Definition (Definición Expresión regular)

- ∅ es una expresión regular que denota el conjunto vacío ∅.
- λ es una expresión regular que denota el conjunto $\{\lambda\}$.
- para cada a ∈ Σ, a es es una expresión regular que denota el conjunto {a}.
- si r y s denotan los lenguajes R y S entonces $r \mid s, rs, r^*$ y r^+ son expresiones regulares que denotan los conjuntos $R \cup S$, RS, R^* y R^+ respectivamente.

Notaci<u>ón</u>

Lo anterior puede notarse:
$$\mathcal{L}(r) = R$$
, $\mathcal{L}(s) = S$, $\mathcal{L}(r \mid s) = R \cup S$, $\mathcal{L}(rs) = RS$, $\mathcal{L}(r^*) = R^*$ y $\mathcal{L}(r^+) = R^+$.

Example (Ejemplos)

- 00
- (0 | 1)*
- $(0 | 1)^* 00 (0 | 1)^*$
- (1 | 10)*
- $(0 | \lambda) (1 | 10)^*$

Theorem (Teorema)

Dada una expresión regular r, existe un AFND- λ M con un solo estado final y sin transciones a partir del mismo, tal que $\mathcal{L}(M) = \mathcal{L}(r)$

- caso base:
 - $r = \emptyset$,

- caso base:
 - $r = \lambda$,

- caso base:
 - \bullet r = a.

- inducción en la cantidad de operadores:
 - Caso $r=r_1\mid r_2$: por h.i. existen $M_1=\langle Q_1,\Sigma_1,\delta_1,q_1,\{f_1\}\rangle$ y $M_2=\langle Q_2,\Sigma_2,\delta_2,q_2,\{f_2\}\rangle$, tales que $\mathcal{L}\left(M_1\right)=\mathcal{L}\left(r_1\right)$ y $\mathcal{L}\left(M_2\right)=\mathcal{L}\left(r_2\right)$ respectivamente. Entonces podemos construir el autómata $M=\langle Q_1\cup Q_1\cup \{q_0,f_0\}\,,\Sigma_1\cup \Sigma_1,\delta,q_0,\{f_0\}\rangle$ con δ dada por:

•
$$\delta(q_0, \lambda) = \{q_1, q_2\}$$

•
$$\delta(q, a) = \delta_1(q, a)$$
 para $q \in Q_1 - \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$

•
$$\delta(q, a) = \delta_2(q, a)$$
 para $q \in Q_2 - \{f_2\}$ y $a \in \Sigma_2 \cup \{\lambda\}$

•
$$\delta(f_1, \lambda) = \delta(f_2, \lambda) = \{f_0\}$$

- inducción en la cantidad de operadores:
 - Caso $r=r_1^*$: por h.i. existen $M_1=\langle Q_1,\Sigma_1,\delta_1,q_1,\{f_1\}\rangle$, tal que $\mathcal{L}\left(M_1\right)=\mathcal{L}\left(r_1\right)$ Entonces podemos construir el autómata

$$\textit{M} = \langle \textit{Q}_1 \cup \{\textit{f}_0, \textit{q}_0\} \,, \Sigma_1, \delta, \textit{q}_0, \{\textit{f}_0\} \rangle$$
 con δ dada por:

- $\delta(q, a) = \delta_1(q, a)$ para $q \in Q_1 \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$
- $\delta(q_0, \lambda) = \delta(f_1, \lambda) = \{q_1, f_0\}$

- inducción en la cantidad de operadores:
 - Caso $r=r_1r_2$: por h.i. existen $M_1=\langle Q_1,\Sigma_1,\delta_1,q_1,\{f_1\}\rangle$ y $M_2=\langle Q_2,\Sigma_2,\delta_2,q_2,\{f_2\}\rangle$, tales que $\mathcal{L}\left(M_1\right)=\mathcal{L}\left(r_1\right)$ y $\mathcal{L}\left(M_2\right)=\mathcal{L}\left(r_2\right)$ respectivamente. Entonces podemos construir el autómata

$$M = \langle Q_1 \cup Q_1, \Sigma_1 \cup \Sigma_1, \delta, q_1, \{f_2\} \rangle$$
 con δ dada por:

•
$$\delta(q, a) = \delta_1(q, a)$$
 para $q \in Q_1 - \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$

•
$$\delta(q, a) = \delta_2(q, a)$$
 para $q \in Q_2 - \{f_2\}$ y $a \in \Sigma_2 \cup \{\lambda\}$

Theorem (Teorema)

Dado un AFD $M = \langle \{q_1, \dots, q_n\}, \Sigma, \delta, q_1, F \rangle$ que acepta el lenguaje L, existe una expresión regular que denota el mismo lenguaje.

Demostración.

Denotemos con $R_{i,j}^k$ el conjunto de cadenas de Σ^* que llevan al autómata M desde el estado q_i al estado q_j pasando por estados cuyo índice es, a lo sumo, k. Entonces, $R_{i,j}^n$ denota todos los caminos entre q_i y q_j .

Definamos $R_{i,i}^k$ en forma recursiva:

$$\begin{split} R_{i,j}^k &= R_{i,k}^{k-1} \left(R_{kk}^{k-1}\right)^* R_{k,j}^{k-1} \cup R_{i,j}^{k-1} \text{ para } k \geq 1 \\ R_{i,j}^0 &= \left\{ \begin{array}{l} \left\{a: \delta\left(q_i, a\right) = q_j\right\}, \, a \in \Sigma \quad \text{ si } i \neq j \\ \left\{a: \delta\left(q_i, a\right) = q_j\right\} \cup \left\{\lambda\right\}, \, a \in \Sigma \quad \text{ si } i = j \end{array} \right. \end{split}$$

Demostración (cont.)

- Base: k = 0 $R_{i,j}^0$ es el conjunto de cadenas de un solo caracter o λ . Por lo tanto, $r_{i,j}^0$ será igual a:
 - $a_1 \mid \ldots \mid a_p$, con a_1, \ldots, a_p símbolos de Σ , si $\delta(q_i, a_s) = q_j$ para $s = 1, \ldots, p$ y $q_i \neq q_j$.
 - $a_1 \mid \ldots \mid a_p \mid \lambda$,con a_1, \ldots, a_p símbolos de Σ , si idem anterior pero además $q_i = q_i$.
 - \varnothing , si no existe ningún a_i que una q_i y q_i y $q_i \neq q_i$.
 - λ , si idem anterior pero además $q_i = q_j$.

Demostración (cont.)

• Paso inductivo: Por hipótesis inductiva, tenemos que:

$$\mathcal{L}\left(r_{ik}^{k-1}\right) = R_{ik}^{k-1}, \, \mathcal{L}\left(r_{kk}^{k-1}\right) = R_{kk}^{k-1}, \, \mathcal{L}\left(r_{kj}^{k-1}\right) = R_{kj}^{k-1} \, \text{ y}$$

$$\mathcal{L}\left(r_{ij}^{k-1}\right) = R_{ij}^{k-1} \, . \, \text{Si tomamos}$$

$$r_{ij}^{k} = r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^{*} r_{kj}^{k-1} \mid r_{ij}^{k-1} \, \text{ tendremos que}$$

$$\mathcal{L}\left(r_{ij}^{k}\right) = \mathcal{L}\left(r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^{*} r_{kj}^{k-1} \mid r_{ij}^{k-1}\right)$$

$$= \mathcal{L}\left(r_{ik}^{k-1} \left(r_{kk}^{k-1}\right)^{*} r_{kj}^{k-1}\right) \cup \mathcal{L}\left(r_{ij}^{k-1}\right)$$

$$= \mathcal{L}\left(r_{ik}^{k-1}\right) \mathcal{L}\left(r_{kk}^{k-1}\right)^{*} \mathcal{L}\left(r_{kj}^{k-1}\right) \cup \mathcal{L}\left(r_{ij}^{k-1}\right)$$

$$= R_{ik}^{k-1} \left(R_{kk}^{k-1}\right)^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

$$= R_{ii}^{k}$$

Demostración (cont.)

Por otro lado

$$\mathcal{L}\left(M\right) = \bigcup_{q_{j} \in F} R_{1j}^{n} = R_{1j_{1}}^{n} \cup \ldots \cup R_{1j_{m}}^{n},$$

con $F = \{q_{j_1}, \dots, q_{j_m}\}$. De lo anterior, $\mathcal{L}\left(r_{1j_i}^n\right) = R_{1j_i}^n$ para $i = 1, \dots, m$, por lo tanto,

$$\mathcal{L}(M) = \mathcal{L}\left(r_{1j_{1}}^{n}\right) \cup \ldots \cup \mathcal{L}\left(r_{1j_{m}}^{n}\right)$$
$$= \mathcal{L}\left(r_{1j_{1}}^{n} \mid \ldots \mid r_{1j_{m}}^{n}\right),$$

entonces, el lenguaje $\mathcal{L}(M)$ es denotado por la expresión regular $r_{1i.}^{n} \mid \ldots \mid r_{1i...}^{n}$.