

# Architecture de Réseau



cours@urec.cnrs.fr



# Architecture de Réseau

- 1994 : Bernard Tuy
  - o modifications

1998: Jean-Paul Gautier



#### Modèle de référence OSI

- · Open Systems Interconnection
  - modèle fondé sur un principe énoncé par Jules César : diviser pour mieux régner
  - le principe de base est la description des réseaux sous forme d'un ensemble de couches superposées les unes aux autres
  - l'étude du tout est réduit à celle de ses parties, l'ensemble devient plus facile à manipuler



### Normalisation

- O Deux organismes de normalisation pour réseaux informatiques :
  - · l'ISO (International Standardization Organization),
  - · l'UIT-T (Union Internationale des Télécommunications) ex CCITT
- O l'ISO est un organisme dépendant de l'ONU.
  - Les représentants nationaux sont des organismes nationaux de normalisation :
    - ANSI pour les USA
    - AFNOR pour la France
    - DIN pour l'Allemagne
    - BSI pour le Royaume Uni
    - HSC pour le Japon
- O l'UIT-T comprend des opérateurs et des industriels des télécommunications



## Architectures de réseaux Généralités

- Organisation en séries de couches ou niveaux.
  - · leur nombre, leur nom, leur fonction varie selon les réseaux
  - · l'objet de chaque couche est d'offrir certains services aux couches plus hautes
    - ces dernières neconnaissant pas la mise en oeuvre de ces services.





## Architectures de réseaux Généralités

- Organisation en séries de couches ou niveaux.
  - · leur nombre, leur nom, leur fonction varie selon les réseaux
  - · l'objet de chaque couche est d'offrir certains services aux couches plus hautes
    - ces dernières neconnaissant pas la mise en oeuvre de ces services.





## Architectures de réseaux Généralités

- Organisation en séries de couches ou niveaux.
  - · leur nombre, leur nom, leur fonction varie selon les réseaux
  - · l'objet de chaque couche est d'offrir certains services aux couches plus hautes
    - ces dernières neconnaissant pas la mise en oeuvre de ces services.





### Architectures de réseaux





# Architecture de réseaux Echanges d'informations





message : m couche 7

Source





Source



Réception



**Source** 





**Source** 





Source































#### 1) ISO 7498-1: le modèle de référence OSI de base

- 2) ISO 7498-2 : l'architecture de sécurité
- 3) ISO 7498-3 : la dénomination et l'adressage
- 4) ISO 7498-4 : le cadre général pour la gestion OSI
- 1/Ad-1): la transmission en mode sans connexion
- 1/Ad-2) : la transmission en multipoint



**PDU : Protocol Data Unit** 



**Application** 

**Présentation** 

Session

Transport

Réseau

Liaison données

- Support Physique + Couche Physique
- O La norme ISO 10022 ou la recommandation X.211 de l'UIT définit le service qui doit etre rendu.
- O Elle fournit les moyens mécaniques, électriques, fonctionnels, au maintien et à la désactivation des connexions physiques destinées à la transmission des éléments binaires entre entités de liaisons
- Transmission des bits sur un circuit de communication
- O Eléments de la couche physique
  - · Support physique
  - · Codeurs, Modulateurs,
  - · Multiplexeurs, Concentrateurs
- O La conception de la couche physique peut-etre réellement considérée comme faisant partie du domaine de l'ingénieur électronicien.



**Application** 

**Présentation** 

Session

Transport

<u>Réseau</u>

Liaison données

- Utilise la couche physique
- O Gestion de la liaison de données
  - · données de l'émetteur en trame de données,
  - · transmission des trames en séquence,
  - · gestion des trames d'acquittement,
  - · reconnaissance des frontières de trames envoyées par la couche physique.
- O Détection et reprise sur erreur
  - · régulation du trafic,
  - · gestion des erreurs.
- O Procédure de transmission (HDLC,LLC, DSC, ..)
- O La norme ISO 8886 ou la recommandation UIT X.212 définit le service fournit par la couche 2



**Application** 

**Présentation** 

Session

**Transport** 

Réseau

Liaison données

Physique

- O Fournit les moyens d'établir, de maintenir et de libérer des connexions de réseau entre des systèmes ouverts
  - · gestion du sous-réseau,
  - · acheminement des paquets de source vers la destination.
- Fonctionnalités
  - · Adressage
  - · Routage
    - source routing/"hop by hop"
  - · Controle de flux
- Modes connecté/non connecté
  - · IP, X25

La couche réseau doit permettre l'interconnexion de réseaux hétérogènes



**Application** 

**Présentation** 

Session

**Transport** 

Réseau

Liaison données

**Physique** 

- Indépendance des réseaux sous-jacents
- O Accepte les données de la couche session
  - · les découpe éventuellement,
  - · s'assure de l'ordonnancement
- Optimiser les ressources réseaux
- O Fonctionnalités de bout en bout
  - · multiplexage de plusieurs messages sur un canal
    - nécessité d'indiquer quel message appartient à quelle connexion.
- O Dépendance du service réseau (QoS)
- Protocoles de Transport
  - · TP0, 1, 2, 3 ou 4
  - · TCP, UDP

Authentique couche de bout en bout



**Application** 

**Présentation** 

Session

**Transport** 

Réseau

Liaison données

- OResponsable de la synchronisation
- **Fonctions de type** 
  - ·Gestion du dialogue (bi- ou unidirectionnel)
  - ·Points de reprise,
  - ·Retour arrière
  - ·etc.
- **Orchestration**
- OGestion des transactions



**Application** 

**Présentation** 

Session

**Transport** 

Réseau

Liaison données

- O S'intéresse à la syntaxe et à la sémantique des informations
  - Représentation des données transférées entre entités d'application,
    Représentation de la structure de données et représentation de l'ensemble des actions effectuées sur cette structure de données.
  - · encodage dans une norme agrée permettant à des équipements "ASCII" et "EBCDIC" par exemple de communiquer.
    - compression des données, chiffrement.
- O Exemple: La syntaxe abstraite ASN.1 (ISO 8824, UIT X208) normalisée par l'ISO.
  - · utilisée dans la messagerie X400 et les annuaires X500.



#### **Application**

**Présentation** 

Session

**Transport** 

Réseau

Liaison données

- O Elle offre aux processus d'application le moyen d'accéder à l'environnement OSI.
- O Les processus d'application échangent leurs informations par l'intermédiaire des entités d'application
  - · exemple : terminal de réseau virtuel, tranfert de fichiers, courrier électronique, consultation des annuaires.





#### Eléments complémentaires

- · Structure de données
  - Service Data Unit (SDU), Protocol Data Unit (PDU)
  - Points d'accès aux services
    - Services Access point (SAP)
    - · Connectiuon End Point (CEP)
  - Encapsulation
  - Fonctions
    - · Segmentation, groupage, ..

IDU : Unité de données d'interface entre couches (Interface Data Unit)

ICI : Information de commande de l'interface (Interface Control Information)

SDU : Unité de données de service (Service Data Unit)

SAP : Point d'accès d'un service (Service Access Point)

N-PDU : Unité de données de protocole de couche N (N- protocol Data Unit)