非線形パネルVAR-SPDE-LSTMモデル(精度評価付き)

著者

- 氏名: 柴田怜
- 職業: データサイエンティスト
- 学位: 上智大学大学大学院修士号(環境学)

前提

- 1. メモリ容量の最大化
- 2. 必要なライブラリの読込
- 3. 関数定義
- 4. ローデータの目視確認

実行手順

- 1. 誤差項調整
- 2. 多重共線性の実証分析
- 3. 無相関検定
- 4. 単位根検定(ADF検定)
- 5. 共和分検定
- 6. 偏グレンジャー因果性検定と非直交化インパルス応答関数
- 7. パネルVARモデルによる動的直接相関係数の導出
- 8. 幾何ブラウン運動
- 9. LSTM(Long Short Term Memory)
- 10. グラフ描画・出力

メモリ容量の最大化

```
In [1]: memory.limit(memory.size(max = T))
gc(verbose = getOption("verbose"), reset = T, full = T)

Warning message in memory.limit(memory.size(max = T)):
"メモリー限界を減らすことができません:無視しました"

32176

A matrix: 2 × 6 of type dbl

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 524108 28.0 1178095 63 524108 28.0

Vcells 961226 7.4 8388608 64 961226 7.4
```

必要なライブラリの読込

```
In [2]: load. lib \langle -c(
        "data. table"
                       #. csv読込・出力
          "magrittr"
                       #前処理
          "tidyr"
                       #前処理
          "dplyr"
                       #前処理
          "tidyverse"
                       #前処理
          "tseries"
                       #前処理
          "urca"
                       #ADF検定
          "aTSA"
                       #共和分検定
          "plm"
                       #パネルデータの形成
          "panelvar"
                       #パネルVARモデル
          "Sim. DiffProc" #幾何ブラウン運動
           'ggplot2"
                       #可視化
          "gridExtra"
                       #グラフの集約
           ″qgraph″
                       #相関行列の可視化
          "tsbox"
                       #ts_df関数の利用
          "keras"
                       #LSTMによる幾何ブラウン運動の精度評価
          "tensorflow"
                       #LSTMによる幾何ブラウン運動の精度評価
          "vars"
                       #関数定義に用いる(以下、同じ)。
          "NlinTS"
          "tsDyn"
       install.lib <- load.lib[!load.lib %in% installed.packages()]</pre>
       for (lib in install. lib) install. packages (lib, dependencies = T)
       sapply(load. lib, require, character = T)
       #LSTMによる幾何ブラウン運動の精度評価
       install_tensorflow(gpu = TRUE) #GPUの利用
       Loading required package: Imtest
       Attaching package: 'vars'
       The following object is masked from 'package:panelvar':
           stability
       The following object is masked from 'package:aTSA':
           arch. test
       Loading required package: NlinTS
```

関数定義

Warning message:

```
時系列プロット

    LSTM(Long Short Term Memory)

In [3]: |#対数差分系列に変換する。
         diff.log <- function(x) {</pre>
          y <- diff(log(x))
          return(y)
        #プロビット写像
        probit <- function(x) {</pre>
          y < -c(exp(((-x^2)/2))/sqrt(2 * pi))
          return(y)
         #偏グレンジャー因果性検定と非直交化インパルス応答関数
         ts \leftarrow function(y1, y2) {
          temp \langle - \text{ cbind}(y1, y2) \% \rangle \% as data frame
          model \leftarrow VAR(temp, p = 2, type = "both", ic = "AIC")
           wk_result_1 <- causality(model, cause = "y1")</pre>
           wk_result_2 <- causality(model, cause = "y2")</pre>
           granger
                      <- list(wk_result_1, wk_result_2)</pre>
          impulse_1 \leftarrow irf(model, impulse = "y1", response = "y2", boot = F)
           impulse_2 \leftarrow irf(model, impulse = "y2", response = "y1", boot = F)
           imp <- list(impulse_1, impulse_2)</pre>
          result <- list(granger, imp)</pre>
          return(result)
         #ADF検定
        ADF <- function(x) {
          result \langle -\text{ ur. df}(x, \text{type} = c(\text{"drift"}), \text{ lags} = 1) \% \rangle \%
            summary
          return(result)
         #標本分散
        sigma \leftarrow function(x) {
          result \langle -var(x)*(length(x)-1)/length(x)
          return(result)
         #時系列プロット
        fig <- function(data, y, title, label) {
          data %>%
            ggplot(aes(x = time, y = y)) +
            geom_point() +
            geom_line() +
            ggtitle(title) +
            labs(x = "ff", y = label)
        #LSTM(Long Short Term Memory)の前処理
         #時系列データts_dfをwindowで指定した長さ毎に区切って訓練用のデータを生成する。
        LSTM <- function(ts_df, window, rm.na = F) {
          data.x = NULL
          data.y = NULL
          n = dim(ts_df)[2]
          for (i in 1:n) {
            ts_x = ts_df[, i]
            for (j in 1: (length(ts_x)-window)) {
               if (rm. na) {
                 tmp. x = ts_x[1:window + j -1]
                 tmp. y = ts_x[1:window + j -1]
                 if(sum(c(is.na(tmp.x), is.na(tmp.y))) == 0) {
                   data. x = rbind(data. x, ts_x[1:window + j -1])
                   data. y = rbind(data. y, ts_x[window + j])
               }else{
                 data. x = rbind(data. x, ts_x[1:window + j -1])
                 data. y = rbind(data. y, ts_x[window + j])
           data \leftarrow list(x = array_reshape(data. x, c(dim(data. x), 1)),
                        y = data. y)
           scale = max(ts_df, na.rm = T)
           x = data$x / scale
          y = data$y / scale
          lstm <- keras_model_sequential()</pre>
           Istm %>%
            layer_lstm(units = 64, input_shape = c(dim(x)[2], 1)) %>%
            layer_dropout(rate = 0.4) %>%
             layer_dense(units = 1)
           Istm %>% compile(loss = "mean_squared_error",
                            optimizer = optimizer_adam(),
                            metrics = "accuracy")
           Istm \%>% fit(x, y,
                        epochs = 1000, batch_size = 10, validation_split = 0.2)
           i = 1
           test_x = ts_df[, i]
          test_x = data$x
           scale=max(ts_df, na.rm = T)
           test_x = test_x/scale
          pred_x = Istm %>%
            predict(test_x)
           ts.plot(ts_df[, i]/scale->a, ylim = c(min(c(a, pred_x)), max(c(a, pred_x))), ylab = "検証値")
          lines (c (rep (NA, window), pred_x), col = 2)
```

ローデータの目視確認

- 読込
- 要約統計量を求める。

対数差分系列プロビット写像

ADF検定標本分散

• 偏グレンジャー因果性検定と非直交化インパルス応答関数

In [4]: #読込

raw_data <- fread("./0_input/raw_data.csv") %>%
 as. data. frame
raw_data

Warning message in require_bit64_if_needed(ans):

"Some columns are type 'integer64' but package bit64 is not installed. Those columns will print as strange looking floating point data. There is no need t install packages ('bit64') to obtain the integer64 print method and print the data again."

A data.frame: 29 × 13

id	time	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11
<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int64></int64>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
0	1986	11.36838	1111250	0	20.90	1.212152e-313	42.4	85.9	2.6	217.71013	58.594	0
0	1987	11.91077	1111019	0	24.12	1.437787e-313	41.9	85.9	2.8	251.03609	58.594	0
0	1988	12.58026	1186750	0	18.37	1.734345e-313	40.4	86.5	2.8	348.65896	58.594	0
0	1989	13.02217	1216857	0	22.40	1.735299e-313	38.7	88.5	2.5	439.72734	58.594	0
0	1990	13.54005	1304676	0	27.67	1.772752e-313	36.8	91.2	2.3	261.49901	53.711	0
0	1991	13.73636	1318934	1	23.65	1.974477e-313	36.2	94.3	2.1	243.73033	53.711	0
0	1992	13.85659	1330643	0	22.79	2.087208e-313	36.9	95.8	2.1	176.66962	43.640	1
0	1993	14.00667	1333073	0	19.51	2.313130e-313	39.9	97.1	2.2	179.37425	43.640	0
0	1994	14.50500	1385835	0	18.97	2.530688e-313	41.1	97.7	2.5	201.87369	43.640	1
0	1995	14.96408	1421641	1	18.69	2.772627e-313	43.6	97.6	2.9	203.56711	43.640	0
0	1996	15.20326	1424113	0	22.65	2.444392e-313	46.3	97.7	3.2	198.17144	47.600	0
0	1997	15.31663	1414397	0	22.31	2.234803e-313	48.4	99.5	3.4	153.35417	47.600	1
0	1998	15.11348	1371363	0	15.90	2.039227e-313	56.1	100.1	3.4	138.28342	47.600	0
0	1999	15.48801	1399009	1	22.42	2.265293e-313	63.5	99.8	4.1	189.72285	47.600	0
0	2000	15.65519	1406195	0	35.48	2.412343e-313	69.5	99.1	4.7	139.10888	48.542	0
0	2001	15.45515	1387952	1	31.80	2.130494e-313	75.6	98.4	4.7	107.14045	48.542	0
0	2002	15.68053	1422453	0	32.94	2.051602e-313	81.8	97.5	5.0	87.98923	48.542	0
1	2003	15.53167	1428102	0	36.30	2.232162e-313	88.2	97.2	5.4	109.84198	49.375	0
0	2004	15.73810	1427399	1	44.38	2.440000e-313	95.8	97.2	5.3	118.19712	49.375	0
0	2005	15.67054	1439905	0	60.88	2.417166e-313	100.2	97.0	4.7	166.26863	61.667	1
0	2006	15.71379	1425899	0	71.49	2.302782e-313	100.5	97.2	4.4	177.22047	61.667	0
1	2007	15.44623	1461356	1	74.52	2.302205e-313	102.0	97.2	4.1	157.48745	61.667	0
0	2008	14.35917	1385165	0	94.32	2.560759e-313	107.2	98.6	3.9	89.85355	61.667	1
0	2009	14.08942	1290244	0	64.02	2.659101e-313	120.7	97.2	4.0	108.50247	24.792	0
1	2010	14.69798	1350428	0	79.04	2.856209e-313	127.5	96.5	5.1	105.99917	24.792	1
0	2011	14.30011	1396767	0	93.72	3.129825e-313	135.6	96.3	5.1	87.80218	24.792	0
0	2012	14.11543	1478859	0	95.30	3.175953e-313	142.5	96.2	4.6	108.05800	61.250	1
0	2013	14.00908	1315869	0	94.86	2.645133e-313	146.6	96.6	4.3	168.64710	61.250	1
1	2014	13.55841	1268712	0	89.09	2.490221e-313	149.5	99.2	4.0	175.91502	61.263	0

In [5]: # 要約統計量を求める。

raw_data %>%

summary

```
Y2
     id
                    time
                                   Y1
Min. : 0.0000
               Min.
                      :1986
                              Min. :11.37
                                             Min.
                                                  :1111019
               1st Qu. :1993
1st Qu. : 0.0000
                              1st Qu. :13.86
                                            1st Qu.∶1315869
                              Median :14.50
Median :0.0000
                Median :2000
                                             Median :1385835
               Mean : 2000
Mean : 0. 1379
                              Mean : 14.44
                                             Mean : 1352237
3rd Qu.: 0.0000
               3rd Qu.:2007
                              3rd Qu. : 15. 46
                                            3rd Qu.: 1422453
Max. :1.0000
                     :2014
                                                   : 1478859
               Max.
                              Max.
                                    : 15. 74
                                            Max.
     Y3
                     Y4
                                    Y5
                                                        Y6
Min. : 0.0000
               Min. :15.90
                              Min. :1.212e-313
                                                  Min. : 36.20
1st Qu. : 0.0000
               1st Qu. :22.40
                              Median :0.0000
               Median :31.80
                               Median :2.303e-313
                                                  Median : 69.50
                                                  Mean : 77.77
Mean : 0. 2069
               Mean :44.78
                               Mean : 2. 288e-313
3rd Qu.: 0.0000
               3rd Qu. :71.49
                              3rd Qu. : 2. 531e-313
                                                  3rd Qu.:102.00
Max. :1.0000
                     : 95. 30
               Max.
                               Max. ∶3. 176e-313
                                                  Max. :149.50
                     Y8
                                    Υ9
     Y7
                                                  Y10
Min. : 85.90
               Min. : 2. 100
                              Min. : 87.8 Min. : 24.79
1st Qu.: 96.20
               1st Qu. :2.800
                              1st Qu.:109.8
                                             1st Qu. 47.60
                                             Median :49.38
Median : 97.20
               Median :4.000
                               Median :168.6
               Mean : 3. 731
Mean : 95.83
                               Mean : 176. 3
                                             Mean : 50. 20
                               3rd Qu. :201.9
3rd Qu.: 97.70
               3rd Qu. : 4. 700
                                             3rd Qu. 58.59
Max. :100.10
               Max. :5.400
                              Max. ∶439.7
                                             Max.
                                                    ∶61. 67
    Y11
Min. : 0.0000
1st Qu.: 0.0000
Median : 0.0000
Mean : 0. 2759
3rd Qu. : 1. 0000
Max. : 1.0000
```

誤差項調整

- 対数差分系列(一次のテイラー展開近似によって変化率に近似するとともに、定常状態として扱う為)
- プロビット写像(Y3: 原子力事故・異常事象(有無)及びY11: 気候変動対策に関する合意(有無))

```
In [6]: | adjusted <- bind_cols(</pre>
            raw_data$id[-1]
           , time = raw_datatime[-1]
           , Y1 = diff. log(raw_data\$Y1)
           , Y2 = diff.log(raw_data$Y2)
           , Y3 = probit(raw_data$Y3) %>% diff.log
           , Y4 = diff.log(raw_data$Y4)
           , Y5 = diff.log(raw_data$Y5)
           , Y6 = diff.log(raw_data$Y6)
           , Y7 = diff.log(raw_data$Y7)
           , Y8 = diff.log(raw_data$Y8)
           , Y9 = diff.log(raw_data$Y9)
           , Y10 = diff.log(raw_data$Y10)
           , Y11 = probit(raw_data$Y11) %>% diff.log
       ) %>%
         as.data.frame %>%
         apply(2, as.numeric)
        #列名を戻す。
        colnames(adjusted) <- colnames(raw_data)</pre>
        #目視確認
        adjusted
        New names:
        * `` -> ...1
```

A matrix: 28 × 13 of type dbl

id	time	Y1	Y2	Y 3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11
0	1987	0.046607215	-0.0002075447	0.0	0.14329221	0.1707077926	-0.011862535	0.000000000	0.07410797	0.142432217	0.0000000000	0.0
0	1988	0.054685886	0.0659405832	0.0	-0.27232247	0.1875249212	-0.036456042	0.006960585	0.00000000	0.328497543	0.0000000000	0.0
0	1989	0.034524371	0.0250528768	0.0	0.19834206	0.0005498574	-0.042990185	0.022858138	-0.11332869	0.232060612	0.0000000000	0.0
0	1990	0.038998803	0.0696837388	0.0	0.21128783	0.0213535400	-0.050341755	0.030052345	-0.08338161	-0.519724354	-0.0870144800	0.0
0	1991	0.014394272	0.0108689107	-0.5	-0.15698568	0.1077701561	-0.016438726	0.033426293	-0.09097178	-0.070368106	0.0000000000	0.0
0	1992	0.008714722	0.0088388117	0.5	-0.03704127	0.0555237206	0.019152432	0.015781495	0.00000000	-0.321780945	-0.2076436613	-0.5
0	1993	0.010772766	0.0018240989	0.0	-0.15539469	0.1027744168	0.078164773	0.013478690	0.04652002	0.015192965	0.0000000000	0.5
0	1994	0.034959424	0.0388164337	0.0	-0.02806837	0.0898898827	0.029631798	0.006160184	0.12783337	0.118167806	0.0000000000	-0.5
0	1995	0.031159255	0.0255087629	-0.5	-0.01487016	0.0913039761	0.059049029	-0.001024066	0.14842001	0.008353503	0.0000000000	0.5
0	1996	0.015857401	0.0017371782	0.5	0.19217123	-0.1259988187	0.060084811	0.001024066	0.09844007	-0.026863202	0.0868586003	0.0
0	1997	0.007429008	-0.0068456259	0.0	-0.01512484	-0.0896434279	0.044357853	0.018256085	0.06062462	-0.256382442	0.0000000000	-0.5
0	1998	-0.013351743	-0.0308981841	0.0	-0.33871590	-0.0915824352	0.147635999	0.006012042	0.00000000	-0.103444766	0.0000000000	0.5
0	1999	0.024478952	0.0199589422	-0.5	0.34363431	0.1051333650	0.123904093	-0.003001503	0.18721154	0.316258978	0.0000000000	0.0
0	2000	0.010736322	0.0051230969	0.5	0.45901574	0.0628945041	0.090286847	-0.007038742	0.13657554	-0.310307365	0.0195966413	0.0
0	2001	-0.012860357	-0.0130577529	-0.5	-0.10950287	-0.1242445153	0.084129531	-0.007088637	0.00000000	-0.261116371	0.0000000000	0.0
0	2002	0.014477595	0.0245535532	0.5	0.03522143	-0.0377330966	0.078820960	-0.009188426	0.06187540	-0.196926135	0.0000000000	0.0
1	2003	-0.009538389	0.0039633957	0.0	0.09713002	0.0843494517	0.075329719	-0.003081667	0.07696104	0.221828315	0.0170148206	0.0
0	2004	0.013203009	-0.0004923290	-0.5	0.20097118	0.0890274800	0.082655722	0.000000000	-0.01869213	0.073310989	0.0000000000	0.0
0	2005	-0.004301644	0.0087231997	0.5	0.31611580	-0.0094022430	0.044905504	-0.002059733	-0.12014431	0.341250985	0.2223047186	-0.5
0	2006	0.002755722	-0.0097750164	0.0	0.16065287	-0.0484778413	0.002989539	0.002059733	-0.06595797	0.063789851	0.0000000000	0.5
1	2007	-0.017173256	0.0245626200	-0.5	0.04150997	-0.0002502452	0.014815086	0.000000000	-0.07061757	-0.118048806	0.0000000000	0.0
0	2008	-0.072976716	-0.0535457027	0.5	0.23562571	0.1064360454	0.049723435	0.014300550	-0.05001042	-0.561164644	0.0000000000	-0.5
0	2009	-0.018964102	-0.0709880749	0.0	-0.38749772	0.0376846080	0.118611879	-0.014300550	0.02531781	0.188591810	-0.9112279213	0.5
1	2010	0.042285657	0.0455904399	0.0	0.21075852	0.0715069360	0.054808236	-0.007227703	0.24294618	-0.023341656	0.0000000000	-0.5
0	2011	-0.027443021	0.0337389524	0.0	0.17035756	0.0914819847	0.061593011	-0.002074690	0.00000000	-0.188344936	0.0000000000	0.5
0	2012	-0.012998483	0.0571102968	0.0	0.01671820	0.0146305688	0.049632624	-0.001038961	-0.10318424	0.207581822	0.9044428289	-0.5
0	2013	-0.007562957	-0.1167737613	0.0	-0.00462769	-0.1828865067	0.028365790	0.004149384	-0.06744128	0.445140215	0.0000000000	0.0
1	2014	-0.032698240	-0.0364946245	0.0	-0.06275503	-0.0603497264	0.019588603	0.026559273	-0.07232066	0.042192664	0.0002122224	0.5

多重共線性の実証分析

In [7]: #確率変数のみのデータフレーム relation <- adjusted[, !(colnames(adjusted) %in% c("id", "time"))] %>%

apply(2, as.numeric) %>% as.data.frame

as. data. fi #目視確認 relation

A data.frame: 28 × 11

Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.046607215	-0.0002075447	0.0	0.14329221	0.1707077926	-0.011862535	0.000000000	0.07410797	0.142432217	0.0000000000	0.0
0.054685886	0.0659405832	0.0	-0.27232247	0.1875249212	-0.036456042	0.006960585	0.00000000	0.328497543	0.0000000000	0.0
0.034524371	0.0250528768	0.0	0.19834206	0.0005498574	-0.042990185	0.022858138	-0.11332869	0.232060612	0.0000000000	0.0
0.038998803	0.0696837388	0.0	0.21128783	0.0213535400	-0.050341755	0.030052345	-0.08338161	-0.519724354	-0.0870144800	0.0
0.014394272	0.0108689107	-0.5	-0.15698568	0.1077701561	-0.016438726	0.033426293	-0.09097178	-0.070368106	0.0000000000	0.0
0.008714722	0.0088388117	0.5	-0.03704127	0.0555237206	0.019152432	0.015781495	0.00000000	-0.321780945	-0.2076436613	-0.5
0.010772766	0.0018240989	0.0	-0.15539469	0.1027744168	0.078164773	0.013478690	0.04652002	0.015192965	0.0000000000	0.5
0.034959424	0.0388164337	0.0	-0.02806837	0.0898898827	0.029631798	0.006160184	0.12783337	0.118167806	0.0000000000	-0.5
0.031159255	0.0255087629	-0.5	-0.01487016	0.0913039761	0.059049029	-0.001024066	0.14842001	0.008353503	0.0000000000	0.5
0.015857401	0.0017371782	0.5	0.19217123	-0.1259988187	0.060084811	0.001024066	0.09844007	-0.026863202	0.0868586003	0.0
0.007429008	-0.0068456259	0.0	-0.01512484	-0.0896434279	0.044357853	0.018256085	0.06062462	-0.256382442	0.0000000000	-0.5
-0.013351743	-0.0308981841	0.0	-0.33871590	-0.0915824352	0.147635999	0.006012042	0.00000000	-0.103444766	0.0000000000	0.5
0.024478952	0.0199589422	-0.5	0.34363431	0.1051333650	0.123904093	-0.003001503	0.18721154	0.316258978	0.0000000000	0.0
0.010736322	0.0051230969	0.5	0.45901574	0.0628945041	0.090286847	-0.007038742	0.13657554	-0.310307365	0.0195966413	0.0
-0.012860357	-0.0130577529	-0.5	-0.10950287	-0.1242445153	0.084129531	-0.007088637	0.00000000	-0.261116371	0.0000000000	0.0
0.014477595	0.0245535532	0.5	0.03522143	-0.0377330966	0.078820960	-0.009188426	0.06187540	-0.196926135	0.0000000000	0.0
-0.009538389	0.0039633957	0.0	0.09713002	0.0843494517	0.075329719	-0.003081667	0.07696104	0.221828315	0.0170148206	0.0
0.013203009	-0.0004923290	-0.5	0.20097118	0.0890274800	0.082655722	0.000000000	-0.01869213	0.073310989	0.0000000000	0.0
-0.004301644	0.0087231997	0.5	0.31611580	-0.0094022430	0.044905504	-0.002059733	-0.12014431	0.341250985	0.2223047186	-0.5
0.002755722	-0.0097750164	0.0	0.16065287	-0.0484778413	0.002989539	0.002059733	-0.06595797	0.063789851	0.0000000000	0.5
-0.017173256	0.0245626200	-0.5	0.04150997	-0.0002502452	0.014815086	0.000000000	-0.07061757	-0.118048806	0.0000000000	0.0
-0.072976716	-0.0535457027	0.5	0.23562571	0.1064360454	0.049723435	0.014300550	-0.05001042	-0.561164644	0.0000000000	-0.5
-0.018964102	-0.0709880749	0.0	-0.38749772	0.0376846080	0.118611879	-0.014300550	0.02531781	0.188591810	-0.9112279213	0.5
0.042285657	0.0455904399	0.0	0.21075852	0.0715069360	0.054808236	-0.007227703	0.24294618	-0.023341656	0.0000000000	-0.5
-0.027443021	0.0337389524	0.0	0.17035756	0.0914819847	0.061593011	-0.002074690	0.00000000	-0.188344936	0.0000000000	0.5
-0.012998483	0.0571102968	0.0	0.01671820	0.0146305688	0.049632624	-0.001038961	-0.10318424	0.207581822	0.9044428289	-0.5
-0.007562957	-0.1167737613	0.0	-0.00462769	-0.1828865067	0.028365790	0.004149384	-0.06744128	0.445140215	0.0000000000	0.0
-0.032698240	-0.0364946245	0.0	-0.06275503	-0.0603497264	0.019588603	0.026559273	-0.07232066	0.042192664	0.0002122224	0.5

無相関検定

• 相関係数に統計的有意性を検出すれば、多重共線性がある。

```
In [8]: #Y1~11
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y2,
        cor.test(relation$Y1, relation$Y3,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y4,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y5,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y6,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y7,
                                              method = "pearson")
        cor. test(relation$Y1, relation$Y8,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y9.
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y1, relation$Y11,
                                              method = "pearson")
        #Y2~11
        cor.test(relation$Y2, relation$Y3,
                                              method = "pearson")
        cor. test(relation$Y2, relation$Y4,
                                              method = "pearson")
        cor. test(relation$Y2, relation$Y5,
                                              method = "pearson")
        cor. test(relation$Y2, relation$Y6,
                                              method = "pearson")
                                              method = "pearson")
        cor. test(relation$Y2, relation$Y7,
        cor.test(relation$Y2, relation$Y8,
                                              method = "pearson")
        cor. test(relation$Y2, relation$Y9,
                                              method = "pearson")
                                              method = "pearson")
        cor.test(relation$Y2, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y2, relation$Y11,
        #Y3~11
        cor.test(relation$Y3, relation$Y4,
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y5,
                                              method = "pearson")
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y6,
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y7,
        cor.test(relation$Y3, relation$Y8,
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y9,
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y3, relation$Y11,
                                              method = "pearson")
        #Y4~11
        cor. test(relation$Y4, relation$Y5,
                                              method = "pearson")
        cor. test(relation$Y4, relation$Y6,
                                              method = "pearson")
                                              method = "pearson")
        cor. test(relation$Y4, relation$Y7,
        cor. test(relation$Y4, relation$Y8,
                                              method = "pearson")
        cor. test(relation$Y4, relation$Y9,
                                              method = "pearson")
        cor. test(relation$Y4, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y4, relation$Y11,
                                              method = "pearson")
        #Y5~11
        cor.test(relation$Y5, relation$Y6,
                                              method = "pearson")
        cor.test(relation$Y5, relation$Y7,
                                              method = "pearson")
        cor.test(relation$Y5, relation$Y8,
                                              method = "pearson")
        cor.test(relation$Y5, relation$Y9,
                                              method = "pearson")
        cor.test(relation$Y5, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y5, relation$Y11.
                                              method = "pearson")
        #Y6~11
        cor.test(relation$Y6, relation$Y7,
                                              method = "pearson")
        cor. test(relation$Y6, relation$Y8,
                                              method = "pearson")
                                              method = "pearson")
        cor.test(relation$Y6, relation$Y9,
        cor.test(relation$Y6, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y6, relation$Y11,
                                              method = "pearson")
        #Y7~11
        cor.test(relation$Y7, relation$Y8,
                                              method = "pearson")
        cor.test(relation$Y7, relation$Y9,
                                              method = "pearson")
                                              method = "pearson")
        cor.test(relation$Y7, relation$Y10,
        cor. test(relation$Y7, relation$Y11,
                                              method = "pearson")
        #Y8~11
        cor.test(relation$Y8, relation$Y9,
                                              method = "pearson")
        cor.test(relation$Y8, relation$Y10,
                                              method = "pearson")
        cor.test(relation$Y8, relation$Y11, method = "pearson")
        #Y9~11
        cor.test(relation$Y9, relation$Y10, method = "pearson")
        cor. test(relation$Y9, relation$Y11, method = "pearson")
        #Y10~11
        cor. test(relation$Y10, relation$Y11, method = "pearson")
```

Pearson's product-moment correlation

Pearson's product-moment correlation

```
data: relation$Y1 and relation$Y3
t = -0.8296, df = 26, p-value = 0.4143
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.5034983    0.2260323
```

多変量時系列分析

- 単位根検定(ADF検定)
- 共和分検定
- 偏グレンジャー因果性検定と非直交化インパルス応答関数
- パネルVARモデルによる動的直接相関係数の導出
- 幾何ブラウン運動と確率偏微分方程式
- LSTM(Long Short Term Memory)

単位根検定(ADF検定)

```
In [9]: | relation %>%
           apply(2, ADF)
         $Y1
         # Augmented Dickey-Fuller Test Unit Root Test #
         Test regression drift
         Call:
         Im(formula = z. diff \sim z. lag. 1 + 1 + z. diff. lag)
         Residuals:
                        1Q Median
                                                  Max
                                          3Q
         -0.06802 -0.01276 0.00237 0.01493 0.05123
         Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
         (Intercept) 0.0004843 0.0052101 0.093 0.92674
                      A CO11CE1 A DODOOOA
                                            0 007 0 00000 ...
         共和分検定
In [10]: |#Y1~11
         coint.test(relation\$Y1, relation\$Y2, nlag = 1) %>% summary
         coint.test(relation$Y1, relation$Y3, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y4, nlag = 1) %>% summary
         coint.test(relation$Y1, relation$Y5, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y6, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y1, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation$Y1, relation$Y11, nlag = 1) %>% summary
         #Y2~11
         coint.test(relation\$Y2, relation\$Y3, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y4, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y6, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation\$Y2, relation\$Y11, nlag = 1) %>% summary
         #Y3~11
         coint.test(relation\$Y3, relation\$Y4, nlag = 1) \%>% summary
         coint.test(relation\$Y3, relation\$Y5, nlag = 1) %>% summary
         coint.test(relation\$Y3, relation\$Y6, nlag = 1) %>% summary
         coint.test(relation\$Y3, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y3, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y3, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y3, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation$Y3, relation$Y11, nlag = 1) %>% summary
         #Y4~11
         coint.test(relation\$Y4, relation\$Y5, nlag = 1) %>% summary
         coint.test(relation$Y4, relation$Y6, nlag = 1) %>% summary
         coint.test(relation\$Y4, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y4, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y4, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y4, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation\$Y4, relation\$Y11, nlag = 1) %>% summary
         #Y5~11
         coint.test(relation\$Y5, relation\$Y6, nlag = 1) %>% summary
         coint.test(relation\$Y5, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y5, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y5, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation$Y5, relation$Y10, nlag = 1) %>% summary
         coint.test(relation$Y5, relation$Y11, nlag = 1) %>% summary
         #Y6~11
         coint.test(relation\$Y6, relation\$Y7, nlag = 1) %>% summary
         coint.test(relation\$Y6, relation\$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y6, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y6, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation$Y6, relation$Y11, nlag = 1) %>% summary
         #Y7~11
         coint.test(relation$Y7, relation$Y8, nlag = 1) %>% summary
         coint.test(relation\$Y7, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation$Y7, relation$Y10, nlag = 1) %>% summary
         coint.test(relation\$Y7, relation\$Y11, nlag = 1) %>% summary
         #Y8~11
         coint.test(relation\$Y8, relation\$Y9, nlag = 1) %>% summary
         coint.test(relation\$Y8, relation\$Y10, nlag = 1) %>% summary
         coint.test(relation$Y8, relation$Y11, nlag = 1) %>% summary
         #Y9~11
         coint.test(relation$Y9, relation$Y10, nlag = 1) %>% summary
         coint.test(relation$Y9, relation$Y11, nlag = 1) %>% summary
         #Y10~11
         coint.test(relation$Y10, relation$Y11, nlag = 1) %>% summary
         Response: relation$Y1
         Input: relation$Y2
         Number of inputs: 1
         Model: y \sim X + 1
```

Engle-Granger Cointegration Test

EG p. value

EG p. value

EG p. value

alternative: cointegrated

1.00 -4.55 0.01

1.00 -1.44 0.10

Type 3: quadratic trend

1.000 0.826 0.100

Type 2: linear trend

Type 1: no trend

lag

lag

偏グレンジャー因果性検定と非直交化インパルス応答関数

```
In [11]: #Y1~11
         ts(relation$Y1, relation$Y2)
         ts(relation$Y1, relation$Y3)
         ts(relation$Y1, relation$Y4)
         ts(relation$Y1, relation$Y5)
         ts(relation$Y1, relation$Y6)
         ts(relation$Y1, relation$Y7)
         ts(relation$Y1, relation$Y8)
         ts(relation$Y1, relation$Y9)
         ts(relation$Y1, relation$Y10)
         ts(relation$Y1, relation$Y11)
         #Y2~11
         ts(relation$Y2, relation$Y3)
         ts(relation$Y2, relation$Y4)
         ts(relation$Y2, relation$Y5)
         ts(relation$Y2, relation$Y6)
         ts(relation$Y2, relation$Y7)
         ts(relation$Y2, relation$Y8)
         ts(relation$Y2, relation$Y9)
         ts(relation$Y2, relation$Y10)
         ts(relation$Y2, relation$Y11)
         #Y3~11
         ts(relation$Y3, relation$Y4)
         ts(relation$Y3, relation$Y5)
         ts(relation$Y3, relation$Y6)
         ts(relation$Y3, relation$Y7)
         ts(relation$Y3, relation$Y8)
         ts(relation$Y3, relation$Y9)
         ts(relation$Y3, relation$Y10)
         ts(relation$Y3, relation$Y11)
         #Y4~11
         ts(relation$Y4, relation$Y5)
         ts(relation$Y4, relation$Y6)
         ts(relation$Y4, relation$Y7)
         ts(relation$Y4, relation$Y8)
         ts(relation$Y4, relation$Y9)
         ts(relation$Y4, relation$Y10)
         ts(relation$Y4, relation$Y11)
         #Y5~11
         ts(relation$Y5, relation$Y6)
         ts(relation$Y5, relation$Y7)
         ts(relation$Y5, relation$Y8)
         ts(relation$Y5, relation$Y9)
         ts(relation$Y5, relation$Y10)
         ts(relation$Y5, relation$Y11)
         #Y6~11
         ts(relation$Y6, relation$Y7)
         ts(relation$Y6, relation$Y8)
         ts(relation$Y6, relation$Y9)
         ts(relation$Y6, relation$Y10)
         ts(relation$Y6, relation$Y11)
         #Y7~11
         ts(relation$Y7, relation$Y8)
         ts(relation$Y7, relation$Y9)
         ts(relation$Y7, relation$Y10)
         ts(relation$Y7, relation$Y11)
         #Y8~11
         ts(relation$Y8, relation$Y9)
         ts(relation$Y8, relation$Y10)
         ts(relation$Y8, relation$Y11)
         #Y9~11
         ts(relation$Y9, relation$Y10)
         ts(relation$Y9, relation$Y11)
         #Y10~11
         ts(relation$Y10, relation$Y11)
         [[1]]
         [[1]][[1]]
         [[1]][[1]]$Granger
                 Granger causality HO: y1 do not Granger-cause y2
         data: VAR object model
         F-Test = 2.6256, df1 = 2, df2 = 40, p-value = 0.08484
         [[1]][[1]]$Instant
                 HO: No instantaneous causality between: y1 and y2
         data: VAR object model
         Chi-squared = 7.1644, df = 1, p-value = 0.007436
         ГГ177 ГГ077
```

パネルVARモデルによる動的直接相関係数の導出

- 1. パネルデータの生成
- 2. 目視確認
- 3. 要約統計量を求める。
- 4. モデル形成
- 5. 詳細結果の目視確認
- 6. 動的直接相関係数の抽出
- 7. パネルVARモデルの標準誤差の抽出

In [12]: #パネルデータの生成 index <- adjusted[1:2] %>% apply(2

index <- adjusted[, 1:2] %>% apply(2, as.character) %>% as.data.frame panel <- bind_cols(index, relation) %>% pdata.frame(index = c("id", "time")) #目視確認

panel

A pdata.frame: 28 × 13

	id	time	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0-1987	0	1987	0.046607215	-0.0002075447	0.0	0.14329221	0.1707077926	-0.011862535	0.000000000	0.07410797	0.142432217	0.0000000000	0.0
0-1988	0	1988	0.054685886	0.0659405832	0.0	-0.27232247	0.1875249212	-0.036456042	0.006960585	0.00000000	0.328497543	0.0000000000	0.0
0-1989	0	1989	0.034524371	0.0250528768	0.0	0.19834206	0.0005498574	-0.042990185	0.022858138	-0.11332869	0.232060612	0.0000000000	0.0
0-1990	0	1990	0.038998803	0.0696837388	0.0	0.21128783	0.0213535400	-0.050341755	0.030052345	-0.08338161	-0.519724354	-0.0870144800	0.0
0-1991	0	1991	0.014394272	0.0108689107	-0.5	-0.15698568	0.1077701561	-0.016438726	0.033426293	-0.09097178	-0.070368106	0.0000000000	0.0
0-1992	0	1992	0.008714722	0.0088388117	0.5	-0.03704127	0.0555237206	0.019152432	0.015781495	0.00000000	-0.321780945	-0.2076436613	-0.5
0-1993	0	1993	0.010772766	0.0018240989	0.0	-0.15539469	0.1027744168	0.078164773	0.013478690	0.04652002	0.015192965	0.0000000000	0.5
0-1994	0	1994	0.034959424	0.0388164337	0.0	-0.02806837	0.0898898827	0.029631798	0.006160184	0.12783337	0.118167806	0.0000000000	-0.5
0-1995	0	1995	0.031159255	0.0255087629	-0.5	-0.01487016	0.0913039761	0.059049029	-0.001024066	0.14842001	0.008353503	0.0000000000	0.5
0-1996	0	1996	0.015857401	0.0017371782	0.5	0.19217123	-0.1259988187	0.060084811	0.001024066	0.09844007	-0.026863202	0.0868586003	0.0
0-1997	0	1997	0.007429008	-0.0068456259	0.0	-0.01512484	-0.0896434279	0.044357853	0.018256085	0.06062462	-0.256382442	0.0000000000	-0.5
0-1998	0	1998	-0.013351743	-0.0308981841	0.0	-0.33871590	-0.0915824352	0.147635999	0.006012042	0.00000000	-0.103444766	0.0000000000	0.5
0-1999	0	1999	0.024478952	0.0199589422	-0.5	0.34363431	0.1051333650	0.123904093	-0.003001503	0.18721154	0.316258978	0.0000000000	0.0
0-2000	0	2000	0.010736322	0.0051230969	0.5	0.45901574	0.0628945041	0.090286847	-0.007038742	0.13657554	-0.310307365	0.0195966413	0.0
0-2001	0	2001	-0.012860357	-0.0130577529	-0.5	-0.10950287	-0.1242445153	0.084129531	-0.007088637	0.00000000	-0.261116371	0.0000000000	0.0
0-2002	0	2002	0.014477595	0.0245535532	0.5	0.03522143	-0.0377330966	0.078820960	-0.009188426	0.06187540	-0.196926135	0.0000000000	0.0
0-2004	0	2004	0.013203009	-0.0004923290	-0.5	0.20097118	0.0890274800	0.082655722	0.000000000	-0.01869213	0.073310989	0.0000000000	0.0
0-2005	0	2005	-0.004301644	0.0087231997	0.5	0.31611580	-0.0094022430	0.044905504	-0.002059733	-0.12014431	0.341250985	0.2223047186	-0.5
0-2006	0	2006	0.002755722	-0.0097750164	0.0	0.16065287	-0.0484778413	0.002989539	0.002059733	-0.06595797	0.063789851	0.0000000000	0.5
0-2008	0	2008	-0.072976716	-0.0535457027	0.5	0.23562571	0.1064360454	0.049723435	0.014300550	-0.05001042	-0.561164644	0.0000000000	-0.5
0-2009	0	2009	-0.018964102	-0.0709880749	0.0	-0.38749772	0.0376846080	0.118611879	-0.014300550	0.02531781	0.188591810	-0.9112279213	0.5
0-2011	0	2011	-0.027443021	0.0337389524	0.0	0.17035756	0.0914819847	0.061593011	-0.002074690	0.00000000	-0.188344936	0.0000000000	0.5
0-2012	0	2012	-0.012998483	0.0571102968	0.0	0.01671820	0.0146305688	0.049632624	-0.001038961	-0.10318424	0.207581822	0.9044428289	-0.5
0-2013	0	2013	-0.007562957	-0.1167737613	0.0	-0.00462769	-0.1828865067	0.028365790	0.004149384	-0.06744128	0.445140215	0.0000000000	0.0
1-2003	1	2003	-0.009538389	0.0039633957	0.0	0.09713002	0.0843494517	0.075329719	-0.003081667	0.07696104	0.221828315	0.0170148206	0.0
1-2007	1	2007	-0.017173256	0.0245626200	-0.5	0.04150997	-0.0002502452	0.014815086	0.000000000	-0.07061757	-0.118048806	0.0000000000	0.0
1-2010	1	2010	0.042285657	0.0455904399	0.0	0.21075852	0.0715069360	0.054808236	-0.007227703	0.24294618	-0.023341656	0.0000000000	-0.5
1-2014	1	2014	-0.032698240	-0.0364946245	0.0	-0.06275503	-0.0603497264	0.019588603	0.026559273	-0.07232066	0.042192664	0.0002122224	0.5

In [13]: #要約統計量を求める。

panel %>% summary

```
Y1
                                          Y2
                                                             Y3
id
           time
0:24
      1987
            : 1
                  Min. :-0.072977
                                     Min. :-0.116774
                                                       Min. :-0.5
                  1st Qu. :-0.012895
                                     1st Qu. :-0.007578
1: 4
      1988
            : 1
                                                       1st Qu.: 0.0
                  Median : 0.009726
      1989
            : 1
                                     Median : 0.006923
                                                       Median : 0.0
                  Mean : 0.006292
      1990
            : 1
                                     Mean : 0.004733
                                                       Mean : 0.0
                                                       3rd Qu.: 0.0
      1991 : 1
                  3rd Qu.: 0.026149
                                     3rd Qu.: 0.025167
      1992 : 1
                  Max. : 0.054686
                                     Max. : 0.069684
                                                       Max. : 0.5
      (0ther):22
                       Y5
                                         Y6
                                                          Y7
     Υ4
Min. :−0.38750
                 Min. :-0. 18289
                                   Min. :-0.05034
                                                     Min. :−0. 014301
                 1st Qu. :-0. 04042
1st Qu. :-0. 04347
                                   1st Qu.: 0.01807
                                                     1st Qu. :-0.002306
Median : 0.03837
                 Median : 0.04660
                                   Median : 0.04968
                                                     Median : 0.000512
Mean : 0.05178
                 Mean : 0.02571
                                   Mean : 0. 04501
                                                     Mean : 0.005141
3rd Qu.: 0.19900
                 3rd Qu.: 0.09135
                                   3rd Qu.: 0.07833
                                                     3rd Qu.: 0.013684
Max. : 0.45902
                 Max. : 0. 18752
                                   Max. : 0. 14764
                                                     Max. : 0.033426
     Y8
                       Υ9
                                         Y10
                                                           Y11
                 Min. :-0. 561165
Min. :-0. 12014
                                    Min. :-0.911228
                                                       Min. :-0.500
1st Qu. :-0.06824
                 1st Qu. :-0. 190490
                                    1st Qu.: 0.000000
                                                       1st Qu. :-0.125
Median : 0.00000
                 Median : 0.011773
                                    Median : 0.000000
                                                       Median : 0.000
Mean : 0.01539
                 Mean :-0.007613
                                    Mean : 0.001591
                                                       Mean : 0.000
3rd Qu.: 0.07482
                 3rd Qu.: 0.193339
                                    3rd Qu.: 0.000000
                                                       3rd Qu.: 0.125
Max. : 0. 24295
                 Max. : 0.445140
                                    Max. : 0.904443
                                                       Max. : 0.500
```

```
In [14]: |#モデルの形成
         model <- pvargmm(dependent_vars = c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6", "Y7", "Y8", "Y9", "Y10", "Y11"),
                         lags = 1,
                         transformation = c("fod"),
                         data = panel
                         panel_identifier = c("id", "time"),
                         steps = c("twostep"),
                         system instruments = F.
                         max_instr_dependent_vars = 2,
                         min_instr_dependent_vars = 1L
         Warning message in pvargmm(dependent_vars = c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6", :
         "The matrix Lambda is singular, therefore the general inverse is used"
          One-step estimation: Matrix inversion
         Warning message in pvargmm(dependent_vars = c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6", :
         "The matrix D_e is singular, therefore the general inverse is used"
         Warning message in sqrt(diag(var_first_step)):
         "計算結果が NaN になりました
         Windmeijer - Sigmund robust se: [========] Iteration 2 of 2
```

In [15]: #詳細結果の目視確認

model %>% summary

Dynamic Panel VAR estimation, two-step GMM

Transformation: Forward orthogonal deviations Group variable: id Time variable: time Number of observations = 16

max = 16

Number of groups = 2 Obs per group: min = 0 avg = 8

Number of instruments = 6171

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Υ9 Y10 Y11 lag1_Y1 -0. 0028 -0.00620. 2220 -0. 0480 -0.0713 0.0020 -0.00320.0356 -0. 2040 0.0030 0.0694 (0.0029)(0.0064)(0.2297)(0.0497)(0.0737)(0.0021)(0.0033)(0.0368)(0.2110)(0.0031)(0.0718)-0.00500.0665 -0. 0711 0.0002 0.3901 lag1_Y2 0. 0275 0.0470 0. 0084 0.0002 0. 0185 -0.0490(0.0688)(0.0486)(0.0003)(0.0052)(0.0285)(0.0736)(0.0086)(0.0002)(0.0191)(0.4036)(0.0506)-0. 1693 -0.09961. 1327 0. 3829 -0.90920.0764 0. 0159 -0.6283-0. 1379 1. 2018 -3.0932lag1_Y3 (0.9407)(0.1752)(0.1031)(1.1719)(0.3962)(0.0791)(0.0164)(0.6501)(0.1427)(1.2434)(3.2002)lag1_Y4 -0. 1018 -0.20310. 1416 0. 4216 -0.78540.0740 -0.0072-0. 3813 -0. 7137 -1.1339-0. 3781 (0.1053)(0.2101)(0.1465)(0.4362)(0.8126)(0.0765)(0.0075)(0.3945)(0.7384)(1.1731)(0.3911)-0.0015 0.0306 -0. 2511 lag1_Y5 0.0010 -0. 0201 0. 2714 0. 1218 -0. 1988 0. 0155 -0. 1497 0.3809 (0.1548)(0.0010)(0.0208)(0.2808)(0.1260)(0.2057)(0.0160)(0.0016)(0.0316)(0.2598)(0.3941)lag1_Y6 0. 0185 0.0151 -0. 4520 0.0361 0. 1133 -0.0066-0.00190.0210 -0.0355-0. 2796 0.3409 (0.0156)(0.0191)(0.4676)(0.0373)(0.1173)(0.0068)(0.0019)(0.0218)(0.0367)(0.2893)(0.3527)1ag1_Y7 -0. 0003 0.0018 0. 0511 -0. 0136 0. 0153 -0. 0011 0. 0011 -0.0023 0. 0392 0. 0517 -0. 0450 (0.0012)(0.0003)(0.0019)(0.0528)(0.0141)(0.0158)(0.0011)(0.0024)(0.0405)(0.0535)(0.0465)0.0099 -0.04550. 1571 0. 3401 -0. 2181 -0.0049 -0. 0012 0.0360 -0.8514 -0.9308lag1_Y8 0.3010 (0.0103)(0.0471)(0.1626)(0.3519)(0.2257)(0.0051)(0.0012)(0.0372)(0.8809)(0.9630)(0.3115)lag1_Y9 0.0137 -0.01720. 1555 -1.09440. 2983 -0. 0133 -0. 0235 0. 2952 1. 5217 0. 7877 0. 7928 (0.0142)(0.0178)(0.1608)(1.1323)(0.3086)(0.0138)(0.0243)(0.3054)(1.5743)(0.8150)(0.8203)lag1_Y10 -0.0772 0. 1379 -1. 5153 -0. 4357 0. 3174 0.0684 0.0029 -0.4685 1. 6202 2. 3678 -1. 2263 (1.5677)(0.3284)(0.0799)(0.1427)(0.4508)(0.0708)(0.0030)(0.4847)(1. 6762) (2.4498)(1.2688)-0. 2774 -0.0540 -0. 1086 -0. 1045 -0. 0170 0. 3311 -0.9623-1.6206lag1_Y11 0.0971 0. 0105 0. 6966 (0.2870)(0.1124)(0.0176)(1. 6767) (0.0108)(0.0559)(0.1081)(0.3425)(0.9956)(0.7207)(0.1004)

*** p < 0.001; ** p < 0.01; * p < 0.05

Instruments for equation
Standard

GMM-type
Dependent vars: L(1, 2)
Collapse = FALSE

Hansen test of overid. restrictions: chi2(6050) = 0 Prob > chi2 = 1 (Robust, but weakened by many instruments.)

In [16]: #動的直接相関係数の抽出

coefficient <- model %>%
 coef %>%
 apply(2, as.numeric) %>%
 as.data.frame

A data.frame: 11 × 11

coefficient

fod_lag1_Y1	fod_lag1_Y2	fod_lag1_Y3	fod_lag1_Y4	fod_lag1_Y5	fod_lag1_Y6	fod_lag1_Y7	fod_lag1_Y8	fod_lag1_Y9	fod_lag1_Y10	fod_lag1_Y11
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-0.002755249	-0.0050207787	-0.16931255	-0.101768112	0.0009635997	0.018466039	-0.0002774653	0.009914154	0.01369006	-0.077207792	0.09705778
-0.006195090	0.0275329642	-0.09964652	-0.203052304	-0.0201305406	0.015078743	0.0018038768	-0.045506299	-0.01724720	0.137895850	0.01045967
0.222002529	0.0665407711	1.13272639	0.141606922	0.2713863935	-0.451975130	0.0510547863	0.157144539	0.15545010	-1.515287824	-0.27741172
-0.048013232	-0.0711160547	0.38291057	0.421612797	0.1218261696	0.036098516	-0.0135971765	0.340138699	-1.09443628	-0.435713156	-0.05399573
-0.071277637	0.0469653214	-0.90920739	-0.785444930	-0.1987902325	0.113329527	0.0152993784	-0.218143602	0.29830157	0.317430644	-0.10862941
0.002014497	0.0083530692	0.07643506	0.073981297	0.0154727523	-0.006572534	-0.0010711035	-0.004921998	-0.01333021	0.068395469	-0.10447770
-0.003231988	0.0002458802	0.01588686	-0.007247741	-0.0015249092	-0.001877827	0.0011170139	-0.001197610	-0.02346839	0.002867628	-0.01703419
0.035585016	0.0001843510	-0.62833666	-0.381344959	0.0305652783	0.021040742	-0.0023231949	0.035958589	0.29516954	-0.468530403	0.33108238
-0.203964391	0.0184871855	-0.13789203	-0.713690182	-0.2511128046	-0.035476207	0.0391586341	-0.851447218	1.52166575	1.620152172	-0.96231174
0.002957264	0.3900753633	1.20176931	-1.133852030	-0.1496687682	-0.279649802	0.0517230279	-0.930755480	0.78773599	2.367832667	-1.62063087
0.069353903	-0.0489548229	-3.09319628	-0.378062190	0.3809335545	0.340858601	-0.0449922690	0.301033813	0.79282291	-1.226328617	0.69663788

fod_lag1_Y4

Min. :−1.13385

1st Qu. :-0.54752

Median :-0.20305

Mean :-0. 27884

3rd Qu.: 0.03337

Max. : 0.42161

In [17]: #要約統計量を求める。

coefficient %>%
 summary

3rd Qu.: 0.22967 3rd Qu.: 0.0192711 3rd Qu.: 0.037249 Max. : 0. 2220025 Max. : 0.390075 Max. : 1.20177 fod_lag1_Y5 fod_lag1_Y6 fod_lag1_Y7 Min. :-0. 2511128 Min. :-0.45198 Min. :-0. 044992 1st Qu. :-0. 0848997 1st Qu. :-0. 02102 1st Qu. :-0.001697 Median : 0.01508 Median : 0.0009636 Median : 0.001117 Mean : 0.0181746 Mean :-0. 02097 Mean : 0.008900 3rd Qu.: 0.0761957 3rd Qu.: 0.02857 3rd Qu.: 0.027229

Max. : 0.34086 Max. : 0.3809336 Max. : 0. 051723 fod_lag1_Y8 fod_lag1_Y10 fod_lag1_Y9 fod_lag1_Y11 Min. :−1.09444 Min. :-1.515288 Min. :-0. 930755 Min. :−1.62063 1st Qu.:-0.131825 1st Qu. :-0.01529 1st Qu. :-0. 452122 1st Qu. :-0. 19302 Median :-0.001198 Median : 0.15545 Median : 0.002868 Median :-0.05400 Mean :-0. 109798 Mean : 0. 24694 Mean : 0.071955 Mean :-0. 18266 3rd Qu.: 0.05376 3rd Qu.: 0.096552 3rd Qu.: 0.54302 3rd Qu.: 0.227663 Max. : 0. 340139 Max. : 1. 52167 Max. : 2. 367833 Max. : 0.69664

In [18]: #モデルの標準誤差

#モナルの標準誤差 SE <- model %>%

se %>%
apply(2, as.numeric) %>%

as.data.frame

SE

A data.frame: 11 × 11

V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.002850591	0.0051945161	0.1751714	0.10528966	0.0009969438	0.019105032	0.0002870666	0.010257220	0.01416379	0.079879466	0.10041634
0.006409463	0.0284857061	0.1030947	0.21007866	0.0208271314	0.015600523	0.0018662976	0.047080984	0.01784402	0.142667554	0.01082161
0.229684634	0.0688433269	1.1719229	0.14650704	0.2807773622	0.467615134	0.0528214700	0.162582319	0.16082925	1.567722364	0.28701119
0.049674667	0.0735769322	0.3961607	0.43620215	0.1260418038	0.037347657	0.0140676889	0.351908751	1.13230781	0.450790436	0.05586418
0.073744106	0.0485904945	0.9406693	0.81262422	0.2056691068	0.117251146	0.0158287932	0.225692174	0.30862390	0.328414913	0.11238839
0.002084206	0.0086421162	0.0790800	0.07654132	0.0160081665	0.006799968	0.0011081676	0.005092317	0.01379148	0.070762204	0.10809301
0.003343827	0.0002543886	0.0164366	0.00749854	0.0015776767	0.001942807	0.0011556667	0.001239051	0.02428048	0.002966858	0.01762364
0.036816389	0.0001907302	0.6500794	0.39454090	0.0316229495	0.021768829	0.0024035860	0.037202888	0.30538349	0.484743280	0.34253905
0.211022310	0.0191269102	0.1426636	0.73838649	0.2598022325	0.036703814	0.0405136671	0.880910427	1.57432099	1.676215404	0.99561127
0.003059596	0.4035734076	1.2433549	1.17308749	0.1548478588	0.289326715	0.0535128352	0.962963048	0.81499456	2.449768398	1.67671066
0.071753804	0.0506488401	3.2002323	0.39114453	0.3941152585	0.352653564	0.0465491672	0.311450692	0.82025750	1.268764104	0.72074411

```
In [19]: #要約統計量を求める。
         SE %>%
          summary
               ۷1
                                 ٧2
                                                    ٧3
                                                                    ٧4
         Min. : 0. 002084
                           Min. : 0.0001907
                                             Min. : 0.01644
                                                               Min. : 0.007498
         1st Qu.: 0.003202
                           1st Qu.: 0.0069183
                                             1st Qu. : 0. 12288
                                                               1st Qu.: 0.125898
         Median : 0. 036816
                           Median : 0.0284857
                                             Median ∶0.39616
                                                               Median : 0.391145
         Mean : 0. 062768
                           Mean : 0. 0642843
                                             Mean : 0. 73808
                                                               Mean : 0. 408355
         3rd Qu. : 0. 072749
                           3rd Qu.: 0.0597461
                                             3rd Qu. :1.05630
                                                               3rd Qu.: 0.587294
              :0. 229685
                                 :0. 4035734
                                                   :3. 20023
                                                               Max. :1. 173088
                           Max.
                                             Max.
               ٧5
                                  ۷6
                                                    ٧7
                                                                      ٧8
                            Min. : 0.001943
         Min. : 0. 0009969
                                                   :0.0002871
                                                                Min. : 0. 001239
                                             Min.
          1st Qu. : 0. 0184176
                            1st Qu. : 0. 017353
                                             1st Qu. : 0. 0015110
                                                                1st Qu. : 0. 023730
         Median : 0. 1260418
                            Median :0.036704
                                             Median : 0. 0140677
                                                                 Median : 0. 162582
         Mean : 0. 1356624
                            Mean : 0. 124192
                                             Mean : 0. 0209195
                                                                 Mean : 0. 272398
                                                                3rd Qu.: 0.331680
         3rd Qu. : 0. 2327357
                            3rd Qu. 0. 203289
                                              3rd Qu. : 0. 0435314
              :0.3941153
                            Max. : 0. 467615
                                                   :0. 0535128
                                             Max.
                                                                Max. : 0. 962963
               ۷9
                               V10
                                                V11
         Min. : 0.01379
                          Min. :0.002967
                                            Min. : 0. 01082
         1st Qu. : 0. 02106
                          1st Qu.: 0.111273
                                            1st Qu. :0.07814
         Median : 0.30538
                          Median : 0.450790
                                            Median : 0.11239
         Mean : 0. 47153
                          Mean : 0. 774791
                                            Mean : 0. 40253
         3rd Qu.: 0.81763
                          3rd Qu. : 1. 418243
                                            3rd Qu. ∶0. 53164
         Max. ∶1.57432
                          Max.
                                :2. 449768
                                           Max. ∶1.67671
         幾何ブラウン運動
          1. パラメータ設定
          2. 各列にシミュレートする。
          3. その確率ベクトルを横結合し、確率偏微分方程式を形成する。
          4. 結果の目視確認
         パラメータ設定
          1. 標準偏回帰係数
          2. ドリフト項
          3. ボラティリティ
          4. シミュレーションの設定
In [20]: #標準偏回帰係数
         SE_coefficient <- coefficient / SE %>%
          apply(2, as.numeric) %>%
          as. data. frame
         #ドリフト項
         mean_coefficient <- SE_coefficient %>%
          apply (2, mean) \%>\%
          as.data.frame
         #ボラティリティ
         volatility_coefficient <- SE_coefficient %>%
          apply(2, sigma) %>%
          as. data. frame
         #シミュレーションの設定
        N <- 2050 - 1987 %>% as numeric #標本数
         t0 <- 1987 %>% as. numeric #開始時(年)
        T <- 2050 %>% as.numeric #終了時(年)
         パラメータ抽出
          1. ドリフト項
          2. ボラティリティ
In [21]: #ドリフト項
         mean_Y1 <- mean_coefficient[1, ] %>% as.numeric
         mean_Y2 <- mean_coefficient[2, ] %>% as numeric
         mean_Y3 <- mean_coefficient[3, ] %>% as.numeric
         mean_Y4 <- mean_coefficient[4, ] %>% as.numeric
         mean_Y5 <- mean_coefficient[5, ] %>% as.numeric
         mean Y6 <- mean_coefficient[6, ] %>% as.numeric
         mean_Y7 <- mean_coefficient[7, ] %>% as.numeric
         mean_Y8 <- mean_coefficient[8, ] %>% as.numeric
         mean_Y9 <- mean_coefficient[9, ] %>% as.numeric
         mean_Y10 <- mean_coefficient[10, ] %>% as.numeric
         mean_Y11 <- mean_coefficient[11, ] %>% as. numeric
         #ボラティリティ
         volatility_Y1 <- volatility_coefficient[1, ] %>% as. numeric
         volatility_Y2 <- volatility_coefficient[2, ] %>% as.numeric
         volatility_Y3 <- volatility_coefficient[3, ] %>% as.numeric
         volatility_Y4 <- volatility_coefficient[4, ] %>% as.numeric
         volatility_Y5 <- volatility_coefficient[5, ] %>% as.numeric
         volatility_Y6 <- volatility_coefficient[6, ] %>% as.numeric
```

幾何ブラウン運動の実行

• Y1~11について時間微分係数の期待値を求める。

volatility_Y7 <- volatility_coefficient[7,] %>% as.numeric
volatility_Y8 <- volatility_coefficient[8,] %>% as.numeric
volatility_Y9 <- volatility_coefficient[9,] %>% as.numeric
volatility_Y10 <- volatility_coefficient[10,] %>% as.numeric
volatility_Y11 <- volatility_coefficient[11,] %>% as.numeric

各列について実行する。

```
In [22]: #時間微分係数の期待値を求める。
SDE_Y1 <- GBM(N = N, t0 = t0, theta = mean_Y1, Sigma = volatility_Y1, T = T) #Y1
SDE_Y2 <- GBM(N = N, t0 = t0, theta = mean_Y2, Sigma = volatility_Y2, T = T) #Y2
SDE_Y3 <- GBM(N = N, t0 = t0, theta = mean_Y3, Sigma = volatility_Y3, T = T) #Y3
SDE_Y4 <- GBM(N = N, t0 = t0, theta = mean_Y4, Sigma = volatility_Y4, T = T) #Y4
SDE_Y5 <- GBM(N = N, t0 = t0, theta = mean_Y5, Sigma = volatility_Y5, T = T) #Y5
SDE_Y6 <- GBM(N = N, t0 = t0, theta = mean_Y6, Sigma = volatility_Y7, T = T) #Y6
SDE_Y7 <- GBM(N = N, t0 = t0, theta = mean_Y7, Sigma = volatility_Y8, T = T) #Y8
SDE_Y8 <- GBM(N = N, t0 = t0, theta = mean_Y8, Sigma = volatility_Y8, T = T) #Y8
SDE_Y9 <- GBM(N = N, t0 = t0, theta = mean_Y9, Sigma = volatility_Y9, T = T) #Y9
SDE_Y10 <- GBM(N = N, t0 = t0, theta = mean_Y10, Sigma = volatility_Y10, T = T) #Y10
SDE_Y11 <- GBM(N = N, t0 = t0, theta = mean_Y11, Sigma = volatility_Y11, T = T) #Y11
```

確率偏微分方程式の形成

- 1. 各列に実行した幾何ブラウン運動の結果を横結合する。
- 2. 結果の目視確認を行う。
- 3. 要約統計量を求める。

```
In [23]: #横結合
        SPDE <- bind_cols(
            SDE_Y1
            , SDE_Y2
           , SDE_Y3
           , SDE_Y4
           , SDE_Y5
           , SDE_Y6
           , SDE_Y7
           , SDE_Y8
, SDE_Y9
, SDE_Y10
       , SDE_Y11
          apply(2, as.numeric) %>%
          as.data.frame
         #列名変更
        colnames(SPDE) <- colnames(relation)
        #目視確認
        SPDE
        New names:
```

* NA -> ...1 * NA -> ...2 * NA -> ...3

* NA -> ...4 * NA -> ...5

* ...

A data.frame: 64 × 11

Y1	Y2	Y3	Y 4	Y5	Y6	Y7	Y8	Y9	Y10	Y11
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	1.214194e+142	0	0	2.787757e-295	2.787757e-295	2.787757e-295	0	6.826907e-96	2.787757e-295	0
0	4.133972e+141	0	0	3.266796e-296	5.939844e-295	3.088589e-295	0	8.474909e-96	3.020410e-296	0
0	5.680518e+141	0	0	1.924925e-296	2.333422e-295	8.164215e-296	0	3.768269e-96	3.332225e-296	0
0	9.068536e+141	0	0	1.911499e-296	4.138334e-296	8.309882e-296	0	1.216803e-96	2.045401e-296	0
0	6.491479e+141	0	0	9.152112e-297	1.182610e-296	6.051013e-296	0	2.735550e-96	1.275311e-296	0
0	8.626633e+141	0	0	2.746953e-297	4.074779e-297	1.853794e-296	0	3.178792e-96	2.159099e-296	0
0	2.907390e+141	0	0	2.915014e-297	1.044717e-297	1.270394e-297	0	1.558161e-96	1.172482e-296	0
0	5.689126e+141	0	0	1.520802e-297	1.848659e-298	1.396565e-298	0	7.318166e-97	2.193733e-297	0
0	8.422197e+141	0	0	1.370119e-297	1.414571e-298	2.157131e-299	0	1.850876e-97	5.401755e-298	0
0	1.343433e+142	0	0	1.562422e-297	3.666734e-298	3.909599e-299	0	5.626103e-98	4.969202e-298	0
0	1.963395e+142	0	0	1.165156e-297	7.311918e-299	8.074072e-299	0	3.213482e-98	1.425646e-297	0
0	2.937836e+142	0	0	6.429528e-298	4.366383e-299	2.650212e-298	0	1.517392e-97	7.072424e-298	0
0	4.586697e+142	0	0	7.376481e-298	3.759845e-299	1.683173e-298	0	1.701511e-97	4.800539e-298	0
0	4.924456e+142	0	0	1.197895e-297	3.033579e-299	1.879733e-298	0	3.268478e-97	6.406467e-298	0
0	6.274031e+142	0	0	1.345781e-298	8.171912e-300	1.116355e-298	0	4.367118e-97	1.528197e-298	0
0	1.146464e+143	0	0	8.313259e-299	4.131371e-300	7.724724e-299	0	1.366006e-96	1.218856e-298	0
0	6.735473e+142	0	0	8.133384e-299	2.309601e-300	3.534577e-298	0	1.761566e-96	7.827204e-299	0
0	2.785127e+143	0	0	4.668681e-299	6.483988e-301	8.513687e-298	0	1.423775e-96	3.534569e-299	0
0	2.637355e+143	0	0	1.263130e-298	2.858944e-301	5.407387e-298	0	4.708019e-97	2.595134e-299	0
0	4.191093e+143	0	0	5.322464e-299	2.630013e-301	1.568923e-298	0	3.542974e-97	2.002842e-300	0
0	1.860761e+143	0	0	6.988724e-299	3.685076e-301	7.543013e-299	0	1.278071e-97	3.955502e-301	0
0	1.288428e+143	0	0	1.913657e-299	1.117852e-301	5.191190e-299	0	1.238308e-97	8.899072e-302	0
0	1.163756e+143	0	0	6.955880e-300	6.658581e-302	4.879327e-299	0	4.264457e-97	4.291062e-302	0
0	3.760048e+143	0	0	4.515025e-300	5.865524e-301	1.066848e-299	0	2.560566e-97	3.330340e-302	0
0	4.246543e+143	0	0	8.782374e-301	1.499278e-301	3.519326e-300	0	1.427364e-97	3.244767e-302	0
0	5.191312e+143	0	0	1.097417e-301	3.823971e-302	2.622649e-300	0	9.700909e-98	5.594532e-303	0
0	7.010992e+143	0	0	2.180184e-302	1.036853e-302	1.895580e-301	0	1.402514e-97	1.193157e-302	0
0	2.301503e+144	0	0	1.116130e-302	1.645363e-302	6.487082e-302	0	1.055203e-97	1.545247e-302	0
0	5.362575e+144	0	0	1.316369e-303	1.266600e-302	5.099889e-302	0	2.371404e-97	2.350550e-302	0
0	6.643682e+144	0	0	9.263435e-304	3.039875e-302	7.308491e-303	0	5.858961e-97	3.886445e-302	0
•••	•••								•••	
0	2.274851e+143	0	0	1.972459e-305	1.133251e-302	2.951669e-304	0	2.625420e-96	1.505918e-303	0
0	6.649106e+143	0	0	1.486527e-305	5.993107e-303	1.564650e-305	0	4.367747e-96	1.599935e-303	0
0	2.028560e+144	0	0	2.457973e-305	4.510684e-303	2.444390e-306	0	1.666321e-96	1.764040e-304	0
0	4.770517e+144	0	0	1.200340e-305	1.275104e-304	8.985445e-306	0	1.191096e-96	3.716448e-304	0
0	5.385745e+144	0	0	1.734870e-305	4.017162e-305	7.967693e-306	0	4.554666e-97	8.257543e-305	0
0	1.754441e+145	0	0	1.211206e-306	1.504632e-304	1.584009e-305	0	1.738000e-96	3.302062e-304	0
0	3.292832e+145	0	0	1.086977e-306	1.408875e-304	2.453603e-305	0	3.133587e-97	2.181093e-304	0
0	3.127287e+145	0	0	3.824501e-307	2.788557e-305	2.667214e-305	0	5.367967e-98	8.987112e-305	0
0	3.473154e+145	0	0	1.079168e-307	2.195801e-305	5.562284e-306	0	3.227509e-98	2.085755e-305	0
0	6.175739e+145	0	0	7.088563e-308	2.012136e-305	8.887277e-306	0	2.315584e-98	1.179048e-305	0
0	4.609363e+145	0	0	3.836282e-308	1.527368e-305	4.892176e-306	0	1.719304e-97	7.458071e-306	0
0	6.212359e+145	0	0	2.589835e-308	1.401808e-305	4.152540e-306	0	6.200939e-97	9.411740e-306	0
0	1.866404e+145	0	0	9.729905e-309	4.973264e-306	5.932756e-306	0	6.860489e-96	5.116610e-306	0
0	2.505258e+145	0	0	6.140306e-309	1.194196e-306	1.402225e-305	0	4.777367e-96	1.022420e-305	0
0	2.137613e+145	0	0	1.310548e-308	6.514859e-307	3.424565e-306	0	1.521874e-95	2.539981e-306	0
0	3.324482e+145	0	0	5.730077e-309	1.800392e-307	1.464333e-306	0	2.520386e-95	3.806488e-307	0
0	1.626421e+146	0	0	1.062747e-309	9.174795e-308	6.336254e-307	0	2.616591e-95	5.640131e-307	0
0	3.095471e+146	0	0	2.550817e-310	1.036256e-307	5.356706e-307	0	1.022733e-94	7.481744e-307	0
0	4.404557e+146	0	0	8.495617e-311	1.602704e-307	3.679543e-307	0	4.567477e-95	1.015604e-306	0

```
Y11
  Y1
                Y2
                       Y3
                              Y4
                                            Y5
                                                          Y6
                                                                        Y7
                                                                               Y8
                                                                                            Y9
                                                                                                         Y10
<dbl>
              <dbl>
                                                        <dbl>
                                                                            <dbl>
                                                                                                              <dbl>
                    <dbl>
                           <dbl>
                                          <dbl>
                                                                      <dbl>
                                                                                          <dbl>
                                                                                                        <dbl>
                               0 2.551335e-311 3.439900e-307 8.852829e-307
   0 3.590938e+146
                                                                                0 1.045618e-94 2.112730e-306
                                                                                                                  0
                        0
   0 1.083830e+146
                               0 1.592664e-311 1.375234e-307 1.611067e-307
                                                                                0 5.365368e-95 6.184044e-306
                                                                                                                  0
   0 1.907798e+146
                               0 7.536309e-312 8.978749e-308 1.147383e-307
                        0
                                                                                0 4.138386e-95 3.802603e-306
                                                                                                                  0
   0 2.550076e+146
                        0
                               0 5.595942e-312 1.901073e-307 1.181876e-307
                                                                                0 1.232250e-95 5.760028e-306
                                                                                                                  0
   0 6.326700e+146
                        0
                               0 2.566766e-312 2.925832e-307 6.208100e-308
                                                                                0 6.380427e-96 1.523416e-305
                                                                                                                  0
   0 1.106675e+147
                               0 2.470169e-313 8.488189e-308 1.909217e-308
                                                                                  3.346930e-96 8.550474e-306
                                                                                                                  0
                               0 8.057936e-314 3.067900e-308 6.372203e-308
   0 1.877841e+147
                                                                                0 6.507873e-96 1.648091e-305
                                                                                                                  0
                        0
                               0 9.802376e-314 4.871468e-309 6.185313e-308
   0 1.698578e+147
                                                                                0 6.874906e-96 9.943816e-306
                                                                                                                  0
   0 2.204589e+147
                               0 7.704980e-314 1.416572e-309 1.306769e-308
                                                                                0 4.367821e-95 1.731673e-304
                                                                                                                  0
                        0
                                                                                0 9.955506e-96 7.198074e-304
   0 2.747394e+147
                               0 7.747987e-314 4.572720e-310 1.238614e-308
                                                                                                                  0
   0 3.590484e+147
                               0 4.879711e-314 2.832750e-310 3.475210e-309
                                                                                                                  0
                        0
                                                                                0 3.208301e-96 5.130536e-304
```

In [24]: #要約統計量を求める。

```
SPDE %>%
summary
```

```
Y2
                                                                Y5
      Y1
                                       Y3
                                                    Y4
Min.
                   :2. 907e+141
                                        :0
                                                    : 0
       :0
            Min.
                                 Min.
                                              Min.
                                                          Min.
                                                                : 0.000e+00
1st Qu.:0
            1st Qu. :1.028e+143
                                 1st Qu.∶0
                                              1st Qu.:0
                                                          1st Qu.: 0.000e+00
            Median : 1. 565e+144
                                              Median :0
Median :0
                                 Median ∶0
                                                          Median : 0.000e+00
            Mean
                   ∶2. 517e+146
                                 Mean :0
                                              Mean
                                                          Mean : 5. 835e-297
Mean
      : 0
                                                    :0
            3rd Qu. :5. 001e+145
                                 3rd Qu.:0
                                                          3rd Qu.: 9.393e-299
3rd Qu.:0
                                              3rd Qu.:0
                   :3.590e+147
       : 0
            Max.
                                 Max.
                                        :0
                                              Max.
                                                     :0
                                                          Max.
                                                                 :2. 788e-295
Max.
      Y6
                           Y7
                                                 Y8
                                                             Υ9
                     Min. : 0.000e+00
                                                            :2.316e-98
      : 0.000e+00
                                          Min. :0
                                                      Min.
Min.
1st Qu.: 0.000e+00
                     1st Qu.: 0.000e+00
                                          1st Qu.∶0
                                                       1st Qu.: 1.818e-97
Median : 0.000e+00
                     Median : 0.000e+00
                                          Median :0
                                                       Median : 1. 204e-96
                                          Mean :0
Mean : 1. 821e-296
                     Mean : 1. 306e-296
                                                       Mean : 8. 902e-96
3rd Qu. : 2. 800e-300
                     3rd Qu. : 8. 846e-299
                                          3rd Qu.:0
                                                       3rd Qu. : 6. 412e-96
       :5.940e-295
                           :3.089e-295
                                                 :0
                     Max.
                                          Max.
                                                       Max.
                                                             ∶1. 046e−94
     Y10
                          Y11
      : 0.000e+00
                     Min.
                           :0
Min.
1st Qu.: 0.000e+00
                     1st Qu.:0
Median : 1.000e-302
                     Median :0
Mean : 6. 496e-297
                     Mean :0
3rd Qu. : 8. 918e-299
                     3rd Qu.:0
       :2. 788e-295
                     Max.
```

LSTM(Long Short Term Memory)

- 時系列予測の精度評価を行う。
- 時系列データ向けのDeepLearningである。

出力保存先の相対パス指定

```
In [25]: setwd("./1_output")
```

関数定義の実行

- 確率ベクトル毎に実行する。
- LSTM(Long Short Term Memory)による幾何ブラウン運動の精度評価
- 値が0以外の確率過程について精度評価を行う。
- グラフ描画も関数定義に含む。

```
In [26]: LSTM(SDE_Y2, 10)
          ggsave ("LSTM_Y2. jpg")
          LSTM(SDE_Y5, 10)
          ggsave ("LSTM_Y5. jpg")
          LSTM(SDE Y6. 10)
          ggsave ("LSTM_Y6. jpg")
          LSTM(SDE_Y7, 10)
          ggsave ("LSTM_Y7. jpg")
          LSTM(SDE_Y9, 10)
          ggsave ("LSTM_Y9. jpg")
          LSTM(SDE_Y10, 10)
          ggsave ("LSTM_Y10. jpg")
                            2000
                                   2010
                                           2020
                                                   2030
                                                           2040
                                                                   2050
                    1990
                                          Time
```

Saving 6.67 x 6.67 in image

結果.csvの出力

```
In [27]: fwrite(SPDE, "panel_VAR_SPDE_LSTM_model.csv")
```

- ··· - - - -

グラフ描画・出力

- 1. ローデータの多変量時系列プロット
- 2. 誤差項調整した多変量時系列プロット
- 3. 相関行列の可視化による多重共線性の目視確認

ローデータの多変量時系列プロット

```
In [28]: #各グラフの作成
       |fig_1 <- fig(raw_data, raw_data$Y1, "最終エネルギー消費量(EJ)", "統計値")
       |fig_2 <- fig(raw_data, raw_data$Y2, "温室効果ガス排出量(t-CO2換算)", "統計値")
       fig_3 <- fig(raw_data, raw_data$Y3,
                                        "原発事故・異常事象(有無)", "統計値")
       |fig_4 <- fig(raw_data, raw_data$Y4, "原油平均価格(実質US$/bbl)", "統計值")|
       |fig_5 <- fig(raw_data, raw_data$Y5,
                                       "実質GDP(US$/消費者物価指数: 2015年 = 1)", "統計値")
       |fig_6 <- fig(raw_data, raw_data$Y6, "GDP比国債残高(%)", "統計値")
       fig_7 <- fig(raw_data, raw_data$Y7,
                                       "年間平均消費者物価指数(2015年 = 100)", "統計值")
       |fig_8||<-|fig(raw_data, raw_data$Y8, "年間平均完全失業率(%)","統計值")
       |fig_9 <- fig(raw_data, raw_data$Y9,
                                       "日経平均株価終値(実質円)","統計值")
       |fig_10 <- fig(raw_data, raw_data$Y10, "自民党の衆院議席獲得率(%)", "統計値")
       |fig_11 <- fig(raw_data, raw_data$Y11, "気候変動対策に関する合意(有無)", "統計値")
       fig_12 <- fig(raw_data, raw_data$id, "エネルギー基本計画の策定・改正(有無)", "統計値")
        #一枚に集約して出力する。
        grid.arrange(fig_1, fig_2, fig_3, fig_4, fig_5, fig_6, fig_7, fig_8, fig_9, fig_10, fig_11, fig_12)
        ggsave("Multivariate_Time_Series_Plot_raw_data.jpg")
```

Don't know how to automatically pick scale for object of type integer64. Defaulting to continuous.

Saving 6.67 x 6.67 in image

誤差項調整した多変量時系列プロット

In [29]: | #各グラフの作成 |fig_1 <- fig(panel, panel\$Y1, "最終エネルギー消費量(EJ)", "対数差分系列") |fig_2 <- fig(panel, panel\$Y2, "温室効果ガス排出量(t-CO2換算)", "対数差分系列") |fig_3 <- fig(panel, panel\$Y3, "原発事故・異常事象(有無)", "対数差分プロビット写像") |fig_4 <- fig(panel, panel\$Y4, "原油平均価格(実質US\$/bbl)", "対数差分系列") |fig_5||<-|fig(panel, panel\$Y5, "実質GDP(US\$/消費者物価指数: 2015年 = 1)", "対数差分系列") fig_6 <- fig(panel, panel\$Y6, "GDP比国債残高(%)", "対数差分系列") $fig_7 \leftarrow fig(panel, panel\$Y7,$ "年間平均消費者物価指数(2015年 = 100)","対数差分系列") ″年間平均完全失業率(%)″, ″対数差分系列″) fig_8 <- fig(panel, panel\$Y8, |fig_9||<-|fig(panel, panel\$Y9, "日経平均株価終値(実質円)", "対数差分系列") |fig_10 <- fig(panel, panel\$Y10, "自民党の衆院議席獲得率(%)", "対数差分系列") |fig_11 <- fig(panel, panel\$Y11, "気候変動対策に関する合意(有無)", "対数差分プロビット写像") fig_12 <- fig(panel, panel\$id, "エネルギー基本計画の策定・改正(有無)", "対数差分系列") #一枚に集約して出力する。 grid.arrange(fig_1, fig_2, fig_3, fig_4, fig_5, fig_6, fig_7, fig_8, fig_9, fig_10, fig_11, fig_12) ggsave ("Multivariate_Time_Series_Plot_adjusted.jpg") geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? Saving 6.67 x 6.67 in image geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic? 最終エネルギー消費量(E、 温室効果ガス排出量(t-C 🎨 原発事故·異常事象(有無 原油平均価格(実質US\$ 実質GDP(US\$/消費者物

相関行列の可視化による多重共線性の目視確認

Saving 6.67 x 6.67 in image

geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

幾何ブラウン運動の多変量時系列プロット

```
In [31]: #classをtsからdata.frameに変換し、グラフの規格化を図る。
        plot_SDE_Y1 <- SDE_Y1 %>% ts_df
        plot_SDE_Y2 <- SDE_Y2 %>% ts_df
        plot_SDE_Y3 <- SDE_Y3 %>% ts_df
        plot_SDE_Y4 <- SDE_Y4 %>% ts_df
        plot_SDE_Y5 <- SDE_Y5 %>% ts_df
        plot_SDE_Y6 <- SDE_Y6 %>% ts_df
        plot_SDE_Y7 <- SDE_Y7 %>% ts_df
        plot_SDE_Y8 <- SDE_Y8 %>% ts_df
        plot_SDE_Y9 <- SDE_Y9 %>% ts_df
        plot_SDE_Y10 <- SDE_Y10 %>% ts_df
        plot_SDE_Y11 <- SDE_Y11 %>% ts_df
        #各グラフの作成
                                                "最終エネルギー消費量(EJ)", "時間微分係数の期待値")
       fig_1 \leftarrow fig(plot\_SDE\_Y1, plot\_SDE\_Y1$value,
                                                ″温室効果ガス排出量(t-CO2換算)″, ″時間微分係数の期待値″)
       fig_2 <- fig(plot_SDE_Y2, plot_SDE_Y2$value,
       fig_3 <- fig(plot_SDE_Y3, plot_SDE_Y3$value,
                                                "原発事故・異常事象(有無)", "時間微分係数の期待値")
       "原油平均価格(実質US$/bbl)","時間微分係数の期待値")
       fig_5 < -fig(plot_SDE_Y5, plot_SDE_Y5$value,
                                                "実質GDP(US$/消費者物価指数: 2015年 = 1)","時間微分係数の期待値")
                                               "GDP比国債残高(%)","時間微分係数の期待値")
       fig_6 <- fig(plot_SDE_Y6, plot_SDE_Y6$ value,
       fig_7 <- fig(plot_SDE_Y7, plot_SDE_Y7$value,
                                               "年間平均消費者物価指数(2015年 = 100)","時間微分係数の期待値")
       fig_8 <- fig(plot_SDE_Y8, plot_SDE_Y8$ value,
                                               "年間平均完全失業率(%)","時間微分係数の期待値")
       fig_9 \leftarrow fig(plot_SDE_Y9, plot_SDE_Y9\$value,
                                               "日経平均株価終値(実質円)","時間微分係数の期待値")
                                               "自民党の衆院議席獲得率(%)","時間微分係数の期待値")
       fig_10 <- fig(plot_SDE_Y10, plot_SDE_Y10$ value,
       fig_11 <- fig(plot_SDE_Y11, plot_SDE_Y11$value,
                                               "気候変動対策に関する合意(有無)","時間微分係数の期待値")
        #一枚に集約して出力する。
        grid.arrange(fig_1, fig_2, fig_3, fig_4, fig_5, fig_6, fig_7, fig_8, fig_9, fig_10, fig_11)
        ggsave("Multivariate_Time_Series_Plot_GBM.jpg")
```

Saving 6.67 x 6.67 in image

