    <- lslm( y = y, x = x, weig = weig, boot = TRUE )
## [1] "----- Complete: 20/200 -----"
## [1] "----- Complete: 40/200 -----"
## [1] "----- Complete:60/200 -----"
## [1] "----- Complete:80/200 -----"
## [1] "----- Complete:100/200 -----"
## [1] "----- Complete:120/200 -----"
## [1] "----- Complete:140/200 -----"
## [1] "----- Complete:160/200 -----"
## [1] "----- Complete: 180/200 -----"
## [1] "----- Complete:200/200 -----"
```

If boot=TRUE, a nonparametric bootstrapping is performed to estimate the 95 percent confidence intervals for the τ^2 and ρ parameters, and the direct and indirect effects, which quantify spill-over effects. Default is FALSE. Here is the output in which {s rho, sp SE} are parameters { ρ , τ^2 }:

```
res
```

```
## Call:
## lslm(y = y, x = x, weig = weig, boot = TRUE)
##
  ----Coefficients-----
##
                   Estimate
                                          t_value
## (Intercept) -14.719039676 2.82212543 -5.2155866 2.748705e-07
## CRIM
               -0.107615211 0.02851293 -3.7742599 1.809488e-04
## ZN
                0.002594642 0.01276738 0.2032243 8.390474e-01
## INDUS
               -0.098604511 0.06191541 -1.5925681 1.119273e-01
                1.903178819 0.89128954 2.1353093 3.325050e-02
## CHAS
## NOX
               -5.101316236 3.84673642 -1.3261414 1.854349e-01
                6.922743307 0.33388005 20.7342228 0.000000e+00
## RM
## AGE
               -0.040691404 0.01262483 -3.2231248 1.355874e-03
##
## ----Spatial effects (lag)------
##
          Estimates
                       CI_lower
                                  CI_upper
## sp_rho 0.02709059 -0.01719329 0.07116669
## sp SE 7.54450065 6.46102496 8.65782232
```

```
----Effects estimates-----
##
## Direct:
##
           Estimates
                         CI_lower
                                      CI_upper p_value
## CRIM -0.107999852 -0.16099863 -0.04293564
         0.002603915
                     -0.02026394
                                    0.02433576
                                                  0.78
## INDUS -0.098956945
                      -0.21172752
                                    0.02999494
                                                  0.11
  CHAS
         1.909981199 -0.01116839
                                    3.69193811
                                                  0.06
  NOX
         -5.119549463 -12.28728462
                                    2.50662248
                                                  0.16
  RM
         6.947486715
                       6.28989913 7.63288140
                                                  0.00
##
   AGE
         -0.040836844 -0.06324858 -0.01971002
                                                  0.00
##
##
  Indirect:
##
            Estimates
                            CI_lower
                                         CI_upper p_value
        -2.227815e-03 -0.0064240640 0.0017284487
         5.371341e-05 -0.0006825552 0.0007624517
                                                     0.78
  INDUS -2.041278e-03 -0.0068872125 0.0017196288
                                                     0.33
  CHAS
         3.939898e-02 -0.0269301988 0.1255616236
                                                     0.26
## NOX
         -1.056058e-01 -0.4465711317 0.1015544431
                                                     0.34
## R.M
         1.433123e-01 -0.0812544108 0.3929973561
                                                     0.22
         -8.423800e-04 -0.0027221106 0.0005694488
## AGE
##
## ----Error statistics-----
##
                        stat
## resid_SE
                   3.9555161
## adjR2(cond)
                   0.8129243
## rlogLik
               -1561.3219098
## AIC
                3144.6438195
## BIC
                3191.1357229
```

Low rank spatial error model

The low rank spatial error model (LSEM) approximates the following model:

$$y_i = \beta_0 + z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) z_i = \sum_{k \neq 1}^K x_{i,k} \beta_k + e_i \quad e_i = \lambda \sum_{i \neq j}^N w_{i,j} e_j + u_i \quad u_i \sim N(0, \tau^2)$$

where z_i is defined by the classical spatial error model (SLM) with parameters λ and τ^2 . Just like the original SEM, λ takes a larger positive value in the presence of stronger positive dependence. τ^2 represents the variance of the SEM-based spatial process (i.e., z_i). As with LSLM, the LSEM estimates can be different from the original SEM if data is noisy.

The Isem function estimates LSEM as follows:

```
data(boston)
res <- lsem( y = y, x = x, weig = weig )
res

## Call:
## lsem(y = y, x = x, weig = weig)
##
## ----Coefficients-------
## Estimate SE t_value p_value
## (Intercept) -15.535928399 2.82054020 -5.5081393 6.082512e-08</pre>
```

```
## CRIM
                -0.093112127 0.02911351 -3.1982447 1.479351e-03
## 7.N
                 0.002300116 0.01292558 0.1779507 8.588411e-01
## INDUS
                -0.063433279 0.06176206 -1.0270591 3.049394e-01
## CHAS
                 1.335521734 0.88216035 1.5139217 1.307414e-01
## NOX
                -5.717186159 3.86329642 -1.4798725 1.396007e-01
                 7.052094665 0.33425292 21.0980796 0.000000e+00
## RM
                -0.037131943 0.01253448 -2.9623833 3.212894e-03
## AGE
##
##
   ----Spatial effects (residuals)-----
##
             Estimates
## sp_lambda
             0.885701
              2.926975
## sp_SE
##
##
  ----Error statistics-----
##
                        stat
## resid_SE
                   4.0001174
## adjR2(cond)
                   0.8086816
## rlogLik
               -1544.3307054
## AIC
                3110.6614108
## BIC
                3157.1533142
{s_lambda, sp_SE} are parameters \{\lambda, \tau^2\}.
```

Tips for modeling large samples

Eigen-decomposition

The meigen function implements an eigen-decomposition that is slow for large samples. For fast eigen-approximation, the meigen_f function is available. By default, this function approximates 200 eigenvectors; 200 is based on simulation results in Murakami and Griffith (2019a). The computation is further accelerated by reducing the number of eigenvectors. It is achieved by specifying enum by a number smaller than 200. While the meigen function took 243.8 seconds for 5,000 samples, the meigen_f took less than 1 second as demonstrated below:

On the other hand, the weigen function impelements the ARPACK routine for fast eigen-decomposition by default. The computational times with 5,000 samples and enum = 200 (default), 100, and 50 are as follows:

```
system.time( weig_test200 <- weigen( coords_test ))[3]</pre>
```

elapsed

```
## 7.45
system.time( weig_test100 <- weigen( coords_test, enum=100 ))[3]

## elapsed
## 3.244
system.time( weig_test50 <- weigen( coords_test, enum=50 ))[3]

## elapsed
## 2.059</pre>
```

Parameter estimation

The basic ESF model is estimated computationally efficiently by specifying fn = "all" in the esf function. This setting is acceptable for large samples (Murakami and Griffith, 2019a). The resf and resf_vc functions estimate all the models explained above using a fast estimation algorithm developed in Murakami and Griffith (2019b). They are available for large samples (e.g., 100,000 samples). Although the SF-UQR model requires a bootstrapping to estimate confidential intervals for the coefficients, the computational cost for the iteration does not dependent on sample size. So, it is available for large samples too.

For very large samples (e.g., millions of samples)

A computational limitation is the memory consumption of the meigen and meigen_f functions to store Moran eigenvectors. Because of the limitation, the resf and resf_vc functions are not available for very large samples (e.g., millions of samples). To overcome this limitation, the besf and besf_vc functions perform the same calculation as resf and resf_vc but without saving the eigenvectors in the memory. Besides, for fast computation, these functions perform a parallel model estimation (see Murakami and Griffith, 2019c).

Here is an example implementing a spatial regression model using the besf function and a SVC model using the besf_vc function:

```
data(house)
      <- data.frame(coordinates(house),
                   house@data[,c("price", "age", "rooms", "beds", "syear")])
coords<- dat[ ,c("long","lat")]</pre>
у
        <- log(dat[,"price"])
      <- dat[,c("age","rooms","beds","syear")]</pre>
х
        <- besf(y=y, x=x, coords=coords)
res1
res1
## Call:
## besf(y = y, x = x, coords = coords)
##
##
   ----Coefficients-----
##
                                     SE
                                          t_value
                   Estimate
                                                         p_value
## (Intercept) -59.74119013 2.581277964 -23.14404 1.669381e-118
                -0.74382798 0.013230756 -56.21961 0.000000e+00
## age
                 0.10674191 0.002956556
## rooms
                                        36.10347 2.000958e-285
## beds
                 0.05090625 0.005004261
                                         10.17258
                                                  2.628517e-24
## syear
                 0.03525367 0.001293284 27.25904 1.298460e-163
##
##
   ----Variance parameter-----
##
## Spatial effects (residuals):
```

```
##
                     (Intercept)
                      0.05164646
## random_SE
## Moran.I/max(Moran.I) 0.37377320
## ----Error statistics-----
##
                     stat
## resid_SE
                0.3364882
              0.8054432
## adjR2(cond)
## rlogLik
             -8904.8873898
## AIC
             17825.7747797
## BIC
            17890.9012605
       <- besf_vc(y=y, x=x, coords=coords)
res2
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 17052.535"
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16554.086"
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16551.736"
## [1] "----" Iteration 4 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16551.678"
## [1] "----" Iteration 5 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16551.675"
## [1] "----" Iteration 6 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
```

```
## [1] "BIC: 16551.675"
res2
## Call:
## besf_vc(y = y, x = x, coords = coords)
##
  ----Spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
##
     (Intercept)
                                          rooms
                                                             beds
                          age
##
   Min.
          :-62.33
                    Min.
                           :-2.4832
                                      Min.
                                             :0.01487
                                                        Min.
                                                               :-0.04372
                    1st Qu.:-1.0272
   1st Qu.:-61.49
                                      1st Qu.:0.08312
                                                        1st Qu.: 0.02779
##
##
   Median :-61.30
                    Median :-0.7180
                                      Median :0.09778
                                                        Median: 0.04263
                                      Mean
                                             :0.10081
                                                        Mean
##
   Mean
          :-61.30
                    Mean
                           :-0.7449
                                                               : 0.04603
##
   3rd Qu.:-61.09
                    3rd Qu.:-0.4303
                                                        3rd Qu.: 0.06190
                                      3rd Qu.:0.11242
##
           :-60.56
                    Max.
                           : 1.3728
                                      Max.
                                             :0.22700
                                                        Max.
                                                               : 0.15948
   Max.
##
       syear
##
           :0.03608
   Min.
##
   1st Qu.:0.03608
##
   Median : 0.03608
##
   Mean
          :0.03608
   3rd Qu.:0.03608
##
           :0.03608
##
   Max.
##
## Statistical significance:
##
                          Intercept
                                      age rooms beds syear
## Not significant
                                  0
                                     3660
                                             92 14801
## Significant (10% level)
                                                          0
                                  0
                                      888
                                             39
                                                 2661
## Significant (5% level)
                                  0 1640
                                            254
                                                 4553
                                                          0
## Significant (1% level)
                              25357 19169 24972 3342 25357
##
## ----Variance parameters-----
##
## Spatial variation (coefficients on x):
##
                        (Intercept)
                                         age
                                                   rooms
                        0.04164352 0.0680170 0.004495287 0.005488655
## random SE
                                                                         0
## Moran.I/max(Moran.I) 0.16505502 0.0928096 0.121670501 0.061202744
                                                                        NΑ
##
## ----Error statistics------
##
                        stat
## resid SE
                  0.3217129
## adjR2(cond)
                  0.8221120
## rlogLik
               -8204.8516043
## AIC
               16437.7032085
## BIC
              16551.6745500
```

Roughly speaking, these functions are faster than the resf and resf_vc functions if the sample size is more than 100,000.

I have evaluated the computational time for a SVC modeling using the besf_vc function using a Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB memory). The besf_vc function took only 8.0 minutes to estimate the 7 SVCs from 1 million samples. I also confirmed that besf_vc took 70.3 minutes to estimate the same model from 10 million samples. besf and besf_vc are suitable for very large data analysis.

Future updates

Spatiotemporal models, non-Gaussian models, and extensions of the low rank spatial econometric models will be implemented in the future.

Reference

- Croissant, Y., and Millo, G. (2008) Panel data econometrics in R: The plm package. Journal of statistical software, 27(2), 1-43.
- Firpo, S., Fortin, N.M., and Lemieux, T. (2009) Unconditional quantile regressions. Econometrica, 77 (3), 953-973.
- Griffith, D.A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.
- Ghosh, M., and Rao, J. N.K. (1994) Small area estimation: an appraisal. Statistical science, 9 (1), 55-76.
- LeSage, J.P. and Pace, R.K. (2009) Introduction to Spatial Econometrics. CRC Press.
- Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.
- Murakami, D. and Griffith, D.A. (2019a) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.
- Murakami, D. and Griffith, D.A. (2019b) Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spatial Statistics, 30, 39-64.
- Murakami, D. and Griffith, D.A. (2019c) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science, doi: 10.1007/s42081-019-00063-x.
- Murakami, D., Griffith, D.A. (2020) Balancing spatial and non-spatially variations in varying coefficient modeling: a remedy for spurious correlation. Arxiv, 2005:09981.
- Murakami, D. and Seya, H. (2019) Spatially filtered unconditional quantile regression. Environmetrics, 30 (5), e2556.
- Murakami, D., Seya, H., and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv, 1810.02956.
- Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.
- Wheeler, D., and Tiefelsdorf, M. (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161-187.
- Yu, D., Murakami, D., Zhang, Y., Wu, X., Li, D., Wang, X., and Li, G. (2020) Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis. Transportation Research Part B: Methodological, 133, 21-37.