向きづけ層

toshi2019

2024年10月15日

1 局所自由層

1.1 局所的な条件について

以後,「層が局所的に同型」という形の条件をよく用いる.これについては次の2つの表現がある.

命題 1.1. $F \ge G \ge X \bot$ の層とする. 次の条件は同値である.

- (i) 各点 x に対し、開近傍 U で $F|_U \cong G|_U$ となるものが存在する.
- (ii) X の開被覆 $(U_i)_{i\in I}$ で、各 i に対し $F|_{U_i}\cong G|_{U_i}$ となるものが存在する.

証明. (i) \Rightarrow (ii) : X の各点 x に対し開近傍 U_x で $F|_{U_x}\cong G|_{U_x}$ となるものが存在する. $(U_x)_{x\in X}$ は X の開被覆である.

(ii)⇒(i) : $(U_i)_{i\in I}$ を X の開被覆で各 U_i に対し $F|_{U_i}\cong G|_{U_i}$ となるものとする. $x\in X$ とすると $x\in U_i$ となる $i\in I$ が存在する.

1.2 局所自由層

X を局所コンパクト空間とする. A を X 上の環とする. まず、局所自由層を定義しよう.

定義 1.2 (局所自由層). $k \geq 0$ を整数とし、 \mathcal{L} を \mathcal{A} 加群とする。X の開被覆 $X = \bigcup_{i \in I} U_i$ で、どの $i \in I$ に対しても $\mathcal{L}|_{U_i} \cong \mathcal{A}|_{U_i}^{\oplus k}$ となるものが存在するとき、 \mathcal{L} は階数 k の局所自由層(locally free sheaf)であるという。階数 1 の局所自由層のことを可逆層(invertible sheaf)とよぶ。

1.1 節のことばを用いると, $\mathcal L$ が局所自由層であるとは, $\mathcal L$ が局所的に $\mathcal A^{\oplus k}$ と同型であるということである.

 ${f k}$ を大域次元が有限な環とする. ${\cal A}={f k}_X$ のとき,局所自由層は局所定数層である.可逆層は局所的に ${f k}_X$ と同型な層である.

 $L\in \mathrm{Mod}(\mathbf{k}_X)$ とする. $L^{\otimes -1}:=\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbf{k}_X}(L,\mathbf{k}_X)$ とおく. \mathbf{k} が体ならば、 \mathbf{k}_X は入射的なので、 $\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbf{k}_X}(L,\mathbf{k}_X)=\mathscr{H}\!\mathit{om}_{\mathbf{k}_X}(L,\mathbf{k}_X)$ が成り立つ.

2 向きづけ層

2.1 対合律

 A_X を A をファイバーとする定数層とする.

$$D'F := R \mathcal{H}om_{A_X}(F, A_X)$$

とおく. 次の公式が成り立つ.

定理 2.1 ([KS90, 演習 III.3]). X を位相空間とする. F を \mathbb{Z}_X と局所的に同型な層とする. このとき,次の同型がある.

$$F \otimes F \cong \mathbb{Z}_X$$
, $D'_X F \cong F$.

このノートだけの用語で定理 2.1 を F の対合律 (involution law) とよぶことにする. 証明にあたり、次の事実に注意しよう.

補題 2.2. $\varphi: \mathbb{Z} \to \mathbb{Z}$ をアーベル群の同型とする. このとき φ は $\pm \operatorname{id}_{\mathbb{Z}}$ のどちらか一方である.

証明. $\varphi(1)=m$ とおくと任意の整数 n に対し $\varphi(n)=n\varphi(1)=nm$ となるので, \mathbb{Z} から \mathbb{Z} への射は m 倍写像である. $\psi\colon\mathbb{Z}\to\mathbb{Z}$ を φ の逆射とすると

$$1 = \psi(\varphi(1)) = \psi(m) = m\psi(1)$$

となる. \mathbb{Z} の可逆元は ± 1 のみであるから、

$$m = \pm 1$$
, $\psi(1) = \pm 1$ (複合同順)

である.

定理 ${f 2.1}$ の証明 1 つ目の主張を示す。X の開被覆 $(U_i)_{i\in I}$ と各 U_i 上の層の射

$$\theta_i \colon F|_{U_i} \stackrel{\sim}{\to} \mathbb{Z}_X|_{U_i}$$

で同型であるものが存在する。補題 2.2 より、この $(\theta_i)_i$ は各 i に対し $\theta_i=\pm 1$ とかける。実際、 $x\in U_i$ とすると、 $s_x\in F_x\cong \mathbb{Z}$ に対し $(\theta_i)_x(s_x)=\pm s_x$ となる。したがって、各 i,j に対して

$$\theta_{i} \otimes \theta_{i}|_{U_{i} \cap U_{j}} \cong (\pm 1) \otimes (\pm 1)$$

$$\cong 1$$

$$\cong \theta_{j} \otimes \theta_{j}|_{U_{i} \cap U_{j}}$$

となるので $(\theta_i \otimes \theta_i)_i$ から層の射

$$\theta \otimes \theta \colon F \otimes F \to \mathbb{Z}_X \otimes \mathbb{Z}_X$$

がひきおこされる. これと同型

$$\mathbb{Z}_X \otimes \mathbb{Z}_X \to \mathbb{Z}_X$$

の合成を φ で表す. 各点 $x \in X$ に対して

$$\varphi_x \colon F_x \otimes F_x \stackrel{\sim}{\to} \mathbb{Z} \otimes \mathbb{Z} \cong (\mathbb{Z}_X)_x$$

が成り立つので、 φ は同型である.

1つ目の主張から2つ目の主張が従うことを示す。随伴 $(\otimes, \mathcal{H}om)$ から

$$\operatorname{Hom}_{\mathbb{Z}_X}(F \otimes F, \mathbb{Z}_X) \cong \operatorname{Hom}_{\mathbb{Z}_X}(F, \mathscr{H}om_{\mathbb{Z}_X}(F, \mathbb{Z}_X))$$

である.同型は同型に送られるので同型 $F\otimes F\to \mathbb{Z}_X$ は同型 $F\to \mathscr{H}om_{\mathbb{Z}_X}(F,\mathbb{Z}_X)=\mathrm{D}'F$ に送られる. \Box 定理 2.1 によると, \mathbb{Z}_X 上の可逆層は対合律をみたす.

2.2 向きづけ層

A を可換環とし A_X で A をファイバーとする定数層とする. $\operatorname{or}_X^{\mathbb{Z}}$ で \mathbb{Z} 上の向きづけ層, or_X で A 上の向きづけ層を表す. $\operatorname{or}_X\cong\operatorname{or}_X^{\mathbb{Z}}\otimes A_X$ である.

 or_X も対合律をみたす.

命題 2.3 ([KS90, 命題 3.3.4]). $f: Y \to X$ をファイバー次元が l の位相的しずめ込みとする.

(i) $\omega_{Y/X}^{\mathbf{Z}} \in \mathsf{D}^+(\mathbf{Z}_Y)$ と $\mathrm{or}_{Y/X}^{\mathbf{Z}} \in \mathrm{Mod}(\mathbf{Z}_Y)$ を \mathbf{Z} 上の双対化複体と向きづけ層とするとき,次の同型が成り立つ。

$$\omega_{Y/X} \cong A_Y \underset{\mathbf{Z}_Y}{\otimes} \omega_{Y/X}^{\mathbf{Z}}, \quad \operatorname{or}_{Y/X} \cong A_Y \underset{\mathbf{Z}_Y}{\otimes} \operatorname{or}_{Y/X}^{\mathbf{Z}}.$$

(ii) 次の自然な同型が成り立つ.

$$\operatorname{or}_{Y/X} \otimes \operatorname{or}_{Y/X} \cong A_Y,$$

 $\mathscr{H}om(\operatorname{or}_{Y/X}, A_Y) \cong A_Y.$

(iii) $g: Z \to Y$ を連続写像で $f \circ g$ がファイバー次元 m の位相的しずめ込みになるものとする. $F \in \mathsf{D}^+(A_X)$ に対して,

$$g! \circ f^{-1}F \cong (f \circ g)^{-1}F \otimes \operatorname{or}_{Z/X} \otimes g^{-1}\operatorname{or}_{Y/X}[m-l]$$

が成り立つ.

$$\operatorname{or}_{Y/X} \otimes \operatorname{or}_{Y/X} \cong \left(\operatorname{or}_{Y/X}^{\mathbf{Z}} \otimes \operatorname{or}_{Y/X}^{\mathbf{Z}}\right) \otimes A_Y \cong Z_Y \otimes A_Y \cong A_Y$$

である.

■うめこみについて 以降, $A=\mathbf{C}$ とし \mathbf{C} 上の向きづけ層を考える. $i\colon M\hookrightarrow X$ を閉埋め込みとし, $a_M\colon M\to \{\mathrm{pt}\}$ と $a_X\colon X\to \{\mathrm{pt}\}$ を一点への射とすると

$$\operatorname{or}_{M/X}[-n] \cong \omega_{M/X} \cong i^{!} \mathbf{C}_{X}$$

$$\cong i^{!} a_{X}^{-1} \mathbf{C}$$

$$\cong (a_{X} \circ i)^{-1} \mathbf{C} \underset{\mathbf{C}_{M}}{\otimes} \operatorname{or}_{M} \underset{\mathbf{C}_{M}}{\otimes} i^{-1} \operatorname{or}_{X}[n-2n]$$

$$\cong a_{M}^{-1} \mathbf{C} \underset{\mathbf{C}_{M}}{\otimes} \operatorname{or}_{M} \underset{\mathbf{C}_{M}}{\otimes} i^{-1} \operatorname{or}_{X}[-n]$$

$$\cong \mathbf{C}_{M} \underset{\mathbf{C}_{M}}{\otimes} \operatorname{or}_{M} \underset{\mathbf{C}_{M}}{\otimes} i^{-1} \operatorname{or}_{X}[-n]$$

$$\cong \operatorname{or}_{M} \underset{\mathbf{C}_{M}}{\otimes} i^{-1} \operatorname{or}_{X}[-n]$$

$$\cong \operatorname{or}_{M} \underset{\mathbf{C}_{M}}{\otimes} i^{-1} \operatorname{or}_{X}[-n]$$

が成り立つ. $\omega_{M/X} \cong \text{or}_{M/X}[-n]$ なので,

$$\operatorname{or}_{M/X} \cong \operatorname{or}_{M} \otimes i^{-1} \operatorname{or}_{X} \tag{2.1}$$

である. X 上の層 or_X と制限 $\operatorname{or}_X|_M=i^{-1}\operatorname{or}_X$ を M 上で同一視すると,上の式は

$$\operatorname{or}_{M/X} \cong \operatorname{or}_M \otimes \operatorname{or}_X$$
 (2.2)

とも書ける. ([KS90, p.130] の記法.)

3 超関数

$$R\Gamma_M(\mathcal{O}_X) \otimes or_M[n] \cong R\mathscr{H}om_{\mathbf{C}_X}(D_M'\mathbf{C}_{XM}, \mathcal{O}_X).$$
 (3.1)

証明. まず $\mathrm{D}_X'\mathbf{C}_{XM}\cong\mathrm{or}_M[-n]$ より、右辺は

$$R\mathscr{H}om_{\mathbf{C}_X}(D'_M\mathbf{C}_{XM},\mathcal{O}_X) \cong R\mathscr{H}om_{\mathbf{C}_X}(or_M,\mathcal{O}_X)[n]$$

である. 一方左辺は

$$R\Gamma_M(\mathcal{O}_X) \otimes \operatorname{or}_M \cong R\mathscr{H}om(\mathbf{C}_{XM}, \mathcal{O}_X) \otimes \operatorname{or}_M$$

である. よって (3.1) が成り立つのは

$$R\mathscr{H}om(\mathbf{C}_{XM}, \mathcal{O}_X) \otimes \operatorname{or}_M \cong R\mathscr{H}om_{\mathbf{C}_X}(\operatorname{or}_M, \mathcal{O}_X)$$
(*)

■質問について 可逆層で同型が ± 1 なので、 $\operatorname{or}_M\cong\operatorname{or}_M^{\otimes -1}$ (*) は

$$R\mathscr{H}om_{\mathbf{C}_X}(\mathrm{or}_M^{\otimes -1},\mathcal{O}_X) \to R\mathscr{H}om(\mathbf{C}_{XM},\mathcal{O}_X) \otimes \mathrm{or}_M$$

右は

$$R\mathscr{H}om(\mathbf{C}_{XM},\mathcal{O}_X)\otimes \operatorname{or}_M \to R\mathscr{H}om(\mathbf{C}_{XM},\mathcal{O}_X\otimes \operatorname{or}_M^{\otimes -1})$$
$$\to R\mathscr{H}om(\mathbf{C}_{XM},R\mathscr{H}om(\operatorname{or}_M,\mathcal{O}_X))$$
$$\cong R\mathscr{H}om(\mathbf{C}_{XM}\otimes \operatorname{or}_M^{\otimes -1},\mathcal{O}_X)$$

参考文献

[KS90] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.

[Sch04] Pierre Schapira, Sheaves: from Leray to Grothendieck and Sato, Séminaires et Congres 9, Soc. Math. France, pp.173–181, 2004.