الجامعة المصرية للتعلم الإلكتروني الأهلية

GEN206 Discrete Mathematics

Section 05

Faculty of Information Technology Egyptian E-Learning University

Fall 2020

8. Find these values.

g)
$$\left[\frac{1}{2} + \left[\frac{1}{2}\right]\right]$$

h)
$$\lceil \lfloor \frac{1}{2} \rfloor + \lceil \frac{1}{2} \rceil + \frac{1}{2} \rceil$$

Find these values.

a)
$$\lceil \frac{3}{4} \rceil$$

c)
$$[-\frac{3}{4}]$$

g)
$$\lfloor \frac{1}{2} + \lceil \frac{3}{2} \rceil \rfloor$$

b)
$$\lfloor \frac{7}{8} \rfloor$$

d)
$$[-\frac{7}{8}]$$

h)
$$\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor$$

38. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from **R** to **R**.

$$(f \circ g)(x) = x^2 + 4x + 5$$

 $(g \circ f)(x) = x^2 + 3$

Sequences

Geometric

A geometric progression is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the *initial term a* and

the *common ratio* r are real numbers.

Sequences

Arithmetic

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, ..., a + nd, ...$$

where the *initial term a* and

the *common difference d* are real numbers.

- **1.** Find these terms of the sequence $\{a_n\}$, where $a_n =$ $2 \cdot (-3)^n + 5^n$.
 - **a)** a_0 **b)** a_1 **c)** a_4 **d)** a_5

Solution

- **1.** Find these terms of the sequence $\{a_n\}$, where $a_n =$ $2 \cdot (-3)^n + 5^n$.
 - **a)** a_0 **b)** a_1 **c)** a_4 **d)** a_5

- **787 2639**

5. List the first 10 terms of each of these sequences.

- a) the sequence that begins with 2 and in which each successive term is 3 more than the preceding term
- **b)** the sequence that lists each positive integer three times, in increasing order
- c) the sequence that lists the odd positive integers in increasing order, listing each odd integer twice
- **d)** the sequence whose *n*th term is $n! 2^n$
- e) the sequence that begins with 3, where each succeeding term is twice the preceding term
- f) the sequence whose first term is 2, second term is 4, and each succeeding term is the sum of the two preceding terms

Solution

5. List the first 10 terms of each of these sequences.

- **a)** the sequence that begins with 2 and in which each successive term is 3 more than the preceding term
- **b)** the sequence that lists each positive integer three times, in increasing order
- c) the sequence that lists the odd positive integers in increasing order, listing each odd integer twice
- **d**) the sequence whose *n*th term is $n! 2^n$
- e) the sequence that begins with 3, where each succeeding term is twice the preceding term
- **f**) the sequence whose first term is 2, second term is 4, and each succeeding term is the sum of the two preceding terms

- (a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29
- (b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4
- (c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9
- (d) -1, -2, -2, 8, 88, 656, 4912, 40064, 362368, 3627776
- (e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536
- (f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25$$
$$= 55.$$

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$$

THEOREM

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

TABLE 2 Some Useful Summation Formulae.	
Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

29. What are the values of these sums?

a)
$$\sum_{k=1}^{5} (k+1)$$

b)
$$\sum_{j=0}^{4} (-2)^j$$

c)
$$\sum_{i=1}^{3} \sum_{j=0}^{2} j$$

d)
$$\sum_{i=0}^{2} \sum_{j=0}^{3} i^2 j^3$$

35. Show that $\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$, where a_0, a_1, \dots, a_n is a sequence of real numbers. This type of sum is called **telescoping**.

$$\sum_{j=1}^{n} a_j a_{j-1} = \sum_{j=1}^{n} a_j - \sum_{j=1}^{n} a_{j-1} = \sum_{j=1}^{n} a_j - \sum_{k=0}^{n-1} a_k$$

$$= (a_n + a_{n-1} + a_{n-2} + \dots + a_1) - (a_n/1 + a_{n-2} + \dots + a_1 + a_0)$$

$$=a_n-a_0$$

TABLE 2 Some Useful Summation Formulae. Sum Closed Form $\sum_{k=0}^{n} ar^k \ (r \neq 0)$ $\frac{ar^{n+1}-a}{r-1}, r\neq 1$ $\frac{n(n+1)}{2}$ $\frac{n(n+1)(2n+1)}{6}$ $\frac{n^2(n+1)^2}{4}$ $\sum_{k=0}^{\infty} x^k, \, |x| < 1$ $\frac{1}{1-x}$ $\sum_{k=1}^{\infty} kx^{k-1}, |x| < 1$

39. Find $\sum_{k=100}^{200} k$. (Use Table 2.)

$$\sum_{k=1}^{n} k$$

$$\frac{n(n+1)}{2}$$

39. Find $\sum_{k=100}^{200} k$. (Use Table 2.)

$$\sum_{k=100}^{200} k$$

$$= \sum_{k=1}^{200} k - \sum_{k=1}^{99} k$$

$$= \frac{200(200+1)}{2} - \frac{99(99+1)}{2}$$

$$= 20100 - 4950$$

$$= 15150$$

40. Find $\sum_{k=99}^{200} k^3$. (Use Table 2.)

$$\sum_{k=1}^{n} k^3$$

$$\sum_{k=1}^{n} k^3 \qquad \frac{n^2(n+1)^2}{4}$$

40. Find $\sum_{k=99}^{200} k^3$. (Use Table 2.)

$$\begin{split} &\sum_{k=99}^{200} k^3 \\ &= \sum_{k=1}^{200} k^3 - \sum_{k=1}^{98} k^3 \\ &= \frac{200^2 (200+1)^2}{4} - \frac{98^2 (98+1)^2}{4} \\ &= 404,010,000 - 23,532,201 \\ &= 380477799 \end{split}$$