## Decoding Alzheimer's: Advanced MRI Analysis Through Computer Vision Techniques

#### Data:

Atlas registered MRI scans sliced into 176 images, masked and not masked.

Scans from 412 individuals age 18 to 96 of which 100 are dignosed with mild to moderate AD



#### **Challenges:**

- High number of images (~150,000) (demanding computational recources)
- Low number of actually different samples (412)
- Data imbalence

#### Roadmap:

- 1. Exploratory Data Analysis
  - Discover further potential challenges
- 2. Preprocessing
  - Goal: reduce computational load during training
  - Evaluation of which slices contain relevant data. E.g. train 176 simple models on the respective slices, then only keep top n slices where the accuracy was the highest.

See next slide

# Decoding Alzheimer's: Advanced MRI Analysis Through Computer Vision Techniques

### Roadmap:

- 1. Exploratory Data Analysis
- 2. Data Preprocessing
- 3. Implement Baseline Model: Use the average prediction from 10 EfficientNets on the 10 most relevant slices.
- 4. Weighted Prediction Aggregation
- 5. Replace EfficientNets with Transformer-based model
- Remove the Classification Head from the model, concatenate the feature representations, and use a new Classification Head for prediction based on these feature representations.
- 7. Implement Attention into the Classification Head
- 8. Self Distillation of Training Labels
- 9. Implement other state-of-the-art methodologies

