Chapter 32 Electro-magnetic Waves

Maxwell Equations

Electro-magnetic spectrum

Speed of Light

Energy and Momentum – Poynting Vector and Radiation Pressure Standing waves

1

Chapter 32 - El-mg Waves		
Maxwell's Equation -	Integral	form

Law	Equation	Relates
Gauss' law for electric field	$\oint \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_0} q_{enc}$	net electric flux to net enclosed electric charge
Gauss' law for magnetic field	$ \oint \vec{B} \cdot d\vec{A} = 0 $	net magnetic flux to net enclosed magnetic charge
Faraday/Lenz law of induction	$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$	induced electric field to change in magnetic flux
Maxwell-Ampere law	$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc} + \varepsilon_0 \mu_0 \frac{d\Phi_E}{dt}$	induced magnetic field to change electric flux and to current

Conclusions

Electric and magnetic fields can be separated for electrostatic charges and/or steady currents. Time-varying fields are no longer independent.

Every accelerating charge radiates el.mg. energy, in particular a charge in SHM – see Fig 32.3 page 1053.

2

Chapter 32 - El-mg Waves	
N / 112	Later word and all

Maxwell's Equation – Integral and Differential Forms

Law	Equation	Relates
Gauss' law for electric field	$\iint \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_0} q_{enc}$	net electric flux to net enclosed electric charge
	$ec{ abla}\cdotec{E}=rac{1}{arepsilon_0} ho_{enc}$	
Gauss' law for magnetic field	$\iint \vec{B} \cdot d\vec{A} = 0$	net magnetic flux to net enclosed magnetic charge
	$\vec{\nabla} \cdot \vec{B} = 0$	
Faraday/Lenz law of induction	$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$	induced electric field to change in magnetic flux
	$\vec{\nabla} imes \vec{E} = -rac{\partial \vec{B}}{\partial t}$	
Maxwell-Ampere law	$\oint \vec{B} \cdot d\vec{s} = \varepsilon_0 \mu_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc}$	induced magnetic field to change in electric flux and to current
	$\vec{\nabla} \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$	

3

5

Chapter 32 - El-mg Waves

Electro-magnetic Waves

El-mg waves = changing electric & magnetic fields traveling through vacuum and obeying Maxwell equations (w/out involving moving charges or currents)

Maxwell (1850s) showed this for light (el.mg waves traveling at the C) and predicted radio waves Heinrich Hertz (1888) - Helmholtz's student – experimental demo for radio waves (& sparks)

Postulate field configurations with wave-like behavior traveling in the +x direction in phase

$$\vec{E} = E_{max} \sin(\kappa x - \omega t) \hat{j}$$
 Snapshot at given t
$$\vec{B} = B_{max} \sin(\kappa x - \omega t) \hat{k}$$
 E,B travel as package in x direction with $\lambda = \frac{2\pi}{k}$ and $T = \frac{2\pi}{\omega}$

Test if they satisfy Maxwell's equations

Show they propagate at the speed of light $c = 3 \cdot 10^8 \frac{m}{s}$ See YF derivation page 1055-1057

6

Chapter 32 - El-mg Waves

Speed of Light

Speed of the electromagnetic waves

$$c = \lambda f = \frac{\omega}{\kappa} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3 \cdot 10^8 \frac{m}{s}$$

Compare to

$$\omega = \sqrt{\frac{k}{m}} = \frac{2\pi}{T}$$
 SHM of mass on spring
$$v = \sqrt{\frac{F_T}{\mu}}$$
 Mechanical wave on taut string

Relationship between electric and magnetic field

 $\frac{E(t)}{E(t)} = \frac{E_{max}}{E(t)} = C$

Proof:
$$\begin{split} E &= E_{max} \sin(\kappa x - \omega t) & /: \frac{\partial}{\partial x} \\ \frac{\partial E}{\partial x} &= \kappa E_{max} \cos(\kappa x - \omega t) \\ \text{Use} & \frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t} & \text{from Faraday's law} & /\cdot dt \\ \int \kappa E_{max} \cos(\kappa x - \omega t) dt &= \int -\frac{\partial B}{\partial t} dt & /\int \dots dt \\ \frac{k}{\omega} E_{max} \sin(\kappa x - \omega t) &= \frac{E_{max}}{c} \sin(\kappa x - \omega t) = \frac{E}{c} = B \end{split}$$

Fields are in phase

7

9

11

Chapter 32 - El-mg Waves

Key Properties of electro-magnetic Waves

An electro-magnetic wave is traveling in the z direction.

- 1. The points A,B, C have the same z coordinate. Compare the magnitude of the electric field at A and B:
 - A) $E_A > E_B$
 - B) $E_A = E_B$
 - C) $E_A < E_B$

2. Consider a point (x,y,z) at time t when E_x is negative and has its maximum value. What is $B_{\scriptscriptstyle \rm V}$

- A) B_{ν} is positive and has its maximum value
- B) B_y is negative and has its maximum value
- C) $\vec{B_v}$ is zero
- D) We do not have enough information

Chapter 32 - El-mg Waves

Energy Transport

Relate magnitude of \vec{S} with energy contained in the electric and magnetic field of the el.mg. wave Energies densities are the same

$$u_E = u_B$$

using
$$c \varepsilon_0 = \frac{1}{c} \mu_0$$

$$u_E = \frac{1}{2} \varepsilon_0 E^2 \frac{c}{c} = \frac{1}{2c} \frac{1}{c \mu_0} E^2 = \frac{1}{2 \mu_0} \left(\frac{E}{c}\right)^2 = \frac{1}{2 \mu_0} B^2 = u_B$$

Total energy density

$$u = u_E + u_B = \varepsilon_0 E^2$$

$$S = c$$

Take averages

$$S_{avg} = c \ u_{ave} = c \ \varepsilon_0 (E^2)_{avg} = c \ \varepsilon_0 \frac{1}{2} E_m^2 = c \ \varepsilon_0 \ E^2_{rms}$$

$$I = \frac{P_{ave}}{A} = \frac{1}{A} \frac{u_{ave} \, vol}{t} = \frac{1}{A} \frac{u_{ave}(c \, t) \, A}{t} = c \, u_{ave}$$

$$I = S_{avg} = \frac{1}{c \,\mu_0} E_{rms}^2$$

$$[D] = m^2$$

Example: average intensity of sunlight on Earth $\sim 1400 \, \frac{W}{m^2} \sim 140 \, \frac{mW}{cm^2}$

13

Chapter 32 - El-mg Waves

Radiation Pressure

Examples:

Atmospheric pressure

$$p_0 = 101 \, kPa \cong 10^5 Pa$$

Pressure from sun

$$p_r = \frac{I}{c} = \frac{1400 \text{ W/m}^2}{3 \cdot 10^8 \text{ m/s}} = 4.7 \text{ } \mu Pa = 4.6 \cdot 10^{-1} \text{ } p_0$$

Laser pointer

$$p_r = \frac{2I}{c} = \frac{2\frac{P}{\pi r^2}}{c} = \frac{210^{-3}}{\pi \ 10^{-6}3 \ 10^8} = 2.1 \ \mu Pa$$

Chapter 32 - El-mg Waves

Radiation Pressure

Radiation pressure of el-mag waves (p_r)

Assume el-mg wave incident on object and totally absorbed over Δt

U = energy carried by wave

 $\Delta p = \frac{\Delta U}{c}$ (Maxwell) change in linear momentum of an object after absorbing ΔU

$$p_r = \frac{F}{A} = \frac{1}{A} \frac{\Delta p}{\Delta t} = \frac{1}{A} \frac{\frac{\Delta U}{c}}{\Delta t} = \frac{1}{c} \frac{1}{A} \frac{\Delta U}{\Delta t} = \frac{I}{c}$$

$$p_r = \frac{I}{c}$$
 since

Total absorption:
$$p_r = \frac{l}{c}$$
 since $\Delta p = p_i - 0 = p_i$

Assume el-mg wave incident on object and totally reflected over Δt $\Delta p = \frac{2\,\Delta U}{c} \qquad \qquad \text{(Maxwell) change in linear momentum model}$

$$\Delta p = \frac{2\Delta}{c}$$

(Maxwell) change in linear momentum of an object after reflecting ΔU

$$p_r = \frac{2I}{c}$$
 si

Perfect reflection
$$p_r = \frac{2I}{c}$$
 since $\Delta p = p_i - (-p_i) = 2p_i$

14

Chapter 32 - El-mg Waves

Radiation Pressure: Applications

Optical (laser) tweezers

intense laser focused on small area 1987 Arthur Ashkin - used in cell biology

2018 1/2 Nobel Prize

Solar sail

IKARUS - Japan, 2010-2013

(Interplanetary Kite-craft Accelerated by Radiation Of the Sun)

https://www.youtube.com/watch?v=7Mb47w0vB04

7.5 μ m over 200 m^2 (14 m square);); 2 kg

reflectance-adjustable LCD panel

Sunjammer – NASA, Jan 2015 (planned) $1200 \, m^2 \, (35 \, m \, \text{square}); 32 \, kg$

cancelled >4v, >\$21M

"It looks like it just wasn't big enough for us to afford it," Dana Rohrabacher (R-Calif.)

