

restriction of a continuous mapping is continuous

Canonical name RestrictionOfAContinuousMappingIsContinuous

Date of creation 2013-03-22 13:55:53 Last modified on 2013-03-22 13:55:53

Owner matte (1858) Last modified by matte (1858)

Numerical id 6

Author matte (1858)
Entry type Theorem
Classification msc 54C05
Classification msc 26A15

Theorem Suppose X and Y are topological spaces, and suppose $f: X \to Y$ is a continuous function. For a subset $A \subset X$, the http://planetmath.org/RestrictionOfAFun of f to A (that is $f|_A$) is a continuous mapping $f|_A: A \to Y$, where A is given the subspace topology from X.

Proof. We need to show that for any open set $V \subset Y$, we can write $(f|_A)^{-1}(V) = A \cap U$ for some set U that is open in X. However, by the properties of the inverse image (see http://planetmath.org/InverseImagethis page), we have for any open set $V \subset Y$,

$$(f|_A)^{-1}(V) = A \cap f^{-1}(V).$$

Since $f: X \to Y$ is continuous, $f^{-1}(V)$ is open in X, and our claim follows. \square