

Jurusan Teknologi Informasi

Scalar Vector Matrix Tensor

Difference between a scalar, a vector, a matrix and a tensor

- · A scalar is a single number
- · A vector is an array of numbers.

$$oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ \dots \ x_n \end{bmatrix}$$

· A matrix is a 2-D array

$$m{A} = egin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \ \cdots & \cdots & \cdots & \cdots \ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix}$$

• A tensor is a n-dimensional array with n>2

Besaran Skalar

Besaran yang didefinisikan oleh satu bilangan dengan satuan yang sesuai. Misal panjang, luas, volume, massa, waktu, dll. Setelah satuan dinyatakan, besaran dilambangkan dengan ukuran atau besarannya.

Besaran Vektor

Besaran yang didefinisikan ketika tidak hanya diketahui besarannya (dengan satuan) tetapi juga arah pengoperasiannya. Misal kekuatan, kecepatan, percepatan. Besaran vektor melibatkan arah dan juga besaran.

- a) Kecepatan $10 \, km/jam$ adalah besaran skalar, tetapi
- b) Kecepatan ' $10 \ km/jam$ ke utara' adalah besaran vektor

Contoh 2

Gaya *F* yang bekerja di titilk *P* merupakan besaran vektor, karena untuk mendefinisikannya harus memberikan :

- a) Besaran, dan
- b) Arah

C O N T O H

Latihan Soal 1

- 1. Suhu 100°C adalah besaran . . .
- 2. Percepatan 9,8 m/s^2 vertikal ke bawah adalah besaran . . .
- 3. Berat massa 7 kg adalah besaran . . .
- 4. Jumlah £500 adalah besaran . . .

"Setelah melengkapi soal-soal tersebut, diketahui bahwa besaran tidak hanya mencakup *ukuran* tetapi juga *arah*."

2)Silahkan jalankan kode berikut dan jelaskan hasil outputnya

Create a vector with Python and Numpy

```
import numpy as np
#1 -dimensional array:
x = np.array([1, 2, 3, 4])
print ("1d array",x)

#2 -dimensional array:
A = np.array([[1, 2], [3, 4], [5, 6]])
print ("2d array",A)

#Transpose
A_t = A.T
print ("Transpose", A_t)

#We can see that A has 2 rows and 3 columns from A_t.
A_t.shape
```


3. Silahkan jalankan kode berikut dan jelaskan hasil outputnya

Use NumPy to create a one-dimensional array:

4. Silahkan jalankan kode berikut dan jelaskan hasil outputnya

NumPy's arrays make that easy:

```
# Load Library
import numpy as np
# Create row vector
vector = np.array([1, 2, 3, 4, 5, 6])
# Create matrix
matrix = np.array([[1, 2, 3],
                     [4, 5, 6],
                     [7, 8, 9]])
# Select third element of vector
vector[2]
```


Tambahkan kode sebelumnya dengan kode ini dan amati hasilnya

```
# Select all elements of a vector
vector[:]

array([1, 2, 3, 4, 5, 6])
```

Select everything up to and including the third element
vector[:3]

```
array([1, 2, 3])
```

Select everything after the third element
vector[3:]

```
array([4, 5, 6])
```


5. Eksplorasi kode Python berikut:

https://www.oreilly.com/library/view/machine-learning-with/9781491989371/ch01.html

6. Silahkan review penerapan vektor atau skalar dalam kehidupan sehari-hari.

