Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Matemática Aplicada e Computacional com Habilitação em Métodos Matemáticos

Modelo de Lorenz 80: Uma abordagem estocástica

Lucas Amaral Taylor

Monografia Final

MAP 2429 — Trabalho de Formatura em Matemática Aplicada

Supervisor: Prof. Dr. Breno Raphaldini Ferreira da Silva

São Paulo 2025 O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License)

Na verdade, na verdade vos digo que, se o grão de trigo, caindo na terra, não morrer, fica ele só; mas se morrer, dá muito fruto. João 12:24

Agradecimentos

Do. Or do not. There is no try.

Mestre Yoda

Texto texto. Texto opcional.

Resumo

Lucas Amaral Taylor. **Modelo de Lorenz 80: Uma abordagem estocástica** . Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2025.

escrever

Palavra-chave: Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Lucas Amaral Taylor. **The Lorenz 80 model: a stochastic approach**. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2025.

escrever

Keywords: Keywords. Keywords.

Lista de figuras

1.1	Diagrama do modelo de água-rasa adaptado	6
1.2	Simulação do modelo PE (1 dia)	9
2.1	Comparação entre simulação determinística e estocástica do browniano	
	acoplado	13
2.2	Comparação entre histogramas das simulações determinística e estocástica	
	do browniano acoplado	13

Lista de tabelas

21

Sumário

Referências

In	trodu	ıção	1
1	O m	odelo de Lorenz 80 determinístico	3
	1.1	Introdução	3
	1.2	Breves considerações sobre geofísica	3
	1.3	Motivação e apresentação do modelo	4
	1.4	O modelo de água-rasa	5
	1.5	Construção dos modelos	6
	1.6	Simulações	9
2	Intr	odução às equações diferenciais estocásticas	11
	2.1	Introdução	11
	2.2	Noções gerais de estatística	11
	2.3	Movimento Browniano	12
		2.3.1 Motivação	12
		2.3.2 Definição	12
		2.3.3 Propriedades	12
	2.4	Equações diferenciais estocásticas	12
	2.5	Exemplo	12
A	Prog	gramas	15
	A.1	Código do modelo Lorenz 80 determinístico	15
	A.2	Exemplo do capítulo 02	16
В	Con	siderações matemáticas	19
	B.1	Decomposição de Helmholtz	19

x

Índice remissivo 23

Introdução

Lorem

Capítulo 1

O modelo de Lorenz 80 determinístico

1.1 Introdução

Este capítulo tem como objetivo apresentar o modelo determinístico Lorenz 80. Para isso, começamos, na seção 1.2, com uma introdução aos conceitos básicos de geofísica, a fim de familiarizar o leitor com os fundamentos dessa área. Em seguida, na seção 1.3, contextualizamos o modelo, discutindo os trabalhos que o precederam e as motivações por trás de sua formulação.

Na seção 1.4, introduzimos o modelo de água rasa, que serve de base para o desenvolvimento do Lorenz 80. A construção deste é detalhada na seção 1.5. Por fim, a seção 1.6 traz simulações computacionais realizadas com o modelo, acompanhadas de uma análise gráfica dos resultados.

1.2 Breves considerações sobre geofísica

Nesta seção, reunimos um breve glossário com os principais conceitos de geofísica que servem de base para a compreensão do modelo de Lorenz 80. Todas as definições expostas abaixo estão detalhadas em VALLIS (2017).

- Convecção. Convecção é um processo de transferência de calor que ocorre em fluidos, como líquidos e gases. Esse fenômeno envolve o movimento do próprio fluido e a transferência energia térmica de uma região para outra.
- Parâmetro de Coriolis. A força de Coriolis é uma quasi-força (ou pseudo-força) que surge devido à rotação da Terra. Quando analisamos o movimento de um corpo em um referencial rotativo, esse corpo parece sofrer a ação de uma força que desvia sua trajetória. Esse desvio é quantificado pelo parâmetro de Coriolis, definido pela expressão:

$$f = 2\Omega \sin(\theta)$$

onde Ω representa a velocidade angular de rotação da Terra e θ é a latitude, ou seja, o ângulo entre a posição do ponto e o equador terrestre.

 Número de Rossby. O número de Rossby é a razão entre a magnitude da aceleração relativa e a aceleração de Coriolis. É aproximado por:

$$Ro \equiv \frac{U}{fL}$$

onde U é a magnitude aproximada da velocidade horizontal e L é uma escala de comprimento e f é o parâmetro de Coriolis.

• **Equilíbrio hidrostático.** Matematicamente, a equação do equilíbrio hidrostático é dada por:

$$\frac{\partial p}{\partial z} = -\rho_0 g,\tag{1.1}$$

onde: p é a pressão do fluido, z é a coordenada vertical, ρ_0 é a densidade constante do fluido e g é a aceleração da gravidade.

- Conservação de massa. Em um escoamento de fluido, a densidade pode variar de acordo com o tempo ou a posição. No entanto, a *quantidade total de massa* do fluido permanece constante. Esse princípio estabelece que a massa não pode ser criada nem perdida durante o movimento.
- Equações quasi-geostróficas. As equações quasi-geostróficas são equações amplamente usadas em estudos teóricos da atmosfera e oceano. Elas atendem as seguintes características:
 - 1. O número de Rossby é pequeno;
 - 2. A escala do movimento não é significativamente maior do que a escala de deformação;
 - 3. As variações no parâmetro de Coriolis são pequenas;
 - 4. As escalas de tempo são advectivas, ou seja, T = L/U.

1.3 Motivação e apresentação do modelo

Edward Norton Lorenz (1917-2008) foi um importante matemático e meteorologista responsável pela publicação de vários artigos com desenvolvimento de modelos na área de meteorologia e geofísica.

O mais famoso deles foi o artigo "Deterministic Nonperiodic Flow", publicado em 1963 E. N. LORENZ (1963). Nele, Lorenz desenvolveu um modelo matemático simplificado para a convecção atmosférica, composto por três equações diferenciais ordinárias, expressas

abaixo:

$$\begin{cases} \frac{dx}{dt} = \sigma(y - x) \\ \frac{dy}{dt} = x(\rho - z) - y, \\ \frac{dz}{dt} = xy - \beta z \end{cases}$$
 (1.2)

onde σ é o número de Prandtl, que regula a sensibilidade entre x e y; ρ é o número de *Rayleigh*, associado à magnitude da convecção; e β está ligado à geometria da célula de convecção, influenciando a relação entre as taxas de x e z.

O modelo acima, conhecido como Lorenz 63, é um sistema determinístico desenvolvido para representar sistemas hidrodinâmicos ideais e dissipativos de força. O Lorenz 63 tornouse amplamente conhecido por sua alta sensibilidade às condições iniciais — pequenas alterações nas variáveis x_0 , y_0 e z_0 podem levar a trajetórias completamente distintas no espaço de fases. Essa sensibilidade extrema é uma característica caótica do modelo.

Em 1980, Lorenz publica o artigo intitulado "Attractor Sets and Quasi-Geostrophic Equilibrium" (Edward N. Lorenz, 1980). Neste artigo, Lorenz apresenta a construção e a simulação de dois modelos distintos: o primeiro, é formado a partir das equações primitivas (PE) com nove EDOs (equações diferenciais ordinárias), derivado das equações de águas rasas com topografia e forçamento, enquanto o segundo é um modelo quasi-geostrófico (QG) com 3 EDOs, obtido ao descartar as variáveis associadas ao escoamento divergente xe seus termos correspondentes. O modelo PE contém tanto ondas gravitacionais rápidas quanto oscilações quasi-geostróficas lentas, enquanto o modelo QG mantém apenas estas últimas, em um quadro simplificado para atmosfera de latitudes médias.

O modelo de água-rasa 1.4

O modelo de água rasa descreve um fluido de densidade constante, em equilíbrio hidrostático, que pode ou não estar em rotação. Nele, a escala horizontal é significativamente maior que a profundidade. Esse fluido possui superfície livre e é limitado pelas bordas (Vallis, 2017). No caso considerado, adotamos a versão de uma única camada.

Para a construção do modelo de água-rasa, consideramos a equação do equilíbrio hidrostático, expressa em (1.1). A partir das manipulações envolvendo os conceitos de momento e conservação de massa, detalhado em VALLIS (2017), obtemos as equações que descrevem o modelo:

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V + f\mathbf{k} \times V = -g\nabla\eta$$

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (\eta V) = 0$$
(1.3)

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (\eta V) = 0 \tag{1.4}$$

Onde:

- *t*: tempo;
- r: vetor de posição inicial;

- V(t): Velocidade horizontal;
- $\eta(t)$: altura da superfície;
- k: vetor da vertical.

1.5 Construção dos modelos

Nesta seção, apresentaremos a construção dos modelos apresentados no artigo Edward N. LORENZ (1980). Como dito anteriormente, o modelo é construído a partir das equações de água-rasa com algumas particularidades descritas a seguir.

Consideremos um fluido homogêneo e incompressível, ou seja, com densidade constante em todo o volume e volume invariável mesmo sob variações de pressão. O escoamento é predominantemente horizontal, descrito por uma velocidade $V(t, \mathbf{r})$ independente da altura, onde \mathbf{r} representa o vetor de posição inicial.

A componente vertical da velocidade é determinada pela continuidade de massa. A superfície livre do fluido está localizada na altura $H + z(t, \mathbf{r})$, onde H representa a profundidade média e a base se apoia sobre uma topografia variável $h(\mathbf{r})$. Temos também que $h(\mathbf{r})$ e $z(t, \mathbf{r})$ possuem média zero.

O sistema está sujeito à rotação planetária, com um parâmetro de Coriolis constante f. Tanto o campo de velocidades V quanto a elevação da superfície z sofrem dissipação difusiva, associada a movimentos de pequena escala: o termo v representa o coeficiente de difusão viscosa (dissipação de momento) e κ representa o coeficiente de difusão térmica. O modelo também inclui um termo de forçamento externo $F(\mathbf{r})$ e, por fim, adota-se a hipótese de equilíbrio hidrostático.

A partir da descrição acima, podemos construir o seguinte diagrama:

Figura 1.1: Diagrama do modelo de água-rasa adaptado

Além disso, o modelo de água-rasa adaptado é expresso por:

$$\frac{\partial V}{\partial t} = -(V \cdot \nabla)V - f\mathbf{k} \times V - g\nabla z + \nu \nabla^2 V \tag{1.5}$$

$$\frac{\partial z}{\partial t} = -(V \cdot \nabla)(z - h) - (H + z - h)\nabla \cdot V + \kappa \nabla^2 z + F \tag{1.6}$$

Onde:

- *H*: profundidade média do fluido;
- $h(\mathbf{r})$: variação da superfície topológica;
- $V(t, \mathbf{r})$: Velocidade horizontal;
- $z(t, \mathbf{r})$: altura da superfície;
- *F*: forças externas;
- κ: coeficiente de difusão viscosa;
- *v*: coeficiente de difusão térmica;

Em seguida, aplicamos a decomposição de Helmholtz¹ à equação (1.5), escrevendo

$$V = \nabla \chi + \mathbf{k} \times \nabla \psi,$$

onde χ é o potencial de velocidade associado à parte divergente e ψ a função corrente associada à parte rotacional. Dessa forma, $\nabla^2 \chi$ representa a divergência e $\nabla^2 \psi$ a vorticidade. Substituindo essa decomposição obtemos:

$$\frac{\partial \nabla^2 \chi}{\partial t} = -\frac{1}{2} \nabla^2 (\nabla \chi \cdot \nabla \chi) - \nabla \chi \cdot \nabla (\nabla^2 \psi) \times \mathbf{k} + \nabla^2 (\nabla \chi \cdot \nabla \psi \times \mathbf{k})
+ \nabla \cdot (\nabla^2 \psi \nabla \psi) - \frac{1}{2} \nabla^2 (\nabla \psi \cdot \nabla \psi) + \nu \nabla^4 \chi + f \nabla^2 \psi - g \nabla^2 z,$$
(1.7)

$$\frac{\partial \nabla^2 \psi}{\partial t} = -\nabla \cdot (\nabla^2 \psi \nabla \chi) - \nabla \psi \cdot \nabla (\nabla^2 \psi) \times \mathbf{k} - f \nabla^2 \chi + \nu \nabla^4 \psi. \tag{1.8}$$

Analogamente, aplicando (1.6), temos:

$$\frac{\partial z}{\partial t} = -\nabla \cdot \left[(z - h) \nabla \chi \right] - \nabla \psi \cdot \nabla (z - h) \times \mathbf{k} - H \nabla^2 \chi + \kappa \nabla^2 z + F. \tag{1.9}$$

Nosso objetivo é reduzir as equações (1.7)–(1.9) a um modelo de baixa ordem. Para isso, introduzimos três vetores adimensionais α_1 , α_2 , α_3 que satisfazem

$$\alpha_1 + \alpha_2 + \alpha_3 = 0,$$

e adotamos as permutações cíclicas

$$(i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).$$

Definimos então:

$$a_i = \alpha_i \cdot \alpha_i, \quad b_i = \alpha_j \cdot \alpha_k, \quad c = (b_1 b_2 + b_2 b_3 + b_3 b_1)^{1/2}.$$

Lorenz também apresenta uma forma alternativa, equivalente, mais conveniente para

¹ Definição apresentada no apêndice B

a implementação computacional:

$$b_i = \frac{1}{2}(a_i - a_j - a_k), \quad c_i = c.$$

Escolhido um comprimento característico *L*, construímos três funções ortogonais:

$$\phi_i(\mathbf{r}) = \cos\left(\alpha_i \cdot \frac{\mathbf{r}}{L}\right),$$

para as quais valem, por exemplo:

$$L^{2}\nabla^{2}\phi_{i} = -a_{i}\phi_{i},$$

$$L^{2}\nabla\phi_{i}\cdot\nabla\phi_{k} = -\frac{1}{2}b_{ik}\phi_{i} + \cdots,$$

$$L^{2}\nabla\cdot(\phi_{j}\nabla\phi_{k}) = \frac{1}{2}b_{jk}\phi_{i} + \cdots,$$

$$L^{2}\phi_{j}\cdot\nabla\phi_{k}\times\mathbf{k} = -\frac{1}{2}c_{jk}\phi_{i} + \cdots,$$

onde os termos omitidos são múltiplos de cossenos. Com essas funções, expandimos as variáveis em série e introduzimos escalas adimensionais:

$$t = f^{-1}\tau,$$

$$\chi = 2L^{2}f^{2}\sum_{i}x_{i}\phi_{i},$$

$$\psi = 2L^{2}f^{2}\sum_{i}y_{i}\phi_{i},$$

$$z = 2L^{2}f^{2}g^{-1}\sum_{i}z_{i}\phi_{i},$$

$$h = 2L^{2}f^{2}g^{-1}\sum_{i}h_{i}\phi_{i},$$

$$F = 2L^{2}f^{2}g^{-1}\sum_{i}F_{i}\phi_{i}.$$
(1.10)

Substituindo as equações de (1.10) em (1.7)–(1.9), e projetando sobre a base $\{\phi_i\}$, obtemos finalmente o modelo PE de baixa ordem, composto de nove equações diferenciais ordinárias:

$$a_{i}\frac{dx_{i}}{d\tau} = a_{i}b_{i}x_{i}x_{k} - c(a_{i} - a_{k})x_{i}y_{k} + c(a_{i} - a_{j})y_{i}x_{k} - 2c^{2}y_{i}y_{k} - v_{0}a_{i}^{2}x_{i} + a_{i}y_{i} - a_{i}z_{i},$$
(1.11)
$$a_{i}\frac{dy_{i}}{d\tau} = -a_{i}b_{k}x_{i}y_{k} - a_{i}b_{i}y_{i}x_{k} + c(a_{k} - a_{i})y_{i}y_{k} - a_{i}x_{i} - v_{0}a_{i}^{2}y_{i},$$
(1.12)
$$\frac{dz_{i}}{d\tau} = -b_{k}x_{i}(z_{k} - h_{k}) - b_{i}(z_{i} - h_{i})x_{k} + cy_{i}(z_{k} - h_{k}) - c(z_{i} - h_{i})y_{k} + g_{0}a_{i}x_{i} - \kappa_{0}a_{i}z_{i} + F_{i}.$$
(1.13)

As variáveis x_i representam os modos divergentes do escoamento, associados às ondas de gravidade; as variáveis y_i correspondem aos modos rotacionais (vorticidade), ligados às oscilações quasi-geostróficas; e as variáveis z_i funcionam como variáveis auxiliares acopladas ao sistema.

Na construção do modelo QG, começamos desprezando todos os termos não lineares, assim como aqueles que envolvem as variáveis x, incluindo a derivada temporal, na equação (1.11). Fazemos o mesmo com os termos não lineares ou topográficos que dependem de x nas equações (1.12) e (1.13). Por fim, eliminamos as variáveis x e z, obtendo ao modelo QG apresentado a seguir:

$$(a_i g_0 + 1) \frac{dy_i}{d\tau} = g_0 c(a_k - a_j) y_j y_k - a_i (a_i g_0 v_0 + \kappa_0) y_i - ch_k y_j + ch_j y_k + F_i,$$
 (1.14)

ADICIONAR SOBRE O CAPÍTULO 2.7 DO SALMON

1.6 Simulações

Nesta seção, apresentaremos o resultados das simulações computacionais do modelo PE, expresso pelas equações (1.11)-(1.13). Os gráficos foram gerados a partir de simulações computacionais realizadas em Julia, principalmente, com o auxílio da biblioteca *SciML: Differentiable Modeling and Simulation Combined with Machine Learning* (RACKAUCKAS e NIE, 2017).

Os parâmetros usados para a simulação foram os mesmos utilizados em Edward N. LORENZ (1980) e CHEKROUN *et al.*, 2021. Os parâmetros estão definidos a seguir: $g_0 = 8,00 \,\mathrm{m\,s^{-2}}, \ a = (1,1,3), \ F = (0.1,0,0) \ e \ c = \sqrt{\frac{3}{4}}, \ h = (-1,0,0) \ e \ v_0 = \kappa_0 = \frac{1}{48}$. As simulações foram realizadas a partir do código disponível no apêndice A.

Figura 1.2: Simulação do modelo PE (1 dia).

Capítulo 2

Introdução às equações diferenciais estocásticas

2.1 Introdução

2.2 Noções gerais de estatística

Nesta seção, vamos apresentar as principais definições e teoremas relacionados a probabilidade e estatística que constroem a base necessária para compreensão de equações diferenciais estocásticas. Todos os conceitos apresentados estão detalhados em PAVLIOTIS (2014) e EVANS (2014).

- · Processo Estocástico.
- · Espaço de fase.
- Esperança condicional.
- Processos de Markov.
- Equações de Champman-Kolmogorov.
- · Processo de difusão.
- Forward and Backward Kolmogorov Equation

2.3 Movimento Browniano

2.3.1 Motivação

2.3.2 Definição

2.3.3 Propriedades

Um processo estocástico real, denotado por $W(\cdot)$ é chamado de processo de Wiener quando satisfaz as seguintes propriedades:

- 1. W(0) = 0, quase certamente;
- 2. Para todo $t \ge s \ge 0$, tem-se que $W(t) W(s) \sim \text{Normal}(0, t s)$;
- 3. $W(\cdot)$ possui incrementos independentes, isto é, para $0 < t_1 < t_2 < \cdots < t_n$, as variáveis aleatórias

$$W(t_1), \ W(t_2) - W(t_1), \ ..., \ W(t_n) - W(t_{n-1})$$
 são independentes.

2.4 Equações diferenciais estocásticas

2.5 Exemplo

A seguir, apresentemos um exemplo retirado de PAVLIOTIS e STUART (2008) de uma aproximação de um sistema determinístico para um sistema estocástico. Tal exemplo é relevante, pois trata-se de uma abordagem simplificada do que vamos realizar com o modelo de Lorenz 80.

O exemplo trata-se de um movimento browniano, assim como apresentado em na seção 2.3.3 acoplado ao sistema Lorenz 63 apresentado em 1.2 a partir das variáveis $y = (y_1, y_2, y_3)^T$. O exemplo em questão é expresso por:

$$\frac{dx}{dt} = x - x^{3} + \frac{\lambda}{\varepsilon} y_{2},
\frac{dy_{1}}{dt} = \frac{10}{\varepsilon^{2}} (y_{2} - y_{1}),
\frac{dy_{2}}{dt} = \frac{1}{\varepsilon^{2}} (28y_{1} - y_{2} - y_{1}y_{3}),
\frac{dy_{3}}{dt} = \frac{1}{\varepsilon^{2}} (y_{1}y_{2} - \frac{8}{3}y_{3}).$$
(2.1)

EXEMPLICAR POR QUE PODEMOS APROXIMAR

Podemos aproximar o modelo para sua versão estocástica forma de Itô:

$$\frac{dX}{dt} = X - X^3 + \sigma \frac{dW}{dt},\tag{2.2}$$

Onde σ é expresso por:

$$\sigma^2 = 2\lambda^2 \int_0^\infty \frac{1}{T} \left(\lim_{T \to \infty} \int_0^T \psi^s(y) \, \psi^{t+s}(y) \, ds \right) dt. \tag{2.3}$$

A partir das equações apresentadas, podemos realizar simulações computacionais. Novamente, as simulações foram realizadas com o uso da biblioteca *SciML* (RACKAUCKAS e NIE, 2017) e os programas que geraram os dados estão no apêndice A.

VER O NEGÓCIO DA SEED

Figura 2.1: Comparação entre simulação determinística e estocástica do browniano acoplado.

Figura 2.2: Comparação entre histogramas das simulações determinística e estocástica do browniano acoplado.

Apêndice A

Programas

A.1 Código do modelo Lorenz 80 determinístico

```
using DifferentialEquations, ModelingToolkit, CSV, DataFrames
3 @parameters t
4 @variables x[1:3](t) y[1:3](t) z[1:3](t)
5 D = Differential(t)
7 a = [1.0, 1.0, 3.0]
8 b = [0.5 * (a[1] - a[2] - a[3]), 0.5 * (a[2] - a[3] - a[1]), 0.5 * (a[2] - a[3] - a[3])
       [3] - a[1] - a[2])
9 c = sqrt(3/4)
h = [-1.0, 0.0, 0.0]
11 f = [0.1, 0.0, 0.0]
12 g_0, kappa_0, nu_0 = 8.0, 1/48, 1/48
14 \text{ eqs} = [
       D(x[i]) \sim (
15
           a[i]*b[i]*x[(i % 3) + 1]*x[((i+1) % 3) + 1]
16
           -c*(a[i]-a[((i+1) % 3) + 1])*x[(i % 3) + 1]*y[((i+1) % 3) +
      1]
           -2*c^2*y[i]*y[((i+1) % 3) + 1]
           - nu_0*a[i]^2*x[i]
19
           + a[i]*y[i] - a[i]*z[i]
       ) / a[i] for i in 1:3
21
22
23 append! (eqs, [
24
       D(y[i]) \sim (
           -a[((i+1) \% 3) + 1]*b[((i+1) \% 3) + 1]*x[(i \% 3) + 1]*y[((i+1)
25
       % 3) + 1]
           -a[(i \% 3) + 1]*b[(i \% 3) + 1]*y[(i \% 3) + 1]*x[((i+1) \% 3) +
          - a[i]*x[i] - nu_0*a[i]^2*y[i]
```

```
28 ) / a[i] for i in 1:3
  29 ])
  30 append! (eqs, [
         D(z[i]) \sim (
  31
              -b[((i+1) \% 3) + 1]*x[(i \% 3) + 1]*(z[((i+1) \% 3) + 1]-h[((i+1) \% 3) + 1])
         +1) % 3) + 1])
             -b[(i \% 3) + 1]*(z[(i \% 3) + 1]-h[(i \% 3) + 1])*x[((i+1) \% 3)
  33
          + 1]
              + c*y[(i % 3) + 1]*(z[((i+1) % 3) + 1]-h[((i+1) % 3) + 1])
  34
              -c*(z[(i \% 3) + 1]-h[(i \% 3) + 1])*y[((i+1) \% 3) + 1]
  35
              + g_0*a[i]*x[i] - kappa_0*a[i]*z[i] + f[i]
         ) for i in 1:3
  37
     ])
  38
  39
     @mtkbuild sys = ODESystem(eqs, t)
  40
  42 \times 0, y0, z0 = [0.1, 0.0, 0.0], [0.1, 0.0, 0.0], [0.1, 0.0, 0.0]
  43 u0 = vcat(x0, y0, z0)
  44 tspan = (0.0, 8*10.0) # 8*numero_de_dias
  46 sol = solve(ODEProblem(sys, u0, tspan), Tsit5(); abstol=1e-6, reltol=1
         e-8, saveat=0.01)
  48 U = Array(sol)
  49 df = DataFrame(time = sol.t, x1 = U[1,:], x2 = U[2,:], x3 = U[3,:], y1
          = U[4,:], y2 = U[5,:], y3 = U[6,:],z1 = U[7,:], z2 = U[8,:], z3 = U[8,:]
          U[9,:])
  51 cd(@__DIR__)
  52 isdir("data") || mkdir("data")
  53 CSV.write("data/solucao.csv", df)
```

Programa A.1: Simulação do modelo Lorenz 80

A.2 Exemplo do capítulo 02

```
D(y3) ~ (1 / ε^2) * (y1*y2 - (8/3)*y3)

d

d

emtkbuild sys = ODESystem(eqs, t)

tspan = (0.0, 1.0)
prob = ODEProblem(sys, [], tspan)
solucao_deterministico = solve(prob, Tsit5(), reltol=1e-6, abstol=1e -7, saveat=1e-3)

x_vals = solucao_deterministico[x]
y2_vals = solucao_deterministico[y2]

df = DataFrame(t = solucao_deterministico.t, y2 = y2_vals, x = x_vals)
cd(@__DIR__)
CSV.write("data/deterministico.csv", df)
```

Programa A.2: Modelo determinístico browniano acoplado

```
using DataFrames, Plots, CSV, Statistics, StatsBase, DSP
3 cd(@__DIR__)
4 df = CSV.read("data/deterministico.csv", DataFrame)
6 y2_vals = df[:, 2]
7 t_vals = df[:,1]
8 \Delta t = 1e-3
10 y2_centered = y2_vals .- mean(y2_vals)
11
12 acor = xcorr(y2_centered; scaling = :coeff)
13 n = length(y2_centered)
14 acor_pos = acor[n:end] # lags \ge 0
15
16 \lambda = 1.0
18 \sigma^2 = 2 * \lambda^2 * sum(acor_pos) * \Delta t
19 \sigma = \operatorname{sqrt}(\sigma^2)
20
21 println(\sigma)
```

Programa A.3: Cálculo do sigma

```
using DifferentialEquations, Plots

sigma = 8.880502080440465
4 x0 = 0.1
5 tspan = (0.0, 1.0)

f1(X, p, t) = X - X^3
```

```
8 f2(X, p, t) = p
9
10 W = WienerProcess(0.0, 0.0)
11 prob = SDEProblem(f1, f2, x0, tspan, sigma; noise = W)
12 solucao_estocastico = solve(prob, EM(), dt = 1e-3)
13
14 df = DataFrame(t = solucao_estocastico.t, x = solucao_estocastico.u)
15 cd(@__DIR__)
16 CSV.write("data/estocastico.csv", df)
```

Programa A.4: Modelo estocastico browniano acoplado

Apêndice B

Considerações matemáticas

B.1 Decomposição de Helmholtz

Referências

- [Chekroun et al. 2021] Mickaël D. Chekroun, Honghu Liu e James C. McWilliams. "Stochastic rectification of fast oscillations on slow manifold closures". *Proceedings of the National Academy of Sciences* 118.48 (nov. de 2021). ISSN: 1091-6490. DOI: 10.1073/pnas.2113650118. URL: http://dx.doi.org/10.1073/pnas.2113650118 (citado na pg. 9).
- [Evans 2014] Lawrence C. Evans. *An Introduction to Stochastic Differential Equations*. Providence, RI: American Mathematical Society, jan. de 2014 (citado na pg. 11).
- [E. N. LORENZ 1963] E. N. LORENZ. "Deterministic nonperiodic flow". *Journal of the Atmospheric Sciences* 20.2 (1963), pp. 130–141. DOI: 10.1175/1520-0469(1963) 020<0130:DNF>2.0.CO;2 (citado na pg. 4).
- [Edward N. Lorenz 1980] Edward N. Lorenz. "Attractor sets and quasi-geostrophic equilibrium". *Journal of the Atmospheric Sciences* 37.8 (ago. de 1980), pp. 1685–1699. ISSN: 1520-0469. DOI: 10.1175/1520-0469(1980)037<1685:asaqge>2.0.co;2 (citado nas pgs. 5, 6, 9).
- [PAVLIOTIS 2014] Grigorios A. PAVLIOTIS. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer New York, 2014. ISBN: 9781493913237. DOI: 10.1007/978-1-4939-1323-7 (citado na pg. 11).
- [Pavliotis e Stuart 2008] Grigorios A. Pavliotis e Andrew Stuart. *Multiscale Methods: Averaging and Homogenization*. Springer New York, 2008. ISBN: 9780387738291. DOI: 10.1007/978-0-387-73829-1 (citado na pg. 12).
- [RACKAUCKAS e Nie 2017] Christopher RACKAUCKAS e Qing Nie. "Differential Equations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia". *Journal of Open Research Software* 5.1 (2017) (citado nas pgs. 9, 13).
- [Vallis 2017] Geoffrey K. Vallis. *Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation*. Cambridge University Press, jun. de 2017. ISBN: 9781107588417. DOI: 10.1017/9781107588417 (citado nas pgs. 3, 5).

Índice remissivo

Captions, *veja* Legendas Código-fonte, *veja* Floats

Equações, veja Modo matemático

Figuras, *veja* Floats Floats

Algoritmo, *veja* Floats, ordem Fórmulas, *veja* Modo matemático

Inglês, veja Língua estrangeira

Palavras estrangeiras, *veja* Língua estrangeira

Rodapé, notas, veja Notas de rodapé

Subcaptions, *veja* Subfiguras Sublegendas, *veja* Subfiguras

Tabelas, veja Floats

Versão corrigida, *veja* Tese/Dissertação, versões

Versão original, *veja* Tese/Dissertação, versões