Работа посадочной опоры многоразовой РН Прикладные задачи динамики твердого тела и систем тел

Юдинцев В. В.

Кафедра теоретической механики Самарский университет

10 ноября 2023 г.

Посадочные опоры PH Falcon-9

Условия

- Рассматривается упрощенная модель взаимодействия посадочной опоры многоразовой ступени РН с поверхностью земли.
- Ступень садится на 4 опоры.
- Каждая опора состоит из демпфирующего подкоса переменной длины ВК и опорного подкоса АК постоянной длины, которые шарнирно закрепляются на корпусе РН.

Модель

Сотовый демпфер

В качестве демпфирующего элемента используется сминаемый одноразовый демпфер сотового типа, обеспечивающий постоянную силу смятия.

Кинематические соотношения

Из теоремы косинусов для треугольника ABK найдём зависимость длины демпфирующего подкоса от высоты шарнира A над поверхностью земли h = AE, который определяет вертикальное положение ступени:

$$s^2 = l^2 + a^2 - 2al\cos\alpha = l^2 + a^2 + 2al\cos(\pi - \alpha)$$

Кинематические соотношения

Косинус угла $\cos(\pi - \alpha)$ из треугольника AEK

$$\cos(\pi - \alpha) = \frac{h}{l},$$

тогда:

$$s^2 = l^2 + a^2 - 2al\cos\alpha = l^2 + a^2 + 2ah$$

Кинематические соотношения

Продифференцировав

$$s^2 = l^2 + a^2 - 2al\cos\alpha = l^2 + a^2 + 2ah$$
,

получим зависимость скорости деформации подкоса \dot{s} от изменения вертикальной скорости ступени \dot{h} :

$$2s\dot{s} = 2a\dot{h} \quad \rightarrow \quad \dot{s} = -\frac{a}{s}\dot{h}$$

Скорость деформации демпфера телескопического подкоса в s/a раз меньше вертикальной скорости посадочной ступени. Найденная зависимость s от h также позволяет записать уравнение в вариациях:

$$s \cdot \delta s = a \cdot \delta h \quad \rightarrow \quad \delta s = -\frac{a}{s} \delta h,$$

которое пригодится для определения обобщенных сил при выводе уравнения Лагранжа II-го рода.

Уравнение вертикального движения ступени

Уравнение вертикального движения корпуса возвращаемой ступени при взаимодействии четырех опор с поверхностью земли будет иметь вид:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{s}} - \frac{\partial T}{\partial s} = Q_s$$

Будем считать, что масса посадочных опор мала в сравнении с массой всей ступени. В этом случае кинетическая энергия T рассматриваемой механической системы будет определяться кинетической энергией корпуса:

$$T = \frac{m\dot{h}^2}{2}$$

где m – масса возвращаемой ступени в момент посадки, \dot{h} – вертикальная скорость ступени.

Левая часть уравнения Лагранжа

Учитывая что

$$\dot{h} = \frac{s}{a}\dot{s},$$

перепишем выражение для кинетической энергии:

$$T = \frac{m\dot{h}^2}{2} = \frac{m\dot{s}^2}{2} \frac{s^2}{a^2}$$

Левая часть уравнения Лагранжа запишется в виде:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{s}} - \frac{\partial T}{\partial s} = m\frac{d}{dt}\left(\frac{s^2}{a^2}\dot{s}\right) - m\frac{s}{a^2}\dot{s}^2 = \frac{ms}{a^2}\left(\dot{s}^2 + s\ddot{s}\right)$$

Обобщенные силы

Обобщенную силу Q_s определим, записав выражение для элементарной работы сил на элементарном перемещение δs :

$$\delta A = \delta A_g + 4\delta A_D + 4\delta A_F$$

Работа силы тяжести

Элементарная работа силы тяжести при вертикальном перемещении корпуса ступени определяется как

$$\delta A_g = -mg\delta h = -mg\frac{s}{a}\delta s$$

Знак минус учитывает, что при положительной вариации δh (высота увеличивается) работа совершаемая силой тяжести будет отрицательной.

Работа демпфера

Элементарная работа демпфера при отрицательном элементарном перемещении (сжатии демпфера) будет отрицательной, поэтому

$$\delta A_D = D\delta s,$$

где D - сила сопротивления демпфера при его деформации.

Работа силы трения

Элементарная работа силы трения при элементарном перемещении точки K вдоль поверхности земли δK :

$$\delta A_F = -F\delta K = -N\mu\frac{\partial}{\partial\,h}\left(\sqrt{l^2-h^2}\right)\delta h = N\mu\frac{hs}{a\sqrt{l^2-h^2}}\delta s$$

где μ – коэффициент трения.

Сила реакции опоры

Силу реакции опоры N определим, записав уравнение вертикального движения центра масс возвращаемой ступени под действием внешних сил:

$$m\ddot{h} = 4N - mg$$

из которого следует, что

$$N = (m\ddot{h} + mg)/4.$$

Вертикальное ускорение

Вертикальное ускорение \ddot{h} определим из полученного ранее кинематического уравнения

$$\dot{s} = -\frac{a}{s}\dot{h}$$

продифференцировав его

$$\ddot{h} = \frac{1}{a}(\ddot{s}s + \dot{s}^2)$$

Обобщенная сила

Выражение для элементарной работы примет вид:

$$\delta A = -mg\frac{s}{a}\delta s + 4D\delta s + \mu m\frac{hs(\frac{1}{a}(\ddot{s}s + \dot{s}^2) + g)}{a\sqrt{l^2 - h^2}}\delta s$$

Запишем обобщенную силу:

$$Q_{s} = -mg\frac{s}{a} + 4D + \mu m \frac{hs(\frac{1}{a}(\ddot{s}s + \dot{s}^{2}) + g)}{a\sqrt{l^{2} - h^{2}}}$$

Уравнение движения

Уравнение движения посадочной опоры

$$ms\dot{s}^2 + ms^2\ddot{s} = -mgsa + 4Da^2 + \mu m \frac{hs(\ddot{s}s + \dot{s}^2 + ag)}{\sqrt{l^2 - h^2}}$$

Разрешив это уравнение относительно старшей производной, получим:

$$\ddot{s} = \frac{1}{s} \left(\frac{4a^2x}{ms(x - \mu h)} D - ag - \dot{s}^2 \right)$$

где
$$x = \sqrt{l^2 - h^2}$$
.

Стационарное решение (равновесие)

Стационарное решение этого уравнения при $\ddot{s}=\dot{s}=0$

$$\frac{4a^2x}{ms(x-\mu h)}D - ag = 0$$

Из стационарного решения можно вывести минимальное усилие, создаваемое демпфером, при котором система будет находится в равновесии:

$$D_{min} = ag \frac{ms (x - \mu h)}{4a^2x},$$

которое в случае отсутствия трения опоры о поверхность земли ($\mu=0$) примет вид:

$$D_{min} = \frac{mg}{4} \frac{s}{a}$$

Задание

Масса возвращаемой ступени в момент посадки равна 30 т, AK=6.5 м, BK = 8 м, a = 3 м. Ступень касается земли с начальной вертикальной скоростью 3 м/с.

- **1** Найти минимальное необходимое усилие смятия демпфера $D_{0.4}$ при $\mu = 0.4$ и деформации демпфера не более 0.5 м.
- ② Найти минимальное необходимое усилие смятия демпфера $D_{0.0}$ при $\mu=0.0$ и деформации демпфера не более 0.5 м.
- Верифицировать модель, убедившись в равенстве нулю суммы начальной кинетической энергии возвращаемой ступени, работы сили тяжести, работы демпферов и сил трения опор.