THE CLAIMS

We claim:

- 1. A method of reducing, treating or preventing drug-mediated respiratory depression in an animal, incident to the administration to said animal of a respiratory depression-mediating drug, comprising administering to the animal receiving said drug an effective amount of a delta receptor agonist compound.
- 2. A method according to claim 1, wherein the delta agonist also exhibits mu receptor agonist character.
 - 3. A method according to claim 1, wherein said delta receptor agonist is administered with a separate mu receptor agonist compound.
 - 4. A method according to claim 1, wherein the delta agonist is selected from the group consisting of:
 - (-)-4-((αR)- α -((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide;
 - $\label{eq:continuous} $$(\pm)-4-((\alpha R^*)-\alpha-((2R^*,5S^*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide;$
- $(+)-4-((\alpha R^*)-\alpha-((2R^*,5S^*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide;$
 - $\label{eq:continuous} \mbox{$(-)$-4-(($\alpha R*)$-$\alpha-(($2R*,5S*)$-4-allyl-2,5-dimethyl-1-piperazinyl)$-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide,}$

20

deltorphin I;

deltorphin II; and

- 5 [D-Pen²,D-Pen⁵]-enkephalin.
 - 5. A method according to claim 1, wherein said delta agonist comprises a compound of the formula:

$$R_{1}$$
 R_{2}
 R_{1}

in which,

 R_1 and R_2 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl, C_{3-6} alkenyl, C_{3-5} alkynyl, aryl, aralkyl or furan-2 or 3-yl alkyl or may form together a C_{3-7} alkyl ring which may be interrupted by oxygen.

R₃ and R₄, which can be the same or different, are each hydrogen, linear or branched C₁₋₆ alkyl, or R₄ is oxygen forming with the carbon atom to which is attached a C=O group;

R₅ is hydrogen, hydroxy, C₁₋₃ alkoxy, thiol or alkylthio;

 R_6 is phenyl, halogen, NH_2 or a para or meta $-C(Z)-R_8$ group, in which Z is oxygen or sulphur;

R₈ is C₁₋₈-alkyl, C₁₋₈-alkoxy or NR₉R₁₀, wherein R₉ and R₁₀, which may be the same or different, are hydrogen, straight or branched C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₄₋₆ cycloalkylalkyl, C₃₋₆ alkenyl, aryl or aralkyl,

$$R_{11}$$
or R_6 is a para or metal
 $-N-C(Z)-R_{12}$ group

in which R_{11} and R_{12} which may the same or different are hydrogen, straight or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, aryl, aralkyl or an optionally substituted heterocyclic ring, and Z is as defined above; and,

 R_7 is hydrogen, straight or branched C_{1-8} alkyl or halogen.

6. A method according to claim 1, wherein said delta agonist comprises a compound of the formula:

$$R_{6}$$

$$R_{7}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

25

in which,

R₁ and R₂, which can be the same or different, are each hydrogen, linear or branched C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkenyl, C₄₋₆ cycloalkylalkyl, C₃₋₆ alkenyl, C₃₋₅ alkynyl, aryl, aralkyl or furan-2 or 3-yl alkyl or may form together a C₃₋₇ alkyl ring which may be interrupted by oxygen.

 R_3 and R_4 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl;

R₅ is hydroxy, C₁₋₆ alkoxy, thiol or alkylthio;

 R_6 is a -C(Z)-Rg group, in which Z is oxygen or sulphur, R_8 is C_{1-8} -alkyl, C_{1-8} -alkoxy or NR₉R₁₀, wherein R₉ and R₁₀, which may be the same or different, are hydrogen, straight or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, aryl or aralkyl,

$$R_{11}$$
or R_6 is a $-N$ - $C(Z)$ - R_{12} group

in which R_{11} and R_{12} have the same meaning as R_9 and R_{10} or together form an optionally substituted heterocyclic ring and Z is as defined above, and R_7 is hydrogen, straight or branched $C_{1.8}$ alkyl or halogen.

7. A method of reducing, treating or preventing drug-mediated respiratory depression in an animal, comprising administering to the animal an effective amount of a compound of the formula:

5

$$\begin{array}{c|c}
R^7 \\
Ar \\
G \\
R^3 \\
R^4 \\
R^6
\end{array}$$

wherein:

Ar is a 5- or 6-member carbocyclic or heterocyclic aromatic ring with atoms selected from the group consisting of carbon, nitrogen, oxygen and sulfur, and having on a first carbon atom thereof a substituent Y and on a second ring carbon thereof a substituent R¹,

(I)

Y is selected from the group consisting of:

hydrogen;

halogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₁-C₆ haloalkyl;

C₁-C₆ alkoxy;

C₃-C₆ cycloalkoxy;

sulfides of the formula SR^8 where R^8 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, arylalkyl having a C_5 - C_{10} aryl moiety and an C_1 - C_6 alkyl moiety, or C_5 - C_{10} aryl;

sulfoxides of the formula SOR8 where R8 is the same as above;

sulfones of the formula SO₂R⁸ where R⁸ is the same as above;

nitrile;

C₁-C₆ acyl;

alkoxycarbonylamino (carbamoyl) of the formula NHCO₂R⁸ where R⁸ is the same as above;

25

30

5

carboxylic acid, or an ester, amide, or salt thereof; aminomethyl of the formula CH₂NR⁹R¹⁰ where R⁹ and R¹⁰ may be the same or different, and may be hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ hydroxyalkyl, C₂-C₆ methoxyalkyl, C₃-C₆ cycloalkyl, or C₅-C₁₀ aryl, or R⁹ and R¹⁰ together may form a ring of 5 or 6 atoms, the ring atoms selected from the group consisting of N and C; carboxamides of the formula CONR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above, or C₂-C₃₀ peptide conjugates thereof; and sulfonamides of the formula SO₂NR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above;

2 is selected from the group consisting of:
hydroxyl, and esters thereof;
hydroxymethyl, and esters thereof; and

amino, and carboxamides and sulfonamides thereof;

G is carbon or nitrogen;

R¹ is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R² is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R³, R⁴ and R⁵ may be the same or different, and are independently selected from hydrogen and methyl, and wherein at least one of R³, R⁴ or R⁵ is not hydrogen, subject to the proviso that the total number of methyl groups does not exceed two, or any two of R³, R⁴ and R⁵ together may form a bridge of 1 to 3 carbon atoms;

R⁶ is selected from the group consisting of:

hydrogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₃-C₆ cycloalkyl;

arylalkyl having C₅-C₁₀ aryl and C₁-C₆ alkyl moieties;

alkoxyalkyl having C₁-C₄ alkoxy and C₁-C₄ alkyl moieties;

C2-C4 cyanoalkyl;

C2-C4 hydroxyalkyl;

aminocarbonylalkyl having a C₁-C₄ alkyl moiety; and

 $R^{12}COR^{13}$, where R^{12} is C_1 - C_4 alkylene, and R^{13} is C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

and

5

R⁷ is hydrogen or fluorine,

- or a pharmaceutically acceptable ester or salt thereof.
 - 8. A method according to claim 7, wherein Ar is a 6-member carbocyclic aromatic (benzene) ring and R¹ is hydrogen.
 - 9. A method according to claim 7, wherein Y is a carboxamide of the formula CONR⁹R¹⁰.
 - 10. A method according to claim 9, wherein R⁹ and R¹⁰ together form a ring of five or six atoms, thereby forming a pyrrolidinyl or piperidino ring.
- 20 11. A method according to claim 9, wherein R⁹ and R¹⁰ are the same or different and are each independently selected from hydrogen, C₁ alkyl and C₂ alkyl.
 - 12. A method according to claim 8, wherein Y is hydrogen.
- 25 13. A method according to claim 8, wherein Y is a sulfone of the formula SO_2R^8 , and R^8 is C_1 - C_6 alkyl.

- 14. A method according to claim 8 wherein G is N, R^7 and R^2 are each hydrogen, and Z is hydroxyl.
- 15. A method according to claim 8, wherein R⁶ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl and C₂-C₆ alkynyl.
 - 16. A method according to claim 9, wherein R⁶ is selected from the group consisting of hydrogen, methyl, propyl, allyl and butenyl.
 - 17. A method according to claim 14, wherein R³, R⁴ and R⁵ are hydrogen or methyl, where the total number of methyl groups is one or two.
 - 18. A method according to claim 7, wherein R³ and R⁵ are both methyl, and R⁴ is hydrogen.

Se san from the same

20

- 19. A method according to claim 7 wherein the compound is selected from the group consisting of:
- (-)-4-((α R)- α -((2R,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;
- (-)-4-((αR)-α-((2R,5R)-2,5-dimethyl-4-propyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;
 - $4\hbox{-}((\alpha R)\hbox{-}\alpha\hbox{-}(2S,5S)\hbox{-}4\hbox{-}allyl\hbox{-}2,5\hbox{-}dimethyl\hbox{-}1\hbox{-}piperazinyl)\hbox{-}3\hbox{-}hydroxybenzyl) benzamide;$
- (±)-3-((αR^*)- α -(($2S^*$, $5R^*$)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)benzamide;
 - N,N-diethyl-4-((αR)-3-hydroxy- α -((2R,5R)-2,5-dimethyl-1-piperazinyl)benzyl)benzamide;

 $4-((\alpha R)-\alpha-((2S,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-ethyl-N-methyl-benzamide;$

 $3-((\alpha R)-\alpha-((2S, 5S)-4-allyl-2,5-dimethyl-1-piperazinyl)$ benzyl)phenol;

(±)-N,N-diethyl-4-((α R*)-3-hydroxy- α -((2R*,5S*)-2,4,5-trimethyl-1-piperazinyl)benzyl)-benzamide;

(+)-4-((α S)- α -((2S,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-10 benzamide;

3-((αR) -4-(piperidinocarbonyl)- α -((2S,5S)-2,4,5-trimethyl-1-piperazinyl)benzyl)phenol;

 $3-((\alpha R)-4-(1-pyrrolidinylcarbonyl)-\alpha-((2S,5S)-2,4,5-trimethyl-1-piperazinyl) benzyl) phenol;$

(±)-3-((αR^*)- α -(($2R^*$,5S*)-4-allyl-2,5-dimethyl-1-piperazinyl)-4-(methylsulfonyl)benzyl)-phenol;

(\pm)-4-((α R*)- α -((2R*,5S*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide;

(+)-4-((α R)- α -((2R,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfon-amide; or

25 (-)-4-((α R)- α -((2R,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide,

 (\pm) -3- $((\alpha R^*)$ - α - $((2S^*,5R^*)$ -4-allyl-2,5-dimethyl-1-piperazinyl)benzyl)phenol;

30 (\pm)-4-((αR^*)- α -(($2S^*$, $5R^*$)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxbenzyl)benzamide;

(\pm)-4-((α R*)- α -((2R*,5S*)-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;

5 (±)-cis-4-(α-(4-allyl-3,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide;
cis-4-(α-(3,5-dimethyl-4-(methylallyl)-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;
and pharmaceutically acceptable salts thereof.

20. A method according to claim 19, wherein the compound is (-)-4-((αR) - α -((2R,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide or a pharmaceutically acceptable salt thereof.

21. A method for screening opioid respiratory depression-suppressing compounds, comprising conducting activity reversal assays of a candidate respiratory depression-suppressing compound in receptor tissue to determine if the candidate respiratory depression-suppressing compound transductionally mediates a respiratory depression effect in the receptor tissue, in response to a respiration-depressing composition, wherein said activity reversal assays are conducted comparatively, in the absence and in the presence of an anti-suppression compound of the formula

$$\begin{array}{c|c}
R^7 \\
Ar \\
\hline
R^5 \\
R^6
\end{array}$$

$$\begin{array}{c|c}
R^7 \\
R^2 \\
\hline
R^4 \\
R^6
\end{array}$$

(I)

25 wherein:

```
15 miles and the second of the
```

Ar is a 5- or 6-member carbocyclic or heterocyclic aromatic ring with atoms selected from the group consisting of carbon, nitrogen, oxygen and sulfur, and having on a first carbon atom thereof a substituent Y and on a second ring carbon thereof a substituent R¹,

5

```
Y is selected from the group consisting of:
```

hydrogen;

halogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

10 C₁-C₆ haloalkyl;

 C_1 - C_6 alkoxy;

C₃-C₆ cycloalkoxy;

sulfides of the formula SR^8 where R^8 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, arylalkyl having a C_5 - C_{10} aryl moiety and an C_1 - C_6 alkyl moiety, or C_5 - C_{10} aryl;

sulfoxides of the formula SOR⁸ where R⁸ is the same as above;

sulfones of the formula SO_2R^8 where R^8 is the same as above;

nitrile;

C₁-C₆ acyl;

alkoxycarbonylamino (carbamoyl) of the formula $NHCO_2R^8$ where R^8 is the same as above;

carboxylic acid, or an ester, amide, or salt thereof;

aminomethyl of the formula CH₂NR⁹R¹⁰ where R⁹ and R¹⁰ may be the same or different, and may be hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ hydroxyalkyl, C₂-

C₆ methoxyalkyl, C₃-C₆ cycloalkyl, or C₅-C₁₀ aryl, or R⁹ and R¹⁰ together may form a ring of 5 or 6 atoms, the ring atoms selected from the group consisting of N and C;

carboxamides of the formula $CONR^9R^{10}$ where R^9 and R^{10} are the same as above, or $C_{2^{-}}$ C_{30} peptide conjugates thereof; and

sulfonamides of the formula SO₂NR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above;

30

Z is selected from the group consisting of: hydroxyl, and esters thereof; hydroxymethyl, and esters thereof; and amino, and carboxamides and sulfonamides thereof;

5

G is carbon or nitrogen;

R¹ is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

 R^2 is hydrogen, halogen, or C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_1 - C_4 alkynyl;

R³, R⁴ and R⁵ may be the same or different, and are independently selected from hydrogen and methyl, and wherein at least one of R³, R⁴ or R⁵ is not hydrogen, subject to the proviso that the total number of methyl groups does not exceed two, or any two of R³, R⁴ and R⁵ together may form a bridge of 1 to 3 carbon atoms;

R⁶ is selected from the group consisting of:

hydrogen;

 C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl;

C₃-C₆ cycloalkyl;

arylalkyl having C₅-C₁₀ aryl and C₁-C₆ alkyl moieties;

alkoxyalkyl having C₁-C₄ alkoxy and C₁-C₄ alkyl moieties;

C2-C4 cyanoalkyl;

C₂-C₄ hydroxyalkyl;

25

aminocarbonylalkyl having a C1-C4 alkyl moiety; and

R¹²COR¹³, where R¹² is C₁-C₄ alkylene, and R¹³ is C₁-C₄ alkyl or C₁-C₄ alkoxy;

and

R⁷ is hydrogen or fluorine,

or a pharmaceutically acceptable ester or salt thereof,

to determine if the activity of the candidate compound is substantially reversed at the tissue site by the presence of the anti-suppression compound of formula (I), thereby indicating the candidate respiratory depression-suppressing compound as possessing potential bioefficacy for supressing respiratory depression effects incident to the use of other therapeutic agents.

10

5

22. A method according to claim 21, wherein the anti-suppression compound of formula (I) is selected from the group consisting of:

(-)-4- $((\alpha S)-\alpha-((2R,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide;$

(-)-4- $((\alpha S)-\alpha$ -((2R,5R)-2,5-dimethyl-4-propyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide; and

 \emph{cis} -4-(α -(4-((Z)-2-butenyl)-3,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide; and

acceptable salts thereof.

25

- 23. A pharmaceutical composition comprising:
- (1) an effective amount of a bioactive compound mediating respiratory depression, muscle rigidity, and/or nausea/vomiting as an unwanted side effect thereof; and

30

(2) a delta receptor agonist.

- 24. A pharmaceutical composition comprising:
- 10 (1) an effective amount of a bioactive compound mediating respiratory depression, muscle rigidity, and/or nausea/vomiting as an unwanted side effect thereof; and
 - (2) a delta receptor agonist selected from the group consisting of:
 - I. [D-Pen²,D-Pen⁵]-(enkephalin);
 - II. deltorphin I;
 - III. deltorphin II;
 - IV. delta agonist compounds of the formula:

$$Ar \xrightarrow{R^7} Z$$

$$R^5 \xrightarrow{N} R^4$$

$$R^6$$

25 wherein:

25

30

Ar is a 5- or 6-member carbocyclic or heterocyclic aromatic ring with atoms selected from the group consisting of carbon, nitrogen, oxygen and sulfur, and having on a first carbon atom thereof a substituent Y and on a second ring carbon thereof a substituent R¹,

5 Y is selected from the group consisting of:

hydrogen;

halogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

 C_1 - C_6 haloalkyl;

10 C_1 - C_6 alkoxy;

C₃-C₆ cycloalkoxy;

sulfides of the formula SR^8 where R^8 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, arylalkyl having a C_5 - C_{10} aryl moiety and an C_1 - C_6 alkyl moiety, or C_5 - C_{10} aryl;

sulfoxides of the formula SOR⁸ where R⁸ is the same as above;

sulfones of the formula SO₂R⁸ where R⁸ is the same as above;

nitrile;

 C_1 - C_6 acyl;

alkoxycarbonylamino (carbamoyl) of the formula NHCO₂R⁸ where R⁸ is the same as above;

carboxylic acid, or an ester, amide, or salt thereof;

aminomethyl of the formula $CH_2NR^9R^{10}$ where R^9 and R^{10} may be the same or different, and may be hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_2 - C_6 hydroxyalkyl, C_3 - C_6 cycloalkyl, or C_5 - C_{10} aryl, or R^9 and R^{10} together may form a ring of 5 or 6 atoms, the ring atoms selected from the group consisting of N and C; carboxamides of the formula $CONR^9R^{10}$ where R^9 and R^{10} are the same as above, or C_2 - C_{30} peptide conjugates thereof; and

sulfonamides of the formula $SO_2NR^9R^{10}$ where R^9 and R^{10} are the same as above;

Z is selected from the group consisting of:

hydroxyl, and esters thereof; hydroxymethyl, and esters thereof; and amino, and carboxamides and sulfonamides thereof;

5 G is carbon or nitrogen;

R¹ is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R² is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R³, R⁴ and R⁵ may be the same or different, and are independently selected from hydrogen and methyl, and wherein at least one of R³, R⁴ or R⁵ is not hydrogen, subject to the proviso that the total number of methyl groups does not exceed two, or any two of R³, R⁴ and R⁵ together may form a bridge of 1 to 3 carbon atoms;

R⁶ is selected from the group consisting of:

hydrogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₃-C₆ cycloalkyl;

arylalkyl having C₅-C₁₀ aryl and C₁-C₆ alkyl moieties;

alkoxyalkyl having C₁-C₄ alkoxy and C₁-C₄ alkyl moieties;

C₂-C₄ cyanoalkyl;

C2-C4 hydroxyalkyl;

aminocarbonylalkyl having a C1-C4 alkyl moiety; and

R¹²COR¹³, where R¹² is C₁-C₄ alkylene, and R¹³ is C₁-C₄ alkyl or C₁-C₄ alkoxy;

and

25

R⁷ is hydrogen or fluorine,

30 or a pharmaceutically acceptable ester or salt thereof;

V. delta agonist compounds of the formula:

$$R_{1}$$
 R_{2}
 R_{1}
 R_{2}
 R_{1}

in which,

 R_1 and R_2 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl, C_{3-6} alkenyl, C_{3-5} alkynyl, aryl, aralkyl or furan-2 or 3-yl alkyl or may form together a C_{3-7} alkyl ring which may be interrupted by oxygen.

R₃ and R₄, which can be the same or different, are each hydrogen, linear or branched C₁₋₆ alkyl, or R₄ is oxygen forming with the carbon atom to which is attached a C=O group;

 R_5 is hydrogen, hydroxy, C_{1-3} alkoxy, thiol or alkylthio;

 R_6 is phenyl, halogen, NH_2 or a para or meta $-C(Z)-R_8$ group, in which Z is oxygen or sulphur;

 R_8 is C_{1-8} -alkyl, C_{1-8} -alkoxy or NR_9R_{10} , wherein R_9 and R_{10} , which may be the same or different, are hydrogen, straight or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, aryl or aralkyl,

5 $\begin{array}{ccc} R_{11} \\ | \\ \text{or } R_6 \text{ is a para or metal} & \text{-N-C(Z)-R}_{12} & \text{grou} \end{array}$

in which R₁₁ and R₁₂ which may the same or different are hydrogen, straight or branched C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₄₋₆ cycloalkylalkyl, C₃₋₆ alkenyl, aryl, aralkyl or an optionally substituted heterocyclic ring, and Z is as defined above; and,

R₇ is hydrogen, straight or branched C₁₋₈ alkyl or halogen; and

VI. delta agonist compounds of the formula:

$$R_{6}$$

$$R_{7}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

20 in which,

 R_1 and R_2 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl, C_{3-6} alkenyl, C_{3-5} alkynyl, aryl,

aralkyl or furan-2 or 3-yl alkyl or may form together a C₃₋₇ alkyl ring which may be interrupted by oxygen.

R₃ and R₄, which can be the same or different, are each hydrogen, linear or branched C₁₋₆ alkyl;

R₅ is hydroxy, C₁₋₆ alkoxy, thiol or alkylthio;

R₆ is a -C(Z)-Rg group, in which Z is oxygen or sulphur, R₈ is C₁₋₈-alkyl, C₁₋₈-10 alkoxy or NR₉R₁₀, wherein R₉ and R₁₀, which may be the same or different, are hydrogen, straight or branched C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₄₋₆ cycloalkylalkyl, C₃₋₆ alkenyl, aryl or aralkyl,

$$R_{11}$$
or R_6 is a $-N$ - $C(Z)$ - R_{12} group

25

30

in which R_{11} and R_{12} have the same meaning as R_9 and R_{10} or together form an optionally substituted heterocyclic ring and Z is as defined above, and R_7 is hydrogen, straight or branched C_{1-8} alkyl or halogen.

- 25. A pharmaceutical composition according to claim 24, in a form suitable for injectable or spinal administration.
- 26. A pharmaceutical composition comprising:
- (1) an effective amount of a bioactive compound mediating respiratory depression; and
- (2) an effective amount of a compound for reducing, treating or preventing respiratory depression, of the formula:

$$Ar \xrightarrow{R^7} R^2$$

$$R^5 \xrightarrow{N} R^4$$

$$R^6$$

wherein:

Ar is a 5- or 6-member carbocyclic or heterocyclic aromatic ring with atoms selected from the group consisting of carbon, nitrogen, oxygen and sulfur, and having on a first carbon atom thereof a substituent Y and on a second ring carbon thereof a substituent R¹,

(I)

Y is selected from the group consisting of:

hydrogen;

halogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₁-C₆ haloalkyl;

C₁-C₆ alkoxy;

C₃-C₆ cycloalkoxy;

sulfides of the formula SR^8 where R^8 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, arylalkyl having a C_5 - C_{10} aryl moiety and an C_1 - C_6 alkyl moiety, or C_5 - C_{10} aryl;

sulfoxides of the formula SOR⁸ where R⁸ is the same as above;

sulfones of the formula SO₂R⁸ where R⁸ is the same as above;

nitrile;

 C_1 - C_6 acyl;

alkoxycarbonylamino (carbamoyl) of the formula NHCO₂R⁸ where R⁸ is the same as above;

25

30

5

10

carboxylic acid, or an ester, amide, or salt thereof; aminomethyl of the formula CH₂NR⁹R¹⁰ where R⁹ and R¹⁰ may be the same or different, and may be hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ hydroxyalkyl, C₂-C₆ methoxyalkyl, C₃-C₆ cycloalkyl, or C₅-C₁₀ aryl, or R⁹ and R¹⁰ together may form a ring of 5 or 6 atoms, the ring atoms selected from the group consisting of N and C; carboxamides of the formula CONR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above, or C₂-C₃₀ peptide conjugates thereof; and sulfonamides of the formula SO₂NR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above;

Z is selected from the group consisting of: hydroxyl, and esters thereof; hydroxymethyl, and esters thereof; and amino, and carboxamides and sulfonamides thereof;

G is carbon or nitrogen;

R¹ is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R² is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R³, R⁴ and R⁵ may be the same or different, and are independently selected from hydrogen and methyl, and wherein at least one of R³, R⁴ or R⁵ is not hydrogen, subject to the proviso that the total number of methyl groups does not exceed two, or any two of R³, R⁴ and R⁵ together may form a bridge of 1 to 3 carbon atoms;

R⁶ is selected from the group consisting of:

hydrogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₃-C₆ cycloalkyl;

arylalkyl having C₅-C₁₀ aryl and C₁-C₆ alkyl moieties;

alkoxyalkyl having C₁-C₄ alkoxy and C₁-C₄ alkyl moieties;

C2-C4 cyanoalkyl;

C2-C4 hydroxyalkyl;

aminocarbonylalkyl having a C1-C4 alkyl moiety; and

R¹²COR¹³, where R¹² is C₁-C₄ alkylene, and R¹³ is C₁-C₄ alkyl or C₁-C₄ alkoxy;

and

5

R⁷ is hydrogen or fluorine,

- or a pharmaceutically acceptable ester or salt thereof.
 - 27. A pharmaceutical composition according to claim 26, wherein Ar is a 6-member carbocyclic aromatic (benzene) ring and R¹ is hydrogen.
 - 28. A pharmaceutical composition according to claim 26, wherein Y is a carboxamide of the formula CONR⁹R¹⁰.
 - 29. A pharmaceutical composition according to claim 26, wherein R⁹ and R¹⁰ together form a ring of five or six atoms, thereby forming a pyrrolidinyl or piperidino ring.
 - 30. A pharmaceutical composition according to claim 26, wherein R^9 and R^{10} are the same or different and are each independently selected from hydrogen, C_1 alkyl and C_2 alkyl.
 - 31. A pharmaceutical composition according to claim 26, wherein Y is hydrogen.
 - 32. A pharmaceutical composition according to claim 26, wherein Y is a sulfone of the formula SO_2R^8 and R^8 is C_1 - C_6 alkyl.
- 33. A pharmaceutical composition according to claim 26, wherein G is N, R⁷ and R² are each hydrogen, and Z is hydroxyl.

- 34. A pharmaceutical composition according to claim 26, wherein R^6 is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl and C_2 - C_6 alkynyl.
- 5 35. A pharmaceutical composition according to claim 26, wherein R³, R⁴ and R⁵ are hydrogen or methyl, where the total number of methyl groups is one or two.
 - 36. A pharmaceutical composition according to claim 26, wherein R³ and R⁵ are both methyl, and R⁴ is hydrogen.
 - 37. A pharmaceutical composition according to claim 26, wherein the compound is selected from the group consisting of:
 - (-)-4-((α R)- α -((2R,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide;
 - (-)-4-((α R)- α -((2R,5R)-2,5-dimethyl-4-propyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;
 - $4-((\alpha R)-\alpha-(2S,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)$ benzamide;
 - (\pm) -3- $((\alpha R^*)$ - α - $((2S^*,5R^*)$ -4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)benzamide;
 - N,N-diethyl-4- $((\alpha R)$ -3-hydroxy- α -((2R,5R)-2,5-dimethyl-1-piperazinyl)benzyl)benzamide;
 - $4-((\alpha R)-\alpha-((2S,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-ethyl-N-methyl-benzamide;$
 - 3-((α R)- α -((2S, 5S)-4-allyl-2,5-dimethyl-1-piperazinyl)benzyl)phenol;

10

- (±)-N,N-diethyl-4-((α R*)-3-hydroxy- α -((2R*,5S*)-2,4,5-trimethyl-1-piperazinyl)benzyl)-benzamide;
- (+)-4-((αS)-α-((2S,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-5 benzamide;
 - $3-((\alpha R)-4-(piperidinocarbonyl)-\alpha-((2S,5S)-2,4,5-trimethyl-1-piperazinyl) benzyl) phenol;$
- $3-((\alpha R)-4-(1-pyrrolidinylcarbonyl)-\alpha-((2S,5S)-2,4,5-trimethyl-1-piperazinyl)benzyl)phenol;$
 - (±)-3-((α R*)- α -((2R*,5S*)-4-allyl-2,5-dimethyl-1-piperazinyl)-4-(methylsulfonyl)benzyl)-phenol;
 - (\pm) -4- $((\alpha R^*)$ - α - $((2R^*,5S^*)$ -4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide;
 - (+)-4-((α R)- α -((2R,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfon-amide; or
 - (-)-4-((αR) - α -((2R,5S)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide,
 - $(\pm)-3-((\alpha R^*)-\alpha-((2S^*,5R^*)-4-allyl-2,5-dimethyl-1-piperazinyl) benzyl) phenol;$
- $(\pm) 4 ((\alpha R^*) \alpha ((2S^*, 5R^*) 4 allyl 2, 5 dimethyl 1 piperazinyl) 3 hydroxbenzyl) benzamide;$
 - (\pm)-4-((α R*)- α -((2R*,5S*)-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide;
- $30 \qquad (\underline{+})\text{-}cis\text{-}4\text{-}(\alpha\text{-}(4\text{-}allyl\text{-}3,5\text{-}dimethyl\text{-}1\text{-}piperazinyl})\text{-}3\text{-}hydroxybenzyl)\text{-}N,N\text{-}diethylbenzamide};$

5

 $\label{eq:cis-4-alpha-decomposition} cis-4-(\alpha-(3,5-dimethyl-4-(methylallyl)-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethyl-benzamide;$ and pharmaceutically acceptable salts thereof.

- 38. A pharmaceutical composition according to claim 37, wherein the compound is (-)-4- $((\alpha R)-\alpha-((2R,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide or a pharmaceutically acceptable salt thereof.$
- 10 39. A pharmaceutical composition according to claim 26, wherein the bioactive compound comprises an opiate compound.
 - 40. A pharmaceutical composition according to claim 26, wherein the bioactive compound comprises an opiate analysis compound.
 - 41. A pharmaceutical composition according to claim 26, wherein the bioactive compound comprises a mu opiate compound.
 - 42. A method of treating a patient in need thereof with fentanyl while attenuating fentanyl-induced muscle rigidity and fentanyl-induced respiratory depression, comprising administering to the patient a delta agonist compound in an effective amount to attenuate said fentanyl-induced muscle rigidity and fentanyl-induced respiratory depression.
- 43. A method of treating a patient in need thereof with an opioid receptor therapeutic agent, while attenuating respiratory depression incident to the administration thereof, comprising administering to the patient with said opioid receptor therapeutic agent, a delta agonist compound selected from the group consisting of:
- 30 I. [D-Pen²,D-Pen⁵]-(enkephalin);

- II. deltorphin I;
- III. deltorphin II;
- 5 IV. delta agonist compounds of the formula:

$$\begin{array}{c|c}
R^7 \\
Ar & - \\
R^2 \\
R^5 & R^4 \\
R^6 & R^4
\end{array}$$

wherein:

Ar is a 5- or 6-member carbocyclic or heterocyclic aromatic ring with atoms selected from the group consisting of carbon, nitrogen, oxygen and sulfur, and having on a first carbon atom thereof a substituent Y and on a second ring carbon thereof a substituent R¹,

(I)

Y is selected from the group consisting of:

hydrogen;

halogen;

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

C₁-C₆ haloalkyl;

C₁-C₆ alkoxy;

20 C₃-C₆ cycloalkoxy;

sulfides of the formula SR^8 where R^8 is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, arylalkyl having a C_5 - C_{10} aryl moiety and an C_1 - C_6 alkyl moiety, or C_5 - C_{10} aryl;

sulfoxides of the formula SOR⁸ where R⁸ is the same as above;

sulfones of the formula SO₂R⁸ where R⁸ is the same as above;

10

nitrile;

 C_1 - C_6 acyl;

alkoxycarbonylamino (carbamoyl) of the formula NHCO₂R⁸ where R⁸ is the same as above;

carboxylic acid, or an ester, amide, or salt thereof;

aminomethyl of the formula $CH_2NR^9R^{10}$ where R^9 and R^{10} may be the same or different, and may be hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_2 - C_6 hydroxyalkyl, C_3 - C_6 cycloalkyl, or C_5 - C_{10} aryl, or R^9 and R^{10} together may form a ring of 5 or 6 atoms, the ring atoms selected from the group consisting of N and C; carboxamides of the formula $CONR^9R^{10}$ where R^9 and R^{10} are the same as above, or C_2 -

carboxamides of the formula CONR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above, or C₂C₃₀ peptide conjugates thereof; and

sulfonamides of the formula SO₂NR⁹R¹⁰ where R⁹ and R¹⁰ are the same as above;

Z is selected from the group consisting of:

hydroxyl, and esters thereof;

hydroxymethyl, and esters thereof; and

amino, and carboxamides and sulfonamides thereof;

G is carbon or nitrogen;

R¹ is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

R² is hydrogen, halogen, or C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkynyl;

- R³, R⁴ and R⁵ may be the same or different, and are independently selected from hydrogen and methyl, and wherein at least one of R³, R⁴ or R⁵ is not hydrogen, subject to the proviso that the total number of methyl groups does not exceed two, or any two of R³, R⁴ and R⁵ together may form a bridge of 1 to 3 carbon atoms;
- R⁶ is selected from the group consisting of:

hydrogen;

 C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl;

C₃-C₆ cycloalkyl;

arylalkyl having C_5 - C_{10} aryl and C_1 - C_6 alkyl moieties;

alkoxyalkyl having C_1 - C_4 alkoxy and C_1 - C_4 alkyl moieties;

C2-C4 cyanoalkyl;

C₂-C₄ hydroxyalkyl;

aminocarbonylalkyl having a C1-C4 alkyl moiety; and

 $R^{12}COR^{13}$, where R^{12} is C_1 - C_4 alkylene, and R^{13} is C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

10 and

5

R⁷ is hydrogen or fluorine,

or a pharmaceutically acceptable ester or salt thereof;

V. delta agonist compounds of the formula:

$$R_{7}$$
 R_{7}
 R_{4}
 R_{2}
 R_{1}

in which,

 R_1 and R_2 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkenyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, C_{3-5} alkynyl, aryl, aralkyl or furan-2 or 3-yl alkyl or may form together a C_{3-7} alkyl ring which may be interrupted by oxygen.

5

1 3

 R_3 and R_4 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, or R_4 is oxygen forming with the carbon atom to which is attached a C=O group;

10

R₅ is hydrogen, hydroxy, C₁₋₃ alkoxy, thiol or alkylthio;

 R_6 is phenyl, halogen, NH_2 or a para or meta $-C(Z)-R_8$ group, in which Z is oxygen or sulphur;

15

 R_8 is C_{1-8} -alkyl, C_{1-8} -alkoxy or NR_9R_{10} , wherein R_9 and R_{10} , which may be the same or different, are hydrogen, straight or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, aryl or aralkyl,

20

25

or R₆ is a para or metal

in which R_{11} and R_{12} which may the same or different are hydrogen, straight or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, aryl, aralkyl or an optionally substituted heterocyclic ring, and Z is as defined above; and,

R₇ is hydrogen, straight or branched C₁₋₈ alkyl or halogen; and

30

VI. delta agonist compounds of the formula:

$$R_{6}$$

$$R_{7}$$

$$R_{4}$$

$$R_{2}$$

$$R_{1}$$

in which,

 R_1 and R_2 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkenyl, C_{4-6} cycloalkylalkyl, C_{3-6} alkenyl, C_{3-5} alkynyl, aryl, aralkyl or furan-2 or 3-yl alkyl or may form together a C_{3-7} alkyl ring which may be interrupted by oxygen.

 R_3 and R_4 , which can be the same or different, are each hydrogen, linear or branched C_{1-6} alkyl;

R₅ is hydroxy, C₁₋₆ alkoxy, thiol or alkylthio;

R₆ is a -C(Z)-Rg group, in which Z is oxygen or sulphur, R₈ is C₁₋₈-alkyl, C₁₋₈-alkoxy or NR₉R₁₀, wherein R₉ and R₁₀, which may be the same or different, are hydrogen, straight or branched C₁₋₆ alkyl, C₃₋₇ cycloalkyl, C₄₋₆ cycloalkylalkyl, C₃₋₆ alkenyl, aryl or aralkyl,

in which R_{11} and R_{12} have the same meaning as R_9 and R_{10} or together form an optionally substituted heterocyclic ring and Z is as defined above, and R_7 is hydrogen, straight or branched C_{1-8} alkyl or halogen.

- 5 45. A method of reducing, treating or preventing drug-mediated respiratory depression in an animal, incident to the administration to said animal of a respiratory depression-mediating drug, comprising administering to the animal receiving said drug an effective amount of a compound selected from the group consisting of:
- 10 (±)-4-((α R*)- α -((2R*,5S*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide;

(+)-4-((α R*)- α -((2R*,5S*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfon-amide; and

(-)-4-((αR^*)- α -(($2R^*$, $5S^*$)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-dimethylbenzenesulfonamide, and

pharmaceutically acceptable salts thereof.

THE TO THE LANGE OF THE LOCATION OF THE LANGE OF THE LANG

25

46. A method of reducing, treating or preventing drug-mediated respiratory depression, muscle rigidity, or nausea/vomiting in an animal, incident to the administration to said animal of a respiratory depression-mediating drug, comprising administering to the animal receiving said drug an effective amount of a delta receptor agonist or a mixed delta/mu opioid agonist composition.