

Novel Real-time Calibration and Alignment Procedure for LHCb Run II

Claire Prouve, on behalf of the LHCb collaboration University of Bristol

New challenges in Run II

- Increase in energy: $\sqrt{s} = 7(8) \text{ TeV} \Rightarrow 13 \text{ TeV}$
- 15% increase of inelastic collision rate
- 20% increase of multiplicity per collision
- 60% increase of $\sigma_{\rm bb^-}$ and $\sigma_{\rm cc^-}$
- Reduced bunch spacing: 50 ns ⇒ 25 ns

Real Time Alignment and Calibration

- Particle identification useable in HLT2
- Overall improved HLT2 efficiency
- Stable quality of alignment
- No more differences between online and offline

LHCb Trigger Schemes

The LHCb Detector

Performance and Impact on Physics

Alignment Farm and Framework

- Alignments performed for each fill
- HLT1 line for each task
- Event reconstruction parallelised on analysers (1700 nodes), computing of alignment constants by iterator (1 node)
- Steered by the run control using a Finite
 State Machine
- VELO, Tracker & calibrations: automatic update of the constants if they differ by a given value
- RICH alignment & Muon System: monitoring mode

RICH Mirror Alignment

Orientation of the RICH mirrors in x and y

• Refractive index calibration: Fit to the

scale factor for the refractive index

reconstructed-expected Cherenkov angle yields

HPD image calibration: Sobel filter applied to

each HPD and used to provide calibration

- Fit the variation of the Cherenkov angle $\Delta\theta$ as a function of the polar angle ϕ to extract the misalignments on the detector plane (Θ_x, Θ_y) : $\Delta\theta = \Theta_x \sin\phi + \Theta_v \cos\phi$
- Monitoring mode, updated O(10) times a year
- ~30 minutes per task

RICH Calibration

RICH1 scale factor

HPD image

RICH1 Stability

Tracker Alignment: VELO, Tracker, Muon System

Position of the tracking elements in x and y

Minimisation of residual of Kalman track fit using additional constraints

 $\alpha = \alpha_0 - \left. \left(\frac{d^2 \chi^2}{d\alpha^2} \right)^{-1} \right|_{\alpha_0} \left. \frac{d\chi^2}{d\alpha} \right|_{\alpha_0}$

- Independent alignments:
- VELO & Tracker: updated every O(1) fills
- Tracker: updated every O(1) weeks
- Muon system: updated O(1) per year
- ~7 minutes for each task

Example of alignment sequence

find misalignments RUNNING

Set up Brunel

Reconstruct events and fil

histograms.

Reconstruct

events and fill

Calorimeter Calibration

Updated every run

Relative calibration for each cell

- Scale the High Voltage by factor α to keep the gain stable by evaluating the variation of the occupancy
- LED monitoring system to detect ageing of the Photo Multiplier Tubes
- Updated per fill

Calibrate to the neutral π mass

- Fit the π^0 mass distribution for each cell for $\pi^0\!\!\to\!\!\gamma\gamma$, where one γ has its seed in the cell
- Run on the HLT-farm during TS

Outer Tracker Calibration

Global time alignment for all modules

Fit the residual of the drift time to extract the global time delay t₀ caused by readout electronics

OT Stability

 $t_{\text{meas}} = t_0 + t_{\text{flight}} + t_{\text{drift}} + t_{\text{prop}}$

• Updated every O(10) runs

