

Performance evaluation of GNSS/INS integration

Student: Guo Xiaoliang

Supervisor: Prof. Nobuaki Kubo

2021/08/10

0. Contents

- 1. Objectives;
- 2. GNSS/INS loosely coupled and tightly coupled;
- 3. Multi-sensor fusion method;
- 4. Experiment and result;
- 5. Summary.

1. Objectives

With the rise of automatic driving, the research of vehicle integrated navigation and positioning becomes very important. In the face of market-oriented demand, what kind of technical solutions to achieve low-cost, high reliability and accurate positioning have become an important research topic.

1. Objectives

- Our laboratory has study in GNSS and INS for many years.
- Dr. Tominaga showed the IAE (innovation-based adaptive estimation) Kalman filter, and compare the estimation result with classical Kalman filter, we continue his study, and use this method in the tightly coupled.

• Reference: Takaki Tominaga, A study on improvement of GNSS positioning system in urban area

1. Objectives

- Our laboratory has achieved accuracy within 1 m (95%) even in dense urban area (Marunouchi) using low-cost GNSS/IMU + speed sensor.
- However, we have not investigated the difference of performance between loosely coupled (LC) and tightly coupled (TC) thoroughly. In this paper, the TC program was built and mainly focused on the difference between LC and TC.
- The accuracy leaves in the TODO list and set as the future study.

Each sensor has its advantages and disadvantages, GNSS/INS coupled can

improve the positioning better.

The difference between two methods is the measurements, tightly coupled is

closer to the raw data. Kalman Filter **GNSS** INS Loosely coupled Position & speed Attitude & speed Close to the raw data Tightly coupled Pseudo range Gyro x, y, z; Doppler frequency Acceleration x, y, z. Carrier phase

2. GNSS/INS coupled

Basic Kalman filter in GNSS/INS integration.

In Kalman filter, the state vector estimation is:

$$\widehat{\boldsymbol{\chi}}_{k}^{-} = \boldsymbol{\Phi}_{k-1} \widehat{\boldsymbol{\chi}}_{k-1}^{+}$$

Error covariance matrix is:

$$P_{k}^{-} = \Phi_{k-1} P_{k-1}^{+} \Phi_{k-1}^{T} + Q_{k-1}$$

Observation matrix is:

$$\boldsymbol{h}(\boldsymbol{x}_k, t_k) = \boldsymbol{H}_k \boldsymbol{x}_k$$

Kalman gain is:

$$\boldsymbol{K}_{k} = \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{\mathrm{T}} (\boldsymbol{H}_{k} \boldsymbol{P}_{k}^{-} \boldsymbol{H}_{k}^{\mathrm{T}} + \boldsymbol{R}_{k})^{-1}$$

Update state vector:

$$\widehat{\boldsymbol{x}}_{k}^{+} = \widehat{\boldsymbol{x}}_{k}^{-} + \boldsymbol{K}_{k}(\boldsymbol{z}_{k} - \boldsymbol{H}_{k}\widehat{\boldsymbol{x}}_{k}^{-})$$
$$= \widehat{\boldsymbol{x}}_{k}^{-} + \boldsymbol{K}_{k}\delta\boldsymbol{z}_{k}^{-}$$

Update of error covariance matrix:

$$\boldsymbol{P}_k^+ = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_k^-$$

2. GNSS/INS coupled

GNSS LAB lumsat

Mechanization equation in ECEF

INS position methods called mechanization equation. For mechanization equation, there are four steps:

- Using gyro increments to update the attitude;
- Convert the acceleration specific force from body frame to navigation frame (ECEF or ENU);
- 3. Using old velocity, the acceleration and the time interval, the new speed can be calculated;
- 4. The new position can be calculated from the old position, new speed and time interval.

2. GNSS/INS coupled

Design Kalman filter for GNSS/INS integration

The GNSS/INS integration using INS as the main sensor. The INS attitude integral is obtained by gyro, and velocity integral is obtained by acceleration.

INS, as a dead-reckoning method, needs accurate attitude ψ_{eb}^e , velocity v_{eb}^e , position r_{eb}^e , acceleration bias b_a and gyro bias b_g to do positioning. So, in the Kalman filter, these five values are settled as the state vector estimation.

$$\delta x = egin{pmatrix} \delta oldsymbol{\psi}_{eb}^e \ \delta oldsymbol{v}_{eb}^e \ \delta oldsymbol{v}_{eb}^e \ \delta oldsymbol{b}_a \ \delta oldsymbol{b}_g \end{pmatrix}$$

2.1 GNSS/INS loosely coupled

GNSS/INS loosely coupled means using GNSS position and velocity as Kalman filter measurements, which use it to estimate the INS. The Kalman filter will feed back the INS bias and output the position, velocity and attitude.

2.1 GNSS/INS loosely coupled

The GNSS/INS loosely coupled flow chart was showed in the left;

The initial attitude of INS is the Euler angle from body frame the navigation frame (ECEF);

If GNSS available, do Kalman filter. If not, output the INS result;

This program has close-loop correction, so after the Kalman filter, the estimate bias will feed back to the INS.

2.2 GNSS/INS tightly coupled

GNSS/INS tightly coupled means using GNSS pseudo range and pseudo range rate (Doppler frequency) as Kalman filter measurements, using INS position and velocity to calculate the estimate pseudo range and pseudo range rate, Kalman filter will estimate the INS errors, and eliminate the error of INS.

2.2 GNSS/INS tightly coupled

The GNSS/INS tightly coupled flow chart was showed in the left;

The initial attitude of INS is the Euler angle from body frame the navigation frame (ECEF);

If GNSS available, do Kalman filter. If not, output the INS result;

This program has close-loop correction, so after the Kalman filter, the estimate bias will feed back to the INS.

2.3 Difference with LC & TC

The difference between loosely coupled and tightly coupled is:

When the number of the satellites is less than 4, loosely coupled can't provide the measurements, but the tightly coupled can continuously provide the measurements when the satellites is one or more.

The satellite position, lonospheric delay tropospheric delay are as the known quantity, we just need to estimate the receiver clock error and clock error rate.

It means that the tightly coupled can provide more continue measurement than loosely coupled. When the GNSS receiver in the urban environment, tightly coupled result should be more stable than loosely coupled.

Even in this case (only 1 sat.), TC can compare the measurement pseudo-range with predicted pseudo-range through INS.

2.3 Difference with LC & TC

The difference of transformation matrix is as follows:

$$\boldsymbol{\Phi}_{\mathrm{LC}}^{e} \approx \begin{bmatrix} \boldsymbol{I}_{3} - \boldsymbol{\Omega}_{ie}^{e} \tau_{s} & 0_{3} & 0_{3} & \widehat{\boldsymbol{C}}_{b}^{e} \tau_{s} \\ \boldsymbol{F}_{21}^{e} \tau_{s} & I_{3} - 2 \boldsymbol{\Omega}_{ie}^{e} \tau_{s} & \boldsymbol{F}_{23}^{e} \tau_{s} & \boldsymbol{C}_{b}^{e} \tau_{s} & 0_{3} \\ 0_{3} & I_{3} \tau_{s} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} \end{bmatrix}$$

$$\boldsymbol{\Phi}_{\mathrm{LC}}^{e} \approx \begin{bmatrix} \boldsymbol{I}_{3} - \boldsymbol{\Omega}_{ie}^{e} \tau_{s} & 0_{3} & 0_{3} & \hat{\boldsymbol{C}}_{b}^{e} \tau_{s} \\ \boldsymbol{F}_{21}^{e} \tau_{s} & I_{3} - 2\boldsymbol{\Omega}_{ie}^{e} \tau_{s} & \boldsymbol{I}_{3} - 2\boldsymbol{\Omega}_{ie}^{e} \tau_{s} & \boldsymbol{I}_{3} \\ 0_{3} & I_{3} \tau_{s} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} \end{bmatrix} \quad \boldsymbol{\Phi}_{\mathrm{TC}}^{e} \approx \begin{bmatrix} \boldsymbol{I}_{3} - \boldsymbol{\Omega}_{ie}^{e} \tau_{s} & 0_{3} & 0_{3} & 0_{3} & \hat{\boldsymbol{C}}_{b}^{e} \tau_{s} & 0_{3} & 0_{3} \\ \boldsymbol{F}_{21}^{e} \tau_{s} & I_{3} - 2\boldsymbol{\Omega}_{ie}^{e} \tau_{s} & \boldsymbol{F}_{23}^{e} \tau_{s} & \boldsymbol{C}_{b}^{e} \tau_{s} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & I_{3} \tau_{s} & I_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & I_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} &$$

Where:
$$F_{21}^{e} = \left[-\left(\widehat{\boldsymbol{C}}_{b}^{e} \hat{f}_{ib}^{b} \right) \Lambda \right]$$

$$F_{23}^{e} = -\frac{2\widehat{\gamma}_{ib}^{e}}{r_{eS}^{e}(\widehat{L}_{b})} \frac{\widehat{r}_{eb}^{e}}{|\widehat{r}_{eb}^{e}|}$$

Reference: Paul D Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems

2.3 Difference with LC & TC

The difference in observation matrix is as follows:

$$\boldsymbol{H}_{LC} = \begin{pmatrix} 0_3 & 0_3 & -\boldsymbol{I}_3 & 0_3 & 0_3 \\ 0_3 & -\boldsymbol{I}_3 & 0_3 & 0_3 & 0_3 \end{pmatrix}$$

The difference in innovation matrix is as follows:

$$\delta z_{LC} = \begin{pmatrix} \hat{\boldsymbol{r}}_{eaG}^{e} - \hat{\boldsymbol{r}}_{eb}^{e} - \hat{\boldsymbol{c}}_{b}^{e} \boldsymbol{L}_{ba}^{b} \\ \hat{\boldsymbol{v}}_{eaG}^{e} - \hat{\boldsymbol{v}}_{eb}^{e} - \hat{\boldsymbol{C}}_{b}^{e} (\hat{\boldsymbol{\omega}}_{ib}^{b} \wedge \boldsymbol{L}_{ba}^{b}) + \boldsymbol{\Omega}_{ie}^{e} \hat{\boldsymbol{C}}_{b}^{e} \boldsymbol{L}_{ba}^{b} \end{pmatrix}_{k}$$

$$\boldsymbol{H}_{TC} \approx \begin{pmatrix} 0_{1,3} & 0_{1,3} & u_1^{\gamma T} & 0_{1,3} & 0_{1,3} & 1 & 0 \\ 0_{1,3} & 0_{1,3} & u_2^{\gamma T} & 0_{1,3} & 0_{1,3} & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1,3} & 0_{1,3} & u_m^{\gamma T} & 0_{1,3} & 0_{1,3} & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0_{1,3} & u_1^{\gamma T} & 0_{1,3} & 0_{1,3} & 0_{1,3} & 0 & 1 \\ 0_{1,3} & u_2^{\gamma T} & 0_{1,3} & 0_{1,3} & 0_{1,3} & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1,3} & u_m^{\gamma T} & 0_{1,3} & 0_{1,3} & 0_{1,3} & 0 & 1 \end{pmatrix}_{x=\hat{x}_k}$$

$$\delta z_{LC} = \begin{pmatrix} \hat{\boldsymbol{r}}_{eaG}^{e} - \hat{\boldsymbol{r}}_{eb}^{e} - \hat{\boldsymbol{c}}_{b}^{e} \boldsymbol{L}_{ba}^{b} \\ \hat{\boldsymbol{v}}_{eaG}^{e} - \hat{\boldsymbol{v}}_{eb}^{e} - \hat{\boldsymbol{c}}_{b}^{e} \boldsymbol{L}_{ba}^{b} \end{pmatrix}_{k} \qquad \delta z_{TC} = \begin{pmatrix} \left(\tilde{\rho}_{a,C}^{1} - \hat{\rho}_{a,C}^{1-}, \tilde{\rho}_{a,C}^{2} - \hat{\rho}_{a,C}^{2-}, \cdots \tilde{\rho}_{a,C}^{m} - \hat{\rho}_{a,C}^{m-} \right)_{k} \\ \left(\tilde{\rho}_{a,C}^{1} - \hat{\rho}_{a,C}^{1-}, \tilde{\rho}_{a,C}^{2} - \hat{\rho}_{a,C}^{2-}, \cdots \tilde{\rho}_{a,C}^{m} - \hat{\rho}_{a,C}^{m-} \right)_{k} \end{pmatrix}$$

Where:

 $u_m^{\gamma T}$ is the satellite m predict line of sight

Reference: Paul D Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems

Besides using GNSS position and velocity, there are several choices for Kalman filter measurements, for the attitude ψ_{eb}^e , velocity v_{eb}^e , position r_{eb}^e , acceleration bias b_a and gyro bias b_g , the measurements are as follows:

$$\delta x = egin{pmatrix} \delta oldsymbol{\psi}_{eb}^e \ \delta oldsymbol{v}_{eb}^e \ \delta oldsymbol{r}_{eb}^e \ \delta oldsymbol{b}_a \ \delta oldsymbol{b}_g \end{pmatrix}$$
 Vehicle motion model , Wheel speed sensor $\delta oldsymbol{r}_{eb}^e \ \delta oldsymbol{b}_a \ \delta oldsymbol{b}_g \ \delta oldsymbol{c}_g \$

3.1 Wheel speed sensor

For the vehicle motion model, in the ENU coordination, the vertical velocity is zero. The horizontal velocity is the component of the forward velocity of the body coordinate in the East and north directions.

$$\begin{cases} v_E^n = \sin(heading) \boldsymbol{v_{WSS}^b} \\ v_N^n = \cos(heading) \boldsymbol{v_{WSS}^b} \\ v_U^n \approx 0 \end{cases}$$

Where:

WSS is wheel speed sensor, car speed in the front direction.

3.1 Wheel speed sensor

The WSS+YAW can provide the velocity in ENU. Using old position and velocity, we can get the WSS+YAW dead-reckoning position, do Kalman filter with the LC/TC position, can remove some error from the GNSS.

The Kalman filter is a very simple filter, the WSS+YAW error covariance is set as 0.1 m, the LC/TC position error covariance is set as 1 m.

The WSS+YAW dead-reckoning position has accumulate error because of the speed and the YAW angle. So the position accuracy can't hold in a long time.

3.2 Barometer

$$h = 153.8 * (t_0 + 273.2) * \left(1 - \left(\frac{p}{p_0}\right)^{0.1902}\right)$$

Where:

P₀ is the Sea level standard atmospheric pressure, about 1013.25 hPa

The barometer can be used to calculate the stable height, and the GNSS error can be obtained by comparing with the height of GNSS in the local horizontal coordinate system. If the difference between GNSS height and barometer height is greater than 6m, we will discard this GNSS information.

However, the temperature is from the inside sensor, and the air pressure is easily affected by the weather, the height has noise and bias.

3.3 Zero angular rate update

The measurement matrix is:

$$H_{ZA,k} = (0_3 \quad 0_3 \quad 0_3 \quad -I_3 \quad 0)$$

The measurement innovations of gyro is:

$$\delta z_{\boldsymbol{b}_g,k}^- = \boldsymbol{0} - \boldsymbol{b}_g$$

Bias always exists in the INS, when the car is static, the gyro values should be zeros. In this time, the gyro measurements are available, and the Kalman filter can predict bias completely as above.

Two portions were selected, as considered more relevant for the objective of the tests, for each dataset tested twice:

- In Tsukishima, some places the GNSS signal is poor, but the environment isn't always challengeable;
- 2. In Marunouchi, there are many tall buildings and it is hard to receive continuous GNSS signals. Also, it has one of the largest railway station, there are many overhead bridge, limiting the number of the satellites in view. It is a typical urban canyon environment.

Hardware list and setting:

Equipment	Output	Frequency	Note		
Ublox-F9P	-F9P GNSS measurements		Integrated with Estelle, synchronize the clock of sensors		
Epson G370	Gyro and acceleration	50 Hz	Be used in Tsukishima 1 st test and Marunouchi 2 nd test		
Estelle	Wheel speed sensor, temperature, air pressure	50 Hz	Be used in Tsukishima 2 nd test and Marunouchi 1 st test		
poslv	Position	200 Hz			

The GNSS setting is as follows:

GNSS parameters setting					
Satellites	GPS, QZSS, GALILEO and BDS				
Elevation mask (degree)	15				
SNR mask (dBHz)	35				
GNSS measurements					
Loosely coupled	RTK and DGNSS				
Tightly coupled	DGNSS				

The Kalman filter parameters are as follows:

Kalman filter initial setting					
Initial attitude uncertainty (deg)	20				
Initial velocity uncertainty (m/s)	0.1				
Initial position uncertainty (m)	10				
Initial acceleration bias uncertainty (uG)	1e-4				
Initial gyro bias uncertainty (deg/hour)	10				
Initial clock offset uncertainty (m)	10				
Initial clock drift uncertainty (m/s)	0.1				

Measurement noise							
LC	GNSS positioning noise (m)	3e-2					
LC	GNSS velocity noise (m/s)	1e-3					
TC	GNSS pseudo range noise (m)	1					
IC .	GNSS pseudo range rate noise (m/s)	6e-3					
Multi-sensor	WSS+YAW (m)	0.1					
iviuiti-sensor	Zero angular rate (rad/s)	5e-4					
System noi	se						
Gyro bias Insta	Gyro bias Instability (deg/hour) 0.8						
Acceleration b	Acceleration bias Instability (uG) 12						
Acceleration velocity random walk (m/sec/hour^0.5) 0.025							
Gyro angular random walk (deg/hour^0.5) 0.06							
Receiver clock frequency-drift PSD (m^2/s^3) 1							
Receiver clock	phase-drift PSD (m^2/s)	1					

4.1 Tsukishima result

In Tsukishima result:

When the car under the viaduct, no GNSS signal, the TC error is smaller than the LC error, the TC attitude estimation is better than LC;

In multi-path effect, due to the GNSS velocity and pseudorange rate measurements, both LC and TC have stable positioning result;

LC position measurement using RTK fix and float solutions, so the TC mean error is lager than LC.

Note: GNSS means RTK fix solution and float solution

4.1 Tsukishima result 1st

UNIT (M)	MAX-E	MAX-N	MEAN-E	MEAN-N	95%-Е	95%-N
GNSS	22.6471	21.2237	0.3653	0.3127	5.1651	5.5614
LC	<mark>12.9120</mark>	3.9714	0.0544	0.1307	1.3885	1.1613
тс	<mark>3.9694</mark>	<mark>2.1577</mark>	0.2866	0.1700	2.6873	1.4457

4.1 Tsukishima result 2nd

200		Yaw	angles estimated		Z
150			ميطسم		Cog
100	6	mba			1
50					
0-1					
-50		-			
100					_
150 -		Lud;		~ ~~	-
200 3.646	3.648 3.65	3.652 3.	654 3.656	3.658 3.66	3.662 3.664

UNIT (M)	MAX-E	MAX-N	MEAN-E	MEAN-N	95%-E	95%-N
GNSS	11.7968	19.6548	0.0767	0.0739	3.1382	3.8893
LC	<mark>4.2219</mark>	<mark>6.3466</mark>	0.0474	0.0070	2.1314	2.1126
тс	<mark>2.2633</mark>	<mark>2.4547</mark>	0.0669	0.0151	1.6963	1.9741

4.2 Result of Marunouchi

In Marunouchi 1st result:

In multi-path effect is strong in the left side of the figure, the GNSS signal is not continues and the error is huge.

LC heavily dependents on on the GNSS position and velocity, it is hard for LC to give accurate position here;

For TC, it can provide more measurements than LC in urban canyon environment, so the error is smaller than LC.

4.2 Result of Marunouchi 1st

UNIT (M)	MAX-E	MAX-N	MEAN-E	MEAN-N	95%-E	95%-N
GNSS	126.1871	124.9765	1.7869	0.1131	48.5011	40.8056
LC	45.1765	68.9323	1.1100	0.5589	<mark>16.2394</mark>	<mark>45.2281</mark>
тс	29.6913	36.1436	0.5658	0.0224	<mark>7.2646</mark>	13.8202

4.2 Result of Marunouchi 2nd

UNIT (M)	MAX-E	MAX-N	MEAN-E	MEAN-N	95%-Е	95%-N
GNSS	1003.853	820.0854	0.4863	4.6508	64.6970	97.8188
LC	59.0915	56.4772	0.8582	3.8423	<mark>30.5077</mark>	<mark>45.9571</mark>
тс	11.3592	8.2782	0.4679	1.0031	<mark>7.3340</mark>	<mark>6.5890</mark>

4.4 Multi-sensor fusion result

UNIT (M)	MAX-E	MAX-N	MEAN-E	MEAN-N	95%-Е	95%-N
GNSS	1003.853	820.0854	0.4863	4.6508	64.6970	97.8188
LC	59.0915	56.4772	0.8582	3.8423	30.5077	45.9571
тс	<mark>11.3592</mark>	<mark>8.2782</mark>	0.4679	1.0031	7.3340	6.5890
MULTI- SENSOR	<mark>9.6177</mark>	8.0312	0.4673	0.8318	6.1176	6.1178

In the result of Marunouchi, the Multi-sensor fusion result is from the TC position and WSS+YAW. The maximum error is reduced, and positioning accuracy is improved.

5. Summary

After serious of the vehicle data test and analyzed the results, the conclusions are as follows:

- 1. In norm urban environment, LC mean error and 95th percentile are smaller than TC, maximum error is larger than TC;
- 2. In urban canyon conidiation, LC error is morse than TC;
- 3. LC is easier affected by GNSS error than TC;
- 4. The estimate yaw angle form LC is worse than TC;
- 5. Multi-sensor fusion can reduce the maximum error effectively.

- In norm urban environment, TC result is stable than LC;
- In urban canyon environment, TC is better than LC;

5. Summary

For this master thesis there are several shortages:

- The IMU bias affected by the temperature, but here is no temperature compensate;
- The initial attitude ROLL and PITCH are set as zeros, the attitude error is exist;
- The loosely coupled without anti-error Kalman filter, so the error is affected by the GNSS easily;

For the future research:

- The program was written by MATLAB, it is necessary to replace it by C/C++;
- Carrier phase will be included in TC to improve the positioning accuracy;
- Multi-sensor in tightly coupled, which include GNSS compass;

Thank you for your watching!

