安徽大学 2013—2014 学年第一学期

《高等数学 C (三)》考试试卷 (A 卷) 时间 120 分钟) (闭卷

题 号	-	11	111	四	总分
得 分					
阅卷人					

	冼择斯	(每小题2分,	出 10 分)
•			シマエロ・カラ

得 分

)

- 1. 设 A, B 为随机事件,且 P(B) > 0, P(A|B) = 1,则必有
 - (A) $P(A \cup B) > P(A)$
- (B) $P(A \cup B) > P(B)$
- (C) $P(A \cup B) = P(B)$
- (D) $P(A \cup B) = P(A)$
- 2. 设随机变量 X 与 Y 相互独立,且 $X \sim N(0, \frac{1}{2})$, $Y \sim N(1, \frac{1}{2})$,则与随机变量 Z = Y X 同 分布的随机变量是
 - (A) X Y
- (B) X+Y
- (C) X-2Y
- (D) Y-2X
- 3. 设随机变量 X 和 Y 相互独立, 且 X 和 Y 的概率分布列分别为:

X	0	1	2	3
P	1/2	1/4	1/8	1/8

Y	-1	0	1
P	1/3	1/3	1/3

则 P(X + Y = 2) =

)

- (A) 1/12 (B) 1/8 (C) 1/6 (D) 1/2
- 4. 设n个相互独立的随机变量 X_1, X_2, \dots, X_n 均服从 $N(\mu, 8)$,记 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则由

Chebyshev 不等式得 $P(|\overline{X} - \mu| < 4) \ge$

)

- (A) $1 \frac{1}{2n}$ (B) $\frac{1}{2n}$ (C) $1 \frac{1}{4n^2}$ (D) $\frac{1}{4n^2}$

5. 设 $X \sim N(0,1)$, $Y \sim \chi^2(1)$, 若 $P(X > u_\alpha) = \alpha$, $P(Y > \chi^2_\alpha(1)) = \alpha$, 则 $\chi^2_\alpha(1) = ($ (A) u_α (B) $u_{\alpha/2}$ (C) u^2_α (D) $u^2_{\alpha/2}$

	十早 ペ→ H型	(每小题2分,	サ 10 ハヽ
	坦分别	(XI /I) & / 7 .	# 10 7f)
<u> </u>	ス上心	\ 	/\ IU /J /

得分

- 6. 从数字1,2,…,10 中任取 4 个数,则至少取到一个偶数的概率为______.
- 7. 设 X_1, X_2, \dots, X_m (m > 1) 为来自二项分布总体 B(n, p) 的简单随机样本, $0 ,记 <math>\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i$ 和 $S^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2$ 分别表示样本均值和样本方差.若 $\bar{X} + kS^2$ 为 np^2 的无偏估计量,其中 k 为常数,则 k =______.
- 8. 设随机变量 X 和 Y 相互独立,并且都服从参数为 $\lambda > 0$ 的 Poisson 分布 $P(\lambda)$,令 U = 2X + Y, V = 2X Y,则随机变量 U 和 V 的相关系数为______.
- 9. 设二维随机变量 (X,Y) 的联合概率密度函数为 $p(x,y) = \begin{cases} 6e^{-(2x+3y)}, & x>0,y>0, \\ 0, & \text{其他.} \end{cases}$ 则概率 $P(-1 \le X \le 1, -2 \le Y \le 2) =$ _______.
- 10. 设某种清漆的 9 个样品,其干燥时间(单位:小时)分别为 6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0. 设干燥时间总体服从正态分布 $N(\mu,0.6^2)$, μ 为未知参数,则 μ 的置信水平为 0.95 的置信 区间为 . (其中 $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$.)

得分

三、解答题(每小题 12 分, 共 72 分)

- 11. 某地区应届初中毕业生有50%报考普通高中,有40%报考中专,有10%报考职业高中,录取率分别为80%,50%,40%.
 - (1) 随机调查一名学生, 求他如愿以偿(即按志愿被录取)的概率;
 - (2) 若某位学生按志愿被录取了,那么他是报考普通高中的概率为多少?

- 12. 设随机变量 $X \sim N(10,16)$.
 - (1) 求概率P(|X-10|<4);
 - (2) 若 $P(X>c)=P(X\leq c)$, 求常数c.(其中 $\Phi(0.25)=0.5987$, $\Phi(1.0)=0.8413$).

13. 设连续型随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} A \mid x \mid, & \mid x \leq 1, \\ 0, & 其他, \end{cases}$$

其中 A 为常数. 求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F(x); (3) 随机变量 Y=2X+1 的概率密度函数 $p_{y}(y)$.

14. 设二维随机变量(X,Y)的联合概率密度函数为

$$p(x, y) = \begin{cases} 2, & 0 < x < 1, 0 < y < x, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 求(X,Y)的边缘概率密度函数 $p_X(x)$ 和 $p_Y(y)$;
- (2) 判断 X 和 Y 是否独立,并说明理由.

15. 已知随机变量 $X \times Y$ 以及 XY 的概率分布列如下表示:

X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

- (1) 求(X,Y)的联合概率分布列;
- (2) 令 $U = \max(X, Y)$, 求U的期望EU.

16. 设总体 X 具有如下概率分布列:

X	1	2	3
P	$oldsymbol{ heta}^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数. 已知取得样本值 $x_1=1,x_2=2,x_3=3$,试求 θ 的矩估计值和最大似然估计值.

得 分

四、应用题(每小题8分,共8分)

17. 如果一个矩形的宽度 ω 和长度 l 的比 $\frac{\omega}{l} = \frac{\sqrt{5}-1}{2} \approx 0.618$,这样的矩形称为黄金矩形,这种尺寸的矩形使人看起来有良好的感觉. 现从某工艺品工厂随机地取 20 个矩形的宽度与长度的比值,计算得样本均值为 $\bar{x} = 0.660$,样本方差为 $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = 0.0925^2$. 假设这一工厂生产的矩形的宽度与长度的比值总体 $X \sim N(\mu, \sigma^2)$, μ, σ^2 均未知. 试检验假设 $H_0: \mu = 0.618 \leftrightarrow H_1: \mu \neq 0.618$.

(其中显著性水平 α = 0.05, $\sqrt{20}\approx 4.47$, $\Phi(1.65)=0.95$, $\Phi(1.96)=0.975$, $t_{0.025}(19)=2.093$, $t_{0.025}(20)=2.091$.)