# Inverse Scalar Born-Infeld Theory

Ground-State Energy Densities

January 13, 2017

## 1 Solve for the momentum

Start with equation (29):

$$\pi = \dot{\phi} \left[ 1 - \left( \dot{\phi}^2 - V \right) / M^4 \right]^{-3/2} \tag{1}$$

where  $M \in \mathbb{R}^+$ ,  $V \in \mathbb{R}$ . Solve for  $\dot{\phi}(\pi, M, V)$ .

Introducing intermediate variables

$$\xi = 27\pi \left( M^4 + V \right),$$

$$\eta = \left( M^{12}\pi^3 \left( \sqrt{27 \left( 4M^{12} + \xi \right)} - \xi \right) \right)^{1/3},$$
(2)

the solution is taken as

$$\dot{\phi}(\pi, M, V) = \pm \sqrt{\left(3 \times 2^{1/3}\right)^{-1} \frac{\eta}{\pi^{-2}} - M^{12} 2^{1/3} \eta^{-1} + M^4 + V}$$
 (3)

# 2 Behavior

The solution in (3) is plotted with M = V = 1 in figure 1.

## 2.1 Asymptotics

For unbounded momenta,

$$\lim_{\pi \to \infty} \dot{\phi}(\pi, M, V) = \sqrt{M^4 + V}. \tag{4}$$

The numerical behavior of the small momentum sequence requires attention. Analytically,

$$\lim_{\pi \to 0} \dot{\phi}(\pi, M, V) = 0. \tag{5}$$



Figure 1:  $\dot{\phi}(\pi, M, V)$  with M = V = 1

Table 1: Function evaluations, naive double precision.

| $\pi$      | $\dot{\phi}\left(\pi, M=1, V=1\right)$ |
|------------|----------------------------------------|
| $10^{-12}$ | 0.0413399                              |
| $10^{-11}$ | 0.0123526                              |
| $10^{-10}$ | 0.00378221                             |
| $10^{-9}$  | 0.00109183                             |
| $10^{-8}$  | 0.000345267                            |
| $10^{-7}$  | 0.0000965051                           |
| $10^{-6}$  | 0.0000285466                           |
| 0.00001    | 0.0000295485                           |
| 0.0001     | 0.000282851                            |
| 0.001      | 0.00282841                             |
| 0.01       | 0.0282673                              |
| 0.1        | 0.26777                                |
| 1.         | 1.                                     |
|            | 1.                                     |
| 10.        | 1.31941                                |

A table of values was built in Mathematica: The gray shaded values signal a computation problem due to the fact that subtraction is an ill-conditioned process in finite precision arithmetic. As  $\pi \to 0$ , the quantity

$$\left(3\times 2^{1/3}\right)^{-1}\frac{\eta}{\pi^{-2}}-M^{12}2^{1/3}\eta^{-1}$$

becomes the difference of two large numbers. Catastrophic cancellation destroys the precision of the result.

One solution is to use a Maclaurin expansion near the origin. The foundation series that describes  $\eta$  in (2):

$$\eta \approx 2^{1/3} \sqrt{3} M^6 p - \frac{3(M^4 + V)}{2^{2/3}} \pi^2 + \frac{3\sqrt{3} (M^4 + V)^2}{4 \times 2^{2/3} M^6} \pi^3 + \frac{3 (M^4 + V)^3}{2^{2/3} M^{12}} \pi^4 + \mathcal{O}(\pi^4).$$

Manipulation of these two terms yields the Laurent expansions

$$\frac{\eta}{3 \times 2^{1/3} \pi^{-2}} \approx \frac{M^6}{\sqrt{3}p} - \frac{1}{2} \left( M^4 + V \right) + \frac{\sqrt{3}}{8M^6} \left( M^4 + V \right)^2 p + \frac{\left( M^4 + V \right)^3}{2M^{12}} \pi^2 + \mathcal{O}(\pi^3)$$
$$M^{12} 2^{1/3} \eta^{-1} \approx \frac{M^6}{\sqrt{3}p} + \frac{1}{2} \left( M^4 + V \right) + \frac{\sqrt{3}}{8M^6} \left( M^4 + V \right)^2 p - \frac{\left( M^4 + V \right)^3}{2M^{12}} \pi^2 + \mathcal{O}(\pi^3)$$

The nature of the convergence is linear, as given by

$$\lim_{\pi \to 0} \dot{\phi}(\pi, M, V) \approx \sqrt{\frac{(M^4 + V)^3}{M^{12}} \pi^2 + \mathcal{O}(\pi^3)}.$$
 (6)

#### 2.2 Invariance

Equation (3) has at least one invariant. When  $M^4 + V = 0$ ,  $\dot{\phi}(\pi, M, V) = 0$ .