Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy Číslo úlohy 304 - 4ROperační zesilovač

Zadání

- 1. Ověřte měřením některé katalogové údaje OZ MAA 741
 - (a) Napěťová nesymetrie OZ
 - (b) Rychlost přeběhu OZ
- 2. Podle zadání vyučujícího sestavte a realizujte OZ jako stejnosměrný meinvertující zesilovač se zatěžovacím rezistorem $R_L=10~k\Omega$. Měřením ověřte zadanou hodnotu A_u .
- 3. U navrřeného zesilovače změřte horní mezní frekvenci, nakreslete na mm papír frekvenční přenosovou charakteristiku.
- 4. Změřte a zekreslete závislost $f_H = f(A_u)$

Poř. č.	PŘÍJMEI	PŘÍJMENÍ a Jméno				Třída	Skupina	Školní rok	
26		VYKYDAL Jan				4A	3	2014	/2015
Datum měření Datum		odevzdání	Počet listů		Klasifikace				
						příprava	meření	protokol	obhajoba
8.10.		15.10.		6					
Protokol o měření obsahuje:		Teoretický	retický úvod T		Tabulky naměřených a vypočtených hodnot				
		Schéma		Vz	Vzor výpočtu				
		Tabulka použitých přístrojů		Grafy					
		Postup měi	ření	Zá	věr				

Schéma

Schéma č. 1: Měření napěťové nesymetrie OZ

Schéma č. 2: Měření rychlosti přeběhu SR OZ

Schéma č. 3: Měření $f_H=f({\cal A}_u)$

Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo
DMM_1	DMM	HC-5050DB	0376
OSC_1	analogový osciloskop	GOS-620	0651
CNT_1	čítač	U2000	0179
FG_1	generátor	8505A	0167
V_1	milivoltmetr	BK-128	0901
V_2	milivoltmetr	BK-128	0902
Z_1	symetrický zdroj	BK-126	0649

Tabulka č. 1: Použité přístroje

Tabulky naměřených a vypočítaných hodnot

U_2 $[mV]$	$\delta_{U_2\%} [\mu V]$	U_1
80	1,125~%	879

Tabulka č. 2: meřené napěťové nesymetrie U_{IO} OZ

veličina	hodnota
ΔU	4 V
Δt	$5 \mu s$

Tabulka č. 3: meřené veličiny pro výpořet rychlosti přeběhu SR OZ

U_2 [V]	$\delta_\%$ [%]
5,0	$\pm 3,000$
0,2	$\pm 7,142$
0,6	$\pm 2,500$
0,9	$\pm 1,667$
2,0	± 2.250

Tabulka č. 4: hodnoty napětí U_2 a procentuální chyby měření při $U_1=0,3~V$ a $\delta_{U_1\%}=\pm 5~\%$

$f_H [kHz]$	A_u [-]
1	16, 6
50	6,6
100	3,0
200	2,0
472	0, 7

Tabulka č. 5: závislost $f_H = f(A_u)$

Vzory výpočtů

Výpočet relativní procentuální chyby digitu:

$$\delta_{digit\%} = \frac{5 \cdot digit}{MH} \cdot 100 = \frac{5 \cdot 0, 1}{80} \cdot 100 \doteq \underbrace{0,625 \%}_{}$$

Celková procentuální chyba:

$$\delta_{U_2\%} = \pm \delta_{MH\%} + \delta_{digit\%} = \pm 0, 5 \pm 0, 625 \doteq \underline{1,125~\%}$$

Výpočet procentuální chyby $\delta_{\%}$ milivoltmetru:

$$\delta_{\%} = \pm TP \cdot \frac{MR}{MH} = \pm 1, 5 \cdot \frac{1}{0.9} = \pm \frac{\pm 1,667 \%}{\pm 100}$$

Výpočet R_2 , $R_1 = 1 k\Omega$, $A_u = 100$:

$$R_2 = R_1(A_n - 1) = 100 - 1 = 99 \ k\Omega$$

Vzhledem k tomu že, použitý rezistor $R_2 = 90 \ k\Omega$, tak přepočítáme hodnotu napěťového zesílení A_u . Výpočet A_u , $R_1 = 1 \ k\Omega$ a $R_2 = 90 \ k\Omega$:

$$A_U = 1 + \frac{R_2}{R_1} = \frac{1}{90} = \underline{91}$$

Výpočet napěťové nesymetrie U_{IO} :

$$U_{IO} = \frac{U_2 R_1}{R_1 + R_2} = \frac{80}{1 + 90} \doteq \underbrace{0.879 \ mV}_{}$$

Výpočet rychlosti přeběhu SR:

$$SR = \frac{\Delta U}{\Delta t} = \frac{4}{5} = \underbrace{0.8 \ V \mu s^{-1}}_{}$$

Výpočet R_2 , $R_1=1$ $k\Omega$, $A_u=15$:

$$R_2 = R_1(A_u - 1) = 15 - 1 = \underline{14 \ k\Omega}$$

Výpočet zesílení A_u :

$$A_u = \frac{U_2}{U_1} = \frac{5}{0.3} \doteq \underbrace{16,667}_{}$$

Výpočet zisku a_u :

$$a_u = 20 \log A_u = 20 \log 15 \doteq \underline{23,521 \ dB\Omega}$$

Grafy

Graf č. 1: Závislost zesílení na frekvenci $f_H=f(A_u)$

Závěr

Chyby měřících přístrojů

- 1. Při měření napěťové nesymetrie jsme se dopustily procentuální chyby 1,125 %.
- 2. Při měření zesílení A_u maximální procentuální chyba dosáhla hodnoty $\pm 7,142$ %, což už je poměrně veliká odchylka od měřené hodnoty. Díky této chybě nám program plot mírně zdeformoval křivku po interpolaci a došlo k posunutí horní mezní frekvence. Tato chyba nastala při měření napětí 0,2 V, jelikož použitý milivoltmetr nenabízel pro tuto činnost vhodnější měřící rozsah.
- 3. Tento bod byl částečně zodpovězen v bodu 2, změřená hozní mezní frekvence je změřená pčesně při $A_u = 0, 7$.

Zhodnocení

- 1. V katalogu je hodnota $U_{IO} \leq 6~mV$, my jsme ji změřili za využití nepřímého měření (měřili sme U_2 a U_{IO} jsme s něho dopočítali) na hodnotu 870 μV . Dále u parametru SR je v katalogu uvedena hodnota $1, 6~V \mu s^{-1}$, my jsme ji změřili na hodnotu $0, 8~V \mu s^{-1}$
- 2. Měli jsme zadané $A_u = 15$, vlastnosti A_u byli velmi závislé na frekvenci vstupního signálu. Pži frekvenci vstupního signálu $f = 1 \ kHz$ jsme dosáhli zesílení $A_u = 16, 6$.
- 3. Horní mezní kmitočet jsme změřili na frekvenci 472~kHz, při této frekvenci výstupní signál napěťově pohlesnul o 3 dB. Tedy hodnota $A_u=0,7$. Napěťové zesílení ale začalo prudce klesat již při frekvencích několik desítek kilohetzů, viz. graf číslo 1. S toho důvůdu ususuji že tento integrovaný obvod MAA 741 je nevhodný pro zesilování vysokofrekvenčních signálů. Jeho využití bych vyděl například jako nískofrekvenční zesilovač.