Введение в искусственный интеллект. Машинное обучение Семинар 9. Примеры реализации бустинга

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

1 декабря 2020 г.

AdaBoost — значение алгоритма

- AdaBoost значение алгоритма
- Практические примеры градиентного бустинга на решающих деревьях:

- AdaBoost значение алгоритма
- Практические примеры градиентного бустинга на решающих деревьях:
 - XGBoost

- AdaBoost значение алгоритма
- Практические примеры градиентного бустинга на решающих деревьях:
 - XGBoost
 - 2 LightGBM

- AdaBoost значение алгоритма
- Практические примеры градиентного бустинга на решающих деревьях:
 - XGBoost
 - 2 LightGBM
 - CatBoost

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

• В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),

²Viola and Jones (2001). "Robust Real-time Object Detection"

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году 2 был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.

²Viola and Jones (2001). "Robust Real-time Object Detection"

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году 2 был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,

²Viola and Jones (2001). "Robust Real-time Object Detection"

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году 2 был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,
 - Этот алгоритм детекции был лидирующим для детекции лиц на протяжении более 10 лет (до начала широкого применения сверточных нейросетей).

²Viola and Jones (2001). "Robust Real-time Object Detection"

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году² был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,
 - Этот алгоритм детекции был лидирующим для детекции лиц на протяжении более 10 лет (до начала широкого применения сверточных нейросетей).

²Viola and Jones (2001). "Robust Real-time Object Detection"

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 3 :

⁵Ke, G. et al. (2017). "Lightgbm: A highly efficient gradient boosting decision tree".

³https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

⁴Chen, T., and Guestrin, C. (2016). "Xgboost: A scalable tree boosting system".

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревьях 3 :

³https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

⁴Chen, T., and Guestrin, C. (2016). "Xgboost: A scalable tree boosting system".

⁵Ke, G. et al. (2017). "Lightgbm: A highly efficient gradient boosting decision tree". ⁶Prokhorenkova, L., et al. (2017). "CatBoost: unbiased boosting with categorical features".

Наибольшую популярность на данный момент имеют реализации градиентного бустинга на решающих деревья x^3 :

Одни из наиболее известных на данный момент - это XGBoost⁴, LightGBM⁵ и CatBoost⁶.

⁶Prokhorenkova, L., et al. (2017). "CatBoost: unbiased boosting with categorical features".

5/7

³https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

⁴Chen, T., and Guestrin, C. (2016). "Xgboost: A scalable tree boosting system".

⁵Ke. G. et al. (2017). "Lightgbm: A highly efficient gradient boosting decision tree".

Эти реализации отличаются:

• Методом ветвления в узлах дерева при его обучении,

Эти реализации отличаются:

- Методом ветвления в узлах дерева при его обучении,
- Способом работы с категориальными признаками (например, XGBoost не умеет с ними работать),

Эти реализации отличаются:

- Методом ветвления в узлах дерева при его обучении,
- Способом работы с категориальными признаками (например, XGBoost не умеет с ними работать),
- Скоростью обучения / тестирования.

Эти реализации отличаются:

- Методом ветвления в узлах дерева при его обучении,
- Способом работы с категориальными признаками (например, XGBoost не умеет с ними работать),
- Скоростью обучения / тестирования.

	XGBoost	Boost Light BGM		CatBoost	
Parameters Used	max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200	max_depth: 50 learning_rate: 0.1 num_leaves: 900 n_estimators: 300		depth: 10 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50	
Training AUC Score	0.999	Without passing indices of categorical features	Passing indices of categorical features	Without passing indices of categorical features	Passing indices of categorical features
		0.992	0.999	0.842	0.887
Test AUC Score	0.789	0.785	0.772	0.752	0.816
Training Time	970 secs	153 secs	326 secs	180 secs	390 secs
Prediction Time	184 secs	40 secs	156 secs	2 secs	14 secs
Parameter Tuning Time (for 81 fits, 200 iteration)	500 minutes	200 minutes		120 minutes	

Дорожная карта Scikit-Learn⁷

⁷https://scikit-learn.org/stable/tutorial/machine_learning_map/ < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >

