3.3. Алгоритм прямого симплекс-метода

Запишем алгоритм симплекс-метода в виде последовательности шагов и разберем на примере одну из его численных реализаций (так называемый прямой симплекс-метод). Итак, алгоритм состоит из следующих шагов:

ШАГ 0. ВЫБОР НАЧАЛЬНОГО БАЗИСНОГО РЕШЕНИЯ И ЗАПОЛНЕНИЕ НАЧАЛЬНОЙ СИМПЛЕКС-ТАБЛИЦЫ. (выполняется один раз)

ШАГ 1. ПРОВЕРКА ТЕКУЩЕГО РЕШЕНИЯ НА ОПТИМАЛЬНОСТЬ. (если решение оптимально, то конец) →

ШАГ 2. ВЫБОР НАПРАВЛЕНИЯ УЛУЧШЕНИЯ РЕШЕНИЯ И ОПРЕДЕЛЕНИЕ ПАРАМЕТРА θ .

ШАГ 3. ПЕРЕХОД К НОВОМУ ("ЛУЧШЕМУ") ТЕКУЩЕМУ РЕШЕНИЮ. ВОЗВРАЩЕНИЕ К ШАГУ 1.

Переходим к подробному описанию шагов алгоритма прямого симплекс-метода, иллюстрируя их примером о планировании выпуска продукции.

Итак, пусть ЗЛП записана с ограничениями-равенствами.

$$f = 4x_1 + 5x_2 \longrightarrow \max$$

$$\begin{cases} 4x_1 + 6x_2 + x_3 &= 24\\ 3x_1 + 2x_2 &+ x_4 &= 12\\ x_1 + x_2 &+ x_5 = 8 \end{cases}$$

$$x_i \ge 0 \quad (i \in 1:5)$$

ШАГ 0. ВЫБОР НАЧАЛЬНОГО БАЗИСНОГО РЕШЕНИЯ

Выберем в качестве базисных переменных дополнительные переменные x_3, x_4, x_5 . Тогда $x_1 = x_2 = 0$ и начальное базисное решение будет иметь вид

$$X_0 = (0, 0, 24, 12, 8)$$

• Заметим, что дополнительные переменные имеют совершенно ясное содержательное истолкование:

 x_3 - это остаток сырья 1-го вида, x_4 - 2-го, а x_5 - 3-го вида. Тогда начальное решение можно интерпретировать следующим образом "если ничего не выпускать ($x_1=x_2=0$), то все запасы сырья перейдут в остаток ($x_3=24, \quad x_4=12, \quad x_5=8$). При этом будет получена нулевая прибыль ($f(X_0)=0$)". •

Запишем исходные данные ЗЛП и информацию о начальном решении в таблицу, которая называется симплекс-таблицей (n - число переменных, m - число ограничений).

Начальная симплекс-таблица для нашего примера с базисным решением примет вид, представленный ниже. Значение целевой функции на начальном шаге определяется

Так для подсчета оценки Δ_1 нужно столбец

$$C_{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

скалярно умножить на столбец

$$A_1 = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$$

и из результата вычесть коэффициент $c_1 = 4$ т.е.

$$\Delta_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} - 4 = 4 \cdot 0 + 3 \cdot 0 + 1 \cdot 0 - 4 = -4$$

Оценка Δ_1 записывается в первый элемент строки Δ . Аналогично вычисляются остальные оценки.

$$\Delta_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} - 5 = -5 \quad , \quad \Delta_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 0 = 0$$

$$\Delta_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0 = 0 \quad , \quad \Delta_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0 = 0$$

• Удобнее всего вычислять оценки прямо в таблице. Столбец A_j , оценку которого надо вычислить, умножается скалярно на столбец $C_{\it E}$. Из полученного числа вычитается коэффициент целевой функции, стоящий <u>над</u> столбцом A_j . Результат записывается в строку оценок <u>под</u> столбцом A_j . Заметим, также. что на начальном шаге (т.к. $C_{\it E}$ =(0, 0, 0)) оценки равны коэффициентам целевой функции с обратным знаком •

Оценки и значение целевой функции вычисляются только на начальном шаге, а в дальнейшем пересчитываются автоматически. Заполнением начальной симплекстаблицы завершается нулевой шаг симплекс-метода.

ШАГ 1. ПРОВЕРКА ТЕКУЩЕГО РЕШЕНИЯ НА ОПТИМАЛЬНОСТЬ

Критерием оптимальности (или условием того, что имеющаяся вершина является оптимальной) является выполнение условия

$$\Delta_i \ge 0$$
 $(j \in 1:n)$

для всех оценок в строке Δ .

• Если решается ЗЛП на min, то знак неравенства меняется на обратный и условие принимает вид $\Delta_j \leq 0$ $(j \in 1:n)$ •

При работе с симплекс-таблицей проверка решения на оптимальность сводится к просмотру строки оценок Δ . Если все элементы строки оценок больше или равны нулю, то текущее решение оптимально и вычисления на этом заканчиваются. Если же среди элементов строки оценок имеется хотя бы один отрицательный, то текущее решение не оптимально и может быть улучшено.

Проверим на оптимальность текущее решение в рассматриваемом примере.

Просмотр элементов строки оценок Δ убеждает нас в том, что среди элементов имеются отрицательные (отмечены знаком \otimes), а , значит, текущее решение не является оптимальным и может быть улучшено. На этом шаг проверки решения на оптимальность завершается.

ШАГ 2. ВЫБОР НАПРАВЛЕНИЯ УЛУЧШЕНИЯ РЕШЕНИЯ И ОПРЕДЕЛЕНИЕ ПАРАМЕТРА Θ

<u>Для улучшения решения выбирается одна из отрицательных оценок,</u> т.е. одно из возможных направлений. (Более точный выбор направления будет описан ниже в замечании). Выберем в примере в качестве направления то, которое отвечает оценке $\Delta_1 = -4$ (в таблице отмечено стрелкой).

После выбора направления $-Z_{j_0}$ проверяется критерий неограниченности целевой функции на множестве решений (см. случай неразрешимости ЗЛП в разд. 2). Он состоит в следующем:

Если среди элементов выбранного направления $-Z_{j_0}\equiv A_{j_0}$ нет положительных, то целевая функция не ограничена на множестве решений и ЗЛП неразрешима.

Если же среди элементов A_{j_0} есть положительные, то решение по выбранному направлению можно улучшить. Для выбранного нами направления в примере

$$A_1 = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$$

все компоненты положительны.

Теперь остается определить параметр θ , растягивающий (сжимающий) вектор $-Z_{j_0}\equiv A_{j_0}$. Значение этого параметра выбирается по следующему правилу:

$$\theta = \min \left\{ \frac{X_{Bi}}{A_{j_0i}} \middle| A_{j_0i} > 0 \right\}$$

В симплекс-таблице выбирается наименьшее из отношений элементов столбца $X_{\it Б}$ к соответствующим <u>положительным</u> элементам вектора направления. Проиллюстрируем сказанное фрагментом симплекс-таблицы.

		1	2	3	4	5
N _δ	ХБ					
3	24 ◀	4	6			
4	12 ◀	→ 3	2			
5	8 🗲	→ 1	1			

Минимум достигается в строке i_0 , соответствующей некото-рой базисной переменной (в примере это переменная \mathcal{X}_4 . Ее строка отмечена стрелкой). На этом ШАГ 2 завершается.

$$\theta = \min\left\{\frac{24}{4}, \frac{12}{3}, \frac{8}{1}\right\} = \min\{6, 4, 8\}$$

• 1. Собственно для перехода к новому решению нам важно знать не саму величину θ , а, именно, строку i_0 , где этот минимум достигается.

2. Величина θ может быть использована для более точного выбора направления. Известно, что скачок целевой функции, при переходе к "лучшему" решению равен.

$$\Delta f = -\Delta_{j_0} \cdot \theta \tag{*}$$

(Δ_{j_0} - выбранная оценка, heta - соответствующий ей параметр).

Естественно, хотелось бы при улучшении решения получить максимальный скачок целевой функции. Для этого необходимо:

- a). Найти значения heta , соответствующие каждой из отрицательных оценок.
- б). Выбрать из полученных величин Δf наибольшую. Ту оценку, которая отвечает максимальной величине скачка Δf , и надо выбирать для определения направления улучшения решения.

Рассмотрим, для нашего примера, какую из двух оценок следует выбрать:

Оценка
$$\Delta_1=-4$$
 , $\theta=\min\{\,24/4,\ 12/3,\ 8/1\,\}=4$, $\Delta f=-(-4)\cdot 4=16$ Оценка $\Delta_2=-5$, $\theta=\min\{\,24/6,\ 12/2,\ 8/1\,\}=4$, $\Delta f=-(-5)\cdot 4=20$

Значит сделанный нами выбор был не самым удачным. Если в качестве направления мы выбрали бы то, которое отвечает оценке $\Delta_2=-5$, значение целевой функции увеличилось бы на 20 единиц, а не на 16, как при выборе оценки $\Delta_1=-4$. Часто в литературе можно встретить такое правило выбора оценки: "Выбирается оценка максимальная по абсолютной величине". Соотношение (*) показывает, что оно не всегда справедливо (хотя в нашем примере оно выполняется). Другими словами, максимальной по абсолютной величине оценке не обязательно соответствует максимальный скачок целевой функции (θ может быть очень мало). Правило выбора наилучшего направления можно сформулировать в следующем виде: "Выбирать то направление, которому соответствует максимальная абсолютная величина произведения оценки Φ на Φ .

3. При реализации симплекс-метода на ЭВМ использование правил выбора направления, как по максимальному модулю оценки, так и по максимуму скачка целевой функции, требует дополнительных вычислений, приводит к дополнительным затратам и машинного времени и усложнению программы. В этом случае часто используют правило, по которому выбирают первую отрицательную оценку. •

ШАГ 3. ПЕРЕХОД К НОВОМУ РЕШЕНИЮ.

Переход к новому решению связан с заменой одних базисных переменных на другие. В симплекс-методе такая замена выглядит следующим образом:

				1	2	3	4	5
	N _B	Сь	ХБ	4	5	0	0	0
	3	0	24	4	6	1	0	0
-	4	0	12	3	2	0	1	0
	5	0	8	1	1	0	0	1
			0	-4	-5	0	0	0
			×××××		******	****	******	

1. Новой базисной переменной становится переменная \mathcal{X}_{j_0} , соответствующая выбранной отрицательной оценке Δ_{j_0} (столбец отмечен стрелкой).

В примере этого переменная \mathcal{X}_1 .

2. Из базисных переменных исключается та \mathcal{X}_{i_0} , которая соответствует строке, где определялась величина

heta (строчка отмечена стрелкой). В примере это переменная x_4 .

Поэтому новую симплекс-таблицу начинают заполнять с того, что в столбцах $N_{\rm B}$ и $C_{\rm B}$ заменяют номер i_0 на номер j_0 и элемент ${}^{C}i_0$ на ${}^{C}j_0$. (В примере номер 4 заменяют на номер 1 и $c_4=0$ заменяют в столбце $C_{\rm B}$ на $c_1=4$). Далее сохраняют коэффициенты целевой функции в строке C (как не изменяющиеся исходные данные).

Оставшуюся (выделенную) часть "старой" симплекс-таблицы пересчитывают по методу полного исключения Гаусса-Жордана с ведущим элементом, стоящим на пересечении отмеченной строки (ведущая строка) и отмеченного столбца (ведущий столбец). Пересчет по методу Гаусса-Жордана означает выполнение следующих действий.

1. Ведущая строка делится на ведущий элемент

				1	2	3	4	5					1	2	3	4	5
	N _δ	СБ	X _δ	4	5	0	0	0		N _δ	СБ	X _δ	~~~		*****	****	
	3	0	24	4	6	1	0	0		3	0		0				
→	1	4	12	3	2	0	1	0	$\frac{1}{3}$	1	4	4	1	2/ 3	0	1/3	0
	5	0	8	1	1	0	0	1		5	0		0				***
			0	-4	-5	0	0	0					0				*
			*****		****		 					×××××	~}		*****	<u> </u> 	******
				T									\top				

Оставшиеся элементы ведущего столбца заполняются нулями.

2. Остальные элементы пересчитываются по формуле "прямоугольника"

$$a_{ij}^* = a_{ij} - \frac{a_{ij_0} \cdot a_{i_0 j}}{a_{i_0 j_0}}$$

Здесь a^* - элемент новой симплекс-таблицы,

 $a\,$ - элемент "старой" симплекс-таблицы. (Номера строк и столбцов берутся по оставшейся части таблицы).

формулу " прямоугольника" легко запомнить, пользуясь приведенным рисунком. "Для того, чтобы определить элемент a_{ij} новой симплекс-таблицы, необходимо взять элемент a_{ij} в старой таблице, найти ведущий элемент и построить (мысленно) прямоугольник, как указано на рис. Затем вычесть из a_{ij} произведение элементов противоположной диагонали прямоугольника ($a_{i_0j} \cdot a_{ij_0}$), деленное на ведущий элемент ($a_{i_0j_0}$)".

Пересчитаем элементы первой строки в оставшейся части таблицы.

2

			1	2	3	4	5
N _δ	Сь	ХБ	4	5	0	0	0
3	0	8	0	10/3	.>>>>>>	-4/3	****
1	4/	4	1	2/3	0	1/3	0
5/	0		0				
			0				
		***	***	^	***	**********	*

\$\$\$\$\$\$			******	******	******					
24	4	. _ 6	1	0	0					
12	3	2	0	1	0					
8	1	1	0	0	1					
0	-4	-5	0	0	0					
$6 - \frac{4 \cdot 2}{2} = \frac{10}{2}$										

	_		******		I
24	4	6	1_	0 •	0
12	3	2	0	71	0
8	1	1	o /	0	1
0	-4	-5	9/	0	0
\$\$\$\$\$\$\$	^	^>>>>>		******	******
	-				
	0 –	$\frac{4\cdot 1}{2}$	$-\frac{4}{3}$		

Для ускорения счета

можно пользоваться двумя приемами.

- 1. Если в ведущей строке есть нулевые элементы, то соответствующие им столбцы переносятся в новую таблицу без изменений.
- 2. Если в ведущем столбце (старой таблицы) есть нулевые элементы, то соответствующие им строки переносятся в новую таблицу без изменений.

Воспользовавшись первым из этих правил, перенесем без изменений в новую таблицу старые столбцы, соответствующие 3-й и 5-й переменным. После пересчета 1-й строки новая таблица примет вид:

			1	2	3	4	5
N _δ	СБ	ХБ	4	5	0	0	0
3	0	8	0	10/3	1	-4/3	0
1	4	4	1	2/3	0	1/3	0
5	0	4	0	1/3	0	-1/3	1
			0		0		0
		~>>>>>	/××××	*****	$\langle \langle \rangle \rangle$	//////////////////////////////////////	****

24 4 6 1 0 0 12 3 2 0 1 0 8 • 1 1 • 0 0 1 0 -4 -5 0 0 0	}}	*****	******	**************************************	******	*****	~~~~~ <u></u>	
8 1 1 0 0 1	<u> </u>	24	4	6	1	0	0	
	**	12	3	2	0	1	0	
0 -4 -5 0 0 0		8 🌪	1	1 🗨	0	0	1	
	**************************************	0	-4	-5	0	0	0	/

 $0-\frac{\overline{1\cdot 1}}{}$

Аналогично пересчитываются элементы третьей строки.(см. выше) И, наконец, элементы последней строки (значение целевой функции и оценки):

											1	2	3	4	5
								N_{B}	Сь	ХБ	4	5	0	0	0
- 55	****	^^^^	****	*****	******				< <	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	*****		****** 	******	
~	24	4	6	1	0	0		3	0	8	0		1		0 §
**	12	3	2	0	1	0		1	4	4	1		0		0
<i>></i>	8	1	1	0	0	1		5	0	4	0		0		1
- }}		'	•	U	U					, T	U		U		
<i>></i>	0	-4	-5	0	0	0				(16)	0	-7/3	0	4/3)	0
\$	ו•×××	****	***	*****	****	******			3		~~~~	****	*****	~~ \	******
							$-\frac{-4.12}{2}$ =	-				1		<u> </u>	
						→	=	= 16				}		-4 ⋅1	4
									5	$-4\cdot 2$		7	10	3	$=\frac{1}{3}$
					+					3		3		1	•
								_						<i>/</i>	

Пересчет закончен. Построена новая симплекс-таблица, отвечающая новому базисному решению (или новой вершине множества решений). На этом ШАГ 3, а вместе с ним и полная итерация симплекс-метода завершается.

				1	2	3	4	5	
	ΝБ	Сь	Хь	4	5	0	0	0	C
-	3	0	8	0	10/3	1	-4/3	0	
	1	4	4	1	2/3	0	1/3	0	
	5	0	4	0	1/3	0	-1/3	1	
			16	0	-7/3	0	4/3	0	Δ
			f						-

В полученном новом текущем решении базисными неизвестными являются неизвестные \mathcal{X}_3 , \mathcal{X}_1 и \mathcal{X}_5 (столбец $N_{\text{Б}}$), их значения равны 8, 4, 4 соответственно (столбец $X_{\text{Б}}$). Значение целевой функции на этом решении равно 16. Переходим к следующей итерации симплекс-метода, т.е. возвращаемся на ШАГ 1.

ШАГ 1. Анализ строки оценок Δ показывает, что текущее решение не является оптимальным (оценка $\Delta_2 = -7/3 < 0$).

ШАГ 2. Так как отрицательная оценка одна ($\Delta_2 < 0$), ее и выбираем для определения направления (значит, в число базисных будем вводить переменную x_2). Находим θ :

$$\theta = \min\left\{\frac{8}{10/3}, \frac{8}{10/3}, \frac{8}{10/3}\right\} = \frac{12}{5}$$

Минимум достигается в строке, соответствующей переменной \mathcal{X}_3 (она будет выведена из числа базисных). Отмечаем ведущую строку, ведущий столбец и ведущий элемент.

ШАГ 3. Заменяем в $N_{\rm B}$ номер 3 на номер 2, а в столбце $C_{\rm B}$ с $_{\rm 3}$ = 0 на с $_{\rm 2}$ = 5. Переписываем строку $C_{\rm B}$ в новую таблицу. Так как в ведущей строке есть два нулевых элемента, то соответствующие им столбцы переносим в новую таблицу без изменений. Делим ведущую строку на ведущий элемент и заполняем нулями ведущий столбец. Остальные элементы выделенной части пересчитываем по методу Гаусса-Жордана (по строкам).

Вторая итерация симплекс-метода завершена. Переходим к проверке полученного решения на оптимальность.

Таким образом, мы заключаем, что текущее решение является оптимальным решением $\underline{\rm 3Л\Pi}$ (т.е. целевая функция достигла своего максимального значения $f_{\rm max}=108/5$). Выпишем оптимальное значение из симплекс-таблицы. В столбце $N_{\rm B}$ хранятся номера базисных переменных, а в столбце $X_{\rm B}$ их значения. Получаем

Остальные переменные (небазисные) равны нулю: $x_3 = 0$, $x_4 = 0$

Значение целевой функции выписываем из клетки $\,f\,$

$$f = 108/5$$

Окончательно, данная ЗЛП имеет следующее оптимальное решение:

$$X^* = (\frac{12}{5}, \frac{12}{5}, 0, 0, \frac{16}{5}), f(X^*) = 108/5$$

Такой же результат получен графически (см. раздел 2)

ЭКОНОМИЧЕСКИЙ СМЫСЛ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ.

- 1. Наиболее выгодным является выпуск табуреток и стульев в количестве по 12 шт. за 5 плановых периодов.
- 2. Прибыль за плановый период составит 108\5 ед.
- 3. Сырье 1-го и 2-го видов при этом будет израсходовано полностью $(x_3=0,x_4=0)$.

а остаток сырья 3-го вида (\mathcal{X}_5) составит 16\5 ед. к концу планового периода.