Parte I: Capítulo 4

4.3 Función de multiplicidad

(The Multiplicity Function)

4.4.1 Representationes en módulos de persistencia: Desarrollo teórico

(Representations on persistence modules - Theoretical development)

Eduardo Velázquez

26 de octubre de 2023

4.3 Función de Multiplicidad

Sea \mathcal{B} un código de barras, e $I \subset \mathbb{R}$ un intervalo finito.

Denotemos $m(\mathcal{B}, I)$ al número de barras en \mathcal{B} que contienen a I.

Además, sea I=(a,b] y $c\leq \frac{b-a}{2}$ denotemos $I^c=(a+c,b-c]$.

Definición 4.3.2 Se define la **Función de multiplicidad** como

$$\mu_k(\mathcal{B}) = \sup\{c \mid \exists \text{ un intervalo finito I de longitud} > 4c,$$
 tal que $m(\mathcal{B}, I) = m(\mathcal{B}, I^{2c}) = k\}$.

Dado
$$k \in \mathbb{N}$$
, $\mu_k(\mathcal{B}) = sup(\{c\})$
 $c \in \mathbb{R}$ tal que:

- Podemos encontrar un intervalo I tal que $\frac{\mathsf{Longitud}\,I}{4} > c$.
- ightharpoonup I está contenido en \mathcal{B}
- $ightharpoonup m(\mathcal{B},I)=k$

En palabras, dado $k \in \mathbb{N}$, la función de multiplicidad busca la máxima ventana, i.e. un intervalo I de longitud > 4c en \mathbb{R} , tal que arriba de ella y del intervalo acortado I^{2c} existan exactamente k barras.

Ejercicio 4.3.1

Sean \mathcal{B} y \mathcal{C} dos códigos de barras tales que

$$d_{bot}(\mathcal{B}, \mathcal{C}) < c$$

además, sea I un intervalo de longitud > 4c tal que $m(\mathcal{B},I)=m(\mathcal{B},I^{2c})=m_0$. Entonces

$$m(\mathcal{C},I^c)=m_0$$
.

Por el ejercicio 4.3.1, podemos deducir que para dos códigos de barras \mathcal{B} , \mathcal{C} y cualquier $k \in \mathbb{N}$,

$$|\mu_k(\mathcal{B}) - \mu_k(\mathcal{C})| \le d_{bot}(\mathcal{B}, \mathcal{C}). \tag{16}$$

Una aplicación de (16) es la siguiente.

Definición 4.3.3

- Decimos que un módulo de persistencia (V, π) sobre \mathbb{R} admite una **estructura compleja** J si existe un isomorfismo $J: V \to V$ que satisface $J^2 = -1$.
- En tal caso, llamaremos a (V, π) módulo de persistencia complejo.
- ightharpoonup Se sigue además que $dimV_t$ es par $\forall t \in \mathbb{R}$.

Afirmación

(4.3.4) Sea \mathcal{B} el código de barra asociado a un módulo de persistencia (V,π) que admite una estructura compleja, entonces $m(\mathcal{B},I)$ es par para cualquier intervalo I. En particular, se sigue que para un módulo de persistencia complejo (V,π) , obtenemos $\mu_k(\mathcal{B}(V))=0$ para todo entero impar $k\in\mathbb{N}$.

Demostración.

Sea I=(a,b] y $\widetilde{a}\in\mathbb{R}$ suficientemente cerca de a tal que

$$a < ilde{a} < b$$
.

Cualquier barra que contenga a I contribuye en +1 a $dim(\text{im } \pi_{\tilde{a},b})$, es decir, $m(\mathcal{B},I)=dim(\text{im } \pi_{\tilde{a},b})$.

Como $\pi_{\tilde{a},b}J_{\tilde{a}}=J_b\pi_{\tilde{a},b}$, entonces $J_b(\operatorname{im}\pi_{\tilde{a},b})\subset\operatorname{im}\pi_{\tilde{a},b}$, es decir, $J':=J_b|_{\operatorname{im}\pi_{\tilde{a},b}}$ también satisface $(J')^2=-\mathbb{1}\Rightarrow dim(\operatorname{im}\pi_{\tilde{a},b})$ es par.

Sea
$$\mu_{odd}(\mathcal{B}) := \max_{j \text{ odd}} \mu_j(\mathcal{B}).$$

Afirmación

Sea (V,π) un módulo de persistencia. Entonces para todo módulo (W,θ) que admita una estructura compleja, la distancia de entrelazamiento entre ellos está acotada por abajo:

$$d_{int}\left((V,\pi),\,(W,\theta)\right)\geq\mu_{odd}\left(\mathcal{B}(V,\pi)\right)$$
.

Implicaciones:

- La distancia de entrelazamiento entre cualquier módulo de persistencia (V,π) y la colección de módulos complejos está acotada por abajo por $\mu_{odd}(\mathcal{B}(V,\pi))$.
- En el caso de que $\mu_{odd}\left(\mathcal{B}(V,\pi)\right)>0$, obtenemos una restricción para aproximar un módulo de persistencia (V,π) dado por un módulo de persistencia complejo.

Demostración.

Por el Teorema de Isometría, la desigualdad (16) y la Afirmación 4.3.4, si (W,θ) es un módulo complejo, entonces

$$egin{array}{lll} d_{int}\left((V,\pi),\,(W, heta)
ight) &=& d_{bot}\left(\mathcal{B}(V,\pi),\,\mathcal{B}(W, heta)
ight) \ &\geq& \left|\mu_{odd}(\mathcal{B}(V,\pi)) - \underline{\mu_{odd}}(\mathcal{B}(W, heta))
ight| \end{array}$$

4.4 Representaciones en módulos de persistencia

4.4.1 Desarrollo teórico

Recordemos que la representación de un grupo G es un par (V,ρ) , donde V es un espacio vectorial de dimensión finita y ρ es un homomorfismo de G a GL(V). Adaptaremos este concepto a los módulos de persistencia.

Definición 4.4.2

Una representación de persistencia de un grupo G es un par $((V,\pi),\rho)$, donde (V,π) es un módulo de persistencia y ρ es un homomorfismo de G al grupo de automorfismos de persistencia de (V,π) . Una subrepresentación de persistencia $((W,\pi),\rho)$ de $((V,\pi),\rho)$ es un submódulo de persistencia (W,π) de (V,π) tal que $\forall t\in\mathbb{R},\ W_t$ es invariante bajo $\rho(g)_t$ para cualquier $g\in G$.

Ejemplo 1

Un módulo de persistencia con involución (pmi), denotado $((V,\pi),A)$, es una representación de persistencia de $G=\mathbb{Z}_2$. En otras palabras, A es un homomorfismo de G al grupo de persistencia de automorfismos de (V,π) tal que para cualquier $t\in\mathbb{R},\ A_t^2=\mathbb{1}.$

Definición 4.3.3

Sean $((V,\pi),\rho^V)$ y $((W,\theta),\rho^W)$ dos representaciones de persistencia del grupo G. Un **morfismo** G-**persistente** $\mathfrak{f}:((V,\pi),\rho^V)\to((W,\theta),\rho^W)$ es una \mathbb{R} -familia de morfismos persistentes G-equivariantes $f_t:V_t\to W_t,\ t\in\mathbb{R}$.

Dado un *G*-morfismo persistente $\mathfrak{f}:((V,\pi),\rho^V)\to((W,\theta),\rho^W)$, se puede considerar

$$\mathsf{ker}(\mathfrak{f}) = \left\{v \in V_t | f_t(v) = 0
ight\}_{t \in \mathbb{R}}$$
 y $\mathsf{im}(\mathfrak{f}) = \left\{f_t(v) \in W_t | v \in V_t
ight\}_{t \in \mathbb{R}}$.

Ejercicio 4.4.4 Demuestre que (ker(f), ρ^V) es una subrepresentación persistente de ((V,π), ρ^V) y, análogamente, (im(f), ρ^W) de ((W,θ), ρ^W) .

Ejemplo 4.4.5

Sea $((V,\pi),\rho^V)$ una representación persistente sobre $\mathbb C$ del grupo finito $\mathbb Z_p=\{0,1,\cdots,p-1\}$. Sea ξ la p-ésima raíz de la unidad. Consideremos $(L_\xi)_t=\ker(\rho(1)_t-\xi\mathbb 1_{V_t})$ para todo $t\in\mathbb R$. Entonces $((\{(L_\xi)_t\}_{t\in\mathbb R},\pi),\rho)$ es una subrepresentación persistente de $((V,\pi),\rho^V)$.

Recordemos que un δ corrimiento de un módulo de persistencia (V,π) , denotado $(V[\delta],\pi[\delta])$, se define como $V[\delta]_t=V_{t+\delta}$ y $\pi[\delta]_{s,t}=\pi_{s+\delta,t+\delta}$. Análogamente, para cualquier morfismo persistence $\mathfrak{f}:(V,\pi)\to(W,\theta)$ definimos su δ -corrimiento:

$$f[\delta]: (V[\delta], \pi[\delta]) \to (W[\delta], \theta[\delta])$$

 $(f[\delta])_t = f_{t+\delta}.$

Observe que si $((V, \pi), \rho)$ es una representación persistente de G, también lo es $((V[\delta], \pi[\delta]), \rho[\delta])$.

Definición 4.4.7

Sean $((V,\pi),\rho^V)$ y $((W,\theta),\rho^W)$ dos representaciones de persistencia del grupo G. Decimos que (V,π) y (W,θ) están (δ,G) -entrelazados si existen G-morfismos persistentes $\mathfrak{f}:(V,\pi)\to(W[\delta],\theta[\delta])$ y $\mathfrak{g}:(W,\theta)\to(V[\delta],\pi[\delta])$ tales que los siguientes diagramas conmutan:

$$(V,\pi) \xrightarrow{\mathfrak{f}} (W[\delta],\theta[\delta]) \xrightarrow{\mathfrak{g}[\delta]} (V[2\delta],\pi[2\delta])$$

$$(W,\theta) \xrightarrow{\mathfrak{g}} (V[\delta], \pi[\delta]) \xrightarrow{\mathfrak{f}[\delta]} (W[2\delta], \theta[2\delta])$$

Consistentemente, podemos definir la distancia de *G*-entrelazamiento como

$$d_{G-int}\left((V,\pi),\,(W, heta)
ight)=\inf\left\{\delta>0|(V,\pi)\;{
m y}\;(W, heta)\;{
m están}\ (\delta,\,G) ext{-entrelazados}
ight\}\,.$$

Proposición 4.4.8

Sean $((V, \pi), \rho^V)$ y $((W, \theta), \rho^W)$ dos representaciones de persistencia del grupo G. Entonces,

$$d_{G-int}((V,\pi),(W,\theta)) \geq d_{int}((V,\pi),(W,\theta))$$
.

Ejemplo 4.4.9

Sean $((V,\pi),\rho^V)$ y $((W,\theta),\rho^W)$ dos representaciones de persistencia sobre $\mathbb C$ del grupo finito $\mathbb Z_p=\{0,1,\cdots,p-1\}$, con p un número primo. Para cualquier raíz p-ésima de la unidad ξ , denotemos como $((L_\xi^V,\pi),\rho^V)$ y $((L_\xi^W,\theta),\rho^W)$ a las subrepresentaciones de persistencia de $((V,\pi),\rho^V)$ y $((W,\theta),\rho^W)$, respectivamente (ver Ejemplo 4.4.5). Si $((V,\pi),\rho^V)$ y $((W,\theta),\rho^W)$ están (δ,G) -entrelazados, se puede demostrar que $((L_\xi^V,\pi),\rho^V)$ y $((L_\xi^W,\theta),\rho^W)$ también están (δ,G) -entrelazados. Por tanto,

$$d_{G-int}((V,\pi),(W,\theta)) \geq d_{G-int}\left((L_{\xi}^{V},\pi),(L_{\xi}^{W},\theta)\right)$$

$$\geq d_{int}\left((L_{\xi}^{V},\pi),(L_{\xi}^{W},\theta)\right)$$

$$= d_{bot}\left((L_{\xi}^{V},\pi),(L_{\xi}^{W},\theta)\right).$$

En esta sección no se trabaja con el caso general $G=\mathbb{Z}_p$ sino sólo con p=2,4. Note que si \mathbb{Z}_4 actúa en un conjunto, esta acción induce una \mathbb{Z}_2 -acción sobre el mismo conjunto, por el homomorfismo $\mathbb{Z}_2 \to \mathbb{Z}_4$, $1 \mapsto 2$. Decimos que un módulo de persistencia con involución (pmi) $((W,\theta),B)$ es un \mathbb{Z}_4 -pmi si su \mathbb{Z}_2 acción B proviene de una \mathbb{Z}_4 -acción, es decir, si existe un morfismo de persistencia $C:(W,\theta)\to (W,\theta)$, tal que $B=C^2$ y $C^4=\mathbb{1}$.

Sea $((V,\pi),A)$ un pmi. Retomando el Ejemplo 4.4.5 con $\xi=-1$, denotemos L^V al módulo de persistencia resultante construido a partir de los (-1)—espacios propios.

Teorema 4.4.11

Sea $((V,\pi),A)$ un módulo de persistencia con involución (pmi). La \mathbb{Z}_2 -distancia de entrelazamiento entre V y la collección de módulos de persistencia con involución cuya \mathbb{Z}_2 acción proviene de una \mathbb{Z}_4 , está acotada por abajo en términos de la función de multiplicidad: Para cualquier \mathbb{Z}_4 -pmi $((W,\theta),B)$,

$$d_{\mathbb{Z}_2-int}(V,W) \geq \mu_{odd}(L^V)$$
.

Demostración.

Ejercicio 4.4.12:

- 1. Demostrar que si (V, π) y (W, θ) están \mathbb{Z}_2 -entrelazados, entonces L^V y L^W están δ -entrelazados.
- 2. Demostrar que $C(L^W) = L^W$, y deducir que $C^2|_{L^W} = -1$.

En consecuencia, L^W es un módulo de peristencia complejo (Definición 4.3.3). Por tanto, por la Afirmación 4.3.5,

$$d_{\mathbb{Z}_2-int}\left((V,\pi),(W, heta)
ight) \geq d_{int}(L^V,L^W) \geq \mu_{odd}\left(L^V
ight)$$
.

