Лекция 6

Реконструкция типов в просто типизированном лямбда-исчислении, комбинаторы

1 Лекция 6

Реконструкция типов в просто типизированном лямбда-исчислении, комбинаторы

1.1 Алгоритм вывода типов

Пусть есть: ?|-A:?, хотим найти пару \langle контекст, тип \rangle

Алгоритм:

- 1. Рекурсия по структуре формулы Построить по формуле A пару $\langle E, \tau \rangle$, где E-набор уравнений, τ -тип A
- 2. Решение уравнения, получения подстановки S и из решения E и $S(\tau)$ получения ответа

Т.е. необохимо свести вывод типа к алгоритму унификации.

Пункт 1.1. Рассмотрим 3 случая

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой конекст, α_A -новая переменная нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P \ Q \implies \langle E_P \cup E_Q \cup \{ \tau_P = \tau_Q \to \alpha_A \}, \alpha_A \rangle$, где α_A -новая переменная
- 3. $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \to \tau_P \rangle$

Пункт 1.2. Алгоритм унификации

Рассмотрим E—набор уравнений, запишем все уравнения в алгебраическом виде т.е. $\alpha \to \beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 1.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma | -M : \rho$, то существует:

- 1. S—решение E_M тогда $\Gamma = \{S(\alpha_x) | x \in FV(M)\}$, FV—множество свободных переменных в терме M, α_x переменная полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S- решение E_M , то $\Gamma | -M : \rho$, Доказательство—индукция по структуре терма M

 $\langle \Gamma, \rho \rangle$ -основная пара для терма M, если

- 1. $\Gamma | -M : \tau$
- 2. Если $\Gamma'|-M:\tau'$, то сущесвтует $S:\ S(\Gamma)\subset \Gamma'$

Пример.

Рассмотрим терм: $\lambda f \lambda x. f(f(x))$, построим и пронумеруем его дерево разбора:

1.
$$E_1 = \langle \{\}, \alpha_x \rangle$$

2.
$$E_2 = \langle \{\}, \alpha_f \rangle$$

3.
$$E_3 = \langle \{\}, \alpha_f \rangle$$

4.
$$E_4 = \langle \{\alpha_f = \alpha_x \to \alpha_1\}, \alpha_1 \rangle$$

5.
$$E_5 = \langle \{\alpha_f = \alpha_x \to \alpha_1 \\ \alpha_f = \alpha_1 \to \alpha_2\}, \alpha_2 \rangle$$

6.
$$E_6 = \langle \{\alpha_f = \alpha_x \to \alpha_1 \\ \alpha_f = \alpha_1 \to \alpha_2\}, \alpha_x \to \alpha_2 \rangle$$

7.
$$E_7 = \langle \{\alpha_f = \alpha_x \to \alpha_1 \\ \alpha_f = \alpha_1 \to \alpha_2\}, \alpha_f \to (\alpha_x \to \alpha_2) \rangle$$

$$E=lpha_f=lpha_x
ightarrowlpha_1 \ lpha_f=lpha_1
ightarrowlpha_2$$
, решим полученную систему:

1. приведем систему к алгебрачиескому виду и решим её:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$
 (b)

(b)
$$\left\{ \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \right\}$$

$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных
- 4. тип терма $\lambda f \lambda x. f(f(x))$ является результат подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2))$, получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

1.2 Сильная и слабая нормализации

Определение 1.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 1.2. Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

Утверждение 1.1.

- 1. $KI\Omega$ слабо нормализуема
- 2. Ω не нормализуема
- 3. *II* сильно нормализуема

Лемма 1.2. Сильная нормализация влечет слабую.

1.3 Выразимость комбинаторов

Утверждение 1.2. Любое λ выражение можно записать с помощью комбинаторов S и K, где

$$S = \lambda x \lambda y \lambda z.(x z)(y z)$$

$$K = \lambda x \lambda y.x$$

Утверждение 1.3. Соотношение комбинаторов с λ исчислением:

- 1. T(x) = x
- 2. T(PQ) = T(P)T(Q)
- 3. $T(\lambda x.P) = K(T(P)), x \notin FV(P)$
- 4. $T(\lambda x.x) = I$
- 5. $T(\lambda x \lambda y.P) = T(\lambda x.T(\lambda y.P))$
- 6. $T(\lambda x.P Q) = S T(\lambda x.P)T(\lambda x.Q)$

Утверждение 1.4. Альтернативный базис:

- 1. $B = \lambda x \lambda y \lambda z . x(y z)$
- 2. $C = \lambda x \lambda y \lambda z.((x z)y)$
- 3. $W = \lambda x \lambda y.((x y)y)$