

WHY DO WE CARE?

Why does information propagation matter?

01

DATA

What's our data? Where does it come from?

02

METHODS

How do we interpret this data?

03

05

What next?

06

CONCLUSION

Closing thoughts, questions

Why does information propagation matter?

A better model of text propagation means a better understanding of:

- How companies build brands or attract customers
- How research gets attention, citations, and funding
- How ideas spread across cultures or teams
- How misinformation spreads

01

WHY DO WE CARE?

02

What's our data? Where does it come from?

- Scraped text data from Twitter users
 connected to ML researchers
- Accounts between 1000 and 50000 followers
- Predicting 'Retweets' as our goal

OUR DATA IN 3 NUMBERS:

02

63000

Tweets Analyzed

1524

Different Users

2

Machine Learning Clusters

What is our data?

Distribution of Retweet Count

Most content is not viral – Most has 0-1 retweets

Linear Regression

XGBoost

TabNet

- Many algorithms tested (ask for details)
- Both Regression and classification

Random Forest

Deep Learning

1D CNN

What was discovered?

What was discovered?

Viral Text is Different

There is a measurable difference between viral text and nonviral text - we could explain about 11% of variance (R2) using NLP

Viral Topics

Some topics are clearly more viral, e.g. talking about OpenAl, or hiring phd candidates

Quantifiability

Specific words/topics can be measured, e.g. '100daysofcode' had 16% correlation (R) with retweets

What was discovered?

REGRESSION PERFORMANCE

- XGB on metadata remains more predictive than NLP
- Ensemble methods yet to improve performance

Classification Performance on Holdout Data

UT	0	4
----	---	---

	Precision	Recall	F1-Score	Support
Not Viral	0.98	0.98	0.98	2520
Viral	.27	0.26	0.26	70
Accuracy		>50 retweets	97%	2590

Process Integration

How might this fit in a marketing dashboard? Could the service be used to market itself?

What Next?

Improve the Model

Collecting more data and improving on embeddings from newer large language models

Reuse the Pipeline

Can we predict citation counts of research papers based on their titles and abstracts? Etc.

In a nutshell...

06

We were able to use machine learning to predict 26% of viral tweets. That means we could start to preemptively score marketing and communications for virality.

Virality may always be hard to predict – like predicting the stock market, if you find something that works, it could change the landscape and stop working.

Technical Details

CLASSIFICATION PERFORMANCE

- Random Forest had the best F1 score at .31 on Val.
- Also the best Area Under the Curve at 82%

