Data Science

Anomalieerkennung

Künstliche Intelligenz

Produktionsüberwachung

Machine Learning

Predictive Maintenance

Data Warehousing

Data Science

Der Weg vom Sensor in die Cloud bis hin zur Endanwendung

Data Science by esentri

- O1 Data Science Zielsetzungen als Anlagenbetreiber vs. Anlagenhersteller
- O2 Vom Sensor bis zur Endanwendung
 - Wie gelangen die Daten vom Sensor zur Endanwendung?
 - Welche Prozesse ereignen sich in der Cloud?
 - An welcher Stelle findet Data
 Science statt?
- 04 Beispiel Use Case KSE
- O5 Ausblick: Data Science in der Compoundiertechnik

DATA SCIENCE ZIELSETZUNGEN

Gegenüberstellung Anlagenbetreiber vs. Anlagenhersteller

	ANLAGENBETREIBER -> PRODUKTIONSDATEN	ANLAGENHERSTELLER -> PRODUKTDATEN
Art der Daten	Sämtliche Datenquellen entlang der eigenen Produktionslinie (Schnittstellen von Maschinen, angebrachte Sensorik, SCADA,) Viele unterschiedliche Schnittstellen (take what you get)	Datenquellen der Anlage/Maschine (Logs der Steuerung, verbaute Sensorik, Wartungshistorie,) Einheitliche Schnittstelle von vielen identischen/ähnlichen Anlagen
Relevanz von Data Science	 Je stärker die Kopplung der Produktionsschritte bzw. höher die Kosten bei Fehlproduktion desto relevanter 	Je größer der Anteil der Anlage an der Gesamtproduktion desto relevanter
Zielsetzungen	 Produktivität / Durchsatz steigern (OEE, Downtime,) Kostenspielige Ausfälle / Fehlproduktionen vermeiden Datengetriebene Entscheidungen ermöglichen 	 Zusätzliches Verkaufsargument ggü. dem Wettbewerber (Der Kunde kann die Daten einfach über eine Schnittstelle auslesen) Erkenntnisse aus der Endanwendung für die eigene Produktentwicklung verfügbar machen Neue Geschäftsmodelle erschließen (Monitoring, Wartung, "as a

Service")

VOM SENSOR BIS ZUR ENDANWENDUNG

Wie gelangen die Daten vom Sensor zur Endandwendung?

esentri

VOM SENSOR BIS ZUR ENDANWENDUNG

Gateway - MQTT - Cloud Endersit

Welche Prozesse ereignen sich in der Cloud?

Anlagenbetreiber: Kann das nicht mein SCADA / MES System?

VOM SENSOR BIS ZUR ENDANWENDUNG

Gateway Fordersit

An welcher Stelle findet Data Science statt?

Anlagenbetreiber: Kann das nicht mein SCADA / MES System?

DATA SCIENCE BEISPIEL USE CASE

Anomalieerkennung bei der KSB

- Algorithmus, der im Zeitverlauf das typische Schwingungsverhalten für jede Pumpe individuell erlernt und darauf aufbauend statistische Schwingungsgrenzwerte berechnet.
- Wird der Grenzwert von der tatsächlich gemessenen Schwingung überschritten, erhält der Endkunde in Echtzeit eine Benachrichtigung.
- Dadurch können Anomalien frühzeitig erkannt und Ausfälle vermieden werden.

AUSBLICK: DATA SCIENCE IN DER COMPOUNDIERTECHNIK

Welche Data Science use cases ergeben sich in der Compoundiertechnik?

Klassische Software

Machine Learning / Data Science

Maschinen-/Anlagenhersteller

- MUSS: Schnittstelle um Rezepturdaten, Sensordaten,
 Qualitätsdaten einfach & effizient zu extrahieren
- STRATEGISCH: Anomalieerkennung / Predictive Maintenance z.B. beim Extruder

Anlagenbetreiber

- MUSS: Datengetriebene Entscheidungen ermöglichen. Z.B.
 Systematische Analyse von Rezepturen mithilfe von
 Machine Learning
- KOSTEN/NUTZEN: Anomalieerkennung im eigenen Betrieb / spezifischer Fall frühzeitiges Erkennen von schlechter Qualität

Thank you for your attention!

Simon Kneller esentri AG Head of Industrial Analytics & IoT

- +49 160 967 648 04
- simon.kneller@esentri.com
- m www.linkedin.com/in/simon-kneller/