# "NORDEUS DATA SCIENCE CHALLENGE 2024: PREDICTING USER ACTIVITY FOR ENHANCED RETENTION"



A Machine Learning Approach to Forecasting User Engagement in Top Eleven

Presenter: Konstantinos Soufleros

Date: November 2024

# Project Overview

- **Objective:** To predict user activity in the first 28 days after re-registration to Top Eleven, using historical and re-registration data.
- Why It Matters: Accurate predictions help Nordeus tailor personalized experiences, leading to increased user retention and engagement.
- **Key Challenge:** Re-engaging users who have uninstalled and later re-registered.



Photo by Lukas ter Poorten on Unsplash

## Problem Statement



#### **Core Problem**

User retention is crucial in mobile gaming. Re-registered users represent a valuable opportunity for re-engagement.



#### **Target Variable**

Number of days a user is active during the first 28 days post reregistration (integer value between 0 and 28).



#### **Business Impact**

Predicting user activity enables targeted re-engagement strategies, improving user satisfaction and retention rates.

# **Project Objectives**

- Predict User Activity: Develop a robust model to forecast user engagement for the first 28 days after re-registration.
- Enhance User Retention: Provide actionable insights to help Nordeus optimize marketing and content strategies for returning players.
- **Deliver Insights:** Identify key features influencing user activity and offer data-driven recommendations for product teams.



Photo by The CEO Kid on Unsplash

# Data Description

- Datasets Used: Historical gameplay data and re-registration data: previous\_lives\_training\_data.csv, registration\_data\_training.csv, previous\_lives\_test\_data.csv, registration\_data\_test.csv.
- Data Size: Approximately 250,000 rows across all datasets, combining both training and test data.
- **Key Variables:** Features include user engagement metrics, re-registration details, and historical behavior data.

```
5.94,66755.39,0,0,0,0

39.12,42826.99,0,0,0

35.64,50656.8,0,0,0

115.94,66938.9,0

115.94,66938.9,0
```

Photo by Mika Baumeister on Unsplash

# Data Preprocessing and Feature Engineering



#### **Data Cleaning**

Addressed missing values, performed datetime conversion, and encoded categorical features.



### **Feature Engineering**

Aggregated user data, merged historical and re-registration datasets, and mapped countries to continents.



### **Outlier Handling**

Retained outliers representing valid, high-engagement user behavior.

# Exploratory Data Analysis (EDA)

- **Key Insights:** High correlation observed between features indicating potential multicollinearity: total\_match\_played\_count & total\_match\_won\_count (0.93), avg\_stars\_top\_11\_players & avg\_stars\_top\_3\_players (0.93), treatments\_spent & morale\_spent (0.80).
- Engagement Patterns: Strong engagement observed for users with higher playtime and session counts.
- Visualization: Correlation heatmap and distribution plots for key features were utilized.



# Modeling Approach



#### **Baseline Models**

Linear Regression, Ridge, Lasso were used as initial benchmarks.



#### **Tree-Based Models**

Random Forest, XGBoost, and LightGBM were explored for capturing non-linear relationships.



#### **Deep Learning and Ensembles**

Feedforward Neural Network (FFNN) and ensemble methods like Voting and Stacking Regressor.

# Hyperparameter Tuning with Optuna

- Optimization Strategy: Bayesian optimization using Optuna for FFNN and LightGBM models.
- Hyperparameters Explored: Learning rate, number of layers, batch size, and tree depth among others.
- **Results:** FFNN achieved an MAE of 5.45; LightGBM tuning reduced MAE to 5.91.



Photo by Martin W. Kirst on Unsplash

# Model Performance and Comparison



#### **Best Model**

Feedforward Neural Network (FFNN) achieved an MAE of 5.45, outperforming all other models.



#### **Tree-Based Model Performance**

LightGBM was the top-performing tree-based model with an MAE of 5.95.



#### **Overall Results**

XGBoost and Stacking Regressor had higher MAE, with FFNN emerging as the most accurate predictor.

# Model Interpretability

- SHAP Analysis: Identified key features influencing predictions, such as playtime and session count.
- Feature Importance Plot: LightGBM feature importance indicates 'playtime' as the top predictor.
- SHAP Summary Plot: SHAP values highlight 'playtime' and 'days\_active\_lifetime' as the most impactful features.



## Recommendations



#### **Personalized Content**

Use predictions to offer customized experiences, targeting users with high predicted engagement.



## **Targeted Marketing**

Focus re-engagement efforts on users predicted to have lower activity, with special offers and incentives.



### **Feature Optimization**

Leverage feature insights to enhance game mechanics and increase user satisfaction.

## **Future Work**



#### **Incorporate More Data**

Include additional features from user activity logs and external sources.



## **Automate Retraining**

Implement an MLOps pipeline for automated model retraining with new data.



## **Real-Time Deployment**

Deploy the model as a real-time API service for integration into production systems.

# **Key Takeaways**

- **Best Model:** The tuned Feedforward Neural Network (FFNN) achieved the lowest MAE of 5.45, indicating strong predictive performance.
- **Business Impact:** Accurate predictions enable targeted re-engagement strategies, improving user retention and satisfaction.
- Scalable Solution: The project lays the foundation for future enhancements, including real-time predictions and automated retraining.



## Q&A

Any questions? I'm happy to discuss further.

- Feedback Welcome: We value your insights and look forward to any suggestions for improvement.
- Thank You: Thank you for your time and attention throughout this presentation.
- Contact Information: LinkedIn: https://www.linkedin.com/in/konstantinossoufleros Email: soufleros.kostas@gmail.com GitHub: https://github.com/kostas696



Photo by Abraham Serey on Unsplash