1.5 Relations, Partitions and Equivalence Relation

We start with the definition of cartesian product of two sets and to define relations.

Definition 1.5.1 (Cartesian Product). Let A and B be two sets. Then their cartesian product, denoted $A \times B$, is defined as $A \times B = \{(a,b) : a \in A, b \in B\}$.

Example 1.5.2. 1. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then

$$A \times A = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}.$$

$$A \times B = \{(a,1), (a,2), (a,3), (a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (c,2), (c,3), (c,4)\}.$$

2. The Euclidean plane, denoted $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) : x \in \mathbb{R}\}.$

Definition 1.5.3 (Relation). A relation R on a non-empty set A, is a subset of $A \times A$.

Example 1.5.4. 1. Let $A = \{a, b, c, d\}$. Then, some of the relations R on A are:

- (a) $R = A \times A$.
- (b) $R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (b, c)\}.$
- (c) $R = \{(a, a), (b, b), (c, c)\}.$
- (d) $R = \{(a, a), (a, b), (b, a), (b, b), (c, d)\}.$
- (e) $R = \{(a, a), (a, b), (b, a), (a, c), (c, a), (c, c), (b, b)\}.$
- (f) $R = \{(a, b), (b, c), (a, c), (d, d)\}.$
- 2. Consider the set $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Some of the relations on \mathbb{Z}^* are as follows:
 - (a) $R = \{(a, b) \in \mathbb{Z}^* \times \mathbb{Z}^* : a|b\}.$
 - (b) Fix a positive integer n and define $R = \{(a,b) \in \mathbb{Z}^2 : n \text{ divides } a-b\}.$
 - (c) $R = \{(a, b) \in \mathbb{Z}^2 : a \le b\}.$
 - (d) $R = \{(a, b) \in \mathbb{Z}^2 : a > b\}.$
- 3. Consider the set \mathbb{R}^2 . Also, let us write $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$. Then some of the relations on \mathbb{R}^2 are as follows:
 - (a) $R = \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\mathbf{x}|^2 = x_1^2 + x_2^2 = y_1^2 + y_2^2 = |\mathbf{y}|^2 \}.$
 - (b) $R = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : \mathbf{x} = \alpha \mathbf{y} \text{ for some } \alpha \in \mathbb{R}^* \}.$
 - (c) $R = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : 4x_1^2 + 9x_2^2 = 4y_1^2 + 9y_2^2\}.$
 - (d) $R = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : \mathbf{x} \mathbf{y} = \alpha(1, 1) \text{ for some } \alpha \in \mathbb{R}^* \}.$
 - (e) Fix a $c \in \mathbb{R}$. Now, define $R = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : y_2 x_2 = c(y_1 x_1)\}.$
 - (f) $R = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\mathbf{x}| = \alpha |\mathbf{y}| \}$, for some positive real number α .

- 4. Let A be the set of triangles in the plane. Then $R = \{(a, b) \in A^2 : a \sim b\}$, where \sim stands for similarity of triangles.
- 5. In \mathbb{R} , define a relation $R = \{(a,b) \in \mathbb{R}^2 : |a-b| \text{ is an integer}\}.$
- 6. Let A be any non-empty set and consider the set $\mathcal{P}(A)$. Then one can define a relation R on $\mathcal{P}(A)$ by $R = \{(S,T) \in \mathcal{P}(A) \times \mathcal{P}(A) : S \subset T\}$.

Now that we have seen quite a few examples of relations, let us look at some of the properties that are of interest in mathematics.

Definition 1.5.5. Let R be a relation on a non-empty set A. Then R is said to be

- 1. reflexive if $(a, a) \in R$, for all $a \in A$.
- 2. symmetric if $(b, a) \in R$ whenever $(a, b) \in R$.
- 3. anti-symmetric if, for all $a, b \in A$, the conditions $(a, b), (b, a) \in R$ implies that a = b in A.
- 4. transitive if, for all $a, b, c \in A$, the conditions $(a, b), (b, c) \in R$ implies that $(a, c) \in R$.

We are now ready to define a relation that appears quite frequently in mathematics. Before doing so, let us either use the symbol \sim or $\stackrel{R}{\sim}$ for relation. That is, if $a,b\in A$ then $a\sim b$ or $a\stackrel{R}{\sim}b$ will stand for $(a,b)\in R$.

Definition 1.5.6. Let \sim be a relation on a non-empty set A. Then \sim is said to form an equivalence relation if \sim is reflexive, symmetric and transitive.

The equivalence class containing $a \in A$, denoted [a], is defined as $[a] := \{b \in A : b \sim a\}$.

Example 1.5.7. 1. Let $a, b \in \mathbb{Z}$. Then $a \sim b$, if 10 divides a - b. Then verify that \sim is an equivalence relation. Moreover, the equivalence classes can be taken as [0], [1], ..., [9]. Observe that, for $0 \le i \le 9$, $[i] = \{10n + i : n \in \mathbb{Z}\}$. This equivalence relation in modular arithmetic is written as $a \equiv b \pmod{10}$.

In general, for any fixed positive integer n, the statement " $a \equiv b \pmod{n}$ " (read "a is equivalent to b modulo n") is equivalent to saying that $a \sim b$ if n divides a - b.

2. Determine the equivalence relations that appear in Example 1.5.4. Also, for each equivalence relation, determine a set of equivalence classes.

Definition 1.5.8 (Partition of a set). Let A be a non-empty set. Then a partition Π of A, into m-parts, is a collection of non-empty subsets A_1, A_2, \ldots, A_m , of A, such that

- 1. $A_i \cap A_j = \emptyset$ (empty set), for $1 \le i \ne j \le m$ and
- $2. \bigcup_{i=1}^{m} A_i = A.$

Example 1.5.9. 1. The partitions of $A = \{a, b, c, d\}$ into

- (a) 3-parts are a|b|cd, a|bc|d, ac|b|d, a|bd|c, ad|b|c, ab|c|d, where the expression a|bc|d represents the partition $A_1 = \{a\}$, $A_2 = \{b,c\}$ and $A_3 = \{d\}$.
- (b) 2-parts are

a|bcd, b|acd, c|abd, d|abc, ab|cd, ac|bd and ad|bc.

- 2. Let $A = \mathbb{Z}$ and define
 - (a) $A_0 = \{2x : x \in \mathbb{Z}\}$ and $A_1 = \{2x + 1 : x \in \mathbb{Z}\}$. Then $\Pi = \{A_0, A_1\}$ forms a partition of Zl into odd and even integers.
 - (b) $A_i = \{10n + i : n \in \mathbb{Z}\}$, for i = 1, 2, ..., 10. Then $\Pi = \{A_1, A_2, ..., A_{10}\}$ forms a partition of \mathbb{Z} .
- 3. $A_1 = \{0, 1\}, A_2 = \{n \in \mathbb{N} : n \text{ is a prime}\} \text{ and } A_3 = \{n \in \mathbb{N} : n \geq 3, n \text{ is composite}\}.$ Then $\Pi = \{A_1, A_2, A_3\}$ is a partition of \mathbb{N} .
- 4. Let $A = \{a, b, c, d\}$. Then $\Pi = \{\{a\}, \{b, d\}, \{c\}\}\$ is a partition of A.

Observe that the equivalence classes produced in Example 1.5.7.1 indeed correspond to the non-empty sets A_i 's, defined in Example 1.5.9.2b. In general, such a statement is always true. That is, suppose that A is a non-empty set with an equivalence relation \sim . Then the set of distinct equivalence classes of \sim in A, gives rise to a partition of A. Conversely, given any partition Π of A, there is an equivalence relation on A whose distinct equivalence classes are the elements of Π . This is proved as the next result.

Theorem 1.5.10. Let A be a non-empty set.

- 1. Also, let \sim define an equivalence relation on the set A. Then the set of distinct equivalence classes of \sim in A gives a partition of A.
- 2. Let I be a non-empty index set such that $\{A_i : i \in I\}$ gives a partition of A. Then there exists an equivalence relation on A whose distinct equivalence classes are exactly the sets $A_i, i \in I$.

Proof. Since \sim is reflexive, $a \sim a$, for all $a \in A$. Hence, the equivalence class [a] contains a, for each $a \in A$. Thus, the equivalence classes are non-empty and clearly, their union is the whole set A. We need to show that if [a] and [b] are two equivalence classes of \sim then either [a] = [b] or $[a] \cap [b] = \emptyset$.

Let $x \in [a] \cap [b]$. Then by definition, $x \sim a$ and $x \sim b$. Since \sim is symmetric, one also has $a \sim x$. Therefore, we see that $a \sim x$ and $x \sim b$ and hence, using the transitivity of \sim , $a \sim b$. Thus, by definition, $a \in [b]$ and hence $[a] \subseteq [b]$. But $a \sim b$, also implies that $b \sim a$ (\sim is

symmetric) and hence $[b] \subseteq [a]$. Thus, we see that if $[a] \cap [b] \neq \emptyset$, then [a] = [b]. This proves the first part of the theorem.

For the second part, define a relation \sim on A as follows: for any two elements $a,b \in A$, $a \sim b$ if there exists an $i,i \in I$ such that $a,b \in A_i$. It can be easily verified that \sim is indeed reflexive, symmetric and transitive. Also, verify that the equivalence classes of \sim are indeed the sets $A_i, i \in I$.