Solved Problems

Construction

ABCD is a square of center O such that $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} (\text{mod } 2\pi)$.

1) Construct the image of ABCD by $S(A; \sqrt{2}; \frac{\pi}{4})$.

2) Construct the image of ABCD by $S(0; \frac{\sqrt{2}}{2}; \frac{\pi}{4})$.

ABD is a triangle right at B such that: $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{3} (\text{mod } 2\pi)$.

1) a- Construct the point C image of B by $S\left(D; \frac{\sqrt{3}}{3}; \frac{\pi}{2}\right)$.

b- Determine the nature of ABCD.

2) Construct the image of ABCD by $S\left(B; \frac{1}{2}; \frac{2\pi}{3}\right)$.

 $N^{\circ}3$.

ABCD is a rectangle such that AD = 4, AB = 2 and $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} \pmod{2\pi}$.

Let I be the midpoint of [AD] and J the symmetric of I with respect to (AC).

1) Let S be the direct plane similitude I, of ratio $\sqrt{2}$ and angle $\frac{3\pi}{4}$. Determine S(A).

2) Let S' be the direct plane similitude of center J that transforms A onto C.

Precise the ratio k of S' and a measure of its angle.

N=4ABC is a triangle whose center of gravity is G.

M. N and P are the midpoints of the segments [BC], [AC] and [AB].

Determine the image of triangle ABC by the direct plane [AB].

1) Determine the similar similar of $S\left(G; \frac{1}{2}; \frac{\pi}{3}\right)$.

2) Construct the image of triangle ABM by the direct plane similitude $S\left(A; \frac{\sqrt{3}}{3}; \frac{\pi}{6}\right)$.

In an oriented plane, consider the two circles (C) and (C') of centers O and O' respectively, and of respective radii r and r'. The two circles intersect in two points A and B.

The two circles interests a direct plane similitude S of center A that transforms (C) onto (C') and precise its angle and ratio.

1)

2

2) Let M be a point of (C) and M' its image by S.

a- Compare the angles
$$\left(\overrightarrow{OA}; \overrightarrow{OM}\right)$$
 and $\left(\overrightarrow{O'A}; \overrightarrow{O'M'}\right)$.

b- Prove that the points M, B and M' are collinear.

In an oriented plane, consider a triangle ABC right and isosceles of vertex A such that : AB = a and $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} \pmod{2\pi}$.

Denote by A' the symmetric of A with respect to C.

$$(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{3} \pmod{2\pi}$$

1) Calculate AO and AC 1) Calculate AC and 2) Let S be the direct similitude of center C, of angle $\frac{\pi}{6}$ and r_{atio}

a- Prove that S transforms A onto B.

a- Prove that S transfer O' of point O is the midpoint of BC.

the

are

tria WE

De

1)

3) Denote by D' the image of D by S. Denote by D' belongs to the semi straight line [CA).

- b- What is the measure of angle $|\overrightarrow{OD}; \overrightarrow{O'D'}|$?
- c- Deduce a measure of angle $(\overrightarrow{BC}; \overrightarrow{O'D'})$.
- 4) Prove that D' is the center of the circle circumscribed about triangle BCD.

Consider a circle (C) of diameter [OB].

A is a point of the segment [OB], distinct of O and of B, and I the midpoint of [AB].

The perpendicular bisector of the segment [AB] cuts the

circle at M and M' such that : $(\overrightarrow{MO}; \overrightarrow{MB}) = \frac{\pi}{2} (\text{mod } 2\pi)$.

Designate by N the orthogonal projection of A on (OM).

- 1) a- Precise the nature of quadrilateral AMBM'
 - b- Deduce that the straight line (AM') is perpendicular to (OM)and that the points N, A and M' are collinear. In what follows, let S be the direct plane similitude of center N such that: S(M) = A.
- 2) a- Precise the angle of S.
 - b- Determine the images of the straight lines (MI) and (NA)

Deduce the image of M' by S.

peduce the image of MM'], determine the position of point 3) $\frac{1}{I'} = S(I)$.

beduce that the straight line (NI) is tangent at N to the circle (C') of diameter [OA].

ABC is a direct triangle, A', B' and C' are the points situated on ABC is a different triangle such that A'BC, B'CA and C'AB the exterior of triangles .J, K and L are the suilateral triangles .Jthe exterior of triangles .J, K and L are the centers of gravity of are equilateral triangles .J, K and C'AB respectively are equinate are the ce triangles A'BC, B'CA and C'AB respectively. we need to prove that triangle JKL is equilateral. We need to P.

Designate by S_A the direct plane similitude of center A that transforms C and by S_B that of center B that transforms C and Designate S_B that of center B that transforms C onto J.

K onto C and by S_B that of center B that transforms C onto J. 1) Determine the ratio and angle of S_A .

Determine the ratio and angle of S_B . 2) Determined $S_B \circ S_A$ is a rotation whose angle is to be determined. 3) Show that $S_B \circ S_A$ is a rotation whose angle is to be determined.

Prove that L is the center of $S_B \circ S_A$.

4) Deduce from part 3) that triangle JKL is direct equilateral.

ABCD is a square such that $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} \pmod{2\pi}$.

Let r be the rotation of center A and angle $\frac{\pi}{2}$, t is the translation of

vector \overrightarrow{AB} and $h = h(C; \sqrt{3})$.

1) a- Show that $t \circ r$ is a rotation whose angle is to be determined. Designate by $r' = t \circ r$.

b- Determine the images of A and B by r'. Deduce the center of r'.

2) Let $f = r' \circ h$.

a- Find the nature of f and precise its angle and ratio .

b- Let I be the center of f. Determine the image of C by f, and show that

$$(\overrightarrow{IC}; \overrightarrow{ID}) = \frac{\pi}{2} \pmod{2\pi}$$
 and that $ID = \sqrt{3} IC$,

c- Find a measure of the angle $(\overrightarrow{CD}; \overrightarrow{CI})$ then construct I.

ABC is a right triangle such that $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} \pmod{2\pi}$.

H is the foot of the perpendicular issued from A. Let D be the point so that ACD is a direct right isosceles triangle of vertex A.

O is the foot of the

- b- Determine the image of triangle AHC by r.
- c- Deduce that AHOK is a square.
- 2) Designate by Ω the point of intersection of (AB) and (KH). Prove that there exists a dilation h that transforms triangle AKDonto triangle BHA.
- 3) Consider the transformation $S = h \circ r$.
 - a- Determine the image of the points H, C and A by S.
 - b- Determine the nature of S and precise its elements.

N° 13.

- A, B, C and D are four distinct points belonging to the circle (γ).
- 1) Consider the direct plane similitude S of center A that transforms C onto D. Designate by E the image of point B by S.

a- Prove that
$$(\overrightarrow{CB}; \overrightarrow{DE}) = (\overrightarrow{AC}; \overrightarrow{AD}) \pmod{2\pi}$$
.

Chapter 9 - Direct Plane Similitude

b. Prove that E belongs to the straight line (BD).

c- Prove that: $AD \times BC = DE \times AC$

- 2) a Prove that : $(\overrightarrow{AB}; \overrightarrow{AC}) = (\overrightarrow{AE}; \overrightarrow{AD}) \pmod{2\pi}$ and that $\frac{AC}{AB} = \frac{AD}{AE}$
 - b- Let S' be the similitude of center A that transforms B onto C. Prove that S'(E) = D.
 - c- Prove that $AB \times CD = AC \times BE$.
- 3) Prove that $AC \times BD = AB \times CD + AD \times BC$.

In the oriented plane, consider an isosceles triangle ABC such that

 $AB = AC \text{ and } \left(\overrightarrow{AB}; \overrightarrow{AC} \right) = \frac{\pi}{4} \pmod{2\pi}$.

Let I be the point such that CAI is right isosceles with

$$\left(\overrightarrow{CA}; \overrightarrow{CI}\right) = -\frac{\pi}{2} \pmod{2\pi} .$$

1) We denote by r_A the rotation of center A that transforms B onto C and r_C the rotation of center C and angle $-\frac{\pi}{2}$.

Let $f = r_C \circ r_A$.

a- Determine the images of A and of B by f.

b- Determine the nature of f and construct its center O.

- c- What is the nature of quadrilateral ABOC? 2) Let S be the direct similitude of center O that transforms 4 onto be contented by C' the image of C by S, H is the midpoint of Roll by C areate by C' the image of C by S, H is the midpoint of Roll by C. Let S be the direct silling of C by S, H is the midpoint of BC

 - and H its image are of the angle of S.

 a. Determine the measure of the angle of S. Show that C' belongs to the straight line (OA).
 - b. Find the image of segment [OA] by S and show that H. is the midpoint of [OB].
 - c- Show that (C'H') is perpendicular to (OB). Show that (Chr) is the center of the circle circumscribed about triangle OBC.

$$\left(\overrightarrow{AB}; \overrightarrow{AO}\right) = \frac{\pi}{6} \pmod{2\pi}$$

Let S be the direct similitude that transforms B onto O and O onto A.

- 1) Determine the ratio k and an angle of S.
- 2) Let I be the center of S.
 - a- Construct geometrically I.
 - b- Prove that I is the foot of the perpendicular issued from 0 in triangle OAB.
- 3) (Δ) is a variable straight line passing through O and (D) is a straight line passing through B and perpendicular to (Δ) , designate by A' and B' the orthogonal projections of A and Brespectively on (Δ) .
 - a- Determine the image by S of (D) and of (Δ) .
 - b- Deduce the image of B' by S.
 - c- Prove that the circle of diameter [A'B'] passes through a fixed point when (Δ) varies.

V 16. OIJ is a right isosceles triangle such that $(\overrightarrow{OI}; \overrightarrow{OJ}) = \frac{\pi}{2} (\text{mod } 2\pi)$.

Let M be a variable point of (IJ) and N the point such that

$$\left(\frac{1}{NO;NM}\right) = \frac{\pi}{2} \pmod{2\pi} \text{ and } NO = NM. I' \text{ is the midpoint of } [IJ].$$

Determine the ratio k and an angle α of the direct plane similitude of center O that transforms M onto N. Sof center O that transforms M onto N.

2) a Determine S(I) and $S \circ S(I)$. b. Determine the image (Δ) of (IJ) by S.

3) Let S' be the direct plane similitude of center I', ratio $\sqrt{2}$ and angle $-\frac{\pi}{4}$.

Precise the nature of the transformations $t_1 = S' \circ S$ and $t_2 = S \circ S'$.

In an oriented plane, consider a triangle ABC such that:

In an order
$$AB = 2$$
, $AC = 1 + \sqrt{5}$ and $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} \pmod{2\pi}$.

1) Let S be the direct plane similitude that transforms B onto A and A onto C.

Determine the ratio k and a measure α of the angle of S.

2) Designate by Ω the center of S, construct Ω geometrically.

3) Let D be the image of C by S.

- a- Prove that the points A, Ω and D are collinear, and that the straight lines (CD) and (AB) are parallel.
- b- Construct the point D.
- c- Show that $CD = 3 + \sqrt{5}$.

4) Let E be the orthogonal projection of B on (CD).

a- Explain the construction of the point F image of point E by S and place F on the figure.

b- What is the nature of quadrilateral BFDE?